Rising Waters: Can We Use Machine Learning to Accurately and Effectively Predict Bangladesh's Floods and Hydrological Data?

Audience: Central and local governments of Bangladesh

David Campos, Chun Him Cheung, Kolby Devery, Redwan Hussain

UNIVERSITY CALIFORNIA, BERKELEY | Fall 2021 MIDS W201 | MON 4PM PT | GROUP 2

Bangladesh is subject to catastrophe due to floods

- Population of ~165 million people.
- Located at the delta of the Padma and Jamuna rivers in the northeastern part of the Indian subcontinent.

Bangladesh is subject to catastrophe due to floods

- 2020: heavy monsoons caused nearly 25 percent of the country to be submerged
 - ~2 million displacements
 - Hundreds of deaths
- Going forward, the UN
 estimates that the number of
 households to be impacted by
 natural disaster will grow
 exponentially.

Data

- Bangladesh Disaster Related Statistics
- Bangladesh Water Development Board (BWDB)
 Data:
 - Historical water level data across all of the nation's major rivers
- Bangladesh Meteorological Department (BMD)
 Data
 - Daily rainfall and temperature data
- NOAA Global Integrated Surface Dataset:
 - Meteorological data such as humidity, wind, cloud coverage, and historical patterns of extreme weather such as cyclones

Bangladeshi households impacted by weather events: p

Study design

- Quantitative study
- Establish baseline predictive method used by government
- Capture mix of historical and live data
- Feed captured data to train model
- Calculate predictive ability of our model against baseline prediction

Sample

- Stratification based on flood-prone geographical areas
- Use latitude and longitude points from dataset for grouping
- Interpolate for missing values

Source: United Nations Office for the Coordination of Humanitarian Affairs

Variables and/or Intervention

- Hydrological/meteorological data:
 - Precipitation, river flows/levels, storm surges

Statistical Methods

$$NSE = 1 - rac{\sum_{t=1}^{T} \left(Q_o^t - Q_m^t
ight)^2}{\sum_{t=1}^{T} \left(Q_o^t - \overline{Q}_o
ight)^2}$$

$$RMSE = \sqrt{\frac{\sum_{i=1}^{N} (Predicted_i - Actual_i)^2}{N}}$$

Nash-Sutcliffe efficiency coefficient (NSE)

- Assesses predictive ability of hydrological models
- One minus ratio of the error variance of model divided by the variance of the observed

Root Mean Squared Error (RMSE)

Square root of predicted minus actual data divided by

Potential Risks

- Overfitting
- Parameter instability of model
- Communication with stakeholders and local community
- Fair and equitable access to results
- Regional variance

Deliverables

After 3 years, we will provide:

- Technical details of predictive model (e.g. accuracy, # of projection days)
- Live test results of new model
- Summary report with recommendations

Thank You