Redes de computadores I: Proposta de Trabalho

Pedro Sobral, Bruno Gomes pmsobral@ufp.edu.pt bagomes@ufp.edu.pt

Novembro de 2022 Universidade Fernando Pessoa Faculdade de Ciências e Tecnologia

Introdução

Pretende-se que os estudantes sejam capazes de implementar a topologia apresentada na figura 1. A topologia exibe uma simulação de rede de uma clínica médica com uma camada de dispositivos de acesso à rede (*Access Layer*) e uma segunda camada agregadora de todos os *switches* access (*Distribution Layer*). Os PC's deverão ser contentores *docker* (*netutils*), os *switches* A1, A2, A3, C1, C2e C3 deverão ser do tipo IOSvL2, o Router R1 deverá ter a imagem IOSvL3. O dispositivo *Server* é uma máquina virtual com sistema operativo Linux (sugere-se a distribuição bunsenlabs¹ (64-bit) ou contentor *docker* a desempenhar o papel de servidor. As configurações de rede dos equipamentos são apresentadas na tabela 1.

Figura 1: Topologia de Rede

-

¹ https://www.bunsenlabs.org

Equipamento	Interface	VLAN	IP	Gateway
A1	VLAN99	99	10.200.99.1/24	Não tem
A2	VLAN99	99	10.200.99.2/24	Não tem
A3	VLAN99	99	10.200.99.3/24	Não tem
C1	VLAN99	99	10.200.99.11/24	Não tem
C2	VLAN99	99	10.200.99.12/24	Não tem
С3	VLAN99	99	10.200.99.13	Não tem
PC1	eth0	20	10.200.20.1/24	10.200.20.254
PC2	eth0	10	10.200.10.1/24	10.200.10.254
PC3	eth0	20	10.200.20.1/24	10.200.20.254
PC4	eth0	30	10.200.30.2/24	10.200.30.254
Linux Server	bond0.10	10	10.200.10.253/24	10.200.10.254
	bond0.20	20	10.200.20.253/24	10.200.20.254
Router	gi0/0.10	10	10.200.10.254/24	Gi0/1
	gi0/0.20	20	10.200.20.254/24	Gi0/1
	gi0/0.30	30	10.200.30.254/24	Gi0/1
	gi0/1	-	DHCP	DHCP

Tabela 1: Dados para a configuração dos equipamentos

Objectivos do projecto

- 1. Configurar, testar, monitorizar e reparar ligações agregadas baseadas no protocolo LACP (*Link Aggregation Control Protocol*)
 - Criar interfaces EtherChannel
 - Associar interfaces físicas ao EtherChannel e analisar os diferentes modos de associação
 LACP (on, passive ou active)
 - Descrever o propósito de configurar a prioridade LACP numa porta do switch.
 - Descrever e testar os diferentes modos de balanceamento da carga no *Ether Channel*.
 - Descrever o significado da saída dos comandos *show etherchannel summary* e *show etherchannel port*.
 - Explicar o que acontece quando elementos do *EtherChannel* ficam indisponíveis. Demonstrar com casos práticos.
 - Configurar o protocolo LACP no Servidor Linux² instalando e activando e configurando os módulos necessários. Testar a operação do LACP entre o CISCO IOS e o LINUX.
 - Recorrendo ao wireshark de capturar as frames referentes ao protocolo LACP (IEEE 802.3ad)
 e analisar o seu conteúdo.

² https://wiki.debian.org/Bonding

Explorar e implementar a possibilidade de substituir C2 por um switch de outro fabricante (e. g. Arista) (LACP Multivendor)

2. Configurar, testar, monitorizar e reparar interfaces de rede na presença de VLANs

- Descrever o protocolo IEEE 802.1q.
- Configurar interfaces em modo *access* e *trunk* de acordo com o exigido na figura 1.
- Descrever e testar os diferentes modos de configuração do Dynamic Trunking Protocol
 (DTP) (Switch (config-if)# switchport trunk?).
- Configurar interfaces VLAN (L3) nos Switches, Servidor Linux e no Router ("ROAS-Router On A Stick").
- Estudar e implementar a possibilidade de eliminar da topologia o Router assumindo C2 esse papel recorrendo a SVIs (Switch Virtual Interfaces) e portas físicas L3 ("*routed ports*")
- Analisar o estado das interfaces relativamente às VLANs (Switch#show interfaces <intf>switchport; Switch#show interfaces trunk)
- Recorrendo ao wireshark capturar as frames referentes ao protocolo IEEE 802.3q e analisar o seu conteúdo.

3. Configurar, testar, monitorizar e reparar o protocolo VTP (Vlan Trunking Protocol)

- Descrever os domínios, modos e diferentes anúncios do protocolo VTP
- Criar as VLANs necessárias de acordo com a tabela seguinte.

VLAN ID	Nome	Prefixo de Rede	Gateway
99	Management	10.200.99.0/24	Não tem
10	Diagnosis	10.200.10.0/24	10.200.10.254
20	Office	10.200.20.0/24	10.200.20.254
30	Guest	10.200.30.0/24	10.200.30.254

- Configurar C2 como servidor VTP e os restantes *switches* como clientes VTP.
- Analisar o estado do protocolo VTP (Switch#show vtp status)
- Discutir a importância do VTP pruning.
- Recorrendo ao wireshark de capturar as frames referentes ao protocolo VTP e analisar o seu conteúdo.

4. Configurar, testar, monitorizar e reparar o protocolo *Spanning Tree* (802.1D e PVST+) numa topologia de rede local

- Descrever a operação do protocolo STP (IEEE 802.1D) e conhecer as principais diferenças para os protocolos RSTP (IEEE 802.1w), PVST+ e *Rapid* PVST+.
- Configurar as prioridades dos Switch de acordo com a tabela seguinte:

Switch	VLAN10	VLAN20	VLAN30
C1	4096	8192	4096
C2	8192	4096	8192
С3	8192	24576	4096

- Analisar o estado do protocolo STP (*Switch#show spanning-tree vlan <id>*) para cada uma das VLANs existentes na topologia.
- Explicar a reconfiguração da rede em caso de alteração topológica.
- Explicar os conceitos de PortFast, UplinkFast e BackboneFast e aplicá-los na topologia indicada.
- Recorrendo ao wireshark de capturar os BPDUs referentes ao protocolo STP quando este converge e analisar o seu conteúdo.

5. Executar e explicar testes de conectividade e acesso entre equipamentos

- Exibir e explicar as tabelas de endereços MAC dos Switches
- Descrever e configurar a segurança nas interfaces dos Switches ((Switch (config-if)# switchport port-security?).
- Descrever e configurar a segurança no acesso aos *Switches* e *Router*.
- Configurar o acesso à Internet recorrendo ao dispositivo NAT do GNS3 (a operação deste protocolo está fora do âmbito do trabalho e será vista no próximo semestre).
- Executar testes de conectividade usando o ping e o traceroute e ser capaz de explicar o seu resultado.

Defesa, ficheiros e documentos a entregar

O trabalho será realizado individualmente ou por um grupo de dois estudantes. A defesa ocorrerá presencialmente em data a designar pelo docente. Até ao prazo indicado, deverão submeter no CANVAS as configurações dos equipamentos (utilizando a função do GNS3 para a exportação de *portable* do projeto) e um relatório breve indicando as configurações realizadas para cada um dos cinco objectivos bem como capturas de ecrã evidenciando os testes efectuados, estado da operação dos equipamentos e capturas de pacotes associadas **sempre enquadradas por texto explicativo**.

Critérios de Avaliação

• Suficiente

Configurações básicas efectuadas e explicadas. Testes de conectividade entre equipamentos a funcionar adequadamente e devidamente fundamentados. Demonstrar conhecimento básico da operação do LACP, VLANs, VTP e STP. Ser capaz de explicar 50% dos pontos indicados em cada um dos objectivos.

• *Bom*

Para além dos objectivos anteriores, ser capaz de explicar correctamente as consequências para os protocolos implementados de alterações topológicas (tais como o desligamento de uma interface de rede, de um *switch*, etc.). Ser capaz de explicar 75% dos pontos indicados em cada um dos objectivos.

• Muito Bom

Para além dos objectivos anteriores, ser capaz de explicar com detalhe a configuração LACP do servidor Linux e do acesso à Internet recorrendo ao Router. Ser capaz de explicar o conteúdo das mensagens protocolares capturadas em tempo real pelo *wireshark* e associar essas mensagens aos eventos que ocorrem na topologia de rede. Ser capaz de explicar 90% dos pontos indicados em cada um dos objectivos.

Bibliografia Adicional

CCNA 200-301 Official Cert Guide, Volume 1, Wendell Odom, 2020 CISCO Press