Examen final Futfi 1º convocatoria

Grado en Ingeniería Informática - Curso 2020/21

Ejercicio 1. (0.25 puntos) Si queremos disminuir la resistividad de una muestra de silicio, ¿qué tipo de dopado elegiríamos? ¿Por qué?

Ejercicio 2. (0.25 puntos) ¿La corriente de saturación en un diodo de unión PN depende de su temperatura? Razona la respuesta.

Ejercicio 3. (0.5 puntos) Dado el circuito de la figura, calcular la corriente I y la corriente en el diodo cuando V=5~V y V=-5~V. $R_1=~R_2=~R_3=1k\Omega$. Considerar el modelo con tensión de despegue $V_{\Upsilon}=0.7~V$.

Ejercicio 4. (1.5 puntos) Dada la función $S = \overline{ABC + (A + B + C)D}$:

- a) (0.75 puntos) Hacer un diseño en lógica pseudo-NMOS con $V_{OL} \leq 1~V$ y $t_{PHL} \leq 1~ns$. Considerar una carga de $C_L = 70 fF$, mucho mayor que la capacidad intrínseca de la puerta lógica, $V_{DD} = 5~V$ y $R_P = R_N = 10^4 \left(\frac{L}{W}\right)$.
- b) (0.75 puntos) Si $D = \overline{AB + AC}$, realizar un diseño en lógica dinámica dominó en dos etapas. Asumir que tanto las entradas como sus negadas están disponibles y que la salida S se conectará a lógica estática.

Ejercicio 5. (0.25 puntos) Obtener la tabla de verdad del siguiente circuito. Asumir $R_N \ll R_P$.

Ejercicio 6. (0.25 puntos) El siguiente circuito es un registro insensible al *clock skew*. Describir su funcionamiento frente a solapamiento de señales de reloj.

