О численном методе решения семейства интегро-дифференциальных уравнений с переменными коэффициентами, возникающих в финансовой математике

О. Е. Кудрявцев

Ростовский филиал Российской таможенной академии В. В. Родоченко

Южный Федеральный Университет

1 Аннотация

Мы представляем новый численный метод решения семейства интегро-дифференциальных уравнений с переменными коэффициентами, возникающих при вычислении стоимости барьерного опциона для широкого класса популярных моделей со скачками и стохастической волатильностью, вариация в которых подчиняется процессу СІК. Мы используем подходящие замены переменных для устранения эффекта корреляции, приближаем процесс вариации на малых отрезках времени при помощи специальным образом построенной марковской цепи, а затем в каждом из узлов цепи решаем задачи вычисления цены барьерного опциона при помощи метода линий. Для решения полученных задач используется авторский метод быстрой приближённой факторизации Винера-Хопфа. Итоговый ответ получаем при помощи рекуррентной процедуры, движущейся назад во времени по дереву вариации.

2 Введение

Со времен фундаментальных работ Е. Б. Дынкина, Р. Фейнмана и М. Каца известно, что решение уравнения диффузии в определенной области может быть интерпретировано как математическое ожидание выхода из нее винеровского процесса. В дальнейших исследованиях эта взаимосвязь была распространена, в частности, на процессы, комбинирующие диффузионную модель и модель Леви, траектории которых могут быть разрывными. В настоящее время процессы Леви используются при моделировании различных естественных и экономических явлений и привлекают внимание как исследователей, так и финансовых институтов. С точки зрения приложений в сфере финансовой математики, разработка инструментов для решения этих уравнений позволяет решать одну из важных прикладных задач — задачу вычисления цен производных финансовых инструментов, в частности — опционов.

Таким образом, вычисление функционалов от марковских процессов со скачками является важным и актуальным для приложений направлением исследования. Указанная задача является нетривиальной и сводится к решению достаточно сложных интегро-дифференциальных уравнений с частными производными, известных как прямое и обратное уравнение Колмогорова, с определенными начальными и краевыми условиями. Как правило, аналитические методы непригодны для решения подобных уравнений, поэтому возникает необходимость привлечения современного аппарата вычислительной математики.

В качестве базовой модели рассмотрим систему стохастических дифференциальных уравнений, записанную в форме Ито, которая описывает динамику положения S_t частицы на прямой во взаимосвязи с процессом вариации V_t , которая подчиняется процессу CIR [CIR].

$$dS_t = (r - \lambda_J \zeta) S_t dt + \sqrt{V_t} S_t dZ_t^S + (J - 1) S_t dN_t,$$

$$dV_t = \kappa_V (\theta_V - V_t) dt + \sigma_V \sqrt{V_t} dZ_t^V,$$

$$\langle dZ_t^S, dZ_t^V \rangle = \rho dt,$$
(1)

где r — неотрицательный параметр, Z_t^S и Z_t^V — винеровские процессы, связанные коэффициентом корреляции ρ . В скачковой части, N_t представляет из себя пуассоновский процесс с интенсивностью λ_J , считающий к моменту t количество одинаково распределенных скачков размера J. Процесс N_t не зависит от процессов Z_t^S и Z_t^V , а также независим от J. Параметр κ_V определяет скорость "возврата" процесса вариации к "долговременному" среднему значению θ_V , $\sigma_V > 0$ называется "волатильностью" вариации. Соотношение между ζ и параметрами распределения J подбирается из соображения мартингальности процесса $\exp(-rt)S_t$.

В финансовых приложениях процесс S_t в (1) моделирует динамику цены финансового актива, а параметр $r \geq 0$ имеет смысл безрисковой процентной ставки. Если величина скачков J имеет логнормальное распределение $J \sim \text{LogN}(\mu_J, \sigma_J^2)$, тогда $\zeta = e^{\mu_J + \frac{1}{2}\sigma_J^2} - 1$ и мы получаем "модель Бейтса", описанную в работе [Bates]. В случае, если положить интенсивность скачков равной нулю, сохраняя динамику процесса вариации, система выродится в систему уравнений модели Хестона — одну из наиболее известных моделей со стохастической волатильностью [Heston].

Если заменить процесс V_t положительной постоянной V_0 , то первое уравнение системы (1) будет описывать процесс Леви, известный в литературе как диффузия со скачками (англ. jump-diffusion), см. например, [Cont, Tankov]. В частности, если J имеет логнормальное распределение, то мы получем модель Мертона [Merton], а если положить интенсивность скачков равной нулю, модель сведётся к одной из наиболее исследованных и известных моделей финансового рынка — модели Блэка-Шоулза [B-S].

Целью работы является разработка универсального численного метода вычисления условного математического ожидания

$$f(S, V, t) = M[e^{-r(T-t)} \mathbf{1}_{\underline{S}_T > H} G(S_T) | S_t = S, V_t = V],$$
(2)

для моделей вида (1), где H – поглощающий барьер, $\underline{S}_T (=\inf_{0 \le t \le T} S_T)$ – процесс инфимума процесса S_t .

Функционалы вида (2) возникают в финансовой математике при решении задачи о нахождении цены барьерного опциона в модели (1). Под "барьерным опционом" мы будем понимать контракт, по которому выплачивается определённая сумма $G(S_T)$ в момент окончания срока действия контракта T, при условии, что в течение срока действия контракта цена актива S_T не упадёт ниже определённого барьера H (down-and-out barrier option) или не поднимется выше определённого барьера H (up-and-out barrier option). Например, для опциона, дающего право продать базовый актив по цене K ("опцион put"), $G(S) = \max\{0, K - S\}$, а для опциона, дающего право купить базовый актив по цене K ("опцион call"), $G(S) = \max\{0, K - K\}$.

Пусть $\tau = T - t$, тогда $F(S, V, \tau)$ (= $f(S, V, T - \tau)$) удовлетворяет следующему [см, например, статья 17 Фенг]) интегро-дифференциальному уравнению в частных производных

с переменными коэффициентами в области $S(\tau) > H$.

$$\begin{split} \frac{\partial F(S,V,\tau)}{\partial \tau} &= \frac{1}{2} V S^2 \frac{\partial^2 F(S,V,\tau)}{\partial S^2} + \rho \sigma_V V S \frac{\partial^2 F(S,V,\tau)}{\partial S \partial V} + \\ \frac{1}{2} \sigma_V^2 V \frac{\partial^2 F(S,V,\tau)}{\partial V^2} &+ (r - \lambda_J \zeta) S \frac{\partial F(S,V,\tau)}{\partial S} + \kappa_V (\theta_V - V) \frac{\partial F(S,V,\tau)}{\partial V} - \\ (r + \lambda_J) F(S,V,\tau) &+ \lambda_J \int_0^\infty F(JS,V,\tau) f(J) dJ, \\ F(S,V,0) &= G(S), \end{split}$$

где f(J) - функция плотности вероятностей величины скачков J. Поскольку H является поглощающим барьером и S_t может перескакивать через барьер, то необходимо добавить условие $F(S, V, \tau) = 0, S(\tau) < H$.

Основными подходами к решению таких уравнений являются метод Монте-Карло (Alfonsi, A. High order discretization schemes for the CIR process: application to affine term structure and Heston models (2010)), конечно-разностные схемы (см. Chiarella, C. et. al., The Evaluation of Barrier Option Prices Under Stochastic Volatility (2010)) и гибридный подход, комбинирующий метод деревьев и конечно-разностные схемы (Briani, D.M. et. al., A hybrid tree-finite difference approach for the Heston model (2014)).

Наиболее серьезным недостатком методов Монте-Карло является низкая скорость вычислений, поскольку в случае задач с барьерами в моделях со скачками возникает необходимость детального моделирования траектории. Конечно-разностные схемы зависят от конкретной модели Леви и недостаточно точны, поскольку соответствующая матрица системы в отличие от диффузионных моделей является плотной, а для ее обращения многие авторы в неявном виде используют только трехдиагональную часть. Ряд авторов комбинируют метод расщепления и конечно-разностные схемы, аппроксимируя интегральную часть как функцию символа соответствующего псевдодифференциального оператора от конечных разностей (Itkin, A. Pricing Derivatives Under Levy Models (2017)), но для популярных моделей Леви это приводит к необходимости вычислять матричные логарифмы и экспоненты, что может приводить к существенным вычислительным погрешностям.

С целью снижения размерности уравнения ряд авторов (см., напр., [Ch1, Briani, D.M. et. al.]) предлагают использовать марковскую цепь с непрерывным временем для аппроксимации процесса волатильности, простейшим случаем которой является биномиальной модель [Appol]. В результате, мы получаем модель Леви с переключением режимов по волатильности. Марковская цепь с непрерывным временем строится так, чтобы вероятности перехода из каждого состояния сохраняли соответствующие мгновенные снос и/или волатильность.

В серии статей (см., например, [KuLev, KuOбозрение, KuMathMod, KuZanet]) универсальный метод приближенной факторизации Винера-Хопфа для широкого класса процессов Леви с фиксированной вариацией был применен для решения задач с барьерами для интегро-дифференциальных уравнений, к которым сводится вычисление цен различных видов опционов. Численная реализация операторов Винера-Хопфа осуществлялась с помощью быстрого преобразования Фурье, что делало соответствующие методы вычисления цен опционов по простоте реализации близкими к конечно-разностным схемам, но, как показывают численные эксперименты [KuLev, KuZanet], значительно более быстрыми и точными.

В основе нового предлагаемого численного метода решения задачи (2) будет лежать новая усовершенствованная приближенная факторизация Винера-Хопфа, разработанная

в [Advantages of the Laplace transform approach in pricing first touch digital options in Levy-driven models (2016)]. Новые формулы являются более универсальными по сравнению с [KuL], поскольку не требуют выделения главной части факторизуемой характеристической функции. Для решения поставленной задачи после дискретизации по времени (метод линий) коэффициенты полученного интегро-дифференциального оператора будет аппроксимироваться с помощью метода деревьев, моделирующего процесс волатильности, тем самым сводя задачу в каждом узле дерева к модели с постоянной волатильностью, а для соответствующей задачи будут использованы новые явные формулы для факторов Винера-Хопфа. В результате, мы получим метод сравнимый по скорости с гибридной конечно-разностной схемой, но более универсальный и точный.

3 Замена процесса

Одним из свойств модели является эффект корреляции винеровских процессов в уравнениях для цены и вариации. Для решения уравнений его необходимо учесть при построении процедуры оценки. Методика, которой мы воспользуемся, аналогична применяемой в [Zanet, Деревья], и состоит в том, чтобы подобрать подходящую замену для процессов. Обозначим $\hat{\rho} = \sqrt{1-\rho^2}$, $W = Z^V$, $\rho W + \hat{\rho} Z = Z^S$, где $W_t Z_t$ - независимые броуновские движения. В этих терминах мы получаем возможность переписать систему (1).

Введём также замену для процесса S_t , положив $Y_t = \ln(\frac{S_t}{H}) - \frac{\rho}{\sigma_V} V_t$. При этом $S_t = H \exp(Y_t + \frac{\rho}{\sigma_V} V_t)$ Такой вид замены одновременно позволяет перейти к логарифмической шкале и произвести нормировку по отношению к барьеру, которая является удобной с вычислительной точки зрения. После введения обеих замен, система (1) примет вид:

$$dY_t = \left(r - \frac{1}{2}V_t - \frac{\rho}{\sigma_V}\kappa_V(\theta_V - V_t) - \lambda_J\zeta\right)dt + \hat{\rho}\sqrt{V_t}dZ_t + \ln JdN_t,$$

$$dV_t = \kappa_V(\theta_V - V_t)dt + \sigma_V\sqrt{V_t}dW_t.$$
(3)

Для дальнейшего описания алгоритма введём следующие обозначения:

$$\mu_Y(V_t) = r - \frac{1}{2}V_t - \frac{\rho}{\sigma_V}\kappa_V(\theta_V - V_t) - \lambda_J \zeta,$$

$$\mu_V(V_t) = \kappa_V(\theta_V - V_t).$$

4 Рандомизация Карра

Для того, чтобы иметь возможность свести рассматриваемую задачу к задаче на малых интервалах времени, мы используем процедуру, известную как «рандомизация Карра», впервые введённую в статье [Карр, рандомизация] и обобщённую на общий случай задач стохастического управления в статье [Карр, обобщение]. Обозначим $F_n(Y_{t_n}, V_{t_n}) = F_n(H \exp(Y_t + \frac{\rho}{\sigma_V} V_t), V_{t_n}, t_n)$ - приближение Карра значения функции $F(S, V, \tau)$ в момент времени t_n , где $t_i = i \Delta \tau$ и $\Delta \tau = \frac{T}{N}$. Пусть $\{\tau_i\}_{i=1}^N$ — набор независимых экспоненциально распределённых случайных величин со средним $\Delta \tau$. Обозначим $Z_{\tau}^n = Y_{t_n+\tau} + \frac{\rho}{\sigma_V} V_{t_n+\tau}$.

Полагая $F_N(Y_T, V_T) = G(H \exp(Y_T + \frac{\rho}{\sigma_V} V_T))$, получаем возможность записать:

$$F_n(Y_{t_n}, V_{t_n}) = M_{t_n}[e^{-r\Delta\tau}I_{\underline{Z}_{\tau_n}^n > 0}F_{n+1}(Y_{t_n + \tau_n}, V_{t_n + \tau_n})], n = N - 1, ..., 0$$

5 Аппроксимация

Нашей следующей целью является свести полученную задачу к семейству задач меньшей размерности и получить модель Леви с переключение режимов по волатильности . Для этого мы построим, следуя процедуре [Антонино, деревья], аппроксимацию процесса CIR при помощи марковской цепи. К её достоинствам можно отнести быструю сходимость к оригинальному процессу и способность сохранять адекватность в широком диапазоне изменения параметров. В частности, условие Феллера $2\kappa_V\theta_V > \sigma_V^2 r$ в этом случае не является существенным для корректной работы.

Разделим промежуток [0,T] на N равных частей, $\Delta \tau = \frac{T}{N}$. Зафиксируем точки $t_n = n \cdot \Delta \tau$. Построим биномиальное дерево со «склеенными» вершинами, определяемыми по формуле:

$$V(n,k) = (\sqrt{V_0} + \frac{\sigma_V}{2}(2k-n)\sqrt{\Delta\tau})^2 \mathbb{1}_{(\sqrt{V_0} + \frac{\sigma_V}{2}(2k-n)\sqrt{\Delta\tau}) > 0}, n = 0, 1, ..., N, \ k = 0, 1, ..., n.$$

Идея приближения состоит в том, что в каждый момент времени t_n вариация может находиться в одном из состояний V(n,k). В момент t_{n+1} из вершины (n,k) мы можем попасть либо "вверх в вершину $(n+1,k_u)$, либо "вниз - вершину $(n+1,k_d)$, при этом k_u и k_d подбираются так, чтобы согласовать движение по дереву со сносом $\mu(V_{(n,k)})$, по следующим правилам:

$$k_u^{\Delta \tau}(n,k) = \min\{k^* : k+1 \le k^* \le n+1, V(n,k) + \mu_V(V(n,k)) \Delta \tau \le V(n+1,k^*)\}$$
$$k_d^{\Delta \tau}(n,k) = \max\{k^* : 0 \le k^* \le k, V(n,k) + \mu_V(V(n,k)) \ge V(n+1,k^*)\}$$

Определим вероятности переходов следующим образом:

$$p_{k_u^{\Delta \tau}(n,k)}^{\Delta \tau} = \frac{\mu_V(V(n,k))\Delta \tau + V(n,k) - V(n+1, k_d^{\Delta \tau}(n,k))}{V(n+1, k_u^{\Delta \tau}(n,k)) - V(n+1, k_d^{\Delta \tau}(n,k))}$$

Чтобы обеспечить корректную работу схемы в случае различных значений параметров, необходимо ввести дополнительные правила, предотвращающие появление отрицательных вероятностей в некоторых вершинах:

$$p_{k_{u}^{\Delta\tau}(n,k)}^{\Delta\tau} := \begin{cases} 1, & p_{k_{u}^{\Delta\tau}(n,k)}^{\Delta\tau} > 1\\ p_{k_{u}^{\Delta\tau}(n,k)}^{\Delta\tau}, & p_{k_{u}^{\Delta\tau}(n,k)}^{\Delta\tau} \in [0,1] , & p_{k_{d}^{\Delta\tau}(n,k)}^{\Delta\tau} := 1 - p_{k_{u}^{\Delta\tau}(n,k)}^{\Delta\tau}, \\ 0, & p_{k_{u}^{\Delta\tau}(n,k)}^{\Delta\tau} < 0 \end{cases}$$

6 Приближённая факторизация

Зафиксировав таким образом вариацию в каждом из узлов, мы имеем возможность рассматривать семейство задач с интегро-дифференциальным оператором следующего вида:

$$L_{n,k}f(y) := L_Y^{V(n,k)}f(y) = \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{iy\xi} \psi_{n,k}(\xi) \hat{f}(\xi) d\xi$$

Этот оператор можно понимать как псевдодифференциальный оператор, символом которого является $\psi_{n,k}(\xi)$ – характеристическая экспонента процесса Y_t при $V_t = V(n,k)$:

$$\psi_{n,k}(\xi) = \hat{\rho}^2 \frac{V(n,k)}{2} \xi^2 - i\mu_Y(V(n,k))\xi + \phi(\xi), \tag{4}$$

где $\phi(\xi)$ - слагаемое, зависящее распределения скачков. Например, для модели Мертона оно имеет вид: $\phi(\xi) = -i\lambda(1-e^{\frac{\sigma_J^2}{2}+\mu_J})\xi + \lambda(1-e^{\frac{\sigma_J^2}{2}+\mu_J})$

Для каждого из узлов (n,k), n=N-1,...0 возникает две задачи – одна в предположении, что переход был совершён в вершину $(n+1,k_d)$, другая – в предположении, что переход был совершён в вершину $(n+1,k_u)$. Решение каждой из этих задач может быть записано в терминах операторов ε_q^+ и ε_q^- - факторов Винера-Хопфа:

$$f_n^{k_d}(y) = (q\Delta\tau)^{-1} \,\varepsilon_q^- \mathbb{1}_{(-\frac{\rho}{\sigma_V}V(n,k),+\infty)}(y) \,\varepsilon_q^+ f_{n+1}^{k_d}(y); \tag{5}$$

$$f_n^{k_u}(y) = (q\Delta \tau)^{-1} \,\varepsilon_q^- \mathbb{1}_{(-\frac{\rho}{\sigma_V}V(n,k),+\infty)}(y) \,\varepsilon_q^+ f_{n+1}^{k_u}(y),\tag{6}$$

Далее последовательно вычисляя $f_n^k = p_{k_d^{\Delta \tau}(n,k)} f_n^{k_d}(y) + p_{k_u^{\Delta \tau}(n,k)} f_n^{k_u}(y)$ для n = N - 1, ..., 0, k = 0, ..., n, где $f_n^k = F(He^{y+\frac{\rho}{\sigma_V}V(n,k)}, V(n,k), n\Delta \tau)$, мы, после возвращения к исходным обозначениям, получаем приближённые значения искомого функционала (2). В отличие от более простого случая модели Хестона [hikari, мы], наличие скачков лишает возможности использовать явные формулы для факторов - их получить не удаётся. Получение приближённых формул для этих объектов является трудной задачей, последние успехи в которой (см. [см. Мекс, 2016]) позволяют обобщение на случай семейства моделей с различным образом распределёнными скачками.

Приближённые формулы имеют вид:

$$\phi_q^+(\xi) = \exp\left[(2\pi i)^{-1} \int_{-\infty + i\omega_-}^{+\infty + i\omega_-} \frac{\xi \ln(q + \psi(\eta))}{\eta(\xi - \eta)} d\eta\right];$$

$$\phi_q^-(\xi) = \exp\left[-(2\pi i)^{-1} \int_{-\infty + i\omega_+}^{+\infty + i\omega_+} \frac{\xi \ln(q + \psi(\eta))}{\eta(\xi - \eta)} d\eta\right],$$

Константы ω_+ и ω_- , такие, что $\omega_- < 0 < \omega_+$, имеют здесь смысл параметров и подбираются так, чтобы сохранить сходимость соответствующих интегралов и зависят от параметров процесса Леви. Вопросы выбора констант подробнее освещается в статье [Кудрявцев, Мекс]. Свойства этих функций позволяют получить удобное для численной реализации представление. Функция $\phi_q^+(\xi)$ допускает аналитическое продолжение в полуплоскость $\Im \xi > \omega_-$ и может быть представлена как:

$$\phi_q^+(\xi) = \exp\left[i\xi F^+(0) - \xi^2 \hat{F}^+(\xi)\right],$$
 (7)

$$F^{+}(x) = \mathbb{1}_{(-\infty,0]}(x)(2\pi)^{-1} \int_{-\infty+i\omega}^{+\infty+i\omega_{-}} e^{ix\eta} \frac{\ln(q+\psi(\eta))}{\eta^{2}} d\eta;$$
 (8)

$$\hat{F}^{+}(\xi) = \int_{-\infty}^{+\infty} e^{-ix\xi} F^{+}(x) dx.$$
 (9)

Аналогично, $\phi_q^-(\xi)$ допускает аналитическое продолжение в полуплоскость $\Im \xi < \omega_+$ и

может быть представлена как:

$$\phi_q^-(\xi) = \exp\left[-i\xi F^-(0) - \xi^2 \hat{F}^-(\xi)\right],$$
 (10)

$$\phi_{q}^{-}(\xi) = \exp\left[-i\xi F^{-}(0) - \xi^{2} \hat{F}^{-}(\xi)\right], \tag{10}$$

$$F^{-}(x) = \mathbb{1}_{[0,+\infty)}(x)(2\pi)^{-1} \int_{-\infty+i\omega_{+}}^{+\infty+i\omega_{+}} e^{ix\eta} \frac{\ln(q+\psi(\eta))}{\eta^{2}} d\eta; \tag{11}$$

$$\hat{F}^{-}(\xi) = \int_{-\infty}^{+\infty} e^{-ix\xi} F^{-}(x) dx. \tag{12}$$

Для вычисления интегралов используется алгоритм быстрого преобразования Фурье.

7 Выводы

Получен универсальный метод приближённого решения интегро-дифференциального уравнения с переменными коэффициентами, основанный на применении быстрой приближённой факторизации Винера-Хопфа сохраняющий работоспособность в широком диапазоне изменения параметров. Метод позволяет вычислять значения функционалов вида (2), для семейства моделей, основанных на широком классе процессов Леви с различным образом распределёнными скачками и имеет ряд приложений в области вычислительной финансовой математики.

Работа выполнена при поддержке РФФИ (проект 15-32-01390).

Литература

- 1. E. Appolloni, L. Caramellino, A. Zanette A robust tree method for pricing American options with CIR stochastic interest rate. 2013
- 2. Bates, D. S. Jumps and Stochastic Volatility: Exchange Rate Processes Implicit in Deutshe Mark Options / D. S. Bates // Review of Financial Studies. — 1996. — Vol. 9. — P. 69–107.
- 3. M. Briani, L. Caramellino, A. Zanette A hybrid tree-finite difference approach for the Heston model. 2014.
- 4. Cox, J. C. A Theory of the Term Structure of Interest Rates / J. C. Cox, J. E. Ingersoll, S. A. Ross // Econometrica. -- 1985. -- Vol. 53. -- P. 385-408.
- 5. Ch2 Chourdakis, K. Levy processes driven by stochastic volatility / K.Chourdakis // Asia-Pacific Finan. Markets. – 2005. - № 12. – P. 333-352.
- 6. L. HESTON A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options. Review of Financial Studies. 1993. v. 6. p. 327–343.
- 7. Kudryavtsev, O. Fast and accurate pricing of barrier options under Lévy processes / O. Kudryavtsev, S. Levendorskii // Finance and Stochastics. -- 2009. - Vol. 13. -- № 4. --P. 531–562.
- 8. КУДРЯВЦЕВ, О.Е. Вычисление цен барьерных и американских опционов в моделях Леви. – Обозрение прикл. и промышл. матем., 2010, т.17, в.2, с.210-220.

- 9. *Kudryavtsev O*. Efficient pricing of Swing options in Lévy-driven models / O. Kudryavtsev, A. Zanette //Quantitative Finance. 2013. –V. 13. № 4. P. 627-635.
- 10. A. Alfonsi, High order discretization schemes for the CIR process: application to affine term structure and Heston models, Mathematics of Computation, 79 (2010), 209 237. https://doi.org/10.1090/s0025-5718-09-02252-2
- 11. E. Appolloni, L. Caramellino, A. Zanette, A robust tree method for pricing American options with CIR stochastic interest rate, 2013.
- 12. B. Bouchard, N. El Karoui, N. Touzi, Maturity randomization for stochastic control problems, Ann. Appl. Probab., 15 (2005), no. 4, 2575 2605. https://doi.org/10.1214/1050516050000008
- 13. D.M. Briani, L. Caramellino, A. Zanette, A hybrid tree-finite difference approach for the Heston model, 2014.
- 14. Cont, R. Financial modelling with jump processes: monograph / R. Cont, P. Tankov. Chapman & Hall/CRC Press, 2004. 535 p.
- 15. P. Carr, Randomization and the American put, Review of Financial Studies, 11 (1998), 597 626. https://doi.org/10.1093/rfs/11.3.597
- 16. C. Chiarella, B. Kang, G. H. Meyer, The Evaluation of Barrier Option Prices Under Stochastic Volatility, Computers & Mathematics with Applications, 64 (2010), 2034 2048. https://doi.org/10.1016/j.camwa.2012.03.103
- 17. Feng, Y. Q. CVA under Bates Model with Stochastic Default Intensity /Y. Q. Feng // Journal of Mathematical Finance. 2017. №7. P. 682-698.
- 18. O. Kudryavtsev, S. Levendorskii, Fast and accurate pricing of barrier options under Lévy processes, Finance and Stochastics, 13 (2009), no. 4, 531 562.
- 19. O. Ye. Kudryavtsev, An efficient numerical method to solve a special cass of integrodifferential equations relating to the Levy models, Mathematical Models and Computer Simulations, 3 (2011), no. 6, 706–711.
- 20. Kudryavtsev, O. Advantages of the Laplace transform approach in pricing first touch digital options in Lévy-driven models / O. Kudryavtsev // J. Boletin de la Sociedad Matematica Mexicana. − 2016. − V. 22. − № 2. − P. 711−731.
- 21. PREMIA: An Option Pricer Project CERMICS-INRIA, available at http://www.premia.fr

8 Об авторах

- 1. Кудрявцев Олег Евгеньевич; 2. Доктор физико-математических наук, доцент; 3. Должность (например, Заведующий кафедры информационных таможенных технологий); 4. Ростовский филиал Российской Таможенной Академии; 5. *******@mail.ru; 6. +7(903)-999-99