МИНОБРНАУКИ РОССИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования

«САРАТОВСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИМЕНИ Н. Г. ЧЕРНЫШЕВСКОГО»

ТРИГГЕ	'РЫ
--------	-----

ОТЧЕТ

студента 3 курса 331 группы направления 10.05.01 — Компьютерная безопасность факультета КНиИТ Бородина Артёма Горовича

Проверил	
аспирант	 А. А. Мартышкин

СОДЕРЖАНИЕ

ВВЕДЕНИЕ	3
Задание 1	4
Задание 2	7
Задание 3	8
Тестовые задания1	1
ЗАКЛЮЧЕНИЕ1	13

введение

Целью данной работы служит ознакомление с основными характеристи- ками интегральных триггеров $RS,\,D$, $T,\,JK$ и их испытание.

Задание 1.

Запустить лабораторный комплекс Labworks и среду MS10. Открыть файл **32.5.ms10**, размещенный в папке **Circuit Design Suite 10.0** среды MS10, или собрать на рабочем поле среды MS10 схему для испытания *асинхронного RS-триггера* и установить в диалоговых окнах компонентов их параметры или режимы работы. **Скопировать** схему на страницу отчета.

Рисунок 1 – Схема асинхронного *RS*-триггера.

Воспользовавшись порядком засвечивания разноцветных пробников и задавая коды (00, 01, 10) состояния ключей **1** и **2** (входных сигналов), **составить** таблицу истинности *RS*-триггера. Убедитесь, что при запрещенном коде 11 входных сигналов на выходе *RS*-триггера могут засветиться оба пробника, или оба не светятся.

Рисунок 2 – Задание кода 00 состояния ключей.

Рисунок 3 – Задание кода 01 состояния ключей.

Рисунок 4 – Задание кода 10 состояния ключей.

Рисунок 5 – Задание кода 11 состояния ключей.

Составим таблицу истинности *RS*-триггера.

S	R	Q	\overline{Q}
0	0	1	0
0	1	0	1
1	0	1	0
1	1	1	1

Таблица 1 – Таблица истинности *RS*-триггера.

Задание 2.

Подключить к входам триггера логический генератор (генератор слова) **XWG1**, запрограммировав его первые три ячейки кодами 00, 10 и 01 и соединив входы и выходы триггера с входами логического анализатора **XLA2**.

В диалоговом окне генератора слова **XWG1** задать частоту f_r = 10 к Γ ц и два цикла моделирования сигналов (в режиме **Burst**), а в окне анализатора **XLA2** – частоту f_a = 0,1 М Γ ц таймера, уровень высокого напряжения U_m = 5 B, число импульсов **Clocks/div** = 8 таймера, приходящихся на одно деление.

Получить на экране анализатора **XLA2** временную диаграмму состояний RS-триггера. **Скопировать** схему испытания и временную диаграмму состояния RS-триггера на страницу отчета.

Рисунок 6 – Интерфейс анализатора **XLA2**.

Задание 3.

Открыть файл **32.7.ms10**, размещенный в папке **Circuit Design Suite 10.0** среды MS10, или собрать на рабочем поле среды MS10 схему для испытания триггеров JK, TuD и установить в диалоговых окнах компонентов их параметры или режимы работы. **Скопировать** схему на страницу отчета.

Рисунок 7 – Схема для испытания триггеров *JK*, *T* и *D*.

Провести моделирование работы триггеров в режимах **Step** или **Burst** генератора **XWG1, скопировать** в отчет временные диаграммы, **составить** и **заполнить** таблицы истинности работы триггеров **JK, T** и **D**.

Рисунок 8 – Набор кодовых комбинаций, соответствующих варианту 1.

Рисунок 9 – Результат моделирования работы триггеров.

Заполним таблицы истинности работы триггеров ЈК, Т и D:

SEQ_i	Q_{JK}	\overline{Q}_{JK}	Q_T	\overline{Q}_T	Q_D	\overline{Q}_D
0000	0	1	0	1	0	1
1010	0	1	0	1	0	1
1111	1	0	1	0	1	0
1001	1	0	0	1	1	0
1001	1	0	0	1	1	0
1101	1	0	1	0	1	0
1100	0	1	1	0	1	0
0000	0	1	0	1	0	1

Таблица 2 — Таблица истинности работы триггеров JK, T, D при заданных входных комбинациях.

Тестовые задания.

- 1. Укажите, какая **комбинация** логических сигналов является запрещенной для асинхронного RS-триггера: **11**.
 - 2. Укажите условное графическое обозначение:
 - а) JK-триггера Γ);
 - б) RS-триггера **в**);

- 3. Укажите условное графическое обозначение:
- а) T-триггера, выполненного на основе JK-триггера **б**) (синхронный) и **д**) (асинхронный);
 - б) D-триггера, выполненного на основе JK-триггера **в**);

- 4. Укажите, нашли ли широкое применение **асинхронные** D-триггеры: триггер задержки (**D-триггер**) может быть только синхронным, так как имеет одининформационный D-вход нет;
- 5. Укажите, как функционирует JK-триггер при комбинации J = 1, K = 1 на входе: одновременное присутствие логических единиц на информационных входах не является для JK-триггера запрещенной комбинацией; при J = 1 и K = 1 триггер работает в счетном режиме, то есть переключается каждым тактовым импульсом на входе C;
- 6. Укажите **время запаздывания** выходного сигнала по отношению к моменту подачи на C-вход D-триггера синхроимпульса при тактовой частоте f=10 к Γ ц ($D^t=1,Q^t=0$): 0,1 мс;
- 7. Укажите значение **сигнала на выходе** JK-триггера при комбинации J = 1, K = 0 на входе и Q = 1 после окончания действия синхроимпульса: **1.**;

- 8. Укажите аналитическое выражение, описывающее работу:
- а) *RS*-триггера: $Q^{t+1} = S + Q^t \overline{R}$;
- б) JK-триггера: $Q^{t+1} = \overline{K}^t Q^t + J^t \overline{Q}^t$;
- в) T-триггера: $Q^{t+1} = Q^t \overline{T} + \overline{Q}^t T;$
- г) D-триггера: $Q^{t+1} = \overline{C}^t Q^t + C^t Q^t;$
- 9. Укажите, чем отличается **динамическое управление** триггерами от статического управления: у триггеров с динамическим управлением сигналы на информационных входах должны оставаться неизменными на всем интервале действия активного логического сигнала синхронизации (C=1);
- 10. Укажите **уровни напряжения** интегральных микросхем триггеров серии ТТЛ, принимаемые за логическую 1 и логический 0 при напряжении питания $U_n = 5$ B: 2,4 B < $U^1 < 5$ B; 0 < $U^0 < 0,4$ B;
- 11.Укажите, к какому типу триггеров относят Т-триггеры: к синхронным.

ЗАКЛЮЧЕНИЕ

В ходе лабораторной работы мы ознакомились с основными характеристиками интегральных триггеров RS, D, T и JK и испытали их на практике.