Московский физико-технический институт

ФАКУЛЬТЕТ АЭРОКОСМИЧЕСКИХ ТЕХНОЛОГИЙ Лабораторная работа 2.3.1

Получение и измерение вакуума

Автор: Артем Овчинников Преподаватель: Арина Владимировна Радивон

10 мая 2024 г.

Содержание

1	Аннотация	2
2	Теоретические сведения	2
3	Методика измерений	3
4	Используемое оборудование	3
5	Результаты измерений и обработка данных	4
6	Обсуждение результатов	5
7	Выволы	5

1 Аннотация

Цель работы: 1) измерение объемов орвакуумной и высоковаку умной частей установки; 2) определение скорости откачки системы в стационарном режиме, а также по ухудшению и по улучшению вакуума.

В работе используются: вакуумная установка с манометрами: масляным, термопарным и ионизационным.

2 Теоретические сведения

Производительность насоса определяется скоростью откачки W (π /c): W — это объем газа, удаляемого из сосуда при данном давлении за единицу времени. Скорость откачки форвакуумного насоса равна емкости воздухозаборной камеры, умноженной на число оборотов в секунду. Рассмотрим обычную схему откачки. Разделим вакуумную систему на две части: «откачиваемый объем» (в состав которого включим используемые для работы части установки) и «насос», к которому, кроме самого насоса, отнесем трубопроводы и краны, через которые производится откачка нашего объема. Обозначим через Q_d количество газа, десорбирующегося с поверхности откачиваемого объема в единицу времени, через Q_i — количество газа, проникающего в единицу времени в этот объем извне — через течи. Будем считать, что насос обладает скоростью откачки W и в то же время сам является источником газа; пусть Q_n — поток газа, поступающего из насоса назад в откачиваемую систему. Будем измерять количество газа Q_d , Q_i и Q_n в единицах PV (легко видеть, что это произведение с точностью до множителя RT/μ равно массе газа). Основное уравнение, описывающее процесс откачки, имеет вид

$$-VdP = (PW - Q_d - Q_n - Q_i)dt. (1)$$

Левая часть этого уравнения равна убыли газа в откачиваемом объеме V, а правая определяет количество газа, уносимого насосом, и количество прибывающего вследствие перечисленных выше причин за время dt. При достижении предельного вакуума (давление P_{pr})

$$\frac{dP}{dt} = 0, (2)$$

$$W = \frac{\sum Q_i}{P_{mr}}. (3)$$

Обычно Q_i постоянно, а Q_n и Q_d слабо зависят от времени, поэтому в наших условиях все эти члены можно считать постоянными. Считая также постоянной скорость откачки W, уравнение (1) можно проинтегрировать и, используя (2), получить

$$P = P_o \exp\left(-\frac{W}{V}t\right) + P_{pr}.\tag{4}$$

Характер течения газа существенно зависит от соотношения между размерами системы и длиной свободного пробега молекул. При атмосферном давлении и даже при понижении давления до форвакуумного длина свободного пробега меньше диаметра трубок и течение откачиваемого газа определяется его вязкостью, т. е. вза-имодействием его молекул. При переходе к высокому вакууму картина меняется. Столкновения молекул между собой начинают играть меньшую роль, чем соударения со стенками. Течение газа в трубе напоминает в этих условиях диффузию газа

из области больших концентраций в области, где концентрация ниже, причем роль длины свободного пробега играет ширина трубы. Для количества газа, протекающего через трубу в условиях высокого вакуума или, как говорят, в кнудсеновском режиме, справедлива формула

$$\frac{d(PV)}{dt} = \frac{4}{3}r^3\sqrt{\frac{2\pi RT}{\mu}}\frac{P_2 - P_1}{L}.$$
 (5)

Применим эту формулу к случаю, когда труба соединяет установку с насосом. Пренебрежем давлением P_1 у конца, обращенного к насосу. Будем измерять количество газа, покидающего установку при давлении $P = P_2$. Пропускная способность трубы

$$C_{tr} = \left(\frac{dV}{dt}\right)_{tr} = \frac{4}{3} \frac{r^3}{L} \sqrt{\frac{2\pi RT}{\mu}}.$$
 (6)

Мы видим, что пропускная способность зависит от радиуса трубы в третьей степени и обратно пропорциональна ее длине. В вакуумных установках следует поэтому применять широкие короткие трубы.

При расчете вакуумных систем нужно принимать во внимание также пропускную способность отверстий, например, в кранах. Для диффузионного насоса можно считать, что каждая молекула воздуха, попавшая в кольцевой зазор между соплом и стенками насоса, увлекается струей пара и не возвращается обратно в откачиваемый объем. Скорость откачки такого насоса можно считать равной пропускной способности отверстия с площадью, равной площади кольцевого зазора, т. е. насос качает как кольцевой зазор, с одной стороны которого расположен откачиваемый объем, а с другой – пустота.

3 Методика измерений

При работе с насосом следует помнить, что после остановки насоса в него обязательно нужно впускать воздух. Если этого не делать, то атмосерное давление может выдавить масло из насоса в патрубки и в вакуумную систему. Соединять насос с атмосерой следует при помощи кранов К1 или К2. После включения насоса его присоединяют к установке не сразу, а через некоторое время, когда насос откачает собственный объјм и про- странство, расположенное до крана К2. Об этом можно судить по звуку насоса. Вначале насос сильно шумит, затем его звук делается мягким, и, наконец, в насосе возникает сухой стук, это происходит, когда до- стигается хорошее разрежение.

4 Используемое оборудование

Экспериментальная установка. Установка изготовлена из стекла и состоит из орвакуумного баллона (ФБ), высоковакуумного диузи- онного насоса (ВН), высоковакуумного баллона (ВБ), масляного (М) и ионизационного (И) манометров, термопарных манометров (М1 и М2), орвакуумного насоса (ФН) и соединительных кранов К1, К2, ..., К6 (рис. 1). Кроме того, в состав установки входят: вариатор (автотрансорматор с регулируемым выходным напряжением), или реостат, и ам- перметр для регулирования тока нагревателя диузионного насоса.

Форвакуумный насос. Устройство и принцип действия ротационного пластинчатого орвакуумного насоса схематически показаны на рис. 2. В цилиндрической полости массивного корпуса размещен эксцен- трично ротор так, что он постоянно соприкасается своей верхней частью с корпусом. В диаметральный разрез ротора вставлены две пластины, раздвигаемые пружиной и плотно прижимаемые к поверхности полости. Они разделяют объјм между ротором и корпусом на две части.

Диффузионный насос. Откачивающее действие диузионного на- соса основано на диузии (внедрении) молекул разреженного воздуха в струю паров масла. Попавшие в струю молекулы газа увлекаются ею и уже не возвращаются назад. На прежнем их месте образуется пустота, которая немедленно заполняется следующими порциями газа, увеличи- вая степень разрежения газа в окрестности струи и оказывая таким образом сильное откачивающее воздействие на весь газ в откачиваемом объјме. Скорость откачки диузионных насосов в сотни и тысячи раз превосходит скорость откачки орвакуумного насоса.

5 Результаты измерений и обработка данных

Таблица 1: Результаты измерений

t, s	P, 10^(-4)mmHg
0	1.8
5	1.8
10	1.8
15	2.2
20	2.9
25	3.7
30	4.5
35	5.2
40	5.9
45	6.5
50	7.3
55	7.9
60	5.8
65	2.4
70	1.9
75	1.8

Рис. 1: График зависимости $ln(\frac{P-P_{lim}}{P_0})(t)$

$$\frac{W}{V} = 0.13 \frac{1}{s}$$

$$W = 0.28 \frac{L}{s}$$

6 Обсуждение результатов

7 Выводы