## **Cost of LU Factorization**

## **Contents**

1 Cost of PLU Factorization Algorithm

# Cost of PLU Factorization Algorithm

## Notation: Big-O and Asymptotic

Let f, g be positive functions defined on  $\mathbb{N}$ .

• 
$$f(n) = O\left(g(n)\right)$$
 ("f is big-O of g") as  $n \to \infty$  if

complex Simple 
$$\frac{f(n)}{g(n)} \leqslant C$$
, for all sufficiently large  $n$ .

•  $f(n) \sim g(n)$  ("f is asymptotic to g") as  $n \to \infty$  if

$$\lim_{n\to\infty}\frac{f(n)}{g(n)}=1.$$

$$f(n)=0 \ (n^3) \text{ because } \frac{f(n)}{n^3}=\frac{3n^3+2n^2-1}{n^3}=3+\frac{2}{n}-\frac{1}{n^3}\leqslant 3+1+1=5$$

$$\frac{\text{Note }}{n}f(n)=0 \ (5n^3), \ f(n)=0 \ (n^5), \ \cdots$$

$$f(n)\sim 3n^3 \text{ because } \lim_{n\to\infty}\frac{3n^3+2n^2-1}{2n^3}=1.$$

## Timing Vector/Matrix Operations – FLOPS

- One way to measure the "efficiency" of a numerical algorithm is to count the number of <u>floating-point arithmetic operations</u> (FLOPS) necessary for its execution.
- The number is usually represented by  $\sim cn^p$  where c and p are given explicitly.
- We are interested in this formula when n is large.

# **FLOPS** for Major Operations

### Vector/Matrix Operations

Let  $x, y \in \mathbb{R}^n$  and  $A, B \in \mathbb{R}^{n \times n}$ . Then

- (vector-vector)  $x^{\mathrm{T}}y$  requires  $\sim 2n$  flops.
- (matrix-vector) Ax requires  $\sim 2n^2$  flops.
- (matrix-matrix) AB requires  $\sim 2n^3$  flops.

$$A = \begin{bmatrix} \vec{a} \\ \vdots \\ \vec{c} \end{bmatrix}$$

$$\begin{bmatrix} \vec{\lambda}_{1}^{T} \end{bmatrix}$$

$$A \vec{x} = \begin{bmatrix} -\vec{\alpha}_1 \\ \vec{\alpha}_2 \end{bmatrix}$$











$$2n^2$$

$$=2n^{T}$$

$$=2n^{-}$$

$$= 2n$$

# GE W/ partial pivoting

· PLU factorization: ~= 3 n3 (PA = LU) PA = PB

• Backward Substitution:  $n n^2 = P \vec{b}$ 

$$V = \frac{1}{2}$$

## Cost of PLU Factorization

• Privot: 
$$R_i \Leftrightarrow R_j$$
 (no flops)  
• NOW replacement:  $R_i \to R_i + (-\frac{a_{ij}}{a_{ij}}) R_j$ 

Note that we only need to count the number of *flops* required to zero out elements below the diagonal of each column.

- For each i > j, we replace  $R_i$  by  $R_i + cR_j$  where  $c = -a_{i,j}/a_{j,j}$ . This requires approximately 2(n-j+1) flops:
  - 1 division to form *c*
  - n-j+1 multiplications to form  $cR_j$
  - n-j+1 additions to form  $R_i+cR_j$
- Since  $i \in \mathbb{N}[j+1,n]$ , the total number of *flops* needed to zero out all elements below the diagonal in the jth column is approximately 2(n-j+1)(n-j).
- Summing up over  $j \in \mathbb{N}[1, n-1]$ , we need about  $(2/3)n^3$  flops:

$$\sum_{j=1}^{n-1} 2(\underbrace{n-j+1}_{\text{N-J}})(n-j) \sim 2 \sum_{j=1}^{n-1} (n-j)^2 = 2 \sum_{j=1}^{n-1} j^2 \sim \frac{2}{3} n^3$$

5th ... nth: N-1+1

$$N - (5+1) + 1$$

$$= N - 7 - 1 + 1 = N - 1$$

Explanation 
$$9\sqrt{\frac{1}{2}} \log \frac{1}{2} \log \frac{1}{2}$$

$$= \frac{n(n-1)(2n-1)}{6} = \frac{2n^3 + (hower-order terms)}{6}$$

### Cost of Forward Elimination and Backward Substitution

#### **Forward Elimination**

- The calculation of  $y_i = \beta_i \sum_{j=1}^{i-1} \ell_{ij} y_j$  for i > 1 requires approximately 2i flops:
  - 1 subtraction
  - i-1 multiplications
  - i-2 additions
- Summing over all  $i \in \mathbb{N}[2, n]$ , we need about  $n^2$  flops:

$$\sum_{i=2}^{n} 2i \sim 2\frac{n^2}{2} = n^2.$$

#### **Backward Substitution**

• The cost of backward substitution is also approximately  $n^2$  flops, which can be shown in the same manner.

## Cost of G.E. with Partial Pivoting

Gaussian elimination with partial pivoting involves three steps:

- PLU factorization:  $\sim (2/3)n^3$  flops
- Forward elimination:  $\sim n^2$  flops
- Backward substitution:  $\sim n^2$  flops

### Summary

The total cost of Gaussian elimination with partial pivoting is approximately

$$\frac{2}{3}n^3 + n^2 + n^2 \sim \frac{2}{3}n^3$$

flops for large n.

# Application: Solving Multiple Square Systems Simultaneously

To solve two systems  $A\mathbf{x}_1 = \mathbf{b}_1$  and  $A\mathbf{x}_2 = \mathbf{b}_2$ . (Note both involve the same Coeff. matrix.)

#### Method 1.

- Use G.E. for both.
- It takes  $\sim (4/3)n^3$  flops.

#### Method 2.

- Do it in two steps:
  - **1** Do PLU factorization PA = LU.
  - 2 Then solve  $LU\mathbf{x}_1 = P\mathbf{b}_1$  and  $LU\mathbf{x}_2 = P\mathbf{b}_2$ .
- It takes  $\sim (2/3)n^3$  flops.

```
%% method 1

x1 = A \setminus b1; \quad \sim \frac{2}{3} n^3

x2 = A \setminus b2; \quad \sim \frac{2}{3} n^3
```

```
%% method 2

[L, U, P] = lu(A); \sim \frac{2}{3} \sqrt{3}

x1 = U (L (P*b1)); \sim 4 \sqrt{3}

x2 = U (L (P*b2)); \sim 4 \sqrt{3}

%% compact implementation

X = A \ [b1, b2];

x1 = X(:, 1);

x2 = X(:, 2);
```

$$A \begin{bmatrix} \overrightarrow{x}_1 & \overrightarrow{x}_2 \end{bmatrix} = \begin{bmatrix} \overrightarrow{b}_1 & \overrightarrow{b}_2 \end{bmatrix} \\
\times B$$

$$AX = B$$