Striking out on one's own

Idiosyncratic frequency as a measure of derivation vs inflection

Maria Copot, Timothee Mickus & Olivier Bonami

Outline

Background

The theoretical difference between inflection and derivation

Empirical manifestation: the case of frequency

Methodology

Statistical inference

Frequency

Word vectors

Experiments

Model structure

The data

The numbers

Annex

Outline

Background

The theoretical difference between inflection and derivation

Empirical manifestation: the case of frequency

Methodology

Statistical inference

Frequency

Word vectors

Experiments

Model structure

The data

The numbers

Annex

Inflection vs Derivation

- Derivation increasingly recognised as paradigmatic, in a parallel way to inflection
 - See among many others: Marle (1984), Becker (1993), Bochner (1993), Blevins (2001), Stump (2005), Stekauer (2014), Boyé and Schalchli (2016), and Bonami and Strnadová (2019)
- A movement towards a unified, gradient approach based on empirical evidence.

The theory

 While not a dichotomy, inflection and derivation remain two distinct concepts in theory

Inflection	Derivation
lire~lisait	lire~lisible
Outputs realisations of a single lexeme	Outputs independent lexical entries
Same concept	Different concepts

• Can this theoretical difference manifest itself empirically?

A general prediction

- Derivational output is inherently more independent from its base. More variability for members of derivational relationships.
- For example, meaning relationships are more predictable in inflection than derivation (Bonami and Paperno, 2018)

A more specific prediction

- For related reasons, we can expect a difference in the predictability of word frequency for inflection and derivation.
- Because derived lexemes are independent lexical entities, we expect their frequency to vary independently of their base

Verb	Action noun	Freq. ratio
ouvrer 'to work'	ouvrage 'work; book'	0.02
	cambriolage 'robbery'	0.02
	edian	17
arriver 'to arrive'	arrivage 'delivery'	489
fixer 'to fasten'	fixage 'fixing'	1927
	<i>, , , ,</i>	

 In inflection, we do not expect such variability, except where it is semantically motivated (e.g. eye is more likely to be found in the plural than nose)

The research question

- Is the frequency of the output more predictable for inflection, compared to derivation?
 - Gradient vs dichotomy?
 - What factors are most helpful?

Outline

Background

The theoretical difference between inflection and derivation

Empirical manifestation: the case of frequency

Methodology

Statistical inference

Frequency

Word vectors

Experiments

Model structure

The data

The numbers

Annex

The methodological plan

How does a given morphological process impact frequency?

- We can train a statistical model for each morphological process to predict the frequency of the output
- We can use goodness of fit measures to compare our different models, and highlight whether some processes are harder to model than others
 - The residual standard error (RSE) of a model quantifies the accuracy of the prediction (low RSE = good prediction)

...But what predictors should be used?

Frequency

We can use the **frequency of a related form** for a **rough estimate** of how frequently the lexeme is used

• We'll use the reference form (verb inf. & noun sg.)

reference form = citation form (of the base)

To compute frequencies, we need a large corpus:

- FrCOW 16: 6B tokens, in French, crawled from the web.
- We use the tokenization provided in the XML files.

"Word vectors"

We want predictors for semantic information

	runs	barks
dog	1	5
hyena	1	2
cat	4	0

from Baroni, Bernardi, and Zamparelli (2014)

- We can use many different observations, e.g., on words or lexemes
- Frequency is encoded in the length (norm) of a vector

Semantic neighbourhood

We expect the neighbours of a given word to share semantic characteristics with it

Word vectors: to recap

- word vectors reflect lexical semantics
- Regions of the semantic space describe coherent semantic fields (e.g., weather verb vectors are bunched together).

We can use vectors to make semantically informed predictions.

- We can use them directly: plug in the vector \vec{w} of the word w (Word-level semantic information)
- We can use them indirectly: explore the neighbourhood of \vec{w} which describe the general trend for semantically similar words (Lexeme-level semantic information)

We'll train two 100D vector spaces on FrCOW16 data.

Two many vector components

We want to use vectors as predictors in statistical models

"With four parameters I can fit an elephant, and with five I can make him wiggle his trunk."

John von Neumann

- If we use all 100 vector components, we would have more predictors than distinct responses.
- We can apply dimensionality reduction to solve this issue.

Outline

Background

The theoretical difference between inflection and derivation

Empirical manifestation: the case of frequency

Methodology

Statistical inference

Frequency

Word vectors

Experiments

Model structure

The data

The numbers

Annex

• A baseline: $f(output) \sim f(reference form)$

- A baseline: $f(output) \sim f(reference form)$
 - f(lirai) ~ f(lire)

- A baseline: $f(output) \sim f(reference form)$
- $f(output) \sim f(reference form) + reference form$

- A baseline: $f(output) \sim f(reference form)$
- $f(output) \sim f(reference form) + reference form$
 - $f(lirai) \sim f(lire) + LIRE$
 - · why? A way to take base semantics into account
 - Necessary to account for eye \sim eyes, nose \sim noses

- A baseline: $f(output) \sim f(reference form)$
- $f(output) \sim f(reference form) + reference form$
- $f(output) \sim f(reference form)$ + average neighbour relative frequency

- A baseline: f(output) ~ f(reference form)
- $f(output) \sim f(reference form) + reference form$
- $f(output) \sim f(reference form)$ + average neighbour relative frequency
 - average neighbour relative frequency = $\frac{1}{n} \cdot \sum_{i=1}^{n} \frac{neighb \, form_i}{neighb \, ref \, form_i}$
 - $f(lirai) \sim f(lire) + avg(\frac{f(intérpreterai)}{f(intérpreter)} + \frac{f(déchiffrerai)}{f(déchiffrer)} + ...)$
 - why? For processes whose output is heavily dependent on the base, this should provide an accuracy boost.

- A baseline: $f(output) \sim f(reference form)$
- $f(output) \sim f(reference form) + reference form$
- $f(output) \sim f(reference form)$ + average neighbour relative frequency
- $f(output) \sim f(reference form) + average neighbour$

- A baseline: $f(output) \sim f(reference form)$
- $f(output) \sim f(reference form) + reference form$
- $f(output) \sim f(reference form)$ + average neighbour relative frequency
- $f(output) \sim f(reference form) + average neighbour$
 - f(lirai) ~ f(lire) + avg(intérpreterai + déchiffrerai + ...)
 - Neighbours of the base are obtained. The vector of their output is averaged and added as a predictor.
 - why? Same reason for model type 3, but semantics is included more directly.

The data

- What morphological processes did we look at?
- Derivation¹:
 - $V \rightarrow ACTION NOUN$
 - $V \rightarrow AGENT NOUN$
- Inflection²
 - Noun pluralisation
 - 18 verbal inflectional cells (excluded cells with high intraparadigmatic homophony, as frequency counts are unreliable)

¹Datasets of derivational pairs are scarce, so we were not able to include more. Derivational pairs were selected from Demonette (Hathout and Namer, 2014)

²Inflectional pairs were based on the GLàFF (Sajous, Hathout, and Calderone, 2014)

Crunching the numbers

Conclusion

- Theoretically, the distinction between inflection and derivation is quite clear:
 - Inflection: different ways to talk about the same concept depending on context
 - Derivation: different concepts
- Prediction: qualities of derivational output are harder to predict from the base, compared to inflection. This is borne out: all of inflection has a lower RSE than all of derivation.
- The method employed shows promise for better understanding the nature of different processes.
 - For past participles, the output has inherently varied semantics, which is why models based on frequency rather than vectors are better predictors

Outline

Background

The theoretical difference between inflection and derivation

Empirical manifestation: the case of frequency

Methodology

Statistical inference

Frequency

Word vectors

Experiments

Model structure

The data

The numbers

Annex

Data selection

- Which cells in the paradigm of French verbs can we work with?
- · Working with our dataset, we exclude...

Finite forms						
	1sg	2sg	3sg	1PL	2PL	3PL
IND.PRS	2	3	183	2	5	14
IND.IPFV	0	0	5083	10	10	5076
IND.PST	4484	4448	4694	5116	5116	5101
FUT	5211	5207	5213	5190	5212	5221
SBJV.PRS	0	250	2	8	7	13
SBJV.IPFV	4701	4725	5119	4726	4738	4740
COND	0	0	5220	5212	5212	5215
IMP	_	0	_	2	2	_

	Nonfinite forms						
	INF PRS.PTCP	DDS DTCD	PST.PTCP				
		M.SG	F.SG	M.PL	F.PL		
	5006	4311	3935	3055	2903	3199	

Number of verbs from Flexique with no homograph documented in the GLÀFF, by paradigm cell

Data selection

- Which cells in the paradigm of French verbs can we work with?
- · Working with our dataset, we exclude...
 - · cells with high numbers of homographs according to the GLÀFF;

Finite forms							
1SG 2SG 3SG 1PL 2PL 3PL							
IND.PRS	2	3	183	2	5	14	
IND.IPFV	0	0	5083	10	10	5076	
IND.PST	4484	4448	4694	5116	5116	5101	
FUT	5211	5207	5213	5190	5212	5221	
SBJV.PRS	0	250	2	8	7	13	
SBJV.IPFV	4701	4725	5119	4726	4738	4740	
COND	0	0	5220	5212	5212	5215	
IMP	-	0	-	2	2	_	

Nonfinite forms							
INF	PRS.PTCP		PST.PTCP				
HAL	INF PRS.PICP	M.SG	F.SG	M.PL	F.PL		
5006	4311	3935	3055	2903	3199		

Number of verbs from Flexique with no homograph documented in the GLÀFF, by paradigm cell

Data selection

- Which cells in the paradigm of French verbs can we work with?
- · Working with our dataset, we exclude...
 - · cells with high numbers of homographs according to the GLAFF;
 - · cells out of current usage (i.e. most attestations are likely to be archaic);

Finite forms								
	1SG 2SG 3SG 1PL 2PL 3PL							
IND.PRS	2	3	183	2	5	14		
IND.IPFV	0	0	5083	10	10	5076		
IND.PST	4484	4448	4694	5116	5116	5101		
FUT	5211	5207	5213	5190	5212	5221		
SBJV.PRS	0	250	2	8	7	13		
SBJV.IPFV	4701	4725	5119	4726	4738	4740		
COND	0	0	5220	5212	5212	5215		
IMP	_	0	_	2	2	-		

Nonfinite forms							
INF PRS.PTCP	DDC DTCD		PST.PTCP				
	FK3.FICF	M.SG	F.SG	M.PL	F.PL		
5006	4311	3935	3055	2903	3199		

Number of verbs from Flexique with no homograph documented in the GLÀFF, by paradigm cell

• In morphology, inflection has been claimed to be more semantically regular than derivation (Stump, 1998; Stekauer, 2014, e.g.)

- In morphology, inflection has been claimed to be more semantically regular than derivation (Stump, 1998; Stekauer, 2014, e.g.)
 - · know-knows, dance-dances:

- In morphology, inflection has been claimed to be more semantically regular than derivation (Stump, 1998; Stekauer, 2014, e.g.)
 - know-knows, dance—dances:
 knowing the meaning of the former entails knowing the meaning of the latter

- In morphology, inflection has been claimed to be more semantically regular than derivation (Stump, 1998; Stekauer, 2014, e.g.)
 - know-knows, dance—dances:
 knowing the meaning of the former entails knowing the meaning of the latter
 - · sell-seller, but dine-diner or see-seer:

- In morphology, inflection has been claimed to be more semantically regular than derivation (Stump, 1998; Stekauer, 2014, e.g.)
 - know-knows, dance—dances:
 knowing the meaning of the former entails knowing the meaning of the latter
 - sell-seller, but dine-diner or see-seer:
 knowing the meaning of the former does not entail knowing the meaning of the latter

- In morphology, inflection has been claimed to be more semantically regular than derivation (Stump, 1998; Stekauer, 2014, e.g.)
 - know-knows, dance—dances:
 knowing the meaning of the former entails knowing the meaning of the latter
 - sell-seller, but dine-diner or see-seer:
 knowing the meaning of the former does not entail knowing the meaning of the latter
- Bonami and Paperno (2018) test whether this assumption is consistent with distributional semantics

- In morphology, inflection has been claimed to be more semantically regular than derivation (Stump, 1998; Stekauer, 2014, e.g.)
 - know-knows, dance—dances:
 knowing the meaning of the former entails knowing the meaning of the latter
 - sell-seller, but dine-diner or see-seer:
 knowing the meaning of the former does not entail knowing the meaning of the latter
- Bonami and Paperno (2018) test whether this assumption is consistent with distributional semantics
- Assuming it is, we would expect linear offsets for inflectional relations (e.g., bare 3rd sg) to be more consistent than those for derivational relations (e.g., verb – agent)

 Many factors to control: frequency, but also the inherent semantics of the words under consideration

- Many factors to control: frequency, but also the inherent semantics of the words under consideration
- The solution of Bonami and Paperno (2018) is to use word triples

- Many factors to control: frequency, but also the inherent semantics of the words under consideration
- The solution of Bonami and Paperno (2018) is to use word triples

 They find that derivational relations yield significantly more variation than inflectional ones: derivational pairs stray more from the average value than inflectional pairs.