Determine the output voltage, v_0

Solution: (from central playlist)

https://youtu.be/KBWfa-NuYzk?list=PLPf6M92pkd7DRilBZLzKot-39S215ksSw&t=617

18. Miscellaneous

Determine the output voltage, v_0

Solution: (from central playlist)

https://youtu.be/KBWfa-NuYzk?list=PLPf6M92pkd7DRilBZLzKot-39S215ksSw&t=890

Determine the voltages: \boldsymbol{V}_{01} , $\boldsymbol{V}_{\boldsymbol{X}}$, \boldsymbol{V}_{02}

Solution: (from central playlist)

https://youtu.be/KBWfa-NuYzk?list=PLPf6M92pkd7DRilBZLzKot-39S215ksSw&t=1198

Additional Hint for finding V_X : Use Nodal Analysis on the V_X node instead of the current method shown in the video link above.

20. Miscellaneous

Determine the marked currents and the output voltage

Determine the appropriate value of R_1

Express the output voltage \boldsymbol{v}_0 in terms of all the other quantities shown in the circuit below.

Determine the output of the comparator, V_0 after finding V_a and V_b .

Draw the correct waveform of $\,V_{_{0}}\,$ (with voltage labels) alongside the input waveform of $\,E$.

$$V^+ = -3 + (2.2 * 3) = 3.6V$$
 [you may use source transformation here too] $V^+ = V^- = 3.6V$

When E= 2.2V => Nodal Analysis at V^- :

$$(V^{-} - 2.2)/2 + (V^{-} - V_{0})/4 = 0 = 0 = 6.4V$$

When E= 1.8V => Nodal Analysis at V^- :

$$(V^{-} - 1.8)/2 + (V^{-} - V_{0})/4 = 0 = 7.2V$$

We know that the input-output relationship of an ideal inverting amplifier with op-amp is given by:

$$V_0 = -\frac{R_F}{R_1} V_{in}$$

However, realistic op-amps are non-ideal. Determine the input-output relationship of a non-ideal inverting amplifier. Use the equivalent circuit of an op-amp which contains A, R_i , R_0 .

26. Miscellaneous

Draw the approximate waveforms of both $V_{_A}$ and $v_{_0}$ from the circuit below.

After drawing both z(t) and h(t), determine the relation between them.

28. Miscellaneous

Draw the VTC of both an inverting and a non-inverting amplifier. The following information are known:

(i)
$$2R_1 = R_F$$
 (ii) $V_{sat}^+ = +10V$, $V_{sat}^- = -10V$

• Identify which of these I-V curves are Linear and which are Nonlinear:

Ans: Linear: (d)

• Write down the slopes of these following regions in ascending order (you do not need to calculate the slopes)

Ans: (a) |OA| < |OB| < |OC| < |OD|, (b) Slopes of AB and CD are equal(infinity). The DE slope is negative. However, the value of slope is higher than BC here. |BC| < |DE| < |AB|

• Find out the slope of the following curves

Answer: **Slope,**
$$|\mathbf{m}| = \left| \frac{y_2 - y_1}{x_2 - x_1} \right|$$

$$|BC| = \left| \frac{y_2 - y_1}{x_2 - x_1} \right| = \left| \frac{-7 + 4}{-4 + 0} \right| = \frac{3}{4}$$

$$|DE| = \left| \frac{y_2 - y_1}{x_2 - x_1} \right| = \left| \frac{0 - 7}{7 - 0} \right| = 1$$
 [Can you identify the issue in this curve?]

$$|AB| = \left| \frac{y_2 - y_1}{x_2 - x_1} \right| = \left| \frac{-7 - 0}{-4 + 4} \right| = \infty$$

• Calculate and Show 'C' and 'Io' in the figures

[Hint: use
$$-\frac{Vo}{R} = Io = c$$
]

• Draw the alternative circuit diagram, I-V curve and calculate the parameters with the following information:

i. Vo= 5V, m=
$$2/k\Omega$$

ii. Vo= 3.5 V, m=
$$-2.5/k\Omega$$

iii. Vo= -5V, m=
$$5/k\Omega$$

Solution:

i.
$$|R| = \left| \frac{1}{m} \right|$$
 i.e. $\frac{1}{2} k\Omega$, $c = -\frac{Vo}{R} = -\frac{5}{0.5} mA = -2.5 mA$

ii.
$$|R| = |\frac{1}{m}|$$
 i.e. $\frac{1}{2.5} k\Omega$, $c = -\frac{3.5}{0.4} mA = -8.75 mA$

iii.
$$|R| = |\frac{1}{m}|$$
 i.e. $\frac{1}{5} k\Omega$, $c = -\frac{-5}{0.2} mA = 25 mA$

Alternative Diagram:

I-V curve:

Calculate and Show 'C' and 'Vo' in the figures

[Hint: Use IoR = -Vo]

• Draw the alternative circuit diagram with the equivalent linear model, I-V curve and calculate the parameters with the following information:

i. Io= 5 mA, m=
$$2/k\Omega$$

ii. Io= 3.5 mA, m= -2.5
$$/k\Omega$$

iii. Io= -5 mA, m=
$$5/k\Omega$$

Solution:

i.
$$|R| = |\frac{1}{m}|$$
 i.e. $\frac{1}{2} k\Omega$, $c = Io = 5 mA$, $Vo = -IoR = -2.5 V$

ii.
$$|R| = \left| \frac{1}{m} \right|$$
 i.e. $\frac{1}{2.5} k\Omega$, $c = Io = 3.5 \, mA$, $Vo = -(-IoR) = 1.4 \, V$; as m is negative

iii.
$$|R| = \left| \frac{1}{m} \right|$$
 i.e. $\frac{1}{5} k\Omega$, $c = Io = -5 \text{ mA}$, $Vo = -IoR = 1 \text{ V}$

Alternative diagram:

I-V:

• From the I-V curve-

i. State the device model for each region,

Solution:

i.

AB: Voltage source in series with a resistor/ Current source in parallel with a resistor

BC: Voltage source

CD: Current source

EF: Voltage source in series with a resistor/ Current source in parallel with a resistor

FG: Voltage source

• A Voltage Source, Vo= 10 V in series with a resistor of R= 3 $k\Omega$.

i. Write down the equation representing this curve

ii. Determine the unknown parameters

iii. Label the I-V curve

Solution:

i.
$$y=mx+c$$

Or, I= m. Vs
$$-\frac{Vo}{R}$$

ii. Vo= 10 V, R=3
$$k\Omega$$

$$|\mathbf{m}| = |\frac{1}{R}| = \frac{1}{3}$$

Y axis intersection: $c = -\frac{Vo}{R} = -\frac{10V}{3k\Omega} = -\frac{10}{3} \text{ mA}$

X axis intersection: Vo= 10 V

iii.

• A Voltage Source, Vo= -10 V in series with a resistor of R= 3 $k\Omega$.

i. Write down the equation representing this curve

ii. Determine the unknown parameters

iii. Label the I-V curve

Solution:

i.
$$y=mx+c$$

Or, I= m. Vs
$$-\frac{Vo}{R}$$

ii. Vo= 10 V, R=3
$$k\Omega$$

$$|\mathbf{m}| = |\frac{1}{R}| = \frac{1}{3}$$

Y axis intersection: $c = -\frac{Vo}{R} = -\frac{-10V}{3k\Omega} = \frac{10}{3} \text{ mA}$

X axis intersection: Vo = -10 V

Iii.

- A Current Source, Io= 5 mA in parallel with a resistor of R= 5 $k\Omega$.
 - i. Write down the equation representing this curve
 - ii. Determine the unknown parameters
 - iii. Label the I-V curve

Solution:

i.
$$y=mx+c$$

Or,
$$Is = \frac{Vs}{R} + Io$$

ii. Vo= 10 V, R=5
$$k\Omega$$

$$|\mathbf{m}| = |\frac{1}{R}| = \frac{1}{5}$$

Y axis intersection : c = Io = 5 mA

X axis intersection: IoR = -Vo

Or,
$$Vo = -5*5 V = -25V$$

iii.

- You are provided with the following circuit elements:
 - Two 1 $k\Omega$ resistors
 - A 4 V voltage source
 - A 2 V voltage source

Can you implement a circuit element X that has an IV characteristics, as seen in the right figure below, but by **ONLY USING THE ELEMENTS MENTIONED ABOVE**? The voltage polarity and current direction should be as shown in the left figure.

Hybrid Problems

1.

The saturation voltages of the Op-Amp are given as- $V_{sat}^+ = +10V$ and $V_{sat}^- = -10V$. The forward voltage drop of the diode, V_D is 0.7V.

- (a) **Determine** the operating mode diode, D_1 . Verify your assumption with necessary calculations.
- (b) Calculate the voltage at (i) node 'Va', (ii) non-inverting terminal of the Op-Amp, (iii) inverting terminal of the Op-Amp.
- (c) Find out the output voltage, Vo of the Op-Amp.

2.

The saturation voltages of the Op-Amp are given as- $V_{sat}^+ = +\ 10V$ and $V_{sat}^- = -\ 10V$. The forward voltage drop of the diode, V_D is 0.7V.

- (a) **Determine** the operating mode diode, D_1 . Verify your assumption with necessary calculations.
- (b) Calculate the voltage at (i) node 'Va', (ii) non-inverting terminal of the Op-Amp, (iii) inverting terminal of the Op-Amp.
- (c) Find out the output voltage, Vo of the Op-Amp.

Soln:

Nodal:
$$(V_a - 0.7)(1 + 2.2 + 1) + V_a(1 + 1.2) = 10 + 5$$

 $\geqslant V_a = 3.898 V$

i.
$$id = i_1 - i_2 = \frac{5 - Va}{1} - \frac{Va - 0}{1 \cdot 2} = -2.15 \text{ mA} < 0 \text{ mA}$$

i. $id = i_1 - i_2 = \frac{5 - Va}{1} - \frac{Va - 0}{1 \cdot 2} = -2.15 \text{ mA} < 0 \text{ mA}$

". D1 is OFF → Left side Open → Equivalent ckt :

> This is an invterting amplifier with 5V and (1k+1.2k) at the inverting terminal

$$% = -\frac{3.3}{1+1.2} \times 5V = -6.82V$$

You are provided with the diagram below as a starting point for designing an AC to DC converter. Input voltage source is an sinusoidal voltage source (V_{in}) , with 2V peak to peak voltage (i.e. 1 V amplitude) and the DC voltage is around 10 V (with ripple) at the output terminals (v_{o}) .

So, in order to solve this problem, you are provided with a single diode (with $V_{D0} = 0.7 \text{ V}$), two resistors (R_1 and R_2 , excluding the load resistors R_L) and an UA741 op-amp.

- (a) Design **circuit-1** with the single diode and $R_L = 10 k\Omega$ (R_L is already provided in the diagram as output terminals of **circuit-1**) to get a rectified voltage and determine the DC value of the output voltage (v_{a1}) of the circuit. [1+2]
- (b) Determine the ripple voltage of v_{o1} . [Ripple voltage is defined as the difference between the maximum and minimum value of a DC voltage.] [2]
- (c) What should be the value of a capacitor used at the output end of **circuit-1** with R_L to reduce the ripple voltage of v_{o1} to 0. 1 V. How should the capacitor be connected with R_L in the diagram? [4+1]
- (d) Design an amplifier using an operational amplifier as **circuit-2** to increase the DC voltage level of the output voltage of the circuit designed in (c) to 10 V. Find the ripple voltage of the amplified voltage signal. [4+1]

4.

5.

