CSPB 4622 - Truong - Machine Learning

<u>Dashboard</u> / My courses / <u>2247:CSPB 4622</u> / <u>26 August - 1 September</u> / <u>Quiz 1-1. Linear Regression</u>

Started on	Tuesday, 3 September 2024, 2:49 PM
State	Finished
Completed on	Tuesday, 3 September 2024, 3:09 PM
Time taken	19 mins 13 secs
Grade	9.00 out of 10.00 (90 %)
Question 1 Correct Mark 1.00 out of 1.00	
The regression ted	chnique described in class is called least-squares regression because:
a. The estimate	ed model parameters are learned by minimizing the sum of the squares of the residuals.
b. It always pro	duces predictions that are perfect squares.
c. The solution	technique involves a square design matrix.

Question **2**

Correct

Mark 1.00 out of 1.00

Given the following three regression models for **SepalLength**, indicate which model has the **worst** fit.

OLS Regressio	n Resu	ılts		A.						
Dep. Var	iable:		Sepall	Length		R	squared	d:	0.	760
М	odel:			OLS	Adj.	R	-squared	d:	0.	758
Ме	thod:		Least S	quares		F	-statistic	o:	46	8.6
	Date:	Th	u, 19 Ap	r 2018	Prob	(F-	statistic):	1.04e	-47
•	Time:		15	:18:01	Log	-Li	kelihood	d:	-77.	020
No. Observat	ions:			150			AIC	:	15	8.0
Df Resid	luals:			148			BIC	:	16	4.1
Df M	odel:			1						
Covariance	Type:		non	robust						
	coe	ef	std err	t	P>	t	[0.025	0.	975]	
Intercept	4.305	6	0.078	54.895	0.00	00	4.151	4	.461	
PetalLength	0.409	1	0.019	21.646	0.00	00	0.372	0	.446	
Omnib	us: 0	.212	2 Du	rbin-Wa	tson:	1.	.868			
Prob(Omnibu	is): 0	.899	9 Jarqu	ue-Bera	(JB):	0.	350			
Ske	w: 0	.070	0	Prob	(JB):	0.	.839			
Kurtos	is: 2	.809	9	Cond	. No.		10.3			

B.

OLS Regression Res	ults						
Dep. Variable:		SepalL	ength		R-	squared	: 0.012
Model:			OLS	Adj.	R-	squared	0.005
Method:	Le	Least Squares		F-statistic:			1.792
Date:	Thu,	19 Apr	2018	Prob	(F-s	tatistic)	0.183
Time:		15:	23:41	Log	-Lik	elihood	: -183.14
No. Observations:			150			AIC	370.3
Of Residuals:		148		BIC:			376.3
Df Model:			1				
Covariance Type:		nonr	obust				
cc	ef st	td err		t P>	t	[0.025	0.975]
Intercept 6.48	12	0.481	13.466	0.00	00	5.530	7.432
SepalWidth -0.20	89	0.156	-1.339	0.18	33	-0.517	0.099
Omnibus: 4	.455	Dur	bin-Wa	tson:	0.9	941	
Prob(Omnibus):	0.108	Jarqu	e-Bera	(JB):	4.2	252	
Skew: 0	.356		Prob	(JB):	0.1	119	
Kurtosis: 2	2.585		Conc	l. No.	2	4.3	

C.

OLS Regression Results

Dep. Variable:		Sepall	Length	R	-squared	3.0	340
м	odel:		OLS	Adj. R	3.0	338	
Ме	thod:	Least S	quares	F	-statistic	o: 38	6.8
	Date: T	hu, 19 Ap	r 2018	Prob (F-	statistic): 2.74e	-59
1	Time:	15	:18:22	Log-Li	kelihood	d: -46.4	142
No. Observat	tions:		150		98	.88	
Df Residuals:			147		: 10	107.9	
Df M	lodel:		2				
Covariance	Type:	non	robust				
	coef	std err	t	P> t	[0.025	0.975]	
Intercept	2.2513	0.247	9.104	0.000	1.763	2.740	
PetalLength	0.4708	0.017	27.616	0.000	0.437	0.504	
SepalWidth	0.5968	0.069	8.602	0.000	0.460	0.734	

2.015	Durbin-Watson:	0.169	Omnibus:
0.319	Jarque-Bera (JB):	0.919	Prob(Omnibus):
0.853	Prob(JB):	-0.051	Skew:
48.2	Cond. No.	2.798	Kurtosis:

a. A.

o b. B.

____ c. C.

Question $\bf 3$

Correct

Mark 1.00 out of 1.00

Given the following regression model information for the model **SepalLength~PetalLength** answer the question below.

When the PetalLength increases by 1, how much does the SepalLength increase by?

Answer: 0.4091 **✓**

			- 4
O	uest	ion	-4

Correct

Mark 1.00 out of 1.00

Assume you are modeling $Y \sim X$ where X is a continuous variable and Y is a discrete variable. Is this a regression or classification problem?
■ a. Classification
b. Either technique could be used.
c. Regression
Question 5
Correct
Mark 1.00 out of 1.00
It makes sense to use a correlation matrix to select multiple features by choosing features in order of correlation.
a. True
● b. False
Question 6
Correct
Mark 1.00 out of 1.00
We have a linear regression model with an intercept in the form $y = ax + b$. We create a new model with no intercept in the form $y = ax$. The r-squared value for the model with no intercept is higher than the r-squared value model with an intercept. We can feel confident that the model with no intercept is better than the model with an intercept.
a. True
● b. False
Question 7
Incorrect
Mark 0.00 out of 1.00
Suppose you fit a multiple linear regression model to a dataset with $p=7$ features and $n=1000$ data points. Answer the following
question: Hint: (Design matrix) X (coefficients vector) = (Y vector) The design matrix X has 2000 columns

Question 8

Correct

Mark 1.00 out of 1.00

Assume you've run a regression model $Y \sim \beta_0 + \beta_1 X$ for a single factor 'X'. The value of $R^2 = 0.932$ and the model is y = 5.5000 - 9.1667x. The t- value for β_0 is 0.625 with a corresponding p-value of 0.555. The t-value for β_1 is 5.257 with a corresponding p-value of 0.002. The confidence interval for β_0 is [-16.048, 27.048] and the confidence interval for β_1 is [4.900, 13.434]. Is the model a poor, good or perfect fit to the available data?

- a. Poor
- o b. Good
- c. Perfect

Question 9

Correct

Mark 1.00 out of 1.00

Assume you've run a regression model $Y \sim \beta_0 + \beta_1 X$ for a single factor 'X'. The value of $R^2 = 0.932$ and the model is y = 5.5000 - 9.1667x. The t- value for β_0 is 0.625 with a corresponding p-value of 0.555. The t-value for β_1 is 5.257 with a corresponding p-value of 0.002. The confidence interval for β_0 is [-16.048, 27.048] and the confidence interval for β_1 is [4.900, 13.434]. Is the intercept (β_0) statistically significant?

- a. Yes
- o b. No

Ouestion 10

Correct

Mark 1.00 out of 1.00

Assume you've run a regression model $Y \sim \beta_0 + \beta_1 X$ for a single factor 'X'. The value of $R^2 = 0.932$ and the model is y = 5.5000 - 9.1667x. The t- value for β_0 is 0.625 with a corresponding p-value of 0.555. The t-value for β_1 is 5.257 with a corresponding p-value of 0.002. The confidence interval for β_0 is [-16.048, 27.048] and the confidence interval for β_1 is [4.900, 13.434]. Is the slope (β_1) statistically significant?

- o a. Yes
- b. No