Fondamenti di ottica

Onde Elettromagnetiche

• Combinazione di campi elettrici e magnetici variabili nel tempo

che si propagano con velocità

$$v = [1/(\mu \epsilon)]^{1/2}$$

· Velocità nel vuoto

$$c = 3 \cdot 10^8 \,\text{m/sec}$$

onda elettromagnetica

Di solito per semplicità si considera solo il campo elettrico

Esempio di soluzione dell'equaz. delle onde: onda piana monocromatica

$$\mathscr{E}(x, t) = \mathscr{E}_0 \cos(\omega t - kx + \phi)$$

Esempio: onda piana monocromatica

$$\mathcal{E} = \mathcal{E}_0 \cos kx$$
campo elettrico in funzione di x
(t=0)

$$\mathcal{E} = \mathcal{E}_0 \cos \omega t$$

campo elettrico in funzione del tempo (x=0)

Spettro delle onde Elettromagnetiche

La luce è <u>un'onda</u> elettromagnetica

(Maxwell 1873)

·Velocità nel vuoto

$$c = 3 \cdot 10^8 \text{ m/sec}$$

· velocità in un mezzo qualsiasi

$$v = c / n$$

n = indice di rifrazione del mezzo

H = magnetic field

E = electric field

direction of

propagation

$$n = \sqrt{\mu_r \varepsilon_r}$$

La luce bianca è scomponibile nello spettro visibile (Newton 1600)

- · Il colore è determinato dalla lunghezza d'onda
- · Lunghezze d'onda rivelabili dall'occhio: ~ 400-700 nm

Sensibilità relativa dell'occhio umano alle varie lunghezze d'onda

Fig. 20 — Relative sensitivity of the human eye to light at various wavelengths.

Caratteristiche e comportamenti delle onde luminose

Polarizzazione di un'onda piana

Un'onda piana è *polarizzata* se il vettore del campo elettrico vibra in uno specifico piano

Polarizzazione di un fascio luminoso

Un generico fascio luminoso comprende di solito molte onde i cui piani di vibrazione del campo elettrico sono orientati casualmente

Luce non polarizzata: la risultante del campo elettrico cambia orientamento casualmente nel tempo

Luce polarizzata: la risultante del campo elettrico è orientata

Riflessione e rifrazione

A light wave travelling in a medium with a greater refractive index $(n_1 > n_2)$ suffers reflection and refraction at the boundary.

© 1999 S.O. Kasap, Optoelectronics (Prentice Hall)

Interferenza

Interferenza costruttiva: 2 onde che arrivano in un punto in fase

Interferenza distruttiva: 2 onde che arrivano in un punto in opposizione di fase

Interferenza

Diffrazione

Capacità delle onde di "girare" intorno agli ostacoli

Questo comportamento può essere spiegato mediante il Principio di Huygens-Fresnel: ciascun punto di un fronte d'onda agisce come sorgente di piccole onde secondarie il cui inviluppo costituisce un nuovo fronte d'onda.

Esempio di diffrazione

Teorie sulla natura della luce:

· Teoria ondulatoria

(luce: emissione di onde)

· Teoria quantistica

(luce: emissione di particelle di energia)

Teoria quantistica

Max Karl Ernst Ludwig Plank (1858-1947)

(Nobel nel 1918)

L'emissione o l'assorbimento di energia e.m. avviene per quantità discrete, chiamate quanti, che rappresentano la minima quantità di energia

L'energia (E) di un quanto è legata alla frequenza (v) mediante la costante h

$$E = h v$$

h= 6.63×10^{-34} Joule seconds = 4.14 eV sec (costante di Plank)

Gli scambi di energia elettromagnetica avvengono sempre attraverso quantità intere di (hv)

$$E = n h v$$
 n= 1, 2, 3,

Origini della teoria quantistica

Emissione del corpo nero

Un corpo nero è un corpo la cui superficie è in grado di assorbire qualsiasi radiazione elettromagnetica che incide su di essa.

Questo significa, anche, che tale corpo è un emettitore perfetto, cioè è in grado di emettere radiazione e.m. di qualsiasi frequenza.

Nel 1879 Stefan e Boltzmann trovarono che l'energia irradiata da un corpo nero è proporzionale alla quarta potenza della temperatura.

Origini della teoria quantistica

Spettro di emissione del corpo nero

Energia totale emessa da un corpo nero

Legge di Stefan-Boltzmann (1844-1906)

$$W = K T^4$$

dove:

W = energia emessa da un corpo nero di area unitaria

K = costante di Stefan-Boltzmann

T = temperatura del corpo

Distribuzione spettrale dell'energia emessa

Legge dello spostamento di Wien (1864-1928):

$$\lambda_{m}T = cost$$

 λ_m = lunghezza d'onda alla quale si ha il max di energia, per ogni T

Origini della teoria quantistica Spettro di emissione del corpo nero

La legge di Stefan-Boltzmann e quella di Wien, trovate per via empirica, misero in grave difficoltà i fisici del tempo abituati a ragionare in termini "classici".

Secondo la Meccanica
Classica, infatti, lo
spettro di emissione del
corpo nero dovrebbe
rispettare la legge di
Rayleigh-Jeans: ma
secondo questa legge
l'intensità emessa
dovrebbe andare all'infinito
per basse lunghezze d'onda
(catastrofe ultravioletta).

L'andamento della curva di emissione del corpo nero risultava, perciò, inspiegabile.

Origini della teoria quantistica

L'andamento di tale curva fu spiegato da Plank (1900) mediante la <u>teoria dei quanti</u>.

Quanti di energia luminosa

Albert Einstein 1879-1955

Nel 1905 l'ipotesi dei quanti fu usata da Einstein per spiegare l'effetto fotoelettrico

L'energia della luce emessa o assorbita è composta da granuli indivisibili di energia chiamati fotoni

Ciascun fotone possiede un'energia proporzionale alla sua frequenza

E = h v

Effetto fotoelettrico

- \cdot Quando un fotone colpisce un metallo, la sua energia (E_F = h f) è trasferita ad un elettrone
- Se l'energia assorbita dall'elettrone è insufficiente a fargli vincere le forze di attrazione nell'atomo, l'elettrone rimane all'interno del materiale
- •Se l'energia assorbita dall'elettrone è maggiore dell'energia necessaria a vincere le forze di attrazione, l'eccesso di energia diviene energia cinetica (Ec) dell'elettrone rilasciato

 E_F = energia del fotone E_c = energia cinetica dell'elettrone h = cost. di Plank f = frequenza della radiazione luminosa

$$E_c = h f - \Phi$$

 Φ = potenziale di estrazione (work function) (cost. caratteristica di ciascun particolare metallo)

Effetto fotoelettrico

Un metallo illuminato da radiazione e.m. può emettere una corrente di elettroni

Esperimento di Hertz (1887):

Nel vuoto un metallo (emettitore E) viene illuminato; tra esso e un elettrodo (collettore C) è applicata una differenza di potenziale.

Se l'energia associata all'illuminazione è sufficiente, si ha effetto fotoelettrico: il metallo emette elettroni (e) dando luogo ad una corrente.

Perché l'effetto si verifichi, esiste una soglia sulla <u>frequenza</u> della luce che colpisce il metallo, non sull'intensità.
(Infatti, essendo (E=h f) l'energia dipende dalla frequenza della radiazione)

Natura ondulatoria e corpuscolare della luce (dualità onda-corpuscolo)

La LUCE è formata da onde o da particelle?

Risposta:

La luce ha entrambe le proprietà:

- si comporta come una perturbazione ciclica che si propaga con velocità v = c/n
- si comporta come se fosse composta da un numero elevato di particelle, ciascuna aventi energia E = h v

i due aspetti sono sostanzialmente inscindibili

Utilità delle due teorie

Teoria ondulatoria:

in grado di fornire spiegazioni dei fenomeni concernenti l'interazione luce-luce (es: interferenza, diffrazione)

Teoria quantistica:

in grado di fornire spiegazioni dei fenomeni riguardanti l'interazione luce-materia (es: emissione del corpo nero, effetto fotoelettrico, emissione o assorbimento di energia nei sistemi atomici)