LES SUITES NUMÉRIQUES E08C

EXERCICE N°4 Suite auxiliaire et tableur

- Soit la suite $(u_n)_{n\in\mathbb{N}}$ définie par : $u_0 = 2$ et pour tout entier naturel n, $u_{n+1} = 2u_n + 2n^2 n$.
- Soit la suite $(v_n)_{n\in\mathbb{N}}$ définie par : pour tout entier naturel n, $v_n = u_n + 2n^2 + 3n$.
- 1) Voici un extrait de feuille de tableur ci-contre : Quelles formules a-t-on écrites dans les cellules C2 et B3 et copiées vers le bas pour afficher les termes des suites u et v?

• C2 :	=B2+2*A2^2+3*A2	
■ B3:	=2*B2+2*A2^2-A2	

- 2) Déterminer, en justifiant, une expression de v_n puis de u_n en fonction de n.
- C n u

• Exprimons
$$v_{n+1}$$
 en fonction v_n :

Soit
$$n \in \mathbb{N}$$
,

$$v_{n+1} = u_{n+1} + 2(n+1)^2 + 3(n+1)$$

$$= 2u_n + 2n^2 - n + 2(n+1)^2 + 3(n+1)$$

$$= 2u_n + 2n^2 - n + 2n^2 + 4n + 2 + 3n + 3 + 5$$

$$= 2u_n + 4n^2 + 6n + 10$$

$$= 2(u_n + 2n^2 + 3n + 5)$$

$$= 2v_n$$

On en déduit que la suite v est géométrique de raison q=2 et de premier terme $v_0=7$ Pour v_0 , il suffit de lire la valeur dans le tableur...

Exprimons V_n en fonction n:

$$\forall n \in \mathbb{N}$$

$$v_n = v_0 \times q^n$$
, ainsi $v_n = 7 \times 2^n$

• Exprimons u_n en fonction n:

Soit $n \in \mathbb{N}$,

$$v_n = u_n + 2n^2 + 3n \Leftrightarrow u_n = v_n - 2n^2 - 3n = 7 \times 2^n - 2n^2 - 3n$$

Ainsi,

$$\forall n \in \mathbb{N} , \quad u_n = 7 \times 2^n - 2n^2 - 3n$$