shashank.sharma.1991@outlook.com github.com/ssharma1991

Experience

Dematic, Kion Mobile Automation

Machine Learning Engineer

Holland, MI

Sept 2020 - Present

- \bullet Creating a robust SLAM algorithm testing pipeline using ROS, Gazebo and Rviz.
- Evaluating Gmapping, Octomap and Cartographer based mapping approaches using 2D and 3D Lidar sensors.
- Evaluating the use of Visual Inertial Odometry and GraphSLAM to improve AGV navigation in warehouse environments.

Stony Brook University

Stony Brook, NY

May 2017 - Aug 2020

Research Assistant

- Developed a Computational Framework for Data-Driven Mechanism Design Innovation supported by a \$450K NSF grant.
- Designed algorithms for simulation and synthesis of Planar, Spherical, and Spatial single-degree-of-freedom Robotic systems resulting in multiple publications in journals by the American Society of Mechanical Engineers.
- Created MotionGen a web-based mechanism design framework. Uses MEAN (MongoDB, Express.js, Angular.js, Node.js) stack to create a RESTful web service based on MVC architecture. iOS and Android apps created using Apache Cordova framework.
- In-charge of Computer-Aided Design and Innovation Lab and collaborating with a research group of 10+ graduate students.

Teaching Assistant

 $Aug \; 2016 - Apr \; 2017$

- Developed SnappyXO, a laser-cut design-driven robotics platform that enables designing mechanisms, structures, and robots. It has successfully raised \$16K+ on Indiegogo for a crowdfunding campaign.
- Advised 250+ students in MEC101-Freshman Design Innovation, MEC 102-Engineering Computing, and Vertically Integrated Projects(VIP) Program. The Robot Design projects gained recognition from the Office of President at university.

Vivonics, Inc.

Stony Brook, NY

Feb 2016 — Aug 2016

Product Design Intern

- Coordinated with the design team on developing PMT Monitor, a portable medical headset that detects head trauma.
- Generated concepts for an interpupillary distance adjusting mechanism focusing on manufacturability and robustness.

Leviathan Energy

Stony Brook, NY

Strategic Partnership for Industrial Resurgence (SPIR) Intern

Feb 2016 - May 2016

- Designed and manufactured Hydro-kinetic turbines with improved airfoil design which produces 50% more power in collaboration with Leviathan Energy.
- Created engineering models using Solidworks and Autodesk Inventor and fabricated parts by FDM based 3D printing.

Indian Institute of Information Technology

Junior Research Fellow

Jabalpur, India

May 2014 - May 2015

- Led a \$70k+ research project funded by the Science and Engineering Research Board titled "Development of Additive-Subtractive Integrated Rapid Prototyping System for Improved Part Quality".
- Spearheaded design and manufacturing teams to create a new hybrid 3D printing process using Pellet based Screw Extruder with CNC machines. Created Toolpath Planning strategies to manufacture CAD models using Hybrid Manufacturing techniques.

Sara Sae Private Limited

Dehradun, India

Design Intern

May 2013 - Aug 2013

- Involved with product development of Hydraulic Tongs used in the oil and gas industry.
- Carried out Kinematic and Dynamic analysis to find the most probable failure regions.

Engineering Intern

Jabalpur, India

Sept 2012 - Dec 2012

- Solved practical engineering problems by Topology, Topography, Size and Shape Optimization using OptiStruct.
- Achieved 44th rank in Altair All India Optimization Contest 2012.

Vehicle Factory Jabalpur

Jabalpur, India

Manufacturing Intern

July 2011 - July 2011

• Worked with the Production Line and Maintenance Teams for Mine Protected Vehicle and Stallion Mark-I trucks.

Central Institute of Hand Tools

Jalandhar, India

Computer Aided Design Intern

June 2010 - June 2010

• Carried out Computer-aided Design using Pro/ENGINEER, Mold Modelling and Mold-flow analysis.

Education

Stony Brook University

Stony Brook, NY

Ph.D., Mechanical (Concentration: Design and Robotics, Minor: Applied Mathematics), GPA 3.95

Aug 2015 - Aug 2020

• Relevant Courses: Robotics, Advanced Dynamics, Vibration and Control, Kinematic Analysis and Synthesis, Applied Stress Analysis, Product Design Optimization, Geometric Modeling, Analysis of Algorithms

Udacity, School of Autonomous Systems

Self Driving Car Engineer Nanodegree

Mountain View, CA

Mar 2019 - Mar 2020

• Relevant Areas: Computer Vision, Deep Learning, Sensor Fusion, Localization, Planning, Control, System Integration

Relevant Projects

Self Driving Car subsystem design and integration

Udacity

Python, Jupyter, OpenCV, TensorFlow, Keras, C++, ROS

May 2019 - Aug 2019

- Detection: A robust image processing pipeline is created to detect highway lanes in dashcam live-feed.
- Perception: Car's position within lane and lane curvature is calculated using perspective transform and polynomial fitting.
- Classification: LeNet inspired convolution neural network is developed to detect and classify 40+ kinds of traffic signs.
- Deep Learning: Cloned human behavior using an end-to-end neural network to autonomously steer a car using camera input.
- Sensor Fusion: Car location is estimated using an extended Kalman filter which acts on LIDAR and RADAR sensors data.
- Localization: A 2D particle filter for sparse localization is designed and uses GPS and sensor data with a landmark map.
- Trajectory Planning: A Finite State Machine based planner is created to achieve autonomous highway driving with other cars.
- Control: A PID controller is implemented to maneuver a vehicle around a virtual track using steering, throttle and brake.
- System Integration: Robot Operation System (ROS) is used to robustly combine Perception, Planning, and Control.

Motion Planning for a Robot with Two Anthropomorphic 6-DOF Arms Matlab

MEC529 Robotics Mar 2016 - May 2016

 Inverse Kinematics and Dual Quaternion interpolation based optimal trajectory planning to pick and place objects considering individual arm's workspace and dexterity.

Interactive Manipulation of NURBS Surfaces

MEC572 Geometric Modelling

C++, OpenGL, Qt5

Mar 2016 – May 2016

OpenGL based implementation in C++ for interactive manipulation of Non Uniform Rational B-Spline Surfaces.

Fracture test analysis for compact tension specimen

Feb 2017 - May 2017

• Finite element analysis of a fracture specimen to predict and validate deformations at the crack tip using Abacus.

Conceptual Design

Aug 2015 – May 2016

• Formulation of design specification/criteria and conceptual design generation of an Ergonomic Nutcracker and Stone Crusher.

Quality Improvement of Aircraft Wing Assembly

Aug 2015 – Nov 2015

• Identifying and correcting the root cause for high rejection rate of final assembly using Pareto Charts, Cause and Effect Diagrams, Control Charts and Histograms.

Mold Design and Manufacturing

May 2012 – Nov 2012

- Designed and manufactured molds for irrigation industry products for Injection Molding Process.
- Flow Analysis results were used to optimize design and a Pricing Strategy was developed for industry.

Technical Proficiency

- \bullet Languages : Python, Javascript, C++, MATLAB, Mathematica
- CAD softwares: Solidworks, Autodesk Inventor, PTC Creo, CATIA, Ansys (CFD and Mechanical), Autodesk AutoCAD, Autodesk Moldflow, FeatureCAM, MSC-Adams, ZWCAD, Altair HyperMesh, Altair OptiStruct, Materialize Magics, Materialize Mimics, CNC G-M Code
- Tools & Technologies: Keras, Tensorflow, OpenCV, HTML, CSS, Canvas, Node.js, Express.js, Redis, Apache Cordova, OpenGL, Jupyter, Anaconda, Git, npm, MongoDB, Docker, ROS

Selected Publications

- Sharma S., Purwar A.; Path Synthesis of Defect-Free Spatial 5-SS Mechanisms Using Machine Learning., ASME IDETC-CIE2020; doi:10.1115/DETC2020-22731
- Sharma S., Purwar A.; Unified Motion Synthesis of Spatial Seven-Bar Platform Mechanisms and Planar-Four Bar Mechanisms., ASME IDETC-CIE2020; doi:10.1115/DETC2020-22718
- Sharma S., Purwar A.; Using a Point-Line-Plane Representation for Unified Simulation of Planar and Spherical Mechanisms, ASME J. Computing and Information Science in Engineering; doi:10.1115/1.4046817
- Sharma S., Purwar A., Ge Q.J.; A Motion Synthesis Approach to Solving Alt-Burmester Problem by Exploiting Fourier Descriptor Relationship Between Path and Orientation., ASME J. Mechanisms Robotics; doi:10.1115/1.4042054
- Sharma S., Purwar A., Ge Q.J.; An Optimal Parametrization Scheme for Path Generation Using Fourier Descriptors for Four-Bar Mechanism Synthesis., ASME J. Computing and Information Science in Engineering; doi:10.1115/1.4041566