Antiderivative(Indefinite Integral)

Sunday, 15 December 2024 1:19 pm

4.9

Antiderivatives

Definition A function F is called an **antiderivative** of f on an interval I if F(x) = f(x) for all x in I.

$$F(x) = f(x) = G'(x)$$

so G(x) - F(x) = C, where C is a constant. We can write this as G(x) = F(x) + C, so we have the following result.

1 Theorem If F is an antiderivative of f on an interval I, then the most general antiderivative of f on I is

$$F(x) + C$$

where C is an arbitrary constant.

FIGURE 1

Members of the family of antiderivatives of $f(x) = x^2$

EXAMPLE 1 Find the most general antiderivative of each of the following functions.

(a)
$$f(x) = \sin x$$

(b)
$$f(x) = 1/x$$

(b)
$$f(x) = 1/x$$
 (c) $f(x) = x^n$, $n \ne -1$

Function	Particular antiderivative	Function	Particular antiderivative
cf(x)	cF(x)	sec ² X	tan x
f(x) + g(x)	F(x) + G(x)	sec X tan X	sec x
$X^n \ (n \neq -1)$	$\frac{x^{n+1}}{n+1}$	$\frac{1}{\sqrt{1-x^2}}$	$\sin^{-1}x$
$\frac{1}{x}$	ln x	$\frac{1}{1+x^2}$	tan ⁻¹ x
e^x	e^x	cosh x	sinh x
COS X	sin x	sinh x	cosh x
sin x	−cos x		

EXAMPLE 2 Find all functions g such that

$$g'(x) = 4\sin x + \frac{2x^5 - \sqrt{x}}{x}$$

EXAMPLE 3 Find f if $f'(x) = e^x + 20(1 + x^2)^{-1}$ and f(0) = -2.

V EXAMPLE 4 Find f if $f''(x) = 12x^2 + 6x - 4$, f(0) = 4, and f(1) = 1.

EXAMPLE 6 A particle moves in a straight line and has acceleration given by a(t) = 6t + 4. Its initial velocity is v(0) = -6 cm/s and its initial displacement is s(0) = 9 cm. Find its position function s(t).

SOLUTION Since v'(t) = a(t) = 6t + 4, antidifferentiation gives

$$v(t) = 6\frac{t^2}{2} + 4t + C = 3t^2 + 4t + C$$

Note that v(0) = C. But we are given that v(0) = -6, so C = -6 and

$$v(t) = 3t^2 + 4t - 6$$

Since v(t) = s'(t), s is the antiderivative of v:

$$s(t) = 3\frac{t^3}{3} + 4\frac{t^2}{2} - 6t + D = t^3 + 2t^2 - 6t + D$$

This gives s(0) = D. We are given that s(0) = 9, so D = 9 and the required position function is

$$s(t) = t^3 + 2t^2 - 6t + 9$$

1 Table of Indefinite Integrals

$$\int cf(x) dx = c \int f(x) dx$$

$$\int [f(x) + g(x)] dx = \int f(x) dx + \int g(x) dx$$

$$\int k dx = kx + C$$

$$\int x^n dx = \frac{x^{n+1}}{n+1} + C \quad (n \neq -1)$$

$$\int \frac{1}{x} dx = \ln|x| + C$$

$$\int e^x dx = e^x + C$$

$$\int \sin x dx = -\cos x + C$$

$$\int \sec^2 x dx = \tan x + C$$

$$\int \sec x \tan x dx = \sec x + C$$

$$\int \frac{1}{x^2 + 1} dx = \tan^{-1}x + C$$

$$\int \cosh x dx = \sinh x + C$$

$$\int \cosh x dx = \sinh x + C$$

$$f'''(t) = \cos t$$

$$f'''(t) = e^t + t^{-4}$$

$$f(x) = \frac{2 + x^2}{1 + x^2}$$