Test Securitatea Informației (varianta 1)

Criptografie

CRYPTO. 1. Între imaginile de mai jos este vreo una care să fi fost criptată în modul CBC? Argumentați.

Drepturi de acces

- DR. 1. Care din următoarele caracterizări este validă? De ce?
 - a) drwxrwxr-x 2 doc doc 20480 aug 23 11:08 All/
 - b) -rw-rw-r
– 1 ss ss 277472874 nov 11 14:00 ta.mp4
 - c) -srwr-xr-x 1 root root 66920 feb 21 2019 ping*

Modelul Matricei de control al accesului

MC1. 1. Fie sistemul de protecție dat prin $C = \{disp; lamp; danv\}$, unde:

$$\begin{array}{c} \text{command } disp\ (X,Y),\ X,Y\in\mathcal{V}_{sub} \\ \text{if } x\ \text{in } (X,Y) \\ \text{then} \\ \text{enter } t\ \text{into } (X,Y) \\ \text{end} \\ \\ \text{command } lamp\ (X,Y,Z),\ X\in\mathcal{V}_{sub},\ Y,Z\in\mathcal{V}_{sub}\cup\mathcal{V}_{ob} \\ \text{if } t\ \text{in } (X,Y)\ \text{and } r\ \text{in } (Y,Z) \\ \text{then} \\ \text{enter } r\ \text{into } (X,Z) \\ \text{end} \\ \\ \text{command } danv\ (X,\ Y,\ Z),\ X\in\mathcal{V}_{sub},\ Y,Z\in\mathcal{V}_{sub}\cup\mathcal{V}_{ob} \\ \text{if } t\ \text{in } (X,Y)\ \text{and} \\ p\ \text{in } (Y,Z) \\ \text{then} \\ \text{enter } t\ \text{into } (X,Z) \\ \end{array}$$

A	$\mid a \mid$	b	c	o_1	o_2
a	p	\boldsymbol{x}	t, w	w	r, w
b	Ø	p	t, s	x	\overline{w}
c	0	Ø	p	r, w	\overline{w}

Arătaţi, prin desenarea matricei, cum se modifică aceasta în urma aplicării comenzilor disp(a, b), danv(a, c, c), $lamp(a, c, o_1)$.

Modelul Take Grant

TG. 1. Se dă graful TG din Figura 1. Aplicând reguli de tranziție de tip take, grant, create, decideți dacă nodul a poate ajunge să aibă dreptul r asupra lui z. Numerotați arcele noi corespunzător regulii pe care ați aplicat-o.

Figura 1: Graf TG Ex. 1

TG. 2. Considerând graful Take-Grant G din Figura 2, decideți dacă predicatul $can_share(g, o_{13}, s_{11}, G)$ are valoarea true sau false. Verificați explicit condițiile din Teorema de validare a predicatului can_share din curs. Se va menționa ce valori vor lua nodurile s, s', p' în graful de mai jos, care sunt insulele I_1, \ldots, I_n , podurile dintre insule și tipul lor.

Figura 2: Graful G - $can_share(g, o_{13}, s_{11}, G)$.