

Shelving Filter Cascade with Adjustable Transition Slope and Bandwidth

<u>Frank Schultz</u>, Nara Hahn, Sascha Spors

Research Group Signal Processing and Virtual Acoustics, University of Rostock

148th AES Convention Vienna 2020

Low Order Shelving Filter Design

Figure: Typical 2nd order shelving filter with cutoff frequency 500 Hz defined at mid-level. Slope and transition bandwidth is linked to chosen shelving level and Q-factor.

Higher Order Shelving Filter Designs

we don't have copyright, please cf. Figure 19

Figure: [McGrath, Baird & Jackson, 2004, 117th AES Conv.]
Approximation of a shelving filter transition band with PEQ biquads.

Higher Order Shelving Filter Designs

[Holters & Zölzer, 2006, 120th AES Conv.] Butterworth alignment of poles and zeros, cf. [US patent: #9 722 560]

[Eastty, 2008, 125th AES Conv.] Idea refinement and explicit control of transition band, cf. [US patent #9 203 366]

Proposed: Shelving Filter Cascade

Idea: Cascade of 1st / 2nd order low / high shelving filters to create adjustable transition band. Logarithmic alignment due to filter characteristics in log-log domain, also meaningful for human hearing.

Figure: [Schultz, Hahn, Spors, 2020, 148th AES Conv.] Example: $+3 \, dB/oct$ slope and $-9 \, dB$ shelving gain achieved by one octave spacing of three biguads.

Proposed: Shelving Filter Cascade

Idea: Cascade of 1st / 2nd order low / high shelving filters to create adjustable transition band: upper cutoff frequency $\omega_{\rm u} > 0$ in rad/s,

shelving level G in dB, slope χ in dB/octave, bandwidth $\beta > 0$ in octaves

$$G=\mp\,\beta\cdot\chi$$

- (a) each shelving biguad with mid-level cutoff frequency $\omega_{c,\mu}$.
- (b) shelving filter cascade with lower / upper cutoff frequency $\omega_{1/u}$.

Figure: Parameters of (a) shelving biguad and (b) shelving filter cascade.

Fixed Level with Varied Slope or Bandwidth

Figure: Fixed shelving level $G=\pm 12\,\mathrm{dB}$. Varied slope χ in $\mathrm{dB/oct}$ with resulting bandwidth β in oct or vice versa.

Fixed Slope with Varied Bandwidth or Level

Figure: Fixed slope $\chi=3\,\mathrm{dB/oct}$. Varied bandwidth β in oct , resulting shelving level G in dB or vice versa.

Fixed Bandwidth with Varied Level or Slope

Figure: Fixed bandwidth $\beta = 6$ oct. Varied shelving level G in dB, resulting slope χ in dB/oct or vice versa.

Constraint: Discrete Steps for Shelving Level

Figure: The resulting shelving level deviates from G for less than $N_G=6$ biguads per octave. Slope $\chi=3\,\mathrm{dB/oct}$ and shelving level $G=-\frac{19}{6}\chi\approx-9.5\,\mathrm{dB}$ vields bandwidth $\beta = 19/6 \, \text{oct.}$

Constraint: Ripple Along Transition Slope

Figure: Left: Deviation $20 \lg |H(\omega)| - 20 \lg |H_{\text{ideal slope}}(\omega)|$.

Right: distribution of poles (x) and zeros (o).

$$\beta = 9 \, \mathrm{oct}$$
, $G = -10 \, \mathrm{lg}(2) pprox -3 \, \mathrm{dB}$ yields

$$\chi = \frac{10}{9} \lg(2) \approx +0.3345 \, dB/oct.$$

Discrete-Time Filter Design

Straightforward design with bilinear or matched-z transform of biquads as long as upper cutoff frequency $f_{\rm u}$ much smaller than sampling frequency $f_{\rm s}$.

Figure: Digital filter design with bilinear transform, cascade of 6 biquads. $3\,\mathrm{dB/oct}$ slope over a $6\,\mathrm{oct}$ bandwidth, $f_\mathrm{H}=2\mathrm{kHz},\,f_\mathrm{S}=48\,\mathrm{kHz},\,N_O=1$ biquad per octave.

Summary

ullet Proposing a shelving filter with adjustable parameters : shelving level G,\quad bandwidth eta,\quad slope χ

- Cascade of 2nd order shelving filters, logarithmically spaced along frequency
- Limitations are not severe but design must be carefully adapted to specific target application, i.e. choosing appropriate number of biquads per octave and the total amount of biquads
- Potential applications: line array equalizers, audio mixing and production, sound field synthesis pre-filters, equal loudness contour equalizers