1.

由上圖可知(W/L) $_N=0.5\mu/0.18\mu$, (W/L) $_P=1.5\mu/0.18\mu$ 組成的 inverter 的 input capacitance $C_{in}=3.78fF$

(a)

I. 由上圖手算估算出 9 個 inverter 會有較小的 delay,以下用"9 個 inverter 相連"(理論值)與"7 個 inverter 相連"以及"11 個 inverter 相連"的 delay 進行比較

	Fall delay	Rise delay
7個 inverter 相連	602ps	593ps
9個 inverter 相連	598ps	593ps
11個 inverter 相連	628ps	622ps

由上表顯示," 9 個 inverter 相連"的形式不管是在 Fall delay 還是 Rise delay 都是三者內最佳,符合手算的結果。

II. 以下為" 7 個 inverter 相連"、"9 個 inverter 相連"、"11 個 inverter 相 連"delay 圖

● 7個 inverter 相連

● 9個 inverter 相連(理論值)

● 11個 inverter 相連

(b)

I. 以下為各個 node 的 Fall delay 以及 Rise delay

■ 各級 propagation delay for rising input 圖

■ 各級 propagation delay for falling input 圖

	For rising input	For falling input
Out1	42.4ps	45.3ps
Out2	115ps	113ps
Out3	181ps	184ps
Out4	253ps	250ps
Out5	318ps	322ps
Out6	390ps	387ps
Out7	455ps	459ps
Out8	527ps	523ps
Out9	598ps	593ps

(c)

N=9, 每一級的 delay(d)取
$$\frac{\text{out}_9 \text{ Fall delay} + \text{out}_9 \text{ Rise delay}}{2} \times \frac{1}{9} = d$$

$$f = \frac{1}{2Nd} = \frac{1}{(598+593)\times 10^{-12}} \approx 839.63 \text{MHz}$$

由估算得出 oscillation loop 的 frequency 應該在 839.63MHz 附近

(d)

■ 各個 node 的 frequency 圖

- 實驗結果:顯示 oscillation loop 的 frequency 大約落在 811.33MHz,與估算結果有者 3.4%的誤差(= (839.63 811.33/839.63))。
- 分析:實驗結果顯示,變成 oscillation loop 後,delay 較估算的值大,因此 frequency 會較原先的值小,因為 out9 點峰對峰值的時間較原先 input 長(如左圖),也就是說第 1 級的 inverter 會較晚進入判別區,使得 delay 會比預測的來的大。

(e) node cap node cap node cap = 47.1499f 0:out3 = 1.7696p 0:out6 = 15.0219f 0:out2 = 169.1755 f+0:out1 +0:out4 = 495.6539f 0:out5 = 5.2079p +0:out7 = 18.5868p 0:out8 = 52.8386p 0:out9 = 184.8571p+0: vdd = 118.5406p

以上是在 out9=0.9V 下個 node 的電容值, C_{total} 沒有含括 C_{vdd} ,因為此電容不會 充放電,會一直保持在充飽的狀態。

ightarrowC_{total} = C_{out1} + C_{out2} + C_{out3} + C_{out4} + C_{out5} + C_{out6} + C_{out7} + C_{out8} + C_{out9} P = $C_{total} \times V_{dd}^2 \times f = (263.987 \times 10^{-12}) \times 1.8^2 \times (811.33 \times 10^6) = 693.9 mW$ 由上述估算出 Power≈ 693.9 mW

(f)

- 實驗結果: Power = 783.5mW
- 分析:由上圖實驗顯示,其測得 power 結果783.5mW,與(e)估算出 Power=693.9mW 相差89.6mW,這是因為我們在(e)估算時只有算到 dynamic power 部分,然而power = dynamic power + static power,因此(e)估算的值必會小於(f)測出來的值,且(f)、(e)間的差值為此電路的static power。

(g)

Version2(最終版)

設計:(改良版)

layout 作法:

(如下圖)先把 1~8 級串聯起來,最後第 9 級反轉至第二列與第 1 級&第8級串聯。

- ◆ 頻率:810kHz
- ◆ Power consumption: 44.66mW

pwr1 temper alter# 4.466e-02 25.0000 1

◆ 分析:

1. 頻率:

- 經過 pex 後測出的 frequency 為 810kHz 與(d)測出的頻率 811.33MHz (ideal)相差約 1000 倍。
- 先從各級間的 delay 說起,發現 delay 有逐漸上升的趨勢,這是因為寄生電容隨著並聯的 mos 數增加而增加,再加上第九級 width 變大的影響,因而 delay 增加。

2. Power:

- 經過 pex 後測出的 power 為 44.66mW 與(f)測出的 power 783.5mW(ideal)相差約 17.5 倍。
- Power 變小的原因是第 8 級和第 9 級的 delay 較大因而拉 長每一週期的時間,因此 average power 反而比(f)測的值 小。

■ 改良版前(Version1)

◆ 設計:(前面使用的版本)

◆ layout :

◆ 各 node 的波形圖

- ◆ 頻率:379kHz
- ◆ Power consumption: 12.23mW

pwrl temper alter# 1.225e-02 25.0000 1

- ◆ 分析(與改良後的 version2):
 - 1. 改良前發現,Out9 也就是第 9 級的 output 點的波形嚴重變形,這是因為此設計接在第 9 級的 metal 較長,使得 metal 上的寄生電容和電阻較大,進而影響 Out9 的波形和此電路。
 - 2. 改良後的頻率 810kHz 較改良前的頻率 379kHz 佳,如上述,由於改良第 9 級的 size,使得第 9 級連接兩端第 1 級和第 8 級的 metal 減少,進而降第 metal 上的寄生電容和寄生電阻的影響。
 - 改良後的 power = 44.66mW 亦較改良前的 power = 12.23mW 佳,原因如上述第二點所言。