Regularization & Cross Validation

Professor: Srikanth Krishnamurthy

Presented by: Chenlian Xu

Qianli Ma

Mar 3, 2018

What is it?

How to prevent it?

Data

Normal Fitting

Serious Overfitting

Overfitting

Underfitting High Bias

Normal Fitting Bias-Variance Tradeoff

> Overfitting High Variance

Bias-Variance Tradeoff

- Too many features
- Fit the train set very well
- Fail to generalize to new examples

How to prevent overfitting?

•1 Reduce number of features

- Manually select
- Model selection algorithm

2 Regularization

- sparsity
- Reduce values of parameters

Regularization

L1, L2, Elastic Net

Regularization

 Reduces overfitting by adding a complexity penalty to the loss function

$$J(\theta) = \frac{1}{2m} \sum_{i=1}^{m} \left[\left(h_{\theta} \left(x^{(i)} \right) - y^{(i)} \right)^2 + penalty \right]$$

L1 & L2 Regularization

• L1 LASSO (Least absolute shrinkage and selection operator)

$$J(\theta) = \frac{1}{2m} \sum_{i=1}^{m} \left[\left(h_{\theta} \left(x^{(i)} \right) - y^{(i)} \right)^{2} + \lambda \sum_{j=1}^{n} |\theta_{j}| \right]$$

· L2 Ridge

$$J(\theta) = \frac{1}{2m} \sum_{i=1}^{m} \left[\left(h_{\theta} \left(x^{(i)} \right) - y^{(i)} \right)^{2} + \lambda \sum_{j=1}^{n} \theta_{j}^{2} \right]$$

Elastic Net

- Elastic Net
- linearly combines the L1 and L2 penalties of the lasso and ridge methods

Effect of L1 Regularization

• L1 LASSO (Least absolute shrinkage and selection operator)

$$J(\theta) = \frac{1}{2m} \sum_{i=1}^{m} \left[\left(h_{\theta} \left(x^{(i)} \right) - y^{(i)} \right)^{2} + \lambda \sum_{j=1}^{n} |\theta_{j}| \right]$$

L1 Regularization encourages sparsity

$$\theta \longrightarrow \theta' = \theta - \eta \lambda \cdot sgn(\theta) - \eta \frac{\partial C0}{\partial \theta}$$

Effect of L2 Regularization

· L2 Ridge

$$J(\theta) = \frac{1}{2m} \sum_{i=1}^{m} \left[\left(h_{\theta} \left(x^{(i)} \right) - y^{(i)} \right)^2 + \lambda \sum_{j=1}^{n} \theta_j^2 \right]$$

As λ increases, sum of squares decreases

Weight decay

$$\theta \longrightarrow \theta' = (1-\eta\lambda)\theta - \eta \frac{\partial C0}{\partial \theta}$$

Regularization

- Reduces overfitting
- Reduces variance
- Minimizes the test-set error

Minimizes the R_{in}

Regularization

Only Regularization?

- "Optimal" λ?
- We need a validation set

Why do we need Cross Validation?

small validation set \Rightarrow large error in estimated loss large validation set \Rightarrow small training set \Rightarrow bad model

Cross Validation

Estimate the "optimal" λ by using it

K-fold cross validation

Divide the dataset into k blocks for k = 1 to k train on blocks except kth block, test on kth block average the results, choose best λ .

K-fold cross validation

Common cases: K = 5, 10 or K = N (LOOCV) High computation cost: K = N folds \times many choices of model or N

Summary

Regularization

&

Cross Validation

Regularization & Cross Validation

- Trading off bias and variance is hard.
 - Degree of Polynomial → Bias → Variance →
- Regularization penalizes hypothesis complexity
 - L2 regularization leads to small weights
 - L1 regularization leads to many zero weights (sparsity)
- Cross-validation enables selection of regularization penalties by estimating test-set error on parts of the training set

Demo

Regularization

8

Cross Validation