Exercice 1: (7 points)

- 1. Démontrer que la suite (x_n) défine pour tout entier n > 0 par $x_n = \frac{1}{n}$ n'est ni arithmétique ni géométrique.
- 2. Calculer le 7ème terme de la suite géométrique de premier terme $v_0 = 2$ et de raison $\sqrt{5}$.
- **3.** Démontrer que la suite(w_n) définie pour tout entier n par $w_n = 9(-11)^n$ est géométrique et donner sa raison et son premier terme.
- 4. Soit (u_n) une suite arithmétique telle que $u_2 = 11$ et $u_7 = 18$. Calculer la forme explicite de la suite (u_n) ainsi que u_{17} .

Exercice 2: (5 points)

- 1. Calculer la dérivée f'(x) de la fonction $f(x) = -\frac{4}{3}x^3 8x^2 16x + 42$
- 2. Décomposer f'(x) en un produit de facteurs de degré 1 et étudier son signe.
- 3. Montrer que la suite (u_n) définie pour tout entier naturel par $u_n = -\frac{4}{3}n^3 8n^2 16n + 42$ est strictement décroissante.

Exercice 3: (3 points)

Soit (u_n) la suite définie par récurrence par $u_0 = 1$ et pour tout entier n par $u_{n+1} = 2u_n + 3$. On admet que pour tout entier naturel n, $u_n > 0$.

- 1. Démontrer que le suite (u_n) est strictement croissante.
- 2. Trouver une forme explicite pour la suite (u_n) . On pourra introduire la suite auxiliaire $v_n = u_n + 3$.

Exercice 4: (5 points)

Réaliser un algorithme permettant de calculer et afficher le plus petit entier naturel n pour lequel $3^n > 129140163$.