Trabajo Final: Algoritmo Q-D Grupo 16

Introducción:

Algoritmo Q-D

Polinomio completo, con coeficientes reales, no nulos y de grado n

todas las raíces de manera simultánea.

Método de Bairstow

Polinomio que contengan raíces complejas

mejora el factor cuadrático según una precisión deseada.

Otras aplicaciones

- -Cálculo de autovalores y autovectores de una matriz
- -Fracciones continuas
- -Transformación LR de Rutishauser
- Métodos de preprocesamiento de polinomios
- Ejemplos comparativos de los resultados con otros métodos de obtención de raíces.

Algoritmo Q-D

Aproximación de los factores lineales y cuadráticos. Sea el polinomio real:

$$p(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$$
tal que $a_k \neq 0$ para todo k = n, n-1,,1,0

• <u>Iteración 0:</u>

$$\begin{aligned} q_1^{(0)} &= \frac{-a_{n-1}}{a_n} \quad ; & | \quad q_i^{(0)} &= 0 \quad \forall i = 2, 3, \cdots, n \\ e_i^{(0)} &= \frac{a_{n-i-1}}{a_{n-i}} \quad \forall i = 1, 2, \cdots, n-2, n-1 \quad ; & e_0^{(0)} &= e_n^{(0)} &= 0 \end{aligned}$$

• <u>Iteraciones de orden (m+1): (resto de las iteraciones):</u>

$$\begin{aligned} q_i^{(m+1)} &= e_i^{(m)} - e_{i-1}^{(m)} + q_i^{(m)} & \forall i = 1, 2, \dots, n \\ e_i^{(m+1)} &= \frac{q_{i-1}^{(m+1)}}{q_i^{(m+1)}} \cdot e_i^{(m)} & \forall i = 1, 2, \dots, n-1 \\ e_0^{(m+1)} &= e_n^{(m+1)} = 0 \end{aligned}$$

Tabla de valores

A partir de los valores de la iteración cero y los valores de las demás iteraciones

- <u>Columnas qi</u> los valores de las raíces irán convergiendo a un valor real
- <u>Columnas ei</u> el valor del error tenderá a cero.
- Si los valores de alguna columna ei fluctúan:
 - recurrir al método de Bairstow.

Metodo de Bairstow

Si el polinomio con el que se trabaja posee raíces complejas, este método se puede utilizar para refinar el factor cuadrático (aquel que contiene raices co-modulares).

Se parte del siguiente conjunto de datos:

- Un polinomio P(x).
- Un factor cuadratico perteneciente al polinomio.
- Una tolerancia para el valor del error.

Este método se aplica cuando en una iteración m-ésima se ve una fluctuación en la columna de error.

q_i	e_i	q_{i+1}
q _i ^(m-1)	e _i (m-1)	$q_{i+1}^{ (m-1)}$
$q_i^{(m)}$		$q_{i+1}^{(m)}$

Explicacion del metodo Bairstow

Partiendo de unos valores iniciales u0 y v0, se calcula en cada iteración t (0 ...N) los valores de qt y pt por medio del siguiente esquema:

$$\begin{vmatrix} q_t = a_t + u_m \cdot q_{t-1} + v_m \cdot q_{t-2} & para \ 0 < t < n & y \ adopt and o : \ q_{-2} = q_{-1} = 0 \\ p_t = q_t + u_m \cdot p_{t-1} + v_m \cdot p_{t-2} & para \ 0 < t < n-1 \ y \ adopt and o : \ p_{-2} = p_{-1} = 0 \\ \end{vmatrix}$$

Con los valores obtenidos para q y p, podemos calcular valores de h y k solución del siguiente sistema:

$$p_{n-2} \cdot h + p_{n-3} \cdot k = q_{n-1}$$

 $p_{n-1} \cdot h + p_{n-2} \cdot k = q_n$

o sea, despejando h y k

$$h = \frac{q_{n} \cdot p_{n-3} - q_{n-1} \cdot p_{n-2}}{p_{n-2}^{2} - p_{n-1} \cdot p_{n-3}}$$

$$k = \frac{q_{n-1} \cdot p_{n-1} - q_n \cdot p_{n-2}}{p_{n-2}^2 - p_{n-1} \cdot p_{n-3}}$$

Finalmente, con h y k, volvemos a calcular los valores de u y v de la siguiente forma:

$$u_{m+1} = u_m + h_m$$

$$v_{m+1} = v_m + k_m$$

El método se va a repetir en la medida que los valores de qn y qn-1 sigan siendo mayores que la cota de error deseada.

Al terminar, se calculan las raíces en cuestión usando u y v como valores dentro de la fórmula resolvente.

Aun asi, si el polinomio no cumple con las condiciones para el uso del algoritmo Q-D, se pueden aplicar métodos de preprocesamiento para transformar dicho polinomio.

Preprocesamiento de un polinomio

- Transformación de polinomios
- Elimina las restricciones de p(X) para poder aplicar el algoritmo
- Los métodos son:
 - Traslación efectuada sobre la indeterminada
 - Transformación Recíproca
 - Homotecia sobre un polinomio
 - Homotecia sobre la indeterminada

Transformación sobre la indeterminada

- $P(x) \rightarrow P(x + c)$ $Q(x) = P(x + c) = \sum b_k (x - c)^k$
- Los coeficientes de b están dados por:

$$b_k = \frac{P^{(k)}(c)}{k!}$$

- z es cero de P(x) si y sólo si z c es cero de Q(x)
- Es útil para desarrollar el algoritmo Q-D cuando uno de los coeficientes es nulo

Homotecia sobre un polinomio

 Se implementa para realizar un ajuste de escalas en el gráfico

•
$$P(x) \rightarrow c P(x) = Q(x) (c \neq 0)$$

 El resultado obtenido es un nuevo polinomio que posee todos los coeficientes de P(x) pero ahora multiplicados por el valor c.

Transformación Recíproca

Consiste en realizar la siguiente operación:

$$P(x) \rightarrow x^n p(1/x)$$
 donde n es el grado de $P(x)$

El nuevo polinomio Q (x) será:

$$Q(x) = x^n P(1/x)$$

 Un número complejo z distinto de 0 será raíz del polinomio P(x) si, y sólo si, su recíproco 1/z es cero del polinomio transformado Q(x).

$$P(z) = 0 \leftrightarrow Q(1/z) = 0$$

Homotecia sobre la indeterminada

Se modifica el eje x en base a un factor |c|.

•
$$P(cz) = 0 \leftrightarrow Q(z) = 0$$

- Si el factor c= -1:
 - -Q(x)=P(-x)
 - Sus coef.: $b_k = [(-1)]^k a_k$ siendo a_k el coeficiente de x_k en P(x).
 - $-P(-z) = 0 \leftrightarrow Q(z) = 0$

Casos Analizados

- Par de raíces co-modulares
- Coeficientes iguales a 0
- Todas raíces reales

- Raíces complejas y reales
- Raíces muy cercanas

Coeficientes iguales a cero

$$P(x) = x^3 - 2x^2 - 1$$

C=2:
$$Q(x)= x^3 + 4x^2 + 4x - 1$$

Coeficientes iguales a cero

Raíces de Q(x):

- x1 = -2.10278 + 0.66546 i
- x2 = -2.10278 0.66546 i
- x3 = 0.20557

Raices de P(x):

- x1= 2.20557
- x2= -0.10278 + 0.66546 i
- x3= -0.10278- 0.66546 i

Coeficientes iguales a cero

Comparación con el método de Newton-Raphson

	original	Q-D (100 iter) tol=0.0001	Newton-Raphson tol=0.0001
x1	2.20556943	2.20557	2.2055766 x0=1 11 iter
×2	-0.1027847152+ 0.66546 i	-0.10278+ 0.66546 i	-0.10278+ 0.66546i x0=1+i 8 iter
x3	-0.1027847152 - 0.66546 i	-0.10278- 0.66546 i	-0.10278-0.66546i x0=1-i 8 iter

Raices co-modulares

$$P(x) = x^3 + x^2 - 9x - 9$$

- x1 =-3
- x2 =-1
- x3 = 3

Raices co-modulares

Raíces obtenidas por el método Q-D

 Se obtuvieron dos raíces por el método de Bairstow, más allá de que estas sean reales:

Esta raiz se obtuvo por qd, sin necesidad de aplicar Bairstow

Raices co-modulares

Comparación con Punto Fijo Sistemático

	origlnal	QD /Bairstow (100 iter) tol=0.0001	P F S tol=0.0001
x1	3	3.00002	2.9999981 intervalo: [2 ; 4] Iter =4
x2	-3	-3.00002	-3.0000065 intervalo [-4;-2] Iter =32
x3	-1	-1.00001	-1.0000022 Intervalo [-2;0] Iter =6

Todas raíces reales

$$P(x) = 25x^3 + 75x^2 - 15x - 1$$

- x1=-3.184469958
- x2= 0.2373840453
- x3= -0.05291408719

Todas raíces reales

Comparación con el método de Bisección

	original	QD (iter: 4)	Bisección
×1	-3.184469958	-3.18447	-3.18447 [-3.15;-3.19], iter: 9
×2	-0.05291408719	-0.05295	-0.05291 [-0.1;0.0], iter: 10
x3	0.2373840453	0.23742	0.2374023 [0.2;0.24], iter: 9

Raíces complejas y reales

$$P(x) = x^4 + 2x^3 - 2x^2 + 7x + 10$$

x1= -1 x2 -3.054239 x3= 1.027119592 + 1.489685589 i x4=1.027119592 - 1.489685589 i

Raíces complejas y reales

)		original	QD (iter: 100)	NR
	x1	-3.054239	-3,05424	-3.0542392 x0= -5, Iter: 6
	x2	-1	-1,0000	-1.00000 x0= -2, Iter: 4
	x3	1.027119592 + 1.489685589 i	1,02712 + 1,48969 i	1.02712 + 1.489689 i x0= (0,2.4 i). Iter: 9
	x4	1.027119592 - 1.489685589 i	1,02712 - 1,48969 i	1.02712 -1.48969 i x0= (1, -10 i). Iter: 12

Raíces muy cercanas

$$P(x)=x^2-8.001x+16.004$$

Raíces muy cercanas

Comparación con el método de Newton Raphson

	original	QD (iter 100)	NR
x1	4	3.99903	3.99259 Iter: 11, x0=0
x2	4.001	4.00197	4.00840 Iter: 7, x0=5

Conclusión

Ventajas:

Obtención directa de todas las raíces.

Desventajas:

- Gran cantidad de iteraciones.
- El polinomio debe estar completo.
- Las raíces deben ser reales y con un espaciado determinado.