

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization

International Bureau

(43) International Publication Date 25 May 2001 (25.05.2001)

(10) International Publication Number WO 01/36471 A2

(51) International Patent Classification*:	C07K 14/00	60/242.332	20 October 2000 (20 10,2000)	US
		60/242,343	20 October 2000 (20 10,2000)	US
(21) International Application Number:	PCT/US00/31509	60/243.019	24 October 2000 (24.10,2000)	US

(22) International Filing Date:

16 November 2000 (16.11.2000)

(25) Filing Language: English

(26 lish

(30)	Priority	Data:

o) Publication Lai	guage:	Engli	
))	Priority Data:		
	60/166,088	17 November 1999 (17.11.199	(P) {
	60/166,099	17 November 1999 (17.11.199	9) (
	60/166,369	17 November 1999 (17.11.199	9) [
	60/171,900	23 December 1999 (23.12.199	9) l
	60/171.901	23 December 1999 (23.12.199	9) t
	60/171,902	23 December 1999 (23.12.199	9) (
	60/181,749	11 February 2000 (11.02.200	O) l
	60/189,258	14 March 2000 (14.03.200	o) t
	60/189.259	14 March 2000 (14.03.200	() (
	60/195,898	10 April 2000 (10.04.200	() (
	60/195,899	10 April 2000 (10.04.200	
	60/196,078	10 April 2000 (10.04.200	
	60/200.419	28 April 2000 (28.04.200	()) (
	60/203,630	12 May 2000 (12.05.200	
	60/210.741	12 June 2000 (12.06.200	() (
	60/210,982	12 June 2000 (12,06,200	oi t
	60/226,760	21 August 2000 (21:08:200	o) t
	60/235.418	- 26 September 2000 (26.09.200	
	60/235.779	26 September 2000 (26:09:200	

(71) Applicant (for all designated States except US): ARENA PHARMACEUTICALS, INC. [US/US]: 6166 Nancy Ridge Drive, San Diego, CA 92121 (US).

- (72) Inventors; and
- (75) Inventors/Applicants (for US only): CHEN, Ruoping [CN/US]: 5296 Timber Branch Way, San Diego, CA 92130 (US). DANG, Huong, T. [US/US], 5352 Oak Park Drive, San Diego, CA 92105 (US). LOWITZ, Kevin, P. [US/US]: 8031 Caminito de Pizza #C. San Diego, CA 82108 (US).
- (74) Agents: MILLER, Suzanne, E. et al.: Woodcock Washburn Kurtz Mackiewicz & Norris LLP, One Liberty Place -46th Floor, Philadelphia, PA 19103 (US).
- (81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ. BA, BB, BG, BR, BY, BZ, CA, CH, CN, CR, CU, CZ, DE, DK, DM, DZ, EE, ES, FL GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, ET, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW.
- (84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European

[Continued on next page]

(54) Title: ENDOGENOUS AND NON-ENDOGENOUS VERSIONS OF HUMAN G PROTEIN COUPLED RECEPTORS

333333

IP3 Assay in 293 Cells

protein-coupled receptor for which the endogenous ligand is unknown ("orphan GPCR receptors"), and most particularly to mutated (non-endogenous) versions of the human GPCRs for evidence of constitutive activity.

patent (AL, BE, CH, CY, DE, DK, ES, FL FR, GB, GR, H., H. LU, MC, NL, PT, SE, TR), OAPI patent (BL, BJ, CE, CG, CL, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

For two-letter codes and other abbreviations, reter to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

Published

Without international search report and to be republished upon receipt of that report

ENDOGENOUS AND NON-ENDOGENOUS VERSIONS OF HUMAN G PROTEIN-COUPLED RECEPTORS

FIELD OF THE INVENTION

5

The invention disclosed in this patent document relates to transmembrane receptors, and more particularly to human G protein-coupled receptors, and specifically to endogenous human GPCRs with particular emphasis on non-endogenous versions of the GPCRs that have been altered to establish or enhance constitutive activity of the receptor. Preferably, the altered GPCRs are used for the direct identification of candidate compounds as receptor agonists, inverse agonists or partial agonists having potential applicability as therapeutic agents.

BACKGROUND OF THE INVENTION

15

20

25

30

10

Although a number of receptor classes exist in humans, by far the most abundant and therapeutically relevant is represented by the G protein-coupled receptor (GPCR or GPCRs) class. It is estimated that there are some 100,000 genes within the human genome, and of these, approximately 2%, or 2,000 genes, are estimated to code for GPCRs. Receptors, including GPCRs, for which the endogenous ligand has been identified are referred to as "known" receptors, while receptors for which the endogenous ligand has not been identified are referred to as "orphan" receptors. GPCRs represent an important area for the development of pharmaceutical products: from approximately 20 of the 100 known GPCRs, approximately 60% of all prescription pharmaceuticals have been developed.

GPCRs share a common structural motif. All these receptors have seven sequences of between 22 to 24 hydrophobic amino acids that form seven alpha helices, each of which spans the membrane (each span is identified by number, *i.e.*, transmembrane-1 (TM-1), transmebrane-2 (TM-2), etc.). The transmembrane helices are joined by strands of amino acids between transmembrane-2 and transmembrane-3,

transmembrane-4 and transmembrane-5, and transmembrane-6 and transmembrane-7 on the exterior, or "extracellular" side, of the cell membrane (these are referred to as "extracellular" regions 1, 2 and 3 (EC-1, EC-2 and EC-3), respectively). The transmembrane helices are also joined by strands of amino acids between transmembrane-1 and transmembrane-2, transmembrane-3 and transmembrane-4, and transmembrane-5 and transmembrane-6 on the interior, or "incracellular" side, of the cell membrane (these are referred to as "intracellular" regions 1, 2 and 3 (IC-1, IC-2 and IC-3), respectively). The "carboxy" ("C") terminus of the receptor lies in the intracellular space within the cell, and the "amino" ("N") terminus of the receptor lies in the extracellular space outside of the cell.

5

10

15

20

25

Generally, when an endogenous ligand binds with the receptor (often referred to as "activation" of the receptor), there is a change in the conformation of the intracellular region that allows for coupling between the intracellular region and an intracellular "G-protein." It has been reported that GPCRs are "promiscuous" with respect to G proteins, *i.e.*, that a GPCR can interact with more than one G protein. *See*, Kenakin, T., 43 *Life Sciences* 1095 (1988). Although other G proteins exist, currently, Gq, Gs, Gi, Gz and Go are G proteins that have been identified. Endogenous ligand-activated GPCR coupling with the G-protein begins a signaling cascade process (referred to as "signal transduction"). Under normal conditions, signal transduction ultimately results in cellular activation or cellular inhibition. It is thought that the IC-3 loop as well as the carboxy terminus of the receptor interact with the G protein.

Under physiological conditions, GPCRs exist in the cell membrane in equilibrium between two different conformations: an "inactive" state and an "active" state. A receptor in an inactive state is unable to link to the intracellular signaling transduction pathway to produce a biological response. Changing the receptor

conformation to the active state allows linkage to the transduction pathway (via the G-protein) and produces a biological response.

A receptor may be stabilized in an active state by an endogenous ligand or a compound such as a drug. Recent discoveries, including but not exclusively limited to modifications to the amino acid sequence of the receptor, provide means other than endogenous ligands or drugs to promote and stabilize the receptor in the active state conformation. These means effectively stabilize the receptor in an active state by simulating the effect of an endogenous ligand binding to the receptor. Stabilization by such ligand-independent means is termed "constitutive receptor activation."

10

15

20

5

SUMMARY OF THE INVENTION

Disclosed herein are endogenous and non-endogenous versions of human GPCRs and uses thereof.

BRIEF DESCRIPTION OF THE DRAWINGS

Figure 1 provides an illustration of second messenger IP₃ production from endogenous version RUP12 ("RUP12") as compared with the control ("CMV").

Figure 2 is a graphic representation of the results of a second messenger cell-based cyclic AMP assay providing comparative results for constitutive signaling of endogenous RUP13 ("RUP13") and a control vector ("CMV").

Figure 3 is a diagrammatic representation of the signal measured comparing CMV, endogenous RUP13 ("RUP13 wt") and non-endogenous, constitutively activated RUP13 ("RUP13(A268K)"), utilizing 8XCRE-Luc reporter plasmid.

Figure 4 is a graphic representation of the results of a [³⁵S]GTPγS assay providing comparative results for constitutive signaling by RUP13:Gs Fusion Protein ("RUP13-Gs") and a control vector ("CMV").

- Figure 5 is a diagrammatic representation of the signal measured comparing CMV, endogenous RUP14 ("RUP14 wt") and non-endogenous, constitutively activated RUP13 ("RUP14(L246K)"), utilizing 8XCRE-Luc reporter plasmid.
 - **Figure 6** is a diagrammatic representation of the signal measured comparing CMV, endogenous RUP15 ("RUP15 wt") and non-endogenous, constitutively activated RUP15 ("RUP15(A398K)"), utilizing 8XCRE-Luc reporter plasmid.
- Figure 7 is a graphic representation of the results of a second messenger cell-based cyclic AMP assay providing comparative results for constitutive signaling of endogenous RUP15 ("RUP15 wt"), non-endogenous, constitutively activated version of RUP15 ("RUP15(A398K)") and a control vector ("CMV").
 - Figure 8 is a graphic representation of the results of a [35S]GTPγS assay providing comparative results for constitutive signaling by RUP15:Gs Fusion Protein ("RUP15-Gs") and a control vector ("CMV").

15

- **Figure 9** provides an illustration of second messenger IP₃ production from endogenous version RUP17 ("RUP17") as compared with the control ("CMV").
- Figure 10 provides an illustration of second messenger IP₃ production from endogenous version RUP21 ("RUP21") as compared with the control ("CMV").
 - Figure 11 is a diagrammatic representation of the signal measured comparing CMV, endogenous RUP23 ("RUP23 wt") and non-endogenous, constitutively activated RUP23 ("RUP23(W275K)"), utilizing 8XCRE-Luc reporter plasmid.

WO 01 36471 PCT US00, 31509

Figure 12 is a graphic representation of results from a primary screen of several candidate compounds against RUP13; results for "Compound A" are provided in well A2 and "Compound "B" are provided in well G9.

DETAILED DESCRIPTION

5

10

The scientific literature that has evolved around receptors has adopted a number of terms to refer to ligands having various effects on receptors. For clarity and consistency, the following definitions will be used throughout this patent document. To the extent that these definitions conflict with other definitions for these terms, the following definitions shall control:

AGONISTS shall mean materials (e.g., ligands, candidate compounds) that activate the intracellular response when they bind to the receptor, or enhance GTP binding to membranes.

AMINO ACID ABBREVIATIONS used herein are set out in Table A:

TABLE A

ALANINE	ALA	A
ARGININE	ARG	R
ASPARAGINE	ASN	N
ASPARTIC ACID	ASP	D
CYSTEINE	CYS	C
GLUTAMIC ACID	GLU	E
GLUTAMINE	GLN	Q
GLYCINE	GLY	G
HISTIDINE	HIS	Н
ISOLEUCINE	ILE	I
LEUCINE	LEU	L
LYSINE	LYS	K
METHIONINE	MET	М

PHENYLALANINE	PHE	F
PROLINE	PRO	P
SERINE	SER	S
THREONINE	THR	T
TRYPTOPHAN	TRP	W
TYROSINE	TYR	Y
VALINE	VAL	V

PARTIAL AGONISTS shall mean materials (e.g., ligands, candidate compounds) that activate the intracellular response when they bind to the receptor to a lesser degree/extent than do agonists, or enhance GTP binding to membranes to a lesser degree/extent than do agonists.

5

10

15

20

ANTAGONIST shall mean materials (e.g., ligands, candidate compounds) that competitively bind to the receptor at the same site as the agonists but which do not activate the intracellular response initiated by the active form of the receptor, and can thereby inhibit the intracellular responses by agonists or partial agonists. ANTAGONISTS do not diminish the baseline intracellular response in the absence of an agonist or partial agonist.

CANDIDATE COMPOUND shall mean a molecule (for example, and not limitation, a chemical compound) that is amenable to a screening technique. Preferably, the phrase "candidate compound" does not include compounds which were publicly known to be compounds selected from the group consisting of inverse agonist, agonist or antagonist to a receptor, as previously determined by an indirect identification process ("indirectly identified compound"); more preferably, not including an indirectly identified compound which has previously been determined to have therapeutic efficacy in at least one mammal; and, most preferably, not including an indirectly identified compound which has previously been determined to have therapeutic utility in humans.

WO 01 36471 PCT U800 31509

COMPOSITION means a material comprising at least one component; a "pharmaceutical composition" is an example of a composition.

COMPOUND EFFICACY shall mean a measurement of the ability of a compound to inhibit or stimulate receptor functionality, as opposed to receptor binding affinity. Exemplary means of detecting compound efficacy are disclosed in the Example section of this patent document.

5

10

15

20

25

CODON shall mean a grouping of three nucleotides (or equivalents to nucleotides) which generally comprise a nucleoside (adenosine (A), guanosine (G), cytidine (C), uridine (U) and thymidine (T)) coupled to a phosphate group and which, when translated, encodes an amino acid.

CONSTITUTIVELY ACTIVATED RECEPTOR shall mean a receptor subject to constitutive receptor activation. A constitutively activated receptor can be endogenous or non-endogenous.

CONSTITUTIVE RECEPTOR ACTIVATION shall mean stabilization of a receptor in the active state by means other than binding of the receptor with its endogenous ligand or a chemical equivalent thereof.

CONTACT or **CONTACTING** shall mean bringing at least two moieties together, whether in an in vitro system or an in vivo system.

the phrase "candidate compound", shall mean the screening of a candidate compound against a constitutively activated receptor, preferably a constitutively activated orphan receptor, and most preferably against a constitutively activated G protein-coupled cell surface orphan receptor, and assessing the compound efficacy of such compound. This phrase is, under no circumstances, to be interpreted or understood to be encompassed by or to encompass the phrase "indirectly identifying" or "indirectly identified."

ENDOGENOUS shall mean a material that a mammal naturally produces. ENDOGENOUS in reference to, for example and not limitation, the term "receptor," shall mean that which is naturally produced by a mammal (for example, and not limitation, a human) or a virus. By contrast, the term NON-ENDOGENOUS in this context shall mean that which is not naturally produced by a mammal (for example, and not limitation, a human) or a virus. For example, and not limitation, a receptor which is not constitutively active in its endogenous form, but when manipulated becomes constitutively active, is most preferably referred to herein as a "non-endogenous, constitutively activated receptor." Both terms can be utilized to describe both "in vivo" and "in vitro" systems. For example, and not limitation, in a screening approach, the endogenous or non-endogenous receptor may be in reference to an in vitro screening system. As a further example and not limitation, where the genome of a mammal has been manipulated to include a non-endogenous constitutively activated receptor, screening of a candidate compound by means of an in vivo system is viable.

G PROTEIN COUPLED RECEPTOR FUSION PROTEIN and **GPCR FUSION PROTEIN**, in the context of the invention disclosed herein, each mean a non-endogenous protein comprising an endogenous, constitutively activate GPCR or a non-endogenous, constitutively activated GPCR fused to at least one G protein, most preferably the alpha (α) subunit of such G protein (this being the subunit that binds GTP), with the G protein preferably being of the same type as the G protein that naturally couples with endogenous orphan GPCR. For example, and not limitation, in an endogenous state, if the G protein "Gs α " is the predominate G protein that couples with the GPCR, a GPCR Fusion Protein based upon the specific GPCR would be a non-endogenous protein comprising the GPCR fused to Gs α ; in some circumstances, as will be set forth below, a non-predominant G protein can be fused to the GPCR. The G

protein can be fused directly to the c-terminus of the constitutively active GPCR or there may be spacers between the two.

HOST CELL shall mean a cell capable of having a Plasmid and/or Vector incorporated therein. In the case of a prokaryotic Host Cell, a Plasmid is typically replicated as a autonomous molecule as the Host Cell replicates (generally, the Plasmid is thereafter isolated for introduction into a eukaryotic Host Cell); in the case of a eukaryotic Host Cell, a Plasmid is integrated into the cellular DNA of the Host Cell such that when the eukaryotic Host Cell replicates, the Plasmid replicates. Preferably, for the purposes of the invention disclosed herein, the Host Cell is eukaryotic, more preferably, mammalian, and most preferably selected from the group consisting of 293, 293T and COS-7 cells.

5

10

15

20

25

INDIRECTLY IDENTIFYING or INDIRECTLY IDENTIFIED means the traditional approach to the drug discovery process involving identification of an endogenous ligand specific for an endogenous receptor, screening of candidate compounds against the receptor for determination of those which interfere and/or compete with the ligand-receptor interaction, and assessing the efficacy of the compound for affecting at least one second messenger pathway associated with the activated receptor.

INHIBIT or **INHIBITING**, in relationship to the term "response" shall mean that a response is decreased or prevented in the presence of a compound as opposed to in the absence of the compound.

INVERSE AGONISTS shall mean materials (e.g., ligand, candidate compound) which bind to either the endogenous form of the receptor or to the constitutively activated form of the receptor, and which inhibit the baseline intracellular response initiated by the active form of the receptor below the normal base level of activity which

is observed in the absence of agonists or partial agonists, or decrease GTP binding to membranes. Preferably, the baseline intracellular response is inhibited in the presence of the inverse agonist by at least 30%, more preferably by at least 50%, and most preferably by at least 75%, as compared with the baseline response in the absence of the inverse agonist.

KNOWN RECEPTOR shall mean an endogenous receptor for which the endogenous ligand specific for that receptor has been identified.

5

10

15

20

LIGAND shall mean an endogenous, naturally occurring molecule specific for an endogenous, naturally occurring receptor.

MUTANT or MUTATION in reference to an endogenous receptor's nucleic acid and/or amino acid sequence shall mean a specified change or changes to such endogenous sequences such that a mutated form of an endogenous, non-constitutively activated receptor evidences constitutive activation of the receptor. In terms of equivalents to specific sequences, a subsequent mutated form of a human receptor is considered to be equivalent to a first mutation of the human receptor if (a) the level of constitutive activation of the subsequent mutated form of a human receptor is substantially the same as that evidenced by the first mutation of the receptor; and (b) the percent sequence (amino acid and/or nucleic acid) homology between the subsequent mutated form of the receptor and the first mutation of the receptor is at least about 80%, more preferably at least about 90% and most preferably at least 95%. Ideally, and owing to the fact that the most preferred cassettes disclosed herein for achieving constitutive activation includes a single amino acid and/or codon change between the endogenous and the non-endogenous forms of the GPCR, the percent sequence homology should be at least 98%.

NON-ORPHAN RECEPTOR shall mean an endogenous naturally occurring molecule specific for an endogenous naturally occurring ligand wherein the binding of a ligand to a receptor activates an intracellular signaling pathway.

ORPHAN RECEPTOR shall mean an endogenous receptor for which the endogenous ligand specific for that receptor has not been identified or is not known.

5

10

15

20

PHARMACEUTICAL COMPOSITION shall mean a composition comprising at least one active ingredient, whereby the composition is amenable to investigation for a specified, efficacious outcome in a mammal (for example, and not limitation, a human). Those of ordinary skill in the art will understand and appreciate the techniques appropriate for determining whether an active ingredient has a desired efficacious outcome based upon the needs of the artisan.

PLASMID shall mean the combination of a Vector and cDNA. Generally, a Plasmid is introduced into a Host Cell for the purposes of replication and/or expression of the cDNA as a protein.

SECOND MESSENGER shall mean an intracellular response produced as a result of receptor activation. A second messenger can include, for example, inositol triphosphate (IP₃), diacycglycerol (DAG), cyclic AMP (cAMP), and cyclic GMP (cGMP). Second messenger response can be measured for a determination of receptor activation. In addition, second messenger response can be measured for the direct identification of candidate compounds, including for example, inverse agonists, agonists, partial agonists and antagonists.

STIMULATE or STIMULATING, in relationship to the term "response" shall mean that a response is increased in the presence of a compound as opposed to in the absence of the compound.

VECTOR in reference to cDNA shall mean a circular DNA capable of incorporating at least one cDNA and capable of incorporation into a Host Cell.

The order of the following sections is set forth for presentational efficiency and is not intended, nor should be construed, as a limitation on the disclosure or the claims to follow.

A. Introduction

5

10

15

20

The traditional study of receptors has always proceeded from the a priori assumption (historically based) that the endogenous ligand must first be identified before discovery could proceed to find antagonists and other molecules that could affect the receptor. Even in cases where an antagonist might have been known first, the search immediately extended to looking for the endogenous ligand. This mode of thinking has persisted in receptor research even after the discovery of constitutively activated receptors. What has not been heretofore recognized is that it is the active state of the receptor that is most useful for discovering agonists, partial agonists, and inverse agonists of the receptor. For those diseases which result from an overly active receptor or an under-active receptor, what is desired in a therapeutic drug is a compound which acts to diminish the active state of a receptor or enhance the activity of the receptor, respectively, not necessarily a drug which is an antagonist to the endogenous ligand. This is because a compound that reduces or enhances the activity of the active receptor state need not bind at the same site as the endogenous ligand. Thus, as taught by a method of this invention, any search for therapeutic compounds should start by screening compounds against the ligand-independent active state.

25 B. Identification of Human GPCRs

The efforts of the Human Genome project has led to the identification of a plethora of information regarding nucleic acid sequences located within the human genome; it has been the case in this endeavor that genetic sequence information has been made available without an understanding or recognition as to whether or not any particular genomic sequence does or may contain open-reading frame information that translate human proteins. Several methods of identifying nucleic acid sequences within the human genome are within the purview of those having ordinary skill in the art. For example, and not limitation, a variety of human GPCRs, disclosed herein, were discovered by reviewing the GenBankTM database. Table B, below, lists several endogenous GPCRs that we have discovered, along with other GPCR's that are homologous to the disclosed GPCR.

5

10

TABLE B

Disclosed Human Orphan GPCRs	Accession Number Identified	Open Reading Frame (Base Pairs)	Reference To Homologous GPCR	Per Cent Homology To Designated GPCR
hRUP8	AL121755	1,152bp	NPY2R	27° o
hRUP9	AC0113375	1,260bp	GAL2R	22%
hRUP10	AC008745	1,014bp	C5aR	40° o
hRUP11	AC013396	1,272bp	HM74	36° o
hRUP12	AP000808	966bp	Mas1	34%
hRUP13	AC011780	1,356bp	Fish GPRX- ORYLA	43%
hRUP14	AL137118	1.041bp	CysLT1R	35° o
hRUP15	AL016468	1,527bp	RE2	30° o
hRUP16	AL136106	1,068bp	GLR101	37° o
hRUP17	AC023078	969bp	Masl	37%
hRUP18	AC008547	1,305bp	Oxytocin	3100
hRUP19	AC026331	1,041bp	HM74	52° o
hRUP20	AL161458	1,011bp	GPR34	25%
hRUP21	AC026756	1,014bp	P2Y1R	3700
hRUP22	AC027026	993bp	RUP17 Mas1	67° 6 37° 6

hRUP23	AC007104	1,092bp	Rat GPR26	31%
hRUP24	AL355388	1,125bp	SALPR	44%
hRUP25	AC026331	1,092bp	HM74	95%
hRUP26	AC023040	1,044bp	Rabbit 5HT1D	27% o
hRUP27	AC027643	158,700	MCH	38° o

Receptor homology is useful in terms of gaining an appreciation of a role of the receptors within the human body. As the patent document progresses, we will disclose techniques for mutating these receptors to establish non-endogenous, constitutively activated versions of these receptors.

The techniques disclosed herein have also been applied to other human, orphan GPCRs known to the art, as will be apparent as the patent document progresses.

C. Receptor Screening

5

10

15

20

Screening candidate compounds against a non-endogenous, constitutively activated version of the human GPCRs disclosed herein allows for the direct identification of candidate compounds which act at this cell surface receptor, without requiring use of the receptor's endogenous ligand. Using routine, and often commercially available techniques, one can determine areas within the body where the endogenous version of human GPCRs disclosed herein is expressed and/or over-expressed. It is also possible using these techniques to determine related disease/disorder states which are associated with the expression and/or over-expression of the receptor; such an approach is disclosed in this patent document.

With respect to creation of a mutation that may evidence constitutive activation of the human GPCR disclosed herein is based upon the distance from the proline residue at which is presumed to be located within TM6 of the GPCR; this algorithmic technique is disclosed in co-pending and commonly assigned patent document PCT Application

Number PCT/US99'23938, published as WO 00/22129 on April 20, 2000, which, along with the other patent documents listed herein, is incorporated herein by reference. The algorithmic technique is not predicated upon traditional sequence "alignment" but rather a specified distance from the aforementioned TM6 proline residue (or, of course, endogenous constitutive substitution for such proline residue). By mutating the amino acid residue located 16 amino acid residues from this residue (presumably located in the IC3 region of the receptor) to, most preferably, a lysine residue, such activation may be obtained. Other amino acid residues may be useful in the mutation at this position to achieve this objective.

10

15

20

25

5

D. Disease/Disorder Identification and/or Selection

As will be set forth in greater detail below, most preferably inverse agonists and agonists to the non-endogenous, constitutively activated GPCR can be identified by the methodologies of this invention. Such inverse agonists and agonists are ideal candidates as lead compounds in drug discovery programs for treating diseases related to this receptor. Because of the ability to directly identify inverse agonists to the GPCR, thereby allowing for the development of pharmaceutical compositions, a search for diseases and disorders associated with the GPCR is relevant. For example, scanning both diseased and normal tissue samples for the presence of the GPCR now becomes more than an academic exercise or one which might be pursued along the path of identifying an endogenous ligand to the specific GPCR. Tissue scans can be conducted across a broad range of healthy and diseased tissues. Such tissue scans provide a preferred first step in associating a specific receptor with a disease and/or disorder.

Preferably, the DNA sequence of the human GPCR is used to make a probe for (a) dot-blot analysis against tissue-mRNA, and/or (b) RT-PCR identification of the expression of the receptor in tissue samples. The presence of a receptor in a tissue

source, or a diseased tissue, or the presence of the receptor at elevated concentrations in diseased tissue compared to a normal tissue, can be preferably utilized to identify a correlation with a treatment regimen, including but not limited to, a disease associated with that disease. Receptors can equally well be localized to regions of organs by this technique. Based on the known functions of the specific tissues to which the receptor is localized, the putative functional role of the receptor can be deduced.

E. Screening of Candidate Compounds

5

10

15

20

25

1. Generic GPCR screening assay techniques

When a G protein receptor becomes constitutively active, it binds to a G protein (e.g., Gq, Gs, Gi, Gz, Go) and stimulates the binding of GTP to the G protein. The G protein then acts as a GTPase and slowly hydrolyzes the GTP to GDP, whereby the receptor, under normal conditions, becomes deactivated. However, constitutively activated receptors continue to exchange GDP to GTP. A non-hydrolyzable analog of GTP, [35S]GTPγS, can be used to monitor enhanced binding to membranes which express constitutively activated receptors. It is reported that [35S]GTPγS can be used to monitor G protein coupling to membranes in the absence and presence of ligand. An example of this monitoring, among other examples well-known and available to those in the art, was reported by Traynor and Nahorski in 1995. The preferred use of this assay system is for initial screening of candidate compounds because the system is generically applicable to all G protein-coupled receptors regardless of the particular G protein that interacts with the intracellular domain of the receptor.

2. Specific GPCR screening assay techniques

Once candidate compounds are identified using the "generic" G protein-coupled receptor assay (*i.e.*, an assay to select compounds that are agonists, partial agonists, or inverse agonists), further screening to confirm that the compounds have interacted at the

receptor site is preferred. For example, a compound identified by the "generic" assay may not bind to the receptor, but may instead merely "uncouple" the G protein from the intracellular domain.

a. Gs, Gz and Gi.

5

10

15

20

Gs stimulates the enzyme adenylyl cyclase. Gi (and Gz and Go), on the other hand, inhibit this enzyme. Adenylyl cyclase catalyzes the conversion of ATP to cAMP; thus, constitutively activated GPCRs that couple the Gs protein are associated with increased cellular levels of cAMP. On the other hand, constitutively activated GPCRs that couple Gi (or Gz, Go) protein are associated with decreased cellular levels of cAMP. See, generally, "Indirect Mechanisms of Synaptic Transmission," Chpt. 8, From Neuron To Brain (3rd Ed.) Nichols, J.G. et al eds. Sinauer Associates, Inc. (1992). Thus, assays that detect cAMP can be utilized to determine if a candidate compound is, e.g., an inverse agonist to the receptor (i.e., such a compound would decrease the levels of cAMP). A variety of approaches known in the art for measuring cAMP can be utilized; a most preferred approach relies upon the use of anti-cAMP antibodies in an ELISAbased format. Another type of assay that can be utilized is a whole cell second messenger reporter system assay. Promoters on genes drive the expression of the proteins that a particular gene encodes. Cyclic AMP drives gene expression by promoting the binding of a cAMP-responsive DNA binding protein or transcription factor (CREB) that then binds to the promoter at specific sites called cAMP response elements and drives the expression of the gene. Reporter systems can be constructed which have a promoter containing multiple cAMP response elements before the reporter gene, e.g., \(\beta\)-galactosidase or luciferase. Thus, a constitutively activated Gs-linked receptor causes the accumulation of cAMP that then activates the gene and expression of

the reporter protein. The reporter protein such as β -galactosidase or luciferase can then be detected using standard biochemical assays (Chen et al. 1995).

b. Go and Gq.

5

10

15

20

25

Gq and Go are associated with activation of the enzyme phospholipase C, which in turn hydrolyzes the phospholipid PIP₂, releasing two intracellular messengers: diacycloglycerol (DAG) and inistol 1,4,5-triphoisphate (IP₃). Increased accumulation of IP₃ is associated with activation of Gq- and Go-associated receptors. *See, generally*, "Indirect Mechanisms of Synaptic Transmission," Chpt. 8, From Neuron To Brain (3rd Ed.) Nichols, J.G. et al eds. Sinauer Associates, Inc. (1992). Assays that detect IP₃ accumulation can be utilized to determine if a candidate compound is, *e.g.*, an inverse agonist to a Gq- or Go-associated receptor (*i.e.*, such a compound would decrease the levels of IP₃). Gq-associated receptors can also been examined using an AP1 reporter assay in that Gq-dependent phospholipase C causes activation of genes containing AP1 elements; thus, activated Gq-associated receptors will evidence an increase in the expression of such genes, whereby inverse agonists thereto will evidence a decrease in such expression, and agonists will evidence an increase in such expression. Commercially available assays for such detection are available.

3. GPCR Fusion Protein

The use of an endogenous, constitutively activate orphan GPCR or a non-endogenous, constitutively activated orphan GPCR, for use in screening of candidate compounds for the direct identification of inverse agonists, agonists and partial agonists provide an interesting screening challenge in that, by definition, the receptor is active even in the absence of an endogenous ligand bound thereto. Thus, in order to differentiate between, *e.g.*, the non-endogenous receptor in the presence of a candidate compound and the non-endogenous receptor in the absence of that compound, with an

aim of such a differentiation to allow for an understanding as to whether such compound may be an inverse agonist, agonist, partial agonist or have no affect on such a receptor, it is preferred that an approach be utilized that can enhance such differentiation. A preferred approach is the use of a GPCR Fusion Protein.

5

10

15

20

25

Generally, once it is determined that a non-endogenous orphan GPCR has been constitutively activated using the assay techniques set forth above (as well as others), it is possible to determine the predominant G protein that couples with the endogenous GPCR. Coupling of the G protein to the GPCR provides a signaling pathway that can be assessed. Because it is most preferred that screening take place by use of a mammalian expression system, such a system will be expected to have endogenous G protein therein. Thus, by definition, in such a system, the non-endogenous, constitutively activated orphan GPCR will continuously signal. In this regard, it is preferred that this signal be enhanced such that in the presence of, e.g., an inverse agonist to the receptor, it is more likely that it will be able to more readily differentiate, particularly in the context of screening, between the receptor when it is contacted with the inverse agonist.

The GPCR Fusion Protein is intended to enhance the efficacy of G protein coupling with the non-endogenous GPCR. The GPCR Fusion Protein is preferred for screening with a non-endogenous, constitutively activated GPCR because such an approach increases the signal that is most preferably utilized in such screening techniques. This is important in facilitating a significant "signal to noise" ratio; such a significant ratio is import preferred for the screening of candidate compounds as disclosed herein.

The construction of a construct useful for expression of a GPCR Fusion Protein is within the purview of those having ordinary skill in the art. Commercially available expression vectors and systems offer a variety of approaches that can fit the particular

19

needs of an investigator. The criteria of importance for such a GPCR Fusion Protein construct is that the endogenous GPCR sequence and the G protein sequence both be inframe (preferably, the sequence for the endogenous GPCR is upstream of the G protein sequence) and that the "stop" codon of the GPCR must be deleted or replaced such that upon expression of the GPCR, the G protein can also be expressed. The GPCR can be linked directly to the G protein, or there can be spacer residues between the two (preferably, no more than about 12, although this number can be readily ascertained by one of ordinary skill in the art). We have a preference (based upon convenience) of use of a spacer in that some restriction sites that are not used will, effectively, upon expression, become a spacer. Most preferably, the G protein that couples to the nonendogenous GPCR will have been identified prior to the creation of the GPCR Fusion Protein construct. Because there are only a few G proteins that have been identified, it is preferred that a construct comprising the sequence of the G protein (i.e., a universal G protein construct) be available for insertion of an endogenous GPCR sequence therein; this provides for efficiency in the context of large-scale screening of a variety of different endogenous GPCRs having different sequences.

5

10

15

20

25

As noted above, constitutively activated GPCRs that couple to Gi, Gz and Go are expected to inhibit the formation of cAMP making assays based upon these types of GPCRs challenging (i.e., the cAMP signal decreases upon activation thus making the direct identification of, e.g, inverse agonists (which would further decrease this signal), interesting. As will be disclosed herein, we have ascertained that for these types of receptors, it is possible to create a GPCR Fusion Protein that is not based upon the endogenous GPCR's endogenous G protein, in an effort to establish a viable cyclase-based assay. Thus, for example, an endogenous Gi coupled receptor can be fused to a Gs protein – we believe that such a fusion construct, upon expression, "drives" or "forces"

the endogenous GPCR to couple with, e.g., Gs rather than the "natural" Gi protein, such that a cyclase-based assay can be established. Thus, for Gi, Gz and Go coupled receptors, we prefer that that when a GPCR Fusion Protein is used and the assay is based upon detection of adenylyl cyclase activity, that the fusion construct be established with Gs (or an equivalent G protein that stimulates the formation of the enzyme adenylyl cyclase).

Equally effective is a G Protein Fusion construct that utilizes a Gq Protein fused with a Gs, Gi, Gz or Go Protein. A most preferred fusion construct can be accomplished with a Gq Protein wherein the first six (6) amino acids of the G-protein α -subunit ("G α q") is deleted and the last five (5) amino acids at the C-terminal end of G α q is replaced with the corresponding amino acids of the G α of the G protein of interest. For example, a fusion construct can have a Gq (6 amino acid deletion) fused with a Gi Protein, resulting in a "Gq/Gi Fusion Construct". We believe that this fusion construct will force the endogenous Gi coupled receptor to couple to its non-endogenous G protein, Gq, such that the second messenger, for example, inositol triphosphate or diacylgycerol, can be measured in lieu of cAMP production.

4. Co-transfection of a Target Gi Coupled GPCR with a Signal-Enhancer Gs Coupled GPCR (cAMP Based Assays)

20

25

15

5

10

A Gi coupled receptor is known to inhibit adenylyl cyclase, and, therefore, decrease the level of cAMP production, which can make assessment of cAMP levels challenging. An effective technique in measuring the decrease in production of cAMP as an indication of constitutive activation of a receptor that predominantly couples Gi upon activation can be accomplished by co-transfecting a signal enhancer, *e.g.*, a non-endogenous, constitutively activated receptor that predominantly couples with Gs upon activation (*e.g.*, TSHR-A6231, disclosed below), with the Gi linked GPCR. As is

apparent, constitutive activation of a Gs coupled receptor can be determined based upon an increase in production of cAMP. Constitutive activation of a Gi coupled receptor leads to a decrease in production cAMP. Thus, the co-transfection approach is intended to advantageously exploit these "opposite" affects. For example, co-transfection of a non-endogenous, constitutively activated Gs coupled receptor (the "signal enhancer") with the endogenous Gi coupled receptor (the "target receptor") provides a baseline cAMP signal (*i.e.*, although the Gi coupled receptor will decrease cAMP levels, this "decrease" will be relative to the substantial increase in cAMP levels established by constitutively activated Gs coupled signal enhancer). By then co-transfecting the signal enhancer with a constitutively activated version of the target receptor, cAMP would be expected to further decrease (relative to base line) due to the increased functional activity of the Gi target (*i.e.*, which decreases cAMP).

Screening of candidate compounds using a cAMP based assay can then be accomplished, with two provisos: first, relative to the Gi coupled target receptor, "opposite" effects will result, *i.e.*, an inverse agonist of the Gi coupled target receptor will increase the measured cAMP signal, while an agonist of the Gi coupled target receptor will decrease this signal; second, as would be apparent, candidate compounds that are directly identified using this approach should be assessed independently to ensure that these do not target the signal enhancing receptor (this can be done prior to or after screening against the co-transfected receptors).

F. Medicinal Chemistry

5

10

15

20

25

Generally, but not always, direct identification of candidate compounds is preferably conducted in conjunction with compounds generated via combinatorial chemistry techniques, whereby thousands of compounds are randomly prepared for such analysis. Generally, the results of such screening will be compounds having

unique core structures; thereafter, these compounds are preferably subjected to additional chemical modification around a preferred core structure(s) to further enhance the medicinal properties thereof. Such techniques are known to those in the art and will not be addressed in detail in this patent document.

5

10

15

20

25

G. Pharmaceutical compositions

Candidate compounds selected for further development can be formulated into pharmaceutical compositions using techniques well known to those in the art. Suitable pharmaceutically-acceptable carriers are available to those in the art; for example, see Remington's Pharmaceutical Sciences, 16th Edition, 1980, Mack Publishing Co., (Oslo et al., eds.).

H. Other Utility

Although a preferred use of the non-endogenous versions the human GPCRs disclosed herein may be for the direct identification of candidate compounds as inverse agonists, agonists or partial agonists (preferably for use as pharmaceutical agents), these versions of human GPCRs can also be utilized in research settings. For example, *in vitro* and *in vivo* systems incorporating GPCRs can be utilized to further elucidate and understand the roles these receptors play in the human condition, both normal and diseased, as well as understanding the role of constitutive activation as it applies to understanding the signaling cascade. The value in non-endogenous human GPCRs is that their utility as a research tool is enhanced in that, because of their unique features, non-endogenous human GPCRs can be used to understand the role of these receptors in the human body before the endogenous ligand therefore is identified. Other uses of the disclosed receptors will become apparent to those in the art based upon, *inter alia*, a review of this patent document.

EXAMPLES

The following examples are presented for purposes of elucidation, and not limitation, of the present invention. While specific nucleic acid and amino acid sequences are disclosed herein, those of ordinary skill in the art are credited with the ability to make minor modifications to these sequences while achieving the same or substantially similar results reported below. The traditional approach to application or understanding of sequence cassettes from one sequence to another (e.g. from rat receptor to human receptor or from human receptor A to human receptor B) is generally predicated upon sequence alignment techniques whereby the sequences are aligned in an effort to determine areas of commonality. The mutational approach disclosed herein does not rely upon this approach but is instead based upon an algorithmic approach and a positional distance from a conserved proline residue located within the TM6 region of human GPCRs. Once this approach is secured, those in the art are credited with the ability to make minor modifications thereto to achieve substantially the same results (i.e., constitutive activation) disclosed herein. Such modified approaches are considered within the purview of this disclosure.

//

//

//

20 //

5

10

15

Example 1 ENDOGENOUS HUMAN GPCRS

1. Identification of Human GPCRs

The disclosed endogenous human GPCRs were identified based upon a review of the GenBankTM database information. While searching the database, the following cDNA clones were identified as evidenced below (Table C).

TABLE C

Disclosed Human Orphan GPCRs	Accession Number Identified	Complete DNA Sequence (Base Pairs)	Open Reading Frame (Base Pairs)	Nucleic Acid SEQ.ID. NO.	Amino Acid SEQ.ID. NO.
hRUP8	AL121755	147,566bp	1,152bp	1	2
hRUP9	AC0113375	143,181bp	1,260bp	3	4
hRUP10	AC008745	94,194bp	1,014bp	5	6
hRUP11	AC013396	155,086bp	1,272bp	7	8
hRUP12	AP000808	177,764bp	966bp	9	10
hRUP13	AC011780	167,819bp	1,356bp	11	12
hRUP14	AL137118	168,297bp	1,041bp	13	14
hRUP15	AL016468	138,828bp	1,527bp	15	16
hRUP16	AL136106	208,042bp	1,068bp	17	18
hRUP17	AC023078	161,735bp	969bp	19	20
hRUP18	AC008547	117,304bp	1,305bp	21	22
hRUP19	AC026331	145,183bp	1,041bp	23	24
hRUP20	AL161458	163,511bp	1,011bp	25	26
hRUP21	AC026756	156,534bp	1,014bp	27	28
hRUP22	AC027026	151,811bp	993bp	29	30
hRUP23	AC007104	200,000bp	1,092bp	31	32
hRUP24	AL355388	190,538bp	1,125bp	33	34
hRUP25	AC026331	145,183bp	1,092bp	35	36
hRUP26	AC023040	178,508bp	1,044bp	37	38
hRUP27	AC027643	158,700bp	1,020bp	39	40

2. Full Length Cloning

5

a. hRUP8 (Seq. Id. Nos. 1 & 2)

The disclosed human RUP8 was identified based upon the use of EST database (dbEST) information. While searching the dbEST, a cDNA clone with accession number

AL121755 was identified to encode a novel GPCR. The following PCR primers were used for RT-PCR with human testis Marathon-Ready cDNA (Clontech) as templates: 5'-CTTGCAGACATCACCATGGCAGCC-3' (SEQ.ID.NO.:41; sense) and 5'-GTGATGCTCTGAGTACTGGACTGG-3' (SEQ.ID.NO.: 42; antisense).

PCR was performed using Advantage cDNA polymerase (Clontech; manufacturing instructions will be followed) in 50ul reaction by the following cycles: 94°C for 30 sec; 94°C for 10 sec; 65°C for 20 sec, 72°C for 1.5 min, and 72°C for 7 min. Cycles 2 through 4 were repeated 35 times.

A 1.2kb PCR fragment was isolated and cloned into the pCRII-TOPO vector (Invitrogen) and sequenced using the ABI Big Dye Terminator kit (P.E. Biosystem). See, SEQ.ID.NO.:1. The putative amino acid sequence for RUP8 is set forth in SEQ.ID.NO.:2.

b. hRUP9 (Seq. Id. Nos. 3 & 4)

15

The disclosed human RUP9 was identified based upon the use of GeneBank database information. While searching the database, a cDNA clone with Accession Number AC011375 was identified as a human genomic sequence from chromosome 5. The full length RUP9 was cloned by PCR using primers:

- 5'-GAAGCTGTGAAGAGTGATGC-3' (SEQ.ID.NO.:43; sense),
- 5'-GTCAGCAATATTGATAAGCAGCAG-3' (SEQ.ID.NO.:44; antisense)
- and human genomic DNA (Promega) as a template. Taq Plus Precision polymerase (Stratagene) was used for the amplification in a 100µl reaction with 5% DMSO by the following cycle with step 2 to step 4 repeated 35 times: 94°C for 1 minute; 94°C for 30 seconds; 56°C for 30 seconds; 72°C for 2 minutes; 72°C for 5 minutes.
- A 1.3 Kb PCR fragment was isolated and cloned into the pCRII-TOPO vector (Invitrogen) from 1% agarose gel and completely sequenced using the ABI Big Dye

Terminator kit (P.E. Biosystem). *See*, SEQ.ID.NO.:3. The putative amino acid sequence for RUP8 is set forth in SEQ.ID.NO.:4. The sequence of RUP9 clones isolated from human genomic DNA matched with the sequence obtained from data base.

c. hRUP10 (Seq. Id. Nos. 5 & 6)

The disclosed human RUP10 was identified based upon the use of GenBank database information. While searching the database, a cDNA clone with accession number AC008754 was identified as a human genomic sequence from chromosome 19. The full length RUP10 was cloned by RT-PCR using primers:

5'-CCATGGGGAACGATTCTGTCAGCTACG-3' (SEQ.ID.NO.:45; sense) and

5'-GCTATGCCTGAAGCCAGTCTTGTG-3' (SEQ.ID.NO.:46; antisense)

and human leukocyte Marathon-Ready cDNA (Clontech) as a template. Advantage cDNA polymerase (Clontech) was used for the amplification in a 50µl reaction by the following cycle with step 2 to step 4 repeated 35 times: 94°C for 30 seconds; 94°C for 10 seconds; 62°C for 20 seconds; 72°C for 1.5 minutes; 72°C for 7 minutes. A 1.0 Kb PCR fragment was isolated and cloned into the pCRII-TOPO vector (Invitrogen) and completely sequenced using the ABI Big Dye Terminator kit (P.E. Biosystem). The nucleic acid sequence of the novel human receptor RUP10 is set forth in SEQ.ID.NO.:5 and the putative amino acid sequence thereof is set forth in SEQ.ID.NO.:6.

20

25

5

10

15

d. hRUP11 (Seq. Id. Nos. 7 & 8)

The disclosed human RUP11 was identified based upon the use of GenBank database information. While searching the database, a cDNA clone with accession number AC013396 was identified as a human genomic sequence from chromosome 2.

The full length RUP11 was cloned by PCR using primers:

5

10

15

5'-CCAGGATGTTGTCACCGTGGTGGC-3' (SEQ.ID.NO.:47; sense),

5'-CACAGCGCTGCAGCCTGCAGCTGGC-3' (SEQ.ID.NO.:48; antisense)

and human genomic DNA (Clontech) as a template. TaqPlus Precision DNA polymerase (Stratagene) was used for the amplification in a 50µl reaction by the following cycle with step 2 to step 4 repeated 35 times: 94°C for 3 minutes; 94°C for 20 seconds; 67°C for 20 seconds; 72°C for 1.5 minutes; 72°C for 7 minutes. A 1.3 Kb PCR fragment was isolated and cloned into the pCRII-TOPO vector (Invitrogen) and completely sequenced using the ABI Big Dye Terminator kit (P.E. Biosystem). The nucleic acid sequence of the novel human receptor RUP11 is set forth in SEQ.ID.NO.:7 and the putative amino acid sequence thereof is set forth in SEQ.ID.NO.:8.

e. hRUP12 (Seq. Id. Nos. 9 & 10)

The disclosed human RUP12 was identified based upon the use of GenBank database. While searching the database, a cDNA clone with accession number AP000808 was identified to encode a new GPCR, having significant homology with rat RTA and human mas1 oncogene GPCRs. The full length RUP12 was cloned by PCR using primers:

- 5'-CTTCCTCTCGTAGGGATGAACCAGAC-3' (SEQ.ID.NO.:49; sense)
- 5'-CTCGCACAGGTGGGAAGCACCTGTGG-3' (SEQ.ID.NO.:50; antisense)
- and human genomic DNA (Clontech) as template. TaqPlus Precision DNA polymerase (Stratagene) was used for the amplification by the following cycle with step 2 to step 4 repeated 35 times: 94°C for 3 min; 94°C for 20 sec; 65°C for 20sec; 72°C for 2 min and 72°C for 7 min. A 1.0kb PCR fragment was isolated and cloned into the pCRII-TOPO vector (Invitrogen) and completely sequenced using the ABI Big Dye Terminator kit

(P.E. Biosystem) (*see*, SEQ.ID.NO.:9 for nucleic acid sequence and SEQ.ID.NO.:10 for deduced amino acid sequence).

The disclosed human RUP13 was identified based upon the use of

f. hRUP13 (Seq. ld. Nos. 11 & 12)

GenBank database. While searching the database, a cDNA clone with accession number AC011780 was identified to encode a new GPCR, having significant homology with GPCR fish GPRX-ORYLA. The full length RUP13 was cloned by PCR using primers: 5'-GCCTGTGACAGGAGGTACCCTGG-3' (SEQ.ID.NO.:51; sense) 5'-CATATCCCTCCGAGTGTCCAGCGGC-3' (SEQ.ID.NO.:52; antisense)

and human genomic DNA (Clontech) as template. TaqPlus Precision DNA polymerase (Stratagene) was used for the amplification by the following cycle with step 2 to step 4 repeated 35 times: 94°C for 3 min; 94°C for 20 sec; 65°C for 20sec; 72°C for 2 min and 72°C for 7 min. A 1.35kb PCR fragment was isolated and cloned into the pCRII-TOPO vector (Invitrogen) and completely sequenced using the ABI Big Dye Terminator kit (P.E. Biosystem) (see, SEQ.ID.NO.:11 for nucleic acid sequence and SEQ.ID.NO.:12

g. hRUP14 (Seq. ld. Nos. 13 & 14)

for deduced amino acid sequence).

20

25

The disclosed human RUP14 was identified based upon the use of GeneBank database information. While searching the database, a cDNA clone with Accession Number AL137118 was identified as a human genomic sequence from chromosome 13. The full length RUP14 was cloned by PCR using primers:

- 5'-GCATGGAGAGAAAATTTATGTCCTTGCAACC-3' (SEQ.ID.NO.:53; sense)
- 5'-CAAGAACAGGTCTCATCTAAGAGCTCC-3' (SEQ.ID.NO.:54; antisense)

and human genomic DNA (Promega) as a template. Taq Plus Precision polymerase (Stratagene) and 5% DMSO were used for the amplification by the following cycle

with step 2 and step 3 repeated 35 times: 94°C for 3 minute; 94°C for 20 seconds; 58°C for 2 minutes; 72°C for 10 minutes.

A 1.1 Kb PCR fragment was isolated and cloned into the pCRII-TOPO vector (Invitrogen) and completely sequenced using the ABI Big Dye Terminator kit (P.E. Biosystem) (see, SEQ.ID.NO.:13 for nucleic acid sequence and SEQ.ID.NO.:14 for deduced amino acid sequence). The sequence of RUP14 clones isolated from human genomic DNA matched with the sequence obtained from database.

h. hRUP15 (Seq. Id. Nos. 15 & 16)

5

10

15

The disclosed human RUP15 was identified based upon the use of GeneBank database information. While searching the database, a cDNA clone with Accession Number AC016468 was identified as a human genomic sequence. The full length RUP15 was cloned by PCR using primers:

5'-GCTGTTGCCATGACGTCCACCTGCAC-3' (SEQ.ID.NO.:55; sense)

5'-GGACAGTTCAAGGTTTGCCTTAGAAC-3' (SEQ.ID.NO.:56; antisense)

and human genomic DNA (Promega) as a template. Taq Plus Precision polymerase (Stratagene) was used for the amplification by the following cycle with step 2 to 4 repeated 35 times: 94°C for 3 minute; 94°C for 20 seconds; 65°C for 20 seconds; 72°C for 2 minutes and 72°C for 7 minutes.

A 1.5 Kb PCR fragment was isolated and cloned into the pCRII-TOPO vector (Invitrogen) and completely sequenced using the ABI Big Dye Terminator kit (P.E. Biosystem). See, SEQ.ID.NO.:15 for nucleic acid sequence and SEQ.ID.NO.:16 for deduced amino acid sequence. The sequence of RUP15 clones isolated from human genomic DNA matched with the sequence obtained from database.

i. hRUP16 (Seq. Id. Nos. 17 & 18)

The disclosed human RUP16 was identified based upon the use of GeneBank database information. While searching the database, a cDNA clone with Accession Number AL136106 was identified as a human genomic sequence from chromosome 13. The full length RUP16 was cloned by PCR using primers:

5 '5'-CTTTCGATACTGCTCCTATGCTC-3' (SEQ.ID.NO.:57; sense, 5' of initiation codon),
5'-GTAGTCCACTGAAAGTCCAGTGATCC-3' (SEQ.ID.NO.:58; antisense, 3' of stop codon)
and human skeletal muscle Marathon-Ready cDNA (Clontech) as template. Advantage
cDNA polymerase (Clontech) was used for the amplification in a 50ul reaction by the
following cycle with step 2 to 4 repeated 35 times: 94°C for 30 seconds; 94°C for 5
seconds; 69°C for 15 seconds; 72°C for 1 minute and 72°C for 5 minutes.

A 1.1 Kb PCR fragment was isolated and cloned into the pCRII-TOPO vector (Invitrogen) and completely sequenced using the T7 sequenase kit (Amsham). *See*, SEQ.ID.NO.:17 for nucleic acid sequence and SEQ.ID.NO.:18 for deduced amino acid sequence. The sequence of RUP16 clones matched with four unordered segments of AL136106, indicating that the RUP16 cDNA is composed of 4 exons.

j. hRUP17 (Seq. Id. Nos. 19 & 20)

15

The disclosed human RUP17 was identified based upon the use of GeneBank database information. While searching the database, a cDNA clone with Accession Number AC023078 was identified as a human genomic sequence from chromosome

- 20 11. The full length RUP17 was cloned by PCR using primers:
 - 5'-TTTCTGAGCATGGATCCAACCATCTC-3' (SEQ.ID.NO.:59; sense, containing initiation codon)
 - 5'-CTGTCTGACAGGGCAGAGGCTCTTC-3' (SEQ.ID.NO.:60; antisense, 3' of stop codon) and human genomic DNA (Promega) as template. Advantage cDNA polymerase mix
- 25 (Clontech) was used for the amplification in a 100ul reaction with 5% DMSO by the

following cycle with step 2 to 4 repeated 30 times: 94°C for 1 min; 94°C for 15 sec; 67°C for 20 sec; 72°C for 1 min and 30 sec; and 72°C for 5 min.

A 970bp PCR fragment was isolated from 1% agarose gel and cloned into the pCRII-TOPO vector (Invitrogen) and completely sequenced using the ABI Big Dye Termiantor Kit (P.E. Biosystem). *See*, SEQ.ID.NO.:19 for nucleic acid sequence and SEQ.ID.NO.:20 for deduced amino acid sequence.

k. hRUP18 (Seq. Id. Nos. 21 & 22)

5

10

15

20

The disclosed human RUP18 was identified based upon the use of GeneBank database information. While searching the database, a cDNA clone with Accession Number AC008547 was identified as a human genomic sequence from chromosome 5. The full length RUP18 was cloned by PCR using primers:

- 5'-GGAACTCGTATAGACCCAGCGTCGCTCC-3' (SEQ.ID.NO.:61; sense, 5' of the initiation codon),
- 5'-GGAGGTTGCGCCTTAGCGACAGATGACC-3' (SEQ.ID.NO.:62; antisense, 3' of stop codon)

and human genomic DNA (Promega) as template. TaqPlus precision DNA polymerase (Stratagene) was used for the amplification in a 100ul reaction with 5% DMSO by the following cycle with step 2 to 4 repeated 35 times: 95°C for 5 min; 95°C for 30 sec; 65°C for 30 sec; 72°C for 2 min; and 72°C for 5 min.

A 1.3kb PCR fragment was isolated from 1% agarose gel and cloned into the pCRII-TOPO vector (Invitrogen) and completely sequenced using the ABI Big Dye Termiantor Kit (P.E. Biosystem). *See*, SEQ.ID.NO.:21 for nucleic acid sequence and SEQ.ID.NO.:22 for deduced amino acid sequence.

l. hRUP19 (Seq. Id. Nos. 23 & 24)

WO 01 36471 PCT/4 800 31509

The disclosed human RUP19 was identified based upon the use of GeneBank database information. While searching the database, a cDNA clone with Accession Number AC026331 was identified as a human genomic sequence from chromosome 12. The full length RUP19 was cloned by PCR using primers:

5 5'-CTGCACCCGGACACTTGCTCTG-3' (SEQ.ID.NO.:63; sense, 5' of initiation codon), 5'-GTCTGCTTGT<u>TCA</u>GTGCCACTCAAC-3' (SEQ.ID.NO.:64; antisense, containing the stop codon)

and human genomic DNA (Promega) as template. TaqPlus Precision DNA polymerase (Stratagene) was used for the amplification with 5% DMSO by the following cycle with step 2 to 4 repeated 35 times: 94°C for 1 min; 94°C for 15 sec; 70°C for 20 sec; 72°C for 1 min and 30 sec; and 72°C for 5 min.

A 1.1kp PCR fragment was isolated from 1% agarose gel and cloned into the pCRII-TOPO vector (Invitrogen) and completely sequenced using the ABI Big Dye Termiantor Kit (P.E. Biosystem). *See*, SEQ.ID.NO.:23 for nucleic acid sequence and SEQ.ID.NO.:24 for deduced amino acid sequence.

m. hRUP20 (Seq. Id. Nos. 25 & 26)

10

15

20

The disclosed human RUP20 was identified based upon the use of GeneBank database information. While searching the database, a cDNA clone with Accession Number AL161458 was identified as a human genomic sequence from chromosome 1. The full length RUP20 was cloned by PCR using primers:

5'-TATCTGCAATTCTATTCTAGCTCCTG-3' (SEQ.ID.NO.:65; sense, 5' of initiation codon), 5'-TGTCCCTAATAAAGTCACATGAATGC-3' (SEQ.ID.NO.:66; antisense, 3' of stop codon) and human genomic DNA (Promega) as template. Advantage cDNA polymerase mix (Clonetech) was used for the amplification with 5% DMSO by the following cycle with

step 2 to 4 repeated 35 times: 94°C for 1 min; 94°C for 15 sec; 60°C for 20 sec; 72°C for 1 min and 30 sec; and 72°C for 5 min.

A 1.0 kp PCR fragment was isolated from 1% agarose gel and cloned into the pCRII-TOPO vector (Invitrogen) and completely sequenced using the ABI Big Dye Termiantor Kit (P.E. Biosystem). *See*, SEQ.ID.NO.:25 for nucleic acid sequence and SEQ.ID.NO.:26 for deduced amino acid sequence.

n. hRUP21 (Seq. Id. Nos. 27 & 28)

5

10

15

20

The disclosed human RUP21 was identified based upon the use of GeneBank database information. While searching the database, a cDNA clone with Accession Number AC026756 was identified as a human genomic sequence from chromosome 13. The full length RUP21 was cloned by PCR using primers:

- 5'- GGAGACAACCATGAATGAGCCAC -3' (SEQ.ID.NO.:67; sense)
- 5'- TATTTCAAGGGTTGTTTGAGTAAC -3' (SEQ.ID.NO.:68; antisense)

and human genomic DNA (Promega) as template. Taq Plus Precision polymerase (Stratagene) was used for the amplification in a 100ul reaction with 5% DMSO by the following cycle with step 2 to 4 repeated 30 times: 94°C for 1 min; 94°C for 15 sec; 55°C for 20 sec; 72°C for 1 min and 30 sec; and 72°C for 5 min.

A 1,014 bp PCR fragment was isolated from 1% agarose gel and cloned into the pCRII-TOPO vector (Invitrogen) and completely sequenced using the ABI Big Dye Termiantor Kit (P.E. Biosystem). *See*, SEQ.ID.NO.:27 for nucleic acid sequence and SEQ.ID.NO.:28 for deduced amino acid sequence.

o. hRUP22 (Seq. Id. Nos. 29 & 30)

The disclosed human RUP22 was identified based upon the use of GeneBank database information. While searching the database, a cDNA clone with Accession

WO 01 36471 PCT/U800 34509

Number AC027026 was identified as a human genomic sequence from chromosome 11. The full length RUP22 was cloned by PCR using primers:

- 5'- GGCACCAGTGGAGGTTTTCTGAGCATG -3' (SEQ.ID.NO.:69; sense, containing initiation codon)
- 5 5'-CTGATGGAAGTAGAGGCTGTCCATCTC-3' (SEQ.ID.NO.:70; antisense, 3' of stop codon)

and human genomic DNA (Promega) as template. TaqPlus Precision DNA polymerase (Stratagene) was used for the amplification in a 100ul reaction with 5% DMSO by the following cycle with step 2 to 4 repeated 30 times: 94°C, 1 minutes 94°C, 15 seconds 55°C, 20 seconds 72°C, 1.5 minute 72°C, 5 minutes.

A 970bp PCR fragment was isolated from 1% agarose gel and cloned into the pCRII-TOPO vector (Invitrogen) and completely sequenced using the ABI Big Dye Termiantor Kit (P.E. Biosystem). *See*, SEQ.ID.NO.:29 for nucleic acid sequence and SEQ.ID.NO.:30 for deduced amino acid sequence.

p. hRUP23 (Seq. Id. Nos. 31 & 32)

10

15

The disclosed human RUP23 was identified based upon the use of GeneBank database information. While searching the database, a cDNA clone with Accession Number AC007104 was identified as a human genomic sequence from chromosome 4. The full length RUP23 was cloned by PCR using primers:

- 5'-CCTGGCGAGCCGCTAGCGCC<u>ATG</u>-3' (SEQ.ID.NO.:71; sense, ATG as the initiation codon),
 - 5'-ATGAGCCCTGCCAGGCCC<u>TCA</u>GT-3' (SEQ.ID.NO.:72; antisense, TCA as the stop codon)
- and human placenta Marathon-Ready cDNA (Clontech) as template. Advantage cDNA polymerase (Clontech) was used for the amplification in a 50ul reaction by the following

cycle with step 2 to 4 repeated 35 times: 95°C for 30 sec; 95°C for 15 sec; 66°C for 20 sec; 72°C for 1 min and 20 sec; and 72°C for 5 min.

A 1.0 kb PCR fragment was isolated and cloned into the pCRII-TOPO vector (Invitrogen) and completely sequenced using the ABI Big Dye Terminator Kit (P.E. Biosystem). *See*, SEQ.ID.NO.:31 for nucleic acid sequence and SEQ.ID.NO.:32 for deduced amino acid sequence.

The disclosed human RUP25 was identified based upon the use of GeneBank

q. hRUP24 (Seq. Id. Nos. 33 & 34)

5

10

15

20

database information. While searching the database, a cDNA clone with Accession Number AC026331 was identified as a human genomic sequence from chromosome 12. The full length RUP25 was cloned by PCR using primers: 5'-GCTGGAGCATTCACTAGGCGAG-3' (SEQ.ID.NO.:73; sense, 5'of initiation codon), 5'-AGATCCTGGTTCTTGGTGACAATG-3' (SEQ.ID.NO.:74; antisense, 3' of stop codon) and human genomic DNA (Promega) as template. Advantage cDNA polymerase mix (Clontech) was used for the amplification with 5% DMSO by the following cycle with step 2 to 4 repeated 35 times: 94°C for 1 minute; 94°C for 15 seconds; 56°C for 20 seconds 72°C for 1 minute 30 seconds and 72°C for 5 minutes.

A 1.2kb PCR fragment was isolated from 1% agarose gel and cloned into the pCRII-TOPO vector (Invitrogen) and completely sequenced using the ABI Big Dye Termiantor Kit (P.E. Biosystem). *See*, SEQ.ID.NO.:33 for nucleic acid sequence and SEQ.ID.NO.:34 for deduced amino acid sequence.

r. hRUP25 (Seq. Id. Nos. 35 & 36)

The disclosed human RUP25 was identified based upon the use of GeneBank database information. While searching the database, a cDNA clone with Accession

Number AC026331 was identified as a human genomic sequence from chromosome 12. The full length RUP25 was cloned by PCR using primers:

- 5'-GCTGGAGCATTCACTAGGCGAG-3' (SEQ.ID.NO. 75; sense, 5'of initiation codon),
- 5'-AGATCCTGGTTCTTGGTGACAATG-3' (SEQ.ID.NO.:76; antisense, 3' of stop codon)
- and human genomic DNA (Promega) as template. Advantage cDNA polymerase mix (Clontech) was used for the amplification with 5% DMSO by the following cycle with step 2 to 4 repeated 35 times: 94°C for 1 minute; 94°C for 15 seconds; 56°C for 20 seconds 72°C for 1 minute 30 seconds and 72°C for 5 minutes.

A 1.2kb PCR fragment was isolated from 1% agarose gel and cloned into the pCRII-TOPO vector (Invitrogen) and completely sequenced using the ABI Big Dye Termiantor Kit (P.E. Biosystem). *Sec.*, SEQ.ID.NO.:35 for nucleic acid sequence and SEO.ID.NO.:36 for deduced amino acid sequence.

s. hRUP26 (Seq. Id. Nos. 37 & 38)

10

The disclosed human RUP26 was identified based upon the use of GeneBank database information. While searching the database, a cDNA clone with Accession Number AC023040 was identified as a human genomic sequence from chromosome 2. The full length RUP26 was cloned by RT-PCR using RUP26 specific primers: 5'-AGCCATCCCTGCCAGGAAGCATGG-3' (SEQ.ID.NO.:77; sense, containing initiation codon)

5'-CCAGACTGTGGACTCAAGAACTCTAGG-3' (SEQ.ID.NO.:78; antisense, containing stop codon)
 and human pancreas Marathon - Ready cDNA (Clontech) as template. Advantage cDNA polymerase mix (Clontech) was used for the amplification in a 100μl reaction with 5% DMSO by the following cycle with step 2 to 4 repeated 35 times: 94°C for 5 minute;
 95°C for 30 seconds; 65°C for 30 seconds 72°C for 2 minute and 72°C for 5 minutes.

A 1.1kb PCR fragment was isolated from 1% agarose gel and cloned into the pCRII-TOPO vector (Invitrogen) and completely sequenced using the ABI Big Dye Termiantor Kit (P.E. Biosystem). *See*, SEQ.ID.NO.:37 for nucleic acid sequence and SEQ.ID.NO.:38 for deduced amino acid sequence.

t. hRUP27 (Seq. Id. Nos. 39 & 40)

5

15

20

The disclosed human RUP27 was identified based upon the use of GeneBank database information. While searching the database, a cDNA clone with Accession Number AC027643 was identified as a human genomic sequence from chromosome 12. The full length RUP27 was cloned by PCR using RUP27 specific primers:

- 5'-AGTCCACGAACAATGAATCCATTTCATG-3' (SEQ.ID.NO.:79; sense, containing initiation codon),
 - 5'-ATCATGTCTAGACTCATGGTGATCC-3' (SEQ.ID.NO.:80; antisense, 3' of stop codon) and the human adult brain Marathon-Ready cDNA (Clontech) as template. Advantage cDNA polymerase mix (Clontech) was used for the amplification in a 50µl reaction with 5% DMSO by the following cycle with step 2 to 4 repeated 35 times: 94°C for 1 minute; 94°C for 10 seconds; 58°C for 20 seconds 72°C for 1 minute 30 seconds and 72°C for 5 minutes.

A 1.1kb PCR fragment was isolated from 1% agarose gel and cloned into the pCRII-TOPO vector (Invitrogen) and completely sequenced using the ABI Big Dye Termiantor Kit (P.E. Biosystem). *See*, SEQ.ID.NO.:35 for nucleic acid sequence and SEQ.ID.NO.:36 for deduced amino acid sequence. The sequence of RUP27 cDNA clone isolated from human brain was determined to match with five unordered segments of AC027643, indicating that the RUP27 cDNA is composed of 5 exons.

Example 2 PREPARATION OF NON-ENDOGENOUS, CONSTITUTIVELY ACTIVATED GPCRS

Those skilled in the art are credited with the ability to select techniques for mutation of a nucleic acid sequence. Presented below are approaches utilized to create non-endogenous versions of several of the human GPCRs disclosed above. The mutations disclosed below are based upon an algorithmic approach whereby the 16th amino acid (located in the IC3 region of the GPCR) from a conserved proline (or an endogenous, conservative substitution therefore) residue (located in the TM6 region of the GPCR, near the TM6/IC3 interface) is mutated, preferably to an alanine, histidine, arginine or lysine amino acid residue, most preferably to a lysine amino acid residue.

1. Transformer Site-Directed ™ Mutagenesis

Preparation of non-endogenous human GPCRs may be accomplished on human GPCRs using Transformer Site-DirectedTM Mutagenesis Kit (Clontech) according to the manufacturer instructions. Two mutagenesis primers are utilized, most preferably a lysine mutagenesis oligonucleotide that creates the lysine mutation, and a selection marker oligonucleotide. For convenience, the codon mutation to be incorporated into the human GPCR is also noted, in standard form (Table D):

20

5

10

TABLE D

Codon Mutation		
V274K		
T249K		
R232K		
M294K		
F220K		
A238K		

K
K
A
H
R i
K
K
К
ζ
K
Š.

2. QuikChangeTM Site-DirectedTM Mutagenesis

Preparation of non-endogenous human GPCRs can also be accomplished by

5 using QuikChangeTM Site-DirectedTM Mutagenesis Kit (Stratagene, according to
manufacturer's instructions). Endogenous GPCR is preferably used as a template and
two mutagenesis primers utilized, as well as, most preferably, a lysine mutagenesis
oligonucleotide and a selection marker oligonucleotide (included in kit). For
convenience, the codon mutation incorporated into the novel human GPCR and the

10 respective oligonucleotides are noted, in standard form (Table E):

TABLE E

Receptor Identifier	Codon Mutation	5'-3' orientation (sense), (SEQ.ID.NO.) mutation underlined	5'-3' orientation (antisense) (SEQ.ID.NO.)	Cycle Conditions Min ('), Sec (") Cycles 2-4 repeated 16 times
hRUP13	A268K	GGGGAGGGAAAGCAA AGGTGGTCCTCCTGG (81)	CCAGGAGAACCACCT TTGCTTTCCCTCCCC (82)	98° for 2' 98° for 30" 56°C for 30" 72° for 11' 40" 72° for 5'
hRUP14	L246K	CAGGAAGGCAAAGAC CACCATCATCATC (85)	GATGATGATGGTGGT CTTTGCCTTCCTG (86)	98° for 2' 98° for 30" 55°C for 30" 72° for 11' 40" 72° for 5'

hRUP15	A398K	CCAGTGCAAAGCTAAG	GAAGATCACTTICITA	98° for 2'
		AAAGTGATCTTC (89)	GCTTTGCACTGG (90)	98° for 30"
				55°C for 30"
				72° for 11` 40''
				72° for 5'
hRUP23	W275K	GCCGCCACCGCGCCAA	GCCAATCTTCCTCTTG	98° for 2'
		GAGGAAGATTGGC (93)	GCGCGGTGGCGC	98° for 30"
			(94)	56°C for 30"
				72° for 11` 40``
				72° for 5'

The non-endogenous human GPCRs were then sequenced and the derived and verified nucleic acid and amino acid sequences are listed in the accompanying "Sequence Listing" appendix to this patent document, as summarized in Table F below:

TABLE F

Non Endogenous Human GPCR	Nucleic Acid Sequence Listing	Amino Acid Sequence Listing
hRUP13	SEQ.ID.NO. 83	SEQ.ID.NO.:84
hRUP14	SEQ.ID.NO.:87	SEQ.ID.NO.:88
hRUP15	SEQ.ID.NO. 91	SEQ.ID.NO.:92
hRUP23	SEQ.ID.NO.:95	SEQ.ID.NO.:96

Example 3 RECEPTOR EXPRESSION

5

15

Although a variety of cells are available to the art for the expression of proteins, it is most preferred that mammalian cells be utilized. The primary reason for this is predicated upon practicalities, *i.e.*, utilization of, *e.g.*, yeast cells for the expression of a GPCR, while possible, introduces into the protocol a non-mammalian cell which may not (indeed, in the case of yeast, does not) include the receptor-coupling, genetic-mechanism and secretary pathways that have evolved for mammalian systems -- thus, results obtained in non-mammalian cells, while of

potential use, are not as preferred as that obtained from mammalian cells. Of the mammalian cells, COS-7, 293 and 293T cells are particularly preferred, although the specific mammalian cell utilized can be predicated upon the particular needs of the artisan.

a. Transient Transfection

5

10

15

20

25

On day one, $6x10^6/10$ cm dish of 293 cells well were plated out. On day two, two reaction tubes were prepared (the proportions to follow for each tube are per plate): tube A was prepared by mixing 4µg DNA (*e.g.*, pCMV vector; pCMV vector with receptor cDNA, etc.) in 0.5 ml serum free DMEM (Gibco BRL); tube B was prepared by mixing 24µl lipofectamine (Gibco BRL) in 0.5ml serum free DMEM. Tubes A and B were admixed by inversions (several times), followed by incubation at room temperature for 30-45min. The admixture is referred to as the "transfection mixture". Plated 293 cells were washed with 1XPBS, followed by addition of 5 ml serum free DMEM. 1 ml of the transfection mixture were added to the cells, followed by incubation for 4hrs at 37°C/5% CO₂. The transfection mixture was removed by aspiration, followed by the addition of 10ml of DMEM/10% Fetal Bovine Serum. Cells were incubated at 37°C/5% CO₂. After 48hr incubation, cells were harvested and utilized for analysis.

b. Stable Cell Lines: Gs Fusion Protein

Approximately 12x10⁶ 293 cells are plated on a 15cm tissue culture plate. Grown in DME High Glucose Medium containing ten percent fetal bovine serum and one percent sodium pyruvate, L-glutamine, and anti-biotics. Twenty-four hours following plating of 293 cells to ~80% confluency, the cells are transfected using 12μg of DNA. The 12μg of DNA is combined with 60ul of lipofectamine and 2mL of DME High Glucose Medium without serum. The medium is aspirated from the plates and the cells are washed once with medium without serum. The DNA, lipofectamine, and

medium mixture is added to the plate along with 10mL of medium without serum. Following incubation at 37 degrees Celsius for four to five hours, the medium is aspirated and 25ml of medium containing serum is added. Twenty-four hours following transfection, the medium is aspirated again, and fresh medium with serum is added. Forty-eight hours following transfection, the medium is aspirated and medium with serum is added containing geneticin (G418 drug) at a final concentration of 500µg/mL. The transfected cells now undergo selection for positively transfected cells containing the G418 resistant gene. The medium is replaced every four to five days as selection occurs. During selection, cells are grown to create stable pools, or split for stable clonal selection.

Example 4 Assays For determination of Constitutive Activity of Non-Endogenous GPCRs

5

10

15

20

25

A variety of approaches are available for assessment of constitutive activity of the non-endogenous human GPCRs. The following are illustrative; those of ordinary skill in the art are credited with the ability to determine those techniques that are preferentially beneficial for the needs of the artisan.

1. Membrane Binding Assays: [35S]GTPγS Assay

When a G protein-coupled receptor is in its active state, either as a result of ligand binding or constitutive activation, the receptor couples to a G protein and stimulates the release of GDP and subsequent binding of GTP to the G protein. The alpha subunit of the G protein-receptor complex acts as a GTPase and slowly hydrolyzes the GTP to GDP, at which point the receptor normally is deactivated. Constitutively activated receptors continue to exchange GDP for GTP. The non-hydrolyzable GTP analog, [35S]GTPγS, can be utilized to demonstrate enhanced binding of [35S]GTPγS to membranes expressing constitutively activated receptors. The advantage of using

[35S]GTPγS binding to measure constitutive activation is that: (a) it is generically applicable to all G protein-coupled receptors; (b) it is proximal at the membrane surface making it less likely to pick-up molecules which affect the intracellular cascade.

The assay utilizes the ability of G protein coupled receptors to stimulate [35S]GTPγS binding to membranes expressing the relevant receptors. The assay can, therefore, be used in the direct identification method to screen candidate compounds to known, orphan and constitutively activated G protein-coupled receptors. The assay is generic and has application to drug discovery at all G protein-coupled receptors.

The [35S]GTPγS assay was incubated in 20 mM HEPES and between 1 and about 20mM MgCl₂ (this amount can be adjusted for optimization of results, although 20mM is preferred) pH 7.4, binding buffer with between about 0.3 and about 1.2 nM [35S]GTPγS (this amount can be adjusted for optimization of results, although 1.2 is preferred) and 12.5 to 75 μg membrane protein (*e.g.*, 293 cells expressing the Gs Fusion Protein; this amount can be adjusted for optimization) and 10 μM GDP (this amount can be changed for optimization) for 1 hour. Wheatgerm agglutinin beads (25 μl; Amersham) were then added and the mixture incubated for another 30 minutes at room temperature. The tubes were then centrifuged at 1500 x g for 5 minutes at room temperature and then counted in a scintillation counter.

2. Adenylyl Cyclase

5

10

15

20

A Flash PlateTM Adenylyl Cyclase kit (New England Nuclear; Cat. No. SMP004A) designed for cell-based assays can be modified for use with crude plasma membranes. The Flash Plate wells can contain a scintillant coating which also contains a specific antibody recognizing cAMP. The cAMP generated in the wells can be quantitated by a direct competition for binding of radioactive cAMP tracer to the cAMP

antibody. The following serves as a brief protocol for the measurement of changes in cAMP levels in whole cells that express the receptors.

Transfected cells were harvested approximately twenty four hours after transient transfection. Media is carefully aspirated off and discarded. 10ml of PBS is gently added to each dish of cells followed by careful aspiration. 1ml of Sigma cell dissociation buffer and 3ml of PBS are added to each plate. Cells were pipeted off the plate and the cell suspension was collected into a 50ml conical centrifuge tube. Cells were then centrifuged at room temperature at 1,100 rpm for 5 min. The cell pellet was carefully re-suspended into an appropriate volume of PBS (about 3ml/plate). The cells were then counted using a hemocytometer and additional PBS was added to give the appropriate number of cells (with a final volume of about 50 µl/well).

5

10

15

20

cAMP standards and Detection Buffer (comprising 1 µCi of tracer [125I cAMP (50 µI] to 11 ml Detection Buffer) was prepared and maintained in accordance with the manufacturer's instructions. Assay Buffer was prepared fresh for screening and contained 50µl of Stimulation Buffer, 3ul of test compound (12uM final assay concentration) and 50µl cells, Assay Buffer was stored on ice until utilized. The assay was initiated by addition of 50µl of cAMP standards to appropriate wells followed by addition of 50ul of PBSA to wells H-11 and H12. 50µl of Stimulation Buffer was added to all wells. DMSO (or selected candidate compounds) was added to appropriate wells using a pin tool capable of dispensing 3µl of compound solution, with a final assay concentration of 12µM test compound and 100µl total assay volume. The cells were then added to the wells and incubated for 60 min at room temperature. 100µl of Detection Mix containing tracer cAMP was then added to the wells. Plates were then incubated additional 2 hours followed by counting in a Wallac MicroBeta scintillation

counter. Values of cAMP/well were then extrapolated from a standard cAMP curve which was contained within each assay plate.

3. Cell-Based cAMP for Gi Coupled Target GPCRs

5

10

15

20

25

TSHR is a Gs coupled GPCR that causes the accumulation of cAMP upon activation. TSHR will be constitutively activated by mutating amino acid residue 623 (i.e., changing an alanine residue to an isoleucine residue). A Gi coupled receptor is expected to inhibit adenylyl cyclase, and, therefore, decrease the level of cAMP production, which can make assessment of cAMP levels challenging. An effective technique for measuring the decrease in production of cAMP as an indication of constitutive activation of a Gi coupled receptor can be accomplished by co-transfecting, most preferably, non-endogenous, constitutively activated TSHR (TSHR-A6231) (or an endogenous, constitutively active Gs coupled receptor) as a "signal enhancer" with a Gi linked target GPCR to establish a baseline level of cAMP. Upon creating a nonendogenous version of the Gi coupled receptor, this non-endogenous version of the target GPCR is then co-transfected with the signal enhancer, and it is this material that can be used for screening. We will utilize such approach to effectively generate a signal when a cAMP assay is used; this approach is preferably used in the direct identification of candidate compounds against Gi coupled receptors. It is noted that for a Gi coupled GPCR, when this approach is used, an inverse agonist of the target GPCR will increase the cAMP signal and an agonist will decrease the cAMP signal.

On day one, 2X10⁴ 293 and 293 cells/well will be plated out. On day two, two reaction tubes will be prepared (the proportions to follow for each tube are per plate): tube A will be prepared by mixing 2µg DNA of each receptor transfected into the mammalian cells, for a total of 4µg DNA (*e.g.*, pCMV vector; pCMV vector with mutated THSR (TSHR-A623I); TSHR-A623I and GPCR, etc.) in 1.2ml serum free

DMEM (Irvine Scientific, Irvine, CA); tube B will be prepared by mixing 120μl lipofectamine (Gibco BRL) in 1.2ml serum free DMEM. Tubes A and B will then be admixed by inversions (several times), followed by incubation at room temperature for 30-45min. The admixture is referred to as the "transfection mixture". Plated 293 cells will be washed with 1XPBS, followed by addition of 10ml serum free DMEM. 2.4ml of the transfection mixture will then be added to the cells, followed by incubation for 4hrs at 37°C/5% CO₂. The transfection mixture will then be removed by aspiration, followed by the addition of 25ml of DMEM/10% Fetal Bovine Serum. Cells will then be incubated at 37°C/5% CO₂. After 24hr incubation, cells will then be harvested and utilized for analysis.

5

10

15

20

25

A Flash PlateTM Adenylyl Cyclase kit (New England Nuclear; Cat. No. SMP004A) is designed for cell-based assays, however, can be modified for use with crude plasma membranes depending on the need of the skilled artisan. The Flash Plate wells will contain a scintillant coating which also contains a specific antibody recognizing cAMP. The cAMP generated in the wells can be quantitated by a direct competition for binding of radioactive cAMP tracer to the cAMP antibody. The following serves as a brief protocol for the measurement of changes in cAMP levels in whole cells that express the receptors.

Transfected cells will be harvested approximately twenty four hours after transient transfection. Media will be carefully aspirated off and discarded. 10ml of PBS will be gently added to each dish of cells followed by careful aspiration. 1ml of Sigma cell dissociation buffer and 3ml of PBS will be added to each plate. Cells will be pipeted off the plate and the cell suspension will be collected into a 50ml conical centrifuge tube. Cells will then be centrifuged at room temperature at 1,100 rpm for 5 min. The cell pellet will be carefully re-suspended into an appropriate volume of PBS (about

3ml/plate). The cells will then be counted using a hemocytometer and additional PBS is added to give the appropriate number of cells (with a final volume of about 50µl/well).

cAMP standards and Detection Buffer (comprising 1 µCi of tracer [125] cAMP (50 µl] to 11 ml Detection Buffer) will be prepared and maintained in accordance with the manufacturer's instructions. Assay Buffer should be prepared fresh for screening and contained 50µl of Stimulation Buffer, 3ul of test compound (12uM final assay concentration) and 50µl cells, Assay Buffer can be stored on ice until utilized. The assay can be initiated by addition of 50µl of cAMP standards to appropriate wells followed by addition of 50µl of PBSA to wells H-11 and H12. 50ul of Stimulation Buffer will be added to all wells. Selected compounds (e.g., TSH) will be added to appropriate wells using a pin tool capable of dispensing 3µl of compound solution, with a final assay concentration of 12µM test compound and 100µl total assay volume. The cells will then be added to the wells and incubated for 60 min at room temperature. 100µl of Detection Mix containing tracer cAMP will then be added to the wells. Plates were then incubated additional 2 hours followed by counting in a Wallac MicroBeta scintillation counter. Values of cAMP/well will then be extrapolated from a standard cAMP curve which is contained within each assay plate.

4. Reporter-Based Assays

5

10

15

20

25

a. CRE-LUC Reporter Assay (Gs-associated receptors)

293 and 293T cells are plated-out on 96 well plates at a density of 2 x 10⁴ cells per well and were transfected using Lipofectamine Reagent (BRL) the following day according to manufacturer instructions. A DNA/lipid mixture is prepared for each 6-well transfection as follows: 260ng of plasmid DNA in 100μl of DMEM were gently mixed with 2μl of lipid in 100μl of DMEM (the 260ng of plasmid DNA consisted of

5

10

15

20

25

200ng of a 8xCRE-Luc reporter plasmid, 50ng of pCMV comprising endogenous receptor or non-endogenous receptor or pCMV alone, and 10ng of a GPRS expression plasmid (GPRS in pcDNA3 (Invitrogen)). The 8XCRE-Luc reporter plasmid was prepared as follows: vector SRIF-β-gal was obtained by cloning the rat somatostatin promoter (-71/+51) at BgIV-HindIII site in the pβgal-Basic Vector (Clontech). Eight (8) copies of cAMP response element were obtained by PCR from an adenovirus template AdpCF126CCRE8 (see, 7 Human Gene Therapy 1883 (1996)) and cloned into the SRIF-β-gal vector at the Kpn-BglV site, resulting in the 8xCRE-β-gal reporter vector. The 8xCRE-Luc reporter plasmid was generated by replacing the beta-galactosidase gene in the 8xCRE-β-gal reporter vector with the luciferase gene obtained from the pGL3-basic vector (Promega) at the HindIII-BamHI site. Following 30 min. incubation at room temperature, the DNA/lipid mixture was diluted with 400 µl of DMEM and 100µl of the diluted mixture was added to each well. 100 µl of DMEM with 10% FCS were added to each well after a 4hr incubation in a cell culture incubator. The following day the transfected cells were changed with 200 μl/well of DMEM with 10% FCS. Eight (8) hours later, the wells were changed to 100 µl /well of DMEM without phenol red, after one wash with PBS. Luciferase activity were measured the next day using the LucLite™ reporter gene assay kit (Packard) following manufacturer instructions and read on a 1450 MicroBetaTM scintillation and luminescence counter (Wallac).

b. AP1 reporter assay (Gq-associated receptors)

A method to detect Gq stimulation depends on the known property of Gq-dependent phospholipase C to cause the activation of genes containing AP1 elements in their promoter. A PathdetectTM AP-1 cis-Reporting System (Stratagene, Catalogue # 219073) can be utilized following the protocol set forth above with respect to the

CREB reporter assay, except that the components of the calcium phosphate precipitate were 410 ng pAP1-Luc, 80 ng pCMV-receptor expression plasmid, and 20 ng CMV-SEAP.

c. SRF-LUC Reporter Assay (Gq- associated receptors)

One method to detect Gq stimulation depends on the known property of Gqdependent phospholipase C to cause the activation of genes containing serum response factors in their promoter. A PathdetectTM SRF-Luc-Reporting System (Stratagene) can be utilized to assay for Gq coupled activity in, e.g., COS7 cells. Cells are transfected with the plasmid components of the system and the indicated expression plasmid encoding endogenous or non-endogenous GPCR using a Mammalian Transfection™ Kit (Stratagene, Catalogue #200285) according to the Briefly, 410 ng SRF-Luc, 80 ng pCMV-receptor manufacturer's instructions. expression plasmid and 20 ng CMV-SEAP (secreted alkaline phosphatase expression plasmid; alkaline phosphatase activity is measured in the media of transfected cells to control for variations in transfection efficiency between samples) are combined in a calcium phosphate precipitate as per the manufacturer's instructions. Half of the precipitate is equally distributed over 3 wells in a 96-well plate, kept on the cells in a serum free media for 24 hours. The last 5 hours the cells are incubated with 1µM Angiotensin, where indicated. Cells are then lysed and assayed for luciferase activity using a LucliteTM Kit (Packard, Cat. # 6016911) and "Trilux 1450 Microbeta" liquid scintillation and luminescence counter (Wallac) as per the manufacturer's instructions. The data can be analyzed using GraphPad PrismTM 2.0a (GraphPad Software Inc.).

5

10

15

5

10

15

20

25

d. Intracellular IP₃ Accumulation Assay (Gq-associated receptors)

On day 1, cells comprising the receptors (endogenous and/or non-endogenous) can be plated onto 24 well plates, usually $1x10^5$ cells/well (although his umber can be optimized. On day 2 cells can be transfected by firstly mixing 0.25µg DNA in 50 µl serum free DMEM/well and 2 µl lipofectamine in 50 µl serumfree DMEM/well. The solutions are gently mixed and incubated for 15-30 min at room temperature. Cells are washed with 0.5 ml PBS and 400 µl of serum free media is mixed with the transfection media and added to the cells. The cells are then incubated for 3-4 hrs at 37°C/5%CO₂ and then the transfection media is removed and replaced with 1ml/well of regular growth media. On day 3 the cells are labeled with ³H-myo-inositol. Briefly, the media is removed and the cells are washed with 0.5 ml PBS. Then 0.5 ml inositol-free/serum free media (GIBCO BRL) is added/well with 0.25 μCi of ³H-myo-inositol/ well and the cells are incubated for 16-18 hrs o/n at 37°C/5%CO₂. On Day 4 the cells are washed with 0.5 ml PBS and 0.45 ml of assay medium is added containing inositol-free/serum free media 10 μM pargyline 10 mM lithium chloride or 0.4 ml of assay medium and 50μl of 10x ketanserin (ket) to final concentration of 10μM. The cells are then incubated for 30 min at 37°C. The cells are then washed with 0.5 ml PBSand 200µl of fresh/icecold stop solution (1M KOH; 18 mM Na-borate; 3.8 mM EDTA) is added/well. The solution is kept on ice for 5-10 min or until cells were lysed and then neutralized by 200 μl of fresh/ice cold neutralization sol. (7.5 % HCL). The lysate is then transferred into 1.5 ml eppendorf tubes and 1 ml of chloroform/methanol (1:2) is added/tube. The solution is vortexed for 15 sec and the upper phase is applied to a Biorad AG1-X8TM anion exchange resin (100-200 mesh). Firstly, the resin is washed with water at 1:1.25 W/V and 0.9 ml of upper phase is loaded onto the column. The column is washed with 10 mls of 5 mM myo-inositol and 10 ml of 5 mM Na-borate/60mM Na-formate. The inositol

tris phosphates are eluted into scintillation vials containing 10 ml of scintillation cocktail with 2 ml of 0.1 M formic acid/1 M ammonium formate. The columns are regenerated by washing with 10 ml of 0.1 M formic acid/3M ammonium formate and rinsed twice with dd $\rm H_2O$ and stored at $\rm 4^{o}C$ in water.

Exemplary results are presented below in Table G:

5

TABLE G

Receptor	Mutation	Assay Utilized Figure No.)	Signal Generated: CMV	Signal Generated: Endogenous Version (Relative Light Units)	Signal Generated: Non- Endogenous Version (Relative Light Units)	Difference (⇐⟨) Between CMV v. Wild-type Wild-type v. Mutant
hRUP12	N/A	IP ₃ (Figure 1)	317.03 cpm/mg protein	3463.29 cpm/mg protein		1. 11 Fold ←
hRUP13	N/A	cAMP (Figure 2)	8.06 pmol/cAMP/mg protein	19.10 pmol/cAMP/mg protein		1. 2.4 Fold ←
	A268K	8XCRE- LUC (Figure 3)	3665.43 LCPS	83280.17 LPCS	61713.6 LCPS	1. 23 Fold ← 2. 26 % ⟨
hRUP14	L246K	8XCRE- LUC (Figure 5)	86.07 LCPS	1962.87 LCPS	789.73 LCPS	1. 23 Fold ← 2. 60% ⟨
hRUP15	A398K	8XCRE- LUC (Figure 6)	86.07 LCPS	18286.77 LCPS	17034.83 LCPS	1. 212 Fold ← ← 2. 1% ⟨
	A398K	cAMP (Figure 7)	15.00 pmol/cAMP/mg protein	164.4 pmol/cAMP/mg protein	117.5 pmol/cAMP/ mg protein	1. 11 Fold ← 2. 29% ⟨
hRUP17	N/A	IP ₃ (Figure 9)	317.03 cpm/mg protein	741.07 cpm/mg protein		1. 2.3 Fold =
hRUP21	N/A	IP ₃ (Figure 10)	730.5 cpm/mg protein	1421.9 cpm/mg protein		1. 2 Fold ←
hRUP23	W275K A = not appli	8XCRE- LUC (Figure 11)	311.73 pmol/cAMP/mg protein	13756.00 pmol/cAMP/mg protein	9756.87 pmol/cAMP/ mg protein	1. 44 Fold ← 2. 30% ⟨

N/A = not applied

Exemplary results of GTPγS assay for detecting constitutive activation, as disclosed in Example 4(1) above, was accomplished utilizing Gs:Fusion Protein Constructs on human RUP13 and RUP15. Table H below lists the signals generated from this assay and the difference in signals as indicated:

5

10

15

TABLE H

Receptor: Gs Fusion Protein	Assay Utilized	Signal Generated: CMV (cpm bound GTP)	Signal Generated: Fusion Protein (cpm bound GTP)	Signal Generated: CMV+ 10µMGDP (cpm bound GTP)	Signal Generated: Fusion Protein + 10µM GDP (cpm bound GTP)	Difference Between: 1. CMV v. Fusion Protein 2. CMV+GDP vs. Fusion+GDP 3. Fusion vs. Fusion+GDP (cpm bound GTP)
hRUP13-Gs	GTPγS (Figure 4)	32494.0	49351.30	11148.30	28834.67	 1. 1.5 Fold ⇐ 2. 2.6 Fold ⇐ 3. 42% ⟨
hRUP15-Gs	GTPγS (Figure 8)	30131.67	32493.67	7697.00	14157.33	 1. 1.1 Fold ← 2. 1.8 Fold ← 3. 56% ⟨

Example 5 FUSION PROTEIN PREPARATION

a. GPCR:Gs Fusion Constuct

The design of the constitutively activated GPCR-G protein fusion construct was accomplished as follows: both the 5' and 3' ends of the rat G protein Gsα (long form; Itoh, H. et al., 83 *PNAS* 3776 (1986)) were engineered to include a HindIII (5'-AAGCTT-3') sequence thereon. Following confirmation of the correct sequence (including the flanking HindIII sequences), the entire sequence was shuttled into pcDNA3.1(-) (Invitrogen, cat. no. V795-20) by subcloning using the HindIII restriction site of that vector. The correct orientation for the Gsα sequence was determined after

subcloning into pcDNA3.1(-). The modified pcDNA3.1(-) containing the rat Gsα gene at HindIII sequence was then verified; this vector was now available as a "universal" Gsα protein vector. The pcDNA3.1(-) vector contains a variety of well-known restriction sites upstream of the HindIII site, thus beneficially providing the ability to insert, upstream of the Gs protein, the coding sequence of an endogenous, constitutively active GPCR. This same approach can be utilized to create other "universal" G protein vectors, and, of course, other commercially available or proprietary vectors known to the artisan can be utilized – the important criteria is that the sequence for the GPCR be upstream and in-frame with that of the G protein.

5

10

15

20

25

RUP13 couples via Gs. For the following exemplary GPCR Fusion Proteins, fusion to Gs α was accomplished.

A RUP13-Gs α Fusion Protein construct was made as follows: primers were designed as follows:

5'-gatc[TCTAGAAT]GGAGTCCTCACCCATCCCCAG -3' (SEQ.ID.NO.:97; sense)

5'-gatc[GATATC]CGTGACTCCAGCCGGGGTGAGGCGGC-3' (SEQ.ID.NO.:98; antisense).

Nucleotides in lower caps are included as spacers in the restriction sites (designated in brackets) between the G protein and RUP13. The sense and anti-sense primers included the restriction sites for XbaI and EcoRV, respectively, such that spacers (attributed to the restriction sites) exists between the G protein and RUP15.

PCR was then utilized to secure the respective receptor sequences for fusion within the Gsα universal vector disclosed above, using the following protocol for each: 100ng cDNA for RUP15 was added to separate tubes containing 2μl of each primer (sense and anti-sense), 3μL of 10mM dNTPs, 10μL of 10XTaqPlusTM Precision buffer, 1μL of TaqPlusTM Precision polymerase (Stratagene: #600211), and 80μL of water. Reaction temperatures and cycle times for RUP15 were as follows with cycle steps 2

through 4 were repeated 35 times: 94°C for 1 min; 94°C for 30 seconds; 62°C for 20 sec; 72°C 1 min 40sec; and 72° C 5 min. PCR product for was run on a 1% agarose gel and then purified (data not shown). The purified product was digested with Xbal and EcoRV and the desired inserts purified and ligated into the Gs universal vector at the respective restriction site. The positive clones was isolated following transformation and determined by restriction enzyme digest; expression using 293 cells was accomplished following the protocol set forth *infra*. Each positive clone for RUP15-Gs Fusion Protein was sequenced to verify correctness. (See, SEQ.ID.NO.:99 for nucleic acid sequence and SEQ.ID.NO.:100 for amino acid sequence).

5

10

15

20

25

RUP15 couples via Gs. For the following exemplary GPCR Fusion Proteins, fusion to Gs α was accomplished.

A RUP15-Gsα Fusion Protein construct was made as follows: primers were designed as follows:

5'-TCTAGAATGACGTCCACCTGCACCAACAGC-3' (SEQ.ID.NO.:101; sense)

5'-gatatcGCAGGAAAAGTAGCAGAATCGTAGGAAG-3' (SEQ.ID.NO.:102; antisense).

Nucleotides in lower caps are included as spacers in the restriction sites between the G protein and RUP15. The sense and anti-sense primers included the restriction sites for EcoRV and Xba1, respectively, such that spacers (attributed to the restriction sites) exists between the G protein and RUP15.

PCR was then utilized to secure the respective receptor sequences for fusion within the Gsα universal vector disclosed above, using the following protocol for each: 100ng cDNA for RUP15 was added to separate tubes containing 2µl of each primer (sense and anti-sense), 3µL of 10mM dNTPs, 10µL of 10XTaqPlusTM Precision buffer, 1µL of TaqPlusTM Precision polymerase (Stratagene: #600211), and 80µL of water. Reaction temperatures and cycle times for RUP15 were as follows with cycle steps 2

through 4 were repeated 35 times: 94°C for 1 min; 94°C for 30 seconds; 62°C for 20 sec; 72°C 1 min 40sec; and 72° C 5 min . PCR product for was run on a 1% agarose gel and then purified (data not shown). The purified product was digested). The purified product was digested with EcoRV and Xba1 and the desired inserts purified and ligated into the Gs universal vector at the respective restriction site. The positive clones was isolated following transformation and determined by restriction enzyme digest; expression using 293 cells was accomplished following the protocol set forth *infra*. Each positive clone for RUP15-Gs Fusion Protein was sequenced to verify correctness. (See, SEQ.ID.NO.:103 for nucleic acid sequence and SEQ.ID.NO.:104 for amino acid sequence).

b. Gq(6 amino acid deletion)/Gi Fusion Construct

5

10

15

20

25

The design of a Gq (del)/Gi fusion construct can be accomplished as follows: the N-terminal six (6) amino acids (amino acids 2 through 7, having the sequence of TLESIM (SEQ.ID.NO.: 129) Gαq-subunit will be deleted and the C-terminal five (5) amino acids, having the sequence EYNLV (SEQ.ID.NO.:130) will be replace with the corresponding amino acids of the Gαi Protein, having the sequence DCGLF (SEQ.ID.NO.:131). This fusion construct will be obtained by PCR using the following primers:

5'-gatcaagetteCATGGCGTGCTGCCTGAGCGAGGAG-3' (SEQ.ID.NO.:132) and

 $5'-gateggatecTTAGAACAGGCCGCAGTCCTTCAGGTTCAGCTGCAGGATGGTG-3'\\ (SEQ.ID.NO.:133)$

and Plasmid 63313 which contains the mouse $G\alpha q$ -wild type version with a hemagglutinin tag as template. Nucleotides in lower caps are included as spacers.

TaqPlus Precision DNA polymerase (Stratagene) will be utilized for the amplification by the following cycles, with steps 2 through 4 repeated 35 times: 95°C

for 2 min; 95°C for 20 sec; 56°C for 20 sec; 72°C for 2 min; and 72°C for 7 min. The PCR product will be cloned into a pCRII-TOPO vector (Invitrogen) and sequenced using the ABI Big Dye Terminator kit (P.E. Biosystem). Inserts from a TOPO clone containing the sequence of the fusion construct will be shuttled into the expression vector pcDNA3.1(+) at the HindIII/BamHI site by a 2 step cloning process.

Example 6 TISSUE DISTRIBUTION OF THE DISCLOSED HUMAN GPCRS: RT-PCR

5

10

15

RT-PCR was applied to confirm the expression and to determine the tissue distribution of several novel human GPCRs. Oligonucleotides utilized were GPCR-specific and the human multiple tissue cDNA panels (MTC, Clontech) as templates. Taq DNA polymerase (Stratagene) were utilized for the amplification in a 40µl reaction according to the manufacturer's instructions. 20µl of the reaction will be loaded on a 1.5% agarose gel to analyze the RT-PCR products. Table J below lists the receptors, the cycle conditions and the primers utizilized.

TABLE J

Receptor Identifier	Cycle Conditions Min (*), Sec (") Cycles 2-4 repeated 30 times	5' Primer (SEQ.ID.NO.)	3' Primer (SEQ.ID.NO.)	DNA Fragment	Tissue Expression
hRUP10	94° for 30" 94° for 10" 62°C for 20" 72° for 1' 72° for 7' *cycles 2-4 repeated 35 times	CATGTATGC CAGCGTCCT GCTCC (105)	GCTATGCCTG AAGCCAGTC TTGTG (106)	730bp	Kidney, leukocyte, liver, placenta and spleen
hRUP11	94° for 2' 94° for 15" 67°C for 15" 72° for 45" 72° for 5'	GCACCTGCT CCTGAGCAC CTTCTCC (107)	CACAGCGCT GCAGCCCTG CAGCTGGC (108)	630bp	Liver, kidney, pancreas, colon, small intestinal, spleen and prostate

hRUP12	94° for 2'	CCAGTGATG	CAGACACIT	490bp	Brain, colon,
	94° for 15"	ACTCTGTCC	GGCAGGGAC		heart, kidney,
	66°C for 15"	AGCCTG (109)	GAGGTG (110)		leukocyte,
	72° for 45''				pancreas,
	72° for 5`				prostate, small
	72 101 5				intestinal,
					spleen, testis,
					and thymus

hRUP13	94° for 1	CTTGTGGTCT	CATATCCCTC	700bp	Placenta and
1	94° for 15"	ACTGCAGCA	CGAGTGTCC		lung
1	68°C for 20"	TGTTCCG	AGCGGC (112)		
	72° for 1' 45"	(111)			
İ	72° for 5°	,			
hRUP14		ATGGATCCT	CAAGAACAG	700bp	Not yet
nKUP14	94° for 1'	TATCATGGC	GTCTCATCTA	7000p	determined
	94° for 15"	TICCIC (113)	AGAGCTCC		determined
	68°C for 20"	1100.10 (113)	(114)		
	72° for 1' 45"		(114)		
	72° for 5'		2000		
hRUP16	94° for 30"	CTCTGATGC	GTAGTCCACT	370bp	Fetal brain, fetal
	94° for 5"	CATCTGCTG	GAAAGTCCA		kidney and fetal
	69°C for 15"	GATTCCTG	GTGATCC		skeletal muscle
	72° for 30"	(115)	(116)		
	72° for 5°		<u>'</u>		
hRUP18	94° for 2'	TGGTGGCGA	GTTGCGCCTT	330bp	Pancreas
	94° for 15"	TGGCCAACA	AGCGACAGA		
	60°C for 20"	GCGCTC (117)	TGACC (118)		
	72° for 1`				
	72° for 5'				
hRUP21	94° for 1	TCAACCTGT	AAGGAGTAG		Kidney, lung
	94° for 15"	ATAGCAGCA	CAGAATGGT		and testis
İ	56°C for 20"	TCCTC (119)	TAGCC (120)		
	72° for 40"				
	*cycles 2-3				
	repeated 30 times				
hRUP22	94° for 30"	GACACCTGT	CTGATGGAA		Testis, thymus
, me 122	94° for 15"	CAGCGGTCG	GTAGAGGCT		and spleen
	69°C for 20"	TGTGTG (121)	GTCCATCTC		
	72° for 40"	, ,	(122)		
	*cycles 2-3				
	repeated 30 times				
hRUP23	94° for 2'	GCGCTGAGC	CACGGTGAC	520bp	Placenta
11110123	94° for 15"	GCAGACCAG	GAAGGCAC	-	
	60°C for 20"	TGGCTG (123)	GAGCTC (124)		
	72° for 1'		,		
	72° for 5'				
hRUP26	94° for 2'	AGCCATCCC	CCAGGTAGG	470bp	Pancreas
HKUP20	i i	TGCCAGGAA	TGTGCAGCA	→ /O∪þ	Tancicas
	94° for 15"	GCATGG (125)	CAATGGC		
	65°C for 20" 72° for 1'		(126)		
	1		()		
	72° for 5'				
hRUP27	0.19 60= 30"	CTGTTCAAC	ATCATGTCTA	890bp	Brain
IROP2/	94° for 30"	AGGGCTGGT	GACTCATGGT	6300p	Diani
	94° for 10"	TGGCAAC	GACTCATGGT GATCC (128)		
† 1	55°C for 20"	(127)	GATCC (120)		
1 1	72° for 1'	(127)			İ
İ	72° for 3'				
	*cycles 2-4				
	repeated 35 times	l			

Example 7

5

10

15

20

25

Protocol: Direct Identification of Inverse Agonists and Agonists

A. $[^{35}S]GTP\gamma S$ Assay

Although we have utilized endogenous, constitutively active GPCRs for the direct identification of candidate compounds as, *e.g.*, inverse agonists, for reasons that are not altogether understood, intra-assay variation can become exacerbated. Preferably, then, a GPCR Fusion Protein, as disclosed above, is also utilized with a non-endogenous, constitutively activated GPCR. We have determined that when such a protein is used, intra-assay variation appears to be substantially stabilized, whereby an effective signal-to-noise ratio is obtained. This has the beneficial result of allowing for a more robust identification of candidate compounds. Thus, it is preferred that for direct identification, a GPCR Fusion Protein be used and that when utilized, the following assay protocols be utilized.

1. Membrane Preparation

Membranes comprising the constitutively active orphan GPCR Fusion Protein of interest and for use in the direct identification of candidate compounds as inverse agonists, agonists or partial agonists are preferably prepared as follows:

a. Materials

"Membrane Scrape Buffer" is comprised of 20mM HEPES and 10mM EDTA, pH 7.4; "Membrane Wash Buffer" is comprised of 20 mM HEPES and 0.1 mM EDTA, pH 7.4; "Binding Buffer" is comprised of 20mM HEPES, 100 mM NaCl, and 10 mM MgCl₂, pH 7.4

b. Procedure

All materials will be kept on ice throughout the procedure. Firstly, the media will be aspirated from a confluent monolayer of cells, followed by rinse with 10ml cold

PBS, followed by aspiration. Thereafter, 5ml of Membrane Scrape Buffer will be added to scrape cells; this will be followed by transfer of cellular extract into 50ml centrifuge tubes (centrifuged at 20,000 rpm for 17 minutes at 4°C). Thereafter, the supernatant will be aspirated and the pellet will be resuspended in 30ml Membrane Wash Buffer followed by centrifuge at 20,000 rpm for 17 minutes at 4°C. The supernatant will then be aspirated and the pellet resuspended in Binding Buffer. This will then be homogenized using a Brinkman polytron[™] homogenizer (15-20 second bursts until the all material is in suspension). This is referred to herein as "Membrane Protein".

2. Bradford Protein Assay

5

10

15

20

25

Following the homogenization, protein concentration of the membranes will be determined using the Bradford Protein Assay (protein can be diluted to about 1.5mg/ml, aliquoted and frozen (-80°C) for later use; when frozen, protocol for use will be as follows: on the day of the assay, frozen Membrane Protein is thawed at room temperature, followed by vortex and then homogenized with a polytron at about 12 x 1,000 rpm for about 5-10 seconds; it was noted that for multiple preparations, the homogenizor should be thoroughly cleaned between homoginezation of different preparations).

a. Materials

Binding Buffer (as per above); Bradford Dye Reagent; Bradford Protein Standard will be utilized, following manufacturer instructions (Biorad, cat. no. 500-0006).

b. Procedure

Duplicate tubes will be prepared, one including the membrane, and one as a control "blank". Each contained 800ul Binding Buffer. Thereafter, 10µl of Bradford Protein Standard (1mg/ml) will be added to each tube, and 10µl of membrane Protein

will then be added to just one tube (not the blank). Thereafter, 200ul of Bradford Dye Reagent will be added to each tube, followed by vortex of each. After five (5) minutes, the tubes will be re-vortexed and the material therein will be transferred to cuvettes. The cuvettes will then be read using a CECIL 3041 spectrophotometer, at wavelength 595.

3. Direct Identification Assay

a. Materials

5

10

15

20

25

GDP Buffer consisted of 37.5 ml Binding Buffer and 2mg GDP (Sigma, cat. no. G-7127), followed by a series of dilutions in Binding Buffer to obtain 0.2 μM GDP (final concentration of GDP in each well was 0.1 μM GDP); each well comprising a candidate compound, has a final volume of 200ul consisting of 100μl GDP Buffer (final concentration, 0.1μM GDP), 50ul Membrane Protein in Binding Buffer, and 50μl [35S]GTPγS (0.6 nM) in Binding Buffer (2.5 μl [35S]GTPγS per 10ml Binding Buffer).

b. Procedure

Candidate compounds will be preferably screened using a 96-well plate format (these can be frozen at -80°C). Membrane Protein (or membranes with expression vector excluding the GPCR Fusion Protein, as control), will be homogenized briefly until in suspension. Protein concentration will then be determined using the Bradford Protein Assay set forth above. Membrane Protein (and control) will then be diluted to 0.25mg/ml in Binding Buffer (final assay concentration, 12.5μg/well). Thereafter, 100 μl GDP Buffer was added to each well of a Wallac ScintistripTM (Wallac). A 5ul pintool will then be used to transfer 5 μl of a candidate compound into such well (*i.e.*, 5μl in total assay volume of 200 μl is a 1:40 ratio such that the final screening concentration of the candidate compound is 10μM). Again, to avoid contamination, after each transfer step the pin tool should be rinsed in three reservoirs comprising water (1X), ethanol (1X)

and water (2X) – excess liquid should be shaken from the tool after each rinse and dried with paper and kimwipes. Thereafter, 50 µl of Membrane Protein will be added to each well (a control well comprising membranes without the GPCR Fusion Protein was also utilized), and pre-incubated for 5-10 minutes at room temperature. Thereafter, 50µl of [35S]GTPγS (0.6 nM) in Binding Buffer will be added to each well, followed by incubation on a shaker for 60 minutes at room temperature (again, in this example, plates were covered with foil). The assay will then be stopped by spinning of the plates at 4000 RPM for 15 minutes at 22°C. The plates will then be aspirated with an 8 channel manifold and sealed with plate covers. The plates will then be read on a Wallacc 1450 using setting "Prot. #37" (as per manufacturer instructions).

B. Cyclic AMP Assay

5

10

15

20

25

Another assay approach to directly identified candidate compound was accomplished by utilizing a cyclase-based assay. In addition to direct identification, this assay approach can be utilized as an independent approach to provide confirmation of the results from the $[^{35}S]GTP\gamma S$ approach as set forth above.

A modified Flash PlateTM Adenylyl Cyclase kit (New England Nuclear; Cat. No. SMP004A) was preferably utilized for direct identification of candidate compounds as inverse agonists and agonists to constitutively activated orphan GPCRs in accordance with the following protocol.

Transfected cells were harvested approximately three days after transfection. Membranes were prepared by homogenization of suspended cells in buffer containing 20mM HEPES, pH 7.4 and 10mM MgCl₂. Homogenization was performed on ice using a Brinkman PolytronTM for approximately 10 seconds. The resulting homogenate is centrifuged at 49,000 X g for 15 minutes at 4°C. The resulting pellet was then resuspended in buffer containing 20mM HEPES, pH 7.4 and 0.1 mM EDTA,

homogenized for 10 seconds, followed by centrifugation at 49,000 X g for 15 minutes at 4°C. The resulting pellet was then stored at -80°C until utilized. On the day of direct identification screening, the membrane pellet as slowly thawed at room temperature, resuspended in buffer containing 20mM HEPES, pH 7.4 and 10mM MgCL2, to yield a final protein concentration of 0.60mg/ml (the resuspended membranes are placed on ice until use).

5

10

15

20

25

cAMP standards and Detection Buffer (comprising 2 μCi of tracer [¹²⁵I cAMP (100 μI] to 11 ml Detection Buffer) were prepared and maintained in accordance with the manufacturer's instructions. Assay Buffer was prepared fresh for screening and contained 20mM HEPES, pH 7.4, 10mM MgCl₂, 20mM phospocreatine (Sigma), 0.1 units/ml creatine phosphokinase (Sigma), 50 μM GTP (Sigma), and 0.2 mM ATP (Sigma); Assay Buffer was then stored on ice until utilized.

Candidate compounds identified as per above (if frozen, thawed at room temperature) were added, preferably, to 96-well plate wells (3μ l/well; 12μ M final assay concentration), together with 40 μ l Membrane Protein (30μ g/well) and 50μ l of Assay Buffer. This admixture was then incubated for 30 minutes at room temperature, with gentle shaking.

Following the incubation, 100µl of Detection Buffer was added to each well, followed by incubation for 2-24 hours. Plates were then counted in a Wallac MicroBetaTM plate reader using "Prot. #31" (as per manufacturer instructions).

A representative screening assay plate (96 well format) result is presented in Figure 12. Each bar represents the results for a different compound in each well, plus RUP13-Gsα Fusion Protein construct, as prepared in Example 5(a) above. The representative results presented in Figure 12 also provide standard deviations based upon the mean results of each plate ("m") and the mean plus two arbitrary preference for

selection of inverse agonists as "leads" from the primary screen involves selection of candidate compounds that that reduce the per cent response by at least the mean plate response, minus two standard deviations. Conversely, an arbitrary preference for selection of an agonists as "leads" from the primary screen involves selection of candidate compounds that increase the per cent response by at least the mean plate response, plus the two standard deviations. Based upon these selection processes, the candidate compounds in the following wells were directly identified as putative inverse agonist (Compound A) and agonist (Compound B) to RUP13 in wells A2 and G9, respectively. See, Figure 12. It is noted for clarity: these compounds have been directly identified without any knowledge of the endogenous ligand for this GPCR. By focusing on assay techniques that are based upon receptor function, and not compound binding affinity, we are able to ascertain compounds that are able to reduce the functional activity of this receptor (Compound A) as well as increase the functional activity of the receptor (Compound B). Based upon the location of these receptor in lung tissue (see, for example, hRUP13 and hRUP21 in Example 6), pharmaceutical agents can be developed for potential therapeutic treatment of lung cancer.

5

10

15

20

25

References cited throughout this patent document, including co-pending and related patent applications, unless otherwise indicated, are fully incorporated herein by reference. Modifications and extension of the disclosed inventions that are within the purview of the skilled artisan are encompassed within the above disclosure and the claims that follow.

Although a variety of expression vectors are available to those in the art, for purposes of utilization for both the endogenous and non-endogenous human GPCRs, it is most preferred that the vector utilized be pCMV. This vector was deposited with the American Type Culture Collection (ATCC) on October 13, 1998 (1080) University

Blvd., Manassas, VA 20110-2209 USA) under the provisions of the Budapest Treaty for the International Recognition of the Deposit of Microorganisms for the Purpose of Patent Procedure. The DNA was tested by the ATCC and determined to be viable. The ATCC has assigned the following deposit number to pCMV: ATCC #203351.

5 //

//

//

//

//

10 //

//

//

//

//

15 //

//

//

//

//

20 //

//

//

//

//

25 //

CLAIMS

What is claimed is:

5

1. A G protein-coupled receptor encoded by an amino acid sequence of SEQ.ID.NO.:2.

- 2. A non-endogenous, constitutively activated version of the G protein-coupled receptor of claim 1.
- 3. A plasmid comprising a vector and the cDNA of SEQ.ID.NO.:1.
- 4. A host cell comprising the plasmid of claim 3.
- 5. A G protein-coupled receptor encoded by an amino acid sequence of SEQ.ID.NO.:4.
 - 6. A non-endogenous, constitutively activated version of the G protein-coupled receptor of claim 5.
 - 7. A plasmid comprising a vector and the cDNA of SEQ.ID.NO.:3.
- 8. A host cell comprising the plasmid of claim 7.
 - A G protein-coupled receptor encoded by an amino acid sequence of SEQ.ID.NO.:6.
 - 10. A non-endogenous, constitutively activated version of the G protein-coupled receptor of claim 9.
- 20 11. A plasmid comprising a vector and the cDNA of SEQ.ID.NO.:5.
 - 12. A host cell comprising the plasmid of claim 11.
 - 13. A G protein-coupled receptor encoded by an amino acid sequence of SEQ.ID.NO.:8.
- 14. A non-endogenous, constitutively activated version of the G protein-coupled
 receptor of claim 13.

15. A plasmid comprising a vector and the cDNA of SEQ.ID.NO.:7.

- 16. A host cell comprising the plasmid of claim 15.
- 17. A G protein-coupled receptor encoded by an amino acid sequence of SEQ.ID.NO.:10.
- 5 18. A non-endogenous, constitutively activated version of the G protein-coupled receptor of claim 17.
 - 19. A plasmid comprising a vector and the cDNA of SEQ.ID.NO.:9.
 - 20. A host cell comprising the plasmid of claim 19.

- 21. A G protein-coupled receptor encoded by an amino acid sequence of SEQ.ID.NO.:12.
 - 22. A non-endogenous, constitutively activated version of the G protein-coupled receptor of claim 21 comprising an amino acid sequence of SEQ.ID.NO.84.
 - 23. A plasmid comprising a vector and the cDNA of SEQ.ID.NO.:11.
 - 24. A host cell comprising the plasmid of claim 23.
- 25. A G protein-coupled receptor encoded by an amino acid sequence of SEQ.ID.NO.:14.
 - 26. A non-endogenous, constitutively activated version of the G protein-coupled receptor of claim 25 comprising an amino acid sequence of SEQ.ID.NO.88.
 - 27. A plasmid comprising a vector and the cDNA of SEO.ID.NO.:13.
- 28. A host cell comprising the plasmid of claim 27.
 - 29. A G protein-coupled receptor encoded by an amino acid sequence of SEQ.ID.NO.:16.
 - 30. A non-endogenous, constitutively activated version of the G protein-coupled receptor of claim 29 comprising an amino acid sequence of SEQ.ID.NO.:92.
- 25 31. A plasmid comprising a vector and the cDNA of SEQ.ID.NO.:15.

- 32. A host cell comprising the plasmid of claim 31.
- 33. A G protein-coupled receptor encoded by an amino acid sequence of SEQ.ID.NO.:18.
- 34. A non-endogenous, constitutively activated version of the G protein-coupled receptor of claim 33.
- 35. A plasmid comprising a vector and the cDNA of SEQ.ID.NO.:17.
- 36. A host cell comprising the plasmid of claim 35.

5

- 37. A G protein-coupled receptor encoded by an amino acid sequence of SEQ.ID.NO.:20.
- 38. A non-endogenous, constitutively activated version of the G protein-coupled receptor of claim 37.
 - 39. A plasmid comprising a vector and the cDNA of SE.ID.NO.:19.
 - 40. A host cell comprising the plasmid of claim 39.
 - 41. A G protein-coupled receptor encoded by an amino acid sequence of SEQ.ID.NO.:22.
 - 42. A non-endogenous, constitutively activated version of the G protein-coupled receptor of claim 41.
 - 43. A plasmid comprising a vector and the cDNA of SEQ.ID.NO.:21.
 - 44. A host cell comprising the plasmid of claim 43.
- 20 45. A G protein-coupled receptor encoded by an amino acid sequence of SEQ.ID.NO.:24.
 - 46. A non-endogenous, constitutively activated version of the G protein-coupled receptor of claim 45.
 - 47. A plasmid comprising a vector and the cDNA of SEQ.ID.NO.:23.
- 48. A host cell comprising the plasmid of claim 47.

49. A G protein-coupled receptor encoded by an amino acid sequence of SEQ.ID.NO.:26.

- 50. A non-endogenous, constitutively activated version of the G protein-coupled receptor of claim 49.
- 5 51. A plasmid comprising a vector and the cDNA of SEQ.ID.NO.:25.
 - 52. A host cell comprising the plasmid of claim 51.
 - 53. A G protein-coupled receptor encoded by an amino acid sequence of SEQ.ID.NO.:28.
 - 54. A non-endogenous, constitutively activated version of the G protein-coupled receptor of claim 53.
 - 55. A plasmid comprising a vector and the cDNA of SEQ.ID.NO.:27.
 - 56. A host cell comprising the plasmid of claim 55.

10

- 57. A G protein-coupled receptor encoded by an amino acid sequence of SEQ.ID.NO.:30.
- 15 58. A non-endogenous, constitutively activated version of the G protein-coupled receptor of claim 57.
 - 59. A plasmid comprising a vector and the cDNA of SEQ.ID.NO.:29.
 - 60. A host cell comprising the plasmid of claim 59.
 - 61. A G protein-coupled receptor encoded by an amino acid sequence of SEQ.ID.NO.:32.
 - 62. A non-endogenous, constitutively activated version of the G protein-coupled receptor of claim 61 comprising an amino acid sequence of SEQ.ID.NO.:96.
 - 63. A plasmid comprising a vector and the cDNA of SEQ.ID.NO.:95.
 - 64. A host cell comprising the plasmid of claim 63.

WO 01 36471 PCT US00 31509

65. A G protein-coupled receptor encoded by an amino acid sequence of SEQ.ID.NO.:34.

- 66. A non-endogenous, constitutively activated version of the G protein-coupled receptor of claim 65.
- 5 67. A plasmid comprising a vector and the cDNA of SEQ.ID.NO.:33.
 - 68. A host cell comprising the plasmid of claim 67.
 - 69. A G protein-coupled receptor encoded by an amino acid sequence of SEQ.ID.NO.:36.
 - 70. A non-endogenous, constitutively activated version of the G protein-coupled receptor of claim 69.
 - 71. A plasmid comprising a vector and the cDNA of SEQ.ID.NO.:35.
 - 72. A host cell comprising the plasmid of claim 71.
 - 73. A G protein-coupled receptor encoded by an amino acid sequence of SEQ.ID.NO.:38.
- 74. A non-endogenous, constitutively activated version of the G protein-coupled receptor of claim 73.
 - 75. A plasmid comprising a vector and the cDNA of SEQ.ID.NO.:37.
 - 76. A host cell comprising the plasmid of claim 75.
 - 77. A G protein-coupled receptor encoded by an amino acid sequence of SEQ.ID.NO.:40.
 - 78. A non-endogenous, constitutively activated version of the G protein-coupled receptor of claim 77.
 - 79. A plasmid comprising a vector and the cDNA of SEQ.ID.NO.:39.
 - 80. A host cell comprising the plasmid of claim 79.

20

10

1/12

Figure 3

3/12

4/12

Figure 5

Figure 6

Figure 8

9/12

Figure

Figure 11

WO 01 36471 PCT US00.31509

Figure 12

SEQUENCE LISTING

```
<110> Irena Pharmaceuticals, Inc.
       Chen, Rupong
Dang, Huong T.
Lowitz, Kevin P.
+1200 Non-Endogenous, Constitutively Activated Human G Protein-Coupled Receptors
+130: A.P.EN0087
+1500 60/166,088
+151> 1999-11-17
<150> 60/166,369
·151> 1999-11-17
+150. 60/166,099
+1513 1999-11-17
+150% 61/171,901
+151% 1999-12-23
·150> 60/171,901
<151> 1999-12-23
<150> 60/171,900
<151> 1999-12-23
×150× 60/181,749
-151> 2000-02-11
+150 > 60/189,258
+151> 2000-03-14
×150× 60/189,259
+151> 2000-03-14
+150> 60/195,899
151 - 2000-04-10
+150 > -60/196,078
+151> 2000-04-10
+150: 60/195,898
1515
       1000-04-10
31505 60/200,419
+151> 2000-04-28
                                                                                               123 1000
<150 > 60/203,630
<151 > 2000-05-12
<150> 60/210,741
<151> 2000-06-12
<150> 60/210,982
<151> 2000-06-12
<150> 60/226,760
<151> 2000-08-21
<150> 60/235,779 <151> 2000-09-26
```

WO 01 36471 PCT US00 31509

```
+150+ 60/235,415
161+ 2000-09-26
1509 60/042,332
.151> 2000-10-20
+150E 60/242,343
-.151> 2000-10-20
<150> -60/243.019
<1515 2000-10-24
<160> 133
<170> PatentIn version 3.0
<210> 1
DNAHomo sapiens
<400: 1
atqq:aqooc agaatqqaaa cacbaqttto acacccaact ttaatccacc ccaayaccat
                                                                        60
geotrotoco totootttaa ottragttat ggtgattatg acctooctat ggatgaggat
                                                                       120
gaggacatga ccaagacccg gacottette geagecaaga tegteattgg cattgeactg
                                                                       180
quandcatca tgctgqtctg cggcatcggt aactttgtct ttatcgctgc cctcaccegc
                                                                       240
tatasquaaqt tqcqcaacct caccaatctq ctsattqcca acctqqccat ctccqacttc
                                                                       300
                                                                       360
otggtggeca teatetgetg eccettegag atggaetaet aegtggtaeg geagetetee
taggaquatq gebacqtqot etgtgeeter gtbaactace tgcgcaccgt etcentetas
                                                                       420
quoticacca atgeottigot ggocattigos attigacagat atctogocat egiticacces
                                                                       480
ttqasaccac qqatqaatta tcasacqqcc tccttcctqa tcgccttggt ctggstggtg
                                                                       540
tocattotea tigocatoco atoggottas titigoaacag aaacggioot ottiatigio
                                                                       600
aagaqocaqq agaagatott otgiggocay atotggootg tggatcagoa gotolactac
                                                                       560
aagtectact testeiteat ettiggigte gagitegigg geoorgiggi sacialigaes
                                                                       720
ctqtqctatq ccaqqatcto ccqqqaqcto tqqttsaagg caqtocctqq gttssagacq
                                                                       780
                                                                       840
gagesgatte geaagegget gegetgeege aggaagaegg teetggtget catgligeatt
ofteninggest auguspetigting objequences that acquit teaccated togethactto
                                                                       900
thecicacty tottogtgaa qgaaaaqcad tabeteacty cottetacgt ggtogagtge
                                                                      960
atogicatga gcaacaqcat gatoaacacc gtqtqcttcg tgacggtcaa gaacaacacc
                                                                      1020
atgaagtact toaagaagat gatgotgotg cactggogto ootoocagog gggqagcaag
                                                                      1080
treagtgotg accttgacct dagaaccaas gdggtgocca dcacagaaga ggtggactgt
                                                                      1140
                                                                      1155
atcangctga agtga
```

<210> 2 <211> 384

DATE CONTRACTOR AND

<212> PRT

<213> Homo sapiens

<400> 2

Met Ala Ala Gln Asn Gly Asn Thr Ser Phe Thr Pro Asn Phe Asn Pro 1 5 10 15

Pro Gln Asp His Ala Ser Ser Leu Ser Phe Asn Phe Ser Tyr Gly Asp 20 25 30

Tyr Asp Leu Pro Met Asp Glu Asp Glu Asp Met Thr Lys Thr Arg Thr 35 40 45

Phe Phe Ala Ala Lys Ile Val ile Gly Ile Ala Leu Ala Gly Ile Met 50 60

Leu Val Cys Gly Ile Gly Asn Phe Val Phe Ile Ala Ala Leu Thr Arg 65 70 75 80

Tyr Lys Lys Leu Arg Asn Leu Thr Asn Leu Leu Ile Ala Asn Leu Ala 85 90 95

Ile Ser Asp Phe Leu Val Ala Ile Ile Cys Cys Pro Phe Glu Met Asp $100 \hspace{1.5cm} 105 \hspace{1.5cm} 110$

Tyr Tyr Val Val Arg Gln Leu Ser Trp Glu His Gly His Val Leu Cys 115 120 125

Ala Ser Val Asn Tyr Leu Arg Thr Val Ser Leu Tyr Val Ser Thr Asn 130 135 140

Ala Leu Leu Ala Ile Ala Ile Asp Arg Tyr Leu Ala Ile Val His Pro 145 150 155 160

Leu Lys Pro Arg Met Asn Tyr Gln Thr Ala Ser Phe Leu Ile Ala Leu

Val Trp Met Val Ser Ile Leu Ile Ala Ile Pro Ser Ala Tyr Phe Ala 180 185 190

Thr Glu Thr Val Leu Phe Ile Val Lys Ser Gln Glu Lys Ile Phe Cys 195 200 205

Gly Gln Ile Trp Pro Val Asp Gln Gln Leu Tyr Tyr Lys Ser Tyr Phe

Leu Phe Ile Phe Gly Val Glu Phe Val Gly Pro Val Val Thr Met Thr 225 230 235 240

Leu Cys Tyr Ala Arg Ile Ser Arg Glu Leu Trp Phe Lys Ala Val Pro $245 \hspace{1.5cm} 250 \hspace{1.5cm} 255$

Gly Phe Gln Thr Glu Gln Ile Arg Lys Arg Leu Arg Cys Arg Arg Lys 260 265 270

Thr Val Leu Val Leu Met Cys Ile Leu Thr Ala Tyr Val Leu Cys Trp 275 280 285

Ala Pro Phe Tyr Gly Phe Thr Ile Val Arg Asp Phe Phe Pro Thr Val 290 295 300

Phe Val Lys Glu Lys His Tyr Leu Thr Ala Phe Tyr Val Val Glu Cys 305 $$ 310 $$ 315

```
He Ala Mot Ser Ach Cer Met He Ash Thr Val Cys Phe Vul Thr Val
Lys Asn Asn Thr Met lys Ty: Phe Lys Lys Met Met Leu Leu His Trp
Arg Pro Ser Gl: Aig Cly Ser Lys Ser Ser Ala Asp Leu Asp Leu Aig
Thr Asn Gly Val Pro Thr Thr Glu Glu Val Asp Cys Ile Arg Lou Lys
    370
<210 ⋅
       3
<211 1260
<212 DNA
<213> Homo sapiens
.400. 3
                                                                       60
atgotggbag otgootttgm agaetotaac todagbagda tgaatgtgtm otttgotbac
etecactity coggagggta cetgecetet gatteecagg actggagaac dateateceg
                                                                      120
                                                                      180
quintetting tiggetigtinting contributing tiggetigting attiggeath
cteetteana atgettggaa aggaaageea teeatgatee acteeetgat tetgaatete
                                                                      240
                                                                      300
ageotygety atototopet cotyptytt totycaceta tocyayotac ggogtacted
aaaaqtqttt qqqatctagq ctqqtttqtc tqcaaqtcct ctqactqqtt tatccacaca
                                                                      360
tgcatggcag ccaagagcet gacaatogtt gtggtggcca aagtatgctt catgtatgca
                                                                      420
                                                                      480
aqtquoccaq ocaaqcangt qaqtatocab aactacacca totggtcagt jotggtggcc
atorqqaetq tqqctaqcet qttacccctq ccqqaatqqt totttaqcac catcaqqcat
                                                                      540
catgaaggtg tggaaatgtg octogtggat gtaccagotg tggotgaaga gtttatgtog
                                                                      600
atytttggta agototasos actsotggea tttggeotto cattatottt tgcsagottt
                                                                      66Ü
tatttotqqa gagottatga obaatgtaaa aaaogaggaa otaagabtoa aaatootaga
                                                                      720
aaccuqatac qotbaaaqqa aqtbacagtg atgotgotga gcattgocat batctotgot
stottqtqqq toocoqaatq qqtaqottqq otqtqqqtat qqcatotqaa qqctqcaqqq
                                                                      840
                                                                      900
seggeocsae cacaaggitt satageeetg totcaagtot tgatgtttto catosotica
                                                                      960
genaatoete teattiitet tytgatgteg gaagagttea gygaaggett jaaaaggtgta
                                                                     1023
tqqauatqqa tqataaccaa aaaacctoca actgtotoag agtotoagga aacaccagot
                                                                     1080
ageaucteag agggtottoo tgabaaggtt coatotobag aatoobbago atoostabba
gamamagada maccongete tecestectet ggemmagaga mametgagam ggemmadatt
                                                                     1140
                                                                     1200
separeette etgaegtaga quagtittigg eatgagaggg acadagtede tietgiacag
                                                                     1260
gacantgace etateceetg ggaacatgaa gateaagaga caggggaagg tqttaaatag
```

<.210 > 4

<211> 419

<212> PET

<213 - Homo sapiens

<400> 4

Met Leu Ala Ala Ala Phe Ala Asp Ser Asn Ser Ser Ser Met Asn Val Ser Phe Ala His Leu His Phe Ala Gly Gly Tyr Leu Pro Ser Asp Ser 20 25 30Gln Asp Trp Arg Thr Ile Ile Pro Ala Leu Leu Val Ala Val Cys Leu Val Gly Phe Val Gly Asn Leu Cys Val Ile Gly Ile Leu Leu His Asn Ala Trp Lys Gly Lys Pro Ser Met Ile His Ser Leu Ile Leu Asn Leu Ser Leu Ala Asp Leu Ser Leu Leu Phe Ser Ala Pro Ile Arg Ala Thr Ala Tyr Ser Lys Ser Val Trp Asp Leu Gly Trp Phe Val Cys Lys Ser Ser Asp Trp Phe Ile His Thr Cys Met Ala Ala Lys Ser Leu Thr Ile Val Val Ala Lys Val Cys Phe Met Tyr Ala Ser Asp Pro Ala Lys Gln Val Ser Ile His Asn Tyr Thr Ile Trp Ser Val Leu Val Ala Ile Trp Thr Val Ala Ser Leu Leu Pro Leu Pro Glu Trp Phe Phe Ser Thr Ile Arg His His Glu Gly Val Glu Met Cys Leu Val Asp Val Pro Ala Val Ala Glu Glu Phe Met Ser Met Phe Gly Lys Leu Tyr Pro Leu 200 Leu Ala Phe Gly Leu Pro Leu Phe Phe Ala Ser Phe Tyr Phe Trp Arg 215 Ala Tyr Asp Gln Cys Lys Lys Arg Gly Thr Lys Thr Gln Asn Leu Arg Asn Gln Ile Arg Ser Lys Gln Val Thr Val Met Leu Leu Ser Ile Ala Ile Ile Ser Ala Leu Leu Trp Leu Pro Glu Trp Val Ala Trp Leu Trp Val Trp His Leu Lys Ala Ala Gly Pro Ala Pro Pro Gln Gly Phe Ile Ala Leu Ser Gln Val Leu Met Phe Ser Ile Ser Ser Ala Asn Pro Leu Ile Phe Leu Val Met Ser Glu Glu Phe Arg Glu Gly Leu Lys Gly Val Trp Lys Trp Met Ile Thr Lys Lys Pro Pro Thr Val Ser Glu Ser Gln 325 330

•

```
Glu Thr Pro Ala Gly Ash Ser Glu Gly Leu Pro Asp Lys Val Pro Ser
            340
Pro Glu Ser Pro Ala Ser Ile Pro Glu Lys Glu Lys Pro Ser Ser Pro
Ser Ser Gly Lys Gly Lys Thr Glu Lys Ala Glu Ile Pro Ile Leu Pro
Asp Val Glu Gln Phe Trp His Glu Arg Asp Thr Val Pro Ser Val Gln
Asp Ash Asp Pro Ile Pro Trp Glu His Glu Asp Gln Glu Thr Gly Glu
                                     410
Gly Val Lys
4.220 · F
<2115 1014
      Fills.
- 1111 -
-213 - Home Sapiens
< 400> 5
atgagguard attotytoag otacgagtat ggggattaca gogacototo ggacogooot
                                                                         60
gtquartday ty atggogo etgeotggoo atogaccego tgogogtggo becgetocca
                                                                        120
ctquard. Or coatcitect ggtggggtg ccgggcaatg ccatggtggc ctggqtggct
                                                                        180
qqqmaqqtm; conqeeqgag ggtgggtgcc acctggttgc tecacctggc egtggeggat
                                                                        240
ttq:talqur qtftgtetat gaccatectg geagtgeeca ttgeeegtgg ajgeeactgg
                                                                        300
degtalgata cautgagetg tegggegetg coetecatea testgelgas catglatges
                                                                        360
agenteets, testageage totoagtgoo gacototgot teetggotot egggeotgoo
                                                                        420
tiggtagtista syluttrageg iggegtgeggg gtgeaggtgg leetgtgegge lageetiggaea
                                                                        480
staggestra: tanksacoat associações atotacoado agotasacoa agaaquaetto
                                                                        540
ccaudocqqo tguuqtqtgt qqtqqactac qqcqqctcct ccagcaccqa qaatqcqqtq
                                                                        600
actinication agrittatiti tiggottootig iggococotig tiggoogliggi cagotigodac
                                                                        550
Agtigeoutive ligtgotiggge agcoogacge tigeoggooge tigegoocage eartigtiggtig
                                                                        720
ggg:t::''th totgotgggs accotaceas otgotggggs tggtgctcar tgtggegges
                                                                        780
cognactive santestage cagageesta egagetaac centeategt agaestage
                                                                        840
otogetraca getyeeteaa toocatgoto ttootgtatt ttgggaggge teaacteege
                                                                        900
                                                                        960
eggteactiquicaqetgeetg teactggged etgagggagt cecaggqeea ggaegaaagt
qtqqacaqca aqaaatccac caqccatgac otqqtotoqq aqatqqaqqt qtaq.
                                                                       1014
<210> 6
<211> 337
<212> PRT
```

<213> Homo sapiens

<400> 6

Met Gly Asn Asp Ser Val Ser Tyr Glu Tyr Gly Asp Tyr Ser Asp Leu Ser Asp Arg Pro Val Asp Cys Leu Asp Gly Ala Cys Leu Ala Ile Asp Pro Leu Arg Val Ala Pro Leu Pro Leu Tyr Ala Ala Ile Phe Leu Val Gly Val Pro Gly Asn Ala Met Val Ala Trp Val Ala Gly Lys Val Ala Arg Arg Arg Val Gly Ala Thr Trp Leu Leu His Leu Ala Val Ala Asp Leu Leu Cys Cys Leu Ser Leu Pro Ile Leu Ala Val Pro Ile Ala Arg Gly Gly His Trp Pro Tyr Gly Ala Val Gly Cys Arg Ala Leu Pro Ser Ile Ile Leu Leu Thr Met Tyr Ala Ser Val Leu Leu Leu Ala Ala Leu Ser Ala Asp Leu Cys Phe Leu Ala Leu Gly Pro Ala Trp Trp Ser Thr 135 Val Gln Arg Ala Cys Gly Val Gln Val Ala Cys Gly Ala Ala Trp Thr Leu Ala Leu Leu Thr Val Pro Ser Ala Ile Tyr Arg Arg Leu His Gln Glu His Phe Pro Ala Arg Leu Gln Cys Val Val Asp Tyr Gly Gly Ser Ser Ser Thr Glu Asn Ala Val Thr Ala Ile Arg Phe Leu Phe Gly Phe Leu Gly Pro Leu Val Ala Val Ala Ser Cys His Ser Ala Leu Leu Cys Trp Ala Ala Arg Arg Cys Arg Pro Leu Gly Thr Ala Ile Val Val Gly Phe Phe Val Cys Trp Ala Pro Tyr His Leu Leu Gly Leu Val Leu 245 250 255 Thr Val Ala Ala Pro Asn Ser Ala Leu Leu Ala Arg Ala Leu Arg Ala 265 Glu Pro Leu Ile Val Gly Leu Ala Leu Ala His Ser Cys Leu Asn Pro Met Leu Phe Leu Tyr Phe Gly Arg Ala Gln Leu Arg Arg Ser Leu Pro Ala Ala Cys His Trp Ala Leu Arg Glu Ser Gln Gly Gln Asp Glu Ser Val Asp Ser Lys Lys Ser Thr Ser His Asp Leu Val Ser Glu Met Glu WO 01 36471 PCT US00 31509

Val

```
42100
1271
<211* DNA
<213* Hom: cuplens</pre>
<400° 7
                                                                                                                                                                   60
atottototo acustostos coascista stoccastica teccastito ceetsascae
tectgoaggg gtagaagact ucagaacett stoteaggee cutggoecau geageesatg
                                                                                                                                                                 120
gaactteata acctgagete tecatetece teteteteet estetyttet eccteestee
                                                                                                                                                                 180
tictorecot eaccorecte igorecoret goottiacea eligiggigg giochaiqqa
                                                                                                                                                                 240
gggoodigee accounacte thectogoty gtgrotyset teetggcace aatoolygee
                                                                                                                                                                  300
stquagtitq tustqqqoot ggtqggqaus agtttquooc tottsatott stqcatssas
                                                                                                                                                                 351
augusqueet gyacotebaa bacggtgttb etgyteagee tggtggebgb tgaettbete
                                                                                                                                                                 4: 3
etgateagea acctiquedet codeqtique tabtacetec tideatquiae etgqequitti
                                                                                                                                                                 480
ggggctgctq cotqcaaaqt caacctotte atgctgtcca ccaaccqcac qgccaqcqtt
gtottootea cagocatogo actoaacogo taccitgaagg tggtgcagco ccaccacgtg
                                                                                                                                                                 600
                                                                                                                                                                 660
organicating attempting group of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state o
stigatestea abgggsaect gotoctgage accttotocg geocatostg sateagetas
                                                                                                                                                                 720
aggytgygda byaagbooto ggdotogoto ogotggbaco aggcactyta botgotggag
                                                                                                                                                                 780
                                                                                                                                                                 840
ttottootgo pactagogot cateototit gotattgiga geattgggot caccateogg
aaccqtggtc tgqqcggqca ggcaggcccg cagagggcca tgcgtgtqct ggccatggtg
                                                                                                                                                                 900
qtqqqqqtet anachatetq obtettgeen ageateatet ttqqeatqqe bbocatqqtq
                                                                                                                                                                 960
gotttetgge tytelgeetg begatelety gaseletgea cacagetett beatggetel
                                                                                                                                                               1020
ctggssttsa estacctcaa sagtgtsety gascccgtgc totactgstt stotageccs
                                                                                                                                                               1080
aacttootec accadageed ageettaeta ageetcaege aaqqeegaea aaqqeeaaqta
                                                                                                                                                               1140
agogucqaga gotootacca uccotosagg caqtggcqct accgggaggo ototaggaag
                                                                                                                                                               1200
qeqqaqqeea taqqqaaqot qaaaqtqeaq qqeqaqqtet etetqqaaaa qqaaqqetes
                                                                                                                                                               1260
                                                                                                                                                               1272
toccaggget ga
```

<210> 8
<211> 423
<212> PRT
<213> Homo sapiens

·:400> 8

Met Leu Cys His Arg Gly Gly Gln Leu Ile Val Pro Ile Ile Pro Leu I= 5 = 10 = 15

Cys Pro Glu His Ser Cys Arg Gly Arg Arg Leu Gln Asn Leu Leu Ser Fage 8

20 25 30 Gly Fre Trp Pro Lys Gln Pro Met Glu Leu His Asn Leu Ser Ser Pro Ser Pro Ser Leu Ser Ser Ser Val Leu Pro Pro Ser Phe Ser Pro Ser Pro Ser Ser Ala Pro Ser Ala Phe Thr Thr Val Gly Gly Ser Ser Gly Gly Pro Cys His Pro Thr Ser Ser Ser Leu Val Ser Ala Phe Leu Ala Pro Ile Leu Ala Leu Glu Phe Val Leu Gly Leu Val Gly Asn Ser Leu 105 Ala Leu Phe Ile Phe Cys Ile His Thr Arg Pro Trp Thr Ser Asn Thr 120 Vai Fhe Leu Val Ser Leu Val Ala Ala Asp Phe Leu Leu Ile Ser Asn Leu Pre Leu Arg Val Asp Tyr Tyr Leu Leu His Glu Thr Trp Arg Phe Gly Ala Ala Cys Lys Val Asn Leu Phe Met Leu Ser Thr Asn Arg The Ala Jor Val Val Phe Leu Thr Ala Ile Ala Leu Asn Arg Tyr Leu Lys Val Val Gln Pro His His Val Leu Ser Arg Ala Ser Val Gly Ala Ala Ala Arg Val Ala Gly Gly Leu Trp Val Gly Ile Leu Leu Leu Asn Gly His Leu Leu Ser Thr Phe Ser Gly Pro Ser Cys Leu Ser Tyr Arg Val Gly Thr Lys Pro Ser Ala Ser Leu Arg Trp His Gln Ala Leu Tyr Leu Leu Glu Phe Phe Leu Pro Leu Ala Leu Ile Leu Phe Ala Ile 265 Val Ser Ile Gly Leu Thr Ile Arg Asn Arg Gly Leu Gly Gly Gln Ala Gly Pro Gln Arg Ala Met Arg Val Leu Ala Met Val Val Ala Val Tyr 295 Thr Ile Cys Phe Leu Pro Ser Ile Ile Phe Gly Met Ala Ser Met Val Ala Phe Trp Leu Ser Ala Cys Arg Ser Leu Asp Leu Cys Thr Gln Leu Phe His Gly Ser Leu Ala Phe Thr Tyr Leu Asn Ser Val Leu Asp Pro Val Leu Tyr Cys Phe Ser Ser Pro Asn Phe Leu His Gln Ser Arg Ala 360

WO 01 36471 PCTA 800 31509

E-H Lev Gly Leu Thr Arg Gly Arg Gln Gly Pro Val Ser Asp Glu S-: 370 380 Ser Tyr Gln Pro Ser Arg Gln Trp Ard Tyr Arg Glu Ala Ser Arg Lys Ala Glu Ala The Gly Lys Leu Lys Val Glr. Gly Glu Val Ser Leu Glu Lys Glu Gly Ser Ser Glm Gly 420 <210 > ب 366 <211 → <212 - DNA <213 → Homo sapiens <400 · 4 atqauecaga etttqaatag bagtqqqaec gtqqaqtcag coctaaacta ttobaqaqqq 60 ageacaging acacqueta cotqqtqctq agetcoctqq ecatqtteac etqeetqtee 120 damaiqqqaq qcaacaqcat yytgatotgg cigotgggot ttogaatgca caqqaaccco 180 trotgoator atacoccaa corggoggoa googacoroo tottoctott cagcarggot 240 todabgotica gootggaaac ocagoocotg gtoaatabca otgacaaggt ocabgagotg 300 atgangaqao tyatgtacti tgoctacaca giggqootga gootgotgac ggocatcago 360 accordence quetetetet colottocol atologitos aquitoscoq georaggoso 420 orgreagest gygtgtgtgg estgetgtgg asactstgte teetgatgaa egggttgace 430 tettaettet geageaagtt ettgaaatte aatgaagate ggtgetteag ggtggaeatg 540 utocaggong opetoatoat gggggtotta accoragtga tgactotgto cagentgace 600 statttqsat qqqtqaqqaq qayataacaq caytqqaqqa qqcaqaacaa acqqatqtta ந்ந்ற 720 studing to topoctoid cotdatatt coordinate against a tagttigtad totadiggtt gagdetgoog occgagaige aggtebigtg offcagetig 780 teadycotot cotogtocgi aageagoago gecaaceeeg teatetacti cotggigge 840 agringgagda gecacaqqot geccacagg tecctggdga etgtgeteca acaggigett 900 ngegaggage engagetgga aggtggggag angedeaceg tgggcaddaa tgagatgggg 960 966 actitida +210 · 10 +211 + 321 +212 + PRT -212 -·213 · Homo sapiens +400 - 10

Met Ash Gln Thr Leu Ash Ser Ser Gly Thr Val Glu Ser Ala Leu Ash

Tyr Ser Arg Gly Ser Thr Val His Thr Ala Tyr Leu Val Leu Ser Ser 25

```
Leu Ala Mot Phe Thr Cys Leu Cys Gly Met Ala Gly Asn Ser Met Val 35 40 45
Ile Trp Leu Leu Gly Phe Arg Met His Arg Asn Pro Phe Cys Ile Tyr
Ile Leu Asn Leu Ala Ala Ala Asp Leu Leu Phe Leu Phe Ser Met Ala
Ser Thr Leu Ser Leu Glu Thr Gln Pro Leu Val Asn Thr Thr Asp Lys
Val His Glu Leu Met Lys Arg Leu Met Tyr Phe Ala Tyr Thr Val Gly
Leu Ser Leu Leu Thr Ala Ile Ser Thr Gln Arg Cys Leu Ser Val Leu
Phe Pro Ile Trp Phe Lys Cys His Arg Pro Arg His Leu Ser Ala Trp 130 140
Val Cys Gly Leu Leu Trp Thr Leu Cys Leu Leu Met Asn Gly Leu Thr
Ser Ser Phe Cys Ser Lys Phe Leu Lys Phe Asn Glu Asp Arg Cys Phe
Arg Val Asp Met Val Gln Ala Ala Leu Ile Met Gly Val Leu Thr Pro
Val Met Thr Leu Ser Ser Leu Thr Leu Phe Val Trp Val Arg Arg Ser
Ser Gln Gln Trp Arg Arg Gln Pro Thr Arg Leu Phe Val Val Leu
Ala Ser Val Leu Val Phe Leu Ile Cys Ser Leu Pro Leu Ser Ile Tyr
Trp Phe Val Leu Tyr Trp Leu Ser Leu Pro Pro Glu Met Gln Val Leu
Cys Phe Ser Leu Ser Arg Leu Ser Ser Ser Val Ser Ser Ser Ala Asn
Pro Val Ile Tyr Phe Leu Val Gly Ser Arg Arg Ser His Arg Leu Pro
Thr Arg Ser Leu Gly Thr Val Leu Gln Gln Ala Leu Arg Glu Glu Pro
Glu Leu Glu Gly Gly Glu Thr Pro Thr Val Gly Thr Asn Glu Met Gry
Ala
<2105 11
<211> 1356
<212> DNA
<213> Homo sapiens
<400> 11
atggagteet cacceateee ceagteatea gggaactett ceaetttggg gagggteeet 60
```

Jaäaccccag	gtocutotac	tgccagtggg	gtordagaaag	tgaggetada	ggatuttust	1. '€
togyaatotg	tggenetett	cttoatgets	ctgctggact	tgactqctgt	ggotggeaat	1 = (
qecaetataa	tggcogtgat	cgccaaqacg	cetgecetee	gaaaatttgt	cttagtatta	240
caccitotgec	tggtggacct	getggetges	ot gaccotica	tgecoatgge	catgototoc	300
agetetgeee	tottigadda	agadatattt	ggjgaggtjg	potgoogsot	ctacttattt	360
ctgagcgtgt	gctttgtdag	cotggecatu	ctotoggtat	разроватова	tgtggadege	420
tactattacg	tagtocacco	catgogotac	gaggtgcqca	tgacgctggg	getggtggee	430
totatgatag	tgggtqtjtg	ggtgaaggcc	ttggccatgg	attatgtgad	agtgttggga	540
agggtotost	gggaqjaagg	agotoccagt	gtoccoccag	gotgttcact	ccagtggagc	600
capagtgoot	actgocaget	ttttgtggtg	gtotitgotg	tootttasht	totgttgnac	660
otgotootoa	tacttgtggt	ctactgcage	atgttccgag	tagecoaegt	ggotigosatig	7.20
cagcacgggc	cgotgoddac	gtggatggag	асвососдде	aabgotooga	atototsago	780
agoogotoca	cgatggtcac	cagetegggg	gececcaja	ccaccccaca	ccggacgttt	840
gggggaggga	aagcagcagt	ggttotootg	gctgtygggg	gacagttoct	gctctgttgg	900
tigocotact	tototttoca	pototatgtt	gosotgagtg	ctcagcccat	ticaactggg	٩٩٥
caggtggaga	gtgtggtcac	ctggattggc	tasttttgst	toacttosaa	doctitatio	1020
tatggatgtc	tcaaccggca	gateeggggg	gagotoaqua	agcagtttqt	ctgattatta	1080
ragecagete	cagaggagga	gotgaggotg	sctageeggg	agggctccat	tgaggagaac	1149
ttootgoagt	toottpaggg	gactggctgt	octtotgagt	cctgggtttc	cogaccccta	1200
rocagoddda	agcaggagcc	acctgctgtt	gastftsgaa	toccaggoca	gatagotgag	1260
gagacetetg	agttootgga	gcagcaactc	accagogaca	tcatcatgtc	agacagetae	1320
stoogtootg	cogootcaco	ccggctqqag	tcatqa			1356

<210> 12

<211> 451 <212> PRT <213> Homo sapiens

<400> 12

Met Glu Ser Ser Pro Ile Pro Gln Ser Ser Gly Asn Ser Ser Thr Leu

Gly Arg Val Pro Gln Thr Pro Gly Pro Ser Thr Ala Ser Gly Val Pro

Glu Val Gly Leu Arg Asp Val Ala Ser Glu Ser Val Ala Leu Phe Phe 35 40 45

Met Leu Leu Asp Leu Thr Ala Val Ala Gly Asn Ala Ala Val Met 50

Ala Val Ile Ala Lys Thr Pro Ala Leu Arg Lys Phe Val Fhe Val Phe His Let Cys Leu Val Asp Leu Leu Ala Ala Leu Thr Leu Met Pro Leu Ala Met Leu Ser Ser Ser Ala Leu Phe Asp His Ala Leu Phe Gly Glu Val Ala Cys Arg Leu Tyr Leu Phe Leu Ser Val Cys Phe Val Ser Leu 115 Ala Ile Leu Ser Val Ser Ala Ile Asn Val Glu Arg Tyr Tyr Val Val His Pro Met Arg Tyr Glu Val Arg Met Thr Leu Gly Leu Val Ala Ser Val Leu Val Gly Val Trp Val Lys Ala Leu Ala Met Ala Ser Val Pro Val Leu Gly Arg Val Ser Trp Glu Glu Gly Ala Pro Ser Val Pro Pro Gly Cys Ser Leu Gln Trp Ser His Ser Ala Tyr Cys Gln Leu Phe 200 Val Val Val Phe Ala Val Leu Tyr Phe Leu Leu Pro Leu Leu Leu Ile Leu Val Val Tyr Cys Ser Met Phe Arg Val Ala Arg Val Ala Ala Met Gln His Gly Pro Leu Pro Thr Trp Met Glu Thr Pro Arg Gln Arg Ser 250 Glu Ser Leu Ser Ser Arg Ser Thr Met Val Thr Ser Ser Gly Ala Pro Gln Thr Thr Pro His Arg Thr Phe Gly Gly Gly Lys Ala Ala Val Val Leu Leu Ala Val Gly Gly Gln Phe Leu Leu Cys Trp Leu Pro Tyr Phe Ser Phe His Leu Tyr Val Ala Leu Ser Ala Gln Pro Ile Ser Thr Gly Gln Val Glu Ser Val Val Thr Trp Ile Gly Tyr Phe Cys Phe Thr Ser Asn Pro Phe Phe Tyr Gly Cys Leu Asn Arg Gln Ile Arg Gly Glu Leu Ser Lys Gln Phe Val Cys Phe Phe Lys Pro Ala Prc Glu Glu Leu 360 Arg Leu Pro Ser Arg Glu Gly Ser Ile Glu Glu Asn Phe Leu Gln Phe Leu Gln Gly Thr Gly Cys Pro Ser Glu Ser Trp Val Ser Arg Pro Leu Pro Ser Pro Lys Gln Glu Pro Pro Ala Val Asp Phe Arg Ile Pro Gly 410

Gin Tie Ala Glu Glu Thr Ser Glu Phe Leu Glu Gin Gin Leu Thr Ser 420 Asp lle lle Met Ser Asp Ser Tyr Les Arg Pro Ala Ala Ser Fr: Arg Leu Glu Ser 450 <210 - 13 <211 · 1041 <212 · DNA <213 · Homo sapiens <400 · 13 50 atggagaga aatttatgto ottgoasoca todatotoog tatdagasat ggascoasat qupasettea qeaataasaa cageaqqaas tqeacaattq aaaaettoaa gagagaattt 120 ttoocaattq tatatotgat aatatitito tqqqqaqtot tqqqaaatqq qttqtocata 180 lutgittico igoagootta taagaagtoo adatoigiga adgitticat gotaaatoig 240 gecatticag atotoctytt cataaycaey ottooctica gygotyaeta tiatottaga 300 quoticeaatt ggatatttgg agaestggee tgeaggatta tgtottatte sttgtatgte 360 aacatgtaca qoagtattta tttootgaco gtgotgagtg ttgtqogttt cotqqcaatg 420 qstcacccct ttcqqcttct qsatqtcacc aqcatcaqqa qtqcctqqat sctstqtqqq 480 atcatatgga teettateat ggetteetea ataatgetee tggacagtgg stetgageag 540 amoggoagty toacatoaty citagagoty amintotata amaityciam ycigomyaco 6(11) angaactata tigootiggi ggigggoige oigoigcoal tittoacaci cagcaloigi 660 720 tatorgotga toattogagt totgttaaaa gtggaggtoo cagaatogag gotgogggtt 780 totoacagga aggeactigae caccateate ateacettga teatettett ottigtigtitte ctgccctate acadactgag gaccgtccae ttgacgacat ggaaagtggg tttatgcaaa 840 queaquetge atamaqettt ggttatemem etggesttgg emgemgeda tgeetgette 900 automicity totaltactt typigggag autittaagg acagactaua gruiquacto 950 agaaaaaggee atecacagaa ggcaaagaca aagtgtgttt teeetgttag tgtqtqqttq 1020 1041 agaaaggaaa caagagtata a <2101 1.4 KDIO K211 - SAU PRT <213 Homo sapiens <400 > 14 Met Glu Arg Lys Phe Met Ser Leu Gln Pro Ser Ile Ser Val Ser Glu

Met Glu Pro Asn Gly Thr Phe Ser Asn Asn Asn Ser Arg Asn Cys Thr 20 25 30

Il∈	Glu	Asn 35	Phe	Lys	Arg	Glu	Phe 40	Phe	Pro	Ile	Vāl	Tyr 45	Leu	Tle	Ile
Phe	Phe 50	Trp	Gly	Val	Leu	Gly 55	Asn	Gly	Leu	Ser	Ile 60	Tyr	Val	Fhe	Leu
Gln 65	Pro	Tyr	Lys	ГŻS	Ser 70	Thr	Ser	Val	Asn	Val 75	P'ne	Met	Leu	Asn	Leu 80
Ala	Ile	Ser	Asp	Leu 85	Leu	Phe	Ile	Ser	Thr 90	Leu	Pro	Phe	Arg	Aia 95	Asp
Tyr	Tyr	Leu	Arg 100	Gly	Ser	Asrı	Trp	Ile 105	Phe	Gly	Asp	Leu	Ala 110	Суз	Arg
Ile	Met	Ser 115	Tyr	Ser	Leu	Tyr	Val 120	Asn	Met	Tyr	Ser	Ser 125	Ile	Τγr	Phe
Leu	Thr 130	Val	Leu	Ser	Val	Val 135	Arg	Phe	Leu	Ala	Met 140	Val	His	Pro	Phe
Arg 145	Leu	Leu	His	Val	Thr 150	Ser	Ile	Arg	Ser	Ala 155	Trp	Ile	Leu	Суѕ	Gly 160
lle	Ile	Trp	Ile	Leu 165	Ile	Met	Ala	Ser	Ser 170	Ile	Met	Leu	Leu	Asp 175	Ser
СТА	Ser	Glu	Gln 180	Asn	Gly	Ser	Val	Thr 185	Ser	Cys	Leu	Glu	Leu 190	Asn	Leu
Tyr	Lys	Ile 195	Ala	Lys	Leu	Gln	Thr 200	Met	Asn	Tyr	Ile	Ala 205	Leu	Val	Val
G‡у	Cys 210	Leu	Leu	Pro	Phe	Phe 215	Thr	Leu	Ser	Ile	Cys 220	Тут	Leu	Leu	Ile
11e 215	Arg	Val	Leu	Leu	Lys 230	Val	Glu	Val	Pro	Glu 235	Ser	Gly	Leu	Arg	Val 240
Ser	His	Arg	Lys	Ala 245	Leu	Thr	Thr	Ile	Ile 250	Ile	Thr	Leu	Ile	Ile 255	Phe
Phe	Leu	Суѕ	Phe 260	Leu	Pro	туг	His	Thr 265	Leu	Arg	Thr	Val	His 270	Leu	Thr
Thr	Trp	Lys 275	Val	Glγ.	Leu	Суѕ	Lys 280	Asp	Arg	Leu	His	Lys 285	Ala	Leu	Val
Ile	Thr 290		Ala	Leu		Ala 295		Asn	Ala	_	Phe 300		Pro	Leu	Leu
Tyr 305	Tyr	Phe	Ala	Gly	Glu 310	Asn	Phe	Lys	Asp	Arg 315	Leu	Lys	Ser	Ala	Leu 320
Arg	Lys	Gly	His	Pro 325	Gln	Lys	Ala	Lys	Thr 330	Lys	Суѕ	Val	Phe	Pro 335	Val
Ser	Val	Trp	Leu 340	Arg	Lys	Glu	Thr	Arg 345	Val						
<010 <011 <012 <010	l> = : 2> = :	15 1527 DNA Homo	sapi	iens											

PCT/US00-31509 WO 01/36471

<400> 15					
atqueogtoca cotocacea	ı cagsacgogs	gagagtaaca	disadiceasac	grącatgesc	60
ototopaaaa tgoobatka	g potggoodad	ggcatcatcc	gotcaacogt	getgyttate	130
troctogoog actatitog	: oggcaacata	gigetggege	tägigtigsa	guquaagoog	180
cagotgotyc aggtgacca	a segititate	tttaacctcc	тортовозда	cctdctdcad	240
atttegeteg tyggeneet:	g ggtggtggsc	acctotgtgc	atotittotg	goodstcaac	300
agudaction gdadggddd	t ggttageete	acccacctgt	togoattaga	cagogtcaac	360
accattgtog tggtgtcag	ggatogotad	ttgtccatca	tacaccetet	ctoctaccog	420
topaagatga cocagogoo	g eggttacetg	ctcctctatg	gcacctggat	tqtqqccatc	4 % O
ctgcagagba ctcctccas	stacggetgg	ggccaggctg	cotttgatga	gogoaatgot	$\xi(z_i^*(t))$
ototgotopa tgatotggg	g ggodagddod	agotacacta	ttotpagogt	ggtgtccttc	$\epsilon_{\rm c}(\alpha)$
atogicatic cactgaity	catgattgcc	tgctactccg	tggtgttatg	tqcagcccgg	660
aggeageatg ctetgetgt	a caatgtcaag	agacacaget	tggaagtgog	agtcaaggac	720
tgtgtggaya atgaggatg	a agagggagca	gagaagaagg	aggagttoca	ggatgagagt	780
gagtttogod godagdatg	a aggtgaggtc	aaggccaagg	agggcagaat	ggaagccaag	840
gabggdaged tgaaggdda	ı ggaaggaagc	acggggacca	gtgagagtag	tgtagaggcc	90n
aggggcagog aggaggtca	g agagagsags	acggtggcca	gogaoggoag	catggagggt	960
aaggaaggca gcaccaaag	: tgaggagaac	agcatgaagg	cagacaaggg	togbacagag	1020
gtpaappagt gpagpattg.	a cttgggtgaa	gatgacatgg	agtttggtga	agacgacato	1080
aatttcagtg aggatgacg	: cgaggcagtg	aacatcccgg	agagicticc	acccagtogt	1140
ogtaacagda adagdaacc	toototyccc	aggtgstacc	agtgcaaagc	tootaaagtg	1200
atottoatoa toattttot	r ctatgtgcta	tocotggggs	cotactgott	tttagcagtc	12 60
ctggccqtqt gggtqqatq	. ogaaaboodag	gtaccccagt	gggtyatcac	cataatcatc	1320
tggdttttat tddtgdagt	q otgoatocac	occtatgtct	atggotabāt	gcacaagacc	1380
attaaguagg aaatoougg	a catgotgaag	aagttottot	gcaajgaaaa	goodoogaaa	1440
qaagatagoo acccagacc	; gocoggaaca	gagggtggga	ctgaaggcaa	gattgtccct	1500
toctacqait otgotacti	. toottga				1527

<210 > 16 <211 > 508 <212 > PRT -213 > Homo sapiens

<400 - 16

PCT/US00/31509 WO 01/36471

Thr Cys Met Pro Leu Ser Lys Met Pro I)e Ser Leu Ala His Gly Ile The Arg Ser Thr Val Leu Val The Phe Leu Ala Ala Ser Phe Val Gly Asn Ile Val Leu Ala Leu Val Leu Gln Arg Lys Pro Gln Leu Leu Gln Val Thr Asn Arg Phe Ile Phe Asn Leu Leu Val Thr Asp Leu Leu Gln Ile Ser Leu Val Ala Pro Trp Val Val Ala Thr Ser Val Pro Leu Phe Trp Pro Leu Asn Ser His Phe Cys Thr Ala Leu Val Ser Leu Thr His Leu Phe Ala Phe Ala Ser Val Asn Thr Ile Val Val Val Ser Val Asp 120 Arg Tyr Leu Ser Ile Ile His Pro Leu Ser Tyr Pro Ser Lys Met Thr 135 Gln Arg Arg Gly Tyr Leu Leu Leu Tyr Gly Thr Trp Ile Val Ala Ile Leu Gln Ser Thr Pro Pro Leu Tyr Gly Trp Gly Gln Ala Ala Phe Asp Glu Arg Asn Ala Leu Cys Ser Met Ile Trp Gly Ala Ser Pro Ser Tyr Thr Ile Leu Ser Val Val Ser Phe Ile Val Ile Pro Leu Ile Val Met Ile Ala Cys Tyr Ser Val Val Phe Cys Ala Ala Arg Arg Gln His Ala 215 Leu Leu Tyr Asn Val Lys Arg His Ser Leu Glu Val Arg Val Lys Asp Cys Val Glu Asn Glu Asp Glu Glu Gly Ala Glu Lys Lys Glu Glu Phe Gln Asp Glu Ser Glu Phe Arg Gln His Glu Gly Glu Val Lys Ala Lys Glu Gly Arg Met Glu Ala Lys Asp Gly Ser Leu Lys Ala Lys Glu Gly Ser Thr Gly Thr Ser Glu Ser Ser Val Glu Ala Arg Gly Ser Glu Glu Val Arg Glu Ser Ser Thr Val Ala Ser Asp Gly Ser Met Glu Gly Lys Glu Gly Ser Thr Lys Val Glu Asn Ser Met Lys Ala Asp Lys 325 330 Gly Arg Thr Glu Val Asn Gln Cys Ser Ile Asp Leu Gly Glu Asp Asp Met Glu Phe Gly Glu Asp Asp Ile Asn Phe Ser Glu Asp Asp Val Glu

Ala	Val 377	Asn	Ile	Pro	Glu	Ser 375	Leu	Pro	Pic	Ser	Arq 380	Fig	Asn	Ser	Asn	
Ser 385	Ann	Fro	Pio	Leu	Pro 390	Arg	Cys	Туг	Gin	Cys 395	Lys	Alā	Ala	Lys	Val 400	
He	Phe	Ile	lle	11e 405	Phe	Ser	Tyr	Val	Leu 410	Ser	Leu	Gly	Pro	Tyr 415	Суз	
Phe	Leu	Ala	Val 420	Leu	Ala	Val	Trp	Val 425	Asp	Val	Glu	Thr	Gln 430	Val	Pro	
31n	Trp	Val 435	Ile	Thr	Ile	Ile	11e 440	Trp	Leu	Phe	Phe	Leu 445	Gln	Cys	Суѕ	
Ile	His 450	Pro	Туг	Val	Tyr	Gly 455	Туг	Met	His	Lys	Thr 460	Ile	Lys	Lys	Glu	
11e 465	31:.	Asr	Met	Leu	Lys 470	Lys	Phe	Phe	Сув	Lys 475	Glu	Lys	Pro	Pro	Ly3 480	
12.12	Act	det	His	Pro 485	Asp	Leu	Pro	Gly	Th: 490	Glu	Gly	Glγ	Thr	Glu 495	Gly	
Lys	Ile	Val	Pro 500	Ser	Tyr	Asp	Ser	Ala 505	Thr	Phe	Pro					
<21 <21. <21	· I	.01 € 1475	sapi	.ens												
			` 16744C	gge	it tt	ctto	cattt	. gaç	ggaco	:tct	tggd	:taac	caa :	tatic	tcaga	60
atat	ttat	et e	iggt t	.ataq	je tt	tcat	tacc	t tgc	ettt	gaa	atct	tttt	gt (catto	gcatg	120
agat	ctt	ca t	taad	gatq	ja aa	atao	caact	; cac	aga ta	itqt	ccat	caaa	aat (cattt	gttgc	180
gato	jatto	roz t	qatg	ggtg	jt tt	actt	gtto	tt	igtte	igca	tttt	cgat	at a	aaaat	accya	240
वृत्वव	radta	ito a	ngaac	rtato	ja at	tgct	:gtgg	, ato	ggaga	agcg	tgca	igtgo	cg (ootsa	itggjg	300
tta	:tags	ica t	ageta	itoda	10 09	jaagt	ctct	gt:	catgo	ctac	tgac	ctac	ett d	gactt	tggag	360
aagt	test	gg t	catt	gtet	it co	cctt	cagt	. aac	catto	gac	ctgg	raaaa	acg (gcaga	idotba	420
gtc.	at krist	.ca t	ttqc	atot	g ga	itggo	eggga	i ttt	tta.	itag	ctat	.aat t	cc .	attit	ggaat	480
sagg	rattu		tgqa	iaact	it tt	atgo	ggaaa	ı aat	igga :	tat	gttt	CCC	act ·	ttatt	atgac	540
															acttg	600
stag	actit	ii i	.cato	atto	jt gt	ttt	ectat	att	lact	ıtgt	totg	itta	cat ·	tcaaa	naaacc	660
goot	tgca	ığa (icaca	igaaq	jt aa	iggaa	attgt	ttt	.gga:	ıgag	aggt	gget	.gt	tgcaa	atogt	721
ttat	.tttt	ita t	Lagto	ittot	c to	jatgo	cato	: tgc	ctigga	ttc	ctgt	attt	igt (agtta	aaatc	780
atti	ccct	at t	toogg	jątąc	ja aa	itaco	cagad	aca	aatqa	ictt	coto	gata	agt (gattt	ttttc	840
															ttaag	900
gada	agtt	:Ga č	iacad	rotae	it go	acaa	aacat	: cac	gagga	iaat	caat	ttt	caa .	aatta	aaaaa	960
			-		,			-			Page					

aaaagtitat otacatooat tgigtggata gaggactoot ottooctqaa actiggggtt = 1020 ttgaacaaaa taacacttgg agacagtata atgaaaccag titootag = 1068

<210> 18
<1211> 385
<212> PRT
<1213> Homo sapiens
<1400> 18

Met Pro Leu Thr Asp Gly Ile Ser Ser Phe Glu Asp Leu Leu Ala Asn 1 5 10 15

Asn Ile Leu Arg Ile Phe Val Trp Val Ile Ala Phe Ile Thr Cys Phe 20 25 30

Gly Asn Leu Phe Val Ile Gly Met Arg Ser Phe Ile Lys Ala Glu Asn 35 40 45

Thr Thr His Ala Met Ser Ile Lys Ile Leu Cys Cys Ala Asp Cys Leu 50 60

Met Gly Val Tyr Leu Phe Phe Val Gly Ile Phe Asp Ile Lys Tyr Arg 65 70 75 80

Gly Gln Tyr Gln Lys Tyr Ala Leu Leu Trp Met Glu Ser Val Gln Cys 85 90 95

Arg Leu Met Gly Phe Leu Ala Met Leu Ser Thr Glu Val Ser Val Leu 100 105 110

Leu Leu Thr Tyr Leu Thr Leu Glu Lys Phe Leu Val Ile Val Phe Pro 115 120 125

Phe Ser Asn Ile Arg Pro Gly Lys Arg Gln Thr Ser Val Ile Leu Ile 130 135 140

Cys Ile Trp Met Ala Gly Phe Leu Ile Ala Val Ile Pro Phe Trp Asn 145 150 155 160

Lys Asp Tyr Phe Gly Asn Phe Tyr Gly Lys Asn Gly Val Cys Phe Pro $165 \hspace{1cm} 170 \hspace{1cm} 175$

Leu Tyr Tyr Asp Gln Thr Glu Asp Ile Gly Ser Lys Gly Tyr Ser Leu 180 185 190

Gly 11e Phe Leu Gly Val Asn Leu Leu Ala Phe Leu Ile Ile Val Phe 195 200 205

Ser Tyr Ile Thr Met Phe Cys Ser Ile Gln Lys Thr Ala Leu Gln Thr 210 215 220

Thr Glu Val Arg Asn Cys Phe Gly Arg Glu Val Ala Val Ala Asn Arg 225 230 235 240

Phe Phe Phe Ile Val Phe Ser Asp Ala Ile Cys Trp Ile Pro Val Phe 245 250 255

Val Val Lys Ile Leu Ser Leu Phe Arg Val Glu Ile Pro Asp Thr Met $260 \\ \hspace{1.5cm} 265 \\ \hspace{1.5cm} 270 \\ \hspace{1.5cm}$

Thr Ser Trp Ile Val Ile Phe Phe Leu Pro Val Asn Ser Ala Leu Asn Page 19

280 285 Fro The Leu Tyr Thr Leu Thr Thr Ash Phe Phe Lys Asp Lys Leu Lys Gln Leu Leu His lys His Gln Arg Lys Ser lle Phe Lys Ile Lys Lys Lys Ser Leu Ser Thr Ser Ile Val Trp Ile Glu Asp Ser Ser Ser Leu Lys teu Gly Val Leu Ash Lys Ilo Thr Leu Gly Asp Ser Ile Met Lyn 345 Pro Val Ser 355 (210× <u>.</u> 4 (211 - 969 1212> DNA -213> Homo sapiens <430 × 19 utygatecia neateteaae ettggaeaea gaaetgaeae eaateaaegg aaetgaggag Actetitique acaagcagae etigageets acggigetga egitgeategi ticontigio 120 gggotgacag gaaacgcagt tgtgstotgg otootgggot geogoatgog caggaacqoo 180 ttothoatot acatootoaa ettygoogoa goagaottoo tottootoag eggoodoott 240 atatattees tyttaagett catcagtats ceccatacea tetetaaaat seistateet 300 gtgatgatgt titoctacti tgcaggcotg agettictga gigcogtgag caecgagege 360 tgoctgtoog tootgtggco catotggtad ogotgocaec geoccaeaa cotgteageg 420 480 utugitatatu tootaotola aaoootatoo otaotaoaga acatootaga atagatatta tgtgyctthe tgttcagtgg tgctgattct qettggtqtc aaacatcaga tttcatcaca 549 stoquated by the tittit at a tata tagget to the tagget and the tagget and the tagget and the tagget and tagget aggattote: gtggatebog gaagataoog etgaceagge tgtaegtgae cateetgete 660 acagnactyg tottoctoct eigiggeein ecettiggea ticagittit octatittia 720 rggatouang tiggacaggiga agtottatit tigtoatigtto atotagittis tattitisotig 780 tabegetetta abageagitge caaceaceate attiactict teginggete eittiaggeag 840 cyticaaaata ggcagaacct gaagctggtt ctccagaggg ctctgcagga cgcgtictgag 900 qiqqatqaaq qiqqaqqqca gottootqaq qaaatootqq agotqtoqqq aaqoaqaitq 960 gagcagtga <2100 20 <211> 322 +:212:- PF.T <213> Homo sapiens

<400> 20

Met 1	Asp	Pro	Thr	Ile 5	Ser	Thr	Leu	Asp	Thr 10	Glu	Leu	Thr	Pro	Ile 15	Asn
Glγ	Thr	Glu	Glu 20	Thr	Leu	Cys	Tyr	Lys 25	Gln	Thr	Leu	Ser	Leu 30	Thr	Väl
Leu	Thr	Cys 35	Ile	Val	Ser	Leu	Val 40	Gly	Leu	Thr	Gly	Asn 45	Ala	Val	Val
Leu	Trp 50	Leu	Leu	Gly	Cys	Arg 55	Met	Arg	Arg	Asn	Ala 60	Phe	Ser	Ile	Tyr
Ile 65	Leu	Asn	Leu	Ala	Ala 70	Ala	Asp	Phe	Leu	Phe 75	Leu	Ser	Gly	Arg	Leu 80
Ile	Tyr	Ser	Leu	Leu 85	Ser	Phe	Ile	Ser	Ile 90	Pro	His	Thr	Ile	Ser 95	Lys
lle	Leu	Tyr	Pro 100	Val	Met	Met	Phe	Ser 105	Tyr	Phe	Ala	Gly	Leu 110	Ser	Phe
Leu	Ser	Ala .15	Va1	Ser	Thr	Glu	Arg 120	Cys	Leu	Ser	Val	Leu 125	Trp	Pro	Ile
Trp	Tyr 130	Arg	Cys	His	Arg	Pro 135	Thr	His	Leu	Ser	Ala 140	Val	Val	Cys	Val
Leu 145	Leu	Trp	Ala	Leu	Ser 150	Leu	Leu	Arg	Ser	Ile 155	Leu	Glu	Trp	Met	Leu 160
Cys	Gly	Phe	Leu	Phe 165	Ser	Gly	Ala	Asp	Ser 170	Ala	Trp	Cys	Gln	Thr 175	Ser
Asp	Ph←	Tle	Thr 180	Val	Ala	Trp	Leu	Ile 185	Phe	Leu	Cys	Val	Val 190	Leu	Cys
Gly	Ser	Ser 195	Leu	Val	Leu	Leu	Ile 200	Arg	Ile	Leu	Cys	Gly 205	Ser	Arg	Lys
Ile	Pro 210	Leu	Thr	Arg	Leu	Tyr 215	Val	Thr	Ile	Leu	Leu 220	Thr	Val	Leu	Val
Phe 225	Leu	Leu	Cys	Gly	Leu 230	Pro	Phe	Gly	Ile	Gln 235	Phe	Phe	Leu	Phe	Leu 240
Trp	Ile	His	Val	Asp 245	Arg	Glu	Val	Leu	Phe 250	Cys	His	Val	His	Leu 255	Val
Ser	Ile	Phe	Leu 260	Ser	Ala	Leu	Asn	Ser 265	Ser	Ala	Asn	Pro	11e 270	Ile	Tyr
Phe	Phe	Val 275	Gly	Ser	Phe	Arg	Gln 280	Arg	Gln	Asn	Arg	Gln 285	Asn	Leu	Lys
Leu	Val 290	Leu	Gln	Arg	Ala	Leu 295	Gln	Asp	Ala	Ser	Glu 300	Val	Asp	Glu	Gly
Gly 305	Gly	Gln	Leu	Pro	Glu 310	Glu	Ile	Leu	Glu	Leu 315	Ser	Gly	Ser	Arg	Leu 320
Glu	Gln														
<210 <211		305													

<212 > DNA
>213 > Home sapiens

4400> 21 atagagguto totttagede straattutg begonggege esaweattie egiquudate tigotgaset agagtereaa cetuaeettig gageaagdad needtgeete tigognegeed agoogoogog toogoofggt gittostagag gisatcetag lygiggeggt ggeaaqeaac accadagtgo tgtadogodt gtgoggoggo ggoggadoct gagogyaco daagogtogo 240 aaqatggadt tootgotggt goagotggod otggoggado tqtaogogtg ogggggdaog 300 360 goyotgtoac agotggootg ggaactgotg ggogagoocc gbyoggobac gggggacotg apartgooget teetgeaget getgeaggea teegggeggg gugeetegge eeabetegtg 420 artigoteating coordinguing reaganging grangfatto agranging grangity in acquattacco tegeogecot gagetygety etyacatta tyetygenet geneergyee 540 stagtggtga gaggggaata speataguag atgacqaaga agaagcagaa asagtudatg 600 650 cayocaygog ogococoggo bycobgoyob tggcoggggg agogtogoty obacqygato ttogogocco tgeogogoty geacotycay gtotacycyt totacyayyo cytoycyyyo 720 ttoqtoqoqo etqttacqqt betaqqoqto qettqoqqco acetacteto eqtetqqtqq 780 ogycanoggo ogcaggoddo bydggotyca gogddotggt dygbygagbod agythogagod 840 900 ortgogocca gogogotgoc pogogocaug gtigoagagoc tigaagatgag cotgotgotg 950 policity start togtaggacta sagapatassa tacettagoog ossagactago agasaguatag toutcoggge cogegggaga otgggaggga gagggestyt eggeggeget gegegtggtg 1020 peratggoda adagogotot baatbootto gtotacotot tettecaggo gggogiotgo 1080 igactosgge gacagetgeg gaagegetg ggetetetgt getgegegee geagggagge 1140 1200 joggaggang aggangggoo bongggobab bangogotot anogobasog biggobobab 1260 octicatiato accatgotog gogggaacog stggacgagg goggettgeg cecasecect regegecesa gasceetges tigotootge gaaagtgest tetag 1305

Met Glu Asp Leu Phe Ser Pro Ser Ile Leu Pro Pro Ala Pro Asn !le 1 5 10

Ser Val Pro Ile Leu Gly Trp Gly Leu Asn Leu Thr Leu Gly Gln 20 25 30

Gly Ala Pro Ala Ser Gly Pro Pro Ser Arg Arg Val Arg Leu Val Phe 35 40 45

^{-:210&}gt; 22

<211> 434

^{:212&}gt; PRT

^{213&}gt; Homo sapiens

^{.400&}gt; 22

Leu Gly Val Ile Leu Val Val Ala Val Ala Gly Asn Thr Thr Val Leu Cys Arg Leu Cys Gly Gly Gly Gly Pro Trp Ala Gly Pro Lys Arg Arg 65 70 75 80 Lys Met Asp Phe Leu Leu Val Gln Leu Ala Leu Ala Asp Leu Tyr Ala Cys Gly Gly Thr Ala Leu Ser Gln Leu Ala Trp Glu Leu Leu Gly Glu Pro Arg Ala Ala Thr Gly Asp Leu Ala Cys Arg Phe Leu Gln Leu Leu Gln Ala Ser Gly Arg Gly Ala Ser Ala His Leu Val Val Leu Ile Ala Leu Glu Arg Arg Arg Ala Val Arg Leu Pro His Gly Arg Pro Leu Pro Ala Arg Ala Leu Ala Ala Leu Gly Trp Leu Leu Ala Leu Leu Ala Leu Pro Pro Ala Phe Val Val Arg Gly Asp Ser Pro Ser Pro Leu Pro Pro Pro Pro Pro Pro Thr Ser Leu Gln Pro Gly Ala Pro Pro Ala Ala Arg Ala Trp Pro Gly Glu Arg Arg Cys His Gly Ile Phe Ala Pro Leu Pro Arg Trp His Leu Gln Val Tyr Ala Phe Tyr Glu Ala Val Ala Gly Phe Val Ala Pro Val Thr Val Leu Gly Val Ala Cys Gly His Leu Leu Ser Val Trp Trp Arg His Arg Pro Gln Ala Pro Ala Ala Ala Pro Trp Ser Ala Ser Pro Gly Arg Ala Pro Ala Pro Ser Ala Leu Pro Arg Ala Lys Val Gln Ser Leu Lys Met Ser Leu Leu Leu Ala Leu Leu Phe Val Gly Cys Glu Leu Pro Tyr Phe Ala Ala Arg Leu Ala Ala Ala Trp Ser Ser Gly Pro Ala Gly Asp Trp Glu Gly Glu Gly Leu Ser Ala Ala 330 Leu Arg Val Val Ala Met Ala Asn Ser Ala Leu Asn Pro Phe Val Tyr Leu Phe Phe Gln Ala Gly Asp Cys Arg Leu Arg Arg Gln Leu Arg Lys Arg Leu Gly Ser Leu Cys Cys Ala Pro Gln Gly Gly Ala Glu Asp Glu Glu Gly Pro Arg Gly His Gln Ala Leu Tyr Arg Gln Arg Trp Pro His Page 23

> 60 120

960

1020 1041

Pro His Tyr His His Ala Arg Arg Slu Pro Lou Asp Clu Gly Gly Len And Pro Pro Pro Pro And Pro And Pro Leu Pro Cys Ser Cys Glu Ser 425 Ala Phe <210> 23 -.211> 1041 <:212> DNA <213> Homo sapiens <400> 23 atgtucaacg ggtogtgetg cogcatogag ggggacacca totoccaggt gatgcogcog ctgotoattg tggcotttgt gotgggogoa ctaggoaatg gggtogooot gtgtggttto tgottocaca tgaaqacctg gaaqcccage actgtttacc ttttcaattt ggccqtqqct

180 gattteetee ttatgatetg cotgeetttt eggaeagaet attaceteag aegtagaeae 240 tgggettttg gggacattee etgeogagtg gggetettea egitggeeat gaacagggee 300 gggagcateg tyttcottac ggtggtggct gcggacaggt atttcaaagt ggtccacccc 360 baccatogogy tyaacactat otobacoogy gtggeggetg geatestetg cabbetgtgg 420 goootggtoa tootgggaab agtgtatott ttgotggaga accatototg ogtgcaagag 480 acqqccqtct cotqtqaqaq ottoatcatq qaqtcqqcca atqqctqqca tqacatcatq 540 ticcagotigg agittotttat goodctoggo atdatottat tittgetotti saagatigtt 600 tggaqcotga ggcgqaggca gcagetggcc agacaggcto ggatgaagaa ggcgaccogg 660 ttoarcatgy tygtggcaat tytyttoato acatgotaco tycocagoyt ytotyctaga 720 780 ctctatttc: tctgqacggt gccctcgagt gcctgcgatc cctstgtcca tggggccctg cadataacco toagottoad otacatgaad agcatgotgg atoccotggt gtattatttt 840 toaagooot colttoocaa attotacaac aagotoaaaa totgoagtot qaaacocaag 900

<2100 24 <211> 346</212> PRT

<213> Homo sapiens

cacattette agregoacte a

<400> 24

Met Tyr Asn Gly Ser Cys Cys Arg Ile Glu Gly Asp Thr Ile Ser Gln

cayocaggas asteaaaaac acaaaggoog gaagagatgo caatttogaa cotoggtogo

aggagttgca tcagtgtggc aaatagtttc caaagccagt ctgatgggca atgggatccc

Val Met Pro Pro Leu Leu Ile Val Ala Phe Val Leu Gly Ala Leu Gly 20 25

Asn Gly Val Ala Leu Cys Gly Phe Cys Phe His Met Lys Thr Trp Lys Pro Ser Thr Val Tyr Leu Phe Asn Leu Ala Val Ala Asp Phe Leu Leu Met Ile Cys Leu Pro Phe Arg Thr Asp Tyr Tyr Leu Arg Arg Arg His 65 70 75 80Trp Ala Phe Gly Asp Ile Pro Cys Arg Val Gly Leu Phe Thr Leu Ala Met Asn Arg Ala Gly Ser Ile Val Phe Leu Thr Val Val Ala Ala Asp Arg Tyr Phe Lys Val Val His Pro His His Ala Val Asn Thr Ile Ser Thr Arg Val Ala Ala Gly Ile Val Cys Thr Leu Trp Ala Leu Val Ile Leu Gly Thr Val Tyr Leu Leu Elu Asn His Leu Cys Val Gln Glu Thr Ala Val Ser Cys Glu Ser Phe Ile Met Glu Ser Ala Asn Gly Trp His Asp Ile Met Phe Gln Leu Glu Phe Phe Met Pro Leu Gly Ile Ile 185 Leu Phe Cys Ser Phe Lys Ile Val Trp Ser Leu Arg Arg Arg Gln Gln Leu Ala Arg Gln Ala Arg Met Lys Lys Ala Thr Arg Phe Ile Met Val Val Ala Ile Val Phe Ile Thr Cys Tyr Leu Pro Ser Val Ser Ala Arg Leu Tyr Phe Leu Trp Thr Val Pro Ser Ser Ala Cys Asp Pro Ser Val His Gly Ala Leu His Ile Thr Leu Ser Phe Thr Tyr Met Asn Ser Met Leu Asp Pro Leu Val Tyr Tyr Phe Ser Ser Pro Ser Phe Pro Lys Phe Tyr Asn Lys Leu Lys Ile Cys Ser Leu Lys Pro Lys Gln Pro Gly His Ser Lys Thr Gln Arg Pro Glu Glu Met Pro Ile Ser Asn Leu Gly Arg Arg Ser Cys Ile Ser Val Ala Asn Ser Phe Gln Ser Gln Ser Asp Gly Gln Trp Asp Pro His Ile Val Glu Trp His 340

^{.110: 25}

^{+2115 1011}

^{+212:} DNA +213: Homo sapiens

4 mm - 2.9							
		atachacatg	tattcaucca	tctatqatct	cttccatggc	tttaccaatc	60
atttacato	; (°	teettigtat	tgttggtgtt	tttggaaaca	ctclctctca	atggatattt	120
ttaacaaaa	ia	taggtaaaaa	aacatcaacg	cacatotace	tgtcacadet	tgtgactgca	180
aacttactt	C	tqtqcagtqc	catgoottto	atgagtatut	attteetgaa	aggtticsaa	240
tgggaatat	C	aatotgotoa	atgcagagtg	gtcaattttc	tgggaactot	atccatgcat	300
graagtato	jτ	ttgtcagtct	cttaatttta	agttggattg	ccataageeg	ctatgctacc	360
ttaatgcaa	a	aggattecte	gcaagagact	acttcatgct	atgagaaaat	attttatggc	420
catttacto	a	aaaaatttog	ccageccaae	tttgstagaa	aactatgcat	ttacatatqg	480
ggagttgta	C	tgggcataat	cattccagtt	accgtatact	actcagtcat	agaggotaca	540
gaaggagaa	g	agagoctatg	ctacaatcgg	cagatggaac	taggagccat	gatototoag	600
attgcaggt	. C	trattggaac	cacatttatt	ggattttcct	tittagtagt	actaacatca	650
tactactet	t	tigtaagoca	tctgagaaaa	ataagaacct	gtacgtccat	tatggagaaa	720
gatttgact	t	acagttctgt	gaaaagacat	cttttggtca	tccagattct	actaatagtt	780
tgottoott	C	cttatagtat	ttttaaaccc	attttttatg	ttotacacca	aagagataac	840
tgtcagcaa	t	tgaattattt	aatagaaaca	aaaaacattc	tcacctgtct	tgattaggas	900
agaagtago	a	cagaccccat	tatatttctt	ttattagata	aaacattcaa	gaagacacta	960
tataatoto	t	ttacaaagtc	taattcagca	catatgcaat	catatggttg	â	1011

<210> 26 <211> 336 <212> PRT

<213> Homo sapiens

<400> 26

Met Asn Asn Asn Thr Thr Cys Ile Gln Pro Ser Met Ile Ser Ser Met I1 $\,$ $\,$ 5 $\,$ $\,$ 10 $\,$ $\,$ 15

Asn Thr Leu Ser Gln Trp Ile Phe Leu Thr Lys Ile Gly Lys Lys Thr 35 40 45

Ser Thr His Ile Tyr Leu Ser His Leu Val Thr Ala Asn Leu Leu Val 50 60

Trp Glu Tyr Gln Ser Ala Gln Cys Arg Val Val Asn Phe Leu Gly Thr 85 90 95

Leu Ser Met His Ala Ser Met Phe Val Ser Leu Leu Ile Leu Ser Trp $100 \, {\rm lo5} \, {\rm lo5}$

11⊹	Ala	11e 115	Ser	Arg	Туг	Ala	Thr 120	Leu	Met	Gin	Lγε	Asp 125	Ser	Ser	Gln	
Glu	Thr 130		Ser	Cys	Tyr	Glu 135	Lys	Ile	Phe	Тут	Gly 140	His	Leu	Leu	Lys	
Lys 145	Phe	Arg	Gln	Pro	Asn 150	Phe	Ala	Arg	Lys	Leu 155	Cys	He	Tyr	Ile	Trp 160	
Gly	Val	Val	Leu	Gly 165	Ile	Ile	Ile	Pro	Val 170	Thr	Val	Tyr	Tyr	Ser 175	Val	
Ile	G1u	Ala	Thr 180	Glu	Gly	Glu	Glu	Ser 185	Leu	Cys	Tyr	Asn	Arg 190	Gln	Met	
Glu	Leu	Gly 195	Ala	Met	Ile	Ser	Gln 200	Ile	Ala	Gly	Leu	11e 205	Gly	Thr	Thr	
Phe	Ile 210	Gly	Phe	Ser	Phe	Leu 215	Val	Val	Leu	Thr	Ser 220	Tyr	туг	Ser	Phe	
Val 225	Ser	His	Leu	Arg	Lys 230	Ile	Arg	Thr	Cys	Thr 235	Ser	Ile	Met	Glu	Lys 240	
Asp	Leu	Thr	Tyr	Ser 245	Ser	Val	Lys	Arg	His 250	Leu	Leu	Val	Ile	Gln 255	Ile	
Leu	Leu	Ile	Val 260	Cys	Phe	Leu	Pro	Tyr 265	Ser	Ile	Phe	Lys	Pro 270	Ile	Phe	
Tyr	Val	Leu 275	His	Gln	Arg	Asp	Asn 280	Cys	Gln	Gln	Leu	Asn 285	Tyr	Leu	Ile	
Glu	Thr 290	Lys	Asn	Ile	Leu	Thr 295	Cys	Leu	Ala	Ser	Ala 300	Arg	Ser	Ser	Thr	
Asp 305	Pro	Ile	Ile	Phe	Leu 310	Leu	Leu	Asp	Lys	Thr 315	Phe	Lys	Lys	Thr	Leu 320	
Туг	Asn	Leu	Phe	Thr 325	Lys	Ser	Asn	Ser	Ala 330	His	Met	Gln	Ser	Tyr 335	Gly	
<210 <211 <212 <213	.> !>`	27 1014 DNA Homo	sapi	ens												
<400 atga		27 agc d	cacta	igact	a tt	tago	aaat	gct	tete	jatt	tccc	cgat	ta t	gcag	ctgct	60
tttg	rgaa	att q	gcact	gato	ja aa	acat	ccca	ctc	aaga	itgc	acta	cctc	cc t	gtta	tttat	120
ggca	tta	tct t	tacta	gtgg	gg at	ttcc	aggo	aat	gcaç	rtag	tgat	atco	ac t	taca	ttttc	180
aaaa	tga	gac o	ettgg	jaaga	ig ca	gcac	cato	att	atgo	tga	acct	ggcc	tg d	cacaç	atctg	240
ctgt	atc	tga d	ccago	ctcc	cc ct	tect	gatt	cac	tact	atg	ccaç	ıtggc	ga a	aaact	ggatc	300
tttg	gaga	att 1	tcato	gtgta	aa gt	ttat	ccgc	ttc	agct	tcc	attt	caac	ct ç	gtata	gcagc	360
atco	tct	tcc t	tcaco	etgtt	it ca	gcat	cttc	cgc	tact	gtg	tgat	catt	ca d	ccaa	tgagc	420
tgct	ttt	cca t	ttcac	caaaa	ac to	gato	gtgca	gtt	gtag	rcct	gtgo	tgtç	gt o	gtgga	tcatt	480
tcac	tgg	tag d	ctgto	atto	ec ga	ntgac	cttc	ttg	jatca		caac Page		cag ç	gacca	acaga	540

WO 01 36471 PCT/US00.31509

trassectate	tugaveteac	cagttcggut	qaactcaata	ctattaagtg	gtacauncig	€-D¢i
attitgactq	caactasttt	atgastace	ttuutgatag	tgacactttg	otataccauq	660
attatocaca	ctctqaccca	tggactgcaa	actgacaget	gccttaagca	qaaaycacga	720
aggetaacca	ttotgctact	cottgcattt	tacgtatgit	ttttaccott	ccatatottg	780
aggątbatto	qgategaatc	tegestgett	tcaatcagtt	gttccattga	gaatcagatc	840
catguagett	acatogitte	tagaccatta	qotactotga	acacetttgg	taaccigtia	900
ctatatgtgg	tggtcagcga	caactitcag	caggetgtet	gctcaacagt	gagatgsaaa	960
gtaagcgqga	accttgagca	agcaaagaaa	attagttact	caaacaaccc	ttga	1014

<210> 28 <211> 337

<212> PRT

<213> Homo sapiens

<400> 28

Met Asn Glu Pro Leu Asp Tyr Leu Ala Asn Ala Ser Asp Phe Pro Asp

Tyr Ala Ala Ala Phe Gly Asn Cys Thr Asp Glu Asn Ile Pro Leu Lys

Met His Tyr Leu Pro Val Ile Tyr Gly Ile Ile Phe Leu Val Gly Phe

Pro Gly Asn Ala Val Val Ile Ser Thr Tyr Ile Phe Lys Met Arg Pro

Trp Lys Ser Ser Thr Ile Ile Met Leu Asn Leu Ala Cys Thr Asp Leu 65 70 75

Leu Tyr Leu Thr Ser Leu Pro Phe Leu Ile His Tyr Tyr Ala Ser Gly

Glu Asn Trp Ile Phe Gly Asp Phe Met Cys Lys Phe Ile Arg Phe Ser

Phe His Phe Asn Leu Tyr Ser Ser Ile Leu Phe Leu Thr Cys Phe Ser

Ile Phe Arg Tyr Cys Val Ile Ile His Pro Met Ser Cys Phe Ser Ile

His Lys Thr Arg Cys Ala Val Val Ala Cys Ala Val Val Trp Ile Ile

Ser Leu Val Ala Val Ile Pro Met Thr Phe Leu Ile Thr Ser Thr Asn $165 \\ 170 \\ 175$

Arg Thr Asn Arg Ser Ala Cys Leu Asp Leu Thr Ser Ser Asp Glu Leu 185

Asn Thr Ile Lys Trp Tyr Asn Leu Ile Leu Thr Ala Thr Thr Phe Cys 195 200

Leu Pro Leu Val Ile Val Thr Leu Cys Tyr Thr Thr Ile Ile His Thr Page 28

	210					215					220					
Leu 225	Thr	His	Gly	Leu	Gln 230	Thr	Asp	Ser	Cys	Leu 235	Lys	Gln	Lys	Ala	Arg 240	
Arg	Leu	Thr	Ile	Leu 245	Leu	Leu	Leu	Ala	Phe 250	Тут	Val	Суѕ	Phe	Leu 255	Fro	
Phe	His	Ile	Leu 260	Arg	Val	Ile	Arg	11e 265	Glu	Ser	Arg	Leu	Leu 270	Ser	Ile	
Ser	Cys	Ser 275	Ile	Glu	Asn	Gln	Ile 280	His	Glu	Ala	Tyr	Ile 285	Val	Ser	Arg	
Pro	Leu 290	Ala	Ala	Leu	Asn	1hr 295	Phe	Gly	Asn	Leu	Leu 300	Leu	Туr	Val	Val	
Val 305	Ser	Asp	Asrı	Phe	Gln 310	Gln	Ala	Val	Cys	Ser 315	Thr	Val	Arg	Суѕ	Lys 320	
Val	Ser	Gly	Asrı	Leu 325	Glu	Gln	Ala	Lys	Lys 330	Ile	Ser	Tyr	Ser	Asn 335	Asn	
Pro																
<210 <211 <212 <213	.> 9 !> [29 993 NA Iomo	sapi	.ens												
-1400		Ġ														-
												-			jaccaa	ซ์(
															tcatt	120
															itgcgc	180
									-		-				tctgc	240
				-							_				itcaat	300
	_				_	_		_						-	itgctg	34(
agca	ccgt	ca ç	jcacc	gago	g ct	gcct	gtcc	gto	ctgt	ggc	ccat	ctgc	jta t	tagat	gccgc	4£(
ageo	ccag	jac a	cctg	tcag	ic dd	ıtcgt	gtgt	gto	ctgo	tct	gggc	ccto	itc (cctac	tgctg	48(
agca	tctt	.gg a	aggg	aagt	t ct	gtgg	cttc	tta	ttta	igtg	atgg	rtgad	ctc t	tggtt	ggtgt	54(
caga	catt	tg a	itttc	atca	ic tg	cago	gtgg	cto	attt	ttt	tatt	cato	ıgt t	tctct	gtggg	600
tcca	gtct	.gg c	cctg	ctgg	rt ca	ggat	cctc	tgt	ggct	сса	gggg	tctg	JCC &	actga	ccagg	6ú(
ctgt	acct	ga c	cato	ctgo	t ca	cagt	gctg	gtg	ittec	tcc	tctç	rcggc	ect q	gccct	ttggc	7.10
atto	agtg	ıgt t	ccta	atat	t at	.ggat	ctgg	aaç	gatt	ctg	atgt	ctta	att t	ttgtc	atatt	780
cato	cagt	tt c	agtt	gtcc	t gt	cato	tctt	aac	agca	gtg	ccaa	cccc	at o	cattt	acttc	84(
ttcg	tggg	jat c	tttt	agga	a gc	agto	ıgcgg	ctç	cago	agc	cgat	ccto	aa q	gctgg	ctctc	90(
caga	.gggc	tc t	gcag	gaca	ıt tg	ıctga	ıggtg	gat	caca	igtg	aagç	gatgo	tt d	ccgtc	agggc	96(
acco	cada	iga t	atca	agaa	ıq ca	atct	aata	tac	1							993

Page 29

<210 > 30 <211> 330 <212> FRT

<213> Homo sapiens

-400> 30

Met Asp Pro Thr Thr Pro Ala Trp Gly Thr Glu Ser Thr Thr Val Asn

Gly Asn Asp Gln Ala Leu Leu Leu Cys Gly Lys Glu Thr Leu Ile

Pro Val Phe Leu Ile Leu Phe Ile Ala Leu Val Gly Leu Val Gly Asn

Gly Phe Val Leu Trp Leu Leu Gly Phe Arg Met Arg Arg Asn Ala Phe

Ter Val Ty: Val Leu Ser Leu Ala Gly Ala Asp Phe Leu Phe Leu Cys

Phe Glm Ile Ile Asn Cys Leu Val Tyr Leu Ser Asn Phe Phe Cys Ser

The Ser Ile Asn Phe Pro Ser Phe Phe Thr Thr Val Met Thr Cys Ala

Tyr Lea Ala Gly Leu Ser Met Leu Ser Thr Val Ser Thr Glu Arg Cys

Leu Ser Val Leu Trp Pro Ile Trp Tyr Arg Cys Arg Arg Pro Arg His

Leu Ser Ala Val Val Cys Val Leu Leu Trp Ala Leu Ser Leu Leu Leu

Ser The Leu Shu Gly Lys Phe Cys Gly Phe Leu Phe Ser Asp Gly Asp

Ser Gly Trp Cys Gln Thr Phe Asp Phe Ile Thr Ala Ala Trp Leu Ile $180 \hspace{1cm} 185 \hspace{1cm} 190$

Phe Leu Fhe Met Val Leu Cys Gly Ser Ser Leu Ala Leu Leu Val Arg

The Leu Cys Gly Ser Arg Gly Leu Pro Leu Thr Arg Leu Tyr Leu Thr $\bigcirc 10$. $\bigcirc 215$. $\bigcirc 220$

Ile Leu Leu Thr Val Leu Val Phe Leu Leu Cys Gly Leu Pro Phe Gly

Ile Gin Trp Phe Leu Ile Leu Trp Ile Trp Lys Asp Ser Asp Val Leu 245 250 250

Phe Cys His Ile His Pro Val Ser Val Val Leu Ser Ser Leu Asn Ser

Ser Ala Asn Pro Ile Ile Tyr Phe Phe Val Gly Ser Phe Arg Lys Gln

Trp Arg Leu Gln Gln Pro Ile Leu Lys Leu Ala Leu Gln Arg Ala Leu 295 300

Page 30

Thr Pro Glu Met Ser Arg Ser Ser Leu Val <210> 31 <211> 1092 <2120 DNA <2132 Homo sapiens <400 > 31 atgggccccg gcgaggcgct gctggcgggt ctcctggtga tggtactggc cgtggcgctg 60 statecaaeg cactggtgst getttgttgs geetacageg etgageteeg cactegagee 120 traggegtee teetggtgaa tetgtegetg ggeeacetge tgetggegge getggaeatg 180 scottcacge tgctcggtgt gatgcgcggg cggacaccgt cggcgcccgg cgcatgcsaa 240 gtcattggct tcctggacac cttcctggcg tccaacgegg cgctgagcgt ggeggegetg 300 agegeagace agtggetgge agtgggette ceaetgeget acceeqgacq eetgegaseq 360 egetatgeeg geetgetget gggetgtgee tggggaeagt egetggeett eteaggeget 420 gcacttggct gctcgtggct tggctacagc agcgccttcg cqtcctqttc qctqcqc:tq 480 degeoegage etgagegtee gegettegea geetteaceg ceaegeteea tgeeqtqqqe 540 trootgotgo cgctggcggt gototgotoc acctogotoc aggtgcaccg ggtggcacgc 600 ayocactgcc agogcatgga caccgtcacc atgaaggogc togogctgct ogcoqacctq 666 caccocaqtq tqcqqcaqcq ctqcctcatc caqcaqaaqc qqcqccqcca ccqcqccacc 720 angaagattg goattgotat tgcgacotto otdatotgot ttgccccgta tgtcatqacc aggotggogg agotogtgoo ottogtoaco gtgaacgood agtggggoat cotcagodaq 840 tigoctgacot acageaagge ggtggeegae cegtteaegt actetetget eegeeggeeg 900 ttoogocaag tootggoogg catggtgoad oggotgotga aqaqaaccoo qoqoodagda 960 tocaccoatg acagetetet ggatgtggee ggeatggtge accagetget gaaqaqaace 1010 coge@cccag egtecaccca caacggetet gtggacacag agaatgatte etgectgcag 1080 cagacacact ga 1090 .210 32 ·2118 363 <212> PRT <213% Homo sapiens < 400 Met Gly Pro Gly Glu Ala Leu Leu Ala Gly Leu Leu Val Met Val Leu

Ala Val Ala Leu Leu Ser Asn Ala Leu Val Leu Leu Cys Cys Ala Tyr

25

20

Ghn Asp Ile Ala Glu Val Asp His Ser Glu Gly Cys Phe Arg Gln Gly

Page 31

30

Ser Ala Diu Leu Arg Thr Ard Ala Ser Gly Val Leu Leu Val Ash Leu 35 40 45

Ser Leu Sly His Leu Leu Leu Ala Ala Leu Asp Met Pro Phe Th: Leu 50 60

Leu Gly Val Met Arg Gly Arg Thr Pro Ser Ala Pro Gly Ala Cys Gl
n $\mathfrak{S}5$ 70 70 75

Val lle Gly Phe Leu Asp Thr Phe Leu Ala Ser Asn Ala Ala Leu Ser 85 90 95

Val Ala Ala Leu Ser Ala Asp Gln Trp Leu Ala Val Gly Phe Pro Leu 100 - 105

Arg Tyr Ala Gly Arg Leu Arg Pro Arg Tyr Ala Gly Leu Leu Gly 115 $\,$ 120 $\,$ 125

Cys Ala Trp Gly Gln Ser Leu Ala Phe Ser Gly Ala Ala Leu Gly Cys 130 140

Ser Trp Leu Gly Tyr Ser Ser Ala Phe Ala Ser Cys Ser Leu Arg Leu 145 150 155 160

Fro Pro Glu Pro Glu Arg Pro Arg Phe Ala Ala Phe Thr Ala Thr Leu 165 170 175

His Ala Val Gly Phe Val Leu Pro Leu Ala Val Leu Cys Leu Thr Ser 180 185 190

Leu Gl
n Val His Arg Val Ala Arg Ser His Cys Gl
n Arg Met Asp Thr $195 \hspace{1.5cm} 200 \hspace{1.5cm} 205$

Val Thr Met Lys Ala Leu Ala Leu Leu Ala Asp Leu His Pro Ser Val 210 215 220

Arg Gln Arg Gys Leu Ile Gln Gln Lys Arg Arg Arg His Arg Ala Thr 225 230235235

Arg Lys Ile Gly Ile Ala Ile Ala Thr Phe Leu Ile Cys Phe Ala Pro $245 \\ 250 \\ 250$

Tyr Val Met Thr Arg Leu Ala Glu Leu Val Pro Phe Val Thr Val Ash 260 - 265

Ala Gl
n Trp Gly Ile Leu Ser Lys Cys Leu Thr Tyr Ser Lys Ala Val
 275 \$280 \$285

Ala Asp Pro Phe Thr Tyr Ser Leu Leu Arg Arg Pro Phe Arg Gir Val 290 300

Leu Ala Gly Met Val His Arg Leu Leu Lys Arg Thr Pro Arg Pro Ala 305 310 315

Ser Thr His Asp Ser Ser Leu Asp Val Ala Gly Met Val His Gln Leu 325 - 330 - 335

Leu Lys Arg Thr Pro Arg Pro Ala Ser Thr His Ash Gly Ser Val Asp $340 \hspace{1cm} 345 \hspace{1cm} 350$

Thr Glu Asn Asp Ser Cys Leu Gln Gln Thr His

<210> 33 <211> 1125

```
<212>
       DNA
<213>
       Homo sapiens
<400> 33
atgoccacao teaataette tgesteteea eccacattet tetgggeeaa tgesteegga
                                                                        60
ggcagtgtgc tgagtgctga tgatgctccg atgcctgtca aattcctagc cctgaggctc
atggttgccc tggcctatgg gcttgtgggg gccattggct tgctgggaaa tttggcggtg
                                                                       180
ctgtgggtac tgagtaactg tgcccggaga gcccctggcc caccttcaga caccttcgtc
                                                                       240
ttcaacctgg ctctggcgga cstgggactg gcactcactc tccccttttg ggcagccgag
                                                                       300
toggeactog actiticacty goodttogga ggtgcoctot gcaagatggt totgacqqco
                                                                       360
actiguedtea acquetatige cageatette eteateacag egetigagegt tigetegetae
                                                                       420
tgagtagtag coatggotgo gaggocaggo acceacetet cactettetg ggeocgaata
                                                                       480
gebacectigg cagtgtggge ggeggetgee etggtgaegg tgeecacage tgtetteggg
                                                                       540
qtqqaqqqtq aggtgtgtgg tgtgcgcctt tgcctgctgc gtttccccag caqqtactgq
                                                                       500
ctgggggcct accapetgea gagggtggtg etggetttea tggtgecett gggegteate
                                                                       660
accalcaget acctgetget getggeette etgeagegge ggeaaeggeg geggeaggae
                                                                       720
Agrangiting tygeologics tyticogoate ctggtggett cottetteet etgetggttt
                                                                       780
necasecatg tagtcactet etggggtgte etggtgaagt ttgacetggt gedetggaae
                                                                       840
uqtacttict atactateca gacgtatgte tteectgtea ctacttgett ggeacacage
                                                                       900
aataactgcc tcaaccotqt qotqtactqt ctcctqaqqc qqqaqccccq qcaqqctctq
                                                                       960
ucaqueact transpatct geggtegagg ctgtggcccc agggeggagg ctgggtgcaa
                                                                      1020
caggiqgocc tiaagcaggt aggcaggogg tgggtogcaa gcaaccccog ggagagcogc
                                                                      1080
dottotabco tgotcaccaa cotggacaga gggacaccog ggtga
                                                                      1125
..210
       3.4
       374
       PET
```

<2115 √0.12> <213> Homo sapiens

<400> 34

Met Pro Thr Leu Asn Thr Ser Ala Ser Pro Pro Thr Phe Phe Trp Ala

Asn Ala Ser Gly Gly Ser Val Leu Ser Ala Asp Asp Ala Pro Met Pro

Val Lys Fhe Leu Ala Leu Arg Leu Met Val Ala Leu Ala Tyr Gly Leu

Val Gly Ala Ile Gly Leu Leu Gly Asn Leu Ala Val Leu Trp Val Leu

Ser Ash Cys Ala Arg Arg Ala Pro Gly Pro Pro Ser Asp Thr Phe Val

WO 01.36471 PCT/US00 31509

```
The Asr Let A.. Let Ala Asp Let Gly Let Ala Let Thr Let Fro Phe \frac{1}{90}
Trp Ala Ala Gru Set Ala Leu Asp Phe His Trp Pro Phe Gry Gly Ala
Leu Cys Lys Met Val Leu Thr Ala Thr Val Leu Asn Val Tyr Ala Ser
lle Phe Leu ile Thr Ala Leu Ser Val Ala Arg Tyr Tr<br/>r Val Val Ala 130 $135\  \  \, 140
Met Ala Ala Gly Pro Gly Thr His Leu Ser Leu Phe Trp Ala Arg Ile
Ala Thr Leu Ala Val Trp Ala Ala Ala Ala Leu Val Thr Val Pro Thr
Ala Val Phe Gly Vai Glu Giy Glu Val Cys Gly Val Arg Leu Cys Leu
Leu Arg Phe Pro Ser Arg Tyr Trp Leu Gly Ala Tyr Gln Leu Gln Arg
                             200
Val Val Leu Ala Phe Met Val Pro Leu Gly Val Ile Thr Thr Ser Tyr
                         215
Leu Leu Leu Ala Phe Leu Gln Arg Arg Gln Arg Arg Gln Asp
Ser Arg Val Val Ala Arg Ser Val Arg He Leu Val Ala Ser Phe Phe
Leu Cys Trp Phe Pro Asn His Val Val Thr Leu Trp Gly Val Leu Val
                                 265
Lys Phe Asp Leu Val Pro Trp Asn Ser Thr Phe Tyr Thr Ile Gln Thr
Ty: Val Phe Pro Val Thr Thr Cys Leu Ala His Ser Asn Ser Cys Leu
190 295 300
Asn Pro Val Leu Tyr Cys Leu Leu Arg Arg Glu Pro Arg Gln Ala Leu
                     310
                                          315
Ala Gly Thr Phe Arg Asp Leu Arg Ser Arg Leu Trp Pro Gln Gly Gly
Gly Trp Val Gln Gln Val Ala Leu Lys Gln Val Gly Arg Arg Trp Val
Ala Ser Asn Pro Arg Glu Ser Arg Pro Ser Thr Leu Leu Thr Asn Leu
                             360
Asp Arg Gly Thr Pro Gly
<210>
<2110 35
<2110 1092
<2120 DNA
<2130 Homo saptens
```

< 400> 35

atquatoggo accatotyca ggatoacttt otgyanatag acaagaagau otgolgtgtg 60

ticogagatg acticatigt	caaggtgttg	cogocagtat	tggggctgga	gtttatcttc	120
gggettetgg geaatggeet	tgccctgtgg	attttctgtt	tecaceteaa	gtcctggaaa	180
tocagoogga tittootgit	caacctggca	gtggctgact	ttctactgat	catotgcctg	24.0
osottootga tygasaacta	tgtgaggcgt	tggjactgga	agtttgggga	catocottgo	300
oggotgatgo tottcatgtt	ggctatgaac	cgccagjgca	gcatcatctt	cctcacggtg	360
qtggcggtag acaggtattt	ccgggtggtc	catececace	acgccctgaa	caagatotoo	420
aatoggacag cagocatcat	ctcttgcctt	ctgtggggca	tcactattgg	cctgacagtc	480
cacctootja agaagaagat	gccgatccag	aatggcggtg	caaatttgtg	cagcagette	540
ayeatetgee atacetteca	gtggcacgaa	gccatgttcc	tectggagtt	cttactgaca	600
orgggeatea toorgtrorg	ctcagccaga	attatctgga	geetgeggea	gagacaaatg	66)
qaccggcatg ccaagatcaa	gagagccatc	accttcatca	tggtggtggc	catogtottt	720
gtcatctget tecttoccag	cgtggttgtg	cggatccgca	tottotggot	cctgcacact	780
togggcacgo agaattgtga	agtgtaccgc	tcggtggacc	tggcgttctt	tatcactctc	840
agcttcacct acatgaacag	catgctggac	cccgtggtgt	actacttctc	cagoccatoo	900
tttcccaact tottctccac	tttgatcaac	cgctgcctcc	agaggaagat	gacaggtgag	960
ccagataata accgcagcac	gagcgtcgag	ctcacagggg	accecaacaa	aaccagaggc	1020
getecagagg egttaatgge	caactccggt	gagecatgga	gecectetta	tctgggccca	1080
acctctcctt aa					1092

<210> 36
<211> 363
<212> PRT
<213> Homo sapiens

-:400> 36

Met Asn Arg His His Leu Gln Asp His Phe Leu Glu Ile Asp Lys Lys 1 5 10 15

Val Leu Gly Leu Glu Phe Ile Phe Gly Leu Leu Gly Asn Gly Leu Ala

Leu Trp Ile Phe Cys Phe His Leu Lys Ser Trp Lys Ser Ser Arg Ile 50 60

Phe Leu Phe Asn Leu Ala Val Ala Asp Phe Leu Leu Ile Ile Cys Leu 65 70 75 80

Pro Phe Leu Met Asp Asn Tyr Val Arg Arg Trp Asp Trp Lys Phe Gly 85 90 95

Asp Ile Pro Cys Arg Leu Met Leu Phe Met Leu Ala Met Asn Arg Gln

G13	Je:	11e 115	Il⊬	Fhe	Leu	Thr	Val 120	Val	Ala	Val	Asp	Arg 125	Tyr	Phe	Arq	
Vall	Val 130	His	Pro	His	His	Ala 135	Leu	Asn	Lys	lle	Ser 140	Ash	Arg	Thr	Ala	
A1a 145	He	Ile	Set	Суз	Leu 150	Leu	Trp	Gly	Il€	Th: 155	ile	Gly	Leu	Thr	Val 160	
His	Leu	Leu	Lys	Lys 165	Lys	Met	Pro	He	Gln 170	Asn	Gly	Gly	Ala	Asn 175	leu	
Cys	Ser	Ser	Phe 180	Ser	Ile	Сув	His	Tnr 185	Phe	Gln	Trp	His	Glu 190	Ala	Met	
Ph∈	Leu	Leu 195	Glu	Phe	Phe	Leu	Pro 200	Leu	Gly	Ile	Ile	Leu 205	Phe	Cys	Ser	
Ala	Arg 210	Il€	He	Trp	Ser	Leu 215	Arg	Gln	Arg	Gln	Met 220	Asp	Arg	His	Ala	
Lys 225	lle	Lys	Arg	Ala	11e 230	Thr	Pho	Ile	Met	7al 235	Val	Ala	Ile	Val	Phe 240	
Val	Ile	Суѕ	Phe	Leu 245	Pro	Ser	Val	Val	Val 250	Arg	Ile	Arg	Ile	Phe 255	Trp	
Leu	Leu	His	Thr 260	Ser	Gly	Thr	Glr.	Asn 265	Cys	Glu	Val	Туг	Arg 270	Ser	Val	
Asp	Leu	Ala 275	Phe	Phe	lle	Thr	Leu 280	Ser	Phe	Thr	Туг	Met 285	Asn	Ser	Met	
Leu	Asp 290	Pro	Val	Val	Tyr	Tyr 295	Phe	Ser	Ser	Pro	Ser 300	Phe	Pro	Asn	Phe	
Phe 305	Ser	Thr	Leu	Ile	Asn 310	Arg	Суѕ	Leu	Gln	Arg 315	Lys	Met	Thr	Gly	Glu 320	
Pro	Asp	Asrı	Asr.	Arg 325	Ser	Thr	Ser	Val	Glu 330	Leu	Thr	Gly	Asp	Pro 335	Asn	
Lys	Thr	Arg	Gly 340	Ala	Pro	Glu	Ala	Leu 345	Met	Ala	Asn	Ser	Gly 350	Glu	Pro	
Trp	Ser	Pro 355	Ser	Tyr	Leu	Gly	Pro 360	Thr	Ser	Pro						
:210 ::211 ::212 ::213	li• :	37 1044 DNA Homo	sapi	iens												
<40(ataç		37 atg a	agetç	ggcad	cc tt	gccc	etgte	a ada	cacta	acag	ctto	ggeeg	jāc :	cctga	atccag	60
otea	atcad	gca a	agaca	accet	ig ca	atgco	cccaa	a gca	agcca	agca	acad	stta	stt (gāāco	ctaggg	120
gac	ctdad	ggg t	racco	cagot	to da	atgct	gtac	tg:	gattt	itcc	ttcc	cctca	aag .	cctgo	itgact	180
gcag	geca	cac t	tagot	tgtca	ag co	ccct	igat	g ato	ggtga	асса	ticat	cgcgq	gaa -	ccaad	ggctg	240
cga:	cagga	agc d	cccad	otaco	at go	ctcc	aggat	aac	catco	ctgc	toto	cagad	cat .	ggcct	lacatt	300
ctca	ctcc	aca t	tgata	catic	c ct	ccaç	gcago	c ctç	gggt				ggg -	ccgca	atgycc	360
											Page	36				

tgtggc: ttc	tcactgatgc	tgtcttcgcc	gootgoacca	gcaccatcct	gtectteacc	420
gocattetgo	tgcacaccta	cctggcagtc	atocatocac	tgcgctacct	ctccttcatg	480
::ccat;ggg	ctgcctggaa	ggcagtggcc	ctcatctggc	tggtggcctg	ctgcttcccc	5-10
asattootta	tttggctcag	caagtggcag	gatgcccage	tggaggagca	aggagettea	6-00
nacatociac	caccaageat	gggcacccag	ccgggatgtg	gcctcctggt	cattgttacc	650
tacaceteca	ttetgtgegt	totgttocto	tgcacagete	tcattgccaa	ctgtttctgg	720
aggatotatg	cagaggccaa	gacttcaggc	atotggggge	agggctattc	ccgggccagg	780
ggcaccctgc	tgatccactc	agtgctgatc	acattgtacg	tgagcacagg	ggtggtgttc	840
tocotggaca	tggtgctgac	caggtaccac	cacattgact	ctgggactca	cacatggctc	900
otggcagcta	acagtgaggt	actcatgatg	cttccccgtg	ccatgotocc	atacctgtac	960
ntgotocgot	aceggcaget	gttgggcatg	gtccggggcc	acctcccatc	caggaggcac	1020
:aggccatct	ttaccatttc	ctag				1044

<210> 38

<211> 347

...212> PRT

<213> Homo sapiens

-:400> 38

Met Gly Asp Glu Leu Ala Pro Cys Pro Val Gly Thr Thr Ala Trp Pro 1 5 10 15

Ala Leu Ile Gl
n Leu Ile Ser Lys Thr Pro Cys Met Pro Gl
n Ala Ala 20 \$25\$

Ser Asn Thr Ser Leu Gly Leu Gly Asp Leu Arg Val Pro Ser Ser Met $35 \\ 0 \\ 45$

Leu Tyr Trp Leu Phe Leu Pro Ser Ser Leu Leu Ala Ala Thr Leu 50 60

Ala Val Ser Pro Leu Leu Leu Val Thr Ile Leu Arg Asn Gln Arg Leu $_{75}$ 50 70 80

Arg Gln Glu Pro His Tyr Leu Leu Pro Ala Asn Ile Leu Leu Ser Asp $85 \hspace{1.5cm} 90 \hspace{1.5cm} 95$

Gly Trp Glu Leu Gly Arg Met Ala Cys Gly Ile Leu Thr Asp Ala Val 115 120 125

Phe Ala Ala Cys Thr Ser Thr Ile Leu Ser Phe Thr Ala Ile Val Leu 130 $$135\$

His Thr Tyr Leu Ala Val Ile His Pro Leu Arg Tyr Leu Ser Phe Met 145 \$150\$ 155 \$160\$

Ser His Gly Ala Ala Trp Lys Ala Val Ala Leu Ile Trp Leu Val Ala 165 170 175

Page 37

Cys Cys Phe Pro Thr Phe Leu Ile Trp L 185	eu Ser Lys Trp Gln Asp Ala 190
Gln Leu Glu Glu Gln Gly Ala Ser Tyr I 198 - 200	le Leu Pro Pro Ser Met Gly 205
Thr Glm Fro Gly Cys Gly Led Led Val I 215	le Val Thr Tyr Thr Ser Ile 220
Leu Jys Val Leu Phe Leu Cys Thr Ala L 125 230	eu Ile Ala Asn Cys Phe Trp 235 - 240
Arg Ile Tyr Ala Glu Ala Lys Thr Ser G 245	ly Ile Trp Gly Gln Gly Tyr 50 255
Ser Arg Ala Arg Gly Thr Leu Leu Ile H 260 265	is Ser Val Leu Ile Thr Leu 270
Tyr Val Ser Thr Gly Val Val Phe Ser L 275	eu Asp Met Val Leu Thr Aig 285
Tyr His His Ile Asp Ser Gly Thr His T 290 295	hr Trp Leu Leu Ala Ala Asn 300
Ser Glu Val Leu Met Met Leu Pro Arg A 305	la Met Leu Pro Tyr Leu Tyr 315 320
Leu Leu Arg Tyr Arg Glm Leu Leu Gly M 325	et Val Arg Gly His Leu Pro 30 335
Ser Arg Arg His Gln Ala Ile Phe Thr I 340	le Ser
<210 · 39	
<211 · 1023 <212 · DNA <213 · Homo sapiens	
<212 - DNA	ctgccg aacttttaaa caaatcotgg 60
<212 · DNA <213 · Homo sapiens <400 · 39	
<212 - DNA <213 - Homo sapiens <400 - 39 atgaatccat ttcatgcate ttgttggaac acct	tagata cagicatect decitecary 120
<212 - DNA <213 - Homo sapiens <400 - 39 atgaatccat ttcatgcate ttgttggaac acct aataaagagt ttgcttatca aactgccagt gtgg	tagata cagtoatoot occitocarg 120 acatoo toatigiatt cactataata 180
<pre><212 · DNA <213 · Homo sapiens <400 · 39 atgaatccat ttcatgcate ttgttggaac acct aataaagagt ttgcttatca aactgccagt gtgg attgugatta tctgttcaac aggqctggtt ggca</pre>	tagata cagtoatoot coottocarg 120 acatoo toattgtatt cactatoata 180 totgoa acctqgctgt ggctgatttq 240
<pre><212 · DNA <213 · Homo sapiens <400 · 39 atgaatecat tteatgeate ttgttggaac acct aataaagagt ttgettatea aactgeeagt gtgg attgugatta tetgtteaac agggetggtt ggea agatetagga aaaaaacagt ceetgacate tata</pre>	tagata cagicatect decitedaty 120 acated teatigiath dactathata 180 tetigoa accidgetigt ggetgatity 240 aatiggs decigaggigg agagtiggits 300
<pre><212 · DNA <213 · Homo sapiens <400 · 39 atgaatccat ttcatgcate ttgttggaac acct aataaagagt ttgcttatca aactgccagt gtgg attgqgatta tctgttcaac aggqctggtt ggca agatccagga aaaaaacagt ccctgacatc tata gtccacatag ttggaatgcc ttttcttatt cacc</pre>	tagata cagtoatoot coettobatq 120 acatoo toattgtatt cactataata 180 totgca acctqqotgt ggotgatttq 240 aatggg cocgaggggg agagtgggtg 300 tggata ottgtaacca atttgcotgt 360
<pre><212 · DNA <213 · Homo sapiens <400 · 39 atgaatccat ttcatgcate ttgttggaac acct aatadagagt ttgcttatca aactgccagt gtgg attgqgatta tctgttcaac aggqctggtt ggca agatccaga aaaaaacagt ccctgacate tata gtccacatag ttggaatgcc ttttcttatt cacc tttggggggc ctctctgcac catcatcaca tccc</pre>	tagata cagicatect decitebatq 120 acatec teatigiati daetataata 180 tetgea acetqgetgt ggetgatitq 240 aatggg decgaggggg agagtgggtg 300 tggata ettgtaacea attigeetgt 360 actitg dectegica aceatitega 420
<pre><212 · DNA <213 · Homo sapiens <400 · 39 atgaatccat ttcatgcate ttgttggaac acct aataaagagt ttgcttatca aactgccagt gtgg attgugatta tctgttcaac aggqctggtt ggca agatccagga aaaaaacagt ccctgacatc tata gtccacatag ttggaatgcc ttttcttatt cacc tttggggggc ctctctgcac catcatcaca tccc agtgccatca tgactgtaat gagtgtggac aggtc</pre>	tagata cagtoatect coefficiaty 120 acatec teatigiath cactatoata 180 tetigoa acctigotigi ggetgatity 240 aatigg eccgaggigg agagtiggig 300 tiggata ettigtaacea attigeetigt 360 actitig ecctegica accatiticga 420 ggatea attiggeet tigggeaget 480
<pre><212 · DNA <213 · Homo sapiens <4400 · 39 atgaatccat ttcatgcate ttgttggaac acct aataaagagt ttgcttatca aactgccagt gtgg attgugatta tctgttcaac agggctggtt ggca agatctaqga aaaaaacagt ccctgacatc tata gtccacatag ttggaatgcc ttttcttatt cacc tttggggggc ctctctgcac catcatcaca tccc agtgccatca tgactgtaat gagtgtggac aggtc ctgacacgtt ggagaacaag gtacaagacc atcc</pre>	tagata cagtoatoot coottobatq 120 acatoo toattgtatt cactataata 180 totgoa acctqqotgt ggotgatttq 240 aatggg cocqaggqgg agagtgqgtg 300 tgqata ottgtaacoa atttgcotgt 360 actttq cootogtooa accatttoga 420 gqatoa atttgqgoot ttgqqcagot 480 cgaaqq toatoaaatt taaagacqqt 540
<pre><212 · DNA <213 · Homo sapiens <400 · 39 atgaatecat tteatgeate ttgttggaac acct aataaagagt ttgettatea aactgeeagt gtgg attgqgatta tetgtteaac agggetggtt ggea agatetagga aaaaaacagt ceetgacate tata gteeacatag ttggaatgee ttttettatt cacc tttgggggge etetetgeac cateateaca teee agtgeeatea tgaetgtaat gagtgtggae aggt etgaeacgtt ggagaacaag gtaeaagaee atee teetttatee tggeattgee tgtetgggte tact</pre>	tagata cagicatect deciticaty 120 acated teatigiath dactabata 180 tetigoa accidgetigi ggetgatity 240 aatigg decigagigigi agagtigigigi 300 tiggata ettigiaacoa attigectigi 360 actitig decitegica accatiticga 420 ggatea attiggeeti tigggeaget 480 egaagi teateaaatt taaagaeggi 540 acgatig taetetigita taeaettitat 600
<pre><212 · DNA <213 · Homo sapiens <400 · 39 atgaatccat ttcatgcate ttgttggaac acct aataaagagt ttgcttatca aactgccagt gtgg attgqgatta tctgttcaac aggqctggtt ggca agatccagga aaaaaacagt coctgacate tata gtccacatag ttggaatgcc ttttcttatt cacc tttggggggc ctctctgcac catcatcaca tccc agtgccatca tgactgtaat gagtgtggac aggtc ctgacacgtt ggagaacaag gtacaagacc atcc tcctttatcc tggcattgcc tgtctggqtc tact gttgagagtt gtgctttga tttgacatcc cctg.</pre>	tagata cagicatect deciticaty 120 acated teatigitatic daetataata 180 tetigoa acetigotigit ggetgatitiq 240 aatigigi decegaggigigi agagtigigitigi 360 aetitigi decitigitica aceatiticiga 420 agatea attigigicoti tigigicaget 480 egaagii teateaaati taaagaeggi 540 aegatigi taetetigitia tatuttaati 660 tigatiti tigigigigita tatuttaati 660
<pre><212 · DNA <213 · Homo sapiens <4400 · 39 atgaatccat ttcatgcate ttgttggaac acct aataaagagt ttgcttatca aactgccagt gtgg attgqgatta tctgttcaac aggqctggtt ggca agatccaga aaaaaacagt coctgacate tata gtccacatag ttggaatgcc ttttcttatt cacc tttggggggc ctctctgcae catcatcaca tecc agtgccatca tgactgtaat gagtgtggac aggtc ctgacacgtt ggagaacaag gtacaagacc atcc tcctttatcc tggcattgcc tgtctgggtc tact gttgagagtt gtgcttttga tttgacatec cctg ttgacgataa caacttttt tttccctcta ccct</pre>	tagata cagtoatoot coottobaty 120 acatoo toattgtatt cactataata 180 totgoa acctqqotgt ggotgatttq 240 aatggg cocgaggggg agagtgggtg 300 tggata ottgtaacca atttgcotgt 360 acttq cootcqtoca accatttoga 420 ggatoa atttgqgoot ttgqqcagot 480 ogaaqq toatcaaatt taaagacqqt 540 acgatq tactotggta tacactttat 600 tgatt tqqtqqta tattttaatt 660 aggatq coagatqctq caatoocaqt 720

atootgagtg otgoocotta toatgtgata caactggtga acttacagat ggaacagooc
acactggcot totatgtggg ttattacotc tocatotgto toagotatgo dagoagoago
attaaccett ttototacat cotgotgagt ggaaatttee agaaacgtot gootcaaate
caaagaagag cgactgagaa ggaaatcaac aatatgggaa acactotgaa atcacacttt
tag
<210> 40 <211> 340 <212> PRT <213> Homo sapiens
<400> 40
Met Asn Pro Phe His Ala Ser Cys Trp Asn Thr Ser Ala Glu Leu Leu 1 5 10 15
Asn Lys Ser Trp Asn Lys Glu Phe Ala Tyr Gln Thr Ala Ser Val Val 20 25 30
Asp Thr Val Ile Leu Pro Ser Met Ile Gly Ile Ile Cys Ser Thr Gly 35 40 45
Leu Val Gly Asn Ile Leu Ile Val Phe Thr Ile Ile Arg Ser Arg Lys 50 55 60
Lys Thr Val Pro Asp Ile Tyr Ile Cys Asn Leu Ala Val Ala Asp Leu 65 70 75 80
Val His Ile Val Gly Met Pro Phe Leu Ile His Gln Trp Ala Arg Gly 85 90 95
Gly Glu Trp Val Phe Gly Gly Pro Leu Cys Thr Ile Ile Thr Ser Leu 100 105 110
Asp Thr Cys Asn Gln Phe Ala Cys Ser Ala Ile Met Thr Val Met Ser 115 120 125
Val Asp Arg Tyr Phe Ala Leu Val Gln Pro Phe Arg Leu Thr Arg Trp 130 135 140
Arg Thr Arg Tyr Lys Thr Ile Arg Ile Asn Leu Gly Leu Trp Ala Ala 145 150 155 160
Ser Phe Ile Leu Ala Leu Pro Val Trp Val Tyr Ser Lys Val Ile Lys 165 170 175
Phe Lys Asp Gly Val Glu Ser Cys Ala Phe Asp Leu Thr Ser Pro Asp 180 185 190
Asp Val Leu Trp Tyr Thr Leu Tyr Leu Thr Ile Thr Thr Phe Phe 195 200 205
Pro Leu Pro Leu Ile Leu Val Cys Tyr Ile Leu Ile Leu Cys Tyr Thr 210 215 220

Trp Glu Met Tyr Gln Gln Asn Lys Asp Ala Arg Cys Cys Asn Pro Ser 225 235 235

Val Pro Lys Gln Arg Val Met Lys Leu Thr Lys Met Val Leu Val Leu

Page 39

250 245 .755 Val Val Val Phe Ile Leu Ser Ala Ala Pro Tyr His Val Ile Gli Leu Val Asn Leu Gln Met Glu Gln Fro Thr Leu Ala Phe Tyr Val Gly Tyr Tyr Leu Ser Ile Cys Leu Ser Tyr Ala Ser Ser Ser Ile Asn Pro Fae Lou Tyr lle Leu Leu Ser Gly Asn Phe Gln Lys Arg Leu Pro Gln Lie 310 Gln Arg Arg Ala Thr Glu Lys Glu Ile Asn Asn Met Gly Asn Thr Leu 325 330 Lys Ger His Phe <210 > 41 %211 * 24
%212 * DNA
%213 * Artificial Sequence 代220年 <221 misc_feature
<223 Novel Sequence</pre> -(400 + 41)24 ottgcagada toaccatggo agod +:210> 42 +:211> 24 +:212> DNA 32139 Artificial Sequence -12201-H221 misc_feature H223 Novel Sequence 5.4000 42° gtgatgctct gagtactgga ctgg 24 <0100 43 02110 20 02120 DNA 02130 Artificial Sequence %12. misc_feature %1230 Novel Sequence -14001- 43

PCT/US00/31509

WO 01/36471

gaagetgtga agagtgatge

*C.10 / 44 *C11> 24 *C212> DNA 20

<21130	Artificial Sequence	
	misc_feature Novel Sequence	
r:4000 qtcaqc	44 maata tigataagca gcag	24
<210><211><211><212><213> 213	27 DNA	
	misc_feature Novel Sequence	
<400> ccatgg	45 ggaa cgattctgtc agctacg	27
<210> <211> <212> <213>	24 DNA	
	misc_feature Novel Sequence	
<400> gctatg	46 cotg aagccagtot tgtg	24
	47 26 DNA Artificial Sequence	
	misc_feature Novel Sequence	
<4005 ccagga	47 tgtt gtgtcaccgt ggtggc	26
<pre><210> <211> <212> <213></pre>	48 26 ENA Artificial Sequence	
<221><223>	misc_feature Novel Sequence	
< 400>·	48	

PCT/US00/31509

WO 01/36471

cacagegetg cagecetgea getgge

26

<210≥		
<211>	7.6	
<212 ·	DNA	
4213 -	Artificial Sequence	
-1220 -		
1221 -	misc_feature	
+1.2.2.3 ×	Novel Sequence	
-:40h-	au	
	otkog tagggatgaa ocagac	26
	1.5g taggatgaa coagac	2 0
-1210 -		
<211		
1212		
182 4 3 1	Artificial Sequence	
<220 -	The Fortune	
N2217	m.sc_feature	
	Novel Sequence	
<400 -		
otogbac	cayg tgggaagcac ctgtgg	26
-210 -	51	
×211+	23	
4.2123		
4213 <i>2</i>	Artificial Sequence	
4229 ×		
1221	misc_feature	
223	Novel Sequence	
4000	\$1	
ផ្សាល់ ផ្ទុំ	gada gqaggtacoo tgg	23
110>		
421 D	25	
HIZ 11194	DNA	
-121 v - 1	Artificial Sequence	
4122 pre		
- 221×	misc_feature	
122	Novel Sequence	
0.0	<u> </u>	
	cto egagtgtoca gegge	2.5
4.10-	£3	
4211		
	DNA	
4.71.1.		
4.71.1.	DNA Artificial Sequence	
4.71.1.		

<223>	Novel Sequence	
: 4 00>	53	
gcatgg	agag aaaatttatg teettgeaac c	31
::210 ·	S. 4	
.21.		
4212 ·		
	Artificial Sequence	
k220 -		
	misc_feature	
<2232	Novel Sequence	
- 400:-		
caagaad	cayg totoatitaa gagotoo	27
12.5.60		
-121 CD - 21 125		
<212>		
	Artificial Sequence	
.215,	metricular boquemee	
<220>		
<2215	misc_feature	
203>	Novel Sequence	
. 4000	<mark>ፍ</mark> ፍ	
	goda tgaogtodad otgoad	26
<210>	56	
12112 12125	DNA	
	Artificial Sequence	
42200		
	misc_feature	
a a divi	Novel Sequence	
400>		
ggacagt	tca aggtttgcct tagaac	26
210>	É.J	
<211>	23	
-212>	AMA	
-213>	Artificial Sequence	
2208		
	misc feature	
	Novel Sequence	
	*	
.0.5		
400>		
rcttoga	atac tgctcctatg ctc	23
-210>	5.8	
211>	26	

PCT/US00/31509

WO 01/36471

<pre><pre><pre><pre><pre><pre><pre></pre></pre></pre></pre></pre></pre></pre>	INA Artificial Sequence	
	misc_feature Nover Sequence	
<400 - utauro	-56 cuct gaaantecag tgatco	2 b
<pre><210 + <211 + <212.+ <213 +</pre>	26	
	misc_feature Novel Sequence	
titi tttilu	egra tudatocaac catoto	26
.210 .211 .211 .213	at DNA Artoileaul Sequence	
+122 + + 22 + +1223 +	Run _ inature Novel Gequence	
+:40° ctgrat	ιώ dana upanag aggo totto	25
· 210 · · 211 · · 212: · 2130 ·	P8	
+.220. +.221 +.223+	misc_feature Novel Sequence	
∙:4000 ggaact	nd: ndra tagadecago gtogotec	28
<pre><!--2105 */2115 */2125 */2135</pre--></pre>	DNA	
+(220)+ +(221)+ +(223)+	misc_feature Novel Sequence	
·:400>	62	

WO 01 36471

PCT/US00/31509

ggaggt	tgog oottagogad agatgadd	2.8
:210 + ::211 + ::212 + ::213 +		
-1221) -1221) -1325	misc_feature Novel Sequence	
-4000 etgmad	ნ3 cogg acacttgoto tg	22
82113 82123 82123		
K2200 K2210 K2230	misc_feature Novel Sequence	
<4000 atotac		25
<2100 <2111 <2120 <2130	26	
+ 2200 + 221 / + 2230	musc_feature Novel Sequence	
k40(II) tatotge	f5 caat totattotag otootg	26
K1100 K1110 K1110 K1110 K1130	26	
<2208 <2215 <2235	misc_feature Novel Sequence	
4400: tationor	ьб taat aaagtcacat gaatgc	26
	6.7 23 DNA Artificial Sequence	
<200>		

PCT/US00/31509

WO 01/36471

	nisc feature Novel Sequence	
<400> ggagac	до насо atgaatgago cao	
<210° <211 · <212 · <213 ·	. 4	
	misc_feature Novel Sequence	
4400 - tattho	ស៊ី៖ aadg gttgtttgag taac	24
*1210 + +1211 + +1212 + +1213	27	
	misc_feature Novel Sequence	
dacacc dacacc	69 agtg gaggttttct gagcatg	27
.2100 -(212) -(212) -(213)	6 m 4 · f	
12230 41210 41230	misc_feature Novel Sequence	
-:400:- etgatg	ាក់ gaag tagaggotgt coatoto	27
0.2100 0.211 0.212 0.230	71 23 DNA Artificial Sequence	
-(220)- -(221) -(223)	misc_feature Novel Sequence	
<400 actigac	71 gage egetagegee atg	23
-:210:-	72	

WO 01/36471

PCT/US00/31509

	23	
<212>		
<213>	Artificial Sequence	
<220>		
<12.11>	misc_feature	
:223>	Novel Sequence	
-:400>		
atqago	city coaggoodto agt	23
.010		
<210>		
42112 ·		
<pre><212></pre>		
1.213.	Artificial Sequence	
-12201-		
	misc_feature	
· · · · · · · · · · · · · · · · · · ·	Novel Sequence	
	nover sequence	
400>	73	
ctacqa:	tgoc cacactcaat acttotg	27
42105		
12115	27	
<2125		
- 213:	Artificial Sequence	
42205		
2212	misc_feature	
<223>	Novel Sequence	
400>	7.4	
	ceta caettggtgg ateteag	27
aaqqac	seea caeeeggegg aceeeag	~ /
s.2105	7.5	
.2118		
4212>		
42135	Artificial Sequence	
	75	
actadad	gcat tcactaggcg ag	22
-210>	76	
<211>	24	
2125	DNA	
<213>	Artificial Sequence	
-2200		
\$2215	misc feature	
01235	Novel Sequence	
	north bogaenee	
4000	76	
	iggt tottggtgac aatg	24
-		

PCT/US00/31509

WO 01/36471

<210> 77

11.	24	
- 21.5	DNA	
213.	Artificial Sequence	
000		
<220 ·	w.vc.faaturo	
V 2 2 3	musc_feature tovel Sequence	
	no to a boquetino	
400.		
agccuto	cot godaggaagd atgg	2.4
<210.	78	
<2110		
<212.	DNA	
<213 ·	Artificial Sequence	
<.11.00		
	maso feature	
2.23	misc_feature Novel Sequence	
	•	
	24	
<4(0) ·	्ष :qtg gactcaagaa ctctagg	27
Clagaci	turing gatteaagaa ettetagg	
<11100		
W111:		
1.121	Artificial Sequence	
3 -2	Mitificial Sequence	
<pre>-12200</pre>		
-:121	masc_feature Novel Sequence	
+1.0235	Novel Sequence	
.400	7.4	
	caka caatgaatee atticatg	28
10	<i>y</i> ()	
111		
-:_1.2 ·	DNA	
13	Artificial Sequence	
*		
20	miss feature	
1 2 - - 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Movel Sequence	
223	novez begaense	
-:400 -		25
atcaigi	tota gactoatggt gatoc	٠. ٠
·(21c) +		
	<i>1</i> 0	
-0.212 -		
3	Artificial Sequence	
<.220		
-1221-	misc_feature	
<:223 ×	Novel Sequence	

WO 01/36471

PCT/US00/31509

<400> 31 30 gaggagegaa agcaaaggig gicciccigg <310> 32 <21110 30 RU12H DNA <:213> Artificial Sequence 41220H 1721: misc_feature 1223: Novel Sequence +:400:- 82 ccaggagaac cacctttgct ttccctcccc 30 12100 83 .211> 1356 -.112: DNA ·213 Homo sapiens 4000 83 atggagteet cacceateee ceagteatea gggaactett ceaetttggg gagggteeet 60 caaaccccag gtccctctac tgccagtggg gtcccggagg tggggctacg ggatgttgct 120 toggaatotg toggoodtott ottoatgoto otgotogact togatogotot gootogoaat 180 googetgtga tggccgtgat cgccaagacg cctgccctcc gaaaatttgt cttcqtcttc 240 cassitetgee tggtggaeet getggetgee etgaeeetea tgeeeetgge eatgetetee 300 agatetgeee tetttgacca egecetettt ggggaggtgg eetgeegeet etaettgttt 350 rtgagegtgt getttgteag eetggeeate eteteggtgt eagecateaa tgtggagege 420 tactattacq tagtocacco catgogotac qaqqtqoqoa tqacqotqqq qotqqtqqoo 480 totgtgctgg tgggtgtgtg ggtgaaggco ttggccatgg ottotgtgcc agtgttggga 540 aqqqtctcct gggaggaagg agctcccagt qtcccccaq qctqttcact ccaqtqqaqc 600 cacaqtgcct actgccaget ttttgtggtg gtetttgetg teetttaett tetgttgeee 65C ctyctectea tacttgtggt ctactgcage atgtteegag tggeeegegt ggetgeeatg 720 cagcacggge egetgeecae gtggatggag acacceegge aacgeteega ateteteage تالاد agongotoca ogatggtoac cagotogggg godococaga coacoccaca coggacgttt 840 uggggaggga aagcaaaggt ggttctcctg gctgtggggg gacagttcct gctctgttgg 900 ttgccctact tctctttcca cctctatgtt gccctgagtg ctcagcccat ttcaactggg 950 caggiggaga gigiggicae eiggatigge tacttitiget teaettecaa ecettiette 1020 tatggatgto toaacoggoa gatooggggg gagotoagoa agcagtttgt otgottotto 1080 aagccagete cagaggagga getgaggetg cetageeggg agggeteeat tgaggagaae 1140 ticotgoagt toottoaggg gactggotgt cottotgagt cotgggttto cogaccocta 1200

cccagcccca agcaggagcc acctgctgtt gactttcgaa tcccaggcca gatagctgag

Page 49

PCT/US00/31509

1260

WO 01/36471

WO 01 36471 PCT US00 31509

1356

strugtesty degenteach coggetygas teatga <210> 84 <211> 451 :212> PRT <213> Homo sapiens <400> 84 Met Glu Ser Ser Pro Ile Pro Gin Ser Ser Gly Asn Ser Ser Thr Leu Gly Arg Val Pro Glr. Thr Pro Gly Pro Ser Thr Ala Ser Gly Val Fro Glu Val Gly Leu Arg Asp Val Ala Ser Glu Ser Val Ala Leu Phe Phe Met Leu Leu Leu Asp Leu Thr Ala Val Ala Gly Asn Ala Ala Val Met Ala Val Ile Ala Lys Thr Pro Ala Leu Arg Lys Phe Val Phe Val Phe His Leu Cys Leu Val Asp Leu Leu Ala Ala Leu Thr Leu Met Pro Leu Ala Met Leu Ser Ser Ser Ala Leu Phe Asp His Ala Leu Phe Gly Glu 105 Val Ala Cys Arg Leu Tyr Leu Phe Leu Ser Val Cys Phe Val Ser Leu 120 115 Ala Ile Leu Ser Val Ser Ala Ile Asn Val Glu Arg Tyr Tyr Val Val His Pro Met Arg Tyr Glu Val Arg Met Thr Leu Gly Leu Val Ala Ser Val Leu Val Gly Val Trp Val Lys Ala Leu Ala Met Ala Ser Val 175 Pro Val Leu Gly Arg Val Ser Trp Glu Glu Gly Ala Pro Ser Val Pro Pro Gly Cys Ser Leu Gln Trp Ser His Ser Ala Tyr Cys Gln Leu Phe Val Val Val Phe Ala Val Leu Tyr Phe Leu Leu Pro Leu Leu Leu Ile Leu Val Val Tyr Cys Ser Met Phe Arg Val Ala Arg Val Ala Ala Mot Gln His Gly Pro Leu Pro Thr Trp Met Glu Thr Pro Arg Gln Arg Ser Glu Ser Leu Ser Ser Arg Ser Thr Met Val Thr Ser Ser Gly Ala Pro 265 Gln Thr Thr Pro His Arg Thr Phe Gly Gly Gly Lys Ala Lys Val Val Page 50

gadacetotg agttertgda geageaacte acragegaea trateatgte agaragetae

		275					280					285				
Leu	Leu 290	Alā	Val	Gly	Gl y	Gln 295	Phe	Leu	Leu	Суѕ	Trp 300	Leu	Pro	Tyr	Phe	
Ser 305	Phe	His	Leu	Tyr	Val 310	Ala	Leu	Ser	Ala	Gln 315	Pro	Ile	Ser	Thr	Gly 320	
Gln	Val	Glu	Ser	Val 325	Val	Thr	Trp	Ile	Gly 330	Tyr	Phe	Суѕ	Phe	Thr 335	Ser	
Asn	Pro	Phe	Phe 340	Туг	Gly	Суѕ	Leu	Asn 345	Arg	Gln	Ile	Arg	Gly 350	Glu	Leu	
Ser	Lys	Gln 355	Fne	Val	Cys	Phe	Phe 360	Lys	Pro	Ala	Pro	Glu 365	Glu	Glu	Leu	
Arg	Leu 370	Pro	Ser	Arg	Glu	Gly 375	Ser	Ile	Glu	Glu	Asn 380	Phe	Leu	Gln	Phe	
Leu 385	Gln	Gly	Thr	Gly	Cys 390	Pro	Ser	Glu	Ser	Trp 395	Val	Ser	Arg	Pro	Leu 400	
Pro	Ser	Pro	Lys	Gln 405	Glu	Pro	Pro	Ala	Val 410	Asp	Phe	Arg	Ile	Pro 415	Gly	
Gln	Ile	Ala	Glu 420	Glu	Thr	Ser	Glu	Phe 425	Leu	Glu	Gln	Gln	Leu 430	Thr	Ser	
Asp	Ile	Ile 435	Met	Ser	Asp	Ser	Tyr 440	Leu	Arg	Pro	Ala	Ala 445	Ser	Pro	Arg	
Leu	Glu 450	Ser														
<210 <211 <212 <213	2 !→ E	35 28 NA Iomo	sapi	.ens												
<400). 1.	35														
		ıca a	agac	cacc	a to	atca	itc									28
<210 <211 <212 <213	> 2 > E	86 8 NA	sapi	ens												
< 400	i:- 8	16	ıtggt		g cc	ttcc	tg									28
<210 <211 <212 <213	> 1 > E	7 041 0NA Iomo	sapi	ens												
<400 atgg		7 aa a	attt	atgt	c ct	tgca	асса	. tcc	atct	.ccg	tato	agaa	at ç	ıgaac	caaat	: 60
ggca	cctt	ca g	caat	aaca	a ca	gcag	gaac	tgo	acaa	ttg	aaaa	cttc	aa c	agaq	aattt	120
															ccata	

WO 01.36471 PCT/US00 31509

taigittico	tyragustta	taagaagtee	acatotytya	aduttttiat	griduatotj	240
gucatttcag	atotostątt	cataagsasg	cttesettea	gagetgaeta	ttatottaga	300
ggotocaatt	gqatatitgg	agueetggee	tgcsągatta	tgtettatte	cttqtatqtc	360
aacatgtaca	geagtattta	tttootgacc	gtgstgagtg	ttgtgcgttt	octggcaatg	420
gttclocccct	tt aggethet	gcatdtcadu	agcatcagga	gtgcctquat	uchotataggg	480
atcatatgga	toottatoat	ggattaataa	atautgotoc	tqqacagtgq	ctctqagcag	540
aacggcagtg	tcacatcatg	cttagagetg	aatototata	ääättgotaa	getgeagaee	600
atgaactata	ttgccttggt	ggtgggctgc	ctgotgocat	ttttcacact	cagcatotgt	650
tatotgotga	toattogggt	toigitaaaa	gtggaggtcc	cagaatcqqq	gctacgggtt	720
totoacagga	aggcaaagac	caccatcate	atcaccttga	toatottott	ctigigitte	780
otgodotato	acacactgag	gaccgtccac	ttgacgacat	ggaaagtqqq	tttatgcaaa	840
gacadactgc	ataaagcttt	ggttatcaca	ctggccttgg	cagcagecaa	tgcctgcttc	900
aatoutotgo	totattactt	tgstggggag	aattttaagg	acagactaaa	gtotgcacto	960
agaamaggcc	atocapagaa	ggcaaagaca	aagtgtgttt	tccctgttag	tgtgtggttg	1020
agaaaggaaa	caagagtata	a				1041

<210 + 88
<2110 346
<2120 PRT</pre>

:213: Homo sapiens

Met Glu Arg Lys Phe Met Ser Leu Gln Pro Ser Ile Ser Val Ser Glu

Met Glu Pro Asn Gly Thr Phe Ser Asn Asn Asn Ser Arg Asn Cys Thr

Ile Glu Asn Phe Lys Arg Glu Phe Phe Pro Ile Val Tyr Leu Ile Ile 35 -40 -45

Phe Phe Trp Gly Val Leu Gly Asn Gly Leu Ser Ile Tyr Val Phe Leu

Gln Pro Tyr Lys Lys Ser Thr Ser Val Asn Val Phe Met Leu Asn Leu

Ala Ile Ser Asp Leu Leu Phe Ile Ser Thr Leu Pro Phe Arg Ala Asp $\frac{35}{90}$

Tyr Tyr Leu Arg Gly Ser Asn Trp Ile Phe Gly Asp Leu Ala Cys Arg 100 - 105 110

Ile Met Ser Tyr Ser Leu Tyr Val Ash Met Tyr Ser Ser Ile Tyr Phe

Leu Thr Val Leu Ser Val Val Arg Phe Leu Ala Met Val His Pro Phe 135

Page 52

Arg 145	Leu	Len	His	Val	Thr 150	Ser	Ile	Arg	Ser	Ala 155	Trp	:1e	Leu	Cys	Gly 160		
Ile	Ile	Trp	Ile	Leu 165	Ile	Met	Ala	Ser	Ser 170	Ile	Met	Leu	Leu	Asp 175	Ser		
Gly	Ser	Glu	Gln 180	Asn	Gly	Ser	Val	Thr 185	Ser	Cys	Leu	Glu	Leu 190	Asn	Leu		
Tyr	Lys	Ile 195	Ala	Lys	Leu	Gln	Thr 200	Met	Asn	Туг	lle	Ala 205	Leu	Val	Val		
Gly	Cys 210	Leu	Leu	Pro	Phe	Phe 215	Thr	Leu	Ser	Ile	Cys 220	Tyr	Leu	Leu	Ile		
Ile 225	Arg	Val	Leu	Leu	Lys 230	Val	Glu	Val	Pro	Glu 235	Ser	Gly	Leu	Arg	Val 240		
Jer	Hıs	Arg	Lys	Ala 245	Lys	Thr	Thr	Ile	Ile 250	Ile	Thr	Leu	Ile	Ile 255	Phe		
Phe	Leu	Cys	Phe 260	Leu	Pro	Tyr	His	Thr 265	Leu	Arg	Thr	Val	His 270	Leu	Thr		
Thr	Trp	Lys 275	Val	Gly	Leu	Cys	Lys 280	Asp	Arg	Leu	His	Lys 285	Ala	Leu	Val		
Ile	Thr 290	Leu	Ala	Leu	Ala	Ala 295	Ala	Asn	Ala	Суѕ	Phe 300	Asn	Pro	Leu	Leu		
Tyr 305	Tyr	Phe	Ala	Gly	Glu 310	Asn	Phe	Lys	Asp	Arg 315	Leu	Lys	Ser	Ala	Leu 320		
Arg	Lys	Gly	His	Pro 325	Gln	Lys	Ala	Lys	Thr 330	Lys	Cys	Val	Phe	Pro 335	Val		
Ser	Val	Trp	Leu 340	Arg	Lys	Glu	Thr	Arg 345	Val								
<210 <211 <212 <213	. 10 - 2 20 - 1	39 28 DNA Artif	icia	al Se	equer	ıce											
<220 +:221 +:223	. > r	misc Novel	-		ce												
<40(ccaç		39 aaa g	ıctaa	ıgaaa	ag to	gatet	tc									21	8
<210 <211 <212 <213	.>- 2 >- 1	90 28 DNA Artif	icía	ıl Se	equer	ıce											
<.220 <:221 <:223	.> r	nısc Novel			ce												
<4(i)	-	90 act t	tctt	agct	it to	jcact	gg									21	8

```
<210 × 91
<2115 1513
K012> DNA
<2134 Home sapiens
<400> 91
atgaogteca contecaccaa caqeacqege qagaqtaaca guagocacac qtgcatgecc
                                                                       60
ototocuada typocatody ontygosoda gydatodtud ghtolaccyt ghtyyttato
                                                                      120
tteetegeeg cetetttegt eggcaacata gtgetggege tagtgttgca gegeaageeg
                                                                      180
cagotioning Aggingaciaa contititato tittaacotic togicacoga coingcipoag
                                                                      240
attitudetcz typocecita gatagitago acetolytac eletolicty acceptaac
                                                                      317
agegaptical goaledgeed gqttageete acceaectgt tegeettege eagegteaae
                                                                      350
accattqtog tggtgtoagt ggatcgotan ttgtocatba tocaecotct otootaboog
                                                                      4.20
topaagatga occagogoog oggitadotig oboototatig goadotiggat tigtiggodato
                                                                      430
otypaqagba otootobact otacggotyg ggocaggoty cotttgatga gogcaatgot
                                                                      540
                                                                      600
ctorgetoca tgatotgggg ggodagdddd agetadaeta ttotdagogt ggtgtootto
atogteatty castgattgt catgattged tgotactoog (ggtgttotg tgoagooogg
                                                                      660
                                                                      720
aggeageatg ctetgetgta caatgteaag agacacaget tggaaqtgeg agteaaggae
                                                                      780
tqtqtqqaqa atqaqqatqa aqaqqqaqca qaqaagaaqq aqqaqttcca qqatqaqaqt
qaqtttoqoc qobaqcatqa aqqtqaqqto aaqqobaaqq aqqqbaqaat qqaaqobaaq
                                                                      840
gaoggeagee tgaaggeeaa ggaaggaage acggggacea gtgagagtag tgtagaggee
                                                                      900
aggggcagcg aggaggtcag agagagcagc acggtggcca gcgacggcag catggagggt
                                                                      960
                                                                     1020
aaqqaaqqsa qcaccaaaqt tgaggagaac agsatqaagg sagacaaggg togsacagag
                                                                     1080
qtosaccaqt qcaqcattqa sttqqqtqaa qatqacatqq aqtttqqtqa aqatqacatc
aattteagtg aggatgaegt ogaggeagtg aacatebogg agageetebe acceagtegt
                                                                     1140
ogthacoagoa acagcaacoo toototgooc aggtgotaco agtgoaaago thaagaaagtg
                                                                     1200
atottoatoa toattitoto otatgigota topotgiggo octacigott ittagoagit
                                                                     1250
ctggddgtgt gggtggahgt dgaaadddag gladddagt gggtgatdad dataatbatb
                                                                     1320
tagetttiet teetgeagtg etgeateeae eestatgtet atagetaeat geaeaagaee
                                                                     1380
attaagaaqq aantocaqqa catgotqaaq aaqttottot gosaggaaaa qoocooqaaa
                                                                     1440
                                                                     1500
quaquataque acceaqueet geologgaaca gauqqtigggi etquaggeau quitiqteet.
                                                                     1527
icctacgatt ctgctacttt tccttga
```

<210> 92

<211> 508

<212> PRT

<213> Homo sapiens

<400> 92

Met Thr Ser Thr Cys Thr Asn Ser Thr Arg Glu Ser Asn Ser Ser His Thr Cys Met Pro Leu Ser Lys Met Pro Ile Ser Leu Ala His Gly Ile Ile Arg Ser Thr Val Leu Val Ile Phe Leu Ala Ala Ser Phe Val Gly Asn Ile Val Leu Ala Leu Val Leu Gln Arg Lys Pro Gln Leu Leu Gln Val Thr Asn Arg Phe Ile Phe Asn Leu Leu Val Thr Asp Leu Leu Gln Ile Ser Leu Val Ala Pro Trp Val Val Ala Thr Ser Val Pro Leu Phe Trp Pro Leu Asn Ser His Phe Cys Thr Ala Leu Val Ser Leu Thr His 105 Leu Phe Ala Phe Ala Ser Val Asn Thr Ile Val Val Val Ser Val Asp Arg Tyr Leu Ser Ile Ile His Pro Leu Ser Tyr Pro Ser Lys Met Thr 135 3ln Arg Arg Gly Tyr Leu Leu Tyr Gly Thr Trp Ile Val Ala Ile Leu Gln Ser Thr Pro Pro Leu Tyr Gly Trp Gly Gln Ala Ala Phe Asp Glu Arg Asn Ala Leu Cys Ser Met Ile Trp Gly Ala Ser Pro Ser Tyr Thr Ile Leu Ser Val Val Ser Phe Ile Val Ile Pro Leu Ile Val Met Ile Ala Cys Tyr Ser Val Val Phe Cys Ala Ala Arg Arg Gln His Ala Leu Leu Tyr Asn Val Lys Arg His Ser Leu Glu Val Arg Val Lys Asp Cys Val Glu Asn Glu Asp Glu Glu Gly Ala Glu Lys Lys Glu Glu Phe Gln Asp Glu Ser Glu Phe Arg Arg Gln His Glu Gly Glu Val Lys Ala Lys Glu Gly Arg Met Glu Ala Lys Asp Gly Ser Leu Lys Ala Lys Glu Gly Ser Thr Gly Thr Ser Glu Ser Ser Val Glu Ala Arg Gly Ser Glu Glu Val Arg Glu Ser Ser Thr Val Ala Ser Asp Gly Ser Met Glu Gly 310 Lys Glu Gly Ser Thr Lys Val Glu Glu Asn Ser Met Lys Ala Asp Lys 325 330

Page 55

Gly Arg Thr Glu Val . 340	-	Ser Tle Asp L 345	eu Gly Glu Asp 350	Asp
Met Glu Phe Gly Glu . 355	Asp Asp Ile 7 360	Asn Phe Ser G	lu Asp Asp Val 365	Glu
Alu Val Ash Ile Pro : 370	Glu Ser Leu I 375		rg Arg Asn Ser 80	Asn
Ser Asn Pro Pro Leu 385	Pro Arg Cys " 390	Tyr Gln Cys L 395	ys Ala Lys Lys	Val 400
ile Phe Ile Ile Ile 405	Phe Ser Tyr V	Val Leu Ser Le 410	eu Gly Pro Tyr 415	Сув
Fhe Leu Ala Val Leu 420		Val Asp Val G 425	lu Thr Gln Val 430	Pro
No Try Val (le Thr : 435	Ile Ile Ile 7	Trp Leu Phe Pl	he Leu Gin Cys 445	Cys
In Him From Tyr Val (Tyr Gly Tyr N 455		hr Ile Lys Lys 60	Glu
The Gln App Met Leu 1	Lys Lys Phe E 470	Phe Cys Lys Gl 475	lu Lys Pro Pro	Lys 480
Alb Ang Der His Pro A 485	Asp Leu Pro G	Gly Thr Glu Gl 490	ly Gly Thr Glu 495	Gly
Ly. 11- Val Fro Ser 5	•	Ala Thr Phe P: 505	ro	
+010+ HP <011+ DH <010+ DMA <01+ Artificial Sec	quence			
<pre>223 * Mana_feature <223 * Nove. Sequence</pre>	e			
400 · 93 gnogcoacug ogocaagagg	g aagattggc			29
<21 + 34 <211 + 29 <212 + DNA <213 > Artificial Sec	quence			
<2200 <221+ must feature <223+ Novel Sequence	ę			
<4005 94 gccaatotic otottggcgd	c ggtggcggc			29
<210> 95 <211> 1092 <212> DNA				

			•													
<40 atg		95 ccg	gcga	āācā	ct g	ıctgg	cggg	t ct	cctg	gtga	tgg	tact	ggc	cgtg	gogota	60
cta	tcca	acg	cact	ggtg	ct g	cttt	gttg	c go	ctac	agcg	ctg	agct	ccg	cact	egagee	120
tca	ggcg	tcc	tcct	ggtg	aa t	ctat	cgct	a aa	ccac	ctgc	tgc	tggc	ggc	gctg	gacatg	180
cac.	ttca	cgc	tgct	cggt	gt g	atgo	gegg	g cg	gaca	ccgt	cgg	cgcc	cgg	cgca	tgccaa	240
gtc	attg	gct	tcct	ggac	ac c	ttcc	tggc	g to	caac	gcgg	cgc	tgag	cgt	ggcg	gegetg	300
agco	gcag	acc	agtg	gctg	gc a	gtgg	gctt	c cc	actg	cgct	acg	ccgg	acg	cctg	cgaccg	360
cgc	tatg	ccg	gcct	gctg	ct g	ggct	gtgc	c tg	ggga	cagt	cgc	tggc	ctt	ctca	ggcgct	420
gcad	cttg	gct	gctc	gtgg	ct t	ggct	acago	ag:	cgcc	ttcg	cgt	cctg	ttc	gatg	cgcctg	480
cago	ccg	agc	ctga	gcgt	cc g	cgct	taga	a gc	cttc	accg	сса	cgct	сса	tgcc	gtggge	540
tta	gtgc	tgc	cgct	ggcg	gt g	ctct	gaata	ac	ctcg	ctcc	agg	tgca	ccg	ggtg	gcaege	600
ago	cact	gcc	agcg	catg	ga c	accg	tcaco	at	gaag	gege	tcg	cgct	gct	cgcc	gacctg	660
caco	ccca	gtg	tgcg	gcag	cg c	tgcc	tcato	са	gcag	aagc	ggc	gccg	сса	cege	gccacc	720
agga	aga	ttg	gcat	tgct	at t	gcga	cctt	ct	catc	tgct	ttg	cccc	gta	tgtc	atgacc	780
aggo	tgg	cgg	agct	cgtg	cc c	ttcg	tcaco	gt	gaac	gccc	aga	aggg	cat	cctc	agcaag	840
tgcc	ctga	cct	acag	caag	gc g	gtgg	ccgad	c cc	gttc	acgt	act	ctct	gct	ccgc	eggeeg	900
ttcc	gcc	aag	tcct	ggcc	āā c	atgg	tgcad	c cg:	gctg	ctga	aga	gaac	ccc	gcgc	ccagca	9+10
tidda	CCC	atg	acag	ctct	ct g	gatg	tggcd	gg	catgo	gtgc	acca	agct	get	gaag	agaacc	1020
cago	gcc	cag	cgtc	cacc	ca c	aacg	gatat	gto	ggaca	acag	agaa	atga	ttc	ctgc	ctgcag	1080
caga	caca	act	ga													1092
<210 <211 <212 <213	.> ; !>]	96 363 PRT Homo	sap:	iens												
< 400)> 9	96														
Met 1	Gly	Pro	Gly	Glu 5	Ala	Leu	Leu	Ala	Gly 10	Leu	Leu	Val	Met	Val 15	Leu	
Ala	Val	Ala	Leu 20	Leu	Ser	Asn	Ala	Leu 25	Val	Leu	Leu	Cys	Cys 30	Ala	Tyr	
Ser	Ala	Glu 35	Leu	Arg	Thr	Arg	Ala 40	Ser	Gly	Val	Leu	Leu 45	Val	Asn	Leu	
Ser	Leu 50	Gly	His	Leu	Leu	Leu 55	Ala	Ala	Leu	Asp	Met 60	Pro	Phe	Thr	Leu	
Leu 65	Gly	Val	Met	Arg	Gly 70	Arg	Thr	Pro	Ser	Ala 75	Pro	Gly	Ala	Cys	Gln 80	
Val	Ile	Gly	Phe	Leu	Asp	Thr	Phe	Leu	Ala		Asn Page		Ala	Leu	Ser	

<213> Homo sapiens

90 Val Ala Ala Leu Ser Ala Asp Gln Trp Leu Ala Val Gly Phe Pro Leu 105 Arg Tyr Ala Sly Arg Leu Arg Fic Arg Tyr Ala Gly Leu Leu Leu Sly Cys Ala Trp Gly Gln Ser Leu Ala Phe Ser Gly Ala Ala Leu Gly Cys Ser Trp Leu Gly Tyr Ser Ser Ala Phe Ala Ser Cys Ser Leu Arg Leu Pro Pro Glu Pro Glu Arg Pro Arg Phe Ala Ala Phe Thr Ala Thr Leu His Ala Val Gly Phe Val Leu Pro Leu Ala Val Leu Cys Leu Thr Ser 185 Leu Gln Val His Arg Val Ala Arg Ser His Cys Gln Arg Met Asp Thr Val Thr Met Lys Ala Leu Ala Leu Leu Ala Asp Leu His Pro Ser Val Arg Gln Arg Cys Leu Ile Gln Gln Lys Arg Arg Arg His Arg Ala Thr Arg Lys Ile Gly Ile Ala Ile Ala Thr Phe Leu Ile Cys Phe Ala Pro 250 Tyr Val Met Thr Arg Leu Ala Glu Leu Val Pro Phe Val Thr Val Asn Ala Gln Lys Gly Ile Leu Ser Lys Cys Leu Thr Tyr Ser Lys Ala Val Ala Asp Pro Phe Thr Tyr Ser Leu Leu Arg Arg Pro Phe Arg Gln Val Leu Ala Gly Met Val His Arg Leu Leu Lys Arg Thr Pro Arg Pro Ala 310 315 Ser Thr His Asp Ser Ser Leu Asp Val Ala Gly Met Val His Gln Leu 330

Leu Lys Arg Thr Pro Arg Pro Ala Ser Thr His Asn Gly Ser Val Asp

345

Thr Glu Asn Asp Ser Cys Leu Gln Gln Thr His 355

<2100 97 <2110 34 <2112 DNA <2132 Artificial Sequence

340

<221 - misc feature <223: Novel Sequence

<400> 97 gatetetaga atggagteet cacceateee eeag

<211> 3 <212> D	98 86 DNA :rtificial Seq	juence				
	nisc_feature Ocvel Sequence					
	e to ogtgactoca	gccggggtga	ggcggc			36
-211: 2 -212: D	o 610 NA cmo sapiens a	nd Rat				
< 400. 9	9 ct cacccatece	ccagtcatca	aggaagtett	ccaetttaaa	angaar oost	-50
						50
	ag gtccctctac					120
	tg tggccctctt					180
	gn tggdegtgat					240
	es tggtggacct					300
	on totttgacca					360
	gt getttgtcag					420
tactatta	eu tagtocacco	catgcgctac	gaggtgcgca	tgacgctggg	gctggtggcc	480
tetgtget	gg tgggtgtgtg	ggtgaaggcc	ttggccatgg	cttctgtgcc	agtgttggga	540
agggtete	ct gggaggaagg	agctcccagt	gtccccccag	gctgttcact	ccagtggagc	600
cacagtgc.	et actgecaget	ttttgtggtg	gtctttgctg	tcctttactt	tctgttgccc	ნნ0
ctgstcct	ca tacttgtggt	ctactgcagc	atgttccgag	tggcccgcgt	ggctgccatg	720
cagsacgg	ge egetgeeeae	gtggatggag	acaccccggc	aacgctccga	atctctcagc	786
agccgctc:	ca cgatggtcac	cagetegggg	gccccccaga	ccaccccaca	ccggacgttt	840
gggggagg	ga aagcagcagt	ggttctcctg	gctgtggggg	gacagttcct	gctctgttgg	900
ttgcccta	tototttoca	cctctatgtt	gccctgagtg	ctcagcccat	ttcaactggg	9n0
caggtggag	ga gtgtggtcac	ctggattggc	tacttttgct	tcacttccaa	ccctttcttc	1020
tatggatgt	to tcaaccggca	gatccggggg	gagctcagca	agcagtttgt	ctgcttcttc	1080
aagccagct	to cagaggagga	gctgaggctg	cctagccggg	agggctccat	tgaggagaac	1140
	gt teetteaggg					1200
	ca agcaggagcc					1260
	tg agttcctgga					1320

otecgtesta	acquatauca	ceggetiggaq	tcagogatát	otgoagaatt	ccaccacast	1380
ggactag:gg	atoogagoto	ggtaccaags	ttgggctgca	ggtegataag	ctgaatcaga	1440
aacagta, ga	codaddanca	gogdalacgad	gagaaggege	adogogagge	Саасваааад	1500
atogagazgo	agotgcagaa	ggacaagcag	gtotacoggg	opacqeaeeg	cctgctgctg	1560
etgggtgetg	gaqagtetgg	paaaagcaco	attgtgaagc	agatqaqqat	cotacatgtt	1620
aatgggttta	aciqagaggg	cggcgaagag	gacccgcagg	otgcaaggag	caacagogat	1680
ggtgagaagg	ccaccaaagt	gcaggacate	aaaaacaacc	tgaaggagge	cattgaaacc	1740
attgtggcog	ccatgagcaa	astggtgada	cccgtggagc	tiggodaaced	tgagaaccag	1800
ttpagagtgg	actacattct	gagogtgatg	aacgtgccaa	actttgastt	occacotgaa	1850
ttotatgago	atgccaaggc	totgtgggag	gatgagggag	ttegtgestg	ctacgagogo	1920
tocaacgagt	accagetgat	egactgtgcc	cagtacticc	tygacaagat	tgatgtgatc	1980
aagbaggoog	actacgtgcc	aagtgaccag	gacctgcttc	getgeegegt	octgacotot	2040
ggaatotttg	agaccaagtt	ccaggtggac	aaagtcaact	tocacatgit	cgatgtgggc	2100
ggocagegog	atgaacgccg	caagtggatc	cagtgcttca	atgatgtgac	tgccatcatc	2160
ttogtggtgg	deageageag	stacaacatg	gtcatccggg	aggacaacca	gaccaaccgt	2220
otgoaggayg	ctotgaacct	cttcaagagc	atctggaaca	acagatggct	gogtaccatc	2280
totgtgatos	tottootoaa	caagcaagat	ctgattgatg	agaaggtoot	ogotgggaaa	2340
togaagattq	aggactactt	tecagagite	getegetaca	ccactcctga	ggatgcgact	2400
seegageeeg	gagaggaccc	acgcgtgacc	cgggccaagt	acticatoog	ggatgagttt	2460
otgagaatca	geactgetag	tggagatgga	cgtcactact	gotaccotca	ctttacctgc	2520
googtggasa	ctgagaacat	cogcogtato	ttcaacgact	gccgtgacat	catccagcgc	2580
atgeatette	gccaatacga	gotgototaa				2610

<210 - 100 <211 - 869 <212 - PRT <213 - Homo sapiens and Rat

<400 190

Met Glu 3er Ser Pro Ile Pro Gln Ser Ser Gly Asn Ser Ser Thr Leu $1 \\ 5 \\ 10 \\ 15$

Gly Arg Val Pro Gl
n Thr Pro Giy Pro Ser Thr Ala Ser Gly Val Pro $20 \\ 0 \\ 10 \\ 10 \\ 10$

Glu Val Gly Leu Arg Asp Val Ala Ser Glu Ser Val Ala Leu Phe Phe 35 40 45

Met Leu Leu Asp Leu Thr Ala Val Ala Gly Asn Ala Ala Val Met

Ala Val Ile Ala Lys Thr Pro Ala Leu Arg Lys Phe Val Phe Val Phe His Leu Cys Leu Val Asp Leu Leu Ala Ala Leu Thr Leu Met Pro Leu Ala Met Leu Ser Ser Ser Ala Leu Phe Asp His Ala Leu Phe Gly Glu Val Ala Cys Arg Leu Tyr Leu Phe Leu Ser Val Cys Phe Val Ser Leu 115 120 120 Ala Ile Leu Ser Val Ser Ala Ile Asn Val Glu Arg Tyr Tyr Tyr Val Val His Pro Met Arg Tyr Glu Val Arg Met Thr Leu Gly Leu Val Ala Ser Val Leu Val Gly Val Trp Val Lys Ala Leu Ala Met Ala Ser Val Pro Val Leu Gly Arg Val Ser Trp Glu Glu Gly Ala Pro Ser Val Pro 185 Pro Gly Cys Ser Leu Gln Trp Ser His Ser Ala Tyr Cys Gln Leu Phe 195 200 205 Val Val Val Phe Ala Val Leu Tyr Phe Leu Leu Pro Leu Leu Leu Ile 215 Leu Val Val Tyr Cys Ser Met Phe Arg Val Ala Arg Val Ala Ala Met Gln His Gly Pro Leu Pro Thr Trp Met Glu Thr Pro Arg Gln Arg Ser Glu Ser Leu Ser Ser Arg Ser Thr Met Val Thr Ser Ser Gly Ala Pro Gln Thr Thr Pro His Arg Thr Phe Gly Gly Gly Lys Ala Ala Val Val Leu Leu Ala Val Gly Gly Gln Phe Leu Leu Cys Trp Leu Pro Tyr Phe Ser Phe His Leu Tyr Val Ala Leu Ser Ala Gln Pro Ile Ser Thr Gly Gln Val Glu Ser Val Val Thr Trp Ile Gly Tyr Phe Cys Phe Thr Ser 330 Asn Pro Phe Phe Tyr Gly Cys Leu Asn Arg Gln Ile Arg Gly Glu Leu Ser Lys Gln Phe Val Cys Phe Phe Lys Pro Ala Pro Glu Glu Glu Leu Arg Leu Pro Ser Arg Glu Gly Ser Ile Glu Glu Asn Phe Leu Gln Phe Leu Gln Gly Thr Gly Cys Pro Ser Glu Ser Trp Val Ser Arg Pro Leu Pro Ser Pro Lys Gln Glu Pro Pro Ala Val Asp Phe Arg Ile Pro Gly 405 410

Page 61

Gln	I ! e	Ala	Glu 420	Glu	Thr	Ser	Glu	Phe 425	Leu	Glu	Gln	Gln	Leu 430	Thr	Ser
Asp	Ile	Ile 435	Met	Sei	Asp	Ser	Ty1 440	Leu	Arg	Pro	Ala	Ala 445	Ser	Pre	Arg
Leu	31u 450	Ser	Ala	Ile	Ser	Ala 455	Glu	Phe	His	His	Th: 460	Gly	Leu	Val	Asp
Pro 465	Зег	Ser	Val	Pro	Ser 470	Leu	ЗІУ	Cys	Arg	Ser 475	Met	G1y	Сув	Leu	Gly 480
Asn	Ser	Lys	Thr	G1u 485	Asp	Gln	Arg	Asn	Glu 490	Glu	Lys	Ala	Gln	Arg 495	Glu
Ala	Asn	Lys	Lys 500	Ile	Glu	Lys	Gln	Leu 505	Gln	Lys	Asp	Lys	Gln 510	Val	Туг
Arg	Ala	Thr 515	His	Arg	Leu	Leu	Leu 520	Leu	Gly	Ala	Gly	Glu 525	Ser	Gly	Lys
Ser	Thr 530	Ile	Val	Lys	Gln	Met 535	Arg	Ile	Leu	His	Val 540	Asn	Gly	Phe	Asn
Gly 545	Glu	Gly	Gly	Glu	Glu 550	Asp	Pro	Gln	Ala	Ala 555	Arg	Ser	Asn	Ser	Asp 560
Gly	Glu	Lys	Ala	Thr 565	Lys	Val	Gln	Asp	Ile 570	Lys	Asn	Asn	Leu	Lys 575	Glu
Ala	Ile	Glu	Thr 580	Ile	Val	Ala	Ala	Met 585	Ser	Asn	Leu	Val	Pro 590	Pro	Vāl
Glu	Leu	Ala 595	Asn	Pro	Glu	Asn	Gln 600	Phe	Arg	Val	Asp	Tyr 605	Ile	Leu	Ser
Val	Met 610	Asn	Val	Pro	Asn	Phe 615	Asp	Phe	Pro	Pro	Glu 620	Fhe	Tyr	Glu	His
Ala 625	Lys	Ala	Leu	Trp	Glu 630	Asp	Glu	Gly	Val	Arg 635	Ala	Cys	Туг	Glu	Arg 640
Ser	Asn	Glu	Tyr	Gln 645	Leu	Ile	Asp	Cys	Ala 650	Gln	Tyr	Fhe	Leu	Asp 655	Lys
Ile	Asp	Val	Ile 660	Lys	Gln	Ala	Asp	Tyr 665	Val	Pro	Ser	Asp	Gln 670	Asp	Leu
Leu		Cys 675					3er 680		Ile	Phe		Thr 685		Phe	Gln
Vāl	Asp 690	Lys	Val	Asn	Phe	His 695	Met	Phe	Asp	Val	Gly 700	Gly	Gln	Arg	Asp
Glu 705	Arg	Arg	Lys	Trp	Ile 710	Gln	Cys	Phe	Asn	Asp 715	Val	Thr	Ala	Ile	11e 720
Phe	Val	Val	Ala	Ser 725	Ser	Ser	Tyr	Asn	Met 730	Vāl	Ile	Arg	Glu	Asp 735	Asrı
Gln	Thr	Asn	Arg 740	Leu	Gln	Glu	Ala	Leu 745	Asn	Leu	Phe	Lys	Ser 750	Ile	Trp
Asn	Asn	Arg	Trp	Leu	Arg	Thr	Ile	Ser	Val		Leu Page		Leu	Asn	Lys

		755					760					765				
Gln	Asp 770	Leu	Leu	Ala	Glu	Lys 775	Val	Leu	Ala	Gly	Lys 780	Ser	Lys	Ile	Glu	
Asp 785	Туг	Phe	Pro	Glu	Phe 790	Ala	Arg	Tyr	Thr	Thr 795	Pro	Glu	Asp	Alā	Thr 800	
Pro	Glu	Pro	Gly	Glu 805	Asp	Pro	Arg	Val	Thr 810	Arg	Ala	Lys	Tyr	Phe 815	Ile	
Arg	Asp	Glu	Phe 820	Leu	Arg	Ile	Ser	Thr 825	Ala	Ser	Gly	Asp	Gly 830	Arg	His	
Tyr	Cys	Tyr 835	Pro	His	Phe	Thr	Суs 840	Ala	Val	Asp	Thr	Glu 845	Asn	Ile	Arg	
Arq	Val 950	Phe	Asn	Asp	Cys	Arg 855	Asp	Ile	Ile	Gln	Arg 860	Met	His	Leu	Arg	
Gln '	Туг	Glu	Leu	Leu												
<010 <011 <212 <113	> 3 > E	.01 80 NA Artif	icia	ıl Se	equen	ıce										
<220: <221: <123:	> n		_feat . Sec		ce											
<4000 teta		.01 :ga c	gtcc	acst	g ca	ıccaa	cago									30
<210 <211 <112 <213	> 3 > D	.02 84 NA Artif	icia	ıl Se	quen	ice										
<2211 <2211 <2231	> n		feat Seq		:e											
<4000 gatai		.02 :ag g	raaaa	gtag	ıc ag	aato	gtag	gaa	ıg							34
<210: <211: <212: <213:	> 2 > D	.03 !781 NA lomo	Sapi	.ens	and	Rat										
<400: atga		.03 :ca c	:ctgc	acca:	ıa ca	gcac	gcgc	gag	agta	.aca	gcag	rccac	ac ç	gtgca	atgece	60
ctct	ccaa	aa t	gccc	atsa	ig co	tggc	ccac	ggc	atca	tcc	gctc	aacc	gt ç	gatga	ttatc	120
ttcc	togo	cà c	ctct	ttsg	ıt cg	ıgcaa	cata	gtg	ctgç	cgc	tagt	gttg	rca ç	gegea	agccg	180
cage	tact	.ac a	aata	acca	a cc	attt	tatc	ttt	aacc	tcc	t.cat	cacc	ga c	ctac	tacaa	240

atttogetog	tagecocctg	agtggtggcc	acctetatge	ctctcttctg	gedecticaac	360	
agcoactict	geacggeest	gattageete	acceaccigt	tegaattege	cagogtoaac	34,0	
accattgtog	tggtgtcagt	ggatogotac	ttgtccatca	tocaccetet	otectasccg	420	
tocaagatga	cccagcgccg	cggttacctg	ctoototatg	gcacctggat	tgtggccatc	450	
otgoagagoa	ctoctccact	ctacggctgg	ggccaggetg	cctttgatga	qegeaatget	540	
ctctgctcca	tgatotgggg	ggccagcccc	agotacacta	ttetpagegt	ggtgtccttc	តែហ()	
atogtoatto	castgattgt	catgattgcc	tgctactccg	tggtgttctg	tgcagcccgg	660	
aggcagcatg	ctctgctgta	caatgtcaag	agacacaget	tggaagtgeg	agtcaaggac	720	
tgtgtggaga	atgaggatga	agagggagca	gagaagaagg	aggagttoca	ggatgagagt	730	
gagtttegee	gocagoatga	aggtgaggtc	aaggccaagg	agggcagaat	ggaagccaag	940	
gaeggeadoc	tgaaggosaa	ggaaggaagc	acqqqqaacca	gtgagagtag	tgtagagges	9-10	
aggggsagcg	aggaggtcag	agagagsagc	acggtggcca	gegaeggeag	catggagggt	360	
aaggaaggca	gcaccaaagt	tgaggagaac	agcatgaagg	cagacaaggg	togcacagag	1000	
gtcaaccagt	gcagcattga	cttgggtgaa	gatgacatgg	agtttggtga	agacgacato	1080	
aatttcagtg	aggatgacgt	ogaggcagtg	aacatooogg	agageeteee	acccagtcgt	1140	
ogtaacagca	adagdaaddd	tectetycce	aggtgctacc	agtgcaaagc	tgctaaagtg	1200	
atottoatca	teattttete	ctatgtgcta	tocotyggge	cctactgctt	tttagcagtt	1260	
ctggccgtgt	gggtggatgt	ogaaacccag	gtaccccagt	gjgtgatcac	cataatcatc	1320	
tggcttttct	tootgragtg	otgoatocac	ccctatgtct	atggctacat	gcacaagacc	1380	
attaagaagg	aaatocagga	catgotjaag	aagttottot	gcaaggaaaa	gcccccgaaa	1440	
gaagatagcc	acccagacct	gcccggaaca	gagggtggga	ctgaaggcaa	gattgtccct	1500	
tootacgatt	ctgctacttt	tectgegata	tctgcagaat	tocaccacac	tggactagtg	15-50	
gatoogaget	cggtaccaag	cttgggctgc	aggtcgatgg	gotgootogg	caacagtaag	16.0	
accgaggacc	agogoaacga	ggagaaggcg	cagcgcgagg	ccaacaaaaa	gatcgagaag	1680	
cagotgoaga	aggacaagca	ggtctaccgg	gedacgeace	gootgotgot	gctgggtgct	1740	
ggagagtctg	gcaaaagcac	cattgtgaag	cagatgagga	tootacatgt	taatgggttt	18000	
aacggaqagg	goggogaaga	ggacccgcag	gctgcaagga	gcaacagcga	tggtgagaag	186%	
досасснаад	tgsaggasat	caaaaacaac	ctgaaggagg	ccattgaaac	cattgtggcc	1916	
godatgagoa	acctggtgcc	ccccgtggag	ctggccaacc	ctgagaacca	gttcagagtg	1980	
gactacatto	tgagcgtgat	gaacgtgcca	aactttgact	teccaeetga	attotatgag	2040	
catgosaagg	ctctgtggga	ggatgaggga	gttcgtgcct	gstasgageg	otocaacgag	2100	
taccagetga	tegactgtge	ctagtacttc	ctggacaaga	ttgatgtgat	caagcaggcc	2_60	
gactacqtqc	caagtgacca	qqacctqctt	agatgaagag	tectgacete	tqqaatcttt	2220	
			,	Daga 64			

gagaccaagt	tocaggtgga	caaagtcaac	ttccacatgt	togatgtggg	cdaccadcac	2280
gatgaacgcc	gcaagtggat	ccagtgette	aatgatgtga	ctgccatcat	cttcgtggtg	2340
godagoagoa	getacaacat	ggtcatccgg	gaggacaacc	agaccaaccg	totgcaggag	0400
getetgaace	tottcaagag	catctggaac	aacagatggc	tgcgtaccat	ctctgtgatc	2460
stottoctca	acaagcaaga	tctgcttgct	gagaaggtee	tegetgggaa	atcgaagatt	25 20
gaggactact	ttccagagtt	ogotogotac	accactcctg	aggatgcgac	tecegageee	2580
jgagaggacc	cacgcgtgac	ccgggccaag	tacttcatcc	gggatgagtt	totgagaato	2640
agcactgcta	gtggagatgg	acgtcactac	tgctaccctc	actttacctg	cgccgtggac	2700
actgagaaca	teegeegtgt	cttcaacgac	tgccgtgaca	tcatccagcg	catgcatctt	1760
egocaatacg	agctgctcta	a				1781

<213> Homo sapiens and Rat

.:400> 104

Met Thr Ser Thr Cys Thr Asn Ser Thr Arg Glu Ser Asn Ser Ser His

Thr Cys Met Pro Leu Ser Lys Met Pro Ile Ser Leu Ala His Gly Ile

Ile Arg Ser Thr Val Leu Val Ile Phe Leu Ala Ala Ser Phe Val Gly

Asn Ile Val Leu Ala Leu Val Leu Gln Arg Lys Pro Gln Leu Leu Gln 50 60

Val Thr Asn Arg Phe Ile Phe Asn Leu Leu Val Thr Asp Leu Leu Glm

Ile Ser Leu Val Ala Pro Trp Val Val Ala Thr Ser Val Pro Leu Phe

Trp Pro Leu Asn Ser His Phe Cys Thr Ala Leu Val Ser Leu Thr His

Leu Phe Ala Phe Ala Ser Val Asn Thr Ile Val Val Val Ser Val Asp

Arg Tyr Leu Ser Ile Ile His Pro Leu Ser Tyr Pro Ser Lys Met Thr 130 140

Gln Arg Arg Gly Tyr Leu Leu Leu Tyr Gly Thr Trp Ile Val Ala Ile 150

Leu Gln Ser Thr Pro Pro Leu Tyr Gly Trp Gly Gln Ala Ala Phe Asp 165 170 175

Glu Arg Asn Ala Leu Cys Ser Met Ile Trp Gly Ala Ser Pro Ser Tyr 185

Thir	11e	Lou 195	Ser	Val	Val	Ser	Phe 200	He	vai	Il∈	Pro	Leu 205	Ile	Val	M∈t
Ile	Ala 210	Cys	Ψλ.τ	Ser	Val	Val 215	Phe	Cys	Ala	Ala	Arg 220	Arg	Gln	His	Ala
Leu 225	Leu	Tyr	Asn	Val	Lys 230	Arg	His	Ser	Leu	G1u 235	Val	Arg	Val	Lys	Asr 240
Суз	Vál	Giu	Asn	Glu 245	Asp	Glu	Glu	Gly	Ala 250	Glu	Lys	Lys	Glu	G1u 255	Phe
31n	Asp	Glu	Ser 260	Glu	Phe	Arg	Arg	Gln 265	His	Glu	Gly	Glu	Val 270	Lys	Ala
Lys	Glu	Gly 275	Arg	Met	Glu	Ala	Lys 280	Asp	Gly	Ser	Leu	Lys 285	Alā	Lys	Glu
Gly	Ser 290	Thr	Gly	Thr	Ser	Glu 295	Ser	Ser	Val	Glu	Ala 300	Arg	Gly	Ser	Glu
305	Val	Arq	GIu	Ser	Ser 310	Thr	Val	Ala	Ser	Asp 315	Giy	Ser	Met	Glu	G1y 320
				325					330		Met			335	
Gly	Arg	Thr	Glu 340	Val	Asn	Gln	Jys	Ser 345	Ile	Asp	Leu	Gly	Glu 350	Asp	Asp
Met	Glu	Phe 355	Gly	Glu	Asp	Asp	11e 360	Asn	Phe	Ser	Glu	Asp 365	Asp	Val	Glu
	370					375					Arg 380				
3er 385	Asn	Pro	Pro	Leu	Pro 390	Arg	Cys	Tyr	Gln	Cys 395	Lys	Ala	Ala	Lys	Val 400
				4 05					410		Leu			415	
Phe	Leu	Ala	Val 420	Leu	Ala	Val	Trp	Val 425	Asp	Val	Glu	Thr	Glr. 430	Val	Pro
		435					440				Phe	445			
Ile	His 450	Pro	Tyr	Val	Tyr	Gly 455	Tyr	Met	His	Lys	Thr 460	Ile	Lys	Lys	Glu
Ile 465	Gln	Asp	Met	Leu	Lys 470	Lys	Phe	Phe	Cys	Lys 475	Glu	Lys	Pro	Pro	Lys 480
Glu	Asp	Ser	His	Pro 485	Asp	Leu	Pro	Gly	Thr 490	Glu	Gly	Gly	Thi	Glu 495	Gly
Lys	Ile	Val	Pro 500	Ser	Tyr	Asp	Ser	Ala 505	Thr	Phe	Pro	Ala	Ile 510	Ser	Ala
Glu	Phe	His 515	His	Thr	Gly	Leu	Val 520	Asp	Pro	Ser	Ser	Val 525	Pro	Ser	Leu
Gly	Сув 530	Arg	Ser	Met	Gly	Cys 535	Leu	Gly	Asn	Ser	Lys 540		Glu	Asp	31n
											Page	00			

Arg 545	Asn	Glu	Glu	Lys	Ala 550	Gln	Arg	Glu	Ala	Asn 555	Lys	Lys	Ile	Glu	Lys 560
Gln	Leu	Gln	Ľys	Asp 565	Lys	Gln	Val	Tyr	Arg 570	Ala	Thr	His	Arg	Leu 575	Leu
Leu	Leu	Gly	Ala 580	Gly	Glu	Ser	Gly	Lys 535	Ser	Thr	Ile	Val	Lys 590	Gln	Met
Arg	Ile	Leu 595	His	Val	Asn	Gly	Phe 600	Asn	Gly	Glu	Gly	Gly 605	G⊥u	Glu	Asp
Pro	Gln 610	Ala	Ala	Arg	Ser	Asn 615	Ser	Asp	Gly	Glu	Lys 620	Ala	Thr	Lys	Val
Glr. 625	Asp	Ile	Lys	Asn	Asn 630	Leu	Lys	Glu	Ala	Ile 635	Glu	Thr	Ile	Val	Ala 640
Alá	Met	Ser	Asn	Leu 645	Val	Pro	Pro	Val	Glu 650	Leu	Ala	Asn	Pro	Glu 655	Asn
Gln	Phe	Arg	Val 660	Asp	Tyr	Ile	Leu	Ser 665	Val	Met	Asn	Val	Pro 670	Asn	Phe
Asr	Phe	Pro 675	Pro	Glu	Phe	Tyr	Glu 680	His	Ala	Lys	Ala	Leu 685	Trp	Glu	Asp
Glu	Gly 690	Val	Arg	Ala	Cys	Tyr 695	Glu	Arg	Ser	Asn	Glu 700	Tyr	Gln	Leu	Ile
Asr 705	Cys	Ala	Gln	Tyr	Phe 710	Leu	Asp	Lys	Ile	Asp 715	Val	Ile	Lys	Gln	Ala 720
Asp	Tyr	Val	Pro	Ser 725	Asp	Gln	Asp	Leu	Leu 730	Arg	Cys	Arg	Val	Leu 735	Thr
Sei	Gly	Ile	Phe 740	Glu	Thr	Lys	Phe	Gln 745	Val	Asp	Lys	Val	Asn 750	Phe	His
Met	Phe	Asp 755	Val	Gly	Gly	Gln	Arg 760	Asp	Glu	Arg	Arg	Lys 765	Trp	Ile	Gln
C7.s	Phe 770	Asn	Asp	Val	Thr	Ala 775	Ile	Ile	Phe	Val	Val 780	Ala	Ser	Ser	Ser
Tyr 785	Asn	Met	Val	Ile	Arg 790	Glu	Asp	Asn	Gln	Thr 795	Asn	Arg	Leu	Gln	Glu 800
Ala	Leu	Asn		Phe 805		Ser	Ile		Asn 810		Arg	Trp	Leu	Arg 815	Thr
Ile	Ser	Val	Ile 820	Leu	Phe	Leu	Asn	Lys 825	Gln	Asp	Leu	Leu	Ala 830	Glu	Lys
Val	Leu	Ala 835	Gly	Lys	Ser	Lys	Ile 840	Glu	Asp	Tyr	Phe	Pro 845	Glu	Phe	Ala
Arg	Tyr 850	Thr	Thr	Pro	Glu	Asp 855	Ala	Thr	Pro	Glu	Pro 860	Gly	Glu	Asp	Pro
Arg 865	Val	Thr	Arg	Ala	Lys 870	Tyr	Phe	Ile	Arg	Asp 875	Glu	Phe	Leu	Arg	Ile 880
Ser	Thr	Ala	Ser	Gly	Asp	Gly	Arg	His	Tyr	-	Tyr Page		His	Phe	Thr

895 AR5 890 Cys Ala Val Asp Thr Glu Ash Ile Arg Arg Val Phe Ash Asp Cys Arg Asp Ile Ile Glm Arg Met His Leu Arg Glm Tyr Glu Leu Leu 920 <2105 105
<211 23
<2120 DNA</pre> 3213 Artificial Sequence -1220 %221> misc_feature %223> Novel Sequence -:400 - 105 intgratgee agegteetge too 23 . 10 100 2.4 0.120 DNA 0.130 Artificial Sequence +1110 misc feature Novel Sequence -121 . _ _ . • 4400 ld+ gota:gonth aagedagtot tgtg 24 <!i100 107</pre> +:111 25 -::12: DNA -::13: Artificial Sequence <:120 <:121: misc_feature
<:123: Novel Sequence</pre> +4000 107 25 gracetgete etgageacet tetee -.1105 108 +1115 ft +1115 DNA +1125 DNA +1135 Artificial Sequence +12°2°0°+ %D21> misc_feature %D23> Novel Sequence +14000 108

PCT/US00/31509

WO 01/36471

cacagogoty cagoootyca gotygo

-:210> 109

26

<211 + <212 + <213 + <113 +		
+0.20 + +0.21 + +0.23 +	misc_feature Novel Sequence	
• 400 • cragtç	109 gatga ototgtocag cotg	24
+210+ +211+ +212+ +213+	24	
#220 # +221 + 223:	misc_feature Novel Sequence	
- 400. cagada	110 cttg gcagggacga ggtg	24
<210× <211° -212× <213>	26	
+210× +221× +223×	misc_feature Novel Sequence	
<400> cttgtg	111 gtct actgcagcat gttccg	26
<pre>%210% %211% %212% %213%</pre>	25	
<pre><220> -121223 -</pre>	misc_feature Novel Sequence	
√400 · catate	012 cctc cgagtgtcca gcggc	25
+211+ +211+ +212+ +213+	24	
<2208 <2218 <2239	misc_feature Novel Sequence	

PCT/US00/31509

WO 01/36471

<400> atujat	- 113 dott atmatggoti onto	24
<2105 <211 · <212 · <213 ·	27	
	miso_feature Novel Sequence	
k400> caagaa	114 cagg teleatetaa gagetee	27
0210 9 0211 + 0212 9 0213 +	26	
	misc_feature Novel Sequence	
⊲4005 ototga	115 tgcc atctgctgga ttcctg	26
02100 0211 + 02120 02130	<u>်</u> က်	
0220 0221 02230	misc_feature Novel Sequence	
<4000s gtauto	116 cact gaaagtocag tgatoc	26
-2160 -2110 -2110 -2130	24	
-02200 -02210 -02230	misc_feature Novel Sequence	
<4005 toggtag	117 cqat ggccaacage gete	24
<2110 <2110 <2120 <2132	24	

WO 01 36471

PCT/US00/31509

<220> 221> -113>	misc_feature Novel Sequence	
+ 460 + attgag	118 cott agogacagat gaco	24
-110- -111 -112- -113-	23	
<pre><210> <221> <223></pre>	misc_feature Novel Sequence	
+400+ •aa.co	119 tota tagoagoato oto	23
7110 + 211 + 213 + 213 +	23	
+110 +111 +113	misc_leature Novel Sequence	
- 400 aaggad	The tage agaatggtta gec	23
.210 k211 k112 k113	24	
<pre><220 - <221 - <223 -</pre>	misc_feature Novel Sequence	
k400 - gadadist	121 .qtc agcggtcgtg tgtg	24
<2100 <2110 <2120 <2130	102 27 DNA Artificial Sequence	
<2205 <2215 <2235	misc_feature Novel Sequence	
<400> ctgatgo	122 gaag tagaggetgt ceatete	27

PCT/US00/31509

WO 01/36471

0.2100 0.2110 0.1100 0.2130	- 04	
4220 > .221 > .223 ≠	misc_feature Novel Sequence	
41005 41gatg	123 agog cagaccagty goty	7.4
0010 × 0011 × 0012 × 0013 ×	24	
	misc_feature Novel Sequence	
.400 - cacgut	134 gang aagggcanga goto	24
<pre><c10 +="" +<="" <c11="" <c113="" <c212="" pre=""></c10></pre>	-24	
-(220) -(221) (223)	misc_feature Novel Sequence	
n400° Agcsat	125 cont godaggaage atgg	24
11.100 (11.11) (11.17) (11.30)	± E ₁	
0.1200 0.1210 0.1230	misc_feature Novel Sequence	
e 400). Obagat	- 126 aggt gtgcagcaca atggc	25
1.2.	117 25 DNA Artificial Sequence	
	misc_feature Novel Sequence	

PCT US00 31509

WO 01 36471

WO 01/36471

PCT/US00/31509

```
<400> 127
 ctyttcaaca gggctggttg gcaac
                                                                                                        25
+2.0> 128
+211> 25
+2.2> DNA
+313> Artificial Sequence
+2200
+2210 misc_feature
+2230 Novel Sequence
44005 128
atcatgtota gactcatggt gatco
                                                                                                        25
+2102 129
#2112 6
+212 PRT
+2.3 Artificial Sequence
<210#
<221> misc_feature
<223> Novel Sequence
+400> 129
The Leu Glu Ser Ile Met
<210> 130
<2.02 130
<2.12 5
<1.12 PPT
<2.13 Artificial Sequence</pre>
42200
<321> misc_feature
<223> Novel Sequence
+400> 130
Glu Tyr Asn Leu Val
<210> 131
<211> 5
<212> PFT
<213> Artificial Sequence
<2005
+2015 misc_feature
<2003 Novel Sequence
<400> 131
Asp Cys Gly Leu Phe
<210> 132
```

```
<.iii > 36

<iii2 + PRT
</pre>
<213 < Artificial Sequence</pre>
3220×
<220*
<221   misc feature
<223   Novel Sequence</pre>
<4000 132
3ly Ala Thr Cys Ala Ala Gly Cys Thr Thr Cys Cys Ala Thr Gly Gly
Cys Gay Thr Gly Cys Thr Gly Cys Cys Thr Gly Ala Gly Cys Gly Ala
Gly Gly Ala Gly 35
+1210 > 133
+1211 > 53
+1212 > PRT
+1213 > Artificial Sequence
-:220>
<221> misc_feature
<223 Novel Sequence</pre>
+.400:- 133
Gly Ala Thr Cys Gly Gly Ala Thr Cys Cys Thr Thr Ala Gly Ala Ala 1 \phantom{-}5\phantom{+} 15
Cys Ala Gly Gly Cys Cys Gly Cys Ala Gly Thr Cys Cys Thr Thr Cys 20 25 30
Ala Gly Gly Thr Thr Cys Ala Gly Cys Thr Gly Cys Ala Gly Gly Ala
                                     40
Thr Gly Gly Thr Gly
     50
```

(19) World Intellectual Property Organization International Bureau

(43) International Publication Date 25 May 2001 (25.05.2001)

PCT

(10) International Publication Number WO 01/36471 A3

(51) International Patent Classification [*] : C12N 15/12	C07K 14/705.		60/242.343 60/243.019	20 October 2000 (20,10,2000) US 24 October 2000 (24 10,2000) US
(21) International Application Number:	PCT/US00/31509	(71)	• •	ill designated States except US1: ARENA TICALS, INC. [US/US]: 6166 Nancy
(22) International Filing Date:			Ridge Drive, Sar	n Diego, CA 92121 (US).
To November	2000 (16.11.2000)			
			Inventors; and	
(25) Filing Language:	English	(75)	Inventors/Appli	icants (for US only): CHEN, Ruoping

S2108 (US).

- English (26) Publication Language:
- (30) Priority Data: 17 November 1999 (17.11.1999) 60/166,088 US 60/166,099 17 November 1999 (17.11.1999) US 17 November 1999 (17.11.1999) 60/166,369 113 60/171.900 23 December 1999 (23.12.1999). US 60/171,901 23 December 1999 (23.12.1999). US 23 December 1999 (23,12,1999) 60/171,902 US 60/181,749 11 February 2000 (11.02,2000) US 60/189,258 14 March 2000 (14.03.2000) US LIS 14 March 2000 (14.03,2000) 60/189,259 60/195 898 10 April 2000 (10.04,2000) LIS 10 April 2000 (10.04.2000) 60/195.899 US 60/196,078 40 April 2000 (10.04,2000) 28 April 2000 (28,04,2000) 60/200,419 60/203,630 12 May 2000 (12,05,2000) US US 60/210,741 12 June 2000 (12.06,2000) US 12 June 2000 (12.06.2000) 60/210,982 60/226,760 21 August 2000 (21.08.2000) US 60/235,418 26 September 2000 (26,09,2000) US 60/235,779 26 September 2000 (26,09,2000) US 20 October 2000 (20.10,2000) US 60/242.332
- (75) Inventors/Applicants (for US only): CHEN, Ruoping JCN/USE 5296 Timber Branch Way, San Diego, CA 92130 (US), DANG, Huong, T. [US/US]: 5352 Oak Park Drive, San Diego, CA 92105 (US), LOWITZ, Kevin, P. [US/US]; 8031 Cammito de Pizza #C. San Diego, CA
- (74) Agents: MILLER, Suzanne, E. et al.: Woodcock Washburn Kurtz Mackiewicz & Norris LLP, One Liberty Place -46th Floor, Philadelphia, PA 19103 (US).
- (81) Designated States inationali: AE, AG, AL, AM, AT, AU AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CR, CU, CZ DE, DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM, HR HU. ID. IL. IN. IS. JP. KE, KG, KP, KR, KZ, LC, LK, LR LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW.
- (84) Designated States tregionalr: ARIFO patent (GH, GM KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT. BE. CH, CY. DE, DK, ES, FI, FR, GB, GR, IE IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF CG, CL CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

/Continued on next page,

(54) Title: ENDOGENOUS AND NON-ENDOGENOUS VERSIONS OF HUMAN G PROTEIN-COUPLED RECEPTORS

(57) Abstract: The invention disclosed in this patent document relates to transmembrane receptors, more particularly to a human G protein-coupled receptor for which the endogenous ligand is unknown ("orphan GPCR receptors"), and most particularly to mutated (non-endogenous) versions of the human GPCRs for evidence of constitutive activity.

WO 01/36471 A3

Published:

with international search report

(88) Date of publication of the international search report: 3 January 2002

For two setter codes and other abbreviations, refer to the "Guadance Notes on Codes and Abbreviations" appearing at the beganning of each regular issue of the PCT Gazette

Inter anal Application No

		PCT/US	00/31509
A. CLASSI IPC 7	IFICATION OF SUBJECT MATTER C07K14/705 C12N15/12		
A coording 1	o International Patent Classification (PC) or to both national cl	assiticative and IDC	
	SEARCHED	assincation attority	
	ocumentation searched (classification system followed by clas CO7K	silication symbols)	
Documenta	ilion searched other than minimum occumentation to the exten	That such occuments are included in the field	ds searched
	tata base consulted during the international search (name of diternal, EMBL, STRAND, WPI Data,		
C. DOCUM	ENTS CONSIDERED TO BE RELEVANT		
Category °	Citation of document, with indication, where appropriate, of	the relevant passages	Relevant to claim No
Х	WO 98 46620 A (MILLENNIUM PHA) 22 October 1998 (1998-10-22) claim 1; figures 1A.,2A; exam		1-4
X	US 5 891 720 A (WOOLF ELIZABE 6 April 1999 (1999-04-06) Sequence No. 2 abstract	THA ET AL)	1-4
		-/	
X Furti	her documents are listed in the continuation of box C	X Palent family members are in	sted in annex
"A" docume consider the consider the consider the consideration the consideration the consideration the consideration the consideration the consideration the consideration the consideration the consideration the consideration the consideration that consideration the consideration that consideration the consideration that consideration the consideration that consideration	ent which may throw doubts on priority, claim(s) or is offed to establish the publication date of another in or other special reason (as specified) entireferring to an oral disclosure, use, exhibition or means, entipublished prior to the international filing date but han the priority date claimed.	*T* later document published after the or pnority date and not in conflict cited to understand the principle invention *X* document of particular relevance: cannot be considered novel or calinvolve an inventive step when th *Y* document of particular relevance: cannot be considered to involve a document is combined with one of ments, such combination being of in the art.	with the application but or theory underlying the the claimed invention innot be considered to e document is taken alone the claimed invention an inventive step when the or more other such docubivious to a person skilled
Date of the	actual completion of the international search	Date of mailing of the international	al search report
	8 August 2001	1 9. 09. 01	
Name and r	mailing address of the ISA European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo ni, Fax: (+31-70) 340-3016	Meyer, W	

PCT/US 00/31509

	PCT/US 00/31509		
on) DOCUMENTS CONSIDERED TO BE RELEVANT			
station of document, with indication, where appropriate, of the relevant passages	Helevant to claim No		
STADEL J M ET AL: "Orphan G protein-coupled receptors: a neglected opportunity for pioneer drug discovery" TRENDS IN PHARMACOLOGICAL SCIENCES.GB.ELSEVIER TRENDS JOURNAL. CAMBRIDGE, vol. 18, no. 11, 1 November 1997 (1997-11-01), pages 430-437, XP004099345 ISSN: 0165-6147 abstract; table 1	1-4		
KJELSBERG M A ET AL: "Constitutive activation of the alphalB-adrenergic receptor by all amino acid substitutions at a single site" JOURNAL OF BIOLOGICAL CHEMISTRY, AMERICAN SOCIETY OF BIOLOGICAL CHEMISTS, BALTIMORE, MD, US, vol. 267, no. 3, 25 January 1992 (1992-01-25), pages 1430-1433, XP002135768 ISSN: 0021-9258 abstract	1-4		
O'DOWD B F ET AL: "DISCOVERY OF THREE NOVEL G-PROTEIN-COUPLED RECEPTOR GENES" GENOMICS, ACADEMIC PRESS, SAN DIEGO, US, vol. 47, no. 2, 15 January 1998 (1998-01-15), pages 310-313, XP000863786 ISSN: 0888-7543 abstract	1-4		
WO 97 21731 A (NEW ENGLAND MEDICAL CENTER INC) 19 June 1997 (1997-06-19) page 18, line 18-26; figures 2,3	1-4		
MARCHESE A ET AL: "Novel GPCRs and their endogenous ligands: expanding the boundaries of physiology and pharmacology" TRENDS IN PHARMACOLOGICAL SCIENCES, GB, ELSEVIER TRENDS JOURNAL, CAMBRIDGE, vol. 20, no. 9, 1 September 1999 (1999-09-01), pages 370-375, XP004178194 ISSN: 0165-6147 abstract	1-4		
CAMBRIDGE, vol. 20, no. 9, 1 September 1999 (1999-09-01), pages 370-375, XP004178194 ISSN: 0165-6147			
	STADEL J M ET AL: "Orphan G protein-coupled receptors: a neglected opportunity for pioneer drug discovery" TRENDS IN PHARMACOLOGICAL SCIENCES,GB.ELSEVIER TRENDS JOURNAL. CAMBRIDGE, vol. 18, no. 11, 1 November 1997 (1997-11-01), pages 430-437, XP004099345 ISSN: 0165-6147 abstract; table 1 KJELSBERG M A ET AL: "Constitutive activation of the alphalB-adrenergic receptor by all amino acid substitutions at a single site" JOURNAL OF BIOLOGICAL CHEMISTRY, AMERICAN SOCIETY OF BIOLOGICAL CHEMISTRY, AMERICAN SOCIETY OF BIOLOGICAL CHEMISTS, BALTIMORE, MD,US, vol. 267, no. 3, 25 January 1992 (1992-01-25), pages 1430-1433, XP002135768 ISSN: 0021-9258 abstract O'DOWD B F ET AL: "DISCOVERY OF THREE NOVEL G-PROTEIN-COUPLED RECEPTOR GENES" GENOMICS, ACADEMIC PRESS, SAN DIEGO.US, vol. 47, no. 2, 15 January 1998 (1998-01-15), pages 310-313, XP000863786 ISSN: 0888-7543 abstract WO 97 21731 A (NEW ENGLAND MEDICAL CENTER INC) 19 June 1997 (1997-06-19) page 18, line 18-26; figures 2,3 MARCHESE A ET AL: "Novel GPCRs and their endogenous ligands: expanding the boundaries of physiology and pharmacology" TRENDS IN PHARMACOLOGICAL SCIENCES,GB,ELSEVIER TRENDS JOURNAL, CAMBRIDGE, vol. 20, no. 9, 1 September 1999 (1999-09-01), pages 370-375, XP004178194 ISSN: 0165-6147 abstract		

Inter Onal Application No
PCT/US 00/31509

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT				
Category :	Citation of document, with indication where appropriate, of the relevant passages	Relevant to claim No		
P,X	DATABASE EMBL 'Online! Accession Nr. Q9NTTO, 1 October 2000 (2000-10-01) COLLIER R.: "DJ680N.3 (G-Protein Coupled Receptors) (Fragment)" XP002168498 abstract	1-4		
Ρ,Χ	WO 00 22131 A (ARENA PHARMACEUTICALS INC; GORE MARTIN (US); LIAW CHEN W (US); LIN) 20 April 2000 (2000-04-20) the whole document	1-4		
X	DATABASE EMBL 'Online! AC: AC008728, 4 August 1999 (1999-08-04) DOE JOINT GENOME INSTITUTE: "Sequencing of Human Chromosome 5" XP002175776 abstract	5-8		
Α	WO 98 29439 A (SULLIVAN KATHLEEN ; MERCK & CO INC (US); TAN CARINA (US)) 9 July 1998 (1998-07-09) page 57; figure 13; example 14	5-8		
E	WO 01 14577 A (SMITHKLINE BEECHAM PLC;SMITHKLINE BEECHAM CORP (US)) 1 March 2001 (2001-03-01) page 30-31; claims 1,2	5-8		
E	EP 1 090 989 A (PFIZER LTD ; PFIZER (US)) 11 April 2001 (2001-04-11) Seq. Id. No. 1, 2	5-8		
X	DATABASE EMBL 'Online! AC: AC008754, 4 August 1999 (1999-08-04) DOE JOINT GENOME INSTITUTE: "Homo sapiens chomosome 19 clone CTD-3023J11, complete sequence" XP002175778 abstract	9-12		
X	DATABASE EMBL 'Online! AC: AQ532303, 18 May 1999 (1999-05-18) ZHAO S ET AL.: "Use of BAC End Sequences from Library RPCI-11 for Sequence-Ready Map Building" XP002175779 abstract	9-12		
	-/			

Inter onal Application No
PCT/US 00/31509

Category :	Citation of document, with indication, where appropriate, of the relevant passages	Helevant to claim No
	Chanch of occurrent, with indication, where appropriate, of the relevant passages	Helevant to claim No
P,X	DATABASE EMBL 'Online! AC: AB038237, 4 May 2000 (2000-05-04) OHONO ET AL.: "Homo spiens mRNA for G proteine-coupled receptor C5L2, complete cds" XP002175947 abstract	9-12
Ρ,Χ	WO 00 14229 A (ONO MITSUHARU ;KANNO KIMIYOSHI (JP); ASAHI CHEMICAL IND (JP); ISHI) 16 March 2000 (2000-03-16) page 98 -page 101; claim 4 page 103; claim 5	9-12
E	WO 01 36471 A (ARENA PHARMACEUTICALS INC; CHEN RUOPING (US); DANG HUONG T (US); L) 25 May 2001 (2001-05-25) Seq. Id. No. 3 (claims 5-8) Seq. Id. No. 5 (claims 9-12) Seq. Id. No. 7 (claims 13-16) Seq. Id. No. 9 (claims 17-20) Seq. Id. No. 11 (claims 17-20) Seq. Id. No. 13 (claims 25-28) Seq. Id. No. 21 (claims 41-44) Seq. Id. No. 19, 23 (claims 45-48) Seq. ID. No. 25 (claims 49-52)	5-28, 41-52
E	EP 1 094 076 A (PFIZER LTD ;PFIZER (US)) 25 April 2001 (2001-04-25) Seq. Id. No. 1	9-12
E	WO 01 31014 A (UPJOHN CO :VOGELI GABRIEL (US); WOOD LINDA S (US); MERCHANT KALPAN) 3 May 2001 (2001-05-03) Sequence No. 5	13-16
X	PATENT ABSTRACTS OF JAPAN vol. 1999, no. 09, 30 July 1999 (1999-07-30) & JP 11 098988 A (SMITHKLINE BEECHAM CORP), 13 April 1999 (1999-04-13) abstract & DATABASE EMBL 'Online! AC: E31720; E75225, 22 February 2001 (2001-02-22) JEFFREY L.M.D.D. AND BERGSUMA W.S.H.H.: "cDNA clone HeoAd54 encoding human seven-pass transmembrane receptor" abstract	13-16
X	US 5 955 308 A (BERGSMA DERK J ET AL) 21 September 1999 (1999-09-21) Sequence 1	13-16

Inte onal Application No
PCT/US 00/31509

Sategory :	lation) DOCUMENTS CONSIDERED TO BE RELEVANT Citation of document, with indication where appropriate of the relevant passages	[Helevant to claim No
Jategory \	Charlon of document, with moleanon where appropriate, or the relevant passages	TORSTON IS SIGNITY
X	EP 0 892 051 A (SMITHKLINE BEECHAM CORP) 20 January 1999 (1999-01-20) page 20 -page 21; claim 11	13-16
X , P	DATABASE EMBL 'Online! AC: AP000808, 3 December 1999 (1999-12-03) HATTORI M. ET AL.: "Homo sapiens 171,539 genomic of 11q13" XP002175780 abstract	17-20
X	WO 99 32519 A (FORTIN YVES :LEMBO PAOLA (CA); AHMAD SULTAN (CA); BANVILLE DENIS () 1 July 1999 (1999-07-01)	37-40
A	page 48 -page 54; claims 16.20.21	17-20. 57-60
X X	page 55 -page 56; claim 25 page 52 -page 54; claim 21	37-40 37-40
X	DATABASE EMBL 'Online! ACO11780 , 18 October 1999 (1999-10-18) BIRREN B., LINTON L., NUSBAUM C., LANDER E.: "Homo sapiens clone RP11-15H8, 31 unordered pieces." XP002175781 abstract	21-24
X	JP 08 245697 A (TAKEDA CHEM IND LTD) 24 September 1996 (1996-09-24) claim 4; figures 1,2	21-24
X	WO 96 05302 A (FUJII RYO ;HOSOYA MASAKI (JP); OHGI KAZUHIRO (JP); FUKUSUMI SHOJI) 22 February 1996 (1996-02-22) page 263 -page 264; example 16	21-24
Ρ,Χ	DATABASE EMBL 'Online! AC: AL355310 , 5 May 2000 (2000-05-05) WALLIS, J: "Human DNA sequence from clone RP5-1160K1" XP002175782 abstract	21-24
X	DATABASE EMBL 'Online! AC: AQ001459, ADAMS M.D. ET AL.: "CIT-HSP-2286K19.TF CIT-HSP Homo sapiens genomic clone 2286K19, genomic survey sequence" XP002175783 abstract	25-28
A	EP 0 878 542 A (SMITHKLINE BEECHAM CORP) 18 November 1998 (1998-11-18) page 18 -page 19; claim 1	25-28
	-/	

inter onal Application No PCT/US 00/31509

PCT/US 00/31509				
ategory	(station of document, with indication, where appropriate of the relevant passages	(Helevant to claim N∈		
P,X	HEISE CHRISTOPHER E ET AL: "Characterization of the human cysteinyl leukotriene 2 receptor." JOURNAL OF BIOLOGICAL CHEMISTRY, vol. 275, no. 39, 29 September 2000 (2000-09-29), pages 30531-30536, XP002175775 ISSN: 0021-9258 the whole document & DATABASE EMBL 'Online! AC: AF254664, HEISE C.E. ET AL.: "Homo sapiens cysteinyl leukotriene receptor CYSLT2 gene, complete cds." abstract	25-28		
	US 5 861 309 A (WEINSHANK RICHARD L ET AL) 19 January 1999 (1999-01-19) Sequence 1	29-32		
Ε	WO 01 09184 A (DELEERSNIJDER WILLY; NYS GUY (BE); ZHANG FAN (BE); SOLVAY PHARMACE) 8 February 2001 (2001-02-08) Sequence 1 page 6 -page 7; claims 1,15	29-32		
Ρ,Χ	DATABASE EMBL 'Online! ACO16468, 1 December 1999 (1999-12-01) BIRREN B. ET AL.: "Homo sapiens clone RP11-14N15" XP002175784 abstract	29-32		
A	WO 99 48921 A (ORGANON NV ;SPEK PETRUS JOHANNES V D (NL); UNIV LELAND STANFORD JU) 30 September 1999 (1999-09-30) claims 2,4; figure 4	33-36		
Ρ,Χ	DATABASE EMBL 'Online! AL136106, 7 January 2000 (2000-01-07) BURTON J: "Human DNA sequence from clone RP11-15909" XP002175785 abstract	33-36		
X	DATABASE EMBL 'Online! AC: AC008547, OE JOINT GENOME INSTITUTE STANFORD HUMAN GENOME CENTER.: "Homo sapiens chromosome 5 clone CTC-502M5, complete sequence." XP002175786 abstract	41-44		

inte onal Application No PCT/US 00/31509

Categor	Citation of document, with indication where appropriate of the relevant passages	Helevant to claim No
· · · · ·	WO 99 06552 A (GENSET SA :LACROIX BRUNO (FR); DUCLERT AYMERIC (FR); DUMAS MILNE E) 11 February 1999 (1999-02-11) SEQ ID NO: 95	41-44
1	EP 0 612 845 A (AMERICAN CYANAMID CO) 31 August 1994 (1994-08-31) claim 2; figure 9	49-52
A	DATABASE EMBL 'Online! AC: AL065769, 29 May 1999 (1999-05-29) GEMPSCPÜE: "Drosophila melanogaster genome survey sequence TET3 end of BAC # BACRO8K10 of RPCI-98 library from Drosophila melanogaster (fruit fly)" XP002175910 abstract	49-52
Ρ,Χ	DATABASE EMBL 'Online! AC: Al161458, 16 April 2000 (2000-04-16) BURTON J. ET AL.: "Human DNA sequence from clone RP11-163L4" XP002175911 abstract	49-52
A	BOYER JOSE L ET AL: "Molecular cloning and expression of an avian G protein-coupled P2Y receptor." MOLECULAR PHARMACOLOGY, vol. 52, no. 6, December 1997 (1997-12), pages 928-934, XP002175907 ISSN: 0026-895X the whole document	53-56
Ρ,Χ	DATABASE EMBL 'Online! AC: ACO26756, 24 April 2000 (2000-04-24) ABOLA A.P. ET AL.: "omo sapiens chromosome 13 clone RP11-286P8, complete sequence" XP002175912 abstract	53-56
Ρ, Χ	DATABASE EMBL 'Online! AC ACO27026, 27 April 2000 (2000-04-27) BIRREN B. ET AL.: "Homo sapiens chromosome 11, clone RP11-589F4" XP002175913 abstract	57-60
	WO 01 16159 A (SMITHKLINE BEECHAM CORP) 8 March 2001 (2001-03-08) page 30; claim 1	57-60

Inte onal Application No PCT/US 00/31509

Liconyer		PCT/US 00/31509		
Jategory -	Gitation of document, with indication, where appropriate of the relevant passages	Relevant to claim No		
X	DATABASE EMBL 'Online! AC: AC007104, 23 April 1999 (1999-04-23) STONE ET AL.: "Homo sapiens chomosome 4, 16 unordered pieces" XP002175914 abstract	61-64		
	WO 01 12673 A (MERCK PATENT GMBH ;DUECKER KŁAUS (DE)) 22 February 2001 (2001-02-22) Sequence 1, 2 page 39; claim 3	61-64		
(JP 11 032770 A (ASAHI CHEM IND CO LTD) 9 February 1999 (1999-02-09) page 19; claim 7	65-68		
(WO 98 56820 A (ELSHOURBAGY NABIL A ;SMITHKLINE BEECHAM CORP (US); LI XIAOTONG (US) 17 December 1998 (1998-12-17) page 30 -page 31; claims 1,2	69-72		
1	the whole document	45-48		
(DATABASE EMBL 'Online! AC: ACO10984, 29 September 1999 (1999-09-29) WATERSON R.H.: "Homo sapiens chromosome 2 clone RP11-510C1" XP002175915 abstract	73-76		
	DATABASE EMBL 'Online! AC 008892, 15 July 1998 (1998-07-15) WEINSHANK R. H.: "5-Hydroxytryptamine 1B Receptor(-HT-1B) (Serotonin Receptor)" XP002175948 abstract	73-76		
	MAHAIRAS GREGORY G ET AL: "Sequence-tagged connectors: A sequence approach to mapping and scanning the human genome." PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES, vol. 96, no. 17, 17 August 1999 (1999-08-17), pages 9739-9744, XP002175909 Aug. 17, 1999 ISSN: 0027-8424 the whole document	77-80		
	WO 01 07606 A (SMITHKLINE BEECHAM PLC) 1 February 2001 (2001-02-01) Sequence 2 page 31; claim 4	77-80		

Inte ional Application No
PCT/US 00/31509

	tion) DOCUMENTS CONSIDERED TO BE RELEVANT	
ategory "	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No
P , X	WO 00 49046 A (TERAO YASUKO ;WATANABE TAKUYA (JP); SHINTANI YASUSHI (JP); TAKEDA) 24 August 2000 (2000-08-24) claim 5: figure 1	77-80

Inc.national application No. PCT/US 00/31509

Box I	Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)
This Inte	ernatic hat Search Report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:
1.	Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely:
2.	Claims Nos.: because they relate to parts of the international Application that do not comply with the prescribed requirements to such an extent that no meaningful International Search can be carried out, specifically:
3.	Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).
Box II	Observations where unity of invention is lacking (Continuation of item 2 of first sheet)
This Inte	ernational Searching Authority found multiple inventions in this international application, as follows:
	see additional sheet
1. X	As all required additional search fees were timely paid by the applicant, this international Search Report covers all searchable claims.
2.	As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.
3.	As only some of the required additional search fees were timely paid by the applicant, this International Search Report covers only those claims for which fees were paid, specifically claims Nos.:
4.	No required additional search fees were timely paid by the applicant. Consequently, this International Search Report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:
Remari	The additional search fees were accompanied by the applicant's protest.

This International Searching Authority found multiple (groups of) inventions in this international application. as follows:

1. Claims: 1-4

G protein-coupled receptor as characterized by SEQ.ID.2, its non-endogenous, constitutively activated version, a cDNA encoding said receptor as characterized by SEQ.ID.1, a plasmid comprising said cDNA, and a host cell comprising said plasmid.

2. Claims: 5-8

G protein-coupled receptor as characterized by SEQ.ID.4, its non-endogenous, constitutively activated version, a cDNA encoding said receptor as characterized by SEQ.ID.3, a plasmid comprising said cDNA, and a host cell comprising said plasmid.

3. Claims: 9-12

G protein-coupled receptor as characterized by SEQ.ID.6, its non-endogenous, constitutively activated version, a cDNA encoding said receptor as characterized by SEQ.ID.5, a plasmid comprising said cDNA, and a host cell comprising said plasmid.

4. Claims: 13-16

G protein-coupled receptor as characterized by SEQ.ID.8, its non-endogenous, constitutively activated version, a cDNA encoding said receptor as characterized by SEQ.ID.7, a plasmid comprising said cDNA, and a host cell comprising said plasmid.

5. Claims: 17-20

G protein-coupled receptor as characterized by SEQ.ID.10, its non-endogenous, constitutively activated version, a cDNA encoding said receptor as characterized by SEQ.ID.9, a plasmid comprising said cDNA, and a host cell comprising said plasmid.

6. Claims: 21-24

G protein-coupled receptor as characterized by SEQ.ID.12, its non-endogenous, constitutively activated version SEQ ID.84, a cDNA encoding said receptor as characterized by SEQ.ID.11, a plasmid comprising said cDNA, and a host cell comprising said plasmid.

7. Claims: 25-28

G protein-coupled receptor as characterized by SEQ.ID.14, its non-endogenous, constitutively activated version SEQ.ID. 88, a cDNA encoding said receptor as characterized by SEQ.ID.13, a plasmid comprising said cDNA, and a host cell comprising said plasmid.

8. Claims: 29-32

G protein-coupled receptor as characterized by SEQ.ID.16, its non-endogenous, constitutively activated version SEQ.ID.92, a cDNA encoding said receptor as characterized by SEQ.ID.15, a plasmid comprising said cDNA, and a host cell comprising said plasmid.

9. Claims: 33-36

G protein-coupled receptor as characterized by SEQ.ID.18, its non-endogenous, constitutively activated version, a cDNA encoding said receptor as characterized by SEQ.ID.17, a plasmid comprising said cDNA, and a host cell comprising said plasmid.

10. Claims: 37-40

G protein-coupled receptor as characterized by SEQ.ID.20, its non-endogenous, constitutively activated version, a cDNA encoding said receptor as characterized by SEQ.ID.19, a plasmid comprising said cDNA, and a host cell comprising said plasmid.

11. Claims: 41-44

G protein-coupled receptor as characterized by SEQ.ID.22, its non-endogenous, constitutively activated version, a cDNA encoding said receptor as characterized by SEQ.ID.21, a plasmid comprising said cDNA, and a host cell comprising said plasmid.

12. Claims: 45-48

G protein-coupled receptor as characterized by SEQ.ID.24, its non-endogenous, constitutively activated version, a cDNA encoding said receptor as characterized by SEQ.ID.23, a plasmid comprising said cDNA, and a host cell comprising said plasmid.

13. Claims: 49-52

G protein-coupled receptor as characterized by SEQ.ID.26, its non-endogenous, constitutively activated version, a cDNA encoding said receptor as characterized by SEQ.ID.25, a plasmid comprising said cDNA, and a host cell comprising said plasmid.

14. Claims: 53-56

G protein-coupled receptor as characterized by SEQ.ID.28, its non-endogenous, constitutively activated version, a cDNA encoding said receptor as characterized by SEQ.ID.27, a plasmid comprising said cDNA, and a host cell comprising said plasmid.

15. Claims: 57-60

G protein-coupled receptor as characterized by SEQ.ID.30, its non-endogenous, constitutively activated version, a cDNA encoding said receptor as characterized by SEQ.ID.29, a plasmid comprising said cDNA, and a host cell comprising said plasmid.

16. Claims: 61-64

G protein-coupled receptor as characterized by SEQ.ID.32, its non-endogenous, constitutively activated version, a cDNA encoding said receptor as characterized by SEQ.ID.96, a plasmid comprising said SEQ.ID 95, and a host cell comprising said plasmid.

17. Claims: 65-68

G protein-coupled receptor as characterized by SEQ.ID.34, its non-endogenous, constitutively activated version, a cDNA encoding said receptor as characterized by SEQ.ID.33, a plasmid comprising said cDNA, and a host cell comprising said plasmid.

18. Claims: 69-72

G protein-coupled receptor as characterized by SEQ.ID.36, its non-endogenous, constitutively activated version, a cDNA encoding said receptor as characterized by SEQ.ID.35, a plasmid comprising said cDNA, and a host cell comprising said plasmid.

19. Claims: 73-76

G protein-coupled receptor as characterized by SEQ.ID.38. its non-endogenous, constitutively activated version, a cDNA encoding said receptor as characterized by SEQ.ID.37. a plasmid comprising said cDNA, and a host cell comprising said plasmid.

20. Claims: 77-80

G protein-coupled receptor as characterized by SEQ.ID.40, its non-endogenous, constitutively activated version, a cDNA encoding said receptor as characterized by SEQ.ID.39, a plasmid comprising said cDNA, and a host cell comprising said plasmid.

Information on patent family members

Inte onal Application No PCT/US 00/31509

						PC1/US	00/31509
	Patent documented in search rep		Publication date	i	Patent family member(s)		Fublication date
W	0 9846620	A	22-10-1998	US AU EP	5891720 6973698 1007536	3 A	06-04-1999 11-11-1998 14-06-2000
U	S 5891720	Α	06-04-1999	AU EP WO	6973698 1007536 9846620	5 A	11-11-1998 14-06-2000 22-10-1998
W(9721731	A	19-06-1997	US AU AU CA EP JP 2	5750353 715611 1334397 2239293 0869975 000510324	B A A A	12-05-1998 03-02-2000 03-07-1997 19-06-1997 14-10-1998 15-08-2000
W(0 0022131	А	20-04-2000	AU AU EP WO WO AU WO	6299199 6430799 1121431 0021987 0022129 3790400 0031258	A A A A	01-05-2000 01-05-2000 08-08-2001 20-04-2000 20-04-2000 13-06-2000 02-06-2000
WO	9829439	Α	09-07-1998	EP EP EP WO WO	0948529 0948532 0960125 9829440 9829441	A A A	13-10-1999 13-10-1999 01-12-1999 09-07-1998 09-07-1998
WO	0114577	Α	01-03-2001	NONE			
EP	1090989	Α	11-04-2001	NONE			
WO	0014229	A	16-03-2000	AU EP	5449099 1111049		27-03-2000 27-06-2001
WO	0136471	Α	25-05-2001	NONE			
EP	1094076	Α	25-04-2001	NONE			
WO	0131014	A	03-05-2001	NONE			
JP	11098988	A	13-04-1999	US EP	5955308 0892051		21-09-1999 20-01-1999
US 	5955308	A	21-09-1999	EP JP	0892051 11098988	A A	20-01-1999 13-04-1999
EP 	0892051	A	20-01-1999		5955308 11098988		21-09-1999 13-04-1999
WO	9932519	A	01-07-1999	PL	1990499 / 9814335 / 1284966 / 1051434 / 20003221 / 341524 / 00001861 7	A T A A	12-07-1999 10-10-2000 21-02-2001 15-11-2000 10-08-2000 23-04-2001 21-11-2000

information on patent family members

Int. ional Application No PCT/US 00/31509

Patent document cited in search repo	rt	Publication date	Patent tamily member(s)	Publication date
JP 08245697	А	24-09-1996	NONE	:
WO 9605302	A	22-02-1996	AU 4426296 A CA 2195768 A EP 0804575 A JP 9000268 A US 6114139 A	07-03-1996 22-02-1996 05-11-1997 07-01-1997 05-09-2000
EP 0878542	A	18-11-1998	CA 2231740 A CA 2234399 A EP 0874047 A JP 11032784 A US 6200775 B	22-10-1998 22-10-1998 28-10-1998 09-02-1999 13-03-2001
US 5861309	A	19-01-1999	AU 718197 B AU 3420797 A AU 677968 B AU 5165693 A CA 2145182 A DE 663014 T EP 1063291 A EP 1063292 A EP 0663014 A ES 2085247 T GR 95300067 T JP 8505044 T WO 9408040 A US 6083705 A US 5556753 A US 5714381 A US 6156518 A	06-04-2000 29-01-1998 15-05-1997 26-04-1994 14-04-1994 10-10-1996 27-12-2000 27-12-2000 19-07-1995 01-06-1996 31-01-1996 04-06-1996 14-04-1994 04-07-2000 17-09-1996 03-02-1998 05-12-2000
WO 0109184	Α	08-02-2001	AU 5985800 A	19-02-2001
WO 9948921	Α	30-09-1999	EP 1066324 A	10-01-2001
WO 9906552	Α	11-02-1999	US 6222029 B AU 8555598 A EP 1000150 A	24-04-2001 22-02-1999 17-05-2000
EP 0612845	A	31-08-1994	AU 5640494 A JP 7095889 A US 6258556 B US 6225080 B	01-09-1994 11-04-1995 10-07-2001 01-05-2001
WO 0116159	Α	08-03-2001	NONE	
WO 0112673	A	22-02-2001	NONE	
JP 11032770	Α	09-02-1999	NONE	
WO 9856820	A	17-12-1998	AU 7966098 A EP 1007563 A	30-12-1998 14-06-2000
WO 0107606	Α	01-02-2001	NONE	
WO 0049046	Α	24-08-2000	AU 2573900 A JP 2001017186 A	04-09-2000 23-01-2001