

## UNIVERSIDADE FEDERAL DO CEARÁ - CAMPUS DE CRATEÚS

CURSO: CIÊNCIA DA COMPUTAÇÃO

DISCIPLINA: MATEMÁTICA DISCRETA

PROFESSORA: LÍLIAN DE OLIVEIRA CARNEIRO

ALUNO(A):\_\_\_\_\_\_DATA: 29/10/2018

## AVALIAÇÃO

- 1. Determine se as seguintes afirmações são verdadeiras (V) ou falsas (F). Se a afirmação for verdadeira, demonstre-a; Se for falsa, apresente um contra-exemplo. (2,0)
  - (a) É possível encontrar dois números inteiros, ambos divisíveis por 7, tais que a divisão de um pelo outro deixe resto 39. ( )
  - (b) A diferença entre os cubos de dois inteiros consecutivos nunca é divisível por 2. ( )
  - (c) Existem exatamente 3 inteiros positivos menores que 150 que quando divididos por 39 deixam um resto igual ao quociente. ( )
  - (d) O  $mdc(306,657) = 3^2$  e o  $mmc(306,657) = 2 \cdot 3^2 \cdot 7^3 \cdot 17$ . (
  - (e) Se  $64 \equiv 22 \pmod{m}$ , então existem 16 valores possíveis para m. ( )
- 2. Dados os inteiros a e p, com p primo. Mostre que se  $p \nmid a$ , então o mdc(a, p) = 1. (1,0)
- 3. Usando seus conhecimentos sobre Congruências, faça o que se pede: (3,0)
  - (a) Determine a classe de conguência de 75 módulo 8; (0,7)
  - (b) Sabendo que 17 pertence à classe de conguência de 24 módulo m, determine m. (0,8)
  - (c) Determine um sistema completo de restos  $\{p_1, p_2, \dots, p_7\}$  módulo 7 tal que todo  $p_i$  é primo.(0,5)
  - (d) Sabendo que  $n \equiv 7 \pmod{12}$ . Mostre que  $n \equiv 3 \pmod{4}$ . (1,0)
- 4. Use o Princípio da Indução Matemática para mostrar que  $n^3 n$  é divisível por 3 para todo  $n \in \mathbb{Z}_+^*$ . (2,0)
- 5. Seja  $(s_1, s_2, ...)$  uma sequência defenida da seguinte maneira: (2,0)

$$s_1 = 1, s_2 = 3$$

$$s_k = s_{k-2} + 2 \cdot s_{k-1}, \forall k \ge 3.$$

Mostre que  $s_n$  é impar  $\forall n \geq 1$ .