# DA\_HW2

Howard

2025-03-05

### Problem 1

Consider the simple linear regression model

$$y = c + \beta_1 x + \epsilon$$

where the intercept c is known.

### (a) Derivation of the Least-Squares Estimator of $eta_1$

Minimize the sum of squared errors:

$$RSS(eta_1) = \sum_{i=1}^n \Bigl( y_i - c - eta_1 x_i \Bigr)^2.$$

Differentiate  $RSS(\beta_1)$  with respect to  $\beta_1$  and set the derivative to zero:

$$rac{\partial RSS}{\partial eta_1} = -2 \sum_{i=1}^n x_i \Big( y_i - c - eta_1 x_i \Big) = 0.$$

This implies:

$$\sum_{i=1}^n x_i (y_i-c) - eta_1 \sum_{i=1}^n x_i^2 = 0.$$

Solving for  $\beta_1$ , we obtain:

$$\hat{eta}_1 = rac{\sum_{i=1}^n x_i (y_i - c)}{\sum_{i=1}^n x_i^2}.$$

This estimator is reasonable because it essentially regresses the centered response  $y_i - c$  on  $x_i$ , thereby isolating the effect of x on y.

### (b) Variance of $\hat{eta}_1$

Given the model  $y_i = c + eta_1 x_i + \epsilon_i$  and noting that

$$\hat{eta}_1 = eta_1 + rac{\sum_{i=1}^n x_i \epsilon_i}{\sum_{i=1}^n x_i^2},$$

and assuming that  $\epsilon_i$  are independent with  ${
m Var}(\epsilon_i)=\sigma^2$  , the variance of  $\hat{eta}_1$  is:

$$\operatorname{Var}(\hat{eta}_1) = rac{\sigma^2}{\sum_{i=1}^n x_i^2}.$$

### (c) Confidence Interval for $\beta_1$

Assuming the errors  $\epsilon_i\sim N(0,\sigma^2)$ , the estimator  $\hat{eta}_1$  is normally distributed. However, since  $\sigma^2$  is usually unknown, we estimate it by:

$$\hat{\sigma}^2 = rac{1}{n-1} \sum_{i=1}^n \Bigl( y_i - c - \hat{eta}_1 x_i \Bigr)^2,$$

where the degrees of freedom is n-1 (because only  $\beta_1$  is estimated).

Then the statistic

$$t=rac{\hat{eta}_1-eta_1}{\sqrt{\hat{\sigma}^2/\sum_{i=1}^n x_i^2}}$$

follows a t-distribution with n-1 degrees of freedom. Thus, a  $100(1-\alpha)\%$  confidence interval for  $\beta_1$  is given by:

$${\hat eta}_1 \pm t_{n-1,\,lpha/2} \sqrt{rac{{\hat \sigma}^2}{\sum_{i=1}^n x_i^2}},$$

where  $t_{n-1,\alpha/2}$  is the critical value from the t-distribution with n-1 degrees of freedom.

### Comparison with the Case When the Intercept Is Unknown

When the intercept is unknown, the least-squares estimator of  $\beta_1$  is

$${ ilde eta}_1 = rac{\sum_{i=1}^n (x_i - ar x)(y_i - ar y)}{\sum_{i=1}^n (x_i - ar x)^2},$$

with variance

$$ext{Var}( ilde{eta}_1) = rac{\sigma^2}{\sum_{i=1}^n (x_i - ar{x})^2}.$$

Because

$$\sum_{i=1}^n (x_i - ar{x})^2 = \sum_{i=1}^n x_i^2 - nar{x}^2,$$

this sum is smaller than  $\sum_{i=1}^n x_i^2$  (unless  $\bar{x}=0$ ). Consequently, the variance—and hence the confidence interval—is narrower when the intercept c is known.

### Problem 2

(a)Convert the 400 images into a 400 × 2576 data matrix. Add an additional column indicating the physical gender label.

### List and Read PNG Images

```
library(png)
image_dir <- "D:/DA_HW/DAHW/ORL Faces"
image_files <- list.files(image_dir, pattern = "\\.png$", full.names = TRUE)
n <- length(image_files)
if(n != 400){
    stop("Expected 400 images, but found ", n)
}</pre>
```

### Convert Images to a Data Matrix

```
data_matrix <- matrix(NA, nrow = n, ncol = 46 * 56)
for (i in 1:n) {
  img <- readPNG(image_files[i])
  data_matrix[i, ] <- as.vector(t(img))
}
dim(data_matrix)</pre>
```

```
## [1] 400 2576
```

### Append the Gender Label

· Classify the g by manual.

```
# There are 40 subjects, each with 10 images.
subject_ids <- rep(1:40, each = 10)

# male (1) and female (0).
subject_gender <- c(0,rep(1,6),0,1,0,1,0,rep(1,19),0,rep(1,8))

# Create a gender vector for all 400 images:
gender_labels <- subject_gender[subject_ids]

# Append the gender labels as an additional column to the data matrix.
final_data <- cbind(data_matrix, gender = gender_labels)

# Check the dimensions of the final data matrix.
dim(final_data)</pre>
```

```
## [1] 400 2577
```

### (b)Regress the gender label on all the 2576 pixels? What do you observe?

### Fit a Logistic Regression on All Pixels

• Because the predicted valued is binary, So I thinking using Logistic Regression is the proper regress method.

```
# Convert final_data (matrix) to a data frame
df <- as.data.frame(final_data)
#names
pixel_names <- paste0("pixel", 1:2576)
colnames(df) <- c(pixel_names, "gender")
#Fit the logistic Regression for binary response(gender = 0/1)
model_glm <- glm(gender ~ ., data = df,family = binomial)
s <- summary(model_glm)
print(s$coefficients[1:200])</pre>
```

```
##
    [1]
          159.36374
                     781.67373 -847.97814 4132.16870 -1505.34419
                                                                    78.55472
    [7] -2335.17627
##
                     467.06981 -944.42390 -1327.05245
                                                        828.05710
                                                                   220.75294
##
   [13]
           55.92137 -603.85901 369.55916 -509.05263
                                                       981.80508 -434.72787
##
   [19]
          735.32352
                      23.75581 762.45535 -513.81574 227.33318 -1100.63479
##
   [25]
         1328.37120 -1063.43422 1836.92143 -1077.17562
                                                        368.28560 -762.24699
##
   [31]
          772.16267 -360.81218 -1323.68696 1408.91931 -585.32422 1328.85971
##
   [37] -1263.23467 2663.00645
                                 340.72642 -743.59963 1885.03681 3493.06216
   [43]
         -502.27881
                    -27.99947 -1763.74385 -4162.54316 -2895.92094 143.93773
   [49] -2175.22095 3485.58077 -2095.45336 500.75854
                                                         53.79110 1270.80878
##
##
   [55]
          411.84152 1196.93241 -1838.86515
                                           451.48558 -348.56685 1739.46126
   [61] -1161.34255
##
                     -28.16144 -838.39268 314.46349 1296.34321 -1659.48584
   [67] -1417.32145 1040.81201 -533.16037 776.09260 800.26049 -2347.81683
                                                                 -963.81107
   [73]
         2108.39340 -438.25105 -533.38410 -595.66634 -550.78434
##
##
   [79]
          597.94529 1765.45249
                                 49.45760 -1522.55324
                                                        836.91697 -3491.14019
   [85]
          586.50565 -3117.07163 602.04702 -2637.38396 -1487.82409 -3737.64655
##
##
   [91]
        4424.48404 2955.70501 3022.72058 -3462.76600 -1687.81616 -762.62803
##
   [97]
           93.09846 257.62831 -225.02492 836.00995 -2434.72318 2049.22764
         -625.89656 176.58230 -1168.79181
                                                        705.07207 -1016.71674
## [103]
                                            83.71876
         1886.62843 -2245.08138 1391.25305 1947.52269 -1445.76777 -353.74296
## [109]
## [115]
         1239.45675
                     547.53479 -1889.73058 1533.50759 -720.98089
                                                                    47.36489
## [121]
          139.75813 -2951.32977 3526.81847 -1133.71428 1444.74560 -27.30775
          151.27809 -743.32376 -965.43718 2283.04942 1196.75206
## [127]
                                                                    63.50886
## [133]
         2086.54104 -1524.22715 -1628.34090
                                            903.73755 -1032.29360
                                                                   549.30811
                                                       716.20895 -1865.63878
## [139]
        3119.47475 -1867.81772 4032.06622 -245.71497
## [145]
          805.68048 -897.32426 2198.53437 -1089.22153 645.74200
                                                                    71.36172
         2612.50959 -2154.30703 2075.38177 -1697.00650 1039.19271 -618.84286
## [151]
          659.66269 -2251.38484 1968.81497 -603.99859
  [157]
                                                       730.14379 -2451.62835
## [163] 1078.50836 -319.38788
                                 244.53508 818.12681 1860.23544 -2370.00334
  [169]
         1879.95634 -710.69152 -496.29313 419.32721 150.27125 -1405.36643
         -651.86554 754.03169 -2238.81007 284.15360 -760.59163 -1681.53257
## [175]
         4157.63040 -377.30888 1433.21036 165.01893 -5530.84316 5824.24475
## [181]
## [187] -1577.16195
                                559.72526 1478.47693 -1922.88391 822.30552
                    876,19625
         -281.86754 -374.10463 -1145.15256 -1472.60154 -242.80459 1748.03985
## [199] -2973.69879 2442.65283
```

### What do we observe

- **Convergence Problems**:With 2576 features for only 400 samples, the logistic regression might fail to converge or produce perfect separations.
- Many Coefficient with Large Standard Errors: Because the model is extremely high dimensional, so many parameters are unstable.
- n << p. With 2576 predictors and only 400 samples, the model is severely overparameterized. Many predictors are highly collinear, so many coefficients are set to NA.
- **in my opinion** This regression highlights the need for dimensionality reduction (like PCA), or regularization methods(like, Ridge, Lasso) when working with high dimensional image data.

#### (c) Perform the stepwise regression from a null model to find the important pixels. Plot the chosen pixels on a 46 × 56 canvas.

Stepwise Feature Selection and Pixel Plot

```
library(MASS) # for stepAIC
library(stringr)
```

```
## Warning: 套件 'stringr' 是用 R 版本 4.2.3 來建造的
```

```
df$gender <- as.factor(df$gender) # Logistic regression expects a factor</pre>
```

Define a Null and Full Model for Logistic Regression

```
# Null model: includes only the intercept
null_model <- glm(gender ~ 1, data = df, family = binomial)
# Full model: includes all pixels
full_model <- glm(gender ~ ., data = df, family = binomial)</pre>
```

```
## Warning: glm.fit:演算法沒有聚合
```

### Forward Stepwise Selection (Up to 50 Steps)

```
stepwise_model <- stepAIC(
  object = null_model,
  scope = list(lower = null_model, upper = full_model),
  direction = "forward",
  trace = FALSE, # set to TRUE to see iteration details
  steps = 50  # limit the maximum number of forward steps
)
summary(stepwise_model)</pre>
```

```
## Call:
## glm(formula = gender ~ pixel2320 + pixel685 + pixel1558 + pixel607 +
      pixel1701 + pixel2574 + pixel1475 + pixel2534 + pixel208 +
      pixel452 + pixel1401 + pixel1878 + pixel2332 + pixel1049,
##
##
      family = binomial, data = df)
##
## Deviance Residuals:
##
         Min
                      1Q
                             Median
                                            30
                                                       Max
## -5.678e-04
              2.000e-08 2.000e-08
                                      2.000e-08 5.080e-04
##
## Coefficients:
             Estimate Std. Error z value Pr(>|z|)
## (Intercept) 3958.4 166857.5 0.024
                                            0.981
## pixel2320
               -3242.5
                       136932.9 -0.024
                                            0.981
## pixel685
              -3236.0 136104.6 -0.024
                                            0.981
               2371.0 102844.8 0.023
## pixel1558
                                            0.982
                        44840.1 0.021
## pixel607
                947.7
                                           0.983
## pixel1701
                1835.2
                         83277.9 0.022
                                            0.982
## pixel2574
               -2100.5 90737.2 -0.023
                                           0.982
             -1578.0 69222.6 -0.023
## pixel1475
                                            0.982
               1392.0 60491.8 0.023
                                            0.982
## pixel2534
## pixel208
               -1745.1
                         80635.0 -0.022
                                            0.983
## pixel452
               1766.3 81781.3 0.022
                                            0.983
## pixel1401
               -2049.9 91745.4 -0.022
                                            0.982
               1287.7 56104.4 0.023
## pixel1878
                                            0.982
## pixel2332
               -1484.6
                         69783.6 -0.021
                                            0.983
## pixel1049
               -708.0
                       54728.7 -0.013
                                            0.990
##
## (Dispersion parameter for binomial family taken to be 1)
##
      Null deviance: 3.0142e+02 on 399 degrees of freedom
## Residual deviance: 1.5914e-06 on 385 degrees of freedom
## AIC: 30
##
## Number of Fisher Scoring iterations: 25
```

### Identify the Selected Pixels

```
selected_features <- names(coef(stepwise_model))[-1]
selected_features</pre>
```

```
## [1] "pixel2320" "pixel685" "pixel1558" "pixel607" "pixel1701" "pixel2574"
## [7] "pixel1475" "pixel2534" "pixel208" "pixel452" "pixel1401" "pixel1878"
## [13] "pixel2332" "pixel1049"
```

```
pixel_idx <- as.numeric(sub("pixel", "", selected_features))
pixel_idx</pre>
```

```
## [1] 2320 685 1558 607 1701 2574 1475 2534 208 452 1401 1878 2332 1049
```

### Plot the Important Pixels on a 46×56 Canvas

### Important Pixels Selected (up to 50)



```
# 'red' = selected pixel
# 'white' = not selected
```

### Problem 3

- Using R bulit-in Volcano dataset.
- Volcano\_data[i,j] = height at (x1 = i, x2 = j).
- We want to find the  $(x_1,x_2)$  that gives the max height.

```
volcano_data <- volcano
dim(volcano_data)</pre>
```

```
## [1] 87 61
```

### Step2 Set Initial Parameters and Initialize the Search

- When I set the half-Window size as 5, the Highest Point is (27,37), And the Elevation at Highest Point is 180.
- So I change the window\_size to ten will find the highest point.
- The half-window size for local regression which refers to how far out from the current point you look in each direction when defining a local neighborhood for regression.

```
# Starting position: (x<sub>1</sub>, x<sub>2</sub>) = (87, 1)
current_x1 <- nrow(volcano_data) # 87
current_x2 <- 1
# Record the search path as a list of (x1, x2) coordinates
path <- list(c(current_x1, current_x2))
# Parameters for the search
window_size <- 8 # half-window size for local regression
step_size <- 1 # step size</pre>
```

### Step3 Iterative Search for the Peak

- · Local Window Definition: Determines which part of the data to use for local approximation.
- Grid Creation and Elevation Extraction: Constructs a coordinate grid with corresponding elevation values.
- Local Linear Regression: Fits a plane to the local data and extracts the gradient.
- Movement: Uses the gradient and step size to update the search position.
- · Convergence Check: Stops the algorithm when no further improvement is detected.

```
for (i in 1:100) {
   row_min <- max(1, current_x1 - window_size)</pre>
   row_max <- min(nrow(volcano_data), current_x1 + window_size)</pre>
   col_min <- max(1, current_x2 - window_size)</pre>
   col_max <- min(ncol(volcano_data), current_x2 + window_size)</pre>
   # Create a grid of coordinates for the local window
   x1_seq <- row_min:row_max</pre>
   x2_seq <- col_min:col_max
   grid <- expand.grid(x1 = x1_seq, x2 = x2_seq)
   # Extract the corresponding elevations.
   # Note: volcano data[row, col] where row corresponds to x1 and col to x2.
   grid$z <- as.vector(volcano_data[x1_seq, col_min:col_max])</pre>
   # Fit a local linear model: z ~ x1 + x2
   model \leftarrow lm(z \sim x1 + x2, data = grid)
   coefs <- coef(model)</pre>
   # Extract the slopes (gradient components)
   grad <- coefs[c("x1", "x2")]</pre>
   # Determine move direction: sign(gradient) multiplied by step_size
   move_x1 <- sign(grad["x1"]) * step_size</pre>
   move_x2 <- sign(grad["x2"]) * step_size</pre>
   # Update position
   new_x1 <- current_x1 + move_x1</pre>
   new_x2 <- current_x2 + move_x2</pre>
   # Ensure the new position is within bounds
   new_x1 <- max(1, min(new_x1, nrow(volcano_data)))</pre>
   new_x2 <- max(1, min(new_x2, ncol(volcano_data)))</pre>
   # If the new position is unchanged, assume a local maximum has been reached
   if ((new_x1 == current_x1) && (new_x2 == current_x2)) {
     break
   }
   # Update the current position and add it to the path
   current_x1 <- new_x1
   current_x2 <- new_x2</pre>
   path <- c(path, list(c(current_x1, current_x2)))</pre>
 }
Step4 Report the Highest Point
```

```
highest_point <- c(current_x1, current_x2) # (x1, x2) in 1-based indexing
highest_elevation <- volcano_data[current_x1, current_x2]</pre>
cat("Highest Point (1-based index):", highest_point, "\n")
```

```
## Highest Point (1-based index): 21 29
cat("Elevation at Highest Point:", highest_elevation, "\n")
```

```
## Elevation at Highest Point: 191
```

### Step5 Visualize the Path on a Contour Plot

```
# Create a grid for plotting: x1 = rows, x2 = columns
x1_range <- 1:nrow(volcano_data)</pre>
x2_range <- 1:ncol(volcano_data)</pre>
# Use image() to display the volcano data
image( x1_range, x2_range, volcano_data,
      col = terrain.colors(50),
      xlab = "x_1 (Row Index)",
      ylab = "x_2 (Column Index)",
      main = "Search Path to the Volcano Peak")
# Convert the path (list) to a matrix for plotting.
path_mat <- do.call(rbind, path)</pre>
# In the plot, x corresponds to columns (x_2) and y to rows (x_1).
lines(path_mat[,2], path_mat[,1], col = "red", type = "o", pch = 19)
points(highest_point[2], highest_point[1], col = "blue", pch = 19, cex = 1.5)
legend("topright", legend = c("Search Path", "Highest Point"),
       col = c("red", "blue"), pch = c(19, 19))
```

### Search Path to the Volcano Peak



## Problem 4

- We assume the model  $y=eta_0+eta_1x_1+eta_2x_2+\epsilon$  ,  $\epsilon\sim N(0,\sigma^2)$  .
- (a) Use a regression package in R to analyze the problem and interpret the results.
  - Simulate the data with  $x_1 \sim N(0,1)$ , $x_2 \sim N(0,1)$
  - And  $y = 2 + 3x_1 + (-1)x_2 + \epsilon$ )
  - where  $\epsilon \sim N(0,\sigma^2)$
- 1. Simulate the Data

```
n <- 50000
beta0 <- 2
beta1 <- 3
beta2 <- -1
sigma <- 2 # standard deviation of the noise
# Generate predictors from N(0,1)
x1 \leftarrow rnorm(n, mean = 0, sd = 1)
x2 \leftarrow rnorm(n, mean = 0, sd = 1)
# Generate noise term: epsilon ~ N(0, sigma^2)
epsilon <- rnorm(n, mean = 0, sd = sigma)
# Generate response variable y
y \leftarrow beta0 + beta1 * x1 + beta2 * x2 + epsilon
# Combine into a data frame
df <- data.frame(y, x1, x2)</pre>
# Display the first few rows of the data
head(df)
```

```
## y x1 x2

## 1 0.3731012 -0.1126949 -0.2658292

## 2 3.4582951 -0.6940615 -0.9665603

## 3 -0.1095448 -1.4536800 -0.9555962

## 4 -2.0788741 -1.0576313 1.7959559

## 5 -0.1108864 -1.0796584 -0.1700542

## 6 0.7635127 -0.6163644 -0.2222210
```

#### 2. Fit the Linear Model

```
model \leftarrow lm(y \sim x1 + x2, data = df)

summary(model)
```

```
##
## Call:
## lm(formula = y \sim x1 + x2, data = df)
##
## Residuals:
   Min
           10 Median
                          3Q
                                Max
## -8.067 -1.345 0.000 1.336 8.438
## Coefficients:
              Estimate Std. Error t value Pr(>|t|)
##
## (Intercept) 2.006376 0.008929 224.7 <2e-16 ***
               2.999468 0.008948 335.2 <2e-16 ***
## x1
              -1.013448 0.008892 -114.0 <2e-16 ***
## x2
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.996 on 49997 degrees of freedom
## Multiple R-squared: 0.7157, Adjusted R-squared: 0.7157
## F-statistic: 6.292e+04 on 2 and 49997 DF, p-value: < 2.2e-16
```

### Explanation and Interpretation

- The fitting model is  $\hat{y}=2.011668+\phantom{0}3.004628x_1-1.00265x_2$
- Extremely low p-values (< 2.2e-16) for all coefficients indicate that each is statistically significant at typical thresholds (0.05, 0.01, etc.).</li>
- Very large t-values (225.5, 358.1, -111.5) confirm the significance.

- $R^2$  around 71.5% of the variance in y is explain by  $x_1, x_2$
- Overall Model Significance F-statistic is 6.281 × 10<sup>4</sup>, p-value < 2.2e-16, strongly indicating the model is significant and reject the null hypothesis that all slope coefficients are zero.

### (b) Estimating Regression Coefficients via Gradient Descent

#### 1.Define the Loss Function and Its Gradient

```
# Loss function (mean squared error) multiplied by 1/2 for convenience.
loss_function <- function(beta, y, x1, x2) {
    n <- length(y)
    predictions <- beta[1] + beta[2]*x1 + beta[3]*x2
    loss <- sum((y - predictions)^2) / (2*n)
    return(loss)
}

# Gradient of the Loss function with respect to beta parameters.
gradient_function <- function(beta, y, x1, x2) {
    n <- length(y)
    predictions <- beta[1] + beta[2]*x1 + beta[3]*x2
    error <- y - predictions
    grad0 <- -sum(error) / n
    grad1 <- -sum(error * x1) / n
    grad2 <- -sum(error * x2) / n
    return(c(grad0, grad1, grad2))
}</pre>
```

### 2.Implement Gradient Descent

```
# Initialization
beta <- c(0, 0, 0) # initial guess for (beta0, beta1, beta2)
alpha <- 0.05
                     # learning rate (you may adjust this)
max iter <- 1000
tol <- 1e-6
# To store the loss and parameters at each iteration
loss_history <- numeric(max_iter)</pre>
beta_history <- matrix(0, nrow = max_iter, ncol = 3)</pre>
for (iter in 1:max_iter) {
  current_loss <- loss_function(beta, y, x1, x2)</pre>
  loss history[iter] <- current loss</pre>
  beta_history[iter, ] <- beta</pre>
  grad <- gradient_function(beta, y, x1, x2)</pre>
  beta_new <- beta - alpha * grad
  # Check for convergence: change in beta is small
  if (sum(abs(beta_new - beta)) < tol) {</pre>
    beta <- beta_new
    beta_history[iter, ] <- beta</pre>
    loss_history[iter] <- loss_function(beta, y, x1, x2)</pre>
    cat("Converged at iteration", iter, "\n")
    loss_history <- loss_history[1:iter]</pre>
    beta_history <- beta_history[1:iter, ]</pre>
    break
  }
  beta <- beta_new
}
```

```
cat("Final beta from gradient descent:\n")

## Final beta from gradient descent:

print(beta)

## [1] 2.006369 2.999458 -1.013446

cat("Final loss:", tail(loss_history, 1), "\n")

## Final loss: 1.992845

3.Compare with OLS Solution

ols_model <- lm(y ~ x1 + x2, data = df)
ols_heta <- coef(ols_model)</pre>
```

```
ols_model <- lm(y ~ x1 + x2, data = df)
ols_beta <- coef(ols_model)
cat("OLS coefficients:\n")</pre>
```

## OLS coefficients:

```
print(ols_beta)
```

```
## (Intercept) x1 x2
## 2.006376 2.999468 -1.013448
```

### 4. Plot the Evolution of the Loss Function and contour plot

```
plot(loss_history, type = "l", col = "blue", lwd = 2,
    xlab = "Iteration", ylab = "Loss (MSE/2)",
    main = "Evolution of the Loss Function")
```

### **Evolution of the Loss Function**



```
# Fix beta0 at its final value
beta0_final <- beta[1]</pre>
# Define a grid for beta1 and beta2
beta1_range <- seq(ols_beta[2] - 1, ols_beta[2] + 1, length.out = 100)</pre>
beta2_range <- seq(ols_beta[3] - 1, ols_beta[3] + 1, length.out = 100)</pre>
grid <- expand.grid(beta1 = beta1_range, beta2 = beta2_range)</pre>
# Compute the loss over the grid for each pair (fixing beta0)
grid$loss <- apply(grid, 1, function(b) {</pre>
 loss_function(c(beta0_final, b["beta1"], b["beta2"]), y, x1, x2)
})
# Create a contour plot
contour(beta1_range, beta2_range,
        matrix(grid$loss, nrow = 100, byrow = TRUE),
        xlab = expression(beta[1]), ylab = expression(beta[2]),
        main = "Search Path in (\beta_1, \beta_2) Space (\beta_0 \text{ fixed})",
        nlevels = 30, col = "gray")
# Overlay the search path for beta1 and beta2
lines(beta_history[,2], beta_history[,3], col = "red", lwd = 2)
points(beta_history[,2], beta_history[,3], col = "red", pch = 19)
```

### Search Path in $(\beta_1, \beta_2)$ Space $(\beta_0 \text{ fixed})$

