Osnove matematične analize

Peti sklop izročkov

Fakulteta za računalništvo in informatiko Univerza v Ljubljani

4. november 2020

Pravila za računanje z vrstami

Naj bosta
$$\sum_{n=0}^{\infty} a_n$$
 in $\sum_{n=0}^{\infty} b_n$ konvergentni. Potem so tudi vrste $\sum_{n=0}^{\infty} ca_n$, $c \in \mathbb{R}$, in $\sum_{n=0}^{\infty} (a_n \pm b_n)$ konvergentne in velja:

$$\sum_{n=0}^{\infty} ca_n = c \sum_{n=0}^{\infty} a_n, \quad \sum_{n=0}^{\infty} (a_n \pm b_n) = \sum_{n=0}^{\infty} a_n \pm \sum_{n=0}^{\infty} b_n.$$

Dokaz primera $\sum_{n=0}^{\infty} (a_n + b_n) = \sum_{n=0}^{\infty} a_n + \sum_{n=0}^{\infty} b_n$:

- ▶ Označimo s S_m , S'_m in S''_m m-te delne vsote vrst $\sum_{n=0}^{\infty} a_n$, $\sum_{n=0}^{\infty} b_n$ in $\sum_{n=0}^{\infty} (a_n + b_n)$.
- $\blacktriangleright \ \mathsf{Velja} \ S''_m = S_m + S'_m.$
- Po pravilih za računanje limit velja $\lim_m S_m'' = \lim_m S_m + \lim_m S_m'$, kar dokaže $\sum_{n=0}^{\infty} (a_n + b_n) = \sum_{n=0}^{\infty} a_n + \sum_{n=0}^{\infty} b_n$.

Vrste - dominirana konvergenca/divergenca

Naj bosta $\sum_{n=0}^\infty a_n$ in $\sum_{n=0}^\infty b_n$ vrsti z **nenegativnimi členi** in naj za vsak $n\in\mathbb{N}$ velja $a_n\leq b_n$. (V temu primeru pravimo, da vrsta $\sum_{n=0}^\infty b_n$ dominira vrsto $\sum_{n=0}^\infty a_n$.)

- 1. Če je vrsta $\sum_{n=0}^{\infty} b_n$ konvergentna, je konvergentna tudi vrsta $\sum_{n=0}^{\infty} a_n$.
- 2. Če je vrsta $\sum_{n=0}^{\infty} a_n$ divergentna, je divergentna tudi vrsta $\sum_{n=0}^{\infty} b_n$.

Dokaz točke (1):

- lacktriangle Označimo s S_m in S_m' *m*-ti delni vsoti vrst $\sum_{n=0}^{\infty} a_n$ in $\sum_{n=0}^{\infty} b_n$.
- ightharpoonup Kar so členi a_n nenegativni, je zaporedje $\{S_m\}_m$ naraščajoče.
- ▶ Ker je $\sum_{n=0}^{\infty} b_n$ konvergentna, je zaporedje $\{S'_m\}_m$ omejeno.
- ▶ Iz pogoja $a_n \le b_n$ za vsak n sledi $S_m \le S'_m$ za vsak m. Torej je tudi $\{S_m\}_m$ omejeno.
- Po izreku o monotoni konvergenci zaporedij je zaporedje $\{S_m\}_m$ konvergentno. Po definiciji je vrsta $\sum_{n=0}^{\infty} a_n$ konvergenta.

Kvocientni kriterij

Izrek

Naj bo $\sum_{n=a_{n+1}} a_n$ vrsta s pozitivnimi členi. Tvorimo zaporedje $D_n=rac{a_{n+1}}{a_n}$.

- 1. Če obstaja q < 1, tako da za vsak n od nekega n_0 naprej velja $D_n \le q$, potem vrsta konvergira.
- 2. Če obstaja $q \ge 1$, tako da za vsak n od nekega n_0 naprej velja $D_n \ge q$, potem vrsta divergira.
- 3. Naj $\lim D_n =: D$ obstaja. Če je:
 - 3.1 D < 1, potem vrsta konvergira.
 - 3.2 D = 1, potem ne moremo soditi o konvergenci.
 - 3.3 D > 1, potem vrsta divergira.

Primer

Za katere x > 0 vrsta $\sum_{n=1}^{\infty} nx^n$ konvergira?

Dokaz kvocientnega kriterija

Dokaz točke (1):

Velja

$$\sum_{n} a_n = (a_0 + a_1 + \ldots + a_{n_0-1}) + (a_{n_0} + a_{n_0+1} + a_{n_0+2} + \ldots).$$

Vrsta $\sum_n a_n$ konvergira natanko tedaj, ko konvergira vrsta $a_{n_0} + a_{n_0+1} + a_{n_0+2} + \dots$ (končno mnogo členov namreč nima vpliva na obstoj limit zaporedja delnih vsot).

- ▶ Ker velja $a_{n+1} = D_n a_n$ za vsak n, s k-kratno uporabo te rekurzijo dobimo $a_{n+k} = D_{n+k-1} D_{n+k-2} \cdots D_n a_n$.
- ▶ Ocenimo $a_{n_0+k} \le q^k a_{n_0}$, saj je $D_n \le q$ za vsak $n \ge n_0$.
- ▶ Torej je vrsta $a_{n_0} + a_{n_0+1} + a_{n_0+2} + \ldots$ dominirana z vrsto $a_{n_0} + qa_{n_0} + q^2a_{n_0} + q^3a_{n_0} + \cdots$, ki je geometrijska vrsta z začetnim členom a_{n_0} in kvocientom q < 1. Torej konvergira in po izreku o dominirani konvergenci konvergira tudi $\sum_n a_n$.

Dokaz prvega dela točke (3):

Ker je $\lim_n D_n = D < 1$, obstaja $n_0 \in \mathbb{N}$, ki zadošča

$$|D_n-D| \leq D + \frac{1-D}{2} = \frac{D+1}{2}$$
. Za q v točki (1) lahko vzamemo $\frac{D+1}{2} < 1$.

Korenski kriterij

Izrek

Naj bo $\sum a_n$ vrsta z nenegativnimi členi. Tvorimo zaporedje $C_n = \sqrt[n]{a_n}$.

- 1. Če obstaja q < 1, tako da za vsak n od nekega n_0 naprej velja $C_n \le q$, potem vrsta konvergira.
- 2. Če za vsak n od nekega n_0 naprej velja $C_n \ge 1$, potem vrsta divergira.
- 3. Naj lim $C_n =: C$ obstaja. Če je:
 - 3.1 C < 1, potem vrsta konvergira.
 - 3.2 C = 1, potem ne moremo soditi o konvergenci.
 - 3.3 C > 1, potem vrsta divergira.

Primer

Za katere x > 0 vrsta $\sum_{n=1}^{\infty} \left(\frac{x}{n}\right)^n$ konvergira?

Dokaz korenskega kriterija

Dokaz točke (1):

- Not v dokazu kvocientnega kriterija zadošča dokazati konvergenco vrste $(a_{n_0} + a_{n_0+1} + a_{n_0+2} + \ldots)$.
- lacktriangle Ker velja $a_n=C_n^n$ za vsak n in $C_n\leq q$ za vsak $n\geq n_0$, velja $a_n\leq q^n$.
- ▶ Torej je vrsta $a_{n_0} + a_{n_0+1} + a_{n_0+2} + \ldots$ dominirana z vrsto $q^{n_0} + q^{n_0+1} + q^{n_0+2} + q^{n_0+3} + \ldots$, ki je geometrijska vrsta z začetnim členom q^{n_0} in kvocientom q < 1. Torej konvergira in po izreku o dominirani konvergenci konvergira tudi $\sum_n a_n$.

Dokaz prvega dela točke (3):

Ker je lim $_n$ $C_n=C<1$, obstaja $n_0\in\mathbb{N}$, ki zadošča

$$|\mathit{C}_{\mathit{n}}-\mathit{C}| \leq \mathit{C} + \frac{1-\mathit{C}}{2} = \frac{\mathit{C}+1}{2}.$$
 Za q v točki (1) lahko vzamemo $\frac{\mathit{C}+1}{2} < 1.$

Leibnizov kriterij

Izrek (Leibnizov kriterij)

Če zaporedje a_n pada proti 0 in so vsi členi a_n pozitivni, potem je ∞

$$\sum_{n=1}^{\infty} (-1)^n \cdot a_n \text{ konvergent na.}$$

Dokaz:

- lz rekurzivne zveze $S_{2n}=S_{2n-2}-a_{2n-1}+a_{2n}$ sledi $S_{2n}\leq S_{2n-2}$. (Saj je $a_{2n-1}\geq a_{2n}$.)
- Podobno iz $S_{2n+1}=S_{2n-1}+a_{2n}-a_{2n+1}$ sledi $S_{2n+1}\geq S_{2n-1}$. (Saj je $a_{2n}\geq a_{2n+1}$.)
- ightharpoonup Torej je zaporedje $\{S_{2n}\}$ padajoče, zaporedje $\{S_{2n+1}\}$ pa naraščajoče.
- ▶ Ker velja $S_{2n+1} = S_{2n} a_{2n+1}$, je $S_{2n+1} \le S_{2n} \le S_0$. Torej je zaporedje $\{S_{2n+1}\}$ navzgor omejeno z S_0 in zato po izreku o monotoni konvergenci, konvergentno. Podobno premislimo, da je $\{S_{2n}\}$ navzdol omejeno z S_1 in konvergentno.
- Velja

$$\lim S_{2n} - \lim S_{2n+1} = \lim (S_{2n} - S_{2n+1}) = \lim a_{2n+1} = 0.$$

▶ Sledi lim $S_{2n} = \lim S_{2n+1}$ in zaporedje $\{S_n\}_n$ je konvergentno.

Primer

Preveri, da je alternirajoča harmonična vrsta $\sum_{n=1}^{\infty} (-1)^n \frac{1}{n}$ konvergentna.

Naloga (Izpit 1, 2019/20)

- 1. Navedite definicijo supremuma (natančne zgornje meje) zaporedja $\{a_n\}_{n\in\mathbb{N}}$, $a_n\in\mathbb{R}$.
- 2. Navedite izrek o konvergenci monotonih zaporedij.
- 3. Obravnavajte konvergenco naslednjih zaporedij. Odgovore dobro utemeljite. Pri tem se lahko skličete na lastnosti tistih zaporedij in vrst, ki smo jih obravnavali na predavanjih.
 - $b_0 = 0$, $b_n = b_{n-1} + \frac{1}{n}$ za $n \ge 1$.
 - ho $c_0=0$, $c_n=c_{n-1}+(-1)^n\Big(e-ig(1+rac{1}{n}ig)^n\Big)$ za $n\geq 1$.

Naloga (Izpit 2, 2019/20)

- 1. Napišite definicijo limite zaporedja $\{a_n\}_{n\in\mathbb{N}}$, $a_n\in\mathbb{R}$.
- 2. Napišite izrek o sendviču za limite zaporedij.
 - Naj bosta dani vrsti $A = \sum_{n=0}^{\infty} a_n$ in $B = \sum_{n=0}^{\infty} b_n$, kjer je $a_n = \frac{2}{3^{n+1}}$ in $b_n = \frac{1}{2^n}$. Koliko sta njuni vsoti A in B?
 - Naj bo $C = \sum_{n=0}^{\infty} c_n$, kjer je $c_n \in \{a_n, b_n\}$. Npr., $c_0 = b_0, c_1 = a_1, c_2 = b_2, c_3 = a_3, \dots$ Navzgor in navzdol omejite vsoto vrste C s pomočjo A in B. Odgovor dobro utemeljite.

Kaj je funkcija ene spremenljivke?

Funkcija je predpis, ki vsakemu elementu x iz **definicijskega** območja $\mathcal{D}_f \subset \mathbb{R}$ priredi natanko določeno število $f(x) \in \mathbb{R}$.

$$f: \mathcal{D}_f \rightarrow \mathbb{R}$$

 $x \mapsto f(x)$

Če \mathcal{D}_f ni podano, je največja množica, kjer ima predpis f smisel.

- x... neodvisna spremenljivka
- $y = f(x) \dots$ odvisna spremenljivka
- ▶ $f(A) = \{f(x) ; x \in A\} \dots$ slika množice $A \subset \mathcal{D}_f$
- \triangleright $\mathcal{Z}_f = f(\mathcal{D}_f) \dots$ zaloga vrednosti funkcije f
- ► $f^{-1}(B) = \{x : f(x) \in B\} \dots$ praslika množice $B \subset \mathcal{Z}_f$

Primera:

- ▶ f(x) = y, kjer je $y = x^4$, je funkcija. $\mathcal{D}_f = \mathbb{R}$, $\mathcal{Z}_f = [0, \infty)$.
- f(x) = y, kjer je $y^4 = x$, ni funkcija.

Graf funkcije in podajanje funkcij

Graf funkcije $f: \mathcal{D}_f \to \mathbb{R}, \ \mathcal{D}_f \subset \mathbb{R}$ je krivulja v ravnini:

$$\Gamma(f) = \{(x, f(x)) ; x \in \mathcal{D}_f\} \subset \mathbb{R} \times \mathbb{R}$$

- Graf funkcije seka poljubno navpično premico največ v eni točki.
- lacktriangle Projekcija grafa na os x je \mathcal{D}_f , projekcija grafa na os y pa je \mathcal{Z}_f .

Predpis lahko podamo na več načinov.

- **eksplicitno**: y = f(x), npr. $y = \sqrt{1 x^2}$
- ▶ **implicitno**: F(x, y) = 0, npr. $x^2 + y^2 1 = 0$, $y \ge 0$
- **parametrično**: x = x(t), y = y(t), npr.

$$x = \cos t, \ y = \sin t, \quad t \in [0, \pi]$$

Primera

1.
$$f(x) = |x|$$

$$\mathcal{D}_f = \mathbb{R}, \; \mathcal{Z}_f = [0, \infty)$$

2.
$$g(x) = sign(x) = \begin{cases} 1, & x > 0 \\ 0, & x = 0 \\ -1, & x < 0 \end{cases}$$

 $\mathcal{D}_f = \mathbb{R}, \ \mathcal{Z}_f = \{-1, 0, 1\}$

Transformacije funkcij

- $g(x) = f(x a) \dots$ vodoravni premik za |a| v desno (a > 0) oz. levo (a < 0)
- $g(x) = f(x) + c \dots$ navpični premik za |c| navzgor (c > 0) oz. navzdol (c < 0)
- $g(x) = f(\frac{x}{a}) \dots$ vodoravni razteg (a > 1) oz. skrček (a < 1) za faktor a
- $ightharpoonup g(x) = cf(x) \dots$ navpični razteg (c > 1) oz. skrček (c < 1) za faktor c
- $g(x) = -f(x) \dots$ zrcaljenje preko osi x
- $g(x) = f(-x) \dots$ zrcaljenje preko osi y

Denimo, da znamo narisati graf funkcije y = f(x).

Operacije s funkcijami

Naj bosta $f: \mathcal{D}_f \to \mathbb{R}$ in $g: \mathcal{D}_g \to \mathbb{R}$ funkciji. Na preseku $\mathcal{D}_f \cap \mathcal{D}_g$ lahko definiramo nove funkcije:

- **vsoto** f + g s predpisom $x \mapsto f(x) + g(x)$,
- ▶ razliko f g s predpisom $x \mapsto f(x) g(x)$,
- **produkt** fg s predpisom $x \mapsto f(x)g(x)$,
- **kvocient** f/g s predpisom $x \mapsto f(x)/g(x)$, če $g(x) \neq 0$.

Če je $Z_f\subseteq \mathcal{D}_g$, potem lahko definiramo funkcijo $g\circ f\colon \mathcal{D}_f\to \mathbb{R}$ s predpisom

$$(g\circ f)(x)=g(f(x)),$$

in imenujemo **kompozitum** funkcij g in f.

V splošnem $f \circ g \neq g \circ f$.

Izračunaj kompozituma funkcij

$$f(x) = x^2 + 1$$
, $\mathcal{D}_f = \mathbb{R}$, $g(x) = \log x^2$, $\mathcal{D}_g = \mathbb{R} \setminus \{0\}$.

Lastnosti funkcij

Funkcija $f: \mathcal{D}_f \to \mathbb{R}$ je

- ▶ naraščajoča, če velja $f(x_1) \le f(x_2)$ za vsaka $x_1, x_2 \in \mathcal{D}_f$, ki zadoščata $x_1 \le x_2$.
- ▶ padajoča, če velja $f(x_1) \ge f(x_2)$ za vsaka $x_1, x_2 \in \mathcal{D}_f$, ki zadoščata $x_1 \le x_2$.
- ▶ navzgor omejena, če obstaja $M \in \mathbb{R}$, ki za vsak $x \in \mathcal{D}_f$ zadošča $f(x) \leq M$. Številu M pravimo zgornja meja funkcije f na \mathcal{D}_f .
- ▶ navzdol omejena, če obstaja $m \in \mathbb{R}$, ki za vsak $x \in \mathcal{D}_f$ zadošča $m \leq f(x)$. Številu m pravimo spodnja meja funkcije f na [a, b].
- **omejena** na \mathcal{D}_f , če je na \mathcal{D}_f nazvdol in navzgor omejena.
- ▶ soda, če je f(-x) = f(x) za vsak $x \in \mathcal{D}_f$
- ▶ liha, če je f(-x) = -f(x) za vsak $x \in \mathcal{D}_f$.
- ▶ injektivna, če različni točki $x \neq y \in \mathcal{D}_f$ preslika v različni vrednosti $f(x) \neq f(y) \in \mathcal{Z}_f$.
- **surjektivna**, če je $\mathcal{Z}_f = \mathbb{R}$.
- bijektivna, če je injektivna in surjektivna.

Primeri

- Določi, kje sta funkciji $f(x) = x^3$ in $g(x) = x^4$ naraščajoči oz. padajoči.
- Določi, kateri od funkcij $f(x) = \cos x$ in $g(x) = e^x$ sta omejeni.
- Preveri:
 - $f(x) = |x|, g(x) = x^{2k}$ za $k \in \mathbb{Z}$, $h(x) = \cos x$ so sode.
 - $f(x) = \operatorname{sign}(x)$, $g(x) = x^{2k+1}$ za $k \in \mathbb{Z}$, $h(x) = \sin x$ so lihe.
 - $f(x) = e^x$, $g(x) = \ln x$, $h(x) = x^2 + 2x + 1$ niso ne sode in ne lihe.

Premisli:

- Graf sode funkcije je simetričen glede na os y, graf lihe pa glede na koordinatno izhodišče.
- Vsota sodih funkcij je soda funkcija, vsota lihih je liha funkcija.
- Produkt dveh sodih ali dveh lihih funkcij je soda funkcija, produkt lihe in sode funkcije je liha funkcija.
- Graf injektivne funkcije seka poljubno vodoravno premico v največ eni točki.
- Vsaka vodoravna premica seka graf surjektivne funkcije v vsaj eni točki.

Inverzna funkcija

Naj bo $f: \mathcal{D}_f \to \mathbb{R}$ injektivna funkcija. Potem funkcijo $f^{-1}: \mathcal{Z}_f \to \mathcal{D}_f$, za katero velja

$$(f^{-1}\circ f)(x)=x$$

za vsak $x \in \mathcal{D}_f$, imenujemo **inverzna funkcija** funkcije f.

- Ekvivalentno: $f^{-1}(x) = y \Leftrightarrow f(y) = x$.
- Definicijsko območje in zaloga vrednosti se zamenjata: $D_{f^{-1}} = Z_f$, $Z_{f^{-1}} = D_f$.
- Inverzno funkcijo f^{-1} eksplicitno podane funkcije f izračunamo tako, da zamenjamo vlogi spremenljivk y = f(x), torej x = f(y), in nato izrazimo y kot funkcijo x.
- ▶ Graf inverzne funkcije f⁻¹ dobimo tako, da prezrcalimo graf funkcije f prek simetrale lihih kvadrantov.

Inverzna funkcija

Primer

Naj bo dana funkcija

$$f(x) = \frac{2x+3}{3x-1}.$$

Določi $\mathcal{D}_f, \mathcal{Z}_f, f^{-1}$ (če obstaja), $\mathcal{D}_{f^{-1}}, \mathcal{Z}_{f^{-1}}$.