Meetup: analisi della partecipazione agli eventi

Davide Agnoletto Giovanni Toto

15 dicembre 2020

Meetup

Meetup è un servizio di rete sociale che ha lo scopo di facilitare l'incontro di gruppi di persone in varie località del mondo.

Meetup consente ai membri di trovare e unirsi a gruppi creati attorno a un comune interesse.

Meetup

Meetup è un servizio di rete sociale che ha lo scopo di facilitare l'incontro di gruppi di persone in varie località del mondo.

Meetup consente ai membri di trovare e unirsi a gruppi creati attorno a un comune interesse.

Un utente può inserire la località del proprio domicilio/residenza e l'argomento di proprio interesse per visualizzare i gruppi legati a quella località e argomento.

Come funziona?

Ogni utente è iscritto a uno o più gruppi.

Ogni gruppo può organizzare degli eventi a cui possono partecipare gli iscritti al gruppo.

Ogni gruppo tratta un argomento, che fa riferimento ad una categoria più generale.

Dataset

Il dataset *Nashville Meetup Network*, ottenuto tramite il sito *Kaggle*, è stato generato durante l'evento *Principles of Network Analysis with NetworkX* e utilizzato in una serie di tutorial presentati nei gruppi *PyNash* e *PyTennessee*.

Il dataset utilizzato contiene le partecipazioni agli eventi organizzati a Nashville dal 2015 al 2017 e fa riferimento a 24 476 utenti e 19 031 eventi.

Struttura dei dati

Il dataset è formato da un serie di tabelle, una di riferimento e tre di metadati, collegate attraverso le variabili identificative di utenti, eventi, gruppi e categorie:

Per svolgere le analisi, si sono uniti i dataset attraverso le variabili identificative.

Struttura dei dati

partecipazioni	
member id	codice identificativo dell'utente
ovent id	codico identificativo dell'evente

	membri	
l	member_id	codice identificativo dell'utente
	member name	nome e cognome
	hometown	città di nascita
	city	città di residenza
	state	stato della città di residenza
	lat	latitudine dell'abitazione
	lon	longitudine dell'abitazione

eventi codice identificativo dell'evento event id

event name	nome dell'evento
time _	data e ora dell'evento
group_id	codice identificativo del gruppo che l'ha organizzato

gruppi	
group_id	codice identificativo del gruppo
group_name	nome del gruppo
num members	membri del gruppo
category_id	codice identificativo della categoria di appartenenza
category name	nome della categoria di appartenenza
organizer id	codice identificativo dell'organizzatore
group urlname	url del gruppo nel sito

Struttura dei dati

- 1	ac	ተе	CI	na	71	O	n	

member id codice identificativo dell'utente event id codice identificativo dell'evento

membri

member id codice identificativo dell'utente

hometown città di nascita city città di residenza state stato della città

lat latitudine dell'abitazione lon longitudine dell'abitazione

eventi

event id codice identificativo dell'evento
event name time data e ora dell'evento
group id codice identificativo del gruppo che l'ha organizzato

gruppi

group_id
group_name
num_members
category_id
category_name
organizer_id

codice identificativo del gruppo
membri del gruppo
codice identificativo della categoria di appartenenza
nome della categoria di appartenenza
codice identificativo dell'organizzatore

Tipologie di approcci

Si propongono due approcci per analizzare il fenomeno delle partecipazioni agli eventi:

1 Analisi dei legami tra eventi

Tipologie di approcci

Si propongono due approcci per analizzare il fenomeno delle partecipazioni agli eventi:

- 1 Analisi dei legami tra eventi
- 2 Analisi della partecipazione al singolo evento

Il legame tra una coppia di eventi è definito come il numero di utenti che hanno partecipato a entrambi gli eventi.

L'analisi dei partecipanti comuni permette di studiare l'interesse della popolazione nei confronti di determinati gruppi e/o categorie.

Il legame tra una coppia di eventi è definito come il numero di utenti che hanno partecipato a entrambi gli eventi.

L'analisi dei partecipanti comuni permette di studiare l'interesse della popolazione nei confronti di determinati gruppi e/o categorie.

In particolare, si è interessati a identificare quali gruppi e/o categorie sono più connesse tra loro e determinare la struttura delle relazioni che li lega.

Per l'analisi dei partecipanti comuni si utilizzano tre strumenti:

- Analisi descrittiva della rete di eventi
- Modelli per dati di rete
- Analisi delle associazioni tra categorie

Si considera la rete degli eventi in cui:

- Un nodo corrisponde ad un evento.
- Un arco tra due nodi esiste se i due eventi hanno almeno un partecipante in comune; l'arco è pesato con il numero di partecipanti in comune.

Nodi	19 031
Archi	1 438 370
Densità	0.0079
Categorie	31
Gruppi	602
Utenti distinti	24 631
Partecipazioni totali	126 813
Partecipazioni medie	5.15

Selezione dei nodi

La rete presenta un numero troppo elevato di nodi, oltre a una densità estremamente bassa.

Per motivi sia computazionali sia di visualizzazione e interpretazione, si decide di considerare un sottoinsieme di nodi.

Per fare ciò si ritiene adeguato considerare solo gli eventi con il maggior numero di partecipanti, in particolare si individua un *soglia* al di sotto della quale un evento viene ignorato.

Partecipazione agli eventi

Figura: Frequenza di eventi per numero di partecipanti.

Categorie rilevanti

			soglia	a	
	70	60	50	40	30
Tech	42	63	108	179	324
Socializing	2	10	18	35	65
Career & Business	2	7	15	34	81
Outdoors & Adventures	1	3	6	11	15
Movies & Film	1	2	5	11	16
Religion & Beliefs	0	0	9	20	31
Dancing	0	0	2	7	25
Pet & Animals	0	0	1	2	12
Singles	0	0	0	2	7
Games	0	0	0	0	31
Other	0	0	0	2	18
Total	48	85	164	303	625

Tabella: Numero di eventi con almeno soglia partecipanti per categoria.

Categorie rilevanti

Figura: Frequenza di eventi per numero di partecipanti.

Statistiche descrittive

			soglia				
	70 60 50 40 30						
nodi	48	85	164	303	625		
archi	740	1 602	4 428	11 761	34 577		
densità	0.66	0.45	0.33	0.26	0.18		
grado medio	30.83	37.69	54	77.63	110.65		
betweenness media	23.68	45.58	86.87	161.73	361.57		
diametro	20	8	24	21	28		
categorie	5	5	8	10	18		
gruppi	12	23	38	50	77		
utenti distinti	2 219	3 423	5 151	6 945	9 703		
partecipazioni totali	4 166	6 535	10 779	16 934	27 978		
partecipazioni medie	1.88	1.91	2.09	2.44	2.88		

Tabella: Statistiche descrittive per la rete al variare della soglia.

Modello per dati di rete

Si stima un Additive and Multiplicative Effects Model.

Si considerano solo gli eventi con almeno 50 partecipanti.

Variabili considerate

Le variabili di nodo, uguali per riga e colonna, sono:

- categoria di appartenenza
- numero di iscritti al gruppo di appartenenza

Variabili considerate

Le variabili di nodo, uguali per riga e colonna, sono:

- categoria di appartenenza
- numero di iscritti al gruppo di appartenenza

Le variabili diadiche sono:

- appartenenza allo stesso gruppo
- appartenenza alla stessa categoria

Grafici modello AME

Figura: Risultati del miglior modello, ovvero un *modello AME* con un effetto moltiplicativo latente unidimensionale (R=1); si considerano solo gli eventi con almeno 50 partecipanti.

Output modello AME

p-val

0.800 0.218 0.394 0.989 0.003 0.224 0.230 0.997 0.740 0.000 0.000

Regression coefficients:

	pmean	psa	z-stat
intercept	-0.052	0.204	-0.254
Movies & Film.node	0.223	0.181	1.231
Outdoors & Adventure.node	-0.268	0.314	-0.853
Pets & Animals.node	-0.005	0.372	-0.014
Religion & Beliefs.node	0.467	0.160	2.923
Socializing.node	-0.157	0.129	-1.216
Tech . node	0.124	0.104	1.202
Dancing . node	-0.001	0.264	-0.004
membri iscritti.node	0.000	0.000	0.332
same group.dyad	13.114	0.071	183.484
same category.dyad	1.085	0.048	22.619

Variance parameters: pmean psd va 0.124 0.017 ve 2.047 0.019

Analisi delle associazioni tra categorie

lhs		rhs	supporto	fiducia	lift
{Career & Business,Outdoors & Adventure}	\Rightarrow	{Socializing}	0.0062	0.4872	3.2008
{Food & Drink}	\Rightarrow	{Socializing}	0.0117	0.3273	2.1503
{Singles}	\Rightarrow	{Socializing}	0.0083	0.3040	1.9974
{Singles}	\Rightarrow	{Outdoors & Adventure}	0.0070	0.2578	1.6490
{Food & Drink}	\Rightarrow	{Outdoors & Adventure}	0.0092	0.2559	1.6370
{Career & Business,Socializing}	\Rightarrow	{Outdoors & Adventure}	0.0062	0.2550	1.6312
{Dancing}	\Rightarrow	{Socializing}	0.0111	0.2549	1.6746
{Singles}	\Rightarrow	{Dancing}	0.0068	0.2489	5.7025
{Outdoors & Adventure, Socializing}	\Rightarrow	{Career & Business}	0.0062	0.2460	1.3946
{Dancing}	\Rightarrow	{Outdoors & Adventure}	0.0104	0.2372	1.5172
{Health & Wellbeing}	\Rightarrow	{New Age & Spirituality}	0.0098	0.2269	4.8227
{Music}	\Rightarrow	{Socializing}	0.0093	0.2178	1.4307
{New Age & Spirituality}	\Rightarrow	{Health & Wellbeing}	0.0098	0.2079	4.8227
{Community & Environment}	\Rightarrow	{Outdoors & Adventure}	0.0056	0.2032	1.2998
{Language & Ethnic Identity}	\Rightarrow	{Career & Business}	0.0061	0.1871	1.0610

Identificazione di clusters

Osservando i grafici al variare della *soglia* e le associazioni identificate, si ritiene interessante svolgere ulteriori analisi su alcuni cluster:

- 1 Tech
- Socialità = {Career & Business Outdoors & Adventure Socializing}

Identificazione di clusters

Osservando i grafici al variare della *soglia* e le associazioni identificate, si ritiene interessante svolgere ulteriori analisi su alcuni cluster:

- 1 Tech
- 2 Socialità = {Career & Business Outdoors & Adventure Socializing}

Mantenendo la struttura della rete e l'idea di filtraggio dei nodi in base ad una soglia, si ripetono le stesse analisi nei due cluster identificati.

Cluster Tech: gruppi rilevanti

				oglia		
	70	60	50	40	30	20
NashJS	14	18	21	21	23	23
Nashville .NET User Group	10	13	17	17	21	22
Data Science Nashville	5	6	7	11	13	15
Nashville Blockchain Meetup	4	5	6	9	10	10
Agile Nashville User Group	3	7	11	15	20	22
PyNash	3	5	9	16	19	24
Nashville Mobile Developers	2	2	2	5	8	13
The Nashville Microsoft Azure Users Group	1	1	1	1	6	11
Nashville UX	0	2	10	16	21	29
Nashville Modern Excel & Power BI User Group	0	1	4	12	17	22
NashBI	0	1	2	2	7	8
Greater Nashville Healthcare Analytics	0	1	1	1	3	9
Nashville Bloggers	0	1	1	1	1	2
Nashville DevOps Meetup	0	0	3	11	16	18
Code for Nashville	0	0	3	5	12	29
Nashville Product Meetup	0	0	2	6	15	23
Nashville Machine Learning Meetup	0	0	2	3	5	6
Nashville API Developers	0	0	2	3	4	4
Franklin Developer Lunch & Learn	0	0	1	11	18	20
Nashville Java Üsers' Group	0	0	1	3	8	13
NashReact	0	0	1	2	8	14
Design Thinking Nashville	0	0	1	2	5	11
Total	42	63	108	179	324	539

Tabella: Numero di eventi con almeno soglia partecipanti per gruppo.

Cluster *Tech*: grafo con soglia 70

Cluster *Tech*: grafo con soglia 60

Cluster *Tech*: grafo con soglia 50

Cluster *Tech*: grafo con soglia 40

Cluster *Tech*: grafo con soglia 30

Cluster *Tech*: grafo con soglia 20

Cluster Tech: grafo senza soglia

Cluster Tech: statistiche descrittive

	soglia							
	70	60	50	40	30	20		
nodi	42	63	108	179	324	539		
archi	720	1444	3727	9070	24267	51322		
densità	0.84	0.74	0.64	0.57	0.46	0.35		
grado medio	34.29	45.84	69.02	101.34	149.8	190.43		
betweenness media	17.88	24.84	40.27	66.27	122.63	212.9		
diametro	4	3	3	3	3	3		
gruppi	8	13	22	28	42	57		
utenti distinti	1797	2243	2996	3600	4585	5367		
partecipazioni totali	3700	5036	7483	10622	15630	20793		
partecipazioni medie	2.06	2.25	2.5	2.95	3.41	3.87		

Tabella: Statistiche descrittive al variare della soglia.

Cluster Tech: grafici modello AME

Figura: Risultati del miglior modello, ovvero un *modello AME* con un effetto moltiplicativo latente bidimensionale (R=2); si considerano solo gli eventi con almeno 40 partecipanti.

Cluster Tech: output modello AME

Regression coefficients:

```
pmean
                                      psd z-stat p-val
intercept
                              1 094 0 330
                                             3 316 0 001
DataScienceNashville.node
                              0.356 0.161 2.219 0.026
Franklin Developer . node
                              0.162 0.162 0.998 0.318
NashJS . node
                              0.627 0.202 3.098 0.002
. NetUserGroup . node
                              0.330 0.163 2.018 0.044
DevOpsMeetup.node
                             -0.156 0.158 -0.984 0.325
Modern Excel Power BIUser . node
                             -0.321 0.160 -2.002 0.045
NashvilleUX node
                             -0.431 0.152 -2.833 0.005
PyNash.node
                              0.285 0.160 1.777 0.076
altro gruppo.node
                              0.071 0.117 0.609 0.542
membri iscritti.node
                              0.000 0.000
                                            1.027 0.304
same group.dyad
                             12.021 0.049 245.556 0.000
```

```
Variance parameters: pmean psd
```

va 0.143 0.018

ve 1.969 0.017

Cluster Tech: analisi delle associazioni

lhs		rhs	supporto	fiducia	lift
{Code for Nashville}	\Rightarrow	{NashJS}	0.0866	0.4442	1.4244
{Code for Nashville,PyNash}	\Rightarrow	{NashJS}	0.0283	0.5897	1.8911
{NashJS,PyNash}	\Rightarrow	{Code for Nashville}	0.0283	0.4340	2.2265
{Code for Nashville, Nashville .NET User Group}	\Rightarrow	{NashJS}	0.0267	0.6915	2.2173
{NashJS, Nashville .NET User Group}	\Rightarrow	{Code for Nashville}	0.0267	0.4276	2.1940
{Code for Nashville, Nashville UX}	\Rightarrow	{NashJS}	0.0263	0.7619	2.4431
{NashJS,Nashville UX}	\Rightarrow	{Code for Nashville}	0.0263	0.4384	2.2490
{Code for Nashville, The Iron Yard - Nashville}	\Rightarrow	NashJS	0.0226	0.7237	2.3206
{NashJS,The Iron Yard - Nashville}	\Rightarrow	{Code for Nashville}	0.0226	0.4661	2.3913
{Nashville UX,The Iron Yard - Nashville}	\Rightarrow	{NashJS}	0.0172	0.6364	2.0406
{Nashville UX,PyNash}	\Rightarrow	{NashJS}	0.0160	0.7647	2.4521
{Nashville .NET User Group,PyNash}	\Rightarrow	{NashJS}	0.0156	0.5938	1.9039
{Nashville .NET User Group, Nashville UX}	\Rightarrow	{NashJS}	0.0148	0.6667	2.1377
{Nashville UX,The Iron Yard - Nashville}	\Rightarrow	{Code for Nashville}	0.0127	0.4697	2.4098
{Code for Nashville,The Iron Yard - Nashville}	\Rightarrow	{Nashville UX}	0.0127	0.4079	1.8970

Cluster Socialità: gruppi rilevanti

	soglia					
	70	60	50	40	30	20
Transplant Nashville	2	5	8	11	14	16
WOMEN "Word of Mouth Entrepreneurial Networkers"	2	4	7	12	18	22
Nashville Flight Training	1	1	1	1	1	1
20's & 30's Women looking for girlfriends	0	3	6	11	16	27
Nashville Hiking Meetup	0	2	5	7	9	24
Nashville SEO & Internet Marketing, Over 1,600 Members!	0	2	2	6	14	20
20s in Nashville	0	2	3	7	20	48
Music City Young Professionals	0	1	1	4	6	6
Nashville Young Professionals Meetup	0	1	2	5	13	16
Nashville Online Entrepreneurs	0	0	2	6	13	17
Business Girls Rock! Nashville Entrepreneurship Meetup	0	0	1	1	2	6
Women 'n' Wine of Williamson County	0	0	1	1	9	18
Paddle Adventures Unlimited	0	0	0	3	4	6
Eat Love Nash	0	0	0	2	9	25
Nashville Professional Referral Club TEAM Chapter	0	0	0	2	3	5
Nashville Network After Work - Business Networking Events	0	0	0	1	2	5
Nashville's Society of Women Business Owners (SOWBO)	0	0	0	0	4	11
Women's Business Network	0	0	0	0	1	g
Nashville Backpacker Meetup	0	0	0	0	1	11
Nashville Online Business Strategy Meetup	0	0	0	0	1	6
Total	5	20	39	80	161	353

Tabella: Numero di eventi con almeno soglia partecipanti per gruppo.

Cluster Socialità: diagramma di Venn

Figura: Rappresentazione dei partecipanti in comune fra le tre categoria.

Cluster Socialità: statistiche descrittive

	soglia						
	70	60	50	40	30	20	
nodi	5	20	39	80	161	353	
archi	4	83	293	1153	3913	11073	
densità	0.4	0.44	0.4	0.36	0.3	0.18	
grado medio	1.6	8.3	15.03	28.82	48.61	62.74	
betweenness media	0.6	8.12	19.29	36.87	74.1	186.56	
diametro	17	8	4	3	3	13	
gruppi	3	9	12	16	20	40	
utenti distinti	358	1093	1748	2605	3659	5322	
partecipazioni totali	390	1360	2379	4210	7056	11570	
partecipazioni medie	1.09	1.24	1.36	1.62	1.93	2.17	

Tabella: Statistiche descrittive al variare della soglia.

Cluster Socialità: grafici modello AME

Figura: Risultati del miglior modello, ovvero un *modello AME* con un effetto moltiplicativo latente bidimensionale (R=2); si considerano solo gli eventi con almeno 30 partecipanti.

Cluster *Socialità*: output modello AME

pmean psd z-stat p-val

-0 440 0 660

Regression coefficients:

```
0.072 0.100 7.352 0.000
intercept
Outdoors & Adventure.node
                           -0.205 0.156 -1.316 0.188
Socializing . node
                          -0.082 0.073 -1.125 0.260
membri iscritti.node
                          0.000 0.000 -1.844 0.065
same group.dyad
                            5.120 0.036 142.599 0.000
same category.dyad
                           -0.016 0.037
```

```
Variance parameters:
   pmean
           psd
va 0.093 0.012
ve 0.747 0.007
```

51 di 65

Analisi della partecipazione al singolo evento

Universită degli Studi di Padova

L'analisi precedente permetteva di valutare esclusivamente l'affluenza comune a due eventi, ma non si focalizzava sulla partecipazione al singolo evento.

Analisi della partecipazione al singolo evento DIPADON

L'analisi precedente permetteva di valutare esclusivamente l'affluenza comune a due eventi, ma non si focalizzava sulla partecipazione al singolo evento.

Si è ora interessati a prevedere la partecipazione al singolo evento e, se possibile, identificare le caratteristiche che la influenzano.

Analisi della partecipazione al singolo evento

L'analisi precedente permetteva di valutare esclusivamente l'affluenza comune a due eventi, ma non si focalizzava sulla partecipazione al singolo evento.

Si è ora interessati a prevedere la partecipazione al singolo evento e, se possibile, identificare le caratteristiche che la influenzano.

Si applicano i modelli dell'inferenza classica a tutti gli eventi del dataset e, successivamente, solo agli eventi appartenenti ai due cluster individuati in precedenza.

Variabili considerate

Le variabili considerate sono:

- categoria di appartenenza
- numero di iscritti al gruppo di appartenenza
- membri considerati attivi (almeno una partecipazione)
- anno in cui si è tenuto l'evento
- mese in cui si è tenuto l'evento
- weekend (indica se l'evento si tiene durante il weekend o meno)

Valutazione modelli - complessivo

Modello	MAE
modello lineare	4.50
regressione lasso	4.47
mars	4.54
albero di regressione	4.22
rete neurale	4.23
gradient boosting	3.42
random forest	3.15

Output random forest

Valutazione modelli - Tech

Modello	MAE
modello lineare	7.60
regressione lasso	7.67
mars	8.42
albero di regressione	7.38
rete neurale	7.91
gradient boosting	7.22
random forest	6.81

Output random forest - Tech

Valutazione modelli - Socialità

Modello	MAE
modello lineare	4.62
regressione lasso	4.62
mars	4.45
albero di regressione	4.20
rete neurale	4.85
gradient boosting	3.83
random forest	3.60

Output random forest - Socialità

Conclusioni

Riepilogando, sono state effettuate due analisi parallele che hanno approcciato il problema in due modi diversi:

Conclusioni

Riepilogando, sono state effettuate due analisi parallele che hanno approcciato il problema in due modi diversi:

1 Analisi dei legami tra eventi

Si è interessati a identificare quali gruppi e/o categorie sono più connesse tra loro e determinare la struttura delle relazioni che li lega.

Conclusioni

Riepilogando, sono state effettuate due analisi parallele che hanno approcciato il problema in due modi diversi:

- 1 Analisi dei legami tra eventi
 - Si è interessati a identificare quali gruppi e/o categorie sono più connesse tra loro e determinare la struttura delle relazioni che li lega.
- 2 Analisi della partecipazione al singolo evento Si è interessati a prevedere la partecipazione al singolo evento e, se possibile, ad identificare le caratteristiche che la influenzano.

Fra gli eventi a maggior partecipazione, si sono identificati quattro cluster, corrispondenti a diverse categorie:

- { *Tech*}
- **■** { *Games*}
- {Religion & Beliefs}
- {Career & Business, Outdoors & Adventure, Socializing, ...}

Fra gli eventi a maggior partecipazione, si sono identificati quattro cluster, corrispondenti a diverse categorie:

- { *Tech*}
- **■** { *Games*}
- {Religion & Beliefs}
- {Career & Business, Outdoors & Adventure, Socializing, ...}

Gli eventi tendono ad avere più partecipanti in comune con altri eventi dello stesso cluster, a prescindere dal gruppo di appartenenza, e averne meno con eventi di altri cluster come si evinceva anche nelle analisi associative.

{ Tech}

- Cluster con eventi a più alta partecipazione e in genere molti partecipanti in comune.
- Come ci si aspetta, eventi dello stesso gruppo tendono ad avere più partecipanti in comune ma ciò risulta meno evidente se si considerano solo eventi ad alta affluenza.
- I gruppi più centrali sono *NashJS*, *PyNash* e *Nashville .NET User Group*; in particolare, il primo raccoglie utenti di diversi gruppi con argomenti spesso molto diversi tra loro.

{ Career & Business, Outdoors & Adventure, Socializing, ...}

- Sebbene il cluster contenga 28 categorie, ci si è concentrati solo su quelle sopra riportate poiché sono quelle con più eventi a più alta partecipazione.
- La maggior parte degli eventi hanno meno di 40 partecipanti.
- L'appartenenza allo stesso gruppo ha un minore effetto sulla partecipazione comune rispetto al cluster *Tech*.
- Se si considerano solo eventi ad alta affluenza la distinzione fra le tre categorie di eventi sembra meno netta rispetto a quando si considerano anche eventi con meno partecipanti.

Il modello migliore risulta essere sempre la random forest che non è interpretabile ma fornisce una misura di importanza delle variabili.

In questa situazione, si ritiene che la precisione previsiva sia più importante dell'interpretabilità poiché un'interpretazione del fenomeno è già fornita dal primo approccio.

Il secondo approccio può essere quindi considerato complementare al primo.

Approcci alternativi

Ci si è concentrati su determinati cluster poiché si è preferito dare maggior importanza a quelli con un maggior numero di eventi ad alta affluenza: ovviamente è possibile effettuare un'analisi analoga ai cluster rimanenti.

Data la struttura dei dati, è possibile impostare altre analisi focalizzandosi sugli utenti e non più sugli eventi.