Regression Analysis Other Regression Methods

Nicoleta Serban, Ph.D.

Associate Professor

Stewart School of Industrial and Systems Engineering

Weighted Least Squares Regression

About this lesson

Multiple Linear Regression

Data: $\{(x_{11},...,x_{1p}),Y_1\},....,\{(x_{n1},...,x_{np}),Y_n\}$

What if the variance is not constant?

- Transform the response variable using a variance-stabilizing transformation
- Weighted Least Squares Regression
- Constant Variance Assumption: $Var(\epsilon_i) = \sigma^2$
- Independence Assumption: $\{\epsilon_1,...,\epsilon_n\}$ are independent random variables
- Normality Assumption: $\varepsilon_i \sim Normal$

Example: Normal Approximation

- Assume D_i the number of diseased individuals in a population of size m_i ; and $Y_i = \frac{D_i}{m_i}$
- Only observe Y_i but generally m_i is large, thus apply the normal approximation (CLT):
 - Use a regression analysis under the normality assumption instead of logistic regression
 - $V(Y_i) = \frac{\sigma^2}{m_i}$ thus non-constant variance

Weighted Least Regression (WLS)

Data: $\{(x_{11},...,x_{1p}),Y_1\},....,\{(x_{n1},...,x_{np}),Y_n\}$

Model: $Y_i = \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + ... + \beta_p x_{ip} + \epsilon_i$, i = 1,...,n

Assumptions: For the vector of errors $\varepsilon = (\varepsilon_1, ..., \varepsilon_n)$

- Linearity/Mean Zero Assumption: $E(\varepsilon) = 0$
- Covariance-Variance Assumption: $V(\varepsilon) = \Sigma$
- Independence Assumption: $\{\epsilon_1,...,\,\epsilon_n\}$ are independent random variables if $\underline{\Sigma}$ is a diagonal matrix
- Normality Assumption: ε ~ Normal

Parameter Estimation $(\beta_0, \beta_1, \beta_2, ..., \beta_p)$

To estimate $(\beta_0, \beta_1, \beta_2, ..., \beta_p)$, we find values that minimize squared error:

$$(Y-X\beta)^T \Sigma^{-1}(Y-X\beta)$$

$$\hat{\beta} = (\mathbf{X}^T \Sigma^{-1} \mathbf{X})^{-1} \mathbf{X}^T \Sigma^{-1} Y$$

Statistical Properties: $E(\hat{\beta}) = \beta$

$$V(\hat{\beta}) = \sigma^2 (X^T \Sigma^{-1} X)^{-1}$$

Upshot: The covariance-variance matrix of the error terms is assumed known. However, it is needed for statistical inference. How to get Σ ?

Simple WLS

The simplest WLS model: $V(\varepsilon) = w_i \sigma^2$

How to implement WLS in R?

- $Im(y\sim x, weights = 1/w)$ where w is a vector of the weights How to estimate $w_i = w(x_i)$ as a smooth function of x_i ?
- Several smoothing functions: simplest to use is 'lowess'
 - Use external information: There are some cases where other information on the variance is available (e.g. measurement error)
 very rare!
 - Use replications. If there are several Y's for each x_i , estimate $w_i \sigma^2 = \sigma_i^2$ as the sample variance of the replications
 - Estimate $w_i = w(x_i)$ as a smooth function of x_i using nonparametric regression

Summary

