Coding-based tutorial about Artificial Neural Networks (ANNs)

Guo-Wei Wei^{1,2,3} and Rui Wang¹

¹ Department of Mathematics, Michigan State University, MI 48824, USA

² Department of Biochemistry and Molecular Biology

Michigan State University, MI 48824, USA

³ Department of Electrical and Computer Engineering

Michigan State University, MI 48824, USA

Contents

1	Structure of ANN (One hidden layer)	
	1.1	Digits Dataset
	1.2	One-Hot Encoding
	1.3	Feed-Forward
	1.4	Back-Propagation

1 Structure of ANN (One hidden layer)

In this tutorial, we will employ ANN (with only one hidden layer) to solve the classification problem. First, we will give a brief introduction about Digits dataset and One-Hot Encoding. Next, the feed-forward and back-propagation will be introduced.

1.1 Digits Dataset

Digits Dataset is made up of 1797 8×8 images. We randomly spilt the dataset into training set and test set.

- X_train.shape = (1347, 64)
- X_test.shape = (450, 64)
- y_train.shape = (1347,1) y_train_ohe.shape = (1347,10)
- y_test.shape = (450, 1) y_test_ohe.shape = (450,10)

Here, 1347 is the #of training samples, 450 is the #of test samples, 64 is the feature size, and 10 is the #of classes.

Figure 1: Digits Dataset.

1.2 One-Hot Encoding

One-Hot code can represent a vector [0, 1, 2] as [100, 010, 001]. In the Digits Dataset, we can one-hot encode a categorical data 7 to 0000000100.

1.3 Feed-Forward

We will construct a deep neural network with only one hidden layer as illustrated in Figure 2. The input layer has 64 neurons: $x_1, x_2, ..., x_{64}$.

1. In 1st hidden layer:

$$z_1 = xW_1 + b_1, (1)$$

where $W_1 \in \mathbb{R}^{64 \times N_1}$, $b_1 \in \mathbb{R}^{N_1}$, $z_1 \in \mathbb{R}^{M \times N_1}$. Note: N_1 is # of neurons in this hidden layer and M is the number of samples. Next, we will add activation function. For example, relu function or tanh function:

$$f_1 = \tanh(z_1) \in \mathbb{R}^{M \times N_1}. \tag{2}$$

2. In the output layer:

$$z_2 = f_1 W_2 + b_2, (3)$$

where $W_2 \in \mathbb{R}^{N_1 \times 10}$ and $b_2 \in \mathbb{R}^{10}$, $z_2 \in \mathbb{R}^{M \times 10}$.

3. Use softmax function to get probability for each class.

$$\hat{y} = \mathbf{softmax}(z_2). \tag{4}$$

Here, the softmax function is $\mathbf{softmax}(z)_j = \frac{e^{z_j}}{\sum_k e^{z_k}}$.

Note:

- x.shape = (M, 64). M is the number of samples.
- W_1 .shape = $(64, N_1)$ b_1 .shape = $(1, N_1)$ z_1 .shape = (M, N_1) f_1 .shape = (M, N_1)
- W_2 .shape = $(N_1, 10)$ b_2 .shape = (1, 10) z_2 .shape = (M, 10) \hat{y} .shape = (M, 10)

Figure 2: Illustration of ANN.

1.4 Back-Propagation

1. Loss function (cross-entropy loss)

$$L = -\sum_{i} y_i \log(\hat{y}_i). \tag{5}$$

2. The following derivatives need to be considered: $\frac{\partial L}{\partial W_2}$, $\frac{\partial L}{\partial b_2}$, $\frac{\partial L}{\partial W_1}$, $\frac{\partial L}{\partial b_1}$.

•
$$\frac{\partial L}{\partial W_2} = \frac{\partial L}{\partial \hat{y}} \cdot \frac{\partial \hat{y}}{\partial z_2} \cdot \frac{\partial z_2}{\partial W_2} = f_1^T(\hat{y} - y)$$
, and $\frac{\partial L}{\partial W_2}$. shape = $(N_1, M)(M, 10) = (N_1, 10)$. (See Derivative of softmax loss function)

•
$$\frac{\partial L}{\partial b_2} = \frac{\partial L}{\partial \hat{y}} \cdot \frac{\partial \hat{y}}{\partial z_2} \cdot \frac{\partial z_2}{\partial b_2} = \sum_{\substack{\text{axis}=0 \\ \text{axis}=0}} (\hat{y} - y)$$
, and $\frac{\partial L}{\partial b_2}$. shape = $\sum_{\substack{\text{axis}=0 \\ \text{axis}=0}} (M,10) = (1,10)$

•
$$\frac{\partial L}{\partial W_1} = \frac{\partial L}{\partial \hat{y}} \cdot \frac{\partial \hat{y}}{\partial z_2} \cdot \frac{\partial z_2}{\partial f_1} \cdot \frac{\partial f_1}{\partial z_1} \cdot \frac{\partial z_1}{\partial W_1} = x^T \cdot \left[(1 - f_1^2) \cdot (\hat{y} - y) W_2^T \right]$$

Here,
$$\frac{\partial L}{\partial W_1} = (64, M) \cdot [(M, N_1) \cdot [(M, 10) (10, N_1)]] = (64, N_1)$$

•
$$\frac{\partial L}{\partial b_1} = \frac{\partial L}{\partial \hat{y}} \cdot \frac{\partial \hat{y}}{\partial z_2} \cdot \frac{\partial \hat{z}_2}{\partial f_1} \cdot \frac{\partial f_1}{\partial z_1} \cdot \frac{\partial z_1}{\partial b_1} = \sum_{\substack{\text{axis}=0}} (1 - f_1^2))(\hat{y} - y)W_2^T$$
, and $\frac{\partial L}{\partial b_1}$.shape = (1,N₁).

Let $d_1 = (1 - f_1^2)(\hat{y} - y)W_2^T$, $d_2 = \hat{y} - y$, then

$$\bullet \ \frac{\partial L}{\partial W_2} = f_1^T d_2$$

•
$$\frac{\partial L}{\partial b_2} = d_2$$

$$\bullet \ \frac{\partial L}{\partial W_1} = x^T d_1$$

$$\bullet \ \frac{\partial L}{\partial b_1} = d_1$$