1.							
	Ⅰ、保护现场 Ⅱ、开中断 Ⅲ、关中断 Ⅳ、保存断点						
	V、中断事件处理 VI、恢复现场 VII、中断返回						
	A: I、V、VI、II、VII B: III、I、V、VII						
	C: III、IV、V、VI、VII D: IV、I、V、VI、VII						
2.	2. 假定一台计算机的显示存储器用 DRAM 芯片实现,若要求显示分辨率为:	1600*1200,					
	颜色深度为 24 位,帧频为 85Hz,显示总带宽的 50% 用来刷新屏幕,则需	需要的显存总					
	带宽至少约为(D)						
	A : 245 Mbps B: 979 Mbps						
	C: 1958 Mbps D: 7834Mbps						
3.	3. 主机甲和主机乙之间已建立一个 TCP 连接,TCP 最大段长度为 1000 字节,	若主机甲的					
	当前拥塞窗口为 4000 字节,在主机甲向主机乙连接发送 2 个最大段后,成功收到主机						
	乙发送的第一段的确认段,确认段中通告的接收窗口大小为 2000 字节,则此时主机甲						
	还可以向主机乙发送的最大字节数是 (A)						
	A: 1000 B: 2000						
	C: 3000 D: 4000						
4.	4. 某基于动态分区存储管理的计算机,其主存容量为 55mb (初试为空间),系	《用最佳适配					
	(Best fit) 算法,分配和释放的顺序为: 分配 15mb, 分配 30mb, 释放						
	8mb,此时主存中最大空闲分区的大小是(B)	, ••••					
	A: 7mb B: 9mb C: 10mb D: 15mb						
5.	5. 进行 PO 和 P1 的共享变量定义及其初值为 (A)						
	boolean flag[2];						
	int turn=0;						
	flag[0]=faulse; flag[1]=faulse;						
	若进行 PO 和 P1 访问临界资源的类 C 代码实现如下:						
	Void p0 () // 进程 p0 Void p1 () // 进程 p1						
	{while (TURE) } {while (TURE) }						
	Flag[0]=TURE;ture=1 Flag[1]=TURE; ture=1						
	While $(flag[1]\&\& (turn==1))$ While $(flag[0]\&\& (turn==0))$						
	临界区:						
	Flag[0]=FALSE; Flag[1]=FALSE;						
	}						
	}						
	则并发执行进程 P0 和 P1 时产生的情况是:						
	A: 不能保证进程互斥进入临界区,会出现"饥饿"现象						
	B: 不能保证进程互斥进入临界区,不会出现"饥饿"现象						
	C: 能保证进程互斥进入临界区,会出现"饥饿"现象						
	D: 能保证进程互斥进入临界区,不会出现"饥饿"现象						
6	设与某资源相关联的信号量初值为 3,当前值为 1,若 M 表示该资源的可用个数,N 表						
6.	o.	ŋ 奴,N 仅					
	小寺付页源的近性数,则 M,N 刃 加定(B) A: 0, 1						
7.							
1.	7. 下列中专组合情况中,一次切存过程中,不可能发生的走(D) A:TLB 未命中,Cache 未命中,Page 未命中						

B: TLB 未命中,Cache 命中,Page 命中

- C: TLB 命中, Cache 未命中, Page 命中
- D: TLB 命中, Cache 命中, Page 未命中
- 8. 列有关 RAM 和 ROM 的叙述中,正确的是(A)
 - I、 RAM 是易失性存储器,ROM 是非易失性存储器
 - II、 RAM 和 ROM 都是采用随机存取的方式进行信息访问
 - III、RAM 和 ROM 都可用作 Cache
 - IV、RAM 和 ROM 都需要进行刷新
 - A: 仅I和II B: 仅II和III C: 仅I,II, III D: 仅II, III, IV
- 9. 下列选项中, 能缩短程序执行时间的措施是(D)
 - I 提高 CPU 时钟频率,Ⅱ优化数据通过结构,Ⅲ 对程序进行编译优化
 - A: 仅 I 和 II
- B: 仅 I 和 III C: 仅 II 和 III
- D: I, II, III
- 10. 设某计算机的逻辑地址空间和物理地址空间均为 64KB.按字节编址。若某进程最多需要 6 页(Page)数据存储空间,页的大小为 1KB.操作系统采用固定分配局部置换策略为此 进程分配 4 个页框(Page Fame).

页号	11. 页根号	12. 装入时刻	13.	访问位
0	14. 7	15. 130	16.	1
1	17. 4	18. 230	19.	1
2	20. 2	21. 200	22.	1
3	23. 9	24. 160	25.	1

当该进程执行到时刻 260 时,要访问逻辑地址为 17CAH 的数据,请问答下列问题:

- (1) 该逻辑地址对应的页号是多少?
- (2) 若采用先进先出(FIFO)置换算法,该逻辑地址对应的物理地址是多少?要求给 出计算过程。
- (3) 若采用时钟(CLOCK)置换算法,该逻辑地址对应的物理地址是多少?要求给出 计算过程。(设搜索下一页的指针沿顺时针方向移动, 且当前指向 2 号页框, 示意 图如下。)

解答: 17CAH=(0001 0111 1100 1010)2

- (1) 页大小为 1K, 所以页内偏移地址为 10 位, 于是前 6 位是页号, 所以第一间的 解为:5
- (2) FIFO,则被置换的页面所在页框为7,所以对应的物理地址为(0001 1111 1100 1010) 2-IFCAH
- (3) CLOCK,则被置换的页面所在页框为 2, 所以对应的物理地址为(0000 1011 1100 1010) 2-OBCAH