REC Inb vs Outb, P_e Final ϕ (FD) Events

REC Inb vs Outb, Θ_e Final ϕ (FD) Events

REC Inb vs Outb, Φ_e Final ϕ (FD) Events

Inb vs Outb, P_{D} Final ϕ (FD) Events

Inb vs Outb, Θ_p Final ϕ (FD) Events

Inb vs Outb, Φ_p Final ϕ (FD) Events

Inb vs Outb, P_{κ^+} Final ϕ (FD) Events

Inb vs Outb, Θ_{K^+} Final ϕ (FD) Events

Inb vs Outb, Φ_{κ^+} Final ϕ (FD) Events

Inb vs Outb, P_{κ} . Final ϕ (FD) Events

Inb vs Outb, Θ_{K^-} Final ϕ (FD) Events

Inb vs Outb, Φ_{K^-} Final ϕ (FD) Events

Inb vs Outb, θ_{Copl} Pr. Pass Me, MM2

Inb vs Outb, θ_{Copl} K *. Pass Me, MM2

Inb vs Outb, θ_{Copl} K⁻ Pass Me, MM2

Inb vs Outb, θ_{Copl} Pr. Final ϕ (FD) Events

Inb vs Outb, θ_{Copl} K⁺. Final ϕ (FD) Events

Inb vs Outb, θ_{Copl} K⁻ Final ϕ (FD) Events

Inb vs Outb, W Final ϕ (FD) Events

Inb vs Outb, Q^2 Final ϕ (FD) Events

Inb vs Outb, X_{b} Final ϕ (FD) Events

Inb vs Outb, -t Final φ (FD) Events

Inb vs Outb, ϕ_{trento} Final ϕ (FD) Events 80 outb 70 inb 60 counts 50 40 30 20 10 ⁵⁰ (deg) **-50** 100 150 -150 **-100** φ_{trento}

Inb vs Outb, Missing E, But MissE 5000 [,] outb · inb 4000 counts inb: $\mu = 0.0254$ $\sin b : \sigma = 0.0574$ $outb: \mu = 0.0388$ $out: \sigma = 0.0551$ 2000 1000 -0.5Missing Energy (GeV)

Inb vs Outb, Missing E,Final φ [,] outb 350 inb 300 250 200 200 $linb: \mu = 0.0215$ inb: $\sigma = 0.0561$ outb: $\mu = 0.0402$ out: $\sigma = 0.0560$ 150 100 50 Missing Energy (GeV)

Inb vs Outb, MM² K⁻.,Final φ

Inb vs Outb, MM² K⁺.,Final φ · outb 300 inb 250 counts 200 inb: $\mu = 0.2350$ inb: $\sigma = 0.0336$ outb: $\mu = 0.2575$ 150 out: $\sigma = 0.0439$ 100 50 0.4 0.6 0.8 1 1.2 1.4 **Missing Mass² K** + (GeV²)

Pro: Inb vs Outb, Θ vs P Final ϕ (FD) Events 60 inb out. 50 ⊖ (deg) 40 30 20 10 P³(GeV)

