This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

JAPANESE PATENT LAID-OPEN PUBLICATION NO. HEISEI 8-306853

[TITLE OF THE INVENTION]

SEMICONDUCTOR DEVICE, FABRICATION METHOD THEREOF,

AND FABRICATION METHOD FOR LEAD FRAME

[CLAIMS]

5

10

15

1. A semiconductor device including a semiconductor chip provided with electrode pads formed to have a first pitch, leads electrically connected to the electrode pads by a wiring, respectively, and a resin encapsulate for encapsulating the semiconductor chip, wherein:

protrusions are formed on the leads, respectively, in such a fashion that they have a second pitch different from the first pitch; and

the resin encapsulate is arranged to encapsulate the wiring connected between the electrode pads and the leads while allowing the protrusions to be exposed.

- 2. A semiconductor device including a semiconductor chip provided with electrode pads formed to have a first pitch, leads electrically connected to the electrode pads by a wiring, respectively, and a resin encapsulate for encapsulating the semiconductor chip, wherein:
- 25 protrusions are formed on the leads, respectively, in

591561 vi

such a fashion that they have a second pitch different from the first pitch; and

the resin encapsulate has a thickness from a surface of the semiconductor chip formed with the electrode pads not more than a height from the semiconductor chip surface to each protrusion, but not less than the height from the semiconductor chip surface to the wiring.

- The semiconductor device according to claim 1 or 2,
 wherein the semiconductor chip and the leads are bonded together
 by an adhesive comprised of a polyimide film.
- The semiconductor device according to any one of claims 1 to 3, wherein each of the protrusions is formed in such
 a fashion that it is integrally with an associated one of the leads.
 - 5. The semiconductor device according to any one of claims 1 to 4, wherein the wiring comprises wires.

20

5

- 6. The semiconductor device according to any one of claims 1 to 5, wherein each of the protrusions is formed with a bump.
- 7. A method for fabricating a semiconductor device

10

comprising the steps of:

forming leads each provided with a protrusion at a region where an outer connecting terminal is to be formed;

arranging a polyimide film on at least one of the leads and the semiconductor chip, pressing the leads and the semiconductor chip by a desired pressure while interposing the polyimide film between the leads and the semiconductor chip, and heating the polyimide film to a desired temperature to allow the polyimide film to serve as an adhesive, thereby bonding the leads and the semiconductor chip together;

connecting the electrode pads formed on the semiconductor chip to the leads by a wiring, respectively, thereby electrically connecting the electrode pads and the leads together; and

- forming a resin encapsulate adapted to partially or completely encapsulating the wiring and the semiconductor chip while allowing each of the protrusions to be exposed at a tip surface thereof.
- 8. The method according to claim 7, wherein a thermoplastic adhesive is applied to both surfaces of the polyimide film when the leads and the semiconductor chip are bonded together by the polyimide film at the bonding step.
- 9. The method according to claim 7 or 8, wherein the

electrode pads and the leads are electrically connected together using a direct lead bonding process at the connecting step.

10. A lead frame provided with a plurality of leads each having an inner lead portion and an outer lead portion, wherein

the inner lead portion have a lead pitch less than a lead pitch of the outer lead portions, and each of the outer lead portion has a protrusion integrally formed therewith.

- 11. The lead frame according to claim 10, wherein the lead pitch (Pout) of the outer lead portions is substantially equal to the thickness (W) of each lead at a region where the protrusion is formed, and the lead pitch (Pin) of the inner lead portions corresponds to about half the lead pitch (Pout) of the outer lead portions (Pin = Pout/2).
 - 12. A method for fabricating a lead frame according to claim 10 or 11, comprising:
- a primary etching step for conducting a half-etching

 process for a blank while using a mask arranged on the blank at the protrusion forming region; and

a secondary etching step for conducting a half-etching process for the blank while using a mask arranged on the blank at the lead forming region.

25

13. A method for fabricating a lead frame according to claim 10 or 11, comprising the steps of:

preparing a first blank and a second blank respectively having thicknesses selected in such a fashion that they have a total thickness corresponding to the height of the protrusions when they are overlapped with each other;

forming a lead pattern having a planar shape corresponding to the shape of the leads on the first blank;

forming a protrusion pattern on the second blank in such a fashion that the protrusion pattern is arranged at the protrusion forming region;

overlapping the first blank formed with the lead pattern and the second blank formed with the protrusion pattern together, and bonding the first and second blanks to each other in such a fashion that the lead pattern and the protrusion pattern are overlapped with each other at the protrusion forming region; and

removing unnecessary portions of the first and second blanks.

- 20

5

. 10

15

14. A method for fabricating a lead frame according to claim 10 or 11 comprising the steps of:

forming a lead pattern having a planar shape corresponding to a shape of the leads on a blank; and

25 forming the protrusions at a desired region on the lead

10

pattern after completion of the lead pattern forming step.

- 15. The method according to claim 14, wherein the protrusion forming step is achieved by overlapping one or more bumps on the lead pattern at a desired region to form the protrusion.
- 16. The method according to claim 14, wherein the protrusion forming step is achieved by arranging a conductive member on the lead pattern at a desired region to form the protrusion.
- 17. The method according to claim 14, wherein the protrusion forming step is achieved by subjecting a desired portion of the lead pattern to a plastic shaping process to form the protrusion.

[DETAILED DESCRIPTION OF THE INVENTION] [FIELD OF THE INVENTION]

The present invention relates to a semiconductor device, a method for fabricating the semiconductor device, and a method for fabricating a lead frame used in the semiconductor device.

In particular, the present invention relates to a semiconductor device having a structure encapsulating a semiconductor chip and leads by resin, a method for fabricating the semiconductor

10

20

25

device, and a method for fabricating a lead frame used in the semiconductor device.

The recent trend of electronic appliances to be downsized has resulted in efforts to achieve an increased density
and increased mounting efficiency of semiconductor devices. It
is also expected to obtain an improvement in the reliability of
electronic appliances. In addition, there is demand for an
improvement in the reliability of semiconductor devices.
Furthermore, it is expected for semiconductor devices to achieve
a reduction in costs.

Accordingly, developments of semiconductor devices capable of satisfying the above mentioned demands are strongly required.

15 [DESCRIPTION OF THE PRIOR ART]

Recently, a flip chip type mounting structure has been proposed as a scheme capable of achieving a high-density mounting. Such a flip chip type mounting structure is widely used in multi chip modules (MCMs). In accordance with the flip chip mounting scheme applied to MCMs, no resin encapsulate is formed. Instead, bumps are formed on electrode pads of a semiconductor chip (bare chip), respectively. In this case, mounting of the bare chip is achieved by bonding the bare chip to electrode portions formed on a circuit board (mother board) in a face down bonding fashion.

20

25

In accordance with the use of the flip chip type mounting structure, it is possible to mount semiconductor devices on a mother board at a high density. An improvement in electrical characteristics is also achieved because the semiconductor devices are electrically connected to the mother board by means of bumps directly formed on the bare chips of the semiconductor devices.

[SUBJECT MATTERS TO BE SOLVED BY THE INVENTION]

However, the bare chips not encapsulated by resin involve problems in that they exhibit a degradation in heat resistance, mechanical strength, and temperature resistance. Furthermore, since bumps are directly formed on electrode pads formed on each bare chip, the layout of the electrode pads formed on the bare chip is rendered to be the layout of outer connecting terminals (bumps) as it is.

Generally, semiconductor chips have different layouts of electrode pads thereof in accordance with the manufacturers thereof. Accordingly, even for semiconductor devices having the same function, the user should design a wiring pattern of the mother board to match the kind of those semiconductor devices (manufacturer). In the conventional mounting structure using bare chips, there are problems of a degradation in the matching ability of semiconductor devices to the mother board and an increased burden to the user because no standardization for

5.

10

15

20

25

outer electrode terminals of semiconductor devices is made.

In order to solve the above mentioned problems, the

standardization may probably be made by processing the surface of a chip and forming a wiring on the processed chip surface. However, this scheme requires a number of processes with a high accuracy to form a desired wiring. Furthermore, there are problems of an increase in costs and a degradation in the efficiency of production.

The present invention has been made in view of the above mentioned problems, and an object of the invention is to provide a semiconductor device, a method for fabricating the semiconductor device, and a method for fabricating a lead frame used in the semiconductor device, which are capable of achieving a standardization of outer electrode terminals to keep the reliability of a semiconductor chip used, a reduction in costs, and an improvement in the efficiency of production.

[MEANS FOR SOLVING THE SUBJECT MATTERS]

The above subject matters can be solved by the following means.

The invention of claim 1 is characterized by a semiconductor device including a semiconductor chip provided with electrode pads formed to have a first pitch, leads electrically connected to the electrode pads by a wiring, respectively, and a resin encapsulate for encapsulating the

10

15

20

25

semiconductor chip, wherein: protrusions are formed on the leads, respectively, in such a fashion that they have a second pitch different from the first pitch; and the resin encapsulate is arranged to encapsulate the wiring connected between the electrode pads and the leads while allowing the protrusions to be exposed.

The invention of claim 2 is characterized by a semiconductor device including a semiconductor chip provided with electrode pads formed to have a first pitch, leads electrically connected to the electrode pads by a wiring, respectively, and a resin encapsulate for encapsulating the semiconductor chip, wherein: protrusions are formed on the leads, respectively, in such a fashion that they have a second pitch different from the first pitch; and the resin encapsulate has a thickness from a surface of the semiconductor chip formed with the electrode pads not more than a height from the semiconductor chip surface to each protrusion, but not less than the height from the semiconductor chip surface to the wiring.

The invention of claim 3 is characterized by the semiconductor device according to claim 1 or 2, wherein the semiconductor chip and the leads are bonded together by an adhesive comprised of a polyimide film.

The invention of claim 4 is characterized by the semiconductor device according to any one of claims 1 to 3, wherein each of the protrusions is formed in such a fashion that

it is integrally with an associated one of the leads. The invention of claim 5 is characterized by the semiconductor device according to any one of claims 1 to 4, wherein the wiring comprises wires.

5 The invention of claim 6 is characterized by the semiconductor device according to any one of claims 1 to 5, wherein each of the protrusions is formed with a bump. The invention of claim 4 is characterized by a method for fabricating a semiconductor device comprising the steps of: 10 forming leads each provided with a protrusion at a region where an outer connecting terminal is to be formed; arranging a polyimide film on at least one of the leads and the semiconductor chip, pressing the leads and the semiconductor chip by a desired pressure while interposing the polyimide film 25 between the leads and the semiconductor chip, and heating the polyimide film to a desired temperature to allow the polyimide film to serve as an adhesive, thereby bonding the leads and the semiconductor chip together; connecting the electrode pads formed on the semiconductor chip to the leads by a wiring, 20 respectively, thereby electrically connecting the electrode pads and the leads together; and forming a resin encapsulate adapted to partially or completely encapsulating the wiring and the semiconductor chip while allowing each of the protrusions to be exposed at a tip surface thereof.

The invention of claim 8 is characterized by the method

10

15

20

25

according to claim 7, wherein a thermoplastic adhesive is applied to both surfaces of the polyimide film when the leads and the semiconductor chip are bonded together by the polyimide film at the bonding step.

The invention of claim 9 is characterized by the method according to claim 7 or 8, wherein the electrode pads and the leads are electrically connected together using a direct lead bonding process at the connecting step.

The invention of claim 10 is characterized by a lead frame provided with a plurality of leads each having an inner lead portion and an outer lead portion, wherein the inner lead portion have a lead pitch less than a lead pitch of the outer lead portions, and each of the outer lead portion has a protrusion integrally formed therewith.

The invention of claim 11 is characterized by the lead frame according to claim 10, wherein the lead pitch (Pout) of the outer lead portions is substantially equal to the thickness (W) of each lead at a region where the protrusion is formed, and the lead pitch (Pin) of the inner lead portions corresponds to about half the lead pitch (Pout) of the outer lead portions (Pin = Pout/2). The invention of claim 12 is characterized by a method for fabricating a lead frame according to claim 10 or 11, comprising: a primary etching step for conducting a half-etching process for a blank while using a mask arranged on the blank at the protrusion forming region; and a secondary etching step for

10

15

20

25

conducting a half-etching process for the blank while using a mask arranged on the blank at the lead forming region.

The invention of claim 13 is characterized by a method for fabricating a lead frame according to claim 10 or 11, comprising the steps of: preparing a first blank and a second blank respectively having thicknesses selected in such a fashion that they have a total thickness corresponding to the height of the protrusions when they are overlapped with each other; forming a lead pattern having a planar shape corresponding to the shape of the leads on the first blank; forming a protrusion pattern on the second blank in such a fashion that the protrusion pattern is arranged at the protrusion forming region; overlapping the first blank formed with the lead pattern and the second blank formed with the protrusion pattern together, and bonding the first and second blanks to each other in such a fashion that the lead pattern and the protrusion pattern are overlapped with each other at the protrusion forming region; and removing unnecessary portions of the first and second blanks.

The invention of claim 14 is characterized by a method for fabricating a lead frame according to claim 10 or 11 comprising the steps of: forming a lead pattern having a planar shape corresponding to a shape of the leads on a blank; and forming the protrusions at a desired region on the lead pattern after completion of the lead pattern forming step.

The invention of claim 15 is characterized by the method

10

according to claim 14, wherein the protrusion forming step is achieved by overlapping one or more bumps on the lead pattern at a desired region to form the protrusion.

The invention of claim 16 is characterized by the method according to claim 14, wherein the protrusion forming step is achieved by arranging a conductive member on the lead pattern at a desired region to form the protrusion.

The invention of claim 17 is characterized by the method according to claim 14, wherein the protrusion forming step is achieved by subjecting a desired portion of the lead pattern to a plastic shaping process to form the protrusion.

[FUNCTIONS]

Each of the above mentioned means serves as follows.

In accordance with the invention of claims 1 and 2, it is possible to achieve an improvement in heat resistance, mechanical strength, and temperature resistance. Since the electrode pads and leads are connected together using wires, it is possible to set the layout of the leads irrespective of the layout of the electrode pads. An improvement in the matching ability of the semiconductor device to the circuit board. The resin encapsulate provides an improvement in reliability because it surely protects the connected wires. Since the outer connecting terminals are exposed from the resin encapsulate, the electrical connection of the semiconductor device to the circuit

35

20

25

board can be surely provided.

In accordance with the invention of claim 3, the insulating and bonding processes for the semiconductor chip and leads can be simultaneously conducted because the polyimide film, as an insulating member, interposed between the semiconductor chip and the leads serves as an adhesive.

Accordingly, it is possible to simplify the structure of the semiconductor device while achieving an easy fabrication of the semiconductor device, as compared to the case in which the insulating member and the adhesive are separately provided.

In accordance with the invention of claim 4, each protrusion is integrally formed with an associated one of the leads. Accordingly, it is possible to achieve a simplification in structure, as compared to the case in which the protrusion and lead are formed using separate materials, respectively. In accordance with the invention of claim 5, a wire is used for the connection between the electrode pad and lead. Accordingly, it is possible to achieve an easy connection for the wire between the electrode pad and lead.

In accordance with the invention of claim 6, a bump is formed on each protrusion. Accordingly, it is possible to achieve an easy connection of the semiconductor device to the circuit board, as compared to the case in which the protrusion is directly mounted on the circuit board. In accordance with the invention of claim 7, the leads and semiconductor chip are

10

15

20

25

bonded together by maintaining the polyimide film at a certain temperature and a certain pressure, thereby causing the polyimide film to serve as an adnesive. Accordingly, the insulating and bonding processes for the leads and semiconductor chip can be simultaneously conducted.

Since each electrode pad formed on the semiconductor chip is connected to an associated one of the leads by means of a wire in the bonding process, it is possible to vary the layout of the leads with respect to the layout of the electrode pads by selecting an appropriate connection method. The fabrication of the semiconductor device involves only four processes, that is, a lead forming process, a bonding process, a connecting process, and a resin encapsulating process. Since the fabrication of semiconductor device is achieved using a reduced number of processes, as mentioned above, an improvement in production efficiency is obtained.

In accordance with the invention of claim 8, an easy bonding process can be achieved because the bonding process can be conducted without a control for the temperature applied to the polyimide film within a desired range.

In accordance with the invention of claim 9, the connection between the electrode pads and the leads can be simply and surely achieved because the electrode pads and leads are electrically connected together in accordance with a direct lead bonding process. In accordance with the invention of claim

10

15

20

25

than the lead pitch of the outer lead portions is less than the lead pitch of the inner lead portions. Accordingly, the inner leads can cope with a small pitch of the electrode pads on the semiconductor chip to which the inner lead portions are electrically connected. Furthermore, the mounting efficiency of the semiconductor device to the circuit board is improved because the lead pitch of the outer lead portions electrically connected to the circuit board is large. Since each protrusion is formed on an associated one of the outer lead portions, it can be used as an outer connecting terminal.

Accordingly, it further improves the mounting efficiency.

In accordance with the invention of claim 12, it is possible to form leads each integrally formed with a protrusion by conducting a primary etching process for the blank in accordance with a half-etching method in such a fashion that the blank has a reduced thickness at its portion except for the region to be formed with the protrusions—and then conducting a secondary etching process for the thickness-reduced portion of the blank to form the leads.

The pitch of the leads is determined by the thickness of the blank upon forming the leads. In other words, it is only possible to form leads having a pitch substantially equal to the thickness of the blank. Accordingly, a reduced lead pitch can be obtained when the blank has a reduced thickness.

Meanwhile, where leads provided with protrusions are

10

15

20

25

formed, the thickness of the blank is determined by the height of the protrusions. It is impossible to form leads having a small pitch by simply etching the blank having a thickness equal to the height of the protrusions. In accordance with the present invention, however, it is possible to form leads having a small pitch, even when the leads have a structure provided with protrusions, by conducting a primary etching process for the blank in accordance with a half-etching method in such a fashion that the blank has a reduced thickness at its portion except for the region to be formed with the protrusions, and then conducting a secondary etching process for the thickness-reduced portion of the blank to form the leads. As apparent from the above description, the pitch of the protrusions can be reduced to a pitch substantially equal to the thickness of the blank.

. ..

In accordance with the invention of claim 13, the first and second blanks have thicknesses respectively selected in such a fashion that they have a total thickness corresponding to the height of the protrusions when they are overlapped with each other. For this reason, each of the first and second blanks has a thickness less than the height of the protrusions. In the lead pattern forming step, a lead pattern having the same shape as the whole shape of the leads is formed on the thin first blank. Accordingly, it is possible to reduce the lead pitch of the lead pattern formed in accordance with the above mentioned

10

15

20

25

relation between the blank thickness and lead pitch.

In the protrusion pattern forming step, a protrusion pattern is formed on the second blank in such a fashion that it is arranged at the protrusion forming region. In the bending step, the first and second blanks are bonded together in a state in which they are overlapped with each other. The lead pattern and protrusion pattern are overlapped with each other at the protrusion forming region. The blank thickness at the protrusion forming region corresponds to a desired height of the protrusions. At the removing step, unnecessary portions of the blanks are removed, thereby forming leads.

Accordingly, a reduction in lead pitch is achieved because the thickness of the blank used in the formation of the lead pattern is small. On the other hand, since the lead pattern and protrusion pattern are overlapped with each other at the protrusion forming region, it is possible to form protrusions having a desired thickness. In accordance with the invention of claim 14, the lead pattern forming step and the protrusion forming step are conducted in a separate fashion. Accordingly, the thickness of a blank used can be selected irrespective of the height of the protrusion. Therefore, it is possible to reduce the pitch of a lead pattern when a thin blank is used. In the protrusion forming process, it is possible to form protrusions having an optional height. An improvement in the freedom of design is also achieved.

In accordance with the invention of claims 15 to 17, it is possible to easily conduct the protrusion forming process.

[EMBODIMENTS]

Now, preferred embodiments of the present invention will be described in conjunction with the annexed drawings. Figs. 1 and 2 illustrate a semiconductor device 1 according to an embodiment of the present invention. Fig. 1 is a cross-sectional view of the semiconductor device 1 whereas Fig. 2 is a bottom view of the semiconductor device 1.

As shown in the figures, the semiconductor device 1 mainly includes a semiconductor chip 2, a plurality of leads 3, a resin encapsulate 4, and bumps 5. The semiconductor chip 2 is provided at the central portion of its lower surface with a plurality of electrode pads 6 arranged in a line. Each of the leads 3 has an inner lead portion 3a and an outer lead portion 3b. The leads 3 are bonded to the lower surface of the semiconductor chip 2 by means of a polyimide film 7.

The polyimide film 7 serves as an insulating member for electrically insulating the leads 3 from a circuit surface 2A formed on the lower surface of the semiconductor chip 2. The polyimide film 7 also serves as an adhesive for bonding the leads 3 to the semiconductor chip 2 as described hereinafter. Since the polyimide film 7 functions as both the insulating member and the adhesive, it is possible to simplify the

15

20

25

10

15

20

25

structure of the semiconductor device 1 which achieving an easy fabrication of the semiconductor device 1, as compared to the case in which the insulating member and the adhesive are separately provided.

. ..

Wires 8 are arranged between the inner leads 3a and the electrode pads 6 of the semiconductor chip 2, respectively. The semiconductor chip 2 is electrically connected with the leads 3 by the wires 8, respectively. A protrusion 9 is formed at a desired position of the outer lead portion 3b included in each lead 3 in such a fashion that it is integral with the outer lead portion 3b. In most cases, the leads 3 having the above mentioned structure are arranged on the lower surface of the semiconductor chip 2. This arrangement is called a "lead on chip (LOC)" structure. By virtue of this arrangement, the semiconductor device 1 can be miniaturized.

The resin encapsulate 4 is made of, for example, epoxy resin. This resin encapsulate 4 is formed in accordance with a molding process, as described hereinafter. The resin encapsulate 4 is disposed at the lower surface and side surfaces of the semiconductor chip 2 to have desired thicknesses, respectively. In the illustrated embodiment, the resin encapsulate 4 does not exist at the upper surface of the semiconductor chip 2, that is, a heat dissipation surface.

The resin encapsulate 4 is configured in such a fashion that its thickness (indicated by the arrows H) from the surface

10

15

20

25

of the semiconductor chip 2 formed with the electrode pads ℓ , that is, the lower surface of the resin encapsulate 4, is not more than the height (indicated by the arrows W) from the lower surface of the resin encapsulate 4 to the tip of the protrusion 9, but not less than the height (indicated by the arrows h) from the lower surface of the resin encapsulate 4 to the apex of a roof of the wire 8 (h \leq H \leq W). By virtue of this configuration, at least the tip 9a of each protrusion 9 is surely exposed from the resin encapsulate 4. In this case, the wires 8 and the leads 3, except for the exposed portions of the protrusions 9, are encapsulated by the resin encapsulate 4.

. ..

Since the semiconductor device 1 of this embodiment is configured in such a fashion that a desired portion of the semiconductor chip (that is, the portion except for the upper surface) is encapsulated by the resin encapsulate, it is possible to achieve an improvement in heat resistance, mechanical strength, and temperature resistance. Also, an improvement in the reliability of the semiconductor device 1 is achieved because the resin encapsulate 4 surely protects the wires 8. In addition, it is possible to surely obtain an electrical connection to a circuit board 10 because at least the tip 5a of each protrusion 9 serving as an outer connection terminal is surely exposed from the resin encapsulate 4.

Now, a description will be made in conjunction with a plurality of leads 3 arranged on the lower surface of the

10

15

20

25

semiconductor chip 2 while referring to Fig. 2. For the convenience of description, the resin encapsulate 4 arranged on the lower surface of the semiconductor chip 2 is removed from Fig. 2. As shown in Fig. 2, the leads 3 are configured in such a fashion that the lead pitch of adjacent inner lead portions la (indicated by the arrows Pin) is less than the lead pitch of adjacent outer lead portions 3b (indicated by the arrows Pout). In detail, the lead pitch Pin of the inner lead portions 3a corresponds to about half the lead pitch Pout of the outer lead portions 3b (Pin = Pout/2). The lead pitch Pout of the outer lead portions 3b is substantially equal to the thickness W of each lead 3 at a region where the protrusion 9 is formed.

Since the lead pitch Pin of the inner lead portions 3a is small as compared to the lead pitch Pout of the outer lead portions 3b, the inner lead portions 3a can cope with a possible small pitch of the electrode pads 6 of the semiconductor chip 2 to which the inner lead portions 3a are electrically connected. On the other hand, since the lead pitch Pout of the outer lead portions 3b (protrusions 9) electrically connected to the circuit board 10 is large, it is possible to achieve an improvement in the mounting efficiency of the semiconductor device 1 on the circuit board 10.

Meanwhile, the semiconductor device 1 according to the illustrated embodiment has a configuration in which the electrical connection of the electrode pads 6 arranged on the

semiconductor chip 2 to the circuit board 10 is not achieved by the bumps 5 directly formed on the electrode pads 6, but achieved by the wires 8 arranged between the electrode pads 6 and the inner leads 3a. Accordingly, an electrical signal from each electrode pad 6 can be transferred to the outside of the semiconductor device 1 via the associated lead 3 and wire 6. This makes it possible to set the layout of the leads 3 irrespective of the layout of the electrode pads 6.

In the case of Fig. 2, electrical signals from the 10 electrode pads 6 centrally formed on the semiconductor chip 2 are outwardly transferred via the wires 8 and leads 3. Also, the protrusions 9, which serve as outer connecting terminals, are arranged at the peripheral portion of the semiconductor chip 2. Where the electrode pads 6 are formed at the peripheral 15 portion of the semiconductor chip 2, as shown in Fig. 3, it is possible to arrange the protrusions 9 serving as outer connecting terminals at a region inside the electrode pads 6 because electrical signals from the electrode pads 6 can be outwardly transferred via the wires 8 and leads 3. Furthermore, 20 the protrusions 9 serving as outer connecting terminals may be $^{\circ}$ arranged at a region outside the semiconductor chip 2, as shown in Fig. 4.

Since electrical signals from the electrode pads 6 can be outwardly transferred using the leads and wires 8, an improvement in the matching ability of the semiconductor device

25

30

1 to the circuit board 10 is achieved. It is also possible to easily set the layout of the protrusions 9, which serve as outer connecting terminals, to be the layout of standard outer connecting terminals. Accordingly, a reduction in the burden to the user of the semiconductor device 1 is achieved.

Now, a method for fabricating the semiconductor device I having the above mentioned configuration will be described. The semiconductor device I according to the present invention is fabricated using four basic processes, that is, a lead forming process, a bonding process, a connecting process, and a resin encapsulating process, along with two additional processes, that is, a bump forming process and a testing process. The fabrication method will be described in conjunction with the above mentioned processes, respectively.

Figs. 5 to 9 illustrate a first embodiment associated with the lead forming process. This lead forming process is a process for forming a lead frame 11 which is a blank for forming the leads 3. For the formation of the lead frame 11, a flat blank 12 is first prepared, as shown in Fig. 5. The blank 12 may be a lead frame blank made of, for example, 42 Alloy and having a thickness corresponding to the height W of the protrusions 9.

Thereafter, a mask 13 (indicated by small dots) is arranged on the blank 12, as shown in Fig. 6. The mask 13 covers a region (denoted by the reference numeral 14) to be

25

10

15

20

formed with the protrusions 9 and a region (denoted by the reference numeral 15) to be formed with cradles.

After the arrangement of the mask 13, a half-etching process (primary etching process) is conducted for the blank 11. In the illustrated embodiment, the half-etching process for the blank 12 is carried out in accordance with a wet etching method (of course, other etching methods, for example, a dry etching method, may be used). The etching time is set so that the thickness of an etched portion (the white portion in Fig. 6) corresponds to about half the thickness W of the blank 12 (W/2).

Fig. 7 shows a state in which the mask 13 is removed after completion of the half-etching process. In this state, the blank 12 maintains the thickness W only at its portion corresponding to the region 14 to be formed with protrusions 9 and its portion corresponding to the region 15 to be formed with cracles 15. The remaining portion of the blank 12 (denoted by the reference numeral 16) has a thickness corresponding to W/2 by virtue of the half-etching.

After completion of the half-etching process as mentioned above, the blank 12 is subjected to another etching process under the condition in which a mask 17 (indicated by small dots) is arranged to cover a region (denoted by the reference numeral 18) to be formed with leads 3 along with the region 15 to be formed with cradles.

25 In accordance with the etching process (secondary etching

10

process), the portions of the blank 12 not covered with the mask 17 are removed. Thus, a lead frame 11 provided with a plurality of leads 3 having a structure as shown in Fig. 9 is obtained. If necessary, silver may be plated on a desired portion of the lead frame 11 (corresponding to the region formed with the leads 3).

The lead frame 11 formed as mentioned above has a structure in which each lead 3 has an inner lead portion 3a, an outer lead portion 3b, and a protrusion 9 integrally formed together. In this structure, the protrusion 9 has a thickness corresponding to W whereas the inner lead portion 3a and the outer lead portion 3b except for its part corresponding to the region formed with the protrusion 9 have a thickness corresponding to W/2.

The relation between the lead pitch and the thickness of the blank 12 will now be described. The pitch of the leads 3 is determined by the thickness of the blank 12 upon forming the leads 3. In other words, it is only possible to form leads having a pitch substantially equal to the thickness of the blank 12. Accordingly, a reduced lead pitch can be obtained when the blank 12 has a reduced thickness.

Meanwhile, where leads 3 provided with protrusions 9 are formed, the thickness of the blank 12 is determined by the height of the protrusions 9. It is impossible to form leads having a small pitch by simply etching the blank 12 having a

25

10

thickness equal to the height of the protrusions 9. In accordance with the present invention, however, it is possible to form leads 3 having a small pitch (the lead pitch Fin in Fig. 11a), even when the leads 3 have a structure provided with protrusions 9, by conducting a primary etching process for the blank 12 in accordance with a half-etching method in such a fashion that the blank 12 has a reduced thickness (a thickness corresponding to about W/2) at its portion except for the region 14 to be formed with the protrusions 9, and then conducting a secondary etching process for the thickness-reduced portion of the blank 12 to form the leads 3. For the same reason, the pitch Pout of the protrusions 9 (outer lead portions 3b) can be reduced to a pitch substantially equal to the thickness W of the blank 12.

15 For instance, where a typical lead frame blank having a thickness of 0.10 mm is used, it is possible to obtain a minimum pitch Pout of the outer lead portions 3b and protrusions 9 corresponding to 0.10 mm (Pout = 0.10 mm) and a minimum pitch Pin of the inner lead portions 3a corresponding to 0.05 mm (Pin = 0.05 mm). In the case of a typical lead frame blank having a thickness of 0.15 mm, it is possible to obtain a minimum pitch Pout of the outer lead portions 3b and protrusions 9 corresponding to 0.15 mm (Pout = 0.15 mm) and a minimum pitch Pin of the inner lead portions 3a corresponding to 0.075 mm (Pin = 0.075 mm). Where a typical lead frame blank having a thickness

20

25

of 0.20 mm is used, it is possible to obtain a minimum pitch.

Pout of the outer lead portions 3b and protrusions 9

corresponding to 0.20 mm (Pout = 0.20 mm) and a minimum pitch.

Pin of the inner lead portions 3a corresponding to 0.10 mm .Fin = 0.10 mm).

On the other hand, the position of each protrusion 9 is determined by the position of the mask 13 shown in Fig. 6. That is, the position of each protrusion 9 can be optionally determined by appropriately varying the position of the mask 13.

For this reason, the positions of the protrusions 9 serving as outer connecting terminals can be set within a certain degree of freedom in accordance with a lead forming method included in the illustrated embodiment. Therefore, it is possible to easily form the protrusions 9 at predetermined positions for standard outer connecting terminals, respectively.

Next, a second embodiment associated with the lead forming process will be described. Figs. 10 to 15 illustrate the second embodiment associated with the lead forming process. For the formation of a lead frame 20 in this embodiment, a first blank 21 shown in Fig. 10 and a second blank 22 shown in Fig. 11 are first prepared.

The thicknesses of the blanks 21 and 22 are determined so that the total thickness obtained in an overlapping state of the blanks 21 and 22 corresponds to the height W of each protrusion 9. In this embodiment, the thicknesses of the blanks 21 and 22

20

15

20

25

are set to b W/2, respectively. The blanks 21 and 22 have different thicknesses, respectively, in so far as the total thickness obtained in an overlapping state of the blanks 21 and 22 corresponds to the height W of each protrusion 9.

The first blank 21 shown in Fig. 10 is made of a lead frame material such as 42 ALLOY. This first blank 21 has a structure formed with a lead pattern 23 having the same pattern shape as that of the leads 3 when viewed in a plan view. This structure of the first blank 21 is obtained by previously conducting an etching process or a press-punching process for the first blank 21. However, the lead pattern 23 of the first blank 21 has no protrusion in accordance with this lead forming process, as different from the lead forming process in which the protrusions 9 are formed. Accordingly, the lead pattern 23 has a thickness of W/2 at the entire portion thereof. In Fig. 10, the reference numeral 25 denotes a position determining slot which is formed during the formation of the lead pattern 23.

On the other hand, the second blank 22 shown in Fig. 11 is made of a lead frame material such as 42 ALLOY. This second blank 22 has a structure formed with a protrusion pattern 24. This structure of the second blank 22 is obtained by conducting an etching process or a press-punching process for the second blank 22. The protrusion pattern 24 has a straight line pattern shape. In the protrusion pattern 24, regions to be formed with a certain number of protrusions 9 are arranged in parallel while

10

15

20

25

being laterally spaced from one another. In Fig. 11, the reference numeral 26 denotes a position determining slot which is formed during the formation of the protrusion pattern 24.

The first and second blanks 21 and 22 having the above mentioned structures are then overlapped with each other by vertically aligning the position determining slots 25 and 26 with each other. In the overlapping state, the first and second blanks 21 and 22 are bonded together. The bonding of the first and second blanks 21 and 22 may be achieved using a conductive adhesive or a welding process. Fig. 12 shows the bonded state of the first and second blanks 21 and 22.

In the bonded state of the first and second blanks 21 and 22, the protrusion pattern 24 of the second blank 22 overlaps with protrusion forming regions on the lead pattern 23 of the first blank 22.

Fig. 13 is a plan view illustrating, in a enlarged scale, the overlapping region between the lead pattern 23 and protrusion pattern 24. Also, Fig. 14 is a cross-sectional view illustrating, in an enlarged scale, the overlapping region between the lead pattern 23 and protrusion pattern 24. As shown in Figs. 13 and 14, the lead pattern 23 having a thickness of W/2 corresponding to half the total thickness of the blanks overlaps, in a cross fashion, with the protrusion pattern 24 having a thickness of W/2 corresponding to half the total thickness of the blanks. Accordingly, the regions to be formed

10

15

with the protrusions 9 have a thickness W corresponding to the total blank thickness. Accordingly, this thickness W is rendered to be the height of each protrusion 9 (Fig. 14).

After completion of the bonding process for the first and second blanks 21 and 22, the resulting structure is partially removed at its portion except for the portion where the lead pattern 23 and protrusion pattern 24 cross, using a pressing process or the like, thereby forming a lead frame 20 having leads 3 integrally formed with protrusions 9, as shown in Fig. 15.

Similarly to the lead frame 11 fabricated in accordance with the first embodiment, each lead 3 of the lead frame 20 fabricated in accordance with this embodiment has an inner lead portion 3a, an outer lead portion 3b, and a protrusion 9 integrally formed together. In accordance with this embodiment, the lead pattern 23 can be formed to have a small pitch because the first blank 21 has a thickness corresponding to W/2. This will be apparent by referring to the above mentioned relation between the lead pitch and the blank thickness.

Meanwhile, the position of each protrusion 9 is

determined by the position of the protrusion pattern 24 formed
at the second blank 22. That is, the position of each
protrusion 9 can be optionally determined by appropriately
varying the position of the protrusion pattern 24. For this
reason, the positions of the protrusions 9 serving as outer

10

15

20

25

connecting terminals can be set within a certain degree of freedom in accordance with the lead forming method included in this embodiment. Therefore, it is possible to easily form the protrusions 9 at predetermined positions for standard outer connecting terminals, respectively.

After the lead frame 11 or 20 (in the following description, only the lead frame 11 will be referred) is fabricated in accordance with the above mentioned lead forming process, a bonding process for bonding the lead frame 11 and semiconductor chip 2 together is conducted. Now, the bonding process will be described in conjunction with Figs. 16 to 20.

In this bonding process, gold is plated on the inner lead portions 3a of the lead frame 11 at regions where wires 8 are to be bonded in a subsequent connecting process, thereby forming bonding areas 27, as shown in Fig. 16.

Also, a polyimide film 7 is arranged on the surface of the semiconductor chip 2 formed with the electrode pads 6 in such a fashion that only the electrode pads 6 are exposed. The polyimide film 7 is made of a polyimide material having a glass transition point of 100 to 300 °C. In the state of Fig. 17, the polyimide film 7 is simply in a state laid on the semiconductor chip 2. In order to prevent the polyimide film 7 from being separated from the semiconductor chip 2, accordingly, the semiconductor chip 2 is arranged in such a fashion that its surface formed with the electrode pads 6 is upwardly positioned.

10

15

20

25

In other words, the semiconductor chip 2 is in a bare chip state not encapsulated by resin. The polyimide film 7 may be previously formed on the semiconductor chip 2 during a wafer process for forming the semiconductor chip 2.

Subsequently, the lead frame 11 shown in Fig. 16 is laid on the semiconductor chip 2 on which the polyimide film 7 is laid. The leads 3 (inner lead portions 3a) formed on the lead frame 11 face, in a high accuracy, the electrode pads 6 formed on the semiconductor chip 2. Thus, the position of the lead frame 11 is determined.

After the lead frame 11 is laid in position on the semiconductor chip 2, as mentioned above, a die 28 is lowered to press the lead frame 11 against the semiconductor chip 2, as shown in Fig. 19. The die 28 is equipped with a heating unit. Heat generated from the die 28 is applied to the polyimide film 7 via the lead frame 11.

The polyimide film 7 typically serves as an insulating member for electrically insulating the semiconductor chip 2 and lead frame 11 from each other, as in conventional cases.

However, the inventors found the fact that the polyimide film 7 can serve as an adhesive when it is under a certain condition.

In detail, where the polyimide film 7 is made of a polyimide material having a glass transition point of 100 to 300°C, it can serve as an adhesive when it is heated to a temperature higher than the glass transition point by 100 to 200°C while being

10

applied with a pressure of 1 to 10 Kgf/cm².

In view of the above mentioned fact, the polyimide film T is heated to a temperature higher than the glass transition point by 100 to 200°C by the heater equipped in the die 2E upon bonding the semiconductor chip 2 and lead frame 11 to each other while being applied with a pressure of 1 to 10 Kgf/cm² by the die 28 in accordance with the present invention. Accordingly, the polyimide film 7 can serve as an adhesive. Thus, it is possible to bond the semiconductor chip 2 and lead frame 11 to each other by means of the polyimide film 7.

In accordance with the above mentioned configuration, it is unnecessary to use a separate adhesive for bonding the semiconductor chip 2 and lead frame 11 to each other, as compared to conventional cases using a polyimide film.

- Accordingly, it is possible to achieve a reduction in costs and a reduction in the number of processing steps used in the fabrication of the semiconductor device 1. Fig. 20 illustrates a state in which the semiconductor chip 2 and lead frame 11 are bonded to each other by the polyimide film 7.
- Although the bonding between the semiconductor chip 2 and lead frame 11 is achieved in accordance with the bonding method using the polyimide film 7, it may be achieved using other methods. For example, the bonding between the semiconductor chip 2 and lead frame 11 may be achieved using a method in which an adhesive is applied to both surfaces of the polyimide film

10

15

20

25

interposed between the semiconductor chip 2 and lead frame 11, as in conventional cases. Where this method is used, it is unnecessary to carry out a temperature control and a pressure control for the polyimide film. Accordingly, the bonding process is simply achieved.

. ..

After the semiconductor chip 2 and lead frame 11 are bonded to each other in accordance with the bonding process, a connecting process is carried out to electrically connect the leads 3 formed on the lead frame 11 to the electrode pads 6 formed on the semiconductor chip 2 by means of wires 8, respectively.

Fig. 21 illustrates a process for mounting each wire (for example, a gold wire) 8 between the bonding pad 27 (Fig. 16) formed on an associated one of the leads 3 and an associated one of the electrode pads 6 using capillaries 29. As well known, it is desirable for each wire 8 to be short in terms of an improvement in the electrical characteristics of the semiconductor device 1. On the other hand, in terms of a miniaturization and thinness of the semiconductor device 1, it is desirable for each wire 8 to have a low roof.

For this reason, it is preferred that a low-roof bonding process be used in mounting the wires 8. For such a low-roof bonding process, a variety of methods are known. For example, a method may be used in which each wire 8 is bonded at one end thereof to an associated one of the electrode pad 6 formed on

10

the semiconductor chip 2 and then bonded at the other end thereof to an associated one of the leads 3 by upwardly moving the capillary 29 associated with the other end of the wire E, and then horizontally moving the capillary 29. A method called a "reverse stamping method" may also be used.

Since the leads 3 and electrode pads 6 are electrically connected together in accordance with the wire bonding process, it is possible to achieve the connecting process in an easy fashion and in a high accuracy. The shaping and connection of each wire 8 between the associated lead 3 and electrode pad 6 can be carried out within a certain degree of freedom. Fig. 22 illustrates the state of each wire 8 mounted between the associated lead 3 and electrode pad 6 after the connecting process is conducted.

20 After the leads and electrode pads 6 are electrically connected together in accordance with the connecting process, a resin encapsulating process is carried out to form a resin encapsulate 4 at a desired portion of the semiconductor chip 2. This resin encapsulating process will now be described in conjunction with Figs. 23 to 25.

Fig. 23 illustrates a state in which the semiconductor chip 2 mounted with the lead frame 11 and wires 8 is loaded in a mold 30. The mold 30 includes an upper mold 31 and a lower mold 32. The lead frame 11 is clamped between the upper and lower molds 31 and 32. Thus, the semiconductor chip 2 is mounted in

25

the mold 30.

. 5

10

15

20

25

The upper mold 31 is configured to come into contact with the protrusions 9 and the cradles 33 of the lead frame 11 in a loaded state of the semiconductor chip 2. Since the protrusions 9 have the same height as the cradles 33, the upper mold 31 maintains a flat plate shape. The lower mold 32 has a cavity defined with a space at each side of the semiconductor chip 2 loaded in the lower mold 32. The lower surface of the semiconductor chip 2 is in contact with the lower surface of the cavity 33.

Since the upper mold 31 used in the resin encapsulating process has a flat plate shape, and the cavity 33 defined in the lower mold 32 has a simple structure, it is possible to reduce the costs taken in the manufacture of the mold 30. Accordingly, a reduction in the costs taken in the fabrication of the semiconductor device 1 can be achieved.

Fig. 24 illustrates a state in which a resin encapsulate 4 (indicated by a number of small dots) is molded in the mold 30. As the resin encapsulate 4 is molded in the mold 30, the peripheral surface of the semiconductor chip 2 except for its upper surface (viewed as a lower surface in Figs. 23 to 25) contacting the lower mold 32 is encapsulated by the resin encapsulate 4. The leads 3 and wires 8 mounted to the lower surface of the semiconductor chip 2 are also encapsulated by the resin encapsulate 4. Also, each protrusion 9 except for its

10

portion contacting the upper mold 31 is encapsulated by the resin encapsulate 4.

Fig. 25 illustrates a state in which the semiconductor chip 2 encapsulated by the resin encapsulate 4 is unliazed from the mold 30. As shown in this figure, the upper surface 1a of the semiconductor chip 2 is exposed from the resin encapsulate 4. Accordingly, it is possible to effectively dissipate heat generated from the semiconductor chip 2 at the exposed upper surface 2a. The end 9a of each protrusion 9 is also outwardly exposed from the resin encapsulate 4. Accordingly, the end 9a can be used as an outer connecting terminal.

A semiconductor device is obtained by cutting the lead frame 11 from the structure shown in Fig. 25 along portions indicated by a dotted line in Fig. 25. Although this 15 semiconductor device can achieve the same effect as the semiconductor device shown in Fig. 1, it exhibits a degradation in the mounting efficiency thereof to the circuit board 10 because the end 9a of each protrusion 9 serving as an outer connecting terminal is substantially flush with the surface of 20 the resin encapsulate 4, as shown in Fig. 25. To this end, in accordance with the illustrated embodiment, a bump forming process for forming a bump 5 on the end 9a is conducted after completion of the resin encapsulating process. Hereinafter, the bump forming process will be described in conjunction with Figs. 25 26 to 30.

In the bump forming process, the semiconductor chip 2 encapsulated by the resin encapsulate 4 is subjected to a homing process at the entire surface thereof, as shown in Fig. 26. By this homing process, a resin layer existing on the end Pa of each protrusion 9 is completely removed, there causing the end Sa to be completely exposed. After completion of the homing process, the semiconductor chip 2 encapsulated by the resin encapsulate 4 is immersed in a solder bath 34, thereby causing the end 9a of each protrusion 9 to be plated by scider. The plated solder film is denoted by the reference numeral 35. The 10 solder used in the solder plating process may be one having a composition of Pb : Sn = 1 : 9. Fig. 28 shows a state in which a solder film 35 is formed on the end 9a of each protrusion 9 in accordance with the solder plating process.

15 After completion of the above mentioned scider plating process, a bump 5 is formed on the end 9a of each protrusion 9 formed with the solder film 35. The formation of the bump 5 may be carried out using various methods. For example, a conventional bump forming method capable of effectively and easily forming bumps 5 may be used. Fig. 29 shows a state in 20 which bumps 5 are formed on the ends 9a of the protrusions 9, respectively.

After the formation of the bump 5 on the end %a of each protrusion 9, a process for cutting the lead frame 11 at positions indicated dotted lines in Fig. 29 is carried out.

25

10

After the cutting process is completed, a semiconductor device I shown in Fig. 30 is obtained. Prior to the process for cutting the lead frame 11, the portions of the lead frame 11 to be cut may be subjected to a half-etching process in order to allow the cutting process to be more easily conducted.

A testing process is then conducted for the semiconductor device 1 fabricated as mentioned above, in order to determine whether or not the fabricated semiconductor device 1 operates normally. Figs. 31 to 33 illustrate different testing methods for the semiconductor device 1, respectively. The testing method shown in fig. 31 uses a socket 36 having a configuration for mounting the bumps 5. In accordance with this testing method, a test such as a burning test is conducted in a state the semiconductor device 1 is mounted on the socket 36.

The testing method shown in Fig. 32 is a method for testing the semiconductor device 1 using probes 37. The semiconductor device 1 has a structure in which the end of each lead 3 is exposed from the side surface of the resin encapsulate 4. In view of this structure of the semiconductor device 1, the testing method is adapted to test the semiconductor device 1 using the probes 37 contacting the leads 3 exposed from the resin encapsulate 4. In accordance with this testing method, it is possible to conduct the testing process even after the semiconductor device 1 is mounted on the circuit board 10.

Fig. 33 illustrates a mounting process for mounting the

25

10

15

20

semiconductor device 1 on the circuit board 10. The process for mounting the semiconductor device 1 on the circuit board 10 can be achieved using a variety of well-known methods. For instance, an infrared reflow method may be used. In accordance with this infrared reflow method, each bump 5 formed on the semiconductor device 1 is temporarily fixed to an associated one of electrode portions 38 formed on the circuit board 10 suing a paste. The bump 5 is then melted by an infrared reflow furnace arranged over the semiconductor device 1, thereby causing it to be bonded to the associated electrode portion 36.

Now, examples modified from the above mentioned semiconductor device fabrication method will be described.

Figs. 34 to 37 illustrate modified structures of the protrusions 9, respectively. Figs. 34A and 34B illustrate a protrusion 9A having a circular column shape, respectively. Also, Fig. 34C illustrates a protrusion 9B having a square column shape. That is, the protrusion may have various planar shape, as in the protrusions 9, 9A, and 9B. The protrusion can have an optional shape in accordance with the bonding characteristics of the bump 5 and the shape of the electrode portion 3B formed on the circuit board 10. For example, the protrusion 9, 9A or 9B is formed using an etching method, it can have a desired planar shape by appropriately selecting the shape of the mask 13 arranged at the protrusion forming region 14 shown in Fig. 6.

The protrusion may also have a structure provided with a

10

:5

round recess at the upper surface thereof, as in the protrusion 9C shown in Fig. 35(A). Also, the protrusion may have a structure provided with a lump at a central portion of the upper surface thereof, as in the protrusion 9D shown in Fig. 35B. The protrusion may also have a structure provided with a rectangular recess at a central portion of the upper surface thereof, as in the protrusion 9E shown in Fig. 35C. In all the protrusions 9C to 9E, it is possible to obtain an increased protrusion surface area resulting in an improvement in the bondability to the bump. 5. Furthermore, the protrusions 9C to 9E are adapted to be fixed to the lead 3 at a desired protrusion forming region.

Referring to Fig. 35D, a protrusion SF is illustrated which is formed in accordance with a direct plastic deformation of the lead 3 by a pressing process. In this case, the protrusion SF can be easily formed using a desired process such as a pressing process. However, this method has a problem in that the protrusion SF cannot have a height more than a limitation for the plastic deformation.

Referring to Fig. 36, a protrusion 9G is illustrated

20 which is formed by forming a stud bump at a desired protrusion forming region in accordance with a wire bonding technique.

Fig. 36A illustrates a method for forming the protrusion 9G whereas Fig. 36B illustrates, in an enlarged scale, the protrusion 9G.

25 Where the protrusion 9G is formed to have a stud bump

10

15

20

25

shape in accordance with a wire bonding technique, it is possible for the protrusion 9G to be formed at an optional position. The protrusion 9G serving as an outer connecting terminal can also be easily formed at a desired position. The formation of the protrusion 9G can be achieved simultaneously with the mounting of the wires 9 conducted in the connecting process included in the semiconductor device fabrication process. Thus, the entire fabrication process is simplified.

The height of the protrusion 9G can be optionally set by vertically overlapping a plurality of stud bumps together.

Referring to Fig. 37A, a protrusion 9H is illustrated which is formed by vertically overlapping three stud bumps together. In this case, the protrusion 9H has an increased height, as compared to the protrusion 9G of Fig. 36B constituted by one stud bump.

Another method for increasing the height of the protrusion is illustrated in Fig. 37B. In accordance with the method of Fig. 37B, a conductive member 41 having a plug shape is fixed to the lead 3 by means of a conductive adhesive. A stud bump 42 is then formed on the conductive member 41, as shown in Fig. 37C, so that the overlapping conductive member 41 and stud bump 42 cooperate to form a protrusion 91. In this case, the height of the protrusion 91 is determined by the height of the conductive member 41. Accordingly, the height of the protrusion 91 can be optionally set by using a plug-shaped

conductive member having a diverse size for the plug-shaped conductive member 41.

fig. 36 illustrates a modified bonding process. Although the semiconductor chip 2 and lead frame 11 are bonded together using the polyimide film 7 serving as an adhesive under a certain condition in accordance with the above mentioned embodiment, as shown in Figs. 16 to 20, they may be bonded together using a tape-shaped adhesive 45 in place of the polyimide film 7.

The tape-shaped adhesive 45 may be formed not only at the upper surface of the semiconductor chip 2, but also at the lower surface of the lead frame 11, as shown in Fig. 38.

Alternatively, the tape-shaped adhesive 45 may be formed only at the lower surface of the lead frame. Furthermore, the distribution range of the tape-shaped adhesive 45 may be freely set in so far as it is within a range indicated by the arrow X in Fig. 38, except for the region where the electrode pads 6 are formed. In addition, it is necessary for the tape-shaped adhesive 45 to be an insulating adhesive because the semiconductor chip 2 and lead frame 11 should be electrically insulated from each other.

Figs. 39 to 42 illustrate modified embodiments of the connecting process, respectively. Although the wires 8 are used for the connection between the electrode pads 6 and the leads 3 in accordance with the above mentioned embodiment, as shown in

25

10

15

20

Figs. 21 and 22, a direct lead bonding method is used to directly bond the electrode pads and leads 3 together in accordance with the modified embodiments of Figs. 39 to 42.

In the embodiment of Figs. 39 and 40, each lead 3 is directly bonded to an associated one of the electrode pads (using a bonding tool 46 connected to, for example, an ultrasonic vibrator. In this configuration, however, the electrode pad 6 may be damaged by the bonding tool 46 vibrating at an ultrasonic frequency. In the embodiment of Figs. 41 and 42, a stud bump 47 is mounted on each electrode pad 6. The stud bump 47 is then melted by a heating unit 48 in a state in which it comes into contact with the lead 3, thereby causing the electrode pad 6 to be connected to the lead 3. In accordance with this connecting method, there is no damage to the electrode pad 6. An improvement in the reliability of the connecting process is also achieved.

In accordance with the connecting processes of Figs. 39 to 42, it is possible to achieve a reduction in electrical resistance, as compared to a configuration in which the connection between the electrode pads 6 and the leads 3 is provided by the wires 8. Accordingly, an improvement in the electrical characteristics of the semiconductor device 1 is achieved. The semiconductor device 1 also cope with a high-speed semiconductor chip.

Figs. 43 and 44 illustrated a modified embodiment of the

10

15

20

resin encapsulating process. In the above mentioned embodiment, the bottom surface of the cavity defined in the lower mold 32 included in the mold 30 is in direct contact with the upper surface 2a of the semiconductor chip 2. The upper surface 1a of the semiconductor chip 2 is not encapsulated by the resin encapsulate 4 so that it serves as a surface for improving the heat dissipation characteristics.

Under strict environment, for example, high-temperature environment, the semiconductor device 1 may require a temperature resistance rather than the heat dissipation characteristics. In such a case, it is necessary to completely encapsulate the semiconductor chip 2 by the resin encapsulate 4. Referring to Figs. 43 and 44, a mold 50 is illustrated which is configured to completely encapsulate the semiconductor chip 2 by the resin encapsulate 4.

In detail, a cavity 52 defined in a lower mold 51 is spaced apart from the peripheral surface of the semiconductor chip 2 at its side surface, as shown in Fig. 43. Accordingly, when the resin encapsulate 4 is molded in the mold, the semiconductor chip 2 is completely encapsulated by the resin encapsulate 4, as shown in Fig. 44. The formation region of the resin encapsulate 4 encapsulating the semiconductor chip 2 can be optionally set by appropriately varying the shape of the cavity 33 or 52 of the mold 30 or 50.

Where the upper mold 31 has a recess for mounting the

protrusion 9 formed on ach lead 3 therein, it is possible to obtain a semiconductor device 60 in which the protrusion 9 is greatly protruded from the resin encapsulate 4, as shown in Fig. 45. The semiconductor device 60 shown in Fig. 45 exhibits an improved mounting efficiency to the circuit board 10 because the protrusion 9 is greatly protruded from the resin encapsulate 4. Also, it is unnecessary to form the bumps 5, as in the above mentioned embodiments. Accordingly, it is possible to simplify the fabrication process for the semiconductor device 60.

10

15

20

25

5

(EFFECTS OF THE INVENTION)

As apparent from the above description, various effects are obtained in accordance with the present invention.

In accordance with the invention of claims 1 and 2, it is possible to achieve an improvement in heat resistance, mechanical strength, and temperature resistance. Since the electrode pads and leads are connected together using wires, it is possible to set the layout of the leads irrespective of the layout of the electrode pads. An improvement in the matching ability of the semiconductor device to the circuit board. The resin encapsulate provides an improvement in reliability because it surely protects the connected wires. Since the outer connecting terminals are exposed from the resin encapsulate, the electrical connection of the semiconductor device to the circuit board can be surely provided.

10

15

20

25

In accordance with the invention of claim 3, the insulating and bonding processes for the semiconductor chip and leads can be simultaneously conducted because the polyimid film, as an insulating member, interposed between the semiconductor chip and the leads serves as an adhesive. Accordingly, it is possible to simplify the structure of the semiconductor device which achieving an easy fabrication of the semiconductor device, as compared to the case in which the insulating member and the adhesive are separately provided.

In accordance with the invention of claim 4, each protrusion is integrally formed with an associated one of the leads. Accordingly, it is possible to achieve a simplification in structure, as compared to the case in which the protrusion and lead are formed using separate materials, respectively. In accordance with the invention of claim 5, a wire is used for the connection between the electrode pad and lead. Accordingly, it is possible to achieve an easy connection for the wire between the electrode pad and lead.

In accordance with the invention of claim 6, a bump is formed on each protrusion. Accordingly, it is possible to achieve an easy connection of the semiconductor device to the circuit board, as compared to the case in which the protrusion is directly mounted on the circuit board. In accordance with the invention of claim 7, the leads and semiconductor chip are bonded together by maintaining the polyimide film at a certain

10

15

20

25

temperature and a certain pressure, thereby causing the polyimide film to serve as an adhesive. Accordingly, the insulating and bonding processes for the leads and semiconductor chip can be simultaneously conducted.

Since each electrode pad formed on the semiconductor onip is connected to an associated one of the leads by means of a wire in the bonding process, it is possible to vary the layout of the leads with respect to the layout of the electrode pads by selecting an appropriate connection method. The fabrication of the semiconductor device involves only four processes, that is, a lead forming process, a bonding process, a connecting process, and a resin encapsulating process. Since the fabrication of semiconductor device is achieved using a reduced number of processes, as mentioned above, an improvement in production efficiency is obtained.

In accordance with the invention of claim 8, an easy bonding process can be achieved because the bonding process can be conducted without a control for the temperature applied to the polyimide film within a desired range. In accordance with the invention of claim 9, the connection between the electrode pads and the leads can be simply and surely achieved because the electrode pads and leads are electrically connected together in accordance with a direct lead bonding process.

In accordance with the invention of claim 10 and 11, the lead pitch of the outer lead portions is less than the lead

10

15

20

pitch of the inner lead portions. Accordingly, the inner leads can cope with a small pitch of the electrode pads on the semiconductor chip to which the inner lead portions are electrically connected. Furthermore, the mounting efficiency of the semiconductor device to the circuit board is improved because the lead pitch of the outer lead portions electrically connected to the circuit board is large. Since each protrusion is formed on an associated one of the outer lead portions, it can be used as an outer connecting terminal. Accordingly, it further improves the mounting efficiency.

In accordance with the invention of claim 12 and 13, it is possible to easily form leads of a small pitch integrally formed with protrusions. In accordance with the invention of claim 14, the lead pattern forming process and the protrusion forming process are conducted in a separate fashion.

Accordingly, the thickness of a blank used can be selected irrespective of the height of the protrusion. Therefore, it is possible to reduce the pitch of a lead pattern when a thin blank is used. In the protrusion forming process, it is possible to form protrusions having an optional height. An improvement in the freedom of design is also achieved.

In accordance with the invention of claims 15 to 17, it is possible to easily conduct the protrusion forming process.

(13)日本国特許庁(JP)

m公開特許公報 (A)

(11) 特許出庭公院書号

特開平8-306853

(43)公然日 平成8年(1996) 11月22日

(\$1) Int. C1.	胜别记号	庁内整理番号	Fj				
HOIL 33/20			HÜIL 23/5	0		2	在新表示医所
21/60	311		21/6		311	-	
23/12			23/2		311	C	
23/28	•		13/1			i.	
			电影以水 点	未战术	歴末項の数)	17 OL	(全20頁)
(21) 出版委号	特 数 平 7 - 1 1 0	3 8 0	(71) 出願人		000522	3	
(22) 出籍 6	平成7年(199	5) 5月9日			通株式会社 川県川町市中	厚区上小8	B中4丁目1章
				1 =			
			(72) 兒明者	# 田	缺大		
			i	神奈	川集川崎市中	医医上小目	9 1 0 1 5 €
			1		会泛彩底士革		
			(72) 尺明者	佐屬	光幸		
			1	神奈川	川珠川峡市中 庭	【区上小田	中1015年
			1		5 土港株式会 (
		•	(74)代理人	弁理:	士 伊東 忠和	;	
							最終質に取く

(\$4) 【兒朝の名称】半導体装置及びその製造方圧及びリードフレームの製造方法

(57) (夏约)

【目的】本発明に半端体チップ及びリードを保証財业した構成を有した半端体制度及びその製造方法及び当故半導体保護に用いるリードフレームの製造方法に関し、半端体チップの体質性を維持しつつ外部電極線子の医体化、製品コストの低減及び生産効率の向上を図ることを目的とする。

【様成】第1のピッチで電極パッド6が形成された半導体チップ2と、電極パッド6とワイヤ8を介して電気的に技能されるリード3と、半導体チップ2を対止する対止部間4とを具備する半導体装置において、約21リード3に外部技統は子となる突起9を上記第1のピッチと異なる第2のピッチで形成すると共に、約22別止脚軽4イを登在パッド6とリード3との間に引き回されたワイヤ8を対止し、かつ前に突起9を対出させるよう配数したものである。

【特許請求の範囲】

【鉄球項1】 第1のピッチにて形成された覚径パッド が形成された半導体チップと、

前記電板パッドと記載を介して電気的に接及されるリー ۴Ł.

前記半導体チップを封止する封止制脂とを具備する半導 **体装置において、**

府記リードに外部技統成子となる交配を、上記第1のピ ッチと異なる第2のピッチで形成すると共に、

」を回された配牒を封止し、かつ前記兵起を奪出させるよ う配款されることを特徴とする半導体整度。

【疑求項2】 第1のピッチにて形成された電極パッド が形成された半導体チップと、

前記章極バッドと配象を介して電気的には訳されるリー

前記半導体チップを封止する封止樹脂とを具備する半導 体装置において、

前記リードに外部技統端子となる交起を上記第1のビッ チと異なる第2のピッチで形成すると共に、

南記半導体チップに形成された前記電極パッドの配設面 を基準とし、前記配政策における前記針正樹脂の厚さ が、前記配設面から前記突起までの高さ寸法以下で、か つ前記配数面から前記配数までの高さ寸法以上となるよ う構成したことを特徴とする半導体装置。

【請求項3】 請求項1または2記載の半導体装置にお T.

D記半導体チップと前記リードとをポリイミド膜を接着 『として接合したことを特徴とする半端体装置。

・装置において、

7起突起を前記リードと一体的に形成したことを特定と う半導体装置。

「菽水項5」 - 政水項1乃至4のいずれかに記載の半さ :装置において、

花配具としてワイヤを用いたことを特徴とする予導体 æ.

設才項6) 鈴木項1乃至5のいずれかに記載の半路 筌包において、

記英起にパンプを形成したことを特徴とする半導体学 (0)

無水項7】 外部接続端子となる部位に突起が形成さ てなるリードを形成するリード形成工程と、

記り一ド或いは半導体チップの少なくとも一方にポリ ミド瓜を配設し、前記ポリイミド属を介在させて前記 一ドと前記半導体チップを原定性圧力で件圧しかつ系 皇面に加熱することにより、前記ポリイミド棋を排萃 人名艾斯 萨拉 一足 人名拉里诺达 产业 化人名格雷尔人格

ードとを配線を引き回し推統することにより、前記電艦 パッドと前記リードとも考点的に接続する投稿工程と、 前記記簿及び前記半導体チップの所定範囲或いは全部を 耐止すると共に、阿辺突昆の少なくとも境面を貫出する よう対止智能も配設する対止視度配設工権とを具備する ことを特殊とする半導体装置の製造方法。

【請求項8】 請求項7記載の半導体装置の製造方法に おいて.

前記注合工程でポリイミド膜により前記リードと前記率 前記封止指指が前記を極バッドと前記リードとの間に引 (O 製体チップも接着する数、約記ポリイミド駅として南面 に熱可量性を有する技能剤を記扱したものを用いたこと を特徴とする半導体装置の製造方法。

> 【請求項9】 放求項7または8記載の半導体装置の型 造方法において、

> 前記技能工程で、前記を拡バッドと前記リードとモダイ レクトリードポンディング法により考気的に接続したこ とを特徴とする半導体装置の製造方法。

【故求項10】 インナーリード郎とアウターリード部 とも有した複数のリードが形成されたリードフレームに 20 おいて、

前記アウターリード部のリードピッチに対して前記イン ナーリード部のリードピッチモ小さく設定すると共に、 **和記アウターリード郎に一体的に突起を形成したことを** 特徴とするリードフレーム。

【就求項11】 は求項10記載のリードフレームにお WT.

前記アウターリード邸のリードピッチ (P...) と前記 突尼の形成位置における前記リードの序さ (W) とが略 等しく (P... ≒W) 、かつ粒記インナーリード部のリ 【政求項4】 - 課求項1乃至3のいずれかに記載の半導 - 30 ードピッチ(P...)が前記アウターリード部のリードビ ッチ (P...) の結半分のピッチ (P...=P.../2) であることを特徴とするリードフレーム。

> 【請求項12】 請求項10または11記載のリードフ レームの製造方法において、

> 基材に和記英程の形成位置にマスクを記載した上で、前 記書材に対してハーフエッチングを行う第1のエッチン グエ社と、

> 前記第1のエッチング工程の共了後、 前記リード形成位 産にマスクモ配数した上で、前記番材に対してエッチン グモ行いリードモ形成する第2のエッチング工程とモ具 傷することを特徴とするリードフレームの製造方法。

> 【盆状項13】 盆状項10または11記載のリードフ レームの製造方法において.

> 重ね合わせることにより前記交起の所定応さ寸法となる よう低厚が返定された第1の基材と第2の基材を用金 L.

> 前記第1の基材に、中面積した際に前記り一ドの形状と 对表大大性自然对应自己和的成于主体自己的第三人称单

促するよう交配パターンを形成する交配パターン形成工 役と.

1

前記リードパターンが形成された前記第1の差材と、向 記突起パターンが形成された前記第2の基材を重ね合わ せ、前記突起の形成位置において前記リードパターンと 前記突起パターンが根層されるよう前記第1の基材と前 記第2の基材とを接合する接合工程と、

前記第1の基材及び第2の基材の不要部分を除去する除 去工程とを具備することを特別とするリードフレームの 製造方法。

【疎水項14】 「鉄水項10または11記載のリードフレームの製造方法において。

る材に、平面視した既に向記リードの形状となるようリードパターンを形成するリードパターン形成工程と、 和記リードパターン形成工程後、形成されたリードパターンの所定位置に前記突起を形成する交配形成工程とを 具備することを特徴とするリードフレームの製造方法。 【額求項15】 は求項14記載のリードフレームの製造方法において、

前記突起形成工程は、前記リードパターンの所定位置に 10 ブ)のレイアウトとなってしまう。 パンプモ単数式いは複数預み重ねることにより前記突起 【0007】一般に半導体チップの を形成したことを特徴とするリードフレームの製造方 ウトは半導体製造メーカ板に異なっ 法。

【請求項16】 請求項14記載のリードフレームの貸 造方法において。

和記突起形成工程は、前記リードパターンの所定位置に 連載性部材を配設することにより前記突起を形成したこ とを特徴とするリードフレームの製造方法。

【算求項17】 証求項14記載のリードフレームの製造方法において、

前紀突起形成工程は、前記リードパターンの所定位置を 歴性加工することにより前記突起を形成したことを特徴 とするリードフレームの製造方法。

【見明の詳細な反明】

(0001)

【産業上の利用分野】本見明は半線体装置及びその製造 方法及びリードフレームの製造方法に係り、特に半線体 チップ及びリードモ製器対止した構成を有した半線体装 業及びその製造方法及び当該半線体装置に用いるリード フレームの製造方法に関する。

【0002】近年、電子機器のダウンサイジング化に伴い、半線体装置の高速度化及び半線体装置の高速度を及び半線体装置の高速度装 化が図られている。一方で、電子機器の信頼性の向上も 型まれており、これに伴い半線体装置の信頼性も向上さ せる必要がある。更に、半導体装置は製品コストの係を も望まれている。

【0002】よって、上記した名誉式を放足しうる半点 体装字が空まれている。 ップチップ方式の実装検達が知られており、マルチ・デップ・モジュール(M C M)において広く用いられている。このM C M で用いるフリップチップ実装は、 を取対止をしていない半導体チップ(ペアチップ)の電極パッドにパンプを形成しておき、このペアチップを基板(マザーボード)に形成された電板配にフェースダウンボイングすることにより実まする核成とされている。

(0005)上記のフリップチップ方式の実際構造を用いることにより、高色反に半導体製造をマザーボードに配放することが可能となり、またペアチップに直接形成されたパンプを用いてマザーボードに電気的に接続されるため、電気的特性を向上させることができる。

100061

【発明が解決しようとする意識】しかるに、密報封止がされていないペアチップは、耐熱性、技械的強度、及び耐健性が弱いという問題点がある。また、ペアチップに形成されている電極パッドに直接パンプが形成されたいる快速選子を形成するため、ペアチップに形成されているできていたのレイアウトがそのままが部接規模子(パンプ)のレイアウトとなってしまう。

【0007】一般に半導体チップの電極パッドのレイアウトは半導体を設定メーカ紙に具なっており、従って向一磁能を有する半導体装置であっても、ユーザ側で半導体装置の程度(製造メーカ)に対応するようマザーボードの記録パターンを設計する必要がある。このように、従来のペアチップを用いた実装構造では、半導体装置の外部電極端中の振速化がされていないことにより、生態体装置とマザーボードとのマッチング性に欠け、ユーザ側での負担が重くなるるという問題点があった。

30 【0008】また、これを解決するためにチップ表面に プロセス処理を行い、反称を引き回すことにより被体化 も図ることが考えられるが、この状式では反称の引き回 しに高程度を有する多くの工程を必要とし、製品コスト の上昇及び生産効率の低下を招いてしまうという問題点 があった。

【0009】 本見朝は上記の点に担みてなされたものであり、半途体チップのは領性を維持しつつ外部電極域子の標準ルー 製品コストの低減及び主産効率の向上を図りうる半退体装定及びその製造方法及びリードフレームの 40 製造方法を提供することを目的とする。

[0010]

【森雄を解決するための手段】上記の課題は下記の各手段を課じることにより解決することができる。 は水項 1 記載の発明では、第 1 のピッチにて形成された電極パッドが形成された半途はチップと、前記を極パッドと記録 を介して電気的に度換されるリードと、前記半端はチップを封止する対比を指とを集備でも半途は多句におい

された配路を封止し、かつ前紀突起を耳出させるよう配 投されることを特徴とするものである。

[0011] また、請求項2記載の発明では、第1のビ ッチにて形成された電極パッドが形成された半導体チッ プと、何記章極バッドと記録を介して遺気的に接続され ろリードと、前記半導体チップを封止する封止説録とそ 具質する半部体装置において、前記リードに外部技統総 子となる突症を上記券1のピッチと異なる第2のピッチ で形成すると共に、前記半導体チップに形成された前記 ・。 急極パッドの配設面を蓄填とし、前記配設面における船 10 ード部に一体的に突起を形成したことを特別とするもの 記封止樹脂の厚さが、前記記設面から前記交起までの高 さ寸法以下で、かつ前記配政臣から前記配義までのあさ 寸注以上となるよう構成したことを特徴とするものであ ቕ.

【0012】また、技术項3記数の発明では、前記試次 項1または2記載の半端体装匠において、前記半導体チ ップと前記リードとをポリイミド解を接着剤として接合 したことを特益とするものである。

【0013】また、彼水頂4記載の発明では、和記彼水 記交起を前記リードと一体的に形成したことを特徴とす ろものである。また、政求項5亿歳の発明では、和記款 **求項1乃至4のいずれかに記載の半導体装置において、** 前記記録としてワイヤを用いたことを特定とするもので **55.**

【0014】また、請求項6記載の発明では、前記請求 項1乃至5のいずれかに記載の半導体装置において、前 紀突起にバンブを形成したことを特徴とするものであ る。また、絃求項7記載の発明では、半導体装置の製造 方法において、外部技統第子となる郎位に突起が形成さ れてなるリードを形成するリード形成工程と、前足リー ド吹いは半週体チップの少なくとも一方にポリイミド版 を配蚊し、前花ボリイミド順を介在させて前記リードと 前記半導体チップを所定押圧力で押圧しかつ所定温度に 加熱することにより、前記ポリイミド棋を接着前として 印記リードと印記半導体チップとを接合する接合工程 と、前記中選体チップに形成されている常性パッドと前 記りードとを配款を引き回し接続することにより、 前庭 を極パッドと即記リードとを意気的に接続する推験工程 こ。和記記線表び前記半導体チップの無定筒医蔵いは全 40 引き封止すると共に、和記宍老の少なくとも案面を奪出 『るよう封止技術を配設する封止制能配設工程とを集備 ⁻ろことを行世とするものである。

(0015)また、緑水項8記載の発明では、前記線水 ・7 記載の半週体装置の製造方柱において、前記接合工 でポリイミド層により約定り一ドと前に半導体デップ 旅者する城、和記ポリイミドはとして反正に移列豊性 有する後 世初を反びしたものを思いたことを以及して

項7または8に記載の半選体禁煙の製造方法において、 前記技技工程で、前記電極パッドと前記リードとモダイ レクトリードボンディング性により考集的に復席したこ とを特征とするものである。

【0017】また、は水頂10記載の発明では、インナ ーリード郎とアウターリード郎とを有したは気のリード が形成されたリードフレームにおいて、前記アウターリ ード部のリードビッチに対して戴にインナーリード航の リードピッチを小さく故定すると共に、和応アウターリ である.

【0018】また。請求項11記載の発明では、前記録 求項10記載のリードフレームにおいて、 お兄アウター リード郎のリードビッチ(P...) と訴記交尼の形成位 産における前記リードの序さ(W) とが話等しく(P. ... 与W)、かつ前記インナーリード節のリードピッチ: (P:.) が鯨記アウターリード館のリードピッチ (P ...) の貼半分のピッテ (P...=P... / 2) であるこ とを特徴とするものである。また、政求項12記載の発 項1乃至3のいずれかに記載の半導体禁煙において、前 20 朝では、前記算求項10または11記載のリードフレー ムの製造方法において、蓄材に前記突起の形成位置にマ スクを配設した上で、前記基材に対してハーフエッチン グを行う第1のエッチング工程と、前足第1のエッチン グエ投の終了後、前記リード形成位置にマスクを配致し た上で、和記番材に対してエッチングを行いリードモ形。 **紅ずる第2のエッチング工程とを具備することを特徴と** するものである。

> 【0019】また、鉄水原13記載の発明では、前記録 求項10または11記載のリードフレームの製造方法に 30 おいて、重ね合わせることにより前記交長の所定高さす **法となるよう仮厚が選定された第1の基材と第2の基材** を用意し、前記第1の基材に、平面視した線に前記り一 ドの形状となるようリードパターンを形成するリードパ ターン形成工程と、約記第2の基材に、少なくとも前記 突起の形成位置に位置するよう突起パターンを形成する 突起パターン形成工権と、前記リードパターンが形成さ れた前記第1の差材と、前花交及パターンが形成された 叙記第2の基材を重ね合わせ、前記英記の形成位置にお いて前記リードパターンと前記交起パターンが技度され るよう前記第1の基材と前記第2の基材とを接合する推 合工程と、 和記第1の芒杉及び第2の茶材の不要部分を 除去する除去工程とを具属することを特徴とするもので

【0020】主た、建步項14記載の発明では、前記路 **ホティッぱたは11記載のリードフレームの製造方柱に** おいて、着材に、平面接した際に形だり一ドの形状とな さようリートバターンを形成するリードバターン形成立 E - F::

【0021】また、は水頂15記載の見明では、前花誰 **求項14記載のリードフレームの製造方法において、前** 記交起形成工程は、前記リードパターンの所定位置にパ ンプを単数吹いは弦数状み重ねることにより前足疾起を 形成したことを特徴とするものである。

【0022】また、資水項16記載の発明では、前記録 **求項14記載のリードフレームの製造方法において、前** 記交起形成工程は、前記リードパターンの所定位置に導 名性節材を配設することにより和尼央尼を形成したこと そ特徴とするものである.

【0023】更に、請求項17記載の発明では、前記録 求項14記載のリードフレームの製造方法において、前 紀癸昭形成工程は、前記リードパターンの所定位置モ草 性加工することにより前距突起を形成したことを特徴と するものである。

[0024]

【作用】上記した各手段は、下記のように作用する。月 求項1及び請求項2記数の発明によれば、半導体チップ は対止問題により封止されるため、耐熱性、扭転的往民 及び副復性を向上させることができる。また、電極パッ 20 、ドをリード及び配線を用いて引き回すことができるた め、リードのレイアウトを電板パッドのレイアウトに拘 わらず設定することが可能となり、実装基底とのマッチ ング性を向上させることができる。また、対止指指は引 き回された配数を確実に保護するためこれによっても保 類性を向上させることができ、また外部接収號子に封止 樹脂から再出しているため実装器板との電気的接接を施 実に行うことができる。

【0025】また、緑水填3記載の発明によれば、通常 半導体チップとリードとの絶縁材として配設されるポリー」0 イミド原を接受剤として用いてるため、半導体チップと リードの絶縁とほ合を一括的に行うことができる。よっ て、絶縁材と接着剤とも別数に配設する構成に比べて構 造の簡単化及び製造の容易化を図ることができる。

【0026】また、請求項4記載の発明によれば、突起 をリードと一体的に形成したことにより、交配とリード を別据の材料により構成する場合に比べて構造の簡単化 を図ることができる。また、紋水頂 5 記載の見明によれ ば、配達としてワイヤを用いたことにより、収記したな に行うことができる。

【0027】また、鉄水頂6記載の発明によれば、突起 にパンプを形成したことにより、突起を直接実装基板に 実装する横兵に比べて、半選邦装置の実装基度への接続 も容易に行うことができる。また、武太平7記載の兌明 によれば、ほき工程においてポリイミド順を所定規度かっ つ所定律圧力下に置くことにより存を割化させ、 これに

【0028】また、核糖工程では半端体チップに形成っ れている危極パッドと前記り一ドとを応募を引き回し反 **呪するため、この引き回しを速宜設定することにより、** 電極パッドのレイアウトに対してリードのレイアウトを 変更することが可能となる。また、半異体装置にリード 形成工程,接合工程,接续工程及び对止脱踪配款工程の 4工匠のみで製造される。このように少ない工程で半減 体景度が製造されるため、生産効果を向上させることが ೯೬೩ - 🛌

【0029】また、は水項8記載の発明によれば、ボリ 10 イミド届として関節に無可塑性を寄する接着剤を配設し たものを用いることにより、ポリイミドឆに印加する塩 皮等を所定範囲内に制御することなく接合処理を行うこ とパアミるため、接合処理を容易に行うことができる。 【0030】また、雌求項9記載の発明によれば、接続 工程で、竜極パッドとリードとをダイレクトリードポン ディング住を用いて意気的に接続するため、原単かつ程 実に乾極パッドとリードとの接紋処理を行うことができ る。また、抹木項10及び食水項11記載の発明によれ ば、アウターリード部のリードピッチに対してインナー リード島のリードピッチが小さく紋定されているため、 インナーリード部が電気的に接接される半導体チップの **電極パッドの配数ピッチが小さくてもこれに対応させる** ことができ、かつ実装蓄板と電気的に接続されるアウタ ーリード郎のリードピッチは大きいため、実装蚤仮への 実質性を向上させることができる。また、突起がアウタ ーリード部に形成されることにより、この突起を外部は 統領子して用いることができ、これによっても実際性を 向上させることができる。

【0031】また、森水項12記載の見明によれば、第 1のエッチング工程において突起の形成位置にマスクを 足なした上で基材に対してハーフェッチングを行うこと により 立起形成位置を除く部分の板厚を薄くし、更に 第2のエッチング工程においてリード形成位位にマスク を配款した上で第1のエッテング工程が終了した高材に 対してエッチングを行うことにより、交起が一体的に形 成されたリードを形成することができる。

【0032】ここで、リードを形成する時にリードのピ ッチは蚤材の仮原により決定されてしまう。具体的に 極パッドとリードとの間における記載の引き回しをなる (0) は、リードのピッチは基材の低厚と結構しいピッチにし か形成することはできない。よって、高い板厚を用いる 投リードピッチを挟ピッチ化することができる。

【0033】ところが、突起が形成されるリードでは基 材の返岸は突起の高さにより決まってしまい。突起の高 さと苦しい仮母を有する基材を単にエッチング処理した のでは狭ビッチのリードを形成することができない。し が多に、上記のようにありのエッチング工程におして英

も狭ピッチのリード形成を行うことが可能となる。尚、 上記説明から明らかなように、交起の記数ピッチは基材 の仮耳と脳等しいピッチまで狭ピッチ化することができ

【0034)また、紋状項13記載の発明によれば、第 1 の番材及び第2の番材は重ね合わせることにより突起 の所定而さず圧となるよう低厚が選定されているため、 各基材の仮厚は突起の高さ寸法より小さな厚さとされて、 いる。リードパターン形成工程では、この板度の深い裏 1 の名材に対してリードの形状となるようリードパター (0 0 4 1)また。インナーリード飲3 a と半導体チッ ンを形成するため、先に説明した板原とリードピッチの 関係により、形成されるリードパターンのリードピッチ モ铁ピッチ化することができる。

【0035】また、突起パターン形成工程において第2 の基材に少なくとも前記典器の形成位置に位置するよう 突起パターンを形成し、接合工程において上記第1の基 村と第2の基材を重ね合わせ接合することにより、交配 の形成位置においてリードパターンと交紀パターンが復 履され、この位置における依単は突起の所定高さとな る。続く除去工程では不要部分が除去されリードが形成 10 ている。 される.

【0036】従って、上足のようにリードパターンの形 虹崎には板厚は薄いためリードピッチを狭ピッチ化する ことができ、また突尼形成位置においてはリードパター ンと交起パターンが根据されることにより所定者さの英 起毛形成することができる。また、波水項14記載の発 朝によれば、リードパターンを形成するリードパターン 形成工程と、発起を形成する突起形成工程とを別様に行 うことにより、番材の厚さを央起の高さに向わらず足定 することができ、よって高い名材を用いることによりり 10 厚さ(図中、矢印目で示す)が、底面から突起9の先端 ードパターンの狭ビッチ化を図ることができる。また。 突起形成工程においては、任意の高さを有する突起を形 成することが可能となり、設計の自由度を向上させるこ とがてきる.

【0037】更に、森水頂15万至17花式の発明によ れば、突起形成工程において突起の形成を容易に行うこ とができる。

[0038]

【実施例】次に本発明の実施例について図面と共に抵明 する。図1及び図2は、本発明の一実施例である半導体 (0) 袋屋 1 を示している。図 1 は半進体装置 1 の新面図であ り、また図2は半端体装置1を底面図である。

【0039】 五回に示されるように、半途体装置1は大 話すると半選体チップで、複数のリードで、対止をな 4. 及びパンプ5年によりは成されている。半年はチッ プ2は、底面の中央位置に在まり電塔パッド6が一邦に 利なされている。また、複数のサード3は、ディインナ

【0040】このポリイミド原7は、半選体チップ2の 上二に応成された回路面2Aとリード3とそ考気的に絶 **設する絶縁節材として機能すると共に、後近するように** ポリイミド膜7は半導体チップ2とリード3とを弦会す る度豊蔚として最終している。 このように、ポリイミド 顕 7 に絶談部材と推考期の双方の根底を持たせることに より、絶縁材と接着剤とも別能に配設する構成に比べ、 半導体装置1の構造の簡単化及び製造の容易化を図るこ ことがてきる.

プ2に形成された電極パッド6との間にはワイヤ6が配 設されており、このワイヤ8モ介して半串体チップ2と リード3は電気的に接続された様式とされている。某 に、モリード3に放けられたアウターリード缸3bの所 定位置には、外部技統第子となる突起9が一体的に形成 されている。上記員成とされたリード3は、そ回に示さ れるようにその大部分が半導体チップ2の底面上に配収 された様式の、いわゆるリード・オン・チップ(LO C) 構造となっており、半年体装置1の小型化が図られ

(17) (2) また、封止樹醇4は例えばエポキシ樹醇上 りなり、後述するようにモールディングにより形成され ている。この対止困難 4 は、半導体チップ 2 の底面及び 側面の所定節題に配設されている。しかるに本実施例で は、半導体チップ2の上面においては、飲熱性を向上さ せる面より対止概算4は記載されていない構成とされて

【0043】上記封止崔庭4は、半退ルチップ2の電極 パッドもの配益面(底面)も基体とし、この底面からの までの高さ寸法(四中、矢印Wで示す)以下で、かつ起 面からワイヤ8のループ最上豁までの高さ寸注(図中、 矢印りで示す)以上となるよう様成されている(カ≤H ≦W)。この構成とすることにより、突起9の少なくと も先端部98は確実に封止樹錠4から貸出し、またワイ 〒8及び突起9の韓出部分を除くリード3は封止指指4 に封止された構成となる。

【0044】このように、本実施例の単導体整備上は、 半週体チップ2の所定範囲(上面を除く肌位)を封止権 押って対止された構成となるため、耐熱性、機械的強度 及び副団性を向上させることができる。また、封止能和 4 はワイヤ 8 を確実に保護するため、これによっても半 選体装置1の信頼性を向上させることができ、変に外部 推成菜子となる茶起9の少なくとも先端郎92は花実に 封止階段くから耳出するため、実装を振しるとの発気的 厚戌を確実に行うことができる。

【りりゅう】ここで、正文を用いて生るでき、ぜつの風

ている。南図に示されるように、リード3は編成するイ ンナーリード部3ょのリードピッチ(図中、矢印P。で 示す)が原皮するアウターリード部3ヵのリードビッチ (図中、矢印P... で示す) よりも小さくなるよう形成 されている。具体的には、インナーリード記3gのリー ドピッチP.. はアウターリード 都3bのリードピッチP ... の略半分のピッチ (P...= P... / 2) となるよう 横成されている。また、後に詳述するように、アウター リード町3上のリードビッチ P... ビ皮尼9の形成位置へ、・ におけるリード3の厚さwとが貼等しくなるよう構成さ 10 2は、例えば4.2プロイギのリードフレーム材料であ れている (P.,, 与W).

【0046】上足のように、アウターリード郎3月のリ ードピッチP... に対してインナーリード部3gのリー ドビブをPinが小さく設定されることによりエイスナー リード部3aが着気的に接続される半端体チップ2の意 - 極パッド6の配数ピッチが小さくてもこれに対応させざ ことができ、かつ実装装仮10と急気的に推規されるア ウターリード群3b(交配9) のリードピッチP... は 大きいため、半導体装置1の実装基板10に対する実装 性を向上させることができる。

【0047】一方、本実施例に係る半導体装置1は、半 導体テップでに配設されている電医パッド6に直接パン プ5を形成し実装基板10に接続するのではなく、電板 パッド6とインナーリード部3aとの間にワイヤ8モ引 き回した上でリード3を介して実装基板10に技能する 構成とされている。従って、電極パッド 6 をリード 3 及 びワイヤ8を用いて引き回すことができるため、リード 3のレイアウトを考価パッド6のレイアウトに拘わらず 殺定することが可能となる.

ップ2の中央に形成されている電極パッド6をワイヤ& 及びリード3を用いて引き回し、外部技統第子となる突 起りモ半導体チップ2の外所位置に引き出している。ま た。図3に示されるように、電極パッド6が半退体チッ プ2の外角位置に形成されている場合には、本発明を迅 用して電極パッド6モワイヤ8及びリード3を用いて引 き回すことにより、電板パッド6の形成位置より内側に 外部後状蝶子となる突起9を形成することも可能であ る。更に、図4に示されるように、外部様式セテとなる 突起9モ半路体テップ2の外側位置に配設することも可 40 能となる。

【0049】このように、竜低パッド6をリード3及び ワイヤ8を用いて引き回すことが可能となることによ り、実装基板10と半導体装置1とのマッチング性を向 上させることができ、外部技統は子となる英記9のレイ アウトを標準外部技統第子のレイアウトに参名に設定る ことができる。よって、半点体装定!を吊いるユーザ鉄 の食物を軽減することができる。

は、リード形成工程、接合工程、接続工程及び對止程度 民政工程の基本となる4工程と、これに付益するパンプ 形成工程。は鉄工程の2工程を行うことにより設定され る。以下、杏工程能に放铣するものとする。

1:

【0051】回5万至図9はリード形成工程の第1実施 例を示している。このリード形成工程は、リード3の基 材となるリードフレーム11を形成するための工程であ c. リードフレーム11を形成するには、先ず回5に示 されるような平板状の姿材12を肩まする。 このをなり り、またその板序は形成しようとする突起9のあっけた Wと等しいものが選定されている。

.[005.2] 上記の番材12に対しては、元十四6に示 さきもようにマスクリス(似地で茶す)が日かられる。 このマスク13は、所定の交后9の形成位置(図中、歩 思符号14で示す) 及びクレドール形成位置 (図中、台 既符号 1°5 で示す)に配立される。

【0053】上記のようにマスク13が配放されると、 状いて益材12に対してハーフエッテング処理(第1の 10 エッテング工程)が実施される。本実施例においては、 ウエットエッチングはにより基材12に対してハーフェ ッチング処理を行っている(ドライエッチング処理等の ڧのエッチング方法を用いることも可能である)。 また エッチング時間は、エッチングにより設全される部分 (図6で白味をで示される部分)の厚さが、基材12の 板厚Wの半分の寸法(W/2)となるよう設定されてい a. ·

【0054】このハーフエッテング処理が終了し、マス ク13そ取り除いた状態を図でに示す。 この状態では、 【0048】具体的には、図2に示す例では、半時体チ 30 突起9の形成位置14及びクレドール形成位置15のみ が元の基材12の厚さWを維持しており、 地の部分(歩 照符号16で示す) はハーフエッチングによりその厚さ 寸法はW/2となっている。

> 【0055】上記のようにハーフエッチング処理が終了 する。疣いて図るに示されるように死走のリード3の形 成位置(参照符号18で示す)及びクレドール形成位置 15にマスク17(登地で示す)を配設した上で、この 基材12に対してエッチング処理を行う。

【0056】上記のようにマスク17が配拾されると、 扱いて基材12に対してエッテング処理(第2のエッチ ング工程) が実施され基材12のマスク17が配放され た位置以外の部分を除去する。これにより、図9に示す リード3の所定形状を有した状気のリード3を具属する リードフレーム11が形成される。尚、必要に応じてこ のリードフレーム11の所定品は(リード3の形成位) ここにニングキ等を越してもよい。

【0057】このようにお丘されたリードフレーム11 は バードミャン・チェルニングフィー アウターバード

ーリード郎 3 a 及び突起 9 の形成位置を除くアウターリ ード郎3bの厚さ寸法はW/2となってる。

[0058] ここで、リードピッチと番材12の仮算と の関係について双明する。前記したように、リード3を 形成する口にリード3のピッチは蓋材12の板厚により 決定されてしまい、具体的にはリードピッチは盗材 1.2 の低厚と眩愕しいピッチにしか形成することはできな い。よって、蓋材1~2の佐座が高い投リードビッチを挟。 ピッチ化することができる。

は孟材12の坂厚は宍足9の高さにより決まってしま い、突起9の高さと等しい低厚を有する基材12を単に エッチング処理したのでは狭ヒッチのリードを形成する。 ことができない。しかるに、上記したように第1のエッ テング工程においてハーフエッチング処理を実施するこ とにより、突起形成位置14を除き基材12の拡厚を育 くし(約W/2の板厚となるようにする)、更にこの扉 くされた紙厚を有する部分に第2のエッチング工程を実 応してリード3を形成することにより、突起9を有する リード3であっても狭ピッチ(図1に示されるリードピー20 のは位置決め孔であり、リードパターン23の形式時に ッチP...) のリード形成を行うことが可能となる。ま た。何はの理由により、突起9(アウターリード部3) b) の配設ピッチ (P...,) は、蓋材 1 2 の版序Wと略 等しいピッチミで鉄ビッチ化することが可能となる。 【0060】尚、異体例としては、一般にリード基材と して用いられている板厚0, 10mm, 0, 15mm, 0, 20mmの基材を 例に挙げれば、仮厚0.10mmの基材ではアウターリード部 3 b及び突起 9 の最小ピッチ P... を0.10mm (P... = 2. I Case) 。 インナーリード部3aの最小ピッチP。。 モ0.)Sam (P.,=0.05mm) とすることができる。また、板厚 30 1.15至2の高材ではアウターリード型36及び兵配9の最 トピッチ P... を0.15ma(P... = 0.15ma)、インナー **リード部3gの泉小ピッチP。。 モ0.075mg (P。。 =0.07** eo)とすることができる。更に、弦犀0、10mmの基材では プウターリード部3b及び突起9の最小ピッチP... そ 20em (P... = 0.20em) . インナーリード約3 m の最 、ビッチ P., を0.10sm (P,,=0.10sm) とすることがで

【0061】一方、突起9の形成位置に住目すると、突 こより挟められる。即ち、この図をに示されるマスク1 の配数位配を遊覧変更することにより、突起9の形成 .屋を任念設定することが可能となる。このため、本実 所に係るリード形成方法では、弁部技成以子となる英 9の形成位置を自由度をもって設定することができ、 って子的定められているはは外部は庶衆子に誰に突起 も容易に形成することが可能となる。

: ろ、

ム20を形成するには、先ず回10に示されるような第 1の基材21と、図11に示されるような第2の名材2 2 モ用意する。

【0063】この各番材21、22は、重ね合わせるこ とにより突起 9 の所定高さ寸注Wとなるよう低度が遺定 されており、本実施例では各番材21、22の日度寸法 は共にW/2に設定されている。尚、各番材21、22 の低厚はこれに限定されるものではなべ、異ね合わせる ことにより突起9の所足高さ寸柱Wとなる条件の名にそ 【0059】ところが、突起9が形成されるリード3で 10 基材21、22で仮席を異ならせた検戒としてもよい。 【0064】 図10に示される第1の基材21は、例え ば42アロイ等のリードフレーム材料により形成されて おり、エッチング処理板いはプレス打ちはそ処理等を子 め事故することにより、平面貸した場合にリード3と同 一形状のリードパターン23が形成された核成とされて いる。しかるに、第1実務例で放射したリード形成工程 。 と異なり、この状態のリードパターン23には突起9は 形成されておらず、よってリードパターン23は全体的 にその板厚がW/2とされている。尚、図中25で示す 一括的に形成されるものである。

> 【0065】一方、図11に示される第2の番析22 は、子め42アロイ年のリードフレーム材料に対しエッ テング処理式いはプレス打ちはき処理等を実施すること により、突起パターン24が形成された構成とされてい る。この突起パターン24は直線状のパターン形状を有 しており、、所定の英起9の形成位置を核架するよう様 竝されている。 尚、 図 2 6 は位属鉄め孔であり、交起パ ターン24の形成時に一括的に形成されるものである。 【0066】上記機成とされた第1、の基材21及び第2 の基材22は、位置決め孔25、26を用いて位置点め されつつ重ね合わされ接合される。この第1及び第2の 蓋料21.22の複合は、導電性推量剤を用いては着し てもよく。またな技により接合してもよい。図12は、 第1の番材21と第2の番材22とが混合された状態を 示している。

【0057】上記のように第1の基材21と第2の基材 2.2 とが接合された状態で、第2の基材2.2 に形成され ている交易パターン24は、第1の番材21に形成され \$9 の形成位置は図 6 に示されるマスク 1 3 の配益位置 (10) ているリードバターン 2 3 の所定交配形成位置の上式に 耳な合わされるよう状式されている。

> 10068) 図13は、リードバターン23と奈尼バタ ーン24とが重なりをった郎位を拡大して示す平面包で あり、また殴14はリードパターン23と交近パターン 24とが異なり合った原位を拡大して示す例面包であ る。各国から明らかなように、指揮サ庄W/ミのリード パターンででは、中じく広歩ではペンでの中華(ター)

【0069】上記のように第1の基材21と第2の基材 22との複合処理が終了すると、狭いて不要部分。具体 的には突起パターン24のリードパターン23と交差し 、 た部分を除く部位をプレス加工等により除去することに より、図15に示すように突起9が一体的に形成された リード3を有するリードフレーム20が形成される。

【0070】上記のように、本実施例により製造された リードフレーム20も第1実施的で製造されたリードフ レーム11と同様に、リード3はインナーリード第3 れた祝成となる。また、図10に示すリードパターン2 3の形成時においては、第1の番料21の板厚はW/2 とされているため、先に奴明した被邸とリードピッチの 関係から明らかなように、狭ビッチのリードパターン2 3を形成することができる。

【0071】一方、突起9の形成位置に注目すると、突 記9の形成位置は第2の基材22に形成される突起パタ ーン24の形成位度により決められる。即ち、この交足 パターン24の形成位度を適宜変更することにより、交 起9の形成位置を任意設定することが可能となる。この 10 ため、本実施例に低るリード形成方法においても、外部 接統領子となる突起9の形成位置を自由皮をもって設定 することができ、よって子の定められている保証外部接 統裁子位置に突起9を容易に形成することが可能とな

【0072】上記のようにリード形成工程を実施するこ とによりリードフレーム11.20(以下の説明では、 リードフレーム11を用いた場合を倒に並げて誤明す る)が形成されると、疣いてリードフレーム11と半束 体チップ2を接合するほ合工程が実施される。以下、図 30 ポリイミドጪ?は技者刷として複能するようになり、半 16万至図20を用いて接合工程について依明する。 【0073】接合工程においては、先子図16に示され るようにリードフレーム11のインナーリード郎3a (検言すれば、技迹する技統工程においてワイヤ8がポ ンディングされる郭位)に全メッキを施すことにより、 ポンディングパッド部27モ形成する。

【0074】また。図17に示されるように、半導体チ ップ2の電極バッド6の形成された面には、この電極バ ッド6の形成部位のみが異出する機成でポリイミド限? が配設される。このポリイミド集7はガラス転移点が1~40~ 00~300℃のものが選定されており、図17に示さ れる状態では単に半点体チップ2に截置されただけの状 生となっている。 従って、ポリイミド度 7 が使落しない よう、半導体チップ2は危種パッド6の形成面が上部に 位属するよう配置されている。尚、半導体チップ2は形 雁封止は行われておらずベアチップはとされている。ま た。上記のポリイミドはでは、三点はデップでも形成で、

於され半端体チップ2には、BC18に示されるようにで ードフレーム11が軽度される。この際、リードフレー ゴェミに形成されているリード3(インナーリード 55.3 a)と、半退化チップでに形成されている電極パッド E とが核底よく対向するよう。リードフレーム11は立造

【0076】上記のようにリードフレーム11が半退体 チップ2上の所定位屋に転居されると、趺いて凶19に 示されるように抬其28が降下し、リードフレームi1 a.アウターリード郡3b及び突起9が一体的に形成さ 10 を半導体チップ2に向け押圧する。また、この胎臭28 は加熱盆蔵を具備しており、治具28で発生する熱はり ードフレーム11を介してポリイミド度 7 に印加され

> 【0077】上記ポリイミド展では、半導体デップ2と リードフレーム11とモ電気的に延停する延停部材とし て従来より一般的に用いられているものであるが、本発 明春はこのポリイミド誤7モ所定の製塊条件下に住くこ とにより投草剤として無能することを発見した。異体的 には、ポリイミド級7としてガラス転移点が100~3 00℃のものを使用し、かつこのポリイミド底 7 をガラ ス伝移点+100~200℃に加熱すると共に、1~1 マスェエグcm'の神圧力を印加することにより、ポリ イミド菓子は技者剤として機能するようになる。

【0078】よって、本実施的では上記の点に注目し、 半導体デップ2とリードフレーム11とのほ合時に、治 **具28に設けられているヒータによりポリイミド展7を** ガラス転移点+100~200℃に加熱すると共に、お 表28の加工によりポリイミド項に1~10 kg (/c m'の押圧力を印加する構成としている。これにより、 等はチップ2とリードフレーム11とモポリイミド取り を用いて接着することが可能となる.

【0079】上記機成とすることにより、従来では必要 とされたポリイミド腺モ半導体チップ 2 及びリードフレ ーム11と移萃するための推着剤は不美となり、 製品コ ストの低減及び半導体装置しの組み立て工数の低減を図 ることができる。図20は、半導体チップ2とリードフ レーム11とがポリイミド順7によりな合された状態を 示している.

【0080】尚、半端体チップ2とリードフレーム11 こしほこは、ポリイミド購7を用いて任合する方法に降 定されるものではなく、従来のようにポリイミド族の病 節に接着剤を塗布しておき、この投着剤によりポリイミ ド膜を介在させた状態で半退めテップでとりードフレー ム11とを残合する方法を用いてもよい。この概応で は、ポリイミド毎に対する追求制御及び存在力制のが不 育となり、原名工程を専用に実施することができる。

ド3と単導体チップ2に形成されている電極パッド6と をワイヤ B で名気的に住放する技統工程が実施される。 【0082】 図21は、キャピラリ29を用いてワイヤ

(例えば全ワイヤ) 8をリード3に形成されたポンディ ングパッド都27(図16参照)と電極パッド6との間 に配設する処理を示している。展知のように、半温体器 置1の電気的特性を向上させる節からはワイヤ8の長さ は短い方がよく、また半導体装置1の小型化層型化のた めにはワイヤ8は低ループであることが登ましい。

[0083] このため、ワイヤ8を配数するのに低ルー 10 により封止された構成となる。 プポンディング法を採用することが望ましい。低ループ ポンディング法も種々の方法が建実されているが、例え ば先ず半導体チップでに形成されている点径パッド6に ワイヤ8をポンディングし、炊いて重直上方にキャピラ リ29を移動させた後に水平方向に移動させてリード3 にポンディングする、いわゆる逆打ち怯も用いる状成と してもよい.

【0084】上記のように、リード3と電話パッド6と を電気的に接続するのにワイヤボンディング性を用いる きる。また、リード3と電板パッド6との間におけるワ イヤ 8 の引き回しも比較的自由度を持って行うことがで きる。尚、図22は、接続工程を実施することによりり ード3と電極パッド6との間にワイヤ8が記載された状 駄を示している.

【0085】上記のように接紙工程を実施することによ り、な様パッドもとリード3とがワイヤ8により電気的 に接続されると、続いて半導体チップ2の所定部分に対 止掛版4を配数する對止能能配数工程が実施される。以 下、図23万至図25を用いて封止指揮配設工程につい 30 て放明する.

【0086】図23は、上記のき工権を実施することに よりリードフレーム11.ワイヤ8年が配置された半導 体チップ2を全型30に装着した状態を示している。全 型30は上型31と下型32とにより構成されており、 リードフレーム11が上型31と下型32との間にクラ ンプされることにより、半導体チップでは必要30内に 装着される.

【0087】上型31は、半導体チップ2が衰撃された と当なする構成とされている。交記9の高さとクレドー ル33の高さは等しいため、よって上型31の形状は平 紙形状とされている。また、下型32に至着された半点 体チップ2の側部に空間部を有したキャビティ形状を有 しており、また半退体チップ2の辺における底面はキャ ビディ33の圧圧と当まてる様成とされている。

【0088】このように、民心権施設立場で無いると

装置1の製品コストの低減に寄与することができる。

【0089】図24は金型30に封止圧廃4(製地で示 丁)を充填した伏撃を示している。 金製30に対止を指 4 を充填することにより、半選件チップ2の下型31と 当推した上面(図23万至図25では下郎に位置する) モ除く外周面は対止相解4により対止される。また、半 革はチップ2の仮節に記立されているリード3及びワイ 〒8も対止程度4により対止された状態となる。また、 突起9も上型31と当接している線部を除き對止能指す

【0090】図25は、封止樹脂4が充填処理された半 選体チップ2を企型30から解型した状態を示してい る。同回に示されるように、半導体チップ2の上面2 a は対止を握4より基出しており、よってこの上面2 a よ り半導体チップ2で発生する熱を効率よく放無させるこ とができる。また、突起9の雑載9aも対止光路4から 外部に変出しており、従ってこの奴託9aモ外部技統攻 子として用いることができる。

【0091】図25に示される状葉において、図中一点 ことにより、容易かつ高速度に接続処理を行うことがで to 猛線で示す箇所でリードフレーム11を切断することに より半導体製造を摂成しても、配1に示す半導体装置1 と同様の効果を実現することができる。しかるに、図2 5に示す状態では、外部技統第子として困能する交配9 の雑郎9aが封止併贈4の表面と話面―となっているた め、実装基板10に対する実装性が不良である。このた め、本実施例においては、対止協奪配設工程が終了した ほ、電影90にパン部5を形成するパンプ形成工程を実 嬉している。以下、パンプ形成工程を図26万至図30 を用いて広切する。

【0092】パンプ形成工程においては、先ず囚26に 示すように、好止整路4が配設された半導体チップ2の 全面に対してホーニング処理を行い、理習する樹脂無等 モ除去すると共に、突起9の攻部9aモ発実に外部に攻 出させる。ホーニング処理が終了すると、思いて図27 に示すように、対止避難4が配款された半導体チップ2 を半田様34に使尿し、突起9の雑誌9aに半日を用い て外名メッキを行う(半田根を参照符号35で示す)。 この外名メッキに用いる半田としては、例えばPb:S n=1:9の総成比を有する半田の適用が考えられる。 状態で突起9及びリードフレーム11のクレドール33~40 図28は、上記の外はメッキにより突起9の蛇豚9aに 半田腋35が形成された状態を示している。

> 【0093】上記のように外盆メッキ処理が終了する と、反いて半年基35が形成された交起9の建計9aに パンプ5が形成される。このパンプ5の形成方法として に作々の方法を採用することができ、例えば効率よくか つを名にパンプ 5 をお成しうる症率パンプ方法を用いて 型成してもよい。囚さらは、バンブミが尹思らの女民ら

リードフレーム11の切断処理が行われ、これにより、 図30に示される半導体装置1が形成される。尚、この リードフレーム11の切断処理に先立ち、切断処理を容 易にするためにリードフレーム11の切断箇所にハーフ エッチング処理を行ってもよい。

【0095】上記のように製造された半導体装置1に対 しては、続いて過正に作動するかどうかをは数するな数 工程が実施される。図31及び図33は、夫々貝なる半 毎体装置1の試験方法を示している。図31に示される ット36を用い、このソケット36に半導体整置1を禁 若することによりパーイン等のは以を行うものである。 【0096】また、図32に示される試験方法は、プロ ープ37を用いて半事体装置1の盆敷を行う方法であ る。半導体装置1は、對止整筋4の側部位置にリード3 の雑部が封止根据もから英出した根底とされている。本 試験方法では、これを利用して封止部段4から貸出した リード3にプロープ37を接触させて試験を行う機成と されている。よって、本以駄方法を採用することによ り、中導体数位1を実装蓄板10に実装した後において、20 も試験を行うことが可能となる。

【0097】図33は、半導体装置1を実装益板10に 実装する実験工程を示している。半導体装置1を実容器 版10に実装する方法としては、用知の種々の方法を採 用すすることが可能である。依えば、赤外菜リフロー方 法を用い、半導体装置1に設けられているパンプ5を実 袋器板10に形成されている電板部38にペースト等を **吊いて仮止めし、その上で赤外装りフロー声においてバ** ンプ5を烙配させることによりパンプ5と電框部38と を接合する方法を用いてもよい。

【0098】続いて、上記した半導体装置の製造方法の 変形例について以下収明する。図34万至図37は、夫 々央尼9の文形例を示している。□34(A)。(B) に示される突起9Aは、その形状を円柱状とした構成で ある。また、図37(C)に示される突起9Bは、その 形状を角柱状とした状成である。このように、交配9、 9 A. 9 Bの平面形状は程々選定できるものであり、バ ンプ5の核合性及び実装基柢10に形成されている重任 33.8の形状毎に応じて任意に形状を選定することが可 能である。具体的には、例えばエッチング性により突起 40 9. 9 A. 9 Bを形成する場合には、図6に示す突足形 成位は14に配数するマスク13の形状を適宜選定する ことにより突起9、9A、9Bの平面形状を容易に所望 する形状とすることができる.

【0099】また、図35(A)に示される英足9Cの ように上面に広曲状凹部を形成した検成としてもよく。 図35(B)に示される発展9Dのように上面中央民に マロスエー・スルーム・ニャー・・・ コルーライリアー・

Eによれば、突起表面における面積を大きくすることが できパンプ5との接合性の向上を図ることができる。 尚、上記の英起9C~9Eは、リード3の所定交配形成 位置に、導名性接着剤等を用いて固定された構成とされ ている.

【0100】また図35 (D) に示すのは、リード3を プレス加工等により直接間位式形させることにより交起 9Fを形成したものである。このようにプレス加工与の 型性加工を用いて突起9Fモ形成することにより、値の 試験方法では、パンプ5を装着しうる機能とされたソケー10 で容易に交起9Fを形成することができる。 しかろに、 この形成方法では、突起9Fのあさは豊性加工展界型を 上限とし、それ以上の高さに放定することはできないと いう問題点も変する。

> 【0101】また、図36に示すのは、交起9Gモ形成 するのにワイヤポンディング技術を用い、スタッドパン プナギ 亡の突起発体位置に形成することにより突起 9 G としたことを特定とするものである。 図36 (A) は突 起90の形成方法を示しており、また図36 (B) は交 尼9GE拡大して示している。

【0102】上記のように、疾尽9日モワイヤポンディ ング技術を用いスタッドバンプで形成することにより. 任意の位置に突起9Gモ形成することが可能となり、外 部技技雑子となる突起9Gモ所定位置に容易に形成する ことができる。また、狭起9日の形成は、半導体装備の 製造工程の内、技能工程においてウイヤ8の配投時に一 活的に形成することが可能となり、型造工程の原始化を 図ろことができる。

【0103】また、突起9Gの高さはスタッドバンブモ 複数理技み重ねて配益することにより任意に設定するこ 30 とができる。区37 (A) に示される疾起9 Hは、スタ ッドパンプモ3個限み重ねることにより図36 (B) に 示される1億のスタッドバンブにより兵尼9Gモ形成し たほ成に比べて高さを高くしたものである。

【0 1 0 4】また突起の高さを高くする他の方法として け 「中37(B)に示されるようにテめリード3にプロ ック状の基準性部材41を基準性推着期等により固定し ておき、この真電性部材41の上部に図37 (C) に示 されるようにスタッドパンプ42モ形成し、 ほ居された 選を性部材 4 1 とズタッドパンプ 4 2 とが協助して発起 9 | そ形成する構成としてもよい。この構成の場合、突 記91の高さは返車性部材41の高さにより決められる。 こととなるが、プロック状の調電性配料41は雁々の大 きさのものが復供されており、よって突起91の高さを 任意に収定することができる。

【0105】図38は、排名工程の業形例を示してい で、上記した実施的では、図16万里図20に示したよ うに半路なチップでとリードフレーム116を示定を件 ム」1とも抜合する構成としてもよい。

[0106] また、テープ状族常刻45の配款位置は、 半導体チップ2の上面だけではなく、図38に示される ようリードフレーム11の下面にも設けてもよく、また リードフレーム11の下面のみに設けた構成としてもよ い。更に、テープ状態者削45の配款範囲は、発展パッ ド6の形成位置を除く図中矢印义で示す範囲であれば、 自由に設定することができる。尚、テーブ状態着剤45 は、半事体チップ2とリードフレーム11とを電気的に 絶縁する必要があるため、絶异性技術期である必要があ 10 起9を禁着する凹部を形成しておくことにより、図45

【0107】図39万至図42は、接坡工程の変形例を : 示している。上記した実施例では、図21及び図22に 示されるように電極パッド6とリード3とを接続するの にワイヤ8を用いた構成を示したが、図39万至図42 に示す変形例では電極パッド6とリード3とを直接検蚊 するダイレクトリードホンディング (DLB) 方法を用 いたことを特徴としている。

【0108】図39及び図40に示す例では、リード3 を例えば超音波振動子に接続された複合故具46モ用い 20 の効果を実現することができる。疎求項1及び辞求項2 て直接的に発症パッド6に推合する機成とされている。 しかろに、この裸成では超音放振動する独合出具46に より、電極バッド6にグメージが発生するおそれがあ

【0109】そこで図41及び図42に示す例では、チ め着伍パッド6にスタッドパンプ47モ配款しておき. このスタッドパンプ47にリード3を当枝させた上で加 **熱治具48を用いてスタッドパンプ47を加熱熔融し竜** 低パッド6とリード3を接続する構成とされている。こ の技統方法によれば、を極バッド6が技体するおそれは 30 なく、接続工程の信頼性を向上させることができる。

【0110】また、図39万至図42に示した技統工程 によれば、ワイヤ8を用いて竜笹パッド6とリード36 技統する構成に比べて電気抵抗を低減できるため、半導 体装属1の包気特性を向上させることができ、高速の半 34チップ2に対応することができる。

【0111】図43万三図44は、對止網線配設工程の 変形例を示している。上記した実施例では、図23及び 図24に示されるように全型30を構成する下型32の キャピティ底面は半導体テップ2の上面2aと直接当後 し、この上面2aには放熱特性を向上させる歯から封止 **形脂4が配設されない模成とされていた。**

【0112】 しかるに、半導体装置1が使用される張墳 が厳しい(例えば、多定要検)時には厳熱性よりも対位 性等をより必要とする場合が生じ、このような場合には 好止出籍 4 により半導体チップ 2 を完全に対止する必要 がある。匿名3及び匿名4に示す金型50は、半年化チ ップ2を村上を指して完全に打出する構成とされてい.

ャピティ 5.2 が、 図 4.3 に示されるように半導体チップ 2の外角面から紅筋しており、よって図44に示される ように封止樹脂4を金型に先填した状態で半高体チップ 17江光之に対止樹間 4 に対止された構成となる。このよ 、うに、半導体チップ2に対する対止樹脂4の配款位置。 は、企製30、50に形式されるキャビティ33、52 の形状を筆室変更することにより任意に改定することが できる.

22

【0114】また、上型31にリード3に形成された来 に示されるような疾起9が針止樹脂4から大きく突出し た構成の半導体装置 6 0 を形成することも可能である。 図45に示す半導体装置60は、発起9が封止制能4か ら大きく突出しているため実施基板10に対する実装性 は良好であり、よって前記した実施例に係る半弦は芸俚 1のようにバンブ5を設ける必要はなく、半導体禁患も 0の製造工程の簡単化を図ることができる。

[0115]

【見明の効果】上述の如くな見明によれば、下記の後々 記載の発明によれば、半導はチップは対止樹脂により封 止されるため、耐熱性、磁気的生成及び耐燃性を向上さ こうここができる。 また、竜色パッドとりードとの間で 足成を引き回すことができるため、リードのレイアウト **を発展パッドのレイアウトに拘わらず設定することが可** 能となり、実装基板とのマッチング性を向上させること ができる。また、対止樹稈は引き回された配味を罹失に 保保するためこれによっても存取性を向上させることが でき、また外部技技総子は対止批解から貸出しているだ め実証益板との考集的投稿を応算に行うことができる。 【0116】また、秋水項3花粒の発明によれば、進木 半導体チップとリードとの絶及材として配設されるポリ イミド棋を推着剤として用いてるため、半導体チップと リードの絶談と独合を一括的に行うことができ、よって 絶縁材と技を耐とも制御に配数する構成に比べて構造の

【0117】また、秋水珠4記載の発明によれば、疾起 モリードと一体的に形成したことにより、交易とリード を別個の材料により横成する場合に比べて横進の原単化 を図ることができる。また、は水原5記載の発明によれ ば、配珠としてワイヤを用いたことにより、前記した常 ザツ.…りよりードとの間における配装の引き回しを容易 に行うことができる。

簡単化及び製造の容易化を図ることができる。

【0118】また、油水圧6記載の発明によれば、突起 にパンプを形成したことにより、突起を直接実容蓄板に 実装する構成に比べて、半導体装置の実体基準への採択 を容易に行うことができる。また、技术布工記載の兄郎 经设定银 "接合工模""声"。不然《中文》,是未在大概也不

構成としているため、リードと半端体チップとの発展と 接合を一括的に行うことができる。

【0119】また、接続工程では半導体チップに形成さ れている電圧パッドと向記リードとを配算を引き回し住 以するため、この引き回しを建立設定することにより、 **25**パッドのレイアウトに対してリードのレイアウトモ 変更することが可能となる。また、半導体装置はリード 形成工程、接合工程、推奨工程及び耐止根据配置工程の 4 工程のみで製造される。このように少ない工程で半さ 体核菌が製造されるため、生産効率を向上させることが 10 (図7)本見明に係るリードフレームの製造方法の第.1 てきる.

【0120】また、数求項8記載の発明によれば、ポリ イミド族に印加する歴度等を所定範囲内に制図すること なく技合処理を行うことができるため、技合処理を容易 に行うことができる。また、証求項8記載の発明によれ ば、技肤工程で、電極パッドとリードとモダイレクトリ ードポンディング法を用いて電気的に投続するため、原 単かつ確実に電極パッドとリードとの技統処理を行うこ とができる。

勢によれば、アウターリード部のリードピッチに対して インナーリード部のリードピッチが小さく欲定されてい **るため、インナーリード部が電気的に接取される半導体** チップの電極パッドの配数ピッチが小さくてもこれに対 応させることができ、かつ実装基板と電気的に技統され るアウターリード部のリードピッチは大きいため、大袋 基仮への実装性を向上させることができる。また、突起 がアウターリード部に形成されることにより、この突起 を外肌頂点以子して用いることができ、これによっても 実装住を向上させることができる。

【0122】また、請求項12及び請求項13記載の見 明によれば、突起が一体的に形成された狭ピッチのリー ドモ客島に形成することができる。また、算术項14記 既の発明によれば、リードパターンを形成するリードパ ターン形成工程と、突起も形成する突起形成工程とも別 四に行うことにより、各材の厚さも央尼の高さに向わら ず避定することができ、よって得い益材を用いることに よりリードパターンの教ピッチ化も図ることができる。 また、突起形成工程においては、任意の高さを有する突 起を形成することが可能となり、設計の自由度を向上さ 40 ド森を反放する処理を改明するための区である。 せることができる。

【0123】更に、埃米項15万至17記載の見効によ れば、英尼形成工程において英尼の形成を容易に行うこ とができる.

【図面の原単な反射】

٠,

【図】】 本発明の一実施術である半導体集局を示す断節 日である.

「三つ」 エロヴィースログニティー オルチャイニティエ

示す底面区である。

【図4】 本見明の一変第四である半選体装度の変形の を 示す底面図である。

【図 5】 本発明に係るリードフレームの製造方柱の男 1 実施例を反明するための図であり、 基材を示す図でお

【図6】本発明に係るリードフレームの製造方法の第3 実施例を説明するための区であり、 研定位置にマスク を 足なした状態を示す図である。

実施例を説明するための数であり、第1のエッチングエ 役が終了した状態を示す図である。

【図8】本見明に係るリードフレームの製造方法の第1 実施例を説明するための邸であり、所走位面にマスクを 配設した状態を示す感である。

【図9】本兄朝に任ろリードフレームの設造方法の第1 実施例を説明するための図であり、完成したリードフレ ームを示す因である。

【図10】本発明に係るリードフレームの製造方法の第 【0 1 2 1】また、技术項 1 0 及び試求項 1 1 記載の発 20 2 実施例を説明するための図であり、第 1 の基材を示す

> 【図11】本発明に任るリードフレームの製造方法の弟 2 実施例を説明するための叡であり、第2 の基材を示す 図である。

> 【図12】本見時に係るリードフレームの製造方法の第 2 実施例を説明するための図であり、第1の基材と第2 の基材を接合した状態を示す回である。

> 【図13】リードパターンと突起パターンとが重なり合 った部位を拡大して示す平面図である。

30 【図14】リードパターンと交起パターンとが重なり合 った郎位を拡大して示す側面包である。

【図15】本発明に揺るリードフレームの製造方法の第 2 実施例を放射するための②であり、完成したリードフ レームを景す関である。

【図16】本発明に係る半選件装置の製造工程の住合工 役を説明するための区であり、ポンディングパッド部の 形成を説明するための図である。

【図17】本見明に係る半導体装置の製造工程の指合工 役を説明するための間であり、半時はチップにポリイミ

【図18】本発明に係る半選体装置の製造工程の接合工 役を共勢するための図であり、半路体チップにリードフ レームを配設する処理を放明するための図である。

【四19】本発明に係る半進体装置の製造工程の存合工 屋を収明するための包であり、ポリイミド膜を推着剤と して既能させて半点体チップとリードフレームとを符合 下る処理を表現でなための区である。

示す図である。

【図21】本見明に低る半調体装置の製造工程の接換工 怪を双男するための図であり、キャピラリを用いてワイ ヤの記録処理を行っている状態を示す回である。

【図22】本発明に係る半導体拡展の製造工程の推設工 程を説明するための図であり、電極パッドとリードとの 間にワイヤが配設された状態を示す図である。

【図23】本発明に係る半導体装度の製造工程の封止樹 **訴配於工程を説明するための図であり、半導体チップが** 全型に装着された状態を放射するための間である。

【図24】本発明に係る半導体装置の製造工程の封止層 路配設工程を説明するための図であり、金型に封止部族 が充填された状態を取明するための間である。

【図25】本兒明に係る半導体装筐の製造工程の針止器 **脳配設工程を設勢するための図であり、樹脂封止された** 半導体チップが企型から期型された状態を反映するため の似である。

【図26】本発明に係る半導体装置の製造工程のパンプ 形成工程を説明するための図であり、ホーニング処理を 実施している状態を示す図である。

【図27】本発明に係る半導体装置の製造工程のパンプ 形成工匠を説明するための間であり、外弦メッキ処理を 英能している状態を示す図である。

【図28】本発明に築る半導体装置の製造工程のパンプ 形成工程を説明するための間であり、外装メッキ処理が 終了した状態を示す図である。

【図29】本見明に係る半導体装置の製造工程のパンプ 形成工程を放明するための数であり、パンプを形成した 状体を示す図である.

【図30】本発明に採る半端体装置の製造工程のパンプ 30 9.9A~9 1 突起 形成工程を説明するための図であり、完成した半導体装 昼を示す②である。

【図31】本発明に係る半導体装置の試験工程を説明す - るための図であり、ソケットを用いて試験を行う方法を 示す図である。

【図32】本発明に係る単進体装置の試験工程を説明す るための図であり、プローブを用いては数を行う方法を 示す感である。

【図33】半導体装置を実営基板に実装する実験工程を 説明するための図である。

【図34】 突起の平面形状を異ならせた変形性を示す図 てある.

【図35】 突起の断距形状を異ならせた変形性を示す図

【図36】 スタッドパンプにより交起を形成する構成を 説明するための感である。

【図37】スタッドバンプにより突起を形成する機械の

【図39】投坑株成の変形的を示す図であり、電優パッ ドに直接リードを指統する方法を放明するための図であ る.

【図40】技玩構成の変形例を示す図であり、電極バッ **上に直接リードが接続された状態を示す図である。**

【図41】技統構成の変形例を示す図であり、電極バッ ドにリードモスタッドパンプを介して推検する方法を説 男するための図である。

【図42】接続装成の変形的も示す図であり、電極パッ 10 ドにリードモスタッドバンブモ介して技技した状態を示 す留である。

【型43】対止制理配位工程の変形例を取明するための 図であり、魚型に半導体チップが装着された状態を示す 図である。

【図44】対止協謀症設工程の変形例を説明するための 図であり、食型に対止無償が充填された状態を示す図で ある.

【図45】突起が封止御路より大きく突出した横成の半 導体禁匿を示す図である。

20 (符号の放明)

- 1.60 半導体装置
- 2 単導体テップ
- 3 リード
- 3 a インナーリード部
- 3 b アウターリード部
- 4 對止能器
- 5 バンブ
- 6 電極パッド
- 8 717
- - 10 \$256
 - 11.20 リードフレーム
 - 12 基村
 - 13.17 マスク
 - 21 第1の基材
 - 2.2 第2の基材
 - 23 リードパターン
 - 24 灰起パターン
 - 28 胎具
- 10 29 キャピラリ
 - 30.50 全型
 - 31 上型
 - 32.51 下型
 - 33.52 #+ 274
 - 34 羊田福
 - 35 半≘豚
 - 4.1 温温性部材

4.8 灰熟妝具

[2245]

クロントページの決ぎ

(72) 発明者 字野 正

神奈川県川崎市中原区上小田中1015番

地 富士通株式会社内

(72) 兒明香 庭沢 哲也

神奈川県川崎市中原区上小田中1015番

地 富士通铁式会社内

(72) 発明者 脇 政樹

度児島県庭岸部入来町副田5950番地

株式会社九州富士通エレクトロニクス内