MATH 4317 Homework 6

Homework guidelines:

- Each problem I assign, unless otherwise stated, is asking you to prove something. Give a full mathematical proof using only results from class or Wade.
- Submit a PDF or JPG to gradescope. The grader has ~ 250 proofs to grade: please make his job easier by submitting each problem on a different page.
- If you submit your homework in Latex, you get 2\% extra credit.

Problems (5 total, 10 pts each)

Problem 1. Consider, for each $p \in \mathbb{R}$, the series

$$S_p := \sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k(1+k)^{p/2}}.$$

For which values of $p \in \mathbb{R}$ is the series S_p convergent? For each p for which S_p is convergent, determine whether S_p is absolutely or conditionally convergent. Provide rigorous arguments for all statements.

Proof. We will first rewrite $S_p:=\sum_{k=1}^\infty\frac{(-1)^{k+1}}{k(1+k)^{p/2}}$ as $S_p:=\sum_{k=1}^\infty(-1)^ka_k$ if $a_k\downarrow$ as $k\to\infty$ converges; therefore, for S_p it will converge when $\frac{1}{k(1+k)^{p/2}}\downarrow 0$ as $k\to\infty$. For p>0 we have $\frac{1}{k(1+k)^{p/2}}$ will allows us to use the comparison test with $\frac{1}{k^n}$ where n>1 since p>0 which means that by the p-test this series will converge and that $\sum_{k=1}^\infty\frac{(-1)^{k+1}}{k(1+k)^{p/2}}$ will converge absolutely since $\sum_{k=1}^\infty\frac{(-1)^{k+1}}{k(1+k)^{p/2}}=\sum_{k=1}^\infty\frac{1}{k(1+k)^{p/2}}$ as we were using. For $p\in(-2,0]$ we have that by the alternating series test, that we need to evaluate $\frac{1}{k(1+k)^{p/2}}$ and we can see that $\frac{1}{k(1+k)^{p/2}}\downarrow 0$ as $k\to\infty$ therefore, we know that the series would converge. However, this series does not converge absolutely on this range, if we consider the series $\sum_{k=1}^\infty\frac{1}{k(1+k)^{p/2}}$ with negative p as it is in this range we get that $\sum_{k=1}^\infty\frac{(k+1)^{p/2}}{k}$ for $p\in(-2,0]$. If we consider p=0 we get $\sum_{k=1}^\infty\frac{1}{k}$ which is the harmonic series which we already know is divergent. For other values $p\in(-2,0)$ we get we get similarly divergent series. Lastly, for $p\in(-\infty,-2)$ this series diverges because $\frac{1}{k(1+k)^{p/2}}$ does not approach 0. Therefore, this series converges absolutely for p>0, converges conditionally for $p\in(-2,0]$, and the diverges for $p\leq-2$.

Given a (possibly divergent) series $\sum_{k=1}^{\infty} a_k$ with partial sums $s_n, n \geq 1$, the Cesaro averages are the sequence of values σ_n given by

$$\sigma_n = \frac{s_1 + \dots + s_n}{n} \, .$$

We say that S is Cesaro summable to some value L if $\lim_n \sigma_n = L$.

Problem 2. Prove the following version of Tauber's theorem: if $a_k \geq 0$ for all $k \geq 1$ and $\sum_{1}^{\infty} a_k$ is Cesaro-summable to some L, then $\sum_{1}^{\infty} a_k$ converges to L.

Hint: It will be useful to first prove that

$$\sigma_n = \sum_{k=1}^n \left(1 - \frac{k-1}{n}\right) a_k$$

for all n.

Claim
$$\sigma_n = \sum_{k=1}^n \left(1 - \frac{k-1}{n}\right) a_k$$

Proof. Let us consider the value of $\sigma_n = \frac{s_1 + s_2 + \ldots + s_n}{n} = \frac{1}{n}(s_1 + s_2 + \ldots + s_n) = \frac{1}{n}(\sum_{k=1}^1 a_k + \sum_{k=1}^2 a_k + \ldots + \sum_{k=1}^n a_k) = \frac{1}{n}((a_1) + (a_1 + a_2) + \ldots + (a_1 + a_2 + \ldots + a_n)) = \frac{1}{n}(n(a_1) + (n-1)(a_2) + \ldots + 2(a_{n-1}) + a_n) = a_1 + \frac{(n-1)a_2}{n} + \ldots + \frac{2a_{n-1}}{n} + \frac{a_n}{n} = (a_1 - 0) + (a_2 - \frac{(2-1)a_2}{n}) + (a_3 - \frac{(3-1)a_3}{n}) + \ldots + (a_n - \frac{(n-1)a_n}{n}) = \sum_{k=1}^n (1 - \frac{k-1}{n}) a_k$. Therefore, we have that $\sigma_n = \sum_{k=1}^n (1 - \frac{k-1}{n}) a_k$ as desired.

Now we will prove the original statement.

Proof. Let assumptions be as above, that is to say that $\lim_{\infty} \sigma_n = L$ for our series. This implies that $\lim_{n} \sigma_n = \lim_{n} \sum_{k=1}^{\infty} (1 - \frac{k-1}{n}) a_k = L$. Therefore if we take $\sum_{k=1}^{\infty} a_k - L = \sum_{k=1}^{\infty} a_k - \sum_{k=1}^{\infty} (1 - \frac{k-1}{n}) a_k = \sum_{k=1}^{\infty} a_k + \sum_{k=1}^{\infty} (\frac{k-1}{n} - 1) a_k = \sum_{k=1}^{\infty} a_k + (\frac{k-1}{n} - 1) a_k = \sum_{k=1}^{\infty} a_k (1 + \frac{k-1}{n} - 1) = \sum_{k=1}^{\infty} a_k (\frac{k-1}{n})$. Therefore, we know by Dirichlet's test, since $\frac{k-1}{n} \downarrow 0$ as $k \to \infty$ implies that the whole series converges. Therefore, this all implies that $\sum_{k=1}^{\infty}$ converges to L.

Problem 3. Given the formula $\sum_{k=1}^{\infty} \frac{1}{k^2} = \frac{\pi^2}{6}$, find the exact value of

$$\sum_{k=1}^{\infty} \frac{1}{(2k-1)^2}$$

and prove your answer.

Proof. We know that $\sum_{k=1}^{\infty} \frac{1}{k^2} = 1 + \frac{1}{2^2} + \frac{1}{3^2} + \dots$ and that $\sum_{k=1}^{\infty} \frac{1}{(2k-1)^2} = 1 + \frac{1}{3^3} + \frac{1}{5^2} + \dots$, so we will recognize that $\sum_{k=1}^{\infty} \frac{1}{(2k-1)^2}$ are the odd terms of $\sum_{k=1}^{\infty} \frac{1}{k^2}$. Then,

$$\sum_{k=1}^{\infty} \frac{1}{k^2} = \sum_{k=1}^{\infty} \frac{1}{2k^2} + \sum_{k=1}^{\infty} \frac{1}{(2k-1)^2}$$

$$\sum_{k=1}^{\infty} \frac{1}{k^2} = \frac{1}{4} \sum_{k=1}^{\infty} \frac{1}{k^2} + \sum_{k=1}^{\infty} \frac{1}{(2k-1)^2}$$

$$\frac{3}{4} \sum_{k=1}^{\infty} \frac{1}{k^2} = \sum_{k=1}^{\infty} \frac{1}{(2k-1)^2}$$

$$\sum_{k=1}^{\infty} \frac{1}{(2k-1)^2} = \frac{3}{4} * \frac{\pi^2}{6}$$

$$\sum_{k=1}^{\infty} \frac{1}{(2k-1)^2} = \frac{\pi^2}{8}.$$

Problem 4. Let $f_n, f: E \to \mathbb{R}, n \ge 1$ be continuous functions defined on some set $E \subset \mathbb{R}$. Show that f_n converges to f uniformly on E if and only if

$$\lim_{n\to\infty} \sup_{x\in E} |f_n(x) - f(x)| = 0.$$

Proof. Let assumptions be as above. Let us assume that f_n converges to f uniformly on E, that is to say that for every $\epsilon > 0$ there is an $N \in \mathbb{N}$ such that $n \geq N$ implies $|f_n(x) - f(x)| < \frac{\epsilon}{2}$ for all $x \in E$. This implies that $0 \leq \sup |f_n(x) - f(x)| \leq \frac{\epsilon}{2} < \epsilon$ for all n > N. It then follows that $\lim_{n \to \infty} \sup |f_n(x) - f(x)| = 0$.

Conversely, suppose that $\lim_{n\to\infty}\sup_{x\in E}|f_n(x)-f(x)|=0$, and let $\epsilon>0$. We want to show that there exists $N\in\mathbb{N}$ such that n>N implies that $|f_n(x)-f(x)|<\epsilon$ for all $x\in E$. Since $\lim_{n\to\infty}\sup_{x\in E}|f_n(x)-f(x)|=0$, there exists N such that n>N implies that $\sup|f_n(x)-f(x)|-0=\sup|f_n(x)-f(x)|<\frac{\epsilon}{2}$. Then, by the definition of a supremum, we have that $|f_n(x)-f(x)|\leq \frac{\epsilon}{2}<\epsilon$ for $x\in E$ and n>N as desired.

Therefore, for $f_n, f: E \to \mathbb{R}, n \ge 1$ where f_n is a continuous function on E, then f_n converges to f uniformly on E if and only if $\lim_{n\to\infty} \sup_{x\in E} |f_n(x) - f(x)| = 0$.

Problem 5. Let $f_n, f, g: [a, b] \to \mathbb{R}, n \ge 1$ be functions. Assume the following:

- (a) there exists M > 0 such that $|f_n(x)| \leq M$ for all $n \geq 1, x \in [a, b]$ (i.e., (f_n) is uniformly bounded);
- (b) $f_n \to f$ uniformly on any closed subinterval $[c,d] \subset (a,b)$;
- (c) g is continuous on [a, b] and satisfies g(a) = g(b) = 0.

Prove that under these conditions, $f_ng \to fg$ uniformly.

Proof. Let assumptions be as above. Let us define $h = f_n g$; therefore, we want to show that h converges uniformly to fg. Let $\epsilon > 0$, since g is continuous on [a,b], it has a maximum value C on [a,b]. There is $N \in \mathbb{R}$ such that if n > N and $x \in [a,b]$ then $|f_n - f| < \frac{\epsilon}{C}$. So if n > N and $x \in [a,b]$ then $|h - fg| = |f_n g - fg| = |g||f_n - f| < C(\frac{\epsilon}{C} = \epsilon$. Therefore, $f_n g$ converges uniformly to fg as desired.