Programación entera mixta PEM

- Muchos problemas de optimización requieren formularse con variables enteras (cuántos productos hacer?) o binarias (hacer este producto o no?)
- Estos problemas tienen algunas formas extra de formulación, especialmente con variables binarias
- PEM: Problema entero mixto: es decir que tiene variables de diferente tipo incluyendo enteras, continuas y binarias o algunas de ellas.

Trucos para PEM

1. Variable con valores discontinuos

La variable x está en un intervalo o toma el valor de 0, x = 0 o $l \le x \le u$

Para esto se adiciona una variable auxiliar binaria y

$$y = \begin{cases} 0 & si \quad x = 0 \\ 1 & si \quad l \le x \le u \end{cases}$$

Lo que implica que debe incluirse en el problema las siguientes restricciones

$$x \le uy$$
$$x \ge uy$$
$$y \quad binaria$$

Costos fijos

Se refiere a costos k_i que solo se incurren si xi>0 y solo una vez. Para ello se incluye variables binarias auxiliares yi que se definen como

$$y = \begin{cases} 0 & si \quad x = 0 \\ 1 & si \quad x > 0 \end{cases}$$

El problema se formula como (M es un valor muy alto): $\int_{-\infty}^{n}$

Minimizar

$$Z = \sum_{i=1}^{n} c_{ki} x_i + k_i y_i$$

$$\sum_{i=1}^{n} r_{ij} x_{i} \ge D_{j} \qquad \forall j = 1,..., m$$

$$x_{i} \le M y_{i} \qquad \forall i = 1,..., n$$

$$x_{i} \ge 0 \qquad \forall i = 1,..., n$$

$$y \ binaria$$

Restricciones excluyentes

Se debe cumplir una restricción u otra $I \circ I$) $\sum_{i=1}^{n} r_i x_i \geq D$

$$II) \quad \sum_{i=1}^{n} d_i x_i \ge B$$

Se adicional una variable binaria auxiliar y que se define como

$$y = \begin{cases} 0 & si & se & cumple & I \\ 1 & si & se & cumple & II \end{cases}$$

El problema se formula como (M es un valor muy alto):

$$Z = \sum_{i=1}^{n} c_{ki} x_i$$

Minimizar

$$\sum_{i=1}^{n} r_i x_i \ge D + My$$

$$\sum_{i=1}^{n} d_i x_i \ge B + M(1-y)$$

y binaria

$$x_i \ge 0$$

$$\forall i = 1,...,n$$

Restricciones condicionales

$$I) \qquad \sum_{i=1}^n r_i x_i \le D$$

Se la restricción I se cumple, se debe cumplir otra restricción II.

$$II) \quad \sum_{i=1}^{n} d_i x_i \leq B$$

Se puede observar que si I entonces II, esto es equivalente a que alguna de las 2 sgtes restricciones se cumpla

III)
$$\sum_{i=1}^{n} r_i x_i > D \qquad o \qquad II) \quad \sum_{i=1}^{n} d_i x_i \leq B$$

$$III) \qquad \sum_{i=1}^{n} r_i x_i \ge D + \in$$

Para que III cumpla también la condición de igualdad típica de PL, se adiciona un épsilon \in Se adicional una variable binaria auxiliar y que se define como 1 si se cumple II 1 si se cumple II

El problema se formula como (M es un valor muy alto y L muy bajo):

$$Z = \sum_{i=1}^{n} c_{ki} x_i$$

$$\sum_{i=1}^{n} r_i x_i \ge D + \in -Ly$$

$$\sum_{i=1}^n d_i x_i \ge B + M(1-y)$$

v binaria

TRUCOS PARA FORMULAR PL Y PEM

Trucos para PEM

1. Variable con valores discontinuos

La variable x está en un intervalo o toma el valor de 0,

$$x = 0$$
 o $l \le x \le u$

Para esto se adiciona una variable auxiliar binaria y

$$y = \begin{cases} 0 & si \quad x = 0 \\ 1 & si \quad l \le x \le u \end{cases}$$

Lo que implica que debe incluirse en el problema las siguientes restricciones

$$x \le uy$$
$$x \ge uy$$
$$y \quad binaria$$

Inclusión de Costos fijos

Se refiere a costos k_i que solo se incurren si $X_i>0$ y solo una vez. Para ello se incluye variables binarias auxiliares y_i que se definen como

$$y = \begin{cases} 0 & si \quad x = 0 \\ 1 & si \quad x > 0 \end{cases}$$

El problema se formula como (M es un valor muy alto):

$$Z = \sum_{i=1}^{n} c_{ki} x_i + k_i y_i$$

$$\sum_{i=1}^{n} r_{ij} x_i \ge D_j \qquad \forall j = 1, ..., m$$

$$x_i \le M y_i \qquad \forall i = 1, ..., n$$

$$x_i \ge 0 \qquad \forall i = 1, ..., n$$

$$y \ binaria$$

Restricciones excluyentes

Se debe cumplir una restricción u otra I o II) .I) $\sum_{i=1}^n r_i x_i \ge D$ $II) \sum_{i=1}^n d_i x_i \ge B$

Truco: Se adicional una variable binaria auxiliar y que se define como

$$y = \begin{cases} 0 & si & se & cumple & I \\ 1 & si & se & cumple & II \end{cases}$$

El problema se formula como (M es un valor muy alto):

Minimizar
$$Z = \sum_{i=1}^n c_{ki} x_i$$

$$\sum_{i=1}^n r_i x_i \geq D + My$$

$$\sum_{i=1}^n d_i x_i \geq B + M(1-y)$$

$$y \quad binaria$$

$$x_i \geq 0 \qquad \forall i=1,...,n$$

Restricciones condicionales

Se la restricción I se cumple, se debe cumplir otra restricción II .

$$I) \qquad \sum_{i=1}^{n} r_i x_i \le D$$

$$II) \quad \sum_{i=1}^{n} d_i x_i \leq B$$

Se puede observar que si I entonces II, esto es equivalente a que alguna de las 2 sgtes restricciones se cumpla

$$III) \qquad \sum_{i=1}^{n} r_i x_i > D \qquad o \qquad II) \quad \sum_{i=1}^{n} d_i x_i \leq B$$

Para que III cumpla también la condición de igualdad típica de PL, se adiciona un épsilon \in

$$III) \qquad \sum_{i=1}^{n} r_i x_i \ge D + \in$$

Se adicional una variable binaria auxiliar y que se define como $y = \begin{cases} 0 & si \quad se \quad cumple \quad III \\ 1 & si \quad se \quad cumple \quad II \end{cases}$

El problema se formula como (M es un valor muy alto y L muy bajo):

Minimizar
$$Z = \sum_{i=1}^n c_{ki} x_i$$

$$\sum_{i=1}^n r_i x_i \geq D + \in -Ly$$

$$\sum_{i=1}^n d_i x_i \geq B + M(1-y)$$

$$y \ binaria$$