Author index to Volume 36

Abe, A.	S195	Burgueño-Tapia, E.	947	Elmunajjed, D. T.	151, 376
Abraham, R. J.	S179	Burton, G.	529	Elokhina, V. N.	110
Abram, U.	422	Bush, C. A.	1	Eloranta, J.	98
Adcock, W.	181	Buston, J. E. H.	140	Enriquez, R. G.	S111
	245	Buston, J. D. 11.	240	Erentová, K.	13
Adell, P.		Cadet, J.	363		S71
Agrawal, P. K.	1		154	Ernst, L.	
Ahmad, R.	S47	Cámpora, J.		Escola, N.	529
Aime, S.	S200	Campos Rosa, J.	951	Esteban, A. L.	336
Aksnes, D. W.	747, 769	Campredon, M.	463	Etzel, W. A.	64
Alam, T. M.	132	Cañete, A.	449	Euler, W. B.	398
Albanov, A. I.	110	Carbajo, R. J.	217, 807		
	296	Carpenter, T. A.	116	E-bi W M E	611
Alcázar, J.		Castellani, L.	885	Fabian, W. M. F.	511
Aliev, A. E.	855	Castro, P.	833	Farley, K. A.	S11
Amato, M. E.	693			Farnsworth, N. R.	267
Ambrožič, G.	873	Catalán, C. A. N.	947	Fate, G. D.	635
Amezcua, C.	S3	Cavaleiro, J. A. S.	305	Faure, R.	463, 548
Amm, M.	587	Ceh, S.	873	Fernandes, E. G. R.	305
Ammälahti, E.	363	Cerioni, G.	461	Fernandéz, C.	S61
	S61	Chachaty, C.	46	,	
Amoureux, JP.		Chaffotte, AF.	645	Ferro, M. P.	35
Ando, I.	S195			Fielding, L.	387
Annunziata, R.	520	Chan, W. R.	124	Findeisen, M.	457, 615
Arnó, M.	579	Charris, J. E.	454	Florian, P.	956
Asakawa, N.	S195	Chattopadhyaya, J.	227, 732	Floris, B.	797
Åstrand, PO.	92	Chézeau, J. M.	415	Földesi, A.	227, 732
Attard, J. J.	116	Chow, A.	S145		
Attaid, J. J.	110	Claridge, T. D. W.	140	Fong, H. H. S.	267
			116	Fraenkel, G.	S145
Babonneau, F.	407, 956	Colebrook, L. D.		Framery, E.	407
Bain, A. D.	403	Compton, R. G.	140	Francis, G. W.	769
	311	Contreras, R. H.	336	Frigoli, M.	548
Bampos, N.		Cossec, B.	300	Fujiwara, F. Y.	542, 766
Barbosa-Filho, J. M.	608, 929	Costa, M.	542		741
Bardet, M.	363, 597	Costa, V. E. U.	261	Fukushi, E.	
Barfield, M.	S93	Coutinho, E.	285	Furuya, H.	S195
Barjat, H.	706				
Barreiro, E. J.	533	Crich, S. G.	S200	Galanakis, D.	951
Bartl, A.	8	Cross, T. A.	651	Ganellin, C. R.	951
Basante, W.	454	Crouch, R. C.	551	García, F.	174
		Crow, F. W.	635, S11	García-Martínez, C.	429
Bates, R. B.	539	Culeddu, N.	907		
Bayod-Jasanada, M.	217			Gau, W.	64
Begtrup, M.	296	da Cunha, E. V. L.	608	Gauthier, A. D.	35
Belloc, J.	715	da Silva, M. S.	608, 929	Gawinecki, R.	848
Benedetti-Doctorovich, V.	529	Dahn, H.	137	Gaydou, E. M.	621
Berger, S.	S44			Gerig, J. T.	S169
	S212	Dalvit, C.	670	Gervais, C.	407, 956
Bernatowicz, P.		Damberg, C.	839		687
Bethell, D.	656	Davis, A. L.	706	Gerzain, M.	
Biedrzycka, Z.	356, S85	De Baerdemaeker, J.	196	Gilbertson, T. J.	635
Bigler, P.	343	de Carvalho, M. G.	533	Giovenzana, G.	S200
Binder, H.	250	de Heluani, C. S.	947	Gogoll, A.	73
Bircher, H. R.	343		336	Goldberg, M. E.	645
Blechta, V.	55	de Kowalewski, D. G.		Gómez-Sánchez, A.	154
	267	de la Hoz, A.	296	Gougeon, R.	415
Bodenhausen, G.		de Menezes, S. C.	145		S135
Böhlen, JM.	670	Delepierre, M.	645	Grant, D. M.	
Bolvig, S.	315, 921, S104	Delmotte, L.	415	Green, T. K.	79
Boman, A.	S151	Delsuc, MA.	801, 833	Grela, K.	356, S85
Bongert, D.	250	DeShong, P.	S54	Griffiths, L.	104, S179
Bonhomme, C.	407		801	Grima, P. M.	174
Boog-Wick, K.	S189	Desvaux, H.		Guglielmetti, R.	548
		Di Vona, M. L.	797	O II T D	S11
Borges, M. F. M.	305	Diez, E.	336	Guido, J. E.	507
Borisov, E. V.	S104	Dominguez, J. N.	454	Guilhem, J.	587
Bosco, M.	907	Domschke, G.	8	Guirado, A.	881
Botta, D.	885	Doss, G. A.	135	Günter, J.	442
Botta, M.	S200	Dostál, J.	869	Günther, H.	77, 312, S1, S61
Bouchet, J. P.	587				
Bowman, P. B.	S11	Dotelli, G.	885	Habermehl, G.	371
		Dransfeld, A.	S29		
Boykin, D. W.	720, 921	Duddeck, H. 151, 371, 3	376, 779, 936, S47	Habsaoui, A.	621
Braz-Filho, R.	381, 533, 608	Duholke, W. K.	S11	Haessner, R.	615
Briguet, A.	515	Duplan, J. C.	515	Hall, L. D.	116
Briley-Sbø, K.	S125	Dürüst, Y.	878	Halstead, T. K.	163
Brondeau, MT.	300	Duus, F.	315	Hameed, S.	S47
Brumfield, J. C.	S11	2,000, 1.	313	Hammond, S. J.	706
	MA A		~		
Brun P	463	Edhard II	C151	Hanna A G	0.76
Brun, P.	463	Edlund, U.	S151	Hanna, A. G.	936
Brun, P. Buchanan, G. W. Buddrus, J.	463 687 240	Edlund, U. Ejchart, A. Elgamal, M. H. A.	\$151 559 151, 376, 936	Hanna, A. G. Hansen, P. E. Harper, J. K.	936 315, 921, S104 S135

Author index to Volume 36

Abe, A.	S195	Burgueño-Tapia, E.	947	Elmunajjed, D. T.	151, 376
Abraham, R. J.	S179	Burton, G.	529	Elokhina, V. N.	110
Abram, U.	422	Bush, C. A.	1	Eloranta, J.	98
Adcock, W.	181	Buston, J. E. H.	140	Enriquez, R. G.	S111
	245	Buston, J. D. 11.	240	Erentová, K.	13
Adell, P.		Cadet, J.	363		S71
Agrawal, P. K.	1		154	Ernst, L.	
Ahmad, R.	S47	Cámpora, J.		Escola, N.	529
Aime, S.	S200	Campos Rosa, J.	951	Esteban, A. L.	336
Aksnes, D. W.	747, 769	Campredon, M.	463	Etzel, W. A.	64
Alam, T. M.	132	Cañete, A.	449	Euler, W. B.	398
Albanov, A. I.	110	Carbajo, R. J.	217, 807		
	296	Carpenter, T. A.	116	E-bi W M E	611
Alcázar, J.		Castellani, L.	885	Fabian, W. M. F.	511
Aliev, A. E.	855	Castro, P.	833	Farley, K. A.	S11
Amato, M. E.	693			Farnsworth, N. R.	267
Ambrožič, G.	873	Catalán, C. A. N.	947	Fate, G. D.	635
Amezcua, C.	S3	Cavaleiro, J. A. S.	305	Faure, R.	463, 548
Amm, M.	587	Ceh, S.	873	Fernandes, E. G. R.	305
Ammälahti, E.	363	Cerioni, G.	461	Fernandéz, C.	S61
	S61	Chachaty, C.	46	,	
Amoureux, JP.		Chaffotte, AF.	645	Ferro, M. P.	35
Ando, I.	S195			Fielding, L.	387
Annunziata, R.	520	Chan, W. R.	124	Findeisen, M.	457, 615
Arnó, M.	579	Charris, J. E.	454	Florian, P.	956
Asakawa, N.	S195	Chattopadhyaya, J.	227, 732	Floris, B.	797
Åstrand, PO.	92	Chézeau, J. M.	415	Földesi, A.	227, 732
Attard, J. J.	116	Chow, A.	S145		
Attaid, J. J.	110	Claridge, T. D. W.	140	Fong, H. H. S.	267
			116	Fraenkel, G.	S145
Babonneau, F.	407, 956	Colebrook, L. D.		Framery, E.	407
Bain, A. D.	403	Compton, R. G.	140	Francis, G. W.	769
	311	Contreras, R. H.	336	Frigoli, M.	548
Bampos, N.		Cossec, B.	300	Fujiwara, F. Y.	542, 766
Barbosa-Filho, J. M.	608, 929	Costa, M.	542		741
Bardet, M.	363, 597	Costa, V. E. U.	261	Fukushi, E.	
Barfield, M.	S93	Coutinho, E.	285	Furuya, H.	S195
Barjat, H.	706				
Barreiro, E. J.	533	Crich, S. G.	S200	Galanakis, D.	951
Bartl, A.	8	Cross, T. A.	651	Ganellin, C. R.	951
Basante, W.	454	Crouch, R. C.	551	García, F.	174
		Crow, F. W.	635, S11	García-Martínez, C.	429
Bates, R. B.	539	Culeddu, N.	907		
Bayod-Jasanada, M.	217			Gau, W.	64
Begtrup, M.	296	da Cunha, E. V. L.	608	Gauthier, A. D.	35
Belloc, J.	715	da Silva, M. S.	608, 929	Gawinecki, R.	848
Benedetti-Doctorovich, V.	529	Dahn, H.	137	Gaydou, E. M.	621
Berger, S.	S44			Gerig, J. T.	S169
	S212	Dalvit, C.	670	Gervais, C.	407, 956
Bernatowicz, P.		Damberg, C.	839		687
Bethell, D.	656	Davis, A. L.	706	Gerzain, M.	
Biedrzycka, Z.	356, S85	De Baerdemaeker, J.	196	Gilbertson, T. J.	635
Bigler, P.	343	de Carvalho, M. G.	533	Giovenzana, G.	S200
Binder, H.	250	de Heluani, C. S.	947	Gogoll, A.	73
Bircher, H. R.	343		336	Goldberg, M. E.	645
Blechta, V.	55	de Kowalewski, D. G.		Gómez-Sánchez, A.	154
	267	de la Hoz, A.	296	Gougeon, R.	415
Bodenhausen, G.		de Menezes, S. C.	145		S135
Böhlen, JM.	670	Delepierre, M.	645	Grant, D. M.	
Bolvig, S.	315, 921, S104	Delmotte, L.	415	Green, T. K.	79
Boman, A.	S151	Delsuc, MA.	801, 833	Grela, K.	356, S85
Bongert, D.	250	DeShong, P.	S54	Griffiths, L.	104, S179
Bonhomme, C.	407		801	Grima, P. M.	174
Boog-Wick, K.	S189	Desvaux, H.		Guglielmetti, R.	548
		Di Vona, M. L.	797	O II T D	S11
Borges, M. F. M.	305	Diez, E.	336	Guido, J. E.	507
Borisov, E. V.	S104	Dominguez, J. N.	454	Guilhem, J.	587
Bosco, M.	907	Domschke, G.	8	Guirado, A.	881
Botta, D.	885	Doss, G. A.	135	Günter, J.	442
Botta, M.	S200	Dostál, J.	869	Günther, H.	77, 312, S1, S61
Bouchet, J. P.	587				
Bowman, P. B.	S11	Dotelli, G.	885	Habermehl, G.	371
		Dransfeld, A.	S29		
Boykin, D. W.	720, 921	Duddeck, H. 151, 371, 3	376, 779, 936, S47	Habsaoui, A.	621
Braz-Filho, R.	381, 533, 608	Duholke, W. K.	S11	Haessner, R.	615
Briguet, A.	515	Duplan, J. C.	515	Hall, L. D.	116
Briley-Sbø, K.	S125	Dürüst, Y.	878	Halstead, T. K.	163
Brondeau, MT.	300	Duus, F.	315	Hameed, S.	S47
Brumfield, J. C.	S11	2,000, 1.	313	Hammond, S. J.	706
	MA A		~		
Brun P	463	Edhard II	C151	Hanna A G	0.76
Brun, P.	463	Edlund, U.	S151	Hanna, A. G.	936
Brun, P. Buchanan, G. W. Buddrus, J.	463 687 240	Edlund, U. Ejchart, A. Elgamal, M. H. A.	\$151 559 151, 376, 936	Hanna, A. G. Hansen, P. E. Harper, J. K.	936 315, 921, S104 S135

Harris, K. D. M.	855	Licoccia, S.	797	Oszczapowicz, I.	660
Harris, R. K.	145, 892	Limmer, S.	901	Oszczapowicz, I.	559
Hartung, M.	S61	Lipkowitz, K. B.	693	Pachler, K. G. R.	436
Hassan, A. Z.	936	Liu, FC.	S145	Page, S. W.	403
Hayamizu, K.	429	Lombardo, G. M.	693	Pagliarin, R.	S200
Heckmann, G.	250	López-Ortiz, F.	217, 807	Pan, JQ.	303
Heikkinen, S.	627	Lopyrev, V. A.	110	Pappalardo, G. C.	693
Helm, L.	S125	Lundquist, K.	597	Paredes-León, R.	154
Hennig, L.	457, 615	Lyčka, A.	279	Parella, T.	245, 467, 715
Herdewijn, P.	55	Lycknert, K.	773	Patel, A. B.	285, 815
Hernández, L. R.	947			Pelta, M. D.	706
Heropoulos, G. A.	656	McClung, R. E. D.	445	Peng, C.	267
Herzog, H.	240	McCord, E. F.	755	Perjéssy, A.	511
Hilmersson, G.	663	McDonnell, P. A.	35	Perumal, S.	720, 943
Holt, Ø.	769	McGeorge, G.	S135	Pesterfield, L. L.	79
Holý, A.	442	McLean, S.	124, S111	Peter, S. R.	124
Holzgrabe, U.	211	Mahi, L.	515	Petrič, A.	873
Horton, R.	104	Maisel, H. E.	39	Phadke, R. S.	285, 815
Horváth, G.	376	Maliniak, A.	773	Piekarska-Bartoszewicz, B.	727
Hrnčiar, P.	511	Malliavin, T. E.	801	Pinto, M. M.	305
Hu, H.	S17	Maltseva, T. V.	227	Platzer, N.	587
		Mandelshtam, V. A.	S17	Plavec, J.	732
Ibrom, K.	S71	Mantica, E.	885	Plugariu, C.	S161
Ilavský, D.	681	Maquet, J.	407	Plumitallo, A.	461
Imamura, P. M.	542	Marek, R.	869	Pluta, K.	73
	5 14	Marin, M. L.	579	Pollesello, P.	907
Jacobsen, N. E.	539	Márquez, A.	449	Popkov, A.	351
	205	Marr, J. G.	635	Potáček, M.	869
Jäger, M.		Marsaioli, A. J.	766	Potmischil, F.	240
Jayawickrama, D. A.	755	Martin, G. E.	551, 635, S11	Pottier, E.	548
Jean-Claude, B. J.	87	Masaguer, C. F.	545	Pregosin, P. S.	S189
Jirman, J.	351	Maślankiewicz, A.	73	Prehn, C.	457
Johnels, D.	S151	Maślankiewicz, M. J.	73	Protsuk, N. I.	110
Joseph-Nathan, P.	947	Massiot, D.	407, 956		
Jullian, C.	449	Matasyoh, J. C.	422	Oiu, S.	267
	and the second	Mathieu, C.	46	Qureshi, N.	1
Kaerner, A.	601	Matsubara, K.	761		
Kaluzny, B. D.	635	Mazzola, E. P.	403	Rabenstein, D. L.	601
Kamath, S.	285	Mekarbane, P. G.	826	Radmard, B.	79
Kauppinen, R.	848	Mendez, B.	454	Rahkamaa, E.	627
Kawabata, J.	741	Méou, A.	463	Raimondi, L.	520
Kawecki, R.	921	Merbach, A. E.	S125	Ramalingam, M.	943
Kaye, P. T.	69	Mercier, A.	46	Rampont-Placidi, V.	300
Keenan, R. D.	163	Mesilaakso, M.	627	Rapta, P.	13
Kehr, G.	39, S157	Meurer, B.	415	Raviña, E.	545
Kellar, K. E.	S125	Mikhova, B.	779	Raynes, W. T.	255
Kim, M.	398	Mikkelsen, K. V.	92	Rebek, J., Jr	663
Kimtys, L.	747	Milata, V.	681	Rebiere, N.	548
Kintzinger, J. P.	381	Modro, A. M.	S212	Reich, H. J.	S118
Kjellberg, A.	128, 839	Modro, T. A.	S212	Reinheimer, P.	415
Klimkiewicz, J.	727	Molko, D.	363	Rentsch, D.	S54
Kolehmainen, E.	442, 511, 848	Mollmann, M. E. S.	261	Reřicha, R.	55
Kovács, J.	936	Moloney, M. G.	140	Reynolds, W. F.	124, S111
Kowalewski, J.	145	Molteni, V.	520	Ribeiro, A. A.	325
Kowalewski, V. J.	336	Montaña, A. M.	174	Ribes, S.	174
Kozerski, L.	921	Monte, F. J. Q.	381	Ritter, H.	343
Krajewski, P.	921	Monti, G. A.	892	Robert, D.	597
Krämer, W.	64	Montouillout, V.	956	Robins, R. H.	S11
Krebs, H. C.	371	Morris, G. A.	706	Rockenbauer, A.	205
Kucybała, Z.	848	Moustrou, C.	548	Rodriguez, H.	449
Kvičalová, M.	55	Mphahlele, M. J.	69	Roe, D. C.	755
Kwiecień, B.	921	Munasinghe, J. P.	116	Ronconi, C. A. V.	608
		Mutzenhardt, P.	300	Roselt, P.	732
Lacassagne, V.	956			Rosen, W.	398
Lácová, M.	511	N15 day 11- N4	261	Roux, P.	645
Ladd, D.	S125	Nádvorník, M.	351	Rozenski, J.	55
Laister, R. C.	687	Nakashima, T. T.	445	Rundlöf, T.	773, 839
Lamarque, L.	463	Nicolaï, B.	196 S54	Rybczynski, P. J.	S54
Landersjö, C.	773	Nill, L.		Rys, P.	279
Lappalainen, K.	442, 511	Nishida, T.	128, 839		
Larina, L. I.	110	Nurnberg, V.	766	Şaitz, C.	449
Larive, C. K.	755	Nuyken, O.	13	Šaman, D.	442
Leal, K. Z.	261			Sánchez-Ferrando, F.	245, 715
Lebrun, E.	913	Oba, A.	761	Sanders, A. W.	S118
Leibfritz, D.	S79	Oishi, A.	429	Santos, M. R. L.	533
Leitão da-Cunha, E. V.	929	Okogun, J. I.	371	Scheerlinck, N.	196
León, I.	S111	Ollerenshaw, J.	445	Schilf, W.	S212
Li, WK.	303	Omelka, L.	8	Schleyer, P. v. R.	S29
Licht, H. H.	343	Ośmiałowski, B.	848	Schraml, J.	55

Schuler, P.	205, 422	Szatylłowicz, H.	559	Wallet, JC.	621
Schulze, K.	457			Wang, M.	325
Screttas, C. G.	656	Tabner, B. J.	826	Warne, M. A.	S179
Seidl, P. R.	261	Táborská, E.	869	Watanabe, M.	741
Selvaraj, S.	720, 943	Taguchi, Y.	429	Wawer, I.	727
Sergeyev, N. M.	255	Takayama, K.	1	Weintraub, A.	128
Sergeyeva, N. D.	255	Tanabe, S.	741	Weissmüller, J.	64
Setzer, W. N.	539		573	Wejroch, K.	S85
Shaka, A. J.	S17	Taskinen, E.	124	Welzel, P.	615
Shekar, S. C.	496	Tay, LL.		Wettinger, D.	S157
Shen, Z.	325	Temeriusz, A.	727	Weychert, M.	727
Shimizu, R. N.	S195	Terreno, E.	S200		79
		Thamann, T. J.	S11	Whetstine, J. R.	
Shore, S.	S145	Thunhorst, M.	211	Widmalm, G.	128, 773, 839
Sidler, D. R.	S54	Tinto, W. F.	124	Williams, C. I.	87
Sikorski, W. H.	S118	Toffanin, R.	907	Williams, M. A. K.	163
Silva, A. M. S.	305	Tordo, P.	46	Williams, P. G.	S209
Silva, F. M.	305	Tóth, É.	S125	Willker, W.	S79
Simon, A.	151, 371, 376, 936	Tóth, G.	151, 371, 376, 936	Witanowski, M.	356, S85
Simova, S.	505	Trabesinger, G.	S189	Wrackmeyer, B.	39, S157
Sims, S. M.	S11	Traficante, D. D.	398	Wyszomirski, M.	73
Sisti, M.	S200	Trout, N. A.	181		
Sklenář, V.	869	Hout, N. A.	181		
Skrabal, P.	279			Xiao, PG.	303
Slavík, J.	869	Usui, Y.	761	Xie, L.	S209
Smith, R. F.	S11			Xu, F.	651
Smith, W. B.	S3	Van Hecke, P.	196	Xu, PF.	459
Soares, F. P.	608	Van Toan, V.	137		
		van Uffelen, I.	S125		
Soliman, H. S. M.	151, 376	Vasuki, G.	720, 943	Yu, M.	124, S111
Sopková, J.	351	Vaultier, M.	407	Yuan, S.	267
Sorokin, M. S.	110	Veenstra, D. L.	\$169		
Speers, P.	S209		943	*	
Spencer, L.	398	Venuvanalingam, P.		Zalibera, L.	681
Srivastava, S.	285, 815	Verstreken, E.	196	Zapata, A.	881
Staško, A.	13	Vijayabaskar, V.	720, 943	Zaragozá, R. J.	579
Steele, B. R.	656	Virgili, A.	245, 715	Zens, A. P.	551
Stefaniak, L.	S212	Vlahov, G.	359	Zetta, L.	885
Stegmann, H. B.	205, 422	Vogtherr, M.	901	Zhang, L.	807
Stelzer, U.	64	Voit, B.	13	Zhang, W.	S104
Stephenson, D. S.	310	Volland, J. P.	587	Zhang, Y.	325
Sterk, H.	S161	von Philipsborn, W.	\$54	Zhang, ZY.	459
Stessman, C. C.	539	von Unge, S.	597	Zheng, C.	267
Stockner, T.	S161	Vonderwell, B. S.	S11		39
	S209	Vuolle, M.	98	Zhou, H.	565
Streitwieser, A.		. = 5110, 1711	70	Zhuo, JC.	
Stuhlmann, F.	8	***	244	Zimniak, A.	559
Sun, XW.	459	Wagner, R.	S44	Zoretic, P. A.	325

Subject index to Volume 36

ak initia aalamlatiana 226	505 530	hatalinia asid	267	271 277 207 200 620 675 670 751
ab initio calculations 336 ab initio IGLO study	, S85, S29 S93	betulinic acid bicyclic compounds	267 174	371, 376, 387, 398, 539, 565, 579, 651, 687, 732, 815, 839, 901, 936, 947, S3,
absolute configuration	429	bicyclolactones	463	\$71, \$85, \$104, \$161, \$195
ACCORD-HMBC	S44	bicyclooctane derivatives	579	conformation, oligosaccharide 773
acenaphthenes	943	bimakalin	436	-, polypeptide 651
acetoxymercuration	797	bio NMR	285	conformational barrier S71
adamantane	181	bioactive compound	533	conformational dependence, of ¹³ C
adamantyl fluorides	181	biological activity	559	chemical shifts S93
adenine-type substrate	205	biomolecules	901	conformational effects 336
Al-27 MAS NMR	279	biopolymer gels	163	conformational equilibrium 285
Al-27 NMR	279, 956	bipolar pulse sequences	706	conformational exchange 46
alcohols, unsaturated	132	bis(4-aminoquinolinium) dibromides		conformer population 651
alkanes, substituted	S179 exes 807	blood plasma	S79	contact shifts 656
alkenylcarbyne-tungsten comple alkenylvinylidene-tungsten com		boat conformation body fluids	371 S79	copaiba oil 542
arkenyivinyildene-tungsten com	807	bond anisotropy	S179	coupling constants, see J-coupling CP, see solid state NMR
alkyl formates	336	bond length, C—H	261	CP/MAS , ${}^{1}H \rightarrow {}^{19}F$ 892
alkyl spacer	S195	bond polarization, C—H	261	—, see also solid state NMR
alkynes	797	borane	407	CPMG experiment 163, 227, S195
Altona-Haasnoot equation	627	borazane	407	13-crown-4-ethers 687
aluminium complexes	279	borazine	407	cryptolepine 551
amidoximes	878	borneol	505	cyclic voltammetry 8
aminoquinolinium dibromides	951	bridge, Si-Br-Si	S157	1,3-cycloalkanediones 315
3-aminoacrolein	154	broadband decoupling	515	cycloalkanes S179
amine oxides	240	building block, for HSQC	715	cyclobutane derivative 436
amino acid	351			cyclodextrin 211, 693
angiotensin III analogue	815	C-13 enriched samples	128	cyclopentadienyllithium S151
angiotensinogen	285	C-13 NMR and conformation	336	cyclophanes S71
anisotropy	46	C-13,C-13 DQF-COSY	128	
anisotropy, C-C bond	S179	C-13,C-13 TOCSY	128	data acquisition, new strategy S17
anomeric effect	422	caesalpin	124	data processing 515, S135
3'-anthraniloyladenosine	901	cage molecule	250	-, new strategy S17
anthraquinone glycoside	769	calculations	S93	decomposition, of azo compounds 13
	9, 615, 635	calculations, ³¹ P NMR	S29	decoupling, broadband 515
antimalarial compounds	454	camphene	706	-, heteronuclear 469
antitumor activity	325 325	CAPT sequence	445	density matrix S145 2'-deoxycytidin derivatives 359
antiviral activity	457	carbazole	39 S93	2'-deoxycytidin derivatives 359 dequalinium analogues 951
apocampholenic derivatives apomyoglobin	833	carbon shielding carbonic anhydrase	S169	deuteration, selective 227
apples, moisture transport	196	carbonyl compounds, tautomerism		deuterium exchange 285
APT sequence	445	carbony compounds, tautomerism	807	deuterium isotope effect 255, 315, 921
arene-arene interaction	520	cardenolides	936	deuterium NMR 732, 855
aromatic ring rotation	S169	caryophyllene oxide	S135	1,2-dialkoxyethenes 573
aryl sulfoxides, ¹⁷ O NMR	137	cassane furanoditerpenes	124	dialkoxy disulfides, ¹⁷ O NMR 461
arylglycerol-β-aryl ethers	597	cation radical	98	diastereomers 64, 174, 597, S189
arylhydrazones	533	cefuroxime ester	559	diethylether 515
aryllead tricarboxylates	140	cephalosporines	559	1,5-dichloro-2,4-dimethoxybenzene 403
arylphenylethyne derivatives	797	cesium cyclohexylamide	S209	diffusion 747
aspen lignin	597	charge density 51	1, 951	—, translational 227
assignment, automated	267	charge distribution	261	diffusion ordered spectroscopy 706, 755
atomic charges	S85	chelates, Gd(III)	S200	diffusivity 196
atomic magnetizability tensor	92	chemical shift tensor, 13C	S135	difluorocyclophanes S71
automated assignment	267	chemical shift thermometer, ¹³ C NM		dihedral angle 839
azaerythromycin	217		S118	1,4-dihydroxynaphthalene 98
azalide antibiotic	217	chemical shifts	S179	3,5-difluorobenzenesulfonamide \$169
azithromycin	135, 217	chiolite	956	1,3-dioxane, 6-vinyl-
azo compounds	13	chiral auxiliary	S189	dipeptides 727 dipolar coupling 773
azo dyes, Al complexes of	279	chiral recognition	S47 429	dipolar coupling 773 —, ¹³ C, ¹³ C S195
azoles	39	chiral shift reagent	429	dirhodium complex S47
D gradients	489	chiral spin trap chiral β -lactam	429	distance, C-Li S151
B ₁ gradients B-11 NMR 407.	956, S145	chirality	325	disulfide bridge 913
baccharis oxide	766	chlorinated compounds	885	disulfides, dialkoxy- 461
band-selectivity, ω_1	601	chlorobenzenes	92	diterpenes 124, 542, 947
band shape analysis	154	chromenes, thionyl-substituted	548	dithia[3.3]metaparacyclophane S71
barbituric acid	315	clerodane	947	1,4-dithiinodiquinolines 73
BASHD-ROESY	601	clerodane derivatives	542	DNMR 687, S145
benzene	92	composite decoupling	956	dodecylphosphocholine micelles 815
benzimidazole-type substrate	205	composite material	833	DOSY 489, 706, 755
benzo[a]phenazines	529	computer model	S169	double quantum spectroscopy 670
benzodiazepine	69		5, 761	DOF-COSY, ¹³ C, ¹³ C 128
benzoheteroazepinone	69	—, of amide bonds	741	drug composition 211
			128	drug composition 211 drug molecule 387, 693 dynamic behavior 46

Symmetr NMR 154, Sol, STJ, S116, S145 Mynamics S39 Mynamics Mynamics S39 Mynamics Mynami	dynamic equilibrium 285	-, ¹⁵ N, ¹ H 35, S11	lactones 463
dynamics 387, 596, 663, 687, 747 , "PL*13W[*1] 807 layachone, β 529			
Foodside			-
HR-DOSY			1 ',
E.Z-siomers 154, 181, 398, 520, 565, 573	-, of solids 855, 361		8
HSQC sequence, modified			
Section Sect	E,Z-isomers 154, 181, 398, 520, 565, 573		
n'i HSQC	E. coli	HSQC sequence, modified 715	ligand affinity 656
— "MAR 715 — "measurement of J-couplings 505 lignonids 929 limonoids 371 lineshape analysis 655 state of the certoregativity 8 state of the certoregativity 9 state of the certoregativity 8 state of the certoregativity 9 state of the certoregati	editing 445		lignins 597
-, in HSQC			
bydrocarbons, acidity		,	
becterronic effects 797 hydrogen-bonding 565, 272 lineshape analysis 855, 1814 lineshape analysis 857, 1814 lineshape analysis 177, 1814 linesh			
Imput			
enamino ester enamino lactones 921 hydrogene schange 201 enaminones 565, 921 hydrogenborate 217 liquid crystallin medium 773 liquid chromatography 104, 245 manitomeric excess 5189 hyperino coupling 13, 46, 98 liquid chromatography 104, 245 liquid crystall limedium 773 liquid chromatography 104, 245 liquid crystallin medium 773 liquid chromatography 104, 245 liquid crystallin medium 773 liquid chromatography 104, 245 liquid crystal liquid crystal liquid chromatography 104, 245 liquid crystal li			
enaminolactones 921 bydrogenborate 217 bigd crystalline medium 773 cananinomeric composition 55, 921 bydrogenborate 829 bigdid crystalline medium 782 cananitomeric excess 8189 bydrefine coupling 13, 4, 93 bigdid crystalline medium 782 cananitomeric excess 8189 bydrefine coupling 13, 4, 93 bigdid crystalline medium 782 cananitomeric excess 8189 bydrefine coupling 13, 4, 93 bigdid crystalline medium 782 cananitomeric excess 8189 bydrefine coupling 13, 4, 93 bigdid crystalline medium 782 cananitomeric excess 8189 bydrefine coupling 13, 4, 93 bigdid crystalline medium 782 cananitomeric excess 8189 bydriff and 818 bigdid crystalline medium 782 cananitomeric excess 8189 bydriff and 818 bigdid crystalline medium 782 cananitomeric excess 8189 bigdid crystalline medium 782 cananitomeric excess 8189 bigdid crystalline medium 782 cananitomeric excess 8189 bigdid crystalline medium 782 cananitomeric 820 cananitomeric excess 824 bigdid crystalline medium 782 cananitomeric excess 825 bigdid crystalline medium 782 cananitomeric 825 bigdid crystalline 825 bigdid cryst	electronic effects 797	hydrogen bonding S104	lipids S79
enaminolactones 921 bydrogenborate 217 bigd crystalline medium 773 cananinomeric composition 55, 921 bydrogenborate 829 bigdid crystalline medium 782 cananitomeric excess 8189 bydrefine coupling 13, 4, 93 bigdid crystalline medium 782 cananitomeric excess 8189 bydrefine coupling 13, 4, 93 bigdid crystalline medium 782 cananitomeric excess 8189 bydrefine coupling 13, 4, 93 bigdid crystalline medium 782 cananitomeric excess 8189 bydrefine coupling 13, 4, 93 bigdid crystalline medium 782 cananitomeric excess 8189 bydrefine coupling 13, 4, 93 bigdid crystalline medium 782 cananitomeric excess 8189 bydriff and 818 bigdid crystalline medium 782 cananitomeric excess 8189 bydriff and 818 bigdid crystalline medium 782 cananitomeric excess 8189 bigdid crystalline medium 782 cananitomeric excess 8189 bigdid crystalline medium 782 cananitomeric excess 8189 bigdid crystalline medium 782 cananitomeric 820 cananitomeric excess 824 bigdid crystalline medium 782 cananitomeric excess 825 bigdid crystalline medium 782 cananitomeric 825 bigdid crystalline 825 bigdid cryst	enamino ester 921		lipopolysaccharide 1, 128
Commitmence 555, 921 1,4-bydroquinone 98 liquid chromatograph 194, 245 195		, 0	
Commitmeric composition 211 Syperionic qualquation, negative S29 Inquid crystal S39 Inquid crystal			1 2
Canatiomeric excess S189 Syperfine coupling 13, 46, 98 Ithium amides S61 canationeric purity 211 maging 196 macroscycle ligands S20 macroscycle			
Charactioners S47	*		
enantioneric purity 211 maging 196 proposed 196	enantiomeric excess S189	hyperfine coupling 13, 46, 98	lithium amides S61
ENDOR 422	enantiomers S47		LORG study 336
ENDOR 422	enantioselective alkylation \$189	ikarisoside A 303	luminescence 79
ENDOR			
end ent-atisane 947 ent-beyreane 947 ent-beyreane 947 ent-pimerane 948 ent-pimerane 949 ent			lysozyme 045
ent-atisane			
### of the composition of the co			macrocycle 635 603
## Company of the properties	ent-atisane 947	inclusion complex 663, 693	
macromide antibotic stop s	ent-beverane 947	indoles 39	
Internal rotation 599			
Internuclear distances 359	I		macromolecular Gd(III) complexes S125
EPR 8, 13, 46, 98, 205, 422, 826, S125 cquilibria 343 cquilibria 345 cquili			magic angle spinning, in liquid NMR 645
Comparison of the properties 134 135			
cquilibrium isotope effect 315	EPR 8, 13, 46, 98, 205, 422, 826, S125	inter-proton distances 815	
ESR, see EPIS REP STR Representation	equilibria 343	inversion 469	, , , , , , , , , , , , , , , , , , , ,
FSR, see EPR RCP method			1
exchange rates 205, 285, 3145 exchange rates RMA 815 was also solid state NMR Solation sculpting 245 isobenzofuranones 511 sobenzofuranones 513 sobenzofuranones 514 sobenzofuranones 515 sobores 66 sobiolaufuranones 512 sobores 66 sobiolaufuranones 72 sobores 66 sobiolaufuranones 72 sobores 72 sobores 72 sobores 72 sobiores 72 sobores 72 sobores 72 sobores 72 sobores 72 sobores 72 sobores 72 sobiores			MAS NMR, see solid state NMR
exchange ates			MAS, in liquid NMR S645
Commonstration Subpring 245 Subp			
Section sculpting	exchange rates S209	iron–sulfur cluster 913	
Simple S	excitation sculpting 245	isobenzofuranones 511	
F-19 MMR 181, 761, 892, S71, S169 F-19 MMR 181, 761, 892, S71, S169 F-19 MMR S 8 8 29 ferredoxin I 913 ferredoxin I 913 ferredoxin I 913 filted gradients, see pulsed field gradients s			
	E.10 NMP 191 761 902 971 9160		mesoionic systems 8
International Content			metal-dve complex 279
Somerism 154 156 157 156 157 156 157			
Some	fatty acids S79	isomerism 154	4
Soly	ferredoxin I 913	isomers 69	
Interdiagonalization method S17 Southioquinanthrene T3 Southioqui	field gradients, see pulsed field gradients	isospongiadiol 325	
Sitting procedure		1 0	micelle concentration, critical 615
String procedure			micelles 815
The procedure Society			
Batopes Batopes Batts Botopes Batts Batts Batts Batts Batts Batts Batts	fitting procedure 855	—, on ¹³ C 921	
fluorenone radical anion 656 —, [131]N(11]Sn) 39 19 19 19 19 19 19 19	flavones 621	isotope shift, $^{2/1}H(^{13}C)$ 315	
Buoroplaymers 92 stotope shift, for \(^{15}\)N NMR S157 S157 S15, 839 molecular deling molecular modelling molec	fluorenone radical anion 656	$= \frac{14/15}{N(^{119}Sn)}$ 39	
Bluoroflavones 621 BluPÄC symbols, recommendations 145 815, 839 825 810 825 810 825 825 820 825 825 820 825 825 820 825 825 820 825 82			moisture transport 196
The composition of the composi			molecular dynamics 205, 285, 627, 693,
The propose of the property in the property		1UPAC symbols, recommendations 145	
FOD, methylation 79 fungicide 64 furanoditerpenes 325 gadolinium(III) complexes \$125, \$200 geraniol 706 GIAO/6-311+ G**MP2 \$29 glucopyranose derivatives 727 glycine, ¹³ C, ¹⁴ B 73, ¹² C, ¹⁵ P \$212 glucopyranose derivatives 727 glycine, ¹³ C labelled 351 gramicidine A 651 guest-host interaction 663, 693 H-2 NMR 732, 855 H-3 NMR \$209 Hadamard spectroscopy 839 hadamard spectros			
FOD, metnylation 79	fluxional structure S157	J-coupling 515	
fungicide furanoditerpenes 325	FOD, methylation 79	-, H. H 73, 124, 154, 174, 217, 436, 463,	
furanoditerpenes 325			
885, S104			molecular recognition 205, 901
gadolinium(III) complexes S125, S200 766 779, geraniol 706 706 713C, 13C 240, 351, 356 MQ-MAS 956 GIAO/6-311+ G**MP2 S29 -13C, 15N 279, 398, 351, S157 glycine, 13C 15P 621, 761, S71 glycine, 13C 15P 621, 761, S71 glycine, 13C 15P 8212 gradients 551 -, 13C, 15P 5212 gradients 551 -, 15N, 14 587 guest-host interaction 663, 693 -, 29Si, 13C S157 -, 29Si, 13C S157 S157 N-15 NMR S85 WRI contrast agent multiple quantum MAS 956 multiple solvent suppression 245 multiple solvent suppression 245 multiple solvent suppression 245 multiple solvent suppression 245 with similar specific properties of the solvent suppression 245 multiple quantum MAS 956 multiple solvent suppression 245 multiple quantum MAS 956 multiple solvent suppression 245 multiple quantum MAS 956 multiple solvent suppression 245 multiple quantum MAS 956 multiple quantum MAS 956 multiple solvent suppression 245 multiple quantum MAS 956 multiple plantum MAS 956 multiple qu	raranourier penes 323		mono-saccharides S111
graniol 706 GIAO/6-311+ G**MP2 S29 glucopyranose derivatives 727 glycine, 13C labelled 351 gramicidine A 651 guest-host interaction 663, 693 H-2 NMR 732, 855 H-3 NMR S209 Hadamard spectroscopy 839 helical structure S161 heterocycles 442, 449, 454, 459, 463, 587, 587, 621, 627, 635, 681, 511, 520, 529, 545, 548, 551, 779, 878, 951, S11, S200, S212 J-doubling 839 hexamethyldisilane 747 high-pressure probe 833 hindered rotation 154 hMBC method, modified 472 hMBC method, modified 4875 granioline 706 - 13C, 19F - 279, 398, 351, S157 granioline 8240 - 13C, 19F - 370, 19F - 370, 19F - 371, 19			Mosher's acid S47
GIAO/6-311+ G**MP2 S29 — 13C,15N 279, 398, 351, S157 glycine, 13C labelled 351 — 13C,15N 279, 398, 351, S157 glycine, 13C labelled 351 — 15N,1H 587 gramicidine A 651 — 19F,19F S71 S15N, 14 S87 guest-host interaction 663, 693 — 29Si,13C S157 N-15 MAS NMR 279 — 29Si,15N 55, S157 N-15 MAS NMR 35, 87, 279, 343, 351, NH-2 NMR 732, 855 — 31P,1H 807 S209 — 31P,1H 807 S212 N-15 NMR 35, 87, 279, 343, 351, NH-3 NMR S209 — 31P,1H 807 S212 N-15 NMR 35, 87, 279, 343, 351, NH-3 NMR S209 — 31P,1H 807 S212 N-15 NMR 35, 87, 279, 343, 351, NH-2 NMR S209 — 31P,1H 807 S212 N-15 NMR 35, 87, 279, 343, 351, NH-2 NMR S209 — 31P,1H 807 S212 N-15 NMR 35, 87, 279, 343, 351, NH-2 NMR S209 — 31P,1H 807 S212 N-15 NMR 35, 87, 279, 343, 351, NH-2 NMR S209 — 31P,1H 39 NH-2 NH-2 NH-2 NH-2 NH-2 NH-2 NH-2 NH-2	gadolinium(III) complexes S125, S200	-, ¹³ C, ¹ H long-range 839	
GIAO/6-311+ G**MP2 S29 —, 13C,15N 279, 398, 351, S157 glucopyranose derivatives 727 —, 13C,15F 621, 761, S71 glycine, 13C labelled 351 —, 15N,1H 587 gramicidine A 651 —, 15N,1H 587 guest-host interaction 663, 693 —, 29S,13C S157 H-2 NMR 732, 855 —, 31P,1H 807 Hadamard spectroscopy 839 —, 55Mn,13C S54 halomethanes 255 —, 119Sn,1H 39 HEED-INEPT 55 —, 119Sn,1SN 39 helical structure S161 —, 183W,1H 807 helical structure S161 —, 195 helical stru		—, ¹³ C, ¹³ C 240, 351, 356	
glucopyranose derivatives 727	GIAO/6-311 + G**MP2 S29	-, ¹³ C, ¹⁵ N 279, 398, 351, S157	MKI contrast agent S123
glycine, ¹³ C labelled 351 —, ¹³ C, ³¹ P S212 gradients 551 —, ¹⁵ N, ¹ H 587 gramicidine A 651 —, ¹⁹ F, ¹⁹ F S71 N-14 NMR S85 guest-host interaction 663, 693 —, ²⁹ Si, ¹³ C S157 N-15 MAS NMR 279 —, ²⁹ Si, ¹⁵ N 55, S157 N-15 NMR 35, 87, 279, 343, 351, H-2 NMR 732, 855 —, ³¹ P, ¹ H 807 398, 407, 442, 587, 635, 727, 848, S11, S14 NMR S209 —, ³¹ P, ¹⁸³ W 807 S212 —, ³¹ P, ¹⁸³ W 807 S212 —, ³¹ P, ¹⁸³ W 807 S214 —, ¹⁹ Sn, ¹³ C S54 nano probe 645 halomethanes 255 —, ¹¹⁹ Sn, ¹ H 39 naphtho[2,1-b]pyran, [3H]—548 (+)harwickiate, methyl 542 —, ¹¹⁹ Sn, ¹³ C 39 naphtho-oxazole 449 HEED-INEPT 55 —, ¹¹⁹ Sn, ¹⁵ N 39 naphtho-oxazole 449 HEED-INEPT 55 —, ¹¹⁹ Sn, ¹⁵ N 39 naphtho-oxazole 449 natural products 1, 124, 267, 303, 325, 587, 621, 627, 635, 681, 511, 520, 529, —, measurement by HSQC 505 869, 929, 936, 947, S111, S195 neuronuscular blockers 387 Ni(II) complex of Schiff base nitriles S212 —, sign 39, S157 nitro goup effects, on ¹ J(¹³ C, ¹³ C) 356 hindered rotation 154 khivorin 371 nitro goup effects, on ¹ J(¹³ C, ¹³ C) 356 Nintro goup effects, on ¹ J(¹³ C, ¹³ C) 356 Nintro goup effects, on itro goup effects, on itrogen shielding S85		-, ¹³ C, ¹⁹ F 621, 761, S71	multiple quantum MAS 956
gradients 551 —, 15N, 1H 587 gramicidine A 651 —, 19F, 19F S71 N-14 NMR S85 guest—host interaction 663, 693 —, 29Si, 13C S157 N-15 MAS NMR 279 —, 29Si, 13N 55, S157 N-15 MAS NMR 35, 87, 279, 343, 351, H-2 NMR 732, 855 —, 31P, 1H 807 398, 407, 442, 587, 635, 727, 848, S11, H-3 NMR S209 —, 31P, 183W 807 S212 Hadamard spectroscopy 839 —, 55Mn, 13C S54 nano probe 645 halomethanes 255 —, 119Sn, 1H 39 naphtho[2,1-b]pyran, [3H]— 548 (+)harwickiate, methyl 542 —, 119Sn, 15N 39 naphtho-axazole 449 HEED-INEPT 55 —, 119Sn, 15N 39 naphtho-axazole 449 helical structure S161 —, 183W, 1H 807 natural products 1, 124, 267, 303, 325, 587, 621, 627, 635, 681, 511, 520, 529, —, measurement by HSQC 505 869, 929, 936, 947, S111, S195 S45, 548, 551, 779, 878, 951, S11, S200, —, sign 39, S157 hexamethyldisilane 747 J-modulation 515 Ni(II) complex of Schiff base 351 nitrog oup effects, on 1J(13C, 13C) 356 HMBC method, modified S44 kinetic acidity S209 nitrogen shielding S85		13C 31p	multiple solvent suppression 245
gramicidine A 651			
guest-host interaction 663, 693 —, 29Si, 13C —, 29Si, 15N — 5.5 S157 N-15 MAS NMR 279 —, 29Si, 15N — 5.5 S157 N-15 NMR 35, 87, 279, 343, 351, 15N NMR 15			
H-2 NMR		-, 19F, 19F	
H-2 NMR 732, 855 —, 31P, 1H 807 S212 Hadamard spectroscopy 839 —, 55Mn, 13C S54 nano probe halomethanes 255 —, 119Sn, 1H 39 naphtho-(2,1-b) pyran, [3H]- 548 (+)harwickiate, methyl 542 —, 119Sn, 13C 39 naphtho-oxazole 449 HEED-INEPT 55 —, 119Sn, 15N 39 naphtho-oxazole 449 helical structure S161 —, 183W, 1H 807 natural products 1, 124, 267, 303, 325, 687, 621, 627, 635, 681, 511, 520, 529, —, measurement by HSQC 505 869, 929, 936, 947, S111, S195 S212 J-doubling 839 hexamethyldisilane 747 J-modulation 515 Ni(II) complex of Schiff base 351 high-pressure probe 833 keto-enol equilibrium 315 nitro goup effects, on 1J(13C, 13C) 356 hindered rotation 154 khivorin 371 nitro goup effects, on 1J(13C, 13C) 356 hildered rotation 154 kinetic acidity S209 nitrogen shielding S85	guest-host interaction 663, 693	$-, ^{29}Si, ^{13}C$ S157	N-15 MAS NMR 279
H-2 NMR 732, 855 —, 31P, 1H 807 S212 Hadamard spectroscopy 839 —, 55Mn, 13C S54 nano probe halomethanes 255 —, 119Sn, 1H 39 naphtho-(2,1-b) pyran, [3H]- 548 (+)harwickiate, methyl 542 —, 119Sn, 13C 39 naphtho-oxazole 449 HEED-INEPT 55 —, 119Sn, 15N 39 naphtho-oxazole 449 helical structure S161 —, 183W, 1H 807 natural products 1, 124, 267, 303, 325, 687, 621, 627, 635, 681, 511, 520, 529, —, measurement by HSQC 505 869, 929, 936, 947, S111, S195 S212 J-doubling 839 hexamethyldisilane 747 J-modulation 515 Ni(II) complex of Schiff base 351 high-pressure probe 833 keto-enol equilibrium 315 nitro goup effects, on 1J(13C, 13C) 356 hindered rotation 154 khivorin 371 nitro goup effects, on 1J(13C, 13C) 356 hildered rotation 154 kinetic acidity S209 nitrogen shielding S85		-, ²⁹ Si, ¹⁵ N 55, S157	N-15 NMR 35, 87, 279, 343, 351,
H-3 NMR S209 —, 31P,183W 807 S212 Hadamard spectroscopy 839 —, 55Mn,13C S54 nano probe 645 halomethanes 255 —, 119Sn,14H 39 naphtho[2,1-b]pyran, [3H]— 548 (+)harwickiate, methyl 542 —, 119Sn,13C 39 naphtho-oxazole 449 HEED-INEPT 55 —, 119Sn,15N 39 naphtho-oxazole 449 helical structure S161 —, 183W,1H 807 natural products 1, 124, 267, 303, 325, 612, 627, 635, 681, 511, 520, 529, —, measurement by HSQC 505 869, 929, 936, 947, S111, S195 S45, 548, 551, 779, 878, 951, S11, S200, —, sign 39, S157 S212 J-doubling 839 hexamethyldisilane 747 J-modulation 515 Ni(II) complex of Schiff base 351 high-pressure probe 833 keto-enol equilibrium 315 nitrog goup effects, on 1J(13C,13C) 356 HMBC method, modified S44 kinetic acidity S209 nitrogen shielding S85	H-2 NMR 732 855	31 m 1 m 2 m 2 m 2 m 2 m 2 m 2 m 2 m 2 m	
Hadamard spectroscopy		31 D 183 W	
halomethanes 255 —, 119 Sn, 1H 39 naphtho [2,1-b] pyran, [3H]—548 (+) harwickiate, methyl 542 —, 119 Sn, 13C 39 naphtho-oxazole 449 helical structure 516 —, 119 Sn, 15N 39 naphtho-oxazole 449 helical structure 516 —, 183 W, 1H 807 natural products 1, 124, 267, 303, 325, heterocycles 442, 449, 454, 459, 463, 587, 621, 627, 635, 681, 511, 520, 529, —, measurement by HSQC 505 869, 929, 936, 947, S111, S195 7645, 548, 551, 779, 878, 951, S11, S200, —, sign 39, S157 neolignans 929 1-doubling 839 neuromuscular blockers 387 hexamethyldisilane 747 J-modulation 515 Ni(II) complex of Schiff base 351 nitroles 547 high-pressure probe 833 keto—enol equilibrium 315 nitrog goup effects, on 1J(13C, 13C) 356 hindred rotation 154 khivorin 371 nitrog goup effects, on 1J(13C, 13C) 356 S85 HMBC method, modified S44 kinetic acidity S209 nitrogen shielding S85			
(+)harwickiate, methyl 542 —, \$\frac{119}{5}\text{Sn}, \frac{13C}{39}\$ naphtho-oxazole 1449 helical structure \$151 —, \$\frac{183}{5}\text{N}, \frac{15}{19}\text{Sn}, \frac{15}{19}\text{Sn}, \frac{15}{19}\text{Sn}, \frac{15}{19}\text{Sn}, \frac{15}{19}\text{N} 39 naphtho-oxazole 1449 naphthoxazinone 11, \$124, 267, 303, 325, \$12, \$12, \$13, \$14, \$15, \$15, \$15, \$16, \$11, \$124, \$267, \$303, 325, \$17, \$176, \$31, \$15, \$20, \$29, \$25, \$371, \$376, \$31, \$39, \$608, \$766, \$779, \$39, \$39, \$157, \$11, \$195, \$11, \$115, \$1		—, ³³ Mn, ¹³ C S54	
(+)harwickiate, methyl 542 —, \$\frac{119}{5}\text{Sn}, \frac{13C}{39}\$ naphtho-oxazole 1449 helical structure \$151 —, \$\frac{183}{5}\text{N}, \frac{15}{19}\text{Sn}, \frac{15}{19}\text{Sn}, \frac{15}{19}\text{Sn}, \frac{15}{19}\text{Sn}, \frac{15}{19}\text{N} 39 naphtho-oxazole 1449 naphthoxazinone 11, \$124, 267, 303, 325, \$12, \$12, \$13, \$14, \$15, \$15, \$15, \$16, \$11, \$124, \$267, \$303, 325, \$17, \$176, \$31, \$15, \$20, \$29, \$25, \$42, \$42, \$449, \$454, \$459, \$463, \$-, isotope effect \$255 \$371, \$376, \$31, \$539, \$608, \$766, \$779, \$39, \$587, \$621, \$627, \$635, \$681, \$511, \$520, \$529, \$-, measurement by HSQC \$505 \$869, \$929, \$936, \$947, \$5111, \$195 \$122 \$12 \$1.5 \$1.5 \$1.5 \$1.5 \$1.5 \$1.5 \$1.5 \$1.5		—, 119Sn, 1H	naphtho[2,1-b]pyran, $[3H]$ - 548
HEED-INEPT 55	(+)harwickiate, methyl 542	-, ¹¹⁹ Sn, ¹³ C 39	naphtho-oxazole 449
helical structure S161 —, 183 W, 1 H 807 natural products 1, 124, 267, 303, 325, heterocycles 442, 449, 454, 459, 463, —, isotope effect 255 371, 376, 381, 539, 608, 766, 779, 839, 587, 621, 627, 635, 681, 511, 520, 529, —, measurement by HSQC 505 869, 929, 936, 947, S111, S195 s202, —, sign 39, S157 neolignans 929 hexamethyldisilane 747 J-modulation 515 Ni(II) complex of Schiff base 351 nitroles S47 high-pressure probe 833 keto—enol equilibrium 315 nitroles suppose S43 hindered rotation 154 khivorin 371 nitroles 356, S85 HMBC method, modified S44 kinetic acidity S209 nitrogen shielding S85		-, 119Sn, 15N	
heterocycles 442, 449, 454, 459, 463, 587, 621, 627, 635, 681, 511, 520, 529, —, measurement by HSQC 505 869, 929, 936, 947, S111, S195 929, 545, 548, 551, 779, 878, 951, S11, S200, —, sign 39, S157 neolignans 929 neuromuscular blockers 387 hexamethyldisilane 747 J-modulation 515 Ni(II) complex of Schiff base 351 nitroles S47 high-pressure probe 833 keto—enol equilibrium 315 nitro goup effects, on ¹J(¹³C,¹³C) 356 hindered rotation 154 khivorin 371 nitro goup effects, on ¹J(¹³C,¹³C) 356 HMBC method, modified S44 kinetic acidity S209 nitrogen shielding S85		183W 1H 907	1
587, 621, 627, 635, 681, 511, 520, 529, —, measurement by HSQC 505 869, 929, 936, 947, S111, S195 545, 548, 551, 779, 878, 951, S11, S200, —, sign 39, S157 neolignans 929 S212 J-doubling 839 neuromuscular blockers 387 Hg-199 NMR 797 Ni(II) complex of Schiff base 351 high-pressure probe 833 keto-enol equilibrium 315 nitro goup effects, on ¹J(¹³C,¹³C) 356 hindered rotation 154 khivorin 371 nitroalkanes 356, S85 HMBC method, modified S44 kinetic acidity S209 nitrogen shielding S85			
545, 548, 551, 779, 878, 951, S11, S200, —, sign 39, S157 neolignans 929 S212 J-doubling 839 neuromuscular blockers 387 hexamethyldisilane 747 J-modulation 515 Ni(II) complex of Schiff base 351 Hg-199 NMR 797 nitriles S47 high-pressure probe 833 keto—enol equilibrium 315 nitro goup effects, on ¹J(¹³C,¹³C) 356 hindered rotation 154 khivorin 371 nitroalkanes 356, S85 HMBC method, modified S44 kinetic acidity S209 nitrogen shielding S85			
S212 J-doubling 839 neuromuscular blockers 387 hexamethyldisilane 747 J-modulation 515 Ni(II) complex of Schiff base 351 Hg-199 NMR 797 S15 Ni(II) complex of Schiff base 351 nitriles S47 high-pressure probe 833 keto-enol equilibrium 315 nitro goup effects, on ¹ J(¹³ C, ¹³ C) 356 hindered rotation 154 khivorin 371 nitroalkanes 356, S85 HMBC method, modified S44 kinetic acidity S209 nitrogen shielding S85			
S212 J-doubling 839 neuromuscular blockers 387 hexamethyldisilane 747 J-modulation 515 Ni(II) complex of Schiff base 351 Hg-199 NMR 797 S15 Ni(II) complex of Schiff base 351 nitriles S47 high-pressure probe 833 keto-enol equilibrium 315 nitro goup effects, on ¹ J(¹³ C, ¹³ C) 356 hindered rotation 154 khivorin 371 nitroalkanes 356, S85 HMBC method, modified S44 kinetic acidity S209 nitrogen shielding S85	545, 548, 551, 779, 878, 951, S11, S200,	—, sign 39, S157	neolignans 929
hexamethyldisilane 747 J-modulation 515 Ni(II) complex of Schiff base 351 Hg-199 NMR 797 nitriles S47 high-pressure probe 833 keto-enol equilibrium 315 nitro goup effects, on ¹J(¹³C,¹³C) 356 hindered rotation 154 khivorin 371 nitroalkanes 356, S85 HMBC method, modified S44 kinetic acidity S209 nitrogen shielding S85			
Hg-199 NMR 797 high-pressure probe 833 keto-enol equilibrium 315 nitro goup effects, on ¹ J(¹³ C, ¹³ C) 356 hindered rotation 154 khivorin 371 nitroalkanes 356, S85 HMBC method, modified S44 kinetic acidity S209 nitrogen shielding S85			
high-pressure probe 833 keto-enol equilibrium 315 nitro goup effects, on ${}^1J({}^{13}C, {}^{13}C)$ 356 hindered rotation 154 khivorin 371 nitroalkanes 356, S85 HMBC method, modified S44 kinetic acidity S209 nitrogen shielding S85		o-modulation 313	
hindered rotation 154 khivorin 371 nitroalkanes 356, S85 HMBC method, modified S44 kinetic acidity S209 nitrogen shielding S85			
hindered rotation 154 khivorin 371 nitroalkanes 356, S85 HMBC method, modified S44 kinetic acidity S209 nitrogen shielding S85			
HMBC method, modified S44 kinetic acidity S209 nitrogen shielding S85	hindered rotation 154	khivorin 371	nitroalkanes 356, S85
	HMBC method, modified S44		
200 111101111820100 343			
	, , , , , , , , , , , , , , , , , , , ,	203	545

	- 11 - 1	40		181	1 11	860 8400
nitroxide		46	polypeptide	651	saccharide	769, S189
NMR im	aging	196	polysaccharides 1,	128	sanguinarine pseudobase	869
NMR pro	obe, for high pressure	833	porous silica	747	saponins	S111
		79		135		
	ift reagent		post-processing method		scalar coupling, see J-coupling	
NMRD		S125	practical aspects of PFG metho	ds 469	scaling	135
NOF me	asurements, standard	403	pressure probe	833	Schiff base	351
NOE, {11	H}**F	S169	probe design	833	Schmidt rearrangement	69
-, transf	erred	901	probe, high pressure	833	secondary structure	913
		135	protein			747
noise red				913, S161	self-diffusion	
nonlinear	r regression	163	protein dynamics	S169	semiempirical calculations	356
norhorny	l compounds	261	protein folding	651	sequence assignment	913
N-oxidat	ion	S11	proton exchange	163	sequence, polysaccharide	1
N-phenyl	lglycines	848	proton shielding	S179	shielding, 15N	727
nucleosid		732	protonation	587	—, ¹H	S179
—, ¹³ C re	elaxation	227	protonation effects	779	shift reagents	79
- dente	rium labeled	227	pseudorotation	732	—, chiral	429
nucleotid		901		5, 442, 471,	Si-29 NMR	55, 110, S157
nucleotid	le structure	901	474, 551, 635, 670, 715, 755	839, S11,	sideband suppression	496
			S17, S44		sidebands	496
0 17 17	ID 122 127 161	2010 0120		400		
O-17 NM			-, review	467	signal-to-noise	104
S200, S	S212, 511, 565, 573, 720	0, 921	purines	55	silanes	S118
	ance effect	801		35	silica	747
			pyrazol derivatives			
off-reson	ance ROESY	801	pyrimidine nucleoside	732	siliceous MFI zeolite	415
oligoimir	nes.	398	pyrimidine-2-ones	442	silylotropy	110
oligosacc	naride	615, 839	pyrimidines	55	simplex algorithm	116
oligosacc	charide coformation	773	pyrroles	39	S-methyldibenzothiophenius	m ion 79
		601		873	Sn-119 NMR	250
	selectivity		pyrrolidine	0/3		
ω_1 -homo	nuclear decoupled RO	ESY 601			solid state dynamics	415, S61
ontically	active compound	429			solid state NMR 87.	279, 407, 415,
			quadrupolar coupling constant	S61, S151		
organoci	nlorine compounds	885	—, ² H	732	496, 855, 892, 956, S61	, \$135, \$151,
organohy	ydroborate complexes	S145			S195	
	ad compounds	140	quadrupolar coupling, 7Li	S61, S151	solvent dependence	154
			-, correlation with N-Li-N bo	nd angle		
organolit	thium compounds	S151	,		solvent effects	651
2-089-7-9	azabicyclo[3.2.0]heptar	ne-6-one		S61	solvent suppression	245, 670
2-074-1-6	zzabiejelo[5.2.0]heptai		—, see also solid state NMR			
		429	quadrupolar interaction	956	spectra, 800 MHz	S79
oxadiazii	nes	878			spin diffusion	801
oxadiazo		8, 878	quadrupolar relaxation	227, S145	spin echo experiment	515
		,	quantitative 13C NMR	359		
oxazole (derivatives	449			spin echo, selective	483
			quantitative intensities	801	spin lattice relaxation, see re	lavation
D 24 1 1		007	QUASAR	S61		
	irect detection	807	quaternization, effect of	951	spin trap	13, 826
P-31 NM	IR 250, 656, 907,	S29, S189,			—, chiral	422
	200, 000, 701,	,	quinine	706		663
S212			quinolinium dibromides	951	spin-lattice relaxation	
P-31 shie	elding	250			—, ² H	732
	m allyl complex	S189	quinolinyl sulfides	73	spinning sense	496
			quinolizidine alkaloids, review	779		
pancuro	nium bromide	387	4-quinolones, 3-substituted	681	spinning, magic angle	496
[2,2]para	acyclophane	663			spin-spin coupling, see J-co	upling
	ers, NMR	145	quinolone, tricyclic derivatives		spiro-acetal amine	64
			quinoxalinones	300		
Pb-207 N	NMR	140	quinuclidine derivatives	627	spiroxamine	64
pentacar	bonyl complexes	S54	quinucidine derivatives	027	spongian intermediates	325
						579
	, 1-substituted	S93			spongian precursors	
pentaper	otide	741	radical products	8	standard, for NOE measure	ments 403
peptide		1, 741, 815	radicals	13, 46, 826		325, 371, 376,
peptide,	tetradeca-	285	radiofrequency gradients	489	381, 429, 436, 687, 779, 9	
peroxide	s, di-tert-alkyl	826	rearrangement	873	stereoisomers, of dialkoxyet	thenes 573
	ceutical compound	436	receptor interaction	205	-, of enaminones	565
phase er	rors	469	reduction potential	8	stereoselective synthesis	64
phenantl	hridinone	S17	refocusing	469	steric effects	261, 779
				35		267, 387, 936
phenethy		211	regioisomers		steroids	
3-pheno:	xypyridine sulphate	693	regiospecific analysis	359	stimulated echo	706
phenylth	iols	720	regression analysis	163	structure elucidation, comp	uter-assisted
					on actual cracination, comp	267
	us, tricordinate	S29		27, 415, 559,		
PHORM	AAT	S135	663, 732, 747, S169		structure-activity relation	587
		907	relaxometry	S125, S200	strychnine	S44
phospho					,	
phospho	oric amides	S212	reorientation	46	submicro inverse detection	551
phospho	rus-tin cage molecule	250	resolution enhancement	956	submicro probe	551
phospho	ryl compounds	46	resonance effects	848	subspectral editing, for CH,	
photodir	mer	436	restricted rotation	S189	substituent effects 132.	, 181, 343, 511,
	action product	371	review, pulsed field gradients	467	565, 720, 779, 848, 943,	
						554, 505, 575,
phthalise	oimides	881	—, quinolizidine alkaloids	779	S179	
P flip		S61	ring contraction	873	—, ³¹ P NMR	S29
				387	-, O NMR	137
piperidir		873	rocuronium bromide			
piperidir	ne, 4-p-fluorobenzoyl	545	ROE quantification	801	$-$, on $J(^{13}C,^{13}C)$	356
piperidir		240	ROESY experiment, modified	601	sugar moiety	732
						635
		429	—, ω ₁ -homonuclear decoupled		sulfomycin-I	
Pirkle's	alcohols		DOECV intensities	801	sulfonamide	S169
Pirkle's	alcohols	140	RUEST intensities			
Pirkle's		140	ROESY intensities			127
Pirkle's pK podocar	pane derivatives	579	rotamers	587	sulfoxides, O-17 NMR	137
Pirkle's pK podocar	pane derivatives	579	rotamers			137 747
Pirkle's pK podocar polar su	pane derivatives bstituent effects	579 181, 848	rotamers rotation	587 S169	sulfoxides, O-17 NMR surface layer	747
Pirkle's pK podocar polar su polychlo	pane derivatives bstituent effects probutadiene	579 181, 848 885	rotamers rotation —, of side groups	587 \$169 559	sulfoxides, O-17 NMR	
Pirkle's pK podocar polar su polychlo	pane derivatives bstituent effects probutadiene additives	579 181, 848 885 755	rotamers rotation	587 S169	sulfoxides, O-17 NMR surface layer	747 145
Pirkle's pK podocar polar su polychlo	pane derivatives bstituent effects probutadiene additives	579 181, 848 885	rotamers rotation —, of side groups	587 \$169 559	sulfoxides, O-17 NMR surface layer	747

T_1 , see relaxation		-, ¹³ C, ¹⁹ F	761	tropane alkaloids	240
T_2 , see relaxation		TIGER processing	S135	tumbling motion	46
—, dispersion	163	tin satellites	250	tungsten complexes	807
taraxerenes	539	TNDO/2 method	356, S85		
tautomerism 110, 315,	343, S104	TOCSY, 13C, 13C	128	ultra-high field	S79
temperature dependent spectra	855	TraM protein headpiece	S161	ureido sugars	727
temperature measurement	S118	transferred NOE	901	urinary metabolites	116
tepoxalin	35	translational diffusion	227	armary metabolites	110
terpenes, 13C chemical shift tenso	or S135	triacetylmethane	315	variable temperature NIMD	215 507
terpenoids	579	2,4,6-triamino-s-triazines	587	variable temperature NMR 687, 747, 855, S61, S118, S14	315, 587,
tetraazepinones	87	triazines	587	vecuronium bromide	
tetracyclic compounds	579, 779	triazoles, isomerisation	343	· · · · · · · · · · · · · · · · · · ·	387
tetradecahydroacridines	240	1,2,3-triazoles	459	vinylidenes Viton	807
tetrakis(fod) europate	87	tricyclic compounds	779		892
tetraoxacyclotridecanes	687	trifluoromethylvinyl compounds	761	voltammetry	8
tetrapropylammonium template	415	triglycerides	359		
tetrasaccharide	773	trimethylsilyl compounds	55	W-183 NMR	807
theory	S29	trimethylsilylazoles	110	water transport	196
thermolysis	826	triorganostannyl compounds	39	wideline spectra,	848
thiadiazoles, 1,2,3-	8	triorganotin	39		
thienylchromenes	548	tris(trimethylsilyl)methane	S118	xanthones, substituted	305
thiirene-1-oxide, O-17 NMR	137	trisilylamines	S157	x-ray analysis	587
thiopeptide antibiotic	635	triterpene saponin	376		
thiophenium ions	87	triterpenes	539, 766	zeolite, solid state NMR	415
thioquinanthrene	73	triterpenoids	381, 608	zero quantum coherence	706
thiourea inclusion compound	855	tritium NMR	S209	z-filter	469
through space coupling	S71	tRNA	901	zirconocene complexes	S145

