

Technical Test Result

DESCRIPTION	STATUS
Attempted Questions	15
Blank Answer	0
Basic Correct	11
Optional Correct	0

1. The Which search method takes less memory

(A) Depth-First sear	ch
----------------------	----

- (B) Breadth-First serach ✓
- (C) Linear Search
- O(D) Optimal Search

2. Which algorithm is used for solving temporal probabilistic reasoning?

- (A) Hill-climbing search
- (B) Hidden markov model
- (C) Depth-first search
- O(D) Breadth-first search

3. Which data structure is used to give better heuristic estimates?

- O (A) Forwards state-space
- \bigcirc (B) Backward state-space
- lacktriangle (C) Planning graph algorithm \checkmark
- O (D) None of the mentioned

4. How many types of recognition are there in artificial intelligence
 ○ (A) 1 ○ (B) 2 ● (C) 3 ○ (D) 4
5. Which provides a framework for studying object recognition?
 ○ (A) Learning ○ (B) Unsupervised learning ● (C) Supervised learning ○ (D) None of the mentioned
6. How the distance between two shapes can be defined?
 (A) Weighted sum of the shape (B) Size of the shape (C) Shape context (D) None of the mentioned
7. Which of the following machine learning algorithm can be used for imputing missing values of both categorical and continuous variables?
 (A) K-NN ✓ (B) Linear Regression (C) Logistic Regression (D)
8. In k-NN it is very likely to overfit due to the curse of dimensionality. Which of the following option would you consider to handle such problem?
 ○ (A) Dimensionality ○ (B) Feature selection ● (C) A and B ✓ ○ (D) None of these
9. \$\frac{*}{2}\$ Which of the following statements is true for k-NN classifiers?

 (A) The classification accuracy is better with larger values of k (B) The decision boundary is smoother with smaller values of k (C) The decision boundary is linear (D) k-NN does not require an explicit training step ✓
10. Which of the following algorithm doesn't uses learning Rate as of one of its hyperparameter?
 (A) Random Forest ✓ (B) Gradient Boosting (C) AdaBoost (D)
11. When you use the boosting algorithm you always consider the weak learners. Which of the following is the main reason for having weak learners?
 (A) To prevent overfitting (B) To prevent under fitting (C) To prevent overfitting and underfitting (D) None of these
12. A 4-input neuron has weights 1, 2, 3 and 4. The transfer function is linear with the constant of proportionality being equal to 2. The inputs are 4, 10, 5 and 20 respectively. The output will be:
 (A) 238 ✓ (B) 76 (C) 119 (D) 123
13. A What is true regarding backpropagation rule?
 (A) it is a feedback neural network (B) actual output is determined by computing the outputs of units for each hidden layer (C) hidden layers output is not all important, they are only meant for supporting input and output layers
$^{\circ}$ (D) none of the mentioned

14. ♣ What consist of boltzman machine? ○ (A) fully connected network with both hidden and visible units ○ (B) asynchronous operation ○ (C) stochastic update ○ (D) all of the mentioned ✓ 15. ♣ One of the main challenge/s of NLP Is _ ○ (A) Handling Ambiguity of Sentences ✓ ○ (B) Handling Tokenization

○ (C) Handling POS-Tagging

(D) All of the mentioned