UNIVERSITE IBN TOFAIL ECOLE NATIONALE DES SCIENCES APPLIQUEES Cycle Intégré Préparatoire aux Formations d'Ingénieurs

Année Universitaire 2013/2014

Physique 3 : Électromagnétisme

T.D N° 2 : Lois fondamentales de la magnétostatique – Théorème d'Ampère

(Les exercices supplémentaires seront traités comme Devoir Libre)

Exercice 2.1.

Préciser dans chacun des cas suivants la somme algébrique des courants.

Exercice 2.2. (Exercice traité en cours)

On considère un fil rectiligne infini de rayon R parcouru par un courant d'intensité I.

2.2.1- Calculer la norme du champ magnétique B à une distance r du fil.

On étudiera les cas r < R et R < r.

On suppose que le fil homogène, donc \vec{j} est uniforme.

2.2.2- Tracer B en fonction de r.

Exercice 2.3.

Soit un fil conducteur cylindrique creux dont les parois intérieures et extérieures forment deux cylindres coaxiaux de rayons respectifs R_1 et R_2 (figure ci-contre). Ce conducteur est parcouru par un courant d'intensité totale constante I dans le sens de l'axe (Oz). On supposera ce courant homogène, sa densité de courant est donc constante $(\vec{j} = j\vec{e}_z)$.

- 2.3.1- Quel type de coordonnées choisissez-vous pour analyser les propriétés de la distribution de courant ?
- 2.3.2- On considère un point M situé à la distance r de l'axe (Oz). Analyser la symétrie et les invariances de cette distribution de courant et en déduire la direction et le sens du vecteur champ magnétique $\vec{B}(M)$ créé par cette distribution. De quelles coordonnées dépend le module B(M) du champ?

- 2.3.3- Donner l'expression de la norme de la densité de courant dans le conducteur en fonction de I, R1 et R2.
- **2.3.4-** A l'aide du théorème d'Ampère, calculez la norme du champ magnétique B(M) créé par cette distribution de courant en tout point de l'espace. Tracer le graphe de B(r) lorsque r varie de zéro à l'infini.
- **2.3.5-** On fait tendre R_1 vers R_2 , de telle sorte que l'épaisseur de la paroi du conducteur tende vers zéro en gardant I constant. On obtient alors une nappe de courant cylindrique. Définir le vecteur densité de courant surfacique \vec{j}_s en fonction de I et R_2 et des vecteurs unitaires de la base de coordonnées choisie.

2.3.6- Donner l'expression de la condition de passage à travers la nappe de courant pour le champ magnétique. Montrer que cette expression est en accord avec le résultat de la question **2.3.4**.

Exercice 2.4.

On considère un solénoïde mince d'axe z'Oz supposé de longueur infinie comportant n spires par unité de longueur et parcouru par un courant d'intensité I.

2.4.1. Démontrer que $\vec{B}(M) = B_z \vec{e}_z$ par des considérations de symétries.

On suppose que le champ magnétique s'annule à très grande distance du solénoïde. En utilisant le théorème d'Ampère :

- 2.4.2. Démontrer que le champ magnétique est nul à l'extérieur du solénoïde.
- **2.4.3.** Démontrer que le champ magnétique est uniforme.
- 2.4.4. Calculer le champ magnétique à l'intérieur du solénoïde.

Exercice 2.5. (Exercice supplémentaire : Contrôle continu 2012-2013)

Soit un ensemble infini de fils rectilignes, infinis, de section négligeable, déposés parallèlement à l'axe (Ox) sur un plan (O,x,y). La répartition des fils le long de l'axe (Oy) est uniforme : soit n le nombre de fils par unité de longueur le long de l'axe (Oy). Chaque fil est parcouru par un courant I constant dans le sens des x croissants.

- **2.5.1-** Déterminer la direction du champ magnétique $\vec{B}(M)$ en tout point M de l'espace.
- **2.5.2-** Donner les coordonnées dont il dépend le champ magnétique $\vec{B}(M)$.
- **2.5.3-** Par des arguments de symétrie, trouver la relation entre $\vec{B}(x, y, z)$ et $\vec{B}(x, y, -z)$.
- **2.5.4-** En utilisant le théorème d'Ampère, calculer le champ magnétique en tout point de l'espace.

Exercice 2.6.

Considérons un cylindre de hauteur infinie de rayon R et parcouru par un courant de densité surfacique \overrightarrow{J}_s tel que $\overrightarrow{J}_s = a \overrightarrow{e}_z$ où a est une constante positive. Ce cylindre est entouré par un autre cylindre creux de même hauteur de rayon interne R_1 et externe R_2 (avec $R_1 > R$) et parcouru par un courant de densité volumique \overrightarrow{J}_v tel que $\overrightarrow{J}_v = br^2 \overrightarrow{e}_z$ où b est une constante positive.

- **2.6.1-** Exprimer la symétrie du cylindre, les composantes et les coordonnées éventuellement nulles du vecteur champ magnétique $\vec{B}(M)$ et du potentiel vecteur $\vec{A}(M)$.
- **2.6.2-** A partir de la forme intégrale du théorème d'Ampère, déterminer l'expression du vecteur champ magnétique $\vec{B}(M)$ crée en tout point de l'espace.

- **2.6.3-** A partir de la forme locale du théorème d'Ampère et de la condition de passage du champ, retrouver l'expression du vecteur champ magnétique $\vec{B}(M)$ établi en tout point M de l'espace. Utiliser $B(r \to 0) = 0$.
- **2.6.4-** A partir de la relation qui relie le champ magnétique au potentiel vecteur déterminer l'expression du potentiel vecteur $\overrightarrow{A}(M)$ créé entre $\mathbf{0}$ et \mathbf{R}_1 . Utiliser la condition $\overrightarrow{A}(0) = 0$.
 - **2.6.5-** Vérifier l'équation de Poisson entre 0 et R_1 .

On donne le rotationnel d'un vecteur en coordonnées cylindriques :

$$\overrightarrow{rotV} = (\frac{1}{r} \frac{\partial V_z}{\partial_u} - \frac{\partial V_z}{\partial z}) \overrightarrow{e_r} + (\frac{\partial V_r}{\partial z} - \frac{\partial V_z}{\partial r}) \overrightarrow{e_r} + \frac{1}{r} (\frac{\partial (rV_z)}{\partial r} - \frac{\partial V_r}{\partial_u}) \overrightarrow{e_z}$$

et le laplacien d'un champ scalaire quand il ne dépend que de r, en coordonnées cylindriques :

$$U = U(r) \rightarrow \Delta U = \frac{1}{r} \frac{\partial}{\partial r} (r \frac{\partial}{\partial r} U)$$

Exercice 2.7.

On veut étudier le champ magnétique crée par une distribution de courants présente sur un tore circulaire de rayon R à section circulaire de rayon a. On note O le centre du tore et O(Dz) son axe de révolution. Une chambre à air gonflée, de vélo par exemple, constitue un tel tore.

La distribution de courants est constituée par un enroulement d'un grand nombre de N spires jointives circulaires de rayon a enroulées sur toute la surface du tore, dans lesquelles circule un courant I. Soit M un point quelconque de l'espace où l'on cherche le champ magnétique $\vec{B}(M)$ crée par cette distribution.

- **2.7.1-** Expliquer le choix du système de coordonnées cylindriques d'axe (Oz). Quelle est la direction de $\vec{B}(M)$? Justifier la réponse.
 - **2.7.2-** De quelles coordonnées dépend le module B(M) du champ?
 - 2.7.3- Montrer qu'au centre O, le champ magnétique est nul.
 - 2.7.4- Montrer qu'à extérieur du tore, le champ magnétique est nul.
 - 2.7.5- Quel est le champ magnétique a l'intérieur du tore?

Exercice 2.8. (Exercice supplémentaire)

On considère une spire circulaire, de rayon R, parcourue par un courant I.

- **2.8.1-** Calculer le champ magnétique en un point de l'axe de la spire.
- 2.8.2- Calculer le champ magnétique en un point de l'axe loin de la spire.
- **2.8.3-** Retrouver ce résultat en utilisant le développement du champ magnétique crée par un dipôle magnétique \vec{m} en un point M très éloigné du dipôle (OM = r très grand devant la taille du dipôle et \vec{m} l'angle entre \vec{m} et $\vec{r} = \overrightarrow{OM}$):

$$\vec{B}(M) = \frac{\sim_0}{4fr^3} m \left(2\cos_{\#}\vec{e}_r + \sin_{\#}\vec{e}_r \right) = \frac{\sim_0}{4f} \left(\frac{3(\vec{m}.\vec{e}_r)\vec{e}_r - \vec{m}}{r^3} \right) = \frac{\sim_0}{4f} \left(\frac{3(\vec{m}.\vec{r})\vec{r} - r^2\vec{m}}{r^5} \right)$$

Le dipôle magnétique constitué d'une spire est $\vec{m} = I.\vec{S}$ avec le vecteur \vec{S} orienté par le sens du courant.