Watermarking based image encryption/decryption system

Team: EvalIoT [Members: Amey Mhadgut (arm994) and Parijat Parimal (pp2206)]
Part of Practical Computer Security Spring 2021

Agenda

- 1. Problem statement and use case definition
- 2. Algorithm and threat model
- 3. Success metrics and results
- 4. Future Work and Key Considerations

Problem statement and use case definition

- The role of encryption algorithms **ceases to exist** after a user receives and decrypts an image
- Watermarking of images is a technique that protects an image even after the decryption*
- Idea: Hide image inside another image
- Possible use cases include: Steganography, copy prevention and copyright protection

Image A Image B Image C

Algorithm & Threat Model

Basic Idea of watermarking

Encrypted

Secret Image

Algorithm #1

Idea: Adding watermark as Least Significant Bit

Algorithm #2

Idea: Using Discrete Cosine Transform with parameter s

Threat #1

Attacker knows the algorithm used

Encrypted

Algorithm #3

Idea: Using DCT + pixel shuffling based on 2 seed values

Defense #1

Use 2 seeds R1 & R2 to shuffle the image

Watermarked Image

Host Image

Pixel Unshuffled

Secret Image

Encrypted

Threat & Defence #2

Attacker tries to brute force the seeds R1 and R2

Encrypted

Pixel Shuffled Secret Image

Host Image

Pixel Unshuffled Secret Image

Success Metrics & Results

Success metrics

Success metrics can be defined based on two considerations -

- 1. **Security** against attacks (as discussed)
- 2. **Quality** of the images: Mean squared error (MSE)
- 3. **Performance**: Execution time

About loss:

- 1. Loss was because of floating point to integer conversion
- 2. We added a mode to get lossless images by saving the floating point values in another format (.txt in our case) and using that for extraction

Key Considerations and Future Work

- Run time
- Brute force attack
- Exploring and integrating with other algorithms

Q&A