

Evaluation of Different
Computer Vision
Classification Techniques on
Medical Datasets

Group3
Deshmukh, Sharvari
Ma, Dawson
Nguyen, Andy

Problem Statement

Objective: Identify effective architectures for medical image classification.

Focus: Comparison between Convolutional Neural Networks (CNNs) and

Transformers.

Importance: Enhance accuracy and reliability in diagnostic tools.

Why CNNs and Transformers?

CNNs have been the traditional choice for image data

Transformers were made for NLP, but shows promise in image classification without spatial constraints

CNN

VGG

ResNet

Transformer

Datasets Used

Dataset	Details
MHIST	 Binary classification dataset of classes: Hyperplastic Polyp (HP) & Sessile Serrated Adenoma (SSA) 3,152 fixed-size images of colorectal polyps, each with a gold-standard label determined by the majority vote of seven board-certified gastrointestinal pathologists. 400 MB size with ResNet-18 baseline Used for Histopathology image classification tasks such as how dataset size, network depth, transfer learning, and high-disagreement examples affect model performance.
LC25000	 25,000 color images in 5 classes Each class contains 5,000 images of the following histologic entities: colon adenocarcinoma, benign colonic tissue, lung adenocarcinoma, lung squamous cell carcinoma, and benign lung tissue. 1.85 GB zip with no current baseline model defined All images are de-identified, HIPAA compliant, validated

MHIST

(224 x 224 pixels)

HP

SSA

LC25000

(768 x 768 pixels)

Colon_ACA

Colon_N

LUNG_ACA

LUNG_N

LUNG_SCC

Problems specific to Classification of Medical Data

- Dataset Size, Quality and Scarcity
- Annotation and Labeling
- Inter- and Intra-Class Variability
- Transferability and Generalization
- Robustness to Noise and Artifacts
- Ethical and Legal Concerns

Proposed solutions

- Leveraging Pretrained Weights
- Dataset Augmentation Techniques
- Implementation of Fine-grained models
- Hybrid architectural approach

Transfer Learning

Augmentation Techniques

RandomRotation

RandomHorizontalFlip

RandomVerticalFlip

Fine-Grain Model - API Net

Fine-Grain Model - Swin

tran

Experiments

- Architectures
 - o CNNs: VGG16, ResNet18, API-Net
 - o Transformers: ViT, Swin-T
- Optimizers
 - Adam
 - o SGD
- Optimizer parameters
 - Learning Rate
 - Betas (running averages of gradient)
 - Weight Decay
 - Momentum
- Datasets
 - MHIST
 - o LC25000
- Augmentation techniques
 - Random rotation angle, Probability of random horizontal/vertical flip

Evaluation Metrics

Precision: measures accuracy of positive predictions

Recall/Sensitivity: ability of model to identify relevant instances

Test Accuracy: overall correctness of unseen data

F1 scores: mean of precision and recall (1 = perfect precision and recall

0 = worst

VALUES	POSITIVE
ACTUAL	NEGATIVE

POSITIVE	NEGATIVE
ТР	FN
FP	TN

$$Precision = \frac{TP}{TP + FP} \qquad Recall = \frac{TP}{TP + FN}$$

$$Accuracy = \frac{TP + TN}{TP + FP + FN + TN}$$

$$F1 \, Score = 2 \times \frac{Precision \times Recall}{Precision + Recall}$$

CNN Architectures on MHIST

Model	VG	G16	ResN	ResNet18		VGG16		ResNet18		-Net
Pretrained		X	>	<	()	()	(O .
Augmentation	Х	0	X	0	X	0	X	0	X	0
Accuracy	71.14	73.39	67.35	77.07	84.44	85.36	83.52	86.18	82.19	86.90
Precision	56.75	62.43	47.96	60.00	78.47	78.94	75.27	79.58	76.49	81.87
F1-score	51.39	60.00	40.83	46.67	76.94	74.44	68.06	73.06	78.61	80.28
Recall	63.36	65.06	58.10	84.00	80.06	84.01	84.19	87.38	74.47	83.53

of samples: 3125

CNN Architectures on LC25000

Model	VG	G16	ResN	ResNet18		VGG16		ResNet18		-Net
Pretrained		<	>	X		0		0		O .
Augmentation	Х	0	X	0	X	0	X	0	X	0
Accuracy	96.94	97.02	96.92	96.98	97.90	99.42	99.60	99.76	99.71	99.80
Precision	96.94	97.02	96.92	96.98	97.90	99.42	99.60	99.76	99.71	99.80
F1-score	96.94	97.02	96.92	96.98	97.90	99.42	99.60	99.76	99.71	99.80
Recall	96.94	97.02	96.92	96.98	97.90	99.42	99.60	99.76	99.71	99.80

of samples: 25,000

Transformer Architectures on MHIST

Model	ViT		ViT		Swi	in-T	Swin-T	
Pretrained	>	×	()	>	<	()
Augmentation	X	0	X	0	X	0	X	0
Accuracy	62.2	63.13	81.88	79.30	62.20	62.20	83.08	80.08
Precision	48.08	49.89	73.89	74.07	76.73	76.73	82.98	80.01
F1-score	64.94	66.32	76.18	70.61	48.89	48.89	82.94	79.37
Recall	100.0	62.41	78.61	67.46	63.15	63.15	82.91	80.04

of samples: 3125

Transformer Architectures on

			ViT		Swi	in-T	Swin-T	
Pretrained	X		0		X		0	
Augmentation	X	0	X	0	X	0	X	0
Accuracy	65.48	70.36	99.00	97.34	92.75	92.22	99.94	99.28
Precision	66.50	68.54	99.80	99.90	90.83	92.48	99.94	99.28
F1-score	68.12	73.62	99.9	99.60	90.46	92.34	99.94	99.28
Recall	69.82	79.52	1.00	99.30	90.10	92.36	99.94	99.28

of samples: 25000

Conclusion

- Impact of Augmentation
 - Significantly improved CNNs
 - o Minimal improvement in Transformers
- Transfer Learning Benefits
 - Improved model performance across both architectures
- Fine Grained Models
 - The implementation only resulted in slight improvements in performance which shows that it can distinguished small difference in classes, but effectiveness is affected by size and quality of dataset

Future work

Expanding Dataset

 Implement same experiments with a larger medical data set (>100,000 samples)

Explore Meta-Learning

 Enables a model's ability to learn from a limited number of examples

Leveraging Domain-Specific Pretrained Models

Models pretrained on similar tasks can significantly improve performance due to relevance of similar features.

Hybrid Architecture

 Develop U-Net structure that combines CNN + Transformer to utilize their strengths of spatial hierarchies and long range dependencies

THANKS!