Université de Rennes 1 Licence de mathématiques Module Anneaux et arithmétique

Feuille de TD n°3 bis

Exercice 3 bis.1

Soit **K** un corps, n et k des entiers strictement positifs avec $k \leq n$, E le **K**-espace vectoriel \mathbf{K}^n et E un sous-espace vectoriel de E de dimension E. Soit E: $\mathbf{K}^n \to \mathbf{K}^{k-1}$ la projection sur les E premières coordonnées. Montrer que E n'est pas injective. En déduire la borne de Singleton.

Exercice 3 bis.2

Soit \mathscr{C} un code linéaire et H une matrice de contrôle de \mathscr{C} . Soit d l'unique entier strictement positif vérifiant la propriété suivante :

- 1. il existe d colonnes de H qui forment un système lié;
- 2. tout sous-ensemble de colonnes de H de cardinal d-1 est un système libre Montrer que d est la distance minimale de \mathscr{C} .

Exercice 3 bis.3

- 1. Vérifier que la distance de Hamming est bien une distance.
- 2. Soit A un ensemble fini de cardinal q et $n \ge 1$ un entier. Soit $t \ge 1$ un entier. Montrer que le nombre d'éléments d'une boule de rayon t de A^n (pour la distance de Hamming) est

$$N(q, n, t) = \sum_{k=0}^{t} \binom{n}{k} (q-1)^{k}.$$

- 3. Soit $1 \leqslant k \leqslant n$ un entier et $A^k \cong \mathscr{C} \subset A^n$ un code. Soit $t \geqslant 1$ un entier. Montrer que \mathscr{C} est t-correcteur si et seulement si les boules de rayon t centrée en les éléments de \mathscr{C} sont deux à deux disjointes. Montrer que si \mathscr{C} est t-correcteur alors $N(q,n,t) \leqslant q^{n-k}$ (borne de Hamming).
- 4. Le code $\mathscr C$ est dit parfait s'il existe un entier $t \geqslant 1$ tel que les boules de rayon t centrée en les éléments de $\mathscr C$ forment une partition de A^n . Montrer qu'un tel entier t est alors unique et est le plus grand entier t' tel que $\mathscr C$ est t'-correcteur. Montrer que le code $\mathscr C$ est parfait si et seulement s'il existe un entier $t \geqslant 1$ tel que $\mathscr C$ est t-correcteur et on a l'égalité

$$N(q, n, t) = q^{n-k}.$$

5. Codes de Hamming binaires : soit r un entier et $n=2^r-1$. Soit M une matrice à r colonnes et 2^r-1 lignes dont l'ensemble des lignes coïncide avec $\mathbf{F}_2^r \setminus \{0\}$. Soit

$$\mathscr{C} := \{ x \in \mathbf{F}_2^n, \quad x \cdot M = 0 \}.$$

Déterminer les paramètres de \mathscr{C} . Montrer que \mathscr{C} est 1-correcteur parfait.

6. Lister les éléments du code de Hamming binaire de paramètres [7,4,3] (qui est historiquement l'un des premiers codes non triviaux introduits). Soit $y \in \mathbf{F}_2^7$ un mot transmis comprenant une erreur. Montrer que le syndrome de y est la ligne de M dont l'indice correspond à la position de l'erreur.

7. Codes de Hamming q-aires : soit **K** un corps de cardinal q, r un entier. Soit $\mathcal{L} \subset \mathbf{K}^r$ une partie maximale de \mathbf{K}^r telle que deux éléments de \mathcal{L} ne sont pas colinéaires. Soit M la matrice à r colonnes dont l'ensemble des lignes coïncide avec \mathcal{L} . Explicitez le cas q=3, r=2. Soit

$$\mathscr{C} := \{ x \in \mathbf{K}^n, \quad x \cdot M = 0 \}.$$

Donner les paramètres de \mathscr{C} . Montrer que \mathscr{C} est 1-correcteur parfait.

Exercice 3 bis.4

1. Soit **K** un corps fini de cardinal q et α un générateur de \mathbf{K}^{\times} . Soit $2 \leq d \leq q-1$ un entier et \mathcal{I} l'idéal de $\mathbf{K}[X]$ engendré par le polynôme

$$g(X) := \prod_{i=1}^{d-1} (X - \alpha^i).$$

Montrer que \mathcal{I} définit un code cyclique sur \mathbf{K} de paramètres [q-1,q-d,d] (donc de type MDS). Expliciter une base du code pour les paramètres suivants : [3, 2, 2] et [8, 7, 2].

- 2. Soit **K** un corps, $\alpha \in \mathbf{K}^{\times}$ et n l'ordre multiplicatif de α . Soit m(X) et u(X) des éléments de $\mathbf{K}[X]$ de degré au plus n-1. Montrer que les deux propriétés suivantes sont équivalentes :
 - (a) on a $n \cdot m(X) = \sum_{i=0}^{n-1} u(\alpha^i) X^i$; (b) on a $u(X) = \sum_{i=0}^{n-1} m(\alpha^{-i}) X^i$.
- 3. Soit **K** un corps de cardinal q et $2 \le k \le q-1$ un entier. Soit $\mathbf{K}[X]_{\le k-1}$ l'ensemble des polynômes à coefficients dans **K** de degré au plus k-1. Choisissons une énumération $\{x_i\}_{0 \le i \le q-2}$ des éléments de \mathbf{K}^{\times} . On considère l'application qui à $u \in \mathbf{K}[X]_{\leqslant k-1}$ associe $(u(x_i))_{0 \leqslant i \leqslant q-2}$. Montrer que son image est un code de paramètres [q-1,k,q-k] (donc de type MDS). Comment ce code est-il relié à celui de la première question?

Exercice 3 bis.5

Soit **K** un corps fini, n un entier positif tel que que n et q := [K] sont premiers entre eux, rl'ordre de $[q]_n$ dans $(\mathbf{Z}/n\mathbf{Z})^{\times}$. Soit L un corps à q^r éléments contenant K et $\alpha \in \mathbf{L}^{\times}$ un élément d'ordre n. Pour toute partie Σ de $\mathbb{Z}/n\mathbb{Z}$, on note

$$g_{\Sigma} := \prod_{i \in \Sigma} (X - \alpha^i) \in \mathbf{L}[X]$$

- 1. On veut montrer que g_{Σ} est à coefficient dans **K** si et seulement si Σ est stable par multiplication par q.
 - (a) Soit A, B des anneaux et $\varphi \colon A \to B$ un morphisme. Soit I un ensemble fini, $(a_i)_{i \in I}$ des éléments de A. Écrivons

$$\prod_{i \in I} (X - a_i) = \sum_{k \geqslant 0} b_k X^k, \quad (b_k) \in A^{(\mathbf{N})}$$

Vérifier (sans calculs...) qu'on a

$$\prod_{i \in I} (X - \varphi(a_i)) = \sum_{k \geqslant 0} \varphi(b_k) X^k, \quad (b_k) \in A^{(\mathbf{N})}$$

- (b) Conclure en utilisant le morphisme $x \mapsto x^q$.
- 2. On suppose en outre qu'il existe $\nu \in \mathbf{Z}/n\mathbf{Z}$ et $2 \leqslant d \leqslant n$ un entier positif tels que

$$\{\nu + [i]_n\}_{0 \leqslant i \leqslant d-2} \subset \Sigma$$

On veut montrer que le code cyclique \mathscr{C} de $\mathbf{K}[X]/\langle X^n-1\rangle$ engendré par g est de distance minimale au moins d. Soit $P\in\mathbf{K}[X]$ un multiple de g de degré au plus n-1 et ayant $au\ plus\ d-1$ coefficients non nul. Traduire la condition que P est un multiple de g en un système linéaire d'inconnues les coefficients de P dont la matrice est une matrice de Vandermonde. Conclure que P est nul, puis conclure quant à la distance minimale de \mathscr{C} .

3. On suppose que $\mathbf{K} = \mathbf{F}_2$ et $n = 2^r - 1$. Soit

$$g := \prod_{i=0}^{r-1} (X - \alpha^{2^i}).$$

Vérifier que $g \in \mathbf{F}_2[X]$. Déterminer les paramètres du code cyclique engendré par g. Comparer avec les codes de Hamming binaires de l'exercice 3 bis.3.

4. On suppose que $n=\frac{q^r-1}{q-1}$ et que n et q-1 sont premiers entre eux. Soit

$$g =: \prod_{i=0}^{r-1} (X - \alpha^{q^i}).$$

Vérifier que $g \in \mathbf{K}[X]$. Déterminer les paramètres du code cyclique engendré par g; on pourra comparer ce code avec le code de Hamming q-aire analogue de l'exercice 3 bis.3.