Parallel Computing

Assignment Project Exam Help

https://eduassistpro.github.io/

Dr Paul Ric http://paulrichmond.shef.ac edu_assist_pro_ http://paulrichmond.shef.ac

□ Context and Hardware Trends

□ Supercomputing

Software and Parallel Computing
Assignment Project Exam Help

□Course Outline

https://eduassistpro.github.io/

Context of course

10.0 TFlops				
9.0 TFlops		<i>8.74</i>	TeraFLOPS	
8.0 TFlops				
7.0 TFlops	Ass	ignment Project	Exam	Help
6.0 TFlops		https://eduassi	storo.a	ithub.io/
5.0 TFlops		•		
4.0 TFlops		Add WeChat e	du_ass	sist_pro
3.0 TFlops				
2.0 TFlops	(intel) Core™ i7			
1.0 TFlops				
0.0 TFlops	~40 GigaFLOPS		1/4002	

6 hours *CPU* time vs.

1 minute GPU time

Scale of Performance: Titan Supercomputer

Assignment Project Exam Help

https://eduassistpro.github.io/

Transistors != performance

- ☐ Moores Law: A doubling of transistors every couple of years
 - □ Not a law actually an observation
 - Doesn't actually says anything rabput performance Help

https://eduassistpro.github.io/

Dennard Scaling

"As transistors get smaller their power density stays constant"

Power = Frequency x Voltage²
Assignment Project Exam Help

- ☐ Performance improve https://eduassistpro.githulpyi@ealised by
 - increasing frequency Add WeChat edu_assist_pro
- ☐ Decrease voltage to maintain a steady power
 - ☐Only works so far
- □Increase Power
 - ☐ Disastrous implications for cooling

Instruction Level Parallelism

- ☐ Transistors used to build not edu_assisteptores
- ☐ Use pipelining to overlap instruction execution

Instruction Level Parallelism

- ☐ Transistors used to build not edu_assisteptores
- ☐ Use pipelining to overlap instruction execution

```
add 1 to R1 copy R1 to R2
```


Golden Era of Performance

□90s saw great improvements to single CPU performance

Assignment Project Exam Help 1980s to 2002: 100% performance increase every 2

https://eduassistpro.github.io/ 2002 to now: ~40% every 2 years

Why More Cores?

- ☐ Use extra transistors for multi/many core parallelism
 - ☐ More operations per clock cycle
 - ☐Power can be kept low
 - Processor designs capibe simple repeter pipelings (BISC)

https://eduassistpro.github.io/

GPUs and Many Core Designs

- ☐ Take the idea of multiple cores to the extreme (many cores)
- ☐ Dedicate more die space to compute
 - □ At the expense of branks or prediction to Profipeder Execution Hetho
- ☐ Simple, Lower Power and

□Very effective for HPC appl https://eduassistpro.github.io/

Accelerators

- ☐ Problem: Still require OS, IO and scheduling
- □ Solution: "Hybrid System",
 - □ CPU provides management and
 - "Accelerators" (or Acsignments Projects Grump Holde compute power

Types of Accelerator

- **□**GPUs
 - ☐ Emerged from 3D graphics but now specialised for HPC
 - ☐ Readily available in workstations

Assignment Project Exam Help

☐Xeon Phis

- https://eduassistpro.github.io/
- ☐ Many Integrated Core
- □ Based on Pentium 4 design (We) What edu_assistum ()
- □ Closer to traditional multicore
- ☐ Simpler programming and compilation

- □ Context and Hardware Trends
- Supercomputing
- Software and Parallel Computing
 Assignment Project Exam Help
- □Course Outline

https://eduassistpro.github.io/

Top Supercomputers

Supercomputing Observations

☐ Exascale computing □1 Exaflop = 1M Gigaflops ☐ Estimated for 2020 □ Pace of change Assignment Project Exam Help ☐ Desktop GPU top sup □A desktop with a GPU https://eduassistpro.gjthub.io/ □ A Teraflop of performance towket What edu_assist_pro ☐ Extrapolating the trend □Current gen top500 on every desktop in < 10 years

Trends of HPC

Improvements at individual computer node level are greates
☐Better parallelism
☐ Hybrid processing
□3D fabrication Assignment Project Exam Help
☐Communication costs ☐Memory per core is re https://eduassistpro.github.io/
Add WeChat edu_assist_pro

Supercomputing Observations

Assignment Project Exam Help

https://eduassistpro.github.io/

Add WeChat edu_assist_pro

https://www.nextplatform.com/2016/11/14/closer-look-2016-top-500-supercomputer-rankings/

Green 500

☐ Top energy efficient supercomputers

Assignment Project Exam Help

https://eduassistpro.github.io/

HPC Observations

```
☐ Improvements at individual
 computer node level are
                   Assignment Project Exam Help
 greatest
   ☐ Better parallelism
                        https://eduassistpro.github.io/
   ☐ Hybrid processing
                        Add WeChat edu_assist_pro
   □3D fabrication
□Communication costs are
 increasing
   ☐ Memory per core is reducing
☐Throughput > Latency
```

□ Context and Hardware Trends

□ Supercomputing

□ Software and Parallel Computing Assignment Project Exam Help

□Course Outline

https://eduassistpro.github.io/

Software Challenge

☐ How to use this hardware efficiently?

```
□ Software approaches
□ Parallel languages: some limited impact but not as flexible as sequential programming
□ Automatic parallelisat this yet
□ Design software with parallelisation in mind
□ Software approaches
□ Project Exam Help
□ Exam Help
□ Exam Help
□ Exam Help
□ Software approaches
□ Project Exam Help
□ Fixed Exam Help
□ Project Exam Help
□ Software with parallelisation in mind
```


Amdahl's Law

☐ Speedup of a program is limited by the proportion than can be parallelised

Amdahl's Law cont.

☐Addition of processing cores gives diminishing returns

Parallel Programming Models

☐ Distributed Memory ☐ Geographically distributed processors (clusters) ☐ Information exchanged via messages □ Shared Memory Assignment Project Exam Help □Independent tasks sha □ Asynchronous memor https://eduassistpro.github.io/ □ Serialisation and synchronisation and synch ■ No clear ownership of data □ Not necessarily performance oriented

Types of Parallelism

☐Bit-level □ Parallelism over size of word, 8, 16, 32, or 64 bit. ☐ Instruction Level (ILP) Assignment Project Exam Help □Pipelining **山**Task Parallel https://eduassistpro.github.io/ ☐Program consists of m □ Tasks execute on asynchrodol Wse Chast edu_assist_pro ■Data Parallel ☐ Program has many similar threads of execution ☐ Each thread performs the same behaviour on different data

Implications of Parallel Computing

☐ Performance improvements

□Speed

□Capability (i.e. scale)

Assignment Project Exam Help

https://eduassistpro.github.jo/

Add WeChat edu_assist_pro

FILMMAKING & ANIMATION

□ Context and Hardware Trends

□ Supercomputing

□Course Outline

Software and Parallel Computing
Assignment Project Exam Help

https://eduassistpro.github.io/

COM4521/6521 specifics

☐ Designed to give insight into parallel computing ■ Specifically with GPU accelerators ☐ Knowledge transfers to all many core architectures ☐ What you will lear Assignment Project Exam Help ☐ How to use OpenMP t https://eduassistpro.github.io/Us ☐ How to program in C □What a GPU is and how to progree that edu assist Apprograge ☐ How to think about problems in a highly parallel way ☐ How to identify performance limitations in code and address them

Course Mailing List

□ A google group for the course has been set up
□ You have already been added if you were registered 01/02/2018
□ Mailing list uses;
□ Request help outs the inclasses ject Exam Help
□ Find out if a lecture ha
□ Want to participate in https://eduassistpro.qithub.io/
□ https://groups.google Add W/c Chart edu_assist_pro/#!forum/com452
1-group

Learning Resources

- □ Course website: http://paulrichmond.shef.ac.uk/teaching/COM4521/
- ☐ Recommended Reading:
 - ☐ Edward Kandrot, Jason Sanders, "CUDA by Example: An Introduction to General-Purpose ☐ Purpose ☐ Purpose
 - □Brian Kernighan, Denn ming Language (2nd Edition)", Prentice Hal https://eduassistpro.github.io/

Timetable

☐2 x 1 hour lecture per we	ek (back to back)
☐Monday 15:00 until 17:00	Broad Lane Lecture Theater 11
☐Week 5 first half of the led	ture will be in DIA-LT09 (Lecture Theatre 9)
☐Week 5 second half of the	lecture will be MOLE quiz in DIA-206 (Compute room 4)
□1 x 2 hour lab per week □Tuesday 9:00 until 11:00 b	ignment Project Exam Help
☐Week 10 first half of the la	
□ Assignment	
Released in two parts	Add WeChat edu_assist_pro
☐Part 1	
☐ Released week 3	
Due for hand in on Tuesda	ay week 7 (20/03/2018) at 17:00
Feedback after Easter.	
☐Part 2	
Released week 6	
Due for hand in on Tuesda	ay week 12 (15/05/2018) at 17:00

Course Assessment

- ☐2 x Multiple Choice quizzes on MOLE (10% each)
 - ☐Weeks 5 and 10
- ☐An assignment (80%)
 - □ Part 1 is 30% of the ssignment Poraject Exam Help
 - ☐ Part 2 is 70% of the as

https://eduassistpro.github.io/

- Half of the marks are for the program edu_assist_voliten report
- ☐Will require understanding of why you have implemented a particular technique
- ☐Will require benchmarking, profiling and explanation to demonstrate that you understand the implications of what you have done

Lab Classes

- □2 hours every week
 - ☐ Essential in understanding the course content!
 - ☐ Do not expect to complete all exercises within the 2 hours
- □ Coding help from labsidemenstPatojes: Rbbent Cheisholm and John Charlton:
 - http://staffwww.dcs.s https://eduassistpro.github.io/
 - http://www.dcs.shef.acaut/criveic/hatedu_assisthpriton
- ☐ Assignment and lab class help questions should be directed to the

google discussion group

Feedback

$oldsymbol{\square}$ After each teaching week you MUST submit the lab register/feedback
form
☐This records your engagement in the course
☐ Ensures that I can see what you paye understood
□Allows us to revisit an her examples
☐This only works if you https://eduassistpro.github.io/
☐Submit this once you have finished edu_assist exercises
☐Your feedback will be used to clarify topics which are assessed in the assignments
□Lab Register Link: https://goo.gl/0r73gD
Additional feedback from assignment and MOLE quizzes

Machines Available

☐ Diamond Compute Labs	
□Visual Studio 2017	
■NVIDIA CUDA 9.1	
□VAR Lab	
□CUDA enabled machinesignamensperasielianFond	high spec compute room
□ShARC	-
☐ University of Sheffield H https://eduassistpro ☐ You will need an account (see HPC docs w	o.github.io/
□ Select number of GPU nodes de le	assisit <u>ng</u> prof.ac.uk)
☐Your own machine	
☐ Must have a NVIDIA GPU for CUDA exercises	
☐Virtual machines not an option	
☐IMPORTANT: Follow the websites guidance for ins	stalling Visual Studio

Summary

☐ Parallelism is already here in a big way
☐From mobile to workstation to supercomputers
☐Parallelism in hardware
It's the only way tasignment in group out of water waters
☐Trend is for increasing https://eduassistpro.github.io/
■Supercomputers '
□Increased dependency of dcwere cate tedu_assist_pro
☐Accelerators are greener
☐Software approaches
☐Shared and distributed memory models differ
☐Programs must be highly parallel to avoid diminishing returns

