ML Under Modern Optimization Lens - Boosting - Exercícios

Giovanni Amorim

Junho, 2023

1 Boosting - AdaBoost

O exercício consiste na implementação e análise do algoritmo adaboost em uma tarefa de classificação binária. O objetivo é avaliar a capacidade do modelo de aprender os padrões apresentados pelos dados, capacidade de generalização e analisar características internas do algoritmo.

o dataset "adult" foi utilizado, com a tarefa de previsão de classe de renda de indíviduos civis baseado em características individuais. A base original possui 32.561 amostras, porém apenas 10.000 amostras foram consideradas no exercício, para reduzir a complexidade computacional.

O modelo utilizado como aprendiz fraco foi a árvore de decisão de profundidade 1, pela implementação em "DecisionTree.jl".

1.1 Erros de treino e teste

Os erros de treino e teste por iteração são avaliados utilizando a fórmula de previsão final do modelo até a iteração corrente:

$$H_m(x) = sign(\sum_{i=1}^{m} \alpha_i f_i(x))$$

Os gráficos abaixo mostram os erros avaliados por iteração:

Erro de classificação por iteração

O.24

O.23

O.22

O.21

O.20

Erros medidos nas iterações 1, 10, 20 e 50:

iteração	erro em treino	erro em teste
1	23.97	24.4
10	23.97	24.4
20	23.97	24.4
50	19.52	20.26

Percebemos que a redução dos erros acontece no processo de boosting, mas em "escada", mantendo um mesmo erro durante diversas iterações até "aprender" um novo padrão útil para reduzir os erros seguintes.

1.2 Distribuição dos pesos das amostras

A seguir temos as distribuições dos pesos das amostras para as iterações 1, 10, 20 e 50:

Como esperado, os pesos começam todos iguais, concentrados em $\frac{1}{N}$. Com o passar das iterações, temos concentrações de pesos em amostras mais "difíceis" de acertar para os aprendizes treinados até o momento. Ao fim das 50 iterações, parece que os conjuntos de dados com pesos maiores diminui e ficamos com uma distribuição com comportamento do tipo exponencial.