

L1 — Calcul Scientifique

Frédéric Jurie (<u>frederic.jurie@unicaen.fr</u>)
Université de Caen Normandie
Année universitaire 2019-2020

Organisation du cours

- Objectif de ce cours :
 - Donner les méthodes permettant de résoudre numériquement des problèmes scientifiques
 - Introduire des librairies Python permettant de faciliter ces calculs
- 10 x 1,25h CM
- 6 TP de 2H (1 TP toutes les deux semaines) + 1 TP noté à la fin
- Questions sur les groupes de TP : Françoise Lambert (<u>francoise.lambert@unicaen.fr</u>)
- Diapositives et sujet de TP sur la plateforme ecampus (https://ecampus.unicaen.fr/)

Contrôle des connaissances

- Note finale = (Contrôle continu + Contrôle Terminal)/2
- Contrôle Terminal : épreuve écrite en fin de semestre
- Contrôle continu :
 - 6 exercices notés en fin de séances.
 - 1 TP noté à la fin
- Présence aux TP obligatoire : des exercices notés sont demandés en fin de chaque séance de TP, présence exigée.

Présentation de ce cours

- Le calcul scientifique et numérique a pris un essor considérable dans le domaine de l'ingénierie, de la recherche scientifique ou de l'analyse de données (big data)
- Le langage Python est devenu au fil du temps un langage incontournable pour le calcul scientifique
 - Syntaxe claire et facile à lire
 - Les langages de bas-niveau sont souvent plus rapides à l'exécution, mais il faut également considérer le temps pris pour écrire les programmes
 - Trouver le bon compromis entre temps d'exécution et temps de développement

- Python est utilisé comme un langage liant le haut niveau et le bas niveau
- Les librairies de calcul sont écrites en langage C
- Puis utilisées dans Python qui a l'avantage d'être un langage interprété (pas de nécessité de compiler les programmes)
- Écosystème au sein duquel tout est interopérable
- Librairies numpy, scipy, matploblib, etc.

Environments

IPython console, IPython notebook, Spyder, ...

Python language

Python 2, Python 3, ...

Python packages

numpy, scipy, matplotlib, ...

System and system libraries

OS, BLAS, LAPACK, ...

(optional)

- Nous utiliserons pour le cours et les TP les 'notebooks' Jupyter.
- Appel depuis la console : \$jupyter lab
- Page web depuis laquelle il est possible d'écrire et d'exécuter des lignes de programme python
- Forte interaction avec l'utilisateur

Les modules python utilisés

- sympy: bibliothèque en Python / calcul formel calcul arithmétique formel basique, algèbre, mathématiques différentielles, physique, de mécanique classique ou quantique. Logiciel libre.
- numpy: module Python, manipulation des matrices ou tableaux multidimensionnels et fonctions mathématiques opérant sur ces tableaux. Libre et open source. Base de SciPy, regroupement de bibliothèques Python autour du calcul scientifique
- matplotlib: tracer et visualiser des données sous formes de graphiques. Se combine avec NumPy et SciPy.

Travaux pratiques

- 1. Calcul symbolique (sympy)
- 2. Prise en main numpy et matplotlib
- 3. Approfondissement python et matplotlib
- 4. Recherche de racines
- 5. Interpolation, ajustement
- 6. Splines, Intégration, dérivées

Ouvrages utilisés pour préparer ce cours

