Principles of Data- and Knowledge-based Systems

Torsten Schaub University of Potsdam torsten@cs.uni-potsdam.de

Relational algebra: Overview

- 1 Introduction
- 2 Joins
- 3 Set operations
- 4 Outer join
- 5 Theory
- 6 Summary

Outline

- 1 Introduction
- 2 Joins
- 3 Set operations
- 4 Outer join
- 5 Theory
- 6 Summary

Example Database (1)

STUDENTS					
SID FIRST LAST EMAIL					
101	Ann	Smith			
102	Michael	Jones	(null)		
103	Richard	Turner			
104	Maria	Brown			

EXERCISES					
CAT	<u>ENO</u>	TOPIC	;	MAXPT	
Н	1	Rel.	Algeb.	10	
H	2	SQL SQL		10	
M	1	SQL		14	

RESULTS				
SID	CAT	<u>ENO</u>	POINTS	
101	Н	1	10	
101	H	2	8	
101	M	1	12	
102	H	1	9	
102	H	2	9	
102	M	1	10	
103	H	1	5	
103	M	1	7	

Example Database (2)

- STUDENTS: one row for each student in the course.
 - SID: "Student ID" (primary key).
 - FIRST, LAST: First and last name.
 - EMAIL: Email address (can be null).
- EXERCISES: one row for each graded exercise.
 - CAT: Exercise category (key together with ENO).
 - ENO: Exercise number (within category).
 - TOPIC: Topic of the exercise.
 - MAXPT: Max. no. of points (How many points is it worth?).
- RESULTS: one row for each submitted solution to an exercise.
 - SID: Student who wrote the solution.
 - CAT, ENO: Identification of the exercise.
 - POINTS: Number of points the student got for the solution.
 - A missing row means that the student did not yet hand in a solution to the exercise

Relational Algebra (1)

- Relational algebra (RA) is a theoretical query language for the relational model.
- Relational algebra is not used in any commercial system on the user interface level.
- However, variants of it are used to represent queries internally (for query optimization and execution).
- Knowledge of relational algebra will help in understanding SQL and relational database systems.

Relational Algebra (2)

- An algebra is a set together with operations on this set.
- For instance, the set of integers together with the operations + and * forms an algebra.
- In the case of relational algebra, the set is the set of all finite relations.
- One operation of relational algebra is U (union).
 This is natural since relations are sets.

Relational Algebra (3)

- Another operation of relational algebra is selection.
- E.g. $\sigma_{\text{SID}=101}$ selects all tuples in the input relation that have the value "101" in column "SID":

 $\sigma_{ t SID=101}$

	/	RESULTS			,	
		SID	CAT	<u>ENO</u>	POINTS	
		101	Н	1	10	
		101	Н	2	8	
101	l	101	M	1	12	
		102	H	1	9	
		102	H	2	9	
		102	M	1	10	
	l	103	H	1	5	
	/	103	M	1	7	,

SID	CAT	<u>ENO</u>	POINTS
101	Н	1	10
101	H	2	8
101	M	1	12

Relational Algebra (4)

- Since the output of a relational algebra operation is again a relation, it can be input for another relational algebra operation.
- A query is then a term/expression in this algebra.
- Arithmetic expressions like (x + 2) * y are familiar.
- In relational algebra, relations are connected:

$$\pi_{\mathsf{FIRST},\mathsf{LAST}}(\mathsf{STUDENTS} \bowtie \sigma_{\mathsf{CAT}=\mathsf{'M'}}(\mathsf{RESULTS})).$$

Relational Algebra (5)

- Null values are usually excluded in the definition of relational algebra, except when operations like the outer join are defined.
- Relational algebra treats relations as sets, i.e. any duplicate tuples are automatically eliminated.
- Relational algebra is much simpler than SQL, it has only five basic operations and can be completely defined on one page.
- Relational algebra is also a yardstick for measuring the expressiveness of query languages.
- E.g., every query that can be formulated in relational algebra can also be formulated in SQL.

Selection (1)

- The operation σ_{φ} selects a subset of the tuples of a relation, namely those which satisfy the condition φ . Selection acts like a filter on the input set.
- Example:

$$\sigma_{A=1} \left(\begin{array}{c|c} A & B \\ \hline 1 & 3 \\ 1 & 4 \\ 2 & 5 \end{array} \right) = \begin{array}{c|c} A & B \\ \hline 1 & 3 \\ 1 & 4 \end{array}$$

■ The selection condition has the following form:

$$\langle \mathsf{Term} \rangle \langle \mathsf{Comparison\text{-}Operator} \rangle \langle \mathsf{Term} \rangle$$

■ The selection condition returns a Boolean value (true or false) for a given input tuple.

Selection (2)

- Term (or "expression") is something that can be evaluated to a data type element for a given tuple:
 - an attribute name,
 - a data type constant, or
 - an expression composed from attributes and constants by data type operations like +, -, *, /.
- ⟨Comparison-Operator⟩ is
 - \blacksquare = (equals), \neq (not equals),
 - \blacksquare < (less than), > (greater than), \leq ,
 - or other data type predicates (e.g. LIKE).
- Examples for Conditions:
 - LAST = 'Smith'
 - POINTS >= 8
 - POINTS = MAXPT

Selection (3)

Of course, the attributes used in the selection condition must appear in the input table:

$$\sigma_{C=1} \left(\begin{array}{c|c} A & B \\ \hline 1 & 3 \\ 2 & 4 \end{array} \right) = \text{Error}$$

The following is legal, but the selection is superfluous, because the condition is always true:

$$\sigma_{A=A} \left(\begin{array}{c|c} A & B \\ \hline 1 & 3 \\ 2 & 4 \end{array} \right) = \begin{array}{c} A & B \\ \hline 1 & 3 \\ 2 & 4 \end{array}$$

Selection (4)

■ It is no error if the result of a relational algebra expression happens to be empty in a specific state:

$$\sigma_{A=3} \left(\begin{array}{c|c} A & B \\ \hline 1 & 3 \\ 2 & 4 \end{array} \right) = \emptyset$$

It is legal, but most probably an error, to use a condition that is always false (inconsistent):

$$\sigma_{1=2} \left(\begin{array}{c|c} A & B \\ \hline 1 & 3 \\ 2 & 4 \end{array} \right) = \emptyset$$

Selection (5)

ullet $\sigma_{\varphi}(R)$ corresponds to the following SQL query:

```
SELECT *
FROM R
WHERE \varphi
```

- I.e. selection corresponds to the WHERE-clause.
- A different relational algebra operation called "projection" corresponds to the SELECT-clause in SQL.
 This can be slightly confusing.

Extended Selection (1)

- In the basic selection operation, only simple conditions consisting of a single comparison ("atomic formula") are possible.
- However, one can extend the possible conditions by permitting to combine the single conditions by the logical operators ∧ (and), ∨ (or), and ¬ (not):

φ_1	φ_2	$\varphi_1 \wedge \varphi_2$	$\varphi_1 \vee \varphi_2$	$\neg \varphi_1$
false	false	false	false	true
false	true	false	true	true
true	false	false	true	false
true	true	true	true	false

Extended Selection (2)

- ullet $\varphi_1 \wedge \varphi_2$ is called the "conjunction of φ_1 and φ_2 "
- $\varphi_1 \vee \varphi_2$ is called the "disjunction of φ_1 and φ_2 "
- $\blacksquare \neg \varphi_1$ is called the "negation of φ_1 ".
- One can write "and", "or" and "not" instead of the symbols "∧", "∨", "¬" used in logic.

Extended Selection (3)

- The selection condition must permit evaluation for each input tuple in isolation.
- This extended form of selection is not necessary, since it can always be expressed with the basic operations of relational algebra. But it is convenient.
- E.g. $\sigma_{\varphi_1 \wedge \varphi_2}(R)$ is equivalent to $\sigma_{\varphi_1}(\sigma_{\varphi_2}(R))$.

Projection (1)

- lacktriangleright The projection π eliminates attributes (columns) from the input relation.
- Example:

$$\pi_{A,C} \left(\begin{array}{c|c|c} A & B & C \\ \hline 1 & 4 & 7 \\ 2 & 5 & 8 \\ 3 & 6 & 9 \end{array} \right) = \begin{array}{c|c} A & C \\ \hline 1 & 7 \\ 2 & 8 \\ 3 & 9 \end{array}$$

Projection (2)

- In general, the projection $\pi_{A_{i_1},...,A_{i_k}}(R)$ produces for each input tuple $(A_1: d_1,...,A_n: d_n)$ an output tuple $(A_{i_1}: d_{i_1},...,A_{i_k}: d_{i_k})$.
- I.e. the attribute values are not changed, but only the explicitly mentioned attributes are retained.
 All other attributes are "projected away".

Projection (3)

- Normally, there is one output tuple for every input tuple. However, if two input tuples lead to the same output tuple, the duplicate will be eliminated.
- Example:

$$\pi_B \left(\begin{array}{c|c} A & B \\ \hline 1 & 4 \\ 2 & 5 \\ 3 & 4 \end{array} \right) = \begin{bmatrix} B \\ 4 \\ 5 \end{bmatrix}$$

Projection (4)

- Attributes can be renamed: $\pi_{B_1 \leftarrow A_{i_1}, \dots, B_k \leftarrow A_{i_k}}(R)$ transforms the input tuple $(A_1: d_1, \dots, A_n: d_n)$ into the output tuple $(B_1: d_{i_1}, \dots, B_k: d_{i_k})$.
- Return values can be computed by datatype operations such as + or || (string concatenation):

$$\pi$$
SID, NAME \leftarrow FIRST ||''|| LAST (STUDENTS).

Columns can be created with constant values:

$$\pi$$
SID, FIRST, LAST, GRADE \leftarrow 'A' (STUDENTS).

Projection (5)

- The projection is a mapping, which is applied to every input tuple.
- Each input tuple is mapped locally to an output tuple.
- Only functions which are defined based on single input tuples are allowed.

Projection (6)

 \blacksquare $\pi_{A_1,...,A_n}(R)$ corresponds to the SQL query:

SELECT
$$A_1$$
, ..., A_n FROM R

 \blacksquare $\pi_{B_1 \leftarrow A_1, \dots, B_n \leftarrow A_n}(R)$ is written in SQL as follows:

SELECT
$$A_1$$
 AS B_1 , ..., A_n AS B_n FROM R

■ The keyword AS can be left out ("syntactic sugar").

Summary

Selection σ

(Filters some rows)

Projection π

(Maps each row)

Combining Operations (1)

- Since the result of a relational algebra operation is also a relation, it can act as input to another algebra operation.
- For instance, to compute the exercises solved by student 102:

$$\pi_{\text{CAT, ENO}}(\sigma_{\text{SID}=102}(\text{RESULTS}))$$

An intermediate result can be stored in a temporary relation (can also be seen as macro definition):

$$\begin{array}{ll} \mathtt{S102} \; := \; \sigma_{\mathtt{SID} = \mathtt{102}}(\mathtt{RESULTS}); \\ \pi_{\mathtt{CAT.} \; \mathtt{ENO}}(\mathtt{S102}) \end{array}$$

Combining Operations (2)

Expressions of relational algebra may become clearer if depicted as operator tree:

For comparison, an operator tree for the arithmetic expression (x + 2) * y is shown on the right.

Combining Operations (3)

■ In SQL, σ and π (and \times , see below) can be combined in a single SELECT-expression:

```
SELECT CAT, ENO
FROM RESULTS
WHERE SID = 102
```

Complex queries can be constructed step by step:

```
CREATE VIEW S102
AS SELECT *
FROM RESULTS
WHERE SID = 102
```

Then S102 can be used like a stored table.

Basic Operands

- The leaves of the operator tree are
 - the names of database relations
 - constant relations (explicitly enumerated tuples).
- A relation name R is a legal expression of relational algebra.
 Its value is the entire relation stored under that name.
 It corresponds to the SQL query:

It is not necessary to write a projection on all attributes.

Exercises

- Which of the following relational algebra expressions are syntactically correct? What do they mean?
 - ☐ STUDENTS.
 - $\sigma_{\text{MAXPT} \neq 10}$ (EXERCISES).
 - \Box $\pi_{\text{FIRST}}(\pi_{\text{LAST}}(\text{STUDENTS})).$
 - \Box $\sigma_{\text{POINTS} < 5}(\sigma_{\text{POINTS} > 1}(\text{RESULTS})).$
 - \Box $\sigma_{\text{POINTS}}(\pi_{\text{POINTS}} = 10^{-}(\text{RESULTS})).$

Outline

- 1 Introduction
- 2 Joins
- 3 Set operations
- 4 Outer join
- 5 Theory
- 6 Summary

Cartesian Product (1)

- Often, answer tuples must be computed that are derived from two (or more) input tuples.
- This is done by the "cartesian product" ×.
- Arr R imes S concatenates ("glues together") each tuple from R with each tuple from S.

Cartesian Product (2)

Example:

- Since attribute names must be unique within a tuple, the cartesian product may only be applied when *R* and *S* have no attribute in common.
- This is no real restriction, since we may rename the attributes first (with π) and then apply \times .

Cartesian Product (3)

- Some authors define × such that it automatically renames double attributes:
 - E.g. for relations R(A, B) and S(B, C) the product $R \times S$ has attributes (R.A, R.B, S.B, S.C).
 - As in SQL, one can also use the names *A* and *C*, because they uniquely identify the attributes.
- In this course, this is not permitted!

Cartesian Product (4)

- If the relation R contains n tuples, and the relation S contains m tuples, then $R \times S$ contains n * m tuples.
- The cartesian product is in itself seldom useful, because it leads to a "blowup" in relation size.
- The problem is that R × S combines each tuple from R with each tuple from S. Usually, the goal is to combine only selected pairs of tuples.
- Thus, the cartesian product is useful only as input for a following selection.

Cartesian Product (5)

 \blacksquare $R \times S$ is written in SQL as

■ In SQL it is no error if the two relations have common attribute names, since one can reference attributes also in the form "R.A" or "S.A".

Renaming

■ An operator $\rho_R(S)$ that prepends "R." to all attribute names is sometimes useful:

$$\rho_R \left(\begin{array}{c|c} AA & B \\ \hline 1 & 2 \\ \hline 3 & 4 \end{array} \right) = \begin{array}{c|c} AR.A & R.B \\ \hline 1 & 2 \\ \hline 3 & 4 \end{array}$$

- This is only an abbreviation for an application of the projection: $\pi_{B,A\leftarrow A, R,B\leftarrow B}(S)$.
- Otherwise, attribute names in relational algebra do not automatically contain the relation name.

Join (1)

Since this combination of cartesian product and selection is so common, a special symbol has been introduced for it:

$$R \underset{A=B}{\bowtie} S$$
 is an abbreviation for $\sigma_{\mathtt{A}=\mathtt{B}}(\mathtt{R} \times \mathtt{S})$.

- This operation is called "join": It is used to join two tables (i.e. combine their tuples).
- The join is one of the most important and useful operations of the relational algebra.

Join (2)

STUDENTS ⋈ RESULTS							
SID	FIRST	LAST	EMAIL	CAT	ENO	POINTS	
101	Ann	Smith		H	1	10	
101	Ann	Smith		H	2	8	
101	Ann	Smith		M	1	12	
102	Michael	Jones	(null)	H	1	9	
102	Michael	Jones	(null)	H	2	9	
102	Michael	Jones	(null)	M	1	10	
103	Richard	Turner		H	1	5	
103	Richard	Turner	• • •	M	1	7	

- Student Maria Brown does not appear, because she has not submitted any homework and did not participate in the exam.
- What is shown above, is the natural join of the two tables. However, in the following first the standard join is explained.

Join (3)

- The above procedure is called "nested loop join".
- Note that the intermediate result of $R \times S$ is not materialized (explicitly stored).
- Quite a lot of different algorithms have been developed for computing the join.

Join (4)

- The join condition does not have to take the form A = B (although this is most common). It can be an arbitrary condition, for instance also A < B.
- A typical application of a join is to combine tuples based on a foreign key, e.g.

$$\underset{\mathsf{SID}=\mathsf{SID}'}{\mathsf{RESULTS}} \underset{\mathsf{SID}=\mathsf{SID}'}{\mathsf{M}} \pi_{\mathsf{SID}'\leftarrow\mathsf{SID},\mathsf{FIRST},\mathsf{LAST},\mathsf{EMAIL}}(\mathsf{STUDENTS})$$

Join (5)

■ The join not only combines tuples, but also acts as a filter: It eliminates tuples without join partner.

(Note: Foreign key ensures that join partner exists.)

AA	R		Λ	\Box					
AA			AC	ν		$\Delta \Delta$	R	C	ח
<i>A</i> 1	2	l M	A4	E	=	/ // 1	נ		
AI	_	B=C	A4	3	_	<i>A</i> 3	1	4	
3	4	B=C	6	7		73	-	-	ا ا
			0	'					

- A "semijoin" (⊢ , ⊢) works only as a filter.
- An "outer join" (see end of this part) does not work as a filter: It preserves all input tuples.

Natural Join (1)

- Another useful abbreviation is the "natural join" ⋈.
- It combines tuples which have equal values in attributes with the same name.

AA	В
<i>A</i> 1	2
3	4

AB	С
A4	5
4	8
6	7

M

Natural Join (2)

- The natural join of two relations
 - \blacksquare R(A₁,..., A_n, B₁,..., B_k) and
 - \blacksquare $S(B_1, \ldots, B_k, C_1, \ldots, C_m)$

produces in database state ${\mathcal I}$ all tuples of the form

$$(a_1,\ldots,a_n,b_1,\ldots,b_k,c_1,\ldots,c_m)$$

such that

- lacksquare $(a_1,\ldots,a_n,b_1,\ldots,b_k)\in\mathcal{I}(R)$ and
- $\quad \blacksquare \ (b_1,\ldots,b_k,c_1,\ldots,c_m) \in \mathcal{I}(S).$

Natural Join (3)

- The natural join not only corresponds to a cartesian product followed by a selection, but also
 - automatically renames one copy of each common attribute before the cartesian product, and
 - uses a projection to eliminate these double attributes at the end.
- E.g., given R(A, B), and S(B, C), then $R \bowtie S$ is an abbreviation for

$$\pi_{A,B,C}(\sigma_{B=B'}(R \times \pi_{B'\leftarrow B,C}(S))).$$

Natural Join (4)

A Note on Relational Database Design

- In order to support the natural join, it is beneficial to give attributes from different relations, which are typically joined together, the same name.
- Even if the utilized query language does not have a natural join, this provides good documentation.
- If domain names are used as attribute names, this will happen automatically.
- Try to avoid giving the same name to attributes which will probably not be joined.

Joins in SQL (1)

■ $R \bowtie S$ is normally written in SQL like $\sigma_{A=B}(R \times S)$:

SELECT *
FROM
$$R$$
, S
WHERE $A = B$

Attributes can also referenced with explicit relation name (required if the attribute name appears in both relations):

SELECT *
FROM
$$R$$
, S
WHERE $R.A = S.B$

Joins in SQL (2)

■ In SQL-92, one can also write:

SELECT *

FROM R JOIN S ON R.A = S.B

- This shows the influence of relational algebra, but it is not really in the spirit of SQL.
- E.g. in Oracle 8i, the new alternative syntax for the join is not supported.

Algebraic Laws (1)

■ The join satisfies the associativity condition:

$$(R \bowtie S) \bowtie T = R \bowtie (S \bowtie T).$$

■ Therefore, the parentheses are not needed:

$$R \bowtie S \bowtie T$$
.

- The join is not quite commutative: The sequence of columns (from left to right) will be different.
- However, if a projection follows later, this does not matter (one can also introduce π for this purpose):

$$\pi(R \bowtie S) = \pi(S \bowtie R).$$

Algebraic Laws (2)

- Further algebraic laws hold, which are utilized in the query optimizer of a relational DBMS.
- **E**.g., if the condition φ refers only to S, then

$$\sigma_{\varphi}(R \bowtie S) = R \bowtie \sigma_{\varphi}(S).$$

The right hand side can often be evaluated more efficiently (depending on relation sizes, indexes).

■ But for this course, efficiency is not important.

■ The following query structure is very common:

$$\pi_{A_1,\ldots,A_k}(\sigma_{\varphi}(R_1 \bowtie \cdots \bowtie R_n)).$$

- First join all tables which are needed to answer the query.
- Second, select the relevant tuples.
- Third, project on the attributes which should appear in the output.

- Patterns are often useful conventions of thought.
- But relational algebra operations can be combined in any way. It is not necessary to adhere to this pattern.
- In contrast, in SQL the keywords SELECT and FROM are required, and the sequence must always be

```
SELECT ... FROM ... WHERE ...
```

• $\pi_{A_1,...,A_k}(\sigma_{\varphi}(R_1 \bowtie \cdots \bowtie R_n))$ is written in SQL as:

```
SELECT DISTINCT A_1, \ldots, A_k
FROM R_1, \ldots, R_n
WHERE \varphi AND \langle Join Conditions\rangle
```

- It is a common mistake to forget a join condition.
- Usually, every two relations are linked (directly or indirectly) by equations, e.g. $R_1.B_1 = R_2.B_2$.
- "DISTINCT" is not always necessary (see above).

- To formulate a query, think first about the relations needed:
 - Usually, the natural language version of the query names certain attributes.
 - Each such attribute requires at least one relation which contains this attribute.

- Query Formulation, continued:
 - Finally, sometimes intermediate relations are required in order to make the join meaningful.
 - E.g., suppose that relations R(A,B), S(B,C), T(C,D) are given and attributes A and D are needed. Then $R \bowtie T$ would not be correct. Why?
 - Instead, the join must be R ⋈ S ⋈ T.
 - It often helps to have a graphical representation of the foreign key links between the tables (which correspond to typical joins).

Self Joins (1)

- Sometimes, it is necessary to refer to more than one tuple from one relation at the same time.
- E.g. who got more points than student 101 for any exercise?
- In this case, two tuples of the relation RESULTS are needed in order to compute one result tuple:
 - One tuple for the student 101.
 - One tuple for the same exercise, in which POINTS is greater than in the first tuple.

Self Joins (2)

This requires a generalization of the above query pattern, where two copies of a relation are joined (at least one must be renamed first).

$$S := \rho_{\mathbf{X}}(\mathtt{RESULTS}) \bowtie \rho_{\mathbf{Y}}(\mathtt{RESULTS});$$

$$\begin{matrix} \mathtt{X.CAT} = \mathtt{Y.CAT} \\ \land \mathtt{X.ENO} = \mathtt{Y.ENO} \end{matrix}$$

$$\pi_{\mathtt{X.SID}}(\sigma_{\mathtt{X.POINTS}}, \mathtt{Y.POINTS}, \mathtt{Y.SID} = \mathtt{101}(S))$$

Such joins of a table with itself are sometimes called "self joins".

Outline

- 1 Introduction
- 2 Joins
- 3 Set operations
- 4 Outer join
- 5 Theory
- 6 Summary

Set Operations (1)

- Since relations are sets (of tuples), the usual set operations \cup , \cap , \setminus can also be applied to relations.
- However, both input relations must have the same schema.
- $Arr R \cup S$ contains all tuples which are contained in R, in S, or in both relations (Union).

Set Operations (2)

- $Arr R \setminus S$ contains all tuples which are contained in R, but not in S (Set Difference).
- $R \cap S$ contains all tuples which are contained in both, R and S (Intersection).
- Intersection is (like the join) a derived operation: It can be expressed in terms of \:

$$R \cap S = R \setminus (R \setminus S)$$
.

Set Operations (3)

Union (1)

- Without \cup , every result column can contain only values from a single column of the stored tables.
- E.g. suppose that besides the registered students, who submit homeworks and write exams, there are also guests that attend the course:

■ The task is to produce a list of email addresses of registered students and guests in one query.

Union (2)

■ With U, this is simple:

$$\pi_{\texttt{EMAIL}}(\texttt{STUDENTS}) \cup \pi_{\texttt{EMAIL}}(\texttt{GUESTS}).$$

- This query cannot be formulated without \cup .
- Another typical application of \cup is a case analysis:

$$\texttt{MPOINTS} := \pi_{\texttt{SID},\texttt{POINTS}}(\sigma_{\texttt{CAT}=\texttt{'M'}}, _{\land \texttt{ENO}=1}(\texttt{RESULTS}));$$

Union (3)

■ In SQL, UNION can be written between two SELECT-expressions:

SELECT SID, 'A' AS GRADE

FROM RESULTS

WHERE CAT = 'M' AND ENO = 1 AND POINTS >= 12

UNION

SELECT SID, 'B' AS GRADE

FROM RESULTS

WHERE CAT = 'M' AND ENO = 1

AND POINTS >= 10 AND POINTS < 12

UNION

. . .

Union (4)

- UNION was already contained in the first SQL standard (SQL-86) and is supported in all DBMS.
- There is no other way to formulate a union in SQL.
- UNION, an algebra operator, is a bit strange in SQL.

Set Difference (1)

■ The operators σ , π , \times , \bowtie , \cup have a monotonic behaviour, e.g.

$$R \subseteq S \implies \sigma_{\varphi}(R) \subseteq \sigma_{\varphi}(S)$$

- Then it follows that also every query Q that uses only the above operators behaves monotonically:
 The Alex The Alexander Alexander Alexander Through the incertion of the th
 - Let \mathcal{I}_1 be a database state, and let \mathcal{I}_2 result from \mathcal{I}_1 by the insertion of one or more tuples.
 - Then every tuple t contained in the answer to Q in \mathcal{I}_1 is also contained in the answer to Q in \mathcal{I}_2 .

Set Difference (2)

- If the query must behave nonmonotonically, it is clear that the previous operations are not sufficient, and one must use set difference "\". E.g.
 - Which student has not solved any exercise?
 - Who got the most points in Homework 1?
 - Who has solved all exercises in the database?

Set Difference (3)

STUDENTS					
SID	FIRST	LAST	EMAIL		
101	Ann	Smith			
102	Michael	Jones	(null)		
103	Richard	Turner			
104	Maria	Brown	• • •		

EXERCISES					
CAT ENO TOPIC MAXPT					
Н	1	Rel.	Algeb.	10	
H	2	SQL SQL	_	10	
M	1	SQL		14	

RESULTS					
SID	CAT	<u>ENO</u>	POINTS		
101	Н	1	10		
101	H	2	8		
101	M	1	12		
102	H	1	9		
102	H	2	9		
102	M	1	10		
103	H	1	5		
103	M	1	7		

Set Difference (4)

E.g. which student has not solved any exercise?

$$\mathtt{NO_SOL} := \pi_{\mathtt{SID}}(\mathtt{STUDENTS}) \setminus \pi_{\mathtt{SID}}(\mathtt{RESULTS});$$

$$\pi_{\text{FIRST.LAST}}(\text{STUDENTS} \bowtie \text{NO_SOL})$$

■ What is the error in this query?

$$\pi_{ t SID, t FIRST, t LAST}(t STUDENTS) \setminus \pi_{ t SID}(t RESULTS)$$

Is this a correct solution?

$$\pi_{\texttt{FIRST},\,\texttt{LAST}}(\texttt{STUDENTS} \underset{\texttt{SID} \neq \texttt{SID2}}{\bowtie} \pi_{\texttt{SID2} \leftarrow \texttt{SID}}(\texttt{RESULTS}))$$

Set Difference (5)

- When using \, a typical pattern is the anti-join.
- E.g. given R(A, B) and S(B, C), the tuples from R that do not have a join partner in S can be computed as follows:

$$R \bowtie (\pi_B(R) \setminus \pi_B(S)).$$

- The following is equivalent: $R \setminus \pi_{A,B}(R \bowtie S)$.
- A symbol for the anti-join is not common, but one could use $R \vdash S$ (a complemented semi-join).

Set Difference (6)

- Note that in order for the set difference $R \setminus S$ to be applicable, it is not (!) required that $S \subseteq R$.
- E.g. this query computes the SIDs of students that have solved Homework 2, but not Homework 1:

$$\begin{array}{l} \pi_{\rm SID}(\sigma_{\rm CAT='H', \land ENO=2}({\tt RESULTS})) \\ \backslash \ \pi_{\rm SID}(\sigma_{\rm CAT='H', \land ENO=1}({\tt RESULTS})) \end{array}$$

■ It is no problem that there might also be students that have solved Homework 1, but not Homework 2.

Set Difference (7)

- \blacksquare Suppose that R and S are represented in SQL as
 - SELECT A_1 , ..., A_n FROM R_1 , ..., R_m WHERE φ_1
 - SELECT B_1, \ldots, B_n FROM S_1, \ldots, S_k WHERE φ_2
- Then $R \setminus S$ can be represented as

```
SELECT A_1, ..., A_n

FROM R_1, ..., R_m

WHERE \varphi_1 AND NOT EXISTS

(SELECT * FROM S_1, ..., S_k

WHERE \varphi_2

AND B_1 = A_1 AND ... AND B_n = A_n)
```

Union vs. Join

■ Two alternative representations of the homework, midterm, and final totals of the students are:

Results_1							
STUDENT	Н	M	F				
Jim Ford Ann Lloyd	95 80	60 90	75 95				
min broyu							

Results_2								
STUDENT	CAT	PCT						
Jim Ford	Н	95						
Jim Ford	M	60						
Jim Ford	F	75						
Ann Lloyd	H	80						
Ann Lloyd	M	90						
Ann Lloyd	F	95						

• Give algebra expressions to translate between them.

Outline

- 1 Introduction
- 2 Joins
- 3 Set operations
- 4 Outer join
- 5 Theory
- 6 Summary

Outer Join (1)

■ The usual join eliminates tuples without partner:

Δ	R		В	\mathcal{C}] .			
/ 1			_	_		Α	В	\mathcal{C}
21	h ₁	M	h	C0		/،		
al	$D_{\rm I}$	^	D2	L C2	_	a_2	ha	Co
a_2	b_2		b_3	C ₃		<i>a</i> 2	<i>D</i> ₂	C2
a2	102		<i>D</i> 3	<u></u>				

■ The left outer join guarantees that tuples from the left table will appear in the result:

Α	В	В	С		Α		
a_1	b_1	<i>b</i> ₂	<i>c</i> ₂	=	<i>a</i> ₁	b_1	
a ₂	b_2	<i>b</i> ₃	<i>c</i> ₃		a ₂	<i>b</i> ₂	<i>c</i> ₂

Outer Join (2)

■ The right outer join preserves tuples from the right table:

Α		 В	_		l .	В	
a_1	b_1	<i>b</i> ₂	<i>c</i> ₂	=	<i>a</i> ₂	<i>b</i> ₂	<i>c</i> ₂
a_2	b_2	<i>b</i> ₃	<i>c</i> ₃			<i>b</i> ₃	<i>c</i> ₃

■ The full outer join does not eliminate any tuples:

Δ	R	l	R]	Α	В	С
						a ₁	<i>b</i> ₁	
a_1	b_1		b_2	<i>c</i> ₂	=		b_2	C2
an	bo		b ₃	C3		<i>a</i> ₂	ν_2	<i>c</i> ₂
- 2		l	- 5	3	l		<i>b</i> ₃	<i>C</i> 3

Outer Join (3)

■ E.g. students with their homework results, students without homework result are listed with null values:

$$\texttt{STUDENTS} \nearrow \pi_{\texttt{SID},\texttt{ENO},\texttt{POINTS}}(\sigma_{\texttt{CAT}=",\texttt{H}"},\texttt{(RESULTS)})$$

SID	FIRST	LAST	EMAIL	ENO	POINTS
101	Ann	Smith		1	10
101	Ann	Smith		2	8
102	Michael	Jones	(null)	1	9
102	Michael	Jones	(null)	2	9
103	Richard	Turner		1	5
104	Maria	Brown		(null)	(null)

Outer Join (4)

- Is there any difference between
 - STUDENTS ⋈ RESULTS and
 - STUDENTS RESULTS?
- The outer join is especially useful together with aggregation functions (e.g. count, sum), see below.
- With a selection on the outer join result, one can use it like a set difference: But questionable style.

Outer Join (5)

- The outer join is a derived operation (like \bowtie , \cap), i.e. it can be simulated with the five basic relational algebra operations.
- E.g. consider relations R(A, B) and S(B, C).
- The left outer join $R \bowtie S$ is an abbreviation for

$$R \bowtie S \cup (R \setminus \pi_{A,B}(R \bowtie S)) \times \{(C: null)\}$$

(where \bowtie can be further replaced by \times , σ , π).

Outline

- 1 Introduction
- 2 Joins
- 3 Set operations
- 4 Outer join
- 5 Theory
- 6 Summary

Definitions: Syntax (1)

- A set S_D of data type names, and for each $D \in S_D$ a set val(D) of values.
- \blacksquare A set \mathcal{A} of possible attribute names (identifiers).
- lacksquare A relational database schema ${\cal S}$ that consists of
 - \blacksquare a finite set of relation names \mathcal{R} , and
 - for every $R \in \mathcal{R}$, a relation schema sch(R).

(Constraints are not important here.)

Definitions: Syntax (2)

- One recursively defines the set of relational algebra (RA) expressions (queries) together with the relation schema of each RA expression.
 Base Cases:
 - R: For every $R \in \mathcal{R}$, the relation name R is an RA expression with schema sch(R).

Definitions: Syntax (3)

- Recursive cases, Part 1: Let Q be an RA expression with schema $\rho = (A_1 : D_1, \dots, A_n : D_n)$. Then also the following are RA expressions:
 - $\sigma_{A_i=A_j}(Q)$ for $i,j\in\{1,\ldots,n\}$. It has schema ρ .
 - lacksquare $\sigma_{A_i=d}\left(Q\right)$ for $i\in\{1,\ldots,n\}$ and $d\in val(D_i)$. It has schema ρ .

Definitions: Syntax (4)

- Recursive cases, continued: Let Q_1 and Q_2 be RA expressions with the same schema ρ . Then also the following are RA expressions with schema ρ :
- Let Q_1 and Q_2 be RA expressions with the schemas $(A_1: D_1, \ldots, A_n: D_n)$ and $(B_1: E_1, \ldots, B_n: E_m)$, resp. If $\{A_1, \ldots, A_n\} \cap \{B_1, \ldots, B_m\} = \emptyset$, then also the following is an RA expression:
 - $(Q_1) \times (Q_2)$ Schema: $(A_1: D_1, \dots, A_n: D_n, B_1: E_1, \dots, B_m: E_m).$

Definitions: Syntax (5)

■ Nothing else is a relational algebra expression.

Abbreviations

- Parentheses can be left out if the structure is clear (or the possible structures are equivalent).
- As explained above, additional algebra operations (like the join) can be introduced as abbreviations.

Definitions: Semantics (1)

- A database state \mathcal{I} defines a finite relation $\mathcal{I}(R)$ for every relation name R in the database schema.
- The result of a query Q, i.e. an RA expression, in a database state \mathcal{I} is a relation. The query result is written $\mathcal{I}[Q]$ and defined recursively corresponding to the structure of Q:
 - If Q is a relation name R, then $\mathcal{I}[Q] := \mathcal{I}(R)$.
 - If Q is a constant relation $\{(A_1: d_1, \ldots, A_n: d_n)\}$, then $\mathcal{I}[Q] := \{(d_1, \ldots, d_n)\}$.

Definitions: Semantics (2)

- Definition of the result $\mathcal{I}[Q]$ of an RA expression Q in state \mathcal{I} , continued:
 - If Q has the form $\sigma_{A_i=A_i}(Q_1)$, then

$$\mathcal{I}[Q] := \{(d_1, \ldots, d_n) \in \mathcal{I}[Q_1] \mid d_i = d_i\}.$$

• If Q has the form $\sigma_{A_i=d}(Q_1)$, then

$$\mathcal{I}[Q] := \{(d_1, \ldots, d_n) \in \mathcal{I}[Q_1] \mid d_i = d\}.$$

■ If Q has the form $\pi_{B_1 \leftarrow A_{i_1}, ..., B_m \leftarrow A_{i_m}}(Q_1)$, then

$$\mathcal{I}[Q] := \{(d_{i_1}, \ldots, d_{i_m}) \mid (d_1, \ldots, d_n) \in \mathcal{I}[Q_1]\}.$$

Definitions: Semantics (3)

- Definition of $\mathcal{I}[Q]$, continued:
 - If Q has the form $(Q_1) \cup (Q_2)$ then

$$\mathcal{I}[Q] := \mathcal{I}[Q_1] \cup \mathcal{I}[Q_2].$$

■ If Q has the form $(Q_1) \setminus (Q_2)$ then

$$\mathcal{I}[Q] := \mathcal{I}[Q_1] \setminus \mathcal{I}[Q_2].$$

■ If Q has the form $(Q_1) \times (Q_2)$, then

$$\mathcal{I}[Q] := \{(d_1,\ldots,d_n,e_1,\ldots,e_m) \mid \ (d_1,\ldots,d_n) \in \mathcal{I}[Q_1], \ (e_1,\ldots,e_m) \in \mathcal{I}[Q_2]\}.$$

Monotonicity

- Definition A database state \mathcal{I}_1 is smaller than (or equal to) a database state \mathcal{I}_2 , written $\mathcal{I}_1 \subseteq \mathcal{I}_2$, if and only if $\mathcal{I}_1(R) \subseteq \mathcal{I}_2(R)$ for all relation names R in the schema.
- Theorem If an RA expression Q does not contain the \ (set difference) operator, then the following holds for all database states $\mathcal{I}_1, \mathcal{I}_2$:

$$\mathcal{I}_1 \subseteq \mathcal{I}_2 \implies \mathcal{I}_1[Q] \subseteq \mathcal{I}_2[Q].$$

Equivalence (1)

■ Definition Two RA expressions Q_1 and Q_2 are equivalent if and only if they have the same schema and for all database states \mathcal{I} the following holds:

$$\mathcal{I}[Q_1] = \mathcal{I}[Q_2].$$

■ There are two notions of equivalence, depending on whether one considers all structurally possible states or only states that satisfy the constraints.

Equivalence (2)

- Examples for equivalences
 - \bullet $\sigma_{\varphi_1}(\sigma_{\varphi_2}(Q))$ is equivalent to $\sigma_{\varphi_2}(\sigma_{\varphi_1}(Q))$.
 - $(Q_1 \times Q_2) \times Q_3$ is equivalent to $Q_1 \times (Q_2 \times Q_3)$.
 - If A is an attribute in the schema of Q_1 : $\sigma_{A=d}(Q_1 \times Q_2)$ is equivalent to $(\sigma_{A=d}(Q_1)) \times Q_2$
- Theorem The equivalence of relational algebra expressions is undecidable.

Limitations of RA (1)

- Let R be a relation name with schema (A: D, B: D) and let val(D) be infinite.
- The transitive closure of $\mathcal{I}(R)$ is the set of all $(d,e) \in val(D) \times val(D)$ such that there are $n \in \mathbb{N}$ $(n \geq 1)$ and $d_0,\ldots,d_n \in val(D)$ with $d=d_0,\ e=d_n$ and $(d_{i-1},d_i) \in \mathcal{I}(R)$ for $i=1,\ldots,n$.
- E.g. *R* could be the relation "PARENT", then the transitive closure are all ancestor-relationships (parents, grandparents, great-grandparents, . . .).

Limitations of RA (2)

- Theorem There is no RA expression Q such that $\mathcal{I}[Q]$ is the transitive closure of $\mathcal{I}(R)$ for all database states \mathcal{I} .
- E.g. in the ancestor example, one would need an additional join for every additional generation.
- Therefore, if one does not know, how many generations the database contains, one cannot write a query that works for all possible database states.

Limitations of RA (3)

- This of course implies that relational algebra is not computationally complete:
 - Not every function from database states to relations for which a C program exists can be formulated in relational algebra.
 - However, this can also not be expected, since one wants to be sure that query evaluation always terminates. This is guaranteed for RA.

Limitations of RA (4)

- All RA queries can be computed in time that is polynomically in the size of the database.
- Thus, also very complex functions cannot be formulated in relational algebra.
- As the transitive closure shows, not all problems of polynomial complexity can be formulated in RA.

Expressive Power (1)

- A query language \mathcal{L} for the relational model is called strong relationally complete if for every database schema \mathcal{S} and for every RA expression Q_1 with respect to \mathcal{S} there is a query $Q_2 \in \mathcal{L}_{\mathcal{S}}$ such that for all database states \mathcal{I} with respect to \mathcal{S} the two queries produce the same result: $\mathcal{I}[Q_1] = \mathcal{I}[Q_2]$.
- I.e. the requirement is that every relational algebra expression can be translated into an equivalent query in that language.

Expressive Power (2)

- E.g. SQL is strong relationally complete.
- If the translation of queries is possible in both directions, the two query languages have the same expressive power.
- "Relationally complete" (without "strong") permits to use a sequence of queries and to store intermediate results in temporary relations.

Expressive Power (3)

- The following languages have the same expressive power (queries can be translated between them):
 - Relational algebra
 - SQL without aggregations and with mandatory duplicate elimination.
 - Tuple relational calculus (first order logic with variables for tuples, see below), Domain RC
 - Datalog (a Prolog variant) without recursion
- Thus, the set of functions that can be expressed in RA is at least not arbitrary.

Outline

- 1 Introduction
- 2 Joins
- 3 Set operations
- 4 Outer join
- 5 Theory
- 6 Summary

Summary

The five basic operations of relational algebra are:

- \bullet σ_{φ} : Selection
- \blacksquare $\pi_{\mathtt{A}_1,\ldots,\mathtt{A}_k}$: Projection
- ×: Cartesian Product
- U: Union
- \: Set Difference

Derived operations: The general join \bowtie , the natural join \bowtie , the renaming operator ρ , the intersection \cap .

Bibliography

■ The following list of references is compiled from the open source bibliography available at

https://github.com/krr-up/bibliography

■ Feel free to submit corrections via pull requests!

- S. Abiteboul, R. Hull, and V. Vianu. Foundations of Databases. Addison-Wesley, 1995.
- [2] C. Aggarwal, editor. Data Streams — Models and Algorithms, volume 31 of Advances in Database Systems. Springer-Verlag, 2007.
- [3] K. Apt, H. Blair, and A. Walker. Towards a theory of declarative knowledge. In J. Minker, editor, Foundations of Deductive Databases and Logic Programming, chapter 2, pages 89–148. Morgan Kaufmann Publishers, 1987.
- [4] M. Arenas, L. Bertossi, and J. Chomicki. Consistent query answers in inconsistent databases.

- In Proceedings of the Eighteenth ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems (PODS'99), pages 68–79. ACM Press, 1999.
- [5] F. Baader, D. Calvanese, D. McGuinness, D. Nardi, and P. Patel-Schneider, editors. The Description Logic Handbook: Theory, Implementation, and Applications. Cambridge University Press, 2003.
- [6] B. Babcock, S. Babu, M. Datar, R. Motwani, and J. Widom. Models and issues in data stream systems.
 - In L. Popa, editor, *Proceedings of the Twenty-first ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems (PODS'02)*, pages 1–16. ACM Press, 2002.
- [7] C. Baral.

Knowledge Representation, Reasoning and Declarative Problem Solving.

Cambridge University Press, 2003.

- [8] S. Ceri, G. Gottlob, and L. Tanca. Logic Programming and Databases. Springer-Verlag, 1990.
- [9] R. Elmasri and S. Navathe. Fundamentals of database systems. Addison-Wesley, 1994.
- [10] R. Fagin, J. Ullman, and M. Vardi. On the semantics of updates in databases. preliminary report. In *Proceedings of the Second ACM Conference SIGACT-SIGMOD*, pages 352–365, 1983.
- [11] H. Gallaire, J. Minker, and J. Nicolas. Logic and databases: A deductive approach. Computing Surveys, 16(2):153–185, 1984.
- [12] M. Gebser, R. Kaminski, B. Kaufmann, M. Lindauer, M. Ostrowski, J. Romero, T. Schaub, and S. Thiele.

Potassco User Guide.

- University of Potsdam, 2 edition, 2015.
- [13] M. Gebser, R. Kaminski, B. Kaufmann, and T. Schaub. Answer Set Solving in Practice. Synthesis Lectures on Artificial Intelligence and Machine Learning. Morgan and Claypool Publishers, 2012.
- [14] M. Gelfond and Y. Kahl. Knowledge Representation, Reasoning, and the Design of Intelligent Agents: The Answer-Set Programming Approach. Cambridge University Press, 2014.
- [15] M. Gelfond and V. Lifschitz. Classical negation in logic programs and disjunctive databases. New Generation Computing, 9:365–385, 1991.
- [16] H. Katsuno and A. Mendelzon. On the difference between updating a knowledge database and revising it.

In J. Allen, R. Fikes, and E. Sandewall, editors, *Proceedings of the Second International Conference on Principles of Knowledge Representation and Reasoning (KR'91)*, pages 387–394. Morgan Kaufmann Publishers, 1991.

[17] V. Lifschitz.

Closed-world databases and circumscription.

Artificial Intelligence, 27:229–235, 1985.

[18] V. Lifschitz.

Nonmonotonic databases and epistemic queries.

In J. Myopoulos and R. Reiter, editors, *Proceedings of the International Joint Conference on Artificial Intelligence*, pages 381–386. Morgan Kaufmann Publishers, 1991.

[19] V. Lifschitz. Introduction to answer set programming. Unpublished draft, 2004.

[20] V. Lifschitz, F. van Harmelen, and B. Porter, editors.

Handbook of Knowledge Representation. Elsevier Science, 2008.

[21] L. Liu and M. Özsu, editors. Encyclopedia of Database Systems. Springer-Verlag, 2009.

[22] V. Marek and M. Truszczyński. Nonmonotonic logic: context-dependent reasoning. Artifical Intelligence. Springer-Verlag, 1993.

[23] J. Minker, editor. Foundations of Deductive Databases and Logic Programming. Morgan Kaufmann Publishers, 1988.

[24] R. Reiter.

On closed world data bases.

In H. Gallaire and J. Minker, editors, *Logic and Databases*, pages 55–76. Plenum Press. New York, 1978.

[25] R. Reiter.

Towards a logical reconstruction of relational database theory. In M. Brodie, J. Myopoulos, and J. Schmidt, editors, *On conceptual modeling: Perspectives from Artificial Intelligence, Databases and*

Programming Languages, pages 191–233. Springer-Verlag, 1984.

[26] R. Reiter.

On asking what a database knows.

In J. Lloyd, editor, *Computational Logic*, pages 96–113. Springer-Verlag, 1990.

[27] J. Ullman.

Principles of Database Systems.

Computer Science Press, Rockville MD, 1982.

[28] J. Ullman.

Principles of Database and Knowledge-Base Systems.

Computer Science Press, 1988.