Answer Key

1. •
$$n = 10$$

•
$$k = 3$$

•
$$p = 1/2$$

•
$$C(10,3) \cdot (1/2)^3 \cdot (1/2)^7 = \frac{15}{128}$$

2.			repeats n	successes k	probability p	
	A	Getting five 1's	7	5	1/6	
	В	Getting six 1's	7	6	1/6	
	С	Getting seven 1's	7	7	1/6	

A.
$$C(n,k) \cdot p^k \cdot (1-p)^{n-k} = C(7,5) \cdot (1/6)^5 \cdot (5/6)^2$$

B.
$$C(n,k) \cdot p^k \cdot (1-p)^{n-k} = C(7,6) \cdot (1/6)^6 \cdot (5/6)^1$$

C.
$$C(n,k) \cdot p^k \cdot (1-p)^{n-k} = C(7,7) \cdot (1/6)^7 \cdot (5/6)^0$$

•
$$Prob($$
 at least five 1's $) = C(7,5) \cdot (1/6)^5 \cdot (5/6)^2 + C(7,6) \cdot (1/6)^6 \cdot (5/6)^1 + C(7,7) \cdot (1/6)^7 \cdot (5/6)^0$

3.
$$n = 10, k = 1, p = (1/6)$$

 $C(10, 1) \cdot (1/6)^1 \cdot (5/6)^9 \approx 0.323$