

Advanced ML Workshop

Day 3

Scan the QR code to mark your attendance

Attendance

Learning Objectives

Model Selection

Hyperparameter Tuning

Saving and Loading ML Model

Feature Selection

Feature Engineering

Actual Diagram

ModelImprovement

Assume we want to post an image on social media. What do we do?

Posting Images

ModelImprovement

Model Selection

It is the selection of the most optimal and well-suited model to complete the task with a good fit

What is Model Selection?

Why Model Selection?

There are over a dozen models in sklearn library

All models will perform differently on the same task

It is our job to find the best performing, best fit, best efficiency Model given our data

How to select?

Explainablity

Regression: RMSE (*lower* is better)

Classification: Accuracy & F1 Score (higher is better)

Time

Metrics is in Seconds

Lower is better

When to use?

Model A

• Accuracy: 0.912

• F1 Score: 0.90

• Fit Time: 25.432 seconds

Model B

Accuracy 0.900

• F1 Score: 0.890

• Fit Time: 2.854 Seconds

Model Complexity

Model Complexity

Model Complexity

Why is interpretability so important?

People want to know what is going on behind the scenes

Important in problems especially dealing with human life

Improves credibility of your model if able to explain model

When to use?

Random Forest

• Accuracy: 0.912

• F1 Score: 0.90

Fit Time: 25.432 seconds

Decision Tree

Accuracy 0.900

• F1 Score: 0.890

• Fit Time: 2.854 Seconds

Practice Time!

8 Minutes

Please attempt exercise 1
We will go through the exercises later

imes up

We will now go through the exercises

- Knowledge Check

- > Based on the results in exercise 3, which model should be selected?
- A. Linear Regression
- B. Decision Tree Regressor
- C. K-Neighbours Regressor
- D. Support Vector Regressor

-C' Knowledge Check

Model	RMSE	Fit Time
Logistic Regression	10293	0.18s
Decision Tree	8934	0.02s
Support Vector	8329	0.49s
Random Forest	3829	0.27s

- > We should select
- A. Linear Regression
- B. Decision Tree
- C. Support Vector
- D. Random Forest

-C' Knowledge Check

Model	RMSE	Fit Time
Logistic Regression	10293	0.18s
Decision Tree	4523	0.02s
Support Vector	4849	0.49s
Random Forest	3829	0.27s

- > We should select
- A. Linear Regression
- B. Decision Tree
- C. Support Vector
- D. Random Forest

Hyperparameter tuning

Values in a model that can be used to change the behavior of a ML model

Hyperparameters

<u>c</u> Characteristics

Each model have their own unique set of hyperparameters

Huge range of hyperparameters to change for each model and these information can be found on scikit-learn website

Hard to guess best hyperparameters to set for the model

How to choose the best hyperparameters?

How to choose the best hyperparameters?

Hyperparameter Tuning

Hyperparameter Tuning

Hyperparameter Tuning

Hyper tuning functions

Grid Search CV

Random Search CV

Grid Search CV

Loops through all specified range of hyperparameters

Takes a large amount of time (*no joke*) and resources

Achieves best performance

Random Search CV

Randomly selects n combinations of hyperparameters

Takes shorter amount of time (depending on n)

Less accurate (depending on n)

Where n is the number of combinations to attempt

- (C) - Knowledge Check

- > Which of the following statements are True
- A. Grid Search CV and Random Search CV are identical
- B. Grid Search CV can find parameters faster than Random Search CV
- C. Random Search CV is more accurate the Grid Search CV
- D. Random Search CV usually finds parameters faster than Grid Search CV

Practice Time!

10 Minutes

Please attempt exercise 2
We will go through the exercises later

imes up

We will now go through the exercises

Feature Selection

What is Feature Selection

Benefits

Reduces number of input, allowing easier use of model

Improves performance and training speed of the model

Reduces complexity and overfitting

Le Feature Selection

Research

RFECV

Feature Importance

Example

Task: Forecast sales of company

Example

Task: Predict sales of company

Feature Importance

Assigns a score to each feature based on usefulness of that feature

Highlights more important features through scores

Different model have different scores, some however do not even have such a score

Understanding Feature importance

Problem

We cannot apply cross validation and we cannot gauge with a simple score.

Evaluates specific model to find optimal features

Evaluates all possible combination of features

Includes cross validation for fair evaluation

How RFECV works?

Cross Validation

RFECV

How RFECV works?

Cross Validation

Recursive Feature Elimination

RFECV

How RFE works?

Recursive Feature Elimination

How RFE works?

- (C) - Knowledge Check

- > Which of the following is a possible reason to use RFECV to select features
- A. It assigns a score to each feature
- B. It includes cross validation for a more accurate feature selection process
- C. It is simply the best feature selection method

- Knowledge Check

- > Which of the following is true
- A. All models have a feature importance score
- B. All models have the same type of feature importance score
- C. Different models have different feature importance scores. Some don't have any feature importance score

Practice Time!

10 Minutes

Please attempt exercise 3
We will go through the exercises later

imes up

We will now go through the exercises

Feature Engineering

Research

Observations

Saving & Loading Model

Benefits

Allows us to use models multiple times by training them only once

Allows others to easily use your model without much work

Allows us to deploy our models

Practice Time!

8 Minutes

Please attempt exercise 3
We will go through the exercises later

imes up

We will now go through the exercises

Attendance

