Fakultet elektrotehnike i računarstva Zavod za elektroniku, mikroelektroniku, računalne i inteligentne sustave

Elektronika 1

Ž. Butković, J. Divković Pukšec, A. Barić

Izvor napajanja

Stabilizator – održava stalni istosmjerni napon

Na izlazu ispravljača i filtra → ispravljeni napon koji se sastoji od:

- istosmjerne komponente koja se mijenja zbog promjene mrežnog napona i promjene opterećenja
- male izmjenične komponente napona valovitosti

Stabilizator svodi promjene istosmjerne komponente na minimum i prigušuje izmjeničnu komponentu napona valovitosti

Blok-shema stabilizatora

 $U_{U\!L}
ightarrow$ promjenjiva istosmjerne komponenta

 $u_{ulv} \rightarrow$ izmjenični napon valovitosti

 $R_T \rightarrow$ promjenjivo trošilo

Parametri stabilizatora

Stabilizator nije idealan → izlazni napon mijenja se s radnim uvjetima

$$du_{IZ} = \frac{\partial u_{IZ}}{\partial u_{UI}} du_{UL} + \frac{\partial u_{IZ}}{\partial i_{IZ}} di_{IZ} + \frac{\partial u_{IZ}}{\partial T} dT = S_U du_{UL} + S_I di_{IZ} + S_T dT$$

naponski faktor stabilizacije
$$S_U = \frac{\partial u_{IZ}}{\partial u_{UL}}\Big|_{di_Z = 0, dT = 0}$$

opteretni faktor stabilizacije
$$S_I = \frac{\partial u_{IZ}}{\partial i_{IZ}} \bigg|_{\mathrm{d}u_{UL} = 0, \ \mathrm{d}T = 0}$$

temperaturni koeficijent
$$S_T = \frac{\partial u_{IZ}}{\partial T} \Big|_{du_{IJ} = 0, \ di_{IZ} = 0}$$

Referentni element

Element na kojem se uspostavlja stalni napon → neovisan o radnim uvjetima (promjena struje, temperature) → Zenerova dioda

Parametri:

Zenerov napon U_Z

Dinamički otpor

$$r_Z = \Delta u_Z / \Delta i_Z$$

Minimalna struja $I_{Z\min}$

Maksimalna disipacija snage $P_{Z\max}$

Temperaturni koeficijent

Stabilizator sa Zenerovom diodom

Za ispravan rad
$$\rightarrow U_{U\!L} > U_Z$$

$$I_1 = \frac{U_{UL} - U_{IZ}}{R_1} = \frac{U_{UL} - U_Z}{R_1}$$

$$I_1 = I_Z + I_{IZ}$$

$$I_{IZ} = \frac{U_{IZ}}{R_T} = \frac{U_Z}{R_T}$$

Izlazni napon $\rightarrow U_{IZ} = U_Z$

Princip stabilizacije

- 1. primjer: mijenja se $U_{U\!L} \to$ mijenja se $I_1 \to U_{I\!Z} = U_Z$; ako se ne mijenja R_T ne mijenja se ni $I_{I\!Z} \to$ s I_1 mijenja se i I_Z
- 2. primjer: ne mijenja se $U_{U\!L}$, ali se mijenja $R_T \to \text{uz } U_{I\!Z} = U_Z$ mijenja se $I_{I\!Z} \to \text{struja } I_{I\!Z}$ mijenja se na račun promjene I_Z

Za ispravan rad stabilizatora $\rightarrow I_{Z\min} < I_Z < I_{Z\max}$

Podešavanje otpora R₁

$$I_Z = I_1 - I_{IZ}$$

Minimalna struja $I_{Z\min}$:

$$\begin{split} I_{Z\,\text{min}} &= I_{1\,\text{min}} - I_{IZ\,\text{max}} \\ I_{1\,\text{min}} &= \frac{U_{UL\,\text{min}} - U_Z}{R_{1\,\text{max}}} \qquad I_{IZ\,\text{max}} = \frac{U_Z}{R_{T\,\text{min}}} \\ I_{Z\,\text{min}} &= \frac{U_{UL\,\text{min}} - U_Z}{R_{1\,\text{max}}} - \frac{U_Z}{R_{T\,\text{min}}} \qquad R_{1\,\text{max}} = \frac{U_{UL\,\text{min}} - U_Z}{I_{Z\,\text{min}} + U_Z / R_{T\,\text{min}}} \end{split}$$

Maksimalna struja $I_{Z\max} = P_{Z\max}/U_Z$:

$$I_{Z \max} = I_{1 \max} - I_{IZ \min} = \frac{U_{UL \max} - U_{Z}}{R_{1 \min}} - \frac{U_{Z}}{R_{T \max}} = \frac{P_{Z \max}}{U_{Z}}$$

$$R_{1 \min} = \frac{U_{UL \max} - U_{Z}}{P_{Z \max} / U_{Z} + U_{Z} / R_{T \max}}$$

Faktori stabilizacije

Određuju se iz nadomjesne sheme za mali signal

Naponski faktor stabilizacije:

$$S_U = \frac{u_{iz}}{u_{ul}} \bigg|_{i_{iz} = 0}$$

Uz $i_{iz} = 0 \rightarrow \text{odspaja se } R_T$:

$$S_U = \frac{r_Z}{R_1 + r_Z}$$

Opteretni faktor stabilizacije:

$$S_I = \frac{u_{iz}}{i_{iz}} \bigg|_{u_{ul} = 0}$$

 S_I je po iznosu jednak R_{iz} :

$$R_{iz} = r_Z \| R_1$$

Primjer 9.1

Odabrati otpor R_1 za ispravan rad stabilizatora sa slike. Ulazni napon U_{UL} mijenja se od 25 do 30 V, otpor trošila je $R_T \ge 500~\Omega$, a probojni napon Zenerove diode $U_Z = 20~\mathrm{V}$ uz $I_Z \ge 5~\mathrm{mA}$. Dinamički otpor Zenerove diode u proboju $r_Z = 0.5~\Omega$. Za odabrani otpor R_1 izračunati maksimalnu disipaciju Zenerove diode i otpornika R_1 . Odrediti naponski faktor stabilizacije i izlazni otpor stabilizatora, te efektivnu vrijednost napona valovitosti na trošilu R_T uz $U_{ulvef} = 0.5~\mathrm{V}$.

Primjer 9.2

U stabilizatoru prema slici Zenerova dioda ima parametre: U_Z = 6 V uz $I_{Z\min}$ = 4 mA i $P_{Z\max}$ = 200 mW. Otpor trošila R_T = 200 Ω , a najmanji ulazni napon $U_{UL\min}$ = 10 V.

- a) Izračunati maksimalnu vrijednost otpora $R_{1\text{max}}$.
- b) Uz taj R_1 odrediti najveći dozvoljeni ulazni napon $U_{U\!L\!\max}$.

Serijski tranzistorski stabilizator

Osigurava manju disipaciju snage na diodi → disipaciju snage preuzima tranzistor. Tranzistor je spojen u seriju s izlazom → serijski stabilizator

Princip stabilizacije isti je kao i kod stabilizatora sa Zenerovom diodom Za ispravan rad stabilizatora $\to I_{Z\min} < I_Z < I_{Z\max}$

Podešavanje otpora R₁

Minimalna struja $I_{Z\min}$:

$$\begin{split} I_{Z\,\text{min}} &= I_{1\,\text{min}} - I_{B\,\text{max}} \\ I_{Z\,\text{min}} &= \frac{U_{UL\,\text{min}} - U_{Z}}{R_{1\,\text{max}}} - \frac{U_{IZ}}{\left(1 + \beta\right)R_{T\,\text{min}}} \\ R_{1\,\text{max}} &= \frac{U_{UL\,\text{min}} - U_{Z}}{I_{Z\,\text{min}} + \frac{U_{IZ}}{\left(1 + \beta\right)R_{T\,\text{min}}}} \end{split}$$

Maksimalna struja $I_{Z\max} = P_{Z\max}/U_Z$:

$$I_{Z \max} = I_{1 \max} - I_{B \min} = \frac{U_{UL \max} - U_{Z}}{R_{1 \min}} - \frac{U_{IZ}}{(1+\beta)R_{T \max}} = \frac{P_{Z \max}}{U_{Z}}$$

$$R_{1 \min} = \frac{U_{UL \max} - U_{Z}}{\frac{P_{Z \max}}{U_{Z}} + \frac{U_{IZ}}{(1+\beta)R_{T \max}}}$$

Faktori stabilizacije (1)

Nadomjesna shema za mali signal

Naponski faktor stabilizacije:

$$u_{ul} \mid_{i_{iz} = 0}$$

$$u_{ul} = u_{ulv} \qquad \qquad r_{z} \quad u_{iz}$$

$$S_{U} = \frac{u_{iz}}{u_{ul}} = \frac{r_{Z}}{R_{1} + r_{Z}}$$

Faktori stabilizacije (2)

Opteretni faktor stabilizacije:

$$S_I = \frac{u_{iz}}{i_{iz}} \bigg|_{u_{vl} = 0}$$

 S_I je po iznosu jednak R_{iz} :

$$i = -(1 + h_{fe})i_b$$

$$u = -(r_{be} + R_1 || r_Z)i_b$$

$$R_{iz} = \frac{u}{i} = \frac{r_{be} + R_1 || r_Z}{1 + h_{fe}}$$

$$Za r_Z << R_1:$$

$$R_{iz} \approx \frac{r_{be} + r_Z}{1 + h_{fe}}$$

Primjer 9.3

Odrediti izlazni napon, te dozvoljene granice iznosa otpornika R_1 za ispravan rad serijskog tranzistorskog stabilizatora sa slike. Otpor trošila je $R_T \ge 100~\Omega$, a ulazni napon je $U_{UL} = 12 \pm 1~\rm V$. Parametri Zenerove diode su: $U_Z = 7.5~\rm V$ uz $I_Z \ge 1~\rm mA$, $P_{Z\rm max} = 250~\rm mW$ i $r_Z = 0.5~\Omega$. Faktor strujnog pojačanja tranzistora je $\beta \approx h_{fe} = 100$, a naponski ekvivalent temperature $U_T = 25~\rm mV$. Odrediti naponski faktor stabilizacije i izlazni otpor stabilizatora uz $R_T = 100~\Omega$.

Serijski tranzistorski stabilizator s pojačalom u povratnoj vezi (1)

Omogućuje podešavanje iznosa stabiliziranog izlaznog napona Dio izlaznog napona sa baze T_2 vraća se preko kolektora T_2 u ulazni krug na bazu $T_1 \to$ povratna veza

Serijski tranzistorski stabilizator s pojačalom u povratnoj vezi (2)

Otpornik R_1 osigurava baznu struju tranzistora T_1 i kolektorsku struju tranzistora T_2 . Otpornik R_2 osigurava struju Zenerove diode.

Uloga T_2 : ako se poveća izlazni napon, poveća se potencijal baze $T_2 o$ poveća se $U_{BE2} o$ poveća se $I_{C2} o$ smanji se $I_{B1} o$ smanji se struja trošila i U_{IZ} .

Kliznikom potenciometra mijenja se omjer otpora R_3 i R_4 i podešava $U_{I\!Z}$.

Uz malu struju I_{B2}

$$U_{IZ} = U_Z + U_{BE2} + \frac{R_3}{R_3 + R_4} U_{IZ}$$

$$U_{IZ} = (U_Z + U_{BE2}) \frac{R_3 + R_4}{R_4}$$