Risk-sensitive Distributional Reinforcement Learning for Algorithmic Trading

Rong Guo, Egemen Okur, Arsham Afsardeir, Klaus Obermayer July 19, 2022

Todo list

Environment/Experiments	-
Benchmark model & results, which contextualises existing methods/knowledge in	
the domain	
Metric: objectively compare the solution model with the benchmark model	4

1 Domain Background

Paper	Summary	Drawbacks w.r.t ours
RSQ (Shen et al., 2014b,a)	Utility function over TD error, convergence and optimality guarantees	Tabular Q; Trading on limit order market
Ensemble actor-critic (Yang et al., 2020)	Ensemble trained by returns but the winner is selected by Sharp ration	Add-hoc risk strategies
Exponential Bellman Equation (Fei et al.)	Theoretical guarantees; An instantiation of distributional RL through the MGF of rewards	theoretical paper, no application

2 Problem/Solution Statement

3 Dataset & Input & Metric

- Environment/Experiments.
 - portfolio allocation problem
- Benchmark model & results, which contextualises existing methods/knowledge in the domain.

- SOTA: How are the existing work related to our methods?
- Experiments contrasting risk-neutral with risk-sensitive RL methods

Metric: objectively compare the solution model with the benchmark model.

- 3. Returns vs. Risk
 - Sharp ration, CVaR, etc.
 - Theoretical guarantees and insights on convergence and optimatly

4 Theoretical workflow

4.1 End-to-end formalization

5 Network Architecture

• MLP

References

- Fei, Y.; Yang, Z.; Chen, Y., and Wang, Z. Exponential Bellman Equation and Improved Regret Bounds for Risk-Sensitive Reinforcement Learning. page 24.
- Shen, Y.; Huang, R.; Yan, C., and Obermayer, K. Risk-averse Reinforcement Learning for Algorithmic Trading. pages 391–398. IEEE, 2014a.
- Shen, Y.; Tobia, M. J.; Sommer, T., and Obermayer, K. Risk-sensitive Reinforcement Learning. *Neural Computation*, 26(7):1298–1328, July 2014b.
- Yang, H.; Liu, X.-Y.; Zhong, S., and Walid, A. Deep Reinforcement Learning for Automated Stock Trading: An Ensemble Strategy. SSRN Electronic Journal, 2020.