Contents

1	Topology		2
	1.1	Topological Spaces	2
	1.2	Metric Spaces	6
	1.3	Subspace Topologies	12
	1.4	Closed Sets	14
	1.5	Continuity	18
	1.6	Product Space	22

1

Topology

1.1 Topological Spaces

Definition 1.1.1 ► **Topology**

A **topology** on a set *X* is a collection $\mathcal{T} \subseteq \mathcal{P}(X)$ such that

- $\emptyset, X \in \mathcal{T}$;
- for any index set I, if $\{X_i : i \in I\} \subseteq \mathcal{P}(\mathcal{T})$, then $\bigcup_{i \in I} X_i \in \mathcal{T}$;
- for any $X_1, X_2, \dots, X_n \in \mathcal{T}, \bigcap_{i=1}^n X_i \in \mathcal{T}$.

The pair (X, \mathcal{T}) is said to be a **topological space**. A subset $Y \subseteq X$ is **open** if $Y \in \mathcal{T}$.

Remark. For any set X, we define $\{\emptyset, X\}$ as the *trivial topology* on X, $\mathcal{P}(X)$ as the *discrete topology*, and $\{X \setminus U : U \subseteq X \text{ is finite}\} \cup \{\emptyset\}$ as the *co-finite topology*.

The set $\{(-\alpha, \alpha) : \alpha > 0\} \cup \{\mathbb{R}, \emptyset\}$ defines a topology on \mathbb{R} . This example also demonstrates why it is crucial to only consider closure under finite intersections when defining a topology, because

$$\bigcap_{n=1}^{\infty} \left(-1 - \frac{1}{n}, 1 + \frac{1}{n} \right) = [-1, 1] \notin \mathcal{T}.$$

We now seek a systematic method to generate a topology given any set. The idea here is to make use of a *cover*.

Definition 1.1.2 ▶ Basis

A basis for a topology on *X* is a collection $\mathcal{B} \subseteq \mathcal{P}(X)$ such that

- for any $x \in X$, there exists some $B \in \mathcal{B}$ such that $x \in B$;
- for any $x \in X$ and $B_1, B_2 \in \mathcal{B}$ with $x \in B_1 \cap B_2$, there exists some $B \in \mathcal{B}$ such that $x \in B \subseteq B_1 \cap B_2$.

It may be useful to see a basis as a cover of a set with the second additional property as stated in the above definition. Notice that the first property of the basis \mathcal{B} is basically saying that

$$X \subseteq \bigcup \mathcal{B}$$
,

i.e., \mathcal{B} is a cover of X.

Given any basis \mathcal{B} for some topology on X, a set generated by \mathcal{B} can be defined as

 $\mathcal{T} := \{U \subseteq X : \text{ for any } u \in U, \text{ there exists some } B \in \mathcal{B} \text{ such that } u \in B \subseteq U\}$

We will show that \mathcal{T} is a topology on X. First, it is clear that $\emptyset, X \in \mathcal{T}$.

Let I be an index set and $\{X_i: i \in I\} \subseteq \mathcal{P}(\mathcal{T})$ be any collection of subsets of X. Notice that for any $x \in \bigcup_{i \in I} X_i$, there exists some $j \in I$ such that $x \in X_j \subseteq \mathcal{T}$. According to our construction, this means that there exists some $B \in \mathcal{B}$ such that $x \in B \subseteq X_j \subseteq \mathcal{T}$. Therefore, $\bigcup_{i \in I} X_i \subseteq \mathcal{T}$ as desired.

To prove that \mathcal{T} is closed under finite intersection, we consider the following lemma:

Lemma 1.1.3 ▶ Finite Intersection of Elements in Basis Is Covered

Let \mathcal{B} be a basis for a topology on X and $B_1, B_2, \dots, B_n \in \mathcal{B}$, then for any $x \in \bigcap_{i=1}^n B_i$, there exists some $B \in \mathcal{B}$ such that $x \in B \subseteq \bigcap_{i=1}^n B_i$.

Proof. The case where n=1 is trivial by taking $B=B_1$. Suppose that there is some integer $k \geq 1$ such that for any $B_1, B_2, \cdots, B_k \in \mathcal{B}$ and any $x \in \bigcap_{i=1}^k B_i$, there exists some $B \in \mathcal{B}$ such that $x \in B \subseteq \bigcap_{i=1}^k B_i$. Take any $B_{k+1} \in \mathcal{B}$. It is clear that for any $x \in \bigcap_{i=1}^{k+1} B_i$, there exists some $B \in \mathcal{B}$ such that

$$x \in B \subseteq \bigcap_{i=1}^k B_i$$
.

Notice that $x \in B_{k+1} \in \mathcal{B}$, so we know that $x \in B \cap B_{k+1}$. By Definition 1.1.2, this means that there exists some $B' \in \mathcal{B}$ such that

$$x\in B'\subseteq B\cap B_{k+1}\subseteq \bigcap_{i=1}^{k+1}B_i.$$

Now, suppose $X_1, X_2, \dots, X_n \in \mathcal{T}$ are finitely many subsets of X. Take any $x \in \bigcap_{i=1}^n X_i$. It is clear that $x \in X_i$ for each $i = 1, 2, \dots, n$. Therefore, for each $i = 1, 2, \dots, n$, there exists some $B_i \in \mathcal{B}$ such that $x \in B_i \subseteq X_i$. By Lemma 1.1.3, this means that there exists some set $B \in \mathcal{B}$ such that

$$x \in B \subseteq \bigcap_{i=1}^{n} B_i \subseteq \bigcap_{i=1}^{n} X_i$$
.

Therefore, $\bigcap_{i=1}^{n} X_i \in \mathcal{T}$. So this set \mathcal{T} generated by \mathcal{B} is indeed a topology on X.

The following proposition further shows that the topology generated by a basis \mathcal{B} is the set

of all possible unions of elements in \mathcal{B} :

Proposition 1.1.4 ▶ Equivalent Construction of Topologies Generated from Bases

Let X be any set. If \mathcal{B} is a basis for a topology \mathcal{T} on X, then

$$\mathcal{T} = \left\{ \bigcup_{A \in \mathcal{V}} A : \mathcal{V} \in \mathcal{P}(\mathcal{B}) \right\}.$$

Proof. Denote

 $\mathcal{T}_{\mathcal{B}} := \{ U \subseteq X : \text{ for any } u \in U, \text{ there exists some } B \in \mathcal{B} \text{ such that } u \in B \subseteq U \}.$

It suffices to prove that $\mathcal{T} = \mathcal{T}_{\mathcal{B}}$. Take any $T \in \mathcal{T}$, then there exists some $V \in \mathcal{P}(\mathcal{B})$ such that $T = \bigcup_{A \in \mathcal{V}} A$. This means that for every $t \in T$, there exists some $B_t \in \mathcal{V}$ such that $t \in B_t \subseteq T$. Therefore, $T \in \mathcal{T}_{\mathcal{B}}$. Conversely, for any $S \in \mathcal{T}_{\mathcal{B}}$, there exists some $B_s \in \mathcal{B}$ for each $s \in S$ such that $s \in B_s$. Denote $U \coloneqq \{B_s : s \in S\} \in \mathcal{P}(\mathcal{B})$, then it is clear that $S \subseteq \bigcup_{B \in U} B$. Since $B_s \subseteq S$ for each $s \in S$, we have $\bigcup_{B \in U} B \subseteq S$, which implies that $S = \bigcup_{B \in U} B$. This means that $S \in \mathcal{T}$. Therefore, $\mathcal{T} \subseteq \mathcal{T}_{\mathcal{B}}$ and $\mathcal{T}_{\mathcal{B}} \subseteq \mathcal{T}$, which means that $\mathcal{T} = \mathcal{T}_{\mathcal{B}}$.

Next, we define a special topology in Euclidean spaces using open balls.

Definition 1.1.5 ► **Standard Topology**

For any $\mathbf{x} = (x_1, x_2, \dots, x_n) \in \mathbb{R}^n$ and any r > 0. Denote the Euclidean open ball centred at \mathbf{x} with radius r by

$$B_r(\mathbf{x}) := \left\{ \mathbf{y} = (y_1, y_2, \dots, y_n) \in \mathbb{R}^n : \sqrt{\sum_{i=1}^n (x_i - y_i)^2} < r \right\}$$

The **standard topology** on \mathbb{R}^n is the set generated by the basis

$$\mathcal{B} := \{B_r(\mathbf{x}) : \mathbf{x} \in \mathbb{R}^n, r \in \mathbb{R}^+\}.$$

It may be helpful to actually show that this set \mathcal{B} is indeed a basis of a topology on \mathbb{R}^n . The fact that \mathcal{B} is a cover for \mathbb{R}^n is trivial enough. Take any $\mathbf{x} \in \mathbb{R}^n$ and balls $B_{\alpha}(\mathbf{x}_1)$, $B_{\beta}(\mathbf{x}_2) \in \mathcal{B}$ such that $\mathbf{x} \in B_{\alpha}(\mathbf{x}_1) \cap B_{\beta}(\mathbf{x}_2)$ (the existence of these 2 balls is again trivial enough). Take

$$r = \min \{ \alpha - \| \mathbf{x} - \mathbf{x}_1 \|, \beta - \| \mathbf{x} - \mathbf{x}_2 \| \}.$$

Clearly, r > 0 and $x \in B_r(x)$, so we are done.

Now, we discuss the analogue of the subset relation in topologies.

Definition 1.1.6 ► Fineness and Coarseness

Let \mathcal{T} and \mathcal{T}' be topologies on some set X. We say that \mathcal{T} is **finer** than \mathcal{T}' , or equivalently, that \mathcal{T}' is **coarser** than \mathcal{T} , if $\mathcal{T}' \subseteq \mathcal{T}$.

Observe that any topology of X must be a subset of $\mathcal{P}(X)$, which is the discrete topology on X, so the discrete topology is the finest topology on a set.

Remark. For any basis \mathcal{B} for a topology on X, the topology generated by \mathcal{B} is the coarsest topology containing \mathcal{B} .

The above remark is easy to verify. Let \mathcal{T} be any topology on X with $\mathcal{B} \subseteq \mathcal{T}$ and $\mathcal{T}_{\mathcal{B}}$ be the topology generated by \mathcal{B} . For any $T \in \mathcal{T}_{\mathcal{B}}$, by Proposition 1.1.4, there exists some $V \subseteq \mathcal{B}$ such that $T = \bigcup_{A \in \mathcal{V}} A$. Note that $A \in \mathcal{T}$ for all $A \in \mathcal{V}$, so by Definition 1.1.1, $T \in \mathcal{T}$ and so $\mathcal{T}_{\mathcal{B}} \subseteq \mathcal{T}$ as desired.

This motivates us to consider fineness in terms of bases.

Proposition 1.1.7 ► **Fineness in Terms of Bases**

Let \mathcal{B} and \mathcal{B}' generate topologies \mathcal{T} and \mathcal{T}' respectively on X. \mathcal{T}' is finer than \mathcal{T} if and only if for every $B \in \mathcal{B}$ and any $x \in B$, there exists some $B_x \in \mathcal{B}'$ such that $x \in B_x \subseteq B$.

Proof. Suppose that \mathcal{T}' is finer than \mathcal{T} , then $\mathcal{T} \subseteq \mathcal{T}'$. Take any $B \in \mathcal{B}$, then by Proposition 1.1.4, $B \in \mathcal{T}$, which means that $B \in \mathcal{T}'$. Since \mathcal{B}' is a basis for \mathcal{T}' , by Definition 1.1.2 for any $x \in \mathcal{B}$, there exists some $B_x \in \mathcal{B}'$ such that $x \in B_x \subseteq \mathcal{B}$.

Suppose conversely that for every $B \in \mathcal{B}$ and any $x \in B$, there is some $B_x \in \mathcal{B}'$ such that $x \in B' \subseteq B$. Take any $T \in \mathcal{T}$, for each $x \in T$, by Definition 1.1.2 there exists some $B \in \mathcal{B}$ such that $x \in B \subseteq T$, and so we can find some $B_x \in \mathcal{B}'$ such that $x \in B_x \subseteq B \subseteq T$, so $T \in \mathcal{T}'$. Therefore, $\mathcal{T} \subseteq \mathcal{T}'$ and so \mathcal{T}' is finer than \mathcal{T} .

Recall that every basis of a topology on X is an open cover of X consisting only of subsets of X. Therefore, the union of the elements in the basis is essentially X itself. This motivates us to propose another way to generate a topology on a set.

Definition 1.1.8 ► **Sub-basis**

A sub-basis of *X* is a collection $S \subseteq \mathcal{P}(X)$ such that $\bigcup_{A \in S} A = X$.

Remark. Every basis is a sub-basis.

For an arbitrary set X, let S be a sub-basis and denote the collection of all finite subsets of $\mathcal{P}(S)$ as \mathcal{F}_{S} . Define

$$\mathcal{U}_{\mathcal{S}} \coloneqq \left\{ \bigcap_{A \in F} A : F \in \mathcal{F}_{\mathcal{S}} \right\}$$

to be the collection of all finite intersections of sets in S. The topology generated by a subbasis of X is given by

$$\mathcal{T} \coloneqq \left\{ \bigcup_{A \in \mathcal{V}} A : \mathcal{V} \subseteq \mathcal{U}_{\mathcal{S}} \right\}.$$

We shall show that \mathcal{T} is indeed a topology on X by considering the following proposition:

Proposition 1.1.9 ▶ Finite Intersections of Sets in a Sub-basis Form a Basis

Let S be a sub-basis for a set X and let \mathcal{U}_S be the set of all finite intersections of sets in S, then \mathcal{U}_S is a basis of a topology on X.

Proof. Take any $x \in X$. By Definition 1.1.8, we have $x \in \bigcup_{A \in S} A$. Therefore, there exists some $A \in S \subseteq \mathcal{P}(X)$ such that $x \in A$. For any $x \in X$ and $B_1, B_2 \in \mathcal{U}_S$ such that $x \in B_1 \cap B_2$, notice that $B_1 \cap B_2$ is a finite intersection of sets in S, so $B_1 \cap B_2 \in \mathcal{U}_S$. Therefore, by Definition 1.1.2, \mathcal{U}_S is a basis.

With Propositions 1.1.9 and 1.1.4, it is clear that \mathcal{T} as constructed above is a topology on X.

1.2 Metric Spaces

Definition 1.2.1 ▶ **Metric**

A **metric** on a set *S* is a function $d: S \times S \to \mathbb{R}$ such that:

- $d(x, y) \ge 0$ for all $x, y \in S$ (positivity);
- d(x, y) = 0 if and only if x = y (definiteness);
- d(x, y) = d(x, y) for all $x, y \in S$ (symmetry);
- $d(x, y) \le d(x, z) + d(y, z)$ for all $x, y, z \in S$ (triangular inequality).

Remark. A metric is sometimes also called a distance function.

A metric generalises the notion of distance in Euclidean spaces. We can weaken the above axioms to arrive at the following definition:

Definition 1.2.2 ▶ Pseudo-metric

A **pseudo-metric** on a set *S* is a function $d: S \times S \to \mathbb{R}$ such that:

- $d(x, y) \ge 0$ for all $x, y \in S$ (positivity);
- d(x, x) = 0 for all $x \in S$;
- d(x, y) = d(x, y) for all $x, y \in S$ (symmetry);
- $d(x, y) \le d(x, z) + d(y, z)$ for all $x, y, z \in S$ (triangular inequality).

The key difference between a pseudo-metric and a metric is that a pseudo-metric only requires that every element is at 0 distance away from itself, whereas a metric requires that every element is **the only element** that is at 0 distance away from itself.

By dropping the requirement on symmetry, we obtain the following definition:

Definition 1.2.3 ▶ Quasi-metric

A **quasi-metric** on a set *S* is a function $d: S \times S \to \mathbb{R}$ such that:

- $d(x, y) \ge 0$ for all $x, y \in S$ (positivity);
- d(x, y) = 0 if and only if x = y (definiteness);
- $d(x, y) \le d(x, z) + d(y, z)$ for all $x, y, z \in S$ (triangular inequality).

We equip a set with a metric to generalise the Euclidean spaces.

Definition 1.2.4 ► **Metirc Space**

A metric space (S, d) is a set S together with a metric d on S.

The most basic example of a metric is the *discrete metric* defined by

$$d(x,y) = \begin{cases} 1 & \text{if } x \neq y \\ 0 & \text{if } x = y \end{cases}$$

over any set X, which essentially is just a characteristic function.

Recall that in an inner product space (V, g) over some field \mathbb{F} , we can define the length of any $\mathbf{v} \in V$ as

$$\|\boldsymbol{v}\| = \sqrt{g(\boldsymbol{v}, \boldsymbol{v})}.$$

This length function induces a metric over V given by

$$d(\mathbf{x}, \mathbf{y}) = \|\mathbf{x} - \mathbf{y}\|.$$

In the Euclidean space \mathbb{R}^n , a usual definition for distance is

$$d_2(\mathbf{x}, \mathbf{y}) = \left[\sum_{i=1}^n (y_i - x_i)^2\right]^{\frac{1}{2}}.$$

Note that (\mathbb{R}^n, d_2) is a metric space, where d_2 is known as the *Euclidean distance*. In general, we can prove that for any $p \in \mathbb{N}^+$,

$$d_p(\mathbf{x}, \mathbf{y}) = \left[\sum_{i=1}^n \|y_i - x_i\|^p\right]^{\frac{1}{p}}$$

is a metric over \mathbb{F}^n for any inner product space (\mathbb{F}^n, g) where \mathbb{F} is a field, known as the L^p -norm. Furthermore, notice that

$$\max_{i \in \mathbb{N}^+, i \le n} \|y_i - x_i\|^p \le \sum_{i=1}^n \|y_i - x_i\|^p \le n \max_{i \in \mathbb{N}^+, i \le n} \|y_i - x_i\|^p.$$

Taking the *p*-th root on all three parts, we have

$$\max_{i \in \mathbb{N}^+, i \le n} \|y_i - x_i\| \le \left[\sum_{i=1}^n \|y_i - x_i\|^p \right]^{\frac{1}{p}} \le n^{\frac{1}{p}} \max_{i \in \mathbb{N}^+, i \le n} \|y_i - x_i\|.$$

By Squeeze Theorem, this allows us to define

$$d_{\infty}(\mathbf{x}, \mathbf{y}) = \lim_{p \to \infty} d_p(\mathbf{x}, \mathbf{y}) = \max_{i \in \mathbb{N}^+, i \le n} \|y_i - x_i\|.$$

 $d_{\infty}\left(x,y\right)$ can be alternatively written as $\left\|x-y\right\|_{\infty}$, which is known as the *infinite norm*.

The *p*-adic numbers can be defined from the following lemma:

Lemma 1.2.5 ▶ p-adic Numbers

Let p be any prime number. For all $x \in \mathbb{Q} \setminus \{0\}$, there exists a unique $k \in \mathbb{Z}$ such that

$$x = \frac{p^k r}{s}, \qquad r, s \in \mathbb{Z}$$

with $p \nmid r$, s and $s \neq 0$.

The *p-adic norm* is defined as

$$|x|_p = \begin{cases} p^{-k} & \text{if } x = \frac{p^k r}{s} \\ 0 & \text{if } x = 0 \end{cases},$$

which induces a metric over $\mathbb Q$ defined by

$$d(x,y) = |x - y|_p.$$

We can show that the *p*-adic metric satisfies

$$d(x, z) \le \max\{d(x, y), d(y, z)\}$$

for all $x, y, z \in \mathbb{Q}$. Such a metric is known as an *ultra-metric*.

Given any metric space, the metric will induce a distance between subsets of the space.

Definition 1.2.6 ▶ **Distance between Subsets**

Let (X, d) be a metric space and $A, B \subseteq X$ be non-empty. The **distance** between A and B is defined as

$$d(A, B) := \inf\{d(x, y) : (x, y) \in A \times B\}.$$

Additionally, we may wish to define a measure for the size of a subset in a metric space.

Definition 1.2.7 ▶ **Diameter**

Let (X, d) be a metric space. The **diameter** of a set $A \subseteq X$ is defined as

$$\operatorname{diam}(A) \coloneqq \sup \{ d(x, y) : (x, y) \in A \times A \}.$$

The set A is **bounded** if diam (A) is finite.

The name "diameter" is not a coincidence with the diameter of a graph. Specifically, if we consider a graph G = (V, E), the pair (V, d) forms a metric space with d(u, v) being the usual distance between two vertices in G defined as the size of the shortest u-v path in G. It is clear that d is indeed a metric.

Now, let us consider the subgraph $H \subseteq G$ induced by any $U \subseteq V$ and check the eccentricity for H, i.e.,

$$\epsilon(u) = \max\{d_H(u, u') : u' \in U\}$$
 for all $u \in U$.

Now, the diameters for *H* can be computed as

$$\operatorname{diam}(H) = \max\{\epsilon(u) : u \in U\}$$
$$= \sup\{d_H(u, u') : (u, u') \in U \times U\},\$$

and this obviously agrees with Definition 1.2.7!

Recall that in Definition 1.1.5, we use Euclidean open balls to construct a basis for a topology on \mathbb{R}^n . We can generalise this idea in any metric space.

Proposition 1.2.8 ► Metric Induces a Basis

Let (X, d) be a metric space. Define

$$B_r(x) := \{ y \in X : d(x, y) < r \},$$

then collection

$$\mathcal{B}_d := \{B_r(x) : x \in X, r \in \mathbb{R}^+\}$$

is a basis for a topology on X.

Proof. Notice that for any $x \in X$, we have $x \in B_1(x) \in \mathcal{B}_d$. Let $B_p(x_1), B_q(x_2) \in \mathcal{B}_d$ be such that $x \in B_p(x) \cap B_q(x)$. Take $k = \min\{p - d(x, x_1), q - d(x, x_2)\}$, then clearly k > 0 and we can find $B_k(x) \subseteq B_p(x) \cap B_q(x)$ such that $x \in B_k(x) \in \mathcal{B}_d$. Therefore, \mathcal{B}_d is a basis for a topology on X.

Since we can obtain a basis from a metric, it follows naturally that we can generate a topology using this induced basis.

Definition 1.2.9 ► **Metrisable Topology**

Let (X, d) be a metric space. A topology \mathcal{T} on X is **metrisable**, or **induced** by d, if it is generated by \mathcal{B}_d

We can verify that the discrete topology $\mathcal{P}(X)$ is induced by the discrete metric. Let the discrete metric on X be χ , then it is easy to see that

$$B_r(x) = \begin{cases} \{x\} & \text{if } 0 < r \le 1 \\ X & \text{if } r > 1 \end{cases}.$$

Therefore,

$$\mathcal{B}_{\chi} = \{X\} \cup \big\{ \{x\} : x \in X \big\}.$$

Let \mathcal{T}_{χ} be the topology on X generated by \mathcal{B}_{χ} , then it suffices to prove that $\mathcal{P}(X) \subseteq \mathcal{T}_{\chi}$. Take any $U \in \mathcal{P}(X)$, then for any $u \in U$, we have $u \in \{u\} \subseteq U$. Clearly $\{u\} \in \mathcal{B}_{\chi}$, so $\mathcal{T}_{\chi} = \mathcal{P}(X)$ is the discrete topology indeed.

In particular, for Euclidean spaces, the following result extends Definition 1.1.5:

Proposition 1.2.10 \blacktriangleright Every L^p -metric Generates the Standard Topology

Let \mathcal{T} be the standard topology on \mathbb{R}^n , then \mathcal{T} is induced by any L^p -metric d_p .

Proof. For any $p \in \mathbb{N}^+$, notice that

$$\max_{i \in \mathbb{N}^+, i \le n} \|y_i - x_i\|^p \le \sum_{i=1}^n \|y_i - x_i\|^p \le n \max_{i \in \mathbb{N}^+, i \le n} \|y_i - x_i\|^p.$$

Taking the *p*-th root yields

$$\max_{i \in \mathbb{N}^+, i \leq n} \|y_i - x_i\| \leq \left[\sum_{i=1}^n \|y_i - x_i\|^p \right]^{\frac{1}{p}} \leq n^{\frac{1}{p}} \max_{i \in \mathbb{N}^+, i \leq n} \|y_i - x_i\|.$$

This means that

$$d_{\infty}(\mathbf{x}, \mathbf{y}) \leq d_{p}(\mathbf{x}, \mathbf{y}) \leq n^{\frac{1}{p}} d_{\infty}(\mathbf{x}, \mathbf{y}).$$

Let \mathcal{T}_0 and \mathcal{T}_p be topologies on \mathbb{R}^n generated by \mathcal{B}_{d_∞} and \mathcal{B}_{d_p} respectively. Take any $T \in \mathcal{T}_p$, then for any $\boldsymbol{t} \in T$, there is some $B_r(\boldsymbol{t}') \in \mathcal{B}_{d_p}$ such that $\boldsymbol{t} \in B_r(\boldsymbol{t}') \subseteq T$. Take some $\ell = \frac{1}{2} |r - d_p(\boldsymbol{t}, \boldsymbol{t}')|$, then we have found $B_\ell(\boldsymbol{t}) \in \mathcal{B}_{d_p}$ such that

$$t \in B_{\ell}(t) \subseteq B_r(t') \subseteq T$$
.

Take $k = \frac{1}{2} \ell n^{-\frac{1}{p}}$ and consider

$$B_k(t) := \{ y \in \mathbb{R}^n : d_{\infty}(t, y) < k \} \in \mathcal{B}_{d_{\infty}}.$$

Notice that for each $y \in B_k(t)$, we have

$$d_p(\boldsymbol{t}, \boldsymbol{y}) \leq n^{\frac{1}{p}} d_{\infty}(\boldsymbol{t}, \boldsymbol{y}) < \ell,$$

so $t \in B_k(t) \subseteq B_\ell(t) \subseteq T$. This implies that $T \in \mathcal{T}_0$ and so $\mathcal{T}_p \subseteq \mathcal{T}_0$. By a similar argument, one may check that $\mathcal{T}_0 \subseteq \mathcal{T}_p$. Therefore, $\mathcal{T}_0 = \mathcal{T}_p$ for any $p \in \mathbb{N}^+$. Note that by Definition 1.1.5, \mathcal{T} is generated by \mathcal{B}_{d_2} , which means that $\mathcal{T} = \mathcal{T}_2 = \mathcal{T}_0 = \mathcal{T}_p$ for any $p \in \mathbb{N}^+$. Therefore, \mathcal{T} is induce by any L^p -metric d_p .

The fact that

$$d_{\infty}(\mathbf{x}, \mathbf{y}) \le d_{p}(\mathbf{x}, \mathbf{y}) \le n^{\frac{1}{p}} d_{\infty}(\mathbf{x}, \mathbf{y})$$

means that all L^p -metrics are equivalent over the same space.

1.3 Subspace Topologies

Definition 1.3.1 ► **Subspace Topology**

Let (Y, \mathcal{T}_Y) be a topological space and $X \subseteq Y$ be some subset. The collection

$$\mathcal{T}_X := \{U \cap X : U \in \mathcal{T}_Y\}$$

is the subspace topology on X.

We may check that \mathcal{T}_X defined as such is indeed a topology on X. First, by taking $U = \emptyset$ and U = Y respectively, we know that $\emptyset, X \in \mathcal{T}_X$. For any $U \in \mathcal{T}_Y$, we have $Y \setminus U \in \mathcal{T}_Y$ and so

$$X \setminus (U \cap X) = (Y \setminus U) \cap X \in \mathcal{T}_X.$$

For any $V \subseteq \mathcal{T}_X$, we define a subset $\mathcal{U}_V \subseteq \mathcal{T}_Y$ such that for each $V \in V$ there is a unique $U_V \in \mathcal{U}_V$ such that $V = U_V \cap X$. Then,

$$\bigcup_{A \in \mathcal{V}} A = \bigcup_{B \in \mathcal{U}_{\mathcal{V}}} (B \cap X)$$
$$= \left(\bigcup_{B \in \mathcal{U}_{\mathcal{V}}} B\right) \cap X$$
$$\in \mathcal{T}_{X}.$$

Let $X_1, X_2, \dots, X_n \in \mathcal{T}_X$ and define $X_i = U_i \cap X$ where $U_i \in \mathcal{T}_Y$ for $i = 1, 2, \dots, n$, then

$$\bigcap_{i=1}^{n} X_{i} = \bigcap_{i=1}^{n} (U_{i} \cap X)$$

$$= \left(\bigcap_{i=1}^{n} U_{i}\right) \cap X$$

$$\in \mathcal{T}_{X}.$$

So \mathcal{T}_X is really a topology on X. Intuitively, the following holds:

Proposition 1.3.2 ▶ Basis for a Subspace

Let (Y, \mathcal{T}_Y) be a topological space and \mathcal{T}_X be the subspace topology on some $X \subseteq Y$. If \mathcal{B}_Y is a basis of \mathcal{T}_Y , then

$$\mathcal{B}_X := \{B \cap X : B \in \mathcal{B}_Y\}$$

is a basis of \mathcal{T}_X .

Proof. We first prove that \mathcal{B}_X is a basis. Take any $x \in X \subseteq Y$. Note that there exists some $B \in \mathcal{B}_Y$ such that $x \in B$. Take $B \cap X \in \mathcal{B}_X$, then $x \in B \cap X$. For any $B_1, B_2 \in \mathcal{B}_X$ with $x \in B_1 \cap B_2$, we write $B_1 \coloneqq B_1' \cap X$ and $B_2 \coloneqq B_2' \cap X$ where $B_1', B_2' \in \mathcal{B}_Y$, then we have $x \in B_1' \cap B_2'$. This means that there is some $B \in \mathcal{B}_Y$ such that $x \in B \subseteq B_1' \cap B_2'$. Write $B' \coloneqq B \cap X \in \mathcal{B}_X$, then for each $b \in B'$, we know that $b \in B_1' \cap B_2'$ and $b \in X$, which implies that $b \in B_1 \cap B_2$. Therefore, $x \in B' \subseteq B_1 \cap B_2$. This means that \mathcal{B}_X is a basis of a topology on X.

We then prove that \mathcal{T}_X is generated by \mathcal{B}_X . Let \mathcal{T} be the topology generated by \mathcal{B}_X . By Proposition 1.1.4, we have

$$\mathcal{T} = \left\{ \bigcup_{A \in \mathcal{V}} A : \ \mathcal{V} \subseteq \mathcal{B}_X \right\}.$$

Similarly, we can write

$$\mathcal{T}_Y = \left\{ \bigcup_{A \in \mathcal{V}} A : \mathcal{V} \subseteq \mathcal{B}_Y \right\}.$$

Take any $T \in \mathcal{T}_X$, then there exists some $\mathcal{V} \subseteq \mathcal{B}_Y$ such that

$$T = \left(\bigcup_{A \in \mathcal{V}} A\right) \cap X$$
$$= \bigcup_{A \in \mathcal{V}} A \cap X$$
$$\in \mathcal{T}.$$

Therefore, $\mathcal{T}_X \subseteq \mathcal{T}$. Conversely, take any $T' \in \mathcal{T}$, there exists some $\mathcal{U} \subseteq \mathcal{B}_Y$ such that

$$T' = \bigcup_{B \in \mathcal{U}} (B \cap X)$$
$$= \left(\bigcup_{B \in \mathcal{U}} B\right) \cap X$$
$$\in \mathcal{T}_X.$$

Therefore, $\mathcal{T} \subseteq \mathcal{T}_X$ and so $\mathcal{T}_X = \mathcal{T}$.

The following result shows that open sets in subspaces remain open in the superspace:

Proposition 1.3.3 ► Superspace Preserve Open Sets

Let (Y, \mathcal{T}_Y) be a topological space. If $X \subseteq Y$ is open in Y and $U \subseteq X$ is open in X, then U is open in Y.

Proof. Let \mathcal{T}_X be the subspace topology on X. Since U is open in X, we have $U \in \mathcal{T}_X$. By Definition 1.3.1, there exists some $V \in \mathcal{T}_Y$ such that $U = V \cap X$. However, $U \subseteq X$, so $U = V \in \mathcal{T}_Y$, which means that U is open in Y.

We can do a similar manipulation with metric spaces and induce a metric on a subspace.

Definition 1.3.4 ► **Subspace Metric**

Let (X, d) be a metric space. The **subspace metric** of some $A \subseteq X$ is the restriction of d to A, denoted as

$$d_A(x, y) = d(x, y),$$
 for all $x, y \in A$.

Naturally, the following result is true:

Proposition 1.3.5 ► Subspace Metric Induces Subspace Topology

Let (X, d) be a metric space. The topology induced by the subspace metric d_A on some subspace $A \subseteq X$ is the subspace topology on A.

Proof. Let \mathcal{T}_d and \mathcal{T}_{d_A} be topologies induced by d on X with basis \mathcal{B}_d and by d_A on A with basis \mathcal{B}_{d_A} respectively. Let \mathcal{T}_A be the subspace topology on A with basis \mathcal{B}_A . Take any $B_A \in \mathcal{B}_A$, then there exists $B_r(x) \in \mathcal{B}_d$ such that $B_A = B_r(x) \cap A$. For any $y \in B_A$, consider the ball

$$B_{r'}(y) \coloneqq \{z \in A : d_A(z, y) < r'\} \in \mathcal{B}_{d_A}.$$

Note that $y \in B_{r'}(y)$, so by Proposition 1.1.7, we have $\mathcal{T}_A \subseteq \mathcal{T}_{d_A}$. Conversely, for any $B_r(x) \in \mathcal{B}_{d_A}$, there exists some $B_{r'}(x) \in \mathcal{B}_d$ such that $B_r(x) \subseteq B_{r'}(x)$. Notice that $B_r(x) \subseteq A$, so for any $y \in B_r(x)$, we have $y \in B_{r'}(x) \cap A \in \mathcal{B}_A$. Therefore, by Proposition 1.1.7, $\mathcal{T}_{d_A} \subseteq \mathcal{T}_A$ and so $\mathcal{T}_{d_A} = \mathcal{T}_A$.

1.4 Closed Sets

Definition 1.4.1 ► Closed Set

Let (X, \mathcal{T}) be a topological space. A subset $A \subseteq X$ is closed if $X \setminus A \in \mathcal{T}$.

A set might be open and closed simultaneously. For example, every set X is both open and

closed in itself.

Proposition 1.4.2 ▶ Arbitrary Intersection and Finite Union of Closed Sets Are Closed

Let (X, \mathcal{T}) be a topological space, then

- 1. if $G := \{G_{\alpha} : \alpha \in I\}$ is a family of closed set in X with respect to some index set I, then $\bigcap_{\alpha \in I} G_{\alpha}$ is closed in X;
- 2. if G_1, G_2, \dots, G_n are closed in X, then $\bigcup_{i=1}^n G_i$ is closed in X.

Proof. Notice that

$$X \setminus \bigcap_{\alpha \in I} G_{\alpha} = \bigcup_{\alpha \in G} X \setminus G_{\alpha}.$$

Since $X \setminus G_{\alpha}$ is open in X for all $\alpha \in I$, this means that $X \setminus \bigcap_{\alpha \in I} G_{\alpha}$ is open in X, and so $\bigcap_{\alpha \in I} G_{\alpha}$ is closed in X. Notice also that

$$X \setminus \bigcup_{i=1}^{n} G_i = \bigcap_{i=1}^{n} X \setminus G_i.$$

By a similar argument $\bigcup_{i=1}^{n} G_i$ is closed in X.

The following proposition justifies the fact that intersecting a closed set with a subspace produces a closed set in that subspace:

Proposition 1.4.3 ➤ Closed Sets in Subspace Topology

Let $Y \subseteq X$, then $A \subseteq Y$ is closed in Y if and only if there exists some closed set $G \subseteq X$ such that $A = G \cap Y$.

Proof. Suppose that *A* is closed in *Y*, then $Y \setminus A$ is open in *Y*. Therefore, there exists some open set $B \subseteq X$ such that $Y \setminus A = B \cap Y$. Take $G := X \setminus B$, then

$$G \cap Y = A$$
.

Suppose conversely that there exists some closed set $G \subseteq X$ such that $A = G \cap Y$. Consider

$$Y \setminus (G \cap Y) = (X \setminus G) \cap Y$$
.

Notice that $X \setminus G$ is open in X, so $Y \cap A$ is open in Y, i.e., A is closed in Y.

The following result is analogous to Proposition 1.3.3:

Proposition 1.4.4 ▶ **Superspace Preserves Closed Sets**

If $Y \subseteq X$ is closed in X and $A \subseteq Y$ is closed in Y, then A is closed in X.

Proof. Consider $X \setminus A = X \setminus Y \cup Y \setminus A$. Since Y is closed in X, this means that $X \setminus Y$ is open in X. Note also that $Y \setminus A$ is open in Y. By Proposition 1.3.3, $Y \setminus A$ is open in X. Therefore, $X \setminus A$ is open in X and so A is closed in X.

Closed sets help define the notion "interior of a set".

Definition 1.4.5 ► **Interior, Closure and Boundary**

Let (X, \mathcal{T}) be a topological space and $A \subseteq X$. The **interior** of A is

$$\overset{\circ}{A} \coloneqq \bigcup_{\substack{U \in \mathcal{T} \\ U \subset A}} A \cap U.$$

The **closure** of *A* is

$$\overline{A} := \bigcap_{\substack{X \setminus G \in \mathcal{T} \\ A \subseteq G}} G.$$

The **boundary** of *A* is

$$\partial A = \overline{A} \backslash \mathring{A}$$
.

We interpret the above definition as follows: \mathring{A} is the union of all open sets contained by A. Moreover, \overline{A} is the smallest closed set in X which contains A. To see this, let $C \subseteq X$ be any closed set in X containing A. Take any $a \in \overline{A}$, then since a is contained by all closed sets containing A, it is clear that $a \in C$, which implies that $\overline{A} \subseteq C$.

Remark.

- 1. $\mathring{A} \subseteq A \subseteq \overline{A}$.
- 2. $\mathring{A} = A$ if and only if A is open in X.
- 3. $\overline{A} = A$ if and only if A is closed in X.

We would like to discuss the properties of closure. The following definition is useful:

Definition 1.4.6 ► Limit Point

Let (X, \mathcal{T}) be a topological space. For any $A \subseteq X$, a point $x \in X$ is a **limit point** of A if for every open set $U \subseteq X$ containing x,

$$(A \setminus \{x\}) \cap U \neq \emptyset$$
.

Now, we propose two properties for the closure:

Proposition 1.4.7 ▶ **Properties of Closure**

Let (X, \mathcal{T}) be a topological space. For any $A \subseteq X$,

- 1. $x \in \overline{A}$ if and only if for any open set $U \subseteq X$ containing $x, U \cap A \neq \emptyset$;
- 2. if A' is the set of limit points of A, then $\overline{A} = A \cup A'$.

Proof. We will prove the first statement by considering the contrapositive, i.e., we prove that $x \in X \setminus \overline{A}$ if and only if there exists some open set $U \subseteq X$ containing x such that $U \cap A = \emptyset$. The "if" direction is trivial because $X \setminus \overline{A}$ is open in X such that $(X \setminus \overline{A}) \cap A = \emptyset$. Take $U \subseteq X$ to be an open set in X with $X \in U$ and $X \cap A = \emptyset$. This means that $X \notin A \subseteq \overline{A}$. Therefore, $X \in X \setminus \overline{A}$.

Take any $a \in A'$, then for every open set $U \subseteq X$ with $a \in U$, we have

$$U \cap A \supseteq U \cap (A \setminus \{a\}) \neq \emptyset$$
.

Therefore, $A \cup A' \subseteq \overline{A}$. Take any $x \in \overline{A}$, we shall prove that if $x \notin A'$, then $x \in A$. Since x is not a limit point of A, there exists some open set $V \subseteq X$ containing x such that $(A \setminus \{x\}) \cap V = \emptyset$. However, $x \in \overline{A}$ implies that $V \cap A \neq \emptyset$, so $x \in A$.

The notion of limit points also leads to the definition of convergence. Before that, we shall define the notion of *neighbourhood*.

Definition 1.4.8 ▶ **Neighbourhood**

Let (X, \mathcal{T}) be a topological space. An open set $U \subseteq X$ is called a **neighbourhood** of some $x \in X$ if $x \in U$.

Intuitively, we think of the statement $x_i \to x$ as the fact that no matter how small a neighbourhood we choose for x, there is always a consecutive infinite subsequence of the x_i 's which falls in this neighbourhood.

Definition 1.4.9 ► Convergence

A sequence $\{x_i\}_{i=1}^{\infty}$ of points in a topological space (X, \mathcal{T}) converges to $x \in X$ if for any neighbourhood $U \subseteq X$ containing x, there exists some $N \in \mathbb{N}^+$ such that $x_k \in U$ for all k > N, denoted as $x_i \to x$. x is said to be the $\liminf_{i \to \infty} \{x_i\}_{i=1}^{\infty}$.

It is important to distinguish between limit and limit points. For example, consider the constant sequence $\{1\}_{i=1}^{\infty}$. Clearly, $x_i \to 1$ but one may check that 1 is not a limit point for this sequence.

In a metric space, we can make use of the metric to describe convergence in a more quan-

titative way.

Theorem 1.4.10 ▶ Convergence in Metric Spaces

Let (X, d) be a metric space. A sequence $\{x_i\}_{i=1}^{\infty}$ in X converges to x if and only if for every $\epsilon > 0$, there exists some $N \in \mathbb{N}^+$ such that $d(x_i, x) < \epsilon$ for all i > N.

Proof. Suppose that $x_i \to x$ as $i \to \infty$. For all $\epsilon > 0$, take the open ball $B_{\epsilon}(x) \subseteq X$. Clearly, $B_{\epsilon}(x)$ is a neighbourhood of x. By Definition 1.4.9, there exists some $N \in \mathbb{N}^+$ such that $x_i \in B_{\epsilon}(x)$ for all i > N, i.e., $d(x_i, x) < \epsilon$ for all i > N. Conversely, suppose that for every $\epsilon > 0$, there exists some $N \in \mathbb{N}^+$ such that $d(x_i, x) < \epsilon$ for all i > N. Let $U \subseteq X$ be any neighbourhood containing x. Note that U is open in X, so by Theorem 1.1.4, there exists some open ball $B_r(x) \subseteq U$ such that $x \in B_r(x)$. Therefore, there exists some $M \in \mathbb{N}^+$ such that $d(x_i, x) < r$, i.e., $x_i \in B_r(x) \subseteq U$, for all i > M. Therefore, $x_i \to x$. □

1.5 Continuity

Definition 1.5.1 ► Continuous Map

Let *X* and *Y* be topological spaces. A map $f: X \to Y$ is **continuous** if for any open set $U \subseteq Y$, the pre-image $f^{-1}(U)$ is open in *X*.

Suppose \mathcal{T}_X and \mathcal{T}_Y are topologies on X and Y respectively. The above definition basically says that for all $U \in \mathcal{T}_Y$, we have $f^{-1}(U) \in \mathcal{T}_X$. The following proposition gives an equivalent definition for continuity in terms of sub-bases.

Proposition 1.5.2 ► Equivalent Definition of Continuity

If S is a sub-basis for a topology on some set Y, then for any topological space X, a map $f: X \to Y$ is continuous if and only if $f^{-1}(S)$ is open in X for any $S \in S$.

Proof. Suppose that f is continuous. Note that any $S \in \mathcal{S}$ is open in Y, so by Definition 1.5.1, $f^{-1}(S)$ is open in X. Suppose conversely that $f^{-1}(S)$ is open in X for any $S \in \mathcal{S}$. Take any open set $U \subseteq Y$. By Propositions 1.3.2 and 1.1.4, there exists finite subsets $\mathcal{U}_i \subseteq \mathcal{P}(\mathcal{S})$ where $i \in I$ for some index set I such that

$$U = \bigcup_{i \in I} \left(\bigcap_{S \in \mathcal{U}_i} S \right).$$

Therefore,

$$f^{-1}(U) = \bigcup_{i \in I} \left(\bigcap_{S \in \mathcal{U}_i} f^{-1}(S) \right),$$

which is clearly open in X. Therefore, f is continuous.

A trivial example for continuous maps is the *constant map* $f: X \to Y$ such that $f(x) = y_0$ for some fixed $y_0 \in Y$. This is simply because

$$f^{-1}(U) = \begin{cases} X & \text{if } y_0 \in U \\ \emptyset & \text{otherwise} \end{cases}.$$

The following result should be very intuitive:

Proposition 1.5.3 ► Composition Preserves Continuity

Let X, Y, Z be topological spaces. If $f: X \to Y$ and $g: Y \to Z$ are continuous maps, then $g \circ f$ is continuous.

It is also clear that for any topological space X, the *inclusion map* $f: A \to X$ for any $A \subseteq X$ such that f(a) = a is continuous. Analogously, if $f: X \to Y$ is continuous, then the restriction $f|_A: A \to Y$ for any subspace $A \subseteq X$ is also continuous.

Proposition 1.5.4 ▶ **Properties of Continuous Maps**

Let X and Y be topological spaces. For any map $f: X \to Y$, the followings are equivalent:

- 1. f is continuous;
- 2. for all $A \subseteq X$, $f(\overline{A}) \subseteq \overline{f(A)}$;
- 3. for any closed set $B \subseteq Y$, $f^{-1}(B)$ is closed in X;
- 4. for any $x \in X$ and any open set $V \subseteq Y$ with $f(x) \in V$, there exists an open set $U \subseteq X$ such that $x \in U$ and $f(U) \subseteq V$.

Proof. Suppose that f is continuous. Note that $f(A) \subseteq \overline{f(A)}$, so $A \subseteq f^{-1}(\overline{f(A)})$. Since $\overline{f(A)}$ is closed in Y, so by Definition 1.5.1,

$$f^{-1}\left(Y\backslash\overline{f\left(A\right)}\right) = X\backslash f^{-1}\left(\overline{f\left(A\right)}\right)$$

is open in X. Therefore, $f^{-1}\left(\overline{f(A)}\right)$ is closed in X. By Proposition 1.4.7, $\overline{A}=A\cup A'$

where A' is the set of limit points of A. We claim that $A' \subseteq f^{-1}(\overline{f(A)})$. Suppose on contrary that there exists some $a \in A' \setminus f^{-1}(\overline{f(A)})$. Since $X \setminus f^{-1}(\overline{f(A)})$ is open, by Definition 1.4.6,

$$(A \setminus \{a\}) \cap \left(X \setminus f^{-1}\left(\overline{f(A)}\right)\right) \neq \emptyset,$$

which is a contradiction because $A \setminus \{a\} \subseteq f^{-1}(\overline{f(A)})$. Therefore, $\overline{A} \subseteq f^{-1}(\overline{f(A)})$, which means that $f(\overline{A}) \subseteq \overline{f(A)}$.

Suppose that $f(\overline{A}) \subseteq \overline{f(A)}$ for any $A \subseteq X$. For any closed set $B \subseteq Y$, we have $B = \overline{B}$. Notice that

$$f\left(\overline{f^{-1}\left(B\right)}\right)\subseteq\overline{f\left(f^{-1}\left(B\right)\right)}=B=f\left(f^{-1}\left(B\right)\right),$$

so $\overline{f^{-1}(B)} \subseteq f^{-1}(B)$. This implies that $\overline{f^{-1}(B)} \subseteq f^{-1}(B)$, and so $f^{-1}(B)$ is closed in X.

Suppose that $f^{-1}(B)$ is closed in X for any closed set $b \subseteq Y$. Take any $x \in X$ and any open set $V \subseteq Y$ with $f(x) \in V$. Since $Y \setminus V$ is closed in Y, $f^{-1}(Y \setminus V) = X \setminus f^{-1}(V)$ is closed in X. Therefore, $f^{-1}(V)$ is open in X. It is clear that $x \in f^{-1}(V)$ and $f(f^{-1}(V)) \subseteq V$.

Next, we introduce a lemma which specifies a methodology to construct a continuous map from two different continuous maps.

Lemma 1.5.5 ▶ Pasting Lemma

Let X and Y be topological spaces such that $X = A \cup B$ for some closed sets A and B. If $f: A \to Y$ and $g: B \to Y$ are continuous and f(x) = g(x) for all $x \in A \cap B$, then the function $h: X \to Y$ defined by

$$h(x) = \begin{cases} f(x) & \text{if } x \in A \\ g(x) & \text{if } x \in B \end{cases}.$$

Proof. Let $U \subseteq Y$ be any open set. Then it is clear that $h^{-1}(U) = f^{-1}(U) \cup g^{-1}(U)$. Since f and g are continuous, both $f^{-1}(U)$ and $g^{-1}(U)$ are open in X, so it follows that $h^{-1}(U)$ is open in X. Therefore, h is continuous.

Observe that the continuity of a function $f: X \to Y$ actually depends on our choice of topologies on X and Y. On the other hand, this also means that every function f could

induce a topology on *X* such that it is continuous.

Definition 1.5.6 ▶ Pull-Back Topology

Let \mathcal{T}_Y be a topology on Y and let $f: X \to Y$. The **pull-back topology** on X is defined as

$$\mathcal{T}_X \coloneqq \left\{ f^{-1}(U) : U \in \mathcal{T}_Y \right\}.$$

Note that the pull-back topology is the coarsest topology on X such that f is a continuous map. To verify this, let \mathcal{T} be any topology on X such that f is continuous. Take any $T \in \mathcal{T}_X$, then there exists some $U \in \mathcal{T}_Y$ such that $T = f^{-1}(U)$. However, this means that $T \in \mathcal{T}$ since f is continuous with respect to \mathcal{T} . This shows that $\mathcal{T}_X \subseteq \mathcal{T}$.

Definition 1.5.7 ▶ **Uniform Continuity**

Let (X, d_X) and (Y, d_Y) be metric spaces. A function $f: X \to Y$ is **uniformly continuous** on X if for all $\epsilon > 0$, there exists some $\delta > 0$ such that $d_Y(f(x), f(y)) < \epsilon$ whenever $d_X(x, y) < \delta$.

Essentially, uniform continuity describes a phenomenon where the choice of δ is irrelevant to the point in the function's domain.

We wish to use the following proposition to characterise all uniformly continuous functions:

Proposition 1.5.8 ▶ **Uniform Continuity Characterisation**

Let (X, d_X) and (Y, d_Y) be metric spaces. A function $f: X \to Y$ is uniformly continuous if and only if for any sequences $\{x_i\}_i^{\infty}$ and $\{y_i\}_i^{\infty}$ in X such that $\lim_{i \to \infty} d_X(x_i, y_i) = 0$, we have $\lim_{i \to \infty} d_Y(f(x_i), f(y_i)) = 0$.

Proof. It suffices to prove the "if" direction only because the other direction is trivial from Definition 1.5.7. We shall consider the contrapositive statement. Suppose that there exist sequences $\{x_i\}_i^{\infty}$ and $\{y_i\}_i^{\infty}$ with $\lim_{i\to\infty} d_X(x_i,y_i)=0$ such that $\lim_{i\to\infty} d_Y(f(x_i),f(y_i))\neq 0$, then for all $\delta>0$, there exists some $N\in\mathbb{N}^+$ such that $d_X(x_i,y_i)>0$ for all i>N. However, notice that there exists some $\epsilon>0$ such that for all $M\in\mathbb{N}^+$, there exists some m>M with $d_Y(f(x_m),f(y_m))\geq \epsilon$. This means that for any $\epsilon>0$, we can find some k such that for all $\delta>0$, we have $d_X(x_k,y_k)<\delta$ but $d_Y(f(x_k),f(y_k))\geq \epsilon$. By Definition 1.5.7, this implies that f is not uniformly continuous.

Definition 1.5.9 ▶ Point-wise and Uniform Convergence

Let $\{f_n\}_{n=1}^{\infty}$ be a sequence of maps from X to a metric space (Y, d). We say that $\{f_n\}_{n=1}^{\infty}$ **converges point-wisely** to $f: X \to Y$ if for any $x \in X$, $\lim_{n \to \infty} f_n(x) = f(x)$, and that $\{f_n\}_{n=1}^{\infty}$ **converges uniformly** to $f: X \to Y$ if for any $\varepsilon > 0$, there exists some $N \in \mathbb{N}^+$ such that for all $n \ge N$ and any $x \in X$, $d(f_n(x), f(x)) < \varepsilon$.

Proposition 1.5.10 ▶ Uniform Convergence Implies Continuity

Let $\{f_n\}_{n=1}^{\infty}$ be a sequence of maps from a metric space (X, d_X) to a metric space (Y, d_Y) . If $\{f_n\}_{n=1}^{\infty}$ converges uniformly to $f: X \to Y$, then f is continuous.

1.6 Product Space

Definition 1.6.1 ▶ **Projection**

Let $\{X_{\alpha}\}_{{\alpha}\in\Lambda}$ be a sequence of non-empty sets, consider the product space $\prod_{{\alpha}\in\Lambda}X_{\alpha}$. The **projection** on the β -th factor is

$$\pi_{X_{\beta}}: \prod_{\alpha \in \Lambda} X_{\alpha} \to X_{\beta}$$

such that $\pi_{X_{\beta}}(\mathbf{x}) = x_{\beta}$.

Note that for any $\beta \in \Lambda$ and any $U \subseteq X_{\beta}$, we have

$$\pi_{X_{\beta}}^{-1}(U) = \left\{ x \in \prod_{\alpha \in \Lambda} X_{\alpha} : x_{\beta} \in U \right\}.$$

Definition 1.6.2 ▶ **Product Topology**

Let $\{(X_{\alpha}, \mathcal{T}_{\alpha})\}_{\alpha \in \Lambda}$ be a sequence of non-empty topological spaces. The **product topology** is the topology generated by the sub-basis

$$\mathcal{S} \coloneqq \left\{ \pi_{X_{\alpha}}^{-1} \left(U_{\alpha} \right) : \alpha \in \Lambda, U_{\alpha} \in \mathcal{T}_{\alpha} \right\}.$$

Definition 1.6.3 ► Box Topology

Let $\{(X_{\alpha}, \mathcal{T}_{\alpha})\}_{\alpha \in \Lambda}$ be a sequence of non-empty topological spaces. The **box topology** is the topology generated by the sub-basis

$$\mathcal{B} \coloneqq \left\{ \prod_{\alpha \in \Lambda} U_{\alpha} : U_{\alpha} \in \mathcal{T}_{\alpha} \right\}.$$

Proposition 1.6.4 ▶ **Product Topology Guarantees Continuous Projection**

Let $\{(X_{\alpha}, \mathcal{T}_{\alpha})\}_{\alpha \in \Lambda}$ be a sequence of non-empty topological spaces. The product topology on $\prod_{\alpha \in \Lambda} X_{\alpha}$ is the coarsest topology such that $\pi_{X_{\alpha}}$ is continuous for all $\alpha \in \Lambda$.

Proposition 1.6.5 ► Continuous of Functions over Product Spaces

Let $\{(X_{\alpha}, \mathcal{T}_{\alpha})\}_{\alpha \in \Lambda}$ be a sequence of non-empty topological spaces and let Y be a topological space. For any $\alpha \in \Lambda$, define $f_{\alpha} : Y \to X_{\alpha}$, then $f : Y \to \prod_{\alpha \in \Lambda} X_{\alpha}$ defined by

$$f(y) = (f_{\alpha}(y))_{\alpha \in \Lambda}$$

is continuous if and only if f_{α} is continuous for all $\alpha \in \Lambda$.

Let $f: \mathbb{R} \to \mathbb{R}^{\mathbb{N}}$ such that $f(x) = (x, x, \dots)$. We claim that f is not continuous with respect to the box topology.

Corollary 1.6.6

Let X be a topological space and let $f,g: X \to \mathbb{R}$ be continuous functions, then the functions f+g, f-g and fg are continuous. If $0 \notin g(X)$, then $\frac{f}{g}$ is continuous.

Proposition 1.6.7

Let (X, \mathcal{T}_X) and (Y, \mathcal{T}_Y) be topological spaces. Let $A \subseteq X$, $B \subseteq Y$ and $\mathcal{T}_{A \times B}$ be the subspace topology on $A \times B$ induced by $\mathcal{T}_X \times \mathcal{T}_Y$, then $\mathcal{T}_{A \times B} = \mathcal{T}_A \times \mathcal{T}_B$.

Proposition 1.6.8

Let $n \in \mathbb{Z}^+$ and $n = \sum_{i=1}^k m_i$ with $m_i \in \mathbb{Z}^+$ for $i = 1, 2, \dots, k$, then

$$\prod_{i=1}^k \mathbb{R}^{m_i} = \mathbb{R}^n.$$

Definition 1.6.9 ► L^p -Metric

Let (X_1,d_{X_1}) , (X_2,d_{X_2}) , \cdots , (X_n,d_{X_n}) be metric spaces, we define

$$\begin{split} d_1 \big((x_1, x_2, \cdots, x_n), (y_1, y_2, \cdots, y_n) \big) &\coloneqq \sum_{i=1}^n d_{X_i} \left(x_i, y_i \right) \\ d_\infty \big((x_1, x_2, \cdots, x_n), (y_1, y_2, \cdots, y_n) \big) &\coloneqq \max_{1 < i < n} d_{X_i} \left(x_i, y_i \right). \end{split}$$

Proposition 1.6.10 ▶ Basis for Product Topology

Let $\{(X_i, \mathcal{T}_i)\}_{i=1}^n$ be a sequence of topological spaces and let \mathcal{B}_i be the basis for \mathcal{T}_i for all $i = 1, 2, \dots, n$, then $\prod_{i=1}^n \mathcal{B}_i$ is a basis for the product topology over $\prod_{i=1}^n X_i$.

Proposition 1.6.11 ▶ Metric for Product Topology

Let $\{(X_i, d_{X_i})\}_{i=1}^n$ be a sequence of topological spaces, then d_1 and d_∞ both induce the product topology over $\prod_{i=1}^n X_i$.

Proposition 1.6.12 $\triangleright \rho$ -Metric Induces the Same Topology

Let (X, d) be a metric space and define $\rho: X \times X \to \mathbb{R}$ by

$$\rho(x,y) \coloneqq \frac{d(x,y)}{1 + d(x,y)},$$

then ρ is a metric on X and $\operatorname{diam}_{\rho}(X) < 1$. Let \mathcal{T}_{ρ} and \mathcal{T}_{d} be the topologies on X induced by ρ and d respectively, then $\mathcal{T}_{\rho} = \mathcal{T}_{d}$.

Proposition 1.6.13 ▶ **Product Topology on Infinite Product**

Let $\{(X, d_{X_i})\}_{i=1}^{\infty}$ be a sequence of metric spaces and define $\rho_i: X_i \times X_i \to \mathbb{R}$ by

$$\rho_i(x, y) := \frac{d_{X_i}(x, y)}{1 + d_{X_i}(x, y)},$$

then $d: \prod_{i=1}^{\infty} X_i \times \prod_{i=1}^{\infty} X_i \to \mathbb{R}$ defined by

$$d(\mathbf{x}, \mathbf{y}) \coloneqq \sup \left\{ \frac{\rho_i(x_i, y_i)}{i} : i \in \mathbb{Z}^+ \right\}$$

is a metric inducing the product topology on $\prod_{i=1}^{\infty} X_i$.