Rockchip RGB 和 MCU 接口开发指南

文件标识: RK-YH-YF-483

发布版本: V1.5.0

日期: 2024-08-27

文件密级:□绝密 □秘密 □内部资料 ■公开

免责声明

本文档按"现状"提供,瑞芯微电子股份有限公司("本公司",下同)不对本文档的任何陈述、信息和内容的准确性、可靠性、完整性、适销性、特定目的性和非侵权性提供任何明示或暗示的声明或保证。本文档仅作为使用指导的参考。

由于产品版本升级或其他原因,本文档将可能在未经任何通知的情况下,不定期进行更新或修改。

商标声明

"Rockchip"、"瑞芯微"、"瑞芯"均为本公司的注册商标,归本公司所有。

本文档可能提及的其他所有注册商标或商标,由其各自拥有者所有。

版权所有 © 2024 瑞芯微电子股份有限公司

超越合理使用范畴,非经本公司书面许可,任何单位和个人不得擅自摘抄、复制本文档内容的部分或全部,并不得以任何形式传播。

瑞芯微电子股份有限公司

Rockchip Electronics Co., Ltd.

地址: 福建省福州市铜盘路软件园A区18号

网址: <u>www.rock-chips.com</u>

客户服务电话: +86-4007-700-590

客户服务传真: +86-591-83951833

客户服务邮箱: fae@rock-chips.com

前言

文本主要介绍 Rockchip平台低速显示接口的调试验证指南。

读者对象

本文档(本指南)主要适用于以下工程师:

技术支持工程师

软件开发工程师

硬件开发工程师

修订记录

版本号	作者	修改日期	修改说明
V1.0.0	丁凌崧	2023-07-01	初始发布
V1.1.0	丁凌崧	2023-07-15	添加 mcu-timing 和 display-timings 的详细说明
V1.2.0	丁凌崧	2023-09-05	修改 mcu-timing 和 display-timings 的配置说明
V1.3.0	丁凌崧	2024-03-21	添加 RK3576 支持
V1.4.0	丁凌崧	2024-06-26	添加 SPI RGB Panel 说明
V1.5.0	丁凌崧	2024-08-27	添加 RK3506 支持和 mcu read 功能相关说明

Rockchip RGB 和 MCU 接口开发指南

- 1. 基础概念
 - 1.1 RGB接口
 - 1.1.1 DE Mode
 - 1.1.2 SYNC Mode
 - 1.2 MCU接口
 - 1.2.1 Write Timing
 - 1.2.2 Read Timing
 - 1.2.3 Bypass 和 Normal Mode
- 2. RK 平台支持情况
- 3. 硬件连接
- 4. 软件配置
 - 4.1 显示通路
 - 4.2 Panel 配置
 - 4.2.1 SPI 初始化配置
 - 4.3 RGB接口
 - 4.4 MCU接口
 - 4.4.1 MCU Bypass Timing 配置
 - 4.4.2 MCU Frame Write/Read
- 5. 调试流程
- 6. 常见问题
 - 6.1 RGB/MCU 屏可以显示图像但屏幕上有噪点或者存在显示错位现象

1. 基础概念

1.1 RGB 接口

RGB 接口也被称为 DPI(Display Pixel Interface) 接口,RGB 接口用于同步的信号有 Vsync、Hsync、Den(Enable)和 DCLK(Dotclk)四个引脚,根据同步方式的不同可以分为 DE mode 和 SYNC mode,Rockchip 平台 RGB 接口的输出时序可以同时兼容两者。

1.1.1 **DE Mode**

DB[23:0] 数据是否有效仅由 Den 信号决定,低电平时数据有效,反之无效。

1.1.2 SYNC Mode

DB[23:0] 数据由 Vsync 和 Hsync 信号来同步,按照上图时序扫描数据。

1.2 MCU 接口

MCU接口也被称为 DBI接口或 8080接口,支持 TX 和 RX 端的双向通信,有 RS (CSX)、CSN (D/CX)、WEN (WRX)和 REN (RDX)四个同步信号,RK 平台仅支持 MCU接口的 TX 功能。

1.2.1 Write Timing

CSX、D/CX 和 WRX 引脚依次拉低,在 DB[23:0] 数据有效期间 WRX 信号会先拉低再拉高。

1.2.2 Read Timing

CSX、D/CX 和 RDX 引脚依次拉低,在 DB[23:0] 数据有效期间 RDX 信号会先拉低再拉高。

- read 前先通过一次 write 将所读取的寄存器地址传输给 Panel 端。
- 第一次 read 返回的数据是无效的,从第二次 read 开始才是有效的数据。
- MCU read 通常用于 panel 调试期间 debug、通过区分 panel ID 实现多屏兼容功能等应用场景,以及 会在下文中介绍的 frame read 功能。

1.2.3 Bypass 和 Normal Mode

- bypass 模式: 当 MCU 和 panel 之间通过 write/read 操作进行指令传输时,工作于 bypass 模式。 MCU 接口根据 panel-init-sequence/panel-exit-sequence 传输 init/deinit 指令,以及进行 frame write/read 时(详见后文<u>《软件配置》</u>章节中的相关说明),均属于 bypass 模式。
- normal 模式: 主控将图像通过 MCU 接口传输到 panel 端的 ram 中并正常显示的模式,通常在传输 完 panel-init-sequence 并确认 panel 正常初始化后就会进入到该模式。

bypass 模式下可以包含 write/read 操作, normal 模式下仅为 write 操作。

2. RK 平台支持情况

SOC 平台	是否 支持 RGB	是否 支持 MCU	是否支 持 MCU Read	VOP Version	Video Port 通路(for VOP 2.0)	Output Mode 支持
RK1808	Y	Y	N	VOP 1.0		RGB666/RGB565
RK312X/PX3SE	Y	N	N	VOP 1.0		RGB888/RGB666/RGB565
RK3288	Y	Y	N	VOP 1.0		RGB888/RGB666/RGB565/RGB3x8
RK3308B/RK3308BS	Y	Y	N	VOP 1.0		RGB888/RGB666/RGB565/RGB3x8
RK3326/PX30	Y	Y	N	VOP 1.0		RGB888/RGB666/RGB565
RK3506	Y	Y	Y	VOP 1.0		RGB888/RGB666/RGB565/RGB3x8/RGB3x6/RGB2x8
RK3562	Y	Y	N	VOP 2.0	VP0	RGB888/RGB666/RGB565/RGB3x8
RK3568	Y	N	N	VOP 2.0	VP2	RGB888/RGB666/RGB565
RK3576	Y	Y	N	VOP 2.0	VP1/VP2	RGB888/RGB666/RGB565/RGB3x8/RGB3x6/RGB2x8
RV1103	Y	Y	N	VOP 1.0		RGB3x8
RV1106	Y	Y	N	VOP 1.0		RGB666/RGB565/RGB3x8
RV1109/RV1126	Y	Y	N	VOP 1.0		RGB888/RGB666/RGB565/RGB3x8

注: 上述 VOP 及 VP(Video Port)相关概念参考文档 《Rockchip_Developer_Guide_DRM_Display_Driver_CN》。

3. 硬件连接

1. RK3562/RK3576/RK3506 平台

Component Name	Pin Name	RGB888 (MCU)	RGB666 (MCU)	RGB565 (MCU)	RGB3x8 (MCU)	RGB3x6 (MCU)	RGB2x8 (MCU)
DCLK	VO_LCDC_CLK	DCLK(RS)	DCLK(RS)	DCLK(RS)	DCLK(RS)	DCLK(RS)	DCLK(RS)
VSYNC	VO_LCDC_VSYNC	VSYNC(CSN)	VSYNC(CSN)	VSYNC(CSN)	VSYNC(CSN)	VSYNC(CSN)	VSYNC(CSN)
HSYNC	VO_LCDC_HSYNC	HSYNC(WRN)	HSYNC(WRN)	HSYNC(WRN)	HSYNC(WRN)	HSYNC(WRN)	HSYNC(WRN)
DEN	VO_LCDC_DEN	DEN(RDN)	DEN(RDN)	DEN(RDN)	DEN(RDN)	DEN(RDN)	DEN(RDN)
R7_D23	VO_LCDC_D23	√	√	√	√(D7_m1)	√(D5_m1)	√(D7_m1)
R6_D22	VO_LCDC_D22	√	√	√	√(D6_m1)	√(D4_m1)	√(D6_m1)
R5_D21	VO_LCDC_D21	√	√	√	√(D5_m1)	√(D3_m1)	√(D5_m1)
R4_D20	VO_LCDC_D20	√	√	√	√(D4_m1)	√(D2_m1)	√(D4_m1)
R3_D19	VO_LCDC_D19	√	√	√	√(D3_m1)	√(D1_m1)	√(D3_m1)
R2_D18	VO_LCDC_D18	√	√	×	×	×	×
R1_D17	VO_LCDC_D17	√	×	×	×	×	×
R0_D16	VO_LCDC_D16	√	×	×	×	×	×
G7_D15	VO_LCDC_D15	√	√	√	√(D2_m1)	√(D0_m1)	√(D2_m1)
G6_D14	VO_LCDC_D14	√	√	√	√(D1_m1)	×	√(D1_m1)
G5_D13	VO_LCDC_D13	√	√	√	√(D0_m1)	×	√(D0_m1)
G4_D12	VO_LCDC_D12	√	√	√	√(D7_m0)	√ (D5_m0)	√ (D7_m0)
G3_D11	VO_LCDC_D11	√	√	√	√(D6_m0)	√ (D4_m0)	√ (D6_m0)
G2_D10	VO_LCDC_D10	√	√	√	√(D5_m0)	√ (D3_m0)	√ (D5_m0)
G1_D9	VO_LCDC_D9	√	×	×	×	×	×
G0_D8	VO_LCDC_D8	√	×	×	×	×	×
B7_D7	VO_LCDC_D7	√	√	√	√(D4_m0)	√ (D2_m0)	√ (D4_m0)
B6_D6	VO_LCDC_D6	√	√	√	√(D3_m0)	√(D1_m0)	√ (D3_m0)
B5_D5	VO_LCDC_D5	√	√	√	√(D2_m0)	√ (D0_m0)	√ (D2_m0)
B4_D4	VO_LCDC_D4	√	√	√	√(D1_m0)	×	√ (D1_m0)
B3_D3	VO_LCDC_D3	√	√	√	√(D0_m0)	×	√ (D0_m0)
B2_D2	VO_LCDC_D2	√	√	×	×	×	×
B1_D1	VO_LCDC_D1	√	×	×	×	×	×
B0_D0	VO_LCDC_D0	√	×	×	×	×	×

2. RK3568 平台

Component Name	Pin Name	RGB888	RGB666	RGB565
DCLK	LCDC_CLK	DCLK	DCLK	DCLK
VSYNC	LCDC_VSYNC	VSYNC	VSYNC	VSYNC
HSYNC	LCDC_HSYNC	HSYNC	HSYNC	HSYNC
DEN	LCDC_DEN	DEN	DEN	DEN
R7_D23	LCDC_D23	V	V	√
R6_D22	LCDC_D22	√	\checkmark	√
R5_D21	LCDC_D21	√	V	√
R4_D20	LCDC_D20	√	\checkmark	√
R3_D19	LCDC_D19	√	V	√
R2_D18	LCDC_D18	√	\checkmark	×
R1_D17	LCDC_D17	√	×	×
R0_D16	LCDC_D16	√	×	×
G7_D15	LCDC_D15	√	V	√
G6_D14	LCDC_D14	√	V	V
G5_D13	LCDC_D13	√	V	√
G4_D12	LCDC_D12	√	V	V
G3_D11	LCDC_D11	√	V	√
G2_D10	LCDC_D10	√	V	V
G1_D9	LCDC_D9	√	×	×
G0_D8	LCDC_D8	√	×	×
B7_D7	LCDC_D7	√	V	V
B6_D6	LCDC_D6	√	V	√
B5_D5	LCDC_D5	√	V	V
B4_D4	LCDC_D4	√	V	√
B3_D3	LCDC_D3	√	V	√
B2_D2	LCDC_D2	√	V	×
B1_D1	LCDC_D1	√	×	×
B0_D0	LCDC_D0	√	×	×

Component Name	Pin Name	RGB888 (MCU)	RGB666 (MCU)	RGB666_CPADHI (MCU)	RGB565 (MCU)	RGB565_CPADHI (MCU)	RGB3x8 (MCU)	
DCLK	LCDC_CLK/LCD_CLK	DCLK(RS)	DCLK(RS)	DCLK(RS)	DCLK(RS)	DCLK(RS)	DCLK(RS)	
VSYNC	LCDC_VSYNC/LCD_VSYNC	VSYNC(CSN)	VSYNC(CSN)	VSYNC(CSN)	VSYNC(CSN)	VSYNC(CSN)	VSYNC(CSN)	
HSYNC	LCDC_HSYNC/LCD_HSYNC	HSYNC(WRN)	HSYNC(WRN)	HSYNC(WRN)	HSYNC(WRN)	HSYNC(WRN)	HSYNC(WRN)	
DEN	LCDC_DEN/LCD_DEN	DEN(RDN)	DEN(RDN)	DEN(RDN)	DEN(RDN)	DEN(RDN)	DEN(RDN)	
R7_D23	LCDC_D23/LCD_D23	√	×	√	×	√	×	
R6_D22	LCDC_D22/LCD_D22	√	×	√	×	√	×	
R5_D21	LCDC_D21/LCD_D21	√	×	√	×	√	×	
R4_D20	LCDC_D20/LCD_D20	√	×	√	×	√	×	
R3_D19	LCDC_D19/LCD_D19	√	×	√	×	√	×	
R2_D18	LCDC_D18/LCD_D18	√	×	√	×	×	×	
R1_D17	LCDC_D17/LCD_D17	√	V	×	×	×	×	
R0_D16	LCDC_D16/LCD_D16	√	√	×	×	×	×	
G7_D15	LCDC_D15/LCD_D15	√	V	√	√	√	×	
G6_D14	LCDC_D14/LCD_D14	√	√	√	√	√	×	
G5_D13	LCDC_D13/LCD_D13	√	V	√	√	√	×	
G4_D12	LCDC_D12/LCD_D12	√	V	√	√	√	×	
G3_D11	LCDC_D11/LCD_D11	√	√	√	√	√	×	
G2_D10	LCDC_D10/LCD_D10	√	V	√	√	√	×	
G1_D9	LCDC_D9/LCD_D9	√	V	×	V	×	×	
G0_D8	LCDC_D8/LCD_D8	√	V	×	√	×	×	
B7_D7	LCDC_D7/LCD_D7	√	V	√	√	√	√	
B6_D6	LCDC_D6/LCD_D6	√	√	√	√	√	V	
B5_D5	LCDC_D5/LCD_D5	√	√	√	√	√	V	
B4_D4	LCDC_D4/LCD_D4	√	V	√	V	√	V	
B3_D3	LCDC_D3/LCD_D3	√	√	√	V	√	V	
B2_D2	LCDC_D2/LCD_D2	√	√	√	V	×	√	
B1_D1	LCDC_D1/LCD_D1	√	√	×	V	×	√	
B0_D0	LCDC_D0/LCD_D0	√	√	×	√	×	√	

3. RK1808/RV1106 平台

Component Name	Pin Name	RGB666 (MCU)	RGB565 (MCU)	RGB565 (MCU)	RGB3x8 (MCU)
DCLK	LCDC_CLK/LCD_CLK	DCLK(RS)	DCLK(RS)	DCLK(RS)	DCLK(RS)
VSYNC	LCDC_VSYNC/LCD_VSYNC	VSYNC(CSN)	VSYNC(CSN)	VSYNC(CSN)	VSYNC(CSN)
HSYNC	LCDC_HSYNC/LCD_HSYNC	HSYNC(WRN)	HSYNC(WRN)	HSYNC(WRN)	HSYNC(WRN)
DEN	LCDC_DEN/LCD_DEN	DEN(RDN)	DEN(RDN)	DEN(RDN)	DEN(RDN)
R5_D17	LCDC_D17/LCD_D17	√	×	×	×
R4_D16	LCDC_D16/LCD_D16	√	×	×	×
R3_D15	LCDC_D15/LCD_D15	√	√	√	×
R2_D14	LCDC_D14/LCD_D14	V	V	√	×
R1_D13	LCDC_D13/LCD_D13	V	V	√	×
R0_D12	LCDC_D12/LCD_D12	V	V	V	×
G5_D11	LCDC_D11/LCD_D11	V	V	√	×
G4_D10	LCDC_D10/LCD_D10	V	V	V	×
G3_D9	LCDC_D9/LCD_D9	V	V	√	×
G2_D8	LCDC_D8/LCD_D8	V	V	V	×
G1_D7	LCDC_D7/LCD_D7	V	V	√	V
G0_D6	LCDC_D6/LCD_D6	V	V	√	√
B5_D5	LCDC_D5/LCD_D5	V	V	√	V
B4_D4	LCDC_D4/LCD_D4	V	V	√	V
B3_D3	LCDC_D3/LCD_D3	V	V	V	V
B2_D2	LCDC_D2/LCD_D2	V	V	√	√
B1_D1	LCDC_D1/LCD_D1	V	V	√	V
B0_D0	LCDC_D0/LCD_D0	V	V	√	V

^{4.} RV1103 平台

Component Name	Pin Name	RGB3x8 (MCU)
DCLK	LCDC_CLK	DCLK(RS)
VSYNC	LCDC_VSYNC	VSYNC(CSN)
HSYNC	LCDC_HSYNC	HSYNC(WRN)
DEN	LCDC_DEN	DEN(RDN)
D7	LCDC_D7	√
D6	LCDC_D6	√
D5	LCDC_D5	√
D4	LCDC_D4	√
D3	LCDC_D3	√
D2	LCDC_D2	√
D1	LCDC_D1	√
D0	LCDC_D0	√

4. 软件配置

4.1 显示通路

VOP(Video Output Process)是 RK 平台的显示处理单元,存在 VOP 1.0 和 VOP 2.0 两种架构主要区别是对多显的支持方式不同,详细的介绍可以查阅文档

《Rockchip_Developer_Guide_DRM_Display_Driver_CN》。左右框图分别对应 VOP 1.0 和 VOP 2.0 架构 RGB/MCU 接口的显示通路,VOP 会从 DDR 中读取图像数据并处理,再送到显示接口 RGB/MCU 上,接口模块则会将图像数据转换为符合协议的数据流,最后传输到屏幕上显示。

4.2 Panel 配置

RGB panel 驱动可以参考 drivers/gpu/drm/panel/panel-simple.c 中的实现,下面为典型的 panel 节点配置:

```
/ {
    panel: panel {
        compatible = "simple-panel";
        bus-format = <MEDIA BUS FMT RGB888 1X24>;
        backlight = <&backlight>;
        enable-gpios = <&gpio3 RK_PA6 GPIO_ACTIVE_LOW>;
        enable-delay-ms = <20>;
        reset-gpios = <&gpio3 RK PB0 GPIO ACTIVE LOW>;
        reset-delay-ms = <10>;
        status = "okay";
        display-timings {
            native-mode = <&fx070 dhm11boe timing>;
            fx070_dhm11boe_timing: timing0 {
                clock-frequency = <50000000>;
                hactive = <1024>;
                vactive = <600>;
                hback-porch = <140>;
                hfront-porch = <160>;
                vback-porch = <20>;
                vfront-porch = <20>;
                hsync-len = \langle 20 \rangle;
                vsync-len = <2>;
                hsync-active = <0>;
                vsync-active = <0>;
                de-active = <0>;
                pixelclk-active = <0>;
            } ;
        };
        port {
            panel in rgb: endpoint {
                remote-endpoint = <&rgb out panel>;
            };
        };
    };
};
&backlight {
   pwms = < & pwm9 0 25000 0>;
    status = "okay";
};
```

• bus-format 属性根据屏端支持的 display mode 配置,通常可以通过 panel datasheet 引脚定义说明及 panel 驱动 IC 的显示模式支持等章节确定。DTS 中配置的宏定义详见 kernel 文件 include/uapi/linux/media-bus-format.h,与硬件连接的对应关系如下:

Display Mode	Bus Format	Cycles Per Pixel
RGB888 (24bit)	MEDIA_BUS_FMT_RGB888_1X24	1
RGB666 (18bit)	MEDIA_BUS_FMT_RGB666_1X18	1
RGB666_CPADHI (18bit)	MEDIA_BUS_FMT_RGB666_1X24_CPADHI	1
RGB565 (16bit)	MEDIA_BUS_FMT_RGB565_1X16	1
RGB565_CPADHI (16bit)	MEDIA_BUS_FMT_RGB565_1X24_CPADHI	1
RGB3x8 (8bit)	MEDIA_BUS_FMT_RGB888_3X8 MEDIA_BUS_FMT_RGB888_3X8	3
RGB4x8(8bit)	MEDIA_BUS_FMT_RGB888_DUMMY_4X8 MEDIA_BUS_FMT_BGR888_DUMMY_4X8	4

- backlight 节点的 pwms 配置需要根据硬件实际的连接情况修改,在显示图像前需要确保背光已经正常点亮。详见 pwm 模块参考文档《Rockchip_Developer_Guide_Linux_PWM_CN》。
- enable-gpios/reset-gpios 和 enable-delay-ms/reset-delay-ms/prepare-delay-ms/unprepare-delay-ms/disable-delay-ms 配置需要根据 panel datasheet中上下电和复位的时序要求,以及实际硬件电路的设计来修改。
 - o (可选)enable 引脚通常用于屏端供电的使能,gpio 配置取决于供电电路的具体设计。
 - o (可选)reset 引脚通常屏端会直接引出,并在 datasheet 中说明触发复位功能的条件,gpio 配置取决于复位电路的具体设计。
 - o (可选)enable-delay-ms/reset-delay-ms/prepare-delay-ms/unprepare-delay-ms/disable-delay-ms 根 datasheet 的 power/reset/signal 时序要求配置。
- display-timings 时序节点屏幕 datasheet 会提供推荐配置,用户也可以根据具体的应用需求在指定的上下阈值区间内微调,下图为示例 panel 节点配置对应的 panel datasheet:

	ITEM	SYMBOL	MIN.	TYP.	MAX.	UNIT	Note
	Dot Clock	1/tCLK	45	51.2	57	MHz	
	DCLK pulse duty	Tcwh	40	50	60	%	
	Horizontal total Time	tH	1324	1344	1364	tCLK	
DE	Horizontal effective Time	tHA		1024		tCLK	
MODE	Horizontal Blank Time	tHB	300	320	340	tCLK	
	Vertical total Time	tV	625	635	645	tH	
	Vertical effective Time	tVA	600			tH	
	Vertical Blank Time	tVB	25	35	45	tH	
	Horizontal total Time	TH	1324	1344	1364	tCLK	
	Horizontal Pulse Width	Thpw		20	-	tCLK	thb + thpw =160DCLK is
	Horizontal Back Porch	Thb		140	-	tCLK	fixed
	Horizontal Front Porch	Thfp	140	160	180	tCLK	
SYNC	Horizontal effective Time	THA		1024		tCLK	
MODE	Vertical total Time	TV	625	635	645	tH	
	Vertical Pulse Width	Tvpw		3	-	th	tvpw + tvb
	Vertical Back Porch	Tvb	-	20	-	th	=23th is fixed
	Vertical Front Porch	Tvfp	2	12	22	th	
	Vertical Valid	Tvd		600		th	

同时 DRM 框架对于 display_timing 结构体及其变量的描述可以在文件 include/video/display_timing.h 中找到,如下所示:

```
* have in one setting. This struct can later be converted to struct videomode
 * (see include/video/videomode.h). As each timing_entry can be defined as a
 * range, one struct display timing may become multiple struct videomodes.
* Example: hsync active high, vsync active low
                Active Video
* Video _
                    ____xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
 * |<- sync ->|<- back ->|<---- active ---->|<- front ->|<- sync..
    | porch |
                               | porch |
* HSync |
* VSync -|_____
struct display timing {
  struct timing_entry pixelclock;
  struct timing_entry hactive; /* hor. active video */
   struct timing_entry hfront_porch; /* hor. front porch */
  struct timing entry hback porch; /* hor. back porch */
   struct timing_entry hsync_len;
                                  /* hor. sync len */
  struct timing_entry vactive;
                                  /* ver. active video */
  struct timing_entry vfront_porch;  /* ver. front porch */
  struct timing entry vback porch; /* ver. back porch */
   struct timing_entry vsync_len;
                                  /* ver. sync len */
  };
```

• 对于 RGB/MCU 接口, display-timings 节点下 clock-frequency 属性值会决定 VOP 输出的帧率, 计算中需要用到 drm 框架的时序属性 htotal 和 vtotal, 此处截取部分说明, 详见 include/drm/drm modes.h。

帧率的计算则可以参考 drivers/gpu/drm/drm_modes.c 中 drm_mode_vrefresh() 函数的实现,设帧率为 fr 则计算公式为:

$$fr = \frac{clock}{htotal \times vtotal}$$

```
/**
    struct drm_display_mode - DRM kernel-internal display mode structure
    @hdisplay: horizontal display size
    @hsync_start: horizontal sync start
    @hsync_end: horizontal sync end
    @htotal: horizontal total size
    @hskew: horizontal skew?!
    @vdisplay: vertical display size
    @vsync_start: vertical sync start
    @vsync_end: vertical sync end
    @vtotal: vertical total size
    @vscan: vertical scan?!
.....
*
    * The horizontal and vertical timings are defined per the following diagram.
    *
    * ::
```

```
Front Sync
                                                   Back
           Active
           Region
                           Porch
                                                   Porch
    <----><---->
      <----> [hv]display ---->
    <----> [hv]sync start ----->
    <-----> [hv]sync end ----->
     <----- [hv]total ------
. . . . . .
*/
* drm_mode_vrefresh - get the vrefresh of a mode
* @mode: mode
* Returns:
* @modes's vrefresh rate in Hz, rounded to the nearest integer. Calculates the
* value first if it is not yet set.
int drm_mode_vrefresh(const struct drm_display_mode *mode)
  unsigned int num, den;
  if (mode->htotal == 0 || mode->vtotal == 0)
     return 0;
  num = mode->clock;
  den = mode->htotal * mode->vtotal;
  if (mode->flags & DRM MODE FLAG INTERLACE)
     num *= 2;
  if (mode->flags & DRM_MODE_FLAG_DBLSCAN)
     den *= 2;
  if (mode->vscan > 1)
     den *= mode->vscan;
  return DIV_ROUND_CLOSEST_ULL(mul_u32_u32(num, 1000), den);
EXPORT SYMBOL(drm mode vrefresh);
```

4.2.1 SPI 初始化配置

有些 RGB 屏需要主控通过 SPI 接口发送指令以完成初始化流程,drivers/gpu/drm/panel/panel-simple.c 支持 3-wire 9-bit serial interface 协议:

由于 RK 平台 SPI 模块支持的数据传输粒度为 4/8/16 bit,上述协议为 9 bit 数据单元,因此在 panel-simple 驱动中是用 GPIO 模拟 SPI 来实现。

kernel-5.10 及以上内核版本的典型配置:

```
spi gpio: spi-gpio {
   compatible = "spi-gpio";
   \#address-cells = <0x1>;
   \#size-cells = <0x0>;
   pinctrl-names = "default";
   pinctrl-0 = <&spi gpio pins>;
   spi-delay-us = <10>;
   status = "okay";
   sck-gpios = <&gpio4 RK PA5 GPIO ACTIVE HIGH>;
   miso-gpios = <&gpio4 RK PA7 GPIO ACTIVE HIGH>;
   mosi-gpios = <&gpio4 RK_PA6 GPIO_ACTIVE_HIGH>;
   cs-gpios = <&gpio4 RK PA4 GPIO ACTIVE HIGH>;
   num-chipselects = <1>;
     * 320x480 RGB/MCU screen K350C4516T
    */
   panel: panel {
       compatible = "simple-panel-spi";
        reg = <0>;
       bus-format = <MEDIA BUS FMT RGB666 1X18>;
       backlight = <&backlight>;
        enable-gpios = <&gpio3 RK_PA6 GPIO_ACTIVE_LOW>;
        enable-delay-ms = <20>;
        reset-gpios = <&gpio3 RK_PB0 GPIO_ACTIVE_LOW>;
        reset-delay-ms = <10>;
       prepare-delay-ms = <20>;
        unprepare-delay-ms = <20>;
        disable-delay-ms = <20>;
       init-delay-ms = <10>;
        width-mm = \langle 217 \rangle;
       height-mm = <136>;
        rockchip,cmd-type = "spi";
        status = "okay";
        // type:0 is cmd, 1 is data
        panel-init-sequence = [
            /* type delay num val1 val2 val3 */
            00 00 01 e0
            01 00 01 00
            . . . . . .
```

```
00 78 01 11
           00 00 01 29
       1;
       panel-exit-sequence = [
           //type delay num val1 val2 val3
           00 0a 01 28
           00 78 01 10
       ];
       display-timings {
           native-mode = <&kd050fwfba002 timing>;
           kd050fwfba002_timing: timing0 {
                * 10453500 for RGB666(18bit)
                * /
               clock-frequency = <10453500>;
               hactive = <320>;
               vactive = <480>;
               hback-porch = <10>;
               hfront-porch = <5>;
               vback-porch = <10>;
               vfront-porch = <5>;
               hsync-len = <10>;
               vsync-len = <10>;
               hsync-active = <0>;
               vsync-active = <0>;
               de-active = <0>;
               pixelclk-active = <1>;
           };
       };
       port {
           panel_in_rgb: endpoint {
              remote-endpoint = <&rgb_out_panel>;
           };
       };
   } ;
} ;
```

- 需要打开配置项 CONFIG_SPI_GPIO,并根据硬件设计配置对应的 sck-gpios、miso-gpios、mosi-gpios 和 cs-gpios,详见驱动 drivers/spi/spi-gpio.c。
- panel 节点配置与上文基本相同,注意点如下:
 - o compatible 修改为 "simple-panel-spi"。
 - rockchip,cmd-type 需配置为 "spi"。
 - 在 panel-init-sequence/panel-exit-sequence 填上相应的 init/deinit 序列。
- kernel 4.19 及以下内核版本, SPI RGB 屏用到的 SDI/SCL/CS (注意实际上不支持 SDI, dts 中配置的 SDI 实为硬件上的 SDO, 此为早期版本笔误)引脚直接在 simple-panel 驱动中用 gpio 模拟,不依赖第三方 SPI 驱动。示例如下:

```
panel: panel {
    compatible = "simple-panel";
    .....
    spi-sdi-gpios = <&gpio1 RK_PC7 GPIO_ACTIVE_HIGH>;
```

```
spi-scl-gpios = <&gpio1 RK_PD0 GPIO_ACTIVE_HIGH>;
   spi-cs-gpios = <&gpio1 RK_PD1 GPIO_ACTIVE_HIGH>;
   rockchip,cmd-type = "spi";
   /* type:0 is cmd, 1 is data */
   panel-init-sequence = [
       /* type delay num val1 val2 val3 */
         00 00 01 e0
         . . . . . .
         00 78 01 11
         00 00 01 29
   ];
   panel-exit-sequence = [
       /* type delay num val1 val2 val3 */
       00 0a 01 28
       00 78 01 10
   ];
    . . . . . .
};
```

- 不同内核版本 SPI RGB 屏的参考配置如下:
 - kernel 4.19 及以下: arch/arm64/boot/dts/rockchip/rk3308-evb-ext-v10.dtsi
 - kernel 5.10 及以上: arch/arm64/boot/dts/rockchip/rk3562-evb1-lp4x-v10-rgb-k350c4516t.dts

4.3 RGB 接口

rgb 驱动对应文件 drivers/gpu/drm/rockchip/rockchip_rgb.c,参考 dts 配置如下:

```
&rgb {
   status = "okay";
   pinctrl-0 = <&rgb666 pins>;
   ports {
       port@1 {
           reg = <1>;
            rgb_out_panel: endpoint {
                remote-endpoint = <&panel_in_rgb>;
            };
        } ;
    } ;
} ;
//VOP 1.0
&rgb_in_vop {
   status = "okay";
};
//VOP 2.0
&rgb_in_vp0 {
   status = "okay";
};
```

- 对于 VOP 1.0 和 VOP 2.0 两种架构, RGB 接口相关节点的配置有所不同,参考配置:
 - VOP 1.0: arch/arm/boot/dts/rv1106-evb-ext-rgb-v10.dtsi.
 - VOP 2.0: 可以参考 arch/arm64/boot/dts/rockchip/rk3562-evb1-lp4x-v10-rgb-FX070-DHM11BOE-A dts。
- pinctrl 配置需要根据实际的硬件连接确定,可以在 rkxxxx-pinctrl.dtsi/rvxxxx-pinctrl.dtsi 文件中找到 各种线序对应的定义。

4.4 MCU 接口

mcu 接口及 mcu panel 驱动可以查看 drivers/gpu/drm/rockchip/rockchip_rgb.c, dts 配置与 rgb 接口基本相同,额外需要加上切换 mcu 模式的标志和 timing,参考配置如下:

```
&rgb {
   status = "okay";
   rockchip, data-sync-bypass;
   pinctrl-names = "default";
     * rgb3x8 pins m0/rgb3x8 pins m1 for RGB3x8(8bit)
    * rgb565 pins for RGB565(16bit)
    * /
   pinctrl-0 = <&rgb565_pins>;
     * 320x480 RGB/MCU screen K350C4516T
    * /
   mcu_panel: mcu-panel {
         * MEDIA BUS FMT RGB888 3X8 for RGB3x8(8bit)
        * MEDIA BUS FMT RGB565 1X16 for RGB565(16bit)
         * /
        bus-format = <MEDIA_BUS_FMT_RGB565_1X16>;
        backlight = <&backlight>;
       enable-gpios = <&gpio1 RK PA3 GPIO ACTIVE LOW>;
        enable-delay-ms = <20>;
        reset-gpios = <&gpio1 RK PA4 GPIO ACTIVE LOW>;
        reset-value = <0>;
       reset-delay-ms = <10>;
       prepare-delay-ms = <20>;
        unprepare-delay-ms = <20>;
        disable-delay-ms = <20>;
        init-delay-ms = <10>;
        width-mm = \langle 217 \rangle;
       height-mm = <136>;
        // type:0 is cmd, 1 is data
        panel-init-sequence = [
            //type delay num val1 val2 val3
              01 00 01 55 /*
                               * interface pixel format:
                                * 66 for RGB3x8(8bit)
                                * 55 for RGB565(16bit)
                                * /
```

```
01 00 01 a0 /*
                      * frame rate control:
                      * 70 (45hz) for RGB3x8(8bit)
                      * a0 (60hz) for RGB565(16bit)
     . . . . . .
     01 00 01 02 /*
                      * display function control:
                      * 32 for RGB
                      * 02 for MCU
                      */
     00 78 01 11
     00 32 01 29
     00 00 01 2c
];
panel-exit-sequence = [
   //type delay num val1 val2 val3
     00 0a 01 28
     00 78 01 10
];
display-timings {
   native-mode = <&kd050fwfba002_timing>;
   kd050fwfba002 timing: timing0 {
       /*
        * 7840125 for frame rate 45Hz
        * 10453500 for frame rate 60Hz
       clock-frequency = <10453500>;
       hactive = <320>;
       vactive = <480>;
       hback-porch = <10>;
       hfront-porch = <5>;
       vback-porch = <10>;
       vfront-porch = <5>;
       hsync-len = <10>;
       vsync-len = <10>;
       hsync-active = <0>;
       vsync-active = <0>;
       de-active = <0>;
       pixelclk-active = <1>;
   };
};
port {
       panel in rgb: endpoint {
          remote-endpoint = <&rgb_out_panel>;
       };
   } ;
};
ports {
   rgb_out: port@1 {
       reg = <1>;
       #address-cells = <1>;
       \#size-cells = <0>;
```

```
rgb_out_panel: endpoint@0 {
                    reg = <0>;
                   remote-endpoint = <&panel in rgb>;
               };
          };
       } ;
   } ;
} ;
//VOP 1.0
&rgb_in_vop {
   status = "okay";
} ;
} qov&
   status = "okay";
    * Default config is as follows:
    * mcu-pix-total = <9>;
    * mcu-cs-pst = <1>;
    * mcu-cs-pend = <8>;
    * mcu-rw-pst = <2>;
    * mcu-rw-pend = <5>;
     * mcu-hold-mode = <0>; // default set to 0
     * To increase the frame rate, reduce all parameters because
     * the max dclk rate of mcu is 150M in rv1103/rv1106.
    */
   mcu-timing {
      mcu-pix-total = <5>;
       mcu-cs-pst = <1>;
       mcu-cs-pend = <4>;
       mcu-rw-pst = <2>;
       mcu-rw-pend = <3>;
       mcu-hold-mode = <0>; // default set to 0
   };
} ;
//VOP 2.0
&rgb_in_vp0 {
   status = "okay";
} ;
} 0qv3
   status = "okay";
    * Default config is as follows:
    * mcu-pix-total = <9>;
    * mcu-cs-pst = <1>;
     * mcu-cs-pend = <8>;
     * mcu-rw-pst = <2>;
     * mcu-rw-pend = <5>;
```

```
* mcu-hold-mode = <0>; // default set to 0

*

* To increase the frame rate, reduce all parameters because

* the max dclk rate of mcu is 150M in rk3562.

*/

mcu-timing {

    mcu-pix-total = <5>;

    mcu-cs-pst = <1>;

    mcu-cs-pend = <4>;

    mcu-rw-pst = <2>;

    mcu-rw-pend = <3>;

mcu-rw-pend = <3>;

// default set to 0

};

};
```

- 对于 VOP 1.0 和 VOP 2.0 两种架构, MCU 接口相关节点的配置有所不同,参考配置:
 - VOP 1.0: arch/arm/boot/dts/rv1106-evb-ext-mcu-v10.dtsi.
 - VOP 2.0: 可以参考 arch/arm64/boot/dts/rockchip/rk3562-evb1-lp4x-v10-mcu-k350c4516t.dts。
- 驱动中会根据 rgb 节点下的 rockchip,data-sync-bypass 属性来切换 mcu 和 rgb 两种接口模式,不加该 属性默认为 rgb 接口,使能后则切换到 mcu 接口。
- 在 kernel-5.10 及以上的版本,mcu 接口对应的 panel 配置推荐放在 rgb 节点下,kernel-4.19 及更早版本的内核,则作为独立的节点通过 simple-panel 驱动初始化。若将 simple-panel 驱动对应的 panel 节点移植到 rgb 节点下需要注意:
 - o 确保 panel 节点命名为 mcu-panel, 驱动中根据此去识别并解析 mcu panel 参数。
 - compatible 属性可以删除,无需配置。
- mcu panel 通常需要通过初始化序列来初始化 display mode/pixel format/frame rate 等配置(具体由 panel 的驱动 IC 确定),以及通过去初始化序列来确保 panel 关闭或进入 low-power 模式等。相关 panel-init-sequence 和 panel-exit-sequence 属性的注意点如下:
 - 。 序列由屏厂提供,通常需要从 c 文件转换为 DTS 配置。
 - o 序列每行从左往右依次为: 指令类型cmd/data、延迟时间(ms)、数据长度(byte)、数据。
 - **帧率的配置通常也在序列初始化阶段进行**,需要跟<u>《Panel 配置》</u>中计算出的帧率相对应。 下面是示例驱动 IC 手册中的说明:

5.3.2. Frame Rate Control (In Normal Mode/Full Colors) (B1h)

B1h		FRMCTR1 (Frame Rate Control (In Normal Mode/Full colors))											
	D/CX	RDX	WRX	D [23:8]	D7	D6	D5	D4	D3	D2	D1	D0	HEX
Command	0	1	↑	XX	1	0	1	1	0	0	0	1	B1h
1 st Parameter	1	1	↑	XX		FRS	S [3:0]		0	0	DIVA	[1:0]	B0h
2 nd Parameter	1	1	1	xx	0	0 0 0 RTNA [4:0]						11h	

	FRS [3:0]		CNT	Frame rate(Hz) Tearing Effect Line ON(R35h) VBP+VFP <24		
0	0	0	0	37	28.78	27.64
0	0	0	1	35	30.38	29.17
0	0	1	0	33	32.17	30.89
0	0	1	1	31	34.18	32.82
0	1	0	0	29	36.46	35.01
0	1	0	1	27	39.06	37.51
0	1	1	0	25	42.07	40.40
0	1	1	1	23	45.57	43.76
1	0	0	0	21	49.71	47.74
1	0	0	1	19	54.69	52.52
1	0	1	0	17	60.76	58.35
1	0	1	1	15	68.36	65.65
1	1	0	0	13	78.13	75.03
1	1	0	1	11	91.15	87.53

- mcu-timing 用于配置 MCU 接口 normal mode 控制信号 CSN/WEN/REN 的时序,各属性分别对应下图中各区间的时间。详细时序图及各区间的具体要求摘自示例 dts 配置对应 panel 模组的 datasheet。下面将介绍 mcu-timing 中各属性及 display-timings 中 clock-frequency 属性的配置方法。
 - 设变量 ptotal 为 mcu-timing 中 mcu-pix-total 的值, 查表可知 panel datasheet 中要求 MCU_PIX_TOTAL 区间时间不小于 t_{min}:

(panel datasheet 中 t_{wc} = 40 而驱动 ic datasheet t_{wc} = 30,取两者中的较大值)

$$t_{min} = T_{CHW} + T_{AST} + T_{WC} + T_{CHW} = 40(ns)$$

对于示例 panel,同时支持 MEDIA BUS FMT RGB888 3X8 和

MEDIA_BUS_FMT_RGB565_1X16 两种 mode, Cycles Per Pixel 值(指将一个 pixel 的数据分成 n 个 cycle 去发送,详见<u>《Panel 配置》</u>章节)设为 cpp,则可以计算出两者对应的理论帧率上限(分别设为 fr_{s-max} 和 fr_{p-max}):

$$fr < \frac{1*1000000000}{htotal \times ptotal \times cpp \times t_{min}}$$

$$htotal = hactive + hback - porch + hfront - porch + hsync - len = 345$$

$$vtotal = vactive + vback - porch + vfront - porch + vsync - len = 505$$

$$fr_{s-max} < \frac{1*1000000000}{345 \times 505 \times 3 \times 40} \approx 47.83(Hz)$$

$$fr_{p-max} < \frac{1*1000000000}{345 \times 505 \times 1 \times 40} \approx 143.49(Hz)$$

因此,串行 rgb3x8 模式的帧率 $fr_s = 45(Hz)$,并行 rgb1x16 模式的帧率 $fr_p = 60(Hz)$ 。

(下文变量的下缀 s 表示 serial 串行, p 表示 parallel 并行, 不再赘述)

同时也可算出两者 display-timings 配置中 clock-frequency 属性的值:

$$clock_s = fr_s \times htotal \times vtotal = 45 \times 345 \times 505 = 7840125$$
 $clock_p = fr_p \times htotal \times vtotal = 60 \times 345 \times 505 = 10453500$

o 每个平台 mcu 接口的 dclk 都会有最大值限制,详见 drivers/gpu/drm/rockchip/rockchip_rgb.c 驱动中的 mcu_max_dclk_rate 属性,通常为 1500000000 Hz,驱动中相应的检查逻辑详见 rockchip rgb encoder mode valid() 函数。

根据 $dclk_{max}$ 和初始化序列中配置的帧率(设为变量 fr,值通常为 60Hz),可以算出 ptotal 的最大值:

$$egin{split} ptotal_{max} < rac{dclk_{max}}{cpp imes clock} - 1 \ & ptotal_{s-max} < rac{150000000}{3 imes 7840125} - 1 pprox 5.38 \ & ptotal_{p-max} < rac{150000000}{1 imes 10453500} - 1 pprox 13.35 \end{split}$$

实际的 ptotal 取两者较小值 ptotal = 5,同时由时序图可确定 mcu-timing 的其他属性值。

。 最后,还需要根据 datasheet 时序要求对计算出的实际值作校验。

MCU 接口的实际 dclk 并不是 display-timings 配置中 clock-frequency 属性的值,还和 mcu-timing 中 mcu-pix-total 配置和 Cycles Per Pixel 值有关:

$$egin{aligned} dclk = clock imes cpp imes (ptotal+1) \ \\ dclk_s = 7840125 imes 3 imes 6 = 141122250 \ \\ dclk_p = 10453500 imes 1 imes 6 = 62721000 \end{aligned}$$

上述 delk 值均未超过 delkmax, 同时可以计算出 MCU PIX TOTAL 区间实际时间:

$$egin{aligned} t_s &= rac{(ptotal+1) imes 1000000000}{dclk_s} &pprox 42.52(ns) \ t_p &= rac{(ptotal+1) imes 1000000000}{dclk_p} &pprox 95.66(ns) \end{aligned}$$

上述 MCU PIX TOTAL 区间时间 t 均满足大于 40 ns 的要求。

4.4.1 MCU Bypass Timing 配置

早期支持 MCU 接口的平台,如 RK3308 和 PX30 等, bypass mode 的 timing 配置跟 normal mode 是一致 的。在 RK3562 及之后的平台,IC 在设计上进行了优化,驱动中会有一组默认的 bypass mode timing 用于满足大多数情况下 bypass mode 中 write/read 操作的需要,详见

drivers/gpu/drm/rockchip/rockchip_vop_reg.c 和 drivers/gpu/drm/rockchip/rockchip_vop2_reg.c 中结构体 vop_mcu_bypass_cfg 的相关定义,如:

```
static struct rockchip_mcu_timing rk3506_mcu_bypass_timing = {
    .mcu_pix_total = 26,
    .mcu_cs_pst = 3,
    .mcu_cs_pend = 24,
    .mcu_rw_pst = 6,
    .mcu_rw_pend = 15,
};

static const struct vop_mcu_bypass_cfg rk3506_mcu_bypass_cfg = {
    .timing = &rk3506_mcu_bypass_timing,
    .dclk_rate = 1200000000,
};
```

如果默认的 bypass mode timing 无法满足应用场景的需要,支持在 dts 中指定(参考 arch/arm/boot/dts/rk3506g-evb1-v10-mcu-k350c4516t.dts):

```
&vop {
    mcu-timing {
        mcu-pix-total = <5>;
        mcu-cs-pst = <1>;
        mcu-cs-pend = <4>;
        mcu-rw-pst = <2>;
        mcu-rw-pend = <3>;
        mcu-hold-mode = <0>;
};

mcu-bypass-timing {
        mcu-bypass-timing {
        mcu-pix-total = <9>;
        }
}
```

```
mcu-cs-pst = <1>;
    mcu-cs-pend = <8>;
    mcu-rw-pst = <2>;
    mcu-rw-pend = <7>;

    mcu-hold-mode = <0>;
};
```

• 需要注意的是,bypass mode 中可能会涉及 MCU read 操作,而通常情况下,MCU read timing 的 min 限制会大于 MCU write timing(可以参考前一章节的示例 datasheet),所以 mcu-bypass-timing 通常会以 datasheet 中 read timing 的限制去计算和配置,以同时兼容 write/read 操作的时序要求。

4.4.2 MCU Frame Write/Read

在 MCU normal mode 下,可以通过 frame write/read 功能在帧间去进行主控和 panel 间的指令交互行为,用于读取 panel 的状态寄存器、修改显示的起始位置等,通常用于静电压测或满足一些特定 panel 逐帧更新显示起始位置的需要等场景。

使能该功能需要在 dts 中配置 panel-frame-sequence 序列,可以参考 arch/arm/boot/dts/rk3506g-evb1-v10-mcu-k350c4516t.dts,示例如下:

• 帧间的 write/read 操作是在 drivers/gpu/drm/rockchip/rockchip_rgb.c 中实现的:

```
static void mcu_interframe_work_func(struct work_struct *work)
{
    struct rockchip_mcu_panel *mcu_panel =
        container_of(work, struct rockchip_mcu_panel, interframe_work);
    struct drm_panel *panel = &mcu_panel->base;
    struct drm_display_mode *mode = mcu_panel->desc->mode;
    struct drm_crtc *crtc = mcu_panel->encoder->crtc;
    u32 timeout = DIV_ROUND_CLOSEST_ULL(1000, drm_mode_vrefresh(mode));
    int ret;

ret = rockchip_drm_wait_vact_end(crtc, timeout);
    if (ret) {
        DRM_DEV_ERROR(panel->dev, "wairt vact end timed out\n");
    }
}
```

```
return;
}

ret = rockchip_mcu_panel_xfer_mcu_cmd_seq(mcu_panel, mcu_panel->desc-
>frame_seq);
if (ret) {
    DRM_DEV_ERROR(panel->dev, "failed to send frame cmds seq\n");
    return;
}

schedule_work(&mcu_panel->interframe_work);
};
```

如果有特定的应用需求,可以自行修改上述 work 的实现。

5. 调试流程

1. 确认 rgb/mcu 接口各 pin 脚的硬件连接,需要注意每个平台 pin 脚的映射方式可能会有所不同,具体看上文<u>《硬件连接》</u>章节。

LCDC CLK C	R9002 OR 1 2 R0402 5%	CTCDC_CTK	5
LCDC DEN C	R9003 OR 1 2 R0402 5%	LCDC_DEN	5
LCDC VSYNC C	2 22422 52	LCDC_HSYNC LCDC_VSYNC	
		CTCDC_VSINC	5
LCDC D0 C	R9006 OR 1 2 R0402 5%	CLCDC_D0	5
LCDC D1 C	R9007 OR 1 2 R0402 5% R9008 OR 1 2 R0402 5%	LCDC D1	5
LCDC_D2_C		LCDC D2	5
LCDC D3 C LCDC D4 C	R9009 0R 1 2 R0402 5% R9010 0R 1 2 R0402 5%	LCDC D3	5
LCDC D4 C		LCDC D4	5
	R9011 OR 1 2 R0402 5%	LCDC D5	5
LCDC D6 C		LCDC D6	5
LCDC_D7_C	R9013 OR 1 2 R0402 5%	LCDC_D7	5
LCDC D8 C	R9014 OR 1	LCDC D8	5
LCDC D9 C	R9015 OR 1 2 R0402 5%	LCDC D9	5
LCDC D10 C	R9016 OR 1 2 R0402 5%	LCDC_D10	5
LCDC D11 C		LCDC_D10	5
LCDC D12 C	D0010 0D 1 * * 2 D0402 ES	LCDC D12	5
LCDC D13 C	DQN1Q ND 1 V V 2 DN/N2 59	LCDC D13	5
LCDC D14 C	DQD2D DD 1 * * 2 DDDD2 ES	LCDC_D13	5
LCDC D15 C		LCDC D15	5
		Crepe_pra	5
LCDC D16 C	R9022 OR 1 2 R0402 5%		
		LCDC_D16	5
LCDC D17 C	R9023 OR 1 2 R0402 5%	LCDC D17	5
LCDC D18 C	R9024 OR 1 2 R0402 5%	LCDC D18	5
LCDC_D19_C	R9025 OR 1 2 R0402 5%	LCDC D19	5
LCDC D20 C	R9026 OR 1 2 R0402 5%	LCDC D20	5
LCDC D21 C	R9027 OR 1 2 R0402 5%	LCDC D21	5
LCDC_D22_C		LCDC D22	5
LCDC D23 C	R9029 OR 1 2 R0402 5%	LCDC_D23	5

2. 根据 panel datasheet 正确配置 enable/reset 控制引脚极性和上电时序,以及背光所用到的 pwm 通道。若为 mcu 屏,还需要配置正确的初始化序列。

VOCON RESET C	R9030 OR 1 2 R0402 5%	SALCD RST 5
VOCON PWREN C	R9031 OR 1 2 R0402 5%	LCD PWREN 5
VOCON_LEDPWM_C	R9032 OR 1 2 R0402 5%	LCDC BL PWM 5
	V V	//

3. 确保背光已点亮的情况下,需再确认下 enable/reset 控制引脚是否为正确的电平,若实际测量仍非预期值,则确认下 iomux 是否正确配置为 GPIO。

6. 常见问题

6.1 RGB/MCU 屏可以显示图像但屏幕上有噪点或者存在显示错位现象

答:可以尝试翻转下 dclk 时钟极性,对应 display-timings 下的 pixelclk-active 属性,可以改变 dclk 与 data 信号的相对相位。

```
display-timings {
   native-mode = <&fx070 dhm11boe timing>;
    fx070_dhm11boe_timing: timing0 {
        clock-frequency = <50000000>;
       hactive = <1024>;
       vactive = <600>;
        hback-porch = <140>;
       hfront-porch = <160>;
        vback-porch = <20>;
        vfront-porch = <20>;
       hsync-len = <20>;
        vsync-len = <2>;
       hsync-active = <0>;
        vsync-active = <0>;
       de-active = <0>;
       pixelclk-active = <0>; // 1 翻转, 0 不翻转
   };
};
```