Lecture 11 Distorting Taxes and the Welfare Theorems

Hui-Jun Chen

National Tsing Hua University

October 16, 2025

Overview

In previous lectures, all the taxes we are discussing is lump-sum tax.

> pure income effect, no change to consumption-leisure allocation

satisfy both welfare theorems

In this lecture, the distorting taxes will include substitution effect, and thus

> creating "wedges" to distort consumption-leisure choice

 \triangleright violate the welfare theorems (CE \neq SPP)

Outline

1 Simplified (but Problematic) Model

SPP in Simplified (but Problematic) Model

Assume production is labor-only technology:

$$Y = zN^d$$

So PPF is

$$C = z(h - l) - G$$

Thus, SPP is

$$\max_{l} U(z(h-l)-G,l)$$
 FOC:
$$\frac{D_{l}U(C,l)}{D_{C}U(C,l)} = MRS_{l,C}$$

$$= MRT_{l,C} = z = MPN$$

Labor Demand in Simplified Model

Figure: Figure 5.15 The Labor Demand Curve in the Simplified Model

$$\max_{N^d} zN^d - wN^d$$

FOC would be z = w (horizontal line)

- if z < w: negative profit for every worker hired, choose $N^d = 0$
- if z > w: positive profit for every worker hired, choose $N^d = \infty$
- → only z = w possible, : linear PPF in previous slide
 - >> "infinitely elastic" N^d

Competitive Equilibrium w/ Distorting Tax

A competitive equilibrium, with $\{z, G\}$ exogenous, is a list of endogenous prices and quantities $\{C, l, N^s, N^d, Y, \pi, w, t\}$ such that:

1. taking $\{w, \pi\}$ as given, the consumer solves

$$\max_{C,l,N^s} U(C,l)$$
 subject to $C = w(1-t)N^s + \pi$ and $N^s + l = h$

2. taking w as given, the firm solves:

$$\max_{N^d,Y,\pi}\pi$$
 subject to $\pi=Y-wN^d$ and $Y=zN^d$

- 3. the government spends $G = wtN^s$
- 4. the labor market clears at the equilibrium wage, i.e. $N^s = N^d$

Effect of Distorting Tax

Since the tax is imposed on consumers/workers, it distorted the consumption-leisure decision:

$$MRS_{l,C} = w(1-t)$$

So in the equilibrium, it deviates from SPP:

$$MRS_{l,C} = w(1-t) < w = z = MPN = MRT_{l,C}$$

Result: CE and SPP lead to different allocation!

Graphical Representation

Figure: Figure 5.16 Competitive Equilibrium in the Simplified Model with a Proportional Tax on Labor Income

SPP solution lies at point E:

- ▶ \overline{AB} : PPF, slope -z
- \triangleright can reach indifference curve I_1

CE solution lies at point H:

- ightharpoonup \overline{DF} : consumer's budget line
- \triangleright can only reach I_2
- **>** proportional tax ⇒ N^s ↓
- ▶ $N^s \downarrow \Rightarrow Y \downarrow$, but still need to meet G, so $C \downarrow$: gov't budget critical!

How Much Tax Revenue can be Generated?

Figure: Figure 5.17 A Laffer Curve

equilibrium wage: w = z, implies total tax revenue by solve consumer problem:

$$R(t) = tz(h - l^*(t)),$$

What t maximizes? Solve

$$\max_{t} R(t) = \max_{t} tz(h - l^*(t)),$$

- ightharpoonup not just t = 1! tax rate vs tax base
- > t = 0: no revenue because no tax
- t=1: no revenue because no incentive to work

Full Model Elaboration

Let $U(C, l) = \ln C + \ln l$, and h = z = 1, by firm's problem we know w = z = 1. Consumer has some non-labor income denoted as x > 0. FOC leads to

$$\begin{split} MRS_{l,C} &= \frac{C}{l} \\ &= \frac{(1-t)(1-l) + \pi}{l} = 1 - t < 1 = MRT_{l,C} \\ &\Rightarrow (1-t)(1-l) + \pi = (1-t)l \\ &\Rightarrow 1 - l + \frac{\pi}{1-t} = l \Rightarrow 2l = 1 + \frac{\pi}{(1-t)} \\ &\Rightarrow l = \frac{1}{2} + \frac{\pi}{2(1-t)} \\ &\Rightarrow N^{s}(t) = 1 - l = \frac{1}{2} - \frac{\pi}{2(1-t)} \end{split}$$

Maximize Tax Revenue

Total tax revenue is

$$R(t)=tN^{s}(t),$$

and thus government's problem is

$$\max_t \frac{1}{2}t - \frac{t\pi}{2(1-t)}.$$

FOC leads to

$$\frac{1}{2} - \frac{\pi(1-t) + t\pi}{2(1-t)^2} = 0 \Rightarrow \frac{1}{2} - \frac{\pi}{2(1-t)^2} = 0$$
$$\frac{1}{2} = \frac{\pi}{2(1-t)^2} \Rightarrow 1 = \frac{\pi}{(1-t)^2}$$
$$t = 1 - \sqrt{\pi}$$

Visualization

Consider two cases:

- 1. consumer is poor (low π)
- 2. consumer is rich (high π)

For a given after tax-wage , rich consumer supplies less labor

- > tax revenue shifts down
- > Laffer peak shifts left
- many other conditions also impact this analysis!

Multiple Competitive Equilibria Possible

Figure: Figure 5.18 Two Competitive Equilibria

Previous slide logic implies the government can choose 2 tax rates for a given required level of *G*

- ightharpoonup both t_1 and t_2 yield the same revenue
- consumer strictly better off under lower tax rate t₁

What's wrong with this model?

Recall that $Y = zN^d$ implies labor supply $N^s(t)$ equals to

$$N^{s}(t) = 1 - l = \frac{1}{2} - \frac{\pi}{2(1-t)},\tag{1}$$

and the total tax revenue is given by

$$R(t) = wtN^{s}(t). (2)$$

In equilibrium w=z=1, so $\pi=zN^d-wN^d=0$, so this question is trivial...Stay tuned with Problem Sets Θ

Conclusion

We've focused on the simple case to keep analysis straightforward, but logic applies more broadly.

- ▶ SPP: $MRS_{l,C} = MRT_{l,C} = MPN$, since PPF is C = zF(K, N) G
- > CE: same distortion as our simple case:
 - >> consumer problem implies $MRS_{l,C} = w(1-t)$
 - **>>** firm problem implies $MRT_{l,C} = w$
 - \Rightarrow same result as simplified model: $MRS_{l,C} \neq MRT_{l,C}$, unlike SPP
 - **>>** only difference from simplified model: $MPN = D_N F(K, N) \neq z$