母 公 開 特 許 公 報 (A) 平1 - 135541

			· ·				
B 01 J 29/22 B 01 D 53/36 B 01 J 29/32	1 0 4	A-6750-4G A-8516-4D A-6750-4G	審査請求	未請求	発明の数	1	(全4頁)
@Int_Cl_4	識別記号	庁内整理番号		❷公開	平成1年(1989)5月29日

図発明の名称 排気ガス浄化用触媒

②特 願 昭62-292915

20出 顧 昭62(1987)11月19日

中 徹 愛知県農田市トヨタ町1番地 トヨタ自動車株式会社内 勿発 眀 Œ 者 70発 明 者 松 本 伸 愛知県豊田市トヨタ町1番地 トヨタ自動車株式会社内 **静岡県小笠郡大東町千浜7800番地** キヤタラー工業株式会 明 石 士 社内 愛知県愛知郡長久手町大字長湫字横道41番地の1 株式会 昭 社费田中央研究所内 トヨタ自動車株式会社 愛知県豊田市トヨタ町1番地 の出 阻 人 லய 殂 株式会社費田中央研究 愛知県愛知郡長久手町大字長双字横道41番地の1 所

②代理人 弁理士 萼 優美 外2名

最終頁に続く

明 細 會

発明の名称

排気ガス浄化用触媒

2. 特許請求の範囲

Pt, Pd, Rh, Ir, Ruから選択される1種以上の金属でイオン交換されたゼオライトから成ることを特徴とする排気ガス浄化用触媒。

3.発明の詳細な説明

く産業上の利用分野>

本発明は自動車の排気ガス浄化用触媒、特には空燃比がリーン偶となる酸素過剰雰囲気においてもNOxを高率に浄化できる触媒に関するものである。

く従来の技術>

自動車の排気ガス浄化用触媒として、一酸化 炭素 (CO)及び炭化水素 (HC)の酸化と、窒素 酸化物 (NOx)の還元を同時に行う触媒が汎用 されている。このような触媒は、例えば特公昭 58-20307号公報にもみられるように、耐火 性担体上のアルミナコート層に、Pd。Pt, Rh 等の貴金属、及び場合により助触媒成分として Ce, La 等の 希土類金属又は Ni 等の ベースメ タル酸化物を添加したものが殆んどである。

かかる触媒は、エンジンの数定空燃比によって浄化特性が大きく左右され、希神風合気つまり空燃比が大きいリーン側では燃焼後も酸素(Oa)の量が多くなり、酸化作用が活発に、選元作用が不活発になる。この逆に、空燃比の小さいリッチ側では酸化作用が不活発に、還元作用が活発になる。この酸化と遠元のバランスがとれる理論空燃比(A/F=14.6)付近で触媒は最も有効に働らく。

従って、触媒を用いる排気ガス浄化装置を取付けた自動車では、排気系の酸素器度を検出して、混合気を理論空燃比付近に保つようフィードパック制御が行なわれている。

く発明が解決しようとする問題点>

一方、自動車においては低燃費化も要請されており、そのためには通常走行時なるべく酸素 過剰の進合気を燃焼させればよいことが知られ ている。しかしそうすると空燃比がリーン側の 酸素過剰雰囲気となって、排気ガス中の有害成 分のうちHC, COは酸化除去できても、 NOx は 触媒床に吸齎したOxによって活性金銭との接触 が妨げられるために、 遠元除去できないという 間題があった。そのため従来、 触媒によっては 服の排気ガス浄化を図る自動車にあっては 現を希薄にすることができなかった。

本発明は上記問題点を解決するために為されたものであり、その目的とするところは、リーン側でもNOxを還元除去でき理論空燃比からリーン側の広い領域にわたって全ての有容成分を十分に除去し得る排気ガス浄化用触媒を提供することである。

く問題点を解決するための手段>

そのための本発明の排気ガス浄化用触媒は、 Pt, Pd, Rh, Ir, Ruから選択される1種以上 の金属でイオン交換されたセオライトから成ると とを特徴とする。

本触媒は、セオライトを構成するために本来 。 るパインダーと温練し、得られたスラリーを担

体にウォッシュコートした役焼成すればよい。 敢は、合成セオライトをウォッシュコートした 後イオン交換するようにしてもよい。

〈作用〉

ゼオライトは別名分子節いと言われているように分子の大きさと並ぶ数A単位の細孔を有している。そのためNOxが細孔に選択的に取り込まれる。細孔中にはイオン交換により導入された金属の活性サイトが存在するため、そとにNOxが吸着し反応を起こす。

<実施例>

以下、実施例により本発明を更に詳しく説明 する。

実施例 1

a) スラリー 誤製

バインダーとして、 Si/Ag 比が30となるように混合されたシリカソルとアルミナソルの混合物60部に、セオライト(Si/Ag 比 30; 最大細孔径5.4Å) 粉末100部及び水60部を加えて充分攪拌し、硝酸アルミニウム器

存在している陽イオン(例えば Na+, K+)が、 Pt, Pd, Rh, Ir, Ru又はそれらの幾種かで置 換されたセオライトであればよく、形態として はそれ自体ペレット状であるもの、又はモノリ ス状担体上にコート層として形成されているも のであってよい。また更に他の金属をイオン交 換もしくは担持によって有していてもよい。

セオライトは周知のように一般式:

xM1/n · Ag2O1 · ySiO1

で扱わされる結晶性アルミノケイ酸で、 M(n 価の金属), x, yの違いによって、結晶構造中のトンネル構造(細孔径)が異なり、多くの種類のものが市販されているが、本発明の触媒のためのセオライトとしては、 NOx 分子径よりも値かに大きい約 5~1 0 Åの細孔径を有するものが好ましい。

本触媒を製造するには、例えば、上記金属の イオン群液で処理してイオン交換した合成ゼオ ライトを、アルミナゾル及びシリカゾルからな るパインダーと温線し、得られたスラリーを担

液で pHを 3~6とし、ウォッシュコート用ス ラリーを調製した。

b) コーティング

コージェライト製モノリス状ニハカム担体を水に浸渡し、余分な水を吹き払った後、上配 a) で得られたスラリーに浸渡し、取出した後余分なスラリーを吹き払い、80℃で20分乾燥し、更にこれを250℃で1時間乾燥した。コート量は損休1.8当り100gである。

c) Pt, Rh イオン交換

上記のコート物をジニトロジアミン白金裕 液に浸漉して24時間放置し、担体18当り 10gのPtをイオン交換した。その後、付着 している余分な水を吹き払い、250℃で1時間 関乾燥した後、塩化ロジウム溶液に浸漉して 24時間放置し、担体18当り 0.2gの R hを イオン交換し、余分な水を吹き払った後、80 でで20分乾燥して排気ガス浄化用触媒 A を 製造した。

実施例 2

セオライトとして、最大細孔径 4.7 Åのモルデナイトを用いる以外は実施例 1 と同じ方法で、排気ガス浄化用触媒 B を製造した。

奥施例 5

契施例 1 b) で得られたコート物を硝酸ペラジウム溶液に浸液して 2 4 時間放置し、担体 1 名当り 1 0 m の P dをイオン交換した。その後、付新している水を吹き払い、 2 5 0 Cで 1 時間乾燥してから塩化ロジウム溶液に浸液して 2 4 時間放置し、担体 1 名当り 0 2 m の R hをイオン交換した。付着した水を吹き払った後、8 0 C で 2 0 分間乾燥して排気ガス浄化用触媒 C を製造した。突施例 4

実施例 1 b) で得られたコート物を塩化ルテニウム溶液に浸漉して 2 4 時間放置し、担体 1 を当り 1 2 9 の Ruをイオン交換した。付着した水を吹き払った後、8 0 ℃で 2 0 分間乾燥し、排気ゲガス浄化用触媒 D を製造した。

实施例 5

奥施例 4 における塩化ルチニウムの代わりに

でとれを塩化ロジウム溶液に浸漉し、担体1 8当り0.25のRhを含受担持させ、80℃で20分間乾燥して排気ガス浄化用触供Fを製造した。

比較例 2

比較例 1 b) で得られた焼成体を硝酸パラジウム液に浸漉して担体 1 8 当 9 1 0 9 の P dを含浸担持させ、水を吹き払って 2 5 0 ℃で 1 時間乾燥した。 次いで塩化ロジウム溶液に浸漉して担体 1 8 当 9 0.2 9 の R hを含浸担持させ、 付着水を吹き払って 8 0 ℃ で 2 0 分間乾燥して触媒 G を製造した。

比較例 3

比較例 1 b) で得られた焼成体を、塩化ルテニウム溶液に浸漉して、担体 1 名当り 1 2 g の Ruを含浸担持させ、水を吹き払い、80℃で 2 0 分間乾燥して触媒Hを製造した。

比較例 4

比較例 3 にかける塩化ルテニウム溶液の代わりに塩化イリジウム溶液を用いる性かは比較例 3 の

塩化イリジウムを用いるほかは実施例4と同じ方法で排気ガス浄化用触媒Eを製造した。 比較例1

a) スラリー調製

アルミナ 末 100部に、アルミナゾル(アルミナ合有率 10%)70部、 40 w t % 硝酸アルミニウム水溶液 15部及び水 30部を加えて機神混合し、コーティング用スラリーを調製した。

b) コーティング及び焼成

はスラリーを用い、実施例 1 b) と同様な方法でコーティング、乾燥を行なった。これを硝酸セリウム酢液に受凌し、担体 1 & 当り 0.2 モルの C e を担持させ、 7 0 0 C で 1 時間焼成

c) 貴金属担持

上記のようにして得られた焼成体をジェトロジアミン白金幣液に浸破し、担体 1 8 当り 1 0 P の P t を含浸担持させ、付着した水を吹き払った後、 2 5 0 Cで 1 時間乾燥した。次い

操作を同様に行い、触媒Iを製造した。 試験例

上記各実施例及び比較例に係る触媒A~Iについて、耐久浄化性能試験を行なった。

数試験は触媒A~Iを、空燃比(A/F): 20、空間速度(S・V・): 60.000 h r⁻¹、触媒床温度:700℃の排気ガス環境下に50時間曝した後の各触媒について、

- (1) 入ガス温度 6 0 0 C、 A/F=1 8 にかけるHC、 CO、NOx の争化 率測定、及び
- (2) 触媒の定量分析による貴金属飛散率側定を行なった。

それらの結果を第1表及び第2表にそれぞれ 示す。

第1表:A/F=18における浄化率(5)

	黄金属種	HС	CO	NOx
A(実施例1)	Pt.Rh	8 1	8 4	5 8
B (• 2)	1	77	8 2	5 1
C(, 3)	Pd . Rb	8 3	7 9	.5 3
D(/ 4)	Ru	7 2	74	60
E(, 5)	Ir	7 0	7 5	5 3

F ()	比較化	別1)	Pt.Rh	77	8 4	3
G(•	2)	Pd.Rh	80	8 1	3
н (,	3)	Ru	7.5	7 2	5
1(,	4)	Ir	7 3	7 2	0

第2要: 貴金属飛散率(%)

	Pt	Pd	Rh	Ru	Ιr
A (実施例1)	2.1	_	4.6	_	_
B(• 2)	2.0	-	4, 6	_	-
C(# 5)	-	1.3	4. 9	-	-
D(- # 4)	-	-	_	5. 9	_
E(# 5)		-	_	-	5.3
F(比較例1)	3.0	-	9. 7	_	-
G(# 2)	-	20	9. 2	_	-
H(# 3)	-	-	- 1	2 2.2	_
I(# 4)					1 8.5

く発明の効果>

本発明の排気ガス浄化用触媒は、触媒能を有 する金属でイオン交換されかつ NOx 分子の収込 みに適する細孔を持つゼオライトを担体上に担 持させたものであるため、リーン努朗気においてもNOxが選択的に細孔中の金属の活性サイトに吸着・反応し、浄化される触媒となった。

従って本発明の排気ガス浄化触媒を用いれば、リーン雰囲気走行でも大気中にNOxを排出する 恐れがなくなることから、エンジンの設定空燃 比を大きくして、自動車の低燃費化を図ること ができる。

また、セオライトへのイオン交換により貴金 関が高度に分散されているためか、 NO_x のみな らずHC の 除去率も向上するようになった。

更に、貴金属はイオン交換によりゼオライト中へ存在させたものであるため、貴金属特にRu 及びIr は空気中に飛散しにくくなり、触媒の耐久性向上にも寄与できるようになった。

特 許 出 顧 人 トョタ自動車株式会社 同 株式会社 豊田中央研究所 代理人 弁理士 粤 後 美 ほか2名

第1頁の続き

⑦発 明 者 近 藤 四 郎 愛知県愛知郡長久手町大字長湫字横道41番地の1 株式会 社豊田中央研究所内

TRANSLATION FROM JAPANESE

- (19) JAPANESE PATENT OFFICE (JP)
- (11) Unexamined Patent Application (Kokai) No. 1-135541
- (12) Unexamined Patent Gazette (A)

(51) <u>Int.</u>	<u>Cl.</u> ⁴ :	Classification Symbols:	Internal Office Registration Nos.:
·			
B 01 J	29/22		A-6750-4G
B 01 D	53/36	104	A-8516-4D
B 01 J	29/32		A-6750-4G

(43) Disclosure Date: May 29, 1989

Request for Examination: Not yet submitted

Number of Inventions: 1

(Total of 4 pages [in original])

- (54) Title of the Invention: Exhaust Gas Cleaning Catalyst
- (21) Application No. 62-292915
- (22) Filing Date: November 19, 1987
- (72) Inventor: Toru Tanaka
- (72) Inventor: Shin'ichi Matsumoto
- (72) Inventor: Shuji Tateishi
- (72) Inventor: Hideaki Muraki

- (72) Inventor: Shiro Kondo
- (71) Applicant: Toyota Motor Corporation
- (71) Applicant: Toyota Central Research and Development Laboratories, Ltd.
- (74) Agent: Yumi Gaku, Patent Attorney (and two others)

SPECIFICATION

1. Title of the Invention

Exhaust Gas Cleaning Catalyst

2. Claims

An exhaust gas cleaning catalyst, characterized by comprising a zeolite that has been ion-exchanged with one or more metals selected from Pt, Pd, Rh, Ir, and Ru.

3. Detailed Description of the Invention

Field of Industrial Utilization

The present invention relates to an exhaust gas cleaning catalyst for automobiles, and more particularly to a catalyst capable of efficiently removing NO_x from oxygen-rich environments with lean air-fuel ratios.

Prior Art

Catalysts designed to reduce oxides of nitrogen (NO_x) while oxidizing carbon monoxide (CO) and hydrocarbons (HC) are commonly used as exhaust gas cleaning catalysts for automobiles. Most of these catalysts are obtained by adding Pd, Pt, Rh, and other noble metals to an alumina coating layer on a refractory carrier, and optionally adding rare-earth metals (Ce, La, and the like) or oxides of base metals (such as Ni) as cocatalyst components, as described, for example, in JP (Kokoku) 58-20307.

The cleaning characteristics of such catalysts depend to a large extent on the airfuel ratio setting of the engine, so when a lean mixture (that is, a high air-fuel ratio) is involved, the amount of oxygen (O_2) increases following combustion, promoting oxidation and inhibiting reduction. Conversely, a rich mixture with a low air-fuel ratio inhibits oxidation and promotes reduction. A catalyst operates at its optimum level near the theoretical air-fuel ratio (A/F = 14.6) with balanced oxidation and reduction.

Consequently, automobiles equipped with exhaust gas cleaning devices that have catalysts are operated such that the oxygen concentration of the exhaust system is sensed, and feedback control is implemented in order to keep the air-fuel mixture close to the ideal air-fuel ratio.

Problems Which the Invention is Intended to Solve

It is also known that automobiles are required to have adequate fuel economy, so an air-fuel mixture containing maximum excess oxygen should be combusted during normal travel. A drawback to this approach is that the air-fuel ratio produces a lean environment containing excess oxygen, and although HC and CO (which are the noxious components of exhaust gas) can still be removed by oxidation, NO_x cannot be removed by reduction because the O₂ adsorbed on the catalyst bed inhibits contact with the active metal. For this reason, it has been impossible in the past to use lean air-fuel mixtures in automobiles designed for thorough cleaning of exhaust gas with catalysts.

The present invention, which was devised in order to address these problems, is aimed at providing an exhaust gas cleaning catalyst capable of removing NO_x by reduction in the lean region and of adequately removing all the noxious components across a wide range, from the theoretical air-fuel ratio to the lean region.

Means Used to Solve the Aforementioned Problems

The exhaust gas cleaning catalyst of the present invention is characterized by comprising a zeolite that has been ion-exchanged with one or more metals selected from Pt, Pd, Rh, Ir, and Ru.

The proposed catalyst should be a zeolite in which the inherent cations (for example, Na⁺ and K⁺) commonly constituting a zeolite are replaced with one or more of the following: Pt, Pd, Rh, Ir, and Ru. The catalyst may be used in the form of original pellets or may be applied as a coating to a monolithic carrier. Other metals may also be introduced by ion exchange or deposition.

As is well known, zeolites are crystalline aluminosilicates expressed by the general formula

$$xM_2/n \cdot Al_2O_3 \cdot ySiO_2$$
.

Depending on M (n-valent metal), x, and y, different tunnel structures (pore diameters) can be obtained in the crystal structure, and various types of zeolites are commercially available. A zeolite with a pore diameter of about 5-10 Å, which is slightly greater than the diameter of NO_x molecules, should preferably be used as the catalyst of the present invention.

The proposed catalyst may, for example, be produced by a method in which a synthetic zeolite treated and ion-exchanged with an ionic solution of the aforementioned metals is blended with a binder composed of alumina sol and silica sol, and the resulting slurry is baked after being applied to a carrier by wash coating. Alternatively, the synthetic zeolite may be ion-exchanged after being wash-coated.

Operation of the Invention

Zeolites, also called molecular sieves, have pores on the order of several angstroms, which is comparable to the size of a molecule. For this reason, NO_x can be selectively retained in the pores. Since the pores contain active sites created by the introduction of metals by ion exchange, the NO_x are adsorbed and reacted on the sites.

Working Examples

The present invention will now be described in further detail through working examples.

Working Example 1

(a) Slurry Preparation

A zeolite powder (Si/Al ratio: 30; maximum pore diameter: 5.4 Å) and water were added in amounts of 100 and 60 parts, respectively, to 60 parts of a binder mixture

composed of silica sol and alumina sol and obtained by mixing the two components in an Si/Al ratio of 30. The product was thoroughly agitated and adjusted to a pH of to 3-6 with an aluminum nitrate solution, yielding a slurry for wash coating.

(b) Coating

A cordierite monolithic honeycombed carrier was immersed in water, excess water was blown off, the carrier was immersed in the slurry prepared in (a) above, excess slurry was blown off after the carrier was taken out, and the coated carrier was dried first at 80°C for 20 minutes and then at 250°C for 1 hour. The coating amount was 100 g per liter of carrier.

(c) Pt, Rh Ion-exchange

The coated product was immersed in a dinitrodiamine-platinum solution and allowed to stand for 24 hours, whereby Pt was ion-exchanged in an amount of 1.0 g per liter of carrier. Excess deposited water was then blown off, and the product was dried for 1 hour at 250°C, immersed in a rhodium chloride solution, and allowed to stand there for 24 hours. Rh was ion-exchanged in an amount of 0.2 g per liter of carrier, excess water was blown off, and the product was dried for 20 minutes at 80°C, yielding exhaust gas cleaning catalyst A.

Working Example 2

Exhaust gas cleaning catalyst B was obtained by the same method as in Working Example 1 except that a mordenite with a maximum pore diameter of 6.7 Å was used as the zeolite.

Working Example 3

The coated material obtained in (b) of Working Example 1 was immersed in a palladium nitrate solution and allowed to stand there for 24 hours, whereby Pd was ion-exchanged in an amount of 1.0 g per liter of carrier. Excess deposited water was then blown off, and the material was dried for 1 hour at 250°C, immersed in a rhodium

chloride solution, and allowed to stand there for 24 hours, whereby Rh was ion-exchanged in an amount of 0.2 g per liter of carrier. Excess deposited water was blown off, and the product was then dried for 20 minutes at 80°C, yielding exhaust gas cleaning catalyst C.

Working Example 4

The coated material obtained in (b) of Working Example 1 was immersed in a ruthenium chloride solution and allowed to stand there for 24 hours, whereby Ru was ion-exchanged in an amount of 1.2 g per liter of carrier. Excess deposited water was blown off, and the product was then dried for 20 minutes at 80°C, yielding exhaust gas cleaning catalyst D.

Working Example 5

Exhaust gas cleaning catalyst E was obtained in the same manner as in Working Example 4 except that iridium chloride was used instead of the ruthenium chloride used in Working Example 4.

Comparative Example 1

(a) Slurry Preparation

Alumina sol (70 parts; alumina content: 10%), a 40-wt% aqueous solution of aluminum nitrate (15 parts), and water (30 parts) were added under agitation to 100 parts of alumina powder, yielding a coating slurry.

(b) Coating and Baking

The carrier was coated with the slurry and dried in the same manner as in (b) of Working Example 1. The coated carrier was immersed in a cerium nitrate solution, Ce was deposited in an amount of 0.2 mol per liter of carrier, and the product was baked for 1 hour at 700°C.

(c) Deposition of Noble Metals

The resulting baked product was immersed in a dinitrodiamine-platinum solution and impregnated/coated with Pt in an amount of 1.0 g per liter of carrier. Excess deposited water was blown off, and the product was then dried for 1 hour at 250°C. The dried product was immersed in a rhodium chloride solution, impregnated/coated with Rh in an amount of 0.2 g per liter of carrier, and dried for 20 minutes at 80°C, yielding exhaust gas cleaning catalyst F.

Comparative Example 2

The baked product obtained in (b) of Comparative Example 1 was immersed in a palladium nitrate solution and impregnated/coated with Pd in an amount of 1.0 g per liter of carrier. Excess deposited water was blown off, and the product was dried for 1 hour at 250°C. The dried product was immersed in a rhodium chloride solution, impregnated/coated with Rh in an amount of 0.2 g per liter of carrier, and dried for 20 minutes at 80°C after the deposited water had been blown off, yielding catalyst G.

Comparative Example 3

The baked product obtained in (b) of Comparative Example 1 was immersed in a ruthenium chloride solution and impregnated/coated with Ru in an amount of 1.2 g per liter of carrier. Excess water was blown off, and the product was dried for 20 minutes at 80°C, yielding catalyst H.

Comparative Example 4

The procedures were performed in the same manner as in Comparative Example 3 except that an iridium chloride solution was used instead of the ruthenium chloride solution used in Comparative Example 3, yielding catalyst I.

Test Examples

The catalysts A-I pertaining to the working and comparative examples were tested for extended cleaning performance.

In these tests, catalysts A-I were exposed to an exhaust gas for 50 hours at an airfuel ratio (A/F) of 20, a space velocity (SV) of 60,000 hr⁻¹, and a catalyst bed temperature of 700°C, after which the following operations were performed.

- (1) The cleaning ratios of HC, CO, and NO_x were measured at an inlet gas temperature of 600°C and an A/F of 18, and
- (2) The scatter ratios of noble metals were measured by a quantitative analysis of the catalysts.

The results are shown in Tables 1 and 2.

Table 1. Cleaning ratios at A/F = 18

	Noble metal	HC	СО	NO _x
A (Working Example 1)	Pt · Rh	81	84	58
B (Working Example 2)	1	77	82	51
C (Working Example 3)	Pd · Rh	83	79	53
D (Working Example 4)	Ru	72	74	60
E (Working Example 5)	Īr	70	75	53
F (Comparative Example 1)	Pt · Rh	77	84	3
G (Comparative Example 2)	Pd Rh	80	81	3
H (Comparative Example 3)	Ru	73	72	5
I (Comparative Example 4)	Ir	73	72	0

Table 2. Scatter ratios of noble metals (%)

	Pı	Pd	Rh	Rų	Īr
A (Working Example 1)	2.1	_	4.6		_
B (Working Example 2)	2.0	_	4.6		
C (Working Example 3)	_	1.3	4.9	_	
D (Working Example 4)		_		5.9	_
E (Working Example 5)	_	_	_	_	5.3
F (Comparative Example 1)	3.0	_	9.7	_	
G (Comparative Example 2)		2.0	9.2	_	_
H (Comparative Example 3)	_	_		22.2	-
I (Comparative Example 4)		—			18.5

Merits of the Invention

The exhaust gas cleaning catalyst of the present invention is obtained by coating a carrier with a zeolite. The zeolite is ion-exchanged with metals having catalyst capabilities and is provided with optimal pores for receiving NO_x molecules. It is thus possible to provide a cleaning catalyst with which NO_x can be selectively adsorbed and reacted on active metal sites in the pores even in a lean environment.

Consequently, using the exhaust gas cleaning catalyst of the present invention prevents NO_x from escaping into the atmosphere even when the automobile is driven using a lean mixture, making it possible to increase the air-fuel ratio setting of the engine and to improve the fuel economy of the automobile.

Another merit is that the removal ratio is improved not only for NO_x but also for HC because the noble meals are finely dispersed by ion exchange throughout the zeolite.

Yet another merit is that the noble metals are introduced into the zeolite by ion exchange, and are thus less likely to scatter in the air (this is particularly true for Ru and Ir). As a result, a more durable catalyst is produced.