Homework 5

EXERCISE 5.1. Let A and B denote subsets of a topological space $X = (X, \mathcal{T})$. Prove the following:

- (i) If $A \subset B$, then $cl(A) \subset cl(B)$.
- (ii) $\operatorname{cl}(A \cup B) = \operatorname{cl}(A) \cup \operatorname{cl}(B)$.

Solution.

- (i) Note that cl(B) is a closed set and $A \subseteq B \subseteq cl(B)$. But cl(A) is the intersection of all closed sets containing A and cl(B) being one of them we conclude $cl(A) \subseteq cl(B)$.
- (ii) Since finite unions of closed sets remain closed, the set $cl(A) \cup cl(B)$ is closed in X. Furthermore $A \subset cl(A) \subset cl(A) \cup cl(B)$ and $B \subset cl(B) \subset cl(A) \cup cl(B)$, so $A \cup B \subset cl(A) \cup cl(B)$. Again, $cl(A \cup B)$ is the intersection of all closed sets containing $A \cup B$ and $cl(A) \cup cl(B)$ is such a set, so we conclude $cl(A \cup B) \subset cl(A) \cup cl(B)$.

On the other hand, from part (i) and $A \subset A \cup B$ we can conclude $\operatorname{cl}(A) \subset \operatorname{cl}(A \cup B)$ and similarly $\operatorname{cl}(B) \subset \operatorname{cl}(A \cup B)$. Therefore, $\operatorname{cl}(A) \cup \operatorname{cl}(B) \subset \operatorname{cl}(A \cup B)$ and combining this with the previous paragraph we conclude that $\operatorname{cl}(A \cup B) = \operatorname{cl}(A) \cup \operatorname{cl}(B)$.

Exercise 5.2.

- (i) Show that in a metric space (X, d), the closure of an open ball B(x, r) is contained in the closed ball $\overline{B}(x, r)$.
- (ii) Give an example (with proof) where $\overline{B}(x,r)$ is different from the closure cl(B(x,r)). *Solution.*
 - (i) First, observe that the closed ball $\overline{B}(x,r)$ is a closed set: Consider the function $f: X \longrightarrow \mathbb{R}$ with f(y) = d(x,y). This function is continuous and $\overline{B}(x,r) = f^{-1}([0,r])$ is the preimage of a closed set in \mathbb{R} .
 - Now, $\overline{B}(x,r)$ is a closed set containing B(x,r) and $\operatorname{cl}(B(x,r))$ is the intersection of all such sets. So $\operatorname{cl}(B(x,r)) \subset \overline{B}(x,r)$.
 - (ii) Consider any set X containing at least 2 elements and equip it with the discrete metric. Let $x \in X$. Then $B(x, 1) = \{x\}$ is closed in X and therefore $\operatorname{cl}(B(x, 1)) = B(x, 1) = \{x\}$. But $\overline{B}(x, 1) = X \neq \{x\}$ because we assumed X contains at least 2 elements.

EXERCISE 5.3. If A is a subset of a topological space X, define the boundary of A to be the set

$$\partial A = \operatorname{cl}(A) \setminus \operatorname{int}(A)$$
.

That is, the boundary of *A* is the difference between the closure of *A* and the interior of *A*. Prove that

- (i) The boundary ∂A is closed for any set $A \subseteq X$.
- (ii) $A \cup \partial A = \operatorname{cl}(A)$ for any A.
- (iii) $A \setminus \partial A = \operatorname{int}(A)$ for any A.

Solution.

- (i) Note that $\partial A = \operatorname{cl}(A) \cap (X \setminus \operatorname{int}(A))$ and $\operatorname{cl}(A)$ is closed in X. Also, $\operatorname{int}(A)$, being a union of open sets, is open and therefore $X \setminus \operatorname{int}(A)$ is closed in X. Hence, ∂A is an intersection of two closed sets, and therefore closed itself.
- (ii) First, by definition $A \subset \operatorname{cl}(A)$ and $\partial A \subset \operatorname{cl}(A)$ and therefore $A \cup \partial A \subset \operatorname{cl}(A)$. On the other hand, because $\operatorname{int}(A) \subset A$, there is an inclusion $\operatorname{cl}(A) \setminus A \subset \operatorname{cl}(A) \setminus \operatorname{int}(A)$ and because $A \subset \operatorname{cl}(A)$ we have $\operatorname{cl}(A) = (\operatorname{cl}(A) \setminus A) \cup A \subset (\operatorname{cl}(A) \setminus \operatorname{int}(A)) \cup A = A \cup \partial A$.
- (iii) Writing $C^c = X \setminus C$, we have $A \setminus \partial A = A \cap (\operatorname{cl}(A) \cap \operatorname{int}(A)^c)^c = (A \cap \operatorname{cl}(A)^c) \cup (A \cap \operatorname{int}(A))$. But $A \subset \operatorname{cl}(A)$ and $\operatorname{int}(A) \subset A$, so $A \cap \operatorname{cl}(A)^c = \emptyset$ and $A \cap \operatorname{int}(A) = \operatorname{int}(A)$. Therefore, $A \setminus \partial A = \emptyset \cup \operatorname{int}(A) = \operatorname{int}(A)$.

¹For every $\varepsilon > 0$ if $d(y, y') < \varepsilon$, then $f(y') - f(y) = d(x, y') - d(x, y) \le d(y, y') < \varepsilon$ and $f(y) - f(y') = d(x, y) - d(x, y') \le d(y, y') < \varepsilon$; i. e. $|f(y') - f(y)| < \varepsilon$.

EXERCISE 5.4. Let $A = (\mathbb{Q} \cap (0,1)) \cup \{2\} \cup (3,5]$, thought of as a subset of \mathbb{R} with its standard topology. Compute with proof the sets cl(A), int(A) and ∂A .

Solution. From problem 1 we know that

$$cl(A) = cl((\mathbb{Q} \cap (0,1)) \cup \{2\} \cup (3,5]) = cl(\mathbb{Q} \cap (0,1)) \cup cl(\{2\}) \cup cl((3,5]).$$

Because {2} is closed already, we immediately see $cl(\{2\}) = \{2\}$. We will argue that $cl(\mathbb{Q} \cap (0,1)) = [0,1]$ and cl((3,5]) = [3,5] so that $cl(A) = [0,1] \cup \{2\} \cup [3,5]$. First, [0,1] and [3,5] are closed sets containing $\mathbb{Q} \cap (0,1)$ and (3,5] respectively, so $cl(\mathbb{Q} \cap (0,1)) \subset [0,1]$ and $cl((3,5]) \subset [3,5]$.

Conversely, suppose first that $x \in (0,1)$ and let $U \subseteq \mathbb{R}$ be an open set containing x. Then $(0,1) \cap U$ is open, so there is an $\varepsilon > 0$ such that $(x - \varepsilon, x + \varepsilon) \subseteq (0,1) \cap U$. But every open interval in \mathbb{R} contains infinitely many rational numbers. Hence, $(x - \varepsilon, x + \varepsilon) \cap \mathbb{Q} \neq \emptyset$ and we conclude that in fact $U \cap \mathbb{Q} \cap (0,1) \neq \emptyset$. This implies that $x \in \operatorname{cl}(\mathbb{Q} \cap (0,1))$. Now, $\{\frac{1}{n+2}\}_{n \in \mathbb{N}}$ is a sequence in $\mathbb{Q} \cap (0,1)$ and $\lim_n \frac{1}{n+2} = 0$ in \mathbb{R} . Hence we must have $0 \in \operatorname{cl}(\mathbb{Q} \cap (0,1))$. Similarly, $\lim_n 1 - \frac{1}{n+2} = 1$ and therefore $1 \in \operatorname{cl}(\mathbb{Q} \cap (0,1))$. In conclusion, $\operatorname{cl}(\mathbb{Q} \cap (0,1)) = [0,1]$ as claimed.

As for (3,5], we already know $(3,5] \subset \operatorname{cl}((3,5])$, so we only need to prove $3 \in \operatorname{cl}((3,5])$. For this, just observe that $\lim_n 3 + \frac{1}{n} = 3$ and $3 + \frac{1}{n} \in (3,5]$ for all $n \in \mathbb{N}$.

To compute the interior of A, let A be any open set with A is suppose for contradition that some

To compute the interior of A, let U be any open set with $U \subseteq A$. Suppose for contradition that some $x \in \mathbb{Q} \cap (0,1)$ were contained in U. Then there would be some $\varepsilon > 0$ with $(x - \varepsilon, x + \varepsilon) \subseteq U$. But then $(x - \varepsilon, x + \varepsilon) \cap (0,1) \subseteq U$ as well and the latter would have to contain infinitely many irrational numbers. If $y \in (x - \varepsilon, x + \varepsilon) \cap (0,1)$ is irrational, then $y \notin A$ contradicting our assumption that $U \subseteq A$. We conclude that $U \cap \mathbb{Q} \cap (0,1) = \emptyset$. Furthermore, we also have $2 \notin U$ since otherwise there would again be some $\varepsilon > 0$ with $(2 - \varepsilon, 2 + \varepsilon) \subseteq U$. But $(2 - \varepsilon, 2 + \varepsilon)$ contains infinitely many points outside of A, for example $2 + \frac{1}{n} \notin A$ for $n > 1/\varepsilon$. Similarly, $5 \in U$ is impossible because otherwise there would again be some $\varepsilon > 0$ with $(5 - \varepsilon, 5 + \varepsilon) \subseteq A$. But $5 + \frac{1}{n} \notin A$ for $n > 1/\varepsilon$.

In summary, any open set U contained in A satisfies the stronger inclusion $U \subset (3,5)$. But (3,5) is an open set contained in A, so we conclude that in fact (3,5) = int(A).

Now, the boundary of *A* is easily computed as

$$\partial A = \operatorname{cl}(A) \setminus \operatorname{int}(A) = ([0,1] \cup \{2\} \cup [3,5]) \setminus (3,5) = [0,1] \cup \{2,3,5\}.$$

EXERCISE 5.5. Consider $Y = \mathbb{Q}$, endowed with the subspace topology for the inclusion $\mathbb{Q} \subseteq \mathbb{R}$ (where \mathbb{R} carries its standard topology). Let $A = \{p \in \mathbb{Q} : 2 < p^2 < 3\} \subseteq \mathbb{Q} \subseteq \mathbb{R}$.

First, we note that A is an open subset of \mathbb{Q} . Indeed, $A = U \cap \mathbb{Q}$, where $U = \{p \in \mathbb{R} : 2 < p^2 < 3\}$ is an open subset of \mathbb{R} . Therefore, by definition, since A is the intersection of an open subset in \mathbb{R} with \mathbb{Q} , A is open in the subspace topology of \mathbb{Q} .

- (i) Prove, on the other hand, that A is not open in \mathbb{R} .
- (ii) What is the closure of *A* in \mathbb{R} (denoted $cl_{\mathbb{R}}(A)$)?
- (iii) What is the closure of A in \mathbb{Q} (denoted $\operatorname{cl}_{\mathbb{Q}}(A)$)? *Solution.*
 - (i) Suppose for contradiction that A were open in \mathbb{R} and pick $x \in A$. Then there would be some $\varepsilon > 0$ such that $(x \varepsilon, x + \varepsilon) \subset A \subset \mathbb{Q}$. But any open interval in \mathbb{R} contains infinitely many irrational points, so this is impossible.
 - (ii) We first note that $A = A_+ \cup A_-$ with $A_+ = \mathbb{Q} \cap (\sqrt{2}, \sqrt{3})$ and $A_- = \mathbb{Q} \cap (-\sqrt{3}, -\sqrt{2})$. Therefore, $\mathrm{cl}_{\mathbb{R}}(A) = \mathrm{cl}_{\mathbb{R}}(A_+) \cup \mathrm{cl}_{\mathbb{R}}(A_-)$. To compute $\mathrm{cl}_{\mathbb{R}}(A_+)$, first suppose that $x \in (\sqrt{2}, \sqrt{3})$ and let V be some open neigborhood of x in \mathbb{R} . Then $(\sqrt{2}, \sqrt{3}) \cap V$ is open, so that there is some $\varepsilon > 0$ with $(x \varepsilon, x + \varepsilon) \subset (\sqrt{2}, \sqrt{3}) \cap V$. Because any open interval in \mathbb{R} contains infinitely many rational numbers we conclude that $A_+ \cap V = \mathbb{Q} \cap (\sqrt{2}, \sqrt{3}) \cap V \neq \emptyset$. We conclude that $(\sqrt{2}, \sqrt{3}) \subset \mathrm{cl}_{\mathbb{R}}(A_+)$. Now, $\{\sqrt{2} + \frac{1}{n}\}_{n \in \mathbb{N}}$ is a sequence (eventually) in $(\sqrt{2}, \sqrt{3})$ that converges to $\sqrt{2}$ and similarly $\{\sqrt{3} \frac{1}{n}\}_{n \in \mathbb{N}}$

is a sequence (eventually) in $(\sqrt{2}, \sqrt{3})$ converging to $\sqrt{3}$. Therefore, $\sqrt{2}, \sqrt{3} \in \operatorname{cl}_{\mathbb{R}}((\sqrt{2}, \sqrt{3}))$ and we conclude that $[\sqrt{2}, \sqrt{3}] \subseteq \operatorname{cl}_{\mathbb{R}}(A_+)$. On the other hand, $A_+ \subseteq [\sqrt{2}, \sqrt{3}]$ and because $[\sqrt{2}, \sqrt{3}]$ is closed in \mathbb{R} we also have $\operatorname{cl}_{\mathbb{R}}(A_+) \subseteq [\sqrt{2}, \sqrt{3}]$. So, $\operatorname{cl}_{\mathbb{R}}(A_+) = [\sqrt{2}, \sqrt{3}]$.

An entirely analogous argument shows that $\operatorname{cl}_{\mathbb{R}}(A_{-}) = [-\sqrt{3}, -\sqrt{2}]$. Therefore, we can conclude in summary that $\operatorname{cl}_{\mathbb{R}}(A) = [-\sqrt{3}, -\sqrt{2}] \cup [\sqrt{2}, \sqrt{3}]$.

(iii) Quite generally, we have $\operatorname{cl}_{\mathbb{Q}}(A) = \operatorname{cl}_{\mathbb{R}}(A) \cap \mathbb{Q}$. Therefore,

$$\operatorname{cl}_{\mathbb{Q}}(A) = \mathbb{Q} \cap ([-\sqrt{3}, -\sqrt{2}] \cup [\sqrt{2}, \sqrt{3}]) = \{ p \in \mathbb{Q} : 2 \le p^2 \le 3 \} = \{ p \in \mathbb{Q} : 2 < p^2 < 3 \} = A$$
 since $\pm \sqrt{2}, \pm \sqrt{3} \notin \mathbb{Q}$.