gradient of a softmax input into a cross entropy loss function

(3 points) Derive the gradient with regard to the inputs of a softmax function when cross entropy loss is used for evaluation, i.e., find the gradients with respect to the softmax input vector $\boldsymbol{\theta}$, when the prediction is made by $\hat{\boldsymbol{y}} = \operatorname{softmax}(\boldsymbol{\theta})$. Remember the cross entropy function is

$$CE(\boldsymbol{y}, \hat{\boldsymbol{y}}) = -\sum_{i} y_i \log(\hat{y}_i)$$
 (3)

where y is the one-hot label vector, and \hat{y} is the predicted probability vector for all classes. (*Hint: you might want to consider the fact many elements of* y *are zeros, and assume that only the* k-th dimension of y is one.)

Softmax Gradient

We know softmax (normalized exponential):

$$\sigma(\theta)_i = e^{\theta_i} / \sum_k e^{\theta_k}$$
, for $k = 1, ..., n$

where n is the number of dimension of the input vector z.

Let's consider the gradient with respect to theta_i, where first i = j,

$$rac{d\sigma(heta_j)}{d heta_j} = (\sum_k e^{ heta_k} e^{ heta_j} - e^{ heta_j} d/d heta_j [\sum_k e^{ heta_k}])/(\sum_k e^{ heta_k} * \sum_k e^{ heta_k})$$

we know

$$d/d heta_j[\sum_k e^{ heta_k}] = d/d heta_j[e^{ heta_j} + \sum_{k
eq j} e^{ heta_k}] = e^{ heta_j}$$

SO,

$$rac{d\sigma(heta_j)}{d heta_j} = (\sum_k e^{ heta_k} e^{ heta_j} - e^{ heta_j} e^{ heta_j})/(\sum_k e^{ heta_k} * \sum_k e^{ heta_k}) = rac{e^{ heta_j}}{\sum_k e^{ heta_k}} * rac{\sum_k e^{ heta_k} - e^{ heta_j}}{\sum_k e^{ heta_k}} = \sigma(heta_j)(1 - \sigma(heta_j))$$

In the case where $i \neq j$,

$$rac{d\sigma(heta_j)}{d heta_i} = rac{0 - e^{ heta_j}e^{ heta_i}}{\sum_k e^{ heta_k}\sum_k e^{ heta_k}} = -\sigma(heta_j)\sigma(heta_i).$$

In summary for an input vector x,

$$rac{d}{dx_i} softmax(x_j) = egin{cases} softmax(x_j)(1-softmax(x_j)) & :i=j \ -softmax(x_j)softmax(x_i) & :i
eq j \end{cases}$$

Gradient of Cross Entropy (with softmax input)

With respect to theta,

$$CE(\theta) = -\sum_{i} y_{i} \ln(softmax(\theta))$$

The gradient when k, the index of the nonzero element in y_i, equals j is

$$rac{d}{d heta_{i=k}}CE(heta) = rac{d}{d heta_k}[-y_k\ln(softmax(heta_k)) - \sum_{i
eq k}y_i\ln(softmax(heta_i))]$$

implying

$$egin{aligned} rac{d}{d heta_{j=k}} CE(heta) &= -y_k 1/softmax(heta_k) * softmax(heta_k)(1-softmax(heta_k)) - 0 \ &= softmax(heta_k) - 1 \end{aligned}$$

When $k \neq j$,

$$egin{aligned} rac{d}{d heta_{j
eq k}}CE(heta) &= rac{d}{d heta_j}[-y_j\ln(softmax(heta_j)) - \sum_{i
eq j}y_i\ln(softmax(heta_i))] \ &= 0 - \sum_{i
eq j}y_i1/softmax(heta_i)*(-softmax(heta_j)softmax(heta_i)) \end{aligned}$$

because softmax(theta_i) still is a function of theta_k too (since it's in the denominator), giving

$$=\sum_{i
eq j} y_i softmax(heta_j) = softmax(heta_j)$$

Resources and Mistakes

- don't confuse softmax and sigmoid!
- softmax(x_i) is still a function of x_j even when j ≠ i, since all entries are in the denominator!

A nice walkthrough: https://eli.thegreenplace.net/2016/the-softmax-function-and-its-derivative/

+ Type '/' for commands