Pré-processamento do dados

```
In [1]: import numpy as np
         import pandas as pd
         import matplotlib.pyplot as plt
         import seaborn as sns
         from sklearn.decomposition import PCA
         from sklearn.preprocessing import StandardScaler
In [2]: X = [np.load(f'Inputs/Dados {i}.npy') for i in range(1, 6)]
        y = np.load('Inputs/Classes.npy', allow_pickle=True)
        Np = 200
        Hz = 10_{000}
         t = np.arange(0, Np/Hz, 1/Hz)
         freq = np.fft.fftfreq(len(t), t[1]-t[0])
         print('Shape dos dados de cada sensor:\n','\n'.join([f'\tSensor {i+1}: {X[i].shape}' for i in range(5)]), '\n')
print('Shape dos dados de Classe:', y.shape, '\n')
         print('Classes:', np.unique(y))
        Shape dos dados de cada sensor:
                 Sensor 1: (50000, 201)
                 Sensor 2: (50000, 201)
                 Sensor 3: (50000, 201)
                 Sensor 4: (50000, 200)
                 Sensor 5: (50000, 200)
        Shape dos dados de Classe: (50000, 1)
         Classes: ['Classe A' 'Classe B' 'Classe C' 'Classe D' 'Classe E']
```

Interpretação dos dados:

A partir das informoções de que há 5 dados de sensores, cada um com um formato (50000, ~200), e 1 dado de classe com formato (50000, 1), podemos deduzir que eles representam o seguinte esquema:

- 50.000 experimentos
- 200 pontos por experimento (0.02s)
- 5 canais
- Classe: Estado da máquina por experimento. O estado da máquina é constante durante cada experimento.

Visualização de um experimento

```
In [3]: def tabela(n:int, cols = 5): #n: index do experimento (0-49999)
             out = {}#{'Tempo (s)': t}
             for idx, i in enumerate(X):
                  out[f'Sensor {idx+1}'] = i[n][:Np]
                  if idx+1 == cols:
                      break
             df = pd.DataFrame(out)
              return df
         def plot(n:int, cols=5): #n: index do experimento (0-49999)
             fig, ax = plt.subplots(cols, 2, figsize=(12, 2.5*cols)) fig.suptitle(f'Experimento n_n(y[n][0])', fontsize=16)
              ax[0][0].set_title('Domínio do Tempo')
             ax[0][1].set_title('Domínio da Frequência')
              for i in range(cols):
                  x = X[i][n][:Np]
                  fft = np.abs(np.fft.fft(x))/Np
                  ax[i][0].plot(t, x)
                  ax[i][1].stem(freq[:Np//2], fft[:Np//2], linefmt='k', markerfmt=" ")
                  ax[i][0].set_xticks(np.linspace(0, 0.02, 6))
                  ax[i][0].set_ylabel(f'Sensor {i+1}')
ax[i][0].set_xlabel('Tempo [s]')
                  ax[i][1].set_xlabel('Frequência [Hz]')
             plt.tight_layout()
             plt.show()
         n = 111111
         print(f'Estado da máquina no experimento {n}: {y[n][0]}')
         print('\nTabela:')
         display(tabela(n))
         print('\nGráficos:')
         plot(n)
```

Tabela:

	Sensor 1	Sensor 2	Sensor 3	Sensor 4	Sensor 5
0	-0.010469	0.455837	0.406143	50.0	25.136235
1	0.003428	0.253255	0.797168	50.0	29.017484
2	-0.043429	-0.031478	0.412057	50.0	21.768959
3	0.035873	-0.185538	0.186559	50.0	37.227771
4	-0.029478	-0.390151	-0.414762	50.0	29.357402
195	0.086258	-0.175936	-0.184464	50.0	124.009575
196	0.051223	-0.218309	0.123875	50.0	50.969140
197	-0.038778	-0.173600	0.300519	50.0	30.779624
198	-0.030047	-0.054342	0.337441	50.0	73.422415
199	0.058809	0.010726	0.260120	50.0	84.557901

200 rows × 5 columns

Gráficos:

Seleção dos Sensores

Os sensores 1, 2 e 3 possuem as características esperadas para um comportamento de uma máquina elétrica.

Já os 4 e 5 possuem comportamentos inesperados, que não parecem contribuir positivamente para o treinamento de uma inteligência artifical, por esse motivo, os dados dos sensores 4 e 5 serão desconsiderados a partir daqui.

Remoção de Ruídos

Os sinais obtidos possuem diversos ruídos, que pode prejudicar o aprendizado de máquinas por adicionar dados que não são relevantes para encontrar os targets desejados.

Para filtrar esses ruídos e sinais indesejados duas medidas foram aplicadas:

1. Ignorar frequências altas

Todas as harmônicas com frequência maior que 2500Hz foram descartadas. Isso descartará vibrações de muito alta frequência, que não são interessantes nesse estudo.

2. Ignorar sinais de baixa amplitude

Todas as harmonicas restantes que possuem amplitude menor que 10% do pico são consideradas ruídos e descardadas.

Exemplo:

A seguir será mostrado o mesmo dado de exemplo de antes da nossa filtragem e como ele ficou depois de passar por nosso filtro, tanto no domínio da frequência quanto na do tempo.

Antes e depois da remoção de ruidos


```
In [4]: def remover_ruidos(A0, OmegMax = 2500, threshold = 0.1):
                  A = A0.copy()
                  for i in A:
                       fft = np.fft.fft(A[i])/Np
                        fft_mod = np.abs(fft)
                        fft[abs(freq) > OmegMax] = 0
                        pico = max(fft_mod)
                        fft[fft mod < threshold * pico] = 0</pre>
                       A[i] = \overline{Np*np.fft.ifft(fft).real}
                  return A
            # n=11111
            \# x = X[0][n][:Np]
            # fig, ax = plt.subplots(2, 2, figsize=(12, 6))
           # fft = np.abs(np.fft.fft(x))/Np
# ax[0][0].plot(t, x)
# ax[1][0].stem(freq[:Np//2], fft[:Np//2], linefmt='k', markerfmt=" ")
           # x2 = remover_ruidos(tabela(n, cols=1))['Sensor 1']
# fft2 = np.abs(np.fft.fft(x2))/Np
# ax[0][1].plot(t, x2)
# ax[1][1].stem(freq[:Np//2], fft2[:Np//2], linefmt='k', markerfmt=" ")
            # fig.suptitle('Antes e depois da remoção de ruidos', size=16)
           # ax[0][0].set_xticks(np.linspace(0, 0.02, 6))
# ax[0][0].set_title(f'Antes')
# ax[0][1].set_title(f'Depois')
           # ax[0][0].set_xlabel('Tempo [s]')
# ax[0][1].set_xlabel('Tempo [s]')
# ax[1][0].set_xlabel('Frequência [Hz]')
            # ax[1][1].set_xlabel('Frequência [Hz]')
           # plt.tight_layout()
           # plt.show()
```

Extração das Features

Foram consideradas 16 features numéricas (11 no domínio do tempo e 5 no domínio da frequência) para cada um dos 3 sensores e 1 feature de categorização. O total de features é de 16*3+1=49.

Sendo um elemento de uma coluna representado por x_i e a coluna tendo N elementos, as features são definidas como:

Domínio do tempo:

Média (μ_x)

$$\mu_x = rac{1}{N} \sum_{i=0}^N x_i$$

Desvio Padrão (σ_x)

$$\sigma_x^2 = rac{1}{N} \sum_{i=0}^N (x_i - \mu_x)^2$$

Curtose (κ_x)

$$\kappa_x = rac{1}{N} \sum_{i=0}^N \left(rac{x_i - \mu_x}{\sigma_x}
ight)^4$$

Distorção (γ_x)

$$\gamma_x = rac{1}{N} \sum_{i=0}^N \left(rac{x_i - \mu_x}{\sigma_x}
ight)^3$$

Amplitude Pico a Pico (x_{ppv})

$$x_{ppv} = max(x_i) - min(x_i)$$

Valor Quadrático Médio (x_{rms})

$$x_{rms} = \left(rac{1}{N}\sum_{i=0}^N x_i^2
ight)^{1/2}$$

Raiz Quadrada da Amplitude (x_{sra})

$$x_{sra} = \left(rac{1}{N}\sum_{i=0}^{N}\sqrt{|x_i|}
ight)^2$$

Fator de Crista (x_{cf})

$$x_{cf} = rac{max(|x_i|)}{x_{rms}}$$

Fator de Impulso (x_{if})

$$x_{if} = rac{max(|x_i|)}{rac{1}{N}\sum_{i=0}^{N}|x_i|}$$

Fator de Margem (x_{mf})

$$x_{mf} = rac{max(|x_i|)}{x_{sra}}$$

Fator de Curtose (x_{kf})

$$x_{kf}=rac{\kappa_x}{x_{rms}^4}$$

Domínio da Frequência:

Média (μ_x)

$$u_{\mathbf{v}} = \frac{1}{N} \sum_{i=1}^{N} X_{i}$$

$$\mu_{\Lambda} = \sum_{i=0}^{n} i^{i}$$

Desvio Padrão (σ_x)

$$\sigma_X^2=rac{1}{N}\sum_{i=0}^N(X_i-\mu_X)^2$$

Valor Quadrático Médio (x_{rms})

$$x_{rms} = \left(rac{1}{N}\sum_{i=0}^{N}X_i^2
ight)^{1/2}$$

Valor de Pico

max(X)

Frequencia do Pico

 $f\;para\;quando\;max(X) \; \acute{\mathbf{e}}\; verdade iro$

Categoria

A última coluna é a categoria daquele dataset, que é selecionado a partir da tabela 'Classes'

```
In [5]: def feats(x, fft):
                N = len(x)
                mod = np.abs(x)
                u = x.mean() #x.mean()
                u_mod = mod.mean()
                std = x.std()
amp = x.max() - x.min()
                kurtosis = np.mean(((x - u) / std) ** 4)
skew = np.mean(((x - u) / std) ** 3)
rms = np.sqrt(np.mean(x**2))
                sra = np.mean(np.sqrt(np.abs(mod))) ** 2
                x_cf = max(mod) / rms
x_if = max(mod) / u_mod
x_mf = max(mod) / sra
x_kf = kurtosis / (rms**4)
                freq = np.fft.fftfreq(len(x), 0.001)
                u_fft = fft.mean()
                std_fft = fft.std()
                rms_fft = np.mean(fft**2) ** (1/2)
                pico = fft.max()
                f_pico = abs(freq[fft.argmax()])
                return [u, std, kurtosis, skew, amp, rms, sra, x_cf, x_if, x_mf, x_kf, u_fft, std_fft, rms_fft, pico, f_pico]
           def gerar_linha(A, n):
                 linha = []
                for i in A:
                    x = A[i][:Np]
fft = np.abs( np.fft.fft(x) ) / Np
f = feats(x, fft)
                linha += f
linha += list(y[n])
return linha
```

Salvando checkpoint

```
In [6]: # # Salvar o DataFrame
                      # cabecalho = []
# for i in ['1', '2', '3']:
                                       cabecalho.append(f'med_{i}')
cabecalho.append(f'std_{i}')
                                       cabecalho.append(f'kurt_{i}')
                                       cabecalho.append(f'skew_{i}')
                                       cabecalho.append(f'amp {i}')
                                       cabecalho.append(f'rms_{i}')
                                       cabecalho.append(f'sra_{i}')
                                       cabecalho.append(f'cf_{i}')
                                       cabecalho.append(f'if_{i}')
                                       cabecalho.append(f'mf_{i}')
                                       cabecalho.append(f'kf {i}')
                                       cabecalho.append(f'medFFT_{i}')
                                       cabecalho.append(f'stdFFT_{i}')
cabecalho.append(f'rmsFFT_{i}')
                                       cabecalho.append(f'pico_{i}')
cabecalho.append(f'Fpico_{i}')
                       # cabecalho.append('Classe')
                       #valores = []
                       #for i in range(50000):
                                    A = tabela(i, cols=3)
                                    valores.append(gerar_linha(A, i))
                                    if i%500==0:
                                               print(f'{1+i//500}%')
                       #df = pd.DataFrame(valores, columns = cabecalho)
                       #df = df.sort_values(by=['Classe']).reset_index(drop=True)
                       #df.to_csv('features_todas.csv', index=False)
                       #print('Salvo com sucesso!')
                       # Carregar o DataFrame
                      df = pd.read csv('Outputs/features todas.csv')
                                                                                                                                  amp_1
Out[6]:
                                                                                       kurt 1
                                                                                                                                                         rms 1
                               0 0.008246 0.089968 2.791291 -0.031547 0.450360 0.090121 0.057050 2.624840 3.376314 4.146370 ... 2.767913 3.526430 4.230261 9.211182e+0;
                                1 0.013603 0.084510 2.958243 -0.335697 0.454219 0.085389 0.059767 2.884599 3.550124 4.121255 ... 2.952264 3.661050 4.265138 1.247006e+0
                                2 0.007995 0.107974 2.876807 0.040556 0.588548 0.108000 0.073456 2.990037 3.729967 4.396176 ... 3.017817 3.796782 4.406506 2.758393e+0;
                                3 0.007647 0.079901 2.925226 0.181593 0.438584 0.080067 0.053716 2.779594 3.494876 4.143189 ... 3.034847 3.818828 4.517698 8.481248e+0;
                                4 0.004620 0.001087 3.404259 0.326473 0.006241 0.004745 0.004555 1.744597 1.791983 1.817357 ... 1.564872 1.598911 1.617400 1.177199e+0!
                       4995 -0.001322 0.080573 2.402830 0.073113 0.391527 0.080382 0.056907 2.539793 3.091820 3.587470 ... 2.527962 3.135235 3.700355 1.511734e+0:
                       49996
                                       0.005143 \quad 0.089303 \quad 2.732346 \quad -0.159354 \quad 0.459876 \quad 0.089228 \quad 0.059601 \quad 2.847687 \quad 3.567538 \quad 4.263200 \quad \dots \quad 2.673253 \quad 3.379696 \quad 4.030835 \quad 6.972908e + 0.059601 \quad 0.0
```

50000 rows × 49 columns

49997

49998

Remoção de Outliers

Para evitar outliears que podem distorcer os dados, eles são encontrados e removidos do banco de dados.

Um registro é considerado outlier se a distância desse registro até a média é pelo menos 2 vezes maior que a distância de 99% do dataset até a média

0.007034 0.082569 2.500881 0.165505 0.423173 0.082662 0.057084 2.969554 3.652664 4.300141 3.367601 4.181763 4.846669 2.132667e+0

 $0.004656 \quad 0.080629 \quad 2.574379 \quad 0.290409 \quad 0.389736 \quad 0.080562 \quad 0.054240 \quad 2.508750 \quad 3.132102 \quad 3.726164 \quad \dots \quad 2.976817 \quad 3.762913 \quad 4.419402 \quad 1.680889e+0039409 \quad 0.080629 \quad 0.08062$

4999 0.004627 0.070961 2.410902 -0.127710 0.369275 0.070935 0.051892 2.723096 3.265889 3.722358 ... 2.759622 3.467938 4.155547 9.512454e+0i

Foram encontrados 1815 registros com essa característica, reduzindo-o de 1951 registros para 1812 (redução de 3.63%).

```
In [7]: # Removendo registros que são outliers
         df_orig = df.copy()
         classes = df.Classe.unique()
         def picos(x):
              a_max = np.abs(x.max() - x.mean())
              a\overline{99} = np.abs(np.percentile(x, 99) - x.mean())
              a01 = np.abs(np.percentile(x, 1) - x.mean())
              a_min = np.abs(x.min() - x.mean())
             teto = a_max / a99
chao = a_min / a01
              return teto, chao
         limiar_pico = 2
         flag = 1
while flag:
             flag = 0
for i in df:
    if i != 'Classe':
                      teto, chao = picos(df[i])
                      while teto > limiar_pico or chao > limiar_pico:
                           flag = 1
if teto > limiar_pico:
                                df = df.drop(df[i].idxmax())
                                teto, chao = picos(df[i])
                           if chao > limiar_pico:
                                df = df.drop(df[i].idxmin())
                                teto, chao = picos(df[i])
         n_antigo = len(df_orig)
         n = len(df)
         print('Registros iniciais:', n_antigo)
         print('Registros finais:', n_novo)
print('Outliers Encontrados:', n_antigo - n_novo)
         print(f'Redução de {(100 * (n_antigo - n_novo) / n_antigo):.2f}%')
         Registros iniciais: 50000
         Registros finais: 48185
         Outliers Encontrados: 1815
```

Redução de 3.63%

Seleção de Features

Nível de relevância

Uma feature é considerada relevante se ela possuir dados com baixa variação dentro de cada classe e dados com muita variação entre as classes.

Foi ultilizada um threshold de 2.5, ou seja, para uma feature ser considerada útil a variação entre as classes deve ser no mínima 2.5 maior do que dentro de cada classse individualmente.

```
In [8]: def vari(x):
                 amp = x.max() - x.min()
                  std = x.std()
                  return (std / amp if amp !=0 else 0)
            limiar varmed = 2.5
            filtro 1 = []
            for i in df:
                 if i != 'Classe':
                       med = np.array([])
                        var = np.array([])
                        for j in classes:
                             a = df[df['Classe'] == j][i]
                             med = np.append(med, a.mean())
                             var = np.append(var, vari(a))
                        med2 = vari(med)
                        var2 = var.mean()
                  if med2 / var2 > limiar_varmed:
                       filtro_1.append(i)
            print("NÚMERO DE FEATURES ANTES", len(df.columns) - 1)
print("NÚMERO DE FEATURES DEPOIS:", len(filtro_1))
            print("\nFEATURES SELECIONADAS:")
            print(filtro 1)
            NÚMERO DE FEATURES ANTES 48
            NÚMERO DE FEATURES DEPOIS: 41
            FEATURES SELECIONADAS:
           ['med_1', 'std_1', 'kurt_1', 'skew_1', 'amp_1', 'rms_1', 'sra_1', 'cf_1', 'if_1', 'mf_1', 'kf_1', 'medFFT_1', 'stdFFT_1', 'rmsFFT_1', 'med_2', 'std_2', 'kurt_2', 'skew_2', 'amp_2', 'rms_2', 'sra_2', 'kf_2', 'medFFT_2', 'stdFFT_2', 'pico_2', 'med_3', 'std_3', 'kurt_3', 'skew_3', 'amp_3', 'rms_3', 'sra_3', 'cf_3', 'if_3', 'mf_3', 'kf_3', 'medFFT_3', 'stdFFT_3', 'rmsFFT_3', 'pico_3']
```

Matriz de Correlação

É notado que há várias features com um alto índice de correlação entre si, e isso deve ser evitado na hora de executar o aprendizado de máquina. O próximo bloco de código mostra como está a correlação entre as features até agora.

Em seguida será executado um algorítimo que irá identificar todas as correlações dentro do limite do threshold (positivo e negativo) e excluir uma das duas features da correlação. Restando apenas as features que possuem valores baixos de correlação entre si. O valor de threshold escolhido foi de 0.8

Por fim são mostradas as features restantes

```
In [9]: corr = df[filtro_1].corr()

order = [(i, sum(corr[i])) for i in corr]
order = sorted(order, key=lambda value: value[1], reverse=True)
order = [i[0] for i in order]

corr = corr.reindex(order)[order]
plt.figure(figsize=(14, 12))
plt.title('CORRELAÇÕES ENTRE AS FEATURES ATUAIS')
sns.heatmap(corr)
plt.show()
```



```
In [10]: end = len(corr)
           start = 1
           threshold = 0.8
           features = []
           for i in corr:
                all_features = corr[i][start:end]
                if all(np.abs(all features) < threshold):</pre>
                    features.append(i)
           print("NÚMERO DE FEATURES ANTES:", len(filtro_1))
print("NÚMERO DE FEATURES DEPOIS:", len(features))
print("\nFEATURES SELECIONADAS:")
           print(features, '\n')
           corr2 = corr.reindex(features)[features]
           plt.figure(figsize=(10, 8))
           plt.title("CORRELAÇÃO ENTRE AS FEATURES APÓS O FILTRO")
           sns.heatmap(corr2);
           NÚMERO DE FEATURES ANTES: 41
           NÚMERO DE FEATURES DEPOIS: 17
           FEATURES SELECIONADAS:
```


Salvar checkpoint

Com as features selecionadas, é convetiente salvar esses dados no disco para rápido acesso futuramente, se necessário.

```
In [11]: df = df[np.append(features, 'Classe')]
    df.to_csv('Outputs/features_selecionadas.csv', index=False)
    df.head()
```

Out[11]:		amp_1	amp_2	pico_3	pico_2	cf_3	cf_1	kurt_1	med_1	med_3	med_2	skew_3	kurt_2	skew_2	skew_1	
	0	0.450360	1.055337	0.049626	0.067802	2.767913	2.624840	2.791291	0.008246	0.001066	0.014137	-0.029135	2.548516	-0.182238	-0.031547	42316.39
	1	0.454219	0.834114	0.061991	0.047890	2.952264	2.884599	2.958243	0.013603	0.013238	0.024208	-0.067801	2.885696	-0.410151	-0.335697	55644.13
	2	0.588548	1.107440	0.095776	0.063380	3.017817	2.990037	2.876807	0.007995	-0.002920	-0.001253	-0.062930	2.805858	-0.053052	0.040556	21145.02
	3	0.438584	0.862590	0.086695	0.049796	3.034847	2.779594	2.925226	0.007647	0.005502	-0.000608	-0.374032	2.551467	0.180873	0.181593	71176.23
	5	0.437262	1 /1579/	0.083511	0.067823	3 070142	2 /07555	2 337608	0.006042	0.014666	0.011020	0.260110	3 005618	0 227225	0.120808	25000 01

Visualização das Features Selecionadas

A seguir está uma visualização para cada uma das features selecionadas. Cada ponto representa um experimento e cada cor representa um valor de target.

```
In [16]: def visualizar(nome):
    plt.figure(figsize=(10, 4))
    plt.title(nome)
    for i in classes:
        plt.plot(df[nome][df['Classe'] == i], '.', label = i)
    plt.show()

visualizar('Classe')
for j in df:
    visualizar(j)
```


