Sports Scheduling in Video Games

Richard Gibson

CMPUT 621 Project University of Alberta

April 17, 2009

Background and motivating example

- 1 Background and motivating example
- 2 How I think the example should be

- 1 Background and motivating example
- 2 How I think the example should be
- 3 Scheduling and the n-queens problem

- Background and motivating example
- 2 How I think the example should be
- 3 Scheduling and the n-queens problem
- 4 How I fix the example

- Background and motivating example
- 2 How I think the example should be
- 3 Scheduling and the n-queens problem
- 4 How I fix the example
- 5 Summary and a final example schedule

• I like sports video games.

- I like sports video games.
- Many sports video games today include a league or season mode.

- I like sports video games.
- Many sports video games today include a league or season mode.
- However, most of these games do not allow the user (i.e. me) to adjust the league schedule to their liking.
 - Usually just a small number of hard-coded schedules to choose from.

- I like sports video games.
- Many sports video games today include a league or season mode.
- However, most of these games do not allow the user (i.e. me) to adjust the league schedule to their liking.
 - Usually just a small number of hard-coded schedules to choose from.
- My goal: Write a program that creates league schedules on-line specific to the user's (i.e. my) requests.

Western Conference Central Division Northwest Division Pacific Division **Calgary** Chicago Anaheim Columbus Colorado Dallas Los Angeles Edmonton ____Detroit Phoenix Minnesota **₩**Nashville Vancouver St. Louis San Jose Eastern Conference Northeast Division Atlantic Division Southeast Division New Jersey Boston Atlanta Buffalo New York I **Z**Carolina **Montreal** ■New York R **Florida Philadelphia ĭ**Ottawa **Ź**Tampa Bay

Washington

₩Toronto

Western Conference Central Division Northwest Division Pacific Division **Calgary** Chicago Anaheim Columbus Colorado Dallas Los Angeles Edmonton ____Detroit Phoenix Minnesota **₩**Nashville Vancouver St. Louis San Jose Eastern Conference Northeast Division Atlantic Division Southeast Division New Jersey Boston Atlanta Buffalo New York I Carolina **Montreal** ■New York R **Florida Philadelphia Ottawa Ź**Tampa Bay

Washington

Toronto

 6 games against divisional opponents, 4 games against other teams in same conference, 1 game against teams in other conference

- 6 games against divisional opponents, 4 games against other teams in same conference, 1 game against teams in other conference
- Plus at most 28 playoff games after this regular season

- 6 games against divisional opponents, 4 games against other teams in same conference, 1 game against teams in other conference
- Plus at most 28 playoff games after this regular season
- Say, 25 minutes per game = Up to about 46 hours of playing time

- 6 games against divisional opponents, 4 games against other teams in same conference, 1 game against teams in other conference
- Plus at most 28 playoff games after this regular season
- Say, 25 minutes per game = Up to about 46 hours of playing time
- THIS IS TOO LONG! (for me)

Now, if I was to make a hockey video game:

Western Conference Central Division Northwest Division Pacific Division **Calgary** Chicago Anaheim Columbus **S**Colorado Dallas Los Angeles Edmonton ____Detroit Phoenix Minnesota Nashville 🍑 Vancouver St. Louis San Jose Eastern Conference Northeast Division Atlantic Division Southeast Division New Jersey Boston Atlanta Buffalo New York I **Z**Carolina **Montreal** ፟ Mew York R **Florida Philadelphia Ź**Tampa Bay **I**Ottawa

■Pittsburgh

Mashington

Toronto

Campbell Conference

Smythe Division

Norris Division

Calgary Calgary

Chicago

Edmonton

Columbus

Dallas

Los Angeles

Detroit

Phoenix

San Jose

Nashville

St. Louis

Prince of Wales Conference Adams Division Patrick Division

New Jersey

New York I

₩ York R

Philadelphia

Toronto

Pittsburgh

₩ashington

Number of games against divisional opponents = Number of games against other teams in same conference = Number of games against inter-conference opponents = 0

Number of games against divisional opponents = 4Number of games against other teams in same conference = 2Number of games against inter-conference opponents = 0Total number of games $= 4 \times 2 + 2 \times 3 = 14$

(ロ) (団) (量) (量) (量) (量) の(の

• About 6 hours of playing time to complete regular season!

- About 6 hours of playing time to complete regular season!
- Question: Can we use answer-set programming to create these NHL hockey schedules on-line?

Our scheduling problem is different from most common sports scheduling problems.

Our scheduling problem is different from most common sports scheduling problems.

 Most prior sports scheduling research concerns round-robin schedules; however, our problem is more general.

Our scheduling problem is different from most common sports scheduling problems.

- Most prior sports scheduling research concerns round-robin schedules; however, our problem is more general.
- Real-life professional sports schedules attempt to minimize travel distances; however, optimization is not an issue for us (we just want to find a feasible solution).

Our scheduling problem is different from most common sports scheduling problems.

- Most prior sports scheduling research concerns round-robin schedules; however, our problem is more general.
- Real-life professional sports schedules attempt to minimize travel distances; however, optimization is not an issue for us (we just want to find a feasible solution).
- Real-life sports schedules often take days or even months to construct; however, efficiency is important for us as video gamers will not want to wait.

The minimum requirements for our scheduling problem are:

The minimum requirements for our scheduling problem are:

- Each of the n teams play the same number of games (determined by the user):
 - x games against divisional opponents
 - y games against other conference opponents
 - z games against inter-conference opponents

(typically
$$x \ge y \ge z$$
)

The minimum requirements for our scheduling problem are:

- Each of the *n* teams play the same number of games (determined by the user):
 - x games against divisional opponents
 - y games against other conference opponents
 - z games against inter-conference opponents

(typically
$$x \ge y \ge z$$
)

Each team plays an equal number of home games and away games.

The minimum requirements for our scheduling problem are:

- Each of the *n* teams play the same number of games (determined by the user):
 - x games against divisional opponents
 - y games against other conference opponents
 - z games against inter-conference opponents

(typically
$$x \ge y \ge z$$
)

- Each team plays an equal number of home games and away games.
- No team plays more than 1 game per day.

The minimum requirements for our scheduling problem are:

- Each of the *n* teams play the same number of games (determined by the user):
 - x games against divisional opponents
 - y games against other conference opponents
 - z games against inter-conference opponents

(typically
$$x \ge y \ge z$$
)

- Each team plays an equal number of home games and away games.
- No team plays more than 1 game per day.
- Schedule does not take long to build (say, at most 5 minutes).

The minimum requirements for our scheduling problem are:

- Each of the *n* teams play the same number of games (determined by the user):
 - x games against divisional opponents
 - y games against other conference opponents
 - z games against inter-conference opponents

(typically
$$x \ge y \ge z$$
)

- Each team plays an equal number of home games and away games.
- No team plays more than 1 game per day.
- Schedule does not take long to build (say, at most 5 minutes).

Simplifications:

The minimum requirements for our scheduling problem are:

- Each of the *n* teams play the same number of games (determined by the user):
 - x games against divisional opponents
 - y games against other conference opponents
 - z games against inter-conference opponents

(typically
$$x \ge y \ge z$$
)

- Each team plays an equal number of home games and away games.
- No team plays more than 1 game per day.
- Schedule does not take long to build (say, at most 5 minutes).

Simplifications:

All divisions (conferences) must be of equal size.

The minimum requirements for our scheduling problem are:

- Each of the *n* teams play the same number of games (determined by the user):
 - x games against divisional opponents
 - y games against other conference opponents
 - z games against inter-conference opponents

(typically
$$x \ge y \ge z$$
)

- Each team plays an equal number of home games and away games.
- No team plays more than 1 game per day.
- Schedule does not take long to build (say, at most 5 minutes).

Simplifications:

- All divisions (conferences) must be of equal size.
- x, y, z must be even.

The minimum requirements for our scheduling problem are:

- Each of the *n* teams play the same number of games (determined by the user):
 - x games against divisional opponents
 - y games against other conference opponents
 - z games against inter-conference opponents

(typically
$$x \ge y \ge z$$
)

- Each team plays an equal number of home games and away games.
- No team plays more than 1 game per day.
- Schedule does not take long to build (say, at most 5 minutes).

Simplifications:

- All divisions (conferences) must be of equal size.
- x, y, z must be even.
- $n \le 30$ and each team plays at most 82 games.

Example:

$$x = 4$$

$$y = 2$$

$$z = 0$$

Example:

East Division

$$x = 4$$

$$y = 2$$

$$z = 0$$

Example:

$$x = 4$$

$$y = 2$$

$$z = 0$$

Example:

Away/Home

Day 1 games:

Day

• Place rooks on $n \times n$ board to denote games

Day 1 games:

- Place rooks on $n \times n$ board to denote games
- No team plays against itself

- Place rooks on $n \times n$ board to denote games
- No team plays against itself

- Place rooks on $n \times n$ board to denote games
- No team plays against itself
- Placements are "symmetric"

- Place rooks on $n \times n$ board to denote games
- No team plays against itself
- Placements are "symmetric"
- Colour the rook blue if the row team is away, red if at home

- Place rooks on $n \times n$ board to denote games
- No team plays against itself
- Placements are "symmetric"
- Colour the rook blue if the row team is away, red if at home
- No two rooks may attack each other, since no team may play more than 1 game per day

• Each square receives exactly $\frac{x}{2}$, $\frac{y}{2}$ or $\frac{z}{2}$ rooks of each colour respectively.

4□ > 4□ > 4 = > 4 = > = 990

Minimum Encoding

Blocked n-queens Optimal Encoding

% Each row has exactly 1 queen 1{queen(R,C) : num(C)}1 :- num(R).

Minimum Encoding

Blocked n-queens Optimal Encoding

```
% Each row has exactly 1 queen 1{queen(R,C) : num(C)}1 :- num(R).
```

Schedule Builder

```
% No team plays more than one game per day 0{\text{game}(T1, T2, D, L)}: isTeam(T2): T1 \neq T2: location(L)}1:-isTeam(T1), day(D).
```

Minimum Encoding

Blocked n-queens Optimal Encoding

```
% Each row has exactly 1 queen 1{queen(R,C) : num(C)}1 :- num(R).
```

% No team plays more than one game per day

Schedule Builder

```
O{game(T1, T2, D, L) : isTeam(T2) : T1 ≠ T2 : location(L)}1 :-
isTeam(T1), day(D).

% Each team plays x games against divisional opponents
x/2{game(T1, T2, D, L) : day(D)}x/2 :-
team(T1, Conf, Div),
team(T2, Conf, Div),
location(L),
   T1 ≠ T2.
(Similar for y and z)
```

Problems

This encoding has some problems.

Problems

This encoding has some problems.

• Problem 1: Using smodels, the maximum 30 team, 82 game case takes over 2.5 hours to create a schedule.

Problems

This encoding has some problems.

- Problem 1: Using smodels, the maximum 30 team, 82 game case takes over 2.5 hours to create a schedule.
- Solution: Use Clasp: only takes 20 seconds to create a schedule of the same size!

More problems

Problem 2: Ex. 6 team, 14 game schedule for Montreal:

					Avvay	Home
TORONIO MAPLE LEAFC		TORONTO MAPLE IFAEC		TORONIO MAPLE IEAEC		
	TORUNIO MAPLE TEAFC	nii ene	11	12	nii ene	14
15	16	17	18	19	20	21
22	23	24	25	26	27	28

Away Home

More problems

Problem 2: Ex. 6 team, 14 game schedule for Montreal:

Away Home

• Games are bunched together; this is bad if players get fatigued from playing too frequently.

```
No team plays more than G games per M consecutive days
\{game(T1, T2, D, L) : isTeam(T2) : T1 \neq T2 : day(D) : location(L) : \}
Dmin \le D : D \le Dmax G :=
 isTeam(T1),
 day(Dmin),
 day(Dmax),
 Dmin < Dmax.
 Dmax - Dmin == M-1.
 atMost(G, M).
atMost(2,3).
atMost(3,5).
atMost(5,8).
```

```
Each team must play at least G games per M consecutive days
G\{game(T1, T2, D, L) : isTeam(T2) : location(L) : day(D) : Dmin j = D :
D_i = D_{max} : T1 \neq T2:
 isTeam(T1),
 day(Dmin),
 day(Dmax),
 Dmin < Dmax.
 Dmax - Dmin == M-1.
 atLeast(G, M).
atLeast(1,7).
```

Schedule with Extra Constraints

Ex. 6 team, 14 game schedule for Montreal:

Schedule with Extra Constraints

Ex. 6 team, 14 game schedule for Montreal:

• Games are now nicely spread out.

Schedule with Extra Constraints

Ex. 6 team, 14 game schedule for Montreal:

- Games are now nicely spread out.
- Problem 3: Games against a particular team may be bunched.

So let's add a third extra contraint:

So let's add a third extra contraint:

```
No two teams play each other more than {\sf G} times per {\sf M} consecutive days
```

```
\{game(T1, T2, D, L) : location(L) : day(D) : Dmin \le D : D \le Dmax\}G :
 isTeam(T1),
 isTeam(T2),
 T1 \neq T2,
 day(Dmin),
 day(Dmax),
 Dmin < Dmax.
 Dmax - Dmin == M-1.
 diverse(G, M).
```

diverse(2,7). diverse(3,14).

Schedule With Another Extra Constraint

Ex. 6 team, 14 game schedule for Montreal:

Schedule With Another Extra Constraint

Ex. 6 team, 14 game schedule for Montreal:

• Games against each team are now spread out nicely.

Schedule With Another Extra Constraint

Ex. 6 team, 14 game schedule for Montreal:

- Games against each team are now spread out nicely.
- Problem 4: Away games and home games are bunched together.

• How can we "unbunch" home games and away games?

- How can we "unbunch" home games and away games?
- Maybe try something similar to the previous constraints:

- How can we "unbunch" home games and away games?
- Maybe try something similar to the previous constraints:

No team can play more than G consecutive games at one location

```
{hasGameAt(T1, D1, L1) : day(D1) : Dmin \leq D1 : D1 \leq Dmax}G :-
 0{hasGameAt(T1, D2, L2) : day(D2) : Dmin \leq D2 : D2 \leq Dmax\}0,
 isTeam(T1),
 location(L1),
 location(L2),
 L1 \neq L2,
 day(Dmin),
 day(Dmax),
 Dmin + G < Dmax
 consecLoc(G).
```

consecLoc(4).

• This extra constraint causes the program to run out of memory!

- This extra constraint causes the program to run out of memory!
- This problem has yet to be solved completely, and thus this constraint is not included in the solution.

So we have added 3 extra constraints that have worked nicely for small schedules, but:

So we have added 3 extra constraints that have worked nicely for small schedules, but:

Problem 5: While a 6 team, 14 game schedule can be found almost instantly, the 30 team, 82 game schedule runs out of memory.

So we have added 3 extra constraints that have worked nicely for small schedules, but:

Problem 5: While a 6 team, 14 game schedule can be found almost instantly, the 30 team, 82 game schedule runs out of memory.

• Should we throw away some of the constraints? But then the schedule will have other problems again. How can we fix this problem?

So we have added 3 extra constraints that have worked nicely for small schedules, but:

Problem 5: While a 6 team, 14 game schedule can be found almost instantly, the 30 team, 82 game schedule runs out of memory.

- Should we throw away some of the constraints? But then the schedule will have other problems again. How can we fix this problem?
- · After much my-head-to-wall banging...

Solution to Problem 5

Solution: If we alter the constraints, for example, as follows:

```
No team plays more than G games per M consecutive days (old)
```

```
\{game(T1, T2, D, L) : isTeam(T2) : T1 \neq T2 : day(D) : location(L) : \}
Dmin < D : D < Dmax G :=
 isTeam(T1),
 day(Dmin),
 day(Dmax),
 Dmin < Dmax.
 Dmax - Dmin == M-1.
 atMost(G, M).
atMost(2,3).
atMost(3,5).
atMost(5.8).
```

Solution to Problem 5

Solution: If we alter the constraints, for example, as follows:

```
No team plays more than G games per M consecutive days (new)
```

```
:- G+1\{game(T1, T2, D, L) : isTeam(T2) : T1 \neq T2 : day(D) :
 location(L) : Dmin < D : D < Dmax
 isTeam(T1),
 day(Dmin),
 day(Dmax),
 Dmin < Dmax.
 Dmax - Dmin == M-1.
 atMost(G, M).
atMost(2,3).
atMost(3,5).
atMost(5.8).
```

Solution to Problem 5

Solution: If we alter the constraints, for example, as follows:

```
No team plays more than G games per M consecutive days (new)
:- G+1\{game(T1, T2, D, L) : isTeam(T2) : T1 \neq T2 : day(D) :
 location(L) : Dmin \leq D : D \leq Dmax
 isTeam(T1),
 day(Dmin),
 day(Dmax),
 Dmin < Dmax.
 Dmax - Dmin == M-1.
 atMost(G, M).
atMost(2,3).
atMost(3,5).
atMost(5,8).
```

then a 30 team, 82 game schedule can be found in under 2 minutes!

We have a program that can build NHL schedules.

 Number of teams and their arrangement into divisions and conferences can be set by the user.

- Number of teams and their arrangement into divisions and conferences can be set by the user.
- Number of games a team plays against division, conference, and inter-conference opponents can be set by the user.

- Number of teams and their arrangement into divisions and conferences can be set by the user.
- Number of games a team plays against division, conference, and inter-conference opponents can be set by the user.
- Do not have to wait too long for a schedule to be created.

- Number of teams and their arrangement into divisions and conferences can be set by the user.
- Number of games a team plays against division, conference, and inter-conference opponents can be set by the user.
- Do not have to wait too long for a schedule to be created.
- Conclusion: Answer-set programming is a good way to make sports schedules for video games!

- Number of teams and their arrangement into divisions and conferences can be set by the user.
- Number of games a team plays against division, conference, and inter-conference opponents can be set by the user.
- Do not have to wait too long for a schedule to be created.
- Conclusion: Answer-set programming is a good way to make sports schedules for video games!
- However, home games and away games may still end up bunched together...

Home-and-Home series

In the real NHL, schedules often include "home-and-home" series of 2 games between divisional opponents. So let's add the following constraint:

Home-and-Home series

In the real NHL, schedules often include "home-and-home" series of 2 games between divisional opponents. So let's add the following constraint:

Divisional teams play at least one home-and-home series

```
homeAndHome(T1, T2) :-
 team(T1, Conf, Div), team(T2, Conf, Div),
 game(T1, T2, D1, L1), game(T1, T2, D2, L2),
 day(D1), day(D2),
 location(L1), location(L2),
 T1 \neq T2, L1 \neq L2,
 abs(D2 - D1) == 1, x > 2.
:- team(T1, Conf, Div), team(T2, Conf, Div),
 x > 2, T1 \neq T2,
 not homeAndHome(T1, T2).
```

Final Example Schedule

This gives us the following 6 team, 14 game schedule for Montreal:

Home-and-home series on days 13-14 and days 22-23.

Thanks for listening!