【第2讲】《几何狂作战》

【例 1】如图,在 $\triangle ABC$ 中, $\angle ABC = 59^{\circ}$, $\angle ACB = 30.5^{\circ}$,延长 $\angle ABC$ 的内角平分线 BD至 E,使得 DE = DA,则 $\angle E$ 的度数为_____。

【例 2】已知 P 为等腰 $\triangle ABC$ 内一点,AB=BC, $\angle BPC=108^\circ$, D 为 AC 的中点,BD 与 PC 交于点 E,如果点 P 为 $\triangle ABE$ 的内心,则 $\angle PAC=$ ______.

【例 3】如图,在 $\triangle ABC$ 中,AB=8,AC=10,D为 $\triangle ABC$ 内的一点,满足 $\angle ADC=90^{\circ}$, $\angle ABD=\angle ACD$ 。设E是BC的中点,求DE的长。

【例 4】在 $\triangle ABC$ 中, $\angle A=60^\circ$, $\angle C=75^\circ$,AB=10,D,E,F 分别在AB,BC,CA 上,则 $\triangle DEF$ 的周长的最小值为_____.

【例 5】如图,已知A(1,0),B(2,0),C(3,0),M(0,m)(m>0) 为平面 直角坐标系 xOy 上的三点,满足 $OP \perp AM$, $AQ \perp BM$, $BR \perp CM$ 。若 P,Q,R 三点共 线,则 m=__

【例 6】如图,在锐角 $\triangle ABC$ 中,AD、BE、CF为 $\triangle ABC$ 的三条高线,若 $S_{\triangle AEF}: S_{\triangle ABC} = 3:4$, $\bigcirc \angle BDF = ()$

A. 30°

B. 45°

 $\text{C.}\,60^{\circ}$

 $D.90^{\circ}$

【例 7】矩形 ABCD 的边长 AD=3, AB=2, E 为 AB 的中点, F 在线段 BC 上, 且 BF:FC=1:2, AF 分别与DE, DB交于点M, N, 则MN=(

- (A) $\frac{3\sqrt{5}}{7}$.

- (B) $\frac{5\sqrt{5}}{14}$. (C) $\frac{9\sqrt{5}}{28}$. (D) $\frac{11\sqrt{5}}{28}$.

【例 8】在 $\triangle ABC$ 中, AB = AC, D 为 BC 的中点, $BE \perp AC$ 于 E, 交 AD 于 P, 已知 BP = 3, PE=1,则 AE=()

$$A. \frac{\sqrt{6}}{2}$$

$$B.\sqrt{2}$$

$$C.\sqrt{3}$$

$$D.\sqrt{6}$$

【例 9】在 $\triangle ABC$ 中, $\angle C=90^{\circ}$, $\angle A=60^{\circ}$,AC=1,D在BC上,E 在AB上,使得 $\triangle ADE$ 为等腰直角三角形, $\angle ADE = 90^{\circ}$,则 BE 的长为()

A.
$$4 - 2\sqrt{3}$$

B.
$$2 - \sqrt{3}$$

C.
$$\frac{1}{2}(\sqrt{3}-1)$$
 D. $\sqrt{3}-1$

【例 10】矩形 ABCD中,AD=5,AB=10,E、F 分别为矩形外的两点,BE=DF=4, AF = CE = 3,则EF = ()

A. $4\sqrt{15}$.

B.15.

C. $\sqrt{221}$.

D. $10\sqrt{2}$.

【例 11】已知 O 为坐标原点,位于第一象限的点 A 在反比例函数 $y=\frac{1}{x}(x>0)$ 的图像上,位于第二象限上的点 B 在反比例函数 $y=-\frac{4}{x}(x<0)$ 的图像上,且 $OA\perp OB$,则 $tan \angle ABO$ 的值为()

D.2.

【例 12】已知点 C 在以 AB 为直径的 $\odot O$ 上,过点 B、C 作 $\odot O$ 的切线,交于点 P,连 AC ,若 $OP=\frac{9}{2}AC$,求 $\frac{PB}{AC}$ 的值.

【例 13】如图,在平行四边形 ABCD中,E 为对角线 BD 上一点,且满足 $\angle ECD = \angle ACB$, AC 的延长线与 $\triangle ABD$ 的外接圆交于点 F .证明: $\angle DFE = \angle AFB$.

【例 14】已知 AB 是 $\odot O$ 的直径, C 为 $\odot O$ 上一点, $\angle CAB$ = 15°, $\angle ACB$ 的平分线交 $\odot O$ 于点 D ,若 CD = $\sqrt{3}$,则 AB = ()

(A) 2

(B) $\sqrt{6}$

(C) $2\sqrt{2}$

(D) 3

【例 15】已知锐角 $\triangle ABC$ 的外心为0, AO 交 BC 于 D ,E、 F 分别为 $\triangle ABD$ 、 $\triangle ACD$ 的外心,若 AB > AC , EF = BC ,则 $\angle C - \angle B =$ ______.

【例 16】C、D 两点在以AB 为直径的半圆周上,AD 平分 $\angle BAC$,AB=20, $AD=4\sqrt{15}$,则AC 的长为______.

