Digital IC Design

Exercise 1 Basic Logic Gates

Professor Po-Tsang Huang

International College of Semiconductor Technology National Yang Ming Chiao Tung University

Exercise 1-1: DC characteristics (30%)

- Simulate DC characteristics of FinFETs and planer MOSs by minimal feature sizes
 - ◆ Vgs-Ids of FinFET (N-FinFET & P-FinFET) in one figure
 - \triangleright Number of Fin = 1
 - \triangleright Vdd = 0.7v
 - ◆ Vgs-Ids of CMOS (NMOS & P-MOS)in one figure
 - minimal width and Length = 16nm
 - > Vdd = 0.7v
 - ightharpoonup How to design an unit-sized inverter for these 2 technologies to achieve β = 1 in VTC?

Exercise 1-2: Voltage Transfer Curve (30%)

- Select the smallest and largest inverters from ASAP 7nm standard cell library and simulate the voltage transfer characteristic (VTC).
 - ◆ Netlist of standard cells: asap7sc7p5t_INVBUF_RVT.sp
 - ◆ Plot VTC curves of these 2 inverters under different voltages (Vdd = 0.7V, 0.6V, 0.5V and 0.4V)

Exercise 1-3: Characteristics of Inverter/NAND2 (40%)

- Select the smallest Inverter and NAND2 from ASAP 7nm standard cell library
 - ◆ Output loading: FO4 (4 inverters) + 10 fF as wire loading
 - ◆ Netlist of standard cells:
 - asap7sc7p5t_INVBUF_RVT.sp
 - > asap7sc7p5t_SIMPLE_RVT.sp
 - \blacktriangleright Vdd = 0.7v
 - ◆ Measure Tr, Tf, Tplh, Tphl, power

Submission on e3 platform

Please compress your report & source codes in a single compressed file (.zip) and upload this single file on E3 platform

- Naming rules of files
 - ◆ Upload file: Ex1_#ID.zip
 - Report: Ex1_#ID.pdf
 - ➤ Hspice code: **Ex1_1.sp**

Ex1_2.sp

Ex1_3.sp

■ Due date: 10/13 PM 23:55