

■ Bookmarks

Machine Learning Course: Getting

▼ Week 1

Started

Lecture 1 Course Overview and Maximum Likelihood

Lecture 2 Linear Regression and Least Squares

Week 1 Quiz

Quiz due Jan 26, 2017 07:30 MYT

Week 1 Discussion Questions Week 1 > Week 1 Quiz > Week 1 Quiz

Week 1 Quiz

☐ Bookmark this page

Check all that apply

1.0/1.0 point (graded)

Check all instances of a supervised learning problem.

- separating spam from non-spam email using the text content of the email
- organizing people into groups based on a combination of their height, weight and age
- learning the topics from a corpus of documents

~

Submit

You have used 1 of 2 attempts

Multiple Choice

1/1 point (graded)

The variance of a univariate random variable $x\sim p(x)$ having expectation $\mathbb{E}_q[x]=\mu$ can be written as $\sigma^2=\mathbb{E}_q[(x-\mu)^2]$. An equivalent equation for calculating this variance is

$$\circ$$
 $\sigma^2 = \mathbb{E}_q[x^2] + \mu^2$

$$ullet \sigma^2 = \mathbb{E}_q[x^2] - \mu^2$$

$$egin{aligned} \circ & \sigma^2 = \mathbb{E}_q[x^2] + 2\mu^2 \end{aligned}$$

$$\sigma^2 = \mathbb{E}_q[x^2] - 2\mu^2$$

Submit

You have used 1 of 1 attempt

True/False

1/1 point (graded)

If x_1,\ldots,x_n are generated independent and identically distributed (i.i.d.) according to the distribution $p(x|\theta)$, then the joint likelihood can be written as

$$p(x_1,\ldots,x_n| heta) = \prod_{i=1}^n p(x_i| heta).$$

False

True

Submit

You have used 1 of 1 attempt

Math Expression Input

1/1 point (graded)

You have data x_1,\ldots,x_n with each $x_i\in\{0,1\}$. You model this as $x_i\stackrel{iid}{\sim}Bernoulli(\pi)$. The corresponding joint likelihood is therefore

$$p(x_1,\ldots,x_n|\pi)=\pi^S(1-\pi)^{n-S},$$

where we define $S = \sum_{i=1}^n x_i$. Write the maximum likelihood estimate of π .

S/n

✓ Answer: s/n

 $\frac{S}{n}$

Submit

You have used 1 of 2 attempts

✓ Correct (1/1 point)

	$oldsymbol{y}_{i=1:n}$ where $oldsymbol{x} \in \mathbb{R}^d$ and you perform least		
	learn a function of the form $y=w_0+x^Tw$. If ormation immediately tell you about x ?		
• $x(1)$ is more important than $x(2), \dots, x(d)$ • $x(1)$ is directly proportional to $y \checkmark$ • $x(1)$ is indirectly proportional to y • $x(1)$ should be suppressed somehow			
		Submit You have used 1 of 1 attempt	
squares linear regression to	$y_{i=1:n}$ where $x\in\mathbb{R}^{14}$ and you perform least learn a function of the form $y=w_0+x^Tw$ per of samples required for this to be possible?		
15	✓ Answer: 15		
15			
Submit You have used 1 of 1 attempt			
	our data as a quadratic function using least of the form $y=w_0+\sum_{r=1}^p w_r x^r$. What value		
2	✓ Answer: 2		
2	I		

Submit

You have used 1 of 1 attempt

Numerical Input

1/1 point (graded)

You have data pairs $(y_i,x_i)_{i=1:17}$ where $x\in\mathbb{R}$ and you perform least squares polynomail regression to learn a function of the form $y=w_0+\sum_{r=1}^p w_r x^r$. What is the maximum value you can set p to?

16 **✓ Answer:** 16

Submit

You have used 1 of 1 attempt

Dropdown

1.0/2.0 points (graded)

You have n pairs of observations (y_i,x_i) where $x\in\mathbb{R}^{d+1}$ and the first dimension of x equals 1. You perform least squares on $y\approx x^Tw$ to learn w. From the lectures we discussed how, using the coefficients w_{LS} , you can think of the errors in two ways.

1. When thinking of $y_i pprox x_i^T w_{LS}$ for $i=1,\dots,n$, the errors $y_i-x_i^T w_{LS}$ are _____ to the _____-dimensional hyperplane in \mathbb{R}^d .

not perpendicular, d lacktriangle lacktriangle Answer: not perpendicular, d-1

2. When we think of $y \in \mathbb{R}^n$ and $\hat{y} = Xw_{LS}$, then $y - Xw_{LS}$ creates an error vector orthogonal to _____.

y^ • Answer: $\hat{m{y}}$

Submit

You have used 1 of 1 attempt