Table 1: Pulse frequency for both modes of operation

Pulse Frequncy	AM	HDM
Maximum altitude	8 km	0.5km
Roundtrip time	$53.3\mu s$	$3.33\mu s$
Pulse frequency	18.8kHz	300kHz

$$f_{pulse} = \frac{1}{t_{round}} = \frac{c}{2r}$$

Table 2: Calculation of sun irradiation

Table 2. Calculation	i oi sun madianon
Sun irradiation	
h	$6.63 \cdot 10^{-34} Js$
c	$3.00 \cdot 10^8 m/s$
k	$1.38 \cdot 10^{-23} j/K$
λ	850.00nm
T	5.78kK
I_{λ}	$1.51 \cdot 10^{13} W/m^3$

$$I_{\lambda} = \frac{2hc^2}{\lambda^5} \frac{1}{e^{\frac{hc}{\lambda kT}} - 1}$$

Table 3: Calculation of background power on target area on Europa

Background power	
I_{λ}	$1.51 \cdot 10^{13} W/M^3$
B_{λ}	10.00 nm
Surface area	$15625.00m^2$
r_{sun}	$6.96 \cdot 10^5 km$
r_{europa}	$7.79 \cdot 10^8 km$
P_B	1.89kW

$$P_B = I_\lambda B_\lambda S \frac{r_{sun}^2}{r_{europa}^2}$$

Table 4: Pulse frequency for both modes of operation

effective noise power	
P_B	1.89kW
$\mid r \mid$	500.00 m
$\mid R_{europa} \mid$	35.00%
Diameter lens (D_l)	50.00mm
opacity filter (L_f)	50.00%
opacity optics (L_l)	14.60%
$P_B 2$	$4.82\mu W$

$$P_B' = \frac{P_B R_{europa} D_l L_f L_l}{2r^2}$$

Table 5: Pulse frequency for both modes of operation

energy of photon	
h	$6.63 \cdot 10^{-34} Js$
c	$3.00 \cdot 10^8 m/s$
λ	850.00nm
E_{photon}	$2.34 \cdot 10^{-19} J$

$$E_{photon} = \frac{hc}{\lambda}$$

Table 6: Pulse frequency for both modes of operation

PPS for background photons	
$P_B 2$	$4.82\mu W$
E_{photon}	$2.34 \cdot 10^{-19} J$
PDP	35.00%
PPS_{B}	$7.21 \cdot 10^{12}$

$PPS_B =$	$P_B' \cdot PDP$
	E_{photon}

$$FWHM = 2.35\sqrt{\frac{s\sigma_s^2 + n\sigma_n^2}{(s+n)pulses}}$$

$$C = (\frac{FWHM}{2.35})^2 \cdot pulses \cdot \frac{\text{surface area}}{\text{max surface area}}$$

$$PPS_S/SPAD = n\frac{\sigma_n^2 - C}{C - \sigma_s^2}$$

$$P_{av} = \frac{PPS_S/SPAD \cdot P_B \cdot \text{No. SPADs}}{PPS_B}$$

$$P_{peak} = \frac{P_{av}}{f_{pulse} \cdot \text{FWHM}_{laser}}$$

Table 7: Pulse frequency for both modes of operation

Scanning Power	square	square	line	line
No. SPADs	6250000	6250000	10000	10000
pulse/s	1	300000	625	300000
Window	$3.33\mu s$	$3.33\mu s$	$3.33\mu s$	$3.33\mu s$
exposure time	$3.33\mu s$	1.00 s	2.08ms	1.00 s
Surface Area	$15625 m^2$	$15625 m^2$	$25 m^2$	$25 m^2$
PPS_{B}	$2.40 \cdot 10^7$	$7.21 \cdot 10^{12}$	$2.40 \cdot 10^{7}$	$1.15 \cdot 10^{10}$
DCR	$4.17 \cdot 10^3$	$1.25 \cdot 10^{9}$	$4.17 \cdot 10^{3}$	$2.00 \cdot 10^{6}$
PPS_{B+N}	$2.40 \cdot 10^{7}$	$7.21 \cdot 10^{12}$	$2.40 \cdot 10^{7}$	$1.15 \cdot 10^{10}$
$PPS_{B+N}/SPAD$	3.84	$1.15 \cdot 10^{6}$	$2.40 \cdot 10^{3}$	$1.15 \cdot 10^{6}$
$PPS_S/SPAD$	$1.95 \cdot 10^{8}$	$1.76 \cdot 10^{8}$	$1.22 \cdot 10^{11}$	$1.11\cdot 10^{11}$
P_{av}	318.66kW	288.04kW	318.66kW	289.98kW
P_{peak}	$3.19 \cdot 10^{15} W$	$9.60 \cdot 10^9 W$	$5.10 \cdot 10^{12} W$	$9.67 \cdot 10^9 W$
threshold (γ)	2	70	5	70
$PPS_{B+N}/SPAD$	$2.56 \cdot 10^{-8}$	$9.49 \cdot 10^{-2}$	$3.67 \cdot 10^{-5}$	$9.49 \cdot 10^{-2}$
$PPS_S/SPAD$	1.30	$1.45 \cdot 10^{1}$	$1.86 \cdot 10^{3}$	$9.12 \cdot 10^{3}$
P_{av}	2.12mW	23.70mW	4.87mW	23.86mW
P_{peak}	$2.12 \cdot 10^7 W$	$7.90 \cdot 10^2 W$	$7.79 \cdot 10^4 W$	$7.95 \cdot 10^2 W$