Teoria dei Giochi - Prova del 10 Settembre 2012

Cognome, Nome, Numero di Matricola, email:

Considera il seguente gioco. Tu puoi scegliere un numero tra $\{1,3,5,7\}$; il tuo avversario può scegliere un numero tra $\{2,4,6\}$. Sia x il numero che scegli tu e y il numero scelto dal tuo avversario: se $|x-\left\lceil\frac{x+y}{2}\right\rceil|<|y-\left\lceil\frac{x+y}{2}\right\rceil|$ allora tu vinci una quantità pari a $\left\lceil\frac{x+y}{2}\right\rceil$ euro, $|x-\left\lceil\frac{x+y}{2}\right\rceil|>|y-\left\lceil\frac{x+y}{2}\right\rceil|$ allora il tuo avversario vince una quantità pari a $\left\lceil\frac{x+y}{2}\right\rceil$ euro.

1.1 Considera l'*estensione in strategia mista* del gioco. Formula i problemi di programmazione lineare che tu e il tuo avversario dovete risolvere per individuare, ciascuno, la propria strategia conservativa (non è richiesto di risolvere tali programmi).

Considera quindi le seguenti strategie per te:

- $\xi_1^i = \frac{1}{4} \ \forall i = 1, \dots, 4$
- $\xi_1^1 = \xi_1^2 = 0$ e $\xi_1^3 = \xi_1^4 = \frac{1}{2}$.
- $\xi_1^1 = \xi_1^2 = \xi_1^3 = 0$ e $\xi_1^4 = 1$

e le seguenti strategie per il tuo avversario:

- $\xi_2^j = \frac{1}{3} \ \forall j = 1, \dots, 3$
- $\xi_2^1 = 1, \xi_2^2 = \xi_2^3 = 0$

(al solito indichiamo con $\xi_1=(\xi_1^1,\ldots,\xi_1^4)$ il vettore stocastico associato alle 4 possibili strategie pure del primo giocatore, e con $\xi_2=(\xi_2^1,\ldots,\xi_2^3)$ il vettore stocastico associato alle 3 possibili strategie pure del secondo giocatore). Per ciascuna di queste strategie, indica quanto paga, nel caso peggiore, il giocatore (tu o il tuo avversario) che la utilizza. (Giustifica brevemente la risposta).

- 1.2 Qualcuna delle strategie indicate al punto 1.1 è conservativa? (Giustificare brevemente la risposta).
- **1.3** Qualcuna delle strategie indicate al punto 1.1 conduce a un equilibrio di Nash? (Giustificare brevemente la risposta).
 - 1.4 Qual è il valore del gioco? (Se non è possibile individuarlo, spiega perché non è possibile).
 - **1.5** Esiste un equilibrio di Nash in strategia *pura*? (Giustificare brevemente la risposta).

Soluzione La tua matrice C dei payoff in forma di costo è la seguente

$$\begin{pmatrix}
2 & 3 & 4 \\
-3 & 4 & 5 \\
-4 & -5 & 6 \\
-5 & -6 & -7
\end{pmatrix}$$

Se indichiamo con c_{ij} l'elemento alla riga i e la colonna j di tale matrice, il problema di programmazione lineare che devi risolvere per individuare la tua strategia conservativa è il seguente:

 $\min z$

$$z \ge \sum_{i=1}^{4} c_{ij} \xi_1^i \quad j = 1, \dots, 3$$

$$\xi_1^i \geq 0 \ i=1,\dots,4$$

$$\sum_{i=1}^{4} \xi_1^i = 1$$

- il valore ottimo di questo programma, in corrispondenza a $\xi_1^i = \frac{1}{4} \ \forall i = 1, \dots, 4 \ \text{è} \ z = 2$. Quindi, se utilizzi questa strategia, perdi, nel caso peggiore, (in media) 2 euro per ogni round del gioco.
- il valore ottimo di questo programma, in corrispondenza a $\xi_1^1 = \xi_1^2 = 0$ $\xi_1^3 = \xi_1^4 = \frac{1}{2}$ è $z = -\frac{1}{2}$. Quindi, se utilizzi questa strategia, vinci, nel caso peggiore, (in media) $\frac{1}{2}$ euro per ogni round del gioco.
- il valore ottimo di questo programma, in corrispondenza a ξ₁¹ = ξ₁² = ξ₁³ = 0 e ξ₁⁴ = 1 è z = -5.
 Quindi, se utilizzi questa strategia, vinci, nel caso peggiore, in media 5 euro per ogni round del gioco.

Il problema di programmazione lineare che deve risolvere il tuo avversario per individuare la sua strategia conservativa è il seguente:

max w

$$w \le \sum_{j=1}^{3} c_{ij} \xi_2^j \quad i = 1, \dots, 4$$

 $\xi_2^j \ge 0 \quad j = 1, \dots, 3$

$$\sum_{j=1}^{3} \xi_2^j = 1$$

- il valore ottimo di questo programma, in corrispondenza a $\xi_2^j = \frac{1}{3} \ \forall j = 1, ..., 3 \ \grave{e} 6$. Quindi, il tuo avversario, se utilizza questa strategia, paga, nel caso peggiore, in media 6 euro per ogni round del gioco.
- il valore ottimo di questo programma, in corrispondenza a $\xi_2^1 = 1$, $\xi_2^2 = \xi_2^3 = 0$ è -5. Quindi, il tuo avversario, se utilizza questa strategia, paga, nel caso peggiore, in media 5 euro per ogni round del gioco.

Si osservi che z(0,0,0,1) = w(1,0,0) quindi la strategia (0,0,0,1) è conservativa per te e la strategia (1,0,0) è conservativa per il tuo avversario (e, le altre strategie che restituiscono un payoff atteso diverso da -5 non lo sono). Segue anche che il valore del gioco è -5. Infine, naturalmente, la coppia di strategie conservative individuate determina un equilibrio di Nash.

1.5 Le strategie conservative individuate ai punti precedenti sono strategie pure, quindi determinano un equilibrio di Nash in strategia pura.

Esercizio 2 Si consideri un gioco non cooperativo a due giocatori, in cui ciascun giocatore controlla un'unica variabile, che indichiamo, rispettivamente, con x_1 per il primo giocatore e x_2 per il secondo. L'insieme ammissibile del primo giocatore è $X_1 = \{x_1 : 0 \le x_1 \le 10\}$, quello del secondo giocatore è $X_2 = \{x_2 : -3 \le x_2 \le 4\}$. I payoff (in forma di costo) dei due giocatori sono rispettivamente $C_1(x_1, x_2) = \frac{1}{2}x_1^2 - x_1(x_2^2 - 3x_2) + 4$ e $C_2(x_1, x_2) = (3 - x_1)(7 - 2x_2)$.

- **2.1** Si può affermare *a priori*, ovvero senza calcolare le funzioni best response, l'esistenza di almeno un equilibrio di Nash? (Giustifica brevemente la risposta)
 - **2.2** Individuare, per ciascun giocatore, la funzione best response.
- **2.3** Individuare quindi gli equilibri di Nash del gioco, se essi esistono. (NB È sufficiente determinare gli eventuali equilibri di Nash per via grafica.)

Soluzione Possiamo affermare l'esistenza a priori di un equilibrio di Nash perché le funzioni di costo di entrambi i giocatori sono continuamente differenziabili, $C_1(x_1,x_2)$ è convessa in x_1 e $C_2(x_1,x_2)$ è convessa in x_2 , ed entrambi gli insiemi X_1 ed X_2 sono convessi e compatti.

2.2 Per una data strategia $x_2 \in X_2$, per individuare la best response il primo giocatore deve risolvere il seguente problema:

$$\min \frac{1}{2}x_1^2 - x_1(x_2^2 - 3x_2) + 4$$
$$0 \le x_1 \le 10$$

Analogamente, per una data strategia $x_1 \in X_1$, per individuare la best response il secondo giocatore deve risolvere il seguente problema:

$$\min (3 - x_1)(7 - 2x_2)$$
$$-3 \le x_2 \le 4$$

Per determinare le funzioni best response dobbiamo risolvere il sottoproblema di ciascun giocatore scritto precedentemente. In questo caso quindi le best response function sono date da

$$b_1(x_2) = \begin{cases} 10 & \text{se } -3 \le x_2 \le -2 \\ x_2^2 - 3x_2 & \text{se } -2 \le x_2 \le 0 \\ 0 & \text{se } 0 \le x_2 \le 3 \\ x_2^2 - 3x_2 & \text{se } 3 \le x_2 \le 4 \end{cases} \qquad b_2(x_1) = \begin{cases} 4 & \text{se } 0 \le x_1 < 3 \\ [-3, 4] & \text{se } x_1 = 3 \\ -3 & \text{se } 3 < x_1 \le 10 \end{cases}$$

2.3 Si può verificare graficamente o analiticamente che esistono tre punti di intersezione delle best response function (e quindi tre equilibri di Nash): (10, -3), $(3, \frac{3+\sqrt{21}}{2})$ e $(3, \frac{3-\sqrt{21}}{2})$.

Esercizio 3. Si consideri la seguente istanza dell'House Allocation Problem: siano l'insieme dei giocatori e quello delle case rispettivamente $N = \{1,2,3,4,5,6,7,8\}$ e $C = \{1,2,3,4,5,6,7,8\}$, dove il giocatore i—esimo possiede la i—esima casa, con i = 1,...,8. Le seguenti graduatorie rappresentano le preferenze dei vari giocatori rispetto le case e sono degli ordini totali:

- Giocatore 1: {2,5,6,7,3,1,4,8};
- Giocatore 2: {4,7,2,1,3,5,8,6};
- Giocatore 3: {7,8,1,2,3,6,5,4};
- Giocatore 4: {3,8,7,6,1,2,4,5};
- Giocatore 5: {4,3,2,7,6,1,5,8};
- Giocatore 6: {7,2,5,8,6,1,3,4};
- Giocatore 7: {4,2,7,8,1,3,6,5};
- Giocatore 8: {3,2,6,7,4,5,1,8}.
- **3.1** Trovare il matching stabile utilizzando il TTCA (fornire una breve descrizione di ogni iterazione).
- **3.2** Si consideri il matching $M = \{(1,6), (2,7), (3,8), (4,3), (5,2), (6,4), (7,1), (8,5)\}$ e si dica, giustificando brevemente la risposta, se M è stabile rispetto alle seguenti coalizioni:
 - 1. $S_1 = \{6, 8\};$
 - 2. $S_2 = \{2, 3, 5\}.$

Soluzione Il TTCA restituisce, in 5 iterazioni, il matching $M = \{(1,1), (2,2), (3,7), (4,3), (5,6), (6,5), (7,4), (8,8)\}.$

- **3.2.1** Il matching M non è stabile rispetto alla coalizione S_1 , in quanto se i giocatori 6 ed 8 si scambiassero le case (ovvero il giocatore 6 prendesse la casa 8 e il giocatore 8 prendesse la casa 6), allora entrambi migliorerebbero la propria utilità.
- **3.2.2** Il matching M è stabile rispetto alla coalizione S_2 , in quanto nessuna riallocazione delle case possedute dai giocatori 2,3,5 assegna al giocatore 2 una casa non peggiore di quella assegnatagli da M.

Esercizio 4 Considera il seguente gioco non cooperativo. È data una rete con insieme dei nodi $V = \{s, x_1, x_2, y, t\}$ e insieme degi archi $E = \{a_1 = (s, x_1), a_2 = (s, x_2), b_1 = (x_1, y), b_2 = (x_2, y), c_1 = (y, t), c_2 = (y, t)\}$ (si noti che gli archi c_1 e c_2 sono "paralleli").

Ci sono tre giocatori: A, B, C. Il giocatore A controlla gli archi a_1 e a_2 , il giocatore B controlla gli archi b_1 e b_2 , il giocatore C controlla gli archi c_1 e c_2 . Ciascun giocatore sceglie uno dei due archi che controlla, che hanno il seguente costo: gli archi a_1, b_1 e c_1 costano 1, gli archi a_2, b_2 e c_2 costano 3. Se i tre archi scelti formano un cammino da s a t, allora ciascun giocatore ottiene 4 unità. Se i tre archi scelti non formano un cammino da s a t, allora ciascun giocatore ottiene 0.

Il payoff di ciascun giocatore (in forma di costo) è quindi pari al costo dell'arco da lui scelto, se i tre archi scelti non formano un cammino da *s* a *t*; altrimenti è pari al costo dell'arco scelto meno 4.

Dire quali delle possibili 8 stati del gioco è un equilibrio di Nash, giustificando la risposta in modo dettagliato.

Soluzione Ci sono 8 stati possibili. Nessuno degli stati in cui il terzo giocatore sceglie c_2 determina un equilibrio di Nash, perché in ogni caso il giocatore migliorerebbe il proprio payoff giocando c_1 di c_2 . Rimangono quindi da esaminare 4 stati. Gli stati (a_1,b_2,c_1) e (a_2,b_1,c_1) neanche determinano un equilibrio di Nash, perché il primo giocatore (o il secondo) giocatore migliorerebbe il proprio payoff cambiando la propria strategia. Rimangono i due stati (a_1,b_1,c_1) e (a_2,b_2,c_1) che, come è facile verificare, sono entrambi equilibri di Nash.

Esercizio 5. Consideriamo nuovamente la rete dell'esercizio precedente, ma proviamo a calarla in un contesto di gioco cooperativo. In particolare, assumiamo che ogni giocatore controlli un arco (abbiamo quindi 6 giocatori: $\{a_1, a_2, b_1, b_2, c_1, c_2\}$) e che l'utilità di una coalizione sia 1 se e solo se nel grafo indotto dagli archi controllati dai giocatori della coalizione esiste un cammino da s a t; altrimenti l'utilità della coalizione è 0.

Il gioco così definito è cooperativo? (Se non lo è, spiegare perché.) In caso affermativo, determinare il valore di Shapley di ciascun giocatore.

Soluzione Il gioco non è cooperativo. Infatti le utilità di entrambe le coalizioni (disgiunte) $S = \{a_1, b_1, c_1\}$ e $T = \{a_2, b_2, c_2\}$ è 1, quindi $v(S) + v(T) > v(S \cup T)$.