

**HIGH THROUGHPUT FUNCTIONAL GENOMIC SCREENING METHODS FOR
OSTEOARTHRITIS**

FIELD OF THE INVENTION

The present invention provides novel functional genomic screening methods for identifying genes and gene products that are involved in OA. Genes and gene products are also provided that have been identified in such screening assays and which are useful *inter alia* as drug targets for treating OA. Methods of treating and diagnosing OA and compositions therefor which use genes and/or gene products identified in these screening assays are also provided.

BACKGROUND

Osteoarthritis (OA) is primarily a non-inflammatory disease characterized by pain and stiffness of the joints caused by the progressive loss of articular cartilage. OA is among the most common age associated disease and is estimated to affect about 56 million individuals worldwide or 80% of the population greater than 60 years old. Although OA is generally considered a degenerative disorder, the disease is associated with activation of chondrocyte cells, the major cell type present in normal articular cartilage. Hallmarks of this cell activation include hypertrophy, proliferation, dedifferentiation, degradation of the existing extracellular matrix, and finally apoptosis.

The molecular etiology of OA remains unknown. Current therapeutic methods for treating OA are therefore directed toward symptomatic relief such as reducing joint pain and secondary inflammatory changes rather than toward treating the disease's underlying causes. Pharmacological interventions that prevent disease progression are not currently available. Many patients thus progress to advanced stages of the disease where total joint replacement surgery is necessary. For reviews, see Pritzken, "Pathology of Osteoarthritis" in *Osteoarthritis* (Brandt *et al.*, Eds.) Oxford University Press 1998, pages 50-61. See also, Sandell & Aigner, *Arthritis and Rheumatism* 2001, 3:107-113.

Large scale sequencing of OA cDNA libraries has identified several putative gene products that are expressed by diseased chondrocyte cells. See, Stokes *et al.*, *Arth. Rheum.* 2002, 46:404-419; Hu *et al.*, *J. Biol. Chem.* 1998, 51:34406-34412; Aigner *et al.*, *Arth. Rheum.* 2001, 44:2777-2789. However, functional information is not presently available for these gene products and their role in OA, if any, remains unknown. The molecular basis of OA therefore remains unknown and only a very limited number of potential drug targets is known. There remains a need, therefore, for therapeutic compounds and methods to treat OA and related diseases. There is moreover a need for novel genes and gene products that may be useful, e.g., as drug targets for such therapeutic methods to treat OA.

In order to identify genes associated with OA that can serve as suitable drug targets, Applicants disclose herein several high throughput screening methods that may be used successfully with chondrocytes. Identification of genes that are critical in mediating the diseased phenotype requires development of comprehensive highly sensitive cell-based assays compatible with high-throughput settings. The availability of methods to shuttle full length cDNA clones from one vector into another (Gateway system, Invitrogen, Carlsbad, CA) combined with the ability to express genes in high levels in disease relevant primary cells using viral vectors and the availability of methods for assay miniaturization and liquid handling have lead to the possibility of efficiently screening for inducers of OA phenotype on a genome wide scale.

Using said methods, Applicants have identified several genes (referred to herein as "candidate genes") in chondrocytes that are associated with OA. Thus, according to the present invention, it is now proposed that these genes and gene products have a role in OA pathogenesis and it is contemplated herein that any one or more of them are useful drug targets for the development of therapeutics for the prevention, treatment or amelioration of OA or related conditions associated with abnormal cartilage degradation.

The invention also provides a method for identifying modulators (e.g. inhibitors) of these newly identified OA related genes and the use of such modulators for the treatment,

- 3 -

prevention, or amelioration of this disease and related conditions, in human and veterinary patients. The invention also provides pharmaceutical compositions comprising said modulators.

SUMMARY OF THE INVENTION

The present invention provides high throughput functional genomic screening (HTS) assays that may be used to identify genes and gene products associated with OA. In preferred embodiments, a HTS assay of the invention comprises steps of transfecting a cell (preferably a chondrocyte cell) with a nucleic acid to be tested in the screening assay (*i.e.*, a “test” nucleic acid) so that the test nucleic acid is expressed by the cell. The transfected cell is then assayed for one or more characteristics that are associated with OA. For example, in one preferred embodiment, a screening assay of the invention comprises steps of detecting expression by the cell of one or more genes or gene products whose expression is known to be associated with OA.

Similarly, screening assays of the invention can be used to identify polypeptides and other gene products that are associated with OA in cells. Such methods involve transfecting a cell (preferably a chondrocyte cell) with a nucleic acid that encodes a polypeptide or other gene product to be tested in the screening assay (*i.e.*, a “test” polypeptide) so that the test polypeptide is expressed by the cell. The transfected cell is then assayed for one or more characteristics that are associated with OA. For example, in one preferred embodiment a screening assay of the invention comprises steps of detecting expression by the cell of one or more genes or gene products whose expression is known to be associated with OA.

A variety of known genes and gene products associated with OA are provided in the application and can be used in the above-described assays. Preferred genes and gene products that are associated with OA (or an “OA phenotype” include, for example, an Aggrecanase-1 gene, an MMP-13 gene, genes of Collagen Types I, IIa and X, an iNOS gene, an Aggrecan gene or gene product, and a Decorin gene, as well as gene products encoded by

any of these genes. Still other genes or gene products that are associated with an OA phenotype and can be used in the methods described here include new marker genes C17, SMOC2, OSF-2, MARCKS, retinoic acid receptor beta, Zic1, BASP1 and DIM1 genes and their gene products which were identified by computational analysis of OA cDNA libraries.

In another aspect, the Applicants have discovered that genes and gene products for an OA phenotype may be rapidly screened by identifying gene and gene products that induce the proliferation of chondrocyte cells. Hence, the invention also provides, in another aspect, a method for identifying a nucleic acid that induces an OA phenotype by transfecting a chondrocyte cell with a candidate nucleic acid, and detecting proliferation of the chondrocyte cell (*e.g.*, by identifying clusters of clonally proliferating chondrocyte cells in cell culture). Similarly, the invention provides methods for identifying a polypeptide that induces an OA phenotype in cells, by transfecting a chondrocyte cell with a nucleic acid that encodes a candidate polypeptide, and detecting proliferation of the chondrocyte cell (*e.g.*, by identifying clusters of clonally proliferating chondrocyte cells in cell culture). In such methods, proliferation of the chondrocyte cells indicates that the candidate nucleic acid or polypeptide is a nucleic acid or polypeptide that induces an OA phenotype.

Genes and gene products that are identified by such screening methods are useful, *inter alia*, for the diagnosis and treatment, prevention and/or amelioration of OA. For example, candidate genes and gene products identified by these screening methods may be used in still other screening assays, to identify compounds that bind to and/or inhibit expression of these candidate genes and gene products. The compounds (*i.e.*, modulators) identified in these screening assays are useful, *e.g.*, in therapeutic methods for treating OA and as pharmaceutical compositions or medicaments that can be administered in such therapeutic methods. Thus the present invention also pertains to the use of these genes, gene products, compounds and modulators in the manufacture of a medicament and/or as a pharmaceutical for the treatment, prevention and/or amelioration of OA and other cartilage-related diseases.

- 5 -

In still other embodiments, the invention provides methods for treating, preventing and/or ameliorating OA in an individual, by administering an effective amount of a compound that can modulate (i.e. a "modulator") a candidate gene identified by the assay and methods of the present invention. In a preferred embodiment, the modulator inhibits a candidate gene disclosed in Tables V or VI disclosed herein. The invention also provides pharmaceutical compositions that comprise an effective amount of a modulator to a candidate gene identified herein.

Thus, in another aspect, the invention relates to a method to treat, prevent or ameliorate OA, comprising administering to a subject in need thereof a pharmaceutical composition comprising an effective amount of a modulator of a candidate gene and/or ligand thereof (i.e. a gene provided in Tables V or VI provided herein. In various preferred embodiments, said pharmaceutical composition comprises one or more modulators to any one or more of said candidate genes and/or ligands thereof.

In another aspect, the invention relates to a pharmaceutical composition comprising a modulator of a candidate gene and/or ligand thereof in an amount effective to treat, prevent or ameliorate OA in a subject in need thereof wherein said modulator, e.g., can inhibit the activity, expression of or ligand binding to, any one or more of the candidate genes disclosed herein e.g., a candidate gene provided in Tables V or VI herein. In one embodiment, said pharmaceutical composition comprises any one or more substances selected from the group consisting of antisense oligonucleotides, triple helix DNA, siRNA; ribozymes, RNA aptamers or double or single stranded RNA directed to a nucleic acid sequence of a candidate gene or ligand thereof wherein said substances are designed to inhibit gene expression of said family member or ligand. In a further embodiment, said pharmaceutical composition comprises antibodies to a candidate gene or ligand thereof, or fragments thereof, wherein said antibodies can, e.g., inhibit the activity of said member and/or ligand.

In yet another aspect of the present invention there are provided assay methods and kits comprising the components necessary to detect expression of polynucleotides encoding a candidate gene or ligand thereof, or polypeptide levels of said candidate genes or ligands

thereof, or fragments thereof, in biological samples derived from a patient, such kits comprising, e.g., antibodies that bind to said polypeptides, or to fragments thereof, or oligonucleotide probes that hybridize with said polynucleotides. In a preferred embodiment, such kits also comprise instructions detailing the procedures by which the kit components are to be used.

The present invention also provides methods for identifying individuals who have OA. Such diagnostic methods involve detecting a candidate gene or gene product (identified by one of the high throughput functional assays described, *supra*) in a biological sample (e.g., chondrocyte cell or cartilage tissue sample) from the individual. Elevated expression of the candidate gene or gene product in the chondrocyte cell or cartilage tissue indicates that the individual does have OA.

The invention also provides methods for identifying compounds that may be used to treat OA. In a first embodiment, these methods involve contacting a test compound to a candidate gene or gene product under conditions sufficient to allow the test compound to bind to a candidate gene or gene product of the invention, and detecting complexes of the test compound bound to that candidate gene or gene product. The detection of the test compound bound to the candidate gene or gene product identifies the test compound as a compound that can be used for treating OA.

In another embodiment, methods for identifying compounds that may be used to treat OA involve contacting a test compound to a cell that normally expresses a candidate gene or gene product of the invention, and detecting expression of that candidate gene or gene product by the cell once it has been contacted with the test compound. In such embodiments, a decreased expression of the candidate gene or gene product by the cell in the presence of the test compound indicates that the test compound is a compound that can be used to treat OA.

DETAILED DESCRIPTION

As used herein and in the appended claims, the singular forms "a", "an", and "the" include plural reference unless the context clearly dictates otherwise. Thus, for example, reference to the "antibody" is a reference to one or more antibodies and equivalents thereof known to those skilled in the art, and so forth.

"Nucleic acid sequence", as used herein, refers to an oligonucleotide, nucleotide or polynucleotide, and fragments or portions thereof, and to DNA or RNA of genomic or synthetic origin that may be single or double stranded, and represent the sense or antisense strand.

As used herein, "high throughput" refers to an increase in screening capacity compared to conventional methods. It is contemplated herein that the high throughput method of the present invention is preferably carried out using microtiter plates (i.e. 96, 384 or 1536 well plates). Assays at a genomic level are also contemplated.

cDNA libraries for use with the high throughput screen disclosed herein are those wherein each cDNA is defined and arrayed in a specific order in high throughput format (multititer dishes). While the examples in the present invention describe results obtained with a proprietary cDNA collection, suitable cDNA libraries are commercially available, for example, from Invitrogen (Carlsbad, CA), Origene (Rockville, MD) as well as the NIH (i.e., the Mammalian Gene Collection).

The term "antisense" as used herein, refers to nucleotide sequences which are complementary to a specific DNA or RNA sequence. The term "antisense strand" is used in reference to a nucleic acid strand that is complementary to the "sense" strand. Antisense molecules may be produced by any method, including synthesis by ligating the gene(s) of interest in a reverse orientation to a viral promoter which permits the synthesis of a

complementary strand. Once introduced into a cell, this transcribed strand combines natural sequences produced by the cell to form duplexes. These duplexes then block either the further transcription or translation. The designation "negative" is sometimes used in reference to the antisense strand, and "positive" is sometimes used in reference to the sense strand.

"cDNA" refers to DNA that is complementary to a portion of messenger RNA (mRNA) sequence and is generally synthesized from an mRNA preparation using reverse transcriptase.

As contemplated herein, antisense oligonucleotides, triple helix DNA, RNA aptamers, ribozymes, siRNA and double stranded RNA are directed to a nucleic acid sequence such that the nucleotide sequence chosen will produce gene-specific inhibition of gene expression. For example, knowledge of a nucleotide sequence may be used to design an antisense molecule which gives strongest hybridization to the mRNA. Similarly, ribozymes can be synthesized to recognize specific nucleotide sequences of a gene and cleave it (Cech. J. Amer. Med Assn. 260:3030 (1988)). Techniques for the design of such molecules for use in targeted inhibition of gene expression is well known to one of skill in the art.

The individual candidate gene products, (i.e. proteins/polypeptides) referred to herein include any and all forms of these proteins including, but not limited to, partial forms, isoforms, variants, precursor forms, the full length protein, fusion proteins containing the sequence or fragments of any of the above, from human or any other species. Protein homologs which would be apparent to one of skill in the art are included in this definition. It is also contemplated that the term refers to proteins isolated from naturally occurring sources of any species such as genomic DNA libraries as well as genetically engineered host cells comprising expression systems, or produced by chemical synthesis using, for instance, automated peptide synthesizers or a combination of such methods. Means for isolating and preparing such polypeptides are well understood in the art.

The terms "sample" or "biological sample" as used herein, are used in their broadest sense. A biological sample from a subject may comprise blood, urine or other biological material with which protein activity or gene expression may be assayed. A biological sample may include, for example, cells, cartilage, blood, tumors or other specimens from which total RNA may be purified for gene expression profiling using, for example, conventional glass chip microarray technologies such as Affymetrix chips, RT-PCR or other conventional methods.

As used herein, the term "antibody" refers to intact molecules as well as fragments thereof, such as Fa, F(ab')₂, and Fv, which are capable of binding the epitopic determinant. Antibodies that bind specific polypeptides can be prepared using intact polypeptides or fragments containing small peptides of interest as the immunizing antigen. The polypeptides or peptides used to immunize an animal can be derived from the translation of RNA or synthesized chemically, and can be conjugated to a carrier protein, if desired. Commonly used carriers that are chemically coupled to peptides include bovine serum albumin and thyroglobulin. The coupled peptide is then used to immunize an animal (e.g., a mouse, a rat or a rabbit).

The term "humanized antibody" as used herein, refers to antibody molecules in which amino acids have been replaced in the non-antigen binding regions in order to more closely resemble a human antibody, while still retaining the original binding ability.

A "therapeutically effective amount" is the amount of drug sufficient to treat, prevent or ameliorate pathological conditions associated with OA.

"Subject" or "individual" refer to any human or nonhuman organism.

The high throughput assay disclosed herein is preferably used or performed in an at least substantially automated setting. A multiwell format is suited for performing at least part of the methods of the present invention, but can be performed on many different scales, including screening cDNAs on a genomic scale. The term "automated" as used herein means

- 10 -

able to perform the predetermined steps of the method without, for the most part, requiring manual intervention during the process. In this regard, machines for use in the high throughput methods disclosed herein include, but are not limited to, machines for preparing DNA plasmid preparations, reading DNA concentration and yield, plating cells, automated pipeting stations and luminescence detectors. Such machines are commercially available and familiar to one of skill in the art, for example, the Quiagen 8000 for automated DNA production (Qiagen Inc, Valencia CA), the Beckman Coulter BiomekFX for automated pipetting and transfections (Beckman Coulter, Fullerton CA) and the Fluoroskan Ascent for fluorescent and luminescent assay readouts (Thermo Labsystems, Franklin, MA).

Nucleic acid transfer into cells (e.g. transfection) may be performed according to any conventional method familiar to one of skill in the art. As mentioned above, transfections are preferably implemented in an automated, multiwell, high throughput format, for example, using commercially available robotics such as a Beckman Coulter BiomekFX.

The present invention provides high throughput screening (HTS) assays that are useful, *inter alia* for identifying therapeutic agents to treat and/or diagnose disorders such as osteoarthritis (OA) that affect the growth and/or degradation of cartilage. In particular, the Examples *infra* describe particular, preferred embodiments of screening assays that identify genes and gene products associated with OA. The genes and gene products identified in such screening assays are therefore useful, *e.g.*, as drug target candidates for the development of novel drug therapies to treat OA and other such cartilage disorders. For convenience therefore, the genes and gene products identified in screening assays of the present invention are generally referred to in this document as “candidate” genes and “candidate” gene products, respectively.

Generally speaking, the HTS assays of this invention allow a user to rapidly screen large numbers of genes, *e.g.*, in a cDNA library, to identify ones that are involved in OA. Briefly, nucleic acids (preferably cDNA molecules) corresponding to the genes to be tested in a screening assay are first transferred to expression vectors that are capable of expressing those “test” genes or gene products in chondrocyte cells. Preferred expression vectors are

retroviral vectors (such as those described in the Examples, *infra*) or other vectors that are capable of expressing the candidate genes at high levels in chondrocyte cells.

Chondrocyte cells are then transformed with the expression vectors carrying these test genes and are assayed for one or more characteristics that are associated with OA. For convenience, such characteristics are generally referred to in this application as "OA phenotypes." However, it is understood that a characteristic assayed or tested for in these screening assays may be any feature that is associated with OA.

For instance, Example 1 describes one preferred embodiment of a HTS assay that uses RT-PCR to measure the expression of one or more genes whose expression in chondrocyte cells is associated with OA. Examples of such genes which are preferred in these methods include Aggrecanase-1 and MMP-13 (the expression of which is associated with cartilage degradation), Collagen Type I, Collagen Type IIa and Collagen Type X (the over expression of which is associated with aberrant chondrocyte cell differentiation such as hypertrophy and proliferation), genes and gene products that induce inflammation (for example, iNOS and Cox-2), and genes such as Aggrecan and Decorin that modulate synthesis or repair of the cartilage matrix.

Such genes, whose expression or, more particular, over expression is indicative of OA in chondrocyte cells, are generally referred to here as "marker genes." However, "marker genes" that may be used in screening assays of the invention are not limited to the particular genes described, *e.g.*, in the examples (see, for example, in Table I or Table II, *infra*). Any gene or gene product whose elevated expression in chondrocyte cells is associated with OA may be used as a marker gene in screening assays according to the present invention. For example, and as explained in further detail below, the screening assays of this invention identify other genes and gene products whose elevated expression is associated with OA. Hence, a candidate gene or gene product identified in such screening assays (for example, any of the candidate genes and gene products listed in Tables V and VI *infra*) may itself be used as a marker gene in another screening assay according to this invention.

Similarly, those who are skilled in the art will appreciate that marker genes which can be used in screening assays of this invention are not limited to gene whose over expression is associated with OA. In particular, a screening assay of the present invention can also use marker genes that are underexpressed (*i.e.*, their expression is reduced) in OA chondrocytes. In such embodiments, the HTS assays of this invention will identify candidate genes that, when expressed in chondrocyte cells, cause the reduced expression of one or more marker genes.

The HTS assays of this invention also are not limited to embodiments that measure the expression of marker genes or their gene products. Other characteristics or phenotypes associated with OA can also be measured or observed, and then used to identify candidate genes in a screening assay. For instance, Example 2 *infra* describes an alternative embodiment of the screening assay which identify cDNAs that induce a particular type of cell proliferation characteristic of OA chondrocytes. In particular, whereas normal chondrocyte cells have a low division rate when grown in a 3-dimensional matrix (*e.g.*, of agarose or alginate), OA chondrocyte cells (both in cell culture and in OA cartilage tissue) grow in clusters of rapidly proliferating chondrocyte cell clones. Accordingly, screening assays of the invention can also identify genes and gene products which, when expressed in chondrocyte cell cultures, cause the formation of such clusters of chondrocyte cell clones.

Genes and gene products that are tested in a screening assay of the invention may be from any source and obtained by any method known in the art. For example, cDNA libraries may be derived from a cell or cell line of interest, which is preferably a chondrocyte cell. Methods for obtaining such cDNA libraries are well known in the art. See, for example, Sambrook *et al.*, *Molecular Cloning: A Laboratory Manual*, Second Edition (1989) Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York); Glover, D.M. 3ed., 1985, *DNA Cloning: A Practical Approach*, MRL Press, Ltd. Oxford U.K. Vols. I and II). See also, in the Examples, *infra*. Alternatively, however, the genes and Gene Products may be hand selected. For instance, Example 1 describes an embodiment where the genes in a cDNA library are first "datamined" to identify genes and gene products that are particularly useful as drug targets (*e.g.*, for therapeutic compounds to treat OA). Examples of such preferred test

genes are genes that are involved in signal transduction and/or proteolysis (such as receptors, kinases and proteases).

Candidate genes and gene products that are identified in screening assays of the present invention are useful, *inter alia*, as new marker genes for identifying osteoarthritic cells (*i.e.*, cells that are present in cartilage from patients having OA and/or which exhibit one or more characteristics associated with OA). Moreover, the genes and gene products identified in these screening assays can also be used in diagnostic and prognostic applications. Hence, the candidate genes and gene products that are identified in the screening assays provided here can be used to identify individuals who have a disorder, such as OA, that is associated with abnormal cartilage growth and/or repair.

The candidate genes and gene products identified in screening assays of this invention can also be used in prognostic applications to identify individuals who are either have OA or who are at an increased risk of developing OA. Hence, the invention also provides therapeutic methods for treating OA related disorders in individuals. Such methods involve administering a compound to an individual that inhibits the expression or activity of a candidate gene identified in a screening assay of the invention or, alternatively, a compound that inhibits the expression or activity of a candidate gene product identified in a screening assay of this invention.

Various applications and uses for candidate genes and gene products identified in the present invention are described, in detail, *infra*. In particular, the following sections first describe various homologs and analogs of both candidate genes and candidate genes products that can be used in such prognostic, diagnostic, and therapeutic assays. Particular utilities for these candidate genes and gene products (including the various homologs and analogs thereof) are then also described in detail. Finally, the Examples describe detailed, exemplary embodiments of screening assays that are considered part of the present invention. These examples also provide Tables identifying the nucleotide and amino acid sequence (by GenBank Accession number) of both genes and gene products that are identified in such

screening assays. These nucleotide and amino acid sequences are therefore considered examples of preferred embodiments of candidate genes and gene products of the invention.

The present invention may employ a variety of conventional techniques in the arts of molecular biology, microbiology and recombinant DNA technology. Such techniques are well known in the art and are explained fully in the literature. See, for example, Sambrook, Fitsch & Maniatis, *Molecular Cloning: A Laboratory Manual*, Second Edition (1989) Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York (referred to herein as "Sambrook *et al.*, 1989"); *DNA Cloning: A Practical Approach* Volumes I and II (D.N. Glover *et al.* 1985); *Oligonucleotide Synthesis* (M.J. Gait ed. 1984); *Nucleic Acid Hybridization* (B.D. Hames & S.J. Higgins, eds. 1984); *Animal Cell Culture* (R.I. Freshney, ed. 1986); *Immobilized Cells and Enzymes* (IRL Press, 1986); B.E. Perbal, *A Practical Guide to Molecular Cloning* (1984); F.M. Ausubel *et al.* (eds.), *Current Protocols in Molecular Biology*, John Wiley & Sons, Inc.

Candidate polypeptides:

It is understood that, as used in the description of this invention, the term "candidate polypeptide" refers to the polypeptide encoded by a candidate gene of the invention. For convenience, candidate genes and gene products of the present invention are frequently identified here by SEQ ID number and by the GenBank Accession Number(s) for preferred nucleotide or amino acid sequences. However, it is understood that the candidate genes and gene products of this invention are not limited to these particular sequences, but also include homologs and variants evident to one of ordinary skill in the art.

As an example, and not by way of limitation, candidate gene product polypeptides of the present invention include not only polypeptides having the exemplary full length amino acid sequences specified here, but also include polypeptides comprising an amino acid sequence for one or more epitopes or domains of a full length candidate gene product polypeptide. An epitope of a polypeptide represents a site on the polypeptide against which an antibody may be produced and to which the antibody binds. Therefore, polypeptides comprising the amino acid sequence of a candidate gene product epitope are

useful for making antibodies to the candidate polypeptide. Preferably, an epitope comprises a sequence of at least 5, more preferably at least 10, 15, 20, 25 or 50 amino acid residues in length. Thus, polypeptides of the invention that comprises epitopes of a candidate gene product preferably contain an amino acid sequence corresponding to at least 5, at least 10, at least 15, at least 20, at least 25 or at least 50 amino acid residues of a full length candidate gene product polypeptide sequence.

Candidate gene products of the invention also include analogs and derivatives of the exemplary full length candidate gene product sequences provided in the Examples, *infra*. Analogs and derivatives of the candidate gene products of this invention have the same or homologous characteristics of the exemplary candidate gene product sequences set forth in the Examples, *infra*. Chimeric or fusion polypeptides can also be prepared in which the candidate gene product portion of the fusion polypeptide has one or more characteristics of the candidate gene product. Such fusion polypeptides therefore represent embodiments of the candidate gene product polypeptides of this invention. Such fusion polypeptides may also comprise the amino acid sequence of a marker polypeptide; for example FLAG, a histidine tag, glutathione S-transferase (GST), or the Fc portion of an IgG to name a few. Additionally, fusion polypeptides of the invention may comprise amino acid sequences that increase solubility of the polypeptide, such as a thioreductase amino acid sequence or the sequence of one or more immunoglobulin proteins (*e.g.*, IgG1 or IgG2).

Analogs or variants of a candidate polypeptide can also be made by altering encoding nucleic acid molecules, for example by substitutions, additions or deletions. Preferred analogs or variants of a candidate polypeptide are “function conservative variants” of the particular candidate polypeptide sequence specified in the Examples, *infra*. “Function-conservative variants” of a polypeptide or polynucleotide are those in which a given amino acid residue in the polypeptide, or the amino acid residue encoded by a codon of the polynucleotide, has been changed or altered without altering the overall conformation and function of the polypeptide. Such changes are expected to have little or no effect on the apparent molecular weight or isoelectric point of the polypeptide. Hence, such altered nucleic acid molecules preferably encode functionally similar molecules (*i.e.*, molecules that

perform one or more functions of a candidate polypeptide and/or have one or more of the candidate polypeptide's bioactivities).

Amino acid residues, other than ones that are specifically identified herein as being conserved, may differ among variants of a protein or polypeptide. Accordingly, the percentage of protein or amino acid sequence similarity between any two variants or analogs of a candidate polypeptide may vary. Typically, the percentage of protein or amino acid sequence similarity between variant or analog candidate polypeptides may be from 70% to 99%, as determined according to an alignment scheme such as the Cluster Method and/or the MEGALIGN or GCG alignment algorithm. Preferred variants and analogs of a candidate polypeptide are at least about 75%, and more preferably at least about 80%, 85%, 90%, 95% or 99% sequence identity as determined by a sequence comparison algorithm such as BLAST, FASTA, DNA Strider, CLUSTAL, etc.

Function-conservative variants of the present invention, as defined above, include not only variants of the full length candidate polypeptides of this invention (*e.g.*, variants of polypeptides comprising the particular candidate polypeptide sequences specified in the Examples, *infra*), but also include function-conservative variants of modified candidate polypeptides (*e.g.*, truncations and deletions) and of fragments (*e.g.*, corresponding to domains or epitopes) of full length candidate polypeptides.

In yet other embodiments, an analog of a candidate polypeptide is an allelic variant or mutant of a candidate polypeptide sequence provided, *e.g.*, in the Examples, *infra*. The terms allelic variant and mutant, when used herein to describe a polypeptide, refer to a polypeptide encoded by an allelic variant or mutant gene. Thus, the allelic variant and mutant candidate polypeptides of this invention are polypeptides encoded by allelic variants or mutants of a candidate nucleic acid of the present invention.

In yet other embodiments, an analog of a candidate polypeptide is a substantially homologous polypeptide from the same species (*e.g.*, allelic variants) or from another species (*e.g.*, an orthologous polypeptide). The term "homologous," in all its

grammatical forms and spelling variations, refers to the relationship between two proteins or nucleic acids that possess a “common evolutionary origin”, including proteins from superfamilies (*e.g.*, the immunoglobulin superfamily) in the same species of organism as well as homologous proteins from different species of organism (for example, myosin light chain polypeptide, *etc.*; see, Reeck *et al.*, *Cell* 1987, 50:667). Such proteins (and their encoding nucleic acids) having sequence homology, as reflected by their sequence similarity, whether in terms of percent identity or by the presence of specific residues or motifs and conserved positions. Preferred homologous polypeptides of the present invention have levels of sequence similarity or identity as specified, above, for other variant and analog candidate polypeptides of the invention. Homologs and orthologs of the specific candidate polypeptides may be obtained, *e.g.*, from mammals such as humans, mice, rats, hamsters, rabbit, guinea pig, dog, cat, sheep, goat, pig, horse and cow to name a few.

In other embodiments, variants of a candidate polypeptide (including analogs, homologs, *etc.*) are polypeptides encoded by nucleic acid molecules that hybridize to the complement of a nucleic acid molecule encoding one or more of the particular candidate polypeptide sequences specified in the Examples, *infra*. A nucleic acid molecule is “hybridizable” to another nucleic acid molecule (for example cDNA, genomic DNA, or RNA) when a single stranded form of the nucleic acid molecule can anneal to the other nucleic acid molecule under appropriate conditions of temperature and solution ionic strength (see, *e.g.*, Sambrook *et al.*, *supra*). The conditions of temperature and ionic strength determine the “stringency” of the hybridization. For preliminary screening for homologous nucleic acids, low stringency hybridization conditions corresponding to a melting temperature (T_m) of about 55 °C can be used (for example, 5x SSC, 0.1% SDS, 0.25% milk and no formamide; or, alternatively, 30% formamide, 5x SSC, and 0.5% SDS). Moderate stringency hybridization conditions correspond to a higher T_m , *e.g.*, 40% formamide with 5x or 6x SSC. High stringency hybridization conditions correspond to the highest T_m , *e.g.*, 50% formamide, 5x or 6x SSC. A 1x SSC solution is understood to be a solution containing 0.15 M NaCl and 0.015 M Na-citrate.

Hybridization requires that the two nucleic acids contain complementary sequences, although depending on the stringency of the hybridization, mismatches between bases are possible. The appropriate stringency for hybridizing nucleic acids depends on the length of the nucleic acids and the degree of complementation, variables well known in the art. The greater the degree of similarity or homology between two nucleotide sequences the greater the value of T_m for hybrids of nucleic acids having those sequences.

For hybrids of greater than 100 nucleotides in length, equations for calculating T_m have been derived (see, Sambrook *et al.*, *supra*, 9.50-9.51).

In a specific embodiment, the term "standard hybridization conditions" refers to a T_m of about 55 °C and utilizes conditions as set forth above. In a preferred embodiment, the T_m is 60 °C; in a more preferred embodiment, the T_m is 65 °C. In a specific embodiment, the term "high stringency" refers to hybridization and/or washing conditions at 68 °C in 0.2x SSC, at 42 °C in 50% formamide, 4x SSC, or under conditions that afford levels of hybridization equivalent to those observed under either of these two conditions.

In still other embodiments, variants (including analogs, homologs and orthologs) of a candidate polypeptide can be identified by isolating variants of a candidate gene, *e.g.*, using PCR with degenerate oligonucleotide primers designed on the basis of amino acid sequences of the candidate polypeptides and as described below.

Derivatives of a candidate polypeptide of the invention further include phosphorylated polypeptides, myristylated polypeptides, methylated polypeptides, and other candidate polypeptides that are chemically modified. Candidate polypeptides of the invention further include labeled variants; for example, radio-labeled with iodine or phosphorous (see, *e.g.*, EP 372707B) or other detectable molecules such as, but by no means limited to, biotin, fluorescent dyes (*e.g.*, Cy5 or Cy3), a chelating group complexed with a metal ion, a chromophore or fluorophore, a gold colloid, a particle such as a latex bead, or attached to a water soluble polymer such as poly(ethylene)-glycol (PEG). Chemical modifications of a candidate polypeptide may provide additional advantages under certain

circumstances. See, for example, U.S. Patent No. 4,179,337. For a review, see also Abuchowski *et al.*, in *Enzymes as Drugs* (J.S. Holcerberg & J. Roberts, eds. 1981) pages 367-383. A review article describing protein modification and fusion proteins is also found in Fracis, *Focus on Growth Factors* 1992, 3:4-10, Mediscript: Mountview Court, Friern Barnet Lane, London N20, OLD, UK.

Candidate Nucleic Acids:

It is understood that, for purposes of describing the present invention, the term "candidate nucleic acid" refers to a nucleic acid comprising the nucleotide sequence of a candidate gene. For convenience, candidate nucleic acids of the present invention are frequently identified here by the SEQ ID number or GenBank Accession number for their preferred nucleotide sequences or for preferred amino acid sequences that they encode. However, it is understood that, as with the candidate polypeptides, the candidate nucleic acids of this invention are not limited to those particular sequences and include homologs and variants that are well within the ordinary skill of the art.

In general, candidate nucleic acid molecule of the present invention comprises a nucleic acid sequence that encodes a candidate polypeptide as defined, *supra*, the complement of a nucleic acid sequence that encodes a candidate polypeptide, and fragments thereof. Thus, the exemplary nucleic acid sequences provided in GenBank Accession numbers specified for particular candidate genes of the Examples, *infra*, represent preferred candidate nucleic acid sequences of the present invention.

In still other embodiments, the candidate nucleic acid molecules of the invention comprise nucleotide sequences that encode one or more domains of a candidate polypeptide.

The candidate nucleic acid molecules of the invention also include nucleic acids which comprise a sequence encoding one or more fragments of a candidate polypeptide sequence.

- 20 -

The candidate nucleic acid molecules of the invention also include nucleic acid molecules that comprise coding sequences for modified candidate polypeptides (*e.g.*, having amino acid substitutions, deletions or truncations) and for variants (including allelic variants, analogs and homologs from the same or different species) candidate polypeptides. In preferred embodiments, such nucleic acid molecules have at least 50%, preferably at least 75% and more preferably at least 90% sequence identity to candidate polypeptide coding sequence (*e.g.*, to the coding sequence set forth in the Examples, *infra*).

In addition, candidate nucleic acid molecules of the invention include ones that hybridize to another candidate nucleic acid molecule, *e.g.*, in a Southern blot assay under defined conditions. For example, in specific embodiments a candidate nucleic acid molecule of the invention comprises a nucleotide sequence which hybridizes to a complement of a particular nucleic acid sequence, such as the coding sequence set forth in the GenBank Accession numbers for exemplary candidate genes specified in the Examples, *infra*. Alternatively, a nucleic acid molecule of the invention may hybridize, under the same defined hybridization conditions, to the complement of a fragment of a nucleotide sequence encoding a full length candidate polypeptide. Examples of preferred hybridization include those set forth above.

In other embodiments, the nucleic acid molecules of the invention comprise fragments of a full length candidate nucleic acid sequence. Such candidate nucleic acid fragments comprise a nucleotide sequence that corresponds to a sequence of at least 10 nucleotides, preferably at least 15 nucleotides and more preferably at least 20 nucleotides of a nucleotide sequence encoding a full length candidate polypeptide. In preferred embodiments, the candidate nucleic acid fragments comprise sequences of at least 10, preferably at least 15, and more preferably at least 20 nucleotides that are complementary and/or hybridize to a full length candidate nucleic acid sequence or to a fragment thereof. For hybridization with shorter nucleic acids, *i.e.*, oligonucleotides, the position of mismatches becomes more important and the length of the oligonucleotide determines its specificity (see, Sambrook *et al.*, *supra*, at 11.7-11.8). A minimum length for a hybridizable nucleic acid is preferably at

least about 10 nucleotides, more preferably at least about 15 nucleotides, and still more preferably at least about 20 nucleotides.

Nucleic acid molecules comprising such fragments are useful, for example, as oligonucleotide probes and primers (*e.g.*, PCR primers) to detect and amplify other nucleic acid molecules encoding a candidate polypeptide, including genes that encode variant candidate polypeptides. Oligonucleotide fragments of the invention may also be used, *e.g.*, as antisense nucleic acids to modulate levels of a candidate gene's expression or transcription in cells.

The nucleic acid molecules of the invention also include "chimeric" nucleic acid molecules. Such chimeric nucleic acid molecules are polynucleotides which comprise at least one candidate nucleic acid sequence (which may be any of the full length or partial candidate nucleic acid sequences described above), and also at least one non-candidate nucleic acid sequence (*i.e.*, a nucleic acid sequence not normally associated with the particular candidate gene). For example, the non-candidate nucleic acid sequence may be a heterologous regulatory sequence (for example a promoter sequence) that is derived from another gene and is not normally associated with the naturally occurring candidate gene. The non-candidate nucleic acid sequence may also be a coding sequence of another polypeptide such as FLAG, a histidine tag, glutathione S-transferase (GST), hemagglutinin, β -galactosidase, thioeductase or an immunoglobulin domain or domains (for examples, an Fc region). In preferred embodiments, a chimeric nucleic acid molecule of the invention encodes a fusion polypeptide of the invention.

Nucleic acid molecules of the invention, whether genomic DNA, cDNA or otherwise, can be isolated from any source including, for example, cDNA or genomic libraries derived from a cell or cell line from an organism that has the desired candidate gene. In the case of cDNA libraries, such libraries are preferably derived from a cell or cell line that expresses the particular candidate gene. Methods for obtaining candidate genes are well known in the art (see, *e.g.*, Sambrook *et al.*, 1989, *supra*).

The DNA may be obtained by standard procedures known in the art from cloned DNA (for example, from a DNA "library"), and preferably is obtained from a cDNA library prepared from tissues with high level expression of the protein. In one preferred embodiment, the DNA is obtained from a "subtraction" library to enrich the library for cDNAs of genes specifically expressed by a particular cell type or under certain conditions. Use of such a subtraction library may increase the likelihood of isolating cDNA for a particular gene. In still other embodiments, a library may be prepared by chemical synthesis, by cDNA cloning, or by the cloning of genomic DNA or fragments thereof purified from the desired cell (See, for example, Sambrook *et al.*, 1989, *supra*; Glover, D.M. ed., 1985, *DNA Cloning: A Practical Approach*, MRL Press, Ltd. Oxford, U.K. Vols. I and II).

In one embodiment, a cDNA library may be screened for a desired candidate nucleic acid by identifying cDNA inserts that encode a polypeptide which is homologous or substantially similar to a candidate polypeptide of particular interest. Similarly, a cDNA library may be screened for a desired candidate nucleic acid by identifying cDNA inserts having a nucleic acid sequence that is homologous or substantially similar to a particular candidate nucleic acid sequence of interest.

Clones derived from genomic DNA may contain regulatory and intron DNA regions in addition to coding regions. Clones derived from cDNA generally will not contain intron sequences. Whatever the source, the gene is preferably molecularly cloned into a suitable vector for propagation of the gene. Identification of the specific DNA fragment containing the desired candidate gene may be accomplished in a number of ways. For example, a portion of a candidate gene can be purified and labeled to prepare a labeled probe (Benton & Davis, *Science* 1977, 196:180; Grunstein & Hogness, *Proc. Natl. Acad. Sci. U.S.A.* 1975, 72:3961). Those DNA fragments with substantial homology to the probe, such as an allelic variant from another individual, will hybridize. In a specific embodiment, highest stringency hybridization conditions are used to identify a homologous candidate gene.

The genes encoding derivatives and analogs of a candidate gene of this invention can be produced by various methods known in the art. The manipulations which

result in their production can occur at the gene or protein level. For example, the cloned sequence can be modified by any of numerous strategies known in the art (Sambrook *et al.*, 1989, *supra*). The sequence can be cleaved at appropriate sites with restriction endonuclease(s), followed by further enzymatic modification if desired, isolated, and ligated *in vitro*. In the production of the gene encoding a derivative or analog of a candidate gene, care should be taken to ensure that the modified gene remains within the same translational reading frame as the candidate gene from which it is derived, uninterrupted by translational stop signals, in the gene region where the desired activity is encoded.

Additionally, a candidate gene sequence can be mutated *in vitro* or *in vivo*, to create and/or destroy translation, initiation, and/or termination sequences, or to create variations in coding regions and/or form new restriction endonuclease sites or destroy preexisting ones, to facilitate further *in vitro* modification. Modifications can also be made to introduce restriction sites and facilitate cloning the candidate gene into an expression vector. Any technique for mutagenesis known in the art can be used, including but not limited to, *in vitro* site-directed mutagenesis (Hutchinson, C., *et.al.*, J. Biol. Chem. 253:6551, 1978; Zoller and Smith, DNA 3:479-488, 1984; Oliphant *et al.*, Gene 44:177, 1986; Hutchinson *et al.*, Proc. Natl. Acad. Sci. U.S.A. 83:710, 1986), use of TAB™ linkers (Pharmacia Corp., Peapack, NJ), *etc.* PCR techniques are preferred for site directed mutagenesis (see Higuchi, 1989, "Using PCR to Engineer DNA", in *PCR Technology: Principles and Applications for DNA Amplification*, H. Erlich, ed., Stockton Press, Chapter 6, pp. 61-70).

The identified and isolated gene can then be inserted into an appropriate cloning vector. A large number of vector-host systems known in the art may be used. Possible vectors include, but are not limited to, plasmids or modified viruses, but the vector system must be compatible with the host cell used. Examples of vectors include, but are not limited to, *E. coli*, bacteriophages such as lambda derivatives, or plasmids such as pBR322 derivatives or pUC plasmid derivatives, *e.g.*, pGEX vectors, pmal-c, pFLAG, pKK plasmids (Clonetech, Palo Alto, CA), pET plasmids (Novagen, Inc., Madison, WI), pRSET or pREP plasmids, pcDNA (Invitrogen, Carlsbad, CA), or pMAL plasmids (New England Biolabs, Beverly, MA), *etc.* The insertion into a cloning vector can, for example, be accomplished by

ligating the DNA fragment into a cloning vector which has complementary cohesive termini. However, if the complementary restriction sites used to fragment the DNA are not present in the cloning vector, the ends of the DNA molecules may be enzymatically modified. Alternatively, any site desired may be produced by ligating nucleotide sequences (linkers) onto the DNA termini. These ligated linkers may comprise specific chemically synthesized oligonucleotides encoding restriction endonuclease recognition sequences.

Recombinant molecules can be introduced into host cells via transformation, transfection, infection, electroporation, etc., so that many copies of the gene sequence are generated. Preferably, the cloned gene is contained on a shuttle vector plasmid, which provides for expansion in a cloning cell, *e.g.*, *E. coli*, and facile purification for subsequent insertion into an appropriate expression cell line, if such is desired. For example, a shuttle vector, which is a vector that can replicate in more than one type of organism, can be prepared for replication in both *E. coli* and *Saccharomyces cerevisiae* by linking sequences from an *E. coli* plasmid with sequences from the yeast 2m plasmid.

It is understood that candidate nucleic acids of the invention may be either DNA or RNA and may be single-, double- or even triple-stranded (*e.g.*, a triple-helix of candidate single-stranded candidate nucleic acids and/or their complement(s)). Candidate nucleic acids of the invention include genomic DNA, cDNA, RNA, mRNA, cRNA, *etc.*; as well as synthetic and genetically manipulated polynucleotides and both sense and antisense polynucleotides. Such synthetic polynucleotides include, for example, "protein nucleic acids" (PNA) formed by conjugating nucleotide bases to an amino acid backbone. Other exemplary synthetic nucleic acids include nucleic acids containing modified bases, such as thio-uracil, thio-guanine and fluoro-uracil. For convenience, the exemplary nucleotide sequences provided in this description are provided as sequences of DNA. However, it is understood that identical sequences of other types of nucleic acids (for example, RNA) may also be used and are equivalent. Thus, for example, where the particular nucleotide sequences in this description specify a thymine (T) at some position, it is understood that a uracil (U) may be substituted at that position and is a functional equivalent.

- 25 -

The polynucleotides of this invention may be flanked by natural regulatory sequences, or they may be associated with heterologous sequences such as promoters, enhancers, response elements, signal sequences, polyadenylation sequences, introns, 5' and 3'-non-coding regions and the like. The term "heterologous", in this context, refers to a combination of elements (*e.g.*, sequences) that are not naturally occurring. Hence, a candidate nucleic acid of this invention may have sequences, such as a promoter *etc.*, that are not normally associated with the candidate gene.

Nucleic acids of the invention may also be modified by any means known in the art. Non-limiting examples of such modifications include methylation, "caps", substitution of one or more of the naturally occurring nucleotides with an analog, and internucleotide modifications such as, for example, those with uncharged linkages (*e.g.*, methyl phosphonates, phosphotriesters, phosphoroamidates, carbamates, *etc.*) and with charged linkages (*e.g.*, phosphorothioates, phosphorodithioates, *etc.*). Nucleic acids of the invention may contain one or more additional covalently linked moieties such as proteins (*e.g.*, nucleases, toxins, antibodies, signal peptides, poly-L-lysine, *etc.*), intercalators (*e.g.*, acridine, psoralen, *etc.*), chelators (*e.g.*, metals, radioactive metals; iron, oxidative metals, *etc.*) and alkylators to name a few. The polynucleotides may be derivatized by formation of a methyl or ethyl phosphotriester or an alkyl phosphoramidite linkage. Furthermore, the polynucleotides herein may also be modified with a label capable of providing a detectable signal, either directly or indirectly. Exemplary labels include radioisotopes, fluorescent molecules, biotin and the like.

Expression of Candidate Polypeptides and Nucleic Acids:

A nucleotide sequence coding for candidate polypeptides, including chimeric proteins, antigenic fragments, derivatives or analogs thereof may be inserted into an appropriate expression vector, *i.e.*, a vector which contains the necessary elements for the transcription and translation of the inserted protein-coding sequence. Thus, a nucleic acid encoding a candidate polypeptide of the invention can be operationally associated with a promoter in an expression vector of the invention. Both cDNA and genomic sequences can

be cloned and expressed under control of such regulatory sequences. Such vectors can be used to express functional or functionally inactivated candidate polypeptides.

The necessary transcriptional and translational signals can be provided on a recombinant expression vector.

Potential host-vector systems include but are not limited to mammalian or other vertebrate cell systems transfected with expression plasmids or infected with virus (*e.g.*, vaccinia virus, adenovirus, adeno-associated virus, herpes virus, etc.); insect cell systems infected with virus (*e.g.*, baculovirus); microorganisms such as yeast containing yeast vectors; or bacteria transformed with bacteriophage, DNA, plasmid DNA, or cosmid DNA. The expression elements of vectors vary in their strengths and specificities. Depending on the host-vector system utilized, any one of a number of suitable transcription and translation elements may be used.

Expression of a candidate protein may be controlled by any promoter/enhancer element known in the art, but these regulatory elements must be functional in the host selected for expression. Promoters which may be used to control MIP-3 α gene expression include, but are not limited to, cytomegalovirus (CMV) promoter (U.S. Patent Nos. 5,385,839 and 5,168,062), the SV40 early promoter region (Benoist and Chambon, *Nature* 1981, 290:304-310), the promoter contained in the 3' long terminal repeat of Rous sarcoma virus (Yamamoto, *et al.*, *Cell* 1980, 22:787-797), the herpes thymidine kinase promoter (Wagner *et al.*, *Proc. Natl. Acad. Sci. U.S.A.* 1981, 78:1441-1445), the regulatory sequences of the metallothionein gene (Brinster *et al.*, *Nature* 1982, 296:39-42); prokaryotic expression vectors such as the b-lactamase promoter (Villa-Komaroff, *et al.*, *Proc. Natl. Acad. Sci. U.S.A.* 1978, 75:3727-3731), or the *tac* promoter (DeBoer, *et al.*, *Proc. Natl. Acad. Sci. U.S.A.* 1983, 80:21-25, 1983); see also "Useful proteins from recombinant bacteria" in *Scientific American* 1980, 242:74-94. Still other useful promoter elements which may be used include promoter elements from yeast or other fungi such as the Gal 4 promoter, the ADC (alcohol dehydrogenase) promoter, PGK (phosphoglycerol kinase) promoter, alkaline phosphatase promoter; and transcriptional control regions that exhibit hematopoietic tissue

specificity, in particular: beta-globin gene control region which is active in myeloid cells (Mogram *et al.*, *Nature* 1985, 315:338-340; Kollias *et al.*, *Cell* 1986, 46:89-94), hematopoietic stem cell differentiation factor promoters, erythropoietin receptor promoter (Maouche *et al.*, *Blood* 1991, 15:2557), etc.

In another embodiment, the invention provides methods for expressing candidate polypeptides by using a non-endogenous promoter to control expression of endogenous candidate genes within a cell. An endogenous candidate gene within a cell is a candidate gene of the present invention which is ordinarily (*i.e.*, naturally) found in the genome of that cell. A non-endogenous promoter, however, is a promoter or other nucleotide sequence that may be used to control expression of a gene but is not ordinarily or naturally associated with the endogenous candidate gene. As an example, methods of homologous recombination may be employed (preferably using non-protein encoding nucleic acid sequences of the invention) to insert an amplifiable gene or other regulatory sequence in the proximity of an endogenous candidate gene. The inserted sequence may then be used, *e.g.*, to provide for higher levels of the candidate gene's expression than normally occurs in that cell, or to overcome one or more mutations in the endogenous candidate gene's regulatory sequences which prevent normal levels of gene expression. Such methods of homologous recombination are well known in the art. See, for example, International Patent Publication No. WO 91/06666, published May 16, 1991 by Skoultchi; International Patent Publication No. WO 91/099555, published July 11, 1991 by Chappel; and International Patent Publication No. WO 90/14092, published November 29, 1990 by Kucherlapati and Campbell.

Soluble forms of the protein can be obtained by collecting culture fluid, or solubilizing inclusion bodies, *e.g.*, by treatment with detergent, and if desired sonication or other mechanical processes, as described above. The solubilized or soluble protein can be isolated using various techniques, such as polyacrylamide gel electrophoresis (PAGE), isoelectric focusing, 2-dimensional gel electrophoresis, chromatography (*e.g.*, ion exchange, affinity, immunoaffinity, and sizing column chromatography), centrifugation, differential solubility, immunoprecipitation, or by any other standard technique for the purification of proteins.

Preferred vectors are viral vectors, such as lentiviruses, retroviruses, herpes viruses, adenoviruses, adeno-associated viruses, vaccinia virus, baculovirus, and other recombinant viruses with desirable cellular tropism. Thus, a gene encoding a functional or mutant candidate protein or polypeptide domain fragment thereof can be introduced *in vivo*, *ex vivo*, or *in vitro* using a viral vector or through direct introduction of DNA. Expression in targeted tissues can be effected by targeting the transgenic vector to specific cells, such as with a viral vector or a receptor ligand, or by using a tissue-specific promoter, or both.

Antibodies to Candidate Gene Products:

Antibodies to candidate gene products of the present invention are useful, *inter alia*, for diagnostic and therapeutic methods, as set forth below. According to the invention, candidate polypeptides produced, *e.g.*, recombinantly or by chemical synthesis, and fragments or other derivatives or analogs thereof, including fusion proteins, may be used as an immunogen to generate antibodies that recognize these polypeptides. Such antibodies include but are not limited to polyclonal, monoclonal, chimeric, single chain, Fab fragments, and an Fab expression library. Such an antibody is preferably specific for (*i.e.*, specifically binds to) a human candidate polypeptide of the present invention. However, the antibody may, alternatively, be specific for an ortholog from some other species of organism, preferably another species of mammal such as mouse, rat or hamster, to name a few. The antibody may recognize wild-type, mutant or both forms of the candidate polypeptide.

Various procedures known in the art may be used for the production of polyclonal antibodies. For the production of polyclonal antibodies, various host animals can be immunized by injection with the desired candidate polypeptide, or derivatives (*e.g.*, fragments or fusion proteins) thereof, including but not limited to rabbits, mice, rats, sheep, goats, etc. In one embodiment, the candidate polypeptide or fragment thereof can be conjugated to an immunogenic carrier, *e.g.*, bovine serum albumin (BSA) or keyhole limpet hemocyanin (KLH). Various adjuvants may be used to increase the immunological response, depending on the host species, including but not limited to Freund's (complete and incomplete), mineral gels such as aluminum hydroxide, surface active substances such as

lysolecithin, pluronic polyols, polyanions, peptides, oil emulsions, keyhole limpet hemocyanins, dinitrophenol, and potentially useful human adjuvants such as BCG (*bacille Calmette-Guerin*) and *Corynebacterium parvum*.

For preparation of monoclonal antibodies directed toward the candidate polypeptides, or fragment, analogs, or derivatives thereof, any technique that provides for the production of antibody molecules by continuous cell lines in culture may be used. These include but are not limited to the hybridoma technique originally developed by Kohler and Milstein (*Nature* 1975, 256:495-497), as well as the trioma technique, the human B-cell hybridoma technique (Kozbor *et al.*, *Immunology Today* 1983, 4:72; Cote *et al.*, *Proc. Natl. Acad. Sci. U.S.A.* 1983, 80:2026-2030), and the EBV-hybridoma technique to produce human monoclonal antibodies (Cole *et al.*, in *Monoclonal Antibodies and Cancer Therapy*, Alan R. Liss, Inc., 1985, pp. 77-96). In an additional embodiment of the invention, monoclonal antibodies can be produced in germ-free animals (International Patent Publication No. WO 89/12690). In fact, according to the invention, techniques developed for the production of "chimeric antibodies" (Morrison *et al.*, *J. Bacteriol.* 1984, 159:870; Neuberger *et al.*, *Nature* 1984, 312:604-608; Takeda *et al.*, *Nature* 1985, 314:452-454) may also be used. Briefly, such techniques comprise splicing the genes from an antibody molecule from a first species of organism (e.g., a mouse) that is specific for a candidate polypeptide together with genes from an antibody molecule of appropriate biological activity derived from a second species of organism (e.g., from a human). Such chimeric antibodies are within the scope of this invention.

Antibody fragments which contain the idiotype of the antibody molecule can be generated by known techniques. For example, such fragments include but are not limited to: the F(ab')₂ fragment which can be produced by pepsin digestion of the antibody molecule; the Fab' fragments which can be generated by reducing the disulfide bridges of the F(ab')₂ fragment, and the Fab fragments which can be generated by treating the antibody molecule with papain and a reducing agent.

- 30 -

According to the invention, techniques described for the production of single chain antibodies (U.S. Patent Nos. 5,476,786, 5,132,405, and 4,946,778) can be adapted to produce specific single chain antibodies that specifically bind to a particular candidate polypeptide. An additional embodiment of the invention utilizes the techniques described for the construction of Fab expression libraries (Huse *et al.*, *Science* 1989, 246:1275-1281) to allow rapid and easy identification of monoclonal Fab fragments with the desired specificity for a candidate polypeptide, or for its derivatives, or analogs.

In the production and use of antibodies, screening for or testing with the desired antibody can be accomplished by techniques known in the art, *e.g.*, radioimmunoassay, ELISA (enzyme-linked immunosorbant assay), "sandwich" immunoassays, immunoradiometric assays, gel diffusion precipitin reactions, immunodiffusion assays, *in situ* immunoassays (using colloidal gold, enzyme or radioisotope labels, for example), Western blots, precipitation reactions, agglutination assays (*e.g.*, gel agglutination assays, hemagglutination assays), complement fixation assays, immunofluorescence assays, protein A assays; and immunoelectrophoresis assays, etc. In one embodiment, antibody binding is detected by detecting a label on the primary antibody. In another embodiment, the primary antibody is detected by detecting binding of a secondary antibody or reagent to the primary antibody. In a further embodiment, the secondary antibody is labeled. Many means are known in the art for detecting binding in an immunoassay and are within the scope of the present invention.

The foregoing antibodies can be used in methods known in the art relating to the localization and activity of a candidate polypeptide of interest, *e.g.*, for Western blotting, imaging candidate polypeptides *in situ*, measuring levels thereof in appropriate physiological samples, *etc.* using any of the detection techniques mentioned above or known in the art. Such antibodies can also be used in assays for ligand binding, *e.g.*, as described in US Patent No. 5,679,582. Antibody binding generally occurs most readily under physiological conditions, *e.g.*, pH of between about 7 and 8, and physiological ionic strength. The presence of a carrier protein in the buffer solutions stabilizes the assays. While there is some tolerance of perturbation of optimal conditions, *e.g.*, increasing or decreasing ionic strength,

temperature, or pH, or adding detergents or chaotropic salts, such perturbations generally decrease binding stability.

In still other embodiments, antibodies may also be used to isolate cells which express a candidate polypeptide of interest (for example, OA chondrocyte cells) by panning or related immunoadsorption techniques.

In a specific embodiment, antibodies that agonize or antagonize the activity of a candidate polypeptide can be generated. In particular, intracellular single chain Fv antibodies can be used to regulate (inhibit) MIP-3 α activity (Marasco *et al.*, *Proc. Natl. Acad. Sci. U.S.A.* 1993, 90:7884-7893; Chen., *Mol. Med. Today* 1997, 3:160-167; Spitz *et al.*, *Anticancer Res.* 1996, 16:3415-22; Indolfi *et al.*, *Nat. Med.* 1996, 2:634-635; Kijma *et al.*, *Pharmacol. Ther.* 1995, 68:247-267). Such antibodies can be tested using the assays described *infra* for identifying ligands.

Applications and Uses:

Described herein are various applications and uses for candidate genes and gene products that are identified in screening methods of the present invention. These include, *inter alia*, applications and uses for the candidate nucleic acids and polypeptides described above, including the particular candidate nucleic acids and polypeptides provided in the examples as well as fragments, analogs, homologs and other variants thereof.

The candidate genes and gene products that are identified in screening assays of this invention include ones that are expressed at elevated levels in cells from patients with OA compared to healthy subjects. Other candidate genes and gene products of the invention induce one or more features of an OA phenotype when they are expressed in cells. Hence, candidate genes and/or gene products may be used as tissue-specific markers to detect and/or identify OA cells or tissue, including OA chondrocyte cells and cartilage. Candidate nucleic acids and polypeptides of the invention can therefore be used in methods for detecting OA, e.g., in diagnostic and prognostic applications, by using one or more candidate genes or gene

products to detect expression in a sample such as a cell or tissue sample from an individual (obtained, e.g., from a biopsy).

In addition, candidate genes and gene products of the invention can serve as drug targets for the development of therapeutics to treat individuals suffering from OA. Methods are provided that use candidate nucleic acids and polypeptides of the invention to screen for compounds that can be used to treat or prevent cartilage degradation, as well as for the treatment or prevention of conditions such as OA. Such screening methods may, for example, identify compounds that modulate or interfere with binding of a candidate gene or gene product to its ligand or receptor. In other embodiments, drug screening methods of the invention may identify compounds that modulate downstream signaling events from a candidate or gene or gene product, or they may identify compounds that interfere with upstream signaling event that activate a candidate gene or gene product. In still other embodiments, drug screening assays of the invention may identify compounds that inhibit the expression and/or activity of either a candidate gene or its gene product.

Drug screening assays. Using screening assays such as those described below, it is possible to identify compounds that bind to or otherwise interact with candidate genes of the present invention and/or their gene products, including intracellular compounds (for example, proteins or portions of proteins), natural and synthetic ligands or receptors, compounds that interfere with the interaction of a candidate gene product (for example, compounds that interfere with specific binding of a candidate gene product to its receptor or ligand), and compounds that modulate the activity of a candidate gene (for example, by modulating the level of the candidate gene's expression) or the activity (for example, the bioactivity) of a candidate gene product.

The screening assays of this invention may therefore be used to identify compounds that specifically bind to a candidate gene or gene product to modulate its expression. For example, the screening assays described here may be used to identify compounds that bind to a promoter or other regulatory sequence of a candidate gene, and so may modulate the level of that candidate gene's expression (see, for example, Platt, *J. Biol.*

Chem. 1994, 269:28558-28562). The screening assays may also be used to identify compounds that bind to and thereby stabilize a candidate nucleic acid or polypeptide. In addition, these screening assays may be used to identify compounds that inhibit or modulate such binding interactions and which are therefore useful, *e.g.*, as agonists or antagonists for the candidate gene product's binding to a specific transcription factor or enhancer, or for the candidate gene product's binding to a stabilizer. Compounds identified in these or similar screening assays may therefore be used to treat diseases and disorders that are associated with the candidate gene's abnormal expression and/or activity, associated with , but not limited to, OA.

Classes of compounds that may be identified by such screening assays include, but are not limited to, small molecules (*e.g.*, organic or inorganic molecules which are less than about 2 kDa in molecular weight, are more preferably less than about 1 kDa in molecular weight, and/or are able to cross the blood-brain barrier or gain entry into an appropriate cell and affect expression of either a candidate gene or of some gene involved in the candidate gene's regulatory pathway) as well as macromolecules (*e.g.*, molecules greater than about 2 kDa in molecular weight). Compounds identified by these screening assays may also include nucleic acids, peptides and polypeptides. Examples of such compounds (including peptides) include but are not limited to: soluble peptides; fusion peptide members of combinatorial libraries (such as ones described by Lam *et al.*, *Nature* 1991, 354:82-84; and by Houghten *et al.*, *Nature* 1991, 354:84-86); members of libraries derived by combinatorial chemistry, such as molecular libraries of D- and/or L-configuration amino acids; phosphopeptides, such as members of random or partially degenerate, directed phosphopeptide libraries (see, *e.g.*, Songyang *et al.*, *Cell* 1993, 72:767-778); antibodies, including but not limited to polyclonal, monoclonal, humanized, anti-idiotypic, chimeric or single chain antibodies; antibody fragments, including but not limited to Fab, F(ab')₂, Fab expression library fragments, and epitope-binding fragments thereof. Nucleic acids used in these screening assays may be DNA or RNA, or synthetic nucleic acids. Particular examples include, but are by no means limited to, antisense nucleic acids and ribozymes, as well as double-stranded and triple helix nucleic acid molecules.

Assays for binding compounds. *In vitro* systems can be readily designed to identify compounds capable of binding to a candidate gene product of the present invention. Such compounds can be useful, for example, in modulating the expression, stability or activity of a wild-type candidate gene product or, alternatively, to modulate the expression, stability or activity of a mutant or other variant candidate gene product.

Generally, such screening assays involve preparation of a reactive mixture comprising the candidate gene product of interest and a test compound under conditions and for a time sufficient to allow the two compounds to interact (*e.g.*, bind), thereby forming a complex that may be detected. The assays may be conducted in any of a variety of different ways. For example, one embodiment comprises anchoring a candidate polypeptide or a test compound onto a solid phase and detecting complexes of the candidate polypeptide and the test compound that are on the solid phase at the end of the reaction and after removing (*e.g.*, by washing) unbound compounds. For example, in one preferred embodiment of such a method, a candidate gene product may be anchored onto a solid surface and a labeled compound (*e.g.*, labeled according to any of the methods described *supra*) is contacted to the surface. After incubating the test compound for a sufficient time and under sufficient conditions that a complex may form between the candidate gene product and the test compound, unbound molecules of the test compound are removed from the surface (*e.g.*, by washing) and labeled molecules which remain are detected.

In another, alternative embodiment, molecules of one or more different test compounds are attached to the solid phase and molecules of a labeled candidate polypeptide may be contacted thereto. In such embodiments, the molecules of different test compounds are preferably attached to the solid phase at a particular location on the solid phase so that test compounds that bind to the candidate polypeptide may be identified by determining the location of the bound candidate polypeptides on the solid phase or surface.

Assays for compounds that interact with a candidate gene or gene product. Any of a variety of known methods for detecting protein-protein interactions may also be used to detect and/or identify proteins that interact with a candidate gene product of the

invention. For example, co-immunoprecipitation, cross-linking and co-purification through gradients or chromatographic columns as well as other techniques known in the art may be employed. Proteins which may be identified using such assays include, but are not limited to, extracellular proteins, such as receptors and ligands for candidate genes and/or their gene products, as well as intracellular proteins such as signal transducing proteins.

Compounds, including other cellular proteins and nucleic acids, that interact with a candidate gene or gene product may themselves be used in the methods of this invention, *e.g.*, to modulate activity of the candidate gene or gene product and to treat or prevent cartilage degradation. Alternatively, such interacting compounds may, themselves, be used in the screening assays of this invention to identify other compounds that could, in turn, be used to treat or prevent cartilage degradation.

As an example, and not by way of limitation, an expression cloning assay may be used to identify receptors and other proteins that specifically interact with a candidate gene product of interest. In such assays, a cDNA expression library may be generated from any cell line that expresses such a receptor. Clones from such an expression library may then be transfected or infected into cells that do not normally express a receptor for the candidate gene product. Cells that are transfected with a clone that encodes a receptor which specifically binds to the candidate gene product may then express this receptor, and can be identified and isolated using standard techniques such as FACS or using magnetic beads that have the candidate polypeptide (for example, an Fc-fusion of the candidate polypeptide) attached thereto.

Alternatively, receptors and/or ligands that specifically bind to a candidate gene product may be isolated from a cell line using immunoprecipitation techniques that are well known in the art.

Receptors and/or ligands for a candidate gene product may also be isolated using any of the screening assays discussed, *supra* for identifying binding compounds. For example, an Fc-fusion polypeptide of a candidate gene product may be bound or otherwise

attached to a solid surface, and a labeled compound (*e.g.*, a candidate receptor or ligand) may be contacted to the surface for a sufficient time and under conditions that permit formation of a complex between the fusion polypeptide and the test compound. Unbound molecules of the test compound can then be removed from the surface (*e.g.*, by washing), and labeled compounds that remain bound can be detected.

Once so isolated, standard techniques may be used to identify any protein detected in such assays. For example, at least a portion of the amino acid sequence of a protein that interacts with a candidate gene product can be ascertained using techniques well known in the art, such as the Edman degradation technique (see, *e.g.*, Creighton, 1983, *Proteins: Structures and Molecular Principles*, W.H. Freeman&Co., New York, pages 34-49).

Once such proteins have been identified, their amino acid sequence may be used as a guide for the generation of oligonucleotide mixtures to screen for gene sequences encoding such proteins; *e.g.*, using standard hybridization or PCR techniques described *supra*. See, for example, Ausubel *supra*; and PCR Protocols: A Guide to Methods and Applications, Innis *et al.*, eds., Academic Press, Inc., New York (1990) for descriptions of techniques for the generation of such oligonucleotide mixtures and their use in screening assays.

Other methods are known in the art which result in the simultaneous identification of genes that encode a protein that interacts with a candidate gene or gene product. For example, expression libraries may be probed with a labeled candidate polypeptide.

As another example and not by way of limitation, a two-hybrid system may be used to detect protein interactions with a candidate gene product *in vivo*. Briefly, utilizing such a system, plasmids may be constructed which encode two hybrid proteins, one of which preferably comprises of the DNA-binding domain of a transcription activator protein fused to a candidate gene product. The other hybrid protein preferably comprises an activation

domain of the transcription activator protein used in the first hybrid, fused to an unknown protein that is encoded by a cDNA recombined into the plasmid library as part of a cDNA library. Both the DNA-binding domain fusion plasmid and the cDNA library may be co-transformed into a strain of *Saccharomyces cerevisiae* or other suitable organism which contains a reporter gene (for example, HBS, lacZ, HIS3 or GFP). Preferably, the regulatory region of this reporter gene comprises a binding site for the transcription activator moiety of the two hybrid proteins. In such a two-hybrid system, the presence of either of the two hybrid proteins alone cannot activate transcription of the reporter gene. Specifically, the DNA-binding domain hybrid protein cannot activate transcription because it cannot localize to the necessary activation function. Likewise, the activation domain hybrid protein cannot activate transcription because it cannot localize to the DNA binding site on the reporter gene. However, interaction between the two hybrid proteins, reconstitutes that functional transcription activator protein and results in expression of the reporter gene. Thus, in a two-hybrid system such as the one described here in detail, an interaction between a candidate polypeptide (*i.e.*, the candidate polypeptide fused to the transcription activator's DNA binding domain) and a test polypeptide (*i.e.*, a protein fused to the transcription activator's DNA binding domain) may be detected by simply detecting expression of a gene product of the reporter gene.

cDNA libraries for screening in such two-hybrid and other assays may be made according to any suitable technique known in the art. As a particular and non-limiting example, cDNA fragments may be inserted into a vector so that they are translationally fused to the transcriptional activation domain of GAL4, and co-transformed along with a "bait" GAL4 fusion plasmid (encoding a GAL4-fusion of a candidate gene product) into a strain of *Saccharomyces cerevisiae* or other suitable organism that contains a HIS3 gene driven by a promoter that contains a GAL4 activation sequence. A protein from this cDNA library, fused to the GAL4 transcriptional activation domain, which interacts with the candidate polypeptide moiety of the GAL4-fusion will reconstitute an active GAL4 protein, and can thereby drive expression of the HIS3 gene. Colonies that express the HIS3 gene may be detected by their growth on petri dishes containing semi-solid agar based media lacking

histidine. The cDNA may then be purified from these strains, sequenced and used to identify the encoded protein which interacts with the candidate polypeptide.

Once compounds have been identified which bind to a candidate gene or gene product of the invention, the screening methods described in these methods may also be used to identify other compounds (*e.g.*, small molecules, peptides and proteins) which bind to these binding compounds. Such compounds may also be useful for modulating bioactivities associated with a candidate gene and its gene product, for example by binding to a natural receptor, ligand or other binding partner and preventing its interaction with the candidate gene product. For instance, these compounds could be tested for their ability to inhibit the binding of an Fc-fusion of the candidate gene product to cell lines which express a specific receptor for the candidate gene product.

Assays for compounds that interfere with a candidate gene/protein ligand interaction. As noted *supra*, a candidate gene product of the invention may interact with one or more molecules (*e.g.*, with a specific receptor or ligand) *in vivo* or *in vitro*. Compounds that disrupt or otherwise interfere with this binding interaction are therefore useful in modulating biological activity or activities that are associated with the candidate gene product, including for example, cartilage degradation. Such compounds may therefore be useful, *e.g.*, to treat disorders such as OA that are associated with abnormal levels of a candidate gene or gene product's expression and/or activity.

Such compounds include, but are not limit to, compounds identified according to the screening assays described *supra*, for identifying compounds that bind to a candidate gene product, including any of the numerous exemplary classes of compounds described therein.

In general, assays for identifying compounds that interfere with the interaction between a candidate gene product and a binding partner (*e.g.*, a receptor or ligand) involve preparing a test reaction mixture that contains the candidate gene product and its binding partner under conditions and for a time sufficient for the candidate gene product and its

binding partner to bind and form a complex. In order to test a compound for inhibitory activity (*i.e.*, for the ability to inhibit formation of the binding complex or to disrupt the binding complex once formed), the test compound preferably is also present in the test reaction mixture. In one exemplary embodiment, the test compound may be initially included in the test reaction mixture with the candidate gene product and its binding partner. Alternatively, however, the test compound may be added to the test reaction mixture at a later time, subsequent to the addition of the candidate gene product and its binding partner. In preferred embodiments, one or more control reaction mixtures, which do not contain the test compound, may also be prepared. Typically, a control reaction mixture will contain the same candidate gene product and binding partner that are in the test reaction mixture, but will not contain a test compound. A control reaction mixture may also contain a placebo, not present in the test reaction mixture, in place of the test compound. The formation of a complex between the candidate gene product and the binding partner may then be detected in the reaction mixture. The formation of such a complex in the absence of the test compound (*e.g.*, in a control reaction mixture) but not in the presence of the test compound, indicates that the test compound is one which interferes with or modulates the interaction of the candidate polypeptide and its binding partner.

Such assays for compounds that modulate the interaction of a candidate gene product and a binding partner may be conducted in a heterogeneous format or, alternatively, in a homogeneous format. Heterogeneous assays typically involve anchoring either a candidate gene product or a binding partner onto a solid phase and detecting compounds anchored to the solid phase at the end of the reaction. Thus, such assays are similar to the solid phase assays described *supra* for detecting and/or identifying candidate nucleic acids and gene products and for detecting or identifying binding partners. Indeed, those skilled in the art will recognize that many of the principles and techniques described above for those assays may be modified and applied without undue experimentation in the solid phase assays described here, for identifying compounds that modulate interaction(s) between a candidate gene product and a binding partner.

Regardless of the particular assay used, the order to which reactants are added to a reaction mixture may be varied; for example, to identify compounds that interfere with the interaction of a candidate gene product with a binding partner by competition, or to identify compounds that disrupt a preformed binding complex. Compounds that interfere with the interaction of a candidate gene product with a binding partner by competition may be identified by conducting the reaction in the presence of a test compound. Specifically, in such assays a test compound may be added to the reaction mixture prior to or simultaneously with the candidate gene product and the binding partner. Test compounds that disrupt preformed complexes of a candidate gene product and a binding partner may be tested by adding the test compound to a reaction mixture after complexes have been formed.

The screening assays described herein may also be practiced using peptides or polypeptides that correspond to portions of a full length candidate polypeptide or protein, or with fusion proteins comprising such peptide or polypeptide sequences. For example, screening assays for identifying compounds that modulate interactions of a candidate polypeptide with a binding partner may be practiced using peptides or polypeptides corresponding to particular regions or domains of a full length candidate polypeptide that bind to a binding partner (*e.g.*, receptor "binding sites").

A variety of methods are known in the art that may be used to identify specific binding sites of a candidate polypeptide. For example, binding sites may be identified by mutating a candidate gene and screening for disruptions of binding as described above. A gene encoding the binding partner may also be mutated in such assays to identify mutations that compensate for disruptions from the mutation to the candidate gene. Sequence analysis of these mutations can then reveal mutations that correspond to the binding region of the two proteins.

In an alternative embodiment, a protein (*e.g.*, a candidate protein or a protein binding partner to a candidate protein) may be anchored to a solid surface or support using the methods described hereinabove. Another labeled protein which binds to the protein anchored to the solid surface may be treated with a proteolytic enzyme, and its fragments

may be allowed to interact with the protein attached to the solid surface, according to the methods of the binding assays described *supra*. After washing, short, labeled peptide fragments of the treated protein may remain associated with the anchored protein. These peptides can be isolated and the region of the full length protein from which they are derived may be identified by the amino acid sequence.

In still other embodiments, compounds that interfere with interactions between a candidate polypeptide and a receptor or ligand may also be identified by screening for compounds that modulate binding of the candidate polypeptide (for example, an Fc-fusion construct of the candidate polypeptide) to cells that express a specific receptor thereto.

Diagnostic and Prognostic Applications:

A variety of methods can be employed for diagnostic and prognostic methods using reagents such as the candidate nucleic acids and polypeptides described *supra* as well as antibodies directed against such candidate nucleic acids and polypeptides. For example, using the methods described here it is possible to detect expression of a candidate nucleic acid or protein in a biological sample from an individual, such as in cells or tissues in a sample (*e.g.*, from a biopsy) obtained or derived from an individual subject or patient. As explained above, candidate nucleic acids and polypeptides identified in screening assays of this invention induce one or more characteristics associated with OA when they are expressed in cells. Hence, the expression of such candidate nucleic acids and/or polypeptides at elevated levels in cells is an indication of OA or a related disorder.

Using the methods described here (as well as other methods known in the art) a skilled artisan may detect elevated levels of a candidate nucleic acid or polypeptide in a sample of cells or tissue from an individual, and may thereby detect and/or identify cells or tissue in that sample as being symptomatic of OA. In certain preferred embodiments the particular type of tissue identified in such methods is cartilage tissue. By using such methods to detect such cells or tissue in an individual, a skilled user may thereby diagnose the presence of OA in that individual.

In preferred embodiments the methods described herein are performed using pre-packaged diagnostic kits. Such kits may comprise at least one specific candidate nucleic acid or a candidate gene product specific antibody reagent. For example, said diagnostic kit may be used for detecting mRNA levels or protein levels of a candidate gene or gene product selected from the group consisting of those disclosed in Table V and Table VI, said kit comprising: (a) a polynucleotide of said candidate gene or a fragment thereof; (b) a nucleotide sequence complementary to that of (a); (c) an expression product of said candidate gene, or a fragment thereof; or (d) an antibody to said expression product and wherein components (a), (b), (c) or (d) may comprise a substantial component.

In preferred embodiments, a kit will also contain instructions for its use, e.g., to detect diseased cells or tissues, or to diagnose a disorder (such as OA) associated with abnormal expression of a candidate gene or gene product. In preferred embodiments, such instructions may be packaged directly with the kit. In other embodiments, however, instructions may be provided separately. For example, the invention provides embodiments of kits where instructions for using the kit may be downloaded, e.g., from the internet. A kit of the invention may also comprise, preferably in separate containers, suitable buffers and other solutions to use the reagents (e.g., nucleic acid or antibody specific for a candidate gene or gene product) to detect the candidate gene or gene product. The kit and any reagent(s) contained therein may be used, for example, in a clinical setting, to diagnose patients exhibiting or suspected of having OA.

A sample comprising a cell of any cell type or tissue of any tissue type in which a candidate gene is expressed may also be used in such diagnostic methods, e.g., for detection of candidate gene expression or of candidate gene products (such as candidate polypeptides), as well as for identifying cells, e.g. chondrocytes, that express a candidate gene or a candidate gene product. Thus, in one embodiment, the methods described herein may be performed *in situ*, e.g., using cells or tissues obtained from an individual such as in a biopsy. Such methods may be useful, for example, in surgical procedures where it is desirable to identify arthritic tissue without removing benign, healthy tissue.

The methods described herein are not limited to diagnostic applications, but may also be used in prognostic applications, *e.g.*, to monitor the progression of a disease (such as OA) that is associated with abnormal expression of a candidate gene or gene product, or to monitor a therapy thereto. Accordingly, prognostic methods of the invention may comprise, in one exemplary embodiment, monitoring candidate nucleic acid or polypeptide levels in an individual during the course of a treatment or therapy (for example, a drug treatment or exercise regimen) for OA. Similarly, the methods of the invention may also be used to detect and identify diseased cells and tissue (*e.g.* cells overexpressing one or more candidate genes of gene products compared to non OA cells or tissue) during the course of a therapy. In such embodiments, decreasing numbers of diseased cells is generally indicative of an effective treatment. The methods of the invention may further be used, *e.g.*, to screen candidate drugs or compounds and identify ones that may be effective, *e.g.*, as anti-OA drugs. Such methods may be performed *in vivo* (*e.g.*, using an animal model) or *in vitro* (for example, in a cell culture assay). In one embodiment such methods may comprise contacting a candidate compound to a cell and identifying whether expression of a candidate gene or gene product by the cell has been inhibited. In another embodiment, a compound may be contacted to a cell or administered to an organism, and extracellular levels of candidate nucleic acid or polypeptide may be measured (for example, in cell culture media for cell culture assays, or in blood or other body fluid in an animal model assay).

Detection of candidate nucleic acids. The diagnostic and prognostic methods of the invention include methods for assaying the level of candidate gene expression. A variety of methods known in the art may be used to detect assay levels of one or more candidate nucleic acid sequences in a sample. For example, RNA from a cell type or tissue that is known or suspected to express one or more candidate genes of interest may be isolated and tested utilizing hybridization or PCR techniques known in the art. The isolated cells may be, for example, cells derived from a cell culture or from an individual. The analysis of cells taken from a cell culture may be useful, *e.g.*, to test the effect of compounds on the expression of one or more candidate genes, or alternatively, to verify that the cells are ones of a particular cell type that express one or more candidate genes of interest.

As an example, and not by way of limitation, diagnostic methods for the detection of candidate nucleic acids can involve contacting and incubating nucleic acids (including recombinant DNA molecules, cloned genes or degenerate variants thereof) obtained from a sample with one or more labeled nucleic acid reagents, such as recombinant candidate DNA molecules, cloned genes or degenerate variants thereof, under conditions favorable for specifically annealing or hybridizing these reagents to their complementary sequences in the sample nucleic acids. After incubation, all non-annealed or non-hybridized nucleic acids are removed. The presence of nucleic acids that have hybridized, if any such molecules exist, is then detected and the level of candidate nucleic acid sequences to which the nucleic acid reagents have annealed may be compared to the annealing pattern or level expected from a control sample (*e.g.*, from a sample of normal, non-OA cells or tissues) to determine whether candidate nucleic acid is expressed at an elevated level.

In a preferred embodiment of such a detection scheme, the nucleic acid from the cell type or tissue of interest may be immobilized, for example, to a solid support such as a membrane or a plastic surface (for example, on a nylon membrane, a microtiter plate or on polystyrene beads). After incubation, non-annealed, labeled candidate nucleic acid reagents may be easily removed and detection of the remaining, annealed, labeled candidate nucleic acid reagents may be accomplished using standard techniques that are well-known in the art.

Alternative diagnostic methods for the detection of candidate nucleic acids in patient samples or in other cell or tissue sources may involve their amplification, *e.g.*, by PCR (see, for example, the experimental embodiment taught in U.S. Patent No. 4,683,202) followed by detection of the amplified molecules using techniques that are well known to those skilled in the art. The resulting level of amplified candidate nucleic acids may be compared to those levels that would be expected if the sample being amplified contained only normal levels of the candidate nucleic acid(s), as normal cells or tissues, to determine whether elevated levels of any candidate nucleic acid(s) are expressed.

In one preferred embodiment of such a detection scheme, a cDNA molecule is synthesized from an RNA molecule of interest (*e.g.*, by reverse transcription). A sequence within the cDNA may then be used as a template for a nucleic acid amplification reaction such as PCR. Nucleic acid reagents used as synthesis initiation reagents (*e.g.*, primers) in the reverse transcription and amplification steps of such an assay are preferably chosen from the candidate nucleic acid sequences described herein or are fragments thereof. Preferably, the nucleic acid reagents are at least about 9 to 30 nucleotides in length. The amplification may be performed using, *e.g.*, radioactively labeled or fluorescently labeled nucleotides, for detection. Alternatively, enough amplified product may be made such that the product can be visualized by standard ethidium bromide or other staining methods.

Candidate gene expression assays of the invention may also be performed *in situ* (*i.e.*, directly upon tissue sections of patient tissue, which may be fixed and/or frozen), thereby eliminating the need for nucleic acid purification. Candidate nucleic acid reagents may be used as probes or as primers for such *in situ* procedures (see, for example, Nuovo, PCR In Situ Hybridization: Protocols And Application, 1992, Raven Press, New York). Alternatively, if a sufficient quantity of the appropriate cells can be obtained, standard Northern analysis can be performed to determine the level of candidate gene expression by detecting levels of one or more candidate mRNAs.

Detection of candidate gene products. The diagnostic and prognostic methods of the invention also include ones that comprise detecting levels of a candidate polypeptide and including functionally conserved variants and fragments thereof. For example, antibodies directed against unimpaired, wild-type or mutant candidate gene products or against functionally conserved variants or peptide fragments of a candidate gene product may be used as diagnostic and prognostic reagents. Such reagents may be used, for example, to detect abnormalities in the level of candidate gene product synthesis or expression, or to detect abnormalities in the structure, temporal expression or physical location of a candidate gene product. Antibodies and immunoassay methods such as those described hereinbelow also have important *in vitro* applications for assessing the efficacy of treatments, *e.g.*, for OA. For example, antibodies, or fragments of antibodies, can be used in screens of potentially

therapeutic compounds *in vitro* to ascertain a compound's effects on candidate gene expression and candidate polypeptide production. Compounds that may have beneficial effects on a disorder associated with abnormal candidate gene expression can be identified and a therapeutically effective dose for such compounds may be determined using such assays.

As one example, antibodies or fragments of antibodies may be used to detect the presence of a candidate gene product, a variant of a candidate gene product or fragments thereof, for example, by immunofluorescence techniques employing a fluorescently labeled antibody coupled with light microscopic, flow cytometric or fluorimetric detection methods.

In particularly preferred embodiments, antibodies or fragments thereof may also be employed histologically, for example in immunofluorescence or immunoelectron microscopy techniques, for *in situ* detection of a candidate gene product. *In situ* detection may be accomplished by removing a histological specimen (*e.g.*, a tissue sample) from a patient and applying thereto a labeled antibody of the present invention or a fragment of such an antibody. The antibody or antibody fragment is preferably applied by overlaying the labeled antibody or antibody fragment onto a biological sample. Through the use of such a procedure, it is possible to detect, not only the presence of a candidate gene product, but also the gene product's distribution in the examined tissue. A wide variety of histological methods that are well known in the art (for example, staining procedures) can be readily modified by those skilled in the art without undue experimentation to achieve such *in situ* detection.

Immunoassays for candidate gene products will typically comprise incubating a biological sample (for example, a tissue extract) in the presence of a detectably labeled antibody that is capable of specifically binding a candidate gene product (including, for example, a functionally conserved variant or a peptide fragment thereof). The bound antibody may then be detected by any of a number of techniques well known in the art.

Therapeutic Methods and Pharmaceutical Compositions:

Candidate nucleic acids and polypeptides, and specific antibodies thereto may also be used in therapeutic methods and compositions, *e.g.*, to treat, prevent or ameliorate diseases and disorders associated with abnormal (preferably elevated) levels of the candidate gene's expression. In preferred embodiments such methods are used to treat OA. In one preferred embodiment the therapeutic methods of the invention comprise administering one or more compounds that modulate (*e.g.*, inhibit) the expression or activity of a candidate gene or its gene product; for example, compounds that bind to a candidate nucleic acid or polypeptide of the invention, compounds that modulate expression of a candidate gene, and/or compounds that interfere with or modulate binding of a candidate nucleic acid or polypeptide with a binding compound.

In another preferred embodiment, the therapeutic methods of the invention may comprise one or more cell-targeted therapies which target compounds (for example, drugs, pro-drugs, toxins or cytotoxins) to cells expressing a candidate nucleic acid or polypeptide.

Inhibitory approaches. In alternative embodiments, the present invention provides methods and compositions for treating a disease or disorder (for example, OA) associated with the abnormal expression or activity of a candidate gene or gene product by modulating (*e.g.*, increasing or decreasing) the expression or activity of the candidate gene or its gene product. Such methods may simply comprise administering one or more compounds that modulate expression of a candidate gene, synthesis of a candidate gene product or activity of a candidate gene product so the immune response is modulated (*e.g.*, enhanced or suppressed). Preferably, these one or more compounds are administered until one or more symptoms of the disorder are eliminated or at least ameliorated.

Among the compounds that may exhibit an ability to modulate the activity, expression or synthesis of a candidate nucleic acid are antisense molecules. Such molecules may be designed to reduce or inhibit wild-type nucleic acids and polypeptides or, alternatively, may target mutant candidate nucleic acids or polypeptides.

Antisense RNA and DNA molecules act to directly block the translation of mRNA by hybridizing to target mRNA molecules and preventing protein translation. Antisense approaches involve the design of oligonucleotides that are complementary to a target gene mRNA. The antisense oligonucleotides will bind to the complementary target gene mRNA transcripts and prevent translation. Absolute complementarity, although preferred, is not required. As used in this description, "antisense" broadly includes RNA-RNA interactions, triple helix interactions, ribozymes and RNase-H mediated arrest. Antisense nucleic acid molecules can be encoded by a recombinant gene for expression in a cell (see, e.g., U.S. Patent Nos. 5,814,500; and 5,811,234) or, alternatively, they can be prepared synthetically (U.S. Patent No. 5,780,607).

A sequence that is "complementary" to a portion of a nucleic acid refers to a sequence having sufficient complementarity to be able to hybridize with the nucleic acid and form a stable duplex. The ability of nucleic acids to hybridize will depend both on the degree of sequence complementarity and the length of the antisense nucleic acid. Generally, however, the longer the hybridizing nucleic acid, the more base mismatches it may contain and still form a stable duplex (or triplex in triple helix methods). A tolerable degree of mismatch can be readily ascertained, e.g., by using standard procedures to determine the melting temperature of a hybridized complex.

In one preferred embodiment, oligonucleotides complementary to non-coding regions of a candidate gene may be used in an antisense approach to inhibit translation of endogenous candidate mRNA molecules. Antisense nucleic acids are preferably at least six nucleotides in length, and more preferably range from between about six to about 50 nucleotides in length. In specific embodiments, the oligonucleotides may be at least 10, at least 15, at least 20, at least 25 or at least 50 nucleotides in length.

It is generally preferred that *in vitro* studies are first performed to quantitate the ability of an antisense oligonucleotide to inhibit gene expression. It is preferred that these studies utilize controls that distinguish between antisense gene inhibition and nonspecific biological effects of oligonucleotides. It is also preferred that these studies compare levels of

the target RNA or protein with that of an internal control RNA or protein. Additionally, it is envisioned that results obtained using the antisense oligonucleotide are compared with those obtained using a control oligonucleotide. It is preferred that the control oligonucleotide is of approximately the same length as the test oligonucleotide and that the nucleotide sequence of the oligonucleotide differs from the antisense sequence no more than is necessary to prevent specific hybridization to the target sequence.

While antisense nucleotides complementary to the target gene coding region sequence could be used, those complementary to the transcribed, untranslated region are most preferred.

Antisense molecules are preferably delivered to cells, such as chondrocytes, that express the target gene *in vivo*. A number of methods have been developed for delivering antisense DNA or RNA to cells. For example, antisense molecules can be injected directly into the tissue site (*e.g.*, directly into a tumor), or modified antisense molecules can be designed to target the desired cells (*e.g.*, antisense linked to peptides or antibodies that specifically bind receptors or antigens expressed on the target cell surface) can be administered systemically.

Preferred embodiments achieve intracellular concentrations of antisense nucleic acid molecules which are sufficient to suppress translation of endogenous mRNAs. For example, one preferred approach uses a recombinant DNA construct in which the antisense oligonucleotide is placed under the control of a strong pol III or pol II promoter. The use of such a construct to transfet target cells in the patient will result in the transcription of sufficient amounts of single stranded RNAs that will form complementary base pairs with the endogenous target gene transcripts and thereby prevent translation of the target gene mRNA. For example, a vector, as set forth above, can be introduced *e.g.*, such that it is taken up by a cell and directs the transcription of an antisense RNA. Such a vector can remain episomal or become chromosomally integrated, as long as it can be transcribed to produce the desired antisense RNA. Such vectors can be constructed by recombinant DNA technology methods standard in the art. Vectors can be plasmid, viral, or others known in the

- 50 -

art, used for replication and expression in mammalian cells. Expression of the sequence encoding the antisense RNA can be by any promoter known in the art to act in the particular cell type (for example in a hemopoietic cell). For example, any of the promoters discussed *supra* in connection with the expression of recombinant candidate nucleic acids can also be used to express a candidate antisense nucleic acid.

In addition to antisense technology, RNA aptamers (Good et al., 1997, Gene Therapy 4: 45-54), double stranded RNA (WO 99/32619), ribozymes (Cech. J., 1988, Amer. Med Assn. 260:3030; Cotten et al., 1989, EMBO J. 8:3861-3866; Grassi and Marini, 1996, Annals of Medicine 28: 499-510; Gibson, 1996, Cancer and Metastasis Reviews 15: 287-299) and/or triple helix DNA (Gee, J.E. et al. (1994) In: Huber, B.E. and B. I. Carr, *Molecular and Immunologic Approaches*, Futura Publishing Co., Mt. Kisco, N.Y.) may be used to modulate the activity, expression or synthesis of a target candidate nucleic acid according to methods familiar to one of skill in the art.

Alternatively, small interfering RNA (siRNA) molecules can also be used to inhibit the expression of nucleic acids for a candidate receptor or for a candidate ligand. RNA interference is a method in which exogenous, short RNA duplexes are administered where one strand corresponds to the coding region of the target mRNA (Elbashir et al., *Nature* 2001, 411: 494-498). Upon entry into cells, siRNA molecules cause not only degradation of the exogenous RNA duplexes, but also of single-stranded RNAs having identical sequences, including endogenous messenger RNAs. Accordingly, siRNA may be more potent and effective than traditional antisense RNA methodologies since the technique is believed to act through a catalytic mechanism.

Preferred siRNA molecules are typically greater than about 19 nucleotides in length and comprise the sequence of a nucleic acid for a candidate receptor or its ligand. Effective strategies for delivering siRNA to target cells include any of the methods described, *supra*, for delivering antisense nucleic acids. For example, siRNA can be introduced to cells by transduction using physical or chemical transfection. Alternatively siRNAs may be expressed in cells using, e.g., various PolIII promoter expression cassettes that allow

transcription of functional siRNA or precursors thereof. See, for example, Scherr *et al.*, *Curr. Med. Chem.* 2003, 10(3):245-256; Turki *et al.*, *Hum. Gene Ther.* 2002, 13(18):2197-2201; Cornell *et al.*, *Nat. Struct. Biol.* 2003, 10(2):91-92.

Pharmaceutical preparations. Compositions used in the therapeutic methods of this invention may be administered (*e.g.*, *in vitro* or *ex vivo* to cell cultures, or, more preferably, *in vivo* to an individual) at therapeutically effective doses to treat a disease or disorder such as OA that is associated with abnormal candidate gene expression and/or activity. For example, compounds, including compounds identified in such screening methods as described above, that bind to a candidate gene or gene product of the invention may be administered to the cells or individual so that expression and/or activity of the candidate gene or gene product is inhibited. The invention therefore also provides pharmaceutical preparations for use, *e.g.*, as therapeutic compounds to treat disorders, including OA, that are associated with abnormal candidate gene expression or activity.

The terms "therapeutically effective dose" and "effective amount" refer to the amount of the compound that is sufficient to result in a therapeutic response. In embodiments where a compound (*e.g.*, a drug or toxin) is administered in a complex (*e.g.*, with a specific antibody), the terms "therapeutically effective dose" and "effective amount" may refer to the amount of the complex that is sufficient to result in a therapeutic response. A therapeutic response may be any response that a user (*e.g.*, a clinician) will recognize as an effective response to the therapy. Thus, a therapeutic response will generally be an amelioration of one or more symptoms of a disease or disorder. In preferred embodiments, where the pharmaceutical preparations are used to treat OA, a therapeutic response may be a reduction in the amount of cartilage degradation observed, *e.g.*, in biopsies from a patient during treatment.

Toxicity and therapeutic efficacy of compounds can be determined by standard pharmaceutical procedures, for example in cell culture assays or using experimental animals to determine the LD₅₀ and the ED₅₀. The parameters LD₅₀ and ED₅₀ are well known in the art, and refer to the doses of a compound that are lethal to 50% of a population and

therapeutically effective in 50% of a population, respectively. The dose ratio between toxic and therapeutic effects is referred to as the therapeutic index and may be expressed as the ratio: LD₅₀/ED₅₀. Compounds that exhibit large therapeutic indices are preferred.

While compounds that exhibit toxic side effects may be used, however, in such instances it is particularly preferable to use delivery systems that specifically target such compounds to the site of affected tissue so as to minimize potential damage to other cells, tissues or organs and to reduce side effects.

Data obtained from cell culture assay or animal studies may be used to formulate a range of dosages for use in humans. The dosage of compounds used in therapeutic methods of the present invention preferably lie within a range of circulating concentrations that includes the ED₅₀ concentration but with little or no toxicity (e.g., below the LD₅₀ concentration). The particular dosage used in any application may vary within this range, depending upon factors such as the particular dosage form employed, the route of administration utilized, the conditions of the individual (e.g., patient), and so forth.

A therapeutically effective dose may be initially estimated from cell culture assays and formulated in animal models to achieve a circulating concentration range that includes the IC₅₀. The IC₅₀ concentration of a compound is the concentration that achieves a half-maximal inhibition of symptoms (e.g., as determined from the cell culture assays). Appropriate dosages for use in a particular individual, for example in human patients, may then be more accurately determined using such information.

Measures of compounds in plasma may be routinely measured in an individual such as a patient by techniques such as high performance liquid chromatography (HPLC) or gas chromatography.

Pharmaceutical compositions for use in accordance with the present invention may be formulated in conventional manner using one or more physiologically acceptable carriers or excipients.

Thus, the compounds and their physiologically acceptable salts and solvates may be formulated for administration by inhalation or insufflation (either through the mouth or the nose) or oral, buccal, parenteral or rectal administration.

For oral administration, the pharmaceutical compositions may take the form of, for example, tablets or capsules prepared by conventional means with pharmaceutically acceptable excipients such as binding agents (*e.g.*, pregelatinised maize starch, polyvinylpyrrolidone or hydroxypropyl methylcellulose); fillers (*e.g.*, lactose, microcrystalline cellulose or calcium hydrogen phosphate); lubricants (*e.g.*, magnesium stearate, talc or silica); disintegrants (*e.g.*, potato starch or sodium starch glycolate); or wetting agents (*e.g.*, sodium lauryl sulphate). The tablets may be coated by methods well known in the art. Liquid preparations for oral administration may take the form of, for example, solutions, syrups or suspensions, or they may be presented as a dry product for constitution with water or other suitable vehicle before use. Such liquid preparations may be prepared by conventional means with pharmaceutically acceptable additives such as suspending agents (*e.g.*, sorbitol syrup, cellulose derivatives or hydrogenated edible fats); emulsifying agents (*e.g.*, lecithin or acacia); non-aqueous vehicles (*e.g.*, almond oil, oily esters, ethyl alcohol or fractionated vegetable oils); and preservatives (*e.g.*, methyl or propyl-p-hydroxybenzoates or sorbic acid). The preparations may also contain buffer salts, flavoring, coloring and sweetening agents as appropriate.

Preparations for oral administration may be suitably formulated to give controlled release of the active compound. For buccal administration the compositions may take the form of tablets or lozenges formulated in conventional manner. For administration by inhalation, the compounds for use according to the present invention are conveniently delivered in the form of an aerosol spray presentation from pressurized packs or a nebuliser, with the use of a suitable propellant, *e.g.*, dichlorodifluoromethane, trichlorofluoromethane, dichlorotetrafluoroethane, carbon dioxide or other suitable gas. In the case of a pressurized aerosol the dosage unit may be determined by providing a valve to deliver a metered amount. Capsules and cartridges of *e.g.*, gelatin for use in an inhaler or insufflator may be formulated

containing a powder mix of the compound and a suitable powder base such as lactose or starch.

The compounds may be formulated for parenteral administration by injection, *e.g.*, by bolus injection or continuous infusion. Formulations for injection may be presented in unit dosage form, *e.g.*, in ampoules or in multi-dose containers, with an added preservative. The compositions may take such forms as suspensions, solutions or emulsions in oily or aqueous vehicles, and may contain formulatory agents such as suspending, stabilizing and/or dispersing agents. Alternatively, the active ingredient may be in powder form for constitution with a suitable vehicle, *e.g.*, sterile pyrogen-free water, before use.

The compounds may also be formulated in rectal compositions such as suppositories or retention enemas, *e.g.*, containing conventional suppository bases such as cocoa butter or other glycerides.

In addition to the formulations described previously, the compounds may also be formulated as a depot preparation. Such long acting formulations may be administered by implantation (for example subcutaneously or intramuscularly) or by intramuscular injection. Thus, for example, the compounds may be formulated with suitable polymeric or hydrophobic materials (for example as an emulsion in an acceptable oil) or ion exchange resins, or as sparingly soluble derivatives, for example, as a sparingly soluble salt.

The compositions may, if desired, be presented in a pack or dispenser device that may contain one or more unit dosage forms containing the active ingredient. The pack may for example comprise metal or plastic foil, such as a blister pack. The pack or dispenser device may be accompanied by instructions for administration.

Numerous references, including patents, patent applications and various publications, are cited and discussed in the description of this invention. The citation and/or discussion of such references is provided merely to clarify the description of the present invention and is not an admission that any such reference is "prior art" to the invention

described herein. All references cited and discussed in this specification (including references to biological sequences deposited in GenBank or other public databases) are incorporated herein by reference in their entirety and to the same extent as if each reference was individually incorporated by reference.

EXAMPLES

The present invention is also described by means of the following examples. However, the use of these or other examples anywhere in the specification is illustrative only and in no way limits the scope and meaning of the invention or of any exemplified term. Likewise, the invention is not limited to any particular preferred embodiments described herein. Indeed, many modifications and variations of the invention may be apparent to those skilled in the art upon reading this specification and can be made without departing from its spirit and scope. The invention is therefore to be limited only by the terms of the appended claims along with the full scope of equivalents to which the claims are entitled.

EXAMPLE 1:

A High Throughput Screen to identify candidate genes related to OA

employing RT:PCR analysis of OA “marker” genes

This example describes experiments that use a real time polymerase chain reaction (RT-PCR) assay to identify candidate genes or gene products that may be related to the pathogenesis of OA. In particular, the experiments described in this example test individual full length cDNAs in a high throughput parallel mode for their ability to activate one or more marker genes the expression of which is associated with OA in human articular chondrocyte (HAC) cells.

Materials and Methods:

Data mining OA cDNA libraries. cDNA libraries are preferably generated “in house” from OA chondrocyte cells and used in screening assays of the present invention. Raw sequences of genes in the OA cDNA library are pre-processed and then annotated to

identify clones that are likely to be particularly useful as drug targets. In particular, the Phred/Phrap system (Gordon *et al.*, *Genome Res.* 2001, 11(4):614-625; Ewing *et al.*, *Genome Res.* 1998, 8:175-185; Ewing *et al.*, *Genome Res.* 1998, 8:186-194; Gordon *et al.*, *Genome Res.* 1998, 8:195-202) is used to trim raw sequences to high quality regions and to trim vector sequences. Mitochondrial DNA, ribosomal DNA, repeat regions, low complexity sequence and linker regions are removed. Then, the resulting processed sequences are compared to known and predicted genes in the GenBank database.

Next, the resulting sequence annotations are searched for keywords of interest to select specific clones for screening. The keywords are chosen to emphasize proteins in classes considered most likely to play a role in the disease process based on current biological knowledge. Thus, for example, terms indicative of signal transduction and proteolysis (*e.g.*, “kinase,” “receptor,” “factor” and “protease”) are included since these processes have been previously implicated in osteoarthritis. Individual full length clones for genes selected in this way are then retrieved.

Preparation of plasmid DNA from full length cDNA clones. Bacterial stocks of full-length clones from the OA cDNA libraries in pCMVSport6 vector (Invitrogen, Carlsbad CA) are grown in 96 deep-well blocks (Qiagen, Valencia CA), each well containing 1.0 mL of Terrific broth (Sigma, St. Louis MO) and ampicillin (40 µg/mL). The cultures are initially grown for 24 hours at 37 °C with shaking at 300 RPM, re-inoculated into a fresh block and further grown overnight to ensure uniform growth of bacteria in all wells. Plasmid DNA is isolated from the bacteria with a Biorobot 8000 (Qiagen, Valencia CA) following standard protocols described by the manufacturer.

GATEWAY™ transfer of full-length cDNA clones. In order to screen individual clones in an RT-PCR assay, cDNA clones in the OA libraries are transferred from the pCMVSport6 vector to a retroviral vector using the GATEWAY™ platform (Invitrogen, Carlsbad CA).

Gateway BP reactions are carried out in 96-well plates (Ashford, United Kingdom). Briefly, 1.0 µL (100-120 ng) plasmid DNA is added to each well containing 1 µL

- 57 -

(100-120 ng) pDONR 201 entry vector (Invitrogen, Carlsbad CA), 1 μ L BP reaction buffer (Invitrogen, Carlsbad CA), 1 μ L tris-EDTA and 1 μ L BP Clonase enzyme mix (Invitrogen, Carlsbad CA) on ice. The plates are incubated at 25 °C for three hours.

The Gateway LR reaction mix, consisting of 0.25 μ L of 0.75 M NaCl, 1.0 μ L (100-120 ng) linearized retroviral vector and 1.5 μ L LR Clonase enzyme mix (Invitrogen, Carlsbad CA) is added to each BP reaction.

The retroviral vector contains a hybrid cytomegalovirus (CMV)/Maloney murine leukemia virus (MoMuLV) 5' LTR, a MoMuLV 3' LTR and a retroviral packaging Ψ site and may be constructed according to conventional methods. The same vector is also commercially available (Clontech). Samples are mixed thoroughly and incubated for two additional hours at 25 °C. One-tenth volume (0.8 μ L; 2 mg/mL) of Proteinase K solution (Invitrogen, Carlsbad CA) is added and incubated at 37 °C for ten minutes.

40 μ L of Max efficiency DH5 α cells (Invitrogen, Carlsbad CA) are aliquoted into wells of a flat bottom 96-well block (Qiagen, Valencia CA) on ice. 1 μ L of the LR reaction mixture from each well is then added to the cells and incubated on ice for 30 minutes. Cells are heat shocked for 30 seconds at 42 °C, placed on ice for 1-2 minutes, and 65 μ L of S.O.C. medium (Invitrogen, Carlsbad CA) is added to each well. The 96-well block is incubated at 37 °C for one hour with shaking. 35 μ L of the final transformation mixture was added to each well of a 2x48 deep-well block containing LB agar with 40 μ g/mL zeocin (Invitrogen, Carlsbad CA), and was grown overnight at 37 °C. Single colonies are inoculated to 1 mL Terrific broth/zeocin (40 μ g/mL) in 96-well format and grown overnight at 37 °C/300 RPM. Plasmid DNA is isolated using a Biorobot 8000 (Qiagen, Valencia CA) following standard protocols described by the manufacturer.

Production of Supernatants. GP2-293 packaging cells (BD Biosciences Clontech, Palo Alto CA) are seeded (5×10^4 cells per well) in 96-well PDL plates (BD Biosciences Clontech, Palo Alto CA) 16-24 hours prior to transfection in antibiotic-free DMEM containing 10% FBS (Invitrogen, Carlsbad CA). GATEWAY™ constructs along

with envelope vector pVPack-VSV-G (Stratagene, La Jolla CA) are cotransfected into the packaging cells by combining 150 ng GATEWAY™ construct with 150 ng envelope plasmid in a total volume of 25 μ L OPTIMEM (Invitrogen, Carlsbad CA) in a 96-well format. In a separate plate, 25 μ L of OPTIMEM™ is combined with 1 μ L of Lipofectamine 2000 reagent (Invitrogen, Carlsbad CA). This second solution is incubated for five minutes at room temperature, and the two solutions are then combined. The DNA-lipofectamine complex is allowed to form for 20 minutes before being added to the cells. The media is replaced with complete media containing antibiotics 16-24 hours after the transfection procedure. The media, containing viral supernatants; is collected at 24 and 48 hours post transfection.

Transduction into Primary Chondrocytes. Primary chondrocytes (isolated from cartilage tissue obtained from joint replacement surgery, Mullenberg Hospital, Plainfield, NJ) are seeded at 1.1×10^4 cells per well in duplicate 96-well plates, twenty-four hours prior to transduction. At time of transduction, media are replaced with 100 μ L viral supernatant and 100 μ L complete media supplemented with 20 mM HEPES and 16 μ g/mL polybrene. Cells are centrifuged in a swinging bucket rotor at 32 °C, 1000 x g, for 1.5 hours. The media are replaced after 16-24 hours with fresh media, and cells are incubated for an additional 48 hours.

RNA isolation and RT-PCR. Total cellular RNA is isolated from pooled duplicate 96-well plates using a BioRobot 8000 (Qiagen, Valencia CA) and Qiagen RNeasy 96 Biorobot reagents according to the manufacturer's instructions. On-column DNase I digestion is employed, pursuant to standard protocols published by Qiagen (Valencia CA) to eliminate contaminating genomic DNA. First strand cDNA is synthesized using random primers with a High-Capacity cDNA Archive kit (PE Applied Biosystems, Foster City CA) in a 100 μ L reaction volume. Real time PCR (RT-PCR) was performed in a 384-well format on the ABI Prism 7900HT Sequence Detection System (Applied Biosystems, Foster City CA). The cDNA template and PCR mix are distributed using a Biomek FX liquid handling robot. The 20 μ L reaction contains 5 μ L cDNA, 200 nM forward and reverse primers, and SYBR Green PCR Master Mix (Applied Biosystems, Foster City CA). The default cycling program (95 °C – 10 minutes and 40 cycles of 95 °C – 15 second, 60 °C – 1 minute) is followed by a

dissociation stage whereby a melting curve is generated to confirm the specificity of the PCR product and the absence of primer dimers.

Amplification of the ubiquitously expressed gene GAPDH is used to normalize the amount of cDNA added to the reaction. ROX dye is used as a passive reference to normalize non-PCR related fluctuations in the fluorescence signal. Changes in gene expression are calculated according to the manufacturer's instructions using the comparative C_t method which makes use of a calibrator sample (*i.e.*, a sample to which all others are compared). The value of the calibrator sample is normalized as 1.0 so that expression levels for all other samples are defined as multiples of the expression level measured for the calibrator sample. For RT-PCR experiments described in this example, a retroviral vector containing no cDNA insert is used as the calibrator sample. Briefly, the amount of target relative to the calibrator is calculated according to the formula: $2^{-\Delta C_t}$ where C_t = thresh hold cycle (cycle# at which the amount of amplified target reaches a fixed thresh hold).

Cell treatment. To optimize RT-PCR conditions and validate the markers chosen in these screens, human articular chondrocytes from knee joint cartilage obtained in joint replacement surgeries are plated in 96 well plates (11,000 cells per well) using DMEM medium containing 10% FBS (Invitrogen, Carlsbad CA). Two days later, the cells are treated with IL-1 (5 ng/mL) (Peprotech, UK, London) and OSM (50 ng/mL) or PDGF (50 ng/mL) or TGF- β (50 ng/mL) overnight in serum free medium. OSM, PDGF and TGF- β are purchased from R&D systems, (Minneapolis, MN). RNA is isolated from these cells and evaluated by RT-PCR using the methods described above.

Data mining for OA associated genes. Early and late OA cDNA libraries are mined to identify the most abundant genes associated with OA cartilage. Among the most highly expressed genes in early OA libraries is C17. An exemplary nucleotide sequence for this gene is available from GenBank Accession No. NM_018659. The C17 gene encodes a protein that has been described as "cytokine-like" and was previously believed to be expressed only in CD34+ hematopoietic cells. The number of ESTs for C17 is higher in

- 60 -

early OA than in late OA, suggesting that the expression level of this gene decreases during progression of the disease.

A second abundant gene, known as SMOC2 (available from GenBank Accession No. NM_022138) is highly expressed in late OA cartilage, as evidenced by the higher number of ESTs in a late OA cDNA library than in an early OA cDNA library. Thus, expression of this gene presumably increases during progression of the disease.

OA associated genes are also identified by mining gene expression data generated using DNA microarrays. U95A GeneChips from Affymetrix (Santa Clara, CA) are used according to the manufacturer's recommended protocol to compare sets of expressed genes in knee cartilage from 12 OA and 9 healthy patients. The average difference in intensity is calculated for all genes, and the significance of the difference between diseased and healthy patients is evaluated using a statistical t-test. Visual inspection confirms that the computed differences represent differences between patient groups rather than variability in the data. Among the most significantly changed genes between normal and OA knees are the genes OSF-2 (also known as periostin), MARCKS (myristoylated alanine-rich protein kinase C substrate), retinoic acid receptor beta, zinc finger protein Zic1, BASP1 (brain abundant membrane attached signal protein 1), and DIM1.. All of these genes are upregulated in OA patients but have not previously been associated with that disease. GenBank Accession numbers for preferred nucleotide sequences sequences of these genes are provided below, along with GenBank Accession numbers for amino acid sequences that are encoded by these nucleic acids.

TABLE I NEWLY IDENTIFIED OA MARKER GENES

GenBank Accession Nos.

Gene	Nucleotide	Protein	
OSF-2	NM_006475 SEQ ID NO 171	NP_006466	SEQ ID NO 23
MARCKS	NM_002356	NP_002347	SEQ ID NO 24

- 61 -

SEQ ID NO 172			
Retinoic Acid Receptor β	NM_00965	NP_000956	SEQ ID NO 25
	SEQ ID NO 173;	NP_057236	SEQ ID NO 26
	NM_016152		
	SEQ ID NO 174		
BASP1	NM_006317	NP_006308	SEQ ID NO 27
	SEQ ID NO 175		
Zic1	NM_003412	NP_003403	SEQ ID NO 28
	SEQ ID NO 176		
DIM1	NM_006701	NP_006692	SEQ ID NO 29
	SEQ ID NO 177		

Choosing OA markers. To identify genes that are involved in osteoarthritis (OA) and/or may be useful for the diagnosis or treatment of that disease, a real time polymerase chain reaction (RT-PCR) based assay is used to screen cDNA clones in a high throughput parallel mode. In particular, the assays described in this example use RT-PCR to measure expression of certain genes that are considered “markers” or indicators of OA.

The marker genes are preferably selected to represent various biological pathways that are affected in OA (see Table II). The GenBank Accession Number for an exemplary nucleotide sequence is also provided for each marker gene. In addition, the gene GAPDH (GenBank Accession No.. AJ_005371) is selected as a ubiquitously expressed “housekeeping” gene to which all samples are normalized.

TABLE II: MARKER GENES FOR OA PHENOTYPES

OA Phenotype/Characteristic	Marker Gene	Accession No.
• Cartilage degradation	Aggrecanase-1 MMP-13	AF148213 XM_006274
• Aberrant chondrocyte cell differentiation (hypertrophy and proliferation)	Collagen Type I Collagen Type Iia Collagen Type X	AF017178 XM_012271 NM_000493
• Inflammation	Inos Cox-2	AB022318 M90100
• Matrix synthesis	Aggrecan Decorin	X80278 AF91944

PCR primers for each of the marker genes is designed with Primer Express software (Applied Biosystems, Foster City CA) under default parameters and reaction conditions. The primer sequences used for marker genes in this example are provided in Table III, below.

TABLE III: RT-PCR PRIMERS TO DETECT OA MARKER GENES

Marker Gene	Primer	Sequence	
Aggrecanase-1	forward	5'-TTTCCCTGGCAAGGACTATGA-3'	(SEQ ID NO:1)
	reverse	5'-AATGGCGTGAGTCGGGC-3'	(SEQ ID NO:2)
MMP-13	forward	5'-TGATCTCTTGGAAATTAAGGAGCAT-3'	(SEQ ID NO:3)
	reverse	5'-ATGGGCATCTCCTCCATAATTG-3	(SEQ ID NO:4)
COX-2	forward	5'-AAATTGCTGGCAGGGTTGC-3'	(SEQ ID NO:5)
	reverse	5'-TTTCTGTACTGCAGGGTGGAAC-3'	(SEQ ID NO:6)
iNOS	forward	5'-GCAAACCTTCAAGGCAGCC-3'	(SEQ ID NO:7)
	reverse	5'-TGCTGTTGCCTCGGACAT-3'	(SEQ ID NO:8)
Collagen IIa	forward	5'-ACGCTGCTCGTCGCCG-3'	(SEQ ID NO:9)
	reverse	5'-GCCAGCCTCCTGGACATCCT-3'	(SEQ ID NO:10)
Collage X	forward	5'-ACCCAACACCAAGACACAGTTCT-3'	(SEQ ID NO:11)
	reverse	5'-TCTTACTGCTATACTTTACTCTTATGGTGTA-3'	(SEQ ID NO:12)
Collagen I	forward	5'-CAGCCGCTTCACCTACAGC-3'	(SEQ ID NO:13)
	reverse	5'-TTTGTATTCAATCACTGTCTTGCC-3'	(SEQ ID NO:14)
Decorin	forward	5'-GCCAGCCTCCTGGACATCCT-3'	(SEQ ID NO:15)
	reverse	5'-AGTCCTTCAGGCTAGCTGCATC-3'	(SEQ ID NO:16)
Aggrecan	forward	5'-TCGAGGACAGCGAGGCC-3'	(SEQ ID NO:17)

	reverse	5'-TCGAGGGTGTAGCGTAGAGA-3'	(SEQ ID NO:18)
GAPDH	forward	5'-ATGGGGAAGGTGAAGGTCG-3'	(SEQ ID NO:19)
	reverse	5'-TAAAAGCAGCCCTGGTGACC-3'	(SEQ ID NO:20)

Expression changes of OA markers. To validate the RT-PCR conditions and primers, human articular chondrocyte cells are treated with various compounds as described in the Materials and Methods section, above, for this example. These compounds are known to induce an OA phenotype in the chondrocyte cells. See, for example, Smith *et al.*, *Arthritis Rheum.* 1991, 34:697-706; Tardif *et al.*, *Arthritis Rheum.* 1999, 42:1147-1158.

RT-PCR is performed to determine whether there is any detectable change in expression of one or more marker genes. Table IV, below, summarizes exemplary changes in mRNA levels of each marker mediated by treatment of the chondrocyte cells with: (i) IL-1 and OSM; (ii) TGF- β ; and (iii) PDGF. Expression levels are indicated as the multiples of normalized expression levels (*i.e.*, as the “fold changes” in Mrna levels) measured in untreated chondrocyte cells. The data in Table IV indicates that the various OA marker genes undergo the expected changes in their expression levels in response to known treatments that induce an OA phenotype. Moreover, the response of these OA marker genes is sensitive enough to validate this RT-PCR assay for running high throughput functional screens.

**TABLE IV: CHANGE OF MARKER GENE EXPRESSION
IN TREATED CHONDROCYTE CELLS**

Marker Gene	Treatment			
	IL-1/OSM	TGF- β	PDGF	Untreated
Aggrecanase-1	50.21	3.81	2.46	1.00
MMP-13	125.37	6.92	4.20	1.00
Collagen Iia	-227.54	1.45	-2.04	1.00
Collagen X	-3.71	19.97	-1.79	1.00
Collagen I	-3.58	3.84	-1.89	1.00

To further validate the RT-PCR assay for use in functional screens, the constitutively active gene AKT/PKB (GenBank Accession No. NPL-001907) is overexpressed in chondrocyte cells by retroviral-mediated gene transfer. Activation of this gene's biochemical pathway induces Aggrecanase-1 and MMP-13 in chondrocyte cells. Cellular RNA is harvested 48 hours and 72 hours post transduction, and changes in the expression of MMP-13 and aggrecanase-1 mRNA are detected by RT-PCR. AKT over-expression results in a 12-fold induction of Aggrecanase-1 and a 9-fold induction of MMP-13.

These experiments validate RT-PCR as a valid and sensitive method that can be used in high throughput functional assays to identify novel mediators of an OA phenotype.

Results:

Verified hits from an RT-PCR screen. The high throughput screen disclosed in this example is performed by overexpressing a select set of about 1200 test genes mined from OA libraries in primary chondrocytes. Expression levels of the OA marker genes are measured by RT-PCR when these test genes are expressed in chondrocyte cells, and these expression levels are compared to the expression levels measured in untransformed cells. To the Applicant's knowledge, heretofore, high throughput screens of chondrocytes have not been reported.

Table V lists 63 candidate genes identified in such an RT-PCR screen, along with GenBank accession numbers for their preferred nucleotide sequences. Residues coding the predicted amino acid sequence (*i.e.*, the coding sequence or "CDS") are also specified.

TABLE V: CANDIDATE GENES IDENTIFIED IN RT-PCR SCREEN

Gene	SEQ ID NOS	Accession # (nucleotide)	CDS	Accession # (protein)
SFRS3	30/31	NM_003017	106-600	NP_003008
SFRS10	32/33	NM_004593	122-988	NP_004584
U2AF1	34/35	NM_006758	39-761	NP_006749
TGFBR2	36/37	NM_003242	336-2039	NP_003233
TSC22	38/39	NM_006022	192-626	NP_006013
MTIF3	40/41	NM_152912	237-1073	NP_690876
CAMK2G	42/43	XM_044349	5-1561	XP_044349

Gene	SEQ ID NOS	Accession # (nucleotide)	CDS	Accession # (protein)
PHKG1	44/45	NM_006213	120-1283	NP_006204
DTR	46/47	NM_001945	262-888	NP_001936
TGFA	48/49	NM_003236	32-514	NP_003227
SF3B1	50/51	NM_012433	1-3915	NP_036565
BCAT1	52/53	BC033864	424-1386	AAH33864
CSNK2A1	54/55	NM_001895	149-1324	NP_001886
FLJ14103	56/57	NM_024689	76-624	NP_078965
U5snRNP-AP	58/59	AF221842	106-2931	AAF66128
VTI2	60/61	NM_006370	341-1039	NP_006361
LOC51231	62/63	NM_016440	119-1543	NP_057524
TCEA3	64/65	XM_114075	136-1182	XP_114075
UBE2G1	66/67	NM_003342	167-679	NP_003333
SENP3	68/69	NM_015670	71-1795	NP_056485
SF3A3	70/71	NM_006802	9-1514	NP_006793
NRF1	72/73	NM_005011	79-1647	NM_005002
ARF6	74/75	NM_001663	518-1045	NP_001654
TNFSF12	76/77	NM_003809	97-846	NP_003800
RELA	78/79	NM_021975	39-1652	NP_068810
TNFRSF1A	80/81	NM_001065	282-1649	NP_001056
RPS6KB2	82/83	NM_003952	16-1503	NP_003943
GSK3A	84/85	NM_019884	115-1566	NP_063937
CLC	86/87	NM_013246	46-723	NP_037378
ZNF213	88/89	XM_036493	366-1745	XP_036493
CAMK1	90/91	NM_003656	179-1291	NP_003647
FGFR1	92/93	NM_023107	727-1635	NP_075595
CLK1	94/95	NM_004071	156-1610	NP_004062
MUS81	96/97	NM_025128	511-1941	NP_079404
VEGF	98/99	NM_003376	702-1277	NP_003367
FGF18	100/101	NM_033649	538-1161	NP_387498
HGS	102/103	NM_004712	78-2411	NP_004703
RIPK2	103/104	NM_003821	212-1834	NP_003812
TNFAIP1	105/106	NM_021137	212-1162	NP_066960
CLK3	107/108	NM_003992	57-1529	NP_003983
ADAMTS9	109/110	NM_020249	13-3231	NP_064634
CDKN2C	111/112	NM_001262	1217-1723	NP_001253
FYN	113/114	NM_002037	580-2193	NP_002028
FGF1	115/116	NM_000800	142-609	NP_000791
PTN	117/118	NM_002825	396-902	NP_002816
GLA	119/120	NM_000169	61-1350	NP_000160
LOC162542	121/122	XM_091624	12-287	XP_091624
EXT2	123/124	NM_000401	488-2644	NP_000392
METAP2	125/126	NM_006838	35-1471	NP_006829

Gene	SEQ ID NOS	Accession # (nucleotide)	CDS	Accession # (protein)
MLL3	127/128	NM_021230	364-12441	NP_067053
RARG	129/130	NM_000966	138-1502	NP_000957
Rho GEF p114	131/132	NM_015318	108-3155	NP_056133
CHKL	133/134	NM_005198	185-1372	NP_005189
ANXA2	135/136	NM_004039	50-1069	NP_004030
LOC143785	137/138	XM_084635	390-1025	XP_084635
TGFB3	139/140	NM_003239	254-1492	NP_003230
MAP3K11	141/142	NM_002419	494-3037	NP_002410
PHKG2	143/144	NM_000294	94-1314	NP_000285
NNMT	145/146	NM_006169	118-912	NP_006160
TPT1	147/148	NM_003295	95-613	NP_003286
IL17BR	149/150	NM_018725	45-1553	NP_061195
ECRG4	151/152	NM_032411	109-555	NP_115787

EXAMPLE 2:**A High Throughput Screen to identify candidate genes related to OA employing analysis of clonal proliferation of chondrocyte clusters in vitro**

This example describes experiments using another high throughput screen to identify genes and gene products associated with OA. In particular, the experiments described in this example screen whole cDNA libraries and identify genes that induce clonal proliferation of chondrocyte clusters, a type of cell proliferation associated with osteoarthritic chondrocytes.

Materials and Methods:

Construction of late-OA cDNA library. 1 µg of polyA(+) RNA is isolated from 200 µg of total RNA (extracted from OA chondrocyte cells) using a Dynabeads mRNA Purification kit (Dynal, Lake Success NY) following the manufacturer's recommend protocol. The library is constructed using the Superscript Choice System for cDNA Synthesis (Invitrogen Life Technologies, Carlsbad CA). The procedure follows the manufacturer's recommended protocol, but with the modifications specifically noted here. A modified oligo d(T)-NotI primer is used to prime the first-strand synthesis reaction.

Following second-strand synthesis, adaptor ligation includes the use of EcoRI half-site adapters and Not I restriction digest to allow for the directional cloning of the size fractionated double-stranded cDNA into the entry vector pENTR2B (Invitrogen Life Technologies, Carlsbad CA). This vector is constructed to contain GATEWAY™ site-specific recombination sites (attL1 and attL2) flanking the cloned cDNAs and allows the one-step transfer of cDNA inserts into retroviral vectors containing the attR1 and attR2 site-specific recombination sites via LR clonase.

Transfer of Late-OA library. 300 ng of amplified library DNA is used for the transfer of cDNAs into each of two linearized retroviral vectors using LR Clonase (Invitrogen, Carslbad CA) according to the manufacturer's recommended protocol. Following a brief clean-up step, the LR reaction products are electroporated into STBL4 electrocompetent cells (Invitrogen Life Technologies, Carlsbad CA) and amplified on selective solid medium.

Construction of Early-OA cDNA library. cDNA libraries are constructed "in house" from chondrocytes isolated from early stage human OA cartilage, following the same procedure as for the late-OA cDNA library, above, but with the following exceptions. A modified oligo d(T)-Sfil(B) primer primes the first strand synthesis reaction. Following second-strand synthesis, adaptor ligation includes the use of Sfi I (A) half-site adapters and Sfi I restriction digest to allow for the directional cloning of the size fractionated double-stranded cDNA into the vector pCMBSport6 (Invitrogen Life Technologies, Carlsbad CA). This vector has been constructed to contain the GATEWAY™ site-specific recombination sites attB1 and attB2 flanking the cloned cDNAs and requires a two-step transfer of cDNA inserts — first into an entry vector (BP reaction) and second into a retroviral vector containing the attR1 and attR2 site-specific recombination sites via LR cleanse (LR Reaction; Nitrogen, Carlsbad CA). The early-OA cDNA library is transferred into a retroviral vector using DH10B cells from Invitrogen (Carlsbad, CA) as the host *E. coli* strain.

Transfection. GP2-293 cells are plated the day before transfection at 7×10^5 cells per well in 6-well Bio coat plates (BD Biosciences, Palo Alto CA) with 2 M DMEM

containing 10% FBS per well (Nitrogen, Carlsbad CA). The following day, for each well to be transfected, 1 μ g of OA cDNA library DNA and 1 μ g of pVpack-VSVG plasmids are diluted in OPTIMEM™ medium (Invitrogen, Carlsbad CA) to a final volume of 250 μ L.

Lipofectamine 2000 (Invitrogen, Carlsbad CA) (9 μ L/2 μ g DNA for each well) is diluted in OPTIMEM™ to 250 μ L final volume. The diluted Lipofectamine is added drop wise to the diluted DNA, gently mixed and incubated at room temperature for 20 minutes. The DNA-Lipofectamine complex (500 μ L per well) is then added directly into the 2 mL conditioned medium, and the plates are incubated overnight at 37 °C. The following day, the medium in each well is aspirated and replaced with 3 mL DMEM containing 10% FBS per well. Supernatants are collected 48 hours and 72 hours post transfection, filtered through a 0.22 micron filter and frozen at -80 °C.

Spinfection of viral supernatants into chondrocytes. Human chondrocyte cells (Cell Applications, San Diego CA) derived from fetal human cartilage are cryopreserved at the first passage and used at passage 2. The chondrocyte cells are cultured in six well plates at a cell density of 2.5×10^5 cells per well. The complete growth media is replaced with spinnoculation medium containing DMEM, 10% FBS, 8 μ g/mL polybrene and 10 μ M HEPES). The viral supernatants are diluted 1:2 with this medium, filtered through a 0.22 micron filter and added to the wells (2 mL/well). The chondrocyte cells are centrifuged for 1.5 hours at 2700 rpm, 32 °C. The cells are then placed in a CO₂ incubator for six hours. At the end of the day, 2 mL fresh spinnoculation media is added and the cells are incubated overnight. The next day, the spinnoculation media is replaced with growth media (containing DMEM and 10% FBS), and the cells are cultured for three days.

Chondrocyte cloning assay. Three days post transduction, the chondrocyte cells are trypsinized and suspended in 0.4% low melt agarose (Life Technologies, Rockville MD) in complete DMEM (Invitrogen, Carlsbad CA) at a density of 1×10^4 cells/mL. 8 mL of the chondrocyte cell suspension is pipeted into 10 cm tissue culture plates that have been previously coated with 8 mL of 0.7% low melt agarose in DMEM containing 10% FBS

- 70 -

(Invitrogen, Carlsbad CA). The agarose is allowed to solidify at room temperature, and then placed in a 37 °C humidified incubator for 3-4 weeks.

Identification of chondrocyte cell clones. Chondrocyte cell clones are identified using a microscope under 20X magnification, picked using a hand pipetor and the seeded directly into 6-well cluster plates (BD Biosciences Clontech, Palo Alto CA) at one clone per well. Clones are allowed to expand in monolayer culture (DMEM, 10% FBS) until confluent.

RNA is isolated using RNeasy 96 (Qiagen, Valencia CA). RT-PCR is performed using 96 well format Advantage RT-PCR kit (Clontech, Palo Alto CA) with AmpliTaq Gold (Perkin Elmer, Palo Alto CA), with the following primers for the AttB sites flanking each cDNA:

AttB1	5'-CAAGTTGTACAAAAAAGC-3'	(SEQ ID NO:21)
AttB2	5'-ACCACTTGTACAAGAAAG-3'	(SEQ ID NO:22)

The cDNA sequences thus isolated are cloned using a TOPO TA cloning kit (Invitrogen, Carlsbad CA). The plasmid DNA is then sequenced by standard sequencing methods (Seqwright, Houston TX) for identification. Full length clones corresponding to the identified genes were obtained from a full length clone collection that is generated "in house" by routine methods.

GATEWAY™ transfer of full-length clones. Full length cDNA clones obtained from an in house collection and are transferred into a retroviral vector using the Gateway™ platform as described above, and the fidelity of all clones is verified by nucleotide sequencing (Seqwright, Houston TX).

Image Analysis. Validation of a cDNA's ability to promote clonal chondrocyte cell proliferation is measured in agarose cultures of single-gene transduced chondrocyte cells. Chondrocyte cell response is based on the number of clones formed that are greater than 50 microns in diameter. Chondrocyte cell clones are observed using an

Olympus IX70 inverted microscope with a 4X objective (Olympus America, Inc.; Melville NY) under brightfield illumination. Each culture dish is photographed at five different microscope fields on three replicate plates and digitally captured on an Olympus MagnaFire camera and software. Each image is then analyzed using Image-Pro Plus v.4.5 software (Media Cybernetics, Inc., (Silver Spring, MD). Each image is optimized for cell and clone recognition using enhancement filters before being counted. Counts are done automatically using the software, and mean diameter measurements of cells or clones were compiled on an Excel (Microsoft Corporation, Redmond WA) spreadsheet.

Results:

Normal chondrocyte cells quickly lose their phenotype and become fibroblastic when grown in monolayer cultures. However, when grown in a 3-dimensional matrix (e.g., of agarose or alginate) these cells remain chondrocytic in their appearance, gene expression profile and low cell division rate. See, Benya & Shaffer, *Cell* 1982, 30:215-224; Glowacki *et al.*, *Proc. Soc. Exp. Biol. and Med.* 1983, 172:93-98. Under these culturing conditions, certain growth factors have been shown to induce cell proliferation, as evidenced by the formation of cell clusters reminiscent of the clusters observed in OA cartilage. Kato *et al.*, *J. Cell Physiol.* 1987, 133:491-498; Iwamoto *et al.*, *Biochem. Biophys. Res. Comm.* 1989, 159:1006-1011.

To evaluate whether such growth characteristics could be used in a functional screening assay, the clone forming activity of transduced chondrocyte cells overexpressing bFGF is compared to clone forming activity in chondrocyte cells cultured with bFGF exogenously added to the culture medium. The results demonstrate that expression of a retrovirally transduced gene in chondrocyte cells can stimulate cell proliferation in a manner similar to that observed when the gene product is added exogenously (data not shown).

cDNA libraries are constructed from both early and late stage OA cartilage tissue and transferred to retroviral vectors. These libraries can be virally packed and transduced in early passage human chondrocyte cells. Following growth in suspension cultures for 3-4 weeks, cell clusters are isolated using a micropipet under magnification. The

transgenes are recovered from these cell clusters using PCR, and are identified by routine nucleotide sequencing. The recovered transgenes are preferably verified by determining whether they induce chondrocyte cluster formation when the full length genes are over expressed individually in chondrocyte cells.

Table VI, below, lists candidate genes that can be identified and verified by such a screening assay. GenBank accession numbers for the preferred nucleotide sequences of those genes are also specified, along with the residues coding the predicted amino acid sequence (*i.e.*, the “CDS”) accession numbers for preferred amino acid sequences of their gene product(s).

TABLE VI: CANDIDATE GENES IDENTIFIED IN CLONAL SCREENS

Gene	SEQ ID NOs	Accession # (nucleotide)	CDS	Accession # (protein)
C1r	153/154	NM_001733	52-2169	NP_001724
NDUFV2	155/156	NM_021074	19-768	NP_066552
BPOZ	157/158	NM_032548	505-1515	NP_115937
IL17-RC	159/160	NM_032732	198-1814	NP_116121
COMP	161/162	NM_000095	26-2219	NP_000086
SLC16A3	167/168	NM_004207	1-465	NP_004198
FGF1	169/170	NM_000800	142-609	NP_000791

Candidate genes which may be identified in such clonal screening assays include the bFGF gene, further validating the screening assay.

EXAMPLE 3

Sequences for candidate genes and newly identified OA marker genes identified herein

```
>gi|24025684|gb|NM_003017.2|SFRS3 1403bp mRNA Homo sapiens
splicing factor, arginine-serine-rich 3 (SFRS3), mRNA.
CCGGGTGAGTGAGAGAGTTGGTTGGTGGGCCGGAGGAAAGCGGGAAAGACTCATCGGA
GCGTGTGGATTGAGCCGCCGCATTTTAACCTAGATCTGAAATGCATCGTGATTCC
TGTCCATTGGACTGTAAGTTATGTAGGCAATCTTGGAAACAATGGCAACAAGACGGAA
TTGGAACGGGCTTTGGCTACTATGGACCCTCCGAAGTGTGGGTTGCTAGAAACCCA
CCCGGTTGCTTTGTTGAATTGAAGATCCCCGAGATGCAGCTGATGCAGTCGAGAG
```

CTAGATGGAAGAACACTATGTGGCTGCCGTGTAAGAGTGGAACTGTCGAATGGTAAAAAA
 AGAAGTAGAAATCGTGGCCACCTCCCTCTGGGGTCGTCGCCCTCGAGATGATTATCGT
 AGGAGGAGTCCTCACCTCGCAGATCTCAAGAAGGAGAAGCTCTCTCGCAGCCGG
 AGCAGGTCCCTTCTAGAGATAGGAGAAGAGAGATCGCTGTCGGGAGAGAAATCAC
 AAGCCGTCCCCTCGATCCTCTAGGCTCGTAGTCAGGTCAAATGAAAGGAAATAG
 AAGACAGTTGCAAGAGAAGTGGTGACAGGAAATTACTTCATTGACAGGAGTATGTAC
 AGAAAATTCAAGTTGTTGAGACTTCATAAGCTGGTGCATTTAAGATGTTTAGC
 TGTTCAAATCTGTTGTCTTGAACACAGTGACACAAAGGTGTAATTCTATGGTTGA
 AATGGATCATACGAGGCATGTAATACCAAGAATTGTTACTTACAATGTTCCCTAACGCA
 AAATTGAATTGCTTGAACCTTAACTTATGCACAGACTGATAATAAACCTCTAAACCTG
 CCCAGCGGAAGTGTGTTTTAAATTAAATACAGAAACAACTGGCAAAATTGAAC
 TAAGATTTACTTTTCCATAGCTGGATATAGGCTGCAGCTATAGTTGAACAAGCAG
 TCTTAAAAACTGCTGTGAAACACAGGCCATCAGGAAAACGAAATGCTGCACTATTAAA
 TTAGAGGTTTGAAAAATCCAACCTCTCATCCTGGCAGAGGTTGCCTAGTTGGTATAGA
 ATGTTAAGTTCAAGAAAGTTACCTTGCTTCTAGGTGATAAGTTCTTATTGATTGCT
 GTATATGGATACATGGCTGTCGTGACATTCTTATGTGCAAATTGTGATTCAAAAT
 GTCCTGCCAGTTAAGGGTACATTGTAGAGCCAACTTGAGTTACTGTGCAAGATT
 TTTCATGCTGTCAATTGTAATATGTTGAGAATCCTGGGATTAAAGTTGGTTA
 CAAATTGTTAAAAAAAAAAAAAA

>gi|4506901|gb|NP_003008.1|SFRS3 164aa linear splicing factor, arginine/serine-rich 3; splicing factor, arginine//serine-rich, 20-kD [Homo sapiens].

MHRDSCPLDCKVYVGNLGNNGNKTELERAFGYYGPLRSVWVARNPPGFVFEDPRDAADAVRELDGRTLGCRVRVELSNGEKRSRNRGPPPSWGRRPRDYRRRSPPPRRSPRRSFSSRSRSLSRDRRRERSLRERNHKPSRSRSRSRSNERK

>gi|4759097|gb|NM_004593.1|SFRS10 1972bp mRNA Homo sapiens splicing factor, arginine/serine-rich 10 (transformer 2 homolog, Drosophila) (SFRS10), mRNA.

GAATTGGCACGGGGCGACCGGGCGTCGTGCGGGCTGCGGCCGGAGCCTCTTAAGGA
 AGGTGCAAGAGGTTGGCAGCTCGATTGAAGCACATCGACCAGCGACAGCAGCCAGGAGT
 CATGAGCGACAGCGCGAGCAGAACTACGGCGAGCGGAATCCGTTCTGCTTCCAGAAG
 TGGAAAGTGTACGGATCGGGAAATCTGCAAGGCATACCCCTGCAAGGTCTCGCTCCAA
 GGAAGATTCCAGGCCTCCAGATCAAAGTCCAGGTCCGATCTGAATCTAGGTCTAGATC
 CAGAAGAAGCTCCGAAGGCATTATACCCGGTCACGGTCTCGCTCCGCTCCATAGACG
 ATCACGTAGCAGGTCTACAGTCGAGATTATCGTAGACGGCACAGCCACAGCCATTCTCC
 CATGTCTACTCGCAGGCCTCATGTTGGAAATCGGGCAAATCCTGATCCTAACTGTTGTCT
 TGGAGTATTGGGCTGAGCTTGTACACCACAGAAAGAGATCTAAGAGAAGTGTCTCTAA
 ATATGGTCCCATTGCCATGTGTCTATTGATATGACCAGCAGTCTAGGCGTTCAAGAGG
 ATTGCGCTTGTATATTGAAAATGTAGATGATGCCAAGGAAGCTAAAGAACGTGCCAA
 TGGAAATGGAGCTTGTATGGGCGTAGGATCAGAGTTGATTCTCTATAACAAAAAGACCACA
 TACGCCAACACCAAGGAATTACATGGGAGAACCTACCTATGGCAGCTCGCCGTGGGA
 TTACTATGACAGAGGATATGATCGGGCTATGATGATCGGGACTACTATAGCAGATCATA
 CAGAGGAGGAGGTGGAGGAGGAGGAGTGGAGAGCTGCCAAGACAGGGATCAGATT
 TAGAAGGCGGTACACCTCTCCTTACTATAGTCGTGGAGGATACAGATCACGTTCCAGATC
 TCGATCATACTCACCTCGCTATTAAAGCATGAAGACTTTCTGAAACCTGCCCTAGAG
 CTGGGATATTGTTGGCAATATTGTTATTGTCTTGTAAAGTGAACAGTGC
 CTAGTGAAGTTAGGTGACTTTACACCTTACGATGACTACTTTGGTGGAGTTGAAAT

GCTGTTTCATTCTGCATTGTAGTTGGTCTTCAAGTTAAGTGTTCAGA
 AAAGTATGTTGCATGTATTTTACAGTCTAAATTTGACTGCTGAGAAGTTCTAT
 TGTACAAAACCTCATTAAAAGGTTTCTACTGAATCCAGGGTATTCTGAAGATCGAAG
 CCTGTGTAATGCTACCAAATGGCAAAAGCAACAATAAACAGTTGATTTACTTT
 CTTCTAACATATCAATGCTTAGCAGAACTATTCAAGATTGTCAGTAGTAAATTAAAGAC
 AAATGCCGTTCTCCAGTCCATGAAACATACCAACTTATACCTGCAACTAAGTG
 TTAAAATTATGCTCTGTAACTCTGACTGCTAGTATTAGAACTAAAAATCTAAAATAC
 AGCCAGTGCTTAATGCTTATATCAATGTGGATTTGTCGGCTTTATGTAATCTGTAATAT
 GTATAGCAGGAATACGAAGAGTTACACAGTGTATGCCCTAAAAGGCTTTCTAAAGG
 TGTTACAAGGGATAATGGTATTCAACTAGTTACAGCAAGTGACAATACATTCCACCA
 CAAATACACTCTGTTCTTAGCTTACTGAACTATGAAAAAACCGGGTGCTCAAAGT
 ACATGATAAGGAAACACTATACCTGTCATGGATGAACTGAAGACTTGCCTGTCATTT
 TAAATATTATTCAGGTCTTGCTTACCAAAGGAGGCCAATTCACTCAAATGTT
 TGAGAACTGTGTTAAATAACGCAAATGAAAAGAAAAAAAAAAAAAAA
>gi|4759098|gb|NP_004584.1|SFRS10 288aa linear splicing
 factor, arginine/serine-rich 10 (transformer 2 homolog,
Drosophila); splicing factor, arginine/serine-rich
 (transformer 2 *Drosophila* homolog) 10 [*Homo sapiens*].
MSDSGEQNYGERESRSASRSGSAHSGSKSARHTPARSRSKEDSRRSRSKRSRSESRSRS
RRSSRRHYTRSRSRSRSHRSRSRSRSDYRRRHSHSHSPMSTRRRHVGNRANPDPNCL
GVFGLSLYTTERDLREVFSKYGPPIADVSIVYDQQSRRSRGFVFYFENVDDAKEAKERAN
GMELDGRRIRVDFSITKRPHPTPGIYMGRPTYGSSRRDYDRGYDRGYDDRDYYRSY
RGGGGGGGWRAAQDRDQIYRRRSPSPYYSRGGYRSRSRSRSYSPRRY
>gi|5803206|gb|NM_006758.1|U2AF1 904bp mRNA *Homo sapiens*
U2 (RNU2) small nuclear RNA auxillary factor 1 (U2AF1), mRNA.
GGAATTCCGTCGACGGCAGCGGGCGCGGGTGGGAAATGGCGGAGTATCTGGCCTCCA
TCTTCGGCACCGAGAAAGACAAAGTCAACTGTTCATTTATTCAAAATTGGAGCATGTC
GTCATGGAGACAGGTGCTCGGTTGCACAATAACCGACGTTAGCAGACCATGGCCC
TCTTGAACATTACCGTAACCCCTCAAAACTCTCCCAGTCTGCTGACGGTTGCGCTGTG
CCGTGAGCGATGTGGAGATGCAGGAACACTATGATGAGTTTGAGGAGGTTTACAG
AAATGGAGGAGAAGTATGGGAAGTAGAGGAGATGAACGTCGTGACAACCTGGGAGACC
ACCTGGTGGGAACGTGTACGTCAAGTTGCCGTAGGAAGATGCGAAAAGGCTGTGA
TTGACTTGAATAACCGTTGGTTAATGGACAGCCGATCCACGCCAGCTGTCAACCGTGA
CGGACTTCAGAGAACGCTGCTGCCGTCACTATGAGATGGAGAACGACACGAGGCGGCT
TCTGCAACTTCATGCATTGAAGCCCATTCCAGAGAGCTGCCGGAGCTGTATGGCC
GCCGTCGCAAGAACGATAGATCAAGATCCGATCCCGGAGCGTCGTTCTCGGTCTAGAG
ACCGTGGTGTGGCGGTGGCGGTGGAGGTGGCGGGACGGGAGCGTGACA
GGAGGCGGTCGAGAGATCGTGAAGAGATCTGGCGATTCTGAGCCATGCCATTACCTT
ATGTCTGCTAGAAAGTGTAGTTGATTGACCAAACCAAGTCATAAGGGAAATTTTTA
AAAAACAACAAAAACATACAAAGATGGTTCTGAATAAAAATTGTAGTGATAA
CAGT
>gi|5803207|gb|NP_006749.1|U2AF1 240aa linear U2 small nuclear
RNA auxillary factor 1; U2 snRNP auxiliary factor small
subunit; splicing factor U2AF 35kDa subunit [*Homo sapiens*].
MAEYLASIIGTEKDKVNCSFYFKIGACRHGDRCSRLHNKPTFSQTIALLNIYRNPNQNSQ
SADGLRCAVSDVEMQEHYDEFFEEVFTEMEEKYGEVEEMNVCDNLGDHLVGNVYVKFRRE
EDAEKAVIDLNNRFNGQPIHAELSPVTDFREACCRQYEMGECTRGFCNFMLKPISRE

LRRELYGRRRKHKRSRSRERRSRSDRGRRGGGGGGGGGERDRRRSRDERSGRF
 >gi|23308726|gb|NM_003242.3|TGFBR2 2090bp mRNA Homo sapiens
 transforming growth factor, beta receptor II (70/80kDa)
 (TGFBR2), mRNA.

GTGGCGAGGAGTTCCCTGTTCCCCCGCAGCGCTGAGTTGAAGTTGAGTGAGTCACACTCG
 CGCGCACGGAGCGACGACACCCCCCGCGCGTGCACCCGCTCGGGACAGGAGCCGGACTCCT
 GTGCAGCTCCCTCGGCCGCCGGGGCTCCCCGCGCCTCGCCGGCCTCCAGGGCCCTCC
 TGGCTGGCGAGCGGGGCCACATCTGGCCCGCACATCTGCGCTGCCGGCCCGCGCGGGGG
 TCCGGAGAGGGCGCGCGGGAGCGCAGCCAGGGTCCGGGAAGGCGCCGTCCGTGCGCT
 GGGGGCTCGGTCTATGACGAGCAGCGGGTCTGCCATGGTCGGGGCTGCTCAGGGGCC
 TGTGGCCGCTGCACATCGTCTGTGGACGCGTATGCCAGCACGATCCCACCGCACGTT
 AGAAGTCGGTTAATAACGACATGATAGTCAGTGACAACAACCGGTGCAGTCAGTTCCAC
 AACTGTGAAATTGATGAGATTTCCACCTGTGACAACCAGAAATCCTGCATGA
 GCAACTGCAGCATCACCTCCATCTGTGAGAACGCCACAGGAAGTCTGTGTTGCTGTATGGA
 GAAAGAATGACGAGAACATAACACTAGAGACAGTTGCCATGACCCCAAGCTCCCCTACC
 ATGACTTTATTCTGGAAGATGCTGCTCTCCAAAGTGCATTATGAAGGAAAAAAAAGC
 CTGGTGAGACTTCTTCATGTGTTCTGTAGCTCTGTGAGTGCAATGACAACATCATCT
 TCTCAGAAGAATATAACACCAACAGCAATCCTGACTTGTGCTAGTCATATTCAAGTGACAG
 GCATCAGCCTCTGCCACCCTGGAGTTGCCATATCTGTGATCATCATCATCTTCTACTGCT
 ACCCGTTAACCGGCAGCAGAACGCTGAGTTCAACCTGGAAACCGGCAAGACCGGAAAGC
 TCATGGAGTTAGCGAGCAGTGTGCCATCATCCTGGAAAGATGACCGCTCTGACATCAGCT
 CCACGTGTGCCAACACATCAACCAACACAGAGCTGCTGCCATTGAGCTGGACACCC
 TGGTGGGGAAAGGTCGTTGCTGAGGTCTATAAGGCCAAGCTGAAGCAGAACACTTCAG
 AGCAGTTGAGACAGTGGCAGTCAAGATCTTCCATGAGGAGTATGCCCTTGGAAAGA
 CAGAGAAGGACATCTCTCAGACATCAATCTGAAGCATGAGAACATACTCCAGTTCTGA
 CGGCTGAGGAGCGGAAGACGGAGTTGGGAAACAATACTGGCTGATCACCGCCTTCACG
 CCAAGGGCAACCTACAGGAGTACCTGACGCCATGTCATCAGCTGGGAGGACTGCGCA
 AGCTGGCAGCTCCTGCCGGGGATTGCTCACCTCCAGTGATCACACTCCATGTG
 GGAGGCCAAGATGCCATCGTGCACAGGGACCTCAAGAGCTCCAATATCCTCGTGAAGA
 ACACCTAACCTGCTGCCTGTGACTTTGGCTTCCCTGCGTCTGGACCCCTACTCTGT
 CTGTGGATGACCTGGCTAACAGTGGCAGGTGGAACTGCAAGATACTGGCTCCAGAAG
 TCCTAGAATCCAGGATGAATTGGAGAATGCTGAGTCCTCAAGCAGACCGATGTCTACT
 CCATGGCTCTGGTCTGGAAATGACATCTGCTGTAATGCAGTGGAGAAGTAAAAG
 ATTATGAGCCTCCATTGGTCCAAGGTGCCGGAGCACCCCTGTGTCGAAAGCATGAAGG
 ACAACGTGTTGAGAGATCGAGGGCGACCAGAAATTCCAGCTCTGGCTCAACCACCAAGG
 GCATCCAGATGGTGTGAGACGTTGACTGAGTGCTGGACCACGACCCAGAGGCCGTC

TCACAGCCCAGTGTGTCAGAACGCCCTCAGTGAGCTGGAGCATCTGGACAGGCTCTCGG
 GGAGGAGCTGCTCGGAGGAGAAGATTCCTGAAGACGCCCTCAAACACTACCAAATAGC
 TCTTATGGGGCAGGCTGGCATGTCAAAGAGGCTGCCCTCTCACCAAA

>gi|23308727|gb|NP_003233.3|TGFBR2 567aa linear transforming
 growth factor, beta receptor II (70/80kDa); transforming
 growth factor, beta receptor II (70-80kD) [Homo sapiens].

MGRGLLRGLWPLHIVLWTRIASTIIPPHVQKSVNNDMIVTDNNGAVKFPQLCKFCDVRFST
 CDNQKSCMSNCITSICEKPQEVCVAVWRKDENTLETVCHDPKLPYHDFILEDASPK
 CIMKEKKPGETFFMCSCSSDECNDNIIFSEEEYNTSNPDLLLVIQVTGISMLLPPLGVAI
 SVIIIFYCYRVNRQQKLSSTWETGKTRKLMEFSEHCAIILEDRSDISSTCANNINHNT

- 76 -

LLPIELDTLVGKGRFAEVYKAKLKQNTSEQFETVAVKIFPYEEYASWKTEKDIFSDINLK
 HENILQFLTAEERKTELKGQYWLITAFHAKGNLQEYLTRHVISWEDLRKLGSSLARGIAH
 LHSDDHTPCGRPKMPIVHRDLKSSNIVKNDLTCCLCDFGLSLRLDPTLSVDDLANSQVG
 TARYMAPEVLESRMNLENAESFKQTDVYSMALVLWEMTSRCNAVGEVKDYEPFFGSKVRE
 HPCVESMKDNVLDRGRPEIPSFWLNHQGIQMVCETLTECWHDPEARLTAQCVAERFSE
 LEHLDRLSGRSCSEEKIPEDGSLNTK

>gi|5174728|gb|NM_006022.1|TSC22 1725bp mRNA Homo sapiens
 transforming growth factor beta-stimulated protein TSC-22
 (TSC22), mRNA.

CGCCTCTTCACGGCACTGGGATCCGCATCTGCCTGGGATCATCAAGCCCTAGAACGCTGGG
 TTTCTTAAATTAGGGCTGCCGTTCTGTTCTCCCTGGGCTGCCGAAAGCCAGAAGAT
 TTTATCTAGTTATACAAGGCTGCTGGTGTCCCTCTTTCCACGAGGGTGTGTTTG
 GCTGCAATTGCATGAAATCCAATGGTGTAGACCAGTGGCGATGGATCTAGGAGTTTAC
 AACTGAGACATTTCAATTCTTCTTGTCATCCTGCTGGGACTGAAAACGCTTCTG
 TGAGACTTGATAATAGCTCTGGCAAGTGTGGTAGCTATTGACAACAAAATCGAGC
 AAGCTATGGATCTAGTAAAAGCCATTGATGTATGCCGTAGAGAAGAAGTGGAGGTCC
 TCAAAGAGCAAATCAAAGAACTAATAGAGAAAATCCCAGCTGGAGCAGGAGAACATC
 TGCTGAAGACACTGGCCAGTGCCTGAGCAGCTGCCAGTTCAGGCCAGCTGCAGACTG
 GCTCCCCCCTGCCACCACCCAGCCACAGGGCACACAGCCCCCGCCCAGCCAGCAT
 CGCAGGGCTCAGGACCAACCGCATAGCTGCCTATGCCCTAGGGCTGCTGCGTG
 TGAACGTGAAACAGACGGAGAAGATGTGCTAGGGAGAATCTGCCTCCACAGTCACCCATT
 ATTGCTCGCTGCAAAGAGACGTGAGACTGACATATGCCATTATCTCTTTCCAGTATT
 AACACTCATATGTTATGCCATTGGAGAAAATTCTTAGTTGGGTGAATTAAAGGTTAATCC
 GAGAATTAGCATGGATATAACCGGGACCTCATGCAGCTGGCAGATATCTGAGAAATGGTT
 TAATTCATGCTCAGGAGCTGTGCCTTCCATCCCTCCGGCTCCCTACCCCTCACTTC
 CAAGGGTTCTCTCCTGCTTGCGCTTAGTGTCTACATGGGGTGTGAAGCGATGGAGC
 TCCTCACTGGACTCGCCTCTCCTCTCCCTCCCCAGGAGGAACCTGAAAGGAGGGTAA
 AAAGACTAAAATGAGGGGAAACAGAGTTCACTGTACAAATTGACAACGTCAACAAAT
 TCATAAAAACAATAGTACTGTGCCTCTTCTCAAACAATGGATGACACAAAATAT
 GAGAGTGACAAATGGTGACAGGTAGCTGGACCTAGGCTATCTTACCATGAAGGTTGTT
 TTGCTTATTGTATATTGTGTAGTGTAACTATTGTACAATAGAGGACTGTAAC
 ACTATTAGGTTGTACAGATTGAAATTAGTTGTTCTGGCTGTCTGAGGAGGTGTGG
 ACTTTTATATATAGATCTACATAAAACTGCTACATGACAAAAACACACCTAAACCCCT
 TTTAAGAAATTGGCACAGTTACTCACTTGTGTAACTGTAAATCTAGCTGCTGAATACGC
 TGAAGTAAATCCTGTTCACTGAAGTCTTCAATTGAGCTGGTTGAATACTTTGAAAAT
 GCTCAGTTCTAACTAATGAAATGGATTCCAGTAGGGGTTCTGCATATCACCTGTATA
 GTAGTTATATGCATATGTTCTGTGCATGTTCTACACAATTGTAAGGTGTCACTGTAT
 TTAACGTGCACTTGTCAACTTCAATAAGCATATAATGTTG

>gi|5174729|gb|NP_006013.1|TSC22 144aa linear transforming
 growth factor beta-stimulated protein TSC-22 [Homo sapiens].
 MKSQWCRPVAMDLGVYQLRHFISFLSSLLTENASVRLDNSSSGASVVAIDNKIEQAMD
 LVKSHLMYAVREEEVVLKEQIKELIEKNSQLEQENNLLKTLASPEQLAQFQAQLQTGSPP
 ATTQPQGTTQPPAQQPASQGSGPTA

>gi|24432096|gb|NM_152912.2|MTIF3 1693bp mRNA Homo sapiens
 mitochondrial translational initiation factor 3 (MTIF3), mRNA.
 GCAGATCCGCTGTACTTGCAGGGCGCTACAGTATGTCAATCGCTGCCAGCACAGTGGG
 CTCCGTGGCTTAAGACTTGAACCAAGTAAACGAAGTCTTACTGAGAAGTCTCAGTT

CAAAAGAGCTTCTCCTCATCAACTGGGGATGATTACAGTTCTCCTAAAAAAGCCTACTT
GATGTGAAGACAATGAGGATGAAGACCTTATGGTATCCACTCCACTTAATAGGATGG
CTGCTCTTTCTAAAGAGGTTAACACTACAAACTGTAAAGTCTGAAAATAGTTGCATTA
GATGTTTGGTAAACACATCCTGAAAAGACAGCACAGCACAGTTGTCCCCTATTGCTT
CTGCCCAAGACTCTCCTCCTAATTGCAAAAGCCTTAGTACCGCTGAAGACACCC
AGAATGAAGGAAAAAAGACAAAAAGAATAAAACAGCTTAGTAACTGGAAAGAAAAA
TTAGTCAGCGAGTTATTCACTTATTGATGAGAAGGGCAATGATTGGAAACATGCACC
GAGCAAATGTGATTAGACTTATGGATGAGCGAGACCTGCGACTGGTCAAAGGAACACCA
GCACAGAACCTGCAGAGTATCAGCTCATGACAGGATTGCGAGATCCTCAGGAGCGGCAGA
GGCTGAGGGAGATGGAGAAGGCGAACCCCCAAACTGGACCAACCCCTGAGAAAGGAACGTGA
TTTGTCTCAAATATTGGACAACATGATTGGACACAAAGACTAAACAGATTGAGCAGT
GGATTAAGAAAAAACACCTAGTCCAGATTACCATAAAGAAAGAAAAATGTAGACGTGT
CAGAAAATGAAATGGAGGAGATATTCAAAACTCCAGACTATGCCTGGAATAGCTA
CATTCTCATCTAGGCCACAAGCTGTTCAAGGAGGAAAGCTTAATGTGTGTTCTCGTG
CTTGAGCAAAATGAGGAGAAGGCATATAAAGAAACTCAAGAGACCCAGGAAAGAGACA
CTTGAAACAAAGATCATGGAAATGATAAGGAATCAAATGTTCTGCATCAGTAATTTAAT
AAAGAAAAGCATGCTCTGAGAGAAAAAAAGCTCGCTCCTGGTCTGCAGTCCTTAAAC
AAAGCAGTGCAGTTCTAGCCAAGGTAAGTACTGCAACTGTCGAGAGCATCTTGTCTTC
CACACAGTGGGTGACTCTCCGTTTGACACAAAGATAAGCCTGCCCTGTTCTTT
GGGAGGGATATATCCACTGAGATGAGAGGCAAACCTCGTTTCACGAGATTTTGAC
TTTGAGCTCATTCTTCTGTCAGGATCATGTACAACAGCATGCCTAGTGAGACTTTG
TTTCATTGCAAATGTTTGCACAGCCAGCATGTTCACACACACAAAGGGCGGCTTCTC
ATGGAAGGAGAGGATATGGCTTGGAGATTAAACACAGTTGTATAGGTTCTCCACAGCC
TTCTCTGGACAGCGACATAATCCCTCTGGGGCATGAGTTATGTGTGCTTAAGGAAC
TTGCGTTAAAGTTCCGGCACTTCACATGGATTCTTGAATGAGTTCAAATGTTCCC
ATGCTAAGCTGAGTCTGTGCCATAGCAAACCATGATATAGCAAGTCTCCAGAATGTGTAC
GAATCAATACTCC

>gi|23097266|gb|NP_690876.1|MTIF3 278aa linear mitochondrial translational initiation factor 3 [Homo sapiens].

MAALFLKRLTLQTVKSENSCIRCFGKHILOKTAPAQLSPIASAPRLSFLIHAKAFSTAED
TQNEGKKTKNKTAFSNVGRKISQRVIHLFDEKGNLGNMHRANVIRLMDERDLRLVQRN
TSTEPAEYQLMTGLQILQERQRLREMEKANPKTGPTRLKELILSSNIGQHDLDTKTKQIQ
QWIKKKHLVQITIKKGKNVDVSENEMEEIFHQIILQTMPGIATFSSRPQAVQGGKALMCVL
RALSKNEEKAYKETQETQERDTLNKDHGNDKESNVLHQ

>gi|27499034|gb|XM_044349.7|CAMK2G 1776bp mRNA Homo sapiens calcium/calmodulin-dependent protein kinase (CaM kinase) II gamma (CAMK2G), mRNA.

CAGCATGGCCACCACCGCCACCTGCAACCGTTTACCGACGACTACCAGCTTCAGGA
GCTTGGCAAGGGTGTCTCTGTGGTCCGAGGTGTGAAGAAAACCTCCACGCAGGA
GTACGCAGAAAAATCATCAATACCAAGAAGTTGTCTGCCGGGATCACCAGAACTAGA
ACGTGAGGCTGGATATGTCACTTCTGAAACATCCAAACATCGTGCCTCCATGACAG
TATTCTGAAGAAGGTTTCACTACCTCGTGTGACCTTGTACCGGGGGAGCTGTT
TGAAGACATTGTGCCAGAGAGTACTACAGTGAAGCAGATGCCAGCCACTGTATACATCA
GATTCTGGAGAGTGTAAACCACATCCACCGACATGACATCGTCCACAGGGACCTGAAGCC
TGAGAACCTGCTGGCGAGTAAATGCAAGGGTGCCCGTCAAGCTGGCTGATTTGG
CCTAGCCATCGAAGTACAGGGAGAGCAGCAGGCTGGTTGGCTGGCACCCAGG
TTACTTGTCCCCTGAGGTCTGAGGAAAGATCCCTATGGAAAACCTGTGGATATCTGGGC

CTGCGGGGTCATCCTGTATATCCTCCTGGTGGCTATCCTCCCTCTGGATGAGGATCA
 GCACAAGCTGTATCAGCAGATCAAGGCTGGAGCCTATGATTCCCACCAAGAATGGGA
 CACGGTAACTCCTGAAGCCAAGAACTTGATCAACCAGATGCTGACCATAAACCCAGCAA
 GGCATCACGGCTGACCAGGCTCTCAAGCACCGTGGCTGTCAACCGATCCACGGTGGC
 ATCCATGATGCATCGTCAGGAGACTGTGGAGTGTGCGCAAGTTCAATGCCGGAGAAA
 ACTGAAGGGTGCATCCTCACGACCATGCTGTCAAGCCACAGAGCAACAACAAAAGTCT
 CCTATTGAACAAGAAGTCGGATGGCGGTGTCAAGCCACAGAGCAACAACAAAAGTCT
 CGTAAGCCCAGCCCAAGAGCCCGGCCCTGCAGACGGCCATGGAGCCACAAACCACTGT
 GGTACACAACGCTACAGATGGATCAAGGGCTCCACAGAGAGCTGCAACACCACAGA
 AGATGAGGACCTCAAAGTGCAGAACAGGAGATCATTAAGATTACAGAACAGCTGATTGA
 AGCCATCAACAATGGGGACTTGAGGCCTACACGAAGATTGTGATCCAGGCCTCACTTC
 CTTTGAGCCTGAGGCCCTGGTAACCTCGTGGAGGGATGGATTCCATAAGTTTACTT
 TGAGAATCTCCTGTCCAAGAACAGCAAGCCTATCCATACCACATCCTAAACCCACACGT
 CCACGTGATTGGGGAGGAGCAGCAGCGTGCATGCCATACATCCGCTCACCCAGTACATCGA
 CGGGCAGGGTGGCCTCGCACAGCCAGTCAGAAGAGACCCGGTCTGGCACCGTGGGA
 TGGCAAGTGGCTCAATGTCCACTATCACTGCTCAGGGCCCTGCGCACCGCTGCAGTG
 AGCTCAGCCACAGGGCTTAGGAGATTCCAGGCCAGGTCCAACCTCGCAGCCAGTGG
 CTCTGGAGGGCCTGAGTGACAGCGGCAGTCCTGTTGAGGTTAAAACAATTCAAT
 TACAAAAGCGGCAGCAGCCAATGCACGCCCTGCATGCAGCCCTCCGCCCTCGT
 GTCTGTCTGTGTACCGAGGTGTTTTACATT

>gi|27499035|gb|XP_044349.7|CAMK2G 518aa linear similar to calcium/calmodulin -dependent protein kinase II gamma [Mus musculus] [Homo sapiens].

MATTATCTRFTDDYQLFEELKGAFSVVRRCVKKTSTQEYAAKIINTKKLSARDHQKLER
 EARICRLLKHPNIVRLHDSISEEGFHYLVFDLVTGGELFEDIVAREYYSEADASHCIHQI
 LESVNHIHQHDIVHRDLKPENLLLASKCKGAAVKLADFGLAIEVQGEQQAWFGFAGTPGY
 LSPEVLRKDYPGKVDIWACGVILYILLVGYPPFWDEDQHKLYQQIKAGAYDFPSPEWDT
 VTPEAKNLINQMLTINPAKRITADQALKHPWVCQRSTVASMMHRQETVECLRKFNARRKL
 KGAILTTMLVSRNFSAAKSLLNKSDGGVKPQSNNKNSLVSPAQEPAPlQTAMEPQTTVV
 HNATDGIGGSTESCNTTEDEDLKVRKQEIIKITEQLIEAINNGDFEAYTKICDPGLTSF
 EPEALGNLVEGMDFHKFYFENLLSKNSKPIHTTILNPHVHIGEDAACIAYIRLTQYIDG
 QGRPRTSQSEETRVWHRDGKWLNVHYHCSGAPAAPLQ

>gi|5453881|gb|NM_006213.1|PHKG1 1377bp mRNA Homo sapiens phosphorylase kinase, gamma 1 (muscle) (PHKG1), mRNA.

GGCCTTCAGCCCTCTGTGGTCCCCTCTCCCCGGGGCTTGGGATTCTGTCAAGCTCC
 TTCAAGAGCCCTGCAAGCACCTAACCAAGCCACCCAGAGTTCCCTCACTGAAGATCTGAGCA
 TGACCCGGGACGAGGCAGTCCGGACTCTCATTCTGCACAGGACTTCTATGAGAATTATG
 AGCCCAAAGAGATCCTGGGAGGGCGTTAGCAGTGTGGTCAGGCATGCATCCACAAGC
 CCACGAGCCAGGAGTACGCCGTAAAGGTATCGACGTACCGGTGGAGGCAGCTCAGCC
 CGGAGGAGGTGCGGGAGCTGCGAGAACGCCACGCTGAAGGAGGTGGACATCCTGCGCAAGG
 TCTCAGGGCACCCAACATCATACTGAAGGACACTTATGAGACCAACACTTCTTCT
 TCTTGGTGTGACCTGATGAAGAGAGGGAGCTTTGACTACCTCACTGAGAAGGTCA
 CCTTGAGTGAGAAGGAAACAGAAAGATCATGCGAGCTCTGCTGGAGGTGATTCGACCT
 TGCACAAACTCAACATCGTCACCGGGACCTGAAGCCCGAGAACATTCTCTTGATGACA
 ACATGAACATCAAGCTCACAGACTTGGCTTCTGCCAGCTGGAGCCGGAGAGAGGC
 TCGGAGAGGTCTGCGGGACCCCCAGTTACCTGGCCCTGAGATTATCGAGTGCTCCATGA
 ATGAGGACCAACCGGGTACGGAAAGAGGTGGACATGTGGAGCACTGGCGTCATCATGT

ACACGCTGCTGGCCGGCTCCCCGCCCTCTGGCACCGGAAGCAGATGCTGATGCTGAGGA
 TGATCATGAGCGGCAACTACCAGTTGGCTGCCCGAGTGGGATGATTACTCGGACACCG
 TGAAGGACCTGGTCTCCGATTCTGGTGGCAACCCCAGAACCGCTACACAGCGGAAG
 AGGCCTTGGCACACCCCTCTCCAGCAGTACTTGGTGGAGGAAGTGCAGGACTTCAGCC
 CCCGGGGAAAGTTCAAGGTGATCGCTCTGACCGTGCTGGCTCAGTGCAGGATCTACTACC
 AGTACCGCCGGGTGAAGCCTGTGACCCGGAGATCGTCATCCGAGACCCCTATGCCCTCC
 GCCCTCTGCGCCGGCTCATCGACGCCAACGCTTCCGAATCTATGCCACTGGGTGAAGA
 AGGGGCAGCAGCAGAACCGGGCAGCCCTTTCGAGAACACACCCAAGGCCGTGCTCCTCT
 CCCTGGCCGAGGAGGACTACTGAGGGGCTGCCAGTCAGGGAGGGCTAGGGGGCAGGTGG
 GGAGGGGAAGCCATGGAAATAAAGTCAAAGGGTAAAAAAAAAAAAAAA
>gi|5453882|gb|NP_006204.1|PHKG1 387aa linear phosphorylase kinase, gamma 1 (muscle) [Homo sapiens].

MTRDEALPDHSQAQDFYENYEPKEILGRGVSSVRRCIHKPTSQEYAVKVIDVTGGGSFS
 PEEVRELREATLKEVDILRKVSGHPNIIQLKDTENTFFFIVFDLMKRGEFLDYLTEKV
 TLSEKETRKimrallevictlhklnidvrdlkpenillddnmnikltdfgfsqlepgerv
 LREVCGTPSYLAPEIIECSMNEDHPGYGKEVDMWSTGVIMYTLLAGSPPFWHRKQMLMLR
 MIMSGNYQFGSPEWDDYSDTVKDLVSRLFLVVPQPNRYTAEEALAHPFQQYLVEEVRHFS
 PRGKFKVIALTVLASVRIYYQYRRVKPVTREIVIRDPLYALRPLRLIDAYAFRIYGHWVK
 KGQQQNRAALFENTPKAVLLSLAEEDY

>gi|4503412|gb|NM_001945.1|DTR 2360bp mRNA Homo sapiens diphtheria toxin receptor (heparin-binding epidermal growth factor-like growth factor) (DTR), mRNA.

GCTACGCGGGCCACGCTGCTGGCTGGCCTGACCTAGGCGCGGGGTCGGCGGCCGCG
 GGGCGGGCTGAGTGAGCAAGACAAGACACTCAAGAACAGCGAGCTGCCCTGGTCCC
 CCAGGCTTGCACGCAGAGGGGGCGGAGACGGTGCCGGCGGAATCTCCTGAGCTCC
 CGCCAGCTCTGGTGCAGCGCCAGTGGCCGCCCTCGAAAGTGACTGGTGCTCGCC
 GCCTCCTCTGGTGCAGGACCATGAAGCTGCTGCCGTGGTGTGAAGCTCTTCTG
 GCTGCAGTTCTCTGGCAGGGTACTGGCGAGAGCCTGGAGCGGCTCGGAGAGGGCTA
 GCTGCTGGAACCAGCAACCGGACCCCTCCACTGTATCCACGGACCAGCTGCTACCC
 GGAGGCGGCCGGGACCGGAAAGTCCGTGACTTGCAAGAGGCAGATCTGGACCTTT
 GAGAGTCACCTTATCCTCCAAGCACAAGCACTGCCACACCAACAAGGAGGAGCACGG
 AGAAAAGAAGAAGGCAAGGGCTAGGGAAAGAACAGGGACCCATGTCTCGGAAATACA
 AGGACTTCTGCATCCATGGAGAAATGCAAATATGTGAAGGAGCTCCGGCTCCCTCT
 GCATCTGCCACCCGGTTACCATGGAGAGAGGTGTATGGCTGAGCCTCCAGTGGAAA
 ATCGCTTATGACCTATGACCACACAACCACCTGGCCGTGGCTGTGGTGTATCTG
 CTGCTGCTGGTCTCATGGTGGGCTCTCATGTTAGGTACCATAGGAGAGGGAGGTTAT
 GTGAGGAAAATGAAGAGAAAGTGAAGTGGCATGACTAATTCCACTGAGAGAGACT
 CTCAGGAAATCGGCTGGGACTGCTACCTCTGAGAACACAAAGGTGATTCAGACTG
 GAGGGGAAAGACTCCATCTAGTCACAAAGACTCCTCGTCCCCAGTTGCCGTAGGAT
 TGGGCCTCCATAATTGCTTGCCAAAATACCAGAGCCTCAAGTGCCAAACAGAGTAT
 TCCGATGGTATCTGGTAAGAAGAAAGCAAAAGCAAGGGACCTCATGCCCTCTGATT
 CCCTCCACCAAACCCACTTCCCCTCATAAGTTGTTAACACTTATCTCTGGATTAG
 AATGCCGGTTAAATTCCATATGCTCAGGATCTTGACTGAAAAAGAAGAAGAA
 GAAGGAGAGCAAGAAGGAAAGATTGTGAAGTGGAAAGAACAAAGATTGAGAAGCC
 ATGTACTCAAGTACCAAGGGATCTGCCATTGGACCCCTCCAGTGCTGGATTGATGA
 GTTAACTGTGAAATACCAACAAGCCTGAGAAGTGAATTGGACTTCTACCCAGATGG
 AAATAACAACATTGGTTGTTGTTGAAATGCCCTCTAAATTATATATTATT

TATTCTATGTATGTTAATTAGTTAACAACTAACATAATATTCAAGTGCC
TAGACTGTTACTTGGCAATTCTGGCCCTCCACTCCTCATCCCCACAATCTGGCTTAG
TGCCACCCACCTTGCCACAAAGCTAGGATGGTCTGTGACCACATCTGTAGTAATTATT
GTCTGTCTACATTCTGCAGATCTTCCGTGGTCAGAGTGCCACTGCGGGAGCTCTGTATG
GTCAGGATGTAGGGGTTAACCTGGTCAGAGCCACTCTATGAGTTGGACTTCAGTCTTGCC
TAGGCGATTTGTCTACCATTGTGTTGAAAGCCAAGGTGCTGATGTCAAAGTGTAA
CAGATATCAGTGTCTCCCGTGCCTCTCCCTGCCAAGTCTCAGAAGAGGTTGGCTTCC
ATGCCTGTAGCTTCCTGGCCCTACCCCCATGGCCCCAGGCCACAGCGTGGAACTCA
CTTCCCTGTGTCAGAACATTTCTCTAACCTCCGTCCATTCTCTGGTGTACTCCATGC
AGGGGTCACTGCAGCAGAGCACAGTCTGGAGAAGGTATTAGCAAAGCAAAGGCTGAGAA
GGAACAGGGAACATTGGAGCTGACTGTTCTGGTAACTGATTACCTGCCAATTGCTACCG
AGAAGGTTGGAGGTGGGAAGGCTTGTATAATCCCACCCACCTCACCAAAACGATGAAG
GTATGCTGTATGGCCTTCTGGAAGTTCTGGTGCCTTCTGAACTGTTACAACTTG
TATTCCAAACCTGGTCATATTATACTTTGCAATCCAAATAAGATAACCCATTATTCC
ATAAAAAAAAAAAAAAA

>gi|4503413|gb|NP_001936.1|DTR_208aa linear diphtheria toxin receptor (heparin-binding epidermal growth factor-like growth factor); Diphtheria toxin receptor (heparin-binding EGF-like growth factor) [Homo sapiens].

MKLLPSVVLKLFLAAVLSALVTGESLERLRRGLAAGTSNPDPPPTVSTDQLLPLGGGRDRK
VRDLQEADLDLLRVTLSSKPQALATPNKEEHGKRKKKGKGLGKRDPLRKYKDFCIHGE
CKYVKELRAPSCICHPGYHGERCHGLSLPVENRLYTYDHTTILAVVAVVLSVCLLIVG
LLMFYHRRGGYDVENEEKVKLGMTNSH

>gi|4507460|gb|NM_003236.1|TGFA 4119bp mRNA Homo sapiens transforming growth factor, alpha (TGFA), mRNA.

CTGGAGAGCCTGCTGCCGCCGCCGTAAAATGGTCCCCTGGCTGGACAGCTGCCCT
GTTCGCTCTGGTATTGTGTTGGCTGCGTGCAGGCCCTGGAGAACAGCACGTCCCCGCT
GAGTGCAGACCCGCCGTGGCTGCAGCAGTGGTGTCCCATTAAATGACTGCCAGATT
CCACACTCAGTTCTGCTTCCATGGAACCTGCAGGTTTTGGTGCAGGAGGACAAGCCAGC
ATGTGTCGCCATTCTGGTACGTTGGTGCACGCTGTGAGCATGCCACCTCTGGCGT
GGTGGCTGCCAGCCAGAACAGCAGGCCATACCGCCTGGTGGTGGTCTCCATCGTGGC
CCTGGCTGCCTTATCATCACATGTGTCGATACACTGCTGCCAGGTCCAAAACACTG
TGAGTGGTGCCTGGCCACTCTGCGGACAGAGCCCAGCGCCCTCCTGAAGGGAAAG
AACCGCTTGCCTGCCACTCAGAAACAGTGGTCTGAAGAGCCCAGAGGAGGAGTTGGCCAG
GTGGACTGTGGCAGATCAATAAGAAAGGCTTCTTCAGGACAGCACTGCCAGAGATGCCT
GGGTGTGCCACAGACCTTCTACTTGGCCTGTAATCACCTGTGCAGCCTTGTGGCCT
TCAAAACTCTGTCAAGAACTCCGTCTGCTTGGGTTATTCACTGTGACCTAGAGAAGAAA
TCAGCGGACCACGATTCAAGACTTGTAAAAAGAACTGCAAAGAGACGGACTCCTGTT
CACCTAGGTGAGGTGTGCAAGCTGGTCTGAGTCCACATGTGTCAGTTGTCTTC
TGCCAGCCATGGATTCCAGGCTATATATTCTTTAATGGGCCACCTCCCCACAACAGA
ATTCTGCCAACACAGGAGATTCTATAGTTATTGTTCTGTCATTGCCACTGGGAA
AGAAAGTGAAGGAGGGAAACTGTTAATATCACATGAAGACCCTAGCTTAAGAGAAGC
TGTATCCTCTAACCAACGAGACTCTCAACCAGGCCAACATCTCCATGGACACATGACATT
GAAGACCATCCAAAGCTATGCCACCCCTGGAGATGATGTCTTATTATTAGATGGATAA
TGGTTTATTAAATCTCTTAAGTCAATGTAAGTAAAGTATAAAACCCCTCAGACTTCTA
CATTAATGATGTATGTGTTGCTGACTGAAAAGCTATACTGATTAGAAATGTCTGGCCTCT
TCAAGACAGCTAAGGCTTGGAAAAGTCTTCCAGGGTGCAGGAGATGGAACCAGAGGCTGG

GTTACTGGTAGGAATAAAGGTAGGGGTTCAGAAATGGGCCATTGAAGCCACAAAGCCGG
TAAATGCCTCAATACGTTCTGGGAGAAAACCTAGCAAATCCATCAGCAGGGATCTGTCCC
CTCTGTTGGGGAGAGAGGAAGAGTGTGTGTCTACACAGGATAAACCAATACATATTG
TACTGCTCAGTGATTAATGGGTTACTTCCTCGTGAGCCCTCGGTAAAGTATGTTAGAA
ATAGAACATTAGCCACGAGCCATAGGCATTCAAGGCCAAATCCATGAAAGGGGACCAGT
CATTATTTCCATTTGTTGCTTGGTTGTTGCTTATTTTAAAGGAGAAGTT
TAACCTTGCTATTATTTGAGCACTAGGAAAACATTCCAGTAATTTCCTCA
TTTCCATTAGGATGCCGGTTATAACAAAACCTCTAACAGTCACCTCCACTATGTG
GGCTTCCTTCCCTCAAGAGAAGGGAGCAATTGTTCCCTGACATCTGGTCCATCTGA
CCCATGGGGCCTGCCTGTGAGAACAGTGGTCCCTCAAATACATAGTGGATAGCTCAT
CCCTAGGAATTTCATTAAAATTGAAACAGAGTAATGAAGAAATAATATATAAACTCC
TTATGTGAGGAAATGCTACTAATATCTGAAAAGTGAATTTAAATATGTTAAATTGGCTTGAA
AGTGCACCTAGCTTATTACATCGTGAAGGTACATTAAAATATGTTAAATTGGCTTGAA
ATTTTCAGAGAATTTCAGCTTCCCTAATTCTCTTGGTCTGGAAGAACAAATTCT
ATGAATTTCCTTTATTTTTATAATTCAAGACAATTCTATGACCCGTGCTTCAT
TTTGGCACTCTTATTAAACATGCCACACGTGAAGCAGTGGATCTGTTAGAGCTGAC
CCCTAGCAACGTAGTGACACAGCTCCAGGTTAAATTACTAAAATAAGTCAAGTT
TACATCCCTGGGCAGATATGTGGGTTGAGGCTTGACTGTAGCATCCTGCTTAGAGACC
AATCAATGGACACTGGTTTAGACCTCTATCAATCAGTAGTGTAGCATCCAAGAGACTTT
GCAGAGGCGTAGGAATGAGGCTGGACAGATGGCGGAACGAGAGGTTCCCTGCGAAGACTT
GAGATTTAGTGTCTGTGAATGTTCTAGTCCAGGTCCAGCAAGTCACACCTGCCAGTGC
CCTCATCCTTATGCCTGTAACACACATGCAGTAGAGAGGCCTCACATATACGCCCTCC
AAGTGCCTCCAAGTCAGTCCTTGAAACACAGCAGGTCTGAAAAAGAGGCTGCATCAAT
GCAAGCCTGGTTGGACCATTGTCATGCCAGGATAGAACAGCCTGGCTTATTGGGAA
TTTTCTCTAGAAATCAAATGACTGATAAGCATTGGCTCCCTGCCCCATTAAATGGCAA
TGGTAGTCTTGGTTAGCTGAAAAACTCCATTCAAGTTAAAATGCATCTTCAAT
CCATCTCTGCAAGCTCCCTGTGTTCTGCCATTAGAAAATGAATTGTTCACTACAAT
TAGAGAACATTAAACATCCTGACCTGGTAAGCTGCCACACACCTGGCAGTGGGAGCAT
CGCTGTTCCAATGGCTCAGGAGACAATGAAAAGCCCCATTAAAAAAATAACAAACAT
TTTTAAAAGGCCTCCAATACTCTTATGGAGCCTGGATTTCCTCACTGCTCTACAGGCT
GTGACTTTTTAAAGCATCCTGACAGGAAATGTTCTTACATGGAAAGATAGACAGC
AGCCAACCTGATCTGGAAGACAGGGCCCGGCTGGACACACGTGGAACCAAGCCAGGGA
TGGGCTGGCCATTGTGTCCCCGAGGAGAGATGGGAGAATGCCCTAGAGTCTTTCC
CTGAGAAAAGGAGAAAAGATGGGATGCCACTCACCCACCCACTGGTAAGGGAGGAGA
ATTGTGCTCTGGAGCTCTCAAGGGATTGTGTTCTGAGGTACAGAAAATGCCTGTT
ATCTTCAAGCCAGGTTTCGAGGGCACATGGGTACCAGTGTGTTTCAGTCATTG
CCGGGATGGACTAATGAGGCTCTAACACTGCTCAGGAGACCCCTGCCCTAGTTGGTT
TGGGCTTGTCTCTCAACCTGCCAGTCACAGAAGGAGGAATGACTCAAATGCCAA
AACCAAGAACACATTGAGAAGTAAGACAAACATGTATATTAAATGTTCTAACATAA
GACCTGTTCTCTAGCCATTGATTACCAAGGCTTCTGAAAGATCTAGTGGTTACACAA
GAGAGAGAGAGTACTGAAAAGCAACTCCTCTTAGTCTTAATAATTACTAAAAT
GGTCAACTTTCTTATTATATAAAACCTGATGCTTTTTAGAACCTCCTTAC
TCTGATGCTGTATATGTTGCACTGAAAAGGTTAATATTTAAATGTTTAATTATTTGT
GTGGTAAGTTAATTGATTCTGTAATGTTAATGTTGATTAGCAGTTATTTCCTTAA
TATCTGAATTATACTTAAAGAGTAGTGAGCAATATAAGACGCAATTGTTAGTAA
TGTGCATTGTTATTGAGTTACTGTACCTTATTGGAAGGATGAAGGAATGAACCTTT
TTTCCCTAAAAAAAAAAAAAAAAAAAAAA

>gi|4507461|gb|NP_003227.1|TGFA 160aa linear transforming growth factor, alpha [Homo sapiens].
MVP\$AGQLALFALGIVLAACQALENSTSPLSADPPVAAAVVSHFNDCPDSHTQFCFHGTC
RFLVQEDK\$ACVCHSGYVGARCEHADLLAVVAASQKKQAITALVVVSIVALAVLIITCVL
IHCCQVRKHCEWCRALICRHEKPSALLKGRTACCHSETVV
>gi|6912653|gb|NM_012433.1|SF3B1 4259bp mRNA Homo sapiens splicing factor 3b, subunit 1, 155kDa (SF3B1), mRNA.
ATGGCGAAGATGCCAAGACTCACGAAGATAATTGAAGCAGATTGAGAAATTCAAGGC
AAGAAGGCAGCTCTTGTGATGAAGCTCAAGGAGTGGGCCTCGATTCTACAGGTTATTATGAC
CAGGAAATTATGGTGGAAAGTGACAGCAGATTGCTGGATACGTGACATCAATTGCTGCA
ACTGAACCTGAAGATGATGACGATGACTATTCATCATCTACGAGTTGCTTGGTCAGAAG
AAGCCAGGATATCATGCCCTGTGGCATTGCTTAATGATATAACCACAGTCAACAGAACAG
TATGATCCATTGCTGAGCACAGACCTCAAAGATTGCAGACCGGGAAAGATGAATAACAAA
AAGCATAGCGGACCATGATAATTCCCCAGAGCGTCTTGATCCTTGCAGATGGAGGG
AAGACCCCTGATCTAAAATGAATGTTAGGACTTACATGGATGTAATGCGAGAACACAC
TTGACTAAAGAAGAACGAGAAATTAGGCAACAGCTAGCAGAAAAAGCTAAAGCTGGAGAA
CTAAAAGTCGTCAATGGAGCAGCAGCGTCCAGCCTCCATCAAACGAAAACGGCGTTGG
GATCAAACAGCTGATCAGACTCCTGGTGCCTCCAAAAACTATCAAGTTGGATCAG
GCAGAGACCCCTGGGCATACTCCTCCTTAAGATGGGATGAGACACCCAGGTCGTGCAAAG
GGAAGCGAGACTCCTGGAGCAACCCAGGCTCAAATATGGGATCCTACACCTAGCCAC
ACACCCAGCGGAGCTGCTACTCCTGGACGAGGTGATACACCAGGCCATGCGACACCCAGG
CATGGAGGCGCAACTCCAGTGCTCGTAAACAGATGGGATGAAACCCCAAACAGAG
AGAGATACTCCTGGGCATGGAAGTGGATGGGCTGAGACTCCTCGAACAGATCGAGGTGGA
GATTCTATTGGTAAAACACCGACTCCTGGAGGCCAGTAAAAGAAAATCACGGTGGGATGAA
ACACCCAGCTAGTCAGATGGGAGCAGCTCCAGTTCTGACCCCTGGAAAGACACCAATT
GGCACACCCAGGCATGAACATGGCTACCCCTACTCCAGGTACATAATGAGTATGACTCCT
GAACAGCTTCAGGCTTGGCGGTGGAAAGAGAAAATTGATGAGAGAAAATCGCCACTTCT
GATGAGGAATTAGATGCTATGTTCCAGAAGGATATAAGGTACTTCCTCCTCCAGCTGGT
TATGTTCCATTGAACTCCAGCTCGAAAGCTGACAGCTACTCCAACACCTTGGGTGGT
ATGACTGGTTCCACATGCAAACACTGAAGATCGAACTATGAAAAGTGTAAATGACCAGCA
TCTGGAAATCTCCATTAAAACCTGATGATATTCAATAACTTTGATAAAACTATTGGTT
GATGTTGATGAATCAACACTTAGTCCAGAAGAGCAAAAAGAGAGAAAATAATGAAGTTG
CTTTAAAAATAAGAATGGAACACCCACCAATGAGAAAGGCTGCATTGCGTCAGATTACT
GATAAAGCTCGTAATTGGAGCTGGCTTTGTTAAATCAGATTCTCCTGCTGATG
TCTCCTACACTGAGGATCAAGAGCGTCATTACTTGAAAGTTATTGATAGGATACTG
TACAAACTGATGACTTAGTCGTCCATATGTGCATAAGATCCTCGTGGCATTGAACCG
CTATTGATTGATGAAGATTACTATGCTAGAGTGGAGGCCAGAGATCATTCTAATTG
GCAAAGGCTGCTGGTCTGGCTACTATGATCTTACCATGAGACCTGATATAGATAACATG
GATGAGTATGTCGTAACACAACAGCTAGAGCTTTGCTGTTAGCCTCTGCCCTGGC
ATTCCCTTATTGCCCTTCTTAAAAGCTGTGCAAAGCAAGAAGTCCTGGCAAGCG
AGACACACTGGTATTAAGATTGTACAAACAGATAGCTATTCTTATGGCTGTGCCATCTG
CCACATCTAGAAGTTAGTTGAAATCATTGAACATGGCTTGTGGATGAGCAGCAGAAA
GTTCGGACCATCAGTGCTTGGCATTGCTGCCATTGGCTGAAGCAGCAACTCCTATGGT
ATCGAATCTTGATTCTGTGTTAAAGCCTTATGGAAGGGTATCCGCAACACAGAGGA
AAGGGTTGGCTGCTTCTTGAAGGCTATTGGGTATCTTATTCCCTTATGGATGCAGAA
TATGCCAACTACTATACTAGAGAAGTGTAACTCCTTATTGAGAATTCCAGTCTCCT
GATGAGGAAATGAAAAAATTGTGCTGAAGGTGGTAAAACAGTGTGTTGGGACAGATGGT

GTAGAAGCAAACATCATTAAACAGAGATTCTCCTCCCTTTAAACACTCTGGCAG
CACAGGATGGCTTGGATAGAAGAAATTACCGACAGTTAGTGATACTACTGTGGAGTTG
GCAAACAAAGTAGGTGCAGCAGAAATTATATCCAGGATTGTGGATGATCTGAAAGATGAA
GCCGAACAGTACAGAAAAATGGTGTGGAGACAATTGAGAAAATTATGGGCAATTGGGA
GCAGCAGATATTGATCATAAACCTGAAGAACAACTGATTGATGGTATTCTTATGCTTC
CAAGAACAGACTACAGAGGACTCAGTAATGTTGAACGGCTTGGCACAGTGGTAATGCT
CTTGGCAAACGAGTCAAACCATACTGCCTCAGATCTGTGGTACAGTTGTGGCGTTA
AATAACAAATCTGCTAAAGTTAGGCAACAGGCAGCTGACTTGATTCTCGAAGTGTGTT
GTCATGAAGACTTGTCAAGAGGAAAATTGATGGGACACTTGGGTGTTGATTGTATGAG
TATTGGGTGAAGAGTACCCCTGAAGTATTGGGCAGCATTCTGGAGCACTGAAGGCCATT
GTAAATGTCATAGGTATGCATAAGATGACTCCACCAATTAAAGATCTGCTGCCTAGACTC
ACCCCCATCTTAAAGAACAGACATGAAAAAGTACAAGAGAATTGTATTGATCTGGTGGT
CGTATTGCTGACAGGGGAGCTGAATATGTATCTGCAAGAGAGTGGATGAGGATTGCTT
GAGCTTTAGAGCTCTTAAAGCCCACAAAAGGCTATTGCTAGAGCCACAGTCAACACA
TTTGGTTATATTGCAAAGGCCATTGCCCTCATGATGATTGGCTACACTCTGAACAAAC
CTCAAAGTTCAAGAACAGCAGAACAGAGTTGTAACACTGTAGCAATAGCTATTGTTGCA
GAAACATGTTACCCCTTACAGTACTCCCTGCCTTAATGAATGAACAGAGTTGCTGAA
CTGAATGTCAAAATGGAGTGTAAATCGCTTCCTTGTGAAATATATTGGTGAA
ATGGGAAAAGACTACATTATGCCGTAACACCGTTACTGAAAGATGCTTAAATGGATAGA
GACCTGTACACAGACAGACAGCGCTAGTGCAGTGGTACAGCACATGTCATTGGGTTAT
GGATTGGTTGTGAAGATTGCTGAATCACTTGTGAACTATGTATGGCCAATGTATT
GAGACATCCTCATGTAATTGAGCAGTTATGGGAGCCCTAGAGGGCTGAGAGTTGCT
ATTGGACCATGTAGAATGTTGCAATATTGTTACAGGGTCTGTTCACCCAGCCGGAAA
GTCAGAGATGTATATTGAAAATTACAACACTCCATCTACATTGTTCCAGGACGCTCTC
ATAGCACATTACCAAGAACATCTACACGATGATAAGAACACCTATATTGTTATGAACTT
GACTATATCTATAATTGTTATTGTTATTTGTGTTAATGCAACAGCTACTTCACACCTT
AAACTGCTTGATTGGTGTGAAACTTAAACATTGCAAGTGTAGAAGACTGGT
CATAGAGGAAGAGCTAGAAATCCAGTAGCATGATTTAAATAACCTGTCTTGTGTTG
ATGTTAACAGTAAATGCCAGTAGTGACCAAGAACACAGTGAATTATACACTATACTGG
AGGGATTCATTAAATTCTTATGAAGATTAGAACTCATTGTTGTGTTAAAG
GGAATGTTAATTGAGAAATAACATTGCTACAAATGCTAAAAAAAAAAAAAA
>gi|6912654|gb|NP_036565.1|SF3B1 1304aa linear splicing factor
3b, subunit 1, 155kDa; spliceosome-associated factor 155;
splicing factor 3b, subunit 1, 155kD [Homo sapiens].
MAKIAKTHEDIEAQIREIQGKKAALDEAQGVGLDSTGYDQEIQYGGSDSRFAGYVTSIAA
TELEDDDDDYSSSTSLLQKKPGYHAPVALLNDIPQSTEQYDPFAEHRPPKIADREDEYK
KHRRRTMIIISPERLDPFADGGKTPDPKMNRVRYMDVMREQHLTKEEREIRQQLAEKAKAGE
LKVVNGAAASQPPSKRKRRWDQTADQTPGATPKKLSSWDQAETPGHTPSLRWDETPGRAK
GSETPGATPGSKIWDPTPSHTPAGAATPGRGDTPGHATPGHGATSSARKNRWDETPKTE
RDTPGHGSGWAETPRTDRGGDSIGETPTPGASKRKSRWDETPASQMGGSTPVLTGKTP
GTPAMNMATPTPGHIMSMTPEQLOAWRWEREIDERNRPLSDEELDAMFPEGYKVLPPPAG
YVPIRTPARKLTATPTPLGGMTGFHMQTEDRTMKSVNDQPSGNLPFLKPDDIQYFDKLLV
DVDESTLSPEEQKERKIMKLLLKIKNGTPPMRKAALRQITDKAREFGAGPLFNQILPLLM
SPTLEDQERHLLVKVIDRILYKLDDLVRPYVHKILVVIEPLLIDEDYYARVEGLEIIISNL
AKAAGLATMISTMRPDIDNMDEYVRNTTARAFAVVASALGIPSLLPFLKAVCKSKSWQA
RHTGIKIVQQIAILMGCALPHLRLSLEVIIEHGLVDEQQKVRTISALAIALAEEATPYG
IESFDSVLKPLWKGIRQHRGKGLAAFLKAIGYLIPLMDAEYANYYTREVMLILREFQSP

DEEMKKIVLKVVKQCCGTDGVEANYIKTEILPPFFKHFWQHRLMALDRRNYRQLVDTTVEL
ANKVGAAEIISRIVDDLKDEAEQYRKVMETIEKIMGNLGAADIDHKLEEQLIDGI LYAF
QEQTTEDSVMLNGFGTVVNALGKRVKPYLPQICGTVLWRLNNNSAKVRQQAADLISRTAV
VMKTCQEEKLMGHLGVVLYEYLGEYPEVLGSILGALKAIVNIGMHKMTPIKDLLPRL
TPILKNRHEKVQENCIDLGVRIADRGAEYVSAREWMRICFELLELLKAHKKAIRRA TVNT
FGYIAKAIGPHDVLATLLNNLKVQERQNRVCTVAIAIVAETCSPFTVLPALMNEYRVPE
LNVQNGVLKSLSLFLFEYIGEMGKDYIYAVTPLLLEDALMDRDLVHRQTASAVVQHMSLGVY
GFGCEDSLNHLLNYYWPNVFETSPHVIQAVMGALEGRLVAIGPCRMLQYCLQGLFH PARK
VRDVYWKIYNSIYIGSQDALIAHYPRIYNDDKNTYIRYELDYIL

>gi|21707321|gb|BC033864.1|BC033864 2321bp mRNA Homo sapiens,
Similar to branched chain aminotransferase 1, cytosolic, clone
MGC:45234 IMAGE:5186262, mRNA, complete cds.

GGTGGATGCTCGGGCATCGGAGGACCTGCTGGTGGAGGAAATGGTTACGCCCGTCCCC
GTCCCTTGAGGCTTGCTATTGTGCGTCTGTGATTGACAAGACCACGAGGCTGAGCGC
GCCCTGGAGATTTCTATAAAATGGCTTAACACCCCAGTCTAGACTATTGCTCGGATAT
AAGGGAGACAATTGTTTTGTTCTTGCCGGCGAACCTGGCTCTGTAGGGCTGACCT
GGAATTAAACCAGTCTCCCTGAGCCGGCGAGGAGGACAAAAACGCCGCACCCGGC
AGGGTGGGAAGTGCAGGGCAGCGCTCCCAAGACACGCTTGGAGGTTGGGGCTGGGT
GCTTGGTTGTCTGAGCCTCTTTGTGTTGCCTGGGTCTGGAGAGGAGCGCACGGT
ATCATGGATTGCAGTAACGGATGCTCCGAGAGTGTACCGGAGAAGGAGGATCAAAGAG
GTGGTGGGACTTTAAGGCTAAAGACCTAATAGTCACACCAGCTACCATTAAAGGAA
AAACCAGACCCAATAATCTGGTTTGAACTGTGTTCACGGATCATATGCTGACGGTG
GAGTGGTCCTCAGAGTTGGATGGAGAACCTCATATCAAGCCTCTCAGAACCTGTCA
TTGCACCCCTGGCTCATCAGCTTGCACTATGCAGTGAATTATTGAAGGATTGAAGGCA
TTTCGAGGAGTAGATAATAAAATTGCACTGTTCAAGCCAAACCTCAACATGGATAGAATG
TATCGCTCTGCTGTGAGGGCAACTCTGCCGTATTGACAAAGAAGAGCTTTAGAGTGT
ATTCAACAGCTGTGAAATTGGATCAAGAATGGTCCCATTCAACATCTGCTAGTCTG
TATATTGCTCCTACATTGAACTGAGCCTCTGGAGTCAAGAAGCCTACCAAA
GCCCTGCTTTGACTCTTGAGCCAGTGGACCTTATTTCAGTGGAAACCTTTAAT
CCAGTGTCCCTGTGGCCAATCCCAAGTATGTAAGAGCCTGGAAAGGTGGAACTGGGAC
TGCAAGATGGAGGGATTACGGCTCATCTCTTGCCTAATGTGAAGCAGTAGATAAT
GGGTGTCAAGGTCTGTGGCTCTATGGAGAGGACCATCAGATCACTGAAGTGGGAAC
ATGAATCTTTCTTACTGGATAAAATGAAGATGGAGAAGAAGAACTGGCAACTCCTCCA
CTAGATGGCATCATTCTCCAGGAGTGACAAGCGGTGCATTCTGGACCTGGCACATCAG
TGGGACACAGAACTCAGCTGTTCAATTAAATTGCTGATTCTGCAGTTCAATTAC
TTTGAAACAACATAATTGCAATTGTAGACTGAGAGAAATTGAAACTTCAAAGAGCCATA
TTTCTATTGCAGATATATTCCTGCTCTTCAAATCTACTTACAGCATGAGTTCTTCTT
TTAAATATTCAAATATTGAAATTGCAAGAGCTTGATTCCATTTCATCTCTTGT
GGTTTATAAAATTAGAAAAAAACTCATCTTATTTCAGTGGAAACTTGAACCACTGAGGTAAAAGACA
AGAATTAAACAGATAGTTAAACACATAGCTTAAAGGATCTTCCATTTCCTATCC
TTGAGCAAAGAATATATTCAAACACTTGGCAGAAGTCAATGAGGTTATACCACTAATT
CATGATGAAAATCAACTGAATGTGATACTGAAAGAGAAGAGAATTGTCAGTCAA
GTCAGTCTAGTCATATTAGGAAAAAAATACATACAATTCTCAAATAAGTC
CAAATACATTCAATGTTAAAATAATGAGTATTTCAGATATTGAAACTCAGTCTGTT
CTTATTCCATAAAAGATATAGGTAAGCCGTGCACGGTGGCTCACAACTATAATCCCAGC
ACTTGGCACTTGGAGGCTGAGGTGGAGGATCACATGAGCCCAGCCTGGCAACATA

GGGAGACCGCTATCTTACAAAATAAAATATAAAACCTAGTTGGGCATGGCAG
CATACACCTGTAGTCCCAGGTGCTCGGGAGACTGAGACAGGAGGATCGCTTGGGCCTGGG
AGGTCGAGGCTGCAGTGAGCCAAGATTATGCCACTGCATTCCAGCCTGGGTGACAGGGCA
AGACCCTGTCTAAAAAAAAAAAAAA

>gi|21707322|gb|AAH33864.1|AAH33864 320aa linear Similar to branched chain aminotransferase 1, cytosolic [Homo sapiens]. MDCSNGCSAECTGEIGSKEVVGTFKAKDLIVTPATILKEKPDPNNLVFGTVFTDHMLTVE WSSEFGWEKPHIKPLQNLSPHPGSSALHYAELFEGLKAFRGVDNKIRLFQPQLNMDRMY RSAVRATLPVFDKEELLECIQQLVKLDQEWPYSTSASLYIRPTFIGTEPSLGVKKPTKA LLFVLLSPVGPFSSGTFNPVSLWANPKYVRAWKGGTGDCKMGGNYGSSLFAQCEAVDNG CQQLWLWLYGEDHQITEVGTMNLFLYWINEDGEELATPPLDGIILPGVTRRCILDLAHQW DTELSLFSINLPDFLQFIYF

>gi|29570794|gb|NM_001895.2|CSNK2A1 2323bp mRNA Homo sapiens casein kinase 2, alpha 1 polypeptide (CSNK2A1), transcript variant 2, mRNA.

CCCGCCTCCTGGTAGGAGGGGGTTTCCGCTTCCGGCAGCAGCGGCTGCAGCCTCGCTCTG GTCCCTGCGGCTGGCGCCAGCCGTGTCTCCTCCTCCATGCCGCCATTGTCCTGT GTGAGCAGAGGGAGAGCGGCCGCCGCTGCCGCTCCACACAGTTGAAGAAAACA GGTCTGAAACAAGGTCTTACCCCCAGCTGCTCTGAACACACAGTGACTGCCAGATCTCCAA ACATCAAGTCCAGCTTGTCCGCCAACCTGTCTGACATGTCGGGACCCGTGCCAAGCAGG GCCAGAGTTACACAGATGTTAACACACACAGACTCGAGAATACTGGGATTACGAGTCA CATGTGGTGAATGGGAAATCAAGATGACTACCAGCTGGTTGAAAATTAGGCCGAGGT AAATACAGTGAAGTATTGAAGCCATCAACATCACAAATAATGAAAAGTTGTTAAA ATTCTCAAGCCAGTAAAAAGAAGAAAATTAGCGTAAATAAGATTGGAGAATTG AGAGGAGGTCCAACATCATCACACTGGCAGACATTGTAAGACCTGTGTACGAACC CCCGCCTGGTTTTGAACACGTAAACACACAGACTTCAAGCAATTGTACAGACGTTA ACAGACTATGATATTGATTACATGTATGAGATTCTGAAGGCCCTGGATTATTGTCAC AGCATGGGAAATTATGCACAGAGATGTCAGGCCATAATGTCATGATTGATCATGAGCAC AGAAAGCTACGACTAATAGACTGGGGTTGGCTGAGTTTATCATCCTGGCAAGAATAT AATGTCCGAGTTGCTTCCGATACTCAAGGTCTGAGCTACTGTAGACTATCAGATG TACGATTATAGTTGGATATGTGGAGTTGGTTGTATGCTGCAAGTATGATCTTCGG AAGGAGCCATTTCATGGACATGACAATTATGATCAGTGGTGAGGATAGCCAAGGTT CTGGGGACAGAAGATTATATGACTATATTGACAAATACAACATTGAATTAGATCCACGT TTCAATGATATCTGGCAGACACTCTCGAAAGCGATGGGAAACGCTTGTCCACAGTGA AATCAGCACCTGTCAGCCCTGAGGCCTGGATTCTGGACAAACTGCTGCGATATGAC CACCAGTCACGGCTTACTGCAAGAGAGGCAATGGAGCACCCCTATTCTACACTGTTGTG AAGGACCAGGCTGAATGGGTTCATCTAGCATGCCAGGGGGCAGTACGCCGTAGCAGC GCCAATATGATGTCAGGGATTCTTCAGTGCCAACCCCTCACCCCTGGACCTCTGGCA GGCTCACCAGTGATTGCTGCTGCCAACCCCTGGGATGCCTGTTCCAGCTGCCGTGGC GCTCAGCAGTAACGGCCCTATCTGTCTCCTGATGCCCTGAGCAGAGGTGGGGAGTCCACC CTCTCCTTGATGCACTGCTGGCCTGGGGAGGGTGAAACACTTCAGAAGCACCGTGT CTGAACCCTGCTTGTGGATTATAGTAGTCAGTCATAAAAAAAATTATAATAGGCT GATTTCTTTCTTTCTTTCTTAACTCGAACCTTCATAACTCAGGGATTCCCTGA AAAATTACCTGCAGGTGGAATATTGACAAATTCTCTCCCTCCAAATTG AGTCCTCATCACAAAAGAACAAAGATAAACCCAGCCTCAATCCGGCTGCTGCATTAGG TGGAGACTTCTCCCATTCCCACCATGTTCCACCGTCCACACTTTAGGGGGTTGG TATCTCGTGTCTTCTCCAGAGATTACAAAATGTAGCTCAGGGGAGGCAGGAAGAA

AGGAAGGAAGGAAAGAAGGAAGGGAGGCACCAATCTATAGGAGCAGTGGACTGCCTGCTG
GTCGCTTACATCACTTACTCCATAAGCGCTCAGTGGGTATCCTAGTGGCTCTGTG
GAAGTGTGCTTAGTTACATCAAGATGTTAAAATCTACCCAAAATGCAGACAGATACTA
AAAACCTCTGTTAGTAAGAACATGTCTTACTGATCTAACCCCTAAATCCAACTCATT
TACTTTATTTTAGTTAGTCAGTTAAAATGTTGATACCTCCCTCCAGGCTCCTACCT
GGTCTTTCCCTGTTCATCTCCAAACATGCTGTGCTCCATAGCTGGTAGGAGAGGGAAAGG
CAAATCTTCTTAGTTCTTGCTTGGCCATTTGAATTC
>gi|4503095|gb|NP_001886.1|CSNK2A1 391aa linear casein kinase
II alpha 1 subunit isoform a; CK2 catalytic subunit alpha
[Homo sapiens].
MSGPVPSRARVYDVNTHRPREYWDYESHVVEWGNQDDYQLVRKLGRKYSEVFEAINIT
NNEKVVVKILKPVKKKIKREIKILENLRRGPNIITLADIVKDPVSRTPALVFEHVNNTD
FKQLYQTLTDYDIRFYMYEILKALDYCHSMGIMHRDVKPHNVMDHEHRKLRLIDWGLAE
FYHPGQEYNVRVASRYFKGPELLVDYQMYDYSLSMWSLGCMILASMIFRKEPFFFHGDNYD
QLVRIAKVLGTEDLYDYIDKYNIELDPRFNDILGRHSRKWERFVHSENQHLVSPEALDF
LDKLLRYDHQSRLTAREAMEHPYFYTVVKDQARMGSSSSMPGGSTPVSSANMMMSGIISVPT
PSPLGPLAGSPVIAAANPLGMPVPAAAGAQO
>gi|13375963|gb|NM_024689.1|FLJ14103 2502bp mRNA Homo sapiens
hypothetical protein FLJ14103 (FLJ14103), mRNA.
CTCTTGGCCAAGGCCCTGCCTCTGTACAGCCTCGAGTGGACAGCCAGAGGCTGCAGCTGG
AGCCCAGAGCCAAGATGGAGGCCAGCTGGGCCTGAGGCTGCCGCCCTCGGCCCTGGC
TGGCTGGCCCTGCTGCTGGGTCTCAGCCCTGAGCTGTTCTTCTCCTTGCCAGCTTCT
TCCCTTCCTCTGGTGCCTCAAGTCAGAACCCAGCTACAATTGGAAAGGACTTCTC
GGTCTTGATAAAATGCAATGCCATGGGACATCTATTGCAAGAAGTTCTTAAAGAA
GAAATAAGATCTGACAACCTGGCTGGCTCCACCTGGACTGCCCTCCGATTCTTGCTT
TCTTATCCTGCAAATTACTCAGATGATTCCAAATCTGGGCCCTGTGGAGATCTTCT
CTGGTCAGCAAATATCAAACAGAGATCTCAGACAGGAAATCTGTGCCCTGCACTGCC
CCAAAGACCTGCAGCATTGAGCGTGTCTCGCGAAAACAGAGAGGTTCCAGAAATGGCTG
CAGGCCAGCGCCTCACGCCGGACCTGGTGCAGGACTGTCAACCAGGCCAGAGAGAACTA
AAGTCCTGTGTATGCTGAGATAACACCAGTGAACAGCCTGGCATGGAGGCCAGCACTG
AGAACCTCCAGAAAGTGTAGCCTCTCCAACCTGTGTTACCAACCACATTTCAAAT
AGTAATCATTAAAGAGGCTCTGCATCAAACCTTCACATGCAGCTCCATGCCACCTCC
AGAATTCAACACACAGGCCACAGCAACAGGCTACCTTGCAAAATATTCTCTGAT
GACAACCTCAAAGCCCCGGCTTTCCACCAACTGTGGTCCCTAGATGGGCTGTTGC
TGAGCCCACCCCAATCCAGATGTGATCCCCCTGTGATCTACTCTGGCAAGATTCTCAGT
CTGGACAGGTCTCCCTATGAGATAGAACCTGATAAGGAGCTAGGGCAATTCTGACAACA
TTACCAAAGGCCACATAACTCTAAATTGGTCTGGTCTGAAGGAAACCTGTTCTCG
CCCTAGTGTGGATGAACTCTTATCTCTGGCTCTAGAGGAAAAAAAGCATACCT
CTTTACTTTAAGTACCTCCATCAGAGTCATGAAATCACCTGTCAAGACTATCTATCT
TTTATGTTCCATTCTGGTAAGAACCTTAAATGAGGACACTGCTGATTGCTGGTGTGATG
TTTTTGAGCAAACACTCGGGGTATGGATGAAAGCCAATCGCAGGTCAAATGACTCCTT
GGGAAGCTACTTCTCCTCTATTCAAGATTCACTAAAATCTCCAAGATGAAAGCAAATC
TAGATTTGGTCTTCATTGCTGTCCATTGGTAAATGAACGAGTGTGTTCTAGCTA
GTGTATCAGGCAGGGTCTACAGAGAAACAGAACCAAGTAGGAGATACTATACATGTCC
AGATTATTCAAAGAATTGATTACATGATTGTGGGATTGCAAGTCCAAATCCATA
TGGTAGGCCTGCAATCTGTAAACCTTGGCAGGAGCTGATGCTGTAGTTGCAGATAGA
ATTCCCTGTTCTTAAAGGGCTTGAATGATTGGATCAG

- 87 -

GCCCACCCAGATTACCTAGATAATCTCTTTACTTAAAGTAAACTGATTGTAGGTGCTAA
TCACATCTATGAAATGCCTCACAGCAACACCTAGATTAGCATTCAATTGAATAACTGGG
GAATACAGCCTAGCCAAGTTGACACATAAAATTAACCACATCACAGCAACATGCCTGCTAAA
TTTATCGACCGTCTTCAGACTGTTAAGGATTGTTAGAGAACTGTGACAGCCACTCTC
AGCATCACCCCTGAACCAAAGGCCCTATCAAGTAACAATATAGCCAAGCAAAATTCCAGT
CAATAGAGACATTGACTGGTGGCTGGCTCCAAAGGGATAGCACCAGACAAGAAATGCA
AGGATGAGGAAACCAGGCACGGGAGAGGGAGGGCAACAGAGGTCCAGGGTTGGTTATC
TTTTATTTTCACTGGGAGGTGTTAAGTTAGCCCTGTCGCCATGTATGCAGATGGGAG
AAGTGATTAGAAACTCCAAAGCAATTGGTAATCCCCAAATGGGTGTATCTGGTTGAA
ATGAAACCTTATTTTATTGAAATGGTGGTTCCAAATTCTGTTGCCATTGCCAATA
TAATTGTGGTTGCACATGGCCAGCACATGCCAACAGAAGTAGACAAAGGTCTCACTC
TGTAAGTGGGACCTGGGGAGGAGCTGCCTCCATCATAAAGGGAGGGTTAGTAAAATG
GTCTCTTAAGCCTGTTCTGCTACAGTTAGAGGTGCTAGAACCTCTCAGCAAATA
TAGCAGTTATCTATTGTTGTATTAAACCATTCAACACAT

>gi|13375964|gb|NP_078965.1|FLJ14103 182aa linear hypothetical protein FLJ14103 [Homo sapiens].

MEPQLGPEAAALRPGWLALLWVSALSCSFSLPASSLSSLVPQVRTSYNFGRFLGLDKC
NACIGTSICKFFKEEIRSDNWLA SHLGLPPDSLLSYPANYSDDSKIWRPVEIFRLVSKY
QNEISDRKICASASAPKTCSIERVLRKTERFQKWLQAKRLTPDLVQDCHQGQRELKFLCM
LR

>gi|7658290|gb|AF221842.1|AF221842 3057bp mRNA Homo sapiens U5
snRNP-associated 102 kDa protein mRNA, complete cds.

ACTTTGCTACGGAGTGCATCGGACGTCGAAGCCTAGAGTCCTCGCTCTTCCCTCTTCC
GCTGCCTCATCCTTCTTCCTAGCCTTGGTCGTGCCGCCACCATGAACAAGAAGAAG
AAACCGTTCTAGGGATGCCCGGCCCTCGGCTACGTGCCGGGCTGGCCGGGCGCC
ACTGGCTTACACCGCGGTAGACATTGGGCCCGCCGTATGCAAATGACCTGTGGAT
GATGCCATGCACCCCCAGGCAAGAGAACCGTTGGGGACCAGATGAAGAAAATCAGGCT
GCTGACGATGACGACGAGGATCTAAATGACACCAATTACGATGAGTTAATGGCTATGCT
GGGAGCCTTCTCAAGTGGACCCCTACGAGAAAGATGATGAGGAAGCAGATGCTATCTAT
GCAGCCCTGGATAAAAGGATGGATGAAAGAAGAAAAGACGGAGCAAAGGGAGAAA
GAAGAAATAGAGAAATATCGTATGGAACGCCAAATCCAACAGCAGTTCTCAGACCTC
AAGAGGAAGTTGGCAGAAGTCACAGAAGAAGAGTGGCTGAGCATTCCCGAGGTTGGCGAT
GCCAGAAATAAACGTCAGCGGAACCCACGCTATGAGAAGCTGACCCCTGTTCTGACAGT
TTCTTGCAAACATTACAGACCGAGAGAACCATACCTCAGTGGATCCCCGACAAACT
CAATTGGAGGTCTAACACACCCCTATCCAGGTGGACTAAACACTCCATACCCAGGTGGA
ATGACGCCAGGACTGATGACACCTGGCACAGGTGAGCTGGACATGAGGAAGATTGGCAA
GCGAGGAACACTCTGATGGACATGAGGTGAGCCAGGTGCTGACTCCGTGAGTGGACAG
ACCGTCGTGACCCCAAAGGCTACCTGACGGATTAAATTCCATGATCCGACACACCGA
GGAGACATCAATGATCAAGAAGGCGCGACTGCTCTCAAGTCTGTTGGAGACGAAC
CCTCATCACCCGCCAGCCTGGATTGCATCAGCCGCCCTGGAAAGAAGTCACTGGGAAGCTA
CAAGTAGCTCGGAACCTTATCATGAAGGGAGGGAGATGTGCCCAAGAGTGAAGATGTC
TGGCTGGAAGCAGCCAGGTGAGCTGGCACAGCCAAAGGCCGTGGTAGCCCAAGCT
GTCCGTCTCTCCCACAGTCTGTCAGGATTACATCAGAGCCGAGAGCTGGAAACGGAC
ATTCTGCAAAGAAGCGGGTTCTCGAAAGCCCTCGAGCATGTTCAAACCTGGTTCGC
TTGTGGAAAGCAGCCGTTGAGCTGGAAAGAACCTGAAGATGCTAGAATCATGCTGAGCCGA
GCTGTGGAGTGCTGCCCAACCAGCGTGGAGCTCTGGCTTGCTGGCAAGGCTGGAGACC
TATGAAAATGCCCGCAAGGTCTTGAACAAGGCGGGAGAACATTCTACAGACCGACAT

- 88 -

ATCTGGATCACGGCTGCTAAGCTGGAGGAAGCCAATGGAACACGCAGATGGTGGAGAAG
ATCATCGACCGAGCCATCACCTCGCTGCCAAGGTGTGGAGATCAACCGTGAGCAG
TGGATCCAGGATGCCGAGGAATGTGACAGGGCTGGAGTGTGGCCACCTGCCAGGCCGTC
ATGCGTGCCGTATTGGGATTGGGATTGAGGAGGAAGATCGGAAGCATACCTGGATGGAG
GATGCTGACAGTTGTGTAGCCCACAATGCCCTGGAGTGTGCACGAGCCATCTACGCCCTAC
GCCCTGCAGGTGTTCCCCAGCAAGAAGAGTGTGTGGCTGCGCGCCGCTACTTCGAGAAG
AACCATGGCACTCGGGAGTCCCTGGAAGCCTGCAGAGGGCTGTGGCCCCTGCC
AAAGCAGAGGTGCTGTGGCTCATGGCGCCAAGTCCAAGTGGCTGGCAGGGATGTGCCT
GCAGCAAGGAGCATCCTGGCCCTGGCCTTCCAGGCCAACCCCAACAGTGAGGAGATCTGG
CTGGCAGCCGTGAAGCTGGAGTCCGAGAATGTGAGTACGAGCAGGCCGAGGCTGCTG
GCCAAGGCCGGAGCAGTCCCCCACCGCCGGGTGTTCATGAAGTCTGTGAAGCTGGAG
TGGGTGCAAGACAAACATCAGGGCAGCCAAAGATCTGTGCGAGGAGGCCCTGCC
GAGGACTTCCCCAAGCTGTGGATGATGAAGGGCAGATCGAGGAGCAGAAGGAGATGATG
GAGAAGGCCGGAAAGCCTATAACCAGGGTTGAAGAAGTGTCCCCACTCCACACCCCTG
TGGCTTTGCTCTCGGCTGGAGGAGAAGATTGGCAGCTACTCGAGCACGGCCATT
TTGGAAAAGTCTCGTCTGAAGAACCAAAGAACCCCTGGCTGTGGTGGAGTCCGTGCGG
CTGGAGTACCGTGCAGGGCTGAAGAACATCGCAAATACACTCATGGCCAAGGCCGCTGCAG
GAGTGCCCAACTCCGGTATCCTGTGGCTGAGGCCATCTCCTCGAGGCAAGGCC
AGGAGGACCAAGAGCGTGGATGCCCTGAAGAAGTGTGAGCATGACCCCATGTGCTCCTG
GCCGTGGCCAAGCTGTTGGAGTCAGCGGAAGATCACCAAGGCCAGGGAGTGGTCCAC
CGCACTGTGAAGATTGACTCGGACCTGGGATGCCCTGGCCTTCTTACAAGTTGAG
CTGCAGCATGGCACTGAGGAGCAGCAGGAGGAGTGGAGGAAGCGCTGTGAGAGTCAGAG
CCTCGGCATGGGAGCTGTGGTGCAGGGCTGTCCAAGGACATGCCAAGGCCAGAAG
ATCGGGGACATCCTTAGGCTGGTGGCGCCGCATCAAGAACACCTCTGATTGAGCGGT
TGCCATGGCGGTCTCGTGGGCAAGGGTTGGCCGCATGTGGAAGGGCTCTGAGCTGTG
TCCTCCTCATTAAAAGTTTATGTCTGTCAGAAAAAAAAAAAAAAA
>gi|7658291|gb|AAF6128.1|AAF6128 941aa linear U5 snrNP-
associated 102 kDa protein [Homo sapiens].
MNKKKKPFLGMPAPLGYVPGGLRGATGFTTRSDIGPARDANDPVDDRHAPPKRTVGDQM
KKNQAADDDEDLNDTNYDEFNGYAGSLFSSGPYEKDDEEADAIYAALDKRMDERRKERR
EQREKEEIEKYRMERPKIQQQFSDLRKLAEVTEEEWLSIPEVDARNKRQRNPRYEKLT
PVPDSFFAKHLQTGENHTSVDPRQTQFGGLNTPYPGLNTPYPGGMTPGLMTPGTGELDM
RKIGQARNTLMDMRLSQVSDSVSGQTVVDPKGYLTDLNNSMIPTHGGDINDIKARLLLKS
VRETNPHPPIASARLEEVTKLQVARNLIMKGTEMCPKSEDVLEAARLQPGDTAKA
VVAQAVRHLPQSIVIYIRAAELETDIARKRVLRKALEHVPNSVRLWKAAVELEEPE
IMLSRAVECCPTSVELWLALARLETYENARKVLNKARENIPTRDRIWI
TAALKLEEANGNT
QMVEKIIDRAITSIRANGVEINREQWIQDAEEDRAGSVATCQAVMRAVIGIGIEEEDRK
HTWMEDADSCVAHNALECARAIYAYALQVFPSKKS梧LRAAYFEKNHGTR
TRESLEALLQRA
VAHCPKAEVWLWLMGAKSKWLAGDVPAARSILALAFQANPNSEEIWLA
AVKLES
ENDEYER
ARRLLAKARSSAPTA
RVFMKSVKLEWVQDNIRAAQDLCEEALRH
YEDFPKLWMMKGQIEE
QKEMMEKAREAYNQGLKKCPHSTPLWLLSRLEEKIGQLTRARAILEKSRLKNPKNPG
LW
LESVRLEYRAGLKNIANTLMAKALQEC
PN
GILWSEAI
FLEAR
PQR
RTK
SVD
ALKCEHD
PHV
LLAVAKLFWSQR
KITKAREWFH
RTVKIDSDLGDA
WAFFYKF
ELQHG
TEE
QQEE
VRKR
CESAEPRH
GELWC
AVSKD
IANWQ
KKIGD
ILRLV
AGRI
KNTF
>gi|5454165|gb|NM_006370.1|VTI1B 1287bp mRNA Homo sapiens
vesicle transport through interaction with t-SNAREs homolog 1B
(yeast) (VTI1B), mRNA.

CCCTTCGCTCGGCCCTTCCCCAACCGGACCCGGCACTTCTCGGGTTCCCGACTGCC
 GATCGCCCCGGCGCGCACCGCTCCCTCAGGAGTCGCCTAGGCCGCAGTCTCCGACT
 TCTCGTCAGGCTTCGCGCCGGCCTCCAGCAATCACTGGCTGGAGAAGGTGGCGTCC
 GGCTCGAGAGGACCCCTGCCCGGGCTCCGGAAAGAGCCTCGTCTGGCGGCGTGGTGC
 CGGTCGCCGTTATGCCACTGGCTGGCGCTGACCGCGGGCTAGGAAAGGGCCCAGGG
 CCCGAATCTCGGTGGCCGCTGCTCCAGCGCCGCTGCCATGGCTCTCCGCCGCTC
 CTCGGAGCATTGAGAAGCTGCACGAGATCTCCGGCCTCCATGAAGACCTACAAGG
 GGTGCCGAGCGGCTGCTGGGACGGCGGGACGAAGAAAAGAAGAAATTGATCAGGG
 TTTTGATGAAAAGCAACAGGAAGCAAATGAAACGCTGGCAGAGATGGAGGAGGAGCTAC
 TTATGCACCCCTGTCTTCCGAAACCCCATGATGTCTAAGCTTCGAAACTACCGGAAGGA
 CCTTGCTAAACTCCATCGGAGGTGAGAACGACACCCATTGACAGCCACACCTGGAGGCC
 AGGAGACATGAAATATGGCATATATGCTGTAGAGAACGATGACCAGATGGCTCAGAAATCATAGAAGAGCT
 TCAAAGGGCAATGCTCTGCAGGGACTGAAAGCCTGAACCGGGCACCCAAAGTATTGA
 ACGBTCTCATCGGATTGCCACAGAGACTGACCAGATGGCTCAGAAATCATAGAAGAGCT
 GGGGAACAACGAGACCAGTTAGAACGTACCAAGAGTAGACTGGTAAACACAAGTGA
 CTTGAGAAAAGTCGGAAGATTCTCGTTCAATGTCCAGAAAAGTGACAACCAACAAGCT
 GCTGCTTCCATTATCATCTTACTGGAGCTGCCATCTGGAGGCCCTGGTAACTACAA
 ATTCTTCGAGCCATTGAACCTCTAGGAAAGGGTTGTGGACCAGAACCTTGACCTT
 GTGAATGCATGATGTTAGGGATGTGGATAGAATAAGCATATTGCTGTGGCTGACAG
 TTCAAGGATGCACTGTATAGCCAGGCTGTGGAGGAGGAGGAAAGATGAAAAACCACTT
 AAATGTGAAGGAACACAGAACAGAACAGACCAGTATGATATACCAAGGTAATAATGCTGTT
 TATGACTTCTTAAAAAAAAAAAAAA

>gi|5454166|gb|NP_006361.1|VTI1B 232aa linear vesicle-associated soluble NSF attachment protein receptor (v-SN; vesicle-associated soluble NSF attachment protein receptor (v-SNARE; homolog of *S. cerevisiae* VTI1) [Homo sapiens].

MASSAASSEHFEKLHEIFRGLHEDIQGVPERLLGTAGTEEKKLIRDFDEKQQEANETLA
 EMEEEELRYAPLSFRNPMMSKLRNYRKDLAKLHREVRSTPLTATPGGRGDMKYGIYAVENE
 HMNRQLSQRAMLLQGTESLNRATQSIEERSHRIATETDQIGSEIIIEELGEQRDQLERTKSR
 LVNTSENLSKSRSRKILRSMSRKVTTNKLLSIIILLELAILGGLVYYKFFRSH

>gi|7705992|gb|NM_016440.1|LOC51231 1869bp mRNA Homo sapiens VRK3 for vaccinia related kinase 3 (LOC51231), mRNA.

CCGAGGGTCAGGCTGCAGAACGCCAGAACCTCCACCCAGTCAGTCCCCAAGTACAGAGGTCGCT
 GTCAAGATGGAGTTCCAACCCAGTAAATCCAAGGGCCAGACCGTACCTCATAAAGCAT
 GATCTCCTCTGCCAGACTGTGGAAAAGTATCCAAGCGGCATTCAAATTCTGCCCTA
 CTGTGGAAATTCTTGCCTGTAGAGGAGCATGTAGGGTCCCAGACCTTGTCAATCCACA
 TGTGTATCCTCCAAGGCTCAAAGAGAGGGCTGAACCTCCAGTTGAAACCTCTCCTAA
 GAAAGTGAATGGTCCAGCACCGTCACCTCTCCCCGATTATCCCTTCTCAGATGGTGA
 CAGTTCTGAGTCTGAAGATACTCTGAGTTCTCTGAGAGATCCAAAGGCTCCGGAGCAG
 ACCCCCACCCCAAAAGCAGCCCTCAGAACGACCAGGAAGAGGCCCTCAGGTGACCAGGG
 TAGCCCTCAGAACGACCAGCTGTAGCCCTCAGAACGACCAGGCAGAGGCCCTCAGACGCTGAA
 GCGGAGCCGAGTGAACCTCACTTGAAGCTTGCCTCACAGGACAGGGACAACCAAGGGCATTCTCTA
 GAGTGGCGACAGTGGAAAGCTGAAGTCCTCCAGACCCAGGGACAACCAAGGGCATTCTCTA
 TGAAGCTGCACCCACCTCACCTGACTCAGGACCAACAGAACGAAAGCAAAGTTCTC
 ACTCAAACGGATGCCAACGGATGGCGCTTGTCAATGAGCAGAACCTCTCCAGCGGGC
 CGCCAAGCCTCTGCAAGTCACAAAGTGGAAAGAAGCTGTACTCGACCCACTGCTGGCCAT
 CCCTACCTGCATGGGTTCCGGTGTCAACCAGGACAAATACAGGTTCTGGTGTACCCAG

- 90 -

CCTGGGGAGGAGCCTTCAGTCGGCCCTGGATGTCAGCCCCAAAGCATGTGCTGTCAAGAGAG
 GTCTGTGCTGCAGGTGGCTGCCGGCTGGATGCCCTGGAGTTCCATGAGAATGA
 GTATGTTCATGGAAATGTCAGACTGAAAATATCTTGTGGATCCAGAGGACCAGAGTCA
 GGTGACTTTGGCAGGCTATGGCTTCGCCTCGTATTGCCAACAGTGGCAAACACGTGGC
 CTACGTGGAAGGCAGCAGGAGCCCTCACGAGGGGACCTTGAGTCATTAGCATGGACCT
 GCACAAGGGATGCGGGCCCTCCCGCCGAGCGACCTCCAGAGCCTGGCTACTGCATGCT
 GAAGTGGCTCTACGGGTTCTGCCATGGACAAATTGCCCTCCAACACTGAGGACATCAT
 GAAGCAAAACAGAAGTTGATAAGCCGGGCCCTCGTGGGACCCCTGCGGTCACTG
 GATCAGGCCCTCAGAGACCCCTGCAGAAGTACCTGAAGGTGGTATGGCCCTACGTATGA
 GGAGAAGCCGCCCCTACGCCATGCTGAGGAACAAACCTAGAAGCTTGCTGCAGGATCTGC
 TGTGTCTCCATATGACCCATTGGCCTCCCGATGGTGCCTAGGTGGAATCCAGAACCTT
 CCATTGCACTGTGCAACAGAAAAAAATGAAGCAATGTGACTCAAGGCCTGCTGTTTA
 ATCACAGATAAGCTCTAGAACAAAGCCCTGGAATGTGCATTCCGCCACTGGTTTCAGGA
 TACTCATCAGTCCTGATTAGCCTCCGGAGGGCCCCAGTTCCCTCCCGTGAATGTGAAGT
 TCCCCATCTGGTGGCCTGCCCTCAGCCAGTGTCTAGCAAAGCTGGATGGGTTGGC
 CGGCCACAGGGGGACCCCTCCTACCCCTGACTCCTGTGCTTGGTAATAATTGTT
 TTACCAAGAG

>gi|7705993|gb|NP_057524.1|LOC51231 474aa linear VRK3 for
 vaccinia related kinase 3 [Homo sapiens].

MISFCPDGKSIQAAFKFCPYCGNSLPVEEHVGSQTFVNPHVSSFQGSKRGLNSSFETSP
 KKVWSSVTSPRLSLFSDGDSSESEDTLSSSERSKGSRPPTRKSSPKTRSPQVTR
 GSPQKTSCSPQKTRQSPQTLKRSRVTSLEALPTGTVLTDKSGRQWKLSFQTRDNQGIL
 YEAAPTSTLTCDSGPQKQFKFLKLDAKDGRLFNEQNFFQRAAKPLQVNWKLYSTPLLA
 IPTCMGFVHQDKYRFLVLPQLGRSLQSAVDVSPKHVLSERSVLQVACRLLDALEFLHEN
 EYVHNVTAEINI FVDPEDQSQVTLAGYGFAFRYCPGKHVAYVEGSRSRSPHEGDLEFISM
 LHKCGPSRRSDLQSLGYCMLKWLYGFLPWTNCLPNTEDIMKQKQKFVDKPGFVGPCH
 WIRPSETLQKYLKVMALTYEEKPPYAMLRNNLEALLQDLRVSPYDPIGLPMVP

>gi|27479296|gb|XM_114075.2|TCEA3 1543bp mRNA Homo sapiens
 transcription elongation factor A (SII), 3 (TCEA3), mRNA.

CGCCCCCGCCGGCGTGTGTGTGTGTTGGGCCCGCGCGGGTTGCGCGCCCTCC
 GCCTTCGCGCCTCCTGCCCGAGGCCCTACTGCTGCCCTGTGCCCTCGCCCCGCCGG
 GCGTCGCGGGCCAACATGGGCCAGGAAGAGGGAGCTGCTGAGGATGCCAAAAAGCTGGAG
 AAGATGGTGGCCAGGAAGAACACGGAAGGGCCCTGGACCTCTGAAGAAGCTGCACAGC
 TGCCAGATGTCCATCCAGCTACTACAGACAACCAGGATTGGAGTTGCTGTTAACTGGGTC
 CGCAAGCACTGCTCAGACAAGGAGGTGGTGCCTGGCAAAGTCCTTATCAAAAAGCTGG
 AAGCGGCTGCTAGACTCCCTGGACCCCCAAAAGGAGAAAAGGAGAGGAAAGAGAAAAG
 GCAAAGAAGAAGGAAAAGGGCTTGAGTGTTCAGACTGGAAGCCAGAACAGCAGGCC
 CCACCAAGGAAAAACGAGAACCCCCAAACAGGAGAGACTCTGTGGACTCCAAGTCT
 TCTGCCTCCTCTCCAAAAAGACCATCGGTGGAAAGATCAAACAGCAGCAAATCAA
 GCGGAGAGCCCCAAAACACCTAGCAGCCCTTGACCCCCACGTTGCCTCTCCATGTGT
 CTCCCTGGCCCCCTGCTATCTCACAGGGACTCTGTCCGGACAAGTGTGGAGATGCTG
 TCAGCAGCCCTGAAGCGGACGATGATTACAAGGACTATGGAGTCAACTGTGACAAGATG
 GCATCAGAAATCGAAGATCATATCTACCAAGAGCTCAAGAGCACGGACATGAAGTACCG
 AACCGCGTGCAGCCGATAAGAACCTCAAGGACCCCAGGAACCCGGCTGCAGGCCGG
 AACGTGCTCAGTGGGCCATCTCCGCAGGGCTTATAGCCAAGATGACGGCAGAGGAAATG
 GCCAGTGATGAAGTGGAGTTGAGGAATGCCATGACCCAGGAGGCCATCCGTGAGC
 CAGATGGCCAAGACTGGCGCACCACACTGACCTCTCCAGTGCAGCAAATGCAAGAAG

AAGAACTGCACCTATAACCAGGTGCAGACACGGCAGTGCTGATGAGCCCATGACTACCTTT
GTCTTATGCAATGAATGTGGCAATCGCTGGAAGTTCTGCTGATGGAACAGCCAGCCATGA
ACAAGGTGAGGAAGAAGAAAGAGGAAGCGCTGAATTATCTGAACCTGGAGAAGCAATAAAA
ATTAAAGTGAAGGAAAATACTGAACCTGTCTGAGTGGGATGGTATGAGTTAGAGGAAGA
ATTCTCTGCAAATTAATAATCGGTCAATTAGAAACAATTGGTTAATGGGGAGCCTAATT
GGAGAATGATGCTGAGAATTGTATTGATGAAACCTCTTAGAAACTGCAGAGGGCTGGG
CACGGTGGTTATGGCTGTAATCTGCAAACCTGGGAGGCTGAGGTGGGAGAATCGCTTA
ACCCCAGAAGTTGAGTCCAGGCCAGGCAACACAGCAAGACCC

>gi|20473950|gb|XP_114075.1|TCEA3 348aa linear similar to
Transcription elongation factor A protein 3 (Transcription
elongation factor S-II protein 3) (Transcription elongation
factor TFIIS.h) [Homo sapiens].

MHQEEELLRIAKKLEKMVARKNTEGALDLLKKLHSCQMSIQLLQTTRIGVAVNGVRKHCS
DKEVVSLAKVLIKNWKRLLDSPGPPKGEGEREKAKKKEKGLECSDWKPEAGLSPPRKK
REDPKTRRDSVDSKSSASSSPKRPSVERSNSSKSAESPCKTPSSPLPTFASSMCLLAPC
YLTGDSVRDKCVERMLSAALKADDDYKDYGVNCDKMASEIEDHIYQELKSTDMKYRNRRVS
RISNLKDPRNPGLRRNVLSGAI SAGLIAKMTAEEMASDELRELRNA MTQEAI REHQMAKT
GGTTTDLFQCSKCKKNCTYNQVQTRSADEPMTTFVLCNECGNRWKFC

>gi|21314607|gb|NM_003342.2|UBE2G1 2430bp mRNA Homo sapiens
ubiquitin-conjugating enzyme E2G 1 (UBC7 homolog, C. elegans)
(UBE2G1), mRNA.

ACCGGCAGCGAGGCCGCTCCGCCCTCAGCCCGCCCTCGGCTCCGGCGCTCC
GGTCGCGGGGCCGGGTTCTCGGCACACCCCGCTCCAGCCGCCAGAGCCTGTCCCC
AGCCCTTCCGAAGCCCCGGGCCAGCCCAGGGCTCGGCAGGGAGGATGACGGAGCTGCA
GTCGGCACTGCTACTGCGAAGACAGCTGGCAGAACTCAACAAAAATCCAGTGGAAAGGCTT
TTCTGCAGGTTAACAGATGACAATGATCTTACCGATGGGAAGTCCTTATTATTGGCCC
TCCAGATAACTTATGAAGGTGGTTAACAGGCTCATCTTACTTTCCAAAAGATTA
TCCCCTCCGACCTCTAAATGAAATTCAATTACAGAAATCTGGCACCCAAATGTTGATAA
AAATGGTGATGTGTGCATTCTATTCTCATGAGCCTGGGAAGATAAGTATGGTTATGA
AAAGCCAGAGGAACGCTGGCTCCCTATCCACACTGTGGAAACCACATGATTAGTGTCA
TTCTATGCTGGCAGACCTTAATGGAGACTCACCTGCTAATGTTGATGCTGCGAAAGAATG
GAGGGAAAGATAGAAATGGAGAATTAAAAGAAAAGTTGCCCCTGTGTAAGAAAAAGCCA
AGAGACTGCTTTGAGTGACATTATTAGCAGCTAGTAACCTCACTTATTCAAGGGTCT
CCAATTGAGAAACATGGCACTGTTTCTGCACCTACCCACCTATTGCTGGACTTCTG
TTGTACAAGTTGGCAAACACTGGCTGGAACTGGCTGCAATAAAACATGCCAGTTATCAA
TGCTGACAAGAGCCTAACAGTGCCTAACAGATGATTACGCATTGAAATTCTAATG
AACTGTTAACCTCAGGAAGAATTGTAAGACCTGTACATAGCACAACATGATCCGGA
TAATATATATACTGTTCATGTACATCCACAAATACACCTTGACCAAATAATGCTTCTT
GTAGTAGAATAAGAATCGTGTAAATTCTAAGAGATTAGCAGGTTCTTCTTCTATTCA
TTGTTCTTATCAGTTAACAGGATTCCCTTAAGCATGTCAGATGAAAGCAATTAGGAT
TAAAAGTTCCATTAAATTCCCTAAACCCCTTGAGGCTTCATTAAACTCTTCACTTA
CTAAACTTTGTATCTTCTTGTGTTGACACACTCCCTTGCTTTATCTCTTACCTGC
CAGAATGTTCTCAAATGATTAGTCAAATACTGAAATACTTAATGAGCAATTACTGAT
TTTAATGATGACTTCGAAGGAGTCATCACTAGGTGCTTGTCTTTGTATTCTAGTT
GCACCCACCTCTGGATTGGATATAGCAATAACATTATTGGCCGTTGAGCTCTGAT
CCCAGTCATTACCCCTGAGAACTAAAAATAGATGGTTCTTAATTCAACTTACTGAAAATT
TCCCCAAACAATAGCAAATCTGACTTTCCCTCTCAGTTGCCTGGTATTAAGGTTGGAT

· AAATGAAGCATGCACAGCTACAGGCTTCTACTTAACCTCTGGGTTGCTATTACAAATC
 CTATTTACTCTCATACCCTCTCCTTAGTCCTCATATTCTCTGCCTCTATTCTCTAT
 ACTGCAGATTTCTCACCTATTGTACAAAGAAATTGCGATGTATATTTCATGTAATT
 GATTTGGAATTCTGTCACCTTATGTAGTGAGTTCTCCAAATAAATTTTTCAAT
 AATTGTCAAGTTGGCTTTATTGTATTGAATGAAGGCATAATACTGAGTGCCAGAG
 AAGTGGTTAGGAAAATCTCAGGTTGATTCTTATGCAAATGAACCTTTAATACTTGAAA
 ATCACATGCCATGGCAGTATATGTATTGGTCTATCTAGATTCTCTGTGAATCTAAA
 AGCATTACAGGGTAAATGCTTGCTATTGACGTATACTGAGTCCGTCACTAACAAATAGTA
 CACTTGGATGTGATTAATGTTGAGCTCAATATATTCTATACAGTTCTAA
 CAACTTCAGCAAATGGTAAAATGAACATGTGAGTAAAGGCAGGCCTTAGGCTCCTT
 CATGTTGTTGAGGTTGTTGAGAATGCTTGGCTATAAGGGATAGAACTTG
 AGACAGTAGCAGATGGGACATGGTGGTGTGAGAATCAGTGAGAATTGTGCACT
 CTGCTCTGTGGGTTGGAGAAATGCTTGGCAGAAGAGTGAAAGAACCTGCCAAGAG
 CCCAGACCTCTACAAACGTTGATGCTCTTTAAGCAGAAATAAAATGGTTGAGGACG
 AAAAAAAAAAAAAAAAAAAAAAA

>gi|13489085|gb|NP_003333.1|UBE2G1 170aa linear ubiquitin-conjugating enzyme E2G 1 (UBC7 homolog, *C. elegans*); Ubiquitin-conjugating enzyme E2G (UBC7, *C. elegans*, human homolog of); ubiquitin-conjugating enzyme E2G (homologous to *C. elegans* UBC7); ubiquitin-conjugating enzyme E2G 1 (homologous to *C. elegans* UBC7) [Homo sapiens].

MTELQSALLRRQLAELNKNPVEGFSAGLIDNDLYRWEVLIIGPPDTLYEGGVFKAHLT
 FPKDYPLRPPKMKFITEIWHPNVDKNGDVCISILHEPGEDKYGYEKPEERWLP
 IHTVETI MISVISMLADPNGDSPANVDAAKEWREDRNGEFKRKVARCVRKSQETA
 FE

>gi|21361498|gb|NM_015670.2|SENP3 2258bp mRNA Homo sapiens sentrin/SUMO-specific protease 3 (SENP3), mRNA.

GAAGCTTGAGGCCGGAGACGCCGCTTCGGGCCGTCCGCCGGCTCCCCGCTCCGG
 GTACTGGAAGATGAAAGAGACTATACAAGGGACCGGGCCTGGGGCCCTGAGCCTCTGG
 ACCCGGCATACCCCCAGCTTACTCAAGTCCCAGGCGGGAGCGTCTCGTTGGCCCCCACC
 TCCCAAACCCGACTCAAGTCAGGTGGAGGGTTGGGCCAGATCCTGGGTCAAGGACCAC
 AGTGCCAGCCAGACGCCCTCCCTGTCCCCGACCCCTTTGATGCCTCAGCAAGTGAAGA
 GGAGGAAGAAGAGGAGGAGGAGGAGGATGAAGATGAAGAGGAGGAAGTGGCAGCTGGAG
 GCTGCCCAAGATGGAGTCAGCTGGAACCTCCAGCGGCCCTCCGCCAC
 TCATCGAAAACCTGCTCACAGGCCGCCCGAGCCATGAGAGCCTCCGGATGCTGCT
 CTACTCAAAAGCACCTCGCTGACATTCCACTGGAAGCTTGGGGGCCACCGGGGCC
 GCGGCGGGGCCTCGCACACCCCAAGAACCATCTTCAACCCAGCAAGGGGTGCGACGCC
 ACAGGTGCCATCCCCCTGTTGCTTGAATCCCCCGGGGCCACCTCCACCCGGCT
 GGGCTGCTAGGTGCTCTCATGGCTGAGGATGGGTGAGAGGGCTCCACCGATGCCCTC
 TGGGCCCCCATGGAGGAAGATGGACTCAGGTGGACTCCAAAGTCTCCTCTGGACCTGA
 CTCGGGCCTCTTCATGTAATCTGCCAACGGTTGGGGACAATCTGGGCCAGAAGG
 GGAGCGCAGCTTGGCACCCCTGATGCCAGCATCCTCATCAGCAATGTGTGCGACATCG
 GGACCATGTGGCCAGGAGCTTTCAAGGCTCAGATTGGCATGGCAGAACAGGAG
 GAGGCGCTGGGGAGAAAGCCGCCAGCACAGCCCCCTGCGAGAGGGAGCATGTGAC
 ACTGAGCATCTTGGACGAATTCTTCAAACGTATGGCAGCCTCATACCCCTCAGCA
 TGAGGTAGTAGAGAAGCTGGAGGACATTTCAGCAGGAGTTTCCACCCCTCAGGAA
 GGGCCTGGTGTGCGACTGATCCAGTCTTACCGCGGATGCCAGGCAATGCCATGGT
 GAGGGCTCCGAGTGGCTATAAGCGGCACGTGCTGACCATGGATGACTTGGGGAC
 CCTTGTA

TGGACAGAACTGGCTCAATGACCAGGTGATGAACATGTATGGAGACCTGGTATGGACAC
 AGTCCCTGAAAAGGTGCATTCTCAATAGTTCTTCTATGATAAAACTCCGTACCAAGGG
 TTATGATGGGTGAAAAGGTGGACAAAAACGTGGACATCTCAATAAAGGAGCTACTGCT
 AATCCCCATCCACCTGGAGGTGCATTGGTCCCTCATCTCTGTGATGTGAGGCCACGCAC
 CATCACCTATTTGACTCGCAGCGTACCCCTAAACCGCCGCTGCCCTAACGATATTGCCA
 GTATCTACAGGCAGAGCGGTAAAGAAAGACCGACTGGATTCACCAGGGCTGGAAAGG
 TTACTTCAAAATGAATGTGGCCAGGCAGAATAATGACAGTGACTGTGGTCTTTGTGTT
 GCAGTACTGCAAGCATCTGGCCCTGTCAGCCATTAGCTTCACCCAGCAGGACATGCC
 CAAACTTCTCGCAGATCTACAAGGAGCTGTGACTGCAAACACTCACTGTGAGCCTC
 GTACCCCAGACCCCATAAATGGGAAGGGAGACATGGGAGTCCCTCCAAAGAAA
 CTCCAGTTCTTCTCTCTTGCCTTCCACTCACTCCCTTGGTTTTCATATTAA
 AATGTTCAATTCTGTATTTTTCTTGAGAGAATACTGTTGATTTCTGATGTGC
 AGGGGGTGGCTACAGAAAAGCCCCTTCTTCCCTGTGAGGGAGTGTGGCCCTGTG
 GCCCTGGTGGAGCAGTCATCCTCCCCCTCCCCGTGAGGGAGCAGGAAATCAGTGCTGG
 GGGTGGTGGCGGACAATAGGATCACTGCCAGATCTCAAACTTATATATATAT
 ATATATATATATATATATAAAATATAAAATGCCACGGTCTGCTGGTCAATA
 AAGGATCCTTGTGATACGTAaaaaaaaaaaaaaaa

>gi|21361499|gb|NP_056485.2|SENP3 574aa linear sentrin/SUMO-specific protease 3 [Homo sapiens].

MKETIQGTGSWGPEPPPGPGIPPAYSSPRRERLRWPPPKPRLKSGGGFGPDPGSGTTVPA
 RRLPVPRPSFDASASEEEEEEEDEEEEEEVAAWRLPPRWSQLGTSQRPRPSRPTHRKR
 TCSQRRRRAMRAFRMLLYSKSTSLSFHWKLWGRHRGRRGLAHPKNHLSPOQGGATPQVP
 SPCCRFDSRGPPPRRLGLLGALMAEDGVRSPPVPSGPPMEEDGLRWTPKSPLDPDSGL
 LSCTLPNGFGQSGPEGERSLAPPDASILISNVCSIGDHVAQELFQGSDLGMAEEAERPG
 EKAGQHSPLREEHVTCVQSILDEFIPLQTYGSLIPLSTDEVVEKLEDIFQQEFSTPSRKGLV
 LQLIQSYQRMPGNAMVRGFRVAYKRHVLTMDLGTLYGQNWLNDQVMNMYGDLVMDTVPE
 KVHFFNSFYDKLRTKGYDGVKRWTKNVDIFNKELLIPIHLEVHWSLISVDVRRRTITY
 FDSQRTLNRCPKHIAKYLQAEAVKKDRLDFHQGWKGYFKMNVARQNNDSDCGAFVLQYC
 KHLALSQFSFTQQDMPKLRQIYKELCHCKLTV

>gi|5803166|gb|NM_006802.1|SF3A3 2733bp mRNA Homo sapiens
 splicing factor 3a, subunit 3, 60kDa (SF3A3), mRNA.

AAGGGAAGATGGAGACAATACTGGAGCAGCAGCGCGCTATCATGAGGAGAAGGAACGGC
 TCATGGACGTATGGCTAAAGAGATGCTACCAAGAACGCTCCCGGACCAAGATCA
 ATTCTGATCACCGCACTCGGCCATGCAAGATAGGTATATGGAGGTCACTGGAACCTGA
 GGGATTGTATGATGATAAGGATGGATTACGAAAGGAGGAGCTCAATGCCATTTCAGGAC
 CCAATGAGTTGCTGAATTCTATAATAGACTCAAGCAAATAAGGAATTCCACCGGAAGC
 ACCCAAATGAGATCTGTGCCAATGTCAGTGGATTGAGGAACCTCTGAAGGCTCGAG
 AGAATCCAAGTGAAGAGGCACAAACTGGTGGAGTTCACAGATGAGGAGGGATATGGTC
 GTTATCTGATCTCATGACTGTTACCTCAAGTACATTAAACCTGAAGGCATCTGAGAAGC
 TGGATTATATCACATACCTGTCCATCTTGACCAATTATTGACATTCTCAAAGAAAGGA
 AGAATGCAGAGTATAAGAGATACTAGAGATGCTGCTGAGTACCTTCAGGATTACACAG
 ATAGAGTGAAGCCTCTCCAAGATCAGAATGAACCTTTGGAGATTAGGCTGAGTTG
 AGAAGAAATGGGAGAATGGGACCTTCTGGATGGCCGAAAGAGACAAAGCAGTGCCTGA
 CCCATGCTGGAGCCATCTGACCTCTGCATTCTCTGGAGGGAGTTGGCTTCTC
 TGGGTTGGACAGATTGAAATCTGCTCTTAGCTTAGGCTGAAATGTGGCGGGACCC
 TAGAAGAGCGAGCCCAGAGACTATTCACTACCAAAGGAAAGTCCCTGGAGTCACCTGATA
 CCTCTTGTGCAAAATCCCAAGTCAAAGGGCACCAAGCGAGACACTGAAAGGAACA

- 94 -

AAGACATTGCTTTCTAGAAGCCCAGATCTATGAATATGTAGAGATTCTCGGGAACAGC
 GACATCTCACTCATGAAAATGTACAGCGCAAGCAAGCCAGGACAGGAGAAAGAGCGAGAAG
 AAGAGGAAGAAGAGCAGATCAGTGAGAGTGAGAGTGAAGATGAAGAGAACGAGATCATT
 ACAACCCAAAAACCTGCCACTTGGCTGGGATGGCAAACCTATTCCCTACTGGCTGTATA
 AGCTTCATGGCCTAAATATCAACTACAACACTGTGAGATTGTGGAAACTACACCTACCGAG
 GCCCAAAGCCTCCAGCGACACTTGCTGAATGGCGTATGCTCATGGCATGAGGTGTT
 TGGGCATCCAAATACTGCTCACTTGCTAATGTGACACAGATTGAAGATGCTGTCTCCT
 TGTGGGCAAACGTGAAATTGAGGCTTCAGAACGATGGCAGCCTGACACTGAGGAAG
 AATATGAAGACTCAAGTGGGAATGTTGTGAATAAGAAGACATACTGAGGATCTGAAAAGAC
 AAGGACTGCTCTAGTGGTGGGATGTAGCTCAGCTTGGGCTAGCCAGGCTTCCCTA
 AGATCTGCTTTCTATTCTCCAAACAAATCCTCTAAAGACCCCTTGCTATGTAGTC
 TCATGGCTAGCATGCTTAGAAACAAGGCATGCTGGCAGATTGCAGGGTTGAGAT
 GTGTTTATCTGTTTATTTAAAGATTCTGCCAGAAAATAAAACCAGACCTTGTTC
 TAAAGCCCAGGGTATGGACCAACTCAGTGCTCAGGTCTTAATGCCCTCACCTCTC
 CTCACCAACTTACTAGTAGCTGAGATTAAATGGCACCTATTATGCTACATATCATGTT
 AGGTAAATCTGACCTGACCTTTCCCCACCCCTCCTTGCTGCTGCCCTGAATGAGT
 ATTACCCCAGGATGAGGTCTGCCATCAGCTTAGTTAGCCATTGATGCAAATACTAGGGAA
 AGACTAGGAGGATGAGCCAGGGTTGCTACTAAGGACTAAGTGTGCGACCAAGGTTGCCT
 TTTGTATTGCTAAAGAAAGGAGTTGGAGCTGGTGCAGTGGCTTGTGCCTGTAGTCCC
 AGCTACTTGGGAGGCTGAGGCAGGAGGGTTGCTGAGACTAGCCTAGGTAACATAGTGAG
 ACCCTGTCTCATTAAAAAAAAAAAAAGGCATGGTGGCACGCACACTGTAGTCCCAGCTA
 CTCAGGAGACTGAGGCTAGAAGATCCTTGAACCTAGGAGTTGAGACCAGCCTGGCGA
 TATAGTGAGGCCCATCTCAAAAAAAAAAGCBBBBBBBBBAGTTGGCTGTGTTG
 GAATGGGCCTGCAGCCAAACAAACAGGAACTAGGACCGACAGTGACTTCACCAGCTT
 CTAGGTAGAATGAGAGACTGGTGGTCTGTACCTGTTCTACAAGATCCCTATT
 TGACTGTAAAAGTAGCTAATACTCACATGTTCTCCAATCCCAGGTAGCCATGGTAGAGTT
 GGGTAGAGTTGAGCAGCCGCCAGGATCCAAATGTGGTGTCTGAAATGGAAAGAACTAA
 GGCAACCAGGAAGGCAGTGATCTGCCCTATAAGCACAGTCATCTGAAAGTCAGGCCTGCT
 GCAGGACAGGATCCCCAGAGACCCATTGCCCTCAACACTCAGACCTCAACTGTTT
 TTTAATAATCTACTTTAAAAAAAAAAATA

>gi|5803167|gb|NP_006793.1|SF3A3 501aa linear splicing factor
 3a, subunit 3, 60kDa; pre-mRNA splicing factor SF3a (60kD)
 [Homo sapiens].

METILEQQRRYHEEKERLMDVMAKEMLTKKSTLRDQINSDHTRAMQDRYMEVSGNLRDL
 YDDKDGLRKEELNAISGPNEFAEFYNRLKQIKEFHRKHPNEICVPMVSVEEELLKAREN
 PSEEAQNLVEFTDEEGYGRYLDLHDGYLKYLNLKASEKLDYITYLSIFDQLFDIPKERKNA
 EYKRYLEMLLEYLQDYTDRVPLQDQNELFGKIQAEEFKWENGTFPGWPKETSSALTHA
 GAHLDLSAFSSWEELASLGLDRLKSALLALGLKGCGTLEERAQRLFSTKGKSLESLDTSL
 FAKNPKSKGTKRDTERNKDIASFLEAQIYEYVEILGEQRHLTHEVQRKQARTGEERE
 EEEQISESESEDEENEIIYNPKNLPLGWDGKPIPYWLKYKLHGLNNINYNCIECGNYTYRGPK
 AFQRHFAEWRRAHGMRCLGIPNTAHFANVTQIEDAVSLWAKLKLQKASERWQPDTEEEYE
 DSSGNVVNKKYEDLKRQGLL

>gi|28882054|gb|NM_005011.2|NRF1 2514bp mRNA Homo sapiens
 nuclear respiratory factor 1 (NRF1), mRNA.

GAGGCTGCGAGGAGCCGGCGGTGCGAGTCTCCACGGCGCAGGCCAACGGTAGCGCAGC
 CGCTCTGAGTAGAACCTCATGGAGGAACACGGAGTGACCCAAACGAACATATGGCTACC
 ATAGAACGACATGCAGTGGCCAGCAAGTGCAGCAGGTCCATGTGGCTACTTACACCGAG

CATAGTATGCTGAGTGCTGATGAAGACTCGCCTTCTCTCCCGAGGAACACCTTACGAT
GACTCAGATATACTCAACTCCACAGCAGCTGATGAGGTGACAGCTCATCTGGCAGCTGCA
GGTCCTGTGGGAATGGCCGCTGCTGCTGCTGGCAACAGGAAAGAACGGAAACGGCCT
CATGTATTGAGTCTAATCCATCTATCCGGAAGAGGCAACAAACACGTTGCTCGGAAA
CTTCGAGGCCACGTTAGATGAATATACTACTCGTGTGGACAGCAAGCTATTGCCCTCTGT
ATCTCACCCCTCCAAACCTAACCTGTCTTAAAGTGTGGTGCAGCACCTTGGAGAAT
GTGGTGCAGTACAAGAGCATGATCCTGGAAGACCTGGAGTCTGCTCTGGCAGAACAC
GCCCTGCGCCACAGGAGGTTAACTCAGAACTGCCGCTCTCACCATCGACGGAATTCCA
GTCTCTGTGGACAAAATGACCCAGGCCCAGCTCGGGCATTATCCCAGAGATGCTCAAG
TACTCTACAGGTGGGGAAAACCAGGCTGGGGAAAGAAAGCTGCAAGCCCACGGTGG
CCTGAAGATATCCCCTGGCAAATGTCCGGAGTGTGATGTCGACAGAAAGAGCAAAAGCAG
AGGGTTTCATGGACCCAGGCACTACGGACCAGTAAAAACTGTTATAAACAGCATGGG
CGGGAAAGACCTTTGTATGCCCTTGAAGATCAGCAAACGCAACACAGGCCACAGCCACA
CATAGTATAGCTCATCTGTACCATCACAGACTGTAGTCCAGACTTTAGTAACCCGTAT
GGCACTGTCTCACTTATCCAGGTTGGTACGGGGCAACAGTAGCCACATTGGCTGATGCT
TCAGAATTGCCAACCACGGTCACCGTTGCCAAGTGAATTATTCTGCCGTGGCTGATGGG
GAGGTGGAACAAAATTGGGCCACGTTACAGGGAGGTGAGATGACCATCCAGACGACGCAA
GCATCAGAGGCCACCCAGGCGGTGGCATCGTGGCAGAGGCCAGTGGCAGCTCTCAG
GAGATGCAGCAGGGAGCTACAGTCATGGCCTTAACAGCGAAGCTGCCACCATGCT
GTCGCCACCCCTGGCTGAGGCCACCTTACAAGGTGGGGACAGATCGTCTGTCTGGGAA
ACCGCAGCAGCCGTGGAGCACTTACTGGAGTCCAAGATGCTAATGCCCTTTATGGCA
GATCGTGCAGGTGCAAGTGGATCCTGACTGACAAAGCCACAGGCCCTGGTCCAGATCCCT
GTGAGCATGTACAGACTGTGGTACCGAGCCTGCCAGGGCAACGGACAGTGCAGGTG
GCCATGGCCCCGTGACCAACCAGGATATCAGACAGCGCAGTCACCATGGACGCCAAGCT
GTGGAGGTGGTGACATTGGAACAGTGACATACAGCCATTATGGCATCGTTCTAGTC
TACTTCAAAATTTCACAGTTGAGGGTGAATCAAATGGAATTAAAGTCTCTCGAC
TTTGGAAAGGAAAGTTTGTAAACCTTTTTAAAAGGAAGAAAGCGGGATTGGAA
TTGCATTTTAAAGCACCCTTGTGATTTCTGGGATTGGTGAAGAAACTGCATTGTCA
ATTCACTGTCCAAAAAGCAAATTGTGGCAGGACTTCTCTGCCAAATGTGTG
TATACTTATGTGTGTATGTGTGAGTGTGAATATATGTATATGTACATATGGACATA
CACATTACATATATAAAGTATATATACATATATATATATATGTATGAAACCCG
CATGGAATTATCTGTATGAAATCAAGGTGCCGTGAAACAATAATTCAACCAAGTTAG
TGGGTGGTAGGGTACGTGCCAGACACAGTCACCCAGTTTGTTCATACCAGGGTCA
CGTTGAGCTACTGACAAACTCAGGCCAGGTGACCATGCCCTCACCAAAGCTGCCCTCC
AGTGGCCACACAGAACTCTCCCTGCTGGACTCACAGGAAAGAGGCTCCAGCATGGGG
TGGGTAGAGATGTGCTTGAAGGTCCAGGGACTGCCGTGGTCTGCCAGCTGAGATGCTCC
TCGGGCTGGCCAGGTGCTGACCTGCCACAGGCAGATGAATGTCTGAAAGCTCCGGG
CCTCAGCCTCCATCTCCTCTCCAGGAATCCTGATCTCATGACTATTAAAATGT
TGCTCTGGTTTAAGGTCAAAAAAAAAAAAAAAAAAAAAAA
>gi|28882055|gb|NP_005002.2|NRF1 522aa linear nuclear
respiratory factor 1 [Homo sapiens].

MEEHGVTQTEHMATIEAHAVAQQVQQVHVATYTEHMSL SADEDSPSSPEDTSYDDSDILN
STADEVTAHLAAAGPVGMAAAAAVATGKKRKRPHVFE NPSIRKRQQTRLLRKLRATLD
EYTRVGQQAI VLCISPSKPNPVFKVFGAAPLENVRKYKSMILEDLESALAEHAPAPQE
VNSELPLTLIDGIPVSVDKMTQAQLRAFIP EMLKYSTGRGKPGWGKESCKPIWWPEDIPW
ANVRSDVRTEEQKQRVSWTQALRTIVKN CYKQHGRE DLLYAFEDQQQTQATATHSIAHL
VPSQTVVQTFNSNPDGTVSLIQVGTGATVATIADASELPTTVVAQVNYSAVADGEVEQNW

ATLQGGEMTIQTTQASEATQAVASLAEAAVAASQEMQQGATVTMALNSEAAAHAVALAELAE
 ATLQGGGQIVLSGETAAAVGALTGVQDANGLFMADRAGRKWILTDKATGLVQIPVSMYQT
 VVTSLAQNGNPVQVAMAPVTTRISDAVTMDGQAVEVVTLEQ

>gi|6996000|gb|NM_001663.2|ARF6 1806bp mRNA Homo sapiens ADP-ribosylation factor 6 (ARF6), mRNA.

GGCCGGAGGGAGCCCGCCTGGGGCGGGCTGGAGGCAGCGCACCGAGTTCCCGCGAG
 GATCCATGACCTGACGGGGCCCCGGAGCGCGCTGCCTCTCGGGTGTCCCTGGTCGGTGG
 GGAGCCCAGTGCCTCGCAGGCCGGCGGGCGGGCTGCAGTCTCCCTCGCGGTGA
 GAGGAAGGCGGAGGAGCGGGAACCGCGCGCGCTCGCGCGGCCTGCGGGGGAAGGG
 CAGTTCCGGGCCGGCGCGCCTCAGCAGGGCGCGCTCCAGCGCAGTCTCAGGGCC
 GGGTGGCGGCCGCGACTGGAGAAATCAAGTTGTGGGTGATGCCAGTGAGCGGG
 GGGCCTGGGCCTCTGCCCTAGGAGGCAACTCCCACGCAGGCCAAAGGGCTCGCGG
 CCGAGAGGCTTCGTTCGGTTCGCGGCGGGCGGCGTTGTTGGCTGAGGGGACCCGGG
 ACACCTGAATGCCCGCCGGCCGGCTCCTCCGACGCGATGGGAAGGTGCTATCCAAAAT
 CTTGGGAACAAGGAAATGCGGATCCTCATGTTGGCCTGGACGGCGGCCAAAGACAAC
 AATCCTGTACAAGTTGAAGCTGGCCAGTCGGTACCACCATTCCACTGTGGTTCAA
 CGTGGAGACGGTGACTTACAAAAATGTCAAGTTCAACGTATGGATGTGGCGGCCAGGA
 CAAGATCCGGCCGCTCTGGCGGCTTACTACACTGGACCCAAGGTCTCATCTCGTAGT
 GGACTGCGCCGACCGCGACCGCATCGATGAGGCTCGCCAGGAGCTGCACCGCATTATCAA
 TGACCGGGAGATGAGGGACGCCATAATCCTCATCTCGCCAACAAGCAGGACCTGCCGA
 TGCCATGAAACCCACGAGATCCAGGAGAAACTGGCCTGACCCGGATTGGACAGGAA
 CTGGTATGTGCAGCCCTCTGTGCCACCTCAGGGACGGACTCTATGAGGGGCTCACATG
 GTAACCTCTAACTACAAATCTTAATGAGCATTCTCACCCATCCCCTGGAAGGAGAGAA
 ATCAAAAACCCATTCAAGGATTATGCCACCATCACCTCTTCATTGCCACTTCTCT
 TCTTTGAATTGAACTCTGGAGTTACTGTTCTACAGTTGGCGGGACGGGCTTGGGG
 GTTTCTCTTGTGTTGCCCTTCTTCTTCTTCTTCTTCTTCTTCTTCTTCTTCTTCTTCT
 TTGCGTTAGGATGGCTCTGACATTGACATGAACACAAAGTTGCCAAGATGCTCC
 TTGTTGACTCCAGCAGAATGGGAATGGGGAAACACAGCAGTTCTGGTAAAAGTCCC
 TTTGTAATAATAGGTTGGATTCTTCTTCTTCTTCTTCTTCTTCTTCTTCTTCTTCT
 GCTTTCTTCTTCTTCTTCTTCTTCTTCTTCTTCTTCTTCTTCTTCTTCTTCTTCT
 CATGCCAGACTATGTTGCAAGTCTGTTCATCTAGTAAACTGAAAATTATGCTTAATCAA
 ACTGCCGTTGTCTTTATTTAAGGCCTCCCCCCCCCTCCTTATGAGTTCTAACTTA
 GTAATTCAAATGTGACCTTTATATCTAAGACCAGTATAGTAAACTAGCCCACAGTGG
 CAAATAATGAGTAATATTGTAATATGTCAGCAAGTAAAGTTCTGAAACACATCATGCATGAGTAGGA
 ATAAAAC

>gi|4502211|gb|NP_001654.1|ARF6 175aa linear ADP-ribosylation factor 6 [Homo sapiens].

MGKVLSKIFGNKEMRILMLGLDAAGKTTILYKLKGQSVTIPTVGFNVETVTYKNVKFN
 VWDVGGQDKIRPLWRHYTGTQQLIFVVDCADRDRIDEARQELHRIINDREMRDAIILIF
 ANKQDLPDAMKPHEIQEKLGLTRIRDRNWyVQPSCATSGDGLYEGLTWLTNSYKS

>gi|23510442|gb|NM_003809.2|TNFSF12 1407bp mRNA Homo sapiens tumor necrosis factor (ligand) superfamily, member 12 (TNFSF12), transcript variant 1, mRNA.

CTCTCCCCGGCCGATCCGCCGCCGGCTCCCCCTCCCCGATCCCTGGGTCCGGGAT
 GGGGGGGCGGTGAGGCAGGCACAGCCCCCGCCCCCATGGCCGCCGTCGGAGCCAGAGG
 CGGAGGGGGCGCCGGGGAGCCGGCACCGCCCTGCTGGTCCCGCTCGCGCTGGCCTG

GGCCTGGCGCTGGCCTGCCTCGGCCCTGCTGGCCGTGGTCAAGTTGGGGAGCCGGGCA
 TCGCTGTCCGCCAGGAGCCTGCCAGGAGCTGGTGGCAGAGGAGGACCAAGGACCCG
 TCGGAACTGAATCCCCAGACAGAAGAAAGCCAGGATCCTGCGCTTCCTGAACCGACTA
 GTTCGGCCTCGCAGAACGTGACCTAAAGGCCGGAAAACACGGGCTCGAAGAGCGATCGCA
 GCCCATTATGAAGTCATCCACGACCTGGACAGGACGGAGCGCAGGCAGGTGTGGACGGG
 ACAGTGAGTGGCTGGAGGAAGCCAGAATCAACAGCTCCAGCCCTCGCCTACAACCAC
 CAGATCGGGGAGTTATAGTCACCCGGCTGGGCTCTACTACCTGTACTGTCAAGGTGCAC
 TTTGATGAGGGGAAGGCTGTCTACCTGAAGCTGGACTTGTCTGGATGGTGTGCTGGCC
 CTGCGCTGCCCTGGAGGAATTCTCAGGCCACTGCGGCCAGTCCCTCGGGCCCCAGCTCCGC
 CTCTGCCAGGTGTCGGCTGGCCCTGCGGCCAGGGTCCCTCGGATCCGCACC
 CTCCCCCTGGGCCATCTCAAGGCTGCCCTCCTCACCTACTTCGGACTCTTCAGGTT
 CACTGAGGGGCCCTGGTCTCCCAGTCAGTCGCTCCAGGCTGCCGCTCCCTCGACAGCTC
 TCTGGGCACCCGGTCCCTCTGCCAACCTCAGCCGCTCTTGCTCCAGACCTGCCCT
 CCCTCTAGAGGCTGCCCTGGCCTGTTCACGTGTTCCATCCACATAAATACAGTATT
 CCACTCTTACAACTCCCCACCGCCACTCTCACCTCACTAGCTCCCCAATCCC
 TGACCCCTTGAGGCCAGTGTACTCGACTCCCCCTGGCCACAGACCCCCAGGGCATT
 GTGTTACTGTACTCTGTGGCAAGGATGGTCCAGAAGACCCCCACTTCAGGCACTAAGA
 GGGGCTGGACCTGGCGAGGAAGCCAAGAGACTGGGCCTAGGCCAGGAGTTCCCAAAT
 GTGAGGGCGAGAAACAAGACAAGCTCCCTGAGAATTCCCTGTGGATTTTAAAC
 AGATATTATTTTATTATTGTGACAAATGTTGATAAAATGGATATTAAATAGAATAA
 GTCATAAAAAAAAAAAAAAA

>gi|4507597|gb|NP_003800.1|TNFSF12 249aa linear tumor necrosis factor (ligand) superfamily, member 12 isoform 1 precursor; APO3/DR3 ligand; TNF-related WEAK inducer of apoptosis [Homo sapiens].

MAARRSQRRRGRGEPEGTALLVPLALGLLALACLGLLLAVVSLGSRASLSAQEPAQEEL
 VAEEDQDPSELNPQTEESQDPAPFLNRLVRPQRSAPKGRKTRARRAIAAHYEVHPRPGQD
 GAQAGVDGTVSGWEARINSSPLRYNRQIGEFIVTRAGLYYLYCQVFDEGKAVYLKLD
 LLVDGVIALRCLEEFSSATAASSLGQLRLCQVSGLLALRPGSSLRIRTLPWahlKAAPFL
 TYFGLFQVH

>gi|11496238|gb|NM_021975.1|RELA 2444bp mRNA Homo sapiens v-rel reticuloendotheliosis viral oncogene homolog A, nuclear factor of kappa light polypeptide gene enhancer in B-cells 3, p65 (avian) (RELA), mRNA.

GGCACGAGGCGGGGCCGGTGCAGCTGGGCCGCGCATGGACGAACGTGTTCCCCCTCA
 TCTTCCCAGGCAAGCAGCCAAAGCAGCGGGCATGCGCTTCCGCTACAAGTGCAGGGGC
 GCTCCCGGGCAGCATCCCAGGCGAGAGGAGCACAGATACCAAGACCCACCCACCA
 TCAAGATCAATGGCTACACAGGACCAAGGGACAGTGCATCTCCCTGGTCACCAAGGACC
 CTCCTCACCGGCTCACCCCCACGAGCTTAGGAAAGGACTGCCGGATGGCTTCTATG
 AGGCTGAGCTCTGCCGGACCGCTGCATCCACAGTTCCAGAACCTGGAAATCCAGTGTG
 TGAAGAAGCGGGACCTGGAGCAGGCTATCAGTCAGCGCATCCAGAACCAACAACCCCT
 TCCAAGTTCTATAGAAGAGCAGCGTGGGACTACGACCTGAATGCTGTGCGCTCTGCT
 TCCAGGTGACAGTGCAGGACCCATCAGGCAGGCCCTCCGCCTGCCGCTGTCCCTTCTC
 ATCCCATCTTGACAATCGTGCCCAACACTGCCGAGCTCAAGATCTGCCGAGTGAACC
 GAAACTCTGGCAGCTGCCCTGGTGGGATGAGATCTCTACTGTGTGACAAGGTGCAGA
 AAGAGGACATTGAGGGTGTATTCACGGGACCAGGCTGGGAGGGCCGAGGCTCCTTCGC
 AACGCTGATGTGCACCGACAAGTGGCCATTGTGTTCCGGACCCCTCCACGCAGACCCCA

GCCTGCAGGCTCCTGTGCGTGTCCATGCAGCTGCCGGCCTCCGACCGGGAGCTCA
 GTGAGCCCAGTGGAAATTCCAGTACCTGCCAGATAACAGACGATCGTCACCGGATTGAGGAGA
 AACGTAAAAGGACATATGAGACCTCAAGAGCATCATGAAGAAAGAGTCCTTCAGCGGAC
 CCACCGACCCCCGGCCTCCACCTCGACGCATTGCTGTGCCCTCCGCAGCTCAGCTTCTG
 TCCCCAAGCCAGCACCCAGCCCTACCCCTACGTACATCCCTGAGCACCATAACTATG
 ATGAGTTTCCCACCATGGTGTTCCTCTGGCAGATCAGCCAGGCCTCGGCCTGGCCC
 CGGCCCCCTCCCCAAGTCCTGCCAGGCTCCAGCCCTGCCCTGCTCCAGCCATGGTAT
 CAGCTCTGGCCCAGGCCAGCCCTGTCCAGTCCTAGCCCCAGGCCCTCCTCAGGCTG
 TGGCCCCACCTGCCCAAGCCCACCCAGGCTGGGAAGGAACGCTGTCAAGAGGCCCTGC
 TGCAGCTGCAGTTGATGATGAAGACCTGGGGCCTTGCTTGCAACAGCACAGACCCAG
 CTGTGTTCACAGACCTGGCATCCGTCACAACCTCCGAGTTTCAGCAGCTGCTGAACCAGG
 GCATAACCTGTGGCCCCACACAACCTGAGCCATGCTGATGGAGTACCCCTGAGGCTATAA
 CTCGCCTAGTGACAGCCCAGAGGCCCGACCCAGCTCTGCTCCACTGGGGCCCGG
 GGCTCCCCAATGGCCTCCTTCAGGAGATGAAGACTTCTCCTCCATTGGGACATGGACT
 TCTCAGCCCTGCTGAGTCAGATCAGCTCTAACGGGGTGACGCCCTGCCCTCCAGAGCA
 CTGGTTGCAGGGGATTGAAGCCCTCAAAAGCACTTACGGATTCTGGTGGGGTGTGTTCC
 AACTGCCCCAACTTGTGGATGTCTTCTGGAGGGGGAGCCATATTTATTCTTTA
 TTGTCAGTATCTGTATCTCTCTCTTTGGAGGTGCTTAAGCAGAACATTAACCTCT
 CTGGAAAGGGGGAGCTGGGAAACTCAAACCTTCCCTGCTGATGGTCAGCTCCCT
 TCTCTGTAGGAACTGTGGGGTCCCCATCCCCATCCTCAGCTCTGGTACTCTCTAG
 AGACAGAACAGGCTGGAGGTAAGGCCCTTGAGCCCACAAAGCCTATCAAGTGTCTTCC
 ATCATGGATTCAATTACAGCTTAATCAAATAACGCCAGATACCAGCCCTGTATGGCA
 CTGGCATTGTCCTGTGCCTAACACCAGCGTTGAGGGCTGCCCTCCTGCCCTACAGAG
 GTCTCTGCCGGCTCTTCCTTGCTCAACCAGGCTGAAGGAAACAGTGCACAGCACTGG
 CTCTCTCCAGGATCCAGAAGGGTTGGTCTGGACTTCCTGCTCTCCCTCTCAAG
 TGCCTTAATAGTAGGTAAGTTGTAAGAGTGGGGAGAGCAGGCTGGCAGCTCCAGT
 CAGGAGGCATAGTTTAGTGAACAATCAAAGCACTGGACTTTGCTCTTCTACTCTG
 AACTAATAAGCTGGCCAAGCTGGACGGACGAGCTCGTGCC
 >gi|11496239|gb|NP_068810.1|RELA 537aa linear v-rel
 reticuloendotheliosis viral oncogene homolog A, nuclear factor
 of kappa light polypeptide gene enhancer in B-cells 3, p65; v-
 rel avian reticuloendotheliosis viral oncogene homolog A
 (nuclear factor of kappa light polypeptide gene enhancer in B-
 cells 3 (p65)) [Homo sapiens].
 MDELFLIPAEQPKQRGMFRYKCEGRSAGGI PGERSTD TKT HPTI KING YT GPGTVR
 ISLVT KDP PHR PHPHE LVG KDC RDGF YEAEL CPDRC IHSF QNLGI QCV KRD LEQAI SQR
 IQTNNNPFQVPIEEQRGDYD LNA VR LCF QV T V RDPS GRPL RLPPV LSHPI FDN RAP NTA E
 LKI CRV NRNS GSCLGG D E I FLLCD KV QK ED I E VYFT GPGWEAR GSFS QADV HRQVA IV FR
 TPPYADPSLQAPVRVSMQLRRPSDRELSEPMEFQYLPDTDRHRIE EKR KRTYETFKSIM
 KKSPFSGPTDPRPPP RRI AVPSRSSASVPKPAPQPYPFTSSLSTINYDEFPTMVFPSGQI
 SQASALAPAPPQVLQPAPAPAPAMVSALAQA PAPVPVLAPGPQAVAPPAPKPTQAGE
 GTLSE ALLQLQFDDE DLGALLGNSTDPAVFTDLASVDNSEFQQLLNQGI PVAPHTEPML
 MEYPEAI TRLVTAQRPPDPAPAPLGAPGLPNGLLSGDED FSSIADMDF SALLSQISS
 >gi|23312372|gb|NM_001065.2|TNFRSF1A 2236bp mRNA Homo sapiens
 tumor necrosis factor receptor superfamily, member 1A
 (TNFRSF1A), mRNA.
 GCTGTTGCAACACTGCCTCACTCTCCACCTCTCCCTCTTGCTTTA

- 99 -

ATTTCTCAGAATTCTCTGGACTGAGGCTCCAGTTCTGGCCTTGGGTTCAAGATCACT
GGGACCAGGCCGTGATCTATGCCGAGTCACCCCTCAACTGTCACCCAAGGCAC
TGGGACGTCCTGGACAGACCGAGTCCCAGGAAGCCCCAGCACTGCCGCTGCCACACTGCC
CTGAGCCAAATGGGGAGTGAGAGGCCATAGCTGCTGGCATGGGCCTCTCCACCGTG
CTGACCTGCTGCCACTGGTCTGGAGCTGTTGGAGAATATACCCCTCAGGG
TTATTGGACTGGTCCCTCACCTAGGGACAGGGAGAAGAGAGATAGTGTGTCCCCAAG
GAAAATATCCACCCCTCAAATAATTGATTTGCTGTACCAAGTGCACAAAGGAACCT
ACTTGTACAATGACTGTCCAGGCCGGGAGGATACGGACTGCAGGGAGTGTGAGAGCG
GCTCCTTCACCGCTTCAGAAAACCAACCTCAGACACTGCCTCAGCTGCTCCAAATGCCGAA
AGGAAATGGGTCAAGGTGGAGATCTCTTGTGACAGTGGACCGGACACCGTGTGGCT
GCAGGAAGAACCAAGTACCGCATTATTGGAGTGAAAACCTTCCAGTGCTCAATTGCA
GCCTCTGCTCAATGGGACCGTGACCTCTCCTGCCAGGAGAAACAGAACACCGTGTGCA
CCTGCCATGCAGGTTCTTCTAAGAGAAAACGAGTGTGTCTCTGTAGTAACGTAA
AAAGCCTGGAGTGACGAAGTTGTGCCCTACCCAGATTGAGAATGTTAAGGGCACTGAGG
ACTCAGGCACCACAGTGTGCCCCCTGGTCACTTCTTGGTCTTGCCTTTATCCC
TCCTCTTCATTGGTTAATGTATCGTACCAACGGTGGAAAGTCCAAGCTCTACTCCATTG
TTTGTGGAAATCGACACCTGAAAAAGAGGGGAGCTGAAGGAACTAACACTAAGCCCC
TGGCCCCAAACCAAGCTTCAGTCCCACCTCAGGCTCACCCCCACCCCTGGCTTCAGTC
CCGTGCCAGTTCCACCTTCACCTCAGCTCCACCTATACCCCCGGTGAUTGTCCCAACT
TTGCGGCTCCCCGAGAGAGGTGGCACCAACCTATCAGGGGCTGACCCATCCTGCGA
CAGCCCTCGCCTCCGACCCATCCCCAACCCCTCAGAAGTGGAGGACAGCGCCCACA
AGCCACAGAGCCTAGACACTGATGACCCCGACGCTGTACGCCGTGGAGAACGTGC
CCCCGTTGCGCTGGAGGAATTGTCGCGCGCCTAGGGCTGAGCGACCAACGAGATCGATC
GGCTGGAGCTGCAGAACGGCGCTGCCCTGCCGAGGGCAATACAGCATGCTGGCGACCT
GGAGGCGCGCACGCCGCGCGAGGCCACGCTGGAGCTGCTGGACGCGTGTCCCGCG
ACATGGACCTGCTGGCTGCCCTGGAGGACATGAGGAGGCCTTGCGGCCCCGCC
TCCCGCCCGGCCAGTCTCAGATGAGGCTGCGCCCTGCCGGCAGCTCTAAGGACC
GTCCTGCGAGATGCCCTCCAACCCACTTTTCTGGAAAGAGGGGCTGCAGGGC
AAGCAGGAGCTAGCAGCCGCTACTTGGTCTAACCCCTCGATGTACATAGCTTCTCA
GCTGCCTGCGCGCCGACAGTCAGCGCTGTGCGCGGGAGAGAGGTGCGCCGTGGCT
CAAGAGCCTGAGTGGTGGTTGCGAGGATGAGGGACGCTATGCCCTATGCCGTTTGG
GTGCTCTCACCAGCAAGGCTGCTCGGGGCCCTGGTCTGCCCTGAGCCTTTTACAG
TGCATAAGCAGTTTTTGTGTTTGTGTTGTTAAATCAATCATGTT
ACACTAATAGAAACTGGCACTCCTGTGCCCTCTGCCCTGGACAAGCACATAGCAAGCTGA
ACTGTCCTAAGGCAGGGCGAGCACGGAACATGGGCCTTCAGCTGGAGCTGTGGACTT
TTGTACATACACTAAAATTCTGAAGTAAAGCTCTGCTCTGGAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAA

>gi|4507575|gb|NP_001056.1|TNFRSF1A 455aa linear tumor
necrosis factor receptor 1 precursor; tumor necrosis factor
receptor type 1; tumor necrosis factor-alpha receptor; tumor
necrosis factor binding protein 1 [Homo sapiens].
MGLSTVPDLLPLVLELLVGIYPSGVIGLVPHLGDREKRDSVCPQKYIHPQNNSICCT
KCHKGTLYNDCPGPQDTCRECESGSFTASENHLRHCLSCSKRKEMGQVEISSCTVD
RDTVCGRKNQYRHYSENLFQCFNCSLCLNGTVHLSCQEKFQNTVCTCHAGFFLRENECV
SCSNCKSLECTKLCLPQIENVKGTEDSGTTVLLPLVIFFGCLLLFIQLMYRYQRWK
SKLYSIVCGKSTPEKEGELEGTTKPLAPNPSFSPTPGFTPILGFSPVPSSTFTSSSTYT
PGDCPNFAAPRREVAPPYQGADPIALASDPIPPLQKWEDEAHKPQSLDDPATLY

- 100 -

AVVENVPPLRWKEFVRRLGLSDHEIDRLELQNGRCLREAQYSMLATWRRRTPRREATLEL
LGRVLRDMDLLGCLEDIEEALCGPAALPPAPSLLR

>gi|4506738|gb|NM_003952.1|RPS6KB2 1735bp mRNA Homo sapiens
ribosomal protein S6 kinase, 70kDa, polypeptide 2 (RPS6KB2),
mRNA.

AGAGACTCGTGCCGAATGGCACGAGGCCGACGGGCCGAGGGCCGGCGCCATGGCG
GCCGTGTTGATTGGATTGGAGACGGAGGAAGGCAGCGAGGGCGAGGGCGAGCCAGAG
CTCAGCCCCGCGGACGCATGTCCCCCTGCCAGTTGAGGGCAGCTGGCCTAGAGCCTGTG
GGACACTATGAAGAGGTGGAGCTGACTGAGACCAGCGTGAACGTTGGCCAGAGCGCATC
GGGCCCCACTGCTTGAGCTGCTGCGTGTGGCAAGGGGGCTATGGCAAGGTGTT
CAGGTGCGAAAGGTGCAAGGCACCAACTTGGCAAAATATGCCATGAAAGTCCTAAGG
AAGGCCAAAATTGTGCGCAATGCCAAGGACACAGCACACACACGGGCTGAGCGGAACATT
CTAGAGTCAGTGAAGCACCCCTTATTGTGGAACTGGCCTATGCCTCCAGACTGGTGGC
AAACTCTAACCTCATCCTTGAGTGCCTCAGTGGTGGCAGCTCTCACCGCATCTGGAGCGA
GAGGGCATCTCCTGGAAGATAACGGCCTGCTTACCTGGCTGAGATCACGCTGGCCCTG
GCCATCTCCACTCCCAGGGCATCATCTACCGGGACCTCAAGCCGAGAACATCATGCTC
ACAGCCAGGGCACATCAAACGTGACCTTGGAACGGACTCTGCAAGGAGTCTATCCATGAG
GGCGCCGTCACTCACACCTCTGCCGACCATGGTACATGGCCCTGAGATTCTGGTG
CGCAGTGGCCACAACGGGCTGGAACGGCTGGAGCTGGGAGCTGGGGCCCTGATGTACGACATG
CTCACTGGATGCCGCCCTTACCGCAGAGAACCGGAAGAAACATGGATAAGATCATC
AGGGCAAGCTGGACTGCCCTACCTCACCCAGATGCCGGGACCTTGTCAAAAAG
TTTCTGAAACGGAATCCCAGCCAGCGGATTGGGGTGGCCCAGGGGATGCTGCTGATGTG
CAGAGACATCCCTTTCCGGCACATGAATTGGGACGACCTCTGGCTGGCGTGTGGAC
CCCCCTTCAGGCCCTGTCAGTCAGAGGAGGACGTGAGCCAGTTGATAACCGCTTC
ACACGGCAGACGCCGGTGGACAGTCCTGATGACACAGCCCTCAGCGAGAGTGCCAACCAG
GCCTCCTGGCTTCACATACGTGGCCGTCTGTCTGGACAGCATCAAGGAGGGCTTC
TCCTCCAGCCAAGCTGCCCTCACCCAGGCCCTAACAGTAGCCCCGGTCCCCGTC
AGCCCCCTCAAGTTCTCCCCCTTGAGGGGTTCTGGCCAGCCCCAGCCTGCCGGAGCCC
ACGGAGCTACCTCTACCTCACTCTGCCACCGCCGCCCTGACCACCGCCCTCTC
CCCATCCGTCCCCCTCAGGGACCAAGAAGTCCAAGAGGGCCGTGGCGTCCAGGCC
TAGGAAGCCGGTGGGGTGGAGGGTAGCCCTGAGCCCTGTCCTGCCGGCTGTGAGAGCA
GCAGGACCTGGCCAGTCCAGAGACCTGGGGTGTGCTGGGGTGGGTGTGAGTGC
GTATGAAAGTGTGTCTGCTGGGAGCTGTGCCCCCTGAATCATGGCACGGAGGGCCG
CCCGCCACACCCCGCCTCAACTGCTCCGTGGAAGATTAAAGGGCTGAATCATG

>gi|4506739|gb|NP_003943.1|RPS6KB2 495aa linear ribosomal
protein S6 kinase, 70kDa, polypeptide 2; ribosomal protein S6
kinase, 70kD, polypeptide 2; p70 ribosomal S6 kinase beta
[Homo sapiens].

MARGRRARGAGAAMAAVFDDLDETEEGSEGEGEPELSPADACPLAELRAAGLEPVGHYEE
VELTETSVNVGPERIGPHCFELLRLVKGGYGVFQVRKVQGTNLGKIYAMKVLRKAKIV
RNAKDTAHTRAERNILESVKHPFIVELAYAFQTGGKLYLILECLSGGELFTHLEREGIFL
EDTACFYLAETLALGHLHSQGIIFYRDLKPENIMLSQGHIKLTDGLCKESIHEGAVTH
TFCGTIEYMAPEILVRSGHNRAVDWWSLGAJMYDMLTGSPPTAENRKKTMDKIIRGKLA
LPPYLTPDARDLVKKFLKRNPSQRIGGGPGDAADVQRHPFFRHMNWDDLLAWRVDPPFRP
CLQSEEDVSQFDTRFTRQTPVDPDDTALSESANQAFLGFTYVAPSVLDSIKEGFSFQPK
LRSRRLNSSPRVPVSPPLKFSPFEGFRPSPLPEPTELPLPPLLPPPPPSTAPLPIRPP
SGTKKSKRGRGRPGR

- 101 -

>gi|11995473|gb|NM_019884.1|GSK3A 2169bp mRNA Homo sapiens
glycogen synthase kinase 3 alpha (GSK3A), mRNA.
GCCAGAGCGCGCGCCCTGGAAGAGGCCAGGGCCGGGGAGGCAGGGCAGCGCGCGCG
GCTGGGGCAGCCCAGGGCAGCCGAGCCCCGAGCCTGGGCTGTGCTCGCGCCATGAGC
GGCGCGGGCCTTCGGAGGCAGGCCCTGGGGCTCGGGCAGGGCGCGACTAGCTCGTC
GCGGAGCCCGGGCGAGGCGAGGAGGCGGGCGGGCGGGAGGCTCGGCCTCCGGC
CCAGGCAGGACCGGGCGGAAAGGCATCTGTCGGGCCATGGTGGGGCGTCGGGCC
TCGAGCTCCGGGGTGGACCCGGCAGCGGGAGGAGGCAGCGGAGGCCCGCGCA
GGCACTAGCTCCGCCGCCCCGGGTGAAGCTGGCGTGACAGCGGGAAAGGTGACCACA
GTCGTAGCCACTCTAGGCCAAGGCCAGAGCGCTCCAAGAACAGTGGCTACACGGACATC
AAAGTATTGGCAATGGCTATTGGGTGCGTACCAAGGCACGGCTGGCAGAGACAGG
GAACTAGTCGCCATCAAGAACGGTTCTCAGGACAAGAGGTTCAAGAACCGAGAGCTGCAG
ATCATGCGTAAGCTGGACCACTGCAATATTGTGAGGCTGAGATACTTTTCTACTCCAGT
GGCGAGAACGAAAGACGAGCTTACCTAAATCTGGTGTGGAATATGTGCCGAGACAGTG
TACCGGGTGGCCCACTCACCAAGGCCAGTTGACCATCCCTATCCTATGTCAAG
GTGTACATGTACCAAGCTCTCGCAGCTGGCCTACATCCACTCCAGGGCGTGTAC
CGCGACATCAAGCCCCAGAACCTGCTGGTGGACCCGTACACTGCTGTCCTCAAGCTCTGC
GATTTGGCAGTGCAAAGCAGTTGGTCCGAGGGGAGCCAATGTCTCCTACATCTGTTCT
CGCTACTACCGGGCCCCAGAGCTCATCTTGAGCCACTGATTACACCTCATCCATCGAT
GTTTGGTCAGCTGGCTGTGACTGGCAGAGCTCCTTGGCCAGGCCATCTCCCTGGG
GACAGTGGGTGGACCAAGCTGGTGGAGATCATCAAGGTGCTGGAACACCAACCCGGGAA
CAAATCCGAGAGATGAACCCCAACTACACGGAGTTCAAGTCCCTCAGATTAAAGCTCAC
CCCTGGACAAAGGTGTTCAAATCTCGAACGCCAGAGGCCATCGCGCTCTGCTCTAGC
CTGCTGGAGTACACCCCATCCTCAAGGCTCTCCACTAGAGGCCGTGCGCACAGCTTC
TTTGATGAAC TGCGATGTCTGGAACCCAGCTGCCTAACAACCGCCCACCTCCCCCTCTC
TTCAACTTCAGTGCTGGTGAACCTCCATCCAACCGTCTCTAACGCCATTCTCATCCCT
CCTCACTTGAGGTCCCCCAGCGGCACTACCACCCCTACCCGTCCTACAAGCTTAACT
GAGACTCCGACCAGCTCAGACTGGCAGTCGACCGATGCCACACCTACCCCTACTAACTCC
TCCTGAGGGCCCCACCAAGCACCCCTCCACTTCCATCTGGAGGCCAACAGGGCGTGGG
AAGGGGGGCCATAGCCATCAAGCTCTGCCCTGGCTGGGCCCTAGACTAGAGGGCAGA
GGTAAATGAGTCCCTGTCCCCACCTCCAGTCCTCCACCCCTGTGGT
GGCTTTAAAGAGGATTAACTGGTTGTGGGGAGGGAAAGAGAACAGGGTGTGGGG
GGATGAGGACCTCTACCCCTTGGCCCCCTCCCCTCCCCAGACCTCCACCTCTCCAG
ACCCCTCCCTGTGTCCTTGTAAATAGAACCAAGCCCAGCCGTCTCCTCTCCCT
TCCCTGGCCCCCGGGTGTAAATAGATTGTTATAATTCTTAAAGAAAACGTCGATT
CGCACCGTCCAACCTGCCCGCCCCCTACAGCTGTAACCTCCCTCTGCTCTGCC
CCAAGGTCTACTCCCTCTCACCCACCCCTGGAGGGCAGGGGAGTGGAGAGAGCTCTG
ATGTCTTAGTTCCACAGTAAGGTTGCCTGTACAGACCTCCGTTCAATAATTATTG
GCATGAAAA

>gi|11995474|gb|NP_063937.1|GSK3A 483aa linear glycogen
synthase kinase 3 alpha [Homo sapiens].

MSGGGPSGGPGGSGRARTSSFAEPGGGGGGGGPGGSASGPGBTGGKASVGAMGGGV
GASSSGGGPGGSGGGGSGGPAGTSFPPPGVKLGRDSGKVTVVATLGQGPERSQEYAYT
DIKVIGNGSFGVYQARLAETRELVAIKVLDKRFKNRELQIMRKLDHCNIVRLRYFFY
SSGEKKDELYLNLVLEYVPETVYRVARHFTAKLTIPILYVKVYMYQLFRSLAYIHSQGV
CHRDIKPQNLLVDPTDAVLKLCDFGSAKQLVRGEPNVSYICSRYYRAPELIFGATDYTSS
IDVWSAGCVLAELLQPIFPGDGVDQLVEIIKVLGTPREQIREMNPNYTEFKFPQIK

AHPWTKVFKSRTPPEAIALCSSLLEYTPSSRLSPLACAHASFDELRCLGTQLPNNRPLP
PLFNFSAGELSIQPSLNAILIPPHLRSPSGTTLTPSSQALTETPTSSDWQSTDATPTLT
NSS

>gi|7019350|gb|NM_013246.1| CLC 1689bp mRNA Homo sapiens
cardiotrophin-like cytokine (CLC), mRNA.

GCCTCCGGGAGAGGAGGCCGCACCCGGCCGGCCCCAGCCCCATGGACCTCCGAGCA
GGGGACTCGTGGGGATGTTAGCGTGCCTGTGCACGGTGCTCTGGCACCTCCCTGCAGTG
CCAGCTCTCAATCGCACAGGGGACCCAGGGCCTGGCCCCTCCATCCAGAAAACCTATGAC
CTCACCCGCTACCTGGAGCACCAACTCCGAGCTTGCTGGACCTATCTGAACCTACCTG
GGCCCCCCTTCAACGAGCCAGACTCAACCCCTCCCCGCCTGGGGCAGAGACTCTGCC
AGGGCCACTGTTGACTTGGAGGTGTGGCGAACGCTCAATGACAAACTGCGGCTGACCCAG
AACTACGAGGCCTACAGCCACCTCTGTGTTACTTGCCTGGCCTCAACCGTCAGGCTGCC
ACTGCTGAGCTGCGCCGCAGCCTGGCCACTTCTGCACCAGCCTCCAGGGCCTGCTGGC
AGCATTGCGGGCGTCATGGCAGCTCTGGCTACCCACTGCCAGCCGCTGCCTGGGACT
GAACCCACTTGGACTCCTGGCCCTGCCACAGTGACTTCCTCCAGAAGATGGACGACTTC
TGGCTGCTGAAGGAGCTGCAGACCTGGCTGTGGCGCTGGCCAAGGACTTCAACCGGCTC
AAGAAGAAGATGCAGCCTCCAGCAGCTGCAGTCACCCCTGCACCTGGGGCTATGGCTTC
TGACTTCTGACCTTCCTCGCTCCCCCTCAAACCCCTGCTCCCACTTGTGAGAGC
CAGCCCTGTATGCCAACACCTGTTGAGCCAGGAGACAGAAGCTGTGAGCCTCTGGCCCTT
TCCTGGACCGGCTGGCGTGTGATGCGATGCCCTGTCTCCCTCCCCACCTCCAAAGGT
CTACCGAGCTGGGGAGGAGGTACAGTAGGCCCTGTCCTGTTCTACAGGAAGTCA
TGCTCGAGGGAGTGTGAAGTGGTCAGGTTGGTGCAAGAGCGCTCATGGCCTCTGCTTC
TTGCCTACCAACTTGGCCAGTGCCTGGCCACCCAGCCCTCAGGTGGCACATCTGGAGGGCAGGG
GTTGAGGGGCCACCAACCACATGCCCTTCTGGGTGAAGGCCCTTGGCTGCCCACTCT
CCTTGGATGGGTGTGCTCCCTTATCCCCAAATCACTCTACATCCAATTCAAGGAAACA
AACATGGTGGCAATTCTACACAAAAAGAGATGAGATTAACAGTGCAGGGTTGGGTCTGC
ATTGGAGGTGCCCTATAAACCAAGAAGAGAAAATACTGAAAGCACAGGGCAGGGACAGAC
CAGACCAGACCCAGGAGTCTCAAAGCACAGAGTGGCAAACAAAACCCAGCTGAGCATC
AGGACCTTGCCTCGAATTGTCTTCAGTATTACGGTGCCTCTCTGCCCTTCCCA
GGGTATCTGTGGGTGCCAGGCTGGGAGGGCAACCATGCCACACCACAGGATTCTCG
AAAGTTACAATGCAGTAGCATTGGGGTGTAGGGTGGCAGCTCCCCAAGGCCCTGCC
CCCAGCCCCACCCACTCATGACTCTAAAGTGTGTTGATTAATATTATTTGGAGAT
GTTATTATTAGATGATATTATTGCAGAATTCTATTCTGTATTAACAAATAAAATGC
TTGCCCAAG

>gi|7019351|gb|NP_037378.1| CLC 225aa linear cardiotrophin-like
cytokine; neurotrophin-1/B-cell stimulating factor-3 [Homo
sapiens].

MDLRAGDSWGMLACLCTVLWLPAPALNRTGDPGPGPSIQKTYDLTRYLEHQLRSLAGT
YLNLYLGPPFNEPDFNPPRLGAETLPRATVDLEVWRSLNLDKLRLTQNYEAYSHLLCYLRGL
NRQAATAELRRSLAHFCTSLQGLLGSIAVGMAALGYPLPQPLPGTEPTWTPGPAHSDFLQ
KMDDFWLLKELOTWLWRSAKDFNRLKKKMQPPAAAVTLHLGAHGF

>gi|22068574|gb|XM_036493.3| ZNF213 3073bp mRNA Homo sapiens
zinc finger protein 213 (ZNF213), mRNA.

GGCCTCTGCCGCCTGGCTCCAACATCAAGCACCGGGCTCGAGTGGCCGGATCAGCGC
CCCGAGGCAGAGGCCGGAGGGCGCGCACTGCTAGGAAGTGTGGTCCCCCGCGCCGCT
CTGCCAGCTGGTCCCCGGCAGACGCCCTGTACGATGCCGCTGCCCGCGGGCGAG
GCTGCCGGTGGACAGCGCGGGCTCCGGCTGGCTGCCCTGCCGTGCTGCTG

AGCGACCCCTGGAGTACACATCCAGATGCCAGCCCAGCTACCACAGGGATCCCTCTGGGA
GACTGAAAGTACAGGTTCTGGGGCCAGGTTGAAGCCGACCAACCCTGAGCCTCAGGCCA
GGGAATGGCAGCCCCCTTGGAGGCCAGGACCAGGCCCTGGGGAGGGAGAAGGGCTTC
TGATTGTGAAAGTGGAAAGATTCCCTCTGGGAACAGGAATCTGCCAGCATGAGGATGGCA
GGGATTCCGAAGCCTGCCAGCGCTCCGCCAATTCTGCTACGGGATGTGCATGGC
CTCATGAGGCCTTCAGCCAGCTCTGGAGCTCTGCTGCCGCTGGCTGCCGAGCTGC
GTACCAAGGAGCAGATCCTGGAGCTGCTGGTGTGGAGCAGTCCCTGACAGTGCTGCCAG
GGGAGATCCAGGGCTGGGTGCGTGAGCAGCACCCGGGAAGCGGTGAGGAGGCTGCGCCT
TGGTGGAGGACCTACAGAACGAGCAGTGAAGCCTGGCGACAGGATGTGCCCTCGGAGG
AGGCAGAACCCGAGGCTGCAGGCCGGGATCCCAGGCCACGGGCCTCCCCGACGGTGG
GGCACGGAGGCGGCCGTCTGTTCCCAGGAGCAGCACGCCATAGCGCCAGCCTCCTG
CTCTCTAAAGAGGGTGTCCCAGGAGACAGCACGGACACCTGCTTGTCTCTGGGTCC
ATGGACCTGTGGCATTGGGAGACATCCCATTCTATTCTCCGGGAAGAATGGGGCACCC
TGGACCCCTGCTCAGGGATCTCTCTGGGACATAAAGCGGGAGAACTCCCGAACACCA
CCCTGGGTTTGGGCTCAAAGGCCAAAGTGAGAAGTCCCTGCTGCAGGAGATGGTGCAGG
TGGTGCAGGCCAGACAGGCAGCGACGTGACTGTGCTCTGGAGCCCGAGGAGGCTGAGG
CCTGGGAGAGCAGAACCGGCCAGGGCGGCCCTGGGCCAGTGGTGGCGCGACGG
GGCGGCCACCCACTCGCCGGCCAGTTCCGGACCTGGCAGCCGAGAACCGCACAGCT
GCAGGAGTGTGGAAAGCGCTTCCGCTGGGCTCGACCTGGCGCGCACAGCGCACGC
ACACGGGCAGAACGCCACACAAGTGCCCTGAGTGCAGCACAGAGCTTCCGAGCTCCTCGG
ACCTGGTGCACCAAGGGTGCACACGGGCAGAACGCCCTCTCGTGTCCAGTGCG
GCAAGAGCTTCAGCCGAGCGCCTACCTGGCCGACCACAGCGCATACACACGGCGAGA
AGCCTTCGGCTGCAGCAGTGCAGGAAAGAGCTTCGCTCGCTCGCCTACCTGCTGGACC
ATCGGCGTGTGCACACGGTGGAGCGGCCCTCGGCTCGGAGAGTGCAGCACAGAGCTTCA
AGCAGCGCGCAGCCTCATCGCGCATCAGAGCCTGACGCCAAGATGGCCAGGCCGTGG
GGTAGCAGCTGGCTGGCCGGAAACCCGGGGAGGCCAGGCCACGGCACATCTGCTTT
GTTCACCACTGGACTCTCCTTCCATCTGTGCCACCTCCGGCTGTCGAGGGACCCC
AGGGTACCTCACACTGGAGCTGCCCTGCCCTGCTGGCTCTGAGGACCTGCCAGCGCT
CAAAGGGAACGGAAGCCTCCCTCCGCCCGATCTGCTCTTCCCCCTCTGCG
CCTAGCGTCTCTCCCTAGTTCTGGAGGCCAACACATTCTGGCAGGGACAG
CAGGGTGGCAAGGACTCAGGTCTAGGTCCCTCCAGAACGCCAGGCCCTATTGACT
GTGTGGCTTTGGCCCCCACCCTGTGGGTGGTCCATGGTCAGGCCTCTGCCCTACC
AACCTGTGCCTTCAGTGGCGTGGAGGACTGCCCTGGCCCCCAGGGGCTGCTGGAC
TTTGGGAGAGACAGGCCACACTGTGGACCGCGGGCTTAGTCACGGCGGCAGGGCTT
TCTGGCCCCCTCCACTCCGTTCCAGGCCATGACCACTCTGCCCTGCTGCCATAC
GGACTCGGCCTGCCCTTGCCCTCGGCCTACTGCCCTAGCATGAGGCTCTGAGAGCCACC
TGCCCCACCAATCTGGTGAGGATAATGGTGCTCCAGCGACAGGGAGGCCAACCTGGAGAC
CAAGAACAGGGCGCTGGCTGCCATTTCTCCAGAGGTGGGGCTGCACCAGACTCAG
CACTAGCACTCCATCAGCACTAGCACCTCACTCAGCACTAGCACCTCACTCCATCG
GCCCGGCCACCTGCTCCATCGGCACTGGGCCCTGCTCCATCGGCACTAACGCTCCACT
CGGCGCCCCACTCCATCGGCCCGCTCCATCGGCACTAACGCCCACTCGGCCCGCCACT
CCATCAGCACTAACGCTCCACTCCATTGGCACTAACGCCCAACTCCAGCGGCAGTAATG
ACCCGCTCTTGACATTGGTGGCCCACTCCATCAGCACTAACGCCCTGCTCCATCGGCA
CTGGTGTCCCACTCATTGTCAGTAACGTCCGGCTCCATCGGCACTACCAACCCGCTCCA
TCATCACTATGTCCAGCTCCGTGGCACTACCACCCCTGCTCCATCATCACTACGTCCAGC
TCCAACGGCACTGGTGCCCCATTCCATCGGCACTAACGCCCGCTCCACCGGACCAAGTG
CCTCGCTCCATTGGCACCAACGCCAGCTCCACCGTACTGGCTCCCTGCTCCATCGGCA

CTAACGCCCTGCT

>gi|14777854|gb|XP_036493.1|ZNF213 459aa linear similar to Zinc finger protein 213 (Putative transcription factor CR53) [Homo sapiens].

MAAPLEAQDQAPGEGEGLLIVKVEDSSWEQESAQHEDGRDSEACRQRFRQFCYGDVHGPH
EAFSQLWECCRWRPELRTKEQILELLVLEQFLTVLPGEIQGWVREQHPGSGEEAVALV
EDLQKQPVKAWRQDVPSEEAEPEAAGRGSQATGPPPPTVGARRPSVPQEHQSHSAQPPAL
LKEGRPGETTDTCFVSGVHGPVALGDPFYFSREEWGTLDPAQRDLFWDIKRENSRNTTL
GFGLKGQSEKSLLQEMVPVPGQTGSDVTWSPEEAEWESENRPRAALGPVVGARRGR
PPTRRRQFRDLAAEKPHSCGQCGKFRWGSDLARHQRTHTGEKPHKCPECDKSFRSSSDL
VRHQGVHTGEKPFSCSECGSFSRSAYLADHQRIHTGEKPFGSDCGKSFLRSYLLDHR
RVHTGERPFGCCECDKSFKQRAHLIAHQSLHAKMAQPVG

>gi|21536281|gb|NM_003656.3|CAMK1 1501bp mRNA Homo sapiens calcium/calmodulin-dependent protein kinase I (CAMK1), mRNA.
GGAGAGAGCCGCCGAGCCGAGCCGAGCCCCAGCTCCAGCAAGAGCGCGGGCGGGTGGCCC
AGGCACGCAGCGGTGAGGACCGCGGGCACAGCTCGCGCCAACCACCGCGGGCCTCCAG
CCAGCCCCCGGGCGGGGCAGCCGAGGCCCTGGCTGTGGTCGGGGGGCAGTGGGCCAT
GCTGGGGGCAGTGGAAAGGCCCCAGGTGGAAAGCAGGCGGAGGAATTAGAGACATCTACGA
CTTCCGAGATGTTCTGGCACGGGGCCTCTCGGAGGTGATCCTGGCAGAAGATAAGAG
GACGCAGAAGCTGGTGGCCATCAAATGCATTGCCAAGGAGGCCCTGGAGGGCAAGGAAGG
CAGCATGGAGAATGAGATTGCTGTCCTGCACAAGATCAAGCACCCCAACATTGTAGCCCT
GGATGACATCTATGAGAGTGGGGCACCTCTACCTCATCATGCAGCTGGTGTGGTGG
GGAGCTCTTGACCGTATTGTGGAAAAAGGCTCTACACGGAGCGGACGCCAGCCGCCT
CATCTTCAGGTGGATGCTGTGAAATACTGCATGACCTGGCATTTGACACCAGGA
TCTCAAGCCAGAGAATCTGCTGTACTACAGCCTGGATGAAGACTCCAAAATCATGATCTC
CGACTTTGGCCTCTCCAAGATGGAGGACCCGGCAGTGTGCTCTCCACCGCCTGTGGAAC
TCCGGGATACGTGGCCCTGAAGTCCTGGCCAGAACGCCCTACAGCAAGGCTGTGGATTG
CTGGTCCATAGGTGTCATGCCCTACATCTTGCCTGCGGTTACCCCTCCCTATGACGA
GAATGATGCCAAACTCTTGAAACAGATTTGAAGGCCGAGTACGAGTTGACTCTCTTA
CTGGGACGACATCTGACTCTGCCAAAGATTCTACGCCACTTGATGGAGAACGGACCC
AGAGAAAAGATTCACCTGTGAGCAGGCCCTGCAGCACCCATGGATTGCAGGAGATAAGC
TCTAGATAAGAATATCCACCACTGGCTGAGTGGAGCAGATCAAGAAGAACTTGCCTAAAGAG
CAAGTGGAAAGCAAGCCTCAATGCCACGGCTGTGGTGGCACATGAGGAAACTGCAGCT
GGGCACCAAGCCAGGAGGGCAGGGCAGACGGCAGGCCATGGGAGCTGCTGACACCAGT
GGCTGGGGGGCCGGCAGCTGGCTGTTGCTGTCAGACTGCTGCGTGGAGGCCGGCACAGA
ACTGTCCCCCACACTGCCCCACCAGCTTAGGGCCCTGGACCTCGGGTCACTGATCCTCTG
CGTGGGAGGGCTTGGGGCAGCCTGCTCCCCCTCCCTGAACCGGGAGTTCTCTGC
CCTGTCCCCCTCTCACCTGCTTCCCTACCACTCCTCACTGCATTTCATACAAATGTTT
CTATTTATTGTTCTTCTGTAAATAAGGAAAGATAAAACCAAAAAAAAAAAAAAAA
A

>gi|4502553|gb|NP_003647.1|CAMK1 370aa linear
calcium/calmodulin-dependent protein kinase I [Homo sapiens].
MLGAVEGPRWKQAEDIRDIYDFRDVLGTGAFSEVILAEDKRTQKLVAIKCIAKEALEGKE
GSMENEIAVLHKIKHPNIVALDDIYESGGHLYLIMQLVSGGELFDRIKEKFYTERDASR
LIFQVLDAVKYLHDLGIVHRDLKPENLLYYSLDEDISKIMISDFGLSKMEDPGSVLSTACG
TPGYVAPEVLAQKPYSKAVDCWSIGVIAYILLCGYPPFYDENDAKLFQILKAEYEFDSP
YWDDISDSAKDFIRHLMKDPEKRFTEQALQHPWIAGDTALDKNIHQSVSEQIKKNFAK

SKWKQAFNATAVVRHMRKLQLGTSQEQQGQTASHGELLTPVAGGPAAGCCCCRDCCVEPGT
ELSPTLPHQL

>gi|13186237|gb|NM_023107.1|FGFR1 2590bp mRNA Homo sapiens
fibroblast growth factor receptor 1 (fms-related tyrosine
kinase 2, Pfeiffer syndrome) (FGFR1); transcript variant 5,
mRNA.

CCTCTTGCGGCCACAGGCAGCGCGTCCTCGCGGGCGGCAGCTAGCGGGAGGCCGGGA
CGCCGGTGCAGCCGAGCGCGCGAGAACCGGGGTGTGCCGGGAGCTGGCGGCCACGT
CCGGACGGGACCGAGACCCCTCGTAGCGCATTGCCGACCTCGCCTCCCCGGCGCGA
GCGCGCCGCTGCTGAAAAGCCGCGAACCCAAGGACTTTCTCCGGTCCGAGCTCGGGG
CGCCCCCGCAGGCGCACGGTACCCGTGCTGCAGTCGGCACGCCGCGGCCGGGGCCTC
CGCAGGGCGATGGAGGCCGGTCTGCAAGGAAAGTGAGGGCGCCGCGCTGCGTTCTGGAGGA
GGGGGGACAAGGTCTGGAGACCCCGGGTGGCGGACGGGAGCCCTCCCCCGCCCCGCCT
CCGGGGCACCAAGCTCCGGCTCATTGTTCCCGCCCGGGCTGGAGGGCGCGAGCACCGAGC
GCCGCCGGGAGTCGAGCGCCGGCGGGAGCTCTGCGACCCCGCCAGGACCCGAACAGA
GCCCGGGGGCGGCGGGCCGGAGCCGGGACGCCGGGACACGCCGCTCGCACAAGCCACG
GCGGACTCTCCGAGGGCGAACCTCCACGCCGAGCGAGGGTCAGTTGAAAAGGAGGATC
GAGCTCACTGTGGAGTATCCATGGAGATGTGGAGGCCTGTCACCAACCTCTAACTGCAGA
ACTGGGATGTGGAGCTGGAAAGTGCCTCTCTGGCTGTGGTACAGGCCACACTC
TGCACCGCTAGGCCGTCCCCGACCTTGCCTGAACAAGATGCTCTCCCTCCTGGAGGAT
GATGATGATGATGATGACTCCTCTTCAAGAGGAAAGAACAGATAACACCAAACCAAAC
CGTATGCCGTAGCTCCATATTGGACATCCCCAGAAAAGATGGAAAAGAAATTGCATGCA
GTGCCGGCTGCCAAGACAGTGAAGTCAAATGCCCTCCAGTGGGACCCAAACCCCACA
CTGCGCTGGTTGAAAAATGGCAAAGAATTCAAACCTGACCACAGAATTGGAGGCTACAAG
GTCCGTTATGCCACCTGGAGCATCATAATGGACTCTGTGGTGGCTCTGACAAGGGCAAC
TACACCTGCATTGTGGAGAATGAGTACGGCAGCATCAACCACACATACCAGCTGGATGTC
GTGGAGCGGTCCCCCACCGGCCCACCTGCAAGCAGGGTTGCCGCCAACAAAACAGTG
GCCCTGGGTAGCAACGTGGAGTTCATGTGTAAGGTGTACAGTGACCCGCAGCCGACATC
CAGTGGCTAAAGCACATCGAGGTGAATGGGAGCAAGATTGGCCCAGACAAACCTGCCTTAT
GTCCAGATCTGAAGGTAATCATGGCACCAAGTCTCGTGGCCAGTCTACTGGGAAGGAG
ACCACTGTCCTGGGGCTCAAGTCTGTGGCAGGCTCAGTGCCCCGAATGGGATCA
TTCTCACGGCTTCAGGCACACACACTCCATCTCAGTAGGGATCTAGCCACATCCCCAGG
ACTAGTAACAGAGGTACAAAGTGGAGGTGAGCTGGGAACAGAGGGCTGCAGGGATGGT
GGTGTGGCTGTATAAGCTTGAGAGCAACGTCACTGGGCTTGGGTCAAGCTACAC
AAGGAAGGCATTGGACCCCTGCCTTTCAATTGCCGAAACCAAGAGCCTTCCACCAAGC
GTTCCCAGTCTAGCCCTGTGTTCTGAGTTACGTACGATCTTCTGGCAAATGGGTGC
ATGATAAGAGCATCTCTTACGAAGAGTTGGAAAAAACAAATGCCATATATAAAATTCTAAGC
CATATGAGGAGCGAGGAGTAATGGCATTTCTCCTTCTCACTCCCAGACATTCA
TTGTCCTGAATGCTCCATTAAATCCAGGGAAAGGTAAATTGCCTAAATCTCCAGTGGATCTC
GCAACAGGAAGGAACCAGAACAGCTGGGAAAGTTGTTACCTCTTGTCCAGAGTTAGACC
TCATCCTCCCTAGCTTAGCTGTCTCAGAGATAACTGGCCCTCCCTCTCTCTCTTTG
CTGCTGGTGCCTAAACTGCTCTGTAGGTCAATTGCCACTGTCTCCACTCACACCCCTGC
TCCAGTCTGGAGGGAGTGGGTTAACACAAATAGAACATTCCATTGAAGCAGTGATT
TTTTTTTTTTTTTTAATCAAATGCTTGAGACTTTGAAGTCCACTTGTCTGT
ACTTGAAAAGGAAAGAAGGCCGGCGCAGTCGTACGCCGTGAAATCCCAGCAGTTAG
ATCACTTGAGGTCAAGGAGTTGAGACCAGGCCGGCCAACATGGTAAACACCCATCTAC
TAAAAATACAAAAATTAGCTGTGCATAGTGGTGGCACCTGTAGTCCCAGCTACTCAGGA

- 106 -

GGCTGAGGCAAGCTAACTGCTGAACCCAGAAGGCAGAGGTTGCAGTGAGCTGAGATCAC
GCCACTGCACTCCAGCCTGGGTGACAGAGTGAGACTCTCGTTAAAAAAAAAAAAAA
AAAAAAAAAA

>gi|13186238|gb|NP_075595.1|FGFR1 302aa linear fibroblast
growth factor receptor 1 isoform 5 precursor; fms-related
tyrosine kinase-2; heparin-binding growth factor receptor;
FMS-like tyrosine kinase 2; basic fibroblast growth factor
receptor 1; N-sam tyrosine kinase; FLG protein; protein-
tyrosine kinase; tyrosylprotein kinase; hydroxyaryl-protein
kinase [Homo sapiens].

MWSWKCLLFWAVLVTATLCTARPSPTLPEQDALPSSEDDDDDDSSSEEKETDNTKPNRM
PVAPYWTSPPEKMEKKLHAVPAAKTVFKCPSSGTPNPTLRWLKNGKEFPDHRIGGYKVR
YATWSIIMDSVVPSPDKGNYTCIVENEYGSINHTYQLDVVERSPHRPILQAGLPANKTVAL
GSNVEFMCKVYSDPQPHIQWLKHIEVNGSKIGPDNLPYVQILKVIMAPVFVGQSTGKETT
VSGAQVPVGRRLSCPRMGSFLTLQAHTLHLSRDLATSRTSNRGHKVEVSWEQRAAGMGGA
GL

>gi|4758007|gb|NM_004071.1|CLK1 1834bp mRNA Homo sapiens CDC-
like kinase 1 (CLK1), mRNA.

ATTTTAGATAATCATTAAAGACCACAGAAAATGTAACAGATCCTACTCTTCAAAATAAT
TGCTATTCACTATTAAAACGAGCAGTCAGCTGCGTGATTCCCGTGATTGCGTTACAAGCT
TTGTCTCCTTCGACTTGGAGTCTTGTCCAGGACGATGAGACACTCAAAGAGAACCTTACT
GTCCTGATTGGATGACAAGGATTGGGATTATGGAAAATGGAGGAGCAGCAGCAGTCATA
AAAGAAGGAAGAGATCACATAGCAGTCCCCAGGAGAACAGCGCTGCAAATACAATCACT
CTAAAATGTGTGATAGCATTATTTGGAAAGCAGGTCTATAAATGAGAAAGATTATCATA
GTCGACGCTACATTGATGAGTACAGAAATGACTACACTCAAGGATGTGAACCTGGACATC
GCCAAAGAGACCATGAAAGCCGTATCAGAACCATAGTAGCAAGTCTCTGGTAGAAGTG
GAAGAAGTAGTTATAAAAGCAAACACAGGATTCACCACAGTACTTCACATCGTCGTTCAC
ATGGGAAGAGTCACCGAAGGAAAAGAACCGAGGTGAGAGGATGATGAGGAGGGTCACC
TGATCTGTCAAGAGTGGAGACGTACTAAAGTGCAGATATGAAATTGTTGATACTTTAGGTG
AAGGAGCTTTGGAAAAGTTGTGGAGTGCATCGATCATAAAGCGGGAGGTAGACATGTAG
CAGTAAAATAGTTAAAATGTGGATAGATACTGTGAAGCTGCTCGCTCAGAAATACAAG
TTCTGGAACATCTGAATACAACAGACCCCCAACAGTACTTCCGCTGTGTCAGATGTTGG
AATGGTTGAGCATCATGGTCACATTGCATTGTTGAACTATTGGGACTTAGTACTT
ACGACTTCATTAAAGAAAATGGTTCTACCATTTGACTGGATCATATCAGAAAGATGG
CATATCAGATATGCAAGTCTGTGAATTTCGCACAGTAATAAGTGAACACACAGACT
TAAAGCCTGAAAACATCTTATTGTGCAGTCTGACTACACAGAGGCGTATAATCCAAAA
TAAAACGTGATGAACGCACCTTAATAAATCCAGATATTAAAGTTGAGACTTGGTAGTG
CAACATATGATGACGAACATCACAGTACATTGGTATCTACAAGACATTATAGACACCTG
AAGTTATTTCAGGCCCTAGGGTGGTCCAACCAGTGTGATGTCTGGAGCATAGGATGCATT
TTATTGAATACTATCTTGGGTTACCGTATTCCAACACACGATAGTAAGGAGCATTAG
CAATGATGAAAGGATTCTTGGACCTCTACCAAAACATATGATACAGAAAACCAGGAAAC
GTAAATATTTCACCACGATCGATTAGACTGGGATGAACACAGTTCTGCCGGCAGATATG
TTTCAAGAGCCTGTAAACCTCTGAAGGAATTATGCTTCTCAAGATGTTGAACATGAGC
GTCTCTTGACCTCATTCAAGAAAATGTTGGAGTATGATCCAGCCAAAAGAATTACTCTCA
GAGAAGCCTTAAAGCATCCTTCTTGACCTCTGAAGAAAAGTATATAGATCTGTAATT
GGACAGCTCTCGAAGAGATCTTACAGACTGTATCAGTCTAATTAAATTAAAGTT
ATTGTACAGCTTGTAAATTCTAACATTATATTGCCATGTTATTGTTGGG

TAATTGGTTCATTAAGTACATAGCTAAGGTAATGAACATCTTTTCAGTAATTGTAAAG
TGATTTATTCAAGATAAATTTTGCTTATGA

>gi|4758008|gb|NP_004062.1|CLK1 484aa linear CDC-like kinase
1; protein tyrosine kinase STY [Homo sapiens].

MRHSKRKYCPDWDDKDWDYKWRSSSHKRRKRSHSQAENKRCKYNHSKMCDSHYLESR
SINEKDYHSRRYIDEYRNDYTQGCEPGHRQRDHESTRYQNHSSGRSGRSSYKSKRIH
HSTSHRRSHGKSHRRKRTRSVEDDEEGHLICQSGDVL SARYEIVDTLGEAFGVVECID
HKAGGRHVAVKIVKNVDRYCEAARSEI QVLEHLNTTDPNSTFRCVQMILEWFEHGHICIV
FELLGLSTYDFIKENGFLPFRLDHIRK MAYQICKSVNFLHSNKLTHDLKPENILFVQSD
YTEAYNPKI KRDERTLINPDIKVVDFGSATYDDEHHSTLVSTRHYRAPEVILALGWSQPC
DVWSIGCILIEYYLGFTVFP THDSKEHLAMMERILGPLPKHMIQKTRKRKYFHDRLDWD
EHSSAGRYVS RACKPLKEFMLSQDVEHERLF DLIQKMLEYDPAKRITLREALKH PFFDLL
KKSI

>gi|20127640|gb|NM_025128.2|MUS81 2352bp mRNA Homo sapiens
MUS81 endonuclease (MUS81), mRNA.

GGCACGAGGGTCTCAAAGGCTGGCTGGAGGCCAAGGAAAAGATCGTTAGAGACAG
CGCCCTGACCAACC ACTTAGAGCAGCGCAGGGTGGAGGGCGGCCAGGCCTCC
TCGTTAGTGC CCCCCTGTGTTGGGGCCCCGTGATCTAACGGCCTGCCCTCGTCTCCC
TCTTCCCCCGCCCCGCCCTGGGCCAGGTGTTGAATCCGACTCCAGAACTGGCGCGTC
CCAGTCCC CGGGCGTGGAGCGCCGGAGGACCCGCCCTGGGCTATGGCGGCCCGGT
CGCCTGGGCCGGAAGCGCCCGCTGCCTGCCTGCCAACCCGCTTCGTTCGTGGCTG
ACCGAGTGGCGGGACGAGCGACCCCGCAGCAGGCACCGCACCGCTTCGTATTCA
GAG GCGCTGC GTTCCCTCCGACGGTACCCACTGCCGCTGCGCAGGGAAAGCTA
AGATCTACAGCACTCGGAGACGGGCTCTGCCGGATGCTGGACGAGCGGCTGCAG
ACATCGGGCGGTGACCATGCCCGACTCACCATCTGGAGAGAACAGTCCAGGCC
GGCGACTTGC GGAAGTCCAGGACTCTCCATGCCAGTTCTGCCAGCCAAAGCG
GGCTCTGGCAGCTACTGGCCAGCTCGGCACTCAGGAGCCGAGTGATACTGCT
TACCGGGAGCACCTGAATCTAATGGTCA CCACTTCTTAACCAAGGAGGAGCT
AGGTGTGCTCAGAAGTCCCCCAGGGTAGCCCTGGAGTGCCCAACCCCTGGC
CAGCCCTCCTCACAGGAACCTGGCCTCAGGACACACCAGCCAGGTACTCATT
ACCCAGAGGGCCTGGAGCTGGCCAGAACAGTTGGCCAGTCAGAACGGCT
AATGTGGGCATCGGGCCAAGGAGCCCCCTGGGAGGAGACAGCAGTGCCAG
TCAGCAGAGCTTGCCAGTGAAGCAGGGTCCAGCAGCAGCCACTGGAGCT
GAGTACAGGGTGTGTTGTGGACATTGGCGAGACCCGGGGGGCAGGCC
GAGCTGCTCCGAGAGCTACAGCGGCTGCACGTGACCCACACGGTGC
GGAGATTTGTGTGGGTGGCTCAGGAGACCAATCCTAGAGACCCAG
TTGGTACTGGATCACATTGTGGAGCGCAAGCGACTGGATGAC
TACCTGGTGGAGAGCATGGTCCACAACCTCAGCCTCCTGAGAG
CAGGCTGTCAACCAACACTCAGGTATTGATGGCTTTGTGAAGCG
AAGGAGTCAGCCGCCTACCTGGCCCTTTGACTCGGGCCTGCAG
CACACCCCTACGCAGCCGCCCTGGGAACCCCTGGGAACCC
TCTCCAAACCCCTCTGCTCACTCCTCACCTCAGTGACT
AATAAGGCCAGTCGGTGCAGAGAAGTGTG
AGTGGGGAGAAGGCAGCAGCCCTGGGATCGATA
GCCTATGATGCCTGTGCCACCCCAAGGAACAAGAG
GGCGTCTACAGAGGAATCTGGGCCTGCT
GGCAGGACCTTATCCCAGCT
ACTGC

AGCTACGGCCCTTGACCTGAGCTTATGCCGTGAAACAGCCCCAGCCCCGTCTGTCCC
 CCAACCCAGGCTAGCCAGCCTTTAACACATCTTGGGGTACAATTAGAATCTAAGTG
 TTTGCAGCCATATGTGTATGTAGAAGATGCCTAGCCCTGGGACCTTGTGAAATAACGCA
 GGAACCAGGGATACCATCTGGTCCAGTGGTTTAAACAAAGCTGCTTAGCACCTGGAAT
 TCCCTGGTCAGGGAGATGGAGTCAGTGGGCATTGCAGCTTGAATCTATTATGTCAC
 CAGTTGGTCCTCATCAAATAAAATTCTTAGGAGTGCAGAGGGCTATTGGAAAATAA
 AAATAATAAAATAAAACTTCTAAAAGAAAAGATTGAAACCCAAAAAA
 AAAAAAAAAAAA

>gi|13376707|gb|NP_079404.1|MUS81 476aa linear MUS81
 endonuclease [Homo sapiens].

MLDERLQRHRTSGGDHAPDPSGENSPAPQRLAEVQDSSMPVPAQP KAGGSGSYWPARH
 SGARVILLVLYREHLNPNGHHFLTKEELLQRCAQKSPRVAPGSAPPWALRSLLHRNLVL
 RTHQPARYSLTPEGLELAQKLAESEGLSLLNVGIGPKEPGEETAVPGAASAEASEAGV
 QQQPLELRPGEYRVLLCVDI GETRGGGHRPELLRELQLHVTVRKLVGVDFVWVAQET
 NRPDPANPGELVLDHIVERKRLDDLCSSI IDGRFREQKFRLKRCGLERRVYLVEEHGSVH
 NLSLPESTLLQAVNTQVIDGFFVKRTADIKESEAAYLALLTRGLQRLYQGHTLRSRPWGT
 PGNPESGAMTSPNPLCSLLTFSDFNAGAIAKNAQSVREVFARQLMQVRGVSGEKAALVD
 RYSTPASLLAAYDACATPKEQETLLSTIKCGRLQRNLGPALSRTLSQLYCSYGPLT

>gi|19923239|gb|NM_003376.2|VEGF 3166bp mRNA Homo sapiens
 vascular endothelial growth factor (VEGF), mRNA.

AAGAGCTCCAGAGAGAAGTCGAGGAAGAGAGACGGGGTCAGAGAGAGCGCGCGGGCGT
 GCGAGCAGCGAAAGCGACAGGGCAAAGTGAGTGACCTGCTTTGGGGTGACCGCCGGA
 GCGCGCGTGAGCCCTCCCCCTGGATCCCGAGCTGACCAGTCGCGCTGACGGACAGA
 CAGACAGACACCGCCCCAGCCCCAGTTACCACTCCTCCCCGGCCGGCGGACAGTG
 GACCGGGCGCGAGCCGCGGGCAGGGGCCGGAGCCGCCGGAGGCGGGTGAGGGGG
 GTCGGAGCTCGCGCGTCGCACTGAAACTTCTGTCCAACTCTGGCTGTTCTCGCTTC
 GGAGGGAGCCGTGGTCCCGCGGGGGAGCCGAGCCGAGCGGAGCCGAGAAGTGTAGC
 TCGGGCCGGAGGGAGCCGAGCCGAGCCGGAGGGAGGGAGGAAGAAGAGAAAGAGAG
 AGGGGGCCGCAGTGGCGACTCGCGCTCGGAAGCCGGCTCATGGACGGTGAGGCGGCG
 GTGTGCGCAGACAGTGCTCCAGCGCGCGCTCCCCAGCCCTGGCCCGCCTGGCCGG
 GAGGAAGAGTAGCTCGCCAGGGCGCCAGGGAGAGCGGGCCGCCACAGCCGAGCCGGA
 GAGGGACCGAGCCGCGGCCCGGTGGGCCTCCGAAACCATGAACTTCTGCTGTCTT
 GGGTGCATTGGAGCCTGCGCTGCTCTACCTCACCATGCCAAGTGGTCCCAGGCTG
 CACCCATGGCAGAAGGAGGGAGGCAGAATCATCACGAAGTGGTAAGTICATGGATGTCT
 ATCAGCGCAGCTACTGCCATCCAATCGAGACCCCTGGTGGACATCTTCCAGGAGTACCGCTG
 ATGAGATCGAGTACATCTTCAAGCCATCCTGTGTGCCACTGAGGAGTCAACATCACCAGCAGATTA
 TCGGGATCAAACCTACCAAGGCCAGCACATAGGAGAGATGAGCTTCTACAGCACAACA
 AATGTGAATGCAGACCAAAGAAAGATAGAGCAAGACAAGAAAATCCCTGGGCCTGCT
 CAGAGCGGAGAAAGCATTGTTGTACAAGATCCGAGACGTGTAAATGTTCTGCAAAA
 ACACACACTCGCGTTGCAAGGCAGGGCAGCTGAGTTAACGAACGTACTGCAGATGTG
 ACAAGCCGAGGCAGGTGAGCCGGCAGGAGGAAGGAGCCTCCCTCAGGGTTCGGAAACCA
 GATCTCTCCAGGAAAGACTGATAACAGAACGATCGATAACAGAAACCAACGCTGCCAC
 CACACCATCACCACGACAGAACAGTCCTTAATCCAGAAACCTGAAATGAAGGAAGAGGA
 GACTCTGCGCAGAGCAGCTTGGGTCCGGAGGGCGAGACTCCGGCGGAAGCATTCCGGGC
 GGGTGACCCAGCAGGGTCCCTCTTGAATTGGATTGCCATTATTTCTTGTGCTA
 AATCACCGAGCCCGAAGATTAGAGAGTTTATTCTGGATTGCCATTATTTCTTGTAGACACACCCAC

CCACATACATACATTATATATATATATTATATAAATAAATCTCTATT
TTATATATATAAAATATATATTCTTTTAAATTAACAGTGCTAATGTTATTGGTGT
CTTCACTGGATGTATTGACTGCTGTGGACTTGAGTTGGAGGGGAATGTTCCCACTCAG
ATCCTGACAGGGAAAGAGGGAGATGAGAGACTCTGGCATGATCTTTTGTCCCCT
TGGTGGGCCAGGGTCCTCTCCCCTGCCAAGAACATGTGCAAGGCCAGGGCATGGGGCAA
ATATGACCCAGTTGGAACACCGACAAACCCAGCCCTGGCGCTGAGCCTCTCACCCCC
AGGTCAAGACGGACAGAAAGACAAATCACAGGTTCCGGATGAGGACACCGCTCTGACCA
GGAGTTGGGAGCTTCAGGACATTGCTGTGTTGGGATTCCCTCACATGCTGCACG
CGCATCTGCCCTCAGGGCACTGCCTGGAAGATTCAAGGCCCTGGCGCCCTCGCTTA
CTCTCACCTGCTTCTGAGTTGCCAGGAGGCCACTGGCAGATGTCCCAGGAAGAGAAGA
GACACATTGTTGAAAGAAGCAGCCATGACAGGCCCTTCCCTGGACTCGCCCTCATCC
TCTCCTGCTCCCTCCTGGGTGCAGCCTAAAAGGACCTATGTCCTCACACCATTGAA
ACCACTAGTTCTGTCCTCAGGAAACCTGGTTGTGTGTGAGTGGTTGACCTCCT
CCATCCCCTGGTCCTCCCTTCCCAGGGCACAGAGAGACAGGGCAGGATCCACGT
GCCCATGTTGGAGGCAGAGAAAAGAGAAAGTGTAAATACGGTACTTATTAATATCC
CTTTTAATTAGAAATTAGAACAGTTAATTAAATTAAGAGTAGGGTTTTTCAGTAT
TCTGGTTAATTAACTATTATGAGATGTATCTTGCTCTCTGCTCT
CTTATTGTACCGGTTTGATATAAAATTCACTGTTCCAATCTCTCTCCCTGATCG
GTGACAGTCACTAGCTTATCTGAACAGATATTAAATTGCTAACACTCAGCTCTGCC
TCCCCGATCCCTGGCTCCCCAGCACACATTCTTGAAGAGGGTTCAATATACATCT
ACATACTATATATATTGGCAACTTGTATTGTGTATATATATATATGTTA
TGTATATATGTGATCCTGAAAAAAATAACATCGCTATTCTGTTTTATATGTTCAAACC
AAACAAGAAAAAAATAGAGAATTCTACATACTAAATCTCTCTCCTTTAATTAAATAT
TTGTTATCATTTATTATTGGTGCTACTGTTATCCGTAAATAATTGTGGGGAAAAGATAT
TAACATCACGTCTTGTCTAGTGCAGTTTCGAGATATTCCGTAGTACATATTATT
TTAAACAAACGACAAAGAAATACAGATATCTAAAAAAAAAAAAAA

>gi|19923240|gb|NP_003367.2|VEGF 191aa linear vascular
endothelial growth factor [Homo sapiens].

MNFLLSWVHSLALLLYLHHAKWSQAAPMAEGGGQNHEVVKFMDVYQRSYCHPIETLVD
IFQEYPDEIEYIFKPSCVPLMRCGGCSNDEGLECVPTESNITMQIMRIKPHQGHIGEM
SFLQHNKCECRPKKDRARQENPCGPCSERKHLFVQDPQTCKCSCKNTHSRCKARQLELN
ERTCRCDKPRR

>gi|16306545|gb|NM_033649.1|FGF18 1466bp mRNA Homo sapiens
fibroblast growth factor 18 (FGF18), transcript variant 2,
mRNA.

CACGGCCGGAGAGACGGAGGGAGGAGACATGAGCCGGCGGGGCCAGACGGAGCGGCC
GTGACGCTTCGCGCTGCAGCCGCGCCCCGACCCGGAGCGCTGACCCCTGGCCCCAC
GCAGCTCCGGCCGGCCGGAGAGCGCAACTCGGCTTCCAGACCCGCCGCATGCTGT
CCCCGGACTGAGCCGGCAGCCAGCCTCCCACGGACGCCGGACGGCCGGCCAGCA
GTGAGCGAGCTCCCCGACCGCCAGGCCCTCTGACAGCGCTGCCGCCCGCAGC
CCCTGCGCCAGCCGGAGGGCGAGCGCTCGGGAGGAGCCGCCGGCTGATGCCGC
AGGGCGCGCCGCGGGAGCGCCCCGGAGCAGCAGAGTCTGCAGCAGCAGCGAGGA
GGGAGCAGCAGCAGCGGGCGGGCGGGCGGGAGGAGGCCGGCCGGTCCCGCCG
CGCCGGAGCGGACATGTGAGGCTGGGCTAGGAGGCCGCCCTCCCTCCCGCCAGCGATG
TATTCAAGCAGCTCCGCTGCACCTGCCTGTGTTACACTCCCTGCTGCTGTGCTTCCAG
GTACAGGTGCTGGTTGCCGAGGAGAACGTGGACTTCCGCATCCACGTGGAGAACAGACG
CGGGCTCGGGACGATGTGAGCCGTAAGCAGCTGCCGTGACCGCTACAGCCGGACC

AGTGGGAAACACATCCAGTCCTGGCCGCAGGATCAGTCCCCGGCGAGGATGGGGAC
AAGTATGCCAGCTCCTAGTGGAGACAGACACCTCGGTAGTCAGTCGGATCAAGGGC
AAGGAGACGGAATTCTACCTGTGCATGAACCGCAAAGGCAAGCTCGTGGGAAGCCCGAT
GGCACCAAGCAAGGAGTGTGTTCATCGAGAAGGTTCTGGAGAACAACTACACGGCCCTG
ATGTCGGCTAAGTACTCCGGCTGGTACGTGGGCTTCACCAAGAAGGGCGGCCGCGGAAG
GGCCCAAGACCCGGAGAACCGAGCAGGACGTGCATTTCATGAAGCGCTACCCCAAGGGG
CAGCCGGAGCTTCAGAAGCCCTCAAGTACACGACGGTACCAAGAGGTCCCCTCGGATC
CGGCCACACACCCCTGCCTAGGCCACCCCGCCGCCCTCAGGTGCCCTGGCCACACT
CACACTCCCAGAAAAGTGCATCAGAGGAATATTTTACATGAAAAATAAGGATTTATTG
TTGACTTGAAACCCCCGATGACAAAAGACTCACGCAAAGGGACTGTAGTCACCCACAGG
TGCTTGTCTCTCTAGGAACAGACAACACTCTAAACTCGTCCCCAGAGGAGGACTTGAATG
AGGAAACCAACACTTGAGAAACCAAAGTCCTTTTCCAAAGGTTCTGAAAGGAAAAAA
AAAAAAAAACAAAAAAAAAAAAAA
>gi|16306546|gb|NP_387498.1|FGF18 207aa linear fibroblast
growth factor 18 precursor [Homo sapiens].
MYSAPSACTCLCLHFLLLCFQVQLVAEENVDFRIHVENQTRARDDVSRKQLRLYQLYSR
TSGKHIQVLGRRISARGEDGDKYAQQLLVEVDTSQVRIKGKETEFYLCMNRKGKLVGKP
DGTSKECVFIEKVLENNYTALMSAKYSGWYVGFTKKGRPRKGPKTRENQDVFHMKRYPK
GQPELQKPFKYTTVTKRSRRIRPTHPA
>gi|24496766|gb|NM_004712.3|HGS 2926bp mRNA Homo sapiens
hepatocyte growth factor-regulated tyrosine kinase substrate
(HGS), mRNA.
CGGAAGCGGAAGTCGGGGGGCGGCCAGCTCGTAGCAGGGAGCGCCCGCGTCGGGT
TTGGGCTGGAGGTCGCCATGGGGCGAGGCAGCGCACCTCGAGCGTCTCTAGACAAGG
CGACCAGCCAGCTCTGGAGACAGATTGGAGTCATTTGCAGATCTGCACCTGA
TCCGCCAAGGGACACACAAGCAAATATGCTGTGAATTCCATCAAGAAGAAAGTCACG
ACAAGAACCCACACGTCGCCTGTATGCCCTGGAGGTACATGGAATCTGTGGTAAAGAACT
GTGGCCAGACAGTCATGATGAGGTGGCCAACAAGCAGACCATGGAGGAGCTGAAGGACC
TGCTGAAGAGACAAGTGGAGGTAAACGTCCGTAAACAAGATCCTGTACCTGATCCAGGCCT
GGCGCATGCCTTCCGGAACGCCAAGTACAAGGTGGTCCAGGACACCTACCAGATCA
TGAAGGTGGAGGGCACGTCTTCAGAATTCAAAGAGAGCGATGCCATGTTGCTGCCG
AGAGAGCCCCAGACTGGGTGGACGCTGAGGAATGCCACCGCTCAGGGTCAGTTGGGG
TGATGACCGTAAGCACCCTGCCAGTGGCATCGAGAAGGAGGTGCGCTGTGAGCCCT
CCAAGTACTCCACCATCCCCAAGTTGGCATCGAGAAGGAGGTGCGCTGTGAGCCCT
GCTACGAGCAGCTGAACAGGAAAGCGGAGGGAAAGGCCACTTCCACCACTGAGCTGCC
CCGAGTACCTGACCAGCCCCCTGTCTCAGCAGTCCCAGCTGCCCTAACAGAGGGACGAGA
CGGCCCTGCAGGAGGAGGAGCTCAGCTGCCCTGGCGCTGTACAGTCAGAGGC
AGGAGAAGGAGAGGCTGAGACAGAACAGTCCACGTACACTCGTACCCCAAGGCGGAGGCC
TGCCCTGGCCTCTCAGCGCCCCCGCCAGCAGCCTGTACTCTCACCTGTGAACCTCGT
CGCGCCTCTGGCTGAGGACATCGACCCCTGAGCTCGCACGGTATCTCAACCGGAACACT
GGGAGAAGAACGAGGAGGAGGCTGCAAGAGCCCCACGCCACTCGGCCGTGCCCTGA
CGGAGCCGGCTGCACAGCCTGGGAAGGGCACGCAGCCCCACCAACGTGGTGGAGAAC
CCCTCCCGAGACAGACTCTCAGCCCATTCCCTCTGGTGGCCCTTTAGTGAGGCCAC
AGTTCCACAATGGCGAGTCTGAGGAGAGCCACGAGCAGTTCTGAAGGGCTGCAGAAC
CCGTCACCACTCGTGAACCGCATGAAGAGTAACCACATGCCGGGCCAGCATCACCA
ATGACTCGGCCGTGCTCACTCTCCAGTCATCAACGGCATGCACCCGAGCTGCTGG
AGCTGCTCAACCAGCTGGACGCGAGGCTGTACTATGAGGGCTGCAGGACAAGCTGG

CACAGATCCCGATGCCGGGGGGCTGAGTGCCTGCGGAAGAGCACCAGGAGAAC
 TTCGCCGGCAGCCAGGAGGAGAGCGCCAGCGCCAGATCCAGCTGGCCAGAAGCTGG
 AGATAATGCGGAGAAAGAACAGGAGTACCTGGAGGTGCAGAGGCAGCTGGCATCCAGC
 GCCTGCAGGAGCAGGAGAAGGAGCGGCAGATGCGGCTGGAGCAGCAGAACAGACGGTCC
 AGATGCGCGCGCAGATGCCGCTTCCCCCTGCCCTACGCCAGCTCAGGCCATGCCCG
 CAGCCGGAGGTGTGCTTACCCAGCCCTGGGACCAGCCAGCTCCCCAGCACCTCAGCC
 CTGCCGGCTCGTGAGGGCTCCCAATGCACGGGTGTACATGAGCAGCCAGGCCCTG
 CCGCTGGCCCTACCCAGCATGCCAGCACTGCCAGCATGGGTAGTGCCT
 ACATGTACCCAGCAGGGGCACTGGGGCGCAGGCGGCCCCCAGGCCAGGCCAGGGACCA
 CCGCCAGCCCCGCTTACTCATCCTACCCAGCTACTCCCACAGGGCTACCAGAACGTGG
 CCTCCCAGGCCCCACAGAGCCTCCGGCATCTCAGCCTCCGCAGTCAGCACCATGG
 GCTACATGGGAGCCAGTCAGTCTCCATGGCTACCAGCCTACAACATGCAGAATCTCA
 TGACCACCCCTCCAAGCCAGGATGCGTCTGCCACCCCAGCAGCCCTACATCGGGGGC
 AGCAGCCCAGTGTACCAAGCAGATGGCACCCCTGGCGTCCCCCCCAGCAGCAGCCCCCG
 TGGCCAGCAACCGCAGGCACAGGGCGCCGGCACAGGCAGCGAGGCCAGCTCATT
 CATTGACTGACCCAGGCCATGCTCACGTCCGGAGTAACACTACATACAGTTCACCTGAA
 ACGCCTCGTCTCTAACGTGCCGTCGCTGCCCTGCTCTACTGCCGGTAGTGTCCC
 TTCTCTGCGAGTGAGGGGGGCCTTCACCCCAAGGCCACCTCCCTGCTCTCAGCCTACT
 GCAGTCCCTGAGTTAGTCTCTGCTTTCTTCCCCAGGGCTGGGCATGGGAGGGAAAGGA
 CTTTCTCCCAGGGAAAGCCCCAGCCCTGTGGGTATGGTCTGTGAGAGGTGGCAGGAAT
 GGGGACCCCTCACCCCCCAAGCAGCCTGTGCCCTCTGGCGCAGTGTGAGCTGGCTGTGGT
 GTCTGGGTGTGGCTGGGCTCCCTCTGCAGGGGCTCTCTCGGCAGCCACAGCCAAGGG
 TGGAGGCTTCAGGTCTCCAGCTCTGCTCTCAGCTGCCATCTCAGTGCCTGGGGAGAAT
 GGTACAGCGATAATAAAATGTATTCAGAAAAAAAAAAAAAA
>gi|4758528|gb|NP_004703.1|HGS 777aa linear hepatocyte growth factor-regulated tyrosine kinase substrate; human growth factor-regulated tyrosine kinase substrate [Homo sapiens].

MGRGSGTFERLLDKATSQLLTEDWESILQICDLIRQGDTQAKYAVNSIKKVNNDKNPHV
 ALYALEVMESVVNCQTVHDEVANKQTMEELKDLLKRQVEVNRNKILYLIQAWAHAFR
 NEPKYKVQDTYQIMKVEGHVPEFKESDAMFAAERAPDWVDAEECHRCRVQFGVMTRKH
 HCRAKGQIFCGKCSSKYSTIPKFGIEKEVRVCEPCYEQLNRKAEGKATSTTELPPEYLTS
 PLSQQSQLPPKRDETAHQEEELQLALALSQSEAEKERLRQKSTYTSYPKAEPMPSSASS
 APPASSLYSSPVNSSAPLAEDIDPELARYLNRNYWEKKQEEARKSPTPSAPVPLTEPAAQ
 PGEGHAAPTNVVENPLPETDSQPIPSSGPFSEPQFHNGESEESHEQFLKALQNAVTTFV
 NRMKSNHMRGRSITNDSAVLSLFQSINGMHPQLLELNQLDERRLYYEGLQDKLAQIRDA
 RGALSALREEHREKLRRAAEAERQRQIQLAQKLEIMRQKKQEYLEVQRQLAIQRLQEQE
 KERQMRLEQQKQTQVMRAQMPAFPLPYAQLQAMPAAGGVLYQPSGPASFPSTFSPAGSVE
 GSPMHGVYMSQPAPAPAAGPYPSMPSTAADPSMVSAYMYPAGATGAQAAQPAQAGPTASPAY
 SSYQPTPTAGYQNVASQAPSLPAISQPPQSSTMGYMGSQSVSMGYQPYNMQNLMTTLPS
 QDASLPPQQPYIAGQQPMYQQMAPSGGPPQQQPPVAQQPQAQGPPAQGSEAQLISFD
>gi|20127435|gb|NM_003821.2|RIPK2 1898bp mRNA Homo sapiens receptor-interacting serine-threonine kinase 2 (RIPK2), mRNA.
 GGCAAGGGTCAGCTCTGGTTGGAGAACGAGCGGGCTGGCGTGGGCCATCCGGGAATG
 GGCGCCCTCGTGACCTAGTGTGGGGCAAAAGGGCTTGGCCGGCTCGCTCGTGCAG
 GGGCGTATCTGGCGCTGAGCGCGGTGGAGCCTGGGAGCCGCCAGCAGGGGGC
 ACACCCGGAACCGGCCTGAGCGCCGGGACCATGAACGGGAGGCCATCTGCAGCGCCCT
 GCCCACCATTCCCTACCAAAACTCGCCGACCTGCCTACCTGAGCCGGCGCCTCTGG

- 112 -

CACTGTGTCGCCGCCACGCAGACTGGCGCGTCCAGGTGGCGTGAAGCACCTGCA
 CATCCACACTCCGCTGCTGACAGTGAAAGAAGGATGTTAACAGAAAGCTGAAATT
 ACACAAAGCTAGATTAGTTACATTCTCCAATTGGAAATTGCAATGAGCCTGAATT
 TTTGGGAATAGTTACTGAATACATGCCAATGGATCATTAAATGAACCTCCTACATAGGAA
 AACTGAATATCCTGATGTTGGCATTGAGATTTCGCATCCTGCATGAAATTGCCCT
 TGGTGTAAATTACCTGCACAATATGACTCCTCTTACTTCATCATGACTGAAAGACTCA
 GAATATCTTATTGGACAATGAATTGTTAAGATTGCAGATTGGTTATCAAAGTG
 GCGCATGATGTCCTCTCACAGTCACGAAGTAGCAAATCTGCACCAGAAGGAGGACAAT
 TATCTATATGCCACCTGAAAATCTGAAACCTGGACAAAAATCAAGGGCCAGTATCAAGCA
 CGATATATATAGCTATGCAGTTATCACATGGGAAGTGTATCCAGAAAACAGCCTTTGA
 AGATGTCACCAATCCTTGCAAGATAATGTATAGTGTGTCACAAGGACATGACCTGTTAT
 TAATGAAGAAAGTTGCCATATGATATACCTCACCGAGCACGTATGATCTCTCTAATAGA
 AAGTGGATGGGCACAAAATCCAGATGAAAGACCATCTTCTAAAATGTTAATAGAACT
 TGAACCAGTTTGAGAACATTGAAGAGATAACTTCTGAAAGCTGTTATTAGCTAAA
 GAAAACAAAGTTACAGAGTGTTCAGTGCATTCACCTATGTGACAAGAAGAAAATGGA
 ATTATCTCTGAACATACCTGAAATCATGGTCCACAAGAGGAATCATGGATCCTCTCA
 GCTCCATGAAAATAGTGGTTCTCCTGAAACTCAAGGTCCTGCCAGCCTCAAGACAA
 TGATTTTATCTAGAAAAGCTCAAGACTGTTATTTATGAAGCTGCATCACTGTCCTGG
 AAATCACAGTTGGGATAGCACCATTCTGGATCTCAAAGGGCTGCATTCTGTGATCACAA
 GACCACTCCATGCTCTCAGCAATAATAATCCACTCTCACTGCAAGGAAACTCAGAACG
 TCTGCAGCCTGGTATAGCCCAGCAGTGGATCCAGAGCAAAGGGAAAGACATTGTAACCA
 AATGACAGAAGCCTGCCTAACCAAGCTAGATGCCCTCTGTCCAGGGACTTGATCAT
 GAAAGAGGACTATGAACTTGTAGTACCAAGCCTACAAGGACCTAAAAGTCAGACAATT
 ACTAGACACTACTGACATCCAAGGAGAAGAATTGCAAAGTTATAGTACAAAAATTGAA
 AGATAACAAACAAATGGGTCTCAGCCTACCCGAAACTTGTGGTTCTAGATCACC
 ATCTTAAATTACTCAAATAAAGCATGTAAGTGAETGACTGTTCAAGAAGAAATGTG
 TTTCATAAAAGGATATTATAAAAAAAAAAAAAAA

>gi|4506537|gb|NP_003812.1|RIPK2 540aa linear receptor-interacting serine-threonine kinase 2; receptor interacting protein 2 [Homo sapiens].

MNGEAICSLPTIPYHKLADRLRYLSRGASGTVSSARHADWRVQVAVKHLHIHTPLLDSER
 KDVLREAEILHKARFSYILPILGICNEPEFLGIVTEYMPNGSILNELLHRKTEYPDVAWPL
 RFRILHEIALGVNYLHNMTPLLHHDLKTQNILLNEFHVKIAFDGLSKWRMMMSLSQSRS
 SKSAPEGGTIIYMPENYEPGQKSRAPIKHDISYAVITWEVLSRKQPFEDVTNPLQIMY
 SVSQGHRPVINEESLPYDIPHARMISLIESGWAQNPDERPSFLKCLIELEPVLRTEEI
 TFLEAVIQLKKTKLQSVSSAIHLCKKKMELSLNIPVNHPQEESCGSQLHENSGSPET
 SRSLPAPQNDFLSRKAQDCYFMKLHHCPGNHSWDSTISGSQRAAFCDHKTPCSSAIIN
 PLSTAGNSERLQPGIAQQWIQSKREDIVNQMTEACLNQSLDALLSRDLIMKEDYELVSTK
 PTRTSKVRQLLDTTDIQGEEFAKVIVQKLKDQMLQPYPEILVVSRSPSLNLLQNKSM
>gi|26051238|gb|NM_021137.3|TNFAIP1 3571bp mRNA Homo sapiens tumor necrosis factor, alpha-induced protein 1 (endothelial) (TNFAIP1), mRNA.

CACAGCTTGGACTGCTGAGGGCAGGCGGCTGCAGGCTAGGGCGGCTCGGAGTCCGCT
 GGCCACCCAGCTGAGAGGAGAGGCGCCCCGGGACGCACTGAGATTATGAGGCTCTGGC
 CTCCACTGCCACTCACTCGTGACCCCTTCCACCACGGCGGAGCCTCAAGCCTACCTC
 CTGCCGTGGTGTACCTGCAGCGGGAGATGTGGGGGACACCTGCCTGTGCCAGC
 CTCAGGGGCCAAGCCAGCTCAGTGGCTCAAGGGAGGAGGTTGGCAACAAGTATGT

CCAGCTAACGTGGCGGCTCTGTACTACACCACGTGCGGGCCCTGACCCGCCACGA
CACCATGCTCAAGGCCATGTTCACTGGCGCATGGAGGTGCTGACCGACAAAGAAGGCTG
GATCCTCATAGACCCTGGAAAGCACTTGGCACCATTTGAATTACCTCCGAGATGA
CACCATCACCCCTCCCTCAGAACCGGCAAGAAATCAAGGAATTGATGGCTGAAGCAAAGTA
TTACCTCATCCAGGGCTGGTGAATATGTGCCAGAGTGCCTGCAGGACAAGAAGGACTC
CTACCAGCCTGTGTGCAACATCCCCATCATCACATCCCTAAAGGAGGAGGAGCGGCTCAT
CGAACATCCTCCACCAAGGCCGTGGTGAAGCTGCTGTACAACAGAACACAAGTATT
CTACACCAGCAACTCTGACGGACCACCTGCTGAAAAACATCGAGCTGTTGACAAGCTCTC
CCTGCGCTCAACGGCCCGTGCTTCATCAAGGATGTCATTGGTGAAGGAGATCTGCTG
CTGGTCCTTTATGCCAGGGCCGTAAGCTGGCAGAGGTGTGCTGTACCTCCATCGTGTA
TGCCACGGAGAAGAACGACCAAGGTGGAATTCCAGAGGCCGAATCTATGAGGAGAC
ACTCAACGTCCTACTCTATGAGACTCCCCCGCTCCCCGACAACCTCCTGTTGGAGGCCAC
AAGCCGTAGCCGCAGCCAGGCTCCCCAGTGAAGATGAGGAGACCTTGAACGCGGAG
CCGTGTCCGCCGCATCCACCGTCAAGCGCTACAGCACTTACGATGACCGGCAGCTCGGCCA
CCAGTCTACCCATCGCAGCTGACCAAGGCCCTCAGGGAGTCAGGGCACGGGAGGCCCTATC
TCCCATCCTGTGGAACCCGCCATTGCCACCCATGCTGCTGCTGCCTGGGTCTCTGC
TCTAGCACCCAGAGGCATGACAGGCCCTGCTCAGAGGTCAAGGGGTCTGGCAGAGGAGG
GACCACATTCCCTGCCTGCCCTGAGCACTTCTGGAGACTGCGTCCTGCTATCTGC
TCACCATCACCCCTCCTGCCGACGGAGCTGCTCTGCTCCCTGGGCATATGGACTGAC
CCACCTCCTGCTGAGAACCTCCCTAGGCCCTGTGCAGAAGGGCTACTGCCCTTAGGC
CTCAGCTGGGGAAAGGCAGTTCTGGTGTAGAGGCCCTGGTCAGAAAGTGGGACGT
CTTTTTCTAAGGTGTTAACGACAGGCTTGATAAGTTGGTTTTAAAAAATAATCTA
GGAAATGAATAATTCTAAATCTAGTAATGAGGAAACTGAGCATTCTTGCCTCCAGG
GTGCCAAGACCTACATATGACAGAACCTGGCCCTCTCCATGCCCTGTGGATCTGTT
TCTTTAAAGCACTTGTACTGTTATTCAAGGAGGTGATAATCTCCTTGACCCATGTCTT
CTACCCAATCCCCACTCCCTGCAGAACATCAATCTGAGGGAGGGATAAAGAGGAAGCAA
AAAAAAAAAACATCCGACAGAGCAGCTCTGGCTTGCCAGCCTGGCCAGCAGCTCAGAG
TGCACCGAGGAGGGAAAGGATGGCTAAGCTGGACCGGCAGTCCTCACAGGGTGCTGTGA
GAAAGGACATTACCCCCACATCATAGTCACATCACTGACTCCTAGGTCTAGCACGACT
GCTCTTGTGATTCTCTTGAGTACCCCTGGCTTCCAGCCATGCTGTCTCACATACGGTA
AAGCCAAAGAGCTGTCACATGGCCAGAAACATGAGCCACGGCAGGAAGACCGTGGAGCC
CGTGGCACTGCATGGTGTGGCTGGCATGCCATCAGCTGAGGACAGCAAACCTCCAGC
AGCCCCCTACAGAGGTGGCACATGCTTGGCCACACATCTACTCCTGCCACACCATCTAT
GCTCTTGGTTGGTGTGGCTGGATGGCGGTCTGCCAGTGGTGTCTCTGAGCGCGGGGA
TGACAGGAGCAACCGAACGACCCCTGAAGGCCTTCACTCCTGTTGGTAACTCAGCCATG
GAGATGCCAAGCAGTGGCAGGAGGTGAGTTCTCTTTAGGGCTTGGTTTCATTCTT
TTTGTGTTGGCTTGGCCAAACCAGAATTCAAGCTTATCTGAATTATTTCAAAGGAATGCT
GTCAGGGAGGGACTGTTCTGCCAGCCTAACAAAGCAACGTAGCCACGTATAGTACCCACT
TTCTGCTCTTGGAGAGAACACAGGTTATCAAGTTCAAGTTCATCTCTTGACTACTCTTATGAT
AGCTGATGCCACAGAGCCTATGGCAAATGCCAGACCCAGGGTAGACACAAGGACCTGA
AGTGACATGACGGCGGGACAGGGAAATGTGACTTCTAATTAGGCATTTATGTTAGTC
ACAGTCTTGAATGTATAAACAGCACTAACAGACTCTCAGGTAGGTACCTGGTATCAGCT
ACTAGTTCTCCAGCCCTCATTGAGGTAACAAGATAAAAGACAAATCCACTTCTTGGCCA
AATTCAAGGCTTGGCTTATGACTTCCCACAGAGACTGGAATGCCAGCCTGAGACCA
CTGGCCTATTTCTCAGCTGCCCTCTGAGGTCTTAAACACTCAAATCCCAGCTCCCC
ACTGAGGTGTTGTGATGCTGCCCTTGACCTCCCCATCCCCTTAGTCCCTGCTTACTA
CTTGACATTCAACATCCTCAGTGTCTCAGTCTTTGCCAGAACAGTACTGCTGG

GAATGGGCATTTATCTTCTGACTGAAAATCTCTCCCTGGCTTAAGGAAAATACAAAC
ATTGAACTCAGACATGATCTTAGCTTAAATCAGACTTGTGACTTAAAGTTGG
GGGTTTCTTGAAGTTCCAGCCATTCAAGAAAGCAACTCTGGCTGTGCATTT
TCAACTCCAAGCAGCCCAGGGTAAGTAAACAAAGTATGGATGAAGGTCAAGATTTCTG
TCAGTTCTGAGAACCTGGCAGCCTGCTTAACAAACACAGGCCAGTATTGGGTTTAT
TGAATTGGTATGTGACCAAGGTGGCCTAAAGGATGGCGCAGGTGGCAGGAAAGA
ATTTTCCTTATCACATAACTGTAATATTGGTTGCTCAGCATAAGTGATGGAAGCAA
CACTAATTCTAATAAAATTGTGTTAAACTC

>gi|10863937|gb|NP_066960.1|TNFAIP1 316aa linear tumor
necrosis factor, alpha-induced protein 1 [Homo sapiens].

MSGDTCLCPASGAKPKLSGFKGGLGNKYVQLNVGGSLYYTTVRALTRHDMLKAMFSGR
MEVLTDKEGWILIDRCGKHFGTILNYLRDDTITLPQNRQEIKELMAEAKYYLIQGLVNMC
QSALQDKKDSYQPVCNIPIITSLKEERLIESSTKPVVKLLYNRSNNKSYTSNSDDHLL
KNIELFDKLSLRFNGRVLFIKDVGDEICCWSFYQGRKLAEVCCSIVYATEKKQTKVE
FPEARIYEETLNVLLYETPRVPDNLLEATSRSRSQASPSEDEETFELRDRVRRIHVKR
STYDDRQLGHQSTHRD

>gi|27597077|gb|NM_006293.2|TYRO3 3949bp mRNA Homo sapiens
TYRO3 protein tyrosine kinase (TYRO3), mRNA.

GCGGTGGCGCGGGAGCGGGCCCCGGGACCCCGCGCTGCTGACGGCGCGACCGCGGCCGG
AGGCAGGGCGCGGGCTCGGAGGCGGTCGCCTCAGCACCGCCCCACGGCGGCCAGCCC
CTCCCGCAGCCCTCCCTCCCTCCGCTCCCTCCGCCCTCCCTCCCCGCCCTCCCT
CCTCGCTCGCGGGCCGGGCCCGCATGGTGCGCGTCGCCGCCGATGGCGCTGAGGCAGGA
GCATGGGGCGGCCGGGCTCCCGCCGCTGCCGCTGCCGCCACCGCGGCTCGGGCTGC
TGCTGGCGCTCTGGCTCTGCTCTGCTCCCGAGTCGGCCGCCAGGTCTGAAGCTCA
TGGGAGCCCCGGTGAAGCTGACAGTGTCTCAGGGCAGCCGGTGAAGCTCACTGCAGTG
TGGAGGGGATGGAGGAGCCTGACATCCAGTGGGTGAAGGATGGGGCTGGTCCAGAACT
TGGACCAGTTGTACATCCCAGTCAGCGAGCAGCACTGGATCGGCTTCCCTAGCCTGAAGT
CAGTGGAGCGCTCTGACGCCGGCGTACTGGTGCCAGGTGGAGGATGGGGTGAACACCG
AGATCTCCAGCCAGTGTGGCTCACGGTAGAAGGTGTGCCATTTCACAGTGGAGCCAA
AAGATCTGGCAGTGCCACCCAAATGCCCTTCAACTGTCTTGAGGGCTGGGGTCCCC
CTGAACCTGTTACCATGTCTGGTGAGAGGAACATCGAAGATCGGGGACCCGCTCCCT
CTCCATCTGTTAAATGTAACAGGGGTGACCCAGAGCACCATGTTCTGTGAAGCTC
ACAACCTAAAAGGCCTGGCCTCTCGCACAGCCACTGTCACCTTCAAGCACTGCCTG
CAGCCCCCTCAACATCACCGTGACAAAGCTTCCAGCAGCAACGCTAGTGTGGCTGG
TGCCAGGTGCTGATGGCCGAGCTCTGCTACAGTCCTGTACAGTCAGGTGACACAGGCC
CAGGAGGCTGGGAAGTCCTGGCTGTTGGTCCCTGTGCCCTTACCTGCCTGCTCC
GGGACCTGGTGCCTGCCACCAACTACAGCCTCAGGGTGCCTGTGCCAATGCCCTGGGG
CCTCTCCCTATGCTGACTGGTGCCCTTCAGACCAAGGTCTAGCCCAGCCAGCGCTC
CCCCAAACCTCCATGCCATCGCACAGATTCAAGCCTCATCTGGAGTGGGAAGAAGTGA
TCCCCGAGGCCCTTGGAAAGGCCCTGGACCCCTACAAACTGTCTGGTTCAAGACA
ATGGAACCCAGGATGAGCTGACAGTGGAGGGACCAAGGGCCAATTGACAGGTGGGATC
CCCCAAAAGGACCTGATCGTACGTGTGCGTCTCCAATGCAGTTGGCTGTGGACCCCTGGA
GTCAGCCACTGGTGGTCTCTCATGACCGTGAGGCCAGCAGGGCCCTCCTCACAGCC
GCACATCCTGGTACCTGTGGCTTGGTGTGCTAACGGCCCTGGTGAAGGCTGCTGCC
TGGCCCTCATCCTGCTTCGAAAGAGACGGAAAGAGACGCCAGCGTTGGGCAAGCCTTGACA
GTGTGATGGCCCGGGGAGAGGCCAGCCGTTCACTTCCGGCAGCCGGTCCCTCAATCGAG
AAAGGCCCGAGCGCATCGAGGCCACATTGGACAGCTGGCATCAGCGATGAACTAAAGG

AAAAACTGGAGGATGTGCTCATCCCAGAGCAGCAGTTCACCCCTGGGCCGGATGTTGGCA
AAGGAGAGTTGGTCAGTGCAGGGAGGCCAGCTGAAGCAAGAGGATGGCTCCTTGTA
AACTGGCTGTGAAGATGCTGAAAGCTGACATCATTGCCTCAAGCGACATTGAAGAGTTCC
TCAGGGAAAGCAGCTGCATGAAGGAGTTGACCACACGTGGCAAACCTTGGTGGGG
TAAGCCTCCGGAGCAGGGCTAAAGGCCGTCTCCCCATCCCCATGGTCATCTGCCCTTCA
TGAAGCATGGGGACCTGCATGCCCTCTGCTCGCCTCCGGATTGGGAGAACCCCTTA
ACCTACCCCTCCAGACCCCTGATCCGGTTCATGGTGGACATTGCCTGCCATGGAGTACC
TGAGCTCTCGGAACCTCATCCACCGAGACCTGGCTGCTCGGAATTGCATGCTGGCAGAGG
ACATGACAGTGTGTGGCTGACTTCGGACTCTCCCGAAGATCTACAGTGGGACTACT
ATCGTCAAGGCTGTGCCCTCCAAACTGCCTGTCAAGTGGCTGGCCCTGGAGAGCCTGGCCG
ACAACCTGTATACTGTGCAGAGTGCAGCTGTGGCTCGGGTGCACCATGTGGAGATCA
TGACACGTGGGCAGACGCCATATGCTGGCATCGAAAACGCTGAGATTACAACCTACCTCA
TTGGCGGGAAACGCCCTGAAACAGCCTCCGGAGTGTATGGAGGACGTGTATGATCTCATGT
ACCAGTGTGGAGTGTGACCCCCAAGCAGCGCCCGAGCTTACTTGTCTGCGAATGGAAC
TGGAGAACATCTTGGCCAGCTGTGTGCTATCTGCCAGCCAGGACCCCTTATACATCA
ACATCGAGAGAGCTGAGGAGCCCACTCGGGAGGCAGCCTGGAGCTACCTGGCAGGGATC
AGCCCTACAGTGGGCTGGGATGGCAGTGGCATGGGGCAGTGGTGGCACTCCAGTG
ACTGTCGGTACATACTCACCCCCGGAGGGCTGGCTGAGCAGCAGGGCAGGAGCACC
AGCCAGAGAGTCCCCTCAATGAGACACAGAGGCTTGTGCTGCAAGCAAGGGCTACTGC
CACACAGTAGCTGTAGCCCCACAGGCAGAGGGCATGGGGCATTTGGCCGCTCTGGTG
GCCACTGAGCTGGCTGACTAACCGCCGCTGACCCAGCCAGACAGCAAGGTGTGGAGG
CTCCTGTGGTAGTCCTCCAAGCTGTGCTGGGAAGCCGGACTGACCAAATACCCAATC
CCAGTTCTCCTGCAACCACCTGTGGCCAGCCTGGCATCAGTTAGGCCTGGCTTGAT
GGAAGTGGCCAGTCCTGGTTGTCTGAACCCAGGCAGCTGGCAGGAGTGGGTGGTTATG
TTTCCATGGTACCATGGGTGTGGATGGCAGTGTGGGAGGGCAGGTCCAGCTCTGTGG
CCCTACCCCTCTGCTGAGCTGCCCTGCTGCTTAAGTCATGAGCTGCCCTCCAGC
CTGGTGGCCCAGCTATTACACACTGGGTTAAATATCCAGGTGTGCCCTCCAAGTC
ACAAAGAGATGTCCTGTAATATTCCCTTTAGGTGAGGGTTGTAAGGGTTGGTATCT
CAGGTCTGAATCTCACCATCTTCTGATTCCGCACCCCTGCCTACGCCAGGAGAAGTTGA
GGGGAGCATGCTTCCCTGCAGCTGACCGGGTCACACAAAGGCATGCTGGAGTACCCAGCC
TATCAGGTGCCCTCTTCCTAAAGGCAGCGTGCCGAGCCAGCAAGAGGAAGGGGTGCTGTG
AGGCTGCCAGGAAGCAGTGGAGGCCAGAGGAGTCAGGAACCCCTCTCCATACCCAC
AACTGAGCACGCTACCAAAATCTAAACACTAACAAAGGCAGCTGTGTCTG
AGCCCAACCTCTAAACGGTGACCTTACTGCCAACTTCCCTCTAACTGGACAGCCTC
TTCTGTCCAAGTCTCCAGAGAGAAATCAGGCCTGATGAGGGGAATTCTGGAACCTGG
ACCCAGCCTGGTGGGGAGCCTGGAATGCATGGGCGGGCCTAGCTGTAGGGAC
ATTCCAAGCTGTTAGTGTGTTAAAATAGAAATAAAATTGAAGACT

>gi|27597078|gb|NP_006284.2|TYRO3 890aa linear TYRO3 protein tyrosine kinase; Brt; Dtk; Sky; Tif; Tyro3 protein tyrosine kinase (sea-related receptor tyrosine kinase); tyrosine-protein kinase receptor TYRO3 precursor [Homo sapiens].

MALRRSMGRPLPPLPLPPPRLLAALASLLLPESSAAAGLKLMGAPVKLTQVSGQPV
KLNCSEGMEEPDIDQWVKDGAVVQNLQLYIPVSEQHWIGFLSLKSVERSDAGRYWCQVE
DGGETEISQPVWLTVEGVFFTVEPKDLAVPPNAPFQLSCEAVGPPEPVTIVWWRGTTKI
GGPAPSPSVLNVTGVTQSTMFSCEAHNLKGLOSSRTATVHLQALPAAPFNI
ASVAWMPGADGRALLQSCTVQVTQAPGGWEVLAVVVVPPFTCLLRDLVPATNYSLRVRC
ANALGPSPYADWVPFQTKG LAPASA PONLHAIRTDGLILEWEEVIPEAPLEGPLGPYKL

SWVQDNGTQDELTVEGTRANLTGWDPKDLIVRVCVSNAVCGPWSQPLVVSSHDRAQQ
 GPPHSRTSWPVVLGVLTALVTAAALALILLRKRRKETRGQAFDSVMARGEPAVFRAA
 RSFNRRPERIEATLDSLGIDELKEKLEDVLIPEQQFTLGRMLGKGEFGSVREAQLKQE
 DGSFVKVAVKMLKADIIASSDIEFLREAACMKEFDHPHVAKLVGVSLRSRAKGRLPIPM
 VILPFMKHGLHAFLLASRIGENPFNPLQTLIRFMVDIACGMELYSSRNFIHRDLAARN
 CMIAEDMTVCVADFGLSRKIYSGDYYRQGCASKLPVKWLASELADNLYTVQSDVWAFGV
 TMWEIMTRGQTPYAGIENAEIYNYLIGGNRLKQPPECMEDVYDLMYQCWSADPKQRPSFT
 CLRMELENILGQLSVLSASQDPLYINIERAEEPTAGGSLELPGRDQPYSGAGDGSGMGAV
 GGTPSDCRYILTPGGLAEQPGQAEHQPESPNLETQRLLLQQGLLPHSSC

>gi|4502884|gb|NM_003992.1|CLK3 1762bp mRNA Homo sapiens CDC-like kinase 3 (CLK3), transcript variant phclk3, mRNA.

TGGGGCACTGGTACCTCCAGGACCTGGAGTGACTGGAAGAAATGGTCAGTCAGATGC
 ATCACTGTAAGCGATACCGCTCCCCTGAACCAGACCCGTACCTGAGCTACCGATGGAAGA
 GGAGGAGGTCCCTACAGTCGGAACATGAAGGGAGACTGCGATACCGTCCGAAGGGAGC
 CTCCCCCACGAAGATCTCGGCCAGAACGCCATGACCGCCTGCCCTACCAAGAGGAGGTACC
 GGGAGCGCCGTGACAGCGATACATACCGGTGAAAGAGCGGAGCCCATTGGAGAGG
 ACTACTATGGACCTCACGTTCTCGTCATCGTCGGCGATGCCGGAGAGGGGCCATACC
 GGACCCGCAAGCATGCCACCACTGCCACAAACGCCGACCGAGGTCTTAGCAGCGCCT
 CCTCGAGAACGCAACAGAGCAGTAAGCGCACAGGCCAGTGTGGAAGATGACAAGGAGG
 GTCACCTGGTGTGCCGATCGCGATTGGCTCCAAGAGCGATATGAGATTGTGGGAACC
 TGGGTGAAGGCACCTTGGCAAGGTGGAGTGCTTGGACCATGCCAGAGGGAGTCTC
 AGGTTGCCCTGAAGATCATCCGCAACGTGGCAAGTACCGGGAGGCTGCCGGCTAGAAA
 TCAACGTGCTAAAAAAATCAAGGAGAACGAAAGAAAACAAGTTCCGTGTCTGA
 TGTCTGACTGGTTCAACTTCCACGGTCACATGTGCATGCCCTTGAGCTCCTGGCAAGA
 ACACCTTGAGTTCTGAAGGAGAATAACTTCCAGCCTTACCCCTACCATGTCCGGC
 ACATGGCCTACCAGCTGCCACGCCCTAGATTCTGCATGAGAACAGCTGACCCATA
 CAGACTTGAAACCTGAGAACATCCTGTTGAAATTCTGAGTTGAAACCCCTACAATG
 AGCACAAGAGCTGTGAGGAGAAGTCAGTGAAGAACACCAGCATCCGAGTGGCTGACTTTG
 GCAGTGCCACATTGACCATGAGCACCAACACCATTGTGGCCACCCGTCACTATGCC
 CGCCTGAGGTGATCCTTGAGCTGGCTGGCACAGCCCTGTGACGTCTGGAGCATGGCT
 GCATTCTTTGAGTACTACCGGGCTTCACACTCTCCAGACCCACGAAAACCGAGAGC
 ACCTGGTGATGGAGAACATCCTAGGGCCATCCCATCACACATGATCCACCGTACCA
 GGAAGCAGAAATATTCTACAAAGGGGCTAGTTGGATGAGAACAGCTCTGACGCC
 GGTATGTGAAGGAGAACTGCAAACCTCTGAAGAGTTACATGCTCCAAGACTCCCTGGAGC
 ACGTGCAGCTGTTGACCTGATGAGGAGGATGTTAGAATTGACCCCTGCCAGCGCATCA
 CACTGGCCGAGGCCCTGCTGCACCCCTTTGCTGCCCTGACCCCTGAGGAGCGGTCT
 TCCACACCAGCCGCAACCAAGCAGATGACAGGCACAGGCCACCGCATGAGGAGATGGAG
 GCGGGACTGGCCGCCAGCCCTGACTCCAGCCTGACGCCAGCCAGGCCAGAG
 CCACCCAAATGAACAGTGCAATGTGAAGGAAGGCAGGAGCCTGCAGGGAGCAGACTGGT
 GCCCAGCTGCCAGAAAGCACAGATTGACCCAAGCTATTATGTTATAAAGTTATAAT
 AAAGTGTCTTACTGTTGTA

>gi|4502885|gb|NP_003983.1|CLK3 490aa linear CDC-like kinase 3 isoform hclk3 [Homo sapiens].

MHCKRYRSPEPDYLSYRWKRRSYSREHEGRLRYPYPSRREPPRRSRSHDRLPYQRR
 YRERRDSDTYRCEERSPSFGEDYYGPSRSRHHRSRERGPYRTRKHAAHCHKRRTSCSS
 ASSRSQQSSKRTGRSVEDDKEGHLVCRIGDWLQERYEIVGNLGETFGKVECLDHARGK
 SQVALKIIIRNVGKYREAARLEINVLLKKIKEKDKENFKLCVLMUSDWFNFHGHMCIAFELLG

KNTFEFLKENNQPYPLPHVRHMAYQLCHALRFLHENQLTHTDLKPENILFVNSEFETLY
NEHKSCEEKSVKNTSIRVADFGSATFDHEHHTIVATRHYRPPEVILELGWAQPCDVWSI
GCILFEYYRGFTLFQTHENREHLVMMEKILGPIPSHMIHRTRKQKYFYKGLLVWDENSSD
GRYVKENCKPLKSMLQDSLEHVQLFDLMRRMLEFDPAQRITLAEALLHPFFAGLTPEER
SFHTSRNPSR

>gi|9910121|gb|NM_020249.1|ADAMTS9 3674bp mRNA Homo sapiens a disintegrin-like and metalloprotease (reprolysin type) with thrombospondin type 1 motif, 9 (ADAMTS9), mRNA.

GCGGGAAAGCACCATGCAGTTGTATCCTGGGCCACACTGCTAACGCTCTGGTGCAGGAC
CTGGCCGAGATGGGGAGCCAGACGCCGGCGCGTACGCAAGGACAGGCTGCACCCG
AGGCAAGTGAATTATTAGAGACCCTGGCGAATACGAAATCGTGTCTCCATCCGAGTG
AACGCTCTCGGAGAACCCCTTCCCACGAACGTCCACTCAAAGAACCGCAGGGAGCATT
AACTCTGCCACTGACCCCTGGCCTGCCTCCCTCTTCCTCTACCTCCTCC
CAGGCGCATTACCGCCTCTGCCTCGGCCAGCAGTTCTATTAAATCTCACCGCCAAT
GCCGGATTATCGCTCCACTGTTACTGTCACCCCTCCTCGGACGCCGGGTGAATCAG
ACCAAGTTTATTCCGAAGAGGAAGCGGAACTCAAGCACTGTTCTACAAAGGCTATGTC
AATACCAACTCCGAGCACACGGCGTCATCAGCCTTGCTCAGGAATGCTGGGCACATT
CGGTCTCATGATGGGATTATTTATTGAACCACTACAGTCTATGGATGAACAAGAAGAT
GAAGAGGAACAAAACAAACCCACATCATTATAGGCGCAGCGCCCCCAGAGAGAGCCC
TCAACAGGAAGGCATGCATGTGACACCTCAGAACACAAAAATAGGCACAGTAAAGACAAG
AAGAAAACAGAGCAAGAAAATGGGAGAAGGATTAACCTGGCTGGTGACGTAGCAGCA
TTAACAGCGGCTTAGCAACAGAGGCATTTCTGCTTATGGTAATAAGACGGACAACACA
AGAGAAAAGAGGACCCACAGAAGGACAAACGTTTTATCCTATCCACGGTTGTAGAA
GTCTGGTGGTGGCAGACAACAGAACAGGTTCATACCATGGAGAAAACCTTCAACACTAT
ATTTAACTTAATGTCAATTGTGACCTCTATCTATAAAGACCCAAGTATTGAAATTAA
ATTAATATTGTTATTGTGAACCTTAATTGTGATTCTATAATGAACAGGATGGGCCTTCATA
TCCTTAACTGTCAGACAACATTAAAAACCTTGCCTGGCAGTGGCAGCATTGAAAGAACAGT
CCAGGTGGAATCCATCATGATACTGCTGTTCTTAACAAGACAGGATATCTGAGAGCT
CACGACAAATGTGATACCTAGGCCTGGCTGAACGGAAACCATTGTGATCCCTATAGA
AGCTGTTCTATTAGTGAAGATAGTGGATTGAGTACAGCTTTACGATGCCATGAGCTG
GCCATGTGTTAACATGCCTCATGATGACAACAACAAATGTAAGAAGAAGGAGTTAAG
AGTCCCCAGCATGTCATGGCTCCAAACACTGAACCTACACCAACCCCTGGATGTGGTCA
AAGTGTAGTCGAAAATATCACTGAGTTTAGACACTGGTTATGGCGAGTGTGTTGCTT
AACGAACCTGAATCCAGACCCCTACCCCTTGCTGTCAAACGCCAGGCATCCTTACAAC
GTGAATAAAACATGTGAATTGATTTGGACCAGGTTCTCAGGTGTGCCATATATGATG
CAGTGCAGACGGCTCTGGTGAATAACGTCAATGGAGTACACAAAGGCTGCCGGACTCAG
CACACACCCCTGGGCCGATGGGACGGAGTGCGAGCCTGGAAAGCACTGCAAGTATGGATT
TGTGTTCCCAAAGAAATGGATGTCCCCGTGACAGATGGATCCTGGGAAGTTGGAGTCCC
TTGGAACCTGCTCCAGAACATGTGGAGGGGCATAAAACAGCCATTGAGAGTGCAC
AGACCAGAACAAAAATGGTGGAAAATACTGTGAGGTAGAATGAAATTAAAGTCC
TGCACACCGGAGCCATGTCATAAGCAGAACGGAGACTTCCGAGATGAAACAGTGTGCTCAC
TTGACGGGAAGCATTAAACATCAACGGCTGCTTCCAAATGTGCGCTGGTCCCTAAA
TACAGTGGAAATTCTGATGAGGACCGGTGCAAGTTGTTCTGCAGAGTGGCAGGGAAACACA
GCCTACTATCAGCTCGAGACAGAGTGAAGATGGAACCTCTGTGGCCAGGACACAAAT
GATATCTGTGTCCAGGGCTTGCCTGGCAAGCTGGATGCGATCATGTTAAACTCAAAA
GCCCGGAGAGATAAAATGTGGGTTGTGGTGGCGATAATTCTCATGCAAAACAGTGGCA
GGAACATTAAATACAGTACATTATGGTTACAATACTGTGGTCCGAATTCCAGCTGGTGC

- 118 -

ACCAATATTGATGTGGCAGCACAGTTCTAGGGAAACAGACGATGACAACACTACTTA
 GCTTATCAAGCAGTAAAGGTGAATTCTGCTAAATGGAAACTTGTGTACAGTGGTCCGAGACTGCCGTA
 AAAAGGGAAATTGCATTGGGAATGCTGTGGTAGAGTACAGTGGTCCGAGACTGCCGTA
 GAAAGAATTAACCAACAGATCGCATTGAGCAAGAACCTTGCTTCAGGTTTGTGGTG
 GGAAAGTTGTACAACCCCCATGTACGCTATTCTTCATATTCCAATTGAAGATAAACCT
 CAGCAGTTTACTGGAACAGTCATGGCCATGGCAAGCATGCAGTAAACCCTGCCAAGGG
 GAACGGAAACGAAAACCTGTTGCACCAAGGAATCTGATCAGCTTACTGTTCTGATCAA
 AGATGCGATCGGCTGCCAGCCTGGACACATTACTGAACCCCTGTGGTACAGACTGTGAC
 CTGAGGTGGCATGTTGCCAGCAGGAGTGAATGTAGTGCCCAGTGTGGCTGGGTTACCGC
 ACATTGGACATCTACTGTGCCAATATAGCAGGCTGGATGGGAAGACTGAGAAGGTTGAT
 GATGGTTTGAGCAGCCATCCCCAACCAAGCAACCGTAAAAATGCTCAGGGGAATGT
 AACACGGGTGGCTGGCGCTATTCTGCTGGACTGAATGTTAAAAAGCTGTGACGGTGGG
 ACCCAGAGGAGAAGGGCTATTGTGTCATAACCCGAAATGATGTACTGGATGACAGCAA
 TGCACACATCAAGAGAAAGTTACCAATTGAGGTGCACTGAGTTCCCTGTGACCTTCTCCC
 AACATTCTGCTCCCTTGCTCCCTTGAGAAAACAACCTCCAGTTCTGCCTGCACCA
 TGACTGTCGACTGGATGTAACTAGTCTACCACTGACCTCAGGGCACTTGGGCTGGCT
 AGATCACTCACTGTTGAGCTCTGTTGATTTGAAGTTGCACTGAGTTTACCTGCT
 CCTCTTGAGCCCTAGCTAAGTCACTGAAAGGAAATCATGGATTATAATCATAAAGCT
 ATACTAGCTCACATCTGAAGTCAACATGAAGTTCTACTTCCTTGCTTTGAAATAAGA
 GAATTAGACCCAGGGAGTGACCTCTGACTTACCCATCCAACGTGCCAAAAAAAAAAA
 AAAAAAAAAAAAAA

>gi|9910122|gb|NP_064634.1|ADAMTS9 1072aa linear a disintegrin and metalloproteinase with thrombospondin motifs-9 preproprotein [Homo sapiens].

MQFVSWATLLTLVRDLAEMGSPAAAAAVRKDRLLHPRQVKLLETLGELYEIVSPIRVNALG
 EPFPNVHFKRTRRSINSATDPWPFAFSSSSSTSSQAHYRLSAFGQQFLFNLTANAGFI
 APLFTVTLLGTPGVNQTKFYSEEEAELKHCFYKGYVNTNSEHTAVISLCSGMLGTFRSHD
 GDYFIEPLQSMDEQEDEEEQNKPFI IYRRSAPQREPSTGRACDTSEHKNRHSKKKTR
 ARKWGERINLAGDVAALNSGLATEAFSAYGNKTDNTREKRTHRRTKRFLSYPRFVEVLVV
 ADNRMVSYHGENLQHYILTLMSIVASIYKDPSIGNLINIVNLIVIHNEDQDPSISFNA
 QTLKNLCWQHSKNSPGIHHDTAVLLTRQDI CRAHDKCDTGLAELGTICDPYRSCSI
 SEDSGLSTAFTIAHELGHVFNMMPHDNNKCKEGVKS PQHVMAPTLNFYTNPWMWSKCSR
 KYITEFLDTGYGECLLNNEPESRPYPLPVQLPGILYNVNQCELI FGPGSQVCPYMMQCRR
 LWCNNVNGVKCQTQHTPWADGTECEPGKHCKYGFVPKEMDPVTDGSWGSWSPFGTC
 SRTCGGGIKTAIRECNRPEPKNGGKYCVGRMFKSCNTEPCLKQKRDFRDEQCAHFDGK
 HFNINGLLPNVRWPKYSGLMKDRCKLFCRVAGNTAYQLRDRVIDGTPCGQDTNDICV
 QGLCRQAGCDHVLSKARRDKCGVCGGDNSSCKTVAGTFNTVHYGYNTVVRIPAGATNID
 VRQHSFSGETDDDNYLALSSSKGEFLLNGNFVVTMAKREIRIGNAVVEYSGSETAVERIN
 STDRIEQELLQVLSVGKLYNPDVRYSFNIPIEDKPQQFYWNNSHPWQACSKPCQGERKR
 KLVCTRESDQLTVSDQRCDRLPQPGHITEPCGTDCLRWHVASRSECSAQCGLGYRTL
 YCAKYSRLDGKTEKVDDGFCSSHPKPSNREKCSGECNTGGWRYSAWTECSKSCDGQT
 RAICVNTRNDVLDDSKCTHQEKVTIQRCEFPQWKSGDWSEVRWEGCYFP

>gi|17981697|gb|NM_001262.2|CDKN2C 2104bp mRNA Homo sapiens cyclin-dependent kinase inhibitor 2C (p18, inhibits CDK4) (CDKN2C), transcript variant 1, mRNA.

CTCTGCCGAGCCTCCTAAAAACTCTGCCGTTAAAATGGGGCGGGTTTTCAACTCAAAA
 AGCGCTCAATTTCCTTCAAAAAAAGCTGATGAGGTGGAAAAAGGGAGAAGAAA
 CCGGCACCCCTCTGAGAGGCAACAGAACAGCAATTGTTCAAGCAAAAAAGCAGCAAG
 GGAGGGAGTGAAGGAAAAAAGCAAAAAAGGGGGCACACGCAAGTGCTGTAGGGGTGAA
 AGGAGCAGGGACCGCGATCTAGGGGGGATCAGCTACAAAAGAAACTGTCAGTGGAGC
 GGTGCGGCCAAGGAGGAAGCAGTGCTGCCAGGCTCTGCTCCAGGGCACAGCTGGCTGGCG
 GCTGCCCTGTCCGCAGCAAAGGGCACAGGCCGGGACCGCAGAGGTGGCAAAGTGGCA
 CCGGGCGCCGAGGCTGCTGAGCGCTGCCGAGACGGGACCGGACTGGCTGCCCCGGAAC
 TGCAGCGACTCTCCCTACTCAGAACTTGGCCTACGTTCCCAGGACTCTCCCCATCTCCA
 GAGGCCCCACAAAACCGGAAAGGAAGGAAGGACAGCGGCGGCAGCAGCTCAATGAGT
 GCCTACAGCAGAAAGCCTGAACGAGCTCGGTAGGCGGGAGTTCCCGGGGGCTGC
 CCAGTGCAGCCGCAATGCTGCCGAGCTGCCCGAGCAGTCCGGCTCCGTAGACGCTT
 CCGCATCACTCTCCCTCCTGGCTGCCGGAGTCCCGGGACCTGGCGGGGCCGGCATGA
 CGGGCTTCTCGGGGGCCCGCCGCACGCCCGCAGCCTCCGGAGACGCCGGAGCCCG
 CTCCACGGCCTCTGAGGCTGGCGGGCTGCGGCTGCCTGGCGGGCGGGCTCCGGAGCT
 TTCCCTGAGCGGCATTAGCCCACGGCTTGGCCGGACCGCACAAAGGCTCTTCTGGAGAA
 GCCCAGAGCACTGGCAATCGTTACGACCTGTAACTTGAGGGCCACCGAACGTGCTACTCC
 CGTTCGCCTTGGCGATCATCTTTAACCTCCGGAGCACGTCAGCATCCAGCCACCGCG
 GCGCTCTCCCAGCAGCGGAGGACCCAGGACTATCCCTCGGCGAGACGGATGGAAACCGA
 GCCCCCTGGAGGACCTGCCCTGCAGTTCTGCCTCACACGGCTCAAGTCACCACCGTGAA
 CAAGGGACCTAAAGAATGGCCGAGCCTGGGGAACGAGTTGGCGTCCGAGCTGCCAG
 GGGGGACCTAGAGCAACTTACTAGTTGTTGCAAATAATGTAACAGTCAATGCACAAA
 TGGATTGGAAGGACTGCGCTGCAGGTTATGAAACTTGGAAATCCGAGATTGCCAGGAG
 ACTGCTACTTAGAGGTGCTAATCCGATTGAAAGACCGAACGTGGTTCTGCTGTCAATTCA
 TGATGCGGCCAGAGCAGGTTCTGGACACTTACAGACTTGGCTGGAGTTCAAGCTGA
 TGTAAACATCGAGGATAATGAAGGGAACCTGCCCTGCACGGCTGCCAAAGAAGGCCA
 CCTCCGGGTGGTGGAGTTCTGGTGAAGCACACGGCCAGCAATGTGGGCATCGGAACCA
 TAAGGGGACACCGCCTGTGATTGGCCAGGCTCTATGGGAGGAATGAGGTTGTTAGCCT
 GATGCAGGCAAACGGGGCTGGGGAGCCACAAATCTCAATAAACGTGGGGAGGGCTCCC
 CCACGTTGCCCTACTTATCAATTAACTGAGTAGCTCTCCTGACTTTAATGTCATTG
 TTAAAATACAGTTCTGTATGTTAACGACTAAATTTCTGAAACTGCTACAAGTGA
 ATCTTACAACAGGCTTATGAATATTTAACGAAACATCTTTAACCTGCAAAATCTGTT
 CTAACATGTAATTGAGATAACTTGGACTTTCTGAAATATTATCTTCTGGCTT
 TTCCCTGCTTCCCCCTTGCCAATCTAACACCCAGTTGAAGAGACTTGTAAAAAAT
 GGTTGTCTGATGCTTTGTCTAATTAAAACACTTCAAAACAGGAAAAAAAAAAAAAAA
 AAAA

>gi|4502751|gb|NP_001253.1|CDKN2C 168aa linear cyclin-dependent kinase inhibitor 2C; cyclin-dependent kinase 6 inhibitor p18; cyclin-dependent kinase 4 inhibitor C; cyclin-dependent inhibitor; CDK6 inhibitor p18 [Homo sapiens].
 MAEPWGNELASAAARGDLEQLTSLLQNNNVNAQNGFGRNALQVMKLGPNPEIARRLLLRLG
 ANPDLKDRTGFAVIHDAARAGFLDTLQTLLEFQADVNIEDNEGNLPLHLAAKEGHLRVVE
 FLVKHTASNVGHRNKGDTACDLARLYGRNEVVSLMQANGAGGATNLQ

>gi|23510344|gb|NM_002037.3|FYN 2650bp mRNA Homo sapiens FYN oncogene related to SRC, FGR, YES (FYN), transcript variant 1, mRNA.

GCCGCGCTGGTGGCGGGCGCGTCGTTGCAGTTGCCATCTGTCAGGAGCGGAGCCGG

- 120 -

CGAGGAGGGGGCTGCCGGGGCGAGGAGGGAGGGCTGCCGCAGCCGAAGGCCTCGAGA
CCCGCCC GCCGCCGGCGCGAGAGTAGAGGCAGGTTGTGCGAGCGGCCGCGTCCTC
TCCC GCCCCGGCGCGCTTCTCCAGCGCACCGAGGACCGCCCGGGCGCACACAAA
GCCGCCGCCGCCGCCACCAGCCGGCGGCCGCCGCCGCCAGGGAGGGATT CGGCCG
CCGGGCCGGGACACCCGGCCGCCCTCGGTCTCGAAGGCCACCGCTCCC
GGGCCGCCGGGACCCCCCGAGCCGCTCGGCCGCCGGAGGAGGGGGAGAGGA
CCATGTGAGTGGGCTCCGGAGCCTCAGGCCGCGCAGTTTTGAAGAACAGGATGCT
GATCTAACGTGGAAAAAGACCAGTCCCTGCCTCTGTTGAGAACATGTGGTGTATATA
AAGTTTGATCGTTGGCGACATTGGAATTAGATAATGGGCTGTGCAATGTAAG
GATAAAGAACAAACTGACGGAGGAGAGGACGGCAGCCTGAACCAGAGCTCTGGG
TACCGCTATGGCACAGACCCCACCCCTCAGCACTACCCAGCCTCGGTGTGACCTCCATC
CCCAACTACAACAACCTCCACGCAGCCGGGGCAAGGACTCACCGTCTTGGAGGTGTG
AACTCTCGTCTCATCGGGGACCTCGTACAGAGAGGAGGAACAGGAGTGACACTCTT
GTGGCCCTTATGACTATGAAGCACGGACAGAACAGATGACCTGAGTTTCAAAGGAGAA
AAATTCAAATATTGAACAGCTCGGAAGGAGATTGGTGGAAAGCCCCTTGACAACT
GGAGAGACAGGTTACATTCCAGCAATTATGTGGCTCCAGTTGACTCTATCCAGGCAGAA
GAGTGGTACTTGGAAAATTGGCCAAAAGATGCTGAGCGACAGCTATTGTCCTTGGA
AACCCAAGAGGTACCTTCTTATCCCGAGAGTGAAACCACAAAGGTGCCTATTCACTT
TCTATCCGTGATTGGATGATATGAAAGGAGACCATGTCAAACATTATAAAATTGCAA
CTTGACAATGGTGGATACTACATTACCACCCGGCCAGTTGAAACACTTCAGCAGCTT
GTACAACATTACTCAGAGAGAGCTGCAGGTCTCTGCTGCCGCTAGTAGTTCCCTGTCAC
AAAGGGATGCCAAGGCTTACCGATCTGTCTGTCAAAACCAAGATGTCTGGAAATCCCT
CGAGAATCCCTGCAGTTGATCAAGAGACTGGGAAATGGCAGTTGGGAAGTATGGATG
GGTACCTGGAATGGAAACACAAAAGTAGCCATAAGACTCTTAAACCAAGGCACAATGTCC
CCCGAATCATTCTGAGGAAGCGCAGATCATGAAGAAGCTGAAGCAGCACAAGCTGGTC
CAGCTCTATGCAGTGGTGTCTGAGGAGCCCCTACATCGTCACCGAGTATATGAACAAA
GGAAGTTACTGGATTCTAAAAGATGGAGAAGGAAGAGCTCTGAAATTACCAAATCTT
GTGGACATGGCAGCACAGGTGGCTGCAGGAATGGCTTACATCGAGCGATGAATTATATC
CATAGAGATCTGCATCAGCAAACATTCTAGTGGGAATGGACTCATATGCAAGATTGCT
GACTTCGGATTGGCCCGATTGATAGAACATGAGTACACAGCAAGACAAGGTGCAAAG
TTCCCCATCAAGTGGACGGCCCCCGAGGCAGCCCTGTACGGGAGGTTACAATCAAGTCT
GACGTGTGGCTTTGGATCTTACTCACAGAGCTGGTCACCAAAGGAAGAGTGCCTAC
CCAGGCATGAACAACCGGGAGGTGCTGGAGCAGGTGGAGCGAGGCTACAGGATGCCCTGC
CCGCAGGACTGCCCATCTCTGCATGAGCTCATGATCCACTGCTGGAAAAAGGACCC
GAAGAACGCCCACTTTGAGTACTTGCAGAGCTCCTGGAAAGACTACTTACCGCGACA
GAGCCCCAGTACCAACCTGGTAAAACCTGTAAGGCCGGTCTGCCAGAGAGAGGCCCTG
TCCCAGAGGCTGCCCAACCCCTCCCCATTAGCTTCAATTCCGTAGCCAGCTGCTCCCCA
GCAGCGAACCGCCCAAGGATCAGATTGCATGTGACTCTGAAGCTGACGAACCTCCATGGC
CCTCATTAAATGACACTTGTCCCCAAATCCGAACCTCCTCTGTGAAGCATTGAGACAGAA
CCTTGTATTCTCAGACTTGGAAAATGCATTGTATCGATGTTATGTAAGGCAAC
CTCTGTTAGTGTAAATAGTTACTCCAGTGCCAACAACTCTAGTGTCTTCTTTTAA
AATGCAAATCCTATGTGATTAACTCTGTCTTCACCTGATTCAACTAAAAAAAG
TATTATTTCCAAAAGTGGCCTTTGTCTAAACAAATAAAATTTCATGTTAA
CAAAACCAA

>gi|4503823|gb|NP_002028.1|FYN 537aa linear protein-tyrosine kinase fyn isoform a; proto-oncogene tyrosine-protein kinase fyn; src/yes-related novel gene; src-like kinase; c-syn

protooncogene; tyrosine kinase p59fyn (T); OKT3-induced calcium influx regulator [Homo sapiens].

MGCVQCKDKEATKLTEERDGSLNQSSGYRYGTDPTPQHYPFGVTSIPNYNNFHAGGQGLTVFGGVNSSHTGTLRTRGGTGVTLFVALIDYEARTEDDLSFHKGKFQILNSSEGDWWEARSLTTGETGYIPS NYVAPVDSIQAEWYFGKLGRKDAERQLLSFGNPRGTFLIRESETTKGAYSLSI RDWDDMKGDHVKH YKIRKLDNGYYITTRAQFETLQQLVQHY SERAAGLCCR L VVPCHKGMPRLTLSVKT KDVWEIPRESLQLIKRLNGQFGEVWMGTWNGNTKVAIKT LKPGTMSPESFLEAQIMKKLHDKLVQLYAVVSEEP IYIVTEYMNKGSLDFLKDGEGRALKLPNLVDMAAQVAAGMAYIERMNYIHRDLRSANILVGNGLICKIADFGLARLIEDNEY TARQAKFPIKWTAPEAALYGRFTIKSDVWSFGILLTELVTKGRVPYPMNNREVLEQVERGYRMPCPQDCPISLHELMICHWKKDPEERPTFEYLQSFL EDYFTATEPQYQPGENL
>gi|15055546|gb|NM_000800.2|FGF1 2357bp mRNA Homo sapiens fibroblast growth factor 1 (acidic) (FGF1), transcript variant 1, mRNA.

GAGCCGGGCTACTCTGAGAAGAAGACACCAAGTGGATTCTGCTTCCCCTGGGACAGCACTGAGCGAGTGTGGAGAGAGGTACAGC CCTCGGCCTACAAGCTCTTAGTCTTGAAGGGAAATCACACCACCTCACAGC CCTGACC GAGAAGTTAAC TGCCTCCAGGGAAATTACAAGAACGCCAAACTCCTCTACTGTAGCAAC GGGGCCACTTCCTGAGGATCCTCCGGATGGCACAGTGGATGGACAAGGGACAGGAGC GACCAGCACATT CAGCTGCAGCTCAGTGC GGAAAGCGTGGGGAGGTGTATAAAAGAGT ACCGAGACTGGCCAGTACTTGGCCATGGACACCGACGGCTTTATACGGCTCACAGACA CCAAATGAGGAATGTTGTTCTGGAAAGGCTGGAGGAGAACCAATTACAACACCTATATA TCCAAGAACATGCAGAGAACATTGGTTGTTGGCCTCAAGAACAGTGGAGCTGAAA CGCGGTCCCTGGACTCACTATGCCAGAACAGCAATCTGTTCTCCCCCTGCCAGTCTCT TCTGATTAAAGAGATCTGTTCTGGGTGACC ACTCCAGAGAACAGTGGAGCTGAGGGTCCTC ACCTGGTTGACCCAAAATGTTCCCTGACCATTGGCTGCGCTAACCCCCAGCCCACAGA GCCTGAATTGTAAGCAACTGCTTCAAATGCCAGTTCACTTCTTGCA GAGCCTTT ACCCCTGCACAGTTAGAACAGAGGGACCAAATTGCTCTAGGAGTCAC TGGCTGGCCA GTCTGGGTCTGGTTGGATCTCCAATTGCCCTTGCAAGCTGAGTCCCTCATGCAAAA GTGGGCTAAATGAAGTGTGTTAAGGGTCGGCTAACGGACATTAGTAACTGCACACT ATTCCCTCACTGAGTAAACCTATCTGTGATTCCCCAACATCTGCCATGGCTCCCT TTTGTCCTTCTGTGCCCTGCAAATATTAGCAAAGAACGCTTCAAGAACAGAGGCATTAA AATGGAAAAGAGAGATTGGATTGGTGGTAACTTAGAAGGATGGCATCTCCATGTAGA ATAAATGAAGAACAGGGAGGCCAGCCGAGGAAGGCAGAACATAATCCTGGAGTCATTA CCACGCCTTGACCTCCCAAGGTTACTCAGCAGCAGAGAGCCCTGGGTGACTTCAGGTGG AGAGCACTAGAACGTGGTTCTGATAACAAGCAAGGATATCAGAGCTGGAAATTCACTGGT GGATCTGGGACTGAGTGTGGAGTGAGAGAACAGAACAGGAAACTGGCTGAGGGATAC CATAAAAAGAGGATGATTTCAGAAGGAGAACAGAACAGAACATGTAAATGCCACACATTGTGC TTGGCCCTGGTAAGCAGAGGCTTGGGTCTAGCCCAGTGCTTCTCCAACACTGAAGT GCTTGCA GATCATCTGGGACCTGGTTGAATGGAGATTCTGATTCACTGGGTTGGGGC AGAGTTTCTGCAGTTCCATCAGGTCCCCCCCAGGTGCAAGGTGCTGACAATACTGCTGCCT TACCCGCCATACATTAAGGAGCAGGGCCTGGTCTAAAGAGTATTCAAATGAAGGTGG TTCGACGCCCGAACCTCACCTGACCTCAACTAACCTTAAAATGCACACCTCATGAGT CTACCTGAGCATT CAGGCAGCACTGACAATAGTTATGCCTGTACTAAGGAGCATGATTT AAGAGGCTTGGCCAATGCCTATAAAATGCCATT CGAAGATATACAAAAACATACTTC AAAATGTTAAACCCCTAACCAACAGCTTTCCAGGAGACCATTGTATTACCAATT

- 122 -

GTATAAAATACACTCCTGCTTAAACTTGACCCAGGTGGCTAGCAAATTAGAAAACCATT
CATCTCTAACATATGATACTGATGCCATGTAAGGCCTTAATAAGTCATTGAAATTAC
TGTGAGACTGTATGTTAATTGCATTAAAAATATAGCTGAAAGCAGTAAACTGA
TTAGTATTCAAGGCACTGAGAATGATAGTAATAGGATAACAATGTATAAGCTACTCACTTAT
CTGATACTTATTTACCTATAAAATGAGATTTTGTGCTATTACAAATT
CTTTGAAAGTAGGAACCTTAAGCAATGGAATTGTGAATAAAATTGATGAGAGTGT
AAAAAAAAAAAAAA

>gi|4503697|gb|NP_000791.1|FGF1 155aa linear fibroblast growth factor 1 (acidic) isoform 1 precursor; heparin-binding growth factor 1 precursor; endothelial cell growth factor, alpha; endothelial cell growth factor, beta [Homo sapiens].

MAEGEITTFTALTEKFNLPPGNYKKPKLLYCSNGGHFLRILPDGTVDGRDRSDQHIQLQ
LSAESVGEVYIKSTETGQYLAMTDGLLYGSQTPNEECLFLERLEENHYNTYISKKHAEK
NWFVGLKKNGSCKRGPRTHYGQKAILFLPLPVSSD

>gi|27552761|gb|NM_002825.3|PTN 1029bp mRNA Homo sapiens pleiotrophin (heparin binding growth factor 8, neurite growth-promoting factor 1) (PTN), mRNA.

TCTGCTTTAATAAGCTCCAATCAGCTCTCGAGTGCAAAGCGCTCTCCCTCCCTCGCC
CAGCCTTCGTCCTCCTGGCCCGCTCTCATCCCTCCATTCTCCATTCCCTCCCGTT
CCCTCCCTGTCAGGGCGTAATTGAGTCAAAGGCAGGATCAGGTTCCCCGCTTCCAGTCC
AAAAATCCCGCCAAGAGAGCCCCAGAGCAGAGGAAATCCAAAGTGGAGAGAGGGGAAGA
AAGAGACCAGTGAGTCATCCGTCCAGAAGGGGGAGAGCAGCAGCGGCCAAGCAGGAG
CTGCAGCGAGCCGGGTACCTGGACTCAGCGGTAGCAACCTCGCCCCCTGCAACAAAGGCA
GACTGAGGCCAGAGAGGACGTTCAACTAAAAATGCAGGCTAACAGTACCAAGCAGC
AGCGTCGAAAATTGCACTGCCTTGGCATTCACTGGCAGCTGTGGATA
CTGCTGAAGCAGGGAAAGAAAGAGAAACCAGAAAAAAAGTGAAGAAGTCTGACTGTGGAG
AATGGCAGTGGAGTGTGTGCCCCACCAGTGGAGACTGTGGCTGGGACACGGGAGG
GCACTCGGACTGGAGCTGAGTGCAAGCAAACCATGAAGACCCAGAGATGTAAGATCCCCT
GCAACTGGAAGAAGCAATTGGCGGGAGTGCAAATACCAGTCCAGGCCTGGGAGAAT
GTGACCTGAACACAGCCCTGAAGACCAAGAGACTGGAAGTCTGAAGCGAGCCCTGCACAATG
CCGAATGCCAGAAGACTGTACCCTCCAAGCCCTGGCAAACACTGACCAAGCCCAAAC
CTCAAGCAGAATCTAAGAAGAAAAAGGAAGGCAAGAACAGGAGAAGATGCTGGATT
AAAAGATGTCACCTGTGGAACATAAAAGGACATCAGCAAACAGGATCAGTTAACTATTG
CATTATATGTACCGTAGGCTTGTATTCAAAAATTATCTATAGCTAAGTACACAATAAG
CAAAACAA

>gi|4506281|gb|NP_002816.1|PTN 168aa linear pleiotrophin (heparin binding growth factor 8, neurite growth-promoting factor 1); heparin affin regulatory protein; heparin-binding growth-associated molecule [Homo sapiens].

MQAQQYQQQRRKFAAAFLAFIFILAAVDTAEAGKKEKPEKKVKKSDCGEWQWSVCVPTSG
DCGLGTREGTRTGAECQTMKTQRCKIPCNWKKQFGAECKYQFQAWGECDLNLTALKTRTG
SLKRALHNAECQKTVTISKPCGKLTKPKPQAESKKKKKEGKKQEKMID

>gi|4504008|gb|NM_000169.1|GLA 1350bp mRNA Homo sapiens galactosidase, alpha (GLA), mRNA.

AGGTTAACCTTAAAGCCCAGGTTACCCGCGGAAATTATGCTGTCCGGTCACCGTGACA
ATGCAGCTGAGGAACCCAGAACTACATCTGGGCTGCGCGCTTGCCTGCTTCCGGCC
CTCGTTCTGGGACATCCCTGGGGCTAGAGCACTGGACAATGGATTGGCAAGGACGCC

ACCATGGGCTGGCTGCACTGGAGCGCTTCATGTCAACCTTGACTGCCAGGAAGAGCCA
 GATTCCCTGCATCAGTGAGAAGCTTCTCATGGAGATGGCAGAGCTCATGGTCTCAGAAGGC
 TGGAAAGGATGCAGGTTATGAGTACCTCTGCATTGATGACTGTTGGATGGCTCCCCAAAGA
 GATTCAAGAACGGCAGACTTCAGGCAGACCCTCAGCGCTTCATGGGATTGCCAGCTA
 GCTAATTATGTTCACAGCAAAGGACTGAAGCTAGGGATTATGCAGATGTTGGAAAATAA
 ACCTGCGCAGGCTCCCTGGAGTTGGATACTACGACATTGATGCCAGACCTTGCT
 GACTGGGGAGTAGATCTGCTAAAATTGATGGTTACTGTGACAGTTGGAAAATTG
 GCAGATGGTTATAAGCACATGTCCTGGCCCTGAATAGGACTGGCAGAACGATTGTGTAC
 TCCGTGAGTGGCCTCTTATATGTGGCCCTTCAAAAGCCAAATTATACAGAAATCCGA
 CAGTACTGCAATCACTGGCAGAAATTGCTGACATTGATGATTCTGGAAAAGTATAAAG
 AGTATCTGGACTGGACATCTTTAACAGGAGAGAATTGTTGATGTTGCTGGACCAGGG
 GTTGGAAATGACCCAGATATGTTAGTGGCAACCTTGGCCTCAGCTGGAAATCAGCAA
 GTAACACTCAGATGGCCCTCTGGCTATCATGGCTGCTCCTTATTGATGCTAAATGACCTC
 CGACACATCAGCCCTCAAGCCAAAGCTCTCCTCAGGATAAGGACGTAATTGCATCAAT
 CAGGACCCCTTGGCAAGCAAGGGTACCAAGCTTAGACAGGGAGACAACCTTGAAGTGTGG
 GAACGACCTCTCAGGCTTAGCCTGGCTGTAGCTATGATAAACCGGCAGGAGATTGGT
 GGACCTCGCTCTTACCATCGCAGTTGCTCCCTGGTAAAGGAGTGGCTGTAATCCT
 GCCTGCTTACACAGCTCCTCCCTGTAAAAGGAAGCTAGGGTTCTATGAATGGACT
 TCAAGGTTAAGAAGTCACATAAATCCCACAGGCACTGTTGCTTCAGCTAGAAAATACA
 ATGCAGATGTCATTAAGACTTACTTTAA

>gi|4504009|gb|NP_000160.1|GLA 429aa linear galactosidase,
 alpha [Homo sapiens].

MQLRNPELHLGCAALALRFLALVSDIPGARALDNGLARTPTMGWLHWERFMCNLDCQEEP
 DSCISEKLFMEMAELMVSEGWKDAGYEYLICIDDCWMAPORDSEGRLOADPORFPHGIRQL
 ANYVHSKGLKLGIVADVNKTCAAGFPGSFGYYDIDAQTFA DWGV DLLKFDG CYCDSLENL
 ADGYKHM S LALNRTGRSIVY SCEWPL YMWPFQKP NYTEIRQYCNHWRNFADIDDSWKS IK
 SILDWTSFNQERIVDVAGPGGWNDPDMLVIGNFGLSWNQQTQMALWAIMAAPLFMSNDL
 RHIS PQAK ALLQDKD VIAIN QDPLG KQGYQL RQGD NFEV WERPLS GLAWAVAM INRQEIG
 GPRS YTIAVASLGKGVACNPACFITQ LLPV KRKL GFYEW TSRL RSHIN PTGT VLLQ LENT
 MQMSLK DLL

>gi|18587778|gb|XM_091624.1|LOC162542 287bp mRNA Homo sapiens
 similar to ADP-ribosylation factor 1 (LOC162542), mRNA.

GTCTGATTTTATGGTTGACAGTAATGACAGAGAGCAGATTGATGAGGCCTGGGAAGTGC
 TAACTTACTTGT TAGAGGACGATGAGCTCAGAAATGCAGTTATTGGTATTGCCAATA
 AACAAAGATCTCCCTAATACTATGAACCGGGCAGAGATAACGGACAAGCTGGCCTCCATT
 CCCTCCGCTACAGAAACTGGCACATT CAGGCTACTTGTGCCACTACTGGACATGGCTTT
 ACGAAGGCCTGA ACTGGCTGCCAACCAAGTTCCAGAACCCAGAACACTGA

>gi|18587779|gb|XP_091624.1|LOC162542 91aa linear similar to
 ADP-ribosylation factor 1 [Homo sapiens].

MVDSNDREQIDEAEVLTYLLEDDELRNAVLLVFANKQDLPNTM NAAEITDKLGLHSLRY
 RNWHIQATCATTGHGLYEGLNWL ANQFQNQN

>gi|4557572|gb|NM_000401.1|EXT2 3781bp mRNA Homo sapiens
 exostoses (multiple) 2 (EXT2), mRNA.

CTGTCTGAGCATTCACTGCGGAGCCTGAGCGCGCTGCCTGGAAAACACTGCAGCGGT
 GCTCGGACTCCTCTGTCCAGCAGGAGGCGGGCCCGCAGCTCCCGCATGCGCAGTGC
 CTCGGTGT CAGACGGCCGGATCCCGGTTACCGGCCCCTCGCTCGCTGCCAGCCCA
 GACTCGGCCCTGGCAGTGGCGGCTGGCGATTGGACCGATCCGACCTGGCGGAGGTGGC

CCGCGCCCCGGCATGAGCCGGTACCAAGCTCGGGCCAGCGGGAGGCAGCCGTGGC
CGAGCCACAGGGATCTGATTCCCTCCAGGGGATGTCCTGCCTCAGGGTCCGGTGGTG
GCCTGCCATCCCTGCGGTGCCAGAAGCCGTGGACGAGTGTCTTAATGTTATAGAG
CTACTCAGAGTTGCTGTTCTCCTTGAGATGCTTTGGAGTGTGAGGAAGAGGCTGTCTG
TGTCAATTATGTGTGCGTCGGTCAAGTATAATATCCGGGTCTGCCTCATCCAAAGAAT
GAAGACCAAGCACCGAACATCTACTATATCACCCCTTCATTGCTCCTGGCCTCAT
TGCCACTGGCATGTTCAGTTGGCCCCATTCTATCGAGTCCTCAAATGACTGGAATGT
AGAGAAGCGCAGCATCCGTATGTGCCGGTTGTTAGGCTGCCAGCCGACAGTCCCATCCC
AGAGCGGGGGATCTCAGTTGCAGAATGCACACGTGTTTGATGTCATCGCTGTGGCTT
CAACCCAAAGAACAAAATCAAGGTGTATATCTATGCTCTGAAAAAGTACGTGGATGACTT
TGGCGTCTGTCAAGCAACACCCTCAGGGAGTATAATGAACTGCTCATGGCCATCTC
AGACAGTGACTACTACACTGATGACATCAACCGGCCTGCTGTTGTTCCCTCCATCGA
TGTGCTTAACCAGAACACACTGCGCATCAAGGAGACAGCACAAGCGATGGCCAGCCTC
TAGGTGGGATCGAGGTACGAATCACCTGTTCAACATGTTGCCTGGAGGTCCCCAGA
TTATAACACAGCCCTGGATGTCCTCAGAGACAGGGCCCTGTTGGCTGGCGGCTTT
TACGTGGACTTACCGGAAGGCTACGATGTCAGCATTCTGTCTATAGTCCACTGTCAGC
TGAGGTGGATCTTCCAGAGAAAGGACCAAGGTCACGGCAATACTTCCCTGTATCTCA
GGTGGGCTCCATCCTGAGTACAGAGAGGACCTAGAAGCCCTCCAGGTCAAACATGGAGA
GTCAGTGTAGTACTCGATAAAATGCACCAACCTCTCAGAGGTGTCCTTCTGTCCTGAA
GCGCTGCCACAAGCACCGAGTCTCGATTACCCACAGGTGCTACAGGAGGCTACTTCTG
TGTGGTTCTCGTGGAGCTCGGCTGGCCAGGCAGTATTGAGCGATGTTACAAGCTGG
CTGTGTCCCGGTTGTCATTGCACTCCTATATTGCTCTCTGAAGTTCTGACTG
GAAGAGAGCATCTGTGGTTGTAACAGAAGAAAAGATGTCAGATGTTACAGTATTTGCA
GAGCATTCCCCAAAGACAGATTGAAGAAATGCAAGAGACAGGCCGGTGGTCTGGGAAGC
GTACTCCAGTCATTAAAGCCATTGCCCTGGCCACCCCTGCAGATTATCAATGACCGGAT
CTATCCATATGCTGCCATCTCCTATGAAGAATGAAATGACCCCTGCTGTGAAGTGGGG
CAGCGTGAGCAATCCACTCTCCTCCGCTGATCCCACCAAGTCTCAAGGGTCAACCGC
CATAGTCCTCACCTACGACCGAGTAGAGAGGCCTTCCGGTCATCACTGAAGTGTCAA
GGTGGCCAGTCTATCAAACACTTGTGCTGGATAATCAGAATAAAACCTCCAGA
AGATTCTCTGGCCAAAATCCGGTTCCATTAAAAGTTGAGGACTGCTGAAAACAA
GTTAAGTAACCGTTCTCCCTTATGATGAAATCGAGACAGAAGCTGTTCTGGCATTGA
TGATGATATCATTATGTCACCTCTGACGAGCTGCAATTGGTTATGAGGTCTGGCGGG
ATTTCCTGACCGGTTGGTGGTTACCCGGGTCGTGTCATCTGGGACCATGAGATGAA
TAAGTGGAAAGTATGAGTCTGAGTGGACGAATGAAAGTGTCCATTGGCTCACTGGGAGC
TTTTTATCACAAGTATTTAATTACCTGTATACCTACAAAATGCCTGGGATATCAAGAA
CTGGGTAGATGCTCATATGAACACTGTGAAGATATTGCCATGAACCTCCTGGTGGCAACGT
CACGGGAAAAGCAGTTATCAAGGTAACCCACGAAAGAAATTCAAGTGTCTGAGTGCAC
AGCCATAGATGGGCTTCACTAGACCAAACACACATGGTGGAGAGGTCAAGTGCATCAA
CAAGTTGCTTCAGTCTCGGACCATGCCTCTCAAGGTGGTGGAACACCCAGCTGACCC
TGTCCCTGTACAAAGATGACTTCCCTGAGAAGCTGAAGAGCTTCCCAACATTGGCAGCTT
ATGAAACGTGTCATTGGTGGAGGTCTGAATGTGAGGCTGGACAGAGGGAGAGAACAGG
CCTCCCAAGCACTCTGATGTCAGAGTAGTAGGTTAAGGGTGGAAAGGTTGACCTACTTGGAT
CTTGGCATGCACCCACCTAACCCACTTCTCAAGAACAAAGAACCTAGAATGAATATCCA
GCAACCTCGAGCTATGCAACCTCTGTTCTGTATTCTTATGATCTGATGGGTCTTCT
CGAAAATGCCAAGTGGAAAGACTTGTGGCATGCTCCAGATTAAATCCAGCTGAGGCTCC
CTTGTGTTCAAGTCCATGTAACAATCTGGAAGGAAACTCACGGACAGGAAGACTGCTG
GAGAAGAGAAGCGTGTAGCCCATTGAGGTCTGGGAATCATGTAAGGGTACCCAGAC

CTCACTTTAGTTATTCATCAATGAGTTCTTCAGGGAAACCAACCCAGAATTGGTG
 CAAAAGCCAAACATCTGGTGGATTGATAAATGCCTGGACCTGGAGTGCTGGCTT
 GTGCACAGGAAGAGCACCAGCGCTGAGTCAGGATCCTGTAGTCCATGAGCTATTCC
 CTTGGTTGGCTTTGATATGATTAACATTATTTTATTCCCTTTCTACTGTGTCT
 TAAACACCAATTCTGTAGTCCAAGGAACCAACCTTCTCCCTGATATATTAACTCC
 TCTTGCCCTGACAACAGTCTCTGCCATGTCTGGAACACAGCCAGGAGGAATGTCT
 GATACCCCTCTGCATCAAGCGTAAGAAGGTCCAAATCATAACCATTAAAGAACAGATGA
 CTCAGAAACCTCCAGAGGAATCTGTTGCTCTGATTAGATCCAGTCAATGTTAAAG
 GTATTGTAGAGAAAAACAGAGGGTCTGTACTAGCCATGCAAGGAGTCGCTCTAGCTGGT
 ACCCGTAAAGTTGGATTGTGACCCCCCATCCAAAGGGATGCCAAATTCTCTCA
 TTCTTTGGTATAAACTAACATTAGCCAGGGAGGTTCTGGCTAACGTTAAATGCTGCTA
 TACAACGTCTTGCAACAGTTGCTGGTATATTAAATCATTAAATTTCAGCATTACTAA
 T

>gi|4557573|gb|NP_000392.1|EXT2 718aa linear exostoses
 (multiple) 2 [Homo sapiens].

MCASVKYNIRGPALIPRMKTKRIYYITLFSIVLLGLIATGMFQFWPHSIESNDWNVEK
 RSIRDVPVVRLPADSPIPERGDLSCRMHCFDVYRCGFNPKNKIKVYIYALKKYVDDFGV
 SVSNTISREYNELLMAISDSDYTDINRACLFPVIDVLNQNTLRIKETAQAMAQLSRW
 DRGTONHLLFNMLPGGPPDYNTALDVRDRALLAGGGFSTWTYRQGYDVSIPVYSPLSAEV
 DLPEKGPGPRQYFLSSQVGLHPEYREDLEALQVKGESVLVLDKTNLSEGVLTSRKRC
 HKHQVFDYPQVLQEATFCVVLRGARLGQAVLSVLQAGCVPVIADSYILPFSEVLDWKR
 ASVVVPEEKMSDVSIQSIPOQRQIEEMQRQARWFWEAYFQSIIKAIALATLQIINDRIYP
 YAAISYEEWNDPPAVKWGSVSNPLFLPLIPQSQGFTAIVLTYDRVESLFRVITEVKVP
 SLSKLLVVWNQNPKPEDSLWPKIRVPLKVVRTAENKLSNRFFPYDEIETEAVLAIDDD
 IIMLTSDELQFGYEVWREFPDRLVGYPGRHLWDHEMNWKYESEWTNEVSMVLTGAAFY
 HKYFNYLYTYKMPGDIKNWVDAHMNCEDIAMNFLVANVTGKAVIKVTPRKKFKCPECTAI
 DGLSLDQTHMVERSECINKFASVFGTPLKVVEHRADPVLYKDDFPEKLKSFPNIGSL

>gi|27597083|gb|NM_006838.2|METAP2 1908bp mRNA Homo sapiens
 methionyl aminopeptidase 2 (METAP2), mRNA.

CTCTGTCTCATTCCCTCGCGCTCTCGGGCAACATGGCGGGTGTGGAGGGAGGTAGCGGC
 CTCCGGGAGCCACCTGAATGGCGACCTGGATCCAGACAGGAAAGAAGGAGCTGCCTC
 TACGGCTGAGGAAGCAGCCAAGAAAAAGACGAAAGAAGAAGAGCAAAGGGCCTTC
 TGCAGCAGGGAACAGGAACCTGATAAAGAACATCAGGAGCCTCAGTGGATGAAGTAGCAAG
 ACAGTTGGAAAGATCAGCATGGAAAGATAAAGAAAGAGATGAAGATGATGAAGATGGAGA
 TGGCGATGGAGATGGAGCAACTGGAAAGAAGAAGAAAAGAAGAAGAAGAGAGAGGACC
 AAAAGTTCAAACAGACCCCTCCCTCAGTTCAATATGTGACCTGTATCCTAATGGGTATT
 TCCCAAAGGACAAGAACATGCGAATACCCACCCACACAAGATGGCGAACAGCTGCTTGGAG
 AACTACAAGTGAAGAAAAGAACATTAGATCAGGCAAGTGAAGAGATTGGAAATGATT
 TCGAGAACGCTGCAGAACATCGACAAGTTAGAAAATACGTAATGAGCTGGATCAAGCC
 TGGGATGACAATGATAGAAATCTGTGAAAAGTTGGAAAGACTGTTCACGCAAGTTAA
 AGAGAACATGGATTAAATGCAGGCCTGGCATTCTACTGGATGTTCTCTCAATAATTGTGC
 TGCCCATTATACTCCCAATGCCGGTGACACAAACAGTATTACAGTATGATGACATCTGTAA
 AATAGACTTTGGAACACATATAAGTGGTAGGATTATTGACTGTGCTTTACTGTCAC
 TAATCCCAATATGATACGTTATTAAGCTGAAAAGATGCTACTAACACTGGAATA
 GTGTGCTGGAAATTGATGTTCGTCTGTGATGTTGGTGGCCATCCAAGAAGTTATGGA
 GTCCTATGAAGTTGAAATAGATGGGAAGACATATCAAGTGAACCAATCCGTAATCTAA
 TGGACATTCAATTGGCAATATAGAACATGCTGGAAAAACAGTGCCGATTGTGAAAGG

AGGGGAGGCAACAAGAATGGAGGAAGGAGAAGTATATGCAATTGAAACCTTGGTAGTAC
AGGAAAAGGTGTTCATGATGATATGGAATGTCACATTACATGAAAAATTGATGT
TGGACATGTGCCAATAAGGCTCCAAGAACAAAACACTTGTAAATGTCATCAATGAAA
CTTGGAACCCCTGCCTCTGCCAGATGGCTGGATCGCTGGAGAAAGTAAATACCT
GATGGCTCTGAAGAATCTGCTGACTTGGCATTGTAGATCCATATCCACCATTATGTGA
CATTAAGGATCATATACAGCGCAATTGAACATACCATCCTGCGTCCAACATGTAA
AGAAGTTGTCAGCAGAGGAGATGACTATTAAACTTAGTCAAAGCCACCTCAACACCTT
ATTTCTGAGCTTGAAACATGATACCAGAATTAAATTGCCACATGTTGCTGTT
TTAACAGTGGACCCATGTAATACTTTATCCATGTTAAAAAGAAGGAATTGGACAAAG
GCAAACCGTCTAATGTAATTAAACCAACGAAAAGCTTCCGGACTTTAAATGCTAACTG
TTTTCCCCCTCCTGCTAGGAAAATGCTATAAGCTCAAATTAGTTAGGAATGACTTAT
ACGTTTGTGTTGAATACCTAAGAGATACTTTGGATATTATATTGCCATATTCTTAC
TTGAATGCTTGAATGACTACATCCAGTCTGCACCTATACCCCTGGTGTGCTTTA
ACCTCCTGGAATCCATTCTAAAAATAAGACATTTCAGATCTGA

>gi|5803092|gb|NP_006829.1|METAP2 478aa linear methionyl
aminopeptidase 2; methionine aminopeptidase; eIF-2-associated
p67 [Homo sapiens].

MAGVEEVASGSHLNGDLDPPDREEGAASTEEAKKRRKKKSKGPSAAGEQEPEPKES
GASVDEVARQLERSALEDKERDEDDEDGDGDGDGATGKKKKKKKKRGPKVQTDPPSVPI
CDLYPNGVFPKGQECEYPPTQDGRTAAWRRTSEEKKALDQASEEIWDFREAAEAHRQVR
KYVMSWIKGPMTMIEICEKLEDCSRKLICKENGLNAGLAFPTGCSLNNAHYTPNAGDTT
VLQYDDICKIDFGTHISGRIIDCAFTVTFNPKYDTLLKAVKDANTGIKCAGIDVRLCDV
GEAIQEVMESYEVEIDGKTYQVKPIRNLNHSIGQYRIHAGKTVPIVKGEATRMEEGEV
YAIETFGSTGKGVVHDDMECSHYMKNFDVGHVPIRLPRTKHLLNVINENFGTLAFCRRWL
DRLGESKYLMALKNLCDLGIVDPYPLCDIKGSYTAQFEHTILLRPTCKEVVSRGDDY

>gi|10864040|gb|NM_021230.1|MLL3 12689bp mRNA Homo sapiens
myeloid/lymphoid or mixed-lineage leukemia3 (MLL3), mRNA.

AAAATTCCCTAGTTGCTGGCTTGACCTTTATGTTGCTGAGTTTACACATCTATTC
TCAACTGCCATATCCTAGGGGGCTTGGAGTACCCATAATACAGTGAGCCCACCTCCTGG
TCCCCAGACATTCAAGAGTCGGAAATTTAAACCCAGGCAGCTCCTGGCAGTGCC
ATTGGAGCATCAAAGTGGCCGTGGCTGGATTCCAGGAAGCGGAGACCTCGAGGT
GCAGGACTGCGGGCGAGGTGGCCGAGGCAGGTCAAAGCTGAAAAGTGAATCGGAGCT
GTTGATTACCTGGGTGTCTACTGCAGATATTCAAAATAAGGATGATGAAGAAAAC
TCTATGCACAATACAGTTGTTCTAGCAGTACAAGTCACTTGAATCAGGAT
ATGTTGAGTGGAGGTGTCTGAGTGCAGTGTGTGAGGCCTGTGGGAAGGCAACTGAC
CCAGGAAGACTCCTGCTGTGATGACTGTGACATAAGTTATCACACCTACTGCCCTAGAC
CCTCCATTGCGAGACAGTCCAAAGGAGGCTGGAAGTGCACATGGTGTGTTGGTGCAGA
CACTGTGGAGCAACATCTGCAGGTCTAACAGATGTGAATGGCAGAACAAATTACACACAGTGC
GCTCCTTGTGCAAGCTTATCTCCTGTCAGTCTGCTATCGAAACTATAGAGAAGAAGAT
CTTATTCTGCAATGTAGACAAATGTGATAGATGGATGCATGCAGTTGTGAGAACCTAAAT
ACTGAGGAAGAAGTGGAAAATGTAGCAGACATTGGTTTGATTGTAGCATGTGCAGACCC
TATATGCCCTGCGTCTAATGTGCCCTCCTCAGACTGCTGTGAATCTTCACTTGTAGCACA
ATTGTCACAAAAGTAAAGAGCTAGACCCACCCAAAGACTTACACCCAGGATGGTGTGTT
TTGACTGAATCAGGGATGACTCAGTTACAGAGCCTCACAGTTACAGTTCCAAGAAGAAAA
CGGTAAAACCAAAATTGAAATTGAAGATTATAATCAGAATAGCGTGGCCGTCTTCAG

ACCCCTCCAGACATCCAATCAGAGCATTCAAGGGATGGTGAAATGGATGATAGTCGAGAA
GGAGAACTTATGGATTGTGATGGAAAATCAGAATCTAGTCCTGAGCGGGAGCTGTGGAT
GATGAAACTAAGGGAGTGGAAGGAACAGATGGTGTAAAAAGAGAAAAAGGAAACCATA
AGACCAGGTATTGGTGGATTATGGTGGCAAGAAGTCGAACCTGGCAAGGGAAAACC
AAAAGATCTGTGATCAGAAAAGATTCCCTCAGGCTCTATTCCGAGCAGTTACCTTGAGA
GATGATGGCTGGAGTGAGCAGTTACCAAGATACTTAGTTGATGAATCTGTTCTGTTACT
GAAAGCACTGAAAAAATAAAGAAGAGATACCGAAAAAGGAAAATAAGCTGAAGAAA
TTCCCTGCCTATTACAAGAACGCTTCTGGAAAAGATCTTAGATAACAAGTAGACAA
AGCAAGATAAGTTAGATAATCTGTCAGAACAGATGGAGCTCAGCTTTATATAAAACAA
ATGAACACAGGTTCTGGATCCTCCTTAGATCCACTACTTAGTTCATCCTCGGCTCCA
ACAAAATCTGGAACTCACGGTCTGCTGATGACCCATTAGCTGATATTCTGAAGTTTA
AACACAGATGATGACATTCTGGAATAATTTCAGATGATCTAGCAAATCAGTTGATCAT
TCAGATATTGGCTCTGCACTGATGATCCTCCTTTGCCCTCAGCCAAATGTCAATCAG
AGTCACGACCATTAAAGTGAAGAACAGCTAGATGGGATCCTCAGTCCTGAACTAGACAA
ATGGTCACAGATGGAGCAATTCTGGAAAATTATATAAAATTCCAGAGCTTGGCGGAAA
GATGTTGAAGACTTATTACAGCTGACTTAGCCTGCGAACACTCAGCCAACCTCCATTG
CCACAGCCTCCCCACCAACACAGCTGTTGCCAATACACAATCAGGATGTTTCACGG
ATGCCTCTCATGAATGGCCTATTGGATCCAGTCCTCATCTCCCACATAATTCTTGCCA
CCTGGAAGCGGACTGGGAACCTTCCTGCAATTGCAACATCCTTTATCCTGATGCCAGG
GATAAAAATTAGCCTTTAATCCAATGGCAAGTGAATCCTAACACTTTGGACATCATCA
GCTCCCACTGTGGAGGGAGAAAATGACACAATGTCGAATGCCAGAGAACGACGCTTAAG
TGGGAGAAAGAGGAGGCTCTGGGTGAAATGGCAACTGTTGCCAGTTCTACACCAAT
ATTAATTCCCCAACTTAAAGGAAGAATTCCCTGATTGGACTACTAGAGTGAAGCAAATT
GCCAAATTGTGGAGAAAAGCAAGCTCACAGAAAGAGCACCATAATGCAAAAAGCCAGA
GATAACAGAGCTGCTTACGCATTAATAAGTACAGATGTCAAATGATTCCATGAAAAGG
CAGCAACAGCAAGATAGCATTGATCCCAGCTCTCGTATTGATTGGAGCTTTAAAGAT
CCTTAAAGCAAAGAGAATCAGAACATGAAACAGGAATGGAAATTAGACAGCAAATGCGT
CAGAAAAGTAAGCAGCAAGCTAAAATTGAAGCCACACAGAAACTGAAACAGGTAAAAAT
GAGCAGCAGCAGCAGCAACACAGCAATTGGTTCTCAGCATCTCTGGTCAGTCTGGT
TCAGATACACCAAGTAGTGGGATACAGAGTCCCTGACACCTCAGCCTGGCAATGGAAAT
ATGTCTCTGCACAGTCATTCCATAAAGAACTGTTACAAAACAGCCACCCAGTACCCCT
ACGTCTACATCTTCAGATGATGTTGAAAGCCACAAGCTCCACCTCCTCCAGGCC
CCATCCCGGATTCCATCCAGGATAGTCTTCTCAGGCTCAGACTCTCAGCCACCCCTCA
CCGCAAGTGTTCACCTGGGTCTTAACTCAGACCCATCTCAAATGGATCCATAT
GCAAAATGGTGGTACCCCTCGACCACCTCTGGGCCATAGTTTCCAGAAGAAAT
TCTGCTGCACCAGTGGAAAATGTACACCTTATCATCGGTATCTAGGCCCTTCAAATG
AATGAGACAACAGCAAATAGGCCATCCCTGTCAGAGATTATGTTCTTCCACGACA
AATAATGACCCCTATGCAAAACCTCCAGACACACCTAGGCCTGTGATGACAGATCAATT
CCCAAATCCTGGGCTATCCGGCTCCTGATGTTGAGAACAAACTGCAAAAGGCCCT
ATAGCAGCTGGAACCAAGTGAATCACTTACTAAACCATCTCTAGGGCAGATGTGTTCAA
AGACAAAGGATACCTGACTCATATGCACGACCCCTGTTGACACCTGCACCTCTGATAGT
GGTCTGGACCTTTAAGACTCCAATGCAACCTCCTCCATCCTCTCAGGATCCTTATGG
TCAGTGTCAAGGCATCAAGGCGATTGTCTGTTGACCCCTATGAAAGGCTGCTTGA
CCAAGACCTATAGATAATTCTCATAATCAGTCAAATGATCCATATACTCAGCCTCCC
CTTACCCACATCCAGCAGTGAATGAAATCTTGCCTCAGGACCCATACTCCCAACCCCC
CCTGGAACCATATCAAGGCCAACATCTCAGGACCCATACTCCCAACCCCCAGGAAC
CGACCTGTTGAGATTCTTATTCCAATCTCAGGAACAGCTAGGTCCAATACAGACCC

TACTCTAACCTCCTGGAACCTCCCCGGCCTACTACTGTTGACCCATATAAGTCAGCAGGCC
CAAACCCCAGACCATTACACAAACTGACTTGTACACCTGTAACAAATCAGAGG
CATTCTGATCCATATGCTCATCCTCTGGAACACCAAGACACTGGAATTCTGTCCCTTAC
TCTCAGCCACCAGCAACACCAAGGCCAAGGATTTCTAGAGGGTTTACTAGGTCCCTCAATG
ACAAGACCAGTCCTCATGCCAATCAGGATCCTTCTGCAAGCAGCACAAAACCGAGGA
CCAGCTTACCTGGCCCGTTGTAAGGCCACCTGATAACATGTTCCCAGACACCTAGGCC
CCTGGACCTGGTCTTCAGACACATTAGCCGTGTTCCCCATCTGCTGCCGTGATCCC
TATGATCAGTCTCCAATGACTCCAAGATCTCAGTCTGACTCTTTGGAACAAGTCAAAC
GCCCATGATGTTGCTGATGCCAAGGCCTGGATCAGAGGGGAGCTCTGTGCATCTTCA
AACTCTCCAATGCACCTCCAAGGCCAGCAGTTCTCTGGTGTCTCCAACCTCCTGGACCT
GTGCCAACTCAGGAGTAACGTACACAGAAACTGTAAATATGGCCCAAGCAGATA
GAGAAATTGAGACAGCGGCAGAAGTTACGTGAAATCATTCTCCAGCAGCAACAGCAGAAG
AAGATTGCAGGTCGACAGGAGAAGGGTCACAGGACTCACCCGCAGTGCCTCATCCAGGG
CCTCTTCAACACTGGCAACCAGAGAATGTTAACCAAGGCTTACCCAGACCCCCACCTCCC
TATCCTGGGAACATTAGGTCTCCTGTTGCCCTCCTTAGGACCTAGATATGCTGTTTC
CCAAAAGATCAGCGTGGACCTATCCTCTGATGTTGCTAGTATGGGATGAGACCTCAT
GGATTTAGATTGGATTCCAGGAGGTAGTCATGGTACCATGCCAGTCAAGAGCGCTTC
CTTGTGCCCTCCTCAGCAAATACAGGGATCTGGAGTTCTCCACAGCTAAGAAGATCAGTA
TCTGTAGATATGCCTAGGCCTTAAATAACTCACAAATGAATAATCCAGTTGGACTTCCT
CAGCATTTCACACAGAGCTTGCCAGTTCAGCAGCACAAACATACTGGCCAAGCATA
ATTGAACGTGAGACATAGGGCTCCTGACCGAACGGCTGCCCTTCACTGCTCCACCT
GGCAGCGTTGTAGAGGCATCTCTAAATCTGAGACATGAAACTTCATTCCCCGGCCAGAC
TTTCCGGGCCCTAGACACACAGACCCATGCGACGACCTCCCCAGGGTCTACCTAATCAG
CTACCTGTGCACCCAGATTGGAACAAGTGCACCATGTCACAAAGAGCAAGGTCAATTCT
GTCCATTCATCTTCTATGGTCACTGAGGACTCTGAACCATCCACTAGGTGGTGAATTTC
GAAGCTCCTTGTCAACATCTGTACCGTCTGAAACACGTCTGATAATTACAGATAACC
ACCCAGCCTCTGATGGTCTAGAGGAAAAACTTGATTCTGATGACCCCTCTGTGAAGGAA
CTGGATGTTAAAGACCTTGAGGGGTTGAAGTCAAAGACTTAGATGATGAAGATCTGAA
AACTAAATTAGATACAGAGGATGGCAAGGTAGTTGAATTGGATACTTAGATAATTG
GAAACTAATGATCCCAACCTGGATGACCTCTTAAGGTCAAGGAGAGTTGATATCATTGCA
TATACAGATCCAGAACCTGACATGGAGATAAGAAAAGCATGTTAATGAGGAACAGAC
CTTCCAATTGATGATAAGTTAGATAATCAGTGTATCTGTTGAACCAAAAAAAAGGAA
CAAGAAAACAAACTCTGGTCTCTGATAAACATTACCCACAGAAAAAAACTCCACTGTT
ACCAATGAGGTAAAAACGGAAGTACTGTCTCCAAATTCTAAGGTGGAAATCCAAATGTGAA
ACTGAAAAAAATGATGAGAATAAGATAATGTTGACACTCCTGCTCACAGGCTCTGCT
CACTCAGACCTAAATGATGGAGAAAAGACTTCTTGCATCCTGTGATCCAGATCTATT
GAGAAAAGAACCAATCGAGAAACTGCTGGCCCCAGTGCAAAATGTCATTAGGCATCCACT
CAACTACCTGCTCAAGATGTAATAACTCTGTGGCATAACTGGATCAACTCCAGTTCTC
TCAAGTTACTTGCTAATGAGAAATCTGATAATTCAAGACATTAGGCCATGGGTCTCCA
CCACCAACACTCTGCCGCTCCCCATCCAATCATGTGTCAGTTGCCCTTCTCATA
GCACCGCCTGGCCGTGTTGGATAATGCCATGAATTCTAATGTGACAGTAGTCTCTAGG
GTAAACCATGTTCTCAGGGTGTGCAGGTAAACCCAGGGCTCATTCCAGGTCAATCA
ACAGTTAACACAGTCTGGGGACAGGAAAACCTGCAACTCAAACACTGGGCTCAAACAAAGT
CAGTCTGGTACCACTGAGCATGTCTGGACCCCAACAGCTAATGATTCTCAAACATTAGCA
CAGCAGAATAGAGAGAGGCCCTCTAGAAGAACAGCAGCAGCAAAGACAGATGCAAGCC
TTGGATCAAGAAAGGCAAGAACAGCAGCAGCAAAGACAGATGCAAGCCATGATTGTCAG
CGATCAGAACCGTTCTCCCTAATATTGATTGATGCAATTACAGATCCTATAATGAAA

GCCAAAATGGTGGCCCTTAAAGGTATAAATAAAGTGTGGCACAAAAAATCTGGGCATG
CCACCAATGGTGATGAGCAGGTTCCCTTTATGGGCCAGGTGGTAACGTGAACACAGAAC
AGTGAAGGACAGAACCTGGACCACAGGCCATTCTCAGGATGGCAGTATAACACATCAG
ATTTCTAGGCCTAATCCTCAAATTTGGTCCAGGCCTTGTCAATGATTACAGCGTAAG
CACTATGAAGAGTGGCTCCAGGAGACCCAAACAGCTGCTCAAATGCAGCAGAAGTATCTT
GAAGAACAAATTGGTGCTCACAGAAAATCTAAGAAGGCCCTTCAGCTAAACAACGTACT
GCCAAGAAAGCTGGCGTGAATTCCAGAGGAAGATGCAGAACAACTCAAGCATGTTACT
GAACAGCAAAGCATGGTCAGAAACAGCTAGAACAGATTGTAAACAAACAGAAAGAACAT
GCTGAATTGATTGAAGATTATCGGATCAAACAGCAGCAGCAATGTGCAATGGCCCCACCT
ACCATGATGCCAGTGTCCAGCCCCAGCCACCCCTAATTCCAGGTGCCACTCCACCCACC
ATGAGCCAACCCACCTTCCATGGTGCCACAGCAGCTTCAGCACCAGCAGCACACAACA
GTTATTCTGGCCATACTAGCCCTGTTAGAATGCCAGTTACCTGGATGGCAACCCAAAC
AGTGCTCTGCCACCTGCCCTCAATCCTCTAGAATTCAAGCCCCAATTGCCAGTTA
CCAATAAAAACCTGTACACCAGCCCCAGGGACAGTCTCAAATGCAAATCCACAGAGTGG
CCACCACCTCGGGTAGAATTGATGACAACAATCCCTTAGTGAAGAGTTCAAGAACGG
GAACGTAAGGAACGTTACAGAGAACAGCAAGAGAGACAACGGATCCAACATGCAGGAG
GTAGATAGACAAAGAGCTTGCAGCAGAGGATGGAATGGAGCAGCATGGTATGGTGGC
TCTGAGATAAGTAGTAGTAGGACATCTGTGTCAGATTCCCTCTACAGTTCCGACTTA
CCTTGTGATTTATGCAACCTCTAGGACCCCTCAGCAGTCTCCACAACACCAACAGCAA
ATGGGGCAGGTTTACAGCAGCAGAATATAACAACAGGATCAATTACCTACCCCTCCACC
CAAACCTTCATGCAGACTAATGAGCGAAGGCAGGTAGGCCCTCATTGTTCTGAT
TCACCATCAATCCCTGTTGGAAGCCAAATTTCCTCTGTGAAGCAGGGACATGGAAAT
CTTCTGGGACCAGCTCCAGCAGTCCCCAGTGAGGCCCTTTACACCTGCTTACCA
GCAGCACCTCCAGTAGCTAATAGCAGTCTCCATGTGGCCAAGATTCTACTATAACCCAT
GGACACAGTTATCCGGGATCAACCCAAATCGCTCATTAGTGTATTCTGATATAATCCCA
GAGGAAAAGGGAAAAAGAAAAGAACAAAGAAAGAAAAGAGATGATGAGCAGAACATCC
ACCAAGGCTCCATCAACTCCCCATTCAAGATATAACTGCCAACCGACTCCAGGCATCTCA
GAAACTACCTCTACTCCTGCAGTGAGCACACCCAGTGAGCTCCTCAACAAGCCGACCAA
GAGTCGGTGGAACCAAGCTGGCCATCCACTCCAAATATGGCAGCAGGCCAGCTATGTACA
GAATTAGAGAACAAACTGCCAATAGTGTATTCTCACAAGCAACTCCAAATCAACAGACG
TATGCAAATTCAAGAGTAGACAAGCTCTCATGGAAACCCCTGCCAAAACAGAACAGATA
AAACTGGAAAAGGCTGAGACAGAGTCCTGCCAGGCCAGGCAAGAGGGAGCCTAAATTGGAGGAA
CAGAATGGTAGTAAGGTAGAAGGAAACGCTGTAGCCTGCTCTCCTCAGCACAGAGT
CCTCCCCATTCTGCTGGGGCCCTGCTGCCAAAGGAGACTCAGGGAAATGAACITCTGAAA
CACTTGTGAAAATAAAAGTCATCTCTCTTTGAATCAAAACCTGAGGGCAGTATT
TGTTCAGAAGATGACTGTACAAGGATAATAAAACTAGTTGAGAAGCAGAACCCAGCTGAA
GGACTGCAAACCTGGGGCTCAAATGCAAGGTGGTTGGATGTGCCAACCAAGTTGCCA
AAAACAGATGGAGGAAGTGAACCAAGAACAGCGAACAGGACTCAGAGGACGGGT
GAGAAAGCAGCACCTCGCTCAAAGAAAAGGAAAAGGACGAAGAGGAGAAACAAGCTATG
TACTCTAGCACTGACACGTTACCCACTTGAAACAGGTGAGGCCAGCTCTGCTCCCT
CTAATGGAACCAATCATTGGAGTGAACCTTGCACCTTCTCCTTATGGCAGTGGCCAA
TTAATAGTGGGAATCGACTTCTAGGAACCTTGGCAGTGCTACCCCTGGAAAGGGTTCG
GACTACTATTCTCAGTTGATCTACAAGCAGAATAATTAGTAATCCTCCAACACCCCT
GCCTCTCTCCTACACCACTCCTATGGCTGTCAAGAGATGGCCAATGGTTTGCA
ACAACGTGAAGAACCTTGCTGGAAAAGCCGGAGTGTAGTGAGCCATGAAGTTACAAA
CTAGGACCTAAACCATTCAAGCTGCCCTCAGACCCCCAGGACGACTTGTGGCCCGAGCT
CTGCTCAGGGCCCCAAGACAGTTGATGTGCCAGCCTCCCTCCAAACACCACCTCATAAC

AATCAGGAAGAATTAAAGGATACAGGATCACTGTGGTGTGAGATACTCCTGACAGTTT
GTTCCCTCATCCTCTCCTGAGAGTGTGGTGGGGTAGAAGTGAGCAGGTATCCAGATCTG
TCATTGGTCAAGGAGGAGCCTCCAGAACCGGTGCCGTCCCCCATTCATTCCAATTCTCCT
AGCACTGCTGGGAAAAGTTAGAATCAAGAAGGAATGACATCAAAACTGAGCCAGGCCT
TTATATTTGCGTCACCTTGGTCCTTCCCCAAATGGTCCCAGATCAGGTCTTATATCT
GTAGCAATTACTCTGCATCCTACAGCTGCTGAGAACATTAGCAGTGTGGCTGCATT
TCCGACCTCTTCACGTCCGAATCCTAACAGCTATGAGGTTAGCAGTGCTCCAGATGTC
CCATCCATGGTTGGTCAGTAGCCACAGAACATCAACCCGGTTGGAGTATCGACAGCCT
TTACTTCTCCGTGGCCTCCGCCAGGATCTGCAAACCCCTCCAGATTAGTGAGCTCTTAC
CGGCTGAAGCAGCCTAATGTACCATTCCTCCAACAAGCAATGGTCTTCTGGATATAAG
GATTCTAGTCATGGTATTGCAGAAAGCGCAGCACTCAGACCACAGTGGTGTGATTG
AAAGTGGTATTCTTGGAAAGTGGTGTGCGGAATCTTCAAAGATCTGACCCTTTGAAC
AAGGATTCCCAGAGAAAGCACCAAGAGGGTAGAGAACAGGACATTGTTCTGTAGTAATAAC
TGCTTATTCTTATTCAACTGCACAAGCAGAAAAACTCAGAAAACAAGGAATCCATT
CCTTCATTGCCACAATCACCTATGAGAGAAACGCCTTCCAAAGCATTTCATCAGTACAGC
AACAAACATCTCCACTTGGATGTGCACTGTCTCCCCAGCTCCAGAGAAAGCTTCTCCC
CCTGCCTCACCAACCATGCCTTCCCTCCTGCTTTGAAGCAGGCCAAGTCGAGGCCAAG
CCAGATGAGCTGAAGGTGACAGTCAAGCTGAAGCCTCGGCTAAGAGCTGTCCATGGTGGG
TTTGAAGATTGCAGGCCGCTCAATAAAAATGGAGAGGAATGAAATGAAAGAAGTGGAGC
ATTCAATTGTAATCCCTAACGGGACATTAAACCACCTGTGAGGATGAAATAGATGAA
TTTCTAAAGAAATTGGGCACTTCCCTAAACCTGATCCTGTGCCAAAGACTATCGGAAA
TGTGCTTTGTCATGAAGAAGGTGATGGATTGACAGATGGACCAGCAAGGCTACTCAAC
CTTGACTTGGATCTGTGGTCCACTGAACTGCGCTCTGTGGTCCACGGAGGTCTATGAG
ACTCAGGCTGGTGCCTAATAATGTGGAGCTAGCTCTGAGGAGAGGCTACAAATGAAA
TGTGCTTCTGTACAAGACGGTCCACTAGTGGATGCCACAGATTCGATGCACCAAC
ATTTACTCACTTCACTTGCAGCATTAAAGCACAATGCATGTTTTAAGGACAAAATATG
CTTGCCCCATGCACAAACCAAGGAATTCACTGAGCAAGAACATTAGTTACTTGCAGTC
TTCAGGAGGGTCTATGTCAGCGTGTGAGGTGCGACAGATTGCTAGCATCGTCAACGA
GGAGAACGGGACCATACCTTCGCGTGGTAGCCTCATCTCACACAATTGGTCAGCTG
CTTCCACAGCAGATGCAAGCATTCCATTCTCTAAAGCACTCTCCCTGTGGCTATGAA
GCCAGCCGGCTGTACTGGAGCACTCGCTATGCCAATAGCGCTGCCGTACCTGTGCTCC
ATTGAGGAGAAGGATGGGCCAGTGTGTCATCAGGATTGGAACAAGGCCATGAA
GACCTGGTCTAAGTGCACATCTCACCTAAAGGTGTCTGGATAAGATTGGAGCCTGTG
GCATGTGAGAAAAAGCTGAAATGCTCCAGCTTCCAGCGTATTAAAAGGAGAG
GATCTGTTGGCTGACCGTCTCGCAGTGGCACGCATAGCGGAATCACTTCCTGGGTT
GAGGCATGTGAAAATTACCTTCCGATACGGCGAAATCCTCATGGAACCTTCCTCT
GCCGTTAACCCACAGGTTGTGCCGTTCTGAACCTAAAATGAGTGCCATGTCAAGAGG
CCTCACACCTAAACAGCACAGCACCTCAAAGTCATTCACTGAGCACAGTCAGGGAGAA
CTGAACGCACCTATAGTAAACAGTTGTCACTCCAAGTCATCGCAGTACCGGAAGATG
AAAATGAATGAAATCCAATGTGTATCTGGCACGGTCTCGGATTCAAGGGCTGGCCTG
TATGCTGCTCGAGACATTGAGAAACACACCAGGTCAATTGAGTACATCGGACTATCATT
CGAAACGAAGTAGCCAACAGGAAAGAGAAGCTTATGAGTCTCAGAACCGTGGTGTAC
ATGTTCCGCATGGATAACGACCATGTGATTGACGCGACGCTCACAGGAGGGCCGCAAGG
TATATCAACCATTGCGTGCACCTAATTGTGGCTGAAGTGGTACTTTGAGAGAGGA
CACAAAATTATCATCAGCTCCAGTGGAGAACCCAGAAAGGAGAACAGAGCTCTGCTATGAC
TATAAGTTGACTTGAAGATGACCAGCACAAAGATTCCGTGTCAGTGAGGAGCTGTGAAC
TGCAGGGAGTGGATGAACTGAAATGCATTCTGCTAGCTCAGCGGGCGGCTTGTCCCTA

- 131 -

GGAAGAGGCGATTCAACACACCATTGGAAATTTCAGACAGAACAGAGATTTGTTTCT
GTTTATGACTTTGAAAAGCTCTGGAGTTCTGATTCCCTCAGTCCTTAGGTTAA
AGCAGCGCCAGGAGGAAGCTGACAGAACAGCAGCGTTCTGAAGTGGCCGAGGTTAACCGA
ATCACAGAAATGGTCCAGCACTTTGCTT

>gi|10864041|gb|NP_067053.1|MLL3 4025aa linear
myeloid/lymphoid or mixed-lineage leukemia 3; ALR-like protein
[Homo sapiens].

MHNTVVLFSSSDKFTLNQDMCVVCGSGQGAEGRLLACSGCGCYHPYCVSIKITKVVL
KGWRCLCTVCEACGKATDPGRLLLCDDCDISYHTYCLDPPLQTVPKGWCKWCWCRH
CGATSAGLRCEWQNNTQCPCASLSSCPVCYRNREEDLILQCRQCDRWMAVCQNLNT
EEEVENVADIGFDSCMCRPYMPASNVPSSDCESSLVAQIVTKVKELDPPKTYTQDGVCL
TESGMTQLQSLTVTPRRKRSPKPLKLKIINQNSAVLQTTPDIQSEHSRDGEMDDSRG
ELMDCDGKSESSPEREAVDDETKGVEGTGVKKRKPKYRPGIGGFMRQRSRTGQGKTK
RSVIRKDSSGSISEQLPCRDDGWSEQLPDTLVDESVSVTTESTEKIKKRYRKRNKLEETF
PAYLQEAFFGKDLLTSRQSKISLDNLSEDGAQLLYKTNMNTGFLDPSLDPLSSSSAPT
KSGTHGPADDPLADISEVLNTDDDLIGIISDDLAKSVDHSDIGPVTDDPSSLQPQNVNQS
SRPLSEEQLDGILSPELDKMTDGAIIKGKLYKIPELGGKDVEDLFTAVALSPANTQPTPLP
QPPPPTQLLPIHNQDAFSRMPLMNGLIGSSPHLPHNSLPPGSGLGTFSAIAQSSYPDARD
KNSAFNPMASDPNNSWTSSAPTVEGENDTMSNAQRSTLKWEKEEALGEMATVAPVLYTNI
NFPNLKEEFPDWTRVKQIAKLWRKASSQERAPYVQKARDNRAALRINKVQMSNDSMKRQ
QQQDSIDPSSRIDSELFKDPLKQRESEHEQEwkFRQQMRQKSQQAKIEATQKLEQVKNE
QQQQQQQQFGSQHLLVQSGSDTPSSGIQSPLTPQPGNGNMSPAQSFKELFTKQPPSTPT
STSSDDVFVKPQAPPAPPAPSRIPIQDLSLSQAQTSQPPSPQVFSPGSSNRPPSPMDPYA
KMVGTPRPPPVGHFSRRNSAAPVENCTPLSSVSRPLQMNETTANRPSPVRDLCSSSTTN
NDPYAKPPDTPRPVMTDFPKSLGLSRSPVVSEQTAKGPIAAGTSDHFTKPSPRADVQQR
QRIPDSYARPLLTPAPLDSGPGPFKTPMQPPPSSQDPYGSVSQASRRLSVDPYERPALTP
RPIDNFSHNQSNDPYSQPLTPHPAVNESFAHPSRAFSQPGTISRPTSQDPYSQPPGTPR
PVVDSYSQSSGTARSNTDPYSQPPGTPRPTTVDPSQQPQTPRPSTQTDLFVTPTVNQRH
SDPYAHPPGTPRPGISVPYSQPPATPRPRISEGFRSSMTRPVLMQPNQDPFLQAAQNRGP
ALPGPLVRRPPDTCSQTPRPPGPGLSDTFSRVSPSAARDPYDQSPMTPRSQSDSFGTQTA
HDVADQPRPGSEGSFCASSNSPMHSQGQQFSGSQLPGPVPTSGVTDTQNTVNMAQADTE
KLRQRQKLRREIIILQQQQQKCIAGRQEKGQSDSAVERPHPGPLQHWQOPENVNQAFTRPPPPY
PGNIRSPVAPPLGPRYAVFPKDQRGPYPPDVASMGMRPHGFRFGFPGGSHGTMPSQERFL
VPPQQIQGSGVSPQLRRSVSDMPRLNNSQMNVPGLPQHFSPQSLPVQQHNI LGQAYI
ELRHRAPDGRQRLPFSAPPGVVEASSNLRHGNFIPRPDFPGPRHTDPMRRPPQGLPNQL
PVHPDLEQVPPSQEQGHSVHSSSMVMRTLHNHPLGGEFSEAPLSTSVPSETSDNLQITT
QPSDGLEEKLDSDDPSVKELDVKLEGVEVKDLLDEDLENLNLDTEDGKVVELDTLDNLE
TNDPNLDDLLRSGEFDIIAYTDPLEDMGDKKSFMNEELDPIDDKLDNQCVSVEPKKKEQ
ENKTLVLSDKHSPOKKSTVTNEVKTEVLPNSKVESKCETEKNDENKDNVDTPCSQASAH
SDLNDGEKTSLHPCDPDLFEKRTNRETAGPSANVIQASTQLPAQDVINS CGITGSTPVLS
SLLANEKSDNSDIRPSGSPPPPTLPASPNSHVSSLPPFIAPPGRVLDNAMNSNVTVVSRV
NHVFSQGVQVNPGLIPGQSTVNHSLGTGKPATQTGPQTSQSGTSSMSGPQQLMI PQT LAQ
QNRERPLLEEQPLLLQDLDQERQEQQQQRQMAMIRQRSEPFPPNIDFDAITDPIMKA
KMVALKGINKVMAQNNLGMPMVMRSRFPFMQVVTGTQNSEGQNLGPQAI PQDGSITHQI
SRPNPPNFGPGFVNDSQRKQYEELWLQETQQLLQMQQKYLEEQIGAHRKSKKALSAKQRTA
KKAGREFPEEDEAEQLKHVTEQQSMVQKQLEQIRKQQKEHAELIEDYRIKQQQCAMA PPT
MMPSVQPQPLIPGATPPTMSQPTFPMPVQQLQHQHQHTVISGHTSPVRMPSLPGWQPN

APAHLPLNPPRIQPPIAQLPIKTCTPAPGTVSNANPQSGPPPVEFDDNNPFSESFQERE
 RKERLREQQERQRIQLMQEVDRQRALQQRMENEQHGMVGSEISSLRTSVSQIPFYSSDLP
 CDFMQPLGPLQQSPHQQQMGQVLQQQNIQQGSINSPSTQTFMQTNERRQVGPPSFVPDS
 PSI PVGSPNFSSVKQGHGNLSGTSFOQSPVPRSFTPALPAAPPVANSSLPCQDSTITHG
 HSYPGSTQSILQLYSDIIPEEKKKRTRKKRDDDAESTKAPSTPHSDITAPPTPGISE
 TTSTPAVSTPSELPOQQADQESVEPVGPSTPNMAAGQLCTELENKLPNNSDFSQATPNQQTY
 ANSEVDKLSMETPAKTEEIKLEKAETESCPGQEEPKLEEONGSKVEGNAVACPVSSAQSP
 PHSAGAPAAKGDSGNELLKHLKNKSSSLNQKPEGSICSEDDCTKDNKLVEKQNPAEG
 LQTLGAQMCGGGFCGNQLPKTDGGSETKKQRSKRTQRTGEKAAPRSKKRDEECKQAMY
 SSTDTFTHLKQRQLSLLPLMEPIIGVNFAHFLPYGSQFNNSGNRLLGTSATLEGVSD
 YYSQLIYKQNNLSNPPTPPASLPPTPPMACQKMANGFATTEELAGKAGVLSHEVTCTL
 GPKPFQLPFRPQDDILLARALAQGPKTVDVPASLPPTPPHNNQEELRIQDHCGDRDTPDSFV
 PSSSPESVVGVEVSRYPDLSLVKEEPPEPVPSPIIPILPSTAGKSSESRRNDIKTEPGTL
 YFASPFGPSPNGPRSGLISVAITLHPTAAENISSVVAAFSDLHHVRIPNSYEVSAPDVP
 SMGLVSSHRINPGLEYRQHLLRGPPPGSANPRLVSSYRLKQPNVPFPPTSNGLSGYKD
 SSHGIAESAALRPQWCCHCKVVLGSGVRKSFKDLTLLNKDSRESTKRVEKDIVFCNNC
 FILYSSTAQAKNSENKESEPQLPQSPMRETPSKAFHQYSNNISTLDVHCLPQLPEKASPP
 ASPIIAFPFAFEAAQVEAKPDELKTVKLKPRLRAVHGGFEDCRPLNKKWWRGMWKWWI
 HIVIPKGTFKPPCEDEIDEFLKKLGTSLKDPVPKDYRKCCFCHEEGDGLTDGPARLLNL
 DLDLWVHLNCALWSTEVEYETQAGALINVELAIRRGLQMKCVFCHKTGATSGCHRFRCTNI
 YHFTCAIKAQCMFFKDKTMLCPMHKPKGIGHQELSYYFAVFRRVYVQRDEVRIASIVQRG
 ERDHTFRVGSЛИFTIGQLPQQMQAFHSPKALFPVGYEASRLYWSTRYANRRCRYLCSI
 EEKDGRPVFVIRIVEQGHEDLVLSDISPKGWWDKILEPVACVRKKSEMLQLFPAYLKGED
 LFGLTVSAVARIAESLPGVEACENYTFRYGRNPLMELPLAVNPTGCARSEPKMSAHVKRP
 HTLNSTSTSFSQSTVTGELNAPYSKQFVHSKSSQYRKMTEWKSNVYLARSRIQGLGLY
 AARDIEKHTMVIEYIGTIIRNEVANRKEKLYESQNRGVYMFRMDNDHVIDATLTGGPARY
 INHSCAPNCVAEVVTFERGHKIIISSSRRIQGEELYDYKFDDEDDQHKIPCHCGAVNC
 RKWMN

>gi|21359851|gb|NM_000966.2|RARG 2663bp mRNA Homo sapiens
 retinoic acid receptor, gamma (RARG), mRNA.

```

GGCACGAGGCAGTGGGCAGGCCAGGCAGGGCGGGTACGGAGCCTCCCAGGCTGGGCAGT
GGCATGGGCAGGGCTGTGGCTGAAGACCTGCCCGCCACTGCAGACTCCAGGGACT
CTCACACCGCAGCTGCCATGCCAACATAAGGAGCGACTCTTGCAGCTGGTGCCCTGG
GGCCTGGATCTGGCTACCCAGGGCAGGTTCCCTTCGCCTTCCCAGGGCACTCAGGG
GGTCTCCGCCTTCGAGATGCTGAGCCCTAGCTTCCGGGCCTGGGCCAGCCTGACCTCC
CCAAGGAGATGGCCTCTGTGGAGACACAGAGCACCAGCTCAGAGGAGATGGTGC
CCAGCTGCCCTGCCCTCCGCCTCGGTCTACAAGCCATGCTCGTGTGCAATG
ACAAGTCCTCTGGCTACCACTATGGGTCAGCTTGTGAAGGCTGAAGGGCTCTTC
GCCGAAGCATCCAGAAGAACATGGTGTACACGTGTCACCGCGACAAAAACTGTATCATCA
ACAAGGTGACCAGGAATCGCTGCCAGTACTGCCGGCTACAGAAGTGCTCGAAGTGGCA
TGTCCAAGGAAGCTGTGCAAATGACCGGAACAAGAAGAAGAAGAGGTGAAGGAAGAAG
GGTCACCTGACAGCTATGAGCTGAGCCCTCAGTTAGAAGAGCTCATACCAAGGTGAGCA
AAGCCCATCAGGAGACTTCCCCTCGCTCTGCCAGCTGGCAAGTATACCAAGCACTCCA
GTGCAGACCAACCGCGTGCAGCTGGATCTGGGCTGTGGACAAGTTAGTGAGCTGGCTA
CCAAGTGCATCATCAAGATCGTGGAGTTGCCAAGCGGTTGCCTGGCTTACAGGGCTCA
GCATTGCTGACCAGATCACTCTGCTCAAAGCTGCCCTGCTAGATATCCTGATGCTGCGTA
TCTGCACAAGGTACACCCAGAGCAGGACACCATGACCTTCTCCGACGGGCTGACCCCTGA

```

ACCGGACCCAGATGCACAATGCCGGCTTCGGGCCCTCACAGACCTGCTTGCCTTG
 CTGGGCAGCTCCTGCCCTGGAGATGGATGACACCGAGACAGGGCTGCTCAGGCCATCT
 GCCTCATCTGCGGAGACCGCATGGACCTGGAGGAGGCCGAAAAAGTGGACAAGCTGCAGG
 AGCCACTGCTGGAAGCCCTGAGGCTGTACGCCCGGCCGCCAGCCAGCCCTACA
 TGTTCCAAGGATGCTAATGAAAATCACCGACCTCCGGGCATCAGCACTAAGGGAGCTG
 AAAGGGCCATTACTCTGAAGATGGAGATTCCAGGCCGATGCCCTCCCTTAATCCGAGAGA
 TGCTGGAGAACCCCTGAAATGTTGAGGATGACTCCTCGCAGCCTGGTCCCCACCCCAATG
 CCTCTAGCGAGGATGAGGTTCCCTGGGGCCAGGGCAAAGGGGCTGAAGTCCCAGCCT
 GACCAGGGCCCTGACCTCCCCGCTGTGGGGTTGGGCTTCAGGCAGCAGACTGACCAT
 CTCCCAGACCGCCAGTGACTGGGGAGGACCTGCTCTGCCCTCTCCCACCCCTCCAAT
 GAGCTCCTGTTTGCAAAGTTCTAGGGGTGCCTCTGTGTTCATCCCTCCTGATC
 TAACCGGCTCCCTGCCAGTCCCAGGGGCTGCCCTGCTCCACCCAGGAGAGAGGGCAA
 GGGATGAGCCTGGGTTGGACTCTAAAATCTCAGCACTGCCCATGGGCTTAGACTTCC
 CAGGGCAAGAGGAAGACCCCTGCCATTCCACAGCCCCTCCTGCCAGGTGCTTGGCTCT
 CTGAGAGCAAACAGAACACTAGAGACCAAAAGGGACAAAGGAGAAGGGCTGAGCCA
 CCTCTTGCCTCACCTTGGTGCCTAATGCTGTGATGCACCTGCAGGGTGTGCTA
 GCCTCTGTGCCCGTCCTGTGCCAGGTCAAGGTGGGGCAGGCTGGGCCCTGCATTCT
 GGGCAGGAACAGAGGGTAAAGGGACAGATAGATGCAGGTCCATTCTGCACCTCTGGC
 TCGGGTGCAGAGTTCACCTGTGCCCTCCGTATAAGTCCCTCCCCAGCCCTGTATGT
 GCCTTGGGCTCCTCTGCCCTCCATCTCAGCATTGGGGCAGGGACCCCTACACTACA
 GAGGGGCCAGGGATCCCTCTCCCTAGTCCTCACCCCTTACTCCCCAGAGCAGCT
 TGGCCCAGGGAGGGGGATGCTGCTTAGCTGATCCCGCCCTGACCCAGAGGAAGCCTCTA
 TTTATTTATTAGCTTTGTTACACCGTGAATTGACCCCTCCTCCAGGGGTCTTGGGT
 GGGGGAGCCCAGGGCCCTGTGACCCCTCCTTCTTCCATCCCCAGTTGTATTIA
 GCTGCCAAATAAGATTCCCATTGGCTCCCTGTGTTCTTGGGGGTCAAGGTGCTGTCC
 CCTCCCCTGTGTTACATCTCCCCTCACCCCGCTGTATCGCATATTGCTGAGTTCTA
 TTTTGCAAATAAGTGTGAAACTCAAAAAAAAAAAAAAAAAAAAAAAA
 AAAAAAAAAAAAAAAAAAAAAAA

>gi|4506423|gb|NP_000957.1|RARG 454aa linear retinoic acid receptor, gamma; Retinoic acid receptor, gamma polypeptide [Homo sapiens].

MATNKERLFAAGALPGSGYGPAGFPFAFPGLSPFEMLSPSFRGLQPDLPKEMAS
 LSVETQSTSSEEMVPSSPSPPPPRKYKPCFVCNDKSSGYHYGVSSCEGCKGFFRRSIQK
 NMVYTCHRDKNCIINKVTRNRQCYCRQLKCFCVGMSKEAVRNDRNKKKEVKEEGSPDSY
 ELSPQLEELITKVSKAHQETFPSLCQLGKYTNSSADHRVQLDLGLWDKFSELATKCIIK
 IVEFAKRLPGFTGLSIADQITLLKAACLDILMLRICTTRYTPEQDTMTFSDGLTLNRTQMH
 NAGFGPLTDLVFAFAGQLLPLEDDDETGLLAIICLICGDRMDLEEPEKVDKLQEPLLEA
 LRLYARRRRPSQPYMFPRMLMKITDLRGISTKGAEARAITLKMEIPGPMPLIREMLENPE
 MFEDDSSQPGPHPNASSEDEVPGQQGKGLKSPA

>gi|14670376|gb|NM_015318.1|P114-RHO-GEF 5113bp mRNA Homo sapiens Rho-specific guanine nucleotide exchange factor p114 (P114-RHO-GEF), mRNA.

GCTGGCGGAGAGCGGCCCTCGGGCGATCGGGCCGAGCCTCGCTCAAGGAGCACCCCCGGG
 GCACCCCTCTGTCCGATGGCAGCCGGCCCTGTCCAGGAATGTCGGTATGACGGTCTCTC
 AGAAAGGGGGTCCCAGCCAACACCGAGCCGGCTGGCCCTGGGACGCAACTCGGACCAA
 TCACAGGAGAGATGGATGAAGCCGATTCTGCCTTTAAAATTAAAGCAGACAGCTGATG
 ACTCTCTGTCCCTACATCTCCAAACACCGAGTCCATTGGTAGAAGATCCCTACACCG

CCTCGCTGAGGAGTGAGATTGACTCAGACGCCACGAGTTGAAGCTGAGTCCTGGAGCC
TCGCCGTGGATGCAGCCTACGCCAAGAACAGAAAAGAGGGAGGTGGTAAAAGACAAGATG
TCCTTATGAGCTGATGCAGACAGAGGTGCACCACGTGCGGACGCTCAAGATCATGCTGA
AGGTGTACTCCAGGGCCCTGCAGGAGGAGCTGCAGTCAGCAGCAAGGCCATTGGCCGCC
TCTTCCCCTGCCTGACGACCTGCTGGAGACGCACAGCCACTCCTCGCTCGCTCAAGG
AGCGCCGCCAGGAGTCCCTGGAGGAGGGCAGTGACCGAATTATGTCATCCAGAAAATCG
GCGACCTCCTGGTCAGCAGTTTCAGGTGAAAATGGGAGAGAATGAAAGAAAAGTACG
GTGTGTTTGTAGTGGCCACAATGAAGCTGTTAGTCATTACAAGTTGCTGCTTCAGCAA
ACAAGAAAATTCAAAACTTGATCAAGAAAATTGGCAACTTCTCCATCGTGCAGGCCCTTG
GCGTCAGGAGTGATTCTCCTGGTTACACAACGCATAACCAAATACCCAGTGCTGGTGG
AGCGCATTCCAGAACACCGAACGCTGGCACTGAGGACTATGAAGACCTGACCCAGGCC
TGAACCTCATCAAAGATATCATCTCACAAGTGGACGCCAAGGTAGTGAGTGTGAGAAGG
GCCAGCGCCTCAGGGAGATCGCAGGGAAAGATGGACCTGAAGTCTTCAGCAAACCTCAAGA
ACGGGCTCACCTCCGCAAGGAAGACATGCTTCAGCGGCACTCCACCTGGAGGGCATGC
TATGCTGGAAGACACATCAGGGCGTTGAAAGATATCCTGGCTATCTGCTGACCGACG
TACTTTGCTGCTACAAGAAAAGATCAGAAATACGTCTTGCTTCTGTGGACTCAAAGC
CACCCGTACATCGTTACAAAGCTCATCGTAGGGAAAGTGGCCAACGAGGAGAAAGCGA
TGTTCTGATCAGCGCCTCTGCAAGGGCCGGAGATGTATGAAATCTACACGAGCTCCA
AAGAGGACAGGAACGCCCTGGATGGCCCACATCCAAAGGGCTGTGGAGAGCTGCCCTGACG
AGGAGGAGGGGCCCTCAGCCTGCCGAAGAGGAAAGGAAGGTGGTGGAGGCCCGCCA
CGAGACTCCGGACTTCAAGAGCGGTTGAGCATGAAAGACCAAGCTGATCGCACAGAGCC
TCCTAGAGAAACAGCAGATCTACCTGGAGATGGCCGAGATGGCCGGCTCGAAGACCTGC
CCAGCCCCGAGGCCTATTCCGTGGAGGGACCCATCCGAGACCCCTGCAGGGGGAGCTAA
TTCTCAAGTCGGCCATGAGCGAGATCGAGGGCATCCAGAGCCTGATCTGAGGGCTGG
GCAGCGCCAACGCCAGGCGGAAGACGGAGGCAGCTCCACAGGCCGCCAGGAGGGCTG
AGACCTTCGCGGGTACGACTGCACAAACAGCCCCACCAAGAATGGCAGTTCAAGAAGA
AAGTCAGCAGCACTGACCCCAGGCCAGACTGGCGAGGCCCCAACAGCCGGACT
TGAAGCTCAGTGACAGTGACATTCTGGAGCTCTGAGGAATGCCGCAGGTGGTGGAGG
CGCCAGGCACGGAATCCGATCCCCGTCTGCCACCGCTGGAGTCGGAGCTGTCCAGC
GGATCCAGACACTGTCCCAGCTGCTCCTGAAACCTTCAGCGGTAATGCCAACAGGACA
GCTATGTGGAGACGCAGCGGGCTGCCATCCAGGAGCGGGAGAACAGCAGTCCGGCTGCAGT
CGACCGCTGGAACCTGCTGCTGGAGCAGGAGCGAACGCAACTTCCAGAAGACAGCGGG
AGGAGCGCGCGGCCCTGGAGAAGCTGCAGAGCCAGCTGCGGACAGCAGCAGCGCTGG
AGCGCGAGCGGCCAGTGGCAGCACCAAGGAGCTGGAGCGTGGCGCGGCCAGCGTGGAGC
GCGAGGGCGAGGCCAGCTACCGCACGACCTGGAGCGGCTGCGCAGGCCAGCGTGGCG
GCCAGCGCCAGGCCTACCAAGCAGCACCTGGAGCGGCTGCGCAGGCCAGCGTGGCG
AGCGCGAGCGGGAGCGCCTGGAGCTGCTGCCGCCCTCAAGAACGAGAACACCGCGCC
GCGCGCTGCCGCCACACACTGGCGAGGCCAGGCCAACGCACTCCAGAGGCAGGCC
ACGGGGAAAGGGCTGGAGGCCCTCGGGTGAGCATGCTGCCATCCGGCTGGGCCAGAGT
ACGCAGAGCGCCCCGAGGTGGCTGCCGGACAGCGCCCCCACCGAGAGGCCAGTGGCCA
AGAGCGATGTGCCCATCCAGCTGCTCAGGCCACCAACCAGTCCAGAGGCAGGCC
TGCAGCAGCAGATCCCCACCAAGCTGGCGGCCCTCCACCAAGGGTGGCAAGGACAAGGGCG
GCAAGAGCAGGGCTCTCAGCGCTGGAGAGAGCTCAGCGTCTTCAGCTGAAGCAGCAGC
TGCTGCTCAACAAGCTATGGGAAAGATGAGAGCACCTCACGGAACCGCCGCTCGCTGA
GCCCTATCCTGCCCGCAGACACAGTCCTGCCGCCACCGAGACCCCTGGCTTCCCGGCC
CGAGCCCACCGCCAGCTGACAGCCCCCTCGAGGGCTCTCTCAAGGCCGGGGCACAG
CCCTCCTGCCGCCAGCTCCCTGCCACTGCCAGGCCACCAACTCAGCGCCAAGG

- 135 -

AGGACGCCAGCAAAGAAGACGTATCTTCTAAAGGGCCGTGACTCAAGGAAAGTT
TTAATGAAAGTTGAGCCAGAACTAAACCAGGGAGCTGTCTGAAATCATAGCACCCCATC
CGGGTGGCGGGAGATCAACTCCGAGCTGTTTCCGAGGCAGTGAGGAACGGTGCCGGC
TCTGCACGGAGCTGAGGACAGGACAGACCTGCTTGAGAAGGAGCTGCCGGCGGGGCC
ACGCTCCACAGCCGCCGCGACAGTGGAGCCAAGGGTAGGGCACCAGGAGGGGCCAGG
TGGCGTCGGCAGCATCTGCCCCAGAACATCAGGCAGAACATCCACTCCAAACAGAGCCCCA
CGCAGGTTCACCATGAACCTCAGGGTCAGGGAAATGAGCCAGGCACGGGCATGGCAGA
GAGGGCCACGGGGCAGGGCCACTGAGGAAACATCAGTGGCCCTCCAGTCAGGTTCTGTG
GGTTGGAAGCCCACGTGAAAGGGCTGACCTTGCCCCCTTTACTTGGCATTGGTT
TGAAACAGCTGTTCCAAACTCTGCTTCCAAGGGCAACCGTTGCTGTTCACACGCTC
AGCCTGTCGGGGAGCGGGCCTCTAGCTTCAAGGGCGGGTACACACCCCTGGCACA
GGGTCCCTAGCCCCCGGGAAATGAGCTCCAGGGCTGGCGTCCCACCTCCAGGTGGGG
CTGGCACATCACAGACTGTCGAGAGGCCATGTCAGGGCATGCAGAGGTTGCACCTAG
AGACGTTGCAGCAAGTGGACAAGTGGCCGCTGTGCGGGCCCCCTCGCTGTAGTGAGCTGT
TGCAGCTTACGGTCCGTTCCCTGGAGGGTGGAGGAAGGAGGTGTTGGCAGCATCAAAG
GTGCTGGACATCCCAGGGTGGTGAAGATCCACGATCCAGCTCCGGTGGAGAAAGGG
CCCATGTCAAGCCTGTTCTGCACCCCAAGCATTGGTGGTAGGACTGGGTCTGGCTGAT
CGTCCTTGTCCCAGTGGGTACATGTGAGCCCTGCCAGGGCCAAGTCCTCTCCGAA
CCAGGGTCCCTGGGAACCTGCAAGATCCCAGGGGATTCAAGCCCTCTCCACTGTGCTGGC
AGAGGCACTCCTGTGACGCTGAATACAGTGAACAGGGACATTCCGCCACTGGGACAG
ATGGGCACAAGGGAGGGAAACTCCATCAGGAAGTGTCTCCCTGGCAGAGGCCACT
GGGTGCTGTGGCTCAGGAGGGGGGGCAGGAGCTGGTCCAACCGGGAACAGAGCC
CCACAGCCATACAGCCATTGGTACAAGGTCTGAGAACACAGTGGCCAGGTGTCCCCA
GGCTCCTGGCCCCCTCCGACGACCTCAACTCTGCCAGGCCGGTCCCTGGCCATCAGCAG
GCTGTCCGCCCCCGTCAGATCCCAGTGTGCCATGTTATCATCAGTGTGTTGTT
TGTACTGAGTATCGGAGCACTTACAGAACAGTGTACATTCTGTTCTGTTGAAAG
AGAACATTCCAGACCCTGGCACCCCTCTGAGCCGGGTGTGCCGGTCCAGCCCTCCGAG
ATGCCACAATTCTGGATGGGGAGAACGTTCAAGGAATTCTGCTGGCCACGCCGTGG
GAACCCCGCGTCCCCGCCATGTGGCAGAGGGTCTCAGTCGTGCTAGGCATGGCGGCA
GCGCCGACAGCCCTCCCTGCCAGTGCCTCGGCCACTCCTGGGTTGGAGCCGATT
TATTTGTAAGTTGACAGTCGAGCAAATGTTCTATTTCTGTTGGATCTGCACACGTCTT
TGTCAAGTGTGGTCATGATCTAGTCACCTGCTAATTATTTTACAATGATTACAACATT
TCCTCACTGCCGGATATTCTGACCCGCTTAGAACCTAAGACCTGATTCTAGCAATAA
CGTGTCCGAGATG

>gi|14670377|gb|NP_056133.1|P114-RHO-GEF 1015aa linear Rho-specific guanine nucleotide exchange factor p114 [Homo sapiens].

MTVSQKGGPQPTSPAGPGTQLGPITGEMDEADSAFLKFQQTADDSSLTSNTESIFVE
DPYTASLRSEIESDGHEFEAESWSLAVDAAYAKKQREVVKRQDVLYELMQTEVHVRTL
KIMLKVYSRALQEELQFSSKAIGRLFPCADDLLETHSHFLARLKERRQESLEEGSDRNYY
IQKIGDLLVQQFSGENERMKEKYGVFCSGHNEAVSHYKLLLQQNKKFQNLIKKIGNFSI
VRRLGVQECILLVTQRITKYPVLVERIIQNTTEAGTEDYEDLTQALNLIKDIISQVDAKVS
ECEKGQRLREIAGKMDLKSSSKLNGLTFRKEDMLQRQLHLEGMLCWKTTSGRLKDILAI
LLTDVLLLLQEKDQKVVFASVDSKPPVISLQKLIVREVANEKAMFLISASLQGPEMYEI
YTSSKEDRNAWMAHIQRAVESCPDEEEGPFLPPEERKVVEARATRLRDFQERLSMKDQL
IAQSLLEKQQIYLEMAEMGGLEDLPQPRGLFRGGDPSLTQGELILKSAMSEIEGIQSLI
CRRRLGSANGQAEDGGSSTGPPRRAETFAGYDCTNSPTKNGSFKKKVSSTDPRPRDWRGPP

- 136 -

NSPDLKLSDSDI PGSSEESPQVVEAPGTESDPRLPTVLESELVQRIQTLSQLLNLQAVI
 AHQDSYVETQRAAIQEREKQFRLQSTRGNLLLEQERQRNFEKQREERAALEKLQLSQLRHE
 QQRWERERQWQHQELERAGARLQEREGEARQLRERLEQERAEALERQRQAYQHDLERLREA
 QRAVERERERLELLRLKKQNTAPGALPPDTLAEAQPPSHPPSFNLEGLEGPRVSMLPSG
 VGPEYAERPEVARRDSAPTESRLAKSDVPIQLLSATNQFQRQA VQQQIPTKLAASKGG
 KDKGGKSRGSRWESSASFDLKQQLLNKLMGKDESTSRNRRSLSPILPGRHSAPPDP
 GFPAPSPPPAPSPSEGFSLKAGGTALLPGPPAPSPLPATPLSAKEDASKEDVIFF

>gi|23238259|gb|NM_005198.3|CHKL 1595bp mRNA Homo sapiens
 choline kinase-like (CHKL), transcript variant 1, mRNA.

CCCGGGCCGGGGCACGGAGAGAGCCGAGCGCCGCAGCCGTGAGCCGAATAGAGCCGGAGA
 GACCCGAGTATGACCGGAGAAGCCCAGGCCGGAGGCCGGAGGCCGAGCGCCGGCGAA
 GGAACCGAGCCCCGTCCGAAGGGAGCCGGAGCGCAGCCTGGCCTGGGGCCGGTCAGCCCG
 CGCCATGGCGGCCGAGGCACAGCTGTGGCCGAAGCAGGGCTGTTGGCGGCTGCCTGGC
 CAAAGACGGCTTGCAAGCAGTCTAACGTGCCCCAACACTACCCCCAAAACGGCGGCGCCTC
 GTCGCTGTCGCGTGA CGCCGAGCGCCGAGCCTACCAATGGTGGGGAGTACTGGCGG
 GGCCTGGCGCCGAGTGCAGCCGAGGGAGCTGAGGGTTACCCGTGAGCGGAGGCCTCAG
 CAACCTGCTCTTCCGCTGCTCGCTCCGGACCACCTGCCAGCGTTGGCGAGGAGCCCCG
 GGAGGTGCTCTGCGGCTGTACGGAGCCATCTGCAGGGCGTGGACTCCCTGGTGTAGA
 AAGCGTGATGTTGCCATACTTGCAGCGGGCTGGACAGCTGCTGGGGCCCAAGCTGTACGGAGTCTT
 CCCAGAGGGCCGGCTGGAACAGTACATCCAAAGTCGCCATTGAAAACACTCAAGAGCTTCG
 AGAGCCAGTGTGTCA GCAGCCATTGCCACGAAGATGGCGCAATTGATGGCATGGAGAT
 GCCTTCACCAAGGAGCCCCACTGGCTGTTGGACCATGGAGCGGTACCTAAAACAGAT
 CCAGGACCTGCCCTCAACTGGCCTCCCTGAGATGAACCTGCTGGAGATGTACAGCCTGAA
 GGATGAGATGGGCAACCTCAGGAAGTTACTAGAGTCTACCCATGCCAGTCGTTCTG
 CCACAATGACATCCAGGAAGGGAACATCTGCTGCTCTCAGAGCCAGAAAATGCTGACAG
 CCTCATGCTGGTGGACTTCGAGTACAGCAGTTATAACTATAGGGCTTGACATTGGGAA
 CCATTTTGTGAGTGGTTATGATTATACTCACGAGGAATGCCCTTCTACAAAGCAAG
 GCCCACAGACTACCCACTCAAGAACAGCAGTTGCATTTATTGTCATTACCTGGCAGA
 GGCAAAGAAAGGTGAGACCCCTCTCCCAAGAGGGAGCAGAGAAAATGGAAGAAGATTGCT
 GGTAGAAGTCAGTCGGTATGCTCTGGCATCCATTCTCTGGGGTCTGTGGTCCATCCT
 CCAGGCATCCATGTCACCATAAGAATTGGTACTTGGACTATGCCAGTCGGTTCCA
 GTTCTACTTCCAGCAGAAGGGCAGCTGACCAGTGTCCACTCCTCATCCTGACTCCACCC
 TCCCACTCCTGGATTCTCCTGGAGCCTCCAGGGCAGGACCTGGAGGGAGGAACAACG
 AGCAGAAGGCCCTGGCAGTGGCTGAGCCCCAAGTGAACACTGAGGTTCAAGGAGACCGG
 CCTGTTCTGAGTTGAGTAGGTCCCCATGGCTGGCAGGCCAGAGCCCCGTGCTGTGTAT
 GTAACACAATAACAAGCTCTTCTCCCACCTG

>gi|6978649|gb|NP_005189.2|CHKL 395aa linear
 choline/ethanolamine kinase isoform a [Homo sapiens].

MAAEATAVAGSGAVGGCLAKDGLQQSKCPDTTPKRRRASSLSRDAERRAYQWCREYLGG
 WRRVQPEELRVYPVSGGLSNLLFRCSLPDHLPVGEEPREVLLRLYGA ILQGVDSL
 VMFAILAERSLGPQLYGVFPEGRLQEYI PSLRPLKTQELREPVL
 SAAIAATKMAQFHGMEMP
 FTKEPHWLFGTMERYLKQIQDLPPTGLPEMNLL
 EMYSLKDEMGNLRKLESTPSPVVFCH
 NDIEQEGNILLSE
 PENADSLMLVD
 FEYSSSYNYRGFDIGNHFCEWVYDYTHEEWPFYKARP
 TDYPTQEQQQLHFIRHYLAEAKKGETLSQEEQRKLEEDLL
 LEVSRYALASHFFWGLWSILQ
 ASMSTIEFGYLDYAQSRFQFYFQQKGQLTSVHSSS

- 137 -

>gi|4757755|gb|NM_004039.1|ANXA2 1362bp mRNA Homo sapiens annexin A2 (ANXA2), mRNA.

CATTTGGGGACGCTCTCAGCTCTGGCGCACGGCCAGCTCCTCAAAATGTCTACTGT
TCACGAAATCCTGTCAAGCTCAGCTTGAGGGTATCACTCTACACCCCCAAGTGCATA
TGGGTCTGTCAAAGCTATACTAACTTGTAGCTGAGCGGGATGCTTGAAACATTGAAAC
AGCCATCAAGACCAAAGGTGTGGATGAGGTACCATTGTCAACATTGACCAACCGCAG
CAATGCACAGAGACAGGATATTGCCCTCGCTACCAGAGAAGGACCAAAAAGGAACCTGC
ATCAGCACTGAAGTCAGCCTATCTGCCACCTGGAGACGGTATTTGGCTATTGAA
GACACCTGCTCAGTATGACGCTCTGAGCTAAAGCTTCCATGAAGGGCTGGAACCGA
CGAGGACTCTCATTGAGATCATCTGCTCCAGAACCAACCAGGAGCTGCAGGAAATTAA
CAGAGTCTACAAGGAAATGTACAAGACTGATCTGGAGAAGGACATTATTCGGACACATC
TGGTGAATTCCGCAAGCTGATGGTGCCTGGCAAAGGGTAGAAGAGCAGAGGATGGCTC
TGTCAATTGATTATGAACTGATTGACCAAGATGCTCGGGATCTCTATGACGCTGGAGTGAA
GAGGAAAGGAACGTGATGTTCCAAGTGGATCAGCATCATGACCGAGCGGAGCGTGCCTT
CCTCCAGAAAGTATTGATAGGTACAAGAGTTACAGCCCTATGACATGTTGAAAGCAT
CAGGAAAGAGGTTAAAGGAGACCTGGAAAATGCTTCTGAACCTGGTCAGTGCATTCA
GAACAAGCCCCTGTATTTGCTGATCGGCTGTATGACTCCATGAAGGGCAAGGGACGCG
AGATAAGGTCTGATCAGAACATCATGGTCTCCCGCAGTGAAGTGGACATGTTGAAAATTAG
GTCTGAATTCAAGAGAAAGTACGGCAAGTCCCTGTACTATTATATCCAGCAAGACACTAA
GGGCGACTACCAGAAAGCGCTGCTGTACCTGTGAGGAGATGACTGAAGCCGACACCG
GCCGTGAGCGTCCAGAAATGGTCTCACCATGCTTCCAGCTAACAGGTCTAGAAAACCAGC
TTGCGAATAACAGTCCCCGTGGCCATCCCTGTGAGGGTGACGTTAGCATTACCCCAACC
TCATTTAGTTGCCTAACGATTGCCTGGCCTCCTGTCTAGTCTCTCCTGTAAGCCAAAG
AAATGAACATTCAAGGAGTTGGAAGTGAAGTCTATGATGTGAAACACACTTGCCTCCTGT
GTACTGTGTCAAAACAGATGAATAACTGAATTGTACTTT

>gi|4757756|gb|NP_004030.1|ANXA2 339aa linear annexin A2; annexin II; annexin II (lipocortin II); calpactin I, heavy polypeptide (p36); lipocortin II; Annexin II (lipocortin I); annexin II (lipocortin II; calpactin I, heavy polypeptide) [Homo sapiens].

MSTVHEILCKLSLEGDHSTPPSAYGSVKAYTNFDAERDALNIEAIKTKGVDEVTIVNIL
TNRNSNAQRQDIAFAYQRRTKKELASALKSALSALSHLETIVLGLLKTPAQYDASELKASMKG
LGTDEDSSLIEIICSRNTNQELQEINRVYKEMYKTDLEKDIISDTSGDFRKLMVALAKGRRA
EDGSVIDYELIDQDARDLYDAGVKRKGTDVPKWISIMTERSPHLQKVFDYKSYSPYDM
LESIRKEVKGDLENAFLNLVQCIQNKPLYFADRLYDSMKKGKGTRDKVLIRIMVSREVDM
LKIRSEFKRKYGKSLYYYYIQQDTKGDYQKALLYLCGGDD

>gi|27484939|gb|XM_084635.3|LOC143785 1982bp mRNA Homo sapiens similar to hypothetical protein XP_084635 [Homo sapiens] (LOC143785), mRNA.

TACTATCAGGGGGCAAGAGCCTTCTCCAGCTACACACTCCATCTCCGGAGCAAGG
GGAAACTCCGAGAGGGAGGGCAACAGAGCCAGCATCTGCCAGGGCCCGAGGAGGGTT
CCCCGCTACGCCCTGTGCCGGAGGAGTCCAGTCACCGAGCGAGGGCGCAAGGGTGGGTG
CATCCTGCCTGCAGGGCGCTACCCAGACGCTGGTGTGCAGAGCCACATGAAGCCT
GCTGGGGACTGGGGCCAGGGAGCAGCAAGCCAGCTGGACTGAGGCGAGCGTGTCTCA
GGGAGACGCTGACTCGCAAAGACACTCCCTTGTGCCTGGTAAAAAGTCTCCTCCT
GGGGTCCCTGGCCATCCTGAATATCCAGAATGGTGTCTGAAGTTCTGCATGAGTT
TCTCTGCCACCTGTGTCAAGGCTACTCGATGGCCCCCTACCCAGAGATGTCCAATG

GGACTCTGCACCACTACTCGTCCCCGATGGGGACTATGAGGAGAACGATGACCCCGAGA
 AGTGCCAGCTGCTCTCAGGGTGAGTGACCACAGCGCTGCTCCCAGGGGAGGGAGCC
 AGGTTGGCAGCCTGCTGAGCCTCACCCCTGCAGGAGGAGTCACCGTGCTGGCCGAGG
 TGGAGGATGCTGGCGCGTGGAGGGCATCAGCAAAGCATCTCCTACGACCTAGACG
 GGGAAAGAGAGCTATGGCAAGTACCTCGGGGGAGTCCCACCAAGATCGGGATGCCTACT
 CCAACTCGGACAAATCCCTCACTGAGCTGGAGAGCAAGTTCAAGCAGGCCAGGAACAGG
 ACAGCCGGCAGGAGAGCAGGCTAACGAGGACTTCTGGGAATGCTGGCCACACCAGGT
 CCCTGCTGAAGGAGACACTGGACATCTGTGGGCTCAGGGACAAATACGAGCTGCTGG
 CCCTCACCATTAGGAGCCATGGGACCCGACTAGGTGGCTGAAAATGATTATCTTAAAG
 TATAGGTGGAAGGATACAAATGCTAGAAAGAGGGAATCAAATCAGCCCCGTTTGGAGGG
 TGGGGGACAGAAGATGGGCTACATTCCCCATACCTACTATTTTTATATCCGATT
 TGCACTTGAGAATACATCTAAGGTACATTCTCAAAGAGAAAAATTGGACACTTGAGTG
 ACTTTGTTTTAGTTGTTGTACATTATTGTGATTGTTATGAAATTGTCACCT
 GGAAAGAACAAATTAAAGCAATGTCATTCTAGATGGGTTCTAATTCTGCAGAGACACC
 CGTTTCAGCCACATCTAAAGAGCACAGTTATGTGGTGCAGGAAATTAAACTCCCCATCC
 TGCAGATTATGTGGAATACCCAAAGATAATAGTCAGCTCCTTCAGCCTCTAGCCT
 TCACTCCTGGCTCCAAAGCTATCCCAGTTGCCTGTTTCAAATGAGGTTCAAGGTGC
 TGCTTGCACTGCCTGCCAACCATGGAAGTTCTTACTTCTTCTCTTATT
 TAACCATGGTCTGAGAGTTGTTGTTCTATGTAACAGTATTGCCACAAACTATAGGC
 AAATCGTGGTGCAGGGAGATTCTGATGCCCTGTGGTGTGTAAGTTAAAGTGGCC
 ACATTAAAGAAGGCCAAGCTTGTAGTGGTGCACAGTCACACTGATACTGATGTTGCT
 CTTCTCATTGTATGTCTATGCTTGTCTAGTGTCTAGTAAATTACAAAGAAATAGG
 TAGATTGTATGAAACATACCCACAAATGCCATGATTAGGTTACCAATGTATTCTTCTC
 ATTGGGGTTTGCTCTGCTGTCTGTTATTGAAACTTGTACTTCAAGTAGGGGAA
 TCCTAATTCTAATAACTCCTAGCTAAGTTATTATTCAAGGAAATAACATGTTTCA
 GT

>gi|18578340|gb|XP_084635.1|LOC143785 211aa linear similar to hypothetical protein XP_084635 [Homo sapiens].
 MVFLKFFCMSFFCHLCQGYFDGPLYPEMSNGLTLHHYFVPDGDYEEENDDPEKCQLLFRVSD
 HRRCSQEGSQVGSLLSLTIREEFTVLGRQVEDAGRVLLEGISKSISYLDGEESYGKYLR
 RESHQIGDAYNSDKSLTELESKFKQGQEQRQESRLNEDFLGMLVHTRSLLKETLDIS
 VGLRDKYELLALTIRSHGTRLGRLKNDYLKV

>gi|4507464|gb|NM_003239.1|TGFB3 2574bp mRNA Homo sapiens transforming growth factor, beta 3 (TGFB3), mRNA.
 CCTGTTAGACACATGGACAACAATCCAGCGCTACAAGGCACACAGTCGCTTCTCGT
 CCTCAGGGTTGCCAGCGCTTCTGGAAAGTCCTGAAGCTCTCGCAGTGCAGTGAGTTCATG
 CACCTTCTGCCAACGCTCAGTCTTGGGATCTGGGAGGCCCTGGTTTCTCCCTC
 CTTCTGCACGTCTGGGCTCTTCTCCAGGCCTGCCGTCCCCCTGGCCTCT
 TCCCAGCTCACACATGAAGATGCACTTGCAAAAGGGCTCTGGTGGCTGGCCCTGCTGAA
 CTTGCCACGGTCAGCCTCTCTGTCCACTTGCAACCACCTGGACTTCGGCACATCAA
 GAAGAAGAGGGTGGAAAGCATTAGGGACAGATCTTGAGCAAGCTCAGGCTCACAGCCC
 CCCTGAGCCAACGGTGTGACCCACGTCCCCTATCAGGTCTGGCCCTTACAACAGCAC
 CGGGGAGCTGGAGGAGATGCATGGGAGAGGGAGGAAGGCTGCACCCAGGAAAACAC
 CGAGTCGGAATACTATGCCAAAGAAATCCATAAATTGACATGATCCAGGGCTGGCGA
 GCACAAACGAACGGTGTCTGCCCTAAAGGAATTACCTCAAGGTTTCCGCTTCAATGT
 GTCCTCAGTGGAGAAAATAGAACCAACCTATTCCGAGCAGAATTCCGGGTCTGGGGT
 GCCCAACCCAGCTTAAGCGGAATGAGCAGAGGATCGAGCTTCCAGATCCTCGGCC

AGATGAGCACATTGCCAAACAGCGCTATATCGGTGGCAAGAATCTGCCACACGGGGCAC
 TGCGAGTGGCTGCTTTGATGTCACTGACACTGTGCGTGAGTGGCTGTTGAGAAGAGA
 GTCCAACCTAGGTCTAGAAATCAGCATTCACTGTCCATGTACACACCTTCAGCCAATGG
 AGATATCCTGGAAAACATTACGAGGTGATGGAATCAAATTCAAAGGCCTGGACAATGA
 GGATGACCAGGCCGTGGAGATCTGGGGCGCTCAAGAAGCAGAAGGATCACCAACCC
 TCATCTAACCTCATGATGATTCCCCACACCGGCTGACAACCCGGCCAGGGGGTCA
 GAGGAAGAAGCAGGGCTTGACACCAATTACTGCTTCCGCAACTGGAGGAGAACTGCTG
 TGTGCGCCCCCTACATTGACTTCCGACAGGATCTGGGCTGGAAGTGGTCCATGAACC
 TAAGGGCTACTATGCCAACCTCTGCTCAGGCCCTGCCATAACCTCCGCACTGCAGACAC
 AACCCACAGCACGGTGCTGGACTGTACAACACTCTGAACCCCTGAAGCATTGCCTCGCC
 TTGCTGCGTGGCCCCAGGACCTGGAGGCCCCTGACCATCCTGTACTATGTTGGAGGACCC
 CAAAGTGGAGCAGCTCTAACATGGTGGTAAGTCTTGTAAATGTAGCTGAGACCCAC
 GTGCGACAGAGAGAGAGGGAGAGAGAACCAACTGCCTGACTGCCGCTCCTGGGAAAC
 ACACAAGCAACAAACCTCACTGAGAGGCCTGGAGGCCACAACCTCGGCTCCGGCAAAT
 GGCTGAGATGGAGGTTCTTGGAACATTCTTCTGCTGGCTCTGAGAATCACGGT
 GGTAAAGAAAGTGTGGTTGGTAGAGGAAGGCTGAACCTTCAGAACACACAGACTTT
 CTGTGACGCAGACAGAGGGATGGGATAGAGGAAGGGATGTTAAGTTGAGATGTTG
 TGGCAATGGGATTGGCTACCCCTAAAGGGAGAAGGAAGGGCAGAGAATGGCTGGGTAG
 GCCAGACTGGAAGACACTTCAGATCTGAGGTTGGATTGCTCATGCTGTACCATCT
 GCTCTAGGAAATCTGGATTATGTTACAAAGGCAAGCATTAAAAAGACAGGTT
 ACGAAGACAAAGTCCCAGAATTGTATCTCATCTGCTGGGATTAAGGGCAAATCTATT
 CTTTGCAAACCTGTCCTACATCAATTAAACATCGTGGGCACTACAGGGAGAAAATCCA
 GGTCACTGCAGTCCCTGGCCATCAACTGTATTGGGCTTTGGATATGCTGAACGCAGAA
 GAAAGGGTGGAAATCAACCCCTCCCTGTCTGCCCTCTGGTCCCTCTCACCTCTCCC
 TCGATCATATTCCTGGACACTGGTTAGACGCCCTCCAGGTCAAGGATGCACATT
 TGGATTGTGGTTCCATGCAGCCTGGGCATTATGGGCTTCCCCACTCCCTCCAAG
 ACCCTGTGTTCAATTGGTGGCTGAAGCAGGTGCTACAACATGTGAGGCATTGGG
 AGCTGCACATGTGCCACACAGTGACTTGGCCCAGACGCATAGACTGAGGTATAAGACA
 AGTATGAATATTACTCTCAAAATCTTGTATAAAATAATTTTGGGCATCCTGGATG
 ATTTCATCTTCTGGAATTGTTCTAGAACAGTAAAGCCTTATTCTAAGGTG

>gi|4507465|gb|NP_003230.1|TGFB3 412aa linear transforming
 growth factor, beta 3 [Homo sapiens].

MKMHLQRALVVLALLNFATVSLSLSTCTTLDGFHIKKKRVEAIRQILSKRLTSPPEPT
 VMTHVPYQVLALYNSTRELLEEMHGEREEGCTQENTESEYYAKEIHKFDMIQGLAEHNEL
 AVCPKGITSKVFRFNVSSVEKNRTNLRAEFRLRVPNPSSKRNEQRRIELFQILRPDEHI
 AKQRYIGGKNLPTRGTAEWLSFDVTDTVREWLLRRESNLGLEISIHCPCHTFQPNGDILE
 NIHEVMEIKFKGVNDEDDHGRGDLGLRKQKDHHNPHLILMMIPHRLDNPGQGGQRKRR
 ALDTNYCFRNLEENCCVRPLYIDFRQDLGWKVHEPKGYYANFCSGPCPYLRSADTT
 VLGLYNTLNPEASASPCCVPQDLEPLTILYYVRTPKVEQLSNMVVKSCCKCS

>gi|21735553|gb|NM_002419.2|MAP3K11 3603bp mRNA Homo sapiens
 mitogen-activated protein kinase kinase kinase 11 (MAP3K11),
 mRNA.

ACAAAAGGGAGGAAGAAGGGAGCGGGTGGAGCCGTCGGGGCAAAGGAGACGGGGC
 CAGGAACAGGCAGTCTGGCCCAACTGCGGACGCTCCCTCCACCCCTGGCAAAAAGAC
 CCAACCGGAGTTGAGGCCTGCCCCCTGAAGGCCCCACCTTACACTTGGCGGGGCCGGAG
 CCAGGCTCCAGGACTGCTCCAGAACCGAGGAAGCTCGGGTCCCTCAAGCTAGCCATG
 GTGAGGCGCCGGAGGCCCCGGGCCCCACCCCCCGGCCTGACCACACTGCCCTGGGTGC

CCTCCTCCAGAAGCCCGAGATGCGGGGGCCGGGAGACAACACTCCTGGCTCCCCAGAGA
GGCGTGGGTCTGGGGCTGAGGGCCAGGGCCGGATGCCAGGTTCCGGACTAGGGCCTT
GGCAGCCAGCGGGGGTGGGACCACGGCACCCAGAGAAGGTCTCCACACATCCCAGCG
CCGGCTCCCGGCATGGAGCCCTGAAGAGCCTCTCCTCAAGAGCCCTCTAGGGTCATG
GAATGGCAGTGGCAGCGGGGTGGTGGGGCGGTGGAGGAGGCCGGCTGAGGGTCTCC
AAAGGCAGCGGGTTATGCCAACCCGGTGTGGACAGCCCTGTTGACTACGAGCCAGTGG
GCAGGATGAGCTGCCCTGAGGAAGGGTGACCGTGTGGAGGTGCTGTCGGGACGCAGC
CATCTCAGGAGACGAGGGCTGGTGGCGGGCAGGTGGTGGCCAGGTGGCATCTTCCC
GTCCAACATATGTGTCTGGGGTGGTGGCCCGCCCCCTGCGAGGTGGCCAGCTCCAGGA
GCTGCGGCTGGAGGGAGGTGATCGGCATTGGAGGCTTGGCAAGGTGTACAGGGCAGCTG
GCGAGGTGAGCTGGTGGCTGTGAAGGCAGCTGCCAGGAGCCCGATGAGGACATCAGTGT
GACAGCCGAGAGCGTTGCCAGGAGGCCGCTTCGCCATGCTGGCACACCCAAACAT
CATTGCCCTCAAGGCTGTGTGCCTGGAGGAGCCAACCTGTGCCCTGGTATGGAGTATGC
AGCCGGTGGGCCCTCAGCCGAGCTCTGGCCGGCGCGTGCCTCCCCATGTGCTGGT
CAACTGGGCTGTGCAGATTGCCGTGGATGCACTACCTGCACTGCGAGGCCATTGAGAGTGA
CGACATGGAGCACAAAGACCCTGAAGATCACCAGCTTGGCTGGCCGAGAGTGGCACAA
AACACACAAATGAGTGCCCGGGCACCTACGCCCTGGATGGCTCCTGAGGTATCAAGGC
CTCCACCTCTCTAAGGGCAGTGCAGTCTGGAGTTTGGGGTGTGCTGTGGAACTGCT
GACCGGGAGGTGCCATACCGTGGCATTGACTGCCTGCTGTGGCTATGGCGTAGCTGT
TAACAAGCTCACACTGCCATCCCACCTGCCAGGCGAGGCCCTCGCACAGCTTATGGC
CGACTGCTGGCGCAGGACCCCCACCGCAGGCCGACTTCGCCTCCATCCTGCAGCAGTT
GGAGGCGCTGGAGGCACAGGTCTACGGGAAATGCCCGGGACTCCTCCATTCCATGCA
GGAAGGCTGGAAGCGCAGATCCAGGGCTCTCGACGAGCTGCGAGCCAAGGAAAAGGA
ACTACTGAGCCCGAGGAGGAGCTGACCGAGCGGCCAGTGGAGCTAGAGGTGTCAGCGCGA
GCAGCTGCCGGCGCGAGCACCTGCTGGCCAGTGGAGCTAGAGGTGTCAGCGCGA
GCTGACGCTGCTGCTGCAGCAGGTGGACCGCGAGCGACCGCACGTGCCGCCGCCGCG
GACATTCAAGCGCAGCAAGCTCCGGCGCGACGGCGCGAGCGTATCAGCATGCCACT
CGACTTCAAGCACCGCATACCGTGCAGGCCCTACCCGGCTTGACCGGAGGAAACGT
CTTCGAGGTGGGCTGGGATTGCCACCTTCCCGGTTCCGAGCCATCCAGTTGGA
GCCTGCAGAGCCAGGCATGGGCCAGTCCCCCGACGTCTGGAGGACTCAAG
CAATGGAGAGCGCGAGCATGCTGGCTGGGCTCCAGTCCCCAAGCCTGGGAAGC
CCAGAATGGGAGGAGAAGGTCCCGCATGGACGAAGCCACATGGTACCTGGATTAGATGA
CTCATCCCCCTAGGATCTCCTCCACACCCCGAGCACTCAATGTAACCCCCCGGCC
TAGCCTGGAGCCCGAGGAGCCAAAGAGGCCCTGCTCCCGCAGAGCGCGGTAGCAGCTCTGG
GACGCCAAGCTGATCCAGCGGGCGCTGCGCGGCCCTGCTCGCCTCGCTGG
CCTGGCCCGACCTGCAGCCGCCGGAGGCCAGGACCGAGCGCGGGAGTCCCCGAC
AACACCCCCCACGCCAACGCCCGGCCCTGCCGACCGAGGCCCTTCCCGCTCAT
CTGCTTCTCGCTCAAGACGCCGACTCCCCGCCACTCCTGCACCCCTGTTGCTGGACCT
GGGTATCCCTGTGGCCAGCGGTAGCCAAGAGCCCCGACGTGAGGAGGAGCCCCGCG
AGGCACTGCTCACCCCCACCGGGACATCACGCTCTGCTGGCACCCAGGCACCC
ACGTTCACCAACCCCTGGGCTCATCAGCCGACCTCGGCCCTGCCAGGCCGAT
TGATCCCTGGAGCTTGTGTGTCAGCTGGCCAGGCCCTCTCCCGCATCACACAGCC
TGCAACCCCGAGCACCCCTGGACCTTGTCCCGGACTCAGACCCCTCTGGACTCCCC
ACCTGCCAACCCCTCCAGGGGGCCCCCAGGACTGCGAGGCCACAGACCAAAGACATGGG
TGCCCAGGGCCCTGGGTGCCGGAAAGCGGGCCTTGAGTGGGCCAGGCCACTCCCCGAG
CTCCAGCTGCCCTAGGAGGAGTCACAGCATACACTGGAACAGGAGCTGGTCAGCCTCTG

- 141 -

CAGCTGCCTCAGTTCCCCAGGGACCCCACCCCCCTTGCGGGTCAGGAACACTACACTG
CACAGGAAGCCTCACACTGGAAGGGGACCTGCGCCCCACATCTGAAACCTGTAGGTC
CCCCCAAGCTCACCTGCCCTACTGGGGCCAACACTGTACCCAGCTGGTGGGAGGACCAG
AGCCTGTCTCAGGGAATTGCCTGCTGGGTGATGCAGGGAGGGAGGTGCAGGGAAG
AGGGGCCGGCTCAGCTGTACCAAGCCTGCTACTGCGGCCCTGC
CCTAGGGCTTAGAGCATGGACCTCCTGCCCTGGGGTCATCTGGGCCAGGGCTCTGG
ATGCCTTCCTGCTGCCAGGCCAGGGTTGGAGTCTTAGCCTCGGATCCAGTGAAGCCAG
AAGCAAATAAACTCAAAAGCTGTCTCCCCAAAAAAAAAAAAAAA
AAA

>gi|4505195|gb|NP_002410.1|MAP3K11 847aa linear mitogen-activated protein kinase kinase kinase 11; mixed lineage kinase 3; SH3 domain-containing proline-rich kinase; protein-tyrosine kinase PTK1 [Homo sapiens].

MEPLKSLFLKSPLGSWNGSGGGGGGGRPEGSPKAAGYANPVWTALFDYEPEPSGQDEL
ALRKGDRVEVLSRDAISGDEGWWAGQVGGQVGIFPSNYVSRGGGPPPCEVASFQELRLE
EVIGIGGGFGKVYRGSWRGELVAVKAARQDPDEDISVTAESVRQEARLFAMLAHPNIIALK
AVCLEEPNLCLVMEYAAGGPLSRALAGRVRVPPHVLNVAVQIARGMHYLHCEALVPVIHR
DLKSNNILLQPIESDDMEHKTLLKITDFGLAREWHKTTQMSAAGTYAWMAPEVIKASTFS
KGSDVWSFGVLLWELLTGEVPYRGIDCLAVAYGVAVNKLTLPPIPSTCPEPFAQLMADCWA
QDPHRRPDFASILQQLEALEAQVLREMPLDSFHSMQEGWKREIQGLFDELRAKEKELLSR
EEELTRAAREQRSQAEQLRREHLLAQWELEVFERELTLLLQQVDRERPHVRRRRGTFKR
SKLRARDGGERISMPLDFKHRITVQASPGLRRRNFEVGPGRDPTFPRFRAIQLEPAEP
GQAWGRQSPRRLLEDSSNGERRACWAAGPSSPKPGEAQONGRRSRMDEATWYLDSDDSSPL
GSPSTPPALNGNPPRPSLEPEEPKRVPVAERGSSSGTPKLIQRALRGTALLASLGLRD
LQPPGGPGRERGESPTTPPTPAPCPTEPPPSPLICFSLKTPDSPPTPAPLLLGLIPV
GQRSAKSPRREEEPRGGTVSPPPGTSRSAPGTPGTPRSPLGLISRPRPSPLRSRIDPWS
FVSAGPRPSPLPSQPAPRAPWTLFPDSDFWDSPANPFQGGPQDCRAQTKDMGAQAP
WVPEAGP

>gi|4505784|gb|NM_000294.1|PHKG2 1571bp mRNA Homo sapiens phosphorylase kinase, gamma 2 (testis) (PHKG2), mRNA.
AAGGTGAGCGACTGCAGGCAAACCCGGCACAGCGCAGCTCGCGTCACCTGGCTCCTC
TGCCTGCCCTCAGGCCCGCCTCAGGATGACGCTGGACGTGGGGCCGGAGGAT
GAGCTGCCGACTGGCCGCCAAAGAGTTTACAGAACAGTACGACCCCTAAGGACGTC
ATCGGCAGAGGAGTGAGCTCTGGTCCGCCGTTGTGTTATCGAGCTACTGCCACGAG
TTTGGGTGAAGATTATGGAAGTGACAGCTGAGCGGCTGAGTCCTGAGCAGCTGGAGGAG
GTGCGGGAAAGCCACACGGCGAGAGACACACATCCTCGCCAGGTGCCGGCACCCCCAC
ATCATCACCTCATCGATTCTACGAGTCTTAGCTCATGTTCTGGTGTGTTGACCTG
ATGCGGAAGGGAGAGCTGTTGACTATCTCACAGAGAAGGTGGCCCTCTGAAAAGGAA
ACCAGGTCCATCATCGGGTCTCTGCTGGAAAGCAGTGAGCTTCTCCATGCCAACACATT
GTGCATCGAGATCTGAAGCCCAGAGAATATTCTCTAGATGACAATATGCAGATCCGACTT
TCAGATTGGTTCTCTGCCACTTGGAACCTGGCGAGAACGCTCGAGAGTTGTGTGGG
ACCCCAGGGTATCTAGCGCAGAGATCCTAAATGCTCCATGGATGAAACCCACCCAGGC
TATGGCAAGGAGGTCGACCTCTGGGCCTGTGGGGTGAATCTTGTTCACACTCCTGGCTGGC
TCGCCACCCCTCTGGCACCGGGCAGATCCTGATGTTACGCATGATCATGGAGGGCCAG
TACCAAGTTCAAGTCCCCGAGTGGGATGACCGTTCCAGCACTGTCAAAGACCTGATCTCC
AGGCTGCTGCAGGTGGATCCTGAGGCACGCCTGACAGCTGAGCAGGCCCTACAGCACCCCC
TTCTTGAGCGTTGTGAAGGCAGCCAACCTGGAACCTCACCCCCGCCAGCGGTTCCGG

GTGGCAGTGTGGACAGTGCTGGCTGGACGAGTGGCCCTAACGCACCCATCGTGTACGG
 CCACTGACCAAGAAATGCACTGTTGAGGGACCCTTATCGCCTGGTCAGTCGGCACCTC
 ATCGACAACCTGTGCCCTCCGGCTCTACGGGACTGGTAAAGAAAGGGGAGCAGCAGAAC
 CGGGCGGCTCTCTTCAGCACCGGCCCCCTGGGCCTTCCCATCATGGGCCTGAAGAG
 GAGGGAGACTCTGCTGCTATAACTGAGGATGAGGCCGTGCTGTGCTGGCTAGGACCTC
 AACCCCAGGGATTCCCAGGAAGCAGAACTCTCCAGAAGAAGGGTTTGATCATTCCAGCT
 CCTCTGGCCTCTGGCCTCAGGCCACTAATGATCCTGCTACCCCTTGAAGACCAAGCCCG
 GTACCTCTCTCCCCACTGGCCAGGACTCTGAGATCAGAGCTGGGTGGAAGGGAGCCATT
 CTGAACGCCACGCCCTGGCCCGTCAGTGCTGCATGCATATGAAATAATCTGCT
 ACACGCCAGGG

>gi|4505785|gb|NP_000285.1|PHKG2 406aa linear phosphorylase kinase, gamma 2 (testis); Phosphorylase kinase, gamma 2 (testis/liver) [Homo sapiens].

MTLDVGPEDELPDWAAAKEYQKYDPKDVIGRGVSSVRCVHRATGHEFAVKIMEVTAE
 RLSPEQLEEVREATRRETHILRQVAGHPHIITLIDSYESSSFMFVLFDLMRKGELFDYLT
 EKVALSEKETRSIMRSLLEAVSFLHANNIVHDLKPNENILLDDNMQIRLSDFGSCHLEP
 GEKLRELCGTPGYLAPEILKCSMDETHPGYKVEVDLWACGVILFTLLAGSPPFWHRRQIL
 MLRMIMEQYQFSSPEWDRSSTVKDLISRLLQVDPEARLTAEQALQHPFFERCEGSQPW
 NLTPRQRFRVAVWTVAAGRVALSTHRVRPLTKNALLRDPYALRSVRHLIDNCAFRLYGH
 WVKKGEQQNRAALFQHRPPGPFPIMGPEEGDSAITEDEAVLVLG

>gi|5453789|gb|NM_006169.1|NNMT 952bp mRNA Homo sapiens
 nicotinamide N-methyltransferase (NNMT), mRNA.

TGAACCTGGATGCTGTTAGCCTGAGACTCAGGAAGACAACTCTGCAGGGTCACTCCCT
 GGCTTCTGGAGGAAAGAGAAGGAGGGCAGTGCTCCAGTGGTACAGAAGTGAGACATAATG
 GAATCAGGCTTCACCTCAAGGACACCTATCTAACGCATTAAACCTGGGATTACCTA
 GAAAAATATTACAAGTTGGTCTAGGCACTCTGCAGAAAGCCAGATTCTTAAGCACCTT
 CTGAAAAATCTTCAAGATATTCTGCCTAGACGGTGTGAAGGGAGACCTGCTGATTGAC
 ATCGGCTCTGGCCCCACTATCTACAGCTCCTCTGCTTGAACTCTTAAGGAGATC
 GTCGTCACTGACTACTCAGACCAGAACCTGCAGGAGCTGGAGAAAGTGGTGAAGAAAGAG
 CCAGAGGCCTTGACTGGTCCCCAGTGGTACCTATGTGTGATCTGAAGGAAACAGA
 GTCAAGGGTCCAGAGAAGGAGGAGAAGTTGAGACAGGCGGTCAAGCAGGTGCTGAAGTGT
 GATGTGACTCAGAGCCAGCCACTGGGGCCGTCCCTACCCCCGGCTGACTGCGTGCTC
 AGCACACTGTGTCTGGATGCCGCTGCCAGACCTCCCCACCTACTGCAGGGCGCTCAGG
 AACCTCGGCAGCCTACTGAAGCCAGGGGGCTCCTGGTACATGGATGCGCTCAAGAGC
 AGCTACTACATGATTGGTGAGCAGAAGTTCTCCAGCCTCCCCCTGGCCGGAGGCAGTA
 GAGGCTGCTGTGAAAGAGGCTGGTACACAATGAATGGTTGAGGTGATCTCGCAAAGT
 TATTCTTCCACCATGGCAACAACGAAGGACTTTCTCCCTGGTGGCGAGGAAGCTGAGC
 AGACCCCTGTGATGCCTGTGACCTCAATTAAAGCAATTCCCTTGACCTGTCA

>gi|5453790|gb|NP_006160.1|NNMT 264aa linear nicotinamide N-methyltransferase [Homo sapiens].

MESGFTSKDTYLSHFNPRDYLEKYYKFGSRHSAESQILKLLKNLFKIFCLDGVKGDLLI
 DIGSGPTIYQLLSACESFKEIVVTDYSDQNLQELEKWLKEPEAFDWSPVVTYVCDLEG
 RVKGPEKEEKLQRQAVKQVLKCDVTQSQPLGAVPLPPADCVLSTLCLDAACPDLPTYCRAL
 RNLGSLLKPGGFLVIMDALKSSYYMIGEKFSSLPLGREAVEAAVKEAGYTIEWFEVISQ
 SYSSTMANNEGGLFSLVARKLSRPL

>gi|4507668|gb|NM_003295.1|TPT1 830bp mRNA Homo sapiens tumor protein, translationally-controlled 1 (TPT1), mRNA.

CCCCCCCAGCGCCGCTCCGGCTGCACCGCGCTCGCTCCGAGTTCAAGCTGGCTCGTGTCTAAGCTAGCGCCGTCGTCGCTCCCTTCAGTCGCCATCATGATTATCTACCAGGGACCTCATTCAAGCCACGATGAGATGTTCTCCGACATCTACAAGATCCGGGAGATCGCGACGGGTTGTGCCTGGAGGTGGAGGGAAAGATGGTCAGTAGGACAGAAAGGTAAACATTGATGACTCGCTCATTGGTGGAAATGCCTCCGCTGAAGGCCCCGAGGGCGAAGGTACCGAAAGCACAGTAATCACTGGTGTGATATTGTCATGAACCACATCACCTGCAGGAAACAAGTTCACAAAAGAAGCCTACAAAGAGTACATCAAAGATTACATGAAATCAATCAAAGGAAACTTGAAGAACAGAGACCAAGAAAGACTAAACCTTTATGACAGGGCTGCAGAACAAATCAAGCACATCCTGCTAATTCAAAAACCTACAGTTCTTATTGGTAAAACATGAATCCAGATGGCATGGTTGCTCTATTGGACTACCGTGAGGATGGTGTGACCCATATATGATTTCTTAAGGATGGTTAGAAATGGAAAAATGTTAACAAATGTGGCAATTATTTGGATCTATCACCTGTCTACATAACTGGCTCTGCTTGTCTACACACAAACACCAGGACTTAAGACAAATGGACTGATGTCTACCTGAACGCTTCAATTGTTAAGAAAAACATGTCATGTAGGTTGTCTAAAATAAAATGCATTAAACTCATTGAGAG

>gi|4507669|gb|NP_003286.1|TPT1 172aa linear tumor protein, translationally-controlled 1; fortilin; histamine-releasing factor [Homo sapiens].

MIIYRDLISHDEMFSIDYKIREIADGLCLEVEGKMSRTEGNIDDSIIGGNASAEGPEGE
GTESTVITGVDIVMNHHLQETSFTKEAYKKYIKDYMKSIKGKLEEQRPERVKPFMTGAAE
QIKHILANFKNYQFFIGENNMNPDMVALDYREDGVTPYMFIFKDGLEMEKC

>gi|27477073|gb|NM_018725.2|IL17BR 2077bp mRNA Homo sapiens interleukin 17B receptor (IL17BR), transcript variant 1, mRNA.
AGCGCAGCGTGCAGGGTGGCTGGATCCCGCGCAGTGGCCCGCGATGTCGCTCGTGTGC
TAAGCCTGGCCGCGCTGTGCAGGAGCGCCGTACCCCGAGAGCCGACCGTTCAATGTGGCT
CTGAAACTGGGCCATCTCCAGAGTGGATGCTACAACATGATCTAATCCCCGGAGACTTGA
GGGACCTCCGAGTAGAACCTGTTACAACACTAGTGTGCAACAGGGACTATTCAATTGTA
TGAATGTAAGCTGGGTACTCCGGGCAGATGCCAGCATCCGCTGTTGAAGGCCACCAAGA
TTTGTGTGACGGGCAAAAGCAACTTCCAGTCTACAGCTGTGAGGTGCAATTACACAG
AGGCCTTCCAGACTCAGACCAGACCCCTCTGGTGTAAATGGACATTTCCTACATCGGCT
TCCCTGTAGAGCTGAACACAGTCTATTCTATTGGGCCATAATATTCTAATGCAAATA
TGAATGAAAGATGGCCCTTCCATGTCGTGAATTTCACCTCACAGGCTGCCTAGACCACA
TAATGAAATATAAAAAAAAGTGTGTCAGGCCAGCTGTGGATCCGAACATCACTG
CTTGTAAAGAAGATGAGGAGACAGTAGAAGTGAACCTCACAAACACTCCCCTGGAAACA
GATACATGGCTTATCCAACACAGCACTATCATGGTTTCTCAGGTGTTGAGCCAC
ACCAGAAGAAACAAACGCGAGCTTCAGTGGTGAATTCCAGTGACTGGGATAGTGAAGGTG
CTACGGTGCAGCTGACTCCATATTCTACTTGTGGCAGCGACTGCATCCGACATAAAG
GAACAGTTGTGCTCTGCCACAAACAGCGTCCCTTCCCTGGATAACAACAAAAGCA
AGCCGGGAGGCTGGCTGCCTCTCCCTGCTGTCTGCTGGGCCACATGGGTGCTGG
TGGCAGGGATCTATCTAATGTGGAGGCACGAAAGGATCAAGAAGACTTCTTTCTACCA
CCACACTACTGCCCTTCAAGGTTCTGTGGTTACCCATCTGAAATATGTTCCATC
ACACAATTGTTACTTCAGTGAATTCTTCAAAACCATGCAAGAAGTGAAGGTCTACCTTG
AAAAGTGGCAGAAAAGAAAATAGCAGAGATGGGTCCAGTGCAAGTGGCTGCCACTCAA
AGAAGGCAGCAGACAAAGTCGTCTCCTCTTCCAATGACGTCAACAGTGTGCGATG
GTACCTGTGGCAAGAGCGAGGGCAGTCCCAGTGAGAACTCTCAAGACCTCTCCCCCTTG
CCTTTAACCTTCTGCAAGTGATCTAAGAAGCCAGATTCTGCACAAATACGTGGTGG
TCTACTTTAGAGAGATTGATACAAAGACGATTACAATGCTCAGTGCTGCCACTCAA
ACCACCTCATGAAGGATGCCACTGCTTCTGTGCAGAACCTCTCCATGTCAAGCAGCAGG

- 144 -

TGTCAGCAGGAAAAAGATCACAGCCTGCCACGATGGCTGCTGCTCCTGTAGCCCACCC
ATGAGAAGCAAGAGACCTTAAAGGCTTCCATCCCACCAATTACAGGGAAAAACGTGTG
ATGATCCTGAAGCTTACTATGCAGCCTACAAACAGCCTTAGTAATTAAAACATTTATAC
CAATAAAATTTCAAATATTGCTAACTAATGTAGCATTAACTAACGATTGGAAACTACAT
TTACAACCTCAAAGCTGTTTATACATAGAAATCAATTACAGTTAATTGAAAACATATA
ACCATTTGATAATGCAACAATAAACGATCTCAGCCAAACATCTAGTCTTCATAGACC
ATGCATTGCGAGTGTACCCAGAACTGTTAGCTAATATTCTATGTTAATTATGAATACT
AACTCTAAGAACCCCTCACTGATTCACTCAATAGCATCTTAAGTAAAAACCTCTATT
CATGCAAAAAATCATTGTTTAAAGATAACAAAAGTAGGGAATAAACAGCTGAACCCAC
TTTAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

>gi|27477074|gb|NP_061195.2|IL17BR 502aa linear IL-17B
receptor isoform 1 precursor; IL-17B receptor; interleukin 17
receptor homolog 1; interleukin 17 receptor homolog; cytokine
receptor CRL4 [Homo sapiens].

MSLVLLSLAALCRSAVPREPTVQCGSETGPSPEWMLQHDLIPGDLRDLRVEPVTSVATG
DYSILMNVSWVLRADASIRLLKATKICVTGKSNFQSYSVRCNYTEAFQTQTRPSGGKWT
FSYIGFPVELNTVYFIGAHNIPNANMNEGSPSMSVNFTSPGCLDHIMKYKKCVKAGSLW
DPNITACKNEETVEVNFTTPLGNRYMALIQHSTIIGFSQVFPHQKKQTRASVVIPT
GDSEGATVQLTPYFPTCGSDCIRHKGTVVLCPQTGVFPPLDNKSKPGGWLPLLLLSLLV
ATWVLVAGIYLMWRHERIKKTSFSTTLLPPIKVLVVYPSEICFHHTICYFTEFLQNHCR
SEVILEWKQKKIAEMGPVQWLATQKAADKVVFLLSNDVNSVCDGTCGKSEGSPSENSQ
DLFPLAFNLFCSDLRSQIHLHKYVVVYFREIDTKDDYNALSVCPKYHLMKDATAFCAELL
HVKQQVSAGKRSQACHDGCCSL

>gi|14165275|gb|NM_032411.1|ECRG4 772bp mRNA Homo sapiens
esophageal cancer related gene 4 protein (ECRG4), mRNA.

GGATAACCCGCGGCCGCTGCCGCTCGCACCCCTCTCCCGGCCGGTTCTCCCTCG
CAGCACCTCGAAGTGCGCCCTCGCCCTCTGCTCGCGCCCCGCCATGGCTGCCTCC
CCCGCGGCCCTGCTGCTGGCCCTGACCGGGCTGGCGCTGCTCTGCTCCTGTGCTGG
GGCCCGAGTGGCATAAGTGGAAATAAACTCAAGCTGATGCTTCAAAACGAGAACACCT
GTTCCAACTAAGACTAAAGTGGCCGTTGATGAGAATAAGCCAAAGAAATTCTGGCAGC
CTGAAGCGCCAGAACGGCAGCTGGGACCGGACTCGGCCCCGAGGTGCAGCAGTGGTAC
CAGCAGTTCTCTACATGGCTTGACGAAGCGAAATTGAAGATGACATCACCTATTGG
CTTAACAGAGATCGAAATGGACATGAATACTATGGCGATTACTACCAACGTCACTATGAT
GAAGACTCTGCAATTGGTCCCCGGAGCCCTACGGCTTGGCATGGAGCCAGCGTCAAC
TACGATGACTACTAACCATGACTTGGCACACGCTGTACAAGAACAAATAGCATTCTCT
TCATGTATCTCTAAATGCCTTACACTACTTGGTTCTGATTGCTCTATTCAGCAGATC
TTTCTACCTACTTGGTGATCAAAAAGAAGAGTTAAAACACATGTAATGCCTTT
GATATTTCATGGGAATGTTAAAAATAGAAATAAGCATTGTTAAAACGA

>gi|14165276|gb|NP_115787.1|ECRG4 148aa linear esophageal
cancer related gene 4 protein [Homo sapiens].

MAASPARPAVLALTGLALLLWCWGPAGISGNKLKMLQKREAPVPTKTKVAVDENAKE
FLGSLKRQKRQLWDRTRPEVQQWYQQFLYMGFDEAKFEDDITYWLNDRNGHEYGDYYQ
RHYDEDSAIGPRSPYGFHGASVNYDDY

- 145 -

>gi|24025684|gb|NM_003017.2|SFRS3 1403bp mRNA Homo sapiens splicing factor, arginine/serine-rich 3 (SFRS3), mRNA.

CCGGGTGAGTGAGAGAGTTGGTGGTGGCGGAGGAAAGCGGAAAGACTCATCGGA
GCGTGTGGATTGAGCCCGCATTAAACCTAGATCTGAAATGCATCGTATTCC
TGTCCATTGGACTGTAAGGTTATGTAGGCAATCTGGAAACAATGGCAACAAGACGGAA
TTGGAACGGGCTTTGGCTACTATGGACCCTCGAAGTGTGGTTGCTAGAAACCCA
CCCGGCTTGCTTTGGTAAGATCCCCGAGATGCAGCTGATGCAGTCCGAGAG
CTAGATGGAAGAACACTATGTGGCTGCCGTGTAAAGAGTGGAACTGTCAAATGGTAAAAAA
AGAAGTAGAAATCGTGGCCACCTCCCTTGGGTCGTCGCCCTCGAGATGATTATCGT
AGGAGGAGTCCTCACCTCGCAGATCTCAAGAAGGAGAAGCTCTCTCGCAGCCGG
AGCAGGTCCTTCTAGAGATAGGAGAAGAGAGATCGCTGTCTCGGAGAGAAAATCAC
AAGCCGTCCCACCTCTAGGTCTCGTAGTCATCTAGGTCAAATGAAAGGAAATAG
AAGACAGTTGCAAGAGAAGTGGTGTACAGGAAATTACTTCATAAGCTTGGCATTAAAGATTTAGC
AGAAAATTCAAGTTGTTGAGACTTCATAAGCTTGGCATTAAAGATTTAGC
TGGTCAAATCTGTTGCTCTGAAACAGTGACACAAAGGTGTAAATTCTCTATGGTTGAA
AATGGATCATACTGAGGATGTAATACCAAGAATTGTTACTTACAATGTTCCCTTAAGCA
AAATTGAATTGCTTGAACTTTAGTTATGCACAGACTGATAATAAACCTCTAACCTG
CCAGCGGAAGTGTGTTTTAAATTAAATACAGAAACACTGGCAAAATTGAAC
TAAGATTACTTTTCCATAGCTGGATATAGGCTGCAGCTATAGTTGAACAAGCAG
TCTTAAAAACTGCTGTGAAACACAGGCCATCAGGGAAACGAAATGCTGCACTATTAAA
TTAGAGGTTTGAAATCCAACCTCATCCTGGCAGAGGTTGCCTAGTTGTATAGA
ATGTTAAGTTCAAGAAAGTTACCTTGCTTAGGTCTAAAGTTCATTGATTGCT
GTATATGGATACATGGCTGTCGTGACATTCTTATGTCAAATTGATTCAAAAT
GTCCTGCCAGTTAAGGGTACATTGTAGAGCCAACTTGAGTTACTGTGCAAGATT
TTTCATGCTGTCAATTGTAAATGTTGTGAGAATCCTGGATTAAAGTTGGTTA
CAAATTGTTAAAAAAAAAAAAAA

>gi|4506901|gb|NP_003008.1|SFRS3 164aa linear splicing factor, arginine/serine-rich 3; splicing factor, arginine//serine-rich, 20-kD [Homo sapiens].

MHRDSCPLDKVYVGNLGNNGNKTTELERAFIGYYGPLRSVWVARNPPGAFVEFEDPRDAADAVRELDGRTLCGCRVRVELSNGEKRSRNRGPPPSWGRPRDDYRRRSPPPRRSPRRRSFSRSRSRSLSRDRRRERSLRERNHKPSRSRSRSRSNERK

>gi|4759097|gb|NM_004593.1|SFRS10 1972bp mRNA Homo sapiens splicing factor, arginine/serine-rich 10 (transformer 2 homolog, Drosophila) (SFRS10), mRNA.

GAATTGGCACGAGGGCGACCGGCGCGTCGTGCGGGCTGCGCGGAGCCTCTTAAGGA
AGGTGCAAGAGGTTGGCAGCTCGATTGAAGCACATCGACCGCGACAGCAGCCAGGAGT
CATGAGCGACAGCGCGAGCAGAACTACGGCGAGCGGAATCCGTTCTGCTCCAGAAG
TGGAAAGTGTCACTGGATCGGGAAATCTGCAAGGCATAACCCCTGCAAGGTCTCGCTCCAA
GGAAGATTCCAGGCCTCCAGATCAAAGTCCAGGTCCGATCTGAATCTAGGTCTAGATC
CAGAAGAAGCTCCGAAGGCATTATAACCGGTACGGTCTCGCTCCGCTCCATAGACG
ATCACGTAGCAGGTCTACAGTCGAGATTATCGTAGACGGCACAGCCACAGCCATTCTCC
CATGTCTACTCGCAGGCCTGATGTTGGAATCGGGCAAATCCTGATCCTAACTGTTGTCT
TGGAGTATTGGGCTGAGCTTGTACACCACAGAAAGAGATCTAAGAGAAGTGTCTCAA
ATATGGTCCCATTGCCGATGTGTCTATTGTATATGACCAGCAGTCTAGGCCTCAAGAGG
ATTGCTTGTATATTTGAAAATGTAGATGATGCCAAGGAAGCTAAAGAACGTGCCAA
TGGAAATGGAGCTTGTAGGGCGTAGGATCAGAGTTGATTCTCTATAACAAAAAGACCACA

TACGCCAACACCAGGAATTACATGGGGAGACCTACCTATGGCAGCTCGCCGTGGGA
 TTACTATGACAGAGGATATGATCGGGCTATGATGATCGGGACTACTATAGCAGATCATA
 CAGAGGAGGAGGTGGAGGAGGAGGATGGAGAGCTGCCAAGACAGGGATCAGATT
 TAGAAGGCAGGTACCTCTCCTTACTATAGTCGTGGAGGATACAGATCACGTTCCAGATC
 TCGATCATACTCACCTCGCTATTAAAGCATGAAGACTTCTGAAACCTGCCCTAGAG
 CTGGGATATTGTTGTGGCAATATTTTATTGTCTTGTGTTAAAAGTGAACAGTC
 CTAGTGAAGTTAGGTGACTTTACACCTTACGATGACTACTTTGGTAGTTGAAAT
 GCTGTTTCATTCTGCATTGTGAGTTGGCTTGTTCCAAGTTAAGTGTGTTGAGA
 AAAGTATGTTTGATGTATTTTACAGTCTAAATTTGACTGCTGAGAAGTTCTAT
 TGTACAAAACCTCATTAAAAGGTTTCTACTGAATCCAGGGTATTCTGAAGATCGAAG
 CCTGTGAAAATGCTACCAAATGCCAAAAGCAACAAATAAACAGTTGATTTACTTT
 CTTCTAACATATCAATGCTTAGCAGAACTATTGAGATTGTCAGTAGTAAATTAAAGAC
 AAATGCCCGTTTCCAGTCCATGAAACATACCAACTTATATACCTGCAACTAAGTG
 TTAAAATTATGCTCTGTAACTCTGACTGCTAGTATTAGAACTAAAATCTAAAATAC
 AGCCAGTGCTTAATGCTTATATCAATGTGGATTGTCGGCTTTATGTAATCTGTAATAT
 GTATAGCAGGAAATACGAAGAGTTACACAGTGTATGCCCTAAAAGGCTGTTCTAAAGG
 TGTTACAAGGGATAATGGTATTCACACTAGTTACGCAAGTGACAATACATTCCACCA
 CAAATACACTCTGTTCTTAGCTTTAGACTATATGAAAAAACCGGGTGCTCAAAGT
 ACATGATAAGGAAACACTATACCTGTCATGGATGAACCTGAAGACTTGCCTGTTCAATT
 TTAAATATTATTCAGGTCTTGCTTACCAAAGGAGGCCAATTCACTCAAATGTT
 TGAGAACTGTGTTAAATAACGCAAATGAAAAAGAAAAAAAAAAAAAA

>gi|4759098|gb|NP_004584.1|SFRS10 288aa linear splicing factor, arginine/serine-rich 10 (transformer 2 homolog, Drosophila); splicing factor, arginine/serine-rich (transformer 2 Drosophila homolog) 10 [Homo sapiens].

MSDSGEQNYGERERSRSASRGSAHSGKSARHTPARSRSKEDSRRSRSKRSRSESRSRS
 RRSSRRHYTRSRSRSRSHRRSRSSRSYSDYRRRHSHSHSPMSTRRRHVGNRANPDPNCL
 GVFLSLYTTERDLREVFSKYGPPIADVSIVYDQQSRRSRGFVFENVDDAKEAKERAN
 GMELDGRRIRVDFSITKRPHTPTPGIYMGRPTYGSSRRDYYDRGYDRGYDDRDYYRSY
 RGGGGGGGGWRAAQDRDQIYRRRSPSPYYSRGYRSRSRSRSYSPRRY

>gi|5803206|gb|NM_006758.1|U2AF1 904bp mRNA Homo sapiens U2 (RNU2) small nuclear RNA auxillary factor 1 (U2AF1), mRNA.
 GGAATTCCGTCGACGGCAGCGGCGGGCGGGAAATGGCGGAGTATCTGGCCTCCA
 TCTTCGGCACCGAGAAAGACAAAGTCAACTGTTCATTTATTCAAAATTGGAGCATGTC
 GTCATGGAGACAGGTGCTCGGTTGCACAATAACCGACGTTAGCCAGACCATTGCC
 TCTTGAACATTACCGTAACCTCAAAACTCTCCAGTCTGCTGACGGTTGCGCTGTG
 CCGTGAGCGATGTGGAGATGCAGGAACACTATGATGAGTTTGAGGAGGTTTACAG
 AAATGGAGGAGAAGTATGGGAAGTAGAGGAGATGAACGTCGTGACAACCTGGAGACC
 ACCTGGTGGGAACGTGTACGTCAAGTTCCCGTGAGGAAGATGCGGAAAAGGCTGTGA
 TTGACTTGAATAACCGTTGGTTAATGGACAGCCATCCACGCCAGCTGTCACCGTG
 CGGACTTCAGAGAACGCTGCTGCCGTCACTGAGATGGAGAATGCACACGAGGCGGCT
 TCTGCAACTTCATGCATTGAAGCCCATTCCAGAGAGCTGCCGGAGCTGTATGGCC
 GCCGTGCAAGAACATAGATCAAGATCCCCATCCGGAGCGCTGTTCTCGGTCTAGAG
 ACCGTGGTCGTGGCGGTGGCGGTGGAGGTGGAGGCGGACGGGAGCGTGACA
 GGAGGCGGTCGAGAGATCGTAAAGATCTGGCGATTCTGAGCCATGCCATTACCTT
 ATGTCGTGCTAGAAAGTGTGAGTTGATTGACCAACCAGTCATAAGGGAAATTGTTA
 AAAACACAAAAACATACAAAGATGGGTTCTGAATAAAAATTGAGTGATAA

CAGT

>gi|5803207|gb|NP_006749.1|U2AF1 240aa linear U2 small nuclear RNA auxillary factor 1; U2 snRNP auxiliary factor small subunit; splicing factor U2AF 35kDa subunit [Homo sapiens].

MAEYLASIFGTEKDKVNCFSYFKI GACRHGDRC SRLHNKP TSQTI ALLNI YRNPQNSQ

SADGLRCAVSDVEMQEHYDEFFEEVFTEMEEKYGEVEEMNVCDNLGDHLVGNVVVKFRRE

EDAEKAVIDLNNRFNGQPIHAELSPVTDFREACCROYEMGECTRGGFCNFMHLP I SRE

LRLRELYGRRRKKHRSRSRSRERRSRDRGRGGGGGGGGGRERDRRSRDRERSGRF

>gi|23308726|gb|NM_003242.3|TGFBR2 2090bp mRNA Homo sapiens transforming growth factor, beta receptor II (70/80kDa) (TGFBR2), mRNA.

GTTGGCGAGGGAGTTCCCTGTTCCCCCGCAGCGCTGAGTTGAAGTTGAGTGAGTCACTCG

CGCGCACGGAGCGACGACACCCCCCGCGCGTGCACCCGCTCGGGACAGGAGCCGACTCCT

GTGCAGCTCCCTCGGCCGCCGGGCTCCCCGCGCCTGCCGGCCTCCAGGCCCTCC

TGGCTGGCGAGCGGGGCCACATCTGGCCCGCACATCTGCCTGCCGGCCGGCGCGGGG

TCCGGAGAGGGCGCGCGCGAGCGCAGCCAGGGTCCGGGAAGGCGCCGTCCGTGCGCT

GGGGGCTCGGTCTATGACGAGCAGCGGGTCTGCCATGGGTGGGGCTGCTCAGGGGCC

TGTGGCCGCTGCACATCGTCCCTGTGGACGGTATGCCAGCAGATCCCACGCCACGTT

AGAAAGTCGGTTAATAACGACATGATAGTCACTGACAACAACGGTGCA GTCAAGTTCCAC

AACTGTGTAAATTGTGATGTGAGATTTCACCTGTGACAACCAGAAAATCCTGCATGA

GCAACTG CAGCATCACCTCCATCTGTGAGAACGCCACAGGAAGTCTGTGTGGCTGTATGGA

GAAAGAATGACGAGAACATAACACTAGAGACAGTTGCCATGACCCCAAGCTCCCCTACC

ATGACTTTATTCTGGAAGATGCTGCTCTCAAAGTGCATTATGAAGGAAAAAAAAGC

CTGGTGAGACTTCTTCATGTGTTCTGTAGCTCTGATGAGTGCAATGACAACATCATCT

TCTCAGAAGAATAAACACCAGCAATCTGACTTGTGCTAGTCATATTCAAGTGACAG

GCATCAGCCTCTGCCACC ACTGGGAGTTGCCATATCTGT CATCATCATCTTCTACTGCT

ACCGCGTTAACCGGCAGCAGAACGCTGAGTTCAACCTGGAAACCGGCAAGACGCCAAC

TCATGGAGTTCAGCGAGCACTGTGCCATCATCCTGGAAAGATGACCGCTCTGACATCAGCT

CCACGTGTGCCAACACATCAACCACACAGAGCTGCTGCCATTGAGCTGGACACCC

TGGTGGGGAAAGGTGCTTGCTGAGGTCTATAAGGCCAAGCTGAAGCAGAACACTTCAG

AGCAGTTGAGACAGTGGCAGTCAAGATCTTCCCTATGAGGGAGTATGCCTCTTGAAGA

CAGAGAAGGACATCTCTCAGACATCAATCTGAAGCATGAGAACATACTCCAGTTCTGA

CGGCTGAGGAGCGGAAGACGGAGTTGGGAAACAATACTGGCTGATCACGCCCTCCACG

CCAAGGGCAACCTACAGGAGTACCTGACGCCATGTCATCAGCTGGGAGGACCTGCGCA

AGCTGGGAGCTCCCTGCCCGGGGATTGCTCACCTCACAGTGATCACACTCCATGTG

GGAGGCCAACATGCCCCTCGTGCACAGGGACCTCAAGAGCTCCAATATCCTCGTGAAGA

ACGACCTAACCTGCTGCTGTGACTTTGGCTTCCCTGCGTCTGGACCCCTACTCTGT

CTGTGGATGACCTGGCTAACAGTGGCAGGTGGGAACTGCAAGATACTGGCTCCAGAAG

TCCTAGAATCCAGGATGAATTGGAGAATGCTGAGTCCTCAAGCAGACCGATGTCTACT

CCATGGCTCTGGTCTGGAAATGACATCTCGCTGTAATGCAGTGGGAGAAGTAAAG

ATTATGAGCCTCCATTGGTTCCAAGGTGCCGGAGCACCCCTGTGTCGAAAGCATGAAGG

ACAACGTGTTGAGAGATCGAGGGCGACCAGAAAATCCCAGCTTCTGGCTCAACCACCGG

GCATCCAGATGGTGTGAGACGTTGACTGAGTGCTGGGACCACGACCCAGAGGCCCGTC

TCACAGCCCAGTGTGTCAGAACGCTTCAGTGAGCTGGAGCATCTGGACAGGCTCTCGG

GGAGGAGCTGCTGGAGGGAGAAGATTCCCTGAAGACGGCTCCCTAAACACTACCAAATAGC

TCTTATGGGCAGGCTGGCATGTCAAAGAGGCTGCCCTCTCACCAAA

- 148 -

>gi|23308727|gb|NP_003233.3|TGFBR2 567aa linear transforming growth factor, beta receptor II (70/80kDa); transforming growth factor, beta receptor II (70-80kD) [Homo sapiens].

MGRGLLRGLWPLHIVLWTRIASTIPPHVQKSNNDMIVTDNNGAVKFPQLCKFCDVRFST
CDNQKSCMSNCSITSICEKPQEVCAVWRKNDENITLETVCHDPKLPYHDFILEDAAASPK
CIMKEKKPGETFFMCSCSSDECNDNIIFSEEEYNTSNPDLLVIFQVTGISSLPPILGVAI
SVIIIFYCYRVNRQQKLSSTWETGKTRKLMFSEHCAIILEDDRSDISSTCANNINHNT
LLPIELDTLVGKGRFAEVYKAALKQNTSEQFETVAVKIFPYEEYASWKTEKDIFSDINLK
HENILQFLTAERKTELKGQYWLTAFHAKGNLQEYLTRHVISWEDLRKLGSLSARGIAH
LHSDDHTPCGRPKMPIVHRDLKSSNILVKNDLTCCLCDFGLSLRIDPTLSVDDLANSQVG
TARYMAPEVLESRMNLENAESFKQTDVYSMALVLWEMTSRCNAVGEVKDYEPFGSKVRE
HPCVESMKDNVLDRGRPEIPSFWLNHQGIQMVCETLTECWHDPEARLTAQCVAERFSE
LEHLDRLSGRSCSEEKIPEDGSLNTTK

>gi|5174728|gb|NM_006022.1|TSC22 1725bp mRNA Homo sapiens transforming growth factor beta-stimulated protein TSC-22 (TSC22), mRNA.

CGCCTCTCACGGCACTGGGATCCGCATCTGCCCTGGGATCATCAAGCCCTAGAACGCTGGG
TTTCTTAAATTAGGGCTGCCGTTTCTGTTCTCCCTGGGCTGGAAAGCCAGAACGAT
TTTATCTAGCTTATAACAAGGCTGCTGGTGTTCACCTCTTTTCCACGAGGGTGTTTG
GCTGCAATTGCATGAAATCCAATGGGTAGACCAGTGGCAGGGATCTAGGAGTTTAC
AACTGAGACATTTCAATTCTTCTTGTATCCTTGCTGGGACTGAAAACGCTTCTG
TGAGACTTGATAATAGCTCTGGTAGCAAGTGTGGTAGCTATTGACAACAAAATCGAGC
AAGCTATGGATCTAGTGAAGAACCCATTGATGTATGGCTCAGAGAAGTGGAGGTCC
TCAAAGAGCAAATCAAAGAACTAATAGAGAAAATTCCCAGCTGGAGCAGGAGAACATC
TGCTGAAGACACTGCCAGTCTGAGCAGCTGCCAGTTCAGGCCAGCTGCAGACTG
GCTCCCCCCTGCCACACCAGCCACAGGGCACCACAGCCCCCGCCAGCCAGCAT
CGCAGGGCTCAGGACCAACCGCATAGCTGCCTATGCCCTGGCTGCGTG
TGAACAGACAGACGGAGAAGATGTCTAGGGAGAATCTGCCCTCACAGTCACCAATT
ATTGCTCGCTCGAAAGAGACGTGAGACTGACATATGCCATTATCTCTTCCAGTATTA
AACACTCATATGCTTATGGCTGGAGAAATTCTTAGTTGGGTGAATTAAAGGTAAATCC
GAGAATTAGCATGGATATACCGGGACCTCATGCAGCTGGCAGATATCTGAGAAATGGTT
TAATTCATGCTCAGGAGCTGTGCTGCCATTCCATCCCTCCGGCTCCCTACCCCTCACTTC
CAAGGGTTCTCTCCTGCTGCGCTTAGTGTCTACATGGGGTTGTGAAGCGATGGAGC
TCCTCACTGGACTGCCCTCTCCTCCCTCCCCCAGGAGGAACCTGAGAAAGGAGGGTAA
AAAGACTAAAATGAGGGGAACAGAGTTCACTGTACAAATTGACAACGTCAACAAAT
TCATAAAAAACAATAGTACTGTGCCTTTCTCAACAAATGGATGACACAAAATAT
GAGAGTGACAAAATGGTGACAGGTAGCTGGACCTAGGCTATCTTACCATGAAGGTTGTT
TTGCTTATTGTATTTGTGTAGTGTAACTATTGTACAATAGAGGACTGTAAC
ACTATTAGGTTGTACAGATTGAAATTAGTGTCTTCAATTGGCTGTGAGGGAGGTGTGG
ACTTTATATATAGATCTACATAAAACTGCTACATGACAAAAACCACACCTAAACCCCT
TTAAGAATTGGCACAGTTACTCACTTGTGTAATCTGAAATCTAGCTGCTGAATACGC
TGAAGTAAATCCTGTTCACTGAAGTCTTCAATTGAGCTGGTGAATACCTGAAAT
GCTCAGTTCTAACTAATGAAATGGATTCCAGTAGGGTTCTGCATATCACCTGTATA
GTAGTTATATGCATATGTTCTGTGATGTTCTACACAATTGTAAGGTGCACTGTAT
TTAACTGTTGCACTGTCAACTTCAATAAGCATATAATGTTG

>gi|5174729|gb|NP_006013.1|TSC22 144aa linear transforming growth factor beta-stimulated protein TSC-22 [Homo sapiens].

- 149 -

MKSQWCRPVAMDLGVYQLRHFSISFLSSLLGTENASVRLDNSSSGASVVAIDNKIEQAMD
LVKSHLMYAVREEVEVLKEQIKELIEKNSOLEQENNLLKTLASPEQLAQFQAQLQTGSPP
ATTQPQGTTQPPAQPASQGSGPTA

>gi|24432096|gb|NM_152912.2|MTIF3 1693bp mRNA Homo sapiens
mitochondrial translational initiation factor 3 (MTIF3), mRNA.

GCAGATCCGCTGTACTTGCAGGGCGCTACAGTATGTCATCGCTGCCAGCACAGTGGG
CTCCGTGGCTTAAGACTGAACCAAGTAAACGAAGTTCTCTTACTGAGAAAGTCTCAGTT
CAAAAGAGCTCTCCTCATCAACTGGGGATGATTACAGTTCTTCTAAAGCCTACTT
GATGTGAAGACAATGAGGATGAAGACCTTATGGTGTACCCACTTCCACTTAATAGGAATGG
CTGCTCTTTCTAAAGAGGTAAACACTACAAACTGTAAAGTCTGAAAATAGTTGCATTA
GATTTTGTTGAAACACATCCTGCAAAAGACAGCACAGCACAGTTGTCCCCTATTGCTT
CTGCCCAAGACTCTCTCTAATTGCAAAAGCCTTAGTACCGCTGAAGACACCC
AGAATGAAGGAAAAAAAGACAAAAAAGAATAAAACAGCTTTAGTAACGTTGAAAGAAAAA
TTAGTCAGCGAGTTATTCACTTATTGATGAGAAGGGCAATGATTGGAAACATGCACC
GAGCAAATGTGATTAGACTTATGGATGAGCGAGACCTGCGACTGGTCAAAGGAACACCA
GCACAGAACCTGCAGAGTATCAGCTCATGACAGGATTGCGAGATCCTCAGGAGCGGCAGA
GGCTGAGGGAGATGGAGAAGGCACCCCCAAACTGGACCAACCTGAGAAAGGAACGTGA
TTTGCTTCAAATATTGGACAAACATGATTGGACACAAAGACTAAACAGATTCAAGCAGT
GGATTAAGAAAAACACCTAGTCCAGATTACCATAAAGAAAGGAAAAATGTAGACGTGT
CAGAAAATGAAATGGAGGAGATATTGATCAAATACTCCAGACTATGCCCTGGAATAGCTA
CATTCTCATCTAGGCCACAAGCTGTTCAAGGAGGAAAGCTTAAATGTGTGTTCTCGTG
CTTGAGCAAAATGAGGAGAAGGCATATAAGAAACTCAAGAGACCCAGGAAAGAGACA
CTTGAAACAAGATCATGGAATGATAAGGAATCAAATGTTCTGCATCAGTAATTAAAT
AAAGAAAAGCATGCTCTGAGAGAAAAAAAGCTCGCTCTGGTCTGCAGTCCTTAAAC
AAAGCAGTGCAGTTCTAGCCAAGGGTAAGTACTGCAACTGTGAGAGCATCTTGTCTTC
CACACAGTTGGGTGACTCTCCGTTGACACAAAGATAAGCCTGCCCTGTTCTTCTT
GGGAGGGATATATCCACTGAGATGAGAGGCCAAACTCCGTTTCACGAGATTTTGAC
TTTGAGCTCATTTCTTGTCAAGGATCATGTACAACAGCATGCCTAGTGAGACTTTG
TTTCATTGCAAATGTTTGCCACAGCCAGCATGTTCACACACAAAAGGGCGCTTCCTC
ATGGAAGGAGAGGATATGGCTTGGAGATTAACACAGTTGTATAGGTTCTCCACAGCC
TTCTCTGGACAGGCACATAATCCCTCTGGGCATGAGTTATGTGTGCTTAAGGAAC
TTGCGTTAAAGTTCCGGCAACTTCACATGGATTCTGAATGAGTTCAAATGTTCCC
ATGCTAAGCTGAGTCTGTGCCATAGCAAACCATGATATAGCAAGTCTCCAGAATGTGTAC
GAATCAATACTCC

>gi|23097266|gb|NP_690876.1|MTIF3 278aa linear mitochondrial
translational initiation factor 3 [Homo sapiens].

MAALFLKRLTLQTVKSENSCIRCFGKHILQKTAPQLSPIASAPRLSFLIHAKAFSTAED
TQN EGGKTKKNKTAFSNVGRKISQRVIHLFDEKGNDLGNMHRANVIRLMDERDLRLVQRN
TSTEPAEYQLMTGLQILQERQRRLREMEKANPKTGTPLRKELILSSNIGQHDLDTKTKQIQ
QWIKKKHLVQITIKKGKNVDVSENEMEEIFHQILQTMPIATFSSRPQAVQGGKALMCVL
RALSKNEEKAYKETQETQERDTLNKDHGNDKESNVLHQ

>gi|27499034|gb|XM_044349.7|CAMK2G 1776bp mRNA Homo sapiens
calcium/calmodulin-dependent protein kinase (CaM kinase) II
gamma (CAMK2G), mRNA.

CAGCATGGCCACCACGCCACCTGCACCCGTTTCAACGACGACTACCAGCTTCTCGAGGA
GCTTGGCAAGGGTGCTTCTGTGGTCCGCAGGTGTGAAGAAAACCTCCACCGCAGGA
GTACGCAGAAAAATCATCAATACCAAGAAGTTGTCTGCCGGATCACCAGAAACTAGA

- 150 -

ACGTGAGGCTCGGATATGTCGACTTCTGAAACATCCAAACATCGTCGCCCTCCATGACAG
 TATTCTGAAGAAGGGTTCACTACCTCGTGGTACCTTGACCTTGTACCGGGGGAGCTGTT
 TGAAGACATTGTGGCCAGAGAGTACTACAGTGAAGCAGATGCCAGCCACTGTATACATCA
 GATTCTGGAGAGTGTAAACCACATCCACCAGCATGACATCGTCCACAGGGACCTGAAGCC
 TGAGAACCTGCTGGCGAGTAAATGCAAGGGTGCCCGTCAAGCTGGCTGATTTGG
 CCTAGCCATCGAAGTACAGGGAGAGCAGCAGGCTGGTTGGTTGCTGGCACCCCAGG
 TTACTTGTCCCCTGAGGTCTTGAGGAAAGATCCCTATGAAAACCTGTGGATATCTGGGC
 CTGGGGGTCACTCTGTATATCCTCTGGTGGCTATCCTCCCTCTGGATGAGGATCA
 GCACAAGCTGTATCAGCAGATCAAGGCTGGAGCCTATGATTTCCATCACCAGAATGGGA
 CACGGTAACTCCTGAAGCCAAGAACTTGTATCAACCAGATGCTGACCATAAACCCAGCAA
 GCGCATCACGGCTGACCAGGCTCTCAAGCACCCGTGGGTCTGTCAACGATCCACGGTGGC
 ATCCATGATGCATCGTCAAGGAGACTGTGGAGTGTGCGCAAGTTCAATGCCGGAGAAA
 ACTGAAGGGTGCCATCCTCACGACCATGTTGTCTCCAGGAACCTCTCAGCTGCCAAAAG
 CCTATTGAACAAGAAGTCGGATGGCGGTGTCAAGCCACAGAGCAACAAACAAACAGTCT
 CGTAAGCCCAGCCAAAGAGCCCCGCGCCCTTGAGACGCCATGGAGCCACAAACCAACTGT
 GGTACACAACGCTACAGATGGGATCAAGGGCTCCACAGAGAGCTGCAACACCACACAGA
 AGATGAGGACCTCAAAGTGCAAAACAGGAGATCATTAAGATTACAGAACAGCTGATTGA
 AGCCATCAACAATGGGACTTGAGGCCTACACGAAGATTGTGATCCAGGCCTCACTTC
 CTTGAGCCTGAGGCCCTGGTAACCTCGTGGAGGGATGGATTCCATAAGTTTACTT
 TGAGAATCTCCTGTCCAAGAACAGCAAGCCTATCCATACCACCATCCTAAACCCACACGT
 CCACGTGATTGGGGAGGACGCAGCGTGCATGCCCTACATCCGCCCTACCCAGTACATCGA
 CGGGCAGGGTCGGCCTCGCACAGCCAGTCAGAAGAGACCCGGGTCTGGCACCGCTGGGA
 TGGCAAGTGGCTCAAATGTCCACTATCACTGCTCAGGGGCCCCCTGCCGACCGCTGCAGTG
 AGCTCAGCCACAGGGCTTAGGAGATTCCAGCCGGAGGTCCAACCTCGCAGCCAGTGG
 CTCTGGAGGGCTGAGTGCAGCGGCAGTCCTGTTGAGGTTAAAACAATTCAAT
 TACAAAAGCGGCAGCAGCAATGCACGCCCTGCATGCAGCCCTCCGCCCTCGT
 GTCTGTCTGCTGTACCGAGGTGTTTTACATTT.

>gi|27499035|gb|XP_044349.7|CAMK2G 518aa linear similar to calcium/calmodulin -dependent protein kinase II gamma [Mus musculus] [Homo sapiens].

MATTATCTRFTDDYQLFEELKGAFSVRRCVKKTSTQEYAAKIINTKKL SARDHQKLER
 EARICRLLKHPNIVRLHDSI SEEGFHYLVFDLVTGGELFEDIVAREYYSEADASHCIHQI
 LESVNHIHQHDIVHRDLKPENLLASKCKGA VKLADFGLAIEVQGEQQAWFGFAGTPGY
 LSPEVLRKD PYGKPVDIWACGVILYILLVGYPPFWDEDQHKLYQQIKAGAYDFPSPEWDT
 VTPEAKNLINQMLTINPAKRITADQALKHPWCQRSTVASMMH RQETVECLRKFNARRKL
 KGAILTTMLVSRNFSAAKSLLNKSDGGVKPQSNNKNLSVSPAQEPA PLQTAMEPQTTVV
 HNATDGIGKSTESCNTTEDEDLKVRKQEIIKITEQ LIEAINNGDFEAYTKICDPGLTSF
 EPEALGNLVEGMDFHKFYFENLLSKNSKPIHTTILNPVHVIGEDAACIA YIRLTQYIDG
 QGRPRTSQSEETRVWHRRDGKWLNVHYHCSGAPAAPLO

>gi|5453881|gb|NM_006213.1|PHKG1 1377bp mRNA Homo sapiens phosphorylase kinase, gamma 1 (muscle) (PHKG1), mRNA.

GGCCTTCAGCCCTCTGGTCCCTCTCCCCGGGGCTTGAGCTTGTCAAGCTCC
 TTCAAGAGCCTGCAAGCACTAACCAAGCCACCCAGAGTTCCCTCACTGAAGATCTGAGCA
 TGACCCGGGACGAGGCACTGCCGGACTCTCATTCTGCACAGGACTTCTATGAGAATTATG
 AGCCCAAAGAGATCCTGGCAGGGCGTTAGCAGTGTGGTCAGGCATGCATCCACAAGC
 CCACGAGCCAGGAGTACGCCGTGAAGGTATCGACGTACCGGTGGAGGCAGCTCAGCC
 CGGAGGAGGTGCGGGAGCTGCGAGAAGCCACGCTGAAGGAGGTGGACATCCTGCGCAAGG

- 151 -

TCTCAGGGCACCCAACATCATACAGCTGAAGGACACTTATGAGACCAACACTTTCTCT
 TCTTGGTGTGACCTGATGAAGAGAGGGAGCTTTGACTACCTCACTGAGAAGGTCA
 CCTTGAGTGAGAAGGAAACCAGAAAGATCATGCGAGCTCTGCTGGAGGTGATGACACCT
 TGACACAAACTCAACATCGTCACCAGGGACCTGAAGCCCAGAACATTCTCTGGATGACA
 ACATGAACATCAAGCTCACAGACTTGGCTTCTGCCAGCTGGAGCCGGAGAGAGGC
 TGCAGAGGGTCTGCGGGACCCCCAGTTACCTGGCCCTGAGATTATCGAGTGCTCCATGA
 ATGAGGACCACCCGGCTACGGAAAGAGGTGGACATGTGGAGCACTGGCGTCATCATGT
 ACACGCTGCTGGCCGGCTCCCCGCCCTCTGGCACCGGAAGCAGATGCTGATGCTGAGGA
 TGATCATGAGCGGCAACTACCAGTTGGCTCGCCCGAGTGGGATGATTACTCGGACACCG
 TGAAGGACCTGGTCTCCCGATTCTGGTGGTGCAACCCAGAACCGCTACACAGCGGAAG
 AGGCCTTGGCACACCCCTTCTCCAGCAGTACTTGGTGGAGGAAGTGCAGGCACTTCAGCC
 CCCGGGGGAAGTTCAAGGTGATCGCTCTGACCGTGCTGGCTTCAGTGCAGGATCTACTACC
 AGTACCGCCGGGTGAAGCCTGTGACCCGGAGATCGTCATCCGAGACCCCTATGCCCTCC
 GGCTCTGCGCCGGCTATCGACGCCTACGCTTCCGAATCTATGGCACTGGGTGAAGA
 AGGGCAGCAGCAGAACCGGGCAGCCCTTTCAGAGAACACACCCAAGGCCGTGCTCCTCT
 CCCTGGCCGAGGAGGACTACTGAGGGCTGGCCAGTCAGGGAGGGCTAGGGGGCAGGTGG
 GGAGGGGAAGCCATGGAAATACAAGTCAAAGGGTAAAAAAAAAAAAAAA
>gi|5453882|gb|NP_006204.1|PHKG1 387aa linear phosphorylase kinase, gamma 1 (muscle) [Homo sapiens].

MTRDEALPDSHSAQDFYENYEPKEILGRGVSSVRRCIHKPTSQEYAVKVIDVTGGGSFS
 PEEVRELREATLKEVDILRKVSGHPNI IQLKDTYETNTFFFLVFDMKRGELFDYLTEKV
 TLSEKETRKIMRALLEVICTHLKLNIVHRDLKPENILDDNMNI KLTDFGFSCQLEPGER
 LREVCGTPSYLAPEI IECSMNEHDPGYGKEVDMWSTGVIMYTLLAGSPPFWHRKQMLMLR
 MIMSGNYQFGSPEWDDYSDTVKDLSRFLVVQPQNRYTAEEALAHPPFQQYLVEEVRFHS
 PRGKFKVIALTVLASVRIYYQYRRVKPVTRIEVIRDYPYALRPLRLIDAYAFRIYGHWVK
 KGQQQNRAALFENTPKAVLLSLAEEDY

>gi|4503412|gb|NM_001945.1|DTR 2360bp mRNA Homo sapiens diphtheria toxin receptor (heparin-binding epidermal growth factor-like growth factor). (DTR), mRNA.

GCTACCGGGCACCGCTGGCTGCCCTGACCTAGGCGCGGGGTGGCGGCCGCG
 GGGCGGGCTGAGTGAGCAAGACAAGACACTCAAGAAGAGCGAGCTGCCCTGGTCCCG
 CCAGGCTTGACGCAGAGGGGGCGGCAGACGGTGCCGGCGGAATCTCCTGAGCTCCGC
 CGCCCAGCTCTGGTGCAGCGCCAGTGGCCCGCTTCGAAAGTGACTGGTGCCTCGCC
 GCCTCCTCTCGGTGCAGGACCATGAAGCTGCTGCCGTGGTGGCTGAAGCTTTCTG
 GCTGCAGTTCTCTGGCACTGGTACTGGCGAGAGCCTGGAGCGGGCTCGGAGAGGGCTA
 GCTGCTGGAACCAGAACCCGGACCCTCCACTGTATCCACGGACCAGTGCTACCCCTA
 GGAGGCGGCCGGGACCGGAAAGTCCTGACTTGCAAGAGGCAGATCTGGACCTTGAGA
 GTCACTTTATCCTCCAAGCCACAAGCACTGGCCACACCAAACAAGGAGGAGCACGGAAA
 AGAAAGAAGAAAGGCAAGGGCTAGGGAAGAAGAGGGACCCATGTCTCGAAATACAAG
 GACTTCTGCATCCATGGAGAATGCAAATATGTGAAGGAGCTCCGGCTCCCTGCATC
 TGCCACCCGGTTACCATGGAGAGAGGTGTCATGGCCTGAGCCTCCAGTGGAAAATCGC
 TTATATACCTATGACCACACAACCCTGGCGTGGCTGTGGTGCATCTGTC
 TGTCTGCTGGTCATCGTGGGCTTCTCATGTTAGGTACCATAGGAGAGGAGGTTATGAT
 GTGGAAAATGAAGAGAAAGTGAAGTGGCATGACTAATTCCACTGAGAGAGACTTGTG
 CTCAAGGAATCGGCTGGGACTGCTACCTCTGAGAAGACACAAGGTGATTCAGACTGCA
 GAGGGGAAAGACTCCATCTAGTCACAAAGACTCCTCGTCCCCAGTTGCCGTAGGAT
 TGGCCTCCATAATTGCTTGCAAAATACCAAGAGCCTCAAGTGCCAAACAGAGTATG

- 152 -

TCCGATGGTATCTGGTAAGAAGAAAGCAAAAGCAAGGGACCTCATGCCCTCTGATTCC
 CCTCCACCAAACCCACTTCCCCTCATAAGTTGTTAACACTTATCTCTGGATTAG
 AATGCCGGTAAATCCATATGCTCAGGATCTTGACTGAAAAAAAAGAAGAAGAA
 GAAGGAGAGCAAGAAGGAAAGATTGTGAACGTGAAGAAAGCAACAAAGATTGAGAAGCC
 ATGTACTCAAGTACCACCAAGGGATCTGCCATTGGGACCCCTCCAGTGCTGGATTGATGA
 GTTAACTGTGAAATACCACAAGCCTGAGAACTGAATTGGACTCTACCCAGATGGAA
 AAATAACAACATTTGTGTTGTTGAAATGCCTCTAAATTATATATTATT
 TATTCTATGTATGTTAATTAGTTAAACAATCTAACATAATTCAAGTGCC
 TAGACTGTTACTTGGCAATTCTGGCCACTCCTCATCCCCACAATCTGGCTTAG
 TGCCACCCACCTTGCACAAAGCTAGGATGTTCTGTGACCCATCTGTAGTAATT
 GTCTGTCTACATTCTGCAGATCTCCGTGGTCAGAGTGCCTGCGGGAGCTGTATG
 GTCAGGATGTAGGGGTTAACCTGGTCAGAGCCACTCTATGAGTTGGACTTCAGTCTGCC
 TAGGCGATTGTCTACCATTTGTTGAAAGCCCAAGGTGCTGATGTCAAAGTGTAA
 CAGATATCAGTGTCTCCCCGTGTCCTCTCCCTGCCAAGTCTCAGAAGAGGTTGGGCTTCC
 ATGCCTGTAGCTTCTGGTCCCTCACCCCCATGGCCCCAGGCCACAGCGTGGAACTCA
 CTTCCTTGTGTCAGACATTCTCTAACCTGCCATTCTCTGGTCTACTCCATGC
 AGGGTCAGTGCAGCAGAGCAGTCTGGAGAAGGTATTAGCAAAGCAAAGGCTGAGAA
 GGAACAGGAACATTGGAGCTGACTGTTCTGGTAAGTGTACCTGCCATTGCTACCG
 AGAAGGTTGGAGGTGGGAAGGGCTTGTATAATCCCACCCACCTCACCAAAACGATGAAG
 GTATGCTGTCACTGGCCTTCTGGAGTTCTGGTCCATTCTGAACGTGTTACAACCTG
 TATTTCACAAACCTGGTCAATTATACATTGCAATCCAAATAAGATAACCCTTATTCC
 ATAAAAAAAAAAAAAA

>gi|4503413|gb|NP_001936.1|DTR 208aa linear diphtheria toxin receptor (heparin-binding epidermal growth factor-like growth factor); Diphtheria toxin receptor (heparin-binding EGF-like growth factor) [Homo sapiens].

MKLLPSVVLKLFLAAVLSALVTGESLERLRRGLAAGTSNPDPPVSTDQLLPLGGGRDRK
 VRDLQEADLDLLRVTLSSKPQALATPNKEEHGKRKKKGKGLGKRDPCRLKYKDFCIHGE
 CKYVKELRAPSCIChPGYHGERCHGLSLPVENRLYTYDHTTILAVVAVVLSSVCLLIVG
 LLMFRYHRRGGYDVEEAKVKGMTNSH

>gi|4507460|gb|NM_003236.1|TGFA 4119bp mRNA Homo sapiens
 transforming growth factor, alpha (TGFA), mRNA.

CTGGAGAGCCTGCTGCCGCCGCCGTAAAATGGTCCCTCGGCTGGACAGCTGCCCT
 GTTCGCTCTGGTATTGTGTTGGCTGCGTGCAGGCCCTGGAGAACAGCACGTCCCCGCT
 GAGTGCAGACCCGCCGTGGCTGCAGCAGTGGTGTCCATTAAATGACTGCCAGATT
 CCACACTCAGTCTGCTCCATGGAACCTGCAGGTTTGGTGCAGGAGGACAAGCCAGC
 ATGTGTCTGCCATTCTGGTACGTTGGTCACGCTGTGAGCATCGGACCTCCTGGCGT
 GGTGGCTGCCAGCCAGAAGAACAGCAGGCCATACCGCCTGGTGGTCTCCATCGTGGC
 CCTGGCTGCTTATCATCACATGTGCTGATACACTGCTGCCAGGTCCAAAACACTG
 TGAGTGGTGCCGGCCCTCATCTGCCGGCACGAGAACGCCAGCGCCCTCCTGAAGGGAAAG
 AACCGCTTGCTGCCACTCAGAAACAGTGGTCTGAAGAGGCCAGAGGAGGAGTTGGCCAG
 GTGGACTGTGGCAGATCAATAAGAAAGGCTTCTCAGGACAGCACTGCCAGAGATGCCT
 GGGTGTGCCACAGACCTCCTACTTGGCCTGTAATCACCTGTGAGCAGGCCCTTGTGGCCT
 TCAAAACTCTGTCAAGAACTCCGTCTGGGTTATTCAAGTGTGACCTAGAGAAGAAA
 TCAGCGGACCACGATTCAAGACTTGTAAAAAGAAACTGCAAAGAGACGGACTCCTGTT
 CACCTAGGTGAGGTGTGAGCAGTTGGTGTGAGTCCACATGTGTGAGCTTGTCTTC
 TGCCAGCCATGGATTCCAGGCTATATATTCTTTAATGGGCCACCTCCCCACAACAGA

ATTCTGCCAACACAGGAGATTCATACTTGTATTGTTCTGCATTGCCTACTGGGGA
AGAAAGTGAAGGAGGGAAACTGTTAATATCACATGAAGACCCTAGCTTAAGAGAAC
TGTATCCTCTAACACAGAGACTCTCAACCAGCCCACATCTCCATGGACACATGACATT
GAAGACCATCCCAAGCTATGCCACCCTGGAGATGATGTTATTTATTAGATGGATAA
TGGTTTATTTTAATCTCTAACATGTAATGAAAAAGTATAAAACCCCTCAGACTCTA
CATTAATGATGTATGTGTTGCTGACTGAAAAGCTATACTGATTAGAAATGTCTGGCCTCT
TCAAGACAGCTAAGGCTGGGAAAAGTCTCCAGGGTGCAGGAGATGGAACCAGAGGCTGG
GTACTGGTAGGAATAAAGTAGGGGTCAGAAATGGTGCCTGAAGCCACAAAGCCGG
TAAATGCCTCAATACGTTCTGGGAGAAAACCTAGCAAATCCATCAGCAGGGATCTGTC
CTCTGTTGGGAGAGAGGAAGAGTGTGTCTACACAGGATAAACCAATAACATATTG
TACTGCTCAGTGATTAAATGGGTCACTTCCTCGTGAGCCCTCGTAAGTATGTTAGAA
ATAGAACATTAGCCACGAGCCATAGGCATTTCAGGCCAAATCCATGAAAGGGGACAGT
CATTTATTTCCATTTGTTGCTTGGTTGGTTGCTTATTTAAAAGGAGAAGTT
TAACTTGCTATTTATTTGAGCACTAGGAAACTATTCCAGTAATTTTTCTCA
TTTCCATTCAAGGATGCCGGTTATTAACAAAACCTCTAACAAAGTCACCTCAACTATGTG
GGTCTCCCTTCCCTCAAGAGAAGGAGCAATTGTCCTGACATCTGGTCCATCTGA
CCCATGGGCCTGCCTGTGAGAAACAGTGGTCCCTCAAATACATAGTGGATAGCTCAT
CCCTAGGAATTCATTAAAATTGGAAACAGAGTAATGAAGAAATAATATAAACTCC
TTATGTGAGGAAATGCTACTAATATGAAAAGTAAAGATTCTATGTATTAACTCTTA
AGTCACCTAGCTTATTACATCGTGAAGGTACATTAAAATATGTTAAATTGGCTTGAA
ATTTCAAGAGAATTTGCTTCCCTAATTCTCTTGGTCTGGAAGAACAAATTCT
ATGAATTTCTCTTATTTTTTATAATTCAAGACAATTCTATGACCCGTGCTTCAT
TTTGGCACTCTTATTAACAATGCCACACCTGAAGCAGTGGATCTGTCAGAGCTGAC
CCCTAGCAACGTAGTGACACAGCTCCAGGTTTAAATTACTAAAATAAGTCAAGTT
TACATCCCTGGGCCAGATATGTGGGTTGAGGCTTGACTGTAGCATCCTGCTTAGAGACC
AATCAATGGACACTGGTTTAGACCTCTATCAATCAGTAGTTAGCATCCAAGAGACTTT
GCAGAGGCGTAGGAATGAGGCTGGACAGATGGCGAACGAGAGGTTCCCTGCGAAGACTT
GAGATTAGTGTCTGTGAATGTTCTAGTTCTAGGTCAGCAAGTCACACCTGCCAGTGC
CCTCATCCTTATGCCTGTAACACACATGCAGTGAGAGGCCTCACATATACGCC
AAGTGCCTTCCAAGTCAGTCCATTGGAAACCAGCAGGCTGAAAAAGAGGCTGATCAAT
GCAAGCCTGGTGGACCATTGTCATGCCCTCAGGATAGAACAGCCTGGCTTATTGGGGA
TTTTCTTCTAGAAATCAAATGACTGATAAGCATTGGCTCCCTCTGCCATTAAATGGCA
TGGTAGTCTTGGTTAGCTGCAAAATACTCCATTCAAGTTAAAATGCATCTCTAAT
CCATCTCTGCAAGCTCCCTGTGTTCTGCCCTTAGAAAATGAATTGTTCACTACAAT
TAGAGAATCATTAACATCCTGACCTGGTAAGCTGCCACACACCTGGCAGTGGGAGCAT
CGCTGTTCCAATGGCTCAGGAGACAATGAAAAGCCCCATTAAAAAAATAACAAACAT
TTTTAAAAGGCCTCCAATACTCTTATGGAGCCTGGATTTCCTACTGCTCTACAGGCT
GTGACTTTTTAAGCATCCTGACAGGAAATGTTCTTACATGGAAAGATAGACAGC
AGCCAACCCGTATGGAGACAGGGCCCGGCTGGACACACGTGGAACCAAGCCAGGGA
TGGGCTGGCCATTGTCCTCCCGCAGGAGAGATGGCAGAATGCCCTAGAGTTCTTCC
CTGAGAAAGGAGAAAAGATGGGATTGCCACTCACCACCCACACTGGTAAGGGAGGAGA
ATTGTCCTCTGGAGCTTCTCAAGGGATTGTTGCAGGTACAGAAAATGCCTGTT
ATCTTCAAGCCAGGTTTCAAGGGCACATGGGTACCCAGTTGCTTTCACTGCAATTGG
CCGGGATGGACTAATGAGGCTCTAACACTGCTCAGGAGACCCCTGCCCTAGTTGGTTC
TGGGCTTGTCTCTTCAACCTGCCAGTCACAGAAGGAGGAATGACTCAAATGCCAA
AACCAAGAACACATTGAGAAGTAAGACAAACATGTATTTAAATGTTCTAACATAA
GACCTGTTCTCTAGCCATTGATTACCAAGGCTTCTGAAAGATCTAGGGTACACA

- 154 -

GAGAGAGAGAGAGTACTGAAAAAGCAACTCCTCTTAGCTTAATAATTACTAAAAT
GGTCAACTTTCATTTATTATAATAAAACCTGATGCTTTTTAGAACTCCTTAC
TCTGATGTCGTATATGTTGACTGAAAAGGTTAATATTTAATGTTTAATTATTTGT
GTGGTAAGTTAATTGATTCTGTAATGTGTTAATGTGATTAGCAGTTATTTCTTAA
TATCTGAATTATACTTAAAGAGTAGTGAGCAATAAGACGCAATTGTGTTTCAGTAA
TGTGCATTGTTATTGAGTTACTGTACCTTATTGGAAGGATGAAGGAATGAACCTTT
TTTCTAAAAAAAAAAAAAAAAAAAAAA

>gi|4507461|gb|NP_003227.1|TGFA 160aa linear transforming growth factor, alpha [Homo sapiens].

MVPSAGQLALFALGIVLAACQALENSTSPLSADPPVAAAVVSHFNDCPDSHTQFCFHGTC
RFLVQEDKPACVCHSGYVGARCEHADLLAVVAASQKKQAITALVVSVVALAVLIITCVL
IHCCQVRKHCEWCRALICRHEKPSALLKGRTACCHSETVV

>gi|6912653|gb|NM_012433.1|SF3B1 4259bp mRNA Homo sapiens splicing factor 3b, subunit 1, 155kDa (SF3B1), mRNA.

ATGGCGAAGATGCCAAGACTCACGAAGATATTGAAGCACAGATTGAGAAATTCAAGGC
AAGAAGGCAGCTTGTGATGAAGCTCAAGGAGTGGCCTCGATTCTACAGGTTATTATGAC
CAGGAAATTATGGTGGAAAGTGACAGCAGATTGCTGGATACGTGACATCAATTGCTGCA
ACTGAACCTGAAGATGATGACGATGACTATTCATCATCTACGAGTTGCTTGGTCAGAAG
AAGCCAGGATATCATGCCCTGTGGCATTGCTTAATGATATAACCACAGTCAACAGAACAG
TATGATCCATTGCTGAGCACAGACCTCAAAGATTGAGACACGGGAAGATGAATAACAAA
AAGCATAGGCGGACCATGATAATTCCCCAGAGCGTCTGATCCTTGCAGATGGAGGG
AAGACCCCTGATCTAAAATGAATGTTAGGACTACATGGATGTAATGCGAGAACACAC
TTGACTAAAGAAGAACGAGAAATTAGGCAACAGCTAGCAGAAAAAGCTAAAGCTGGAGAA
CTAAAGTCGTCAATGGAGCAGCAGCGTCCCAGCCTCATCAAAACGAAAACGGCGTTGG
GATCAAACAGCTGATCAGACTCCTGGTGCCTCCACTCCCCAAACTATCAAGTTGGATCAG
GCAGAGACCCCTGGGCATACTCCTCTTAAGATGGATGAGACACCAAGGTCGTGCAAAG
GGAAGCGAGACTCCTGGAGCAACCCAGGCTCAAAATATGGATCCTACACCTAGCCAC
ACACCGCGGAGCTGACTCCTGGACGAGGTGATACACCAGGCCATGCGACACCGAGC
CATGGAGGCGCAACTCCAGTGCTCGTAAAACAGATGGATGAAACCCCCAAACAGAG
AGAGATACTCCTGGCATGGAAGTGGATGGCTGAGACTCCTCGAACAGATCGAGGTGGA
GATTCTATTGGTAAACACCGACTCCTGGAGCCAGTAAAGAAAATCACGGTGGGATGAA
ACACCGCTAGTCAGATGGTGGAAAGCACTCCAGTCTGACCCCTGGAAAGACACCAATT
GGCACACCAGCCATGAACATGGCTACCCCTACTCCAGGTACATAATGAGTATGACTCCT
GAACAGCTCAGGCTTGGCGGTGGAAAGAGAAATTGATGAGAGAAATGCCCACTTCT
GATGAGGAATTAGATGCTATGTTCCAGAAGGATATAAGGTACTCCTCTCCAGCTGGT
TATGTTCTATTGAAACTCCAGCTCGAAAGCTGACAGCTACTCCAACACCTTGGGTGGT
ATGACTGGTTCCACATGCAAACACTGAAGATCGAACTATGAAAAGTGTAAATGACCAGCCA
TCTGGAAATCTCCATTAAACCTGATGATATTCAATACTTGATAAAACTATTGGTT
GATGTTGATGAATCAACACTTAGTCAGAAGAGCAAAAGAGAGAAAATAATGAAGTTG
CTTTAAAAATTAAAGAATGGAACACCAACCAATGAGAAAGGCTGCATTGCGTCAGATTACT
GATAAAGCTCGTAATTGGAGCTGGCCTTGTAAATCAGATTCTCCTCTGCTGATG
TCTCCTACACTGAGGATCAAGAGCGTCATTACTTGATGAAAGTTATTGATAGGATACTG
TACAAACTGATGACTTAGTCGTCCATATGTGATAAGATCCTCGTGGTCATTGAACCG
CTATTGATGATGAAGATTACTATGCTAGAGTGGAGGCTAGAGATCATTCTAATTG
GCAAAGGCTGGCTGGCTACTATGATCTCTACCATGAGACCTGATATAAGATAACATG
GATGAGTATGTCGTAACACAACAGCTAGAGCTTGTGTTAGCCTCTGCCCTGGGC
ATTCCCTCTTATTGCCCTCTTAAAGCTGTGCAAAAGCAAGAAGTCCTGGCAAGCG

AGACACACTGGTATTAAGATTGTACAACAGATAGCTATTCTATGGGCTGTGCCATCTG
 CCACATCTAGAAGTTAGTTGAAATCATTGAACATGGCTTGCTGGATGAGCAGCAGAAA
 GTTCGGACCATCAGTCTTGGCCATTGCTGCCTGGCTGAAGCAGCAACTCCTATGGT
 ATCGAATCTTGATTCTGTGTTAACAGCCTTATGGAAGGGTATCCGCCAACACAGAGGA
 AAGGGTTGGCTGCTTCTTGAAGGCTATTGGGTATCTTATTCTCTTATGGATGCAGAA
 TATGCCAACTACTATACTAGAGAAGTGTAAATCCTTATTGAGAATTCCAGTCTCCT
 GATGAGGAAATGAAAAAATTGTGCTGAAGGTGGTAAACAGTGTGTGGACAGATGGT
 GTAGAAGCAAACATACATTAAAACAGAGATTCTCCTCCCTTTAAACACTCTGGCAG
 CACAGGATGGCTTGGATAGAAGAAATTACCGACAGTTAGTGATACTACTGTGGAGTTG
 GCAAACAAAGTAGGTGCAGCAGAAATTATATCCAGGATTGTGGATGATCTGAAAGATGAA
 GCCGAACAGTACAGAAAAATGGTGTGGAGACAATTGAGAAAATTATGGCAATTGGGA
 GCAGCAGATATTGATCATAAACTTGAAGAACAACTGATTGATGGTATTCTTATGCTTTC
 CAAGAACAGACTACAGAGGACTCAGTAATGTTGAACGGCTTGGCACAGTGGTTATGCT
 CTTGGCAAACGAGTCAAACCAACTTGCCTCAGATCTGTGGTACAGTTGTGGCGTTA
 AATAACAAATCTGCTAAAGTTAGGCAACAGGCAGCTGACTTGATTCTGAACGTGTT
 GTCATGAAGACTTGTCAAGAGGAAAATTGATGGGACACTTGGGTGTTATTGTATGAG
 TATTGGGTGAAGAGTACCCCTGAAGTATTGGCAGCATTCTGGAGCACTGAAGGCCATT
 GTAAATGTCATAGGTATGCATAAGATGACTCCACCAATTAAAGATCTGCTGCCTAGACTC
 ACCCCCACATCTAAAGAACAGACATGAAAAAGTACAAGAGAATTGATTGATCTGTTGGT
 CGTATTGCTGACAGGGGAGCTGAATATGTATCTGCAAGAGAGTGGATGAGGATTGCTT
 GAGCTTTAGAGCTCTAAAAGCCCACAAAAGGCTATTGCTAGAGCCACAGTCAACACA
 TTTGGTTATATTGCAAAGGCCATTGCCCTCATGATGATTGGCTACACTTCTGAACAAAC
 CTCAAAGTTCAAGAAAGGCAGAACAGAGTTGTACCACTGTAGCAATAGCTATTGTTGCA
 GAAACATGTCACCCCTTACAGTACTCCCTGCCTTAATGAATGAATACAGAGTCTGAA
 CTGAATGTCAAAATGGAGTGTAAAATGCCCTTCTGTTGAATATATTGGTGAA
 ATGGGAAAAGACTACATTATGCCGTAAACACCCTACTTGAAGATGCTTAATGGATAGA
 GACCTTGTACACAGACAGACGGCTAGTGCAGTGGTACAGCACATGTCATTGGGTTAT
 GGATTGGTTGTGAAGAGTTCGCTGAATCACTGTTGAACTATGTATGCCCAATGTATT
 GAGACATCTCCTCATGTAATTGAGCTTATGGGAGCCCTAGAGGGCCTGAGAGTTGCT
 ATTGGACCATGTAATGTTGAATATTGTTACAGGGCTGTTCAACCGCCGGAAA
 GTCAGAGATGTTATTGAAAATTACAACCTACATCTACATTGGTCCAGGACGCTCTC
 ATAGCACATTACCAAGAACATCTACACGATGATAAGAACACCTATATTGTTATGAACTT
 GACTATATCTATAATTGTTATTGTTATTTGTGTTAATGCAAGCTACTTCACACCTT
 AAACATTGCTTGATTGGTGTAAACTTTAAACATTGCAAGTGTAGAACTGGT
 CATAGAGGAAGAGCTAGAAATCCAGTAGCATGATTAAATAACCTGTCTTGTGTT
 ATGTTAACACAGTAAATGCCAGTAGTGCACCAAGAACACAGTGAATTATACACTATACTGG
 AGGGATTTCATTTAATTCATCTTATGAAAGATTAGAACTCATTCTGTGTTAAAG
 GGAATGTTAATTGAGAAATAAACATTGTGTACAAAATGCTAAAAAAAAAAAAAA
 >gi|6912654|gb|NP_036565.1|SF3B1 1304aa linear splicing factor
 3b, subunit 1, 155kDa; spliceosome-associated factor 155;
 splicing factor 3b, subunit 1, 155kD [Homo sapiens].
 MAKIAKTHEDIEAQIREIQGKKAALDEAQGVGLDSTGYDQEIYGGSDSRFAGYVTSIAA
 TELEDDDDYSSSTSLLQKKPGYHAPVALLNDIPQSTEQYDPFAEHRPPKIADREDEYK
 KHRRTMIIISPERLDPFADGKTPDPKMNRVTYMDVMREQHLTKEEREIRQQLAEKAKAGE
 LKVVNNGAAASQPPSKRKRRWDQTADQTPGATPKKLSSWDQAETPGHPTPSLRWDETPGRAK
 GSETPGATPGSKIWDPTPSHTPAGAATPGRGDTPGHATPGHGGATSSARKNRWDETPKTE
 RDTPGHGSGWAETPRTDRGGDSIGETPTPGASKRKSRWDETPASQMGGSTPVLTGKTP

GTPAMNMATPTPGHIMSMTPEQLOQAWRWEREIDERNRPLSDEELDAMFPEGYKVLPPPAG
 YVPIRTPARKLTATPTPLGGMTGFHMQTEDRTMKSVDQPSGNLPFLKPDDIQYFDKLLV
 DVDESTLSPEEQKERKIMKLLLKIKNGTPPMRKAALRQITDKAREGAGPLFNQILPLLM
 SPTLEDQERHLLVKVIDRILYKLDDLVRPYVHKILVVIEPLLIDEDYYARVEGLEIISNL
 AKAAGLATMISTMRPDIDNMDEYVRTTARAFAVVASALGIPSLLPFLKAVCKSKSWQA
 RHTGIKIVQQIAILMGCAILPHLRLSLEVIIEHGLVDEQQKVRTISALATAALAEATPYG
 IESFDSDLKPLWKGIRQHRGKGLAAFLKAIGYIPLMDAEYANYYTREVMLILIREFQSP
 DEEMKKIVLKVVVKQCCGTDGVEANYIKTEILPPFFKHFWQHRYMALDRRNRYRQLVDTTVEL
 ANKVGAAEIISRIVDDLKDEAEQYRKVMETIEKIMGNLGAADIDHKLEEQLIDGILYAF
 QEQTTEDSVMLNGFGTVVNALGKRVKPQICGTVLWRLNNNSAKVRQQAADLISRTAV
 VMKTCQEELMGLGVVLYEYLGEYPEVLGSILGALKAINVIGMHKMTPPIKDLLPRL
 TPILKNRHEKVQENCIDLVGRADIADRGAEYVSAREWMRICFELLELLKAHKKAIIRRATVNT
 FGYIAKAIAGPHDVLATLLNNLKVQERQRNVCCTVAIAIAVAETCSPFTVLPALMNEYRVPE
 LNVQNGVLKSLSLFLEYIGEMGKDYIYAVTPPLEDALMDRDLVHRQTASAVVQHMSLGVY
 GFGCEDSLNHLLNYYWPNVFETSPHIQAVMGALEGRLRAIGPCRMLQYCLQGLFHPARK
 VRDVYWKIYNSIYIGSQDALIAHYPRIYNDDKNTYIRYELDYIL

>gi|21707321|gb|BC033864.1|BC033864 2321bp mRNA Homo sapiens,
 Similar to branched chain aminotransferase 1, cytosolic, clone
 MGC:45234 IMAGE:5186262, mRNA, complete cds.

GGTGGATGCTGCGCATCGGAGGACCCCTGCTGGTGGAGGAAATGGTCACGCCGTCCCC
 GTTCCCTTGCAGGCTTGCTATTGTGCGTCTGTGATTGACAAGACCAACGAGGCTGAGCGC
 GCCCTGGAGATTTCTATAAATGGCTTAACACCCCAGTCTAGACTATTGCTCGGATAT
 AAGGGAGACAATTGTTTTGTTCTTGCCGGGAACCTGGCTCTGTAGGGCTGACCT
 GGAATTAAACAGCTTCCCTGAGCCGGGGAGGAGGACAAAAACGCCGCACCCGGC
 AGGGTGGGAAGTGCAGGGCAGCGCTCCAAGACACGCTTGGAGGTTGGGGCTGGGT
 GCTTGGTTGTCTGAGCCTCTTTGTGTTGCCTGGGTCTGGAGAGGGAGCCACGGT
 ATCATGGATTGCAGTAACGGATGCTCCGAGAGTGTACCGGAGAAGGGAGGATAAAAGAG
 GTGGTGGGACTTTAACGGCTAAAGACCTAATAGTCACACCAGTACCAATTAAAGGAA
 AAACCAAGACCCAAATAATCTGGTTTGGAACTGTGTTCACGGATCATATGCTGACGGT
 GAGTGGTCCTCAGAGTTGGATGGGAGAACCTCATATCAAGCCTCTCAGAACCTGTCA
 TTGCAACCTGGCTCATCAGCTTGCACTATGCACTGGAAATTATTGAAGGATTGAAGGCA
 TTTGAGGAGTAGATAATAAAATTGCACTGTTCAGCCAAACCTCAACATGGATAGAATG
 TATCGCTCTGCTGTGAGGGCAACTCTGCCGGTATTGACAAAGAAGAGCTTGTAGAGTGT
 ATTCAACAGCTTGTGAAATTGGATCAAGAATGGTCCCATTCAACATCTGCTAGTCTG
 TATATTGCTCCTACATTGAACTGAGCCTCTGGAGTCAAGAAGCCTACCAA
 GCCCTGCTCTTGACTCTGAGGCCAGTGGACCTATTTCAGTGGAAACCTTTAAT
 CCAGTGTCCCTGTGGGCCAATCCCAAGTATGTAAGAGCCTGGAAAGGTGGAACGGGAC
 TGCAAGATGGGAGGGAATTACGGCTCATCTCTTGCCTGGACCTATTCAAGTGGAAACCTTAA
 GGGTGTAGCAGGCTGTGGCTCATGGAGAGGACCATCAGATCACTGAAGTGGGAAC
 ATGAATCTTTCTTACTGGATAAAATGAAGATGGAGAAGAAGAACTGGCAACTCCTCCA
 CTAGATGGCATCATTCTCCAGGAGTGACAAGCGGTGCATTCTGGACCTGGCACATCAG
 TGGGACACAGAACTCAGCTGTTCAATTAAATTGCACTGAGAGAAATTGAAACTTTCAAAGAGCCATA
 TTTGAACAAACATAATTGCAATTGTAAGACTGAGAGAAATTGAAACTTTCAAAGAGCCATA
 TTTCTATTGAGATATATTCTGCTCTTCAAATCTACTACAGCATGAGTTCTTCTT
 TTAAATATTCAAATATTGAAATTGCAAGAGCTTGAATTCCATTTTATCTCTTGT
 GGGTTATAAAATTAAAGAAAAAAACTCATCTTATTGGAAACCTCTTATTTTATTG
 CCCTTATTCAAATAACTGTTGACAAACTTGAACCACTGAGGTAAAAGAACAA

- 157 -

AGAATTAAACAGATAGTTAACACATAGCTTAAAGGATCTTCCCATTCTATCC
TTGAGCAAAGAATATATTCAAACACTTGGCAGAAGTCATGAGGTTATACCACTAATT
CATGATGAAAATCAACTGAATGTGATACTGAAAGAGAAGGAAGAGAATTGTCAGTGTAAA
GTCAACTGTTAGTCATATTAGGAAAAAAATACATACAATACAATTCTCAAATAAGTC
CAAATATACATTCAATGTTAAAATAATGAGTATTTCAGATATTGAACTCAGTCTGTT
CTTATTCCATAAAAGATATAGGTAAGCCGTGCACGGCTCACAACTATAATCCCAGC
ACTTTGGCACTTGGGAGGCTGAGGTGGGAGGATCACATGAGCCCAGCCTGGCAACATA
GGGAGACCCTATCTTACAAAATAAAATATAAAACCTAGTTGGCATGGCAG
CATACACCTGTAGTCCCAGGTGCTCGGGAGACTGAGACAGGAGGATCGCTTGGCCTGGG
AGGTCGAGGCTGCAGTGAGCCAAGATTGCCACTGCATTCCAGCCTGGGTGACAGGGCA
AGACCCTGTCTAAAAAAAAAAAAAAAAAAAAAA

>gi|21707322|gb|AAH33864.1|AAH33864 320aa linear Similar to
branched chain aminotransferase 1, cytosolic [Homo sapiens].
MDCSNGCSAECTGEIGSKEVVGTFKAKDLIVTPATILKEKPDPNLNVFGTVFTDHMLTVE
WSSEFGWEKPHIKPLQNLSPHGSSALHYAELFEGLKAFRGVVDNKIRLFQPNLNMDRMY
RSARVATLPVFDKEELLECIQQLVKLDQEWPYSTSASLYIRPTFIGTEPSLGVKKPTKA
LLFVLLSPVGPYFSSGTNPVSLWANPKYVRAWKGTTGDKCMGGNYGSSLFAQCEAVDNG
CQVLWLGYGEDHQITEVGTMNLFYWINEDGEELATPPLDGIILPGVTRRCILDLAHQW
DTELSLFSINLPDFLQFIYF

>gi|29570794|gb|NM_001895.2|CSNK2A1 2323bp mRNA Homo sapiens
casein kinase 2, alpha 1 polypeptide (CSNK2A1), transcript
variant 2, mRNA.

CCCGCCTCCTGGTAGGGGGTTCCGCTTCCGGCAGCAGCGGCTGCAGCCTCGCTCTG
GTCCTGGCTGGGGCCAGCCGTGTCTCCTCCATCGCCGCCATTGTCTGT
GTGAGCAGAGGGAGAGCGGCCGCCGCTGCCGCTCCACACAGTTGAAGAAAACA
GGTCTGAAACAAGGTCTACCCCCAGCTGCTCTGAACACAGTGACTGCCAGATCTCCAA
ACATCAAGTCCAGCTTGTCCGCCAACCTGTCTGACATGTCGGGACCCGTGCCAAGCAGG
GCCAGAGTTACACAGATGTTAACACACAGACCTCGAGAAACTGGGATTACGAGTC
CATGTGGTGGAAATGGGAAATCAAGATGACTACCAGCTGGTCAAAATTAGGCCGAGGT
AAATACAGTGAAGTATTGAAGCCATCAACATCACAAATAATGAAAAGTTGTTAAA
ATTCTCAAGCCAGTAAAAAGAAGAAAATTAGCGTAAATAAGATTGGAGAATTG
AGAGGAGGTCCAACATCATCACACTGGCAGACATTGTAAGACCTGTGTACGAACC
CCCGCCTGGTTTTGAACACGTAACACACAGACTTCAAGCAATTGTACCGAGCGTTA
ACAGACTATGATATTGATTTACATGTATGAGATTCTGAAGGCCCTGGATTATTGTAC
AGCATGGGAAATTATGCACAGAGATGCAAGCCCCATAATGTCATGATTGATCATGAGC
AGAAAGCTACGACTAATAGACTGGGGTTGGCTGAGTTTATCATCCTGGCAAGAATAT
AATGTCCGAGTTGCTTCCGATACTTCAGGCTCTGAGCTACTGTAGACTATCAGATG
TACGATTATAGTTGGATATGAGTTGGGTGTATGCTGGCAAGTATGATCTTCGG
AAGGAGCCATTTCATGGACATGACAATTATGATCAGTTGGTGGAGGATAGCCAAGGTT
CTGGGGACAGAAGATTATGACTATATTGACAAATACAACATTGAATTAGATCCACGT
TTCAATGATATCTGGGAGACACTCTCGAAAGCGATGGGAACGCTTGTCCACAGTGAA
AATCAGCACCTGTCAAGCCCTGAGGCCCTGGATTCTGACAAACTGCTGCGATATGAC
CACCAGTCACGGCTTACTGCAAGAGAGGCAATGGAGCACCCTATTCTACACTGTTGT
AAGGACCAGGCTCGAATGGGTTCATCTAGCATGCCAGGGGCAGTACGCCGTAGCAGC
GCCAATATGATGTCAGGGATTCTTCAGTGCACCCCTTCACCCCTGGACCTCTGGCA
GGCTCACCAGTGTGCTGCTGCCAACCCCTGGGATGCCTGTTCCAGCTGCCGTGGC
GCTCAGCAGTAACGGCCCTATCTGTCCTGATGCCCTGAGCAGAGGTGGGGAGTCCACC

CTCTCCTTGATGCAGCTTGGCCCTGGGGGAGGGGTGAAACACTTCAGAAGCACCGTGT
 CTGAACCCTGCTTGTGGATTATAGTAGTCAGTCATAAAAAAAATTATAATAGGCT
 GATTTCTTTCTTTTTTAACCGAACCTTCAACTCAGGGGATTCCCTGA
 AAAATTACCTGCAGGTGGAATATTCATGGACAAATTCTCTCCCCTCCAAATT
 AGTTCCCTCATCACAAAAGAACAAAGATAAACCCAGCCTCAATCCGGCTGCTGATTAGG
 TGGAGACTTCTTCCCATTCCCACCATTGTTCCACCGTCCCACACTTAGGGGTTGG
 TATCTCGTGCCTCTCCAGAGATTACAAAATGTAGCTTCAGGGGAGGCAGGAAGAA
 AGGAAGGAAGGAAAGAACAGGGAGGCCAATCTATAGGAGCAGTGGACTGCTTGCTG
 GTGCTTACATCACTTACTCCATAAGCGCTCAGTGGGTTATCCTAGTGGCTTGTG
 GAAAGTGTGCTTAGTTACATCAAGATGTTGAAATCTACCCAAATGCAGACAGATACTA
 AAAACTCTGTTAGTAAGAACATGTCTACTGATCTAACCCCTAAATCCAACCTATT
 TACTTTATTTTAGTTAGTCAGTTAAAATGTTGATACCTTCCCTCCAGGCTCCTTACCTT
 GGTCTTCCCTGTTCATCTCCAACATGCTGTGCTCCATAGCTGGTAGGAGAGGGAAGG
 CAAAATCTTCTTAGTTCTTGTCTGGCCATTGAATT

>gi|4503095|gb|NP_001886.1|CSNK2A1 391aa linear casein kinase II alpha 1 subunit isoform a; CK2 catalytic subunit alpha [Homo sapiens].

MSGPVPSRARVYTDVNTHRPREYWDYESHVVEWGNQDDYQLVRKLRGKYSEVFEAINIT
 NNEKVVVKILKPVKKKKIKEIKILENLRGGPNIITLADIVKDPVSRTPALVFEHVNNTD
 FKQLYQTLTDYDIRFMYEILKALDYCHSMGIMHRDVKPHNMIDHEHRKLRLIDWGLAE
 FYHPGQEYNVRVASRYFKPELLVDYQMYDYSLDMWSLGCMILASMIFRKEPFFHGHDNYD
 QLVRIAKVLGTEDLYIDKYNIELDPRFNDILGRHSRKRWERFVHSENQHLVSPEALDF
 LDKLLRYDHQSRLTAREAMEHPYFYTVVKDQARMSSMPGGSTPVSSANMMMSGISSLVPT
 PSPLGPLAGSPVIAAANPLGMPVPAAAGAQO

>gi|13375963|gb|NM_024689.1|FLJ14103 2502bp mRNA Homo sapiens hypothetical protein FLJ14103 (FLJ14103); mRNA.

CTCTTGGCCAAGCCCTGCCTCTGTACAGCCTCGAGTGGACAGCCAGAGGCTGCAGCTGG
 AGCCCAGAGCCAAGATGGAGCCCCAGCTGGGCTGAGGCTGCCGCCCTCCGCCCTGGC
 TGGCTGGCCCTGCTGCTGGGTCTCAGCCCTGAGCTGTTCTTCTGCCAGCTTCT
 TCCCTTCTCTGGTCCCCAAGTCAGAACCAAGCTACAATTGGAGACTTCCCT
 GGTCTGATAAAATGCAATGCCATCGGGACATCTATTGCAAGAAGTTCTTAAAGAA
 GAAATAAGATCTGACAACCTGGCTGGCTCCACCTGGACTGCCTCCGATTCTTGCTT
 TCTTATCCTGCAAATTACTCAGATGATTCCAAATCTGGCGCCCTGGAGATCTTAGA
 CTGGTCAGCAAATATCAAAACGAGATCTCAGACAGGAAATCTGTGCCCTGCATCAGCC
 CCAAAGACCTGCAGCATTGAGCGTGCCTGCCGGAAACAGAGAGGTTCCAGAAATGGCTG
 CAGGCCAGCGCTCACGCCGGACCTGGTGCAGGACTGTACCAAGGGCCAGAGAGAACTA
 AAGTTCTGTGTATGCTGAGATAACACCAGTGAAAAGCCTGGCATGGAGCCAGCACTG
 AGAACTTCCAGAAAGTGTAGCCTCTCCAACTGTGTTATACCAACCACATTTCAAAT
 AGTAATCATTAAAGAGGCTCTGCATCAAACCTCACATGCAGCTCCATGCCACCCCTCC
 AGAATTACCAACACACAGGCCACCAGCAACAGGCTACCTTGACAATATTCTCTGAT
 GACAACCTCAAAGCCCCGGCTTTCCACCAACTGTGGTCCCTAGATGGGCTGTTGC
 TGAGCCCACCCAAATCCAGATGTGATCCCCCTGTGATCTACTTCTGGCAAGATTCTCAGT
 CTGGACAGGTCTCCCTATGAGATAGAACCTGATAAGGAGCTAGGGCAATTCTGACAACA
 TTACCAAAGGCCACATAACTTCAAATTGGTCTGGCTGAAGGAAAACCTGTTCTCG
 CCCTAGTGTGGATGAACTCTCTTATCTGGCTCTAGAGGGAAAAAAAGCATAACCT
 CTTTACTTTAAAGTACCTCCATCAGAGTCATGAAATCACCTGTCAAGACTATCTATCT
 TTATGTTCCATTCTGGTAAGAACTCTTAAATGAGGACACTGCTGATTGCTGGTATG

TTTTTGAGCAAACACTCGGGGTATGGATGAAAGCCAATCGCAGGTCAAATGACTCCTT
 GGGGAAGCTACTTCTCCTATTCAAGATTCACTAAAATCTCCAAGATGAAAGCAAATC
 TAGATTCGGTCTTCATTGCTGCCATTGTAATGAACGAGTGTGTTCTTAGCTA
 GTGTATCAGGCAGGGTTCTACCAGAGAACAGAACCCAGTAGGAGATAACATACATGTCC
 AGATTTATTCAAAGAATTGATTTACATGATTGTGGGGATTGGCAAGTCAAATCCATA
 TGGTAGGCCTGCAATCTGTAACCTTGGCAGGAGCTGATGCTGTAGTTGCAGATAGA
 ATTCCTTGTTCCTAAAAAAATCTGTTTGTCTTAAGGGCTTGAATGATTGGATCAG
 GCCCACCCAGATTACCTAGATAATCTCTTACTTAAAGTAAACTGATTGTAGGTGCTAA
 TCACATCTATGAAATGCCTTCACAGCAACACCTAGATTAGCATTCAATTGAATAACTGGG
 GAATACAGCCTAGCCAAGTTGACACATAAAATTAACCATCACAGCAACATGCCTGCTAAA
 TTTTATCGACCGTCTCAGACTGTTAAGGATTGTGGTAGAGAACTGTGACAGCAGCACTCTC
 AGCATCACCCCTGAACCAAAGGCCCTATCAAGTAACAAATATAGCCAAGCAAAATTCCAGT
 CAATAGAGACATTGACTGGTTGGCTGGCTCCAAAGGGATAGCACCAGACAAGAAATGCA
 AGGATGAGGAAACCAGGCACGGGAGAGGGAGGGCAACAGAGGTCCAGGGTTGGTTATC
 TTTTATTTTCACTGGGAGGTGGTAAGTTAGCCCTGTTGCCATGTATGCAGATGGGAG
 AAGTGATTAGAAACTCCAAAGCAATTGTAATCCCCAAATGGGTGTATCTGGTTGAA
 ATGAAACCTTATTTATTGAAATGGTTGGTTCCAATTCTGTTGCCATTGGCCAATA
 TAATTGTGGTTTGCACATGCCAGCACATGCCAAACAGAAAGTAGACAAAGGTCTCACTC
 TGTAAGTGGGACCTGGGGAGGAGCTGCCTCCATCAAAGGGAGGGTTAGTAAAATG
 GTCTCTTAAGCCTGTCCTGCTACAGTTAGAGGTGCTCAGAACCTCTCAGCAAATA
 TAGCAGTTATCTATTGTTGTATTAAACCATTCAACACAT

>gi|13375964|gb|NP_078965.1|FLJ14103 182aa linear hypothetical protein FLJ14103 [Homo sapiens].

MEPQLGPEAAALRPGLALLWVSALSCSFSLPASSLSSLPQVRTSYNFGRTFLGLDKC
 NACIGTSICKFFKEEIRSDNWLASHLGLPPDSLLSYPANYSDDSKIWRPVEIFRLVSKY
 QNEISDRKICASASAPKTCSIERVLRKTERFQKWLQAKRLTPDLVQDCHQGQRELKFLCM
 LR

>gi|7658290|gb|AF221842.1|AF221842 3057bp mRNA Homo sapiens U5
 snRNP-associated 102 kDa protein mRNA, complete cds.

ACTTTGCTACGGAGTGCATCGGACGTCGAAGCCTAGAGTCTCTCGCTCTTCCCTCTTCC
 GCTGCCTCATTCTTCTCTAGCCTGGTCGTGCCGCCACCATGAACAAAGAAGAAG
 AAACCGTTCTAGGGATGCCGCCCTCGGCTACGTGCCGGGCTGGCCGGGCGCC
 ACTGGCTTCAACCACCGCGTCAGACATTGGGCCCGCCGTGATGCAAATGACCCGTGGAT
 GATGCCATGCACCCCCAGCAAGAGAACCGTTGGGACCAGATGAAGAAAAATCAGGCT
 GCTGACGATGACGACGAGGATCTAAATGACACCAATTACGATGAGTTAATGGCTATGCT
 GGGAGCCTCTCTCAAGTGGACCCCTACGAGAAAGATGATGAGGAAGCAGATGCTATCTAT
 GCAGCCCTGGATAAAAGGATGGATGAAAGAAGAAAAGAACGGGAGCAAAGGGAGAAA
 GAAGAAATAGAGAAATATCGTATGGAACGCCAAATCAAACAGCAGTTCTCAGACCTC
 AAGAGGAAGTGGCAGAAGTCACAGAAGAAGAGTGGCTGAGCATCCCCGAGGTGGCGAT
 GCCAGAAATAACGTCAGCGAACCCACGCTATGAGAAGCTGACCCCTGTCAGACAGT
 TTCTTGCCAAACATTACAGACCGGAGAGAACCATACCTCAGTGGATCCCCGACAAACT
 CAATTGGAGGTCTTAACACACCCTATCCAGGTGGACTAAACACTCCATACCCAGGTGGA
 ATGACGCCAGGACTGATGACACCTGGCACAGGTGAGCTGGACATGAGGAAGATTGGCAA
 GCGAGGAACACTCTGATGGACATGAGGCTGAGCCAGGTGCTGACTCCGTGAGTGGACAG
 ACCGTCGTTGACCCAAAGGCTACCTGACGGATTAAATTCCATGATCCGACACACGGA
 GGAGACATCAATGATATCAAGAAGGCGCGACTGCTCCTCAAGTCTGTTGGGAGACGAAC
 CCTCATACCCGCCAGCCTGGATTGCATCAGCCGCTGGAAGAAGTCACTGGGAAGCTA

CAAGTAGCTCGAACCTTATCATGAAGGGGACGGAGATGTGCCCAAGAGTGAAGATGTC
 TGGCTGGAAGCAGCCAGGTTGCAGCCTGGGACACAGCCAAGGCCGTGGTAGCCAAGCT
 GTCCGTCATCTCCCACAGTCAGGATTACATCAGAGCCGAGAGCTGGAAACGGAC
 ATTCGTGCAAAGAAGCGGGTCTTCGAAAGGCCCTCGAGCATGTTCAAACCTCGGTTCGC
 TTGTGAAAGCAGCCGTTGAGCTGGAAGAACCTGAAGATGCTAGAATCATGCTGAGCCGA
 GCTGTGGAGTGCTGCCACCAGCGTGGAGCTGGCTCTGGCAAGGCTGGAGAC
 TATGAAAATGCCGCAAGGTCTGAACAAGGCGGGAGAACATTCTACAGACCGACAT
 ATCTGGATCACGGCTGCTAAGCTGGAGGAAGCCAATGGAACACGCAGATGGTGGAGAAG
 ATCATCGACCGAGCCATCACCTCGCTGCCAACGGTGTGGAGATCAACCGTGAGCAG
 TGGATCCAGGATGCCGAGGAATGTGACAGGGCTGGAGTGTGCCACCTGCCAGGCCGTC
 ATGCGTGCCTGATTGGATTGGAGGAAGATCGGAAGCATACCTGGATGGAG
 GATGCTGACAGTTGTGTAGCCCACATGCCCTGGAGTGTGCACGAGCCATCTACGCC
 GCCCTGCAGGTGTTCCCCAGCAAGAAGAGTGTGTGGCTGCCGCGTACTTCGAGAAG
 AACCATGGCACTCGGGAGTCCCTGAAAGCACTCCTGCAGAGGGCTGTGGCCACTGCC
 AAAGCAGAGGTGCTGTGGCTCATGGCGCAAGTCCAAGTGGCTGGCAGGGATGTGC
 GCAGCAAGGAGCATCCTGCCCTGCCCTCAGGCCAACCCAAAGTGAGGAGATCTGG
 CTGGCAGCCGTGAAGCTGGAGTCCGAGAATGATGAGTACGAGCGGGCCGGAGGCTG
 GCCAAGGCCGGAGCAGTCCCCCACCAGCCGGTGTTCATGAAGTCTGTGAAGCTGGAG
 TGGGTGCAAGACAACATCAGGGCAGCCAAGATCTGTGCGAGGAGGCCCTGCCACTAT
 GAGGACTTCCCCAAGCTGTGGATGATGAAGGGCAGATCGAGGAGCAGAAGGAGATGATG
 GAGAAGGCCGGAGCCTATAACCAGGGTTGAAGAAGTGTCCCCACTCCACACCCCTG
 TGGCTTTGCTCTCGGCTGGAGGAGAAGATTGGCAGCTTACTCGAGCACGGCCATT
 TTGGAAAAGTCTCGTCTGAAGAACCAAAGAACCCCTGGCTGTGGTTGGAGTCCGTGC
 CTGGAGTACCGTGGGGCTGAAGAACATCGCAAATACACTCATGGCCAAGGCCCTG
 GAGTGCCCAACTCCGTATCCTGTGGCTGAGGCCATCTCCTCGAGGCAAGGCCAG
 AGGAGGACCAAGAGCGTGGATGCCCTGAAGAACAGTGTGAGCATGACCCCATGTG
 CCTGCCGCAAGCTGTTGGAGTCAGCGGAAGATCACCAAGGCCAGGGAGTGGTCC
 CGCACTGTGAAGATTGACTCGACCTGGGGATGCCTGGCCTCTTACAAGTTGAG
 CTGCAGCATGGCACTGAGGAGCAGCAGGAGGAGGTGAGGAAGCGCTGTGAGAGTGC
 CAGAGCCTCGGCACTGGGAGCTGTGGTGCAGGCCGTGTCAGGACATGCCACTGG
 CAGAAGAACATCCTTAGGCTGGTGGCGGCATCAAGAACACCTCTGATTGAGCG
 TGCCATGGCCGGCTCCGTGGGGCAGGGTTGGCCGATGTGGAAGGGCTGTGAGCTG
 TCCTCCTCATTAAGTTTATGCTCGTGTAGAAAAAAAAAAAAAA
 >gi|7658291|gb|AAF66128.1|AAF66128 941aa linear U5 snRNP-
 associated 102 kDa protein [Homo sapiens].
 MNKKKKPFLGMPAPLGYVPGLRGATGFTTRSDIGPARDANDPVDDRHAPPKRTVG
 DQM
 KKNQAADDDEDLNDTNYDEFNGYAGSLFSSGPYEKDDEEADAIYAALDKRM
 DERKERR
 EQREKEEIEKYRMERPKIQQQFSDLKRKLAEVTEEEWLSIPEVGDARNKRQRN
 PRYEKLT
 PVPDSFFAKHLQTGENHTSVDPRQTQFGLNTPYPGGLNTPYGGMTPGL
 PGTGELDM
 RKIGQARNTLMDMRLSQVSDSVSGQTVDPKGYLTDLNSMIPTHGGD
 INDIKKARLLLKS
 VRETNP
 HPPAWIASARLEEV
 TGKLQVARNLIMKGTE
 MCPKSEDV
 WLEAARLQPGDTAKA
 VVAQAVR
 RHL
 PQSVRIYIR
 AAELETDIR
 AKR
 VLR
 KALEH
 VPNSV
 RLW
 KAAVE
 LEED
 PEDAR
 IMLSRA
 VEC
 CPT
 SVEL
 WL
 LALAR
 LETYEN
 ARK
 VL
 NKAREN
 IPTDR
 HIW
 ITAA
 KLEE
 ANGNT
 QMVEKI
 IDRAITS
 LRANG
 VEINREQ
 WIQDAE
 ECD
 RAGS
 VATC
 QAVM
 RAVIG
 IGI
 EEDRK
 HTWMEDAD
 SCVAHN
 ALECAR
 AIYAYAL
 QVPSK
 KS
 VWL
 RAAY
 FEKNHG
 TRES
 LEALL
 QRA
 VAHCP
 KAEVL
 WLM
 GAKSK
 WL
 AGDV
 PAARS
 SI
 LALAF
 QAN
 PN
 SEE
 IW
 LA
 AVK
 LES
 ENDE
 YER
 ARLL
 LAK
 ARSSA
 PTA
 RVFM
 KSV
 KLE
 WV
 QDN
 I
 RAA
 QDL
 CEE
 ALR
 HYED
 FPKL
 WMM
 KGQ
 IEE

QKEMMEKAREAYNQGLKKCPHSTPLWLLSRLEEKIGQLTRARAILEKSRLKNPKNPGLW
 LESVRLEYRAGLKNIANTLMAKALQECPNNSGILWSEAFLEARPQRRTKSVDALKCEHD
 PHVLLAVAKLFWSQRKITKAREWFHRTVKIDSDLGDAWAFFYKFELQHGTEEQQEEVRKR
 CESAEPRHGELWCAVSKDIANWQKKIGDILRLVAGRIKNTF

>gi|5454165|gb|NM_006370.1|VTI1B 1287bp mRNA Homo sapiens
 vesicle transport through interaction with t-SNAREs homolog 1B
 (yeast) (VTI1B), mRNA.

CCCTTTCGCTGCGGCCCTTCCCCAACCCGGACCCGGCACCTCTCGGGTCCCGCAGTGCC
 GATCGCCCCGGCGCGGACCGCTCCCTCAGGAGTCGCCTAGGCCGCGCAGTCTCCGACT
 TCTCGTCAGGCTTCGCGCCGGCGCTCCAGCAATCACTGGCTGGAGAAGGTGGCGTTCC
 GGCTCGAGAGGACCTGCCCGGGCTCCGGAAAGAGCCTCGTCCTGGCGCGGTGGTGC
 CGGTCGCCGTTATGCCACTGGCTGGCGCTGACCGCGGGTAGGAAAGGGCCCAGGG
 CCCGAATCTCGGTGGCGCTGCTCCAGCGCGGCCTGCGCCATGGCCTCCTCCGCCGCTC
 CTCGGAGCATTTCGAGAAGCTGCACAGAGATCTTCGCGGCCATGAAGACCTACAAGG
 GGTGCCGAGCGGCTGCTGGGACGGCGGGACCGAAGAAAAGAAGAAATTGATCAGGGA
 TTTTGATGAAAAGCAACAGGAAGCAAATGAAACGCTGGCAGAGATGGAGGAGGAGCTAC
 TTATGCACCCCTGTCTTCCGAAACCCATGATGTCTAACGCTTCAGGAAACTACCGGAAGGA
 CCTTGCTAAACTCCATCGGGAGGTGAGAAGCACACCTTGACAGCCACACCTGGAGGCC
 AGGAGACATGAAATATGGCATATATGCTGTAGAGAATGAGCATATGAATCGGCTACAGTC
 TCAAAGGGCAATGCTCTGCAGGGCACTGAAAGCCTGAACCAGGCCACCCAAAGTATTGA
 ACGTTCTCATCGGATTGCCACAGAGACTGACCAGATTGGCTCAGAAATCATAGAAGAGCT
 GGGGAAACAACGAGACCAGTTAGAACGTACCAAGAGTAGACTGGTAAACACAAGTGA
 AAACTTGAGCAAAAGTCGGAAGATTCTCGTTCAATGTCCAGAAAAGTGACAACCAAGCT
 GCTGCTTCCATTATCATCTTACTGGAGCTGCCATCCTGGAGGCCTGGTTACTACAA
 ATTCTTCGCAGCCATTGAACCTCTATAGGGAGGGTTGTGGACAGAAACTTGACCTT
 GTGAATGCATGATGTTAGGGATGTGGATAGAATAAGCATATTGCTGCTGTGGCTGACAG
 TTCAAGGATGCACTGTATAGCCAGGCTGTGGAGGAGGGAGGAAAGATGAAAAACCACTT
 AAATGTGAAGGAACAACAGCAACAGACAGTATGATATACCAAGGTAATAATGCTGTT
 TATGACTTCTTAAAAAAAAAAAAAA

>gi|5454166|gb|NP_006361.1|VTI1B 232aa linear vesicle-associated soluble NSF attachment protein receptor (v-SN; vesicle-associated soluble NSF attachment protein receptor (v-SNARE; homolog of S. cerevisiae VTI1) [Homo sapiens].

MASSAASSEHFEKLHEIFRGLHEDLQGVPERLLGTAGTEEKKLIRDFDEKQQEANETLA
 EMEEELRYAPLSFRNPMMSKLRNYRKDLAKLHREVRSTPLTATPGGRGDMKYGIYAVENE
 HMNRLQSQRAMLLQGTESLN RATQS IERSHRIATETDQIGSEIIEELGEQRDQLERTKSR
 LVNTSENLSKSRKILRSMSRKVTTNKLSSIIILLELAILGGLVYYKFRSH

>gi|7705992|gb|NM_016440.1|LOC51231 1869bp mRNA Homo sapiens VRK3 for vaccinia related kinase 3 (LOC51231), mRNA.

CCGAGGGTCAGGCTGCAGAACGCCAGAACCCACCCAGTCCCCAAGTACAGAGGTCGCT
 GTCAAGATGGAGTTCCAACCCAGTAAATCCAAGGGCCAGACCGTGACCTCATAAAGCAT
 GATCTCCTCTGTCCAGACTGTGGCAAAAGTATCCAAGCGGCATTCAAATTCTGCCCTA
 CTGTGGAAATTCTTGCCTGTAGAGGAGCATGTAGGGTCCCAGACCTTGTCAATCCACA
 TGTGTCACTCTCCAAGGCTCAAAGAGAGGGCTGAACCTCCAGTTGAAACCTCTCTAA
 GAAAGTGAATGGTCCAGCACCGTCACCTCTCCCCGATTATCCCTCTCAGATGGTGA
 CAGTTCTGAGTCTGAAGATACTCTGAGTCCCTGTAGAGAGATCCAAAGGCTCCGGGAGCAG
 ACCCCCAACCCCCAAAAGCAGCCCTCAGAAGACCAGGAAGAGCCCTCAGGTGACCAGGG

TAGCCCTCAGAAGACCAGCTGTAGCCCTCAGAAGACCAGGCAGAGCCCTCAGACGCTGAA
 GCGGAGCCGAGTGACCACCTCACTTGAAGCTTGCCCACAGGGACAGTGCTGACAGACAA
 GAGTGGCGACAGTGGAGCTGAAGTCCTCCAGACCAGGGACAACCAGGGATTCTCTA
 TGAAGCTGCACCCACCTCCACCTCACCTGTGACTCAGGACCACAGAACAAAGTTCTC
 ACTCAAACGGATGCCAAGGATGGCGCTTGTCAATGAGCAGAACCTTCCAGCAGGGC
 CGCCAAGCCTCTGCAAGTCAACAAGTGGAGAACAGCTGTACTCGACCCACTGCTGGCC
 CCCTACCTGCATGGGTTCCGGTGTACCCAGGACAAATACAGGTTCTGGTGTACCCAG
 CCTGGGGAGGAGCCTTCAGTCGGCCCTGGATGTCAAGCCAAAGCATGTGCTGTCAGAGAG
 GTCTGTGCTGCAGGTGGCCTGCCGGCTGCTGGATGCCCTGGAGTTCCCTCATGAGAATGA
 GTATGTTCATGAAATGTGACAGCTGAAAATATCTTGTGGATCCAGAGGACCAGAGTCA
 GGTGACTTGGCAGGCTATGGCTTCCGCTATTGCCCAAGTGGCAAACACGTGGC
 CTACGTGGAAGGCAGCAGGAGCCCTCACGAGGGGACCTTGAGTTCAATTAGCATGGAC
 GCACAAGGGATGCGGGCCCTCCCGCCAGCGACCTCCAGAGCCTGGCTACTGCATGCT
 GAAGTGGCTCTACGGGTTCTGCCATGGACAAATTGCCCTCCAACACTGAGGACATCAT
 GAAGCAAAACAGAAGTTGATAAGCCGGGCCCTCGTGGGACCTGCGGTCAGTG
 GATCAGGCCCTCAGAGACCCTGCAGAAGTACCTGAAGGTGGTGTGGACCTGCGTATGA
 GGAGAAGCCGCCCTACGCCATGCTGAGGAACAACCTAGAACGCTTGCTGCAGGATCTGCG
 TGTGTCTCCATATGACCCATTGGCCTCCGATGGTCCCTAGGTGGAATCCAGAACCTT
 CCATTTGCAGTGTGCAACAGAAAAAAATGAAGCAATGTGACTCAAGGCCTGCTGTTA
 ATCACAGATAAGCTCTAGAACAAAGCCCTGGAATGTGCATTCCCTGCCACTGGTTCA
 GGA
 TACTCATCAGTCTGATTAGCCTCCGGAGGGCCCCAGTTCCCTCCCGTAATGTGAAGT
 TCCCCATCTGGTGGCCTGCCCTCAGCCAGTGTCTAGCAAAGCTGGATGGGTTGGC
 CGGCCACAGGGGGACCCCTCACCCCTGACTCCTGTGCTTGGTAATAAATTGTT
 TTACCAAGAG

>gi|7705993|gb|NP_057524.1|LOC51231 474aa linear VRK3 for
 vaccinia related kinase 3 [Homo sapiens].

MISFCPDGKSIQAAFKFCPYCGNSLPVEEHVGSQTFVNPHVSSFQGSKRGLNSSFETSP
 KKVKWSSTVTSPRLSLFSDGDSSESEDTLSSSERSKGSRSRPPTPKSSPKTRKSPQVTR
 GSPQKTSCSPQKTRQSPQTLKRSRVTTSLAEALPTGTVLTDKGSRQWKLKFQTRDNQGIL
 YEAAAPTSTLTCDSGPQKQKFLKLDAKDGRLFNEQNFFQRAAKPLQVNWKLYSTPLLA
 IPTCMGFGVHQDKYRFVLPSLGRSLQSALDVSPKHVLRSERSVLQVACRLLDALEFLHEN
 EYVHGNVTAENIFVDPEDQSQVTLAGYGFAFRYCPGSKHVAYVEGSRSPHEGDLEFISMD
 LHKCGGPSRRSDLQLSLGYCMLKWLGYFLPWTNCLPNTEDIMKQKQKFVDKPGFVGPCGH
 WIRPSETLQKYLKVVMALTYEEKPPYAMLRNNLEALLQDLRVSPYDPIGLPMVP

>gi|27479296|gb|XM_114075.2|TCEA3 1543bp mRNA Homo sapiens
 transcription elongation factor A (SII), 3 (TCEA3), mRNA.

CGCCCCCGCCGGCGTGTGTGCGTGTGTTGGGGCCCGCGCGGGTTGCGCGCCCTCC
 GCCTTCGCGCCTCTGCCCCCGAGGCCCTACTGCTGCCCTGTGCCCTCGCCCCGCCGG
 GCGTCGCGGGCCAACATGGCCAGGAAGAGGAGCTGCTGAGGATGCCAAAAGCTGGAG
 AAGATGGTGGCCAGGAAGAACACGGAAGGGCCCTGGACCTCTGAAGAACGCTGCACAGC
 TGCCAGATGTCCATCCAGCTACTACAGACAACCAGGATTGGAGTTGCTGTTAATGGGTC
 CGCAAGCACTGCTCAGACAAGGAGGTGGTGCCTTGGCCAAGTCCTTATCAAAAAGTGG
 AAGCGGCTGCTAGACTCCCCTGGACCCCCAAAGGAGAAAAGGAGAGGAAAGAGAAAAG
 GCAAAGAAGAAGGAAAAGGGCTTGAGTGTTCAGACTGGAAGCCAGAACAGCAGGC
 CCACCAAGAAAAACGAGAAGACCCAAAACCAGGAGAGACTCTGTGGACTCCAAGTCT
 TCTGCCTCTCTCCAAAAGACCATCGGTGGAAAGATCAAACAGCAGCAAATCAA
 GCGGAGAGCCCCAAAACACCTAGCAGCCCCCTGACCCCCACGTTGCCTCTCATGTGT

CTCCTGGCCCCCTGCTATCTCACAGGGACTCTGTCCGGACAAGTGTGTGGAGATGCTG
 TCAGCAGCCCTGAAGGCGGACGATGATTACAAGGACTATGGAGTCAACTGTGACAAGATG
 GCATCAGAAATCGAAGATCATATCTACCAAGAGCTCAAGAGCACGGACATGAAGTACCGG
 AACCGCGTGCAGCCGCATAAGCAACCTCAAGGACCCCAGGAACCCGGCTGCGGCGG
 AACGTGCTCAGTGGGCCATCTCCGCAGGGCTATAGCCAAGATGACGGCAGAGGAAATG
 GCCAGTGATGAACTGAGGGAGTTGAGGAATGCCATGACCCAGGAGGCCATCCGTGAGCAC
 CAGATGGCCAAGACTGGCGCACCACTGACCTCTCCAGTGCAGCAAATGCAAGAAG
 AAGAACTGCACCTATAACCAGGTGCAGACACGCAGTGCTGATGAGCCATGACTACCTT
 GTCTTATGCAATGAATGTGGCAATCGCTGGAAAGTTCTGCTGATGGAACAGCCAGCCATGA
 ACAAGGTGAGGAAGAAGAAAGAGGAAGCGCTGAATTATCTGAACTGGAGAAGCAATAAAA
 ATTAAAGTGAAGGAAAATCTGAACCTGTGAGTGGGATGGTATGAGTTAGAGGAAGA
 ATTCTCTGCAAATTAAATAATCGGTCAATTAGAAACAATTGGTTAATGGGGGAGCCTAATT
 GGAGAATGATGCTGAGAATTGTATTGATGAAACCTCTTTAGAAAATGCAAGAGGGCTGGG
 CACGGTGGTTATGGCTGTAATCTGCAAACCTGGGAGGCTGAGGTGGGAGAACGCTTA
 ACCCCAGAAGTTGAGTCCAGCCCAGGCAACACAGCAAGACCC

>gi|20473950|gb|XP_114075.1|TCEA3 348aa linear similar to Transcription elongation factor A protein 3 (Transcription elongation factor S-II protein 3) (Transcription elongation factor TFIIS.h) [Homo sapiens].

MGQEEELLRIAKKLEKMVARKNTEGALDLLKKLHSQMSIQLLQTTRIGVAVNGVRKHCS
 DKEVVSLAKVLINKWKRLLDSPGPPKGEKGEEREKAKKEKGLECSWDKPEAGLSPPRKK
 REDPKTRRDSVDSKSSASSSPKRPSVERNSSKSKAESPCKTPSSPLPTFASSMCLLAPC
 YLTGDSVRDKCVCVEMLSAALKADDDYKDYGVNCDKMASEIEDHIYQELKSTDMDKYRNVRVS
 RISNLKDPRNPGLRRNVLSGAI SAGLIAKMTAEEMASDELRELRNAMTQEAI REHQMAKT
 GGTTDLFQCSKCKKNCTYNQVQTRSADEPMTTFVLCNECGNRWKFC

>gi|21314607|gb|NM_003342.2|UBE2G1 2430bp mRNA Homo sapiens ubiquitin-conjugating enzyme E2G 1 (UBC7 homolog, C. elegans) (UBE2G1), mRNA.

ACCGGCAGCGAGGGCGCCGCTCCGGCCCTCAGCCCGCCTTCCTCGGCTCCGGCGCTCC
 GTCGGCGGGGCCGGGTTCTCGGCACACCCCGCTCCAGCCGCCAGAGCCTGTCCCC
 AGCCCTTCCGAAGCCCCGGGCCAGCCCAGGGCCCTCGGAGGGAGGATGACGGAGCTGCA
 GTCGGCACTGCTACTGCGAAGACAGACTGGCAGAACTCAACAAAATCCAGTGGAAAGGCTT
 TTCTGCAGGTTAATAGATGACAATGATCTCTACCGATGGGAAGTCCTTATTATTGGCCC
 TCCAGATAACACTTTATGAAGGTGGTTTTAAGGCTCATCTTACTTCCAAAAGATTA
 TCCCCTCCGACCTCTAAAATGAAATTCACTACAGAAATCTGGCACCCAAATGTTGATAA
 AAATGGTGTGTCATTCTATTCTCATGAGCCTGGGAAGATAAGTATGGTTATGAA
 AAAGCCAGAGGAACGCTGGCTCCCTATCCACACTGTGGAAACCACATGATTAGTGTCA
 TTCTATGCTGGCAGACCTTAATGGAGACTCACCTGCTAATGTTGATGCTGCGAAAGAATG
 GAGGGAGATAGAAATGGAGAATTAAAAGAAAAGTTGCCCGCTGTGTAAGAAAAAGCCA
 AGAGACTGCTTTGAGTGACATTATTTAGCAGCTAGTAACCTCACTTATTTCAGGGTCT
 CCAATTGAGAAACATGGCACTGTTTCTGCACTCTACCCACCTATTGCTGGACTTCTG
 TTGTACAAGTTGGCAAACACTGGCTGGAACTGGCTGCAATAAACATGCCAGTTATCAA
 TGCTGACAAGAGCCTAACAAAGTGCCTAACTTACAGATGATTACGCATTGAAATTCTAATG
 AACTGTTAACCTTCAGGAAGAATTGTAAGAGACCTGTACATAGCACAACATGATCCGGA
 TAATATATATACTGTTCATGTCATCCACAAATACACCTGTACCAAATAATGCTTTCTT
 GTAGTAGAATAAGAATCGTGTAAATTCTAAGAGATTAGCAGGTTCTTCTTCTATTCA
 TTGTTCTTATCAGTTAAAAGGATTCCCTTAAGCATGTCAGATGAAAGCAATTAGGAT

- 164 -

TAAAAGTTCCATTAATTCCCTTAAACCCCTGAGGCTTCATTAACACTTTCACTTA
 CTAAACTTTGTATCTTCTTGTTGACACACTCCCCTTGCTTTATCTCTACCTGC
 CAGAATGTTCTCAAATGATTAGTTCAAATACTGAAATACTTAATGAGCAATTACTTGAT
 TTTAATGATGACTTCGAAGGAGTCATCACTAGGTGCTTGTCCTTTGTATTCTAGTT
 GCACCCACCTCTGGATTGGATATAGCAATAACATTATTGCCGTTGTGAGCTCTTGAT
 CCCAGTCATTACCCCTGAGAACTAAAAATAGATGGTCTTAATTCAACTTACTGAAAATT
 TCCCCAAACAATAGCAAATCTGACTTTCCCTCTCAGTTGCCTGGTATTAAGGTTGGAT
 AAATGAAGCATGCACAGCTACAGGCTTCTACTTAACCTCTGGGTTGCTATTACAAATC
 CTATTTACTCTCATACCCTCTCCTTAGTCCTCATATTCTCTGCCTCTATTCTTCTAT
 ACTGCAGATTTTCTCACCTATTGTACAAAGAAATTGCGATGTATATTTCATGTAATT
 GATTTGGAATTCTGTACCTTATGTAGTAGTTCTCCAAAATAATTTTTTCAAT
 AATTGTCAAGTTGGCTTTATTGTATTGAATGAAGGCTATAACTGAGTGCCAGAG
 AAGTGGTTAGGAAAATCTCAGGTTGATTCTTATGCAAATGAACCTTTAATACTGAAA
 ATCACATGGCCATGGCAGTATATGTATTGGTTCTATCTAGATTCTCTGTGAATCTAAA
 AGCATTACAGGGTAAATGCTTGCTATTGACGTATAGATCCCGTCACTAACAAATAGTA
 CACTTGGATGTGATTAATGTTGAGCTCAATATATTCAATACAGTTTCTAAAA
 CAACTCAGCAAATGGTAAAATGAACATGTGCACTGTTAAAGGCAGGCTTAGGCTCCTT
 CATGTTGTTGTGAGGTTGTTGAGGCTTATAAGGGATAGAACATTG
 AGACAGTAGCAGATGGGACATGGTGGTTGATTGTGAGAATCAGTGAGAATTCTGTCATCT
 CTGCTCTGTTGGAGAAATGCTTGGCAGAAGAGTGAAGAACCTCTGCCAAGAG
 CCCAGACCTCTACAAACGTGTATGCTTTTAAGCAGAAATAATGGTTGAGGACG
 AAAAAAAAAAAAAAAAAAAAAAA

>gi|13489085|gb|NP_003333.1|UBE2G1 170aa linear ubiquitin-conjugating enzyme E2G 1 (UBC7 homolog, *C. elegans*); Ubiquitin-conjugating enzyme E2G (UBC7, *C. elegans*, human homolog of); ubiquitin-conjugating enzyme E2G (homologous to *C. elegans* UBC7); ubiquitin-conjugating enzyme E2G 1 (homologous to *C. elegans* UBC7) [Homo sapiens].

MTELQSALLLRRQLAELNKNPVEGFSAGLIDDNDLYRWEVLIIGPPDTLYEGGVFKAHLT
 FPKDYPLRPPKMKFITEIWHPNVDKNGDVCISILHEPGEDKYGYEKPEERWLP
 IHTVETIMISVISMLADPNGDSPANVDAAKEWREDRNGEFKRKVARCVRKSQETA
 FE

>gi|21361498|gb|NM_015670.2|SENP3 2258bp mRNA Homo sapiens sentrin/SUMO-specific protease 3 (SENP3), mRNA.

GAAGCTTGAGGCCGGAGACGCCGCCTCGGGCCGTCGGCCGGCTCCCCGCTCCGG
 GTACTGGAAGATGAAAGAGACTATAACAGGGACCGGGCTCTGGGGCCTGAGCCTCCTGG
 ACCCGGCATACCCCCAGCTACTCAAGTCCCAGGCAGGCGTCTCGTTGGCCCCCACC
 TCCCAAACCCGACTCAAGTCAGGTGGAGGGTTGGCCAGATCCTGGGTCAAGGAC
 AGTGCCAGGCCAGACGCCCTCGTCCCCGACCTCTTGATGCCTCAGCAAGTGAAGA
 GGAGGAAGAAGAGGAGGAGGAGGAGGATGAAGATGAAGAGGAGGAAGTGGCAGCTGGAG
 GCTGCCCAAGATGGAGTCAGCTGGAACCTCCCAGCGGCCCTCCGCCAC
 TCATCGAAAACCTGCTCACAGCGCCGCCAGCCATGAGAGCCTCCGGATGCTGCT
 CTACTCAAAAGCACCTCGTGACATTCCACTGGAAAGCTTGGGGGCCACGGGGCG
 CGGGCGGGGCCCTCGCACACCCCAAGAACCATCTTCAACCCAGCAAGGGGTGCGACGCC
 ACAGGTGCCATCCCCCTGTGCTTTGACTCCCCCGGGGCCACCTCCACCCGGCT
 GGGCTGCTAGGTGCTCATGGCTGAGGATGGGGTGAAGAGGGTCTCCACCAGTGC
 CTCGGCCCCCATGGAGGAAGATGGACTCAGGTGGACTCCAAAGTCTCCTCTGGAC
 CTCGGGCCCTTCATGTACTCTGCCAACGGTTGGGGACAATCTGGGCCAGAAGG

GGAGCGCAGCTGGCACCCCTGATGCCAGCATCCTCATCAGCAATGTGTGCAGCA TCGG
 GGACCATGTGGCCCAGGAGCTTTCAAGGGCTCAGATTGGCATGCCAGAAGAGGCAGA
 GAGGCCTGGGAGAAAGCCGCCAGCACAGCCCCCTGCAGAGAGGAGCATGTGACCTGCGT
 ACAGAGCATCTGGACGAATTCTCAAACGTATGGCAGCCTCATACCCCTCAGCACTGA
 TGAGGTAGTAGAGAACGCTGGAGGACATTTCCAGCAGGAGTTTCCACCCCTCAGGAA
 GGGCCTGGTGTGCAGCTGATCCAGTCTACCAGCGATGCCAGGCAATGCCATGGTGAG
 GGGCTCCGAGTGGCTTATAAGCGGCACGTGCTGACCATGGATGACTGGGACCTTGT
 TGGACAGAACTGGCTCAATGACCAGGTGATGAACATGTATGGAGACCTGGTCATGGACAC
 AGTCCCTGAAAAGGTGCATTCTCAATAGTTCTTATGATAAACTCCGTACCAAGGG
 TTATGATGGGTGAAAAGGTGGACCAAAACGTGGACATCTCAATAAGGAGCTACTGCT
 AATCCCCATCCACCTGGAGGTGCATTGGCCCTCATCTCTGTTGATGTGAGGCGACGCAC
 CATCACCTATTTGACTCGCAGCGTACCCCTAAACCGCCGCTGCCCTAACGATATTGCCAA
 GTATCTACAGGCAGAGCGGTAAAGAAAGACCGACTGGATTCCACCAAGGGCTGGAAAGG
 TTACTTAAAATGAATGTGCCAGGCAGAATAATGACAGTGACTGTGGTGTCTTGT
 GCAGTACTGCAAGCATCTGGCCCTGTCTCAGCCATTCACTGCAAAACTCACTGTGTGAGCCTC
 CAAACTCGTCGGCAGATCTACAAGGAGCTGTGCACTGCAAAACTCACTGTGTGAGCCTC
 GTACCCCAGACCCATAATGGGAGGGAGACATGGGAGTCCCTTCCAAGAAA
 CTCCAGTTCCCTTCCCTCTTGCCTCTTCCACTCACTCCCTTGGTTTTCATATTAA
 AATGTTCAATTCTGTATTTTCTTGAGAGAAATCTTGTGATTTCTGATGTGC
 AGGGGGTGGCTACAGAAAAGCCCTTCTCCTCTGTTGCAAGGGAGTGTGCCCTGTG
 GCCTGGGTGGAGCAGTCATCCTCCCCCTCCCGTGCAGGGAGCAGGAAATCAGTGTGG
 GGGTGGTGGCGGACAATAGGATCACTGCCTGCCAGATCTCAAACCTTATATATAT
 ATATATATATATATATATATAAAATATAATAAATGCCACGGCCTGCTGTCAATA
 AAGGATCCTTGTGATACGTAAAAAAAAAAAAAA

>gi|21361499|gb|NP_056485.2|SENP3 574aa linear sentrin/SUMO-specific protease 3 [Homo sapiens].

MKETIQGTGSWGPEPPPGPIPPAYSSPRRERLRWPPPKPRILKSGGGFGPDPGSGTTVPA
 RRLPVPRPSFDASASEEEEEEEDEEEEVAWLPPRWSQLTSQRPRPSRPTHRK
 TCSQRRRAFRMLLYSKSTS LT FH WL WGR H R G R R G L A H P K N H L S P Q Q G G A T P Q V P
 SPCCRFDS PRG PPPP RL GL GAL MAEDGV RG SPPV PS G P P M E D G L R W T P K S P L D P D S G L
 LSCLPNGFGGQSGPEGERSLAPPDASILISNVCSIGDHVAQELFQGSDLGMAEEAERPG
 EKAGQHSPLREEHVTCVQSILDEFLQTYGSLIPLSTDEVVEKLEDIFQQEFSTPSRKGLV
 LQLIQSYQRMPGNAMVRGFRVAYKRHVLTMDDLGTLYGQNWLNDQVMNMYGDLVMDTVPE
 KVHFFNSFYDKLRTKGYDGVKRWTKNVDIFNKELLIPIHLEVHWSLISVDVRRRTITY
 FDSQRTLNRCPKHIAKYLQAEAVKKDRLDFHQGWKGYFKMNVARQNNSDCGAFVLQYC
 KHLALSQPFSFTQDMPKLRRQIYKELCHCKLT

>gi|5803166|gb|NM_006802.1|SF3A3 2733bp mRNA Homo sapiens splicing factor 3a, subunit 3, 60kDa (SF3A3), mRNA.

AAGGGAAGATGGAGACAATACTGGAGCAGCAGCGGCCATGCAGATAGGTATATGGAGGTCA GTGGGAACCTGA
 TCATGGACGTCACTGGCTAAAGAGATGCTACCAAGAACGCTCCGGGACAGATCA
 ATTCTGATCACCGCACTCGGCCATGCAGATAGGTATATGGAGGTCA GTGGGAACCTGA
 GGGATTTGTATGATAAGGATGGATTACGAAAGGAGGAGCTCAATGCCATTCA
 CCAATGAGTTGCTGAATTCTATAATAGACTCAAGCAAATAAGGAATTCCACCGGAAGC
 ACCCAAATGAGATCTGTGTGCCAATGTCAGTGGATTGAGGAACCTCTGAAGGCTCGAG
 AGAAATCCAAGTGAAGAGGCACAAAATGGTGGAGTTACAGATGAGGAGGGATATGGTC
 GTTATCTCGATCTCATGACTGTTACCTCAAGTACATTAACTGAAGGCATCTGAGAAGC
 TGGATTATATCACATACCTGTCCATCTTGACCAATTATTTGACATTCTAAAGAAAGGA

AGAATGCAGAGTATAAGAGATAACCTAGAGATGCTGCTTGAGTACCTTCAGGATTACACAG
 ATAGAGTGAAGCCTCTCCAAGATCAGAACTTTGGAGATTCAAGCTGAGTTTG
 AGAAGAAATGGGAGAATGGGACCTTCCTGGATGGCCGAAAGAGACAAGCAGTGCCTGA
 CCCATGCTGGAGCCCCTTGACCTCTGCATTCTCCTCTGGGAGGAGTTGGCTTCTC
 TGGGTTTGGACAGATTGAAATCTGCTCTTAGCTTAGGCTGAAATGTGGCGGGACCC
 TAGAAGAGCGAGCCCAGAGACTATTCACTACCAAAGGAAAGTCCCTGGAGTCATTGATA
 CCTCTTGTGCCCCAAACTCCAAGTCAAAGGGACCAAGCGAGACACTGAAAGGAACA
 AAGACATTGCTTCTAGAACGCCAGATCTATGAATATGTAGAGATTCTCGGGAAACAGC
 GACATCTCACTCATGAAAATGTACAGCGCAAGCAAGCCAGGACAGGAGAACAGCGAGAAG
 AAGAGGAAGAAGAGCAGATCAGTGAGAGTGAAGATGAAGAGAACGAGATCATT
 ACAACCCCCAAAACCTGCCACTTGGCTGGATGGCAAACCTATTCCCTACTGGCTGTATA
 AGCTTCATGGCCTAAATATCAACTACAACACTGTGAGATTGTGAAACTACACCTACCGAG
 GGCCCAAAGCCTTCCAGCGACACTTGCTGAATGGCGTATGCTCATGGCATGAGGTGTT
 TGGGCATCCAAATACTGCTCACTTGCTAATGTGACACAGATTGAAGATGCTGTCTCCT
 TGTGGGCCAAACTGAAATTGCAAGAGCTTCAAGGATGGCAGCTGACACTGAGGAAG
 AATATGAAGACTCAAGTGGGAATGTTGTGAATAAGAAGACATACGAGGATCTGAAAAGAC
 AAGGACTGCTCTAGTGTGAGGGATGTAGCTCAGCTTGGCTAGCCAGGCTCCCTA
 AGATCTGCTTTCTATTCTCCCAACCAAATCCTCTTAAAGACCCTTGCTATGTAGTC
 TCATGGCTAGCATGCATCTGTAGAAACAAGGCATGCTGGCAGATTGCAGGGTTGAGAT
 GTGTTTATCTGTTTATTTAAAGATTCTGCCAGAAAATAACAGACCTTGTTC
 TAAAGCCCAGGGTTATGGACCAACTCAGTGCTTCAGGTCTTAATGCCTCCATACTCTTC
 CTCACCAACTTACTAGTAGCTGAGATTAAATGGGCACCTATTATGCTACATATCATGTT
 AGGTAATCTGACCTGACCTCTTCCCCACCCCTCTTGTGCTGCTTCCCTGAATGAGT
 ATTACCCCAGGATGAGGTCTGCCATCAGCTTAGGATGCAAATACTAGGGAA
 AGACTAGGAGGATGAGCCAGGGTTGCTACTAAGGACTAAGTGTGCGCACCAAGGTTGCCT
 TTTGTATTGCAAAAGAAAGGAGTTGGAGCTGGGTGCACTGGCTGTGCCTGTAGTCCC
 AGCTACTTGGGAGGCTGAGGCAGGAGGGTTGCTTGAGACTAGCCTAGGTAACATAGTGAG
 ACCCTGTCTCATTAAAAAAAAAAAAAGGCATGGTGGCACGCACACTGACTGTAGTCCCAGCTA
 CTCAGGAGACTGAGGCTAGAAAGATCCTTGAACCTAGGAGTTGAGACCAGCCTGGCGA
 TATAGTGAGGCCCATCTCAAAAAAAAAAGCGGGGGGGGAGTTGGCTGTGTTG
 GAATGGGCTGCAGCCAAACAAACAGGAACACTAGGACCGACAGTGACTTCACCAGCTTG
 CTAGGTAGAAATGAGAGACTGGTGGGTCTGCTACCTGTTCTCTACAAGATCCCTATT
 TGACTGTAAAAGTAGCTAATACTCACATGTTCTCAATCCCAGGTAGCCATGGTAGAGTT
 GGGTAGAGTTGAGCAGCCCCCCAGGATCAAATGTTGCTGAAATGGAAAGAACTAA
 GGCACCAGGAAGGCAGTGCCTATAAGCACAGTCATCTGAAAGTCAGGCCTGCT
 GCAGGACAGGATCCCCAGAGACCCATTGCCTCTAACACTCAGACCTCAACTGTT
 TTTAATAAAATCTACTTTAAAAAAAAAAATA

>gi|5803167|gb|NP_006793.1|SF3A3 501aa linear splicing factor
 3a, subunit 3, 60kDa; pre-mRNA splicing factor SF3a (60kD)
 [Homo sapiens].

METILEQQRRYHEEKERLMDVMAKEMTKKSTLRDQINSDHRTTRAMQDRYMEVSGNLRDL
 YDDKDGLRKEELNAISGPNEFAEFYNRLKQIKEFHRKHPNEICVPMSEFEELLKAREN
 PSEEAQNLVEFTDEEGYGRYLQLHDCLKYINLKASEKLDYITYLSIFDQLFDIPKERKNA
 EYKRYLEMLLEYLQDYDRVPLQDNELFGKIQAEEFKKWENGTFPGWPKETSSALTHA
 GAHLDLSAFSSWEELASLGLDRLKSALLALGLKCGGTLEERAQRLFSTKGKSLESLDTSL
 FAKNPKSKGTRKRDTERNKDIASFLEAQIYEYVEILGEQRHLTHEVQRKQARTGEERE
 EEEEQIISESEDEENEIIYNPKNLPLGWDGKPIPYWLYKLHGLNINYNEICGNYTYRGPK

AFQRHFAEWRRAHGMRCLGIPNTAHFANVTQIEDAVSLWAKLKLQKASERWQPDTEEEYE
DSSGVVNVKKTYEDLKRGQGLL
>gi|28882054|gb|NM_005011.2|NRF1 2514bp mRNA Homo sapiens
nuclear respiratory factor 1 (NRF1), mRNA.
GAGGCTGCGAGGAGCCGGCGGTGCGAGTCTCCACGGCGCAGGCCACGGTAGCGCAGC
CGCTCTGAGTAGAACATTCATGGAGGAACACGGAGTGACCCAAACGAACATATGGCTACC
ATAGAAGCACATGCAGTGGCCCAGCAAGTGCAGCAGGTCCATGTGGCTACTTACACCGAG
CATAGTATGCTGAGTGTGATGAAGACTCGCCTTCTCTCCCGAGGACACCTCTACGAT
GACTCAGATATACTCAACTCCACAGCAGCTGATGAGGTGACAGCTCATCTGGCAGCTGCA
GGTCCTGTGGATGGCCGCTGCTGCTGTGGCAACAGGAAAGAAACGGAAACGGCCT
CATGTATTGAGTCTAATCCATCTATCCGGAAGAGGCAACAAACACGTTGCTCGGAAA
CTTCGAGCCACGTTAGATGAATATACTACTCGTGTGGACAGCAAGCTATTGTCCTCTGT
ATCTCACCCCTCAAACCTAACCTGTCTTAAAGTGTGTTGGCAGCACCTTGGAGAAT
GTGGTGCCTAAGTACAAGAGCATGATCCTGGAAGACCTGGAGTCTGCTCTGGCAGAAC
GCCCTGCGCCACAGGAGGTTAACTCAGAACTGCGCCTCTCACCATCGACGGAATTCCA
GTCTCTGTGGACAAATGACCCAGGCCCAGCTCGGGCATTATCCCAGAGATGCTCAAG
TACTCTACAGGTGGGGAAAACCAGGCTGGGGAAAGAAAGCTGCAAGCCCACCTGGTGG
CCTGAAGATATCCCCCTGGGAAATGTCGGAGTGATGTCGACAGAAAGAGCAAAAGCAG
AGGGTTTCATGGACCCAGGCACTACGGACCATAGTTAAAAACTGTTATAAACAGCATGGG
CGGGAAAGACCTTTGTATGCCCTTGAAAGATCAGCAAACGAAACACAGGCCACAGCCACA
CATAGTATAGCTCATCTGTACCATCACAGACTGTAGTCCAGACTTTAGTAACCCTGAT
GGCACTGTCTCACTTATCCAGGTTGGTACGGGGCAACAGTAGGCCACATTGGCTGATGCT
TCAGAATTGCCAACCACGGTCACCGTTGCCAAGTGAATTATTCTGCCGTGGCTGATGGA
GAGGTGGAAACAAATTGGGCCACGTTACAGGGAGGTGAGATGACCATCCAGACGACGCAA
GCATCAGAGGCCACCCAGGGCGTGGCATCGTTGGCAGAGGCCAGTGGCAGCTCTCAG
GAGATGCAGCAGGGAGCTACAGTCACTATGGCCTAACAGCGAAGCTGCCGCCATGCT
GTCGCCACCCCTGGCTGAGGCCACCTTACAAGGTGGGGACAGATCGTCTGTCTGGGAA
ACCGCAGCAGCCGTCGGAGCACTTACTGGAGTCCAAGATGCTAATGGCCTTTATGGCA
GATCGTCAGGTGCAAGTGGATCCTGACTGACAAAGCCACAGGCCCTGGTCCAGATCCCT
GTGAGCATGTACCAAGACTGTGGTGACCAGCCTGCCAGGGCAACGGACCAGTGCAGGTG
GCCATGGCCCCCTGTGACCACCAGGATATCAGACAGGCCAGTCACCATGGACGGCCAAGCT
GTGGAGGTGGTGACATTGGAACAGTGACATACAGCCATATTATGGCATCGTTCTAGTC
TACTTCAAAATTTCACAGTTGCAGAGGTGCAATCAAATGGAATTAAAGTCTCTCGAC
TTTGGAAAGGAAAGTTTGTAAACCTTTTTAAAGGAAGAAAGCGGATTGGAA
TTGCATTTTAAAGCACCACCTTGATTTCTGGGATTGGTGAAGAAACTGCATTGTCA
ATTCACTGTCCCCAAAAGCCAAATTGTGGCAGGACTTCTCTGCCGAAATGTGTG
TATACCTATGTGTGTATGTGTGAGTGTGAATATGTATATGTACATATGGACATA
CACATTACATATATATAAGTATATATACATATATATATATGTATGAAACCCG
CATGGAATTATCTGTATGAAATCAAGGTGCGCTGTGGAAACAATAATTCAACCCAGTTAG
TGGGTGGTAGGGTACGTGGCCAGACACAGTCACCCAGTTTGTTCATACCAGGGTCATG
CGTTGAGCTACTGACAAACTCAGGCGGAGGTGACCATGCCCTCACCAAAGCTGCCCTCC
AGTGGCCACACAGAACTCTCCCTGCTGGACTCACCTGAGGAAAGAGGCCAGCATGGGG
TGGGTGAGAGATGTGCTTGCAGAGTCCAGGGACTGCGTGGTCTGCCAGCTGAGATGCTCC
TCGGGCTGGCCAGGTGCTGACCTGCCACAGGCAGATGAATGTCTGAAAGCTCCGGG
CCTCAGCCTCCATCTCCTCCTCCAGGAATCCTGATCTCATGACTATTAAAATGT
TGCTCTGGTTAAGGTAAAAAAAAAAAAAAAAAAAAAA

- 168 -

>gi|28882055|gb|NP_005002.2|NRF1 522aa linear nuclear respiratory factor 1 [Homo sapiens].

MEEHGVTQTEHMATIEAHAVAQQVQQHVATYTHEHMSL SADEDSPSSPEDTSYDDSDILN STADEVTAHLAAAGPVGMAAAAAVATGKKRKRPHVFESNPSIRKQQTRLLRKLRATLD EYTRVQQAIQLCISPSKPNSPKVFGAAPPLEVVRKYKSMILEDLESALAEHAPARQE VNSELPLTIDGIPVSVDKMTQAQLRAFIPEMLKYSTGRGKPGWGKESCKPIWWPEDIPW ANVRSDVRTEEQKQRVSWTQALRTIVKNCYKQHGREDLLYAFEDQQQTQATATHSIAHL VPSQTVVQTFSNPDGTVSLIQVGTGATVATLADASELPTTVTAQVNYSAVADGEVEQNW ATLQGGEMTIQTTQASEATQAVASLAEAAVAASQEMQQGATVTMALNSEAAAHAVATLAE ATLQGGGQIVLSGETAAAVGALTGVQDANGLFMADAGRKWILTDKATGLVQIPVSMYQT VVTSLAQNGNPVQVAMAPVTTRISDSAVTMDGQAVEVVTLEQ

>gi|6996000|gb|NM_001663.2|ARF6 1806bp mRNA Homo sapiens ADP-ribosylation factor 6 (ARF6), mRNA.

GGCCGGAGGGAGCCCGCGCTCGGGCGGCCGGCTGGAGGCAGCGCACCGAGTTCCCGCGAG GATCCATGACCTGACGGGGCCCCGGAGCCCGCCTGCCTCTCGGGTGTCTGGGTGGTGG GGAGCCCAGTGCCTCGCAGGCCGGCGGGCGAGGGCTGCAGTCTCCCTCGCGGTGA GAGGAAGGCGGAGGAGCGGGAACCGCGGCCGCTCGCGCGCCCTGCGGGGGAAAGGG CAGTTCCGGGCCGGCGCCCTCAGCAGGGCGGCCCTCCACCGCAGTCTCAGGGCCC GGGTGGCGGCCGGCGACTGGAGAAATCAAGTTGTGCAGGTGATGCCGAGTGAGCGGG GGGCCTGGGCCTCTGCCCTTAGGAGGCAACTCCCACGCAGGCCGAAAGGGCTTCGCGG CCGAGAGGCTCGTTCGGTTCGCGGCCGGCGCGTTGTTGGCTGAGGGGACCCGGG ACACCTGAATGCCCGGGCTCCTCCGACGCATGGGAAGGTGCTATCAAAT CTTCGGAAACAAGGAAATGCGGATCCTCATGTTGGCCTGGACGCAGGCCGAAAGACAAC AATCCTGTACAAGTTGAAGCTGGCCAGTCGGTACCACCTCCACTGTGGTTCAA CGTGGAGACGGTGACTTACAAAATGTCAAGTTCAACGTATGGGATGTGGGCGGCCAGGA CAAGATCCGGCGCTCTGGCGGATTACTACACTGGGACCCAAGGTCTCATCTCGTAGT GGACTGCGCCGACCGCAGCGCATCGATGAGGCTGCCAGGAGCTGCACCGCATTATCAA TGACCGGGAGATGAGGGACGCCATAATCCTCATCTCGCCAACAAGCAGGACCTGCCGA TGCCATGAAACCCACGAGATCCAGGAGAAACTGGGCTGACCCGGATTGGGACAGGAA CTGGTATGTGCAGCCCTCTGTGCCACCTCAGGGACGGACTCTATGAGGGGCTCACATG GTTAACCTCTAACTACAAATCTTAATGAGCATTCTCCACCCATCCCCTGGAAGGAGAGAA ATCAAAAACCCATTCATAGGATTATGCCACCATCACCTCTTCAATTGCCACTTCTCT TCTTTGAATTGAACTCTGGAGTTACTGTTCTACAGTTGGGGGACGGGGCTGGGCT TTGCGTTAGGATGGCTCTGACATTGACATGAACACAAAGTTGCCAAGATGCTCC TTGTTGACTCCAGCAGAATGGGAATGGGGAAACACAGCAGTTCTGGTAAAAGTCCC TTTGTAATAATAGGTTGGATTTTTATTTCGAGAGAAATCTTCAATTGCTTCTATGTAT GCTTTCTCTTTGTTGTTCCCTTCTTTCTTTTTTTTTTTTTGTTGGCT TTGCGTTAGGATGGCTCTGACATTGACATGAACACAAAGTTGCCAAGATGCTCC TTGTTGACTCCAGCAGAATGGGAATGGGGAAACACAGCAGTTCTGGTAAAAGTCCC TTTGTAATAATAGGTTGGATTTTTATTTCGAGAGAAATCTTCAATTGCTTCTATGTAT GCTTTCTCTTTGCCCAGTTCTTATCACTGCTGTAGATGGCTTATTTGCATT CATGCAGACTATGTGCAAGTCTGTTCATCTAGTAAACTGAAAATTATTGCTTAATCAA ACTGCCGTTGTCTTTATTTAAGGCCTCCCCCCCCCTCCTTATGAGTTCTAACTTA GTAATTCAAATGTGACCTTTATATCTAAGACCAGTATAGTAAACTTAGCCCACAGTGG CAAATAATGAGTAATATTGTAATATGTTCCAGTTGCACCTCAGTATGTTAAACAGGTAAT GTAAGAAGTTCTGAAATGTCAGCAAGTAAGTTCTGAAACACATCATGCATGAGTAGGA ATAAC

>gi|4502211|gb|NP_001654.1|ARF6 175aa linear ADP-ribosylation factor 6 [Homo sapiens].

MGKVLSKIFGNKEMRILMLGLDAAGKTTILYKLKLGQSVTIPTVGFNVETVTYKNVKFN

VWDVGGQDKIRPLWRHYYGTQGLIFVVDCADRDRIDEARQELHRIINDREMRDAIILIF
 ANKQDLPDAMKPHEIQEKLGLTRIRDRNWVQPSCATSGDLYEGLTWLTSNYKS

>gi|23510442|gb|NM_003809.2|TNFSF12 1407bp mRNA Homo sapiens
 tumor necrosis factor (ligand) superfamily, member 12
 (TNFSF12), transcript variant 1, mRNA.

CTCTCCCCGGCCGATCCGCCGCCGGCTCCCCCTCCCCGATCCCTGGGTCCCGGGAT
 GGGGGGGCGGTGAGGCAGGCACAGCCCCCCCCTGGCCGCCGTCGGAGGCCAGAGG
 CGGAGGGGGCGCCGGGGAGCCGGCACCGCCCTGCTGGTCCGCTCGCCTGGGCCTG
 GGCCTGGCGCTGGCTGCCTCGGCCCTGCTGGCCGTGGTAGTTGGGAGGCCGGCA
 TCGCTGTCCGCCAGGAGCTGCCAGGAGAGCTGGTGGCAGAGGAGGACCAGGACCCG
 TCGGAAGTGAATCCCCAGACAGAAGAAAGCAGGATCCTGCGCCTTCTGAACCGACTA
 GTTCGGCCTCGCAGAAGTGCACCTAAAGGCCGAAAACACGGGCTCGAAGAGCGATCGCA
 GCCCATTATGAAGTTCATCCACGACCTGGACAGGAGCGCAGGCAGGTGTGGACGGG
 ACAGTGAGTGGCTGGAGGAAGGCCAGAATCAACAGCTCCAGCCCTCTGCGCTACAACCGC
 CAGATCGGGGAGTTATAGTCACCCGGCTGGCTACTACCTGTACTGTCAAGGTGAC
 TTTGATGAGGGGAAGGCTGTCTACCTGAAGCTGGACTTGCTGGTGGATGGTGTGCTGGC
 CTGCGCTGCCTGGAGGAATTCTCAGCCACTGCGGCAGTTCCCTGGGCCAGCTCCGC
 CTCTGCCAGGTGTCGGCTGGCCCTGCGGCCAGGTCCCTGGGATCCGAC
 CTCCCCTGGGCCATCTCAAGGCTGCCCTTCCTCACCTACTCGGACTCTCCAGGTT
 CACTGAGGGGCCCTGGCTCCCCGCAGTCGCTCCAGGCTGCCGGCTCCCTGACAGCTC
 TCTGGGCACCCGGTCCCTGCCCCACCCCTAGCCGCTTTGCTCCAGACCTGCCCT
 CCCTCTAGAGGCTGCCTGGCCTGTTCACGTGTTCCATCCCACATAAAACAGTATT
 CCACTCTTATCTTACAACCTCCCCACCGCCCACTCTCACCTCACTAGCTCCCCAATCCC
 TGACCCCTTGAGGGCCCCAGTGATCTGACTCCCCCTGGCCACAGACCCCCAGGGCATT
 GTGTTCACTGTACTCTGTGGCAAGGATGGTCCAGAACAGACCCACTTCAGGCAGTAAGA
 GGGGCTGGACCTGGCGCAGGAAGCAAAGAGACTGGCCTAGGCCAGGAGTTCCCAAAT
 GTGAGGGGGCAGAAACAAGACAAGCTCCTCCCTGAGAATTCCCTGGATTTTAAAC
 AGATATTATTTATTATTATTGTGACAAATGTTGATAATGGATATTAAATAGAATAA
 GTCATAAAAAAAAAAAAAAA

>gi|4507597|gb|NP_003800.1|TNFSF12 249aa linear tumor necrosis factor (ligand) superfamily, member 12 isoform 1 precursor; APO3/DR3 ligand; TNF-related WEAK inducer of apoptosis [Homo sapiens].

MAARRSQRRGRGEPTALLVPLALGLALACLGLLLAVVSLGSRASLSAQEPQAQEL
 VAEEDQDPSELNPQTEESQDPAPFLNRLVRPRRSAPKGRKTRARRAIAAHYEVHPRPGQD
 GAQAGVDGTVSGWEARINSSSPLRYNRQIGEFIVTRAGLYYLYCQVFDEGKAVYLKLD
 LLVDGVLAIRCLEEFSATAASSLGPQLRLCQVSGLLALRPGSSLIRITLPWAHLKAAPFL
 TYFGLFQVH

>gi|11496238|gb|NM_021975.1|RELA 2444bp mRNA Homo sapiens v-rel reticuloendotheliosis viral oncogene homolog A, nuclear factor of kappa light polypeptide gene enhancer in B-cells 3, p65 (avian) (RELA), mRNA.

GGCACGAGGCAGGGGCCGGCTCGCAGCTGGGCCCGCGCATGGACGAACGTGTTCCCCCTCA
 TCTTCCCGCAGAGCAGCCCAAGCAGCAGGGCATGCGCTCCGCTACAAGTGCGAGGGGC
 GCCTCCGCAGCATCCAGGCGAGAGGAGCACAGATAACCACCAAGACCCACCCACCA
 TCAAGATCAATGGCTACACAGGACCAGGGACAGTGCGCATCTCCCTGGTCACCAAGGACC
 CTCCTCACCGGCCTCACCCCCACGAGCTTAGGAAAGGACTGCCGGATGGCTTCTATG

AGGCTGAGCTCTGCCGGACCGCTGCATCCACAGTTCCAGAACCTGGGAATCCAGTGTG
 TGAAGAAGCGGGACCTGGAGCAGGCTATCAGTCAGCGATCCAGACCAACAACAACCCCT
 TCCAAGTTCCCTATAGAACAGCAGCGTGGGACTACGACCTGAATGCTGTGCGGCTCTGCT
 TCCAGGTGACAGTGCGGGACCCATCAGGCAGGCCCTCCGCCTGCCGCTGTCCCTTCTC
 ATCCCATCTTGACAATCGTCCCCAACACTGCCAGGCTCAAGATCTGCCAGTGAACC
 GAAACTCTGGCAGCTGCCTGGTGGGATGAGATCTCCTACTGTGTGACAAGGTGCAGA
 AAGAGGACATTGAGGTGTATTCACGGGACCAGGCTGGGAGGCCGAGGCTCCTTCGC
 AAGCTGATGTGCACCGACAAGTGGCATTGTGTTCCGGACCCCTCCCTACGCAGACCCCA
 GCCTGCAGGCTCCTGTGCGTGTCTCCATGCAGCTGCCGGCCTCCGACCGGGAGCTCA
 GTGAGCCCATGGAATTCCAGTACCTGCCAGATAACAGACGATCGTACCCGGATTGAGGAGA
 AACGTAAAAGGACATATGAGACCTCAAGAGCATCATGAAGAAGAGTCCTTCAGCGGAC
 CCACCGACCCCCGGCCTCCACCTCGACGCATTGCTGTGCCTTCCGCAGCTCAGCTTCTG
 TCCCCAAGCCAGCACCCAGCCCTACCCCTTACGTACCCCTGAGCACCATACTATG
 ATGAGTTCCCACCATGGTGTTCCTCTGGGAGATCAGCCAGGCCCTCGGCCTGGCCC
 CGGCCCTCCCCAAGTCCTGCCAGGCTCCAGCCCTGCTCCAGTCCAGGCCATGGTAT
 CAGCTCTGGCCCAGGCCAGGCCCTGTCCCAGTCCTAGCCAGGCCCTCCTCAGGCTG
 TGGCCCCACCTGCCCAAGCCCACCCAGGCTGGGAAGGAACGCTGTCAAGGCCCTGC
 TGCAAGCTGCAGTTGATGATGAAGACCTGGGGCCTGCTTGGCAACAGCACAGACCCAG
 CTGTGTTCACAGACCTGGCATCCGTCGACAACACTCGAGTTCTAGCAGCTGCTGAACCAGG
 GCATACCTGTGGCCCCCACACAACACTGAGCCATGCTGATGGAGTACCCCTGAGGCTATAA
 CTCGCCTAGTGAACAGCCCAGAGGCCCGACCCAGCTCCTGCTCCACTGGGGCCCGG
 GGCTCCCCATGGCCTCTTCAGGAGATGAAGACTTCTCCTCCATTGCGGACATGGACT
 TCTCAGCCCTGCTGAGTCAGATCAGCTCCTAAGGGGGTGACGCCCTCCCCAGAGCA
 CTGGTTGCAGGGGATTGAAGCCCTCAAAAGCACTACGGATTCTGGTGGGTGTGTTCC
 AACTGCCCAACTTGTGGATGTCTCCTTGGAGGGGAGCCATATTTATTCTTTTA
 TTGTCAGTATCTGTATCTCTCTCTTTGGAGGTGCTTAAGCAGAACATTAACCTCT
 CTGGAAAGGGGGAGCTGGGAAACTCAAACCTTCCCTGCTCTGATGGTCAGCTCCCT
 TCTCTGAGGAACCTGTGGGTCCCCATCCCCATCCTCCAGCTCTGGTACTCTCCTAG
 AGACAGAACGAGGCTGGAGGTAAGGCCATTGAGCCACAAAGCCTATCAAGTGTCTCC
 ATCATGGATTCAATTACAGCTTAATCAAACAGCCCCAGATAACAGCCCTGTATGGCA
 CTGGCATTGTCCTGTGCCTAACACCAAGCGTTGAGGGCTGCCCTGCCCTACAGAG
 GTCTCTGCCGGCTCTTCCTGCTCAACCATGGCTGAAGGAAACAGTGCAACAGCACTGG
 CTCTCTCCAGGATCCAGAAGGGGTTGGTCTGGACTTCCTGCTCTCCCTCTCAAG
 TGCCTTAATAGTAGGGTAAGTTAAGAGTGGGGAGAGCAGGCTGGCAGCTCCAGT
 CAGGAGGCATAGTTTAGTGAACAATCAAAGCACTGGACTCTGCTCTTCTACTCTG
 AACTAATAAGCTGTTGCCAAGCTGGACGGCACGAGCTCGTGCC

>gi|11496239|gb|NP_068810.1|RELA 537aa linear v-rel
 reticuloendotheliosis viral oncogene homolog A, nuclear factor
 of kappa light polypeptide gene enhancer in B-cells 3, p65; v-
 rel avian reticuloendotheliosis viral oncogene homolog A
 (nuclear factor of kappa light polypeptide gene enhancer in B-
 cells 3 (p65)) [Homo sapiens].

MDELFPPLIFPAEQPKQRGMFRYKCEGRSAGSI PGERSTDTKTHPTIKINGYTGP GTVR
 ISLVTKDPPHRPHFELVGKDCRDGFYEAEI LCPDRCIHSFQNLGIQCVKKRDLEQAISQR
 IQTNNNPFQVPPIEEQRGDYDLNAVRLCFQVTVRDPSPRPLPPVLSHPIFDNRAPNTAE
 LKICRVNRNSGSCLGGDEI FLLCDKVQKEDIEVYFTGPGWEARGFSQSADVHRQVAIVFR
 TPPYADPSLQAPVRVSMQLRRPSDRELSEPMEFQYL PDTDDRHRIEEKRKRTYETFKSIM

- 171 -

KKSPFSGPTDPRPPRRIAVPSRSSASVPKPAPQPYPFTSSLSTINYDEFPTMVFPSQI
SQASALAPAPPQVLPQAPAPAPAPAMVSALAQAQAPAPVVLAPGPPQAVAPPAPKPTQAGE
GTLSEALLQLQFDDEDLGALLGNSTDPAVFTDLASVDNSEFQQLLNQGIKVAPHTTEPML
MEYPEAITLEVTAQRPPDPAPAPLGAAPGLPNGLLSGDEFSSIADMDFSALLSQISS
>gi|23312372|gb|NM_001065.2|TNFRSF1A 2236bp mRNA Homo sapiens
tumor necrosis factor receptor superfamily, member 1A
(TNFRSF1A), mRNA.
GCTGTTGCAACACTGCCCTACTCTTCCCCTCCACCTCTCTCCCCTCCTCTGCTTTA
ATTTCTCAGAATTCTCTGGACTGAGGCTCCAGTTCTGGCCTTGGGTTCAAGATCACT
GGGACCAGGCCGTGATCTCTATGCCCGAGTCTCAACCCCTCAACTGTCACCCCAAGGCACT
TGGGACGTCTGGACAGACCGAGTCCCGGAAGCCCCAGCACTGCCGCTGCCACACTGCC
CTGAGCCCAAATGGGGGAGTGAGAGGCCATAGCTGTCTGGCATGGCCTCTCCACCGTGC
CTGACCTGCTGCTGCCACTGGTGTCTGGAGCTGTTGGTGGGAATATAACCCCTCAGGGG
TTATTGGACTGGTCCCTCACCTAGGGACAGGGAGAAGAGAGATAGTGTGTCCCCAAG
GAAAATATATCCACCCCTAAAATAATCGATTGCTGTACCAAGTGCCACAAAGGAACCT
ACTTGTACAATGACTGTCCAGGCCGGCAGGATACGGACTGCAGGGAGTGTGAGAGCG
GCTCCTTCACCGCTTCAGAAAACACCTCAGACACTGCCTCAGCTGCTCCAAATGCCGAA
AGGAAATGGGTCAAGGTGGAGATCTCTTGCACAGTGGACCGGGACACCGTGTGGCT
GCAGGAAGAACCAAGTACCGGCATTATGGAGTGAAAACCTTTCCAGTGCTTCATTGCA
GCCTCTGCCTCAATGGGACCGTGCACCTCTGCCAGGAGAAACAGAACACCGTGTGCA
CCTGCCATGCAGGTTCTTCTAAGAGAAAACGAGTGTCTCTGTAGTAAGTGAAGA
AAAGCCTGGAGTGCACGAAGTTGTGCTTACCCAGATTGAGAAATGTTAAGGGCACTGAGG
ACTCAGGCACCACAGTGTGTTGCCCTGGTCTTTGGCTTGCCTTATCCC
TCCTCTTCATTGGTTAATGTATCGCTACCAACGGTGAAGTCCAAGCTCTACTCCATTG
TTTGTGGAAATGCACACCTGAAAAAGAGGGGAGCTGAAGGAACTACTAAGCCCC
TGGCCCCAAACCAAGCTTCAGTCCCACCCAGCTTGCCTACCCCTGGCTTCAGTC
CCGTGCCAGTTCCACCTCACCTCCAGCTCACCTACCCCCGGTACTGTCCCAACT
TTGCCGCTCCCCGAGAGAGGTGGCACCACCTATCAGGGGCTGACCCATCCTGCGA
CAGCCCTGCCCTCCGACCCCATCCCCAACCCCCCTCAGAAGTGGGAGGACAGCGCCCACA
AGCCACAGAGCCTAGACACTGATGACCCCGCGACGCTGTACGCCGTGGAGAACGTGC
CCCCGTTGCCGTGGAAGGAATTGTCGGCGCCTAGGGCTGAGCGACCAAGGAGATCGATC
GGCTGGAGCTGCAGAACGGCGCTGCTGCCGAGGCCAATACAGCATGCTGGGACCT
GGAGGCCGGCGCACGCCGCCGCGAGGCCACGCTGGAGCTGCTGGACGCCGTGCTCCGCG
ACATGGACCTGCTGGCTGCCCTGGAGGACATCGAGGAGGCCGCTTGCAGGGCCGCC
TCCCGCCCGGCCAGTCTCTCAGATGAGGCTGCCCTGCCAGCTTAAGGACC
GTCCTGCGAGATCGCTTCAACCCACTTTTCTGGAAAGGAGGGTCTGCAGGGC
AAGCAGGAGCTAGCAGCCGCTACTTGGTGTCAACCCCTCGATGTACATAGCTTCTCA
GCTGCCTGCCGCCGACAGTCAGCGCTGTGCCGCCGGAGAGAGGTGCCGTGGGCT
CAAGAGCCTGAGTGGGTGGTTGCGAGGATGAGGGACGCTATGCCCTATGCCCTTTGG
GTGCTCTCACCAGCAAGGCTGCTGGGGGCCCTGGTCTGCCCTGAGCCTTTACAG
TGCATAAGCAGTTTTTGTGTTGTTGTTAAATCAATCATGTT
ACACTAATAGAAACTTGGCACTCCTGTGCCCTGCCAGAACAGCACATAGCAAGCTGA
ACTGCTCTAAGGCAGGGCGAGCACGGAACAAATGGGCCCTCAGCTGGAGCTGGACTT
TTGTACATACACTAAAATTCTGAAGTTAAAGCTCTGCTCTGGAAAAAAAAAAAAAA
AAAAAAAAAAAAAA

>gi|4507575|gb|NP_001056.1|TNFRSF1A 455aa linear tumor
necrosis factor receptor 1 precursor; tumor necrosis factor

receptor type 1; tumor necrosis factor-alpha receptor; tumor necrosis factor binding protein 1 [Homo sapiens].

MGLSTVPDLLPLVLLLELLVGIYPSGVIGLVPHLGDREKRDSVCPQGKYIHPQNNSICCTKCHKTYLYNDCPGPGQDTDCRECESGSFTASENHLRHCLSCSKRKEMQVEISSCTVDRDTVCGRKNQYRHYSENLFQCFNCSLCLNGTVHLSCQEKGNTVCTCHAGFFLRENECVSCSNCKSLECTKLCLPQIENVKGTEDSGTTVLLPLVIFFLCLLSLLFIGLMYRYQRWKSKLYSIVCGKSTPEKEGELEGTTTKPLAPNPSFSPTPGFTP TLGFSPVPSSTFTSSSTYPGDCPNFAAPRREVAPPYQGADPILATALASDPIPNPLQKWEDESAHKPQSLTDPPATLYAVVENVPPLRKEFVRRRLGLSDHEIDRLELQNGRCLREAQYSMLATWRRRTPRREATLELGRLVRMDLLGCLEDIEEALCGPAALPPAPSLLR

>gi|4506738|gb|NM_003952.1|RPS6KB2 1735bp mRNA Homo sapiens ribosomal protein S6 kinase, 70kDa, polypeptide 2 (RPS6KB2), mRNA.

AGAGACTCGTGCCGAATGGCACCGAGGCCGACGGGCCCCGGGGGCCGGCGCCATGGCGGCCGTGTTGATTGGATTGGAGACGGAGGAAGGCAGCGAGGGCGAGGGCGAGCCAGAGCTCAGCCCCCGGGACGCATGTCCCCTGCGAGTTGAGGGCAGCTGGCTAGAGCCTGTGGACACTATGAAGAGGTGGAGCTGACTGAGACCAGCGTGAACGTTGGCCAGAGCGCATCGGGCCACTGCTTGAGCTGCTGCGTGTGCTGGCAAGGGGGCTATGGCAAGGTGTTCCAGGTGCGAAAGGTCAAGGCACCAACTTGGCAAAATATGCCATGAAAGTCTAAGGAAGGCCAAATTGTGCGCAATGCCAAGGACACAGCACACACACACGGGCTGAGCGAACATTCTAGAGTCAGTGAAGCACCCCTTATTGTGGAACTGGCTATGCCTTCCAGACTGGTGGCAAACACTACCTCATCCTTGAGTGCTCAGTGGTGGCGAGCTCTCACGCATCTGGAGCGAGGGCATCTCCTGGAAGATAACGGCCTGCTTACCTGGCTGAGATCACGCTGGCCCTGGCATCTCCACTCCCAGGGCATCATCACCGGACCTCAAGGCCGAGAACATCATGCTCAGCAGCCAGGGCCACATCAAAC TGACCGACTTGGACTCTGCAAGGAGTCTATCCATGAGGGCCGTACTCACACCTTGCGGGACCATTGAGTACATGGCCCTGAGATTCTGGTCCAGCAGTGGCCACAACCGGGCTGTGGACTGGTGGAGCCTGGGGCCCTGATGTACGACATGCTCACTGGATCGCCGCCCTTACCGCAGAGAACCGGAAGAAAACCATGGATAAGATCATCAGGGCAAGCTGGCACTGCCCTACCTCACCCAGATGCCGGGACCTGTCAAAAGTTCTGAAACGGAATCCCAGCCAGCGGATTGGGGTGGCCAGGGATGCTGCTGATGTGAGAGACATCCCTTTCCGGCACATGAATTGGACGACCTCTGGCCTGGCGTGTGGACCCCCCTTCAGGCCCTGTCTGCAGTCAGAGGAGGACGTGAGCCAGTTGATAACCGCTTCACACGGCAGACGCCGGTGGACAGTCCTGATGACACAGGCCCTCAGCGAGAGTGCACACCAGGCCCTGGCTCACATACTGGGCCGTCTGCTCTGGACAGCATCAAGGAGGGCTTCACCTCCAGGCCCTAAGCTGCCACCCAGGCGCCTAACAGTAGCCCCCGGGTCCCCGTCAGCCCCCTCAAGTTCTCCCCCTTTGAGGGGTTCTGGGCCAGCCCCAGCCTGCCGGAGCCACGGAGCTACCTCTACCTCCACTCCTGCCACCGCCGCCCTCGACCACCGCCCTCTCAGGGACATCCGCCCCCTCAGGGACCAAGAAGTCCAAGAGGGCGTGGCGTCCAGGGCGCTAGGAAGCCGGTGGGGGTGAGGGTAGCCCTGAGCCCTGTCCCTGCGGCTGTGAGAGCAGCAGGACCTGGGCCAGTTCCAGAGACCTGGGGTGTGTCTGGGGTGGGGTGTGAGTGCAGTGAAGTGTGTCTGCTGGGCCAGCTGTGCCCCCTGAATCATGGGCACGGAGGGCCGCCCCCACACCCCGCCTCAACTGCTCCCGTGGAAAGATTAAAGGGCTGAATCATG

>gi|4506739|gb|NP_003943.1|RPS6KB2 495aa linear ribosomal protein S6 kinase, 70kDa, polypeptide 2; ribosomal protein S6 kinase, 70kD, polypeptide 2; p70 ribosomal S6 kinase beta [Homo sapiens].

MARGRRARGAGAAMAAVFIDLDETEEGSEGEPELSPADACPLAELRAAGLEPVGHYEE

VELTETSVNVGPERIGPHCFELLRLGKGGYKVFQVRKVQGTNLGKIYAMKVLRKAKIV
RNAKDTAHTRAERNILESVKHPFIVELAYAFQTGGKLYLILECLSGGELFTLREGI FL
EDTACFYLAETLALGHLHSQGIIYRDLKPENIMLSSQGHIKLTDFGLCKESIHEGAVTH
TFCGTIEYMAPEILVRSRGNRAVDWWSLGALMYDMLTGSPPFTAENRKKTMDKIIRGKLA
LPPYLTPDARDLVKKFLKRNPSPQRIGGGPGDAADVQRHPFFRHMNWDDLLAWRVDPPFRP
CLQSEEDVSQFDTRFTRQTPVDPSPDDTALSESANQAFLGFTYVAPSVLDSIKEGFSFQPK
LRSPRRLNSSLPRVPVSPPLKFSPFEGFRPSPLPEPTELPLPPLLPPPSTTAPLPIRPP
SGTKKSKRGRGRGPGR

>gi|11995473|gb|NM_019884.1|GSK3A 2169bp mRNA Homo sapiens
glycogen synthase kinase 3 alpha (GSK3A), mRNA.
GCCAGAGCGCGCGCCCTGGAAAGAGGCCAGGGCCCGGGGAGGCCAGGGCAGGCCAGCGCGCG
GCTGGGGCAGCCCGGGCAGCCCAGGCCAGGCCCTGGGGCTCGGGCAGGGCAGACTAGCTCGTT
GGCGCGGGCCTTCGGGAGGGCGGCCCTGGGGCTCGGGCAGGGCAGACTAGCTCGTT
GCGGAGCCCCGGCGGGAGGGCGAGGGCGAGGGCGGCCCTGGGGCTCGGGCCTCCGGC
CCAGGCAGGCCACCGCGGGAAAGGCATCTGTCGGGCCATGGTGGGGCGTCGGGCC
TCGAGCTCCGGGGTGGACCCGGCGCAGCGCGAGGGAGGCAGCGGAGGGCCCGCA
GGCACTAGCTCCCGCCGCCGGGTGAAGCTGGCCGTGACAGCGGGAAAGGTGACCACA
GTCGTAGCCACTCTAGGCCAAGGCCAGAGCGCTCCAAAGAAGTGGCTTACACGGACATC
AAAGTGATTGGCAATGGCTCATTTGGGCTGTGTACCAAGGCACGGCTGGCAGAGACCAGG
GAAGTAGTCGCCATCAAGAAGGTTCTCCAGGACAAGAGGTTCAAGAACCGAGAGCTGCAG
ATCATGCGTAAGCTGGACCACTGCAATATTGTGAGGCTGAGATACTTTTCTACTCCAGT
GGCGAGAAGAAAGACGAGCTTACCTAAATCTGGTCTGGAAATATGTGCCCGAGACAGTG
TACCGGGTGGCCCGCCACTTCACCAAGGCCAAGTTGACCATCCCTATCCTATGTCAAG
GTGTACATGTACCAAGCTCTTCGAGCTGGCTACATCCACTCCCAGGGCGTGTAC
CGCGACATCAAGCCCCAGAACCTGCTGGTGGACCCCTGACACTGCTGTCTCAAGCTCTG
GATTTGGCAGTGCAAAGCAGTTGGTCCAGGGGAGCCAATGTCTCCTACATCTGTTCT
CGCTACTACCGGGCCCCAGAGCTCATCTTGAGGCCACTGATTACACCTCATCCATCGAT
GTTTGGTCAGCTGGCTGTGTACTGGCAGAGCTCCTCTGGGCCAGCCCATCTCCCTGGG
GACAGTGGGGTGGACCAAGCTGGTGGAGATCATCAAGGTGCTGGAACACCAACCCGGGAA
CAAATCCGAGAGATGAACCCCAACTACACGGAGTTCAAGTTCCCTCAGATTAAAGCTCAC
CCCTGGACAAAGGTGTTCAAATCTCGAACGCCAGAGGCCATCGCGCTCTGCTCTAGC
CTGCTGGAGTACACCCCATCCTCAAGGCTCTCCCCACTAGAGGCCCTGTGCGCACAGCTTC
TTTGATGAACTGCGATGTCTGGAACCCAGCTGGTGGAGATCATCAAGGTGCTGGAACACCAACCCGGGAA
TTCAACTTCAGTGTGGTAACCTCCATCCAACCGTCTCTCAACGCCATTCTCATCCCT
CCTCACTTGAGGTCCCCCAGCGGCACTACCACCCCTACCCCGTCTCACAGCTTAACT
GAGACTCCGACCAGCTCAGACTGGCAGTCGACCGATGCCACACCTACCCTACTAACCTC
TCCTGAGGGCCCCACCAAGCACCCCTCCACTTCCATCTGGGAGGCCAGAGGGCGTGGG
AAGGGGGCCATAGCCCATCAAGCTCCTGGCTGGGCCCTAGACTAGAGGGCAGA
GGTAAATGAGTCCCTGTCCCCACCTCCAGTCCTCCCTCACAGCCTCACCCCTGTGGTG
GGCTTTTAAGAGGATTAACTGGTTGTGGGAGGGAAAGAGAAGGACAGGGTGTGGGG
GGATGAGGACCTCCTACCCCTTGGCCCCCTCCCCCTCCCCAGACCTCACCTCCAG
ACCCCTCCCTCCTGTGTCCCTTGAAATAGAACCGCCAGGCCGTCTCCTCTTCCCT
TCCCTGGCCCCCGGGTGTAAATAGATTGTATAATTCTTAAAGAAAACGTCGATT
CGCACCGTCCAACCTGCCCCGCCCCCTCCTACAGCTGTAACCTCCCTCTGTCTGCC
CCAAGGTCTACTCCCTCCTCACCCACCCCTGGAGGGCCAGGGGAGTGGAGAGAGCTCCTG
ATGTCTTAGTTCCACAGTAAGGTTGCCTGTGTACAGACCTCCGTTCAATAAATTATTG
GCATGAAA.

- 174 -

>gi|11995474|gb|NP_063937.1|GSK3A 483aa linear glycogen synthase kinase 3 alpha [Homo sapiens].

MSGGGPGGGPGGSGRARTSSFAEPGGGGGGGGPGGSASGPGBTGGGKASVGAMGGV
GASSGGGGPGGSGGGSGGGPGAGTSFPPPGVKLGRDSGVTTVVATLGQGPERSQEVA
YDIKVIGNGSFGVYQARLAETRELVAIKVLQDKRFKNRELQIMRKLDHCNIVRLRYFFY
SSGEKKDELYLNVLLEYVPETVYRVARHFTAKAKLTIPILYKVVYMYQLFRSLAYIHSQGV
CHRDICKPQNLLVDPTAVLKLCDFGSAKQLVRGEPNVSYICSRYYRAPELIFGATDYTSS
IDVWSAGCVLAELLLGQPIFPGDGVDQLVEIIKVLGTPTREQIREMNPNTTEFKFPQIK
AHPWTKVFKSRTPPEAIALCSSLLEYTPSSRLSPLACAHSSFDELRC LGTQLPNNRPLP
PLFNFSAGELSIQPSLNAILIPPHLRSPSGTTLTPSSQALTETPTSSDWQSTDATPTLT
NSS

>gi|7019350|gb|NM_013246.1|CLC 1689bp mRNA Homo sapiens
cardiotrophin-like cytokine (CLC), mRNA.

GCCTCCGGGAGAGGGAGCCGCACCCGGCCGGCCCCAGCCCCATGGACCTCCGAGCA
GGGGACTCGTGGGGATGTTAGCGTCCTGTGCACGGTGCTCTGGCACCTCCCTGCAGTG
CCAGCTCTCAATCGCACAGGGGACCCAGGGCCTGGCCCCTCCATCCAGAAAACCTATGAC
CTCACCCGCTACCTGGAGCACCAACTCCGCAGCTTGGCTGGACCTATCTGAACCTACCTG
GCCGCCCTTCAACGAGCCAGACTCAACCCCTCCCGCCTGGGGCAGAGACTCTGCC
AGGGCCACTGTTGACTTGGAGGTGTGGCGAACGCTCAATGACAAACTGCGGCTGACCCAG
AACTACGAGGCCTACAGCCACCTCTGTGTTACTTGGCTGGCCTCAACC GT CAGGCTG
ACTGCTGAGCTGCCCGCAGCCTGGCCACTTCTGCACCAGCCTCCAGGGCCTGCTGGC
AGCATTGCGGGCGTCATGGCAGCTCTGGCTACCCACTGCCAGCCGCTGCCTGGGACT
GAACCCACTGGACTCCTGGCCCTGGCCACAGTGACTTCCTCCAGAAGATGGACGACTTC
TGGCTGCTGAAGGAGCTGCAGACCTGGCTGTGGCGCTGGCCAAGGACTTCAACCGGCTC
AAGAAGAAGATGCAGCCTCCAGCAGCTGCAGTCACCCCTGCACCTGGGGCTATGGCTTC
TGACTTCTGACCTCTCGCTCCCTGGCTGGCCCTGGCCACACTGGGCTCATGGCTTC
CAGCCCTGTATGCCAACACCTGTTGAGCCAGGAGACAGAAGCTGTGAGCCTGGCC
TCCTGGACGGCTGGCGTGTGATGCGATGCCCTGTCTCCCTGGCTGGCCACCTCCCAAAGGT
CTACCGAGCTGGGGAGGAGGTACAGTAGGCCCTGTCTGTGTTCTACAGGAAGTCA
TGCTCGAGGGAGTGTGAAGTGGTCAGGTTGGTGCAGAGGCCGT CATGGCCTCTGCTTC
TTGCCTACCACTTGGCCAGTGCCACCCAGCCCTCAGGTGGCACATCTGGAGGGCAGGG
GTTGAGGGGCCACCACACATGCCCTTCTGGGTGAAGGCCCTTGGCTGCCCACTCT
CCTGGATGGGTGTTGCTCCCTTATCCCCAAATCACTCTATACTCAATTAGGAAACA
AACATGGTGGCAATTCTACACAAAAAGAGATGAGATTAACAGTGCAGGGTGGGTCTGC
ATTGGAGGTGCCCTATAAACCAAGAAGAGAAATCTGAAAGCACAGGGCAGGGACAGAC
CAGACCAGACCCAGGAGTCTCAAAGCACAGAGTGGCAAACAAAACCCGAGCTGAGCATC
AGGACCTGCCTCGAATTGTCTCCAGTATTACGGTGCCTCTCTGCCCCCTTCCCA
GGGTATCTGTGGGTGCCAGGCTGGGGAGGGCAACCAGCCACACCACAGGATTTCCTG
AAAGTTACAATGCACTAGCATTGGGTGTTGAGGTGGCAGCTCCCAAGGCCCTGCC
CCCAGCCCCACCCACTCATGACTCTAAGTGTGTTGTTAATATTATTTGGAGAT
GTTATTATTAGATGATATTATTGAGAATTCTATTCTGTATTAAACAAATAAATGC
TTGCCCAAG

>gi|7019351|gb|NP_037378.1|CLC 225aa linear cardiotrophin-like cytokine; neurotrophin-1/B-cell stimulating factor-3 [Homo sapiens].

MDLRAGDSWGMLACLCTVLWHLPAVPALNRTGDPGP GPSIQKYDLTRYLEHQLRSLAGT
YLN LGPPFNEPDFNPPR LGAETLPRATVDLEVWRSIINDKLRLTQNYEAYSHLLCYLRGL

- 175 -

NRQAATAELRRSLAHFCTSLQGLLGSIAGVMAALGYPLPQPLPGTEPTWTPGPAHSDFLQ
KMDDFWLLKELOQTWLWRSAKDFNRLKKMQPPAAVTLHLGAHGF
>gi|22068574|gb|XM_036493.3|ZNF213 3073bp mRNA Homo sapiens
zinc finger protein 213 (ZNF213), mRNA.
GGCCTCTGGCGCCTGGCTCCAACATCAAGCACCGGGCTCCGAGTGGCCGGATCAGCGC
CCCGAGGCAGAGGCCGGAGGGCGCGCACTGCTAGGAAGTGCTGGTCCCCGCGCCGCT
CTGCCAGCTTGGTCCCCGGCAGACGCCCTGTACGATGCCGCTGCCGCTGCCGAG
GCTGCGGTGGACAGCGCGGGCTCCGGCTGGCTGCCCTCCGGCTGCCGTGCTGCTG
AGCGACCCTGGAGTACACATCCAGATGCCAGCCAGCTACCACAGGGATCCCTGGGA
GACTGAAAGTACAGGTTCTGGGGCCAGGTTGAAGCCGACCAACCCTGAGCCTCAGGCCA
GGGAATGGCAGCCCCCTGGAGGCCAGGACCAAGGCCCTGGGAGGGAGAAGGGCTTC
TGATTGTGAAAGTGGAAGATTCTCCTGGGAACAGGAATCTGCCAGCATGAGGATGGCA
GGGATTCCGAAGCCTGCCAGCGCTCCGGCAATTCTGCTACGGGGATGTGCATGGGC
CTCATGAGGCCTTCAGCCAGCTCTGGAGCTCTGCTGCCGCTGGCTGCCGAGCTGC
GTACCAAGGAGCAGATCCTGGAGCTGCTGGTGTGGAGCAGTCCTGACAGTGTGCCAG
GGGAGATCCAGGGCTGGGTGCGTGAGCAGCACCCGGAAAGCGGTGAGGAGGCTGCGCCT
TGGTGGAGGACCTACAGAACGAGCCAGTGAAAGCCTGGCAGCAGGATGTGCCCTCGGAGG
AGCGGAAACCGAGGCTGCAGGCCGGGATCCCAGGCCACGGGCTCCCCGACGGTGG
GGCACGGAGGCCGCGTCTGTTCCCCAGGAGCAGCACGCCATAGGCCAGCCTCCTG
CTCTTCTAAAGAGGGTCGTCCCAGGAGACGACGGACACCTGCTTGTCTGGGGTCC
ATGGACCTGTGGCATGGAGACATCCCATTCTATTCTCCGGAAAGAATGGGGCACCC
TGGACCCCTGCTCAGCGGGATCTCTTCTGGGACATAAAGCGGGAGAACTCCGGAACACCA
CCCTGGGTTTGGGCTCAAAGGCCAAAGTGAGAAGACTCCCTGCTGCAGGAGATGGTGCAGGG
TGGTGCCAGGCCAGACAGGCAGCGACGTGACTGTGTCTGGAGGCCAGGAGGCTGAGG
CCTGGGAGAGCGAGAACCGGCCGAGGGCGGCCCTGGGCCCAGTGGTGGCGCGACGGG
GGCGGCCACCACTGCCGGCGCCAGTCCGGACCTGGCAGCCAGAACCGCACAGCT
GCCGGCAGTGTGGAAAGCCTCCGCTGGGCTCGGACCTGGCGCGGCCACCAGCGCACGC
ACACGGGCGAGAACGCCACACAAGTGCCCTGAGTGCAGCACAGAGCTCCGCAGCTCCTCGG
ACCTGGTGCACCCAGGTGAGCGGCCCTCGGCTCGGGAGAGTGCGACAAGAGCTTCA
GCAAGAGCTTCAGCCGAGCGCCTACCTGGCGACCAACAGCGCATAACACAGGGCGAGA
AGCCTTCGGCTGCAGCGACTGCCAGAGCTTCTCGCTGCCCTCCTACCTGCTGGAC
ATCGCGTGTGCACACCAGGTGAGCGGCCCTCGGCTCGGGAGAGTGCGACAAGAGCTTCA
AGCAGCGCGCAGCCTCATCGCGCATCAGAGCCTGAGCGCAAGATGGCCAGGCCGTGG
GGTAGCAGCTGGCTGGCCGGAAACCCGGGGAGGCCAGGCACGGCACATCTGCTTT
GTTCACCACTGGACTCTCCTCCATCTGTGGCCACCTCCGGCTGCTCCGAGGGACCCC
AGGGTACCTCACACTGGAGCTGCCCTGCCCTGCTGGCTCTGAGGACCTGCCAGCGCT
CAAAGGAACGGAAGCCTCCCTCCGCCGATCTGCTCTTCCCCCTCTGCG
CCTAGCGTCCCTCTCCCTAGTTCTGGAGCCCCAACACATTCTGGCAGGGACAG
CAGGGTGGCAAGGACTCAGGTCTAGGTCCCTCCAGAACGCCAGCCTCATTGACT
GTGTGGCTTTGGCCCCACCCCTGTGGGTGGCATGGTCAGGCCCTGCCCTACC
AACCTGTGCCCTTCAGTGGCGTGGAGGACTGCCCTGGCCCCCAGGGGCTGCTGGAC
TTTGGGAGAGACAGCCCACACCTGTGGGACCGCGGGCTTAGTCAGGGCGAGGGCTT
TCTGGCCCCCTCCCACTCCCGTTCCAGGCCATGACCACTCTGCCCTGCTGCCATAC
GGACTCGGCCCTGCCCTTGCCCTGCCCTACTTGCCCTAGCATGAGGCTCTGAGAGGCCAC
TGCCCACCAATCTGGTGAGGATAATGGTGGCTCCAGCGACAGGGCCAACCTGGAGAC
CAAGAACAGGGCGCCTGGCTGCCATCTTCTCCAGAGGTGGGCTGCACCAGACTCAG
CACTAGCACTCCATCAGCACTAGCACCTCACTCATCAGCACTAGCACCTCACTCCATCG

GCCCCGGCACCCCTGCTCCATCGGCACTGGGCCCTGCTCCATCGGCACATAATGCTCCACT
 CGCGCCCCACTCCATCGGCCCGCTCCATCGGCACTAATGCCCACTCGGCCCGCCACT
 CCATCAGCACTAATGCTCCACTCCATTGGCACTAACGCCCAACTCCAGCGGCACTAATG
 ACCCGCTCCTTGACATTGGTGCCCACTCCATCAGCACTAACGCCCTGCTCCATCGGC
 CTGGTGTCCCCTCCATTGTCACTAACGTCCGGCTCCATCGGCACTAACCACCCGCTCCA
 TCATCACTATGTCCAGCTCCGTGGCACTACCACCCCTGCTCCATCATCACTACGTCCAGC
 TCCAACGGCACTGGTGCCCACTCCATCGGCACTAACGCCCGCTCCACCGGCACCAAGTG
 CCTCGCTCATTGGCACCAACGCCAGCTCCACCGGTACTGGCTCCCTGCTCCATCGGC
 CTAACGCCCTGCT

>gi|14777854|gb|XP_036493.1|ZNF213 459aa linear similar to Zinc finger protein 213 (Putative transcription factor CR53) [Homo sapiens].

MAAPLEAQDQAPGEGEGLLIVKVEDSSWEQESAQHEDGRDSEACRQRFRQFCYGDVHGPH
 EAFSQLWELCCRWRLRPELRTKEQILELLVLEQFLTVLPGEIQGWVREQHPGSGEAVALV
 EDLQKQPVKAWRQDPSEEAEPEAAGRGSQATGPPTVGARRPSVPQEQQHSQAQPPAL
 LKEGRPGETTDTCFVSGVHGPVALGIPFYFSREEWGTLDPAQRDLFWDIKRENSRNTTL
 GFGLKGQSEKSSLQEMVPVPGQTGSDVTWSWSPEEAEAWESERPRALAEGPVVGARRGR
 PPTRRRQFRDLAAEKPHSCGQCGKFRWGSDLARHQRTHTGEKPKHCPECDKSFRSSDL
 VRHQGVHTGEKPFSCSECGSFSRSAYLADHQRIHTGEKPFGCSDCGKSFSLRSYLLDHR
 RVHTGERPFGCGECDSFKQRAHLIAHOSLHAKMAQPVG

>gi|21536281|gb|NM_003656.3|CAMK1 1501bp mRNA Homo sapiens calcium/calmodulin-dependent protein kinase I (CAMK1), mRNA.

GGAGAGAGCCGCCGAGCCGAGCCGAGCCCCAGCTCCAGCAAGAGCGCGGGCGGGTGGCCC
 AGGCACGCAGCGGTGAGGACCGCGGGCACAGCTGGCGCCAACCACCGCGGGCCTCCAG
 CCAGCCCCCGGGCGGGCAGCCGAGGAGCCCTGGCTGTGGTCGGGGGGCAGTGGCCAT
 GCTGGGGGCAGTGGAAAGGCCCAAGGGTGAAGCAGGAGGGACATTAGAGACATCTACGA
 CTTCCGAGATGTTCTGGGACGGGGCCTTCCTGGAGGTGATCCTGGCAGAAGATAAGAG
 GACGCAGAAGCTGGGCCATCAAATGCATTGCCAAGGAGGCCCTGGAGGGCAAGGAAGG
 CAGCATGGAGAATGAGATTGCTGTCTGCACAAGATCAAGCACCCAACATTGTAGCCCT
 GGATGACATCTATGAGAGTGGGGCACCTCTACCTCATGCAGCTGGTGTGGGTGG
 GGAGCTCTTGACCGTATTGGAAAAAAGGCTCTACACGGAGCGGGACGCCAGCCGCCT
 CATCTTCCAGGTGCTGGATGCTGTGAAATACCTGCATGACCTGGCATTGTACACCGGG
 TCTCAAGCCAGAGAAATCTGCTGTACTACAGCCTGGATGAAGACTCCAAATCATGATCTC
 CGACTTTGGCCTCTCAAGATGGAGGACCCGGGCAGTGTGCTCTCCACCGCCTGTGGAAAC
 TCCGGGATACGTGGCCCTGAAGTCCTGGCCAGAACGCCCTACAGCAAGGCTGTGGATTG
 CTGGTCCATAGGTGTACCGCTACATCTTGTCTGGGTTACCCCTCCCTATGACGA
 GAATGATGCCAAACTCTTGAACAGATTGAAAGGCCAGTACGAGTTGACTCTCCTTA
 CTGGGACGACATCTGACTCTGCCAAAGATTGATCCGGCAGTGGATTGAGGAGATACAGC
 AGAGAAAAGATTGACCTGTGAGCAGGCCCTGCAGCACCCATGGATTGAGGAGATACAGC
 TCTAGATAAGAATATCCACCACTCGGTGAGTGGAGCAGATCAAGAAGAACTTGCCTAAGAG
 CAAGTGGAAAGCAAGCCTCAATGCCACGGCTGGTGCAGCACATGAGGAAACTGCAGCT
 GGGCACCAGCCAGGGAGGGCAGGGCAGACGGCGAGCCATGGGAGCTGCTGACACCAGT
 GGCTGGGGGCCGGCAGCTGGCTGTTGCTGAGACTGCTGCGTGGAGGCCGGCACAGA
 ACTGTCCTCCACACTGCCCAACCAGCTAGGGCCCTGGACCTCGGGTATGATCCTCTG
 CGTGGGAGGGCTGGGGCAGCCTGCTCCCTTCCCTGAACCGGGAGTTCTCTG
 CCTGTCCCCCTCTCACCTGCTCCCTACCACTCCTACTGCATTTCATACAAATGTT
 CTATTTATTGTTCTTCTGTAATAAAGGAAAGATAAAACCAAAAAAAAAAAAAAA

A

>gi|4502553|gb|NP_003647.1|CAMK1 370aa linear
 calcium/calmodulin-dependent protein kinase I [Homo sapiens].
 MLGAVEGPRWKQAEDIRDIYDFRDVLGTGAFSEVILAEDKRTQKLVAIKCIAKEALEGKE
 GSMENEIAVLHKIKHPNIVALDDIYESGGHLYLIMQLVSGGELFDRIVEKGFYTERDASR
 LIFQVLDAVKYLHDLGIVHRDLKPENLLYYSLDEDSKIMISDFGLSKMEDPGSVLSTACG
 TPGYVAPEVLAQKPYSKAVDCWSIGVIAYILLCGYPFYDENDAKLFEQILKAEEFDSP
 YWDDISDSAKFIRHLMKDPEKRFTEQALQHPWIAGDTALDKNIHQSVSEQIKKNFAK
 SKWKQAFNATAVVRRHMRKLQLGTSQEQQQTASHGELLTPVAGGPAAAGCCCRDCCVEPGT
 ELSPTLPHQL

>gi|13186237|gb|NM_023107.1|FGFR1 2590bp mRNA Homo sapiens
 fibroblast growth factor receptor 1 (fms-related tyrosine
 kinase 2, Pfeiffer syndrome) (FGFR1), transcript variant 5,
 mRNA.

CCTCTTGCGGCCACAGGCAGCGCTCTGGCGGGCGGCAGCTAGCGGGAGCCGGGA
 CGCCGGTGCAGCCGCAGCGCGGGAGGAACCCGGGTGTGCCGGGAGCTGGCGGCCACGT
 CCGGACGGGACCGAGACCCCTCGTAGCGCATTCGCGCACCTCGCCTCCCCGGCCGC
 GCGCGCCGCTGTTGAAAAGCCGCGAACCCAAGGACTTTCTCCGGTCCGAGCTCGGG
 CGCCCCGCAGGCGCACGGTACCCGTCTGCAGTCGGCACGCCGGCCGGGGGC
 CGCAGGGCGATGGAGCCGGTCTGCAAGGAAAGTGAGGCGCCGCCGCTGC
 GGGGGCACAAGGTCTGGAGACCCGGGTGGCGACGGGAGCCCTCCCCCGCCCCGC
 CCTGGGGCACCAGCTCCGGCTCCATTGTTCCCGCCGGCTGGAGGCGCCGAGC
 GCCGCCGGAGTCGAGCGCCGGCGGGAGCTCTTGCAGACCCGCCAGGACCC
 GAGACTCTCCGAGGCAGAACCTCACGCCAGCGAGCAGGGTCAGTTGAAAAGG
 GAGACTCTGGAGTATCCATGGAGATGTGGAGCCTGTCACCAACCTCTAA
 ACTGGGATGTGGAGCTGGAAGTGCCTCCTCTGGGCTGTGGTACAGCCACACTC
 TGCACCGCTAGGCCGTCCCCGACCTTGCCTGAACAAGATGCTCTCCCTCG
 GAGGATGATGATGATGACTCCTCTTCAGAGGAGAAAGAACAGATAACAC
 CGTATGCCGTAGCTCATATTGGACATCCCCAGAAAAGATGGAAAAGAAATT
 GTGCAAGACAGTGAAGTCAAATGCCCTCCAGTGGACCCAAACCCACA
 CTGCGCTGGTTGAAAATGGCAAAGAAATTCAAACCTGACCACAGAATT
 GTGGAGCAGTCCCTCACCGGCCATCCTGCAAGCAGGGTTGCCGCC
 AACAAAACAGTG
 GCCCTGGGTAGCAACGTGGAGTTCATGTGTAAGGTGTACAGTG
 ACCCGCAGCCGACATC
 CAGTGGCTAAAGCACATCGAGGTGAATGGGAGCAAGATTGG
 CCCAGACAACCTGCCTTAT
 GTCCAGATCTGAAGGTAATCATGGCACCAGTCTCGTGGCAG
 GCTACTGGGAAGGAG
 ACCACTGTCTGGGGCTCAAGTTCTGTGGCAGGCTCAGTTGCC
 CCCGAATGGGATCA
 TTCTCACGCTTCAGGCACACACACTCCATCTCAGTAGGG
 ACTAGTAACAGAGGTACAAAGTGGAGGTGAGCTGG
 AACAGAGGGCTGCAGGGATGGGT
 GGTGCTGGTCTGTAATAAGCTTGTGAGAGCAACGT
 ACTGGGGCTTGGGGTCAGCTACAC
 AAGGAAGGCATTGGACCCCTGCCTTTCATTGCC
 GAAACCAGAGCCTTCCACCAAGC
 GTTCCCAGTCTAGCCCTGTGTTGAGTTACGT
 ACAGTCTTCTGG
 CAAATGGGTGC
 ATGATAAGAGCATCTTACGAAGAGTTGG
 AAAACAAATGCC
 CATATATAAAATTCTAAGC
 CATATGAGGACGAGGAGTAATGG
 CATTTCCTCTCACTCCCAGACACATTCA
 TTGTCCTGAATGCTCCATTAAATCCAGGG
 AAGGTAAATTGCCT
 AAATCTCCAGTGGATCTC

GCAACAGGAAGGAACCAGAACGCTGGAAAGTTGTTACCTCTTGTCAGAGCTTACCCAGAGTTAGACC
 TCATCCTCCCCTAGCTTAGCTGTCTCAGAGATATACTGGCCCTCCCTCTCTCTCTTTG
 CTGCTGGTGTAAAAGTCTGTAGGTATTGCCACTGTCTCCACTCACAAACCCCTGC
 TCCAGTCCTGGAGGGAGTGGGTTAACACAAATAGAACATTCCATTGAAGCAGTGATT
 TTTTTTTTTTTTTTAATCAAATGCTTGACTTTGAAGTCCACTTGTTCTGT
 ACTTGAAAAGGAAAGAAGGCCGGCGAGTCGTACGCCGTGAACTCCAGCACTTAG
 ATCACTTGAGGTCAAGGAGTTGAGACCAGGCCGGCAACATGGTAAACCCCCATCTC
 TAAAAATACAAAAATTAGCTGTGCATAGTGGTGGCACCTGTAGTCCCAGCTACTCAGGA
 GGCTGAGGCAAGCTAACTGCTGAACCCAGAACAGGAGGTTGCAAGTGAGCTGAGATCAC
 GCCACTGCACTCCAGCCTGGGTGACAGAGTGAGTGAGACTCTCGGTTAAAAAAAAAAAA
 AAAAAAAAAA

>gi|13186238|gb|NP_075595.1|FGFR1 302aa linear fibroblast growth factor receptor 1 isoform 5 precursor; fms-related tyrosine kinase-2; heparin-binding growth factor receptor; FMS-like tyrosine kinase 2; basic fibroblast growth factor receptor 1; N-sam tyrosine kinase; FLG protein; protein-tyrosine kinase; tyrosylprotein kinase; hydroxyaryl-protein kinase [Homo sapiens].

MWSWKCLLFWAVLVTATLCTARPSPLPEQDALPSSEDDDDDDSSSEEKETDNTKPNRM
 PVAPYWTSPKMEKKLHAVPAAKTVFKCPSSGTPNPTLRWLKNGKEFPDHRIGGYKVR
 YATWSIIMDSVVPSDKNYTCIVNEYGSINHTYQLDVVERSPhRPILQAGLPANKTVAL
 GSNVEFMCKVYSDPQPHIQWLKHIEVNGSKIGPDNLPyVQILKVIMAPFVGQSTGKETT
 VSGAQPVGRLSCPRMGSFLTLQAHTLHLSRDLATSRTSNRGHKVEVSWEQRAAGMGGA
 GL

>gi|4758007|gb|NM_004071.1|CLK1 1834bp mRNA Homo sapiens CDC-like kinase 1 (CLK1), mRNA.

ATTTTAGATAATCATTAAGACCAACAGAAAATGTAACAGATCCTACTCTTCAAAATAAT
 TGCTATTCACTATTAAAACGAGCAGTCAGCTGCGTGAATTCCCGTATTGCGTTACAAGCT
 TTGTCTCCTCGACTGGAGTCTTGTCCAGGACGATGAGACACTCAAAGAGAACTTACT
 GTCCTGATTGGATGACAAGGATTGGGATTATGGAAAATGGAGGAGCAGCAGTCATA
 AAAGAAGGAAGAGATCACATAGCAGTGCCCAGGAGAACAGCGCTGCAAATACAATCACT
 CTAATGTGTGATAGCATTATTGGAAAGCAGGTCTATAAATGAGAAAGATTATCATA
 GTCGACGCTACATTGATGAGTACAGAAATGACTACACTCAAGGATGTGAACCTGGACATC
 GCCAAAGAGACCATGAAAGCCGTATCAGAACCATAGTAGCAAGTCTCTGGTAGAAGTG
 GAAGAAGTAGTTATAAAAGCAAACACAGGATTCACCACAGTACTTCACATCGTCGTTCAC
 ATGGGAAGAGTCACCGAAGGAAAAGAACCCAGGAGTGTAGAGGATGATGAGGAGGGTCACC
 TGATCTGTCAGAGTGGAGACGTACTAAGTGAAGATATGAAATTGTTGATACTTAGGTG
 AAGGAGCTTTGGAAAAGTTGTCAGTGCATCGATCATAAAGCGGGAGGTAGACATGTAG
 CAGTAAAATAGTAAAAATGTGGATAGATACTGTGAAGCTGCTCGCTCAGAAATAAAG
 TTCTGGAACATCTGAATACAACAGACCCAACAGTACTTCCGCTGTGTCAGATGTTGG
 AATGGTTGAGCATCATGGTCACATTGCATTGTTGAACTATTGGACTTAGTACTT
 ACGACTTCATTAAAGAAAATGGTTTCTACCATTGCACTGGATCATATCAGAAAGATGG
 CATATCAGATATGCAAGTCTGTGAATTGGCACAGTAATAAGTGAACACACAGACT
 TAAAGCCTGAAAACATCTTATTGTCAGTCTGACTACACAGAGGCGTATAATCCAAA
 TAAAACGTGATGAACGCACCTTAATAAAATCCAGATATTAAAGTTGAGACTTGGTAGTG
 CAACATATGATGACGAACATCACAGTACATTGGTATCTACAAGACATTATAGAGCACCTG
 AAGTTATTAGCCCTAGGGTGGTCCAACCATGTGATGTCGGAGCATAGGATGCATT

TTATTGAATACTATCTGGGTTACCGTATTCCAACACACGATAGTAAGGAGCATTAG
 CAATGATGGAAAGGATTCTGGACCTCTACAAAACATATGATAACAGAAAACCAGGAAAC
 GTAAATATTTCACCAACGATCGATTAGACTGGGATGAACACAGTTCTGCCGGCAGATATG
 TTTCAAGAGCCTGTAAACCTCTGAAGGAATTATGCTTCTCAAGATGTTAACATGAGC
 GTCTCTTGACCTCATTCAGAAAATGTTGGAGTATGATCCAGCAAAGAATTACTCTCA
 GAGAAGCCTTAAAGCATCCTTCTTGACCTCTGAAGAAAAGTATATAGATCTGAATT
 GGACAGCTCTCTGAAGAGATCTTACAGACTGTATCAGTCTAATTAAATTAAAGTT
 ATTTGTACAGCTTGTAAATTCTAACATTATATTGCCATGTTATTGTTGGG
 TAATTGGTTCATTAAGTACATAGCTAACAGTAATGAACATCTTTCAAGTAATTGTAAG
 TGATTTATTCAAGAATAAATTGTTGTGTTATGA

>gi|4758008|gb|NP_004062.1|CLK1 484aa linear CDC-like kinase 1; protein tyrosine kinase STY [Homo sapiens].

MRHSKR TYCPDWDKDWDYKWRSSSSHKRRKRSHSSAQENKRCKYNHSKMCDSHYLES R
 SINEKDYHSRRYIDEYRNDYTQGCEPGHRQRDHESR YQNHSSKSSGRSGRSYKSKHRI H
 HSTSHRRSHGKSHRRKRTRSVEDDEEGHLICQSGDVLSARYEIVDTLGEAFGVVECID HKAGGRHV AVKVIVKVNDRYCEAARSEI QVLEHLNTTDPNSTFRCVQM LEWF EHGHICIV FELLGLSTYDFIKENGFLPRLDH IRKMAYQICKSVNFLHSNKLTHDLKPENILFVQSD YTEAYNP KIKRDERTL INPDIVVDFGSATYDDEHHSTLVSTRHYRAPEVILALGWSQPC DVWSIGCILIEYYLGFTVFP THDSKEHLAMMERILGPLPKHMIQKTRKRKYFHDRLDWD EHSSAGRYVSRACKPLKEFMLSQDV EHERLF DLIQKMLEYDPAKRITLREALKHPFFDLL KKSI

>gi|20127640|gb|NM_025128.2|MUS81 2352bp mRNA Homo sapiens MUS81 endonuclease (MUS81), mRNA.

GGCACGAGGGTCTCAAAGGCTGGCTGGAGTGGACCAAAGAAAAGATCGTTAGAGACAG CGCCCCCTGACCAACC ACTTAGAGCAGCGCAGGGTGGAGGGCGGCCAGGCTCTCCTC TCGTTAGTGC CCCCCTGTGTTGGGGCCCGTGATCTCAACGGCCTGCCCTCGGTCTCCC TCTTCCCCCGCCCCGCCCTGGGCCAGGTGTTCGAATCCCGACTCCAGAACTGGCGGCCGT CCAGTCCCCGGCGTGGAGCGCCGGAGGACCCGCCCTGGGCTCATGGCGGCCCGGT CGCCTGGGCCCGGAAGCGCCCGCTGCCTGCCTGCCCACCCGCTT CGTGGCTG ACCGAGTGGCGGGACGAGGCGACCCCGCAGCAGGACCGCACCGCACCGCTT CGTATT CAGAAG GCGCTCGCTTCCCTCCACGGTACCCACTGCCGCTCGCAGCGGGAGGAAGCTAAGATC CTACAGCACTT CGGAGACGGGCTCTGCCGGATGCTGGACGAGCGGCTGCAGCGCACCGA ACATCGGGCGGTGACCATGCCCGGACTCACCATCTGGAGAGAACAGTCCAGCCCCGAG GGGCGACTT CGGGAAGTCCAGGACTCTTCCATGCCAGTT CCTGCCAGGCCAAAGCGGG A GGCTCTGGCAGCTACTGGCAGCTCGCACTCAGGAGGCCAGTGATACTGCTGGT GCTC TACCGGGAGCACCTGAATCTAATGGT CACCACTCTTAACCAAGGAGGAGCTGCTGCAG AGGTGTGCTCAGAAGTCCCCCAGGGTAGGCCCTGGAGTGCCCAACCTGGCCAGCCCT CGCTCCCTCTTCAAGGAACCTGGCCTCAGGACACACCAGCCAGGTACTCATTG ACCCCAGAGGGCCTGGAGCTGGCCAGAAGTTGGCCAGTCAGAAGGCTGAGCTGCTG AATGTGGGATCGGGCCAAGGAGCCCCCTGGGAGGAGACAGCAGTGCCAGGAGCAGCT TCAGCAGAGCTGCCAGTGAAGCAGGGTCCAGCAGCAGCCACTGGAGCTGAGGCTGG AAGTACAGGGTGTGTTGTGGACATTGGCGAGACCCGGGGGGCGGGCACAGGCCG GAGCTGCTCCGAGAGCTACAGCGGCTGCACGTGACCCACACGGTGCAGCAAGCTGCACG TT GGAGATT TGTGTTGGCTCAGGAGACCAATCCTAGAGACCCAGCAAACCTGGGAG TTGGTACTGGATCACATTGTGGAGCGCAAGCGACTGGATGACCTTGCA GAGCAGCATCATC GACGGCCGCTCCGGGAGCAGAAGTCCGACTGAAGCGCTGTGGCTGGAGCGCCGGGTA TACCTGGTGGAAAGAGCATGGTCCACAAACCTCAGCCTCCTGAGAGCAGACTGCTG

CAGGCTGTACCAACACTCAGGTATTGATGGTTTGTGAAGCGCACAGCAGACATT
 AAGGAGTCAGCCGCTACCTGGCCCTTGAUTCGGGGCCTGCAGAGACTCTACCAGGGC
 CACACCCTACGCAGCCGCCCCTGGGAACCCCTGGGAACCCCTGAATCAGGGCCATGACC
 TCTCCAAACCCTCTTGCTACTCCTCACCTCAGTGACTTCAACGCAGGAGCCATCAAG
 ATAAGGCCAGTCGGTGCAGAAGTGTGCCCCGGCAGCTGATGCAGGTGCGCGGAGTG
 AGTGGGAGAAGGCAGCAGCCCTGGTGGATCGATAACAGCACCCCTGCCAGCCTCCTGGCC
 GCCTATGATGCCTGTGCCACCCCAAGGAACAAGAGACACTGCTGAGCACCATTAAAGTGT
 GGGCGTCTACAGAGGAATCTGGGGCTGCTCTGAGCAGGACCTTATCCAGCTACTGC
 AGCTACGGCCCTTGACCTGAGCTTATGCCGTGAAACAGCCCCAGCCCCGTCTGTCCC
 CCAACCCAGGCTAGCCAGCCTTTAACACATCTTGGGGTACAATTAGAATCTAAGTG
 TTTGCAGCCATATGTGTCATGTAGAAGATGCTAGCCCTGGGACCTTGTGAAATACGCA
 GGAACCAGGGATACCATCTGGTCCAGTGGTTTTAAACAAAGCTGCTTAGCACCTGGAAT
 TCCCTGGTCAGGGAGATGGAGTCAGTGGGGCATTGCAGCTTGAATCTATTATGTCAC
 CAGTTGGTCCTCATCAAATAAAATTCCCTAGGAGTGCAGAGGGCTATTGGAAAATAA
 AAATAATAAAATAAAACTCCTAAAAGAAAAGATTGAAACCCAAAAAAATAA
 AAAAAAAAAAA

>gi|13376707|gb|NP_079404.1|MUS81 476aa linear MUS81
 endonuclease [Homo sapiens].

MLDERLQRHRTSGGDHAPDPSGENSPAPQRLAEVQDSSMPVPAQPKAGGSYSWPARH
 SGARVILLVLYREHLNPNGHHFLTKEELLQRCAQKSPRVAPGSAPPALRSLLHRNLVL
 RTHQPARYSLTPEGLELAQKLAESEGLSLLNVGIGPKEPGEETAVPGAASAELASEAGV
 QQOPLERLPGEYRVLLCVDIGETRGGGHREPLLRELQRLHVTHTVRKLHVGFVWVAQET
 NRPDPANPGELVLDHIVERKRLDDLCSSIIDGRFREQKFRLKRCGLERVYLVEEHGSVH
 NLSLPESTILQAVNTQVIDGFFVKRTADIKESEAAYLALLTRGLQRLYQGHTLRSRPWGT
 PGNPESGAMTSNPNPLCSLLTFSDFNAGAIKNKAQSVREVFARQLMQVRGVSGEKAALVD
 RYSTPASLLAAYDACATPKEQETLLSTIKCGLRQLRNLPALSRTLSQLYCSYGPLT

>gi|19923239|gb|NM_003376.2|VEGF 3166bp mRNA Homo sapiens
 vascular endothelial growth factor (VEGF), mRNA.

AAGAGCTCCAGAGAGAAGTCGAGGAAGAGAGACGGGGTCAGAGAGAGCGCGCGGGCGT
 GCGAGCAGCGAAAGCGACAGGGCAAAGTGAGTGACCTGCTTTGGGGGTGACCGCCGGA
 GCGCGCGTGAGCCCTCCCCCTGGATCCCGCAGCTGACCAGTCGCCTGACGGACAGA
 CAGACAGACACCGCCCCCAGCCCCAGTTACCACTCCTCCCCGGCCGGCGGACAGTG
 GACGCGGGCGGCGAGCCGGGGCAGGGGGCAGCCGCCCCCGAGGCGGGGTGGAGGGG
 GTCGGAGCTCGCGCGTGCACGTGAAACTTTCTGTCAAATTCTGGGCTGTTCTGCTTC
 GGAGGAGCCGTGGTCCCGCGGGGGAAAGCCGAGCCGAGCGGAGCCGCGAGAAGTGCTAGC
 TCGGGCGGGAGGAGCCGAGCCGGAGGAGGGGAGGAGGAAGAAGAGAAGGAAGAGGAG
 AGGGGGCCGCAGTGGCGACTCGCGCTCGGAAGCCGGCTCATGGACGGGTGAGGCAGCG
 GTGTGCGCAGACAGTGCTCCAGCGCGCGCTCCCCAGCCCTGGCCCGCTCGGGCCGG
 GAGGAAGAGTAGCTCGCCAGGGCGAGGAGAGAGCGGGCCGCCACAGCCGAGCCGGA
 GAGGGACCGAGCCCGCGCCCGGTGGGCCTCCGAAACCATGAACTTCTGCTGTCTT
 GGGTGCATTGGAGCCTGCGCTTGCTCTACCTCACCAGCCAAGTGGTCCCAGGCTG
 CACCCATGGCAGAAGGAGGGAGGGCAGAATCATCACGAAGTGGTAAGTTCATGGATGTCT
 ATCAGCGCAGCTACTGCCATCCAATCGAGACCCCTGGTGGACATCTCCAGGAGTACCTG
 ATGAGATCGAGTACATCTCAAGCCATCCTGTGTGCCCCACTGAGGAGTCCAACATCACC
 CAAATGACGAGGGCCTGGAGTGTGTGCCCCACTGAGGAGTCCAACATCACC
 TGCGGATCAAACCTCACCAAGGCCAGCACATAGGAGAGATGAGCTCCTACAGCACAACA
 AATGTGAATGCAGACCAAGAAAGATAGAGCAAGACAAGAAAATCCCTGTGGGCCTTGCT

CAGAGCGGAGAAAGCATTGTTGTACAAGATCCGCAGACGTGAAATGTTCTGC
 ACACACACTCGCGTGCAAGGCAGGCAGCTGAGTAAACGAACGTACTGCAGATGTG
 ACAAGCCGAGGCCGTGAGCCGGCAGGAGGAAGGAGCCTCCCTCAGGGTTCGGGAACCA
 GATCTCTCTCCAGGAAAGACTGATAACAGAACGATCGATAACAGAAACCACGCTGCCGCCAC
 CACACCACCATCACCATCGACAGAACAGTCCTTAATCCAGAAACCTGAAATGAAGGAAGAGGA
 GACTCTGCGCAGAGCACTTGGGTCCGGAGGGCAGACTCCGGCGGAAGCATTCCCGGGC
 GGGTGACCCAGCACGGTCCCTTGAATTGGATTGCCATTTTATTTCTTGCTGCTA
 AATCACCAGGCCGAAGATTAGAGAGTTTATTCTGGGATTCTGTAGACACACCCAC
 CCACATACATACATTATATATATATATTATATATATAAAAATAAATATCTCTATT
 TTATATATATAAAAATATATATTCTTTAAATTAAACAGTGCTAATGTTATTGGTGT
 CTTCACTGGATGTATTGACTGCTGTGGACTTGAGTTGGAGGGAAATGTTCCCACTCAG
 ATCCTGACAGGGAAAGAGGAGGAGATGAGAGACTCTGGCATGATCTTTTTGTC
 TGGTGGGGCCAGGGCCTCTCCCCTGCCAAGAATGTGCAAGGCCAGGGCATGGGGCAA
 ATATGACCCAGTTGGAACACCCGACAAACCCAGCCCTGGCGCTGAGCCTCTAACCC
 AGGTCAAGACGGACAGAAAGACAAATCACAGGTTCCGGATGAGGACACCGCTGACCA
 GGAGTTGGGAGCTCAGGACATTGCTGTGCTTGGGATTCCCTCACATGCTGCACG
 CGCATCTGCCCTCAGGGCACTGCCTGGAAGATTAGGAGCCTGGCGGCCCTGCTTA
 CTCTCACCTGCTTGAGTTGCCAGGAGGCCACTGGCAGATGTCCGGCGAAGAGAAGA
 GACACATTGTTGAAGAAGCAGCCCCATGACAGCGCCCTTCCTGGACTCGCCCTCATCC
 TCTCCTGCTCCCCTCCTGGGTGAGCCTAAAAGGACCTATGTCCTCACACCATTGAA
 ACCACTAGTTCTGCCCCCAGGAAACCTGGTTGTGTGAGTGGTGAACCTTCCT
 CCATCCCCTGGCCTTCCCTCCCTCCGAGGCACAGAGAGACAGGGCAGGATCCACGT
 GCCCATTGTGGAGGCAGAGAAAAGAGAAAGTGTATATACGGTACTTATTAATATCC
 CTTTTAATTAGAAATTAGAACAGTTAATTAAATTAAAGAGTAGGGTTTTTCAGTAT
 TCTTGGTTAATTAAACTTCAACTATTTATGAGATGTATCTTGCTCTCTTGCTCT
 CTTATTGTAACGGTTTGATATAAAATTCACTGTTCCAATCTCTCTCCCTGATCG
 GTGACAGTCACTAGTTATCTGAACAGATATTAAATTGCTAACACTCAGCTGCCC
 TCCCCGATCCCCTGGCTCCCCAGCACACATTCTTGAAAGAGGGTTCAATATACATCT
 ACATACTATATATATATTGGCAACTTGTATTGTGTATATATATATATGTTA
 TGTATATATGTGATCCTGAAAAAAATAACATCGTATTCTGTTTTATATGTC
 AAACAAAGAAAAATAGAGAATTCTACATACTAAATCTCTCTTTAATTAAATAT
 TTGTTATCATTTATTATTGGTGCTACTGTTATCCGTAATAATTGTGGGAAAAGATAT
 TAACATCACGTCTTGTCTAGTGCAGTTTCGAGATATTCCGTAGTACATATT
 TTTAAACAAACGACAAAGAAACAGATACTTAAAAA
>gi|19923240|gb|NP_003367.2|VEGF 191aa linear vascular
 endothelial growth factor [Homo sapiens].
 MNFLLSWVHWSLALLLYLHHAKWSQAAPMAEGGGQNHHEVVFKMDVYQRSYCHPIETLVD
 IFQEYPDEIEYIFKPSCVPLMRCGGSNDEGLECVPTEESENITMQIMRIKPHQGHIGEM
 SFLQHNKCECRPKKDRARQENPCGPCSERRKHLFVQDPQTCKCSCKNTHSRCKARQLELN
 ERTCRCDKPRR
>gi|16306545|gb|NM_033649.1|FGF18 1466bp mRNA Homo sapiens
 fibroblast growth factor 18 (FGF18), transcript variant 2,
 mRNA.
 CACGGCCGGAGAGACGCCGGAGGAGACATGAGCCGGCGCCAGACGGAGCGGCC
 GTGACGCTTCGCGCTGCAGCCGCGCCCCGACCCGGAGCGCTGACCCCTGGCCCCAC
 GCAGCTCCCGGCCGGCCGGAGAGCGCAACTCGGCTTCCAGACCCGCCGCATGCTGT
 CCCCGGACTGAGCCGGCAGCCAGCTCCCACGGACGCCGGACGGCCGGCCAGCA

GTGAGCGAGCTTCCCCCACCGGCCAGCGCCTCCTGCACAGCGGCTGCCGCCCGCAGC
 CCCTGCGCCAGCCGGAGGGCGCAGCGCTCGGAGGAGCCGCGGGCGCTGATGCCGC
 AGGGCGCGCCCGGGAGCGCCCGGAGCAGCAGAGTCTGCAGCAGCAGCAGCCGGGAGGA
 GGGAGCAGCAGCAGCGGCCGGCGGGCGGGCGGGAGGCGCCCGGTCCCGGCCG
 CGCGGAGCGGACATGTGCAGGCTGGCTAGGAGCCGCGCCTCCCTCCGCCCAGCGATG
 TATTCAAGCGCCCTCCGCCTGCACTTGCGCTGTGTTACACTTCCTGCTGCTGCTTCCAG
 GTACAGGTGCTGGTTGCCGAGGAACGTGGACTTCCGCATCCACGTGGAGAACAGACG
 CGGGCTCGGGACGATGTGAGCCGTAAGCAGCTGCGGCTGTACCAGCTACAGCCGGACC
 AGTGGGAAACACATCCAGGTCTGGGCCGAGGATCAGTGCCCGGGAGGATGGGGAC
 AAGTATGCCAGCTCTAGTGGAGACAGACACCTCGTAGTCAAGTCCGGATCAAGGGC
 AAGGAGACGGAATTCTACCTGTGCATGAACCGCAAAGGCAAGCTCGTGGGAAGCCCGAT
 GGCACCAGCAAGGAGTGTGTTCATCGAGAAGGTTCTGGAGAACAACTACACGGCCCTG
 ATGTCGGCTAAGTACTCCGGTGGTACGTGGCTTCACCAAGAACGGGGCGGCCGGAAG
 GGCCCCAAGACCCGGAGAACCCAGCAGGACGTGCATTTCATGAAGCGCTACCCCAAGGGG
 CAGCCGGAGCTTCAGAACGCCCTCAAGTACACGACGGTAGCCAAGAGGTCCCCTGGGATC
 CGGCCACACACCCTGCCTAGGCCACCCGCCGGCCCTCAGGTGCCCCCTGGCCACACT
 CACACTCCCAGAAAATGCATCAGAGGAATTTCATGAAAAAATAAGGATTATTG
 TTGACTTGAACCCCCGATGACAAAAGACTCACGCAAAGGGACTGTAGTCAACCCACAGG
 TGCTTGTCTCTCTAGGAACAGACAACCTCTAAACTCGTCCCCAGAGGAGGACTTGAATG
 AGGAAACCAACACTTGAGAAACCAAGTCCTTTCCAAAGGTTCTGAAAGGAAAAAA
 AAAAAAAAAACAAAAAAAAAAAAAA

>gi|16306546|gb|NP_387498.1|FGF18. 207aa linear fibroblast
 growth factor 18 precursor [Homo sapiens].

MYSAPSACTCLCLHFLLCFQVQLVAEENVDRIHVENVQTRARDDVSRKQLRLYQLYSR
 TSGKHIQVLGRRISARGEDGDKYAQLLVETDTFGSQVRIKGKETEFYLCMNRKGKLVGKP
 DGTSKECVFIEKVLENNYTALMSAKYSGWYVGFTKKGRPRKGPKTRENQDVFHMKRYPK
 QPELQKPFKYTTVTKRSRRIRPTHAP

>gi|24496766|gb|NM_004712.3|HGS 2926bp mRNA Homo sapiens
 hepatocyte growth factor-regulated tyrosine kinase substrate
 (HGS), mRNA.

CGGAAGCGGAAGTCGGGGCGCCAGCTCGTAGCAGGGAGCGCCCGGGCGTCGGGT
 TTGGGCTGGAGGTGCCATGGGGCAGGGCAGCGGCACCTTCAGCGTCTCCTAGACAAGG
 CGACCAAGCCAGCTCTGTTGGAGACAGATTGGGAGTCATTTGCAGATCTGCACCTGA
 TCCGCCAAGGGGACACACAAGAAAAATATGCTGTGAATTCCATCAAGAACAAAGTCAACG
 ACAAGAACCCACACGTCGCCCTGTATGCCCTGGAGGTATGGAATCTGGTAAAGAAACT
 GTGGCCAGACAGTTCATGATGAGGTGGCCAACAAGCAGACCATGGAGGAGCTGAAGGACC
 TGCTGAAGAGACAAGTGGAGGTAACGTCCGTAACAAGATCCTGTACCTGATCCAGGCCT
 GGGCGCATGCCCTCCGAACGAGCCCAAGTACAAGGTGGTCAGGACACCTACCAAGATCA
 TGAAGGTGGAGGGCACGTCTTCCAGAATTCAAAGAGAGCGATGCCATGTTGCTGCCG
 AGAGAGCCCCAGACTGGGTGGACGCTGAGGAATGCCACCGCTGCAGGGTGCAGTCGGGG
 TGATGACCCGTAAGCACCACGCCGGCGTGTGGCAGATATTCTGTGAAAGTGTCTT
 CCAAGTACTCCACCATCCCCAAGTTGGCATCGAGAAGGGAGGTGCGCGTGTGAGCCCT
 GCTACGAGCAGCTGAACAGGAAAGCGGAGGGAAAGGCCACTTCCACCACTGAGCTGCC
 CCGAGTACCTGACCAAGCCCCCTGTCTCAGCAGTCCCAGCTGCCCTGGCGCTGTCACAGTCAGAGGCGG
 CGGCCCTGCAGGAGGAGGAGCTGCAGCTGCCCTGGCGCTGTCACAGTCAGAGGCGG
 AGGAGAAGGAGAGGCTGAGACAGAAGTCCACGTACACTTCGTACCCCAAGGCGGAGGCCA
 TGCCCTCGGCCCTCAGCGCCCCCGCCAGCAGCCTGACTCTCACGTGAACTCGT

CGGGCCCTCTGGCTGAGGACATCGACCCTGAGCTCGCACGGTATCTAACCGGAACACTACT
GGGAGAAGAAGCAGGAGGAGGCTCGCAAGAGCCCCACGCCATCTGCGCCGTGCCCTGA
CGGAGCCGCTGCACAGCCTGGGAAGGGCACGCAGCCCCACCAACGTGGTGGAGAAC
CCCTCCCGAGACAGACTCTCAGCCCATTCCCTCTGGTGGCCCTTAGTGAGGCCAC
AGTTCCACAATGGCGAGTCTGAGGAGAGCCACGAGCAGTCCTGAAGGCCTGCAGAAC
CCGTCACCACCTCGTAACCGCATGAAGAGTAACCACATGCCGGGCCAGCATCACCA
ATGACTCGGCCGTGCTCTACTCTTCAGTCATCAACGGCATGCACCCGAGCTGCTGG
AGCTGCTCAACCAGCTGGACCGAGCGCAGGCTGTACTATGAGGGCTGCAGGACAAGCTGG
CACAGATCCCGCATGCCGGGGCGCTGAGTGCCTGCGCGAAGAGCACCGGGAGAAC
TTCGCCGGCAGCCGAGGAGGCAGAGGCCAGCGCCAGATCCAGCTGGCCAGAACAGCTGG
AGATAATGCGGCAGAAGAACAGGAGTACCTGGAGGTGCAGAGGCAGCTGCCATCCAGC
GCCTGCAGGAGCAGGAGAACAGGAGCGCAGATCGGGCTGGAGCAGCAGAACAGACGGTCC
AGATGCGCCGCAGATGCCGCCTTCCCTGCCCTACGCCAGCTCCAGGCCATGCCCG
CAGCCGGAGGTGTGCTTACAGCCCTCGGACCAGCCAGCTCCAGCACCTTCAGCC
CTGCCGGCTCGGTGGAGGGCTCCCAATGCACGGCGTGTACATGAGCCAGCCGGCCCTG
CCGCTGGCCCTACCCAGCATGCCAGCAGCTGGCTGATCCCAGCATGGTGAGTGCCT
ACATGTACCCAGCAGGGGCCACTGGGCGCAGGCCAGGGCCAGGCCAGGCCAGCCA
CCGCCAGCCCCGCTTACTCATCCTACCAGCCTACTCCCACAGCGGGTACCAAGAACGTGG
CCTCCCAGGCCCCACAGAGCCTCCGGCCATCTCTCAGCCTCCAGTCAGCACCATGG
GCTACATGGGAGCCAGTCAGTCTCCATGGGCTACCAGCCTTACAACATGCAGAACATCTCA
TGACCACCCCTCCAAGCCAGGATGCGTCTCTGCCACCCAGCAGCCCTACATGCCGGGC
AGCAGCCCATGTACCAAGCAGATGGCACCCCTCTGGCGGTCCCCCCCAGCAGCACCCCCCG
TGGCCCAGCAACCAGCAGGCAAGGGGCCGCCAGAGGCAGCGAGGCCAGCTCATTT
CATTGACTGACCCAGGCCATGCTCACGTCCGGAGTAACACTACATACAGTTCACCTGAA
ACGCCTCGTCTTAACTGCCGTGTCCTGCCCTCCCTGTCCTACTGCCGGTAGTGTCCC
TTCTCTGCGAGTGAGGGGGGCTTCACCCCAAGCCCACCTCCCTGTCCTCAGCCTACT
GCAGTCCCTGAGTTAGTCTCTGCTTCTTCCCCAGGGCTGGCCATGGGAGGGAGGA
CTTCTCCCAGGGAAAGCCCCAGCCCTGTGGTCATGGTCTGTGAGAGGTGGCAGGAAT
GGGGACCTCACCCCCCAAGCAGCCTGTCCTCTGGCGCAGTGTGAGCTGGCTGTGGT
GTCTGGGTGTGGCTGGGCTCCCTCTGCAGGGCCTCTCGGCAGCACAGCCAAGGG
TGGAGGCTTCAGGCTCCAGCTCTGCTTCAGCTGCCATCTCCAGTGCCTGGCCAGAAT
GGTACAGCGATAATAAAATGTATTCAGAAAAAAAAAAAAAAA

>gi|4758528|gb|NP_004703.1|HGS 777aa linear hepatocyte growth factor-regulated tyrosine kinase substrate; human growth factor-regulated tyrosine kinase substrate [Homo sapiens].

MGRSGTFERLLDKATSQNLLETDWESILQICDLIRQGDTQAKYAVNSIKKVNDKNPHV
ALYALEVMESVVKNCGQTVHDEVANKQTMEELKDLLKRQEVNVRNKILYLIQAWAHAFR
NEPKYKVVQDTYQIMKVEGHVFPEFKESDAMFAAERAPDWDAEECHRRCRVQFGVMTRKH
HCRACGQIFCGKCSSKYSTIPKFGIEKEVRVCEPCYEQLNRKAEGKATSTTELPPEYLTS
PLSQSQLPPKRDETAQEEEELQLALALSQSEAEKERLRQKSTYTSYPKAEPMPSSASS
APPASSLYSSPVNSAPLAEDIDPELARYLNRYWEKKQEEARKSPTPSAPVPLTEPAAQ
PGEGHAAPTNVVENPLPETDSQPIPPSGGPSEPQFHNGESEESHEQFLKALQNAVTTFV
NRMKSNHMRGRSITNDSAVLSLFQSINGMHPQLLELLNQLDERRLYYEGLQDKLAIQRLQEQE
RGALSALREEHREKLRRRAEEAERQRQIQLAQKLEIMRQKKQEYLEVQRQLAIQRLQEQE
KERQMRLEQQKQTVQMRAQMPAFPLPYAQLQAMPAAGGVLYQPSGPASFPSTFSPAGSVE
GSPMHGVYMSQPAPAAAGPYPSMPSTAADPSMVSAYMYPAGATGAQAAPQAQAGPTASPAY
SSYQPTPTAGYQNVASQAPQSLPAISQPPQSSTMGYMGSQSVMGYQPYNMQNLMTTLPS

- 184 -

QDASLPPQQPYIAGQQPMYQQMAPSGGPPQQQPPVAQQPQAQGPPAQGSEAQLISFD
>gi|20127435|gb|NM_003821.2|RIPK2 1898bp mRNA Homo sapiens
receptor-interacting serine-threonine kinase 2 (RIPK2), mRNA.
GGCACGAGGGTCAGCTCTGGTTCGGAGAACGAGCGGCTGGCGTGGCCATCCGGGAATG
GGCGCCCTCGTACCTAGTGTGCGGGCAAAAGGGCTTGCCGGCTCGCTCGTGCAG
GGCGTATCTGGCGCTGAGCGCGCTGGAGCCTGGAGGCCGCCAGCAGGGGGC
ACACCCGGAACCGGCCTGAGCGCCGGACCATGAACGGGAGGCCATCTGCAGCGCCCT
GCCACCATTCCCTACCAAAACTCGCCGACCTGCGTACCTGAGCCGGCGCCTCTGG
CACTGTGTCGTCGCCCGCACGCAACTGGCGTCCAGGTGGCGTGAAGCACCTGCA
CATCCACACTCCGCTGCTGACAGTGAAGAAGGATGTCTTAAGAGAAAGCTGAAATT
ACACAAAGCTAGATTAGTTACATTCTCAATTGGAAATTGCAATGAGCCTGAATT
TTTGGGAATAGTTACTGAATACATGCCAAATGGATCATTAAATGAACCTCCTACATAGGAA
AACTGAATATCCTGATGTTGCTTGGCATTGAGATTGCACTGCATGAAATTGCCCT
TGGTGTAAATTACCTGCACAATATGACTCCTCCTTACTTCATCATGACTTGAAGACTCA
GAATATCTTATTGGACAATGAATTTCATGTTAAGATTGAGATTGGTTATCAAAGTG
GCGCATGATGTCCTCTCACAGTCACGAAGTAGCAAATCTGCACCAGAAGGAGGGACAAT
TATCTATATGCCACCTGAAAATGAACTGGACAAAATCAAGGGCAGTATCAAGCA
CGATATATATAGCTATGCAGTTATCACATGGGAAGTGTATCCAGAAAACAGCCTTGA
AGATGTCACCAATCCTTGCAGATAATGTATAGTGTGTACAAGGACATCGACCTGTTAT
TAATGAAGAAAGTTGCAATGATATACCTCACCGAGCACGTATGATCTCTAAATAGA
AAAGTGGATGGCACAAAATCCAGATGAAAGACCATCTTCTAAATGTTAATAGAACT
TGAACCAAGTTACAGAGTGTCAAGTGCCTACCTATGTGACAAGAAGAAAATGGA
ATTATCTGAACATACCTGAAATCATGGTCCACAAGAGGAATCATGTGGATCCTCTCA
GCTCCATGAAAATAGGGTCTCTGAAACTCAAGGTCCCTGCCAGCTCTCAAGACAA
TGATTTTATCTAGAAAAGCTCAAGACTGTTATTTATGAAGCTGCATCACTGTCCTGG
AAATCACAGTGGATAGCACCATTCTGGATCTCAAAGGGCTGCATTCTGTGATCACAA
GACCACTCCATGCTCTCAGCAATAATAAATCCACTCTCAACTGCAGGAAACTCAGAACG
TCTGCAGCCTGGTATAGCCCAGCAGTGGATCCAGAGCAAAAGGGAGACATTGTGAACCA
AATGACAGAAGCCTGCCTAACCAAGCTCGTAGATGCCCTCTGCCAGGGACTGATCAT
GAAAGAGGACTATGAACCTGTTAGTACCAAGCCTACAAGGACCTAAAAGTCAGACAAATT
ACTAGACACTACTGACATCCAAGGAGAAGATTGCCAAAGTTATAGTACAAAATTGAA
AGATAACAAACAAATGGGTCTTCAGCCTACCCGGAAATACTTGTGGTTCTAGATCACC
ATCTTAAATTACTCAAAATAAAAGCATGTAAGTGAETGTTTCAAGAAGAAATGTG
TTCTAAAGGATATTATAAAAAAAAAAAAAAA

>gi|4506537|gb|NP_003812.1|RIPK2 540aa linear receptor-interacting serine-threonine kinase 2; receptor interacting protein 2 [Homo sapiens].

MNGEAICSLPTIPYHKLADLRYLSRGASGTVSSARHADWRVQAVKHLHIHTPLLDSER
KDVLRRAEILHKARFSYILPILGICNEPEFLGIVTEYMPNGSLNELLHRKTEYPDVAWPL
RFRILHEIALGVNYLHNMTTPPLLHSDLKTQNILLDNEFHVKIADFGSKWRMMSLSQSRS
SKSAPEGGTIIYMPHENYEPGQKSRSAKHDIVSYAVITWEVLSRKQPFEDVTNPLQIMY
SVSQGHRPVINEESLPYDIYHRARMISLIESGWAQNPDERPSFLKCLIELEPVRLRTFEEI
TFLEAVIQLKKTKLQSVSSAIHLCDKKMELSLNIPVNHGPOEESCSSLHENGSPET
SRSLPAPQDNDFLSRKAQDCYFMKLHHCPGNHSWDSTISGSQRAAFCDHKTPCSSAIIN
PLSTAGNSERLQPGIAQQWIQSKREDIVNQMTEACLNQSLDALLSRDLIMKEDYELVSTK
PTRTSKVRQLLDTDIQGEFAKVIVQKLKDQKQMGLQPYPEILVVSRSPSLNLLQNKSM

>gi|26051238|gb|NM_021137.3|TNFAIP1 3571bp mRNA Homo sapiens tumor necrosis factor, alpha-induced protein 1 (endothelial) (TNFAIP1), mRNA.

CACAGCTTGGGACTGCTGAGGGGCAGGCCGCTGCAGGCTAGGGCGGCTCGGAGTCGCGCT
GGCCACCCAGCTGAGAGGAGGGCGCCCCCGGGACGCAGTGAATTATGAGGCTCTGGC
CTCCACTGCCACTCACTCGTACCCCTTCCACCACGGCGGAGCCTCCAAGCCTACCTC
CTGCCGTGTTGATCTACCTGCAGCGGGAGATGTCGGGGACACCTGCCTGTGCCAGC
CTCAGGGCCAAGCCAAGCTCAGTGGCTCAAGGGAGGGTGGCAACAAGTATGT
CCAGCTAACGTGGCGGCTCTGTACTACACCACTGTGCAGGCCCTGACCCGCCACGA
CACCATGCTAACGCCATGTCAGTGGCGCATGGAGGTGCTGACCGACAAAGAAGGCTG
GATCCTCATAGACCGTTGAAAGCACTTGGCACCATTTGAATTACCTCCGAGATGA
CACCATCACCCCTCAGAACCGCAAGAAATCAAGGAATTGATGGCTGAAGCAAAGTA
TTACCTCATCCAGGGCTGGTGAATATGTGCCAGAGTGCCCTGCAGGACAAGAAGGACTC
CTACCAGCCTGTGCAACATCCCCATCATCACATCCCTAAAGGAGGAGGAGCGGCTCAT
CGAACCTCCACCAAGCCGTGGTGAAGCTGCTGTACAACAGAACAAAGTATT
CTACACCAGCAACTCTGACGACCACCTGCTGAAAAACATCGAGCTGTTGACAAGCTCTC
CCTGCGCTTCAACGGCCGCGTCTTCATCAAGGATGTCATTGGTGACGAGATCTGCTG
CTGGTCCTTTATGCCAGGGCGTAAGCTGGCAGAGGTGTGCTGTACCTCCATCGTGT
TGCCACGGAGAAGAACGAGACCAAGGTGAATTCCCAGAGGCCGAATCTATGAGGAGAC
ACTCAACGTCTACTCTATGAGACTCCCCCGTCCCCGACAACACTCCTGGAGGCCAC
AAGCCGTAGCCGCAGCCAGGCTCCCCAGTGAAGATGAGGAGACCTTGAACCTGGGA
CCGTGTCCGCCGCATCCACGTCAAGCGCTACGCACCTACGATGACGGCAGCTGGCCA
CCAGTCTACCCATCGCAGCTGACCAAGACCCCTCAGGGAGTCAGGGCACGGGAGGCCCTATC
TCCCATCCTGTGGAACCCGCCCCATTGGCACCCCCATGCTGCTGCTGCCCTGGTCTCTGC
TCTAGCACCCAGAGGCATGACAGGCCCTGCTCAGAGGTCAAGAGGTCTGGCAGAGGAGG
GACCACATTCCCCTGCCTGCCCCCTGAGCACTTCTGGAGACTGCGTCTGTCTATCTGC
TCACCACACCCTTCCGACGGAGCTGCTCTGCTCCCTGGGCATATGGACTGAC
CCACCTCCTGCTGAGAACCTTCCCCTAGGCCCTGTGCAGAAGGGCTACTGCCCTTAGGC
CTCAGCTGGGGAAAGGCAGTTCTGGTGCTGTAGAGGCCCTGGTCAGAAAGTGGGACGT
CTTTTTCTAAGGTGTTAAGCACAGGCTGATAAGTTGGTTTAAAAAATAATCTA
GGAAATGAATAATTCTAAATCTAGTAATGAGGAAACTGAGCATTCTTTGCCCTCCAGG
GTGCCAAGACCCATACATATGACAGAACCCCTGGCCCTCTCCATGCCGTGGATCTGTT
TCTTAAAGCACTTGTACTGTTATTCAAGGAGGTGATAATCTCCTGACCCATGTCTTT
CTACCCCTAATCCCCACTTCCCTGCAGAACATCAATCTGAGGGAGGGATAAGAGGAAGCAA
AAAAAAAAACATCCGACAGAGCAGCTCTGGCTTGCAGCCTGGCAGCAGCTCAGAG
TGCACCGAGGAGGGAAAGGATGGCTAACGCTGGGACCAGCAGTCTCACAGGGTGCCTGTGA
GAAAGGACATTTCACCCCCACATCATAGTCACATCACTGACTCCTAGGTCTAGCACGACT
GCTCTTGTGATTCTCTTGAGTACCCCTGGCTTCCAGCCATGCTGTCTCACATACGGTA
AAGCCAAAGAGCTGTCACATGGCCAGAAACATGAGGCCAGGCAGGAAGACCGTGGAGCC
CGTGGGCACTGCATGGTGTGGCTGGCATGCCATCAGCTGAGGACAGCAAACCTCCAGC
AGCCCTACAGAGGTGGCACATGCTGGCACACATCTACTCCCTGCCACACCACATCTAT
GCTCTTGGTTGGTGTGGCTGGGATGGCGGTTCTGCCAGTGGTGTCTGTAGCGCGGGGA
TGACAGGAGCAACCGAACGACCCCTGAAGGCCTTCACTCCTGTTGGTAACTCAGCCATG
GAGATGCCAAGCAACTGCCAGGAGGTGAGTCCTCTTAGGGCTTTGGTTTCAATTCT
TTTGTGTTGGCTGGCAAACCAAGAATTCAAGCTTATCTGAATTATTTCAAAGGAATGCT
GTCAGGGAGGGACTGTTCTGCCAGCCTAACAAAGCAACGTAGCCACGTATAGTACCCACT
TTCTGCTCTTGGAGAGAACACAGGTTATCAAGTTCATCTCTTGAECTACTCTTATGAT

AGCTGATGCCACAGAGCCTATGGCAAATGCCAGACCCAGGGTTAGACACAAGGACCTGA
 AGTACATGACGGGGACAGGGAAATGTACTTCTAATTAGGCATTTATGTTAGTC
 ACAGTCTTGAATGTATAAACAGCACTAAGACTCTCAGGTACAGGTTGATCAGCT
 ACTAGTTCTCCAGCCCTATTGAGGTAACAAGATAAAAGACAAATCCACCTCTTGGCCA
 AATTAGGCTTGGCTTATGACTTCCCACAGAGACTGGAATGCGTCAGCCTGAGACCA
 CTGGCTATTCTCAGCTGCCCTTGAAGGCTTAACACTCAAATCCCAGCTCCCC
 ACTGAGGTGTTGTGATGCTGCCTTGACCTCCCACCCCTTAGTCCCTGCTTACTA
 CTTGACATTACATCCTCAGTGTCTCAGTCAGTCTTGTGAGGAAAGCACAGTAGTCTGG
 GACTGGGCATTATCTCTGACTGAAAATCTCCTGGTCTTAAGGAAAATACTAAC
 ATTGAACACTGACATGATCTAGCTTAACTCAGACTTGTGACTTAAAGTTGG
 GGGTTTCTTGAAAGTTCCAGCCATTAGAAAGCAACTCTGGCTGTGCATT
 TCAACTCCAAGCAGCCCAGGGTAAGTAAACAAAGTATGGATGAAGGTCAGATTCTTG
 TCAGTTCTGAGAAACCTGGCAGCCTGCTTAACACACAGGCCAGTATTGGGTTTAT
 TGAATTGGTATGTGACCAAGGTCGCCCTAAAGGATGGCGCAGGTCTGGGCAGGAAAGA
 ATTTTCCTTATCACATAACTGTAATATTGGTTGCTCAGCATAAGTGATGGAAGCAAA
 CACTAATTCTAATAAAATTGTGTTAAACTC

>gi|10863937|gb|NP_066960.1|TNFAIP1 316aa linear tumor
 necrosis factor, alpha-induced protein 1 [Homo sapiens].
 MSGDTCLCPASGAKPKLSGFKGGLGNKYVQLNVGGSLYYTTVRALTRHDMLKAMFSGR
 MEVLTDEGWILIDRCGKHFGTILNYLRDDTITLPQNQREIKELMAEAKYLIQGLVNMC
 QSALQDKKDSYQPVCNIPIITSLKEERLIESSTKPVKLLYNRSNNKSYTSNSDDHLL
 KNIELFDKLSLRFNGRVLFIKDVGDEICCWSFYQQGRKLAEVCTSIVYATEKKQTKE
 FPEARIYEETLNVLLYETPRVPDNLLEATSRSRSQASPSEDEETFELRDRVRRIHVKRY
 STYDDRQLGHQSTHRD

>gi|27597077|gb|NM_006293.2|TYRO3 3949bp mRNA Homo sapiens
 TYRO3 protein tyrosine kinase (TYRO3), mRNA.
 GCGGTGGCGCGGGAGCGGCCCGGGACCCCGCGCTGCTGACGGCGGCCACCGCGGCCGG
 AGGCGGGCGCGGTCTCGGAGGCGGTGCGCTCAGCACCGCCCCACGGCGGCCAGCCC
 CTCCCGCAGCCCTCTCCCTCCGCTCCCTCCGCCCTCCTCCCCCCTCCTCCCT
 CCTCGCTCGCGGGCCGGCCGGCATGGTGCGCGTCGCCGCCGATGGCGCTGAGGCGGA
 GCATGGGGCGGCCGGGCTCCCGCCGCTGCCGCTGCCGCCACCGCGGCTGGGCTGC
 TGCTGGCGCTCTGGCTCTGCTGCTCCGGAGTCCGCGCCGAGGTCTGAAGCTCA
 TGGGAGCCCCGGTGAAGCTGACAGTGTCTCAGGGCAGCCGGTGAAGCTCACTGCAGTG
 TGGAGGGGATGGGAGGAGCCTGACATCCAGTGGTGAAGGATGGGCTGTGGTCCAGAACT
 TGGACCAGTTGTACATCCCAGTCAGCGAGCAGCACTGGATGGCTTCCCTAGCCTGAAGT
 CAGTGGAGCGCTCTGACGCCGGCGGTACTGGTGCCAGGTGGAGGATGGGGTGAACACCG
 AGATCTCCAGCCAGTGTGGCTCACGGTAGAAGGTGTGCCATTTCACAGTGGAGCCAA
 AAGATCTGGCAGTGCCACCCAATGCCCTTCAACTGTCTTGAGGCTGTGGTCCCC
 CTGAACCTGTTACCATGTCTGGTGAGAGGAACATCGAAGATCGGGGACCCGCTCCCT
 CTCCATCTGTTAAATGTAACAGGGGTGACCCAGAGCACCATGTTCTGTGAAGCTC
 ACAACCTAAAAGGCCTGGCCTTCTCGCACAGCCACTGTTCACCTCAAGCACTGCCTG
 CAGCCCCCTCAACATCACCGTGACAAAGCTTCCAGCAGCAACGCTAGTGTGGCCTGGA
 TGCCAGGTGCTGATGGCGAGCTCTGCTACAGTCCTGTACAGTTAGGTGACACAGGCC
 CAGGAGGCTGGGAAGTCCTGGCTGTGTGGTCCCTGTGCCCCCTTACCTGCCCTGCTCC
 GGGACCTGGTGCCTGCCACCAACTACAGCCTCAGGGTGCCTGTGCCAATGCCCTGGGGC
 CCTCTCCCTATGCTGACTGGGTGCCCTTCAGACCAAGGGTCTAGCCCCAGCCAGCGCTC
 CCCAAAACCTCCATGCCATCCGCACAGATTAGGCCTCATTTGGAGTGGGAAGAAGTGA

TCCCCGAGGCCCTTGGAAAGGCCCTGGGACCCCTACAAACTGTCTGGGTTCAAGACA
ATGGAACCCAGGATGAGCTGACAGTGGAGGGACCAGGGCCAATTGACAGGCTGGGATC
CCCAAAGGACCTGATCGTACGTGTGCCTCCAATGCAGTTGGCTGTGGACCCCTGGA
GTCAGCCACTGGTGGTCTCTCATGACCGTGAGGCCAGCAGGGCCCTCCTCACAGCC
GCACATCCTGGTACCTGTGGTCCTGGTGTCTAACGGCCCTGGTACGGCTGCTGCC
TGGCCCTCATCCTGCTCGAAAGAGACGGAAAGAGACGCCGGTTGGCAAGCCTTGACA
GTGTATGGCCCAGGGAGAGCCAGCCGTTCACTCCGGCAGCCGGTCTTCAATCGAG
AAAGGCCCGAGCGCATCGAGGCCACATTGGACAGCTGGGCATCAGCGATGAACATAAGG
AAAAACTGGAGGATGTGCTCATCCCAGAGCAGCAGTTCACCTGGGCCATGTTGGCA
AAGGAGAGTTGGTTAGTGCAGGGAGGCCAGCTGAAGCAAGAGGATGGCTCCTTGTGA
AAGTGGCTGTGAAGATGCTGAAAGCTGACATCATTGCTCAAGCGACATTGAAGAGTTCC
TCAGGGAAGCAGCTTGATGAAGGAGTTGACCACACGTGGCAAACCTTGTGGGG
TAAGCCTCCGGAGCAGGGCTAAAGGCCGTCTCCCCATCCCCATGGTATCTGCCCTCA
TGAAGCATGGGACCTGCATGCCTCCTGCTCGCCTCCGGATTGGGGAGAACCCCTTA
ACCTACCCCTCCAGACCCCTGATCCGGTTATGGTGGACATTGCCTGCGCATGGAGTACC
TGAGCTCTCGGAACCTCATCCACCGAGACCTGGCTGCTCGGAATTGCATGCTGGCAGAGG
ACATGACAGTGTGTGGCTGACTTCGGACTCTCCCGAAGATCTACAGTGGGACTACT
ATCGTCAGGCTGTGCCTCCAAACTGCCTGTCAAGTGGCTGGCCCTGGAGAGCCTGGCCG
ACAACCTGTATACTGTGCAGAGTGAAGTGGCTGGGCTGGGAGATCA
TGACACGTGGCAGACGCCATATGCTGGCATCGAAAACGCTGAGATTACAACACTAC
TTGGCGGAAACCGCCTGAAACAGCCTCCGGAGTGTATGGAGGACGTGTATGATCTCATGT
ACCAGTGTGGAGTGTGCTGACCCCAAGCAGCAGGCCAGCTTACTTGTCTGCGAATGGAAC
TGGAGAACATCTGGGCCAGCTGTCTGTCTATCTGCCAGCCAGGACCCCTTACATCA
ACATCGAGAGAGCTGAGGAGCCCAGTGCAGGGAGGAGCAGCTGGAGCTACCTGGCAGGGATC
AGCCCTACAGTGGGCTGGGATGGCAGTGGCATGGGGCAGTGGTGGCACTCCAGTG
ACTGTGGTACATACTCACCCCCGGAGGGCTGGCTGAGCAGCCAGGGCAGGCAGAGCACC
AGCCAGAGAGTCCCTCAATGAGACACAGAGGCTTTGCTGCTGCAGCAAGGGCTACTGC
CACACAGTAGCTGTTAGCCCACAGGCAGAGGGCATGGGCCATTGGCCGGCTCTGGT
GCCACTGAGCTGGCTGACTAAGCCCCGCTGACCCAGCCAGACAGCAAGGTGTGGAGG
CTCCTGTGGTAGTCCTCCAAAGCTGTGCTGGAGGCCAGCTGACCAAATACCCAAATC
CCAGTTCTCCTGCAACCACCTGTGGCCAGCCTGGCATCAGTTAGGCCTTGGCTTGAT
GGAAGTGGGCCAGTCTGGTGTGAACCCAGGCAGCTGGCAGGAGTGGGTGGTTATG
TTTCCATGGTACCATGGGTGTGGATGGCAGTGTGGGGAGGGCAGGTCCAGCTCTGTGG
CCCTACCCCTCCTGCTGAGCTGCCCTGCTGCTTAAGTGCATGCATTGAGCTGCCCTCCAGC
CTGGTGGGCCAGCTATTACACACTTGGGTTAAATATCCAGGTGTGCCCTCCAAGTC
ACAAAGAGATGCTCTGTAATATTCCCTTTAGGTGAGGGTTGGTAAGGGGTGGTATCT
CAGGTCTGAATCTCACCATCTTCTGATTCCGCACCCCTGCCACGCCAGGAGAAGTTGA
GGGGAGCATGCTTCCCTGCAGCTGACCGGGTCACACAAAGGCATGCTGGAGTACCCAGCC
TATCAGGTGCCCTCTCCAAAGGCAGCGTGCCGAGCCAGCAAGAGGAAGGGGTGTG
AGGCTTGCCAGGAGCAAGTGAGGCCGGAGAGGAGTTCAAGGAAACCCCTCCATACCCAC
AATCTGAGCACGCTACCAAATCTCAAATATCCTAACAGACTAACAAAGGCAGCTGTGCTG
AGCCCAACCCCTCTAAACGGTGACCTTACTGCCAACCTCCCTCTAACACTGGACAGCCTC
TTCTGTCCCAAGTCTCCAGAGAGAAATCAGGCCATGAGGGGGATTCTGGAACCTGG
ACCCCAAGCCTTGGTGGGGAGGCCCTGGAAATGCATGGGGCAGGTCTAGCTGTTAGGGAC
ATTTCAGGCTGTTAGTTGCTGTTAAAATAGAAATAAAATTGAAGACT
>gi|27597078|gb|NP_006284.2|TYRO3 890aa linear TYRO3 protein
tyrosine kinase; Brt; Dtk; Sky; Tif; Tyro3 protein tyrosine

kinase (sea-related receptor tyrosine kinase); tyrosine-protein kinase receptor TYRO3 precursor [Homo sapiens].

MALRRSMGRPGLPPLPLPPPRRLGLLAALASLLPESAAAGLKLMGAPVKLTVSQGQPV
 KLNCSVEGMEEPDIQWVKDGAVVQNLDQLYI PVSEQHWIGFLSLKSVERSDAGRYWCQVE
 DGGETEISQPVWLTVEGVPFFTVEPKDLAVPPNAPFQLSCEAVGPPEPVTIVWWRGFTKI
 GGPAPSPSVLNVTGVTQSTMFSCEAHNLKGLASSRTATVHLQALPAAPFNITVTKLSSSN
 ASVAWMPGADGRALLQSCTVQVTQAPGGWEVLAVVVPVPPFTCLLRDLPATNYSLRVRC
 ANALGPSPYADWVPFQTKG LAPASAPQNLHAIRTDGLILEWEEVIPEAPEPLGPLGPYKL
 SWVQDNGTQDELTVEGTRANLTGWDPKDLIVRVCVSNAVCGCPWSQPLVVSSHDRAGQQ
 GPPHSRTSWPVVLGVLTALVTAALALILLRKRRKETRFQAFDSVMARGEPAVFRAA
 RSFNRRPERIEATLDSLGI SDELKEKLEDVLIPEQQFTLGRMLGKGEFGSVREAQLKQE
 DGSFVKVAVKMLKADI IASSDIEEFLREACMKEFDHPHVAKLVGVSLRSRAKGR LP1PM
 VILPFMKHDLHAFLLASRIGENPFNLPLQTLIRFMVDIACGMEYLSSRNFIHRDLAARN
 CMLAEDMTVCVADFGLSRKI YSGDYYRQGCASKLPVKWL ALES LADNLYTVQSDVWA FGV
 TMWEIMTRGQTPYAGIENAEIYNLIGGNRLKQPPECMEDVYDLMYQCWSADPKQRPSFT
 CLRMELENILGQLSVLSASQDPLYINIERAEEPTAGGSLELPGRDQPYSAGDGSGMGAV
 GGTPSDCRYILTPGGLAEQPGQAEHQPE SPLNETQRLLLQQGLLPHSSC

>gi|4502884|gb|NM_003992.1|CLK3 1762bp mRNA Homo sapiens CDC-like kinase 3 (CLK3), transcript variant phclk3, mRNA.

TGGGGCACTGGTACCTCCAGGACCTGGAGTGTACTGGAAAGAAATGGTG CAGTCCAGATGCC
 ATCACTGTAAGCGATAACCGCTCCCCTGAACCAGACCCGTACCTGAGCTACCGATGGAAAGA
 GGAGGAGGT CCTACAGTCGGAACATGAAGGGAGACTCGCGATACCCGTCCCGAAGGGAGC
 CTCCCCCACGAAGATCTCGGTCCAGAACGCCATGACCGCCTGCCCTACCAGAGGAGGTAC
 GGGAGCGCCGTGACAGCGATACATACCGGTGTGAAGAGCGGAGCCCATTGGAGAGG
 ACTACTATGGACCTTCACGTTCTCGTCATCGTCCGGCGATGCCGGAGAGGGGGCCA TACC
 GGACCCGCAAGCATGCCACC ACTGCCACAAACGCCACCAGGTCTTGTAGCAGCGCCT
 CCTCGAGAACAGCAGTAAGCGCACAGGCCGGAGTGTGGAAGATGACAAGGAGG
 GTCACCTGGTGTGCCGGATCGCGATTGGCTCCAAGAGCGATATGAGATTGTGGGAACC
 TGGGTGAAGGCACCTTGGCAAGGTGGAGTGCTTGGACCATGCCAGAGGAAGTCTC
 AGGTTGCCCTGAAGATCATCCGCAACGTGGCAAGTACCGGGAGGCTGCCGGCTAGAAA
 TCAACGTGCTAAAAAAATCAAGGAGAACAGAAAACAAGTTCCGTGTGCTTGA
 TGTCTGACTGGTCAACTTCCACGGTCACATGTGCATCGCCTTGAGCTCCTGGCAAGA
 ACACCTTGAGTCCCTGAAGGAGAATAACTCCAGCCTTACCCCTACACATGTCCGGC
 ACATGGCCTTACCACTGAGCTGCCACGCCCTAGATTCTGCATGAGAACAGCTGACCCATA
 CAGACTTGAAACCTGAGAACATCCTGTTGTGAATTCTGAGTTGAACCCCTCTACAATG
 AGCACAAGAGCTGTGAGGAGAAGTCAGTGAAGAACACCAGCATCCGAGTGGCTGACTTG
 GCAGTGCCACATTGACCATGAGCACCACACCATTGTGCCACCCGTCACTATGCC
 CGCCTGAGGTGATCCTGAGCTGGGCTGGCACAGCCCTGTGACGTCTGGAGCATTGGCT
 GCATTCTCTTGAGTACTACCGGGCTTCACACTCTCCAGACCCACGAAAACCGAGAGC
 ACCTGGTGTGATGGAGAACATCCTAGGGCCATCCCACACATGATCCACCGTACCA
 GGAAGCAGAAATATTCTACAAAGGGGCCTAGTTGGATGAGAACAGCTCTGACGGCC
 GGTATGTGAAGGAGAACCTGCAAACCTCTGAAGAGTTACATGCTCCAAGACTCCCTGGAGC
 ACGTGCAGCTGTTGACCTGATGAGGAGGATGTTAGAATTGACCCCTGCCAGCGCATCA
 CACTGGCCGAGGCCCTGCTGCCACCCCTTCTGCTGCCCTGACCCCTGAGGAGGGTCC
 TCCACACCAGCCGCAACCCAAGCAGATGACAGGCACAGGCCACCGCATGAGGAGATGGAG
 GGCAGGGACTGGGCCAGCCCTGACTCCAGCCTGACCCAGGCCAGCCCCAGGCCAGAG
 CCACCCAATGAAACAGTGCATGTGAAGGAAGGCAGGAGCCTGCAGGGAGCAGACTTGGT

GCCCAGCTGCCAGAAAGCACAGATTGACCCAAGCTATTTATATGTTATAAAGTTATAAT
AAAGTGTTCCTACTGTTGTA
>gi|4502885|gb|NP_003983.1|CLK3 490aa linear CDC-like kinase 3
isoform hclk3 [Homo sapiens].
MHHCKRYRSPEPDYPLSYRKRRSYSREHEGLRYPSSRREPPPRRSRSRSHDRLPYQRR
YRERRDSDTYCEERSPSFGEDYYGPSRSRHRRSRERGPYRTRKHAHHCHKRRTSCSS
ASSRSQQSSKRTGRSVEDDKEGHLVCRIGDWLQERYEIVGNLGEFTFGKVECLDHARGK
SQVALKIIRNVGKYREAARLEINVKKIKEKDKENFKLCVLMSDWFNFHGHMCIAFELLG
KNTFEFLKENNQPYPLPHVRHMAQLCHALRFLHENQLHTDLKPENILFVNSEFETLY
NEHKSCCEEKSVKNTSIRVADFGSATFDHEHHTTIVATRHYPPEVILELGWAQPCDVWSI
GCILFEYYRGFTLFQTHENREHLVMMEKILGPIPSHMIHRTRKQKYFYKGGLVWDENSSD
GRYVKENCKPLKSYMLQDSLEHVQLFDLMRRMLEFDPAQRITLAEALLHPFFAGLTPEER
SFHTSRNPSR
>gi|9910121|gb|NM_020249.1|ADAMTS9 3674bp mRNA Homo sapiens a
disintegrin-like and metalloprotease (reprolysin type) with
thrombospondin type 1 motif, 9 (ADAMTS9), mRNA.
GCGGGAAACCATGCAGTTGTATCCTGGGCCACACTGCTAACGCTCCTGGTGCAGGGAC
CTGGCCGAGATGGGGAGCCCCAGACGCCGGCGCCGAGCAGCAAGGACAGGCTGCACCCG
AGGCAAGTGAAATTATTAGAGACCCTGGCGAATACGAAATCGTGTCTCCCATCCGAGTG
AACGCTCTCGGAGAACCCCTTCCCACGAACGTCCACCTCAAAGAACCGGACGGAGCATT
AACTCTGCCACTGACCCCTGGCCTGCCTCGCCTCCCTCCTCTCCTCACCTCCTCC
CAGGCGCATTACCGCCTCTGCCTCGGCCAGCAGTTCTATTAACTCACCGCCAAT
GCCGGATTATCGCTCCACTGTTACTGTCACCCCTCCTCGGGACGCCGGGTGAATCAG
ACCAAGTTTATTCCGAAGAGGAAGCGGAACCTCAAGCACTGTTCTACAAAGGCTATGTC
AATACCAACTCCGAGCACCGCCGTATCAGCCTCTGCTCAGGAATGCTGGCACATT
CGGTCTCATGATGGGATTATTTATTGAACCAACTACAGTCTATGGATGAACAAGAAGAT
GAAGAGGAACAAAACAAACCCACATCATTATAGGCGAGCGCCCCCAGAGAGAGGCC
TCAACAGGAAGGCATGCATGTGACACCTCAGAACACAAAAATAGGCACAGTAAAGACAAG
AAGAAAACAGAGCAAGAAAATGGGGAGAAAGGATTAACCTGGCTGGTACGTAGCAGCA
TTAACACGGCTTAGCAACAGAGGCATTTCTGCTTATGGTAATAAGACGGACAACACA
AGAGAAAAGAGGACCCACAGAAGGACAAACGTTTTATCCTATCCACGGTTGTAGAA
GTCTGGTGGTGGCAGACAACAGAACATGGTTCTACCATGGAGAAAACCTTCAACACTAT
ATTTAACTTAATGTCATTGACTTAAATTGTGATTCTACATGGAAACAGGATGGCCTTCCATA
TCTTTAAATGCTCAGACAACATTAAAAACCTTGCCTGGCAGCATTGAAAGAACAGT
CCAGGTGGAATCCATCATGATACTGCTGTTCTTAACAAGACAGGATATCTGAGAGCT
CACGACAAATGTGATACTTAGGCCTGGCTGAACCTGGGAACCATTTGTGATCCCTATAGA
AGCTGTTCTATTAGTGAAGATAGTGGATTGAGTACAGCTTACGATGCCCATGAGCTG
GCCATGTGTTAACATGCCCTCATGATGACAACAAACATGTAAGAAGAAGGAGTTAAG
AGTCCCCAGCATGTCATGGCTCCAAACACTGAACCTTACACCAACCCCTGGATGTGGTCA
AAGTGTAGTCGAAAATATCACTGAGTTTAGACACTGGTTATGGCGAGTGGTTGCTT
AACGAACCTGAATCCAGACCCCTACCCCTTGCCTGTCCAACCTGCCAGGCATCCTTACAAC
GTGAATAAAACAAATGTGAATTGATTGTTGGACCAGGTTCTCAGGTGTGCCCATATATGATG
CAGTGCAGACGGCTCTGGTGCATAACGTCAATGGAGTACACAAAGGCTGCCGAGCTCAG
CACACACCCCTGGGCCGATGGACGGAGTGCAGCCTGGAAAGCACTGCAAGTATGGATT
TGTGTTCCCAAAGAAATGGATGTCCCCGTGACAGATGGATCCTGGGAAAGTGGAGTCCC
TTTGGAACCTGCTCCAGAACATGTGGAGGGGCATAAAACAGCCATTGAGAGTGCAAC

- 190 -

AGACCAGAACCAAAAAATGGTGGAAAATACTGTGTAGGACGTAGAATGAAATTAAAGTCC
TGCAACACGGAGCCATGTCATCAAGCAGAAGCGAGACTCCGAGATGAACAGTGTGCTCAC
TTTGACGGGAAGCATTTAACATCAACGGTCTGCTTCCCAATGTGCGCTGGTCCCTAAA
TACAGTGGATTCTGATGAAGGACCGGTGCAAGTTGTTCTGCAGAGTGGCAGGGAACACA
GCCTACTATCAGCTCGAGACAGAGTGTAGATGGAACCTCCTGTGGCCAGGACACAAAT
GATATCTGTGTCCAGGGCCTTGCAGGCAAGCTGGATGCGATCATGTTAAACTCAA
GCCCGGAGAGATAAAATGTGGGTTGTGGCGATAATTCTCATGCACAAACAGTGGCA
GGAACATTAAACAGTACATTATGGTTACAATACTGTGGTCCGAATTCCAGCTGGTGT
ACCAATATTGATGTGCGGCAGCACAGTTCTCAGGGAAACAGACGATGACAACACTTA
GCTTTATCAAGCAGTAAAGGTGAATTCTGCTAAATGGAAACTTGTGTACAATGGCC
AAAAGGGAAATTGCATTGGGAAATGCTGTGGTAGAGTACAGTGGTCCGAGACTGCC
GAAAGAATTAAACTAACAGATCGCATTGAGCAAGAACCTTGCTTCAGGTTGTGGTG
GGAAAGTTGTACAACCCCGATGTACGCTATTCTTCAATATTCCAATTGAAGATAAACCT
CAGCAGTTTACTGGAACAGTCATGGGCATGGCAAGCAGTGCAGTAAACCTGCCAAGGG
GAACGGAAACGAAAACCTGTTGCACCAGGGAAATCTGATCAGCTACTGTTCTGATCAA
AGATGCGATCGGCTGCCAGCCTGGACACATTACTGAACCCCTGTGGTACAGACTGTGAC
CTGAGGTGGCATGTTGCCAGCAGGAGTGAATGTAGTGCCTCAGTGTGGCTGGTTACCGC
ACATTGGACATCTACTGTGCCAAATATAGCAGGCTGGATGGAAAGACTGAGAAGGTTGAT
GATGGTTTGCAGCAGCCATCCAAACCAAGCAACCGTGAAGGAAATGCTCAGGGAAATGT
AACACGGGTGGCTGGCGCTATTCTGCCTGGACTGAATGTTCAAAAGCTGTGACGGTGGG
ACCCAGAGGAGAAGGGCTATTGTGTCATAACCGAAATGATGTTACTGGATGACAGCAA
TGCACACATCAAGAGAAAGTTACCAATTCAAGGGCTGTGAGTCCCTGTCCACAGTGG
AAATCTGGAGACTGGTCAGAGGTAAGATGGAGGGCTGTTATTCCCTAGGTATCTCT
TACATTCTAGTTCTGGTGCTCTATCTGTTAACGACAAACCCCTGTGCACCTTCTCCC
ACCTCTCCCTTCTCCCTTGCTCCCTGAGAAAACAACCTCCAGTTCTGCCTGCACCA
TGACTGTCGTACTGGATGTAACTAGTCTACCACTGACCTCAGGGCAGTTGGCTGGCT
AGATCACTCACTGTTAGCTGTGATTTGAAGTTGCAGTCCATCACCTTCCCT
CCTCTTGAGCCCTAGCTAAGTCACTGAAAGGAAATCATGGATTATTAATCATAAAGCT
ATACTAGCTCACATCTGAAGTCAACATGAAGTTCTACTTCCTGTCTTGAAATAAGA
GAATTAGACCCAGGGAGTGACCTCTGACTTACCCATCCAACGTGCCAAAAAAAAAAA
AAAAAAAAAAAAAA

>gi|9910122|gb|NP_064634.1|ADAMTS9 1072aa linear a disintegrin and metalloproteinase with thrombospondin motifs-9 preproprotein [Homo sapiens].

MQFVSWATLLTLVRDLAEMGSPAAAAAVRKDRHLPRQVKLLETLGELYEVSPIRVNALG
EPFPNVHKRTRRSINSATDPWPFASSSSSTSSQAHYRLSAFGQQFLFNLTANAGFI
APLFTVTLLGTPGVNQTKFYSEEEAELKHCFYKGYVNTNSEHTAVISLCGMLGTFRSHD
GDYFIEPLQSMDEQEDEEEQNKPFIYRRSAPQREPSTGRHACDTSEHKNRHSKDKKTR
ARKWGERINLAGDVAALNSGLATEAFAFSAYGNKTDNTREKRTHRRRTKRFLSYPRFVEVLVV
ADNRMVSYHGENLQHYILTLMSIVASIYKDPSIGNLINIVNLIVIHNEDGPSISFNA
QTLKNLCQWQHSKNSPGGIHHDTAVLLTRQDIICRAHDKCDTLGLAELGTICDPYRSCSI
SEDSGLSTAFTIAHELGHVFNMMPHDDNNKCKEEGVKSPQHVMAPTLNFYTNPMWWSKCSR
KYITEFLDTGYGECLLNEPESRPYPLPVQLPGILYNVNKQCELIFGPGSQVCYPMMQCRR
LWCNNVNGVHKGCRTOHTPWADGTECEPGKHCYGFVCPKEMDVPVTGSWGSWSFGTC
SRTCGGGIKTAIRECNRPEPKNGGKCVGRRMKFKSCNTEPCLKQKDRFRDEQCAHFDGK
HFNINGLLPNVRWPKYSGILMKDRCKLFCRVAGNTAYQLRDRVIDGTPCGQDTNDICV
QGLCRQAGCDHVLSKARRDKCGVCGD NSSCKTVAGTFNTVHYGYNTVVRIPAGATNID

- 191 -

VRQHSFSGETDDNYLALSSSKGEFLNGNFVVTMAKREIRIGNAVVEYSGSETAVERIN
STDRIEQELLLQVLSVGKLYNPDRVYSFNIPIEDKPQQFYWNSHGPWQACSKPCQGERKR
KLVCTRESDQLTVSDQRCDRLPQPGHITEPCGTDCLRWHVASRSECSAQCGLGRTLDI
YCAKYSRLDGKTEKVDDGFCSHPKPSNREKCSGECNTGGWRYSAWTECSKSCDGGTQRR
RAICVNTRNDVLDDSKCTHQEKVTIQCSEFPCPQWKSGDWSEVRWEGCYFP
>gi|17981697|gb|NM_001262.2|CDKN2C 2104bp mRNA Homo sapiens
cyclin-dependent kinase inhibitor 2C (p18, inhibits CDK4)
(CDKN2C), transcript variant 1, mRNA.

CTCTGCCGAGCCTCTAAAACCTCTGCCGTTAAAATGGGGGCGGGTTTTCAACTCAAAA
AGCGCTCAATTTTTCTTTCAAAAAAAAGCTGATGAGGTGCGAAAAAAAGGGAGAAGAAA
CCGGCACCCCTCTGAGAGGCAACAGAACAGCAGCAATTGTTCAGCAGAAAAAGCAGCAAG
GGAGGGAGTGAAGGAAAAAAAGCAAAAAAGGGGGCGACACGCAAGTGCCGTAGGGGTGAA
AGGAGCAGGGACCAGCGATCTAGGGGGGATCAGCTACAAAAGAAACTGTCAGTGGAGC
GGTGCAGCCAAGGAGGAAGCAGTGCTGCCAGGCTCTGCTCCAGGGCACAGCTGGCTGGCG
GCTGCCCTGTCCGCAGCAAAGGGCACAGGCCGGGACCGCGAGAGGTGGCAAAGTGGCA
CCGGCGCCGAGGCTGCTGAGCGCTCGCCAGACGGCACCGGACTGGCTGCCCGGAAC
TGCAGCGACTCTCCCTACTCAGAACCTGGCTACGTTCCCAGGACTCTCCCCATCTCCA
GAGGCCCAACAAACCGGAAAGGAAGGAAAGGACAGCGGCCAGCAGCTCAATGAGT
GCCTACAGCAGAAAGCCTGAACGAGCTCGTCGTAGGCGGAAGTTCCGGGGGCTGC
CCAGTGCAGCCGCAATGCTGCCCGAGCTGCCAGCAGTCCGGCTCCGTAGACGCTTT
CCGCATCACTCTCCCTCGGGCTGCCGGAGTCCCGGGACCTGGCGGGGCCGGCATGA
CGGGCTTCTCGGGGCCGCGCACGCCCGAGCCTCCGGAGACGCGCGCCGAGCCCG
CTCCACGGCCTCTGAGGCTGGCGGGCTGGCGCTGCCCTGGCGGGCTCCGGAGCT
TTCCTGAGCGGCAATTAGCCCACGGCTTGGCCGGACCGGACCAAAGGCTCTTCTGGAGAA
GCCAGAGCACTGGCAATGTTACGACCTGTAATTGAGGGCACCGAACGCTACTCC
CGTTGCCTTGGCGATCATCTTTAACCTCCGGAGCACGTCAGCATCCAGCCACCGCG
GCGCTCTCCAGCAGCGGAGGACCCAGGACTATCCCTCGGCCAGACGGATGGAAACCGA
GCCCTGGAGGACCTGCCCTGCAGTTCTGCCCTCACACGGCTCAAGTCACCACCGTGAA
CAAGGGACCTAAAGAATGGCCGAGCCTGGGGGAACGAGTTGGCGTCCGAGCTGCCAG
GGGGGACCTAGAGCAACTTACTAGTTGCAAAATAATGTAACAGTCATGCACAAA
TGGATTGGAAGGACTGCGCTGCAGTTATGAAACTTGGAAATCCGAGATTGCCAGGAG
ACTGCTACTTAGAGGTGCTAATCCGATTGAAAGACCGAACGTTGCTGTCAAGCTGA
TGATGCCGCCAGAGCAGGTTCTGGACACTTACAGACTTGGCTGGAGTTCAAGCTGA
TGTTAACATCGAGGATAATGAAGGGAACCTGCCCTGCACGGCTCAAGTCACCACCGTGAA
CCTCCGGGTGGAGTTCTGGTGAGTGTGGCAGGCTCTATGGGAGGAATGAGGTTTAGCCT
GATGCAGGCAAACGGGGCTGGGGAGCCACAAATCTCAATAACAGTGGGAGGGCTCCC
CCACGTTGCCCTACTTATCAATTAACTGAGTAGCTCTCTGACTTTAATGTCATTG
TTAAAATACAGTTCTGTCAATGTTAAGCAGCTAAATTCTGAAACTGCTACAAGTGA
ATCTTACAAACAGGCTTATGAATATAATTAAAGCAACATCTTTAACCTGCAAATCTGTT
CTAACATGTAATTGCAGATAACTTGACTTTCTTCTGAATATTATCTTCTGGCTT
TTCCCTGCTTCCCTTTGCCAATCTCAACACCCAAGTTGAAGACTTGTGTTAAAAT
GGTTGTCCTGATGCTTTGTCTAATTAAAACACTTCAAAACAGGAAAAAAAAAAAA
AAAA

>gi|4502751|gb|NP_001253.1|CDKN2C 168aa linear cyclin-
dependent kinase inhibitor 2C; cyclin-dependent kinase 6

- 192 -

inhibitor p18; cyclin-dependent kinase 4 inhibitor C; cyclin-dependent inhibitor; CDK6 inhibitor p18 [Homo sapiens].

MAEPWGNELASAAARGDLEQLTSLLQNNNVNAQNGFGRTELQVMKLGPEIARRLLLRLG
ANPDLKDRTGFAVIHDAARAGFLDTLQTLLEFQADVNIEDNEGNLPLHLAAKEGHLRVVE

FLVKHTASNVGHRNHKGDTACDLARLYGRNEVVSLMQANGAGGATNLQ

>gi|23510344|gb|NM_002037.3|FYN 2650bp mRNA Homo sapiens FYN oncogene related to SRC, FGR, YES (FYN), transcript variant 1, mRNA.

CCCGCGCTGGTGGCGGCGCGTCGTTGCAGTTGCCCATCTGTCAAGGAGCGGAGGCCGG
CGAGGAGGGGGCTGCCGCGGGCGAGGAGGGTCGCCGAGGCCGAAGGCCTTCGAGA
CCCGCCCGCCGCCGGCGAGACTAGAGGCCGAGGTGTTGCGAGCGGGCGCTCCTC
TCCCAGCCCGGGCGCCGCGCTTCTCCAGCGCACCGAGGACCGCCGGCGCACACAAA
GCCGCCGCCGCCGCCGCCCCGGCGCCAGGGAGGGATTGGCCCG
CCGGGCCGGGGACACCCCGGCCGCCGCCCTCGGTGCTCTCGGAAGGCCAACGGCTCCC
GGGCCCAGCCGGGACCCCCCGAGCCGCCTCGGCCGCCGGAGGAGGGCGGGAGAGGA
CCATGTGAGTGGGCTCCGGAGCCTCAGCGCCGCGCAGTTTTGAAGAACAGGATGCT
GATCTAACGTGGAAAAGACCACTGCCTGCCTCTGTTGAGAACATGTGGTGTATATA
AAGTTTGATCGTGGCGACATTTGGAATTAGATAATGGGCTGTGCAATGTAAG
GATAAAGAACAAACTGACGGAGGAGAGGGACGGCAGCCTGAACCAAGAGCTCTGGG
TACCGCTATGGCACAGACCCCACCCCTCAGCACTACCCAGCTCGGTGACCTCCATC
CCCAACTACAACAACCTCCACGCAGCCGGGGCCAAGGACTCACCGTCTTGGAGGTGTG
AACTCTCGTCTCATACGGGGACCTTGCCTACGAGAGGAGAACAGGAGTGACACTCTT
GTGGCCCTTATGACTATGAAGCACGGACAGAACAGATGACCTGAGTTTCAAAGGAGAA
AAATTCAAATATTGAACAGCTCGGAAGGGAGATTGGTGGGAAGGCCGCTCCTGACAAC
GGAGAGACAGGTTACATTCCCAGCAATTATGTTGCTCAGTTGACTCTATCCAGGAGAA
GAGTGGTACTTGGAAAACCTGGCCAAAAGATGCTGAGCGACAGCTATTGTCCTTGG
AACCCAAGAGGTACCTTCTATCCCGAGAGTGAAACCACCAAAGGTGCCTATTCACT
TCTATCCGTGATTGGGATGATATGAAAGGAGACCATGTCAAACATTATAAAATTGCAAA
CTTGACAATGGTGGATACTACATTACCACCCGGCCCAGTTGAAACACTTCAGCAGCTT
GTACAACATTACTCAGAGAGAGCTGCAGGTCTCTGCTGCCCTAGTAGTTCCCTGTCAC
AAAGGGATGCCAAGGCTTACCGATCTGTCTGCAAAACCAAAGATGTCGGAAATCCCT
CGAGAATCCCTGCAGTTGATCAAGAGACTGGGAAATGGCAGTTGGGAAGTATGGATG
GGTACCTGGAATGGAAACACAAAAGTAGCCATAAAGACTCTTAAACCAGGCACAATGTCC
CCCGAATCATTCTGAGGAAGCGCAGATCATGAAGAACGCTGAAGCACGACAAGCTGGTC
CAGCTCTATGCAGTGGTGTCTGAGGAGCCCACATCACATCGTACCGAGTATATGAACAAA
GGAAGTTACTGGATTCTAAAAGATGGAGAAGGAAGAGCTCTGAAATTACCAAATCTT
GTGGACATGGCAGCACAGGTGGCTGCAGGAATGGCTTACATCGAGCGCATGAATTATATC
CATAGAGATCTGCATCAGCAAACATTCTAGTGGGAATGGACTCATATGCAAGATTGCT
GACTTCGGATTGGCCGATTGATAGAACAAATGAGTACACAGCAAGACAAGGTGCAAAG
TTCCCCATCAAGTGGACGGCCCCGAGGCAGCCCTGTACGGGAGGTTACAATCAAGTCT
GACGTGTGGTCTTGGAAATCTTACTCACAGAGCTGGTCACCAAAGGAAGAGTGCCATAC
CCAGGCATGAACAACCGGGAGGTGCTGGAGCAGGTGGAGCGAGGCTACAGGATGCCCTGC
CCGCAGGACTGCCCATCTCTGCATGAGCTCATGATCCACTGCTGGAAAAAGGACCC
GAAGAACGCCCCACTTTGAGTACTGCAGAGCTCTGGAAAGACTACTTACCGCGACA
GAGCCCCAGTACCAACCTGGTGAACCTGTAAGGCCGGTCTGCGGAGAGAGGCCCTG
TCCCAGAGGCTGCCACCCCTCCCCATTAGCTTCAATTCCGTAGCCAGCTGCTCCCCA
GCAGCGGAACCGCCAGGATCAGATTGCATGTGACTCTGAAGCTGACGAACCTCCATGGC

CCTCATTAAATGACACTTGTCCCCAAATCCGAACCTCCTGTGAAGCATTGAGACAGAA
 CCTTGTATTCTCAGACTTGGAAAATGCATTGTATCGATGTTATGTAAGGCCAAC
 CTCTGTTAGTGTAAATAGTTACTCCAGTGCCAACAATCCTAGTGCTTCCTTTAAA
 AATGCAAATCCTATGTGATTTAATCTGTCTCACCTGATTCAACTAAAAAAAG
 TATTATTTCCAAAAGTGGCCTCTTGTCTAAAACAATAAAATTTTTCATGTTTAA
 CAAAAACCAA

>gi|4503823|gb|NP_002028.1|FYN 537aa linear protein-tyrosine kinase fyn isoform a; proto-oncogene tyrosine-protein kinase fyn; src/yes-related novel gene; src-like kinase; c-syn protooncogene; tyrosine kinase p59fyn(T); OKT3-induced calcium influx regulator [Homo sapiens].

MGCVQCKDKEATKLTEERDGSLNQSSGYRYGDPHQHYPFGVTSIPNYNNFHAGGQG
 LTVFGGVNSSHTGTLRTRGGTGVTLFVALYDYEARTEDDSLFSHKGEKFQILNSSEGDWW
 EARSLTTGETGYIPSINYAVPVDISIQAEWEYFGKLGKDAERQLLSFGNPRGTFLIRESET
 TKGAYSLSIRDWDDMKGDHVHYKIRKLDNGYYITTRAQFETLQQLVQHYSERAGLCC
 RLVPCHKGMPRLTDLSVKTKDVWEIPRESLQLIKRLNGQFGEVWMGTWNGNTKVAIKT
 LKPGTMSPESFLEEAQIMKKLHDKLVQLYAVVSEEPYIVTVEYNKGSLLDFLKDGEGR
 ALKLPNLVDMAAQVAAGMAYIERMNYIHRDLRSANILVGNGLICKIADFGLARLIEDNEY
 TARQGAKFPIKWTAPEAALYGRFTIKSDVWSFGILLTELVTKGRVPYPMNNREVLEQVE
 RGYRMPCPQDCPISLHELMIHCWKKDPEERPTFEYLQSFLEDYFTATEPQYQPGENL

>gi|15055546|gb|NM_000800.2|FGF1 2357bp mRNA Homo sapiens fibroblast growth factor 1 (acidic) (FGF1), transcript variant 1, mRNA.

GAGCCGGGCTACTCTGAGAAGAAGACACCAAGTGGATTCTGCTTCCCCTGGGACAGCACT
 GAGCGAGTGTGGAGAGAGGTACAGCCCTCGGCCTACAAGCTCTTAGTCTGAAAGCGCC
 ACAAGCAGCAGCTGCTGAGCCATGGCTGAAGGGAAATCACCACTTCACAGCCCTGACC
 GAGAAGTTAATCTGCCTCCAGGAATTACAAGAAGCCAAACTCCTCTACTGTAGCAAC
 GGGGCCACTCCTGAGGATCCTCCGGATGGCACAGTGGATGGACAGGGACAGGAGC
 GACCAGCACATTCACTGCTCAGTCAGTGCAGGAAAGCGTGGGGAGGTGTATAAGAGT
 ACCGAGACTGGCCAGTACTTGGCCATGGACACCGACGGCTTTATACGGCTCACAGACA
 CCAAATGAGGAATGTTGTTCTGGAAAGGCTGGAGGAGAACCAATTACAACACCTATATA
 TCCAAGAAGCATGCAGAGAAGAATTGGTTGTTGGCCTCAAGAAGAACATGGAGCTGCAA
 CGGGTCCTCGGACTCACTATGCCAGAAAGCAATCTGTTCTCCCTGCCAGTCT
 TCTGATTAAGAGATCTGTTCTGGGTGTTGACCACCTCAGAGAACGTTGAGGGTCCTC
 ACCTGGTTGACCCAAAATGTTCCCTGACCATTGGCTGCGCTAACCCCCCAGGCCACAGA
 GCCTGAATTGTAAGCAACTGCTTCTAAATGCCAGTTCACTTCTGAGAGCCTTT
 ACCCCTGCACAGTTAGAACAGAGGGACCAAATTGCTCTAGGAGTCAACTGGCTGGCCA
 GTCTGGGTCTGGTTGGATCTCCAATTGCCCTTGCAAGGCTGAGTCCCTCCATGCAAAA
 GTGGGGCTAAATGAAGTGTGTTAAGGGCTGGCTAAGTGGACATTAGTAACTGCACACT
 ATTTCCCTACTGAGTAAACCCATATCTGTGATTCCCCAAACATCTGGCATGGCTCCCT
 TTTGTCCTCTGCCCCCTGCAAATTAGCAAAGAAGCTTCACTGCCAGGTTAGGAAGGC
 AGCATTCCATGACCAGAAACAGGGACAAAGAAATCCCCCTTCAGAACAGAGGCATTAA
 AATGGAAAAGAGAGATTGGATTGGTGGTAACTTAGAAGGATGGCATCTCCATGTAGA
 ATAAATGAAGAAAGGGAGGCCCAGCCGAGGAAGGCAGAACATAATCCTGGGAGTCATTA
 CCACGCCTTGACCTCCCAAGGTTACTCAGCAGCAGAGAGGCCCTGGGTGACTTCAGGTGG
 AGAGCACTAGAAGTGGTTCTGATAACAAGCAAGGATATCAGAGCTGGAAATTCACTGT
 GGATCTGGGACTGAGTGTGGAGTGCAGAGAAAGGAAACTGGCTGAGGGATAC

CATAAAAAGAGGATGATTTCAGAAGGAGAAGGAAAAAGAAAGTAATGCCACACATTGTGC
TTGGCCCCCTGGTAAGCAGAGGCTTGGGGTCTAGCCCAGTGCTCTCCAACACTGAAGT
GCTTGAGATCATCTGGGACCTGGTTGAATGGAGATTCTGATTCACTGAGGTGGTGGGGC
AGAGTTCTGCAGTCCATCAGGTCCCCCCCAGGTGCAGGTGCTGACAATACTGCTGCCT
TACCCGCCATACATTAAGGAGCAGGGCCTGGCTCAAAGAGTTATTCAAATGAAGGTGG
TTCGACGCCCCAACCTCACCTGACCTCAACTAACCCCTAAAAATGCACACCTCATGAGT
CTACCTGAGCATTAGGCAGCACTGACAATAGTTATGCCTGTACTAAGGAGCATGATTT
AAGAGGCTTGGCCAATGCCATTCGAAGATATAACAAAACATACTTC
AAAAATGTTAAACCCCTACCAACAGCTTCCCAGGAGACCATTGTATTACCAATTACTT
GTATAAATACACTCCTGCTTAAACTTGACCCAGGTGGCTAGCAAATTAGAAACACCATT
CATCTCTAACATATGATACTGATGCCATGTAAGGCCCTTAATAAGTCATTGAATTTAC
TGTGAGACTGTATTTTAATTGCATTAAAAATATAGCTTGAAAGCAGTTAAACTGA
TTAGTATTAGGCAGCACTGAGAATGATAGTAATAGGATAACATGTATAAGCTACTCACTTAT
CTGATACTTATTTACCTATAAAATGAGATTTTGTCTGCTATTACAAATTTT
CTTTGAAAGTAGGAACCTTAAGCAATGGTAATTGTGAATAAAATTGATGAGAGTGT
AAAAAAAAAAAAAAA

>gi|4503697|gb|NP_000791.1|FGF1 155aa linear fibroblast growth factor 1 (acidic) isoform 1 precursor; heparin-binding growth factor 1 precursor; endothelial cell growth factor, alpha; endothelial cell growth factor, beta [Homo sapiens].

MAEGEITTFTALTEKFNLPPGNYKKPKLLYCSNGGHFLRILPDGTVDGRDRSDQHIQLQ
LSAESVGEVYIKSTETGQYLAMDTDGLLYGSQTPNEECLFLERLEENHYNTYISKKHAEK
NWFVGLKKNGSCKRGPRTHYQKAILFLPLPVSSD

>gi|27552761|gb|NM_002825.3|PTN 1029bp mRNA Homo sapiens pleiotrophin (heparin binding growth factor 8, neurite growth-promoting factor 1) (PTN), mRNA.

TCTGCTTTAATAAGCTTCCAATCAGCTCGAGTGCAAAGCGCTCTCCCTCCCTCGCC
CAGCCTCGTCTCTGGCCGCTCTCATCCCTCCATTCTCCATTCCCTTCCCGTT
CCCTCCCTGTCAGGGCGTAATTGAGTCAAAGGCAGGATCAGGTTCCCCGCTTCCAGTCC
AAAAATCCCGCCAAGAGAGCCCCAGAGCAGAGGAAAATCCAAGTGGAGAGAGGGGAAGA
AAGAGACCACTGAGTCATCCGTCCAGAAGGCCGGGAGAGCAGCAGCGGCCAACAGGAG
CTGCAGCGAGCCGGTACCTGGACTCAGCGGTAGCAACCTGCCCTTGCAACAAAGGCA
GACTGAGCGCCAGAGAGGACGTTCCAACTAAAAATGCAGGCTCAACAGTACCAGCAGC
AGCGTCGAAAATTGCACTGCCTTCTGGCATTCTTACACTGGCAGCTGTGGATA
CTGCTGAAGCAGGGAAAGAAAGAGAAACAGAAAAAAAGTGAAGAAGTCTGACTGTGGAG
AATGGCAGTGGAGTGTGTGCCCACCACTGGAGACTGTGGCTGGCACACGGGAGG
GCACTCGGACTGGAGCTGAGTGCAGCAAACCATGAAGACCCAGAGATGTAAGATCCCT
GCAACTGGAAGAAGCAATTGGCGGGAGTGCAAATACCACTGGCAGGCCCTGGGAGAAT
GTGACCTGAACACAGCCCTGAAGACCAAGAACACTGGAAAGTCTGAAGCAGGCCCTGCACAATG
CCGAATGCCAGAAGACTGTCAACCATCTCAAGCCCTGTGGCAAACAGCCAAGCCCAAAC
CTCAAGCAGAATCTAAGAAGAAGAAAAGGAAGGCAAGAAACAGGAGAAGATGCTGGATT
AAAAGATGTCACCTGTGGAACATAAAAAGGACATCAGCAAACAGGATCAGTTAACTATTG
CATTTATATGTACCGTAGGCTTGTATTCAAAAATTATCTATAGCTAAGTACACAATAAG
CAAAACAA

>gi|4506281|gb|NP_002816.1|PTN 168aa linear pleiotrophin (heparin binding growth factor 8, neurite growth-promoting

- 195 -

factor 1); heparin affin regulatory protein; heparin-binding growth-associated molecule [Homo sapiens].

MQAQQYQQQRRKFAAFLAFIFILAAVDTAEAGKKEKPEKKVKKSDCGEWQWSVCVPTSG
DCGLGTREGTRTGAECQTMKTQRCKIPCNWKKQFGAECKYQFQAWGECDLNALKTRTG
SLKRALHNAECQKTVTISKPCGKLTKPKPQAESKKKKEGKKQEKM**L**

>gi|4504008|gb|NM_000169.1|GLA 1350bp mRNA Homo sapiens
galactosidase, alpha (GLA), mRNA.

AGGTTAACCTAAAAGCCCAGGTTACCCGGCAAATTATGCTGTCCGGTCACCGTGACA
ATGCAGCTGAGGAACCCAGAACTACATCTGGGCTGCGCCTGCGCTTCGCTTCTGGCC
CTCGTTCTGGGACATCCCTGGGGCTAGAGCACTGGACAATGGATTGGCAAGGACGCC
ACCATGGGCTGGCTGCACTGGAGCGCTTCATGTGCAACCTGACTGCCAGGAAGAGCCA
GATTCCCTGCATCAGTGAGAAGCTCTCATGGAGATGGCAGAGCTCATGGTCTCAGAAGGC
TGGAAGGATGCAGGTTATGAGTACCTCTGCATTGATGACTGTTGGATGGCTCCCCAAAGA
GATTCAAGAAGGCAGACTTCAGGCAGACCCTCAGCGCTTCATGGGATTGCCAGCTA
GCTAATTATGTCACAGCAAAGGACTGAAGCTAGGGATTATGCAGATGTTGGAAATAAA
ACCTGCGCAGGCTCCCTGGAGTTGGATACTACGACATTGATGCCAGACCTTGCT
GA^TGGGGAGTAGATCTGCTAAAATTGATGGTTACTGTGACAGTTGGAAAATTG
GCAGATGGTTATAAGCACATGCTTGGCCCTGAATAGGACTGGCAGAACATTGTGTAC
TCCTGTGAGTGGCCTCTTATATGTCGGCCCTTCAAAAGCCAATTATACAGAAATCCGA
CA^GTACTGCAATCACTGGCAGAAATTGGCTGACATTGATGATTCTGGAAAAGTATAAAG
AGTATCTTGGACTGGACATCTTAA^CCCAGGAGAGAATTGTTGATGTTGCTGGACCAGGG
GGTTGGAATGACCCAGATATGTTAGTGATTGGCAACTTGGCCTCAGCTGGAAATCAGCAA
GTAACTCAGATGGCCCTCTGGCTATCATGGCTGCTCCTTATTGATGCTAATGACCTC
CGACACATCAGCCCTCAAGCCAAGCTCTCAGGATAAGGACGTAATTGCCATCAAT
CAGGACCCCTGGCAAGCAAGGGTACAGCTTAGACAGGGAGACAATTGAAAGTGTGG
GAACGACCTCTCAGGCTAGCCTGGCTGATGATAAAACGGCAGGAGATTGGT
GGACCTCGCTCTTATACCATCGCAGTGCTTCCCTGGTAAAGGAGTGGCTGTAATCCT
GCCTGCTTCATCACACAGCTCCTCCCTGTGAAAGGAAGCTAGGGTTATGAATGGACT
TCAAGGTTAAGAAGTCACATAAATCCCACAGGCAC^TGTTGCTCAGCTAGAAAATACA
ATGCAGATGTCAT^AAAAGACTTACTTAA

>gi|4504009|gb|NP_000160.1|GLA 429aa linear galactosidase,
alpha [Homo sapiens].

MQLRNPELHLGCALALRFLALVSDIPGARALDNGLARTPTMGWLHWERFMCNLDQEEP
DSCISEKLFM^EMAELMVSEGWDAGYEYL^IDDCW^MAPQR^DSEGR^LQADPQR^FPHG^IRQL
ANYVHSKGLKLGIYADVG^NKTCAGFP^GSFGYYDIDAQT^FADWGVDLLKFDG^CYCD^SLENL
ADGYKHMSLALNRTGRSIVY^SCEWPL^YWPFQ^KP^NY^TEIRQYCNHWRNFADIDDSWKS^IK
SILDWTSFNQERI^VDVAGPGGWNDP^DMLVIGNFGL^WNQ^QVTQ^MALWAIMA^APLFMSNDL
RHIS^PQAKALLQDKD^VIAINQDPLGKQGYQLRQGDNF^EVWERPLSGL^AWA^VAMINRQEIG
GPRSYTIAVASLGKVACNPAC^FITQ^LLPV^KR^LG^FYEWT^SRL^RSHINPTGT^VLLQ^LENT
MQMSLKDLL

>gi|1858778|gb|XM_091624.1|LOC162542 287bp mRNA Homo sapiens
similar to ADP-ribosylation factor 1 (LOC162542), mRNA.

GTCTGATTTTATGGTTGACAGTAATGACAGAGAGCAGATTGATGAGGCC^TGGGAAGTGC
TAACTTACTTGT^TAGAGGACGATGAGCTCAGAAATGCAGTTATTGGTATTGCCAATA
AACAAAGATCTCC^TAATACTATGAACGCGGAGAGATAACGGACAAGCTCGGCC^TCCATT
CCCTCCGCTACAGAAACTGGCACATT^CAGGCTACTTGTGCCACTACTGGACATGGCTT
ACGAAGG^CCTGA^ACTGGCTGCCAAC^CAGTCCAGAAC^CAGAAC^TGA

- 196 -

>gi|18587779|gb|XP_091624.1|LOC162542 91aa linear similar to ADP-ribosylation factor 1 [Homo sapiens].
MVDSDNDREQIDEAWEVLTYLLEDDELNAVLLVFANKQDLPNTMNAAEITDKLGLHSLRY
RNWHIQATCATTGHGLYEGLNWLANQFQNQN
>gi|4557572|gb|NM_000401.1|EXT2 3781bp mRNA Homo sapiens
exostoses (multiple) 2 (EXT2), mRNA.
CTGTCTGAGCATTCACTGCGGAGCCTGAGCGCGCTGCCTGGAAAACACTGCAGCGGT
GCTCGGACTCCTCCGTCCAGCAGGAGGCCGGCCCGCAGCTCCGCATGCGCAGTGC
CTCGGTGTCAAGACGGCCGGATCCCGTTACCGGCCCTCGCTCGCTCGCCAGCCCA
GAATCGGCCCTGGCAGTGGGGCTGGCGATTGGACCGATCCGACCTGGCGGAGGTGGC
CCCGGCCCGCGGCATGAGCCGGTACCAAGCTCGGGCCAGCGGGAGGCAGCCGTGGC
CGAGCCACAGGGATCTGATTCCAGGGGATGTCCTGCCTCAGGGTCCGGTGGTG
GCCTGCAGGATCCCTGCGGTGCCAGAACCGTGGACAGTGTCTTAATGTTATAGAG
CTACTCAGAGTTGCTGTTCTCCTTGAGATGCTTTGGAGTGTGAGGAAGAGGCTGTCTG
TGTCAATTGTGTGCGTCGGTCAAGTATAATATCCGGGTCTGCCCTCATCCAAAGAAT
GAAGACCAAGCACCGAATCTACTATATCACCCCTTCTCCATTGTCCTCCTGGCCTCAT
TGCCACTGGCATGTTCAAGTTGGCCCCATTCTATCGAGTCCTCAAATGACTGGAATGT
AGAGAACGGCAGCATCCGTATGTGCCGGTTGTTAGGCTGCCAGCCGACAGTCCCATCCC
AGAGCGGGGGGATCTCAGTGCAGAATGCACACGTGTTGATGTCTATCGCTGTGGCTT
CAACCCAAAGAACAAAATCAAGGTGTATATCTATGCTCTGAAAAAGTACGTGGATGACTT
TGGCGTCTGTCAAGAACACCATCTCCGGAGTATAATGAACGTGCTCATGGCCATCTC
AGACAGTGAATACACTGATGACATCAACCGGGCTGTCTGTTGTTCCCTCCATCGA
TGTGCTTAACCAGAACACACTGCGCATCAAGGAGACAGCACAAGCGATGGCCAGCTCTC
TAGGTGGGATCGAGGTACGAATCACCTGTTCAACATGTTGCTGGAGGTCCCCAAGA
TTATAACACAGCCCTGGATGTCCCCAGAGACAGGGCCCTGTTGGCTGGCGGCTTTTC
TACGTGGACTTACCGGCAAGGCTACGATGTCAGCATTCTGTCTATAGTCACGTGAGC
TGAGGTGGATCTTCCAGAGAAAGGACCAGGTCCACGGCAATACTTCCCTGTCTCATCTCA
GGTGGGCTCCATCCTGAGTACAGAGAGGACCTAGAACGCCCTCCAGGTCAAACATGGAGA
GTCAGTGTAGTACTCGATAATGCACCAACCTCTCAGAGGGTGTCTTCTGTCCGTAA
GGCCTGCCACAAGCACCAAGGTCTCGATTACCCACAGGTGCTACAGGAGGCTACTTCTG
TGTGGTTCTCGTGGAGCTGGCTGGCCAGGCAGTATTGAGCGATGTGTTACAAGCTGG
CTGTGTCCGGTTGTCATTGCAAGACTCCTATATTGCTCTGTTCTGAAGTTCTGACTG
GAAGAGAGCATCTGTGGTTGACAGAAGAAAAGATGTCAGATGTGTACAGTATTTGCA
GAGCATCCCCAAAGACAGATTGAAGAAATGCAGAGACAGGCCGGTGGTCTGGGAAGC
GTACTTCCAGTCAATTAAAGCATTGCCCTGGCCACCCCTGCAGATTATCAATGACCGGAT
CTATCCATATGCTGCCATCTCCTATGAAGAATGGAATGCCCTCTGCTGTGAAGTGGGG
CAGCGTGAGCAATCCACTCTTCCCTCCGCTGATCCCACCACAGTCTCAAGGGTCAACCGC
CATAGCCTCACCTACGACCGAGTAGAGAGGCCCTTCCGGTCATCACTGAAGTGTCAA
GGTGGCCAGTCTATCCAAACTACTTGTGCTGGAAATAATCAGAATAAAACCCCTCCAGA
AGATTCTCTCTGGCCAAAATCCGGGTTCCATTAAAGTGTGAGGACTGCTGAAAACAA
GTTAAGTAACCGTTCTTCCCTTATGATGAAATCGAGACAGAACAGCTGTTCTGGCCATTGA
TGATGATATCATTATGCTGACCTCTGACGAGCTGCAATTGGTTATGAGGTCTGGCGGG
ATTTCTGACCGGTTGGTGGTTACCCGGGCTGCTGCACTCTGGGACCATGAGATGAA
TAAGTGGAAAGTATGAGTCTGAGTGGACGAATGAAGTGTCCATGGTGCCTACTGGGCAGC
TTTTATCACAAGTATTTAATTACCTGTATACCTACAAATGCCCTGGGATATCAAGAA
CTGGGTAGATGCTCATATGAACTGTGAAGATATTGCCATGAACCTCCGGTGGCAACGT
CACGGGAAAAGCAGTTATCAAGGTAACCCACGAAAGAAATTCAAGTGTCTGAGTGCAC

- 197 -

AGCCATAGATGGGCTTCACTAGACCAAACACACATGGTGGAGAGGTAGAGTCATCAA
 CAAGTTGCTCAGTCTCGGGACCATGCCTCTCAAGGTGGTGAACACCGAGCTGACCC
 TGTCTGTACAAAGATGACTTCTGAGAAGCTGAAGAGCTTCCCCAACATTGGCAGCTT
 ATGAAACGTGTCATTGGTGGAGGTCAGATGTGAGGCTGGACAGAGGGAGAGAACAGG
 CCTCCCAGCACTCTGATGTCAGAGTAGTAGGTTAAGGGTGGAAAGGTTGACCTACTTGGAT
 CTTGGCATGCACCCACCTAACCCACTTCTCAAGAACAAAGAACCTAGAATGAATATCCAA
 GCACCTCGAGCTATGCAACCTCTGTTCTGTATTCTATGATCTGTGATGGTTCTTCT
 CGAAAATGCCAAGTGGAAAGACTTGTGGCATGCTCCAGATTAAATCCAGCTGAGGCTCC
 CTTTGTTCAGTTCCATGTAACAATCTGGAAGGAAACTTCACGGACAGGAAGACTGCTG
 GAGAAGAGAAGCGTGTAGGCCATTGAGGTCTGGGAATCATGTAAGGGTACCCAGAC
 CTCACTTTAGTTATTCATCAATGAGTTCTTCAGGGAACCAAACCCAGAACATTGGTG
 CAAAAGCCAACATCTGGTGGATTGATAATGCCTGGACCTGGAGTGCTGGCTT
 GTGCACAGGAAGAGCACCGCCGCTGAGTCAGGATCCTGTGAGTTCCATGAGCTATTCT
 CTTGGTTGGCTTTGATATGATTAATTTTATTCTTTACTGTGTCT
 TAAACACCAATTCTGATAGTCCAAGGAACCACCTTCTCCCTGATATATTTAACTCCG
 TCTTGGCCTGACAACAGTCTCTGCCATGTCGGAACACACGCCAGGAGGAATGTCT
 GATACCCCTCTGCATCAAGCGTAAGAAGGTCCAAATCATAACCATTAAAGAACAGATGA
 CTCAGAACCTCCAGAGGAATCTGTTGCTTCCTGATTAGATCCAGTCATGTTAAAG
 GTATTGTCAGAGAAAAACAGAGGGTCTGTACTAGCCATGCAAGGAGTCGCTCTAGCTGGT
 ACCCGTAAAGTTGTGGATTGTGACCCCCCATCCCAAGGGATGCCAAATTCTCTCA
 TTCTTTGGTATAAACTAACATTAGCCAGGGAGGTCTGGCTAACGTTAAATGCTGCTA
 TACAAC TGCTTGCAACAGTTGCTGGTATATTAAATCATTAAATTTCAGCATTACTAA
 T

>gi|4557573|gb|NP_000392.1|EXT2 718aa linear exostoses
 (multiple) 2 [Homo sapiens].

MCASVKYNIRGPALIPRMKTHRIYYITLFSIVLLGLIATGMQFWPHSIESSNDWNVEK
 RSIRDVPVVRLPADSPIPERGDLSCRMHTCFDVYRCFNPKNKIKVYIYALKKYVDDFGV
 SVSNTISREYNELLMAISDSDYTDIDNRACLFVPSIDVLNQNTLRIKETAQAMAQLSRW
 DRGTNHLLFNMLPGGPPDYNTALDVPRDRALLAGGGFSTWTYRQGYDVSIPVYSPLSAEV
 DLPEKGPGPRQYFLSSQVGLHPEYREDLEALQVKHGESVLDKCTNLSEGVLVRKRC
 HKHQVFDYPQVLQEATFCVVLRGARLGQAVLSDVLQAGCVPVIADSYILPFSEVLDWKR
 ASVVVPEEKMSDVSILQSIQRQIEEMQRQARWFWEAYFQSIIKAIALATLQIINDRIYP
 YAAISYEEWNDPPAVKWGSVSNPLFLPLIPPQSQGFTAIVLTYDRVESLFRVITEVSKVP
 SLSKLLVWNNQNKNPPEDSLWPKIRVPLKVRTAENKLSNRFFPYDEIETEAVLAIDDD
 IIMLTSDELQFGYEVWREFPDRLVGYPGRLHLWDHEMNWKYESEWTNEVSMVLTGAAFY
 HKYFNYLYTYKMPGDIKNWVDAHMNCEDIAMNFLVANVTGKAVIKVTPRKKFKCPECTAI
 DGLSLDQTHMVERSECINKFASVFGTPLKVVEHRADPVLYKDDFPEKLKSFPNIGSL
>gi|27597083|gb|NM_006838.2|METAP2 1908bp mRNA Homo sapiens
 methionyl aminopeptidase 2 (METAP2), mRNA.

CTCTGTCTCATTCCCTCGCGCTCTCGGGCAACATGGCGGGTGTGGAGGAGGTAGCGGC
 CTCCGGGAGCCACCTGAATGGCGACCTGGATCCAGACAGGGAAAGAACAGGAGCTGCCTC
 TACGGCTGAGGAAGCAGCAAAGAAAAAGACGAAAGAACAGAGCAAAAGGGCCTTC
 TGCAGCAGGGAAACAGGAACCTGATAAAAGAACATCAGGAGCCTCAGTGGATGAAGTAGCAAG
 ACAGTTGGAAAGATCAGCATTGGAAGATAAAAGAACAGAGATGAAGAGATGATGAAGATGGAGA
 TGGCGATGGAGATGGAGCACTGGAAAGAAGAAAAAGAAGAACAGAGAGGACC
 AAAAGTTCAAACAGACCCCTCCCTCAGTTCCAATATGTGACCTGTATCCTAATGGTGTATT
 TCCCAAAGGACAAGAACATGCGAATACCCACCCACACAAGATGGCGAACAGCTGCTGGAG

AACTACAAGTGAAGAAAAGAAAGCATTAGATCAGGCAAGTGAAGAGATTGGAATGATT
 TCGAGAAGCTGCAGAACATCGACAAGTTAGAAAATACGTAATGAGCTGGATCAAGCC
 TGGGATGACAATGATAGAAATCTGTGAAAAGTTGGAAGACTGTCACGCAAGTTAATAAA
 AGAGAATGGATTAAATGCAGGCCTGGCATTCTACTGGATGTTCTCAATAATTGTGC
 TGCCCATTATACTCCAATGCCGGTGACACAAACAGTATTACAGTATGATGACATCTGAA
 AATAGACTTGGAACACATATAAGTGGTAGGATTATTGACTGTGCTTTACTGTCACCTT
 TAATCCCAAATATGATACGTTATTAAAAGCTGTAAAAGATGCTACTAACACTGGAATAAA
 GTGTGCTGGAATTGATGTTCGTCTGTGATGTTGGTGAGGCCATCCAAGAAGTTATGGA
 GTCCTATGAAGTTGAAATAGATGGGAAGACATATCAAGTGAACCCAATCCGTAACTAAA
 TGGACATTCAATTGGGCAATATAGAATACATGCTGGAAAAACAGTGGCGATTGTGAAAGG
 AGGGGAGGCAACAAAGAATGGAGGAAGGAGAAGTATATGCAATTGAAACCTTGGTAGTAC
 AGGAAAAGGTGTTCATGATGATGGAATGTTACATTACATGAAACCTTGGTAGTAC
 TGGACATGTGCCAATAAGGCTTCAAGAACAAAACACTGTTAAATGTCATCAATGAAAA
 CTTTGGAACCCCTTGCCCTCTGCCGAGATGGCTGGATCGCTGGAGAAAGTAAACTT
 GATGGCTCTGAAGAATCTGTGACTTGGCATTGTAGATCCATATCCACCATTATGTGA
 CATTAAAGGATCATATACAGCGCAATTGAACATACCATCCTGCGTCCAACATGAA
 AGAAGTTGTCAGCAGAGGAGATGACTATTAAACTTAGTCCAAAGCCACCTCAACACCTT
 ATTTCTGAGCTTGGAAAACATGATACCAAGAATTAAATTGCCACATGTTGCTGTT
 TTAACAGTGGACCCATGTAATAACTTTATCCATGTTAAAAGAAGGAATTGGACAAAG
 GCAAACCGTCTAATGTAATTAAACCAACGAAAAGCTTCCGGACTTTAAATGCTAACTG
 TTTTCCCCCTCCTGTCTAGGAAAATGCTATAAGCTCAAATTAGTTAGGAATGACTTAT
 ACGTTTTGTTTGAATACCTAACGAGACTTTGGATATTATATTGCCATATTCTTAC
 TTGAATGCTTGAATGACTACATCCAGTCTGCACCTATACCCCTGGTGTGCTTTTA
 ACCTCCTGGAATCCATTCTAAAAAATAAGACATTTCAGATCTGA
 >gi|5803092|gb|NP_006829.1|METAP2 478aa linear methionyl
 aminopeptidase 2; methionine aminopeptidase; eIF-2-associated
 p67 [Homo sapiens].
 MAGVEEVAASGSHLNGDLDPPDREEGAASTAEAAKKRRKKKSKGPSAAGEQEPEPKES
 GASVDEVARQLERSALEDKERDEDEDGDDGATGKKKKKKKKRGPKVQTDPPSVPI
 CDLYPNGVFPKGQECEYPPTQDGRTAAWRRTSEEKKALDQASEEIWNDFREAAEAHRQVR
 KYVMSWIKPGMTMIEICEKLEDCSRKLICKENGLNAGLAFPTGCSLNCAAHYTPNAGDTT
 VLQYDDICKIDFGTHISGRIIDCAFTVTNPKYDTLLKAVKDANTNTGIKCAGIDVRLCDV
 GEAIQEVMESYEVEIDGKTYQVKPIRNLNGHSIGQYRIHAGKTVPIVKGEATRMEEGEV
 YAIETFGSTGKGVVHDDMECSHYMKNFVDVGHPIRLPRTKHLNVINENFGTLAFCRRWL
 DRLGESKYLMAKNLCDLGIVDPYPLCDIKGSYTAQFEHTILLRPTCKEVVSRGDDY
 >gi|10864040|gb|NM_021230.1|MLL3 12689bp mRNA Homo sapiens
 myeloid/lymphoid or mixed-lineage leukemia 3 (MLL3), mRNA.
 AAAATTCCCTAGTTGCTGGCTTGCACCTTTATGTTGCTGAGTTTACACATCTATTTCT
 TCAACTGCCATATCCTAGGGGGCTGGAGTACCCATAATACAGTGAGGCCACCTCCTGG
 TCCCCAGACATTCAAGGGCGGGAAATTAAACCCAGGCAGCTCCTGGCAGTGCC
 ATTGGAGCATCAAAGTGGGCCGTGGGTCTGGATTCCAGGAAAGCGGAGACCTCGAGGT
 GCAGGACTGTCGGGGCGAGGTGGCCGAGGCAGGTCAAAGCTGAAAAGTGAATCGGAGCT
 GTTGTATTACCTGGGGTGTCTACTGCAGATATTCAACATAAGGATGATGAAGAAAAC
 TCTATGCACAATACAGTTGTTGTTCTAGCAGTGACAAGTTCACTTGAATCAGGAT
 ATGTGTGTAGTTGGCAGTTGGCCAAGGAGCAGAAGGAAGATTACTGCCTGTTCT
 CAGTGTGGTCAGTGTACCATCCATACTGTGTCAGTATTAAGATCACTAAAGTGGTTCTT
 AGCAAAGGTTGGAGGTGTCTGAGTGCAGTGACTGTGAGGGCCTGTGGGAAGGCAACTGAC

CCAGGAAGACTCCTGCTGTGATGACTGTGACATAAGTTATCACACCTACTGCCTAGAC
CCTCCATTGCAGACAGTCCAAAGGGAGGCTGGAAAGTGCAAATGGTGTGTTGGTGCAGA
CACTGTGGAGCAACATCTGCAGGTCTAACAGATGTGAATGGCAGAACAAATTACACACAGTGC
GCTCCTTGTGCAAGCTTATCTTCCTGTCCAGTCTGCTATCGAAACTATAGAGAAGAAGAT
CTTATTCTGCAATGTAGACAATGTGATAGATGGATGCATGCAGTTGTAGCATGTGCAGACCC
ACTGAGGAAGAAGTGGAAAATGTAGCAGACATTGGTTTGATTGTAGCATGTGCAGACCC
TATATGCCTGCGTCTAACATGTGCCTCCTCAGACTGCTGTGAATCTTCATTGTAGCACAA
ATTGTACACAAAAGTAAAAGAGCTAGACCCACCCAAAGACTTATACCCAGGATGGTGTGT
TTGACTGAATCAGGGATGACTCAGTTACAGAGCCTCACAGTTACAGTTCCAAGAAGAAAA
CGGTCAAAACCAAAATTGAAATTGAAGATTATAAATCAGAATAGCGTGGCCGTCTTCAG
ACCCCTCCAGACATCCAATCAGAGCATTCAAGGGATGGTAAATGGATGATAGTCGAGAA
GGAGAACTTATGGATTGTGATGGAAAATCAGAATCTAGTCAGCGGGAAAGCTGTGGAT
GATGAAACTAAGGGAGTGGAGGAAGAACAGATGGTGTAAAAAGAGAAAAGGAAACCATA
AGACCAGGTATTGGTGGATTATGGTGGCAAAGAAGTCGAACGGCAAGGGAAAACC
AAAAGATCTGTGATCAGAAAAGATTCTCAGGCCTCTATTCCGAGCAGTTACCTGCAGA
GATGATGGCTGGAGTGAGCAGTTACAGATACTTAGTTGATGAATCTGTTCTGTTACT
GAAAGCACTGAAAAAATAAAGAAGAGATACCGAAAAGGAAAATAAGCTGAAGAAACT
TTCCCTGCCTATTTACAAGAAGCTTCTTGAAAAGATCTCTAGATACAAGTAGACAA
AGCAAGATAAGTTAGATAATCTGTAGAAGATGGAGCTCAGCTTTATATAAAACAAAC
ATGAACACAGGTTCTGGATCCTCCTTAGATCCACTACTTAGTTCATCCTCGGCTCCA
ACAAAATCTGGAACTCACGGCCTGCTGATGACCCATTAGCTGATATTCTGAAGTTTA
AACACAGATGATGACATTCTGAAATAATTTCAGATGATCTAGCAAAATCAGTTGATCAT
TCAGATATTGGTCCTGTCAGTGTGATGATCCTCCTTTGCCTCAGCCAAATGTCAATCAG
AGTCACGACCATTAAAGTGAAGAACAGCTAGATGGGATCCTCAGTCTGAACTAGACAAA
ATGGTCACAGATGGAGCAATTCTGAAAATTATAAAAATTCCAGAGCTGGCGGAAA
GATGTTGAAGACTTATTACAGCTGACTTAGTCCTGCGAACACTCAGCCAACCTCATTG
CCACAGCCTCCCCACCAACACAGCTGTTGCAATACACAATCAGGATGCTTTCACGG
ATGCCTCTCATGAATGGCCTTATTGGATCCAGTCCTCATCTCCCACATAATTCTTGCA
CCTGGAAGCGGACTGGGAACCTTCTGCAATTGCAACATCCTCTTATCCTGATGCCAGG
GATAAAAATTCAAGCCTTAATCCAATGGCAAGTGATCCTAACAACTCTGGACATCATCA
GCTCCCACGTGGAAGGAGAAAATGACACAATGTGAATGCCAGAGAACCGCTTAAG
TGGGAGAAAAGAGGAGGCTCTGGGTGAAATGGCAACTGTTGCCAGTTCTACACCAAT
ATTAATTCCCCAACTTAAAGGAAGAATTCCCTGATTGGACTACTAGAGTGAAGCAAATT
GCCAAATTGTGGAGAAAAGCAAGCTCACAAGAAAGAGCACCATATGTGCAAAAGCCAGA
GATAACAGAGCTGCTTACGCATTAATAAAGTACAGATGTCAAATGATTCCATGAAAAGG
CAGCAACAGCAAGATAGCATTGATCCAGCTCTCGTATTGATTGGAGCTTTAAAGAT
CCTTTAAAGCAAAGAGAATCAGAACATGAACAGGAATGGAAATTAGACAGCAAATGCGT
CAGAAAAGTAAGCAGCAAGCTAAATTGAAGCCACACAGAAACTTGAACAGGTAAAAAT
GAGCAGCAGCAGCAACAAACAGCAATTGGTCTCAGCATCTCTGGTGCAGTCTGGT
TCAGATACACCAAGTAGTGGGATACAGAGTCCTGACACCTCAGCCTGGCAATGGAAAT
ATGTCTCCCTGCACAGTCATTCCATAAAAGAACATGTTACAAAACAGCCACCCAGTACCCCT
ACGTCTACATCTCAGATGATGTGTTGTAAGCCACAAGCTCCACCTCCTCCAGCC
CCATCCCAGATTCCCATCCAGGATAGTCTTCTCAGGCTCAGACTCTCAGCCACCCCTCA
CCGCAAGTGTGTTCACCTGGGTCTAACACTCACGACCACCATCTCCAATGGATCCATAT
GCAAAAATGGTTGGTACCCCTCGACCAACCTCCTGTGGGCCATAGTTTCCAGAAGAAAT
TCTGCTGCACCAAGTGGAAAATGTACACCTTATCATCGGTATCTAGGCCCTCAAATG
AATGAGACAAACAGCAAATAGGCCATCCCTGTCAGAGATTATGTTCTTCCACGACA

AATAATGACCCCTATGCAAAACCTCCAGACACACCTAGGCCTGTGATGACAGATCAATT
CCCCAATCCTGGGCCTATCCGGTCTCCTGTAGTTTAGAACAAACTGCAAAAGGCCCT
ATAGCAGCTGGAACCAGTGATCACTTACTAAACCATCTCCTAGGGCAGATGTGTTCAA
AGACAAAGGATACTGACTCATATGCACGACCCCTGTTGACACCTGCACCTCTTGATAGT
GGTCCTGGACCTTTAAGACTCCAATGCAACCTCCTCCATCCTCTCAGGATCCTTATGG
TCAGTGTACAGGCATCAAGGCATTGTCTGTTGACCCCTATGAAAGGCCTGTTGACA
CCAAGACCTATAGATAATTTCTCATATCAGTCAAATGATCCATATAGTCAGCCTCCC
CTTACCCCACATCCAGCAGTGAATGAATCTTGTGCCCATCCTCAAGGGCTTTCCCAG
CCTGGAACCATATCAAGGCCAACATCTCAGGACCCATACTCCAACCCCCAGGAACCTCA
CGACCTGTTGAGATTCTTATTCCAATCTCAGGAACAGCTAGGTCCAATACAGACCC
TACTCTCAACCTCTGAACTCCCCGGCTACTACTGTTGACCCATATAGTCAGCAGCCC
CAAACCCAAGACCATCTACACAAACTGACTTGTACACCTGTAACAAATCAGAGG
CATTCTGATCCATATGCTCATCCTCTGGAACACCAAGACCTGGAATTCTGTCCTTAC
TCTCAGCCACCAGCAACACCAAGGCCAAGGATTCAGAGGGTTTACTAGGTCTCAATG
ACAAGACCACTCTCATGCCAAATCAGGATCCTTCTGCAAGCAGCACAAAACCGAGGA
CCAGCTTACCTGGCCGTTGGTAAGGCCACCTGATACATGTTCCAGACACCTAGGCC
CCTGGACCTGGTCTTCAGACACATTAGCCGTGTTCCCCATCTGCTGCCGTGATCCC
TATGATCAGTCTCCAATGACTCCAAGATCTCAGTCTGACTCTTGGAAACAAGTCAAAC
GCCCATGATGTTGCTGATCAGCCAAGGCCTGGATCAGAGGGAGCTTCTGTCATCTTCA
AACTCTCCAATGCACTCCAAGGCCAGCAGTTCTCTGGTCTCCAACTTCTGGACCT
GTGCCAACCTCAGGAGTAAC TGATAACAGAAACTGTAAATATGGCCAAGCAGATA
GAGAAATTGAGACAGCGGCAGAAGTTACGTGAAATCATTCTCAGCAGCAACAGCAGAA
AAGATTGCAAGGTCGACAGGAGAAGGGGTACAGGACTCACCCGAGTGCCTCATCCAGGG
CCTCTTCAACACTGGCAACCAGAGAAATGTTAACCAGGCTTCACCAGACCCCCACCTCCC
TATCCTGGGAACATTAGGTCTCCTGTTGCCCTCCTTAGGACCTAGATATGCTGTTTC
CCAAAAGATCAGCGTGGACCCCTATCCTCTGATGTTGCTAGTATGGGGATGAGACCTCAT
GGATTAGATTGGATTCCAGGAGGTAGTCATGGTACCATGCCAGTCAAGAGCGCTTC
CTTGTGCCCTCAGCAAATACAGGGATCTGGAGTTCTCCACAGCTAAGAAGATCAGTA
TCTGTAGATATGCCTAGGCCTTAAATAACTCACAAATGAATAATCCAGTTGGACTTCCT
CAGCATTTCACCACAGAGCTGCGAGTTCAGCAGCACAAACTACTGGCCAAGCATA
ATTGAAC TGAGACATAGGGCTCCTGACGGAAGGCAACGGCTGCCCTTCACTGCTCCACCT
GGCAGCGTTGAGAGGCATCTCTAAATCTGAGACATGGAAACTTCATTCCCGGCCAGAC
TTTCCGGGCCCTAGACACACAGACCCATGCGACGACCTCCCCAGGGTCTACCTAATCAG
CTACCTGTGCACCCAGATTGGAACAAGTGCCACCATCTCAACAAAGAGCAAGGTCA
GTCATTCTCATCTTCTATGGTACGAGGACTCTGAACCATCCACTAGGTGGTGAATTTC
GAAGCTCCTTGTCAACATCTGTACCGTCTGAAACAAACGTCTGATAATTACAGATAACC
ACCCAGCCTCTGATGGTAGAGGAAAAACTGATTCTGATGACCCCTCTGTGAAGGAA
CTGGATGTTAAAGACCTGAGGGGGTTGAAGTCAGGACTTAGATGATGAAGATCTTGA
AACTTAAATTAGATAACAGAGGATGGCAAGGTAGTTGAATTGGATACTTTAGATAATTG
GAAACTAATGATCCAAACCTGGATGACCTCTTAAGGTCAAGGAGGTTGATATCATTGCA
TATACAGATCCAGAACCTGACATGGAGATAAGAAAAGCATGTTAATGAGGAACAGAC
CTTCCAATTGATGATAAGTTAGATAATCAGTGTATCTGTTGAACCAAAAAAGGAA
CAAGAAAACAAAACCTGGTTCTCTGATAAACATTCAACCCAGACAAAAATCCACTGTT
ACCAATGAGGTAACCGGAAGTACTGTCTCCAAATTCTAAGGTGGAAATCCAAATGTGAA
ACTGAAAAAAATGATGAGAATAAGATAATGTTGACACTCCTGCTCACAGGCTCTGCT
CACTCAGACCTAAATGATGGAGAAAAGACTTCTTGCATCCTGATCCAGATCTATT
GAGAAAAGAACCAATCGAGAAACTGCTGGCCCCAGTGCACATGTCATTCAAGGCATCCACT

CAACTACCTGCTCAAGATGTAATAAAGTCTTGCGATAACTGGATCAACTCCAGTTCTC
TCAAGTTACTTGCTAATGAGAAATCTGATAATTGAGACATTAGGCCATGGGGTCTCCA
CCACCACCAACTCTGCCGCCTCCCCATCCAATCATGTGTCAAGTTGCCTCCTTCATA
GCACCGCCTGCCGTGTTGGATAATGCCATGAATTCTAATGTGACAGTAGTCTCTAGG
GTAAACCATGTTTCTCAGGGTGTGCAGGTAAACCCAGGGCTATTCCAGGTCAATCA
ACAGTTAACACAGTCTGGGGACAGGAAAACCTGCAACTCAAACACTGGCCTCAAACAAGT
CAGTCTGGTACCAAGTAGCATGTCTGGACCCAAACAGCTAATGATTCTCAAACATTAGCA
CAGCAGAATAGAGAGAGGCCCTTCTAGAAGAACAGCCTCTACTTCTACAGGATCTT
TTGGATCAAGAAAGGCAAGAACAGCAGCAGCAAAGACAGATGCAAGCCATGATTGTCAG
CGATCAGAACCGTTCTCCCTAATATTGATTGATGCAATTACAGATCCTATAATGAAA
GCCAAAATGGTGGCCCTTAAAGGTATAAAATAAAGTGTGGCACAAAACAATCTGGGCATG
CCACCAATGGTGTGAGCAGGTTCCCTTATGGGCCAGGTGGTAACTGGAACACAGAAC
AGTGAAGGACAGAACCTGGACCACAGGCCATTCTCAGGATGGCAGTATAACACATCAG
ATTCTAGGCCTAATCCTCAAATTGGTCCAGGCTTGTCAATGATTCACAGCGTAAG
CAGTATGAAGAGTGGCTCCAGGAGACCCAAACAGCTGCTCAAATGCAAGCAGAAGTATCTT
GAAGAACAAATTGGTGTCAAGAAAATCTAAGAACGCCCTTCAGCTAAACAAACGTACT
GCCAAGAAAGCTGGCGTGAATTCCAGAGGAAGATGCAAGAACAACTCAAGCATGTTACT
GAACAGCAAAGCATGGTCAGAAACAGCTAGAACAGATTGCAAACAGAAAGAACAT
GCTGAATTGATTGAAGATTATCGGATCAAACAGCAGCAGCAATGTGCAATGGCCCCACCT
ACCATGATGCCAGTGTCCAGCCCCAGCCACCCCTAATTCCAGGTGCCACTCCACCCACC
ATGAGCCAACCCACCTTCCATGGGCCACAGCAGCTTCAAGCACCAGCAGCACACAACA
GTTATTCTGGCCATACTAGCCCTGTTAGAATGCCAGTTACCTGGATGGCAACCCAAC
AGTGCCTGCCACCTGCCCCCTAATCCTCTAGAATTGAGCCCCATTGCCAGTTA
CCAATAAAAATGTACACCAGCCCCAGGGACAGTCTCAAATGCAAATCCACAGAGTGG
CCACCACCTCGGGTAGAATTGATGACAACAATCCCTTAGTGAAAGTTCAAGAACGG
GAACGTAAGGAACGTTACGAGAACAGCAAGAGAGAACGGATCCAACATGCAGGAG
GTAGATAGACAAAGAGCTTGCAGCAGAGGATGGAAATGGAGCAGCATGGTATGGTGGC
TCTGAGATAAGTAGTAGTAGGACATCTGTGCCCAGATTCCCTCTACAGTCCGACTTA
CCTTGTGATTTATGCAACCTCTAGGACCCCTTCAGCAGTCTCCACAACACCAACAGCAA
ATGGGGCAGGTTTACAGCAGCAGAAATATAACAACAGGATCAATTAAATTCAACCTCCACC
CAAACTTCATGCAGACTAATGAGCGAAGGCAGGTAGGCCCTCCTCATTTGTTCTGAT
TCACCATCAATCCCTGTTGGAAGCCAAATTCTCTGTGAAGCAGGGACATGGAAAT
CTTCTGGGACCAGCTCCAGCAGTCCCCAGTGAGGCCTTACACCTGCTTACCA
GCAGCACCTCCAGTAGCTAATAGCAGTCTCCATGTGGCAAGATTCTACTATAACCCAT
GGACACAGTTATCGGGATCAACCCAACTGCTCATTCAAGTGTATTCTGATATAATCCA
GAGGAAAAAGGGAAAAGAAAAGAACACAAGAAAGAAAAGAGAGATGATGCAGAACATCC
ACCAAGGCTCCATCAACTCCCCATTCAAGATATAACTGCCAACCGACTCCAGGCATCTCA
GAAACTACCTCTACTCCTGCAGTGAGCACACCCAGTGAGCTTCTCAACAAGCCGACCAA
GAGTCGGTGGAACCGAGTCGGCCATCCACTCCAAATATGGCAGCAGGCCAGCTATGTACA
GAATTAGAGAACAAACTGCCAATAGTGTATTCTCACAAGCAACTCAAATCAACAGACG
TATGCAAATTCAAGAAGTAGACAAGCTCTCCATGGAAACCCCTGCCAAACAGAACAGAGATA
AAACTGGAAAAGGCTGAGACAGAGTCCTGCCAGGCCAGAGGAGCCTAAATTGGAGGAA
CAGAATGGTAGTAAGGTAGAAGGAAACGCTGTAGCCTGTCCTCAGCACAGAGT
CCTCCCCATTCTGCTGGGGCCCTGCTGCCAAAGGAGACTCAGGGAAATGAACATTCTGAAA
CACTTGTGAAAATAAAAGTCATCTCTTTGAATCAAAACCTGAGGGCAGTATT
TGTTCAAGAGATGACTGTACAAAGGATAATAACTAGTTGAGAAGCAGAACCCAGCTGAA
GGACTGCAAACCTTGGGGCTCAAATGCAAGGTGGTTTGGATGGCAACCAGTTGCCA

AAAACAGATGGAGGAAGTGAAACCAAGAAACAGCGAAGCAAACGGACTCAGAGGACGGGT
GAGAAAGCAGCACCTCGCTAAAGAAAAGGAAAAAGGACGAAGAGGAGAAACAAGCTATG
TACTCTAGCACTGACACGTTACCCACTTGAACACAGGTGAGGCAGCTCTCTGCTCCCT
CTAATGGAACCAATCATTGGAGTGAACTTGCACCTTCTTCCTATGGCAGTGGCCAA
TTAATAGTGGAAATCGACTCTAGGAACCTTGGCAGTGCTACCCCTGGAAGGGGTTCG
GACTACTATTCTCAGTTGATCTACAAGCAGAATAATTAAAGTAATCCTCCAACACCCCT
GCCTCTCTCCTCCTACACCACCTCCTATGGCTTGTCAGAAGATGGCCAATGGTTTGCA
ACAACGTGAAAGAACTTGCTGAAAAGCCGGAGTGTAGTGAGCCATGAAGTTACAAAAC
CTAGGACCTAACCACTTCAGCTGCCCTCAGACCCCAGGACGACTTGGCCGAGCT
CTTGCTCAGGGCCCCAAGACAGTTGATGTGCCAGCCTCCCTCCAACACCCACCTCATAAC
AATCAGGAAGAATTAAGGATACAGGATCACTGTGGTGTGAGATACTCCTGACAGTTT
GTTCCTCATCCTCCTGAGAGTGTGGTGGGTTAGAAGTGAGCAGGTATCCAGATCTG
TCATTGGTCAAGGAGGGAGCCTCCAGAACCGGTGCCGTCCCCCATCATTCCAATTCTCCT
AGCACTGCTGGAAAAGTTAGAATCAAGAAGGAATGACATCAAAACTGAGCCAGGCACT
TTATATTTGCGTCACCTTGGTCCTTCCCCAAATGGTCCCAGATCAGGTCTTATATCT
GTAGCAATTACTCTGCATCCTACAGCTGCTGAGAACATTAGCAGTGTGGCTGCATT
TCCGACCTTCTCACGTCCGAATCCCTAACAGCTATGAGGTTAGCAGTGCTCCAGATGTC
CCATCCATGGTTGGTCAGTAGCCACAGAACATCAACCCGGTTGGAGTATCGACAGCAT
TTACTCTCCGTGGGCCTCCGCCAGGATCTGCAAACCCCTCCAGATTAGTGAGCTCTTAC
CGGCTGAAGCAGCCTAATGTACCACTTCCCTAACAGCAATGGTCTTCTGGATAAAAG
GATTCTAGTCATGGTATTGAGAACAGCGCAGCACTCAGACCAACAGTGGTGTGTCATTGT
AAAGTGGTTATTCTGGAAAGTGGTGTGCCGAAATCTTCAAAGATCTGACCCTTTGAAC
AAGGATTCCCGAGAAAGCACCAAGAGGGTAGAGAAGAACATTGTCTCTGTAGTAATAAC
TGCTTATTCTTATTCAACTGCACAAGCGAAAAACTCAGAAAACAAGGAATCCATT
CCTTCATTGCCACAATCACCTATGAGAGAACAGCCTCCAAAGCATTCTCAGTACAGC
AACAAACATCTCCACTTGGATGTGCACTGTCCTCCCTCCAGAGAACGCTCTC
CCTGCCTCACCACCCATGCCCTCCCTGCTTTGAAGCAGCCAAGTCGAGGCCAAG
CCAGATGAGCTGAAGGTGACAGTCAGCTGAAGCCTCGGCTAAGAGCTGTCCATGGTGG
TTTGAAGATTGCAGGCCGCTCAATAAAAATGGAGAGGAATGAAATGGAAGAAGTGGAGC
ATTCAATTGAAATCCCTAAGGGGACATTAAACCCACCTGTGAGGATGAAATAGATGAA
TTTCTAAAGAAATTGGGCACCTCCCTAAACCTGATCCTGTGCCAAAGACTATCGGAAA
TGTGCTTGTCAAGAAGGTGATGGATTGACAGATGGACCAGCAAGGCTACTCAAC
CTTGACTTGGATCTGTGGGCCACTTGAACCTGCGCTCTGTGGTCCACGGAGGTCTATGAG
ACTCAGGGTGGTGCCTTAATAAAATGTGGAGCTAGCTCTGAGGGAGAGGCCCTACAAATGAAA
TGTGCTTGTCAAGACGGGTGCCACTAGTGGATGCCACAGATTGCACTGCATGCCAAC
ATTTATCACTCACTGCCATTAAAGCACATGCATGTTTTAAGGACAAAACATATG
CTTGCCCCATGCACAAACCAAGGGAATTGAGCAAGAACATTAGTTACTTGCAGTC
TTCAGGAGGGTCTATGTTAGCGTGTGAGGTGCGACAGATTGCTAGCATCGTCAACGA
GGAGAACGGGACCATACTTCCGCTGGGTAGCCTCATCTCCACACAATTGGTCAGCTG
CTTCCACAGCAGATGCAAGCATTCCATTCTCTAAAGCACTCTCCCTGTGGCTATGAA
GCCAGCCGGCTGTACTGGAGCACTCGCTATGCCAATAGGCCTGCCGTACCTGTGCTCC
ATTGAGGAGAAGGATGGCGCCAGTGTGTCATCAGGATTGTGGAACAAGGCCATGAA
GACCTGGTCTAAGTGACATCTCACCTAAAGGTGTCAGCTGGATAAGATTGGAGCCTGTG
GCATGTGTGAGAAAAAGTCTGAAATGCTCAGCTTCCAGCGTATTAAAAGGAGAG
GATCTGTTGGCCTGACCGTCTGCACTGGCACGCAAGCGGAAATCACTCCTCATGGAAC
GAGGCATGTGAAATTACCTCCGATACGGCCGAAATCCTCTCATGGAACCTCCT
GCCGTTAACCCACAGGTTGTGCCGTTGAAACCTAAAGTAGTGCCCATGTCAAGAGG

CCTCACACCTTAAACAGCACCAGCACCTCAAAGTCATTCAGAGCACAGTCACTGGAGAA
 CTGAACGCACTTATAGTAAACAGTTGTTCACTCCAAGTCATCGCAGTACCGGAAGATG
 AAAACTGAATGGAAATCCAATGTGTATCTGGCACGGCTCGGATTCAAGGGCTGGGCCTG
 TATGCTGCTCGAGACATTGAGAACACACCATGGTCATTGAGTACATCGGGACTATCATT
 CGAAACGAAGTAGCCAACAGGAAAGAGAAGCTTATGAGTCTCAGAACCGTGGTGTAC
 ATGTTCCGCATGGATAACGACCATGTGATTGACGCGACGCTCACAGGAGGGCCCGCAAGG
 TATATCAACCATTCTGTGACCTAATTGTGTGGCTGAAGTGGTACTTTGAGAGAGGA
 CACAAAATTATCATCAGCTCCAGTCGGAGAACATCCAGAAAGGAGAACAGAGCTCTGCTATGAC
 TATAAGTTGACTTGAAAGATGACCAGCACAAGATTCCGTGTCAGTCAGCGGGCGGCTGTCCCTA
 TGCCGGAAGTGGATGAACTGAAATGCATTCTTGCTAGCTCAGCGGGCGGCTGTCCCTA
 GGAAGAGGCGATTCAACACACCATTGGAAATTTCAGACAGAACAGAGATTTTGTGTTAA
 AGCAGCGCCAGGAGGAAGCTGACAGAACAGCAGCAGTCAGTGGCCGAGGTTAACCGGA
 ATCACAGAATGGTCCAGCACTTTGCTT

>gi|10864041|gb|NP_067053.1|MLL3 4025aa linear
 myeloid/lymphoid or mixed-lineage leukemia 3; ALR-like protein
 [Homo sapiens].

MHNTVVLFSSSDKFTLNQDMCVVCGSGQGAERLLACSQCGQCYHPYCVSIKITKVVL
 KGWRCLLECTVCEACGKATDPGRLLLDDCDISYHTYCLDPPLQTVPKGWKCWKWCWCRH
 CGATSAGLRCEWNNTQCAPCASLSSCPVCYRNREEDLILQCRQCDRWMHAVCQNLNT
 EEEVENVADIGFDSCMCRPYMPASNVPSSDCCESSLVAQIVTKVKELDPPKTYTQDGVCL
 TESGMTQLQSLTVTPRRKRSPKPLKLKIINQNSAVLQTPPDIQSEHSRDGEMDDSREG
 ELMDCDGKSESSPEREAVDDETGVVEGTGKVRKRKPYRPGIGGFMRQRSRTGQGKTK
 RSVIRKDSSGSISEQLPCRDDGWSEQLPDTLVDESVSVTESTEKIKKRYRKRNKLETF
 PAYLQEAFFGKDLLTSRQSKISLDNLSEDGAQLLYKTNMNTGFLDPSLDPLLSSSSAPT
 KSGTHGPADDPLADISEVLNTDDDIILGIISDDLAKSVDHSDIGPVTDDPSSLQPVNQOS
 SRPLSEEQLDGILSPELDKMVTGAILGKLYKIPELGGKDVEDLFTAVALSPANTQPTPLP
 QPPPPTQLLPIHNQDAFSRMPNGLIGSSPHLPHNSLPPGSGLGTFSIAIAQSSYPDARD
 KNSAFNPMASDPNNSWTSSAPTVEGENDTMSNAQRSTLKWEKEEALGEMATVAPVLYTNI
 NFPNLKEEFPDWTTRVKQIAKLWRKASSQERAPYVQKARDNRAALRINKVQMSNDSMKRQ
 QQQDSIDPSSRIDSELFKDPLKQRESEHEQEWKFROQMRQKSQQAKIEATQKLEQVKNE
 QQQQQQQQFGSQHLLVQSGSDTPSSGIQSPLTPQPGNGNMSPAQSFKELFTKQPPSTPT
 STSSDDVFVKPQAPPAPSRIPIQDLSLSQAOTSQPPSPQVFSPGSSNSRPPSPMDPYA
 KMVGTPRPPPVGHSFSRRNSAAPVENCTPLSSVSRLQMNNETTANRPSPVRDLCSSSTTN
 NDPYAKPPDTPRPVMTDQFPKSLGLSRSPVSEQTAKPIAAGTSDHFTKPSPRADVQRF
 QRI PDSYARPLLTAPLDGPGPFKTPMQPPPSSQDPYGSVSQASRRLSVDPYERPALTP
 RPIDNFSHNQSNDPYSQPPPLTPHPAVNESFAHPSRAFSQPGTISRPTSQDPYSQPPGTPR
 PVVDSYSQSSGTARSNTDPYSQPPGTPRPTTVDPYSQQPQTPRPSTQTDLFVTPTVNRH
 SDPYAHPPGTPRPGISVPYSQPPATPRPRISEGFRSSMTRPVLMPNQDPFLQAAQNRGP
 ALPGPLVRPPDTCSQTPRPPGPGLSDTFSRVSPSAARDPYDQSPMTPRSQSDSFGTQTA
 HDVADQPRPGSEGSFCASSNSPMHSQGQQFSGVSQLPGPVPTSGVTDTQNTVNMQAQADTE
 KLRQRQKLREIILQQQQQKTIAGRQEKGSDSPAVENTPQHFSPQSLPVQQHNILGQAYI
 PGNIRSPVAPPLGPRYAVFPKDQRGPYPPDVASMGMRPHGFRFGFPGGSHGTMPQSERFL
 VPPQQIQGSGVSPQLRRSVSDMPRPLNNNSQMNNPVGLPQHFSPQSLPVQQHNILGQAYI
 ELRHRAPDGRQRLPFSAPPGSVVEASNLRHGNFIPRPDFPGPRHTDPMRRPPQGLPNQL
 PVHPDLEQVPPSQEQGHSHVSSSMVMRTLHNPLGEFSEAPLSTSVPSETTSNDLQITT
 QPSDGLEEKLDSDPSVKELDVKLEGVEVKDLDDELENLNLDTEDGVVELTLDNLE

- 204 -

TNDPNLDDILLRSGEFDIIAYTDPEDMGDKKSMFNEELDLPIDDKLDNQCVSVEPKKKEO
 ENKTLVLSDKHSPQKKSTVTNEVKTEVLSPNSKVESKCETEKNDENKDNDTPCSQASAH
 SDLNDEKTSLHPCDPDLFEKRTNRETAGPSANVIQASTQLPAQDVINSCTGSPVLS
 SLLANEKSDNSDIRPSGSPPPPTLPPASPSNHVSSLPPFIAPPGRVLDNAMNSNVTVSRV
 NHVFSQGVQVNPGЛИPGQSTVNHSGLTGKPATQTGPQTSQSGTSSMSGPQQLMIQTLAQ
 QNRERPLLLEEQPLLQDLDQERQEQQQQRQMAMIRQRSEPFPNIDFDAITDPIMKA
 KMVALKGINKVMAQNNLGMPMVMMSRFPMQVVTGTQNSEGQNLGPQAIQDGSIITHQI
 SRPNPPNFGPGFVNDSQRKQYEEWLQETQQLLQMQQKYLEEQIGAHRKSKKALSAKQRTA
 KKAGREFPEEDAEQLKHVTEQQSMVQKQLEQIRKQQKEHAELIEDYRIKQQQCAMA
 MMPSVQPQPLIIPGATPPTMSQPTFPMPVPPQQLQHQHQTIVISGHTSPVRMPSLPGWQPN
 APAHLPLNPPRIQPIAQLPIKTCTAPGTVSNANPQSGPPPVEFDDNNPFSESFQERE
 RKERLREQQERQRIQLMQEVDRQRALQORMEMEQHGMVGSEISSRTSVSQIPFYSSDLP
 CDFMQPLGPLQQSPQHQHQQMVGVLQQQNIQQGSINSPSTQTFMQTNERRQVGPPSFVPDS
 PSIPIVGSPNFSSVKQGHGNLSGTSFQQSPVPRPSFTPALPAAPPVANSSLPCGQDSTITHG
 HSYPGSTQSLIQLYSDIIPEEKGKKRTRKKRDDDAESTKAPSTPHSDITAPPTPGISE
 TTSTPAVSTPSelpQQADQESVEPVGPSTPNMAAGQLCTELENKLPNSDFSQATPNQQT
 ANSEVDKLSMETPAKTEEIKLEKAETESCPGQEEPKLEEQNGSKVEGNAVACPVSSAQSP
 PHSAGAPAAKGDSGNELLKHLKNKSSSLNQKPEGSICSEDDCTKDNKLVEKQNPAEG
 LQTLGAQMGGFGCGNQLPKTDGGSETKKQRSKRTQRTGEKAAPRSKKRKKDEECKQAMY
 SSTDTFTHLKQVRQLSLLPLMEPIIGVNFAHFLPYGSGQFNSGNRLLGTFGSATLEGVSD
 YYSQLIYKQNNLSNPPTPPASLPPPTPPMACQKMANGFATTEELAGKAGVLVSHEVTKTL
 GPKPFQLPFRPQDDLLARALAQGPKTVDVPASLPTPPHNQEEELRIQDHCGDRDTPDSFV
 PSSSPESVVGVEVSRYPDLSLVKEEPPEPVPSPIIPILPSTAGKSSESRRNDIKTEPGTL
 YFASPFGPSPNGPRSGLISVAITLHTAAENISSVVAAFSDLHVRIPNSYEVSSAPDVP
 SMGLVSSHINPGLEYRQHLLRGPPPGSANPRLVSSYRLKQPNVPFFTSNGLSGYKD
 SSHGIAESAALRPQWCCHCKVVLGSGVRKSFKDLTLLNKDSRESTKRVEKDIVFCSSNC
 FILYSSTAQAKNSENKEIPS LPQSPMRETPSKAFHQYSNNISTLDVHCLPQLPEKASPP
 ASPIIAFPFAEAAQVEAKPDELKVTVKLKPRLLRAVHGGFEDCRPLNKKWRGMWKWKS
 HIVIPKGTFKPPCEDEIDEFLKKLGTSLKPDPVPKDYRKCCFCHEEGDGLTDGPARLLNL
 DLDLWVHLNCALWSTEVYETQAGALINVELALARGLQMKCVFCHKTGATSGCHRFRCTNI
 YHFTCAIKAQCMFFDKTMLCPMHKPQGIHEQELSYFAVFRRVYVQRDEVRQIASIVORG
 ERDHTFRVGSЛИHTIGQLLPQQMQAFHSPKALFPVGYEASRLYWSTRYANRRCRYLC
 EEKDGRPVFVIRIVEQGHEDLVLSDISPKGWWDKILEPVACVRKKSEMLQLFPAYLK
 GEDLFGLTVSAVARIAESLPGVEACENYTFYGRNPLMELPLAVNPTGCARSEPKMSAHVK
 RPTHTLNSTSTSFSQSTVTGELNAPYSQFVHSKSSQYRKMTEWKSNVYLARSRIQGLGLY
 AARDIEKHTMVIEYIGTIIRNEVANRKEKLYESQNRGVYMFRMDNDHVIDATLTGGPARY
 INHSCAPNCVAEVVTFERGHKIIISSSSRRIQKGEELCYDYKFDFEDDQHKIPCHCGAVNC
 RKWMN

>gi|21359851|gb|NM_000966.2|RARG 2663bp mRNA Homo sapiens
 retinoic acid receptor, gamma (RARG), mRNA.
 GGCACGAGGCAGTGGCAGGCCAGGCAGGGCGGGTACGGAGCCTCCAGGCTGGGCAGT
 GGGCATGGCAGGGCTGTGGCTGAAGACCTCGCCCCACTGCAGACTCCAGGGGACT
 CTCACACCGCAGCTGCCATGGCCACCAATAAGGAGCGACTCTTGCCTGGCTCCAGGG
 GGCCTGGATCTGGCTACCCAGGGCAGGTTCCCCTCGCCTCCAGGGCACTCAGGG
 GGTCTCCGCCCTTCGAGATGCTGAGCCCTAGCTTCCGGGCTGGGCCAGCCTGACCTC
 CCAAGGAGATGGCCTCTGTCGGTGGAGACACAGAGCACCAGCTCAGAGGAGATGGTGC
 CCAGCTGCCCTGCCCTCCGCTCGGGTCTACAAGCCATGCTCGTGTGCAATG

- 205 -

ACAAGTCCTCTGGCTACCACTATGGGGTCAGCTCTTGTGAAGGCTGCAAGGGCTCTTC
GCCAAGCATCCAGAAGAACATGGTGTACACGTGTACCGCAGACAAAACGTATCATCA
ACAAGGTGACCAGGAATCGCTGCCAGTACTGCCGGCTACAGAAGTGCTCGAAGTGGCA
TGTCCAAGGAAGCTGTGCAGAACAGAAGAAAGAGGTGAAGGAAGAAG
GGTCACCTGACAGCTATGAGCTGAGCCCTCAGTTAGAAGAGCTCATCACCAAGGTAGCA
AAGCCCATTAGGAGACTTCCCCTCGCTGCCAGCTGGCAAGTATACCAACGAACTCCA
GTGCAGACCACCGCGTGCAGCTGGATCTGGGCTGTGGACAAGTCAGTGAGCTGGCTA
CCAAGTGCATCATCAAGATCGTGGAGTTGCCAAGCGTTGCCCTGGCTTACAGGGCTCA
GCATTGCTGACCAGATCACTCTGCTCAAAGCTGCCTGCCAGTATCCTGATGCTGCCTA
TCTGCACAAGGTACACCCAGAGCAGGACACCATGACCTCTCCGACGGGCTGACCCCTGA
ACCGGACCCAGATGCACAATGCCGGCTCAGGCCCCCTCACAGACCTGTCTTGCCCTTG
CTGGGCAGCTCCTGCCCTGGAGATGGATGACACCGAGACAGGGCTGCTCAGGCCATCT
GCCTCATCTGCGGAGACCGCATGGACCTGGAGGAGCCGAAAAAGTGGACAAGCTGCAGG
AGCCACTGCTGGAAGCCCTGAGGCTGTACGCCCGGCCGGCCAGGCCAGCCCTACA
TGTCCCAAGGATGCTAATGAAAATCACCGACCTCCGGGCATCAGCACTAAGGGAGCTG
AAAGGGCATTACTCTGAAGATGGAGATTCCAGGCCGATGCCCTCCCTTAATCCGAGAGA
TGCTGGAGAACCCCTGAAATGTTGAGGATGACTCCTCGCAGCCTGGTCCCCACCCCAATG
CCTCTAGCGAGGATGAGGTTCTGGGGCCAGGGCAAAGGGGCTGAAGTCCCCAGCCT
GACCAGGGCCCTGACCTCCCCGCTGTGGGGCTGGGCTCAGGCAGCAGACTGACCAT
CTCCCAGACGCCAGTGACTGGGGAGGACCTGCTCTGCCCTCTCCCCACCCCTCCAAT
GAGCTCTTGTGCAAGTTCTAGGGGTGCCTCTGTGTTCATCCCCCTCTGATC
TAACCGGCTCCCTGCCAGTCCCAGGGGCTGCCCTGCTCCCACCCAGGAGAGAGGGCAA
GGGATGAGCCTGGGTTGGACTCTAAATCTCAGCACTGCCCATGGGCTTAGACTTCC
CAGGGCAAGAGGAAGACCCCTGCCATTCCACAGCCCCCTCCTCTGCCAGGTGCTGGCTCT
CTGAGAGCAAACAGGAACACTAGAGACAAAAAGGGACAAAGGAGAAGGGCTGAGCCA
CCTCTTGCTCCTACCCCTGGTGCCTAATGCTGTGATGCACCTGCAGGGTGTGCTA
GCCCTGTGCCCGTCTGTGCCAGGTCAAGGTGGGGCAGGCTGGGCCCTGCATTCT
GGGGCAGGAACAGAGGGTGAAGGGACAGATAGATGCAGGTCCATTCTGCACCTCTGGC
TCGGGTGCAGAGTTCACCTGTGCCCTCCGTTATAAGTCCCTCCCCAGCCCTGTCTGATGT
GCCCTGGGCTCCCTGCCCTCCATCTCAGCCATTGGGGCAGGGACCCCTCTACACTACA
GAGGGGCCAGGGATCCCTCTCCCTAGTGCTTCCACCCCTTACTCCCCAGAGCAGCT
TGGCCAGGGAGGGGGATGCTGCTTAGCTGATCCCAGGCTGACCCAGAGGAAGCCTCTA
TTTATTTATTAGCTTTGTTACACCGTGGATTGACCCCTCCCTCCAGGGTCTGGGT
GGGGGAGCCCAGGGCCCTGTGACCCCTCTTCTTCCATCCCCAGTTGTATTAA
GCTGCCAAATAAGATTCCATTGGCTCCCTGTGTTCTTGGGGGTCAAGGTGCTGTCC
CCTCCCTCTGTTACATCTCCCTCACCCGCTGTATCGCATATTGCTGAGTTCTA
TTTTGCAAAATAAGTGTGGAAACTCAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAA

>gi|4506423|gb|NP_000957.1|RARG 454aa linear retinoic acid receptor, gamma; Retinoic acid receptor, gamma polypeptide [Homo sapiens].

MATNIKERLFAAGALPGSGYPGAGFPFAFPGLRGSPPFEMLSPSFRGLQPDLPKEMAS
LSVETQSTSSEEMVPSSPSPPPPRKYKPCFVCNDKSSGYHYGVSSCEGCKGFFRRSIQK
NMVYTCHRDKNCIINKVTRNRCQYCRQLKCFCVGMSKEAVRNDRNKKKEVKEEGSPDSY
ELSPQLEELITKVSKAHQETFPSLCQLGKYTNSSADHRVQLDLGLWDKFSELATKCIIK
IVEFAKRLPGFTGLSIADQITLLKAACLDILMLRICTTRYTPEQDTMTFS DGLTLNRTQMH
NAGFGPLTDLVFAFAGQLLPLEMDDTETGLLSAICLICGDRMDLEEPEKVDKLQEPLLEA

LRLYARRRRPSQPYMFPRMLMKITDLRGISTKGAERAITLKMEIPGPMPLIREMLENPE
MFEDDSSQPGPHPNASSDEVPGGQGKGGLKSPA
>gi|14670376|gb|NM_015318.1|P114-RHO-GEF 5113bp mRNA Homo sapiens Rho-specific guanine nucleotide exchange factor p114 (P114-RHO-GEF), mRNA.
GCTGGCGGAGAGCAGGGCTGCGGGCGATCGGGCCGAGCCTCGCTCAAGGAGCACCCCCGGG
GCACCCCTCTGTCCGATGGCAGCCGGCCCTGTCCAGGAATGTCGGTATGACGGTCTCTC
AGAAAGGGGTCCCCAGCCAACACCGAGCCGGCTGCCCTGGACGCAACTCGGACCAA
TCACAGGAGAGATGGATGAAGCCGATTCTCGGTTTTAAAATTTAAGCAGACAGCTGATG
ACTCTCTGTCCCTACATCTCAAACACCGAGTCCATTGGTAGAAGATCCCTACACCG
CCTCGCTGAGGAGTGAGATTGAGTCAGACGCCACGAGTTGAAGCTGAGTCCTGGAGCC
TCGCCGTGGATGCAGCCTACGCCAAGAACAGGGAGGTGGAAAAGACAAGATG
TCCTTATGAGCTGATGCAGACAGAGGTGCACCACGTGCGGACGCTCAAGATCATGCTGA
AGGTGTACTCCAGGGCCCTGCAGGAGGAGCTGCAGTTCAGCAGCAAGGCCATTGGCCGCC
TCTTCCCATGCGCTGACGACCTGCTGGAGACGCACGCCACTTCCTCGCTGGCTCAAGG
AGCGCCGCCAGGAGTCCCTGGAGGAGGGCAGTGACCGGAATTATGTCATCCAGAAAATCG
GCGACCTCCTGGTTCAGCAGTTTCAGGTGAAAATGGGAGAGAATGAAAGAAAAGTACG
GTGTGTTTGTAGTGGCCACAATGAAGCTGTTAGTCATTACAAGTTGCTGCTTCAGCAAA
ACAAGAAAATTCAAAACTGATCAAGAAAATTGGCAACTTCTCATCGTGCAGGCCCTTG
GCGTGCAGGAGTGACATTCTCTGGTTACACAACGCATAACCAAATACCCAGTGCTGGTGG
AGCGCATCATCCAGAACACCGAACGCTGGCACTGAGGACTATGAAGACCTGACCCAGGCC
TGAACCTCATCAAAGATATCATCTACAAGTGGACGCCAAGGTCACTGAGTGTGAGAAGG
GCCAGCGCCTCAGGGAGATCGCAGGGAAAGATGGACCTGAAGTCTCCAGCAAACCTCAAGA
ACGGGCTCACCTTCCGCAAGGAAGACATGCTTCAGCGGCACTCCACCTGGAGGGCATGC
TATGCTGGAAGACCACATCAGGGCGCTTGAAAGATATCCTGGCTATCCTGCTGACCGACG
TACTTTGCTGCTACAAGAAAAGATCAGAAATACGTCTTGCTTGTGGACTCAAAGC
CACCCGTATCTCGTTACAAAGCTCATCGTGAAGGAAGTGGCAACGAGGAGAAAGCGA
TGTTCAGCAGCAGGAAACGCCCTGGATGGCCCACATCCAAAGGGCTGGAGAGCTGCCCTGACG
AGGAGGAGGGGCCCTCAGCCTGCCGAAGAGGAAGGAAGGTGGTCAGGCCCGCCA
CGAGACTCCGGACTTCAAGAGGGTTGAGCATGAAAGACAGCTGATCGCACAGAGCC
TCCTAGAGAAACAGCAGATCTACCTGGAGATGGCCGAGATGGCGGCCCTCGAAGACCTGC
CCCAGCCCCAGGCCTATTCCGTGGAGGGACCCATCCGAGACCCCTGCAGGGGAGCTAA
TTCTCAAGTCGGCCATGAGCGAGATCGAGGGCATCCAGAGCCTGATCTGCAGGCCCTGG
GCAGCGCCAACGGCCAGGCCAGGCGGAAGACGGAGGCAGCTCCACAGGCCGCCAGGAGGCTG
AGACCTTCGCGGGCTACGACTGCACAAACAGCCCACCAAGAATGGCAGTTCAAGAAGA
AAGTCAGCAGCACTGACCCAGGCCAGACTGGCGAGGCCAAACAGCCGGACT
TGAAGCTCAGTGACAGTGCATTCTGGAGCTCTGAGGAATCGCCGAGGTGGAGG
CGCCAGGCACGGAATCCGATCCCCGCTGCCACCGCTGGAGTCGGAGCTGTCCAGC
GGATCCAGACACTGTCCCAGCTGCTCCTGAACCTTCAGGCGGTAACTGCCAACAGGACA
GCTATGTGGAGACGCAGCGGGCTGCCATCCAGGAGGGAGAACAGCAGTCCGGCTGCAGT
CGACGCGTGGAACCTGCTGGAGCAGGAGCGGCAACGCAACTTCGAGAACAGCAGCGGG
AGGAGCGCGCCGGCCCTGGAGAACAGCTGCAGAGCCAGCTGCCACGAGCAGCAGCGCTGG
AGCGCGAGCGCCAGTGGCAGCACCAGGAGCTGGAGCGGTGCCGCGCGCTGCAGGAGC
GCGAGGGCGAGGCCAGCTACCGCACGACCTGGAGCGGCTGCCGAGGCCAGCGTGCCTGG
GCCAGCGCCAGGCCCTACCGCACGACCTGGAGCGGCTGCCGAGGCCAGCGTGCCTGG
AGCGCGAGCGGGAGCGCCTGGAGCTGCGCCGCTCAAGAACAGCGCCAG

GCGCGCTGCCGCCGACACACTGGCCGAGGCCAGCCCCAAGCCACCCCTCCAGCTTCA
ACGGGGAAAGGCTGGAGGCCCTGGGTGAGCATGCTGCCATCCGGCTGGGCCAGAGT
ACGCAGAGGCCCGAGGTGGCTGCCGGACAGGCCAACCGAGAGCCGGCTGGCCA
AGAGCGATGTGCCCATCCAGCTCAGGCCACCAACCAGTCCAGAGGCAGGCCCG
TGCAGCAGCAGATCCCCACCAAGCTGGCGGCTCCACCAAGGGTGGCAAGGACAAGGGCG
GCAAGAGCAGGGCTCTCAGCGCTGGGAGAGCTCAGCGTCCTCGACCTGAAGCAGCAGC
TGCTGCTCAACAAGCTCATGGGAAAGATGAGAGCACCTCACCGAACCGCCCTCGCTGA
GCCCTATCCTGCCCGCAGACACAGTCCTGCCCCCCACCAAGACCTGGCTTCCC GCC
CGAGCCCACCGCCAGCTGACAGCCCTCCGAGGGCTCTCTCAAGGCCGGGACAG
CCCTCCTGCCCGGCCCCCAGCTCCCTGCCACTGCCGGCACACCACTCAGGCCAAGG
AGGACGCCAGCAAAGAAGACGTATCTTCTAAAGGGCCGTGACTCAAGGAAAGTTT
TTAATGAAAGTTGAGCCAGAACTAAACCAGGGAGCTGTCTGAAATCATAGCACCCATC
CGGGTGGCGGGAGATCAACTCCGAGCTGTTTCCGAGGCAGTGAGGAACGGTGC CGGC
TCTGCACGGAGCTGAGGACAGGACAGACCTGCTTGAGAAGGAGCTGCCGGCGGGGC
ACGCTCCACAGCCGCCGCGACAGTGGAGCCAAGGGTAGGGCACCAGGAGGGCCAGG
TGGCGTCGGCAGCATCTGCCCCAGAATCAGGCAGAATCCACTTCCAAACAGAGCCCA
CGCAGGTTCACCATGAACCTCAGGGTCAGGAATGAGCCAGGCACGGGCATGGGAGA
GAGGGCCACGGGCAGGGCCACTGAGGAACATCAGTGGCCCTCCAGTCAGGTTCTGT
GGTTGGAAGCCATCGTCAAAGGGCTGACCTTGGCCCTTTACTTGGCATTGGTT
TGAAACCAGCTGTTCCCAAACCTCTGCTTCCAAGGGCAACCGTTGCTGTTCACACGCTC
AGCCTGTCTGGGGAGCGGGCTCTAGCTCAGCCAGGGGGTACACACCCTGGGCACA
GGGTCCCTAGCCCCGGGAATGAGCTCCAGGGCTGGCGTCCCACCTCCAGGTGGGG
CTGGCACATCACAGACTGTCGAGAGGCCATGTCCAGGGCATGCAGAGGTTGCACCTAG
AGACGTTGCAGCAAGTGGACAAGTGGCCGCTGTGCGGGCCCCCTGCTTGAGCTGT
TGCAGCTTACGGTCCGTTCCCTGGAGGGTGGAGGAAGGAGGTGTTGGCAGCATCAAAG
GTGCTGGACATCCCAGGGGGTGAAGATCCATCCACGATCCAGCTCCGGTGGAGAAAGGG
CCCATGTCAAGCCTGTTCTGCACCCCAAGCATTGGTAGGACTGGGCCTGGCTGAT
CGTCCTTGTCCCAGTGGGTACATGTGAGCCCTGCCAGGGCCAAGTCCTCTCCGAA
CCCAGGGCTGGGAACTGCAGATCCCGGGGGATTCAAGCCCTCTCCACTGTGCTGGC
AGAGGCACTCCTGTGACGCTGAATAACAGTGAACAGGGACATTCCGCCACTGGGGACAG
ATGGGCACAAGGGAGGGAAACTCCATCAGGAAGTGTCCCCCTGGCAGAGGCGCCACT
GGGTGCTGTGGCTCAGGAGGGGGGGCAGGAGCTGGTGCCAACCGGGAACAGAGCC
CCACAGCCATACAGCCATTGGTACAAGGTCTGAGAACACAGTGGCCAGGTGTCCCCA
GGCTCCTGGCCCCCTCCGACGACCTCAACTCTGCCAGCCGGTCCCTGGCCATCGCAG
GCTGTCCGCCCCCGTCAGATCCCATGTGTCATGTTATCATCAGTGTGGTATT
TGTACTGAGTATCGGAGCACTTACAGAACGCTGACTGTACATTCTGTTCTGTGAAG
AGAACATTCCCAGACCCCTGGCACCCCTCTGAGCCGGCTGTGCCGGTCCAGCCCTCCGAG
ATGCCACAATTCTGGATGGGGAGAACGTTCAAGGAATTCTGCTGGCCACGCCGGTGG
GAACCCCGCTCCCCGCCATGTGGCAGAGGGTCTCAGTCGTCTAGGCATGGCGGCA
GCGCCGACGCCCTCCCTGCCAGTGCCCTCGGCCACTCTGGTGGAGGCCATT
TATTTGTAAAGTTGACAGTCGAGCAAATGTTCTATTTCGTGGGACTGCACACGTCTT
TGTCAAGTTGTGGTCATGATCTTAGTCACCTGCTAATTATTTACAATGATTACAACATT
TCCTCACTGCCGGATATTCTGACCCGTTAGAACCTAAGACCTGATTCTAGCAATAAA
CGTGTCCGAGATG
>gi|14670377|gb|NP_056133.1|P114-RHO-GEF 1015aa linear Rho-
specific guanine nucleotide exchange factor p114 [Homo
sapiens].

MTVSQKGGPQPTPS PAGPGTQLGP ITGEMDEADSAFLKFQQTADDSSLTS PNTES IFVE
DPYTASLRSEIESDGHEFEA EWSLAVDAAYAKKQKREVVKRQDVLYELMQTEVHHVRTL
KIMLK VY SRALQEELQFSSKAIGRLFPCADDLLETHSHFLARLKERRQESLEEGSDRNYV
IQKIGDLLVQQFSGENGERMKEKYGVFCSGHNEAVSHYKLLLQQNKKFQNLIKKIGNFSI
VRRLGVQECILLVTQRITKYPVLVERI IQNTEAGTEDYEDLTQALNLIKDI ISQVDAKVS
ECEKGQRLREIAGKMDLKSSSKLNGLTFRKEDMLQRLHLEGMLCWKTSGRLKDILAI
LLTDVLLLQEKDQKYVFASVDSKPV ISLQKLIVREVANEKAMFLISASLQGPEMYEI
YTSSKEDRNAWMAHIQRAVESCPDEEEGPFSLPEEERKVVEARATRLRDFQERLSMKDQL
IAQSLLEKQQIYLEMAEMGGLEDLPQPRGLFRGGDPSETLQGELILKSAMSEIEGIQSII
CRR LGSANGQAEDGGSSTGPPRRAETFAGYDCTNSPTKNGSFKKKVSSTDPRPRDW RGPP
NSPDLKLSDSDIPGSSEESPQVVEAPGTESDPRLPTVLESELVQRIQTLSQLLNLQAVI
AHQDSYVETQRAAIQEREKQFRLQSTRGNLLEQERQRNFKEQREERAALEKLQLSQLRHE
QQRWERERQWQHQELE RAGARLQEREGEARQLRERLEQERAELERQRQAYQHDLERLREA
QRAVERERERLELLRRLKKQNTAPGALPPDTLAEAQPPSHPPSFN GEGLEGPRV SMLPSG
VGPEYAERPEVAR RDSAPTESRLAKSDVPIQLLSATNQFQRQAAVQQQIPTKLA ASTKGG
KDKGGKSRGSQRWESSASF D LKQQLLNKLMGKDESTSRNRRSLSPILPGRHSP APPDP
GFPAPS PPPADSPSEGFSLKAGGTALLPGPPAPSPLPATPLSAKEDASKEDVIFF
>gi|23238259|gb|NM_005198.3|CHKL 1595bp mRNA Homo sapiens
choline kinase-like (CHKL), transcript variant 1, mRNA.
CCCGGGCCGGGGCACGGAGAGAGCCGAGCGCCGCAGCCGTGAGCCGAATAGAGCCGGAGA
GACCCGAGTATGACCGGAGAACGCCAGGCCGCCGGAAAGAGGAGCCGAGCGCGCCGGAA
GGAACCGAGCCCGTCCGAAGGGAGCGGAGCGCAGCAGCTGTGGCCCGAAGCGGGCTGTTGGCGGCTGCCTGGC
CGCCATGGCGGCCGAGGCAGACAGCTGTGGCCCGAAGCGGGCTGTTGGCGGCTGCCTGGC
CAAAGACGGCTTG CAGCAGTCTAAGTGC CCGAACACTACCCAAAACGGCGGCGC CT
GTCGCTGTCGCGTGACGCCAGCGCCAGCCTACCAATGGTGCCGGAGTACTTGGCG
GGCCTGGCGCCGAGTGCAGCCGAGGAGCTGAGGGTTACCCGTGAGCGGAGGCCTCAG
CAACCTGCTCTCCGCTGCTCGCTCCGGACCAC TGCCCAGCGTTGGCGAGGAGCCCCG
GGAGGTGCTCTCGCGCTGTACGGAGCCATCTGCAGGGCGTGGACTCCCTGGTCTAGA
AAGCGTGATGTTCGCCATACTTGC GGAGCGGT CGCTGGGGCC CAGCTGTACGGAGTCTT
CCCAGAGGGCCGGCTGGAACAGTACATCCCAAGT CGGCCATTGAAA ACTCAAGAGCTCG
AGAGCCAGTGTGTCAGCAGCCATTGCCACGAAGATGGCGCAATT CATGGCATGGAGAT
GCCTTCACCAAGGAGCCCCACTGGCTGTTGGACCATGGAGCGGTACCTAAA ACAGAT
CCAGGACCTGCC CCAACTGGCCTCCCTGAGATGAACCTGCTGGAGATGTACAGCCTGAA
GGATGAGATGGGCAACCTCAGGAAGTTACTAGAGTCTACCCATGCCAGTCGCTTCTG
CCACAATGACATCCAGGAAGGGAACATCTTGCTGCTCTCAGAGCCAGAAAATGCTGACAG
CCTCATGCTGGTGGACTTCCAGTACAGCAGTTATAACTATAGGGCTTGACATTGGAA
CCATTTTGAGTGGTTATGATTATACTCACGAGGAATGGCCTTCTACAAAGCAAG
GCCACAGACTACCCACTCAAGAACAGCAGTGCATT TATCGTCATTACCTGGCAGA
GGCAAAGAAAGGTGAGACCCCTCTCCAAGAGGGAGCAGAGAAA ACTGGAAGAAGATTTGCT
GGTAGAAGTCAGTCGGTATGCTCTGGCATCCATTCTCTGGGGTCTGTGGTCCATCCT
CCAGGCATCCATGTCCACCATA GAATTTGGTTACTTGGACTATGCCAGTCTGGTTCCA
GTTCTACTCCAGCAGAAGGGCAGCTGACCAGTGTCCACTCCTCATCCTGACTCCACCC
TCCCACTCCTGGATTCTCCTGGAGCCTCAGGGCAGGACCTTGGAGGGAGGAACAACG
AGCAGAAGGCCCTGGCGACTGGGCTGAGCCCCAAGTGA AACTGAGGTTCAGGAGACC GG
CCTGTTCTGAGTTGAGTAGGTCCCCATGGCTGGCAGGCCAGAGCCCCGTGCTGTAT
GTAACACAATAAACAGCTTCTCCCACCTG

- 209 -

>gi|6978649|gb|NP_005189.2|CHKL 395aa linear
choline/ethanolamine kinase isoform a [Homo sapiens].

MAAEATAVAGSGAVGGCLAKDGLQQSKCPDTTPKRRRASSLSRDAERRAYQWCREYLGGA
WRRVQPEELRVYPVSGGLSNLLFRCSLPDHLPVGEEPREVLLRLYGAILQGVDSLVL
VMFAILAERSLGPQLYGVFPEGRLQEYIPSRLKTQELREPVLSSAAIAKMAQFHGMEMP
FTKEPHWLFGTMERYLKQIQDLPPTGLPEMNLEMYSLKDEMGNLRKLESTPSPVVFCH
NDIQEGNILLSEPNADSLMLVDFEYSSSYNRGFDIGNHFCEWVYDYTHEEWPFYKARP
TDYPTQEQLHFIRHYLAEAKKGETLSQEEQRKLEEDLLVEVSRYALASHFFWGLWSILQ
ASMSTIEFGYLDYAQSRFQFYFQQKGQLTSVHSSS

>gi|4757755|gb|NM_004039.1|ANXA2 1362bp mRNA Homo sapiens
annexin A2 (ANXA2), mRNA.

CATTTGGGGACGCTCTCAGCTCTCGCGCACGGCCCAGCTTCCTCAAAATGTCTACTGT
TCACGAAATCCTGTGCAAGCTCAGCTTGGAGGGTATCACTCTACACCCCCAAGTGCATA
TGGGTCTGTCAAAGCTATACTAACCTTGATGCTGAGCGGGATGCTTGAAACATTGAAAC
AGCCATCAAGACCAAAGGTGGATGAGGTACCATTGCAACATTGACCAACCGCAG
CAATGCACAGAGACAGGATATTGCCCTCGCCTACCAAGAGAAGGACCAAAAGGAAC
ATCAGCACTGAAGTCAGCCTTATCTGCCACCTGGAGACGGTATTGGCCTATTGAA
GACACCTGCTCAGTATGACGCTTCTGAGCTAAAGCTTCCATGAAGGGCTGGAACCGA
CGAGGACTCTCATTGAGATCATCTGCTCCAGAACCAACCAGGAGCTGCAGGAAATTAA
CAGAGTCTACAAGGAAATGTACAAGACTGATCTGGAGAAGGACATTATTCGGACACATC
TGGTGACTCCGCAAGCTGATGGTTGCCCTGGCAAAGGGTAGAAGAGCAGAGGATGGCTC
TGTCAATTGATTATGAACTGATTGACCAAGATGCTCGGGATCTATGACGCTGGAGTGAA
GAGGAAAGGAACGTGATGTTCCAAGTGGATCAGCATCATGACCGAGCGCGTGCCTCCA
CCTCCAGAAAGTATTGATAGGTACAAGAGTTACAGCCCTATGACATGTTGAAAGCAT
CAGGAAAGAGGTTAAAGGAGACCTGAAAATGCTTCTGAACCTGGTTAGTCATTCA
GAACAAGCCCTGTATTTGCTGATGGCTGTATGACTCCATGAAGGGCAAGGGACGCG
AGATAAGGTCTGATCAGAACATGGTCTCCCGAGTGAAGTGGACATGTTGAAAGCAT
GTCTGAATTCAAGAGAAAGTACGGCAAGTCCCTGTACTATTATATCCAGCAAGACACTAA
GGGCGACTACCAGAAAGCGCTGCTGTACCTGTGGAGATGACTGAAGCCGACACCG
GCCTGAGCGTCCAGAAATGGTCTCACCATGCTTCCAGCTAACAGGTCTAGAAAACCAGC
TTGCGAATAACAGTCCCCGTGGCCATCCCTGTGAGGGTGACGTTAGCATTACCCCAACC
TCATTTAGTTGCCTAACGATTGCCCTGGCTCTGTCTAGTCTCTCCTGTAAGCCAAAG
AAATGAACATTCCAAGGAGTTGGAAGTGAAGTCTATGATGTGAAACACTTGCCTCCTGT
GTACTGTGTCATAAACAGATGAATAAACTGAATTGTACTTT

>gi|4757756|gb|NP_004030.1|ANXA2 339aa linear annexin A2;
annexin II; annexin II (lipocortin II); calpactin I, heavy
polypeptide (p36); lipocortin II; Annexin II (lipocortin I);
annexin II (lipocortin II; calpactin I, heavy polypeptide)
[Homo sapiens].

MSTVHEILCKLSLEGDHSTPPSAYGSVKAYTNFDAERDALNIETAIKTKGVDEVTIVNIL
TNRSNAQRQDIAFAYQRRTKELASALKSALSGHLETVILGLLKTPAQYDASELKASMKG
LGTDEDLSIEIICSRNTQELQEINRVYKEMYKTDLEKDIISDTSGDFRKLMVALAKGRRA
EDGSVIDYELIDQDARDLYDAGVKRKGDVPKWISIMTERSVPHLQKVFDYKSYSYDM
LESIRKEVKGDLENAFLNLVQCIQNKPPLYFADRLYDSMKGKTRDKVLIRIMVSREVD
LKRSEFKRKYGKSLYYYIQQDTKGDYQKALLYLCGGDD

- 210 -

>gi|27484939|gb|XM_084635.3|LOC143785 1982bp mRNA Homo sapiens similar to hypothetical protein XP_084635 [Homo sapiens] (LOC143785), mRNA.

TACTATCAGGGGGCAAGAGCCTTCTCCAGCTACACACTCCATCTCCCGGGAGCAAGG GGAAACTCCGAGAGGGAGGGCAACAGAGCCAGCATCTGCCAGGGCCCCGGAGGAGGGTT CCCGCTACGCCTGTGCCGGAGGAGTCCAGTCACCAGCGAGGGCGCAAGGGTGGGTG CATCCTGCCTGCAGCGGGCGCTACCCAGACGCTGGTGTGCAGAGCCACATGAAGCCT GCTGGGACTGGGGCCAGGGAGCAGCAAGCCAGCTGGGACTGAGGCCAGCTGTCTCA GGGAGACGCTGACTCGCAAAGACACTCCCTCCTGTGCCTGGTAAAAAGTCTCCTCCT GGGTCCCTGGCATCCTGAATATCCAGAATGGTGTCTGAAGTTCTGCATGAGTT TCTTCTGCCACCTGTGTCAAGGCTACTCGATGCCCTCTACCCAGAGATGTCCAATG GGACTCTGCACCACTACTCGTCCCCATGGGACTATGAGGAGAACGATGCCCGAGA AGTGCCAGCTGCTCTCAGGGTGAGTGACCACAGGCCTGCTCCAGGGGAGGGAGCC AGGTTGGCAGCCTGCTGAGCCTCACCTCGGGAGGAGTCACCGTGTGGGCCAGG TGGAGGATGCTGGCGCGTGGAGGGCATCAGCAAAAGCATCTCCTACGACCTAGACG GGGAAAGAGAGCTATGGCAAGTACCTCGGGAGTCCCACAGATGGGATGCCTACT CCAACTCGGACAAATCCCTCACTGAGCTGGAGAGCAAGTTCAAGCAGGCCAGGAACAGG ACAGCCGGCAGGAGAGCAGGCTAACGAGGACTTCTGGGATGCTGGCACACCAGGT CCCTGCTGAAGGAGACACTGGACATCTGTGGGCTCAGGGACAAATACGAGCTGCTGG CCCTCACCATTAGGAGCCATGGGACCCGACTAGGTGGCTGAAAAATGATTATCTAAAG TATAGGTGGAAGGATACAAATGCTAGAAAGAGGAATCAAATAGCCCCGTTGGAGG TGAGGAGACAGAAGATGGGCTACATTCCCCATACCTACTATTTTTATATCCGATT TGCACTTGAGAATACATCTAAGGTCTTCAAAAGAGAAAAATTGGACACTTGAGTG ACTTTGTTTTAGTTGTTGTACATTATTTATGTGATTGTTATGGAATTGTCACCT GGAAAGAACAAATTAAAGCAATGTCATTCTAGATGGGTTCTAATTCTGCAGAGACACC CGTTTCAGCCACATCTAAAAGAGCACAGTTATGTTGCGGAATTAAACTCCCCATCC TGCAGATTATGTGAAATACCCAAAGATAATAGTCAGCTCCTTCAGCCTCTAGCCT TCACCTCTGGCTCCAAAGCTATCCCAGTTGCCTGTTTCAAATGAGGTTCAAGGTGC TGCTTGATGCCCTGCCAACCCATGGAAGTTGTTCTTACTCTTCTCTTATTAT TAACCATGGTCTGAGAGTTGTTCTATGTAACAGTATTGCCACAAACTATAGGC AAAATCGTGGAGGAGATTCTGATGCCCTGTGGGTGTGTAAGTTAAAGTGGCC ACATTAAAGAACGCCAAGCTTGTAGTGGTTGCACAGTCACACTGATATGCTGATTGCT CTTCTCATTGTATGTCTATGCTTGTATCAGTGCTATGTAACAGTAAATTACAAAGAAATAGG TAGATTGTATGAACATACCCACAAATGCCTATGATTAGGTTACCAATGTATTCTTC ATTGGGTTTGCTCTGTCTGTTATTGAAACTTGTACTTCAGTAAAGTAGGGAA TCCTAATTCTAATAACTCCTTAGCTAAGTTTATTATTAGGCAATAACATGTTTCAT GT

>gi|18578340|gb|XP_084635.1|LOC143785 211aa linear similar to hypothetical protein XP_084635 [Homo sapiens].

MVFLKFFCMSFFCHLCQGYFDGPLYPEMSNGLHLHYFVPDGDYEENDDPPEKCQLLFRVSD HRRCSQGEQSQVGSSLTLREEFTVLGRQVEDAGRVLLEGISKSISYDLDGEESYGKYLR RESHQIGDAYNSDKSLTELESKFKQGQEQRQESRLNEDFLGMLVHTRSLLKETLDIS VGLRDKYELLALTIRSHGTRLGRLKNDYLKV

>gi|4507464|gb|NM_003239.1|TGFB3 2574bp mRNA Homo sapiens transforming growth factor, beta 3 (TGFB3), mRNA.

CCTGTTAGACACATGGACAACAATCCCAGCGCTACAAGGCACACAGTCCGCTTCTCGT CCTCAGGGTTGCCAGCGCTTCTGGAAGTCCTGAAGCTCTCGCAGTGCAGTGAGTTCATG

- 211 -

CACCTTCTGCCAAGCCTCAGTCTTGGATCTGGGAGGCCCTGGTTTCCTCCCT
CTTCTGCACGTCTGCTGGGTCTCTCCCTCCAGGCCTGCCGTCCCCCTGGCCTCTCT
TCCCAGCTCACACATGAAGATGCACTTGCAAAGGGCTCTGGTGGCTGGCCCTGCTGAA
CTTGCCACGGTCAGCCTCTCTGTCCACTTGACCACCTTGGACTTCGGCACATCAA
GAAGAAGAGGGTGGAAAGCCATTAGGGACAGATCTTGAGCAAGCTCAGGCTACCAGCCC
CCCTGAGCCAACGGTGATGACCCACGTCCCCTACAGGTCTGGCCCTTACAACAGCAC
CCGGGAGCTGCTGGAGGAGATGCATGGGAGAGGGAGGAAGGCTGCACCCAGGAAAACAC
CGAGTCGGAATACTATGCCAAAGAAATCCATAAATTGACATGATCCAGGGCTGGCGGA
GCACAAACGAACTGGCTGTCTGCCCTAAAGGAATTACCTCCAAGGTTTCCGCTTCATGT
GTCCTCAGTGGAGAAAAATAGAACCAACCTATTCCGAGCAGAATTCCGGGTCTGCGGGT
GCCCAACCCCAGCTCTAAGCGGAATGAGCAGAGGATCGAGCTTCCAGATCCTCGGCC
AGATGAGCACATTGCCAAACAGCGCTATATCGTGGCAAGAATCTGCCACACGGGCAC
TGCCGAGTGGCTGTCTTGATGTCAGTGCAGACTGTGCGTGAGTGGCTGTTGAGAAGAGA
GTCCAACCTAGGTCTAGAAATCAGCATTCACTGTCCATGTACACCTTCAGCCAATGG
AGATATCCTGGAAACATTACGAGGTGATGAAATCAAATTCAAAGGCCTGGACAATGA
GGATGACCATGGCCGTGGAGATCTGGGCGCCTCAAGAAGCAGAAGGATCACCAACCC
TCATCTAATCCTCATGATGATTCCCCACACCGCTCGACAACCCGGCCAGGGGGTCA
GAGGAAGAACGGGCTTGGACACCAATTACTGCTTCCGCAACTTGGAGGAGAACTGCTG
TGTGCGCCCCCTCTACATTGACTTCCGACAGGATCTGGCTGGAAGTGGTCCATGAACC
TAAGGGCTACTATGCCAACTTCTGCTCAGGCCCTGCCATACCTCCGCACTGCAGACAC
AACCCACAGCACGGTGCTGGACTGTACAACACTCTGAACCCCTGAAGCATCTGCCCTGCC
TTGCTGCGTGTCCCCAGGACCTGGAGCCCTGACCATCCTGTACTATGTTGGAGGACCC
CAAAGTGGAGCAGCTCTCAACATGGTGGTAAGTCTGTAAATGTAGCTGAGACCCAC
GTGCGACAGAGAGAGAGGGAGAGAGAACCAACTGCCTGACTGCCGCTCTGGGAAAC
ACACAAGCAACAAACCTCACTGAGAGGCCTGGAGGCCACAACCTTCGGCTCCGGCAAAT
GGCTGAGATGGAGGTTCTTGTGGAACATTCTTCTGCTGGCTCTGAGAATCACGGT
GGTAAAGAAAGTGTGGTTGGTAGAGGAAGGCTGAACTCTCAGAACACACAGACTT
CTGTGACGCAGACAGAGGGATGGGATAGAGGAAGGGATGTAAGTGAGATGTTGTG
TGGCAATGGGATTGGCTACCCCTAAAGGGAGAAGGAAGGGCAGAGAATGGCTGGGTCA
GGCCAGACTGGAAGACACTTCAGATCTGAGGTTGGATTGCTCATGCTGTACCACTCT
GCTCTAGGAATCTGGATTATGTTACAGGCAAGCATTGTTAAAGACAGGT
ACGAAGACAAAGTCCCAGAATTGTATCTCATACTGTCTGGGATTAAGGCAAATCTATT
CTTTGCAAACCTGCTCTACATCAATTACATCGTGGGTCACTACAGGGAGAAATCCA
GGTCATGCAGTCTGGCCATCAACTGTATTGGCCTTTGGATATGCTGAACGCAGAA
GAAAGGGTGGAAATCAACCCCTCCTGTCTGCCCTCTGGGCCCTCCTCACCTCTCCC
TCGATCATATTCCCTGGACACTGGTAGACGCCCTCCAGGTCAAGGATGCACATTG
TGGATTGTGGTCCATGCAGCCTGGGCATTATGGGTCTTCCCCACTCCCTCCAAG
ACCCTGTGTCATTGGTCTGGCAAGCAGGTGCTACAACATGTGAGGCATTGGGGA
AGCTGCACATGTGCCACACAGTGACTTGGCCCAGACGCATAGACTGAGGTATAAGACA
AGTATGAATATTACTCTCAAAATCTTGTATAAAATAATTTGGGGCATCTGGATG
ATTTCATCTCTGGAAATTGTTCTAGAACAGTAAAGCCTATTCTAAGGTG
>gi|4507465|gb|NP_003230.1|TGFB3 412aa linear transforming
growth factor, beta 3 [Homo sapiens].

MKMLQRALVVLALLNFATVSLSLSTCTLDFGHIKKRVEAIRQILSKRLTSPPEPT
VMTHVPYQVLALYNSTRELLEEMGEREEGCTQENTSEYYAKEIHKFDLMIQGLAEHNEL
AVCPKGITSKVFRFNVSSVEKNRTNLRAEFRLRVNPSSKRNEQRIELFQILRPDEHI
AKQRYIGGKLNPLTRGTAEWLSFDVTDTVREWLLRRESNLGLEISIHCPCHTFQPNGDILE

- 212 -

NIHEVMEIKFGVDNEDDHGRGDLGRLKKQKDHNPHLILMMI PPHRLDNPQGGQRKRR
ALDTNYCFRNLEENCCVRPLYIDFRQDLSWVHEPKGYYANFCSGPCPYLRSADTHST
VLGLYNTLNPEASASPCCVPQDLEPLTILYYVGRTPKVEQLSNMVVKSCCKS
>gi|21735553|gb|NM_002419.2|MAP3K11 3603bp mRNA Homo sapiens
mitogen-activated protein kinase kinase kinase 11 (MAP3K11),
mRNA.
ACAAAGGGAGGAGGAAGAAGGGAGCGGGGTGGAGCCGTGGGGCCAAAGGAGACGGGGC
CAGGAACAGGCAGTCTCGGCCCAACTGCGGACGCTCCCTCCACCCCTGCGAAAAAGAC
CCAACCGGAGTTGAGGCCTGCCCTGAAGGCCAACCTTACACTGGCGGGGCCGGAG
CCAGGCTCCCAGGACTGCTCCAGAACCGAGGGAGCTCGGGTCCCTCCAAGCTAGCCATG
GTGAGGCCTGGAGGCCGGAGGCCGGCCCCACCCCCCGGCCCTGACCACACTGCCCTGGGTGC
CCTCCAGAAGCCCAGATGCGGGGGCCGGAGACAAACACTCCTGGCTCCCCAGAGA
GGCGTGGGTCTGGGCTGAGGCCAGGGCCGGATGCCAGGTTCCGGACTAGGGCCTT
GGCAGCCAGCGGGGTGGGACACGGCACCCAGAGAAGGTCTCCACACATCCCAGCG
CCGGCTCCCGGCCATGGAGCCCTTGAAGAGCCTTCCTCAAGAGCCCTCTAGGGTCA
GAATGGCAGTGGCAGCGGGGTGGTGGGGCGGTGGAGGAGGCCCTGAGGGTCTCC
AAAGGCAGCGGGTTATGCCAACCCGGTGTGGACAGCCCTGTTGACTACGAGCCCAGTG
GCAGGATGAGCTGCCCTGAGGAAGGGTACCGTGTGGAGGTGCTGTCGGGACGCCAGC
CATTCAGGAGACGAGGGCTGGTGGCGGGCCAGGTGGTGGCCAGGTGGCATCTTCCC
GTCCAACATATGTGTCTGGGTGGTGGCCCGCCCCCTGCGAGGTGGCCAGCTTCCAGGA
GCTGGGCTGGAGGAGGTGATGGCATTGGAGGTTGGCAAGGTGTACAGGGCAGCTG
GCGAGGTGAGCTGGTGGCTGTGAAGGAGCTGCCAGGACCCGATGAGGACATCAGTGT
GACAGCCAGAGCGTTCGCCAGGCCGGCTTCGCCATGCTGGCACACCCCAACAT
CATTGCCCTCAAGGCTGTGTGCCCTGGAGGAGCCAAACCTGTGCCCTGGTATGGAGTATGC
AGCCGGTGGGCCCTCAGCCAGCTCTGGCCGGCGCGTGCCTCCCCATGTGCTGGT
CAACTGGGCTGTGCAGATTGCCGTGGATGCACTACCTGCACTGCCAGGGCCCTGGTGC
CGTCATCCACCGTACCTCAAGTCCAACAACATTGCTGCTGCAGCCATTGAGAGTGA
CGACATGGAGCACAAAGACCCCTGAAGATCACCAGCTTGGCCTGGCCGAGAGTGGCACAA
AACACACAAATGAGTGGCGGGCACCTACGCCCTGGATGGCTCCTGAGGTATCAAGG
CTCCACCTCTCAAGGGCAGTGACGTCTGGAGTTTGGGTGCTGCTGGGAACTGCT
GACCGGGGAGGTGCCATACCGTGGCATTGACTGCCCTGCTGTGGCCTATGGCTAGCTGT
TAACAAGCTCACACTGCCCATCCACCTGCCCGAGCCCTCGCACAGCTATGGC
CGACTGCTGGCGCAGGACCCCCACCGCAGGCCGACTTCGCCCTCCATCCTGCAGCAGTT
GGAGGCCTGGAGGCACAGGTCTACGGAAATGCCCGGGACTCCTCCATTCCATGCA
GGAAGGCTGGAAGCGCGAGATCCAGGGTCTTCGACAGAGCTGCCAGCAAGGAAAGGA
ACTACTGAGCCCGAGGAGGGAGCTGACCGCAGCGCGCGAGCAGCGTACAGGCCGA
GCAGCTGCCCGCGCAGCACCTGCTGGCCAGTGGAGCTAGAGGTGTTGAGCGCGA
GCTGACGCTGCTGCTGCAGCAGGTGGACCGCGAGCGACCGCACGTGCGCCGCCCG
GACATTCAAGCGCAGCAAGCTCCGGCGCGACGGCGAGCGTATCAGCATGCCACT
CGACTTCAAGCACCGCATCACCGTCAAGGCTCACCCGGCTTGACCGGAGGAGAAACGT
CTTCGAGGTGGGCCCTGGGATTGCCCACCTTCCCCGGTCCGAGCCATCCAGTTGGA
GCCTGCAGAGCCAGGCCAGGCATGGGGCCAGTCCCCCGACGTCTGGAGGACTCAAG
CAATGGAGAGCGCGAGCATGCTGGCTGGGCTGGGAGCTTCCCCCAAGCCTGGGAAAGC
CCAGAATGGGAGGAGAAGGTCCCGATGGACGAAGCCACATGGTACCTGGATTGAGATGA
CTCATCCCCCTAGGATCTCCTCCACACCCCAAGCACTCAATGGTAACCCCCCGCGGCC
TAGCCTGGAGGCCAGGGAGGCCAAGAGGCCCTGTCGGCGAGCGCGGTAGCAGCTCTGG
GACGCCCAAGCTGATCCAGCGGGCGCTGCTGCCGGCACCGCCCTGCTGCCCTCGCTGG

CCTTGGCCGCGACCTGCAGCCGCCGGGAGGCCAGGACGCGAGCGCGGGAGTCCCCGAC
 AACACCCCCCACGCCAACGCCGCCCTGCCGACCGAGCCGCCCTCCCCGCTCAT
 CTGCTTCGCTCAAGACGCCGACTCCCCGCCACTCCTGCACCCCTGTTGCTGGACCT
 GGGTATCCCTGTGGCCAGCGGTAGCCAAGAGCCCCGACGTGAGGAGGAGCCCCGCGG
 AGGCACTGTCTCACCCCCACCGGGACATCACGCTCTGCTCTGGCACCCAGGCACCCC
 ACGTTCACCAACCCCTGGGCCTCATCAGCCGACCTCGGCCCTGCCCTCGCAGCCGCAT
 TGATCCCCTGGAGCTTGTGTCAGCTGGCCACGGCCTCTCCCTGCCATCACCAAGCC
 TGCACCCCCGCCGAGCACCCCTGGACCTTGTCCCCGGACTCAGACCCCTCTGGACTCCCC
 ACCTGCCAACCCCTCCAGGGGGGCCAGGACTGCAGGGCACAGACCAAAGACATGGG
 TGCCCAGGCCCCGTGGGTGCCGGAAGCGGGCCTGAGTGGCCAGGCCACTCCCCGAG
 CTCCAGCTGCCTTAGGAGGAGTCACAGCATAACACTGAAACAGGAGCTGGTCAGCCTCTG
 CAGCTGCCTCAGTTCCCCAGGACCCCACCCCCCTTGGGGTCAGGAACACTACACTG
 CACAGGAAGCCTCACACTGAAAGGGGACCTGCGCCCCACATCTGAAACCTGTAGGTC
 CCCCCAGCTCACCTGCCCTACTGGGCCAACACTGTACCCAGCTGGTGGGAGGACCAG
 AGCCTGTCTCAGGAATTGCCCTGCTGGGTATGCAGGGAGGGAGGTGCAGGGAAG
 AGGGGCCGGCCTCAGCTGTCAACCAGCACTTGACCAAGTCCTGCTACTGCGGCCCTGC
 CCTAGGGCTTAGAGCATGGACCTCCTGCCCTGGGGTCATCTGGGCCAGGGCTCTGG
 ATGCCTTCCTGCTGCCAGCCAGGGTGGAGTCTTAGCCTGGGATCCAGTGAAGCCAG
 AAGCCAAATAAACTCAAAAGCTGTCTCCCCAAAAAAAAAAAAAAA
AAA

>gi|4505195|gb|NP_002410.1|MAP3K11 847aa linear mitogen-activated protein kinase kinase kinase 11; mixed lineage kinase 3; SH3 domain-containing proline-rich kinase; protein-tyrosine kinase PTK1 [Homo sapiens].

MEPLKSLFLKSPLGSWNGSGGGGGGGRPEGSPKAAGYANPVWTALFDYEPSGQDEL
 ALRKGDRVEVLSRDAASGDEGWAGQVGIFPSNYVSRGGPPCEVASFQELRLE
 EVIGIGGFVKYRGSWRGEVAVKAARQDPDEDISVTAESVRQEARNFAMLAHPNI IALK
 AVCLEEPNLCLVMYEYAGGPLSRALAGRVPVPHLVNWAVQIARGMHYLHCEALVPVIHR
 DLKSNNILLQPIESDDMEHKTLCITDFGLAREWHKTTQMSAAGTYAWMAPEVIKASTFS
 KGSDVWSFGVLLWELLTGEVPYRGIDCLAVAYGVAVNKLTLPIPSTCPEPFAQLMADCWA
 QDPHRRPDFASILQQLEALEAQVLREMPRDSFHSMQEGWKREIQGLFDELRAKEKELLSR
 EEEELTRAAREQRSQAEQLRRREHLLAQWELEVFERELTLLLQQVDRERPHVRRRGTFKR
 SKLRARDGGERISMPLDFKHRITVQASPGLRRRNVEVPGPDSPTFPRFRAIQLPAEP
 GQAWGRQSPPRRLEDSSNGERRACWAAGPSSPKPGEAQNGRRSRMDEATWYLDSDDSSL
 GSPSTPPALNGNPPRPSLEPEEPKRPVPAERGSSSGTPKLIQRALLRGTALLASLGLGRD
 LQPPGGPGRERGESPTTPPTPAPCPTEPPSPICFLKTPDSPPTPAPLLLGLIPV
 GQRSAKSPPREEEPRGGTVSPPPGTSRSAPGTPGTPRSPPPLGLISRPRPSPLRSRIDPWS
 FVSAGPRPSPLPSQPAPRAPWTLFPDSDFWDSPANPFQGGPQDCRAQTKDMGAQAP
 WVPEAGP

>gi|4505784|gb|NM_000294.1|PHKG2 1571bp mRNA Homo sapiens phosphorylase kinase, gamma 2 (testis) (PHKG2), mRNA.

AAGGTGAGCGACTGCAGGCAAACCCGGCGACAGCGCAGCTCGCGTCGACCCCTGGCTCCTC
 TGCCTGCCCTCAGGCCCGCCTCAGGATGACGCTGGACGTGGGGCCGGAGGAT
 GAGCTGCCGACTGGCCGCCAAAGAGTTTACCAAGAAGTACGACCCCTAACGGACGTC
 ATCGGCAGAGGAGTGAGCTCTGTTGCGCTGTTCATCGAGCTACTGCCACGAG
 TTTGCGGTGAAGATTATGGAAGTGACAGCTGAGCGGCTGAGCCTGAGCAGCTGGAGGAG
 GTGCGGGAAAGCCACACGGCGAGAGACACACATCCTGCCAGGTGCGCCGGCCACCCCCAC

ATCATCACCCCTCATCGATTCTACGAGTCTTAGCTTCATGTTCTGGTGTGACCTG
 ATCGGAAAGGGAGAGCTGTTGACTATCTCACAGAGAAGGTGGCCCTCTGAAAAGGAA
 ACCAGGTCCATCATCGGCTCTGCTGGAAGCAGTGAGCTTCTCCATGCCAACACATT
 GTGCATCGAGATCTGAAGCCCGAGAATATTCTCCTAGATGACAATATGCAGATCCGACTT
 TCAGATTCCGGTTCTCCTGCCACTTGGAACCTGGCGAGAAGCTTCAGAGAGTTGTGTTGGG
 ACCCCAGGGTATCTAGCGCCAGAGATCCTTAAATGCTCCATGGATGAAACCCACCCAGGC
 TATGGCAAGGAGGTCGACCTCTGGGCTGTGGGTGATCTTGTTCACACTCCTGGCTGGC
 TCGCCACCCTCTGGCACCGGGCAGATCCTGATGTTACGCATGATCATGGAGGGCCAG
 TACCAAGTTCAAGTCCCCGAGTGGGATGACCGTTCCAGCACTGTCAAAGACCTGATCTCC
 AGGCTGCTGCAGGTGGATCCTGAGGCACGCCGACAGCTGAGCAGGCCCTACAGCACCCC
 TTCTTGAGCGTTGTGAAGGCAGCCAACCTTGGAACCTCACCCCCGCCAGCGGTTCCGG
 GTGGCAGTGTGGACAGTGCTGGCTGGACGAGTGGCCTAAGCACCCATGTGTACGG
 CCACTGACCAAGAATGCACTGTTGAGGGACCCTATGCGCTGCGTCAGTGCACCCACTC
 ATCGACAACACTGTGCCCTCCGGCTCACGGCACTGGTAAAGAAAGGGAGCAGCAGAAC
 CGGGCGGCTCTCTTCAGCACCGGCCCCCTGGGCCTTTCCCATATGGGCCTGAAGAG
 GAGGGAGACTCTGCTGCTATAACTGAGGATGAGGCCGTGCTGTGCTGGCTAGGACCTC
 AACCCCAGGGATTCCCAGGAAGCAGAACTCTCCAGAAGAAGGGTTTGATCATTCCAGCT
 CCTCTGGCTCTGGCTCAGGCCACTAATGATCCTGCTACCCCTTGAAGACCAGCCCG
 GTACCTCTCTCCCCACTGGCCAGGACTCTGAGATCAGAGCTGGGTGGAAGGGAGCCATT
 CTGAACGCCACGCCCTGGCCGGTCAGTGCTGCATGCACTGCATATGAAATAATCTGCT
 ACACGCCAGGG
>gi|4505785|gb|NP_000285.1|PHKG2 406aa linear phosphorylase kinase, gamma 2 (testis); Phosphorylase kinase, gamma 2 (testis/liver) [Homo sapiens].
MTLDVGPEDELPDWAAKEFYQKYDPKDViGRGVSSVRRVCVRATGHEFAVKIMEVTAE
RLSPEQLEEVREATRRETHILRQVAGHPHiITLIDSYESSFMFVLFDLMRKGEFLFDYLT
EKVALSEKETRSIMRSILAEVSFLHANNiVHRDLKPENILLDDNMQiRLSDFGFSCHLEP
GEKLRELCPGYPGLAPEILKCSMDETHPGYKEVDLWACGViLFTLLAGSPPFWHRRQiL
MLRMiMEQYQFSSPEWDRSSTVKDLiSRLLQVDPEARLTAEQALQHPFFERCEGSQPW
NLTPRQRFRVAVWTViLAAGRVALSTHRVRPLTKNALLRDpYALRSVRHLIDNCAFRLYGH
WVKKGEQQNRAALFQHRPPGPFPiMGPEEEGDSAAITEDEAVLVLG
>gi|5453789|gb|NM_006169.1|NNMT 952bp mRNA Homo sapiens
nicotinamide N-methyltransferase (NNMT), mRNA.
TGAACCTGGATGCTGTTAGCCTGAGACTCAGGAAGACAACCTCTGCAGGGTCACTCCCT
GGCTTCTGGAGGAAAGAGAAGGAGGGCAGTGCTCCAGTGGTACAGAAGTGAGACATAATG
GAATCAGGCTTCAACCTCAAGGACACCTATCTAACGCATTAAACCTCGGGATTACCTA
GAAAAATATTACAAGTTGGTTAGGACTCTGCAGAAAGCCAGATTCTTAAGCACCTT
CTGAAAAATCTTCAAGATATTCTGCCTAGACGGTGTGAAGGGAGACCTGCTGATTGAC
ATCGGCTCTGGCCCCACTATCTATCAGCTCCTCTGCTGTGAATCCTTAAGGAGATC
GTCGTCACTGACTACTCAGACCAGAACCTGCAGGAGCTGGAGAAGTGGCTGAAGAAAGAG
CCAGAGGCCTTGACTGGTCCCCAGTGGTACCTATGTGTGATCTGAAGGGAACAGA
GTCAGGGTCCAGAGAAGGAGGAAGTTGAGACAGGCGGTCAAGCAGGTGCTGAAGTGT
GATGTGACTCAGAGCCAGCCACTGGGGCCGCTCCCTACCCCCGGCTGACTGCGTGCTC
AGCACACTGTGTGGATGCCGCTGCCAGACCTCCCCACCTACTGCAGGGCGCTCAGG
AACCTCGGCAGCCTACTGAAGCCAGGGGCTTCTGGTGTGATCATGGATGCGCTCAAGAGC
AGCTACTACATGATTGGTGAGCAGAAGTTCTCCAGCCTCCCCCTGGGCCGGAGGCAGTA
GAGGCTGCTGTGAAAGAGGCTGGTACACAAATCGAATGGTTGAGGTGATCTCGCAAAGT

- 215 -

TATTCTTCCACCATGGCCAACAACGAAGGACTTTCTCCCTGGTGGCGAGGAAGCTGAGC
 AGACCCCTGTGATGCCTGTGACCTCAATTAAAGCAATTCTTGTACCTGTCA
 >gi|5453790|gb|NP_006160.1|NNMT 264aa linear nicotinamide N-methyltransferase [Homo sapiens].
 MESGFTSKDTYLSHFNPRDYLEKYYKFGSRHSAESQILKHLKLNLFKIFCLDGVKGDLLI
 DIGSGPTIYQLLSACESFKEIVVTDYSQDNLQELEKWLKEPEAFDWSPVVTYVCDLEGN
 RVKGPEKEEKLRLQAVKQVLKCDVTQSPLGAAPLPPADCVLSTLCLDAACPDLPTYCRAL
 RNLGSLLKPGGFLVIMDALKSSYYMIGEQKFSSLPLGREAVEAAVKEAGYTIEWFEVISQ
 SYSSTMANNEGLFSLVARKLSRPL
 >gi|4507668|gb|NM_003295.1|TPT1 830bp mRNA Homo sapiens tumor protein, translationally-controlled 1 (TPT1), mRNA.
 CCCCCCCCAGCGCCGCTCCGGCTGCACCGCGCTCGCTCCGAGTTTCAGGCTCGTCTAAG
 CTAGCGCCGTCGTCTCCCTCAGTCGCCATCATGATTATCTACCAGGGACCTCATCAG
 CCACGATGAGATGTTCTCCGACATCTACAAGATCCGGGAGATCGCGGACGGGTTGTGCCT
 GGAGGGTGGAGGGAAAGATGGTCAGTAGGACAGAAGGTAACATTGATGACTCGCTCATTGG
 TGGAAATGCCTCCGCTGAAGGCCCGAGGGCGAAGGTACCGAAAGCACAGTAATCACTGG
 TGTGATATTGTATGAACCATCACCTGCAGGAAACAAGTTCACAAAAGAACGCCTACAA
 GAAGTACATCAAAGATTACATGAAATCAAAGGAAACTGAAGAACAGAGACCAGA
 AAGAGTAAAACCTTTATGACAGGGGCTGCAGAACAAATCAAGCACATCCTTGCTAATT
 CAAAAACTACCAGTTCTTATTGGTGAAGGACATGAATCCAGATGGCATGGTTGCTCTATT
 GGACTACCGTGAGGATGGTGTGACCCCATATATGATTTCCTTAAGGATGGTTAGAAAT
 GGAAAAATGTTAACAAATGTGGCAATTATTTGGATCTACACCTGTCTACATAACTGGC
 TTCTGCTTGTATCCACACACACCAGGACTAACAGAACATGGGACTGATGTCATCTTGA
 GCTCTTCATTATTGACTGTGATTATTGGAGTGGAGGCATTGTTAAGAAAAAC
 ATGTCATGTAGGTTGTCTAAAATAAAATGCATTTAAACTCATTGAGAG
 >gi|4507669|gb|NP_003286.1|TPT1 172aa linear tumor protein, translationally-controlled 1; fortilin; histamine-releasing factor [Homo sapiens].
 MIIYRDLISHDEMFS DIYKIREIADGLCLEVEGKMRTEGNIDDSLIGGNASAEGPEGE
 GTESTVITGVDIVMNHHQETSFTKEAYKKYIKDYMKSIKGKLEEQRPERVKPFMTGAAE
 QIKHILANFKNYQFIGENMNPDMVALLDYREDGVTPYMIFFKDGLEMEKC
 >gi|27477073|gb|NM_018725.2|IL17BR 2077bp mRNA Homo sapiens interleukin 17B receptor (IL17BR), transcript variant 1, mRNA.
 AGCGCAGCGTGCAGGGTGGCCTGGATCCCGCGCAGTGGCCCGCGATGTCGCTCGTCTGC
 TAAGCCTGGCCGCGCTGTGCAGGAGCGCCGTACCCCGAGAGGCCACCGTTCAATGGCT
 CTGAAACTGGGCCATCTCCAGAGTGGATGCTACAACATGATCTAACATCCCCGGAGACTTGA
 GGGACCTCCGAGTAGAACCTGTTACAACACTAGTGGTCAACAGGGACTATTCAATTGAA
 TGAATGTAAGCTGGGTACTCCGGGAGATGCCAGCATCCGCTTGTGAAGGCCACCAAGA
 TTTGTGTGACGGGCAAAGCAACTTCCAGTCTACAGCTGTGAGGTGCAATTACACAG
 AGGCCTTCCAGACTCAGACCAAGACCCCTCTGGTGTAAATGGACATTTCCTACATCGGCT
 TCCCTGTAGAGCTGAACACAGTCTATTCAATTGGGCCATAATATTCTAACATGCAAATA
 TGAATGAAAGATGGCCCTTCCATGTGTGAATTTCACCTCACCAAGGCTGCCTAGACCACA
 TAATGAAATATAAAAAAGTGTGTCAAGGCCGAAGCCTGTGGGATCCGAACATCACTG
 CTTGTAAGAAGAATGAGGAGACAGTAGAAGTGAACCTCACAAACCACTCCCCTGGAAACA
 GATACATGGCTTTATCCAACACAGCACTATCATGGGTTTCAGGTGTTGAGGCCAC
 ACCAGAAGAAACAAACGCGAGCTCAGTGGTGAATCCAGTGACTGGGATAGTGAAGGTG
 CTACGGTGCAGCTGACTCCATATTTCCTACTTGTGGCAGCGACTGCATCCGACATAAAG

GAACAGTTGTGCTCTGCCAACAAACAGGCCTCCCTTCCCTGGATAACAACAAAAGCA
 AGCCGGGAGGGCTGGCTGCCTCTCCTCCTGCTCTGCTGGTGCCACATGGGTGCTGG
 TGGCAGGGATCTATCTAATGTGGAGGCACGAAAGGATCAAGAAGACTTCCTTCTACCA
 CCACACTACTGCCCCCCATTAAAGGTTCTGGTTACCCATCTGAAATATGTTCCATC
 ACACAATTGTTACTCACTGAATTCTCAAACACCATTGCAGAAGTGAGGTACATCCTTG
 AAAAGTGGCAGAAAAAGAAAATAGCAGAGATGGGTCCAGTGCAGTGGCTGCCACTCAA
 AGAAGGCAGCAGACAAAGTCGTCTCCTTCCAATGACGTCAACAGTGTGTGCGATG
 GTACCTGTGGCAAGAGCGAGGGCAGTCCCAGTGAGAACTCTCAAGACCTTCCCCCTTG
 CCTTAACCTTTCTGCAGTGATCTAAGAAGCCAGATTCACTGACAAATACGTGGTGG
 TCTACTTAGAGAGATTGATAACAAAGACGATTACAATGCTCTCAGTGTCTGCCCAAGT
 ACCACCTCATGAAGGGATGCCACTGCTTCTGTGAGAACTCTCCATGTCAAGCAGCAGG
 TGTAGCAGGAAAAAGATCACAGCCTGCCACGATGGCTGCTCCTGTAGCCCACCC
 ATGAGAAGCAAGAGACCTAAAGGCTCCTATCCCACCAATTACAGGGAAAAACGTGTG
 ATGATCCTGAAGCTTACTATGCAGCCTACAAACAGCCTAGTAATTAAACATTTATAC
 CAATAAAATTTCAAATATTGCTAACTAATGTAGCATTAACACTAACGATTGGAAACTACAT
 TTACAACCTCAAAGCTGTTTATACATAGAAATCAATTACAGTTAATTGAAAACATATA
 ACCATTTGATAATGCAACAATAAAGCATCTCAGCCTAACATCTAGTCTCCATAGACC
 ATGCATTGCACTGTACCCAGAACTGTTAGCTAAATATCTATGTTAATTGAATACT
 AACTCTAAGAACCCCTCACTGATTCACTCAATAGCATCTTAAGTGAACACCTTCTATTA
 CATGAAAAAAATCATTGTTTAAGATAACAAAGTAGGGAATAAACAGCTGAACCCAC
 TTTAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

>gi|27477074|gb|NP_061195.2|IL17BR 502aa linear IL-17B
 receptor isoform 1 precursor; IL-17B receptor; interleukin 17
 receptor homolog 1; interleukin 17 receptor homolog; cytokine
 receptor CRL4 [Homo sapiens].

MSLVLLSLAALCRSAVPREPTVQCGSETGPSPEWMLQHDLIPGDLRDLRVEPVTTSVATG
 DYSILMNVSWVLRADASIRLLKATKICVTGKSNFQSYSVRCNYTEAFQTQTRPSGGKWT
 FSYIGFPVELNTVYFIGAHNI PNANMNEGDPSMSVNFTSPGCLDHIMKYKKKCVKAGSLW
 DPNI TACKNEETVEVNFTTPLGNRYMALIQHSTIIGFSQVFEPHQKKQTRASVVI PVT
 GDSEGATVQLTPYFPTCGSDCIRHKGTVVLCPQTGVFPPLDNNKSKPGGWLPLLLLSLLV
 ATWVLVAGIYLMWRHERIKKTSFSTTLLPPIKVLVVYPSEICFHHTICYFTEFLQNHCR
 SEVILEWKQKKKIAEMGPVQWLATQKKAADKVVFLLSNDVNSVCDGTCGKSEGSPSENSQ
 DLFPLAFNLFCSDLRSQIHLHKYVVVYFREIDTKDDYNALSVCPKYHLMKDATAFCAELL
 HVKQVSAGKRSQACHDGCCSL

>gi|14165275|gb|NM_032411.1|ECRG4 772bp mRNA Homo sapiens
 esophageal cancer related gene 4 protein (ECRG4), mRNA.

GGATAACCCGGCCGCGCCTGCCGCTCGCACCCCTCTCCCGGCCGGTTCTCCCTCG
 CAGCACCTCGAAGTGCGCCCTCGCCCTCTGCTCGGCCGCCATGGCTGCCTCC
 CCCCGCGGCCCTGCTGCTGGCCCTGACCGGGCTGGCGCTGCTCCTGCTCTGTGCTGG
 GGCCCAGGTGGCATAAGTGGAAATAAACTCAAGCTGATGCTTCAAAACGAGAACACCT
 GTTCCAACTAAGACTAAAGTGGCGTTGATGAGAATAAGCCAAAGAATTCTCTGGCAGC
 CTGAAGCGCCAGAACGGCAGCTGTGGGACCGGACTCGGCCGCCAGGTGCAGCAGTGGTAC
 CAGCAGTTCTCATGGCTTGACGAAGCGAAATTGAAGATGACATCACCTATTGG
 CTTAACAGAGATCGAAATGGACATGAATACTATGGCGATTACTACCAACGTCACTATGAT
 GAAGACTCTGCAATTGGTCCCCGGAGCCCTACGGCTTCTAGGCATGGAGCCAGCGTCAAC
 TACGATGACTACTAACCATGACTTGGCACACGGCTGTACAAGAAGCAAATAGCATTCTCT
 TCATGTATCTCTTAATGCCTTACACTACTTGGTTCTGATTGCTCTATTTCAGCAGATC

- 217 -

TTTCTACCTACTTGGTGATCAAAAAAGAAGAGTTAAAACAACACATGTAAATGCCTTT
GATAATTCCATGGGAATGTTAAAAATAGAAATAAGCATTGTTAAAACGA
>gi|14165276|gb|NP_115787.1|ECRG4 148aa linear esophageal
cancer related gene 4 protein [Homo sapiens].
MAASPARPAVLALTGLALLLLCWGP GG ISGNKLKMLQKREAPVPTKTVAVDENKAKE
FLGSLKRQKRQLWDRTRPEVQQWYQQFLYMGFDEAKFEDDITYWLNRDRNGHEYGDYYQ
RHYDEDSAIGPRSPYGF RGASVNYDDY