Matematyka I

Jakub Guzek red. Karolina Kobylińska

Uwaga!

Poniższe opracowanie jest oparte głównie na podstawie wykładów z przedmiotu **Matematyka I** prowadzonych na kierunku **Biotechnologia** w Szkole Głównej Gospodarstwa Wiejskiego w Warszawie. Jest ono autorstwa studentów toteż może zawierać błędy i do zawartych w nim informacji należy poodchodzić z głową.

SPIS TREŚCI

L	Logi						
1	1.1	Symbole logiczne					
		1.1.1 Podstawowe relacje dwuargumentowe					
		1.1.2 Kwantyfikatory					
2 2	Zbic	v					
2	2.1	Działania na zbiorach					
2	2.2	Zbiory liczbowe					
	War	rtość bezwzględna liczby					
9	3.1	Własności					
. (Ogólne własności funkcji						
4	4.1	Pojęcie funkcji					
4	1.2	Monotoniczność funkcji					
	1.3	Różnowartościowość					
	1.4	Parzystość i nieparzystość					
	4.5	Okresowość					
7	1.0	ORICOOWOOD					
1	Funkcje						
Ę	5.1	Funkcja liniowa					
Ę	5.2	Funkcja kwadratowa					
Ę	5.3	Wielomiany					
Ę	5.4	Funkcje wymierne					
		5.4.1 Funkcja homograficzna					
F	5.5	Funkcje potęgowe i pierwiastkowe					
	5.6	Funkcje wykładnicze					
	5.7	Funkcja logarytmiczne					
	5.8	Funkcje trygonometryczne					
٠). O	5.8.1 Funkcja sinus					
		3					
		3					
-	- 0	5.8.3 Funkcja tangens					
	5.9	Funkcje złożone					
		Funkcje odwrotne					
ŕ	0.11	Funkcje cyklometryczne					
		5.11.1 Funkcja arcus sinus					
		5.11.2 Funkcja arcus cosinus					
		5.11.3 Funkcja arcus tangens					
		5.11.4 Funkcja arcus cotangens					
(Cias	gi liczbowe i ich własności					
	5.1	Pojęcie ciągu					
	5.2	Własności ciągów liczbowych					
		6.2.1 Monotoniczność					
		U:=:I IIIUIUUUIIUUUIIUUU					

	6.2.2	Ograniczoność
7	7.1 Pojęcie 7.2 Wzory	agu 1 e granicy
8	Granice fu	nkcji 1
9	Ciągłość fu	ınkcji 2
10	Asymptoty	funkcji 2
11	11.1.1 11.2 Pochod 11.3 Własno 11.3.1 11.4 Pochod	funkcji pochodnej
	11.5.1 11.5.2	Monotoniczność
12	Szeregi licz	
	12.2 Zbieżno 12.2.1	s szeregu
	12.3 Szereg	naprzemienny
13	13.2 Szereg 13.2.1 13.2.2 13.2.3 13.2.4	tegowe 3 szeregu potęgowego 3 Taylora i szereg Maclaurina 3 Wzór Taylora 3 Wielomian Taylora 3 Resztea LaGrange'a 3 Szereg Taylora 3 Szereg Maclaurina 3
14	Całka nieo	znaczona 3
14	14.1 Pojęcie 14.2 Wzory 14.3 Całkow 14.4 Całkow	znaczona 3. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2.

Notatki:	: Matematyka I	3			
15 Call	znaczona	41			
15.1	Pojęcie całki oznaczonej	41			
	15.1.1 Interpretacja geometryczna sumy Riemanna	42			
15.2	Własności	43			
15.3	Zastosowania całki oznaczonej	44			
Bibliografia					

1. Logika

1.1 Symbole logiczne

Podstawowe relacje dwuargumentowe

∧ – "i" (koniunkcja)

∨ – "lub" (alternatywa)

⇒ - "jeżeli…to" (implikacja)

⇔ – "wtedy i tylko wtedy gdy" (równoważność)

 \sim - "nie" (negacja)

Kwantyfikatory

∀ – dla każdego

 \exists – istnieje

2. Zbiory

2.1 Działania na zbiorach

 $x \in A$ – x należy do zbioru A

 $x \notin A$ – x nie należy do zbioru A

 $A \subseteq B$ – A zawiera się lub jest równe B

 $A \subset B$ – A zawiera się w B

 $A \cup B$ – Suma zbiorów A i B

 $A \cup B = \{x : x \in A \lor x \in B\}$

 $A \cap B$ – Iloczyn/przecięcie/część wspólna zbiorów A i B

 $A \cap B = \{x : x \in A \land x \in B\}$

 $A \setminus B$ – Różnica zbiorów A i B

A' – Dopełnienie zbioru A

 $(A \subset B) \Rightarrow A' = \{x : x \notin A \land x \in B\}$

Nie istnieje zbiór wszystkich zbiorów

2.2 Zbiory liczbowe

 \mathbb{N} – Zbiór liczb naturalanych (ang. natural)

 \mathbb{Z} – Zbiór liczb całkowitych (niem. Zahlen)

Q – Zbiór liczb wymiernych (ang. quotient)

 $\mathbb{Q} = \{ \frac{p}{q} : p \in \mathbb{Z} \land q \in \mathbb{Z} \land q \neq 0 \}$

 \mathbb{R} – Zbiór liczb rzeczywistych (ang. real)

 \mathbb{C} – Zbiór liczb zespolonych (ang. complex)

 $\mathbb{C} = \{ z : (x \land y) : x \in \mathbb{R} \land y = i \}$

Przykład

Dowód nie wprost na to, że $\sqrt{2} \notin \mathbb{Q}$

Założenia:
$$(\sqrt{2} \in \mathbb{Q}) \Rightarrow (\exists p \in \mathbb{Z} \land \exists q \in \mathbb{Z})^{\frac{p}{q}} = \sqrt{2}$$

przy czym $q \neq 0$

oraz p i q nie mają wspólnych dzielników

Dowód: $\frac{p}{a}$

$$\frac{p}{q} = \sqrt{2} \Rightarrow \frac{p^2}{q^2} = 2$$

$$p^2 = 2q^2$$

Z czego wynika, że p^2 , a więc także i p są liczbami parzystymi

p można więc zapisać jako 2k

$$(2k)^2 = 2q^2 \Rightarrow 4k^2 = 2q^2 \Rightarrow q^2 = 2k^2$$

Z czego wynika, że również q jest parzyste

To sprawia, że dochodzimy do sprzeczności, gdyż wedle założeń p i q nie mają wspólnych dzielników, co oznacza, że nie mogą być obydwie parzyste, ponieważ miałyby wówczas wspólny dzielnik =2

Co za tym idzie; jeżeli założenie jest błędne, to $\sqrt{2} \notin \mathbb{Q}$ więc nie jest wymierny.

3. Wartość bezwzględna liczby

Definicja 3.1.

$$|a| = \begin{cases} a; & dla \ a > 0 \\ -a; & dla \ a < 0 \end{cases}$$
$$r = |x - x_0|$$

x należy do zbioru takich punktów, których odległość od punktu x_0 wynosi r.

3.1 Własności

$$|a| \geqslant 0 \qquad \forall a \in \mathbb{R}$$

$$|a+b| \leqslant |a| + |b| \qquad \forall a \in \mathbb{R} \land \forall b \in \mathbb{R}$$

$$|ab| \leqslant |a| \cdot |b| \qquad \forall a \in \mathbb{R} \land \forall b \in \mathbb{R}$$

4. OGÓLNE WŁASNOŚCI FUNKCJI

4.1 Pojęcie funkcji

Definicja 4.1. Przyporządkowanie postaci

$$(\forall x \in X \land \forall y \in Y) \Longrightarrow f: X \to Y \lor f: x \to y$$

nazywamy funkcją odwzorowującą X w Y

Odw
zorowaniem punktu
$$x$$
jest $y \begin{cases} f \colon X \to Y \\ f(x) = y \end{cases}$

 D_f – dziedzina funkcji (zbiór punktów x należących do funkcji f)

Definicja 4.2. Jeżeli $f(D_f) = \{ y \in Y : \forall x \in X \ f(x) = y \}$ to mówimy, że funkcja f odwzorowuje X <u>na</u> Y. W przeciwnym wypadku mówimy, że odwzorowuje X <u>w</u> Y.

Przykład

$$f(x) = x^2$$

a. $f: \mathbb{R} \to \mathbb{R}$ – funkcja jest "w" \mathbb{R}

b. $f: \mathbb{R} \to \mathbb{R}_+$ – funkcja jest "<u>na</u>" \mathbb{R}

4.2 Monotoniczność funkcji

Definicja 4.3. Funkcję f nazywamy funkcją:

- Rosnącą na zbiorze $A \subset D_f \iff [\forall (x_1 \land x_2) \in D_f(x_1 < x_2 \implies f(x_1) < f(x_2)]$
- Malejąca na zbiorze $A \subset D_f \iff [\forall (x_1 \land x_2) \in D_f(x_1 < x_2 \Longrightarrow f(x_1) > f(x_2)]$
- Niemalejąca na zbiorze $A \subset D_f \iff [\forall (x_1 \land x_2) \in D_f(x_1 < x_2 \Longrightarrow f(x_1) \geqslant f(x_2)]$
- Nierosnąca na zbiorze $A \subset D_f \iff [\forall (x_1 \land x_2) \in D_f(x_1 < x_2 \Longrightarrow f(x_1) \leqslant f(x_2)]$

Funkcja f jest monotoniczna na zbiorze $A \subset D_f$ jeśli jest rosnąca, malejąca, niemalejąca lub nierosnąca. Funkcje rosnące i malejące nazywamy ściśle monotonicznymi.

4.3 Różnowartościowość

Definicja 4.4. Funkcja f nazywamy różnowartościową wtedy, i tylko wtedy, gdy $dla \ f \colon X \to Y \ zachodzi$

$$\forall (x_1 \land x_2) \in X(x_1 \neq x_2 \Longrightarrow f(x_1) \neq f(x_2)$$

lub

$$\forall (x_1 \land x_2) \in X[f(x_1) = f(x_2) \Longrightarrow x_1 = x_1]$$

4.4 Parzystość i nieparzystość

Definicja 4.5. Funkcję $f: X \to \mathbb{R}$ nazywamy parzystą jeżeli:

1.
$$\forall x \in X - x \in X$$

2.
$$\forall x \in X \ f(x) = f(-x)$$

Definicja 4.6. Funkcję $f \colon X \to \mathbb{R}$ nazywamy nieparzystą jeżeli:

1.
$$\forall x \in X - x \in X$$

2.
$$\forall x \in X \ f(x) = -f(-x)$$

4.5 Okresowość

Definicja 4.7. Funkcję $f: X \to \mathbb{R}$ nazywamy okresową jeśli:

1.
$$\exists T > 0^{-1}$$

2.
$$\forall x \in X \ [(x+T) \in X \land (x-T) \in X]$$

3.
$$\forall x \in X [f(x+T) = f(x)]$$

5. Funkcje

5.1 Funkcja liniowa

$$f(x) = ax + b$$

$$D_f = \mathbb{R}$$
$$ZW_f = \mathbb{R}$$
$$a = \operatorname{tg} \alpha$$

¹T - okres funkcji

5.2 Funkcja kwadratowa

$$f(x) = ax^{2} + bx + c f(x) = a(x - p)^{2} + q f(x) = a(x - x_{1})(x - x_{2})$$

$$D_{f} = \mathbb{R}$$

$$ZW_{f} = \mathbb{R}_{+} \cup \{0\}$$

$$\Delta = b^{2} - 4ac$$

$$p = -\frac{b}{2a}$$

$$x_{1} = \frac{-b + \sqrt{\Delta}}{2a}$$

$$q = f(p) = -\frac{\Delta}{4a}$$

$$x_{1} = \frac{-b - \sqrt{\Delta}}{2a}$$

5.3 Wielomiany

$$f(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n$$
 $(a_0; a_1; a_2; a_3; \dots; a_n) \in \mathbb{R}$ $a_n \neq 0$

Przykład

Dzielenie wielomianów

$$\frac{x-2}{(x^3-2x^2-13x+6)} : (x^2+3)$$

$$-(x^3+3x)$$

$$-2x^2-16x+6$$

$$-(-2x^2-6)$$

$$(16x+12)$$
reszta

$$(x^3 - 2x^2 - 13x + 6) = (x^2 + 3)(x - 2) - 16x + 12$$

5.4 Funkcje wymierne

$$f(x) = \frac{W(x)}{P(x)}$$

 $D_f = \mathbb{R} \setminus \{x \colon P(x) = 0\}$

Funkcja homograficzna

$$f(x) = \frac{ax+b}{cx+d}$$

$$\begin{vmatrix} a & b \\ c & d \end{vmatrix} = ad - bc \neq 0$$

5.5 Funkcje potęgowe i pierwiastkowe

$$f(x) = \sqrt[n]{x}$$

$$f(x) = x^{\alpha}$$

$$D_f = \begin{cases} \langle 0; \infty \rangle; & \text{dla parzystych } n \\ \mathbb{R}; & \text{dla nieparzystych } n \end{cases}$$
$$n \in \mathbb{N}$$
$$n \geqslant 2$$

$$D_{f} = \begin{cases} \langle 0; \infty \rangle; & \text{dla parzystych } n \\ \mathbb{R}; & \text{dla nieparzystych } n \end{cases} \qquad D_{f} = \begin{cases} \mathbb{R}; & \text{dla } \alpha \in \mathbb{N}_{+} \\ \mathbb{R} \setminus \{0\}; & \text{dla } \alpha \in \mathbb{Z} \land \alpha < 0 \\ (0; \infty); & \text{dla } \alpha \notin \mathbb{Z} \end{cases}$$

$$\alpha \in \mathbb{R}$$

5.6 Funkcje wykładnicze

$$f(x) = a^{x}$$

$$ZW_{f} = (0; \infty)$$

$$a \in \{(0; 1) \cup (1; \infty)\}$$

Funkcja wykładnicza jest różnowartościowa

$$a^{x_1} = a^{x_2} \iff x_1 = x_2$$

Jeżeli a > 1

$$a^{x_1} < a^{x_2} \iff x_1 < x_2$$

Jeżeli a < 1

$$a^{x_1} > a^{x_2} \iff x_1 < x_2$$

5.7 Funkcja logarytmiczne

$$f(x) = \log_a x$$

$$D_f = \mathbb{R}_+$$

$$ZW_f = \mathbb{R}$$

$$a \in \{(0; 1) \cup (1; \infty)\}$$

Funkcja logarytmiczna jest różnowartościowa

$$a > 1 \Longrightarrow (\log_a x_1 < \log_a x_2 \iff x_1 < x_2)$$

 $a \in (0; 1) \Longrightarrow (\log_a x_1 > \log_a x_2 \iff x_1 < x_2)$

Funkcja logarytmiczna i funkcja wykładnicza przy tej samej postawie są do siebie odwrotne.

5.8 Funkcje trygonometryczne

Funkcja sinus

$$f(x) = \sin x$$

$$D_f = \mathbb{R}$$
$$ZW_f = \langle -1; 1 \rangle$$

Własności

- nieróżnowartościowa
- nieparzysta
- okresowa $T=2\pi$

Funkcja cosinus

$$f(x) = \cos x$$

$$D_f = \mathbb{R}$$
$$ZW_f = \langle -1; 1 \rangle$$

Własności

- nieróżnowartościowa
- parzysta
- okresowa $T=2\pi$

Funkcja tangens

$$f(x) = \operatorname{tg} x$$

$$D_f = \mathbb{R} \setminus \{x \colon x = \frac{(2k+1)\pi}{2}\}$$
$$ZW_f = \mathbb{R}$$

5.9 Funkcje złożone

Definicja 5.1. Funkcję h określoną wzorem h(x)=f(g(x)), nazywamy funkcją złożoną $h\colon A\to C,$ jeżeli:

- 1. $g: A \to B$
- 2. $f: B \to C$

5.10 Funkcje odwrotne

Definicja 5.2. Jeżeli funkcja $f: X \to Y$ jest różnowartościowa i określona na zbiór Y, to istnieje funkcja $g: Y \to X$ odwrotna do funkcji f taka, że:

$$\forall (a \in X \land b \in Y) \ b = f(a) \Longrightarrow a = g(b)$$

g(f(x)) = x - odwzorowanie identycznościowe

Wykres funkcji i funkcji do niej odwrotnej są do sienie symetryczne względem prostej y-x.

5.11 Funkcje cyklometryczne

Funkcje cyklometryczne to funkcje odwrotne do funkcji trygonometrycznych ograniczonych do pewnych przedziałów.

Funkcje trygonometryczne rozpatrywane na całym zbiorze \mathbb{R} nie są różnowartościowe, ale jeżeli zawęzimy ich dziedziny do pewnych przedziałów

$$-\sin x \colon \langle -\frac{\pi}{2}; \frac{\pi}{2} \rangle \to \langle -1; 1 \rangle$$

$$-\operatorname{tg} x \colon \left(-\frac{\pi}{2}; \frac{\pi}{2}\right) \to \mathbb{R}$$

$$-\cos x \colon \langle 0; \pi \rangle \to \langle -1; 1 \rangle \qquad - \operatorname{ctg} x \colon (0; \pi) \to \mathbb{R}$$

$$-\operatorname{ctg} x \colon (0;\pi) \to \mathbb{R}$$

Funkcja arcus sinus

$$f(x) = \arcsin x$$

$$D_f = \langle -1; 1 \rangle$$
$$ZW_f = \langle -\frac{\pi}{2}; \frac{\pi}{2} \rangle$$

Definicja 5.3. Funkcję odwrotną do funkcji sinus obciętej do przedziału $\langle -\frac{\pi}{2}; \frac{\pi}{2} \rangle$, nazywamy arcus sinus

$$y = \arcsin x \iff x = \sin y$$

$$dla\ y \in \langle -\frac{\pi}{2}; \frac{\pi}{2} \rangle \land x \in \langle -1; 1 \rangle$$

Funkcja arcus cosinus

$$f(x) = \arccos x$$

$$D_f = \langle -1; 1 \rangle$$

$$ZW_f = \langle 0; \pi \rangle$$

Definicja 5.4. Funkcję odwrotną do funkcji cosinus obciętej do przedziału $\langle 0; \pi \rangle$, nazywamy arcus cosinus

$$y = \arccos x \iff x = \cos y$$

$$dla\ y \in \langle 0; \pi \rangle \land x \in \langle -1; 1 \rangle$$

Funkcja arcus tangens

$$f(x) = \operatorname{arctg} x$$

$$D_f = \mathbb{R}$$

$$ZW_f = \langle -\frac{\pi}{2}; \frac{\pi}{2} \rangle$$

Funkcja arcus cotangens

$$f(x) = \operatorname{arcctg} x$$

$$D_f = \mathbb{R}$$

$$ZW_f = \langle 0; \pi \rangle$$

6. Ciągi liczbowe i ich własności

6.1 Pojęcie ciągu

Definicja 6.1. Ciągiem liczbowym nazywamy funkcję postaci:

$$a\colon \mathbb{N}\to Y \qquad \mathit{gdzie}\ Y\in \mathbb{R}$$

Wartość odwzorowania a najczęściej oznaczamy a_n i nazywamy n-tym wyrazem ciągu lub wyrazem ogólnym ciągu.

$$(a_n)$$
 - ciąg
 a_n - $n-ty$ wyraz ciągu

Ciągi liczbowe można określić

- 1. wzorem ogólnym np. $a_n = 3^n$
- 2. rekurencyjnie (wzorem rekurencyjnym) np. $a_1=1;\,a_2=1;\,a_n=a_{n-1}+a_{n-2}$
- 3. opisowo

6.2 Własności ciągów liczbowych

Monotoniczność

- rosnący gdy $\forall n \in \mathbb{N} \ a_{n+1} > a_n$
- malejący gdy $\forall n \in \mathbb{N} \ a_{n+1} < a_n$
- nierosnący gdy $\forall n \in \mathbb{N} \ a_{n+1} \leqslant a_n$
- niemalejący gdy $\forall n \in \mathbb{N} \ a_{n+1} \geqslant a_n$

Ograniczoność

Definicja 6.2. O ciągu a_n mówimy, że jest ograniczony z góry wtedy, i tylko wtedy, gdy:

$$\exists M \in \mathbb{R} \ \forall n \in \mathbb{N} \ a_n \leqslant M$$

Natomiast qdy:

$$\exists m \in \mathbb{R} \ \forall n \in \mathbb{N} \ a_n \geqslant m$$

to mówimy, że ciąg a_n jest ograniczony z dołu.

M – ograniczenie górne

m – ograniczenie dolne

Jeżeli ciąg jest ograniczony z góry i z dołu, to mówimy, że jest ograniczony.

Może być nieskończenie wiele ograniczeń.

Przykład

Zbadaj monotoniczność i ograniczoność ciągu:

$$a_n = \frac{3}{2n+1}$$

$$a_n - a_{n-1} = \frac{3}{2n+1} - \frac{3}{2(n-1)+1} = \frac{3}{2n+1} - \frac{3}{2n-1} = \frac{3(2n-1) - 3(2n+1)}{(2n-1)(2n+1)} = \frac{-6}{(2n-1)(2n+1)}$$

 $a_n - a_{n-1} < 0$, więc podany ciąg jest monotoniczny malejący.

Ponieważ jest malejący, to jego największym wyrazem jest $a_1 = 1$.

Jako, że wszystkie wyrazy tego ciągu są dodatnie, to jego ograniczeniem dolnym jest (np.) 0.

Ciąg ten ma ograniczenie górne i dolne, jest więc ograniczony.

7. Granice ciągu

7.1 Pojęcie granicy

Definicja 7.1. Ciąg (a_n) ma granicę właściwą $g \in \mathbb{R}$, co oznaczamy:

$$(\exists g \in \mathbb{R} \lim_{n \to \infty} a_n = g) \iff \forall \varepsilon > 0 \ \exists n_0 \in \mathbb{N} \ \forall n > n_0 \ |a_n - g| < \varepsilon$$

Oznacza to, że w dowolnie małym otoczeniu liczby g leżą prawie wszystkie wyrazy ciągu (czyli wszystkie za wyjątkiem skończonej ilości).

Ciąg mający granicę właściwą nazywamy ciągiem zbieżnym.

Przykład

Udowodnij z definicji, że $\lim_{n\to\infty}(3-\frac{2}{n})=3$

$$a_n = 3 - \frac{2}{n} \qquad g = 3$$
$$|3 - \frac{2}{n} - 3| = |-\frac{2}{n}| = \frac{2}{n} < \varepsilon$$
$$n > \frac{2}{\varepsilon}$$
$$n_0 = \frac{2}{\varepsilon}$$

Twierdzenie 7.1. Każdy ciąg monotoniczny i ograniczony ma granicę właściwą (jest ciągiem zbieżnym).

Twierdzenie 7.2 (Twierdzenie Bolzano-Weierstrassa). Z dowolnego ciągu ograniczonego można wybrać podciąg zbieżny.

Twierdzenie 7.3. Każdy ciąg zbieżny ma dokładnie jedną granicę.

7.2 Wzory

$$\lim_{n \to \infty} c = c \qquad c = const. \tag{7.1}$$

$$\lim_{n \to \infty} \frac{1}{n} = 0 \qquad n \in \mathbb{N} \tag{7.2}$$

$$\lim_{n \to \infty} q^n = \begin{cases} 0; & \text{dla } |q| < 1\\ 1; & \text{dla } q = 1 & q \in \mathbb{R}\\ \infty; & \text{dla } q > 1 & n \in \mathbb{N}\\ \text{nie istnieje}; & \text{dla } q \leqslant -1 \end{cases}$$
 (7.3)

Dla $\lim_{n\to\infty} a_n = a$ oraz $\lim_{n\to\infty} b_n = b$:

$$\lim_{n \to \infty} (a_n + b_n) = \lim_{n \to \infty} a_n + \lim_{n \to \infty} b_n = a + b \tag{7.4}$$

$$\lim_{n \to \infty} (a_n - b_n) = \lim_{n \to \infty} a_n - \lim_{n \to \infty} b_n = a - b \tag{7.5}$$

$$\lim_{n \to \infty} (a_n \cdot b_n) = \lim_{n \to \infty} a_n \cdot \lim_{n \to \infty} b_n = ab$$
 (7.6)

$$\frac{\lim_{n\to\infty} a_n}{\lim_{n\to\infty} b_n} = \lim_{n\to\infty} \left(\frac{a_n}{b_n}\right) = \frac{a}{b} \qquad \text{dla } b_n \neq 0 \land b \neq 0 \tag{7.7}$$

7.3 Twierdzenia

Twierdzenie 7.4 (Twierdzenie o trzech ciągach). Dane są trzy ciągi: (a_n) ; (b_n) ; (c_n) .

Jeżeli dla prawie wszystkich n spełnione są warunki:

1.
$$a_n \leqslant b_n \leqslant c_n$$

2.
$$\lim_{n\to\infty} a_n = \lim_{n\to\infty} c_n = g$$

to:

$$\lim_{n\to\infty} b_n = g$$

Twierdzenie 7.5.

$$\lim_{n \to \infty} \sqrt[n]{n} = 1$$

Twierdzenie 7.6.

$$\lim_{n \to \infty} \sqrt[n]{a} = 0; \qquad dla \ a > 0$$

Przykład

Oblicz $\lim_{n\to\infty} \sqrt[n]{17^n + 128^n + 360^n}$.

$$\sqrt[n]{360} \leqslant \sqrt[n]{17^n + 128^n + 360^n} \leqslant \sqrt[n]{3 \cdot 360^n} = \sqrt[n]{3} \cdot \sqrt[n]{360^n}$$

Ponieważ:

$$\lim_{n \to \infty} \sqrt[n]{360^n} = 360$$

oraz

$$\lim_{n \to \infty} \sqrt[n]{3} \cdot \sqrt[n]{360^n} = 360$$

to na postawie Twierdzenia 7.4 (Twierdzenie o trzech ciągach):

$$\lim_{n \to \infty} \sqrt[n]{17^n + 128^n + 360^n} = 360$$

Twierdzenie 7.7. Niech ciąg (a_n) to będzie taki ciąg, że:

1.
$$a_n > 0$$

2.
$$\lim_{n\to\infty} a_n = 0$$

Wówczas:

$$\lim_{n \to \infty} (1 + a_n)^{\frac{1}{a_n}} = e \tag{7.8}$$

A w szczególności:

$$\lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^n$$

e – liczba Eulera

e = 2,718281828459...

Definicja 7.2. Ciąg (a_n) ma granicę niewłaściwą $-\infty$ lub ∞ jeżeli dla każdej dodatniej liczby M prawie wszystkie wyrazy ciągu spełniają warunek $a_n > M$ (lub $a_n < -M$).

Ciągi, które nie mają granicy lub mają granicę niewłaściwą nazywamy ciągami rozbieżnymi.

Twierdzenie 7.8 (Twierdzenie o granicach niewłaściwych).

$$\lim_{n \to \infty} a_n = a; \quad \operatorname{przy} \ \operatorname{czym} \ 0 < a < \infty \\ \lim_{n \to \infty} b_n = 0; \quad \operatorname{przy} \ \operatorname{czym} \ \forall x \in \mathbb{N} \ b_n > 0 \end{cases} \Longrightarrow \lim_{n \to \infty} \frac{a_n}{b_n} = \infty$$

Symbole nieoznaczone:

$$\begin{array}{cccc}
- \left[\infty - \infty\right] & - \left[1^{\infty}\right] \\
- \left[0 \cdot \infty\right] & - \left[\infty^{0}\right] \\
- \left[\frac{\infty}{0}\right] & - \left[0^{0}\right]
\end{array}$$

8. Granice funkcji

Definicja 8.1. Sąsiedztwem o promieniu r > 0 punktu $x_0 \in \mathbb{R}$, nazywamy zbiór

$$S(x_0; r) = (x_0 - r; x_0) \cup (x_0; x_0 + r)$$

Sąsiedztwem lewostronnym o promieniu r > 0 punktu $x_0 \in \mathbb{R}$, nazywamy zbiór

$$S(x_0^-;r)=(x_0-r;x_0)$$

Sąsiedztwem prawostronnym o promieniu r > 0 punktu $x_0 \in \mathbb{R}$, nazywamy zbiór

$$S(x_0^+; r) = (x_0; x_0 + r)$$

Definicja 8.2. Otoczeniem punktu x_0 , nazywamy sąsiedztwo tego punktu wraz z tym punktem, czyli zbiór

$$U(x_0; r) = (x_0 - r; x_0 + r)$$

Definicja 8.3 (Definicja Heinego granicy właściwej funkcji w punkcie $x_0 \in \mathbb{R}$). Niech funkcja f będzie określona przynajmniej na $S(x_0)$. Liczba g jest granicą właściwą funkcji f w punkcie x_0 wtedy, i tylko wtedy, gdy:

$$\forall (x_n) \subset S(x_0) \ [(\lim_{n \to \infty} x_n = x_0) \Longrightarrow (\lim_{x \to x_0} f(x_n) = g)]$$

$$(x_n \to x_0) \Longrightarrow (f(x_n) \to g)$$

Definicja 8.4. Jeżeli $x_0 \in \mathbb{R}$ i funkcja f jest określona przynajmniej na lewostronnym sąsiedztwie $S(x_0)$, to liczba g jest granicą właściwą lewostronną funkcji f wtedy, i tylko wtedy, gdy:

$$\forall (x_n) \subset S(x_0^-) \left[\left(\lim_{n \to \infty} x_n = x_0 \right) \Longrightarrow \left(\lim_{x \to x_0} f(x_n) = g \right) \right]$$

Analogicznie definiuje się granicę prawostronną.

Warunek istnienia granicy funkcji w punkcie x_0

$$\lim_{x \to x_0} f(x) = g \Longrightarrow \left[\lim_{x \to x_0^-} f(x) = \lim_{x \to x_0^+} f(x) = g \right]$$

Jeżeli funkcje f i g mają granice właściwe w punkcie x_0 , to:

- 1. Prawdziwe są wzory: (7.1); (7.2); (7.3); (7.4); (7.5); (7.6); (7.7).
- 2.

$$\lim_{x \to x_0} f(x)^{g(x)} = \left[\lim_{x \to x_0} f(x) \right]^{\lim_{x \to x_0} g(x)}$$
(8.1)

Definicja 8.5. Jeżeli $x_0 \in \mathbb{R}$ i funkcja f jest określona na $S(x_0)$, to:

$$\lim_{x \to x_0} f(x) = \infty \iff \forall (x_n) \subset S(x_0) \left[\left(\lim_{n \to \infty} x_n = x_0 \right) \Longrightarrow \left(\lim_{x \to x_0} f(x_n) = \infty \right) \right]$$

oraz analogicznie:

$$\lim_{x \to x_0} f(x) = -\infty \iff \forall (x_n) \subset S(x_0) \left[\left(\lim_{n \to \infty} x_n = x_0 \right) \Longrightarrow \left(\lim_{x \to x_0} f(x_n) = -\infty \right) \right]$$

9. CIĄGŁOŚĆ FUNKCJI

Definicja 9.1. O funkcji f(x) określonej w pewnym otoczeniu $U(x_0)$ mówimy, że jest ciągła w tym punkcie, gdy:

$$\lim_{x \to x_0} f(x) = f(x_0)$$

lub ciągła lewostronnie, gdy:

$$\lim_{x \to x_0^-} f(x) = f(x_0)$$

lub prawostronnie, gdy:

$$\lim_{x \to x_0^+} f(x) = f(x_0)$$

Jeżeli funkcji jest ciągła w danym punkcie, to znaczy, że jest ona w tym punkcie prawo- i lewostronnie ciągła.

Aby funkcja f była ciągła w danym punkcie $x=x_0$ potrzeba i wystarcza by jednocześnie:

- 1. funkcja f(x) była określona dla punktu $x = x_0$
- 2. funkcja f(x) miała granicę dla $x = x_0$
- 3. wartość funkcji i granica funkcji f w punkcie $x=x_0$ były sobie równe

Funkcja ciągła prawostronnie

Funkcja nieciągła

Własności funkcji ciągłych

- 1. suma, różnica, iloczyn i iloraz funkcji ciągłych f i g w punkcie x_0 są funkcjami ciągłymi w tym punkcie
- 2. funkcje odwrotne do funkcji ciągłych są funkcjami ciągłymi w każdym punkcie, w którym są określone
- 3. funkcja złożona funkcji ciągłych jest funkcją ciągłą, w każdym punkcie, w którym jest określona

Uwaga: funkcje elementarne są funkcjami ciągłymi w swoich dziedzinach.

10. Asymptoty funkcji

Definicja 10.1. Prostą $x = x_0$, nazywamy asymptotą pionową wykresu funkcji y = f(x), jeżeli przynajmniej jedna z granic jednostronnych funkcji f(x) w punkcie x_0 jest niewłaściwa.

$$\lim_{x \to x_0^-} f(x) = \infty \vee \lim_{x \to x_0^+} f(x) = \infty$$

lub

$$\lim_{x \to x_0^-} f(x) = -\infty \vee \lim_{x \to x_0^+} f(x) = -\infty$$

Definicja 10.2. Prostą o równaniu y = ax+b nazywamy asymptotą ukośną wykresu funkcji y = f(x), jeżeli:

$$\lim_{x \to \infty} [f(x) - (a+b)] = 0$$

lub

$$\lim_{x \to \infty} [f(x) - (a+b)] = 0$$

Jeżeli wiadomo, że funkcja f(x) ma asymptotę ukośną, to:

$$a = \lim_{x \to \infty} \frac{f(x)}{x} \tag{10.1}$$

$$b = \lim_{x \to \infty} [f(x) - ax] \tag{10.2}$$

lub

$$a = \lim_{x \to \infty} \frac{f(x)}{x} \tag{10.3}$$

$$b = \lim_{x \to \infty} [f(x) - ax] \tag{10.4}$$

11. Pochodna funkcji

11.1 Pojęcie pochodnej

Dana jest funkcja y = f(x), określona w pewnym otoczeniu $U(x_0; r)$ (gdzie r > 0) Niech Δx oznacza przyrost zmiennej niezależnej (dodatni lub ujemny), taki że

$$(x_0 + \Delta x) \in U$$

Przyrostowi argumentu Δx odpowiada przyrost wartości funkcji:

$$\Delta y = [f(x_0 + \Delta x) - f(x_0)]$$

Definicja 11.1. Iloczynem różnicowym, nazywamy iloraz

$$\frac{\Delta f}{\Delta x} = \frac{\Delta y}{\Delta x} = \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x}$$

Interpretacja geometryczna iloczynu różnicowego

Jest to tangens kąta nachylenia siecznej przechodzącej przez punkty $(x_0; f(x_0))$ i $(x_0 + \Delta x; f(x_0 + \Delta x))$ do dodatniej części osi OX

$$\operatorname{tg} x = \frac{\Delta f}{\Delta x}$$

Definicja 11.2. Jeżeli istnieje skończona granica ilorazu różnicowego funkcji f, gdy $\Delta x \to 0$, to tę granicę nazywamy pochodną funkcji f(x) w punkcie x_0 i oznaczamy $f'(x_0)$ lub $\frac{df}{dx}(x_0)$

$$f'(x_0) = \lim_{\Delta x \to 0} \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x}$$
 (11.1)

Jeżeli granica ta nie istnieje, to funkcja nie ma pochodnej w punkcie x_0 Jeżeli istnieje granica jednostronna, to mówimy o pochodnych jednostronnych (oznaczanych $f'_{-}(x_0)$ lub $f'_{-}(x_0)$).

O funkcji, która ma pochodne w punkcie x_0 mówimy, że jest różniczkowalna w tym punkcie.

Przykład

Oblicz z definicji pochodną funkcji $f(x) = x^3$ w dowolnym punkcie $x_0 \in \mathbb{R}$ Δx – przyrost argumentu

$$f(x_0 + \Delta x) = (x_0 + \Delta x)^3 = x_0^3 + 3x_0^2 \Delta x + 3x_0 \Delta x^2 + \Delta x^3$$

więc:

$$\lim_{\Delta x \to 0} \frac{\cancel{x}_0^3 + 3x_0^2 \Delta x + 3x_0 \Delta x^2 + \Delta x^3 - \cancel{x}_0^3}{\Delta x} = \lim_{\Delta x \to 0} \frac{3x_0^2 \cancel{\Delta} x + 3x_0 \Delta x^2 + \Delta x^3}{\cancel{\Delta} x} = \lim_{\Delta x \to 0} \left(3x_0^2 + 3x_0 \Delta x + \Delta x^2\right) = 3x_0^2$$

Ostatecznie:

$$f(x_0) = x_0^2$$

Twierdzenie 11.1. Jeżeli funkcja f jest różniczkowalna w punkcie x_0 , to jest w tym punkcie ciągła.

Twierdzenie odwrotne nie jest prawdziwe

Na przykład $f(x) = |x| \le x_0 = 0$ jest ciągła ale nie ma pochodnej.

11.2 Pochodne ważniejszych funkcji elementarnych

$$(c)' = 0; c \in \mathbb{R} (11.2)$$

$$(x^n)' = nx^{n-1}; n \in \mathbb{Z}; x \in \mathbb{R} (11.3)$$

$$(x^{\alpha})' = \alpha x^{\alpha - 1}; \qquad \alpha \in \mathbb{R}$$
 (11.4)

$$(\sin x)' = \cos x; \qquad \qquad x \in \mathbb{R} \tag{11.5}$$

$$(\cos x)' = -\sin x; \qquad x \in \mathbb{R}$$
 (11.6)

$$(\operatorname{tg} x)' = \frac{1}{\cos^2 x};$$
 $x \neq \frac{\pi}{2} + k\pi$ (11.7)

$$(\operatorname{ctg} x)' = \frac{1}{\sin^2 x}; \qquad x \neq k\pi$$
 (11.8)

$$(a^x)' = a^x \ln a; \qquad x \in \mathbb{R}; a \in \mathbb{R}_+$$
 (11.9)

$$(e^x)' = e^x; x \in \mathbb{R} (11.10)$$

$$(\ln|x|)' = \frac{1}{x}; \qquad x \in \mathbb{R} \setminus \{0\}$$
 (11.11)

$$(\log_a |x|)' = \frac{1}{x \ln a} = \frac{1}{x} \log_a e;$$
 $x \in \mathbb{R}_+; a \in \mathbb{R}_+ \setminus \{1\}$ (11.12)

$$(\arcsin x)' = \frac{1}{\sqrt{1-x^2}};$$
 $x \in (-1;1)$ (11.13)

$$(\arccos x)' = \frac{-1}{\sqrt{1-x^2}};$$
 $x \in (-1;1)$ (11.14)

$$(\operatorname{arctg} x)' = \frac{1}{1+x^2}; \qquad x \in \mathbb{R}$$
 (11.15)

$$(\operatorname{arcctg} x)' = \frac{-1}{1+x^2}; \qquad x \in \mathbb{R}$$
 (11.16)

11.3 Własności

Twierdzenie 11.2. *Jeżeli funkcje f i g mają pochodne właściwe, to:*

$$(cf)'(x) = cf'(x); \qquad c \in \mathbb{R}$$
$$(fg)'(x) = f'(x)g(x) + f(x)g'(x)$$
$$\left(\frac{f}{g}\right)(x) = \frac{f'(x)g(x) - f(x)g'(x)}{g^2(x)}$$

Przykład

$$(x^{3} + e^{x})' = 3x^{2} + e^{x}$$

$$(2\sin x - \sqrt{x})' = 2\cos x - \frac{1}{2\sqrt{x}}$$

$$(x^{5}\cos x)' = 5x^{4}\cos x + x^{5}\sin x$$

$$\left(\frac{x^{7}}{e^{x}}\right)' = \frac{7x^{6} - x^{7}e^{x}}{e^{2x}} = \frac{7x^{6} - x^{7}}{e^{x}}$$

Twierdzenie 11.3. Pochodna funkcji złożonej Jeżeli:

- 1. $funkcja\ f\ ma\ pochodną\ właściwą\ w\ punkcie\ x_0$
- 2. funkcja g ma pochodną właściwą w punkcie $f(x_0)$

to:

$$(g \bullet f)'(x_0) = g'(f(x_0)) \cdot f'(x_0)$$

Przykład

Obliczyć pochodne funkcji

a.
$$y = \sin \sqrt{x}$$

 $y' = \cos \sqrt{x} \cdot \frac{1}{2\sqrt{x}}$

b.
$$y = \ln 2x$$

 $y' = \frac{1}{2x} \cdot 2 = \frac{1}{x}$

c.
$$y = e^{\cos x}$$

 $y' = e^{\cos x} \cdot (-\sin x)$

d.
$$y = x^x$$

 $y' = (x^x)' = (e^{\ln x^x})' = (e^{x \ln x})' = e^{x \ln x} (\ln x + 1) = x^x (\ln x + 1)$

Twierdzenie 11.4. Pochodna funkcji odwrotnej Jeżeli funkcja f spełnia warunki:

- 1. Jest ciągła na otoczeniu $U(x_0($
- 2. Jest malejąca lub rosnąca na otoczeniu $U(x_0)$
- 3. Ma pochodną właściwą f'(/xz)

to:

$$(f^{-1})'(y_0) = \frac{1}{f'(x_0)};$$
 $gdzie\ y_0 = f(x_0)$ (11.17)

Interpretacja geometryczna pochodnej

Niech α oznacza kąt między styczną do wykresu funkcji f w punkcie $(x_0; f(x_0))$, a dodatnią częścią osi OX

Równanie stycznej do wykresu funkcji f w punkcie $(x_0; f(x_0))$:

$$y = f(x_0) + f'(x_0)(x - x_0)$$
(11.18)

Przykład

Napisz równanie stycznej do wykresu funkcji $f(x) = e^x$ w punkcie $x_0 = 0$

$$f'(x) = e^x \Longrightarrow f'(x_0) = 1$$

bo $e^0 = 1$

Ze wzoru (11.18)

$$y = x + 1$$

więc ostatecznie:

$$tg \alpha = 45^{\circ}$$

Definicja 11.3. Niech wykresy funkcji f i g mają punkt wspólny $(x_0; y_0)$, przy czym obydwa mają pochodną właściwą w punkcie x_0 .

Kąt przecięcia wykresu funkcji f i g nazywamy kątem φ między stycznymi do wykresów tych funkcji w punkcie x_0 . Miara kąta przecięcia wykresów funkcji f i g wyraża się wzorem:

$$\varphi = arctg \left| \frac{f'(x_0) - g'(x_0)}{1 + g'(x_0)f'(x_0)} \right|$$
 (11.19)

lub

$$tg\varphi = \left| \frac{f'(x_0) - g'(x_0)}{1 + g'(x_0)f'(x_0)} \right|$$

Twierdzenie 11.5 (Twierdzenie o wartości średniej - Twierdzenie Rolle'a). *Jeżeli funkcja f spełnia warunki:*

- 1. jest ciągła na $\langle a; b \rangle$
- 2. ma pochodną właściwą lub niewłaściwą na (a; b)
- 3. f(a) = f(b)

to istnieje punkt $c \in (a; b)$ taki, że:

$$f'(c) = 0$$

(styczna w punkcie c jest równoległa do osi OX)

Twierdzenie 11.6 (Twierdzenie LaGrange'a). Jeżeli funkcji f spełnia warunki

- 1. jest ciągła na $\langle a; b \rangle$
- 2. $ma \ pochodna \ w \ (a;b)$

to istnieje $c \in (a; b)$ takie, że

$$f(x) = \frac{f(a) - f(b)}{a - b}$$

11.4 Pochodne wyższych rzędów

Definicja 11.4. Pochodną właściwą n-tego rzędu funkcji f w punkcie x_0 definiujemy indukcyjnie (lub rekurencyjnie) jako:

$$f^{(n)}(x_0) \stackrel{\text{def}}{=} [f^{(n-1)}]'(x_0) \quad dla \ n \geqslant 2$$

przy czym:

$$f^{(1)}(x_0) = f'(x_0)$$

oraz

$$f^{(0)}(x_0) = f(x_0)$$

Przykład

$$f(x) = x^{3} + 3x^{2} - 7x + 2$$

$$f'(x) = 3x^{2} + 6x - 7$$

$$f''(x) = 6x + 6$$

$$f'''(x) = 6$$

$$f^{(4)}(x) = 0$$

więc

$$f^{(n)}(x) = 0 \quad \text{dla } n \geqslant 4$$

Twierdzenie 11.7 (Regula de l'Hospitala). Jeżeli funkcje f i g spełniają warunki

1.

$$\lim_{x \to x_0} f(x) = \lim_{x \to x_0} g(x) = 0$$

lub

$$\lim_{x \to x_0} f(x) = \lim_{x \to x_0} g(x) = \infty$$

lub

$$\lim_{x \to x_0} f(x) = \lim_{x \to x_0} g(x) = -\infty$$

2. Istnieje granica

$$\lim_{x \to x_0} \frac{f'(x)}{g'(x)}$$

to:

$$\lim_{x \to x_0} \frac{f(x)}{g(x)} = \lim_{x \to x_0} \frac{f'(x)}{g'(x)}$$
 (11.20)

Twierdzenie to jest prawdziwe również dla granic jednostronnych.

Przykład

Obliczyć granicę funkcji:

$$\lim_{x \to 0} \frac{\ln 1 + x^2}{\cos x - e^{-x}} \stackrel{\left[\frac{0}{0}\right]}{=} \lim_{x \to 0} \frac{\frac{2x}{x^2 + 1}}{-\sin x + e^{-1}} = \lim_{x \to 0} \frac{2x}{-(x^2 + 1)(\sin x - e^{-x})} = \left[\frac{0}{1}\right] = 0$$

11.5 Zastosowanie pochodnej do badania funkcji

Monotoniczność

Niech Ioznacza przedział. Jeżeli $\forall x \in I$ funkcja fspełnia warunek:

- -f'(x)=0, to jest stała na I
- f'(x) > 0, to jest rosnąca na I
- -f'(x) < 0, to jest malejąca na I
- $-f'(x) \geqslant 0$, to jest niemalejąca na I
- $-f'(x) \leq 0$, to jest nierosnąca na I

Ekstrema lokalne

Definicja 11.5. Funkcja f ma w punkcie $x_0 \in \mathbb{R}$ minimum lokalne, jeżeli:

$$\exists \delta > 0 \ \forall x \in S(x_0; \delta) \ f(x) \geqslant f(x_0)$$

Definicja 11.6. Funkcja f ma w punkcie $x_0 \in \mathbb{R}$ maksimum lokalne, jeżeli:

$$\exists \delta > 0 \ \forall x \in S(x_0; \delta) \ f(x) \leqslant f(x_0)$$

Twierdzenie 11.8 (Twierdzenie Fermata – Warunek konieczny istnienia ekstremum lokalnego funkcji). *Jeżeli funkcja f*:

- 1. ma ekstremum lokalne w punkcie x_0
- 2. ma pochodną $f'(x_0)$

to ta pochodna zeruje się w punkcie x_0

Twierdzenie odwrotne jest fałszywe

Twierdzenie 11.9 (Pierwszy warunek wystarczający istnienia ekstremum lokalnego). Jeżeli funkcja f spełnia warunki:

1.
$$f'(x_0) = 0$$

2.

$$\exists \delta > 0 \begin{cases} f'(x) < 0; & \forall x \in S(x_0^-; \delta) \\ f'(x) > 0; & \forall x \in S(x_0^+; \delta) \end{cases}$$

to w punkcie x_0 funkcja f ma maksimum lokalne. Jeżeli funkcja f spełnia warunki:

1.
$$f'(x_0) = 0$$

2.

$$\exists \delta > 0 \begin{cases} f'(x) > 0; & \forall x \in S(x_0^-; \delta) \\ f'(x) < 0; & \forall x \in S(x_0^+; \delta) \end{cases}$$

to w punkcie x_0 funkcja f ma minimum lokalne.

Aby funkcja miała ekstremum to konieczne jest aby jej pochodna zerowała się w punkcie x_0 oraz aby jej pochodna zmieniała znak w $S(x_0; \delta)$

Wypukłość i punkty przegięcia

Definicja 11.7. Funkcja f jest wypukła na przedziale (a;b) takim, że $(-\infty \le a < b \le \infty)$ wtedy, i tylko wtedy, gdy:

$$\forall a < (x_1 \land x_2) < b \ \forall 0 < \lambda < 1 \ f(\lambda x_1 - (1 - \lambda)x_2) \le \lambda f(x_1) + (1 - \lambda)f(x_2)$$

lub ściśle wypukła, qdy:

$$\forall a < (x_1 \land x_2) < b \ \forall 0 < \lambda < 1 \ f(\lambda x_1 - (1 - \lambda)x_2) < \lambda f(x_1) + (1 - \lambda)f(x_2)$$

Definicja 11.8. Funkcja f jest wklęsta na przedziale (a;b) takim, że $(-\infty \le a < b \le \infty)$ wtedy, i tylko wtedy, gdy:

$$\forall a < (x_1 \land x_2) < b \ \forall 0 < \lambda < 1 \ f(\lambda x_1 - (1 - \lambda)x_2) \geqslant \lambda f(x_1) + (1 - \lambda)f(x_2)$$

lub ściśle wklęsła, gdy:

$$\forall a < (x_1 \land x_2) < b \ \forall 0 < \lambda < 1 \ f(\lambda x_1 - (1 - \lambda)x_2) > \lambda f(x_1) + (1 - \lambda)f(x_2)$$

Styczna do wykresu funkcji wypukłej znajduje się zawsze pod wykresem. Styczna do wykresu funkcji wklęsłej znajduje się zawsze nad wykresem

Twierdzenie 11.10 (Warunek konieczny istnienia punktu przegięcia). *Jeżeli funkcja f spełnia warunki:*

- 1. $(x_0; f(x_0))$ jest punktem przegięcia
- 2. istnieje $f''(x_0)$

to

$$f''(x_0) = 0$$

Twierdzenie 11.11 (Warunek wystarczający istnienia punktu przegięcia). Jeżeli funkcja f spełnia warunki

1. $w punkcie x_0 ma pochodną$

2.

$$\exists \delta > 0 \begin{cases} f''(x) < 0; & \forall x \in S(x_0^-; \delta) \\ f''(x) > 0; & \forall x \in S(x_0^+; \delta) \end{cases}$$

lub

$$\exists \delta > 0 \begin{cases} f''(x) > 0; & \forall x \in S(x_0^-; \delta) \\ f''(x) < 0; & \forall x \in S(x_0^+; \delta) \end{cases}$$

to punkt $(x_0; f(x_0))$ jest punktem przegięcia wykresu funkcji f.

12. Szeregi liczbowe

12.1 Pojęcie szeregu

Definicja 12.1. Szeregiem liczbowym o wyrazach a_n , nazywamy wrażenie postaci:

$$a_1 + a_2 + a_3 + a_4 + \ldots + a_n = \sum_{n=1}^{\infty} a_n$$

Definicja 12.2. Sumami częściowymi szeregu $\sum_{n=1}^{\infty} a_n$, nazywamy wyrażenia:

$$S_1 = a_1$$

$$S_2 = a_1 + 1_2$$

$$S_3 = a_1 + 1_2 + a_3$$

$$S_4 = a_1 + 1_2 + a_3 + a_4$$

$$S_n = a_1 + 1_2 + a_3 + a_4 + \dots + a_n$$

 $Ciąg(S_n)$, nazywamy ciągiem sum częściowych.

Przykład

$$\sum_{n=1}^{\infty} \left(\frac{1}{n} - \frac{1}{n+1} \right)$$

$$S_1 = 1 - \frac{1}{2} = \frac{1}{2}$$

$$S_2 = 1 - \frac{1}{2} + \frac{1}{2} - \frac{1}{3} = \frac{2}{3}$$

$$S_3 = 1 - \frac{1}{2} + \frac{1}{2} - \frac{1}{3} + \frac{1}{3} - \frac{1}{4} = \frac{3}{4}$$

$$S_n = 1 - \frac{1}{2} + \frac{1}{2} - \frac{1}{\beta} + \frac{1}{\beta} - \frac{1}{4} + \dots + \frac{1}{n} - \frac{1}{n+1}$$

$$s_n = 1 - \frac{1}{n+1}$$

12.2 Zbieżność szeregu

Definicja 12.3. Szereg liczbowy

$$\sum_{n=1}^{\infty} a_n$$

nazywamy zbieżnym, jeżeli jego ciąg sum częściowych jest ciągiem zbieżnym (mającym granicę skończoną)

$$\lim_{n\to\infty} (S_n) = S$$

Jeżeli ciąg sum częściowych jest rozbieżny (mający granicę niewłaściwą lub nie mający granicy), to mówimy, że szereg jest rozbieżny.

Przykład

$$\sum_{n=1}^{\infty} \left(1 - \frac{1}{n+1} \right)$$

$$S_n = 1 - \frac{1}{n+1}$$

$$\lim_{n \to \infty} \left(1 - \frac{1}{n+1} \right) = 1$$

Szereg ten jest zbieżny

Warunek konieczny zbieżności szeregu

Jeżeli szereg liczbowy

$$\sum_{n=1}^{\infty} a_n$$

jest zbieżny, to:

$$\lim_{n \to \infty} a_n = 0$$

Przykład

$$\sum_{n=1}^{\infty} \frac{n}{2n+1}$$

$$\lim_{n \to \infty} \frac{n}{2n+1} = \frac{1}{2} \neq 0$$

Warunek konieczny zbieżności szeregu nie jest spełniony, więc szereg ten jest rozbieżny.

Kryterium 12.1 (Kryterium d'Alemberta). Dany jest szereg:

$$\sum_{n=1}^{\infty} a_n$$

oraz

$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = g$$

 $Je\dot{z}eli\ g < 1\ to\ szereg\ jest\ zbieżny$

Jeżeli g > 1 to szereg jest rozbieżny

 $Jeżeli\ g=1\ to\ nie\ da\ się\ określić\ zbieżności\ szeregu\ przy\ pomocy\ tego\ kryterium.$

Przykład

Zbadać zbieżność szeregu przy pomocy kryterium d'Alemberta (12.1).

$$\sum_{n=1}^{\infty} \frac{n!}{10^n} > 0$$

$$a_n = \frac{n!}{10^n}; \qquad a_{n+1} = \frac{(n+1)!}{10^{n+1}}$$

$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \left| \frac{(n+1)\cancel{n}!}{10 \cdot \cancel{10^n}} \cdot \frac{\cancel{10^n}}{\cancel{n}!} \right| =$$

$$= \lim_{n \to \infty} \left| \frac{n+1}{10} \right| = \infty$$

Na podstawie kryterium d'Alemberta (12.1) szereg ten jest rozbieżny.

Kryterium 12.2 (Kryterium Cauchy'ego). Dany jest szereg:

$$\sum_{n=1}^{\infty} a_n$$

oraz

$$\lim_{n \to \infty} \sqrt[n]{|a_n|} = g$$

 $Je\dot{z}eli\ g < 1\ to\ szereg\ jest\ zbie\dot{z}ny$

 $Je\dot{z}eli\ q > 1$ to szereg jest rozbieżny

Jeżeli g = 1 to nie da się określić zbieżności szeregu przy pomocy tego kryterium

Przykład

Zbadać zbieżność szeregu przy pomocy kryterium Cauchy'ego (12.2)

$$\sum_{n=1}^{\infty} \left(\frac{n}{7n+8}\right)^n$$

$$a_n = \left(\frac{n}{7n+8}\right)^n$$

$$\lim_{n \to \infty} \sqrt[n]{\left(\frac{n}{7n+8}\right)^n} = \lim_{n \to \infty} \frac{n}{7n+8} = \frac{1}{7} < 0$$

Na podstawie kryterium Cauchy'ego (12.2) szereg ten jest zbieżny.

Definicja 12.4. Szereg

$$\sum_{n=1}^{\infty} \frac{1}{n}$$

nazywamy szeregiem harmonicznym

Definicja 12.5. Szereg postaci:

$$\sum_{n=1}^{\infty} \frac{1}{n^p}$$

nazywamy szeregiem harmonicznym rzędu p Szereg harmoniczny rzędu

- 1. p > 1 jest zbieżny
- 2. $p \in (0; 1)$ jest rozbieżny

Kryterium 12.3 (Kryterium porównawcze). Dane są szeregi:

$$\sum_{n=1}^{\infty} a_n \qquad oraz \qquad \sum_{n=1}^{\infty} b_n$$

takie, że:

$$\forall n > n_0 \ 0 \leqslant a_n \leqslant b_n$$

Wówczas:

- Jeżeli
$$\sum_{n=1}^{\infty} b_n$$
 jest zbieżny, to $\sum_{n=1}^{\infty} a_n$ jest zbieżny

- Jeżeli
$$\sum_{n=1}^{\infty} a_n$$
 jest rozbieżny, to $\sum_{n=1}^{\infty} b_n$ jest rozbieżny

Przykład

Zbadać zbieżność szeregu

$$\sum_{n=1}^{\infty} \frac{1}{(3n-1)^2}$$

$$a_n = \frac{1}{(3n-1)^2} \geqslant \frac{1}{(3n)^2} = \frac{1}{9n^2}$$

 $\sum_{n=1}^{\infty} \frac{1}{9n^2}$ – jest to szereg harmoniczny rzędu 2, więc jest on zbieżny.

$$a_n \leqslant \frac{1}{(2n)^2} = \frac{1}{4n^2}$$

 $\sum_{n=1}^{\infty}\frac{1}{4n^2}$ – jest to szereg harmoniczny rzędu 2, więc jest on zbieżny.

$$\sum_{n=1}^{\infty} \frac{1}{4n^2} \text{ jest zbieżny} \stackrel{KP}{\Longrightarrow} \sum_{n=1}^{\infty} \frac{1}{(3n-1)^2} \text{ jest zbieżny}$$

12.3 Szereg naprzemienny

Definicja 12.6. Szereg liczbowy postaci:

$$\sum_{n=1}^{\infty} (-1)^n a_n \qquad \forall n \in \mathbb{N} \ a_n > 0$$

nazywamy szeregiem naprzemiennym.

Kryterium 12.4 (Kryterium Leibniza). Jeżeli:

- 1. od pewnego $n_0 \in \mathbb{N}$ ciąg jest nierosnący
- $2. \lim_{n \to \infty} a_n = 0$

to szereg naprzemienny $\sum_{n=1}^{\infty} (-1)^n a_n$ jest zbieżny

Definicja 12.7. Szereg liczbowy $\sum_{n=1}^{\infty} a_n$, nazywamy bezwzględnie zbieżnym jeżeli szereg

$$\sum_{n=1}^{\infty} |a_n|$$

jest zbieżny

Szereg liczbowy zbieżny ale niezbieżny bezwzględnie, nazywamy warunkowo zbieżnym. Jeżeli dany szereg jest bezwzględnie zbieżny, to jest zbieżny Twierdzenie odwrotne nie jest prawdziwe

Przykład

Zbadać zbieżność warunkową i bezwzględną szeregu: $\sum_{n=1}^{\infty} \frac{(-1)^n}{n}$

Zbieżność bezwzględna

$$\sum_{n=1}^{\infty} \left| \frac{(-1)^n}{n} \right| = \sum_{n=1}^{\infty} \left| \frac{1}{n} \right|$$

 $\sum_{n=1}^{\infty} \left| \frac{1}{n} \right| - \text{szereg harmoniczny rzędu 1, więc rozbieżny.}$

Szereg ten nie jest zbieżny bezwzględnie

Zbieżność warunkowa

$$a_n = \frac{1}{n}$$
 – jest malejący
$$\lim_{n \to \infty} \frac{1}{n} = 0$$

Na podstawie kryterium Leibniza (12.4) szereg ten jest warunkowo zbieżny.

13. Szeregi potegowe

13.1 Pojęcie szeregu potęgowego

Szeregiem potęgowym o środku w punkcie $x_0 \in \mathbb{R}$ i współczynnikach $c_n \in \mathbb{R}$; $(n \in \mathbb{N})$, nazywamy szereg:

$$\sum_{n=1}^{\infty} c_n (x - x_0)^n$$

Definicja 13.1. Promień zbieżności szeregu potęgowego $\sum_{n=1}^{\infty} c_n(x-x_0)^n$ to liczba

$$R = \begin{cases} 0; & dla \ g = \infty \\ \frac{1}{g}; & dla \ 0 < g < \infty \\ \infty; & dla \ g = 0 \end{cases}$$

gdzie:

$$g = \lim_{n \to \infty} \left| \frac{c_{n+1}}{c_n} \right| = \lim_{n \to \infty} \sqrt[n]{|c_n|}$$

Twierdzenie 13.1 (Twierdzenie Cauchy'ego - Hadamarda). Jeżeli $R \in (0, \infty)$ jest promieniem zbieżności szeregu

$$\sum_{n=1}^{\infty} c_n (x - x_0)^n$$

Wtedy szereg ten jest:

- 1. Zbieżny bezwzględnie w każdym punkcie przedziału $(x_0 R; x_0 + R)$
- 2. Rozbieżny w każdym punkcie zbioru $(-\infty; x_0 R) \cup (x_0 + R; \infty)$

Na krańcach przedziału $(x_0 - R; x_0 + R)$ szereg może być zbieżny lub rozbieżny

Przedziałem zbieżności szeregu potęgowego $\sum_{n=1}^{\infty} c_n (x-x_0)^n$ nazywamy zbiór:

$${x \colon x \in \mathbb{R}; \sum_{n=1}^{\infty} c_n (x - x_0)^n \text{jest zbieżny}}$$

13.2 Szereg Taylora i szereg Maclaurina

Wzór Taylora

Jeżeli funkcja f ma w przedziale $\langle x_0; x \rangle$ pochodną rzędu n-1 oraz pochodną rzędu n w przedziale $(x_0; x)$ wówczas istnieje $c \in (x_0; x)$ takie, że:

$$f(x) = f(x_0) + \frac{f'(x_0)}{l!}(x - x_0) + \frac{f''(x_0)}{2!}(x - x_0)^2 + \dots + \frac{f^{(n)}(c)}{n!}(x - x_0)^n$$
 (13.1)

Wielomian Taylora

Wielomian postaci:

$$f(x_0) + \frac{f'(x_0)}{l!}(x - x_0) + \frac{f''(x_0)}{2!}(x - x_0)^2 + \dots + \frac{f^{(n-1)}(x_0)}{(n-1)!}(x - x_0)^{n-1}$$
 (13.2)

nazywamy wielomianem Taylora

Resztea LaGrange'a

$$R_n = \frac{f^{(n)}(c)}{n!} (x - x_0)^n \tag{13.3}$$

Takie wyrażenie nazywamy n-tą resztą LaGrange'a rozwinięcia Taylora funkcji f.

Szereg Taylora

Załóżmy, że funkcja f ma pochodne wszystkich rzędów w pewnym otoczeniu $U(x_0)$. Szereg

$$\sum_{n=0}^{\infty} \frac{f^{(x_0)}(c)}{n!} (x - x_0)^n \tag{13.4}$$

nazywamy szeregiem Taylora funkcji f w otoczeniu $U(x_0)$

Szereg Maclaurina

W szczególności dla $x_0 = 0$ szereg

$$\sum_{n=0}^{\infty} \frac{f^{(x_0)}(c)}{n!} x^n \tag{13.5}$$

nazywamy szeregiem Maclaurina funkcji f

Przykład

Znaleźć szereg Maclaurina dla funkcji $f(x) = \sin 2x$

$$f^{(n)}(x) = \begin{cases} (-1)^k \sin 2x & \text{dla } n = 2k \\ (-1)^k \cos 2x & \text{dla } n = 2k + 1 \end{cases} \qquad k \in \mathbb{N}$$

$$f'(0) = 2 \qquad f''(0) = 0$$

$$f'''(0) = -8 \qquad f^{(4)}(0) = 0$$

$$f^{(5)}(0) = 32$$

$$f^{(n)}(0) = \begin{cases} 0 & \text{dla } n = 2k \\ (-1)^k 2^n & \text{dla } n = 2k + 1 \end{cases} \qquad k \in \mathbb{N}$$

Szereg Maclaurina funkcji f

$$\sum_{n=0}^{\infty} \frac{(-1)^k \cdot 2^{k+1}}{(2k+1)!} x^{2k+1}$$

Zadanie 1. Wyznaczyć szereg Maclaurina dla funkcji $f(x) = \frac{1}{1-x}$, a następnie wyznaczyć jego przedział zbieżności.

14. Całka nieoznaczona

14.1 Pojęcie całki nieoznaczonej

Definicja 14.1. Mówimy, że funkcja y = F(x) jest funkcją pierwotną funkcji y = f(x), jeżeli:

$$F'(x) = f(x)$$

Przykład $F(x) = \sin x$; dla $x \in \mathbb{R}$ $f(x) = \cos x$ bo $(\sin x)' = \cos x$ dla $x \in \mathbb{R}$

Twierdzenie 14.1. Jeżeli funkcja F(x) jest funkcją pierwotną funkcji f(x) (w pewnym przedziale) to funkcja F(x)+C (C - stała rzeczywista) jest również funkcja pierwotną funkcji f(x).

Zatem każdą funkcja pierwotną funkcji f (w danym przedziale) można przedstawić za pomocą sumy y = F(x) + C

Twierdzenie 14.2. Każda funkcja ciągła na danym przedziale ma w tym przedziale funkcje pierwotną

Definicja 14.2. Zbiór wszystkich funkcji pierwotnych funkcji f(x) na danym przedziale nazywamy całką nieoznaczoną funkcji f(x) na tym przedziale i oznaczamy symbolem:

$$\int f(x) \, dx$$

$$\left[\int f(x) \, dx = F(x) + C \right] \iff \left[F(x) + C \right]' = f(x)$$

14.2 Wzory

$$\int 0 dx = C$$

$$\int 1 dx = x + C$$

$$\int x^{\alpha} dx = \frac{x^{\alpha+1}}{\alpha+1} + C$$

$$\int x^{-1} dx = \ln|x| + C$$

$$\int e^{x} dx = e^{x} + C$$

$$C \in \mathbb{R} \ (14.1)$$

$$x \in \mathbb{R}; \alpha \in \mathbb{R} \setminus \{-1\} \ (14.3)$$

$$x \in \mathbb{R} \ (14.4)$$

$$\int \sin x \, dx = -\cos x + C \qquad x \in \mathbb{R} \quad (14.6)$$

$$\int \cos x \, dx = \sin x + C \qquad x \in \mathbb{R} \quad (14.7)$$

$$\int \frac{1}{\cos^2 x} \, dx = \operatorname{tg} x + C \qquad x \in \mathbb{R} \quad (14.8)$$

$$\int \frac{1}{\sin^2 x} \, dx = \operatorname{ctg} x + C \qquad x \in \mathbb{R} \quad (14.9)$$

$$\int (f(x) + g(x)) \, dx = \int f(x) \, dx + \int g(x) \, dx \qquad (14.10)$$

$$\int \frac{f'(x)}{f(x)} \, dx = \ln|f(x)| + C \qquad (14.11)$$

14.3 Całkowanie przez części

Twierdzenie 14.3. Jeżeli funkcje f i g mają ciągłe pochodne, to:

$$\int f(x) \cdot g'(x) dx = f(x)g(x) - \int f'(x) \cdot g(x) dx \qquad (14.12)$$

Przykład

a)
$$\int x^{2}e^{x} dx$$

$$f(x) = x^{2} \quad f'(x) = 2x$$

$$g'(x) = e^{x} \quad g(x) = e^{x}$$

$$\int x^{2}e^{x} dx = x^{2}e^{x} - 2 \int xe^{x} dx$$

$$h(x) = x \quad h'(x) = 1$$

$$i'(x) = e^{x} \quad i(x) = e^{x}$$

$$\int x^{2}e^{x} dx = x^{2}e^{x} - 2 \left(xe^{x} - \int e^{x} dx\right) =$$

$$= x^{2}e^{x} - 2xe^{x} + 2e^{x} + C = e^{x}(x^{2} - 2x + 2) + C$$
b)
$$\int \ln x dx$$

$$f(x) = \ln x \quad f'(x) = \frac{1}{x}$$

$$g'(x) = 1 \quad g(x) = x$$

$$\int \ln x dx = x \ln x - \int \frac{1}{x} \cdot x dx = x \ln x - x + C$$

14.4 Całkowanie przez zamianę zmiennych

Jeżeli funkcja $f: I \to \mathbb{R}$ jest ciągła na przedziale I, a funkcja $\varphi: J \to I$ ma ciągła pochodną na przedziale J, to:

$$\int f(x) dx = \int f(\varphi(t))\varphi'(t) dt = F(\varphi(t)) + C$$
 (14.13)

gdzie F jest dowolną funkcją pierwotną funkcji f oraz $C \in \mathbb{R}$

Przykład

a)
$$\int (9x+1)^{2019} dx$$

$$t = 9x+1 \quad \frac{dt}{dx} = 9$$

$$dt = 9dx \quad dx = \frac{dt}{9}$$

$$\int t^{2019} \frac{dt}{9} = \frac{1}{9} \int t^{2019} dt = \frac{1}{9} \cdot \frac{t^{2020}}{2020} + C = \frac{1}{9 \cdot 2020} (9x+1)^{2020} + C$$

b)
$$\int \sin^3 x \, dx = \int \sin^2 x \cdot \sin x \, dx =$$

$$= \int (1 - \cos^2 x) \sin x \, dx$$

$$t = \cos x \quad dt = -\sin x dx$$

$$dx = -\frac{dt}{\sin x}$$

$$\int (1 - \cos^2 x) \sin x \, dx = -\int (1 - t^2) \sin x \, \frac{dt}{\sin x} =$$

$$= -(t - \frac{1}{3}t^3) + C = \frac{1}{3}\cos^3 x - \cos x + C$$

14.5 Całkowanie funkcji wymiernych

$$\int \frac{1}{ax^2 + bx + c} \, dx$$

Przypadek I. $ax^2 + bx + c$; $\Delta = 0$

$$\int \frac{1}{x^2 + 4x + 4} dx = \int \frac{1}{(x+2)^2} dx$$
$$t = x + 2 \quad dt = dx$$
$$\int \frac{1}{(x+2)^2} dx = \int \frac{dt}{t^2} = -\frac{1}{t} + C = -\frac{1}{x+2} + C$$

Przypadek II. $ax^2 + bx + c$; $\Delta > 0$

$$\int \frac{1}{x^2 - 1} \, dx = \int \frac{dx}{(x - 1)(x + 1)}$$

Ułamek podwójny

$$\frac{1}{(x-1)(x+1)} = \frac{A}{x+1} + \frac{B}{x-1} =$$

$$= \frac{A(x-1) + B(x+1)}{(x+1)(x-1)}$$

$$1 = Ax - A + Bx + B$$

$$\begin{cases} 0 = A + B \\ 1 = -A + B \end{cases}$$

$$-1 = 2A$$

$$A = -\frac{1}{2}; \quad B = \frac{1}{2}$$

$$\int \frac{dx}{(x-1)(x+1)} = \int \left(\frac{-\frac{1}{2}}{x+1} + \frac{\frac{1}{2}}{x-1}\right) dx =$$

$$= \frac{1}{2} \int \left(\frac{1}{x-1} - \frac{1}{x+1}\right) dx$$

W przypadku ogólnym

$$\int \frac{dx}{x+a}$$

$$t = x+a; \quad dt = dx$$

$$\int \frac{1}{t} dt = \ln|t| + C$$

więc

$$\frac{1}{2} \int \left(\frac{1}{x-1} - \frac{1}{x+1} \right) dx = \frac{1}{2} (\ln|x-1| - \ln|x+1|) + C =$$

$$= \frac{1}{2} \ln\left| \frac{x-1}{x+1} \right| + C$$

15. Całka oznaczona

15.1 Pojęcie całki oznaczonej

Definicja 15.1. Niech $f: \langle a; b \rangle \to \mathbb{R}$ będzie funkcją ograniczoną Podziałem \mathcal{P}_m odcinka $\langle a; b \rangle$, nazywamy dowolny skończony ciąg punktów

$$a = x_0 < x_1 < \ldots < x_{n_m-1} < x_{n_m} = b$$

Przedziały

$$\langle x_{i-1}; x_i \rangle$$
; $gdzie\ i = 1, 2, 3, \dots, n$

nazywamy przedziałami cząstkowymi podziału \mathcal{P}_m , a ich długość oznaczamy Δx_i Niech δ_m oznacza największą z liczb Δx_i , czyli długość najdłuższego przedziału cząstkowego podziału \mathcal{P}_m .

Ciąg podziałów (\mathcal{P}_m) nazywamy normalnym ciągiem podziałów, jeżeli $\lim_{m\to\infty} \delta_m = 0$

Definicja 15.2. Sumę iloczynów wartości funkcji $f(c_i)$ w dowolnym punkcie c_i przedziału $\langle x_{i-1}; x_i \rangle$ i długości Δx_i tych przedziałów przy podziale \mathcal{P}_m , nazywamy sumą Riemanna

$$S_m = \sum_{i=1}^{n_m} f(c_i) \Delta x_i \tag{15.1}$$

Jeżeli istnieje granica

$$\lim_{m\to\infty} S_m$$

taka sama dla każdego normalnego ciągu podziałów (\mathcal{P}_m) , niezależnie od wyboru punktów c_i , to funkcję f(x) nazywamy funkcją całkowalną w przedziale $\langle a;b\rangle$.

Interpretacja geometryczna sumy Riemanna

Definicja 15.3. Granicę ciągu (S_m) spełniającą powyższe warunki nazywamy całką Riemanna, lub całką oznaczoną funkcji f(x), w granicach od a do b i oznaczamy symbolem

$$\int_{a}^{b} f(x) dx \tag{15.2}$$

15.2 Własności

Zakładając, że $f \colon \langle a; b \rangle \to \mathbb{R}$ jest całkowalna:

$$\int_{a}^{b} [f(x) + g(x)] dx = \int_{a}^{b} f(x) dx + \int_{a}^{b} g(x) dx$$
 (15.3)

$$\int_{a}^{b} af(x) \, dx = a \int_{a}^{b} f(x) \, dx \tag{15.4}$$

$$\int_{a}^{b} g(x) dx = -\int_{b}^{a} g(x) dx \tag{15.5}$$

$$\int_{a}^{b} f(x) dx = \int_{a}^{c} f(x) dx + \int_{c}^{b} f(x) dx$$
 dla $a < c < b$ (15.6)

Twierdzenie 15.1 (Twierdzenie Newtona-Leibniza). *Jeżeli funkcja jest ciągła na przedziale* $\langle a;b\rangle$, to

$$\int_{a}^{b} f(x) dx = [F(b) - F(a)]$$
 (15.7)

 $gdzie\ F\ jest\ dowolna\ funkcja\ pierwotna\ funkcji\ f\ na\ tym\ przedziale.$

Przykład

Obliczyć całkę na przedziale $\langle -1;2\rangle$ z funkcji $f(x)=x^2-2x$

$$\int (x^2 - 2x) dx = \frac{1}{3}x^3 - x^2 + C$$

$$\int_{-1}^2 (x^2 - 2x) dx = \left[\left(\frac{1}{3} \cdot 2^3 - 4 \right) - \left(\frac{1}{3} (-1)^3 - 1 \right) \right] = 3 - 3 = 0$$

Przykład

Za pomocą całki oznaczonej obliczyć pole obszaru ograniczonego wykresami funkcji $y=x^2$ i y=x

Wyznaczamy granice całkowania i obliczamy pole korzystając z twierdzenia 15.1 (Twierdzenia Newtona-Leibniza)

$$\begin{cases} y = x^2 \\ y = x \end{cases}$$

$$0 = x^2 - x$$

$$x_1 = 0 \quad x_2 = 1$$

$$\int (x - x^2) dx = \frac{1}{2}x^2 - \frac{1}{3}x^3 + C$$

$$\int_0^1 (x - x^2) dx = \left[\left(\frac{1}{2} - \frac{1}{3} \right) - 0 \right] = \frac{3}{6} - \frac{2}{6} = \frac{1}{6}$$

15.3 Zastosowania całki oznaczonej

- 1 Wyznaczanie pola ograniczonego krzywymi
- 2 Wyznaczanie objętości bryły obrotowej powstałej z obrotu krzywej

$$|V| = \int_{a}^{b} f^{2}(x) dx \tag{15.8}$$

BIBLIOGRAFIA

- [1] W. Krysicki, L. Włodarski. *Analiza Matematyczna w Zadaniach 1.*, Wydawnictwo naukowe PWN SA, Warszawa, Wydanie XXIX, 2018.
- [2] Wikipedia contributors. Riemann sum, Wikipedia, The Free Encyclopedia, https://en.wikipedia.org/w/index.php?title=Riemann_sum&oldid=873980898, 16 December 2018 09:58 UTC.