Listing of Claims:

This claim listing will replace all prior versions, and listings, of claims in the application.

1. (WITHDRAWN) A method for performing a diagnostic or therapeutic procedure comprising administering to an individual an effective amount of the compound of formula 4

$$R^{72}$$
 R^{72}
 R^{73}
 R^{74}
 R^{75}
 R^{76}
 R^{76}
 R^{76}
 R^{76}
 R^{76}
 R^{77}
 R^{78}
 R^{78}

wherein

 $Z^6 \text{ is selected from the group consisting of hydrogen, } C_1\text{-}C_{10} \text{ alkyl, } C_5\text{-}C_{20} \text{ aryl, } C_1\text{-}C_{10} \text{ alkoxyl, } C_1\text{-}C_{10} \text{ polyalkoxyalkyl, } C_1\text{-}C_{20} \text{ polyhydroxyalkyl, } C_5\text{-}C_{20} \text{ polyhydroxyaryl, } C_1\text{-}C_{10} \text{ aminoalkyl, } C_1\text{-}C_10 \text{ aminoalkyl, } C_2\text{-}$

 B_4 , C_4 , and D_4 are independently selected from the group consisting of -O-, -S-, -Se-, -P-, -CR¹R², -CR¹, alkyl, NR³, and -C=O;

 A_4 , B_4 , C_4 , and D_4 may together form a 6- to 12-membered carbocyclic ring or a 6- to 12-membered heterocyclic ring optionally containing one or more oxygen, nitrogen, or sulfur atom; a_6 is from 0 to 5; R^1 to R^4 , and R^{67} to R^{79} are independently selected from the group consisting of hydrogen, C_1 - C_{10} alkyl, C_5 - C_{20} aryl, C_1 - C_{10} alkoxyl, C_1 - C_{10} polyalkoxyalkyl, C_1 - C_{20} polyhydroxyalkyl, C_5 - C_{20}

polyhydroxyaryl, C₁-C₁₀ aminoalkyl, glucose derivatives of R groups, cyano, nitro, halogen, saccharide, peptide, -CH₂(CH₂OCH₂)_b-CH₂-OH, -(CH₂)_a-CO₂H, -(CH₂)_a-CONH-Bm, -CH₂-(CH₂OCH₂)_b-CH₂-CONH-Bm, -(CH₂)_a-OH and -CH₂-(CH₂OCH₂)_b-CO₂H; Bm and Dm are independently selected from the group consisting of a bioactive peptide, a protein, a cell, an antibody, an antibody fragment, a saccharide, a glycopeptide, a peptidomimetic, a drug, a drug mimic, a hormone, a metal a chelating agent, a radioactive or nonradioactive metal complex, and an echogenic agent;

a and c are independently from 1 to 20; and b and d are independently from 1 to 100, with the proviso that either Y^6 or Z^6 contains a biomolecule Bm or Dm, and with the proviso that when W^6 and X^6 are $C((CH_2)OH)_2$, Y^6 is not $(CH_2)_2$ -CONH-Bm, activating the compound, and performing the diagnostic or therapeutic procedure.

2. (WITHDRAWN) The method of claim 1 comprising administering to an individual an effective amount of the compound wherein W⁶ and X⁶ are independently selected from the group consisting of -C(CH₃)₂, $-C((CH_2)_aOH)CH_3$, $-C((CH_2)_aOH)_2$, $-C((CH_2)_aCO_2H)CH_3$, $-C((CH_2)_aCO_2H)_2$, $-C((CH_2)_aNH_2)CH_3$, $C((CH_2)_aNH_2)_2$, $C((CH_2)_aNR^3R^4)_2$, -NR³, and -S-; Y⁶ is selected from the group consisting of hydrogen, C_1 - C_{10} alkyl, C_5 - C_{20} aryl, C_1 - C_{10} alkoxyl, C_1 - C_{10} polyalkoxyalkyl, C_1 - C_{20} polyhydroxyalkyl, C_5 - C_{20} polyhydroxyaryl, C₁-C₁₀ aminoalkyl, -CH₂(CH₂OCH₂)_b-CH₂-OH, -(CH₂)_a-CO₂H, -(CH₂)_a-CONH-Bm, -CH₂- $(CH_2OCH_2)_b$ - CH_2 -CONH-Bm, $-(CH_2)_a$ -NHCO-Bm, $-CH_2$ - $(CH_2OCH_2)_b$ - CH_2 -NHCO-Bm, $-(CH_2)_a$ - NR^3R^4 , and -CH₂(CH₂OCH₂)_b-CH₂NR³R⁴; Z⁶ is selected from the group consisting of hydrogen, C₁-C₁₀ alkyl, C₅- C_{20} aryl, C_1 - C_{10} alkoxyl, C_1 - C_{10} polyalkoxyalkyl, C_1 - C_{20} polyhydroxyalkyl, C_5 - C_{20} polyhydroxyaryl, C_1 - C_{10} aminoalkyl, -CH₂(CH₂OCH₂)_b-CH₂-OH, -(CH₂)_a-CO₂H, -(CH₂)_a-CONH-Dm, -CH₂-(CH₂OCH₂)_b-CH₂-CONH-Dm, -(CH₂)_a-NHCO-Dm, -CH₂-(CH₂OCH₂)_b-CH₂-NHCO-Dm, -(CH₂)_a-NR³R⁴, and -CH₂(CH₂OCH₂)_b-CH₂NR³R⁴; A₄ is a single or a double bond; B₄, C₄, and D₄ are independently selected from the group consisting of -O-, -S-, NR³, (CH2)_a -CR¹R², and -CR¹; A₄, B₄, C₄, and D₄ may together form a 6- to 10-membered carbocyclic ring or a 6- to 10-membered heterocyclic ring optionally containing one or more oxygen, nitrogen, or sulfur atom; a_6 is from 0 to 3; R^1 to R^4 , and R^{67} to R^{79} are independently selected from the group consisting of hydrogen, C₁-C₁₀ alkyl, C₅-C₁₂ aryl, C₁-C₁₀ alkoxyl, C₁-C₁₀ polyhydroxyalkyl, C₅-C₁₂ polyhydroxyaryl, C₁-C₁₀ aminoalkyl, mono- or oligosaccharide, peptide with 2 to 30 amino acid units, -CH₂(CH₂OCH₂)_b-CH₂-OH, -(CH₂)_a-CO₂H, -(CH₂)_a-CONH-Bm, -CH₂-(CH₂OCH₂)_b-CH₂-CONH-Bm, -(CH₂)_a-NHCO-Bm, -CH₂-(CH₂OCH₂)_b-CH₂-NHCO-Bm, -(CH₂)_a-OH and -CH₂-(CH₂OCH₂)_b-CO₂H; Bm and Dm are independently selected from the group consisting of a bioactive peptide containing 2 to 30 amino acid units, an antibody, a mono- or oligosaccharide, a glycopeptide, a metal chelating agent, a radioactive or nonradioactive metal complex, and an echogenic agent; a and c are independently from 1 to 10; and b and d are independently from 1 to 30, with the proviso that either Y⁶ or Z⁶ contains a biomolecule Bm or Dm.

- 3. (WITHDRAWN) The method of claim 2 comprising administering to an individual an effective amount of the compound wherein each of W^6 and X^6 is $C((CH_2)OH)_2$; Y^6 is $-(CH_2)_2$ -CONH-Bm; Z^6 is $-(CH_2)_2$ -CO $_2$ H; A_4 is a single bond; A_4 , B_4 , C_4 , and D_4 together form a 6-membered carbocyclic ring; a_6 is 1; R^{67} is galactose; each R^{68} to R^{79} is hydrogen; and Bm is Octreotate.
- 4. (WITHDRAWN) The method of claim 1 wherein said procedure utilizes light of wavelength in the region of 350-1300 nm.
- 5. (WITHDRAWN) The method of claim 1 wherein the diagnostic procedure is optical tomography.
- 6. (WITHDRAWN) The method of claim 1 wherein said diagnostic procedure is fluorescence endoscopy.
- 7. (WITHDRAWN) The method of claim 1 further comprising monitoring a blood clearance profile of said compound by a method selected from the group consisting of fluorescence, absorbance, and light scattering, wherein light of wavelength in the region of 350-1300 nm is used.
- 8. (WITHDRAWN) The method of claim 1 wherein said procedure further comprises imaging and therapy, wherein said imaging and therapy is selected from the group consisting of absorption, light scattering, photoacoustic and sonofluoresence technique.
- 9. (WITHDRAWN) The method of claim 1 wherein said procedure is capable of diagnosing atherosclerotic plaques and blood clots.
- 10. (WITHDRAWN) The method of claim 1 wherein said procedure comprises administering localized therapy.
- 11. (WITHDRAWN) The method of claim 1 wherein said therapeutic procedure comprises photodynamic therapy.
- 12. (WITHDRAWN) The method of claim 1 wherein said therapeutic procedure comprises laser assisted guided surgery for the detection of micrometastases.
- 13. (WITHDRAWN) The method of claim 1 further comprising adding a biocompatible organic solvent at a concentration of one to fifty percent to the compound to prevent *in vivo* or *in vitro* fluorescence quenching.

- 14. (WITHDRAWN) The method of claim 13 wherein said compound is dissolved in a medium comprising one to fifty percent of at least one of dimethyl sulfoxide, ethyl alcohol, isopropyl alcohol, or glycerol.
- 15. (WITHDRAWN) The method of claim 1 wherein the compound comprises one to ten groups containing Bm, Dm, and combinations thereof providing a cooperative effect to enhance binding of the compound.
- 16. (WITHDRAWN) The method of claim 15 further comprising attaching a compound selected from the group consisting of a porphyrin and a photodynamic therapy agent to biomolecule Bm or Dm, and providing light of a wavelength sufficient to activate the porphyrin or phototherapy agent.
- 17. (WITHDRAWN) The method of claim 15 wherein the procedure monitors blood clearance of the compound to detect an abnormality.
- 18. (WITHDRAWN) The method of claim 15 further comprising activating the compound prior to performing the procedure.
- 19. (WITHDRAWN) The method of claim 1 further comprising administering a non-optical contrast agent and imaging by at least one of magnetic resonance, ultrasound, X-ray, positron emission tomography, computed tomography, and single photon emission computed tomography.
- 20. (WITHDRAWN) The method of claim 1 wherein the compound administered has at least one R group replaced by EDTA, DOTA, or DOTA.
- 21. (WITHDRAWN) The method of claim 20 wherein the compound administered further comprises a radioactive metal ion or a paramagnetic metal ion.
- 22. (WITHDRAWN) The method of claim 21 further comprising imaging by at least one of optical imaging or magnetic resonance imaging.
- 23. (WITHDRAWN) The method of claim 1 wherein the compound is administered in a formulation selected from at least one of liposomes, micelles, microcapsules, or microparticles.
- 24. (WITHDRAWN) A method of imaging a patient comprising administering a non-optical contrast agent composition further comprising the compound of claim 1 and performing at least one of an optical imaging procedure or a non-optical imaging procedure.

- 25. (WITHDRAWN) The method of claim 24 wherein the non-optical contrast agent composition is chosen from a magnetic resonance composition, a computed tomography composition, an x-ray composition, a nuclear imaging composition, a positron emission tomography composition, a single photon emission computed tomography composition, or an ultrasound composition.
- 26. (WITHDRAWN) The method of claim 25 wherein the compound stablilizes or buffers the non-optical contrast agent composition.
- 27. (WITHDRAWN) A method to reduce aggregation of a dye administerable to a patient for a photodiagnostic or phototherapeutic procedure comprising adding to the dye a biocompatible organic solvent at a concentration ranging from about 1% to about 50% to reduce dye aggregation.
- 28. (WITHDRAWN) The method of claim 27 wherein the biocompatible organic solvent is added to a pharmaceutically acceptable formulation of the dye.
- 29. (WITHDRAWN) The method of claim 27 wherein the dye is dissolved or suspended in the biocompatible organic solvent.
- 30. (WITHDRAWN) The method of claim 27 where the biocompatible organic solvent is selected from the group consisting of dimethylsulfoxide, ethyl alcohol, isopropyl alcohol, glycerol, a polyol, or combinations thereof.
- 31. (WITHDRAWN) The method of claim 27 wherein the dye is represented by formulas 1, 2, 3, or 4.
- 32. (ORIGINAL) A method to enhance fluorescence of a dye administerable to a patient for a photodiagnostic or phototherapeutic procedure comprising adding to the dye a biocompatible organic solvent at a concentration ranging from about 1% to about 50% to enhance dye fluorescence.
- 33. (ORIGINAL) The method of claim 32 wherein the biocompatible organic solvent is added to a pharmaceutically acceptable formulation of the dye.
- 34. (ORIGINAL) The method of claim 32 wherein the dye is dissolved or suspended in the biocompatible organic solvent.
- 35. (CURRENTLY AMENDED) The method of claim 32 where the biocompatible organic solvent is selected from the group consisting of dimethylsulfoxide, ethyl alcohol, isopropyl alcohol, glycerol, a polyol[[,]] such as sorbitol, mannitol, xylitol, lactitol, erythritol, polydextrose, sucrose, fructose, maltose, hydrogenated starch hydrolysate (HSH), isomalt (palitinit), polyglycerol, hyperbranched polyglycerol.

acetylated polyols, maltodextrine, cyclodextrine, dianhydosorbitol, starches, polysaccharides, [[or]] and combinations thereof.

36. (WITHDRAWN) The method of claim 32 wherein the dye is represented by formulas 1, 2, 3, or 4.

37. (WITHDRAWN) A method to maintain fluorescence of a dye in a photodiagnosis or phototherapy procedure comprising administering to an individual an effective amount of a composition comprising a biocompatible organic solvent at a concentration from about 1% to about 50% and a dye of formula 4

$$R^{72}$$
 R^{72}
 R^{73}
 R^{74}
 R^{76}
 R^{76}

wherein

W⁶ and X⁶ are independently selected from the group consisting of -CR¹R², -O-, -NR³, and -S-; Y⁶ is selected from the group consisting of hydrogen, C₁-C₁₀ alkyl, C₅-C₂₀ aryl, C₁-C₁₀ alkoxyl, C₁-C₁₀ polyalkoxyalkyl, C₁-C₂₀ polyhydroxyalkyl, C₅-C₂₀ polyhydroxyaryl, C₁-C₁₀ aminoalkyl, - CH₂(CH₂OCH₂)_b-CH₂-OH, -(CH₂)_a-CO₂H, -(CH₂)_a-CONH-Bm, -CH₂-(CH₂OCH₂)_b-CH₂-CONH-Bm, -(CH₂)_a-N(R³)-(CH₂)_b-CONH-Bm, (CH₂)_a-N(R³)-(CH₂)_a-NHCO-Bm, -(CH₂)_a-N(R³)-CH₂-(CH₂OCH₂)_b-CH₂-CONH-Bm, -(CH₂)_a-N(R³)-CH₂-(CH₂OCH₂)_b-CH₂-N(R³)-CH₂-(C

 $Z^6 \text{ is selected from the group consisting of hydrogen, C_1-C_{10} alkyl, C_5-C_{20} aryl, C_1-C_{10} alkoxyl, C_1-C_{10} polyalkoxyalkyl, C_1-C_{20} polyhydroxyalkyl, C_5-C_{20} polyhydroxyaryl, C_1-C_{10} aminoalkyl, $-CH_2(CH_2OCH_2)_b$-CH_2-$ONH-Dm, $-CH_2$-$(CH_2OCH_2)_b$-CH_2-$CONH-Dm, $-CH_2$-$(CH_2OCH_2)_b$-$CONH-Dm, $-CH_2$-$(CH_2OCH_2)_b$-$CONH-Dm, $-CH_2$-$(CH_2OCH_2)_b$-$CONH-Dm, $-CH_2$-$(CH_2OCH_2)_b$-$CONH-Dm, $-CH_2$-$(CH_2OCH_2)_b$-CH_2-$N(R^3)$-CH_2-$(CH_2OCH_2)_b$-CH_2-$N(R^3)$-CH_2-$(CH_2OCH_2)_b$-CH_2-$N(R^3)$-CH_2-$(CH_2OCH_2)_b$-CH_2-$N(R^3)$-CH_2-$(CH_2OCH_2)_b$-CH_2-$N(R^3)$-CH_2-$(CH_2OCH_2)_b$-CH_2-$N(R^3)$-CH_2-$(CH_2OCH_2)_b$-CH_2-$N(R^3)$-CH_2-$(CH_2OCH_2)_b$-CH_2-$N(R^3)$-CH_2-$(CH_2OCH_2)_b$-CH_2-$N(R^3)$-CH_2-$(CH_2OCH_2)_b$-CH_2-$N(R^3)$-CH_2-$(CH_2OCH_2)_b$-CH_2-$N(R^3)$-CH_2-$(CH_2OCH_2)_b$-CH_2-$N(R^3)$-CH_2-$(CH_2OCH_2)_b$-CH_2-$N(R^3)$-CH_2-$(CH_2OCH_2)_b$-CH_2-$N(R^3)$-CH_2-$(CH_2OCH_2)_b$-CH_2-$N(R^3)$-CH_2-$(CH_2OCH_2)_b$-CH_2-$N(R^3)$-CH_2-$(CH_2OCH_2)_b$-CH_2-$N(R^3)$-CH_2-$(CH_2OCH_2)_b$-CH_2-$N(R^3)$-CH_2-$(CH_2OCH_2)_b$-CH_2-$N(R^3)$-CH_2-$

 A_4 is a single or a double bond; B_4 , C_4 , and D_4 are independently selected from the group consisting of -O-, -S-, -Se-, -P-, -CR¹R², -CR¹, alkyl, NR³, and -C=O;

 A_4 , B_4 , C_4 , and D_4 may together form a 6- to 12-membered carbocyclic ring or a 6- to 12-membered heterocyclic ring optionally containing one or more oxygen, nitrogen, or sulfur atom; a_6 is from 0 to 5:

Bm and Dm are independently selected from the group consisting of a bioactive peptide, a protein, a cell, an antibody, an antibody fragment, a saccharide, a glycopeptide, a peptidomimetic, a drug, a drug mimic, a hormone, a metal chelating agent, a radioactive or nonradioactive metal complex, and an echogenic agent;

a and c are independently from 1 to 20; and b and d are independently from 1 to 100.

38. (WITHDRAWN) The method of claim 37 wherein the organic solvent is selected from the group consisting of dimethylsulfoxide, ethyl alcohol, isopropyl alcohol, a polyol, a glycerol, and combinations thereof.

39. (WITHDRAWN) A method to maintain fluorescence of a dye in a photodiagnosis or phototherapy procedure comprising administering to an individual an effective amount of a composition comprising a biocompatible organic solvent at a concentration from about 1% to about 50% and a dye of formula 1

$$R^{32}$$
 R^{33}
 R^{34}
 R^{35}
 R^{34}
 R^{35}
 R^{36}
 R^{30}
 R^{30}

wherein

 W^3 and X^3 may be the same or different and are selected from the group consisting of -CR 1 R 2 , -O-, -NR 3 , -S-;

 $Y^3 \text{ is selected from the group consisting of hydrogen, } C_1\text{-}C_{10} \text{ alkyl, } C_5\text{-}C_{20} \text{ aryl, } C_1\text{-}C_{10} \text{ alkoxyl, } C_1\text{-}C_{10} \text{ polyalkoxyalkyl, } C_1\text{-}C_{20} \text{ polyhydroxyalkyl, } C_5\text{-}C_{20} \text{ polyhydroxyaryl, } C_1\text{-}C_{10} \text{ aminoalkyl, } C_1\text{-}C_1\text{-}C_2\text{-}C$

 $CH_2\text{-NHCO-Bm}, -CH_2\text{-}(CH_2OCH_2)_b\text{-}CH_2\text{-}N(R^3)\text{-}(CH_2)_a\text{-}CONH\text{-}Bm}, -CH_2\text{-}(CH_2OCH_2)_b\text{-}CH_2\text{-}N(R^3)\text{-}(CH_2)_a\text{-}NHCO\text{-}Bm}, -CH_2\text{-}(CH_2OCH_2)_b\text{-}CH_2\text{-}N(R^3)\text{-}(CH_2)_d\text{-}CONH\text{-}Bm}, -CH_2\text{-}(CH_2OCH_2)_b\text{-}CH_2\text{-}N(R^3)\text{-}CH_2\text{-}N(R^3)\text{-}CH_2\text{-}N(R^3)\text{-}CH_2\text{-}NHCO\text{-}Bm}, -(CH_2)_a\text{-}NR^3R^4, \text{ and } -CH_2(CH_2OCH_2)_b\text{-}CH_2NR^3R^4; Z^3 \text{ is selected from the group consisting of hydrogen, } C_1\text{-}C_{10} \text{ alkyl}, C_5\text{-}C_{20} \text{ aryl}, C_1\text{-}C_{10} \text{ alkoxyl}, C_1\text{-}C_{10} \text{ polyalkoxyalkyl}, C_1\text{-}C_{20} \text{ polyhydroxyaryl}, C_1\text{-}C_{10} \text{ aminoalkyl}, -CH_2(CH_2OCH_2)_b\text{-}CH_2\text{-}OH, -(CH_2)_a\text{-}CO_2H, -(CH_2)_a\text{-}CONH\text{-}Dm}, -CH_2\text{-}(CH_2OCH_2)_b\text{-}CH_2\text{-}CONH\text{-}Dm}, -(CH_2)_a\text{-}NHCO\text{-}Dm}, -CH_2\text{-}(CH_2OCH_2)_b\text{-}CH_2\text{-}NHCO\text{-}Dm}, -CH_2\text{-}(CH_2)_a\text{-}N(R^3)\text{-}CH_2\text{-}(CH_2)_a\text{-}N(R^3)\text{-}CH_2\text{-}(CH_2)_a\text{-}N(R^3)\text{-}CH_2\text{-}(CH_2)_a\text{-}N(R^3)\text{-}CH_2\text{-}N(R^3)\text{-}CH_2\text{-}N(R^3)\text{-}CH_2\text{-}N(R^3)\text{-}CH_2\text{-}N(R^3)\text{-}CH_2\text{-}N(R^3)\text{-}CH_2\text{-}N(R^3)\text{-}CH_2\text{-}N(R^3)\text{-}CH_2\text{-}N(R^3)\text{-}CH_2\text{-}N(R^3)\text{-}CH_2\text{-}N(R^3)\text{-}CH_2\text{-}CONH\text{-}Dm}, -CH_2\text{-}(CH_2OCH_2)_b\text{-}CH_2\text{-}N(R^3)\text{-}CH_2\text{-}(CH_2OCH_2)_a\text{-}NHCO\text{-}Dm}, -CH_2\text{-}(CH_2OCH_2)_b\text{-}CH_2\text{-}N(R^3)\text{-}CH_2\text{-}(CH_2OCH_2)_b\text{-}CH_2\text{-}N(R^3)\text{-}CH_2\text{-}(CH_2OCH_2)_a\text{-}NHCO\text{-}Dm}, -CH_2\text{-}(CH_2OCH_2)_b\text{-}CH_2\text{-}N(R^3)\text{-}CH_2\text{-}(CH_2OCH_2)_b\text{-}CH_2\text{-}N(R^3)\text{-}CH_2\text{-}(CH_2OCH_2)_b\text{-}CH_2\text{-}N(R^3)\text{-}CH_2\text{-}(CH_2OCH_2)_b\text{-}CH_2\text{-}N(R^3)\text{-}CH_2\text{-}(CH_2OCH_2)_b\text{-}CH_2\text{-}NHCO\text{-}Dm}, -CH_2\text{-}(CH_2OCH_2)_b\text{-}CH_2\text{-}N(R^3)\text{-}CH_2\text{-}(CH_2OCH_2)_b\text{-}CH_2\text{-}NHCO\text{-}Dm}, -CH_2\text{-}(CH_2OCH_2)_b\text{-}CH_2\text{-}N(R^3)\text{-}CH_2\text{-}(CH_2OCH_2)_b\text{-}CH_2\text{-}N(R^3)\text{-}CH_2\text{-}(CH_2OCH_2)_b\text{-}CH_2\text{-}N(R^3)\text{-}CH_2\text{-}(CH_2OCH_2)_b\text{-}CH_2\text{-}N(R^3)\text{-}CH_2\text{-}(CH_2OCH_2)_b\text{-}CH_2\text{-}N(R^3)\text{-}CH_2\text{-}(CH_2OCH_2)_b\text{-}CH_2\text{-}N(R^3)\text{-}CH_2\text{-}(CH_2OCH_2)_b\text{-}CH_2\text{-}N(R^3)\text{-}CH_2\text{-}(CH_2OCH_2)_b\text{-}CH_2\text{-}N(R^3)\text{-}CH_2\text{-}(CH_2OCH_2)_b\text{-}CH_2\text{-}$

 A_1 is a single or a double bond;

 B_1 , C_1 , and D_1 may the same or different and are selected from the group consisting of -O-, -S-, -Se-, -P-, -CR¹R², -CR¹, alkyl, NR³, and -C=O;

 A_1 , B_1 , C_1 , and D_1 may together form a 6- to 12-membered carbocyclic ring or a 6- to 12-membered heterocyclic ring optionally containing one or more oxygen, nitrogen, or sulfur atom;

a₃ and b₃ independently vary from 0 to 5;

 R^1 to R^4 , and R^{29} to R^{37} are independently selected from the group consisting of hydrogen, C_1 - C_{10} alkyl, C_5 - C_{20} aryl, C_1 - C_{10} alkoxyl, C_1 - C_{10} polyalkoxyalkyl, C_1 - C_{20} polyhydroxyalkyl, C_5 - C_{20} polyhydroxyaryl, C_1 - C_{10} aminoalkyl, glucose derivatives of R groups, cyano, nitro, halogen, saccharide, peptide, $-CH_2(CH_2OCH_2)_b$ - CH_2 -OH, $-(CH_2)_a$ -OH-Bm, $-CH_2$ -COH-Bm, $-CH_2$ -COH-Bm, $-CH_2$ - CH_2OCH_2 - $-CH_2$

Bm and Dm are independently selected from the group consisting of a bioactive peptide, a protein, a cell, an antibody, an antibody fragment, a saccharide, a glycopeptide, a peptidomimetic, a drug, a drug mimic, a hormone, a metal chelating agent, a radioactive or nonradioactive metal complex, a photosensitizer for phototherapy, and an echogenic agent;

a and c are independently from 1 to 20; and b and d are independently from 1 to 100.

- 40. (WITHDRAWN) The method of claim 39 wherein the organic solvent is selected from the group consisting of dimethylsulfoxide, ethyl alcohol, isopropyl alcohol, a polyol, a glycerol, and combinations thereof.
- 41. (WITHDRAWN) A method to maintain fluorescence of a dye in a photodiagnosis or phototherapy procedure comprising administering to an individual an effective amount of a composition comprising a biocompatible organic solvent at a concentration from about 1% to about 50% and a dye of formula 2

$$R^{49}$$
 R^{50}
 R^{51}
 R^{52}
 R^{53}
 R^{54}
 R^{55}
 R^{55}
 R^{55}
 R^{55}
 R^{55}
 R^{55}

wherein

 W^4 and X^4 may be the same or different and are selected from the group consisting of -CR¹R², -O-, -NR³, -S-;

 $Y^4 \text{ is selected from the group consisting of hydrogen, } C_1\text{--}C_{10} \text{ alkyl, } C_5\text{--}C_{20} \text{ aryl, } C_1\text{--}C_{10} \text{ alkoxyl, } C_1\text{--}C_{10} \text{ polyalkoxyalkyl, } C_1\text{--}C_{20} \text{ polyhydroxyalkyl, } C_5\text{--}C_{20} \text{ polyhydroxyaryl, } C_1\text{--}C_{10} \text{ aminoalkyl, } \text{--} CH_2(CH_2OCH_2)_b\text{--}CH_2\text{--}OH, } \text{--}(CH_2)_a\text{--}CO_2H, } \text{--}(CH_2)_a\text{--}CONH\text{--}Bm, } \text{--}CH_2\text{--}(CH_2OCH_2)_b\text{--}CH_2\text{--}CONH\text{--}Bm, } \text{--}(CH_2)_a\text{--}N(R^3)\text{--}(CH_2)_a\text{--}N(R^3)\text{--}(CH_2)_a\text{--}N(R^3)\text{--}(CH_2)_a\text{--}N(R^3)\text{--}(CH_2)_a\text{--}N(R^3)\text{--}(CH_2)_a\text{--}N(R^3)\text{--}(CH_2)_a\text{--}N(R^3)\text{--}(CH_2)_a\text{--}N(R^3)\text{--}(CH_2)_a\text{--}N(R^3)\text{--}(CH_2)_a\text{--}N(R^3)\text{--}(CH_2)_a\text{--}N(R^3)\text{--}(CH_2)_a\text{--}N(R^3)\text{--}(CH_2)_a\text{--}N(R^3)\text{--}(CH_2)_a\text{--}N(R^3)\text{--}(CH_2)_a\text{--}N(R^3)\text{--}(CH_2)_a\text{--}(CH_2)_a\text{--}N(R^3)\text{--}(CH_2)_a\text{--}($

 $Z^4 \text{ is selected from the group consisting of hydrogen, } C_1\text{-}C_{10} \text{ alkyl, } C_5\text{-}C_{20} \text{ aryl, } C_1\text{-}C_{10} \text{ alkoxyl, } C_1\text{-}C_{10} \text{ polyalkoxyalkyl, } C_1\text{-}C_{20} \text{ polyhydroxyalkyl, } C_5\text{-}C_{20} \text{ polyhydroxyaryl, } C_1\text{-}C_{10} \text{ aminoalkyl, } C_1\text{-}C_{10} \text{ polyalkoxyalkyl, } C_1\text{-}C_2\text{-}D_1\text{-}C_2\text{-}D_2\text{-}D_2\text{-}C_2\text{-}D_2\text{-}D_2\text{-}C_2\text{-}D_2\text{-}D_2\text{-}C_2\text{-}D_2\text{-}D_2\text{-}C_2\text{-}D_2\text{-}D_2\text{-}C_2\text{-}D_2\text{-}D_2\text{-}C_2\text{-}D_2\text{-}D_2\text{-}C_2\text{-}D_2\text{-}D_2\text{-}D_2\text{-}D_2\text{-}D_2\text{-}D_2\text{-}D_2\text{-}D_2\text{-}D_2\text{-}D_2\text{-}D_2\text{-}D_2\text{-}D_2\text{-}D_2\text{-}$

 A_2 is a single or a double bond; B_2 , C_2 , and D_2 may be the same or different and are selected from the group consisting of -O-, -S-, -Se-, -P-, -CR¹R², -CR¹, alkyl, NR³, and -C=O;

A₂, B₂, C₂, and D₂ may together form a 6- to 12-membered carbocyclic ring or a 6- to 12-membered heterocyclic ring optionally containing one or more oxygen, nitrogen, or sulfur atom; a₄ and b₄ independently vary from 0 to 5;

Bm and Dm are independently selected from the group consisting of a bioactive peptide, a protein, a cell, an antibody, an antibody fragment, a saccharide, a glycopeptide, a peptidomimetic, a drug, a drug mimic, a hormone, a metal chelating agent, a radioactive or nonradioactive metal complex, a photosensitizer for phototherapy, and an echogenic agent; a and c are independently from 1 to 20; and b and d are independently from 1 to 100.

42. (WITHDRAWN) The method of claim 41 wherein the organic solvent is selected from the group consisting of dimethylsulfoxide, ethyl alcohol, isopropyl alcohol, a polyol, a glycerol, and combinations thereof.

43. (WITHDRAWN) A method to maintain fluorescence of a dye in a photodiagnosis or phototherapy procedure comprising administering to an individual an effective amount of a composition comprising a biocompatible organic solvent at a concentration from about 1% to about 50% and a dye of formula 3

$$R^{61}$$
 R^{62}
 R^{62}
 R^{63}
 R^{64}
 R^{65}
 R^{65}

wherein

 W^5 and X^5 may be the same or different and are selected from the group consisting of -CR 1 R 2 , -O-. -NR 3 . -S-:

 $Y^5 \text{ is selected from the group consisting of hydrogen, } C_1\text{-}C_{10} \text{ alkyl, } C_5\text{-}C_{20} \text{ aryl, } C_1\text{-}C_{10} \text{ alkoxyl, } C_1\text{-}C_{10} \text{ polyalkoxyalkyl, } C_1\text{-}C_{20} \text{ polyhydroxyalkyl, } C_5\text{-}C_{20} \text{ polyhydroxyaryl, } C_1\text{-}C_{10} \text{ aminoalkyl, } C_1\text{-}C_{10} \text{ polyalkoxyalkyl, } C_1\text{-}C_{20} \text{ polyhydroxyaryl, } C_1\text{-}C_{10} \text{ aminoalkyl, } C_1\text{-}C_1\text{-}C_2$

 $N(R^3)$ - CH_2 - $(CH_2OCH_2)_d$ -CONH-Dm, $-CH_2$ - $(CH_2OCH_2)_b$ - CH_2 - $N(R^3)$ - CH_2 - $(CH_2OCH_2)_d$ -NHCO-Dm, $-(CH_2)_a$ - NR^3R^4 , and $-CH_2(CH_2OCH_2)_b$ - $CH_2NR^3R^4$;

A₃ is a single or a double bond;

 B_3 , C_3 , and D_3 may be the same or different and are selected from the group consisting of -O-, -S-, -Se-, -P-, -CR¹R², -CR¹, alkyl, NR³, and -C=O;

 A_3 , B_3 , C_3 , and D_3 may together form a 6- to 12-membered carbocyclic ring or a 6- to 12-membered heterocyclic ring optionally containing one or more oxygen, nitrogen, or sulfur atom; a_5 is independently from 0 to 5;

Bm and Dm are independently selected from the group consisting of a bioactive peptide, a protein, a cell, an antibody, an antibody fragment, a saccharide, a glycopeptide, a peptidomimetic, a drug, a drug mimic, a hormone, a metal chelating agent, a radioactive or nonradioactive metal complex, a photosensitizer for phototherapy, and an echogenic agent;

a and c are independently from 1 to 20; and b and d are independently from 1 to 100.

44. (WITHDRAWN) The method of claim 43 wherein the organic solvent is selected from the group consisting of dimethylsulfoxide, ethyl alcohol, isopropyl alcohol, a polyol, a glycerol, and combinations thereof.