Physics 106b — Classical Mechanics

Michael Cross

California Institute of Technology

Winter Term, 2014

Dissipative Dynamical Systems

Outline

- Dissipative systems
- One dimensional flows
 - Fixed points
 - Bifurcations of fixed points
- Higher dimensional flows
 - Hopf bifurcation of fixed point
 - Bifurcations of periodic orbits
 - Chaos

Equations of Motion

Consider equations of the form

$$\dot{x}_i = f_i(x_1, x_2, \dots x_n), \quad i = 1 \dots n.$$

with f_i smooth and finite functions

- Equations are **autonomous**: no explicit time dependence on RHS
- Solutions can be represented by non-crossing *trajectories* or *flows* in the n-dimensional phase space $(x_1, x_2, \dots x_n)$
- f_i define a vector field \mathbf{f} the velocity of the flow at each point in phase space
- In general the system will be non-Hamiltonian, so dynamical variables do not come in canonically conjugate pairs, and there are no symplectic constraints on the flows

Example of a Dissipative System

Lorenz Model

$$\dot{X} = -\sigma(X - Y)
\dot{Y} = rX - Y - XZ
\dot{Z} = -bZ + XY$$

Crudely, the diagonal terms such as $\dot{X} = -\sigma X$ correspond to decaying motion

Contraction of phase space volumes:

$$\nabla_{\text{ph}} \cdot \mathbf{V}_{\text{ph}} = \frac{\partial}{\partial X} \left[-\sigma(X - Y) \right] + \frac{\partial}{\partial Y} \left[rX - Y - XZ \right] + \frac{\partial}{\partial Z} \left[-bZ + XY \right]$$
$$= -\sigma - 1 - b < 0$$

Phase space volumes contract uniformly and exponentially

Dissipation

With dissipation we expect phase space volumes to contract

$$\nabla_{\rm ph} \cdot \mathbf{V}_{ph} = \nabla_{\rm ph} \cdot \mathbf{f} < 0$$

at least on average

After transients have died out, the long time asymptotic dynamics must be confined to a lower dimensional region of phase space known as an *attractor*

- point: fixed point, equilibrium
- curve:
 - limit cycle, periodic orbit
 - homo- or hetero-clinic orbit
- \blacksquare surface: m-torus corresponding to oscillations at m different frequencies
- fractal: *strange attractor* giving chaotic dynamics (Lecture 10)

Many (in some cases, almost all) different initial conditions will lead to trajectories on the *same* attractor after transients have died out, and often there is a single attractor. This makes it easier to formulate simple questions than in Hamiltonian systems, but harder to answer.

One Dimensional Flows

The simplest system is one dimensional n = 1

Equation of motion is

$$\dot{x} = f(x)$$

giving flows on the line.

The motion can be thought of as the damped motion in a potential, $\eta \dot{x} = -dV(x)/dx$ with η the damping constant.

Pictures of the flow: plot the flow as arrows on the x-axis, and also plot f(x) which gives \dot{x} .

- Limit cycle \Rightarrow fixed point of Poincaré map \mathcal{T} : $\mathbf{x}_{n+1} = \mathcal{T}(\mathbf{x}_n)$
- Linear stability given by eigenvalues λ of the Jacobean of the map at the fixed point
- $|\lambda|$ gives the magnification of a perturbation under each iteration of the map \Rightarrow Floquet exponent $\sigma = T^{-1} \log \lambda$ (with T the limit cycle period)
- Bifurcation: $|\lambda|$ passes through the unit circle
 - λ = 1: change in the stability of the limit cycle, but no change in the frequency, giving bifurcations analogous to the saddle-node, transcritical, and pitchfork bifurcations of fixed points
 - $\lambda = -1$: period doubling bifurcation it takes two of the original periods of the original limit cycle for the motion to repeat
 - Complex pair λ , λ * passing through the unit circle: oscillations at a new frequency, and, naïvely, motion on a two torus in phase space

Bifurcations of Limit Cycles

Global bifurcations

Infinite period bifurcation: saddle-node bifurcation of fixed points where the one-dimensional line of the the analysis is the θ variable

$$\dot{\theta} = \mu - \sin \theta$$

Bifurcations of Limit Cycles

Global bifurcations

Homoclinic or **saddle-loop** bifurcation: limit cycle grows towards a saddle fixed point, becomes a homoclinic orbit at the bifurcation point, and then disappears

Chaos

- For flows in a phase space of dimension n > 2, the attractors are not limited to fixed points and limit cycles
- For dissipative systems where the phase space volume contracts, the dimension of the attractor must be less than *n*
- Simplest case: three dimensional system n = 3
 - Does the phase space volume of initial conditions contract to a planar (and so zero volume) attractor, ruling out chaos by the usual argument that trajectories cannot intersect?
 - No: chaotic motion corresponds to a *strange attractor* that has non-integral dimension, i.e. is a *fractal* (here 2 < D < 3) next lecture