The SPICA infrared space observatory - project status

Peter Roelfsema

SAFARI Principal Investigator

SPICA European consortium lead

on behalf of the SPICA/J and SAFARI consortia

Contents

- The goal a big cold IR facility; SPICA
- The heart of the matter SPICA science
 - The science case for the (far) IR
 - Requirements for the mission and instruments
- Mission overview
 - Satellite concepts
 - Instruments, capabilities
- M5 proposal under evaluation at ESA
 - Expect candidate selection June 2017 (SPC)
 - Next milestone; mission selection in 2019

SPICA's science M5; unveiling dusty matter in the universe

The SPICA 'sweet spot' – the dusty universe

A unique observatory

looking through the veils, enabling

transformational science

What is so unique?

- A COLD, big mirror
 - → true background limited Mid/Far-IR observing
 - >2 orders of magnitude better raw sensitivity than Herschel
- ~20 to ~350 µm inaccessible for any observatory
 - → the wavelength domain where *obscured matter* shines

fill the blind spot between JWST and ALMA @ R~ few 1000

Science Objectives – mission design drivers

- What processes govern star formation across cosmic time
 - what starts it, controls it, and stops it?
 - What are the major physical processes in the most obscured regions of the universe?
 - How is this related to the enrichment of the universe with metals
- What is the **origin** and composition of **the first dust**, how does this relate to present day dust processing?
- What is the thermal and chemical history of the building blocks of planets?
- What is the role of magnetic fields in dust filaments?

The SPICA mission the M5 configuration

SPICA – proposed to ESA/M5

- ESA-led mission
 with large JAXA contribution
- 'PLANCK configuration'
 - Size Φ4.5 m x 5.3 m
 - Mass 3450 kg (wet, with margin)
 - V-grooves
- 2.5 meter telescope, < 8K
 - Warm launch
- 12 230 μm spectroscopy
 - MIR imaging spectroscopy SMI
 - FIR spectroscopy SAFARI/SPEC
 - FIR polarimetry SAFARI/POL
- 'standard' Herschel/Planck SVM
- Japanese H3 launcher, L2 halo orbit
- 5 year goal lifetime

SAFARI

Who provides what

Launcher

SPICA Data Center

Focal Plane Instrument Assembly

FIR Spectrometer (SAFARI)

NL + European countries + Canada, US, Taiwan

MIR Instrument (SMI)

Complexity in responsibilities and interfaces → challenging AIV program

Main challenge -<8K telescope thermal design

- Active cooling to 4K and 1.7K
 - Detector modules at 50mK with dedicated mK coolers (SAFARI)
- V-grooves passive cooling to 40K
- Detachable support struts

The SPICA Instruments

The Far-IR instrument SAFARI

SAFARI/SPEC - high sensitivity grating spectrometer

- Basic R \sim 300 mode \rightarrow 1hr/5 σ -5-7 \times 10⁻²⁰ W/m² (4.6 m²)
 - Improves with better TES performance!
- Martin Puplett Interferometer to provide High-R mode
 - Backup: Fabry-Pérot Interferometer
- 4 bands *instantaneously* covering 35-230 micron

...limited imaging capability: 3 pixels on-sky

SAFARI/POL - imager polarimeter

- Polarization sensitive bolometers

 3 bands: 110, 220,350 µm
- FPA architecture designed and tested
- Readout analogous to PACS system

US/JPL contribution: LW/VLW grating modules

SAFARI

The Mid-infrared Instrument SMI

- SMI/LR-CAM large area low resolution surveyor
 - $17 36 \mu m$, R = 50 120
 - 4 slits (10' long) with prism
 - Detector: Si:Sb
 - Camera mode 10'x12' FoV
- SMI/MR medium resolution mapper
 - $18 36 \mu m$, R = 1200 2300,
 - 1 slit (1' long) with grating
 - Detector: Si:Sb

1024x1024 pix

- SMI/HR molecular physics/kinematics
 - $12 18 \mu m$, R = 28,000
 - 1 slit (4" long) with immersion grating
 - Detector: Si:As

SPICA capabilities - spectral resolution

SPICA sensitivity/speed - a huge leap forward

Raw sensitivity improvement >2 orders of magnitude Instantaneous full spectra → huge step in efficiency

The programmatic context and the outlook

Governance and harvesting

International mission

→ international oversight

 SAFARI/consortium has influence through representation at various levels

Instrument

- SPICA system
- SPICA executive board
- Science advisory committee

Observing time
 mission will be open for all astronomers

- Guaranteed v.s. open time details TBD
- Detailed implementation of e.g. 'Key projects' TBD
- Time Allocation Committee

Director's Time

SAFARI

Open Time

Mission Status

- Mission well defined
 - Spacecraft elements, responsibilities
 - Instrument complement ready to start phase-A
- Japan: SPICA passed 'Mission Definition Review'
 - SPICA officially in 'Pre-project' phase (~phase A)
 - 2027/2028 H3 slot tentatively assigned to SPICA
- M5 proposal under evaluation
 - ESA-led mission (~550M€) with JAXA participation
 - JAXA committed to support at the ~300M\$ level
 - European/Canadian/US instrument SAFARI
 - Mission candidate selection: June/2017
 - → Phase A/B1 under ESA-led study team
 - Mission final selection: 2019
 - Launch: 2028/2029

Summary

- SPICA: a mid-far infrared space observatory
 - 2.5 m diameter mirror, actively cooled to 8 K
 - → unprecedented sensitivity in mid/far IR
 - ESA/JAXA project with PI-provided instruments
 - Open for astronomical community
- SPICA focus: spectroscopy of the obscured universe, straddling the gap between JWST and ALMA
 - SPICA is proposed as a candidate for ESA M5
 - Candidate selection in June 2017, final selection Q4/2019
 - Launch ~2029

SPICA supporters/joiners?

register at www.spica-mission.org

..contact Matt – bradford@submm.caltech.edu

or me - P.R.Roelfsema@sron.nl

