ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «САНКТ-ПЕТЕРБУРГСКИЙ ПОЛИТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ПЕТРА ВЕЛИКОГО»

Институт компьютерных наук и технологий

Высшая школа программной инженерии

ЛАБОРАТОРНАЯ РАБОТА №5

Построение фазовых портретов для матрицы в MvStudium

по дисциплине «Математическое моделирование»

Студент гр. 3530202/90202

А. М. Потапова

Руководитель Ст. преподаватель Ю.Б. Сениченков

Задание 5_2

Вариант 13

Бифуркации на плоскости. Разностное уравнение

Исследовать следующие дискретные системы. Определить тип устойчивости неподвижных точек.

№	Уравнение	Параметры
13	$x_{n+1} = -(a - x_n **2) * \sin(2*pi/r) + x_n \cos(2*pi/r)$	$x_0=2.1; a \in [-0.8,4]; r=3$

Ход работы

Неподвижные точки:

Фазовые портреты

Фазовый портрет разностного уравнения при a = -0.8, r = 3:

Фазовый портрет разностного уравнения при a = 4, r = 3:

Первое пересечение на графике – аттрактор

Второе пересечение на графике – репеллер

Модель в AnyDynamycs

Описание глобального гибридного класса и глобальных переменных:

Карта поведения гибридного класса-цикла для получения точек разностного уравнения:

Результат

Решения разностного уравнения в зависимости от параметра а:

Фазовая диаграмма по z от параметра а:

Фазовая диаграмма по х от параметра а:

