Chapter 1	Chapter 2	Chapter 3	Chapter 3 (cont.)	Chapter 3
Preference Relation: at least as good as (Strict vs. normal: indifference set existence)	consumption bundle as vector(multidimensional)	Desirability (following 2) Non-satiation: existence of x neighborhood of y such that y > x	Utility maximization problem: max """ s.t. p. x <=w (compact set) Continuous u(.) => solution	HDF (is HDZ)& EF (Expenditure): $e(p,u) = p.x^* = p.h(p,u);$ $h(p,u) = \nabla_p e(p,u)$ $S(p,u) = {}^{D_p}h(p,u) = {}^{D_p}e(p,u)$ $D_ph(p,u) : Symmetric$,NSDsince e:Concave
Rationality Relation (Completeness, transitivity)	Walrasian Demand Function (WDF), Walras Law(WL) x.p=w	Monotonicity: u(x)>u(y) if x>>y: increasing func If monotone => locally non satiated	u(.) continuous, local non satiated ≥ => W.D.C (correspondence): HDZ, W.L., convexity/uniqueness => u(.) quasiconcave	Cross price effect substitution $\frac{\partial h_i(p,u)}{\partial p_k} > 0$ complementary $\frac{\partial h_i(p,u)}{\partial p_k} < 0$
Choice preference & Budget set	Homogeneity of degree zero (HDZ) $x(\alpha p, \alpha w) = x(p, w)$	Upper /Lower counter (≥): UC/LC	Kuhn Tucker condition: Solution to UMP: Lagrange multiplier: $\nabla u(x^*(p, w)) = \lambda p$ $\nabla u(x) = \left[\frac{\partial u(x)}{\partial x_1}, \frac{\partial u(x)}{\partial x_2},, \frac{\partial u(x)}{\partial x_1}\right]$	$\begin{aligned} & h_l(p, u) = x_l(p, e(p, w)) \\ & \frac{\partial x_l(p, e(p, w))}{\partial p_l} = \frac{\partial h_l(p, u)}{\partial p_l} + \\ & [\frac{\partial x_l(p, e(p, w))}{\partial w} (-x_l(\overline{p}, \overline{w}))] \\ & \text{Price effect} = & \text{Substitution} \\ & \text{effect+wealth effect} \end{aligned}$
Weak Axiom of Revealed preference (WARP)	Wealth expansion: one variable fix; Dw x(p,w):1*n, Dp:x(p,w)n*n	Convexity assumption $\geq \text{ convex if UC convex: } y,z \geq x = > \alpha y + (1-\alpha)z \geq x$: Diminishing Marginal Rates of substitution (DMRS): Diversification	Marginal rate of substitution of two goods (MRS): $\frac{\partial u(x^*)}{\partial x_l} / \frac{\partial u(x^*)}{\partial x_k} = \frac{p_l}{p_k}$ $\nabla u(x(p, w)) D_w x(p, w) = \lambda p D_w x(p, w)$ $= \lambda: \qquad WL$	IDF & WDF: $\overline{u} = v(\overline{p}, \overline{w})$ $x_{l}(\overline{p}, \overline{u}) = \frac{\frac{\partial v(\overline{p}, \overline{w})}{\partial p_{l}} \text{Roy's}}{\frac{\partial v(\overline{p}, \overline{w})}{\partial w}}$ identity Welfare change: = $v(p^{1}, w)$ - $v(p^{1}, w)$ EF is IUF (strictly incr.)
Weak Axiom of Revealed preference & Rationality of choice	WDF & HDZ (differentiate w.r.t. α): $\sum \frac{\partial x_i(p,w)}{\partial p_k} p_k + \frac{\partial x_i(p,w)}{\partial w} w = 0$ Elasticity conversion	Homothetic: if indifference set proportional expansion $x \sim y => \alpha x \sim \alpha y$	Indifference curve characteristics: 1. Negative slope (substitution effect) + Diminishing marginal utility 2. Linear: perfect substitute 3. L shape: perfect complement	e(\overline{P} , v(p, w)) money metric indirect utility function; p0 to p¹: Equivalent variation(E.V.): $e^{(p^0,u^1)}$ -w
All three budget sets & WARP => Rationality	Two properties of Cournot & Engel aggregation WL: differentiate w.r.t. w $\sum \frac{\partial x_l(p,w)}{\partial p_k} p_k + \partial x_l(p,w) = 0$ $p.D_p x(p,w) + x(p,w)^T = 0^T$ WL:	Quasilinear: 1. Parallel displacement: $x \sim y = > (x + \alpha e_1) \sim (y + \alpha e_1)$ $e_1 = (1, 0,, 0)$ 2. Good 1 desirable: $x + \alpha e_1 > x$ (all $x & \alpha > 0$)	Cobb-Douglas utility function: $u(x_1, x_2) = k x_1^{\alpha} x_2^{1-\alpha}$ Constant elasticity of substitution (CES): $u(x) = [\alpha_1 x_1^{\alpha} + \alpha_2 x_2^{\alpha}]^{1/\varrho}$ Cobb-Douglas simulator $p \rightarrow 0$ Leontief simulator $p \rightarrow 1$	Compensating variation (C.V.): = \mathbf{w} - $e(p^1, u^0)$ Parallel straight wealth expansion path condition (Gorman form): $v_i(p, w_i) = a_i(p) + b(p)w_i$
	WI.: $\sum \frac{\partial x_i(p, w)}{\partial w} p_k = 1$ $p.D_w x(p, w) = 0$	Continues: If preserved underlimits $\{(x^n, y^n)\}_{n=1}^{\infty}, x^n \ge y^n$ $x = \lim_{n \to \infty} x^n, y = \lim_{n \to \infty} y^n$ $\Rightarrow x \ge y$ Closed UC/LC; diagonal ray	Demand function properties: 1. WL 2. HDZ 3. Unique 4. Continuity 5. Monotonicity 6. Quasiconvexity	Gorman function v(p,u)=a(p)+b(p)w; IUF 1. $a(p)$ constant 2. Hom. Degr. 1 3. Quasiconcave 4. $b(p)>=0$ 5. $\nabla b(p) \le 0$ for every $p>>$)
	WDF satisfies WARP if: p.x(p',w')<=w & x(p',w')!=x(p,w) => p.x(p,w)>w'	Continuity of ≤ =>utility fun exists (Restriction duality)	HDO(deg. 1) on $w=>\epsilon_{1w}=1 =>$ $\alpha=1/w=>D_wx=$ function of p only=> wealth expansion=ray passing $x(p,1)$	
	Slutsky wealth compensation (SWC): $\Delta w = \Delta p.x$ Compensated Law of demand (CLD)	Differentiability (Loentiff function having problem of non-differentiability)	Parents (1/5-)	
	CLD ~WT satisfies HDZ, WL: $(\text{dp. dx}) \Delta p\Delta x <= 0 => \text{WARP}$ SWC: $\text{dx} = [D_p x(p,w) + D_w x(p,w) x(p,w)^T] dp$	Strict/Convexity of preference = strict/quasiconcavity of utiliy func: $u(\alpha x + (1-\alpha)y) >= Min \{u(x), u(y)\}$	Revealed preferred a over b: 1. wealth of a option greater than wealth of better modified demand a; 2. Modified pricewealth a greater than wealth b	
	Slutsky matrix(SM): substitution effect $[D_p x(p, w) + D_w x(p, w).x(p, w)^T]$ Differentiable WDF WL, HDZ, WA	\geq homothethic \Leftrightarrow utility:homogeneios of degree one = $u(\alpha x) = \alpha u(x)$	Summer of previous cell: under this price I went for x, since based on WL it uses most of my money; so under new price since the other	
	SM v.S(p,w).v<=0 for any v S called Negative Semidefinite (NS) (inferior = Giffen analysis) CLD => NS	\geq quasilinear if admist utility function of form: $u(x)=x1+ (x_2,,x_L)$	demand is chosen, this demand should have required more wealth that lead me not to choose that, and go for option b.	
	WDF differentiable, HDZ, WL => p.S(p,w)=S(p,w).p for any p,w Rationality needs Symmetry as well L=2 however symmetry exists	Ordinal properties of u(.): 1. Increasingness 2.Quasiconcavity Rational, continues, locally non satiation preference u(.) contineous		

Production plan/vector: y =(y1,y2,,yl)=R ^L	Marginal Rate of Transformation	$q = (q_1, q_2,, q_m)$	1		$\frac{\overline{z}(\overline{z})}{\overline{z}}$	Production function properties: 1. Y is non-empty 2. Y is closed
Transformation function:	$\frac{\partial F(\bar{y})}{\partial x}$	$z = (z_1, z_2,, z_{l-1})$	$(R_+) \in R_+^{L-M}$:	$MRT_{lk} = \frac{1}{\partial F}$	$\frac{\partial z_l}{\partial (\bar{z})}, \bar{q} = f(\bar{z})$	(boundary inclusion) 3. No free
$F(.): Y = \{y \in R^{L} : F(y) \le 0\}$	$MRT_{ik} = \frac{\frac{\partial F(y)}{\partial y_i}}{\frac{\partial F(\bar{y})}{\partial y_k}} = \frac{\partial y_k}{\partial y_i}$	would be inputs			$\overline{z_k}$.	lunch: if $y \in Y$, $y \ge 0$ then $y=0$
Transformation frontier:	$\sqrt{\frac{\partial y_k}{\partial y_k}}$	$Y = \{(z,q): F(-z,q) \le 0 \text{ for } z \le 0 \text{ for } z$		Marginal rate	e of technical	4. 0 is part of Y (inaction)
$Y = \{y \in R^{L} : F(y) = 0\}$	Diminishing product productivity	Production function in output for given input	` '	substitution		
5. free disposal:	6. irreversibility: $y \in Y, y \neq 0$	7. Non increasing t	return to scale:	8.Nondecrea	asing return to scale	9 constant return to scale
$y \in Y, y' \le y \to y' \in Y$	then $-y \notin Y$	$y \in Y, \alpha \in [0,1]$	•	· -	$[1,\infty] \to \alpha y \in Y$	$y \in Y, \alpha \in [0, \infty] \to \alpha y \in Y$
10. Additivity (Free entry)	11. convex cone: $y \in Y$				r (p1,p2,,pl)>>0 ,	PMP: $\frac{\partial F(y^*)}{\partial y}$
$y \in Y, y' \in Y \rightarrow y + y' \in Y$	$y' \in Y$, α , $\beta > 0 \Rightarrow$	Firms are price takers 2. Firm's objective: $ \begin{bmatrix} I - p_1 v_2 & F(y) \\ F(y) \le 0 \end{bmatrix} $ ax $p.y = \sum_{i=1}^{L} p_i y_i, s.t. y \in Y$		$PMP: \frac{\partial F(y^*)}{\partial y_i} MRT_{\alpha} = \frac{\partial F(y^*)}{\partial F(y^*)} = \frac{p_i}{p_k}$		
Profit function: $\pi(p)=p.y(p)$	$\alpha y + \beta y \in Y$	L=p.y- F(y),		y	<i>l</i> =1	Oy ₁ Oy _k
Single output f(z):	$\frac{\partial f(y^*)}{\partial z_l} p = w_l$	$\frac{\partial f(y^*)}{\partial y^*}$ $\frac{\partial f(y^*)}{\partial y^*}$			t(.) : H.D.1 2. π(.)	5. y: str/convex => y(p) : single
p- output price w- input price vector	OZ ₁ &	$\frac{\partial z_l}{w_l} = \frac{\partial z_k}{w_k}$	convex in p 3. I	(n) for all nex	anction is convex:	value/convex. $f(\alpha x + (1-\alpha)y) \le \alpha f(x) + (1-\alpha)f(y):$
profit = p.f(z)-w.z	$MPT = \frac{\partial f(y^*)}{\partial z_l} - w_l$	W_l W_k	$I = \{y \in K, p, y \le \pi\}$	(p) for all p>	> 0} 4. y(p) H.D.Z in p	convexity
	$CZ_{I} & \& \\ MRT_{R} = \frac{\frac{\partial f(y^{*})}{\partial z_{I}}}{\frac{\partial f(y^{*})}{\partial z_{k}}} = \frac{w_{I}}{w_{k}} \\ \frac{\partial f(y^{*})}{\partial z_{k}} = \frac{w_{I}}{w_{k}}$ single value then the					,
6. (Hotelling's Lemma) if y(p) is	single value then the	If y(p) id differentiable	le, then $D_{y}(\overline{y}) = I$	$O^2\pi(\overline{p})$ is symm	metric and positive	$\nabla \pi(p) = y(p) + p.Dy(p)$
production function $\pi(p)$ is diffe	erentiable and $\nabla \pi(\overline{p}) = y(\overline{y})$	semidefinite with D_{v}	y • ·			HDZ in $p: y(\alpha p) = y(p)$
Cost minimization Problem (CN	MP): z: input; w: input price: Min	,				
	Z	•				$N = \lambda \frac{\partial z_i}{\partial z_i}; w. \frac{\partial q}{\partial q} = \frac{\partial q}{\partial q}$
$f(z(w,q)) = q \Longrightarrow \frac{\partial c(w,q)}{\partial q} = \lambda$	Properties of c(.) (i) c(w,q): H.D.	O.Q & non-decr. in q	(ii) c(w,q): concav	ve(w) (iii)	$(v) \{z \ge 0: j$	$f(z) \ge q$: convex /strictly=>
∂q	$\{z \ge 0 : f(z) \ge q\} : convex \forall q \Rightarrow$	$\Rightarrow I = \{(-z,q) : wz \ge$	$C(w,q) \lor w >> 0$	(iv) z(w,q): H	z(w,q): conve	
$7(\overline{W}, q)$	(w)	$\nabla C(\overline{w}, a) = 7$	(\overline{w}, q)		$O = D^* \tau(\overline{w} q)$	asymmetric neg. semidef.
(vi) (shepend's Lemma) 2(w, q)	: single valued => c(.): differentia	able & $\sqrt[4]{}_{w} = (w,q) = 2$	(vii) z	(.) differentiabl	$e (a) w => D_{m} 2(n, q)$:	asymmetric neg. semidet.
(vii) f(.): H.D.1& $z(\overline{w}, q) => c($	(i.) & z(.) : H.D.1. (q) (ix) $f(.)$): concave \Rightarrow c(.) co Douglas: $F(z_1,z_2)=z_1^{\circ}$	$p = \frac{\partial c}{\partial x_{2\beta}}$	$\frac{(\mathbf{w}, \mathbf{q}^*)}{\partial q}$: MC=MI	Doing firm Profit m 1.F(.)2. $\frac{\partial f(y^*)}{\partial f(y^*)} = \frac{\partial f(y^*)}{\partial f(y^*)}$	aximization and cost minimization: 3.z(wi's,q)5.c=zw6.c'=p7. analysis
	Coup	Douglas. 1 (21,22)-21	2.2	: MC=MI	$\frac{\partial z_i}{w_i} = \frac{\partial z_i}{w_b}$	<u>òz,</u>
Average cost (AC)= $C(\overline{w},q)/q$	Max(AC): 1st order=> AC=M	IC Short run: alw	ays something is	fixed.	Long run: reshuffling.	Prof max \rightarrow efficient $\neg \exists y' > y \in Y$
Effic. convex→ prof max	I: consumers i=1,, I	Equilibrium condit	tions:		restrutting.	
economic allocation	J- firms, j=1,,J	(i)Profit maximizat		. ,		
$(x_1, x_2,, x_I, y_1, y_2,, y_J)$	l-goods l=1,2,, L Ui – consumer utility	$\text{Max } p^*.yi, y_j \in Y_j$				
$x_i \in X_i \ y_j \in Y_j$,	(ii) Utility maximiz	ation for each cor	nsumer I, x*		
$(x_1, x_2,, x_I, y_1, y_2,, y_J)$	$X_{i} (x_{1i},,x_{Si}) \in \mathbb{R}^{L}$ consumer I's consumption	solves: Max ui(xi) $x_i \in X_i$ so that. P*.xi		.xi		
is feasible if $\sum_{u=1}^{I} x_{li} \le w_l + \sum_{j=1}^{J} y_{lj}$	bundle	$\leq p * w_i + \sum_{j=1}^{J} \theta_{ij}(p * . y)$	*,)			
is feasible if $\frac{1}{u-1}$ $\frac{1}{j-1}$	$Y_j = (y_1 i, \dots, y_l i) \in Y_j$	(iii) Market clearing		=1 I		
$(x_1, x_2,, x_I, y_1, y_2,, y_J)$	production plan of firm j	','	-	-1,,1		
pareto optimal if	$(y'1,y'2,,y'j) \in R^{Lj}$	$\sum_{i=1}^{J} x *_{lj} = w_l + \sum_{j=1}^{J} y_j$, ** lj			
$\neg\exists(x'_{1},x'_{2},,x'_{I},y'_{1},y'_{2},,y'_{J})$	production plan of all J firms					
$\forall i = 1I, u_i(x'_i) \ge u_i(x_i) \&$	$Wl \ge 0$, $l=1,2,,L$					
$\exists i: u_i(x'_i) > u_i(x_i)$	Initial endowment of good l					
	$w_l + \sum_{j=1}^J y_{lj}$: total amount					
	of good l					