

Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Московский государственный технический университет имени Н.Э. Баумана» (МГТУ им. Н.Э. Баумана)

Рубежный контроль 1 по курсу «Технологии машинного обучения»

Выполнил студент группы ИУ5-64 XXX Вариант 7

Задание

Номер варианта	Номер задачи	Номер набора данных, указанного в задаче
7	1	7

Для заданного набора данных проведите корреляционный анализ. В случае наличия пропусков в данных удалите строки или колонки, содержащие пропуски. Сделайте выводы о возможности построения моделей машинного обучения и о возможном вкладе признаков в модель.

Дополнительное требование: для произвольной колонки данных построить график "Скрипичная диаграмма (violin plot)".

Ход работы

```
In [1]: import pandas as pd
           # Загрузка данных data = pd.read_csv("Admission_Predict_Ver1.1.csv")
Out[1]:
               Serial No. GRE Score TOEFL Score University Rating SOP LOR CGPA Research Chance of Admit
                                               118
                                                                  4 4.5
          1
                                324
                                              107
                                                                  4 4.0
                                                                           4.5
                                                                                  8.87
                                                                                                              0.76
            2
                       3
                                 316
                                               104
                                                                  3 3.0
                                                                           3.5
                                                                                  8.00
                                                                                                              0.72
                                               110
                                                                  3 3.5 2.5 8.67
                                               103
          495
                     496
                                               108
                                                                  5 4.5
                                                                           4.0 9.02
                                                                                                              0.87
          496
                     497
                              337
                                               117
                                                                  5 5.0
                                                                           5.0 9.87
                                                                                                              0.96
          497
                     498
                                 330
                                               120
                                                                  5 4.5
                                                                            5.0
                                                                                  9.56
                                                                                                              0.93
                                               103
                                                                                                              0.73
          498
                     499
                              312
                                                                  4 4.0
                                                                           5.0 8.43
                                                                  4 4.5
                                                                           4.5 9.04
                                                                                                              0.84
         500 rows × 9 columns
           # Число пропусков
data.isnull().sum()
Out[2]: Serial No.
          GRE Score
TOEFL Score
          University Rating
SOP
          LOR
CGPA
          Research
Chance of Admit
dtype: int64
           # Целевой признак
target = "Chance of Admit"
           import seaborn as sb
import matplotlib.pyplot as plt
%matplotlib inline
           from math import sqrt
           fix, axs = plt.subplots(data.shape[1] - 1, figsize=(5, (data.shape[1] - 1) * 5))
           for i, col in enumerate(data.columns):
   if col != target:
    sb.scatterplot(x=target, y=col, data=data, ax=axs[i])
               500
               400
           § 300
           Serial N
               100
                 0 -
                                           0.6
                                        Chance of Admit
               340
               330
           Score
320
           85
310
               290
```

Chance of Admit

Violin plot

Корреляционный анализ

In [6]:	<pre>corr = data.corr()</pre>
	corr

t[6]:		Serial No.	GRE Score	TOEFL Score	University Rating	SOP	LOR	CGPA	Research	Chance of Admit
	Serial No.	1.000000	-0.103839	-0.141696	-0.067641	-0.137352	-0.003694	-0.074289	-0.005332	0.008505
	GRE Score	-0.103839	1.000000	0.827200	0.635376	0.613498	0.524679	0.825878	0.563398	0.810351
	TOEFL Score	-0.141696	0.827200	1.000000	0.649799	0.644410	0.541563	0.810574	0.467012	0.792228
	University Rating	-0.067641	0.635376	0.649799	1.000000	0.728024	0.608651	0.705254	0.427047	0.690132
	SOP	-0.137352	0.613498	0.644410	0.728024	1.000000	0.663707	0.712154	0.408116	0.684137
	LOR	-0.003694	0.524679	0.541563	0.608651	0.663707	1.000000	0.637469	0.372526	0.645365
	CGPA	-0.074289	0.825878	0.810574	0.705254	0.712154	0.637469	1.000000	0.501311	0.882413
	Research	-0.005332	0.563398	0.467012	0.427047	0.408116	0.372526	0.501311	1.000000	0.545871
	Chance of	0.008505	0.810351	0.792228	0.690132	0.684137	0.645365	0.882413	0.545871	1.000000

In [7]: sb.heatmap(corr, annot=True, fmt=".2f");

Вывод

```
In [8]:
    from IPython.display import Markdown
    def corr_values(series, feature):
        for k, v in series[feature].iteritems():
            if k != feature:
                 yield (k, v)

good_features = [
            k
            for k, v in corr_values(corr, target)
            if v > 0.5
]

bad_features = [
            k
            for k, v in corr_values(corr, target)
            if v < 0.5
]

display(
            Markdown(f"- Хорошо коррелируют с целевым признаком ({target})): {', '.join(good_features)}"),
            Markdown(f"- Плохо коррелируют с целевым признаком ({target})): {', '.join(bad_features)}")
}</pre>
```

- Хорошо коррелируют с целевым признаком (Chance of Admit)): GRE Score, TOEFL Score, University Rating, SOP, LOR, CGPA, Research
- Плохо коррелируют с целевым признаком (Chance of Admit)): Serial No.
- Линейно зависимых признаков с высоким коэффициентом корреляции не обнаружено
- Построить модель можно после удаления лишних признаков