Logit Models

Bill

2019-12-29

Contents

1	Basics								
	1.1	Logit	5						
	1.2	Probit	7						
2	MLE								
	2.1	Basic idea of MLE	11						
	2.2	Coin flip example, probit, and logit	12						
	2.3	Further on logit	14						
	2.4	Fisher information	15						
	2.5	References	15						
3	Lin	Linear Mixed Models							
	3.1	Calculate mean	17						
	3.2	Test the treatment effect	19						
	3.3	Another example	20						
	3.4	Full LMM model	22						
	3.5	Serial correlations in time and space	24						
4	Bas	Basic Concepts 27							
	4.1	Score	27						
5	Generalized Linear Mixed Models								
	5.1	Computing techniques	29						
	5.2	Basics of GLMM	38						
	5.3	Some References	39						

4 CONTENTS

6	Twitter Example					
	6.1	Model	41			
	6.2	Simulating Data of Senators on Twitter	42			
	6.3	Simulating Data of Conservative Users on Twitter and Model Testing	43			
	6.4	Simulating Data of Liberal Users on Twitter and Model Testing .	45			

Chapter 1

Basics

1.1 Logit

$$f(x) = log(\frac{p(y=1)}{1 - p(y=1)})$$

The basic idea of logistic regression:

$$p(y=1) = \frac{1}{1 + e^{-(\beta_0 + \beta_1 x_1 + \dots + \beta_n x_n)}} = \frac{e^{\beta_0 + \beta_1 x_1 + \dots + \beta_n x_n}}{1 + e^{\beta_0 + \beta_1 x_1 + \dots + \beta_n x_n}}$$

Thus, $e^{\beta_0+\beta_1x_1+...+\beta_nx_n}$ can be from $-\infty$ to $+\infty$, and p(y=1) will be always within the range of (0,1).

```
f<-function(x){exp(x)/(1+exp(x))}
data<-seq(-10,10,1)
plot(data,f(data),type = "b")</pre>
```


We can also write the function into another format as follows:

$$\log \frac{p(y=1)}{1 - p(y=1)} = \beta_0 + \beta_1 x_1 + \dots + \beta_n x_n$$

Thus, we know that the regression coeficients of β_i actually change the "log-odds" of the event. Of course, note that the magnitude of β_i is dependent upon the units of x_i .

The following is an example testing whether that home teams are more likely to win in NFL games. The results show that the odd of winning is the same for both home and away teams.

mylogit1 = glm(result new~1, family=binomial, data=mydata)

```
mydata = read.csv(url('https://raw.githubusercontent.com/nfl-football-ops/Big-Data-Bow/
mydata$result_new<-ifelse(mydata$HomeScore>mydata$VisitorScore,1,0)
summary(mydata$result_new)

## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.0000 0.0000 0.0000 0.4945 1.0000 1.0000
```

Call:

summary(mylogit1)

1.2. PROBIT 7

```
## glm(formula = result_new ~ 1, family = binomial, data = mydata)
##
## Deviance Residuals:
##
     Min
              1Q Median
                               3Q
                                     Max
## -1.168 -1.168 -1.168
                            1.187
                                    1.187
##
## Coefficients:
              Estimate Std. Error z value Pr(>|z|)
##
## (Intercept) -0.02198
                          0.20967 -0.105
##
## (Dispersion parameter for binomial family taken to be 1)
##
       Null deviance: 126.14 on 90 degrees of freedom
## Residual deviance: 126.14 on 90 degrees of freedom
## AIC: 128.14
##
## Number of Fisher Scoring iterations: 3
```

1.2 Probit

As noted above, logit $f(x) = log(\frac{p(y=1)}{1-p(y=1)})$ provides the resulting range of (0,1). Another way to provide the same rage is through the cdf of normal distribution. The following R code is used to illustrate this process.

```
data2<-seq(-5,5,1)
plot(data2,pnorm(data2),type = "b")</pre>
```


Thus, the cdf of normal distribution can be used to indicate the probability of p(y=1).

$$\Phi(\beta_0 + \beta_1 x_1 + \dots + \beta_n x_n) = p(y = 1)$$

Similar to logit model, we can also write the inverse function of the cdf to get the function that can be from $-\infty$ to $+\infty$.

$$\beta_0 + \beta_1 x_1 + \dots + \beta_n x_n = \Phi^{-1}(p(y=1))$$

Thus, for example, if $X\beta = -2$, based on $\Phi(\beta_0 + \beta_1 x_1 + ... + \beta_n x_n) = p(y = 1)$ we can get that the p(y = 1) = 0.023.

In contrast, if $X\beta = 3$, the p(y = 1) = 0.999.

pnorm(-2)

[1] 0.02275013

pnorm(3)

[1] 0.9986501

1.2. PROBIT 9

Let's assume that there is a latent variable called Y^* such that

$$Y^* = X\beta + \epsilon, \epsilon \sim N(0, \sigma^2)$$

You could think of Y^* as a kind of "proxy" between $X\beta + \epsilon$ and the observed Y(1or0). Thus, we can get the following. Note that, it does not have to be zero, and can be any constant.

$$Y^* = \begin{cases} 0 & if \ y_i^* \le 0 \\ 1 & if \ y_i^* > 0 \end{cases}$$

Thus,

$$y_i^* > 0 \Rightarrow \beta' X_i + \epsilon_i > 0 \Rightarrow \epsilon_i > -\beta' X_i$$

Thus, we can write it as follows. Note that $\frac{\epsilon_i}{\sigma} \sim N(0,1)$

$$p(y=1|x_i) = p(y_i^* > 0|x_i) = p(\epsilon_i > -\beta' X_i) = p(\frac{\epsilon_i}{\sigma} > \frac{-\beta' X_i}{\sigma}) = \Phi(\frac{\beta' X_i}{\sigma})$$

We thus can get:

$$p(y=0|x_i) = 1 - \Phi(\frac{\beta' X_i}{\sigma})$$

For $p(y=1|x_i)=\Phi(\frac{\beta^{'}X_i}{\sigma})$, we can not really estimate both β and σ as they are in a ratio. We can assume $\sigma=1$, then $\epsilon\sim N(0,1)$. We know y_i and x_i since we observe them. Thus, we can write it as follows.

$$p(y=1|x_i) = \Phi(\beta' X_i)$$

Chapter 2

MLE

2.1 Basic idea of MLE

Suppose that we flip a coin, $y_i = 0$ for tails and $y_i = 1$ for heads. If we get p heads from n trials, we can get the proportion of heads is p/n, which is the sample mean. If we do not do any further calculation, this is our best guess.

Suppose that the true proablity is ρ , then we can get:

$$\mathbf{L}(y_i) = \begin{cases} \rho & y_i = 1\\ 1 - \rho & y_i = 0 \end{cases}$$

Thus, we can also write it as follows.

$$\mathbf{L}(y_i) = \rho^{y_i} (1 - \rho)^{1 - y_i}$$

Thus, we can get:

$$\prod \mathbf{L}(y_i|\rho) = \rho^{\sum y_i} (1-\rho)^{\sum (1-y_i)}$$

Further, we can get a log-transformed format.

$$log(\prod \mathbf{L}(y_i|\rho)) = \sum y_i log\rho + \sum (1-y_i) log(1-\rho)$$

To maximize the log-function above, we can calculate the derivative with respect to ρ .

$$\frac{\partial log(\prod \mathbf{L}(y_i|\rho))}{\partial \rho} = \sum y_i \frac{1}{\rho} - \sum (1-y_i) \frac{1}{1-\rho}$$

Set the derivative to zero and solve for ρ , we can get

$$\sum y_i \frac{1}{\rho} - \sum (1 - y_i) \frac{1}{1 - \rho} = 0$$

$$\Rightarrow (1 - \rho) \sum y_i - \rho \sum (1 - y_i) = 0$$

$$\Rightarrow \sum y_i - \rho \sum y_i - n\rho + \rho \sum y_i = 0$$

$$\Rightarrow \sum y_i - n\rho = 0$$

$$\Rightarrow \rho = \frac{\sum y_i}{n} = \frac{p}{n}$$

Thus, we can see that the ρ maximizing the likelihood function is equal to the sample mean.

2.2 Coin flip example, probit, and logit

In the example above, we are not really trying to estimate a lot of regression coefficients. What we are doing actually is to calculate the sample mean, or intercept in the regression sense. What does it mean? Let's use some data to explain it.

Suppose that we flip a coin 20 times and observe 8 heads. We can use the R's glm function to esimate the ρ . If the result is consistent with what we did above, we should observe that the cdf of the esimate of β_0 (i.e., intercept) should be equal to 8/20 = 0.4.

```
coins<-c(rep(1,times=8),rep(0,times=12))
table(coins)

## coins
## 0 1
## 12 8

coins<-as.data.frame(coins)</pre>
```

2.2.1 Probit

```
probitresults <- glm(coins ~ 1, family = binomial(link = "probit"), data = coins)
probitresults</pre>
```

```
##
## Call: glm(formula = coins ~ 1, family = binomial(link = "probit"),
       data = coins)
##
##
## Coefficients:
## (Intercept)
##
       -0.2533
##
## Degrees of Freedom: 19 Total (i.e. Null); 19 Residual
## Null Deviance:
                        26.92
## Residual Deviance: 26.92
                                AIC: 28.92
pnorm(probitresults$coefficients)
## (Intercept)
##
           0.4
```

As we can see the intercept is -0.2533, and thus $\Phi(-0.2533471) = 0.4$

2.2.2 Logit

We can also use logit link to calculate the intercept as well. Recall that

$$p(y=1) = \frac{1}{1 + e^{-(\beta_0 + \beta_1 x_1 + \ldots + \beta_n x_n)}} = \frac{e^{\beta_0 + \beta_1 x_1 + \ldots + \beta_n x_n}}{1 + e^{\beta_0 + \beta_1 x_1 + \ldots + \beta_n x_n}}$$

Thus,

$$p(y=1) = \frac{e^{\beta_0}}{1 + e^{\beta_0}}$$

logitresults <- glm(coins ~ 1, family = binomial(link = "logit"), data = coins)
logitresults\$coefficients</pre>

```
## (Intercept)
## -0.4054651

exp(logitresults$coefficients)/(1+exp(logitresults$coefficients))
## (Intercept)
```

Note that, the defaul link for the binomial in the glm function in logit.

2.3 Further on logit

The probability of y = 1 is as follows:

$$p = p(y = 1) = \frac{1}{1 + e^{-(\beta_0 + \beta_1 x_1 + \dots + \beta_n x_n)}} = \frac{e^{\beta_0 + \beta_1 x_1 + \dots + \beta_n x_n}}{1 + e^{\beta_0 + \beta_1 x_1 + \dots + \beta_n x_n}}$$

Thus, the likelihood function is as follows:

$$L = \prod p^{y_i} (1-p)^{1-y_i} = \prod \left(\frac{1}{1+e^{-(\beta_0+\beta_1 x_1 + \dots + \beta_n x_n)}}\right)^{y_i} \left(\frac{1}{1+e^{\beta_0+\beta_1 x_1 + \dots + \beta_n x_n}}\right)^{1-y_i}$$
$$= \prod \left(1+e^{-(\beta_0+\beta_1 x_1 + \dots + \beta_n x_n)}\right)^{-y_i} \left(1+e^{\beta_0+\beta_1 x_1 + \dots + \beta_n x_n}\right)^{-(1-y_i)}$$

Thus, the log-likelihood is as follows:

$$logL = \sum (-y_i \cdot log(1 + e^{-(\beta_0 + \beta_1 x_1 + ... + \beta_n x_n)}) - (1 - y_i) \cdot log(1 + e^{\beta_0 + \beta_1 x_1 + ... + \beta_n x_n}))$$

Typically, optimisers minimize a function, so we use negative log-likelihood as minimising that is equivalent to maximising the log-likelihood or the likelihood itself.

```
#Source of R code: https://www.r-bloggers.com/logistic-regression/
mle.logreg = function(fmla, data)
  # Define the negative log likelihood function
  logl <- function(theta,x,y){</pre>
    y <- y
    x <- as.matrix(x)</pre>
    beta <- theta[1:ncol(x)]
    # Use the log-likelihood of the Bernouilli distribution, where p is
    # defined as the logistic transformation of a linear combination
    # of predictors, according to logit(p)=(x%*\%beta)
    loglik <- sum(-y*log(1 + exp(-(x%*%beta))) - (1-y)*log(1 + exp(x%*%beta)))
    return(-loglik)
  }
  # Prepare the data
  outcome = rownames(attr(terms(fmla), "factors"))[1]
 dfrTmp = model.frame(data)
 x = as.matrix(model.matrix(fmla, data=dfrTmp))
```

```
y = as.numeric(as.matrix(data[,match(outcome,colnames(data))]))
  # Define initial values for the parameters
  theta.start = rep(0, (dim(x)[2]))
  names(theta.start) = colnames(x)
  # Calculate the maximum likelihood
  mle = optim(theta.start,logl,x=x,y=y, method = 'BFGS', hessian=T)
  out = list(beta=mle$par,vcov=solve(mle$hessian),ll=2*mle$value)
}
mydata = read.csv(url('https://stats.idre.ucla.edu/stat/data/binary.csv'))
mylogit1 = glm(admit~gre+gpa+as.factor(rank), family=binomial, data=mydata)
mydata$rank = factor(mydata$rank) #Treat rank as a categorical variable
fmla = as.formula("admit~gre+gpa+rank") #Create model formula
mylogit2 = mle.logreg(fmla, mydata) #Estimate coefficients
print(cbind(coef(mylogit1), mylogit2$beta))
##
                                         [,2]
                            [,1]
                    -3.989979073 -3.772676422
## (Intercept)
                     0.002264426 0.001375522
## gre
## gpa
                     0.804037549 0.898201239
## as.factor(rank)2 -0.675442928 -0.675543009
## as.factor(rank)3 -1.340203916 -1.356554831
## as.factor(rank)4 -1.551463677 -1.563396035
```

2.4 Fisher information

https://people.missouristate.edu/songfengzheng/Teaching/MTH541/Lecture% $20 \rm notes/Fisher_info.pdf$

2.5 References

http://www.columbia.edu/~so33/SusDev/Lecture_9.pdf

Chapter 3

Linear Mixed Models

The following is a shortened version of Jonathan Rosenblatt's LMM tutorial. http://www.john-ros.com/Roourse/lme.html.

In addition, another reference is from Douglas Bates's R package document. https://cran.r-project.org/web/packages/lme4/vignettes/lmer.pdf?fbclid= IwAR1nmmRP9A0BrhKdgBibNjM5acR spTpXV8QlQGdmTWyQz3ZtV3LYn6kCbQ

Assume that y is a function of x and u, where x is the fixed effect and u is the random effect. Thus, we can get,

$$y|x, u = x'\beta + z'u + \epsilon$$

For random effect, one example can be that you want to test the treatment effect, and sample 8 observations from 4 groups. You measure before and after the treatment. In this case, x represents the treatment effect, whereas z represents the group effect (i.e., random effect). Note that, in this case, it reminds the paired t-test. Remember in SPSS, why do we do paired t-test? Typically, it is the case when we measure a subject (or, participant) twice. In this case, we can consider each participant as an unit of random effect (rather than as group in the last example.)

3.1 Calculate mean

The following code generates 4 numbers (N(0,10)) for 4 groups. Then, replicate it within each group. That is, in the end, there are 8 observations.

Note that, in the following code, there are no "independent variables". Both the linear model and mixed model are actually just trying to calculate the mean. Note that $lmer(y\sim1+1|groups)$ and $lmer(y\sim1|groups)$ will generate the same results.

```
set.seed(123)
n.groups <- 4 # number of groups
n.repeats <- 2 # samples per group</pre>
#Generating index for observations belong to the same group
groups <- as.factor(rep(1:n.groups, each=n.repeats))</pre>
n <- length(groups)</pre>
#Generating 4 random numbers, assuming normal distribution
z0 <- rnorm(n.groups, 0, 10)</pre>
z <- z0[as.numeric(groups)] # generate and inspect random group effects
## [1] -5.6047565 -5.6047565 -2.3017749 -2.3017749 15.5870831 15.5870831 0.7050839
## [8] 0.7050839
epsilon <- rnorm(n,0,1) # generate measurement error</pre>
beta0 <- 2 # this is the actual parameter of interest! The global mean.
y <- beta0 + z + epsilon # sample from an LMM
# fit a linear model assuming independence
# i.e., assume that there is no "group things".
lm.5 < - lm(y~1)
# fit a mixed-model that deals with the group dependence
#install.packages("lme4")
library(lme4)
lme.5.a \leftarrow lmer(y~1+1|groups)
lme.5.b <- lmer(y~1|groups)</pre>
lm.5
##
## Call:
## lm(formula = y ~ 1)
##
## Coefficients:
## (Intercept)
##
         4.283
lme.5.a
## Linear mixed model fit by REML ['lmerMod']
## Formula: y ~ 1 + 1 | groups
## REML criterion at convergence: 36.1666
## Random effects:
## Groups Name
                          Std.Dev.
```

```
## groups
             (Intercept) 8.8521
## Residual
                        0.8873
## Number of obs: 8, groups: groups, 4
## Fixed Effects:
## (Intercept)
        4.283
lme.5.b
## Linear mixed model fit by REML ['lmerMod']
## Formula: y ~ 1 | groups
## REML criterion at convergence: 36.1666
## Random effects:
                        Std.Dev.
## Groups Name
## groups (Intercept) 8.8521
## Residual
                       0.8873
## Number of obs: 8, groups: groups, 4
## Fixed Effects:
## (Intercept)
        4.283
##
```

3.2 Test the treatment effect

[7,] 3.9291657

[8,] 3.0648977

As we can see that, LLM and paired t-test generate the same t-value.

```
times <- rep(c(1,2),4) # first time and second time
times
## [1] 1 2 1 2 1 2 1 2
data_combined<-cbind(y,groups,times)</pre>
data_combined
                y groups times
## [1,] -3.4754687
                    1
## [2,] -1.8896915
                     1
                     2
## [3,] 0.1591413
                           1
                     2
## [4,] -1.5668361
                            2
## [5,] 16.9002303
                     3
                           1
                     3
                          2
## [6,] 17.1414212
```

4

4

1

2

```
lme_diff_times<- lmer(y~times+(1|groups))</pre>
t_results<-t.test(y~times, paired=TRUE)</pre>
lme_diff_times
## Linear mixed model fit by REML ['lmerMod']
## Formula: y ~ times + (1 | groups)
## REML criterion at convergence: 35.0539
## Random effects:
## Groups Name
                      Std.Dev.
## groups (Intercept) 8.845
## Residual
                         1.013
## Number of obs: 8, groups: groups, 4
## Fixed Effects:
## (Intercept)
                     times
       4.5691
                    -0.1908
print("The following results are from paired t-test")
## [1] "The following results are from paired t-test"
t_results$statistic
##
## 0.2664793
```

3.3 Another example

```
data(Dyestuff, package='lme4')
attach(Dyestuff)

## The following objects are masked from Dyestuff (pos = 6):
##
## Batch, Yield

Dyestuff
```

```
##
      Batch Yield
## 1
         A 1545
## 2
         A 1440
## 3
         A 1440
## 4
         A 1520
## 5
         A 1580
## 6
         B 1540
## 7
         B 1555
## 8
         B 1490
## 9
         B 1560
## 10
         B 1495
## 11
         C 1595
## 12
         C 1550
## 13
         C 1605
## 14
         C 1510
         C 1560
## 15
## 16
         D 1445
## 17
         D 1440
## 18
         D 1595
         D 1465
## 19
## 20
         D 1545
## 21
         E 1595
## 22
        E 1630
## 23
         E 1515
## 24
         E 1635
## 25
         E 1625
## 26
        F 1520
## 27
         F 1455
## 28
         F 1450
## 29
         F 1480
## 30
         F 1445
lme_batch<- lmer( Yield ~ 1 + (1|Batch) , Dyestuff )</pre>
summary(lme_batch)
## Linear mixed model fit by REML ['lmerMod']
## Formula: Yield ~ 1 + (1 | Batch)
##
     Data: Dyestuff
##
## REML criterion at convergence: 319.7
## Scaled residuals:
              1Q Median
      Min
                               3Q
                                      Max
## -1.4117 -0.7634 0.1418 0.7792 1.8296
##
```

```
## Random effects:
   Groups
                         Variance Std.Dev.
##
             Name
##
   Batch
             (Intercept) 1764
                                  42.00
## Residual
                         2451
                                  49.51
## Number of obs: 30, groups: Batch, 6
## Fixed effects:
##
               Estimate Std. Error t value
## (Intercept) 1527.50
                             19.38
                                      78.8
```

3.4 Full LMM model

In the following, I used the data from the package of lme4. For Days + (1 | Subject), it only has random intercept; in contrast, Days + (Days| Subject) has both random intercept and random slope for Days. Note that, random effects do not generate specific slopes for each level of Days, but rather just a variance of all the slopes.

Therefore, we can see that "Days + (Days | Subject)" and "Days + (1+Days | Subject)" generate the same results. For more discussion, you can refer to the following link: https://www.jaredknowles.com/journal/2013/11/25/getting-started-with-mixed-effect-models-in-r

```
data(sleepstudy, package='lme4')
attach(sleepstudy)
## The following objects are masked from sleepstudy (pos = 6):
##
##
       Days, Reaction, Subject
fm1 <- lmer(Reaction ~ Days + (1 | Subject), sleepstudy)</pre>
summary(fm1)
## Linear mixed model fit by REML ['lmerMod']
## Formula: Reaction ~ Days + (1 | Subject)
##
      Data: sleepstudy
##
## REML criterion at convergence: 1786.5
## Scaled residuals:
##
       Min
                1Q Median
                                3Q
                                        Max
## -3.2257 -0.5529 0.0109 0.5188 4.2506
##
```

```
## Random effects:
## Groups
           Name
                       Variance Std.Dev.
## Subject (Intercept) 1378.2 37.12
                      960.5
## Residual
## Number of obs: 180, groups: Subject, 18
## Fixed effects:
             Estimate Std. Error t value
## (Intercept) 251.4051 9.7467 25.79
## Days
        10.4673
                         0.8042 13.02
##
## Correlation of Fixed Effects:
     (Intr)
## Days -0.371
fm2<-lmer ( Reaction ~ Days + ( Days | Subject ) , data= sleepstudy )</pre>
summary(fm2)
## Linear mixed model fit by REML ['lmerMod']
## Formula: Reaction ~ Days + (Days | Subject)
     Data: sleepstudy
## REML criterion at convergence: 1743.6
##
## Scaled residuals:
      Min 1Q Median 3Q
                                    Max
## -3.9536 -0.4634 0.0231 0.4633 5.1793
##
## Random effects:
## Groups Name
                       Variance Std.Dev. Corr
## Subject (Intercept) 611.90 24.737
##
                       35.08
                                5.923
                                       0.07
            Days
## Residual
                       654.94
                                25.592
## Number of obs: 180, groups: Subject, 18
## Fixed effects:
            Estimate Std. Error t value
## (Intercept) 251.405 6.824 36.843
## Days
              10.467
                          1.546 6.771
##
## Correlation of Fixed Effects:
## (Intr)
## Days -0.138
```

```
fm3<-lmer ( Reaction ~ Days + (1+Days| Subject ) , data= sleepstudy )</pre>
summary(fm3)
## Linear mixed model fit by REML ['lmerMod']
## Formula: Reaction ~ Days + (1 + Days | Subject)
     Data: sleepstudy
## REML criterion at convergence: 1743.6
##
## Scaled residuals:
      Min 10 Median
                                30
                                       Max
## -3.9536 -0.4634 0.0231 0.4633 5.1793
##
## Random effects:
## Groups
                        Variance Std.Dev. Corr
            Name
   Subject (Intercept) 611.90
                                  24.737
##
                          35.08
                                  5.923
                                         0.07
            Days
## Residual
                         654.94
                                  25.592
## Number of obs: 180, groups: Subject, 18
## Fixed effects:
               Estimate Std. Error t value
## (Intercept) 251.405
                             6.824 36.843
## Days
                10.467
                             1.546
                                     6.771
##
## Correlation of Fixed Effects:
       (Intr)
## Days -0.138
```

3.5 Serial correlations in time and space

The hierarchical model of $y|x, u = x'\beta + z'u + \epsilon$ can work well for correlations within blocks, but not for correlations in time as the correlations decay in time. The following uses nlme package to calculate time serial data.

##	4	1	0.0000000	16
##	5	1	0.04545455	13
##	6	1	0.09090910	10
##	7	1	0.13636360	12
##	8	1	0.18181820	14
##	9	1	0.22727270	13
##	10	1	0.27272730	20
##	11	1	0.31818180	22
##	12	1	0.36363640	15
##	13	1	0.40909090	18
##	14	1	0.45454550	17
##	15	1	0.50000000	14
##	16	1	0.54545450	18
##	17	1	0.59090910	14
##	18	1	0.63636360	16
##	19	1	0.68181820	17
##	20	1	0.72727270	18
##	21	1	0.77272730	18
##	22	1	0.81818180	17
##	23	1	0.86363640	14
##	24	1	0.90909090	12
##	25	1	0.95454550	12
##	26	1	1.00000000	14
##	27	1	1.04545500	10
##	28	1	1.09090900	11
##	29	1	1.13636400	16
##	30	2	-0.15000000	6
##	31	2	-0.10000000	6
##	32	2	-0.05000000	8
##	33	2	0.00000000	7
##	34	2	0.05000000	16
##	35	2	0.10000000	10
##	36	2	0.15000000	13
##	37	2	0.2000000	9
##	38	2	0.25000000	7
##	39	2	0.3000000	6
##	40	2	0.35000000	8
##	41	2	0.4000000	8
##	42	2	0.45000000	6
##	43	2	0.50000000	8
##	44	2	0.55000000	7
##	45	2	0.6000000	9
##	46	2	0.65000000	6
##	47	2	0.7000000	4
##	48	2	0.75000000	5
##	49	2	0.80000000	8

```
## 50
        2 0.85000000
                             11
fm10var.lme <- nlme::lme(fixed=follicles ~ sin(2*pi*Time) + cos(2*pi*Time),</pre>
                  data = Ovary,
                  random = pdDiag(~sin(2*pi*Time)),
                  correlation=corAR1() )
summary(fm10var.lme)
## Linear mixed-effects model fit by REML
## Data: Ovary
##
   AIC
                 BIC logLik
##
   1563.448 1589.49 -774.724
## Random effects:
## Formula: ~sin(2 * pi * Time) | Mare
## Structure: Diagonal
##
          (Intercept) sin(2 * pi * Time) Residual
## StdDev:
             2.858385
                               1.257977 3.507053
## Correlation Structure: AR(1)
## Formula: ~1 | Mare
## Parameter estimate(s):
##
        Phi
## 0.5721866
## Fixed effects: follicles ~ sin(2 * pi * Time) + cos(2 * pi * Time)
                         Value Std.Error DF
                                              t-value p-value
## (Intercept)
                     12.188089 0.9436602 295 12.915760 0.0000
## sin(2 * pi * Time) -2.985297 0.6055968 295 -4.929513 0.0000
## cos(2 * pi * Time) -0.877762 0.4777821 295 -1.837159 0.0672
## Correlation:
##
                     (Intr) s(*p*T)
## sin(2 * pi * Time) 0.000
## cos(2 * pi * Time) -0.123 0.000
## Standardized Within-Group Residuals:
          Min
                       Q1
                                  Med
                                               QЗ
## -2.34910093 -0.58969626 -0.04577893 0.52931186 3.37167486
## Number of Observations: 308
## Number of Groups: 11
```

Chapter 4

Basic Concepts

4.1 Score

The score is the gradient (the vector of partial derivatives) of $logL(\theta)$, with respect to an m-dimensional parameter vector θ .

$$S(\theta) = \frac{\partial (logL(\theta))}{\partial \theta}$$

Such differentiation yields a $m \times 1$ row vector, and indicates the sensitivity of the likelihood.

Chapter 5

Generalized Linear Mixed Models

5.1 Computing techniques

Since GLMM can use EM algorithm in its maximum likelihood calculation (see McCulloch, 1994), it is practically useful to rehearse EM and other computing techniques.

5.1.1 Monte carlo approximation

Example: calculate the integral of p(z>2) when $z\sim N(0,1)$. To use Monte Carlo approximation, we can have an indicator function, which will determine whether the sample from N(0,1) will be included into the calculation of the integral.

```
Nsim=10^4
indicator=function(x){
y=ifelse((x>2),1,0)
return(y)}
newdata<-rnorm(Nsim, 0,1)
mc=c(); v=c(); upper=c(); lower=c()
for (j in 1:Nsim)
{</pre>
```

```
mc[j]=mean(indicator(newdata[1:j]))
v[j]=(j^{-1})*var(indicator(newdata[1:j]))
upper[j]=mc[j]+1.96*sqrt(v[j])
lower[j]=mc[j]-1.96*sqrt(v[j])
}
library(ggplot2)
values=c(mc,upper,lower)
type=c(rep("mc",Nsim),rep("upper",Nsim),rep("lower",Nsim))
iter=rep(seq(1:Nsim),3)
data=data.frame(val=values, tp=type, itr=iter)
Rcode<-ggplot(data,aes(itr,val,col=tp))+geom_line(size=0.5)
Rcode+geom_hline(yintercept=1-pnorm(2),color="green",size=0.5)</pre>
```

Warning: Removed 2 rows containing missing values (geom_path).

5.1.2 Importance sampling

Importance sampling has samples generated from a different distribution than the distribution of interest. Specifically, assume that we want to calculate the expected value of h(x), and $x \sim f(x)$.

$$E(h(x)) = \int h(x)f(x)dx = \int h(x)\frac{f(x)}{g(x)}g(x)dx$$

We can sample x_i from g(x) and then calculate the mean of $h(x_i) \frac{f(x_i)}{g(x_i)}$.

Using the same explane above, we can use a shifted exponential distribution to help calculate the integral for normal distribution. Specifically,

$$\int_{2}^{\infty} \frac{1}{2\pi} e^{-\frac{1}{2}x^{2}} dx = \int_{2}^{\infty} \frac{\frac{1}{2\pi} e^{-\frac{1}{2}x^{2}}}{e^{-(x-2)}} e^{-(x-2)} dx$$

The idea is that, we can generate x_i from exponential distribution of $e^{-(x-2)}$, and then insert them into the targeted "expected (value) function" of $\frac{1}{2\pi}e^{-\frac{1}{2}x^2}$. Thus, as you can see, importance sampling is based on the law of large numbers (i.e., If the same experiment or study is repeated independently a large number of times, the average of the results of the trials must be close to the expected value). We can use it to calculate integral based on link of the definition of expected value.

```
Nsim=10^4
normal_density=function(x)
{y=(1/sqrt(2*pi))*exp(-0.5*(x^2))}
return(y)}
x=2-log(runif(Nsim))
ImpS=c(); v=c(); upper=c(); lower=c()
for (j in 1:Nsim)
ImpS[j]=mean(normal density(x[1:j])/exp(-(x[1:j]-2)))
v[j]=(j^{-1})*var(normal\ density(x[1:j])/exp(-(x[1:j]-2)))
upper[j]=ImpS[j]+1.96*sqrt(v[j])
lower[j]=ImpS[j]-1.96*sqrt(v[j])
}
library(ggplot2)
values=c(ImpS,upper,lower)
type=c(rep("mc",Nsim),rep("upper",Nsim),rep("lower",Nsim))
iter=rep(seq(1:Nsim),3)
data=data.frame(val=values, tp=type, itr=iter)
ggplot(data,aes(itr,val,col=tp))+geom_line(size=0.5)+
geom hline(yintercept=1-pnorm(2),color="green",size=0.5)
```

Warning: Removed 2 rows containing missing values (geom_path).

5.1.3 Newton Raphson algorithm

For nonlinear functions, it is sometimes difficult to calculate MLEs. Newton Raphson algorithm is an iterative procedure to calculate MLEs.

The basic idea of Newton Raphson is to find a approximate function that can be easily maximized analytically. We need some theoretical background from Taylor's Theorem.

If f has k+1 times differentiable on an open interval I. For any x and x+h in I, there is a point of w between x and x+h where we can get the following:

$$f(x+h) = f(x) + f^{'}h + \frac{1}{2}f^{''}h^2 + \ldots + \frac{1}{k!}f^{[k]}(x)h^k + \frac{1}{(k+1)!}f^{[k+1]}(w)h^{k+1}$$

If h goes to be close to 0, the higher order terms will go to 0 as well. Thus, we can get:

$$f(x+h) \approx f(x) + f'(x)h$$

This is the first order Taylor approximation of f at x. In a similar vein, we also have the second order Taylor approximation of f at x as follows.

$$f(x+h) = f(x) + f'h + \frac{1}{2}f''h^2$$

For the first order, we can rewrite it as follows.

$$f(x+h) \approx f(x) + f'(x)h = a + bh$$

where,

$$a = f(x), b = f'(x)$$

Similarly,

$$f(x+h) \approx f(x) + f'(x)h + \frac{1}{2}f''(x)h^{2} = a + bh + \frac{1}{2}ch^{2}$$

We can calculate the derivative with respect to h, we can get:

$$f'(x+h) \approx b + ch$$

We can then set it to zero, and get:

$$0 = b + c\hat{h}$$

Thus, we can get,

$$\hat{h} = -\frac{b}{c} = -\frac{f'(x)}{f''(x)}$$

Thus, we can get that the following can maximize f at x:

$$x + \hat{h} = x - \frac{f'(x)}{f''(x)}$$

Thus, the basic idea of Newton Raphson algorithm is as follows. - set a tolerance (typically a very small number) - Check if |f'(x)| < thetolerance. If not, $i \leftarrow i+1; x_i \leftarrow x_{i-1} - \frac{f^{'}(x_{i-1})}{f^{''}(x_{i-1})}$

Practice:

(1) Solve the
$$x^3 - 5 = 0$$

Note that, this is obviously not a maximization problem. In contrast, it involves a function with zero. As we can see, we can think it as the first order of Taylor approximation. That is, $f'(x) = x^3 - 5 = 0$. As we can see the following plot, it converts very quickly. [I will revisit this part later to double check whether such narrative is correct. But, the code is correct, for sure.]

```
f_firstorder=function(x){x^3-5}
f_secondorder=function(x){3*x}
x_old=1;tolerance=1e-3
max_its=2000;iteration=1;difference=2
c_iteration<-c() ## to collect numbers generated in the iteration process
while(difference>tolerance & iteration<max_its){
    x_updated=x_old-(f_firstorder(x_old)/f_secondorder(x_old))
    difference=abs(x_updated-x_old);
    iteration=iteration+1;
    x_old=x_updated
    c_iteration<-c(c_iteration,x_updated)}
plot(c_iteration,type="b")</pre>
```


2. Use Newton Raphson to calculate the logistic regression

Suppose we have n observation, and m variables.

$$\begin{bmatrix} x_{11} & x_{12} & x_{13} & \dots & x_{1m} \\ x_{21} & x_{22} & x_{23} & \dots & x_{2m} \\ \dots & & & & & \\ x_{n1} & x_{n2} & x_{n3} & \dots & x_{nm} \end{bmatrix}$$

Typically, we add a vector of 1 being used to estimate the constant.

$$\begin{bmatrix} 1 & x_{11} & x_{12} & x_{13} & \dots & x_{1m} \\ 1 & x_{21} & x_{22} & x_{23} & \dots & x_{2m} \\ \dots & & & & & \\ 1 & x_{n1} & x_{n2} & x_{n3} & \dots & x_{nm} \end{bmatrix}$$

And, we have observe a vector of n y_i as well, which is a binary variable:

$$Y = \begin{bmatrix} 1 \\ 0 \\ 1 \\ 0 \\ 0 \\ 0 \\ \dots \\ 1 \end{bmatrix}$$

Using the content from the MLE chapter, we can get:

$$\mathbf{L} = \prod_{i=1}^{n} p_i^{y_i} (1 - p_i)^{(1 - y_i)}$$

Further, we can get a log-transformed format.

$$log(\mathbf{L}) = \sum_{i=1}^{n} [y_i log(p_i) + (1 - y_i) log(1 - p_i)]$$

Given that $p_i = \frac{e^{\beta_0 + \beta_1 x_1 + \ldots + \beta_n x_n}}{1 + e^{\beta_0 + \beta_1 x_1 + \ldots + \beta_n x_n}} = \frac{e^{\beta^T x}}{1 + e^{\beta^T x}}$, we can rewrite it as follows:

$$log(\mathbf{L}) = \ell = \sum_{i=1}^{n} [y_i log(\frac{e^{\beta^T x_i}}{1 + e^{\beta^T x_i}}) + (1 - y_i) log(1 - \frac{e^{\beta^T x_i}}{1 + e^{\beta^T x_i}})]$$

Before doing the derivative, we set.

$$\frac{e^{\beta^T x_i}}{1 + e^{\beta^T x_i}} = p(\beta^T x_i)$$

$$log(\mathbf{L}) = \ell = \sum_{i=1}^{n} [y_i log(p(\beta^T x_i)) + (1 - y_i) log(1 - p(\beta^T x_i))]$$

Note that, $\frac{\partial p(\beta^T x_i)}{\partial (\beta^T x_i)} = p(\beta^T x_i)(1 - p(\beta^T x_i))$. We will use it later.

$$\begin{split} \frac{\partial \ell}{\partial \beta} &= \sum_{i=1}^{n} [y_{i} \frac{1}{p(\beta^{T}x_{i})} \frac{\partial p(\beta^{T}x_{i})}{\partial (\beta^{T}x_{i})} \frac{\partial (\beta^{T}x_{i})}{\partial \beta} + (1 - y_{i}) \frac{1}{1 - p(\beta^{T}x_{i})} (-1) \frac{\partial p(\beta^{T}x_{i})}{\partial (\beta^{T}x_{i})} \frac{\partial (\beta^{T}x_{i})}{\partial \beta}] \\ &= \sum_{i=1}^{n} x_{i}^{T} [y_{i} \frac{1}{p(\beta^{T}x_{i})} p(\beta^{T}x_{i}) (1 - p(\beta^{T}x_{i})) + (1 - y_{i}) \frac{1}{1 - p(\beta^{T}x_{i})} (-1) p(\beta^{T}x_{i}) (1 - p(\beta^{T}x_{i}))] \\ &= \sum_{i=1}^{n} x_{i}^{T} [y_{i} \frac{1}{p(\beta^{T}x_{i})} p(\beta^{T}x_{i}) (1 - p(\beta^{T}x_{i})) - (1 - y_{i}) \frac{1}{1 - p(\beta^{T}x_{i})} p(\beta^{T}x_{i}) (1 - p(\beta^{T}x_{i}))] \\ &= \sum_{i=1}^{n} x_{i}^{T} [y_{i} (1 - p(\beta^{T}x_{i})) - (1 - y_{i}) p(\beta^{T}x_{i})] \\ &= \sum_{i=1}^{n} x_{i}^{T} [y_{i} - y_{i} p(\beta^{T}x_{i}) - p(\beta^{T}x_{i})] \\ &= \sum_{i=1}^{n} x_{i}^{T} [y_{i} - p(\beta^{T}x_{i})] \\ &= \sum_{i=1}^{n} x_{i}^{T} [y_{i} - \frac{e^{\beta^{T}x_{i}}}{1 + e^{\beta^{T}x_{i}}}] \end{split}$$

As noted, the Newton Raphson algorithm needs the second order.

$$Secondorder = \frac{\partial \sum_{i=1}^{n} x_i^T [y_i - p(\beta^T x_i)]}{\partial \beta}$$

$$= -\sum_{i=1}^{n} x_i^T \frac{\partial p(\beta^T x_i)}{\partial \beta}$$

$$= -\sum_{i=1}^{n} x_i^T \frac{\partial p(\beta^T x_i)}{\partial (\beta^T x_i)} \frac{\partial (\beta^T x_i)}{\partial \beta}$$

$$= -\sum_{i=1}^{n} x_i^T p(\beta^T x_i) (1 - p(\beta^T x_i)) x_i$$

The following are the data simulation (3 IVs and 1 DV) and Newton Raphson analysis.

```
# Data generation
set.seed(123)
n=500
x1_norm<-rnorm(n)
x2_norm<-rnorm(n,3,4)
x3_norm<-rnorm(n,4,6)
x_combined<-cbind(1,x1_norm,x2_norm,x3_norm) # dimension: n*4</pre>
```

```
coefficients_new<-c(1,2,3,4) #true regression coefficient
inv_logit<-function(x,b){\exp(x\%*\%b)/(1+\exp(x\%*\%b))}
prob_generated<-inv_logit(x_combined,coefficients_new)</pre>
y<-c()
for (i in 1:n) {y[i] <-rbinom(1,1,prob_generated[i])}</pre>
# Newton Raphson
#We need to set random starting values.
beta_old<-c(1,1,1,1)
tolerance=1e-3
max its=2000;iteration=1;difference=2
W<-matrix(0,n,n)
while(difference>tolerance & iteration<max_its)</pre>
   # The first order
  f_firstorder<-t(x_combined)%*%(y-inv_logit(x_combined,beta_old))
   # The second order
  diag(W) = inv_logit(x_combined,beta_old)*(1-inv_logit(x_combined,beta_old))
  f_secondorder<--t(x_combined)%*%W%*%x_combined
   # Calculate the beta_updated
  beta_updated=beta_old-(solve(f_secondorder)%*%f_firstorder)
  difference=max(abs(beta_updated-beta_old));
   iteration=iteration+1;
  beta_old=beta_updated}
beta_old
##
                      [,1]
##
               0.9590207
## x1_norm 1.7974165
## x2 norm 3.0072303
## x3_norm 3.9578107
\frac{\partial \ell}{\partial \beta} = \sum_{i=1}^n [y_i \frac{1}{p(\beta^T x_i)} \frac{\partial p(\beta^T x_i)}{\partial (\beta^T x_i)} \frac{\partial (\beta^T x_i)}{\partial \beta} + (1 - y_i) \frac{1}{1 - p(\beta^T x_i)} (-1) \frac{\partial p(\beta^T x_i)}{\partial (\beta^T x_i)} \frac{\partial (\beta^T x_i)}{\partial \beta}]
           = \sum_{i=1}^{n} [y_i \frac{1}{p(\beta^T x_i)} \phi(\beta^T x_i) - (1 - y_i) \frac{1}{1 - p(\beta^T x_i)} \phi(\beta^T x_i)] x_i
                       \Phi(\beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3) = p(y = 1)
```

```
# Data generation
n = 500
x1_norm<-rnorm(n)</pre>
x2_norm<-rnorm(n)</pre>
x3_norm<-rnorm(n)
x_combined<-cbind(1,x1_norm,x2_norm,x3_norm)</pre>
coefficients_new<-c(2,2,3,3) #true regression coefficient
inv_norm<-function(x,b){pnorm(x%*%b)}
prob_generated<-inv_norm(x_combined,coefficients_new)</pre>
y<-c()
for (i in 1:n) {y[i] <-rbinom(1,1,prob_generated[i])}</pre>
# Newton Raphson
#We need to set random starting values.
x_old<-c(1,1,1,1)
tolerance=1e-3
max_its=2000;iteration=1;difference=2
while(difference>tolerance & iteration<max_its){</pre>
  x_updated=x_old-(f_firstorder(x_old)/f_secondorder(x_old))
  difference=abs(x_updated-x_old);
  iteration=iteration+1;
  x old=x updated
  c_iteration<-c(c_iteration,x_updated)}</pre>
plot(c_iteration,type="b")
```

Some links related to this topic (canonical link function): http://www.winvector.com/blog/2011/09/the-simpler-derivation-of-logistic-regression/ https://en.wikipedia.org/wiki/Generalized_linear_model#Link_function https://stats.stackexchange.com/questions/40876/what-is-the-difference-between-a-link-function-and-a-canonical-link-function https://stats.stackexchange.com/questions/344309/why-using-newtons-method-for-logistic-regression-optimization-is-called-iterati https://www.stat.washington.edu/adobra/classes/536/Files/week1/newtonfull.pdf https://tomroth.com.au/logistic/https://www.stat.cmu.edu/~cshalizi/350/lectures/26/lecture-26.pdf

http://seankross.com/2019/10/27/R-as-a-First-Programming-Language.html

5.2 Basics of GLMM

Recall the formula in the probit model:

$$Y^* = X\beta + \epsilon, \epsilon \sim N(0, \sigma^2) = N(0, I)$$

Similar to LMM, binary model with random effect can be written as follows.

$$Y^* = X\beta + Zu + \epsilon$$

where,

$$\epsilon \sim N(0, I)$$

$$u \sim N(0, D)$$

We also assume ϵ and u are independent. Thus, we know that D represents the virances of the random effects. If we make u=1, the model becomes the usual probit model. McCulloch (1994) states that there are a few advantages to use probit, rather than logit models.

The following is the note from Charle E. McCulloch's "Maximum likelihood algorithems for Generalized Linear Mixed Models"

5.3 Some References

http://www.biostat.umn.edu/~baolin/teaching/linmods/glmm.html

 $http://www.biostat.umn.edu/{\sim}baolin/teaching/probmods/GLMM_mcmc. \\ html$

https://bbolker.github.io/mixedmodels-misc/glmmFAQ.html

Chapter 6

Twitter Example

The following is part of my course project for Stat 536. It aims to replicate part of the findings from Barbera (2015) Birds of the Same Feather Tweet Together: Bayesian Ideal Point Estimation Using Twitter Data. Political Analysis 23 (1). Note that, the following model is much simpler than that in the original paper.

6.1 Model

Suppose that a Twitter user is presented with a choice between following or not following another target $j \in \{1, ..., m\}$. Let $y_j = 1$ if the user decides to follow j, and $y_j = 0$ otherwise.

$$y_j = \begin{cases} 1 & Following \\ 0 & NotFollowing \end{cases}$$

$$p(y_j = 1|\theta) = \frac{exp(-\theta_0|\theta_1 - x_j|^2)}{1 + exp(-\theta_0|\theta_1 - x_j|^2)}$$

We additionally know the priors of θ .

$$\theta_i \sim N(0, 10^2)(i = 0, 1)$$

The likelihood function is as follows.

$$L(Y|\theta) = \prod_{j=1}^{m} \left(\frac{exp(-\theta_0|\theta_1 - x_j|^2)}{1 + exp(-\theta_0|\theta_1 - x_j|^2)}\right)^{y_j} \left(1 - \frac{exp(-\theta_0|\theta_1 - x_j|^2)}{1 + exp(-\theta_0|\theta_1 - x_j|^2)}\right)^{(1-y_j)}$$

Thus, the posterior is as follows.

$$L(Y|\theta) \cdot N(\theta_0|0,10) \cdot N(\theta_1|0,10)$$

$$\propto \prod_{j=1}^{m} \left(\frac{exp(-\theta_{0}|\theta_{1}-x_{j}|^{2})}{1+exp(-\theta_{0}|\theta_{1}-x_{j}|^{2})}\right)^{y_{j}} \left(1-\frac{exp(-\theta_{0}|\theta_{1}-x_{j}|^{2})}{1+exp(-\theta_{0}|\theta_{1}-x_{j}|^{2})}\right)^{(1-y_{j})} \cdot exp(-\frac{1}{2}(\frac{\theta_{0}}{10})^{2}) \cdot exp(-\frac{1}{2}(\frac{\theta_{1}}{10})^{2})$$

6.2 Simulating Data of Senators on Twitter

Assume that we have 100 senators, 50 Democrats and 50 Republicans, who we know their ideology. Assume that Democrats have negative ideology scores to indicate that they are more liberal, whereas Republicans have positive scores to indicate that they are more conservative. The following is data simulation for senators.

```
# Republicans are more conservative, and they have positive numbers.
Republicans<-c()
Republicans<-rnorm(50,1,0.5)
No_Republicans<-rep(1:50,1)
Part_1<-cbind(No_Republicans,Republicans)

# Democrats are more liberal, and they have negative numbers.
Democrats<-c()
Democrats<-rnorm(50,-1,0.5)
No_Democrats<-rep(51:100,1)
Part_2<-cbind(No_Democrats,Democrats)
Data_Elites<-rbind(Part_1,Part_2)
Data_Elites<-as.data.frame(Data_Elites)
colnames(Data_Elites) <- c("Elite_No","Elite_ideology")</pre>
```

```
Elite_No Elite_ideology
##
## 1
         1
                1.2848895
         2
## 2
                0.1733722
## 3
         3
                0.6666728
## 4
         4
                0.7758829
        0 1.5219457
6 1 F111
## 5
## 6
```

6.3 Simulating Data of Conservative Users on Twitter and Model Testing

Assume that we observe one Twitter user, who is more conservative. To simulate Twitter following data for this user, I assign this user to follow more Republican senators. Thus, if the Metropolis Hastings algorithm works as intended, we would expect to see a positive estimated value for their ideology. Importantly, as we can see in the histogram below, the estimated value indeed is positive, providing preliminary evidence for the statistical model and the algorithm. In addition, for the acceptance rate, we can see that the constant has a lower number than ideology, since we only accept a constant when it is positive.

```
#This user approximately follows 45 Republican Senators and 10 Democrat Senators.
Data_user<-as.data.frame(matrix(c(ifelse(runif(50)<.1,0,1),ifelse(runif(50)<.8,0,1))), 100, 1)
colnames(Data_user)<-c("R_User")
Data_combined<-cbind(Data_Elites,Data_user)

X_data<-Data_combined$Elite_ideology
Y_data<-Data_combined$R_User

fit_C<-Bayes_logit(Y_data,X_data)
fit_C$acceptance_rate</pre>
```

```
## [1] 0.1590795 0.4817409
```

Constant (Conservative Users)

Estimated Ideology Scores (Conservative Users)

Estimated Ideology Scores (Conservative Users)

6.4 Simulating Data of Liberal Users on Twitter and Model Testing

To further verify the Metropolis Hastings algorithm, I plan to test the opposite estimate. Specifically, assume that we observe another user, who is more liberal. To simulate Twitter following data for this user, I assign this user to follow more Democrat senators. In this case, we would expect to see a negative value for their estimated ideology. As we can see in the histogram shown below, as expected, the estimated value is negative, providing convergent evidence for the model and the algorithm.

```
#This user approximately follows 10 Republican Senators and 45 Democrat Senators.
Data_user<-as.data.frame(matrix(c(ifelse(runif(50)<.8,0,1),ifelse(runif(50)<.1,0,1))), 100, 1)
colnames(Data_user)<-c("L_User")
Data_combined<-cbind(Data_Elites,Data_user)

X_data<-Data_combined$Elite_ideology
Y_data<-Data_combined$L_User</pre>
```

```
fit_L<-Bayes_logit(Y_data,X_data)
fit_L$acceptance_rate</pre>
```

[1] 0.2081041 0.4337169

Constant (Liberal Users)

Estimated Ideology Scores (Liberal Users)

Estimated Ideology Scores (Liberal Users)

