Reconhecimento de Gestos

1st Raphael Ramos Ciência da Computação Universidade de Brasília Brasília, Brasil raphael.soares.1996@gmail.com 2nd André Luis Souto Engenharia de Computação Universidade de Brasília Brasília, Brasil andresouto.as@gmail.com 3th Rafaela Sinhoroto Engenharia Mecatrônica Universidade de Brasília Brasília, Brasil rsinhoroto@hotmail.com

Resumo—Gestos são parte da comunicação não verbal diária, dessa forma, provendo um jeito inovador e natural de interação com o computador. Logo, reconhecimento de gestos tem aplicações largas na área de computação, como interação humano-computador, linguagem de sinais e jogos. Neste trabalho, duas abordagens de reconhecimentos de gestos, uma baseada em redes neurais convolucionais e outra baseada em parâmetros do formato da mão, são testadas com o Marcel dataset e têm sua acurácia comparadas.

Index Terms—Processamento de Imagem, Redes Neurais Convolucionais, Reconhecimento de Gestos, Parâmetros de Forma.

I. Introdução

Neste trabalho foram comparados dois modelos diferentes para realizar reconhecimento de gestos: redes neurais convolucionais (CNN) e reconhecimento baseado em parâmetros de forma [9]. Para fazer o treinamento e o teste dos nossos modelos, nós usamos o Marcel dataset [7] que consiste de 6 sinais de mão (A, B, C, FIVE, POINT, V) executados por 24 pessoas em três tipos diferentes de backgrounds. Pessoas e backgrounds diferentes foram usados para aumentar a diversidade e a informação contida no dataset. Em termos de background, as imagens no Marcel dataset foram capturadas em um background uniforme com luz, um uniforme escuro e um background complexo variado. Devido ao número diferente de pessoas incluídas na criação desse dataset há também variação no formato e tamanho da mão, além de rotações e mudanças na forma que os sinais são executados. Este dataset contém 4872 imagens de treino e 658 de teste.

Por fim, a acurácia dos dois métodos utilizados é comparada a fim de determinar o mais eficiente para o dataset utilizado, considerando fundo da imagem e gestos reconhecidos.

II. TRABALHOS RELACIONADOS

Redes neurais profundas são a base dos resultados do estado da arte para reconhecimento de imagens [10], detecção de objetos [4], reconstrução tridimensional de objetos [2], reconhecimento de faces [16], reconhecimento de discurso [5], *machine translation* [13], geração de legendas de imagens [17], tecnologia de carros autônomos [6], entre outros. Entretanto, treinar uma rede neural profunda é uma problema de otimização global difícil. Por isso, para o presente trabalho foi utilizado o método de *machine learning* conhecido como *transfer learning* [8]. *Transfer learning* é um metodo onde um modelo desenvolvido para uma tarefa é reusado como ponto

de partida para um modelo em outra tarefa. Esse método foi utilizado neste projeto para a inicialização dos pesos visto que ele permite progresso rápido e performance melhorada para modelar a tarefa requerida.

O outro método utilizado para comparação, reconhecimento baseado em parâmetros de forma, utiliza como referência o trabalho [9] com algumas correções e adaptções para o *dataset* utilizado. Para reconhecimento de gestos, são utilizados apenas parâmetros baseados no formato da mão, como centro de massa, orientação, e posicionamento dos dedos. Logo, cor da pele e textura não são considerados. No trabalho anterior, são analisadas apenas gestos em fundo branco e sem a presença de partes da roupa cobrindo o pulso, o que facilita o processo de segmentação da mão e detecção da orientação do gesto. Nesta abordagem, foram feitas alterações para permitir a segmentação da mão em fundos variados, e com o pulso coberto.

III. SOLUÇÕES PROPOSTAS

A. Redes Neurais Convolucionais

Temos como vantagem do uso de aprendizado profundo a desnecessidade de engenharia de características – a própria rede o faz. Como contrapartida, necessita-se de uma grande quantidade de exemplos de treinamento. Neste trabalho isso foi mitigado pelo uso de *data augmentation*, e transferência de aprendizado ao usar pesos pré-treinados para uma maior e mais desafiadora tarefa de classificação de imagens em 1000 classes: a ImageNet [3]. Foram avaliados dois modelos de redes neurais neste trabalho: *Xception* [1] e *Inception ResNet V2* [14].

A *Inception ResNet V2* [14] é uma rede neural convolucional que faz convoluções fatorizadas e regularizações. Devido a imensa variação na localização da informação em uma imagem, escolher o tamanho do kernel ideal para realizar operações de convolução, que destacam partes salientes da imagem, é uma tarefa difícil. Um tamanho de kernel maior é preferível para a informação que é distribuída mais globalmente, enquanto um kernel de tamanho menor é preferível para informação que é distribuída mais localmente. Para resolver esse problema, as redes da linha *Inception* introduziram os módulos *Inception*, que realizam convoluções em uma entrada com vários tamanhos de filtros além de realizar *max pooling* para obter *features* contidas em subregiões da entrada. Para a

versão residual das redes *Inception (Inception ResNet V2)* foi utilizado blocos *Inception* mais baratos que o modelo original

Na Xception houve uma modificação na camada Depthwise Separable Convolution. Nesta camada existe uma pointwise convolution seguida por uma depthwise convolution (ordem contrária no modelo InceptionV3 [15]). Depthwise convolution é a convolução espacial canal a canal. A convolução separável em profundidade (Depthwise convolution) baseia-se em fatorizar a operação de convolução em duas camadas: uma convolução em profundidade que aplica um filtro para cada canal da entrada; e uma convolução por pontos (pointwise), de tamanho 1x1, responsável por criar novas características por combinações lineares dos canais de entrada e alteram a dimensão. Como resultado, são mais baratas computacionalmente sem perdas de performance significativas em relação às convoluções completas.

B. Reconhecimento Baseado em Parâmetros de Forma

O algoritmo de reconhecimento baseado em parâmetros de forma segue os seguintes passos:

- Segmentação da figura da mão utilizando k-means clustering;
- Detecção de orientação da mão como horizontal ou vertical;
- Extração de features relevantes para a classificação (centroide da mão, detecção do polegar, etc.);
- Classificação a partir das informações obtidas nas etapas
 1 a 3.
- 1) Segmentação: A segmentação da mão é realizada utilizando *k-means clustering* para agrupar os pixeis da mão em clusters separados dos pixeis do plano de fundo utilizando a distância euclidiana entre as diferentes cores de cada agrupamento.

Para que o agrupamento funcione, primeiro é necessário transformar a informação de cor das imagens do espaço RGB para o espaço de cor L*a*b*, um espaço de cor baseado em um canal de luminosidade e dois canais cromáticos que permite que a diferença entre duas cores seja dada pela distância euclidiana entre elas. Os dois canais de cor, a* e b*, são baseados na teoria de cores opostas, onde duas cores não podem ser verdes e vermelhas ao mesmo tempo, nem amarelas e azuis ao mesmo tempo.

Após essa transformação, é necessário estabelecer a quantidade de centroides para o *k-means* classificar. Em imagens com condições uniformes (contendo apenas a mão realizando o gesto e um fundo plano, sem detalhes e de cor distinta a de pele), 2 centroides são suficientes para uma boa segmentação. Porém, em casos gerais, mais complexos, são utilizados 5 centroides para que o agrupamento não junte pedaços da mão com informação irrelevante de fundo.

A técnica do *k-means* funcina melhor com imagens maiores em que há maior distinção dos pixeis da mão para os de fundo.

2) Orientação: Uma vez segmentada a mão, é necessário determinar sua orientação, vertical ou horizontal. A detecção correta é importante pois a orientação influencia diretamente no método de identificação dos dedos.

Figura 1. Orientação vertical.

Figura 2. Orientação horizontal.

Dada a mão segmentada de largura L e comprimento C, calcula-se a razão R entre tais medidas:

$$R = \frac{C}{L} \tag{1}$$

assim, tem-se as condições

$$Orienta \tilde{\varsigma ao} = \begin{cases} Vertical, & R > 1 \\ Horizontal, & \text{Caso contrário} \end{cases}$$
 (2)

Portanto, caso o comprimento da mão segmentada seja maior que sua largura, a mesma encontra-se na vertical. E caso a largura seja maior que o comprimento, a orientação é horizontal.

- 3) Extração de features: Nesta etapa, são extraídas informações a respeito do centro de massa da mão (centroide), da presença ou não do polegar e do estado dos dedos, se estão levantados ou abaixados. Tais informações são usadas juntas na classificação e interpretação dos gestos.
- a) Centro de Massa: O centro de massa divide a imagem da mão em duas partes, uma parte contendo os dedos e outra não contendo. Tal divisão é feita no centro geométrico da imagem.

Para calcular o centroide, foi utilizado o momento da imagem, dado por

$$M_{ij} = \sum \sum x^i y^j I(x, y) \tag{3}$$

onde M_{ij} é o momento da imagem e I(x,y) é a intensidade na coordenada (x,y). Em resumo, o momento da imagem é a

Figura 3. Retângulos formados para detecção de polegar.

média ponderada das intensidades dos *pixels* da imagem. Dado M_{ij} , foi possível calcular o centro de massa:

$$X_c, Y_c = \frac{M_{10}}{M_{00}}, \frac{M_{01}}{M_{00}} \tag{4}$$

onde $X_c,\,Y_c$ são as coordenadas do centroide e M_{00} é a área da imagem binária.

b) Detecção de polegar: Nesta etapa, há a identificação da presença ou não do polegar no gesto da imagem. Dados os limiares das laterais, obtidos na segmentação da mão, pega-se 30 pixels para dentro da imagem partindo-se de cada uma das duas bordas laterais. Forma-se então dois retângulos de área 30 pixels x comprimento da mão.

Calcula-se então a porcentagem de *pixels* brancos dentro de cada retângulo em comparação com o total da imagem. Caso a porcentagem seja menor que 7% em um dos lados, o polegar está presente neste lado. Caso nos dois retângulos conste uma porcentagem maior que 7%, não há polegar no gesto. E caso nos dois lados haja menos de 7% de *pixels* brancos, também não há polegar no gesto.

c) Identificação dos dedos: Para a identificação do restante dos dedos são usados dois métodos. Primeiramente, percorre-se todo o contorno da mão segmentada a fim de marcar regiões de picos, pois tais regiões representam os dedos na imagem.

Com os picos detectados, no segundo método, calcula-se a distância euclidiana de todos os picos encontrados com o centro de massa. Dessa forma, tem-se todos os dedos identificados, porém, como alguns podem estar dobrados, todos os picos que tiverem distância euclidiana de valor menor que 75% do maior valor, são declarados insignificantes, ou seja, dobrados.

4) Classificação: Por fim, dadas as informações obtidas na etapa de extração de features, gera-se um vetor de cinco bits onde cada bit representa o estado de cada dedo. Ou seja, caso ele se encontre no gesto, o bit correspondente é setado como 1. Caso contrário, é setado como 0. Na figura 4, um exemplo de gesto com os cinco dedos levantados e abaixo o vetor de bits correspondente.

Figura 4. Gesto correspondente ao vetor de bits [1 1 1 1 1].

IV. RESULTADOS EXPERIMENTAIS

A. Redes Neurais Convolucionais

Os dois modelos foram avaliados em 3 cenários diferentes, variando *dropout* [11], que previne sobreajuste nos dados de treino (*overfitting*), e *batch size*. A melhor acurácia obtida foi de 91.45%, conforme mostra a Tabela I. Notou-se rápida convergência em um baixo número de épocas, além de *overfitting*, considerando a acurácia de 99% alcançada na validação e no treino. Por isso, foi aumentado o dropout para a segunda *Xception* testada e a acurácia obtida foi melhor. O que já era esperado, considerando que o *dropout* dropa as unidades junto com suas conexões. Assim, o *dropout* não permite que as unidades se co-adaptem muito, prevenindo *overfitting* pois essas co-adaptações das unidades para diminuir a *loss* são complexas e podem não generalizar bem para dados não vistos.

Tabela I RESULTADOS OBTIDOS USANDO CNN.

	Dropout	Acurácia (Top-1)
Xception-1.0	60%	89.82%
Xception-2.0	80%	91.45%
Inception ResNetV2	80%	91.45%

Figura 5. Matriz de confusão para o modelo Xception que obteve a maior acurácia.

B. Reconhecimento Baseado em Parâmetros de Forma

O método foi avaliado utilizando as imagens do conjunto de teste para comparação com o desempenho do método de

Tabela II
RESULTADOS OBTIDOS USANDO SHAPE PARAMETERS.

Gesto	Acurácia
A	16.7%
В	0.0%
С	0.0%
Five	10.4%
Point	37.0%
V	38.9%
Total	16.9%

Confusion Matrix 0.0% R4 20 2.4% 2.6% 0.9% 3.5% 1.8% 0 2 0.0% 0.0% 0.0% 0.0% NaN⁹ 0.0% NaN% NaN% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% Output Class 0.0% 0.0% 0.2% 2.1% 0.0% 0.0% 0.0% 31 1.1% 0.0% 1 0.2% 0.0% 0.6% 0.2% 0.0% 1.7% 5.6% 48 51 33 7.3% 6.7% 12.9% 12.5% 7.8% 5.0% 0.0% 83.1% 2 3 4 5 6 **Target Class**

Figura 6. Matriz de confusão para o método utilizando *shape parameters*. As classes enumeradas de 1 a 6 são [A, B, C, FIVE, POINT, V], respectivamente, enquanto a classe 7 representa falhas de segmentação/classificação.

utilizando redes neurais convolucionais. A Tabela II resume os resultados obtidos utilizando o método descrito em [9].

Como mostrado na tabela, observa-se que as taxas de acerto para todos os gestos foram insatisfatórias, tendo gestos que não foram reconhecidos em nenhuma tentativa.

V. CONCLUSÃO

Os resultados obtidos para o modelo utilizando Redes Neurais Convolucionais foram satisfatórios, visto que a melhor acurácia relatada por [12] foi de 78.22%. Enquanto que para o modelo que utiliza parâmetros de forma, a acurácia alcançada foi muito baixa. O fato do modelo ter sido desenvolvido para reconhecimento de gestos em fundo uniforme e com a mão reta e de frente para a câmera influenciou diretamente na segmentação da mão. Pois no dataset testado, poucas imagens apresentavam uniformidade no fundo juntamente com a correta posição da mão em relação a câmera. Dessa forma, a segmentação foi prejudicada, o que ocasionou em resultados baixos de acerto no reconhecimento dos gestos. Uma outra forma de segmentação, adequada a fundos heterogêneos, é o indicado para aumentar as taxas de acerto deste modelo.

Dessa forma, é correto concluir que o método utilizando Redes Neurais Convolucionais é mais adequado para ser utilizado em reconhecimento de gestos quando o ambiente das imagens não é um ambiente controlado.

REFERÊNCIAS

- [1] François Chollet. Xception: Deep learning with depthwise separable convolutions. *arXiv preprint*, pages 1610–02357, 2017.
- [2] Christopher B Choy, Danfei Xu, Jun Young Gwak, Kevin Chen, and Silvio Savarese. 3d-r2n2: A unified approach for single and multi-view 3d object reconstruction. In *Proceedings of the European Conference* on Computer Vision (ECCV), 2016.
- [3] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. ImageNet: A Large-Scale Hierarchical Image Database. In CVPR09, 2009.
- [4] Ross Girshick, Jeff Donahue, Trevor Darrell, and Jitendra Malik. Rich feature hierarchies for accurate object detection and semantic segmentation. In *Proceedings of the IEEE conference on computer vision and pattern recognition*, pages 580–587, 2014.
- [5] Alex Graves and Navdeep Jaitly. Towards end-to-end speech recognition with recurrent neural networks. In *International Conference on Machine Learning*, pages 1764–1772, 2014.
- [6] Brody Huval, Tao Wang, Sameep Tandon, Jeff Kiske, Will Song, Joel Pazhayampallil, Mykhaylo Andriluka, Pranav Rajpurkar, Toki Migimatsu, Royce Cheng-Yue, et al. An empirical evaluation of deep learning on highway driving. arXiv preprint arXiv:1504.01716, 2015.
- [7] Sébastien Marcel. Sebastien marcel static hand posture database. https://www.idiap.ch/resource/gestures/, 1999.
- [8] Sinno Jialin Pan and Qiang Yang. A survey on transfer learning. IEEE Transactions on Knowledge and Data Engineering, 22:1345–1359, 2010.
- [9] Meenakshi Panwar. Hand gesture recognition based on shape parameters. 2012.
- [10] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image recognition. arXiv preprint ar-Xiv:1409.1556, 2014.
- [11] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov. Dropout: a simple way to prevent neural networks from overfitting. The Journal of Machine Learning Research, 15(1):1929–1958, 2014.
- [12] Gjorgji Strezoski, Dario Stojanovski, Ivica Dimitrovski, and Gjorgji Madjarov. Hand gesture recognition using deep convolutional neural networks. In *International Conference on ICT Innovations*, pages 49– 58. Springer, 2016.
- [13] Ilya Sutskever, Oriol Vinyals, and Quoc V Le. Sequence to sequence learning with neural networks. In Advances in neural information processing systems, pages 3104–3112, 2014.
- [14] Christian Szegedy, Sergey Ioffe, Vincent Vanhoucke, and Alexander A Alemi. Inception-v4, inception-resnet and the impact of residual connections on learning. In AAAI, volume 4, page 12, 2017.
- [15] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon Shlens, and Zbigniew Wojna. Rethinking the inception architecture for computer vision. In *Proceedings of the IEEE conference on computer vision and* pattern recognition, pages 2818–2826, 2016.
- [16] Yaniv Taigman, Ming Yang, Marc'Aurelio Ranzato, and Lior Wolf. Deepface: Closing the gap to human-level performance in face verification. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 1701–1708, 2014.
- [17] Oriol Vinyals, Alexander Toshev, Samy Bengio, and Dumitru Erhan. Show and tell: A neural image caption generator. In *Proceedings of the IEEE conference on computer vision and pattern recognition*, pages 3156–3164, 2015.