Coventry University School of Computing, Electronics and Mathematics

5005CEM

Feedback for Probability Problem Sheet 1b

Week 5

1 Given

$$P(A) = 0.4$$
 $P(B) = 0.7$ $P(A \cap B) = 0.2$

It is useful to summarise what we know in a Venn diagram.

Definition of conditional probability

$$P(A \mid B) = \frac{P(A \cap B)}{P(B)}$$

(a)
$$P(A \mid B) = \frac{P(A \cap B)}{P(B)} = \frac{0.2}{0.7} = \frac{2}{7}$$

(b)
$$P(\overline{A} \mid B) = \frac{P(\overline{A} \cap B)}{P(B)} = \frac{0.5}{0.7} = \frac{5}{7}$$

(c)
$$P(A \mid \overline{B}) = \frac{P(A \cap \overline{B})}{P(\overline{B})} = \frac{0.2}{0.3} = \frac{2}{3}$$

(d)
$$P(\overline{A} \mid \overline{B}) = \frac{\overline{A} \cap \overline{B}}{P(\overline{B})} = \frac{0.1}{0.3} = \frac{1}{3}$$

epr015

2 Solution — (C)

If $P(A \mid B) = P(B \mid A)$ then

$$\frac{P(A \cap B)}{P(B)} = \frac{P(B \cap A)}{P(A)}$$

but $A \cap B = B \cap A$ so $P(A \cap B) = P(B \cap A)$ and we are left with P(B) = P(A).

1

5005CEM, 2020/21

Feedback: Probability Problem Sheet 1b

3 Given

$$P(A) = 0.8$$
 $P(B) = 0.7$ $P(C) = 0.6$ $P(A \mid B) = 0.8$ $P(C \mid B) = 0.7$ $P(A \cap C) = 0.48$

Definition of independence

$$P(A \mid B) = P(A)$$
 or equivalently
$$P(B \mid A) = P(B)$$
 or equivalently
$$P(A \cap B) = P(A) \times P(B)$$

- $yes since P(A) = P(A \mid B)$ (a) Are A and B are independent?
- (b) Are A and C are independent? yes since
 - $P(A \cap C) = 0.48$ and $P(A)P(C) = 0.8 \times 0.6 = 0.48$
 - P(A) = 0.8 and $P(A \mid C) = \frac{P(A \cap C)}{P(C)} = \frac{0.48}{0.6} = 0.8$
 - P(C) = 0.6 and $P(C \mid A) = \frac{P(C \cap A)}{P(A)} = \frac{0.48}{0.8} = 0.6$
- (c) Are B and C are independent? no since $P(C \mid B) \neq P(C)$ epr018
- (a) Tree diagram

- (b) (i) $P(B) = \frac{1}{3}$

 - (ii) $P(A \cap F) = \frac{2}{3} \times 0.03 = 0.02$ (iii) $P(B \cap \overline{F}) = \frac{1}{3} \times 0.95 = \frac{19}{60}$ (iv) $P(F) = P(A \cap F) + P(B \cap F) = \frac{2}{3} \times 0.03 + \frac{1}{3} \times 0.05 = \frac{11}{300}$

epr011

5 (a) Tree diagram

(b) "Flipping the tree" (and doing all the calculations on the tree) gives

Conclusion —

(i)
$$P(A \mid B) = \frac{1}{3}$$
 (ii) $P(\overline{A} \mid B) = \frac{2}{3}$ 7 (iii) $P(A \mid \overline{B}) = \frac{7}{16}$ (iv) $P(\overline{A} \mid \overline{B}) = \frac{9}{16}$

Step by step —

Step 1. Flip the tree structure and copy the outcome probabilities of $P(A \cap B)$, $P(\overline{A} \cap \overline{B})$, $P(\overline{A} \cap B)$ and $P(\overline{A} \cap \overline{B})$ to the <u>correct</u> places on the flipped tree.

Step 2. Calculate the probabilities P(B) and $P(\overline{B})$ by adding, e.g.,

3

$$P(B) + P(A \cap B) + P(\overline{A} \cap B) = 0.12 + 0.24 = 0.36$$

and write them on the tree.

Step 3. Calculate the conditional probabilities using the <u>definition</u> of conditional probability, e.g.

$$P(A \mid B) = \frac{P(A \cap B)}{P(B)} = \frac{0.12}{0.36} = \frac{1}{3}$$

and write them on the tree.

6 (a)
$$P(\text{accident}) = P(\text{accident} \mid \text{clumsy}) \times P(\text{clumsy})$$

$$+ P(\text{accident} \mid \text{not clumsy}) \times P(\text{not clumsy})$$

$$= \frac{2}{5} \times \frac{3}{10} + \frac{1}{5} \times \frac{7}{10}$$

$$= \frac{6}{50} + \frac{7}{50}$$

$$= \frac{13}{50} = 0.26$$

4

(b)
$$P(\text{clumsy } | \text{ accident}) = P(\text{clumsy and accident})/P(\text{accident})$$
$$= (\frac{2}{5} \times \frac{3}{10})/(\frac{13}{50})$$
$$= \frac{6}{13}$$

 ${\rm epr}045$

7 Solution — (B)

If A and B are mutually exclusive then $A \cap B = \emptyset$ so $P(A \cap B) = 0$.

Since P(A) > 0 and P(B) > 0 we must have $P(A) \times P(B) > 0$.

Therefore A and B are <u>not</u> independent.

epr005

8 Given

$$P(A) = 0.8$$
 $P(A \mid B) = 0.8$ $P(A \cap B) = 0.5$

Definition of conditional probability

$$P(A \mid B) = \frac{P(A \cap B)}{P(B)}$$

 $Addition\ Law$

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

Negation

$$P(\overline{A}) = 1 - P(A)$$

5

(a)
$$P(B) = \frac{P(A \cap B)}{P(A \mid B)} = \frac{0.5}{0.8} = \frac{5}{8}$$

(b)
$$P(B \mid A) = \frac{P(B \cap A)}{P(A)} = \frac{0.5}{0.8} = \frac{5}{8}$$

(c)
$$P(A \cup B) = P(A) + P(B) - P(A \cap B) = 0.8 + \frac{5}{8} - 0.5 = \frac{37}{40}$$

(d)
$$P(A \mid A \cup B) = \frac{P(A \cap (A \cup B))}{P(A \cup B)} = \frac{P(A)}{P(A \cup B)} = \frac{0.8}{(\frac{37}{40})} = \frac{32}{37}$$

Note that $A \cap (A \cup B) = A$

(e)
$$P(A \cap B \mid A \cup B) = \frac{P((A \cap B) \cap (A \cup B))}{P(A \cup B)} = \frac{P(A \cap B)}{P(A \cup B)} = \frac{0.5}{(\frac{37}{40})} = \frac{20}{37}$$

Note that $(A \cap B) \cap (A \cup B) = A \cap B$

(f)
$$P(A \cap B \mid \overline{B}) = \frac{P((A \cap B) \cap \overline{B})}{P(\overline{B})} = \frac{0}{1 - \frac{5}{8}} = 0$$

Note that $(A \cap B) \cap \overline{B} = \emptyset$

(g)
$$P(A \cap B \mid A) = \frac{P((A \cap B) \cap A)}{P(A)} = \frac{P(A \cap B)}{P(A)} = \frac{0.5}{0.8} = \frac{5}{8}$$

Note that $(A \cap B) \cap A = A \cap B$

 ${\rm epr}016$