NOTICE

THIS DOCUMENT HAS BEEN REPRODUCED FROM MICROFICHE. ALTHOUGH IT IS RECOGNIZED THAT CERTAIN PORTIONS ARE ILLEGIBLE, IT IS BEING RELEASED IN THE INTEREST OF MAKING AVAILABLE AS MUCH INFORMATION AS POSSIBLE

(NASA-CR-161348) SPACE FABRICATION N80-13068
DEMONSTRATION SYSTEM. COMPOSITE BEAM CAP
FABRICATOR DEVELOPMENT, PHASE 1 AND 2
Final Report (Grumman Aerospace Corp.) 78 p Unclas
HC A05/MF A01 CSCL 22A G3/12 46278

GRUMMAN

SPACE FABRICATION DEMONSTRATION SYSTEM COMPOSITE BEAM CAP FABRICATOR DEVELOPMENT PHASE I & II FINAL REPORT

NASA-MSFC Contract NAS8-32472

NSS-SFDS-LR126 Contract NAS8-32472 November 30, 1979

National Aeronautics and Space Administration George C. Marshall Space Flight Center Marshall Space Flight Center, Alabama 35812

Attention:

Erich E. Engler, COR Code EP-13, Bldg. 4610

Subject:

SPACE FABRICATION DEMONSTRATION SYSTEM - Composite Beam Cap Fabricator Development Phase I and II Final Report Presentation

Enclosures:

(1) Subject, Executive Summary, Presented to NASA-MSFC October 24, 1979

(2) Subject, Presented to NASA-MSFC October 24, 1979

SUMMARY

On October 24, 1979 Grumman and Goldsworthy Engineering Incorporated presented the results of their combined Phase I & II composite beam cap fabricator pultrusion process development efforts. The sum and substance of the effort included the following:

- Pultrusion is a workable, though difficult, process for thermoset and thermoplastic graphite composite closed caps
- o Continuous material shaping preparatory to entering the pultrusion die is still to be demonstrated.

DISC SSION

Two final report presentations were made at NASA-MSFC on October 24, 1979. The first, in the morning, consisted of a complete review of all of the effort conducted toward demonstrating that the pultrusion process was a viable approach to producing a composite beam cap fabricator which would fit within the present aluminum cap forming portion of the aluminum beam builder. The second, in the early afternoon, was an executive summary of the first.

Composite Beam Cap Fabricator Executive Summary

Enclosure (1) is a reprint of the material viewed and discussed as the final review executive summary. It follows the following format in abbreviated form. At this meeting the comments were made that we would be ready to proceed with the detail design, fabrication and test of a composite beam cap fabricator and ribbon forming machine following a demonstration of the continuous material shaping section of the concept drawing shown on page 15.

Composite Beam Cap Fabricator Review

Enclosure (2) is a reprint of the material which was viewed during the final review presentation. The following reminders are given to those who were present at the meeting and to serve as a note to others reviewing this material:

O	Introduction and programmatic remarks	- pages 1-6
o	Process development phase I and II tasks	- pages 7-8
0	Closed cap thermoset effort	- pages 9-14
0	Closed cap thermoplastic effort	- pages 15-27
0	Material and cap properties	- pages 28-30
0	Ribbon and cap fabricator configurations	- pages 31-48
0	Summary including 2 bay thermomet beam	- pages 49-51

CONCLUSION

While the above demonstrated major portions of the pultrusion process technology associated with various machine sections of a closed composite beam cap fabricator some unanswered questions remained, i.e.:

- o Can the thermoplastic ribbon stock be shaped prior to entering the pultrusion die in the machine length shown?
- o When might three (3) 11 ft. and one (1) 6 ft closed thermoplastic beam caps be produced?

RECOMMENDATION

NASA-MSFC review the material presented as our final report for this contracted effort and advise us as to what their conclusion and recommendation for the next step might be.

THE PROPERTY OF THE PROPERTY O

Should you have any question, comment or suggestions with regard to the above, the enclosures or the SFDS program in general, please advise us.

Very truly yours,

GRUMMAN AEROSPACE CORPORATION

Flath K Africal

Walter K. Muench SFDS Program Manager

WKM/dr

cc: Distribution: NASA-MSFC

Grumman Goldsworthy

ENCLOSURE (1)

SPACE FABRICATION DEMONSTRATION SYSTEM

COMPOSITE BEAM CAP FABRICATOR DEVELOPMENT

PHASE I & II FINAL REPORT

EXECUTIVE SUMMARY

GRUMMAR

Goldsmort

ORIGINAL PAGE 18 OF POOR QUALITY SPACE FABRICATION DEMONSTRATION SYSTEM

FABRICATOR DEVELOPMENT COMPOSITE BEAM CAP

PHASE I & II FINAL REPORT EXECUTIVE SUMMARY

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION GEORGE C. MARSHALL SPACE FLIGHT CENTER **OCTOBER 24, 1979** PRESENTED TO

Goldsmorthy

1618-201B

INTRODUCTION

*

COMPOSITE BEAM CAP FABRICATOR

- NASA/MSFC CONTRACT NAS 8-32472
- CONTRACTING OFFICER REPRESENTATIVE

- WALTER K. MUENCH

- ERICH E. ENGLER

- PRIME CONTRACTOR GRUMMAN AEROSPACE CORPORATION
 - PROGRAM MANAGER

- PROGRAM MANAGER

- GLENN W. EWALD SUBCONTRACTOR — GOLDSWORTHY ENGINEERING INCORPORATED

1618-215B

1

PROGRAM OBJECTIVES

- TO DEVELOP AND DEMONSTRATE THE FEASIBILITY OF AUTOMATICALLY PRODUCING COMPOSITE BEAM CAPS
- COMPOSITE BEAM CAP FABRICATOR TO BE COMPATIBLE WITH THE CURRENT **ALUMINUM BEAM BUILDER**
- USE EXISTING DEVELOPMENT FACILITIES, TOOLING AND EQUIPMENT
- COMPOSITE MATERIAL TO PROVIDE DIMENSIONAL STABILITY, WEIGHT & STRENGTH EQUAL TO OR BETTER THAN ITS ALUMINUM COUNTERPART

1618-124B

看,

TASKS

PHASE I

MSFC/GRUMMAN/GOLDSWORTHY

7/18/79 MEETING

DECISIONS

DROP THERMOSET

DROP OPEN CAPS

- PROCESS DEVELOPMENT

O THERMOSET & THERMOPLASTIC MATERIALS

OPEN & CLOSED CAPS

- DEVELOPMENT MATERIAL & CAP SELECTION

- DELIVER 30m OF SELECTED BEAM CAP (5-6 m LENGTHS)

● PHASE II

— COMPOSITE BEAM CAP FABRICATOR PRELIMINARY DESIGN

- BEAM CAP/CROSS BRACE FASTENING TECHNIQUE IDENTIFICATION

- BEAM CUT-OFF METHOD

Toldsmorth

1618-1258

COMPOSITE BEAM CAP FABRICATOR DEVELOPMENT

Figure 2

Figure 1

ORIGINAL PAGE OF POOR QUALITY

COMPOSITE BEAM CAP

FABRICATOR DEVELOPMENT

Figure 3

Figure 5

Figure 4

Figure 6

PROCESS EVALUATION

GRUMMAN LABORATORY DATA BEAM CAP PROPERTIES

MATERIAL TYPE IDENTITY LAY-UP	COMPOSITE THERMOSET ~R/PE 0°-0°±45°M-0°-0°	COMPOSITE THERMOPLASTIC GR/PS 0°-0°±45°-0°-0°	METAL ALUMINUM 2024-T3
TYPE OF CAP	CLOSED	CLOSED	OPEN
THICKNESS, IN. WEIGHT, LBS/FT DESIGN ULTIMATE LOAD, LBS FAILURE LOAD, LBS TENSILE STRENGTH LONG, KSI TENSILE MODULUS LONG, MSI FLEXURE STRENGTH LONG, KSI FLEXURE STRENGTH TRANS, KSI FLEXURE MODULUS TRANS, MSI *SPECIMEN LENGTH = 59.05 IN **MODULUS TOO ! OW TO MEASURE	0.038 0.17 720* 111.5 12.8 231.8 14.9 8.1	0.035 0.17 - - 176.0 16.0 13.7 0.5	0.016 0.12 433 505* 47 10.5 NA NA NA

Toldsmorthe

GRUMMAN

a complete the same

CONFIGURATION

- COMPOSITE RIBBON FABRICATOR
- COMPOSITE BEAM CAP FABRICATOR
- DEMONSTRATION MACHINE
- ALUMINUM BEAM BUILDER INSTALLATION

A STATE OF THE STA

Figure 8

ORIGINAL PAGE IS
OF POOR QUALITY

COMPOSITE BEAM CAP FABRICATOR DEVELOPMENT

Figure 10

Figure 11

A Contract of the Contract of

The second of the second se

ORIGINAL PAGE IS OF POOR QUALITY

Figure 15

ORIGINAL PAGE IS OF POOR QUALITY

COMPOSITE BEAM CAP FABRICATOR DEVELOPMENT

HYBRID CONPOSITE INTERCESTAL RIBBON SUPPLY

HYGRID COMPOSITE BEAM CAP
RIBBON SUPPLY (3 PLACES)

INTERCOSTAL WINDING WHEEL (2 PLACES)

BEAM FIACHINE CONTENT CONTERE

Figure 16

CONCLUSION

WHAT HAVE WE LEARNED?

- MATERIALS AVAILABILITY
 - PREPREG IS LIMITED
- CLOTH IS READILY AVAILABLE
 - LAMINATE IS DIFFICULT
- PULTRUSION PROCESS
- **THERMOSET**
- O PRESENTS HANDLING DIFFICULTIES
- O 11 FT CAP LENGTH DEMONSTRATED
 - THERMOPLASTIC
- EASY TO HANDLE
- O 8 FT RIBBON LENGTH DEMONSTRATED
 - O 4 FI CAP LENGTH DEMONSTRATED
- CLOSED BEAM CAP CHARACTERISTICS
- EXHIBITS LOW TRANSVERSE STRENGTH AT PRESENT

Goldsmorthy

Figure 17

OF POOR QUALITY

ENCLOSURE (2)

SPACE FABRICATION DEMONSTRATION SYSTEM COMPOSITE BEAM CAP FABRICATOR DEVELOPMENT PHASE I & II FINAL REPORT

SPACE FABRICATION DEMONSTRATION SYSTEM

FABRICATOR DEVELOPMENT COMPOSITE BEAM CAP

PHASE I & II FINAL REPORT

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION GEORGE C. MARSHALL SPACE FLIGHT CENTER OCTOBER 24, 1979 PRESENTED TO

COMPOSITE BEAM CAP FABRICATOR NASA-MSFC CONTRACT NAS 8-32472

AGENDA

- OVERVIEW
- PROCESS DEVELOPMENT
- PROCESS EVALUATION
- BEAM CAP FABRICATOR CONFIGURATION
- SUMMARY

OVERVIEW

COMPOSITE BEAM CAP FABRICATOR

- NASA/MSFC CONTRACT NAS 8-32472
- CONTRACTING OFFICER REPRESENTATIVE ERICH E. ENGLER
- PRIME CONTRACTOR GRUMMAN AEROSPACE CORPORATION
 - PROGRAM MANAGER WALTER K. MUENCH
- SUBCONTRACTOR GOLDSWORTHY ENGINEERING INCOHPORATED
 - PROGRAM MANAGER GLENN W. EWALD

Goldsworthy

1618-135B

おっているというない

PROGRAM OBJECTIVES

- TO DEVELOP AND DEMONSTRATE THE FEASIBILITY OF AUTOMATICALLY PRODUCING COMPOSITE BEAM CAPS
- COMPOSITE BEAM CAP FABRICATOR TO BE COMPATIBLE WITH THE CURRENT ALUMINUM BEAM BUILDER
- USE EXISTING DEVELOPMENT FACILITIES, TOOLING AND EQUIPMENT
- COMPOSITE MATERIAL TO PROVIDE DIMENSIONAL STABILITY, WEIGHT & STRENGTH EQUAL TO OR BETTER THAN ITS ALUMINUM COUNTERPART

1618-124B

TASKS

MSFC/GRUMMAN/GOLDSWORTHY 7/18/79 MEETING DECISIONS

DROP THERMOSET DROP OPEN CAPS

PHASE I

- PROCESS DEVELOPMENT

O THERMOSET & THERMOPLASTIC MATERIALS

OPEN & CLOSED CAPS

- DEVELOPMENT MATERIAL & CAP SELECTION

- DELIVER 30m OF SELECTED BEAM CAP (5-6 m LENGTHS)

• PHASE II

- COMPOSITE BEAM CAP FABRICATOR PRELIMINARY DESIGN

- BEAM CAP/CROSS BRACE FASTENING TECHNIQUE IDENTIFICATION

- BEAM CUT-OFF METHOD

foldsworthy

1618-1258

SCHEDULE

FEB MAR APR MAY JUN JUL AUG SEP OC PRELIMINARY PROCESS ON A MID TERM ASELECTION 7/18 A 12/2 A 3/7 A 6/8 A 8/8 A 9/7 A 4/2 A 5/4 A 6/8 A 8/8 A 9/7 A 10/4	CHINAL CHINAL CONTINUE OF THAT	THERMOPLASTIC [[[]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]		
SEP OCT NOV DEC JAN GOLDSWORTHY ATP		THERMOSET		
NASA-MSFC REVIEWS NASA-MSFC REPORTS MONTHLY QUARTERLY PHASE I & II FINAL	PROGRAM MANAGEMENT MATERIALS TEST PHYSICAL PROP. PEAM CAP FABRICATE 2 BAY BEAM SAMPLE	DESIGN & DEVELOPMENT MATERIALS TOOLING CAP FABRICATION — PROCESS DEVELOPMENT THERMOSET THERMOPLASTIC	BEAM CAP FABRICATOR/ BEAM BUILDER DESIGN	
GOLDŚWORTHY GRUMMAN MILESTONES				
COMPOSITE BEAM CAP FABRICATOR MILESTONES				

foldswortky

1618-1269

REV 7.18.79

COMPOSITE BEAM CAP FABRICATOR NASA-MSFC CONTRACT NAS 8-32472

AGENDA

- OVERVIEW
- PROCESS DEVELOPMENT
- PROCESS EVALUATION
- BEAM CAP FABRICATOR CONFIGURATION
- SUMMARY

Goldsmorthy

1618-1278

PROCESS DEVELOPMENT

- MATERIAL INVESTIGATION & SELECTION
 - THERMOSET
- THERMOPLASTIC
- PULTRUSION DEVELOPMENT
- THERMOSET MATERIAL (DROPPED 7-18-79)
- OPEN BEAM CAPCLOSED BEAM CAP
- THERMOPLASTIC MATERIAL

- O RIBBON FABRICATION
 O BEAM CAP FORMING
 CLOSED BEAM CAP
 OPEN BEAM CAP (DROPPED 7-18-79)

- CONCEPTUAL MACHINE DESIGN
- RIBBON FABRICATION EQUIPMENT
 - BEAM CAP FABRICATOR
- (INSTALLATION, FASTENING, CUT-OFF, ETC) O GRUMMAN BEAM BUILDER RELATIONSHIP

Goldsmorthy

1618-133B

Figure 2

ORIGINAL PAGE IS
OF POOR QUALITY

COMPOSITE BEAM CAP FABRICATOR DEVELOPMENT

Figure 4

Figure 3

Figure 5

DEVELOPMENT

PULL ** IG LAMINATE SCHEDDLE FIG* 1 TO ORIENTATED CARBON MAT WRAPPED ON PREFORM TOOLING AT +45" 70° ORENTATED CARBON MAT WRAPPED ON PREFORM TOOLING AT - 45° O OUTER UNIDIRECTIONAL O' CENTER UNIDIRECTIONAL O"INSIDE: UNIDIRECTIONAL CARBON PLY PULL DIRECTION

U.S. POLIMERIC P.659
POLYESTER IMPREGNATED THURNEL 300-6K
CARBON FIBER UNIDIRECTIONAL TAPE
INTERNATIONAL PAPER Co.
CELION CARBON MAT.008°
THICK WITH ASHLAND AROPOL "241
150-POLYESTER RESIN.

PULL DIRECTION

Figure 6

12

COMPOSITE BEAM CAP DEVELOPMENT **FABRICATOR**

U.S. POLYWERIC P 656.
POLYESTEIR IMPREGNATED THORNEL 300-6K.
UNDIRECTIONAL TAPE.
ASHLAND AROPOL 724! POLYESTER
IMPREGNATION! OF THE CELION CARBON MAT

Figure 7

COMPOSITE BEAM CAP FABRICATOR DEVELOPMENT

O' OUTER UNIDRECTIONAL

CARBON PLIES

TO GMENTATE DOS CARBON
WIT WIARPED ON PREFORM
TOOLING AT 4.5"

O' INSIDE UNIDRECTIONAL

CARBON PLIES

O' INSIDE UNIDRECTIONAL

CARBON PLIES

150- POLYESTER RESINUS POLYMERC P.659
POLYESTER IMPREGNATED THORNEL 300-6K
CARBON FIBER UNIDIRECTIONAL TAPE
INTERNATIONAL PAPER CO
CELION CARBON MAT 000 \$\xi\$ 008
THICK WITH ASHLAND AROPOL 7241

1

Figure: 8

U.S. POLYMERIC PITOO POLYSULFONE

ĸ,

Figure 11

Figure 13

Figure 15

Figure 17

ORIGINAL PAGE
POOR OUALITY

COMPOSITE BEAM CAP

DEVELOPMENT FABRICATOR

20

Figure 20

Figure 22

ORIGINAL PAGE POOR QUALITY

COMPOSITE BEAM CAP

FABRICATOR DEVELOPMENT

Figure 23

COMPOSITE BEAM CAP

FABRICATOR DEVELOPMENT

Figure 24

Figure 26

Figure 27

OF POOR QUALITY

COMPOSITE BEAM CAP

DEVELOPMENT FABRICATOR

Figure 28

COMPOSITE BEAM CAP FABRICATOR NASA-MSFC CONTRACT NAS 8-32472

AGENDA

- OVERVIEW
- PROCESS DEVELOPMENT
- PROCESS EVALUATION
- BEÁM CAP FABRICATOR CONFIGURATION
- SUMMARY

Coldsmorthy

PROCESS EVALUATION

一 大田大田大学の一

GRUMMAN M&P LABORATORY DATA

MATERIALS PROPERTIES TESTING OF CANDIDATE GRAPHITE & LAMINATES

					5	9	[
					TEN	LUNG. Tension Strength		TENSION	FLEX	FLEXURAL STRENGTH (KS!)	TRENC	БТН	FLE	FLEXURAL MODULUS (MSI)		ILUS
	REINFORCEMENT	RESIN	LAMINATE STACKING	THICK.	, R	(KSI)	E	(MSI)	LONG. 0°	3.0°	90° TRAWS	RAMS	LONG G		e e	90° TRAMS
	DESCRIPTION	DESCRIPTION	SEQUENCE	NESS	T.	170°F	RT	170°F	F.F.	250°F	RT 250°F	₹05°F	F	250°F	FILE	RT 250°F
THOR GLAS CARB	THORNEL 6K SRAPHITE WITH GLASS SCRIM/CELION CARBON MAT CORE	HEXCEL F-549 POLYESTER	0°/CARBON MAT/0°	0.024	99.9	94.1	9.3	6.6								
THOF GLAS	THORNEL 6K GRAPHITE WITH GLASS SCRIM	HEXCEL F-549 Polyester	0/0/0	0.043	59.8	55.1	7.6	6.1			 				 	
CELA	CELANESE 8K GRAPHITE	DAP POLYESTER 0 0/45 0/135 00	0 ^/45 ~/135 ^/0	0.034	72.4	66.8	8.1	8.4					-		十	
CELY	CELANESE 6K GRAPHITE	DAP POLYESTER 0°/45°/0°/135°/0°	0°/45°/0°/135°/0°	0.035	113.2	107.1	11.2	Ξ			 				╁╴	
GLAS GLAS	THORNEL 6K GRAPHITE WITH GLASS SCRIM/CARBON & KEVLAR MAT	HEXCEL F-549 POLYESTER	O°/CARBON. KEVLAR-MAT/O°	0.027	82.0	60.1	ස ක	7.5					 			
PAN	PAN GRAPHITE/CARBON MAT (CLOSED BEAM)	POLYESTER	0°/135° CARBON MAT/0° 0.031 T0 0°/45° CARBON MAT/0° 0.034		111.5	56.7(2)	14.9	14.5(2)	231.8	63.2	<u>e</u> .	2.6	14.9	6.9	3 E	0.2(1)
PAR	PAN GRAPHITE	POLYETHER. SULFONE	3°/135°/45°/6°	0.026	86.3	86.4	9.6	9.0								
PAN	PAN GRAPHITE(3)	P1700 POLYSULFONE	0/0/45/135/000	0.036					103.8	119.6	6.8	5.7	12.2	5.6	3	63
PAN	PAN G. APHITE(4)	P1706 POLYSULFONE	0'/0'/45'/135'/0'/0°	0.035					176.0	125.6	13.7	10.8	16.0	- - -	6.5	0.7
1															 	
ALUA	ALUMINUM	ВА	BASELINE	0.916	47.0	47.0	10.5	10.5		KA	_		1	Ϋ́	1	
ROTE	NOTE: 1. MODULUS PLOT TOO LOI 2. Tested @ 250°F	LOW AND ERRAT	W AND ERRATIS TO MEASURE	··· •	PROC	3. PROCESSED AT 676°F/100 #PULL FORCE/12 IPM 4. PÄGCESSED AT 600°F/375 #PULL FORCE/10 IPM	T 575°F T 600°F	/100 #P	טנו דטו טנו דטו	3CE/12	PM					
																١

Goldsworthy

1618-1118

PROCESS EVALUATION

GRUMMAN LABORATORY DATA BEAM CAP PROPERTIES

MATERIAL TYPE IDENTITY LAY-UP	COMPOSITE THERMOSET GR/PE C°-0°±45°M-0°-0°	COMPOSITE THERMOPLASTIC GR/PS 0°-0°±45°-0°-0°	METAL ALUMINUM 2024-T3
TYPE OF CAP	(CLOSED)	CLOSED	OPEN
THICKNESS, IN. WEIGHT, LBS/FT DESIGN ULTIMATE LOAD, LBS FAILURE LOAD, LBS TENSILE STRENGTH LONG, KSI TENSILE MODULUS LONG, MSI FLEXURE STRENGTH LONG, KSI FLEXURE STRENGTH TRANS, KSI FLEXURE MODULUS TRANS, KSI FLEXURE MODULUS TRANS, MSI FLEXURE MODULUS TRANS, MSI **SPECIMEN LENGTH = 59.05 IN	0.038 0.17 - 720* 111.5 12.8 231.8 14.9 8.1	0.035 0.17 - - 176.0 16.0 13.7 0.5	0.016 0.12 433 505* 505* NA NA NA NA
**MODULUS TOO LOW TO MEASURE	ш		

Goldsworthy

1618-123B

ORIGINAL STREET

COMPOSITE BEAM CAP FABRICATOR NASA-MSFC CONTRACT NAS 8-32472

AGENDA

- OVERVIEW
- PROCESS DEVELOPMENT
- PROCESS EVALUATION
- BEAM CAP FABRICATOR CONFIGURATION
- SUMMARY

Goldsworthy

1618-130B

COMPOSITE BEAM CAP FABRICATOR

CONFIGURATION

- COMPOSITE RIBBON FABRICATOR
- COMPOSITE BEAM CAP FABRICATOR
 - DEMONSTRATION MACHINE
- ALUMINUM BEAM BUILDER INSTALLATION

Goldsworthy

1618-036B

COMPOSITE BEAM CAP FABRICATOR DEVELOPMENT

Figure 29

Figure 31

OF POOR PAGE IS

34

35

36

Figure 34

ORIGINAL PAGE IS OF POOR QUALITY

COMPOSITE BEAM CAP FABRICATOR DEVELOPMENT

Figure 35

Figure 36

COMPOSITE BEAM CAP FABRICATOR DEVELOPMENT

Figure 37

Figure 38

Figure 39

COMPOSITE BEAM CAP FABRICATOR DEVELOPMENT

Night AL ROWGS (BUPRY JREELS / WHEELS) ARE PRE-DRED

Figure 44

COMPOSITE BEAM CAP FABRICATOR DEVELOPMENT

Figure 45

OF POOR QUALITY

Figure 47

ORIGINAL PAGE IS

COMPOSITE BEAM CAP FABRICATOR DEVELOPMENT

HYBRID COMPOSITE BEAM CAP RIBBON SUPPLY (3 PLACES)

HYBRID COMPOSITE INTERCUSTAL RIBBON SUPPLY INTERCOSTAL WINDING WHEEL (2 PLACES)

LY (3 PLACES)

Figure 48

BEAM MACHINE CONTINUOUS INTERCOSTAL CONCEPT

COMPOSITE BEAM CAP FABRICATOR NASA-MSFC CONTRACT NAS 8-32472

AGENDA

- OVERVIEW
- PROCESS DEVELOPMENT
- PROCESS EVALUATION
- BEAM CAP FABRICATOR CONFIGURATION
- SUMMARY

46

.

1618-1318

SUMMARY

WHAT HAVE WE LEARNED?

- MATERIALS AVAILABILITY
- PREPREG IS LIMITED
- CLOTH IS READILY AVAILABLELAMINATE IS DIFFICULT
- PULTRUSION PROCESS
- THERMOSET
- PRESENTS HANDLING DIFFICULTIES
 - **O 11 FT CAP LENGTH DEMONSTRATED**
 - THERMOPLASTIC
- EASY TO HANDLE
 8 FT RIBBON LENGTH DEMONSTRATED
 4 FT CAP LENGTH DEMONSTRATED
- 8 18 18 19 BEAM CAP CHARACTERISTICS
- **EVAIBITS LOW TRANSVERSE STRENGTH AT PRESENT**

Goldsworthy

1618-037B

OF POOR OW