## Title

D. Zack Garza

### **Contents**

| 1 | Monday, November 09 |                |   |
|---|---------------------|----------------|---|
|   | 1.1                 | Strong Linkage | 2 |
|   | 1.2                 | Extensions     | 4 |

# Monday, November 09

### 1.1 Strong Linkage

We have two categories:

- $G_rT$ , with a notion of strong linkage, and
- $G_r$ , which instead only has linkage.

We'll restate a few theorems.

```
Theorem 1.1.1(?).
```

Let  $\lambda, \mu \in X(T)$ .

- 1. If  $[\hat{Z}_r(\lambda):\hat{L}_r(\mu)]_{G_rT}\neq 0$ , then  $\mu\uparrow\lambda$  are strongly linked.
- 2. If  $[Z_r(\lambda): L_r(\mu)]_{G_r} \neq 0$ , then  $\mu \in W_p \cdot \lambda + p^r X(T)$ .

Example 1.1.1(?): In the case of  $\Phi = A_2$ , we'll consider the two different categories.

We have the following picture for  $\widehat{Z}$ :

Contents 2



Figure 1: Image

Considering  $X_1(T)$  and  $[\widehat{Z}_1(\lambda):\widehat{L}_1(\mu)] \neq 0$ , and  $\widehat{Z}_1(\lambda)$  has 6 composition factors as  $G_1T$ -modules. On the other hand, for Z, we have the following:

1.1 Strong Linkage 3



Figure 2: Image

This again has 6 composition factors, obtained by ??

What's the main difference?

### 1.2 Extensions

Let  $\lambda, \mu \in X(T)$ . We can use the Chevalley anti-automorphism (essentially the transpose) to obtain a form of duality for extensions:

$$\operatorname{Ext}_{G_r T}^j \left( \widehat{L}_r(\lambda), \widehat{L}_r(\mu) \right) = \operatorname{Ext}_{G_r}^j \left( \widehat{L}_r(\mu), \widehat{L}_r(\lambda) \right) \quad \text{for } j \ge 0.$$

We have a form of a weight space decomposition

$$\operatorname{Ext}_{G_r}^{j}(L_r(\lambda), L_r(\mu)) = \bigoplus_{\gamma \in X(T)} \operatorname{Ext}_{G_r}^{j}(L_r(\lambda), L_r(\mu))_{\gamma}$$

where we are taking the fixed points under the torus T action on the first factor (for which  $T_r$  acts

1.2 Extensions 4

trivially). We can write this as

$$\cdots = \bigoplus_{\gamma \in X(T)} \operatorname{Ext}_{G_r}^j (L_r(\lambda), L_r(\mu) \otimes \gamma)$$

$$= \bigoplus_{\gamma \in X(T)} \operatorname{Ext}_{G_r T}^j (L_r(\lambda), L_r(\mu) \otimes p^r v)$$

$$= \bigoplus_{v \in X(T)} \operatorname{Ext}_{G_r T}^j (\widehat{L}_r(\lambda), \widehat{L}_r(\mu + p^r v)).$$

So if we know extensions in the  $G_r$  category, we know them in the  $G_rT$  category.

There is an isomorphism

$$\operatorname{Ext}_{G_r T}^1\left(\widehat{L}_r(\lambda), \widehat{L}_r(\mu)\right) \cong \operatorname{Hom}_{G_R T}\left(\operatorname{rad}_{G_r T}\widehat{Z}_r(\lambda), \widehat{L}_r(\mu)\right).$$

Finally, for  $\lambda, \mu \in X(T)$ , if

1.2 Extensions 5