धातु और अधातु

धातु:-

पदार्थ जो कठोर, चमकीले, आघातवर्ध्य, तन्य, ध्वानिक और ऊष्मा तथा विद्युत के सुचालक होते हैं, धातु कहलाते हैं। सामान्यतः चमकदार और पीटने पर आवाज करने वाले तत्व होते हैं। जैसे- Iron, Tin, Copper, Gold, Zink, Steel आदि। हम अपने चारों ओर अलग-अलग प्रकार की सामग्री देखते हैं और उन्ही में से अनेक सामग्रियों को हम अपने दैनिक जीवन मे प्रयोग भी करते हैं। लेकिन क्या आपने कभी सोचा है कि ये सामग्रियाँ किसकी बनी होती हैं?

जैसे :- सोडियम (Na), पोटाशियम (K), मैग्नीशियम (Mg), लोहा (Fc), एलूमिनियम (AI), कैल्शियम (Ca), बेरियम (Ba) धातुऐं हैं।

धातुओं के भौतिक गुण :-

- (i) धातु ठोस और चमकीले होते हैं
- (ii) ये ऊष्मा और विद्युत के सुचालक होते हैं।
- (iii) धातुएँ तन्य होती हैं|
- (iv) धातुएँ अघातवर्ध्य होती है
- (v) धातुएँ ध्वानिक होती हैं।

अघातवर्ध्यता :- कुछ धातुएँ पतली चादरों में फैलाई जा सकती है, इस गुण को अघातवर्ध्यता कहते हैं।

तन्यता :- धातु के पतले तार के रूप में खींचने की क्षमता को तन्यता कहते हैं| सिल्वर तथा कॉपर ऊष्मा के सबसे अच्छे चालक हैं। इनकी तुलना में लेड तथा मर्करी ऊष्मा के कुचालक हैं।

PVC का पूरा नाम :- पॉलिवाइनिल क्लोराइड PVC तथा रबड़ जैसी सामग्री ऊष्मा तथा विद्युत के कुचालक हैं। ध्वितक :- धिव्नक धातु का एक भौतिक गुण है| इस गुण से वे हड़ताली पर ध्विन पैदा करते हैं। धातुओं की इस गुण का उपयोग से, स्कूल की घंटी बनाई गई है।

अधातु :-

जो पदार्थ नरम, मिलन, भंगुर, ऊष्मा तथा विद्युत के कुचालक होते हैं, एवं जो ध्वानिक नहीं होते हैं अधातु कहलाते हैं। तथा नरम हैं व हथौड़े की हल्की चोट से टूटकर चूरा हो जाते हैं, ध्वानिक नहीं हैं तथा ऊष्मा व विद्युत के कुचालक हैं, अधातु कहलाते हैं। जैसे-कोयला, सल्फर, ऑक्सीजन, फॉस्फोरस आदि अधातु हैं

जैसे :- ऑक्सजीन (O), हाइड्रोजन (H), नाइट्रोजन (N), सल्फर (S), फास्फोरस (P), फ्लूओरीन (F), क्लोरीन (CI), ब्रोमीन (Br), आयोडिन (I), अधातुऐं हैं।

अधातु के भौतिक गुण :-

- (i) धात् ठोस और चमकीले नहीं होते हैं।
- (ii) ये ऊष्मा और विद्युत के सुचालक नहीं होते हैं।
- (iii) धातुएँ तन्य नहीं होती हैं
- (iv) धातुएँ अघातवर्ध्य नहीं होती है
- (v) धातुएँ ध्वानिक नहीं होती हैं अर्थात पीटने पर ध्विन नहीं निकालती हैं।

अधातुएँ ब्रोमिन को छोड़कर या तो ठोस होती है या गैस, ब्रोमिन तरल होता है|

धातु और अधातुओं का कुछ अन्य गुणधर्म :-

- (i) सभी धात्ये मर्करी (पारा) को छोड़कर कमरे के ताप पर ठोस अवस्था में पाई जाती हैं |
- (ii) मर्करी (पारा) कमरे के ताप पर द्रव अवस्था में पाया जाता है|
- (iii) गैलियम और सीजियम दो ऐसी धातुएँ हैं जो जिनका गलनांक बहुत कम होता है, इन्हें हथेली पर रखते ही पिघल जाती हैं|
- (iv) आयोडीन एक अधातु है परन्तु यह चमकीला होता है
- (v) क्षार धातुएँ (लिथियम, सोडियम और पोटैशियम) इतना मुलायम होती है कि इन्हें चाकू से काटा जा सकता है| इनका घनत्व और गलनांक कम होता है|

कार्बन और इसके अपररूप :- कार्बन एक अधातु है जो अलग-अलग रूपों में पाया जाता है| इसके प्रत्येक रूप कोकार्बन का अपररूप कहा जाता है|

कार्बन के अपररूप :-

- हीरा
- ग्रेफाइट
- बुक्मिन्टरफुलेरिन
- (i) **हीरा :-** यह कार्बन का एक अपररूप है और अब तक का ज्ञात सबसे कठोर पदार्थ है| इसका क्वथनांक और गलनांक बहुत ही अधिक होता है|
- (ii) **ग्रेफाइट :-** यह कार्बन का एक अन्य अपररूप है जो विद्युत का बहुत ही अच्छा चालक है|
- (iii) **बुक्मिन्टरफुलेरिन :-** यह कार्बन का एक अन्य अपररूप है जो 60 कार्बन के अणुओं से बना है| इसकी संरचना फुटबॉल की तरह होता है|

नोट :- अधिकांश अधातुये पानी में घुलने पर अम्लीय ऑक्साइड बनाती है जबिक धातुएँ पानी में घुलकर क्षारकीय ऑक्साइड बनाती हैं|

धातुओं का रासायनिक गुणधर्म :- सभी धातुये ऑक्सीजन के साथ मिलकर संगत धातु ऑक्साइड बनाती हैं | धातु + ऑक्सीजन → धातु ऑक्साइड उदाहरण के लिए, जब कॉपर को वायु में गर्म किया जाता है तो यह ऑक्सीजन से अभिक्रिया कर कॉपर (II) ऑक्साइड बनाता है जो कि एक काला ऑक्साइड है|

$$2Cu + O2 \rightarrow 2CuO$$

(कॉपर) (ऑक्सीजन) (कॉपर(II) ऑक्साइड)

इसीप्रकार, एल्युमीनियम एल्युमीनियम ऑक्साइड बनाता है

$$4A1 + 3O_2 \rightarrow 2Al_2O_3$$

(एल्युमीनियम) (एल्युमीनियम ऑक्साइड)

उभयधर्मी :- कुछ धातु ऑक्साइड्स जैसे एल्युमीनियम ऑक्साइड एवं जिंक ऑक्साइड इत्यादि अम्लीय तथा क्षारकीय व्यवहार को प्रदर्शित करते हैं| ऐसे धातु ऑक्साइड जो अम्ल और क्षारक दोनों के साथ के साथ अभिक्रिया कर लवण और जल का निर्माण करते हैं इन्हें उभयधर्मी ऑक्साइड कहते हैं|

उदाहरण: एल्युमीनियम ऑक्साइड एवं जिंक ऑक्साइड इत्यादि

धातु ऑक्साइड का अम्ल के साथ अभिक्रिया :- एल्युमीनियम ऑक्साइड हाइड्रोक्लोरिक अम्ल के साथ अभिक्रिया कर एल्युमीनियम क्लोराइड का लवण और जल देता है |

इस अभिक्रिया का समीकरण इस प्रकार है

$$Al_2 O_3 + 6HC1 \rightarrow 2A1Cl_3 + 3H_2O$$

धातु ऑक्साइड का क्षारक के साथ अभिक्रिया :- एल्युमीनियम ऑक्साइड सोडियम हाइड्रोऑक्साइड से अभिक्रिया कर सोडियम एलुमिनेट और जल प्रदान करता है :

इस अभिक्रिया का समीकरण इस प्रकार है :

 $Al_2O_3 + 2NaOH \rightarrow 2NaAlO_2 + H_2O$ (सोडियम एलुमिनेट)

धातु ऑक्साइड्स का जल में धुलनशीलता :- अधिकांश धातु ऑक्साइड्स जल में अधुलनशील होते हैं, परन्तु इनमें से कुछ जल में घुलकर क्षार बनाते हैं सोडियम ऑक्साइड और पोटैशियम ऑक्साइड दो ऐसे ऑक्साइड्स हैं जो जल में घुलकर क्षार बनाते हैं| सोडियम ऑक्साइड और पोटैशियम ऑक्साइड के घुलने पर क्रमश: सोडियम हाइड्रोऑक्साइड क्षार और पोटैशियम ऑक्साइड क्षार और पोटैशियम ऑक्साइड क्षार और पोटैशियम ऑक्साइड क्षार और पोटैशियम ऑक्साइड क्षार कार के घुलने पर क्रमश: सोडियम

$$Na_2O(s) + H_2O(1) \rightarrow 2NaOH(aq)$$

$$K_2O(s) + H_2O(1) \rightarrow 2KOH(aq)$$

धातुओं का ऑक्सीजन के साथ अभिक्रियाशीलता :- अलग-अलग धातुएँ ऑक्सीजन से अभिक्रिया कर अलग-अलग अभिक्रियाशीलता प्रदर्शित करती हैं। सोना प्लैटिनम और चाँदी जैसी धातुएँ तो ऑक्सीजन से बिल्कुल ही अभिक्रिया नहीं करती है।

सोडियम और पोटैशियम का ऑक्सीजन से अभिक्रिया :- कुछ धातुएँ जैसे सोडियम और पोटैशियम इतनी अधिक तेजी से ऑक्सीजन से अभिक्रिया करती हैं कि यदि इनको खुला छोड़ा जाये तो ये तेजी आग पकड़ लेती हैं| यही कारण है कि इनको अचानक आग लगने से बचाने के लिए इनकों किरोसिन तेल में डुबोकर रखा जाता है|

कुछ धातु ऑक्साइड रक्षात्मक कवच बनाते हैं:- साधारण तापमान पर धातुओं की सतहें जैसे मैग्नीशियम, एल्युमीनियम, जिंक और शीशा इत्यादि पर ऑक्साइड की पतली परत चढ़ जाती हैं| ये रक्षात्मक कवच इन्हें आगे ऑक्सीडेशन (उपचयन) से बचाता है| इसका एक बहुत बड़ा फायदा धातुओं को यह मिलता है कि ये इन ऑक्साइड्स की वजह से संक्षारित होने से बच जाती हैं|

कुछ धातुएँ ऑक्सीजन से अभिक्रिया नहीं करती है: - गर्म करने पर आयरन का दहन तो नहीं होता है लेकिन जब बर्नर की ज्वाला में लौह चूर्ण डालते हैं तब वह तेज़ी से जलने लगता है। कॉपर का दहन तो नहीं होता है लेकिन गर्म धातु पर कॉपर (II) ऑक्साइड की काले रंग की परत चढ़ जाती है। सिल्वर एवं गोल्ड अत्यंत अधिक ताप पर भी ऑक्सीजन के साथ अभिक्रिया नहीं करते हैं।

एनोड़ीकरण:- ऐनोडीकरण ऐलुमिनियम पर मोटी ऑक्साइड की परत बनाने की प्रक्रिया है। वायु के संपर्क में आने पर ऐलुमिनियम पर ऑक्साइड की पतली परत का निर्माण होता है। ऐलुमिनियम ऑक्साइड की परत इसे संक्षारण से बचाती है। इस परत को मोटा करके इसे संक्षारण से अधिक सुरक्षित किया जा सकता है।

एलुमिनियम का एनोड़ीकरण:- ऐनोडीकरण के लिए ऐलुमिनियम की एक साफ वस्तु को ऐनोड बनाकर तनु सल्फ्ऱ्यूरिक अम्ल के साथ इसका विद्युत-अपघटन किया जाता है। ऐनोड पर उत्सर्जित ऑक्सीजन गैस ऐलुमिनियम के साथ अभिक्रिया करके ऑक्साइड की एक मोटी परत बनाती है। इस ऑक्साइड की परत को आसानी से रँगकर ऐलुमिनियम की आकर्षक वस्तुएँ बनाई जा सकती हैं।

जल के साथ धातु की अभिक्रिया :- जल के साथ अभिक्रिया करके धातुएँ हाइड्रोजन गैस तथा धातु ऑक्साइड उत्पन्न करती हैं। जो धातु ऑक्साइड जल में घुलनशील हैं, जल में घुलकर धातु हाइड्रॉक्साइड प्रदान करते हैं।

समान्य समीकरण:-

धातु + जल —> धातु ऑक्साइड + हाइड्रोजन

धातु ऑक्साइड + जल —> धातु हाइड्रोऑक्साइड

सोडियम और पोटैशियम का ठंढे जल से अभिक्रिया :- पोटैशियम एवं सोडियम जैसी धातुएँ ठंडे जल के साथ तेज़ी से अभिक्रिया करती हैं। सोडियम तथा पोटैशियम की अभिक्रिया तेज़ तथा ऊष्माक्षेपी होती है कि इससे उत्सर्जित हाइड्रोजन तत्काल प्रज्ज्वलित हो जाती है।

$$2K(s) + 2H2O(1) \longrightarrow 2KOH(aq) + H2(g) + ऊष्मीय ऊर्जा$$

$$2Na(s) + 2H2O(l) \longrightarrow 2NaOH(aq) + H2(g) + ऊष्मीय ऊर्जा$$

पानी के साथ कैल्शियम की प्रतिक्रिया:- पानी के साथ कैल्शियम की प्रतिक्रिया कम हिंसक होती है। हाइड्रोजन आग पकड़ने के लिए विकसित गर्मी पर्याप्त नहीं है।

$$Ca(s) + 2H_2O(1) \longrightarrow Ca(OH)_2(aq) + H_2(g)$$

कैल्शियम तैरने लगता है क्योंकि हाइड्रोजन गैस के बुलबुले धातु की सतह से चिपक जाते हैं।

गर्म पानी के साथ धातुओं की प्रतिक्रिया :- मैग्नीशियम ठंडे जल से अभिक्रिया नहीं करता है। यह गर्म पानी के साथ प्रतिक्रिया करके मैग्नीशियम हाइड्रॉक्साइड और हाइड्रोजन बनाता है। हाइड्रोजन गैस के बुलबुले इसकी सतह से चिपके रहने के कारण भी तैरने लगते हैं।

धातुओं की भाप के साथ अभिक्रिया :- एल्युमिनियम, आयरन और जिंक जैसी धातुएं न तो ठंडे या गर्म पानी से प्रतिक्रिया करती हैं। लेकिन वे भाप के साथ क्रिया करके धातु ऑक्साइड और हाइड्रोजन बनाते हैं।

$$2Al(s) + 3H2O(g) \rightarrow Al2O3(s) + 3H2(g)$$

$$3\text{Fe}(s) + 4\text{H}_2\text{O}(g) \longrightarrow \text{Fe}_3\text{O}_4(s) + 4\text{H}_2(g)$$

कुछ धातुएँ जल के साथ अभिक्रिया नहीं करती हैं :- सीसा, तांबा, चांदी और सोना जैसी धातुएं पानी के साथ बिल्कुल भी प्रतिक्रिया नहीं करती हैं।

अम्लों के साथ धातुओं की प्रतिक्रिया :- धातुएँ अम्लों से अभिक्रिया करके संगत लवण तथा हाइड्रोजन गैस देती हैं।

Metal + Dilute acid → Salt + Hydrogen

जब कोई धातु नाइट्रिक एसिड के साथ प्रतिक्रिया करता है तो हाइड्रोजन गैस नहीं बनती है। ऐसा इसलिए है क्योंकि HNO_3 एक मजबूत ऑक्सीकरण एजेंट है। यह उत्पादित H_2

को पानी में ऑक्सीकृत करता है और स्वयं किसी भी नाइट्रोजन ऑक्साइड (N2O, NO,

NO₂) में कम हो जाता है। लेकिन मैग्नीशियम (Mg) और मैंगनीज (Mn) अत्यधिक तनु HNO₃ के साथ प्रतिक्रिया करके H₂ गैस बनाते हैं।

एक्वा रेजिया 3: 1 के अनुपात में सांद्र हाइड्रोक्लोरिक एसिड और सांद्र नाइट्रिक एसिड का ताजा तैयार मिश्रण है। यह सोना भंग कर सकता है, भले ही इनमें से कोई भी अम्ल अकेले ऐसा नहीं कर सकता। एक्वा रेजिया एक अत्यधिक संक्षारक, धूआं तरल है। यह उन कुछ अभिकर्मकों में से एक है जो सोने और प्लेटिनम को घोलने में सक्षम है।

अन्य धातु नमक के साथ धातुओं की प्रतिक्रिया :- अत्यधिक प्रतिक्रियाशील धातुएं कम प्रतिक्रियाशील धातुओं को उनके यौगिकों से घोल या पिघले हुए रूप में विस्थापित कर सकती हैं। इसे विस्थापन अभिक्रिया कहते हैं।

धातु A + B का लवण विलयन --> A + धातु B का लवण विलयन

प्रतिक्रियाशीलता श्रृंखलाः

K > Na > Ca > Mg > A1 > Zn > Fe > Pb > H > Cu > Hg > Ag > Au

धातुओं और अधातुओं के साथ अभिक्रिया :- अधिकतर धातुएँ धनायन (postive charge) बनाती हैं और अधातुएँ आयन (ऋणात्मक आवेश) बनाती हैं।

धनायन और अनायन :- इन दोनों धनायनों और आयनों को समझने के लिए, हमें तत्वों के इलेक्ट्रॉनिक विन्यास और उनकी संयोजकता को समझना होगा।

संयोजकता :- किसी परमाणु के सबसे बाहरी कोश में उपस्थित संयोजकता इलेक्ट्रॉनों की संख्या संयोजकता कहलाती है। भूतपूर्व। सोडियम (Na) का इलेक्ट्रॉनिक विन्यास है 2 8 1 सोडियम परमाणु में तीन कोश होते हैं और सबसे बाहरी कोश में 1 इलेक्ट्रॉन होता है जिसे साझा किया जा सकता है, इसलिए सोडियम का संयोजकता इलेक्ट्रॉन 1 होता है।

- यदि सबसे बाहरी कोश में 1, 2, 3 या 4 इलेक्ट्रान हैं तो ये इलेक्ट्रानों के बंटवारे में दिए जा सकते हैं। तो 1, 2, 3,
 और के लिए वैलेंस इलेक्ट्रान होंगे।
- यदि सबसे बाहरी कोश में 5, 6 या 7 इलेक्ट्रान हैं तो इन्हें इलेक्ट्रानों के बंटवारे में नहीं दिया जा सकता क्योंकि इन्हें अपना अष्टक पूरा करने के लिए इलेक्ट्रानों की आवश्यकता होती है।

तत्व का प्रकार	तत्व	परमाणु क्रमांक	कोशों में इलेक्ट्रॉन की संख्या
			KLMN
उत्क्रण ग्रीम	हीलियम (वह)	2	2
उत्कृष्ट गैस	नियॉन (पूर्व)	10	2 8

	आर्गन (एआर)	18	2 8 8
	सोडियम (ना)	11	2 8 1
	मैग्नीशियम (एमजी)	12	282
धातुओं	एल्यूमिनियम (अल)	13	283
	पोटेशियम (के)	19	2881
	कैल्शियम (सीए)	20	2882
	नाइट्रोजन (एन)	7	2 5
	ऑक्सीजन (ओ)	8	2 6
अधान	फ्लूरिन (एफ)	9	2 7
अधातु	फास्फोरस (पी)	15	2 8 5
	सल्फर (एस)	16	286
	क्लोरीन (सीएल)	17	287

सोडियम परमाणु के सबसे बाहरी कोश में एक इलेक्ट्रॉन होता है। यदि यह अपने एम शेल से इलेक्ट्रॉन खो देता है तो इसका एल शेल अब सबसे बाहरी कोश बन जाता है और इसमें एक स्थिर अष्टक होता है। इस परमाणु के नाभिक में अभी भी 11 प्रोटॉन हैं लेकिन इलेक्ट्रॉनों की संख्या 10 हो गई है, इसलिए एक शुद्ध धनात्मक आवेश है जो हमें सोडियम धनायन Na+देता है। दूसरी ओर क्लोरीन के सबसे बाहरी कोश में सात इलेक्ट्रॉन होते हैं और इसे अपना अष्टक पूरा करने के लिए एक और इलेक्ट्रॉन की आवश्यकता होती है। यदि सोडियम और क्लोरीन प्रतिक्रिया करते हैं, तो सोडियम द्वारा खोए गए इलेक्ट्रॉन को क्लोरीन द्वारा ग्रहण किया जा सकता है। एक इलेक्ट्रॉन प्राप्त करने के बाद क्लोरीन परमाणु को एक इकाई ऋणात्मक आवेश प्राप्त होता है, क्योंकि इसके नाभिक में 17 प्रोटॉन होते हैं और इसके K, L और M कोशों में 18 इलेक्ट्रॉन होते हैं। यह हमें क्लोराइड आयन C1 देता है तो इन दोनों तत्वों के बीच लेन-देन का संबंध हो सकता है। जैसे:

Na
$$\rightarrow$$
 Na⁺ + e⁻
2, 8, 1 2, 8
(सोडियम केशन)

 $C1 + e^{-} \rightarrow C1^{-}$

2, 8, 72, 8, 8

(क्लोराइड आयन)

आयनिक यौगिक: धातु से अधातु में इलेक्ट्रॉनों के स्थानान्तरण से इस प्रकार बनने वाले यौगिकों को आयनिक यौगिक या विद्युतसंयोजी यौगिक कहते हैं।

आयनिक यौगिक के गुण:

1) भौतिक प्रकृति: आयनिक यौगिक ठोस होते हैं और धनात्मक और ऋणात्मक आयनों के बीच प्रबल आकर्षण बल के कारण कुछ कठोर होते हैं। ये यौगिक आम तौर पर भंगुर होते हैं और दबाव डालने पर टुकड़ों में टूट जाते हैं।

- 2) गलनांक और क्वथनांक: आयनिक यौगिकों में उच्च गलनांक और क्वथनांक होते हैं ऐसा इसलिए है क्योंकि मजबूत अंतर-आयनिक आकर्षण को तोड़ने के लिए काफी मात्रा में ऊर्जा की आवश्यकता होती है।
- 3) घुलनशीलता: इलेक्ट्रोवैलेंट यौगिक आमतौर पर पानी में घुलनशील होते हैं और मिट्टी के तेल, पेट्रोल आदि जैसे सॉल्वैंट्स में अघुलनशील होते हैं।
- 4) बिजली का संचालन: एक समाधान के माध्यम से बिजली के संचालन में आवेशित कणों की गित शामिल होती है। पानी में एक आयनिक यौगिक के एक समाधान में आयन होते हैं, जो समाधान के माध्यम से बिजली पारित होने पर विपरीत इलेक्ट्रोड में चले जाते हैं। ठोस अवस्था में आयनिक यौगिक विद्युत का चालन नहीं करते हैं क्योंकि ठोस में आयनों की गित उनकी कठोर संरचना के कारण संभव नहीं होती है। लेकिन आयनिक यौगिक गिलत अवस्था में चालन करते हैं। यह पिघली हुई अवस्था में संभव है क्योंकि गर्मी के कारण विपरीत आवेशित आयनों के बीच इलेक्ट्रोस्टैटिक आकर्षण बल दूर हो जाते हैं। इस प्रकार, आयन स्वतंत्र रूप से चलते हैं और बिजली का संचालन करते हैं।

NCERT SOLUTIONS

प्रश्न (पृष्ठ संख्या 45)

प्रश्न 1 ऐसी धातु का उदाहरण दीजिए जो-

- (a) कमरे के ताप पर द्रव होती है।
- (b) चाकू से आसानी से काटा जा सकता है।
- (c) ऊष्मा की सबसे अच्छी चालक होती है।
- (d) ऊष्मा की कुचालक होती है।

उत्तर-

- (a) मर्करी।
- (b) सोडियम, लिथियम और पौटैशियम।
- (c) सिल्वर तथा कॉपर।
- (d)लेड और मर्करी।

प्रश्न 2 आघातवर्ध्य तथा तन्य का अर्थ बताइए।

उत्तर- कुछ धातुओं को पीटकर पतली चादर बनाया जा सकता है। इस गुणधर्म को आघातवर्ध्य कहते है। कुछ धातुओं के पतले तार के रूप में खीचने कि क्षमता को तन्यता कहते है।

प्रश्न (पृष्ठ संख्या 51)

प्रश्न 1 सोडियम को केरोसिन में डुबोकर क्यों रखा जाता हैं?

उत्तर- सोडियम ओर पोटैशियम अत्यधिक क्रियाशील धातु है, ये वायु के साथ अभिक्रिया कर आसानी से आग पकड लेते है। इसलिए सोडियम को केरोसिन में डुबोकर रखा जाता हैं।

प्रश्न 2 इन अभिक्रियाओं के लिए समीकरण लिखिए-

- (a) भाप के साथ आयरन।
- (b) जल साथ कैल्सियम तथा पोटैशियम।

उत्तर-

(a) लोहा भाप के साथ अभिक्रिया करके आयरन ऑक्साइड तथा हाइड्रोजन प्रदान करता है।

$$2A1(s) + 3H_2O(g) \rightarrow Al_2O_3(s) + 3H_2(g)$$

(b) कैल्शियम ठंडे जल से अभिक्रिया धीमी गति से करता है जो उत्सर्जित उष्मा हाइड्रोजन के प्रज्वलन के लिए पर्याप्त नहीं होती है।

$$ca(s) + 2H_2O \rightarrow ca(OH)_2 (aq) + H_2 (g)$$

जबकी पोटैशियम,ठंडे जल से अभिक्रिया तेज गति से करता है। यह अभिक्रिया इतनी तेज तथा उष्मा छेपी होती है कि इससे उत्सर्जित हाइड्रोजन तत्काल प्रज्वलित हो जाती है।

$$2K(s) + 2H_2O(1) \longrightarrow 2KOH(aq) + H_2(g) + ऊष्मीय ऊर्जा$$

प्रश्न 3 A, B, C एवं D चार धातुओं के नमूनों को लेकर एक-एक करके निम्न विलयन में डाला गया। इससे प्राप्त परिणाम को निम्न प्रकार से सारणीबदध किया गया है?

धातु	आयरन(II) सल्फेट	कॉपर(II) सल्फेट	जिंक सल्फेट	सिल्वर नाईट्रेट
Α	कोई अभिक्रिया नहीं	विस्थापन		
В	विस्थापन		कोई अभिक्रिया नहीं	
С	कोई अभिक्रिया नहीं	कोई अभिक्रिया नहीं	कोई अभिक्रिया नहीं	विस्थापन
D	कोई अभिक्रिया नहीं	कोई अभिक्रिया नहीं	कोई अभिक्रिया नहीं	कोई अभिक्रिया नहीं

इस सारणी का उपयोग कर धातु A, B, C एवं D के संबंध में निम्न प्रश्नों के उत्तर दीजिए-

- a. सबसे अधिक अभिक्रियाशील धातु कौन सी है?
- b. धात् B को कॉपर (ii) सल्फेट के विलयन में डाला जाए तो क्या होगा?
- c. धातु A, B, C एवं D को अभिक्रियाशीलता के घटते हुए क्रम में व्यवस्थित कीजिए।

उत्तर-

- a. सबसे अधिक अभिक्रियाशील धातु 'B' है।
- धातु (B) को कॉपर सल्फेट के विलयन में डालने पर विस्थापन अभिक्रिया होगी जिसमे (B) धातु कॉपर सल्फेट के विलयन में से विस्थापित कर देगी।
- c. B > A > C > D

प्रश्न 4 अभिक्रियाशील धातु को तनु हाइड्रोक्लोरिक अम्ल में डाला जाता है तो कौन सी गैस निकलतीहै? आयरन के साथ तनु ${
m H}_2{
m SO}_4$ की रासायनिक अभिक्रिया लिखिए।

उत्तर- हाइड्रोजन गैस विसर्जित होती है।

Fe (s) +
$$H_2SO_4 \rightarrow FeSO_4$$
 (aq) + H_2 (g)

प्रश्न 5 जिंक को आयरन (II) सल्फेट के विलयन में डालने से क्या होता है? इसकी रासायनिक अभिक्रिया लिखिए। उत्तर- जिंक को आयरन (II) सल्फेट के विलयन में डालने पर विस्थापन अभिक्रिया के फलस्वरूप ज़िंक विलयन में से लौह तत्त्व को विस्थापित कर देता है।

 $Zn(s) + FeSO_4(aq) \rightarrow ZnSO_4(aq) + Cu(s)$

प्रश्न (पृष्ठ संख्या 54)

प्रश्न 1

- (a) सोडियम, ऑक्सीजन एवं मैग्नीशियम के लिए इलेक्ट्रॉन-बिंदु संरचना लिखिए।
- (b) इलेक्ट्रॉन के स्थानांतरण के द्वारा Na2O एवं MgO का निर्माण दर्शाइए
- (c) इन यौगिकों में कौन से आयन उपस्थित हैं?

उत्तर-

(a) सोडियम के लिए इलेक्ट्रान बिंदु की संरचना Na-परमाणु (2, 8, 1) = Na

ऑक्सीजन के लिए इलेक्ट्रान बिंदु की संरचना ऑक्सीजन परमाणु (2, 6) = 0

मैग्नीशियम के लिए इलेक्ट्रान बिंदु की संरचना मैग्नीशियम परमाणु- (2, 8, 2) = Mg

(b) इलेक्ट्रान के स्थानांतरण के द्वारा Na2O एवं MgO का निर्माण-

$$Na$$
 $O: Na^+$
 Na^+
 Na^+
 Na^+
 Na^+
 Na^+
 Na^+
 Na^+

$$Mg : \longrightarrow Mg^{2+} + : O : \longrightarrow MgO$$

(c) इन यौगिकों में कौन से आयन उपस्थित है?

इन यौगिकों में Mg^{2+,} O²⁻ एवं Na⁺ के आयन उपस्थित है।

प्रश्न 2 आयनिक यौगिकों का गलनांक उच्च क्यों होता है?

उत्तर- आयनिक यौगिक में परस्पर आयनिक आकर्षण बहुत ही ज्यादा शक्तिशाली होता है। इस शक्तिशाली बंध को तोड़ने के लिए अत्याधिक ऊर्जा आवश्यक होती है। अतः इनका गलनांक उच्च होता है।

प्रश्न (पृष्ठ संख्या 59)

प्रश्न 1 निम्न पदों की परिभाषा दीजिए-

- (a) खनिज
- (b) अयस्क
- (c) गैंग

उत्तर-

- (a) वे पदार्थ होते है जिनमे धातुएँ अपने यौगिक के रूप में पाई जाती है।
- (b) ऐसे खनिज जिनमे धातुओ का निष्कर्षण अत्याधिक सरल व उपयुक्त होता है, अयस्क कहलाते है।
- (c) खनिज प्रकृति में शुद्ध रूप से प्राप्त नहीं होते है उनमे उपस्थित अशुद्धियो को गैंग कहते है।

प्रश्न 2 दो धातुओं के नाम बताइए जो प्रकृति में मुक्त अवस्था में पाई जाती हैं।

उत्तर- सोना और प्लैटिनम।

प्रश्न 3 धातु को उसके ऑक्साइड से प्राप्त करने के लिए किस रासायनिक प्रक्रम का उपयोग किया जाता है?

उत्तर- अपचयन प्रक्रम का उपयोग किया जाता है। कार्बन के अलावा अत्यधिक अभिक्रियाशील धातुएँ, जैसे- Na, Ca, Al आदि को अपचायक के रूप में उपयोग किया जा सकता है, क्योंकि ये निम्न अभिक्रियाशीलता वाले धातुओं को उनके यौगिकों से विस्थापित कर देते हैं।

उदाहरण के लिए-

3MnO₂(s) + 4Al(s) → 3Mn(l) + 2Al₂O₃(s) + ऊष्मा

प्रश्न (पृष्ठ संख्या 61)

प्रश्न 1 जिंक, मैग्नीशियम एवं कॉपर के धात्विक ऑक्साइडों को निम्न धातुओं के साथ गर्म किया गया-

क्रम.	धातु	ज़िंक	मैग्नीशियम	कॉपर
1.	ज़िंक ऑक्साइड			
2.	मैग्नेशियम ऑक्साइड			
3.	कॉपर ऑक्साइड			

किस स्थिति में विस्थापन अभिक्रिया घटित होगी?

उत्तर-

क्रम.	धातु	ज़िंक	मैग्नीशियम	कॉपर
1.	ज़िंक ऑक्साइड	कोई अभिक्रिया नहीं होगी	विस्थापन अभिक्रिया होगी	कोई अभिक्रिया नहीं होगी
2.	मैग्नेशियम ऑक्साइड	कोई अभिक्रिया नहीं होगी	कोई अभिक्रिया नहीं होगी	कोई अभिक्रिया नहीं होगी
3.	कॉपर ऑक्साइड	विस्थापन अभिक्रिया होगी	विस्थापन अभिक्रिया होगी	कोई अभिक्रिया नहीं होगी

प्रश्न 2 कौन सी धातु आसानी से संक्षारित नहीं होती है?

उत्तर- सोना, प्लैटिनम व चाँदी।

प्रश्न 3 मिश्रातु क्या होते हैं?

उत्तर- दो या दो से अधिक धातुओं के समांगी मिश्रण को मिश्रातु कहते है।

अभ्यास प्रश्न (पृष्ठ संख्या 62-63)

प्रश्न 1 निम्न में कौन सा युगल विस्थापन अभिक्रिया प्रदर्शित करता है-

- a. NaCI विलयन एवं कॉपर धातु
- b. MgCI2 विलयन एवं ऐलुमिनियम धातु
- c. FeSO4विलयन एवं सिल्वर धातु
- d. AgNO3 विलयन एवं कॉपर धातु

उत्तर-

d. AgNO3 विलयन एवं कॉपर धात्

प्रश्न 2 लोहे के फ्राइंग पैन (frying pan) को जंग से बचाने के लिए निम्न में से कौन सी विधि उपयुक्त है-

- a. ग्रीश लगाकर
- b. पेंट लगाकर
- c. जिंक की परत चढ़ाकर
- d. ऊपर के सभी

उत्तर-

c. जिंक की परत चढ़ाकर

प्रश्न 3 कोई धातु ऑक्सीजन के साथ अभिक्रिया कर उच्च गलनांक वाला यौगिक निर्मित करती है। यह यौगिक जल में विलेय है। यह तत्व क्या हो सकता है?

- a. कैल्सियम
- b. कार्बन
- c. सिलिकन
- d. लोहा

उत्तर-

a. कैल्सियम

प्रश्न 4 खाद्य पदार्थ वेफ डिब्बों पर जिंक की बजाय टिन का लेप होता है क्योंकि-

- a. टिन की अपेक्षा जिंक मँहगा है।
- b. टिन की अपेक्षा जिंक का गलनांक अधिक है।
- c. टिन की अपेक्षा जिंक अधिक अभिक्रियाशील है।
- d. टिन की अपेक्षा जिंक कम अभिक्रियाशील है।

उत्तर-

c. टिन की अपेक्षा जिंक अधिक अभिक्रियाशील है।

प्रश्न 5 आपको एक हथौड़ा, बैटरी, बल्ब, तार एवं स्विच दिया गया है-

- (a) इनका उपयोग कर धातुओं एवं अधातुओं के नमूनों के बीच आप विभेद कैसे कर सकते हैं?
- (b) धातुओं एवं अधातुओं में विभेदन के लिए इन परीक्षणों की उपयोगिताओं का आकलन कीजिए।

उत्तर-

- (a) हथौडे की सहायता से धातुओं को पीटकर चादरों में बदला जा सकता है इसलिए इन्हे अघातवर्ध्य कहा जाता है जबिक अधातओं को पीटकर चादरों में नहीं बदला जा सकता है जब हम बैटरी, बल्ब स्विच एवम तारों की सहायता से परिपथ जोड़ते हैं तो केवल धातुओं विधुत धारा प्रवाहित करती है जिससे पता चलता है की धातु विधुत की चालक हैं परन्तु अधातु विधुत धारा प्रवाहित नहीं करती हैं।
- (b) पहले प्रयोग से पता चलता है की आघातवर्ध्य का गुण केवल धातुओं में पाया जाता है जबकि अधातु में यह गन नहीं दिखता हैं इसी प्रकार दूसरे पप्रयोगानुसार पता चलता है की अधातु विधुत की चालक नहीं होती जबकि धातु विधुत की चालक होती हैं।

प्रश्न 6 उभयधर्मी ऑक्साइड क्या होते हैं? दो उभयधर्मी ऑक्साइडों का उदाहरण दीजिए।

उत्तर- ऐसे धातु ऑक्साइड जो अम्ल तथा क्षारक दोनों से आभिक्रिया करके लवण तथा जल प्रदान करते हैं, उभयधर्मी ऑक्साइड कहलाते हैं।

उदाहरण- ऐलुमिनियम ओक्साइड (Al₂O₃) और जिंक ऑक्साइड (ZnO)

प्रश्न 7 दो धातुओं के नाम बताइए जो तनु अम्ल से हाइड्रोजन को विस्थापित कर देंगे, तथा दो धातुएँ जो ऐसा नहीं कर सकती हैं।

उत्तर- दो धातुए जो तनु अम्ल से हाइड्रोजन को विस्थापित करती है-ज़िंक, एल्युमीनियम तथा वे दो जो धातु ऐसे नहीं कराती है। कॉपर और मर्करी (पारा)।

प्रश्न 8 किसी धातु M के विद्युत अपघटनी परिष्करण में आप ऐनोड, कैथोड एवं विद्युत अपघट्य किसे बनाएँगे?

उत्तर- धातु M के विद्युत अपघटनी परिष्करण मे के लिए-

अशुद्ध धातु M का — ऐनोड

शुद्ध धातु M कि पतली पट्टी -> कैथोड

विद्युत अपघट्य --> M धात् का अम्लीक्रित लवण का विलयन

प्रश्न 9 प्रत्यूष ने सल्फर चूर्ण को स्पैचुला में लेकर उसे गर्म किया। चित्रा के अनुसार एक परखनली को उलटा कर के उसने उत्सर्जित गैस को एकत्रा किया।

- a. गैस की क्रिया क्या होगी-
 - 1. सूखे लिटमस पत्रा पर?
 - 2. आर्द्र लिटमस पत्रा पर?
- b. ऊपर की अभिक्रियाओं के लिए संतुलित रासायनिक अभिक्रिया लिखिए।

उत्तर-

सल्फ़र चूर्ण को गर्म करने पर हमें सल्फर डाइ-ऑक्साइड प्राप्त होती हैं, जिसकी प्रकृति अम्लीय है क्योकि यह गैस जल से अभिक्रिया करके सल्फ्यूरिक अम्ल बनती है।

a. गैस की क्रिया-

- सूखे लिटमस पर कोई क्रिया नहीं होगी क्योंकि गैस जल (H⁺ आयन) की अनुपस्थिति में अम्लीय प्रभाव नहीं दिखाती है।
- 2. आर्द्र लिटमस उतसर्जित गैस का आयन (H⁺ आयन) की उपस्थिति के कारण रंग बदल देती (लाल कर देती है) है।
- b. ऊपर की अभिक्रियाओं के लिए संतुलित रासायनिक अभिक्रिया-

$$S_{(s)} + O_2 \longrightarrow SO_2$$

$$SO_2(g) + H_2O(1) \longrightarrow H_2SO_3(aq)$$

प्रश्न 10 लोहे को जंग से बचाने के लिए दो तरीके बताइए।

उत्तर- लोहे को जंग से बचाने के लिए दो तरीके निम्न है-

यशदलेपन द्वारा- इस विधि में लौहे एवं इस्पात पर जिंक की पतली परत चढ़ाई जाती है।

पेंटिंग द्वारा- इस विधि में लौहे की वस्तु पर पेंट कर देते है, ताकि इसकी सतह वायु और आर्द्रता के सीधे सम्पर्क में ना रहे।

प्रश्न 11 ऑक्सीजन के साथ संयुक्त होकर अधातुएँ कैसे ऑक्साइड बनाती हैं?

उत्तर- ऑक्सीजन के साथ संयुक्त होकर अधातुएँ अम्लीय ऑक्साइड बनाती हैं।

प्रश्न 12 कारण बताइए-

- (a) प्लैटिनम, सोना एवं चांदी का उपयोग आभूषण बनाने के लिए किया जाता है।
- (b) सोडियम, पोटैशियम एवं लीथियम को तेल के अंदर संग्रहीत किया जाता है।
- (c) एल्युमीनियम अत्यंत अभिक्रियाशील धातु है, फिर भी इसका उपयोग खाना बनाने वाले बर्तन बनाने के लिए किया जाता है।
- (d) निष्कर्षण प्रक्रम में कार्बोनेट एवं सल्फाइड अयस्क को ऑक्साइड में परिवर्तित किया जाता है।

उत्तर-

- (a) प्लैटिनम, सोना एवं चाँदी का उपयोग आभुषण बनाने में इसलिए किया जाता है कि इसकी धात्विक चमक होती है तथा ये आधातवर्ध्य एवं तन्य धातु है, ये कम अभिक्रियाशील धातुएँ हैं। सोडियम, पोटैशियम एवं लिथियम को तेल के अंदर संग्रहित किया जाता है क्योंकि ये अत्यधिक अभिक्रियाशील धातुएँ हैं, जो ऑक्सीजन से अभिक्रिया कर आग उत्पन करता है। अतः किसी भी दुर्घटना को रोकने के लिए इन धातुओं को तेल के अंदर संग्रहित किया जाता है।
- (b) ऐलुमिनियम को वायु में खुला छोड़ देने पर उसकी सतह पर ऐलुमिनियम ऑक्साइड की एक पतली परत से आच्छादित हो जाती है यह रक्षक परत अपने निचे स्थित धातु की और अधिक क्षति होने से रक्षा करती है इस लिए ऐलुमिनियम धातु से निर्मित वस्तुएँ संक्षारित नहीं होती हैं-
 - इसका उच्च गलनांक होता है।
 - अन्य धातुओं की तुलना में इसका उत्पादन मूल्य सस्ता है।

निष्कर्षण की प्रक्रिया में कार्बोनेट एवं सल्फाइड अयस्क को ऑक्साइड में परिवर्तित करना आवश्यक है क्योंकि ऑक्साइड का अपचयन कर धातु प्राप्त करना सल्फाइड तथा कार्बोनेट अयस्कों की तुलना में सरल है। प्रश्न 13 आपने ताँबे के मलीन बर्तन को नींबू या इमली के रस से साफ करते अवश्य देखा होगा। यह खट्टे पदार्थ बर्तन को साफ करने में क्यों प्रभावी हैं?

उत्तर- नींबू या इमली जैसे पदार्थ में अम्ल होता है यह अम्ल तांबे के अशुद्ध पदार्थ को साफ़ करने में प्रभावी होता है इससे तांबे के बर्तनों कि चमक बनी रहती है।

प्रश्न 14 रासायनिक गुणधर्मों के आधार पर धातुओं एवं अधातुओं में विभेद कीजिए।

उत्तर-

धातु के रासायनिक गुणधर्म-

- a. धातुए क्षारकीय ऑक्साइड बनाती है।
- b. धातु अपचायक होती है।
- c. धातुए जल से हाइड्रोजन को विस्थापित कर देती है।

अधातु के रासायनिक गुणधर्म-

- a. अधातुए अम्लीय या उदासीन ऑक्साइड बनाती है।
- b. अधातु उपचायक होती है।
- c. अधातुए जल से हाइड्रोजन को विस्थापित नहीं कर पाती है।

प्रश्न 15 एक व्यक्ति प्रत्येक घर में सुनार बनकर जाता है। उसने पुराने एवं मलीन सोने के आभूषणों में पहले जैसी चमक पैदा करने का ढोंग रचाया। कोई संदेह किए बिना ही एक महिला अपने सोने के कंगन उसे देती है जिसे वह एक विशेष विलयन में डाल देता है। कंगन नए की तरह चमकने लगते हैं लेकिन उनका वजन अत्यंत कम हो जाता है। वह महिला बहुत दुखी होती है तथा तर्क-वितर्क के पश्चात उस व्यक्ति को झुकना पड़ता है। एक जासूस की तरह क्या आप उस विलयन की प्रकृति के बारे में बता सकते हैं।

उत्तर- उस व्यक्ति ने "ऐक्वा रेजिया" विलयन का प्रयोग कर महिला के सोने को गला दिया तथा वजन कम हो गया। इसमें 3 : 1 अनुपात में सांद्रता HCL और सांद्रता HNO3 होता है।

प्रश्न 16 गर्म जल का टैंक बनाने में ताँबे का उपयोग होता है परंतु इस्पात (लोहे की मिश्रातु) का नहीं। इसका कारण बताएइए।

उत्तर- कॉपर ठंडे पानी, गर्म पानी या भाप के साथ प्रतिक्रिया नहीं करता है। हालांकि, लोहा प्रतिक्रिया करता है। भाप के साथ यदि गर्म पानी के टैंक स्टील (लोहे का एक मिश्र धातु से बने हैं, तो लोहा गर्म पानी से बने भाप के साथ प्रतिक्रिया करेगा और धीरे-धीरे उसे क्षय कर देगा।

