- ৺ 物以类聚,人以群分

 - ∅ 矩阵分解 (如果得到用户对所有商品的评分)
 - ∅ 矩阵分解中的隐式与显式情况解决思路

❤ 特征长什么样子

用户行为	类型	特征	作用
评分	显式	整数量化的偏好,可能的取值是 [0, n]; n 一般取值为 5 或者是 10	通过用户对物品的评分,可以精确的得到用户的偏好
投票	显式	布尔量化的偏好,取值是0或1	通过用户对物品的投票,可以较精确的得到用户的偏好
转发	显式	布尔量化的偏好,取值是 0 或 1	通过用户对物品的投票,可以精确的得到用户的偏好。
保存书签	显示	布尔量化的偏好,取值是 0 或 1	通过用户对物品的投票,可以精确的得到用户的偏好。
标记标签	显示	一些单词,需要对单词进行分析,得到偏 好	通过分析用户的标签,可以得到用户对项目的理解,同时可以分析出用户的情感:喜欢还是讨厌
评论	显示	一段文字,需要进行文本分析,得到偏好	通过分析用户的评论,可以得到用户的情感:喜欢还是讨厌
点击流	隐式	一组用户的点击,用户对物品感兴趣,需 要进行分析,得到偏好	用户的点击一定程度上反映了用户的注意力,所以它也可以从一定程度上反映用户的喜好。
页面停留时间	隐式	一组时间信息,噪音大,需要进行去噪, 分析,得到偏好	用户的页面停留时间一定程度上反映了用户的注意力和喜好,但噪音偏大,不好利用。
购买	隐式	布尔量化的偏好,取值是 0 或 1	用户的购买是很明确的说明这个项目它感兴趣。

- ✓ 基于用户的协同过滤
 - ∅ 首先找到相似用户 (相似度计算)
 - ❷ 属性特征,行为特征等都可以当做计算输入
 - ❷ User1喜欢1,2,3,4; User3当前喜欢2,3

❷ 如果这俩用户计算后相似度较高,就可以把1,4推给User3

✅ 基于用户的协同过滤

❷ 存在的问题:数据稀疏,计算复杂度,人是善变的,冷启动问题

∅ 稀疏:通常商品非常多,用户购买的只是其中极小一部分

∅ 计算: 计算相似度矩阵是个大活,用户和商品都比较多的时候就难了

❷冷启动:新用户来了怎么办?

✅ 基于物品的协同过滤

还是要先得到用户与商品的交互数据

♂ 此时发现商品1和3经常在一起出现

❷ 那这俩商品之间肯定有鬼。。。(相关度)

❷ User3目前只买了商品2和3,此时可以推给他商品1

- ✅ 基于物品的协同过滤
 - ❷ 更流行,现阶段各大网站基本都是用户较多,商品(种类)比用户少的多
 - ❷ 商品属性通常比较固定,特征获取容易,而且基本不会改变
 - 必 即便上架了新商品,它自身也有各种标签,不会像用户一样是张白纸
 - ∅ 应用场景更适合当下各种网站、APP(实时的除外、例如新闻)

✅ 小例子

∅ 首先计算商品之间的相似度 (pearson) , 邻居设置为2, 预测r51=?

 $r_51 = (0.41*2 + 0.59*3)/(0.41 + 0.59) = 2.6$

✅ 为什么需要矩阵分解

Ø 用户: 1个亿,商品100W,这得是多大的一个矩阵,要命了

❷ 能不能间接点来求呢? 最终目标就是把每个用户对各个商品的喜好预测出来

❷ 跟找中介租房子差不多,通过中介来重新组合矩阵

矩阵分解已经成为推荐系统中用的最多的方法

$$R = egin{pmatrix} 1 & ? & 2 & ? & ? \ ? & ? & ? & 4 \ 2 & ? & 4 & 5 & ? \ ? & 3 & ? & ? \ ? & 1 & ? & 3 & ? \ 5 & ? & ? & ? & 2 \ \end{pmatrix}$$

- ❤ 矩阵分解实例
 - ❷ 用户-歌曲之间的行为数据
 - ∅ 1代表听过该歌曲, 0表示没有
 - ♂可以想象成一个非常稀疏的矩阵
 - ❷ 目标:预测空白值到底等于多少

	成都	董小姐	安河桥	洗白白	抓泥鳅	小白兔	西海情歌	青藏高原	呼伦贝尔
用户1	1	1							
用户2	1		1 1						
用户3		1	1						
用户4	$\begin{pmatrix} 1 \\ 1 \end{pmatrix}$	1							
用户5	1		1						
用户6		1	1						
用户7	1								
用户8				1	. 1				
用户9				1		1			
用户10					1	1			
用户11				1	. 1				
用户12				1		1			
用户13					1	1			
用户14				1					
用户15							1	1	
用户16							1		1
用户17								1	. 1
用户18							1	1	
用户19							1		1
用户20								1	. 1
用户21							1		
用户22	1			1	9				
用户23	1						1		
用户24				1			1		

✅ 矩阵分解

Ø user-item矩阵分解

∅ 原矩阵: m*n(用户, 音乐)

user(m*k),item(k*n)

❤ 矩阵分解

❷ 这俩矩阵可有实际值

Ø K等于多少合适呢?

❷ 其中的数值代表什么?

❷ 如何计算得到?

	民谣	儿歌	草原风
用户1	0.93	-0.08	0.10
用户2	0.93	-0.08	0.10
用户3	0.90	-0.21	0.07
用户4	0.93	-0.08	0.10
用户5	0.93	-0.08	0.10
用户6	0.90	-0.21	0.07
用户7	0.62	0.03	0.08
用户8	0.11	0.81	-0.51
用户9	0.11	0.81	-0.51
用户10	0.02	0.74	-0.58
用户11	0.11	0.81	-0.51
用户12	0.11	0.81	-0.51
用户13	0.02	0.74	-0.58
用户14	0.13	0.56	-0.28
用户15	-0.07	0.49	0.77
用户16	-0.07	0.49	0.77
用户17	-0, 17	0.40	0.78
用户18	-0.07	0.49	0.77
用户19	-0.07	0.49	0.77
用户20	-0.17	0.40	0.78
用户21	0.02	0.38	0.49
用户22	0.71	0.55	-0.19
用户23	0.61	0.38	0.53
用户24	0.15	0.88	0.19

User矩阵

	成都	董小姐	安河桥	洗白白	抓泥鳅	小白兔	西海情歌	青藏高原	呼伦贝尔
民谣	0.99	0.74	0.74	0.23	0.03	0.03	0.08	-0.11	-0.11
儿歌	0.09	-0.14	-0.14	0.87	0.58	0.58	0.63	0.36	0.36
草原风	0.16	0.07	0.07	-0.41	-0, 46	-0.46	0.82	0.68	0, 68

Item矩阵

✅ 隐向量

∅ 其实就是特征的高维表达,只不过很难去理解

❷ 例如用户的隐向量可以想象成是这个样子:

- ❤ 隐向量
 - ∅ 用户与商品向量可以当做其特征表示
 - ❷ 这可不是随机值,可以观察下数值特点
 - ♂ 不同颜色表示特征鲜明的地方,也就是喜好

	成都	董小姐	安河桥	洗白白	抓泥鳅	小白兔	西海情歌	青藏高原	呼伦贝尔
民谣	0.99	0.74	0.74	0.23	0.03	0.03	0.08	-0.11	-0.11
儿歌	0.09	-0.14	-0.14	0.87	0.58	0.58	0.63	0.36	0.36
草原风	0.16	0.07	0.07	-0.41	-0.46	-0.46	0.82	0.68	0.68

Item矩阵

	ER. 100	11 105	草原风
III rea			
用户1		-0.08	
用户2	0.93		
用户3	0.90	-0.21	0.07
用户4	0.93	-0.08	0.10
用户5	0.93	-0.08	0.10
用户6	0.90	-0.21	0.07
用户7	0.62	0.03	0.08
用户8	0.11	0.81	-0.51
用户9	0.11	0.81	-0.51
用户10	0.02	0.74	-0.58
用户11	0.11	0.81	-0.51
用户12	0.11	0.81	-0.51
用户13	0, 02	0.74	-0.58
用户14	0.13	0.56	-0.28
用户15	-0.07	0.49	0.77
用户16	-0.07	0.49	0.77
用户17	-0.17	0.40	0.78
用户18	-0.07	0.49	0.77
用户19	-0.07	0.49	0.77
用户20	-0.17	0.40	0.78
用户21	0.02	0.38	0.49
用户22	0.71	0.55	-0.19
用户23	0.61	0.38	0.53
用户24	0.15	0.88	0.19

User矩阵

✅ 隐向量

- ❷ 隐向量真的可以理解吗?通常只是比喻而已,一般难以理解
- ❷ 例如一个50维的向量,鬼知道它具体表什么含义
- ❷ 没关系,咱们理解不了无所谓,计算机能更好的理解就可以了

我	0.3351	0.5545	0.6798	0.4287	0.479	0.668
今天	0.357	0.68	0.066	0.4735	0.329	0.617
真	0.0522	0.4642	0.714	0.04378	0.696	0.795
帅气	0.2855	0.8701	0.4188	0.10523	0.039	0.94

- ❤ 矩阵分解
 - ❷目标其实就是得到一个大表

 - ❷ 数值即表示对当前商品喜好程度
 - ❷ 方法蛮简单,具体怎么做呢?

					-				
	成都	董小姐	安河桥	洗白白	抓泥鳅	小白兔	西海情歌	青藏高原	呼伦贝尔
用户1	0.93	0.70	0.70	0.10	-0.07	-0.07	0.10	-0.07	-0.07
用户2	0.93	0.70	0.70	0.10	-0.07	-0.07	0.10	-0.07	-0.07
用户3	0.88	0.69	0.69	-0.01	-0.13	-0.13	-0.01	-0.13	-0.13
用户4	0.93	0.70	0.70	0.10	-0.07	-0.07	0.10	-0.07	-0.07
用户5	0.93	0.70	0.70	0.10	-0.07	-0.07	0. 10	-0.07	-0.07
用户6	0.88	0.69	0.69	-0.01	-0.13	-0.13	-0.01	-0.13	-0.13
用户7	0.64	0.46	0.46	0.14	0.00	0.00	0.14	0.00	0.00
用户8	0.10	-0.07	-0.07	0.93	0.70	0.70	0. 10	-0.07	-0.07
用户9	0.10	-0.07	-0.07	0. 93	0.70	0.70	0.10	-0.07	-0.07
用户10	-0.01	-0.13	-0.13	0.88	0.69	0.69	-0.01	-0.13	-0. 13
用户11	0.10	-0.07	-0.07	0.93	0.70	0.70	0.10	-0.07	-0.07
用户12	0.10	-0.07	-0.07	0.93	0.70	0.70	0. 10	-0.07	-0.07
用户13	-0.01	-0.13	-0.13	0.88	0.69	0.69	-0.01	-0.13	-0.13
用户14	0.14	0.00	0.00	0.64	0.46	0.46	0.14	0.00	0.00
用户15	0.10	-0.07	-0.07	0.10	-0.07	-0.07	0. 93	0.70	0.70
用户16	0.10	-0.07	-0.07	0. 10	-0.07	-0.07	0. 93	0.70	0.70
用户17	-0.01	-0.13	-0.13	-0.01	-0.13	-0. 13	0.88	0. 69	0. 69
用户18	0.10	-0.07	-0.07	0.10	-0.07	-0.07	0. 93	0.70	0.70
用户19	0.10	-0.07	-0.07	0.10	-0.07	-0.07	0. 93	0.70	0.70
用户20	-0.01	-0.13	-0. 13	-0.01	-0.13	-0.13	0.88	0. 69	0.69
用户21	0.14	0.00	0.00	0.14	0.00	0.00	0.64	0. 46	0.46
用户22	0.72	0.43	0.43	0.72	0.43	0.43	0, 25	-0.01	-0.01
用户23	0.72	0.43	0.43	0. 25	-0.01	-0.01	0.72	0.43	0.43
用户24	0.25	-0.01	-0.01	0.72	0.43	0.43	0.72	0.43	0. 43

✅ 目标函数

- ② 跟回归方程很像: $\min_{X,Y} \sum_{r_{ui} \neq 0} (r_{ui} x_u^T y_i)^2 + \lambda(\sum_u ||x_u||_2^2 + \sum_i ||y_i||_2^2)$
- Ø 用户矩阵: $X = [x_1, x_2, \dots, x_N]$ 商品矩阵: $Y = [y_1, y_2, \dots, y_M]$
- ❷ 其中还额外引入了正则化惩罚项

✅ 后续的改进

- ∅ 如果用户就特别刁钻,评分都会很低;如果商品本身就很好,评分都较高
- 必 这里还需要注意的就是用户与商品的本身属性信息,之前公式中木有涉及
- Ø 例如bu表示用户偏置, bi表示商品偏置

✅ 隐式情况分析

- ∅ 用户-商品的评分矩阵做起来非常直接,但是哪有那么正好的事啊
- 必通常收集的数据都是用户的行为:观看时间,点击次数等指标
- ② 这种数据该怎么求解呢? 首先定义置信度: $c_{ui} = 1 + \alpha r_{ui}$
- ❷ 置信度默认为1,表示用户没有产生行为的商品;行为越多,置信度越大

✅ 隐式情况分析

- $oldsymbol{\mathscr{O}}$ 新的优化目标: $G(x_\star,y_\star) = \left(\sum_{u,i} c_{ui}(p_{ui} x_u^T y_i)^2 \right) + \lambda \left(\sum_u \|x_u\|^2 + \sum_i \|y_i\|^2 \right)$
- 必 总结起来就是置信度越大的你得预测的越准,要不损失就大了

- ✓ Embedding的作用

 - ❷ NLP,CV领域做得太多啦,推荐中也不例外,Embedding做好啦一切都解决了!

兴趣标签 画像 行为序列 点击历史

Tag emb加 权 画像dssm emb 点击历史 bert+lstm emb