Security in the White-box Setting

Avik Chakraborti

Institute for Advancing Intelligence, TCG CREST

Background

How to Protect a Secret? In Secure Hardware

Put it in a smart card

• Or in other secure hardware (say, HSM)

But What are the Disadvantages?

Secure hardware is expensive

• Difficulty in upgrading. If a weakness is exposed, it is not easy to upgrade. Bugs, security flaws might occur.

Software Solutions are Better

- Cheaper
- Easy to update
- Easy to fix
- Application Example-
 - Digital rights management (DRM) (Adv: User)
 - Mobile payment (Adv: Malware)
 - Car Connectivity
 - and others.....

Examples

Overall

- Possible threats
 - Malware
 - Co-hosted apps
 - Users

- Adversary can
 - Fully control over the execution environment
 - Reverse-engineer
 - Access memory
 - Retrieve the secret

Intro to White-box Crypto

Breiefly, White-Box Cryptography (WBC) was

- Chow et al [CEJO01] in SAC 2001
- As a special-purpose obfuscation for AES
- Adversary has full access and control to the implementation and execution environment respectively
- Main goal is to make key extraction difficult
- Several other new goals were proposed later

What is an Obfuscator?

- A word π in language L ($\pi \in L$ is some encoded string)
- Obfuscator O: A compiler that takes a program Π with an embedded secret S, denoted by Π_S , such that
 - $O(\Pi_S) \equiv \Pi_S$
 - No info on S is revealed given full access $O(\Pi_S)$

White-Box AES

- Here $\pi = AES$, S = K, and $\pi_S = AES_K$
- Target: Hide secret key in obfuscated key-embedded code for AES
- Simple but Inefficient solution: Huge table $O(AES_K) = T$, s.t $T[i] = AES_K(i)$
- Chow et al's work: Network of small tables masked with random non-linear encoding
- Broken in three years [BGE04]
- Several other dedicated designs: Broken

Formal Security Notions

First Attempt on Formal White-box Security Notions [DLPR13]

Unbreakability

One-Wayness

Incompressibility

• Traceability (for public key solutions)

Unbreakability (Addresses Key-extraction)

For simplicity use Comp(S) instead of $Comp(\pi_S)$. Let \mathcal{E} be an encryption scheme, $C_{\mathcal{E}}$ be a white-box compiler, and \mathcal{A} be an adversary. For $atk \in \{CPA, CCA, RCA\}$, The success probability for Unbreakability is defined as

$$\mathsf{Succ}^{ubk-atk}_{\mathcal{A},\mathcal{C}_{\mathcal{E}}} = Pr[k \xleftarrow{\$} \mathcal{K}, r \xleftarrow{\$} \mathcal{R}, P = \mathcal{C}_{\mathcal{E}}(k,r), \hat{k} \xleftarrow{\$} \mathcal{A}^{\mathcal{O}}(P) : \hat{k} = k], \ s.t$$

- $\mathcal{O}(.) = \epsilon$ when atk = CPA, $\mathcal{O}(.) = \mathcal{D}_k(.)$ when atk = CCA, and
- $\mathcal{O}(.) = \mathcal{C}_{\mathcal{E}}(k, \mathcal{R})$ when $atk = \mathsf{RCA}(recompilationattack)$

One-Wayness

Let $\mathcal E$ be an encryption scheme, $C_{\mathcal E}$ be a white-box compiler, and $\mathcal A$ be an adversary. For $atk \in \{\mathsf{CPA}, \; \mathsf{CCA}, \; \mathsf{RCA}\}$, The success probability for $\mathit{One-wayness}$, $\mathsf{Succ}_{\mathcal A, C_{\mathcal E}}^{\mathit{ow-atk}}$ is defined as

$$Pr[k \stackrel{\$}{\leftarrow} \mathcal{K}, r \stackrel{\$}{\leftarrow} \mathcal{R}, P = C_{\mathcal{E}}(k, r), m \stackrel{\$}{\leftarrow} \mathcal{M}, c = \mathcal{E}_k(m), \hat{m} \stackrel{\$}{\leftarrow} \mathcal{A}^{\mathcal{O}}(P, c) : \hat{m} = m], \ s.t$$

- $\mathcal{O}(.) = \epsilon$ when atk = CPA, $\mathcal{O}(.) = \mathcal{D}_k(.)$ when atk = CCA, and
- $\mathcal{O}(.) = C_{\mathcal{E}}(k, \mathcal{R})$ when atk = RCA

(λ, δ) -Incompressibility (Addresses Code-Lifting)

Let $\mathcal E$ be an encryption scheme, $C_{\mathcal E}$ be a white-box compiler, and $\mathcal A$ be an adversary. For $atk \in \{\mathsf{CPA}, \; \mathsf{CCA}, \; \mathsf{RCA}\}$, let $\mathsf{Adv}_{\mathcal A, C_{\mathcal E}}^{(\lambda, \delta) - inc - atk}$ is defined as

$$Pr[k \stackrel{\$}{\leftarrow} \mathcal{K}, r \stackrel{\$}{\leftarrow} \mathcal{R}, P = C_{\mathcal{E}}(k, r), P_{com} \stackrel{\$}{\leftarrow} \mathcal{A}^{\mathcal{O}}(P) : \Delta(P_{com}, \mathcal{E}_k(.)) \leq \delta \cap |P_{com}| < \lambda] \ s.t$$

- $\mathcal{O}(.) = \epsilon$ when atk = CPA, $\mathcal{O}(.) = \mathcal{D}_k(.)$ when atk = CCA, and
- $\mathcal{O}(.) = \mathcal{C}_{\mathcal{E}}(k, \mathcal{R})$ when $atk = \mathsf{RCA}$

Here, $\Delta(P,f) = Pr[a \stackrel{\$}{\leftarrow} A, b \leftarrow P(a) : b \neq f(a)]$. We say $C_{\mathcal{E}}$ is (t,ϵ) secure in the sense of (λ,δ) -inc-atk, if for any \mathcal{A} with running time t, $\mathrm{Adv}_{\mathcal{A},C_{\mathcal{E}}}^{(\lambda,\delta)-inc-atk} \leq \epsilon$.

Variants of One-way ness

Strong White-box [BBK14]

- Adversary should be unable to mimic decryption function, given white-box code of E_K .
- Resemblance with trapdoor perm
- CPA setting, goal is stronger
- Used multivariate crypto: lack reductions to established assumption
- Broken in [GPT15] (key recovery),
 [DDKL15] (decomposition),
 [MDFK15] (key recovery)

Challenger

4

chooses
$$K \xleftarrow{\$} \{0,1\}^k$$

computes $P \stackrel{\$}{\leftarrow} Comp(K)$

$$\begin{array}{ccc} & & P & & \\ & & \mathcal{D}' & & \end{array}$$

check $\mathcal{D}^{'} pprox \mathcal{D}_{\mathcal{K}}$ or not

Variants of Incompressibility: Most Desired Notion

Background: Code-Lifting Attack

When key-extraction is not possible, the adversary lifts the code

- First addressed in [DLPR13]
- Large incompressible program
- Full code distribution hard for a attacker
- Incompressible design by [BBK14], [BI15], [FKKM16], [BIT16]
- Several other designs

Important point

- Unbreakability, One-way ness: Single adversary (say malware)
- Incompressibility: Two adversaries (A_{local}, A_{remote})

Total Four Attempts of Formalizing Security Against Code-lifting

- Incompressibility by [DLPR13] (already discussed above)
- Weak Whitebox by [BBK14]
- Space-hardness by [BI15]
- Weak and Strong Incompressibility by [FKKM16]

Second Attempt: T-secure Weak White-box (w.r.t A_{local}) [BBK14]

T-secure Weak White-box

ullet Simply, adversary who gets a secure weak white-box implementation is unable to find out any compact (shorter than T) equivalent representation of it

- ASASA structure based cipher (two secret non-linear layer + three secret affine layer)
- Uses a dedicated small block cipher for the keyed-sbox.

• Broken in a year [DDKL15] (Decomposition Attack), [MDFK15] (Key-Recovery attack)

Third Attempt: Informal Variant of Incompressibility [BI15]

The notion is called Space-hardness

- The difficulty of code lifting attack is measured by space-hardness
- Introduced by Bogdanov et al., in ACM, 2015 and proposed a space-hard cipher SPACE
- ASIACRYPT 2016 paper [BIT16] proposed white-box implementation of SPNbox cipher achieving better space-hardness than SPACE

Space Hardness

Attack setup: (1) Local adversary (leaks), (2) Remote adversary (receives leakage)

(M, z) Weak Space Hardness

An encryption scheme E_k is said to be weak (M, z) space hard if it is infeasible to encrypt (decrypt) any randomly chosen plaintext (ciphertext) with probability more than 2^{-z} given any code (table) of size less than M-bits

(M, Z) Strong space-hardness

An encryption scheme E_k is said to be strong (M, z) space-hard if it is infeasible to compute a plaintext-ciphertext pair with probability more than 2^{-z} given any code (table) of size less than M-bits

Weak and Strong Space-hardness

Weak Space-hardness

Challenger

\mathcal{A}_{remote}

chooses
$$k \stackrel{\$}{\leftarrow} \mathcal{K}$$

computes
$$P \stackrel{\$}{\leftarrow} Comp(k)$$

$$|P| = T$$

$$m^{ch} \stackrel{\$}{\leftarrow} \mathcal{M}$$

$$\xrightarrow{m^{ch}}$$

$$C$$

check
$$c = P(m^{ch})$$
 or not

Strong Space-hardness

Challenger

 \mathcal{A}_{remote}

chooses
$$k \overset{\$}{\leftarrow} \mathcal{K}$$

computes
$$P \stackrel{\$}{\leftarrow} Comp(k)$$

$$|P| = T$$

$$\underbrace{L, \ni |L| \le M}_{(m^{ch}, c^{ch})}$$

check
$$c^{ch} = P(m^{ch})$$
 or not

Power of Adversary

Known Space (KS) Attack

• Chosen Space (CS) Attack

• Adaptive Chosen Space (ACS) Attack

Known Space (KS) Attack

Challenger

\mathcal{A}_{remote}

chooses
$$k \overset{\$}{\leftarrow} \mathcal{K}$$

computes
$$P \stackrel{\$}{\leftarrow} Comp(k)$$

$$|P| = T$$

computes
$$y_i = P_i^r(x_i)$$

$$m^{ch} \overset{\$}{\leftarrow} \mathcal{M} \qquad \underbrace{\frac{(x_1, y_1), \dots, (x_q, y_q)}{c}}_{c}$$

check
$$c = P(m^{ch})$$
 or not

Chosen Space (CS) Attack

Challenger

 \mathcal{A}_{remote}

chooses
$$k \overset{\$}{\leftarrow} \mathcal{K}$$

computes $P \stackrel{\$}{\leftarrow} Comp(k)$

$$|P| = T$$

$$computes \ y_i = P_j^r(x_i) \xrightarrow{y_1, y_2, \dots, y_q}$$

$$m^{ch} \stackrel{\$}{\leftarrow} \mathcal{M} \xrightarrow{m^{ch}}$$

$$c$$

check $c = P(m^{ch})$ or not

Adaptive Chosen Space (ACS) Attack

Challenger

 \mathcal{A}_{remote}

chooses $k \overset{\$}{\leftarrow} \mathcal{K}$

computes $P \stackrel{\$}{\leftarrow} Comp(k)$

$$|P| = T$$
 x_i computes $y_i = P_j^r(x_i)$ y_i $(q \text{ times adaptively})$
 $m^{ch} \stackrel{\$}{\leftarrow} \mathcal{M}$ $m^{ch} \stackrel{\frown}{\leftarrow} C$

check $c = P(m^{ch})$ or not

Strong Space-hardness Under ACS

- Not possible to achieve
- Adversary chooses M, simply adaptively queries the table for the table invocations and compute C.
- Adversary outputs (M, C)

Potential open problem: Identify a Space-hardness notion between Weak Space-hardness and Strong Space-hardness, and design of a white-box cipher secure under the notion

An Efficient Space-hard Construction: SPNBox [BIT16]

- $S_{n_{in}}$ is (AES key addition + Sbox) 64-times (why?)
- ullet $S_{n_{in}}$ is a block cipher with high key extraction security
- ullet Key extraction security of SPNbox reduces to key extraction security of $S_{n_{in}}$
- Three choices of n_{in} : 8, 16, and 32

Space-hardness of SPNBox

- Let $S_{n_{in}}$ is implemented by a table $T_{n_{in}}$
- $|T_{n_{in}}| = T$ in bits
- Assume T/4 table bits are leaked
- ullet To compute C for an arbitrary P (say known and chosen space setting)
 - Total s Sboxes are invoked
 - Each Sbox can be computed with a probability 1/4
 - Total Space-Hardness probability is $(1/4)^s$

SPNBox is not One way secure w.r.t local adversary

Fourth Attempt: Weak and Strong Incompressibility by [FKKM16]

- Fouque et al. proposed weak and strong incompressibility
- Provably secure (weak model) incompressible scheme: White-block (Invertible)
- Provably secure (strong model) incompressible scheme: White-key (Non-invertible)
- Table based construction (table is viewed as a PRF)
- Weak incompressibility Similar to space-hardness [BI15] and weak white-box [BBK14]
- **Strong incompressibility:** To distinguish the output of the encryption

Weak and Strong Incompressibility

Weak Incompressibility

Strong Incompressibility

f(T) m_i

Ci

 $E_T(m_b)$

Challenger

chooses $T \stackrel{\mathcal{D}}{\leftarrow} \mathcal{T}$

 $A_{remotev}$

$$P \stackrel{\$}{\leftarrow} \mathcal{P} \qquad P \longrightarrow C$$

check $C = E_T(P)$ or not

Challenger

chooses
$$\mathcal{T} \overset{\mathcal{D}}{\leftarrow} \mathcal{T}$$

computes $c_i = E_T(m_i)$

$$b \stackrel{\$}{\leftarrow} \{0,1\}$$

check b' = b or not

\mathcal{A}_{remote}

s times

chooses set $\mathcal S$ and compression algorithm $f:\mathcal T\to\mathcal S$

Weak Incompressibility is Similar to Weak Space-Hardness

• A scheme is (s, λ, δ) -weakly incompressible iff any adversary allowed to adaptively query up to s entries of the table T can only correctly encrypt up to a proportion δ of plaintexts (except with negligible probability $2^{-\lambda}$ over the choice of T)

• (s, λ, δ) -weak incompressibility matches exactly with $(s, -log(\delta))$ -space-hardness

A New Stronger Notion of Incompressibility: Longevity [KI21]

Idea

Longevity

- Continuous leakage of the code
- Incompressibility under continuous leakage

z-longevity

A cryptographic scheme has z-longevity if it is computationally difficult to encrypt (decrypt) any randomly chosen plaintext (ciphertext) with probability not more than 2^{-z} where the functionality remains constant, and code (table) is continuously leaked to the adversary

- Proposed a white-box secure construction Yoroi achieving longevity
- Used table update keeping same functionality

This notion needs to be redefined

Design Idea

YOROI

YOROI

Unfortunately

• Yoroi was broken in a year [TI23]

• Tables from different updates are not independent: Leakage from one table leaks information about leakage from the updated table

 Our very recent work [CGIK25] on designing EWEMrl (with Shibam Ghosh, Takanori Isobe, and Sajani Kundu) achieves Lonegvity but assuming adversary can only leak

EWEMrl

ASIACRYPT 2022 Paper [HIT22]

White-Box Security Formalization

• First WB security notions considering two stage adversaries,

• First notion addressing WB security of modes

 A weak variant of public indifferentiability implies reduction, (informally, primitive is white-box secure + the idealized mode weak-public indifferentiable implies the mode is white-box secure)

White-box security analysis of SIV-CTR AEAD

Real and Ideal World

wh-PRP

Ch.

chooses $K \stackrel{\$}{\leftarrow} \mathcal{K}$ computes $P \xleftarrow{\$} Comp(K)$ chooses $b \xleftarrow{\$} \{0, 1\}$

If b = 1, $P = E_K$, $P^{-1} = D_K$

Else, choose a random permutation P

 $\mathcal{A}(\mathcal{A}_{create}, \mathcal{A}_{dist})$

$$(optional)$$

$$C_i = P(M_i)$$

 $\mathcal{L}. St \leftarrow \mathcal{A}_{creato}^{P(\cdot)}(\cdot)$

Lifter $\mathcal{L}(P)$ / simulator $\mathcal{S}^{P,P^{-1}}(.)$ leaks data L

 $b' \leftarrow \mathcal{A}_{dist}^{P(\cdot)}(L, St)$

Check b' = b or not

Why not Wh-AEAD?

- $A(A_{create}, A_{dist})$ never queries (N, A, M)
- \mathcal{A}_{create} creates \mathcal{L} that leaks (C, T) for (N, A, M)
- A_{dist} makes a decryption query (N, A, C, T)

• In the Ideal world, always Reject

• Hence define Wh-PRI

wh-PRI

Ch.

chooses $K \stackrel{\$}{\leftarrow} \mathcal{K}$ computes $\mathcal{P} \xleftarrow{\$} Comp(K)$ chooses $b \xleftarrow{\$} \{0, 1\}$ If b = 1, $f = E_K$, $f^{-1} = D_K$ Else, choose a random injection f

$\mathcal{A}(\mathcal{A}_{create}, \mathcal{A}_{dist})$

$$(optional)$$

$$C_i = f(M_i)$$

$$\mathcal{L}, St \leftarrow \mathcal{A}_{create}^{f(\cdot), f^{-1}(\cdot)}$$

 $\mathcal{L}, \mathit{St} \leftarrow \mathcal{A}_{\mathit{create}}^{f(\cdot), f^{-1}(\cdot)}(\cdot)$ Lifter $\mathcal{L}(\mathcal{P})/$ simulator $\mathcal{S}_{\mathit{l}}^{f, f^{-1}}(\cdot)$ leaks data L

$$b' \leftarrow \mathcal{A}_{dist}^{f(\cdot),f^{-1}(\cdot)}(L,St)$$

Check b' = b or not

References

- [CEJO01] Stanley Chow, Philip A. Eisen, Harold Johnson, Paul C. van Oorschot: White-Box Cryptography and an AES Implementation. Selected Areas in Cryptography 2002: 250-270
- [BGE04] Olivier Billet, Henri Gilbert, Charaf Ech-Chatbi: Cryptanalysis of a White Box AES Implementation. Selected Areas in Cryptography 2004
- [DLPR13]: Cecile Delerablee, Tancrede Lepoint, Pascal Paillier, Matthieu Rivain: White-Box Security Notions for Symmetric Encryption Schemes. Selected Areas in Cryptography 2013: 247-264
- [BBK14] Alex Biryukov, Charles Bouillaguet, Dmitry Khovratovich: Cryptographic Schemes Based on the ASASA Structure: Black-box, White-box, and Public-key. IACR Cryptol. ePrint Arch. 2014: 474
- [*BI*15] Andrey Bogdanov, Takanori Isobe: White-Box Cryptography Revisited: Space-Hard Ciphers. CCS 2015: 1058-1069

References

- [FKKM16] Pierre-Alain Fouque, Pierre Karpman, Paul Kirchner, Brice Minaud: Efficient and Provable White-Box Primitives. ASIACRYPT (1) 2016: 159-188
- [BIT16] Andrey Bogdanov, Takanori Isobe, Elmar Tischhauser: Towards Practical Whitebox Cryptography: Optimizing Efficiency and Space Hardness. ASIACRYPT (1) 2016: 126-158
- [KI21] Yuji Koike, Takanori Isobe: Yoroi: Updatable Whitebox Cryptography. IACR Trans. Cryptogr. Hardw. Embed. Syst. 2021(4): 587-617
- [*TI*23] Yosuke Todo, Takanori Isobe: Hybrid Code Lifting on Space-Hard Block Ciphers Application to Yoroi and SPNbox. IACR Trans. Symmetric Cryptol. 2022(3): 368-402
- [HIT22] Akinori Hosoyamada, Takanori Isobe, Yosuke Todo, Kan Yasuda: A Modular Approach to the Incompressibility of Block-Cipher-Based AEADs. ASIACRYPT (2) 2022
- [CGIK25] Avik Chakraborti, Shibam Ghosh, Takanori Isobe, Sajani Kundu: EWEMrl: A White-Box Secure Cipher with Longevity. IACR Cryptol. ePrint Arch. 2025: 1221

thank you!