Tor (A,B)

V

· A=Z, e -> B

. A = Q BOQ Bree & Q

Abano - BinB

· A = Q/Z - BOOR/Z = Bree & Q/Z & Q/Z is divisible

Tor, (A,B)

- A=Z,Q - O Torsion free

- A-Z/nz - B

The second of th

-> A=Q/2 -> Biorsion by looking at 0-2-00-00/2-00

Est (A,B)

 $\rightarrow A=Z$ Hom (Z,B)=B

A 847/16

A=Bhz Hom (Bhz, B) = nB

→ A= Q Hom (Q, B) = # Home!?

-, A = Q/2 Hom (Q/2,B)=

= Hom (B Z/po, B)

= Tr (B-BB-BB-...)

when B= Q/23 this inverse limit is the p-adic integers! *

Hom (AZ) = Hom (Afree, Z) → B=Z

- B = Q Hom (B, Q) = Hom (Bfee, Q) =

→ B= 2/n2 Hom (A, 2/n) = A Hom (nA, 2/n)

-> B = Q/Z Hom (A, Q/2) = ?

. Ext' (A,B):

-> A= Z Ext (Z,B) = 0 : Z is projective

→ A = Z/n2 Ent'(Z/B)= B/nB

ローコーコーをする

nz
0 → Hom (Z/12,8) → B → B

- Ext'(2,8) - Ext'(2/n2,8)

→ A = Q Ext! (QB) =?

→ A = Q/2 Ext'(Q/2,B) =?

we know have iso Q 12 0

So we must have iso Ext (QB)

In general, for

X I divisible/injective:

See
below Ext'(I, B) is injective

Q. For what abelian groups G

do we have Gen G

Isomorphism?

-> G should be divisible i.e. Galasi injective !

Same goes for Ent'(Q/2, B).

ANT A TEL

-B=Z Ext'(A,Z) = Hom (A,Q/Z)
(Hom (A,Q)

(Hom (A, R)) 0-2-R-R/2-10. is ian injective resolution

A to the part of the

- B= Znz Ext'(A, Znz) = ?

coker (BH, (4's) = Ent, (4's))

- B = Q Ext (A, Q) = 0

Q, Quz injective

-, B= Q/2 Ext (A, Q/2)=0

divisible means G=onG. It does not mean Gn, G is an isomorphism.

The section of the section

Carlot Commence of the State of the

G divisible + torsionfree => Ent'(G,B) is divisible.

Any finite In module is also a & finite Z-module 16) By structure thm: @ (Z/m) for m prime powers so enough to calculate Tor (Zpk, Z/q) for b, q In

is a projective resolution of The southal,

-> Tor * (2/4,B) = 8/4B

--> Tor * (2/4,B) = 8/4B

--> 8/4B

 $\frac{8}{8} = 0$ $\frac{8}{8} \approx 0$ $\frac{8}{8} \approx 0$ $\frac{8}{8} \approx 0$ $\frac{8}{8} \approx 0$

Torx (Zpx, Z/q2) == 0. if \$ \$ \$q\$ becomes invertible Because q becomes invertible

Let pm 11mn. WALOG assum KS &

for * odd, $\frac{k^2}{(p^k)^k}p^k/p^{m-k}Z/p^2 = \frac{Zp^k}{Z/p^{k-m}}$ $= \begin{cases} \frac{Z}{p^m-k} & \text{if } k > m-k \\ \frac{Z}{p^k} & \text{if } k < m-k \end{cases} = \frac{Zp^k}{Z}$

for * even, ZAR 2

= Z/pmin (k, l, m-k, m-l)

first we calculate Tor I'm (3/px, 3/px): Topic (K,m-k) +20 Now use the short exact squences: 0-> 2/px - 2/pm - 2/pm x -0 Z/pm is projective 0- 3/pm - 3/pm - 2/pm -0 Gives: Torin(B/k , B) = Tori (Z/m-k, B) for iso Combining:
Tori(Zbx, Zbx) = { Zbmin(k, x) = 0 }

Error

Error

(K, x) = 0

(K, x) min(k, x) i = 0 Similarly for Ent we are only concerned with Ent (2/9,2/9,2) Look at projective resolution of Wok: John Jan-K park park Hom HA Zinto 262: - Hom (2/pm, 2/q ?) - Hom (2/pm, 2/q ?) - Hom (2/pm, 2/q ?) -Again if p ≠ q all go Hom groups are O. (as Z/n modules) Hom (Zpm, Zpe) = { Zpe if Isme this is always true This very much like Tor

Ext = Tor []

The major of major to the section of Let I be a small category. (L,R,4,B) - adjanction.

4: I B be a functor with a lim * Joseph Market Market Stark R.4 also has a limit & lim R. p = R limp Then Unit-counit: Natural transforms: E: LR - 18 7: 1 RL General peaces (For each is of we have maps lim of Ti yi) Next, we are given an object MEA and maps in Time Rui compatible with I Push Ti by L: LM _______ LRUI In the LRGE (41) Qi Compose with E LTI and factor through lim (E(Qi)).LTi = Ti. 5: Push & bock by R: and use n Rlim op Need to check: M Ti RPI RE-MM RIM P RTT: Ti = RTIO RE. YM RE(qi).LTi].MM M RLM . = R ε(φί) · RLTi · •ηΜ Ripil___RLR(4i) = RE(Pi). Ti

= 1 qi · Ti = Ti

R Eqi)

· R- Need to	prove R is left e	ract.	and the same of	Consult.
(J, 8, L, R)	R: B> & A	d: d-B	a state of the sta	ν,
	→×	·		
My. A. Wan	RX RY RZ	ار پهرو که دها		.;
we know	for TEB, A	Acres (
**************************************	Hom (AT, X)>	Hom (off 1)	→ Hom(&T,	Z)
•	Hom (T, Rx)	Hom (T, RY)	Hom CT, RZ)
Thinking	of 0 as Hom (T,960); we are	e reduced to	showing
Hom (7	$f \Rightarrow Hom(T,Y)$	Hom (TiZ)	exact	
=)	$x \xrightarrow{f} y \xrightarrow{g} z$)=0		
· Take	T= ×, g;f, € 1.	0	, , ,	
	=) kerg	g im f 🙏 .	• •	
Tal	T= kerg. look	at inclusion.	€: 17>	1
The		i=f*j for	some j: T.	→ X
	$\begin{array}{c} x \xrightarrow{f} y \xrightarrow{g} \\ \downarrow & \downarrow i \\ \text{ker } g \end{array}$	7	. Kerg s im	(t) (jot)
$\frac{1}{2}$ $\epsilon_{ij} = \mathbf{t}$		•		W .
For a	bitrary cutegories (n	at necessarily set) _{(;}	
×	<u>;</u> y	o - imf	· .` •	

werg =)

For S'R is a flot R-module - Th. 3.2.2 Weibel 3. 5 - central, multiplicatively closed dook at the small category I 06(I) = S SiS2=S3 there is an arrow S --- S3 indexed by S2. id is there Category? Si Si Si Si Composition is also there need commentativity here need commutativity here q: I R-moder Tours $\varphi(s_i) = \mathbf{SR}$... $\varphi(s_i \xrightarrow{s_j} s_k) = R \xrightarrow{s_j} R$ multiplication by s_i Con Sugar I - directed system? Claim: lim = s R $\varphi(S_1) \xrightarrow{S_1} S_1 R$ $\varphi(S_1) \xrightarrow{S_2} S_1 S_2 \dots$ $S_1 \xrightarrow{S_2} S_4 \xrightarrow{G_1}$ £ ≥ φ(s,) · R = 4(5,52). So we have a map 4 - Ask Suppose we have maps R = 4(5) - fs,

R = 4(se) fs152

Thm: 3.2.2 : 0-5m-5N-15-0 we wish to constant a directed system. I that SM = 11m & PM fox appropriate functors O -> qm -> qn -> qp -> o Then we need to define a map: "SR. M Define: $f(\frac{x}{8}) = f_{s}(x)$ Well defined: $\frac{r_1}{S_1} = \frac{r_2}{S_2}$ (=) $\exists S_3$. ($S_2 r_1 - S_1 r_2$) $S_3 = 0$ un flfts By the diagrams 5 5253 Ti = SiSo T2 we get to get fs, (4) = fs,s2 &s, (8,8263) = f(ss.s) fs, s, s, s, (725, s, s) The second of th R-module map: $f\left(x_i, \frac{x}{s}\right) = f_s\left(x_i, x\right) = x_i f\left(\frac{x}{s}\right)$ Imag 2.5Rb Uniqueness: SR is generated by 1/53 as R-madule

STORY CONTRACTOR CONTRACTOR

