KMS states and Tomita-Takesaki Theory

Iván Mauricio Burbano Aldana

Advised by: Prof. Andrés Fernando Reyes Lega

Universidad de los Andes

May 13, 2018

Motivation

Can we obtain the equations of motion from the equilibrium state?

Motivation

Can we obtain the equations of motion from the equilibrium state?

Maybe in quantum thermal systems.

$$e^{-\beta H} \circlearrowright e^{-iHt}$$
 temperature $\iff i \times \text{time}$

Outline

- Classical and Quantum Theories
- 2 Algebraic Quantum Mechanics
- 3 KMS States
- 4 Tomita-Takesaki Theory
- 5 The Canonical Time Evolution

Classical theories

 Auxiliary space: locally compact Hausdorff space X;

Quantum theories

ullet Auxiliary space: separable Hilbert space ${\cal H}$

Classical theories

- Auxiliary space: locally compact Hausdorff space X;
- Observables: continuous functions C(X) on X;

Quantum theories

- ullet Auxiliary space: separable Hilbert space ${\cal H}$
- ullet Observables: self-adjoint operators on ${\cal H}$

Classical theories

- Auxiliary space: locally compact Hausdorff space X;
- Observables: continuous functions C(X) on X;
- States: probability measures P on X;

Quantum theories

- Auxiliary space: separable Hilbert space ${\cal H}$
- ullet Observables: self-adjoint operators on ${\cal H}$
- States: positive, self-adjoint, normalized and trace-class operators ρ on \mathcal{H} ;

Classical theories

- Auxiliary space: locally compact Hausdorff space X;
- Observables: continuous functions C(X) on X;
- States: probability measures P on X;
- Expected values: $\int f dP$.

Quantum theories

- ullet Auxiliary space: separable Hilbert space ${\cal H}$
- Observables: self-adjoint operators on ${\cal H}$
- States: positive, self-adjoint, normalized and trace-class operators ρ on \mathcal{H} ;
- Expected values: $tr(A\rho)$.

Algebraic Quantum Mechanics

- Observables: A C^* -algebra \mathcal{A} :
 - Complete normed vector space with product and involution;
 - C^* property: $||A^*A|| = ||A||^2$;
 - ▶ A C^* -algebra can always be realized as a uniformly closed subset of the bounded operators on a Hilbert space[Bratteli and Robinson, 1987]. It is called a von Neumann algebra or W^* -algebra if $\mathcal{A}'' = \mathcal{A}$ where the commutant \mathfrak{A}' of a set \mathfrak{A} of bounded operators on a Hilbert space is defined as the set of all bounded operatos which commute with every element of \mathfrak{A} .

• States: Positive normalized linear functionals $\omega: \mathcal{A} \to \mathbb{C}$.

GNS Construction

Start with a C^* -algebra $\mathcal A$ and a state ω .

- $\mathcal{N}_{\omega} := \{ A \in \mathcal{A} | \omega(AA^*) = 0 \}$
- Hilbert space $\mathcal{H}_{\omega}:=\overline{\mathcal{A}/\mathcal{N}_{\omega}}$ with $\langle [A],[B] \rangle:=\omega(A^*B)$
- Define the representation extending

$$\pi_{\omega}: \mathcal{A} \to \mathcal{B}(\mathcal{H}_{\omega})$$

$$A \mapsto \pi_{\omega}(A): \mathcal{H}_{\omega} \to \mathcal{H}_{\omega}$$

$$[B] \mapsto [AB]$$

- Cyclic vector $\Omega_{\omega}:=[1]$, that is, $\overline{\mathcal{A}\Omega_{\omega}}=\mathcal{H}_{\omega}$
- This is the unique *-representation of \mathcal{A} with a cyclic vector Ω_{ω} such that $\omega(A) = \langle \Omega_{\omega}, \pi_{\omega}(A)\Omega_{\omega} \rangle$.

Cyclic representations of W^* -algebras

Theorem (★)

If $\mathfrak M$ is a W^* -algebra and ω is a faithful ($\omega(A^*A)=0 \to A=0$) normal ($\omega(A)=\operatorname{tr}(\rho A)$) state then its cyclic representation ($\mathcal H_\omega,\pi_\omega,\Omega_\omega$) satisfies

- π_{ω} is faithful (injective);
- $\pi_{\omega}(\mathfrak{M})$ is a von Neumann algebra;
- Ω_{ω} is separating for $\pi_{\omega}(\mathfrak{M})$ $(\pi_{\omega}(A)\Omega_{\omega}=0 \to \pi_{\omega}(A)=0)$.

Dynamical Systems

Time evolution is represented by a one-parameter group of automorphisms

$$au: \mathbb{R} \to \mathsf{Aut}(\mathcal{A})$$

$$t \mapsto \tau_t.$$

Dynamical systems consist of an $C^*(W^*)$ -algebra with a time evolutions which satisfy certain continuity properties.

KMS States

Definition

Let (\mathcal{A}, τ) be a dynamical system. We say that a state ω is a (τ, β) -KMS state if for all $A, B \in \mathcal{A}$ there exists a continuous bounded function $F_{A,B}: \overline{\mathfrak{D}_{\beta}} \to \mathbb{C}$ analytic on \mathfrak{D}_{β} (the strip of the complex plain bounded by $\operatorname{Im} z = 0$ and $\operatorname{Im} z = \beta$) such that

$$F_{A,B}(t) = \omega(A\tau_t(B))$$

 $F_{A,B}(t+i\beta) = \omega(\tau_t(B)A)$

for all $t \in \mathbb{R}$.

KMS states as Equilibrium states

KMS states are a candidate for a general definition of thermodynamic equilibrium in quantum systems[Haag, 1992][Duvenhage, 1999]:

- KMS states are invariant under the dynamics $\omega(\tau_t(A)) = \omega(A)$;
- In finite dimensional Hilbert spaces with Schrödinger's time evolution τ , the only possible (τ, β) -KMS states are the β -Gibbs states

$$\mathcal{B}(\mathcal{H}) o \mathbb{C}$$

$$A \mapsto rac{\mathsf{tr} ig(A e^{-eta H}ig)}{\mathsf{tr} ig(e^{-eta H}ig)}.$$

Tomita-Takesaki Theory

For a W^* -algebra $\mathfrak M$ equipped with a cyclic and separating vector Ω Tomita-Takesaki theory yields:

- a one-parameter unitary group $t \mapsto \Delta^{it}$;
- ullet a modular conjugation J.

Theorem (Tomita-Takesaki)

- $J\mathfrak{M}J=\mathfrak{M}'$;
- $\Delta^{it}\mathfrak{M}\Delta^{-it}=\mathfrak{M}$ for all $t\in\mathbb{R}$.

Proof.

[Duvenhage, 1999]

Tomita-Takesaki, Time Evolution and KMS States

Theorem (★)

 $t\mapsto \Delta^{it}$ is the unique strongly continuous one-parameter unitary group on $\mathcal H$ that satisfies the KMS condition with respect to $\mathcal K$ such that $\Delta^{it}\mathcal K\subseteq\mathcal K$ for all $t\in\mathbb R$.

Theorem (★)

Let \mathfrak{M} be a von Neuman algebra and ω a faithful normal state. Consider the unitary group $t\mapsto \Delta^{it}$ associated to the pair $(\pi_{\omega}(\mathfrak{M}),\Omega_{\omega})$. Then the one-parameter group of automorphisms given by $\alpha_t=\pi_{\omega}^{-1}(\Delta^{it}\pi_{\omega}(A)\Delta^{-it})$ makes (\mathfrak{M},α) a W^* -dynamical system.

Proof.

[Duvenhage, 1999]

The Canonical Time Evolution

Theorem (★★★)

Let $\mathfrak M$ be a von Neumann algebra and ω be a faithful normal state. Then $(\mathfrak M,\tau)$ with $\tau_t(A)=\alpha_{-t/\beta}(A)$ and α the modular group of $(\mathfrak M,\omega)$ is the unique W^* -dynamical system such that ω is a (τ,β) -KMS state.

Proof.

[Duvenhage, 1999]

Further work

- Classical KMS states and Tomita-Takesaki theory.
- Understanding KMS states from "first principles":
 - stability;
 - passivity.
- Relativistic generalization of KMS states.
- Entropy ambiguities.

References I

theory.

Duvenhage, R. D. V. (1999).

Quantum statistical mechanics, KMS states and Tomita-Takesaki

Msc. University of Pretoria.

Haag, R. (1992).

Local Quantum Physics: Fields, Particles, Algebras. Springer, 2nd edition.