# PATENT ABSTRACTS OF JAPAN

(11)Publication number:

2003-160612

(43) Date of publication of application: 03.06.2003

(51)Int.CI.

GO3F G03F 7/039 H01L 21/027

(21)Application number: 2001-359905

(71)Applicant: DAICEL CHEM IND LTD

(22)Date of filing:

26.11.2001

(72)Inventor: TSUTSUMI KIYOHARU

## (54) POLYMERIC COMPOUND FOR USE IN PHOTORESIST AND RESIN COMPOSITION FOR USE IN PHOTORESIST

#### (57)Abstract:

PROBLEM TO BE SOLVED: To obtain a polymeric compound for use in photoresist that has excellent etching resistance and can form a fine pattern precisely.

SOLUTION: This polymeric compound for use in photoresist is obtained by homopolymerizing or copolymerizing at least one kind of a vinyl ether compound or at least one kind of the vinyl ether compound with other polymerizable compound. Preferably, at least one of the vinyl ether compound has an alicyclic hydrocarbon structure. The alicyclic hydrocarbon structure includes, for example, a cyclohexane ring, an adamantane ring, a norbornane ring, an isobornane ring, a tricyclodecane ring and a tetracyclodecane ring, etc. The alicyclic hydrocarbon structure may be substituted by a polar functional group such as, for example, a hydroxyl group, an oxo group, a carboxyl group, an alkoxycarbonyl group or a lactone ring group.

#### **LEGAL STATUS**

[Date of request for examination]

07.10.2004

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

(19)日本国特許庁 (JP)

# (12) 公開特許公報(A)

(11)特許出願公開番号 特開2003-160612 (P2003-160612A)

(43)公開日 平成15年6月3日(2003.6.3)

| (51) Int.CL' |        | 識別記号 | FΙ   |       | テーマコート*(参考) |
|--------------|--------|------|------|-------|-------------|
| C08F         | 16/14  |      | C08F | 16/14 | 2H025       |
| G03F         | 7/033  |      | G03F | 7/033 | 4J100       |
|              | 7/039  | 601  |      | 7/039 | 601         |
| H01L         | 21/027 |      | H01L | 21/30 | 502R        |

審査請求 未請求 請求項の数9 OL (全 15 頁)

(21)出顧番号 特顧2001-359905(P2001-359905)

(22)出顧日 平成13年11月26日(2001.11.26)

(71)出願人 000002901

ダイセル化学工業株式会社 大阪府堺市鉄砲町1番地

(72)発明者 堤 聖晴

兵庫県姫路市網干区新在家940

(74)代理人 100101362

弁理士 後藤 幸久

最終頁に続く

### (54) 【発明の名称】 フォトレジスト用高分子化合物及びフォトレジスト用樹脂組成物

#### (57)【要約】

【課題】 耐エッチング性に優れ、微細なパターンを精度よく形成できるフォトレジスト用高分子化合物を得る。

【解決手段】 少なくとも1種のビニルエーテル化合物、又は少なくとも1種のビニルエーテル化合物と他の重合性化合物とを単独又は共重合することにより得られるフォトレジスト用高分子化合物。前記ビニルエーテル化合物の少なくとも1種は脂環式炭化水素構造を有するのが好ましい。脂環式炭化水素構造には、例えば、シクロヘキサン環、アダマンタン環、ノルボルナン環、イソボルナン環、トリシクロデカン環、テトラシクロドデカン環などが含まれる。脂環式炭化水素構造は、例えば、ヒドロキシル基、オキソ基、カルボキシル基、アルコキシカルボニル基又はラクトン環式基などの極性官能基で置換されていてもよい。

【請求項1】 少なくとも1種のビニルエーテル化合 物、又は少なくとも1種のビニルエーテル化合物と他の 重合性化合物とを単独又は共重合することにより得られ るフォトレジスト用髙分子化合物。

【請求項2】 ビニルエーテル化合物の少なくとも1種 が脂環式炭化水素構造を有する請求項1記載のフォトレ ジスト用髙分子化合物。

【請求項3】 脂環式炭化水素構造が、シクロヘキサン 環、アダマンタン環、ノルボルナン環、イソボルナン 環、トリシクロデカン環又はテトラシクロドデカン環で ある請求項2記載のフォトレジスト用高分子化合物。

【請求項4】 脂環式炭化水素構造が極性官能基で置換 されている請求項2又は3記載のフォトレジスト用高分

$$(5)$$

$$(5)$$

$$(6)$$

$$(7)$$

$$(8)$$

$$(7)$$

$$(8)$$

$$(7)$$

$$(8)$$

$$(7)$$

$$(8)$$

$$(7)$$

$$(8)$$

$$(7)$$

$$(8)$$

$$(7)$$

$$(8)$$

$$(7)$$

$$(8)$$

$$(8)$$

$$(7)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

(式中、X<sup>1</sup>、X<sup>2</sup>、X<sup>3</sup>、X<sup>4</sup>、X<sup>5</sup>、X<sup>6</sup>、X<sup>7</sup>、X<sup>8</sup>は、 各環を構成する原子に結合している置換基であり、ハロ

ゲン原子、アルキル基、ハロアルキル基、アリール基、 保護基で保護されていてもよいヒドロキシル基、保護基 で保護されていてもよいヒドロキシメチル基、保護基で 30 保護されていてもよいアミノ基、保護基で保護されてい てもよいカルボキシル基、保護基で保護されていてもよ いスルホ基、オキソ基、ニトロ基、シアノ基、又は保護 基で保護されていてもよいアシル基を示す。X<sup>1</sup>が2以 上の場合、それらは互いに結合して、式中のシクロヘキ サン環を構成する炭素原子と共に4員以上の環を形成し ていてもよい。a、b、c、d、e、f、g、hは0以 上の整数を示す。a、b、c、d、e、f、g又はhが 2以上の場合、括弧内の置換基は同一であってもよく異 なっていてもよい。p、q、rは0~3の整数を示す) で表される何れかの環式基を示し、Wは2価の炭化水素 基を示す。R<sup>2</sup>、R<sup>3</sup>及びR<sup>4</sup>は、同一又は異なって、水 素原子又は有機基を示す。nは0又は1を示し、mは1 ~8の整数を示す。mが2以上の場合、括弧内の基は同 一であってもよく異なっていてもよい〕で表される化合 物である請求項1記載のフォトレジスト用高分子化合

Fedorsの方法による溶解度パラメ 【請求項7】 ーターの値が19.5~24.5 (J/cm³) <sup>1/2</sup> の範 囲である請求項1~6の何れかの項に記載のフォトレジ 50

子化合物。

【請求項5】 極性官能基がヒドロキシル基、オキソ 基、カルボキシル基、アルコキシカルボニル基又はラク トン環式基である請求項4記載のフォトレジスト用高分 子化合物。

【請求項6】 ビニルエーテル化合物の少なくとも1種 が、下記式(4)

【化1】

$$\begin{bmatrix}
\begin{bmatrix}
(W)_{\text{fr}} & R^2 \\
R^3
\end{bmatrix}_{\text{m}}$$
(4)

[式中、環 2 は下記式 (5) ~ (12) 【化2】

$$(7) \qquad (x^4) = (x^4) = (8)$$

$$(11)$$
  $(12)$ 

スト用高分子化合物。

【請求項8】 請求項1~7の何れかの項に記載のフォ トレジスト用高分子化合物と光酸発生剤とを少なくとも 含むフォトレジスト用樹脂組成物。

【請求項9】 請求項8記載のフォトレジスト用樹脂組 成物を基材又は基板に塗布してレジスト塗膜を形成し、 露光及び現像を経てパターンを形成する工程を含む半導 体の製造方法。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は半導体の微細加工な どを行う際に用いるフォトレジスト用の高分子化合物 と、この高分子化合物を含有するフォトレジスト用樹脂 組成物、及び半導体の製造方法に関する。

[0002]

【従来の技術】半導体製造工程で用いられるポジ型フォ トレジストは、光照射により照射部がアルカリ可溶性に 変化する性質、シリコンウエハーへの密着性、プラズマ エッチング耐性、用いる光に対する透明性等の特性を兼 ね備えていなくてはならない。該ポジ型フォトレジスト は、一般に、主剤であるポリマーと、光酸発生剤と、上 記特性を調整するための数種の添加剤を含む溶液として 用いられるが、用途に応じたレジストを調製するには、 主剤であるポリマーが上記の各特性をバランス良く備え ていることが極めて重要である。

【0003】半導体の製造に用いられるリソグラフィの露光光源は、年々短波長になってきており、次世代の露光光源として、波長193nmのArFエキシマレーザーが有望視されている。このArFエキシマレーザーが有望視されている。このArFエキシマレーザー路光機に用いられるレジスト用ポリマーのモノマーユニットとして、前記波長に対して透明度が高く、且つエッチング耐性のある脂環式炭化水素骨格を含む(メタ)アクリル酸エステルに対応するユニットを用いることが提案されている。また、基板に対する密着性を高めるため、極性官能基で置換された脂環式炭化水素骨格を含む(メタ)アクリル酸エステルに対応するユニットをポリマー鎖に組み込むことも行われている。しかし、これらのフォトレジスト用高分子化合物は耐エッチング性等の点で必ずしも十分満足できるものではなかった。

#### [0004]

【発明が解決しようとする課題】従って、本発明の目的は、耐エッチング性に優れ、微細なパターンを精度よく形成できるフォトレジスト用高分子化合物を提供することにある。本発明の他の目的は、基板に対して優れた密着性を有し、しかも高い透明性、アルカリ可溶性及び耐 20 エッチング性を備えたフォトレジスト用高分子化合物を提供することにある。本発明のさらに他の目的は、微細なパターンを高い精度で形成できるフォトレジスト用樹脂組成物、及び半導体の製造方法を提供することにある。

#### [0005]

【課題を解決するための手段】本発明者らは、上記目的 を達成するため鋭意検討した結果、ビニルエーテル化合 物又はビニルエーテル化合物を少なくとも含む単量体混 合物を重合して得られるポリマーをフォトレジスト用樹脂として用いると、高い耐エッチング性を示し、微細なパターンを精度よく形成できることを見出し、本発明を完成した。

【0006】すなわち、本発明は、少なくとも1種のビニルエーテル化合物、又は少なくとも1種のビニルエーテル化合物と他の重合性化合物とを単独又は共重合することにより得られるフォトレジスト用高分子化合物を提供する。

【0007】このフォトレジスト用高分子化合物において、前記ビニルエーテル化合物の少なくとも1種は脂環式炭化水素構造を有するのが好ましい。脂環式炭化水素構造には、例えば、シクロヘキサン環、アダマンタン環、ノルボルナン環、イソボルナン環、トリシクロデカン環、テトラシクロドデカン環などが含まれる。

【0008】脂環式炭化水素構造は、例えば、ヒドロキシル基、オキソ基、カルボキシル基、アルコキシカルボニル基又はラクトン環式基などの極性官能基で置換されていてもよい。

【0009】ビニルエーテル化合物の少なくとも1種が、下記式(4)

#### 【化3】

[式中、環 Z は下記式 (5) ~ (12) 【化 4】



40

(10)

(式中、X¹、X²、X³、X¹、X⁵、X6、X¹、X8は、各環を構成する原子に結合している置換基であり、ハロゲン原子、アルキル基、ハロアルキル基、アリール基、保護基で保護されていてもよいヒドロキシル基、保護基で保護されていてもよいアミノ基、保護基で保護されていてもよいアミノ基、保護基で保護されていてもよいカルボキシル基、保護基で保護されていてもよいスルホ基、オキソ基、ニトロ基、シアノ基、又は保護基で保護されていてもよいアシル基を示す。X¹が2以上の場合、それらは互いに結合して、式中のシクロヘキ 50

サン環を構成する炭素原子と共に4員以上の環を形成していてもよい。a、b、c、d、e、f、g、hは0以上の整数を示す。a、b、c、d、e、f、g又はhが2以上の場合、括弧内の置換基は同一であってもよく異なっていてもよい。p、q、rは0~3の整数を示す)で表される何れかの環式基を示し、Wは2価の炭化水素基を示す。 $R^2$ 、 $R^3$ 及び $R^4$ は、同一又は異なって、水素原子又は有機基を示す。nは0又は1を示し、mは1~8の整数を示す。mが2以上の場合、括弧内の基は同一であってもよく異なっていてもよい]で表される化合

物であってもよい。

【0010】前記フォトレジスト用高分子化合物において、Fedorsの方法による溶解度パラメーターの値が19.5~24.5( $J/cm^3$ ) $^{1/2}$ の範囲であるのが好ましい。

【0011】本発明は、また、上記のフォトレジスト用 高分子化合物と光酸発生剤とを少なくとも含むフォトレ ジスト用樹脂組成物を提供する。

【0012】本発明は、さらに、上記のフォトレジスト 用樹脂組成物を基材又は基板に塗布してレジスト塗膜を 10 形成し、露光及び現像を経てパターンを形成する工程を 含む半導体の製造方法を提供する。

【0013】なお、本明細書におけるビニルエーテル化合物、ビニルエステル化合物には、ビニル基の水素原子が置換基で置換された化合物も含まれるものとする。また、遷移元素とは、周期表IIIA族元素、IVA族元素、VA族元素、VII族元素、VIII族元素及びIB族元素を意味する。本明細書における「有機基」とは、炭素原子含有基だけでなく、例えば、ハロゲン原子、ニトロ基、スルホン酸基などの非金属原子含有基を含む広い20意味で用いる。

#### [0014]

【発明の実施の形態】本発明のフォトレジスト用高分子 化合物は、少なくとも1種のビニルエーテル化合物、又 は少なくとも1種のビニルエーテル化合物と他の重合性 化合物とを単独又は共重合することにより得られるポリ マーで構成されている。

【0015】前記ビニルエーテル化合物には、例えば、 下記式(3)

【化5】

$$R^{5}$$
  $0$   $R^{2}$   $R^{4}$  (3)

(式中、 $R^2$ 、 $R^3$ 及び $R^4$ は、同一又は異なって、水素 原子又は有機基を示し、 $R^5$ は有機基を示す)で表され る化合物が含まれる。

【0016】R<sup>2</sup>、R<sup>3</sup>、R<sup>4</sup>における有機基としては、例えば、ハロゲン原子、炭化水素基、複素環式基、置換オキシカルボニル基(アルコキシカルボニル基、アリー 40ルオキシカルボニル基、アラルキルオキシカルボニル基、シクロアルキルオキシカルボニル基など)、カルボキシル基、置換又は無置換カルバモイル基、シアノ基、ニトロ基、硫黄酸基、硫黄酸エステル基、アシル基(アセチル基等の脂肪族アシル基;ベンゾイル基等の芳香族アシル基など)、アルコキシ基など)、N,Nージ置換アミノ基(N,Nージメチルアミノ基、ピペリジノ基など)など、及びこれらが2以上結合した基などが挙げられ、R<sup>5</sup>における有機基としては、例えば、炭化水素基、複 50

素環式基など、及びこれらが2以上結合した基などが挙げられる。前記カルボキシル基などは有機合成の分野で公知乃至慣用の保護基で保護されていてもよい。前記ハロゲン原子としては、フッ素、塩素、臭素及びヨウ素原子が挙げられる。これらの有機基のなかでも、炭化水素

基、複素環式基などが好ましい。

【0017】前記炭化水素基及び複素環式基には、置換基を有する炭化水素基及び複素環式基も含まれる。前記炭化水素基には、脂肪族炭化水素基、脂環式炭化水素基、芳香族炭化水素基及びこれらの結合した基が含まれる。脂肪族炭化水素基としては、例えば、メチル、エチル、プロピル、イソプロピル、ブチル、イソブチル、sーブチル、tーブチル、ペンチル、ヘキシル、デシル、ドデシル基などの炭素数1~20(好ましくは1~10、さらに好ましくは1~3)程度のアルキル基;ビニル、アリル、1ープテニル基などの炭素数2~20(好ましくは2~10、さらに好ましくは2~3)程度のアルキニル基などが挙げられる。

【0018】脂環式炭化水素基としては、シクロプロピル、シクロプチル、シクロペンチル、シクロヘキシル、シクロオクチル基などの3~20員(好ましくは3~15員、さらに好ましくは5~8員)程度のシクロアルキル基;シクロペンテニル、シクロヘキセニル基などの3~20員(好ましくは3~15員、さらに好ましくは5~8員)程度のシクロアルケニル基;パーヒドロナフタレンー1ーイル基、ノルボルニル、アダマンチル、テトラシクロ [4.4.0.1 $^{2.5}$ .1 $^{7.10}$ ]ドデカンー3ーイル基などの橋かけ環式炭化水素基などが挙げられる。芳香族炭化水素基としては、フェニル、ナフチル基などの炭素数6~14(好ましくは6~10)程度の芳香族炭化水素基が挙げられる。

【0019】脂肪族炭化水素基と脂環式炭化水素基とが結合した炭化水素基には、シクロベンチルメチル、シクロヘキシルメチル、2ーシクロヘキシルエチル基などのシクロアルキルーアルキル基(例えば、C3-20シクロアルキルーC1-4アルキル基など)などが含まれる。また、脂肪族炭化水素基と芳香族炭化水素基とが結合した炭化水素基には、アラルキル基(例えば、C7-18アラルキル基など)、アルキル置換アリール基(例えば、1~4個程度のC1-4アルキル基が置換したフェニル基又はナフチル基など)などが含まれる。

【0020】好ましい炭化水素基には、 $C_{1-10}$  アルキル基、 $C_{2-10}$  アルケニル基、 $C_{2-10}$  アルキニル基、 $C_{3-15}$  シクロアルキル基、 $C_{6-10}$  芳香族炭化水素基、 $C_{3-15}$  シクロアルキルー $C_{1-4}$  アルキル基、 $C_{7-14}$  アラルキル基等が含まれる。

【0021】上記炭化水素基は、種々の置換基、例え が、ハロゲン原子、オキソ基、ヒドロキシル基、置換オ キシ基(例えば、アルコキシ基、アリールオキシ基、アラルキルオキシ基、アシルオキシ基など)、カルボキシル基、置換オキシカルボニル基(アルコキシカルボニル基、アリールオキシカルボニル基、アラルキルオキシカルボニル基など)、置換又は無置換カルバモイル基、シアノ基、ニトロ基、置換又は無置換アミノ基、スルホ基、複素環式基などを有していてもよい。前記ヒドロキシル基やカルボキシル基は有機合成の分野で慣用の保護基で保護されていてもよい。また、脂環式炭化水素基や芳香族炭化水素基の環には芳香族性又は非芳香属性の複素環が縮合していてもよい。

【0022】前記R<sup>2</sup>等における複素環式基を構成する 複素環には、芳香族性複素環及び非芳香族性複素環が含 まれる。このような複素環としては、例えば、ヘテロ原 子として酸素原子を含む複素環(例えば、フラン、テト ラヒドロフラン、オキサゾール、イソオキサゾール、 y ープチロラクトン環などの5員環、4ーオキソー4Hー ピラン、テトラヒドロピラン、モルホリン環などの6員 環、ベンゾフラン、イソベンゾフラン、4ーオキソー4 Hークロメン、クロマン、イソクロマン環などの縮合 環、3-オキサトリシクロ [4.3.1.148] ウン デカン-2-オン環、3-オキサトリシクロ[4.2. 1.048] ノナンー2ーオン環などの橋かけ環)、へ テロ原子としてイオウ原子を含む複素環(例えば、チオ フェン、チアゾール、イソチアゾール、チアジアゾール 環などの5員環、4ーオキソー4Hーチオピラン環など の6員環、ベンゾチオフェン環などの縮合環など)、へ テロ原子として窒素原子を含む複素環(例えば、ピロー ル、ピロリジン、ピラゾール、イミダゾール、トリアゾ ール環などの5員環、ピリジン、ピリダジン、ピリミジ 30 ン、ピラジン、ピペリジン、ピペラジン環などの6員 環、インドール、インドリン、キノリン、アクリジン、 ナフチリジン、キナゾリン、プリン環などの縮合環な ど) などが挙げられる。上記複素環式基には、前記炭化 水素基が有していてもよい置換基のほか、アルキル基 (例えば、メチル、エチル基などのC14 アルキル基な ど)、シクロアルキル基、アリール基(例えば、フェニ ル、ナフチル基など) などの置換基を有していてもよ

【0023】好ましい $R^2$ 、 $R^3$ 、 $R^4$ には、水素原子及び炭化水素基(例えば、 $C_{1-10}$  アルキル基、 $C_{2-10}$  アルケニル基、 $C_{2-10}$  アルキニル基、 $C_{3-15}$  シクロアルキル基、 $C_{6-10}$  芳香族炭化水素基、 $C_{3-12}$  シクロアルキルー $C_{1-4}$  アルキル基、 $C_{7-14}$  アラルキル基など)などが含まれる。 $R^2$ 、 $R^3$ 、 $R^4$ として、水素原子、メチル基などの $C_{1-3}$  アルキル基が特に好ましい。

【0024】本発明のフォトレジスト用高分子化合物において、前記ピニルエーテル化合物の少なくとも1種は脂環式炭化水素構造を有するのが好ましい。脂環式炭化水素構造には、例えば、シクロヘキサン環、アダマンタ 50

ン環、ノルボルナン環、イソボルナン環、トリシクロデカン環、テトラシクロドデカン環などが含まれる。

【0025】脂環式炭化水素構造は、例えば、ヒドロキシル基、オキソ基、カルボキシル基、アルコキシカルボニル基又はラクトン環式基などの極性官能基で置換されていてもよい。上記アルコキシカルボニル基には、例えば、メトキシカルボニル基、エトキシカルボニル基、イソプロポキシカルボニル基、tーブトキシカルボニル基などのC1.4 アルコキシーカルボニル基などが含まれる。なお、ラクトン環式基で置換された脂環式炭化水素構造とは、脂環式炭化水素環とラクトン環(好ましくは5~7員ラクトン環)とが縮合した環構造を意味する。【0026】脂環式炭化水素構造を有するビニルエーテル化合物の代表的な例として、前記式(4)で表される化合物が挙げられる。

【0027】前記X<sup>1</sup>、X<sup>2</sup>、X<sup>3</sup>、X<sup>4</sup>、X<sup>5</sup>、X<sup>6</sup>、 X<sup>7</sup>、X<sup>8</sup>は各環(式中に示される環、例えばシクロヘキ サン環、アダマンタン環、ノルボルナン環、テトラシク ロ [4.4.0.125.17.10] ドデカン環、4ーオ キサトリシクロ [5. 2. 1. 0<sup>2.6</sup>] デカン-3, 5 ージオン環、yープチロラクトン環、4ーオキサトリシ クロ[5.2.1.02.6] デカン-3-オン環、3-オキサトリシクロ [4. 2. 1. 04.8] ノナンー2ー オン環、3ーオキサトリシクロ[4.3.1.14.8] ウンデカンー2ーオン環など)を構成する原子に結合し ている置換基を示す。X1等におけるハロゲン原子とし ては、例えば、フッ素、塩素、臭素原子などが挙げられ る。X<sup>1</sup>等におけるアルキル基としては、例えば、メチ ル、エチル、プロピル、イソプロピル、ブチル、イソブ チル、s-ブチル、t-ブチル、ヘキシル、オクチル、 デシル基などのC1-10 アルキル基 (好ましくは、C1-5 アルキル基) などが挙げられる。X<sup>1</sup>等におけるハロア ルキル基としては、例えば、クロロメチル、トリフルオ ロメチル、トリフルオロエチル、ペンタフルオロエチル 基などのC1-10 ハロアルキル基(好ましくは、C1-5 ハ ロアルキル基)が挙げられる。X<sup>1</sup>等におけるアリール 基としては、例えば、フェニル、ナフチル基などが挙げ られる。アリール基の芳香環は、例えば、フッ素原子な どのハロゲン原子、メチル基などのC1-4 アルキル基、 トリフルオロメチル基など С1-5 ハロアルキル基、ヒド ロキシル基、メトキシ基などのC14 アルコキシ基、ア ミノ基、ジアルキルアミノ基、カルボキシル基、メトキ シカルボニル基などのアルコキシカルボニル基、ニトロ 基、シアノ基、アセチル基などのアシル基等の置換基を 有していてもよい。

【0028】X¹等におけるヒドロキシル基及びヒドロキシメチル基の保護基としては、有機合成の分野で慣用の保護基、例えば、アルキル基(例えば、メチル、tーブチル基などのC1-4 アルキル基など)、アルケニル基(例えば、アリル基など)、シクロアルキル基(例え

ば、シクロヘキシル基など)、アリール基(例えば、 2, 4 - ジニトロフェニル基など)、アラルキル基(例 えば、ベンジル基など);置換メチル基(例えば、メト キシメチル、メチルチオメチル、ベンジルオキシメチ ル、tープトキシメチル、2ーメトキシエトキシメチル 基など)、置換エチル基(例えば、1-エトキシエチル 基など)、テトラヒドロピラニル基、テトラヒドロフラ ニル基、1-ヒドロキシアルキル基(例えば、1-ヒド ロキシエチル基など)等の、ヒドロキシル基とアセター ル又はヘミアセタール基を形成可能な基;アシル基(例 10 えば、ホルミル、アセチル、プロピオニル、ブチリル、 イソブチリル、ピバロイル基などの C1-6 脂肪族アシル 基;アセトアセチル基;ベンゾイル基などの芳香族アシ ル基など)、アルコキシカルボニル基(例えば、メトキ シカルボニル基などの C1-4 アルコキシーカルボニル基 など)、アラルキルオキシカルボニル基、置換又は無置 換カルバモイル基、置換シリル基(例えば、トリメチル シリル基など)など、及び、分子内にヒドロキシル基 (ヒドロキシメチル基を含む) が2以上存在するときに は、置換基を有していてもよい2価の炭化水素基(例え 20 ば、メチレン、エチリデン、イソプロピリデン、シクロ ペンチリデン、シクロヘキシリデン、ベンジリデン基な ど) などが例示できる。

【0029】X<sup>1</sup>等におけるアミノ基の保護基としては、例えば、前記ヒドロキシル基の保護基として例示したアルキル基、アラルキル基、アシル基、アルコキシカルボニル基などが挙げられる。

【0030】X<sup>1</sup>等におけるカルボキシル基、スルホ基の保護基としては、例えば、アルコキシ基(例えば、メトキシ、エトキシ、ブトキシ基などのC<sub>1-6</sub> アルコキシ基など)、シクロアルキルオキシ基、アリールオキシ基、アラルキルオキシ基、トリアルキルシリルオキシ基、置換基を有していてもよいアミノ基、ヒドラジノ基、アルコキシカルボニルヒドラジノ基、アラルキルカルボニルヒドラジノ基などが挙げられる。

【0031】 X<sup>1</sup>等におけるアシル基としては、例えば、ホルミル、アセチル、プロピオニル、ブチリル、イソブチリル、ピバロイル基などのC<sub>1-6</sub> 脂肪族アシル基;アセトアセチル基;ベンゾイル基などの芳香族アシル基などが挙げられる。アシル基の保護基としては有機 40合成分野で慣用の保護基を使用できる。アシル基の保護された形態としては、例えば、アセタール(ヘミアセタールを含む)などが挙げられる。

【0032】X<sup>1</sup>が2以上の場合、それらが互いに結合して、式(5)中のシクロヘキサン環を構成する炭素原子と共に形成する4員以上の環としては、例えば、シクロペンタン環、シクロヘキサン環、パーヒドロナフタレン環(デカリン環)などの脂環式炭素環; yープチロラクトン環、δーバレロラクトン環などのラクトン環などが挙げられる。

【0033】a、b、c、d、e、f、g、hは、例えば0~5の整数、好ましくは0~3の整数である。

【0034】Wは2価の炭化水素基を示す。2価の炭化水素基には、2価の脂肪族炭化水素基、2価の脂環式炭化水素基、2価の汚香族炭化水素基及びこれらが2以上結合した炭化水素基が含まれる。これらの炭化水素基には1価の炭化水素基(脂肪族炭化水素基、脂環式炭化水素基、芳香族炭化水素基又はこれらが2以上結合した炭化水素基)が1又は2以上結合していてもよい。また、2価の炭化水素基には置換基を有する炭化水素基も含まれる。置換基としては、前記環2の置換基X1等と同様の基が挙げられる。

【0035】2価の炭化水素基の代表的な例として、例えば、メチレン、メチルメチレン、エチルメチレン、ジメチルメチレン、エチルメチレン、トリメチレン、テトラメチレン基などのアルキレン基;プロペニレン基などのアルケニレン基;1,3-シクロペンチレン、1,2-シクロペキシレン、1,3-シクロペキシレン、1,4-シクロペキシレン基などのシクロアルキレン基;シクロプロピレン、シクロペンチリデン、シクロペキシリデン基などのシクロアルキリデン基;フェニレン基などのアリーレン基;ベンジリデン基などが挙げられる。

【0036】Wの好ましい例には、例えば、下記式(13)

【化6】

(式中、 $R^6$ 及び $R^7$ は、同一又は異なって、水素原子又は炭化水素基を示す。 $R^6$ 及び $R^7$ は、互いに結合して、隣接する炭素原子と共に脂環式環を形成していてもよい)で表される基が含まれる。

【0037】R<sup>6</sup>、R<sup>7</sup>における炭化水素基としては、R<sup>2</sup>等における炭化水素基と同様の基が挙げられる。前記炭化水素基には置換基を有する炭化水素基も含まれる。置換基としては、前記R<sup>2</sup>等における炭化水素基が有していてもよい置換基と同様の基、あるいは前記環 Z の置換基X<sub>1</sub>等と同様の基が例示される。

【0038】好ましいR<sup>6</sup>、R<sup>7</sup>には、水素原子;メチル、エチル、プロピル、イソプロピル、ブチル基等のC 1-10 アルキル基(特に、C1-5 アルキル基);シクロペンチル基、シクロヘキシル基等の置換基を有していてもよいシクロアルキル基;ノルボルナンー2ーイル基、アダマンタンー1ーイル基などの置換基を有していてもよい橋かけ環式基などが含まれる。シクロアルキル基や橋かけ環式基が有していてもよい置換基として、例えば前記置換基X1等と同様の、ハロゲン原子、アルキル基、ハロアルキル基、アリール基、保護基で保護されていて

もよいヒドロキシル基、保護基で保護されていてもよい ヒドロキシメチル基、保護基で保護されていてもよいア ミノ基、保護基で保護されていてもよいカルボキシル 基、保護基で保護されていてもよいスルホ基、オキソ 基、ニトロ基、シアノ基、保護基で保護されていてもよ いアシル基などが挙げられる。

【0039】mは好ましくは $1\sim4$ の整数、さらに好ましくは $1\sim3$ の整数である。 $R^2$ 、 $R^3$ 、 $R^4$ は前記と同様である。なお、n=0で且つm=1の場合、式(5)においてaは1以上であり、式(6)においてbは1以 10上であり、式(7)において、p=0又は1のときは cは1以上であり、p=0で且つ c=1 のときは $X^3$  はヒドロキシル基以外の基であってもよい。

【0040】式(4)で表されるビニルエーテル化合物の代表的な例には以下の化合物が含まれる。環Zが式(5)で表される基であるビニルエーテル化合物として、例えば、シスー1、1、3ートリメチルー5ービニルオキシシクロへキサン、トランスー1、1、3ートリメチルー5ービニルオキシシクロへキサン、1ーイソプロピルー4ーメチルー2ービニルオキシシクロへキサン、2ービニルオキシー7ーオキサビシクロ[3.2.1]オクタンー6ーオン、及びこれらに対応するイソプロペニルエーテル類などが挙げられる。環Zが式(5)で表される基であるビニルエーテル化合物のなかでも、特に、 $X^1$ が $C_{1-5}$  アルキル基でa=1~3である化合物、 $X^1$ がZ 個結合して式中のシクロへキサン環を構成する炭素原子と共に脂環式炭素環又はラクトン環を形成している化合物が好ましい。また、a=0である化合物も好ましい。

【0041】環2が式(6)で表される基であるビニル 30 エーテル化合物として、例えば、2-メチル-2-ビニ ルオキシアダマンタン、2-エチル-2-ピニルオキシ アダマンタン、1,3-ビス(ビニルオキシ)アダマン タン、3-ビニルオキシー1-アダマンタノール、1. 3, 5-トリス(ビニルオキシ)アダマンタン、3, 5 ービス(ピニルオキシ)ー1ーアダマンタノール、5ー ビニルオキシー1,3-アダマンタンジオール、1, 3, 5, 7ーテトラキス(ビニルオキシ)アダマンタ ン、3,5,7ートリス(ビニルオキシ)-1ーアダマ ンタノール、5,7ービス(ビニルオキシ)-1,3-40 アダマンタンジオール、7ービニルオキシー1、3、5 ーアダマンタントリオール、1,3-ジメチルー5ービ ニルオキシアダマンタン、1,3-ジメチルー5,7-ビス (ビニルオキシ) アダマンタン、3, 5-ジメチル -7-ビニルオキシー1-アダマンタノール、1-カル ボキシー3ービニルオキシアダマンタン、1ーアミノー 3ービニルオキシアダマンタン、1ーニトロー3ービニ ルオキシアダマンタン、1-スルホー3-ビニルオキシ アダマンタン、1-t-ブチルオキシカルボニル-3-ビニルオキシアダマンタン、4ーオキソー1ービニルオ 50

キシアダマンタン、1ービニルオキシー3ー(1ーメチルー1ービニルオキシエチル)アダマンタン、1ー(ビニルオキシメチル)アダマンタン、1ー(1ーメチルー1ービニルオキシエチル)アダマンタン、1ー(1ーエチルー1ービニルオキシエチル)アダマンタン、1,3ービス(1ーメチルー1ービニルオキシエチル)アダマンタン、1ー(1ー(ノルボルナンー2ーイル)ー1ービニルオキシエチル)アダマンタン、及びこれらに対応するイソプロペニルエーテル類などが挙げられる。環2が式(6)で表される基であるビニルエーテル化合物のなかでも、特に、m=2又は3である化合物、n=1である化合物、又はb=1~3である化合物が好ましい。また、b=0である化合物も好ましい。

【0042】環乙が式(7)で表される基であるビニル エーテル化合物として、例えば、2,5ービス(ビニル オキシ) ノルボルナン、2,3-ビス(ビニルオキシ) **ノルボルナン、5-メトキシカルボニルー2-ビニルオ** キシノルボルナン、2-(1-(ノルボルナン-2-イ ル) -1-ビニルオキシエチル) ノルボルナン、2-(ビニルオキシメチル) ノルボルナン、2-(1-メチ ルー1ービニルオキシエチル) ノルボルナン、2-(1 ーメチルー1ービニルオキシペンチル) ノルボルナン、 3-ヒドロキシー4-ビニルオキシテトラシクロ[4. 4. 0. 1<sup>2.5</sup>. 1<sup>7.10</sup>] ドデカン、3、4ービス(ビ ニルオキシ) テトラシクロ [4.4.0.1<sup>2.5</sup>.1 7.10 ] ドデカン、3ーヒドロキシー8ービニルオキシテ トラシクロ [4. 4. 0. 1<sup>2.5</sup> . 1<sup>7,10</sup> ] ドデカン、 3,8-ビス(ビニルオキシ)テトラシクロ[4.4. 0. 1<sup>2.5</sup> . 1<sup>7,10</sup> ] ドデカン、3ーメトキシカルボニ ルー8-ビニルオキシテトラシクロ[4.4.0.1 <sup>2.5</sup> . 1<sup>7,10</sup> ] ドデカン、3 - メトキシカルボニル-9 ービニルオキシテトラシクロ [4.4.0.1<sup>2.5</sup>.1 7.10] ドデカン、3-(ビニルオキシメチル) テトラシ クロ [4. 4. 0. 1<sup>2.5</sup>. 1<sup>7,10</sup>] ドデカン、3ーヒ ドロキシメチルー8-ビニルオキシテトラシクロ[4. 4. 0. 1<sup>2.5</sup> . 1<sup>7.10</sup> ] ドデカン、3ーヒドロキシメ チルー9ービニルオキシテトラシクロ[4.4.0.1 2.5 . 17.10 ] ドデカン、8-ヒドロキシー3-(ビニ ルオキシメチル) テトラシクロ [4, 4, 0, 12.5, 1<sup>7,10</sup> ] ドデカン、9ーヒドロキシー3ー(ビニルオキ シメチル) テトラシクロ [4.4.0.12.5. 17.10 ] ドデカン、及びこれらに対応するイソプロペニ ルエーテル類などが挙げられる。環 Z が式 (7) で表さ れる基であるビニルエーテル化合物のなかでも、特に、 p=0で且つ $c=2\sim4$ である化合物、p=0で且つn= 1 である化合物、p = 1 で且つ  $c = 1 \sim 4$  である化合 物、p=0、c=1で且つ $X^3$ がヒドロキシル基以外の 基である化合物が好ましい。また、p=0又は1であり 且つc=0である化合物、p=c=0で且つ $X^3$ がヒド ロキシル基である化合物も好ましい。

【0043】環2が式(8)で表される基であるビニル エーテル化合物として、例えば、8-ビニルオキシー4 ーオキサトリシクロ [5. 2. 1. 0<sup>2,6</sup>] デカンー 3, 5ージオン、4ービニルオキシー11ーオキサペン タシクロ [6.5.1.13.6.02.7.09.13] ペンタ デカンー10、12ージオン、及びこれらに対応するイ ソプロペニルエーテル類などが挙げられる。

【0044】環Zが式(9)で表される基であるビニル エーテル化合物として、例えば、αービニルオキシー y,  $y - ジメチルー y - プチロラクトン、<math>\alpha$ , y, y - 10 物とを反応させることにより得ることもできる。 トリメチルー α ービニルオキシー γ ープチロラクトン、 y, yージメチルーβーメトキシカルボニルーαービニ ルオキシー y ープチロラクトン、8 ーピニルオキシー4 ーオキサトリシクロ [5. 2. 1. 0<sup>2.6</sup>] デカンー3 ーオン、9ービニルオキシー4ーオキサトリシクロ [5. 2. 1.  $0^{2.6}$ ]  $\vec{r}$  $\vec{n}$  $\vec$ ス (ビニルオキシ) - 4 - オキサトリシクロ [5.2. 1. 02.6] デカンー3ーオン、及びこれらに対応する イソプロペニルエーテル類などが挙げられる。

【0045】環乙が式(10)で表される基であるビニル 20 エーテル化合物として、例えば、4ービニルオキシー 2, 7ージオキサビシクロ[3.3.0]オクタンー 3, 6-ジオン、及びこれに対応するイソプロペニルエ ーテル類などが挙げられる。

【0046】環乙が式(11)で表される基であるビニル エーテル化合物として、例えば、5-ビニルオキシ-3 -オキサトリシクロ [4. 2. 1. 0<sup>4.8</sup>] ノナン-2 ーオン、5ーメチルー5ービニルオキシー3ーオキサト リシクロ[4.2.1.04.8] ノナンー2ーオン、9 ーメチルー5ービニルオキシー3ーオキサトリシクロ [4. 2. 1. 0<sup>4,8</sup>] ノナンー2ーオン、及びこれら に対応するイソプロペニルエーテル類などが挙げられ る。

【0047】環乙が式(12)で表される基であるヒドロ キシ化合物として、例えば、6-ビニルオキシー3-オ キサトリシクロ[4.3.1.14.8] ウンデカン-2 ーオン、6、8ービス(ビニルオキシ)-3ーオキサト リシクロ [4.3.1.148] ウンデカン-2-オ ン、6-ヒドロキシ-8-ビニルオキシ-3-オキサト リシクロ[4.3.1.148] ウンデカン-2-オ ン、8-ヒドロキシー6-ビニルオキシー3-オキサト リシクロ[4.3.1.14.8] ウンデカンー2ーオ ン、及びこれらに対応するイソプロペニルエーテル類な どが挙げられる。

【0048】ビニルエーテル化合物は公知の方法により 製造できる。また、前記式(3)で表されるビニルエー テル化合物は、遷移元素化合物の存在下、下記式(1) 【化7】

$$R^1 \xrightarrow{0} 0 \xrightarrow{R^2} R^4 \qquad (1)$$

(式中、R<sup>1</sup>は水素原子又は有機基を示す。R<sup>2</sup>、R<sup>3</sup>及 びR<sup>1</sup>は前記に同じ)で表されるビニルエステル化合物 と、下記式(2)

R<sup>5</sup>OH (2)

(式中、R5は前記に同じ)で表されるヒドロキシ化合

【0049】前記R1における有機基としては、前記R5 における有機基と同様のものが挙げられる。R1として は、特に、メチル基などの C1-3 アルキル基及びフェニ ル基が好ましい。

【0050】式(1)で表されるビニルエステル化合物 の代表的な例として、酢酸ビニル、酢酸イソプロペニ ル、酢酸1-プロペニル、酢酸2-メチル-1-プロペ ニル、酢酸1,2ージメチルー1ープロペニル、ギ酸ビ ニル、プロピオン酸ビニル、安息香酸ビニルなどが挙げ られる。

【0051】前記遷移元素化合物は単独で又は2以上を 組み合わせて使用できる。遷移元素には、ランタン、セ リウムなどのIIIA族元素(特にランタノイド元素);チ タン、ジルコニウムなどの IVA族元素;バナジウムなど のVA族元素;クロム、モリブデン、タングステンなどの VIA族元素;マンガンなどのVIIA族元素;鉄、コバル ト、ニッケル、ルテニウム、ロジウム、パラジウム、オ スミウム、イリジウム、白金などのVIII族元素:銅、銀 などのIB族元素が含まれる。これらの中でもVIII族元素 30 が好ましく、特に白金族元素(ルテニウム、ロジウム、 パラジウム、オスミウム、イリジウム及び白金)、とり わけイリジウムが好ましい。

【0052】 遷移元素化合物としては、例えば、遷移元 素の単体(金属)、酸化物、硫化物、水酸化物、ハロゲ ン化物(フッ化物、塩化物、臭化物、ヨウ化物)、硫酸 塩、遷移元素を含むオキソ酸又はその塩、無機錯体など の無機化合物;シアン化物、有機酸塩(酢酸塩など)、 有機錯体などの有機化合物が挙げられる。これらのなか でも特に有機錯体が好ましい。錯体の配位子には公知の 配位子が含まれる。遷移元素化合物における遷移元素の 価数は0~6程度、好ましくは0~3価であり、特にイ リジウム化合物などの場合には1価又は3価が好まし い。

【0053】遷移元素化合物の代表的な例をイリジウム を例にとって示すと、例えば、金属イリジウム、酸化イ リジウム、硫化イリジウム、水酸化イリジウム、フッ化 イリジウム、塩化イリジウム、臭化イリジウム、ヨウ化 イリジウム、硫酸イリジウム、イリジウム酸又はその塩 (例えば、イリジウム酸カリウムなど) 、無機イリジウ 50 ム錯体 [例えば、ヘキサアンミンイリジウム (III)

塩、クロロペンタアンミンイリジウム(III)塩等]な どの無機化合物;シアン化イリジウム、有機イリジウム 錯体〔例えば、トリス(アセチルアセトナト)イリジウ ム、ドデカカルボニル四イリジウム(0)、クロロトリ カルボニルイリジウム (I)、ジーμークロロテトラキ ス (シクロオクテン) ニイリジウム (Ι)、ジーμーク ロロテトラキス (エチレン) ニイリジウム (1)、ジー μークロロビス(1,5-シクロオクタジエン)ニイリ ジウム (I)、ジーμークロロジクロロビス(ペンタメ チルシクロペンタジエニル)二イリジウム(III)、ト リクロロトリス (トリエチルホスフィン) イリジウム (III) 、ペンタヒドリドビス(トリメチルホスフィ ン) イリジウム (V)、クロロカルボニルビス (トリフ ェニルホスフィン) イリジウム(1)、クロロカルボニ ルビス(トリフェニルホスフィン)イリジウム(1)、 クロロエチレンビス(トリフェニルホスフィン)イリジ ウム(1)、(ペンタメチルシクロペンタジエニル)ジ カルボニルイリジウム(1)、ピス (1, 2ーピス(ジ フェニルホスフィノ) エタン} イリジウム(1)塩化 物、ペンタメチルシクロペンタジエニルビス(エチレ ン) イリジウム(1)、カルボニルメチルビス(トリフ ェニルホスフィン) イリジウム(I)、(1,5-シク ロオクタジエン)(ジホスフィン)イリジウム(1)ハ ロゲン化物、1,5-シクロオクタジエン(1,2-ビ ス (ジフェニルホスフィノ) エタン) イリジウム ( I ) ヘキサフルオロリン酸塩、(1,5-シクロオクタジエ ン) ピス(トリアルキルホスフィン) イリジウム(I) ハロゲン化物、ビス(1,5-シクロオクタジエン)イ リジウムテトラフルオロボレート、(1,5-シクロオ クタジエン) (アセトニトリル) イリジウムテトラフル 30 オロボレート等] などの有機化合物が挙げられる。

【0054】好ましいイリジウム化合物にはイリジウム 錯体が含まれる。これらの中でも、有機イリジウム錯体、特に、シクロペンテン、ジシクロペンタジエン、シクロオクテン、1,5ーシクロオクタジエン、エチレン、ペンタメチルシクロペンタジエン、ベンゼン、トルエンなどの不飽和炭化水素;アセトニトリルなどのニトリル類;テトラヒドロフランなどのエーテル類を配位子として有する有機イリジウム錯体 [例えば、ジーμークロロテトラキス(シクロオクテン)二イリジウム

(I)、ジー $\mu$ -クロロテトラキス(エチレン)二イリジウム(I)、ジー $\mu$ -クロロビス(1, 5-シクロオクタジエン)二イリジウム(I)、ビス(1, 5-シクロオクタジエン)イリジウムテトラフルオロボレート、(1, 5-シクロオクタジエン)(アセトニトリル)イリジウムテトラフルオロボレート等]が好ましい。イリジウム化合物は単独で又は2以上を混合して使用することができる。また、イリジウム化合物と他の遷移元素化合物とを併用することもできる。

【0055】イリジウム化合物以外の遷移元素化合物と 50

しては、上記イリジウム化合物に対応する化合物 [例えば、ジクロロ (1,5-シクロオクタジエン) ルテニウム、ジクロロ (1,5-シクロオクタジエン) 白金、ジクロロビス (1,5-シクロオクタジエン) 二ロジウム等] などが例示できる。イリジウム化合物以外の遷移元素化合物においても、例えば、シクロペンテン、ジシクロペンタジエン、シクロオクテン、1,5-シクロオクタジエン、エチレン、ペンタメチルシクロペンタジエン、ベンゼン、トルエンなどの不飽和炭化水素;アセトニトリルなどのニトリル類;テトラヒドロフランなどのエーテル類を配位子として有する有機錯体が特に好ましい。

【0056】遷移元素化合物は、そのままで又は担体に担持した形態で使用できる。前記担体としては、触媒担持用の慣用の担体、例えば、シリカ、アルミナ、シリカーアルミナ、ゼオライト、チタニア、マグネシアなどの無機の金属酸化物や活性炭などが挙げられる。担体担持型触媒において、遷移元素化合物の担持量は、担体に対して、例えば0.1~50重量%、好ましくは1~20重量%程度である。触媒の担持は、慣用の方法、例えば、含浸法、沈殿法、イオン交換法などにより行うことができる。

【0057】遷移元素化合物の使用量は、反応成分として用いるヒドロキシ化合物1モルに対して、例えば0.001~1モル、好ましくは0.001~0.3モル、さらに好ましくは0.005~0.1モル程度である。

【0058】式(1)で表されるビニルエステル化合物 と式(2)で表されるヒドロキシ化合物との反応は、溶 媒の存在下又は非存在下で行われる。前記溶媒として は、例えば、ヘキサン、ヘプタン、オクタンなどの脂肪 族炭化水素;シクロヘキサンなどの脂環式炭化水素;ベ ンゼン、トルエン、キシレン、エチルベンゼンなどの芳 香族炭化水素;クロロホルム、ジクロロメタン、1,2 ージクロロエタンなどのハロゲン化炭化水素;ジエチル エーテル、ジメトキシエタン、テトラヒドロフラン、ジ オキサンなどのエーテル; アセトン、メチルエチルケト ンなどのケトン;酢酸メチル、酢酸エチル、酢酸イソプ ロピル、酢酸ブチルなどのエステル; N, Nージメチル ホルムアミド、N, Nージメチルアセトアミドなどのア ミド;アセトニトリル、プロピオニトリル、ベンゾニト リルなどのニトリルなどが挙げられる。これらの溶媒は 単独で又は2種以上を混合して用いられる。

【0059】式(1)で表されるビニルエステル化合物の使用量は、式(2)で表されるヒドロキシ化合物1当量に対して、例えば0.8~10当量、好ましくは1~8当量、さらに好ましくは1.5~5当量程度である。式(1)で表されるビニルエステル化合物を大過剰量用いてもよい。

【0060】反応系に塩基を存在させることにより一般

に反応速度が著しく増大する。塩基には無機塩基及び有機塩基が含まれる。無機塩基としては、例えば、水酸化リチウム、水酸化ナトリウム、水酸化カリウム、水酸化セシウムなどのアルカリ金属水酸化物;水酸化マグネシウム、水酸化カルシウム、水酸化バリウムなどのアルカリ土類金属水酸化物;炭酸リチウム、炭酸ナトリウム、炭酸カリウム、炭酸セシウムなどのアルカリ金属炭酸塩;炭酸マグネシウムなどのアルカリ土類金属炭酸塩;炭酸水素リチウム、炭酸水素ナトリウム、炭酸水素カリウム、炭酸水素セシウムなどのアルカリ金属炭酸水素カリウム、炭酸水素セシウムなどのアルカリ金属炭酸水素塩などが挙げられる。

【0061】有機塩基としては、例えば、酢酸リチウム、酢酸ナトリウム、酢酸カリウム、酢酸セシウムなどのアルカリ金属有機酸塩(特に、アルカリ金属酢酸塩);酢酸マグネシウムなどのアルカリ土類金属有機酸塩;リチウムメトキシド、ナトリウムメトキシド、カリウムエトキシドなどのアルカリ金属アルコキシド(式(2)で表されるヒドロキシ化合物に対応するアルカリ金属アルコキシドなど);ナトリウムフェノキシドなどのアルカリ金属アルコキシドなど);ナトリウムフェノキシドなどが;トリエチルアミン、Nーメチルピベリジンなどのアミン類(第3級アミンなど);ピリジン、2,2′ービピリジル、1,10ーフェナントロリンなどの含窒素芳香族複素環化合物などが挙げられる。上記の塩基の中でもナトリウムを含む塩基が好ましい。

【0062】塩基の使用量は、式(2)で表されるヒドロキシ化合物1モルに対して、例えば0.001~3モル、好ましくは0.005~2モル程度である。

【0063】反応は重合禁止剤の存在下で行ってもよい。反応温度は、反応成分や触媒の種類などに応じて適宜選択でき、例えば、20~200℃、好ましくは50~150℃、さらに好ましくは70~120℃程度である。反応は常圧で行ってもよく、減圧又は加圧下で行ってもよい。反応の雰囲気は反応を阻害しない限り特に限定されず、例えば、空気雰囲気、窒素雰囲気、アルゴン雰囲気などの何れであってもよい。また、反応はバッチ式、セミバッチ式、連続式などの何れの方法で行うこともできる。

【0064】上記方法では、反応により、温和な条件下 40で、対応する式(3)で表されるビニルエーテル化合物が生成する。反応終了後、反応生成物は、例えば、濾過、濃縮、蒸留、抽出、晶析、再結晶、カラムクロマトグラフィーなどの分離手段や、これらを組み合わせた分離手段により分離精製できる。

【0065】本発明のフォトレジスト用高分子化合物において、少なくとも1種のビニルエーテル化合物と共重合させる他の重合性化合物としては、ビニルエーテル化合物と共重合可能な単量体であれば特に限定されず、一般にフォトレジスト用高分子化合物の単量体として用い 50

られる化合物を使用できる。このような他の重合性化合物は1種又は2種以上組み合わせて使用できる。

【0066】前記他の重合性化合物には、例えば、アダマンタン環等の脂環式骨格を含む(メタ)アクリル酸エステル、脂肪族第3級アルコールの(メタ)アクリル酸エステル、環状エーテル骨格を含む(メタ)アクリル酸エステル、ラクトン環を含む(メタ)アクリル酸エステル、置換基又は縮合環を有していてもよいノルボルネン等の環の内部にエチレン性二重結合を有する環式化合物、(メタ)アクリル酸などが含まれる。

【0067】前記脂環式骨格を含む(メタ)アクリル酸エステルの代表的な例として、例えば、1-(メタ)アクリロイルオキシアダマンタン、1-(メタ)アクリロイルオキシー3,5-ジメチルアダマンタン、1-ヒドロキシー3-(メタ)アクリロイルオキシアダマンタン、1,3-ジヒドロキシー5-(メタ)アクリロイルオキシアダマンタン、2-(メタ)アクリロイルオキシー2-メチルアダマンタン、1-t-ブトキシカルボニル-3-(メタ)アクリロイルオキシアダマンタン、1-(1-(メタ)アクリロイルオキシー1-メチルエチル)アダマンタン、1-ヒドロキシー3-(1-(メタ)アクリロイルオキシー1-メチルエチル)アダマンタン、1-ヒドロキシー3-(1-(メタ)アクリロイルオキシノルボルナン、タン、2-(メタ)アクリロイルオキシノルボルナン、2-(メタ)アクリロイルオキシメチルノルボルナンなどが挙げられる。

【0068】脂肪族第3級アルコールの(メタ)アクリル酸エステルの代表的な例として、例えば、tープチル(メタ)アクリレートなどが挙げられる。環状エーテル骨格を含む(メタ)アクリル酸エステルの代表的な例として、例えば、2ーテトラヒドロピラニルオキシ(メタ)アクリレート、2ーテトラヒドロフラニルオキシ(メタ)アクリレートなどが挙げられる。

【0069】ラクトン環を含む(メタ)アクリル酸エステルの代表的な例として、例えば、 $\beta$  — (メタ)アクリロイルオキシー  $\gamma$  — ブチロラクトン、 $\beta$  — (メタ)アクリロイルオキシー  $\beta$  — メチルー  $\gamma$  — ブチロラクトン、 $\alpha$  — (メタ)アクリロイルオキシー  $\gamma$  — ブチロラクトン、 $\alpha$  — (メタ)アクリロイルオキシー  $\alpha$  — メチルー  $\gamma$  — ブチロラクトン、 $\alpha$  — (メタ)アクリロイルオキシー  $\alpha$  — (メタ)アクリロイルオキシー  $\gamma$  ,  $\gamma$  — ジメチルー  $\gamma$  — ブチロラクトン、 $\gamma$  — ブチロラクトン、 $\gamma$  — ブチロラクトン、 $\gamma$  — ブチロラクトン、 $\gamma$  — ブチロー [4.2.1.048] フナン — 2 — オキサトリシクロ [4.2.1.048] フナン — 3 — オキサトリシクロ [4.3.1.148] ウンデカン — 2 — オンなどが挙げられる。

【0070】環の内部にエチレン性二重結合を有する環式化合物の代表的な例として、例えば、無水マレイン酸、ノルボルネン、5-t-ブトキシカルボニルノルボルネン、ビシクロ[2.2.1]へプト-5-エン-2

ーヒドロキシメチルー3ーカルボン酸ラクトンなどが挙 げられる。

【0071】本発明のフォトレジスト用高分子化合物は、単量体の種類に応じて、カチオン重合、ラジカル重合などポリオレフィン系ポリマーやアクリル系ポリマーを製造する際に用いる慣用の重合法により製造できる。重合は、溶液重合、溶融重合などの何れの方法で行ってもよい。重合開始剤、重合触媒としては、一般に用いられるものを使用できる。

【0072】本発明のフォトレジスト用高分子化合物は、Fedorsの方法 [Polym. Eng. Sci., 14, 147 (1974)参照] による溶解度パラメーターの値(以下、単に「SP値」と称することがある)が 19.5 ( $J/cm^3$ )  $^{1/2}\sim 24.5$  ( $J/cm^3$ )  $^{1/2}$  [=9.5 ( $cal/cm^3$ )  $^{1/2}\sim 12$  ( $cal/cm^3$ )  $^{1/2}=19.5$  M $Pa^{1/2}\sim 24.5$  M $Pa^{1/2}$ ] の範囲にあるのが好ましい。

【0073】このような溶解度パラメーターを有する高分子化合物を含むフォトレジスト用樹脂組成物を半導体基板(シリコンウェハー)に塗布して形成されたレジス 20ト塗膜は、基板に対する接着性(密着性)に優れるとともに、アルカリ現像により解像度の高いパターンを形成することができる。溶解度パラメーターの値が19.5 (J/cm³) 1/2 より低いと、基板に対する接着性が低下して、現像によりパターンが剥がれて残らないという問題が起こりやすい。また、溶解度パラメーターの値が24.5 (J/cm³) 1/2 より大きいと、基板にはじかれて塗布することが困難になりやすい上、アルカリ現像液に対する親和性が高くなり、その結果、露光部と未露光部の溶解性のコントラストが悪くなって解像度が低下30しやすくなる。

【0074】前記高分子化合物のSP値の上限は、より好ましくは $23.5(J/cm^3)^{1/2}$ 、特に好ましくは $23.1(J/cm^3)^{1/2}$ である。また、前記高分子化合物のSP値の下限は、より好ましくは $20.5(J/cm^3)^{1/2}$ 、さらに好ましくは $21.5(J/cm^3)^{1/2}$ 、特に好ましくは $22.1(J/cm^3)^{1/2}$ である。

【0075】前記高分子化合物のSP値は、公知の方法、例えば、「ポリマーハンドブック(Polymer Handbo 40 ok)」、第4版、VII-675頁~VII-711頁(特に、VII-68 0頁~VII-683頁)に記載の方法により求めることができる。より具体的には、前記SP値を求める方法として、溶解力試験法、浸透圧法、膨潤度法、濁り度法、比容法、固有粘度法、逆相ガスクロマトグラフィー法、屈折率法、双極子モーメント法、水素結合パラメーター法、グループ寄与法、ハンセンパラメーター法などが挙げられ、これらの方法により得られたSP値を本発明における前記高分子化合物のSP値として使用できる。なお、上記溶解力試験法において使用する溶媒は、前記文献の 50

表1 (VII-683頁) に列記されている。

【0076】本発明では、フォトレジスト用高分子化合物の重量平均分子量(Mw)は、例えば1,000~50,00,000程度、好ましくは3,000~50,000程度であり、分子量分布(Mw/Mn)は、例えば1.5~3.5程度である。なお、前記Mnは数平均分子量(ポリスチレン換算)を示す。

【0077】本発明のフォトレジスト用樹脂組成物は、 前記本発明のフォトレジスト用高分子化合物と光酸発生 剤とを含んでいる。

【0078】光酸発生剤としては、露光により効率よく 酸を生成する慣用乃至公知の化合物、例えば、ジアゾニ ウム塩、ヨードニウム塩(例えば、ジフェニルヨードへ キサフルオロホスフェートなど)、スルホニウム塩(例 えば、トリフェニルスルホニウムヘキサフルオロアンチ モネート、トリフェニルスルホニウムヘキサフルオロホ スフェート、トリフェニルスルホニウムメタンスルホネ ートなど)、スルホン酸エステル[例えば、1-フェニ ルー1-(4-メチルフェニル)スルホニルオキシー1 ーペンゾイルメタン、1,2,3-トリスルホニルオキ シメチルベンゼン、1,3-ジニトロー2-(4-フェ ニルスルホニルオキシメチル) ベンゼン、1-フェニル **-1-(4-メチルフェニルスルホニルオキシメチル)** -1-ヒドロキシー1-ベンゾイルメタンなど]、オキ サチアゾール誘導体、s-トリアジン誘導体、ジスルホ ン誘導体(ジフェニルジスルホンなど)、イミド化合 物、オキシムスルホネート、ジアゾナフトキノン、ベン ゾイントシレートなどを使用できる。これらの光酸発生 剤は単独で又は2種以上組み合わせて使用できる。

【0079】光酸発生剤の使用量は、光照射により生成する酸の強度や前記高分子化合物における各モノマー単位の比率などに応じて適宜選択でき、例えば、前記高分子化合物100重量部に対して0.1~30重量部、好ましくは1~25重量部、さらに好ましくは2~20重量部程度の範囲から選択できる。

【0080】フォトレジスト用樹脂組成物は、アルカリ 可溶性樹脂(例えば、ノボラック樹脂、フェノール樹脂、イミド樹脂、カルボキシル基含有樹脂など)などの アルカリ可溶成分、着色剤(例えば、染料など)、有機溶媒(例えば、炭化水素類、ハロゲン化炭化水素類、アルコール類、エステル類、アミド類、ケトン類、エーテル類、セロソルブ類、カルビトール類、グリコールエーテルエステル類、これらの混合溶媒など)などを含んでいてもよい。

【0081】このフォトレジスト用樹脂組成物を基材又は基板上に塗布し、乾燥した後、所定のマスクを介して、塗膜(レジスト膜)に光線を露光して(又は、さらに露光後ベークを行い)潜像パターンを形成し、次いで現像することにより、微細なパターンを高い精度で形成できる。

【0082】基材又は基板としては、シリコンウエハ、 金属、プラスチック、ガラス、セラミックなどが挙げられる。フォトレジスト用樹脂組成物の塗布は、スピンコータ、ディップコータ、ローラコータなどの慣用の塗布 手段を用いて行うことができる。塗膜の厚みは、例えば 0.1~20 $\mu$ m、好ましくは 0.3~2 $\mu$ m程度である。

【0083】露光には、種々の波長の光線、例えば、紫外線、X線などが利用でき、半導体レジスト用では、通常、g線、i線、エキシマレーザー(例えば、XeCl、KrF、KrCl、ArF、ArClなど)などが使用される。露光エネルギーは、例えば1~1000mJ/cm²程度である。

【0084】光照射により光酸発生剤から酸が生成し、この酸により、例えば前記高分子化合物のアルカリ可溶性ユニットのカルボキシル基等の保護基(脱離性基)が速やかに脱離して、可溶化に寄与するカルボキシル基等が生成する。そのため、水又はアルカリ現像液による現像により、所定のパターンを精度よく形成できる。

#### [0085]

【発明の効果】本発明のフォトレジスト用高分子化合物は、耐エッチング性に優れ、微細なパターンを精度よく形成できる。また、基板に対して優れた密着性を有し、しかも高い透明性、アルカリ可溶性及び耐エッチング性を備えている。本発明のフォトレジスト用樹脂組成物、及び半導体の製造方法によれば、微細なパターンを高い精度で形成することができる。

#### [0086]

【実施例】以下に、実施例に基づいて本発明をより詳細 30 に説明するが、本発明はこれらの実施例により何ら限定されるものではない。なお、構造式中の括弧の右下の数字は該モノマー単位のモル%を示す。

#### 【0087】製造例1

ジーμークロロビス (1, 5-シクロオクタジエン) 二 イリジウム(I) [Ir (cod) Cl] 2 (6.7 m g、0.01mmol)と炭酸ナトリウム(64mg、 0.6mmo1)のトルエン(1.0m1)混合液に、 5ーヒドロキシー3ーオキサトリシクロ[4.2.1. 04.8] ノナンー2ーオン(=2ーヒドロキシー4ーオ キサトリシクロ [4. 2. 1. 03.7] ノナンー5ーオ ン) (1 mm o 1) 及び酢酸ビニル (3 mm o 1) を加 え、アルゴン雰囲気下、100℃で5時間攪拌した。反 応液をガスクロマトグラフィーにより分析したところ、 5-ヒドロキシー3-オキサトリシクロ[4.2.1. 04.8] ノナンー2ーオンの転化率は98%であり、下 記式(14)で示される5-ビニルオキシー3-オキサト リシクロ[4.2.1.04.8] ノナン-2-オン(= 2-ビニルオキシー4-オキサトリシクロ[4.2. 1. 03.7] ノナン-5-オン) が収率96%で生成し

ていた。 【化8】

[5-ビニルオキシー3-オキサトリシクロ [4. 2. 1. 0<sup>4.8</sup>] ノナンー2-オンのスペクトルデータ] <sup>1</sup>H-NMR (CDC 1<sub>3</sub>、TMS) δ: 6. 52 (dd, 1H), 4. 35 (dd, 1H), 4. 03 (dd, 1H), 4. 32 (d, 1H), 3. 81 (m, 1H), 3. 18 (m, 1H), 2. 65-2. 50 (m, 2H), 2. 13-1. 96 (m, 2H), 1. 78 (ddd, 1H), 1. 65 (ddd, 1H) [0088] 製造例2

MS m/e:220, 177, 135, 121, 9 3, 79, 77

[3-ビニルオキシー1-アダマンタノールのスペクトルデータ]

MS m/e:194, 151, 133, 95, 93, 41

## 【0089】製造例3

(化9)

[3-ビニルオキシアダマンタン-1-カルボン酸 t-ブチルエステルのスペクトルデータ]

MS m/e:278, 135, 93, 41 【0090】製造例4

ジーμークロロビス(1,5-シクロオクタジエン)二 イリジウム (I) [Ir (cod) Cl] 2 (6.7 m g、0.01mmol)と炭酸ナトリウム(64mg、 0.6mmol)のトルエン(1.0ml)混合液に、 1ーヒドロキシー4ーオキサトリシクロ[4.3.1. 13.8] ウンデカン-5-オン(=6-ヒドロキシ-3 ーオキサトリシクロ[4.3.1.148] ウンデカン -2-オン) (1 mm o 1) 及び酢酸ビニル (3 mm o 1)を加え、アルゴン雰囲気下、100℃で5時間攪拌 した。反応液をガスクロマトグラフィーにより分析した ところ、1-ヒドロキシー4-オキサトリシクロ[4. 3. 1. 13.8] ウンデカン-5-オンの転化率は82 %であり、下記式(16)で示される1-ビニルオキシー

4-オキサトリシクロ [4.3.1.1<sup>3,8</sup>] ウンデカ ン-5-オン(=6-ビニルオキシ-3-オキサトリシ クロ[4.3.1.148] ウンデカン-2-オン) が 収率72%で生成していた。

24

【化10】



[1-ビニルオキシー4-オキサトリシクロ[4.3. 1. 13.8] ウンデカンー5ーオンのスペクトルデー タ]

 $^{1}H-NMR$  (CDC13, TMS)  $\delta$ : 6. 62 (d d, 1H), 4. 25 (dd, 1H), 4. 01 (d d, 1H), 4.63 (m, 1H), 3.16 (m, 1 H) , 2. 43 (m, 1H) , 2. 15-1. 68 (m, 10H)

【0091】実施例1

下記構造の高分子化合物の合成

【化11】

100mlの丸底フラスコに、製造例1の方法で得られ た5-ビニルオキシー3-オキサトリシクロ[4.2. 1.  $0^{4.8}$ ]  $/+ 2 - 4 \times 3$ . 24g (18. 05) リモル)、製造例2の方法で得られた3-ビニルオキシ -1-アダマンタノール1.75g(9.0ミリモ ル)、製造例3の方法で得られた3-ビニルオキシアダ マンタンー1ーカルボン酸 t ープチルエステル5. 01 g(18.0ミリモル)と攪拌子を入れ、80℃で12 時間真空乾燥した。乾燥窒素で常圧に戻した後、還流管 及び3方コックを取り付け、水素化カルシウム上で蒸留 し且つモレキュラーシーブ上で保存したベンゼン16g と、カールフィッシャー法で濃度を定めた含水ベンゼン (水分量15ミリモル/L) 16gを乾燥窒素雰囲気下 40 で入れた。反応系の温度を30℃に保ち、BF3O(C2 H5) 2 (東京化成(株)製)のベンゼン溶液(濃度6

素雰囲気下で1時間攪拌した後、少量のアンモニアを含 有するメタノール1gを添加した。次いで、反応液をメ タノール500mlに落とし、生じた沈殿物を濾別する ことで精製を行った。回収した沈殿を減圧乾燥後、テト ラヒドロフラン40gに溶解させ、上述の沈殿精製操作 を繰り返すことにより、所望のポリマー8. 68gを得 た。回収したポリマーをGPC分析したところ、重量平 均分子量が12200、分子量分布が2.48であっ た。1H-NMR (DMSO-de中) 分析では、1.5 -2. 7 ppm (プロード) のほか、3. 1 ppm、 3. 2 ppm、3. 6 ppm、3. 8 ppm、4. 3 p pm付近に強いシグナルが観測された。このポリマーの SP値は22.1 (J/cm³) 1/2 である。

【0092】実施例2

下記構造の高分子化合物の合成

【化12】

2. 5ミリモル/L) 8gを加えて重合を開始した。窒

100mlの丸底フラスコに、製造例4の方法で得られ 50 た1-ビニルオキシー4-オキサトリシクロ [4.3.

1. 1<sup>3.8</sup>] ウンデカン-5-オン3. 57g(17. 2ミリモル)、製造例2の方法で得られた3-ビニルオキシー1-アダマンタノール1. 66g(8.6ミリモル)、製造例3の方法で得られた3-ビニルオキシアダマンタン-1-カルボン酸t-ブチルエステル4.77g(17.2ミリモル)と攪拌子を入れ、80℃で12時間真空乾燥した。乾燥窒素で常圧に戻した後、還流管及び3方コックを取り付け、水素化カルシウム上で蒸留し且つモレキュラーシーブ上で保存したベンゼン16gと、カールフィッシャー法で濃度を定めた含水ベンゼン(水分量15ミリモル/L)16gを乾燥窒素雰囲気下で入れた。反応系の温度を30℃に保ち、BF₃O(C2H₅)₂(東京化成(株)製)のベンゼン溶液(濃度62.5ミリモル/L)8gを加えて重合を開始した。窒素雰囲気下で1時間攪拌した後、少量のアンモニアを含

有するメタノール 1 gを添加した。次いで、反応液をメタノール 5 0 0 m 1 に落とし、生じた沈殿物を濾別することで精製を行った。回収した沈殿を滅圧乾燥後、テトラヒドロフラン 4 0 g に溶解させ、上述の沈殿精製操作を繰り返すことにより、所望のポリマー 9. 1 8 gを得た。回収したポリマーを GPC分析したところ、重量平均分子量が 1 0 3 0 0、分子量分布が 2. 2 5 であった。  $^1H-NMR$  (DMSO-ds中)分析では、 1. 5 -2. 5 ppm (プロード)のほか、 3. 1 ppm 、 3. 2 ppm 、 3. 6 ppm 、 4. 6 ppm付近に強いシグナルが観測された。このポリマーの SP 値は 2 1. 7 ( $J/cm^3$ )  $^{1/2}$  である。

【0093】実施例3 下記構造の高分子化合物の合成

【化13】

 $\begin{array}{c|c} -\text{CH}_2 - \text{CH} \xrightarrow{30} / + \text{CH}_2 - \text{CH} \xrightarrow{10} / + \text{CH}_2 - \text{CH} \xrightarrow{30} / 0 \\ \downarrow c = 0 & \downarrow c = 0 \\ \downarrow c = 0 & \downarrow c = 0 \\ \downarrow c = 0 & \downarrow c = 0 \\ \downarrow c = 0 & \downarrow c = 0 \\ \downarrow c = 0 & \downarrow c = 0 \\ \downarrow c = 0 & \downarrow c = 0 \\ \downarrow c = 0 & \downarrow c = 0 \\ \downarrow c = 0 & \downarrow c = 0 \\ \downarrow c = 0 & \downarrow c = 0 \\ \downarrow c = 0 & \downarrow c = 0 \\ \downarrow c = 0 & \downarrow c = 0 \\ \downarrow c = 0 & \downarrow c = 0 \\ \downarrow c = 0 & \downarrow c = 0 \\ \downarrow c = 0 & \downarrow c = 0 \\ \downarrow c = 0 & \downarrow c = 0 \\ \downarrow c = 0 & \downarrow c = 0 \\ \downarrow c = 0 & \downarrow c = 0 \\ \downarrow c = 0 & \downarrow c = 0 \\ \downarrow c = 0 & \downarrow c = 0 \\ \downarrow c = 0 & \downarrow c = 0 \\ \downarrow c = 0 & \downarrow c = 0 \\ \downarrow c = 0 & \downarrow c = 0 \\ \downarrow c = 0 & \downarrow c = 0 \\ \downarrow c = 0 & \downarrow c = 0 \\ \downarrow c = 0 & \downarrow c = 0 \\ \downarrow c = 0 & \downarrow c = 0 \\ \downarrow c = 0 & \downarrow c = 0 \\ \downarrow c = 0 & \downarrow c = 0 \\ \downarrow c = 0 & \downarrow c = 0 \\ \downarrow c = 0 & \downarrow c = 0 \\ \downarrow c = 0 & \downarrow c = 0 \\ \downarrow c = 0 & \downarrow c = 0 \\ \downarrow c = 0 & \downarrow c = 0 \\ \downarrow c = 0 & \downarrow c = 0 \\ \downarrow c = 0 & \downarrow c = 0 \\ \downarrow c = 0 & \downarrow c = 0 \\ \downarrow c = 0 & \downarrow c = 0 \\ \downarrow c = 0 & \downarrow c = 0 \\ \downarrow c = 0 & \downarrow c = 0 \\ \downarrow c = 0 & \downarrow c = 0 \\ \downarrow c = 0 & \downarrow c = 0 \\ \downarrow c = 0 & \downarrow c = 0 \\ \downarrow c = 0 & \downarrow c = 0 \\ \downarrow c = 0 & \downarrow c = 0 \\ \downarrow c = 0 & \downarrow c = 0 \\ \downarrow c = 0 & \downarrow c = 0 \\ \downarrow c = 0 & \downarrow c = 0 \\ \downarrow c = 0 & \downarrow c = 0 \\ \downarrow c = 0 & \downarrow c = 0 \\ \downarrow c = 0 & \downarrow c = 0 \\ \downarrow c = 0 & \downarrow c = 0 \\ \downarrow c = 0 & \downarrow c = 0 \\ \downarrow c = 0 & \downarrow c = 0 \\ \downarrow c = 0 & \downarrow c = 0 \\ \downarrow c = 0 & \downarrow c = 0 \\ \downarrow c = 0 & \downarrow c = 0 \\ \downarrow c = 0 & \downarrow c = 0 \\ \downarrow c = 0 & \downarrow c = 0 \\ \downarrow c = 0 & \downarrow c = 0 \\ \downarrow c = 0 & \downarrow c = 0 \\ \downarrow c = 0 & \downarrow c = 0 \\ \downarrow c = 0 & \downarrow c = 0 \\ \downarrow c = 0 & \downarrow c = 0 \\ \downarrow c = 0 & \downarrow c = 0 \\ \downarrow c = 0 & \downarrow c = 0 \\ \downarrow c = 0 & \downarrow c = 0 \\ \downarrow c = 0 & \downarrow c = 0 \\ \downarrow c = 0 & \downarrow c = 0 \\ \downarrow c = 0 & \downarrow c = 0 \\ \downarrow c = 0 & \downarrow c = 0 \\ \downarrow c = 0 & \downarrow c = 0 \\ \downarrow c = 0 & \downarrow c = 0 \\ \downarrow c = 0 & \downarrow c = 0 \\ \downarrow c = 0 & \downarrow c = 0 \\ \downarrow c = 0 & \downarrow c = 0 \\ \downarrow c = 0 & \downarrow c = 0 \\ \downarrow c = 0 & \downarrow c = 0 \\ \downarrow c = 0 & \downarrow c = 0 \\ \downarrow c = 0 & \downarrow c = 0 \\ \downarrow c = 0 & \downarrow c = 0 \\ \downarrow c = 0 & \downarrow c = 0 \\ \downarrow c = 0 & \downarrow c = 0 \\ \downarrow c = 0 \\ \downarrow c = 0 & \downarrow c = 0 \\ \downarrow c =$ 

還流管、攪拌子、3方コックを備えた100mlの丸底 フラスコに、製造例1の方法で得られた5-ビニルオキ シー3-オキサトリシクロ [4. 2. 1. 04.8] ノナ ン-2-オン2. 97g(16. 5ミリモル)、5-ア クリロイルオキシー1、3ージヒドロキシアダマンタン 1. 31g(5. 5ミリモル)、1-(1-アクリロイ ルオキシー1-メチルエチル) アダマンタン4. 10g (16.5ミリモル)、無水マレイン酸1.62g(1 30 6. 5ミリモル)、及び開始剤(和光純薬工業(株) 製、商品名「V601」)1.0gを入れ、酢酸ーブチ ル10gに溶解させた。フラスコ内を窒素置換した後、 反応系の温度を70℃に保ち、窒素雰囲気下で6時間攪 拌した。反応液をヘキサンとイソプロピルアルコール 1:1(重量比)混合液500gに落とし、生じた沈殿 物を濾別することで精製を行った。回収した沈殿を減圧 乾燥後、酢酸nープチル30gに溶解させ、上述の沈殿 精製操作を繰り返すことにより、所望のポリマー7.5 5gを得た。回収したポリマーをGPC分析したとこ ろ、重量平均分子量が11200、分子量分布が2.3 3であった。「H-NMR (DMSO-d6中)分析で

は、0.5-2.5 ppm (ブロード) のほか、3.1 ppm、3.2 ppm、3.6 ppm、3.8 ppm、4.3 ppm付近に強いシグナルが観測された。このポリマーの S P値は 2 2.8 (J/c m³) <sup>1/2</sup> である。【0094】試験例

実施例で得られたポリマー100重量部とトリフェニルスルホニウムへキサフルオロアンチモネート10重量部とを溶媒である乳酸エチルと混合し、ポリマー濃度17重量%のフォトレジスト用樹脂組成物を調製した。このフォトレジスト用樹脂組成物をシリコンウエハーにスピンコーティング法により塗布し、厚み1.0μmの感光層を形成した。ホットプレート上で温度100℃で150秒間プリベークした後、波長247nmのKrFエキシマレーザーを用い、マスクを介して、照射量30mJ/cm²で露光した後、100℃の温度で60秒間ポストベークした。次いで、0.3Mのテトラメチルアンモニウムヒドロキシド水溶液により60秒間現像し、純水でリンスしたところ、何れの場合も、0.25μmのライン・アンド・スペースパターンが得られた。

## フロントページの続き

F ターム(参考) 2H025 AA04 AA09 AA14 AB16 AC04 AC08 AD01 AD03 BE00 BE10 BG00 CB08 CB41 CB43 CB45 FA17 4J100 AD07P BA11P BC03P BC09P BC12P BC53P BC55P CA01 CA04 JA37

# This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

# **BEST AVAILABLE IMAGES**

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

□ BLACK BORDERS
 □ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
 □ FADED TEXT OR DRAWING
 □ BLURRED OR ILLEGIBLE TEXT OR DRAWING
 □ SKEWED/SLANTED IMAGES
 □ COLOR OR BLACK AND WHITE PHOTOGRAPHS
 □ CRAY SCALE DOCUMENTS
 □ LINES OR MARKS ON ORIGINAL DOCUMENT
 □ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

# IMAGES ARE BEST AVAILABLE COPY.

☐ OTHER:

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.