CS 228 : Logic in Computer Science

Krishna, S

Finite State Machines

A deterministic finite state automaton (DFA) $A = (Q, \Sigma, \delta, q_0, F)$

- Q is a finite set of states.
- Σ is a finite alphabet
- $\delta: Q \times \Sigma \to Q$ is the transition function
- ▶ $q_0 \in Q$ is the initial state
- $ightharpoonup F \subset Q$ is the set of final states
- ▶ L(A)=all words leading from q_0 to some $f \in F$

Languages, Machines and Logic

A language $L \subseteq \Sigma^*$ is called regular iff there exists some DFA A such that L = L(A).

A language $L \subseteq \Sigma^*$ is called FO-definable iff there exists an FO formula φ such that $L = L(\varphi)$.

3/10

- $\Sigma = \{a, b\}$. Consider the following languages $L \subseteq \Sigma^*$:
 - ▶ Begins with a, ends with b, and has a pair of consecutive a's
 - Contains a b and ends with aa
 - Contains abb
 - ▶ There are two occurrences of b between which only a's occur
 - Right before the last position is an a
 - Even length words

 $\Sigma = \{a, b\}$. Consider the following languages $L \subseteq \Sigma^*$:

 $\Sigma = \{a, b\}$. Consider the following languages $L \subseteq \Sigma^*$:

$$\exists x \exists y \exists z (Q_a(x) \land Q_b(y) \land Q_b(z) \land S(x,y) \land S(y,z))$$

 $\Sigma = \{a, b\}$. Consider the following languages $L \subseteq \Sigma^*$:

$$\exists x \exists y \exists z (Q_a(x) \land Q_b(y) \land Q_b(z) \land S(x,y) \land S(y,z))$$

 $\Sigma = \{a, b\}$. Consider the following languages $L \subseteq \Sigma^*$:

$$\exists x \exists y \exists z (Q_a(x) \land Q_b(y) \land Q_b(z) \land S(x,y) \land S(y,z))$$

 $\Sigma = \{a, b\}$. Consider the following languages $L \subseteq \Sigma^*$:

$$\exists x \exists y \exists z (Q_a(x) \land Q_b(y) \land Q_b(z) \land S(x,y) \land S(y,z))$$

 $\Sigma = \{a, b\}$. Consider the following languages $L \subseteq \Sigma^*$:

► Contains abb

5/10

 $\Sigma = \{a, b\}$. Consider the following languages $L \subseteq \Sigma^*$:

$$\exists x \exists y \exists z (Q_a(x) \land Q_b(y) \land Q_b(z) \land S(x,y) \land S(y,z))$$

 $\Sigma = \{a, b\}$. Consider the following languages $L \subseteq \Sigma^*$:

Right before the last position is an a:

 $\Sigma = \{a, b\}$. Consider the following languages $L \subseteq \Sigma^*$:

Right before the last position is an a: Examples: ab, babbaa, bbab

Non examples : ba, bb, aba

$$\exists x [Q_a(x) \land \exists y (S(x,y) \land \forall z (z \leqslant y))]$$

 $\Sigma = \{a, b\}$. Consider the following languages $L \subseteq \Sigma^*$:

Right before the last position is an a:

Examples : *ab*, *babbaa*, *bbab*Non examples : *ba*, *bb*, *aba*

$$\exists x [Q_a(x) \land \exists y (S(x,y) \land \forall z (z \leqslant y))]$$

 $\Sigma = \{a, b\}$. Consider the following languages $L \subseteq \Sigma^*$:

Right before the last position is an a:

Examples: *ab*, *babbaa*, *bbab*Non examples: *ba*, *bb*, *aba*

$$\exists x [Q_a(x) \land \exists y (S(x,y) \land \forall z (z \leqslant y))]$$

 $\Sigma = \{a, b\}$. Consider the following languages $L \subseteq \Sigma^*$:

Right before the last position is an a:

Examples: *ab*, *babbaa*, *bbab*Non examples: *ba*, *bb*, *aba*

$$\exists x [Q_a(x) \land \exists y (S(x,y) \land \forall z (z \leqslant y))]$$

 $\Sigma = \{a, b\}$. Consider the following languages $L \subseteq \Sigma^*$:

► Right before the last position is an *a*: Examples: *ab*, *babbaa*, *bbab*

Non examples : ba, bb, aba

$$\exists x [Q_a(x) \land \exists y (S(x,y) \land \forall z (z \leqslant y))]$$

 $\Sigma = \{a, b\}$. Consider the following languages $L \subseteq \Sigma^*$:

Right before the last position is an a:

Examples : *ab*, *babbaa*, *bbab*Non examples : *ba*, *bb*, *aba*

$$\exists x [Q_a(x) \land \exists y (S(x,y) \land \forall z (z \leqslant y))]$$

 $\Sigma = \{a, b\}$. Consider the following languages $L \subseteq \Sigma^*$:

Right before the last position is an a:

Examples : *ab*, *babbaa*, *bbab*Non examples : *ba*, *bb*, *aba*

 $\Sigma = \{a, b\}$. Consider the following languages $L \subseteq \Sigma^*$:

► Right before the last position is an *a*: Examples: *ab*, *babbaa*, *bbab*

Non examples : ba, bb, aba

$$\exists x [Q_a(x) \land \exists y (S(x,y) \land \forall z (z \leqslant y))]$$

- Every state on every symbol goes to a unique state
- δ: Q × Σ → Q is a transition function Any letter you put on the state changes the state.
 Given a string w ∈ Σ* and a state q ∈ Q, iteratively apply δ
- - \triangleright w = aab
 - $\delta(q, a) = q_1,$

- Every state on every symbol goes to a unique state
 - $\delta: Q \times \Sigma \rightarrow Q$ is a transition function
- ▶ Given a string $w \in \Sigma^*$ and a state $q \in Q$, iteratively apply δ
 - $\mathbf{v} = aab$
 - $\delta(q, a) = q_1, \, \delta(\delta(q, a), a) = \delta(q_1, a) = q_2,$

- Every state on every symbol goes to a unique state
 - $\delta: Q \times \Sigma \to Q$ is a transition function
- ▶ Given a string $w \in \Sigma^*$ and a state $q \in Q$, iteratively apply δ
 - $\mathbf{w} = aab$
 - $\delta(q, a) = q_1, \, \delta(\delta(q, a), a) = \delta(q_1, a) = q_2,$ $\delta(\delta(\delta(q, a), a), b) =$

- Every state on every symbol goes to a unique state
 - $\delta: Q \times \Sigma \to Q$ is a transition function
- ▶ Given a string $w \in \Sigma^*$ and a state $q \in Q$, iteratively apply δ
 - $\mathbf{w} = aab$
 - $\delta(q, a) = q_1, \, \delta(\delta(q, a), a) = \delta(q_1, a) = q_2,$ $\delta(\delta(\delta(q, a), a), b) = \delta(\delta(q_1, a), b) =$

- Every state on every symbol goes to a unique state
 - $\delta: Q \times \Sigma \to Q$ is a transition function
- ▶ Given a string $w \in \Sigma^*$ and a state $q \in Q$, iteratively apply δ
 - $\mathbf{v} = aab$
 - $\delta(q, a) = q_1, \, \delta(\delta(q, a), a) = \delta(q_1, a) = q_2,$ $\delta(\delta(\delta(q, a), a), b) = \delta(\delta(q_1, a), b) = \delta(q_2, b) = q_3$
 - $\hat{\delta}: Q \times \Sigma^* \to Q$ extension of δ to strings
 - $\hat{\delta}(q,\epsilon) = q$
 - $\hat{\delta}(q, wa) = \delta(\hat{\delta}(q, w), a)$

DFA: Transition Function on Words

DFA: Transition Function on Words

- $\delta(q, wa) = s = \delta(\hat{\delta}(q, w), a) = \delta(r, a)$
- $\hat{\delta}(q, wb) = t = \delta(\hat{\delta}(q, w), b) = \delta(r, b)$

DFA Acceptance

- $w \in \Sigma^*$ is accepted iff $\hat{\delta}(q_0, w) \in F$
- $w \in \Sigma^*$ is rejected iff $\hat{\delta}(q_0, w) \notin F$
- ▶ Any string $w \in \Sigma^*$ is either accepted or rejected by a DFA A
- $L(A) = \{ w \in \Sigma^* \mid \hat{\delta}(q_0, w) \in F \}$
- $ightharpoonup \Sigma^* = L(A) \cup \overline{L(A)}$

DFA States

- Each state is a bucket holding infinitely many words
- ▶ Thus we have good and bad buckets
- ▶ The buckets partition Σ^*
- Good buckets determine the language accepted by the DFA
- Words that land in bad buckets are not accepted by the DFA