Class 7: Machine Learning 1

Ayanna Kerr (PID: A17143404

Today we will start our multi-part exploration of some key machine learning methods. We will begin clustering - finding groupingsn in data and then dimensionality reduction.

Clustering

Let's start with "k-means" clustering The main function in base R for this 'kmeans()'.

```
# Make up some data
hist(rnorm(100000, mean =3))
```

Histogram of rnorm(1e+05, mean = 3)


```
tmp <- c(rnorm(30, -3),rnorm(30, +3))
x <- cbind( x = tmp, y = rev(tmp))
plot(x)</pre>
```


Now let's try out 'kmeans()'

```
km <- kmeans(x, centers = 2)
km</pre>
```

K-means clustering with 2 clusters of sizes 30, 30

Cluster means:

```
x y
1 2.828713 -2.993415
2 -2.993415 2.828713
```

Clustering vector:

Within cluster sum of squares by cluster:

[1] 64.83399 64.83399 (between_SS / total_SS = 88.7 %)

Available components:

- [1] "cluster" "centers" "totss" "withinss" "tot.withinss"
- [6] "betweenss" "size" "iter" "ifault"

attributes(km)

\$names

[1] "cluster" "centers" "totss" "withinss" "tot.withinss"

[6] "betweenss" "size" "iter" "ifault"

\$class

- [1] "kmeans"
 - Q. How many points in each cluster?

km\$size

- [1] 30 30
 - Q. What components of your result object details cluster assignment/membership?

km\$cluster

- - Q. What are centers/mean values of each cluster?

km\$centers

- x y 1 2.828713 -2.993415
- 2 -2.993415 2.828713
 - Q. Make a plot of your data showing your clustering results.

```
plot(x, col = c("red","blue"))
```



```
c(1:5) + c(100)
```

[1] 101 102 103 104 105

```
plot(x, col=km$cluster)
points(km$centers, col = "green", pch = 15, cex = 3)
```


Q. Run 'kmeans()' again and cluster in 4 groups and plot the results.

```
km4 <- kmeans(x, centers = 4)
plot(x, col=km4$cluster)</pre>
```


Hierarchical Clustering

This form of clustering aims to reveal the structure in your data by progressively grouping points into a ever smaller number of clusters.

The main function in base R is for this is called 'hclust()'. This function does not take our input data directly but wants a "distance matrix" that details how (dis)similar all our input points are to each other.

```
hc <- hclust(dist(x))
hc</pre>
```

Call:

hclust(d = dist(x))

 $\begin{array}{lll} \hbox{\tt Cluster method} & : & \hbox{\tt complete} \\ \hbox{\tt Distance} & : & \hbox{\tt euclidean} \end{array}$

Number of objects: 60

The printout above is not very useful (unlick that from kmeans) but there is a useful 'plot()' method.

```
plot(hc)
abline(h=10, col = "red")
```

Cluster Dendrogram

dist(x)
hclust (*, "complete")

To get my main result (my cluster membership vector) I need to "cut" my tree using the function 'cutree()'

```
grps <- cutree(hc,h = 10)
grps</pre>
```

```
plot(x, col = grps)
```


plot(x, col = cutree(hc,h = 6))

Principal Component Analysis (PCA)

The goal of PCA is to reduce the dimensionality of a dataset down to some smaller subsets oif new variables (called PCs) thata re a useful bases for further analysis, like visualization, clustering, etc.

```
url <- "https://tinyurl.com/UK-foods"
x <- read.csv(url)
x</pre>
```

	X	${\tt England}$	Wales	${\tt Scotland}$	${\tt N.Ireland}$
1	Cheese	105	103	103	66
2	Carcass_meat	245	227	242	267
3	Other_meat	685	803	750	586
4	Fish	147	160	122	93
5	Fats_and_oils	193	235	184	209
6	Sugars	156	175	147	139
7	Fresh_potatoes	720	874	566	1033
8	Fresh_Veg	253	265	171	143
9	Other_Veg	488	570	418	355
10	Processed_potatoes	198	203	220	187
11	Processed_Veg	360	365	337	334
12	$Fresh_fruit$	1102	1137	957	674
13	Cereals	1472	1582	1462	1494
14	Beverages	57	73	53	47
15	${\tt Soft_drinks}$	1374	1256	1572	1506
16	Alcoholic_drinks	375	475	458	135
17	Confectionery	54	64	62	41

```
nrow(x)
```

ncol(x)

[1] 17

[1] 5

```
x <- read.csv(url, row.names=1)
head(x)</pre>
```

	England	Wales	${\tt Scotland}$	N.Ireland
Cheese	105	103	103	66
Carcass_meat	245	227	242	267
Other_meat	685	803	750	586
Fish	147	160	122	93
Fats_and_oils	193	235	184	209
Sugars	156	175	147	139

dim(x)

[1] 17 4

```
barplot(as.matrix(x), beside=T, col=rainbow(nrow(x)))
```


The so-called "pairs" plot can be useful for small datasets:

```
# rainbow(nrow(x))
pairs(x, col=rainbow(nrow(x)), pch=16)
```


So the pairs plot is useful for small datasets but it can be lots of work to interpret and gets intractable for larger datasets.

So PCA to the rescue...

The main function to do PCA in base R is called 'prcomp()'. This function wants the transpose of our data in this case.

```
pca <- prcomp(t(x))
summary(pca)</pre>
```

Importance of components:

```
        PC1
        PC2
        PC3
        PC4

        Standard deviation
        324.1502
        212.7478
        73.87622
        3.176e-14

        Proportion of Variance
        0.6744
        0.2905
        0.03503
        0.000e+00

        Cumulative Proportion
        0.6744
        0.9650
        1.00000
        1.000e+00
```

```
attributes(pca)
```

```
PC1 PC2 PC3 PC4
England -144.99315 -2.532999 105.768945 -4.894696e-14
Wales -240.52915 -224.646925 -56.475555 5.700024e-13
Scotland -91.86934 286.081786 -44.415495 -7.460785e-13
N.Ireland 477.39164 -58.901862 -4.877895 2.321303e-13
```

A major PCA result is called a "PCA plot" (aka: score plot, biplot, PC1 vs PC2 plot, ordientation plot)

Another important output from PCA is called the "loadings" vector or the "rotation" component - this tells us how much the original variables (the foods in this case) contribute to the new PCs.

pca\$rotation

	PC1	PC2	PC3	PC4
Cheese	-0.056955380	0.016012850	0.02394295	-0.694538519
Carcass_meat	0.047927628	0.013915823	0.06367111	0.489884628
Other_meat	-0.258916658	-0.015331138	-0.55384854	0.279023718
Fish	-0.084414983	-0.050754947	0.03906481	-0.008483145
Fats_and_oils	-0.005193623	-0.095388656	-0.12522257	0.076097502
Sugars	-0.037620983	-0.043021699	-0.03605745	0.034101334
Fresh_potatoes	0.401402060	-0.715017078	-0.20668248	-0.090972715
Fresh_Veg	-0.151849942	-0.144900268	0.21382237	-0.039901917
Other_Veg	-0.243593729	-0.225450923	-0.05332841	0.016719075
Processed_potatoes	-0.026886233	0.042850761	-0.07364902	0.030125166
Processed_Veg	-0.036488269	-0.045451802	0.05289191	-0.013969507
Fresh_fruit	-0.632640898	-0.177740743	0.40012865	0.184072217
Cereals	-0.047702858	-0.212599678	-0.35884921	0.191926714
Beverages	-0.026187756	-0.030560542	-0.04135860	0.004831876
Soft_drinks	0.232244140	0.555124311	-0.16942648	0.103508492
Alcoholic_drinks	-0.463968168	0.113536523	-0.49858320	-0.316290619
Confectionery	-0.029650201	0.005949921	-0.05232164	0.001847469

PCA looks to be a super useful method for gaining some insight into high dimensional data that is difficult to examine in other ways.