Федеральное государственное автономное образовательное учреждение высшего образования

«Московский физико-технический институт (национальный исследовательский университет)»

Лабораторная работа №2.2.3

по курсу общей физики на тему:

«Измерение теплопроводности воздуха при атмосферном давлении»

> Работу выполнила: Назарова Екатерина (Б02-406)

Долгопрудный 13 апреля 2025 г.

Аннотация

Цель работы

Измерить коэффициент теплопроводности воздуха при атмосферном давлении в зависимости от температуры.

Перечень используемого оборудования

- Цилиндрическая колба с натянутой по оси платиновой нитью;
- термостат Witeg WCR-22 (точность поддержания температуры $\pm 0, 1^{\circ}$ C);
- вольтметр B7-78/1 (погрешность (0,009U+0,0010 B)/100 при диапазоне 1 B, (0,012U+0,002 B)/100 при диапазоне 10 B);
- амперметр B7-78/3 (погрешность (0,05I+1 мA)/100 при диапазоне 100 мA);
- эталонное сопротивление;
- источник постоянного напряжения;
- магазин сопротивлений.

Теоретические сведения

Теплопроводность — процесс передачи тепловой энергии от нагретых частей системы к холодным за счет хаотического движения частиц (в данном случае — молекул воздуха) и непосредственной передачи кинетической энергии от быстрых к медленным при столкновениях. Закон Фурье связывает плотность потока энергии q и градиент температуры ∇T через коэффициент теплопроводности k: $\vec{q} = -k \cdot \nabla T$. Для газов выполняется

$$k \sim \lambda \bar{v} n c_V,$$
 (1)

где λ — длина свободного пробега, $\bar{v}=\sqrt{\frac{8RT}{\pi\mu}}$ — средняя скорость теплового движения, μ — молярная масса, n — концентрация молекул, $c_V=\frac{i}{2}k_{\rm B}$ — теплоемкость при постоянном объеме в расчете на одну молекулу (i — количество степеней свободы, $k_{\rm B}$ — постоянная Больцмана). При этом $\lambda=1/n\sigma$, где σ — эффективное сечение столкновений молекул (если их считать шариками диаметра d, то $\sigma=\pi d^2$), тогда для одного и того же газа k зависит только от T, а в предположении $\sigma(T)=const$ получается $k\sim \bar{v}\sim \sqrt{T}$.

Рассмотрим стационарный режим в цилиндрическом цилиндре длины L и радиуса $r_0 \ll L$, температура стенок которого поддерживается равной T_0 и по оси которого натянута нить малого радиуса r_1 с температурой T_1 . В этом случае можно пренебречь теплообменом через торцы, считать, что градиент температуры имеет только горизонтальную (радиальную) составляющую. Поток тепла через цилиндрическую поверхность любого радиуса $r_1 \leqslant r \leqslant r_0$ в стационарном режиме постоянен и равен теплу, выделяемому нитью:

$$Q = 2\pi r L \cdot (-k \frac{dT}{dr}).$$

Если перепад температур от центра к границам сосуда небольшой, то коэффициент теплопроводности можно считать постоянным: $k=k(T_0)=const.$ Тогда при $\Delta T=T_1-T_0$ интегрированием получим

$$Q = \frac{2\pi L}{\ln r_0/r_1} k\Delta T. \tag{2}$$

Получаем поток тепла, пропорциональный разности температур – закон Ньютона-Рихмана.

Оценим теперь характерное время установления стационарного состояния. Для этого рассмотрим некий слой толщины a, площади сечения S. Если на двух его поверхностях возникает разница температур ΔT , то возникающую в процессе установления равновесия плотность потока энергии из закона Фурье можно оценить как $q = k\Delta T/a$, при этом она связана с полным количеством теплоты, полученным за время τ установления равновесия как $qS\tau = Q \approx nSac_P \cdot \Delta T$, где c_P — теплоемкость в расчете на 1 молекулу. Тогда

$$au pprox rac{na^2c_P}{k} = rac{a^2}{\chi}$$
, где $\chi = rac{k}{nc_P}$ — коэффициент температуропроводности. (3)

При нормальных условиях для воздуха $\chi \approx 0,2~{\rm cm^2/c}$, так что при a порядка $1~{\rm cm}~\tau$ — несколько секунд. Более точную оценку здесь производить нецелесообразно.

В приведенных выше рассуждениях не учитывался температурный скачок около нити, поскольку $r_0\gg r_1\gg \lambda$. Также не учитывалась теплопередача конвекцией и излучением. Влияние первой минимизируется путем вертикализации цилиндра (тогда распределение температуры будет аксиально-симметричным), излучение можно оценить по закону Стефана-Больцмана: $Q_{\text{изл}}=\epsilon S\sigma_c(T_1^4-T_0^4)\approx 4\epsilon S\sigma_c T_0^3\Delta T$, где $\sigma_c=5,67\cdot 10^{-8}~\text{BT/(M}^2\text{K}^4)$ — постоянная Стефана-Больцмана, ϵ — «коэффициент черноты» нити (порядка 0,1), S — площадь поверхности нити. $Q_{\text{изл}}\approx 4\cdot 0,1\cdot (2\pi r_1 L)\cdot \sigma_c T_0^3\Delta T\sim 3~\text{мВт.}$ В процессе работы убедимся в том, что это значение много меньше тепловой мощности из закона Джоуля-Ленца.

Экспериментальная установка

Рис. 2: Схема установки

Установка состоит из длинного стеклянного цилиндра, заполненного воздухом, сообщающимся с атмосферой через маленькое отверстие, окруженного кожухом, по которому циркулирует вода из термостата. Таким образом температура стенок поддерживается постоянной и равной температуре термостата. По оси цилиндра протянута металлическая нить, подключенная по четырехпроводной системе в электрическую схему с источником напряжения, амперметром, вольтметром и магазином сопротивлений. Нить одновременно является источником тепла

(Q=UI) и способом измерения собственной температуры по температурной зависимости её сопротивления $R_H=U/I$. Непосредственно измеряя U и I при помощи мультиметров, можно построить нагрузочные кривые $R_H(Q)$, из которых, экстраполируя $Q\to 0$, можно найти сопротивление нити при температуре термостата. Далее, полагая температурную зависимость сопротивления нити линейной $(R_H(t)=R_{273}(1+\alpha t),$ где R_{273} - сопротивление при 273 K, t - температура нити в °C), можно будет найти dR_H/dT . (Во всей работе температура T считается в K, t - в °C)

Ход работы

1. Провели предварительные расчеты параметров опыта. Используя параметры установки $2r_0=(0,7\pm0,1)$ см, $2r_1=(0,05\pm0,01)$ мм, $L=(40\pm1)$ см, приняв максимальную разность температур $\Delta T_{max}=30$ К и оценивая $k\sim25$ мВт/(К·м), рассчитали по (2) максимальную мощность для подачи на нить:

$$Q_{max} = \frac{2\pi \cdot 0, 4}{\ln 7/0, 05} \cdot 25 \cdot 10^{-3} \cdot 30 \text{ BT} = 0,381 \text{ BT}.$$

Используя приближенное значение сопротивления нити $R_H \sim 20$ Ом, рассчитали максимальное значение тока и напряжения:

$$I_{max} = \sqrt{Q_{max}/R_H} = \sqrt{0,381/20} \text{ A} = 138 \text{ MA},$$

 $U_{max} = \sqrt{Q_{max} \cdot R_H} = \sqrt{0,381 \cdot 20} \text{ B} = 2,76 \text{ B}.$

- 2. Подготовили установку к работе: убедились, что схема установке соответствует заявленной, на магазине сопротивлений установили заведомо достаточно большое сопротивление (> 90 кОм), при котором ток через нить будет практически нулевой. После этого включили амперметр (в режим 100 мА) и вольтметр, включили источник питания, установили на нем указанное напряжение (3,8 В). Включив термостат, убедились, что его температура близка к комнатной (23,0°C) и стабильна.
- 3. Q_H мощность, выделяющаяся на нити, R_M сопротивление магазина сопротивлений, $\varepsilon=3,8$ В напряжение на источнике питания. Тогда из закона Джоуля-Ленца можно записать

$$Q_H = I^2 R_H = \frac{\varepsilon^2}{(R_H + R_M)^2} R_H \Rightarrow R_M = \varepsilon \sqrt{R_H / Q_H} - R_H.$$

Отсюда можно вычислить необходимые R_M для 11 точек мощности в диапазоне $0-Q_{max}$:

 Q, м B т											П
R_M, Ω	65	40	29	22	18	15	12	10	8,3	7,5	ľ

Однако во время работы расчеты произвелись по другой формуле, давшей неправильные результаты. Поэтому подбор сопротивлений при комнатной температуре термостата производился полуинтуитивно, но с обязательным отслеживанием того, что на нити не выделяется больше Q_{max} , ток не превышает 100 мА (таков диапазон измерений в установленном режиме работы амперметра), а напряжение 2,76 В.

При фиксированной температуре термостата для 11 значений R_M , постепенно уменьшавшихся, после установления теплового равновесия (около 30 секунд), когда показания становились стабильны, измерялись ток I и напряжение U на нити, из которых тут же вычислялись сопротивление нити и выделяемая на ней мощность (их относительные погрешности $\varepsilon_{R_H} = \varepsilon_Q = \sqrt{\varepsilon_I^2 + \varepsilon_U^2}$). Во время измерений также отслеживалась температура термостата: она не изменялась более, чем на $0,1^{\circ}$ С. Результаты этих измерений приведены в таблицах 3 и 4 в конце работы.

4. Снова установили $R_M > 90$ кОм (при этом I и U упали почти до 0).

- 5. На термостате установили новую температуру (после $23,0^{\circ}\text{C} 30,0^{\circ}\text{C}$, далее с шагом $10,0^{\circ}\text{C}$ до 80°C), дождались нагрева и установления нового стационарного состояния (10-15 минут). После этого повторили измерения нагрузочной кривой при новой температуре (пункты 3 и 4).
- 6. По завершении измерений снова установили наибольшее сопротивление R_M , на термостате выставили 23,0°C. Выключили питание амперметра и вольтметра.
- 7. По полученным данным построили графики зависимости $R_H(Q)$ для каждой из 7 температур, убедились в их линейности. Методом МНК определили коэффициент наклона dR_H/dQ , сопротивление при температуре термостата R_0 и случайные погрешности этих величин. Результаты в таблице 1.

Рис. 3: График зависимости R(Q) при разных температурах термостата (указана в °C)

8. По полученным данным построили график зависимости сопротивления проволоки от температуры, убедились в его линейности. По МНК нашли коэффициент наклона $dR/dT=70,91~{\rm MOm/K},~\sigma^{{\rm случ}}dR/dT=11~{\rm MOm/K},$ свободный коэффициент $R_{273}=17,8367~{\rm Om},~\sigma^{{\rm случ}}R_{273}=0,0021~{\rm Om}.$ В качестве оценки приборной погрешности R_{273} взяли среднюю погрешность точек $R_0~(\bar{\varepsilon}_{R_0}=\sqrt{\bar{\varepsilon}_{R_H}^2+\bar{\varepsilon}_{R_0}^{{\rm случ}~2}})$ и получили полную погрешность $\Delta R_{273}=0,017~{\rm Om}.$

Отсюда получили $\alpha = \frac{1}{R_{273}} \frac{dR}{dT} = (3,975\pm0,008) \cdot 10^{-3} \ 1/\mathrm{K}$, где $\varepsilon_{\alpha} = \sqrt{\varepsilon_{R_{273}}^2 + \varepsilon_{dR/dT}^{\mathrm{cnyq}-2} + \bar{\varepsilon}_{R_0}^2 + \bar{\varepsilon}_T^2}$ ($\varepsilon_T = 0,1$ °C/(t+273°C)). При этом табличное значение $3,90 \cdot 10^{-3} \ 1/\mathrm{K}$. Эти значения расходятся на 2%.

Рис. 4: График зависимости сопротивления платиновой нити от температуры

9. Используя найденные коэффициенты наклона для каждой температуры термостата рассчитали $\frac{dQ}{d(\Delta T)} = \frac{dR/dT}{dR/dQ}$ (см. (2)), при этом $\varepsilon_{dQ/dT} = \sqrt{\varepsilon_{dR/dT}^{\text{случ}-2} + \varepsilon_{dR/dQ}^{\text{случ}-2} + 2\bar{\varepsilon}_{R_0}^2 + \bar{\varepsilon}_T^2 + \bar{\varepsilon}_Q^2}$. Используя эти результаты, также вычислили по (2) коэффициенты теплопроводности k, для них $\varepsilon_k = \sqrt{\varepsilon_{dQ/dT}^2 + \varepsilon_L^2 + \frac{\varepsilon_{r_0}^2 + \varepsilon_{r_1}^2}{\ln^2(r_0/r_1)}}$. Результаты представлены в таблице 2.

Рис. 5: График зависимости коэффициента теплопроводности от температуры

10. Построили график k(t). Можно видеть, что с табличными значениями в пределах погрешности полученные коэффициенты совпадают (кроме 1 точки), но наши значения систематически ниже.

Предположили степенную зависимость $k \sim T^{\beta}$. С учетом того, что $dQ/d(\Delta T)$ и k отличаются умножением на постоянную по температуре величину $\frac{\ln r_0/r_1}{2\pi L}$ (по крайней мере, у нас

не было возможности отслеживать изменение геометрических параметров с ростом температуры), выражающуюся через параметры с большими погрешностями, было решено построить график зависимости $\ln\frac{dQ}{d(\Delta T)}(\ln T)$, отличающийся от $\ln k(\ln T)$ лишь смещением по оси, которое нам не важно:

Рис. 6: График зависимости $\ln dQ/d(\Delta T)$ от $\ln T$

Расчет погрешностей точек: $\sigma_{\ln dQ/d(\Delta T)} = \varepsilon_{dQ/d(\Delta T)}, \ \sigma_{\ln T} = \varepsilon_T$. На график нанесены полосы погрешностей по обеим осям, и видно, что по оси X они сильно меньше. Поэтому методом хи-квадрат нашли и построили наилучшую прямую, на неё с учетом полос погрешностей легло 5 из 7 точек (5/7>2/3). При этом коэффициент наклона получился $\beta=0,976,$ $\sigma_{\beta}^{\text{случ}} = \left((\langle x^2 \rangle - \langle x \rangle^2) \sum_{i=1}^7 1/\sigma_{y_i}^2\right)^{-1/2} = 0,025$ (здесь $\langle \ldots \rangle$ – суммирование с весами σ_{y_i}), $\varepsilon_{\beta}^{\text{приб}} = \sqrt{\bar{\varepsilon}_{x_i}^2 + \bar{\varepsilon}_{y_i}^2} \ll \varepsilon_{\beta}^{\text{случ}}$. Итого: $\beta=0,976\pm0,025, \quad \chi^2=23, \quad \chi^2/(7-2)=4,6>2$.

Выводы

В результате работы получены значения для коэффициента теплопроводности воздуха в диапазоне $20~^{\circ}\text{C}-80~^{\circ}\text{C}$, которые преимущественно совпали с табличными значениями.

Измеренные нагрузочные кривые платиновой нити очень хорошо легли на прямые, позволили вычислить коэффициенты с относительной погрешностью не более десятых долей процента.

Кроме того, в качестве промежуточного результата была получена температурная зависимость сопротивления платиновой нити, которая также хорошо легла на прямую и дала температурный коэффициент сопротивления, отличающийся от табличного всего на 2% (это может быть связано с неидеально чистым материалом нити).

График зависимости коэффициента теплопроводности воздуха от температуры в двойном логарифмическом масштабе лег на прямую уже с трудом: на построенную по методу χ^2 хорошо легли 3 точки, ещё 2 задевают её концами полос погрешности, оставшиеся 2 не пересекают прямую даже так (то есть формально критерий на 2/3 точек выполнен). При этом видно (особенно, на графике k(t) в исходных координатах при сравнении с табличными значениями), что больше всех выбивается третья точка - снятая при температуре термостата 40,3 °C (при том, что установлена на нем была температура ровно 40,0 °C). Вероятно, в этой серии измерений не вполне было достигнуто стационарное состояние.

Полученное значение β почти в 2 раза превышает предсказанное наивно упрощенной теорией значение 1/2. Это говорит о том, что эффективное сечение столкновений молекул всё-таки зависит от температуры (из полученного результата также следует, что степень этой зависимости

в исследуемом температурном диапазоне должна быть чуть меньше 1/2, но ввиду довольно сомнительной линейности итогового графика такое заявление кажется слишком громким). Большое значение χ^2 же свидетельствует о том, что погрешности занижены, что имеет смысл, т.к. предыдущие результаты наводят на мысль о том, что наряду с довольно маленькой приборной и случайной погрешностью (из-за хорошего оборудования) надо учитывать и модельную погрешность: что коэффициент теплопроводности меняется в пределах цилиндра, например.

Таблица 1: Коэффициенты нагрузочных прямых

t, °C	$R_0, \ \Omega$	$\sigma_R^{\text{случ}}, \ \Omega$	$dR/dQ,~\Omega/{ m Bt}$	$\sigma_{dR/dQ}^{ m cлу q}, \Omega/{ m B_T}$	$arepsilon_{R_H}^{ ext{приб}} = arepsilon_Q^{ ext{приб}}$
23,0	19,4741	0,0014	5,60	0,03	0,0008
30,0	19,9656	0,0009	5,438	0,022	0,0008
40,3	20,6881	0,0007	5,394	0,016	0,0008
50,0	21,3775	0,0005	5,153	0,009	0,0008
60,0	22,0891	0,0004	5,026	0,011	0,0008
70,1	22,8017	0,0003	4,874	0,006	0,0008
80,0	23,5185	0,0007	4,720	0,012	0,0008

Таблица 2: Расчет коэффициентов теплопроводности и $dQ/d(\Delta T)$

t, °C	$\frac{dR}{dQ}, \frac{\Omega}{\mathrm{Br}}$	$\frac{dQ}{d(\Delta T)}, \frac{_{ m MBT}}{ m K}$	$\sigma_{rac{dQ}{d(\Delta T)}}, rac{{}_{ m MBT}}{ m K}$	$k, \frac{B_T}{M \cdot K}$	$\sigma_k, \frac{\mathrm{B_T}}{\mathrm{M} \cdot \mathrm{K}}$	$\ln T$	$\ln \frac{dQ}{d(\Delta T)}$	σ_x	σ_y
23,0	5,60	12,67	0,07	0,0249	0,0014	5,6904	-4,369	0,0003	0,006
30,0	5,438	13,04	0,06	0,0256	0,0014	5,7137	-4,340	0,0003	0,005
40,3	5,394	13,15	0,05	0,0258	0,0014	5,7472	-4,332	0,0003	0,004
50,0	5,153	13,76	0,04	0,0271	0,0015	5,7777	-4,2859	0,0003	0,0027
60,0	5,026	14,11	0,04	0,0277	0,0015	5,8081	-4,261	0,0003	0,003
70,1	4,874	14,55	0,04	0,0286	0,0016	5,8380	-4,2303	0,0003	0,0024
80,0	4,720	15,02	0,05	0,0295	0,0016	5,8665	-4,198	0,0003	0,003

Таблица 3: Результаты измерений и данные для графика $R_H(Q)$, продолжение в таблице 4

R_M, Ω	U, B	I, мА	R_H, Ω	Q, м B т	ΔQ , м B т	$\Delta R_H, \Omega$									
	23,0 °C														
361	0,19552	10,033	$19,\!49$	1,961	0,003	0,03									
180	0,36828	18,876	19,512	6,952	0,007	0,020									
43	1,1190	56,436	19,828	63,15	0,04	0,014									
25	1,5302	76,021	20,129	116,33	0,08	0,013									
120	0,52134	26,664	19,551	13,900	0,012	0,017									
90	0,65783	33,576	19,591	22,086	0,018	0,016									
72	0,78089	39,744	19,648	31,036	0,024	0,015									
60	0,89257	45,293	19,707	$40,\!43$	0,03	0,014									
52	0,98581	49,926	19,745	49,22	0,03	0,014									
36	1,2494	62,717	19,921	$78,\!36$	0,05	0,013									
20	1,7021	83,983	20,267	142,95	0,09	0,013									

Таблица 4: Продолжение таблицы 3

$\Delta R_H, \Omega$		0,03	0,018	0,017	0,016	0,015	0,015	0,015	0,014	0,014	0,014	0,014		0,03	0,021	0,018	0,017	0,016	0,016	0,016	0,015	0,015	0,015	0,015		0,04	0,023	0,019	0,018	0,017	0,017	0,016	0,016	0,016	0,016	0,015
ΔQ , mBT $\mid \Delta$		0,003	0,013		0,024	0,03	0,04	0,04	0,06	0,06	0,08	0,09		0,003	0.010		0,026	0.03	0,04	0.04	0,05	0,06	0.07	0,09		0,004		0,020	0,027	0.04	0.05	0.06	0,02	0,08	0,09	0,11
Q, MBT	.	2,069	14,481	22,899	32,040	41,56	50,46	60,74	82,14	97,23	116,84	142,93	F \	2,193	10,486	23,876	34,636	42,97	54,70	62,44	71,96	83,81	98,81	143,74	5 0	2,318	10,987	24,809	35,810	49,67	63,90	85,23	100,11	119,19	144,20	177,76
	40,3 °C	20,70	20,764	20,811	20,862	20,914	20,962	21,019	21,133	21,214	21,317	21,455	60,0°C	22,10	22,140	22,208	22,264	22,306	22,365	22,403	22,452	22,513	22,586	22,809	$80,0{}^{\circ}\mathrm{C}$	23,52	23,573	23,636	23,689	23,753	23,821	23,919	23,992	24,083	24,201	24,355
I, MA		9,9982	26,4084	33,1711	39,1896	44,5774	49,0646	53,7551	62,3418	67,7008	74,0333	81,6205		9,9627	21,7623	32,7886	39,4428	43,8911	49,4562	52,7931	56,6133	61,0126	66,1424	79,3858		9,9262	21,5886	32,3985	38,8798	45,7304	51,7947	59,6924	64,5976	70,3494	77,1909	85,4328
U, B		$0,\!20692$	$0,\!54835$	0,69032	0,81756	0,93228	1,02849	1,12987	1,3175	1,4362	1,5782	1,7512		0,22017	0,48182	0,72818	0,87814	0,97902	$1,\!10608$	1,1827	1,2711	1,3736	1,4939	1,8107		$0,\!23351$	0,50891	0,76576	0,92104	1,08624	1,2338	1,4278	1,5498	1,6942	1,8681	2,0807
R_M, Ω		361	120	06	7.5	09	52	45	35	30	25	20		361	150	06	20	09	20	45	40	35	30	20		361	150	90	02	55	45	35	30	25	20	15
$\Delta R_H, \Omega$		0,03	0,021	0,018	0,016	0,015	0,015	0,014	0,014	0,014	0,014	0,013		0,03	0,021	0,017	0,016	0,016	0,015	0,015	0,015	0,014	0,014	0,014		0,03	0,022	0,019	0,018	0,017	0,016	0,016	0,016	0,015	0,015	0,015
ΔQ , MBT		0,003	0,007	0,012	0,018	0,024	0,03	0,04	0,04	0,05	90,0	0,09		0,003	0,010	0,019	0,025	0,03	0,04	0,04	0,06	0,02	0,09	0,11		0,003	0,010	0,020	0,027	0,04	0,04	0,06	0,02	0,08	0,09	0,11
Q, MBT	- \	2,006	7,092	14,150	22,444	31,492	40,95	49,81	60,19	69,70	68,96	143,35		2,130	10,222	23,389	32,658	52,000 42,27 51,24 61,64 82,99 105,23	82,99 105,23	105,23	143,38	170,54	アン	$2,\!256$	10,736	24,346	35,229	49,00	63,18	84,55	99,50	118,70	143,99	170,37		
	30,0 °C	19,98	19,999	20,047	20,084	20,135	20,187	20,240	20,296	20,344	20,493	20,743	50,0°C	21,39	21,428	21,498	21,546	21,596	21,643	21,696	21,807	21,921	22,115	22,254	$70,1^{\circ}\mathrm{C}$	22,81	22,852	22,920	22,974	23,040	23,111	$23,\!216$	23,288	23,380	23,503	23,631
I, mA		10,0214	18,8311	26,5682	33,4290	39,5479	45,0393	49,6076	54,4582	58,5320	68,7602	83,1312		9,9808	21,8407	32,9842	38,9323	44,2416	48,6589	53,2996	61,6898	69,2847	80,5183	87,5395		9,9441	21,6752	32,5916	$39,\!1595$	46,1178	52,2876	60,3471	65,3633	71,2537	78,2725	84,9082
U, \mathbf{B}		0,20020	$0,\!37655$	0,53262	0,67136	0,79632	0,90917	1,00409	1,10532	1,19078	1,4091	1,7244		0,21345	0,46801	0,70909	0,83884	0,95545	1,05312	1,1564	1,3453	1,5188	1,7807	1,9481		$0,\!22685$	0,49533	0,74701	0,89964	1,06257	1,2084	1,4010	1,5222	1,6659	1,8396	2,0065
R_M, Ω		361	180	120	06	72	09	52	45	40	30	20		361	150	06	72	09	52	45	35	28	20	16		361	150	06	02	55	45	35	30	25	20	16