Empirical Economics and Econometrics

Jean-Pierre Florence

I have a question!

Contents

1	Linear e	Linear equation in functional space												3				
	1.1 Spa	ces																3
	1.2 Lin	ear operator																5

Recall that our problem is to solve the following equation as an inverse problem

$$\mathcal{A}(F,\phi) = 0 \Rightarrow K_F \phi = r_F$$

where K_F is a linear operator and r_F is a known function. We will solve this equation in a functional space. We will use the following notation

1 Linear equation in functional space

We will introduce the following terminology in the context of functional spaces:

- Spaces
- Linear operator
- Solution of linear equations

1.1 Spaces

Let's define a space (of functions) \mathcal{E} on \mathbb{R} as a linear space if it satisifies the following properties:

- $\forall f, g \in \mathcal{E}, f + g \in \mathcal{E}$
- $\forall f \in \mathcal{E}, \forall \alpha \in \mathbb{R}, \alpha f \in \mathcal{E}$

Now let's define a norm on $\mathcal E$ as a function $\lVert \cdot \rVert : \mathcal E \to \mathbb R$ such that

- $||f|| \ge 0$ and ||f|| = 0 if and only if f = 0
- $\|\alpha f\| = |\alpha| \|f\|$
- $||f + g|| \le ||f|| + ||g||$

Definition 1.1 (complete space). A space \mathcal{E} is called a complete space if every Cauchy sequence in \mathcal{E} converges to a limit in \mathcal{E} .

Definition 1.2 (Banach space). A space \mathcal{E} is called a Banach space if it is a complete space with respect to the norm $\|\cdot\|$.

Definition 1.3 (scalar product). A scalar product on \mathcal{E} is a function $\langle \cdot, \cdot \rangle : \mathcal{E} \times \mathcal{E} \to \mathbb{R}$ such that

- $\langle f, g \rangle = \langle g, f \rangle$
- $\bullet \ \langle \alpha f, g \rangle = \alpha \, \langle f, g \rangle$
- $\langle f + q, h \rangle = \langle f, h \rangle + \langle q, h \rangle$
- ullet $\langle f,f \rangle \geq 0$ and $\langle f,f \rangle = 0$ if and only if f=0

If \mathcal{E} is equipped with a scalar product, then it is a Hilbert space.

Definition 1.4 (Hilbert space). A space \mathcal{E} is called a Hilbert space if it is a complete space with respect to the norm $\|\cdot\|$ induced by the scalar product $\langle\cdot,\cdot\rangle$.

The relationship between the norm and the scalar product is given by the following equation:

$$||f|| = \sqrt{\langle f, f \rangle}$$

Remark. A Banach space B is a complete normed vector space. In terms of generality, it lies somewhere in between a metric space M (that has a metric, but no norm) and a Hilbert space H (that has an inner-product, and hence a norm, that in turn induces a metric).

Example 1.1. $L^p\left(\Omega,\mathcal{F},\mu\right)$ is a space of functions such that $\int |f|^p < \infty$. It is a Banach space with the norm $\|f\|_p = \left(\int |f|^p\right)^{1/p}$. Also if μ is a probability measure, then we have the inclusion $L^p\left(\Omega,\mathcal{F},\mu\right) \subset L^q\left(\Omega,\mathcal{F},\mu\right)$ for $p \geq q$.

Definition 1.5 (Sobolev space). Let $\Omega \subset \mathbb{R}^d$ be an open set. The Sobolev space $W^{k,p}\left(\Omega\right)$ is the space of functions $f:\Omega \to \mathbb{R}$ such that

$$||f||_{W^{k,p}} = \left(\sum_{|\alpha| \le k} \int_{\Omega} |\partial^{\alpha} f|^{p}\right)^{1/p} < \infty$$

where α is a multi-index and $\partial^{\alpha} f$ is a partial derivative of order $|\alpha|$.

Definition 1.6 (subspace). Let \mathcal{E} be a space and \mathcal{H} be a subspace of \mathcal{E} . Then \mathcal{H} is a subspace of \mathcal{E} if it satisfies the following properties:

- $\forall f, g \in \mathcal{H}, f + g \in \mathcal{H}$
- $\forall f \in \mathcal{H}, \forall \alpha \in \mathbb{R}, \alpha f \in \mathcal{H}$

Proposition 1.1. calh is closed if for every sequence $(f_n)_{n\in\mathbb{N}}$ in \mathcal{H} such that $f_n\to f$ in \mathcal{E} , we have $f\in\mathcal{H}$.

Remark. In a finite dimensional space, every subspace is closed. However, in an infinite dimensional space, a subspace can be closed or not.

Definition 1.7 (Orthogonal subspace). Let \mathcal{E} be a space and \mathcal{H} be a subspace of \mathcal{E} . Then \mathcal{H}^{\perp} is the orthogonal subspace of \mathcal{H} if

$$\mathcal{H}^{\perp} = \{ f \in \mathcal{E} : \langle f, g \rangle = 0, \forall g \in \mathcal{H} \}$$

Remark. The orthogonal subspace of a subspace is always closed.

1.2 Linear operator

Definition 1.8 (linear operator). Let \mathcal{E} and \mathcal{H} be two Hilbert spaces (equipped with scalar product). A linear operator $K: \mathcal{E} \to \mathcal{H}$ is a function such that

$$K\left(\alpha_1\phi_1 + \alpha_2\phi_2\right) = \alpha_1 K\phi_1 + \alpha_2 K\phi_2$$

for all $\phi_1, \phi_2 \in \mathcal{E}$ and $\alpha_1, \alpha_2 \in \mathbb{R}$.

Example 1.2. Let X,Y,Z be three random variables defined on the $(\Omega,\mathcal{F},\mathbb{P})$. Let $X=Y\times Z$. We construct three L^2 spaces L^2_X,L^2_Y,L^2_Z . Define a linear operator K such that $K\phi=\mathbb{E}\left(\phi(y)\mid Z=z\right)$. Then K is a linear operator from L^2_Y to L^2_Z .

For a linear operator, we define the corresponding subspaces defined as domain, range and kernel as follows:

Definition 1.9 (domain, range and kernel). Let \mathcal{E} and \mathcal{H} be two Hilbert spaces and $K: \mathcal{E} \to \mathcal{H}$ be a linear operator. Then

• The domain of K is defined as

$$\mathcal{D}(K) = \{ \phi \in \mathcal{E} : K\phi \in \mathcal{H} \}$$

• The range of K is defined as

$$\mathcal{R}(K) = \{ K\phi : \phi \in \mathcal{M}(K) \}$$

The kernel of K is defined as

$$\mathcal{N}(K) = \{ \phi \in \mathcal{M}(K) : K\phi = 0 \}$$

For completeness, we define injection and surjection as follows:

Definition 1.10 (injection and surjection). Let \mathcal{E} and \mathcal{H} be two Hilbert spaces and $K: \mathcal{E} \to \mathcal{H}$ be a linear operator. Then

- K is called an injection if for all $\phi_1, \phi_2 \in \mathcal{E}$, $K\phi_1 = K\phi_2$ implies $\phi_1 = \phi_2$.
- K is called a surjection if for all $h \in \mathcal{H}$, there exists $\phi \in \mathcal{E}$ such that $K\phi = h$.

Boundness and continuity

Definition 1.11 (boundness). Let \mathcal{E} and \mathcal{H} be two Hilbert spaces and $K: \mathcal{E} \to \mathcal{H}$ be a linear operator. Then K is called bounded if there exists a constant C > 0 such that

$$||K\phi||_{\mathcal{H}} \le C \, ||\phi||_{\mathcal{E}}$$

for all $\phi \in \mathcal{E}$.

Definition 1.12 (continuity). Let \mathcal{E} and \mathcal{H} be two Hilbert spaces and $K: \mathcal{E} \to \mathcal{H}$ be a linear operator. Then K is called continuous if for all $\phi_n \to \phi$ in \mathcal{E} , we have $K\phi_n \to K\phi$ in \mathcal{H} .

We will look at an example where k is not continuous.

Example 1.3. Let $\mathcal{E} = \mathcal{C}^0_{[0,1]}$ be the space of continuous functions on [0,1]. Define a linear operator $K: \mathcal{E} \to \mathbb{R}$ such that $K\phi = \phi(x_0)$.

Adjoint operator Similar to the transpose of a matrix, we define the adjoint operator of a linear operator.

Definition 1.13 (adjoint operator). Let $\mathcal E$ and $\mathcal H$ be two Hilbert spaces and $K:\mathcal E\to\mathcal H$ be a linear operator. Then the adjoint operator $K^*:\mathcal H\to\mathcal E$ is defined as

$$\langle K\phi, h \rangle_{\mathcal{H}} = \langle \phi, K^*h \rangle_{\mathcal{E}}$$

for all $\phi \in \mathcal{E}$ and $h \in \mathcal{H}$.

Remark. We can show that matrix transpose is a special case of adjoint operator. For example, let A be a matrix of dimension $m \times n$ and x, y be vectors of dimension n, m respectively. Then we have $\langle Ax, y \rangle = (Ax)^\top y = x^\top A^\top y = \langle x, A^*y \rangle$.

Example 1.4 (integral operator). Let $\mathcal{E}=\mathcal{C}^0\left([0,1]\right)=\mathcal{H}$. Define a linear operator $K:\mathcal{E}\to\mathcal{H}$ such that $K\phi\left(x\right)=\int_0^1\phi\left(y\right)k\left(x,y\right)dy=h\left(y\right)$ where $k\left(x,y\right)$ is a given function. Then $\langle K\phi,h\rangle_{\mathcal{H}}=\int_0^1\int_0^1\phi\left(y\right)k\left(x,y\right)dydx=\int_0^1\int_0^1k\left(x,y\right)\phi\left(y\right)dxdy=\langle\phi,K^*h\rangle_{\mathcal{E}}.$ Then we have $K^*h\left(x\right)=\int_0^1k\left(x,y\right)h\left(y\right)dy.$ We say K is **self-adjoint** if $k\left(x,y\right)=k\left(y,x\right)$, that is $K^*=K.$