Logistic Regression

Matthew Engelhard

features $x \rightarrow$ prediction y: a predictive model

End goal: predict y from x

Simple models often work well for clinical data!

x, data/features for a subject or patient

End goal: predict odds of hospital mortality (APACHE III)

Can we use a linear model?

$$z_i = b_1 x_{i1} + b_2 x_{i2} + \dots + b_M x_{iM}$$

The logistic function converts z_i to a probability

$$z_i = b_1 x_{i1} + b_2 x_{i2} + \dots + b_M x_{iM} + \dots + b_0$$

Extra Constant (i.e. intercept) (i.e. bias)

The logistic function converts z_i to a probability

$$z_i = b_1 x_{i1} + b_2 x_{i2} + \dots + b_M x_{iM} + \dots + b_0$$

$$p(y_i = 1 | x_i) = \sigma(z_i) = \frac{\exp(z_i)}{1 + \exp(z_i)}$$

 \square Large and positive z_i indicates that event $y_i = 1$ is likely

 \square Large and negative z_i indicates that event $y_i = 0$ is likely

Logistic Regression: a linear model with a logistic "link" function that converts the prediction to a probability

Logistic Regression: a linear model with a logistic "link" function that converts the prediction to a probability

$$p_i = \sigma(b_1 x_{i1} + b_2 x_{i2} + \dots + b_M x_{iM})$$

Logistic Regression

$$p_i = \sigma(b_1 x_{i1} + b_2 x_{i2} + \dots + b_M x_{iM})$$

Logistic Regression

$$p_i = \sigma(b_1 x_{i1} + b_2 x_{i2} + \dots + b_M x_{iM})$$

ICU Mortality Prediction

A clinical example

Example: ICU Mortality Prediction

• Outcome:

$$y_i = \begin{cases} 1, \text{ patient } i \text{ dies} \\ 0, \text{ patient } i \text{ lives} \end{cases}$$

• Features: On admission, what is patient i's {age, sex, temperature, blood pressure, ... }

 x_i , features for patient i

Example: ICU Mortality Prediction

• Outcome:

$$y_i = \begin{cases} 1, \text{ patient } i \text{ dies} \\ 0, \text{ patient } i \text{ lives} \end{cases}$$

• Features: On admission, what is patient *i*'s: {1: age, 2: sex, 3: temperature, 4: blood pressure ... }

$$z_i = b_1 x_{i1} + b_2 x_{i2} + \dots + b_M x_{iM} + b_0$$

$$\uparrow$$
Age
Blood Pressure

• If increased age increases odds of mortality, b_1 should be positive

Impact on the Sigmoid Function

$$z_i = b_1 x_{i1} + b_2 x_{i2} + \dots + b_M x_{iM} + b_0$$

Age

$$p(y_i = 1|x_i) = \sigma(z_i)$$

As the value z_i increases, the chance of mortality increases

 z_i

The logistic function just converts the patient's logodds (of mortality) to the corresponding probability.

An example:

- Suppose the patient's predicted log odds = 2
- Convert log odds to odds by exponentiating: $e^2 = 7.4$
- The odds are always relative to 1; in other words, they are 7.4x more likely to die than not
- Convert odds to probability = 7.4 / (1 + 7.4) = 0.88

Building the Training Set

We want to learn the model parameters

$$b = (b_0, \dots, b_M)$$

- This requires *training data*; we will find the *b* that match it best
- Record data from N patients
 - Capture features: {age, sex, temp, BP, ...}
 - Did they survive?

Learning Model Parameters

Training Set

$$p_i = \sigma(b_0 + b_1 x_{i1} + b_2 x_{i2} + \dots + b_M x_{iM})$$

Untrained Logistic Regression Model (or "Network")

Trained Model (with learned parameters)

 $b = (b_0, ... b_M)$

Simplifying our Notation...

$$z_i = b_1 x_{i1} + b_2 x_{i2} + \dots + b_M x_{iM}$$

Simplifying our Notation...

$$z_i = b_1 x_{i1} + b_2 x_{i2} + \dots + b_M x_{iM}$$

Compact Notation: $x_i \odot b$ (inner or dot product)

Interpretation of Logistic Regression

$$z_{i} = b_{0} + b_{1}x_{i1} + b_{2}x_{i2} + b_{M}x_{iM}$$
$$= b_{0} + x_{i} \odot b$$

 z_i

$$p(y_i = 1 | x_i) = \sigma(z_i)$$

- lacktriangle May think of vector b as a template or filter (will visualize to make clear)
- \square If x_i is aligned/matched with b, then $x_i \odot b$ will be large
- \Box The parameter b_0 is a bias to correct for class prevalence

Recognizing Handwritten Digits

A visual example

The MNIST Dataset

 The Modified National Institute of Standards and Technology (MNIST) contains pictures of handwritten digits (0,1,2,...)

 Want to be able to tell what digit each image is (e.g., optical character recognition)

```
0000000000000000000
   / 1 1 / 7 1 1 / / / / / /
22222222222222222
333333333333333333333
ゞょりょうらう ひらりをひららばらあらぶら
フキ17ククフフフフフフフ)クチワフフフ
`$$$$$$$$$$$$$$$$$$$$$$
```

Images are Encoded as Numbers

0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	118	200	223	155	155	23	0	0	0	0	0
0	0	0	0	0	0	0	0	6	124	214	253	253	253	253	254	229	213	67	0	0	0
0	0	0	0	0	0	0	43	198	253	254	253	247	175	175	236	253	253	108	0	0	0
o	0	0	0	0	0	9	212	253	253	224	58	19	0	0	16	139	247	247	71	0	0
0	0	0	0	0	0	58	254	254	186	14	0	0	0	0	0	0	139	254	118	0	0
0	0	0	0	0	0	58	253	183/	8	0	0	0	0	0	0	36	222	253	118	0	0
0	0	0	0	0	0	54	250	128	2	0	0	0	6	71	192	237	253	247	71	0	0
0	0	0	0	0	0	0	213	253	50	0	18	123	198	253	254	253	247	85	0	0	0
0	0	0	0	0	0	0	69	241	227	136	200	253	253	253	254	192	34	0	0	0	0
0	0	0	0	0	0	0	o	178	254	256	254	254	254	149	59	0	0	0	0	0	0
0	0	0	0	0	0	0	101	253	253	254	253	253	253	42	0	0	0	0	0	0	0
0	0	0	0	0	8	138	247	253	243	1 59	196	243	253	199	0	0	0	0	0	0	0
0	0	0	0	12	183	253	253	253/	50	0	0	49	2 53	214	0	0	0	0	0	0	0
0	0	0	0	180	254	253	213	50	2	0	0	71	253	214	0	0	0	0	0	0	0
0	0	0	0	2/34	217	97	10	0	0	0	23	207	254	215/	0	0	0	0	0	0	0
0	0	0	174	253	156	0	0	0	0	45	215	253	253/	95	0	0	0	0	0	0	0
0	0	9	210	253	163	5	19	49	130	244	253	251	137	4	0	0	0	0	0	0	0
0	0	13	229	253	254	192	253	253	253	254	253	137	0	0	0	0	0	0	0	0	0
0	0	0	160	253	254	253	253	253	253	239	132	4	0	0	0	0	0	0	0	0	0
0	0	0	18	112	194	254	254	254	163	59	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Vectorization

 We will start talking about deep learning without using the structure of the image

 Later, in block 2, we will consider how to take advantage of this structure

 To convert an image into an unstructured set of numbers, we vectorize (or flatten) it

Start With The Binary Case

Learning on MNIST

Training set: 28 x 28 images

$$p_i = \sigma(b_0 + b_1 x_{i1} + b_2 x_{i2} + \dots + b_M x_{iM})$$

Untrained Logistic Regression Model (or "Network")

$$b = (b_0, \dots b_M)$$

Trained Model (with learned parameters)

Zooming in on 0/1

Zooming in on 0/1

Zooming in on 0/1

Learned Weights for 0/1

Logistic Regression is a "Linear" Classifier

A "generalized linear model"

 Can only split data by linear trends

Summary

- Logistic regression is commonly used in machine learning to predict events and/or binary labels. It is simple but often quite effective.
- Logistic regression consists of a linear model coupled with a logistic "link" function that converts predictions to valid probabilities.
- We may view its parameters as a *filter*; when the features and filter are similar (dissimilar), the predicted probability is high (low).
- For many problems, however, we will not want to limit ourselves to a linear decision surface. In the next lecture, we will extend logistic regression to address this limitation.