Analiza danych z sensorów IOT w inteligentnym domu

Program służy do generowania i analizy danych z symulowanych sensorów IOT. Dane są generowane dla roku wstecz od dnia bieżącego z godzinnym interwałem. Program umożliwia wyświetlania danych z wybranego okresu czasu w postaci wykresów. Zaimplementowe liczniki umożliwiają śledzenie całkowitego zużycia energii elektrycznej oraz wody ciepłej i zimnej.

Zaimplementowane funkcje:

- 1. Możliwość włączenia lub wyłączenia generowania danych dla wybranych czujników: energia elektryczna, woda ciepła, woda zimna, temperatura, wilgotność.
- 2. Generowanie danych dla czujników opiera się na podstawie losowych wartości z uwzględnieniem wzorców dla odpowiednich okresów w roku i w ciągu dnia. Dane generowane są na rok wstecz od bieżącej daty z godzinnym interwałem.
- 3. Możliwość zapisania wygenerowanych danych do pliku .csv.
- 4. Możliwość wczytania danych z pliku .csv.
- 5. Wyświetlanie wykresów z możliwością wybrania okresu czasowego dla którego wyświetlane są dane. Liczniki dla mierników energii elektrycznej, ciepłej wody i zimnej wody.

Wykorzystane biblioteki:

- Tkinter: GUI.
- Pandas: przetwarzanie i analiza danych.
- Numpy: generowanie losowych danych.
- Matplotlib: tworzenie wykresów.
- Pillow: konwersja wykresów na obrazy wyświetlane w GUI.

Propozycje rozszerzenia funkcjonalności:

- Dodanie nowych typów sensorów
- Dodanie zaawansowej analizy danych (wykrywanie anomalii, obliczanie tendencji rozwojowej)
- Użycie prawdziwych sensorów lub bibliotek, które pozwalałyby na bardziej realistyczną symulację sensorów
- Użycie baz danych SQL

Natrafiono na następujące problemy:

Problem	Rozwiązanie
Biblioteki umożliwiające symulowanie danych z	Samodzielna symulacja wartości sensorów przy
sensorów IOT (counterfit, pysor) były outdated i nie	użyciu <i>numpy</i> , biorąc pod uwagę realistyczne
działały poprawnie .	zużycie w danych godzinach.
Problem z optymalizacją ładowania danych.	Zmiana interwałów każdego sensora na 1 godzinę.
Założono, że domyślne będą 15 minutowe	Poprawiona szybkość wczytywania danych.
interwały pomiarów na sensorach z możliwością	
ich indywidualnego ustawienia na daną wartość.	
Użycie GUI customtkinter okazało się kłopotliwe w	Zastosowanie standardowego tkinter.
przypadku wyświetlania wykresów.	
Wykresy nie mieściły się w oknie.	Dodanie scrollbara do przewijania wykresów.
Problemy z poprawnym wyświetlaniem wykresów.	Użycie biblioteki <i>pillow</i> do konwersji wykresów na
	obrazy.

Instrukcja korzystania z aplikacji

1. Wybór czujników

a. Zanim dane zostaną wygenerowane należy najpierw określić, które sensory będą symulowane. Służy do tego opcja "Sensor settings" gdzie możliwe jest zaznaczenie interesujących nas sensorów.

2. Generowanie danych

a. Po kliknięciu przycisku "Generate data" zostaną wygenerowane dane z sensorów dla roku wstecz od dnia bieżącego z interwałem odczytów wynoszącym jedną godzinę. Dane przechowywane są w pamięci podręcznej programu.

3. Zapisywanie danych

a. Wygenerowane dane można zapisać do pliku .csv korzystając z przycisku "Save data".

4. Wczytywanie danych

a. Do wczytania danych służy przycisk "Load data". Dane zostają wczytane do pamięci podręcznej programu.

5. Wyświetlanie danych

- a. Do wyświetlania danych służy przycisk "Plot data". Po jego kliknięciu wyświetla się okno dialogowe.
- b. Z rozwijanego menu należy wybrać interesujący nas okres wyświetlania danych Opcje są następujące: Day, Month, Year.
- c. Poniżej okna wyboru okresu należy podać dokładny zakres wyświetlania danych.
 - i. Dla opcji "Day" YYYY-MM-DD (np. 2024-03-20)
 - ii. Dla opcji "Month" YYYY-MM (np. 2024-03)
 - iii. Dla opcji "Year" YYYY (np. 2024)
- d. Po wykonianu powyższych czynności należy kliknąć przycisk "Plot data".
- e. Dane zostaną wyświetlone w postaci odpowiednich wykresów. Dla miernika energii elektrycznej oraz wody zaimplementowano również liczniki całkowitego zużycia w wybranym okresie.

Przy tworzeniu aplikacji skorzystano z następujących źródeł informacji:

- https://youtu.be/ibf5cx221hk
- https://youtu.be/OZOOLe2imFo
- https://youtu.be/a9UrKTVEeZA
- https://youtu.be/IVTC8CvScQo
- https://youtu.be/QUT1VHiLmml
- https://medium.com/@lukasschaub/modern-graphical-user-interfaces-using-python-customtkinter-80f42b698eaf
- https://coderslegacy.com/python/embed-matplotlib-graphs-in-tkinter-gui/
- https://docs.python.org/3/library/tk.html
- https://numpy.org/doc/stable/
- https://pandas.pydata.org/docs/
- https://pillow.readthedocs.io/en/stable/
- https://matplotlib.org/stable/users/index