Лекция 12 от 28ю.11.2016 Степенные ряды

Определение 1. Степенной ряд — это функциональный ряд вида $\sum_{n=0}^{\infty} c_n (x-x_0)^n$.

В этом ряду, x — переменная, $\{c_n\}$ — последовательность коэффициентов, $x_0 \in \mathbb{R}$ — центр ряда.

Отметим, что ряд начинается с n=0. Это будет важно в дальнейшем, давая возможность представлять рядами функции в нуле не равные нулю.

В процессе всех дальнейших рассуждений в рамах этой лекции будем считать $x_0 = 0$. Это не умаляет общности, так как фактически это сдвиг по оси (замена переменной $x' = x_0 + x$, если угодно).

Теорема 1 (Абеля I). Пусть ряд $\sum_{n=0}^{\infty} c_n x^n$ сходится в точке x_1 . Тогда $\forall x |x| < |x_1|$ этот ряд сходится абсолютно. Более того, $\forall x_2 \in (0,x_1)$ сходимость на $[-x_2,x_2]$ — равномерная.

Доказательство. Возьмем $K_0 = \{z: z < z_0\}$ Пусть $q = \frac{z}{z_0} < 1$ Так как $\sum_0^\infty c_n z^n - \text{сходится в}$ точке z_0 , то есть $\sum_0^\infty c_n z_0^n < \infty$, то можно утверждать, что $\lim_{n \to \infty} c_n z^n = 0$, $\{c_n z^n\}$ — ограничена: $\exists M: \forall n \in N: c_n z_0^n \leqslant M c_n z^n = (c_n z_0^n) \left(\frac{z^n}{z_0^n}\right) = c_n z_0^n \frac{z^n}{z_0} \leqslant M q^n \leqslant M$ Получили, что $\sum_0^\infty M q^n - \text{сходится}$.

Значит по признаку сравнения ряд $\sum_{n=0}^{\infty} c_n z^n$ – сходится абсолютно $\forall z \in K_0$.

Для доказательства равномерной сходимости воспользуемся признаком Вейерштрасса. $\forall n \in \mathbb{N} \forall x \in [-x_2; x_2] |c_n x^n| \leqslant C \left| \frac{x}{x_1} \right| < C \left| \frac{x_2}{x_1} \right|.$

Так как
$$\sum\limits_{0}^{\infty}C\left|\frac{x_2}{x_1}\right|$$
 — сходится, то $\sum\limits_{n=0}^{\infty}c_nx^n$ равномерно сходится на $[-x_2;x_2]$

Определение 2. Радиусом сходимости R степенного ряда называется точная верхняя грань множества точек, в которых ряд сходится.

Следствие 1. Ряд $\sum_{n=0}^{\infty} c_n x^n$ сходится абсолютно $\forall x \in (-R;R)$ (этот интервал называется интервалом сходимости ряда), и более того, $\forall r \in (0;r)$ сходимость на (-r;r) — равномерная.

Всё вышесказанное очевидно следует из определения точной верхней грани и теоремы Абеля.

Нахождение радиуса сходимости

Факт существования у рядов радиуса сходимости — это прекрасно, но хотелось бы уметь его находить.

Теорема 2 (Формула Коши-Адамара). Пусть $\sum\limits_{n=0}^{\infty}c_nx^n-c$ тепенной ряд. Тогда радиус сходимости этого ряда $R=\frac{1}{\varlimsup\limits_{n\to\infty}\sqrt[n]{|c_n|}}$ (полагая при $\varlimsup\limits_{n\to\infty}\sqrt[n]{|c_n|}=\infty$ что R=0 и при $\varlimsup\limits_{n\to\infty}\sqrt[n]{|c_n|}=0$ что $R=\infty$).

Доказательство. Как ни странно, прямо следует из признака Коши сходимости числовых рядов.

Зная эту формулу можно легко придумать ряд с любым радиусом сходимости.

Поведение в концах интервала сходимости

В концах интервала сходимости может происходить разное. Два простых примера:

$$\sum_{n=0}^{\infty} \frac{1}{n} x^n$$
 — радиус сходимости равен 1, в при $x=\pm 1$ ряд расходится.

$$\sum_{n=0}^{\infty} \frac{1}{n} x^n$$
 — радиус сходимости равен 1, в при $x=\pm 1$ ряд расходится. $\sum_{n=0}^{\infty} \frac{(-1)^n}{n} x^n$ — радиус сходимости равен 1, в при $x=\pm 1$ ряд сходится условно. $\sum_{n=0}^{\infty} \frac{1}{n^2} x^n$ — радиус сходимости равен 1, в при $x=\pm 1$ ряд сходится абсолютно.

$$\sum_{n=0}^{\infty} \frac{1}{n^2} x^n$$
 — радиус сходимости равен 1, в при $x=\pm 1$ ряд сходится абсолютно.

Теорема 3 (Абеля II). Пусть ряд $\sum_{n=0}^{\infty} c_n x^n$ сходится в точке x_1 . Тогда он равномерно сходится на отрезке. $[0, x_1]$.

Доказательство. Пусть x не превышает радиуса сходимости ряда. То есть: $0 \leqslant x \leqslant R$. Заменим переменную x на R и получим из ряда $\sum_{n=0}^{\infty} a_n x_n$ ряд, имеющий вид: $\sum_{n=0}^{\infty} a_n R_n \left(\frac{x}{R}\right)^n$. Видим, что полученный ряд $\sum_{n=0}^{\infty} a_n R^n$ не зависит от переменной x, тогда его сходимость означает и равномерную сходимость. Очевидно, что последовательность $\left\{\left(\frac{x}{R}\right)^n\right\}$ ограничена на отрезке [0;R], ее члены неотрицательны: $0\leqslant \left(\frac{x}{R}\right)^n\leqslant 1$. Эта последовательность убывает в каждой точке (при x = R она не строго убывает, точнее, является стационарной). Значит выполняются условия признака Абеля равномерной сходимости рядов. То есть ряд $\sum_{n=0}^{\infty} a_n z^n$ равномерно сходится на отрезке [0; R].

Следствие 2. Сумма степенного ряда непрерывна на всём множестве его сходимости.

Доказательство. Согласно первой теореме Абеля, ряд равномерно сходится на $[-r,r] \subset (-R,R)$, однако про весь интервал это точно утверждать нельзя, так как на интервале (-R,R) ряд может сходиться и неравномерно. Пусть $x_0 \in (-R, R)$. Выберем такое r, что $x_0 < r < R$. Так как x_0 — внутренняя точка отрезка [-r,r] и на [-r,r] ряд сходится равномерно, то, по теореме о непрерывности суммы равномерно сходящегося ряда непрерывных функций, сумма ряда является непрерывной функцией на [-r,r], включая точку x_0 . Поскольку точку $x_0 \in (-R,R)$ мы взяли произвольную, то сумма ряда непрерывна на интервале (-R, R).