

Optimization Theory and Methods

魏可佶

kejiwei@tongji.edu.cn https://kejiwei.github.io/

Chapter 8. INTRACTABILITY

- Actual number of steps taken by an algorithm and the actual run times will depend on specific problem instance.
- So let us aim to find an upper bound on the number of steps taken by an algorithm.
- A step is an arithmetic operation like addition, subtraction, multiplication, division, comparison, assignment, etc.
- As the problem size (that is, number of nodes and arcs for the case of network problems) increases, the run time and the number of steps will obviously increase.
- So our upper bounds on the run times will be functions of number of nodes (n) and number of arcs (m).
- We are quite satisfied if we are within a constant factor. Otherwise the task becomes too complex.

Chapter 8. INTRACTABILITY

- We say that an algorithm runs in **polynomial time** if the number of steps taken by the algorithm is bounded above by a polynomial in n and m.
- We use big 'O' to indicate upper bounds.
- For example, we may say that an algorithm is $O(n^2)$. That means the algorithm takes at most cn^2 steps for some constant c. E.g., at most $14n^2$ steps.
- We say that an algorithm runs in **exponential time** whenever it does not run in polynomial time.

- **O**-notation to give an upper bound on a function.

4 "Easy" Problems

Sorting a list of n numbers: [42, 3, 17, 26, ..., 100]

$$n \log_2 n$$

Multiplying two n x n matrices:

"Easy" Problems(cont.)

The Shortest Path Problem (i.e. "Google Maps")

Depending on implementation: $O(|V|^2)$ or O(|E| + |V|Log|V|)

Edsgar Dijkstra

https://www.cs.hmc.edu/~cs5grad/cs5/LectureSlides/class07-black-16-functional5.pptx

Grase Cont.)

"Polynomial Time" = "Efficient"

$$n, n^2, n^3, n^4, n^5,...$$

- ✓ sorting
- matrix multiplication
- shortest paths

How about something like *n* $log_2 n$?

The "class" P

The Travelling Salesperson Problem

4 The Hamiltonian Path Problem

8. INTRACTABILITY • n² Versus 2ⁿ

■ The Geoff-O-Matic performs 10⁹ operations/sec

	n = 10	n = 30	n = 50	n = 70
n ²	100 < 1 sec	900 < 1 sec	2500 < 1 sec	4900 < 1 sec
2 ⁿ	1024 < 1 sec	10 ⁹ 1 sec	10 ¹⁵ 11.6 days	10 ²¹ 31,688 years
114	< 1 sec	10 ¹⁶ years	10 ⁵⁷ years	10 ⁹³ years

8. INTRACTABILITY • Tractability

- Some problems are intractable: as they grow large, we are unable to solve them in reasonable time
 - Not in polynomial time: $O(2^n)$, O(n!), $O(n^n)$,

- What constitutes reasonable time?
 - Standard working definition: polynomial time
 - On an input of size n the worst-case running time is $O(n^k)$ for some constant k
 - Polynomial time: O(1), O(n lg n), O(n²), O(n³),

Optimization/Decision Problems

- Optimization Problems
 - An optimization problem is one which asks, "What is the optimal solution to problem X?"
 - Examples:
 - Maximal Matching
 - >Traveling Salesperson
 - ➤ Minimum Spanning Tree
- Decision Problems
 - An decision problem is one with yes/no answer
 - Examples:
 - Does a graph G have a MST of weight ≤ W?

- An *optimization problem* tries to find an optimal solution
- A decision problem tries to answer a yes/no question
- Many problems will have decision and optimization versions
 - Eg: Traveling salesman problem
 - >optimization: find hamiltonian cycle of minimum weight
 - \triangleright decision: is there a hamiltonian cycle of weight $\le k$
- Some problems are decidable, but *intractable*: as they grow large, we are unable to solve them in reasonable time
 - Is there a polynomial-time algorithm that solves the problem?

- The *class P* consists of those problems that are solvable in polynomial time.
- More specifically, they are problems that can be solved in time O(n^k) for some constant k, where n is the size of the input to the problem.
- The key is that *n* is the **size of input**.

"Easy" Problems

8. INTRACTABILITY <u>Solution</u> From the class P (cont.)

同济经管 TONGJI SEM

- **P**: the class of decision problems that have polynomial-time deterministic algorithms.
 - That is, they are solvable in O(p(n)), where p(n) is a polynomial on n
 - A deterministic algorithm is (essentially) one that always computes the correct answer
- Why polynomial?
 - if not, very inefficient
 - nice closure properties
 - the sum and composition of two polynomials are always polynomials too

8. INTRACTABILITY Somplexity class P

同济经管 TONGJISEM

Deterministic in nature

Solved by conventional computers in polynomial time

• O(1)

Constant

• O(log n)

Sub-linear

• O(n)

Linear

• O(n log n)

Nearly Linear

• O(n²)

Quadratic

Polynomial upper and lower bounds

8. INTRACTABILITY Sample class P

- Shortest Path Dijkstra **algorithm** O(n²).
- Eulerian path O(E)
- MST O(ElogV)
- Merge Sort
- Huffman Algorithm: Constructing the Optimal Binary (Huffman) Tree.
- Others

Single-Source Bottleneck Path Algorithm Faster than Sorting for Sparse Graphs

Ran Duan *1, Kaifeng Lyu †1, Hongxun Wu ‡1, and Yuanhang Xie §1

¹Institute for Interdisciplinary Information Sciences, Tsinghua University

Abstract

In a directed graph G=(V,E) with a capacity on every edge, a bottleneck path (or widest path) between two vertices is a path maximizing the minimum capacity of edges in the path. For the single-source all-destination version of this problem in directed graphs, the previous best algorithm runs in $O(m+n\log n)$ (m=|E| and n=|V|) time, by Dijkstra search with Fibonacci heap [Fredman and Tarjan 1987]. We improve this time bound to $O(m\sqrt{\log n})$, thus it is the first algorithm which breaks the time bound of classic Fibonacci heap when $m=o(n\sqrt{\log n})$. It is a Las-Vegas randomized approach. By contrast, the s-t bottleneck path has an algorithm with running time $O(m\beta(m,n))$ [Chechik et al. 2016], where $\beta(m,n)=\min\{k\ge 1: \log^{(k)} n \le \frac{m}{n}\}$.

- NP is not the same as non-polynomial complexity/running time. NP does not stand for not polynomial.
- NP = Non-Deterministic polynomial time
- NP means verifiable in polynomial time
- Verifiable?
 - If we are somehow given a 'certificate' of a solution we can verify the legitimacy in polynomial time

- MST
- Maximal matching
- Hamiltonian Cycle (Traveling Salesman)
- Graph Coloring

- Determining whether a directed graph has a Hamiltonian cycle does not have a polynomial time algorithm (yet!)
- However if someone was to give you a sequence of vertices, determining whether or not that sequence forms a Hamiltonian cycle can be done in polynomial time.
- Therefore Hamiltonian cycles are in NP.

"Hard" Problem?

8. INTRACTABILITY • NP problems

- Graph theory has these fascinating (annoying?) pairs of problems
 - Shortest path algorithms?
 - Longest path is NP complete (we'll define NP complete later)
 - Eulerian tours (visit every vertex but cover every edge only once, even degree etc). Solvable in polynomial time!
 - Hamiltonian tours (visit every vertex, no vertices can be repeated). NP complete

Review: P And NP problems

- P = set of problems that can be solved in polynomial time
- NP = set of problems for which a solution can be verified in polynomial time
- Clearly P ⊆ NP
- Open question: Does P = NP?
 - Most suspect not
 - An August 2010 claim of proof that P ≠ NP, by Vinay
 Deolalikar, researcher at HP Labs, Palo Alto, has flaws

- \blacksquare A decision problem *D* is NP-complete iff
 - **1**) *D* ∈ *NP*
 - 2) Every problem in *NP* is polynomial-time reducible to *D*

4 Reduction

- A problem R can be reduced to another problem Q if any instance of R can be rephrased to an instance of Q, the solution to which provides a solution to the instance of R
 - This rephrasing is called a *transformation*
- Intuitively: If R reduces in polynomial time to Q, R is "no harder to solve" than Q
- Example: lcm(m, n) = m * n / gcd(m, n),
 lcm(m,n) problem is reduced to gcd(m, n) problem

Polynomial-Time Reducibility

Language L is polynomialtime reducible to language M if there is a function computable in polynomial time that takes an input x of L and transforms it to an input f(x) of M, such that x is a member of **L** if and only if f(x) is a member of M.

- If R is polynomial-time reducible to Q, we denote this $R \leq_p Q$
- Definition of NP-Hard and NP-Complete:
 - If all problems $R \in NP$ are polynomial-time reducible to Q, then Q is NP-Hard

Note: An NP-Hard problem need not be NP.

- An NP-Hard problem is at least as hard as the NP-complete problems.
- We say Q is NP-Complete if Q is NP-Hard and Q ∈ NP
- If $R \leq_p Q$ and R is NP-Hard, Q is also NP-Hard (why?)

https://upload.wikimedia.org/wikipedia/commons/a/a0/P_np_np-complete_np-hard.svg

https://upload.wikimedia.org/wikipedia/commons/a/a0/P_np_np-complete_np-hard.svg

Chapter 8. INTRACTABILITY • Brief summary

Objective:

Key Concepts:

