

Medidas Informais de qualidade de um esquema relacional

Semántica dos atributos das relações

Mais fácil explicar a semántica de uma relação melhor o projeto do esquema relacional. O que significa que não se pode (deve) combinar os atributos de múltiplos tipos de entidades ou tipos de associações numa relação.

Um esquema simplificado do banco de dados relacional EMPRESA.

EMPREGADO

ENOME	SNN	DATANASC	ENDERECO	DNUMERO
Smith,John B.	123456789	1965-01-09	731 Fondren, Houston, TX	5
Wong, Franklin T.	333445555	1955-12-08	638 Voss, Houston, TX	5
Zelaya, Alicia J.	999887777	1968-07-19	3321 Castle, Spring, TX	4
Wallace, Jennifer S.	987654321	1941-06-20	291 Berry, Bellaire, TX	4
Narayan, Remesh K.	666884444	1962-09-15	975 Fire Oak, Humble, TX	5
English, Joyce A.	453453453	1972-07-31	5631 Rice, Houston, TX	5
Jabbar, Ahmad V.	987987987	1969-03-29	980 Dallas, Houston, TX	4
Borg,James E.	888665555	1937-11-10	450 Stone, Houston, TX	1
				DEPT_LOCALIZACOES

DEPARTAMENTO

DNOME	DNUMERO	DGERSSN
Pesquisa	5	333445555
Administraçã	ão 4	987654321
Diretoria	1	888665555

TRABALHA EM

TRABALHA EM					
SNN	PNUMERO	HORAS			
123456789	1	32.5			
123456789	2	7.5			
666884444	3	40.0			
453453453	1	20.0			
453453453	2	20.0			
333445555	2	10.0			
333445555	3	10.0			
333445555	10	10.0			
333445555	20	10.0			
999887777	30	30.0			
999887777	10	10.0			
987987987	10	35.0			
987987987	30	5.0			
987654321	30	20.0			
987654321	20	15.0			
888665555	20	null			

DNUMERO DLOCALIZACAO

1	Houston
4	
4	Stafford
5	Bellaire
5	Sugarland
5	Houston
	5

PROJETO

PNOME	PNUMERO	PLOCALIZACAO	DNUM
ProdutoX	1	Bellaire	5
ProdutoY	2	Sugarland	5
ProdutoZ	3	Houston	5
Automação	10	Stafford	4
Reorganizaçã	o 20	Houston	1
NovosBenefíc	ios 30	Stafford	4

Redução de valores redundantes nas tuplas.

Anomalias de atualização:

- inserção

- exclusão
- atualização

valores nulos en tuplas

10% empregados têm salas — Não necessário ter na relação empregado, o atributo Nro_SALA - melhor EMP_SALA(SNN, NRO_SALA)

Tuplas "Spurius"

Junções sem perda de informação emp_locs (ename, plocation) emp-proj 1 (ssn, pnumber, hours, pname, plocatión)

por emp-proj

Dois esquemas de relações que sofrem anomalias de atualização

Exemplo de estado para EMP_DEPT e EMP_PROJ resultantes da aplicação do NATURAL JOIN nas relações da Figura 10.2. Elas podem ser armazenadas como relações básicas por razões de desempenho.

EMP_DEPT	ī				redundância	1
ENOME	SSN	DATANASC	ENDERECO	DNUMERO	DNOME	DGERSSN
Smith,John B.	123456789	1965-01-09	731 Fondren, Houston, TX	5	Pesquisa	333445555
Wong, Franklin T.	333445555	1955-12-08	638 Voss, Houston, TX	5	Pesquisa	333445555
Zelaya, Alicia J.	999887777	1968-07-19	3321 Castle, Spring, TX	4	Administracao	987654321
Wallace, Jennifer S.	987654321	1941-06-20	291 Berry, Bellaire, TX	4	Administracao	987654321
Narayan, Ramesh K.	666884444	1962-09-15	975 FireOak, Humble, TX	5	Pesquisa	333445555
English, Joyce A.	453453453	1972-07-31	5631 Rice, Houston, TX	5	Pesquisa	333445555
Jabbar, Ahmad V.	987987987	1969-03-29	980 Dallas, Houston, TX	4	Administração	987654321
Borg,James E.	888665555	1937-11-10	450 Stone, Houston, TX	1	Sede Administrativa	888665555

rodundância

EMP_PROJ		rec	dundancia	redui	L
06599900			100000000000000000000000000000000000000		
SSN	PNUMERO	HORAS	ENOME	PNOME	PLOCALIZACAO
23456789	1	32.5	Smith,John B.	ProdutoX	Bellaire
123456789	2	7.5	Smith, John B.	ProdutoY	Sugarland
666884444	3	40.0	Narayan, Ramesh K.	ProdutoZ	Houston
153453453	1	20.0	English, Joyce A.	ProdutoX	Bellaire
453453453	2	20.0	English, Joyce A.	ProdutoY	Sugarland
33445555	2	10.0	Wong, Franklin T.	ProdutoY	Sugarland
333445555	3	10.0	Wong, Franklin T.	ProdutoZ	Houston
333445555	10	10.0	Wong, Franklin T.	Automação	Stafford
333445555	20	10.0	Wong, Franklin T.	Reorganização	Houston
999887777	30	30.0	Zelaya, Alicia J.	NovosBenefícios	Stafford
999887777	10	10.0	Zelaya, Alicia J.	Automação	Stafford
987987987	10	35.0	Jabbar, Ahmad V.	Automação	Stafford
987987987	30	5.0	Jabbar, Ahmad V.	Novos benefícios	Stafford
987654321	30	20.0	Wallace, Jennifer S.	Novos benefícios	Stafford
987654321	20	15.0	Wallace, Jennifer S.	Reorganização	Houston
888665555	20	null	Borg, James E.	Reorganização	Houston

redundância

Projeto particularmente pobre para a relação EMP_PROJ. (a) Os dois esquemas de relações EMP_LOCS e EMP_PROJ1. (b) O resultado da projeção de EMP_PROJ, da .4, para as relações EMP_LOCS e EMP_PROJ1

EMP_PROJ1

SSN	PNUMERO	HORAS	PNOME	PLOCALIZACAO
		ļ		

(b) EMP_LOCS

ENOME	PLOCALIZACAO
Smith, John B.	Bellaire
Smith, John B.	Sugarland
Narayan, Ramesh K.	Houston
English, Joyce A.	Bellaire
English, Joyce A.	Sugarland
Wong, Franklin T.	Sugarland
Wong, Franklin T.	Houston
Wong, Franklin T.	Stafford
Zelaya, Alicia J.	Stafford
Jabbar, Ahmad V.	Stafford
Wallace, Jennifer S.	Stafford
Wallace, Jennifer S.	Houston
Borg, James E.	Houston

EMP_PROJ1

SSN	PNUMERO	HORAS	PNOME	PLOCALIZACAO
123456789	1	32.5	Produto X	Bellaire
123456789	2	7.5	Produto Y	Sugarland
666884444	3	40.0	Produto Z	Houston
453453453	1	20.0	Produto X	Bellaire
453453453	2	20.0	Produto Y	Sugarland
333445555	2	10.0	Produto Y	Sugarland
333445555	3	10.0	Produto Z	Houston
333445555	10	10.0	Automação	Stafford
333445555	20	10.0	Reorganização	Houston
999887777	30	30.0	Novos benefícios	Stafford
999887777	10	10.0	Automação	Stafford
987987987	10	35.0	Automação	Stafford
987987987	30	5.0	NovosBenefícios	Stafford
987654321	30	20.0	NovosBenefícios	Stafford
987654321	20	15.0	Reorganização	Houston
888665555	20	null	Reorganização	Houston

Resultado da aplicação de NATURAL JOIN nas tuplas acima da linha pontilhada de EMP_PROJ1 e EMP_LOCS da Figura 10.5. As tuplas ilegítimas geradas estão marcadas com asteriscos.

ENAME

	NSS	PNUMERO	HORAS	PNOME	PLOCALIZAÇÃO	ENAME
	123456789	1	32.5	ProdutoX	Bellaire	John Smith
*	123456789	1	32.5	ProdutoX	Bellaire	Joyce English
	123456789	2	7.5	ProdutoY	Sugarland	John Smith
*	123456789	2	7.5	ProdutoY	Sugarland	Joyce English
*	123456789	2	7.5	ProdutoY	Sugarland	Franklin Wong
	666884444	3	40.0	ProdutoZ	Houston	Ramesh Narayan
*	666884444	3	40.0	ProdutoZ	Houston	Franklin Wong
*	453453453	1	20.0	ProdutoX	Bellaire	John Smith
	453453453	1	20.0	ProdutoX	Bellaire	Joyce English
*	453453453	2	20.0	ProdutoY	Sugarland	John Smith
	453453453	2	20.0	ProdutoY	Sugarland	Joyce English
*	453453453	2	20.0	ProdutoY	Sugarland	Franklin Wong
*	333445555	2	10.0	ProdutoY	Sugarland	John Smith
*	333445555	2	10.0	ProdutoY	Sugarland	Joyce English
	333445555	2	10.0	ProdutoY	Sugarland	Franklin Wong
*	333445555	3	10.0	ProdutoZ	Houston	Ramesh Narayan
	333445555	3	10.0	ProdutoZ	Houston	Franklin Wong
	333445555	10	10.0	Automação	Stafford	Franklin Wong
*	333445555	20	10.0	Reorganização	Houston	Ramesh Narayan
	333445555	20	10.0	Reorganização	Houston	Franklin Wong

<u>NORMALIZAÇÃO</u>

- identificadores ou chaves candidatas
- CHAVE
- consistência e inserção, remoção anormais.

Temos um conjunto de dados coletados a partir de entrevistas ao usuário.

¿Cómo escolher as relações apropriadas no esquema relacional ? ¿Cómo escolher os tipos de registros e enlaces no modelo de rede ?

Projeto ascendente = Análise de relatórios ou dados --> Relações
Os problemas estão relacionados com o fato de um valor de um atributo numa relação - determina completamente o valor de outro atributo.

Exemplo:

Temos dados de CONSTRUTOR ESTILO e PREÇO que formam uma relação.

CASAS: <CONSTRUTOR, ESTILO, PRECIO>

CONSTRUCTOR	ESTILO	PREÇO
M e M Ltda	Bangaló	1,500.00
S e A S.A	Bangaló	1,500.00
MeM Ltda	Colonial	8,500.00
S e A S.A	Rústico	1,400.00
S e A S.A	Colonial	8,500.00
M e M Ltda	Rústico	1,400.00

Propriedades indesejáveis ?

<u>Introduzido por Codd no seu artigo inicial 1970.</u>

```
1972 Foram expostos com detalhes: As 2a e 3a. FN
```

1974 FNBC

1977 Fagin estabelece. 4a. FN

1979 Fagin estabelece 5a FN

Processo passo a passo reversível, de mudar uma determinada relação por sucessivas coleções de relações, as quais sejam progressivamente mais simples e regulares (conceito inicial)

OBJETIVO

Evitar anomalías de inserção, atualização e remoção.

UTILIZAÇÃO

Como ferramenta de projeto Como validação do modelo conceitual

Dois processos diferentes para chegar num esquema relacional normalizado

- Decomposição
- Síntese

<u>NORMALIZAÇÃO</u>

1A FN—— Definição do modelo relacional Novos modelos NF não seguem esta regra— OBJETOS COMPLEXOS

Exemplo

Anomalias da relação→ **NOTAS_FISCAIS 2.**

Atualização — atualização da unidade de um material, o que acontecee ?

Inserção de INFORMAÇÕES de um novo material .

O que acontece ??

Remoção — O que acontece se REMOVEMOS A ÚNICA NOTA FISCAL que CONTEM AS INFORMAÇÕES DE UM MATERIAL ???

NOTAS FISCAIS 1 ({Código, Quantidade, Unidade, Descrição, Valor_Unitário, Valor_Total}, Total da Nota, Vend, Ped, Cond, Peso_Liq, Destinatário, Endereço, CEP, Munic, Data de emissão,

CGC_CPF_Destinatário, Número da Nota, VALOR_ICMS (IGV), Data_de_Saída)

1a FN ⇒

NOTAS_FISCAIS 2 Código, Quantidade, Unidade, Descrição, Valor_Unitário, Valor_Total, Total da Nota, Vend, Ped, Cond, Peso-Liq, Destinatário, Endereço, CEP, Munic, Data de emissão, CGC_CPF_Destinatário, Número da Nota, VALOR_ICMS (IGV), Data_de_Saída)

PROBLEMAS

No há independência de dados Redundância

FUNÇÃO

Se A e B são dois conjuntos, f é uma função de A em B sse \forall x \in A, \exists um único y \in B

Exercícios

DEPENDÊNCIA FUNCIONAL

Seja R uma relação e sejam A e B atributos ou conjuntos de atributos de R.

A determina Bou B depende funcionalmente de A) a cada valor de A corresponde um único valor de B.

f muda com o tempo. Exemplo. (No caso de Notas fiscais 2) Código → Unidade

Código 🗡 Quantidade (várias notas)

Código [→] Valor Unitário Quando ?

(Código, Número Nota) Total da Nota

(Código, Quantidade) _____ Destinatário

AXIOMATIZAÇÃO DAS DEPENDÊNCIAS FUNCIONAIS (Axiomas de Armstrong)

Como gerar novas DFs a partir das existentes ?

Seja a seguinte relação :

R (A1, ..., Am, B1, ..., Bj, ..., Bn, C1, ..., Ch)

1. REFLEXIVA

(A1,, Am)→ Ai, i=1, ..., m DEPENDÊNCIA TRIVIAL

2. AUMENTO

Se $X \rightarrow Y \longrightarrow XZ \rightarrow YZ$

3. TRANSITIVIDADE

(A1,, Am) → (B1,...., Bn) e (B1,...., Bn) → (C1,....Ch) (A1,, Am) → (C1,....Ch)

Pode ser demonstrado

UNIÃO E PROJEÇÃO

(A1,, Am) (B1,...., Bn) (A1,, Am) Bi, i=1, ..., n

4. Pseudo-transitividade: Se A \rightarrow B e BW \rightarrow C, então AW \rightarrow C..

Exercício: Demonstre que se XY \rightarrow Z e XYZ \rightarrow V, então XY \rightarrow V.

Dica: A partir de 4. $A \rightarrow B$, $BA \rightarrow C$, então $A \rightarrow C$

A partir de 1 e 3 é possível deduzir a regra de decomposição Se $X \rightarrow Y$ e $Z \subseteq Y \Longrightarrow X \longrightarrow Z$ Pseudotransitividade: Se $X \longrightarrow Y$ e $Y \mapsto Y \mapsto X \mapsto Z$

Exemplos

- 1. (Número da Nota, Código) ____, Código
- 2. Código → Unidade Código → Descrição > Código → (Unidade, Descrição)
- 3. Número da Nota → CGC_CPF_Destinatário CGC_CPF_Destinatário → Endereço Número da Nota → Endereço

DEPENDÊNCIA FUNCIONAL COMPLETA

A é dependente funcional completo de (X, Y)

(Código, Número da Nota) — Quantidade

DEPENDÊNCIA FUNCIONAL PARCIAL

$$(X,Y) \longrightarrow A \longrightarrow X \longrightarrow A$$
 ou $Y \longrightarrow A$

A é dependente funcional parcial de (X, Y)

(Código, Numero da Nota) → Descrição

O fato de existir DFs parciais - Mistura de informação dos dados que a representam

Procedimento de cálculo de chaves

o Premissas:

- Todo atributo independente (que não participa de nenhuma dependência funcional) forma parte de todas as chaves.
- Os descritores equivalentes geram várias chaves.
- Nenhum atributo implicado que não é implicante forma parte de uma chave.
- Todo atributo implicante mas não implicado forma parte de todas as chaves (sempre que não tenha equivalentes)
- Aqueles atributos que s\u00e3o implicantes e implicados podem formar parte de alguma chave.

- Passo 1: Eliminação de descritores independentes.
- Eliminar da relação todos os atributos que não fazem parte de nenhuma dependência, obtendo Rsi.
 - Exemplo 1: seja R({A,B,C,D,E,F,G,H,I,J};
 {AB→C, C→AB, E→D, D→E, E→F, F→E, ABD→G,
 CF→H})
 - Os atributos I e J são independentes e são eliminados da relação.

- Passo 2: Eliminação de descritores equivalentes.
- Sempre que existam dependências equivalentes (X→ Y e Y→ X). Podem ser mais de dois descritores. Para cada grupo de descritores equivalentes, se elege um.
 - No exemplo 1 AB é equivalente com C, D com E e com F. Escolhemos um representante de cada grupo e os outros são eliminados.
 - Rsie($\{C,D,G,H\}$; $\{CD \rightarrow G,CD \rightarrow H\}$)

- Deve-se ter em conta que, às vezes, as dependências não aparecem diretamente senão que aparecem em um ciclo. Exemplo 2:
 - AD→ B, B→C, C→AD o que implica que AD e equivalente com B e com C. Então, Rsie seria: R1sie =(AD;Φ) ou R2sie=(B; Φ) ou R3sie=(C; Φ).

- Passo 3: Determinação de um descritor (que não tenha implicados) que seja chave de Rsie.
- Já que todos os atributos de uma relação Rsie que são implicantes mas não implicados formam parte da chave, pegamos esses atributos e formamos com eles uma chave possível (Kp). Caso não seja chave, achamos o fecho de uma chave possível que contem todos os atributos de Rsie.
 - No exemplo 1 acima CD é o único implicante, não implicado.
 - Pode ocorrer que no passo 2 não seja possível obter nenhuma chave porque:
 - o O conjunto DF é vazio. Ir ao passo 5. Veja exemplo 2.
 - Ou o fechamento da Chave não tem todos os atributos da Rsie. Ir ao passo 4.

- o Exemplo 3. Seja Rsie ({A,B,C,D,E,F}; AB→C, DE→F, F→D})
- Chaves: ABE o problema é o fechamento é ABCE (caso 2)

- Passo 4. Determinação de um descritor chave de Rsie (no qual podem existir implicados que são também implicantes).
 - Se for possível se obtêm uma parte de Rsie eliminando todos aqueles atributos que entram no fechamento e que não formam parte de outras dependências funcionais, diferentes das que foram usadas para calcular o fechamento. Gerando uma nova relação R'sie.
 - No exemplo 3 o fechamento era ABCE. Obtemos uma nova relação
 R'sie eliminando de Rsie os atributos A,B e C.
 - R'sie({D,E,F}; {DE→F, F→D})
 - Uma chave de R'sie é EF e outra chave seria ED.
 - Portanto, as chaves de Rsie seriam: ABEF ou ABED.

- Passo 5. Tratamento de atributos independentes para obter uma chave da relação original.
 - Às chaves de Rsie obtidas no passo 3 ou no passo 4 adicionam-se os atributos independentes obtidos no passo 1.
 - A relação do exemplo 1 tinha dois atributos independentes I
 e J. Foi achada a chave CD de Rsie. Se adicionamos a CD os
 atributos I e J, temos CDIJ que é a chave de R.
 - A relação do exemplo 2, depois de eliminar as equivalências, obtínhamos, AD como descritor independente em R1sie, já que não existem dependências. Portanto, uma chave da relação seria AD.

- Passo 6. Tratamento de descritores equivalentes.
 - Quando no passo 2 se obtém os descritores
 equivalentes, achamos todas as chaves, substituindo,
 nas chaves obtidas no passo 5, ou nos passos 3 ou 4,
 os descritores pelos seus equivalentes.
 - No exemplo 1, existiam as seguintes equivalências: AB
 ←> C e D←>E←>F. No passo 5, se obteve a chave
 CDIJ. O tratamento de descritores equivalentes gera 6
 chaves: CDIJ, CEIJ, CFIJ, ABDIJ, ABEIJ, ABFIJ.
 - No exemplo 2, com as equivalências AD←>B←>C, teria as 3 chaves seguintes: AD, B, C.

Exercício

- Dada o seguinte esquema de relação: R ({O,R,U,V,W,X,Y,Z}, { XY→Z, Z→U, XYZ→V, R→X, X→R, W→O, O→W})
 - Achar o fecho transitivo do descritor XY.
 - Determinar as chaves de R.

Solução

- Passo 1: Não existem descritores independentes.
- Passo 2: Eliminação de descritores equivalentes: W ←> O, R ←> X.
 Então, Rsie ({U,V,X,Y,Z}, {XY→Z, Z→U, XYZ→V})
- Passo 3: Kp = XY, Já que Kp+=XYZUV.

Passo 5 e 6: chaves possíveis de R:
 XYW, XYO, RYW, RYO.

2da FORMA FORMAL

Um atributo primário membro de alguma chave candidata.

RELAÇÃO em 1a FN +

Todas as colunas e conjunto de colunas que não fazo chaves da relação devem ser dependentes funcionais chaves.

te de Vietos das

Def. Do livro: "Um esquema de relação R está na 2FN se cada atributo não primário A de R não for parcialmente dependente de nenhuma chave de R"

Para obter uma relação na 2<u>a</u> FN é preciso remover as dependências parciais de atributos em relação às CHAVES.

DECOMPOSIÇÃO DA RELAÇÃO EM OUTRAS RELAÇÕES PRESERVANDO AS DEPENDÊNCIAS FUNCIONAIS DAS COLUNAS CO

No caso das Notas fiscais 2 temos: apenas a seguinte DF TOTAL.

(Utilizando regra 2 > :

(Código, Número da Nota) → (Quantidade, Valor_Total) As DFs Parciais com relação à CHAVE:

Código → (Unidade, Descrição, Valor_Unitário)

Número da nota → (Total da Nota, Vend, Pend, Cond, Peso-liq, Destinatário, Endereço, CEP, Munic, Data da emissão, CGC_CPF_Destinatário, Valor, ICMS, Data _Saída)

As relações geradas

ANOMALIAS DAS RELAÇÕES NA 2<u>a</u> FN.

```
ATUALIZAÇÃO O que deve ser feito para atualizar o endereço de um cliente ???

INSERÇÃO O que deve ser feito para a inclusão de um novo cliente ???
```

ELIMINAÇÃO O que acontece se a única Nota fiscal de um cliente for removida ???

Confusão dos dados dos clientes com os dados da NOTA FISCAL

Dependência de Dados

2da FN \Longrightarrow

It<u>em_Nota (Código, Número_da_Nota, Quantidade,</u> valor_Total)

Material (Código, Unidade, Descrição, Valor_Unitário)

Notas 3 (Número_da Nota, Total_da_Nota, Vend, Pend, Cond,

Peso_Liquido, Destinatário, Endereço, CEP, Munic, Data_da_Emissão,

CGC CPF Destinatário, Valor IGV ICMS, Data de Saída)

DEPENDÊNCIA FUNCIONAL TRANSITIVA.

Seja R (A, B, C, . . .) A
$$\longrightarrow$$
 C \longrightarrow A \longrightarrow B \longrightarrow C B \longrightarrow A (B não é nem uma chave candidata nem um sub. de qualq, chave)

C é dependente funcional transitivo de A. Evenno

Exemplo.

Número da Nota — CGC_CPF_Destinatário.
CGC_CPF_Destinatário — Destinatário
CGC_CPF_Destinatário — Número da NOTA*

Número da NOTA --- Destinatário

- * (o mesmo cliente pode fazer mais de uma compra)
- DUAS CLASSES de DFs (da CHAVE e outros atrib.)
 UMA RELAÇÃO que não tem DFs transitivas automaticamente está em 2a FN

NORMALIZAÇÃO

3ra FORMA NORMAL

RELAÇÃO em 1° FN +

Qualquer coluna fora de qualquer CHAVE <u>NÃO</u> é dependente transitiva destas (estando por tanto na 2da FN)

Exemplo.

Má decomposição.

A decomposição de Notas_Fiscais 3 poderia ser feita:

Destinatário1 (CGC_CPF_Destinatário, Destinatário)

Destinatário2 (CGC_CPF_Destinatário, Endereço)

etc.

Descomposição

```
2da FN
It<u>em Nota (Código, Número da Nota, Quantidade, </u>
            Preço Total
           (Código, Unidade, Descrição, Preço_Unitário)
Material
           (Número da Nota, Total da Nota, Vend, Pend, Cond,
Notas 3
                     Peso Liquido, Destinatário, Endereço, CEP, Munic,
                     Data da Emissão, CGC CPF Destinatário,
                         Valor IGV ICMS, Data de Saída
3ra FN
Destinatário (CGC_CPF_Destinatário, Destinatário, Endereço,
              CEP. Munic
Notas 4 (Número da Nota, Total da Nota, Vend, Pend, Cond,
         Peso Liquido, Valor_IGV_ICMS, Data_de_Saída,
         CGC CPF Destinatário)
```

NORMALIZAÇÃO

Suponha que no lugar de Notas Fiscais 4, existisse:

(outro casso de má decomposição)

Notas Fiscais5 <u>(Número da Nota, CGC_CPF_Destinatário, Destinatário)</u>

Duas decomposições seriam possíveis:

Notas Fiscais6 (Número da Nota, CGC_CPF_Destinatário)

Destinatário6 (Número da Nota, Destinatário)

OU

Notas Fiscais7 (Número da Nota, CGC_CPF_Destinatário)

Destinatário7 (CGC_CPF_Destinatário, Destinatário)

Reconstitución sem perda de informações

NORMALIZAÇÃO

Suponha que no lugar de Notas Fiscais 4 , existisse:

(outro casso de má decomposição)

Notas Fiscais5 <u>(Número da Nota, CGC_CPF_Destinatário, Destinatário)</u>

Duas decomposições seriam possíveis:

Notas Fiscais6 (Número da Nota, CGC_CPF_Destinatário)

Destinatário6 (Número da Nota, Destinatário)

OU

Notas Fiscais7 (Número da Nota, CGC_CPF_Destinatário)

Destinatário7 (CGC_CPF_Destinatário, Destinatário)

melhor

Reconstitución sem perda de informações

CASO PATOLÓGICO

Seja uma relação que:

- 1. Tem várias CHAVES candidatas; onde
- 2. essas CHAVES candidatas são compostas e
- 3. Supõe-se que existem pelo menos um atributo em comum.

EXEMPLO

Seja a seguinte relação:

Notas8 (Código, <u>Número da Nota, Descrição</u>, Quantidade)

Supondo que vários materiais têm a mesma descrição (Descrição \longrightarrow Código) mas Código \longrightarrow Descrição

e em cada Nota a Descrição aparece uma única vez.

Esta em 3a FN ? Veja Slide a seguir.

Anomalías de NOTAS 8

Eliminação de uma NOTA, onde aparece por única vez uma descrição de um material — PERDA DE INFORMAÇÃO

- Codigo, Numero da Nota → Codigo
- Codigo → Descricao
- Codigo → Codigo, Numero da Nota

- Descricao é dependente funcional transitivo de Codigo, Numero da Nota
- o Então não estaria em 3FN?
- A questão é que Descricao é parte de uma chave, ele é primário.

FORMA NORMAL DE BOYCE - CODD

Seja R (**A**, **B**, **C**, **D**, **E**, ...)

Normalização na 2FN e na 3FN. (a) Normalização EMP_PROJ em relações na 2FN. (b) Normalização EMP_DEPT em relações na 3FN.

Normalização na 2FN e na 3FN.

- (a) A relação LOTES
 com dependências
 funcionais DF1 e DF4.
 (b) Decomposição
 para as relações na
 2FN LOTES1 e
 LOTES2.
- (c) Decomposição de LOTES1 para as relações na 3FN LOTES1A e LOTES1B. (d) Resumo do processo de normalização de LOTES.

Forma normal de Boyce-Codd. (a) Normalização BCNF de LOTES1A com a dependência funcional DF2 eliminada na decomposição. (b) Uma relação A esquemática com DFs; ela está na 3FN, mas não na BCNF.

Uma relação ENSINA que está na 3FN, mas não BCFN

ENSINA

ALUNO	CURSO	INSTRUTOR
Narayan	Banco de dados	Mark
Smith	Banco de dados	Navathe
Smith	Sistemas operacionais	Ammar
Smith	Teoria	Schulman
Wallace	Banco de dados	Mark
Wallace	Sistemas operacionais	Ahamad
Wong	Banco de dados	Omiecinsk
Zelaya	Banco de dados	Navathe

DF1: $\{ALUNO, CURSO\} \longrightarrow INSTRUTOR$

DF2: INSTRUTOR → CURSO

Três formas de decompor:

- {<u>ALUNO, INSTRUTOR</u>} e {<u>ALUNO, CURSO</u>}
- {CURSO, <u>INSTRUTOR</u>} e {<u>CURSO</u>, <u>ALUNO</u>}
- {<u>INSTRUTOR</u>, CURSO} e {<u>INSTRUTOR</u>, <u>ALUNO</u>}

Qual é a decomposição desejável?? Todas perdem a DF1.

Teste de junção não aditiva para

decomposição binária: Uma decomposição D = {R1, R2} de R tem a propriedade não aditiva de junção (lossless) com relação a um conjunto de dependências funcionais F de R sse:

A DF ((R1 INT R2) \rightarrow (R1 – R2)) está no F+, ou A DF ((R1 INT R2) \rightarrow (R2 – R1)) está no F+

- \circ F = (Al,Cur) \rightarrow Inst; Inst \rightarrow Cur
- Caso 1: R1(Al,Inst); R2(Al,Cur)
- \circ R1 INT R2 = Al | Al \rightarrow Inst ou
- \circ R2 -R1 = Cur

 \circ R1 - R2 = Inst | A| \rightarrow Cur em F+?

- Caso 2: R1(Cur,Inst); R2(Cur,Al)
- \circ R1 INT R2 = Cur | Cur \rightarrow Inst ou
- \circ R1 R2 = Inst
- $\circ R2 R1 = AI$
- Caso 3: R1(Inst, Cur); R2(Inst,Al)
- o R1 INT R2 = Inst Inst → Cur ou
- \circ R1 R2 = Cur
- $\circ R2 R1 = AI$

Cur → Al em F+?

Inst \rightarrow Al em F+?

QUARTA FORMA NORMAL

RELAÇÃO NÃO - NORMALIZADA Livros 1 (Número_de_ cha mada , {Autores}, Titulo, {Assuntos}, Nome_ **Editora, Cidade Editora, Ano) Para 1a. FN** Livros 2 (Número de cha mada <u>, Autor, Assun</u>to, Titulo, Nome_Editora, **Cidade Editora, Ano)** Como: Título Número de cha mada Não está em 2da FN Ano Para 2da FN

Livros 3 (Número_de_chamada, Título, Nome_Editora, Cidade_Editora, Ano)

Livros 4 (Número_de_chamada, Autor, Assunto)

Livros 4

NUMERO DE CHAMADAS	AUTOR	ASSUNTO
1	AU 1	AS 1
1	AU 1	AS 2
1	AU 2	AS 1
1	AU 2	AS 2
2	AU 1	AS 3
2	AU 1	AS 4
2	AU 1	AS 1
2	AU 3	AS 3
2	AU 3	AS 4
2	AU 3	AS 1

É necessário representar todas as possíveis combinações de autores e assuntos. Para cada livro se repete a informação de quais são seus autores para cada assunto.

Outra forma Livro 5

Maior custo

de recuperação

NUMERO DE CHAMADA	AUTOR	ASSUNTO
1	AU 1	AS 1
1	AU 2	AS 2
2	AU 1	AS 3
2	AU 3	AS 4
2	AU 3	AS 5

Número_de_chamada determina vários valores de autor e vários valores de assunto.

A dependência multivalorada.

Numa relação R (A, B, C), A — B <u>Sse</u> sempre que exista as tuplas (a1, b1, c1) e (a1, b2, c2) em R então (a1, b1, c2) e (a1, b2, c1) também pertencem a R. Livros 6

NUMERO DE CHAMADA	ASSUNTO
1	AS 1
1	AS 2
2	AS 3
2	AS 4
2	AS 5

NUMERO DE CHAMADA	AUTOR
1	AU 1
1	AU 2
2	AU 1
2	AU3

Dependência Multivalorada

Uma dependência multivalorada: X Y especificada no esquema de relação R, no qual X e Y são ambos subconjuntos de R, especifica a seguinte restrição para qualquer estado r de R: se duas tuplas t1 e t2 existirem em r tal que t1[X] = t2[X], então duas tuplas t3 e t4 também devem existir em r com as seguintes propriedades, onde usamos Z para denotar (R - (XUY)):

```
t3[X] = t4[X] = t1[X] = t2[X]
t3[Y] = t1[Y] e t4[Y] = t2[Y]
```

$$t3[Z] = t2[Z] = t4[Z] = t1[Z]$$

Sempre que X \longrightarrow Y implica X \longrightarrow Z

4FN

Não devem existir dependências multivaloradas não triviais, o mesmo que as dependências funcionais que violam la FNBC. (nenhuma redundância).

Def: Um esquema de relação R está em 4FN em relação a um conjunto F de dependências (que inclui dependências funcionais e multivaloradas indesejáveis) se, para cada dependência multivalorada não trivial X — Y em F+, X for uma superchave de R.

DEPENDÊNCIA DE JUNÇÃO

Problemas com perdas de junção na descomposição em mais de duas relações !!

5ta forma normal trata estes problemas.

Estes casos ocorren raramente e são difíceis de tratar na prática.

Uma dependência de junção, DJ (R1, R2, ..., Rn), sobre uma relação R, especifica uma restrição sobre as instâncias de R. A restrição define que toda instância de R deveria ter uma decomposição R1, R2,, Rn cuja junção não tem perdas de informação.

* (
$$\pi$$
 < R1 > (r), π < R2 > (r),, π < Rn > (r)) = r.
DMV = DJ onde = n = 2

A quarta e a quinta formas normais. (a) A relação EMP com duas DMVs: ENOME→PNOME e ENOME→DNOME. (b) A decomposição da relação EMP em duas relações na 4FN EMP_PROJETOS e EMP_DEPENDENTES. (c) A relação FORNECE sem DMV está na 4FN, mas não na 5FN se ela possuir a DJ(R1, R2, R3). (d) A decomposição da relação FORNECE nas relações da 5FN R1. R2. R3.

(a) **EMP**

ENOME	PNOME	DNOME
Smith	×	John
Smith	Y	Anna
Smith	×	Anna
Smith	Y	John

(b) **EMP PROJETOS**

Smith

33.		
ENOME	PNOME	
Smith	×	

EMP_DEPENDENTES

ENOME	DNOME	
Smith	John	
Smith	Anna	

(c) FORNECE

FNOME	NOMEPECA	NOMEPROJ
Smith	Parafuso	ProjX
Smith	Porca	ProjY
Adamsky	Prego	ProjY
Walton	Porca	ProjZ
Adamsky	Prego	ProjX
Adamsky	Parafuso	ProjX
Smith	Parafuso	ProjY

(d) R₁

FNOME	NOMEDEON
FNOME	NOMEPECA
Smith	Parafuso
Smith	Porca
Adamsky	Parafuso
Walton	Porca
Adamsky	Prego

R2	
FNOME	NON

FNOME	NOMEPROJ
Smith	ProjX
Smith	ProjY
Adamsky	ProjY
Walton	ProjZ
Adamsky	ProjX

R3

NOMEPECA	NOMEPROJ
Parafuso	ProjX
Porca	ProjY
Parafuso	ProjY
Porca	ProjZ
Prego	ProjX

Quinta forma normal 5NF

(project-join normal form)

Uma relação R esta na 5NF com relação a um conjunto F de dependências funcionais, multivalorados e de junção se para toda dependência de junção não trivial DJ (R1, R2,, Rn) de F+ (implicadas por F), todo Ri é uma superchave de R.

Exemplo: Suponha a relação FORNECE e a seguinte restrição sempre se aplica "cada vez que um fornecedor f fornece uma peça p, e um projeto j usa uma peça p, e o fornecedor f fornecer pelo menos uma peça para o projeto j, então o fornecedor f também estará fornecendo a peça p para o projeto j"

FORNECE

FORNECE

FNOME	NOMEPECA	NOMEPROJ
Smith	Parafuso	ProjX
Smith	Porca	ProjY
Adamsky	Prego	ProjY
Walton	Porca	ProjZ
Adamsky	Prego	ProjX
Adamsky	Parafuso	ProjX
Smith	Parafuso	ProjY

н		H2		нз	
FNOME	NOMEPECA	FNOME	NOMEPROJ	NOMEPECA	NOMEPROJ
Smith	Parafuso	Smith	ProjX	Parafuso	ProjX
Smith	Porca	Smith	ProjY	Porca	ProjY
Adamsky	Parafuso	Adamsky	ProjY	Parafuso	ProjY
Walton	Porca	Walton	ProjZ	Porca	ProjZ
Adamsky	Prego	Adamsky	ProiX	Prego	ProiX

A junção natural de duas quaisquer dessas relações produz tuplas espurias, o que não acontece se é aplicada a junção às três relações.

Exercícios

CASAS (Construtor, Quadra, Preço, Estilo)

Quadra → Construtor

Construtor → Estilo

Construtor, Quadra → Preço

Está em 2FN?

Em 3FN?

Como normalizar?

Exercícios

R (Nome, Salário, Dept, Gerente, Projeto, Data)

Nome → Salário

Nome → Dept

Nome → Gerente

Dept → Gerente

(Nome, Projeto) → Data

Está em 2FN?

Em 3FN?

Como normalizar?

Outro exercício

- Considere a seguinte relação: 30%
- VENDA_CARRO(CarroNr, Data_Venda, VendedorNr, Comissão%, Desconto)
- Pressuponha que um carro possa ser vendido por diversos vendedores e conseqüentemente (CarroNr, VendedorNr) é a chave primária. Outras dependências são:
- Data_Venda → Desconto
- ∨endedorNr → Comissão%
- Baseado em uma dada chave primária, essa relação está na 1FN, na 2FN ou na 3FN? Por que sim ou por que não? Faça normalizações sucessivas até chegar à normalização total.

Outro Exemplo.

SKILL-USED

EMP-NO	SKILL-NO	PROJ-NAME,
38	27	GAMMA
38	51	GAMMA
38	27	DELTA
38	3	DELTA
		<u> </u>

(a)

SKILL-AVAILABLE

EMP-NO	SKILL-NO	PROJ-NAME
14	22	ALPHA
14	22	BETA
14	35	ALPHA
14	35	BETA

EMP-SKILL EMP-NO SKILL-NO EMP-PROJ EMP-NO PROJ-NAME

14 22 14 ALPHA 14 BETA

Figure 4. Nondecomposable and decomposable ternary relationships expressed as relations. (a) 4NF relation (nondecomposable); (b) 3NF relation decomposable to 4NF relations.