- Enunciare la legge di Coulomb:
 - Due cariche puntiformi q_1 e q_2 poste ad una distanza r interagiscono con una forza $\vec{F} = k_e \frac{q_1 \cdot q_2}{|\vec{r}|^3} \vec{r}$ avente modulo pari a $|\vec{F}| = k_e \frac{q_1 \cdot q_2}{|\vec{r}|^2}$

(nel vuoto:
$$k_e = 8.99 * 10^9 Nm^2/C^2$$
)

- Spiegare il principio di sovrapposizione: il carattere vettoriale della legge di Coulomb comporta che la forza elettrica su una carica puntiforme q_0 , risultante da un sistema discreto di N cariche puntiformi q_i , sia data dalla risultante delle singole forze $\vec{F}_{TOT} = \sum_{i=1}^N k_e \frac{q_0 \cdot q_i}{|\vec{r_i} \vec{r_0}|^3} (\vec{r_i} \vec{r_0})$
- Fornire, come richiesto, uno dei due esempi proposti mostrando come a partire dalla relazione qui sopra si arrivi all'espressione del campo elettrico
- Trovare l'espressione del campo elettrico nel caso in cui il punto in cui si calcola il campo elettrico si trova ad una distanza molto maggiore a quella tra le cariche del dipolo

Domanda 2

• Enunciare il Teorema di Gauss:

$$\Phi_{S}(\vec{E}) = \int_{S} \vec{E} \cdot \vec{n} \ dS = \frac{Q_{int}}{\varepsilon_{0}}$$

N.B. Specificare, con l'ausilio di un disegno, cosa sono i vari termini presenti nella formula precedente

- <u>Caso distribuzione lineare e uniforme di carica:</u>
 - Definire cosa si intende con distribuzione lineare e uniforme di carica
 - Spiegare, anche graficamente, perché ci si aspetta che le linee di campo elettrico siano perpendicolare al filo
 - Posto il filo lungo l'asse x, calcolare il campo (se in 2D avrà la direzione dell'asse y)

 $E_y = \int_{-\infty}^{+\infty} k_e \frac{\lambda \, dx}{|\vec{r}|^2} \cos{(\vartheta)}$ (per fare l'integrale conviene introdurre la grandezza $tg(\vartheta) = \frac{x}{y_P}$ dove P(0,y_P) è il punto nel quale di vuole determinare il campo elettrico

Domanda 3

• Enunciare il Teorema di Gauss:

$$\Phi_{S}(\vec{E}) = \int_{S} \vec{E} \cdot \vec{n} \ dS = \frac{Q_{int}}{\varepsilon_{0}}$$

N.B. Specificare, con l'ausilio di un disegno, cosa sono i vari termini presenti nella formula precedente

- <u>Caso distribuzione piana e uniforme di carica</u>
 - Definire cosa si intende con distribuzione piana e uniforme di carica
 - Intersecare il piano con un cilindro di altezza h e raggio r in modo che le superfici di base siano parallele al piano stesso. Calcolare il flusso attraverso le superfici di base (attraverso la superficie laterale il flusso è nullo, spiegarne il motivo) ed utilizzare il

teorema di Gauss per calcolare il modulo di E (occorre spiegare per quale motivo il campo elettrico è atteso essere normale al piano)

Domanda 4

- Dare la definizione di dipolo:
 Un dipolo è un sistema composto da due cariche elettriche q₁ e q₂ uguali ed opposte poste ad una distanza d.
- Campo elettrico:
 occorre calcolare la somma vettoriale dei due campi elettrici generati
 dalle due cariche in un punto P (x,0) sull'asse del dipolo (conviene porre
 l'origine degli assi nel punto medio del segmento congiungente le
 cariche). Dalla formula ottenuta

$$\vec{E} = \vec{E}_1 + \vec{E}_2 = k_e \frac{2qxd}{\left(x^2 - \frac{d^2}{4}\right)^2} \vec{i}$$
 (caso in cui +q sia in A(+d/2, 0)

è possibile ottenere un'espressione asintotica ipotizzando che x>>d

 Potenziale: si segue la stessa strada del campo elettrico ottenendo

$$V = V_1 + V_2 = k_e \frac{qd}{x^2 - \frac{d^2}{x}}$$
 (caso in cui +q sia in A(+d/2, 0))

NB: il campo elettrico (lungo l'asse del dipolo) si ricava dal potenziale semplicemente come: $\vec{E} = -\nabla V = -\frac{dV}{dx}\vec{i}$ in quanto $\frac{dV}{dy} = \frac{dV}{dz} = 0$.

Domanda 5

- Dare la definizione di forza conservativa (fornire un esempio di forza conservativa e di una forza non conservativa, come l'attrito) Una forza è conservativa se $\oint \vec{F} \cdot d\vec{s} = 0$. Data una forza conservativa a cui si associa un potenziale U, allora $L_{\vec{r}_A \to \vec{r}_B} = U(\vec{r}_A) U(\vec{r}_B)$.
- Nel caso della forza di Coulomb:

$$L_{A \to B} = \int_{A}^{B} \vec{F} \cdot \vec{ds} = \int_{A}^{B} k_{e} \frac{q_{1}q_{2}}{|\vec{r}|^{2}} \vec{u_{r}} \cdot \vec{ds} = \int_{A}^{B} k_{e} \frac{q_{1}q_{2}}{r^{2}} dr = k_{e} \frac{q_{1}q_{2}}{r_{A}} - k_{e} \frac{q_{1}q_{2}}{r_{B}}$$

da cui si evince che vale la formula $L_{\vec{r}_A \to \vec{r}_B} = U(\vec{r}_A) - U(\vec{r}_B)$.

Dimostrare questa relazione nel caso in cui la forza sia generata da una carica puntiforme eventualmente con l'ausilio di un disegno per indicare il significato dei vari termini.

 Elencare alcune delle conseguenze della conservatività della forza di Coulomb.

• Energia potenziale:

E' l'energia associata ad un dato sistema di cariche. Si definisce come l'energia necessaria per portare un sistema di cariche in una data configurazione (a partire dall'infinito). Si scriva l'espressione esplicita di U nel caso di due (o tre) cariche puntiformi.

• Potenziale:

Il potenziale elettrico è una grandezza scalare definita come $V = \frac{U}{q}$; dove U è l'energia potenziale e q la carica di prova ([V]=volt).

• Lavoro:

$$L_{A-B} = \int_{A}^{B} \vec{F} \cdot \overrightarrow{ds} = \int_{A}^{B} k_{e} \frac{q_{1}q_{2}}{|\vec{r}|^{2}} \overrightarrow{u_{r}} \cdot \overrightarrow{ds} = \int_{A}^{B} k_{e} \frac{q_{1}q_{2}}{r^{2}} dr = k_{e} \frac{q_{1}q_{2}}{r_{A}} - k_{e} \frac{q_{1}q_{2}}{r_{B}}$$

dalla formula precedente si nota come il lavoro sia uguale alla differenza di energia potenziale tra le due configurazioni (iniziale (A) e finale (B)). Aggiungere eventualmente qualche considerazione sul segno del lavoro.

Domanda 7

• Fornire la definizione di capacità e di condensatore

Campo elettrico e capacità:

O Per calcolare il campo elettrico di procede come nel caso di una distribuzione di carica uniforme piana ed infinita: Intersecare il piano con un cilindro di altezza h e raggio r in modo che le superfici di base siano parallele al piano stesso. Calcolare il flusso attraverso le superfici di base (attraverso la superficie laterale il flusso è nullo, spiegarne il motivo) ed utilizzare il teorema di Gauss per calcolare il modulo di E (considerare il piano carico con una densità superficiale di carica pari a σ , e quindi la carica "interna" sarà $Q = \sigma^* S_b$ dove S_b è l'area di base del cilindro considerato).

Il campo presente tra le armature sarà pertanto $E=2\frac{\sigma}{2\epsilon_0}$; dove il

"2" indica il fatto che il conto con il teorema di Gauss si è calcolato il campo prodotto da una sola delle due armature.

N.B. Occorre mostrare con un disegno per quale motivo il campo all'esterno e nullo mentre tra le armature è doppio rispetto al caso di una singola armatura.

Dal calcolo effettuato di deduce che il campo elettrico tra le piastre è costante, di modulo pari a $E=\frac{\sigma}{\epsilon_0}$, direzione normale alle piastre stesse, e verso entrante nella piastra negativa.

O Per calcolare la capacità occorre partire dalla relazione $C = \frac{Q}{\Delta V}$ Poiché $\Delta V = \int \vec{E} \cdot \vec{ds} = \frac{\sigma}{\epsilon_0} d$ (d è la distanza tra le armature)

$$C = \frac{Q}{\Delta V} = \frac{\delta A}{\frac{\delta}{\varepsilon_0} d} = \varepsilon_0 \frac{A}{d}$$

- Definire il concetto di resistenza equivalente
- Resistori in serie:

entrambe le resistenze sono attraversate dalla stessa corrente i=i1=i2.

$$V_A - V_B = iR_1$$
;
 $V_B - V_C = iR_2$;
 $V_A - V_C = iR_{eq}$;

sommando le prime due equazioni membro a membro si ottiene per confronto con la terza

$$R_{eq} = R_1 + R_2$$

(scrivere l'espressione generale a n resistori)

Resistori in parallelo: entrambe le resistenze sono soggette alla stessa differenza di potenziale.

$$V_A - V_B = i_1 R_1;$$

 $V_A - V_B = i_2 R_2;$
 $V_A - V_B = i R_{eq};$

poiché $i_1 + i_2 = i$ si ottiene (ricavando le tre intensità di corrente e sostituendole nell'ultima equazione)

$$\frac{1}{R_{eq}} = \frac{1}{R_1} + \frac{1}{R_2}$$

(scrivere l'espressione generale a n resistori)

Domanda 9

- Definire il concetto di capacità equivalente
- Condensatori in serie: La carica presente sulle piastre è la stessa,

$$Q_A = Q_B = Q.$$

 $V_1 - V_3 = \frac{Q}{C_A};$
 $V_3 - V_2 = \frac{Q}{C_B};$
 $V_1 - V_2 = \frac{Q}{C_{eq}};$

$$V_1 - V_2 = \frac{c_B}{c_{eq}}$$

sommando le prime due equazioni membro a membro si ottiene per confronto con la terza

$$\frac{1}{C_{eq}} = \frac{1}{C_A} + \frac{1}{C_B}$$

(scrivere l'espressione generale a n condensatori)

• <u>Condensatori in parallelo:</u> entrambi i condensatori sono soggetti alla stessa differenza di potenziale.

$$egin{aligned} V_1 - V_2 &= rac{Q_{tot}}{C_{eq}}; \ V_1 - V_2 &= rac{Q_A}{C_A}; \ V_1 - V_2 &= rac{Q_B}{C_B}; \end{aligned}$$

poiché $Q_A + Q_B = Q_{tot}$ si ottiene (ricavando le tre quantità di carica sostituendole nell'ultima equazione)

$$C_{eq} = C_A + C_B$$

(scrivere l'espressione generale a n condensatori)

Domanda 10

- Discutere il comportamento fisico del fenomeno durante il processo di carica e scarica del condensatore
- Per entrambi i casi si imposti l'equazione differenziale e se ne scriva la soluzione (eventualmente la si verifichi sostituendola nell'equazione differenziale):
 - o Carica:

all'istante t=0s l'interruttore viene chiuso (per t<0 la carica sul condensatore è nulla).

La legge di carica del condensatore è $Q(t) = C\varepsilon (1 - e^{-\frac{t}{RC}})$.

- Facendo il limite per $t \to 0$ (cioè subito dopo la chiusura dell'interruttore) si evince che Q(0)=0. Il condensatore si comporta come un cortocircuito.
- Facendo il limite per $t \to +\infty$ (cioè molto tempo dopo la chiusura dell'interruttore) si evince che $Q(\infty) = C\varepsilon$. Il condensatore, alla stazionarietà, si comporta come un circuito aperto.

o Scarica:

all'istante t=0s l'interruttore viene chiuso (per t<0 la carica sul condesnsatore è $Q_0 = C\varepsilon$).

La legge di carica del condensatore è $Q(t) = Q_0 e^{-\frac{t}{RC}}$:

- Facendo il limite per t → 0 (cioè subito dopo la chiusura dell'interruttore) si evince che $Q(0) = Q_0$. Il condensatore si comporta come un generatore di tensione $\varepsilon = \frac{Q_0}{c}$.
- Facendo il limite per $t \to +\infty$ (cioè molto tempo dopo la chiusura dell'interruttore) si evince che $Q(\infty) = 0$. Alla stazionarietà nel circuito non scorre più corrente.

- Dare la definizione di intensità di corrente
- Una descrizione microscopica prevede di considerare gli elettroni di valenza come un "gas" avente moto libero e casuale. L'applicazione di un campo elettrico (differenza di potenziale) genera un ulteriore moto (collettivo e ordinato) con una velocità v_d (velocità di deriva) all'interno del conduttore.

$$I = n q v_d A$$

dove:

- n è il numero di portatori di carica per unità di volume (densità)
- *q* è la carica del portatore (e)
- A è la sezione del conduttore attraversata dalla corrente I

Se si introduce la conduttività σ , il vettore "densità di corrente" $\vec{J}=\sigma\vec{E}$, e si considera un tratto di conduttore lungo d, si ottiene

$$I = \int \vec{J} \cdot d\vec{A} = \sigma |\vec{E}| A = \sigma E A$$
 (si assume campo E ortogonale alla sezione)

Poiché si ipotizza E uniforme, E = V/d da cui

$$I = \sigma \frac{V}{d}A \rightarrow = \frac{1}{\sigma A}I \rightarrow V = RI$$

Domanda 12

Una carica q in moto con una velocità \vec{v} in una regione in cui sia presente un campo magnetico \vec{B} è soggetta ad una forza $\vec{F}=q\ \vec{v}\times\vec{B}$.

- Caso: $\vec{v} \parallel \vec{B}$ Il prodotto vettoriale in questo caso è nullo e quindi la particella non è suggetta alla forza magnetica.
- Caso: $\vec{v} \perp \vec{B}$ Il modulo della forza magnetica è $F = q \ v \ B$, la direzione è ortogonale al piano contenente i vettori \vec{v} e \vec{B} e il verso è determinato con la regola dellla mano destra. Nel caso in cui \vec{B} sia omogeneo e costante il moto avviene su una traiettoria circolare: trovare la frequenza di ciclotrone
- Caso: moto ad elica È una combinazione dei due casi analizzati. Si scompone il vettore velocità in due componenti tra loro perpendicolari, $\vec{v} = \vec{v}_{\parallel} + \vec{v}_{\perp}$, in modo che $\vec{v}_{\parallel} \parallel \vec{B}$ e $\vec{v}_{\perp} \perp \vec{B}$.
 - $\circ \quad \vec{v}_{\parallel}$ non dà alcun contributo alla forza magnetica
 - $\circ \quad \vec{v}_\bot \text{ produce una forza ortogonale al piano contenente } \vec{v}_\bot \text{ e } \vec{B}.$

La combinazione dei due moti genera un moto elicoidale avente asse coincidente con \hat{u}_B .

Un filo rettilineo percorso da una corrente i produce ad una distanza r un campo magnetico di modulo $B=\frac{\mu_0}{2\pi}\frac{i}{r}$; le cui linee di forza sono circonferenze concentriche (aventi centro sull'asse coincidente con il filo stesso) e verso determinato con la regola della mano destra.

Nel caso in cui si considerino due fili paralleli (filo 1 e filo 2) accade che vi sia una mutua interazione: sul filo 1, percorso da una corrente i_1 , agisce una forza F_{12} dovuta al campo magnetico B_2 prodotto dal filo 2, mentre sul filo 2, percorso da una corrente i_2 , agisce una forza F_{21} dovuta al campo magnetico B_1 prodotto dal filo 1.

$$F_{12} = B_1 i_2 l = \frac{\mu_0}{2\pi} \frac{i_1}{d} i_2 l$$

dove d è la distanza tra i due fili e l è il tratto di filo considerato. (Illustrare la situazione con un disegno)

Spiegare la relazione con la terza legge di Newton, considerando il fatto che $\vec{F}_{12} = -\vec{F}_{21}$

Domanda 14

• Legge Biot-Savart:

$$\overrightarrow{dB} = \frac{\mu_0}{4\pi} \ i \ \frac{\overrightarrow{dl} \times \widehat{u}_r}{|\vec{r}|^2}$$

dove \overrightarrow{dl} è un tratto di lunghezza infinitesima di filo (verso dato dal verso della corrente) e \overrightarrow{r} è il raggio-vettore che individua il punto P nel quale è misurato il campo \overrightarrow{dB} . Illustrare con un disegno il significato dei vari termini

- Applicazione alla spira circolare
 - Si consideri una spira circolare di raggio R percorsa da una corrente i, disposta sul piano XY e avente centro coincidente con l'origine degli assi.
 - Si consideri un punto P sull'asse z di coordinate P(0,0,z).
 - Si calcoli in campo ivi generato da due tratti dl della spira diametralmente opposti.
 - Si mostri (anche con l'ausilio di un disegno) che l'unica componente dB non nulla è quella lungo l'asse z.
 - \circ Si calcoli l'espressione di \vec{B} .

Domanda 15

• Legge di Ampere: $\oint \vec{B} \cdot d\vec{s} = \mu_0 I_{conc}$ dove I_{conc} è la somma delle correnti concatenate al percorso chiuso su cui si esegue la circuitazione.

- Applicazione:
 - o Considerare un solenoide con asse coincidente con l'asse x
 - o Si spieghi qualitativamente come è fatto il campo magnetico
 - $\oint \vec{B} \cdot d\vec{s} = \int_a^b \vec{B} \cdot d\vec{s} + \int_b^c \vec{B} \cdot d\vec{s} + \int_c^d \vec{B} \cdot d\vec{s} + \int_a^d \vec{B} \cdot d\vec{s} + \int_d^a \vec{B} \cdot d\vec{s}$ di cui solo il primo addendo non è nullo (il secondo e quarto sono 0 perché $\vec{B} \perp d\vec{s}$; il terzo è nullo perché all'esterno del solenoide $\vec{B} = \vec{0}$)

$$B = \mu_0 ni$$

dove:

- n=numero di spire per unità di lunghezza
- i = corrente che fluisce nel solenoide

$$I_{conc} = n h i$$

Domanda 16

• Enunciare la legge di Faraday-Lenz:

$$fem_{indotta} = -\frac{d\Phi_{S}(\vec{B})}{dt}$$

• Esempio: solenoide

In seguito alla variazione della corrente i che fluisce nel solenoide si ha una variazione del flusso del campo magnetico attraverso la sezione del solenoide stesso. Grazie alla legge di Faraday- Lenz si genera una fem che induce una corrente che si oppone a tale variazione. Se ad esempio l'intensità di corrente i cresce, allora aumenta anche il flusso: sul solenoide si produce una corrente indotta di verso tale da opporsi alla corrente iniziale, tale cioè da opporsi alla variazione di flusso (fenomeno dell'autoinduzione).

- ο Dedurre l'espressione di L per un solenoide a partire da $Φ_S(\vec{B}) = Li$
- \circ Calcolare il flusso di \vec{B} concatenato con un avvolgimento
- \circ Calcolare il flusso di \vec{B} concatenato con N avvolgimenti