<150> 60/087607

Sequence Listing

```
<110> Ashkenazi, Avi J.
      Baker, Kevin P.
      Botstein, David
      Desnoyers, Luc
      Eaton, Dan L.
      Ferrara, Napoleone
      Fong, Sherman
      Gerber, Hanspeter
      Gerritsen, Mary E.
      Goddard, Audrey
      Godowski, Paul J.
      Grimaldi, J. Christopher
      Gurney, Austin L.
      Kljavin, Ivar J.
      Napier, Mary A.
      Pan, James
      Paoni, Nicholas F.
      Roy, Margaret Ann
      Stewart, Timothy A.
      Tumas, Daniel
      Watanabe, Colin K.
      Williams, P. Mickey
      Wood, William I.
      Zhang, Zemin
<120> Secreted and Transmembrane Polypeptides and Nucleic
      Acids Encoding the Same
<130> P2730P1C45
<150> 60/049787
<151> 1997-06-16
<150> 60/062250
<151> 1997-10-17
<150> 60/065186
<151> 1997-11-12
<150> 60/065311
<151> 1997-11-13
<150> 60/066770
<151> 1997-11-24
<150> 60/075945
<151> 1998-02-25
<150> 60/078910
<151> 1998-03-20
<150> 60/083322
<151> 1998-04-28
<150> 60/084600
<151> 1998-05-07
<150> 60/087106
<151> 1998-05-28
```

<151> 1998-06-02 <150> 60/087609 <151> 1998-06-02 <150> 60/087759 <151> 1998-06-02 <150> 60/087827 <151> 1998-06-03 <150> 60/088021 <151> 1998-06-04 <150> 60/088025 <151> 1998-06-04 <150> 60/088026 <151> 1998-06-04 <150> 60/088028 <151> 1998-06-04 <150> 60/088029 <151> 1998-06-04 <150> 60/088030 <151> 1998-06-04 <150> 60/088033 <151> 1998-06-04 <150> 60/088326 <151> 1998-06-04 <150> 60/088167 <151> 1998-06-05 <150> 60/088202 <151> 1998-06-05 <150> 60/088212 <151> 1998-06-05 <150> 60/088217 <151> 1998-06-05 <150> 60/088655 <151> 1998-06-09 <150> 60/088734 <151> 1998-06-10 <150> 60/088738 <151> 1998-06-10 <150> 60/088742 <151> 1998-06-10 <150> 60/088810 <151> 1998-06-10

<150> 60/088824

<151> 1998-06-10 <150> 60/088826 <151> 1998-06-10 <150> 60/088858 <151> 1998-06-11 <150> 60/088861 <151> 1998-06-11 <150> 60/088876 <151> 1998-06-11 <150> 60/089105 <151> 1998-06-12 <150> 60/089440 <151> 1998-06-16 <150> 60/089512 <151> 1998-06-16 <150> 60/089514 <151> 1998-06-16 <150> 60/089532 <151> 1998-06-17 <150> 60/089538 <151> 1998-06-17 <150> 60/089598 <151> 1998-06-17 <150> 60/089599 <151> 1998-06-17 <150> 60/089600 <151> 1998-06-17 <150> 60/089653 <151> 1998-06-17 <150> 60/089801 <151> 1998-06-18 <150> 60/089907 <151> 1998-06-18 <150> 60/089908 <151> 1998-06-18 <150> 60/089947 <151> 1998-06-19 <150> 60/089948 <151> 1998-06-19

<150> 60/089952 <151> 1998-06-19

<150> 60/090246

3

<151> 1998-06-22 <150> 60/090252 <151> 1998-06-22 <150> 60/090254 <151> 1998-06-22 <150> 60/090349 <151> 1998-06-23 <150> 60/090355 <151> 1998-06-23 <150> 60/090429 <151> 1998-06-24 <150> 60/090431 <151> 1998-06-24 <150> 60/090435 <151> 1998-06-24 <150> 60/090444 <151> 1998-06-24 <150> 60/090445 <151> 1998-06-24 <150> 60/090472 <151> 1998-06-24 <150> 60/090535 <151> 1998-06-24 <150> 60/090540 <151> 1998-06-24 <150> 60/090542 <151> 1998-06-24 <150> 60/090557 <151> 1998-06-24 <150> 60/090676 <151> 1998-06-25 <150> 60/090678 <151> 1998-06-25 <150> 60/090690 <151> 1998-06-25 <150> 60/090694 <151> 1998-06-25 <150> 60/090695 <151> 1998-06-25 <150> 60/090696 <151> 1998-06-25

<150> 60/090862

- <151> 1998-06-26
- <150> 60/090863
- <151> 1998-06-26
- <150> 60/091360
- <151> 1998-07-01
- <150> 60/091478
- <151> 1998-07-02
- <150> 60/091544
- <151> 1998-07-01
- <150> 60/091519
- <151> 1998-07-02
- <150> 60/091626
- <151> 1998-07-02
- <150> 60/091633
- <151> 1998-07-02
- <150> 60/091978
- <151> 1998-07-07
- <150> 60/091982
- <151> 1998-07-07
- <150> 60/092182
- <151> 1998-07-09
- <150> 60/092472
- <151> 1998-07-10
- <150> 60/091628
- <151> 1998-07-02
- <150> 60/091646
- <151> 1998-07-02
- <150> 60/091673
- <151> 1998-07-02
- <150> 60/093339
- <151> 1998-07-20
- <150> 60/094651
- <151> 1998-07-30
- <150> 60/095282
- <151> 1998-08-04
- <150> 60/095285
- <151> 1998-08-04
- <150> 60/095302
- <151> 1998-08-04
- <150> 60/095318
- <151> 1998-08-04
- <150> 60/095321

- <151> 1998-08-04 <150> 60/095301 <151> 1998-08-04
- <150> 60/095325 <151> 1998-08-04
- <150> 60/095916 <151> 1998-08-10
- <150> 60/095929
- <151> 1998-08-10
- <150> 60/096012
- <151> 1998-08-10
- <150> 60/096143
- <151> 1998-08-11
- <150> 60/096146
- <151> 1998-08-11
- <150> 60/096329
- <151> 1998-08-12
- <150> 60/096757
- <151> 1998-08-17
- <150> 60/096766
- <151> 1998-08-17
- <150> 60/096768
- <151> 1998-08-17
- <150> 60/096773
- <151> 1998-08-17
- <150> 60/096791
- <151> 1998-08-17
- <150> 60/096867
- <151> 1998-08-17
- <150> 60/096891 <151> 1998-08-17
- <150> 60/096894 <151> 1998-08-17
- (191) 1990 00-17
- <150> 60/096895 <151> 1998-08-17
- <150> 60/096897 <151> 1998-08-17
- <150> 60/096949
- <151> 1998-08-18
- <150> 60/096950
- <151> 1998-08-18
- <150> 60/096959

- <151> 1998-08-18 <150> 60/096960 <151> 1998-08-18
- <150> 60/097022 <151> 1998-08-18
- <150> 60/097141 <151> 1998-08-19
- <150> 60/097218 <151> 1998-08-20
- <150> 60/097661 <151> 1998-08-24
- <150> 60/097952 <151> 1998-08-26
- <150> 60/097954
- <151> 1998-08-26
- <150> 60/097955 <151> 1998-08-26
- <150> 60/098014
- <151> 1998-08-26
- <150> 60/097971 <151> 1998-08-26
- <150> 60/097974 <151> 1998-08-26
- <150> 60/097978 <151> 1998-08-26
- <150> 60/097986 <151> 1998-08-26
- <150> 60/097979
- <151> 1998-08-26
- <150> 60/098525 <151> 1998-08-31
- <150> 60/100634
- <151> 1998-09-16
- <150> 60/100858 <151> 1998-09-17
- <150> 60/113296
- <151> 1998-12-22
- <150> 60/123957 <151> 1999-03-12
- <150> 60/141037 <151> 1999-06-23
- <150> 60/143048

- <151> 1999-07-07
- <150> 60/144758
- <151> 1999-07-20
- <150> 60/145698
- <151> 1999-07-26
- <150> 60/146222
- <151> 1999-07-28
- <150> 60/149396 <151> 1999-08-17
- <150> 60/158663
- <151> 1999-10-08
- <150> 60/213637
- <151> 2000-06-23
- <150> 60/230978
- <151> 2000-09-07
- <150> 08/743698
- <151> 1996-11-06
- <150> 08/876698
- <151> 1997-06-16
- <150> 08/965056
- <151> 1997-11-05
- <150> 09/105413
- <151> 1998-06-26
- <150> 09/168978
- <151> 1998-10-07
- <150> 09/187368
- <151> 1998-11-06
- <150> 09/202054
- <151> 1998-12-07
- <150> 09/218517
- <151> 1998-12-22
- <150> 09/254311
- <151> 1999-03-03
- <150> 09/254460
- <151> 1999-03-09
- <150> 09/267213 <151> 1999-03-12
- 1201/ 1333 03 12
- <150> 09/284291 <151> 1999-04-12
- <150> 09/380137
- <151> 1999-08-25
- <150> 09/380138

- <151> 1998-08-25
- <150> 09/380139
- <151> 1999-08-25
- <150> 09/403296
- <151> 1999-10-18
- <150> 09/423844
- <151> 1999-11-12
- <150> 09/664610
- <151> 2000-09-18
- <150> 09/665350
- <151> 2000-09-18
- <150> 09/709238
- <151> 2000-11-08
- <150> 09/808689
- <151> 2001-03-14
- <150> 09/854816
- <151> 2001-05-15
- <150> 09/866028
- <151> 2001-05-25
- <150> 09/866034
- <151> 2001-05-25
- <150> 09/872035
- <151> 2001-06-01
- <150> 09/882636
- <151> 2001-06-14
- <150> 09/941,992
- <151> 2001-08-28
- <150> PCT/US97/20069
- <151> 1997-11-05
- <150> PCT/US98/19330
- <151> 1998-09-16
- <150> PCT/US98/19437
- <151> 1998-09-17
- <150> PCT/US98/21141
- <151> 1998-10-07
- <150> PCT/US98/25108
- <151> 1998-12-01
- <150> PCT/US99/00106
- <151> 1999-01-05
- <150> PCT/US99/05028
- <151> 1999-03-08
- <150> PCT/US99/12252

- <151> 1999-06-02
- <150> PCT/US99/21090
- <151> 1999-09-15
- <150> PCT/US99/21547
- <151> 1999-09-15
- <150> PCT/US99/28313
- <151> 1999-11-30
- <150> PCT/US99/28301
- <151> 1999-12-01
- <150> PCT/US99/28634
- <151> 1999-12-01
- <150> PCT/US99/30095
- <151> 1999-12-16
- <150> PCT/US99/30911
- <151> 1999-12-20
- <150> PCT/US00/00219
- <151> 2000-01-05
- <150> PCT/US00/00376
- <151> 2000-01-06
- <150> PCT/US00/03565
- <151> 2000-02-11
- <150> PCT/US00/04341
- <151> 2000-02-18
- <150> PCT/US00/04414
- <151> 2000-02-22
- <150> PCT/US00/04914
- <151> 2000-02-24
- <150> PCT/US00/05004
- <151> 2000-02-24
- <150> PCT/US00/05841
- <151> 2000-03-02
- <150> PCT/US00/06319
- <151> 2000-03-10
- <150> PCT/US00/06884
- <151> 2000-03-15
- <150> PCT/US00/07377
- <151> 2000-03-20
- <150> PCT/US00/08439
- <151> 2000-03-30
- <150> PCT/US00/13358
- <151> 2000-05-15
- <150> PCT/US00/13705

<151> 2000-05-17 <150> PCT/US00/14042 <151> 2000-05-22 <150> PCT/US00/14941 <151> 2000-05-30 <150> PCT/US00/15264 <151> 2000-06-02 <150> PCT/US00/20710 <151> 2000-07-28 <150> PCT/US00/22031 <151> 2000-08-11 <150> PCT/US00/23522 <151> 2000-08-23 <150> PCT/US00/23328 <151> 2000-08-24 <150> PCT/US00/30952 <151> 2000-11-08 <150> PCT/US00/32678 <151> 2000-12-01 <150> PCT/US01/06520 <151> 2001-02-28 <150> PCT/US01/17800 <151> 2001-06-01 <150> PCT/US01/19692 <151> 2001-06-20 <150> PCT/US01/21066 <151> 2001-06-29 <150> PCT/US01/21735 <151> 2001-07-09 <160> 532 <210> 1 <211> 1943 <212> DNA <213> Homo sapiens cggacgcgtg ggtgcgaggc gaaggtgacc ggggaccgag catttcagat 50 ctgctcggta gacctggtgc accaccacca tgttggctgc aaggctggtg 100

tgtctccgga cactaccttc tagggttttc caccagctt tcaccaaggc 150

ctccctgtt gtgaagaatt ccatcacgaa gaatcaatgg ctgttaacac 200 ctagcaggga atatgccacc aaaacaagaa ttgggatccg gcgtgggaga 250 actggccaag aactcaaaga ggcagcattg gaaccatcga tggaaaaaat 300

atttaaaatt gatcagatgg gaagatggtt tgttgctgga ggggctgctg 350 ttggtcttgg agcattgtgc tactatggct tgggactgtc taatgagatt 400 ggagctattg aaaaggctgt aatttggcct cagtatgtca aggatagaat 450 tcattccacc tatatgtact tagcagggag tattggttta acagctttgt 500 ctgccatage aatcageaga acgeetgtte teatgaactt catgatgaga 550 ggctcttggg tgacaattgg tgtgaccttt gcagccatgg ttggagctgg 600 aatgctggta cgatcaatac catatgacca gagcccaggc ccaaagcatc 650 ttgcttggtt gctacattct ggtgtgatgg gtgcagtggt ggctcctctg 700 acaatattag ggggtcctct tctcatcaga gctgcatggt acacagctgg 750 cattgtggga ggcctctcca ctgtggccat gtgtgcgccc agtgaaaagt 800 ttctgaacat gggtgcaccc ctgggagtgg gcctgggtct cgtctttgtg 850 tcctcattgg gatctatgtt tcttccacct accaccgtgg ctggtgccac 900 tctttactca gtggcaatgt acggtggatt agttcttttc agcatgttcc 950 ttctgtatga tacccagaaa gtaatcaagc gtgcagaagt atcaccaatg 1000 tatggagttc aaaaatatga tcccattaac tcgatgctga gtatctacat 1050 ggatacatta aatatatta tgcgagttgc aactatgctg gcaactggag 1100 gcaacagaaa gaaatgaagt gactcagctt ctggcttctc tgctacatca 1150 aatatcttgt ttaatggggc agatatgcat taaatagttt gtacaagcag 1200 ctttcgttga agtttagaag ataagaaaca tgtcatcata tttaaatgtt 1250 ccggtaatgt gatgcctcag gtctgccttt ttttctggag aataaatgca 1300 gtaatcetet eccaaataag cacacatt tteaattete atgtttgagt 1350 gattttaaaa tgttttggtg aatgtgaaaa ctaaagtttg tgtcatgaga 1400 atgtaagtct tttttctact ttaaaattta gtaggttcac tgagtaacta 1450 aaatttagca aacctgtgtt tgcatatttt tttggagtgc agaatattgt 1500 aattaatgtc ataagtgatt tggagctttg gtaaagggac cagagagaag 1550 gagtcacctg cagtcttttg tttttttaaa tacttagaac ttagcacttg 1600 tgttattgat tagtgaggag ccagtaagaa acatctgggt atttggaaac 1650 aagtggtcat tgttacattc atttgctgaa cttaacaaaa ctgttcatcc 1700 tgaaacaggc acaggtgatg cattctcctg ctgttgcttc tcagtgctct 1750 ctttccaata tagatgtggt catgtttgac ttgtacagaa tgttaatcat 1800 acagagaatc cttgatggaa ttatatatgt gtgttttact tttgaatgtt 1850 acaaaaggaa ataactttaa aactattctc aagagaaaat attcaaagca 1900

tgaaatatgt tgctttttcc agaatacaaa cagtatactc atg 1943

- <210> 2
- <211> 345
- <212> PRT
- <213> Homo sapiens

<400> 2

- Met Leu Ala Ala Arg Leu Val Cys Leu Arg Thr Leu Pro Ser Arg
 1 5 10 15
- Val Phe His Pro Ala Phe Thr Lys Ala Ser Pro Val Val Lys Asn
 20 25 30
- Ser Ile Thr Lys Asn Gln Trp Leu Leu Thr Pro Ser Arg Glu Tyr 35 40 45
- Ala Thr Lys Thr Arg Ile Gly Ile Arg Arg Gly Arg Thr Gly Gln
 50 55 60
- Glu Leu Lys Glu Ala Ala Leu Glu Pro Ser Met Glu Lys Ile Phe
 65 70 75
- Lys Ile Asp Gln Met Gly Arg Trp Phe Val Ala Gly Gly Ala Ala 80 85 90
- Val Gly Leu Gly Ala Leu Cys Tyr Tyr Gly Leu Gly Leu Ser Asn 95 100
- Glu Ile Gly Ala Ile Glu Lys Ala Val Ile Trp Pro Gln Tyr Val 110 115 120
- Lys Asp Arg Ile His Ser Thr Tyr Met Tyr Leu Ala Gly Ser Ile 125 130
- Gly Leu Thr Ala Leu Ser Ala Ile Ala Ile Ser Arg Thr Pro Val 140 145 150
- Leu Met Asn Phe Met Met Arg Gly Ser Trp Val Thr Ile Gly Val 155 160 165
- Thr Phe Ala Ala Met Val Gly Ala Gly Met Leu Val Arg Ser Ile 170 175 180
- Pro Tyr Asp Gln Ser Pro Gly Pro Lys His Leu Ala Trp Leu Leu 185 190
- His Ser Gly Val Met Gly Ala Val Val Ala Pro Leu Thr Ile Leu 200 205 210
- Gly Gly Pro Leu Leu Ile Arg Ala Ala Trp Tyr Thr Ala Gly Ile \$215\$
- Val Gly Gly Leu Ser Thr Val Ala Met Cys Ala Pro Ser Glu Lys 230 235 240
- Phe Leu Asn Met Gly Ala Pro Leu Gly Val Gly Leu Gly Leu Val 245 250 255
- Phe Val Ser Ser Leu Gly Ser Met Phe Leu Pro Pro Thr Thr Val 260 265 270
- Ala Gly Ala Thr Leu Tyr Ser Val Ala Met Tyr Gly Gly Leu Val

275 280 285 Leu Phe Ser Met Phe Leu Leu Tyr Asp Thr Gln Lys Val Ile Lys 290 295 Arg Ala Glu Val Ser Pro Met Tyr Gly Val Gln Lys Tyr Asp Pro Ile Asn Ser Met Leu Ser Ile Tyr Met Asp Thr Leu Asn Ile Phe 320 325 330 Met Arg Val Ala Thr Met Leu Ala Thr Gly Gly Asn Arg Lys Lys 335 345 <210> 3 <211> 43 <212> DNA <213> Artificial Sequence <223> Synthetic oligonucleotide probe <400> 3 tgtaaaacga cggccagtta aatagacctg caattattaa tct 43 <210> 4 <211> 41 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide probe <400> 4 caggaaacag ctatgaccac ctgcacacct gcaaatccat t 41 <210> 5 <211> 3033 <212> DNA <213> Homo sapiens <400> 5 gaaggetgee tegetggtee gaatteggtg gegeeacgte egecegtete 50 cgccttctgc atcgcggctt cggcggcttc cacctagaca cctaacagtc 100 gcggagccgg ccgcgtcgtg agggggtcgg cacggggagt cgggcggtct 150 tgtgcatctt ggctacctgt gggtcgaaga tgtcggacat cggagactgg 200 ttcaggagca tcccggcgat cacgcgctat tggttcgccg ccaccgtcgc 250 cgtgcccttg gtcggcaaac tcggcctcat cagcccggcc tacctcttcc 300 tetggceega ageetteett tategettte agatttggag geeaateact 350 gccacctttt atttccctgt gggtccagga actggatttc tttatttggt 400 caatttatat ttcttatatc agtattctac gcgacttgaa acaggagctt 450 ttgatgggag gccagcagac tatttattca tgctcctctt taactggatt 500 tgcatcgtga ttactggctt agcaatggat atgcagttgc tgatgattcc 550

tctgatcatg tcagtacttt atgtctgggc ccagctgaac agagacatga 600 ttgtatcatt ttggtttgga acacgattta aggcctgcta tttaccctgg 650 gttatccttg gattcaacta tatcatcgga ggctcggtaa tcaatgagct 700 tattggaaat ctggttggac atctttattt tttcctaatg ttcagatacc 750 caatggactt gggaggaaga aattttctat ccacacctca gtttttgtac 800 cgctggctgc ccagtaggag aggaggagta tcaggatttg gtgtgcccc 850 tgctagcatg aggcgagctg ctgatcagaa tggcggaggc ggqagacaca 900 actggggcca gggctttcga cttggagacc agtgaagggg cggcctcggg 950 cagccgctcc tctcaagcca catttcctcc cagtgctggg tgcacttaac 1000 aactgcgttc tggctaacac tgttggacct gacccacact gaatgtagtc 1050 tttcagtacg agacaaagtt tcttaaatcc cgaagaaaaa tataagtgtt 1100 ccacaagttt cacgattctc attcaagtcc ttactgctgt gaagaacaaa 1150 taccaactgt gcaaattgca aaactgacta cattttttgg tgtcttctct 1200 teteceettt cegtetgaat aatgggtttt agegggteet aatetgetgg 1250 cattgagetg gggetgggte accaaaccet teccaaaagg acettatete 1300 tttcttgcac acatgcctct ctcccacttt tcccaacccc cacatttgca 1350 actagaaaaa gttgcccata aaattgctct gcccttgaca ggttctgtta 1400 tttattgact tttgccaagg ctggtcacaa caatcatatt cacgttattt 1450 tccccttttg gtggcagaac tgttaccaat agggggagaa gacagccacg 1500 gatgaagcgt ttctcagctt ttggaattgc ttcgactgac atccgttgtt 1550 aaccgtttgc cactcttcag atatttttta taaaaaaagt accactgagt 1600 tcatgagggc cacagattgg ttattaatga gatacgaggg ttggtgctgg 1650 gtgtttgttt cctgagctaa gtgatcaaga ctgtagtgga gttgcagcta 1700 acatgggtta ggtttaaacc atgggggatg caccectttg cgtttcatat 1750 gtagccctac tggctttgtg tagctggagt agttgggttg ctttgtgtta 1800 ggaggatcca gatcatgttg gctacaggga gatgctctct ttgagaggtc 1850 ctgggcattg attoccattt caatctcatt ctggatatgt gttcattgag 1900 taaaggagga gagaccctca tacgctattt aaatgtcact tttttgccta 1950 tcccccgttt tttggtcatg tttcaattaa ttgtgaggaa ggcgcagctc 2000 ctctctgcac gtagatcatt ttttaaagct aatgtaagca catctaaggg 2050 aataacatga tttaaggttg aaatggcttt agaatcattt gggtttgagg 2100 gtgtgttatt ttgagtcatg aatgtacaag ctctgtgaat cagaccagct 2150

taaataccca caccttttt tcgtaggtgg gcttttccta tcagagcttg 2200 gctcataacc aaataaagtt ttttgaaggc catggctttt cacacagtta 2250 ttttatttta tgacgttatc tgaaagcaga ctgttaggag cagtattgag 2300 tggctgtcac actttgaggc aactaaaaag gcttcaaacg ttttgatcag 2350 tttcttttca ggaaacattg tgctctaaca gtatgactat tctttccccc 2400 actcttaaac agtgtgatgt gtgttatcct aggaaatgag agttggcaaa 2450 caacttctca ttttgaatag agtttgtgtg tacttctcca tatttaattt 2500 atatgataaa ataggtgggg agagtctgaa ccttaactgt catgttttgt 2550 tgttcatctg tggccacaat aaagtttact tgtaaaattt tagaggccat 2600 tactccaatt atgttgcacg tacactcatt gtacaggcgt ggagactcat 2650 tgtatgtata agaatatttc tgacagtgag tgacccggag tctctggtgt 2700 accetettae cagteagetg cetgegagea gteattttt cetaaaggtt 2750 tacaagtatt tagaactttt cagttcaggg caaaatgttc atgaagttat 2800 tcctcttaaa catggttagg aagctgatga cgttattgat tttgtctgga 2850 ttatgtttct ggaataattt taccaaaaca agctatttga gttttgactt 2900 gacaaggcaa aacatgacag tggattctct ttacaaatgg aaaaaaaaa 2950 tccttatttt gtataaagga cttccctttt tgtaaactaa tcctttttat 3000 tggtaaaaat tgtaaattaa aatgtgcaac ttg 3033

<210> 6

<211> 251

<212> PRT

<213> Homo sapiens

<400> 6

Met Ser Asp Ile Gly Asp Trp Phe Arg Ser Ile Pro Ala Ile Thr 1 5 10 15

Arg Tyr Trp Phe Ala Ala Thr Val Ala Val Pro Leu Val Gly Lys 20 25 30

Leu Gly Leu Ile Ser Pro Ala Tyr Leu Phe Leu Trp Pro Glu Ala 35 40 45

Phe Leu Tyr Arg Phe Gln Ile Trp Arg Pro Ile Thr Ala Thr Phe 50 55 60

Tyr Phe Pro Val Gly Pro Gly Thr Gly Phe Leu Tyr Leu Val Asn 65 70 75

Leu Tyr Phe Leu Tyr Gln Tyr Ser Thr Arg Leu Glu Thr Gly Ala 80 85 90

Phe Asp Gly Arg Pro Ala Asp Tyr Leu Phe Met Leu Leu Phe Asn 95 100 105

```
Trp Ile Cys Ile Val Ile Thr Gly Leu Ala Met Asp Met Gln Leu
Leu Met Ile Pro Leu Ile Met Ser Val Leu Tyr Val Trp Ala Gln
                                     130
Leu Asn Arg Asp Met Ile Val Ser Phe Trp Phe Gly Thr Arg Phe
                140
                                    145
Lys Ala Cys Tyr Leu Pro Trp Val Ile Leu Gly Phe Asn Tyr Ile
                                    160
Ile Gly Gly Ser Val Ile Asn Glu Leu Ile Gly Asn Leu Val Gly
                                                         180
His Leu Tyr Phe Phe Leu Met Phe Arg Tyr Pro Met Asp Leu Gly
                                    190
Gly Arg Asn Phe Leu Ser Thr Pro Gln Phe Leu Tyr Arg Trp Leu
                200
                                                         210
Pro Ser Arg Arg Gly Gly Val Ser Gly Phe Gly Val Pro Pro Ala
                                    220
Ser Met Arg Arg Ala Ala Asp Gln Asn Gly Gly Gly Arg His
Asn Trp Gly Gln Gly Phe Arg Leu Gly Asp Gln
```

<210> 7

<211> 1373

<212> DNA

<213> Homo sapiens

<400> 7

attaactggt tggtagcttc tatcetgggg gctgagcgac tgcgggccag 100 ctcttcccct actcctctc ggctccttgt ggcccaaagg cctaaccggg 150 gtccggcggt ctggcctagg gatcttcccc gttgcccctt tgggggcgga 200 tggctgcgga agaagaagac gaggtggagt gggtagtgga gagcatcgcg 250 gggttcctgc gaggcccaga ctggtccatc cccatcttgg actttgtgga 300 acagaaatgt gaagttaact gcaaaggagg gcatgtgat actccaggaa 350 gcccaagagcc ggtgatttg gtggcctgtg ttccccttg ttttgatgat 400 gaagaagaaa gcaaattgac ctatacagag attcatcagg aatacaaaga 450 actagttgaa aagctgttag aaggttacct caaagaaatt tcaagaagca tgcacttct ctcttgcaaa gacccataca 550 tcacaggcca ttttgcaacc tgtgttggca gcagaagatt ttactatctt 600 gaataattca agagagaaat ggtgtattac ctgactgct aacccgatgcc 700 gaataattca agagagaaat ggtgtattac ctgactgct aacccgatgcc

tetgatgtgg teagtgacet tgaacacgaa gagatgaaaa teetgaggga 750 agttettaga aaateaaaag aggaatatga eeaggaagaa gaaaggaaga 800 ggaaaaaaaca gttateagag getaaaacag aagageeeae agtgeattee 850 agtgaageege eaataatgaa taatteeeaa ggggatggtg aacattttge 900 acaceeeaee teagaagtta aaatgeattt tgetaateag teaatagaae 950 etttgggaag aaaagtggaa aggtetgaaa etteeteeet eeeaaaaaa 1000 ggeetgaaga tteetggett agageatgeg ageattgaag gaceaatage 1050 aaaeettatea gtaettggaa eagaagaaet teggeaaega gaacaetate 1100 teaageagaa gagagataag ttgatgeea tgagaaagga tatgaggaet 1150 aaacagatae aaaatatgga geagaaagga aaaeeeaetg gggaggtaga 1200 ggaaatgaea gagaaaceag aaatgaeag agagagaag eaaaeattae 1250 taaagaggag attgettgea gagaaaetea aagaagaagt tattaataag 1300 taataattaa gaacaattta acaaaatgga agtteaaatt gtettaaaaa 1350 taaattatta agteettaea etg 1373

<210> 8

<211> 367

<212> PRT

<213> Homo sapiens

<400> 8

Met Ala Ala Glu Glu Glu Asp Glu Val Glu Trp Val Val Glu Ser
1 5 10 15

Ile Ala Gly Phe Leu Arg Gly Pro Asp Trp Ser Ile Pro Ile Leu 20 25 30

Asp Phe Val Glu Gln Lys Cys Glu Val Asn Cys Lys Gly Gly His
35 40 45

Val Ile Thr Pro Gly Ser Pro Glu Pro Val Ile Leu Val Ala Cys 50 55 60

Val Pro Leu Val Phe Asp Asp Glu Glu Glu Ser Lys Leu Thr Tyr
65 70 75

Thr Glu Ile His Gln Glu Tyr Lys Glu Leu Val Glu Lys Leu 80 85 90

Glu Gly Tyr Leu Lys Glu Ile Gly Ile Asn Glu Asp Gln Phe Gln 95 100 105

Glu Ala Cys Thr Ser Pro Leu Ala Lys Thr His Thr Ser Gln Ala
110 115 120

Ile Leu Gln Pro Val Leu Ala Ala Glu Asp Phe Thr Ile Phe Lys 125 130 135

Ala Met Met Val Gl
n Lys Asn Ile Glu Met Gl
n Leu Gl
n Ala Ile 140 $$ 145 $$ 150

Arg Ile Ile Gln Glu Arg Asn Gly Val Leu Pro Asp Cys Leu Thr Asp Gly Ser Asp Val Val Ser Asp Leu Glu His Glu Glu Met Lys 180 Ile Leu Arg Glu Val Leu Arg Lys Ser Lys Glu Glu Tyr Asp Gln 190 Glu Glu Glu Arg Lys Arg Lys Gln Leu Ser Glu Ala Lys Thr Glu Glu Pro Thr Val His Ser Ser Glu Ala Ala Ile Met Asn Asn 215 Ser Gln Gly Asp Gly Glu His Phe Ala His Pro Pro Ser Glu Val Lys Met His Phe Ala Asn Gln Ser Ile Glu Pro Leu Gly Arg Lys 245 250 255 Val Glu Arg Ser Glu Thr Ser Ser Leu Pro Gln Lys Gly Leu Lys 260 Ile Pro Gly Leu Glu His Ala Ser Ile Glu Gly Pro Ile Ala Asn Leu Ser Val Leu Gly Thr Glu Glu Leu Arg Gln Arg Glu His Tyr 295 Leu Lys Gln Lys Arg Asp Lys Leu Met Ser Met Arg Lys Asp Met 310 315 Arg Thr Lys Gln Ile Gln Asn Met Glu Gln Lys Gly Lys Pro Thr 320 325 330 Gly Glu Val Glu Glu Met Thr Glu Lys Pro Glu Met Thr Ala Glu Glu Lys Gln Thr Leu Leu Lys Arg Arg Leu Leu Ala Glu Lys Leu

<210> 9

<211> 418

<212> DNA

<213> Homo sapiens

Lys Glu Glu Val Ile Asn Lys

<400> 9

gggcacagca catgtgaagt ttttgatgat gaagaagaaa gcaaattgac 50 ctatacagag attcatcagg aatacaaaga actagttgaa aagctgttag 100 aaggttacct caaagaaatt ggaattaatg aagatcaatt tcaagaagca 150 tgcacttctc ctcttgcaaa gacccataca tcacaggcca tttttgcaac 200 ctgtgttggc agcagaagat tttactatct ttaaagcaat gatggtccag 250 aaaaacattg aaatgcagct gcaagccatt cgaataattc aagagagaaa 300

```
tggtgtatta cctgactgct taaccgatgg ctctgatgtg gtcagtgacc 350
 ttgaacacga agagatgaaa atcctgaggg aagttcttag aaaatcaaaa 400
 gaggaatatg accaggaa 418
<210> 10
<211> 22
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 10
 ttgacctata cagagattca tc 22
<210> 11
<211> 23
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 11
 ctaagaactt ccctcaggat ttt 23
<210> 12
<211> 40
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 12
atgaagatca atttcaagaa gcatgcactt ctcctcttgc 40
<210> 13
<211> 2886
<212> DNA
<213> Homo sapiens
<400> 13
gcgtggtttt tgttctgcaa taggcggctt agagggaggg gctttttcgc 50
ctatacctac tgtagcttct ccacgtatgg accctaaagg ctactgctgc 100
 tactacgggg ctagacagtt actgtctcag ctctaggatg tgcgttcttc 150
 cactagaagc tcttctgagg gaggtaatta aaaaacagtg gaatggaaaa 200
acagtgctgt agtcatcctg taatatgctc cttgtcaaca atgtatacat 250
tcctgctagg tgccatattc attgctttaa gctcaagtcg catcttacta 300
gtgaagtatt ctgccaatga agaaaacaag tatgattatc ttccaactac 350
tgtgaatgtg tgctcagaac tggtgaagct agttttctgt gtgcttgtgt 400
cattctgtgt tataaagaaa gatcatcaaa gtagaaattt gaaatatgct 450
```

teetggaagg aattetetga ttteatgaag tggteeatte etgeetttet 500 cagecatgge tgttatette teaaatttta geattataae aacagetett 600 ctattcagga tagtgctgaa gaggcgtcta aactggatcc agtgggcttc 650 cctcctgact ttatttttgt ctattgtggc cttgactgcc gggactaaaa 700 ctttacagca caacttggca ggacgtggat ttcatcacga tgcctttttc 750 agcccttcca attcctgcct tcttttcaga agtgagtgtc ccagaaaaga 800 caattgtaca gcaaaggaat ggacttttcc tgaagctaaa tggaacacca 850 cagccagagt tttcagtcac atccgtcttg gcatgggcca tgttcttatt 900 atagtccagt gttttatttc ttcaatggct aatatctata atgaaaagat 950 actgaaggag gggaaccagc tcactgaaag catcttcata cagaacagca 1000 aactctattt ctttggcatt ctgtttaatg ggctgactct gggccttcag 1050 aggagtaacc gtgatcagat taagaactgt ggatttttt atggccacag 1100 tgcattttca gtagccctta tttttgtaac tgcattccag ggcctttcag 1150 tggctttcat tctgaagttc ctggataaca tgttccatgt cttgatggcc 1200 caggitacca cigicattat cacaacagig teigteeigg teittgacti 1250 caggecetee etggaatttt tettggaage eccateagte etteteteta 1300 tatttattta taatgccagc aagcctcaag ttccggaata cgcacctagg 1350 caagaaagga tccgagatct aagtggcaat ctttgggagc gttccagtgg 1400 ggatggagaa gaactagaaa gacttaccaa acccaagagt gatgagtcag 1450 atgaagatac tttctaactg gtacccacat agtttgcagc tctcttgaac 1500 cttattttca cattttcagt gtttgtaata tttatctttt cactttgata 1550 aaccagaaat gtttctaaat cctaatattc tttgcatata tctagctact 1600 ccctaaatgg ttccatccaa ggcttagagt acccaaaggc taagaaattc 1650 taaagaactg atacaggagt aacaatatga agaattcatt aatatctcag 1700 tacttgataa atcagaaagt tatatgtgca gattattttc cttggccttc 1750 aagcttccaa aaaacttgta ataatcatgt tagctatagc ttgtatatac 1800 acatagagat caatttgcca aatattcaca atcatgtagt tctagtttac 1850 atgccaaagt cttccctttt taacattata aaagctaggt tgtctcttga 1900 attttgaggc cctagagata gtcattttgc aagtaaagag caacgggacc 1950 ctttctaaaa acgttggttg aaggacctaa atacctggcc ataccataga 2000 tttgggatga tgtagtctgt gctaaatatt ttgctgaaga agcagtttct 2050

cagacacaac atctcagaat tttaattttt agaaattcat gggaaattgg 2100 atttttgtaa taatcttttg atgttttaaa cattggttcc ctagtcacca 2150 tagttaccac ttgtatttta agtcatttaa acaagccacg gtggggcttt 2200 tttctcctca gtttgaggag aaaaatcttg atgtcattac tcctgaatta 2250 ttacattttg gagaataaga gggcatttta ttttattagt tactaattca 2300 agctgtgact attgtatatc tttccaagag ttgaaatgct ggcttcagaa 2350 tcataccaga ttgtcagtga agctgatgcc taggaacttt taaagggatc 2400 ctttcaaaag gatcacttag caaacacatg ttgactttta actgatgtat 2450 gaatattaat actctaaaaa tagaaagacc agtaatatat aagtcacttt 2500 acagtgctac ttcacactta aaagtgcatg gtattttca tggtattttg 2550 catgcagcca gttaactctc gtagatagag aagtcaggtg atagatgata 2600 ttaaaaatta gcaaacaaaa gtgacttgct cagggtcatg cagctgggtg 2650 atgatagaag agtgggcttt aactggcagg cctgtatgtt tacagactac 2700 catactgtaa atatgagctt tatggtgtca ttctcagaaa cttatacatt 2750 tetgetetee ttteteetaa gttteatgea gatgaatata aggtaatata 2800 ctattatata attcatttgt gatatccaca ataatatgac tggcaagaat 2850 tggtggaaat ttgtaattaa aataattatt aaacct 2886

<210> 14

<211> 424

<212> PRT

<213> Homo sapiens

<400> 14

Met Glu Lys Gln Cys Cys Ser His Pro Val Ile Cys Ser Leu Ser 1 5 10

Thr Met Tyr Thr Phe Leu Leu Gly Ala Ile Phe Ile Ala Leu Ser 20 25 30

Ser Ser Arg Ile Leu Leu Val Lys Tyr Ser Ala Asn Glu Glu Asn 35 40 45

Lys Tyr Asp Tyr Leu Pro Thr Thr Val Asn Val Cys Ser Glu Leu 50 55 60

Val Lys Leu Val Phe Cys Val Leu Val Ser Phe Cys Val Ile Lys
. 65 70 70

Lys Asp His Gln Ser Arg Asn Leu Lys Tyr Ala Ser Trp Lys Glu 80 85 90

Phe Ser Asp Phe Met Lys Trp Ser Ile Pro Ala Phe Leu Tyr Phe 95 100 105

Leu Asp Asn Leu Ile Val Phe Tyr Val Leu Ser Tyr Leu Gln Pro 110 115 120

Ala	Met	: Ala	a Val	l Ile 125	Phe	Ser	Asn	Phe	Ser 130		: Ile	Thr	Th:	r Ala 135
Leu	Let	ı Phe	e Arç	140	val	Leu	Lys	Arg	Arg 145		Asn	Trp	> Il€	e Gln 150
Trp	Ala	ser	Leu	1 Leu 155	Thr	Leu	Phe	Leu	Ser 160		· Val	Ala	Let	165
Ala	Gly	Thr	Lys	Thr 170	Leu	Gln	His	Asn	Leu 175		Gly	Arg	GlZ	Phe 180
His	His	Asp	Ala	Phe 185	Phe	Ser	Pro	Ser	Asn 190	Ser	Cys	Leu	Leu	Phe 195
Arg	Ser	Glu	Cys	Pro 200	Arg	Lys	Asp	Asn	Cys 205	Thr	Ala	Lys	Glu	Trp 210
Thr	Phe	Pro	Glu	Ala 215	Lys	Trp	Asn	Thr	Thr 220	Ala	Arg	Val	Phe	Ser 225
				230					235					Cys 240
Phe	Ile	Ser	Ser	Met 245	Ala	Asn	Ile	Tyr	Asn 250	Glu	Lys	Ile	Leu	Lys 255
				Leu 260					265					270
				Gly 275					280					285
				Arg 290					295					300
				Phe 305					310					315
				Val 320					325					330
				Met 335					340					345
				Val 350					355					360
Leu				365					370					375
Ser				380					385					390
Arg .				395					400					405
Glu	Glu	Leu	Glu	Arg 410	Leu '	Thr :	Lys	Pro	Lys 415	Ser	Asp	Glu	Ser	Asp 420
Glu Z	Asp	Thr	Phe											

```
<210> 15
 <211> 755
 <212> DNA
 <213> Homo sapiens
 <400> 15
  cgtgcctgcg caatgggtgt cgggtccgct ttttcccaat ccggacgtaa 50
  tcgtggtttt tgttctgcaa taggcggctt agagggaggg gctttttcgc 100
  ctatacctac tgtagettct ccacgtatgg accctaaagg ctactgctgc 150
  tactacgggg ctagacagtt actgtctcag ctctaggatg tgcgttcttc 200
  cactagaagc tettetgagg gaggtaatta aaaaacagtg gaatggaaaa 250
  acagtgctgt agtcatcctg taatatgctc cttgtcaaca atgtatacat 300
  tectgetagg tgccatatte attgetttaa getcaagteg catettaeta 350
  gtgaagtatt ctgccaatga agaaaacaag tatgattatc ttccaactac 400
  tgtgaatgtg tgctcagaac tggtgaagct agttttctgt gtgcttgtgt 450
 cattctgtgt tataaagaaa gatcatcaaa gtagaaattt gaaatatgct 500
 tcctggaagg aattctctga tttcatgaag tggtccattc ctgcctttct 550
 cagecatgge tgttatette teaaatttta geattataae aacagetett 650
 ctattcagga tagtgctgaa gaggcgtcta aactggatcc agtgggcttc 700
 cctcctgact ttatttttgt ctattgtggc cttgactgcc gggactaaaa 750
 cttta 755
<210> 16
<211> 20
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 16
 ctatacctac tgtagcttct 20
<210> 17
<211> 20
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 17
tcagagaatt ccttccagga 20
<210> 18
<211> 40
<212> DNA
```

```
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 18
 acagtgctgt agtcatcctg taatatgctc cttgtcaaca 40
<210> 19
<211> 2142
<212> DNA
<213> Homo sapiens
<400> 19
 cggacgcgtg ggcggacgcg tgggcggacg cgtggggccg gcttggctag 50
 cgcgcggcgg ccgtggctaa ggctgctacg aagcgagctt gggaggagca 100
 gcggcctgcg gggcagagga gcatcccgtc taccaggtcc caagcggcgt 150
 ggcccgcggg tcatggccaa aggagaaggc gccgagagcg gctccgcggc 200
 ggggctgcta cccaccagca tcctccaaag cactgaacgc ccggcccagg 250
 tgaagaaaga accgaaaaag aagaaacaac agttgtctgt ttgcaacaag 300
 ctttgctatg cacttggggg agccccctac caggtgacgg gctgtgccct 350
 gggtttcttc cttcagatct acctattgga tgtggctcag gtgggccctt 400
tetetgeete cateateetg tttgtgggee gageetggga tgeeateaca 450
gaccccctgg tgggcctctg catcagcaaa tccccctgga cctgcctggg 500
tegeettatg ceetggatea tetteteeac geecetggee gteattgeet 550
acttcctcat ctggttcgtg cccgacttcc cacacggcca gacctattgg 600
tacctgcttt tctattgcct ctttgaaaca atggtcacgt gtttccatgt 650
tecetacteg geteteacea tgtteateag caacegagea gaetgagegg 700
gattctgcca ccgcctatcg gatgactgtg gaagtgctgg gcacagtgct 750
gggcacggcg atccagggac aaatcgtggg ccaagcagac acgccttgtt 800
tccaggactt caatagctct acagtagctt cacaaagtgc caaccataca 850
catggcacca cttcacacag ggaaacgcaa aaggcatacc tgctggcagc 900
gggggtcatt gtctgtatct atataatctg tgctgtcatc ctgatcctgg 950
gcgtgcggga gcagagagaa ccctatgaag cccagcagtc tgagccaatc 1000
gectaettee ggggeetaeg getggteatg agecaeggee catacateaa 1050
acttattact ggcttcctct tcacctcctt ggctttcatg ctggtggagg 1100
ggaactttgt cttgttttgc acctacacct tgggcttccg caatgaattc 1150
cagaatctac teetggeeat catgeteteg geeactttaa ceatteecat 1200
```

ctggcagtgg ttcttgaccc ggtttggcaa gaagacagct gtatatgttg 1250

ggatctcatc agcagtgcca tttctcatct tggtggccct catggagagt 1300 aacctcatca ttacatatgc ggtagctgtg gcagctggca tcagtgtggc 1350 agctgccttc ttactaccct ggtccatgct gcctgatgtc attgacgact 1400 tccatctgaa gcagccccac ttccatggaa ccgagcccat cttcttctcc 1450 ttctatgtct tcttcaccaa gtttgcctct ggagtgtcac tgggcatttc 1500 taccctcagt ctggactttg cagggtacca gacccgtggc tgctcgcagc 1550 cggaacgtgt caagtttaca ctgaacatgc tcgtgaccat ggctcccata 1600 gttctcatcc tgctgggcct gctgctcttc aaaatgtacc ccattgatga 1650 ggagaggegg eggeagaata agaaggeect geaggeactg agggaegagg 1700 ccagcagete tggetgetea gaaacagaet ccacagaget ggetageate 1750 ctctagggcc cgccacgttg cccgaagcca ccatgcagaa ggccacagaa 1800 gggatcagga cctgtctgcc ggcttgctga gcagctggac tgcaggtgct 1850 aggaagggaa ctgaagactc aaggaggtgg cccaggacac ttgctgtgct 1900 gtggggccaa gccctggggc tgccactgtg aatatgccaa ggactgatcg 2000 ggcctagccc ggaacactaa tgtagaaacc ttttttttac agagcctaat 2050 taataactta atgactgtgt acatagcaat gtgtgtgtat gtatatgtct 2100 gtgagctatt aatgttatta attttcataa aagctggaaa gc 2142

<210> 20 <211> 458 <212> PRT

<213> Homo sapiens

<400> 20

Met Trp Leu Arg Trp Ala Leu Ser Leu Pro Pro Ser Ser Cys Leu 1 5 10

Trp Ala Glu Pro Gly Met Pro Ser Gln Thr Pro Trp Trp Ala Ser 20 25 30

Ala Ser Ala Asn Pro Pro Gly Pro Ala Trp Val Ala Leu Cys Pro 35 40 45

Gly Ser Ser Ser Pro Arg Pro Trp Pro Ser Leu Pro Thr Ser Ser 50 55 60

Ser Gly Ser Cys Pro Thr Ser His Thr Ala Arg Pro Ile Gly Thr $65 \hspace{1cm} 70 \hspace{1cm} 75$

Cys Phe Ser Ile Ala Ser Leu Lys Gln Trp Ser Arg Val Ser Met 80 85 90

Phe Pro Thr Arg Leu Ser Pro Cys Ser Ser Ala Thr Glu Gln Thr 95 100 . 105

Glu Arg Asp Ser Ala Thr Ala Tyr Arg Met Thr Val Glu Val Leu 115 Gly Thr Val Leu Gly Thr Ala Ile Gln Gly Gln Ile Val Gly Gln 125 Ala Asp Thr Pro Cys Phe Gln Asp Phe Asn Ser Ser Thr Val Ala Ser Gln Ser Ala Asn His Thr His Gly Thr Thr Ser His Arg Glu Thr Gln Lys Ala Tyr Leu Leu Ala Ala Gly Val Ile Val Cys Ile 170 175 180 Tyr Ile Ile Cys Ala Val Ile Leu Ile Leu Gly Val Arg Glu Gln Arg Glu Pro Tyr Glu Ala Gln Gln Ser Glu Pro Ile Ala Tyr Phe 200 205 Arg Gly Leu Arg Leu Val Met Ser His Gly Pro Tyr Ile Lys Leu 215 Ile Thr Gly Phe Leu Phe Thr Ser Leu Ala Phe Met Leu Val Glu Gly Asn Phe Val Leu Phe Cys Thr Tyr Thr Leu Gly Phe Arg Asn Glu Phe Gln Asn Leu Leu Leu Ala Ile Met Leu Ser Ala Thr Leu 265 Thr Ile Pro Ile Trp Gln Trp Phe Leu Thr Arg Phe Gly Lys Lys 275 280 Thr Ala Val Tyr Val Gly Ile Ser Ser Ala Val Pro Phe Leu Ile 290 295 300 Leu Val Ala Leu Met Glu Ser Asn Leu Ile Ile Thr Tyr Ala Val Ala Val Ala Ala Gly Ile Ser Val Ala Ala Ala Phe Leu Pro 320 Trp Ser Met Leu Pro Asp Val Ile Asp Asp Phe His Leu Lys Gln Pro His Phe His Gly Thr Glu Pro Ile Phe Phe Ser Phe Tyr Val 350 355 Phe Phe Thr Lys Phe Ala Ser Gly Val Ser Leu Gly Ile Ser Thr 365 370 375 Leu Ser Leu Asp Phe Ala Gly Tyr Gln Thr Arg Gly Cys Ser Gln Pro Glu Arg Val Lys Phe Thr Leu Asn Met Leu Val Thr Met Ala Pro Ile Val Leu Ile Leu Leu Gly Leu Leu Phe Lys Met Tyr 410 415 420

Pro Ile Asp Glu Glu Arg Arg Gln Asn Lys Lys Ala Leu Gln 425 430 435

Ala Leu Arg Asp Glu Ala Ser Ser Ser Gly Cys Ser Glu Thr Asp
440 445 450

Ser Thr Glu Leu Ala Ser Ile Leu 455

<210> 21

<211> 571

<212> DNA

<213> Homo sapiens

<400> 21

gggaaacgca aaaggcatac ctgctggcag cgggggtcat tgtctgtatc 50 tatataatct gtgctgcat cetgatectg ggcgtgggg agcagagaga 100 accetatgaa gcccagcagt ctgagccaat cgcctacttc cggggcctac 150 ggctggtcat gagccacggc ccatacatca aacttattac tggcttcctc 200 ttcacctcct tggctttcat gctggtggag gggaactttg tcttgttttg 250 cacctacacc ttgggcttcc gcaatgaatt ccagaatcta ctcctggcca 300 tcatgctctc ggccacttta accattcca tctggcagtg gttcttgacc 350 cggtttggca agaagacagc tgtatatgtt gggatctcat cagcagtgcc 400 atttctcatc ttggtggcc tcatggagag taacctcatc attacatatg 450 cggtagctgt ggcagctggc atcagtgtg cagctgctt cttactaccc 500 tggtccatgc tgcctgatgt cattgacgac ttccatctga agcagccca 550 cttccatgga accgagccca t 571

<210> 22

<211> 1173

<212> DNA

<213> Homo sapiens

<400> 22

ggggcttcgg cgccagcggc cagcgctagt cggtctggta aggatttaca 50
aaaggtgcag gtatgagcag gtctgaagac taacattttg tgaagttgta 100
aaacagaaaa cctgttagaa atgtggtggt ttcagcaagg cctcagtttc 150
cttccttcag cccttgtaat ttggacatct gctgctttca tatttcata 200
cattactgca gtaacactcc accatataga cccggcttta ccttatatca 250
gtgacactgg tacagtagct ccagaaaaat gcttatttgg ggcaatgcta 300
aatattgcgg cagttttatg cattgctacc atttatgttc gttataagca 350
agttcatgct ctgagtcctg aagagaacgt tatcatcaaa ttaaacaagg 400
ctggccttgt acttggaata ctgagttgtt taggactttc tattgtggca 450

aacttccaga aaacaaccct ttttgctgca catgtaagtg gagctgtgct 500 tacctttggt atgggctcat tatatatgtt tgttcagacc atcctttcct 550 accaaatgca gcccaaaatc catggcaaac aagtcttctg gatcagactg 600 ttgttggtta tctggtgtgg agtaagtgca cttagcatgc tgacttgctc 650 atcagttttg cacagtggca attttgggac tgatttagaa cagaaactcc 700 attggaaccc cgaggacaaa ggttatgtgc ttcacatgat cactactgca 750 gcagaatggt ctatgtcatt ttccttcttt ggtttttcc tgacttacat 800 tcgtgattt cagaaaattt cttaccggt ggaagccaat ttacatggat 850 taaccctcta tgacactgca ccttgcccta ttaacaatga acgaacacgg 900 ctacttcca gagatatttg atgaaaggat aaaatattc tgtaatgatt 950 atgattcca gggattggg aaaggttcac agaagttgct tattcttct 1000 tgaaattttc aaccacttaa tcaaggctga cagtaacact gatgaatgct 1050 gataatcagg aaacatgaaa gaagccatt gatagattat tctaaaggat 1100 atcatcaaga agactattaa aaacacctat gcctatactt tttatctca 1150 gaaaataaag tcaaaagact atg 1173

<210> 23

<211> 266

<212> PRT

<213> Homo sapiens

<400> 23

Met Trp Trp Phe Gln Gln Gly Leu Ser Phe Leu Pro Ser Ala Leu 1 5 10 15

Val Ile Trp Thr Ser Ala Ala Phe Ile Phe Ser Tyr Ile Thr Ala
20 25 30

Val Thr Leu His His Ile Asp Pro Ala Leu Pro Tyr Ile Ser Asp 35 40 45

Thr Gly Thr Val Ala Pro Glu Lys Cys Leu Phe Gly Ala Met Leu 50 55 60

Asn Ile Ala Ala Val Leu Cys Ile Ala Thr Ile Tyr Val Arg Tyr
65 70 75

Lys Gln Val His Ala Leu Ser Pro Glu Glu Asn Val Ile Ile Lys 80 85 90

Leu Asn Lys Ala Gly Leu Val Leu Gly Ile Leu Ser Cys Leu Gly
95 100

Leu Ser Ile Val Ala Asn Phe Gln Lys Thr Thr Leu Phe Ala Ala 110 115 120

His Val Ser Gly Ala Val Leu Thr Phe Gly Met Gly Ser Leu Tyr 125 130 135

```
Met Phe Val Gln Thr Ile Leu Ser Tyr Gln Met Gln Pro Lys Ile
                  140
 His Gly Lys Gln Val Phe Trp Ile Arg Leu Leu Val Ile Trp
 Cys Gly Val Ser Ala Leu Ser Met Leu Thr Cys Ser Ser Val Leu
                  170
                                      175
 His Ser Gly Asn Phe Gly Thr Asp Leu Glu Gln Lys Leu His Trp
                                      190
 Asn Pro Glu Asp Lys Gly Tyr Val Leu His Met Ile Thr Thr Ala
                                      205
                                                          210
 Ala Glu Trp Ser Met Ser Phe Ser Phe Phe Gly Phe Phe Leu Thr
                 215
                                      220
 Tyr Ile Arg Asp Phe Gln Lys Ile Ser Leu Arg Val Glu Ala Asn
                                      235
 Leu His Gly Leu Thr Leu Tyr Asp Thr Ala Pro Cys Pro Ile Asn
 Asn Glu Arg Thr Arg Leu Leu Ser Arg Asp Ile
                 260
<210> 24
<211> 485
<212> DNA
<213> Homo sapiens
<220>
<221> unsure
<222> 14, 484
<223> unknown base
<400> 24
cggacgettg ggcngcgcca gcggccagcg ctagtcggtc tggtaagtgc 50
ctgatgccga gttccgtctc tcgggtcttt tcctggtccc aggcaaagcg 100
gagcggagat cctcaaacgg cctagtgctt cgcgcttccg gagaaaatca 150
gcggtctaat taattcctct ggtttgttga agcagttacc aagaatcttc 200
aaccetttee cacaaaaget aattgagtae aegtteetgt tgagtacaeg 250
ttcctgttga tttacaaaag gtgcaggtat gagcaggtct gaagactaac 300
```

attttgtgaa gttgtaaaac agaaaacctg ttagaaatgt ggtggtttca 350 gcaaggcete agttteette etteageeet tgtaatttgg acatetgetg 400 ettteatatt tteatacatt actgeagtaa eacteeacea tatagaeeeg 450

gctttacctt atatcagtga cactggtaca gtanc 485

<210> 25

<211> 40

<212> DNA

<213> Artificial Sequence

```
<220>
<223> Synthetic oligonucleotide probe
<400> 25
 acctgttaga aatgtggtgg tttcagcaag gcctcagttt 40
<210> 26
<211> 46
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 26
ggagatagct gctatgggtt cttcaggcac aacttaacat gggaag 46
<210> 27
<211> 1399
<212> DNA
<213> Homo sapiens
<400> 27
cccacgcgtc cgcccgccgc tgcgtcccgg agtgcaagtg agcttctcgg 50
ctgccccgcg ggccgggtg cggagccgac atgcgcccgc ttctcggcct 100
ccttctggtc ttcgccggct gcaccttcgc cttgtacttg ctgtcgacgc 150
gactgccccg cgggcggaga ctgggctcca ccgaggaggc tggaggcagg 200
tegetgtggt teeceteega eetggeagag etgegggage tetetgaggt 250
ccttcgagag taccggaagg agcaccaggc ctacgtgttc ctgctcttct 300
geggegeeta cetetacaaa cagggetttg ceateceegg etecagette 350
ctgaatgttt tagctggtgc cttgtttggg ccatggctgg ggcttctgct 400
gtgctgtgtg ttgacctcgg tgggtgccac atgctgctac ctgctctcca 450
gtatttttgg caaacagttg gtggtgtcct actttcctga taaagtggcc 500
ctgctgcaga gaaaggtgga ggagaacaga aacagcttgt ttttttctt 550
attgtttttg agacttttcc ccatgacacc aaactggttc ttgaacctct 600
cggccccaat tctgaacatt cccatcgtgc agttcttctt ctcagttctt 650
atcggtttga tcccatataa tttcatctgt gtgcagacag ggtccatcct 700
gtcaacccta acctctctgg atgctctttt ctcctgggac actgtcttta 750
agctgttggc cattgccatg gtggcattaa ttcctggaac cctcattaaa 800
aaatttagtc agaaacatct gcaattgaat gaaacaagta ctgctaatca 850
tatacacagt agaaaagaca catgatctgg attttctgtt tgccacatcc 900
ctggactcag ttgcttattt gtgtaatgga tgtggtcctc taaagcccct 950
cattgttttt gattgccttc tataggtgat gtggacactg tgcatcaatg 1000
```

tgcagtgtct tttcagaaag gacactetge tettgaaggt gtattacate 1050 aggttttcaa accageectg gtgtageaga caetgeaaca gatgeeteet 1100 agaaaatget gtttgtggee gggegeggtg geteaegeet gtaateeeag 1150 caetttggga ggeegaggee ggtgatteae aaggteagga gtteaagaee 1200 ageetggeea agatggtaa ateetgtete taataaaaat acaaaaatta 1250 geeaggegtg gtggeaggea eetgtaatee eagetaeteg ggaggetgag 1300 geaggagaat tgettgaace aaggtggeag aggttgeagt aageeaagat 1350 caeaeeactg eaeteeagee tgggtgatag agtgagaeae tgeettgae 1399

<210> 28

<211> 264

<212> PRT

<213> Homo sapiens

<400> 28

Met Arg Pro Leu Leu Gly Leu Leu Leu Val Phe Ala Gly Cys Thr 1 5 10 15

Phe Ala Leu Tyr Leu Leu Ser Thr Arg Leu Pro Arg Gly Arg Arg 20 25 30

Leu Gly Ser Thr Glu Glu Ala Gly Gly Arg Ser Leu Trp Phe Pro 35 40 45

Ser Asp Leu Ala Glu Leu Arg Glu Leu Ser Glu Val Leu Arg Glu 50 55 60

Tyr Arg Lys Glu His Gln Ala Tyr Val Phe Leu Leu Phe Cys Gly 65 70 75

Ala Tyr Leu Tyr Lys Gln Gly Phe Ala Ile Pro Gly Ser Ser Phe 80 85 90

Leu Asn Val Leu Ala Gly Ala Leu Phe Gly Pro Trp Leu Gly Leu 95 100 105

Leu Leu Cys Cys Val Leu Thr Ser Val Gly Ala Thr Cys Cys Tyr
110 115 120

Leu Leu Ser Ser Ile Phe Gly Lys Gln Leu Val Val Ser Tyr Phe 125 130 135

Pro Asp Lys Val Ala Leu Leu Gln Arg Lys Val Glu Glu Asn Arg

Asn Ser Leu Phe Phe Phe Leu Leu Phe Leu Arg Leu Phe Pro Met 155 160 165

Thr Pro Asn Trp Phe Leu Asn Leu Ser Ala Pro Ile Leu Asn Ile 170 175 180

Pro Ile Val Gln Phe Phe Phe Ser Val Leu Ile Gly Leu Ile Pro 185 190 195

Tyr Asn Phe Ile Cys Val Gln Thr Gly Ser Ile Leu Ser Thr Leu 200 205 210

Thr Ser Leu Asp Ala Leu Phe Ser Trp Asp Thr Val Phe Lys Leu 215 220 225

Leu Ala Ile Ala Met Val Ala Leu Ile Pro Gly Thr Leu Ile Lys 230 235

Asn His Ile His Ser Arg Lys Asp Thr 260

<210> 29

<211> 1292

<212> DNA

<213> Homo sapiens

<400> 29

ccgaggcggg aggagcccga gggggcgcga gccccgcatg aatcattgta 50 gtcaatcatt ttccagttct cagccgctca gttgtgatca agggacacgt 100 ggtttccgaa ctgccagctc agaataggaa aataacttgg gattttatat 150 tggaagacat ggatcttgct gccaacgaga tcagcattta tgacaaactt 200 tcagagactg ttgatttggt gagacagacc ggccatcagt gtggcatgtc 250 agagaaggca attgaaaaat ttatcagaca gctgctggaa aagaatgaac 300 ctcagagacc ccccccgcag tatcctctcc ttatagttgt gtataaggtt 350 ctcgcaacct tgggattaat cttgctcact gcctactttg tgattcaacc 400 tttcagccca ttagcacctg agccagtgct ttctggagct cacacctggc 450 gctcactcat ccatcacatt aggctgatgt ccttgcccat tgccaagaag 500 tacatgtcag aaaataaggg agttcctctg catgggggtg atgaagacag 550 accettteca gaetttgace eetggtggac aaacgaetgt gagcagaatg 600 agtcagagee catteetgee aactgeactg getgtgeeca gaaacacetg 650 aaggtgatgc tcctggaaga cgccccaagg aaatttgaga ggctccatcc 700 actggtgatc aagacgggaa agcccctgtt ggaggaagag attcagcatt 750 ttttgtgcca gtaccctgag gcgacagaag gcttctctga agggtttttc 800 gccaagtggt ggcgctgctt tcctgagcgg tggttcccat ttccttatcc 850 atggaggaga cctctgaaca gatcacaaat gttacgtgag ctttttcctg 900 ttttcactca cctgccattt ccaaaagatg cctctttaaa caagtgctcc 950 tttcttcacc cagaacctgt tgtggggagt aagatgcata agatgcctga 1000 cctatttatc attggcagcg gtgaggccat gttgcagctc atccctccct 1050 tccagtgccg aagacattgt cagtctgtgg ccatgccaat agagccaggg 1100 gatategget atgtegacae cacceaetgg aaggtetaeg ttatageeag 1150

aggggtccag cctttggtca tctgcgatgg aaccgctttc tcagaactgt 1200 aggaaataga actgtgcaca ggaacagctt ccagagccga aaaccaggtt 1250 gaaaggggaa aaataaaaac aaaaacgatg aaactgcaaa aa 1292

<210> 30

<211> 347

<212> PRT

<213> Homo sapiens

<400> 30

Met Asp Leu Ala Ala Asn Glu Ile Ser Ile Tyr Asp Lys Leu Ser 1 5 10 15

Glu Thr Val Asp Leu Val Arg Gln Thr Gly His Gln Cys Gly Met 20 25 30

Ser Glu Lys Ala Ile Glu Lys Phe Ile Arg Gln Leu Leu Glu Lys 35 40 45

Asn Glu Pro Gln Arg Pro Pro Pro Gln Tyr Pro Leu Leu Ile Val 50 55 60

Val Tyr Lys Val Leu Ala Thr Leu Gly Leu Ile Leu Leu Thr Ala 65 70 75

Tyr Phe Val Ile Gln Pro Phe Ser Pro Leu Ala Pro Glu Pro Val 80 85 90

Leu Ser Gly Ala His Thr Trp Arg Ser Leu Ile His His Ile Arg 95 100 105

Leu Met Ser Leu Pro Ile Ala Lys Lys Tyr Met Ser Glu Asn Lys 110 115 120

Gly Val Pro Leu His Gly Gly Asp Glu Asp Arg Pro Phe Pro Asp 125 130 135

Phe Asp Pro Trp Trp Thr Asn Asp Cys Glu Gln Asn Glu Ser Glu 140 145

Pro Ile Pro Ala Asn Cys Thr Gly Cys Ala Gln Lys His Leu Lys 155 160 165

Val Met Leu Leu Glu Asp Ala Pro Arg Lys Phe Glu Arg Leu His 170 175 180

Pro Leu Val Ile Lys Thr Gly Lys Pro Leu Leu Glu Glu Glu Ile 185 190 195

Gln His Phe Leu Cys Gln Tyr Pro Glu Ala Thr Glu Gly Phe Ser 200 205 210

Glu Gly Phe Phe Ala Lys Trp Trp Arg Cys Phe Pro Glu Arg Trp 215 220 225

Phe Pro Phe Pro Tyr Pro Trp Arg Arg Pro Leu Asn Arg Ser Gln 230 235 240

Met Leu Arg Glu Leu Phe Pro Val Phe Thr His Leu Pro Phe Pro 245 250 255

```
Lys Asp Ala Ser Leu Asn Lys Cys Ser Phe Leu His Pro Glu Pro
Val Val Gly Ser Lys Met His Lys Met Pro Asp Leu Phe Ile Ile
                                                         285
                                    280
Gly Ser Gly Glu Ala Met Leu Gln Leu Ile Pro Pro Phe Gln Cys
                                                         300
Arg Arg His Cys Gln Ser Val Ala Met Pro Ile Glu Pro Gly Asp
Ile Gly Tyr Val Asp Thr Thr His Trp Lys Val Tyr Val Ile Ala
                320
                                    325
                                                         330
Arg Gly Val Gln Pro Leu Val Ile Cys Asp Gly Thr Ala Phe Ser
                                    340
```

Glu Leu

<210> 31 <211> 478 <212> DNA

<213> Homo sapiens

<400> 31 ccacggtgtc cgttcttcgc ccggcggcag ctgtccccga ggcgggagga 50 gcccgagggg cgcgagcccc gcatgaatca ttgtagtcaa tcattttcca 100 gttctcagcc gttcagttgt gatcaaggga cacgtggttt ccgaactgcc 150 agctcagaat aggaaaataa cttgggattt tatattggaa gacatggatc 200 ttgctgccaa cgagatcagc atttatgaca aactttcaga gactgttgat 250 ttggtgagac agaccggcca tcagtgtggc atgtcagaga aggcaattga 300 aaaatttatc agacagctgc tggaaaagaa tgaacctcag agaccccccc 350 cgcagtatcc tctccttata gttgtgtata aggttctcgc aaccttggga 400 ttaatcttgc tcactgccta ctttgtgatt caacctttca gcccattagc 450 acctgagcca gtgctttgtg gagctcac 478

<210> 32 <211> 3531 <212> DNA <213> Homo sapiens

<400> 32 cccacgcqtc cgcccacgcq tccggctgaa cacctcttct ttqqaqtcaq 50 ccactgatga ggcagggtcc ccacttgcag ctgcagcagc tgcagcagct 100 gcagagcgct gctcctggct ggtgccactg gtgcgcacgc tgctagaccg 150 tgcctatgag ccgctggggc tgcagtgggg actgccctcc ctgccaccca 200 ccaatggcag ccccaccttc tttgaagact tccaggcttt ttgtgccaca 250

cccgaatggc gccacttcat cgacaaacag gtacagccaa ccatgtccca 300 gttcgaaatg gacacgtatg ctaagagcca cgaccttatg tcaggtttct 350 ggaatgcctg ctatgacatg cttatgagca gtgggcagcg gcgccagtgg 400 gagegegeee agagtegteg ggeetteeag gagetggtge tggaacetge 450 gcagaggcgg gcgcgcctgg aggggctacg ctacacggca gtgctgaagc 500 agcaggcaac gcagcactcc atggccctgc tgcactgggg ggcgctgtgg 550 cgccagctcg ccagcccatg tggggcctgg gcgctgaggg acactcccat 600 cccccgctgg aaactgtcca gcgccgagac atattcacgc atgcgtctga 650 agctggtgcc caaccatcac ttcgaccctc acctggaagc cagcgctctc 700 cgagacaatc tgggtgaggt tcccctgaca cccaccgagg aggcctcact 750 gcctctggca gtgaccaaag aggccaaagt gagcacccca cccgagttgc 800 tgcaggagga ccagctcggc gaggacgagc tggctgagct ggagaccccg 850 atggaggcag cagaactgga tgagcagcgt gagaagctgg tgctgtcggc 900 cgagtgccag ctggtgacgg tagtggccgt ggtcccaggg ctgctggagg 950 tcaccacaca gaatgtatac ttctacgatg gcagcactga gcgcgtggaa 1000 accgaggagg gcatcggcta tgatttccgg cgcccactgg cccagctgcg 1050 tgaggtccac ctgcggcgtt tcaacctgcg ccgttcagca cttgagctct 1100 tetttatega teaggeeaae taetteetea aetteeeatg eaaggtggge 1150 acgaccccag teteatetee tagecagaet eegagaeeee ageetggeee 1200 cateceaece catacecagg taeggaaeca ggtgtaeteg tggeteetge 1250 gcctacggcc cccctctcaa ggctacctaa gcagccgctc cccccaggag 1300 atgctgcgtg cctcaggcct tacccagaaa tgggtacagc gtgagatatc 1350 caacttcgag tacttgatgc aactcaacac cattgcgggg cggacctaca 1400 atgacctgtc tcagtaccct gtgttcccct gggtcctgca ggactacgtg 1450 tececaaece tggaceteag caaceeagee gtetteeggg acetgtetaa 1500 gcccatcggt gtggtgaacc ccaagcatgc ccagctcgtg agggagaagt 1550 atgaaagctt tgaggaccca gcagggacca ttgacaagtt ccactatggc 1600 acceactact ccaatgcage aggegtgatg cactacetea teegegtgga 1650 gecetteace teeetgeacg teeagetgea aagtggeege tttgaetget 1700 ccgaccggca gttccactcg gtggcggcag cctggcaggc acgcctggag 1750 agecetgeeg atgtgaagga geteateeeg gaattettet aettteetga 1800 cttcctggag aaccagaacg gttttgacct gggctgtctc cagctgacca 1850

acgagaaggt aggcgatgtg gtgctacccc cgtgggccag ctctcctgag 1900 gacttcatcc agcagcaccg ccaggctctg gagtcggagt atgtgtctgc 1950 acacctacac gagtggatcg acctcatctt tggctacaag cagcgggggc 2000 cageegeega ggaggeeete aatgtettet attactgeae etatgagggg 2050 gctgtagacc tggaccatgt gacagatgag cgggaacgga aggctctgga 2100 gggcattatc agcaactttg ggcagactcc ctgtcagctg ctgaaggagc 2150 cacatccaac toggototca gotgaggaag cagoccatog cottgoacgo 2200 ctggacacta actcacctag catcttccag cacctggacg aactcaaggc 2250 attettegea gaggtgactg tgagtgeeag tgggetgetg ggeacceaca 2300 gctggttgcc ctatgaccgc aacataagca actacttcag cttcagcaaa 2350 gaccccacca tgggcagcca caagacgcag cgactgctga gtggcccgtg 2400 ggtgccaggc agtggtgtga gtggacaagc actggcagtg gccccggatg 2450 gaaagetget atteageggt ggceactggg atggeagect gegggtgaet 2500 gcactacccc gtggcaagct gttgagccag ctcagctgcc accttgatgt 2550 agtaacctgc cttgcactgg acacctgtgg catctacctc atctcaggct 2600 cccgggacac cacgtgcatg gtgtggcggc tcctgcatca gggtggtctg 2650 tcagtaggcc tggcaccaaa gcctgtgcag gtcctgtatg ggcatggggc 2700 tgcagtgage tgtgtggcca tcagcactga acttgacatg gctgtgtctg 2750 gatctgagga tggaactgtg atcatacaca ctgtacgccg cggacagttt 2800 gtagcggcac tacggcctct gggtgccaca ttccctggac ctattttcca 2850 cctggcattg gggtccgaag gccagattgt ggtacagagc tcagcgtggg 2900 aacgtcctgg ggcccaggtc acctactcct tgcacctgta ttcagtcaat 2950 gggaagttgc gggcttcact gcccctggca gagcagccta cagccctgac 3000 ggtgacagag gactttgtgt tgctgggcac cgcccagtgc gccctgcaca 3050 tectecaact aaacacactg eteceggeeg egeeteeett geeeatgaag 3100 gtggccatcc gcagcgtggc cgtgaccaag gagcgcagcc acgtgctggt 3150 gggcctggag gatggcaagc tcatcgtggt ggtcgcgggg cagccctctg 3200 aggtgcgcag cagccagttc gcgcggaagc tgtggcggtc ctcgcggcgc 3250 atctcccagg tgtcctcggg agagacggaa tacaacccta ctgaggcgcg 3300 ctgaacctgg ccagtccggc tgctcgggcc ccgccccgg caggcctggc 3350 ccgggaggcc ccgcccagaa gtcggcggga acaccccggg gtgggcagcc 3400 cagggggtga gcggggcca ccctgcccag ctcagggatt ggcgggcgat 3450

gttaccect cagggattgg cgggcggaag tecegeeet egeeggetga 3500 ggggcegee tgagggeeag caetggegte t 3531

<210> 33

<211> 1003

<212> PRT

<213> Homo sapiens

<400> 33

Met Ser Gln Phe Glu Met Asp Thr Tyr Ala Lys Ser His Asp Leu

1 10 15

Met Ser Gly Phe Trp Asn Ala Cys Tyr Asp Met Leu Met Ser Ser 20 25 30

Gly Gln Arg Arg Gln Trp Glu Arg Ala Gln Ser Arg Arg Ala Phe
35 40 45

Gln Glu Leu Val Leu Glu Pro Ala Gln Arg Arg Ala Arg Leu Glu 50 55 60

Gly Leu Arg Tyr Thr Ala Val Leu Lys Gln Gln Ala Thr Gln His
65 70 75

Ser Met Ala Leu Leu His Trp Gly Ala Leu Trp Arg Gln Leu Ala 80 85 90

Ser Pro Cys Gly Ala Trp Ala Leu Arg Asp Thr Pro Ile Pro Arg 95 100 105

Trp Lys Leu Ser Ser Ala Glu Thr Tyr Ser Arg Met Arg Leu Lys 110 115 120

Leu Val Pro Asn His His Phe Asp Pro His Leu Glu Ala Ser Ala 125 130 135

Leu Arg Asp Asn Leu Gly Glu Val Pro Leu Thr Pro Thr Glu Glu 140 145 150

Ala Ser Leu Pro Leu Ala Val Thr Lys Glu Ala Lys Val Ser Thr 155 160 165

Pro Pro Glu Leu Gln Glu Asp Gln Leu Gly Glu Asp Glu Leu 170 175 180

Ala Glu Leu Glu Thr Pro Met Glu Ala Ala Glu Leu Asp Glu Gln
185 190 195

Arg Glu Lys Leu Val Leu Ser Ala Glu Cys Gln Leu Val Thr Val 200 205 210

Val Ala Val Val Pro Gly Leu Leu Glu Val Thr Thr Gln Asn Val 215 220 225

Tyr Phe Tyr Asp Gly Ser Thr Glu Arg Val Glu Thr Glu Glu Gly 230 235 240

Ile Gly Tyr Asp Phe Arg Arg Pro Leu Ala Gln Leu Arg Glu Val 245 250 255

His Leu Arg Arg Phe Asn Leu Arg Arg Ser Ala Leu Glu Leu Phe 260 265 270

Phe	∶Il∈	e Asp	Glr	1 Ala 275	a Asn	туг	Phe	: Leu	Asn 280		Pro	Cys	Lys	Val 285
Gly	Thr	Thr	Pro	Val 290	Ser	Ser	Pro	Ser	Gln 295		Pro	Arg	Pro	Gln 300
Pro	Gly	Pro	Ile	9 Pro 305	Pro	His	Thr	Gln	Val 310		Asn	Gln	. Val	. Tyr 315
Ser	Trp	Leu	Let	Arg 320	Leu	Arg	Pro	Pro	Ser 325		Gly	Tyr	Leu	Ser 330
Ser	Arg	Ser	Pro	Gln 335	Glu	Met	Leu	Arg	Ala 340	Ser	Gly	Leu	Thr	Gln 345
Lys	Trp	Val	Gln	Arg 350	Glu	Ile	Ser	Asn	Phe 355	Glu	Tyr	Leu	Met	Gln 360
Leu	Asn	Thr	Ile	Ala 365	Gly	Arg	Thr	Tyr	Asn 370	Asp	Leu	Ser	Gln	Tyr 375
Pro	Val	Phe	Pro	Trp 380	Val	Leu	Gln	Asp	Tyr 385	Val	Ser	Pro	Thr	Leu 390
Asp	Leu	Ser	Asn	Pro 395	Ala	Val	Phe	Arg	Asp 400	Leu	Ser	Lys	Pro	Ile 405
Gly	Val	Val	Asn	Pro 410	Lys	His	Ala	Gln	Leu 415	Val	Arg	Glu	Lys	Tyr 420
Glu	Ser	Phe	Glu	Asp 425	Pro	Ala	Gly	Thr	Ile 430	Asp	Lys	Phe	His	Tyr 435
Gly	Thr	His	Tyr	Ser 440	Asn	Ala	Ala	Gly	Val 445	Met	His	Tyr	Leu	Ile 450
Arg	Val	Glu	Pro	Phe 455	Thr	Ser	Leu	His	Val 460	Gln	Leu	Gln	Ser	Gly 465
Arg	Phe	Asp	Суз	Ser 470	Asp	Arg	Gln	Phe	His 475	Ser	Val	Ala	Ala	Ala 480
Trp	Gln	Ala	Arg	Leu 485	Glu	Ser	Pro	Ala	Asp 490	Val	Lys	Glu	Leu	Ile 495
Pro	Glu	Phe	Phe	Tyr 500	Phe	Pro	Asp	Phe	Leu 505	Glu	Asn	Gln	Asn	Gly 510
Phe	Asp	Leu	Gly	Cys 515	Leu	Gln	Leu	Thr	Asn 520	Glu	Lys	Val	Gly	Asp 525
Val	Val	Leu	Pro	Pro 530	Trp	Ala	Ser	Ser	Pro 535	Glu	Asp	Phe	Ile	Gln 540
Gln	His	Arg	Gln	Ala 545	Leu	Glu	Ser	Glu	Tyr 550	Val	Ser	Ala	His	Leu 555
His	Glu	Trp	Ile	Asp 560	Leu	Ile	Phe	Gly	Tyr 565	Lys	Gln	Arg	Gly	Pro 570
Ala	Ala	Glu	Glu	Ala 575	Leu	Asn	Val	Phe	Tyr 580	Tyr	Cys	Thr	Tyr	Glu 585

Gly Ala Val Asp Leu Asp His Val Thr Asp Glu Arg Glu Arg Lys Ala Leu Glu Gly Ile Ile Ser Asn Phe Gly Gln Thr Pro Cys Gln Leu Leu Lys Glu Pro His Pro Thr Arg Leu Ser Ala Glu Glu Ala 620 Ala His Arg Leu Ala Arg Leu Asp Thr Asn Ser Pro Ser Ile Phe 640 Gln His Leu Asp Glu Leu Lys Ala Phe Phe Ala Glu Val Thr Val 650 655 Ser Ala Ser Gly Leu Leu Gly Thr His Ser Trp Leu Pro Tyr Asp Arg Asn Ile Ser Asn Tyr Phe Ser Phe Ser Lys Asp Pro Thr Met 685 Gly Ser His Lys Thr Gln Arg Leu Leu Ser Gly Pro Trp Val Pro Gly Ser Gly Val Ser Gly Gln Ala Leu Ala Val Ala Pro Asp Gly Lys Leu Leu Phe Ser Gly Gly His Trp Asp Gly Ser Leu Arg Val 730 Thr Ala Leu Pro Arg Gly Lys Leu Leu Ser Gln Leu Ser Cys His 745 Leu Asp Val Val Thr Cys Leu Ala Leu Asp Thr Cys Gly Ile Tyr 755 Leu Ile Ser Gly Ser Arg Asp Thr Thr Cys Met Val Trp Arg Leu Leu His Gln Gly Gly Leu Ser Val Gly Leu Ala Pro Lys Pro Val 795 Gln Val Leu Tyr Gly His Gly Ala Ala Val Ser Cys Val Ala Ile Ser Thr Glu Leu Asp Met Ala Val Ser Gly Ser Glu Asp Gly Thr 820 Val Ile Ile His Thr Val Arg Arg Gly Gln Phe Val Ala Ala Leu 830 835 840 Arg Pro Leu Gly Ala Thr Phe Pro Gly Pro Ile Phe His Leu Ala 850 Leu Gly Ser Glu Gly Gln Ile Val Val Gln Ser Ser Ala Trp Glu 860 Arg Pro Gly Ala Gln Val Thr Tyr Ser Leu His Leu Tyr Ser Val Asn Gly Lys Leu Arg Ala Ser Leu Pro Leu Ala Glu Gln Pro Thr 890 895 900

```
Ala Leu Thr Val Thr Glu Asp Phe Val Leu Leu Gly Thr Ala Gln
                  905
 Cys Ala Leu His Ile Leu Gln Leu Asn Thr Leu Leu Pro Ala Ala
                                      925
 Pro Pro Leu Pro Met Lys Val Ala Ile Arg Ser Val Ala Val Thr
                  935
                                      940
                                                          945
 Lys Glu Arg Ser His Val Leu Val Gly Leu Glu Asp Gly Lys Leu
                                      955
 Ile Val Val Ala Gly Gln Pro Ser Glu Val Arg Ser Ser Gln
                 965
                                      970
 Phe Ala Arg Lys Leu Trp Arg Ser Ser Arg Arg Ile Ser Gln Val
                 980
                                      985
 Ser Ser Gly Glu Thr Glu Tyr Asn Pro Thr Glu Ala Arg
                 995
                                    1000
<210> 34
<211> 43
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 34
tgactgcact accccgtggc aagctgttga gccagctcag ctg 43
<210> 35
<211> 1395
<212> DNA
<213> Homo sapiens
<400> 35
cggacgcgtg ggcggacgcg tgggggctgt gagaaagtgc caataaatac 50
atcatgcaac cccacggccc accttgtgaa ctcctcgtgc ccagggctga 100
tgtgcgtctt ccagggctac tcatccaaag gcctaatcca acgttctgtc 150
ttcaatctgc aaatctatgg ggtcctgggg ctcttctgga cccttaactg 200
ggtactggcc ctgggccaat gcgtcctcgc tggagccttt gcctccttct 250
actgggcctt ccacaagccc caggacatcc ctaccttccc cttaatctct 300
gccttcatcc gcacactccg ttaccacact gggtcattgg catttggagc 350
ceteateetg accettgtge agatageeeg ggteatettg gagtatattg 400
accacaaget cagaggagtg cagaaccetg tagecegetg cateatgtge 450
tgtttcaagt gctgcctctg gtgtctggaa aaatttatca agttcctaaa 500
ccgcaatgca tacatcatga tcgccatcta cgggaagaat ttctgtgtct 550
cagccaaaaa tgcgttcatg ctactcatgc gaaacattgt cagggtggtc 600
```

gtcctggaca aagtcacaga cctgctgctg ttctttggga agctgctggt 650

eggertggg taaagacttt aagagcccc acctcaacta ttactggctg 750 cccatcatga cetecatect gggggectat gteategeca geggettett 800 cagegttte ggcatgtgg tggacacget ctteetege tteetggaag 850 acctggagg gaacaacgge teeetggace gggegeece eggacaacaa 950 gaagaggaag aagteegge teeggeece accaectggage gggegeece eggacaacaa 950 cccaecgtee agecatecaa ecteaetggage eagagagaa aggtttagg eagagagaa eagettetag eeggeece eggacaacaa 1000 cccaecgtee agecatecaa ecteaetteg eettacagg etggtaaaaaa aggtttagg eagagegeeg tggeteaegg etggtaateca 1100 acaetttgag aggetgage gggeggatea eetgagteag gagttegaga 1150 ccageetgge eaacatggtg aaaceteegt eteetataaa aatacaaaaa 1200 ttageegaga gtggtgeat geaectgtea teeeaggte etggaggeet 1250 gaggeeggag aategeega accegggagg eagagttge agtgageega 1300 gategegeea etgeaeteea acceggggga eagagttge eteeaaaaca 1350 aaacaaaaaa acaaaaaa tttataaaa atatttgtt aacte 1395

<210> 36

<211> 321

<212> PRT

<213> Homo sapiens

<400> 36

Arg Thr Arg Gly Arg Thr Arg Gly Gly Cys Glu Lys Val Pro Ile
1 5 10 15

Asn Thr Ser Cys Asn Pro Thr Ala His Leu Val Asn Ser Ser Cys

Pro Gly Leu Met Cys Val Phe Gln Gly Tyr Ser Ser Lys Gly Leu 35 40 45

Ile Gln Arg Ser Val Phe Asn Leu Gln Ile Tyr Gly Val Leu Gly 50 55 60

Leu Phe Trp Thr Leu Asn Trp Val Leu Ala Leu Gly Gln Cys Val 6570 75

Leu Ala Gly Ala Phe Ala Ser Phe Tyr Trp Ala Phe His Lys Pro 80 85 90

Gln Asp Ile Pro Thr Phe Pro Leu Ile Ser Ala Phe Ile Arg Thr 95 100 105

Leu Arg Tyr His Thr Gly Ser Leu Ala Phe Gly Ala Leu Ile Leu 110 115 120

Thr Leu Val Gln Ile Ala Arg Val Ile Leu Glu Tyr Ile Asp His 125 130 135

```
Lys Leu Arg Gly Val Gln Asn Pro Val Ala Arg Cys Ile Met Cys
  Cys Phe Lys Cys Cys Leu Trp Cys Leu Glu Lys Phe Ile Lys Phe
  Leu Asn Arg Asn Ala Tyr Ile Met Ile Ala Ile Tyr Gly Lys Asn
                  170
  Phe Cys Val Ser Ala Lys Asn Ala Phe Met Leu Leu Met Arg Asn
                  185
  Ile Val Arg Val Val Val Leu Asp Lys Val Thr Asp Leu Leu
                  200
                                      205
  Phe Phe Gly Lys Leu Leu Val Val Gly Gly Val Gly Val Leu Ser
                  215
  Phe Phe Phe Ser Gly Arg Ile Pro Gly Leu Gly Lys Asp Phe
                                      235
  Lys Ser Pro His Leu Asn Tyr Tyr Trp Leu Pro Ile Met Thr Ser
                                      250
 Ile Leu Gly Ala Tyr Val Ile Ala Ser Gly Phe Phe Ser Val Phe
 Gly Met Cys Val Asp Thr Leu Phe Leu Cys Phe Leu Glu Asp Leu
                  275
                                      280
 Glu Arg Asn Asn Gly Ser Leu Asp Arg Pro Tyr Tyr Met Ser Lys
                                      295
 Ser Leu Leu Lys Ile Leu Gly Lys Lys Asn Glu Ala Pro Pro Asp
                 305
                                                          315
 Asn Lys Lys Arg Lys Lys
                 320
<210> 37
<211> 22
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 37
 tcgtgcccag gggctgatgt gc 22
<210> 38
<211> 24
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 38
gtctttaccc agccccggga tgcg 24
<210> 39
<211> 50
```

<212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide probe <400> 39 ggcctaatcc aacgttctgt cttcaatctg caaatctatg gggtcctggg 50 <210> 40 <211> 1365 <212> DNA <213> Homo sapiens <400> 40 gagtettgae egeegeeggg etettggtae eteagegega gegeeaggeg 50 teeggeegee gtggetatgt tegtgteega ttteegeaaa gagttetaeg 100 aggtggtcca gagccagagg gtccttctct tcgtggcctc ggacgtggat 150 gctctgtgtg cgtgcaagat ccttcaggcc ttgttccagt gtgaccacgt 200 gcaatatacg ctggttccag tttctgggtg gcaagaactt gaaactgcat 250 ttcttgagca taaagaacag tttcattatt ttattctcat aaactgtgga 300 gctaatgtag acctattgga tattcttcaa cctgatgaag acactatatt 350 ctttgtgtgt gactcccata ggccagtcaa tgtcgtcaat gtatacaacg 400 atacccagat caaattactc attaaacaag atgatgacct tgaagttccc 450 gcctatgaag acatcttcag ggatgaagag gaggatgaag agcattcagg 500 aaatgacagt gatgggtcag agccttctga gaagcgcaca cggttagaag 550 aggagatagt ggagcaaacc atgcggagga ggcagcggcg agagtgggag 600 gcccggagaa gagacatcct ctttgactac gagcagtatg aatatcatgg 650 gacatcgtca gccatggtga tgtttgagct ggcttggatg ctgtccaagg 700 acctgaatga catgctgtgg tgggccatcg ttggactaac agaccagtgg 750 gtgcaagaca agatcactca aatgaaatac gtgactgatg ttggtgtcct 800 gcagcgccac gtttcccgcc acaaccaccg gaacgaggat gaggagaaca 850 cacteteegt ggactgeaca eggateteet ttgagtatga ceteegeetg 900 gtgctctacc agcactggtc cctccatgac agcctgtgca acaccagcta 950 taccgcagcc aggttcaagc tgtggtctgt gcatggacag aagcggctcc 1000 aggagttcct tgcagacatg ggtcttcccc tgaagcaggt gaagcagaag 1050 ttccaggcca tggacatctc cttgaaggag aatttgcggg aaatgattga 1100 agagtctgca aataaatttg ggatgaagga catgcgcgtg cagactttca 1150 gcattcattt tgggttcaag cacaagtttc tggccagcga cgtggtcttt 1200

gccaccatgt ctttgatgga gagccccgag aaggatggct cagggacaga 1250 tcacttcatc caggctctgg acagcctctc caggagtaac ctggacaagc 1300 tgtaccatgg cctggaactc gccaagaagc agctgcgagc cacccagcag 1350 accattgcca gctgc 1365

<210> 41

<211> 566

<212> PRT

<213> Homo sapiens

<400> 41

Met Phe Val Ser Asp Phe Arg Lys Glu Phe Tyr Glu Val Val Gln
1 5 10 10

Ser Gln Arg Val Leu Leu Phe Val Ala Ser Asp Val Asp Ala Leu 20 25 30

Cys Ala Cys Lys Ile Leu Gln Ala Leu Phe Gln Cys Asp His Val 35 40

Gln Tyr Thr Leu Val Pro Val Ser Gly Trp Gln Glu Leu Glu Thr 50 55 60

Ala Phe Leu Glu His Lys Glu Gln Phe His Tyr Phe Ile Leu Ile 65 70 75

Asn Cys Gly Ala Asn Val Asp Leu Leu Asp Ile Leu Gln Pro Asp 80 85 90

Glu Asp Thr Ile Phe Phe Val Cys Asp Ser His Arg Pro Val Asn 95 100 105

Val Val Asn Val Tyr Asn Asp Thr Gln Ile Lys Leu Leu Ile Lys 110 115 120

Gln Asp Asp Asp Leu Glu Val Pro Ala Tyr Glu Asp Ile Phe Arg 125 130 135

Asp Glu Glu Glu Asp Glu Glu His Ser Gly Asn Asp Ser Asp Gly 140 145

Ser Glu Pro Ser Glu Lys Arg Thr Arg Leu Glu Glu Glu Ile Val 155 160 165

Glu Gln Thr Met Arg Arg Arg Gln Arg Arg Glu Trp Glu Ala Arg 170 175 180

Arg Arg Asp Ile Leu Phe Asp Tyr Glu Gln Tyr Glu Tyr His Gly
185 190

Thr Ser Ser Ala Met Val Met Phe Glu Leu Ala Trp Met Leu Ser 200 205 210

Lys Asp Leu Asn Asp Met Leu Trp Trp Ala Ile Val Gly Leu Thr 215 220 225

Asp Gln Trp Val Gln Asp Lys Ile Thr Gln Met Lys Tyr Val Thr 230 235 240

Asp Val Gly Val Leu Gln Arg His Val Ser Arg His Asn His Arg

					245					250					255
F	lsn	Glu	Asp	Glu	Glu 260	Asn	Thr	Leu	Ser	Val 265	Asp	Cys	Thr	Arg	11e 270
S	Ser	Phe	Glu	Tyr	Asp 275	Leu	Arg	Leu	Val	Leu 280	Tyr	Gln	His	Trp	Ser 285
Ι	eu	His	Asp	Ser	Leu 290	Суз	Asn	Thr	Ser	Tyr 295	Thr	Ala	Ala	Arg	Ph∈
I	ys	Leu	Trp	Ser	Val 305	His	Gly	Gln	Lys	Arg 310	Leu	Gln	Glu	Phe	Leu 315
P	la	Asp	Met	Gly	Leu 320	Pro	Leu	Lys	Gln	Val 325	Lys	Gln	Lys	Phe	Glr 330
7	la	Met	Asp	Ile	Ser 335	Leu	Lys	Glu	Asn	Leu 340	Arg	Glu	Met	Ile	Glu 345
G	Slu	Ser	Ala	Asn	Lys 350	Phe	Gly	Met	Lys	Asp 355	Met	Arg	Val	Gln	Thr 360
E	he	Ser	Ile	His	Phe 365	Gly	Phe	Lys	His	Lys 370	Phe	Leu	Ala	Ser	Asp 375
V	al	Val	Phe	Ala	Thr 380	Met	Ser	Leu	Met	Glu 385	Ser	Pro	Glu	Lys	Asp 390
G	Sly	Ser	Gly	Thr	Asp 395	His	Phe	Ile	Gln	Ala 400	Leu	Asp	Ser	Leu	Ser 405
7	rg	Ser	Asn	Leu	Asp 410	Lys	Leu	Tyr	His	Gly 415	Leu	Glu	Leu	Ala	Lys 420
Ι	ys	Gln	Leu	Arg	Ala 425	Thr	G1n	Gln	Thr	Ile 430	Ala	Ser	Cys	Leu	Cys 435
Ί	'hr	Asn	Leu	Val	Ile 440	Ser	Gln	Gly	Pro	Phe 445	Leu	Tyr	Cys	Ser	Leu 450
M	let	Glu	Gly	Thr	Pro 455	Asp	Val	Met	Leu	Phe 460	Ser	Arg	Pro	Ala	Ser 465
I	eu	Ser	Leu		Ser 470					Lys 475		Phe	Val	Суѕ	Ser 480
Т	'hr	Lys	Asn	Arg	Arg 485	Cys	Lys	Leu	Leu	Pro 490	Leu	Val	Met	Ala	Ala 495
P	'ro	Leu	Ser	Met	Glu 500	His	Gly	Thr	Val	Thr 505	Val	Val	Gly	Ile	Pro 510
P	'ro	Glu	Thr	Asp	Ser 515	Ser	Asp	Arg	Lys	Asn 520	Phe	Phe	Gly	Arg	Ala 525
P	he	Glu	Lys	Ala	Ala 530	Glu	Ser	Thr	Ser	Ser 535	Arg	Met	Leu	His	Asn 540
Н	is	Phe	Asp	Leu	Ser 545	Val	Ile	Glu	Leu	Lys 550	Ala	Glu	Asp	Arg	Ser 555
L	ys	Phe	Leu	Asp	Ala	Leu	Ile	Ser	Leu	Leu	Ser				

```
<210> 42
 <211> 380
 <212> DNA
 <213> Homo sapiens
 <220>
 <221> unsure
 <222> 44, 118, 172, 183
 <223> unknown base
 <400> 42
  gtacctcagc gcgagcgcca ggcgtccggc cgccgtggct atgntcgtgt 50
  ccgatttccg caaagagttc tacgaggtgg tccagagcca gagggtcctt 100
  ctcttcgtgg cctcggangt ggatgctctg tgtgcgtgca agatccttca 150
  ggccttgttc cagtgtgacc angtgcaata tangctggtt ccagtttctg 200
 ggtggcaaga acttgaaact gcatttcttg agcataaaga acagtttcat 250
 tattttattc tcataaactg tggagctaat gtagacctat tggatattct 300
 tcaacctgat gaagacacta tattctttgt gtgtgacacc cataggccag 350
 tcaatgttgt caatgtatac aacgataccc 380
<210> 43
<211> 25
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 43
 ttccgcaaag agttctacga ggtgg 25
<210> 44
<211> 26
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 44
 attgacaaca ttgactggcc tatggg 26
<210> 45
<211> 50
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
gtggatgctc tgtgtgcgtg caagatcctt caggccttgt tccagtgtga 50
<210> 46
```

<211> 3089

<212> DNA

<213> Homo sapiens

<400> 46 caggaaccct ctctttgggt ctggattggg acccctttcc agtaccattt 50 tttctagtga accacgaagg gacgatacca gaaaacaccc tcaacccaaa 100 ggaaatagac tacagcccca attggctgac tttggctata gaaaaaagaa 150 aggaacgaaa agagacagtt ttttttggaa agctaagtct tccctttatc 200 gagtcaagaa acccccctt cttgagctat ttacagcttt taacaattga 250 gtaaagtacg ctccggtcac catggtgaca gccgccctqq qtcccqtctq 300 ggcagcgctc ctgctctttc tcctgatgtg tgagatccgt atggtggagc 350 teacetttga cagagetgtg gecagegget gecaaeggtg etgtgaetet 400 gaggaccccc tggatcctgc ccatgtatcc tcagcctctt cctccggccg 450 ccccacgcc ctgcctgaga tcagacccta cattaatatc accatcctga 500 agggtgacaa aggggaccca ggcccaatgg gcctgccagg gtacatgggc 550 agggagggtc cccaagggga gcctggccct cagggcagca agggtgacaa 600 gggggagatg ggcagccccg gcgccccgtg ccagaagcgc ttcttcgcct 650 tctcagtggg ccgcaagacg gccctgcaca gcggcgagga cttccagacg 700 ctgctcttcg aaagggtctt tgtgaacctt gatgggtgct ttgacatggc 750 gaccggccag tttgctgctc ccctgcgtgg catctacttc ttcagcctca 800 atgtgcacag ctggaattac aaggagacgt acgtgcacat tatgcataac 850 cagaaagagg ctgtcatcct gtacgegcag cccagegagc gcagcatcat 900 gcagagccag agtgtgatgc tggacctggc ctacggggac cgcgtctggg 950 tgcggctctt caagcgccag cgcgagaacg ccatctacag caacgacttc 1000 gacacctaca tcaccttcag cggccacctc atcaaggccg aggacgactg 1050 agggcctctg ggccaccctc ccggctggag agctcaggtg ctggtcccgt 1100 cccctgcagg gctcagtttg cactgctgtg aagcaggaag gccagggagg 1150 tccccgggga cctggcattc tggggagacc ctgcttctat cttggctgcc 1200 atcatccctc ccagcctatt tctgctcctc tcttctctct tggacctatt 1250 ttaagaagct tgctaaccta aatattctag aactttccca gcctcgtagc 1300 ccagcacttc tcaaacttgg aaatgcatgc gaatcacccg gggttcgtgt 1350 taaatgcaga ttctgactca gcaggtctga gtgggtccag gattctgtgt 1400 ttctcatatg ttcctgggtg atgctgatgg ggtcagtcta tgaaccacac 1450

tggagcaacc aggttctagg actttctcaa tattctagta ctttctgaac 1500 attetggaat cetececaca ttetagaatt eteceaacat tttttttet 1550 tgagacagag tettgetetg ttgeccagge tagagtgeag tggtgeaate 1600 tcagttcact gcaacctctg cctcccgggt tcaagcgatt cttctgcctc 1650 agceteceta gtggetggga ttacaggege etgetaceat geetggetaa 1700 tttttgtatt tttagtagag atggggtttc accatattgg ccaggctggt 1750 cttgaactcc tgacttcagg tgacccaccc gcctcggcct ctcaaaatgc 1800 tgggattaca ggtgtgagcc accgtgcctg qccaattcca acattcttaa 1850 attctctcat ccctccaggg ctccccgtgc tatgttctct ttaccccttc 1900 cccctcttct cttgctcagg cctgcaccac tgcagccacc qttcatttat 1950 tcattcatta aacactgagc actcactctg tgctgggtcc cgggaagggt 2000 gagggggtca gacacaggcc ctqcccctqc cctcagtgac tqqccagtcc 2050 ageceaggeg gggagagatg tgtacatagg ttttaaagea gacecagage 2100 tcatgggggc ctgtgttctg ggtgttcagg tgctgctggt cctccattac 2150 ccactgctcc ccaaggctgg tgggacgggg tcccggtggc aggggcaggt 2200 atotectico egitecteat ecacetgece agigeteate gitacageaa 2250 accccagggg gccttggcca ggtcaagggt tctgtgagga gaggacccag 2300 gagtgtgggg gcatttgggg ggtgaagtgg cccccqaaqa atggaaccca 2350 cacccatage tetececaca getgatacgg cateetgega gaagacetge 2400 cctcctcact gggatcccct tcctgcctcc tcccagggct ctgccagggc 2450 cttgctcagt cccttccacc aaagtcatct gaacttccgt ttccccaggg 2500 cctccagctg ccctcagaca ctgatgtctg tccccaggtg ctctctgccc 2550 ctcatgcccc tctcaccggc ccagtgcccc gactctccag gctttatcaa 2600 ggtgctaagg cccgggtggg cageteeteg teteagagee eteeteegge 2650 ctggtgctgc ctttacaaac acctgcagga gaaggcccac ggaagcccca 2700 ggctttagag ccctcagcag gtctggggag ctagagcaaa ggagggacct 2750 caggeettee gtttettett ceagggtggg gtggeetggt gtteeectag 2800 ccttccaaac ccaggtggcc tgcccttctc cccagaggga ggcggcctcc 2850 gcccattggt gctcatgcag actctggggc tgaggtgccc cggggggtga 2900 tetetggtge teacageega gggageegtg getecatgge cagatgaegg 2950 aaacagggtc tgaccaagtg ccaggaagac ctgtgctata aaccaccctg 3000 cctgatectg ccctgcctg accccqccac gccttqccqt ccaqcatgat 3050

taaagaatgc tgtctcctct tggaaaaaaa aaaaaaaaa 3089 <210> 47 <211> 259 <212> PRT <213> Homo sapiens <220> <221> Signal Peptide <222> 1-20 <223> Signal Peptide <220> <221> N-glycosylation Site <222> 72-75 <223> N-glycosylation Site <220> <221> C1q Domain Proteins <222> 144-178, 78-111, 84-117 <223> C1q Domain Proteins <400> 47 Met Val Thr Ala Ala Leu Gly Pro Val Trp Ala Ala Leu Leu Leu Phe Leu Leu Met Cys Glu Ile Arg Met Val Glu Leu Thr Phe Asp Arg Ala Val Ala Ser Gly Cys Gln Arg Cys Cys Asp Ser Glu Asp 40 Pro Leu Asp Pro Ala His Val Ser Ser Ala Ser Ser Ser Gly Arg Pro His Ala Leu Pro Glu Ile Arg Pro Tyr Ile Asn Ile Thr Ile Leu Lys Gly Asp Lys Gly Asp Pro Gly Pro Met Gly Leu Pro Gly Tyr Met Gly Arg Glu Gly Pro Gln Gly Glu Pro Gly Pro Gln Gly 105 Ser Lys Gly Asp Lys Gly Glu Met Gly Ser Pro Gly Ala Pro Cys 110

Gln Lys Arg Phe Phe Ala Phe Ser Val Gly Arg Lys Thr Ala Leu

Ala Pro Leu Arg Gly Ile Tyr Phe Phe Ser Leu Asn Val His Ser 170 175 180

Trp Asn Tyr Lys Glu Thr Tyr Val His Ile Met His Asn Gln Lys 185 190 195

Glu Ala Val Ile Leu Tyr Ala Gln Pro Ser Glu Arg Ser Ile Met

200 205 210 Gln Ser Gln Ser Val Met Leu Asp Leu Ala Tyr Gly Asp Arq Val 215 220 Trp Val Arg Leu Phe Lys Arg Gln Arg Glu Asn Ala Ile Tyr Ser Asn Asp Phe Asp Thr Tyr Ile Thr Phe Ser Gly His Leu Ile Lys 255 Ala Glu Asp Asp <210> 48 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide probe <400> 48 ccagacgctg ctcttcgaaa gggtc 25 <210> 49 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide probe <400> 49 ggtccccgta ggccaggtcc agc 23 <210> 50 <211> 50 <212> DNA <213> Artificial sequence <220> <223> Synthetic oligonucleotide probe ctacttcttc agcctcaatg tgcacagctg gaattacaag qagacqtacq 50 <210> 51 <211> 2768 <212> DNA <213> Homo sapiens <400> 51 actogaacgc agttgcttcg ggacccagga ccccctcggg cccgacccgc 50 caggaaagac tgaggccgcg gcctgccccg cccggctccc tgcgccgccg 100 ccgcctcccg ggacagaaga tgtgctccag ggtccctctg ctqctqccqc 150 tgctcctgct actggccctg gggcctgggg tgcagggctg cccatccggc 200 tgccagtgca gccagccaca gacagtcttc tgcactgccc gccaggggac 250

cacggtgccc cgagacgtgc cacccgacac ggtggggctg tacgtctttg 300 agaacggcat caccatgctc gacgcaggca gctttgccgg cctgccgggc 350 ctgcagctcc tggacctgtc acagaaccag atcgccagcc tgcccagcgg 400 ggtcttccag ccactcgcca acctcagcaa cctggacctg acggccaaca 450 ggctgcatga aatcaccaat gagaccttcc gtggcctgcg gcgcctcgag 500 cgcctctacc tgggcaagaa ccgcatccgc cacatccagc ctggtgcctt 550 cgacacgete gacegeetee tggageteaa getgeaggae aacgagetge 600 gggcactgcc cccgctgcgc ctgccccgcc tgctgctgct ggacctcagc 650 cacaacagec teetggeest ggageeegge atectggaca etgeeaaegt 700 ggaggcgctg cggctggctg gtctggggct gcagcagctg gacgaggggc 750 tettcageeg ettgegeaac etccaegace tggatgtgte egacaaceag 800 ctggagcgag tgccacctgt gatccgaggc ctccggggcc tgacgcgcct 850 geggetggee ggcaacacce geattgeeca getgeggeee gaggaeetgg 900 ccggcctggc tgccctgcag gagctggatg tgagcaacct aagcctgcag 950 geeetgeetg gegaeetete gggeetette eeeegeetge ggetgetgge 1000 agetgeeege aacecettea aetgegtgtg ceeeetgage tggtttggee 1050 cctgggtgcg cgagagccac gtcacactgg ccagccctga ggagacgcgc 1100 tgccacttcc cgcccaagaa cgctggccgg ctgctcctgg agcttgacta 1150 cgccgacttt ggctgcccag ccaccaccac cacagccaca gtgcccacca 1200 cgaggcccgt ggtgcgggag cccacagcct tgtcttctag cttggctcct 1250 acctggetta gececacage geeggeeact gaggeeecea geeegeeete 1300 cactgeecea eegactgtag ggeetgteee eeageeceag gaetgeecae 1350 cgtccacctg cctcaatggg ggcacatgcc acctggggac acggcaccac 1400 ctggcgtgct tgtgccccga aggcttcacg ggcctgtact gtgagagcca 1450 gatggggcag gggacacggc ccagccctac accagtcacg ccgaggccac 1500 cacggtccct gaccctgggc atcgagccgg tgagccccac ctccctgcgc 1550 gtggggctgc agcgctacct ccaggggagc tccgtgcagc tcaggagcct 1600 ccgtctcacc tatcgcaacc tatcgggccc tgataagcgg ctggtgacgc 1650 tgcgactgcc tgcctcgctc gctgagtaca cggtcaccca gctgcggccc 1700 aacgccactt actccgtctg tgtcatgcct ttggggcccg ggcgggtgcc 1750 ggagggcgag gaggcctgcg gggaggccca tacaccccca gccgtccact 1800 ccaaccacge cccagtcace caggecegeg agggcaacet geegeteete 1850

attgcgcccg ccctggccgc ggtgctcctg gccgcgctgg ctgcggtggg 1900 ggcagcctac tgtgtgcggc gggggcgggc catggcagca gcggctcagg 1950 acaaagggca ggtggggcca ggggctgggc ccctggaact ggagggagtg 2000 aaggtcccct tggagccagg cccgaaggca acagagggcg gtggagaggc 2050 cctgcccagc gggtctgagt gtgaggtgcc actcatgggc ttcccagggc 2100 ctggcctcca gtcacccctc cacgcaaagc cctacatcta agccagagag 2150 agacagggca gctggggccg ggctctcagc cagtgagatg gccagccccc 2200 teetgetgee acaccaegta agtteteagt eccaaceteg gggatgtgtg 2250 cagacagggc tgtgtgacca cagctgggcc ctgttccctc tggacctcgg 2300 tetecteate tgtgagatge tgtggcccag ctgacgagee ctaacgtece 2350 cagtccctgg gcacggcggg ccctgccatg tgctggtaac gcatgcctgg 2450 gtcctgctgg gctctcccac tccaggcgga ccctgggggc cagtgaagga 2500 agctcccgga aagagcagag ggagagcggg taggcggctg tgtgactcta 2550 gtcttggccc caggaagcga aggaacaaaa gaaactggaa aggaagatgc 2600 tttaggaaca tgttttgctt ttttaaaata tatatttta taagagatcc 2650 tttcccattt attctgggaa gatgttttc aaactcagag acaaggactt 2700 tggtttttgt aagacaaacg atgatatgaa ggccttttgt aagaaaaaat 2750 aaaagatgaa gtgtgaaa 2768

<210> 52

<211> 673

<212> PRT

<213> Homo sapiens

<400> 52

Met Cys Ser Arg Val Pro Leu Leu Leu Pro Leu Leu Leu Leu 1 5 10 15

Ala Leu Gly Pro Gly Val Gln Gly Cys Pro Ser Gly Cys Gln Cys 20 25 30

Ser Gln Pro Gln Thr Val Phe Cys Thr Ala Arg Gln Gly Thr Thr

Val Pro Arg Asp Val Pro Pro Asp Thr Val Gly Leu Tyr Val Phe 50 55 60

Glu Asn Gly Ile Thr Met Leu Asp Ala Gly Ser Phe Ala Gly Leu
65 70 75

Pro Gly Leu Gln Leu Leu Asp Leu Ser Gln Asn Gln Ile Ala Ser 80 85 90

Leu Pro Ser Gly Val Phe Gln Pro Leu Ala Asn Leu Ser Asn Leu

				95					100					105
Asp	Leu	Thr	Ala	Asn 110	Arg	Leu	His	Glu	Ile 115	Thr	Asn	Glu	Thr	Phe 120
Arg	Gly	Leu	Arg	Arg 125	Leu	Glu	Arg	Leu	Tyr 130	Leu	Gly	Lys	Asn	Arg 135
Ile	Arg	His	Ile	Gln 140	Pro	Gly	Ala	Phe	Asp 145	Thr	Leu	Asp	Arg	Leu 150
Leu	Glu	Leu	Lys	Leu 155	Gln	Asp	Asn	Glu	Leu 160	Arg	Ala	Leu	Pro	Pro 165
Leu	Arg	Leu	Pro	Arg 170	Leu	Leu	Leu	Leu	Asp 175	Leu	Ser	His	Asn	Ser 180
Leu	Leu	Ala	Leu	Glu 185	Pro	Gly	Ile	Leu	Asp 190	Thr	Ala	Asn	Val	Glu 195
Ala	Leu	Arg	Leu	Ala 200	Gly	Leu	Gly	Leu	Gln 205	Gln	Leu	Asp	Glu	Gly 210
Leu	Phe	Ser	Arg	Leu 215	Arg	Asn	Leu	His	Asp 220	Leu	Asp	Val	Ser	Asp 225
Asn	Gln	Leu	Glu	Arg 230	Val	Pro	Pro	Val	Ile 235	Arg	Gly	Leu	Arg	Gly 240
Leu	Thr	Arg	Leu	Arg 245	Leu	Ala	Gly	Asn	Thr 250	Arg	Ile	Ala	Gln	Leu 255
Arg	Pro	Glu	Asp	Leu 260	Ala	Gly	Leu	Ala	Ala 265	Leu	Gln	Glu	Leu	Asp 270
Val	Ser	Asn	Leu	Ser 275	Leu	Gln	Ala	Leu	Pro 280	Gly	Asp	Leu	Ser	Gly 285
Leu	Phe	Pro	Arg	Leu 290	Arg	Leu	Leu	Ala	Ala 295	Ala	Arg	Asn	Pro	Phe
Asn	Cys	Val	Cys	Pro 305	Leu	Ser	Trp	Phe	Gly 310	Pro	Trp	Val	Arg	Glu 315
Ser	His	Val	Thr	Leu 320	Ala	Ser	Pro	Glu	Glu 325	Thr	Arg	Cys	His	Phe 330
Pro	Pro	Lys	Asn	Ala 335	Gly	Arg	Leu	Leu	Leu 340	Glu	Leu	Asp	Tyr	Ala 345
Asp	Phe	Gly	Cys	Pro 350	Ala	Thr	Thr	Thr	Thr 355	Ala	Thr	Val	Pro	Thr 360
Thr	Arg	Pro	Val	Val 365	Arg	Glu	Pro	Thr	Ala 370	Leu	Ser	Ser	Ser	Leu 375
Ala	Pro	Thr	Trp	Leu 380	Ser	Pro	Thr	Ala	Pro 385	Ala	Thr	Glu	Ala	Pro 390
Ser	Pro	Pro	Ser	Thr 395	Ala	Pro	Pro	Thr	Val 400	Gly	Pro	Val	Pro	Gln 405
Pro	Gln	Asp	Cys	Pro	Pro	Ser	Thr	Cys	Leu	Asn	Glv	Glv	Thr	Cys

				410					415					420
His	Leu	Gly	Thr	Arg 425	His	His	Leu	Ala	Cys 430	Leu	Cys	Pro	Glu	Gly 435
Phe	Thr	Gly	Leu	Tyr 440	Cys	Glu	Ser	Gln	Met 445	Gly	Gln	Gly	Thr	Arc 450
Pro	Ser	Pro	Thr	Pro 455	Val	Thr	Pro	Arg	Pro 460	Pro	Arg	Ser	Leu	Thr 465
Leu	Gly	Ile	Glu	Pro 470	Val	Ser	Pro	Thr	Ser 475	Leu	Arg	Val	Gly	Leu 480
Gln	Arg	Tyr	Leu	Gln 485	Gly	Ser	Ser	Val	Gln 490	Leu	Arg	Ser	Leu	Arg 495
Leu	Thr	Tyr	Arg	Asn 500	Leu	Ser	Gly	Pro	Asp 505	Lys	Arg	Leu	Val	Thr 510
Leu	Arg	Leu	Pro	Ala 515	Ser	Leu	Ala	Glu	Tyr 520	Thr	Val	Thr	Gln	Leu 525
Arg	Pro	Asn	Ala	Thr 530	Tyr	Ser	Val	Суѕ	Val 535	Met	Pro	Leu	Gly	Pro 540
Gly	Arg	Val	Pro	Glu 545	Gly	Glu	Glu	Ala	Cys 550	Gly	Glu	Ala	His	Thr 555
Pro	Pro	Ala	Val	His 560	Ser	Asn	His	Ala	Pro 565	Val	Thr	Gln	Ala	Arg 570
Glu	Gly	Asn	Leu	Pro 575	Leu	Leu	Ile	Ala	Pro 580	Ala	Leu	Ala	Ala	Val 585
Leu	Leu	Ala	Ala	Leu 590	Ala	Ala	Val	Gly	Ala 595	Ala	Tyr	Cys	Val	Arg 600
Arg	Gly	Arg	Ala	Met 605	Ala	Ala	Ala	Ala	Gln 610	Asp	Lys	Gly	Gln	Val 615
Gly	Pro	Gly	Ala	Gly 620	Pro	Leu	Glu	Leu	Glu 625	Gly	Val	Lys	Val	Pro 630
Leu	Glu	Pro	Gly	Pro 635	Lys	Ala	Thr	Glu	Gly 640	Gly	Gly	Glu	Ala	Leu 645
Pro	Ser	Gly	Ser	Glu 650	Суѕ	Glu	Val	Pro	Leu 655	Met	Gly	Phe	Pro	Gly 660
Pro	Gly	Leu	Gln	Ser 665	Pro	Leu	His	Ala	Lys 670	Pro	Tyr	Ile		
210>	- 53													

<211> 23

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 53

tcttcagccg cttgcgcaac ctc 23

```
<210> 54
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 54
 ttgctcacat ccagctcctg cagg 24
<210> 55
<211> 41
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 55
tggatgttgt ccagacaacc agctggagct gtatccgagg c 41
<210> 56
<211> 3462
<212> DNA
<213> Homo sapiens
<400> 56
gaatcatcca cgcacctgca gctctgctga gagagtgcaa gccgtggggg 50
ttttgagctc atcttcatca ttcatatgag gaaataagtg gtaaaatcct 100
tggaaataca atgagactca tcagaaacat ttacatattt tgtagtattg 150
ttatgacagc agagggtgat gctccagagc tgccagaaga aagggaactg 200
atgaccaact gctccaacat gtctctaaga aaggttcccg cagacttgac 250
cccagccaca acgacactgg atttatecta taaccteett tttcaactee 300
agagttcaga ttttcattct gtctccaaac tgagagtttt gattctatgc 350
cataacagaa ttcaacagct ggatctcaaa acctttgaat tcaacaagga 400
gttaagatat ttagatttgt ctaataacag actgaagagt gtaacttggt 450
atttactggc aggtctcagg tatttagatc tttcttttaa tgactttgac 500
accatgccta tctgtgagga agctggcaac atgtcacacc tggaaatcct 550
aggtttgagt ggggcaaaaa tacaaaaatc agatttccag aaaattgctc 600
atctgcatct aaatactgtc ttcttaggat tcagaactct tcctcattat 650
gaagaaggta gcctgcccat cttaaacaca acaaaactgc acattgtttt 700
accaatggac acaaatttct gggttctttt gcgtgatgga atcaagactt 750
caaaaatatt agaaatgaca aatatagatg gcaaaagcca atttgtaagt 800
tatgaaatgc aacgaaatct tagtttagaa aatgctaaga catcggttct 850
attgcttaat aaagttgatt tactctggga cgaccttttc cttatcttac 900
```

aatttgtttg gcatacatca gtggaacact ttcagatccg aaatgtgact 950 tttggtggta aggcttatct tgaccacaat tcatttgact actcaaatac 1000 tgtaatgaga actataaaat tggagcatgt acatttcaga gtgttttaca 1050 ttcaacagga taaaatctat ttgcttttga ccaaaatgga catagaaaac 1100 ctgacaatat caaatgcaca aatgccacac atgcttttcc cgaattatcc 1150 tacgaaattc caatatttaa attttgccaa taatatctta acagacgagt 1200 tgtttaaaag aactatccaa ctgcctcact tgaaaactct cattttgaat 1250 ggcaataaac tggagacact ttctttagta agttgctttg ctaacaacac 1300 accettggaa caettggate tgagteaaaa tetattacaa cataaaaatg 1350 atgaaaattg ctcatggcca gaaactgtgg tcaatatgaa tctgtcatac 1400 aataaattgt ctgattctgt cttcaggtgc ttgcccaaaa gtattcaaat 1450 acttgaccta aataataacc aaatccaaac tgtacctaaa gagactattc 1500 atctgatggc cttacgagaa ctaaatattg catttaattt tctaactgat 1550 ctccctggat gcagtcattt cagtagactt tcagttctga acattgaaat 1600 gaacttcatt ctcagcccat ctctggattt tgttcagagc tgccaggaag 1650 ttaaaactct aaatgcggga agaaatccat tccggtgtac ctgtgaatta 1700 aaaaatttca ttcagcttga aacatattca gaggtcatga tggttggatg 1750 gtcagattca tacacctgtg aatacccttt aaacctaagg ggaactaggt 1800 taaaagacgt tcatctccac gaattatctt gcaacacagc tctgttgatt 1850 gtcaccattg tggttattat gctagttctg gggttggctg tggccttctg 1900 ctgtctccac tttgatctgc cctggtatct caggatgcta ggtcaatgca 1950 cacaaacatg gcacagggtt aggaaaacaa cccaagaaca actcaagaga 2000 aatgtccgat tccacgcatt tatttcatac agtgaacatg attctctgtg 2050 ggtgaagaat gaattgatcc ccaatctaga gaaggaagat ggttctatct 2100 tgatttgcct ttatgaaagc tactttgacc ctggcaaaag cattagtgaa 2150 aatattgtaa gcttcattga gaaaagctat aagtccatct ttgttttgtc 2200 tcccaacttt gtccagaatg agtggtgcca ttatgaattc tactttgccc 2250 accacaatct cttccatgaa aattctgatc atataattct tatcttactg 2300 gaacccattc cattctattg cattcccacc aggtatcata aactgaaagc 2350 tctcctggaa aaaaaagcat acttggaatg gcccaaggat aggcgtaaat 2400 gtgggctttt ctgggcaaac cttcgagctg ctattaatgt taatgtatta 2450 gccaccagag aaatgtatga actgcagaca ttcacagagt taaatgaaga 2500

gtctcgaggt tctacaatct ctctgatgag aacagattgt ctataaaatc 2550 ccacagtcct tgggaagttg gggaccacat acactgttgg gatgtacatt 2600 gatacaacct ttatgatggc aatttgacaa tatttattaa aataaaaaat 2650 ggttattccc ttcatatcag tttctagaag gatttctaag aatgtatcct 2700 atagaaacac cttcacaagt ttataagggc ttatggaaaa aggtgttcat 2750 cccaggattg tttataatca tgaaaaatgt ggccaggtgc agtggctcac 2800 tcttgtaatc ccagcactat gggaggccaa ggtgggtgac ccacgaggtc 2850 aagagatgga gaccatcctg gccaacatgg tgaaaccctg tctctactaa 2900 aaatacaaaa attagctggg cgtgatggtg cacgcctgta gtcccagcta 2950 cttgggaggc tgaggcagga gaatcgcttg aacccgggag gtggcagttg 3000 cagtgagctg agatcgagcc actgcactcc agcctggtga cagagcgaga 3050 ctccatctca aaaaaaagaa aaaaaaaaaa gaaaaaaatg gaaaacatcc 3100 tcatggccac aaaataaggt ctaattcaat aaattatagt acattaatgt 3150 aatataatat tacatgccac taaaaagaat aaggtagctg tatatttcct 3200 ggtatggaaa aaacatatta atatgttata aactattagg ttggtgcaaa 3250 actaattgtg gtttttgcca ttgaaatggc attgaaataa aagtgtaaag 3300 aaatctatac cagatgtagt aacagtggtt tgggtctggg aggttggatt 3350 acagggagca titgatttct atgttgtgta titctataat gtttgaattg 3400 tttagaatga atctgtattt cttttataag tagaaaaaa ataaagatag 3450 tttttacagc ct 3462

<210> 57

<211> 811

<212> PRT

<213> Homo sapiens

<400> 57

Met Arg Leu Ile Arg Asn Ile Tyr Ile Phe Cys Ser Ile Val Met $1 \hspace{1cm} 1 \hspace{1cm} 5 \hspace{1cm} 10 \hspace{1cm} 15$

Thr Ala Glu Gly Asp Ala Pro Glu Leu Pro Glu Glu Arg Glu Leu 20 25 30

Met Thr Asn Cys Ser Asn Met Ser Leu Arg Lys Val Pro Ala Asp 35

Leu Thr Pro Ala Thr Thr Leu Asp Leu Ser Tyr Asn Leu Leu
50 55 60

Phe Gln Leu Gln Ser Ser Asp Phe His Ser Val Ser Lys Leu Arg
65 70 75

Val Leu Ile Leu Cys His Asn Arg Ile Gln Gln Leu Asp Leu Lys 80 85 90

Thr Phe Glu Phe Asn Lys Glu Leu Arg Tyr Leu Asp Leu Ser Asn Asn Arg Leu Lys Ser Val Thr Trp Tyr Leu Leu Ala Gly Leu Arg 110 115 Tyr Leu Asp Leu Ser Phe Asn Asp Phe Asp Thr Met Pro Ile Cys 125 130 Glu Glu Ala Gly Asn Met Ser His Leu Glu Ile Leu Gly Leu Ser 145 Gly Ala Lys Ile Gln Lys Ser Asp Phe Gln Lys Ile Ala His Leu 155 His Leu Asn Thr Val Phe Leu Gly Phe Arg Thr Leu Pro His Tyr 175 Glu Glu Gly Ser Leu Pro Ile Leu Asn Thr Thr Lys Leu His Ile 185 190 Val Leu Pro Met Asp Thr Asn Phe Trp Val Leu Leu Arg Asp Gly Ile Lys Thr Ser Lys Ile Leu Glu Met Thr Asn Ile Asp Gly Lys 215 Ser Gln Phe Val Ser Tyr Glu Met Gln Arg Asn Leu Ser Leu Glu 230 235 Asn Ala Lys Thr Ser Val Leu Leu Leu Asn Lys Val Asp Leu Leu 245 250 Trp Asp Asp Leu Phe Leu Ile Leu Gln Phe Val Trp His Thr Ser 265 Val Glu His Phe Gln Ile Arg Asn Val Thr Phe Gly Gly Lys Ala 280 Tyr Leu Asp His Asn Ser Phe Asp Tyr Ser Asn Thr Val Met Arg 295 Thr Ile Lys Leu Glu His Val His Phe Arg Val Phe Tyr Ile Gln Gln Asp Lys Ile Tyr Leu Leu Leu Thr Lys Met Asp Ile Glu Asn 325 Leu Thr Ile Ser Asn Ala Gln Met Pro His Met Leu Phe Pro Asn 335 340 Tyr Pro Thr Lys Phe Gln Tyr Leu Asn Phe Ala Asn Asn Ile Leu 355 Thr Asp Glu Leu Phe Lys Arg Thr Ile Gln Leu Pro His Leu Lys 365 Thr Leu Ile Leu Asn Gly Asn Lys Leu Glu Thr Leu Ser Leu Val 385 Ser Cys Phe Ala Asn Asn Thr Pro Leu Glu His Leu Asp Leu Ser 395

Gln Asn Leu Leu Gln His Lys Asn Asp Glu Asn Cys Ser Trp Pro Glu Thr Val Val Asn Met Asn Leu Ser Tyr Asn Lys Leu Ser Asp Ser Val Phe Arg Cys Leu Pro Lys Ser Ile Gln Ile Leu Asp Leu 440 445 Asn Asn Asn Gln Ile Gln Thr Val Pro Lys Glu Thr Ile His Leu 460 Met Ala Leu Arg Glu Leu Asn Ile Ala Phe Asn Phe Leu Thr Asp 475 Leu Pro Gly Cys Ser His Phe Ser Arg Leu Ser Val Leu Asn Ile 490 Glu Met Asn Phe Ile Leu Ser Pro Ser Leu Asp Phe Val Gln Ser 505 Cys Gln Glu Val Lys Thr Leu Asn Ala Gly Arg Asn Pro Phe Arg Cys Thr Cys Glu Leu Lys Asn Phe Ile Gln Leu Glu Thr Tyr Ser 535 Glu Val Met Met Val Gly Trp Ser Asp Ser Tyr Thr Cys Glu Tyr 550 Pro Leu Asn Leu Arg Gly Thr Arg Leu Lys Asp Val His Leu His 565 Glu Leu Ser Cys Asn Thr Ala Leu Leu Ile Val Thr Ile Val Val 580 Ile Met Leu Val Leu Gly Leu Ala Val Ala Phe Cys Cys Leu His 595 Phe Asp Leu Pro Trp Tyr Leu Arg Met Leu Gly Gln Cys Thr Gln 615 Thr Trp His Arg Val Arg Lys Thr Thr Gln Glu Gln Leu Lys Arg 620 Asn Val Arg Phe His Ala Phe Ile Ser Tyr Ser Glu His Asp Ser 635 640 Leu Trp Val Lys Asn Glu Leu Ile Pro Asn Leu Glu Lys Glu Asp 650 660 Gly Ser Ile Leu Ile Cys Leu Tyr Glu Ser Tyr Phe Asp Pro Gly Lys Ser Ile Ser Glu Asn Ile Val Ser Phe Ile Glu Lys Ser Tyr 680 685 690 Lys Ser Ile Phe Val Leu Ser Pro Asn Phe Val Gln Asn Glu Trp 705 Cys His Tyr Glu Phe Tyr Phe Ala His His Asn Leu Phe His Glu 710

```
ering prins prins prins and prime record recet. If all all prins prins all the companies of the companies of
```

```
Asn Ser Asp His Ile Ile Leu Ile Leu Glu Pro Ile Pro Phe
                 725
 Tyr Cys Ile Pro Thr Arg Tyr His Lys Leu Lys Ala Leu Leu Glu
 Lys Lys Ala Tyr Leu Glu Trp Pro Lys Asp Arg Arg Lys Cys Gly
                 755
                                     760
                                                          765
 Leu Phe Trp Ala Asn Leu Arg Ala Ile Asn Val Asn Val Leu
 Ala Thr Arg Glu Met Tyr Glu Leu Gln Thr Phe Thr Glu Leu Asn
                 785
                                      790
 Glu Glu Ser Arg Gly Ser Thr Ile Ser Leu Met Arg Thr Asp Cys
                                     805
                                                          810
 Leu
<210> 58
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 58
tcccaccagg tatcataaac tgaa 24
<210> 59
<211> 27
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 59
ttatagacaa tctgttctca tcagaga 27
<210> 60
<211> 40
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
aaaaagcata cttggaatgg cccaaggata ggtgtaaatg 40
<210> 61
<211> 3772
<212> DNA
<213> Homo sapiens
<400> 61
gggggctttc ttgggcttgg ctgcttggaa cacctgcctc caaggaccgg 50
cctcggaggg gtcgccggga aagggaggga agaaggaagg gcggggccgg 100
```

ceceetgeg eeegeeege geetetgege geeeetgtee geeeeggeee 150 ageccageee ageceegegg geeggteaea egegeageea geeggeegee 200 tecegegeee aagegegeeg etetgetgtg eeetgegeee ttgeeeegeg 250 ccagettetg egecegeage eegeceggeg eeeeeggtga eegtgaeeet 300 gccctgggcg cggggcggag caggcatgtc ccgcccgggg accgctaccc 350 cagcgctggc cctggtgctc ctggcagtga ccctggccgg ggtcggagcc 400 cagggcgcag ccctcgagga ccctgattat tacgggcagg agatctggag 450 ccgggagccc tactacgcgc gcccggagcc cgagctcgag accttctctc 500 cgccgctgcc tgcggggccc ggggaggagt gggagcggcg cccgcaggag 550 cccaggccgc ccaagagggc caccaagccc aagaaagctc ccaagaggga 600 gaagtcggct ccggagccgc ctccaccagg taaacacagc aacaaaaaag 650 ttatgagaac caagagetet gagaaggetg ccaacgatga teacagtgte 700 cqtqtqqccc qtqaaqatqt caqaqaqaqt tqcccacctc ttqqtctqqa 750 aaccttaaaa atcacagact tccagctcca tgcctccacg gtgaagcgct 800 atggcctggg ggcacatcga gggagactca acatccaggc gggcattaat 850 gaaaatgatt tttatgacgg agcgtggtgc gcgggaagaa atgacctcca 900 gcagtggatt gaagtggatg ctcggcgcct gaccagattc actggtgtca 950 teacteaagg gaggaactee etetggetga gtgactgggt gacateetat 1000 aaggtcatgg tgagcaatga cagccacacg tgggtcactg ttaagaatgg 1050 atctggagac atgatatttg agggaaacag tgagaaggag atccctgttc 1100 tcaatgaget acceptecee atggtggeee getacateeg cataaaceet 1150 cagtcctggt ttgataatgg gagcatctgc atgagaatgg agatcctggg 1200 ctgcccactg ccagatccta ataattatta tcaccgccgg aacgagatga 1250 ccaccactga tgacctggat tttaagcacc acaattataa ggaaatgcgc 1300 cagttgatga aagttgtgaa tgaaatgtgt cccaatatca ccagaattta 1350 caacattgga aaaagccacc agggcctgaa gctgtatgct gtggagatct 1400 cagatcaccc tggggagcat gaagtcggtg agcccgagtt ccactacatc 1450 gegggggeec aeggeaatga ggtgetggge egggagetge tgetgetget 1500 ggtgcagttc gtgtgtcagg agtacttggc ccggaatgcg cgcatcgtcc 1550 acctggtgga ggagacgcgg attcacgtcc teceeteect caaccecgat 1600 ggctacgaga aggcctacga agggggctcg gagctgggag gctggtccct 1650 gggacgctgg acccacgatg gaattgacat caacaacaac tttcctqatt 1700

taaacacgct gctctgggag gcagaggatc gacagaatgt ccccaggaaa 1750 gttcccaatc actatattgc aatccctgag tggtttctgt cggaaaatgc 1800 cacggtggct gccgagacca gagcagtcat agcctggatg gaaaaaatcc 1850 cttttgtgct gggcggcaac ctgcagggcg gcgagctggt ggtggcgtat 1900 ccctacgacc tggtgcggtc cccctggaag acgcaggaac acaccccac 1950 ccccgatgac cacgtgttcc gctggctggc ctactcctat gcctccacac 2000 accgcctcat gacagacgcc cggaggaggg tgtgccacac ggaggacttc 2050 cagaaggagg agggcactgt caatggggcc teetggcaca eegtegetgg 2100 aagtotgaac gatttcagot acottcatac aaactgottc gaactgtcca 2150 tctacgtggg ctgtgataaa tacccacatg agagccagct gcccgaggag 2200 tgggagaata accgggaatc tctgatcgtg ttcatggagc aggttcatcg 2250 tggcattaaa ggcttggtga gagattcaca tggaaaagga atcccaaacg 2300 ccattatete egtagaagge attaaceatg acateegaae ageeaaegat 2350 ggggattact ggcgcctcct gaaccctgga gagtatgtgg tcacagcaaa 2400 ggccgaaggt ttcactgcat ccaccaagaa ctgtatggtt ggctatgaca 2450 tgggggccac aaggtgtgac ttcacactta gcaaaaccaa catggccagg 2500 atccgagaga tcatggagaa gtttgggaag cagcccgtca gcctgccagc 2550 caggcggctg aagctgcggg ggcggaagag acgacagcgt gggtgaccct 2600 cctgggccct tgagactcgt ctgggaccca tgcaaattaa accaacctgg 2650 tagtagetee atagtggaet caeteaetgt tgttteetet gtaatteaag 2700 aagtgcctgg aagagggt gcattgtgag gcaggtccca aaagggaagg 2750 ctggaggctg aggctgtttt cttttctttg ttcccattta tccaaataac 2800 ttggacagag cagcagagaa aagctgatgg gagtgagaga actcagcaag 2850 ccaacctggg aatcagagag agaaggagaa ggaggggagc ctgtccgttc 2900 agageetetg getgeataga aaaggattet ggtgetteee etgtttgegt 2950 ggcagcaagg gttccacgtg catttgcaat ttgcacagct aaaattgcag 3000 catttcccca gctgggctgt cccaaatgtt accatttgag atgctcccag 3050 gcgtcctaag agaatccacc ctctctggcc ctgggacatt gcaagctgct 3100 acaaataaat totgtgttot tttgacaata gogtcattgo caagtgcaca 3150 tcagtgagcc tcttgaatct gtttagtctc ctttttcaac aaaggagtgt 3200 gttcagaaaa ggagagaga gctgagatca ttcaggagtt tgttgggcag 3250 caagcatgga gcttcttgca caaattctgg gtccataaac aacccccaaa 3300

<210> 62 <211> 756 <212> PRT

<213> Homo sapiens

<400> 62

Met Ser Arg Pro Gly Thr Ala Thr Pro Ala Leu Ala Leu Val Leu 1 5 10 15

Leu Ala Val Thr Leu Ala Gly Val Gly Ala Gln Gly Ala Ala Leu 20 25 30

Glu Asp Pro Asp Tyr Tyr Gly Gln Glu Ile Trp Ser Arg Glu Pro 35 40 45

Tyr Tyr Ala Arg Pro Glu Pro Glu Leu Glu Thr Phe Ser Pro Pro 50 55 60

Leu Pro Ala Gly Pro Gly Glu Glu Trp Glu Arg Arg Pro Gln Glu 65 70 75

Pro Arg Pro Pro Lys Arg Ala Thr Lys Pro Lys Lys Ala Pro Lys 80 85 90

Arg Glu Lys Ser Ala Pro Glu Pro Pro Pro Pro Gly Lys His Ser 95 100 105

Asn Lys Lys Val Met Arg Thr Lys Ser Ser Glu Lys Ala Ala Asn 110 115 120

Asp Asp His Ser Val Arg Val Ala Arg Glu Asp Val Arg Glu Ser 125 130 135

Cys Pro Pro Leu Gly Leu Glu Thr Leu Lys Ile Thr Asp Phe Gln
140 145 150

Leu His Ala Ser Thr Val Lys Arg Tyr Gly Leu Gly Ala His Arg 155 160 165

Gly Arg Leu Asn Ile Gln Ala Gly Ile Asn Glu Asn Asp Phe Tyr 170 175 180

Asp Gly Ala Trp Cys Ala Gly Arg Asn Asp Leu Gln Gln Trp Ile

				185					190					195
Glu	Val	Asp	Ala	Arg 200	Arg	Leu	Thr	Arg	Phe 205	Thr	Gly	Val	Ile	Thr 210
Gln	Gly	Arg	Asn	Ser 215	Leu	Trp	Leu	Ser	Asp 220	Trp	Val	Thr	Ser	Tyr 225
Lys	Val	Met	Val	Ser 230	Asn	Asp	Ser	His	Thr 235	Trp	Val	Thr	Val	Lys 240
Asn	Gly	Ser	Gly	Asp 245	Met	Ile	Phe	Glu	Gly 250	Asn	Ser	Glu	Lys	Glu 255
Ile	Pro	Val	Leu	Asn 260	Glu	Leu	Pro	Val	Pro 265	Met	Val	Ala	Arg	Tyr 270
Ile	Arg	Ile	Asn	Pro 275	Gln	Ser	Trp	Phe	Asp 280	Asn	Gly	Ser	Ile	Cys 285
Met	Arg	Met	Glu	Ile 290	Leu	Gly	Cys	Pro	Leu 295	Pro	Asp	Pro	Asn	Asn 300
Tyr	Tyr	His	Arg	Arg 305	Asn	Glu	Met	Thr	Thr 310	Thr	Asp	Asp	Leu	Asp 315
Phe	Lys	His	His	Asn 320	Tyr	Lys	Glu	Met	Arg 325	Gln	Leu	Met	Lys	Val 330
Val	Asn	Glu	Met	Cys 335	Pro	Asn	Ile	Thr	Arg 340	Ile	Tyr	Asn	Ile	Gly 345
Lys	Ser	His	Gln	Gly 350	Leu	Lys	Leu	Tyr	Ala 355	Val	Glu	Ile	Ser	Asp 360
His	Pro	Gly	Glu	His 365	Glu	Val	Gly	Glu	Pro 370	Glu	Phe	His	Tyr	Ile 375
Ala	Gly	Ala	His	Gly 380	Asn	Glu	Val	Leu	Gly 385	Arg	Glu	Leu	Leu	Leu 390
Leu	Leu	Val	Gln	Phe 395	Val	Cys	Gln	Glu	Tyr 400	Leu	Ala	Arg	Asn	Ala 405
Arg	Ile	Val	His	Leu 410	Val	Glu	Glu	Thr	Arg 415	Ile	His	Val	Leu	Pro 420
Ser	Leu	Asn	Pro	Asp 425	Gly	Tyr	Glu	Lys	Ala 430	Tyr	Glu	Gly	Gly	Ser 435
Glu	Leu	Gly	Gly	Trp 440	Ser	Leu	Gly	Arg	Trp 445	Thr	His	Asp	Gly	Ile 450
Asp	Ile	Asn	Asn	Asn 455	Phe	Pro	Asp	Leu	Asn 460	Thr	Leu	Leu	Trp	Glu 465
Ala	Glu	Asp	Arg	Gln 470	Asn	Val	Pro	Arg	Lys 475	Val	Pro	Asn	His	Tyr 480
Ile	Ala	Ile	Pro	Glu 485	Trp	Phe	Leu	Ser	Glu 490	Asn	Ala	Thr	Val	Ala 495
Ala	Glu	Thr	Arg	Ala	Val	Ile	Ala	Trp	Met	Glu	Lys	Ile	Pro	Phe

				500					505	i				510
Val	Leu	ı Gly	Gly	Asn 515	Leu	Gln	Gly	Gly	Glu 520		Val	Val	Ala	Tyr 525
Pro	Туг	Asp	Leu	Val 530	Arg	Ser	Pro	Trp	Lys 535		Gln	Glu	His	Thr 540
Pro	Thr	Pro	Asp	Asp 545	His	Val	Phe	Arg	Trp 550		Ala	Tyr	Ser	Tyr 555
Ala	Ser	Thr	His	Arg 560	Leu	Met	Thr	Asp	Ala 565		Arg	Arg	Val	Cys 570
His	Thr	Glu	Asp	Phe 575	Gln	Lys	Glu	Glu	Gly 580		Val	Asn	Gly	Ala 585
Ser	Trp	His	Thr	Val 590	Ala	Gly	Ser	Leu	Asn 595	Asp	Phe	Ser	Tyr	Leu 600
His	Thr	Asn	Cys	Phe 605	Glu	Leu	Ser	Ile	Tyr 610	Val	Gly	Cys	Asp	Lys 615
Tyr	Pro	His	Glu	Ser 620	Gln	Leu	Pro	Glu	Glu 625	Trp	Glu	Asn	Asn	Arg 630
Glu	Ser	Leu	Ile	Val 635	Phe	Met	Glu	Gln	Val 640	His	Arg	Gly	Ile	Lys 645
Gly	Leu	Val	Arg	Asp 650	Ser	His	Gly	Lys	Gly 655	Ile	Pro	Asn	Ala	Ile 660
Ile	Ser	Val	Glu	Gly 665	Ile	Asn	His	Asp	Ile 670	Arg	Thr	Ala	Asn	Asp 675
Gly	Asp	Tyr	Trp	Arg 680	Leu	Leu	Asn	Pro	Gly 685	Glu	Tyr	Val	Val	Thr 690
Ala	Lys	Ala	Glu	Gly 695	Phe	Thr	Ala	Ser	Thr 700	Lys	Asn	Cys	Met	Val 705
Gly	Tyr	Asp	Met	Gly 710	Ala	Thr	Arg	Cys	Asp 715	Phe	Thr	Leu	Ser	Lys 720
Thr	Asn	Met	Ala	Arg 725	Ile	Arg	Glu	Ile	Met 730	Glu	Lys	Phe	Gly	Lys 735
Gln	Pro	Val	Ser	Leu 740	Pro	Ala	Arg	Arg	Leu 745	Lys	Leu	Arg	Gly	Arg 750
Lys	Arg	Arg	Gln	Arg 755	Gly									
<210><211><211><212>	24 DNA		7	G -										
<213>	Art	TIIC	тат	sequ	ence									

<220> <223> Synthetic oligonucleotide probe

<400> 63 gttctcaatg agctacccgt cccc 24

```
<210> 64
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 64
 cgcgatgtag tggaactcgg gctc 24
<210> 65
<211> 50
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 65
 atccgcataa accctcagtc ctggtttgat aatgggagca tctgcatgag 50
<210> 66
<211> 2854
<212> DNA
<213> Homo sapiens
<400> 66
 ctaagaggac aagatgaggc ccggcctctc atttctccta gcccttctgt 50
 tetteettgg ccaagetgea ggggatttgg gggatgtggg acetecaatt 100
cccagccccg gcttcagctc tttcccaggt gttgactcca gctccagctt 150
 cagetecage tecaggtegg getecagete cageegeage ttaggeageg 200
gaggttctgt gtcccagttg ttttccaatt tcaccggctc cgtggatgac 250
cgtgggacct gccagtgctc tgtttccctg ccagacacca cctttcccgt 300
ggacagagtg gaacgcttgg aattcacagc tcatgttctt tctcagaagt 350
ttgagaaaga actttctaaa gtgagggaat atgtccaatt aattagtgtg 400
tatgaaaaga aactgttaaa cctaactgtc cgaattgaca tcatggagaa 450
ggataccatt tcttacactg aactggactt cgagctgatc aaggtagaag 500
tgaaggagat ggaaaaactg gtcatacagc tgaaggagag ttttggtgga 550
agctcagaaa ttgttgacca gctggaggtg gagataagaa atatgactct 600
cttggtagag aagcttgaga cactagacaa aaacaatgtc cttgccattc 650
gccgagaaat cgtggctctg aagaccaagc tgaaagagtg tgaggcctct 700
aaagatcaaa acaccctgt cgtccaccct cctcccactc cagggagctg 750
tggtcatggt ggtgtggtga acatcagcaa accgtctgtg gttcagctca 800
actggagagg gttttcttat ctatatggtg cttggggtag ggattactct 850
ccccagcatc caaacaaagg actgtattgg gtggcgccat tgaatacaga 900
```

tgggagactg ttggagtatt atagactgta caacacactg gatgatttgc 950 tattgtatat aaatgctcga gagttgcgga tcacctatgg ccaaggtagt 1000 ggtacagcag tttacaacaa caacatgtac gtcaacatgt acaacaccgg 1050 gaatattgcc agagttaacc tgaccaccaa cacgattgct gtgactcaaa 1100 ctctccctaa tgctgcctat aataaccgct tttcatatgc taatgttgct 1150 tggcaagata ttgactttgc tgtggatgag aatggattgt gggttattta 1200 ttcaactgaa gccagcactg gtaacatggt gattagtaaa ctcaatgaca 1250 ccacacttca ggtgctaaac acttggtata ccaagcagta taaaccatct 1300 gcttctaacg ccttcatggt atgtggggtt ctgtatgcca cccgtactat 1350 gaacaccaga acagaagaga tttttacta ttatgacaca aacacaggga 1400 aagagggcaa actagacatt gtaatgcata agatgcagga aaaagtgcag 1450 agcattaact ataaccettt tgaccagaaa ctttatgtct ataacgatgg 1500 ttaccttctg aattatgatc tttctgtctt gcagaagccc cagtaagctg 1550 tttaggagtt agggtgaaag agaaaatgtt tgttgaaaaa atagtcttct 1600 ccacttactt agatatctgc aggggtgtct aaaagtgtgt tcattttgca 1650 gcaatgttta ggtgcatagt tctaccacac tagagatcta ggacatttgt 1700 cttgatttgg tgagttctct tgggaatcat ctgcctcttc aggcgcattt 1750 tgcaataaag tctgtctagg gtgggattgt cagaggtcta ggggcactgt 1800 gggcctagtg aagcctactg tgaggaggct tcactagaag ccttaaatta 1850 ggaattaagg aacttaaaac tcagtatggc gtctagggat tctttgtaca 1900 ggaaatattg cccaatgact agtcctcatc catgtagcac cactaattct 1950 tccatgcctg gaagaaacct ggggacttag ttaggtagat taatatctgg 2000 agctcctcga gggaccaaat ctccaacttt tttttccct cactagcacc 2050 tggaatgatg ctttgtatgt ggcagataag taaatttggc atgcttatat 2100 attctacatc tgtaaagtgc tgagttttat ggagagaggc ctttttatgc 2150 attaaattgt acatggcaaa taaatcccag aaggatctgt agatgaggca 2200 cctgcttttt cttttctctc attgtccacc ttactaaaag tcagtagaat 2250 cttctacctc ataacttcct tccaaaggca gctcagaaga ttagaaccag 2300 acttactaac caattccacc ccccaccaac ccccttctac tgcctacttt 2350 aaaaaaatta atagttttct atggaactga tctaagatta gaaaaattaa 2400 ttttctttaa tttcattatg gacttttatt tacatgactc taagactata 2450 agaaaatctg atggcagtga caaagtgcta gcatttattg ttatctaata 2500

aagaccttgg agcatatgtg caacttatga gtgtatcagt tgttgcatgt 2550 aatttttgcc tttgtttaag cctggaactt gtaagaaaat gaaaatttaa 2600 tttttttttc taggacgagc tatagaaaag ctattgagag tatctagtta 2650 atcagtgcag tagttggaaa ccttgctggt gtatgtgatg tgcttctgtg 2700 cttttgaatg actttatcat ctagtctttg tctattttc ctttgatgtt 2750 caagtcctag tctataggat tggcagttta aatgctttac tcccctttt 2800 aaaataaatg attaaaatgt gctttgaaaa aaaaaaaaa aaaaaaaaa 2850 aaaa 2854

<210> 67

<211> 510

<212> PRT

<213> Homo sapiens

<400> 67

Met Arg Pro Gly Leu Ser Phe Leu Leu Ala Leu Leu Phe Phe Leu 1 5 10 15

Gly Gln Ala Ala Gly Asp Leu Gly Asp Val Gly Pro Pro Ile Pro 20 25 30

Ser Pro Gly Phe Ser Ser Phe Pro Gly Val Asp Ser Ser Ser Ser 35 40 45

Phe Ser Ser Ser Ser Arg Ser Gly Ser Ser Ser Ser Arg Ser Leu
50 55 60

Gly Ser Gly Gly Ser Val Ser Gln Leu Phe Ser Asn Phe Thr Gly
65 70 75

Ser Val Asp Asp Arg Gly Thr Cys Gln Cys Ser Val Ser Leu Pro 80 85 90

Asp Thr Thr Phe Pro Val Asp Arg Val Glu Arg Leu Glu Phe Thr 95 100 105

Ala His Val Leu Ser Gln Lys Phe Glu Lys Glu Leu Ser Lys Val 110 115 120

Arg Glu Tyr Val Gln Leu Ile Ser Val Tyr Glu Lys Lys Leu Leu 125 130 135

Asn Leu Thr Val Arg Ile Asp Ile Met Glu Lys Asp Thr Ile Ser 140 145 150

Tyr Thr Glu Leu Asp Phe Glu Leu Ile Lys Val Glu Val Lys Glu
155 160 165

Met Glu Lys Leu Val Ile Gln Leu Lys Glu Ser Phe Gly Gly Ser 170 175

Ser Glu Ile Val Asp Gln Leu Glu Val Glu Ile Arg Asn Met Thr 185 190 190

Leu Leu Val Glu Lys Leu Glu Thr Leu Asp Lys Asn Asn Val Leu 200 205 210

Ala Ile Arg Arg Glu Ile Val Ala Leu Lys Thr Lys Leu Lys Glu Cys Glu Ala Ser Lys Asp Gln Asn Thr Pro Val Val His Pro Pro Pro Thr Pro Gly Ser Cys Gly His Gly Gly Val Val Asn Ile Ser 245 Lys Pro Ser Val Val Gln Leu Asn Trp Arg Gly Phe Ser Tyr Leu Tyr Gly Ala Trp Gly Arg Asp Tyr Ser Pro Gln His Pro Asn Lys 275 Gly Leu Tyr Trp Val Ala Pro Leu Asn Thr Asp Gly Arg Leu Leu 295 Glu Tyr Tyr Arg Leu Tyr Asn Thr Leu Asp Asp Leu Leu Leu Tyr 310 Ile Asn Ala Arg Glu Leu Arg Ile Thr Tyr Gly Gln Gly Ser Gly Thr Ala Val Tyr Asn Asn Met Tyr Val Asn Met Tyr Asn Thr 335 Gly Asn Ile Ala Arg Val Asn Leu Thr Thr Asn Thr Ile Ala Val 350 355 Thr Gln Thr Leu Pro Asn Ala Ala Tyr Asn Asn Arg Phe Ser Tyr 365 Ala Asn Val Ala Trp Gln Asp Ile Asp Phe Ala Val Asp Glu Asn 385 Gly Leu Trp Val Ile Tyr Ser Thr Glu Ala Ser Thr Gly Asn Met 400 Val Ile Ser Lys Leu Asn Asp Thr Thr Leu Gln Val Leu Asn Thr Trp Tyr Thr Lys Gln Tyr Lys Pro Ser Ala Ser Asn Ala Phe Met Val Cys Gly Val Leu Tyr Ala Thr Arg Thr Met Asn Thr Arg Thr 445 Glu Glu Ile Phe Tyr Tyr Tyr Asp Thr Asn Thr Gly Lys Glu Gly Lys Leu Asp Ile Val Met His Lys Met Gln Glu Lys Val Gln Ser 475 Ile Asn Tyr Asn Pro Phe Asp Gln Lys Leu Tyr Val Tyr Asn Asp 485 490 Gly Tyr Leu Leu Asn Tyr Asp Leu Ser Val Leu Gln Lys Pro Gln

<210> 68

<211> 410

<212> DNA

```
<213> Homo sapiens
<220>
<221> unsure
<222> 206, 217, 387
<223> unknown base
<400> 68
 gctctgaaga ccaaqctgaa aqaqtqtqaq qcctctaaaq atcaaacacc 50
 cctgtcgtcc accetcctcc cactccaggg agctgtggtc atggtggtgt 100
 ggtgaacatc agcaaaccgt ctgtggttca gctcaactgg agagggtttt 150
 cttatctata tggtgcttgg ggtagggatt actctcccca gcatccaaac 200
 aaaggnatgt attgggnggc gccattgaat acagatggga gactgttgga 250
 gtattataga ctgtacaacc cactggatga tttgctattg tatataaatg 300
 ctcgagagtt gcggatcacc tatggccaag gtagtggtac agcagtttac 350
 aacaacaaca tgtacgtcaa catgtacaac accgggnata ttgccagagt 400
 taacctgacc 410
<210> 69
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 69
 agctgtggtc atggtggtgt ggtg 24
<210> 70
<211> 24
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 70
ctaccttggc cataggtgat ccgc 24
<210> 71
<211> 42
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 71
catcagcaaa ccgtctgtgg ttcagctcaa ctggagaggg tt 42
<210> 72
<211> 3127
<212> DNA
<213> Homo sapiens
```

<400> 72 tctcgcagat agtaaataat ctcggaaagg cgagaaagaa gctgtctcca 50 tcttgtctgt atccgctgct cttgtgacgt tgtggagatg gggagcgtcc 100 tggggctgtg ctccatggcg agctggatac catgtttgtg tggaagtgcc 150 ccgtgtttgc tatgccgatg ctgtcctagt ggaaacaact ccactgtaac 200 tagattgatc tatgcacttt tcttgcttgt tggagtatgt gtagcttgtg 250 taatgttgat accaggaatg gaagaacaac tgaataagat tcctggattt 300 tgtgagaatg agaaaggtgt tgtcccttgt aacattttgg ttggctataa 350 agctgtatat cgtttgtgct ttggtttggc tatgttctat cttcttctct 400 ctttactaat gatcaaagtg aagagtagca gtgatcctag agctgcagtg 450 cacaatggat tttggttctt taaatttgct gcagcaattg caattattat 500 tggggcattc ttcattccag aaggaacttt tacaactgtg tggttttatg 550 taggcatggc aggtgccttt tgtttcatcc tcatacaact agtcttactt 600 attgattttg cacattcatg gaatgaatcg tgggttgaaa aaatggaaga 650 agggaactcg agatgttggt atgcagcctt gttatcagct acagctctga 700 attatctgct gtctttagtt gctatcgtcc tgttctttgt ctactacact 750 catccagcca gttgttcaga aaacaaggcg ttcatcagtg tcaacatgct 800 cctctgcgtt ggtgcttctg taatgtctat actgccaaaa atccaagaat 850 cacaaccaag atctggtttg ttacagtctt cagtaattac agtctacaca 900 atgtatttga catggtcagc tatgaccaat gaaccagaaa caaattgcaa 950 cccaagtcta ctaagcataa ttggctacaa tacaacaagc actgtcccaa 1000 aggaagggca gtcagtccag tggtggcatg ctcaaggaat tataggacta 1050 attctctttt tgttgtgtgt attttattcc agcatccgta cttcaaacaa 1100 tagtcaggtt aataaactga ctctaacaag tgatgaatct acattaatag 1150 aagatggtgg agctagaagt gatggatcac tggaggatgg ggacgatgtt 1200 caccgagetg tagataatga aagggatggt gtcacttaca gttatteett 1250 ctttcacttc atgettttcc tggcttcact ttatatcatg atgaccctta 1300 ccaactggtc caggtatgaa ccctctcgtg agatgaaaag tcagtggaca 1350 gctgtctggg tgaaaatctc ttccagttgg attggcatcg tgctgtatgt 1400 ttggacactc gtggcaccac ttgttcttac aaatcgtgat tttgactgag 1450 tgagacttct agcatgaaag tcccactttg attattgctt atttgaaaac 1500 agtattccca acttttgtaa agttgtgtat gtttttgctt cccatgtaac 1550

ttctccagtg ttctggcatg aattagattt tactgcttgt cattttgtta 1600 ttttcttacc aagtgcattg atatgtgaag tagaatgaat tgcagaggaa 1650 agttttatga atatggtgat gagttagtaa aagtggccat tattgggctt 1700 attctctgct ctatagttgt gaaatgaaga gtaaaaacaa atttgtttga 1750 ctattttaaa attatattag accttaagct gttttagcaa gcattaaagc 1800 aaatgtatgg ctgccttttg aaatatttga tgtgttgcct ggcaggatac 1850 tgcaaagaac atggtttatt ttaaaattta taaacaagtc acttaaatgc 1900 cagttgtctg aaaaatctta taaggtttta cccttgatac ggaatttaca 1950 caggtaggga gtgtttagtg gacaatagtg taggttatgg atggaggtgt 2000 cggtactaaa ttgaataacg agtaaataat cttacttggg tagagatggc 2050 ctttgccaac aaagtgaact gttttggttg ttttaaactc atgaagtatg 2100 ggttcagtgg aaatgtttgg aactctgaag gatttagaca aggttttgaa 2150 aaggataatc atgggttaga aggaagtgtt ttgaaagtca ctttgaaagt 2200 tagttttggg cccagcacgg tagctcaccc ttggtaatcc cagcactttg 2250 ggagcttaag tgggtagatt acttgagccc aggaattcag accagcttgg 2300 cacatggtga acctgttcta taaaaataat ctggctttga gcatatgcct 2350 gtggtccagc actgagaggc tagtgaagat tgctgagccc agagccaaag 2400 gttgcagtga gcaagtcacg tcactgcact ctagctggca cagagtaagc 2450 caaaaaaata tatatatatt gaaatcaagg aggcaaaatt ttgacaggga 2500 aggaagtaac tgcaaaacca ctaggcttta gtaggtactt atataaaatc 2550 tagtccagtt ctctcattta aaaaaatgaa gacactgaaa tacagactta 2600 aatagctcag atagctaatt aggaaatttc aagttggcca ataatagcat 2650 tetetetgae atttaaaaat aatttetatt caaaatacat geatattgat 2700 ttacacctca tactgtgata attaatgtga tgtggattgc tggtgtccag 2750 catgacccat aaacaggtca gaagaatgat ggaatgtttt agaataaact 2800 cctgcttata gtatactaca cagttcaaaa gatgtttaaa atgcttttgt 2850 atttactgcc atgtaattga aatatataga ttattgtaac ctttcaacct 2900 gaaaatcaag cagtatgaga gtttagttat ttgtatgtgt cactagtgtc 2950 taatgaagct tttaaaatct acaatttctt ctttaaaaaat atttattaat 3000 gtgaatggaa tataacaatt cagcttaatt ccccaacctt attctgtgtg 3050 tagacattgt attccacaat tttgaatggc tgtgttttac ctctaaataa 3100 atgaattcag agaaaaaaa aaaaaaa 3127

```
<210> 73
<211> 453
<212> PRT
<213> Homo sapiens
<400> 73
Met Gly Ser Val Leu Gly Leu Cys Ser Met Ala Ser Trp Ile Pro
Cys Leu Cys Gly Ser Ala Pro Cys Leu Leu Cys Arg Cys Cys Pro
Ser Gly Asn Asn Ser Thr Val Thr Arg Leu Ile Tyr Ala Leu Phe
Leu Leu Val Gly Val Cys Val Ala Cys Val Met Leu Ile Pro Gly
Met Glu Glu Gln Leu Asn Lys Ile Pro Gly Phe Cys Glu Asn Glu
Lys Gly Val Val Pro Cys Asn Ile Leu Val Gly Tyr Lys Ala Val
Tyr Arg Leu Cys Phe Gly Leu Ala Met Phe Tyr Leu Leu Leu Ser
Leu Leu Met Ile Lys Val Lys Ser Ser Ser Asp Pro Arg Ala Ala
                110
                                     115
Val His Asn Gly Phe Trp Phe Phe Lys Phe Ala Ala Ala Ile Ala
                                     130
Ile Ile Ile Gly Ala Phe Phe Ile Pro Glu Gly Thr Phe Thr Thr
                                     145
Val Trp Phe Tyr Val Gly Met Ala Gly Ala Phe Cys Phe Ile Leu
                                     160
Ile Gln Leu Val Leu Leu Ile Asp Phe Ala His Ser Trp Asn Glu
Ser Trp Val Glu Lys Met Glu Glu Gly Asn Ser Arg Cys Trp Tyr
Ala Ala Leu Leu Ser Ala Thr Ala Leu Asn Tyr Leu Leu Ser Leu
                                    205
Val Ala Ile Val Leu Phe Phe Val Tyr Tyr Thr His Pro Ala Ser
                215
Cys Ser Glu Asn Lys Ala Phe Ile Ser Val Asn Met Leu Leu Cys
                230
                                    235
Val Gly Ala Ser Val Met Ser Ile Leu Pro Lys Ile Gln Glu Ser
                                    250
```

280

Gln Pro Arg Ser Gly Leu Leu Gln Ser Ser Val Ile Thr Val Tyr

Thr Met Tyr Leu Thr Trp Ser Ala Met Thr Asn Glu Pro Glu Thr

275

```
Asn Cys Asn Pro Ser Leu Leu Ser Ile Ile Gly Tyr Asn Thr Thr
                 290
Ser Thr Val Pro Lys Glu Gly Gln Ser Val Gln Trp Trp His Ala
Gln Gly Ile Ile Gly Leu Ile Leu Phe Leu Leu Cys Val Phe Tyr
                320
Ser Ser Ile Arg Thr Ser Asn Asn Ser Gln Val Asn Lys Leu Thr
                                     340
Leu Thr Ser Asp Glu Ser Thr Leu Ile Glu Asp Gly Gly Ala Arg
                350
                                     355
Ser Asp Gly Ser Leu Glu Asp Gly Asp Asp Val His Arg Ala Val
Asp Asn Glu Arg Asp Gly Val Thr Tyr Ser Tyr Ser Phe Phe His
                380
                                     385
Phe Met Leu Phe Leu Ala Ser Leu Tyr Ile Met Met Thr Leu Thr
                                     400
                                                         405
Asn Trp Ser Arg Tyr Glu Pro Ser Arg Glu Met Lys Ser Gln Trp
Thr Ala Val Trp Val Lys Ile Ser Ser Ser Trp Ile Gly Ile Val
                425
                                     430
Leu Tyr Val Trp Thr Leu Val Ala Pro Leu Val Leu Thr Asn Arg
```

Asp Phe Asp

<210> 74

<211> 480

<212> DNA

<213> Homo sapiens

440

<220>

<221> unsure

<222> 48, 163

<223> unknown base

<400> 74

gegagaaaga agetgtetee atettgtetg tateeegetg ettettgnga 50
cgttgtggag atggggageg teeetgggge tgtgeteeat ggegagetgg 100
ataeeatgtt tgtgtggaag tgeeeegtgt ttgetatgee gatgetgtee 150
tagtggaaae aanteeactg taaeetagatt gateetatgea ettetettge 200
ttgttggagt atgtgtaget tgtgtaatgt tgataeeagg aatggaagaa 250
caaeetgaata agatteetgg attttgtgag aatggaaaag gtgttgteee 300
ttgtaaeatt ttggttgget ataaegetgt ataeegttt tgetttggtt 350
tggetatgtt etatettet eteetttae taatgateaa agtgaagagt 400

445

```
tgctgcagca attgcaatta ttattggggc 480
<210> 75
<211> 438
<212> DNA
<213> Homo sapiens
<220>
<221> unsure
<222> 32, 65, 92, 121, 142, 154, 170, 293, 315, 323
<223> unknown base
<400> 75
 gttattgtga actttgtgga gatgggaggt cntggggctg tgttccatgg 50
 cgagctggat accangtttg tgtggaagtg ccccqtgttt gntatqccga 100
 tgctgtccta gtggaaacaa ntccactgta attagattga tntatgcact 150
 tttnttgctt gttggagtan gtgtagcttg tgtaatgttg ataccaggaa 200
 tggaagaaca actgaataag attcctggat tttgtgagaa tgagaaaggt 250
 gttgtccctt gtaacatttt ggttggctat aaagctgtat atngtttgtg 300
 ctttggtttg gctangttct atnttcttct ctctttacta atgatcaaag 350
 tgaagagtag cagtgatcct agagctgcag tgcacaatgg attttggttt 400
 tttaaatttg ctgcagcaat tgcaattatt attggggc 438
<210> 76
<211> 473
<212> DNA
<213> Homo sapiens
<220>
<221> unsure
<222> 48
<223> unknown base
<400> 76
aagaagctgt ctccatcttg tctgtatccg ctgctcttgt gaacgttntg 50
gagatgggga gcgtccttgg ggttgtgctc catggcgagc tggataccat 100
gtttgtgtgg aagtgccccg tgtttgctat gccgatgctg tcctagtgga 150
aacaactcca ctgtaactag attgatctat gcacttttct tgcttgttgg 200
agtatgtgta gcttgtgtaa tgttgatacc aggaatggaa gaacaactga 250
ataagattcc tggattttgt gagaatgaga aaggtgttgt cccttgtaac 300
attttggttg gctataaagc tgtatatcgt ttgtgctttg gtttggctat 350
gttctatctt cttctctt tactaatgat caaagtgaag agtagcagtg 400
atcctagage tgcagtgcac aatggatttt ggttctttaa atttgctgca 450
gcaattgcaa ttattattgg ggc 473
```

agcagtgatc ctagagctgc agtgcacaat ggattttggt tctttaaatt 450

```
<210> 77
 <211> 666
 <212> DNA
 <213> Homo sapiens
 <220>
 <221> unsure
 <222> 21, 111
 <223> unknown base
 <400> 77
  gctgtcctta gtggaaacaa ntccaacttg taacttggat tgatctatgc 50
  actttttcct tgcttgttgg agtatgtgta gctttgtgta atgttgttcc 100
  caggattgga ngaacaactg aataagattc ctggattttt gtgagaatga 150
  gaaaggtgtt gtccccttgt aacatttttg gttggctata aagctgtata 200
  tcgtttgtgc tttggtttgg ctatgttcta tcttcttctc tctttactaa 250
  tgatcaaagt gaagagtagc agtgatccta gagctgcagt gcacaatgga 300
 ttttggttct ttaaatttgc tgcagcaatt gcaattatta ttggggcatt 350
 cttcattcca gaaggaactt ttacaactgt gtggttttat gtaggcatgg 400
 caggtgcctt ttgtttcatc ctcatacaac tagtcttact tattgatttt 450
 gcacattcat ggaatgaatc gtgggttgaa aaaatggaag aagggaactc 500
 gagatgttgg tatgcagcct tgttatcagc tacagctctg aattatctgc 550
 tgtctttagt tgctatcgtc ctgttctttg tctactacac tcatccagcc 600
 agttgttcag aaaacaaggc gttcatcagt gtcaacatgc tcctctgcgt 650
 tggtgcttct gtaatg 666
<210> 78
<211> 22
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 78
 atgtttgtgt ggaagtgccc cg 22
<210> 79
<211> 18
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 79
gtcaacatgc tcctctgc 18
<210> 80
<211> 26
```

```
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 80
 aatccattgt gcactgcagc tctagg 26
<210> 81
<211> 23
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 81
 gagcatgcca ccactggact gac 23
<210> 82
<211> 54
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
 gccgatgctg tcctagtgga aacaactcca ctgtaactag attgatctat 50
 gcac 54
<210> 83
<211> 3906
<212> DNA
<213> Homo sapiens
<400> 83
 ctcgggcgcg cacaggcagc tcggtttgcc ctgcgattga gctgcgggtc 50
 gcggccggcg ccggcctctc caatggcaaa tgtgtgtggc tggaggcgag 100
 egegaggett teggeaaagg eagtegagtg tttgeagace ggggegagte 150
 ctgtgaaagc agataaaaga aaacatttat taacgtgtca ttacgagggg 200
agegeeegge eggggetgte geacteeeeg eggaacattt ggeteeetee 250
agctccgaga gaggagaaga agaaagcgga aaagaggcag attcacgtcg 300
tttccagcca agtggacctg atcgatggcc ctcctgaatt tatcacgata 350
tttgatttat tagcgatgcc ccctggtttg tgtgttacgc acacacacgt 400
gcacacaagg ctctggctcg cttccctccc tcgtttccag ctcctgggcg 450
aatcccacat ctgtttcaac tctccgccga gggcgagcag gagcgagagt 500
gtgtcgaatc tgcgagtgaa gagggacgag ggaaaagaaa caaagccaca 550
gacgcaactt gagactcccg catcccaaaa gaagcaccag atcagcaaaa 600
```

aaagaagatg ggccccccga gcctcgtgct gtgcttgctg tccgcaactg 650 tgttctccct gctgggtgga agctcggcct tcctgtcgca ccaccgcctg 700 aaaggcaggt ttcagaggga ccgcaggaac atccgcccca acatcatcct 750 ggtgctgacg gacgaccagg atgtggagct gggttccatg caggtgatga 800 acaagacccg gcgcatcatg gagcagggcg gggcgcactt catcaacgcc 850 ttcgtgacca cacccatgtg ctgcccctca cgctcctcca tcctcactgg 900 caagtacgtc cacaaccaca acacctacac caacaatgag aactgctcct 950 egecetectg geaggeacag caegagagee geacetttge egtgtacete 1000 aatagcactg gctaccggac agctttcttc gggaagtatc ttaatgaata 1050 caacggctcc tacgtgccac ccggctggaa ggagtgggtc ggactcctta 1100 aaaactcccg cttttataac tacacgctgt gtcggaacgg ggtgaaagag 1150 aagcacggct ccgactactc caaggattac ctcacagacc tcatcaccaa 1200 tgacagcgtg agcttcttcc gcacgtccaa gaagatgtac ccgcacaggc 1250 cagtecteat ggteateage catgeagece eccaeggece tgaggattea 1300 gccccacaat attcacgcct cttcccaaac gcatctcagc acatcacgcc 1350 gagetacaae taegegeeea aeeeggaeaa aeaetggate atgegetaca 1400 cggggcccat gaagcccatc cacatggaat tcaccaacat gctccagcgg 1450 aagegettge agaeeeteat gteggtggae gaeteeatgg agaegattta 1500 caacatgctg gttgagacgg gcgagctgga caacacgtac atcgtataca 1550 ccgccgacca cggttaccac atcggccagt ttggcctggt gaaagggaaa 1600 tccatgccat atgagtttga catcagggtc ccgttctacg tgaggggccc 1650 caacgtggaa gccggctgtc tgaatcccca catcgtcctc aacattgacc 1700 tggcccccac catcctggac attgcaggcc tggacatacc tgcggatatg 1750 gacgggaaat ccatcctcaa gctgctggac acggagcggc cggtgaatcg 1800 gtttcacttg aaaaagaaga tgagggtctg gcgggactcc ttcttggtgg 1850 agagaggcaa getgetacae aagagagaea atgacaaggt ggaegeeeag 1900 gaggagaact ttctgcccaa gtaccagcgt gtgaaggacc tgtgtcagcg 1950 tgctgagtac cagacggcgt gtgagcagct gggacagaag tggcagtgtg 2000 tggaggacgc cacggggaag ctgaagctgc ataagtgcaa gggccccatg 2050 eggetgggeg geageagage ceteteeaac etegtgeeca agtactaegg 2100 gcagggcagc gaggcctgca cctgtgacag cggggactac aagctcagcc 2150 tggccggacg ccggaaaaaa ctcttcaaga agaagtacaa ggccagctat 2200

gtccgcagtc gctccatccg ctcagtggcc atcgaggtgg acggcagggt 2250 gtaccacgta ggcctgggtg atgccgccca gccccgaaac ctcaccaagc 2300 ggcactggcc aggggcccct gaggaccaag atgacaagga tggtggggac 2350 ttcagtggca ctggaggcct tcccgactac tcagccgcca accccattaa 2400 agtgacacat cggtgctaca tcctagagaa cgacacagtc cagtgtgacc 2450 tggacctgta caagtccctg caggcctgga aagaccacaa gctgcacatc 2500 gaccacgaga ttgaaaccct gcagaacaaa attaagaacc tgagggaagt 2550 ccgaggtcac ctgaagaaaa agcggccaga agaatgtgac tgtcacaaaa 2600 tcagctacca cacccagcac aaaggccgcc tcaagcacag aggctccagt 2650 ctgcatcctt tcaggaaggg cctgcaagag aaggacaagg tgtggctgtt 2700 gcgggagcag aagcgcaaga agaaactccg caagctgctc aagcgcctgc 2750 agaacaacga cacgtgcagc atgccaggcc tcacgtgctt cacccacgac 2800 aaccagcact ggcagacggc gcctttctgg acactggggc ctttctgtgc 2850 ctgcaccagc gccaacaata acacgtactg gtgcatgagg accatcaatg 2900 agactcacaa tttcctcttc tgtgaatttg caactggctt cctagagtac 2950 tttgatctca acacagaccc ctaccagctg atgaatgcag tgaacacact 3000 ggacagggat gtcctcaacc agctacacgt acagctcatg gagctgagga 3050 gctgcaaggg ttacaagcag tgtaaccccc ggactcgaaa catggacctg 3100 gatggaggaa gctatgagca atacaggcag tttcagcgtc gaaagtggcc 3150 agaaatgaag agaccttctt ccaaatcact gggacaactg tgggaaggct 3200 gggaaggtta agaaacaaca gaggtggacc tccaaaaaca tagaggcatc 3250 acctgactgc acaggcaatg aaaaaccatg tgggtgattt ccagcagacc 3300 tgtgctattg gccaggaggc ctgagaaagc aagcacgcac tctcagtcaa 3350 catgacagat tctggaggat aaccagcagg agcagagata acttcaggaa 3400 gtccattttt gcccctgctt ttgctttgga ttatacctca ccagctgcac 3450 aaaatgcatt ttttcgtatc aaaaagtcac cactaaccct cccccagaag 3500 ctcacaaagg aaaacggaga gagcgagcga gagagatttc cttggaaatt 3550 tctcccaagg gcgaaagtca ttggaatttt taaatcatag gggaaaagca 3600 gtcctgttct aaatcctctt attcttttgg tttgtcacaa agaaggaact 3650 aagaagcagg acagaggcaa cgtggagagg ctgaaaacag tgcagagacg 3700 tttgacaatg agtcagtagc acaaaagaga tgacatttac ctagcactat 3750 aaaccctggt tgcctctgaa gaaactgcct tcattgtata tatgtgacta 3800

tttacatgta atcaacatgg gaacttttag gggaacctaa taagaaatcc 3850 caattttcag gagtggtggt gtcaataaac gctctgtggc cagtgtaaaa 3900 gaaaaa 3906

<210> 84

<211> 867

<212> PRT

<213> Homo sapiens

<400> 84

Met Gly Pro Pro Ser Leu Val Leu Cys Leu Leu Ser Ala Thr Val

1 5 10 15

Phe Ser Leu Leu Gly Gly Ser Ser Ala Phe Leu Ser His His Arg
20 25 30

Leu Lys Gly Arg Phe Gln Arg Asp Arg Arg Asn Ile Arg Pro Asn 35 40 45

Ile Ile Leu Val Leu Thr Asp Asp Gln Asp Val Glu Leu Gly Ser 50 55 60

Met Gln Val Met Asn Lys Thr Arg Arg Ile Met Glu Gln Gly Gly 65 70 75

Ala His Phe Ile Asn Ala Phe Val Thr Thr Pro Met Cys Cys Pro 80 85 90

Ser Arg Ser Ser Ile Leu Thr Gly Lys Tyr Val His Asn His Asn 95 $$ 100 $$ 105

Thr Tyr Thr Asn Asn Glu Asn Cys Ser Ser Pro Ser Trp Gln Ala 110 115 120

Gln His Glu Ser Arg Thr Phe Ala Val Tyr Leu Asn Ser Thr Gly 125 130 135

Tyr Arg Thr Ala Phe Phe Gly Lys Tyr Leu Asn Glu Tyr Asn Gly 140 145

Ser Tyr Val Pro Pro Gly Trp Lys Glu Trp Val Gly Leu Leu Lys 155 160 165

Asn Ser Arg Phe Tyr Asn Tyr Thr Leu Cys Arg Asn Gly Val Lys 170 175

Glu Lys His Gly Ser Asp Tyr Ser Lys Asp Tyr Leu Thr Asp Leu 185 190 195

Ile Thr Asn Asp Ser Val Ser Phe Phe Arg Thr Ser Lys Lys Met 200 205 210

Tyr Pro His Arg Pro Val Leu Met Val Ile Ser His Ala Ala Pro 215 220 225

His Gly Pro Glu Asp Ser Ala Pro Gln Tyr Ser Arg Leu Phe Pro 230 235 240

Asn Ala Ser Gln His Ile Thr Pro Ser Tyr Asn Tyr Ala Pro Asn 245 250 255

Pro Asp Lys His Trp Ile Met Arg Tyr Thr Gly Pro Met Lys Pro Ile His Met Glu Phe Thr Asn Met Leu Gln Arg Lys Arg Leu Gln 275 280 Thr Leu Met Ser Val Asp Asp Ser Met Glu Thr Ile Tyr Asn Met Leu Val Glu Thr Gly Glu Leu Asp Asn Thr Tyr Ile Val Tyr Thr Ala Asp His Gly Tyr His Ile Gly Gln Phe Gly Leu Val Lys Gly 320 325 330 Lys Ser Met Pro Tyr Glu Phe Asp Ile Arg Val Pro Phe Tyr Val Arg Gly Pro Asn Val Glu Ala Gly Cys Leu Asn Pro His Ile Val 355 Leu Asn Ile Asp Leu Ala Pro Thr Ile Leu Asp Ile Ala Gly Leu 365 370 Asp Ile Pro Ala Asp Met Asp Gly Lys Ser Ile Leu Lys Leu Leu Asp Thr Glu Arg Pro Val Asn Arg Phe His Leu Lys Lys Met Arg Val Trp Arg Asp Ser Phe Leu Val Glu Arg Gly Lys Leu Leu 415 His Lys Arg Asp Asn Asp Lys Val Asp Ala Gln Glu Glu Asn Phe 430 Leu Pro Lys Tyr Gln Arg Val Lys Asp Leu Cys Gln Arg Ala Glu 440 445 Tyr Gln Thr Ala Cys Glu Gln Leu Gly Gln Lys Trp Gln Cys Val Glu Asp Ala Thr Gly Lys Leu Lys Leu His Lys Cys Lys Gly Pro Met Arg Leu Gly Gly Ser Arg Ala Leu Ser Asn Leu Val Pro Lys 490 Tyr Tyr Gly Gln Gly Ser Glu Ala Cys Thr Cys Asp Ser Gly Asp Tyr Lys Leu Ser Leu Ala Gly Arg Arg Lys Lys Leu Phe Lys Lys 520 Lys Tyr Lys Ala Ser Tyr Val Arg Ser Arg Ser Ile Arg Ser Val Ala Ile Glu Val Asp Gly Arg Val Tyr His Val Gly Leu Gly Asp Ala Ala Gln Pro Arg Asn Leu Thr Lys Arg His Trp Pro Gly Ala 560 565

Pro Glu Asp Gln Asp Asp Lys Asp Gly Gly Asp Phe Ser Gly Thr Gly Gly Leu Pro Asp Tyr Ser Ala Ala Asn Pro Ile Lys Val Thr 590 595 His Arg Cys Tyr Ile Leu Glu Asn Asp Thr Val Gln Cys Asp Leu 610 Asp Leu Tyr Lys Ser Leu Gln Ala Trp Lys Asp His Lys Leu His Ile Asp His Glu Ile Glu Thr Leu Gln Asn Lys Ile Lys Asn Leu Arg Glu Val Arg Gly His Leu Lys Lys Lys Arg Pro Glu Glu Cys 650 655 Asp Cys His Lys Ile Ser Tyr His Thr Gln His Lys Gly Arg Leu Lys His Arg Gly Ser Ser Leu His Pro Phe Arg Lys Gly Leu Gln Glu Lys Asp Lys Val Trp Leu Leu Arg Glu Gln Lys Arg Lys 695 Lys Leu Arg Lys Leu Leu Lys Arg Leu Gln Asn Asn Asp Thr Cys Ser Met Pro Gly Leu Thr Cys Phe Thr His Asp Asn Gln His Trp 730 Gln Thr Ala Pro Phe Trp Thr Leu Gly Pro Phe Cys Ala Cys Thr 740 745 Ser Ala Asn Asn Asn Thr Tyr Trp Cys Met Arg Thr Ile Asn Glu Thr His Asn Phe Leu Phe Cys Glu Phe Ala Thr Gly Phe Leu Glu Tyr Phe Asp Leu Asn Thr Asp Pro Tyr Gln Leu Met Asn Ala Val Asn Thr Leu Asp Arg Asp Val Leu Asn Gln Leu His Val Gln Leu 805 Met Glu Leu Arg Ser Cys Lys Gly Tyr Lys Gln Cys Asn Pro Arg Thr Arg Asn Met Asp Leu Asp Gly Gly Ser Tyr Glu Gln Tyr Arg 830 835 Gln Phe Gln Arg Arg Lys Trp Pro Glu Met Lys Arg Pro Ser Ser Lys Ser Leu Gly Gln Leu Trp Glu Gly Trp Glu Gly

<210> 85

<211> 19

<212> DNA

```
<213> Artificial Sequence
 <220>
 <223> Synthetic oligonucleotide probe
 <400> 85
 gaagccggct gtctgaatc 19
<210> 86
<211> 18
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 86
 ggccagctat ctccgcag 18
<210> 87
<211> 18
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 87
 aagggcctgc aagagaag 18
<210> 88
<211> 18
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 88
cactgggaca actgtggg 18
<210> 89
<211> 18
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 89
 cagaggcaac gtggagag 18
<210> 90
<211> 21
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 90
aagtattgtc atacagtgtt c 21
```

```
<210> 91
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 91
tagtacttgg gcacgaggtt ggag 24
<210> 92
<211> 24
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 92
tcataccaac tgctggtcat tggc 24
<210> 93
<211> 45
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 93
ctcaagctgc tggacacgga gcggccggtg aatcggtttc acttg 45
<210> 94
<211> 971
<212> DNA
<213> Homo sapiens
<400> 94
aacaaagttc agtgactgag agggctgagc ggaggctgct gaaggggaga 50
 aaggagtgag gagctgctgg gcagagaggg actgtccggc tcccagatgc 100
 tgggcctcct ggggagcaca gccctcgtgg gatggatcac aggtgctgct 150
 gtggcggtcc tgctgctgct gctgctgctg gccacctgcc ttttccacgg 200
 acggcaggac tgtgacgtgg agaggaaccg tacagctgca gggggaaacc 250
 gagteegeeg ggeeeageet tggeeettee ggegggggg ceacetggga 300
 atettteace ateacegtea teetggeeac gtateteatg tgeegaatgt 350
 gggcctccac caccaccacc accccgcca cacccctcac cacctccacc 400
 accaccacca ccccaccgc caccatcccc gccacgctcg ctgaggctgc 450
 tgtcgccggt gcctgtggac agcagctgcc cctgccctcc catctgttcc 500
 caggacaagt ggaccccatg tttccatgtg gaaggatgca tctctggggt 550
 gaacgagggg aacaatagac tggggcttgc tccaģctgca tttgcatggc 600
```

<210> 95

<211> 115

<212> PRT

<213> Homo sapiens

<400> 95

Met Leu Gly Leu Gly Ser Thr Ala Leu Val Gly Trp Ile Thr $1 \hspace{1cm} 5 \hspace{1cm} 10 \hspace{1cm} 15$

Gly Ala Ala Val Ala Val Leu Leu Leu Leu Leu Leu Leu Ala Thr 20 25 30

Cys Leu Phe His Gly Arg Gln Asp Cys Asp Val Glu Arg Asn Arg 35 40 45

Thr Ala Ala Gly Gly Asn Arg Val Arg Arg Ala Gln Pro Trp Pro
50 55 60

Phe Arg Arg Gly His Leu Gly Ile Phe His His Arg His 65 70 75

Pro Gly His Val Ser His Val Pro Asn Val Gly Leu His His 80 85 90

His His Pro Arg His Thr Pro His His Leu His His His His 95 100 105

Pro His Arg His His Pro Arg His Ala Arg 110 115

<210> 96

<211> 1312

<212> DNA

<213> Homo sapiens

<400> 96

ggcggctgct gagctgcctt gaggtgcagt gttggggatc cagagccatg 50
tcggacctgc tactactggg cctgattggg ggcctgactc tcttactgct 100
gctgacgctg ctggcctttg ccgggtactc agggctactg gctggggtgg 150
aagtgagtgc tgggtcaccc cccatccgca acgtcactgt ggcctacaag 200
ttccacatgg ggctctatgg tgagactggg cggctttca ctgagagctg 250
cagcatctct cccaagctcc gctccatcgc tgtctactat gacaaccccc 300

acatggtgcc ccctgataag tgccgatgtg ccgtgggcag catcctgagt 350 gaaggtgagg aatcgccctc ccctgagctc atcgacctct accagaaatt 400 tggcttcaag gtgttctcct tcccggcacc cagccatgtg gtgacagcca 450 cettececta caccaccatt etgtecatet ggetggetae eegeegtgte 500 catcctgcct tggacaccta catcaaggag cggaagctgt gtgcctatcc 550 tcggctggag atctaccagg aagaccagat ccatttcatg tgcccactgg 600 cacggcaggg agacttctat gtgcctgaga tgaaggagac agagtggaaa 650 tggcgggggc ttgtggaggc cattgacacc caggtggatg gcacaggagc 700 tgacacaatg agtgacacga gttctgtaag cttggaagtg agccctggca 750 geegggagae tteagetgee acaetgteae etggggegag eageegtgge 800 tgggatgacg gtgacacccg cagcgagcac agctacagcg agtcaggtgc 850 cageggetee tettttgagg agetggaett ggagggegag gggeeettag 900 gggagtcacg gctggaccct gggactgagc ccctggggac taccaagtgg 950 ctctgggagc ccactgcccc tgagaagggc aaggagtaac ccatggcctg 1000 caccetectg cagtgeagtt getgaggaac tgageagact etceageaga 1050 ctctccagcc ctcttcctcc ttcctctggg ggaggagggg ttcctgaggg 1100 acctgacttc ccctgctcca ggcctcttgc taagccttct cctcactgcc 1150 ctttaggctc ccagggccag aggagccagg gactattttc tgcaccagcc 1200 cccagggctg ccgccctgt tgtgtctttt tttcagactc acagtggagc 1250 ttccaggacc cagaataaag ccaatgattt acttgtttca cctggaaaaa 1300 aaaaaaaaa aa 1312

<210> 97

<211> 313

<212> PRT

<213> Homo sapiens

<400> 97

Met Ser Asp Leu Leu Leu Gly Leu Ile Gly Gly Leu Thr Leu 1 5 10 15

Leu Leu Leu Thr Leu Leu Ala Phe Ala Gly Tyr Ser Gly Leu 20 25 30

Leu Ala Gly Val Glu Val Ser Ala Gly Ser Pro Pro Ile Arg Asn
35

Val Thr Val Ala Tyr Lys Phe His Met Gly Leu Tyr Gly Glu Thr
50 55 60

Gly Arg Leu Phe Thr Glu Ser Cys Ser Ile Ser Pro Lys Leu Arg
65 70 75

```
Ser Ile Ala Val Tyr Tyr Asp Asn Pro His Met Val Pro Pro Asp
                  80
Lys Cys Arg Cys Ala Val Gly Ser Ile Leu Ser Glu Gly Glu Glu
Ser Pro Ser Pro Glu Leu Ile Asp Leu Tyr Gln Lys Phe Gly Phe
                 110
                                     115
Lys Val Phe Ser Phe Pro Ala Pro Ser His Val Val Thr Ala Thr
                                     130
Phe Pro Tyr Thr Thr Ile Leu Ser Ile Trp Leu Ala Thr Arg Arg
                 140
                                     145
Val His Pro Ala Leu Asp Thr Tyr Ile Lys Glu Arg Lys Leu Cys
Ala Tyr Pro Arg Leu Glu Ile Tyr Gln Glu Asp Gln Ile His Phe
                                     175
Met Cys Pro Leu Ala Arg Gln Gly Asp Phe Tyr Val Pro Glu Met
Lys Glu Thr Glu Trp Lys Trp Arg Gly Leu Val Glu Ala Ile Asp
                                     205
Thr Gln Val Asp Gly Thr Gly Ala Asp Thr Met Ser Asp Thr Ser
                215
                                     220
Ser Val Ser Leu Glu Val Ser Pro Gly Ser Arg Glu Thr Ser Ala
                230
Ala Thr Leu Ser Pro Gly Ala Ser Ser Arg Gly Trp Asp Asp Gly
                                     250
                                                         255
Asp Thr Arg Ser Glu His Ser Tyr Ser Glu Ser Gly Ala Ser Gly
                260
                                     265
Ser Ser Phe Glu Glu Leu Asp Leu Glu Gly Glu Gly Pro Leu Gly
                275
                                                         285
Glu Ser Arg Leu Asp Pro Gly Thr Glu Pro Leu Gly Thr Thr Lys
                                                         300
Trp Leu Trp Glu Pro Thr Ala Pro Glu Lys Gly Lys Glu
```

<210> 98

<211> 725

<212> DNA

<213> Homo sapiens

305

<400> 98

ccgcgggaac gctgtcctgg ctgccgccac ccgaacagcc tgtcctggtg 50 ccccggctcc ctgcccgcg cccagtcatg accctgcgcc cctcactcct 100 cccgctccat ctgctgctgc tgctgctgct cagtgcggcg gtgtgccggg 150 ctgaggctgg gctcgaaacc gaaagtcccg tccggaccct ccaagtggag 200 accctggtgg agccccaga accatgtgcc gagcccgctg cttttggaga 250

310

cacgetteae atacactaca egggaagett ggtagatgga egtattattg 300 acaceteect gaccagagae ectetggtta tagaacttgg ecaaaageag 350 gtgatteeag gtetggagea gagtettete gacatgtgtg tgggagagaa 400 gegaagggea ateatteett eteaettgge etatggaaaa eggggattte 450 caccatetgt eceageggat geagtggtge agtatgaegt ggagetgatt 500 geaetaatee gageeaacta etggetaaag etggtgaagg geattttgee 550 tetggtaggg atggeeatgg tgeeageeet eetgggeete attgggtate 600 acetatacag aaaggeeaat agaceeaaag teteeaaaa gaageteaag 650 gaagagaaac gaaacaagag eaaaaagaa taataaataa taaatttaa 700 aaaacttaaa aaaaaaaaa aaaaa 725

<210> 99 <211> 201 <212> PRT

<213> Homo sapiens

<400> 99

Met Thr Leu Arg Pro Ser Leu Leu Pro Leu His Leu Leu Leu 1 5 10 15

Leu Leu Ser Ala Ala Val Cys Arg Ala Glu Ala Gly Leu Glu 20 25 30

Thr Glu Ser Pro Val Arg Thr Leu Gln Val Glu Thr Leu Val Glu 35 40 45

Pro Pro Glu Pro Cys Ala Glu Pro Ala Ala Phe Gly Asp Thr Leu 50 55 60

His Ile His Tyr Thr Gly Ser Leu Val Asp Gly Arg Ile Ile Asp 65 70 75

Thr Ser Leu Thr Arg Asp Pro Leu Val Ile Glu Leu Gly Gln Lys 80 85 90

Gln Val Ile Pro Gly Leu Glu Gln Ser Leu Leu Asp Met Cys Val 95 100 105

Gly Glu Lys Arg Arg Ala Ile Ile Pro Ser His Leu Ala Tyr Gly
110 115 120

Lys Arg Gly Phe Pro Pro Ser Val Pro Ala Asp Ala Val Val Gln 125 130 135

Tyr Asp Val Glu Leu Ile Ala Leu Ile Arg Ala Asn Tyr Trp Leu 140 145 150

Lys Leu Val Lys Gly Ile Leu Pro Leu Val Gly Met Ala Met Val 155 160 165

Pro Ala Leu Leu Gly Leu Ile Gly Tyr His Leu Tyr Arg Lys Ala 170 175 180

Asn Arg Pro Lys Val Ser Lys Lys Lys Leu Lys Glu Glu Lys Arg

Šazi:

185 190 195

Asn Lys Ser Lys Lys Lys 200

<210> 100 <211> 705

<211> 703 <212> DNA

<213> Homo sapiens

<400> 100

cccgggaacg tgttcctgg tgccgcacc gaacagcctg tcctggtgc 50
ccggctccct gccccgcgc cagtcatgac cctgcgccc tcactcctc 100
cgctccatct gctgctgctg ctgctgctca gtgcggcggt gtgccgggct 150
gaggctgggc tcgaaaccga aagtcccgtc cggaccctcc aagtggagac 200
cctggtggag cccccagaac catgtgccga gcccgctgct tttggagaca 250
cgcttcacat acactacacg ggaagcttgg tagatggacg tattattgac 300
acctccctga ccagagaccc tctggttata gaacttggcc aaaagcaggt 350
gattccaggt ctggagcaga gtcttctcga catgtgtgg ggagagaagc 400
gaagggcaat cattccttct cacttggcct atggaaaacg gggattcca 450
ccatctgtcc cagcggatgc agtggtgcag tatgacgtgg agctgattgc 500
actaatccga gccaactact ggctaaagct ggtgaagggc attttgcctc 550
tggtagggat ggccatggtg ccaccctcct gggcctcatt gggtatcacc 600
tatacagaaa ggccaataga cccaaagtct ccaaaaagaa gctcaaggaa 650
gagaaacgaa acaagagcaa aaagaaataa taaataataa attttaaaaa 700

actta 705

<210> 101

<211> 543

<212> DNA

<213> Homo sapiens

<400> 101

cegaaagtce egteeggace etecaagtgg agaceetggt ggageececa 50 gaaccatgtg eegageeege tgettttgga gacaegette acatacacta 100 caegggaage ttggtagatg gacgtattat tgacaeetee etgaeeagag 150 accetetggt tatagaactt ggeeaaaage aggtgattee aggtetggag 200 cagagtette tegaeatgtg tgtgggagag aagegaaggg eaatcattee 250 tteteaettg geetatggaa aaeggggatt teeaeeatet gteeeagegg 300 atgeagtggt geagtatgae gtggagetga ttgeaetaat eegageeaac 350 taetggetaa agetggtgaa gggeattttg eetetggtag ggatggeeat 400

ggtgccagcc ctcctgggcc tcattgggta tcacctatac agaaaggcca 450 atagacccaa agtctccaaa aagaagctca aggaagagaa acgaaacaag 500 agcaaaaaga aataataaat aataaatttt aaaaaactta aaa 543

<210> 102

<211> 1316

<212> DNA

<213> Homo sapiens

<400> 102

ctgctgcatc cgggtgtctg gaggctgtgg ccgttttgtt ttcttggcta 50 aaatcggggg agtgaggcgg gccggcgcgg cgcgacaccg ggctccggaa 100 ccactgcacg acggggctgg actgacctga aaaaaatgtc tggatttcta 150 gagggcttga gatgctcaga atgcattgac tggggggaaa agcgcaatac 200 tattgcttcc attgctgctg gtgtactatt ttttacaggc tggtggatta 250 tcatagatgc agctgttatt tatcccacca tgaaagattt caaccactca 300 taccatgcct gtggtgttat agcaaccata gccttcctaa tgattaatgc 350 agtatcgaat ggacaagtcc gaggtgatag ttacagtgaa ggttgtctgg 400 gtcaaacagg tgctcgcatt tggcttttcg ttggtttcat gttggccttt 450 ggatctctga ttgcatctat gtggattctt tttggaggtt atgttgctaa 500 agaaaaagac atagtatacc ctggaattgc tgtatttttc cagaatgcct 550 tcatcttttt tggagggctg gtttttaagt ttggccqcac tqaaqactta 600 tggcagtgaa cacatctgat ttcccacagc acaacagccc tgcatgggtt 650 tgtttgtttt tttactgctc actcccaacc ttttgtaatg ccattttcta 700 aacttatttc tgagtgtagt ctcagcttaa agttgtgtaa tactaaaatc 750 acgagaacac ctaaacaaca accaaaaatc tattgtggta tgcacttgat 800 taacttataa aatgttagag gaaactttca catgaataat ttttgtcaaa 850 ttttatcatg gtataatttg taaaaataaa aagaaattac aaaagaaatt 900 atggatttgt caatgtaagt atttgtcata tctgaggtcc aaaaccacaa 950 tgaaagtgct ctgaagattt aatgtgttta ttcaaatgtg gtctcttctg 1000 tgtcaaatgt taaatgaaat ataaacattt tttagttttt aaaatattcc 1050 gtggtcaaaa ttcttcctca ctataattgg tatttacttt taccaaaaat 1100 tctgtgaaca tgtaatgtaa ctggcttttg agggtctccc aaggggtgag 1150 tggacgtgtt ggaagagaa agcaccatgg tccagccacc aggctccctg 1200 tgtcccttcc atgggaaggt cttccgctgt gcctctcatt ccaaqqqcaq 1250 gaagatgtga ctcagccatg acacgtggtt ctggtgggat gcacagtcac 1300

tccacatcca ccactg 1316

<210> 103

<211> 157

<212> PRT

<213> Homo sapiens

<400> 103

Met Ser Gly Phe Leu Glu Gly Leu Arg Cys Ser Glu Cys Ile Asp 1 5 10 15

Trp Gly Glu Lys Arg Asn Thr Ile Ala Ser Ile Ala Ala Gly Val 20 25 30

Leu Phe Phe Thr Gly Trp Trp Ile Ile Ile Asp Ala Ala Val Ile
35 40 45

Tyr Pro Thr Met Lys Asp Phe Asn His Ser Tyr His Ala Cys Gly 50 55

Val Ile Ala Thr Ile Ala Phe Leu Met Ile Asn Ala Val Ser Asn
65 70 75

Gly Gln Val Arg Gly Asp Ser Tyr Ser Glu Gly Cys Leu Gly Gln 80 85 90

Thr Gly Ala Arg Ile Trp Leu Phe Val Gly Phe Met Leu Ala Phe 95 100 105

Gly Ser Leu Ile Ala Ser Met Trp Ile Leu Phe Gly Gly Tyr Val 110 115 120

Ala Lys Glu Lys Asp Ile Val Tyr Pro Gly Ile Ala Val Phe Phe 125 130 135

Gln Asn Ala Phe Ile Phe Phe Gly Gly Leu Val Phe Lys Phe Gly 140 145 150

Arg Thr Glu Asp Leu Trp Gln 155

<210> 104

<211> 545

<212> DNA

<213> Homo sapiens

<400> 104

ttettggeta aaategggg agtgaggeg geeggegg egegacaceg 50 ggeteeggaa ceaetgeacg aegggetgg actgacetga aaaaaatgte 100 tggatteta gagggettga gatgeteaga atgeattgae tggggggaaa 150 agegeaatae tattgettee attgetgetg gtgtactatt ttttacagge 200 tggtggatta teatagatge agetgttatt tateceaeca tgaaagattt 250 caaceaetea taceatgeet gtggtgttat ageaaecata geetteetaa 300 tgattaatge agtategaat ggacaagtee gaggtgatag ttacagtgaa 350 ggttgtetgg gteaaaeagg tgetegeatt tggettteg ttggttteat 400

```
gttggccttt ggatctctga ttgcatctat gtggattctt tttggaggtt 450
 atgttgctaa agaaaaagac atagtatacc ctggaattgc tgtatttttc 500
 cagaatgcct tcatctttt tggagggctg gtttttaagt ttggc 545
<210> 105
<211> 490
<212> DNA
<213> Homo sapiens
<220>
<221> unsure
<222> 31, 39, 108, 145, 179, 219, 412, 479
<223> unknown base
<400> 105
 tggacggacc tgaaaaaaat qtttggattt ntaqaqqqnt tqaqatqttc 50
 agaatgcatg actgggggaa aagcgcaaat actattgctt ccattgctgc 100
 tggtgtanta ttttttacag gctggtggat tatcatagat gcagntgtta 150
 tttatcccac catgaaagat ttcaaccant cataccatgc ctgtggtgtt 200
 atagcaacca tagccttcnt aatgattaat gcagtatcga atggacaagt 250
 ccgaggtgat agttacagtg aaggttgttt gggtcaaaca ggtgctcqca 300
 tttggctttt cgttggtttc atgttggcct ttggatctct gattgcatct 350
 atgtggattc tttttggagg ttatgttgct aaagaaaaag acatagtata 400
 ccctggaatt gntgtatttt tccagaatgc cttcatcttt tttggagggc 450
 tggtttttaa gtttggccgc actgaagant tatggcagtg 490
<210> 106
<211> 466
<212> DNA
<213> Homo sapiens
<220>
<221> unsure
<222> 26, 38, 81, 115, 207, 329, 380, 446, 449
<223> unknown base
<400> 106
ggacaccggg ttccggacca atgcangacg gggtggantg acctgaaaaa 50
 aatgtttgga tttttagagg gcttgagatg ntcagaatgc attgactggg 100
 ggaaaagcgc aatantattg ctttccattg ctgctggtgt actattttt 150
 acagggtggt ggattatcat agatgcagct gttatttatc ccaccatgaa 200
agatttnaac cactcatacc atgcctgtgg tgttatagca accatagcct 250
 tcctaatgat taatgcagta tcgaatggac aagtccgagg tgatagttac 300
agtgaaggtt gtttgggtca aacaggtgnt cgcatttggc ttttcgttgg 350
tttcatgttg gcctttggat ttctgattgn attctatgcg gattcttctt 400
```

```
ggaggttatg ttgctaaaga aaaagacata gtataccctg gaattnctnt 450
atttttccag aatgcc 466
<210> 107
<211> 377
<212> DNA
<213> Homo sapiens
<220>
<221> unsure
<222> 52, 67, 70, 78, 105, 144, 150, 209, 266, 268, 282, 310, 331, 356
<223> unknown base
<400> 107
tagagggctt gagatgctca gaatgcattg actgggggga aaagcgcaat 50
antattgctt ccattgntgn tggtgtanta tttttttaca ggctggtgga 100
ttatnataga tgcagctgtt atttatccca ccatgaaaga tttnaaccan 150
 tcataccatg cctgtggtgt tatagcaacc atagccttcc taatgattaa 200
 tgcagtatng aatggacaag tccgaggtga tagttacagt gaaggttgtt 250
 tgggtcaaac aggtgntngc atttggcttt tngttggttt catgttggcc 300
 tttggatctn tgattgcatt tatgtggatt ntttttggag gttatgttgc 350
taaagnaaaa gacatagtat accctgt 377
<210> 108
<211> 552
<212> DNA
<213> Homo sapiens
<220>
<221> unsure
<222> 12, 25, 65, 130, 437, 537
<223> unknown base
<400> 108
 gggaggctgt gnccgttttg ttttnttggc taaaatcggg ggagtgaggc 50
ggcccggcgc ggcgngacac cgggttccgg gaaccattgc acgacggggt 100
ggactgacct gaaaaaaatg tttggatttn tagagggctt gagatgctca 150
gaatgcattg actgggggga aaagcgcaat actattgctt ccattgctgc 200
 tggtgtacta ttttttacag gctggtggat tatcatagat gcagctgtta 250
tttatcccac catgaaagat ttcaaccact cataccatgc ctgtggtgtt 300
 atagcaacca tagccttcct aatgattaat gcagtatcga atggacaagt 350
ccgaggtgat agttacagtg aaggttgtct gggtcaaaca ggtgctcgca 400
 tttggctttt cgttggtttc atgttggcct ttggatntct gattgcatct 450
atgtggattc tttttggagg ttatgttgct aaagaaaaag acatagtata 500
ccctggaatt gctgtatttt tccagaatgc cttcatnttt tttggagggc 550
```

```
tg 552
<210> 109
<211> 23
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 109
 gggtggatgg tactgctgca tcc 23
<210> 110
<211> 26
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 110
tgttgtgctg tgggaaatca gatgtg 26
<210> 111
<211> 46
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 111
gtgtctggag gctgtggccg ttttgttttc ttgggctaaa atcggg 46
<210> 112
<211> 3004
<212> DNA
<213> Homo sapiens
<400> 112
 cgacgccggc gtgatgtggc ttccgctggt gctgctcctg gctgtqctqc 50
 tgctggccgt cctctgcaaa gtttacttgg gactattctc tggcagctcc 100
 ccgaatcctt tctccgaaga tgtcaaacgg ccccagcgc ccctggtaac 150
 tgacaaggag gccaggaaga aggttctcaa acaagctttt tcagccaacc 200
 aagtgccgga gaagctggat gtggtggtaa ttggcagtgg ctttgggggc 250
 ctggctgcag ctgcaattct agctaaagct ggcaagcgag tcctggtgct 300
 ggaacaacat accaaggcag ggggctgctg tcataccttt ggaaagaatg 350
 gccttgaatt tgacacagga atccattaca ttgggcgtat ggaagagggc 400
 agcattggcc gttttatctt ggaccagatc actgaagggc agctggactg 450
 ggctcccctg tcctcctt ttgacatcat ggtactggaa gggcccaatg 500
 gccgaaagga gtaccccatg tacagtggaq agaaagccta cattcagggc 550
```

ctcaaggaga agtttccaca ggaggaagct atcattgaca agtatataaa 600 gctggttaag gtggtatcca gtggagcccc tcatgccatc ctgttgaaat 650 tecteceatt geoegtggtt cageteeteg acaggtgtgg getgetgaet 700 cgtttctctc cattccttca agcatccacc cagagcctgg ctgaggtcct 750 gcagcagctg ggggcctcct ctgagctcca ggcagtactc agctacatct 800 tccccactta cggtgtcacc cccaaccaca gtgccttttc catgcacgcc 850 ctgctggtca accactacat gaaaggaggc ttttatcccc gagggggttc 900 cagtgaaatt gccttccaca ccatccctgt gattcagcgg gctgggggcg 950 ctgtcctcac aaaggccact gtgcagagtg tgttgctgga ctcaqctgqg 1000 aaagcctgtg gtgtcagtgt gaagaagggg catgagctgg tgaacatcta 1050 ttgccccatc gtggtctcca acgcaggact gttcaacacc tatgaacacc 1100 tactgccggg gaacgcccgc tgcctgccag gtgtgaagca gcaactgggg 1150 acggtgcggc ccggcttagg catgacctct gttttcatct gcctgcgagg 1200 caccaaggaa gacctgcatc tgccgtccac caactactat gtttactatg 1250 acacggacat ggaccaggcg atggagcgct acgtctccat gcccagggaa 1300 gaggetgegg aacacatece tettetette ttegetttee cateageeaa 1350 agateegace tgggaggace gatteecagg eeggteeace atgateatge 1400 tcatacccac tgcctacgag tggtttgagg agtggcaggc ggagctgaag 1450 ggaaagcggg gcagtgacta tgagaccttc aaaaactcct ttgtggaagc 1500 ctctatgtca gtggtcctga aactgttccc acagetggag gggaaggtgg 1550 agagtgtgac tgcaggatcc ccactcacca accagttcta tctggctgct 1600 ccccgaggtg cctgctacgg ggctgaccat gacctgggcc gcctgcaccc 1650 ttgtgtgatg gcctccttga gggcccagag ccccatcccc aacctctatc 1700 tgacaggcca ggatatette acctgtggac tggtcggggc cetgcaaggt 1750 gccctgctgt gcagcagcgc catcctgaag cggaacttgt actcagacct 1800 taagaatctt gattctagga tccgggcaca gaagaaaaag aattagttcc 1850 atcagggagg agtcagagga atttgcccaa tggctggggc atctcccttg 1900 acttacccat aatgtctttc tgcattagtt ccttgcacgt ataaagcact 1950 ctaatttggt tctgatgcct gaagagaggc ctagtttaaa tcacaattcc 2000 gaatctgggg caatggaatc actgcttcca gctggggcag gtgagatctt 2050 tacgcctttt ataacatgcc atccctacta ataggatatt gacttggata 2100 gettgatgte teatgacgag eggegetetg cateceteae ceatgeetee 2150

taactcagtg atcaaagcga atattccatc tgtggataga acccctggca 2200 gtgttgtcag ctcaacctgg tgggttcagt tctgtcctga ggcttctgct 2250 ctcattcatt tagtgctacg ctgcacagtt ctacactgtc aagggaaaag 2300 ggagactaat gaggcttaac tcaaaacctg ggcgtggttt tggttgccat 2350 tccataggtt tggagagctc tagatctctt ttgtgctggg ttcagtggct 2400 cttcagggga caggaaatgc ctgtgtctgg ccagtgtggt tctggagctt 2450 tggggtaaca gcaggatcca tcagttagta gggtgcatgt cagatgatca 2500 tatccaattc atatggaagt cccgggtctg tcttccttat catcggggtg 2550 gcagctggtt ctcaatgtgc cagcagggac tcagtacctg agcctcaatc 2600 aagccttatc caccaaatac acagggaagg gtgatgcagg gaagggtgac 2650 atcaggagtc agggcatgga ctggtaagat gaatactttg ctgggctgaa 2700 gcaggetgca gggcattcca gccaagggca cagcagggga cagtgcaggg 2750 aggtgtgggg taagggaggg aagtcacatc agaaaaggga aagccacgga 2800 atgtgtgtga agcccagaaa tggcatttgc agttaattag cacatgtgag 2850 ggttagacag gtaggtgaat gcaagctcaa ggtttggaaa aatgactttt 2900 cagttatgtc tttggtatca gacatacgaa aggtctcttt gtagttcgtg 2950 aaaa 3004

<210> 113

<211> 610

<212> PRT

<213> Homo sapiens

<400> 113

Met Trp Leu Pro Leu Val Leu Leu Leu Ala Val Leu Leu Leu Ala 1 5 10 15

Val Leu Cys Lys Val Tyr Leu Gly Leu Phe Ser Gly Ser Ser Pro 20 25 30

Asn Pro Phe Ser Glu Asp Val Lys Arg Pro Pro Ala Pro Leu Val 35 40 40

Thr Asp Lys Glu Ala Arg Lys Lys Val Leu Lys Gln Ala Phe Ser 50 55 60

Ala Asn Gln Val Pro Glu Lys Leu Asp Val Val Ile Gly Ser
65 70 75

Gly Phe Gly Gly Leu Ala Ala Ala Ala Ile Leu Ala Lys Ala Gly 80 85 90

Lys Arg Val Leu Val Leu Glu Gln His Thr Lys Ala Gly Gly Cys 95 100 105

Cys His Thr Phe Gly Lys Asn Gly Leu Glu Phe Asp Thr Gly Ile His Tyr Ile Gly Arg Met Glu Glu Gly Ser Ile Gly Arg Phe Ile Leu Asp Gln Ile Thr Glu Gly Gln Leu Asp Trp Ala Pro Leu Ser Ser Pro Phe Asp Ile Met Val Leu Glu Gly Pro Asn Gly Arg Lys 155 160 Glu Tyr Pro Met Tyr Ser Gly Glu Lys Ala Tyr Ile Gln Gly Leu Lys Glu Lys Phe Pro Gln Glu Glu Ala Ile Ile Asp Lys Tyr Ile 190 Lys Leu Val Lys Val Val Ser Ser Gly Ala Pro His Ala Ile Leu 200 205 Leu Lys Phe Leu Pro Leu Pro Val Val Gln Leu Leu Asp Arg Cys 220 Gly Leu Leu Thr Arg Phe Ser Pro Phe Leu Gln Ala Ser Thr Gln Ser Leu Ala Glu Val Leu Gln Gln Leu Gly Ala Ser Ser Glu Leu 245 Gln Ala Val Leu Ser Tyr Ile Phe Pro Thr Tyr Gly Val Thr Pro 260 265 Asn His Ser Ala Phe Ser Met His Ala Leu Leu Val Asn His Tyr 275 280 Met Lys Gly Gly Phe Tyr Pro Arg Gly Gly Ser Ser Glu Ile Ala Phe His Thr Ile Pro Val Ile Gln Arg Ala Gly Gly Ala Val Leu 310 Thr Lys Ala Thr Val Gln Ser Val Leu Leu Asp Ser Ala Gly Lys Ala Cys Gly Val Ser Val Lys Lys Gly His Glu Leu Val Asn Ile 335 340 Tyr Cys Pro Ile Val Val Ser Asn Ala Gly Leu Phe Asn Thr Tyr 355 360 Glu His Leu Leu Pro Gly Asn Ala Arg Cys Leu Pro Gly Val Lys 370 365 Gln Gln Leu Gly Thr Val Arg Pro Gly Leu Gly Met Thr Ser Val 380 385 Phe Ile Cys Leu Arg Gly Thr Lys Glu Asp Leu His Leu Pro Ser 400 Thr Asn Tyr Tyr Val Tyr Tyr Asp Thr Asp Met Asp Gln Ala Met 415

```
Glu Arg Tyr Val Ser Met Pro Arg Glu Glu Ala Ala Glu His Ile
Pro Leu Leu Phe Phe Ala Phe Pro Ser Ala Lys Asp Pro Thr Trp
Glu Asp Arg Phe Pro Gly Arg Ser Thr Met Ile Met Leu Ile Pro
                                     460
Thr Ala Tyr Glu Trp Phe Glu Glu Trp Gln Ala Glu Leu Lys Gly
                                     475
Lys Arg Gly Ser Asp Tyr Glu Thr Phe Lys Asn Ser Phe Val Glu
                                     490
Ala Ser Met Ser Val Val Leu Lys Leu Phe Pro Gln Leu Glu Gly
                500
                                     505
Lys Val Glu Ser Val Thr Ala Gly Ser Pro Leu Thr Asn Gln Phe
                515
                                     520
                                                         525
Tyr Leu Ala Ala Pro Arg Gly Ala Cys Tyr Gly Ala Asp His Asp
Leu Gly Arg Leu His Pro Cys Val Met Ala Ser Leu Arg Ala Gln
Ser Pro Ile Pro Asn Leu Tyr Leu Thr Gly Gln Asp Ile Phe Thr
                560
                                     565
                                                         570
Cys Gly Leu Val Gly Ala Leu Gln Gly Ala Leu Leu Cys Ser Ser
                                     580
Ala Ile Leu Lys Arg Asn Leu Tyr Ser Asp Leu Lys Asn Leu Asp
                                     595
                590
Ser Arg Ile Arg Ala Gln Lys Lys Lys Asn
```

<210> 114

<211> 1701

<212> DNA

<213> Homo sapiens

605

<400> 114

gcagcggcga ggcggcggtg gtggctgagt ccgtggtggc agaggcgaag 50 gcgacagctc taggggttgg caccggccc gagaggagga tgcgggtccg 100 gatagggctg acgctgctgc tgtgtgcggt gctgctgagc ttggcctcgg 150 cgtcctcgga tgaagaaggc agccaggatg aatccttaga ttccaagact 200 actttgacat cagatgagtc agtaaaggac catactactg caggcagagt 250 agttgctggt caaatattc ttgattcaga agaatctgaa ttagaatcct 300 ctattcaaga agaggaagac agcctcaaga gccaagaggg ggaaagtgtc 350 acagaagata tcagcttct agagtctcca aatccagaaa acaaggacta 400 tgaagagcca aagaaagtac ggaaaccagc tttgaccgcc attgaaggca 450

```
cagcacatgg ggagccctgc cacttccctt ttcttttcct agataaggag 500
tatgatgaat gtacatcaga tgggagggaa gatggcagac tgtggtgtgc 550
tacaacctat gactacaaag cagatgaaaa gtggggcttt tgtgaaactg 600
aagaagaggc tgctaagaga cggcagatgc aggaagcaga aatgatgtat 650
caaactqqaa tqaaaatcct taatqqaaqc aataaqaaaa qccaaaaaaq 700
agaagcatat cggtatctcc aaaaggcagc aagcatgaac cataccaaag 750
ccctggagag agtgtcatat gctcttttat ttggtgatta cttgccacag 800
aatatccagg cagcgagaga gatgtttgag aagctgactg aggaaggctc 850
teccaaggga cagactgete ttggetttet gtatgeetet ggaettggtg 900
ttaattcaag tcaggcaaag gctcttgtat attatacatt tggagctctt 950
gggggcaatc taatagccca catggttttg gtaagtagac tttagtggaa 1000
ggctaataat attaacatca gaagaatttg tggtttatag cggccacaac 1050
tttttcagct ttcatgatcc agatttgctt gtattaagac caaatattca 1100
gttgaacttc cttcaaattc ttgttaatgg atataacaca tggaatctac 1150
atgtaaatga aagttggtgg agtccacaat ttttctttaa aatgattagt 1200
ttggctgatt gcccctaaaa agagagatct gataaatggc tctttttaaa 1250
ttttctctga gttggaattg tcagaatcat tttttacatt agattatcat 1300
aattttaaaa atttttcttt agtttttcaa aattttgtaa atggtggcta 1350
tagaaaaaca acatgaaata ttatacaata ttttgcaaca atgccctaag 1400
aattgttaaa attcatggag ttatttgtgc agaatgactc cagagagctc 1450
tactttctgt tttttacttt tcatgattgg ctgtcttccc atttattctg 1500
gtcatttatt gctagtgaca ctgtgcctgc ttccagtagt ctcattttcc 1550
ctattttgct aatttgttac tttttctttg ctaatttgga agattaactc 1600
a 1701
```

```
<210> 115
```

<211> 301

<212> PRT

<213> Homo sapiens

<400> 115

Met Arg Val Arg Ile Gly Leu Thr Leu Leu Leu Cys Ala Val Leu $1 \hspace{1cm} 5 \hspace{1cm} 10 \hspace{1cm} 15$

Leu Ser Leu Ala Ser Ala Ser Ser Asp Glu Glu Gly Ser Gln Asp 20 25 30

Glu Ser Leu Asp Ser Lys Thr Thr Leu Thr Ser Asp Glu Ser Val Lys Asp His Thr Thr Ala Gly Arg Val Val Ala Gly Gln Ile Phe Leu Asp Ser Glu Glu Ser Glu Leu Glu Ser Ser Ile Gln Glu Glu Glu Asp Ser Leu Lys Ser Gln Glu Gly Glu Ser Val Thr Glu Asp Ile Ser Phe Leu Glu Ser Pro Asn Pro Glu Asn Lys Asp Tyr Glu Glu Pro Lys Lys Val Arg Lys Pro Ala Leu Thr Ala Ile Glu Gly 110 115 Thr Ala His Gly Glu Pro Cys His Phe Pro Phe Leu Phe Leu Asp Lys Glu Tyr Asp Glu Cys Thr Ser Asp Gly Arg Glu Asp Gly Arg Leu Trp Cys Ala Thr Thr Tyr Asp Tyr Lys Ala Asp Glu Lys Trp 155 Gly Phe Cys Glu Thr Glu Glu Glu Ala Ala Lys Arg Arg Gln Met 170 Gln Glu Ala Glu Met Met Tyr Gln Thr Gly Met Lys Ile Leu Asn 185 190 Gly Ser Asn Lys Lys Ser Gln Lys Arg Glu Ala Tyr Arg Tyr Leu 200 Gln Lys Ala Ala Ser Met Asn His Thr Lys Ala Leu Glu Arg Val Ser Tyr Ala Leu Leu Phe Gly Asp Tyr Leu Pro Gln Asn Ile Gln 230 235 Ala Ala Arg Glu Met Phe Glu Lys Leu Thr Glu Glu Gly Ser Pro Lys Gly Gln Thr Ala Leu Gly Phe Leu Tyr Ala Ser Gly Leu Gly 260 Val Asn Ser Ser Gln Ala Lys Ala Leu Val Tyr Tyr Thr Phe Gly 275 Ala Leu Gly Gly Asn Leu Ile Ala His Met Val Leu Val Ser Arg

Leu

<210> 116

<211> 584

<212> DNA

<213> Homo sapiens

290

<400> 116

cttcccagcc ctgtgccca aagcacctgg agcatatage cttgcagaac 50
ttctacttgc ctgcctccct gcctctggcc atggcctgcc ggtgcctcag 100
cttccttctg atggggacct tcctgtcagt ttcccagaca gtcctggccc 150
agctggatgc actgctggtc ttcccaggcc aagtggctca actctcctgc 200
acgctcagcc cccagcacgt caccatcagg gactacggtg tgtcctggta 250
ccagcagcgg gcaggcagtg cccctcgata tctcctcac taccgctcgg 300
aggaggatca ccaccaggcct gctgacatcc ccgatcgatt ctcggcagcc 350
aaggatgagg cccacaatgc ctgtgtcctc accattagtc ccgtgcagcc 400
tgaagacgac gcggattact actgctctgt tggctacggc tttagtccct 450
aggggtgggg tgtgagatgg gtgcctcccc tctgcctcc atttctgccc 500
ctgaccttgg gtccctttta aactttctct gagccttgct tcccctctgt 550
aaaatgggtt aataatattc aacatgtcaa caac 584

<210> 117 <211> 123 <212> PRT

<213> Homo sapiens

<400> 117

Met Ala Cys Arg Cys Leu Ser Phe Leu Leu Met Gly Thr Phe Leu 1 5 10 15

Ser Val Ser Gln Thr Val Leu Ala Gln Leu Asp Ala Leu Leu Val 20 25 30

Phe Pro Gly Gln Val Ala Gln Leu Ser Cys Thr Leu Ser Pro Gln 35 40 45

His Val Thr Ile Arg Asp Tyr Gly Val Ser Trp Tyr Gln Gln Arg 50 55 60

Ala Gly Ser Ala Pro Arg Tyr Leu Leu Tyr Tyr Arg Ser Glu Glu 65 70 75

Asp His His Arg Pro Ala Asp Ile Pro Asp Arg Phe Ser Ala Ala 80 85 90

Lys Asp Glu Ala His Asn Ala Cys Val Leu Thr Ile Ser Pro Val $95 \hspace{1.5cm} 100 \hspace{1.5cm} 105$

Gln Pro Glu Asp Asp Ala Asp Tyr Tyr Cys Ser Val Gly Tyr Gly
110 115

Phe Ser Pro

<400> 118

<210> 118 <211> 3402 <212> DNA <213> Homo sapiens

102

geogeocege eeegagaceg ggeoeggggg egeggggegg egggatgegg 50 cgcccggggc ggcgatgacc gcggagcgca cgccgcgggc ccggccctga 100 ccccgccgcc cgcccgctga gccccccgcc gaggtccgga caggccgaga 150 tgacgccgag ccccctgttg ctgctcctgc tgccgccgct gctgctgggg 200 gccttcccac cggccgccgc cgcccgaggc cccccaaaga tggcggacaa 250 ggtggtccca cggcaggtgg cccggctggg ccgcactgtg cggctgcagt 300 gcccagtgga gggggacccg ccgccgctga ccatgtggac caaggatggc 350 cgcaccatcc acagcggctg gagccgcttc cgcgtgctgc cgcaggggct 400 gaaggtgaag caggtggagc gggaggatgc cggcgtgtac gtgtgcaagg 450 ecaecaacgg cttcggcagc ctgagcgtca actacaccct cgtcgtgctg 500 gatgacatta gcccagggaa ggagagcctg gggcccgaca gctcctctgg 550 gggtcaagag gaccccgcca gccagcagtg ggcacgaccg cgcttcacac 600 agecetecaa gatgaggege egggtgateg caeggeeegt gggtagetee 650 gtgcggctca agtgcgtggc cagcgggcac cctcggcccg acatcacgtg 700 gatgaaggac gaccaggcct tgacgcgccc agaggccgct gagcccagga 750 agaagaagtg gacactgagc ctgaagaacc tgcggccgga ggacagcggc 800 aaatacacct gccgcgtgtc gaaccgcgcg ggcgccatca acgccaccta 850 caaggtggat gtgatccagc ggacccgttc caagcccgtg ctcacaggca 900 cgcaccccgt gaacacgacg gtggacttcg gggggaccac gtccttccag 950 tgcaaggtgc gcagcgacgt gaagccggtg atccagtggc tgaagcgcgt 1000 ggagtacggc gccgagggcc gccacaactc caccatcgat gtgggcggcc 1050 agaagtttgt ggtgctgccc acgggtgacg tgtggtcgcg gcccgacggc 1100 tectacetea ataagetget eateaceegt gecegeeagg aegatgeggg 1150 catgtacatc tgccttggcg ccaacaccat gggctacagc ttccgcagcg 1200 ccttcctcac cgtgctgcca gacccaaaac cgccagggcc acctgtggcc 1250 tectegteet eggecactag eetgeegtgg eeegtggtea teggeateee 1300 agcoggoget gtetteatee tgggcaecet geteetgtgg etttgeeagg 1350 cccagaagaa gccgtgcacc cccgcgcctg ccctcccct gcctgggcac 1400 cgcccgccgg ggacggcccg cgaccgcagc ggagacaagg accttccctc 1450 gttggccgcc ctcagcgctg gccctggtgt ggggctgtgt gaggagcatg 1500 ggtctccggc agcccccag cacttactgg gcccaggccc agttgctggc 1550 cctaagttgt accccaaact ctacacagac atccacaca acacacaca 1600

acacteteae acacacteae acgtggaggg caaggteeae cageaeatee 1650 actatcagtg ctagacggca ccgtatctgc agtgggcacg ggggggccgg 1700 ccagacaggc agactgggag gatggaggac ggagctgcag acgaaggcag 1750 gggacccatg gcgaggagga atggccagca ccccaggcag tctgtgtgtg 1800 aggeatagee eetggacaca cacacacaga cacacacat acetggatge 1850 atgtatgcac acacatgcgc gcacacgtgc tccctgaagg cacacgtacg 1900 cacacgcaca tgcacagata tgccgcctgg gcacacagat aagctgccca 1950 aatgcacgca cacgcacaga gacatgccag aacatacaag gacatgctgc 2000 ctgaacatac acacgcacac ccatgcgcag atgtgctgcc tggacacaca 2050 cacacacacg gatatgctgt ctggacgcac acacgtgcag atatggtatc 2100 cggacacaca cgtgcacaga tatgctgcct ggacacacag ataatgctgc 2150 cttgacacac acatgcacgg atattgcctg gacacacaca cacacacac 2200 cgtgcacaga tatgctgtct ggacacgcac acacatgcag atatgctgcc 2250 tggacacaca cttccagaca cacgtgcaca ggcgcagata tgctgcctgg 2300 acacacgcag atatgctgtc tagtcacaca cacacgcaga catgctgtcc 2350 ggacacacac acgcatgcac agatatgctg tccggacaca cacacgcacg 2400 cagatatget geetggacae acaeaagat aatgetgeet caacaeteae 2450 acacgtgcag atattgcctg gacacacaca tgtgcacaga tatgctgtct 2500 ggacatgcac acacgtgcag atatgctgtc cggatacaca cgcacgcaca 2550 catgcagata tgctgcctgg gcacacatt ccggacacac atgcacacac 2600 aggtgcagat atgctgcctg gacacacaca cagataatgc tgcctcaaca 2650 ctcacacacg tgcagatatt gcctggacac acacatgtgc acagatatgc 2700 tgtctggaca tgcacacacg tgcagatatg ctgtccggat acacacgcac 2750 gcacacatgc agatatgctg cctgggcaca cacttccgga cacacatgca 2800 cacacaggtg cagatatgct gcctggacac acgcagactg acgtgctttt 2850 gggagggtgt gccgtgaagc ctgcagtacg tgtgccgtga ggctcatagt 2900 tgatgaggga ctttccctgc tccaccgtca ctcccccaac tctgcccgcc 2950 totgtocoog cotoagtoco ogcotocato coogcototg toccotggeo 3000 ttggcggcta tttttgccac ctgccttggg tgcccaggag tcccctactg 3050 ctgtgggctg gggttggggg cacagcagcc ccaagcctga gaggctggag 3100 cccatggcta gtggctcatc cccagtgcat tctcccctg acacagagaa 3150 ggggccttgg tatttatatt taagaaatga agataatatt aataatgatg 3200

gaaggaagac tgggttgcag ggactgtggt ctctcctggg gcccgggacc 3250 cgcctggtct ttcagccatg ctgatgacca caccccgtcc aggccagaca 3300 ccaccccca ccccactgtc gtggtggccc cagatctctg taattttatg 3350 tagagtttga gctgaagccc cgtatattta atttattttg ttaaacacaa 3400 aa 3402

<210> 119

<211> 504

<212> PRT

<213> Homo sapiens

<400> 119

Met Thr Pro Ser Pro Leu Leu Leu Leu Leu Pro Pro Leu Leu 1 5 10 15

Leu Gly Ala Phe Pro Pro Ala Ala Ala Ala Arg Gly Pro Pro Lys
20 25 30

Met Ala Asp Lys Val Val Pro Arg Gln Val Ala Arg Leu Gly Arg 35 40 45

Thr Val Arg Leu Gln Cys Pro Val Glu Gly Asp Pro Pro Pro Leu
50 55 60

Thr Met Trp Thr Lys Asp Gly Arg Thr Ile His Ser Gly Trp Ser
65 70 75

Arg Phe Arg Val Leu Pro Gln Gly Leu Lys Val Lys Gln Val Glu 80 85 90

Arg Glu Asp Ala Gly Val Tyr Val Cys Lys Ala Thr Asn Gly Phe 95 100 105

Gly Ser Leu Ser Val Asn Tyr Thr Leu Val Val Leu Asp Asp Ile 110 115 120

Ser Pro Gly Lys Glu Ser Leu Gly Pro Asp Ser Ser Ser Gly Gly
125 130 135

Gln Glu Asp Pro Ala Ser Gln Gln Trp Ala Arg Pro Arg Phe Thr 140 145 150

Gln Pro Ser Lys Met Arg Arg Arg Val Ile Ala Arg Pro Val Gly
155 160 165

Ser Ser Val Arg Leu Lys Cys Val Ala Ser Gly His Pro Arg Pro

Asp Ile Thr Trp Met Lys Asp Asp Gln Ala Leu Thr Arg Pro Glu 185 190 195

Ala Ala Glu Pro Arg Lys Lys Lys Trp Thr Leu Ser Leu Lys Asn 200 205

Leu Arg Pro Glu Asp Ser Gly Lys Tyr Thr Cys Arg Val Ser Asn 215 220 225

Arg Ala Gly Ala Ile Asn Ala Thr Tyr Lys Val Asp Val Ile Gln
230 235 240

```
Arg Thr Arg Ser Lys Pro Val Leu Thr Gly Thr His Pro Val Asn
Thr Thr Val Asp Phe Gly Gly Thr Thr Ser Phe Gln Cys Lys Val
                                     265
Arg Ser Asp Val Lys Pro Val Ile Gln Trp Leu Lys Arg Val Glu
Tyr Gly Ala Glu Gly Arg His Asn Ser Thr Ile Asp Val Gly Gly
Gln Lys Phe Val Val Leu Pro Thr Gly Asp Val Trp Ser Arg Pro
                 305
                                     310
                                                         315
Asp Gly Ser Tyr Leu Asn Lys Leu Leu Ile Thr Arg Ala Arg Gln
                                     325
Asp Asp Ala Gly Met Tyr Ile Cys Leu Gly Ala Asn Thr Met Gly
                                     340
                                                         345
Tyr Ser Phe Arg Ser Ala Phe Leu Thr Val Leu Pro Asp Pro Lys
                                     355
                                                         360
 Pro Pro Gly Pro Pro Val Ala Ser Ser Ser Ala Thr Ser Leu
 Pro Trp Pro Val Val Ile Gly Ile Pro Ala Gly Ala Val Phe Ile
                 380
                                     385
Leu Gly Thr Leu Leu Trp Leu Cys Gln Ala Gln Lys Lys Pro
                                     400
Cys Thr Pro Ala Pro Ala Pro Pro Leu Pro Gly His Arg Pro Pro
                 410
                                     415
Gly Thr Ala Arg Asp Arg Ser Gly Asp Lys Asp Leu Pro Ser Leu
                                     430
Ala Ala Leu Ser Ala Gly Pro Gly Val Gly Leu Cys Glu Glu His
Gly Ser Pro Ala Ala Pro Gln His Leu Leu Gly Pro Gly Pro Val
                                     460
Ala Gly Pro Lys Leu Tyr Pro Lys Leu Tyr Thr Asp Ile His Thr
His Thr His Thr His Ser His Thr His Ser His Val Glu Gly Lys
Val His Gln His Ile His Tyr Gln Cys
                 500
<210> 120
<211> 20
```

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 120

```
cgagatgacg ccgagccccc 20
<210> 121
<211> 21
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 121
 cggttcgaca cgcggcaggt g 21
<210> 122
<211> 45
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 122
tgctgctcct gctgccgccg ctgctgctgg gggccttccc gccgg 45
<210> 123
<211> 4420
<212> DNA
<213> Homo sapiens
<400> 123
cccagctgag gagccctgct caagacacgg tcactggatc tgagaaactt 50
cccaggggac cgcattccag agtcagtgac tctgtgaagc acccacatct 100
acctcttgcc acgttcccac gggcttgggg gaaagatggt ggggaccaag 150
gcctgggtgt tctccttcct ggtcctggaa gtcacatctg tgttggggag 200
acagacgatg ctcacccagt cagtaagaag agtccagcct gggaagaaga 250
accccagcat ctttgccaag cctgccgaca ccctggagag ccctggtgag 300
tggacaacat ggttcaacat cgactaccca ggcgggaagg gcgactatga 350
gcggctggac gccattcgct tctactatgg ggaccgtgta tgtgcccgtc 400
ccctgcggct agaggctcgg accactgact ggacacctgc gggcagcact 450
ggccaggtgg tccatggtag tccccgtgag ggtttctggt gcctcaacag 500
ggagcagcgg cctggccaga actgctctaa ttacaccgta cgcttcctct 550
gcccaccagg atccctgcgc cgagacacag agcgcatctg gagcccatgg 600
tetecetgga gcaagtgete agetgeetgt ggteagaetg gggteeagae 650
tcgcacacgc atttgcttgg cagagatggt gtcgctgtgc agtgaggcca 700
gcgaagaggg tcagcactgc atgggccagg actgtacagc ctgtgacctg 750
acctgcccaa tgggccaggt gaatgctgac tgtgatgcct gcatgtgcca 800
ggacttcatg cttcatgggg ctgtctccct tcccggaggt gccccagcct 850
```

caggggctgc tatctacetc ctgaccaaga cgccgaaget gctgacccag 900 acagacagtg atgggagatt ccgaatccct ggcttgtgcc ctgatggcaa 950 aagcatcctg aagatcacaa aggtcaagtt tgcccccatt gtactcacaa 1000 tgcccaagac tagcctgaag gcagccacca tcaaggcaga gtttgtgagg 1050 gcagagactc catacatggt gatgaaccct gagacaaaag cacggagagc 1100 tgggcagage gtgtetetgt getgtaagge cacagggaag eccaggecag 1150 acaagtattt ttggtatcat aatgacacat tgctggatcc ttccctctac 1200 aagcatgaga gcaagctggt gctgaggaaa ctgcagcagc accaggctgg 1250 ggagtacttt tgcaaggccc agagtgatgc tggggctgtg aagtccaagg 1300 ttgcccagct gattgtcaca gcatctgatg agactccttg caacccagtt 1350 cctgagaget atcttatccg gctgccccat gattgctttc agaatgccac 1400 caactccttc tactatgacg tgggacgctg ccctgttaag acttgtgcag 1450 ggcagcagga taatgggatc aggtgccgtg atgctgtgca gaactgctgt 1500 acccaccaag gtggccaagg agtgcagctg ccagcggtgt acggaaactc 1600 ggagcatcgt gcggggccgt gtcagtgctg ctgacaatgg ggagcccatg 1650 cgctttggcc atgtgtacat ggggaacagc cgtgtaagca tgactggcta 1700 caagggcact ttcaccctcc atgtccccca ggacactgag aggctggtgc 1750 tcacatttgt ggacaggctg cagaagtttg tcaacaccac caaagtgcta 1800 cctttcaaca agaagggag tgccgtgttc catgaaatca agatgcttcg 1850 toggaaagag cocatcactt tggaagccat ggagaccaac atcatccccc 1900 tgggggaagt ggttggtgaa gaccccatgg ctgaactgga gattccatcc 1950 aggagtttct acaggcagaa tggggagccc tacataggaa aagtgaaggc 2000 cagtgtgacc ttcctggatc cccggaatat ttccacagcc acagctgccc 2050 agactgacct gaacttcatc aatgacgaag gagacacttt cccccttcgg 2100 acgtatggca tgttctctgt ggacttcaga gatgaggtca cctcagagcc 2150 acttaatgct ggcaaagtga aggtccacct tgactcgacc caggtcaaga 2200 tgccagagca catatccaca gtgaaactct ggtcactcaa tccagacaca 2250 gggctgtggg aggaggaagg tgatttcaaa tttgaaaatc aaaggaggaa 2300 caaaagagaa gacagaacct tcctggtggg caacctggag attcgtgaga 2350 ggaggctctt taacctggat gttcctgaaa gcaggcggtg ctttgttaag 2400 gtgagggcct accggagtga gaggttcttg cctagtgagc agatccaggg 2450

ggttgtgatc tccgtgatta acctggagcc tagaactggc ttcttgtcca 2500 accetaggge etggggeege tttgaeagtg teateaeagg ceceaaeggg 2550 gcctgtgtgc ctgccttctg tgatgaccag tcccctgatg cctactctgc 2600 ctatgtcttg gcaagcctgg ctggggggga actgcaagca gtggagtctt 2650 ctcctaaatt caacccaaat gcaattggcg tccctcagcc ctatctcaac 2700 aageteaact acegteggae ggaceatgag gateeaeggg ttaaaaagae 2750 agctttccag attagcatgg ccaagccaag gcccaactca gctgaggaga 2800 gcaatgggcc catctatgcc tttgagaacc tccgggcatg tgaagaggca 2850 ccacccagtg cagcccactt ccggttctac cagattgagg gggatcgata 2900 tgactacaac acagtcccct tcaacgaaga tgaccctatg agctggactg 2950 aagactatct ggcatggtgg ccaaagccga tggaattcag ggcctgctat 3000 atcaaggtga agattgtggg gccactggaa gtgaatgtgc gatcccgcaa 3050 catggggggc actcatcggc ggacagtggg gaagctgtat ggaatccgag 3100 atgtgaggag cactcgggac agggaccagc ccaatgtctc agctgcctgt 3150 ctggagttca agtgcagtgg gatgctctat gatcaggacc gtgtggaccg 3200 caccctggtg aaggtcatcc cccagggcag ctgccgtcga gccagtgtga 3250 accecatget geatgagtae etggteaace acttgecaet tgeagteaac 3300 aacgacacca gtgagtacac catgctggca cccttggacc cactgggcca 3350 caactatggc atctacactg tcactgacca ggaccctcgc acggccaagg 3400 agatogogot oggooggtgo tttgatggoa catoogatgg otootooaga 3450 atcatgaaga gcaatgtggg agtagccctc accttcaact gtgtagagag 3500 gcaagtaggc cgccagagtg ccttccagta cctccaaagc accccagccc 3550 agtcccctgc tgcaggcact gtccaaggaa gagtgccctc gaggaggcag 3600 cagegagega geaggggtgg ecagegeeag ggtggagtgg tggcetetet 3650 gagatttcct agagttgctc aacagcccct gatcaactaa gttttgtggt 3700 acttcaccct cttctgccct catttcatgt gacagccatt gtgagactga 3750 tgcacaaact gtcacttggt taatttaagc acttctgttt tcgtgaattt 3800 gcttgtttgt ttcttcatgc ctttacttac tttgtcccat gctactgatt 3850 ggcacgtggc ccccacaatg gcacaataaa gcccctttgt gaaactgttc 3900 tttaaatgaa acacaagaaa ttggccactg gtaaaactct gcagcttcaa 3950 ctgtacttca tttaatgcca ttaatgcaaa tatacttcct cttcttttg 4000 catggttttg cccacctctg caatagtgat aatctgatgc tgaagatcaa 4050

ataaccaata taaagcatat ttcttggcct tgctccacag gacataggca 4100 agccttgatc atagttcata catataaatg gtggtgaaat aaagaaataa 4150 aacacaatac ttttacttga aatgtaaata acttatttat ttctttgcta 4200 aatttggaat tctagtgcac attcaaagtt aagctattaa atatagggtg 4250 atcatagttc ctctaccaag tctggaaaga acatctcctg gtatccacaa 4300 ttacaccagg ttgctaactg tatttgtaca tttccctttg cattcgcttt 4350 tgttcttgct agaaacccag tgtagcccag ggcagatgtc aataaatgca 4400 tactctgtat ttcgaaaaaa 4420

<210> 124 <211> 1184 <212> PRT

<213> Homo sapiens <400> 124 Met Val Gly Thr Lys Ala Trp Val Phe Ser Phe Leu Val Leu Glu Val Thr Ser Val Leu Gly Arg Gln Thr Met Leu Thr Gln Ser Val Arg Arg Val Gln Pro Gly Lys Lys Asn Pro Ser Ile Phe Ala Lys Pro Ala Asp Thr Leu Glu Ser Pro Gly Glu Trp Thr Trp Phe Asn Ile Asp Tyr Pro Gly Gly Lys Gly Asp Tyr Glu Arg Leu Asp Ala Ile Arg Phe Tyr Tyr Gly Asp Arg Val Cys Ala Arg Pro Leu Arg Leu Glu Ala Arg Thr Thr Asp Trp Thr Pro Ala Gly Ser Thr Gly Gln Val Val His Gly Ser Pro Arg Glu Gly Phe Trp Cys Leu 110 115 Asn Arg Glu Gln Arg Pro Gly Gln Asn Cys Ser Asn Tyr Thr Val 130 Arg Phe Leu Cys Pro Pro Gly Ser Leu Arg Arg Asp Thr Glu Arg Ile Trp Ser Pro Trp Ser Pro Trp Ser Lys Cys Ser Ala Ala Cys 160 Gly Gln Thr Gly Val Gln Thr Arg Thr Arg Ile Cys Leu Ala Glu 175 Met Val Ser Leu Cys Ser Glu Ala Ser Glu Glu Gly Gln His Cys 195 Met Gly Gln Asp Cys Thr Ala Cys Asp Leu Thr Cys Pro Met Gly 200 205

Gln Val Asn Ala Asp Cys Asp Ala Cys Met Cys Gln Asp Phe Met Leu His Gly Ala Val Ser Leu Pro Gly Gly Ala Pro Ala Ser Gly Ala Ala Ile Tyr Leu Leu Thr Lys Thr Pro Lys Leu Leu Thr Gln 245 Thr Asp Ser Asp Gly Arg Phe Arg Ile Pro Gly Leu Cys Pro Asp Gly Lys Ser Ile Leu Lys Ile Thr Lys Val Lys Phe Ala Pro Ile 275 Val Leu Thr Met Pro Lys Thr Ser Leu Lys Ala Ala Thr Ile Lys 290 Ala Glu Phe Val Arg Ala Glu Thr Pro Tyr Met Val Met Asn Pro Glu Thr Lys Ala Arg Arg Ala Gly Gln Ser Val Ser Leu Cys Cys Lys Ala Thr Gly Lys Pro Arg Pro Asp Lys Tyr Phe Trp Tyr His 335 Asn Asp Thr Leu Leu Asp Pro Ser Leu Tyr Lys His Glu Ser Lys 350 355 Leu Val Leu Arg Lys Leu Gln Gln His Gln Ala Gly Glu Tyr Phe 365 370 Cys Lys Ala Gln Ser Asp Ala Gly Ala Val Lys Ser Lys Val Ala 380 385 Gln Leu Ile Val Thr Ala Ser Asp Glu Thr Pro Cys Asn Pro Val 400 Pro Glu Ser Tyr Leu Ile Arg Leu Pro His Asp Cys Phe Gln Asn 415 420 Ala Thr Asn Ser Phe Tyr Tyr Asp Val Gly Arg Cys Pro Val Lys 425 430 Thr Cys Ala Gly Gln Gln Asp Asn Gly Ile Arg Cys Arg Asp Ala 445 Val Gln Asn Cys Cys Gly Ile Ser Lys Thr Glu Glu Arg Glu Ile Gln Cys Ser Gly Tyr Thr Leu Pro Thr Lys Val Ala Lys Glu Cys Ser Cys Gln Arg Cys Thr Glu Thr Arg Ser Ile Val Arg Gly Arg 490 Val Ser Ala Ala Asp Asn Gly Glu Pro Met Arg Phe Gly His Val 510 Tyr Met Gly Asn Ser Arg Val Ser Met Thr Gly Tyr Lys Gly Thr 515 520

Phe Thr Leu His Val Pro Gln Asp Thr Glu Arg Leu Val Leu Thr Phe Val Asp Arg Leu Gln Lys Phe Val Asn Thr Thr Lys Val Leu Pro Phe Asn Lys Lys Gly Ser Ala Val Phe His Glu Ile Lys Met 560 Leu Arg Arg Lys Glu Pro Ile Thr Leu Glu Ala Met Glu Thr Asn 580 Ile Ile Pro Leu Gly Glu Val Val Gly Glu Asp Pro Met Ala Glu Leu Glu Ile Pro Ser Arg Ser Phe Tyr Arg Gln Asn Gly Glu Pro Tyr Ile Gly Lys Val Lys Ala Ser Val Thr Phe Leu Asp Pro Arg Asn Ile Ser Thr Ala Thr Ala Ala Gln Thr Asp Leu Asn Phe Ile Asn Asp Glu Gly Asp Thr Phe Pro Leu Arg Thr Tyr Gly Met Phe Ser Val Asp Phe Arg Asp Glu Val Thr Ser Glu Pro Leu Asn Ala 665 Gly Lys Val Lys Val His Leu Asp Ser Thr Gln Val Lys Met Pro Glu His Ile Ser Thr Val Lys Leu Trp Ser Leu Asn Pro Asp Thr Gly Leu Trp Glu Glu Glu Gly Asp Phe Lys Phe Glu Asn Gln Arg Arg Asn Lys Arg Glu Asp Arg Thr Phe Leu Val Gly Asn Leu Glu Ile Arg Glu Arg Arg Leu Phe Asn Leu Asp Val Pro Glu Ser Arg 740 Arg Cys Phe Val Lys Val Arg Ala Tyr Arg Ser Glu Arg Phe Leu 760 Pro Ser Glu Gln Ile Gln Gly Val Val Ile Ser Val Ile Asn Leu Glu Pro Arg Thr Gly Phe Leu Ser Asn Pro Arg Ala Trp Gly Arg 790 Phe Asp Ser Val Ile Thr Gly Pro Asn Gly Ala Cys Val Pro Ala 805 Phe Cys Asp Asp Gln Ser Pro Asp Ala Tyr Ser Ala Tyr Val Leu Ala Ser Leu Ala Gly Glu Glu Leu Gln Ala Val Glu Ser Ser Pro 830 835

Lys Phe Asn Pro Asn Ala Ile Gly Val Pro Gln Pro Tyr Leu Asn Lys Leu Asn Tyr Arg Arg Thr Asp His Glu Asp Pro Arg Val Lys 870 Lys Thr Ala Phe Gln Ile Ser Met Ala Lys Pro Arg Pro Asn Ser 875 Ala Glu Glu Ser Asn Gly Pro Ile Tyr Ala Phe Glu Asn Leu Arg 890 895 Ala Cys Glu Glu Ala Pro Pro Ser Ala Ala His Phe Arg Phe Tyr 905 915 Gln Ile Glu Gly Asp Arg Tyr Asp Tyr Asn Thr Val Pro Phe Asn Glu Asp Asp Pro Met Ser Trp Thr Glu Asp Tyr Leu Ala Trp Trp 935 945 Pro Lys Pro Met Glu Phe Arg Ala Cys Tyr Ile Lys Val Lys Ile 955 Val Gly Pro Leu Glu Val Asn Val Arg Ser Arg Asn Met Gly Gly 975 Thr His Arg Arg Thr Val Gly Lys Leu Tyr Gly Ile Arg Asp Val 980 Arg Ser Thr Arg Asp Arg Asp Gln Pro Asn Val Ser Ala Ala Cys 995 1000 Leu Glu Phe Lys Cys Ser Gly Met Leu Tyr Asp Gln Asp Arg Val 1010 1015 Asp Arg Thr Leu Val Lys Val Ile Pro Gln Gly Ser Cys Arg Arg 1025 Ala Ser Val Asn Pro Met Leu His Glu Tyr Leu Val Asn His Leu 1045 Pro Leu Ala Val Asn Asn Asp Thr Ser Glu Tyr Thr Met Leu Ala Pro Leu Asp Pro Leu Gly His Asn Tyr Gly Ile Tyr Thr Val Thr 1070 1075 Asp Gln Asp Pro Arg Thr Ala Lys Glu Ile Ala Leu Gly Arg Cys 1085 1090 Phe Asp Gly Thr Ser Asp Gly Ser Ser Arg Ile Met Lys Ser Asn 1105 Val Gly Val Ala Leu Thr Phe Asn Cys Val Glu Arg Gln Val Gly 1115 1125 Arg Gln Ser Ala Phe Gln Tyr Leu Gln Ser Thr Pro Ala Gln Ser 1135 Pro Ala Ala Gly Thr Val Gln Gly Arg Val Pro Ser Arg Arg Gln 1145 1150

```
Gln Arg Ala Ser Arg Gly Gly Gln Arg Gln Gly Gly Val Val Ala
                 1160
                                                          1170
 Ser Leu Arg Phe Pro Arg Val Ala Gln Gln Pro Leu Ile Asn
                 1175
                                     1180
<210> 125
<211> 22
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 125
 ctggtgcctc aacagggagc ag 22
<210> 126
<211> 23
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 126
ccattgtgca ggtcaggtca cag 23
<210> 127
<211> 40
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 127
ctggagcaag tgctcagctg cctgtggtca gactggggtc 40
<210> 128
<211> 2819
<212> DNA
<213> Homo sapiens
<400> 128
ctgcaagttg ttaacgccta acacacaagt atgttaggct tccaccaaag 50
tcctcaatat acctgaatac gcacaatatc ttaactcttc atatttggtt 100
ttgggatctg ctttgaggtc ccatcttcat ttaaaaaaaa atacagagac 150
ctacctaccc gtacgcatac atacatatgt gtatatatat gtaaactaga 200
caaagatcgc agatcataaa gcaagctctg ctttagtttc caagaagatt 250
acaaagaatt tagagatgta tttgtcaaga tccctgtcga ttcatgccct 300
ttgggttacg gtgtcctcag tgatgcagcc ctaccctttg gtttggggac 350
attatgattt gtgtaagact cagatttaca cggaagaagg gaaagtttgg 400
gattacatgg cctgccagcc ggaatccacg gacatgacaa aatatctgaa 450
```

agtgaaactc gatceteegg atattaeetg tggagaeeet eetgagaegt 500 tetgtgcaat gggcaateee tacatgtgca ataatgagtg tgatgcgagt 550 acccctgagc tggcacaccc ccctgagctg atgtttgatt ttgaaggaag 600 acatecetee acattttgge agtetgeeae ttggaaggag tateceaage 650 ctctccaggt taacatcact ctgtcttgga gcaaaaccat tgagctaaca 700 gacaacatag ttattacctt tgaatctggg cgtccagacc aaatgatcct 750 ggagaagtet etegattatg gacgaacatg geagecetat eagtattatg 800 ccacagactg cttagatgct tttcacatgg atcctaaatc cgtgaaggat 850 ttatcacagc atacggtctt agaaatcatt tgcacagaag agtactcaac 900 agggtataca acaaatagca aaataatcca ctttgaaatc aaagacaggt 950 tegegetttt tgetggaeet egeetaegea atatggette eetetaegga 1000 cagetggata caaccaagaa actcagagat ttetttacag teacagacet 1050 gaggataagg ctgttaagac cagccgttgg ggaaatattt gtagatgagc 1100 tacacttggc acgctacttt tacgcgatct cagacataaa ggtgcgagga 1150 aggtgcaagt gtaatctcca tgccactgta tgtgtgtatg acaacagcaa 1200 attgacatgc gaatgtgagc acaacactac aggtccagac tgtgggaaat 1250 gcaagaagaa ttatcagggc cgaccttgga gtccaggctc ctatctcccc 1300 atccccaaag gcactgcaaa tacctgtatc cccagtattt ccagtattgg 1350 tacgaatgtc tgcgacaacg agctcctgca ctgccagaac ggagggacgt 1400 gccacaacaa cgtgcgctgc ctgtgcccgg ccgcatacac gggcatcctc 1450 tgcgagaagc tgcggtgcga ggaggctggc agctgcggct ccgactctgg 1500 ccagggegeg ecceegeacg geaceceage getgetgetg etgaceaege 1550 tgctgggaac cgccagcccc ctggtgttct aggtgtcacc tccagccaca 1600 ccggacgggc ctgtgccgtg gggaagcaga cacaacccaa acatttgcta 1650 ctaacatagg aaacacaca atacagacac ccccactcag acagtgtaca 1700 aactaagaag gcctaactga actaagccat atttatcacc cgtggacagc 1750 acatccgagt caagactgtt aatttctgac tccagaggag ttggcagctg 1800 ttgatattat cactgcaaat cacattgcca gctgcagagc atattgtgga 1850 atcaaccgac ctaaaaacat tggctactct agcgtggtgc gccctagtac 1950 gactccgccc agtgtgtgga ccaaccaaat agcattcttt gctgtcaggt 2000 gcattgtggg cataaggaaa tctgttacaa gctgccatat tggcctgctt 2050

ccgtccctga atcccttcca acctgtgctt tagtgaacgt tgctctgtaa 2100 ccctcgttgg ttgaaagatt tctttgtctg atgttagtga tgcacatgtg 2150 taacagcccc ctctaaaagc gcaagccagt catacccctg tatatcttag 2200 cagcactgag tccagtgcga gcacacaccc actatacaag agtggctata 2250 ggaaaaaaga aagtgtatct atccttttgt attcaaatga agttattttt 2300 cttgaactac tgtaatatgt agattttttg tattattgcc aatttgtgtt 2350 accagacaat ctgttaatgt atctaattcg aatcagcaaa gactgacatt 2400 ttattttgtc ctctttcgtt ctgttttgtt tcactgtgca gagatttctc 2450 tgtaagggca acgaacgtgc tggcatcaaa gaatatcagt ttacatatat 2500 aacaagtgta ataagattcc accaaaggac attctaaatg ttttcttgtt 2550 gctttaacac tggaagattt aaagaataaa aactcctgca taaacgattt 2600 caggaatttg tattgcaatt tcttaagatg aaaggaacag ccaccaagca 2650 gtttcacact cactttactg atttctgtgt ggactgagta cattcagctg 2700 acgaatttag ttcccaggaa gatggattga tgttcactag cttggacaac 2750 ttctgcaaaa tatgagacta tttccacttg ggaaaaatta caacagcaaa 2800 aaaaaaaaa aaaaaaaa 2819

<210> 129 <211> 438

<212> PRT

<213> Homo sapiens

<400> 129

Met Tyr Leu Ser Arg Ser Leu Ser Ile His Ala Leu Trp Val Thr 1 5 10 15

Val Ser Ser Val Met Gln Pro Tyr Pro Leu Val Trp Gly His Tyr 20 25 30

Asp Leu Cys Lys Thr Gln Ile Tyr Thr Glu Glu Gly Lys Val Trp 35 40 45

Asp Tyr Met Ala Cys Gln Pro Glu Ser Thr Asp Met Thr Lys Tyr 50 55 60

Leu Lys Val Lys Leu Asp Pro Pro Asp Ile Thr Cys Gly Asp Pro 65 70 75

Pro Glu Thr Phe Cys Ala Met Gly Asn Pro Tyr Met Cys Asn Asn 80 85 90

Glu Cys Asp Ala Ser Thr Pro Glu Leu Ala His Pro Pro Glu Leu 95 100 105

Met Phe Asp Phe Glu Gly Arg His Pro Ser Thr Phe Trp Gln Ser 110 115

Ala Thr Trp Lys Glu Tyr Pro Lys Pro Leu Gln Val Asn Ile Thr

				125					130					13:
Leu	Ser	Trp	Ser	Lys 140	Thr	Ile	Glu	Leu	Thr 145	Asp	Asn	Ile	Val	Ile 150
Thr	Phe	Glu	Ser	Gly 155	Arg	Pro	Asp	Gln	Met 160	Ile	Leu	Glu	Lys	Se:
Leu	Asp	Tyr	Gly	Arg 170	Thr	Trp	Gln	Pro	Туг 175	Gln	Tyr	Tyr	Ala	Th:
Asp	Cys	Leu	Asp	Ala 185	Phe	His	Met	Asp	Pro 190	Lys	Ser	Val	Lys	As ₁
Leu	Ser	Gln	His	Thr 200	Val	Leu	Glu	Ile	Ile 205	Суз	Thr	Glu	Glu	Ty:
Ser	Thr	Gly	Tyr	Thr 215	Thr	Asn	Ser	Lys	Ile 220	Ile	His	Phe	Glu	Ile 223
Lys	Asp	Arg	Phe	Ala 230	Leu	Phe	Ala	Gly	Pro 235	Arg	Leu	Arg	Asn	Met 240
Ala	Ser	Leu	Tyr	Gly 245	Gln	Leu	Asp	Thr	Thr 250	Lys	Lys	Leu	Arg	As ₁ 25!
Phe	Phe	Thr	Val	Thr 260	Asp	Leu	Arg	Ile	Arg 265	Leu	Leu	Arg	Pro	Ala 270
Val	Gly	Glu	Ile	Phe 275	Val	Asp	Glu	Leu	His 280	Leu	Ala	Arg	Tyr	Phe 28
Tyr	Ala	Ile	Ser	Asp 290	Ile	Lys	Val	Arg	Gly 295	Arg	Cys	Lys	Cys	Ası 300
Leu	His	Ala	Thr	Val 305	Cys	Val	Tyr	Asp	Asn 310	Ser	Lys	Leu	Thr	Cys 315
Glu	Cys	Glu	His	Asn 320	Thr	Thr	Gly	Pro	Asp 325	Cys	Gly	Lys	Cys	Ly:
Lys	Asn	Tyr	Gln	Gly 335	Arg	Pro	Trp	Ser	Pro 340	Gly	Ser	Tyr	Leu	Pro 345
Ile	Pro	Lys	Gly	Thr 350	Ala	Asn	Thr	Суз	Ile 355	Pro	Ser	Ile	Ser	Set 360
Ile	Gly	Thr	Asn	Val 365	Суз	Asp	Asn	Glu	Leu 370	Leu	His	Cys	Gln	Asr 375
Gly	Gly	Thr	Cys	His 380	Asn	Asn	Val	Arg	Cys 385	Leu	Cys	Pro	Ala	Ala 390
Tyr	Thr	Gly	Ile	Leu 395	Cys	Glu	Lys	Leu	Arg 400	Cys	Glu	Glu	Ala	Gl ₃ 405
Ser	Cys	Gly	Ser	Asp 410	Ser	Gly	Gln	Gly	Ala 415	Pro	Pro	His	Gly	Th: 420
Pro	Ala	Leu	Leu	Leu 425	Leu	Thr	Thr	Leu	Leu 430	Gly	Thr	Ala	Ser	Pro 435
Tou	7727	Dho												

```
<210> 130
<211> 24
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 130
tcgattatgg acgaacatgg cagc 24
<210> 131
<211> 20
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 131
ttctgagatc cctcatcctc 20
<210> 132
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 132
aggttcaggg acagcaagtt tggg 24
<210> 133
<211> 50
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 133
tttgctggac ctcggctacg qaattggctt ccctctacgg acagctggat 50
<210> 134
<211> 1493
<212> DNA
<213> Homo sapiens
<400> 134
 cccacgcqtc cqqqtgacct qqqccqaqcc ctcccqqtcq qctaaqattq 50
 ctgaggaggc ggcgggtagc tggcaggcgc cgacttccga aggccgccgt 100
 ccgggcgagg tgtcctcatg acttctcttg tggaccatgt ccgtgatctt 150
 ttttgcctgc gtggtacggg taagggatgg actgcccctc tcagcctcta 200
 ctgattttta ccacacccaa gattttttgg aatggaggag acggctcaag 250
 agtttagcct tgcgactggc ccagtatcca ggtcgaggtt ctgcagaagg 300
```

```
ttgtgacttt agtatacatt tttcttcttt cggggacgtg gcctgcatgg 350
ctatctgctc ctgccagtgt ccagcagcca tggccttctg cttcctggag 400
accetgtggt gggaatteae agetteetat gacactacet geattggeet 450
agcctccagg ccatacgctt ttcttgagtt tgacagcatc attcagaaag 500
tgaagtggca ttttaactat gtaagttcct ctcagatgga gtgcagcttg 550
gaaaaaattc aggaggagct caagttgcag cctccagcgg ttctcactct 600
ggaggacaca gatgtggcaa atggggtgat gaatggtcac acaccqatqc 650
acttggagcc tgctcctaat ttccgaatgg aaccagtgac agccctgggt 700
atcetetece teatteteaa cateatgtgt getgeeetga ateteatteg 750
aggagttcac cttgcagaac attctttaca ggatccaagg agctggttct 800
gctggttgga ccaaacctcg tgagccagcc acccctgacc caaatgagga 850
gagetetgat teteceatee gggageagtg atgteaaact tetgetgetg 900
gggaaatctc atcagcaggg agcctgtgga aaagggcatg tcagtgaaat 950
ctgggaatgg ctggattcgg aaacatctgc ccatgtgtat tgatggcaga 1000
gctgttgccc acaagcgcct tttatttagg gtaaaattaa caaatccatt 1050
ctattcctct gacccatgct tagtacatat gacctttaac ccttacattt 1100
atatgattct ggggttgctt cagaagtgtt atttcatgaa tcattcatat 1150
gatttgatcc cccaggattc tattttgttt aatgggcttt tctactaaaa 1200
gcataaaata ctgaggctga tttagtcagg gcaaaaccat ttactttaca 1250
tattcgtttt caatacttgc tgttcatgtt acacaagctt cttacggttt 1300
tcttgtaaca ataaatattt tgagtaaata atgggtacat tttaacaaac 1350
tcagtagtac aacctaaact tgtataaaag tgtgtaaaaa tgtatagcca 1400
tttatatcct atgtataaat taaatgaggt ggcttcagaa atggcagaat 1450
aaatctaaag tgtttattaa aaaaaaaaaa aaaaaaaaa aag 1493
```

<210> 135

<211> 228

<212> PRT

<213> Homo sapiens

<400> 135

Met Ser Val Ile Phe Phe Ala Cys Val Val Arg Val Arg Asp Gly 1 5 10 15

Leu Pro Leu Ser Ala Ser Thr Asp Phe Tyr His Thr Gln Asp Phe 20 25 30

Leu Glu Trp Arg Arg Arg Leu Lys Ser Leu Ala Leu Arg Leu Ala
35 40 45

```
Gln Tyr Pro Gly Arg Gly Ser Ala Glu Gly Cys Asp Phe Ser Ile
                  50
His Phe Ser Ser Phe Gly Asp Val Ala Cys Met Ala Ile Cys Ser
Cys Gln Cys Pro Ala Ala Met Ala Phe Cys Phe Leu Glu Thr Leu
                                      85
Trp Trp Glu Phe Thr Ala Ser Tyr Asp Thr Thr Cys Ile Gly Leu
Ala Ser Arg Pro Tyr Ala Phe Leu Glu Phe Asp Ser Ile Ile Gln
                110
                                     115
Lys Val Lys Trp His Phe Asn Tyr Val Ser Ser Ser Gln Met Glu
                125
Cys Ser Leu Glu Lys Ile Gln Glu Glu Leu Lys Leu Gln Pro Pro
                                     145
                                                         150
Ala Val Leu Thr Leu Glu Asp Thr Asp Val Ala Asn Gly Val Met
Asn Gly His Thr Pro Met His Leu Glu Pro Ala Pro Asn Phe Arg
                170
                                     175
Met Glu Pro Val Thr Ala Leu Gly Ile Leu Ser Leu Ile Leu Asn
                185
                                    190
Ile Met Cys Ala Ala Leu Asn Leu Ile Arg Gly Val His Leu Ala
                200
                                    205
Glu His Ser Leu Gln Asp Pro Arg Ser Trp Phe Cys Trp Leu Asp
                                    220
                                                         225
Gln Thr Ser
```

<210> 136

<211> 239

<212> DNA

<213> Homo sapiens

<220>

<221> unsure

<222> 39, 61, 143, 209

<223> unknown base

<400> 136

tgcttcctgg agaccctgtg gtgggaattc acagcttcnt atgacactac 50 ctgcattggc ntagcctcca ggccatacgc ttttcttgag tttgacagca 100 tcattcagaa agtgaagtgg cattttaact atgtaagttc ctntcagatg 150 gagtgcagct tggaaaaaat tcaggaggag ctcaagttgc agcctccagc 200 ggttctcant atggaggaca cagatgtggc aaatggggt 239

<210> 137

<211> 2300

<212> DNA

<400> 137 ctcagcggcg cttcctcgta gcgagcctag tggcgggtgt ttgcattgaa 50 acgtgagcgc gacccgacct taaagagtgg ggagcaaagg gaggacagag 100 ccetttaaaa cgaggcgggt ggtgcctgcc cctttaaggg cggggcgtcc 150 ggacqactgt atctgagccc cagactgccc cgagtttctg tcgcaggctg 200 cgaggaaagg cccctaggct gggtctgggt gcttggcggc ggcggcttcc 250 teccegeteg tecteceegg geecagagge aceteggett eagteatget 300 gagcagagta tggaagcacc tgactacgaa gtgctatccg tgcgagaaca 350 gctattccac gagaggatcc gcgagtgtat tatatcaaca cttctgtttg 400 caacactgta catcctctgc cacatcttcc tgacccgctt caagaagcct 450 gctgagttca ccacagtgga tgatgaagat gccaccgtca acaagattgc 500 gctcgagctg tgcaccttta ccctggcaat tgccctgggt gctgtcctgc 550 teetgeeett eteeateate ageaatgagg tgetgetete eetgeetegg 600 aactactaca tecagtgget caacggetee etcatecatg geetetggaa 650 ccttgttttt ctcttcccca acctgtccct catcttcctc atgccctttg 700 catatttctt cactgagtct gagggctttg ctggctccag aaagggtgtc 750 ctgggccggg tctatgagac agtggtgatg ttgatgctcc tcactctgct 800 ggtgctaggt atggtgtggg tggcatcagc cattgtggac aagaacaagg 850 ccaacagaga gtcactctat gacttttggg agtactatct cccctacctc 900 tactcatgca totocttoct tggggttctg ctgctcctgg tgtgtactcc 950 actgggtete gecegeatgt teteegteae tgggaagetg etagteaage 1000 cccggctgct ggaagacctg gaggagcagc tgtactgctc agcctttgag 1050 gaggcagccc tgacccgcag gatctgtaat cctacttcct gctggctgcc 1100 tttagacatg gagetgetae acagacaggt cetggetetg cagacacaga 1150 gggtcctgct ggagaagagg cggaaggctt cagcctggca acggaacctg 1200 ggetaceeee tggetatget gtgettgetg gtgetgaegg geetgtetgt 1250 geteattgtg gecatecaea teetggaget geteategat gaggetgeea 1300 tgccccgagg catgcagggt acctccttag gccaggtctc cttctccaag 1350 ctgggctcct ttggtgccgt cattcaggtt gtactcatct tttacctaat 1400 ggtgtcctca gttgtgggct tctatagctc tccactcttc cggagcctgc 1450 ggcccagatg gcacgacact gccatgacgc agataattgg gaactgtgtc 1500

tgtctcctgg tcctaagctc agcacttcct gtcttctctc gaaccctggg 1550 gctcactcgc tttgacctgc tgggtgactt tggacgcttc aactggctgg 1600 gcaatttcta cattgtgttc ctctacaacg cagcctttgc aggcctcacc 1650 acactctgtc tggtgaagac cttcactgca gctgtgcggg cagagctgat 1700 cegggeettt gggetggaca gaetgeeget geeegtetee ggttteeece 1750 aggcatctag gaagacccag caccagtgac ctccagctgg gggtgggaag 1800 gaaaaaactg gacactgcca tctgctgcct aggcctggag ggaagcccaa 1850 ggctacttgg acctcaggac ctggaatctg agagggtggg tggcagaggg 1900 gagcagagcc atctgcacta ttgcataatc tgagccagag tttgggacca 1950 ggacctcctg cttttccata cttaactgtg gcctcagcat ggggtagggc 2000 tgggtgactg ggtctagccc ctgatcccaa atctgtttac acatcaatct 2050 gcctcactgc tgttctgggc catccccata gccatgttta catgatttga 2100 tgtgcaatag ggtggggtag gggcagggaa aggactgggc cagggcaggc 2150 togggagata gattgtotoc ottgcototg goccagoaga goctaagcac 2200 tgtgctatcc tggaggggct ttggaccacc tgaaaqacca aggggatagg 2250 gaggaggagg cttcagccat cagcaataaa gttgatccca gggaaaaaaa 2300

<210> 138

<211> 489

<212> PRT

<213> Homo sapiens

<400> 138

Met Glu Ala Pro Asp Tyr Glu Val Leu Ser Val Arg Glu Gln Leu $1 \hspace{1cm} 5 \hspace{1cm} 10 \hspace{1cm} 15$

Phe His Glu Arg Ile Arg Glu Cys Ile Ile Ser Thr Leu Leu Phe 20 25 30

Ala Thr Leu Tyr Ile Leu Cys His Ile Phe Leu Thr Arg Phe Lys
35 40 45

Lys Pro Ala Glu Phe Thr Thr Val Asp Asp Glu Asp Ala Thr Val 50 55 60

Asn Lys Ile Ala Leu Glu Leu Cys Thr Phe Thr Leu Ala Ile Ala 65 70 75

Leu Gly Ala Val Leu Leu Pro Phe Ser Ile Ile Ser Asn Glu 80 85 90

Val Leu Leu Ser Leu Pro Arg Asn Tyr Tyr Ile Gln Trp Leu Asn 95 100 105

Gly Ser Leu Ile His Gly Leu Trp Asn Leu Val Phe Leu Phe Pro 110 115 120

Asn Leu Ser Leu Ile Phe Leu Met Pro Phe Ala Tyr Phe Phe Thr

				125	5				130)				135
Glu	ı Sei	r Glı	ı Gly	y Phe	e Ala	a Gly	y Sei	r Arg	J Lys 145		y Val	l Lei	ı Gl	y Arg 150
Val	- Туі	r Glı	ı Thi	r Val 155	. Val	L Met	: Lei	ı Met	Let 160		ı Thi	. Lei	ı Leı	ı Val 165
Leu	ı Gly	y Met	: Val	170	Val	Ala	a Ser	Ala	11€ 175		_ Asr	Lys	s Asr	180
Ala	Asn	n Arç	g Glu	185	Lev	ı Tyr	asp	Phe	Trp		туг	: Туг	Leu	1 Pro 195
Tyr	Leu	туг	Ser	Cys 200	: Ile	e Ser	Phe	e Leu	Gly 205	v Val	. Leu	ı Let	ı Lev	1 Leu 210
Val	Cys	Thr	Pro	Leu 215	Gly	Leu	Ala	Arg	Met 220		e Ser	: Val	. Thr	Gly 225
Lys	Leu	. Leu	ı Val	. Lys 230	Pro	Arg	Leu	. Leu	Glu 235		Leu	Glu	Glu	Gln 240
Leu	Tyr	: Сув	s Ser	Ala 245	Phe	Glu	Glu	Ala	Ala 250		. Thr	Arg	Arg	7 Ile 255
Cys	Asn	Pro	Thr	Ser 260	Cys	Trp	Leu	Pro	Leu 265		Met	Glu	Leu	Leu 270
His	Arg	Gln	Val	Leu 275	Ala	Leu	Gln	Thr	Gln 280	Arg	Val	Leu	Leu	Glu 285
Lys	Arg	Arg	Lys	Ala 290	Ser	Ala	Trp	Gln	Arg 295	Asn	Leu	Gly	Tyr	Pro 300
Leu	Ala	Met	Leu	Cys 305	Leu	Leu	Val	Leu	Thr 310	Gly	Leu	Ser	Val	Leu 315
Ile	Val	Ala	Ile	His 320	Ile	Leu	Glu	Leu	Leu 325	Ile	Asp	Glu	Ala	Ala 330
Met	Pro	Arg	Gly	Met 335	Gln	Gly	Thr	Ser	Leu 340	Gly	Gln	Val	Ser	Phe 345
Ser	Lys	Leu	Gly	Ser 350	Phe	Gly	Ala	Val	Ile 355	Gln	Val	Val	Leu	Ile 360
Phe	Tyr	Leu	Met	Val 365	Ser	Ser	Val	Val	Gly 370	Phe	Tyr	Ser	Ser	Pro 375
Leu	Phe	Arg	Ser	Leu 380	Arg	Pro	Arg	Trp	His 385	Asp	Thr	Ala	Met	Thr 390
Gln	Ile	Ile	Gly	Asn 395	Cys	Val	Cys	Leu	Leu 400	Val	Leu	Ser	Ser	Ala 405
Leu	Pro	Val	Phe	Ser 410	Arg	Thr	Leu	Gly	Leu 415	Thr	Arg	Phe	Asp	Leu 420
Leu	Gly	Asp	Phe	Gly 425	Arg	Phe	Asn	Trp	Leu 430	Gly	Asn	Phe	Tyr	Ile 435
Val	Phe	Leu	Tyr	Asn	Ala	Ala	Phe	Ala	Glv	T.e.11	Thr	Thr	T.OH	Cure

440 445 450

Leu Val Lys Thr Phe Thr Ala Ala Val Arg Ala Glu Leu Ile Arg 455 460 465

Ala Phe Gly Leu Asp Arg Leu Pro Leu Pro Val Ser Gly Phe Pro 470 475 480

Gln Ala Ser Arg Lys Thr Gln His Gln 485

<210> 139

<211> 294

<212> DNA

<213> Homo sapiens

<220>

<221> unsure

<222> 53, 57

<223> unknown base

<400> 139

ggetgeegag ggaaggeece ttgggttggt ettggttget tggeggegge 50 ggnttentee eegetegtee teecegggee cagaggeace teggetteag 100 teatgetgag cagagtatgg aageacetga etacegaggt etateegtge 150 gagaacaget atteeacgag aggateegeg agtgtattat ateaacaett 200 etgtttgeaa eactgtacat eetetgeeac atetteetga eeegetteaa 250 gaageetget gagtteacea eagtggatga tgaagatgee aeeg 294

<210> 140

<211> 526

<212> DNA

<213> Homo sapiens

<220>

<221> unsure

<222> 197, 349

<223> unknown base

<400> 140

gaccgacctt aaagagtggg agcaaaggga ggacagagcc ttttaaaacg 50 aggcggtggt gcctgcctt taagggcggg gcgtccggac gactgtatct 100 gagccccaga ctgccccgag tttctgtcgc aggctgcgag gaaaggcccc 150 taggctgggt ctggtgcttg gcggcgggg cttcctcccc gttgtcntcc 200 ccgggcccag aggcacctcg gcttcagtca tgctgagcag agtatggaag 250 cacctgacta cgaagtgcta tccgtgcgag aacagctatt ccacgagagg 300 atccgcggt gtattatatc aacacttctg tttgcaacac tgtacatcnt 350 ctgcacactc ttcctgaccc gcttcaagaa gcctgctgag ttcaccacag 400 tggatgatga agatgccacc gtcaacaaga ttgcgctcga gctgtgcacc 450

```
tttaccctgg caattgccct gggtgctgtc ctgctcctgc ccttctccat 500
 catcagcaat gaggtgctgc actccc 526
<210> 141
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 141
 gactgtatct gagccccaga ctgc 24
<210> 142
<211> 20
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 142
 tcagcaatga ggtgctgctc 20
<210> 143
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 143
tgaggaagat gagggacagg ttqg 24
<210> 144
<211> 50
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 144
 tatggaagca cctgactacg aagtgctatc cgtgcgagaa cagctattcc 50
<210> 145
<211> 685
<212> DNA
<213> Homo sapiens
<400> 145
gatgtgctcc ttggagctgg tgtgcagtgt cctgactgta agatcaagtc 50
caaacctgtt ttggaattga ggaaacttct cttttgatct cagcccttgg 100
tggtccaggt cttcatgctg ctgtgggtga tattactggt cctggctcct 150
gtcagtggac agtttgcaag gacacccagg cccattattt tcctccagcc 200
tccatggacc acagtcttcc aaggagagag agtgaccctc acttgcaagg 250
```

gatttegett etaeteacea cagaaaacaa aatggtacea teggtacett 300 gggaaagaaa taetaagaga aaceecagae aatateettg aggtteagga 350 atetggagag taeagatgee aggeecaggg eteecetete agtageeetg 400 tgeaettgga ttttettea gagatgggat tteeteatge tgeecagget 450 aatgttgaae teetgggete aagtgatetg eteaectagg eeteteaaag 500 egetgggatt aeagettege tgateetgea ageteeaett teetgtgtttg 550 aaggagaete tgtggttetg aggtgeeggg eaaaggegga agtaaeaetg 600 aataataeta tttaeaagaa tgataatgte etggeattee ttaataaaag 650 aaetgaette caaaaaaaaa aaaaaaaaa aaaaa 685

<210> 146 <211> 124

<212> PRT

<213> Homo sapiens

<400> 146

Met Leu Leu Trp Val Ile Leu Leu Val Leu Ala Pro Val Ser Gly 1 5 10

Gln Phe Ala Arg Thr Pro Arg Pro Ile Ile Phe Leu Gln Pro Pro 20 25 30

Trp Thr Thr Val Phe Gln Gly Glu Arg Val Thr Leu Thr Cys Lys 35 40 45

Gly Phe Arg Phe Tyr Ser Pro Gln Lys Thr Lys Trp Tyr His Arg
50 55 60

Tyr Leu Gly Lys Glu Ile Leu Arg Glu Thr Pro Asp Asn Ile Leu 65 70 75

Glu Val Gln Glu Ser Gly Glu Tyr Arg Cys Gln Ala Gln Gly Ser 80 85 90

Pro Leu Ser Ser Pro Val His Leu Asp Phe Ser Ser Glu Met Gly 95 100 105

Phe Pro His Ala Ala Gln Ala Asn Val Glu Leu Leu Gly Ser Ser 110 115 120

Asp Leu Leu Thr

<210> 147

<211> 1621

<212> DNA

<213> Homo sapiens

<400> 147

cagaagagg ggctagctag ctgtctctgc ggaccaggga gacccccgcg 50 ccccccggt gtgaggcgc ctcacagggc cgggtgggct ggcgagccga 100 cgcggcggcg gaggaggctg tgaggagtgt gtggaacagg acccgggaca 150

gaggaaccat ggctccgcag aacctgagca ccttttgcct gttgctgcta 200 tacctcatcg gggcggtgat tgccggacga gatttctata agatcttggg 250 ggtgcctcga agtgcctcta taaaaggatat taaaaaggcc tataggaaac 300 tagecetgea getteatece gaceggaace etgatgatee acaageeeag 350 gagaaattcc aggatctggg tgctgcttat gaggttctgt cagatagtga 400 gaaacggaaa cagtacgata cttatggtga agaaggatta aaagatggtc 450 atcagagete ecatggagae attttteae acttetttgg ggattttggt 500 ttcatgtttg gaggaacccc tcgtcagcaa gacagaaata ttccaagagg 550 aagtgatatt attgtagatc tagaagtcac tttggaagaa gtatatgcag 600 gaaattttgt ggaagtagtt agaaacaaac ctgtggcaag gcaggctcct 650 ggcaaacgga agtgcaattg tcggcaagag atgcggacca cccagctggg 700 ccctgggcgc ttccaaatga cccaggaggt ggtctgcgac gaatgcccta 750 atgtcaaact agtgaatgaa gaacgaacgc tggaagtaga aatagagcct 800 ggggtgagag acggcatgga gtaccccttt attggagaag gtgagcctca 850 cgtggatggg gagcctggag atttacggtt ccgaatcaaa gttgtcaagc 900 acccaatatt tgaaaggaga ggagatgatt tgtacacaaa tgtgacaatc 950 tcattagttg agtcactggt tggctttgag atggatatta ctcacttgga 1000 tggtcacaag gtacatattt cccgggataa gatcaccagg ccaggagcga 1050 agctatggaa gaaaggggaa gggctcccca actttgacaa caacaatatc 1100 aagggctctt tgataatcac ttttgatgtg gattttccaa aagaacagtt 1150 aacagaggaa gcgagagaag gtatcaaaca gctactgaaa caagggtcag 1200 tgcagaaggt atacaatgga ctgcaaggat attgagagtg aataaaattg 1250 gactttgttt aaaataagtg aataagcgat atttattatc tgcaaggttt 1300 ttttgtgtgt gtttttgttt ttattttcaa tatgcaagtt aggcttaatt 1350 tttttatcta atgatcatca tgaaatgaat aagagggctt aagaatttgt 1400 ccatttgcat tcggaaaaga atgaccagca aaaggtttac taatacctct 1450 ccctttgggg atttaatgtc tggtgctgcc gcctgagttt caagaattaa 1500 agctgcaaga ggactccagg agcaaaagaa acacaatata gagggttgga 1550 gttgttagca atttcattca aaatgccaac tggagaagtc tgtttttaaa 1600 tacattttgt tgttattttt a 1621

<210> 148

<211> 358

<212> PRT

<400> 148 Met Ala Pro Gln Asn Leu Ser Thr Phe Cys Leu Leu Leu Tyr Leu Ile Gly Ala Val Ile Ala Gly Arg Asp Phe Tyr Lys Ile Leu Gly Val Pro Arg Ser Ala Ser Ile Lys Asp Ile Lys Lys Ala Tyr Arg Lys Leu Ala Leu Gln Leu His Pro Asp Arg Asn Pro Asp Asp Pro Gln Ala Gln Glu Lys Phe Gln Asp Leu Gly Ala Ala Tyr Glu Val Leu Ser Asp Ser Glu Lys Arg Lys Gln Tyr Asp Thr Tyr Gly Glu Glu Gly Leu Lys Asp Gly His Gln Ser Ser His Gly Asp Ile Phe Ser His Phe Phe Gly Asp Phe Gly Phe Met Phe Gly Gly Thr 110 115 Pro Arg Gln Gln Asp Arg Asn Ile Pro Arg Gly Ser Asp Ile Ile 130 Val Asp Leu Glu Val Thr Leu Glu Glu Val Tyr Ala Gly Asn Phe Val Glu Val Val Arg Asn Lys Pro Val Ala Arg Gln Ala Pro Gly 155 Lys Arg Lys Cys Asn Cys Arg Gln Glu Met Arg Thr Thr Gln Leu 175 Gly Pro Gly Arg Phe Gln Met Thr Gln Glu Val Val Cys Asp Glu Cys Pro Asn Val Lys Leu Val Asn Glu Glu Arg Thr Leu Glu Val 200 Glu Ile Glu Pro Gly Val Arg Asp Gly Met Glu Tyr Pro Phe Ile 220 Gly Glu Gly Glu Pro His Val Asp Gly Glu Pro Gly Asp Leu Arg 230 235 Phe Arg Ile Lys Val Val Lys His Pro Ile Phe Glu Arg Arg Gly Asp Asp Leu Tyr Thr Asn Val Thr Ile Ser Leu Val Glu Ser Leu Val Gly Phe Glu Met Asp Ile Thr His Leu Asp Gly His Lys Val His Ile Ser Arg Asp Lys Ile Thr Arg Pro Gly Ala Lys Leu Trp

290

```
Lys Lys Gly Glu Gly Leu Pro Asn Phe Asp Asn Asn Ile Lys
                  305
                                                          315
 Gly Ser Leu Ile Ile Thr Phe Asp Val Asp Phe Pro Lys Glu Gln
                  320
 Leu Thr Glu Glu Ala Arg Glu Gly Ile Lys Gln Leu Leu Lys Gln
                  335
                                      340
 Gly Ser Val Gln Lys Val Tyr Asn Gly Leu Gln Gly Tyr
                                      355
<210> 149
<211> 509
<212> DNA
<213> Homo sapiens
<220>
<221> unsure
<222> 34, 52, 134, 142, 155, 158, 196, 217, 228, 272, 347, 410, 445,
      482
<223> unknown base
<400> 149
 tgggaccagg gaaccccggg cccccggtg gagngcctaa caggccggtg 50
 gntgcgaccg aagcggcggg cggaggaggt tttgaggatt tttgggaacag 100
 gacccggaca gaggaaccat ggttccgcag aacntgagca cnttttgcct 150
 gttgntgnta tacttcatcg gggcggtgat tgccggacga gatttntata 200
 agattttggg gtgcctngaa gtgccttnta taaaggatat taaaaaggcc 250
 tataggaaac tagccctgca gntttatccc gaccggaacc ctgatgatcc 300
 acaagcccag gagaaattcc aggatttggg tgctgcttat gaggttntgt 350
 cagatagtga gaaacggaaa cagtacgata attatggtga agaaggatta 400
 aaagatggtn atcagagete eeatggagae attttteae acttntttgg 450
 ggattttggt ttcatgtttg gaggaacccc tngtcagcaa gacagaaata 500
 ttccaagag 509
<210> 150
<211> 1532
<212> DNA
<213> Homo sapiens
<400> 150
ggcacgaggc ggcggggcag tcgcgggatg cgcccgggag ccacagcctg 50
aggccctcag gtctctgcag gtgtcgtgga ggaacctagc acctgccatc 100
ctcttcccca atttgccact tccagcagct ttagcccatg aggaggatgt 150
gaccgggact gagtcaggag ccctctggaa gcatggagac tgtggtgatt 200
gttgccatag gtgtgctggc caccatcttt ctggcttcgt ttgcagcctt 250
```

ggtgctggtt tgcaggcagc gctactgccg gccgcgagac ctgctgcagc 300

```
gctatgattc taagcccatt gtggacctca ttggtgccat ggagacccag 350
tctgagccct ctgagttaga actggacgat gtcgttatca ccaaccccca 400
cattgaggcc attctggaga atgaagactg gatcgaagat gcctcgggtc 450
tcatgtccca ctgcattgcc atcttgaaga tttgtcacac tctgacagag 500
aagettgttg ccatgacaat gggetetggg gecaagatga agaetteage 550
cagtgtcagc gacatcattg tggtggccaa gcggatcagc cccagggtgg 600
atgatgttgt gaagtcgatg taccctccgt tggaccccaa actcctggac 650
gcacggacga etgecetget cetgtetgte agteacetgg tgetggtgae 700
aaggaatgcc tgccatctga cgggaggcct ggactggatt gaccagtctc 750
tgtcggctgc tgaggagcat ttggaagtcc ttcgagaagc agccctagct 800
tctgagccag ataaaggcct cccaggccct gaaggcttcc tgcaggagca 850
gtctgcaatt tagtgcctac aggccagcag ctagccatga aggcccctgc 900
cgccatccct ggatggctca gcttagcctt ctactttttc ctatagagtt 950
agttgttctc cacggctgga gagttcagct gtgtgtgcat agtaaagcag 1000
gagatccccg tcagtttatg cctcttttgc agttgcaaac tgtggctggt 1050
gagtggcagt ctaatactac agttagggga gatgccattc actctctgca 1100
agaggagtat tgaaaactgg tggactgtca gctttattta gctcacctag 1150
tgttttcaag aaaattgagc caccgtctaa gaaatcaaga ggtttcacat 1200
taaaattaga atttctggcc tctctcgatc ggtcagaatg tgtggcaatt 1250
ctgatctgca ttttcagaag aggacaatca attgaaacta agtaggggtt 1300
tcttcttttg gcaagacttg tactctctca cctggcctgt ttcatttatt 1350
tgtattatet geetggteee tgaggegtet gggtetetee tetecettge 1400
aggtttgggt ttgaagctga ggaactacaa agttgatgat ttctttttta 1450
tetttatgee tgeaatttta eetagetace actaggtgga tagtaaattt 1500
atacttatgt ttccctcaaa aaaaaaaaaa aa 1532
```

<210> 151

<211> 226

<212> PRT

<213> Homo sapiens

<400> 151

Met Glu Thr Val Val Ile Val Ala Ile Gly Val Leu Ala Thr Ile

1 10 15

Phe Leu Ala Ser Phe Ala Ala Leu Val Leu Val Cys Arg Gln Arg
20 25 30

Tyr Cys Arg Pro Arg Asp Leu Leu Gln Arg Tyr Asp Ser Lys Pro

35 40 45

Ile Val Asp Leu Ile Gly Ala Met Glu Thr Gln Ser Glu Pro Ser 50 55 60

Glu Leu Glu Leu Asp Asp Val Val Ile Thr Asn Pro His Ile Glu
65 70 75

Ala Ile Leu Glu Asn Glu Asp Trp Ile Glu Asp Ala Ser Gly Leu 80 85 90

Met Ser His Cys Ile Ala Ile Leu Lys Ile Cys His Thr Leu Thr

Glu Lys Leu Val Ala Met Thr Met Gly Ser Gly Ala Lys Met Lys 110 115 120

Thr Ser Ala Ser Val Ser Asp IIe IIe Val Val Ala Lys Arg IIe 125 130 135

Ser Pro Arg Val Asp Asp Val Val Lys Ser Met Tyr Pro Pro Leu 140 145 150

Asp Pro Lys Leu Leu Asp Ala Arg Thr Thr Ala Leu Leu Leu Ser 155 160 : 165

Val Ser His Leu Val Leu Val Thr Arg Asn Ala Cys His Leu Thr 170 175 180

Gly Gly Leu Asp Trp Ile Asp Gln Ser Leu Ser Ala Ala Glu Glu 185 190 195

His Leu Glu Val Leu Arg Glu Ala Ala Leu Ala Ser Glu Pro Asp 200 205 210

Ile

<210> 152

<211> 1027

<212> DNA

<213> Homo sapiens

<220>

<221> unsure

<222> 1017, 1020

<223> unknown base

<400> 152

getteattte teeegaetea getteeeae etgggettte egaggtgett 50
tegeegetgt eeceaecaet geageeatga teteettaae ggacaegeag 100
aaaattggaa tgggattaae aggatttgga gtgttttee tgttetttgg 150
aatgattete ttttttgaca aageaetaet ggetattgga aatgtttat 200
ttgtageegg ettggetttt gtaattggt tagaaagaae atteagatte 250
ttetteeaaa aacataaaat gaaagetaea ggtttttte tgggtggtgt 300

```
atttgtagtc cttattggtt ggcctttgat aggcatgatc ttcgaaattt 350
 atggattttt tctcttqttc agggqcttct ttcctqtcgt tqttggcttt 400
 attagaagag tgccagtcct tggatccctc ctaaatttac ctggaattag 450
 atcatttgta gataaagttg gagaaagcaa caatatggta taacaacaag 500
 tgaatttgaa gactcattta aaatattgtg ttatttataa agtcatttga 550
 agaatattca gcacaaaatt aaattacatq aaatagcttq taatqttctt 600
 tacaggagtt taaaacgtat agcctacaaa gtaccagcag caaattagca 650
 aagaaqcaqt gaaaacaqqc ttctactcaa qtqaactaaq aaqaaqtcaq 700
 caagcaaact gagagaggtg aaatccatgt taatgatgct taagaaactc 750
 ttgaaggcta tttgtgttgt ttttccacaa tgtgcgaaac tcagccatcc 800
 ttagagaact gtggtgcctg tttctttct ttttattttg aaggctcagg 850
 agcatccata ggcatttgct ttttagaagt gtccactgca atggcaaaaa 900
 tatttccagt tgcactgtat ctctggaagt gatgcatgaa ttcgattgga 950
 ttgtgtcatt ttaaagtatt aaaaccaagg aaaccccaat tttgatgtat 1000
 ggattacttt tttttgngcn cagggcc 1027
<210> 153
<211> 138
<212> PRT
<213> Homo sapiens
<220>
<221> N-myristoylation Sites
<222> 11-16, 51-56 and 116-121
<223> N-myristoylation Sites.
<220>
<221> Transmembrane domains
<222> 12-30, 33-52, 69-89 and 93-109
<223> Transmembrane domains
<220>
<221> Aminoacyl-transfer RNA Synthetases.
<222> 49-59
<223> Aminoacyl-transfer RNA synthetases class-II protein.
<400> 153
Met Ile Ser Leu Thr Asp Thr Gln Lys Ile Gly Met Gly Leu Thr
Gly Phe Gly Val Phe Phe Leu Phe Phe Gly Met Ile Leu Phe Phe
```

40

55

60

Asp Lys Ala Leu Leu Ala Ile Gly Asn Val Leu Phe Val Ala Gly

Leu Ala Phe Val Ile Gly Leu Glu Arg Thr Phe Arg Phe Phe

50

```
Gln Lys His Lys Met 65 Lys Ala Thr Gly Phe Phe Leu Gly Gly Val 75

Phe Val Val Leu 1le 80 Gly Trp Pro Leu 1le 85 Gly Met 1le Phe Glu 90

Ile Tyr Gly Phe Phe Leu Leu Phe Arg 61 Gly Phe Phe Pro Val Val 105

Val Gly Phe Ile Arg 110 Ser Phe Val Asp 130 Val Gly Glu Ser Asn 135
```

Asn Met Val

<210> 154 <211> 405 <212> DNA <213> Homo sapiens <220> <221> unsure

<221> unsure <222> 66

<223> unknown base

<400> 154
gaagacgtgg cggctctcgc ctgggctgtt tcccggcttc atttctcccg 50
actcagcttc ccaccntggg ctttccgagg tgctttcgcc gctgtcccca 100
ccactgcagc catgatctcc ttaacggaca cgcagaaaat tggaatggga 150
ttaaccggat ttggagtgtt tttcctgttc tttggaatga ttctcttttt 200
tgacaaagca ctactggcta ttggaaatgt tttatttgta gccggcttgg 250
cttttgtaat tggtttagaa agaacattca gattcttctt ccaaaaacat 300
aaaatgaaag ctacaggttt tttctgggt ggtgtatttg tagtccttat 350
tggttggcct ttgataggca tgatcttcga aatttatgga tttttctct 400
tgttc 405

<210> 155 <211> 1781 <212> DNA <213> Homo sapiens

<400> 155
ggcacgaggc tgaacccagc cggctccatc tcagcttctg gtttctaagt 50
ccatgtgcca aaggctgcca ggaaggagac gccttcctga gtcctggatc 100
tttcttcctt ctggaaatct ttgactgtgg gtagttattt atttctgaat 150
aagagcgtcc acgcatcatg gacctcgcgg gactgctgaa gtctcagttc 200
ctgtgccacc tggtcttctg ctacgtcttt attgcctcag ggctaatcat 250

caacaccatt cagetettea etetecteet etggeecatt aacaagcage 300 tetteeggaa gateaactge agactgteet attgeatete aagecagetg 350 gtgatgctgc tggagtggtg gtcgggcacg gaatgcacca tcttcacgga 400 cccgcgcgcc tacctcaagt atgggaagga aaatgccatc gtggttctca 450 accacaagtt tgaaattgac tttctgtgtg gctggagcct gtccgaacgc 500 tttgggctgt tagggggctc caaggtcctg gccaagaaag agctggccta 550 tgtcccaatt atcggctgga tgtggtactt caccgagatg gtcttctgtt 600 cqcqcaagtg ggagcaggat cgcaagacgg ttgccaccag tttgcagcac 650 ctccgggact accccgagaa gtattttttc ctgattcact gtgagggcac 700 acggttcacg gagaagaagc atgagatcag catgcaggtg gcccgggcca 750 aggggetgee tegeeteaag cateacetgt tgecaegaae caagggette 800 gccatcaccg tgaggagctt gagaaatgta gtttcagctg tatatgactg 850 tacactcaat ttcagaaata atgaaaatcc aacactgctg ggagtcctaa 900 acggaaagaa ataccatgca gatttgtatg ttaggaggat cccactggaa 950 gacatecetg aagacgatga egagtgeteg geetggetge acaageteta 1000 ccaqqaqaaq qatqcctttc aqqaqqaqta ctacaqqacq qqcaccttcc 1050 cagagacgec catggtgeec eeeeggegge cetggaeeet egtgaactgg 1100 ctgttttggg cctcqctqqt qctctaccct ttcttccaqt tcctgqtcag 1150 catgatcagg agegggtctt ccctgacgct ggccagcttc atcctcgtct 1200 tctttgtggc ctccgtggga gttcgatgga tgattggtgt gacggaaatt 1250 gacaagggct ctgcctacgg caactctgac agcaagcaga aactgaatga 1300 ctgactcagg gaggtgtcac catccgaagg gaaccttggg gaactggtgg 1350 cctctqcata tcctccttag tgggacacgg tgacaaaggc tgggtgagcc 1400 cctgctgggc acggcggaag tcacgacctc tccagccagg gagtctggtc 1450 tcaaggccgg atggggagga agatgttttg taatcttttt ttccccatgt 1500 getttagtgg getttggttt tetttttgtg cgagtgtgtg tgagaatgge 1550 tgtgtggtga gtgtgaactt tgttctgtga tcatagaaag ggtattttag 1600 gctgcagggg agggcagggc tggggaccga aggggacaag ttcccctttc 1650 atcetttggt getgagtttt etgtaaceet tggttgeeag agataaagtg 1700 aaaagtgctt taggtgagat gactaaatta tgcctccaag aaaaaaaaat 1750 taaagtgctt ttctgggtca aaaaaaaaaa a 1781

<210> 156

<211> 378 <212> PRT <213> Homo sapiens

<400> 156 Met Asp Leu Ala Gly Leu Leu Lys Ser Gln Phe Leu Cys His Leu Val Phe Cys Tyr Val Phe Ile Ala Ser Gly Leu Ile Ile Asn Thr Ile Gln Leu Phe Thr Leu Leu Leu Trp Pro Ile Asn Lys Gln Leu Phe Arg Lys Ile Asn Cys Arg Leu Ser Tyr Cys Ile Ser Ser Gln Leu Val Met Leu Leu Glu Trp Trp Ser Gly Thr Glu Cys Thr Ile Phe Thr Asp Pro Arg Ala Tyr Leu Lys Tyr Gly Lys Glu Asn Ala Ile Val Val Leu Asn His Lys Phe Glu Ile Asp Phe Leu Cys Gly 100 Trp Ser Leu Ser Glu Arg Phe Gly Leu Leu Gly Gly Ser Lys Val Leu Ala Lys Lys Glu Leu Ala Tyr Val Pro Ile Ile Gly Trp Met 125 130 Trp Tyr Phe Thr Glu Met Val Phe Cys Ser Arg Lys Trp Glu Gln Asp Arg Lys Thr Val Ala Thr Ser Leu Gln His Leu Arg Asp Tyr Pro Glu Lys Tyr Phe Phe Leu Ile His Cys Glu Gly Thr Arg Phe Thr Glu Lys Lys His Glu Ile Ser Met Gln Val Ala Arg Ala Lys Gly Leu Pro Arg Leu Lys His His Leu Leu Pro Arg Thr Lys Gly 200 205 210 Phe Ala Ile Thr Val Arg Ser Leu Arg Asn Val Val Ser Ala Val Tyr Asp Cys Thr Leu Asn Phe Arg Asn Asn Glu Asn Pro Thr Leu 230 235 Leu Gly Val Leu Asn Gly Lys Lys Tyr His Ala Asp Leu Tyr Val 250 Arg Arg Ile Pro Leu Glu Asp Ile Pro Glu Asp Asp Asp Glu Cys 265 Ser Ala Trp Leu His Lys Leu Tyr Gln Glu Lys Asp Ala Phe Gln 275 280 Glu Glu Tyr Tyr Arg Thr Gly Thr Phe Pro Glu Thr Pro Met Val

290 295 300 Pro Pro Arg Arg Pro Trp Thr Leu Val Asn Trp Leu Phe Trp Ala 305 315 Ser Leu Val Leu Tyr Pro Phe Phe Gln Phe Leu Val Ser Met Ile 325 Arg Ser Gly Ser Ser Leu Thr Leu Ala Ser Phe Ile Leu Val Phe 335 340 345 Phe Val Ala Ser Val Gly Val Arg Trp Met Ile Gly Val Thr Glu 355 Ile Asp Lys Gly Ser Ala Tyr Gly Asn Ser Asp Ser Lys Gln Lys 365

Leu Asn Asp

<210> 157 <211> 1849 <212> DNA <213> Homo sapiens

<400> 157 ctgaggcggc ggtagcatgg agggggagag tacgtcggcg gtgctctcgg 50 getttgtget eggegeacte getttecage aceteaacae ggaeteggae 100 acggaaggtt ttcttcttgg ggaagtaaaa ggtgaagcca agaacagcat 150 tactgattcc caaatggatg atgttgaagt tgtttataca attgacattc 200 agaaatatat tccatgctat cagcttttta gcttttataa ttcttcaggc 250 gaagtaaatg agcaagcact gaagaaaata ttatcaaatg tcaaaaagaa 300 tgtggtaggt tggtacaaat tccgtcgtca ttcagatcag atcatgacgt 350 ttagagagag gctgcttcac aaaaacttgc aggagcattt ttcaaaccaa 400 gacettgttt ttetgetatt aacaceaagt ataataacag aaagetgete 450 tactcatcga ctggaacatt ccttatataa acctcaaaaa ggactttttc 500 acagggtacc tttagtggtt gccaatctgg gcatgtctga acaactgggt 550 tataaaactg tatcaggttc ctgtatgtcc actggtttta gccgagcagt 600 acaaacacac agctctaaat tttttgaaga agatggatcc ttaaaggagg 650 tacataagat aaatgaaatg tatgcttcat tacaagagga attaaagagt 700 atatgcaaaa aagtggaaga cagtgaacaa gcagtagata aactagtaaa 750 ggatgtaaac agattaaaac gagaaattga gaaaaggaga ggagcacaga 800 ttcaggcagc aagagagaag aacatccaaa aagaccctca ggagaacatt 850 tttctttgtc aggcattacg gacctttttt ccaaattctg aatttcttca 900 ttcatgtgtt atgtctttaa aaaatagaca tgtttctaaa agtagctgta 950

actacaacca ccatctcgat gtagtagaca atctgacctt aatggtagaa 1000 cacactgaca ttcctgaagc tagtccagct agtacaccac aaatcattaa 1050 gcataaagcc ttagacttag atgacagatg gcaattcaag agatctcggt 1100 tgttagatac acaagacaaa cgatctaaag caaatactgg tagtagtaac 1150 caagataaag catccaaaat gagcagccca gaaacagatg aagaaattga 1200 aaagatgaag ggttttggtg aatattcacg gtctcctaca ttttgatcct 1250 tttaacctta caaggagatt tttttatttg gctgatgggt aaagccaaac 1300 atttctattg tttttactat gttgagctac ttgcagtaag ttcatttgtt 1350 tttactatgt tcacctgttt gcagtaatac acagataact cttagtgcat 1400 ttacttcaca aagtactttt tcaaacatca gatgctttta tttccaaacc 1450 tttttttcac ctttcactaa gttgttgagg ggaaggctta cacagacaca 1500 ttctttagaa ttggaaaagt gagaccaggc acagtggctc acacctgtaa 1550 teccageaet tagggaagae aagteaggag gattgattga agetaggagt 1600 tagagaccag cctgggcaac gtattgagac catgtctatt aaaaaataaa 1650 atggaaaagc aagaatagcc ttattttcaa aatatggaaa gaaatttata 1700 tgaaaattta tctgagtcat taaaattctc cttaagtgat acttttttag 1750 aagtacatta tggctagagt tgccagataa aatgctggat atcatgcaat 1800

<210> 158

<211> 409

<212> PRT

<213> Homo sapiens

<400> 158

Met Glu Gly Glu Ser Thr Ser Ala Val Leu Ser Gly Phe Val Leu $1 \hspace{1cm} 5 \hspace{1cm} 10 \hspace{1cm} 15$

Gly Ala Leu Ala Phe Gln His Leu Asn Thr Asp Ser Asp Thr Glu 20 25 30

Gly Phe Leu Leu Gly Glu Val Lys Gly Glu Ala Lys Asn Ser Ile 35 40 45

Thr Asp Ser Gln Met Asp Asp Val Glu Val Val Tyr Thr Ile Asp 50 55 60

Ile Gln Lys Tyr Ile Pro Cys Tyr Gln Leu Phe Ser Phe Tyr Asn 65 70 75

Ser Ser Gly Glu Val Asn Glu Gln Ala Leu Lys Lys Ile Leu Ser

Asn Val Lys Lys Asn Val Val Gly Trp Tyr Lys Phe Arg Arg His 95 100 105

Ser Pro Thr Phe

Ser Asp Gln Ile Met Thr Phe Arg Glu Arg Leu Leu His Lys Asn Leu Gln Glu His Phe Ser Asn Gln Asp Leu Val Phe Leu Leu Thr Pro Ser Ile Ile Thr Glu Ser Cys Ser Thr His Arg Leu Glu 140 His Ser Leu Tyr Lys Pro Gln Lys Gly Leu Phe His Arg Val Pro 160 Leu Val Val Ala Asn Leu Gly Met Ser Glu Gln Leu Gly Tyr Lys 180 Thr Val Ser Gly Ser Cys Met Ser Thr Gly Phe Ser Arg Ala Val 190 Gln Thr His Ser Ser Lys Phe Phe Glu Glu Asp Gly Ser Leu Lys 205 Glu Val His Lys Ile Asn Glu Met Tyr Ala Ser Leu Gln Glu Glu Leu Lys Ser Ile Cys Lys Lys Val Glu Asp Ser Glu Gln Ala Val Asp Lys Leu Val Lys Asp Val Asn Arg Leu Lys Arg Glu Ile Glu 245 250 Lys Arg Arg Gly Ala Gln Ile Gln Ala Ala Arg Glu Lys Asn Ile 260 265 Gln Lys Asp Pro Gln Glu Asn Ile Phe Leu Cys Gln Ala Leu Arg 280 Thr Phe Phe Pro Asn Ser Glu Phe Leu His Ser Cys Val Met Ser 295 Leu Lys Asn Arg His Val Ser Lys Ser Ser Cys Asn Tyr Asn His His Leu Asp Val Val Asp Asn Leu Thr Leu Met Val Glu His Thr 320 Asp Ile Pro Glu Ala Ser Pro Ala Ser Thr Pro Gln Ile Ile Lys 340 His Lys Ala Leu Asp Leu Asp Asp Arg Trp Gln Phe Lys Arg Ser 350 Arg Leu Leu Asp Thr Gln Asp Lys Arg Ser Lys Ala Asn Thr Gly 370 Ser Ser Asn Gln Asp Lys Ala Ser Lys Met Ser Ser Pro Glu Thr 385 Asp Glu Glu Ile Glu Lys Met Lys Gly Phe Gly Glu Tyr Ser Arg

<210> 159 <211> 2651 <212> DNA <213> Homo sapiens

<400> 159 acgagoggac cagogoaggg cagocoaago agogogoago gaacgooogo 100 egeegeeeae accetetgeg gteeeegegg egeetgeeae cetteeetee 150 ttccccgcgt ccccgcctcg ccggccagtc agettgccgg gttcgctgcc 200 ccgcgaaacc ccgaggtcac cagcccgcgc ctctgcttcc ctgggccgcg 250 egeegeetee aegeeeteet teteeeetgg eeeggegeet ggeaeegggg 300 accettect gacecages ccaectetae titteccee geetetecte 350 cgcctgctcg cctcttccac caactccaac tecttctccc tecageteca 400 ctcgctagtc cccgactccg ccagccctcg gcccgctgcc gtagcgccgc 450 ttcccgtccg gtcccaaagg tgggaacgcg tccgcccgg cccqcaccat 500 ggcacggttc ggcttgcccg cgcttctctg caccctggca gtgctcagcg 550 ecgegetget ggetgeegag etcaagtega aaagttgete ggaagtgega 600 cgtctttacg tgtccaaagg cttcaacaag aacgatgccc ccctccacga 650 gatcaacggt gatcatttga agatctgtcc ccagggttct acctgctgct 700 ctcaagagat ggaggagaag tacagcctgc aaagtaaaga tgatttcaaa 750 agtgtggtca gcgaacagtg caatcatttg caagctgtct ttgcttcacg 800 ttacaagaag tttgatgaat tcttcaaaga actacttgaa aatgcagaga 850 aatccctgaa tgatatgttt gtgaagacat atggccattt atacatgcaa 900 aattotgago tatttaaaga totottogta gagttgaaac gttactacgt 950 ggtgggaaat gtgaacctgg aagaaatgct aaatgacttc tgggctcgcc 1000 tcctggagcg gatgttccgc ctggtgaact cccagtacca ctttacagat 1050 gagtatetgg aatgtgtgag caagtataeg gageagetga ageeettegg 1100 agatgtccct cgcaaattga agctccaggt tactcgtgct tttgtagcag 1150 eccgtacttt egeteaagge ttageggttg egggagatgt egtgageaag 1200 gtctccgtgg taaaccccac agcccagtgt acccatgccc tgttgaagat 1250 gatctactgc tcccactgcc ggggtctcgt gactgtgaag ccatgttaca 1300 actactgctc aaacatcatg agaggctgtt tggccaacca aggggatctc 1350 gattttgaat ggaacaattt catagatgct atgctgatgg tggcagagag 1400 gctagagggt cctttcaaca ttgaatcggt catggatccc atcgatgtga 1450

```
agatttctga tgctattatg aacatgcagg ataatagtgt tcaagtgtct 1500
 cagaaggttt tccagggatg tggacccccc aagcccctcc cagctggacg 1550
 aatttctcgt tccatctctg aaagtgcctt cagtgctcgc ttcagaccac 1600
 atcacccega ggaacgecca accacageag etggeactag tttggacega 1650
 ctggttactg atgtcaagga gaaactgaaa caggccaaga aattctggtc 1700
 ctcccttccg agcaacgttt gcaacgatga gaggatggct gcaggaaacg 1750
 gcaatgagga tgactgttgg aatgggaaag gcaaaagcag gtacctgttt 1800
 gcagtgacag gaaatggatt agccaaccag ggcaacaacc cagaggtcca 1850
 ggttgacacc agcaaaccag acatactgat cettegteaa atcatggete 1900
 ttcgagtgat gaccagcaag atgaagaatg catacaatgg gaacgacgtg 1950
 gacttctttg atatcagtga tgaaagtagt ggagaaggaa gtggaagtgg 2000
 ctgtgagtat cagcagtgcc cttcagagtt tgactacaat gccactgacc 2050
 atgctgggaa gagtgccaat gagaaagccg acagtgctgg tgtccgtcct 2100
 ggggcacagg cctacctcct cactgtcttc tgcatcttgt tcctggttat 2150
 gcagagagag tggagataat tctcaaactc tgagaaaaag tgttcatcaa 2200
 aaagttaaaa ggcaccagtt atcacttttc taccatccta gtgactttgc 2250
 tttttaaatg aatggacaac aatgtacagt ttttactatg tggccactgg 2300
 tttaagaagt gctgactttg ttttctcatt cagttttggg aggaaaaggg 2350
 actgtgcatt gagttggttc ctgctccccc aaaccatgtt aaacgtggct 2400
 aacagtgtag gtacagaact atagttagtt gtgcatttgt gattttatca 2450
 ctctattatt tgtttgtatg ttttttctc atttcgtttg tgggtttttt 2500
 tttccaactg tgatctcgcc ttgtttctta caagcaaacc agggtccctt 2550
 cttggcacgt aacatgtacg tatttctgaa atattaaata gctgtacaga 2600
 agcaggtttt atttatcatg ttatcttatt aaaagaaaaa gcccaaaaag 2650
 c 2651
<210> 160
<212> PRT
<213> Homo sapiens
```

<211> 556

<400> 160

Met Ala Arg Phe Gly Leu Pro Ala Leu Leu Cys Thr Leu Ala Val

Leu Ser Ala Ala Leu Leu Ala Ala Glu Leu Lys Ser Lys Ser Cys

Ser Glu Val Arg Arg Leu Tyr Val Ser Lys Gly Phe Asn Lys Asn

				35					40					45
Asp	Ala	Pro	Leu	His 50	Glu	Ile	Asn	Gly	Asp 55	His	Leu	Lys	Ile	Cys 60
Pro	Gln	Gly	Ser	Thr 65	Cys	Cys	Ser	Gln	Glu 70	Met	Glu	Glu	Lys	Tyr 75
Ser	Leu	Gln	Ser	Lys 80	Asp	Asp	Phe	Lys	Ser 85	Val	Val	Ser	Glu	Gln 90
Cys	Asn	His	Leu	Gln 95	Ala	Val	Phe	Ala	Ser 100	Arg	Tyr	Lys	Lys	Phe 105
Asp	Glu	Phe	Phe	Lys 110	Glu	Leu	Leu	Glu	Asn 115	Ala	Glu	Lys	Ser	Leu 120
Asn	Asp	Met	Phe	Val 125	Lys	Thr	Tyr	Gly	His 130	Leu	Tyr	Met	Gln	Asn 135
Ser	Glu	Leu	Phe	Lys 140	Asp	Leu	Phe	Val	Glu 145	Leu	Lys	Arg	Tyr	Tyr 150
Val	Val	Gly	Asn	Val 155	Asn	Leu	Glu	Glu	Met 160	Leu	Asn	Asp	Phe	Trp 165
Ala	Arg	Leu	Leu	Glu 170	Arg	Met	Phe	Arg	Leu 175	Val	Asn	Ser	Gln	Tyr 180
His	Phe	Thr	Asp	Glu 185	Tyr	Leu	Glu	Суз	Val 190	Ser	Lys	Tyr	Thr	Glu 195
Gln	Leu	Lys	Pro	Phe 200	Gly	Asp	Val	Pro	Arg 205	Lys	Leu	Lys	Leu	Gln 210
Val	Thr	Arg	Ala	Phe 215	Val	Ala	Ala	Arg	Thr 220	Phe	Ala	Gln	Gly	Leu 225
Ala	Val	Ala	Gly	Asp 230	Val	Val	Ser	Lys	Val 235	Ser	Val	Val	Asn	Pro 240
Thr	Ala	Gln	Cys	Thr 245	His	Ala	Leu	Leu	Lys 250	Met	Ile	Tyr	Cys	Ser 255
His	Суз	Arg	Gly	Leu 260	Val	Thr	Val	Lys	Pro 265	Суѕ	Tyr	Asn	Tyr	Cys 270
Ser	Asn	Ile	Met	Arg 275	Gly	Суз	Leu	Ala	Asn 280	Gln	Gly	Asp	Leu	Asp 285
Phe	Glu	Trp	Asn	Asn 290	Phe	Ile	Asp	Ala	Met 295	Leu	Met	Val	Ala	Glu 300
Arg	Leu	Glu	Gly	Pro 305	Phe	Asn	Ile	Glu	Ser 310	Va1	Met	Asp	Pro	Ile 315
Asp	Val	Lys	Ile	Ser 320	Asp	Ala	Ile	Met	Asn 325	Met	Gln	Asp	Asn	Ser 330
Val	Gln	Val	Ser	Gln 335	Lys	Val	Phe	Gln	Gly 340	Суѕ	Gly	Pro	Pro	Lys 345

Pro Leu Pro Ala Gly Arg Ile Ser Arg Ser Ile Ser Glu Ser Ala

				350)				355	<u>, </u>				360
Phe	Ser	Ala	Arg	Phe 365	Arg	Pro	His	His	370	Glu	Glu	Arg	Pro	Thr 375
Thr	Ala	Ala	Gly	Thr 380	Ser	Leu	Asp	Arg	Leu 385		Thr	Asp	Val	Lys 390
Glu	Lys	Leu	Lys	Gln 395	Ala	Lys	Lys	Phe	Trp 400		Ser	Leu	Pro	Ser 405
Asn	Val	Cys	Asn	Asp 410	Glu	Arg	Met	Ala	Ala 415	Gly	Asn	Gly	Asn	Glu 420
Asp	Asp	Cys	Trp	Asn 425	Gly	Lys	Gly	Lys	Ser 430		Tyr	Leu	Phe	Ala 435
Val	Thr	Gly	Asn	Gly 440	Leu	Ala	Asn	Gln	Gly 445	Asn	Asn	Pro	Glu	Val 450
Gln	Val	Asp	Thr	Ser 455	Lys	Pro	Asp	Ile	Leu 460	Ile	Leu	Arg	Gln	Ile 465
Met	Ala	Leu	Arg	Val 470	Met	Thr	Ser	Lys	Met 475	Lys	Asn	Ala	Tyr	Asn 480
Gly	Asn	Asp	Val	Asp 485	Phe	Phe	Asp	Ile	Ser 490	Asp	Glu	Ser	Ser	Gly 495
Glu	Gly	Ser	Gly	Ser 500	Gly	Cys	Glu	Tyr	Gln 505	Gln	Cys	Pro	Ser	Glu 510
Phe	Asp	Tyr	Asn	Ala 515	Thr	Asp	His	Ala	Gly 520	Lys	Ser	Ala	Asn	Glu 525
Lys	Ala	Asp	Ser	Ala 530	Gly	Val	Arg	Pro	Gly 535	Ala	Gln	Ala	Tyr	Leu 540
. Leu	Thr	Val	Phe	Cys 545	Ile	Leu	Phe	Leu	Val 550	Met	Gln	Arg		Trp 555
Arg														
<210>														
<211> <212>														
<213>	Art	ific	ial	Sequ	ence									
<220> <223>	Syn	thet	ic o	ligo	nucl	eoti	de p	robe						
<400> ctcc		ta aa	accc	caca	g cc	c 23								
<210>														
<211> <212>														
<213>		ifici	ial s	Seque	ence									

<220> <223> Synthetic oligonucleotide probe

```
<400> 162
  tcacatcgat gggatccatg accg 24
 <210> 163
 <211> 50
 <212> DNA
 <213> Artificial Sequence
 <220>
 <223> Synthetic oligonucleotide probe
 <400> 163
 ggtctcgtga ctgtgaagcc atgttacaac tactgctcaa acatcatgag 50
 <210> 164
 <211> 870
 <212> DNA
 <213> Homo sapiens
<400> 164
 ctcgccctca aatgggaacg ctggcctggg actaaagcat agaccaccag 50
 gctgagtatc ctgacctgag tcatccccag ggatcaggag cctccagcag 100
 ggaacettee attatattet teaageaact tacagetgea eegacagttg 150
 cgatgaaagt tctaatctct tccctcctcc tgttgctgcc actaatgctg 200
 atgtccatgg tctctagcag cctgaatcca ggggtcgcca gaggccacag 250
 ggaccgaggc caggcttcta ggagatggct ccaggaaggc ggccaagaat 300
 gtgagtgcaa agattggttc ctgagagccc cgagaagaaa attcatgaca 350
 gtgtctgggc tgccaaagaa gcagtgcccc tgtgatcatt tcaagggcaa 400
 tgtgaagaaa acaagacacc aaaggcacca cagaaagcca aacaagcatt 450
 ccagageetg ccageaattt etcaaacaat gtcagetaag aagetttget 500
 ctgcctttgt aggagetetg agegeeeact ettecaatta aacattetea 550
 gccaagaaga cagtgagcac acctaccaga cactcttctt ctcccacctc 600
 actotocoac tgtaccoacc cotaaatcat tocagtgoto tcaaaaagca 650
 tgtttttcaa gatcattttg tttgttgctc tctctagtgt cttcttctct 700
 cgtcagtctt agcctgtgcc ctccccttac ccaggcttag gcttaattac 750
 ctgaaagatt ccaggaaact gtagcttcct agctagtgtc atttaacctt 800
 aaatgcaatc aggaaagtag caaacagaag tcaataaata tttttaaatg 850
 tcaaaaaaa aaaaaaaaa 870
<210> 165
<211> 119
<212> PRT
<213> Homo sapiens
<400> 165
Met Lys Val Leu Ile Ser Ser Leu Leu Leu Leu Pro Leu Met
```

ļ.:

1 5 10 15

Leu Met Ser Met Val Ser Ser Ser Leu Asn Pro Gly Val Ala Arg 20 25 30

Gly His Arg Asp Arg Gly Gln Ala Ser Arg Arg Trp Leu Gln Glu 35 40 45

Gly Gly Gln Glu Cys Glu Cys Lys Asp Trp Phe Leu Arg Ala Pro
50 55 60

Arg Arg Lys Phe Met Thr Val Ser Gly Leu Pro Lys Lys Gln Cys
65 70 75

Pro Cys Asp His Phe Lys Gly Asn Val Lys Lys Thr Arg His Gln 80 85

Arg His His Arg Lys Pro Asn Lys His Ser Arg Ala Cys Gln Gln 95 100 105

Phe Leu Lys Gln Cys Gln Leu Arg Ser Phe Ala Leu Pro Leu 110 115

<210> 166

<211> 551

<212> DNA

<213> Homo sapiens

<400> 166

aatggetgte ttagtactte geetgacagt tgteetggga etgettgtet 50
tatteetgae etgetatgea gaegacaaac cagacaagee agaegacaag 100
ccagacgaet egggeaaaga eecaaageea gaetteeeea aatteetaag 150
ccteetggge acagagatea ttgagaatge agtegagtte ateeteeget 200
ccatgteeag gageacagga tttatggaat ttgatgataa tgaaggaaaa 250
catteateaa agtgacatee teaggacaca eecatgtgge teetggaeaa 300
teeaagagea geeaaateet gettteeag tttggeteea eaagteetee 350
aggacagage eeteaaagea acteeeaaeg agtteteagg atteaggete 400

tggcttcaac caaacagaac tcattttgaa caccctgact gcatttttgc 450 ttttagaaag ttagaataaa tatggcgctt tgggatcaca tagttgatgg 500

a 551

<210> 167

<211> 87

<212> PRT

<213> Homo sapiens

<400> 167

Met Ala Val Leu Val Leu Arg Leu Thr Val Val Leu Gly Leu Leu 1 5 10 10

Val Leu Phe Leu Thr Cys Tyr Ala Asp Asp Lys Pro Asp Lys Pro

Asp Asp Lys Pro Asp Asp Ser Gly Lys Asp Pro Lys Pro Asp Phe \$35\$

Pro Lys Phe Leu Ser Leu Leu Gly Thr Glu Ile Ile Glu Asn Ala 50 55 60

Val Glu Phe Ile Leu Arg Ser Met Ser Arg Ser Thr Gly Phe Met 65 70 75

Glu Phe Asp Asp Asn Glu Gly Lys His Ser Ser Lys 80 85

<210> 168

<211> 1371

<212> DNA

<213> Homo sapiens

<400> 168

ggacgccagc gcctgcagag gctgagcagg gaaaaagcca gtgccccagc 50 ggaagcacag ctcagagctg gtctgccatg gacatcctgg tcccactcct 100 gcagctgctg gtgctgcttc ttaccctgcc cctgcacctc atggctctgc 150 tgggctgctg gcagcccctg tgcaaaagct acttccccta cctgatggcc 200 gtgctgactc ccaagagcaa ccgcaagatg gagagcaaga aacgggagct 250 cttcagccag ataaaggggc ttacaggagc ctccgggaaa gtggccctac 300 tggagctggg ctgcggaacc ggagccaact ttcagttcta cccaccgggc 350 tgcagggtca cctgcctaga cccaaatccc cactttgaga agttcctgac 400 aaagagcatg gctgagaaca ggcacctcca atatgagcgg tttgtggtgg 450 ctcctggaga ggacatgaga cagctggctg atggctccat ggatgtggtg 500 gtetgeacte tggtgetgtg etetgtgeag ageceaagga aggteetgea 550 ggaggtccgg agagtactga gaccgggagg tgtgctcttt ttctgggagc 600 atgtggcaga accatatgga agctgggcct tcatgtggca gcaagttttc 650 gagcccacct ggaaacacat tggggatggc tgctgcctca ccagagagac 700 ctggaaggat cttgagaacg cccagttctc cgaaatccaa atggaacgac 750 agccccctcc cttgaagtgg ctacctgttg ggccccacat catgggaaag 800 gctgtcaaac aatctttccc aagctccaag gcactcattt gctccttccc 850 cageeteeaa ttagaacaag eeaceeacea geetatetat etteeactga 900 gagggaccta gcagaatgag agaagacatt catgtaccac ctactagtcc 950 ctctctcccc aacctctgcc agggcaatct ctaacttcaa tcccgccttc 1000 gacagtgaaa aagctctact tctacgctga cccagggagg aaacactagg 1050 accetgttgt atcetcaact geaagtttct ggactagtct cccaacgttt 1100

geeteceaat gttgteeett teettegtte eeatggtaaa geteeteeg 1150 ettteeteet gaggetacae eeatgegtet etaggaactg gteacaaaag 1200 teatggtgee tgeateeetg eeaageeeee etgaeeetet eteeeeaeta 1250 eeacettett eetgagetgg gggeaceagg gagaateaga gatgetgggg 1300 atgeeagage aagaeteaaa gaggeagagg ttttgttete aaatatttt 1350 taataaatag aegaaaceae g 1371

<210> 169

<211> 277

<212> PRT

<213> Homo sapiens

<400> 169

Met Asp Ile Leu Val Pro Leu Leu Gln Leu Leu Val Leu Leu Leu 1 5 10 15

Thr Leu Pro Leu His Leu Met Ala Leu Leu Gly Cys Trp Gln Pro
20 25 30

Leu Cys Lys Ser Tyr Phe Pro Tyr Leu Met Ala Val Leu Thr Pro 35 40 45

Lys Ser Asn Arg Lys Met Glu Ser Lys Lys Arg Glu Leu Phe Ser 50 55 60

Gln Ile Lys Gly Leu Thr Gly Ala Ser Gly Lys Val Ala Leu Leu 65 70 75

Glu Leu Gly Cys Gly Thr Gly Ala Asn Phe Gln Phe Tyr Pro Pro 80 $\,$ 85 $\,$ 90 $\,$

Gly Cys Arg Val Thr Cys Leu Asp Pro Asn Pro His Phe Glu Lys 95 100 105

Phe Leu Thr Lys Ser Met Ala Glu Asn Arg His Leu Gln Tyr Glu 110 115 120

Arg Phe Val Val Ala Pro Gly Glu Asp Met Arg Gln Leu Ala Asp 125 130 135

Gly Ser Met Asp Val Val Val Cys Thr Leu Val Leu Cys Ser Val 140 145 150

Gln Ser Pro Arg Lys Val Leu Gln Glu Val Arg Arg Val Leu Arg 155 160 165

Pro Gly Gly Val Leu Phe Phe Trp Glu His Val Ala Glu Pro Tyr 170 175

Gly Ser Trp Ala Phe Met Trp Gln Gln Val Phe Glu Pro Thr Trp 185 190 195

Lys His Ile Gly Asp Gly Cys Cys Leu Thr Arg Glu Thr Trp Lys 200 205 210

Asp Leu Glu Asn Ala Gln Phe Ser Glu Ile Gln Met Glu Arg Gln 215 220 225

```
Pro Pro Pro Leu Lys Trp Leu Pro Val Gly Pro His Ile Met Gly 230

Lys Ala Val Lys Gln Ser Phe Pro Ser Ser Lys Ala Leu Ile Cys 255

Ser Phe Pro Ser Leu Gln Leu Glu Gln Ala Thr His Gln Pro Ile 260
```

Tyr Leu Pro Leu Arg Gly Thr

<210> 170 <211> 1621 <212> DNA <213> Homo sapiens

<400> 170 gtgggattta tttgagtgca agatcgtttt ctcagtggtg gtggaagttg 50 cctcatcgca ggcagatgtt ggggctttgt ccgaacagct cccctctgcc 100 agcttctgta gataagggtt aaaaactaat atttatatga cagaagaaaa 150 agatgtcatt ccgtaaagta aacatcatca tcttggtcct ggctgttgct 200 ctcttcttac tggttttgca ccataacttc ctcagcttga gcagtttgtt 250 aaggaatgag gttacagatt caggaattgt agggcctcaa cctatagact 300 ttgtcccaaa tgctctccga catgcagtag atgggagaca agaggagatt 350 cctgtggtca tcgctgcatc tgaagacagg cttggggggg ccattgcagc 400 tataaacagc attcagcaca acactcgctc caatgtgatt ttctacattg 450 ttactctcaa caatacagca gaccatctcc ggtcctggct caacagtgat 500 tccctgaaaa gcatcagata caaaattgtc aattttgacc ctaaactttt 550 ggaaggaaaa gtaaaggagg atcctgacca gggggaatcc atgaaacctt 600 taacctttgc aaggttctac ttgccaattc tggttcccag cgcaaagaag 650 gccatataca tggatgatga tgtaattgtg caaggtgata ttcttgccct 700 ttacaataca gcactgaagc caggacatgc agctgcattt tcagaagatt 750 gtgattcagc ctctactaaa gttgtcatcc gtggagcagg aaaccagtac 800 aattacattg gctatcttga ctataaaaag gaaagaattc gtaagctttc 850 catgaaagcc agcacttgct catttaatcc tggagttttt gttgcaaacc 900 tgacggaatg gaaacgacag aatataacta accaactgga aaaatggatg 950 aaactcaatg tagaagaggg actgtatagc agaaccctgg ctggtagcat 1000 cacaacacct cctctgctta tcgtatttta tcaacagcac tctaccatcg 1050 atcctatgtg gaatgtccgc caccttggtt ccagtgctgg aaaacgatat 1100 tcacctcagt ttgtaaaggc tgccaagtta ctccattgga atggacattt 1150

gaagccatgg ggaaggactg cttcatatac tgatgtttgg gaaaaatggt 1200 atattccaga cccaacaggc aaattcaacc taatccgaag atataccgag 1250 atctcaaaca taaagtgaaa cagaatttga actgtaagca agcatttctc 1300 aggaagtcct ggaagatagc atgcatggga agtaacagtt gctaggcttc 1350 aatgcctatc ggtagcaagc catggaaaaa gatgtgtcag ctaggtaaag 1400 atgacaaact gccctgtctg gcagtcagct tcccagacag actatagact 1450 ataaatatgt ctccatctgc cttaccaagt gtttcttac tacaatgctg 1500 aatgactgga aagaagaact gatatggcta gttcagctag ctggtacaga 1550 taattcaaaa ctgctgttgg ttttaatttt gtaacctgtg gcctgatctg 1600 taaataaaac ttacatttt c 1621

<210> 171

<211> 371

<212> PRT

<213> Homo sapiens

<400> 171

Met Ser Phe Arg Lys Val Asn Ile Ile Ile Leu Val Leu Ala Val 1 5 10 15

Ala Leu Phe Leu Leu Val Leu His His Asn Phe Leu Ser Leu Ser 20 25 30

Ser Leu Leu Arg Asn Glu Val Thr Asp Ser Gly Ile Val Gly Pro 35 40 45

Gln Pro Ile Asp Phe Val Pro Asn Ala Leu Arg His Ala Val Asp
50 55 60

Gly Arg Gln Glu Glu Ile Pro Val Val Ile Ala Ala Ser Glu Asp
65 70 75

Arg Leu Gly Gly Ala Ile Ala Ile Asn Ser Ile Gln His Asn 80 85 90

Thr Arg Ser Asn Val Ile Phe Tyr Ile Val Thr Leu Asn Asn Thr 95 100 105

Ala Asp His Leu Arg Ser Trp Leu Asn Ser Asp Ser Leu Lys Ser 110 115 120

Ile Arg Tyr Lys Ile Val Asn Phe Asp Pro Lys Leu Leu Glu Gly 125 130 130

Lys Val Lys Glu Asp Pro Asp Gln Gly Glu Ser Met Lys Pro Leu 140 145 150

Thr Phe Ala Arg Phe Tyr Leu Pro Ile Leu Val Pro Ser Ala Lys 155 160 165

Lys Ala Ile Tyr Met Asp Asp Val Ile Val Gln Gly Asp Ile 170 175 180

Leu Ala Leu Tyr Asn Thr Ala Leu Lys Pro Gly His Ala Ala Ala

185 190 195 Phe Ser Glu Asp Cys Asp Ser Ala Ser Thr Lys Val Val Ile Arg 200 210 Gly Ala Gly Asn Gln Tyr Asn Tyr Ile Gly Tyr Leu Asp Tyr Lys 215 Lys Glu Arg Ile Arg Lys Leu Ser Met Lys Ala Ser Thr Cys Ser 230 235 Phe Asn Pro Gly Val Phe Val Ala Asn Leu Thr Glu Trp Lys Arg 250 Gln Asn Ile Thr Asn Gln Leu Glu Lys Trp Met Lys Leu Asn Val 260 Glu Glu Gly Leu Tyr Ser Arg Thr Leu Ala Gly Ser Ile Thr Thr Pro Pro Leu Leu Ile Val Phe Tyr Gln Gln His Ser Thr Ile Asp 295 300 Pro Met Trp Asn Val Arg His Leu Gly Ser Ser Ala Gly Lys Arg 315 Tyr Ser Pro Gln Phe Val Lys Ala Ala Lys Leu Leu His Trp Asn 320 325 Gly His Leu Lys Pro Trp Gly Arg Thr Ala Ser Tyr Thr Asp Val 335 340 Trp Glu Lys Trp Tyr Ile Pro Asp Pro Thr Gly Lys Phe Asn Leu 355 Ile Arg Arg Tyr Thr Glu Ile Ser Asn Ile Lys 365 <211> 585 <212> DNA

<210> 172

<213> Homo sapiens

<220>

<221> unsure

<222> 71, 76, 86, 91, 162, 220, 269, 281

<223> unknown base

<400> 172

tggtttttgc cccataaatt ccctcagctt gagcagtttg ttaaggaatg 50 aggttacaga ttcaggaatt ntaggncctc aacctntaga ntttgtccca 100 aatgttctcc gacatgcagt agatgggaga caagaggaga ttcctgtggt 150 categetgea tntgaagaca ggettggggg ggccattgea getataaaca 200 gcattcagca caacactcgn tccaatgtga ttttctacat tgttactctc 250 aacaatacag cagaccatnt ccggtcctgg ntcaacagtg attccctgaa 300 aagcatcaga tacaaaattg tcaattttga ccctaaactt ttggaaggaa 350

aagtaaagga ggatcctgac cagggggaat ccatgaaacc tttaaccttt 400 gcaaggttct acttgccaat tctggttccc agcgcaaaga aggccatata 450 catggatgat gatgtaattg tgcaaggtga tattcttgcc ctttacaata 500 cagcactgaa gccaggacat gcagctgcat tttcagaaga ttgtgattca 550 gcctctacta aagttgtcat ccgtggagca ggaaa 585

- <210> 173
- <211> 1866
- <212> DNA
- <213> Homo sapiens
- <400> 173

cgacgctcta gcggttaccg ctgcgggctg gctgggcgta gtggggctgc 50 gcggctgcca cggagctaga gggcaagtgt gctcggccca gcgtgcaggg 100 aacgcgggcg gccagacaac gggctgggct ccgggggcctg cggcgcgggc 150 getgagetgg cagggegggt eggggegegg getgeateeg cateteetee 200 ategeetgea gtaagggegg eegeggegag eetttgaggg gaacgaettg 250 teggageeet aaccaggggt gtetetgage etggtgggat eeeggageg 300 tcacatcact ttccgatcac ttcaaagtgg ttaaaaacta atatttatat 350 gacagaagaa aaagatgtca ttccgtaaag taaacatcat catcttggtc 400 ctgggctgtt gctctcttct tactggtttt gcaccataac ttcctcagct 450 tgaggcagtt tgttaaggaa tgaggttaca gattcaggaa ttgtagggcc 500 tcaacctata ggactttgtc ccaaatgctc tccgacatgc agtagatggg 550 agacaagagg agattcctgt ggtcatcgct gcatctgaag acaggcttgg 600 gggggccatt gcagctataa acagcattca gcacaacact cgctccaatg 650 tgattttcta cattgttact ctcaacaata cagcagacca tctccggtcc 700 tgggctcaac agtgattccc tgaaaagcat cagatacaaa attgtcaatt 750 ttgaccctaa acttttggaa ggaaaagtaa aggaggatcc tgaccagggg 800 gaatccatga aacctttaac ctttgcaagg ttctacttgc caattctggg 850 ttcccagcgc aaagaaggcc atatacatgg atgatgatgt aattgtgcaa 900 ggtgatattc ttgcccttta caatacagca ctgaagccag gacatgcagc 950 tgcattttca gaagattgtg attcagcctc tactaaagtt gtcatccgtg 1000 gagcaggaaa ccagtacaat tacattggct atcttgacta taaaaaggaa 1050 agaattcgta agctttccat gaaagccagc acttgctcat ttaatcctgg 1100 agtttttgtt gcaaacctga cggaatggaa acgacagaat ataactaacc 1150 aactggaaaa atggatgaaa ctcaatgtag aagagggact gtatagcaga 1200 accetggctg gtagcatcac aacacetect etgettateg tattitatea 1250 acagcactet accategate etatgtggaa tgteegeeae ettggtteea 1300 gtgetggaaa acgatatea eeteagttig taaaggetge eaagttaete 1350 cattggaatg gacattigaa geeatggga aggaetgett eatataetga 1400 tgtttgggga aaaatggtat atteeagaee eaacaggeaa atteaaceta 1450 ateegaagat atacegagat eteaaacata aagtgaaaca gaattigaac 1500 tgtaagcaag eattieteag gaagteetgg aagatageat gegtgggaag 1550 taacagtige taggetteaa tgeetategg tageaageea tggaaaaaga 1600 tgtgteaget aggtaaagat gacaaactge eetgatege tagaacagee tateagate 1700 tetettaeta eaatgetgaa tgaetggaaa gaagaactga tateggetagt 1750 teagetaget ggtacagata atteaaacet getgttggtt taaattitigt 1800 aaccetgtgge etgatetgaa aataaaactt acattittea ataggtaaaa 1850 aaaaaaaaaaa aaaaaa 1866

<210> 174

<211> 823

<212> DNA

<213> Homo sapiens

<400> 174

cccctcccct ggtcctccca gtgtttgctg gataataaat ggaactatgg 800 ctctaaaaaa aaaaaaaaa aaa 823

<210> 175

<211> 87

<212> PRT

<213> Homo sapiens

<400> 175

Met Gly Ala Ala Ile Ser Gln Gly Ala Leu Ile Ala Ile Val Cys
1 5 10 15

Asn Gly Leu Val Gly Phe Leu Leu Leu Leu Leu Trp Val Ile Leu 20 25 30

Cys Trp Ala Cys His Ser Arg Leu Pro Thr Leu Thr Leu Ser Leu 35 40 45

Asn Pro Val Pro Thr Pro Ala Leu Ala Pro Val Leu Arg Arg Pro 50 55 60

His His Pro Arg Ser Pro Ala Met Lys Ala Ala Thr Cys Cys Ser
65 70 75

Pro Glu Gly Pro Trp Pro Ser Leu Glu Pro Arg Thr 80 85

<210> 176

<211> 1660

<212> DNA

<213> Homo sapiens

<400> 176

cccaggetac cagtteetec aageaagtea tteeettat ttaacegatg 100
tgteecteaa acacetgagt getacteeet attigeateet gttttgataa 150
atgatgttga caceeteeae egaattetaa gtggaateat gtegggaaga 200
gatacaatee tteggeetgg tateeteegea ttageettgt etttggeeat 250
gatgtttace tteagattea teggeetege tegggattea eagaaggga 400
cattggttat tttgggattg ttgtttget gegggtgttt atggtggeeggaaga 250
aaaatatgaag tgegtgetgg ggtttgetat egtaceaea ggeaateaegg 450
cagtgetget egtettgat tttgtteeta gaaatggaa eaaaattgaca 500
gttgagettt teeaaateae aaataaagee ateageagga eteeetgee 550
getgtteeag ceaetgtgga catttgeeat eeteattte tteetggtee 600
tetgggtgge tgtgetget ageetgggaa etgeaggaa teeggaea teeggaeae 700
gttggaaggeg geeaagtgga atataageee ettteggea tteeggtaea 700
gttggaegeae eatttaaattg geeteeteg gaetagtgaa tteeateettg 750

cgtgccagca aatgactata gctggggcag tggttacttg ttatttcaac 800 agaagtaaaa atgatcctcc tgatcatccc atcctttcgt ctctctccat 850 tctcttcttc taccatcaag gaaccgttgt gaaagggtca tttttaatct 900 ctgtggtgag gattccgaga atcattgtca tgtacatgca aaacgcactg 950 aaagaacagc agcatggtgc attgtccagg tacctgttcc gatgctgcta 1000 ctgctgtttc tggtgtcttg acaaatacct gctccatctc aaccagaatg 1050 catatactac aactgctatt aatgggacag atttctgtac atcagcaaaa 1100 gatgcattca aaatcttgtc caagaactca agtcacttta catctattaa 1150 ctgctttgga gacttcataa tttttctagg aaaggtgtta gtggtgtgtt 1200 tcactgtttt tggaggactc atggctttta actacaatcg ggcattccag 1250 gtgtgggcag tccctctgtt attggtagct ttttttgcct acttagtagc 1300 ccatagtttt ttatctgtgt ttgaaactgt gctggatgca cttttcctgt 1350 gttttgctgt tgatctggaa acaaatgatg gatcgtcaga aaagccctac 1400 tttatggatc aagaatttct gagtttcgta aaaaggagca acaaattaaa 1450 caatgcaagg gcacagcagg acaagcactc attaaggaat gaggagggaa 1500 cagaactcca ggccattgtg agatagatac ccatttaggt atctgtacct 1550 ggaaaacatt toottotaag agocatttac agaatagaag atgagaccac 1600 tagagaaaag ttagtgaatt ttttttaaa agacctaata aaccctattc 1650 ttcctcaaaa 1660

<210> 177

<211> 445

<212> PRT

<213> Homo sapiens

<400> 177

Met Ser Gly Arg Asp Thr Ile Leu Gly Leu Cys Ile Leu Ala Leu 1 5 10 15

Ala Leu Ser Leu Ala Met Met Phe Thr Phe Arg Phe Ile Thr Thr 20 25 30

Leu Leu Val His Ile Phe Ile Ser Leu Val Ile Leu Gly Leu Leu 35 40 45

Phe Val Cys Gly Val Leu Trp Trp Leu Tyr Tyr Asp Tyr Thr Asn 50 55 60

Asp Leu Ser Ile Glu Leu Asp Thr Glu Arg Glu Asn Met Lys Cys
65 70 75

Val Leu Gly Phe Ala Ile Val Ser Thr Gly Ile Thr Ala Val Leu 80 85 90

Leu Val Leu Ile Phe Val Leu Arg Lys Arg Ile Lys Leu Thr Val

				95					100					10:
Glu	Leu	Phe	Gln	Ile 110	Thr	Asn	Lys	Ala	Ile 115	Ser	Ser	Ala	Pro	Phe 120
Leu	Leu	Phe	Gln	Pro 125	Leu	Trp	Thr	Phe	Ala 130	Ile	Leu	Ile	Phe	Phe 135
Trp	Val	Leu	Trp	Val 140	Ala	Val	Leu	Leu	Ser 145	Leu	Gly	Thr	Ala	Gly 150
Ala	Ala	Gln	Val	Met 155	Glu	Gly	Gly	Gln	Val 160	Glu	Tyr	Lys	Pro	Leu 165
Ser	Gly	Ile	Arg	Tyr 170	Met	Trp	Ser	Tyr	His 175	Leu	Ile	Gly	Leu	Ile 180
Trp	Thr	Ser	Glu	Phe 185	Ile	Leu	Ala	Cys	Gln 190	Gln	Met	Thr	Ile	Ala 195
Gly	Ala	Val	Val	Thr 200	Cys	Tyr	Phe	Asn	Arg 205	Ser	Lys	Asn	Asp	Pro 210
Pro	Asp	His	Pro	Ile 215	Leu	Ser	Ser	Leu	Ser 220	Ile	Leu	Phe	Phe	Туз 225
His	Gln	Gly	Thr	Val 230	Val	Lys	Gly	Ser	Phe 235	Leu	Ile	Ser	Val	Val 240
Arg	Ile	Pro	Arg	Ile 245	Ile	Val	Met	Tyr	Met 250	Gln	Asn	Ala	Leu	Lys 255
Glu	Gln	Gln	His	Gly 260	Ala	Leu	Ser	Arg	Tyr 265	Leu	Phe	Arg	Cys	Cys 270
Tyr	Cys	Cys	Phe	Trp 275	Cys	Leu	Asp	Lys	Tyr 280	Leu	Leu	His	Leu	Ası 285
Gln	Asn	Ala	Tyr	Thr 290	Thr	Thr	Ala	Ile	Asn 295	Gly	Thr	Asp	Phe	Су: 300
Thr	Ser	Ala	Lys	Asp 305	Ala	Phe	Lys	Ile	Leu 310	Ser	Lys	Asn	Ser	Sei 315
His	Phe	Thr	Ser	Ile 320	Asn	Cys	Phe	Gly	Asp 325		Ile	Ile	Phe	Let 330
Gly	Lys	Val	Leu	Val 335	Va1	Cys	Phe	Thr	Val 340	Phe	Gly	Gly	Leu	Met 345
Ala	Phe	Asn	Tyr	Asn 350	Arg	Ala	Phe	Gln	Val 355	Trp	Ala	Val	Pro	Let 360
Leu	Leu	Val	Ala	Phe 365	Phe	Ala	Tyr	Leu	Val 370	Ala	His	Ser	Phe	Let 375
Ser	Val	Phe	Glu	Thr 380	Val	Leu	Asp	Ala	Leu 385	Phe	Leu	Cys	Phe	Ala 390
Val	Asp	Leu	Glu	Thr 395	Asn	Asp	Gly	Ser	Ser 400	Glu	Lys	Pro	Tyr	Phe 405
Met	Asp	Gln	Glu	Phe	Leu	Ser	Phe	Val	Lvs	Ara	Ser	Asn	Lvs	Lei

ķek

410 415 420

Asn Asn Ala Arg Ala Gln Gln Asp Lys His Ser Leu Arg Asn Glu 425 430 435

Glu Gly Thr Glu Leu Gln Ala Ile Val Arg 440 445

<210> 178

<211> 2773

<212> DNA

<213> Homo sapiens

<400> 178

gttcgattag ctcctctgag aagaagagaa aaggttcttg gacctctccc 50 tgtttcttcc ttagaataat ttgtatggga tttgtgatgc aggaaagcct 100 aagggaaaaa gaatattcat tctgtgtggt gaaaattttt tgaaaaaaaa 150 attgccttct tcaaacaagg gtgtcattct gatatttatg aggactgttg 200 ttctcactat gaaggcatct gttattgaaa tgttccttgt tttgctggtg 250 actggagtac attcaaacaa agaaacggca aagaagatta aaaggcccaa 300 gttcactgtg cctcagatca actgcgatgt caaagccgga aagatcatcg 350 atcctgagtt cattgtgaaa tgtccagcag gatgccaaga ccccaaatac 400 catgtttatg gcactgacgt gtatgcatcc tactccagtg tgtgtggcgc 450 tgccgtacac agtggtgtgc ttgataattc aggagggaaa atacttgttc 500 ggaaggttgc tggacagtct ggttacaaag ggagttattc caacggtgtc 550 caatcgttat ccctaccacg atggagagaa tcctttatcg tcttagaaag 600 taaacccaaa aagggtgtaa cctacccatc agctcttaca tactcatcat 650 cgaaaagtcc agctgcccaa gcaggtgaga ccacaaaagc ctatcagagg 700 ccacctattc cagggacaac tgcacagccg gtcactctga tgcagcttct 750 ggctgtcact gtagctgtgg ccacccccac caccttgcca aggccatccc 800 cttctgctgc ttctaccacc agcatcccca gaccacaatc agtgggccac 850 aggagecagg agatggatet etggtecaet gecaectaea caageageca 900 aaacaggccc agagctgatc caggtatcca aaggcaagat ccttcaggag 950 ctgccttcca gaaacctgtt ggagcggatg tcagcctggg acttgttcca 1000 aaagaagaat tgagcacaca gtctttggag ccagtatccc tgggagatcc 1050 aaactgcaaa attgacttgt cgtttttaat tgatgggagc accagcattg 1100 gcaaacggcg attccgaatc cagaagcagc tcctggctga tgttgcccaa 1150 gctcttgaca ttggccctgc cggtccactg atgggtgttg tccagtatgg 1200 agacaaccct gctactcact ttaacctcaa gacacacacg aattctcgag 1250

atctgaagac agccatagag aaaattactc agagaggagg actttctaat 1300 gtaggtcggg ccatctctt tgtgaccaag aacttcttt ccaaagccaa 1350 tggaaacaga agcggggctc ccaatgtggt ggtggtgatg gtggatggct 1400 ggcccacgga caaagtggag gaggcttcaa gacttgcgag agagtcagga 1450 atcaacattt tottoatcac cattgaaggt gotgotgaaa atgagaagca 1500 gtatgtggtg gagcccaact ttgcaaacaa ggccgtgtgc agaacaaacg 1550 gettetacte getecacgtg cagagetggt ttggceteca caagaccetg 1600 cagcetetgg tgaagegggt etgegaeact gaeegeetgg eetgeageaa 1650 gacctgcttg aactcggctg acattggctt cgtcatcgac ggctccagca 1700 gtgtggggac gggcaacttc cgcaccgtcc tccagtttgt gaccaacctc 1750 accaaagagt ttgagatttc cgacacggac acgcgcatcg gggccgtgca 1800 gtacacctac gaacagcggc tggagtttgg gttcgacaag tacagcagca 1850 ageetgaeat ceteaacgee ateaagaggg tgggetaetg gagtggtgge 1900 accagcaegg gggetgeeat caacttegee etggageage tetteaagaa 1950 gtccaagccc aacaagagga agttaatgat cctcatcacc gacgggaggt 2000 cctacgacga cgtccggatc ccagccatgg ctgcccatct gaagggagtg 2050 atcacctatg cgataggcgt tgcctgggct gcccaagagg agctagaagt 2100 cattgccact caccccgcca gagaccactc cttctttgtg gacgagtttg 2150 acaacctcca tcagtatgtc cccaggatca tccagaacat ttgtacagag 2200 ttcaactcac agcctcggaa ctgaattcag agcaggcaga gcaccagcaa 2250 gtgctgcttt actaactgac gtgttggacc accccaccgc ttaatggggc 2300 acgcacggtg catcaagtct tgggcagggc atggagaaac aaatgtcttg 2350 ttattattct ttgccatcat getttttcat attccaaaac ttggagttac 2400 aaagatgatc acaaacgtat agaatgagcc aaaaggctac atcatgttga 2450 gggtgctgga gattttacat tttgacaatt gttttcaaaa taaatgttcg 2500 gaatacagtg cagcccttac gacaggctta cgtagagctt ttgtgagatt 2550 tttaagttgt tatttctgat ttgaactctg taaccctcag caagtttcat 2600 ttttgtcatg acaatgtagg aattgctgaa ttaaatgttt agaaggatga 2650 aaaaaaaaa aag 2773

<210> 179

<211> 678 <212> PRT <213> Homo sapiens

<400> 179 Met Arg Thr Val Val Leu Thr Met Lys Ala Ser Val Ile Glu Met Phe Leu Val Leu Leu Val Thr Gly Val His Ser Asn Lys Glu Thr Ala Lys Lys Ile Lys Arg Pro Lys Phe Thr Val Pro Gln Ile Asn Cys Asp Val Lys Ala Gly Lys Ile Ile Asp Pro Glu Phe Ile Val Lys Cys Pro Ala Gly Cys Gln Asp Pro Lys Tyr His Val Tyr Gly Thr Asp Val Tyr Ala Ser Tyr Ser Ser Val Cys Gly Ala Ala Val His Ser Gly Val Leu Asp Asn Ser Gly Gly Lys Ile Leu Val Arg Lys Val Ala Gly Gln Ser Gly Tyr Lys Gly Ser Tyr Ser Asn Gly 115 Val Gln Ser Leu Ser Leu Pro Arg Trp Arg Glu Ser Phe Ile Val 130 Leu Glu Ser Lys Pro Lys Lys Gly Val Thr Tyr Pro Ser Ala Leu 145 Thr Tyr Ser Ser Ser Lys Ser Pro Ala Ala Gln Ala Gly Glu Thr 160 Thr Lys Ala Tyr Gln Arg Pro Pro Ile Pro Gly Thr Thr Ala Gln Pro Val Thr Leu Met Gln Leu Leu Ala Val Thr Val Ala Val Ala Thr Pro Thr Thr Leu Pro Arg Pro Ser Pro Ser Ala Ala Ser Thr 205 Thr Ser Ile Pro Arg Pro Gln Ser Val Gly His Arg Ser Gln Glu 220 Met Asp Leu Trp Ser Thr Ala Thr Tyr Thr Ser Ser Gln Asn Arg 235 Pro Arg Ala Asp Pro Gly Ile Gln Arg Gln Asp Pro Ser Gly Ala 245 250 Ala Phe Gln Lys Pro Val Gly Ala Asp Val Ser Leu Gly Leu Val 270 Pro Lys Glu Glu Leu Ser Thr Gln Ser Leu Glu Pro Val Ser Leu

Gly Asp Pro Asn Cys Lys Ile Asp Leu Ser Phe Leu Ile Asp Gly

				290)				295	ō				300
Sei	r Th:	r Se	r Ile	e Gly 305	/ Lys	s Arg	g Ar	g Phe	e Aro		e Glı	n Ly	s Gl	n Leu 315
Leı	ı Ala	a Asj	p Val	1 Ala 320	a Glr	n Ala	a Lei	u Asp	p. Ile 325		y Pro	o Ala	a Gl	y Pro 330
Leu	ı Met	t Gl	y Val	Val 335	Glr	туг	Gly	y Asp	Asr 340		> Ala	a Th:	r Hi:	s Phe 345
Asr	ı Leı	ı Ly:	s Thr	350	Thr	: Asn	ı Sei	r Arg	355		ı Lys	s Thi	r Ala	360
Glu	ı Lys	s Ile	e Thr	Gln 365	Arg	g Gly	Gl	y Leu	370		ı Val	L Gly	/ Arg	7 Ala 375
Ile	e Ser	Phe	e Val	. Thr 380	Lys	s Asn	Phe	Phe	Ser 385		a Ala	a Asr	ı Gl	7 Asn 390
Arg	Ser	Gly	, Ala	Pro 395	Asn	. Val	. Val	. Val	Val 400		: Val	Asp	Gly	7 Trp 405
Pro	Thr	: Asp	Lys	Val 410	Glu	Glu	. Ala	Ser	Arg 415		Ala	Arç	g Glu	Ser 420
Gly	'Ile	a Asn	ı Ile	Phe 425	Phe	: Ile	Thr	: Ile	Glu 430	Gly	Ala	Ala	Glu	Asn 435
Glu	Lys	Gln	Tyr	Val 440	Val	Glu	Pro	Asn	Phe 445	Ala	Asn	Lys	Ala	Val 450
Cys	Arg	Thr	Asn	Gly 455	Phe	Tyr	Ser	Leu	His 460	Val	Gln	Ser	Trp	Phe 465
Gly	Leu	His	Lys	Thr 470	Leu	Gln	Pro	Leu	Val 475	Lys	Arg	Val	Cys	Asp 480
Thr	Asp	Arg	Leu	Ala 485	Cys	Ser	Lys	Thr	Cys 490	Leu	Asn	Ser	Ala	Asp 495
Ile	Gly	Phe	Val	Ile 500	Asp	Gly	Ser	Ser	Ser 505	Val	Gly	Thr	Gly	Asn 510
Phe	Arg	Thr	Val	Leu 515	Gln	Phe	Val	Thr	Asn 520	Leu	Thr	Lys	Glu	Phe 525
Glu	Ile	Ser	Asp	Thr 530	Asp	Thr	Arg	Ile	Gly 535	Ala	Val	Gln	Tyr	Thr 540
Tyr	Glu	Gln	Arg	Leu 545	Glu	Phe	Gly	Phe	Asp 550	Lys	Tyr	Ser	Ser	Lys 555
Pro	Asp	Ile	Leu	Asn 560	Ala	Ile	Lys	Arg	Val 565	Gly	Tyr	Trp	Ser	Gly 570
			Thr	5/5					580					585
			Ser	590					595					600
Thr	Asp	Gly	Arg	Ser	Tyr	Asp	Asp	Val	Arg	Ile	Pro	Ala	Met	Ala

Ala His Leu Lys Gly Val Ile Thr Tyr Ala Ile Gly Val Ala Trp 630

Ala Ala Gln Glu Leu Glu Val Ile Ala Thr His Pro Ala Arg 645

Asp His Ser Phe Phe Val Asp Glu Phe Asp Asn Leu His Gln Tyr 660

Val Pro Arg Ile Ile Gln Asn Ile Cys Thr Glu Phe Asn Ser Gln 675

Pro Arg Asn

<210> 180 <211> 1759 <212> DNA

<213> Homo sapiens

<400> 180

caggatgaac tggttgcagt ggctgctgct gctgcggggg cgctgagagg 50 acacgagete tatgeettte eggetgetea teeegetegg ceteetgtge 100 gcgctgctgc ctcagcacca tggtgcgcca ggtcccgacg gctccgcgcc 150 agatcccgcc cactacagtt tttctctgac tctaattgat gcactggaca 200 ccttgctgat tttggggaat gtctcagaat tccaaagagt ggttgaagtg 250 ctccaggaca gcgtggactt tgatattgat gtgaacgcct ctgtgtttga 300 aacaaacatt cgagtggtag gaggactcct gtctgctcat ctgctctcca 350 agaaggctgg ggtggaagta gaggctggat ggccctgttc cgggcctctc 400 ctgagaatgg ctgaggaggc ggcccgaaaa ctcctcccag cctttcagac 450 ccccactggc atgccatatg gaacagtgaa cttacttcat ggcgtgaacc 500 caggagagac ccctgtcacc tgtacggcag ggattgggac cttcattgtt 550 gaatttgcca ccctgagcag cctcactggt gacccggtgt tcgaagatgt 600 ggccagagtg gctttgatgc gcctctggga gagccggtca gatatcgggc 650 tggtcggcaa ccacattgat gtgctcactg gcaagtgggt ggcccaggac 700 gcaggcatcg gggctggcgt ggactcctac tttgagtact tggtgaaagg 750 agccatcctg cttcaggata agaagctcat ggccatgttc ctagagtata 800 acaaagccat ccggaactac acccgcttcg atgactggta cctgtgggtt 850 cagatgtaca aggggactgt gtccatgcca gtcttccagt ccttggaggc 900 ctactggcct ggtcttcaga gcctcattgg agacattgac aatgccatga 950 ggaccttcct caactactac actgtatgga agcagtttgg ggggctcccg 1000

gaattctaca acattcctca gggatacaca gtggagaagc gagagggcta 1050 cccacttcgg ccagaactta ttgaaagcgc aatgtacctc taccgtgcca 1100 cgggggatcc caccctccta gaactcggaa gagatgctgt ggaatccatt 1150 gaaaaaatca gcaaggtgga gtgcggattt gcaacaatca aagatctgcg 1200 agaccacaag ctggacaacc gcatggagtc gttcttcctg gccgagactg 1250 tgaaatacct ctacctcctg tttgacccaa ccaacttcat ccacaacaat 1300 gggtccacct tcgacgcggt gatcaccccc tatggggagt gcatcctggg 1350 ggctgggggg tacatcttca acacagaagc tcaccccatc gaccttgccg 1400 ccctgcactg ctgccagagg ctgaaggaag agcagtggga ggtggaggac 1450 ttgatgaggg aattctactc tctcaaacgg agcaggtcga aatttcagaa 1500 aaacactgtt agttcggggc catgggaacc tccagcaagg ccaggaacac 1550 tetteteace agaaaaccat gaccaggcaa gggagaggaa gcctgccaaa 1600 cagaaggtee caetteteag etgeeceagt cagecettea eetecaagtt 1650 ggcattactg ggacaggttt tcctagactc ctcataacca ctggataatt 1700 tttttatttt tattttttg aggctaaact ataataaatt gcttttggct 1750 atcataaaa 1759

<210> 181

<211> 541

<212> PRT

<213> Homo sapiens

<400> 181

Met Pro Phe Arg Leu Leu Ile Pro Leu Gly Leu Leu Cys Ala Leu 1 5 10 15

Leu Pro Gln His His Gly Ala Pro Gly Pro Asp Gly Ser Ala Pro 20 25 30

Asp Pro Ala His Tyr Ser Phe Ser Leu Thr Leu Ile Asp Ala Leu
35 40

Asp Thr Leu Leu Ile Leu Gly Asn Val Ser Glu Phe Gln Arg Val 50 55 60

Val Glu Val Leu Gln Asp Ser Val Asp Phe Asp Ile Asp Val Asn 65 70 75

Ala Ser Val Phe Glu Thr Asn Ile Arg Val Val Gly Gly Leu Leu 80 85 90

Ser Ala His Leu Leu Ser Lys Lys Ala Gly Val Glu Val Glu Ala 95 100 105

Gly Trp Pro Cys Ser Gly Pro Leu Leu Arg Met Ala Glu Glu Ala 110 115 120

Ala Arg Lys Leu Pro Ala Phe Gln Thr Pro Thr Gly Met Pro

				125					130					135
Tyr	Gly	Thr	Val	Asn 140	Leu	Leu	His	Gly	Val 145	Asn	Pro	Gly	Glu	Th: 150
Pro	Val	Thr	Cys	Thr 155	Ala	Gly	Ile	Gly	Thr 160	Phe	Ile	Val	Glu	Phe 165
Ala	Thr	Leu	Ser	Ser 170	Leu	Thr	Gly	Asp	Pro 175	Val	Phe	Glu	Asp	Val 180
Ala	Arg	Val	Ala	Leu 185	Met	Arg	Leu	Trp	Glu 190	Ser	Arg	Ser	Asp	Ile 195
Gly	Leu	Val	Gly	Asn 200	His	Ile	Asp	Val	Leu 205	Thr	Gly	Lys	Trp	Va] 21(
Ala	Gln	Asp	Ala	Gly 215	Ile	Gly	Ala	Gly	Val 220	Asp	Ser	Tyr	Phe	Glu 225
Tyr	Leu	Val	Lys	Gly 230	Ala	Ile	Leu	Leu	Gln 235	Asp	Lys	Lys	Leu	Met 240
Ala	Met	Phe	Leu	Glu 245	Tyr	Asn	Lys	Ala	Ile 250	Arg	Asn	Tyr	Thr	Arc 255
Phe	Asp	Asp	Trp	Tyr 260	Leu	Trp	Val	Gln	Met 265	Tyr	Lys	Gly	Thr	Val 270
Ser	Met	Pro	Val	Phe 275	Gln	Ser	Leu	Glu	Ala 280	Tyr	Trp	Pro	Gly	Let 285
Gln	Ser	Leu	Ile	Gly 290	Asp	Ile	Asp	Asn	Ala 295	Met	Arg	Thr	Phe	Le:
Asn	Tyr	Tyr	Thr	Val 305	Trp	Lys	Gln	Phe	Gly 310	Gly	Leu	Pro	Glu	Phe 315
Tyr	Asn	Ile	Pro	Gln 320	Gly	Tyr	Thr	Val	Glu 325	Lys	Arg	Glu	Gly	Туі 33(
Pro	Leu	Arg	Pro	Glu 335	Leu	Ile	Glu	Ser	Ala 340	Met	Tyr	Leu	Tyr	Arg 345
Ala	Thr	Gly	Asp	Pro 350	Thr	Leu	Leu	Glu	Leu 355	Gly	Arg	Asp	Ala	Va] 360
Glu	Ser	Ile	Glu	Lys 365	Ilė	Ser	Lys	Val	Glu 370	Cys	Gly	Phe	Ala	Th: 375
Ile	Lys	Asp	Leu	Arg 380	Asp	His	Lys	Leu	Asp 385	Asn	Arg	Met	Glu	Sei 390
Phe	Phe	Leu	Ala	Glu 395	Thr	Val	Lys	Tyr	Leu 400	Tyr	Leu	Leu	Phe	Asr 405
Pro	Thr	Asn	Phe	Ile 410	His	Asn	Asn	Gly	Ser 415	Thr	Phe	Asp	Ala	Val 420
Ile	Thr	Pro	Tyr	Gly 425	Glu	Cys	Ile	Leu	Gly 430	Ala	Gly	Gly	Tyr	Ile 435
Phe	Asn	Thr	Glu	Ala	His	Pro	Tle	Asp	Len	Ala	Ala	T,e11	His	Cvs

440 445 450 Cys Gln Arg Leu Lys Glu Glu Gln Trp Glu Val Glu Asp Leu Met Arg Glu Phe Tyr Ser Leu Lys Arg Ser Arg Ser Lys Phe Gln Lys 470 480 Asn Thr Val Ser Ser Gly Pro Trp Glu Pro Pro Ala Arg Pro Gly 490 Thr Leu Phe Ser Pro Glu Asn His Asp Gln Ala Arg Glu Arg Lys 500 Pro Ala Lys Gln Lys Val Pro Leu Leu Ser Cys Pro Ser Gln Pro Phe Thr Ser Lys Leu Ala Leu Leu Gly Gln Val Phe Leu Asp Ser 530 535 Ser

<210> 182 <211> 2056 <212> DNA

<213> Homo sapiens

<400> 182 aaagttacat tttctctgga actctcctag gccactccct gctgatgcaa 50 catctgggtt tgggcagaaa ggagggtgct tcggagcccg ccctttctga 100 getteetggg eeggetetag aacaatteag gettegetge gaeteagaee 150 tcagctccaa catatgcatt ctgaagaaag atggctgaga tggacagaat 200 gctttatttt ggaaagaaac aatgttctag gtcaaactga gtctaccaaa 250 tgcagacttt cacaatggtt ctagaagaaa tctggacaag tcttttcatg 300 tggtttttct acgcattgat tccatgtttg ctcacagatg aagtggccat 350 tetgeetgee ceteagaace tetetgtaet etcaaccaac atgaagcate 400 tcttgatgtg gagcccagtg atcgcgcctg gagaaacagt gtactattct 450 gtcgaatacc agggggagta cgagagcctg tacacgagcc acatctggat 500 ccccagcagc tggtgctcac tcactgaagg tcctgagtgt gatgtcactg 550 atgacatcac ggccactgtg ccatacaacc ttcgtgtcag ggccacattg 600 ggctcacaga cctcagcctg gagcatcctg aagcatccct ttaatagaaa 650 ctcaaccatc cttacccgac ctgggatgga gatcaccaaa gatggcttcc 700 acctggttat tgagctggag gacctggggc cccagtttga gttccttgtg 750 gcctactgga ggagggagcc tggtgccgag gaacatgtca aaatggtgag 800 gagtgggggt attccagtgc acctagaaac catggagcca ggggctgcat 850

```
actgtgtgaa ggcccagaca ttcgtgaagg ccattgggag gtacagcgcc 900
 ttcagccaga cagaatgtgt ggaggtgcaa ggagaggcca ttcccctggt 950
 actggccctg tttgcctttg ttggcttcat gctgatcctt gtggtcgtgc 1000
cactgttcgt ctggaaaatg ggccggctgc tccagtactc ctgttgcccc 1050
gtggtggtcc tcccagacac cttgaaaata accaattcac cccagaagtt 1100
aatcagctgc agaagggagg aggtggatgc ctgtgccacg gctgtgatgt 1150
ctcctgagga actcctcagg gcctggatct cataggtttg cggaagggcc 1200
caggtgaagc cgagaacctg gtctgcatga catggaaacc atgaggggac 1250
aagttgtgtt tctgttttcc gccacggaca agggatgaga gaagtaggaa 1300
gagectgttg tetacaagte tagaageaac cateagagge agggtggttt 1350
gtctaacaga acactgactg aggcttaggg gatgtgacct ctagactggg 1400
ggctgccact tgctggctga gcaaccctgg gaaaagtgac ttcatccctt 1450
cggtcctaag ttttctcatc tgtaatgggg gaattaccta cacacctgct 1500
aaacacaca acacagagte tetetetata tatacacacg tacacataaa 1550
tacacccagc acttgcaagg ctagagggaa actggtgaca ctctacagtc 1600
tgactgattc agtgtttctg gagagcagga cataaatgta tgatgagaat 1650
gatcaaggac tctacacact gggtggcttg gagagcccac tttcccagaa 1700
taatccttga gagaaaagga atcatgggag caatggtgtt gagttcactt 1750
caageceaat geeggtgeag aggggaatgg ettagegage tetaeagtag 1800
gtgacctgga ggaaggtcac agccacactg aaaatgggat gtgcatgaac 1850
acggaggatc catgaactac tgtaaagtgt tgacagtgtg tgcacactgc 1900
agacagcagg tgaaatgtat gtgtgcaatg cgacgagaat gcagaagtca 1950
gtaacatgtg catgtttgtt gtgctccttt tttctgttgg taaagtacag 2000
aaaaaa 2056
```

```
<210> 183
<211> 311
<212> PRT
```

<213> Homo sapiens

<220>

<221> Signal peptide

<222> 1-29

<223> Signal peptide

<220>

<221> N-glycosylation sites

<222> 40-43, 134-137

```
<223> N-glycosylation sites.
<220>
<221> Tissue factor proteins homology
<222> 92-119
<223> Tissue factor proteins homology
<220>
<221> Transmembrane domain
<222> 230-255
<223> Transmembrane domain
<220>
<221> Integrins alpha chain protein homology
<222> 232-262
<223> Integrins alpha chain protein homology
<400> 183
Met Gln Thr Phe Thr Met Val Leu Glu Glu Ile Trp Thr Ser Leu
Phe Met Trp Phe Phe Tyr Ala Leu Ile Pro Cys Leu Leu Thr Asp
Glu Val Ala Ile Leu Pro Ala Pro Gln Asn Leu Ser Val Leu Ser
Thr Asn Met Lys His Leu Leu Met Trp Ser Pro Val Ile Ala Pro
                  50
                                      55
Gly Glu Thr Val Tyr Tyr Ser Val Glu Tyr Gln Gly Glu Tyr Glu
Ser Leu Tyr Thr Ser His Ile Trp Ile Pro Ser Ser Trp Cys Ser
Leu Thr Glu Gly Pro Glu Cys Asp Val Thr Asp Asp Ile Thr Ala
                                     100
Thr Val Pro Tyr Asn Leu Arg Val Arg Ala Thr Leu Gly Ser Gln
                                                         120
Thr Ser Ala Trp Ser Ile Leu Lys His Pro Phe Asn Arg Asn Ser
Thr Ile Leu Thr Arg Pro Gly Met Glu Ile Thr Lys Asp Gly Phe
                                     145
His Leu Val Ile Glu Leu Glu Asp Leu Gly Pro Gln Phe Glu Phe
                                                         165
Leu Val Ala Tyr Trp Arg Arg Glu Pro Gly Ala Glu Glu His Val
Lys Met Val Arg Ser Gly Gly Ile Pro Val His Leu Glu Thr Met
                                    190
                                                         195
Glu Pro Gly Ala Ala Tyr Cys Val Lys Ala Gln Thr Phe Val Lys
                                    205
                                                         210
Ala Ile Gly Arg Tyr Ser Ala Phe Ser Gln Thr Glu Cys Val Glu
```

215

```
Val Gln Gly Glu Ala Ile Pro Leu Val Leu Ala Leu Phe Ala Phe
230 235 240
```

Val Gly Phe Met Leu Ile Leu Val Val Val Pro Leu Phe Val Trp \$245\$ \$250\$

Lys Met Gly Arg Leu Leu Gln Tyr Ser Cys Cys Pro Val Val Val 260 265 270

Leu Pro Asp Thr Leu Lys Ile Thr Asn Ser Pro Gln Lys Leu Ile 275 280 285

Ser Cys Arg Arg Glu Glu Val Asp Ala Cys Ala Thr Ala Val Met 290 295 300

Ser Pro Glu Glu Leu Leu Arg Ala Trp Ile Ser 305 310

<210> 184

<211> 808

<212> DNA

<213> Homo sapiens

<220>

<221> unsure

<222> 654, 711, 748

<223> unknown base

<400> 184

tectgetgat geacatetgg gtttggeaaa aggaggttge ttegageege 50 cetttetage tteetggeeg getetagaac aatteagget tegetgegae 100 tagaceteag etecaacata tgeattetga agaaagatgg etgagatgae 150 agaatgett attttggaaa gaaacaatgt tetaggteaa actgagteta 200 ceaaatgeag acttteacaa tggttetaga agaaatetgg acaagtettt 250

tcatgtggtt tttctacgca ttgattccat gtttgctcac agatgaagtg 300 gccattctgc ctgcccctca gaacctctct gtactctcaa ccaacatgaa 350

gcatctcttg atgtggagcc cagtgatcgc gcctggagaa acagtgtact 400

attotgtoga ataccagggg gagtacgaga gootgtacac gagccacato 450

tggatcccca gcagctggtg ctcactcact gaaggtcctg agtgtgatgt 500

cactgatgac atcacggcca ctgtgccata caacctttgt gtcagggcca 550

cattgggctc acagacctca gcctggagca tcctgaagca tccctttaat 600 agaaactcaa ccatccttac ccgacctggg atggagatca ccaaagatgg 650

cttncacctg gttattgagc tggaggacct ggggccccag tttgagttcc 700

ttgtggccta ntggaggagg ggcgaacccc ttgcggcgca aggggttngc 750

gaaccccttg cggccgctgg ggtatctctc gagaaaagag aggcccaata 800

tgacccac 808

```
<210> 185
<211> 23
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 185
 aggetteget gegactagae etc 23
<210> 186
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 186
ccaggtcggg taaggatggt tqag 24
<210> 187
<211> 50
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 187
tttctacgca ttgattccat gtttgctcac agatgaagtg gccattctgc 50
<210> 188
<211> 1227
<212> DNA
<213> Homo sapiens
<400> 188
cggacgcgtg ggccgccacc tccggaacaa gccatggtgg cggcgacggt 50
ggcagcggcg tggctgctcc tgtgggctgc ggcctgcgcg cagcaggagc 100
aggacticta cgacticaag gcggtcaaca tccggggcaa actggtgtcg 150
ctggagaagt accgcggatc ggtgtccctg gtggtgaatg tggccagcga 200
gtgcggcttc acagaccagc actaccgagc cctgcagcag ctgcagcgag 250
acctgggccc ccaccacttt aacgtgctcg ccttcccctg caaccagttt 300
ggccaacagg agcctgacag caacaaggag attgagagct ttgcccgccg 350
cacctacagt gtctcattcc ccatgtttag caagattgca gtcaccggta 400
ctggtgccca tcctgccttc aagtacctgg cccagacttc tgggaaggag 450
cccacctgga acttctggaa gtacctagta gccccagatg gaaaggtggt 500
aggggcttgg gacccaactg tgtcagtgga ggaggtcaga ccccagatca 550
cagegetegt gaggaagete atectaetga agegagaaga ettataacca 600
```

caatgcaaac tcaaatggtg cttcaaaggg agagacccac tgactctcct 700 tcctttactc ttatgccatt ggtcccatca ttcttgtggg ggaaaaattc 750 tagtattttg attattgaa tcttacagca acaaatagga actcctggcc 800 aatgagagct cttgaccagt gaatcaccag ccgatacgaa cgtcttgcca 850 acaaaaaatg gtggcaaata gaagtatatc aagcaataat ctcccacca 900 aggcttctgt aaactgggac caatgattac ctcatagggc tgttgtgagg 950 attaggatg aatacctgtg aaagtgccta ggcagtgcca gccaaatagg 1000 aggcattcaa tgaacattt ttgcatataa accaaaaaat aacttgttat 1050 caataaaaac ttgcatccaa catgaattc cagccgatga taatccaggc 1100 caaaggttta gttgttgta tttcctctgt attatttct tcattacaaa 1150 agaaaatgcaa gttcattgta acaatccaaa caatacctca cgatataaaa 1200 taaaaaatgaa agtatcctcc tcaaaaa 1227

<210> 189

<211> 187

<212> PRT

<213> Homo sapiens

<400> 189

Met Val Ala Ala Thr Val Ala Ala Ala Trp Leu Leu Trp Ala 1 5 10 15

Ala Ala Cys Ala Gl
n Glu Glu Gln Asp Phe Tyr Asp Phe Lys Ala 20 25 30

Val Asn Ile Arg Gly Lys Leu Val Ser Leu Glu Lys Tyr Arg Gly 35 40 45

Ser Val Ser Leu Val Val As
n Val Ala Ser Glu Cys Gly Phe Thr $50~{\rm 55}~{\rm 60}$

Pro His His Phe Asn Val Leu Ala Phe Pro Cys Asn Gln Phe Gly 80 85

Gln Gln Glu Pro Asp Ser Asn Lys Glu Ile Glu Ser Phe Ala Arg 95 100 105

Arg Thr Tyr Ser Val Ser Phe Pro Met Phe Ser Lys Ile Ala Val 110 $$ 115 $$ 120

Thr Gly Thr Gly Ala His Pro Ala Phe Lys Tyr Leu Ala Gln Thr 125 130 135

Ser Gly Lys Glu Pro Thr Trp Asn Phe Trp Lys Tyr Leu Val Ala 140 145 150

Pro Asp Gly Lys Val Val Gly Ala Trp Asp Pro Thr Val Ser Val

160 165 155 Glu Glu Val Arg Pro Gln Ile Thr Ala Leu Val Arg Lys Leu Ile Leu Leu Lys Arg Glu Asp Leu 185 <210> 190 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide probe <400> 190 gcaggacttc tacgacttca aggc 24 <210> 191 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide probe <400> 191 agtctgggcc aggtacttga aggc 24 <210> 192 <211> 50 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide probe <400> 192 caacatccgg ggcaaactgg tgtcgctgga gaagtaccgc ggatcggtgt 50 <210> 193 <211> 2187 <212> DNA <213> Homo sapiens <400> 193 cggacgcgtg ggcgggccgg gacgcagggc aaagcgagcc atggctgtct 50 acgtcgggat gctgcgcctg gggaggctqt gcgccgggag ctcgggggtg 100 ctgggggccc gggccgccct ctctcggagt tggcaggaag ccaggttgca 150 gggtgtccgc ttcctcagtt ccagagaggt ggatcgcatg gtctccacgc 200 ccatcggagg cctcagctac gttcaggggt gcaccaaaaa gcatcttaac 250

agcaagactg tgggccagtg cctggagacc acagcacaga gggtcccaga 300 acgagaggcc ttggtcgtcc tccatgaaga cgtcaggttg acctttgccc 350

aactcaagga ggaggtggac aaagctgctt ctggcctcct gagcattggc 400

ctctgcaaag gtgaccggct gggcatgtgg ggacctaact cctatgcatg 450 ggtgctcatg cagttggcca ccgcccaggc gggcatcatt ctggtgtctg 500 tgaacccagc ctaccagget atggaactgg agtatgteet caagaaggtg 550 ggctgcaagg cccttgtgtt ccccaagcaa ttcaagaccc agcaatacta 600 caacgtcctg aagcagatct gtccagaagt ggagaatgcc cagccagggg 650 cettgaagag teagaggete ceagatetga ceaeagteat eteggtggat 700 gcccctttgc cggggaccct gctcctggat gaagtggtgg cggctggcag 750 cacacggcag catctggacc agctccaata caaccagcag ttcctgtcct 800 gccatgaccc catcaacatc cagttcacct cggggacaac aggcagcccc 850 aagggggcca ccctctccca ctacaacatt gtcaacaact ccaacatttt 900 aggagagcgc ctgaaactgc atgagaagac accagagcag ttgcggatga 950 tcctgcccaa ccccctgtac cattgcctgg gttccgtggc aggcacaatg 1000 atgtgtctga tgtacggtgc caccctcatc ctggcctctc ccatcttcaa 1050 tggcaagaag gcactggagg ccatcagcag agagagaggc accttcctgt 1100 atggtacccc cacgatgttc gtggacattc tgaaccagcc agacttctcc 1150 agttatgaca tctcgaccat gtgtggaggt gtcattgctg ggtcccctgc 1200 acctccagag ttgatccgag ccatcatcaa caagataaat atgaaggacc 1250 tggtggttgc ttatggaacc acagagaaca gtcccgtgac attcgcgcac 1300 ttccctgagg acactgtgga gcagaaggca gaaagcgtgg gcagaattat 1350 gcctcacacg gaggcccgga tcatgaacat ggaggcaggg acgctggcaa 1400 agctgaacac gcccggggag ctgtgcatcc gagggtactg cgtcatgctg 1450 ggctactggg gtgagcctca gaagacagag gaagcagtgg atcaggacaa 1500 gtggtattgg acaggagatg tcgccacaat gaatgagcag ggcttctgca 1550 agatcgtggg ccgctctaag gatatgatca tccggggtgg tgagaacatc 1600 taccccgcag agctcgagga cttctttcac acacacccga aggtgcagga 1650 agtgcaggtg gtgggagtga aggacgatcg gatgggggaa gagatttgtg 1700 cctgcattcg gctgaaggac ggggaggaga ccacggtgga ggagataaaa 1750 gctttctgca aagggaagat ctctcacttc aagattccga agtacatcgt 1800 gtttgtcaca aactaccccc tcaccatttc aggaaagatc cagaaattca 1850 aacttcgaga gcagatggaa cgacatctaa atctgtgaat aaagcagcag 1900 gcctgtcctg gccggttggc ttgactctct cctgtcagaa tgcaacctgg 1950 ctttatgcac ctagatgtcc ccagcaccca gttctgagcc aggcacatca 2000

aatgtcaagg aattgactga acgaactaag agctcctgga tgggtccggg 2050 aactcgcctg ggcacaaggt gccaaaaggc aggcagcctg cccaggccct 2100 ccctcctgtc catccccac attcccctgt ctgtccttgt gatttggcat 2150 aaagagcttc tgttttcttt gaaaaaaaaa aaaaaaa 2187

<210> 194

<211> 615

<212> PRT

<213> Homo sapiens

<400> 194

Met Ala Val Tyr Val Gly Met Leu Arg Leu Gly Arg Leu Cys Ala 1 5 10 15

Gly Ser Ser Gly Val Leu Gly Ala Arg Ala Ala Leu Ser Arg Ser 20 25 30

Trp Gln Glu Ala Arg Leu Gln Gly Val Arg Phe Leu Ser Ser Arg 35 40 45

Glu Val Asp Arg Met Val Ser Thr Pro Ile Gly Gly Leu Ser Tyr
50 55 60

Val Gln Gly Cys Thr Lys Lys His Leu Asn Ser Lys Thr Val Gly 65 70 75

Gln Cys Leu Glu Thr Thr Ala Gln Arg Val Pro Glu Arg Glu Ala 80 85 90

Leu Val Val Leu His Glu Asp Val Arg Leu Thr Phe Ala Gln Leu 95 100 105

Lys Glu Glu Val Asp Lys Ala Ala Ser Gly Leu Leu Ser Ile Gly 110 115 120

Leu Cys Lys Gly Asp Arg Leu Gly Met Trp Gly Pro Asn Ser Tyr 125 130 135

Ala Trp Val Leu Met Gln Leu Ala Thr Ala Gln Ala Gly Ile Ile 140 145 150

Leu Val Ser Val Asn Pro Ala Tyr Gln Ala Met Glu Leu Glu Tyr 155 160 165

Val Leu Lys Lys Val Gly Cys Lys Ala Leu Val Phe Pro Lys Gln 170 175 180

Phe Lys Thr Gln Gln Tyr Tyr Asn Val Leu Lys Gln Ile Cys Pro 185 190 195

Glu Val Glu Asn Ala Gln Pro Gly Ala Leu Lys Ser Gln Arg Leu 200 205 210

Pro Asp Leu Thr Thr Val Ile Ser Val Asp Ala Pro Leu Pro Gly 215 220 225

Thr Leu Leu Leu Asp Glu Val Val Ala Ala Gly Ser Thr Arg Gln 230 235 240

His Leu Asp Gln Leu Gln Tyr Asn Gln Gln Phe Leu Ser Cys His

				245	5				250)				255
Asp	Pro) Ile	e Asn	11e 260	e Glr	n Phe	e Thr	Ser	Gly 265		Thr	Gly	y Sei	Pro 270
Lys	Gly	Ala	a Thr	Leu 275	ser	His	з Туг	Asr	11e 280		Asn	n Asn	ser	Asn 285
Ile	e Leu	Gly	Glu	Arg 290	Leu	Lys	E Let	His	Glu 295		Thr	Pro	Glu	Gln 300
Leu	Arg	Met	: Ile	Leu 305		Asr	n Pro	Leu	Tyr 310		Cys	Leu	ı Gly	Ser 315
Val	Ala	. Gly	Thr	Met 320	Met	Cys	Leu	Met	Tyr 325		Ala	Thr	Leu	330
Leu	Ala	Ser	Pro	Ile 335	Phe	Asn	Gly	Lys	Lys 340		Leu	Glu	Ala	Ile 345
Ser	Arg	Glu	Arg	Gly 350	Thr	Phe	e Leu	Tyr	Gly 355	Thr	Pro	Thr	Met	Phe 360
Val	Asp	Ile	Leu	Asn 365	Gln	Pro	Asp	Phe	Ser 370	Ser	Tyr	Asp	Ile	Ser 375
Thr	Met	Cys	Gly	Gly 380	Val	Ile	Ala	Gly	Ser 385	Pro	Ala	Pro	Pro	Glu 390
Leu	Ile	Arg	Ala	Ile 395	Ile	Asn	Lys	Ile	Asn 400	Met	Lys	Asp	Leu	Val 405
Val	Ala	Tyr	Gly	Thr 410	Thr	Glu	Asn	Ser	Pro 415	Val	Thr	Phe	Ala	His 420
Phe	Pro	Glu	Asp	Thr 425	Val	Glu	Gln	Lys	Ala 430	Glu	Ser	Val	Gly	Arg 435
Ile	Met	Pro	His	Thr 440	Glu	Ala	Arg	Ile	Met 445	Asn	Met	Glu	Ala	Gly 450
Thr	Leu	Ala	Lys	Leu 455	Asn	Thr	Pro	Gly	Glu 460	Leu	Cys	Ile	Arg	Gly 465
Tyr	Cys	Val	Met	Leu 470	Gly	Tyr	Trp	Gly	Glu 475	Pro	Gln	Lys	Thr	Glu 480
Glu	Ala	Val	Asp	Gln 485	Asp	Lys	Trp	Tyr	Trp 490	Thr	Gly	Asp	Val	Ala 495
Thr	Met	Asn	Glu	Gln 500	Gly	Phe	Cys	Lys	Ile 505	Val	Gly	Arg	Ser	Lys 510
Asp	Met	Ile	Ile	Arg 515	Gly	Gly	Glu	Asn	Ile 520	Tyr	Pro	Ala	Glu	Leu 525
Glu	Asp	Phe	Phe	His 530	Thr	His	Pro	Lys	Val 535	Gln	Glu	Val	Gln	Val 540
Val	Gly	Val	Lys	Asp 545	Asp	Arg	Met	Gly	Glu 550	Glu	Ile	Cys	Ala	Cys 555
Ile	Arg	Leu	Lys	Asp	Gly	Glu	Glu	Thr	Thr	Val	Glu	Glu	Ile	Lys

Ala Phe Cys Lys Gly Lys Ile Ser His Phe Lys Ile Pro Lys Tyr 585

Ile Val Phe Val Thr 590 Tyr Pro Leu Thr 1le Ser Gly Lys Ile 600

Gln Lys Phe Lys Leu Arg Glu Gln Met Glu Arg His Leu Asn Leu 615

<210> 195

<211> 642

<212> DNA

<213> Homo sapiens

<400> 195

caactccaac attttaggag agcgcctgaa actgcatgag aagacaccag 50 agcagttgcg gatgatcctg cccaaccccc tgtaccattg cctgggttcc 100 gtggcaggca caatgatgtg tctgatgtac ggtgccaccc tcatcctggc 150 ctctcccatc ttcaatggca agaaggcact ggaggccatc agcagagaga 200 gaggcacctt cctgtatggt acccccacga tgttcgtgga cattctgaac 250 cagccagact tctccagtta tgacatctcg accatgtgtg gaggtgtcat 300 tgctgggtcc cctgcacctc cagagttgat ccgagccatc atcaacaaga 350 taaatatgaa ggacctggtg gttgcttatg gaaccacaga gaacagtccc 400 gtgacattcg cgcacttccc tgaggacact gtggagcaga aggcagaaag 450 cgtgggcaga attatgcctc acacggaggc gcggatcatg aacatggagg 500 cagggacgtc ggcaaagctg aacacgcccg gggagctgtg catccgaggg 550 tactgcgtca tgctgggcta ctggggtag cctcagaaga cagaggaagc 600 agtggatcag gacaagtggt attggacagg agatgtcgcc ac 642

<210> 196

<211> 1575

<212> DNA

<213> Homo sapiens

<400> 196

gagcaggacg gagccatgga ccccgccagg aaagcaggtg cccaggccat 50 gatctggact gcaggctggc tgctgctgct gctgcttcgc ggaggagcgc 100 aggccctgga gtgctacagc tgcgtgcaga aagcagatga cggatgctcc 150 ccgaacaaga tgaagacagt gaagtgcgcg ccgggcgtgg acgtctgcac 200 cgaggccgtg ggggggtgg agaccatcca cggacaattc tcgctggcag 250 tgcggggttg cggttcggga ctccccggca agaatgaccg cggcctggat 300 cttcacggcc ttctggcgtt catccagctg cagcaatgcg ctcaggatcg 350

```
ctgcaacgcc aagctcaacc tcacctcgcg ggcgctcgac ccggcaggta 400
atgagagtgc ataccegeec aacggegtgg agtgctacag etgtgtggge 450
ctgagccggg aggcgtgcca gggtacatcg ccgccggtcg tgagctgcta 500
caacgccagc gatcatgtct acaagggctg cttcgacggc aacgtcacct 550
tgacggcagc taatgtgact gtgtccttgc ctgtccgggg ctgtgtccag 600
gatgaattet geacteggga tggagtaaca ggeccagggt teacgeteag 650
tggctcctgt tgccaggggt cccgctgtaa ctctgacctc cgcaacaaga 700
cetaettete ecetegaate ceaccettg teeggetgee eceteeagag 750
cccacgactg tggcctcaac cacatctgtc accacttcta cctcggcccc 800
agtgagaccc acatecacca ccaaacccat gccagcgcca accagtcaga 850
ctccgagaca gggagtagaa cacgaggcct cccgggatga ggagcccagg 900
ttgactggag gcgccgctgg ccaccaggac cgcagcaatt cagggcagta 950
teetgeaaaa ggggggeece ageageecea taataaagge tgtgtggete 1000
ccacagetgg attggcagee cttetgttgg ccgtggctge tggtgteeta 1050
ctgtgagett ctccacctgg aaattteect ctcacctact tetetggeec 1100
tgggtacccc tcttctcatc acttcctgtt cccaccactg gactgggctg 1150
geceageece tgttttteea acatteecea gtateeceag ettetgetge 1200
gctggtttgc ggctttggga aataaaatac cgttgtatat attctgccag 1250
gggtgttcta gctttttgag gacagctcct gtatccttct catccttgtc 1300
teteegettg teetettgtg atgttaggae agagtgagag aagteagetg 1350
tcacggggaa ggtgagagag aggatgctaa gcttcctact cactttctcc 1400
tagccagcct ggactttgga gcgtggggtg ggtgggacaa tggctcccca 1450
ctctaagcac tgcctcccct actccccgca tctttgggga atcggttccc 1500
catatgtctt ccttactaga ctgtgagctc ctcgaggggg ggcccggtac 1550
ccaattcgcc ctatagtgag tcgta 1575
```

<210> 197

<211> 346

<211> 340 <212> PRT

<213> Homo sapiens

<400> 197

Met Asp Pro Ala Arg Lys Ala Gly Ala Gln Ala Met Ile Trp Thr
1 10 15

Ala Gly Trp Leu Leu Leu Leu Leu Arg Gly Gly Ala Gln Ala 20 25 30

Leu Glu Cys Tyr Ser Cys Val Gln Lys Ala Asp Asp Gly Cys Ser

35 40 45

Pro Asn Lys Met Lys Thr Val Lys Cys Ala Pro Gly Val Asp Val Cys Thr Glu Ala Val Gly Ala Val Glu Thr Ile His Gly Gln Phe Ser Leu Ala Val Arg Gly Cys Gly Ser Gly Leu Pro Gly Lys Asn Asp Arg Gly Leu Asp Leu His Gly Leu Leu Ala Phe Ile Gln Leu 100 Gln Gln Cys Ala Gln Asp Arg Cys Asn Ala Lys Leu Asn Leu Thr 110 115 Ser Arg Ala Leu Asp Pro Ala Gly Asn Glu Ser Ala Tyr Pro Pro 130 Asn Gly Val Glu Cys Tyr Ser Cys Val Gly Leu Ser Arg Glu Ala Cys Gln Gly Thr Ser Pro Pro Val Val Ser Cys Tyr Asn Ala Ser 160 Asp His Val Tyr Lys Gly Cys Phe Asp Gly Asn Val Thr Leu Thr 175 Ala Ala Asn Val Thr Val Ser Leu Pro Val Arg Gly Cys Val Gln 185 190 Asp Glu Phe Cys Thr Arg Asp Gly Val Thr Gly Pro Gly Phe Thr Leu Ser Gly Ser Cys Cys Gln Gly Ser Arg Cys Asn Ser Asp Leu Arg Asn Lys Thr Tyr Phe Ser Pro Arg Ile Pro Pro Leu Val Arg 235 Leu Pro Pro Pro Glu Pro Thr Thr Val Ala Ser Thr Thr Ser Val Thr Thr Ser Thr Ser Ala Pro Val Arg Pro Thr Ser Thr Thr Lys 260 265 Pro Met Pro Ala Pro Thr Ser Gln Thr Pro Arg Gln Gly Val Glu His Glu Ala Ser Arg Asp Glu Glu Pro Arg Leu Thr Gly Gly Ala 295 Ala Gly His Gln Asp Arg Ser Asn Ser Gly Gln Tyr Pro Ala Lys 310 Gly Gly Pro Gln Gln Pro His Asn Lys Gly Cys Val Ala Pro Thr Ala Gly Leu Ala Ala Leu Leu Leu Ala Val Ala Ala Gly Val Leu 335 340

Leu

<210> 198 <211> 1657 <212> DNA <213> Homo sapiens

<400> 198 cgggactcgg cgggtcctcc tgggagtctc ggaggggacc ggctgtgcag 50 acgccatgga gttggtgctg gtcttcctct gcagcctgct ggcccccatg 100 gtcctggcca gtgcagctga aaaggagaag gaaatggacc cttttcatta 150 tgattaccag accctgagga ttgggggact ggtgttcgct gtggtcctct 200 tctcggttgg gatcctcctt atcctaagtc gcaggtgcaa gtgcagtttc 250 aatcagaagc cccgggcccc aggagatgag gaagcccagg tggagaacct 300 catcaccgcc aatgcaacag agccccagaa gcagagaact gaagtgcagc 350 catcaggtgg aagcctctgg aacctgaggc ggctgcttga acctttggat 400 gcaaatgtcg atgcttaaga aaaccggcca cttcagcaac agccctttcc 450 ccaggagaag ccaagaactt gtgtgtcccc caccctatcc cctctaacac 500 catteeteea eetgatgatg caactaacae ttgeeteece aetgeageet 550 gcggtcctgc ccacctcccg tgatgtgtgt gtgtgtgtgt gtgtgtgact 600 gtgtgtgttt gctaactgtg gtctttgtgg ctacttgttt gtggatggta 650 ttgtgtttgt tagtgaactg tggactcgct ttcccaggca ggggctgagc 700 cacatggcca tetgeteete cetgeeceeg tggeecteea teacettetg 750 ctcctaggag gctgcttgtt gcccgagacc agccccctcc cctgatttag 800 ggatgcgtag ggtaagagca cgggcagtgg tcttcagtcg tcttgggacc 850 tgggaaggtt tgcagcactt tgtcatcatt cttcatggac tcctttcact 900 cetttaacaa aaacettget teettateee acetgateee agtetgaagg 950 tctcttagca actggagata caaagcaagg agctggtgag cccagcgttg 1000 acgtcaggca ggctatgccc ttccgtggtt aatttcttcc caggggcttc 1050 cacgaggagt ccccatctgc cccgcccctt cacagagcgc ccggggattc 1100 caggcccagg gcttctactc tgcccctggg gaatgtgtcc cctgcatatc 1150 ttctcagcaa taactccatg ggctctggga ccctacccct tccaaccttc 1200 cctgcttctg agacttcaat ctacagccca gctcatccag atgcagacta 1250 cagtccctgc aattgggtct ctggcaggca atagttgaag gactcctqtt 1300 ccgttggggc cagcacaccg ggatggatgg agggagagca gaggcctttg 1350 cttctctgcc tacgtcccct tagatgggca gcagaggcaa ctcccgcatc 1400

ctttgctctg cctgtcggtg gtcagagcgg tgagcgaggt gggttggaga 1450 ctcagcaggc tccgtgcagc ccttgggaac agtgagaggt tgaaggtcat 1500 aacgagagtg ggaactcaac ccagatcccg cccctctgt cctctgtgtt 1550 cccgcggaaa ccaaccaaac cgtgcgctgt gacccattgc tgttctctgt 1600 atcgtgatct atcctcaaca acaacagaaa aaaggaataa aatatccttt 1650 gtttcct 1657

<210> 199

<211> 120

<212> PRT

<213> Homo sapiens

<400> 199

Met Glu Leu Val Leu Val Phe Leu Cys Ser Leu Leu Ala Pro Met
1 5 10 15

Val Leu Ala Ser Ala Ala Glu Lys Glu Lys Glu Met Asp Pro Phe 20 25 30

His Tyr Asp Tyr Gln Thr Leu Arg Ile Gly Gly Leu Val Phe Ala 35 40 45

Val Val Leu Phe Ser Val Gly Ile Leu Leu Ile Leu Ser Arg Arg 50 55 60

Cys Lys Cys Ser Phe Asn Gln Lys Pro Arg Ala Pro Gly Asp Glu 65 70 75

Glu Ala Gln Val Glu Asn Leu Ile Thr Ala Asn Ala Thr Glu Pro 80 85 90

Gln Lys Gln Arg Thr Glu Val Gln Pro Ser Gly Gly Ser Leu Trp 95 100 105

Asn Leu Arg Arg Leu Leu Glu Pro Leu Asp Ala Asn Val Asp Ala 110 115 120

<210> 200

<211> 415

<212> DNA

<213> Homo sapiens

<400> 200

```
cattttccat ccaaa 415
```

- <210> 201
- <211> 99
- <212> PRT
- <213> Homo sapiens

<400> 201

Met Lys Ile Pro Val Leu Pro Ala Val Val Leu Leu Ser Leu Leu 1 5 10 15

Val Leu His Ser Ala Gln Gly Ala Thr Leu Gly Gly Pro Glu Glu 20 25 30

Glu Ser Thr Ile Glu Asn Tyr Ala Ser Arg Pro Glu Ala Phe Asn 35 40

Thr Pro Phe Leu Asn Ile Asp Lys Leu Arg Ser Ala Phe Lys Ala 50 55 60

Asp Glu Phe Leu Asn Trp His Ala Leu Phe Glu Ser Ile Lys Arg
65 70 75

Lys Leu Pro Phe Leu Asn Trp Asp Ala Phe Pro Lys Leu Lys Gly 80 85 90

Leu Arg Ser Ala Thr Pro Asp Ala Gln 95

- <210> 202
- <211> 678
- <212> DNA
- <213> Homo sapiens

<400> 202

ggtggagatt gcetttgcet cagtgattet cacetgcete tecettetgg 100 cagcaggagatt gcetttgcet gttettetee agecagttee aacteaggag 150 acaggagatt eteceaggtt gttettetee agecagttee aacteaggag 150 acaggtceca aggccatggg agatetetee tgtggetttg eeggecaete 200 atgagagtgt ttttggtaa agtattttt agaatactgt tgaettette 250 atgattaat aaccateett tgegaagttt tatgaggett taggggaatg 300 teaaccetea aattttgtt atactagatg getteeattt acceaceaet 350 attttaaggt eeetttatt ttaggtteaa ggtteatttg acttgagaaa 400 gtgeeettet geagetteat tgatttgtt tatetteaet attaattgta 450 acgattaaaa aagaataaga geaegeagae etetaggaga atattttate 500 eetgggtgee eetgacacat ttatgtagtg ateceacaaa tgtgattgtt 550 aatttaaatg ttattetat attagtacat teagttgta tgtaatatga 600 ataaccagaa tetattett aaaagttttg agtatattt teaactagat 650 atttgtatag aaagactgaa tagtgatg 678

Cys Gly Phe Ala Gly His Ser

<210> 204 <211> 1917 <212> DNA <213> Homo sapiens

<400> 204 ggggaatctg cagtaggtct gccggcgatg gagtggtggg ctagctcgcc 50 getteggete tggetgetgt tgtteeteet geeeteageg eagggeegee 100 agaaggagtc aggttcaaaa tggaaagtat ttattgacca aattaacagg 150 tctttggaga attacgaacc atgttcaagt caaaactgca gctgctacca 200 tggtgtcata gaagaggatc taactccttt ccqaggaggc atctccagga 250 agatgatggc agaggtagtc agacggaagc tagggaccca ctatcagatc 300 actaagaaca gactgtaccg ggaaaatgac tgcatgttcc cctcaaggtg 350 tagtggtgtt gagcacttta ttttggaagt gatcgggcgt ctccctgaca 400 tggagatggt gatcaatgta cgagattatc ctcaggttcc taaatggatg 450 gagcctgcca tcccagtctt ctccttcagt aagacatcag agtaccatga 500 tatcatgtat cctgcttgga cattttggga agggggacct gctgtttggc 550 caatttatcc tacaggtctt ggacggtggg acctcttcag agaagatctg 600 gtaaggtcag cagcacagtg gccatggaaa aagaaaaact ctacagcata 650 tttccgagga tcaaggacaa gtccagaacg agatcctctc attcttctgt 700 ctcggaaaaa cccaaaactt gttgatgcag aatacaccaa aaaccaggcc 750 tggaaatcta tgaaagatac cttaggaaag ccagctgcta aggatgtcca 800 tcttgtggat cactgcaaat acaagtatct gtttaatttt cgaggcgtag 850 ctgcaagttt ccggtttaaa cacctcttcc tgtgtggctc.acttgttttc 900 catgttggtg atgagtggct agaattcttc tatccacagc tgaagccatg 950 ggttcactat atcccagtca aaacagatct ctccaatgtc caagagctgt 1000

tacaatttgt aaaagcaaat gatgatgtag ctcaagagat tgctgaaagg 1050 ggaagccagt ttattaggaa ccatttgcag atggatgaca tcacctgtta 1100 ctgggagaac ctcttgagtg aatactctaa attcctgtct tataatgtaa 1150 cgagaaggaa aggttatgat caaattattc ccaaaatgtt gaaaactgaa 1200 ctatagtagt catcatagga ccatagtcct ctttgtggca acagatctca 1250 gatatectae ggtgagaage ttaccataag ettggeteet atacettgaa 1300 tatctgctat caagccaaat acctggtttt ccttatcatg ctgcacccag 1350 agcaactett gagaaagatt taaaatgtgt etaatacaet gatatgaage 1400 agttcaactt tttggatgaa taaggaccag aaatcgtgag atgtggattt 1450 tgaacccaac tctacctttc attttcttaa gaccaatcac agcttgtgcc 1500 tcagatcatc cacctgtgtg agtccatcac tgtgaaattg actgtgtcca 1550 tgtgatgatg ccctttgtcc cattatttgg agcagaaaat tcgtcatttg 1600 gaagtagtac aactcattgc tggaattgtg aaattattca aggcgtgatc 1650 tctgtcactt tattttaatg taggaaaccc tatggggttt atgaaaaata 1700 aatgatgtag gagttctctt ttgtaaaacc ataaactctg ttactcagga 1800 ggtttctata atgccacata gaaagaggcc aattgcatga gtaattattg 1850 caattggatt tcaggttccc tttttgtgcc ttcatgccct acttcttaat 1900 gcctctctaa agccaaa 1917

<210> 205

<211> 392

<212> PRT

<213> Homo sapiens

<400> 205

Met Glu Trp Trp Ala Ser Ser Pro Leu Arg Leu Trp Leu Leu 1 5 10 15

Phe Leu Leu Pro Ser Ala Gln Gly Arg Gln Lys Glu Ser Gly Ser 20 25 30

Lys Trp Lys Val Phe Ile Asp Gln Ile Asn Arg Ser Leu Glu Asn 35 40 45

Tyr Glu Pro Cys Ser Ser Gln Asn Cys Ser Cys Tyr His Gly Val 50 55 60

Ile Glu Glu Asp Leu Thr Pro Phe Arg Gly Gly Ile Ser Arg Lys 65 70 75

Met Met Ala Glu Val Val Arg Arg Lys Leu Gly Thr His Tyr Gln 80 85 90

Ile Thr Lys Asn Arg Leu Tyr Arg Glu Asn Asp Cys Met Phe Pro

				95	5				100					105
Ser	Arg	g Cys	Ser	Gly 110	v Val	. Glu	His	Phe	lle 115		Glu	ı Val	. Ile	Gly 120
Arg	, Leu	Pro	Asp	Met 125	Glu	. Met	: Val	. Ile	Asn 130		Arg	Asp	Туг	Pro 135
Gln	Val	. Pro	Lys	Trp 140	Met	Glu	Pro	Ala	Ile 145	Pro	Val	Phe	e Ser	Phe 150
Ser	Lys	Thr	Ser	Glu 155	Tyr	His	Asp	Ile	Met 160	Tyr	Pro	Ala	Trp	Thr 165
Phe	Trp	Glu	Gly	Gly 170	Pro	Ala	Val	Trp	Pro 175	Ile	Tyr	Pro	Thr	Gly 180
Leu	Gly	Arg	Trp	Asp 185	Leu	Phe	Arg	Glu	Asp 190	Leu	Val	Arg	Ser	Ala 195
Ala	Gln	Trp	Pro	Trp 200	Lys	Lys	Lys	Asn	Ser 205	Thr	Ala	Tyr	Phe	Arg 210
Gly	Ser	Arg	Thr	Ser 215	Pro	Glu	Arg	Asp	Pro 220	Leu	Ile	Leu	Leu	Ser 225
Arg	Lys	Asn	Pro	Lys 230	Leu	Val	Asp	Ala	Glu 235	Tyr	Thr	Lys	Asn	Gln 240
Ala	Trp	Lys	Ser	Met 245	Lys	Asp	Thr	Leu	Gly 250	Lys	Pro	Ala	Ala	Lys 255
Asp	Val	His	Leu	Val 260	Asp	His	Cys	Lys	Tyr 265	Lys	Tyr	Leu	Phe	Asn 270
		Gly		275					280					285
Cys	Gly	Ser	Leu	Val 290	Phe	His	Val	Gly	Asp 295	Glu	Trp	Leu	Glu	Phe 300
Phe	Tyr	Pro	Gln	Leu 305	Lys	Pro	Trp	Val	His 310	Tyr	Ile	Pro	Val	Lys 315
Thr	Asp	Leu	Ser	Asn 320	Val	Gln	Glu	Leu	Leu 325	Gln	Phe	Val	Lys	Ala 330
Asn	Asp	Asp	Val	Ala 335	Gln	Glu	Ile	Ala	Glu 340	Arg	Gly	Ser	Gln	Phe 345
Ile	Arg	Asn	His	Leu 350	Gln	Met	Asp	Asp	Ile 355	Thr	Cys	Tyr	Trp	Glu 360
Asn	Leu	Leu	Ser	Glu 365	Tyr	Ser	Lys	Phe	Leu 370	Ser	Tyr	Asn	Val	Thr 375
Arg	Arg	Lys	Gly	Tyr 380	Asp	Gln	Ile	Ile	Pro 385	Lys	Met	Leu	Lys	Thr 390
Glu	Leu													

<210> 206

<211> 1425 <212> DNA <213> Homo sapiens

<400> 206 caccecteca tittetegeca tggcccetge actgetectg atcectgetg 50 coetegeete ttteateetg geetttggea eeggagtgga gttegtgege 100 tttacctccc ttcggccact tcttggaggg atcccggagt ctggtggtcc 150 ggatgcccgc cagggatggc tggctgccct gcaggaccgc agcatccttg 200 ccccctqqc atqqqatctq qqqctcctqc ttctatttqt tqqqcaqcac 250 agecteatgg cagetgaaag agtgaaggea tggacateee ggtaetttgg 300 ggtccttcag aggtcactgt atgtggcctg cactgccctg gccttgcagc 350 tggtgatgcg gtactgggag cccataccca aaggccctgt gttgtgggag 400 gctcgggctg agccatgggc cacctgggtg ccgctcctct gctttgtgct 450 ccatgtcatc tcctggctcc tcatctttag catccttctc gtctttgact 500 atgctgagct catgggcctc aaacaggtat actaccatgt gctggggctg 550 ggegageete tggeeetgaa gteteeeegg geteteagae tetteteeea 600 cctgcgccac ccagtgtgtg tggagctgct gacagtgctg tgggtggtgc 650 ctaccetggg cacggaccgt ctcctccttg ctttcctcct taccetctac 700 ctqqqcctqq ctcacqqqct tqatcaqcaa gacctccqct acctccqqcc 750 ccagctacaa agaaaactcc acctgctctc tcggccccag gatggggagg 800 cagagtgagg ageteactet ggttacaage cetgttette eteteceaet 850 gaattctaaa toottaacat ocaggoootg gotgottcat gocagaggoo 900 caaatccatg gactgaagga gatgcccctt ctactacttg agactttatt 950 ctctgggtcc agetccatac cctaaattct gagtttcagc cactgaactc 1000 caaggtccac ttctcaccag caaggaagag tggggtatgg aagtcatctg 1050 tcccttcact gtttagagca tgacactctc cccctcaaca gcctcctgag 1100 aaggaaagga totgoootga coactoooct ggoactgtta ottgoototg 1150 cgcctcaggg gtccccttct gcaccgctgg cttccactcc aagaaggtgg 1200 accagggtct gcaagttcaa cggtcatagc tgtccctcca ggccccaacc 1250 ttgcctcacc actcccggcc ctagtctctg cacctcctta ggccctgcct 1300 ctgggctcag accccaacct agtcaagggg attctcctgc tcttaactcg 1350 atgacttggg gctccctgct ctcccgagga agatgctctg caggaaaata 1400 aaagtcagcc tttttctaaa aaaaa 1425

```
<210> 207
 <211> 262
 <212> PRT
 <213> Homo sapiens
 <400> 207
 Met Ala Pro Ala Leu Leu Leu Ile Pro Ala Ala Leu Ala Ser Phe
 Ile Leu Ala Phe Gly Thr Gly Val Glu Phe Val Arg Phe Thr Ser
 Leu Arg Pro Leu Leu Gly Gly Ile Pro Glu Ser Gly Gly Pro Asp
 Ala Arg Gln Gly Trp Leu Ala Ala Leu Gln Asp Arg Ser Ile Leu
 Ala Pro Leu Ala Trp Asp Leu Gly Leu Leu Leu Phe Val Gly
 Gln His Ser Leu Met Ala Ala Glu Arg Val Lys Ala Trp Thr Ser
 Arg Tyr Phe Gly Val Leu Gln Arg Ser Leu Tyr Val Ala Cys Thr
 Ala Leu Ala Leu Gln Leu Val Met Arg Tyr Trp Glu Pro Ile Pro
                 110
                                     115
 Lys Gly Pro Val Leu Trp Glu Ala Arg Ala Glu Pro Trp Ala Thr
 Trp Val Pro Leu Cys Phe Val Leu His Val Ile Ser Trp Leu
                 140
                                     145
 Leu Ile Phe Ser Ile Leu Leu Val Phe Asp Tyr Ala Glu Leu Met
                                     160
Gly Leu Lys Gln Val Tyr Tyr His Val Leu Gly Leu Gly Glu Pro
                                     175
 Leu Ala Leu Lys Ser Pro Arg Ala Leu Arg Leu Phe Ser His Leu
                 185
 Arg His Pro Val Cys Val Glu Leu Leu Thr Val Leu Trp Val Val
                                     205
 Pro Thr Leu Gly Thr Asp Arg Leu Leu Leu Ala Phe Leu Leu Thr
                 215
                                     220
 Leu Tyr Leu Gly Leu Ala His Gly Leu Asp Gln Gln Asp Leu Arg
 Tyr Leu Arg Ala Gln Leu Gln Arg Lys Leu His Leu Leu Ser Arg
 Pro Gln Asp Gly Glu Ala Glu
<210> 208
```

<210> 208 <211> 2095

<213> Homo sapiens

<400> 208 ccgagcacag gagattgcct gcgtttagga ggtggctgcg ttgtgggaaa 50 agctatcaag gaagaaattg ccaaaccatg tctttttttc tgttttcaga 100 gtagttcaca acagatctga gtgttttaat taagcatgga atacagaaaa 150 caacaaaaaa cttaagcttt aatttcatct ggaattccac agttttctta 200 gctccctgga cccggttgac ctgttggctc ttcccgctgg ctgctctatc 250 acgtggtgct ctccgactac tcaccccgag tgtaaagaac cttcggctcg 300 cgtgcttctg agctgctgtg gatggcctcg gctctctgga ctgtccttcc 350 gagtaggatg tcactgagat ccctcaaatg gagcctcctg ctgctgtcac 400 tcctgagttt ctttgtgatg tggtacctca gccttcccca ctacaatgtg 450 atagaacgcg tgaactggat gtacttctat gagtatgagc cgatttacag 500 acaagacttt cacttcacac ttcgagagca ttcaaactgc tctcatcaaa 550 atccatttct ggtcattctg gtgacctccc acccttcaga tgtgaaagcc 600 aggcaggcca ttagagttac ttggggtgaa aaaaagtctt ggtggggata 650 tgaggttctt acatttttct tattaggcca agaggctgaa aaggaagaca 700 aaatgttggc attgtcctta gaggatgaac accttcttta tggtgacata 750 atccgacaag attttttaga cacatataat aacctgacct tgaaaaccat 800 tatggcattc aggtgggtaa ctgagttttg ccccaatgcc aagtacgtaa 850 tgaagacaga cactgatgtt ttcatcaata ctggcaattt agtgaagtat 900 cttttaaacc taaaccactc agagaagttt ttcacaggtt atcctctaat 950 tgataattat tcctatagag gattttacca aaaaacccat atttcttacc 1000 aggagtatcc tttcaaggtg ttccctccat actgcagtgg gttgggttat 1050 ataatgtcca gagatttggt gccaaggatc tatgaaatga tgggtcacgt 1100 aaaacccatc aagtttgaag atgtttatgt cgggatctgt ttgaatttat 1150 taaaagtgaa cattcatatt ccagaagaca caaatctttt ctttctatat 1200 agaatccatt tggatgtctg tcaactgaga cgtgtgattg cagcccatgg 1250 cttttcttcc aaggagatca tcactttttg gcaggtcatg ctaaggaaca 1300 ccacatgcca ttattaactt cacattctac aaaaagccta gaaggacagg 1350 ataccttgtg gaaagtgtta aataaagtag gtactgtgga aaattcatgg 1400 ggaggtcagt gtgctggctt acactgaact gaaactcatg aaaaacccag 1450 actggagact ggagggttac acttgtgatt tattagtcag gcccttcaaa 1500

gatgatatgt ggaggaatta aatataaagg aattggaggt ttttgctaaa 1550 gaaattaata ggaccaaaca atttggacat gtcattctgt agacctagaat 1600 ttcttaaaag ggtgttactg agttataagc tcactaggct gtaaaaacaa 1650 aacaatgtag agttttattt attgaacaat gtagtcactt gaaggttttg 1700 tgtatatctt atgtggatta ccaatttaaa aatatatgta gttctgtgtc 1750 aaaaaacttc ttcactgaag ttatactgaa caaaatttta cctgtttttg 1800 gtcatttata aagtacttca agatgttgca gtattcaca gttattatta 1850 tttaaaatta cttcaacttt gtgttttaa atgtttgac gatttcaata 1900 caagataaaa aggatagtga atcattcttt acatgcaaac attttccagt 1950 tacttaactg atcagttat tattgataca tcactccatt aatgtaaagt 2000 cataggtcat tattgcatat cagtaatctc ttggactttg ttaaatattt 2050 tactgggta atataggaa gaattaaagc aagaaaatct gaaaa 2095

<210> 209

<211> 331

<212> PRT

<213> Homo sapiens

<400> 209

Met Ala Ser Ala Leu Trp Thr Val Leu Pro Ser Arg Met Ser Leu 1 5 10 15

Arg Ser Leu Lys Trp Ser Leu Leu Leu Ser Leu Leu Ser Phe 20 25 30

Phe Val Met Trp Tyr Leu Ser Leu Pro His Tyr Asn Val Ile Glu 35 40 45

Arg Val Asn Trp Met Tyr Phe Tyr Glu Tyr Glu Pro Ile Tyr Arg
50 55 60

Gln Asp Phe His Phe Thr Leu Arg Glu His Ser Asn Cys Ser His
65 70 75

Gln Asn Pro Phe Leu Val Ile Leu Val Thr Ser His Pro Ser Asp 80 85 90

Val Lys Ala Arg Gln Ala Ile Arg Val Thr Trp Gly Glu Lys Lys 95 100 105

Ser Trp Trp Gly Tyr Glu Val Leu Thr Phe Phe Leu Leu Gly Gln
110 115 120

Glu Ala Glu Lys Glu Asp Lys Met Leu Ala Leu Ser Leu Glu Asp 125 130 130

Glu His Leu Leu Tyr Gly Asp Ile Ile Arg Gln Asp Phe Leu Asp 140 145

Thr Tyr Asn Asn Leu Thr Leu Lys Thr Ile Met Ala Phe Arg Trp
155 160 165

```
Val Thr Glu Phe Cys Pro Asn Ala Lys Tyr Val Met Lys Thr Asp
                170
Thr Asp Val Phe Ile Asn Thr Gly Asn Leu Val Lys Tyr Leu Leu
Asn Leu Asn His Ser Glu Lys Phe Phe Thr Gly Tyr Pro Leu Ile
                 200
Asp Asn Tyr Ser Tyr Arg Gly Phe Tyr Gln Lys Thr His Ile Ser
                215
                                     220
Tyr Gln Glu Tyr Pro Phe Lys Val Phe Pro Pro Tyr Cys Ser Gly
                                     235
                                                         240
Leu Gly Tyr Ile Met Ser Arg Asp Leu Val Pro Arg Ile Tyr Glu
                245
                                     250
Met Met Gly His Val Lys Pro Ile Lys Phe Glu Asp Val Tyr Val
                260
                                                         270
Gly Ile Cys Leu Asn Leu Leu Lys Val Asn Ile His Ile Pro Glu
                                     280
Asp Thr Asn Leu Phe Phe Leu Tyr Arg Ile His Leu Asp Val Cys
Gln Leu Arg Arg Val Ile Ala Ala His Gly Phe Ser Ser Lys Glu
                305
                                     310
Ile Ile Thr Phe Trp Gln Val Met Leu Arg Asn Thr Thr Cys His
                                     325
```

Tyr

<210> 210

<211> 745

<212> DNA

<213> Homo sapiens

<400> 210

cctctgtcca ctgctttcgt gaagacaaga tgaagttcac aattgtcttt 50 gctggacttc ttggagtctt tctagctcct gccctagcta actataatat 100 caacgtcaat gatgacaaca acaatgctgg aagtgggcag cagtcagtga 150 gtgtcaacaa tgaacacaat gtggccaatg ttgacaataa caacggatgg 200 gactcctgga attccatctg ggattatgga aatggctttg ctgcaaccag 250 actcttcaa aagaagacat gcattgtgca caaaatgaac aaggaagtca 300 tgccctccat tcaatccctt gatgcactgg tcaaggaaaa gaagcttcag 350 ggtaagggac caggaggacc acctcccaag ggcctgatgt actcagtcaa 400 cccaaacaaa gtcgatgacc tgagcaagtt cggaaaaaac attgcaaca 450 tgtgtcgtgg gattccaaca tacatggctg aggagtgca gagggcaagc 500 ctgtttttt actcaggaac gtgctacacg accagtgtac tatggattgt 550

ggacatttcc ttctgtggag acacggtgga gaactaaaca atttttaaa 600 gccactatgg atttagtcat ctgaatatgc tgtgcagaaa aaatatgggc 650 tccagtggtt tttaccatgt cattctgaaa tttttctcta ctagttatgt 700 ttgatttctt taagtttcaa taaaatcatt tagcattgaa aaaaa 745 <210> 211

<211> 185

<212> PRT

<213> Homo sapiens

<400> 211

Met Lys Phe Thr Ile Val Phe Ala Gly Leu Leu Gly Val Phe Leu

Ala Pro Ala Leu Ala Asn Tyr Asn Ile Asn Val Asn Asp Asp Asn

Asn Asn Ala Gly Ser Gly Gln Gln Ser Val Ser Val Asn Asn Glu 45

His Asn Val Ala Asn Val Asp Asn Asn Gly Trp Asp Ser Trp

Asn Ser Ile Trp Asp Tyr Gly Asn Gly Phe Ala Ala Thr Arg Leu

Phe Gln Lys Lys Thr Cys Ile Val His Lys Met Asn Lys Glu Val 85

Met Pro Ser Ile Gln Ser Leu Asp Ala Leu Val Lys Glu Lys Lys

Leu Gln Gly Lys Gly Pro Gly Gly Pro Pro Pro Lys Gly Leu Met 115

Tyr Ser Val Asn Pro Asn Lys Val Asp Asp Leu Ser Lys Phe Gly 135

Lys Asn Ile Ala Asn Met Cys Arg Gly Ile Pro Thr Tyr Met Ala 145

Glu Glu Met Gln Glu Ala Ser Leu Phe Phe Tyr Ser Gly Thr Cys 155 160

Tyr Thr Thr Ser Val Leu Trp Ile Val Asp Ile Ser Phe Cys Gly 170

Asp Thr Val Glu Asn 185

<210> 212

<211> 1706

<212> DNA

<213> Homo sapiens

<400> 212

catttctgaa actaatcgtg tcagaattga ctttgaaaag cattgctttt 50 tacagaagta tattaacttt ttaggagtaa tttctagttt ggattgtaat 100

atgaaataat ttaaaagggc ttcgctcata tataggaaaa tcgcatatgg 150 tcctagtatt aaattcttat tgcttactga tttttttgag ttaagagttg 200 ttatatgcta gaatatgagg atgtgaatat aaataagaga agaaaaaaga 250 ataaagtaga ttgagtctcc aattttatgt aagcttcaga agaactggtt 300 tgtttacatg caagcttata gttgaaatat ttttcaggaa ttacatgaat 350 gacagtette gaaccaatgt gtttgttega ttteaaccag agactatage 400 atgtgcttgc atctaccttg cagctagagc acttcagatt ccgttgccaa 450 ctcgtcccca ttggtttctt ctttttggta ctacagaaga ggaaatccag 500 gaaatctgca tagaaacact taggctttat accagaaaaa agccaaacta 550 tgaattactg gaaaaagaag tagaaaaaag aaaagtagcc ttacaagaag 600 ccaaattaaa agcaaaggga ttgaatccgg atggaactcc agccctttca 650 accetgggtg gattttctcc agcetccaag ccatcatcac caagagaagt 700 aaaagctgaa gagaaatcac caatctccat taatgtgaag acagtcaaaa 750 aagaacctga ggatagacaa caggcttcca aaagccctta caatggtgta 800 agaaaagaca gcaagagaag tagaaatagc agaagtgcaa gtcgatcgag 850 gtcaagaaca cgatcacgtt ctagatcaca tactccaaga agacactata 900 ataataggeg gagtegatet ggaacataca getegagate aagaageagg 950 tecegeagte acagtgaaag ceetegaaga cateataate atggttetee 1000 tcaccttaag gccaagcata ccagagatga tttaaaaagt tcaaacagac 1050 atggtcataa aaggaaaaaa tctcgttctc gatctcagag caagtctcgg 1100 gatcactcag atgcagccaa gaaacacagg catgaaaggg gacatcatag 1150 ggacaggcgt gaacgatctc gctcctttga gaggtcccat aaaagcaagc 1200 accatggtgg cagtcgctca ggacatggca ggcacaggcg ctgactttct 1250 cttcctttga gcctgcatca gttcttggtt ttgcctatct acagtgtgat 1300 cttgaaaccc tctaggtctc tagaacactg aggacagttt cttttgaaaa 1400 gaactatgtt aatttttttg cacattaaaa tgccctagca gtatctaatt 1450 aaaaaccatg gtcaggttca attgtacttt attatagttg tgtattgttt 1500 attgctataa gaactggagc gtgaattctg taaaaatgta tcttatttt 1550 atacagataa aattgcagac actgttctat ttaagtggtt atttgtttaa 1600 atgatggtga atactttctt aacactggtt tgtctgcatg tgtaaagatt 1650 tttacaagga aataaaatac aaatcttgtt ttttctaaaa aaaaaaaaa 1700

aaaagt 1706

<210> 213

<211> 299

<212> PRT

<213> Homo sapiens

<400> 213

Met Asn Asp Ser Leu Arg Thr Asn Val Phe Val Arg Phe Gln Pro

1 5 10 15

Glu Thr Ile Ala Cys Ala Cys Ile Tyr Leu Ala Ala Arg Ala Leu 20 25 30

Gln Ile Pro Leu Pro Thr Arg Pro His Trp Phe Leu Leu Phe Gly
35 40

Thr Thr Glu Glu Glu Ile Gln Glu Ile Cys Ile Glu Thr Leu Arg
50 55 60

Leu Tyr Thr Arg Lys Lys Pro Asn Tyr Glu Leu Leu Glu Lys Glu
65 70 75

Val Glu Lys Arg Lys Val Ala Leu Gln Glu Ala Lys Leu Lys Ala 80 85 90

Lys Gly Leu Asn Pro Asp Gly Thr Pro Ala Leu Ser Thr Leu Gly 95 100 105

Gly Phe Ser Pro Ala Ser Lys Pro Ser Ser Pro Arg Glu Val Lys 110 115 120

Ala Glu Glu Lys Ser Pro Ile Ser Ile Asn Val Lys Thr Val Lys 125 130 135

Lys Glu Pro Glu Asp Arg Gln Gln Ala Ser Lys Ser Pro Tyr Asn 140 145 150

Gly Val Arg Lys Asp Ser Lys Arg Ser Arg Asn Ser Arg Ser Ala 155 160 165

Ser Arg Ser Arg Ser Arg Thr Arg Ser Arg Ser Arg Ser His Thr 170 175 180

Pro Arg Arg His Tyr Asn Asn Arg Arg Ser Arg Ser Gly Thr Tyr 185 190 195

Ser Ser Arg Ser Arg Ser Arg Ser Arg Ser His Ser Glu Ser Pro 200 205 210

Arg Arg His His Asn His Gly Ser Pro His Leu Lys Ala Lys His 215 220 225

Thr Arg Asp Asp Leu Lys Ser Ser Asn Arg His Gly His Lys Arg 230 235 240

Lys Lys Ser Arg Ser Arg Ser Gln Ser Lys Ser Arg Asp His Ser 245 250 255

Asp Ala Ala Lys Lys His Arg His Glu Arg Gly His His Arg Asp 260 265 270

Arg Arg Glu Arg Ser Arg Ser Phe Glu Arg Ser His Lys Ser Lys

His His Gly Gly Ser Arg Ser Gly His Gly Arg His Arg Arg 290 $$ 295

<210> 214

<211> 730

<212> DNA

<213> Homo sapiens

<220>

<221> unsure

<222> 72-73, 85, 91, 127, 226, 268, 454, 484, 513, 566, 663

<223> unknown base

<400> 214

tggggataaa ggaaaaatgg tcaggtatta atggcttaaa gattattgga 50

aggggtttat cattttttga anntattcgg gtcanaattg nctttgaaaa 100

gcattgcttt ttacagaaat atattanctt tttagagtaa tttctagttt 150

ggattgtaat atgaaattat ttaaaagggc ttcgctcata tataggaaaa 200

tcgcatatgg tcctagtatt aaattnttat tgcttactga tttttttgag 250

ttaagagttg ttatatgnta gaatatgagg atgtgaatat aaataagaga 300

agaaaaaaga ataaagtaga ttgagtctcc aattttatgt aagcttcaga 350

agaactggtt tgtttacatg caagcttata gttgaaatat ttttcaggaa 400

ttacatgaat gacagtette gaaccaatgt gtttgttega tttcaaccag 450

agantatage atgtgettge atctacettg cagntagage actteagatt 500

ccgttgccaa ctngtcccca ttggtttctt ctttttggta ctacagaaga 550

ggaaatccag gaaatntgca tagaaacact taggctttat accagaaaaa 600

agccaaacta tgaattactg gaaaaagaag tagaaaaaag aaaagtagcc 650

ttacaagaag ccnaattaaa agcaaaggga ttgaatccgg atggaactcc 700

agccctttca accctgggtg gattttctcc 730

<210> 215

<211> 1807

<212> DNA

<213> Homo sapiens

<400> 215

ggcacgaggc ctcgtgccaa gcttggcacg agggtgcacc gcgttctcgc 50

acgcgtcatg gcggtcctcg gagtacagct ggtggtgacc ctgctcactg 100

ccaccctcat gcacaggctg gcgccacact gctccttcgc gcgctggctg 150

ctctgtaacg gcagtttgtt ccgatacaag cacccgtctg aggaggagct 200

tegggeeetg geggggaage egaggeeeag aggeaggaaa gageggtggg 250

ccaatggcct tagtgaggag aagccactgt ctgtgccccg agatgccccg 300

ttccagctgg agacctgccc cctcacgacc gtggatgccc tggtcctgcg 350 cttcttcctg gagtaccagt ggtttgtgga ctttgctgtg tactcgggcg 400 gcgtgtacct cttcacagag gcctactact acatgctggg accagccaag 450 gagactaaca ttgctgtgtt ctggtgcctg ctcacggtga ccttctccat 500 caagatgttc ctgacagtga cacggctgta cttcagcgcc gaggaggggg 550 gtgagcgctc tgtctgcctc acctttgcct tcctcttcct gctgctggcc 600 atgctggtgc aagtggtgcg ggaggagacc ctcgagctgg gcctggagcc 650 tggtctggcc agcatgaccc agaacttaga gccacttctg aagaagcagg 700 gctgggactg ggcgcttcct gtggccaagc tggctatccg cgtgggactg 750 gcagtggtgg gctctgtgct gggtgccttc ctcaccttcc caggcctgcg 800 gctggcccag acccaccggg acgcactgac catgtcggag gacagaccca 850 tgctgcagtt cctcctgcac accagcttcc tgtctcccct gttcatcctg 900 tggctctgga caaagcccat tgcacgggac ttcctgcacc agccgccgtt 950 tggggagacg cgtttctccc tgctgtccga ttctgccttc gactctgggc 1000 gcctctggtt gctggtggtg ctgtgcctgc tgcggctggc ggtgacccgg 1050 ccccacctgc aggcctacct gtgcctggcc aaggcccggg tggagcagct 1100 gcgaagggag gctggccgca tcgaagcccg tgaaatccag cagagggtgg 1150 tccgagtcta ctgctatgtg accgtggtga gcttgcagta cctgacgccg 1200 ctcatcctca ccctcaactg cacacttctg ctcaagacgc tgggaggcta 1250 tteetgggge etgggeecag etectetaet atecceegae ceatecteag 1300 ccagcgctgc ccccatcggc tctggggagg acgaagtcca gcagactgca 1350 gcgcggattg ccggggccct gggtggcctg cttactcccc tcttcctccg 1400 tggcgtcctg gcctacctca tctggtggac ggctgcctgc cagctgctcg 1450 ccagcetttt eggeetetae ttecaccage aettggeagg etectagetg 1500 cetgeagace etectgggge cetgaggtet gtteetgggg cagegggaca 1550 ctagectgee ecetetgttt gegeeeegt gteeeeaget geaaggtggg 1600 geoggaetee eeggegttee etteaceaea gtgeetgaee egeggeeeee 1650 cttggacgcc gagtttctgc ctcagaactg tctctcctgg gcccagcagc 1700 atgagggtcc cgaggccatt gtctccgaag cgtatgtgcc aggtttgagt 1750 ggcgagggtg atgctggctg ctcttctgaa caaataaagg agcatgccga 1800 tttttaa 1807

<210> 216

<211> 479 <212> PRT <213> Homo sapiens

<400> 216 Met Ala Val Leu Gly Val Gln Leu Val Val Thr Leu Leu Thr Ala Thr Leu Met His Arg Leu Ala Pro His Cys Ser Phe Ala Arg Trp 20 25 Leu Leu Cys Asn Gly Ser Leu Phe Arg Tyr Lys His Pro Ser Glu Glu Glu Leu Arg Ala Leu Ala Gly Lys Pro Arg Pro Arg Gly Arg Lys Glu Arg Trp Ala Asn Gly Leu Ser Glu Glu Lys Pro Leu Ser Val Pro Arg Asp Ala Pro Phe Gln Leu Glu Thr Cys Pro Leu Thr Thr Val Asp Ala Leu Val Leu Arg Phe Phe Leu Glu Tyr Gln Trp Phe Val Asp Phe Ala Val Tyr Ser Gly Gly Val Tyr Leu Phe Thr 110 115 Glu Ala Tyr Tyr Tyr Met Leu Gly Pro Ala Lys Glu Thr Asn Ile 130 Ala Val Phe Trp Cys Leu Leu Thr Val Thr Phe Ser Ile Lys Met 145 Phe Leu Thr Val Thr Arg Leu Tyr Phe Ser Ala Glu Glu Gly Gly 155 Glu Arg Ser Val Cys Leu Thr Phe Ala Phe Leu Phe Leu Leu Leu 175 Ala Met Leu Val Gln Val Val Arg Glu Glu Thr Leu Glu Leu Gly Leu Glu Pro Gly Leu Ala Ser Met Thr Gln Asn Leu Glu Pro Leu 200 Leu Lys Lys Gln Gly Trp Asp Trp Ala Leu Pro Val Ala Lys Leu Ala Ile Arg Val Gly Leu Ala Val Val Gly Ser Val Leu Gly Ala 230 235 Phe Leu Thr Phe Pro Gly Leu Arg Leu Ala Gln Thr His Arg Asp Ala Leu Thr Met Ser Glu Asp Arg Pro Met Leu Gln Phe Leu Leu 265 270 His Thr Ser Phe Leu Ser Pro Leu Phe Ile Leu Trp Leu Trp Thr Lys Pro Ile Ala Arg Asp Phe Leu His Gln Pro Pro Phe Gly Glu

290 295 300 Thr Arg Phe Ser Leu Leu Ser Asp Ser Ala Phe Asp Ser Gly Arg 310 Leu Trp Leu Leu Val Val Leu Cys Leu Leu Arg Leu Ala Val Thr Arg Pro His Leu Gln Ala Tyr Leu Cys Leu Ala Lys Ala Arg Val 335 Glu Gln Leu Arg Arg Glu Ala Gly Arg Ile Glu Ala Arg Glu Ile 350 355 Gln Gln Arg Val Val Arg Val Tyr Cys Tyr Val Thr Val Val Ser 365 370 Leu Gln Tyr Leu Thr Pro Leu Ile Leu Thr Leu Asn Cys Thr Leu 385 Leu Leu Lys Thr Leu Gly Gly Tyr Ser Trp Gly Leu Gly Pro Ala Pro Leu Leu Ser Pro Asp Pro Ser Ser Ala Ser Ala Ala Pro Ile 415 Gly Ser Gly Glu Asp Glu Val Gln Gln Thr Ala Ala Arg Ile Ala Gly Ala Leu Gly Gly Leu Leu Thr Pro Leu Phe Leu Arg Gly Val 440 445 Leu Ala Tyr Leu Ile Trp Trp Thr Ala Ala Cys Gln Leu Leu Ala Ser Leu Phe Gly Leu Tyr Phe His Gln His Leu Ala Gly Ser <210> 217 <211> 574 <212> DNA

<213> Homo sapiens

<220>

<221> unsure

<222> 5, 146

<223> unknown base

<400> 217

cgttngcacg cgtcaatggc ggtcctcgga gtacagctgg tggtgaccct 50 gctcactgcc accetcatgc acaggctggc gccacactgc tccttcgcgc 100 gctggctgct ctgtaacggc agtttgttcc gatacaagca cccgtnttga 150 ggaggagett egggeeetgg eggggaagee gaggeeeaga ggeaggaaag 200 ageggtggge caatggeett agtgaggaga agecaetgte tgtgeecega 250 gatgccccgt tccagctgga gacctgcccc ctcacgaccg tggatgccct 300 ggtcctgcgc ttcttcctgg agtaccagtg gtttgtggac tttgctgtgt 350 actoggogg cgtgtacctc ttcacagagg cctactacta catgctggga 400 ccagccaagg agactaacat tgctgtgtc tggtgcctgc tcacagtgac 450 cttctccatc aagatgttcc tgacagtgac acggctgtac ttcagcgccg 500 aggaggggg tgagcgctct gtctgcctca cctttgcctt cctcttcctg 550 ctgctggcca tgctggtgca agcg 574

<210> 218

<211> 2571

<212> DNA

<213> Homo sapiens

<400> 218

ggttcctaca tcctctcatc tgagaatcag agagcataat cttcttacgg 50 gcccgtgatt tattaacgtg gcttaatctg aaggttctca gtcaaattct 100 ttgtgatcta ctgattgtgg gggcatggca aggtttgctt aaaggagctt 150 ggctggtttg ggcccttgta gctgacagaa ggtggccagg gagaatgcag 200 cacactgctc ggagaatgaa ggcgcttctg ttgctggtct tgccttggct 250 cagtcctgct aactacattg acaatgtggg caacctgcac ttcctgtatt 300 cagaactetg taaaggtgcc teccactaeg geetgaecaa agataggaag 350 aggcgctcac aagatggctg tccagacggc tgtgcgagcc tcacagccac 400 ggctccctcc ccagaggttt ctgcagctgc caccatctcc ttaatgacag 450 acgagectgg cctagacaac cctgectaeg tgteetegge agaggaeggg 500 cagccagcaa tcagcccagt ggactctggc cggagcaacc gaactagggc 550 acggcccttt gagagatcca ctattagaag cagatcattt aaaaaaataa 600 atcgagcttt gagtgttctt cgaaggacaa agagcgggag tgcagttgcc 650 aaccatgccg accagggcag ggaaaattct gaaaacacca ctgcccctga 700 agtettteca aggttgtace acctgattee agatggtgaa attaccagea 750 tcaagatcaa tcgagtagat cccagtgaaa gcctctctat taggctggtg 800 ggaggtagcg aaaccccact ggtccatatc attatccaac acatttatcq 850 tgatggggtg atcgccagag acggccggct actgccagga gacatcattc 900 taaaggtcaa cgggatggac atcagcaatg tccctcacaa ctacgctgtg 950 cgtctcctgc ggcagccctg ccaggtgctg tggctgactg tgatqcqtga 1000 acagaagtto cgcagcagga acaatggaca ggccccggat gcctacagac 1050 cccgagatga cagetttcat gtgattctca acaaaagtag ccccgaggag 1100 cagcttggaa taaaactggt gcgcaaggtg gatgagcctg gggttttcat 1150 cttcaatgtg ctggatggcg gtgtggcata tcgacatggt cagcttgagg 1200

agaatgaccg tgtgttagcc atcaatggac atgatcttcg atatggcagc 1250 ccagaaagtg cggctcatct gattcaggcc agtgaaagac gtgttcacct 1300 cgtcgtgtcc cgccaggttc ggcagcggag ccctgacatc tttcaggaag 1350 ccggctggaa cagcaatggc agctggtccc cagggccaqq qqaqaqqaqc 1400 aacactccca agcccctcca tcctacaatt acttgtcatg agaaggtggt 1450 aaatatccaa aaagaccccg gtgaatctct cggcatgacc gtcgcagggg 1500 gagcatcaca tagagaatgg gatttgccta tctatgtcat cagtgttgag 1550 cccggaggag tcataagcag agatggaaga ataaaaacag gtgacatttt 1600 gttgaatgtg gatggggtcg aactgacaga ggtcagccgg agtgaggcag 1650 tggcattatt gaaaagaaca tcatcctcga tagtactcaa agctttggaa 1700 gtcaaagagt atgagcccca ggaagactgc agcagcccag cagccctgga 1750 ctccaaccac aacatggccc cacccagtga ctggtcccca tcctgggtca 1800 tgtggctgga attaccacgg tgcttgtata actgtaaaga tattgtatta 1850 cgaagaaaca cagctggaag tctgggcttc tgcattgtag gaggttatga 1900 agaatacaat ggaaacaaac ctttttcat caaatccatt gttgaaggaa 1950 caccagcata caatgatgga agaattagat gtggtgatat tettettget 2000 gtcaatggta gaagtacatc aggaatgata catgcttgct tggcaagact 2050 gctgaaagaa cttaaaggaa gaattactct aactattgtt tcttggcctg 2100 gcactttttt atagaatcaa tgatgggtca gaggaaaaca gaaaaatcac 2150 aaataggcta agaagttgaa acactatatt tatcttgtca gtttttatat 2200 ttaaagaaag aatacattgt aaaaatgtca ggaaaagtat gatcatctaa 2250 tgaaagccag ttacacctca gaaaatatga ttccaaaaaa attaaaacta 2300 ctagtttttt ttcagtgtgg aggatttctc attactctac aacattgttt 2350 atattttttc tattcaataa aaagccctaa aacaactaaa atgattgatt 2400 tgtatacccc actgaattca agctgattta aatttaaaat ttggtatatg 2450 ctgaagtctg ccaagggtac attatggcca tttttaattt acagctaaaa 2500 tattttttaa aatgcattgc tgagaaacgt tgctttcatc aaacaagaat 2550 aaatattttt cagaagttaa a 2571

<210> 219

<211> 632

<212> PRT

<213> Homo sapiens

<400> 219

Met Lys Ala Leu Leu Leu Leu Val Leu Pro Trp Leu Ser Pro Ala

1				5					10					15
Asn	Tyr	Ile	Asp	Asn 20	Val	Gly	Asn	Leu	His 25	Phe	Leu	Tyr	Ser	Glu 30
Leu	Суѕ	Lys	Gly	Ala 35	Ser	His	Tyr	Gly	Leu 40	Thr	Lys	Asp	Arg	Lys 45
Arg	Arg	Ser	Gln	Asp 50	Gly	Cys	Pro	Asp	Gly 55	Cys	Ala	Ser	Leu	Thr 60
Ala	Thr	Ala	Pro	Ser 65	Pro	Glu	Val	Ser	Ala 70	Ala	Ala	Thr	Ile	Ser 75
Leu	Met	Thr	Asp	Glu 80	Pro	Gly	Leu	Asp	Asn 85	Pro	Ala	Tyr	Val	Ser 90
Ser	Ala	Glu	Asp	Gly 95	Gln	Pro	Ala	Ile	Ser 100	Pro	Val	Asp	Ser	Gly 105
Arg	Ser	Asn	Arg	Thr 110	Arg	Ala	Arg	Pro	Phe 115	Glu	Arg	Ser	Thr	Ile 120
Arg	Ser	Arg	Ser	Phe 125	Lys	Lys	Ile	Asn	Arg 130	Ala	Leu	Ser	Val	Leu 135
Arg	Arg	Thr	Lys	Ser 140	Gly	Ser	Ala	Val	Ala 145	Asn	His	Ala	Asp	Gln 150
Gly	Arg	Glu	Asn	Ser 155	Glu	Asn	Thr	Thr	Ala 160	Pro	Glu	Val	Phe	Pro 165
Arg	Leu	Tyr	His	Leu 170	Ile	Pro	Asp	Gly	Glu 175	Ile	Thr	Ser	Ile	Lys 180
Ile	Asn	Arg	Val	Asp 185	Pro	Ser	Glu	Ser	Leu 190	Ser	Ile	Arg	Leu	Val 195
Gly	Gly	Ser	Glu	Thr 200	Pro	Leu	Val	His	Ile 205	Ile	Ile	Gln	His	Ile 210
Tyr	Arg	Asp	Gly	Val 215	Ile	Ala	Arg	Asp	Gly 220	Arg	Leu	Leu	Pro	Gly 225
Asp	Ile	Ile	Leu	Lys 230	Val	Asn	Gly	Met	Asp 235	Ile	Ser	Asn	Val	Pro 240
His	Asn	Tyr	Ala	Val 245	Arg	Leu	Leu	Arg	Gln 250	Pro	Cys	Gln	Val	Leu 255
Trp	Leu	Thr	Val	Met 260	Arg	Glu	Gln	Lys	Phe 265	Arg	Ser	Arg	Asn	Asn 270
Gly	Gln	Ala	Pro	Asp 275	Ala	Tyr	Arg	Pro	Arg 280	Asp	Asp	Ser	Phe	His 285
Val	Ile	Leu	Asn	Lys 290	Ser	Ser	Pro	Glu	Glu 295	Gln	Leu	Gly	Ile	Lys 300
Leu	Val	Arg	Lys	Val 305	Asp	Glu	Pro	Gly	Val 310	Phe	Ile	Phe	Asn	Val 315
Leu	qzA	Glv	Glv	Va]	Ala	Tvr	Ara	His	Glv	Gln	Leu	Glir	Glu	Asn

				320	ı	,			325	5				330
Asp	Arç	y Val	l Leu	Ala 335	Ile	a Asr	ı Gly	/ His	340		ı Arç	д Туі	Gly	7 Ser 345
Pro	Glu	ı Sei	: Ala	Ala 350		Leu	ı Ile	e Gln	Ala 355		Glu	ı Arç	g Aro	y Val 360
His	Lev	ı Val	L Val	Ser 365	Arg	Gln	. Val	. Arg	Gln 370		Ser	Pro	Asp	375
Phe	Gln	ı Glu	a Ala	Gly 380	Trp	Asn	Ser	: Asn	Gly 385	Ser	Trp	Ser	Pro	Gly 390
Pro	Gly	g Glu	a Arg	Ser 395	Asn	Thr	Pro	Lys	Pro 400		His	Pro	Thr	: Ile 405
Thr	Cys	His	Glu	Lys 410	Val	Val	Asn	Ile	Gln 415		Asp	Pro	Gly	Glu 420
Ser	Leu	Gly	Met	Thr 425	Val	Ala	Gly	Gly	Ala 430	Ser	His	Arg	Glu	Trp 435
Asp	Leu	Pro	Ile	Tyr 440	Val	Ile	Ser	Val	Glu 445	Pro	Gly	Gly	Val	Ile 450
Ser	Arg	Asp	Gly	Arg 455	Ile	Lys	Thr	Gly	Asp 460	Ile	Leu	Leu	Asn	Val 465
Asp	Gly	Val	Glu	Leu 470	Thr	Glu	Val	Ser	Arg 475	Ser	Glu	Ala	Val	Ala 480
Leu	Leu	Lys	Arg	Thr 485	Ser	Ser	Ser	Ile	Val 490	Leu	Lys	Ala	Leu	Glu 495
Val	Lys	Glu	Tyr	Glu 500	Pro	Gln	Glu	Asp	Cys 505	Ser	Ser	Pro	Ala	Ala 510
Leu	Asp	Ser	Asn	His 515	Asn	Met	Ala	Pro	Pro 520	Ser	Asp	Trp	Ser	Pro 525
Ser	Trp	Val	Met	Trp 530	Leu	Glu	Leu	Pro	Arg 535	Cys	Leu	Tyr	Asn	Cys 540
Lys	Asp	Ile	Val	Leu 545	Arg	Arg	Asn	Thr	Ala 550	Gly	Ser	Leu	Gly	Phe 555
Cys	Ile	Val	Gly	Gly 560	Tyr	Glu	Glu	Tyr	Asn 565	Gly	Asn	Lys	Pro	Phe 570
Phe	Ile	Lys	Ser	Ile 575	Val	Glu	Gly	Thr	Pro 580	Ala	Tyr	Asn	Asp	Gly 585
Arg	Ile	Arg	Cys	Gly 590	Asp	Ile	Leu	Leu	Ala 595	Val	Asn	Gly	Arg	Ser 600
Thr	Ser	Gly	Met	Ile 605	His	Ala	Cys	Leu	Ala 610	Arg	Leu	Leu	Lys	Glu 615
Leu	Lys	Gly	Arg	Ile 620	Thr	Leu	Thr	Ile	Val 625	Ser	Trp	Pro	Gly	Thr 630
Phe	Len													

- <210> 220 <211> 773 <212> DNA
- <213> Homo sapiens

<400> 220 ccaaagtgat catttgaaaa agagatatcc acatcttcaa gcccatataa 50 aggatagaag ctgcacaggg cagctttact tactccagca ccttcctctc 100 ccaggcaaat ggtgctgacc atctttggga tacaatctca tggatacgag 150 gtttttaaca tcatcagccc aagcaacaat ggtggcaatg ttcaggagac 200 agtgacaatt gataatgaaa aaaataccgc catcgttaac atccatgcag 250 gatcatgctc ttctaccaca atttttgact ataaacatgg ctacattgca 300 tccagggtgc tctcccgaag agcctgcttt atcctgaaga tggaccatca 350 gaacatccct cctctgaaca atctccaatg gtacatctat gagaaacagg 400 ctctggacaa catgttctcc aacaaataca cctgggtcaa gtacaaccct 450 ctggagtctc tgatcaaaga cgtggattgg ttcctgcttg ggtcacccat 500 tgagaaactc tgcaaacata tccctttgta taagggggaa gtggttgaaa 550 acacacataa tgtcggtgct ggaggctgtg caaaggctgg gctcctgggc 600 atcttgggaa tttcaatctg tgcagacatt catgtttagg atgattagcc 650 ctcttgtttt atcttttcaa agaaatacat ccttggttta cactcaaaag 700 tcaaattaaa ttctttccca atgccccaac taattttgag attcagtcag 750

- <210> 221
- <211> 184
- <212> PRT
- <213> Homo sapiens

aaaatataaa tgctgtattt ata 773

- <400> 221
- Met Lys Ile Leu Val Ala Phe Leu Val Val Leu Thr Ile Phe Gly
 1 5 10 15
- Ile Gln Ser His Gly Tyr Glu Val Phe Asn Ile Ile Ser Pro Ser 20 25 30
- Asn Asn Gly Gly Asn Val Gln Glu Thr Val Thr Ile Asp Asn Glu
 35 40
- Lys Asn Thr Ala Ile Val Asn Ile His Ala Gly Ser Cys Ser Ser 50 55 60
- Thr Thr Ile Phe Asp Tyr Lys His Gly Tyr Ile Ala Ser Arg Val 65 70 75
- Leu Ser Arg Arg Ala Cys Phe Ile Leu Lys Met Asp His Gln Asn 80 85 90

IleProProLeuAsn
95AsnLeuGlnTrpTyr
100IleTyrGluLysGln
105AlaLeuAspAsnMet
110PheSerAsnLysTyr
115ThrTrpValLysTyr
120AsnProLeuGluSerLeuIleLysAspValAspTrpPheLeuLeuGlySerProIleGluLysLeuCysLysHis
145IleProLeuTyrLysGlyGluValValGlyAsnThrHisAsnValGlyAlaGlyGlyCysAlaLysAlaGlyLeuGlyIleLeuGlyIleSerIleCysAla

Asp Ile His Val

<210> 222

<211> 992

<212> DNA

<213> Homo sapiens

<400> 222

ggcacgagcc aggaactagg agqttctcac tqcccqaqca qaqqccctac 50 acccaccgag gcatggggct ccctgggctg ttctgcttgg ccgtgctggc 100 tgccagcagc ttctccaagg cacgggagga agaaattacc cctgtggtct 150 ccattgccta caaagtcctg gaagttttcc ccaaaggccg ctgggtgctc 200 ataacctgct gtgcacccca gccaccaccg cccatcacct attccctctg 250 tggaaccaag aacatcaagg tggccaagaa ggtggtgaag acccacgagc 300 eggeeteett caaceteaac gteacactea agtecagtee agacetgete 350 acctacttct gccgggcgtc ctccacctca ggtgcccatg tggacagtgc 400 caggctacag atgcactggg agctgtggtc caagccagtg tctgagctgc 450 gggccaactt cactctgcag gacagagggg caggccccag ggtggagatg 500 atctgccagg cgtcctcggg cagcccacct atcaccaaca gcctgatcgg 550 gaaggatggg caggtccacc tqcaqcaqaq accatqccac aqqcaqcctq 600 ccaacttete etteetgeeg agecagaeat eggaetggtt etggtgeeag 650 gctgcaaaca acgccaatgt ccagcacagc gccctcacag tggtgccccc 700 aggtggtgac cagaagatgg aggactggca gggtcccctg qaqagcccca 750 tccttgcctt gccgctctac aggagcaccc gccgtctgag tgaagaggag 800 tttggggggt tcaggatagg gaatggggag gtcagaggac gcaaagcagc 850 agccatgtag aatgaaccgt ccagagagcc aagcacggca gaggactgca 900

ggccatcagc gtgcactgtt cgtatttgga gttcatgcaa aatgagtgtg 950 ttttagctgc tcttgccaca aaaaaaaaaa aaaaaaaaa aa 992

<210> 223

<211> 265

<212> PRT

<213> Homo sapiens

<400> 223

Met Gly Leu Pro Gly Leu Phe Cys Leu Ala Val Leu Ala Ala Ser 1 5 10 15

Ser Phe Ser Lys Ala Arg Glu Glu Glu Ile Thr Pro Val Val Ser 20 25 30

Ile Ala Tyr Lys Val Leu Glu Val Phe Pro Lys Gly Arg Trp Val 35 40 45

Leu Ile Thr Cys Cys Ala Pro Gln Pro Pro Pro Pro Ile Thr Tyr
50 55 60

Ser Leu Cys Gly Thr Lys Asn Ile Lys Val Ala Lys Lys Val Val
65 70 75

Lys Thr His Glu Pro Ala Ser Phe Asn Leu Asn Val Thr Leu Lys 80 85 90

Ser Ser Pro Asp Leu Leu Thr Tyr Phe Cys Arg Ala Ser Ser Thr 95 100 105

Ser Gly Ala His Val Asp Ser Ala Arg Leu Gln Met His Trp Glu 110 115 120

Leu Trp Ser Lys Pro Val Ser Glu Leu Arg Ala Asn Phe Thr Leu 125 130 135

Gln Asp Arg Gly Ala Gly Pro Arg Val Glu Met Ile Cys Gln Ala 140 145 150

Ser Ser Gly Ser Pro Pro Ile Thr Asn Ser Leu Ile Gly Lys Asp 155 160 165

Gly Gln Val His Leu Gln Gln Arg Pro Cys His Arg Gln Pro Ala 170 175 180

Asn Phe Ser Phe Leu Pro Ser Gln Thr Ser Asp Trp Phe Trp Cys 185 190 195

Gln Ala Ala Asn Asn Ala Asn Val Gln His Ser Ala Leu Thr Val 200 205 210

Val Pro Pro Gly Gly Asp Gln Lys Met Glu Asp Trp Gln Gly Pro 225 220

Leu Glu Ser Pro Ile Leu Ala Leu Pro Leu Tyr Arg Ser Thr Arg 230 235 240

Arg Leu Ser Glu Glu Glu Phe Gly Gly Phe Arg Ile Gly Asn Gly 245 250 250

Glu Val Arg Gly Arg Lys Ala Ala Ala Met 260 265

<213> Homo sapiens

<210> 224

```
<211> 1297
<212> DNA
<213> Homo sapiens
<400> 224
 ggtccttaat ggcagcagcc gccgctacca agatccttct gtgcctcccg 50
 cttctgctcc tgctgtccgg ctggtcccgg gctgggcgag ccgaccctca 100
 ctctctttgc tatgacatca ccqtcatccc taagttcaga cctggaccac 150
 ggtggtgtgc ggttcaaggc caggtggatg aaaagacttt tcttcactat 200
 gactgtggca acaagacagt cacacctgtc agtcccctgg ggaagaaact 250
 aaatgtcaca acggcctgga aagcacagaa cccagtactg agagaggtgg 300
 tggacatact tacagagcaa ctgcgtgaca ttcagctgga gaattacaca 350
 cccaaggaac ccctcaccct gcaggcaagg atgtcttgtg agcagaaagc 400
 tgaaggacac agcagtggat cttggcagtt cagtttcgat gggcagatct 450
 tcctcctctt tgactcagag aagagaatgt ggacaacggt tcatcctgga 500
 gccagaaaga tgaaagaaaa gtgggagaat gacaaggttg tggccatgtc 550
 cttccattac ttctcaatgq gagactgtat aggatggctt gaggacttct 600
 tgatgggcat ggacagcacc ctggagccaa gtgcaggagc accactcgcc 650
 atgtcctcag gcacaaccca actcagggcc acagccacca ccctcatcct 700
 ttgctgcctc ctcatcatcc tcccctgctt catcctccct ggcatctgag 750
 gagagtcctt tagagtgaca ggttaaagct gataccaaaa ggctcctgtg 800
 agcacggtct tgatcaaact cgcccttctg tctggccagc tgcccacgac 850
 ctacggtgta tgtccagtgg cctccagcag atcatgatga catcatggac 900
 ccaatagctc attcactgcc ttgattcctt ttgccaacaa ttttaccagc 950
 agttatacct aacatattat gcaattttct cttggtgcta cctgatggaa 1000
 ttcctgcact taaagttctg gctgactaaa caagatatat cattttcttt 1050
 cttctctttt tgtttggaaa atcaagtact tctttgaatg atgatctctt 1100
 tcttgcaaat gatattgtca gtaaaataat cacgttagac ttcagacctc 1150
 tggggattct ttccgtgtcc tgaaagagaa tttttaaatt atttaataag 1200
 aaaaaattta tattaatgat tgtttccttt agtaatttat tgttctgtac 1250
 tgatatttaa ataaagagtt ctatttccca aaaaaaaaa aaaaaaa 1297
<210> 225
<211> 246
<212> PRT
```

<400> 225 Met Ala Ala Ala Ala Thr Lys Ile Leu Cys Leu Pro Leu Leu Leu Leu Ser Gly Trp Ser Arg Ala Gly Arg Ala Asp Pro His Ser Leu Cys Tyr Asp Ile Thr Val Ile Pro Lys Phe Arg Pro Gly Pro Arg Trp Cys Ala Val Gln Gly Gln Val Asp Glu Lys Thr Phe Leu His Tyr Asp Cys Gly Asn Lys Thr Val Thr Pro Val Ser Pro Leu Gly Lys Lys Leu Asn Val Thr Thr Ala Trp Lys Ala Gln Asn Pro Val Leu Arg Glu Val Val Asp Ile Leu Thr Glu Gln Leu 100 Arg Asp Ile Gln Leu Glu Asn Tyr Thr Pro Lys Glu Pro Leu Thr 110 115 Leu Gln Ala Arg Met Ser Cys Glu Gln Lys Ala Glu Gly His Ser Ser Gly Ser Trp Gln Phe Ser Phe Asp Gly Gln Ile Phe Leu Leu Phe Asp Ser Glu Lys Arg Met Trp Thr Thr Val His Pro Gly Ala 155 160 165 Arg Lys Met Lys Glu Lys Trp Glu Asn Asp Lys Val Val Ala Met 170 175 Ser Phe His Tyr Phe Ser Met Gly Asp Cys Ile Gly Trp Leu Glu 185 190 195 Asp Phe Leu Met Gly Met Asp Ser Thr Leu Glu Pro Ser Ala Gly Ala Pro Leu Ala Met Ser Ser Gly Thr Thr Gln Leu Arg Ala Thr Ala Thr Thr Leu Ile Leu Cys Cys Leu Leu Ile Ile Leu Pro Cys 240 Phe Ile Leu Pro Gly Ile

<210> 226

<211> 735

<212> DNA

<213> Homo sapiens

<400> 226

gggaaagcca tttcgaaaac ccatctatac aaactatata ttttcatttc 50 tgctgctagc tgccttgggc ctcacaattt tcattctgtt ttctgacttt 100 caagttatat accgtggaat ggagttgatc ccaaccataa catcgtggag 150

ggttttaatt ttggtggtag ccctcaccca attctggtgt ggctttcttt 200 gcagaggatt ccaccttcaa aatcatgaac tctggctgtt gatcaaaaga 250 gaatttggat tctactctaa aagtcaatat aggacttggc aaaagaagct 300 agcagaagac tcaacctggc ctcccataaa caggacagat tattcaggtg 350 atggcaaaaa tggattctac atcaacggag gctatgaaag ccatgaacag 400 attccaaaaa gaaaactcaa attgggaggc caacccacag aacagcattt 450 ctgggccagg ctgtaatcag aattgtcgtc gtacatgctc aacagcattg 500 ctttttccc caaaattaac acattgtgga gaagtgatga tactctccc 550 ttaccttcc tctctccatt caagcattca aagtatattt tcaatgaatt 600 aaaccttgca gcaagggacc ttagataggc ttattctgac tgtatgcttt 650 accaatgaga gaaaaaaaa caattacctt atcatcctt tcaataaact 700 gtattcattt tgaaaaaaaa aaaaaaaaa aaaaaaaaa aaaaa 735

<210> 227 <211> 115 <212> PRT

<213> Homo sapiens

<400> 227

Met Glu Leu Ile Pro Thr Ile Thr Ser Trp Arg Val Leu Ile Leu 1 5 10 15

Val Val Ala Leu Thr Gln Phe Trp Cys Gly Phe Leu Cys Arg Gly 20 25 30

Phe His Leu Gln Asn His Glu Leu Trp Leu Leu Ile Lys Arg Glu 35 40 45

Phe Gly Phe Tyr Ser Lys Ser Gln Tyr Arg Thr Trp Gln Lys Lys 50 55 60

Leu Ala Glu Asp Ser Thr Trp Pro Pro Ile Asn Arg Thr Asp Tyr
65 70 75

Ser Gly Asp Gly Lys Asn Gly Phe Tyr Ile Asn Gly Gly Tyr Glu 80 85 90

Ser His Glu Gln Ile Pro Lys Arg Lys Leu Lys Leu Gly Gln 95 100 105

Pro Thr Glu Gln His Phe Trp Ala Arg Leu
110 115

<210> 228

<211> 2185

<212> DNA

<213> Homo sapiens

<400> 228

gttctccttt ccgagccaaa atcccaggcg atggtgaatt atgaacgtgc 50 cacaccatga agctcttgtg gcaggtaact gtgcaccacc acacctggaa 100

tgccatcctg ctcccgttcg tctacctcac ggcgcaagtg tggattctgt 150 gtgcagccat cgctgctgcc gcctcagccg ggccccagaa ctgcccctcc 200 gtttgctcgt gcagtaacca gttcagcaag gtggtgtgca cgcgccgggg 250 cctctccgag gtcccgcagg gtattccctc gaacacccgg tacctcaacc 300 tcatggagaa caacatccag atgatccagg ccgacacctt ccgccacctc 350 caccacctgg aggtcctgca gttgggcagg aactccatcc ggcagattga 400 ggtgggggcc ttcaacggcc tggccagcct caacaccctg gagctgttcg 450 acaactgget gacagtcate cetagegggg cetttgaata cetgtecaag 500 ctgcgggagc tctggcttcg caacaacccc atcgaaagca tcccctctta 550 cgccttcaac cgggtgccct ccctcatgcg cctggacttg ggggagctca 600 agaagctgga gtatatctct gagggagctt ttgaggggct gttcaacctc 650 aagtatctga acttgggcat gtgcaacatt aaagacatgc ccaatctcac 700 ccccctggtg gggctggagg agctggagat gtcagggaac cacttccctg 750 agatcaggec tggeteette catggeetga geteecteaa gaagetetgg 800 gtcatgaact cacaggtcag cctgattgag cggaatgctt ttgacgggct 850 ggcttcactt gtggaactca acttggccca caataacctc tcttctttgc 900 cccatgacet etttaceceg etgaggtace tggtggagtt geatetacae 950 cacaaccett ggaactgtga ttgtgacatt ctgtggctag cctggtggct 1000 togagagtat atacccacca attocacctg ctgtggccgc tgtcatgctc 1050 ccatgcacat gcgaggccgc tacctcgtgg aggtggacca ggcctccttc 1100 cagtgetetg ecceetteat catggaegea ectegagace teaacattte 1150 tgagggtcgg atggcagaac ttaagtgtcg gactccccct atgtcctccg 1200 tgaagtggtt gctgcccaat gggacagtgc tcagccacgc ctcccgccac 1250 ccaaggatct ctgtcctcaa cgacggcacc ttgaactttt cccacgtgct 1300 gctttcagac actggggtgt acacatgcat ggtgaccaat gttgcaggca 1350 actccaacgc ctcggcctac ctcaatgtga gcacggctga gcttaacacc 1400 tccaactaca gcttcttcac cacagtaaca gtggagacca cggagatctc 1450 gcctgaggac acaacgcgaa agtacaagcc tgttcctacc acgtccactg 1500 gttaccagec ggcatatace acetetacea eggtgeteat teagactace 1550 cgtgtgccca agcaggtggc agtacccgcg acagacacca ctgacaagat 1600 gcagaccagc ctggatgaag tcatgaagac caccaagatc atcattggct 1650 getttgtggc agtgaetetg ctagetgeeg ceatgttgat tgtettetat 1700

aaacttcgta agcggcacca gcagcggagt acagtcacag ccgcccggac 1750
tgttgagata atccaggtgg acgaagacat cccagcagca acatccgcag 1800
cagcaacagc agctccgtcc ggtgtatcag gtgagggggc agtagtgctg 1850
cccacaattc atgaccatat taactacaac acctacaaac cagcacatgg 1900
ggcccactgg acagaaaaca gcctggggaa ctctctgcac cccacagtca 1950
ccactatctc tgaaccttat ataattcaga cccataccaa ggacaaggta 2000
caggaaactc aaatatgact cccctcccc aaaaaactta taaaatgcaa 2050
tagaatgcac acaaagacag caacttttgt acagagtggg gagagacttt 2100
ttcttgtata tgcttatata ttaagtctat gggctggtta aaaaaaacag 2150
attatattaa aatttaaaga caaaaagtca aaaca 2185

<210> 229

<211> 653

<212> PRT

<213> Homo sapiens

<400> 229

Met Lys Leu Trp Gln Val Thr Val His His His Thr Trp Asn Ala Ile Leu Leu Pro Phe Val Tyr Leu Thr Ala Gln Val Trp Ile Leu Cys Ala Ala Ile Ala Ala Ala Ser Ala Gly Pro Gln Asn Cys Pro Ser Val Cys Ser Cys Ser Asn Gln Phe Ser Lys Val Val Cys Thr Arg Arg Gly Leu Ser Glu Val Pro Gln Gly Ile Pro Ser Asn Thr Arg Tyr Leu Asn Leu Met Glu Asn Asn Ile Gln Met Ile Gln Ala Asp Thr Phe Arg His Leu His His Leu Glu Val Leu Gln 95 100 Leu Gly Arg Asn Ser Ile Arg Gln Ile Glu Val Gly Ala Phe Asn Gly Leu Ala Ser Leu Asn Thr Leu Glu Leu Phe Asp Asn Trp Leu 125 130 135 Thr Val Ile Pro Ser Gly Ala Phe Glu Tyr Leu Ser Lys Leu Arg Glu Leu Trp Leu Arg Asn Asn Pro Ile Glu Ser Ile Pro Ser Tyr Ala Phe Asn Arg Val Pro Ser Leu Met Arg Leu Asp Leu Gly Glu 170 175 Leu Lys Lys Leu Glu Tyr Ile Ser Glu Gly Ala Phe Glu Gly Leu

				185					190					19
Phe	Asn	Leu	Lys	Tyr 200	Leu	Asn	Leu	Gly	Met 205	Суѕ	Asn	Ile	Lys	Asp 210
Met	Pro	Asn	Leu	Thr 215	Pro	Leu	Val	Gly	Leu 220	Glu	Glu	Leu	Glu	Met 225
Ser	Gly	Asn	His	Phe 230	Pro	Glu	Ile	Arg	Pro 235	Gly	Ser	Phe	His	Gl ₂
Leu	Ser	Ser	Leu	Lys 245	Lys	Leu	Trp	Val	Met 250	Asn	Ser	Gln	Val	Se:
Leu	Ile	Glu	Arg	Asn 260	Ala	Phe	Asp	Gly	Leu 265	Ala	Ser	Leu	Val	Gl: 270
Leu	Asn	Leu	Ala	His 275	Asn	Asn	Leu	Ser	Ser 280	Leu	Pro	His	Asp	Le:
Phe	Thr	Pro	Leu	Arg 290	Tyr	Leu	Val	Glu	Leu 295	His	Leu	His	His	Ası 300
Pro	Trp	Asn	Cys	Asp 305	Cys	Asp	Ile	Leu	Trp 310	Leu	Ala	Trp	Trp	Let 315
Arg	Glu	Tyr	Ile	Pro 320	Thr	Asn	Ser	Thr	Cys 325	Суѕ	Gly	Arg	Cys	His 330
Ala	Pro	Met	His	Met 335	Arg	Gly	Arg	Tyr	Leu 340	Val	Glu	Val	Asp	Glr 345
Ala	Ser	Phe	Gln	Cys 350	Ser	Ala	Pro	Phe	Ile 355	Met	Asp	Ala	Pro	Arg 360
Asp	Leu	Asn	Ile	Ser 365	Glu	Gly	Arg	Met	Ala 370	Glu	Leu	Lys	Cys	Arc 375
Thr	Pro	Pro	Met	Ser 380	Ser	Val	Lys	Trp	Leu 385	Leu	Pro	Asn	Gly	Th:
Val	Leu	Ser	His	Ala 395	Ser	Arg	His	Pro	Arg 400	Ile	Ser	Val	Leu	Asr 405
Asp	Gly	Thr	Leu	Asn 410	Phe	Ser	His	Val	Leu 415	Leu	Ser	Asp	Thr	Gl ₃ 420
Val	Tyr	Thr	Cys	Met 425	Val	Thr	Asn	Val	Ala 430	Gly	Asn	Ser	Asn	Ala 435
Ser	Ala	Tyr	Leu	Asn 440	Val	Ser	Thr	Ala	Glu 445	Leu	Asn	Thr	Ser	Asr 450
Tyr	Ser	Phe	Phe	Thr 455	Thr	Val	Thr	Val	Glu 460	Thr	Thr	Glu	Ile	Ser 465
Pro	Glu	Asp	Thr	Thr 470	Arg	Lys	Tyr	Lys	Pro 475	Val	Pro	Thr	Thr	Ser 480
Thr	Gly	Tyr	Gln	Pro 485	Ala	Tyr	Thr	Thr	Ser 490	Thr	Thr	Val	Leu	Il∈ 495
Gln	Thr	Thr	Arg	Val	Pro	Lys	Gln	Val	Ala	Val	Pro	Ala	Thr	Asp

				500					505					510
Thr	Thr	Asp	Lys	Met 515	Gln	Thr	Ser	Leu	Asp 520	Glu	Val	Met	Lys	Thr 525
Thr	Lys	Ile	Ile	Ile 530	Gly	Cys	Phe	Val	Ala 535	Val	Thr	Leu	Leu	Ala 540
Ala	Ala	Met	Leu	Ile 545	Val	Phe	Tyr	Lys	Leu 550	Arg	Lys	Arg	His	Gln 555
Gln	Arg	Ser	Thr	Val 560	Thr	Ala	Ala	Arg	Thr 565	Val	Glu	Ile	Ile	Gln 570
Val	Asp	Glu	Asp	Ile 575	Pro	Ala	Ala	Thr	Ser 580	Ala	Ala	Ala	Thr	Ala 585
Ala	Pro	Ser	Gly	Val 590	Ser	Gly	Glu	Gly	Ala 595	Val	Val	Leu	Pro	Thr 600
Ile	His	Asp	His	Ile 605	Asn	Tyr	Asn	Thr	Tyr 610	Lys	Pro	Ala	His	Gly 615
Ala	His	Trp	Thr	Glu 620	Asn	Ser	Leu	Gly	Asn 625	Ser	Leu	His	Pro	Thr 630
Val	Thr	Thr	Ile	Ser 635	Glu	Pro	Tyr	Ile	Ile 640	Gln	Thr	His	Thr	Lys 645
Asp	Lys	Val	Gln	Glu 650	Thr	Gln	Ile							
-010	000													

<210> 230 <211> 2846 <212> DNA

<213> Homo sapiens

<400> 230

tggggctcac ttttctcag ctccttctca tctcgtcctt gccaagagag 100
tacacagtca ttaatgaagc ctgccctgga gcagagtgga atatcatgtg 150
tcgggagtgc tgtgaatatg atcagattga gtgcgtctgc cccggaaaga 200
gggaagtcgt gggttatacc atcccttgct gcaggaatga ggagaatgag 250
tgtgactcct gcctgatcca cccaggttgt accatctttg aaaactgcaa 300
gagctgccga aatggctcat ggggggaac cttggatgac ttctatgtga 350
aggggttcta ctgtgcagag tgccgagcag gctggtacgg aggagactgc 400
atgcgattgt gccaggttct gcgagccca aagggtcaga ttttgttgga 450
aagctaccc ctaaatgctc actgtgaatg gaccattcat gctaaacctg 500
ggtttgtcat ccaactaaga tttgtcatgt tgaggtcaga accgcgatgg 600
ccagatcatc aagcgtgtct gtggcaacga gcggccagct cctatccaga 650

gcataggatc ctcactccac gtcctcttcc actccgatgg ctccaagaat 700 tttgacggtt tccatgccat ttatgaggag atcacagcat gctcctcatc 750 cccttgtttc catgacggca cgtgcgtcct tgacaaggct ggatcttaca 800 agtgtgcctg cttggcaggc tatactgggc agcgctgtga aaatctcctt 850 gaagaaagaa actgctcaga ccctgggggc ccagtcaatg ggtaccagaa 900 aataacaggg ggccctgggc ttatcaacgg acgccatgct aaaattggca 950 ccgtggtgtc tttcttttgt aacaactcct atgttcttag tggcaatgag 1000 aaaagaactt gccagcagaa tggagagtgg tcagggaaac agcccatctg 1050 cataaaagcc tgccgagaac caaagatttc agacctggtg agaaggagag 1100 ttcttccgat gcaggttcag tcaagggaga caccattaca ccagctatac 1150 tcagcggcct tcagcaagca gaaactgcag agtgccccta ccaagaagcc 1200 agccettece tttggagate tgeccatggg ataccaacat etgeatacee 1250 agotecagta tgagtgeate teaccettet accgeegeet gggeageage 1300 aggaggacat gtctgaggac tgggaagtgg agtgggcggg caccatcctg 1350 catccctatc tgcgggaaaa ttgagaacat cactgctcca aagacccaag 1400 ggttgcgctg gccgtggcag gcagccatct acaggaggac cagcggggtg 1450 catgacggca gcctacacaa gggagcgtgg ttcctagtct gcagcggtgc 1500 cctggtgaat gagcgcactg tggtggtggc tgcccactgt gttactgacc 1550 tggggaaggt caccatgatc aagacagcag acctgaaagt tgttttgggg 1600 aaattctacc gggatgatga ccgggatgag aagaccatcc agagcctaca 1650 gatttctgct atcattctgc atcccaacta tgaccccatc ctgcttgatg 1700 ctgacatcgc catcctgaag ctcctagaca aggcccgtat cagcacccga 1750 gtccagccca tetgcetege tgccagtegg gateteagea etteetteea 1800 ggagtcccac atcactgtgg ctggctggaa tgtcctggca gacgtgagga 1850 gccctggctt caagaacgac acactgcgct ctggggtggt cagtgtggtg 1900 gactcgctgc tgtgtgagga gcagcatgag gaccatggca tcccagtgag 1950 tgtcactgat aacatgttct gtgccagctg ggaacccact gccccttctg 2000 atatetgeae tgeagagaea ggaggeateg eggetgtgte etteceggga 2050 cgagcatctc ctgagccacg ctggcatctg atgggactgg tcagctggag 2100 ctatgataaa acatgcagcc acaggctctc cactgccttc accaaggtgc 2150 tgccttttaa agactggatt gaaagaaata tgaaatgaac catgctcatg 2200 cactccttga gaagtgtttc tgtatatccg tctgtacgtg tgtcattgcg 2250

<210> 231 <211> 720 <212> PRT <213> Homo sapiens

<400> 231

Met Glu Leu Gly Cys Trp Thr Gln Leu Gly Leu Thr Phe Leu Gln 1 5 10 15

Leu Leu Leu Ile Ser Ser Leu Pro Arg Glu Tyr Thr Val Ile Asn 20 25 30

Glu Ala Cys Pro Gly Ala Ģlu Trp Asn Ile Met Cys Arg Glu Cys 35 40 45

Cys Glu Tyr Asp Gln Ile Glu Cys Val Cys Pro Gly Lys Arg Glu
50 55 60

Val Val Gly Tyr Thr Ile Pro Cys Cys Arg Asn Glu Glu Asn Glu
65 70 75

Cys Asp Ser Cys Leu Ile His Pro Gly Cys Thr Ile Phe Glu Asn 80 85 90

Cys Lys Ser Cys Arg Asn Gly Ser Trp Gly Gly Thr Leu Asp Asp 95 100 105

Phe Tyr Val Lys Gly Phe Tyr Cys Ala Glu Cys Arg Ala Gly Trp 110 115 120

Tyr Gly Gly Asp Cys Met Arg Cys Gly Gln Val Leu Arg Ala Pro 125 130 135

Lys Gly Gln Ile Leu Leu Glu Ser Tyr Pro Leu Asn Ala His Cys 140 145 150

Glu Trp Thr Ile His Ala Lys Pro Gly Phe Val Ile Gln Leu Arg 155 160 165

Phe Val Met Leu Ser Leu Glu Phe Asp Tyr Met Cys Gln Tyr Asp Tyr Val Glu Val Arg Asp Gly Asp Asn Arg Asp Gly Gln Ile Ile 185 190 Lys Arg Val Cys Gly Asn Glu Arg Pro Ala Pro Ile Gln Ser Ile Gly Ser Ser Leu His Val Leu Phe His Ser Asp Gly Ser Lys Asn Phe Asp Gly Phe His Ala Ile Tyr Glu Glu Ile Thr Ala Cys Ser Ser Ser Pro Cys Phe His Asp Gly Thr Cys Val Leu Asp Lys Ala 245 250 Gly Ser Tyr Lys Cys Ala Cys Leu Ala Gly Tyr Thr Gly Gln Arg Cys Glu Asn Leu Leu Glu Glu Arg Asn Cys Ser Asp Pro Gly Gly 275 Pro Val Asn Gly Tyr Gln Lys Ile Thr Gly Gly Pro Gly Leu Ile Asn Gly Arg His Ala Lys Ile Gly Thr Val Val Ser Phe Phe Cys Asn Asn Ser Tyr Val Leu Ser Gly Asn Glu Lys Arg Thr Cys Gln 320 325 Gln Asn Gly Glu Trp Ser Gly Lys Gln Pro Ile Cys Ile Lys Ala 335 340 Cys Arg Glu Pro Lys Ile Ser Asp Leu Val Arg Arg Arg Val Leu 350 355 Pro Met Gln Val Gln Ser Arg Glu Thr Pro Leu His Gln Leu Tyr 370 Ser Ala Ala Phe Ser Lys Gln Lys Leu Gln Ser Ala Pro Thr Lys Lys Pro Ala Leu Pro Phe Gly Asp Leu Pro Met Gly Tyr Gln His 400 Leu His Thr Gln Leu Gln Tyr Glu Cys Ile Ser Pro Phe Tyr Arg 410 415 Arg Leu Gly Ser Ser Arg Arg Thr Cys Leu Arg Thr Gly Lys Trp 425 430 Ser Gly Arg Ala Pro Ser Cys Ile Pro Ile Cys Gly Lys Ile Glu Asn Ile Thr Ala Pro Lys Thr Gln Gly Leu Arg Trp Pro Trp Gln 455 Ala Ala Ile Tyr Arg Arg Thr Ser Gly Val His Asp Gly Ser Leu 475

```
His Lys Gly Ala Trp Phe Leu Val Cys Ser Gly Ala Leu Val Asn
                 485
 Glu Arg Thr Val Val Val Ala Ala His Cys Val Thr Asp Leu Gly
                 500
                                     505
 Lys Val Thr Met Ile Lys Thr Ala Asp Leu Lys Val Val Leu Gly
 Lys Phe Tyr Arg Asp Asp Asp Asp Glu Lys Thr Ile Gln Ser
                                     535
 Leu Gln Ile Ser Ala Ile Ile Leu His Pro Asn Tyr Asp Pro Ile
                                     550
 Leu Leu Asp Ala Asp Ile Ala Ile Leu Lys Leu Leu Asp Lys Ala
                 560
                                     565
 Arg Ile Ser Thr Arg Val Gln Pro Ile Cys Leu Ala Ala Ser Arg
                 575
                                     580
 Asp Leu Ser Thr Ser Phe Gln Glu Ser His Ile Thr Val Ala Gly
                                     595
 Trp Asn Val Leu Ala Asp Val Arg Ser Pro Gly Phe Lys Asn Asp
                                     610
 Thr Leu Arg Ser Gly Val Val Ser Val Val Asp Ser Leu Leu Cys
                 620
 Glu Glu Gln His Glu Asp His Gly Ile Pro Val Ser Val Thr Asp
                                     640
 Asn Met Phe Cys Ala Ser Trp Glu Pro Thr Ala Pro Ser Asp Ile
 Cys Thr Ala Glu Thr Gly Gly Ile Ala Ala Val Ser Phe Pro Gly
                 665
                                     670
 Arg Ala Ser Pro Glu Pro Arg Trp His Leu Met Gly Leu Val Ser
 Trp Ser Tyr Asp Lys Thr Cys Ser His Arg Leu Ser Thr Ala Phe
                 695
                                     700
 Thr Lys Val Leu Pro Phe Lys Asp Trp Ile Glu Arg Asn Met Lys
<210> 232
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 232
aggttcgtga tggagacaac cgcg 24
<210> 233
<211> 24
<212> DNA
<213> Artificial Sequence
```

```
<220>
<223> Synthetic oligonucleotide probe
<400> 233
tgtcaaggac gcactgccgt catg 24
<210> 234
<211> 50
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 234
togccagate atcaagegtg tetgtggcaa egageggeca geteetatee 50
<210> 235
<211> 1964
<212> DNA
<213> Homo sapiens
<400> 235
 accaggiatt gtatetteag ttgteateaa gttegeaate agattggaaa 50
 ageteaactt qaagetttet tgeetgeagt gaageagaga gatagatatt 100
 attcacgtaa taaaaaacat gggcttcaac ctgactttcc acctttccta 150
 caaattccqa ttactqttqc tqttqacttt qtqcctqaca qtqqttqqqt 200
 gggccaccag taactacttc gtgggtgcca ttcaagagat tcctaaagca 250
 aaggagttca tggctaattt ccataagacc ctcattttgg ggaagggaaa 300
 aactctgact aatgaagcat ccacgaagaa ggtagaactt gacaactgtc 350
 cttctgtgtc tccttacctc agaggccaga gcaagctcat tttcaaacca 400
 gateteactt tggaagaggt acaggeagaa aateeeaaag tgteeagagg 450
 coggtatogo cotoaggaat gtaaagettt acagagggto gecatootog 500
 ttccccaccq gaacagagag aaacacctga tgtacctgct ggaacatctg 550
 catecettee tgeagaggea geagetggat tatggeatet aegteateea 600
 ccaggctgaa ggtaaaaagt ttaatcgagc caaactcttg aatgtgggct 650
 atctagaagc cctcaaggaa gaaaattggg actgctttat attccacgat 700
 gtggacctgg tacccgagaa tgactttaac ctttacaagt gtgaggagca 750
 tcccaagcat ctggtggttg gcaggaacag cactgggtac aggttacgtt 800
 acagtggata ttttgggggt gttactgccc taagcagaga gcagtttttc 850
 aaggtgaatg gattctctaa caactactgg ggatggggag gcgaagacga 900
 tgacctcaga ctcagggttg agctccaaag aatgaaaatt tcccggcccc 950
```

tgcctgaagt gggtaaatat acaatggtct tccacactag agacaaaggc 1000

aatgaggtga acgcagaacg gatgaagctc ttacaccaag tgtcacgagt 1050 ctggagaaca gatgggttga gtagttgttc ttataaatta gtatctgtgg 1100 aacacaatcc tttatatatc aacatcacag tggatttctg gtttggtgca 1150 tgaccctgga tcttttggtg atgtttggaa gaactgattc tttgtttgca 1200 ataattttgg cctagagact tcaaatagta gcacacatta agaacctgtt 1250 acageteatt gttgagetga attttteett tttgtatttt ettageagag 1300 ctcctggtga tgtagagtat aaaacagttg taacaagaca gctttcttag 1350 tcattttgat catgagggtt aaatattgta atatggatac ttgaaggact 1400 ttatataaaa ggatgactca aaggataaaa tgaacgctat ttgaggactc 1450 tggttgaagg agatttattt aaatttgaag taatatatta tgggataaaa 1500 ggccacagga aataagactg ctgaatgtct gagagaacca gagttgttct 1550 cgtccaaggt agaaaggtac gaagatacaa tactgttatt catttatcct 1600 gtacaatcat ctgtgaagtg gtggtgtcag gtgagaaggc gtccacaaaa 1650 gaggggagaa aaggcgacga atcaggacac agtgaacttg ggaatgaaga 1700 gttgcaggtg ctgatagcct tcaggggagg acctgcccag gtatgccttc 1800 cagtgatgcc caccagagaa tacattctct attagttttt aaagagtttt 1850 tgtaaaatga ttttgtacaa gtaggatatg aattagcagt ttacaagttt 1900 acatattaac taataataaa tatgtctatc aaatacctct gtagtaaaat 1950 gtgaaaaaqc aaaa 1964

```
<210> 236
<211> 344
<212> PRT
<213> Homo sapiens
<220>
<221> Signal peptide
<222> 1-27
<223> Signal peptide
<220>
<221> N-glycosylation sites
<222> 4-7, 220-223, 335-338
<223> N-glycosylation sites
<220>
<221> Xylose isomerase proteins
<222> 191-201
<223> Xylose isomerase proteins
<400> 236
Met Gly Phe Asn Leu Thr Phe His Leu Ser Tyr Lys Phe Arg Leu
```

10

15

Leu Leu Leu Thr Leu Cys Leu Thr Val Val Gly Trp Ala Thr Ser Asn Tyr Phe Val Gly Ala Ile Gln Glu Ile Pro Lys Ala Lys Glu Phe Met Ala Asn Phe His Lys Thr Leu Ile Leu Gly Lys Gly Lys Thr Leu Thr Asn Glu Ala Ser Thr Lys Lys Val Glu Leu Asp Asn Cys Pro Ser Val Ser Pro Tyr Leu Arg Gly Gln Ser Lys Leu Ile Phe Lys Pro Asp Leu Thr Leu Glu Glu Val Gln Ala Glu Asn 95 100 Pro Lys Val Ser Arg Gly Arg Tyr Arg Pro Gln Glu Cys Lys Ala Leu Gln Arg Val Ala Ile Leu Val Pro His Arg Asn Arg Glu Lys 130 His Leu Met Tyr Leu Leu Glu His Leu His Pro Phe Leu Gln Arg 145 150 Gln Gln Leu Asp Tyr Gly Ile Tyr Val Ile His Gln Ala Glu Gly Lys Lys Phe Asn Arg Ala Lys Leu Leu Asn Val Gly Tyr Leu Glu 170 175 Ala Leu Lys Glu Glu Asn Trp Asp Cys Phe Ile Phe His Asp Val 185 190 Asp Leu Val Pro Glu Asn Asp Phe Asn Leu Tyr Lys Cys Glu Glu 200 205 His Pro Lys His Leu Val Val Gly Arg Asn Ser Thr Gly Tyr Arg Leu Arg Tyr Ser Gly Tyr Phe Gly Gly Val Thr Ala Leu Ser Arg 230 235 Glu Gln Phe Phe Lys Val Asn Gly Phe Ser Asn Asn Tyr Trp Gly Trp Gly Glu Asp Asp Asp Leu Arg Leu Arg Val Glu Leu Gln 265 Arg Met Lys Ile Ser Arg Pro Leu Pro Glu Val Gly Lys Tyr Thr 280 Met Val Phe His Thr Arg Asp Lys Gly Asn Glu Val Asn Ala Glu 295 Arg Met Lys Leu His Gln Val Ser Arg Val Trp Arg Thr Asp 305 310 Gly Leu Ser Ser Cys Ser Tyr Lys Leu Val Ser Val Glu His Asn 320 325

```
Pro Leu Tyr Ile Asn Ile Thr Val Asp Phe Trp Phe Gly Ala
                 335
<210> 237
<211> 25
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 237
ccttacctca gaggccagag caagc 25
<210> 238
<211> 25
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 238
gagetteate egttetgegt teace 25
<210> 239
<211> 46
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 239
caggaatgta aagctttaca gagggtcgcc atcctcgttc cccacc 46
<210> 240
<211> 2567
<212> DNA
<213> Homo sapiens
<400> 240
 cgtgggccgg ggtcgcgcag cgggctgtgg gcgcgcccgg aggagcgacc 50
 geografic tegageteca getgeattee eteegegtee geoceaeget 100
 tetecegete egggeeeege aatggeeeag geagtgtggt egegeetegg 150
 ccgcatcctc tggcttgcct gcctcctgcc ctgggccccg gcaggggtgg 200
 ccgcaggcct gtatgaactc aatctcacca ccgatagccc tgccaccacg 250
 ggagcggtgg tgaccatctc ggccagcctg gtggccaagg acaacggcag 300
 cctggccetg cccgctgacg cccacctcta ccgcttccac tggatccaca 350
 ccccgctggt gcttactggc aagatggaga agggtctcag ctccaccatc 400
 cgtgtggtcg gccacgtgcc cggggaattc ccggtctctg tctgggtcac 450
 tgccgctgac tgctggatgt gccagcctgt ggccaggggc tttgtggtcc 500
 tececateae agagtteete gtgggggaee ttgttgteae eeagaacaet 550
```

tecetaceet ggeecagete etateteaet aagacegtee tgaaagtete 600 cttcctcctc cacgacccga gcaacttcct caagaccgcc ttgtttctct 650 acagetggga etteggggae gggaeecaga tggtgaetga agaeteegtg 700 gtctattata actattccat catcgggacc ttcaccgtga agctcaaagt 750 ggtggcggag tgggaagagg tggagccgga tgccacgagg gctgtgaagc 800 agaagaccgg ggacttctcc gcctcgctga agctgcagga aacccttcga 850 ggcatccaag tgttggggcc caccctaatt cagaccttcc aaaagatgac 900 cgtgaccttg aacttcctgg ggagccctcc tctgactgtg tgctggcgtc 950 tcaagectga gtgeeteeeg etggaggaag gggagtgeea eeetgtgtee 1000 gtggccagca cagcgtacaa cctgacccac accttcaggg accctgggga 1050 ctactgcttc agcatccggg ccgagaatat catcagcaag acacatcagt 1100 accacaagat ccaggtgtgg ccctccagaa tccagccggc tgtctttgct 1150 ttcccatgtg ctacacttat cactgtgatg ttggccttca tcatgtacat 1200 gaccetgegg aatgecacte ageaaaagga catggtggag aacceggage 1250 caccetetgg ggteaggtge tgetgeeaga tgtgetgtgg geetttettg 1300 ctggagactc catctgagta cctggaaatt gttcgtgaga accacgggct 1350 gctcccgccc ctctataagt ctgtcaaaac ttacaccgtg tgagcactcc 1400 ccctccccac cccatctcag tgttaactga ctgctgactt ggagtttcca 1450 gcagggtggt gtgcaccact gaccaggagg ggttcatttg cgtggggctg 1500 ttggcctgga tcatccatcc atctgtacag ttcagccact gccacaagcc 1550 cctccctctc tgtcacccct gaccccagcc attcacccat ctgtacagtc 1600 cagccactga cataagcccc actcggttac cacccccttg accccctacc 1650 tttgaagagg cttcgtgcag gactttgatg cttggggtgt tccgtgttga 1700 ctcctaggtg ggcctggctg cccactgccc attcctctca tattggcaca 1750 tctgctgtcc attgggggtt ctcagtttcc tcccccagac agccctacct 1800 gtgccagaga gctagaaaga aggtcataaa gggttaaaaa tccataacta 1850 aaggttgtac acatagatgg gcacactcac agagagaagt gtgcatgtac 1900 acacaccaca cacacacaca cacacacaca cacagaaata taaacacatg 1950 cgtcacatgg gcatttcaga tgatcagctc tgtatctggt taagtcgqtt 2000 gctgggatgc accctgcact agagctgaaa ggaaatttga cctccaagca 2050 gccctgacag gttctgggcc cgggccctcc ctttgtgctt tgtctctgca 2100 gttcttgcgc cctttataag gccatcctag tccctgctgg ctggcagggg 2150

cctggatgg gggcaggact aatactgagt gattgcagag tgctttataa 2200 atatcacctt attttatcga aacecatctg tgaaactttc actgaggaaa 2250 aggccttgca gcggtagaag aggttgagtc aaggccgggc gcggtggctc 2300 acgcctgtaa tcccagcact ttgggaggcc gaggcgggtg gatcacgaga 2350 tcaggagatc gagaccaccc tggctaacac ggtgaaaccc cgtctctact 2400 aaaaaaatac aaaaagttag ccgggcgtgg tggtgggtgc ctgtagtccc 2450 agctactcgg gaggctgagg caggagaatg gtgcgaaccc gggaggcgga 2500 gcttgcagtg agcccagatg gcgccactgc actccagcct gagtgacaga 2550 gcgagactct gtctcca 2567

<210> 241 <211> 423

<212> PRT

<213> Homo sapiens

<400> 241

Met Ala Gln Ala Val Trp Ser Arg Leu Gly Arg Ile Leu Trp Leu $1 \hspace{1cm} 5 \hspace{1cm} 10 \hspace{1cm} 15$

Ala Cys Leu Pro Trp Ala Pro Ala Gly Val Ala Ala Gly Leu 20 25 30

Tyr Glu Leu Asn Leu Thr Thr Asp Ser Pro Ala Thr Thr Gly Ala 35 40 45

Val Val Thr Ile Ser Ala Ser Leu Val Ala Lys Asp Asn Gly Ser 50 55 60

Leu Ala Leu Pro Ala Asp Ala His Leu Tyr Arg Phe His Trp Ile
65 70 75

His Thr Pro Leu Val Leu Thr Gly Lys Met Glu Lys Gly Leu Ser 80 85 90

Ser Thr Ile Arg Val Val Gly His Val Pro Gly Glu Phe Pro Val 95 100 105

Ser Val Trp Val Thr Ala Ala Asp Cys Trp Met Cys Gln Pro Val 110 115

Ala Arg Gly Phe Val Val Leu Pro Ile Thr Glu Phe Leu Val Gly 125 130 135

Asp Leu Val Val Thr Gln Asn Thr Ser Leu Pro Trp Pro Ser Ser 140 145 150

Tyr Leu Thr Lys Thr Val Leu Lys Val Ser Phe Leu Leu His Asp
155 160

Pro Ser Asn Phe Leu Lys Thr Ala Leu Phe Leu Tyr Ser Trp Asp 170 175 180

Phe Gly Asp Gly Thr Gln Met Val Thr Glu Asp Ser Val Val Tyr \$185\$

```
Tyr Asn Tyr Ser Ile Ile Gly Thr Phe Thr Val Lys Leu Lys Val
                200
                                    205
Val Ala Glu Trp Glu Glu Val Glu Pro Asp Ala Thr Arg Ala Val
                215
Lys Gln Lys Thr Gly Asp Phe Ser Ala Ser Leu Lys Leu Gln Glu
Thr Leu Arg Gly Ile Gln Val Leu Gly Pro Thr Leu Ile Gln Thr
                                    250
                245
Phe Gln Lys Met Thr Val Thr Leu Asn Phe Leu Gly Ser Pro Pro
Leu Thr Val Cys Trp Arg Leu Lys Pro Glu Cys Leu Pro Leu Glu
Glu Gly Glu Cys His Pro Val Ser Val Ala Ser Thr Ala Tyr Asn
Leu Thr His Thr Phe Arg Asp Pro Gly Asp Tyr Cys Phe Ser Ile
                                    310
Arg Ala Glu Asn Ile Ile Ser Lys Thr His Gln Tyr His Lys Ile
                                    325
                320
Gln Val Trp Pro Ser Arg Ile Gln Pro Ala Val Phe Ala Phe Pro
Cys Ala Thr Leu Ile Thr Val Met Leu Ala Phe Ile Met Tyr Met
                350
                                    355
Thr Leu Arg Asn Ala Thr Gln Gln Lys Asp Met Val Glu Asn Pro
                                    370
Glu Pro Pro Ser Gly Val Arg Cys Cys Gln Met Cys Cys Gly
                380
                                    385
Pro Phe Leu Leu Glu Thr Pro Ser Glu Tyr Leu Glu Ile Val Arg
Glu Asn His Gly Leu Leu Pro Pro Leu Tyr Lys Ser Val Lys Thr
                                    415
```

Tyr Thr Val

<210> 242

<211> 26

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 242

catttcctta ccctggaccc agctcc 26

<210> 243

<211> 25

<212> DNA

<213> Artificial Sequence

```
<220>
<223> Synthetic oligonucleotide probe
<400> 243
gaaaggccca cagcacatct ggcag 25
<210> 244
<211> 46
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 244
ccacgacccg agcaacttcc tcaagaccga cttgtttctc tacagc 46
<210> 245
<211> 485
<212> DNA
<213> Homo sapiens
<400> 245
 gctcaagacc cagcagtggg acagccagac agacggcacg atggcactga 50
 gctcccagat ctgggccgct tgcctcctgc tcctcctcct cctcgccagc 100
 ctgaccagtg gctctgtttt cccacaacag acgggacaac ttgcagagct 150
 qcaaccccaq qacaqagctg gagccagggc cagctggatg cccatgttcc 200
 agaggcgaag gaggcgagac acceacttcc ccatctgcat tttctqctgc 250
 ggctgctgtc atcgatcaaa gtgtgggatg tgctgcaaga cgtagaacct 300
 acctgccctg cccccgtccc ctcccttcct tatttattcc tgctgcccca 350
 gaacataggt cttggaataa aatggctggt tcttttgttt tccaaaaaaa 400
 авалавала авалавала авалавала даналавала даналавала 450
 aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa 485
<210> 246
<211> 84
<212> PRT
<213> Homo sapiens
<400> 246
 Met Ala Leu Ser Ser Gln Ile Trp Ala Ala Cys Leu Leu Leu
 Leu Leu Leu Ala Ser Leu Thr Ser Gly Ser Val Phe Pro Gln Gln
 Thr Gly Gln Leu Ala Glu Leu Gln Pro Gln Asp Arg Ala Gly Ala
 Arg Ala Ser Trp Met Pro Met Phe Gln Arg Arg Arg Arg Asp
 Thr His Phe Pro Ile Cys Ile Phe Cys Cys Gly Cys Cys His Arg
```

Ser Lys Cys Gly Met Cys Cys Lys Thr 80

<210> 247 <211> 2359

<212> DNA

<213> Homo sapiens

<400> 247 ctgtcaggaa ggaccatctg aaggctgcaa tttgttctta gggaggcagg 50 tgctggcctg gcctggatct tccaccatgt tcctgttgct gccttttgat 100 agectgattg teaacettet gggeatetee etgactgtee tetteaceet 150 ccttctcgtt ttcatcatag tgccagccat ttttggagtc tcctttggta 200 tccgcaaact ctacatgaaa agtctgttaa aaatctttgc gtgggctacc 250 ttgagaatgg agcgaggagc caaggagaag aaccaccagc tttacaagcc 300 ctacaccaac ggaatcattg caaaggatcc cacttcacta gaagaagaga 350 tcaaagagat tcgtcgaagt ggtagtagta aggctctgga caacactcca 400 gagttcgagc tctctgacat tttctacttt tgccggaaag gaatggagac 450 cattatggat gatgaggtga caaagagatt ctcagcagaa gaactggagt 500 cctggaacct gctgagcaga accaattata acttccagta catcagcctt 550 cggctcacgg tcctgtgggg gttaggagtg ctgattcggt actgctttct 600 gctgccgctc aggatagcac tggctttcac agggattagc cttctggtgg 650 tgggcacaac tgtggtggga tacttgccaa atgggaggtt taaggaattc 700 atgagtaaac atgttcactt aatgtgttac cggatctgcg tgcgagcgct 750 gacagccatc atcacctacc atgacaggga aaacagacca agaaatggtg 800 gcatctgtgt ggccaatcat acctcaccga tcgatgtgat catcttggcc 850 agegatgget attatgeeat ggtgggteaa gtgeaegggg gaeteatggg 900 tgtgattcag agagccatgg tgaaggcctg cccacacgtc tggtttgagc 950 gctcggaagt gaaggatcgc cacctggtgg ctaagagact gactgaacat 1000 gtgcaagata aaagcaagct gcctatcctc atcttcccag aaggaacctg 1050 catcaataat acatcggtga tgatgttcaa aaagggaagt tttgaaattg 1100 gagccacagt ttaccctgtt gctatcaagt atgaccctca atttggcgat 1150 gccttctgga acagcagcaa atacgggatg gtgacgtacc tgctgcgaat 1200 gatgaccage tgggccattg tetgcagegt gtggtacetg ceteccatga 1250 ctagagaggc agatgaagat gctgtccagt ttgcgaatag ggtgaaatct 1300 gccattgcca ggcagggagg acttgtggac ctgctgtggg atgggggcct 1350

gaagagggag aaggtgaagg acacgttcaa ggaggagcag cagaagctgt 1400 acagcaagat gatcgtgggg aaccacaagg acaggagccg ctcctgagcc 1450 tgcctccage tggctggggc caccgtgcgg ggtgccaacg ggctcagagc 1500 tggagttgcc gccgccgccc ccactgctgt gtcctttcca gactccaggg 1550 ctccccqqqc tqctctqqat cccaqqactc cqqctttcqc cqaqccqcaq 1600 cgggatccct gtgcacccgg cgcagcctac ccttggtggt ctaaacggat 1650 gctgctgggt gttgcgaccc aggacgagat gccttgtttc ttttacaata 1700 agtcgttgga ggaatgccat taaagtgaac tccccacctt tqcacqctqt 1750 gcgggctgag tggttgggga gatgtggcca tggtcttgtg ctagagatgg 1800 cggtacaaga gtctgttatg caagcccgtg tgccagggat gtgctgqqqq 1850 cggccacccg ctctccagga aaggcacagc tgaggcactg tggctggctt 1900 cggcctcaac atcgcccca gccttggagc tctgcagaca tgataggaag 1950 gaaactgtca tctgcagggg ctttcagcaa aatgaagggt tagattttta 2000 tgctgctgct gatggggtta ctaaagggag gggaagaggc caggtgggcc 2050 gctgactggg ccatggggag aacgtgtgtt cgtactccag gctaaccctg 2100 aactccccat gtgatgcgcg ctttgttgaa tgtgtgtctc ggtttcccca 2150 totgtaatat gagtoggggg gaatggtggt gattoctacc toacagggct 2200 gttgtgggga ttaaagtgct gcgggtgagt gaaggacaca tcacgttcag 2250 tgtttcaagt acaggcccac aaaacggggc acggcaggcc tgagctcaga 2300 gctgctgcac tgggctttgg atttgttctt gtgagtaaat aaaactggct 2350 ggtgaatga 2359

<210> 248

<211> 456

<212> PRT

<213> Homo sapiens

<400> 248

Met Phe Leu Leu Pro Phe Asp Ser Leu Ile Val Asn Leu Leu $1 \hspace{1cm} 5 \hspace{1cm} 10 \hspace{1cm} 15$

Gly Ile Ser Leu Thr Val Leu Phe Thr Leu Leu Leu Val Phe Ile $20 \\ 25 \\ 30$

Ile Val Pro Ala Ile Phe Gly Val Ser Phe Gly Ile Arg Lys Leu 35 40 45

Tyr Met Lys Ser Leu Leu Lys Ile Phe Ala Trp Ala Thr Leu Arg
50 55 60

Met Glu Arg Gly Ala Lys Glu Lys Asn His Gln Leu Tyr Lys Pro
65 70 75

Tyr Thr Asn Gly Ile Ile Ala Lys Asp Pro Thr Ser Leu Glu Glu Glu Ile Lys Glu Ile Arg Arg Ser Gly Ser Ser Lys Ala Leu Asp Asn Thr Pro Glu Phe Glu Leu Ser Asp Ile Phe Tyr Phe Cys Arg 110 115 Lys Gly Met Glu Thr Ile Met Asp Asp Glu Val Thr Lys Arg Phe 130 Ser Ala Glu Glu Leu Glu Ser Trp Asn Leu Leu Ser Arg Thr Asn 145 Tyr Asn Phe Gln Tyr Ile Ser Leu Arg Leu Thr Val Leu Trp Gly 160 Leu Gly Val Leu Ile Arg Tyr Cys Phe Leu Leu Pro Leu Arg Ile 175 Ala Leu Ala Phe Thr Gly Ile Ser Leu Leu Val Val Gly Thr Thr 185 190 Val Val Gly Tyr Leu Pro Asn Gly Arg Phe Lys Glu Phe Met Ser Lys His Val His Leu Met Cys Tyr Arg Ile Cys Val Arg Ala Leu Thr Ala Ile Ile Thr Tyr His Asp Arg Glu Asn Arg Pro Arg Asn 235 Gly Gly Ile Cys Val Ala Asn His Thr Ser Pro Ile Asp Val Ile 245 250 Ile Leu Ala Ser Asp Gly Tyr Tyr Ala Met Val Gly Gln Val His 260 265 Gly Gly Leu Met Gly Val Ile Gln Arg Ala Met Val Lys Ala Cys 280 Pro His Val Trp Phe Glu Arg Ser Glu Val Lys Asp Arg His Leu 290 Val Ala Lys Arg Leu Thr Glu His Val Gln Asp Lys Ser Lys Leu 310 Pro Ile Leu Ile Phe Pro Glu Gly Thr Cys Ile Asn Asn Thr Ser 330 Val Met Met Phe Lys Lys Gly Ser Phe Glu Ile Gly Ala Thr Val 340 Tyr Pro Val Ala Ile Lys Tyr Asp Pro Gln Phe Gly Asp Ala Phe Trp Asn Ser Ser Lys Tyr Gly Met Val Thr Tyr Leu Leu Arg Met 365 370 Met Thr Ser Trp Ala Ile Val Cys Ser Val Trp Tyr Leu Pro Pro

385

Met Thr Arg Glu Ala Asp Glu Asp Ala Val Gln Phe Ala Asn Arg 405

Val Lys Ser Ala Ile Ala Arg Gln Gly Gly Leu Val Asp Leu Leu 420

Trp Asp Gly Gly Leu Lys Arg Glu Lys Val Lys Asp Thr Phe Lys 435

Glu Glu Gln Gln Gln Lys Leu Tyr Ser Lys Met 11e Val Gly Asn His 450

Lys Asp Arg Ser Arg Ser 455

<210> 249 <211> 1103 <212> DNA

<213> Homo sapiens

<400> 249 gcccctcgaa accaggactc cagcacctct ggtcccgccc tcacccggac 50 ccctggccct cacgtctcct ccagggatgg cgctggcggc tttgatgatc 100 gccctcggca gcctcggcct ccacacctgg caggcccagg ctgttcccac 150 catectgeec etgggeetgg etceagacae etttgaegat acetatgtgg 200 gttgtgcaga ggagatggag gagaaggcag ccccctgct aaaggaggaa 250 atggcccacc atgccctgct gcgggaatcc tgggaggcag cccaggagac 300 ctgggaggac aagegtegag ggettacett geeeetgge ttcaaageee 350 agaatggaat agccattatg gtctacacca actcatcgaa caccttgtac 400 tgggagttga atcaggccgt gcggacgggc ggaggctccc gggagctcta 450 catgaggcac tttcccttca aggccctgca tttctacctg atccgggccc 500 tgcagctgct gcgaggcagt gggggctgca gcaggggacc tggggaggtg 550 gtgttccgag gtgtgggcag ccttcgcttt gaacccaaga ggctggggga 600 ctctgtccgc ttgggccagt ttgcctccag ctccctggat aaggcagtgg 650 cccacagatt tggggagaag aggcggggct gtgtgtctqc qccaqqqqtq 700 cagctagggt cacaatctga gggggcctcc tctctgcccc cctggaagac 750 tetgetettg geeeetggag agtteeaget eteaggggtt gggeeetgaa 800 agtccaacat ctgccactta ggagccctgg gaacgggtga ccttcatatg 850 acgaagaggc acctccagca gccttgagaa gcaagaacat ggttccqqac 900 ccagccctag cagccttctc cccaaccagg atgttggcct ggggaggcca 950 cagcagggct gagggaactc tgctatgtga tggggacttc ctgggacaag 1000 caaggaaagt actgaggcag ccacttgatt gaacggtgtt gcaatgtgga 1050

```
gacatggagt tttattgagg tagctacgtg attaaatggt attgcagtgt 1100
gga 1103
<210> 250
<211> 240
<212> PRT
<213> Homo sapiens
<400> 250
Met Ala Leu Ala Ala Leu Met Ile Ala Leu Gly Ser Leu Gly Leu
His Thr Trp Gln Ala Gln Ala Val Pro Thr Ile Leu Pro Leu Gly
Leu Ala Pro Asp Thr Phe Asp Asp Thr Tyr Val Gly Cys Ala Glu
Glu Met Glu Glu Lys Ala Ala Pro Leu Lys Glu Glu Met Ala
His His Ala Leu Leu Arg Glu Ser Trp Glu Ala Ala Gln Glu Thr
Trp Glu Asp Lys Arg Arg Gly Leu Thr Leu Pro Pro Gly Phe Lys
Ala Gln Asn Gly Ile Ala Ile Met Val Tyr Thr Asn Ser Ser Asn
                                     100
Thr Leu Tyr Trp Glu Leu Asn Gln Ala Val Arg Thr Gly Gly Gly
                 110
Ser Arg Glu Leu Tyr Met Arg His Phe Pro Phe Lys Ala Leu His
Phe Tyr Leu Ile Arg Ala Leu Gln Leu Leu Arg Gly Ser Gly Gly
Cys Ser Arg Gly Pro Gly Glu Val Val Phe Arg Gly Val Gly Ser
Leu Arg Phe Glu Pro Lys Arg Leu Gly Asp Ser Val Arg Leu Gly
                                     175
Gln Phe Ala Ser Ser Ser Leu Asp Lys Ala Val Ala His Arg Phe
                 185
                                     190
                                                         195
Gly Glu Lys Arg Arg Gly Cys Val Ser Ala Pro Gly Val Gln Leu
                 200
                                     205
Gly Ser Gln Ser Glu Gly Ala Ser Ser Leu Pro Pro Trp Lys Thr
Leu Leu Ala Pro Gly Glu Phe Gln Leu Ser Gly Val Gly Pro
<210> 251
<211> 50
```

<212> DNA

<213> Artificial Sequence

```
<220>
 <223> Synthetic oligonucleotide probe
 <400> 251
  ccaccacctg gaggtcctgc agttgggcag gaactccatc cggcagattg 50
 <210> 252
 <211> 1076
 <212> DNA
 <213> Homo sapiens
 <400> 252
  gtggcttcat ttcagtggct gacttccaga gagcaatatg gctggttccc 50
  caacatgeet caeceteate tatateettt ggeageteae agggteagea 100
  gcctctggac ccgtgaaaga gctggtcggt tccgttggtg gggccgtgac 150
  tttccccctg aagtccaaag taaagcaagt tgactctatt gtctggacct 200
  tcaacacaac ccctcttgtc accatacagc cagaaggggg cactatcata 250
  gtgacccaaa atcgtaatag ggagagagta gacttcccag atggaggcta 300
  ctccctgaag ctcagcaaac tgaagaagaa tgactcaggg atctactatg 350
  tggggatata cagctcatca ctccagcagc cctccaccca ggagtacgtg 400
 ctgcatgtct acgagcacct gtcaaagcct aaagtcacca tgggtctgca 450
 gagcaataag aatggcacct gtgtgaccaa tctgacatgc tgcatggaac 500
 atggggaaga ggatgtgatt tatacctgga aggccctggg gcaagcagcc 550
 aatgagtccc ataatgggtc catcctcccc atctcctgga gatggggaga 600
 aagtgatatg accttcatct gcgttgccag gaaccctgtc agcagaaact 650
 tetcaagece cateettgee aggaagetet gtgaaggtge tgetgatgae 700
 ccagatteet ecatggteet cetgtgtete etgttggtge eceteetget 750
 cagtetettt gtactgggge tatttetttg gtttetgaag agagagagae 800
 aagaagagta cattgaagag aagaagagag tggacatttg tcgggaaact 850
 cctaacatat gcccccattc tggagagaac acagagtacg acacaatccc 900
 tcacactaat agaacaatcc taaaggaaga tccagcaaat acggtttact 950
 ccactgtgga aataccgaaa aagatggaaa atccccactc actgctcacg 1000
 atgccagaca caccaaggct atttgcctat gagaatgtta tctagacagc 1050
 agtgcactcc cctaagtctc tgctca 1076
<210> 253
<211> 335
<212> PRT
<213> Homo sapiens
<400> 253
Met Ala Gly Ser Pro Thr Cys Leu Thr Leu Ile Tyr Ile Leu Trp
```

1				5					10					15
Gln	Leu	Thr	Gly	Ser 20	Ala	Ala	Ser	Gly	Pro 25	Val	Lys	Glu	Leu	Val 30
Gly	Ser	Val	Gly	Gly 35	Ala	Val	Thr	Phe	Pro 40	Leu	Lys	Ser	Lys	Val 45
Lys	Gln	Val	Asp	Ser 50	Ile	Val	Trp	Thr	Phe 55	Asn	Thr	Thr	Pro	Leu 60
Val	Thr	Ile	Gln	Pro 65	Glu	Gly	Gly	Thr	Ile 70	Ile	Val	Thr	Gln	Asn 75
Arg	Asn	Arg	Glu	Arg 80	Val	Asp	Phe	Pro	Asp 85	Gly	Gly	Tyr	Ser	Leu 90
Lys	Leu	Ser	Lys	Leu 95	Lys	Lys	Asn	Asp	Ser 100	Gly	Ile	Tyr	Tyr	Val 105
Gly	Ile	Tyr	Ser	Ser 110	Ser	Leu	Gln	Gln	Pro 115	Ser	Thr	Gln	Glu	Tyr 120
Val	Leu	His	Val	Tyr 125	Glu	His	Leu	Ser	Lys 130	Pro	Lys	Val	Thr	Met 135
Gly	Leu	Gln	Ser	Asn 140	Lys	Asn	Gly	Thr	Cys 145	Val	Thr	Asn	Leu	Thr 150
Cys	Cys	Met	Glu	His 155	Gly	Glu	Glu	Asp	Val 160	Ile	Tyr	Thr	Trp	Lys 165
Ala	Leu	Gly	Gln	Ala 170	Ala	Asn	Glu	Ser	His 175	Asn	Gly	Ser	Ile	Leu 180
Pro	Ile	Ser	Trp	Arg 185	Trp	Gly	Glu	Ser	Asp 190	Met	Thr	Phe	Ile	Cys 195
Val	Ala	Arg	Asn	Pro 200	Val	Ser	Arg	Asn	Phe 205	Ser	Ser	Pro	Ile	Leu 210
Ala	Arg	Lys	Leu	Cys 215	Glu	Gly	Ala	Ala	Asp 220	Asp	Pro	Asp	Ser	Ser 225
Met	Val	Leu	Leu	Суs 230	Leu	Leu	Leu	Val	Pro 235	Leu	Leu	Leu	Ser	Leu 240
Phe	Val	Leu	Gly	Leu 245	Phe	Leu	Trp	Phe	Leu 250	Lys	Arg	Glu	Arg	Gln 255
Glu	Glu	Tyr	Ile	Glu 260	Glu	Lys	Lys	Arg	Val 265	Asp	Ile	Cys	Arg	Glu 270
Thr	Pro	Asn	Ile	Cys 275	Pro	His	Ser	Gly	Glu 280	Asn	Thr	Glu	Tyr	Asp 285
Thr	Ile	Pro	His	Thr 290	Asn	Arg	Thr	Ile	Leu 295	Lys	Glu	Asp	Pro	Ala 300
Asn	Thr	Va1	Tyr	Ser 305	Thr	Val	Glu	Ile	Pro 310	Lys	Lys	Met	Glu	Asn 315
Pro	His	Ser	Leu	Leu	Thr	Met	Pro	Asp	Thr	Pro	Ara	Len	Phe	Ala

320

325

330

Tyr Glu Asn Val II

<210> 254

<211> 1053

<212> DNA

<213> Homo sapiens

<400> 254

Mary design

Mary Hard

4. 1

Mary Jan

Lui,

ļ.

Hara Maria

111

\$+#=

ctggttcccc aacatgcctc accctcatct atatcctttg geagetcaca 50 gggtcagcag cctctggacc cgtgaaagag ctggtcggtt ccgttggtgg 100 ggccgtgact ttccccctga agtccaaagt aaagcaagtt gactctattg 150 tetggaeett eaacacaace eetettgtea eeatacagee agaaggggge 200 actatcatag tgacccaaaa tcgtaatagg gaqagagtag acttcccaga 250 tggaggctac tccctgaagc tcagcaaact gaagaagaat gactcaggga 300 tctactatgt ggggatatac agctcatcac tccagcagcc ctccacccag 350 gagtacgtgc tgcatgtcta cgagcacctg tcaaagccta aagtcaccat 400 gggtctgcag agcaataaga atggcacctg tgtgaccaat ctgacatgct 450 gcatggaaca tggggaagag gatgtgattt atacctggaa ggccctgggg 500 caagcagcca atgagtccca taatgggtcc atcctcccca tctcctqgag 550 atggggagaa agtgatatga ccttcatctg cgttgccagg aaccctgtca 600 gcagaaactt ctcaagcccc atccttgcca ggaagctctg tgaaggtgct 650 gctgatgacc cagattecte catggteete etgtgtetee tgttggtgee 700 cctcctgctc agtctctttg tactggggct atttctttgg tttctgaaga 750 gagagagaca agaagagtac attgaagaga agaagagagt ggacatttgt 800 cgggaaactc ctaacatatg cccccattct ggagagaaca cagagtacga 850 cacaatccct cacactaata gaacaatcct aaaggaagat ccagcaaata 900 cggtttactc cactgtggaa ataccgaaaa agatggaaaa tccccactca 950 ctgctcacga tgccagacac accaaggcta tttgcctatg agaatgttat 1000 ctagacagca gtgcactccc ctaagtctct gctcaaaaaa aaaaaaaaa 1050

aaa 1053

<210> 255

<211> 860 <212> DNA

<213> Homo sapiens

<400> 255

gaaagacgtg gtcctgacag acagacaatc ctattcccta ccaaaatgaa 50

gatgctgctg ctgctgtgtt tgggactgac cctagtctgt gtccatgcag 100 aagaagetag ttetaeggga aggaaettta atgtaqaaaa gattaatggg 150 gaatggcata ctattatcct ggcctctgac aaaagagaaa agatagaaga 200 acatggcaac tttagacttt ttctggagca aatccatgtc ttggagaatt 250 ccttagttct taaagtccat actgtaagag atgaagagtg ctccgaatta 300 tctatggttg ctgacaaaac agaaaaggct ggtgaatatt ctgtgacgta 350 tgatggattc aatacattta ctatacctaa gacagactat gataactttc 400 ttatggctca cctcattaac gaaaaggatg gggaaacctt ccaqctgatg 450 gggctctatg gccgagaacc agatttgagt tcagacatca aggaaaggtt 500 tgcacaacta tgtgaggagc atggaatcct tagagaaaat atcattgacc 550 tatccaatgc caatcgctgc ctccaggccc gagaatgaag aatggcctga 600 gcctccagtg ttgagtggac acttctcacc aggactccac catcatccct 650 tectatecat acageatece cagtataaat tetgtgatet geattecate 700 ctgtctcact gagaagtcca attccagtct atcaacatgt tacctaggat 750 acctcatcaa gaatcaaaga cttctttaaa tttctctttq atacaccctt 800 gacaattttt catgaaatta ttcctcttcc tgttcaataa atgattaccc 850 ttgcacttaa 860

<210> 256

<211> 180

<212> PRT

<213> Homo sapiens

<400> 256

Met Lys Met Leu Leu Leu Cys Leu Gly Leu Thr Leu Val Cys 1 5 10 15

Val His Ala Glu Glu Ala Ser Ser Thr Gly Arg Asn Phe Asn Val

Glu Lys Ile Asn Gly Glu Trp His Thr Ile Ile Leu Ala Ser Asp 35 40 45

Lys Arg Glu Lys Ile Glu Glu His Gly Asn Phe Arg Leu Phe Leu 50 55 60

Glu Gln Ile His Val Leu Glu Asn Ser Leu Val Leu Lys Val His
65 70 75

Thr Val Arg Asp Glu Glu Cys Ser Glu Leu Ser Met Val Ala Asp 80 85 90

Lys Thr Glu Lys Ala Gly Glu Tyr Ser Val Thr Tyr Asp Gly Phe 95 100

Asn Thr Phe Thr Ile Pro Lys Thr Asp Tyr Asp Asn Phe Leu Met

```
Ala His Leu Ile Asn Glu Lys Asp Gly Glu Thr Phe Gln Leu Met $125$ $130$
```

Gly Leu Tyr Gly Arg Glu Pro Asp Leu Ser Ser Asp Ile Lys Glu 140 145

Arg Phe Ala Gln Leu Cys Glu Glu His Gly Ile Leu Arg Glu Asn 155 160 165

Ile Ile Asp Leu Ser Asn Ala Asn Arg Cys Leu Gln Ala Arg Glu 170 175 180

<210> 257

<211> 766

<212> DNA

<213> Homo sapiens

<400> 257

ggctcgagcg tttctgagcc aggggtgacc atgacctgct gcgaaggatg 50 gacatcctgc aatggattca gcctgctggt tctactgctg ttaggagtag 100 ttctcaatgc gatacctcta attgtcagct tagttgagga agaccaattt 150 tctcaaaacc ccatctcttg ctttgagtgg tggttcccag gaattatagg 200 agcaggtctg atggccattc cagcaacaac aatgtccttg acagcaagaa 250 aaagagcgtg ctgcaacaac agaactggaa tgtttctttc atcatttttc 300 agtgtgatca cagtcattgg tgctctgtat tgcatgctga tatccatcca 350 ggctctctta aaaggtcctc tcatgtgtaa ttctccaagc aacagtaatg 400 ccaattgtga attiticattg aaaaacatca gtgacattca tccagaatcc 450 ttcaacttgc agtggttttt caatgactct tgtgcacctc ctactggttt 500 caataaaccc accagtaacg acaccatggc gagtggctgg agagcatcta 550 gtttccactt cgattctgaa gaaaacaaac ataggcttat ccacttctca 600 gtatttttag gtctattgct tgttggaatt ctggaggtcc tgtttgggct 650 cagtcagata gtcatcggtt tccttggctg tctgtgtgga gtctctaagc 700 gaagaagtca aattgtgtag tttaatggga ataaaatgta agtatcagta 750 gtttgaaaaa aaaaaa 766

<210> 258

<211> 229

<212> PRT

<213> Homo sapiens

<400> 258

Met Thr Cys Cys Glu Gly Trp Thr Ser Cys Asn Gly Phe Ser Leu $1 \hspace{1cm} 5 \hspace{1cm} 10 \hspace{1cm} 15$

Leu Val Leu Leu Leu Gly Val Val Leu Asn Ala Ile Pro Leu 20 25 30

Ile Val Ser Leu Val Glu Glu Asp Gln Phe Ser Gln Asn Pro Ile

man.

35 40 45

Ser Cys Phe Glu Trp Trp Phe Pro Gly Ile Ile Gly Ala Gly Leu 50 55 60

Met Ala Ile Pro Ala Thr Thr Met Ser Leu Thr Ala Arg Lys Arg
65 70 75

Ala Cys Cys Asn Asn Arg Thr Gly Met Phe Leu Ser Ser Phe Phe 80 85 90

Ser Val Ile Thr Val Ile Gly Ala Leu Tyr Cys Met Leu Ile Ser 95 100 105

Ile Gln Ala Leu Leu Lys Gly Pro Leu Met Cys Asn Ser Pro Ser 110 115 120

Asn Ser Asn Ala Asn Cys Glu Phe Ser Leu Lys Asn Ile Ser Asp 125 130 135

Ile His Pro Glu Ser Phe Asn Leu Gln Trp Phe Phe Asn Asp Ser 140 145 150

Cys Ala Pro Pro Thr Gly Phe Asn Lys Pro Thr Ser Asn Asp Thr
155 160 165

Met Ala Ser Gly Trp Arg Ala Ser Ser Phe His Phe Asp Ser Glu 170 175 180

Glu Asn Lys His Arg Leu Ile His Phe Ser Val Phe Leu Gly Leu
185 190 195

Leu Leu Val Gly Ile Leu Glu Val Leu Phe Gly Leu Ser Gln Ile 200 205 210

Val Ile Gly Phe Leu Gly Cys Leu Cys Gly Val Ser Lys Arg Arg 215 220 220

Ser Gln Ile Val

<210> 259

<211> 434 <212> DNA

<213> Homo sapiens

<400> 259

gtcgaatcca aatcactcat tgtgaaagct gagctcacag ccgaataagc 50 caccatgagg ctgtcagtgt gtctcctgat ggtctcgctg gccctttgct 100 gctaccaggc ccatgctctt gtctgcccag ctgttgcttc tgagatcaca 150 gtcttcttat tcttaagtga cgctgcggta aacctccaag ttgccaaact 200 taatccacct ccagaagctc ttgcagccaa gttggaagtg aagcactgca 250 ccgatcagat atctttaag aaacgactct cattgaaaaa gtcctggtgg 300 aaatagtgaa aaaatgtggt gtgtgacatg taaaaatgct caacctggtt 350 tccaaagtct ttcaacgaca ccctgatctt cactaaaaat tgtaaaggtt 400

tcaacacgtt gctttaataa atcacttgcc ctgc 434

<210> 260

<211> 83

<212> PRT

<213> Homo sapiens

<400> 260

Met Arg Leu Ser Val Cys Leu Leu Met Val Ser Leu Ala Leu Cys 1 5 10 15

Cys Tyr Gln Ala His Ala Leu Val Cys Pro Ala Val Ala Ser Glu 20 25 30

Ile Thr Val Phe Leu Phe Leu Ser Asp Ala Ala Val Asn Leu Gln 35 40 45

Val Ala Lys Leu Asn Pro Pro Pro Glu Ala Leu Ala Ala Lys Leu
50 55 60

Glu Val Lys His Cys Thr Asp Gln Ile Ser Phe Lys Lys Arg Leu
65 70 75

Ser Leu Lys Lys Ser Trp Trp Lys

<210> 261

<211> 636

<212> DNA

<213> Homo sapiens

<400> 261

atcegitate tgegetgeea geteaggiga gecetegeea aggitgacete 50 geaggacact ggitgaaggag cagitgaggaa cetigeagagi cacacagitig 100 cigaceaati gagetgigag eetigageag atcegigge tgeagaceee 150 egeeceagig ceteteeee tgeageeetig eeeetegaac tgitgacatig 200 agagagigae eetigeeeti eteetaetigg eaggeetgae tgeetiggaa 250 geeaatgace eatitgeeaa taaagaegat eeetitetaet atgaetggaa 300 aaacetgeag etgageggae tgatetgegg agggeteetig geeatigetig 350 ggategegge agitetgagi ggeaaatgea aatacaagag eageeagaag 400 eageacagte etgaeeetga gaaggeeate eeaeteatea eteetaggete 450 tgeeactaet tgetgageae aggaetgee teeagggatig geetgaagee 500 taacaetgge eeeetageee teeteeeetg ggaggeetta teeteaagga 550 aggaettete teeaagggea ggetgitagg eeeetitetig atcaggage 600 ttetttatga attaaaeteg eeeeaeee eeetee 636

<210> 262

<211> 89

<212> PRT

<213> Homo sapiens

Lys Ala Ile Pro Leu Ile Thr Pro Gly Ser Ala Thr Thr Cys $80 \hspace{1cm} 85$

<210> 263 <211> 1676 <212> DNA <213> Homo sapiens

<400> 263 ggagaagagg ttgtgtggga caagctgctc ccgacagaag gatgtcgctg 50 ctgagcctgc cctggctggg cctcagaccg gtggcaatgt ccccatggct 100 actcctqctq ctqqttqtqq qctcctqqct actcqcccqc atcctqqctt 150 ggacctatgc cttctataac aactgccgcc ggctccagtg tttcccacag 200 cccccaaaac ggaactggtt ttggggtcac ctgggcctga tcactcctac 250 agaggagggc ttgaaggact cgacccagat gtcggccacc tattcccagg 300 gctttacggt atggctgggt cccatcatcc ccttcatcgt tttatgccac 350 cctgacacca tccggtctat caccaatgcc tcagctgcca ttgcacccaa 400 ggataatctc ttcatcaggt tcctgaagcc ctggctggga gaagggatac 450 tgctgagtgg cggtgacaag tggagccgcc accqtcqqat gctgacqccc 500 gccttccatt tcaacatcct gaagtcctat ataacgatct tcaacaagag 550 tgcaaacatc atgcttgaca agtggcagca cctggcctca gagggcagca 600 gtcgtctgga catgtttgag cacatcagcc tcatgacctt ggacagtcta 650 cagaaatgca tcttcagctt tgacagccat tgtcaggaga gqcccagtga 700 atatattgcc accatcttgg agctcagtgc ccttgtagag aaaagaagcc 750 agcatatect ecageaeatg gaetttetgt attacetete ecatgaeggg 800 eggegettee acagggeetg eegeetggtg catgacttea cagacgetgt 850 catcogggag cggcgtcgca ccctccccac tcagggtatt gatgattttt 900 tcaaagacaa agccaagtcc aagactttgg atttcattga tgtgcttctg 950

ctgagcaagg atgaagatgg gaaggcattg tcagatgagg atataagagc 1000 agaggctgac accttcatgt ttggaggcca tgacaccacg gecagtggcc 1050 tetectgggt cctgtacaac cttgcgaggc acccagaata ccaggagcgc 1100 tgccgacagg aggtgcaaga gcttctgaag gaccgcgatc ctaaagagat 1150 tgaatgggac gacctggece agctgcctt cctgaccatg tgcgtgaagg 1200 agagcctgag gttacatccc ccagctcct tcatctcccg atgctgcacc 1250 caggacattg tteteccaga tggccgagtc atcccaaag gcattacctg 1300 cctcatcgat attatagggg tccatcaca cccaactgtg tggccggatc 1350 ctgaggtcta cgacccttc cgctttgacc cagagaacag caaggggagg 1400 tcacctctgg ctttattcc tttetccgca gggcccagga actgcatcgg 1450 gcaggcgttc gccatggcag agatgaaagt ggtcctggcg ttgatgctgc 1500 tgcacttccg gttcctgcca gaccacctg agccccgcag gaagctggaa 1550 ttgatcatgc gcgccgaggg cgggctttgg ctgcgggtgg agcccctgaa 1600 tgtaggcttg cagtgactt ctgaccatc cacctgttt tttgcagatt 1650 gtcatgaata aaacggtgct gtcaaa 1676

<210> 264 <211> 524

<212> PRT

<213> Homo sapiens

<400> 264

Met Ser Leu Ser Leu Pro Trp Leu Gly Leu Arg Pro Val Ala 1 5 10 15

Met Ser Pro Trp Leu Leu Leu Leu Val Val Gly Ser Trp Leu 20 25 30

Leu Ala Arg Ile Leu Ala Trp Thr Tyr Ala Phe Tyr Asn Asn Cys 35 40 45

Arg Arg Leu Gln Cys Phe Pro Gln Pro Pro Lys Arg Asn Trp Phe 50 55 60

Trp Gly His Leu Gly Leu Ile Thr Pro Thr Glu Glu Gly Leu Lys
65 70 75

Asp Ser Thr Gln Met Ser Ala Thr Tyr Ser Gln Gly Phe Thr Val 80 85 90

Trp Leu Gly Pro Ile Ile Pro Phe Ile Val Leu Cys His Pro Asp 95 100 105

Thr Ile Arg Ser Ile Thr Asn Ala Ser Ala Ala Ile Ala Pro Lys 110 115 120

Asp Asn Leu Phe Ile Arg Phe Leu Lys Pro Trp Leu Gly Glu Gly 125 130 135

Ile Leu Leu Ser Gly Gly Asp Lys Trp Ser Arg His Arg Arg Met Leu Thr Pro Ala Phe His Phe Asn Ile Leu Lys Ser Tyr Ile Thr 155 160 Ile Phe Asn Lys Ser Ala Asn Ile Met Leu Asp Lys Trp Gln His 170 175 Leu Ala Ser Glu Gly Ser Ser Arg Leu Asp Met Phe Glu His Ile Ser Leu Met Thr Leu Asp Ser Leu Gln Lys Cys Ile Phe Ser Phe Asp Ser His Cys Gln Glu Arg Pro Ser Glu Tyr Ile Ala Thr Ile 220 Leu Glu Leu Ser Ala Leu Val Glu Lys Arg Ser Gln His Ile Leu 230 235 Gln His Met Asp Phe Leu Tyr Tyr Leu Ser His Asp Gly Arg Arg 250 Phe His Arg Ala Cys Arg Leu Val His Asp Phe Thr Asp Ala Val Ile Arg Glu Arg Arg Arg Thr Leu Pro Thr Gln Gly Ile Asp Asp Phe Phe Lys Asp Lys Ala Lys Ser Lys Thr Leu Asp Phe Ile Asp 295 Val Leu Leu Ser Lys Asp Glu Asp Gly Lys Ala Leu Ser Asp 310 305 Glu Asp Ile Arg Ala Glu Ala Asp Thr Phe Met Phe Gly Gly His 320 325 Asp Thr Thr Ala Ser Gly Leu Ser Trp Val Leu Tyr Asn Leu Ala Arg His Pro Glu Tyr Gln Glu Arg Cys Arg Gln Glu Val Gln Glu 350 355 Leu Leu Lys Asp Arg Asp Pro Lys Glu Ile Glu Trp Asp Asp Leu 365 Ala Gln Leu Pro Phe Leu Thr Met Cys Val Lys Glu Ser Leu Arg 380 Leu His Pro Pro Ala Pro Phe Ile Ser Arg Cys Cys Thr Gln Asp Ile Val Leu Pro Asp Gly Arg Val Ile Pro Lys Gly Ile Thr Cys Leu Ile Asp Ile Ile Gly Val His His Asn Pro Thr Val Trp Pro 425 430 Asp Pro Glu Val Tyr Asp Pro Phe Arg Phe Asp Pro Glu Asn Ser 440 445

```
Lys Gly Arg Ser Pro Leu Ala Phe Ile Pro Phe Ser Ala Gly Pro 455 460 465
```

Arg Asn Cys Ile Gly Gln Ala Phe Ala Met Ala Glu Met Lys Val 470 475 480

Val Leu Ala Leu Met Leu Leu His Phe Arg Phe Leu Pro Asp His
485 490 495

Thr Glu Pro Arg Arg Lys Leu Glu Leu Ile Met Arg Ala Glu Gly 500 505 510

Gly Leu Trp Leu Arg Val Glu Pro Leu Asn Val Gly Leu Gln 515 520

<210> 265

<211> 584

<212> DNA

<213> Homo sapiens

<400> 265

caacagaagc caagaaggaa gccgtctatc ttgtggggat catgtataag 50 ctggcetcet gctgtttgct tttcacagga ttcttaaatc ctctcttatc 100 tcttcctctc cttgactcca gggaaatatc ctttcaactc tcagcacctc 150 atgaagacgc gcgcttaact ccggaggagc tagaaagagc ttcccttcta 200 cagatattgc cagagatgct gggtgcagaa agaggggata ttctcaggaa 250 agcagactca agtaccaaca ttttaaccc aagaggaaat ttgagaaagt 300 ttcaggatt ctctggacaa gatcctaaca ttttactgag tcatctttg 350 gccagaatct ggaaaccata caagaaacgt gagactcctg attgcttctg 400 gaaatactgt gtctgaagtg aaataagcat ctgttagtca gctcagaaac 450 acccatctta gaatatgaaa aataacacaa tgcttgattt gaaaacagtg 500 tggagaaaaa ctaggcaaac tacaccctgt tcattgttac ctggaaaata 550 aatcctctat gttttgcaca aaaaaaaaaa aaaa 584

<210> 266

<211> 124

<212> PRT

<213> Homo sapiens

<400> 266

Met Tyr Lys Leu Ala Ser Cys Cys Leu Leu Phe Thr Gly Phe Leu 1 5 10 15

Asn Pro Leu Leu Ser Leu Pro Leu Leu Asp Ser Arg Glu Ile Ser 20 25 30

Phe Gln Leu Ser Ala Pro His Glu Asp Ala Arg Leu Thr Pro Glu 35 40 45

Glu Leu Glu Arg Ala Ser Leu Leu Gln Ile Leu Pro Glu Met Leu 50 55 60

Gly Ala Glu Arg Gly Asp Ile Leu Arg Lys Ala Asp Ser Ser Thr
65 70 75

Asn Ile Phe Asn Pro Arg Gly Asn Leu Arg Lys Phe Gln Asp Phe 80 85 90

Ser Gly Gln Asp Pro Asn Ile Leu Leu Ser His Leu Leu Ala Arg 95 100 105

Ile Trp Lys Pro Tyr Lys Lys Arg Glu Thr Pro Asp Cys Phe Trp 110 115 120

Lys Tyr Cys Val

<210> 267

<211> 654

<212> DNA

<213> Homo sapiens

<400> 267

cacctctggg atgggttgc tggtttaaaa caaacgccag tcatcctata 100
taaggacctg acagccacca ggcaccacct ccgccaggaa ctgcaggccc 150
acctgtctgc aacccagctg aggccatgcc ctccccaggg accgtctgca 200
gcctcctgct cctcggcatg ctctggctgg acttggccat ggcaggctcc 250
agcttcctga gccctgaaca ccagagagtc cagcaggaga aggatcgaa 300
gaagccacca gccaagctgc agccccgagc tctagcaggc tggctccgcc 350
cggaagatgg aggtcaagca gaaggggcag aggatgaact ggaagtccgg 400
ttcaacgccc cctttgatgt tggaatcaag ctgtcagggg ttcagtacca 450
gcagcacagc caggccctgg ggaagtttct tcaggacatc ctctgggaag 500
aggccaaaga ggccccagcc gacaagtgat cgcccacaag ccttactcac 550
ctctctctaa gtttagaagc gctcatctgg cttttcgctt gcttctgcag 600
caactcccac gactgttgta caagctcagg aggcgaataa atgttcaaac 650

<210> 268

tgta 654

<211> 117

<212> PRT

<213> Homo sapiens

<400> 268

Met Pro Ser Pro Gly Thr Val Cys Ser Leu Leu Leu Gly Met 1 5 10 15

Leu Trp Leu Asp Leu Ala Met Ala Gly Ser Ser Phe Leu Ser Pro 20 25 30

Glu His Gln Arg Val Gln Gln Arg Lys Glu Ser Lys Lys Pro Pro 35 40 45 Ala Lys Leu Gln Pro Arg Ala Leu Ala Gly Trp Leu Arg Pro Glu 60

Asp Gly Gly Gln Ala Glu Gly Ala Glu Asp Glu Leu Glu Val Arg 75

Phe Asn Ala Pro Phe 80 Asp Val Gly Ile Lys Leu Ser Gly Val Gln 90

Tyr Gln Gln His Ser Gln Ala Leu Gly Lys Phe Leu Gln Asp Ile 105

Leu Trp Glu Glu Ala Lys Glu Ala Pro Ala Asp Lys 110 115

<210> 269

<211> 1332

<212> DNA

<213> Homo sapiens

<400> 269

eggecacage tggeatgete tgeetgateg ceatectget gtatgteete 50 gtccagtacc tcgtgaaccc cggggtgctc cgcacggacc ccagatgtca 100 agaatatgaa cacgtggctg ctgttcctcc ccctgttccc ggtgcaggtg 150 cagaccetga tagtegtgat categggatg etegtgetee tgetggaett 200 tcttggcttg gtgcacctgg gccagctgct catcttccac atctacctga 250 gtatgtcccc caccctaagc ccccgatccc cccaaggctg ggtggtcaga 300 gctgctcatc ttacacctct acttgagtat gtccctaacc ctgagccccc 350 cacgcctggg gccagagtct ttgtcccccg tgtgcgcatg tgttcagggt 400 cagectetee cagaagtgag atcatggaca aaaagggcaa atcacaggaa 450 gaaattaaat ccatgaggac ccagcaggcc cagcaagaag ctgaactcac 500 gccgagacct gcaggagtgg tgccaggtgc ttgaagtaac aagtttaaaa 550 tgttcagaga caatggaatg gaatctatta qqcaaqaaca qqacattatq 600 aaataaggac aggtggactt ccaaaaacac aagtagaaat tctaacaatg 650 aaatatatta caggcaggte acccactaac caaacaactg aagcgagage 700 tgtggtcttg cttggtctca cagtgggcac agcggtaggc ggtcagtcat 750 gttgctgaac gacggagggt aaactcccca gccccaagaa aacctgtgtt 800 ggaagtaaca acaacctccc tgctcctggc accagccgtt ttggtcatgg 850 tgggccagct gcaaagcgtc ttccattctc tgggcagtgg tggccccgag 900 gctgtggcct ctcagggggt ttctgtggac acgggcagca gagtgtgtcc 950 aggccagccc ccaagaatgc cctgctcctg acagcttggc caacccctgg 1000 tcagggcaga gggagttggg tgggtcaggc tctqqqctca cctccatctc 1050

<210> 270

<211> 142

<212> PRT

<213> Homo sapiens

<400> 270

Met Asn Thr Trp Leu Leu Phe Leu Pro Leu Phe Pro Val Gln Val 1 5 10 15

Gln Thr Leu Ile Val Val Ile Ile Gly Met Leu Val Leu Leu 20 25 30

Asp Phe Leu Gly Leu Val His Leu Gly Gln Leu Leu Ile Phe His $35 \hspace{1cm} 40 \hspace{1cm} 45$

Ile Tyr Leu Ser Met Ser Pro Thr Leu Ser Pro Arg Ser Pro Gln
50 55 60

Gly Trp Val Val Arg Ala Ala His Leu Thr Pro Leu Leu Glu Tyr 65 70 75

Val Pro Asn Pro Glu Pro Pro Thr Pro Gly Ala Arg Val Phe Val 80 85 90

Pro Arg Val Arg Met Cys Ser Gly Ser Ala Ser Pro Arg Ser Glu
95 100 105

Ile Met Asp Lys Lys Gly Lys Ser Gln Glu Glu Ile Lys Ser Met
110 115 120

Arg Thr Gln Gln Ala Gln Gln Glu Ala Glu Leu Thr Pro Arg Pro $125 \\ 130 \\ 135$

Ala Gly Val Val Pro Gly Ala

<210> 271

<211> 1484

<212> DNA

<213> Homo sapiens

<400> 271

ggagtgcaga tggcatcett eggttettee agacaagetg caagacgetg 50 accatggcea agatggaget etegaaggee ttetetggee ageggacact 100 cetatetgee atceteagea tgetateaet eagettetee acaacateee 150 tgeteageaa etactggttt gtgggcacae agaaggtgee caageeeetg 200 tgegagaaag gtetggeage caagtgettt gacatgeeag tgteeetgga 250

tggagatacc aacacatcca cccaggaggt ggtacaatac aactgggaga 300 ctqqqqatqa ccqqttctcc ttccqqaqct tccqqaqtqq catqtqqcta 350 tcctgtgagg aaactgtgga agaaccaggg gagaggtgcc gaagtttcat 400 tgaacttaca ccaccagcca agagaggtga gaaaggacta ctggaatttg 450 ccacgttgca aggcccatgt caccccactc tccgatttgg agggaagcgg 500 ttgatggaga aggetteect ecceteceet eccttgggge tttgtggcaa 550 aaatcctatg gttatccctg ggaacgcaga tcacctacat cggacttcaa 600 ttcatcagct tcctcctgct actaacagac ttgctactca ctqqqaaccc 650 tgcctgtggg ctcaaactga gcqcctttqc tqctqtttcc tctqtcctqt 700 caggtetect ggggatggtg geceacatga tgtatteaca agtettecaa 750 gcgactgtca acttgggtcc agaagactgg agaccacatg tttggaatta 800 tggctgggcc ttctacatgg cctggctctc cttcacctqc tqcatqqcqt 850 cggctgtcac caccttcaac acgtacacca ggatggtgct ggaqttcaaq 900 tgcaagcata gtaagagett caaggaaaac cegaactgec taccacatca 950 ccatcagtgt ttccctcggc ggctgtcaag tgcagcccc accgtgggtc 1000 ctttgaccag ctaccaccag tatcataatc agcccatcca ctctgtctct 1050 gagggagtcg acttctactc cgagctgcgg aacaagggat ttcaaaqagq 1100 ggccagccag gagctgaaag aagcagttag gtcatctgta gaggaagagc 1150 agtgttagga gttaagcggg tttggggagt aggcttgagc cctaccttac 1200 acgtctgctg attatcaaca tgtgcttaag ccaacatccg tctcttgagc 1250 atggttttta gaggctacga ataaggctat gaataagggt tatctttaag 1300 tectaaggga tteetgggtg ceaetgetet etttteetet acageteeat 1350 cttgtttcac ccaccccaca tctcacacat ccagaattcc cttctttact 1400 gatagtttct gtgccaggtt ctgggctaaa ccatggagat aaaaagaaga 1450 gtaaaataca cttcccgacc ttaaggatct gaaa 1484

<210> 272

<211> 285

<212> PRT

<213> Homo sapiens

<400> 272

Met Ala Lys Met Glu Leu Ser Lys Ala Phe Ser Gly Gln Arg Thr 1 5 10

Leu Leu Ser Ala Ile Leu Ser Met Leu Ser Leu Ser Phe Ser Thr 20 25 30

Thr Ser Leu Leu Ser Asn Tyr Trp Phe Val Gly Thr Gln Lys Val

443

2 = 2

35 40 45

Pro Lys Pro Leu Cys Glu Lys Gly Leu Ala Ala Lys Cys Phe Asp Met Pro Val Ser Leu Asp Gly Asp Thr Asn Thr Ser Thr Gln Glu Val Val Gln Tyr Asn Trp Glu Thr Gly Asp Asp Arg Phe Ser Phe Arg Ser Phe Arg Ser Gly Met Trp Leu Ser Cys Glu Glu Thr Val 100 Glu Glu Pro Gly Glu Arg Cys Arg Ser Phe Ile Glu Leu Thr Pro 110 115 120 Pro Ala Lys Arg Gly Glu Lys Gly Leu Leu Glu Phe Ala Thr Leu Gln Gly Pro Cys His Pro Thr Leu Arg Phe Gly Gly Lys Arg Leu 140 145 150 Met Glu Lys Ala Ser Leu Pro Ser Pro Pro Leu Gly Leu Cys Gly Lys Asn Pro Met Val Ile Pro Gly Asn Ala Asp His Leu His Arg Thr Ser Ile His Gln Leu Pro Pro Ala Thr Asn Arg Leu Ala Thr 190 185 His Trp Glu Pro Cys Leu Trp Ala Gln Thr Glu Arg Leu Cys Cys Cys Phe Leu Cys Pro Val Arg Ser Pro Gly Asp Gly Gly Pro His 215 220 225 Asp Val Phe Thr Ser Leu Pro Ser Asp Cys Gln Leu Gly Ser Arg 235 Arg Leu Glu Thr Thr Cys Leu Glu Leu Trp Leu Gly Leu Leu His 250 Gly Leu Ala Leu Leu His Leu Leu His Gly Val Gly Cys His His Leu Gln His Val His Gln Asp Gly Ala Gly Val Gln Val Gln Ala

<210> 273

<211> 1158

<212> DNA

<213> Homo sapiens

<400> 273

aactggaagg aaagaaagaa aggtcagctt tggcccagat gtggttaccc 50 cttggtctcc tgtctttatg tcttctcct cttcctattc tgtcatctcc 100 ctcacttaag tctcaggcct gtcagcagct cctgtggaca ttgccatccc 150 ctctggtage cttcagagca aacaggacaa cctatgttat ggatgtttcc 200

accaaccagg gtagtggcat ggagcaccgt aaccatctgt gcttctgtga 250 tototatgac agagocactt ctocacotot gaaatgttoo otgototgaa 300 atctggcatg agatggcaca ggtgaccacg cagaagccac cagaatcttg 350 cctgccctat tcctcctccc aagtetqttc tcttattqtc aacctcaqca 400 caacaggctg gcgccaatgg cattacagag aaagcaatct gtgtggctag 450 tgggcagatt accatgcaag ccccaggaga aatggaggag ctttgtagcc 500 acctccctgt cagccagtat taacatgtcc ccttccccct gccccgccgt 550 agattcagga cattcgcccc tgtgtgccac caaaccagga ctttcccctt 600 ggcttggcat ccctggctct ctcctggtac ccagcaagac gtctgttcca 650 gggcagtgta gcatctttca agctccgtta ctatggcgat ggccatgatg 700 ttacaatccc acttgcctga ataatcaagt gggaagggga agcagaggga 750 aatggggcca tgtgaatgca gctgctctgt tctccctacc ctgaggaaaa 800 accaaaggga agcaacagga acttctgcaa ctggttttta tcggaaagat 850 catcctgcct gcagatgctg ttgaaggggc acaagaaatg tagctggaga 900 agattgatga aagtgcaggt gtgtaaggaa atagaacagt ctgctgggag 950 tcagacctgg aattctgatt ccaaactctt tattactttg ggaagtcact 1000 cagectecce gtagecatet ecagggtgae ggaacceagt gtattacetg 1050. ctggaaccaa ggaaactaac aatgtaggtt actagtgaat accccaatgg 1100 tttctccaat tatgcccatg ccaccaaaac aataaaacaa aattctctaa 1150 cactgaaa 1158

<210> 274 <211> 86 <212> PRT <213> Homo sapiens

<400> 274

Met Trp Leu Pro Leu Gly Leu Leu Ser Leu Cys Leu Ser Pro Leu 1 15

Pro Ile Leu Ser Ser Pro Ser Leu Lys Ser Gln Ala Cys Gln Gln $20 \\ 25 \\ 30$

Leu Leu Trp Thr Leu Pro Ser Pro Leu Val Ala Phe Arg Ala Asn $35 \hspace{1cm} 40 \hspace{1cm} 45$

Arg Thr Thr Tyr Val Met Asp Val Ser Thr Asn Gln Gly Ser Gly 50 55 60

Met Glu His Arg Asn His Leu Cys Phe Cys Asp Leu Tyr Asp Arg
65 70 75

Ala Thr Ser Pro Pro Leu Lys Cys Ser Leu Leu 80 85

```
<210> 275
<211> 2694
<212> DNA
<213> Homo sapiens
```

<400> 275 gtagegegte ttgggtetee eggetgeege tgetgeegee geegeetegg 50 gtcgtggagc caggagcgac qtcaccgcca tggcaggcat caaagctttg 100 attagtttgt cctttggagg agcaatcgga ctgatgtttt tgatgctfgg 150 atgtgccctt ccaatataca acaaatactg gccctcttt gttctatttt 200 tttacatcct ttcacctatt ccatactgca tagcaagaag attagtggat 250 gatacagatg ctatgagtaa cgcttgtaag gaacttgcca tctttcttac 300 aacgggcatt gtcgtgtcag cttttggact ccctattgta tttgccagag 350 cacatctgat tgagtgggga gcttgtgcac ttgttctcac aggaaacaca 400 gtcatctttg caactatact aggctttttc ttggtctttg gaagcaatga 450 cgacttcagc tggcagcagt ggtgaaaaga aattactgaa ctattgtcaa 500 atggacttcc tgtcatttgt tggccattca cgcacacagg agatggggca 550 gttaatgctg aatggtatag caagcctctt gggggtattt taggtgctcc 600 cttctcactt ttattgtaag catactattt tcacagagac ttgctgaagg 650 attaaaagga ttttctcttt tgqaaaagct tqactqattt cacacttatc 700 tatagtatgc tttttgtggt gtcctgctga atttaaatat ttatgtgttt 750 ttcctgttag gttgattttt tttggaatca atatgcaatg ttaaacactt 800 ttttaatgta atcatttgca ttggttagga attcagaatt ccgccggctc 850 tattactggt caagtacatc ttttctctta aaattattta gcctccatta 900 ttacaaaaaa ttataaaaat aagttttcag tcagtcagga tgacatcact 950 cccaatgtta tgcagacata cagacggttg gcatacgtta tagactgtat 1000 actcagtgca aatatagctg catttatacc tcagaggggc caagtgttaa 1050 tgcccatgcc ctccgttaag ggttgttggt tttactggta gacagatgtt 1100 ttgtggattg aaaattattt tatggaattg ctacagagga gtgcttttct 1150 tctcaattgt tagaagaatt tatgttaaac tttaaggtaa gggtgtaaaa 1200 tgcaatgtgg gaagaaatga cattgaaatt ccagtttttg aatcctgttt 1300 ctatttataa gtgaaatttg tgatctccta tcaacctttc atgttttacc 1350 ctgttaaaat ggacatacat ggaaccacta ctgatgaggg acagttgtat 1400 gtttgcatca tatatgccag aaaaccttcc tctqcttcct ccttttqact 1450

```
tatttggtat gttgtatata ttacataaaa taacttttca aatatagttt 1500
 aataacactt agaagtgttt acttacctgg aaaataattg ctatgccgta 1550
 cattcagagt gccccctccc ctgcaaggcc ttgccatgat taacaagtaa 1600
 cttgttagtc ttacagataa ttcatgcatt aacagtttaa gatttagacc 1650
atggtaatag tagttcttat tctctaaggt tatatcatat gtaatttaaa 1700
agtattttta agacaagttt cctgtatacc tctgaactgt tttgattttg 1750
agttcatcat gatagatctg ctgtttcctt ataaaaggca tttgttgtgt 1800
gagttaatgc aaagtagcca agtccagcta tatagcagct tcagaaacat 1850
acctgaccaa aaaattccca gtaaccaggc atgatcaatt tatagtggtc 1900
gtttacatct aataattatc aggacttttt tcaggagtgg gttataaaaa 1950
cattcaagtt ggtctgacag tattttgtta aggatatttg tttgtatgtt 2000
tattcagtat acttacataa aaattatttc gccatcagcc aaaactcagt 2050
aatcatgaca gctgtctgtt gttttatgaa gtttatttct caagaaaatg 2100
ggaataaatt tgggatttgt tcagcttttt tactaaagat gcctaaagcc 2150
acaggtttta ttgcctaact taagccatga cttttagata tgagatgacg 2200
ggaagcagga cgaaatatcg gcgtgtggct ggagccttcc cactggaggc 2250
tgaaagtggc ttgtggtatt ataatgttca gatttcaaga ggaaggtgca 2300
ggtacacatg agttagagag ctggtgagac agttgggaac tctttgtgct 2350
tgtgatctac tggacttttt ttttgcagga agtgcattct ctggtccttc 2400
cctattttct gttctggatg tcagtgcagt gcactgctac tgttttatcc 2450
acttggccac agacttttc taacagctgc gtattatttc tatatactaa 2500
ttgcattggc agcattgtgt ctttgacctt gtatactagc ttgacatagt 2550
gctgtctctg atttctaggc tagttacttg agatatgaat tttccataga 2600
atatgcactg atacaacatt accattcttc tatggaaaga aaacttttga 2650
```

```
<210> 276
```

Asn Lys Tyr Trp Pro Leu Phe Val Leu Phe Phe Tyr Ile Leu Ser

<211> 131

<212> PRT

<213> Homo sapiens

<400> 276

Met Ala Gly Ile Lys Ala Leu Ile Ser Leu Ser Phe Gly Gly Ala 1 $$ 5 10 15

Ile Gly Leu Met Phe Leu Met Leu Gly Cys Ala Leu Pro Ile Tyr
20 25 30

la i

35 40 45

Pro Ile Pro Tyr Cys Ile Ala Arg Arg Leu Val Asp Asp Thr Asp 50 55 60

Ala Met Ser Asn Ala Cys Lys Glu Leu Ala Ile Phe Leu Thr Thr
65 70 75

Ala His Leu Ile Glu Trp Gly Ala Cys Ala Leu Val Leu Thr Gly 95 100 105

Asn Thr Val Ile Phe Ala Thr Ile Leu Gly Phe Phe Leu Val Phe 110 $$ 115 $$ 120

Gly Ser Asn Asp Asp Phe Ser Trp Gln Gln Trp
125 130

<210> 277

<211> 4104

<212> DNA

<213> Homo sapiens

<400> 277

cccacgcgtc cgcccacgcg tccgcccacg cgtccgccca cgcgtccgcc 50 cacqcqtccq cccacqcqtc cqcccacqcq tccqqtqcaa qctcqcqccq 100 cacactgcct ggtggaggga aggagcccgg gcgcctctcg ccgctccccg 150 egeogeogte egeacetece cacegeoge egeogeoge eegeogeog 200 caaagcatga gtgagcccgc tctctgcagc tgcccggggc gcgaatggca 250 ggctgtttcc gcggagtaaa aggtggcgcc ggtcagtggt cgtttccaat 300 gacggacatt aaccagactg teagateetg gggagtegeg ageceegagt 350 ttggagtttt ttccccccac aacgtcacag tccgaactgc agagggaaag 400 gaaggeggea ggaaggegaa getegggete eggeaegtag ttgggaaaet 450 tgcgggtcct agaagtcgcc tccccgcctt gccggccgcc cttgcagccc 500 egageegage ageaaagtga gacattgtge geetgeeaga teegeeggee 550 gcggaccggg gctgcctcgg aaacacagag gggtcttctc tcgccctgca 600 tataattagc ctgcacacaa agggagcagc tgaatggagg ttgtcactct 650 ctggaaaagg atttctgacc gagcgcttcc aatggacatt ctccagtctc 700 tctggaaaga ttctcgctaa tggatttcct gctgctcggt ctctgtctat 750 actggctgct gaggaggccc tcgggggtgg tcttgtgtct gctgggggcc 800 tgctttcaga tgctgcccgc cgcccccagc gggtgcccgc agctgtgccg 850 gtgcgagggg cggctgctgt actgcgaggc qctcaacctc accgaggcgc 900 cccacaacct gtccggcctg ctgggcttgt ccctgcgcta caacaqcctc 950

tcggagctgc gcgccggcca gttcacgggg ttaatgcagc tcacgtggct 1000 ctatctqqat cacaatcaca tctqctccqt qcaqqqqqac qcctttcaqa 1050 aactgcgccg agttaaggaa ctcacgctga gttccaacca gatcacccaa 1100 ctgcccaaca ccaccttccg gcccatgccc aacctgcgca gcgtggacct 1150 ctcgtacaac aagctgcagg cgctcgcgcc cgacctcttc cacgggctgc 1200 ggaageteae caegetgeat atgegggeea aegecateea gtttgtgeec 1250 gtgcgcatct tccaggactg ccgcagcctc aagtttctcg acatcggata 1300 caatcagctc aagagtctgg cgcgcaactc tttcgccggc ttgtttaagc 1350 tcaccgagct gcacctcgag cacaacgact tggtcaaggt qaacttcgcc 1400 cactteeege geeteatete eetgeacteg etetgeetge ggaggaacaa 1450 ggtggccatt gtggtcagct cgctggactg ggtttggaac ctggagaaaa 1500 tggacttgtc gggcaacgag atcgagtaca tggagcccca tgtgttcgag 1550 acceptgccgc acctgcagtc cctgcagctg gactccaacc gcctcaccta 1600 catcgagccc cggatcctca actcttggaa gtccctgaca agcatcaccc 1650 tggccgggaa cctgtgggat tgcgggcgca acgtgtgtgc cctagcctcg 1700 tggctcagca acttccaggg gcgctacgat ggcaacttgc agtgcgccag 1750 cccggagtac gcacagggcg aggacgtcct ggacgccqtg tacgccttcc 1800 acctgtgcga ggatggggcc gagcccacca gcggccacct gctctcggcc 1850 gtcaccaacc gcagtgatct ggggccccct gccagctcgg ccaccacgct 1900 cgcggacggc ggggagggc agcacgacgg cacattcgag cctgccaccg 1950 tggctcttcc aggcggcgag cacgccgaga acgccgtgca gatccacaag 2000 gtggtcacgg gcaccatggc cctcatcttc tccttcctca tcqtqqtcct 2050 ggtgctctac gtgtcctgga agtgtttccc agccagcctc aggcagctca 2100 gacagtgett tgtcacgcag cgcaggaagc aaaagcagaa acagaccatg 2150 catcagatgg ctgccatgtc tgcccaggaa tactacgttg attacaaacc 2200 gaaccacatt gagggagccc tggtgatcat caacgagtat ggctcgtgta 2250 cctgccacca gcagcccgcg agggaatgcg aggtgtgatt gtcccagtgg 2300 ctctcaaccc atgcgctacc aaatacgcct gggcagccgg gacgggccgg 2350 cgggcaccag gctggggtct ccttgtctgt gctctgatat gctccttgac 2400 tgaaacttta aggggatctc tcccagagac ttgacatttt agctttattg 2450 aaccttcagg acagtctatc ttaaatttca tatgagaact ccttcctccc 2550

tttgaagatc tgtccatatt caggaatctg agagtgtaaa aaaggtggcc 2600 ataagacaga gagagaataa tegtgetttg ttttatgeta eteeteecae 2650 cctqcccatg attaaacatc atgtatgtag aagatcttaa qtccatacgc 2700 atttcatgaa gaaccattgg aaagaggaat ctgcaatctg ggagcttaag 2750 agcaaatgat gaccataqaa agctatgttc ttactttgtg tgtgtgtctg 2800 tatgtttctg cgttgtgtgt ctttgtaggc aagcaaacgt tgtctacaca 2850 aacgggaatt tagctcacat catttcatgc ccctgtgcct ctagctctgg 2900 agattggtgg ggggaggtgg ggggaaacqg caggaataaq ggaaagtggt 2950 agttttaact aaggttttgt aacacttgaa atcttttctt tctcaaatta 3000 attatettta agetteaaga aaettgetet gaceeeteta ageaaaetae 3050 taagcattta aaagagaatc taatttttaa aggtgtagca ccttttttt 3100 tattcttccc acagagggtg ctaatctcat tatgctgtgc tatctgaaaa 3150 gaacttaagg ccacaattca cgtctcgtcc tgggcattgt gatggattga 3200 ccctccattt gcagtacctt cccagctgat taaagttcag cagtggtatt 3250 gaggtttttc gaatatttat atagaaaaaa agtcttttca catgacaaat 3300 gacactetea caccagtett agecetagta gttttttagg ttggaccaga 3350 ggaagcaggt taaatgagac ctgtcctctg ctgcactcag aaaaaatagg 3400 cagtecetga tgeteagate ttageettga tattaatagt tgagaceace 3450 tacccacaat gcagcctata ctcccaagac tacaaagtta ccatcgcaaa 3500 ggaaaggtta ttccagtaaa aggaaatagt tttctcaacc atttaaaaat 3550 attettetga acteateaaa gtagaagage eeccaacett ttetetetge 3600 cttcaagaag gcagacattt ggtatgattt agcatcaaca acacatttat 3650 gagtatatgt aagtaatcag aggggcaaat gccacttgtt attcctccca 3700 agttttccaa gcaagtacac acagatetet ggtaggatta ggggccaett 3750 gtgtttccgg cttattttag tcgacttgtc agcaagtttg atgcctagtc 3800 tatetgacat ggcccagtag aacagggcat tgatggatca catgagatgg 3850 tagaaggaac atcatcacat acccctctca cagagaaaat tatcaaagaa 3900 ccagaaatta tatctgtttt ggagcaagag tgtcataatg tttcagggta 3950 gtcaaaataa acataaatta tctcctctag atgagtggcg atgttggctg 4000 atttgggtct gccattgaca gaatgtcaaa taaaaaggaa ttagctagaa 4050 tatgaccatt aaatgtgctt ctgaaatata ttttgagata ggtttagaat 4100 gtca 4104

<210> 278 <211> 522 <212> PRT

<213> Homo sapiens

<400> 278 Met Asp Phe Leu Leu Gly Leu Cys Leu Tyr Trp Leu Leu Arg Arg Pro Ser Gly Val Val Leu Cys Leu Leu Gly Ala Cys Phe Gln Met Leu Pro Ala Ala Pro Ser Gly Cys Pro Gln Leu Cys Arg Cys Glu Gly Arg Leu Leu Tyr Cys Glu Ala Leu Asn Leu Thr Glu Ala Pro His Asn Leu Ser Gly Leu Leu Gly Leu Ser Leu Arg Tyr Asn Ser Leu Ser Glu Leu Arg Ala Gly Gln Phe Thr Gly Leu Met Gln Leu Thr Trp Leu Tyr Leu Asp His Asn His Ile Cys Ser Val Gln Gly Asp Ala Phe Gln Lys Leu Arg Arg Val Lys Glu Leu Thr Leu 115 Ser Ser Asn Gln Ile Thr Gln Leu Pro Asn Thr Thr Phe Arg Pro 130 Met Pro Asn Leu Arg Ser Val Asp Leu Ser Tyr Asn Lys Leu Gln 140 145 Ala Leu Ala Pro Asp Leu Phe His Gly Leu Arg Lys Leu Thr Thr 155 160 165 Leu His Met Arg Ala Asn Ala Ile Gln Phe Val Pro Val Arg Ile 170 175 Phe Gln Asp Cys Arg Ser Leu Lys Phe Leu Asp Ile Gly Tyr Asn 185 190 Gln Leu Lys Ser Leu Ala Arg Asn Ser Phe Ala Gly Leu Phe Lys Leu Thr Glu Leu His Leu Glu His Asn Asp Leu Val Lys Val Asn 220 215 Phe Ala His Phe Pro Arg Leu Ile Ser Leu His Ser Leu Cys Leu 230 235 Arg Arg Asn Lys Val Ala Ile Val Val Ser Ser Leu Asp Trp Val Trp Asn Leu Glu Lys Met Asp Leu Ser Gly Asn Glu Ile Glu Tyr

260

Met Glu Pro His Val Phe Glu Thr Val Pro His Leu Gln Ser Leu

265

<213> Homo sapiens

```
Gln Leu Asp Ser Asn Arg Leu Thr Tyr Ile Glu Pro Arg Ile Leu
 Asn Ser Trp Lys Ser Leu Thr Ser Ile Thr Leu Ala Gly Asn Leu
                 305
                                     310
 Trp Asp Cys Gly Arg Asn Val Cys Ala Leu Ala Ser Trp Leu Ser
 Asn Phe Gln Gly Arg Tyr Asp Gly Asn Leu Gln Cys Ala Ser Pro
 Glu Tyr Ala Gln Gly Glu Asp Val Leu Asp Ala Val Tyr Ala Phe
                 350
                                     355
 His Leu Cys Glu Asp Gly Ala Glu Pro Thr Ser Gly His Leu Leu
 Ser Ala Val Thr Asn Arg Ser Asp Leu Gly Pro Pro Ala Ser Ser
                 380
                                     385
 Ala Thr Thr Leu Ala Asp Gly Gly Glu Gly Gln His Asp Gly Thr
                 395
 Phe Glu Pro Ala Thr Val Ala Leu Pro Gly Gly Glu His Ala Glu
 Asn Ala Val Gln Ile His Lys Val Val Thr Gly Thr Met Ala Leu
                 425
                                     430
 Ile Phe Ser Phe Leu Ile Val Val Leu Val Leu Tyr Val Ser Trp
 Lys Cys Phe Pro Ala Ser Leu Arg Gln Leu Arg Gln Cys Phe Val
                 455
 Thr Gln Arg Arg Lys Gln Lys Gln Thr Met His Gln Met
                 470
                                     475
 Ala Ala Met Ser Ala Gln Glu Tyr Tyr Val Asp Tyr Lys Pro Asn
 His Ile Glu Gly Ala Leu Val Ile Ile Asn Glu Tyr Gly Ser Cys
                 500
                                     505
 Thr Cys His Gln Gln Pro Ala Arg Glu Cys Glu Val
<210> 279
<211> 46
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 279
tccgtgcagg gggacgcctt tcagaaactg cgccgagtta aggaac 46
<210> 280
<211> 709
<212> DNA
```

<400> 280 gtgcaaggag ccgaggcgag atgggcgtcc tgggccgggt cctgctgtgg 50 ctgcagetet gegeactgae ceaggeggte tecaaactet gggteeceaa 100 cacggacttc gacgtcgcag ccaactggag ccagaaccgg accccgtgcg 150 ccggcggcgc cgttgagttc ccggcggaca agatggtgtc agtcctggtg 200 caagaaggtc acgccgtctc agacatgctc ctgccgctgg atggggaact 250 cgtcctggct tcaggagccg gattcggcgt ctcagacgtg ggctcgcacc 300 tggactgtgg cgcgggcgaa cctgccgtct tccgcgactc tgaccgcttc 350 tcctggcatg acccgcacct gtggcgctct ggggacgagg cacctggcct 400 cttcttcgtg gacgccgagc gcgtgccctg ccgccacgac gacgtcttct 450 tteegeetag tgeeteette egegtgggge teggeeetgg egetageece 500 gtgcgtgtcc gcagcatctc ggctctgggc cggacgttca cgcgcgacga 550 ggacctggct gttttcctgg cgtcccgcgc gggccgccta cgcttccacg 600 ggccgggcgc gctgagcgtg ggccccgagg actgcgcgga cccgtcgggc 650 tgcgtctgcg gcaacgcgga ggcgcagccg tggatctgcg cggccctgct 700 ccagcccct 709

<210> 281

<211> 229

<212> PRT

<213> Homo sapiens

<400> 281

Met Gly Val Leu Gly Arg Val Leu Leu Trp Leu Gln Leu Cys Ala 1 5 10 10

Leu Thr Gln Ala Val Ser Lys Leu Trp Val Pro Asn Thr Asp Phe 20 25 30

Asp Val Ala Ala Asn Trp Ser Gln Asn Arg Thr Pro Cys Ala Gly 35 40 45

Gly Ala Val Glu Phe Pro Ala Asp Lys Met Val Ser Val Leu Val 50 55 60

Gln Glu Gly His Ala Val Ser Asp Met Leu Leu Pro Leu Asp Gly 65 70 75

Glu Leu Val Leu Ala Ser Gly Ala Gly Phe Gly Val Ser Asp Val 80 85 90

Gly Ser His Leu Asp Cys Gly Ala Gly Glu Pro Ala Val Phe Arg 95 100 105

Asp Ser Asp Arg Phe Ser Trp His Asp Pro His Leu Trp Arg Ser 110 115 120

Gly Asp Glu Ala Pro Gly Leu Phe Phe Val Asp Ala Glu Arg Val 125 130 135

```
Pro Cys Arg His Asp Asp Val Phe Phe Pro Pro Ser Ala Ser Phe
                140
Arg Val Gly Leu Gly Pro Gly Ala Ser Pro Val Arg Val Arg Ser
                155
                                     160
                                                         165
Ile Ser Ala Leu Gly Arg Thr Phe Thr Arg Asp Glu Asp Leu Ala
Val Phe Leu Ala Ser Arg Ala Gly Arg Leu Arg Phe His Gly Pro
Gly Ala Leu Ser Val Gly Pro Glu Asp Cys Ala Asp Pro Ser Gly
                200
                                     205
                                                         210
Cys Val Cys Gly Asn Ala Glu Ala Gln Pro Trp Ile Cys Ala Ala
                                     220
```

Leu Leu Gln Pro

<210> 282 <211> 644 <212> DNA

<213> Homo sapiens

<400> 282 ategcateaa ttgggagtae catetteete atgggaeeag tgaaacaget 50 gaagcgaatg tttgagccta ctcgtttgat tgcaactatc atggtgctgt 100 tgtgttttgc acttaccctg tgttctgcct tttggtggca taacaaggga 150 cttgcactta tcttctgcat tttgcagtct ttggcattga cgtggtacag 200 cctttccttc ataccatttg caagggatgc tgtgaagaag tgttttgccg 250 tgtgtcttgc ataattcatg gccagtttta tgaagctttg gaaggcacta 300 tggacagaag ctggtggaca gttttgtaac tatcttcgaa acctctgtct 350 tacagacatg tgccttttat cttgcagcaa tgtgttgctt gtgattcgaa 400 catttgaggg ttacttttgg aagcaacaat acattctcqa acctgaatgt 450 cagtagcaca ggatgagaag tgggttctgt atcttgtgga gtggaatctt 500 cctcatgtac ctgtttcctc tctggatgtt gtcccactga attcccatga 550

<210> 283 <211> 77 <212> PRT <213> Homo sapiens

<400> 283 Met Gly Pro Val Lys Gln Leu Lys Arg Met Phe Glu Pro Thr Arg 10 15

Leu Ile Ala Thr Ile Met Val Leu Leu Cys Phe Ala Leu Thr Leu

44 mm

Mary Street

Ann A

4.1

1,13

H H

Cys Ser Ala Phe Trp Trp His Asn Lys Gly Leu Ala Leu Ile Phe 35 40 45

Cys Ile Leu Gln Ser Leu Ala Leu Thr Trp Tyr Ser Leu Ser Phe 50 55 60

Ile Pro Phe Ala Arg Asp Ala Val Lys Lys Cys Phe Ala Val Cys 65 70 75

Leu Ala

<210> 284

<211> 2623

<212> DNA

<213> Homo sapiens

<400> 284

ttgagegeag gtgageteet gegegtteeg ggggegttee teeagteace 50 ctcccgccgt tacccgcggc gcgcccgagg gagtctcctc cagaccctcc 100 ctcccgttgc tccaaactaa tacggactga acggatcgct gcgagggtgg 150 gagagaaaat tagggggaga aaggacagag agagcaacta ccatccatag 200 ccagatagat tatcttacac tgaactgatc aagtactttg aaaatgactt 250 cgaaatttat cttggtgtcc ttcatacttg ctgcactgag tctttcaacc 300 accttttctc tccaactaga ccagcaaaag gttctactag tttcttttga 350 tggattccgt tgggattact tatataaagt tccaacgccc cattttcatt 400 atattatgaa atatggtgtt cacgtgaagc aagttactaa tgtttttatt 450 acaaaaacct accctaacca ttatactttg gtaactggcc tctttgcaga 500 gaatcatggg attgttgcaa atgatatgtt tgatcctatt cggaacaaat 550 ctttctcctt ggatcacatg aatatttatg attccaagtt ttgggaagaa 600 gcgacaccaa tatggatcac aaaccagagg gcaggacata ctagtggtgc 650 agccatgtgg cccggaacag atgtaaaaat acataagcgc tttcctactc 700 attacatgcc ttacaatgag tcagtttcat ttgaagatag agttgccaaa 750 attgttgaat ggtttacgtc aaaagagccc ataaatcttg gtcttctcta 800 ttgggaagac cctgatgaca tgggccacca tttgggacct gacagtccgc 850 tcatggggcc tgtcatttca gatattgaca agaagttagg atatctcata 900 caaatgctga aaaaggcaaa gttgtggaac actctgaacc taatcatcac 950 aagtgatcat ggaatgacgc agtgctctga ggaaaggtta atagaacttg 1000 accagtacct ggataaagac cactataccc tgattgatca atctccagta 1050 gcagccatct tgccaaaaga aggtaaattt gatgaagtct atgaagcact 1100

aactcacgct catcctaatc ttactgttta caaaaaagaa gacgttccag 1150 aaaggtggca ttacaaatac aacagtcgaa ttcaaccaat catagcagtg 1200 gctgatgaag ggtggcacat tttacagaat aagtcagatg actttctgtt 1250 aggcaaccac ggttacgata atgcgttagc agatatgcat ccaatatttt 1300 tagcccatgg tcctgccttc agaaagaatt tctcaaaaga agccatgaac 1350 tocacagatt tgtacccact actatgccac ctcctcaata tcactgccat 1400 gccacacaat ggatcattct ggaatgtcca ggatctgctc aattcagcaa 1450 tgccaagggt ggtcccttat acacagagta ctatactcct ccctggtagt 1500 gttaaaccag cagaatatga ccaagagggg tcataccctt atttcatagg 1550 ggtctctctt ggcagcatta tagtgattgt attttttgta attttcatta 1600 agcatttaat tcacagtcaa atacctgcct tacaagatat gcatgctgaa 1650 atageteaae cattattaea ageetaatgt taetttgaag tggatttgea 1700 tattgaagtg gagattccat aattatgtca gtgtttaaag gtttcaaatt 1750 ctgggaaacc agttccaaac atctgcagaa accattaagc agttacatat 1800 ttaggtatac acacacaca acacacaca atacacaca acggaccaaa 1850 atacttacac ctgcaaagga ataaagatgt gagagtatgt ctccattgtt 1900 cactgtagca tagggataga taagateetg etttatttgg aettggegea 1950 gataatgtat atatttagca actttgcact atgtaaagta ccttatatat 2000 tgcactttaa atttctctcc tgatgggtac tttaatttga aatgcacttt 2050 atggacagtt atgtcttata acttgattga aaatgacaac tttttgcacc 2100 catgtcacag aatacttgtt acgcattgtt caaactgaag gaaatttcta 2150 ataatcccga ataatgaaca tagaaatcta tctccataaa ttgagagaag 2200 aagaaggtga taagtgttga aaattaaatg tgataacctt tgaaccttga 2250 attttggaga tqtattccca acaqcagaat qcaactqtqq qcatttcttq 2300 tcttatttct ttccagagaa cgtggttttc atttattttt ccctcaaaag 2350 agagtcaaat actgacagat tcgttctaaa tatattgttt ctgtcataaa 2400 attattgtga tttcctgatg agtcatatta ctgtgatttt cataataatg 2450 aagacaccat gaatatactt ttcttctata tagttcagca atggcctgaa 2500 tagaagcaac caggcaccat ctcagcaatg ttttctcttg tttgtaatta 2550 tttgctcctt tgaaaattaa atcactatta attacattaa aaatcaaatt 2600 ggataaaaaa aaaaaaaaaa aaa 2623

<210> 285

<211> 477 <212> PRT <213> Homo sapiens

<400> 285 Met Thr Ser Lys Phe Ile Leu Val Ser Phe Ile Leu Ala Ala Leu Ser Leu Ser Thr Thr Phe Ser Leu Gln Leu Asp Gln Gln Lys Val Leu Leu Val Ser Phe Asp Gly Phe Arg Trp Asp Tyr Leu Tyr Lys Val Pro Thr Pro His Phe His Tyr Ile Met Lys Tyr Gly Val His 50 Val Lys Gln Val Thr Asn Val Phe Ile Thr Lys Thr Tyr Pro Asn His Tyr Thr Leu Val Thr Gly Leu Phe Ala Glu Asn His Gly Ile Val Ala Asn Asp Met Phe Asp Pro Ile Arg Asn Lys Ser Phe Ser Leu Asp His Met Asn Ile Tyr Asp Ser Lys Phe Trp Glu Glu Ala Thr Pro Ile Trp Ile Thr Asn Gln Arg Ala Gly His Thr Ser Gly 125 130 135 Ala Ala Met Trp Pro Gly Thr Asp Val Lys Ile His Lys Arg Phe Pro Thr His Tyr Met Pro Tyr Asn Glu Ser Val Ser Phe Glu Asp 155 160 Arg Val Ala Lys Ile Val Glu Trp Phe Thr Ser Lys Glu Pro Ile Asn Leu Gly Leu Leu Tyr Trp Glu Asp Pro Asp Asp Met Gly His His Leu Gly Pro Asp Ser Pro Leu Met Gly Pro Val Ile Ser Asp Ile Asp Lys Lys Leu Gly Tyr Leu Ile Gln Met Leu Lys Lys Ala 220 Lys Leu Trp Asn Thr Leu Asn Leu Ile Ile Thr Ser Asp His Gly 230 235 240 Met Thr Gln Cys Ser Glu Glu Arg Leu Ile Glu Leu Asp Gln Tyr Leu Asp Lys Asp His Tyr Thr Leu Ile Asp Gln Ser Pro Val Ala 260 Ala Ile Leu Pro Lys Glu Gly Lys Phe Asp Glu Val Tyr Glu Ala Leu Thr His Ala His Pro Asn Leu Thr Val Tyr Lys Lys Glu Asp

290 295 300 Val Pro Glu Arg Trp His Tyr Lys Tyr Asn Ser Arg Ile Gln Pro 305 310 Ile Ile Ala Val Ala Asp Glu Gly Trp His Ile Leu Gln Asn Lys 325 330 Ser Asp Asp Phe Leu Leu Gly Asn His Gly Tyr Asp Asn Ala Leu 335 340 Ala Asp Met His Pro Ile Phe Leu Ala His Gly Pro Ala Phe Arg 350 355 Lys Asn Phe Ser Lys Glu Ala Met Asn Ser Thr Asp Leu Tyr Pro 365 370 Leu Leu Cys His Leu Leu Asn Ile Thr Ala Met Pro His Asn Gly 380 385 Ser Phe Trp Asn Val Gln Asp Leu Leu Asn Ser Ala Met Pro Arg 395 400 405 Val Val Pro Tyr Thr Gln Ser Thr Ile Leu Leu Pro Gly Ser Val Lys Pro Ala Glu Tyr Asp Gln Glu Gly Ser Tyr Pro Tyr Phe Ile Gly Val Ser Leu Gly Ser Ile Ile Val Ile Val Phe Phe Val Ile 440 445 Phe Ile Lys His Leu Ile His Ser Gln Ile Pro Ala Leu Gln Asp 455 460 Met His Ala Glu Ile Ala Gln Pro Leu Leu Gln Ala 470

<210> 286

<211> 1337

<212> DNA

<213> Homo sapiens

<400> 286

ggatttttgt gatccgcgat tegeteceae gggegggaee tttgtaactg 50
cgggaggeee aggacaggee caccetgegg ggegggagge ageeggggtg 100
agggaggtga agaaaccaag acgcagagag gccaagceee ttgeettggg 150
tcacacagee aaaggaggea gagccagaae teacaaccag atccagagge 200
aacagggaca tggecacctg ggacgaaaag gcagtcacce gcagggecaa 250
ggtggeteee getgagagga tgagcaagtt ettaaggeae tteacggteg 300
tgggagacga ctaccatgee tggaacatca actacaagaa atgggagaat 350
gaagaggagg aggaggaga ggagcageea ceacceacae cagtetcagg 400
cgaggaagge ceccettgae tteagggea tgttgaggaa actgttcage 500

toccacaggt ttcaggtcat catcatctgc ttggtggttc tggatgccct 550 cctqqtqctt gctgagctca tcctgqacct gaagatcatc caqcccgaca 600 agaataacta tgctgccatg gtattccact acatgagcat caccatcttg 650 gtctttttta tgatggagat catctttaaa ttatttgtct tccgcctgag 700 ttctttcacc acaagtttga gatcctggat gcccgtcgtg gtggtggtct 750 cattcatcct ggacattgtc ctcctgttcc aggagcacca gtttgaggct 800 ctgggcctgc tgattctgct ccggctgtgg cgggtggccc ggatcatcaa 850 tgggattatc atctcagtta agacacgttc agaacggcaa ctcttaaggt 900 taaaacagat gaatgtacaa ttggccgcca agattcaaca ccttgagttc 950 agctgctctg agaagcccct ggactgatga gtttgctgta tcaacctgta 1000 aggagaagct ctctccggat ggctatggga atgaaagaat ccgacttcta 1050 ctctcacaca gccaccqtqa aaqtcctqqa qtaaaatqtq ctqtqtacaq 1100 aagagagaga aggaagcagg ctggcatgtt cactgggctg gtgttacgac 1150 agagaacctg acagtcactg gccagttatc acttcagatt acaaatcaca 1200 cagagcatct gcctgttttc aatcacaaga gaacaaaacc aaaatctata 1250 aagatattct gaaaatatga cagaatttga caaataaaag cataaacgtg 1300 taaaaaaaaa aaaaaaaaa aaaaaaaa 1337

<210> 287

<211> 255

<212> PRT

<213> Homo sapiens

<400> 287

Met Ala Thr Trp Asp Glu Lys Ala Val Thr Arg Arg Ala Lys Val 1 5 10

Ala Pro Ala Glu Arg Met Ser Lys Phe Leu Arg His Phe Thr Val 20 25 30

Val Gly Asp Asp Tyr His Ala Trp Asn Ile Asn Tyr Lys Lys Trp 35 40

Glu Asn Glu Glu Glu Glu Glu Glu Glu Gln Pro Pro Thr
50 55 60

Pro Val Ser Gly Glu Glu Gly Arg Ala Ala Pro Asp Val Ala 65 70 75

Pro Ala Pro Gly Pro Ala Pro Arg Ala Pro Leu Asp Phe Arg Gly 80 85 90

Met Leu Arg Lys Leu Phe Ser Ser His Arg Phe Gln Val Ile Ile 95 100

Ile Cys Leu Val Val Leu Asp Ala Leu Leu Val Leu Ala Glu Leu
110 115 120

```
Ile Leu Asp Leu Lys Ile Ile Gln Pro Asp Lys Asn Asn Tyr Ala
                125
                                     130
Ala Met Val Phe His Tyr Met Ser Ile Thr Ile Leu Val Phe Phe
                140
                                     145
Met Met Glu Ile Ile Phe Lys Leu Phe Val Phe Arg Leu Ser Ser
Phe Thr Thr Ser Leu Arg Ser Trp Met Pro Val Val Val Val
                170
                                     175
Ser Phe Ile Leu Asp Ile Val Leu Leu Phe Gln Glu His Gln Phe
                185
                                     190
Glu Ala Leu Gly Leu Leu Ile Leu Leu Arg Leu Trp Arg Val Ala
                200
                                     205
Arg Ile Ile Asn Gly Ile Ile Ile Ser Val Lys Thr Arg Ser Glu
                215
                                     220
Arg Gln Leu Leu Arg Leu Lys Gln Met Asn Val Gln Leu Ala Ala
                230
                                     235
Lys Ile Gln His Leu Glu Phe Ser Cys Ser Glu Lys Pro Leu Asp
                245
```

<210> 288

<211> 3334

<212> DNA

<213> Homo sapiens

<400> 288 cggctcgagc tcgagccgaa tcggctcgag gggcagtgga gcacccagca 50 ggccgccaac atgctctgtc tgtgcctgta cgtgccggtc atcggggaag 100 cccagaccga gttccagtac tttgagtcga aggggctccc tgccgagctg 150 aagtecattt teaageteag tgtetteate eecteeeagg aatteteeac 200 ctaccgccag tggaagcaga aaattgtaca agctggagat aaggaccttg 250 atgggcagct agactttgaa gaatttgtcc attatctcca agatcatgag 300 aagaagctga ggctggtgtt taagattttg gacaaaaaga atgatggacg 350 cattgacgcg caggagatca tgcagtccct gcgggacttg ggagtcaaga 400 tatetgaaca geaggeagaa aaaattetea agageatgga taaaaaegge 450 acgatgacca togactggaa cgagtggaga gactaccacc toctocacco 500 cgtggaaaac atccccgaga tcatcctcta ctggaagcat tccacgatct 550 ttgatgtggg tgagaatcta acggtcccgg atgagttcac agtggaggag 600 aggcagacgg ggatgtggtg gagacacctg gtggcaggag gtggggcagg 650 ggccgtatcc agaacctgca cggcccccct ggacaggctc aaggtgctca 700 tgcaggtcca tgcctcccgc agcaacaaca tgggcatcgt tggtggcttc 750

actcagatga ttcgagaagg aggggccagg tcactctggc ggggcaatgg 800 catcaacgtc ctcaaaattg cccccgaatc agccatcaaa ttcatggcct 850 atgagcagat caagcgcctt gttggtagtg accaggagac tctgaggatt 900 cacgagagge ttgtggcagg gtccttggca ggggccatcg cccagagcag 950 catctaccca atggaggtcc tgaagacccg gatggcgctg cggaagacag 1000 gccagtactc aggaatgctg gactgcgcca ggaggatcct ggccagagag 1050 ggggtggccg ccttctacaa aggctatgtc cccaacatgc tgggcatcat 1100 cccctatgcc ggcatcgacc ttgcagtcta cgagacgctc aagaatgcct 1150 ggctgcagca ctatgcagtg aacagcgcgg accccggcgt gtttgtgctc 1200 etggcetgtg geaceatgte eagtacetgt ggceagetgg ceagetacee 1250 cctggcccta gtcaggaccc ggatgcaggc gcaagcctct attgagggcg 1300 ctccggaggt gaccatgagc agcctcttca aacatatcct gcggaccgag 1350 ggggccttcg ggctgtacag ggggctggcc cccaacttca tgaaggtcat 1400 cccagctgtg agcatcagct acgtggtcta cgagaacctg aagatcaccc 1450 tgggcgtgca gtcgcggtga cggggggagg gccgcccggc agtggactcg 1500 ctgatcctgg gccgcagcct ggggtgtgca gccatctcat tctgtgaatg 1550 tgccaacact aagctgtctc gagccaagct gtgaaaaccc tagacgcacc 1600 cgcagggagg gtggggagag ctggcaggcc cagggcttgt cctgctgacc 1650 ccagcagacc ctcctgttgg ttccagcgaa gaccacaggc attccttagg 1700 gtccagggtc agcaggctcc gggctcacat gtgtaaggac aggacatttt 1750 ctgcagtgcc tgccaatagt gagcttggag cctggaggcc ggcttagttc 1800 ttccatttca cccttgcagc cagctgttgg ccacggcccc tgccctctgg 1850 tetgeegtge atetecetgt gecetettge tgeetgeetg tetgetgagg 1900 taaggtggga ggagggctac agcccacatc ccacccctc gtccaatccc 1950 ataatccatg atgaaaggtg aggtcacgtg gcctcccagg cctqacttcc 2000 caacctacag cattgacgcc aacttggctg tgaaggaaga ggaaaggatc 2050 tggccttgtg gtcactggca tctgagccct gctgatggct ggggctctcg 2100 ggcatgcttg ggagtgcagg gggctcgggc tgcctggcct ggctgcacag 2150 aaggcaagtg ctggggctca tggtgctctg agctggcctg gaccctgtca 2200 ggatgggccc cacctcagaa ccaaactcac tgtccccact gtggcatgag 2250 ggcagtggag caccatgttt gagggcgaag ggcagagcgt ttgtgtgttc 2300 tggggaggga aggaaaaggt gttggaggcc ttaattatgg actgttggga 2350

aaagggtttt gtccagaagg acaagccgga caaatgagcg acttctgtgc 2400 ttccagagga agacgaggga gcaggagctt ggctgactgc tcagagtctg 2450 ttctgacgcc ctgggggttc ctgtccaacc ccagcagggg cgcagcggga 2500 ccagccccac attocacttg tgtcactgct tggaacctat ttattttgta 2550 tttatttgaa cagagttatg tcctaactat ttttatagat ttgtttaatt 2600 aatagcttgt cattttcaag ttcatttttt attcatattt atgttcatgg 2650 ttgattgtac cttcccaagc ccgcccagtg ggatgggagg aggaggagaa 2700 ggggggcctt gggccgctgc agtcacatct gtccaqaqaa attccttttg 2750 ggactggagg cagaaaagcg gccagaaggc agcagccctg gctcctttcc 2800 tttggcaggt tggggaaggg cttgccccca gccttaggat ttcagggttt 2850 gactgggggc gtggagagag agggaggaac ctcaataacc ttgaaggtgg 2900 aatccagtta tttcctgcgc tgcgagggtt tctttatttc actcttttct 2950 gaatgtcaag gcagtgaggt gcctctcact gtgaatttgt ggtgggcggg 3000 ggctggagga gagggtgggg ggctggctcc gtccctccca gccttctgct 3050 gcccttgctt aacaatgccg gccaactggc gacctcacgg ttgcacttcc 3100 attccaccag aatgacctga tgaggaaatc ttcaatagga tgcaaagatc 3150 aatgcaaaaa ttgttatata tgaacatata actggagtcg tcaaaaagca 3200 aattaagaaa gaattggacg ttagaagttg tcatttaaag cagccttcta 3250 aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaa 3334

<210> 289 <211> 469

<212> PRT <213> Homo sapiens

<400> 289

Met Leu Cys Leu Cys Leu Tyr Val Pro Val Ile Gly Glu Ala Gln 1 5 10

Thr Glu Phe Gln Tyr Phe Glu Ser Lys Gly Leu Pro Ala Glu Leu 20 25 30

Lys Ser Ile Phe Lys Leu Ser Val Phe Ile Pro Ser Gln Glu Phe 35 40

Ser Thr Tyr Arg Gln Trp Lys Gln Lys Ile Val Gln Ala Gly Asp 50 55 60

Lys Asp Leu Asp Gly Gln Leu Asp Phe Glu Glu Phe Val His Tyr
65 70

Leu Gln Asp His Glu Lys Lys Leu Arg Leu Val Phe Lys Ile Leu $80 \hspace{1cm} 85 \hspace{1cm} 90$

Asp Lys Lys Asn Asp Gly Arg Ile Asp Ala Gln Glu Ile Met Gln Ser Leu Arg Asp Leu Gly Val Lys Ile Ser Glu Gln Gln Ala Glu 115 110 Lys Ile Leu Lys Ser Met Asp Lys Asn Gly Thr Met Thr Ile Asp Trp Asn Glu Trp Arg Asp Tyr His Leu Leu His Pro Val Glu Asn Ile Pro Glu Ile Ile Leu Tyr Trp Lys His Ser Thr Ile Phe Asp 160 165 Val Gly Glu Asn Leu Thr Val Pro Asp Glu Phe Thr Val Glu Glu 175 Arg Gln Thr Gly Met Trp Trp Arg His Leu Val Ala Gly Gly 190 Ala Gly Ala Val Ser Arg Thr Cys Thr Ala Pro Leu Asp Arg Leu Lys Val Leu Met Gln Val His Ala Ser Arg Ser Asn Asn Met Gly Ile Val Gly Gly Phe Thr Gln Met Ile Arg Glu Gly Gly Ala Arg 230 235 240 Ser Leu Trp Arg Gly Asn Gly Ile Asn Val Leu Lys Ile Ala Pro 245 250 Glu Ser Ala Ile Lys Phe Met Ala Tyr Glu Gln Ile Lys Arg Leu Val Gly Ser Asp Gln Glu Thr Leu Arg Ile His Glu Arg Leu Val Ala Gly Ser Leu Ala Gly Ala Ile Ala Gln Ser Ser Ile Tyr Pro Met Glu Val Leu Lys Thr Arg Met Ala Leu Arg Lys Thr Gly Gln 305 310 315 Tyr Ser Gly Met Leu Asp Cys Ala Arg Arg Ile Leu Ala Arg Glu 320 325 Gly Val Ala Ala Phe Tyr Lys Gly Tyr Val Pro Asn Met Leu Gly 335 340 345 Ile Ile Pro Tyr Ala Gly Ile Asp Leu Ala Val Tyr Glu Thr Leu Lys Asn Ala Trp Leu Gln His Tyr Ala Val Asn Ser Ala Asp Pro 370 Gly Val Phe Val Leu Leu Ala Cys Gly Thr Met Ser Ser Thr Cys 380 385 390 Gly Gln Leu Ala Ser Tyr Pro Leu Ala Leu Val Arg Thr Arg Met 400

Gln Ala Gln Ala Ser Ile Glu Gly Ala Pro Glu Val Thr Met Ser Ser Leu Phe Lys His Ile Leu Arg Thr Glu Gly Ala Phe Gly Leu 425 430 435 Tyr Arg Gly Leu Ala Pro Asn Phe Met Lys Val Ile Pro Ala Val Ser Ile Ser Tyr Val Val Tyr Glu Asn Leu Lys Ile Thr Leu Gly 460

Val Gln Ser Arq

<210> 290 <211> 1658 <212> DNA

<213> Homo sapiens

<400> 290 ggaaggcagc ggcagctcca ctcagccagt acccagatac gctgggaacc 50 ttccccagcc atggcttccc tggggcagat cctcttctgg agcataatta 100 gcatcatcat tattctggct ggagcaattg cactcatcat tggctttggt 150 atttcaggga gacactccat cacagtcact actgtcgcct cagctgggaa 200 cattggggag gatggaatcc tgagctgcac ttttgaacct gacatcaaac 250 tttctgatat cgtgatacaa tggctgaagg aaggtgtttt aggcttggtc 300 catgagttca aagaaggcaa agatgagctg tcggagcagg atgaaatgtt 350 cagaggccgg acagcagtgt ttgctgatca agtgatagtt ggcaatgcct 400 ctttgcggct gaaaaacgtg caactcacag atgctggcac ctacaaatgt 450 tatatcatca cttctaaagg caaggggaat gctaaccttg agtataaaac 500 tggagccttc agcatgccgg aagtgaatgt ggactataat gccagctcag 550 agaccttgcg gtgtgaggct ccccgatggt tcccccagcc cacagtggtc 600 tgggcatccc aagttgacca gggagccaac ttctcggaag tctccaatac 650 cagetttgag etgaactetg agaatgtgac catgaaggtt gtgtetgtgc 700 tctacaatgt tacgatcaac aacacatact cctgtatgat tgaaaatgac 750 attgccaaag caacagggga tatcaaagtg acagaatcgg agatcaaaag 800 gcggagtcac ctacagctgc taaactcaaa ggcttctctg tgtgtctctt 850 ctttctttgc catcagctgg gcacttctgc ctctcagccc ttacctqatq 900 ctaaaataat gtgccttggc cacaaaaaaq catgcaaaqt cattgttaca 950 acagggatct acagaactat ttcaccacca gatatgacct agttttatat 1000 ttctgggagg aaatgaattc atatctagaa qtctggagtg agcaaacaag 1050 <210> 291 <211> 282 <212> PRT

<213> Homo sapiens

<400> 291

Met Ala Ser Leu Gly Gln Ile Leu Phe Trp Ser Ile Ile Ser Ile 1 5 10 15

Ile Ile Ile Leu Ala Gly Ala Ile Ala Leu Ile Ile Gly Phe Gly 20 25 30

Ile Ser Gly Arg His Ser Ile Thr Val Thr Thr Val Ala Ser Ala 35 40 45

Gly Asn Ile Gly Glu Asp Gly Ile Leu Ser Cys Thr Phe Glu Pro 50 55 60

Asp Ile Lys Leu Ser Asp Ile Val Ile Gln Trp Leu Lys Glu Gly 65 70 75

Val Leu Gly Leu Val His Glu Phe Lys Glu Gly Lys Asp Glu Leu 80 85 90

Ser Glu Gln Asp Glu Met Phe Arg Gly Arg Thr Ala Val Phe Ala $95 \hspace{1.5cm} 100 \hspace{1.5cm} 105$

Asp Gln Val Ile Val Gly Asn Ala Ser Leu Arg Leu Lys Asn Val 110 115 120

Gln Leu Thr Asp Ala Gly Thr Tyr Lys Cys Tyr Ile Ile Thr Ser 125 130 135

Lys Gly Lys Gly Asn Ala Asn Leu Glu Tyr Lys Thr Gly Ala Phe 140 145

Ser Met Pro Glu Val Asn Val Asp Tyr Asn Ala Ser Ser Glu Thr

				155					160					165	
Leu	Arg	Cys	Glu	Ala 170	Pro	Arg	Trp	Phe	Pro 175	Gln	Pro	Thr	Val	Val 180	
Trp	Ala	Ser	Gln	Val 185	Asp	Gln	Gly	Ala	Asn 190	Phe	Ser	Glu	Val	Ser 195	
Asn	Thr	Ser	Phe	Glu 200	Leu	Asn	Ser	Glu	Asn 205	Val	Thr	Met	Lys	Val 210	
Val	Ser	Val	Leu	Tyr 215	Asn	Val	Thr	Ile	Asn 220	Asn	Thr	Tyr	Ser	Cys 225	
Met	Ile	Glu	Asn	Asp 230	Ile	Ala	Lys	Ala	Thr 235	Gly	Asp	Ile	Lys	Val 240	
Thr	Glu	Ser	Glu	Ile 245	Lys	Arg	Arg	Ser	His 250	Leu	Gln	Leu	Leu	Asn 255	
Ser	Lys	Ala	Ser	Leu 260	Суз	Val	Ser	Ser	Phe 265	Phe	Ala	Ile	Ser	Trp 270	
Ala	Leu	Leu	Pro	Leu 275	Ser	Pro	Tyr	Leu	Met 280	Leu	Lys				

<210> 292 <211> 1484 <212> DNA <213> Homo sapiens

<400> 292

gaatttgtag aagacagcgg cgttgccatg gcggcgtctc tggggcaggt 50 gttggctctg gtgctggtgg ccgctctgtg gggtggcacg cagccgctgc 100 tgaagcgggc ctccgccggc ctgcagcggg ttcatgagcc gacctgggcc 150 cagcagttgc tacaggagat gaagaccctc ttcttgaata ctgagtacct 200 gatgecettt eteeteaace agtgtggate eettetetat taeeteacet 250 tggcatcgac agatctgacc ctggctgtgc ccatctgtaa ctctctggct 300 atcatcttca cactgattgt tgggaaggcc cttggagaag atattggtgg 350 aaaacgtaag ttagactact gcgagtgcgg gacgcagctc tgtggatctc 400 gacatacctg tgttagttcc ttcccagaac ccatctcccc agagtgggtg 450 aggacacggc cttttcccat cctgcccttt cctctgcagc tgttttgctt 500 ccttgtggcc atcagagttc ccttcccctg gacagtctgg agaaagacag 550 aggctggggt ttgggattga agaccagacc ccatctgagc ccttcctcca 600 gccctgtacc agctcctact ggcatggctg agctcagacc ctcctgattt 650 ctgcctatta tcccaggagc agttgctggc atggtgctca ccgtgatagg 700 aatttcactc tgcatcacaa gctcagtgag taagacccag gggcaacagt 750 ctaccetttg agtgggccga acceaettee agetetgetg cetecaggaa 800

<210> 293 <211> 180

<212> PRT

<213> Homo sapiens

<400> 293

Met Ala Ala Ser Leu Gly Gln Val Leu Ala Leu Val Leu Val Ala 1 5 10 15

Ala Leu Trp Gly Gly Thr Gln Pro Leu Leu Lys Arg Ala Ser Ala 20 25 30

Gly Leu Gln Arg Val His Glu Pro Thr Trp Ala Gln Gln Leu Leu
35 40

Gln Glu Met Lys Thr Leu Phe Leu Asn Thr Glu Tyr Leu Met Pro 50 55 60

Phe Leu Leu Asn Gln Cys Gly Ser Leu Leu Tyr Tyr Leu Thr Leu 65 70 75

Ala Ser Thr Asp Leu Thr Leu Ala Val Pro Ile Cys Asn Ser Leu 80 85 90

Ala Ile Ile Phe Thr Leu Ile Val Gly Lys Ala Leu Gly Glu Asp 95 100 105

Ile Gly Gly Lys Arg Lys Leu Asp Tyr Cys Glu Cys Gly Thr Gln 110 115 120

Leu Cys Gly Ser Arg His Thr Cys Val Ser Ser Phe Pro Glu Pro 125 130 135

Ile Ser Pro Glu Trp Val Arg Thr Arg Pro Phe Pro Ile Leu Pro 140 145 150

Phe Pro Leu Gln Leu Phe Cys Phe Leu Val Ala Ile Arg Val Pro 155 160 165

Phe Pro Trp Thr Val Trp Arg Lys Thr Glu Ala Gly Val Trp Asp 170 175 180

<210> 294

<211> 1164

<212> DNA

<213> Homo sapiens

<400> 294

cttctgtagg acagtcacca ggccagatcc agaagcctct ctaggctcca 50 gctttctctg tggaagatga cagcaattat agcaggaccc tgccaggctg 100 tcgaaaagat tccgcaataa aactttgcca gtgggaagta cctagtgaaa 150 cggcctaaga tgccacttct tctcatgtcc caggcttgag gccctgtggt 200 ccccatcctt gggagaagtc agctccagca ccatgaaggg catcctcgtt 250 gctggtatca ctgcagtgct tgttgcagct gtagaatctc tgagctgcgt 300 gcagtgtaat tcatgggaaa aatcctgtgt caacagcatt gcctctgaat 350 gteceteaca tgccaacace agetgtatea getecteage cageteetet 400 ctagagacac cagtcagatt ataccagaat atgttctgct cagcggagaa 450 ctgcagtgag gagacacaca ttacagcctt cactgtccac gtgtctgctg 500 aagaacactt tcattttgta agccagtgct gccaaggaaa ggaatgcagc 550 aacaccageg atgeeetgga eceteeetg aagaaegtgt ecageaaege 600 agagtgccct gcttgttatg aatctaatgg aacttcctgt cgtgggaagc 650 cctggaaatg ctatgaagaa gaacagtgtg tctttctagt tgcagaactt 700 aagaatgaca ttgagtctaa gagtctcgtg ctgaaaggct gttccaacgt 750 cagtaacgcc acctgtcagt tcctgtctgg tgaaaacaag actcttggag 800 gagtcatctt tcgaaagttt gagtgtgcaa atgtaaacag cttaaccccc 850 acgtctgcac caaccacttc ccacaacgtg ggctccaaag cttccctcta 900 cetettggee ettgecagee teettetteg gggaetgetg ecetgaggte 950 ctggggctgc actttgccca gcaccccatt tctgcttctc tgaggtccag 1000 agcaccccct gcggtgctga caccctcttt ccctgctctg ccccgtttaa 1050 ctgcccagta agtgggagtc acaggtctcc aggcaatgcc gacagctgcc 1100 aaaaaaaaa aaaa 1164

<210> 295

<211> 237

<212> PRT

<213> Homo sapiens

```
<400> 295
Met Lys Gly Ile Leu Val Ala Gly Ile Thr Ala Val Leu Val Ala
                                      10
Ala Val Glu Ser Leu Ser Cys Val Gln Cys Asn Ser Trp Glu Lys
Ser Cys Val Asn Ser Ile Ala Ser Glu Cys Pro Ser His Ala Asn
Thr Ser Cys Ile Ser Ser Ser Ala Ser Ser Ser Leu Glu Thr Pro
                  50
                                      55
Val Arg Leu Tyr Gln Asn Met Phe Cys Ser Ala Glu Asn Cys Ser
Glu Glu Thr His Ile Thr Ala Phe Thr Val His Val Ser Ala Glu
                                      85
Glu His Phe His Phe Val Ser Gln Cys Cys Gln Gly Lys Glu Cys
                  95
Ser Asn Thr Ser Asp Ala Leu Asp Pro Pro Leu Lys Asn Val Ser
Ser Asn Ala Glu Cys Pro Ala Cys Tyr Glu Ser Asn Gly Thr Ser
Cys Arg Gly Lys Pro Trp Lys Cys Tyr Glu Glu Glu Gln Cys Val
                                     145
Phe Leu Val Ala Glu Leu Lys Asn Asp Ile Glu Ser Lys Ser Leu
                 155
                                     160
Val Leu Lys Gly Cys Ser Asn Val Ser Asn Ala Thr Cys Gln Phe
                 170
                                     175
Leu Ser Gly Glu Asn Lys Thr Leu Gly Gly Val Ile Phe Arg Lys
Phe Glu Cys Ala Asn Val Asn Ser Leu Thr Pro Thr Ser Ala Pro
                 200
                                     205
Thr Thr Ser His Asn Val Gly Ser Lys Ala Ser Leu Tyr Leu Leu
Ala Leu Ala Ser Leu Leu Leu Arg Gly Leu Leu Pro
                 230
```

<210> 296

<211> 1245

<212> DNA

<213> Homo sapiens

<400> 296

ggcctcggtt caaacgaccc ggtgggtcta cagcggaagg gagggagcga 50 aggtaggagg cagggcttgc ctcactggcc accetcccaa ccccaagagc 100 ccagcccat ggtcccgcc gccggcgcgc tgctgtgggt cctgctgctg 150

```
aatctgggtc cccgggcggc gggggcccaa ggcctgaccc agactccgac 200
cgaaatgcag cgggtcagtt tacgctttgg gggccccatg acccgcagct 250
accggagcac cgcccggact ggtcttcccc ggaagacaag gataatccta 300
gaggacgaga atgatgccat ggccgacgcc gaccgcctgg ctggaccagc 350
ggctgccgag ctcttggccg ccacggtgtc caccggcttt agccggtcgt 400
ccgccattaa cgaggaggat gggtcttcag aagagggggt tgtgattaat 450
gccggaaagg atagcaccag cagagagctt cccagtgcga ctcccaatac 500
agcggggagt tccagcacga ggtttatagc caatagtcag gagcctgaaa 550
tcaggctgac ttcaagcctg ccgcgctccc ccgggaggtc tactgaggac 600
ctgccagget egcaggecae eetgagecag tggtecaeae etgggtetae 650
cccgagccgg tggccgtcac cctcacccac agccatgcca tctcctgagg 700
atctgcggct ggtgctgatg ccctggggcc cgtggcactg ccactgcaag 750
tegggeacea tgageeggag eeggtetggg aagetgeacg geettteegg 800
gcgccttcga gttggggcgc tgagccagct ccgcacggag cacaagcctt 850
gcacctatca acaatgtccc tgcaaccgac ttcgggaaga gtgccccctg 900
gacacaagtc totgtactga caccaactgt gcctctcaga gcaccaccag 950
taccaggace accactacce cettececae catecacete agaageagte 1000
ccagcctgcc acccgccagc ccctgcccag ccctggcttt ttggaaacgg 1050
gtcaggattg gcctggagga tatttggaat agcctctctt cagtgttcac 1100
agagatgcaa ccaatagaca gaaaccagag gtaatggcca cttcatccac 1150
atgaggagat gtcagtatct caacctctct tgccctttca atcctagcac 1200
ccactagata tttttagtac agaaaaacaa aactggaaaa cacaa 1245
```

```
<210> 297
```

<211> 341

<212> PRT

<213> Homo sapiens

<400> 297

Met Val Pro Ala Ala Gly Ala Leu Leu Trp Val Leu Leu Leu Asn 1 5 10 15

Leu Gly Pro Arg Ala Ala Gly Ala Gln Gly Leu Thr Gln Thr Pro
20 25 30

Thr Glu Met Gln Arg Val Ser Leu Arg Phe Gly Gly Pro Met Thr 35 40 45

Arg Ser Tyr Arg Ser Thr Ala Arg Thr Gly Leu Pro Arg Lys Thr
50 55 60

Arg Ile Ile Leu Glu Asp Glu Asn Asp Ala Met Ala Asp Ala Asp

in:

65 70 75

Arg Leu Ala Gly Pro Ala Ala Ala Glu Leu Leu Ala Ala Thr Val Ser Thr Gly Phe Ser Arg Ser Ser Ala Ile Asn Glu Glu Asp Gly Ser Ser Glu Glu Gly Val Val Ile Asn Ala Gly Lys Asp Ser Thr 110 115 Ser Arg Glu Leu Pro Ser Ala Thr Pro Asn Thr Ala Gly Ser Ser 125 130 Ser Thr Arg Phe Ile Ala Asn Ser Gln Glu Pro Glu Ile Arg Leu Thr Ser Ser Leu Pro Arg Ser Pro Gly Arg Ser Thr Glu Asp Leu 155 Pro Gly Ser Gln Ala Thr Leu Ser Gln Trp Ser Thr Pro Gly Ser 175 Thr Pro Ser Arg Trp Pro Ser Pro Ser Pro Thr Ala Met Pro Ser 185 Pro Glu Asp Leu Arg Leu Val Leu Met Pro Trp Gly Pro Trp His 200 Cys His Cys Lys Ser Gly Thr Met Ser Arg Ser Arg Ser Gly Lys 215 220 Leu His Gly Leu Ser Gly Arg Leu Arg Val Gly Ala Leu Ser Gln 235 Leu Arg Thr Glu His Lys Pro Cys Thr Tyr Gln Gln Cys Pro Cys 245 250 Asn Arg Leu Arg Glu Glu Cys Pro Leu Asp Thr Ser Leu Cys Thr Asp Thr Asn Cys Ala Ser Gln Ser Thr Thr Ser Thr Arg Thr Thr 280 Thr Thr Pro Phe Pro Thr Ile His Leu Arg Ser Ser Pro Ser Leu 290 295 Pro Pro Ala Ser Pro Cys Pro Ala Leu Ala Phe Trp Lys Arg Val 310 Arg Ile Gly Leu Glu Asp Ile Trp Asn Ser Leu Ser Ser Val Phe 320 325

Thr Glu Met Gln Pro Ile Asp Arg Asn Gln Arg 335 340

<210> 298

<211> 2692

<212> DNA

<213> Homo sapiens

<400> 298

cccgggtcga cccacgcgtc cggggagaaa ggatggccgg cctggcggcg 50

cggttggtcc tgctagctgg ggcagcggcg ctggcgagcg gctcccaggg 100 cgaccgtgag ccggtgtacc gcgactgcgt actgcagtgc gaagagcaga 150 actgctctgg gggcgctctg aatcacttcc gctcccgcca gccaatctac 200 atgagtctag caggctggac ctgtcgggac gactgtaagt atgagtgtat 250 gtgggtcacc gttgggctct acctccagga aggtcacaaa gtgcctcagt 300 tocatggcaa gtggcccttc toccggttoc tgttctttca agagccggca 350 toggoogtgg cotogtttot caatggootg gocagootgg tgatgototg 400 ecgetacege acettegtge eageetecte ecceatgtac caeacetgtg 450 tggccttcgc ctgggtgtcc ctcaatgcat ggttctggtc cacagtcttc 500 cacaccaggg acactgacct cacagagaaa atggactact tetgtgeete 550 cactgtcatc ctacactcaa tctacctgtg ctgcgtcagg accgtggggc 600 tgcagcaccc agctgtggtc agtgccttcc gggctctcct gctgctcatg 650 ctgaccgtgc acgtctccta cctgagcctc atccgcttcg actatggcta 700 caacctggtg gccaacgtgg ctattggcct ggtcaacgtg gtgtggtggc 750 tggcctggtg cctgtggaac cagcggcggc tgcctcacgt gcgcaagtgc 800 gtggtggtgg tcttgctgct gcaggggctg tccctgctcg agctgcttga 850 cttcccaccg ctcttctggg tcctggatgc ccatgccatc tggcacatca 900 gcaccatccc tgtccacgtc ctcttttca gctttctgga agatgacagc 950 ctgtacctgc tgaaggaatc agaggacaag ttcaagctgg actgaagacc 1000 ttggagegag tetgeeccag tggggatect geeccegeec tgetggeete 1050 ccttctcccc tcaacccttg agatgatttt ctcttttcaa cttcttgaac 1100 ttggacatga aggatgtggg cccagaatca tgtggccagc ccaccccctg 1150 ttggccctca ccagccttgg agtctgttct agggaaggcc tcccagcatc 1200 tgggactcga gagtgggcag cccctctacc tcctggagct gaactggggt 1250 ggaactgagt gtgttcttag ctctaccggg aggacagctg cctgtttcct 1300 ccccaccage etecteccca catecccage tgeetggetg ggteetgaag 1350 ccctctgtct acctgggaga ccagggacca caggccttag ggatacaggg 1400 ggtccccttc tgttaccacc ccccaccctc ctccaggaca ccactaggtg 1450 gtgctggatg cttgttcttt ggccagccaa ggttcacggc gattctcccc 1500 atgggatctt gagggaccaa gctgctggga ttgggaagga gtttcaccct 1550 gaccgttgcc ctagccaggt tcccaggagg cctcaccata ctccctttca 1600 gggccagggc tccagcaagc ccagggcaag gatcctgtqc tqctqtctqq 1650

ttgagagcct gccaccgtgt gtcgggagtg tgggccaggc tgagtgcata 1700 ggtgacaggg ccgtgagcat gggcctgggt gtgtgtgagc tcaggcctag 1750 gtgcgcagtg tggagacggg tgttgtcggg gaagaggtgt ggcttcaaag 1800 tgtgtgtgtg caggggtgg gtgtgttagc gtgggttagg ggaacgtgtg 1850 tgcgcgtgct ggtgggcatg tgagatgagt gactgccqqt gaatgtgtcc 1900 acagttgaga ggttggagca ggatgaggga atcctgtcac catcaataat 1950 cacttgtgga gcgccagetc tgcccaaqac gccacctggg cggacagcca 2000 ggagetetee atggeeagge tgeetgtgtg catgtteeet gtetggtgee 2050 cetttqeeeg cetectqeaa aceteaeagg qteeecacae aacagtqeee 2100 tccagaagca gcccctcgga ggcagaggaa ggaaaatggg gatggctggg 2150 geteteteca teeteetttt eteettgeet tegeatgget ggeetteece 2200 tecaaaaect ceatteeect getgeeagee cetttgeeat ageetgattt 2250 tggggaggag gaaggggcga tttgagggag aaggggagaa agcttatggc 2300 tgggtctggt ttcttccctt cccagagggt cttactgttc cagggtggcc 2350 ccaqqqcaqq caqqqqcac actatqcctq tqccctqqta aaqqtqaccc 2400 ctgccattta ccagcagccc tggcatgttc ctgccccaca ggaatagaat 2450 ggagggaget ccagaaaett tecateccaa aggeagtete egtggttgaa 2500 gcagactgga tttttgctct gcccctgacc ccttgtccct ctttgaggga 2550 ggggagctat gctaggactc caacctcagg gactcgggtg gcctgcgcta 2600 gcttcttttg atactgaaaa cttttaaggt gggagggtgg caagggatgt 2650

<210> 299

<211> 320

<212> PRT

<213> Homo sapiens

<400> 299

Met Ala Gly Leu Ala Ala Arg Leu Val Leu Leu Ala Gly Ala Ala 1 5 10 15

Ala Leu Ala Ser Gly Ser Gln Gly Asp Arg Glu Pro Val Tyr Arg 20 25 30

Asp Cys Val Leu Gln Cys Glu Glu Gln Asn Cys Ser Gly Gly Ala 35 40 45

Leu Asn His Phe Arg Ser Arg Gln Pro Ile Tyr Met Ser Leu Ala 50 55 60

Gly Trp Thr Cys Arg Asp Asp Cys Lys Tyr Glu Cys Met Trp Val 65 70

```
Thr Val Gly Leu Tyr Leu Gln Glu Gly His Lys Val Pro Gln Phe
His Gly Lys Trp Pro Phe Ser Arg Phe Leu Phe Phe Gln Glu Pro
                                    100
Ala Ser Ala Val Ala Ser Phe Leu Asn Gly Leu Ala Ser Leu Val
Met Leu Cys Arg Tyr Arg Thr Phe Val Pro Ala Ser Ser Pro Met
                                    130
Tyr His Thr Cys Val Ala Phe Ala Trp Val Ser Leu Asn Ala Trp
                140
                                    145
                                                         150
Phe Trp Ser Thr Val Phe His Thr Arg Asp Thr Asp Leu Thr Glu
Lys Met Asp Tyr Phe Cys Ala Ser Thr Val Ile Leu His Ser Ile
                                    175
                                                         180
Tyr Leu Cys Cys Val Arg Thr Val Gly Leu Gln His Pro Ala Val
                185
                                    190
Val Ser Ala Phe Arg Ala Leu Leu Leu Met Leu Thr Val His
                200
                                    205
Val Ser Tyr Leu Ser Leu Ile Arg Phe Asp Tyr Gly Tyr Asn Leu
                215
                                    220
Val Ala Asn Val Ala Ile Gly Leu Val Asn Val Val Trp Trp Leu
                230
                                    235
Ala Trp Cys Leu Trp Asn Gln Arg Arg Leu Pro His Val Arg Lys
                245
                                    250
                                                         255
Cys Val Val Val Leu Leu Gln Gly Leu Ser Leu Leu Glu
                                    265
                                                        270
Leu Leu Asp Phe Pro Pro Leu Phe Trp Val Leu Asp Ala His Ala
                275
                                    280
Ile Trp His Ile Ser Thr Ile Pro Val His Val Leu Phe Phe Ser
                290
                                    295
                                                         300
Phe Leu Glu Asp Asp Ser Leu Tyr Leu Leu Lys Glu Ser Glu Asp
                305
```

Lys Phe Lys Leu Asp 320

<210> 300

<211> 1674

<212> DNA

<213> Homo sapiens

<400> 300

ggccgcctgg aattgtggga gttgtgtctg ccactcggct gccggaggcc 50 gaaggtccgt gactatggct ccccagagcc tgccttcatc taggatggct 100 cctctgggca tgctgcttgg gctgctgatg gccgcctqct tcaccttctq 150

cctcagtcat cagaacctga aggagtttgc cctgaccaac ccagagaaga 200 gcagcaccaa agaaacggag agaaaagaaa ccaaagccga ggaggagctg 250 gatgccgaag tcctggaggt gttccacccg acgcatgagt ggcaggccct 300 tcagccaggg caggctgtcc ctgcaggatc ccacgtacgg ctgaatcttc 350 agactgggga aagagaggca aaactccaat atgaggacaa gttccgaaat 400 aatttgaaag gcaaaaggct ggatatcaac accaacacct acacatctca 450 ggatctcaag agtgcactgg caaaattcaa ggagggggca gagatggaga 500 gttcaaagga agacaaggca aggcaggctg aggtaaaggg gctcttccgc 550 cccattgagg aactgaagaa agactttgat gagctgaatg ttgtcattga 600 gactgacatg cagatcatgg tacggctgat caacaagttc aatagttcca 650 gctccagttt ggaagagaag attgctgcgc tctttgatct tgaatattat 700 gtccatcaga tggacaatgc gcaggacctg ctttcctttg gtggtcttca 750 agtggtgatc aatgggctga acagcacaga gcccctcgtg aaggagtatg 800 ctgcgtttgt gctgggcgct gccttttcca gcaaccccaa ggtccaggtg 850 gaggccatcg aagggggagc cctgcagaag ctgctggtca tcctggccac 900 ggagcagccg ctcactgcaa agaagaaggt cctgtttgca ctgtgctccc 950 tgctgcgcca cttcccctat gcccagcggc agttcctgaa gctcgggggg 1000 ctgcaggtcc tgaggaccct ggtgcaggag aagggcacgg aggtgctcgc 1050 cgtgcgcgtg gtcacactgc tctacgacct ggtcacggag aagatgttcg 1100 ccgaggagga ggctgagctg acccaggaga tgtccccaga gaagctgcag 1150 cagtatcgcc aggtacacct cctgccaggc ctgtgggaac agggctggtg 1200 cgagatcacg gcccacctcc tggcgctgcc cgagcatgat gcccgtgaga 1250 aggtgctgca gacactgggc gtcctcctga ccacctgccg ggaccgctac 1300 egteaggace eccagetegg caggacactg gecageetge aggetgagta 1350 ccaggtgctg gccagcctgg agctgcagga tggtgaggac gagggctact 1400 tccaggagct gctgggctct gtcaacagct tgctgaagga gctgagatga 1450 ggccccacac caggactgga ctgggatgcc gctagtgagg ctgaggggtg 1500 ccagcgtggg tgggcttctc aggcaggagg acatcttggc agtgctggct 1550 aaaaaaaaaaaaaaaaaaaa 1674

<210> 301

<211> 461 <212> PRT <213> Homo sapiens

<400> 301 Met Ala Pro Gln Ser Leu Pro Ser Ser Arg Met Ala Pro Leu Gly Met Leu Leu Gly Leu Leu Met Ala Ala Cys Phe Thr Phe Cys Leu Ser His Gln Asn Leu Lys Glu Phe Ala Leu Thr Asn Pro Glu Lys Ser Ser Thr Lys Glu Thr Glu Arg Lys Glu Thr Lys Ala Glu Glu Glu Leu Asp Ala Glu Val Leu Glu Val Phe His Pro Thr His Glu Trp Gln Ala Leu Gln Pro Gly Gln Ala Val Pro Ala Gly Ser His Val Arg Leu Asn Leu Gln Thr Gly Glu Arg Glu Ala Lys Leu Gln Tyr Glu Asp Lys Phe Arg Asn Asn Leu Lys Gly Lys Arg Leu Asp Ile Asn Thr Asn Thr Tyr Thr Ser Gln Asp Leu Lys Ser Ala Leu 125 130 Ala Lys Phe Lys Glu Gly Ala Glu Met Glu Ser Ser Lys Glu Asp 140 Lys Ala Arg Gln Ala Glu Val Lys Arg Leu Phe Arg Pro Ile Glu 155 160 Glu Leu Lys Lys Asp Phe Asp Glu Leu Asn Val Val Ile Glu Thr 175 Asp Met Gln Ile Met Val Arg Leu Ile Asn Lys Phe Asn Ser Ser Ser Ser Ser Leu Glu Glu Lys Ile Ala Ala Leu Phe Asp Leu Glu 200 205 210 Tyr Tyr Val His Gln Met Asp Asn Ala Gln Asp Leu Leu Ser Phe 215 220 Gly Gly Leu Gln Val Val Ile Asn Gly Leu Asn Ser Thr Glu Pro 230 235 Leu Val Lys Glu Tyr Ala Ala Phe Val Leu Gly Ala Ala Phe Ser Ser Asn Pro Lys Val Gln Val Glu Ala Ile Glu Gly Gly Ala Leu Gin Lys Leu Val Ile Leu Ala Thr Glu Gln Pro Leu Thr Ala 280

Lys Lys Val Leu Phe Ala Leu Cys Ser Leu Leu Arg His Phe

290 295 300 Pro Tyr Ala Gln Arg Gln Phe Leu Lys Leu Gly Gly Leu Gln Val Leu Arg Thr Leu Val Gln Glu Lys Gly Thr Glu Val Leu Ala Val Arg Val Val Thr Leu Leu Tyr Asp Leu Val Thr Glu Lys Met Phe 340 Ala Glu Glu Ala Glu Leu Thr Gln Glu Met Ser Pro Glu Lys 350 355 Leu Gln Gln Tyr Arg Gln Val His Leu Leu Pro Gly Leu Trp Glu 370 Gln Gly Trp Cys Glu Ile Thr Ala His Leu Leu Ala Leu Pro Glu 385 His Asp Ala Arg Glu Lys Val Leu Gln Thr Leu Gly Val Leu Leu 395 400 405 Thr Thr Cys Arg Asp Arg Tyr Arg Gln Asp Pro Gln Leu Gly Arg 410 415 Thr Leu Ala Ser Leu Gln Ala Glu Tyr Gln Val Leu Ala Ser Leu 425 430 Glu Leu Gln Asp Gly Glu Asp Glu Gly Tyr Phe Gln Glu Leu Leu 445 450 Gly Ser Val Asn Ser Leu Leu Lys Glu Leu Arg 455

<210> 302 <211> 2136

<212> DNA

<213> Homo sapiens

<400> 302

tteggettee gtagaggaag tggegeggae etteatttgg ggttteggtt 50
eeeeeeette eeetteeeeg gggtetgggg gtgacattge acegegeeee 100
tegtggggte gegttgeeae eeeaegegga eteeeeaget ggegegeeee 150
teeeatttge etgteetggt eaggeeeeea eeeeettee eacetgaeea 200
gecatggggg etgeggtgtt ttteggetge actttegteg egtteggeee 250
ggeettegeg ettteetga teaetgtgge tggggaeeeg ettegegta 300
teateetggt egeagggea ttttettgge tggteteeet geteetggee 350
tetgtggtet ggtteatett ggteeatgtg acegaeeggt eagatgeeeg 400
geteeagtae ggeeteetga tttttggtge tgetgtetet gteettetae 450
aggaggtgtt eegetttgee tactaeaage tgettaagaa ggeagatgaa 500
gggttageat egetgagtga ggaeggaaga teaeeeatet eeateegeea 550

gatggcctat gtttctggtc tctccttcgg tatcatcagt ggtgtcttct 600 ctgttatcaa tattttggct gatgcacttg ggccaggtgt ggttgggatc 650 catggagact caccetatta ettectgact teageettte tgacageage 700 cattatectg etecatacet tttggggagt tgtgttettt gatgeetgtg 750 agaggagacg gtactgggct ttgggcctgg tggttgggag tcacctactg 800 acatcgggac tgacattcct gaacccctgg tatgaggcca gcctgctgcc 850 catctatgca gtcactgttt ccatggggct ctgggccttc atcacagctg 900 gagggtccct ccgaagtatt cagcgcagcc tcttgtgtaa ggactgacta 950 cctggactga tcgcctgaca gatcccacct gcctgtccac tgcccatgac 1000 tgagcccagc cccagcccgg gtccattgcc cacattctct gtctccttct 1050 cgtcggtcta ccccactacc tccagggttt tgctttgtcc ttttgtgacc 1100 gttagtctct aagctttacc aggagcagcc tgggttcagc cagtcagtga 1150 ctggtgggtt tgaatctgca cttatcccca ccacctgggg acccccttgt 1200 tgtgtccagg actcccctg tgtcagtgct ctgctctcac cctgcccaag 1250 actcacctcc cttcccctct gcaggccgac ggcaggagga cagtcgggtg 1300 atggtgtatt ctgccctgcg catcccaccc gaggactgag ggaacctagg 1350 ggggacccct gggcctgggg tgccctcctg atgtcctcgc cctgtatttc 1400 tccatctcca gttctggaca gtgcaggttg ccaagaaaag ggacctagtt 1450 tagccattgc cctggagatg aaattaatgg aggctcaagg atagatgagc 1500 totgagtttc tcagtactcc ctcaagactg gacatcttgg tctttttctc 1550 aggcctgagg gggaaccatt tttggtgtga taaataccct aaactgcctt 1600 tttttctttt ttgaggtggg gggagggagg aggtatattg gaactcttct 1650 aacctccttg ggctatattt tctctcctcg agttgctcct catggctggg 1700 ctcatttcgg tccctttctc cttggtccca gaccttgggg gaaaggaagg 1750 aagtgcatgt ttgggaactg gcattactgg aactaatggt tttaacctcc 1800 ttaaccacca gcatccctcc tctccccaag gtgaagtgga gggtgctgtg 1850 gtgagetgge cactecagag etgeagtgee aetggaggag teagaetace 1900 atgacatcgt agggaaggag gggagatttt tttgtagttt ttaattgggg 1950 tgtgggaggg gcggggaggt tttctataaa ctgtatcatt ttctgctgag 2000 ggtggagtgt cccatccttt taatcaaggt gattgtgatt ttgactaata 2050 aaaaaaaaa aaaaaaaaa aaaaaaa aaaaaa 2136

<220>

```
<210> 303
<211> 247
<212> PRT
<213> Homo sapiens
<400> 303
 Met Gly Ala Ala Val Phe Phe Gly Cys Thr Phe Val Ala Phe Gly
 Pro Ala Phe Ala Leu Phe Leu Ile Thr Val Ala Gly Asp Pro Leu
 Arg Val Ile Ile Leu Val Ala Gly Ala Phe Phe Trp Leu Val Ser
                  35
 Leu Leu Leu Ala Ser Val Val Trp Phe Ile Leu Val His Val Thr
Asp Arg Ser Asp Ala Arg Leu Gln Tyr Gly Leu Leu Ile Phe Gly
 Ala Ala Val Ser Val Leu Leu Gln Glu Val Phe Arg Phe Ala Tyr
 Tyr Lys Leu Leu Lys Lys Ala Asp Glu Gly Leu Ala Ser Leu Ser
 Glu Asp Gly Arg Ser Pro Ile Ser Ile Arg Gln Met Ala Tyr Val
                 110
                                     115
 Ser Gly Leu Ser Phe Gly Ile Ile Ser Gly Val Phe Ser Val Ile
 Asn Ile Leu Ala Asp Ala Leu Gly Pro Gly Val Val Gly Ile His
 Gly Asp Ser Pro Tyr Tyr Phe Leu Thr Ser Ala Phe Leu Thr Ala
                                     160
 Ala Ile Ile Leu Leu His Thr Phe Trp Gly Val Val Phe Phe Asp
                                     175
 Ala Cys Glu Arg Arg Tyr Trp Ala Leu Gly Leu Val Val Gly
                 185
                                     190
 Ser His Leu Leu Thr Ser Gly Leu Thr Phe Leu Asn Pro Trp Tyr
Glu Ala Ser Leu Leu Pro Ile Tyr Ala Val Thr Val Ser Met Gly
                 215
Leu Trp Ala Phe Ile Thr Ala Gly Gly Ser Leu Arg Ser Ile Gln
                                     235
Arg Ser Leu Leu Cys Lys Asp
<210> 304
<211> 240
<212> DNA
<213> Homo sapiens
```

```
<221> unsure
<222> 108, 123, 126, 154, 198, 206, 217
<223> unknown base
<400> 304
 aagctggttt aaggaagcag aggagggtta gattcgttga gtgaggacgg 50
 aagatcaacc catttccatt ccgccagatg gcctatgttt ctggtctctc 100
 ccttcggnat catcagtggt gtnttntctg ttatcaatat tttggctgat 150
 gcanttgggc caggtgtggt tgggatccat ggagactcac cctattantt 200
 cctganttca gcctttntga cagcagccat tatcctgctc 240
<210> 305
<211> 378
<212> DNA
<213> Homo sapiens
<220>
<221> unsure
<222> 58, 94, 132, 186, 191, 220, 240, 248, 280, 311, 332
<223> unknown base
<400> 305
 gaccgaccgt tcagatgccc ggttccagta cggcttcctg atttttggtg 50
 ctgctgtntc tgtccttcta caggaggtgt tccgctttgc ctantacaag 100
 ctgcttaaga aggcagatga ggggttagca tngctgagtg aggacggaag 150
 atcacccatt tocatccgcc agatggccta tgtttntggt ntttccttcg 200
 gtatcatcag tggtgttttn tctgttatca atattttggn tgatgcantt 250
 gggccaggtg tggttgggat ccatggagan tcaccctatt aattcctgaa 300
 ttcagccttt ntgacagcag ccattatcct gntccatacc ttttggggag 350
 ttgtgttttt tgatgcctgt gagaggag 378
<210> 306
<211> 655
<212> DNA
<213> Homo sapiens
<220>
<221> unsure
<222> 1, 22, 129, 133, 184
<223> unknown base
<400> 306
ngttggagaa gtggcgcgga cnttcatttg gggtttcggt ttccccctt 50
 tecettteec eggggtetgg ggtgacattg caegggeece tegtggggte 100
 gcgttgccac cccacgcgga ctccccagnt gqngcqccct tcccatttqc 150
 ctgtcctggt caggccccca cccccttcc cacntgacca gccatggggg 200
 ctgcggtgtt tttcggctgc actttcgtcg cgttcggccc ggccttcgcg 250
```

```
cttttcttga tcactgtggc tggggacccg cttcgcgtta tcatcctggt 300
 egeaggggea tttttetgge tggteteeet geteetggee tetgtggtet 350
 ggttcatctt ggtccatgtg accgaccggt cagatgcccg gctccagtac 400
 ggcctcctga tttttggtqc tgctgtctct gtccttctac aggaggtgtt 450
 ccgctttgcc tactacaagc tgcttaagaa ggcagatqaq qqqttagcat 500
 cgctgagtga ggacggaaga tcacccatct ccatccgcca gatggcctat 550
 gtttctggtc tctccttcgg tatcatcagt ggtgtcttct ctgttatcaa 600
 tattttggct gatgcacttg ggccaggtgt ggttgggatc catggagact 650
 caccc 655
<210> 307
<211> 650
<212> DNA
<213> Homo sapiens
<220>
<221> unsure
<222> 52, 89, 128
<223> unknown base
<400> 307
 gtaaaagaaa gtggccggac cttcattggg gtttcggttc cccctttcc 50
 cnttccccgg ggtctggggg tgacattgca ccgcgcccnt cgtggggtcg 100
 cgttgccacc ccacgcggac tccccagntg gcgcgccct cccatttgcc 150
 tgtcctggtc aggccccac ccccttccc acctgaccag ccatgggggc 200
 tgcggtgttt ttcgggctgc actttcgtcg cgttcgggcc cggccttcgc 250
 gcttttcttg atcactgtgg ctggggaccc gcttcgcgtt atcatcctgg 300
 tegeagggge attittetgg etggtetece tgeteetgge etetgtggte 350
 tggttcatct tggtccatgt gaccgaccgg tcagatgccc ggctccagta 400
 cggcctcctg atttttggtg ctgctgtctc tgtccttcta caggaggtgt 450
 tccgctttgc ctactacaag ctgcttaaga aggcagatga ggggttagca 500
 tcgctgagtg aggacggaag atcacccatc tccatccgcc agatggccta 550
 tgtttctggt ctctccttcg gtatcatcag tggtgtcttc tctgttatca 600
 atattttggc tgatgcactt gggccaggtg tggttgggat ccatggagac 650
<210> 308
<211> 1570
<212> DNA
<213> Homo sapiens
<400> 308
```

gccccaggga gcagtgggtg gttataactc aggcccggtg cccagagccc 50

aggaggaggc agtggccagg aaggcacagg cctgagaagt ctgcggctga 100 gctgggagca aatcccccac cccctacctg ggggacaggg caagtgagac 150 ctggtgaggg tggctcagca ggcagggaag gagaggtgtc tgtgcgtcct 200 gcacccacat ctttctctgt ccctccttg ccctgtctgg aggctgctag 250 actectatet tetgaattet atagtgeetg ggteteageg cagtgeegat 300 ggtggcccgt ccttgtggtt cctctctacc tggggaaata aggtgcagcg 350 gccatggcta cagcaagacc cccctggatg tgggtgctct gtgctctgat 400 cacagoottg cttctggggg tcacagagca tgttctcgcc aacaatgatg 450 tttcctgtga ccacccctct aacaccgtgc cctctgggag caaccaggac 500 ctgggagctg gggccgggga agacgcccgg tcggatgaca gcagcagccg 550 catcatcaat ggatccgact gcgatatgca cacccagccg tggcaggccg 600 cgctgttgct aaggcccaac cagctctact gcggggcggt gttggtgcat 650 ccacagtggc tgctcacggc cgcccactgc aggaagaaag ttttcaqagt 700 ccgtctcggc cactactccc tgtcaccagt ttatgaatct gggcagcaga 750 tgttccaggg ggtcaaatcc atcccccacc ctggctactc ccaccctggc 800 cactctaacg acctcatgct catcaaactg aacagaagaa ttcgtcccac 850 taaagatgtc agacccatca acgteteete teattgteee tetgetggga 900 caaagtgctt ggtgtctggc tgggggacaa ccaagagccc ccaagtgcac 950 ttccctaagg tcctccagtg cttgaatatc agcgtgctaa gtcagaaaag 1000 gtgcgaggat gcttacccga gacagataga tgacaccatg ttctgcgccg 1050 gtgacaaagc aggtagagac teetgeeagg gtgattetgg ggggeetgtg 1100 gtctgcaatg gctccctgca gggactcgtg tcctggggag attacccttg 1150 tgcccggccc aacagaccgg gtgtctacac gaacctctgc aagttcacca 1200 agtggatcca ggaaaccatc caggccaact cctgagtcat cccaggactc 1250 agcacaccgg catccccacc tgctgcaggg acagccctga cactcctttc 1300 agacceteat teetteecag agatgttgag aatgtteate tetecageee 1350 ctgaccccat gtctcctgga ctcagggtct gcttccccca cattgggctg 1400 accgtgtctc tctagttgaa ccctgggaac aatttccaaa actgtccagg 1450 gegggggttg egteteaate teeetgggge acttteatee teaageteag 1500 ggcccatccc ttctctgcag ctctgaccca aatttagtcc cagaaataaa 1550 ctgagaagtg gaaaaaaaa 1570

<210> 309

<211> 293 <212> PRT <213> Homo sapiens

<400> 309 Met Ala Thr Ala Arg Pro Pro Trp Met Trp Val Leu Cys Ala Leu Ile Thr Ala Leu Leu Gly Val Thr Glu His Val Leu Ala Asn Asn Asp Val Ser Cys Asp His Pro Ser Asn Thr Val Pro Ser Gly Ser Asn Gln Asp Leu Gly Ala Gly Ala Gly Glu Asp Ala Arg Ser Asp Asp Ser Ser Ser Arg Ile Ile Asn Gly Ser Asp Cys Asp Met His Thr Gln Pro Trp Gln Ala Ala Leu Leu Arg Pro Asn Gln Leu Tyr Cys Gly Ala Val Leu Val His Pro Gln Trp Leu Leu Thr Ala Ala His Cys Arg Lys Lys Val Phe Arg Val Arg Leu Gly His Tyr Ser Leu Ser Pro Val Tyr Glu Ser Gly Gln Gln Met Phe Gln 130 Gly Val Lys Ser Ile Pro His Pro Gly Tyr Ser His Pro Gly His Ser Asn Asp Leu Met Leu Ile Lys Leu Asn Arg Arg Ile Arg Pro 155 160 165 Thr Lys Asp Val Arg Pro Ile Asn Val Ser Ser His Cys Pro Ser Ala Gly Thr Lys Cys Leu Val Ser Gly Trp Gly Thr Thr Lys Ser 190 Pro Gln Val His Phe Pro Lys Val Leu Gln Cys Leu Asn Ile Ser Val Leu Ser Gln Lys Arg Cys Glu Asp Ala Tyr Pro Arg Gln Ile Asp Asp Thr Met Phe Cys Ala Gly Asp Lys Ala Gly Arg Asp Ser 230 240 Cys Gln Gly Asp Ser Gly Gly Pro Val Val Cys Asn Gly Ser Leu Gln Gly Leu Val Ser Trp Gly Asp Tyr Pro Cys Ala Arg Pro Asn Arg Pro Gly Val Tyr Thr Asn Leu Cys Lys Phe Thr Lys Trp Ile 280 285 Gln Glu Thr Ile Gln Ala Asn Ser

```
<210> 310
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 310
tcctgtgacc acccctctaa cacc 24
<210> 311
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 311
ctggaacatc tgctgcccag attc 24
<210> 312
<211> 50
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 312
gtcggatgac agcagcagcc gcatcatcaa tggatccgac tgcgatatgc 50
<210> 313
<211> 3010
<212> DNA
<213> Homo sapiens
<400> 313
 atggtcaacg accggtggaa gaccatgggc ggcgctgccc aacttgagga 50
 ccggccgcgc gacaagccgc agcggccgag ctgcggctac gtgctgtgca 100
 ccgtgctgct ggccctggct gtgctgctgg ctgtagctgt caccggtgcc 150
 gtgctcttcc tgaaccacgc ccacgcgccg ggcacggcgc ccccacctgt 200
 cgtcagcact ggggctgcca gcgccaacag cgccctggtc actgtggaaa 250
 gggcggacag ctcgcacctc agcatcctca ttgacccgcg ctgccccgac 300
 ctcaccgaca gettegeacg cetggagage geceaggeet eggtgetgea 350
 ggcgctgaca gagcaccagg cccagccacg gctggtgggc gaccaggagc 400
 aggagetget ggacacgetg geegaceage tgeeeegget getggeeega 450
 gcctcagage tgcagacgga gtgcatgggg ctgcggaagg ggcatggcac 500
 gctgggccag ggcctcagcg ccctgcagag tgagcagggc cgcctcatcc 550
```

agettetete tgagageeag ggeeacatgg eteacetggt gaacteegte 600 agcgacatcc tggatgccct gcagagggac cgggggctgg gccggccccg 650 caacaaggee gacetteaga gagegeetge eeggggaace eggeeeeggg 700 gctgtgccac tggctcccgg ccccgagact gtctggacgt cctcctaagc 750 ggacagcagg acgatggcgt ctactctgtc tttcccaccc actacccggc 800 cggcttccag gtgtactgtg acatgcgcac ggacggcggc ggctggacgg 850 tgtttcagcg ccgggaggac ggctccgtga acttcttccg gggctgggac 900 gcgtaccgag acggctttgg caggctcacc ggggagcact ggctagggct 950 caagaggatc cacgccctga ccacacaggc tgcctacgag ctgcacgtgg 1000 acctggagga ctttgagaat ggcacggcct atgcccgcta cgggagcttc 1050 ggcgtgggct tgttctccgt ggaccctgag gaagacgggt acccgctcac 1100 egtggetgae tatteeggea etgeaggega eteceteetg aageaeageg 1150 gcatgaggtt caccaccaag gaccgtgaca gcgaccattc agagaacaac 1200 tgtgccgcct tctaccgcgg tgcctggtgg taccgcaact gccacacgtc 1250 caacctcaat gggcagtace tgcgcggtge gcacgcctcc tatgccgacg 1300 gcgtggagtg gtcctcctgg accggctggc agtactcact caagttctct 1350 gagatgaaga tooggooggt cogggaggac cgctagactg gtgcaccttg 1400 tecttggeec tgetggteec tgtegeecea teecegaece caceteacte 1450 tttcgtgaat gttctccacc cacctgtgcc tggcggaccc actctccagt 1500 agggagggc cgggccatcc ctgacacgaa gctccctggg ccggtgaagt 1550 cacacatege ettetegeeg tecceaecee etceatttgg cageteaetg 1600 atctcttgcc tctgctgatg ggggctggca aacttgacga ccccaactcc 1650 tgcctgcccc cactgtgact ccggtgctgt ttgccgtccc ctggccagga 1700 tggtggagtc tgccccaggc accetctgcc ctgcccggcc aaatacccgg 1750 cattatgggg acagagaca gggggcagac agcacccctg gagtcctcct 1800 agcagatcgt ggggaatgtc aggtctctct gaggtcaggt ctgaggccag 1850 tatectecag eceteceaat gecaaceee acceegttte eetggtgeee 1900 agagaaccca cctctccccc aagggcctca gcctggctgt gggctgggtg 1950 gccccatcct accaggccct gaggtcagga tggggagctg ctgcctttgg 2000 ggacccacgc tecaaggetg agaccagtte cetggaggee acceaecetg 2050 tgccccggca ggcctggggt ctgcagtcct cttacctgct gtgcccacct 2100 getetetgte teaaatgagg ceeaacceat ecceaccea geteceggee 2150

gtcctcctac ctggggcagc cggggctgcc atcccatttc tcctgcctct 2200 ggaaggtggg tggggccctg caccgtgggg ctggactgcg ctaatgggaa 2250 gctcttggtt ttctgggctg gggcctaggc agggctggga tgaggcttgt 2300 acaaccccca ccaccaattt cccagggact ccagggtcct gaggcctccc 2350 aggagggcct tgggggtgat gaccccttcc ctgaggtggc tgtctccatg 2400 aggaggecaa ceettgecat tgacegtgge caeetggace caggecagge 2450 ccggcccggc gagtggtcaa gggacaggga ccacctcacc gggcaaatgg 2500 ggtcgggggg actggggcac cagaccaggc accacctgga cactttcttg 2550 ttgaatcctc ccaacaccca gcacgctgtc atccccactc cttgtgtgca 2600 cacatgcaga ggtgagaccc gcaggctccc aggaccagca gccacaaggg 2650 cagggctgga gccgggtcct cagctgtctg ctcagcagcc ctggacccgc 2700 gtgcgttacg tcaggcccag atgcagggcg gcttttccaa ggcctcctga 2750 tggggggcctc cgaaagggct ggagtcagcc ttggggagct gcctagcagc 2800 ctctcctcgg gcaggagggg aggtggcttc ctccaaagga cacccgatgg 2850 caggtgccta gggggtgtgg ggttccgttc tcccttcccc tcccactgaa 2900 gtttgtgctt aaaaaacaat aaatttgact tggcaccact gggggttggt 2950 gggagaggcc gtgtgacctg gctctctgtc ccagtgccac caggtcatcc 3000 acatgcgcag 3010

<210> 314

<211> 461

<212> PRT

<213> Homo sapiens

<400> 314

Met Val Asn Asp Arg Trp Lys Thr Met Gly Gly Ala Ala Gln Leu $1 \hspace{1cm} 1 \hspace{1cm} 15$

Glu Asp Arg Pro Arg Asp Lys Pro Gln Arg Pro Ser Cys Gly Tyr 20 25 30

Val Leu Cys Thr Val Leu Leu Ala Leu Ala Val Leu Leu Ala Val 35 40 45

Ala Val Thr Gly Ala Val Leu Phe Leu Asn His Ala His Ala Pro 50 55 60

Gly Thr Ala Pro Pro Pro Val Val Ser Thr Gly Ala Ala Ser Ala 65 70 75

Asn Ser Ala Leu Val Thr Val Glu Arg Ala Asp Ser Ser His Leu 80 85 90

Ser Ile Leu Ile Asp Pro Arg Cys Pro Asp Leu Thr Asp Ser Phe 95 100 105

Ala Arg Leu Glu Ser Ala Gln Ala Ser Val Leu Gln Ala Leu Thr Glu His Gln Ala Gln Pro Arg Leu Val Gly Asp Gln Glu Gln Glu 130 125 Leu Leu Asp Thr Leu Ala Asp Gln Leu Pro Arg Leu Leu Ala Arg 140 145 Ala Ser Glu Leu Gln Thr Glu Cys Met Gly Leu Arg Lys Gly His Gly Thr Leu Gly Gln Gly Leu Ser Ala Leu Gln Ser Glu Gln Gly Arg Leu Ile Gln Leu Leu Ser Glu Ser Gln Gly His Met Ala His 185 190 Leu Val Asn Ser Val Ser Asp Ile Leu Asp Ala Leu Gln Arg Asp 200 205 Arg Gly Leu Gly Arg Pro Arg Asn Lys Ala Asp Leu Gln Arg Ala Pro Ala Arg Gly Thr Arg Pro Arg Gly Cys Ala Thr Gly Ser Arg Pro Arg Asp Cys Leu Asp Val Leu Leu Ser Gly Gln Gln Asp Asp Gly Val Tyr Ser Val Phe Pro Thr His Tyr Pro Ala Gly Phe Gln Val Tyr Cys Asp Met Arg Thr Asp Gly Gly Gly Trp Thr Val Phe 275 280 Gln Arg Arg Glu Asp Gly Ser Val Asn Phe Phe Arg Gly Trp Asp 290 295 Ala Tyr Arg Asp Gly Phe Gly Arg Leu Thr Gly Glu His Trp Leu 305 Gly Leu Lys Arg Ile His Ala Leu Thr Thr Gln Ala Ala Tyr Glu 320 325 Leu His Val Asp Leu Glu Asp Phe Glu Asn Gly Thr Ala Tyr Ala Arg Tyr Gly Ser Phe Gly Val Gly Leu Phe Ser Val Asp Pro Glu 350 355 Glu Asp Gly Tyr Pro Leu Thr Val Ala Asp Tyr Ser Gly Thr Ala 365 370 Gly Asp Ser Leu Leu Lys His Ser Gly Met Arg Phe Thr Thr Lys 385 Asp Arg Asp Ser Asp His Ser Glu Asn Asn Cys Ala Ala Phe Tyr 395 400 405 Arg Gly Ala Trp Trp Tyr Arg Asn Cys His Thr Ser Asn Leu Asn 410

```
Gly Gln Tyr Leu Arg Gly Ala His Ala Ser Tyr Ala Asp Gly Val
                   425
                                                           435
  Glu Trp Ser Ser Trp Thr Gly Trp Gln Tyr Ser Leu Lys Phe Ser
                   440
  Glu Met Lys Ile Arg Pro Val Arg Glu Asp Arg
                  455
                                       460
 <210> 315
 <211> 24
 <212> DNA
 <213> Artificial Sequence
 <220>
 <223> Synthetic oligonucleotide probe
<400> 315
 cacacgtcca acctcaatgg gcag 24
<210> 316
<21:1> 23
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probė
<400> 316
 gaccagcagg gccaaggaca agg 23
<210> 317
<211> 44
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 317
gttctctgag atgaagatcc ggccggtccg ggagtaccgc ttag 44
<210> 318
<211> 1841
<212> DNA
<213> Homo sapiens
<400> 318
gcagtcagag acttcccctg cccctcgctg ggaaagaaca ttaggaatgc 50
cttttagtgc cttgcttcct gaactagctc acagtagccc ggcggcccag 100
ggcaatccga ccacatttca ctctcaccgc tgtaggaatc cagatgcagg 150
ccaagtacag cagcacgagg gacatgctgg atgatgatgg ggacaccacc 200
atgageetge atteteaage etetgeeaca acteggeate cagageeceg 250
gcgcacagag cacagggctc cctcttcaac gtggcgacca gtggccctga 300
ccctgctgac tttgtgcttg gtgctgctga tagggctggc agccctgggg 350
cttttgtttt ttcagtacta ccagctctcc aatactggtc aagacaccat 400
```

```
ttctcaaatg gaagaaagat taggaaatac gtcccaagag ttgcaatctc 450
ttcaagtcca gaatataaag cttgcaggaa gtctgcagca tgtggctgaa 500
aaactctgtc gtgagctgta taacaaagct ggagcacaca ggtgcagccc 550
ttgtacagaa caatggaaat ggcatggaga caattgctac cagttctata 600
aagacagcaa aagttgggag gactgtaaat atttctgcct taqtgaaaac 650
tctaccatgc tgaagataaa caaacaagaa gacctggaat ttgccgcgtc 700
tcagagctac tctgagtttt tctactctta ttggacaggg cttttgcgcc 750
ctgacagtgg caaggectgg ctgtggatgg atggaacccc tttcacttct 800
gaactgttcc atattataat agatgtcacc agcccaaqaa qcaqaqactq 850
tgtggccatc ctcaatggga tgatcttctc aaaggactgc aaagaattga 900
agegttgtgt ctgtgagaga agggeaggaa tqqtgaagee agagageete 950
catgtccccc ctgaaacatt aggcgaaggt gactgattcg ccctctgcaa 1000
ctacaaatag cagagtgagc caggcggtgc caaagcaagg gctagttgag 1050
acattgggaa atggaacata atcaggaaag actatctctc tgactagtac 1100
aaaatgggtt ctcgtgtttc ctgttcagga tcaccagcat ttctgagctt 1150
gggtttatgc acgtatttaa cagtcacaag aagtcttatt tacatgccac 1200
caaccaacct cagaaaccca taatgtcatc tgccttcttg gcttagagat 1250
aacttttagc tototttott otcaatgtot aatatcacct coctgttttc 1300
atgtcttcct tacacttggt ggaataagaa actttttgaa gtagaggaaa 1350
tacattgagg taacatcctt ttctctqaca gtcaagtagt ccatcagaaa 1400
ttggcagtca cttcccagat tgtaccagca aatacacaag gaattctttt 1450
tgtttgtttc agttcatact agtcccttcc caatccatca gtaaagaccc 1500
catctgcctt gtccatgccg tttcccaaca gggatgtcac ttgatatgag 1550
aatctcaaat ctcaatqcct tataaqcatt ccttcctqtq tccattaaqa 1600
ctctgataat tgtctcccct ccataggaat ttctcccagg aaagaaatat 1650
atccccatct ccgtttcata tcagaactac cgtccccgat attcccttca 1700
gagagattaa agaccagaaa aaagtgagcc tetteatetg cacctgtaat 1750
agtttcagtt cctattttct tccattgacc catatttata cctttcaggt 1800
actgaagatt taataataat aaatgtaaat actgtgaaaa a 1841
```

<210> 319

<211> 280

<212> PRT

<213> Homo sapiens

<400> 319 Met Gln Ala Lys Tyr Ser Ser Thr Arg Asp Met Leu Asp Asp Asp Gly Asp Thr Thr Met Ser Leu His Ser Gln Ala Ser Ala Thr Thr Arg His Pro Glu Pro Arg Arg Thr Glu His Arg Ala Pro Ser Ser Thr Trp Arg Pro Val Ala Leu Thr Leu Leu Thr Leu Cys Leu Val Leu Leu Ile Gly Leu Ala Ala Leu Gly Leu Leu Phe Phe Gln Tyr Tyr Gln Leu Ser Asn Thr Gly Gln Asp Thr Ile Ser Gln Met Glu Glu Arg Leu Gly Asn Thr Ser Gln Glu Leu Gln Ser Leu Gln Val Gln Asn Ile Lys Leu Ala Gly Ser Leu Gln His Val Ala Glu Lys 115 120 Leu Cys Arg Glu Leu Tyr Asn Lys Ala Gly Ala His Arg Cys Ser Pro Cys Thr Glu Gln Trp Lys Trp His Gly Asp Asn Cys Tyr Gln 140 Phe Tyr Lys Asp Ser Lys Ser Trp Glu Asp Cys Lys Tyr Phe Cys 155 Leu Ser Glu Asn Ser Thr Met Leu Lys Ile Asn Lys Gln Glu Asp 170 175 Leu Glu Phe Ala Ala Ser Gln Ser Tyr Ser Glu Phe Phe Tyr Ser Tyr Trp Thr Gly Leu Leu Arg Pro Asp Ser Gly Lys Ala Trp Leu 200 205 Trp Met Asp Gly Thr Pro Phe Thr Ser Glu Leu Phe His Ile Ile 220 Ile Asp Val Thr Ser Pro Arg Ser Arg Asp Cys Val Ala Ile Leu 230 235 Asn Gly Met Ile Phe Ser Lys Asp Cys Lys Glu Leu Lys Arg Cys 250 Val Cys Glu Arg Arg Ala Gly Met Val Lys Pro Glu Ser Leu His Val Pro Pro Glu Thr Leu Gly Glu Gly Asp 275

<210> 320

<211> 468

<212> DNA

<213> Homo sapiens

```
<220>
<221> unsure
<222> 59, 95, 149, 331, 364, 438, 446
<223> unknown base
<400> 320
aattttcacc gctgtaggaa tccagatgca ggccaagtac agcagcacga 50
 gggacatgnt ggatgatgat gggacaccac catgagcctg cattntcaag 100
 cttttgccac aattcggcat ccagagcccc ggcgcacaga gcacagggnt 150
 cctttttcaa cgtggcgacc agtggccctg accctgctga ctttgtgctt 200
 ggtgctgctg atagggctgg cagccctqgg qcttttgttt tttcagtact 250
 accagetete caatactggt caagacacca ttteteaaat ggaagaaaga 300
 ttaggaaata cgtcccaaga gttgcaattt nttcaagtcc agaatataaa 350
 gcttgcagga agtntgcagc atgtggctga aaaactctgt cgtgagctgt 400
 ataacaaagc tggaggaact ttgaaggagg gcaaagtntc ctcatntact 450
 atacacaca cacttccc 468
<210> 321
<211> 23
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 321
atgcaggcca agtacagcag cac 23
<210> 322
<211> 23
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 322
catgctgacg acttcctgca agc 23
<210> 323
<211> 23
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 323
ccacacagtc tctgcttctt ggg 23
<210> 324
<211> 40
<212> DNA
<213> Artificial Sequence
```

```
<220>
<223> Synthetic oligonucleotide probe
<400> 324
atgctggatg atgatgggga caccaccatg agcctgcatt 40
<210> 325
<211> 2988
<212> DNA
<213> Homo sapiens
<400> 325
 gccgagcgca agaaccctgc gcagcccaga gcagctgctg gaggggaatc 50
 gaggegegge teeggggatt eggeteggge egetggetet getetgeggg 100
 gagggagcgg gcccgccgc ggggcccgag ccctccggat ccgcccctc 150
 cccggtcccg cccctcgga gactcctctg gctgctctgg gggttcgccg 200
 gggccgggga cccgcggtcc gggcgccatg cgggcatcgc tgctgctgtc 250
 ggtgctgcgg cccgcagggc ccgtggccgt gggcatctcc ctgggcttca 300
 ccctgagcct gctcagcgtc acctgggtgg aggagccgtg cggcccaggc 350
 ccgccccaac ctggagactc tgagctgccg ccgcgcggca acaccaacgc 400
 ggcgcgccgg cccaactcgg tgcagcccgg agcggagcgc gagaagcccg 450
 gggccggcga aggcgccggg gagaattggg agccgcgcgt cttgccctac 500
 caccetgeae ageeeggeea ggeegeeaaa aaggeegtea ggaeeegeta 550
 catcagcacg gagetgggca tcaggcagag getgetggtg geggtgetga 600
 cctctcagac cacgctgccc acgctgggcg tggccgtgaa ccgcacgctg 650
 gggcaccggc tggagcgtgt ggtgttcctg acgggcgcac ggggccgccg 700
 ggccccacct ggcatggcag tggtgacgct gggcgaggag cgacccattg 750
 gacacetgea cetggegetg egecacetge tggageagea eggegaegae 800
 tttgactggt tcttcctggt gcctgacacc acctacaccg aggcgcacgg 850
 cetggeaege etaactggee aceteageet ggeeteegee geeeaectgt 900
 acctgggccg gccccaggac ttcatcggcg gagagcccac ccccggccgc 950
 tactgccacg gaggetttgg ggtgctgctg tegegeatge tgctgcaaca 1000
 actgcgcccc cacctggaag gctgccgcaa cgacatcgtc agtgcgcgcc 1050
 ctgacgagtg gctgggtcgc tgcattctcg atgccaccgg ggtgggctgc 1100
 actggtgacc acgagggggt gcactatagc catctggagc tgagccctgg 1150
 ggagccagtg caggagggg acceteattt ccgaagtgcc ctgacagccc 1200
 accetgtgcg tgaccetgtg cacatgtace agetgcacaa agetttegee 1250
```

cgagctgaac tggaacgcac gtaccaggag atccaggagt tacagtggga 1300

gatccagaat accagccatc tggccgttga tggggaccgg gcagctgctt 1350 ggcccgtggg tattccagca ccatcccgcc cggcctcccg ctttgaggtg 1400 ctgcgctggg actacttcac ggagcagcac gctttctcct gcgccgatgg 1450 ctcaccccgc tgcccactgc gtggggctga ccgggctgat gtggccgatg 1500 ttctggggac agctctagag gagctgaacc gccgctacca cccggccttg 1550 cggctccaga agcagcagct ggtgaatggc taccgacgct ttgatccggc 1600 ccggggtatg gaatacacgc tggacttgca gctggaggca ctgaccccc 1650 agggaggccg ccggccctc actcgccgag tgcagctgct ccggccgctg 1700 agecgegtgg agatettgee tgtgeeetat gteaetgagg ceteaegtet 1750 cactgtgctg ctgcctctag ctgcggctga gcgtgacctg gcccctggct 1800 tcttggaggc ctttgccact gcagcactgg agcctggtga tgctgcggca 1850 geoetgaeee tgetgetaet gtatgageeg egeeaggeee agegegtgge 1900 ccatgcagat gtcttcgcac ctgtcaaggc ccacgtggca gagctggagc 1950 ggcgtttccc cggtgcccgg gtgccatggc tcagtgtgca gacagccgca 2000 ccctcaccac tgcgcctcat ggatctactc tccaagaagc acccgctgga 2050 cacactgttc ctgctggccg ggccagacac ggtgctcacg cctgacttcc 2100 tgaaccgctg ccgcatgcat gccatctccg gctggcaggc cttctttccc 2150 atgeatttee aageetteea eecaggtgtg geeceaceae aagggeetgg 2200 gcccccagag ctgggccgtg acactggccg ctttgatcgc caggcagcca 2250 gcgaggcctg cttctacaac tccgactacg tggcagcccg tgggcgcctg 2300 gcggcagcct cagaacaaga agaggagctg ctggagagcc tggatgtgta 2350 cgagctgttc ctccacttct ccagtctgca tgtgctgcgg gcggtggagc 2400 cggcgctgct gcagcgctac cgggcccaga cgtgcagcgc gaggctcagt 2450 gaggacctgt accaccgctg cctccagagc gtgcttgagg gcctcggctc 2500 ccgaacccag ctggccatgc tactctttga acaggagcag ggcaacagca 2550 cetgacecca ecetgteece gtgggeegtg geatggeeae acceeaece 2600 acttetecce caaaaccaga gecacetgee agestegetg ggcagggetg 2650 gccgtagcca gaccccaagc tggcccactg gtcccctctc tggctctgtg 2700 ggtccctggg ctctggacaa gcactggggg acgtgccccc agagccaccc 2750 acttctcatc ccaaacccag tttccctgcc ccctgacgct gctgattcgg 2800 gctgtggcct ccacgtattt atgcagtaca gtctgcctga cgccagccct 2850 gcctctgggc cctgggggct gggctgtaga agagttgttg gggaaggagg 2900

gagetgagga gggggeatet eccaacttet ecettttgga ecetgeegaa 2950 geteeetgee tttaataaac tggeeaagtg tggaaaaa 2988

<210> 326

<211> 775

<212> PRT

<213> Homo sapiens

<400> 326

Met Arg Ala Ser Leu Leu Ser Val Leu Arg Pro Ala Gly Pro
1 5 10 15

Val Ala Val Gly Ile Ser Leu Gly Phe Thr Leu Ser Leu Leu Ser 20 25 30

Val Thr Trp Val Glu Glu Pro Cys Gly Pro Gly Pro Pro Gln Pro 35 40 45

Gly Asp Ser Glu Leu Pro Pro Arg Gly Asn Thr Asn Ala Arg 50 55 60

Arg Pro Asn Ser Val Gln Pro Gly Ala Glu Arg Glu Lys Pro Gly
65 70 75

Ala Gly Glu Gly Ala Gly Glu Asn Trp Glu Pro Arg Val Leu Pro 80 85 90

Tyr His Pro Ala Gln Pro Gly Gln Ala Ala Lys Lys Ala Val Arg 95 100 105

Thr Arg Tyr Ile Ser Thr Glu Leu Gly Ile Arg Gln Arg Leu Leu 110 115 120

Val Ala Val Leu Thr Ser Gln Thr Thr Leu Pro Thr Leu Gly Val 125 130

Ala Val Asn Arg Thr Leu Gly His Arg Leu Glu Arg Val Val Phe \$140\$ \$150\$

Leu Thr Gly Ala Arg Gly Arg Arg Ala Pro Pro Gly Met Ala Val 155 160 165

Val Thr Leu Gly Glu Glu Arg Pro Ile Gly His Leu His Leu Ala 170 175 180

Leu Arg His Leu Leu Glu Gln His Gly Asp Asp Phe Asp Trp Phe 185 190 195

Phe Leu Val Pro Asp Thr Thr Tyr Thr Glu Ala His Gly Leu Ala 200 205 210

Arg Leu Thr Gly His Leu Ser Leu Ala Ser Ala Ala His Leu Tyr 215 220 225

Leu Gly Arg Pro Gln Asp Phe Ile Gly Gly Glu Pro Thr Pro Gly

Arg Tyr Cys His Gly Gly Phe Gly Val Leu Leu Ser Arg Met Leu 245 250 250

Leu Gln Gln Leu Arg Pro His Leu Glu Gly Cys Arg Asn Asp Ile 260 265 270

Val Ser Ala Arg Pro Asp Glu Trp Leu Gly Arg Cys Ile Leu Asp Ala Thr Gly Val Gly Cys Thr Gly Asp His Glu Gly Val His Tyr Ser His Leu Glu Leu Ser Pro Gly Glu Pro Val Gln Glu Gly Asp 305 310 Pro His Phe Arg Ser Ala Leu Thr Ala His Pro Val Arg Asp Pro 320 Val His Met Tyr Gln Leu His Lys Ala Phe Ala Arg Ala Glu Leu 340 Glu Arg Thr Tyr Gln Glu Ile Gln Glu Leu Gln Trp Glu Ile Gln Asn Thr Ser His Leu Ala Val Asp Gly Asp Arg Ala Ala Ala Trp 370 Pro Val Gly Ile Pro Ala Pro Ser Arg Pro Ala Ser Arg Phe Glu 385 Val Leu Arg Trp Asp Tyr Phe Thr Glu Gln His Ala Phe Ser Cys 395 Ala Asp Gly Ser Pro Arg Cys Pro Leu Arg Gly Ala Asp Arg Ala 415 Asp Val Ala Asp Val Leu Gly Thr Ala Leu Glu Glu Leu Asn Arg 430 Arg Tyr His Pro Ala Leu Arg Leu Gln Lys Gln Gln Leu Val Asn 440 Gly Tyr Arg Arg Phe Asp Pro Ala Arg Gly Met Glu Tyr Thr Leu Asp Leu Gln Leu Glu Ala Leu Thr Pro Gln Gly Gly Arg Arg Pro Leu Thr Arg Arg Val Gln Leu Leu Arg Pro Leu Ser Arg Val Glu 485 490 Ile Leu Pro Val Pro Tyr Val Thr Glu Ala Ser Arg Leu Thr Val 505 Leu Leu Pro Leu Ala Ala Glu Arg Asp Leu Ala Pro Gly Phe 515 520 Leu Glu Ala Phe Ala Thr Ala Ala Leu Glu Pro Gly Asp Ala Ala 530 Ala Ala Leu Thr Leu Leu Leu Tyr Glu Pro Arg Gln Ala Gln 550 555 Arg Val Ala His Ala Asp Val Phe Ala Pro Val Lys Ala His Val Ala Glu Leu Glu Arg Arg Phe Pro Gly Ala Arg Val Pro Trp Leu 575 585

```
Ser Val Gln Thr Ala Ala Pro Ser Pro Leu Arg Leu Met Asp Leu
                  590
  Leu Ser Lys Lys His Pro Leu Asp Thr Leu Phe Leu Leu Ala Gly
                  605
                                      610
  Pro Asp Thr Val Leu Thr Pro Asp Phe Leu Asn Arg Cys Arg Met
                  620
  His Ala Ile Ser Gly Trp Gln Ala Phe Phe Pro Met His Phe Gln
                                      640
 Ala Phe His Pro Gly Val Ala Pro Pro Gln Gly Pro Gly Pro Pro
                  650
                                      655
  Glu Leu Gly Arg Asp Thr Gly Arg Phe Asp Arg Gln Ala Ala Ser
 Glu Ala Cys Phe Tyr Asn Ser Asp Tyr Val Ala Ala Arg Gly Arg
                                      685
 Leu Ala Ala Ser Glu Gln Glu Glu Leu Leu Glu Ser Leu
 Asp Val Tyr Glu Leu Phe Leu His Phe Ser Ser Leu His Val Leu
 Arg Ala Val Glu Pro Ala Leu Leu Gln Arg Tyr Arg Ala Gln Thr
                                      730
 Cys Ser Ala Arg Leu Ser Glu Asp Leu Tyr His Arg Cys Leu Gln
                                      745
 Ser Val Leu Glu Gly Leu Gly Ser Arg Thr Glr Leu Ala Met Leu
 Leu Phe Glu Gln Glu Gln Gly Asn Ser Thr
<210> 327
<211> 24
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 327
 tggaaggctg ccgcaacgac aatc 24
<210> 328
<211> 20
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 328
ctgatgtggc cgatgttctq 20
<210> 329
<211> 20
```

```
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 329
 atggctcagt gtgcagacag 20
<210> 330
<211> 24
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 330
 gcatgctgct ccgtgaagta gtcc 24
<210> 331
<211> 24
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 331
 atgcatggga aagaaggcct gccc 24
<210> 332
<211> 47
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 332
 tgcactggtg accacgaggg ggtgcactat agccatctgg agctgag 47
<210> 333
<211> 1095
<212> DNA
<213> Homo sapiens
<400> 333
 gctctggccg gcccggcga ttggtcaccg cccgctagqq gacaqccctq 50
 gcctcctctg attggcaagc gctggccacc tccccacacc ccttgcgaac 100
 gctcccctag tggagaaaag gagtagctat tagccaattc ggcagggccc 150
 gctttttaga agcttgattt cctttgaaga tgaaagacta gcggaagctc 200
 tgcctctttc cccagtgggc gagggaactc ggggcgattg gctgggaact 250
gtatccaccc aaatgtcacc gatttcttcc tatgcaggaa atgagcagac 300
ccatcaataa gaaatttctc agcctggccg aaaatggttg gccccacgaa 350
gccacgacaa ctggaggcaa agagggttgc tcaacgcccc gcctcattgg 400
```

aaaaccaaat cagatetggg acctatatag cgtggcggag gcggggggat 450
gattgtcgcg ctcgcacca ctgcagctgc gcacagtcgc attcttcc 500
ccgcccctga gaccctgcag caccatctgt catggcggct gggctgtttg 550
gtttgagcgc tcgccgtctt ttggcggcag cggcgaccgc agggctcccg 600
gccgcccgcg tccgctggga atctagcttc tccaggactg tggtcgcccc 650
gtccgctgtg gcgggaaagc ggcccccaga accgaccaca ccgtggcaag 700
aggacccaga acccgaggac gaaaacttgt atgagaagaa cccagactcc 750
catggttatg acaaggacc cgttttggac gtctggaaca tgcgacttgt 800
cttcttcttt ggcgtctcca tcatcctggt ccttggcaag acctttgtgg 850
cctatctgcc tgactacagg atgaaagagt ggtcccgccg cgaagctgag 900
aggcttgtga aataccgaga ggccaatggc cttccatca tggaatccaa 950
ctgcttcgac cccagcaaga tccagcttcc ccacccctg cctgccattc 1050
tgacctcttc tcagagcacc taattaaagg ggctgaaagt ctgaa 1095

<210> 334

<211> 153

<212> PRT

<213> Homo sapiens

<400> 334

Met Ala Ala Gly Leu Phe Gly Leu Ser Ala Arg Arg Leu Leu Ala 1 5 10 15

Ala Ala Ala Thr Arg Gly Leu Pro Ala Ala Arg Val Arg Trp Glu 20 25 30

Ser Ser Phe Ser Arg Thr Val Val Ala Pro Ser Ala Val Ala Gly 35 40 45

Lys Arg Pro Pro Glu Pro Thr Thr Pro Trp Gln Glu Asp Pro Glu
50 55 60

Pro Glu Asp Glu Asn Leu Tyr Glu Lys Asn Pro Asp Ser His Gly 65 70 75

Tyr Asp Lys Asp Pro Val Leu Asp Val Trp Asn Met Arg Leu Val 80 85 90

Phe Phe Phe Gly Val Ser Ile Ile Leu Val Leu Gly Ser Thr Phe 95 100 105

Val Ala Tyr Leu Pro Asp Tyr Arg Met Lys Glu Trp Ser Arg Arg 110 115 120

Glu Ala Glu Arg Leu Val Lys Tyr Arg Glu Ala Asn Gly Leu Pro 125 130

Ile Met Glu Ser Asn Cys Phe Asp Pro Ser Lys Ile Gln Leu Pro 140 145 150 Glu Asp Glu

```
<210> 335
<211> 442
<212> DNA
<213> Homo sapiens
<400> 335
 ggcggctggg ctgtttggtt tgagcgctcg ccgtcttttg gcggcagcgg 50
 cgacgcgagg gctcccggcc gcccgcgtcc gctqqqaatc taqcttctcc 100
 aggactgtgg tcgccccgtc cgctgtggcg ggaaagcggc ccccagaacc 150
 gaccacaccg tggcaagagg acccagaacc cgaggacgaa aacttgtatg 200
 agaagaaccc agactcccat ggttatgaca aggaccccgt tttggacgtc 250
 tggaacatgc gacttgtctt cttctttggc gtctccatca tcctggtcct 300
 tggcagcacc tttgtggcct atctgcctga ctacaggatg aaagagtggt 350
 cccgccgcga agctgagagg cttgtgaaat accgagaggc caatggcctt 400
 cccatcatgg aatccaactg cttcgacccc agcaagatcc ag 442
<210> 336
<211> 23
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 336
 ctgagaccct gcagcaccat ctg 23
<210> 337
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 337
ggtgcttctt gagccccact tagc 24
<210> 338
<211> 40
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 338
aatctagctt ctccaggact gtggtcgccc cgtccgctgt 40
<210> 339
<211> 2162
<212> DNA
```

<400> 339 gcggcggcta tgccgcttgc tctgctcgtc ctgttgctcc tggggcccgg 50 cggctggtgc cttgcagaac ccccacgcga caqcctgcgg gaggaacttg 100 tcatcacccc gctgccttcc ggggacgtag ccgccacatt ccagttccgc 150 acgcgctggg attcggagct tcagcgggaa ggagtgtccc attacaggct 200 ctttcccaaa gccctqqqqc aqctqatctc caaqtattct ctacqqqaqc 250 tgcacctgtc attcacacaa ggcttttgga ggacccgata ctgggggcca 300 cccttcctgc aggccccatc aggtgcagag ctgtgggtct ggttccaaga 350 cactgtcact gatgtggata aatcttggaa ggaqctcagt aatgtcctct 400 cagggatett etgegeetet eteaaettea tegaeteeae eaacaeagte 450 acteceactg ceteetteaa acceetgggt etggecaatg acaetgacca 500 ctactttctg cgctatgctg tgctgccgcg ggaggtggtc tgcaccgaaa 550 acctcacccc ctggaagaag ctcttgccct gtagttccaa ggcaggcctc 600 tetgtgetge tgaaggeaga tegettgtte cacaccaget accactecca 650 ggcagtgcat atccgccctg tttgcagaaa tgcacgctgt actagcatct 700 cctgggagct gaggcagacc ctgtcagttq tatttgatqc cttcatcacq 750 gggcagggaa agaaagactg gtccctcttc cggatgttct cccgaaccct 800 cacggagece tgeceeetgg etteagagag eegagtetat gtggaeatea 850 ccacctacaa ccaggacaac gagacattag aggtgcaccc acccccgacc 900 actacatatc aggacgtcat cctaggcact cggaagacct atgccatcta 950 tgacttgctt gacaccgcca tgatcaacaa ctctcgaaac ctcaacatcc 1000 ageteaagtg gaagagaeee ecaqagaatg aggeeeece agtgeeette 1050 ctgcatgccc agcggtacgt gagtggctat gggctgcaga agggggagct 1100 gagcacactg ctgtacaaca cccacccata ccgggccttc ccggtgctgc 1150 tgctggacac cgtaccctgg tatctgcggc tgtatgtgca caccctcacc 1200 atcacctcca agggcaagga gaacaaacca agttacatcc actaccagcc 1250 tgcccaggac cggctgcaac cccacctcct ggagatgctg attcagctgc 1300 cggccaactc agtcaccaag gtttccatcc agtttgagcg ggcgctgctg 1350 aagtggaccg agtacacgcc agatcctaac catggcttct atgtcagccc 1400 atotytooto agogocotty tyccoagcat gytagcaqco aagocaqtqq 1450 actgggaaga gagtccctc ttcaacagcc tgttcccagt ctctgatggc 1500

tetaactact ttgtgegget etacaeggag cegetgetgg tgaacetgee 1550 gacaecggac tteageatge cetacaaegt gatetgeete aegtgeaetg 1600 tggtggeegt gtgetaegge teettetaea ateteeteae eegaaecette 1650 cacategagg ageceegeae aggtggeetg geeaagegge tggeeaaecet 1700 tateeggege geeegaggtg teeeceeaet etgattettg eeettteeag 1750 cagetgeage tgeegttet etetggggag gggageeeaa gggetgtte 1800 tgeeaettge teteeteag gttggettt gaaecaaagt geeetggaee 1850 aggteaggge etacagetgt gttgteeagt acaggageea egageeaaat 1900 gtggeatttg aatttgaatt aaettagaaa tteatteet eaeetggag tggeeaeete 1950 ggeeaeetet atattgaggt geteaataag eaaaagtggt eggtggetge 2000 tgtattggae ageaeagaaa aagatteea teaeeaeaga aaggtegget 2050 ggeageaetg geeaaggtga tggggtgte tacaeagtgt atgteaetg 2150 aaaaaaaaaa aa 2162

<210> 340 <211> 574

<212> PRT

<213> Homo sapiens

<400> 340

Met Pro Leu Ala Leu Leu Val Leu Leu Leu Gly Pro Gly Gly 1 5 10 10

Trp Cys Leu Ala Glu Pro Pro Arg Asp Ser Leu Arg Glu Glu Leu 20 25 30

Val Ile Thr Pro Leu Pro Ser Gly Asp Val Ala Ala Thr Phe Gln 35 40 45

Phe Arg Thr Arg Trp Asp Ser Glu Leu Gln Arg Glu Gly Val Ser 50 55

His Tyr Arg Leu Phe Pro Lys Ala Leu Gly Gln Leu Ile Ser Lys 65 70 75

Tyr Ser Leu Arg Glu Leu His Leu Ser Phe Thr Gln Gly Phe Trp 80 85 90

Arg Thr Arg Tyr Trp Gly Pro Pro Phe Leu Gln Ala Pro Ser Gly 95 100

Ala Glu Leu Trp Val Trp Phe Gln Asp Thr Val Thr Asp Val Asp 110 115 120

Lys Ser Trp Lys Glu Leu Ser Asn Val Leu Ser Gly Ile Phe Cys 125 130 135

Ala Ser Leu Asn Phe Ile Asp Ser Thr Asn Thr Val Thr Pro Thr 140 145 150

Ala Ser Phe Lys Pro Leu Gly Leu Ala Asn Asp Thr Asp His Tyr Phe Leu Arg Tyr Ala Val Leu Pro Arg Glu Val Val Cys Thr Glu 170 Asn Leu Thr Pro Trp Lys Lys Leu Leu Pro Cys Ser Ser Lys Ala 185 Gly Leu Ser Val Leu Leu Lys Ala Asp Arg Leu Phe His Thr Ser 200 Tyr His Ser Gln Ala Val His Ile Arg Pro Val Cys Arg Asn Ala Arg Cys Thr Ser Ile Ser Trp Glu Leu Arg Gln Thr Leu Ser Val Val Phe Asp Ala Phe Ile Thr Gly Gln Gly Lys Lys Asp Trp Ser 245 Leu Phe Arg Met Phe Ser Arg Thr Leu Thr Glu Pro Cys Pro Leu Ala Ser Glu Ser Arg Val Tyr Val Asp Ile Thr Thr Tyr Asn Gln Asp Asn Glu Thr Leu Glu Val His Pro Pro Pro Thr Thr Tyr 290 295 Gln Asp Val Ile Leu Gly Thr Arg Lys Thr Tyr Ala Ile Tyr Asp Leu Leu Asp Thr Ala Met Ile Asn Asn Ser Arg Asn Leu Asn Ile Gln Leu Lys Trp Lys Arg Pro Pro Glu Asn Glu Ala Pro Pro Val 335 Pro Phe Leu His Ala Gln Arg Tyr Val Ser Gly Tyr Gly Leu Gln 360 Lys Gly Glu Leu Ser Thr Leu Leu Tyr Asn Thr His Pro Tyr Arg 365 Ala Phe Pro Val Leu Leu Leu Asp Thr Val Pro Trp Tyr Leu Arg 385 Leu Tyr Val His Thr Leu Thr Ile Thr Ser Lys Gly Lys Glu Asn Lys Pro Ser Tyr Ile His Tyr Gln Pro Ala Gln Asp Arg Leu Gln Pro His Leu Leu Glu Met Leu Ile Gln Leu Pro Ala Asn Ser Val 430 Thr Lys Val Ser Ile Gln Phe Glu Arg Ala Leu Leu Lys Trp Thr Glu Tyr Thr Pro Asp Pro Asn His Gly Phe Tyr Val Ser Pro Ser 455 460

```
Val Leu Ser Ala Leu Val Pro Ser Met Val Ala Ala Lys Pro Val
                  470
                                       475
 Asp Trp Glu Glu Ser Pro Leu Phe Asn Ser Leu Phe Pro Val Ser
 Asp Gly Ser Asn Tyr Phe Val Arg Leu Tyr Thr Glu Pro Leu Leu
                  500
                                       505
 Val Asn Leu Pro Thr Pro Asp Phe Ser Met Pro Tyr Asn Val Ile
                  515
 Cys Leu Thr Cys Thr Val Val Ala Val Cys Tyr Gly Ser Phe Tyr
                  530
                                       535
                                                           540
 Asn Leu Leu Thr Arg Thr Phe His Ile Glu Glu Pro Arg Thr Gly
                  545
                                                           555
 Gly Leu Ala Lys Arg Leu Ala Asn Leu Ile Arg Arg Ala Arg Gly
                  560
                                      565
                                                           570
 Val Pro Pro Leu
<210> 341
<211> 24
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
·<400> 341
 tggacaccgt accctggtat ctgc 24
<210> 342
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<221> Artificial Sequence
<222> 1-24
<223> Synthetic oligonucleotide probe
<400> 342
 ccaactctga ggagagcaag tggc 24
<210> 343
<211> 44
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 343
 tgtatgtgca cacceteace ateaceteca agggeaagga gaac 44
<210> 344
<211> 762
<212> DNA
<213> Homo sapiens
```

<400> 344 caacatgggg tccagcagct tcttggtcct catggtgtct ctcgttcttg 50 tgaccctggt ggctgtggaa ggagttaaag agggtataga gaaagcaggg 100 gtttgcccag ctgacaacgt acgctgcttc aagtccgatc ctccccagtg 150 tcacacagac caggactgtc tgggggaaag gaagtgttgt tacctgcact 200 gtggcttcaa gtgtgtgatt cctgtgaagg aactggaaga aggaggaaac 250 aaggatgaag atgtgtcaag gccataccct gagccaggat gggaggccaa 300 gtgtccaggc tcctcctcta ccaggtgtcc tcagaaatga tgctgggtcc 350 tttctacctc tgggggtcac tctcacttgg cacctgcccc tgagggtcct 400 gagacttgga atatggaaga agcaataccc aaccccacca aagaaaacct 450 gagettgaag teetttteec caaaaagagg gaagagteac aaaaagteea 500 gaccccaqqq acqqtacttt ccctctctac ctqqtqctcc tccctaatqc 550 tcatgaatgg acccctcatg aatgaaacca gtgcccttat aagagacccc 600 aaagagetge ettgeeette tgeaatgtgt gateacaget agaaggeact 650 gtcagagaag agaaactggt cctcaccaga tgctgaatct gctggtgcct 700 tgatcttgga cttcccagcc tctagaactg taagaaataa atatttgctg 750 tttataatcc aa 762

<210> 345

<211> 111

<212> PRT

<213> Homo sapiens

<400> 345

Met Gly Ser Ser Ser Phe Leu Val Leu Met Val Ser Leu Val Leu $1 \hspace{1cm} 5 \hspace{1cm} 10 \hspace{1cm} 15$

Val Thr Leu Val Ala Val Glu Gly Val Lys Glu Gly Ile Glu Lys 20 25 30

Ala Gly Val Cys Pro Ala Asp Asn Val Arg Cys Phe Lys Ser Asp 35 40 45

Pro Pro Gln Cys His Thr Asp Gln Asp Cys Leu Gly Glu Arg Lys
50 55 60

Cys Cys Tyr Leu His Cys Gly Phe Lys Cys Val Ile Pro Val Lys
65 70 75

Glu Leu Glu Glu Gly Gly Asn Lys Asp Glu Asp Val Ser Arg Pro
80 85 90

Tyr Pro Glu Pro Gly Trp Glu Ala Lys Cys Pro Gly Ser Ser Ser 95 100 105

Thr Arg Cys Pro Gln Lys 110 <210> 346 <211> 2528 <212> DNA <213> Homo sapiens

<400> 346 aaactcagca cttgccggag tggctcattg ttaagacaaa gggtgtgcac 50 ttcctggcca ggaaacctga geggtgagac tcccagctgc ctacatcaag 100 gccccaggac atgcagaacc ttcctctaga acccgaccca ccaccatgag 150 qtcctqcctq tqqaqatqca qqcacctqaq ccaaqqcqtc caqtqqtcct 200 tgcttctggc tgtcctggtc ttctttctct tcqccttqcc ctcttttatt 250 aaggagcctc aaacaaagcc ttccaggcat caacgcacag agaacattaa 300 agaaaggtct ctacagtccc tggcaaagcc taagtcccag gcacccacaa 350 gggcgaggag gacaaccatc tatgcagagc cagcgccaga gaacaatgcc 400 ctcaacacac aaacccagcc caaggcccac accaccggag acagaggaaa 450 ggaggccaac caggcaccgc cggaggagca ggacaaggtg ccccacacag 500 cacagaggc agcatggaag agcccagaaa aagagaaaac catggtgaac 550 acactgtcac ccaqaqqqca aqatqcaqqq atqqcctctq qcaqqacaqa 600 ggcacaatca tggaagagcc aggacacaaa gacgacccaa ggaaatgggg 650 gccagaccag gaagctgacg gcctccagga cggtgtcaga gaagcaccag 700 ggcaaagcgg caaccacagc caagacgctc attcccaaaa gtcagcacag 750 aatgctggct cccacaggag cagtqtcaac aaggacgaga cagaaaggag 800 tgaccacage agteatecea ectaaggaga agaaacetea ggecaceeca 850 cccctgccc ctttccagag ccccacgacg cagagaaacc aaagactgaa 900 ggccgccaac ttcaaatctq agcctcqqtq qqattttqaq qaaaaataca 950 gcttcgaaat aggaggcctt cagacgactt gccctgactc tgtgaagatc 1000 aaagcctcca agtcgctgtg gctccagaaa ctctttctgc ccaacctcac 1050 tetetteetg gaeteeagae aetteaacea gagtgagtgg gaeegeetgg 1100 aacactttgc accaccettt ggetteatgg ageteaacta eteettggtg 1150 cagaaggtcg tgacacgctt ccctccagtg ccccagcagc agctgctcct 1200 ggccagcctc cccgctggga gcctccggtg catcacctgt gccgtggtgg 1250 gcaacggggg catcctgaac aactcccaca tgggccagga gatagacagt 1300 cacgactacg tgttccgatt gagcggagct ctcattaaag gctacgaaca 1350 ggatgtgggg actcggacat ccttctacgg ctttaccgcc ttctccctga 1400 cccagtcact ccttatattg ggcaatcggg gtttcaagaa cgtgcctctt 1450

gggaaggacg teegetactt geactteetg gaaggeacee gggactatga 1500 gtggctggaa gcactgctta tgaatcagac ggtgatgtca aaaaaccttt 1550 tetggtteag geacagaece caggaagett ttegggaage cetgeacatg 1600 gacaggtacc tgttgctgca cccagacttt ctccgataca tgaagaacag 1650 gtttctgagg tctaagaccc tqqatqqtqc ccactqqaqq atataccqcc 1700 ccaccactgg ggccctcctg ctgctcactg cccttcagct ctgtgaccag 1750 gtgagtgett atggetteat caetgaggge catgageget tttetgatea 1800 ctactatgat acatcatgga agcggctgat cttttacata aaccatgact 1850 tcaagctgga gagagaagtc tggaagcggc tacacgatga agggataatc 1900 eggetgtace agegteetgg teeeggaact gecaaageea agaactgace 1950 ggggccaggg ctgccatggt ctccttgcct gctccaaggc acaggataca 2000 gtgggaatct tgagactctt tggccatttc ccatggctca gactaagctc 2050 caagecette aggagtteea agggaacact tgaaccatgg acaagactet 2100 ctcaagatgg caaatggcta attgaggttc tgaagttctt cagtacattg 2150 ctgtaggtcc tgaggccagg gatttttaat taaatggggt gatggqtqqc 2200 caataccaca attcctgctg aaaaacactc ttccagtcca aaagcttctt 2250 gatacagaaa aaagaqcctg gatttacaga aacatataga tctggtttga 2300 attccagatc gagtttacag ttgtgaaatc ttgaaggtat tacttaactt 2350 cactacagat tgtctagaag acctttctag gagttatctg attctagaag 2400 ggtctatact tgtccttgtc tttaagctat ttgacaactc tacgtgttgt 2450 agaaaactga taataataca aatgattgtt gtccatggaa aggcaaataa 2500 attttctaca gtgaaaaaaa aaaaaaaa 2528

```
<210> 347
```

Lys Pro Lys Ser Gln Ala Pro Thr Arg Ala Arg Arg Thr Thr Ile

<211> 600

<212> PRT

<213> Homo sapiens

<400> 347

Met Arg Ser Cys Leu Trp Arg Cys Arg His Leu Ser Gln Gly Val 1 5 10 15

Gln Trp Ser Leu Leu Leu Ala Val Leu Val Phe Phe Leu Phe Ala 20 25 30

Leu Pro Ser Phe Ile Lys Glu Pro Gln Thr Lys Pro Ser Arg His 35 40 45

65 70 75

Tyr	Ala	Glu	Pro	Ala 80	Pro	Glu	Asn	Asn	Ala 85	Leu	Asn	Thr	Gln	Thr 90
Gln	Pro	Lys	Ala	His 95	Thr	Thr	Gly	Asp	Arg 100	Gly	Lys	Glu	Ala	Asn 105
Gln	Ala	Pro	Pro	Glu 110	Glu	Gln	Asp	Lys	Val 115	Pro	His	Thr	Ala	Gln 120
Arg	Ala	Ala	Trp	Lys 125	Ser	Pro	Glu	Lys	Glu 130	Lys	Thr	Met	Val	Asn 135
Thr	Leu	Ser	Pro	Arg 140	Gly	Gln	Asp	Ala	Gly 145	Met	Ala	Ser	Gly	Arg 150
Thr	Glu	Ala	Gln	Ser 155	Trp	Lys	Ser	Gln	Asp 160	Thr	Lys	Thr	Thr	Gln 165
Gly	Asn	Gly	Gly	Gln 170	Thr	Arg	Lys	Leu	Thr 175	Ala	Ser	Arg	Thr	Val 180
Ser	Glu	Lys	His	Gln 185	Gly	Lys	Ala	Ala	Thr 190	Thr	Ala	Lys	Thr	Leu 195
Ile	Pro	Lys	Ser	Gln 200	His	Arg	Met	Leu	Ala 205	Pro	Thr	Gly	Ala	Val 210
Ser	Thr	Arg	Thr	Arg 215	Gln	Lys	Gly	Val	Thr 220	Thr	Ala	Val	Ile	Pro 225
Pro	Lys	Glu	Lys	Lys 230	Pro	Gln	Ala	Thr	Pro 235	Pro	Pro	Ala	Pro	Phe 240
Gln	Ser	Pro	Thr	Thr 245	Gln	Arg	Asn	Gln	Arg 250	Leu	Lys	Ala	Ala	Asn 255
Phe	Lys	Ser	Glu	Pro 260	Arg	Trp	Asp	Phe	Glu 265	Glu	Lys	Tyr	Ser	Phe 270
Glu	Ile	Gly	Gly	Leu 275	Gln	Thr	Thr	Суз	Pro 280	Asp	Ser	Val	ГÀЗ	Ile 285
Lys	Ala	Ser	Lys	Ser 290	Leu	Trp	Leu	Gln	Lys 295	Leu	Phe	Leu	Pro	Asn 300
Leu	Thr	Leu	Phe	Leu 305	Asp	Ser	Arg	His	Phe 310	Asn	Gln	Ser	Glu	Trp 315
Asp	Arg	Leu	Glu	His 320	Phe	Ala	Pro	Pro	Phe 325	Gly	Phe	Met	Glu	Leu 330
Asn	Tyr	Ser	Leu	Val 335	Gln	Lys	Val	Val	Thr 340	Arg	Phe	Pro	Pro	Val 345
Pro	Gln	Gln	Gln	Leu 350	Leu	Leu	Ala	Ser	Leu 355	Pro	Ala	Gly	Ser	Leu 360
Arg	Cys	Ile	Thr	Cys 365	Ala	Val	Val	Gly	Asn 370	Gly	Gly	Ile	Leu	Asn 375
Asn	Ser	His	Met	Gly	Gln	Glu	Ile	Asp	Ser	His	Asp	Tyr	Val	Phe

385	390										
ty Tyr Glu Gln Asp Val	Gly										
400	405										
ar Ala Phe Ser Leu Thr	Gln										
415	420										
y Phe Lys Asn Val Pro	Leu										
430	435										
e Leu Glu Gly Thr Arg	Asp										
445	450										
et Asn Gln Thr Val Met	Ser										
460	465										
g Pro Gln Glu Ala Phe .	Arg										
475	480										
u Leu Leu His Pro Asp	Phe										
490	495										
u Arg Ser Lys Thr Leu :	Asp										
505	510										
o Thr Thr Gly Ala Leu :	Leu										
520	525										
p Gln Val Ser Ala Tyr (Gly										
535	540										
e Ser Asp His Tyr Tyr 1	Asp										
550	555										
r Ile Asn His Asp Phe I	Lys										
565	570										
u His Asp Glu Gly Ile I	[le										
580	585										
y Thr Ala Lys Ala Lys A	Asn										
595	500										
<210> 348 <211> 496 <212> DNA <213> Homo sapiens											
<400> 348 cgatgcgcgg acccgggcac cccctcctcc tggggctgct gctggtgctg 50											
gaaggacaag tttctaaaac accttacagg ccctctttat tttagtccaa 150											
agtgcagcaa acacttccat agactttatc acaacaccag agactgcacc 200											
	Tyr Glu Gln Asp Val. Ala Phe Ser Leu Thr Ala Phe Lys Asn Val Pro Asn Glu Gly Thr Arg At Asn Gln Thr Val Met Afo Glu Ala Phe Thr His Pro Asp Ago Ser Lys Thr Leu Sob Thr Thr Gly Ala Leu Sob Thr Thr Gly Ala Tyr Sob The Asn His Asp Phe This Asp Glu Gly Ile Thr Ala Lys Ala Lys Thr Ala Lys Ala Lys										

attectgeat actataaaag atgegeeagg ettettacee ggetggetgt 250 eagteeagtg tgeatggagg ataagtgage agacegtaca ggageageae 300

accaggagcc atgagaagtg ccttggaaac caacagggaa acagaactat 350

ctttatacac atcccctcat ggacaagaga tttatttttg cagacagact 400 cttccataag tcctttgagt tttgtatgtt gttgacagtt tgcagatata 450 tattcgataa atcagtgtac ttgacagtgt tatctgtcac ttattt 496

<210> 349

<211> 91

<212> PRT

<213> Homo sapiens

<400> 349

Met Arg Gly Pro Gly His Pro Leu Leu Leu Gly Leu Leu Val 1 5 10 15

Leu Gly Pro Ser Pro Glu Gln Arg Val Glu Ile Val Pro Arg Asp 20 25 30

Leu Arg Met Lys Asp Lys Phe Leu Lys His Leu Thr Gly Pro Leu 35 40 45

Tyr Phe Ser Pro Lys Cys Ser Lys His Phe His Arg Leu Tyr His
50 55 60

Asn Thr Arg Asp Cys Thr Ile Pro Ala Tyr Tyr Lys Arg Cys Ala
65 70 75

Arg Leu Leu Thr Arg Leu Ala Val Ser Pro Val Cys Met Glu Asp 80 85 90

Lys

<210> 350

<211> 1141

<212> DNA

<213> Homo sapiens

<400> 350

trettggga ggccgacc cggccgcgc cagccccac catgcaccc 100 gcggggctcc gccgggccgc gccgctcacc gcaatcgctc tgttggtgct 150 gggggctcc ctggtgctgg ccggcgagga ctgcctgtgg tacctggacc 200 ggaatggctc ctggcatccg gggtttaact gcgagttctt caccttctgc 250 tgcgggacct gctaccatcg gtactgctgc agggacctga ccttgcttat 300 caccgagagg cagcagaagc actgcctggc cttcagccc aagaccatag 350 caggcatcgc ctcagctgt atcctctttg ttgctgtgt tgccaccacc 400 atctgctgct tcctctgttc ctgttgctac ctgttgctac ctgttgctac ctgttgctac aggcacaga gcatccag gccagcagta tccaatgaca gcatccag 500 tgcagccagt atacccatac ccccaggacc ccaaagctgg ccctgcaccc 550 ccacagcctg gcttcatgta cccacctagt ggtcctgctc cccaatatcc 600

actetacea getggecce cagtetacaa ecetgeaget ecteeteet 650 atatgecace acageeetet taceegggag ectgaggaac cageeatgte 700 tetgetgece etteagtgat gecaacettg ggagatgece teateetgta 750 ectgeatetg gteetggggg tggeaggagt ecteeageea ecaggeeeea 800 gaccaageea ageeetggge ectactgggg acagageeee agggaagtgg 850 aacaggaget gaactagaac tatgaggggt tggggggagg gettggaatt 900 atgggetatt teaaatagt ecetetgete ecaagateee ageeaggaag 1000 getggggeee tactgttgt eceetetggg etggggtggg gggagggagg 1050 aggtteegte ageagetgge agtageeete etetetgget geeeeactgg 1100 ecacatetet ggeetgetag attaaagetg taaagacaaa a 1141

<210> 351 <211> 197 <212> PRT <213> Homo sapiens

<400> 351

Met Pro Pro Ala Gly Leu Arg Arg Ala Ala Pro Leu Thr Ala Ile 1 5 10 15

Ala Leu Leu Val Leu Gly Ala Pro Leu Val Leu Ala Gly Glu Asp 20 25 30

Cys Leu Trp Tyr Leu Asp Arg Asn Gly Ser Trp His Pro Gly Phe 35 40 45

Asn Cys Glu Phe Phe Thr Phe Cys Cys Gly Thr Cys Tyr His Arg
50 55 60

Tyr Cys Cys Arg Asp Leu Thr Leu Leu Ile Thr Glu Arg Gln Gln
65 70 75

Lys His Cys Leu Ala Phe Ser Pro Lys Thr Ile Ala Gly Ile Ala 80 85 90

Ser Ala Val Ile Leu Phe Val Ala Val Val Ala Thr Thr Ile Cys 95 100 105

Cys Phe Leu Cys Ser Cys Cys Tyr Leu Tyr Arg Arg Arg Gln Gln
110 115

Leu Gln Ser Pro Phe Glu Gly Gln Glu Ile Pro Met Thr Gly Ile 125 130 135

Pro Val Gln Pro Val Tyr Pro Tyr Pro Gln Asp Pro Lys Ala Gly 140 145 150

Pro Ala Pro Pro Gln Pro Gly Phe Met Tyr Pro Pro Ser Gly Pro 155 160 165

Ala Pro Gln Tyr Pro Leu Tyr Pro Ala Gly Pro Pro Val Tyr Asn 170 175 180

Pro Ala Ala Pro Pro Pro Tyr Met Pro Pro Gln Pro Ser Tyr Pro 185 190 195

Gly Ala

<210> 352 <211> 3226

<212> DNA

<213> Homo sapiens

<400> 352

gggggagcta ggccggcggc agtggtggtg gcggcggcgc aagggtgagg 50 gcggccccag aaccccaggt aggtagagca agaagatggt gtttctgccc 100 ctcaaatggt cccttgcaac catgtcattt ctactttcct cactgttggc 150 tetettaact gtgtecacte etteatggtg teagageact gaageatete 200 caaaacgtag tgatgggaca ccatttcctt ggaataaaat acgacttcct 250 gagtacgtca tcccagttca ttatgatctc ttgatccatg caaaccttac 300 cacgctgacc ttctggggaa ccacgaaagt agaaatcaca gccagtcagc 350 ccaccagcac catcatectg catagteacc acctgcagat atctagggcc 400 accetcagga agggagetgg agagaggeta teggaagaac ecctgeaggt 450 cctggaacac ccccctcagg agcaaattgc actgctggct cccgagcccc 500 teettgtegg geteeegtae acagttgtea tteactatge tggeaatett 550 tcggagactt tccacggatt ttacaaaagc acctacagaa ccaaggaagg 600 ggaactgagg atactagcat caacacaatt tgaacccact gcagctagaa 650 tggcctttcc ctgctttgat gaacctgcct tcaaagcaag tttctcaatc 700 aaaattagaa gagagccaag gcacctagcc atctccaata tgccattggt 750 gaaatctgtg actgttgctg aaggactcat agaagaccat tttgatgtca 800 ctgtgaagat gagcacctat ctggtggcct tcatcatttc agattttgag 850 totgtcagca agataaccaa gagtggagtc aaggtttctg tttatgctgt 900 gccagacaag ataaatcaag cagattatgc actggatgct gcggtgactc 950 ttctagaatt ttatgaggat tatttcagca taccgtatcc cctacccaaa 1000 caagatettg etgetattee egacttteag tetggtgeta tggaaaactg 1050 gggactgaca acatatagag aatctgctct gttgtttgat gcagaaaagt 1100 cttctgcatc aagtaagctt ggcatcacag tgactgtggc ccatgaactg 1150 gcccaccagt ggtttgggaa cctggtcact atggaatggt ggaatgatct 1200 ttggctaaat gaaggatttg ccaaatttat ggagtttgtg tctgtcagtg 1250 tgacccatcc tgaactgaaa gttggagatt atttctttgg caaatgtttt 1300

gacgcaatgg aggtagatgc tttaaattcc tcacaccctg tgtctacacc 1350 tgtggaaaat cctgctcaga tccgggagat gtttgatgat gtttcttatg 1400 ataagggagc ttgtattctg aatatgctaa gggagtatct tagcgctgac 1450 gcatttaaaa gtggtattgt acagtatctc cagaagcata gctataaaaa 1500 tacaaaaaac gaggacctgt gggatagtat ggcaagtatt tgccctacag 1550 atggtgtaaa agggatggat ggcttttgct ctagaagtca acattcatct 1600 tcatcctcac attggcatca ggaaggggtg gatgtgaaaa ccatgatgaa 1650 cacttggaca ctgcagaggg gttttcccct aataaccatc acagtgaggg 1700 ggaggaatgt acacatgaag caagagcact acatgaaggg ctctgacggc 1750 gccccggaca ctgggtacct gtggcatgtt ccattgacat tcatcaccag 1800 caaatccaac atggtccatc gatttttgct aaaaacaaaa acagatgtgc 1850 tcatcctccc agaagaggtg gaatggatca aatttaatgt gggcatgaat 1900 ggctattaca ttgtgcatta cgaggatgat ggatgggact ctttgactgg 1950 ccttttaaaa ggaacacaca cagcagtcag cagtaatgat cgggcaagtc 2000 tcattaacaa tgcatttcag ctcgtcagca ttgggaagct gtccattgaa 2050 aaggccttgg atttatccct gtacttgaaa catgaaactg aaattatgcc 2100 cgtgtttcaa ggtttgaatg agctgattcc tatgtataag ttaatggaga 2150 aaagagatat gaatgaagtg gaaactcaat tcaaggcctt cctcatcagg 2200 ctgctaaggg acctcattga taagcagaca tggacagacg agggctcagt 2250 ctcagagcaa atgctgcgga gtgaactact actcctcgcc tgtgtgcaca 2300 actatcagcc gtgcgtacag agggcagaag gctatttcag aaagtggaag 2350 gaatccaatg gaaacttgag cctgcctgtc gacgtgacct tggcagtgtt 2400 tgctgtgggg gcccagagca cagaaggctg ggattttctt tatagtaaat 2450 atcagttttc tttgtccagt actgagaaaa gccaaattga atttgccctc 2500 tgcagaaccc aaaataagga aaagcttcaa tggctactag atgaaagctt 2550 taagggagat aaaataaaaa ctcaggagtt tccacaaatt cttacactca 2600 ttggcaggaa cccagtagga tacccactgg cctggcaatt tctgaggaaa 2650 aactggaaca aacttgtaca aaagtttgaa cttggctcat cttccatagc 2700 ccacatggta atgggtacaa caaatcaatt ctccacaaga acacggcttg 2750 aagaggtaaa aggattette agetetttga aagaaaatgg tteteagete 2800 cgttgtgtcc aacagacaat tgaaaccatt gaagaaaaca tcggttggat 2850 ggataagaat tttgataaaa tcagagtgtg gctgcaaagt gaaaagcttg 2900

aacgtatgta aaaatteete eettgeeegg tteetgttat etetaateae 2950 caacattttg ttgagtgtat ttteaaacta gagatggetg ttttggetee 3000 aactggagat actttttee etteaactea ttttttgaet ateeetgtga 3050 aaagaatage tgttagttt teatgaatgg getttteat gaatgggeta 3100 tegetaeeat gtgtttgt eateaeggt gttgeeetge aacgtaaace 3150 caagtgttgg gtteeetgee acagaagaat aaagtaeett attettetea 3200 aaaaaaaaaa aaaaaaaaa aaaaaaaa 3226

<210> 353

<211> 941

<212> PRT

<213> Homo sapiens

<400> 353

Met Val Phe Leu Pro Leu Lys Trp Ser Leu Ala Thr Met Ser Phe 1 5 10 15

Leu Leu Ser Ser Leu Leu Ala Leu Leu Thr Val Ser Thr Pro Ser 20 25 30

Trp Cys Gln Ser Thr Glu Ala Ser Pro Lys Arg Ser Asp Gly Thr 35 40 45

Pro Phe Pro Trp Asn Lys Ile Arg Leu Pro Glu Tyr Val Ile Pro 50 55 60

Val His Tyr Asp Leu Leu Ile His Ala Asn Leu Thr Thr Leu Thr 65 70 75

Phe Trp Gly Thr Thr Lys Val Glu Ile Thr Ala Ser Gln Pro Thr 80 85 90

Ser Thr Ile Ile Leu His Ser His His Leu Gln Ile Ser Arg Ala 95 100 105

Thr Leu Arg Lys Gly Ala Gly Glu Arg Leu Ser Glu Glu Pro Leu 110 115 120

Gln Val Leu Glu His Pro Pro Gln Glu Gln Ile Ala Leu Leu Ala 125 130 135

Pro Glu Pro Leu Val Gly Leu Pro Tyr Thr Val Val Ile His 140 145 150

Tyr Ala Gly Asn Leu Ser Glu Thr Phe His Gly Phe Tyr Lys Ser 155 160 165

Thr Tyr Arg Thr Lys Glu Gly Glu Leu Arg Ile Leu Ala Ser Thr 170 175 180

Gln Phe Glu Pro Thr Ala Ala Arg Met Ala Phe Pro Cys Phe Asp 185 190 195

Glu Pro Ala Phe Lys Ala Ser Phe Ser Ile Lys Ile Arg Arg Glu 200 205 210

Pro Arg His Leu Ala Ile Ser Asn Met Pro Leu Val Lys Ser Val

				21	5				22	0				225
Th	r Va	l Al	a Glı	u Gl <u>s</u> 230	y Lei)	u Ile	e Gl	u Ası	р Ні: 23	s Ph	e Ası	o Va	l Th:	r Val 240
Lys	s Me	t Se	r Thi	r Ty:	r Let	ı Val	l Ala	a Phe	e Ile 250		e Se:	r Asj	p Phe	e Glu 255
Sei	r Vai	l Se	r Lys	3 Ile 260	Thi	c Lys	s Se	r Gly	y Vai 26	l Lys	s Val	l Sei	r Val	L Tyr 270
Alá	a Vai	l Pro	o Asp	275	s Ile	e Asr	n Glr	n Ala	a Asp 280		c Ala	a Lei	ı Asp	Ala 285
Ala	ı Val	l Th:	r Leu	1 Let 290	ı Glu	ı Phe	э Туз	r Glu	295	Э Туг Б	r Ph∈	e Sei	: Ile	Pro 300
Tyr	Pro) Lei	ı Pro	305	Gln	Asp	Leu	ı Ala	a Ala 310		e Pro	Asp	Phe	Gln 315
Ser	: Gly	/ Ala	a Met	Glu 320	Asn	Trp	Gl3	/ Leu	Thr 325	Thr	Туг	Arg	g Glu	Ser 330
Ala	. Leu	ı Leı	ı Phe	335	Ala	Glu	Lys	s Ser	Ser 340	Ala	Ser	Ser	Lys	Leu 345
Gly	Il∈	Thr	r Val	Thr 350	Val	Ala	His	Glu	Leu 355	Ala	His	Gln	Trp	Phe 360
Gly	Asn	let	ı Val	Thr 365	Met	Glu	Trp	Trp	370	Asp	Leu	Trp	Leu	Asn 375
Glu	Gly	Phe	e Ala	Lys 380	Phe	Met	Glu	. Phe	Val 385		Val	Ser	Val	Thr 390
			ı Leu	395					400					405
			Glu	410					415					420
			Glu	425					430					435
			Asp	440					445					450
			Ala	455					460					465
			Ser	470					475					480
			Ser	485					490					495
			Ser	500					505					510
			Gly	212					520			Thr	Trp	Thr 525
Leu	Gln	Ara	Gly	Phe	Pro	T.e11	TTe	Thr	Tla	ጥኮሎ	W-1	7) 20 00	C1	70

				53	0				535	5				540
Ası	n Val	l Hi	s Me	t Ly: 54:	s Gli 5	n Glı	ı His	з Ту	r Met 550	Lys	s Gly	y Se:	r Ası	o Gly 555
Ala	a Pro	Ası	p Thi	r Gly 560	у Туз Э	r Lei	ı Trp	o Hi:	s Val 565	l Pro) Le	ı Th:	r Phe	= Ile 570
Thr	Ser	: Ly:	s Sei	575	n Met	Val	L His	s Aro	g Phe 580		ı Leı	ı Lys	5 Thi	Lys 585
Thr	Asp	Val	l Leı	1 Ile 590	e Leu)	ı Pro	Glu	ı Glı	ı Val 595		Trp	o Ile	e Lys	Phe 600
Asn	Val	. Gl	y Met	605	ı Gly	7 Tyr	Туг	: Ile	Val		Туг	Glu	a Asp	Asp 615
Gly	Trp	Asp	Ser	620	ı Thr	Gly	/ Let	ı Leı	Lys 625		Thr	His	Thr	Ala 630
Val	Ser	Ser	Asn	Asp 635	Arg	, Ala	. Ser	Leu	Ile 640		Asn	Ala	Phe	Gln 645
Leu	Val	Ser	: Ile	650	Lys	Leu	Ser	: Ile	655	Lys	Ala	Lev	Asp	Leu 660
Ser	Leu	Tyr	Leu	Lys 665	His	Glu	Thr	Glu	1le 670		Pro	Val	Phe	Gln 675
Gly	Leu	Asn	Glu	Leu 680	Ile	Pro	Met	Tyr	Lys 685	Leu	Met	Glu	Lys	Arg 690
Asp	Met	Asn	Glu	Val 695	Glu	Thr	Gln	Phe	Lys 700	Ala	Phe	Leu	Ile	Arg 705
Leu	Leu	Arg	Asp	Leu 710	Ile	Asp	Lys	Gln	Thr 715	Trp	Thr	Asp	Glu	Gly 720
Ser	Val	Ser	Glu	Gln 725	Met	Leu	Arg	Ser	Glu 730	Leu	Leu	Leu	Leu	Ala 735
Cys	Val	His	Asn	Tyr 740	Gln	Pro	Cys	Val	Gln 745	Arg	Ala	Glu	Gly	Tyr 750
Phe	Arg	Lys	Trp	Lys 755	Glu	Ser	Asn	Gly	Asn 760	Leu	Ser	Leu	Pro	Val 765
Asp	Val	Thr	Leu	Ala 770	Val	Phe	Ala	Val	Gly 775	Ala	Gln	Ser	Thr	Glu 780
Gly	Trp	Asp	Phe	Leu 785	Tyr	Ser	Lys	Tyr	Gln 790	Phe	Ser	Leu	Ser	Ser 795
Thr	Glu	Lys	Ser	Gln 800	Ile	Glu	Phe	Ala	Leu 805	Cys	Arg	Thr	Gln	Asn 810
Lys	Glu	Lys	Leu	Gln 815	Trp	Leu	Leu	Asp	Glu 820	Ser	Phe	Lys	Gly	Asp 825
Lys	Ile	Lys	Thr	Gln 830	Glu	Phe	Pro	Gln	Ile 835	Leu	Thr	Leu	Ile	Gly 840
Arg	Asn	Pro	Val	Gly	Tyr	Pro	Leu	Ala	Trp	Gln	Phe	Leu	Arg	Lys

845 850 855 Asn Trp Asn Lys Leu Val Gln Lys Phe Glu Leu Gly Ser Ser Ser 860 865 870 Ile Ala His Met Val Met Gly Thr Thr Asn Gln Phe Ser Thr Arg 885 Thr Arg Leu Glu Glu Val Lys Gly Phe Phe Ser Ser Leu Lys Glu Asn Gly Ser Gln Leu Arg Cys Val Gln Gln Thr Ile Glu Thr Ile 905 910 915 Glu Glu Asn Ile Gly Trp Met Asp Lys Asn Phe Asp Lys Ile Arg 925 930 Val Trp Leu Gln Ser Glu Lys Leu Glu Arg Met

935

<210> 354 <211> 1587 <212> DNA

<213> Homo sapiens

<400> 354 cagccacaga cgggtcatga gcgcggtatt actgctggcc ctcctggggt 50 teatectece actgecagga gtgcaggege tgetetgeca gtttgggaca 100 gttcagcatg tgtggaaggt gtccgaccta ccccggcaat ggacccctaa 150 gaacaccagc tgcgacagcg gcttgqggtg ccaggacacg ttgatgctca 200 ttgagagcgg accccaagtg agcctggtgc tctccaaggg ctgcacggag 250 gccaaggace aggagceeeg egteactgag caceggatgg geeeeggeet 300 ctccctgatc tcctacacct tcgtgtgccg ccaggaggac ttctgcaaca 350 acctegttaa cteecteeeg etttgggeee caeageeeee ageagaeeea 400 ggatccttga ggtgcccagt ctgcttgtct atggaaggct gtctggaggg 450 gacaacagaa gagatctgcc ccaaggggac cacacactgt tatgatggcc 500 teeteagget caggggagga ggeatettet ceaatetgag agteeaggga 550 tgcatgcccc agccaggttg caacctgctc aatgggacac aggaaattgg 600 gcccgtgggt atgactgaga actgcaatag gaaagatttt ctgacctgtc 650 atogggggac caccattatg acacacggaa acttggctca agaacccact 700 gattggacca catcgaatac cgagatgtgc gaggtggggc aggtgtgtca 750 ggagacgctg ctgctcatag atgtaggact cacatcaacc ctggtgggga 800 caaaaggctg cagcactgtt ggggctcaaa attcccagaa gaccaccatc 850 cactcagece etectggggt gettgtggee teetataeec aettetgete 900 ctcqqacctq tqcaataqtq ccaqcaqcaq caqcqttctq ctqaactccc 950

tecetectea agetgeecet gteecaggag aceggeagtg tectacetgt 1000 gtgeagecee ttggaacetg tteaagtgge teececegaa tgacetgeee 1050 caggggegee acteattgtt atgatgggta catteatete teaggaggtg 1100 ggetgteeae caaaatgage atteaggget gegtggeeca acetteeage 1150 ttettgttga aceacaceag acaaateggg atetteetet eggetgagaa 1200 gegtgatgtg cageeteetg eeteteagea tgagggaggt ggggetgagg 1250 geetggagte teteacttgg ggggtggge tggeactgge eecagegetg 1300 tggtggggag tggtttgeee tteetgetaa etetatace eecaegatte 1350 tteacegetg etgaceacee acaeteaace teeetetgae eteataacet 1400 aatggeettg gacaceagat tetteeeat tetgteeatg aateatete 1450 eecaecacaa ateateata tetaeteace taacagcaac actggggag 1550 geetggagea teeggacttg eectatggga gaggggaege tggaggagtg 1550 geetggagea teeggacttg eectatggga gaggggaege tggaggagtg 1550 geetgcatgta tetgataata eagaeeetg eetttea 1587

<210> 355 <211> 437

<212> PRT

<213> Homo sapiens

<400> 355

Met Ser Ala Val Leu Leu Leu Ala Leu Leu Gly Phe Ile Leu Pro 1 5 10 15

Leu Pro Gly Val Gln Ala Leu Leu Cys Gln Phe Gly Thr Val Gln 20 25 30

His Val Trp Lys Val Ser Asp Leu Pro Arg Gln Trp Thr Pro Lys 35 40 45

Asn Thr Ser Cys Asp Ser Gly Leu Gly Cys Gln Asp Thr Leu Met 50 55 60

Leu Ile Glu Ser Gly Pro Gln Val Ser Leu Val Leu Ser Lys Gly 65 70 75

Cys Thr Glu Ala Lys Asp Gln Glu Pro Arg Val Thr Glu His Arg 80 85 90

Met Gly Pro Gly Leu Ser Leu Ile Ser Tyr Thr Phe Val Cys Arg 95 100 105

Gln Glu Asp Phe Cys Asn Asn Leu Val Asn Ser Leu Pro Leu Trp 110 115 120

Ala Pro Gln Pro Pro Ala Asp Pro Gly Ser Leu Arg Cys Pro Val 125 130

Cys Leu Ser Met Glu Gly Cys Leu Glu Gly Thr Thr Glu Glu Ile 140 $$145\$

Cys Pro Lys Gly Thr Thr His Cys Tyr Asp Gly Leu Leu Arg Leu

155 160 165

Arg Gly Gly Gly Ile Phe Ser Asn Leu Arg Val Gln Gly Cys Met 170 175 180

Pro Gln Pro Gly Cys Asn Leu Leu Asn Gly Thr Gln Glu Ile Gly 185 190 190

Pro Val Gly Met Thr Glu Asn Cys Asn Arg Lys Asp Phe Leu Thr 200 205 210

Cys His Arg Gly Thr Thr Ile Met Thr His Gly Asn Leu Ala Gln
215 220 225

Glu Pro Thr Asp Trp Thr Thr Ser Asn Thr Glu Met Cys Glu Val 230 235 240

Gly Gln Val Cys Gln Glu Thr Leu Leu Leu Ile Asp Val Gly Leu 245 250 255

Thr Ser Thr Leu Val Gly Thr Lys Gly Cys Ser Thr Val Gly Ala 260 265 270

Gln Asn Ser Gln Lys Thr Thr Ile His Ser Ala Pro Pro Gly Val 275 280 285

Leu Val Ala Ser Tyr Thr His Phe Cys Ser Ser Asp Leu Cys Asn 290 295 300

Ser Ala Ser Ser Ser Ser Val Leu Leu Asn Ser Leu Pro Pro Gln 305 310

Ala Ala Pro Val Pro Gly Asp Arg Gln Cys Pro Thr Cys Val Gln 320 325 330

Pro Leu Gly Thr Cys Ser Ser Gly Ser Pro Arg Met Thr Cys Pro 335

Arg Gly Ala Thr His Cys Tyr Asp Gly Tyr Ile His Leu Ser Gly 350 355

Gly Gly Leu Ser Thr Lys Met Ser Ile Gln Gly Cys Val Ala Gln 365 370 375

Pro Ser Ser Phe Leu Leu Asn His Thr Arg Gln Ile Gly Ile Phe 380 385 390

Ser Ala Arg Glu Lys Arg Asp Val Gln Pro Pro Ala Ser Gln His

Glu Gly Gly Gly Ala Glu Gly Leu Glu Ser Leu Thr Trp Gly Val 410 415 420

Gly Leu Ala Leu Ala Pro Ala Leu Trp Trp Gly Val Val Cys Pro 425 430 435

Ser Cys

<210> 356

<211> 1238

<212> DNA

<213> Homo sapiens

<400> 356 gcgacggca ggacgccccg ttcgcctagc gcgtgctcag gagttggtgt 50 cctgcctgcg ctcaggatga gggggaatct ggccctggtg ggcgttctaa 100 teagectgge ettectgtea etgetgeeat etggacatec teageegget 150 ggcgatgacg cctgctctgt gcagatcctc gtccctggcc tcaaagggga 200 tgcgggagag aagggagaca aaggcgcccc cggacggcct ggaagagtcg 250 gccccacggg agaaaaagga gacatggggg acaaaggaca gaaaggcagt 300 gtgggtcgtc atggaaaaat tggtcccatt ggctctaaag gtgagaaagg 350 agattccggt gacataggac cccctggtcc taatggagaa ccaggcctcc 400 catgtgagtg cagccagctg cgcaaggcca tcggggagat ggacaaccag 450 gtctctcagc tgaccagcga gctcaagttc atcaagaatg ctgtcgccgg 500 tgtgcgcgag acggagagca agatetacet gctggtgaag gaggagaagc 550 gctacgcgga cgcccagctg tcctgccagg gccgcggggg cacgctgagc 600 atgcccaagg acgaggetge caatggcctg atggccgcat acctggcgca 650 ageeggeetg geeegtgtet teateggeat caacgaeetg gagaaggagg 700 gcgccttcgt gtactctgac cactccccca tgcggacctt caacaagtgg 750 cqcaqcqqtq aqcccaacaa tqcctacqac qaqqaqqact qcqtqqaqat 800 ggtggcctcg ggcggctgga acgacgtggc ctgccacacc accatgtact 850 tcatgtgtga gtttgacaag gagaacatgt gagcctcagg ctggggctgc 900 ccattggggg ccccacatgt ccctgcaggg ttggcaggga cagagcccag 950 accatggtgc cagccaggga gctgtccctc tgtgaagggt ggaggctcac 1000 tgagtagagg gctgttgtct aaactgagaa aatggcctat gcttaagagg 1050 aaaatgaaag tgttcctggg gtgctgtctc tgaagaagca gagtttcatt 1100 acctgtattg tagccccaat gtcattatgt aattattacc cagaattgct 1150 cttccataaa gcttgtgcct ttgtccaagc tatacaataa aatctttaag 1200 tagtgcagta gttaagtcca aaaaaaaaa aaaaaaaa 1238

Phe Leu Ser Leu Leu Pro Ser Gly His Pro Gln Pro Ala Gly Asp 20 25 30

<210> 357

<211> 271

<212> PRT

<213> Homo sapiens

<400> 357

Met Arg Gly Asn Leu Ala Leu Val Gly Val Leu Ile Ser Leu Ala 1 5 10

```
Asp Ala Cys Ser Val Gln Ile Leu Val Pro Gly Leu Lys Gly Asp
Ala Gly Glu Lys Gly Asp Lys Gly Ala Pro Gly Arg Pro Gly Arg
Val Gly Pro Thr Gly Glu Lys Gly Asp Met Gly Asp Lys Gly Gln
Lys Gly Ser Val Gly Arg His Gly Lys Ile Gly Pro Ile Gly Ser
Lys Gly Glu Lys Gly Asp Ser Gly Asp Ile Gly Pro Pro Gly Pro
Asn Gly Glu Pro Gly Leu Pro Cys Glu Cys Ser Gln Leu Arg Lys
                 110
Ala Ile Gly Glu Met Asp Asn Gln Val Ser Gln Leu Thr Ser Glu
                                     130
                                                         135
Leu Lys Phe Ile Lys Asn Ala Val Ala Gly Val Arg Glu Thr Glu
                                     145
Ser Lys Ile Tyr Leu Leu Val Lys Glu Glu Lys Arg Tyr Ala Asp
                155
Ala Gln Leu Ser Cys Gln Gly Arg Gly Gly Thr Leu Ser Met Pro
                                     175
Lys Asp Glu Ala Ala Asn Gly Leu Met Ala Ala Tyr Leu Ala Gln
                185
                                     190
Ala Gly Leu Ala Arg Val Phe Ile Gly Ile Asn Asp Leu Glu Lys
                200
                                                         210
Glu Gly Ala Phe Val Tyr Ser Asp His Ser Pro Met Arg Thr Phe
Asn Lys Trp Arg Ser Gly Glu Pro Asn Asn Ala Tyr Asp Glu Glu
Asp Cys Val Glu Met Val Ala Ser Gly Gly Trp Asn Asp Val Ala
                245
                                    250
Cys His Thr Thr Met Tyr Phe Met Cys Glu Phe Asp Lys Glu Asn
```

Met

<210> 358

<211> 972

<212> DNA

<213> Homo sapiens

260

<400> 358

agtgactgca gccttcctag atcccctcca ctcggtttct ctctttgcag 50 gagcaccggc agcaccagtg tgtgagggga gcaggcagcg gtcctagcca 100 gttccttgat cctgccagac cacccagccc ccggcacaga gctgctccac 150

265

270

aggcaccatg aggatcatgc tgctattcac agccatcctg gccttcagcc 200 tagctcagag ctttggggct gtctgtaagg agccacagga ggaggtggtt 250 cctggcgggg gccgcagcaa gagggatcca gatctctacc agctgctcca 300 gagactette aaaageeact catetetgga gggattgete aaageeetga 350 gccaggctag cacagatcct aaggaatcaa catctcccga gaaacgtgac 400 atgcatgact tctttgtggg acttatgggc aagaggagcg tccagccaga 450 gggaaagaca ggacctttct taccttcagt gagggttcct cggccccttc 500 atcccaatca gcttggatcc acaggaaagt cttccctggg aacagaggag 550 cagagacett tataagaete teetaeggat gtgaateaag agaaegteee 600 cagetttgge atecteaagt ateceeegag ageagaatag gtacteeact 650 teeggaetee tggaetgeat taggaagaee tettteeetg teecaateee 700 caggtgcgca cgctcctgtt accctttctc ttccctgttc ttgtaacatt 750 cttgtgcttt gactccttct ccatcttttc tacctgaccc tggtgtggaa 800 actgcatagt gaatateece aaccecaatg ggcattgact gtagaatace 850 ctagagttcc tgtagtgtcc tacattaaaa atataatgtc tctctctatt 900 aaaaaaaaa aa 972

<210> 359

<211> 135

<212> PRT

<213> Homo sapiens

<400> 359

Met Arg Ile Met Leu Leu Phe Thr Ala Ile Leu Ala Phe Ser Leu 1 5 10 15

Ala Gln Ser Phe Gly Ala Val Cys Lys Glu Pro Gln Glu Glu Val 20 25 30

Val Pro Gly Gly Gly Arg Ser Lys Arg Asp Pro Asp Leu Tyr Gln
35 40 45

Leu Leu Gln Arg Leu Phe Lys Ser His Ser Ser Leu Glu Gly Leu
50 55 60

Leu Lys Ala Leu Ser Gln Ala Ser Thr Asp Pro Lys Glu Ser Thr 65 70 75

Ser Pro Glu Lys Arg Asp Met His Asp Phe Phe Val Gly Leu Met 80 85 90

Gly Lys Arg Ser Val Gln Pro Glu Gly Lys Thr Gly Pro Phe Leu 95

Pro Ser Val Arg Val Pro Arg Pro Leu His Pro Asn Gln Leu Gly 110 115 120

Ser Thr Gly Lys Ser Ser Leu Gly Thr Glu Glu Gln Arg Pro Leu 125 130 135

<210> 360

<211> 1738

<212> DNA

<213> Homo sapiens

<400> 360

gggcgtctcc ggctgctcct attgagctgt ctgctcgctg tgcccgctgt 50 gcctgctgtg cccgcgctgt cgccgctgct accgcgtctg ctggacgcgg 100 gagacgccag cgagctggtg attggagccc tgcggagagc tcaagcgccc 150 agetetgeee caggageeca ggetgeeeeg tgagteecat agttgetgea 200 ggagtggagc catgagctgc gtcctgggtg gtgtcatccc cttggggctg 250 ctgttcctgg tctgcggatc ccaaggctac ctcctgccca acgtcactct 300 cttagaggag ctgctcagca aataccagca caacgagtct cactcccggg 350 teegeagage cateeceagg gaggacaagg aggagateet catgetgeae 400 aacaagcttc ggggccaggt gcagcctcag gcctccaaca tggagtacat 450 ggtgagegee ggeteeggee geagaggetg geaeeggggg tggggeetgg 500 gccaccagcc tgctctgttc cccagccagc tctgttcccc agccagtgcg 550 tgtgatggct ggctcagggt ctcctctggc aggggaggat cccggctctg 600 ttctgttttg tttgtttgtt ttgagacagg gtctcactct gccactgacg 650 ctggagtgca atggcacaat cgtcatgccc tgaaacctta gactcccggg 700 gttaagcgat cctgcttcag cctcccaagt agctggaact acaggcatgc 750 accatggtgc ccagctagat tttaaatatt ttgtggagat gggggtcttg 800 ctacgttgcc caggctggtc ttgaactcct aggctcaagc aatcctcctg 850 cctcagcctc tcaaagtgct aggattatag gcatgagtca ccctgtctgg 900 ctctggctct gttcttaaca ttctgccaaa acaacacacg tgggttccct 950 gtgcagagec tgcctcgttg ccttcatgtc actcttggta gctccactgg 1000 gaacacaget etcageettt eccacetgga ggcagagtgg ggaggggeee 1050 agggctgggc tttgctgatg ctgatctcag ctgtgccaca cgctagctgc 1100 accaccctga cttctcctta gcccgtgtga gcctcacttt ccacttggag 1150 agtccttcct cgcgtggttg ccatgactgt gagataagtc gaggctgtga 1200 agggcccggc acagactgac ctgcctcccc aacccctagg ctttgctaac 1250 cgggaaagga gctaacggtg acagaagaca gccaaggtca accctcccgg 1300 gtgattgtga tgggtgttcc aggtgtggtt gggcgatgct gctacttgac 1350

cccaagctcc agtgtggaaa cttecttect ggetggttt ccagaactac 1400 agagggaatgg accacagtet tecagggtee etectegtee accaaceggg 1450 agectecace ttggccatee gteagetatg aatggettt taaacaaace 1500 cacgteccag cetgggtaac atggtaaage ecegteteta caaaaaaate 1550 caagttagee gggcatggt gtggegetgg agetgagga ggaggatege 1600 actgaggtgg aggtggg aggtgggaa ggaggatege 1650 ttgageetgg gtgacagag etgcagtgg ctgaagatg accactgcac 1700 tecageetgg gtgacagag aagaceetgt etcaaaaa 1738

<210> 361

<211> 159

<212> PRT

<213> Homo sapiens

<400> 361

Met Ser Cys Val Leu Gly Gly Val Ile Pro Leu Gly Leu Leu Phe 1 5 10 15

Leu Val Cys Gly Ser Gln Gly Tyr Leu Leu Pro Asn Val Thr Leu 20 25 30

Leu Glu Glu Leu Leu Ser Lys Tyr Gln His Asn Glu Ser His Ser 35 40 45

Arg Val Arg Arg Ala Ile Pro Arg Glu Asp Lys Glu Glu Ile Leu
50 55 60

Met Leu His Asn Lys Leu Arg Gly Gln Val Gln Pro Gln Ala Ser 65 70 75

Asn Met Glu Tyr Met Val Ser Ala Gly Ser Gly Arg Arg Gly Trp 80 85 90

His Arg Gly Trp Gly Leu Gly His Gln Pro Ala Leu Phe Pro Ser 95 100 105

Gln Leu Cys Ser Pro Ala Ser Ala Cys Asp Gly Trp Leu Arg Val 110 115 120

Ser Ser Gly Arg Gly Gly Ser Arg Leu Cys Ser Val Leu Phe Val 125 130 135

Cys Phe Glu Thr Gly Ser His Ser Ala Thr Asp Ala Gly Val Gln
140 145 150

Trp His Asn Arg His Ala Leu Lys Pro 155

<210> 362

<211> 422

<212> DNA

<213> Homo sapiens

<400> 362

aaggagagge caccgggact tcagtgtctc ctccatccca ggagcgcagt 50

ggacactatg gggtetggge tgececttgt cetectettg accetecttg 100 gcageteaca tggaacaggg cegggtatga etttgeaact gaagetgaag 150 gagtettte tgacaaatte etectatgag teeagettee tggaattget 200 tgaaaagete tgeeteece teeateteec tteagggace agegteaece 250 teeaceatge aagateteaa eaceatgttg tetgeaacae atgacageca 300 ttgaageetg tgteettett ggeeeggget tttgggeegg ggatgeagga 350 ggeaggeece gaceetgtet tteageagge eeceaecete etgagtgea 400 ataaataaaa tteggtatge tg 422

<210> 363

<211> 78

<212> PRT

<213> Homo sapiens

<400> 363

Met Gly Ser Gly Leu Pro Leu Val Leu Leu Leu Thr Leu Leu Gly 1 5 10 15

Ser Ser His Gly Thr Gly Pro Gly Met Thr Leu Gln Leu Lys Leu 20 25 30

Lys Glu Ser Phe Leu Thr Asn Ser Ser Tyr Glu Ser Ser Phe Leu 35 40 45

Glu Leu Leu Glu Lys Leu Cys Leu Leu Leu His Leu Pro Ser Gly 50 55 60

Thr Ser Val Thr Leu His His Ala Arg Ser Gln His His Val Val
65 70 75

Cys Asn Thr

<210> 364

<211> 826

<212> DNA

<213> Homo sapiens

<400> 364

caagtgagtg ttaccttttc acttagtagg atgtgttgtt acgctagtaa 500 aatagaaacc tgtgtttatt ctcaggtatt ttagaaacaa cagccatcat 550 tttattttat gtgtgtgttc ttggctgtat tcataaatta tatattttgg 600 gctatcaaat attacttcat tcaatataaa taacaatagt agaagttgtt 650 tacttagata tgctttctag ttgcattttc tcagcctatg taagactact 700 ttgttgtaat agcctttgaa atttacagta ctgtctctct actatcttca 750 gattacttga ttcaaataaa ccaattatgt ttgtaattga tattaataaa 800 accagaataa aagttcatat ctaccc 826

<210> 365

<211> 67

<212> PRT

<213> Homo sapiens

<400> 365

Met Ile Gly Tyr Tyr Leu Ile Leu Phe Leu Met Trp Gly Ser Ser

Thr Val Phe Cys Val Leu Leu Ile Phe Thr Ile Ala Glu Ala Ser 20 25

Phe Ser Val Glu Asn Glu Cys Leu Val Asp Leu Cys Leu Leu Arg

Ile Cys Tyr Lys Leu Ser Gly Val Pro Asn Gln Cys Arg Val Pro

Leu Pro Ser Asp Cys Ser Lys

<210> 366

<211> 2475

<212> DNA

<213> Homo sapiens

<400> 366

gaggatttgc cacagcagcg gatagagcag gagagcacca ccggagccct 50 tgagacatcc ttgagaagag ccacagcata agagactgcc ctgcttggtg 100 ttttgcagga tgatggtggc ccttcgagga gcttctgcat tgctggttct 150 gttccttgca gcttttctgc ccccgccgca gtgtacccag gacccagcca 200 tggtgcatta catctaccag cgctttcgag tcttggagca agggctggaa 250 aaatgtaccc aagcaacgag ggcatacatt caagaattcc aagagttctc 300 aaaaaatata totgtoatgo tgggaagatg toagacotac acaagtgagt 350 acaagagtgc agtgggtaac ttggcactga gagttgaacg tgcccaacgg 400 gagattgact acatacaata ccttcgagag gctgacgagt gcatcgtatc 450 agaggacaag acactggcag aaatgttgct ccaagaagct gaagaagaga 500

aaaagatccg gactctgctg aatgcaagct gtgacaacat gctgatgggc 550 ataaagtett tgaaaatagt gaagaagatg atggacacae atggetettg 600 gatgaaagat gctgtctata actctccaaa ggtgtactta ttaattggat 650 ccagaaacaa cactgtttgg gaatttgcaa acatacgggc attcatggag 700 gataacacca agccagctcc ccggaagcaa atcctaacac tttcctggca 750 gggaacaggc caagtgatct acaaaggttt tctatttttt cataaccaag 800 caacttctaa tgagataatc aaatataacc tgcagaagag gactgtggaa 850 gatcgaatgc tgctcccagg aggggtaggc cgagcattgg tttaccagca 900 ctccccctca acttacattg acctggctgt ggatgagcat gggctctggg 950 ccatccactc tgggccaggc acccatagcc atttggttct cacaaagatt 1000 gageegggea caetgggagt ggageattea tgggatacee catgeagaag 1050 ccaggatget gaageeteat teetettgtg tggggttete tatgtggtet 1100 acagtactgg gggccagggc cctcatcgca tcacctgcat ctatgatcca 1150 ctgggcacta tcagtgagga ggacttgccc aacttgttct tccccaagag 1200 accaagaagt cactccatga tccattacaa ccccagagat aagcagctct 1250 atgcctggaa tgaaggaaac cagatcattt acaaactcca gacaaagaga 1300 aagctgcctc tgaagtaatg cattacagct gtgagaaaga gcactgtggc 1350 tttggcaget gttctacagg acagtgagge tatageceet tcacaatata 1400 gtatccctct aatcacaca aggaagagtg tgtagaagtg gaaatacgta 1450 tgcctccttt cccaaatgtc actgccttag gtatcttcca agagcttaga 1500 tgagagcata tcatcaggaa agtttcaaca atgtccatta ctcccccaaa 1550 cctcctggct ctcaaggatg accacattct gatacagcct acttcaagcc 1600 ttttgtttta ctgctcccca gcatttactg taactctgcc atcttccctc 1650 ccacaattag agttgtatgc cagcccctaa tattcaccac tggcttttct 1700 ctcccctggc ctttgctgaa gctcttccct ctttttcaaa tgtctattga 1750 tattctccca ttttcactgc ccaactaaaa tactattaat atttctttct 1800 tttcttttct tttttttgag acaaggtctc actatgttgc ccaggctggt 1850 ctcaaactcc agagctcaag agatcctcct gcctcagcct cctaagtacc 1900 tgggattaca ggcatgtgcc accacacctg gcttaaaata ctatttctta 1950 ttgaggttta acctetattt cecetageee tgteetteea etaagettgg 2000 tagatgtaat aataaagtga aaatattaac atttgaatat cgctttccag 2050 gtgtggagtg tttgcacatc attgaattct cgtttcacct ttgtgaaaca 2100

tgcacaagtc tttacagctg tcattctaga gtttaggtga gtaacacaat 2150 tacaaagtga aagatacagc tagaaaatac tacaaatccc atagttttc 2200 cattgcccaa ggaagcatca aatacgtatg tttgttcacc tactcttata 2250 gtcaatgcgt tcatcgtttc agcctaaaaa taatagtctg tccctttagc 2300 cagttttcat gtctgcacaa gacctttcaa taggcctttc aaatgataat 2350 tcctccagaa aaccagtcta agggtgagga ccccaactct agcctcctct 2400 tgtcttgctg tcctctgttt ctctctttct gctttaaatt caataaaagt 2450 gacactgagc aaaaaaaaaa aaaaa 2475

<210> 367 <211> 402

<212> PRT

<213> Homo sapiens

<400> 367

Met Met Val Ala Leu Arg Gly Ala Ser Ala Leu Leu Val Leu Phe
1 5 10 15

Leu Ala Ala Phe Leu Pro Pro Gln Cys Thr Gln Asp Pro Ala

Met Val His Tyr Ile Tyr Gln Arg Phe Arg Val Leu Glu Gln Gly

Leu Glu Lys Cys Thr Gln Ala Thr Arg Ala Tyr Ile Gln Glu Phe 50 60

Gln Glu Phe Ser Lys Asn Ile Ser Val Met Leu Gly Arg Cys Gln
65 70 75

Thr Tyr Thr Ser Glu Tyr Lys Ser Ala Val Gly Asn Leu Ala Leu 80 85 90

Arg Val Glu Arg Ala Gln Arg Glu Ile Asp Tyr Ile Gln Tyr Leu 95 100 105

Arg Glu Ala Asp Glu Cys Ile Val Ser Glu Asp Lys Thr Leu Ala 110 115 120

Glu Met Leu Gln Glu Ala Glu Glu Glu Lys Lys Ile Arg Thr 125 130 135

Leu Leu Asn Ala Ser Cys Asp Asn Met Leu Met Gly Ile Lys Ser 140 145

Leu Lys Ile Val Lys Lys Met Met Asp Thr His Gly Ser Trp Met 155 160 165

Lys Asp Ala Val Tyr Asn Ser Pro Lys Val Tyr Leu Leu Ile Gly 170 175

Ser Arg Asn Asn Thr Val Trp Glu Phe Ala Asn Ile Arg Ala Phe 185 190

Met Glu Asp Asn Thr Lys Pro Ala Pro Arg Lys Gln Ile Leu Thr 200 205 210

```
Leu Ser Trp Gln Gly Thr Gly Gln Val Ile Tyr Lys Gly Phe Leu
                215
                                     220
Phe Phe His Asn Gln Ala Thr Ser Asn Glu Ile Ile Lys Tyr Asn
                                     235
Leu Gln Lys Arg Thr Val Glu Asp Arg Met Leu Leu Pro Gly Gly
Val Gly Arg Ala Leu Val Tyr Gln His Ser Pro Ser Thr Tyr Ile
                260
                                     265
Asp Leu Ala Val Asp Glu His Gly Leu Trp Ala Ile His Ser Gly
                275
                                     280
                                                          285
Pro Gly Thr His Ser His Leu Val Leu Thr Lys Ile Glu Pro Gly
                290
                                     295
Thr Leu Gly Val Glu His Ser Trp Asp Thr Pro Cys Arg Ser Gln
                305
                                     310
Asp Ala Glu Ala Ser Phe Leu Leu Cys Gly Val Leu Tyr Val Val
                                     325
Tyr Ser Thr Gly Gly Gln Gly Pro His Arg Ile Thr Cys Ile Tyr
                33<del>5</del>
Asp Pro Leu Gly Thr Ile Ser Glu Glu Asp Leu Pro Asn Leu Phe
                350
                                     355
                                                          360
Phe Pro Lys Arg Pro Arg Ser His Ser Met Ile His Tyr Asn Pro
                                     370
Arg Asp Lys Gln Leu Tyr Ala Trp Asn Glu Gly Asn Gln Ile Ile
Tyr Lys Leu Gln Thr Lys Arg Lys Leu Pro Leu Lys
```

<210> 368

<211> 2281

<212> DNA

<213> Homo sapiens

<400> 368

aggregecege gtacteacta getgaggtgg cagtggttee accaacatgg 50 agctetegea gatgteggag etcatgggge tgteggtgtt gettgggetg 100 etggeectga tggegaegge ggeggtageg egggggtgge tgegegeggg 150 ggaggagagg ageggeegge eegeetgeea aaaageaaat ggattteeac 200 etgacaaate ttegggatee aagaageaga aacaatatea geggattegg 250 aaggagaage etcaacaaca caactteace eacegeetee tggetgeage 300 tetgaagage cacagegga acatatettg eatggaett ageageaatg 350 geaaatacet ggetaectgt geagatgate geaceateeg eatetggage 400 accaaggaet teetgeageg agageaeege ageatgagag eeaacgtgga 450

gctggaccac gccaccctgg tgcgcttcag ccctgactgc agagccttca 500 tcgtctggct ggccaacggg gacaccctcc gtgtcttcaa gatgaccaag 550 cgggaggatg ggggctacac cttcacagcc accccagagg acttccctaa 600 aaagcacaag gcgcctgtca tcgacattgg cattgctaac acagggaagt 650 ttatcatgac tgcctccagt gacaccactg tcctcatctg gagcctgaag 700 ggtcaagtgc tgtctaccat caacaccaac cagatgaaca acacacacgc 750 tgctgtatct ccctgtggca gatttgtagc ctcgtgtggc ttcaccccag 800 atgtgaaggt ttgggaagtc tgctttggaa agaaggggga gttccaggag 850 gtggtgcgag ccttcgaact aaagggccac tccgcggctg tgcactcgtt 900 tgctttctcc aacgactcac ggaggatggc ttctgtctcc aaggatggta 950 catggaaact gtgggacaca gatgtggaat acaagaagaa gcaggacccc 1000 tacttgctga agacaggccg ctttgaagag gcggcgggtg ccgcgccgtg 1050 ccgcctggcc ctctcccca acgcccaggt cttggccttg gccagtggca 1100 gtagtattca tctctacaat acccggcggg gcgagaagga ggagtgcttt 1150 gagcgggtcc atggcgagtg tatcgccaac ttgtcctttg acatcactgg 1200 cegetttctg gcctcctgtg gggaccgggc ggtgcggctg tttcacaaca 1250 ctcctggcca ccgagccatg gtggaggaga tgcagggcca cctgaagcgg 1300 gcctccaacg agagcacccg ccagaggctg cagcagcagc tgacccaggc 1350 ccaagagacc ctgaagagcc tgggtgccct gaagaagtga ctctgggagg 1400 geceggegea gaggattgag gaggagggat etggeeteet eatggeactg 1450 ctgccatctt tecteccagg tggaageett teagaaggag teteetggtt 1500 ttcttactgg tggccctgct tcttcccatt gaaactactc ttgtctactt 1550 aggtetetet ettettgetg getgtgaete etceetgaet agtggeeaag 1600 gtgcttttct tcctcccagg cccagtgggt ggaatctgtc cccacctggc 1650 tggccttgtg gcagcacatc ctcacaccca aagaagtttg taaatgttcc 1750 agaacaacct agagaacacc tgagtactaa gcagcagttt tgcaaggatg 1800 ggagactggg atagcttccc atcacagaac tgtgttccat caaaaagaca 1850 ctaagggatt teettetggg ceteagttet atttgtaaga tggagaataa 1900 tcctctctgt gaactccttg caaagatgat atgaggctaa gagaatatca 1950 agtccccagg tctggaagaa aagtagaaaa gagtagtact attgtccaat 2000 gtcatgaaag tggtaaaagt gggaaccagt gtgctttgaa accaaattag 2050

<210> 369

<211> 447

<212> PRT

<213> Homo sapiens

<400> 369

Met Glu Leu Ser Gln Met Ser Glu Leu Met Gly Leu Ser Val Leu $1 \hspace{1cm} 5 \hspace{1cm} 10 \hspace{1cm} 15$

Leu Gly Leu Leu Ala Leu Met Ala Thr Ala Ala Val Ala Arg Gly
20 25 30

Trp Leu Arg Ala Gly Glu Glu Arg Ser Gly Arg Pro Ala Cys Gln
35 40 45

Lys Ala Asn Gly Phe Pro Pro Asp Lys Ser Ser Gly Ser Lys 50 55 60

Gln Lys Gln Tyr Gln Arg Ile Arg Lys Glu Lys Pro Gln Gln His 65 70 75

Asn Phe Thr His Arg Leu Leu Ala Ala Leu Lys Ser His Ser 80 85 90

Gly Asn Ile Ser Cys Met Asp Phe Ser Ser Asn Gly Lys Tyr Leu 95 100 105

Ala Thr Cys Ala Asp Asp Arg Thr Ile Arg Ile Trp Ser Thr Lys 110 115 120

Asp Phe Leu Gln Arg Glu His Arg Ser Met Arg Ala Asn Val Glu 125 130 135

Leu Asp His Ala Thr Leu Val Arg Phe Ser Pro Asp Cys Arg Ala 140 145 150

Phe Ile Val Trp Leu Ala Asn Gly Asp Thr Leu Arg Val Phe Lys 155 160 165

Met Thr Lys Arg Glu Asp Gly Gly Tyr Thr Phe Thr Ala Thr Pro 170 175 180

Glu Asp Phe Pro Lys Lys His Lys Ala Pro Val Ile Asp Ile Gly 185 190

Ile Ala Asn Thr Gly Lys Phe Ile Met Thr Ala Ser Ser Asp Thr $200 \\ \hspace{1.5cm} 205 \\ \hspace{1.5cm} 210$

Thr Val Leu Ile Trp Ser Leu Lys Gly Gln Val Leu Ser Thr Ile 215 220 220

Asn Thr Asn Gln Met Asn Asn Thr His Ala Ala Val Ser Pro Cys 230 235 240

```
Gly Arg Phe Val Ala Ser Cys Gly Phe Thr Pro Asp Val Lys Val
Trp Glu Val Cys Phe Gly Lys Lys Gly Glu Phe Gln Glu Val Val
                 260
Arg Ala Phe Glu Leu Lys Gly His Ser Ala Ala Val His Ser Phe
                                     280
Ala Phe Ser Asn Asp Ser Arg Arg Met Ala Ser Val Ser Lys Asp
                 290
                                     295
                                                         300
Gly Thr Trp Lys Leu Trp Asp Thr Asp Val Glu Tyr Lys Lys
                 305
                                     310
                                                         315
Gln Asp Pro Tyr Leu Leu Lys Thr Gly Arg Phe Glu Glu Ala Ala
                 320
Gly Ala Ala Pro Cys Arg Leu Ala Leu Ser Pro Asn Ala Gln Val
                                     340
Leu Ala Leu Ala Ser Gly Ser Ser Ile His Leu Tyr Asn Thr Arg
                                                         360
Arg Gly Glu Lys Glu Glu Cys Phe Glu Arg Val His Gly Glu Cys
                365
Ile Ala Asn Leu Ser Phe Asp Ile Thr Gly Arg Phe Leu Ala Ser
                380
                                     385
Cys Gly Asp Arg Ala Val Arg Leu Phe His Asn Thr Pro Gly His
                395
Arg Ala Met Val Glu Glu Met Gln Gly His Leu Lys Arg Ala Ser
                410
                                     415
Asn Glu Ser Thr Arg Gln Arg Leu Gln Gln Gln Leu Thr Gln Ala
                                    430
Gln Glu Thr Leu Lys Ser Leu Gly Ala Leu Lys Lys
```

<210> 370

<211> 1415

<212> DNA

<213> Homo sapiens

440

<400> 370

tggcctccc agcttgcag gcacaaggct gagcggagg aagcgagagg 50 catctaagca ggcagtgttt tgccttcacc ccaagtgacc atgagaggtg 100 ccacgcgagt ctcaatcatg ctcctcag taactgtgtc tgactgtgct 150 gtgatcacag gggcctgtga gcgggatgtc cagtgtgggg caggcacctg 200 ctgtgccatc agcctgtggc ttcgagggct gcggatgtgc accccgctgg 250 ggcgggaagg cgaggatgc caccccggca gccacaaggt ccccttcttc 300 aggaaacgca agcacacac ctgtccttgc ttgcccaacc tgctgtgctc 350 caggttcccg gacggcaggt accgctgct catggacttg aagaacatca 400

atttttagge gettgeetgg teteaggata eccaccatee tttteetgag 450 cacagootgg attittatti etgocatgaa acccagotee catgaetete 500 ccaqtcccta cactgactac cctgatctct cttgtctagt acgcacatat 550 gcacacaggc agacatacct cccatcatga catggtcccc aggctggcct 600 gaggatgtca cagcttgagg ctgtggtgtg aaaggtggcc agcctggttc 650 tetteeetge teaggetgee agagaggtgg taaatggeag aaaggacatt 700 cececteece tecceaggtg acetgetete ttteetggge cetgeecete 750 tececacatq tatecetegq tetgaattaq acatteetqq qeacaggete 800 ttgggtgcat tgctcagagt cccaggtcct ggcctgaccc tcaggccctt 850 cacgtgaggt ctgtgaggac caatttgtgg gtagttcatc ttccctcgat 900 tggttaactc cttagtttca gaccacagac tcaagattgg ctcttcccag 950 agggcagcag acagtcaccc caaggcaggt gtagggagcc cagggaggcc 1000 aatcaqcccc ctqaaqactc tggtcccaqt caqcctqtqg cttqtggcct 1050 gtgacctgtg accttctgcc agaattgtca tgcctctgag gccccctctt 1100 accacacttt accagttaac cactgaagcc cccaattccc acagcttttc 1150 cattaaaatg caaatggtgg tggttcaatc taatctgata ttgacatatt 1200 agaaggcaat tagggtgttt cettaaacaa eteettteea aggateagee 1250 ctgagagcag gttggtgact ttgaggaggg cagtcctctg tccagattgg 1300 ggtgggagca agggacaggg agcagggcag gggctgaaag gggcactgat 1350 tcagaccagg gaggcaacta cacaccaaca tgctggcttt agaataaaag 1400

<210> 371 <211> 105 <212> PRT

<213> Homo sapiens

caccaactga aaaaa 1415

<400> 371

Met Arg Gly Ala Thr Arg Val Ser Ile Met Leu Leu Leu Val Thr 1 5 10 15

Val Ser Asp Cys Ala Val Ile Thr Gly Ala Cys Glu Arg Asp Val 20 25 30

Gln Cys Gly Ala Gly Thr Cys Cys Ala Ile Ser Leu Trp Leu Arg 35 40 45

Gly Leu Arg Met Cys Thr Pro Leu Gly Arg Glu Gly Glu Glu Cys
50 55 60

His Pro Gly Ser His Lys Val Pro Phe Phe Arg Lys Arg Lys His 65 70 75

His Thr Cys Pro Cys Leu Pro Asn Leu Leu Cys Ser Arg Phe Pro 80 85 90

Asp Gly Arg Tyr Arg Cys Ser Met Asp Leu Lys Asn Ile Asn Phe 95 100 105

- <210> 372
- <211> 1281
- <212> DNA
- <213> Homo sapiens
- <400> 372

agcgcccggg cgtcggggcg gtaaaaggcc ggcagaaggg aggcacttga 50 gaaatgtctt tcctccagga cccaagtttc ttcaccatgg ggatgtggtc 100 cattggtgca ggagccctgg gggctgctgc cttggcattg ctgcttgcca 150 acacagacgt gtttctgtcc aagccccaga aagcggccct ggagtacctg 200 gaggatatag acctgaaaac actggagaag gaaccaagga ctttcaaagc 250 aaaggagcta tgggaaaaaa atggagctgt gattatggcc gtgcggaggc 300 caggetgttt cetetgtega gaggaagetg eggatetgte etecetgaaa 350 agcatgttgg accagetggg cgteceette tatgcagtgg taaaggagea 400 catcaggact gaagtgaagg atttccagcc ttatttcaaa ggagaaatct 450 tcctggatga aaagaaaaag ttctatggtc cacaaaggcg gaagatgatg 500 tttatgggat ttatccgtct gggagtgtgg tacaacttct tccgagcctg 550 gaacggaggc ttctctggaa acctggaagg agaaggcttc atccttgggg 600 gagttttcgt ggtgggatca ggaaagcagg gcattcttct tgagcaccga 650 gaaaaagaat ttggagacaa agtaaaccta ctttctgttc tggaagctgc 700 taagatgatc aaaccacaga ctttggcctc agagaaaaaa tgattgtgtg 750 aaactgccca gctcagggat aaccagggac attcacctgt gttcatggga 800 tgtattgttt ccactcgtgt ccctaaggag tgagaaaccc atttatactc 850 tactctcagt atggattatt aatgtatttt aatattctgt ttaggcccac 900 taaggcaaaa tagccccaaa acaagactga caaaaatctg aaaaactaat 950 gaggattatt aagctaaaac ctgggaaata ggaggcttaa aattgactgc 1000 caggetgggt gcagtggctc acacetgtaa teecagcaet ttgggaggee 1050 aaggtgagca agtcacttga ggtcgggagt tcgagaccag cctgagcaac 1100 atggcgaaac cccgtctcta ctaaaaatac aaaaatcacc cgggtgtggt 1150 ggcaggcacc tgtagtccca gctacccggg aggctgaggc aggagaatca 1200 cttgaacctg ggaggtggag gttgcggtga gctgagatca caccactgta 1250 ttccagcctg ggtgactgag actctaacta a 1281

```
<210> 373
<211> 229
<212> PRT
<213> Homo sapiens
<400> 373
Met Ser Phe Leu Gln Asp Pro Ser Phe Phe Thr Met Gly Met Trp
 Ser Ile Gly Ala Gly Ala Leu Gly Ala Ala Leu Ala Leu Leu
 Leu Ala Asn Thr Asp Val Phe Leu Ser Lys Pro Gln Lys Ala Ala
                  35
 Leu Glu Tyr Leu Glu Asp Ile Asp Leu Lys Thr Leu Glu Lys Glu
 Pro Arg Thr Phe Lys Ala Lys Glu Leu Trp Glu Lys Asn Gly Ala
 Val Ile Met Ala Val Arg Arg Pro Gly Cys Phe Leu Cys Arg Glu
 Glu Ala Ala Asp Leu Ser Ser Leu Lys Ser Met Leu Asp Gln Leu
 Gly Val Pro Leu Tyr Ala Val Val Lys Glu His Ile Arg Thr Glu
                 110
                                     115
                                                         120
 Val Lys Asp Phe Gln Pro Tyr Phe Lys Gly Glu Ile Phe Leu Asp
 Glu Lys Lys Phe Tyr Gly Pro Gln Arg Arg Lys Met Met Phe
                 140
 Met Gly Phe Ile Arg Leu Gly Val Trp Tyr Asn Phe Phe Arg Ala
                 155
 Trp Asn Gly Gly Phe Ser Gly Asn Leu Glu Gly Glu Gly Phe Ile
 Leu Gly Gly Val Phe Val Val Gly Ser Gly Lys Gln Gly Ile Leu
                 185
                                     190
 Leu Glu His Arg Glu Lys Glu Phe Gly Asp Lys Val Asn Leu Leu
                 200
                                     205
 Ser Val Leu Glu Ala Ala Lys Met Ile Lys Pro Gln Thr Leu Ala
```

Ser Glu Lys Lys

<210> 374

<211> 744

<212> DNA

<213> Homo sapiens

<400> 374

acggaccgag ggttcgaggg agggacacgg accaggaacc tgagctaggt 50 caaagacgcc cgggccaggt gccccgtcgc aggtgcccct ggccggagat 100

<210> 375

<211> 123

<212> PRT

<213> Homo sapiens

<400> 375

Met Ala Asn Pro Gly Leu Gly Leu Leu Leu Ala Leu Gly Leu Pro 1 10 15

Phe Leu Leu Ala Arg Trp Gly Arg Ala Trp Gly Gln Ile Gln Thr 20 25 30

Thr Ser Ala Asn Glu Asn Ser Thr Val Leu Pro Ser Ser Thr Ser 35 40 45

Ser Ser Ser Asp Gly Asn Leu Arg Pro Glu Ala Ile Thr Ala Ile
50 55 60

Ile Val Val Phe Ser Leu Leu Ala Ala Leu Leu Leu Ala Val Gly
65 70 75

Leu Ala Leu Leu Val Arg Lys Leu Arg Glu Lys Arg Gln Thr Glu 80 85 90

Gly Thr Tyr Arg Pro Ser Ser Glu Glu Gln Phe Ser His Ala Ala 95 100 105

Glu Ala Arg Ala Pro Gln Asp Ser Lys Glu Thr Val Gln Gly Cys 110 115 120

Leu Pro Ile

<210> 376

<211> 713

<212> DNA

<213> Homo sapiens

<400> 376 aatatatcat ctatttatca ttaatcaata atgtattctt ttattccaat 50 aacatttggg ttttgggatt ttaattttca aacacagcag aatgacattt 100 tttctgtcac tattattatt gttggtatgt gaagctattt ggagatccaa 150 ttcaggaagc aacacattgg agaatggcta ctttctatca agaaataaag 200 agaaccacag tcaacccaca caatcatctt tagaagacag tgtgactcct 250 accaaagetg tcaaaaccac aggcaagggc atagttaaag gacggaatet 300 tgactcaaga gggttaattc ttggtgctga agcctggggc aggggtgtaa 350 agaaaaacac ttagattcaa tgattgtaaa tttaaggcaa atacacatat 400 tagtattacc ttagtgtaat gtatccctgt catatataca ataaggtgaa 450 attataagta ccctatgcag ttggctggac agttctaaat tggactttat 500 taatttttaa aatcagtaac tgatttatca ctggctatgt gcttagatct 550 acaggagatc atataatttg atacaaataa aagaaaagtg ttctctcccc 600 ttacagaatt gacattttaa atgcgataca gttagaatag gaaatatgac 650 attagaaagg aagaatgaca gggagaaagg aaagaaggga aaatgttgcc 700 aaggaaaaaa aaa 713 <210> 377 <211> 90 <212> PRT <213> Homo sapiens <400> 377 Met Thr Phe Phe Leu Ser Leu Leu Leu Leu Val Cys Glu Ala Ile Trp Arg Ser Asn Ser Gly Ser Asn Thr Leu Glu Asn Gly Tyr Phe Leu Ser Arg Asn Lys Glu Asn His Ser Gln Pro Thr Gln Ser

Ser Leu Glu Asp Ser Val Thr Pro Thr Lys Ala Val Lys Thr Thr 50 55 60

Gly Lys Gly Ile Val Lys Gly Arg Asn Leu Asp Ser Arg Gly Leu
65 70 75

Ile Leu Gly Ala Glu Ala Trp Gly Arg Gly Val Lys Lys Asn Thr $80 \\ 85 \\ 90$

<210> 378

<211> 3265

<212> DNA

<213> Homo sapiens

<400> 378

cctcttagtt ctgtgcctgc tgcaccagtc aaatacttcc ttcattaagc 100 tgaataataa tggctttgaa gatattgtca ttgttataga tcctagtgtg 150 ccagaagatg aaaaaataat tgaacaaata gaggatatgg tgactacagc 200 ttctacgtac ctgtttgaag ccacagaaaa aagatttttt ttcaaaaatg 250 tatctatatt aattcctqaq aattqqaaqq aaaatcctca qtacaaaaqq 300 ccaaaacatg aaaaccataa acatgctgat gttatagttg caccacctac 350 actcccaggt agagatgaac catacaccaa gcagttcaca gaatgtggag 400 agaaaggega atacattcac ttcacccctg accttctact tggaaaaaaa 450 caaaatgaat atggaccacc aggcaaactg tttgtccatg agtgggctca 500 cctccggtgg ggagtgtttg atgagtacaa tgaagatcag cctttctacc 550 gtgctaagtc aaaaaaaatc gaagcaacaa ggtgttccgc aggtatctct 600 ggtagaaata gagtttataa gtgtcaagga ggcagctgtc ttagtagagc 650 atgcagaatt gattctacaa caaaactgta tggaaaagat tgtcaattct 700 ttcctgataa agtacaaaca gaaaaagcat ccataatgtt tatgcaaagt 750 attgattctg ttgttgaatt ttgtaacgaa aaaacccata atcaagaagc 800 tccaagccta caaaacataa agtgcaattt tagaagtaca tgggaggtga 850 ttagcaattc tgaggatttt aaaaacacca tacccatggt gacaccacct 900 cctccacctg tcttctcatt gctgaagatc agtcaaagaa ttgtgtgctt 950 agttettgat aagtetggaa geatgggggg taaggaeege etaaategaa 1000 tgaatcaagc agcaaaacat ttcctgctgc agactgttga aaatggatcc 1050 tgggtgggga tggttcactt tgatagtact gccactattg taaataagct 1100 aatccaaata aaaaqcaqtq atqaaaqaaa cacactcatq qcaqqattac 1150 ctacatatcc tctgggagga acttccatct gctctggaat taaatatgca 1200 tttcaggtga ttggagagct acattcccaa ctcgatggat ccgaagtact 1250 gctgctgact gatggggagg ataacactgc aagttcttgt attgatgaag 1300 tgaaacaaag tggggccatt gttcatttta ttgctttggg aagagctgct 1350 gatgaagcag taatagagat gagcaagata acaggaggaa gtcatttta 1400 tgtttcagat gaagctcaga acaatggcct cattgatgct tttggggctc 1450 ttacatcagg aaatactgat ctctcccaga agtcccttca gctcgaaagt 1500 aagggattaa cactgaatag taatgcctgg atgaacgaca ctgtcataat 1550 tgatagtaca gtgggaaagg acacgttctt tctcatcaca tggaacagtc 1600 tgcctcccag tatttctctc tgggatccca gtggaacaat aatggaaaat 1650

ttcacagtgg atgcaacttc caaaatggcc tatctcagta ttccaggaac 1700 tgcaaaggtg ggcacttggg catacaatct tcaagccaaa gcgaacccag 1750 aaacattaac tattacagta acttctcgag cagcaaattc ttctgtgcct 1800 ccaatcacag tgaatgctaa aatgaataag gacgtaaaca gtttccccag 1850 cccaatgatt gtttacgcag aaattctaca aggatatgta cctgttcttg 1900 gagecaatgt gaetgettte attgaateae agaatggaea tacagaagtt 1950 ttggaacttt tggataatgg tgcaggcgct gattctttca agaatgatgg 2000 agtctactcc aggtatttta cagcatatac agaaaatggc agatatagct 2050 taaaagttcg ggctcatgga ggagcaaaca ctgccaggct aaaattacgg 2100 cctccactga atagagccgc gtacatacca ggctgggtag tgaacgggga 2150 aattgaagca aacccgccaa gacctgaaat tgatgaggat actcagacca 2200 ccttggagga tttcagccga acagcatccg gaggtgcatt tgtggtatca 2250 caagtcccaa gccttccctt gcctgaccaa tacccaccaa gtcaaatcac 2300 agaccttgat gccacagttc atgaggataa gattattctt acatggacag 2350 caccaggaga taattttgat gttggaaaag ttcaacgtta tatcataaga 2400 ataagtgcaa gtattettga tetaagagae agttttgatg atgetettea 2450 agtaaatact actgatetgt caccaaagga ggccaactcc aaggaaagct 2500 ttgcatttaa accagaaaat atctcagaag aaaatgcaac ccacatattt 2550 attgccatta aaagtataga taaaagcaat ttgacatcaa aagtatccaa 2600 cattgcacaa gtaactttgt ttatccctca agcaaatcct gatgacattg 2650 atcctacacc tactcctact cctactccta ctcctgataa aagtcataat 2700 tctggagtta atattctac gctggtattg tctgtgattg ggtctgttgt 2750 aattgttaac tttattttaa gtaccaccat ttgaacctta acgaagaaaa 2800 aaatcttcaa gtagacctag aagagagttt taaaaaacaa aacaatgtaa 2850 gtaaaggata tttctgaatc ttaaaattca tcccatgtgt gatcataaac 2900 tcataaaaat aattttaaga tgtcggaaaa ggatactttg attaaataaa 2950 aacactcatg gatatgtaaa aactgtcaag attaaaattt aatagtttca 3000 tttatttgtt attttatttg taagaaatag tgatgaacaa agatcctttt 3050 tcatactgat acctggttgt atattatttg atgcaacagt tttctgaaat 3100 gatatttcaa attgcatcaa gaaattaaaa tcatctatct gagtagtcaa 3150

aaaaaaaaa aaaaa 3265

<210> 379

<211> 919

<212> PRT

<213> Homo sapiens

<400> 379

Met Gly Leu Phe Arg Gly Phe Val Phe Leu Leu Val Leu Cys Leu
1 5 10 15

Leu His Gln Ser Asn Thr Ser Phe Ile Lys Leu Asn Asn Asn Gly
20 25 30

Phe Glu Asp Ile Val Ile Val Ile Asp Pro Ser Val Pro Glu Asp 35 40 45

Glu Lys Ile Ile Glu Gln Ile Glu Asp Met Val Thr Thr Ala Ser
50 55 60

Thr Tyr Leu Phe Glu Ala Thr Glu Lys Arg Phe Phe Phe Lys Asn
65 70 75

Val Ser Ile Leu Ile Pro Glu Asn Trp Lys Glu Asn Pro Gln Tyr 80 85 90

Lys Arg Pro Lys His Glu Asn His Lys His Ala Asp Val Ile Val

Ala Pro Pro Thr Leu Pro Gly Arg Asp Glu Pro Tyr Thr Lys Gln
110 115 120

Phe Thr Glu Cys Gly Glu Lys Gly Glu Tyr Ile His Phe Thr Pro 125 130 135

Asp Leu Leu Gly Lys Lys Gln Asn Glu Tyr Gly Pro Pro Gly 140 145 150

Lys Leu Phe Val His Glu Trp Ala His Leu Arg Trp Gly Val Phe 155 160 165

Asp Glu Tyr Asn Glu Asp Gln Pro Phe Tyr Arg Ala Lys Ser Lys

Lys Ile Glu Ala Thr Arg Cys Ser Ala Gly Ile Ser Gly Arg Asn 185 190 195

Arg Val Tyr Lys Cys Gln Gly Gly Ser Cys Leu Ser Arg Ala Cys 200 205 210

Arg Ile Asp Ser Thr Thr Lys Leu Tyr Gly Lys Asp Cys Gln Phe \$215\$ \$220\$

Phe Pro Asp Lys Val Gln Thr Glu Lys Ala Ser Ile Met Phe Met 230 235

Gln Ser Ile Asp Ser Val Val Glu Phe Cys Asn Glu Lys Thr His
245 250 255

Asn Gln Glu Ala Pro Ser Leu Gln Asn Ile Lys Cys Asn Phe Arg

Ser Thr Trp Glu Val Ile Ser Asn Ser Glu Asp Phe Lys Asn Thr

				215					200					200
Ile	Pro	Met	Val	Thr 290	Pro	Pro	Pro	Pro	Pro 295	Val	Phe	Ser	Leu	Le:
Lys	Ile	Ser	Gln	Arg 305	Ile	Val	Cys	Leu	Val 310	Leu	Asp	Lys	Ser	Gl ₃ 315
Ser	Met	Gly	Gly	Lys 320	Asp	Arg	Leu	Asn	Arg 325	Met	Asn	Gln	Ala	Ala 330
Lys	His	Phe	Leu	Leu 335	Gln	Thr	Val	Glu	Asn 340	Gly	Ser	Trp	Val	Gl ₃ 345
Met	Val	His	Phe	Asp 350	Ser	Thr	Ala	Thr	Ile 355	Val	Asn	Lys	Leu	I16 360
Gln	Ile	Lys	Ser	Ser 365	Asp	Glu	Arg	Asn	Thr 370	Leu	Met	Ala	Gly	Leu 375
Pro	Thr	Tyr	Pro	Leu 380	Gly	Gly	Thr	Ser	Ile 385	Суз	Ser	Gly	Ile	Lуя 390
Tyr	Ala	Phe	Gln	Val 395	Ile	Gly	Glu	Leu	His 400	Ser	Gln	Leu	Asp	Gl ₃ 405
Ser	Glu	Val	Leu	Leu 410	Leu	Thr	Asp	Gly	Glu 415	Asp	Asn	Thr	Ala	Sei 420
Ser	Суз	Ile	Asp	Glu 425	Val	Lys	Gln	Ser	Gly 430	Ala	Ile	Val	His	Phe 435
Ile	Ala	Leu	Gly	Arg 440	Ala	Ala	Asp	Glu	Ala 445	Val	Ile	Glu	Met	Se: 450
Lys	Ile	Thr	Gly	Gly 455	Ser	His	Phe	Tyr	Val 460	Ser	Asp	Glu	Ala	Glr 465
Asn	Asn	Gly	Leu	Ile 470	Asp	Ala	Phe	Gly	Ala 475	Leu	Thr	Ser	Gly	Asr 480
Thr	Asp	Leu	Ser	Gln 485	Lys	Ser	Leu	Gln	Leu 490	Glu	Ser	Lys	Gly	Le: 495
Thr	Leu	Asn	Ser	Asn 500	Ala	Trp	Met	Asn	Asp 505	Thr	Val	Ile	Ile	Asp 510
Ser	Thr	Val	Gly	Lys 515	Asp	Thr	Phe	Phe	Leu 520	Ile	Thr	Trp	Asn	Ser 525
Leu	Pro	Pro	Ser	Ile 530	Ser	Leu	Trp	Asp	Pro 535	Ser	Gly	Thr	Ile	Met 540
Glu	Asn	Phe	Thr	Val 545	Asp	Ala	Thr	Ser	Lys 550	Met	Ala	Tyr	Leu	Ser 555
Ile	Pro	Gly	Thr	Ala 560	Lys	Val	Gly	Thr	Trp 565	Ala	Tyr	Asn	Leu	Glr 57(
Ala	Lys	Ala	Asn	Pro 575	Glu	Thr	Leu	Thr	Ile 580	Thr	Val	Thr	Ser	Arc 585
Ala	Ala	Asn	Ser	Ser	Val	Pro	Pro	Ile	Thr	Val	Asn	Ala	Lvs	Met

				590					595					601
Asn	Lys	Asp	Val	Asn 605	Ser	Phe	Pro	Ser	Pro 610	Met	Ile	Val	Tyr	Ala 615
Glu	Ile	Leu	Gln	Gly 620	Tyr	Val	Pro	Val	Leu 625	Gly	Ala	Asn	Val	Th: 630
Ala	Phe	Ile	Glu	Ser 635	Gln	Asn	Gly	His	Thr 640	Glu	Val	Leu	Glu	Let 645
Leu	Asp	Asn	Gly	Ala 650	Gly	Ala	Asp	Ser	Phe 655	Lys	Asn	Asp	Gly	Va]
Tyr	Ser	Arg	Tyr	Phe 665	Thr	Ala	Tyr	Thr	Glu 670	Asn	Gly	Arg	Tyr	Sei 675
Leu	Lys	Val	Arg	Ala 680	His	Gly	Gly	Ala	Asn 685	Thr	Ala	Arg	Leu	Lys 690
Leu	Arg	Pro	Pro	Leu 695	Asn	Arg	Ala	Ala	Tyr 700	Ile	Pro	Gly	Trp	Va] 705
Val	Asn	Gly	Glu	Ile 710	Glu	Ala	Asn	Pro	Pro 715	Arg	Pro	Glu	Ile	Asp 720
Glu	Asp	Thr	Gln	Thr 725	Thr	Leu	Glu	Asp	Phe 730	Ser	Arg	Thr	Ala	Se: 735
Gly	Gly	Ala	Phe	Val 740	Val	Ser	Gln	Val	Pro 745	Ser	Leu	Pro	Leu	Pro 750
Asp	Gln	Tyr	Pro	Pro 755	Ser	Gln	Ile	Thr	Asp 760	Leu	Asp	Ala	Thr	Va] 765
His	Glu	Asp	Lys	Ile 770	Ile	Leu	Thr	Trp	Thr 775	Ala	Pro	Gly	Asp	Ası 780
Phe	Asp	Val	Gly	Lys 785	Val	Gln	Arg	Tyr	Ile 790	Ile	Arg	Ile	Ser	Ala 795
Ser	Ile	Leu	Asp	Leu 800	Arg	Asp	Ser	Phe	Asp 805	Asp	Ala	Leu	Gln	Val 810
Asn	Thr	Thr	Asp	Leu 815				Glu			Ser	Lys	Glu	Se:
Phe	Ala	Phe	Lys	Pro 830	Glu	Asn	Ile	Ser	Glu 835	Glu	Asn	Ala	Thr	His 840
Ile	Phe	Ile	Ala	Ile 845	Lys	Ser	Ile	Asp	Lys 850	Ser	Asn	Leu	Thr	Sei 855
Lys	Val	Ser	Asn	Ile 860	Ala	Gln	Val	Thr	Leu 865	Phe	Ile	Pro	Gln	Ala 870
Asn	Pro	Asp	Asp	Ile 875	Asp	Pro	Thr	Pro	Thr 880	Pro	Thr	Pro	Thr	Pro 885
Thr	Pro	Asp	Lys	Ser 890	His	Asn	Ser	Gly	Val 895	Asn	Ile	Ser	Thr	Let 900
Val	Len	Ser	Val	Tle	Glv	Ser	Val	Val	Tle	Va1	Asn	Phe	Tle	T _i e1

Sept. 411

4. * 15 H

A. 6.

Hann Hann 4, #

ğendi.

ļasis

4 Harry Harry

į.

<210> 380

<211> 3877 <212> DNA

<213> Homo sapiens

<400> 380

ctccttaggt ggaaaccctg ggagtagagt actgacagca aagaccqgga 50 aagaccatac gtccccgggc aggggtgaca acaggtgtca tctttttgat 100 ctcgtgtgtg gctgccttcc tatttcaagg aaagacgcca aggtaatttt 150 gacccagagg agcaatgatg tagccacctc ctaaccttcc cttcttgaac 200 ccccagttat gccaggattt actagagagt gtcaactcaa ccagcaagcg 250 gctccttcgg cttaacttgt ggttggagga gagaaccttt gtggggctgc 300 gttctcttag cagtgctcag aagtgacttg cctgagggtg gaccagaaga 350 aaggaaaggt cccctcttgc tgttggctgc acatcaggaa ggctgtgatg 400 ggaatgaagg tgaaaacttg gagatttcac ttcagtcatt gcttctgcct 450 gcaagatcat cctttaaaag tagagaagct gctctgtgtg gtggttaact 500 ccaagaggca gaactcgttc tagaaggaaa tggatgcaag cagctccggg 550 ggccccaaac gcatgcttcc tgtggtctag cccagggaag cccttccgtg 600 ggggccccgg ctttgaggga tgccaccggt tctggacgca tggctgattc 650 ctgaatgatg atggttcgcc gggggctgct tgcgtggatt tcccgggtgg 700 tggttttgct ggtgctcctc tgctgtgcta tctctgtcct gtacatgttg 750 gcctgcaccc caaaaggtga cgaggagcag ctggcactgc ccagggccaa 800 cagececaeg gggaaggagg ggtaceagge egteetteag gagtgggagg 850 agcagcaccg caactacgtg agcagcctga agcggcagat cgcacagctc 900 aaggaggagc tgcaggagag gagtgagcag ctcaggaatg ggcagtacca 950 agccagcgat gctgctggcc tgggtctgga caggagcccc ccagagaaaa 1000 cccaggccga cctcctggcc ttcctgcact cgcaggtgga caaggcagag 1050 gtgaatgctg gcgtcaagct ggccacagag tatgcagcag tgcctttcga 1100 tagetttact ctacagaagg tgtaccaget ggagactggc cttacccgcc 1150 accccgagga gaagcctgtg aggaaggaca agcgggatga gttggtggaa 1200 gccattgaat cagccttgga gaccctgaac aatcctgcag agaacagccc 1250 caatcaccgt ccttacacgg cctctgattt catagaaggg atctaccgaa 1300

cagaaaggga caaagggaca ttgtatgagc tcaccttcaa aggggaccac 1350 aaacacgaat tcaaacggct catcttattt cgaccattca gccccatcat 1400 gaaagtgaaa aatgaaaagc tcaacatggc caacacgctt atcaatgtta 1450 tcgtgcctct agcaaaaagg gtggacaagt tccggcagtt catgcagaat 1500 ttcagggaga tgtgcattga gcaggatggg agagtccatc tcactgttgt 1550 ttactttggg aaagaagaa taaatgaagt caaaggaata cttgaaaaca 1600 cttccaaagc tgccaacttc aggaacttta ccttcatcca gctgaatgga 1650 gaattttctc ggggaaaggg acttgatgtt ggagcccgct tctggaaggg 1700 aagcaacgtc cttctctttt tctgtgatgt ggacatctac ttcacatctg 1750 aattootoaa taogtgtagg otgaatacao agocagggaa gaaggtattt 1800 tatccagttc ttttcagtca gtacaatcct ggcataatat acggccacca 1850 tgatgcagtc cctcccttgg aacagcagct ggtcataaag aaggaaactg 1900 gattttggag agactttgga tttgggatga cgtgtcagta tcggtcagac 1950 ttcatcaata taggtgggtt tgatctggac atcaaaggct ggggcggaga 2000 ggatgtgcac ctttatcgca agtatctcca cagcaacctc atagtggtac 2050 ggacgcctgt gcgaggactc ttccacctct ggcatgagaa gcgctgcatg 2100 gacgagctga cccccgagca gtacaagatg tgcatgcagt ccaaggccat 2150 gaacgaggca tcccacggcc agctgggcat gctggtgttc aggcacgaga 2200 tagaggetea eettegeaaa cagaaacaga agacaagtag caaaaaaaca 2250 tgaactccca gagaaggatt gtgggagaca ctttttcttt ccttttgcaa 2300 ttactgaaag tggctgcaac agagaaaaga cttccataaa ggacgacaaa 2350 agaattggac tgatgggtca gagatgagaa agcctccgat ttctctctgt 2400 tgggcttttt acaacagaaa tcaaaatctc cgctttgcct gcaaaagtaa 2450 cccagttgca ccctgtgaag tgtctgacaa aggcagaatg cttgtgagat 2500 tataagccta atggtgtgga ggttttgatg gtgtttacaa tacactgaga 2550 cctgttgttt tgtgtgctca ttgaaatatt catgatttaa gagcagtttt 2600 gtaaaaaatt cattagcatg aaaggcaagc atatttctcc tcatatgaat 2650 gagectatea geagggetet agtttetagg aatgetaaaa tateagaagg 2700 caggagagga gataggctta ttatgatact agtgagtaca ttaagtaaaa 2750 taaaatggac cagaaaagaa aagaaaccat aaatatcgtg tcatattttc 2800 cccaagatta accaaaaata atctgcttat ctttttggtt gtccttttaa 2850 ctgtctccgt ttttttcttt tatttaaaaa tgcacttttt ttcccttgtg 2900

agttatagtc tgcttattta attaccactt tgcaagcctt acaagagagc 2950 acaagttggc ctacattttt atatttttta agaagatact ttgagatgca 3000 ttatgagaac tttcagttca aagcatcaaa ttgatgccat atccaaggac 3050 atgccaaatg ctgattctgt caggcactga atgtcaggca ttgagacata 3100 gggaaggaat ggtttgtact aatacagacg tacagatact ttctctgaag 3150 agtattttcg aagaggagca actgaacact ggaggaaaag aaaatgacac 3200 tttctgcttt acagaaaagg aaactcattc agactggtga tatcgtgatg 3250 tacctaaaag tcagaaacca cattttctcc tcagaagtag ggaccgcttt 3300 cttacctgtt taaataaacc aaagtatacc gtgtgaacca aacaatctct 3350 tttcaaaaca gggtgctcct cctggcttct ggcttccata agaagaaatg 3400 gagaaaaata tatatata tatatatatt gtgaaagatc aatccatctg 3450 ccagaatcta gtgggatgga agtttttgct acatgttatc caccccaggc 3500 caggtggaag taactgaatt attttttaaa ttaagcagtt ctactcaatc 3550 accaagatgc ttctgaaaat tgcattttat taccatttca aactattttt 3600 taaaaataaa tacagttaac atagagtggt ttcttcattc atgtgaaaat 3650 tattagccag caccagatgc atgagctaat tatctctttg agtccttgct 3700 tctgtttgct cacagtaaac tcattgttta aaagcttcaa gaacattcaa 3750 gctgttggtg tgttaaaaaa tgcattgtat tgatttgtac tggtagttta 3800 tgaaatttaa ttaaaacaca ggccatgaat ggaaggtggt attgcacagc 3850 taataaaata tgatttgtgg atatgaa 3877

<210> 381

<211> 532

<212> PRT

<213> Homo sapiens

<400> 381

Met Met Met Val Arg Arg Gly Leu Leu Ala Trp Ile Ser Arg Val 1 5 10

Val Val Leu Leu Val Leu Leu Cys Cys Ala Ile Ser Val Leu Tyr
20 25 30

Met Leu Ala Cys Thr Pro Lys Gly Asp Glu Glu Gln Leu Ala Leu 35 40 45

Pro Arg Ala Asn Ser Pro Thr Gly Lys Glu Gly Tyr Gln Ala Val

Leu Gln Glu Trp Glu Glu Gln His Arg Asn Tyr Val Ser Ser Leu
65 70 75

Lys Arg Gln Ile Ala Gln Leu Lys Glu Glu Leu Gln Glu Arg Ser 80 85 90

Glu	ı Glr	ı Leı	ı Arç	g Ası 99	ı Gly	/ Glr	туг	Glr	n Ala 100		Asp	Ala	a Alá	Gly 105
Leu	ı Gly	/ Leu	ı Asp	2 Arg	g Ser	r Pro	Pro	Glu	Lys 115		Gln	Ala	a Asp	Leu 120
Leu	Ala	a Phe	e Let	1 His	s Ser	Gln	Val	. Asp	Lys 130	Ala	Glu	Val	. Asr	135
Gly	Val	. Lys	Leu	140	Thr	Glu	Туг	Ala	Ala 145	Val	Pro	Ph∈	Asp	Ser 150
Phe	Thr	Leu	Gln	Lys 155	Val	Tyr	Gln	. Leu	Glu 160	Thr	Gly	Leu	Thr	Arg 165
His	Pro	Glu	Glu	Lys 170	Pro	Val	Arg	Lys	Asp 175	Lys	Arg	Asp	Glu	Leu 180
Val	Glu	. Ala	Ile	Glu 185	Ser	Ala	Leu	Glu	Thr 190	Leu	Asn	Asn	Pro	Ala 195
Glu	Asn	Ser	Pro	Asn 200	His	Arg	Pro	Tyr	Thr 205	Ala	Ser	Asp	Phe	Ile 210
Glu	Gly	Ile	Tyr	Arg 215	Thr	Glu	Arg	Asp	Lys 220	Gly	Thr	Leu	Tyr	Glu 225
Leu	Thr	Phe	Lys	Gly 230	Asp	His	Lys	His	Glu 235	Phe	Lys	Arg	Leu	Ile 240
Leu	Phe	Arg	Pro	Phe 245	Ser	Pro	Ile	Met	Lys 250	Val	Lys	Asn	Glu	Lys 255
				260					Val 265					270
				275					Met 280					285
				290					His 295					300
				305					Lys 310					315
				320					Phe 325					330
				335					Leu 340					345
				350					Phe 355					Asp 360
				365					Thr 370					Thr 375
				380					Val 385					390
Asn	Pro	Gly	Ile	Ile 395	Tyr	Gly	His	His	Asp 1	Ala	Val	Pro	Pro	Leu 405

```
Glu Gln Gln Leu Val Ile Lys Lys Glu Thr Gly Phe Trp Arg Asp
                 410
 Phe Gly Phe Gly Met Thr Cys Gln Tyr Arg Ser Asp Phe Ile Asn
                 425
                                      430
 Ile Gly Gly Phe Asp Leu Asp Ile Lys Gly Trp Gly Gly Glu Asp
 Val His Leu Tyr Arg Lys Tyr Leu His Ser Asn Leu Ile Val Val
 Arg Thr Pro Val Arg Gly Leu Phe His Leu Trp His Glu Lys Arg
                 470
                                      475
                                                          480
 Cys Met Asp Glu Leu Thr Pro Glu Gln Tyr Lys Met Cys Met Gln
                                      490
 Ser Lys Ala Met Asn Glu Ala Ser His Gly Gln Leu Gly Met Leu
                 500
 Val Phe Arg His Glu Ile Glu Ala His Leu Arg Lys Gln Lys Gln
                 515
                                     520
 Lys Thr Ser Ser Lys Lys Thr
                 530
<210> 382
<211> 25
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 382
ctcggggaaa gggacttgat gttgg 25
<210> 383
<211> 26
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 383
gcgaaggtga gcctctatct cgtgcc 26
<210> 384
<211> 19
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 384
cagcctacac gtattgagg 19
<210> 385
<211> 48
<212> DNA
```

```
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 385
 cagtcagtac aatcctggca taatatacgg ccaccatgat gcagtccc 48
<210> 386
<211> 1346
<212> DNA
<213> Homo sapiens
<400> 386
gaaagaatgt tgtggctgct cttttttctg gtgactgcca ttcatgctga 50
actctgtcaa ccaggtgcag aaaatgcttt taaagtgaga cttagtatca 100
gaacagetet gggagataaa geatatgeet gggataeeaa tgaagaatae 150
ctcttcaaag cgatggtagc tttctccatg agaaaagttc ccaacagaga 200
agcaacagaa atttcccatg tcctactttg caatgtaacc cagagggtat 250
cattctggtt tgtggttaca gacccttcaa aaaatcacac ccttcctgct 300
gttgaggtgc aatcagccat aagaatgaac aagaaccgga tcaacaatgc 350
cttctttcta aatgaccaaa ctctggaatt tttaaaaatc ccttccacac 400
ttgcaccacc catggaccca tctgtgccca tctggattat tatatttggt 450
gtgatatttt gcatcatcat agttgcaatt gcactactga ttttatcagg 500
gatctggcaa cgtagaagaa agaacaaaga accatctgaa gtggatgacg 550
ctgaagataa gtgtgaaaac atgatcacaa ttgaaaatgg catcccctct 600
gatcccctgg acatgaaggg gggcatatta atgatgcctt catgacagag 650
gatgagaggc tcacccctct ctgaagggct gttgttctgc ttcctcaaga 700
aattaaacat ttgtttctgt gtgactgctg agcatcctga aataccaaga 750
gcagatcata tattttgttt caccattctt cttttgtaat aaattttgaa 800
tgtgcttgaa agtgaaaagc aatcaattat acccaccaac accactgaaa 850
tcataagcta ttcacgactc aaaatattct aaaatatttt tctgacagta 900
tagtgtataa atgtggtcat gtggtatttg tagttattga tttaagcatt 950
tttagaaata agatcaggca tatgtatata ttttcacact tcaaagacct 1000
aaggaaaaat aaattttcca gtggagaata catataatat ggtgtagaaa 1050
tcattgaaaa tggatccttt ttgacgatca cttatatcac tctgtatatg 1100
actaagtaaa caaaagtgag aagtaattat tgtaaatgga tggataaaaa 1150
tggaattact catatacagg gtggaatttt atcctgttat cacaccaaca 1200
```

gttgattata tattttctga atatcagccc ctaataggac aattctattt 1250

gttgaccatt tctacaattt gtaaaagtcc aatctgtgct aacttaataa 1300 agtaataatc atctctttt aaaaaaaaaa aaaaaaaaa aaaaaaa 1346

<210> 387

<211> 212

<212> PRT

<213> Homo sapiens

<400> 387

Met Leu Trp Leu Leu Phe Phe Leu Val Thr Ala Ile His Ala Glu
1 5 10 15

Leu Cys Gln Pro Gly Ala Glu Asn Ala Phe Lys Val Arg Leu Ser 20 25 30

Ile Arg Thr Ala Leu Gly Asp Lys Ala Tyr Ala Trp Asp Thr Asn 35 40 45

Glu Glu Tyr Leu Phe Lys Ala Met Val Ala Phe Ser Met Arg Lys 50 55 60

Val Pro Asn Arg Glu Ala Thr Glu Ile Ser His Val Leu Leu Cys 65 70 75

Asn Val Thr Gln Arg Val Ser Phe Trp Phe Val Val Thr Asp Pro 80 85 90

Ser Lys Asn His Thr Leu Pro Ala Val Glu Val Gln Ser Ala Ile 95 100 105

Arg Met Asn Lys Asn Arg Ile Asn Asn Ala Phe Phe Leu Asn Asp 110 115 120

Gln Thr Leu Glu Phe Leu Lys Ile Pro Ser Thr Leu Ala Pro Pro 125 130 135

Phe Cys Ile Ile Ile Val Ala Ile Ala Leu Leu Ile Leu Ser Gly
155 160 165

Ile Trp Gln Arg Arg Arg Lys Asn Lys Glu Pro Ser Glu Val Asp 170 175 180

Asp Ala Glu Asp Lys Cys Glu Asn Met Ile Thr Ile Glu Asn Gly 185 190 190

Ile Pro Ser Asp Pro Leu Asp Met Lys Gly Gly Ile Leu Met Met 200 205 210

Pro Ser

<210> 388

<211> 1371

<212> DNA

<213> Homo sapiens

<400> 388

aactcaaact cctctctg ggaaaacgcg gtgcttgctc ctcccggagt 50

```
ggccttggca gggtgttgga gccctcggtc tgccccgtcc ggtctctggg 100
gccaaggctg ggtttccctc atgtatggca agagctctac tcgtgcggtg 150
cttcttctcc ttggcataca gctcacagct ctttggccta tagcagctgt 200
ggaaatttat acctcccggg tgctggaggc tgttaatggg acagatgctc 250
ggttaaaatg cactttctcc agctttgccc ctgtgggtga tgctctaaca 300
gtgacctgga attttcgtcc tctagacggg ggacctgagc agtttgtatt 350
ctactaccac atagatccct tccaacccat gagtgggcgg tttaaggacc 400
gggtgtcttg ggatgggaat cctgagcggt acgatgcctc catccttctc 450
tggaaactgc agttcgacga caatgggaca tacacctgcc aggtgaagaa 500
cccacctgat gttgatgggg tgatagggga gatccggctc agcgtcgtgc 550
acactgtacg cttctctgag atccacttcc tggctctggc cattggctct 600
gcctgtgcac tgatgatcat aatagtaatt gtagtggtcc tcttccagca 650
ttaccggaaa aagcgatggg ccgaaagagc tcataaagtg gtggagataa 700
aatcaaaaga agaggaaagg ctcaaccaag agaaaaaggt ctctgtttat 750
ttagaagaca cagactaaca attttagatg gaagctgaga tgatttccaa 800
gaacaagaac cctagtattt cttgaagtta atggaaactt ttctttggct 850
tttccagttg tgacccgttt tccaaccagt tctgcagcat attagattct 900
agacaagcaa caccectetg gagecagcae agtgeteete catateacea 950
gtcatacaca gcctcattat taaggtctta tttaatttca gagtgtaaat 1000
tttttcaagt gctcattagg ttttataaac aagaagctac atttttgccc 1050
ttaagacact acttacagtg ttatgacttg tatacacata tattggtatc 1100
aaaggggata aaagccaatt tgtctgttac atttcctttc acgtatttct 1150
tttagcagca cttctgctac taaagttaat gtgtttactc tctttccttc 1200
ccacattete aattaaaagg tgagetaage eteeteggtg tttetgatta 1250
acagtaaatc ctaaattcaa actgttaaat gacattttta tttttatgtc 1300
tctccttaac tatgagacac atcttgtttt actgaatttc tttcaatatt 1350
ccaggtgata gatttttgtc g 1371
```

```
<210> 389
<211> 215
```

<212> PRT

<213> Homo sapiens

<400> 389

Met Tyr Gly Lys Ser Ser Thr Arg Ala Val Leu Leu Leu Gly 1 5 10

```
Ile Gln Leu Thr Ala Leu Trp Pro Ile Ala Ala Val Glu Ile Tyr
 Thr Ser Arg Val Leu Glu Ala Val Asn Gly Thr Asp Ala Arg Leu
 Lys Cys Thr Phe Ser Ser Phe Ala Pro Val Gly Asp Ala Leu Thr
                  50
 Val Thr Trp Asn Phe Arg Pro Leu Asp Gly Gly Pro Glu Gln Phe
 Val Phe Tyr Tyr His Ile Asp Pro Phe Gln Pro Met Ser Gly Arg
 Phe Lys Asp Arg Val Ser Trp Asp Gly Asn Pro Glu Arg Tyr Asp
 Ala Ser Ile Leu Leu Trp Lys Leu Gln Phe Asp Asp Asn Gly Thr
                                     115
 Tyr Thr Cys Gln Val Lys Asn Pro Pro Asp Val Asp Gly Val Ile
 Gly Glu Ile Arg Leu Ser Val Val His Thr Val Arg Phe Ser Glu
                 140
 Ile His Phe Leu Ala Leu Ala Ile Gly Ser Ala Cys Ala Leu Met
                                     160
 Ile Ile Val Ile Val Val Leu Phe Gln His Tyr Arg Lys
                                     175
 Lys Arg Trp Ala Glu Arg Ala His Lys Val Val Glu Ile Lys Ser
                 185
 Lys Glu Glu Arg Leu Asn Gln Glu Lys Lys Val Ser Val Tyr
 Leu Glu Asp Thr Asp
<210> 390
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 390
ccgaggccat ctagaggcca gagc 24
<210> 391
<211> 24
<212> DNA
<213> Artificial Sequence
```

<223> Synthetic oligonucleotide probe

acaggcagag ccaatggcca gagc 24

<400> 391

<211> 25

```
<210> 392
 <211> 45
 <212> DNA
 <213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 392
 gagaggactg cgggagtttg ggacctttgt gcagacgtgc tcatg 45
<210> 393
<211> 471
<212> DNA
<213> Homo sapiens
<400> 393
 gcatttttgt ctgtgctccc tgatcttcag gtcaccacca tgaagttctt 50
 agcagtcctg gtactcttgg gagtttccat ctttctggtc tctgcccaga 100
 atccgacaac agctgctcca gctgacacgt atccagctac tggtcctgct 150
 gatgatgaag cccctgatgc tgaaaccact gctgctgcaa ccactgcgac 200
 cactgctgct cctaccactg caaccaccgc tgcttctacc actgctcgta 250
 aagacattcc agttttaccc aaatgggttg gggatctccc gaatggtaga 300
 gtgtgtccct gagatggaat cagcttgagt cttctgcaat tggtcacaac 350
 tattcatgct tcctgtgatt tcatccaact acttaccttg cctacgatat 400
 cccctttatc tctaatcagt ttattttctt tcaaataaaa aataactatg 450
 agcaacataa aaaaaaaaaa a 471
<210> 394
<211> 90
<212> PRT
<213> Homo sapiens
<400> 394
 Met Lys Phe Leu Ala Val Leu Val Leu Gly Val Ser Ile Phe
 Leu Val Ser Ala Gln Asn Pro Thr Thr Ala Ala Pro Ala Asp Thr
                  20
                                      25
                                                           30
 Tyr Pro Ala Thr Gly Pro Ala Asp Asp Glu Ala Pro Asp Ala Glu
 Thr Thr Ala Ala Ala Thr Thr Ala Thr Thr Ala Ala Pro Thr Thr
                  50
 Ala Thr Thr Ala Ala Ser Thr Thr Ala Arg Lys Asp Ile Pro Val
Leu Pro Lys Trp Val Gly Asp Leu Pro Asn Gly Arg Val Cys Pro
<210> 395
```

```
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 395
 gctccctgat cttcatgtca ccacc 25
<210> 396
<211> 26
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 396
 cagggacaca ctctaccatt cgggag 26
<210> 397
<211> 42
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 397
 ccatctttct ggtctctgcc cagaatccga caacagctgc tc 42
<210> 398
<211> 907
<212> DNA
<213> Homo sapiens
<400> 398
 ggactctgaa ggtcccaagc agctgctgag gcccccaagg aagtggttcc 50
 aaccttggac ccctaggggt ctggatttgc tggttaacaa gataacctga 100
 gggcaggacc ccatagggga atgctacctc ctgcccttcc acctgccctg 150
gtgttcacgg tggcctggtc cctccttgcc gagagagtgt cctgggtcag 200
ggacgcagag gacgctcaca gactccagcc ctttgttacc gagaggacac 250
ttggcaaggt ccagcgatgg tccggagtcc acacacagac tggcggcagg 300
gcaggagggg gacagttctg ttgtgcttgg ttggacagta agagggtctt 350
ggccagtcca gggtgggggg cggcaaactc cataaagaac cagagggtct 400
gggccccggc cacagagtca tctgcccagc tcctctgctg ctggccagtg 450
ggagtggcac gaggtggggc tttgtgccag taaaaccaca ggctggattt 500
gcctgcgggc catggtccct gtctagggca gcaattctca accttcttgc 550
tctcaggacc ccaaagagct ttcattgtat ctattgattt ttaccacatt 600
agcaattaaa actgagaaat gggccgggca cggtggctca cgcctgtaat 650
```

cocagcactt tgggaggccg aggcgggtgg atcacctgag atcaggagtt 700
caagaccagc ctggccaaca tggtgaaacc ttgtctacta aaaatacaaa 750
aaattagcca ggcacagtgg tgtgcactgg tagtcccagt tactcgggag 800
gctgaggcag gaaaatcgct tgaacccagg aggcggacgt tgcggtgagc 850
cgagatcgcg ccgctgattc cagcctgggc gacaagagtg agactccatc 900
tcacaca 907

<210> 399

<211> 120

<212> PRT

<213> Homo sapiens

<400> 399

Met Leu Pro Pro Ala Leu Pro Pro Ala Leu Val Phe Thr Val Ala 1 5 10 15

Trp Ser Leu Leu Ala Glu Arg Val Ser Trp Val Arg Asp Ala Glu 20 25 30

Asp Ala His Arg Leu Gln Pro Phe Val Thr Glu Arg Thr Leu Gly 35 40 45

Lys Val Gln Arg Trp Ser Gly Val His Thr Gln Thr Gly Gly Arg 50 55 60

Ala Gly Gly Gln Phe Cys Cys Ala Trp Leu Asp Ser Lys Arg
65 70 75

Val Leu Ala Ser Pro Gly Trp Gly Ala Ala Asn Ser Ile Lys Asn 80 85 90

Gln Arg Val Trp Ala Pro Ala Thr Glu Ser Ser Ala Gln Leu Leu 95 100 105

Cys Cys Trp Pro Val Gly Val Ala Arg Gly Gly Ala Leu Cys Gln 110 115 120

<210> 400

<211> 893

<212> DNA

<213> Homo sapiens

<400> 400

streatgread type test gtgertyct tyggertyct caatggtgac 50 ceggertyce teageggee ceatgggegg ceeagaactg geacageatg 100 aggagetyac cetgetette catgggacee tygeagetygg ceaggerete 150 aacggtyty acaggaceae ggagggacgg ctgacaaagg ceaggaacag 200 cetggytete tatggeegea caatagaact cetggggeag gaggteagee 250 ggggeeggga tygeageeaa gaactteggg caageetytt ggagaeteag 300 atggaggagg atattetyca getgeaggea gaggeeacaa ctgaggtyet 350 gggggaggtg geecaggeae agaaggtyet aegggacage gtgeagegge 400

<210> 401 <211> 198 <212> PRT

<213> Homo sapiens

<400> 401

Met Pro Val Pro Ala Leu Cys Leu Leu Trp Ala Leu Ala Met Val 1 5 10 15

Thr Arg Pro Ala Ser Ala Ala Pro Met Gly Gly Pro Glu Leu Ala 20 25 30

Gln His Glu Glu Leu Thr Leu Leu Phe His Gly Thr Leu Gln Leu
35 40 45

Gly Gln Ala Leu Asn Gly Val Tyr Arg Thr Thr Glu Gly Arg Leu
50 55 60

Thr Lys Ala Arg Asn Ser Leu Gly Leu Tyr Gly Arg Thr Ile Glu
65 70 75

Leu Leu Gly Gln Glu Val Ser Arg Gly Arg Asp Ala Ala Gln Glu 80 85 90

Leu Arg Ala Ser Leu Leu Glu Thr Gln Met Glu Glu Asp Ile Leu 95 100 105

Gln Ala Gln Lys Val Leu Arg Asp Ser Val Gln Arg Leu Glu Val 125 130 135

Gln Leu Arg Ser Ala Trp Leu Gly Pro Ala Tyr Arg Glu Phe Glu 140 145 150

Val Leu Lys Ala His Ala Asp Lys Gln Ser His Ile Leu Trp Ala 155 160 165

Leu Thr Gly His Val Gln Arg Gln Arg Glu Met Val Ala Gln 170 175 180

Gln His Arg Leu Arg Gln Ile Gln Glu Arg Leu His Thr Ala Ala

<211> 1915 <212> DNA

<210> 402

<213> Homo sapiens

Henry Arts Arts Arts Art Art

Marie Annie

i.i.

i.

in i 17

[.] Bak. <400> 402 ggcaacatgg ctcagcaggc ttgccccaga gccatggcaa agaatggact 50 tgtaatttgc atcctggtga tcaccttact cctggaccag accaccagcc 100 acacatccag attaaaagcc aggaagcaca gcaaacgtcg agtgagagac 150 aaggatggag atctgaagac tcaaattgaa aagctctgga cagaagtcaa 200 tgccttgaag gaaattcaag ccctgcagac agtctgtctc cgaggcacta 250 aagttcacaa gaaatgctac cttgcttcag aaggtttgaa gcatttccat 300 gaggccaatg aagactgcat ttccaaagga ggaatcctgg ttatccccag 350 gaactccgac gaaatcaacg ccctccaaga ctatggtaaa aggagcctgc 400 caggtgtcaa tgacttttgg ctgggcatca atgacatggt cacggaaggc 450 aagtttgttg acgtcaacgg aatcgctatc tccttcctca actgggaccg 500 tgcacageet aacggtggca agcgagaaaa ctgtgteetg tteteccaat 550 cageteaggg caagtggagt gatgaggeet gtegeageag caagagatae 600 atatgcgagt tcaccatccc taaataggtc tttctccaat gtgtcctcca 650 agcaagattc atcataactt ataggttcat gatctctaag atcaagtaaa 700 aatcataatt tttacttatt aaaaaattgc aacacaagat caatgtccat 750 agcaatatga tagcatcagc caattttgct aacacatttc tttgggattt 800 tgcccttcct ggggtatagg ggatcagaaa tattgatcca tgtgcacgca 850 gataaaatgg cttctgctaa acagactaaa atctttctct ctagtctttc 900 tcacttgtac aaacccagtt tgttttcaaa aaatcacagt agcaatgcaa 950 ctcatcactc tagaaaagca agcttaggct acctgaaaga ttttcccttg 1000 gaagtttagc gtatgtttga ctaacaaaaa ttccctacat cagagactct 1050 aggtgctata taatccaaaa acttttcagc ctgttgctca ttctgtccca 1100 tgctggcaat aataccttgt cagcccatta cccttatttt gaattgctcc 1150 atctcctggt gggacttgta tcttgtctgc catatcagaa cacaaacccc 1200 tgaagaggtt ctgatttgat ttttttttt tcttcatgcc tacccttttt 1250 ttggaagttt ccagccgcaa tttgaaatga aatgacaagg tgtatatttg 1300

accctaagge atatcaaga agcagattge atgataaacg gaaatagaaa 1400 aaaagaacct acatttatt tgetttagea teettaetet cacettttat 1450 gagattgaga gtggacttae attteettt ttacattte gtatattat 1500 ttttttage cateattata tgtttaagte tattatggge aaccaatett 1550 tggaagctga aaactgaatt taaagaatge tatettggaa aattgeatae 1600 gtetgtgeaa tttttatte tgeetagtge tatettgett gtttaactag 1650 attgtacaaa ataactteat tgettaatat caaattacaa agtttagact 1700 tggagggaaa tgggetttt agaagcaaac aattttaaat atattttgtt 1750 ctteaaataa atagtgtta aacattgaat gtgttttgg aacaatatee 1800 caetttgeaa actttaacta cacatgettg gaattaagtt ttagetgtt 1850 teattgetea ataataaage etgaattetg atcaataaaa aaaaaaaaa 1900 aaaaaaaaaa aaaaa 1915

<210> 403

<211> 206

<212> PRT

<213> Homo sapiens

<400> 403

Met Ala Gln Gln Ala Cys Pro Arg Ala Met Ala Lys Asn Gly Leu
1 5 10 15

Val Ile Cys Ile Leu Val Ile Thr Leu Leu Leu Asp Gln Thr Thr 20 25 30

Ser His Thr Ser Arg Leu Lys Ala Arg Lys His Ser Lys Arg Arg
35 40 45

Val Arg Asp Lys Asp Gly Asp Leu Lys Thr Gln Ile Glu Lys Leu
50 55 60

Trp Thr Glu Val Asn Ala Leu Lys Glu Ile Gln Ala Leu Gln Thr 65 70 75

Val Cys Leu Arg Gly Thr Lys Val His Lys Lys Cys Tyr Leu Ala 80 85 90

Ser Glu Gly Leu Lys His Phe His Glu Ala Asn Glu Asp Cys Ile 95 100 105

Ser Lys Gly Gly Ile Leu Val Ile Pro Arg Asn Ser Asp Glu Ile 110 $$ 115 $$ 120

Asn Ala Leu Gln Asp Tyr Gly Lys Arg Ser Leu Pro Gly Val Asn 125 130 135

Asp Phe Trp Leu Gly Ile Asn Asp Met Val Thr Glu Gly Lys Phe 140 145

Val Asp Val Asn Gly Ile Ala Ile Ser Phe Leu Asn Trp Asp Arg

155 160 165 Ala Gln Pro Asn Gly Gly Lys Arg Glu Asn Cys Val Leu Phe Ser 170 175 Gln Ser Ala Gln Gly Lys Trp Ser Asp Glu Ala Cys Arg Ser Ser 185 Lys Arg Tyr Ile Cys Glu Phe Thr Ile Pro Lys 200 205 <210> 404 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide probe <400> 404 cctggttatc cccaggaact ccgac 25 <210> 405 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide probe <400> 405 ctcttgctgc tgcgacaggc ctc 23 <210> 406 <211> 46 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide probe <400> 406 cgccctccaa gactatggta aaaggagcct gccaggtgtc aatgac 46 <210> 407 <211> 570 <212> DNA <213> Homo sapiens <400> 407 gcgaggaccg ggtataagaa gcctcgtggc cttgcccggg cagccgcagg 50 ttccccgcgc gccccgagcc cccgcgccat gaagctcgcc gccctcctgg 100 ggetetgegt ggeeetgtee tgeageteeg etgetgettt ettagtggge 150 teggecaage etgtggecca geetgteget gegetggagt eggeggegga 200 ggccggggcc gggaccctgg ccaaccccct cggcaccctc aacccgctga 250

ageteetget gageageetg ggeateeceg tgaaceacet catagaggge 300 - teecagaagt gtgtggetga getgggteec caggeegtgg gggeegtgaa 350

ggccctgaag gccctgctgg gggccctgac agtgtttggc tgagccgaga 400 ctggagcatc tacacctgag gacaagacgc tgcccacccg cgagggctga 450 aaaccccgcc gcggggagga ccgtccatcc ccttcccccg gcccctctca 500 ataaacgtgg ttaagagcaa aaaaaaaaa aaaaaaaaa aaaaaaaaa 550

<210> 408

<211> 104

<212> PRT

<213> Homo sapiens

<400> 408

Met Lys Leu Ala Ala Leu Leu Gly Leu Cys Val Ala Leu Ser Cys 1 5 10 15

Ser Ser Ala Ala Ala Phe Leu Val Gly Ser Ala Lys Pro Val Ala 20 25 30

Gln Pro Val Ala Ala Leu Glu Ser Ala Ala Glu Ala Gly Ala Gly
35
40

Thr Leu Ala Asn Pro Leu Gly Thr Leu Asn Pro Leu Lys Leu 50 55 60

Leu Ser Ser Leu Gly Ile Pro Val Asn His Leu Ile Glu Gly Ser 65 70 75

Gln Lys Cys Val Ala Glu Leu Gly Pro Gln Ala Val Gly Ala Val 80 85 90

Lys Ala Leu Lys Ala Leu Gly Ala Leu Thr Val Phe Gly 95

<210> 409

<211> 2089

<212> DNA

<213> Homo sapiens

<400> 409

tgaaggactt ttccaggacc caaggccaca cactggaagt cttgcagctg 50
aagggaggca ctccttggcc tccgcagccg atcacatgaa ggtggtgcca 100
agtctcctgc tctccgtcct cctggcacag gtgtggctgg tacccggctt 150
ggcccccagt cctcagtcgc cagagacccc agcccctcag aaccagacca 200
gcagggtagt gcaggctccc agggaggaag aggaagatga gcaggaggcc 250
agcagaggaga aggccggtga ggaagagaaa gcctggctga tggccagcag 300
gcagcagctt gccaaggaga cttcaaactt cggattcagc ctgctgcaa 350
agatctccat gaggcacgat ggcaacatgg tcttctctcc atttggcatg 400
tccttggcca tgacaggctc acttgcaggc cctgaagccc accaagcccg 500
ccagatcaag agaggctcc acttgcaggc cctgaagccc accaagcccg 500

ggctcctgcc ttccctcttt aagggactca gagagaccct ctcccqcaac 550 ctggaactgg gcctctcaca ggggagtttt gccttcatcc acaaggattt 600 tgatgtcaaa gagactttct tcaatttatc caagaggtat tttgatacag 650 agtgcgtgcc tatgaatttt cgcaatgcct cacaggccaa aaggctcatg 700 aatcattaca ttaacaaaga gactcggggg aaaattccca aactgtttga 750 tgagattaat cctgaaacca aattaattct tgtggattac atcttgttca 800 aagggaaatg gttgacccca tttgaccctg tcttcaccga agtcgacact 850 ttccacctgg acaagtacaa gaccattaag gtgcccatga tgtacggtgc 900 aggcaagttt gcctccacct ttgacaagaa ttttcgttgt catgtcctca 950 aactgcccta ccaaggaaat gccaccatgc tggtggtcct catggagaaa 1000 atgggtgacc acctegeect tgaagactae etgaceaeag acttggtgga 1050 gacatggctc agaaacatga aaaccagaaa catggaagtt ttctttccga 1100 agttcaagct agatcagaag tatgagatgc atgagctgct taggcagatg 1150 ggaatcagaa gaatcttctc accctttgct gaccttagtg aactctcagc 1200 tactggaaga aatctccaag tatccagggt tttacgaaga acagtgattg 1250 aagttgatga aaggggcact gaggcagtgg caggaatctt gtcagaaatt 1300 actgettatt ccatgeetee tgteateaaa gtggaeegge cattteattt 1350 catgatctat gaagaaacct ctggaatgct tctgtttctg ggcagggtgg 1400 tgaatccgac tctcctataa ttcaggacat gcataagcac ttcgtgctgt 1450 agtagatgct gaatctgagg tatcaaacac acacaggata ccagcaatgg 1500 atggcagggg agagtgttcc ttttgttctt aactagttta gggtgttctc 1550 aaataaatac agtagtcccc acttatctga gggggataca ttcaaagacc 1600 cccagcagat gcctgaaacg gtggacagtg ctgaacctta tatatattt 1650 ttcctacaca tacataccta tgataaagtt taatttataa attaggcaca 1700 gtaagagatt aacaataata acaacattaa gtaaaatgag ttacttgaac 1750 gcaagcactg caataccata acagtcaaac tqattataqa qaaqqctact 1800 aagtgactca tgggcgagga gcatagacag tgtggagaca ttgggcaagg 1850 ggagaattca catcctgggt gggacagagc aggacgatgc aagattccat 1900 cccactactc agaatggcat gctgcttaag acttttagat tgtttatttc 1950 tggaattttt catttaatgt ttttggacca tggttgacca tggttaactg 2000 agactgcaga aagcaaaacc atggataagg gaggactact acaaaagcat 2050 taaattgata catattttt aaaaaaaaaa aaaaaaaaa 2089

```
<210> 410
<211> 444
<212> PRT
<213> Homo sapiens
<400> 410
 Met Lys Val Val Pro Ser Leu Leu Leu Ser Val Leu Leu Ala Gln
                                      10
 Val Trp Leu Val Pro Gly Leu Ala Pro Ser Pro Gln Ser Pro Glu
 Thr Pro Ala Pro Gln Asn Gln Thr Ser Arg Val Val Gln Ala Pro
 Arg Glu Glu Glu Asp Glu Gln Glu Ala Ser Glu Glu Lys Ala
 Gly Glu Glu Lys Ala Trp Leu Met Ala Ser Arg Gln Gln Leu
 Ala Lys Glu Thr Ser Asn Phe Gly Phe Ser Leu Leu Arg Lys Ile
 Ser Met Arg His Asp Gly Asn Met Val Phe Ser Pro Phe Gly Met
Ser Leu Ala Met Thr Gly Leu Met Leu Gly Ala Thr Gly Pro Thr
                                     115
Glu Thr Gln Ile Lys Arg Gly Leu His Leu Gln Ala Leu Lys Pro
                                     130
Thr Lys Pro Gly Leu Leu Pro Ser Leu Phe Lys Gly Leu Arg Glu
                140
Thr Leu Ser Arg Asn Leu Glu Leu Gly Leu Ser Gln Gly Ser Phe
                                     160
Ala Phe Ile His Lys Asp Phe Asp Val Lys Glu Thr Phe Phe Asn
Leu Ser Lys Arg Tyr Phe Asp Thr Glu Cys Val Pro Met Asn Phe
                185
                                     190
Arg Asn Ala Ser Gln Ala Lys Arg Leu Met Asn His Tyr Ile Asn
                                     205
Lys Glu Thr Arg Gly Lys Ile Pro Lys Leu Phe Asp Glu Ile Asn
Pro Glu Thr Lys Leu Ile Leu Val Asp Tyr Ile Leu Phe Lys Gly
                230
Lys Trp Leu Thr Pro Phe Asp Pro Val Phe Thr Glu Val Asp Thr
                                                        255
Phe His Leu Asp Lys Tyr Lys Thr Ile Lys Val Pro Met Met Tyr
Gly Ala Gly Lys Phe Ala Ser Thr Phe Asp Lys Asn Phe Arg Cys
```

280

285

275

```
His Val Leu Lys Leu Pro Tyr Gln Gly Asn Ala Thr Met Leu Val
Val Leu Met Glu Lys Met Gly Asp His Leu Ala Leu Glu Asp Tyr
Leu Thr Thr Asp Leu Val Glu Thr Trp Leu Arg Asn Met Lys Thr
                 320
                                     325
Arg Asn Met Glu Val Phe Phe Pro Lys Phe Lys Leu Asp Gln Lys
                                     340
Tyr Glu Met His Glu Leu Leu Arg Gln Met Gly Ile Arg Arg Ile
                 350
                                     355
                                                          360
Phe Ser Pro Phe Ala Asp Leu Ser Glu Leu Ser Ala Thr Gly Arg
                                     370
Asn Leu Gln Val Ser Arg Val Leu Arg Arg Thr Val Ile Glu Val
                380
                                     385
Asp Glu Arg Gly Thr Glu Ala Val Ala Gly Ile Leu Ser Glu Ile
                                     400
Thr Ala Tyr Ser Met Pro Pro Val Ile Lys Val Asp Arg Pro Phe
His Phe Met Ile Tyr Glu Glu Thr Ser Gly Met Leu Leu Phe Leu
                425
                                     430
Gly Arg Val Val Asn Pro Thr Leu Leu
```

<210> 411

<211> 636

<212> DNA

<400> 411

<213> Homo sapiens

440

cccagacatg aggaggctcc tcctggtcac cagcetggtg gttgtgctgc 100
tgtgggaggc aggtgcagtc ccagcaccca aggtccctat caagatgcaa 150
gtcaaacact ggccctcaga gcaggaccca gagaaggcct ggggcgcccg 200
tgtggtgag cctccggaga aggacgacca gctggtggtg ctgttccctg 250
tccagaagcc gaaactcttg accaccgagg agaagccacg aggtcagggc 300
aggggcccca tccttccagg caccaaggcc tggatggaga ccgaggacac 350
cctgggccgt gtcctgagtc ccgagcccga ccatgacagc ctgtaccacc 400
ctccgcctga ggaggaccag ggcgaggaga ggccccggtt gtggtgatg 450
ccaaatcacc aggtgctcca ggggccatca ctgcccccg cctgtcccaa 550

ggcccaggct gttgggactg ggaccctccc taccctgccc cagctagaca 600

aataaacccc agcaggcaaa aaaaaaaaa aaaaaa 636

```
<210> 412
```

<211> 151

<212> PRT

<213> Homo sapiens

<400> 412

Met Arg Arg Leu Leu Val Thr Ser Leu Val Val Val Leu Leu 1 5 10 15

Trp Glu Ala Gly Ala Val Pro Ala Pro Lys Val Pro Ile Lys Met 20 25 30

Gln Val Lys His Trp Pro Ser Glu Gln Asp Pro Glu Lys Ala Trp
35 40 45

Gly Ala Arg Val Val Glu Pro Pro Glu Lys Asp Asp Gln Leu Val
50 55 60

Val Leu Phe Pro Val Gln Lys Pro Lys Leu Leu Thr Thr Glu Glu 65 70 75

Lys Pro Arg Gly Gln Gly Arg Gly Pro Ile Leu Pro Gly Thr Lys 80 85 90

Ala Trp Met Glu Thr Glu Asp Thr Leu Gly Arg Val Leu Ser Pro 95 100 105

Glu Pro Asp His Asp Ser Leu Tyr His Pro Pro Pro Glu Glu Asp 110 115 120

Gln Gly Glu Glu Arg Pro Arg Leu Trp Val Met Pro Asn His Gln 125 130 135

Val Leu Leu Gly Pro Glu Glu Asp Gln Asp His Ile Tyr His Pro 140 145 150

Gln

<210> 413

<211> 1176

<212> DNA

<213> Homo sapiens

<400> 413

agaaagctgc actctgttga gctccagggc gcagtggagg gagggagtga 50
agggagctctc tgtacccaag gaaagtgcag ctgagactca gacaagatta 100
caatgaacca actcagcttc ctgctgtttc tcatagcgac caccagagga 150
tggagtacag atgaggctaa tacttacttc aaggaatgga cctgttcttc 200
gtctccatct ctgcccagaa gctgcaagga aatcaaagac gaatgtccta 250
gtgcatttga tggcctgtat tttctccgca ctgagaatgg tgttatctac 300
cagaccttct gtgacatgac ctctgggggt ggcggctgga ccctggtggc 350
cagcgtgcat gagaatgaca tgcgtggaa gtgcacggtg ggcgatcgct 400

ggtccagtca gcagggcagc aaagcagact acccagaggg ggacggcaac 450 tgggccaact acaacactt tggatctgca gaggcggcca cgagcgatga 500 ctacaagaac cctggctact acgacatcca ggccaaggac ctgggcatct 550 ggcacgtgcc caataagtcc cccatgcagc actggagaaa cagctccctg 600 ctgaggtacc gcacggacac tggcttcctc cagacactgg gacataatct 650 gtttggcatc taccagaaat atccagtgaa atatggagaa ggaaagtgtt 700 ggactgacaa cggcccggtg atccctgtgg tctatgattt tggcgacgcc 750 cagaaaacag catcttatta ctcaccctat ggccagcggg aattcactgc 800 gggatttgtt cagttcaggg tatttaataa cgagagagca gccaacgcct 850 tgtgtgctgg aatgagggtc accggatgta acactgagca tcactgcatt 900 ggtggaggag gatactttcc agaggccagt ccccagcagt gtggagattt 950 ttctggtttt gattggagtg gatatggaac tcatgttggt tacagcagca 1000 gccgtgagat aactgaggca gctgtgcttc tattctatcg ttgagagttt 1050 tgtgggaggg aacccagacc tctcctccca accatgagat cccaaggatg 1100 gagaacaact tacccagtag ctagaatgtt aatggcagaa gagaaaacaa 1150 taaatcatat tgactcaaga aaaaaa 1176

<210> 414

<211> 313

<212> PRT

<213> Homo sapiens

<400> 414

Met Asn Gln Leu Ser Phe Leu Leu Phe Leu Ile Ala Thr Thr Arg
1 5 10 15

Gly Trp Ser Thr Asp Glu Ala Asn Thr Tyr Phe Lys Glu Trp Thr 20 25 30

Cys Ser Ser Ser Pro Ser Leu Pro Arg Ser Cys Lys Glu Ile Lys 35 40 45

Asp Glu Cys Pro Ser Ala Phe Asp Gly Leu Tyr Phe Leu Arg Thr 50 55 60

Glu Asn Gly Val Ile Tyr Gln Thr Phe Cys Asp Met Thr Ser Gly 65 70 75

Gly Gly Gly Trp Thr Leu Val Ala Ser Val His Glu Asn Asp Met 80 85 90

Arg Gly Lys Cys Thr Val Gly Asp Arg Trp Ser Ser Gln Gln Gly 95 100 105

Ser Lys Ala Asp Tyr Pro Glu Gly Asp Gly Asn Trp Ala Asn Tyr 110 115 120

Asn Thr Phe Gly Ser Ala Glu Ala Ala Thr Ser Asp Asp Tyr Lys

125 130 135 Asn Pro Gly Tyr Tyr Asp Ile Gln Ala Lys Asp Leu Gly Ile Trp 140 145 His Val Pro Asn Lys Ser Pro Met Gln His Trp Arg Asn Ser Ser 155 Leu Leu Arg Tyr Arg Thr Asp Thr Gly Phe Leu Gln Thr Leu Gly 175 180 His Asn Leu Phe Gly Ile Tyr Gln Lys Tyr Pro Val Lys Tyr Gly 190 Glu Gly Lys Cys Trp Thr Asp Asn Gly Pro Val Ile Pro Val Val 205 210 Tyr Asp Phe Gly Asp Ala Gln Lys Thr Ala Ser Tyr Tyr Ser Pro Tyr Gly Gln Arg Glu Phe Thr Ala Gly Phe Val Gln Phe Arg Val 235 240 Phe Asn Asn Glu Arg Ala Ala Asn Ala Leu Cys Ala Gly Met Arg Val Thr Gly Cys Asn Thr Glu His His Cys Ile Gly Gly Gly 265 Tyr Phe Pro Glu Ala Ser Pro Gln Gln Cys Gly Asp Phe Ser Gly 275 280 285 Phe Asp Trp Ser Gly Tyr Gly Thr His Val Gly Tyr Ser Ser Ser 295 Arg Glu Ile Thr Glu Ala Ala Val Leu Leu Phe Tyr Arg 305

<210> 415

<211> 1281

<212> DNA

<213> Homo sapiens

<400> 415

geggageegg egeeggetge geagaggage egeetetegge geeggeacet 50
eggetgggag eecacgagge tgeeggetge tgeetegga acaatgggae 100
teggegegeg aggtgettgg geeggetge teetggggae getgeaggtg 150
etagegetge tgggggeege eeatgaaage geageeatgg eggeatetge 200
aaacatagag aattetggge tteeacacaa eteeagtget aacteaacag 250
agaeteteea acatgtgeet tetgaceata caaatgaaac tteeaacagt 300
actgtgaaac eaceaactte agttgeetea gaeteeagfa atacaacggt 350
caccaccatg aaacetacag eggeatetaa tacaacaaca ecagggatgg 400
teteaacaaa tatgaettet aecacettaa agtetacace caaaacaaca 450
agtgttteac agaacacate teagatatea acateeacaa tgaeegtaac 500

ccacaatagt tcagtgacat ctgctgcttc atcagtaaca atcacaacaa 550 ctatgcattc tgaagcaaag aaaggatcaa aatttgatac tgggagcttt 600 gttggtggta ttgtattaac gctgggagtt ttatctattc tttacattgg 650 atgcaaaatg tattactcaa gaagaggcat tcggtatcga accatagatg 700 aacatgatgc catcatttaa ggaaatccat ggaccaagga tggaatacag 750 attgatgctg ccctatcaat taattttggt ttattaatag tttaaaacaa 800 tattctcttt ttgaaaatag tataaacagg ccatgcatat aatgtacagt 850 gtattacgta aatatgtaaa gattcttcaa ggtaacaagg gtttgggttt 900 tgaaataaac atctggatct tatagaccgt tcatacaatg gttttagcaa 950 gttcatagta agacaaacaa gtcctatctt ttttttttgg ctggggtggg 1000 ggcattggtc acatatgacc agtaattgaa agacgtcatc actgaaagac 1050 agaatgccat ctgggcatac aaataagaag tttgtcacag cactcaggat 1100 tttgggtate ttttgtaget cacataaaga acttcagtge ttttcagage 1150 tggatatatc ttaattacta atgccacaca gaaattatac aatcaaacta 1200 gatctgaagc ataatttaag aaaaacatca acattttttg tgctttaaac 1250 tgtagtagtt ggtctagaaa caaaatactc c 1281

<210> 416

<211> 208

<212> PRT

<213> Homo sapiens

<400> 416

Met Gly Leu Gly Ala Arg Gly Ala Trp Ala Ala Leu Leu Gly 1 5 10

Thr Leu Gln Val Leu Ala Leu Leu Gly Ala Ala His Glu Ser Ala 20 25 30

Ala Met Ala Ala Ser Ala Asn Ile Glu Asn Ser Gly Leu Pro His $35 \hspace{1cm} 40 \hspace{1cm} 45$

Asn Ser Ser Ala Asn Ser Thr Glu Thr Leu Gln His Val Pro Ser 50 55 60

Asp His Thr Asn Glu Thr Ser Asn Ser Thr Val Lys Pro Pro Thr 65 70 75

Ser Val Ala Ser Asp Ser Ser Asn Thr Thr Val Thr Thr Met Lys 80 85 90

Pro Thr Ala Ala Ser Asn Thr Thr Thr Pro Gly Met Val Ser Thr 95 100 105

Asn Met Thr Ser Thr Thr Leu Lys Ser Thr Pro Lys Thr Thr Ser 110 115 120

Val Ser Gln Asn Thr Ser Gln Ile Ser Thr Ser Thr Met Thr Val

125 130 135 Thr His Asn Ser Ser Val Thr Ser Ala Ala Ser Ser Val Thr Ile 140 Thr Thr Met His Ser Glu Ala Lys Lys Gly Ser Lys Phe Asp Thr Gly Ser Phe Val Gly Gly Ile Val Leu Thr Leu Gly Val Leu 175 Ser Ile Leu Tyr Ile Gly Cys Lys Met Tyr Tyr Ser Arg Arg Gly 185 Ile Arg Tyr Arg Thr Ile Asp Glu His Asp Ala Ile Ile

200 <210> 417

<211> 1728 <212> DNA

<213> Homo sapiens

<400> 417 cagccgggtc ccaagcctgt gcctgagcct gagcctgagc ctgagcccga 50 geegggagee ggtegeggg geteeggget gtgggaeege tgggeeecea 100 gcgatggcga ccctgtgggg aggccttctt cggcttggct ccttgctcag 150 cetgtegtge etggegettt eegtgetget getggegeag etgteagaeg 200 ccgccaagaa tttcgaggat gtcagatgta aatgtatctg ccctccctat 250 aaagaaaatt ctgggcatat ttataataag aacatatctc agaaagattg 300 tgattgcctt catgttgtgg agcccatgcc tgtgcggggg cctgatgtag 350 aagcatactg tctacgctgt gaatgcaaat atgaagaaag aagctctgtc 400 acaatcaagg ttaccattat aatttatctc tccattttgg gccttctact 450 tctgtacatg gtatatctta ctctggttga gcccatactg aagaggcgcc 500 tctttggaca tgcacagttg atacagagtg atgatgatat tggggatcac 550 cagecttttg caaatgcaca egatgtgcta geeegeteee geagtegage 600 caacgtgctg aacaaggtag aatatgcaca gcagcgctgg aagcttcaag 650 tecaagagea gegaaagtet gtetttgaee ggeatgttgt eeteagetaa 700 ttgggaattg aattcaaggt gactagaaag aaacaggcag acaactggaa 750 agaactgact gggttttgct gggtttcatt ttaatacctt gttgatttca 800

ccaactgttg ctggaagatt caaaactgga agcaaaaact tgcttgattt 850 ttttttcttg ttaacgtaat aatagagaca tttttaaaag cacacagctc 900

aaagtcagcc aataagtctt ttcctatttg tgacttttac taataaaaat 950 aaatctgcct gtaaattatc ttgaagtcct ttacctggaa caagcactct 1000

<210> 418

<211> 198

<212> PRT

<213> Homo sapiens

<400> 418

Met Ala Thr Leu Trp Gly Gly Leu Leu Arg Leu Gly Ser Leu Leu 1 5 10 15

Ser Leu Ser Cys Leu Ala Leu Ser Val Leu Leu Leu Ala Gln Leu
20 25 30

Ser Asp Ala Ala Lys Asn Phe Glu Asp Val Arg Cys Lys Cys Ile 35 40 40

Cys Pro Pro Tyr Lys Glu Asn Ser Gly His Ile Tyr Asn Lys Asn 50 55 60

Ile Ser Gln Lys Asp Cys Asp Cys Leu His Val Val Glu Pro Met
65 70 75

Pro Val Arg Gly Pro Asp Val Glu Ala Tyr Cys Leu Arg Cys Glu 80 85 90

Cys Lys Tyr Glu Glu Arg Ser Ser Val Thr Ile Lys Val Thr Ile
95 100

Ile Ile Tyr Leu Ser Ile Leu Gly Leu Leu Leu Leu Tyr Met Val 110 115 120

Tyr Leu Thr Leu Val Glu Pro Ile Leu Lys Arg Arg Leu Phe Gly 125 130 135

His Ala Gln Leu Ile Gln Ser Asp Asp Ile Gly Asp His Gln $140 \,$ $145 \,$ 150

Pro Phe Ala Asn Ala His Asp Val Leu Ala Arg Ser Arg Ser Arg 155 160 165

Ala Asn Val Leu Asn Lys Val Glu Tyr Ala Gln Gln Arg Trp Lys 170 175 180

Leu Gln Val Gln Glu Gln Arg Lys Ser Val Phe Asp Arg His Val 185 190 195

Val Leu Ser

<210> 419

<211> 681

<212> DNA

<213> Homo sapiens

<400> 419

geacetgega ceacegtgag cagteatgge gtactecaca gtgeagagag 50 tegetetgge ttetgggett gteetggete tgtegetget getgeecaag 100 geetteetgt eeegegggaa geggeaggag eegeegeega cacetgaagg 150 aaaattggge egattteeac etatgatgea teateaceag geaceeteag 200 atggeeagae teetgggget egttteeaga ggteteacet tgeegaggea 250 tttgeaaagg eeaaaggate aggtggaggt getggaggag gaggtagtgg 300 aagaggtetg atgggeeaga ttatteeaat etaeggtttt gggattttt 350 tatatataet gtacatteta tttaaggtaa gtagaateat eetaeateata 400 ttacateaat gaaaatetaa tatggegata aaaateattg tetacattaa 450 aaettettat agtteataaa attatteeaa ateeateate teettaaate 500 etgeeteete tteatgaggt acttaggata geeattatt eagtteeaca 550 taagaatgtt taeteaatgt ttaagtgtt tgeeceaaaa tteacaacta 600 acaaggeaga actaggaett gaacatggat ettttggtte ttaateeagt 650 gagtgataca atteaatgea eteeeetgee a 681

<210> 420

<211> 128

<212> PRT

<213> Homo sapiens

<400> 420

Met Ala Tyr Ser Thr Val Gln Arg Val Ala Leu Ala Ser Gly Leu $1 \hspace{1cm} 5 \hspace{1cm} 10 \hspace{1cm} 15$

Val Leu Ala Leu Ser Leu Leu Leu Pro Lys Ala Phe Leu Ser Arg 20 25 30

Gly Lys Arg Gln Glu Pro Pro Pro Thr Pro Glu Gly Lys Leu Gly 35 40 45

Arg Phe Pro Pro Met Met His His His Gln Ala Pro Ser Asp Gly 60 Gln Thr Pro Gly Ala Arg Phe Gln Arg Ser 70 His Leu Ala Glu Ala 75 Phe Ala Lys Ala Lys Gly Ser Gly Gly Gly 85 Ala Gly Gly Gly 90 Ser Gly Arg Gly Leu Met Gly Gln Ile Ile Pro Ile Tyr Gly Phe 105 Gly Ile Phe Leu Tyr Ile Leu Tyr Ile Leu Phe Lys Val Ser Arg 120

Ile Ile Leu Ile Ile Leu His Gln 125

<210> 421 <211> 1630 <212> DNA <213> Homo sapien

<213> Homo sapiens

<400> 421 cggctcgagt gcagctgtgg ggagatttca gtgcattgcc tcccctgggt 50 gctcttcatc ttggatttga aagttgagag cagcatgttt tgcccactga 100 aactcatect getgecagtg ttaetggatt atteettggg cetgaatgae 150 ttgaatgttt ccccgcctga gctaacagtc catgtgggtg attcagctct 200 gatgggatgt gttttccaga gcacagaaga caaatgtata ttcaagatag 250 actggactct gtcaccagga gagcacgcca aggacgaata tgtgctatac 300 tattactcca atctcagtgt gcctattggg cgcttccaga accgcgtaca 350 cttgatgggg gacatcttat gcaatgatgg ctctctcctg ctccaagatg 400 tgcaagaggc tgaccaggga acctatatct gtgaaatccg cctcaaaggg 450 gagagccagg tgttcaagaa ggcggtggta ctqcatqtqc ttccagagqa 500 gcccaaagag ctcatggtcc atgtgggtgg attgattcag atgggatgtg 550 ttttccagag cacagaagtg aaacacgtga ccaaggtaga atggatattt 600 tcaggacggc gcgcaaagga ggagattgta tttcgttact accacaaact 650 caggatgtct gtggagtact cccagagctg gggccacttc cagaatcgtg 700 tgaacctggt gggggacatt ttccgcaatg acggttccat catgcttcaa 750 ggagtgaggg agtcagatgg aggaaactac acctgcagta tccacctagg 800 gaacctggtg ttcaaqaaaa ccattgtqct qcatqtcaqc ccqqaaqaqc 850 ctcgaacact ggtgaccccg gcagccctga ggcctctggt cttgggtggt 900 aatcagttgg tgatcattgt gggaattgtc tgtgccacaa tcctgctgct 950 ccctgttctg atattgatcg tgaagaagac ctgtggaaat aagagttcag 1000 tgaattctac agtettggtg aagaacacga agaagactaa tecagagata 1050
aaagaaaaaac cetgecattt tgaaagatgt gaaggggaga aacacattta 1100
ctccccaata attgtacggg aggtgatcga ggaagaagaa ccaagtgaaa 1150
aatcagagge cacctacatg accatgcace cagtttggee ttetetgagg 1200
teagategga acaacteact tgaaaaaaaag teaggtgggg gaatgecaaa 1250
aacacageaa geettttgag aagaatggag agteeettea teteageage 1300
ggtggagact eteteetgtg tgtgteetgg geeactetae cagtgatte 1350
agacteeege teteceaget gteeteetgt eteattgtt ggteaataca 1400
etgaagatgg agaatttgga geetggeaga gagaetggae agetetggag 1450
gaacaggeet getgaggga ggggageatg gaettggeet etggagtggg 1500
acactggeee tgggaaceag getgagetga gtggeeteaa acceeegtt 1550
ggateagace eteetgtggg cagggteet agtggatgag ttactgggaa 1600
gaatcagaga taaaaaceaa eccaaateaa 1630

<210> 422

<211> 394

<212> PRT

<213> Homo sapiens

<400> 422

Met Phe Cys Pro Leu Lys Leu Ile Leu Leu Pro Val Leu Leu Asp 1 5 10 15

Tyr Ser Leu Gly Leu Asn Asp Leu Asn Val Ser Pro Pro Glu Leu 20 25 30

Thr Val His Val Gly Asp Ser Ala Leu Met Gly Cys Val Phe Gln 35 40 45

Ser Thr Glu Asp Lys Cys Ile Phe Lys Ile Asp Trp Thr Leu Ser 50 55 60

Pro Gly Glu His Ala Lys Asp Glu Tyr Val Leu Tyr Tyr Ser 65 70 75

Asn Leu Ser Val Pro Ile Gly Arg Phe Gln Asn Arg Val His Leu 80 85 90

Met Gly Asp Ile Leu Cys Asn Asp Gly Ser Leu Leu Gln Asp 95 100 105

Val Gln Glu Ala Asp Gln Gly Thr Tyr Ile Cys Glu Ile Arg Leu 110 115 120

Lys Gly Glu Ser Gln Val Phe Lys Lys Ala Val Val Leu His Val 125 130 135

Leu Pro Glu Glu Pro Lys Glu Leu Met Val His Val Gly Gly Leu
140 145 150

Ile Gln Met Gly Cys Val Phe Gln Ser Thr Glu Val Lys His Val

155 160 165

Thr Lys Val Glu Trp Ile Phe Ser Gly Arg Arg Ala Lys Glu Glu 170 175 180

Ile Val Phe Arg Tyr Tyr His Lys Leu Arg Met Ser Val Glu Tyr 185 190 195

Ser Gln Ser Trp Gly His Phe Gln Asn Arg Val Asn Leu Val Gly 200 205 210

Asp Ile Phe Arg Asn Asp Gly Ser Ile Met Leu Gln Gly Val Arg 215 220 225

Glu Ser Asp Gly Gly Asn Tyr Thr Cys Ser Ile His Leu Gly Asn 230 235 240

Leu Val Phe Lys Lys Thr Ile Val Leu His Val Ser Pro Glu Glu 245 250

Pro Arg Thr Leu Val Thr Pro Ala Ala Leu Arg Pro Leu Val Leu 260 265 270

Gly Gly Asn Gln Leu Val Ile Ile Val Gly Ile Val Cys Ala Thr 275 280 285

Ile Leu Leu Pro Val Leu Ile Leu Ile Val Lys Lys Thr Cys 290 295 300

Gly Asn Lys Ser Ser Val Asn Ser Thr Val Leu Val Lys Asn Thr 305 310 315

Lys Lys Thr Asn Pro Glu Ile Lys Glu Lys Pro Cys His Phe Glu 320 325 330

Arg Cys Glu Gly Glu Lys His Ile Tyr Ser Pro Ile Ile Val Arg 335 340

Glu Val Ile Glu Glu Glu Glu Pro Ser Glu Lys Ser Glu Ala Thr 350 355 360

Tyr Met Thr Met His Pro Val Trp Pro Ser Leu Arg Ser Asp Arg 365 370 375

Asn Asn Ser Leu Glu Lys Lys Ser Gly Gly Gly Met Pro Lys Thr 380 385 385

Gln Gln Ala Phe

<210> 423

<211> 963

<212> DNA <213> Homo sapiens

<400> 423

ctatgaagaa gcttcctgga aaacaataag caaaggaaaa caaatgtgtc 50 ccatctcaca tggttctacc ctactaaaga caggaagatc ataaactgac 100 agatactgaa attgtaagag ttggaaacta cattttgcaa agtcattgaa 150 ctctgagctc agttgcagta ctcgggaagc catgcaggat gaagatggat 200

acatcacctt aaatattaaa actcggaaac cagctctcgt ctccgttggc 250 cctgcatcct cctcctggtg gcgtgtgatg gctttgattc tgctgatcct 300 gtgcgtgggg atggttgtcg ggctggtggc tctggggatt tggtctgtca 350 tgcagcgcaa ttacctacaa gatgagaatg aaaatcgcac aggaactctg 400 caacaattag caaagcgctt ctgtcaatat gtggtaaaac aatcagaact 450 aaagggcact ttcaaaggtc ataaatgcag cccctgtgac acaaactgga 500 gatattatgg agatagctgc tatgggttct tcaggcacaa cttaacatgg 550 gaagagagta agcagtactg cactgacatg aatgctactc tcctgaagat 600 tgacaaccgg aacattgtgg agtacatcaa agccaggact catttaattc 650 gttgggtcgg attatctcgc cagaagtcga atgaggtctg gaagtgggag 700 gatggctcgg ttatctcaga aaatatgttt gagtttttgg aagatggaaa 750 aggaaatatg aattgtgctt attttcataa tgggaaaatg caccctacct 800 tctgtgagaa caaacattat ttaatgtgtg agaggaaggc tggcatgacc 850 aaggtggacc aactacctta atgcaaagag gtggacagga taacacagat 900 aagggcttta ttgtacaata aaagatatgt atgaatgcat cagtagctga 950 aaaaaaaaa aaa 963

<210> 424

<211> 229

<212> PRT

<213> Homo sapiens

<400> 424

Met Gln Asp Glu Asp Gly Tyr Ile Thr Leu Asn Ile Lys Thr Arg
1 5 10 15

Lys Pro Ala Leu Val Ser Val Gly Pro Ala Ser Ser Ser Trp Trp 20 25 30

Arg Val Met Ala Leu Ile Leu Leu Ile Leu Cys Val Gly Met Val 35 40 45

Val Gly Leu Val Ala Leu Gly Ile Trp Ser Val Met Gln Arg Asn
50 55 60

Tyr Leu Gln Asp Glu Asn Glu Asn Arg Thr Gly Thr Leu Gln Gln
65 70 75

Leu Ala Lys Arg Phe Cys Gln Tyr Val Val Lys Gln Ser Glu Leu 80 85 90

Lys Gly Thr Phe Lys Gly His Lys Cys Ser Pro Cys Asp Thr Asn 95 100 105

Trp Arg Tyr Tyr Gly Asp Ser Cys Tyr Gly Phe Phe Arg His Asn 110 115 120

Leu Thr Trp Glu Glu Ser Lys Gln Tyr Cys Thr Asp Met Asn Ala

			125					130					135	
Thr L	eu Leu	Lys	Ile 140	Asp	Asn	Arg	Asn	Ile 145	Val	Glu	Tyr	Ile	Lys 150	
Ala A	rg Thr	His	Leu 155	Ile	Arg	Trp	Val	Gly 160	Leu	Ser	Arg	Gln	Lys 165	
Ser A	sn Glu	Val	Trp 170	Lys	Trp	Glu	Asp	Gly 175	Ser	Val	Ile	Ser	Glu 180	
Asn M	et Phe	Glu	Phe 185	Leu	Glu	Asp	Gly	Lys 190	Gly	Asn	Met	Asn	Cys 195	
Ala T	yr Phe	His	Asn 200	Gly	Lys	Met	His	Pro 205	Thr	Phe	Cys	Glu	Asr 210	
Lys H	is Tyr	Leu	Met 215	Cys	Glu	Arg	Lys	Ala 220	Gly	Met	Thr	Lys	Val 225	
Asp G	ln Leu	Pro												
<210> 425 <211> 24 <212> DNA <213> Artificial Sequence														
<220> <223> Synthetic oligonucleotide probe														
<400> 425 tgcagcccct gtgacacaaa ctgg 24														
<210> 426 <211> 26 <212> DNA <213> Artificial Sequence														
<220> <223> Synthetic oligonucleotide probe														
<400> 426 ctgagataac cgagccatcc tcccac 26														
<210> 427 <211> 49 <212> DNA <213> Artificial Sequence														
<220> <223> 5	220> 223> Synthetic oligonucleotide probe													
<400> 427 gcttcctgac actaaggctg tctgctagtc agaattgcct caaaaagag 49														
<211> 2 <212> D	<210> 428 <211> 21 <212> DNA <213> Artificial Sequence													
<220> <223> S	Synthet	ic o	ligo	nucl	eoti	de p	robe							

```
army from the probability the probability of the state of
```

```
<400> 428
ccaccaatgg cagccccacc t 21
<210> 429
<211> 17
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 429
gactgccctc cctgcca 17
<210> 430
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 430
caaaaagcct ggaagtcttc aaag 24
<210> 431
<211> 20
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 431
cagctggact gcaggtgcta 20
<210> 432
<211> 22
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 432
 cagtgagcac agcaagtgtc ct 22
<210> 433
<211> 28
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 433
 ggccacctcc ttgagtcttc agttccct 28
<210> 434
<211> 24
<212> DNA
<213> Artificial Sequence
```

```
<220>
 <223> Synthetic oligonucleotide probe
 <400> 434
 caactactgg ctaaagctgg tgaa 24
<210> 435
 <211> 27
 <212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 435
 cctttctgta taggtgatac ccaatga 27
<210> 436
<211> 24
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 436
 tggccatccc taccagaggc aaaa 24
<210> 437
<211> 22
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 437
 ctgaagacga cgcggattac ta 22
<210> 438
<211> 19
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 438
 ggcagaaatg ggaggcaga 19
<210> 439
<211> 30
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 439
tgctctgttg gctacggctt tagtccctag 30
<210> 440
<211> 22
```

```
group, grade, activity gates, terrest present season control of the season control of th
```

```
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 440
 agcagcagcc atgtagaatg aa 22
<210> 441
<211> 22
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 441
 aatacgaaca gtgcacgctg at 22
<210> 442
<211> 23
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 442
 tccagagagc caagcacggc aga 23
<210> 443
<211> 22
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 443
tctagccagc ttggctccaa ta 22
<210> 444
<211> 23
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 444
cctggctcta gcaccaactc ata 23
<210> 445
<211> 25
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 445
tcagtggccc taaggagatg ggcct 25
```

```
<210> 446
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 446
 caggatacag tgggaatctt gaga 24
<210> 447
<211> 22
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 447
 cctgaagggc ttggagctta gt 22
<210> 448
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 448
 tctttggcca tttcccatgg ctca 24
<210> 449
<211> 18
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 449
 cccatggcga ggaggaat 18
<210> 450
<211> 19
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 450
tgcgtacgtg tgccttcag 19
<210> 451
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
```

```
<400> 451
 cagcacccca ggcagtctgt gtgt 24
<210> 452
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 452
 aacgtgctac acgaccagtg tact 24
<210> 453
<211> 27
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 453
 cacagcatat tcagatgact aaatcca 27
<210> 454
<211> 31
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 454
 ttgtttagtt ctccaccgtg tctccacaga a 31
<210> 455
<211> 21
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 455
 tgtcagaatg caacctggct t 21
<210> 456
<211> 20
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 456
tgatgtgcct ggctcagaac 20
<210> 457
<211> 24
<212> DNA
<213> Artificial Sequence
```

<211> 37

```
<220>
<223> Synthetic oligonucleotide probe
<400> 457
tgcacctaga tgtccccagc accc 24
<210> 458
<211> 20
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 458
aagatgcgcc aggcttctta 20
<210> 459
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 459
ctcctgtacg gtctgctcac ttat 24
<210> 460
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 460
tggctgtcag tccagtgtgc atgg 24
<210> 461
<211> 29
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 461
 gcatagggat agataagatc ctgctttat 29
<210> 462
<211> 27
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 462
caaattaaag tacccatcag gagagaa 27
<210> 463
```

```
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 463
 aagttgctaa atatatacat tatctgcgcc aagtcca 37
<210> 464
<211> 20
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 464
 gtgctgccca caattcatga 20
<210> 465
<211> 26
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 465
 gtccttggta tgggtctgaa ttatat 26
<210> 466
<211> 31
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 466
 actototgoa coccacagto accactatot c 31
<210> 467
<211> 22
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 467
 ctgaggaacc agccatgtct ct 22
<210> 468
<211> 23
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 468
gaccagatgc aggtacagga tga 23
```

```
arms, garms, garms, garms, manns, mann, ma
```

```
<210> 469
<211> 25
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 469
 ctgcccttc agtgatgcca acctt 25
<210> 470
<211> 22
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 470
 gggtggaggc tcactgagta ga 22
<210> 471
<211> 28
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 471
 caatacaggt aatgaaactc tgcttctt 28
<210> 472
<211> 36
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 472
 tcctcttaag cataggccat tttctcagtt tagaca 36
<210> 473
<211> 21
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 473
ggtggtcttg cttggtctca c 21
<210> 474
<211> 20
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
```

```
der feine der feine der feine der feine seine der feine der feine
```

```
<400> 474
 ccgtcgttca gcaacatgac 20
 <210> 475
 <211> 20
 <212> DNA
 <213> Artificial Sequence
 <220>
 <223> Synthetic oligonucleotide probe
<400> 475
 accgcctacc gctgtgccca 20
<210> 476
<211> 23
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 476
 cagtaaaacc acaggctgga ttt 23
<210> 477
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 477
 cctgagagca agaaggttga gaat 24
<210> 478
<211> 22
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 478
 tagacaggga ccatggcccg ca 22
<210> 479
<211> 21
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 479
 tgggctgtag aagagttgtt g 21
<210> 480
<211> 20
<212> DNA
<213> Artificial Sequence
```

```
<220>
 <223> Synthetic oligonucleotide probe
 <400> 480
 tccacacttg gccagtttat 20
 <210> 481
 <211> 24
 <212> DNA
 <213> Artificial Sequence
 <223> Synthetic oligonucleotide probe
<400> 481
 cccaacttct cccttttgga ccct 24
<210> 482
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 482
 gtcccttcac tgtttagagc atga 24
<210> 483
<211> 26
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 483
 actotoccc tcaacagcct cctgag 26
<210> 484
<211> 20
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 484
 gtggtcaggg cagatccttt 20
<210> 485
<211> 23
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 485
acagatccag gagagactcc aca 23
<210> 486
<211> 21
```

```
<212> DNA
 <213> Artificial Sequence
 <220>
 <223> Synthetic oligonucleotide probe
 <400> 486
 agcggcgctc ccagcctgaa t 21
 <210> 487
 <211> 23
 <212> DNA
 <213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 487
 catgattggt cctcagttcc atc 23
<210> 488
<211> 20
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 488
 atagagggct cccagaagtg 20
<210> 489
<211> 21
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 489
 cagggccttc agggccttca c 21
<210> 490
<211> 19
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 490
 gctcagccaa acactgtca 19
<210> 491
<211> 17
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 491
 ggggccctga cagtgtt 17
```

```
<210> 492
<211> 26
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 492
 ctgagccgag actggagcat ctacac 26
<210> 493
<211> 17
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 493
gtgggcagcg tcttgtc 17
<210> 494
<211> 1231
<212> DNA
<213> Homo Sapien
<400> 494
 eccaegegte egegeagteg egeagttetg ecteegeetg ecagtetege 50
 ccgcgatccc ggcccggggc tgtggcgtcg actccgaccc aggcagccag 100
 cagecegege gggageegga eegeegeegg aggagetegg aeggeatget 150
 gagccccctc ctttgctgaa gcccgagtgc ggagaagccc gggcaaacgc 200
 aggctaagga gaccaaagcg gcgaagtcgc gagacagcgg acaagcagcg 250
 gaggagaagg aggaggaggc gaacccagag aggggcagca aaagaagcgg 300
tggtggtggg cgtcgtggcc atggcggcgg ctatcgccag ctcqctcatc 350
cgtcagaaga ggcaagcccg cgagcgcgag aaatccaacg cctgcaagtg 400
tgtcagcagc cccagcaaag gcaagaccag ctgcgacaaa aacaagttaa 450
atgtcttttc ccgggtcaaa ctcttcggct ccaagaagag gcgcagaaga 500
agaccagagc ctcagcttaa gggtatagtt accaagctat acagccgaca 550
aggetaceae ttgcagetge aggeggatgg aaccattgat ggcaceaaag 600
atgaggacag cacttacact ctgtttaacc tcatccctgt gggtctgcga 650
gtggtggcta tccaaggagt tcaaaccaag ctgtacttgg caatgaacag 700
tgagggatac ttgtacacct cggaactttt cacacctgag tgcaaattca 750
aagaatcagt gtttgaaaat tattatgtga catattcatc aatgatatac 800
cgtcagcagc agtcaggccg agggtggtat ctgggtctga acaaagaagg 850
agagatcatg aaaggcaacc atgtgaagaa gaacaagcct gcagctcatt 900
```

ttctgcctaa accactgaaa gtggccatgt acaaggagcc atcactgcac 950 gatctcacgg agttctcccg atctggaagc gggaccccaa ccaagagcag 1000 aagtgtctct ggcgtgctga acggaggcaa atccatgagc cacaatgaat 1050 caacgtagcc agtgagggca aaagaagggc tctgtaacag aaccttacct 1100 ccaggtgctg ttgaattctt ctagcagtcc ttcacccaaa agttcaaatt 1150 tgtcagtgac atttaccaaa caaacaggca gagttcacta ttctatctgc 1200 cattagacct tcttatcatc catactaaag c 1231

<210> 495

<211> 245

<212> PRT

<213> Homo Sapien

<400> 495

Met Ala Ala Ile Ala Ser Ser Leu Ile Arg Gln Lys Arg Gln 1 5 10 15

Ala Arg Glu Arg Glu Lys Ser Asn Ala Cys Lys Cys Val Ser Ser 20 25 30

Pro Ser Lys Gly Lys Thr Ser Cys Asp Lys Asn Lys Leu Asn Val 35 40 45

Phe Ser Arg Val Lys Leu Phe Gly Ser Lys Lys Arg Arg Arg 50 55 60

Arg Pro Glu Pro Gln Leu Lys Gly Ile Val Thr Lys Leu Tyr Ser 65 70 75

Arg Gln Gly Tyr His Leu Gln Leu Gln Ala Asp Gly Thr Ile Asp 80 85 90

Gly Thr Lys Asp Glu Asp Ser Thr Tyr Thr Leu Phe Asn Leu Ile 95 100 105

Pro Val Gly Leu Arg Val Val Ala Ile Gln Gly Val Gln Thr Lys 110 115 120

Leu Tyr Leu Ala Met Asn Ser Glu Gly Tyr Leu Tyr Thr Ser Glu 125 130 135

Leu Phe Thr Pro Glu Cys Lys Phe Lys Glu Ser Val Phe Glu Asn 140 145 150

Tyr Tyr Val Thr Tyr Ser Ser Met Ile Tyr Arg Gln Gln Gln Ser 155 160 165

Gly Arg Gly Trp Tyr Leu Gly Leu Asn Lys Glu Gly Glu Ile Met 170 175 180

Lys Gly Asn His Val Lys Lys Asn Lys Pro Ala Ala His Phe Leu 185 190

Pro Lys Pro Leu Lys Val Ala Met Tyr Lys Glu Pro Ser Leu His 200 205 210

Asp Leu Thr Glu Phe Ser Arg Ser Gly Ser Gly Thr Pro Thr Lys

215 220 225 Ser Arg Ser Val Ser Gly Val Leu Asn Gly Gly Lys Ser Met Ser

230 235 Lys Ser Met Se.

His Asn Glu Ser Thr 245

<210> 496 <211> 1471

<212> DNA

<213> Homo Sapien

<400> 496

ccaggatgga gctggggcct gtatagccat attattgttc tatgctacta 50 gacatggggg ggacttggtg aaaaaggtat tatccagcca gagggtctgg 100 gagecetgte ttactgaace tgggeaacet ggatattetg agacatattt 150 tggggggatt tcagtgaaaa aagtggggga tcccctccat ttagagtgta 200 gcaaaggaaa aaacaccaag gttgggttcc ttcctgacat tggcagtgcc 250 ccagtagggg tgggatgagc gaatattccc aaagctaaag tcccacaccc 300 tgtagattac aagagtggat ttggcaggag tgtgccccaa aatacagtgg 350 aaaggtgcct gaagatattt aaaccacgtc ttggaaattt agtgggtctt 400 ggctttggga taggtgaagt gaggacagac actggagagg agggaaaggg 450 gacgttttca ataggaggca aaactcgagg gtgggatcca ctgaggagta 500 cataggctgc tggatctggt ggagccagca ctgggcccac gggtggtaac 550 tggctgctgt ggagggggt acgtgagggg ggggtctggg gcttatcctc 600 aggtcctgtg ggtggggcag cgagtcgggg cctgagcgtc aagagcatgc 650 cctagtgagc gggctcctct gggggagccc agcgcgctcc gggcgcctgc 700 cggtttgggg gtgtctcctc ccggggcgct atggcggcgc tggccagtag 750 cctgatccgg cagaagcggg aggtccgcga gcccgggggc agccggccgg 800 tgtcggcgca gcggcgcgtg tgtccccgcg gcaccaagtc cctttgccag 850 aagcagctcc tcatcctgct gtccaaggtg cgactgtgcg ggggggggcc 900 cgcgcggccg gaccgcggcc cggagcctca gctcaaaggc atcgtcacca 950 aactgttctg ccgccagggt ttctacctcc aggcgaatcc cgacggaagc 1000 atccagggca ccccagagga taccagctcc ttcacccact tcaacctgat 1050 ccctgtgggc ctccgtgtgg tcaccatcca gagcgccaag ctgggtcact 1100 acatggccat gaatgctgag ggactgctct acagttcgcc gcatttcaca 1150 gctgagtgtc gctttaagga gtgtgtcttt gagaattact acgtcctgta 1200 egeetetget etetacegee agegtegtte tggeegggee tggtaceteg 1250

gcctggacaa ggagggccag gtcatgaagg gaaaccgagt taagaagacc 1300
aaggcagctg cccactttct gcccaagctc ctggaggtgg ccatgtacca 1350
ggagccttct ctccacagtg tccccgaggc ctccccttcc agtcccctg 1400
ccccctgaaa tgtagtccct ggactggagg ttccctgcac tcccagtgag 1450
ccagccacca ccacaacctg t 1471

<210> 497

<211> 225

<212> PRT

<213> Homo Sapien

<400> 497

Met Ala Ala Leu Ala Ser Ser Leu Ile Arg Gln Lys Arg Glu Val 1 5 10 15

Arg Glu Pro Gly Gly Ser Arg Pro Val Ser Ala Gln Arg Arg Val 20 25 30

Cys Pro Arg Gly Thr Lys Ser Leu Cys Gln Lys Gln Leu Leu Ile 35 40

Leu Leu Ser Lys Val Arg Leu Cys Gly Gly Arg Pro Ala Arg Pro
50 55 60

Asp Arg Gly Pro Glu Pro Gln Leu Lys Gly Ile Val Thr Lys Leu
65 70 75

Phe Cys Arg Gln Gly Phe Tyr Leu Gln Ala Asn Pro Asp Gly Ser 80 85 90

Ile Gln Gly Thr Pro Glu Asp Thr Ser Ser Phe Thr His Phe Asn 95 100 105

Leu Ile Pro Val Gly Leu Arg Val Val Thr Ile Gln Ser Ala Lys 110 115 120

Leu Gly His Tyr Met Ala Met Asn Ala Glu Gly Leu Leu Tyr Ser 125 130 135

Ser Pro His Phe Thr Ala Glu Cys Arg Phe Lys Glu Cys Val Phe 140 145 150

Glu Asn Tyr Tyr Val Leu Tyr Ala Ser Ala Leu Tyr Arg Gln Arg 155 160 165

Arg Ser Gly Arg Ala Trp Tyr Leu Gly Leu Asp Lys Glu Gly Gln
170 175

Val Met Lys Gly Asn Arg Val Lys Lys Thr Lys Ala Ala His 185 190 195

Phe Leu Pro Lys Leu Leu Glu Val Ala Met Tyr Gln Glu Pro Ser 200 205 210

Leu His Ser Val Pro Glu Ala Ser Pro Ser Ser Pro Pro Ala Pro 215 220 225

<210> 498 <211> 744

<212> DNA <213> Homo Sapien

<400> 498 atggccgcgg ccatcgctag cggcttgatc cgccagaagc ggcaggcgcg 50 ggagcagcac tgggaccggc cgtctgccag caggaggcgg agcagcccca 100 gcaagaaccg cgggctctgc aacggcaacc tggtggatat cttctccaaa 150 gtgcgcatct tcggcctcaa gaagcgcagg ttgcggcgcc aagatcccca 200 gctcaagggt atagtgacca ggttatattg caggcaaggc tactacttgc 250 aaatgcaccc cgatggagct ctcgatggaa ccaaggatga cagcactaat 300 tctacactct tcaacctcat accagtggga ctacgtgttg ttgccatcca 350 gggagtgaaa acagggttgt atatagccat gaatggagaa ggttacctct 400 acccatcaga actttttacc cctgaatgca agtttaaaga atctgtttt 450 gaaaattatt atgtaatcta ctcatccatg ttgtacagac aacaggaatc 500 tggtagagcc tggtttttgg gattaaataa ggaagggcaa gctatgaaag 550 ggaacagagt aaagaaaacc aaaccagcag ctcattttct acccaagcca 600 ttggaagttg ccatgtaccg agaaccatct ttgcatgatg ttggggaaac 650 ggtcccgaag cctggggtga cgccaagtaa aagcacaagt gcgtctgcaa 700 taatgaatgg aggcaaacca gtcaacaaga gtaagacaac atag 744

<210> 499 <211> 247

<212> PRT

<213> Homo Sapien

<400> 499

Met Ala Ala Ile Ala Ser Gly Leu Ile Arg Gln Lys Arg Gln 1 5 10 15

Ala Arg Glu Gln His Trp Asp Arg Pro Ser Ala Ser Arg Arg Arg 20 25 30

Ser Ser Pro Ser Lys Asn Arg Gly Leu Cys Asn Gly Asn Leu Val 35 40 45

Asp Ile Phe Ser Lys Val Arg Ile Phe Gly Leu Lys Lys Arg Arg 50 55

Leu Arg Arg Gln Asp Pro Gln Leu Lys Gly Ile Val Thr Arg Leu 65 70 75

Tyr Cys Arg Gln Gly Tyr Tyr Leu Gln Met His Pro Asp Gly Ala 80 85 90

Leu Asp Gly Thr Lys Asp Asp Ser Thr Asn Ser Thr Leu Phe Asn 95 100 105

Leu Ile Pro Val Gly Leu Arg Val Val Ala Ile Gln Gly Val Lys 110 115 120

```
Thr Gly Leu Tyr Ile Ala Met Asn Gly Glu Gly Tyr Leu Tyr Pro
Ser Glu Leu Phe Thr Pro Glu Cys Lys Phe Lys Glu Ser Val Phe
Glu Asn Tyr Tyr Val Ile Tyr Ser Ser Met Leu Tyr Arg Gln Gln
                155
                                     160
                                                         165
Glu Ser Gly Arg Ala Trp Phe Leu Gly Leu Asn Lys Glu Gly Gln
                170
Ala Met Lys Gly Asn Arg Val Lys Lys Thr Lys Pro Ala Ala His
                185
Phe Leu Pro Lys Pro Leu Glu Val Ala Met Tyr Arg Glu Pro Ser
                200
Leu His Asp Val Gly Glu Thr Val Pro Lys Pro Gly Val Thr Pro
                                                         225
Ser Lys Ser Thr Ser Ala Ser Ala Ile Met Asn Gly Gly Lys Pro
Val Asn Lys Ser Lys Thr Thr
                245
```

<210> 500 <211> 2906

<212> DNA

<213> Homo Sapien

<400> 500 ggggagagga attgaccatg taaaaggaga ctttttttt tggtggtggt 50 ggctgttggg tgccttgcaa aaatgaagga tgcaggacgc agctttctcc 100 tggaaccgaa cgcaatggat aaactgattg tgcaagagag aaggaagaac 150 gaagcttttt cttgtgagcc ctggatctta acacaaatgt gtatatgtgc 200 acacagggag cattcaagaa tgaaataaac cagagttaga cccgcggggg 250 ttggtgtgtt ctgacataaa taaataatct taaagcagct gttcccctcc 300 ccacccccaa aaaaaaggat gattggaaat gaagaaccga ggattcacaa 350 agaaaaaagt atgttcattt ttctctataa aggagaaagt gagccaagga 400 gatatttttg gaatgaaaag tttggggctt ttttagtaaa gtaaagaact 450 aattaataat acatctgcaa agaaatttca gagaagaaaa gttgaccgcg 550 gcagattgag gcattgattg ggggagagaa accagcagag cacagttgga 600 tttgtgccta tgttgactaa aattgacgga taattgcagt tggatttttc 650 ttcatcaacc tcctttttt taaattttta ttccttttgg tatcaagatc 700 atgcgttttc tcttgttctt aaccacctgg atttccatct ggatgttgct 750

gtgatcagtc tgaaatacaa ctgtttgaat tccagaagga ccaacaccag 800 ataaattatg aatgttgaac aagatgacct tacatccaca gcagataatg 850 ataggtccta ggtttaacag ggccctattt gaccccctgc ttgtggtgct 900 gctggctctt caacttcttg tggtggctgg tctggtgcgg gctcagacct 950 gcccttctgt gtgctcctgc agcaaccagt tcagcaaggt gatttgtgtt 1000 cggaaaaacc tgcgtgaggt tccggatggc atctccacca acacacggct 1050 gctgaacctc catgagaacc aaatccagat catcaaagtg aacagcttca 1100 agcacttgag gcacttggaa atcctacagt tgagtaggaa ccatatcaga 1150 accattgaaa ttggggcttt caatggtctg gcgaacctca acactctgga 1200 actctttgac aatcgtctta ctaccatccc gaatggagct tttgtatact 1250 tgtctaaact gaaggagctc tggttgcgaa acaaccccat tgaaagcatc 1300 ccttcttatg cttttaacag aattccttct ttgcgccgac tagacttagg 1350 ggaattgaaa agactttcat acatctcaga aggtgccttt gaaggtctgt 1400 ccaacttgag gtatttgaac cttgccatgt gcaaccttcg ggaaatccct 1450 aacctcacac cgctcataaa actagatgag ctggatcttt ctgggaatca 1500 tttatctgcc atcaggcctg gctctttcca gggtttgatg caccttcaaa 1550 aactgtggat gatacagtcc cagattcaag tgattgaacg gaatgccttt 1600 gacaaccttc agtcactagt ggagatcaac ctggcacaca ataatctaac 1650 attactgcct catgacctct tcactccctt gcatcatcta qaqcqqatac 1700 atttacatca caaccettgg aactgtaact gtgacatact gtggctcagc 1750 tggtggataa aagacatggc cccctcgaac acagcttgtt gtgcccggtg 1800 taacactcct cccaatctaa aggggaggta cattggagag ctcgaccaga 1850 attacttcac atgctatgct coggtgattg tggagcccc tgcagacctc 1900 aatgtcactg aaggcatggc agctgagctg aaatgtcggg cctccacatc 1950 cctgacatct gtatcttgga ttactccaaa tggaacagtc atgacacatg 2000 gggcgtacaa agtgcggata gctgtgctca gtgatggtac gttaaatttc 2050 acaaatgtaa ctgtgcaaga tacaggcatg tacacatgta tggtgagtaa 2100 ttccgttggg aatactactg cttcagccac cctgaatgtt actgcagcaa 2150 ccactactcc tttctcttac ttttcaaccg tcacagtaga gactatggaa 2200 ccgtctcagg atgaggcacg gaccacagat aacaatgtgg gtcccactcc 2250 agtggtcgac tgggagacca ccaatgtgac cacctctctc acaccacaga 2300 gcacaaggtc gacagagaaa accttcacca tcccagtgac tgatataaac 2350

agtgggatcc caggaattga tgaggtcatg aagactacca aaatcatcat 2400 tgggtgtttt gtggccatca cactcatggc tgcagtgatg ctggtcattt 2450 tctacaagat gaggaagcag caccatcggc aaaaccatca cgccccaaca 2500 aggactgttg aaattattaa tgtggatgat gagattacgg gagacacacc 2550 catggaaagc cacctgccca tgcctgctat cgagcatgag cacctaaatc 2600 actataactc atacaaatct cccttcaacc acacaacac agttaacaca 2650 ataaattcaa tacacagttc agtgcatgaa ccgttattga tccgaatgaa 2700 ctctaaagac aatgtacaag agactcaaat ctaaaacatt tacagagtta 2750 caaaaaacaa acaatcaaaa aaaaagacag tttattaaaa atgacacaaa 2800 tgactgggct aaatctactg tttcaaaaaa gtgtctttac aaaaaacaa 2850 aaaagaaaag aaatttattt attaaaaatt ctattgtgat ctaaagcaga 2900 caaaaa 2906

<210> 501 <211> 640 <212> PRT <213> Homo S

<213> Homo Sapien

<400> 501

Met Leu Asn Lys Met Thr Leu His Pro Gln Gln Ile Met Ile Gly Pro Arg Phe Asn Arg Ala Leu Phe Asp Pro Leu Leu Val Val Leu Leu Ala Leu Gln Leu Leu Val Val Ala Gly Leu Val Arq Ala Gln Thr Cys Pro Ser Val Cys Ser Cys Ser Asn Gln Phe Ser Lys Val Ile Cys Val Arg Lys Asn Leu Arg Glu Val Pro Asp Gly Ile Ser Thr Asn Thr Arg Leu Leu Asn Leu His Glu Asn Gln Ile Gln Ile Ile Lys Val Asn Ser Phe Lys His Leu Arg His Leu Glu Ile Leu Gln Leu Ser Arg Asn His Ile Arg Thr Ile Glu Ile Gly Ala Phe 115 Asn Gly Leu Ala Asn Leu Asn Thr Leu Glu Leu Phe Asp Asn Arg 125 130 135 Leu Thr Thr Ile Pro Asn Gly Ala Phe Val Tyr Leu Ser Lys Leu Lys Glu Leu Trp Leu Arg Asn Asn Pro Ile Glu Ser Ile Pro Ser 155 160 165

Tyr Ala Phe Asn Arg Ile Pro Ser Leu Arg Arg Leu Asp Leu Gly 170 Glu Leu Lys Arg Leu Ser Tyr Ile Ser Glu Gly Ala Phe Glu Gly Leu Ser Asn Leu Arg Tyr Leu Asn Leu Ala Met Cys Asn Leu Arg 200 205 Glu Ile Pro Asn Leu Thr Pro Leu Ile Lys Leu Asp Glu Leu Asp Leu Ser Gly Asn His Leu Ser Ala Ile Arg Pro Gly Ser Phe Gln 230 Gly Leu Met His Leu Gln Lys Leu Trp Met Ile Gln Ser Gln Ile Gln Val Ile Glu Arg Asn Ala Phe Asp Asn Leu Gln Ser Leu Val 260 265 270 Glu Ile Asn Leu Ala His Asn Asn Leu Thr Leu Leu Pro His Asp Leu Phe Thr Pro Leu His His Leu Glu Arg Ile His Leu His His Asn Pro Trp Asn Cys Asn Cys Asp Ile Leu Trp Leu Ser Trp Trp 305 315 310 Ile Lys Asp Met Ala Pro Ser Asn Thr Ala Cys Cys Ala Arg Cys 320 Asn Thr Pro Pro Asn Leu Lys Gly Arg Tyr Ile Gly Glu Leu Asp 335 Gln Asn Tyr Phe Thr Cys Tyr Ala Pro Val Ile Val Glu Pro Pro 355 Ala Asp Leu Asn Val Thr Glu Gly Met Ala Ala Glu Leu Lys Cys Arg Ala Ser Thr Ser Leu Thr Ser Val Ser Trp Ile Thr Pro Asn 380 Gly Thr Val Met Thr His Gly Ala Tyr Lys Val Arg Ile Ala Val 400 Leu Ser Asp Gly Thr Leu Asn Phe Thr Asn Val Thr Val Gln Asp 410 Thr Gly Met Tyr Thr Cys Met Val Ser Asn Ser Val Gly Asn Thr Thr Ala Ser Ala Thr Leu Asn Val Thr Ala Ala Thr Thr Thr Pro 445 450 Phe Ser Tyr Phe Ser Thr Val Thr Val Glu Thr Met Glu Pro Ser Gln Asp Glu Ala Arg Thr Thr Asp Asn Asn Val Gly Pro Thr Pro 475

```
Val Val Asp Trp Glu Thr Thr Asn Val Thr Thr Ser Leu Thr Pro
                 485
                                                         495
Gln Ser Thr Arg Ser Thr Glu Lys Thr Phe Thr Ile Pro Val Thr
                500
                                                         510
Asp Ile Asn Ser Gly Ile Pro Gly Ile Asp Glu Val Met Lys Thr
                515
                                     520
Thr Lys Ile Ile Gly Cys Phe Val Ala Ile Thr Leu Met Ala
                530
Ala Val Met Leu Val Ile Phe Tyr Lys Met Arg Lys Gln His His
                545
                                                         555
Arg Gln Asn His His Ala Pro Thr Arg Thr Val Glu Ile Ile Asn
                560
Val Asp Asp Glu Ile Thr Gly Asp Thr Pro Met Glu Ser His Leu
                575
                                                         585
Pro Met Pro Ala Ile Glu His Glu His Leu Asn His Tyr Asn Ser
Tyr Lys Ser Pro Phe Asn His Thr Thr Thr Val Asn Thr Ile Asn
                605
Ser Ile His Ser Ser Val His Glu Pro Leu Leu Ile Arg Met Asn
                620
                                    625
Ser Lys Asp Asn Val Gln Glu Thr Gln Ile
                635
```

<210> 502

<211> 2458

<212> DNA

<213> Homo Sapien

<400> 502

gagttggaag gagagctgac agaaggaagt gacctgactt tgcaqtgtga 650 gtcatcctct ggcacagagc ccattgtgta ttactggcag cgaatccgag 700 agaaagaggg agaggatgaa cgtctgcctc ccaaatctag gattgactac 750 aaccaccetg gacgagttet getgeagaat ettaccatgt eetactetgg 800 actgtaccag tgcacagcag gcaacgaagc tgggaaggaa agctgtgtgg 850 tgcgagtaac tgtacagtat gtacaaagca tcggcatggt tgcaggagca 900 gtgacaggca tagtggctgg agccctgctg attttcctct tggtgtggct 950 gctaatccga aggaaagaca aagaaagata tgaggaagaa gagagaccta 1000 atgaaattcg agaagatgct gaagctccaa aagcccgtct tgtgaaaccc 1050 ageteetett ceteaggete teggagetea egetetggtt etteeteeac 1100 tegetecaca geaaatagtg ceteacgeag ceageggaca etgteaactg 1150 acgcagcacc ccagccaggg ctggccaccc aggcatacag cctagtgggg 1200 ccagaggtga gaggttctga accaaagaaa gtccaccatg ctaatctgac 1250 caaagcagaa accacacca gcatgatccc cagccagagc agagccttcc 1300 aaacggtctg aattacaatg gacttgactc ccacgctttc ctaggagtca 1350 gggtctttgg actcttctcg tcattggagc tcaagtcacc agccacacaa 1400 ccagatgaga ggtcatctaa gtagcagtga gcattgcacg gaacagattc 1450 agatgagcat tttccttata caataccaaa caagcaaaag gatgtaagct 1500 gattcatctg taaaaaggca tcttattgtg cctttagacc agagtaaggg 1550 aaagcaggag tccaaatcta tttgttgacc aggacctgtg gtgagaaggt 1600 tggggaaagg tgaggtgaat atacctaaaa cttttaatgt gggatatttt 1650 gtatcagtgc tttgattcac aattttcaag aggaaatggg atgctgtttg 1700 taaattttct atgcatttct gcaaacttat tggattatta gttattcaga 1750 cagtcaagca gaacccacag ccttattaca cctgtctaca ccatgtactg 1800 agctaaccac ttctaagaaa ctccaaaaaa ggaaacatgt gtcttctatt 1850 ctgacttaac ttcatttgtc ataaggtttg gatattaatt tcaaggggag 1900 ttgaaatagt gggagatgga gaagagtgaa tgagtttctc ccactctata 1950 ctaatctcac tatttgtatt gagcccaaaa taactatgaa aggagacaaa 2000 aatttgtgac aaaggattgt gaagagcttt ccatcttcat gatgttatga 2050 ggattgttga caaacattag aaatatataa tggagcaatt gtggatttcc 2100 cctcaaatca gatgcctcta aggactttcc tgctagatat ttctggaagg 2150 agaaaataca acatgtcatt tatcaacgtc cttagaaaga attcttctag 2200

agaaaaaggg atctaggaat gctgaaagat tacccaacat accattatag 2250 tctcttcttt ctgagaaaat gtgaaaccag aattgcaaga ctgggtggac 2300 tagaaaggga gattagatca gttttctctt aatatgtcaa ggaaggtagc 2350 cgggcatggt gccaggcacc tgtaggaaaa tccagcaggt ggaggttgca 2400 gtgagccgag attatgccat tgcactccag cctgggtgac agagcgggac 2450 tccgtctc 2458

<210> 503

<211> 373

<212> PRT

<213> Homo Sapien

<400> 503

Met Ser Leu Leu Leu Leu Leu Leu Val Ser Tyr Tyr Val Gly
1 5 10 15

Thr Leu Gly Thr His Thr Glu Ile Lys Arg Val Ala Glu Glu Lys 20 25 30

Val Thr Leu Pro Cys His His Gln Leu Gly Leu Pro Glu Lys Asp 35 40 45

Thr Leu Asp Ile Glu Trp Leu Leu Thr Asp Asn Glu Gly Asn Gln 50 55 60

Lys Val Val Ile Thr Tyr Ser Ser Arg His Val Tyr Asn Asn Leu 65 70 75

Thr Glu Glu Gln Lys Gly Arg Val Ala Phe Ala Ser Asn Phe Leu 80 85 90

Ala Gly Asp Ala Ser Leu Gln Ile Glu Pro Leu Lys Pro Ser Asp 95 100 105

Glu Gly Arg Tyr Thr Cys Lys Val Lys Asn Ser Gly Arg Tyr Val 110 115

Trp Ser His Val Ile Leu Lys Val Leu Val Arg Pro Ser Lys Pro 125 130 135

Lys Cys Glu Leu Glu Gly Glu Leu Thr Glu Gly Ser Asp Leu Thr 140 145 150

Leu Gln Cys Glu Ser Ser Ser Gly Thr Glu Pro Ile Val Tyr Tyr 155 160 165

Trp Gln Arg Ile Arg Glu Lys Glu Gly Glu Asp Glu Arg Leu Pro 170 175 180

Pro Lys Ser Arg Ile Asp Tyr Asn His Pro Gly Arg Val Leu Leu 185 190 195

Gln Asn Leu Thr Met Ser Tyr Ser Gly Leu Tyr Gln Cys Thr Ala 200 205 210

Gly Asn Glu Ala Gly Lys Glu Ser Cys Val Val Arg Val Thr Val 215 220 225

```
Gln Tyr Val Gln Ser Ile Gly Met Val Ala Gly Ala Val Thr Gly
                230
Ile Val Ala Gly Ala Leu Leu Ile Phe Leu Leu Val Trp Leu Leu
Ile Arg Arg Lys Asp Lys Glu Arg Tyr Glu Glu Glu Arg Pro
                260
                                    265
Asn Glu Ile Arg Glu Asp Ala Glu Ala Pro Lys Ala Arg Leu Val
                                                        285
Lys Pro Ser Ser Ser Ser Gly Ser Arg Ser Ser Ser Gly
                290
                                                        300
Ser Ser Ser Thr Arg Ser Thr Ala Asn Ser Ala Ser Arg Ser Gln
                305
Arg Thr Leu Ser Thr Asp Ala Ala Pro Gln Pro Gly Leu Ala Thr
                320
                                    325
                                                        330
Gln Ala Tyr Ser Leu Val Gly Pro Glu Val Arg Gly Ser Glu Pro
Lys Lys Val His His Ala Asn Leu Thr Lys Ala Glu Thr Thr Pro
                                                        360
Ser Met Ile Pro Ser Gln Ser Arg Ala Phe Gln Thr Val
                365
                                    370
```

<210> 504

<211> 3060

<212> DNA

<213> Homo Sapien

<400> 504

ccgcaggccc ggggagcctg ggaccaggag cgagagccgc ctacctgcag 50 ccgccgccca cggcacggca gccaccatgg cgctcctgct gtgcttcgtg 100 ctcctgtgcg gagtagtgga tttcgccaga agtttgagta tcactactcc 150 tgaagagatg attgaaaaag ccaaagggga aactgcctat ctgccatgca 200 aatttacgct tagtcccgaa gaccagggac cgctggacat cgagtggctg 250 atatcaccag ctgataatca gaaggtggat caagtgatta ttttatattc 300 tggagacaaa atttatgatg actactatcc agatctgaaa ggccgagtac 350 attttacgag taatgatct aaatctggtg atgcatcaat aaatgtaacg 400 aatttacacc tgtcagatat tggcacatat cagtgcaaag tgaaaaaagc 450 tcctggtgtt gcaaataaga agattcatct ggtagttctt gttaagcctt 500 caggtgcgag atgttacgtt gatggatctg aagaaattgg aagtgacttt 550 aagataaaat gtgaaccaaa agaaggttca cttccattac agtatgagtg 600 gcaaaaattg tctgactcac agaaaaatgc cacttcatgg ttagcagaaa 650 tgacttcatc tgttatatct gtaaaaaatg cctcttctga gtactctggg 700

acatacagct gtacagtcag aaacagagtg ggctctgatc agtgcctgtt 750 qcqtctaaac qttqtccctc cttcaaataa aqctqqacta attqcaqqaq 800 ccattatagg aactttgctt gctctagegc tcattggtct tatcatcttt 850 tgctgtcgta aaaagcgcag agaagaaaaa tatgaaaagg aagttcatca 900 cgatatcagg gaagatgtgc cacctccaaa gagccgtacg tccactgcca 950 gaagctacat eggeagtaat catteateee tgqqqteeat qteteettee 1000 aacatggaag gatattccaa gactcaqtat aaccaagtac caagtgaaga 1050 ctttgaacgc actcctcaga gtccgactct cccacctgct aagttcaagt 1100 accettacaa gactgatgga attacagttg tataaatatg gactactgaa 1150 gaatctgaag tattgtatta tttgacttta ttttaggcct ctagtaaaga 1200 cttaaatgtt ttttaaaaaa agcacaaggc acagagatta gagcagctgt 1250 aagaacacat ctactttatg caatggcatt agacatgtaa gtcagatgtc 1300 atgtcaaaat tagtacgagc caaattettt gttaaaaaac cetatgtata 1350 gtgacactga tagttaaaag atgttttatt atattttcaa taactaccac 1400 taacaaattt ttaacttttc atatgcatat tctgatatgt ggtcttttag 1450 gaaaagtatg gttaatagtt gatttttcaa aggaaatttt aaaattctta 1500 cqttctqttt aatqtttttg ctatttagtt aaatacattg aagggaaata 1550 cccgttcttt tcccctttta tgcacacaac agaaacacgc gttgtcatgc 1600 ctcaaactat tttttatttg caactacatg atttcacaca attctcttaa 1650 acaacgacat aaaatagatt toottgtata taaataactt acatacgctc 1700 cataaagtaa attctcaaag gtgctagaac aaatcgtcca cttctacagt 1750 gttctcgtat ccaacagagt tgatgcacaa tatataaata ctcaaqtcca 1800 atattaaaaa cttaggcact tgactaactt taataaaatt tctcaaacta 1850 tatcaatatc taaagtgcat atattttta agaaagatta ttctcaataa 1900 cttctataaa aataagtttg atggtttggc ccatctaact tcactactat 1950 tagtaagaac ttttaacttt taatgtgtag taaggtttat tctacctttt 2000 tctcaacatg acaccaacac aatcaaaaac gaagttagtg aggtgctaac 2050 atgtgaggat taatccagtg attccggtca caatgcattc caggaggagg 2100 tacccatgtc actggaattg ggcgatatgg tttatttttt cttccctgat 2150 ttggataacc aaatggaaca ggaggaggat agtgattctg atggccattc 2200 cctcgataca ttcctggctt ttttctgggc aaagggtgcc acattggaag 2250 aggtggaaat ataagttctg aaatctgtag ggaagagaac acattaagtt 2300

aattcaaagg aaaaaatcat catctatgtt ccagatttct cattaaagac 2350 aaagttaccc acaacactga gatcacatct aagtgacact cctattgtca 2400 ggtctaaata cattaaaaac ctcatgtgta ataggcgtat aatgtataac 2450 aggtgaccaa tgttttctga atgcataaag aaatgaataa actcaaacac 2500 agtacttect aaacaactte aaccaaaaaa gaccaaaaca tggaacgaat 2550 ggaagettgt aaggacatge ttgttttagt ceagtggttt ceaeagetgg 2600 ctaagccagg agtcacttgg aggcttttaa atacaaaaca ttggagctgg 2650 aggccattat ccttagcaaa ctaatgcaga aacagaaaat caactaccgc 2700 atgttctcac ttataagtgg gaggtaatga taagaactta tgaacacaaa 2750 gaaggaaaca atagacattg gagtctattt gagaggggag ggtgggagaa 2800 ggaaaaggag cagaaaagat aactattqag tactgccttc acacctgggt 2850 gatgaaataa tatgtacaac aaatccctgt gacacatgtt tacctatgga 2900 aaaaaaaaa 3060

<210> 505

<211> 352

<212> PRT

<213> Homo Sapien

<400> 505

Met Ala Leu Leu Cys Phe Val Leu Leu Cys Gly Val Val Asp 1 5 10 15

Phe Ala Arg Ser Leu Ser Ile Thr Thr Pro Glu Glu Met Ile Glu 20 25 30

Lys Ala Lys Gly Glu Thr Ala Tyr Leu Pro Cys Lys Phe Thr Leu 35 40 45

Ser Pro Glu Asp Gln Gly Pro Leu Asp Ile Glu Trp Leu Ile Ser 50 55

Pro Ala Asp Asn Gln Lys Val Asp Gln Val Ile Ile Leu Tyr Ser 65 70 75

Gly Asp Lys Ile Tyr Asp Asp Tyr Tyr Pro Asp Leu Lys Gly Arg 80 85 90

Val His Phe Thr Ser Asn Asp Leu Lys Ser Gly Asp Ala Ser Ile 95 100 105

Asn Val Thr Asn Leu Gln Leu Ser Asp Ile Gly Thr Tyr Gln Cys 110 115

Lys Val Lys Lys Ala Pro Gly Val Ala Asn Lys Lys Ile His Leu

125 130 135 Val Val Leu Val Lys Pro Ser Gly Ala Arg Cys Tyr Val Asp Gly Ser Glu Glu Ile Gly Ser Asp Phe Lys Ile Lys Cys Glu Pro Lys 160 Glu Gly Ser Leu Pro Leu Gln Tyr Glu Trp Gln Lys Leu Ser Asp 170 175 Ser Gln Lys Met Pro Thr Ser Trp Leu Ala Glu Met Thr Ser Ser 185 Val Ile Ser Val Lys Asn Ala Ser Ser Glu Tyr Ser Gly Thr Tyr 200 205 Ser Cys Thr Val Arg Asn Arg Val Gly Ser Asp Gln Cys Leu Leu 215 Arg Leu Asn Val Val Pro Pro Ser Asn Lys Ala Gly Leu Ile Ala 230 235 240 Gly Ala Ile Ile Gly Thr Leu Leu Ala Leu Ala Leu Ile Gly Leu 250 Ile Ile Phe Cys Cys Arg Lys Lys Arg Arg Glu Glu Lys Tyr Glu 265 Lys Glu Val His His Asp Ile Arg Glu Asp Val Pro Pro Lys 275 280 285 Ser Arg Thr Ser Thr Ala Arg Ser Tyr Ile Gly Ser Asn His Ser 290 295 Ser Leu Gly Ser Met Ser Pro Ser Asn Met Glu Gly Tyr Ser Lys 305 Thr Gln Tyr Asn Gln Val Pro Ser Glu Asp Phe Glu Arg Thr Pro 320 325 Gln Ser Pro Thr Leu Pro Pro Ala Lys Phe Lys Tyr Pro Tyr Lys 335 Thr Asp Gly Ile Thr Val Val 350

<210> 506

<211> 1705

<212> DNA

<213> Homo Sapien

<400> 506

tgaaatgact tccacggctg ggacgggaac cttccacca cagctatgcc 50
tctgattggt gaatggtgaa ggtgcctgtc taacttttct gtaaaaagaa 100
ccagctgcct ccaggcagcc agccctcaag catcacttac aggaccagag 150
ggacaagaca tgactgtgat gaggagctgc tttcgccaat ttaacaccaa 200
gaagaattga ggctgcttgg gaggaaggcc aggaggaaca cgagactgag 250

agatgaattt tcaacagagg ctgcaaagcc tgtggacttt agccagaccc 300 ttctgccctc ctttgctggc gacagcctct caaatgcaga tggttgtgct 350 cccttgcctg ggttttaccc tgcttctctg gagccaggta tcaggggccc 400 agggccaaga attccacttt gggccctgcc aagtgaaggg ggttgttccc 450 cagaaactgt gggaagcett ctgggctgtg aaagacacta tgcaagctca 500 ggataacatc acgagtgccc ggctgctgca gcaggaggtt ctgcagaacg 550 tctcggatgc tgagagctgt taccttgtcc acaccctgct ggagttctac 600 ttgaaaactg ttttcaaaaa ccaccacaat agaacagttg aagtcaggac 650 tctgaagtca ttctctactc tggccaacaa ctttgttctc atcgtgtcac 700 aactgcaacc cagtcaagaa aatgagatgt tttccatcag agacagtgca 750 cacaggcggt ttctgctatt ccggagagca ttcaaacagt tggacgtaga 800 agcagetetg accaaageee ttggggaagt ggacattett etgacetgga 850 tgcagaaatt ctacaagctc tgaatgtcta gaccaggacc tccctccccc 900 tggcactggt ttgttccctg tgtcatttca aacagtctcc cttcctatgc 950 tgttcactgg acacttcacg cccttggcca tgggtcccat tcttggccca 1000 ggattattgt caaagaagtc attctttaag cagcgccagt gacagtcagg 1050 gaaggtgcct ctggatgctg tgaagagtct acagagaaga ttcttgtatt 1100 tattacaact ctatttaatt aatgtcagta tttcaactga agttctattt 1150 atttgtgaga ctgtaagtta catgaaggca gcagaatatt gtgccccatg 1200 cttctttacc cctcacaatc cttgccacag tgtggggcag tggatgggtg 1250 cttagtaagt acttaataaa ctgtggtgct ttttttggcc tgtctttgga 1300 ttgttaaaaa acagagaggg atgcttggat gtaaaactga acttcagagc 1350 atgaaaatca cactgtcttc tgatatctgc agggacagag cattggggtg 1400 ggggtaaggt gcatctgttt gaaaagtaaa cgataaaatg tggattaaag 1450 tegecagete acceeateat ecettteeet tggtgeeete ettttttt 1550 tatectagte attetteect aatetteeac ttgagtgtea agetgaeett 1600 gctgatggtg acattgcacc tggatgtact atccaatctg tgatgacatt 1650 aaaaa 1705

<210> 507

<211> 206

<212> PRT

<213> Homo Sapien

<400> 507 Met Asn Phe Gln Gln Arg Leu Gln Ser Leu Trp Thr Leu Ala Arg Pro Phe Cys Pro Pro Leu Leu Ala Thr Ala Ser Gln Met Gln Met 20 Val Val Leu Pro Cys Leu Gly Phe Thr Leu Leu Leu Trp Ser Gln Val Ser Gly Ala Gln Gly Gln Glu Phe His Phe Gly Pro Cys Gln Val Lys Gly Val Val Pro Gln Lys Leu Trp Glu Ala Phe Trp Ala Val Lys Asp Thr Met Gln Ala Gln Asp Asn Ile Thr Ser Ala Arg Leu Leu Gln Gln Glu Val Leu Gln Asn Val Ser Asp Ala Glu Ser 100 Cys Tyr Leu Val His Thr Leu Leu Glu Phe Tyr Leu Lys Thr Val Phe Lys Asn His His Asn Arg Thr Val Glu Val Arg Thr Leu Lys 125 130 Ser Phe Ser Thr Leu Ala Asn Asn Phe Val Leu Ile Val Ser Gln 145 Leu Gln Pro Ser Gln Glu Asn Glu Met Phe Ser Ile Arg Asp Ser 155 160 Ala His Arg Arg Phe Leu Leu Phe Arg Arg Ala Phe Lys Gln Leu 170 175

Leu Leu Thr Trp Met Gln Lys Phe Tyr Lys Leu

<210> 508

<211> 924

<212> DNA

<213> Homo Sapien

<400> 508

aaggagcagc ccgcaagcac caagtgagag gcatgaagtt acagtgtgtt 50
tecetttggc tectgggtac aatactgata ttgtgetcag tagacaacca 100
cggtetcagg agatgtetga tttecacaga catgcaccat atagaagaga 150
gtttecaaga aatcaaaaga gecatecaag etaaggacac etteceaaat 200
gtcactatec tgtecacatt ggagaetetg cagateatta agecettaga 250
tgtgtgetge gtgaccaaga aceteetgge gttetaegtg gacagggtgt 300

Asp Val Glu Ala Ala Leu Thr Lys Ala Leu Gly Glu Val Asp Ile

tcaaggatca tcaggagcca aaccccaaaa tcttgagaaa aatcagcagc 350 attgccaact ctttcctcta catgcagaaa actctgcggc aatgtcagga 400 acagaggcag tgtcactgca ggcaggaagc caccaatgcc accagagtca 450 tccatgacaa ctatgatcag ctggaggtcc acgctgctgc cattaaatcc 500 ctgggagagc tcgacgtct tctagcctgg attaataaga atcatgaagt 550 aatgttctca gcttgatgac aaggaacctg tatagtgatc cagggatgaa 600 cacccctgt gcggtttact gtgggagaca gcccaccttg aaggggaagg 650 agatggggaa ggcccttgc agctgaaagt cccactggct gcgctcaggc 700 tgtcttattc cgcttgaaaa taggcaaaaa gtctactgtg gtatttgtaa 750 taaactctat ctgctgaaag ggcctgcagg ccatcctggg agtaaagggc 800 tgccttccca tctaatttat tgtaaagtca tatagtccat gtctgtgatg 850 tgagccaagt gatatcctgt agtaccatt gtactgagtg gttttctga 900 ataaattcca tattttacct atga 924

<210> 509 <211> 177 <212> PRT

<213> Homo Sapien

<400> 509

Met Lys Leu Gln Cys Val Ser Leu Trp Leu Leu Gly Thr Ile Leu $1 \hspace{1.5cm} 5 \hspace{1.5cm} 10 \hspace{1.5cm} 15$

Ile Leu Cys Ser Val Asp Asn His Gly Leu Arg Arg Cys Leu Ile $20 \hspace{1.5cm} 25 \hspace{1.5cm} 30$

Ser Thr Asp Met His His Ile Glu Glu Ser Phe Gln Glu Ile Lys 35 40 45

Arg Ala Ile Gln Ala Lys Asp Thr Phe Pro Asn Val Thr Ile Leu
50 55 60

Ser Thr Leu Glu Thr Leu Gln Ile Ile Lys Pro Leu Asp Val Cys $65 \hspace{1cm} 70 \hspace{1cm} 75$

Cys Val Thr Lys Asn Leu Leu Ala Phe Tyr Val Asp Arg Val Phe 80 85 90

Lys Asp His Gln Glu Pro Asn Pro Lys Ile Leu Arg Lys Ile Ser 95 100 105

Ser Ile Ala Asn Ser Phe Leu Tyr Met Gln Lys Thr Leu Arg Gln 110 115 120

Cys Gln Glu Gln Arg Gln Cys His Cys Arg Gln Glu Ala Thr Asn 125 130 135

Ala Thr Arg Val Ile His Asp Asn Tyr Asp Gln Leu Glu Val His 140 145 150

Ala Ala Ile Lys Ser Leu Gly Glu Leu Asp Val Phe Leu Ala

155 160 165

Trp Ile Asn Lys Asn His Glu Val Met Phe Ser Ala 170 175

<210> 510

<211> 996

<212> DNA

<213> Homo Sapien

<400> 510

cccgtgccaa gagtgacgta agtaccgcct atagagtcta taggcccact 50 tggcttcgtt agaacgcggc tacaattaat acataacctt atgtatcata 100 cacatacgat ttaggtgaca ctatagaata acatccactt tqcctttctc 150 tccacaggtg tccactccca ggtccaactg cacctcggtt ctatcgataa 200 tctcagcacc agccactcag agcagggcac gatgttgggg gcccgcctca 250 ggctctgggt ctgtgccttg tgcagcgtct gcagcatgag cgtcctcaga 300 gcctatccca atgcctcccc actgctcggc tccagctggg gtggcctgat 350 ccacctgtac acagccacag ccaggaacag ctaccacctg cagatccaca 400 agaatggcca tgtggatggc gcaccccatc agaccatcta cagtgccctg 450 atgatcagat cagaggatgc tggctttgtg gtgattacag gtgtgatgag 500 cagaagatac ctctgcatgg atttcagagg caacattttt ggatcacact 550 atttcgaccc ggagaactgc aggttccaac accagacgct ggaaaacggg 600 tacgacgtct accactctcc tcagtatcac ttcctggtca gtctgggccg 650 ggcgaagaga gccttcctgc caggcatgaa cccacccccg tactcccagt 700 tcctgtcccg gaggaacgag atccccctaa ttcacttcaa cacccccata 750 ccacggcggc acacccggag cgccgaggac gactcggagc gggaccccct 800 gaacgtgctg aagccccggg cccggatgac cccggccccq gcctcctgtt 850 cacaggaget ceegagegee gaggacaaca geeegatgge cagtgaceca 900 ttaggggtgg tcaggggggg tcgagtgaac acgcacgctg ggggaacggg 950 cccggaaggc tgccgccct tcgccaagtt catctagggt cgctgg 996

<210> 511

<211> 251

<212> PRT

<213> Homo Sapien

<400> 511

Met Leu Gly Ala Arg Leu Arg Leu Trp Val Cys Ala Leu Cys Ser $1 \hspace{1.5cm} 5 \hspace{1.5cm} 10 \hspace{1.5cm} 15$

Val Cys Ser Met Ser Val Leu Arg Ala Tyr Pro Asn Ala Ser Pro 20 25 30

```
Leu Leu Gly Ser Ser Trp Gly Gly Leu Ile His Leu Tyr Thr Ala
Thr Ala Arg Asn Ser Tyr His Leu Gln Ile His Lys Asn Gly His
Val Asp Gly Ala Pro His Gln Thr Ile Tyr Ser Ala Leu Met Ile
                 65
                                      70
Arg Ser Glu Asp Ala Gly Phe Val Val Ile Thr Gly Val Met Ser
Arg Arg Tyr Leu Cys Met Asp Phe Arg Gly Asn Ile Phe Gly Ser
His Tyr Phe Asp Pro Glu Asn Cys Arg Phe Gln His Gln Thr Leu
                110
                                     115
Glu Asn Gly Tyr Asp Val Tyr His Ser Pro Gln Tyr His Phe Leu
                                    130
                                                         135
Val Ser Leu Gly Arg Ala Lys Arg Ala Phe Leu Pro Gly Met Asn
                140
Pro Pro Pro Tyr Ser Gln Phe Leu Ser Arg Arg Asn Glu Ile Pro
                155
                                     160
Leu Ile His Phe Asn Thr Pro Ile Pro Arg Arg His Thr Arg Ser
                170
                                    175
                                                         180
Ala Glu Asp Asp Ser Glu Arg Asp Pro Leu Asn Val Leu Lys Pro
                                    190
Arg Ala Arg Met Thr Pro Ala Pro Ala Ser Cys Ser Gln Glu Leu
                200
Pro Ser Ala Glu Asp Asn Ser Pro Met Ala Ser Asp Pro Leu Gly
                                    220
                                                         225
Val Val Arg Gly Gly Arg Val Asn Thr His Ala Gly Gly Thr Gly
                                                         240
Pro Glu Gly Cys Arg Pro Phe Ala Lys Phe Ile
```

<210> 512

<211> 2015

<212> DNA

<213> Homo Sapien

245

<400> 512

ggaaaaggta cccgcgagag acagccagca gttctgtga gcagcggtgg 50 ccggctagga tgggctgtc ctggggtctg gctctgcccc ttttcttctt 100 ctgctgggag gttggggtct ctgggagctc tgcaggcccc agcacccgca 150 gagcagacac tgcgatgaca acggacgaca cagaagtgcc cgctatgact 200 ctagcaccgg gccacgccgc tctggaaact caaacgctga gcgctgagac 250 ctcttctagg gcctcaaccc cagccggccc cattccagaa gcagagacca 300

ggggagccaa gagaatttcc cctgcaagag agaccaggag tttcacaaaa 350 acatetecea actteatggt getgategee aceteegtgg agacateage 400 cgccagtggc agccccgagg gagctggaat gaccacagtt cagaccatca 450 caggcagtga tcccgaggaa gccatctttg acaccctttg caccgatgac 500 agctctgaag aggcaaagac actcacaatg gacatattga cattggctca 550 cacctccaca gaagctaagg gcctgtcctc agagagcagt gcctcttccg 600 acggcccca tccagtcatc accccgtcac gggcctcaga gagcagegec 650 tetteegacg geocecatee agteateace cegteacggg ceteagagag 700 cagegeetet teegaeggee eccateeagt cateaceeg teatggteee 750 cgggatctga tgtcactctc ctcgctgaag ccctggtgac tgtcacaaac 800 atogaggtta ttaattgcag catcacagaa atagaaacaa caacttccag 850 catecetggg geeteagaea tagateteat eeceaeggaa ggggtgaagg 900 cetegtecae etcegateca ceagetetge etgactecae tgaageaaaa 950 ccacacatca ctgaggtcac agectctgcc gagaccctgt ccacagccgg 1000 caccacagag tcagctgcac ctcatgccac ggttgggacc ccactcccca 1050 ctaacagcgc cacagaaaga gaagtgacag cacccggggc cacgaccctc 1100 agtggagctc tggtcacagt tagcaggaat cccctggaag aaacctcagc 1150 cctctctqtt gagacaccaa gttacgtcaa agtctcagga gcagctccgg 1200 tctccataga ggctgggtca gcagtgggca aaacaacttc ctttgctggg 1250 agetetgett cetectacag ceceteggaa geegeeetea agaactteae 1300 cccttcagag acacegacca tggacatcgc aaccaagggg cccttcccca 1350 ccagcaggga ccctcttcct tctgtccctc cgactacaac caacagcagc 1400 cgagggacga acagcacctt agccaagatc acaacctcag cgaagaccac 1450 gatgaageee caacageeae geeeaegaet geeeggaega ggeegaeeae 1500 agacgtgagt gcaggtgaaa atggaggttt cctcctcctg cggctgagtg 1550 tggcttcccc ggaagacctc actgacccca gagtggcaga aaggctgatg 1600 cagcagetee accgggaact ceaegeeeae gegeeteact teeaggtete 1650 cttactgcgt gtcaggagag gctaacggac atcagctgca gccaggcatg 1700 tcccqtatqc caaaaqaqqq tqctqccct aqcctqqqcc cccaccqaca 1750 gactgcagct gcgttactgt gctgagaggt acccagaagg ttcccatgaa 1800 gggcagcatg tccaagcccc taaccccaga tgtggcaaca ggaccctcgc 1850 tcacatccac cggagtgtat gtatggggag gggcttcacc tgttcccaga 1900

ggtgtccttg gactcacctt ggcacatgtt ctgtgtttca gtaaagagag 1950 acctgatcac ccatctgtgt gcttccatcc tgcattaaaa ttcactcagt 2000 gtggcccaaa aaaaa 2015

<210> 513

<211> 482

<212> PRT

<213> Homo Sapien

<400> 513

Met Gly Cys Leu Trp Gly Leu Ala Leu Pro Leu Phe Phe Cys 1 5 10 15

Trp Glu Val Gly Val Ser Gly Ser Ser Ala Gly Pro Ser Thr Arg $20 \\ 25 \\ 30$

Arg Ala Asp Thr Ala Met Thr Thr Asp Asp Thr Glu Val Pro Ala 35 40 45

Met Thr Leu Ala Pro Gly His Ala Ala Leu Glu Thr Gln Thr Leu 50 55 60

Ser Ala Glu Thr Ser Ser Arg Ala Ser Thr Pro Ala Gly Pro Ile 657075

Pro Glu Ala Glu Thr Arg Gly Ala Lys Arg Ile Ser Pro Ala Arg 80 85 90

Glu Thr Arg Ser Phe Thr Lys Thr Ser Pro Asn Phe Met Val Leu 95 100 105

Ile Ala Thr Ser Val Glu Thr Ser Ala Ala Ser Gly Ser Pro Glu
110 115 120

Gly Ala Gly Met Thr Thr Val Gln Thr Ile Thr Gly Ser Asp Pro 125 130 135

Glu Glu Ala Ile Phe Asp Thr Leu Cys Thr Asp Asp Ser Ser Glu 140 145 150

Glu Ala Lys Thr Leu Thr Met Asp Ile Leu Thr Leu Ala His Thr
155 160 165

Ser Thr Glu Ala Lys Gly Leu Ser Ser Glu Ser Ser Ala Ser Ser 170 175 180

Asp Gly Pro His Pro Val Ile Thr Pro Ser Arg Ala Ser Glu Ser

Ser Ala Ser Ser Asp Gly Pro His Pro Val Ile Thr Pro Ser Arg 200 205 210

Ala Ser Glu Ser Ser Ala Ser Ser Asp Gly Pro His Pro Val Ile

Thr Pro Ser Trp Ser Pro Gly Ser Asp Val Thr Leu Leu Ala Glu 230 235 240

Ala Leu Val Thr Val Thr Asn Ile Glu Val Ile Asn Cys Ser Ile $245 \\ 250 \\ 250$

Thr Glu Ile Glu Thr Thr Ser Ser Ile Pro Gly Ala Ser Asp 260 Ile Asp Leu Ile Pro Thr Glu Gly Val Lys Ala Ser Ser Thr Ser Asp Pro Pro Ala Leu Pro Asp Ser Thr Glu Ala Lys Pro His Ile 295 Thr Glu Val Thr Ala Ser Ala Glu Thr Leu Ser Thr Ala Gly Thr Thr Glu Ser Ala Ala Pro His Ala Thr Val Gly Thr Pro Leu Pro Thr Asn Ser Ala Thr Glu Arg Glu Val Thr Ala Pro Gly Ala Thr Thr Leu Ser Gly Ala Leu Val Thr Val Ser Arg Asn Pro Leu Glu 350 360 Glu Thr Ser Ala Leu Ser Val Glu Thr Pro Ser Tyr Val Lys Val 365 Ser Gly Ala Ala Pro Val Ser Ile Glu Ala Gly Ser Ala Val Gly Lys Thr Thr Ser Phe Ala Gly Ser Ser Ala Ser Ser Tyr Ser Pro Ser Glu Ala Ala Leu Lys Asn Phe Thr Pro Ser Glu Thr Pro Thr 410 415 Met Asp Ile Ala Thr Lys Gly Pro Phe Pro Thr Ser Arg Asp Pro 425 430 Leu Pro Ser Val Pro Pro Thr Thr Thr Asn Ser Ser Arg Gly Thr 440 445 Asn Ser Thr Leu Ala Lys Ile Thr Thr Ser Ala Lys Thr Thr Met Lys Pro Gln Gln Pro Arg Pro Arg Leu Pro Gly Arg Gly Arg Pro

Gln Thr

<210> 514

<211> 2284

<212> DNA

<213> Homo Sapien

<400> 514

geggageate egetgeggte etegeegaga ecceegegeg gattegeegg 50 teetteege gggegegaca gagetgteet egeacetgga tggeageagg 100 ggegeegggg teetetegae geeagagaga aateteatea tetgtgeage 150 ettettaaag eaaactaaga eeagagggag gattateett gacetttgaa 200 gaeeaaaaet aaactgaaat ttaaaatgtt etteggggga gaagggaget 250

tgacttacac tttggtaata atttgcttcc tgacactaag gctgtctgct 300 agtcagaatt gcctcaaaaa gagtctagaa gatgttgtca ttgacatcca 350 gtcatctctt tctaagggaa tcagaggcaa tgagcccgta tatacttcaa 400 ctcaagaaga ctgcattaat tcttgctgtt caacaaaaaa catatcaggg 450 gacaaagcat gtaacttgat gatcttcgac actcgaaaaa cagctagaca 500 acccaactgc tacctatttt tctgtcccaa cgaggaagcc tgtccattga 550 aaccagcaaa aggacttatg agttacagga taattacaga ttttccatct 600 ttgaccagaa atttgccaag ccaagagtta ccccaggaag attctctctt 650 acatggccaa ttttcacaag cagtcactcc cctagcccat catcacacag 700 attattcaaa gcccaccgat atctcatgga gagacacact ttctcagaag 750 tttggatcct cagatcacct ggagaaacta tttaagatgg atgaagcaag 800 tgcccagctc cttgcttata aggaaaaagg ccattctcag agttcacaat 850 tttcctctga tcaagaaata gctcatctgc tgcctgaaaa tgtgagtgcg 900 ctcccagcta cggtggcagt tgcttctcca cataccacct cggctactcc 950 aaagcccgcc acccttctac ccaccaatgc ttcagtgaca ccttctggga 1000 cttcccagcc acagctggcc accacagctc cacctgtaac cactgtcact 1050 teteageete ceaegaeeet eatttetaea gtttttaeae gggetgegge 1100 tacactccaa gcaatggcta caacagcagt totgactacc acctttcagg 1150 cacctacgga ctcgaaaggc agcttagaaa ccataccgtt tacagaaatc 1200 tccaacttaa ctttgaacac agggaatgtg tataacccta ctgcactttc 1250 tatgtcaaat gtggagtctt ccactatgaa taaaactgct tcctgggaag 1300 gtagggaggc cagtccaggc agttcctccc agggcagtgt tccagaaaat 1350 cagtacggcc ttccatttga aaaatggctt cttatcgggt ccctgctctt 1400 tggtgtcctg ttcctggtga taggcctcgt cctcctgggt agaatccttt 1450 cggaatcact ccgcaggaaa cgttactcaa gactggatta tttgatcaat 1500 gggatctatg tggacatcta aggatggaac tcggtgtctc ttaattcatt 1550 tagtaaccag aagcccaaat gcaatgagtt tctgctgact tgctagtctt 1600 agcaggaggt tgtattttga agacaggaaa atgccccctt ctgctttcct 1650 tttttttttt ggagacagag tettgetetg ttgeecagge tggagtgeag 1700 tagcacgatc tcggctctca ccgcaacctc cgtctcctgg gttcaagcga 1750 ttctcctgcc tcagcctcct aagtatctgg gattacaggc atgtgccacc 1800 acacctgggt gatttttgta tttttagtag agacggggtt tcaccatgtt 1850

ggtcaggctg gtctcaaact cctgacctag tgatccaccc tcctcggcct 1900 cccaaagtgc tgggattaca ggcatgagcc accacagctg gcccccttct 1950 gttttatgtt tggttttga gaaggaatga agtgggaacc aaattaggta 2000 attttgggta atctgtctct aaaatattag ctaaaaacaa agctctatgt 2050 aaagtaataa agtataattg ccatataaat ttcaaaattc aactggcttt 2100 tatgcaaaga aacaggttag gacatctagg ttccaattca ttcacattct 2150 tggttccaga taaaatcaac tgtttatatc aatttctaat ggatttgctt 2200 ttcttttat atggattcct ttaaaactta ttccagatgt agttcctcc 2250 aattaaatat ttgaataaat cttttgttac tcaa 2284

<210> 515 <211> 431

<212> PRT

<213> Homo Sapien

<400> 515

Met Phe Phe Gly Gly Glu Gly Ser Leu Thr Tyr Thr Leu Val Ile 1 10 15

Ile Cys Phe Leu Thr Leu Arg Leu Ser Ala Ser Gln Asn Cys Leu 20 25 30

Lys Lys Ser Leu Glu Asp Val Val Ile Asp Ile Gln Ser Ser Leu 35 40 45

Ser Lys Gly Ile Arg Gly Asn Glu Pro Val Tyr Thr Ser Thr Gln 50 55 60

Glu Asp Cys Ile Asn Ser Cys Cys Ser Thr Lys Asn Ile Ser Gly
65 70 75

Asp Lys Ala Cys Asn Leu Met Ile Phe Asp Thr Arg Lys Thr Ala 80 85 90

Arg Gln Pro Asn Cys Tyr Leu Phe Phe Cys Pro Asn Glu Glu Ala 95 100 105

Cys Pro Leu Lys Pro Ala Lys Gly Leu Met Ser Tyr Arg Ile Ile 110 115 120

Thr Asp Phe Pro Ser Leu Thr Arg Asn Leu Pro Ser Gln Glu Leu 125 130 135

Pro Gln Glu Asp Ser Leu Leu His Gly Gln Phe Ser Gln Ala Val \$140\$ \$145\$

Thr Pro Leu Ala His His His Thr Asp Tyr Ser Lys Pro Thr Asp 155 160 165

Ile Ser Trp Arg Asp Thr Leu Ser Gln Lys Phe Gly Ser Ser Asp 170 175 180

His Leu Glu Lys Leu Phe Lys Met Asp Glu Ala Ser Ala Gln Leu 185 190 195

```
Leu Ala Tyr Lys Glu Lys Gly His Ser Gln Ser Ser Gln Phe Ser
                200
Ser Asp Gln Glu Ile Ala His Leu Leu Pro Glu Asn Val Ser Ala
                215
                                    220
Leu Pro Ala Thr Val Ala Val Ala Ser Pro His Thr Thr Ser Ala
                230
                                    235
Thr Pro Lys Pro Ala Thr Leu Leu Pro Thr Asn Ala Ser Val Thr
Pro Ser Gly Thr Ser Gln Pro Gln Leu Ala Thr Thr Ala Pro Pro
Val Thr Thr Val Thr Ser Gln Pro Pro Thr Thr Leu Ile Ser Thr
                275
                                    280
Val Phe Thr Arg Ala Ala Ala Thr Leu Gln Ala Met Ala Thr Thr
                290
                                    295
Ala Val Leu Thr Thr Thr Phe Gln Ala Pro Thr Asp Ser Lys Gly
                305
                                    310
Ser Leu Glu Thr Ile Pro Phe Thr Glu Ile Ser Asn Leu Thr Leu
                320
                                    325
                                                         330
Asn Thr Gly Asn Val Tyr Asn Pro Thr Ala Leu Ser Met Ser Asn
                335
                                    340
Val Glu Ser Ser Thr Met Asn Lys Thr Ala Ser Trp Glu Gly Arg
                350
                                    355
Glu Ala Ser Pro Gly Ser Ser Gln Gly Ser Val Pro Glu Asn
                365
                                    370
Gln Tyr Gly Leu Pro Phe Glu Lys Trp Leu Leu Ile Gly Ser Leu
Leu Phe Gly Val Leu Phe Leu Val Ile Gly Leu Val Leu Leu Gly
                395
                                    400
Arg Ile Leu Ser Glu Ser Leu Arg Arg Lys Arg Tyr Ser Arg Leu
                                    415
Asp Tyr Leu Ile Asn Gly Ile Tyr Val Asp Ile
```

<210> 516

<211> 2749

<212> DNA

<213> Homo Sapien

425

<220>

<221> unsure

<222> 1869, 1887

<223> unknown base

<400> 516

ctcccacggt gtccagcgcc cagaatgcgg cttctggtcc tgctatgggg 50 ttgcctgctg ctcccaggtt atgaagccct ggagggccca gaggaaatca 100

430

gcgggttcga aggggacact gtgtccctgc agtgcaccta cagggaagag 150 ctgagggacc accggaagta ctggtgcagg aagggtggga tcctcttctc 200 tcgctgctct ggcaccatct atgcagaaga agaaggccag gagacaatga 250 agggeagggt gtecatecgt gacageegee aggagetete geteattgtg 300 accetgtgga acctcaccet gcaagacget ggggagtact ggtgtggggt 350 cgaaaaacgg ggccccgatg agtctttact gatctctctg ttcgtctttc 400 caggaccetg etgtectece teccettete ceacetteea geetetgget 450 acaacacgcc tgcagcccaa ggcaaaagct cagcaaaccc agcccccagg 500 attgacttct cctgggctct acccggcagc caccacagcc aagcagggga 550 agacaggggc tgaggcccct ccattgccag ggacttccca gtacgggcac 600 gaaaggactt ctcagtacac aggaacctct cctcacccag cgacctctcc 650 tcctgcaggg agctcccgcc cccccatgca gctggactcc acctcagcag 700 aggacaccag tocagototo agcagtggca gototaagco cagggtgtoo 750 atcocgatgg tccgcatact ggccccagtc ctggtgctgc tgagccttct 800 gtcagccgca ggcctgatcg ccttctgcag ccacctgctc ctgtggagaa 850 aggaagctca acaggccacg qagacacaga qqaacgagaa gttctggctc 900 tcacgcttga ctgcggagga aaaggaagcc ccttcccagg cccctgaggg 950 ggacgtgatc tcgatgcctc ccctccacac atctgaggag gagctgggct 1000 cagtgaagca gtatggctgg ctggatcagc accgattccc gaaagctttc 1100 cacctcagec teagagteea getgeeegga eteeaggget eteeceacee 1150 tecceagget etectetige atgitecage etgacetaga agegittigte 1200 agccctggag cccagagcgg tggccttgct cttccggctg gagactggga 1250 catecetgat aggtteacat ecetgggeag agtaceagge tgetgaceet 1300 cagcagggcc agacaaggct cagtggatct ggtctgagtt tcaatctgcc 1350 aggaacteet gggeeteatg eccagtgteg gaccetgeet tecteceact 1400 ccagacccca cettgtette cetecetgge gteeteagae ttagteecae 1450 ggtctcctgc atcagctggt gatgaagagg agcatgctgg ggtgagactg 1500 ggattctggc ttctctttga accacctgca tccagccctt caggaagcct 1550 gtgaaaaacg tgattcctgg ccccaccaag acccaccaaa accatctctg 1600 ggcttggtgc aggactctga attctaacaa tgcccagtga ctgtcgcact 1650 tgagtttgag ggccagtggg cctgatgaac gctcacaccc cttcagctta 1700

```
gagtctgcat ttgggctgtg acgtctccac ctgccccaat agatctgctc 1750
tgtctgcgac accagatcca cgtggggact cccctgaggc ctgctaagtc 1800
caggoettgg teaggteagg tgeacattge aggataagee eaggacegge 1850
acagaagtgg ttgcctttnc catttgccct ccctggncca tgccttcttg 1900
cctttggaaa aaatgatgaa gaaaaccttg gctccttcct tgtctggaaa 1950
gggttacttg cctatgggtt ctggtggcta gagagaaaag tagaaaacca 2000
gagtgcacgt aggtgtctaa cacagaggag agtaggaaca gggcggatac 2050
ctgaaggtga ctccgagtcc agccccctgg agaaggggtc gggggtggtg 2100
gtaaagtagc acaactacta tttttttttt ttttccatta ttattgtttt 2150
ttaagacaga atctcgtgct gctgcccagg ctggagtgca gtggcacgat 2200
ctgcaaactc cgcctcctgg gttcaagtga ttcttctgcc tcagcctccc 2250
gagtagctgg gattacaggc acgcaccacc acacctggct aatttttgta 2300
cttttagtag agatggggtt tcaccatgtt ggccaggctg gtcttgaact 2350
cctgacctca aatgagcctc ctgcttcagt ctcccaaatt gccgggatta 2400
caggcatgag ccactgtgtc tggccctatt tcctttaaaa agtgaaatta 2450
gaagaaaaaa atgtcaccca tagtctcacc agagactatc attatttcgt 2550
tttgttgtac ttccttccac tcttttcttc ttcacataat ttgccggtgt 2600
tctttttaca gagcaattat cttgtatata caactttgta tcctgccttt 2650
tecacettat egiteeatea etitatteea geaettetet gigtittaea 2700
gaccttttta taaataaaat gttcatcagc tgcataaaaa aaaaaaaaa 2749
```

<210> 517

<211> 332

<212> PRT

<213> Homo Sapien

<400> 517

Met Arg Leu Leu Val Leu Leu Trp Gly Cys Leu Leu Pro Gly 1 5 10 15

Tyr Glu Ala Leu Glu Gly Pro Glu Glu Ile Ser Gly Phe Glu Gly 20 25 30

Asp Thr Val Ser Leu Gln Cys Thr Tyr Arg Glu Glu Leu Arg Asp 35 40 45

His Arg Lys Tyr Trp Cys Arg Lys Gly Gly Ile Leu Phe Ser Arg 50 60

Cys Ser Gly Thr Ile Tyr Ala Glu Glu Glu Gly Gln Glu Thr Met 6570

```
Lys Gly Arg Val Ser Ile Arg Asp Ser Arg Gln Glu Leu Ser Leu
Ile Val Thr Leu Trp Asn Leu Thr Leu Gln Asp Ala Gly Glu Tyr
Trp Cys Gly Val Glu Lys Arg Gly Pro Asp Glu Ser Leu Leu Ile
Ser Leu Phe Val Phe Pro Gly Pro Cys Cys Pro Pro Ser Pro Ser
Pro Thr Phe Gln Pro Leu Ala Thr Thr Arg Leu Gln Pro Lys Ala
Lys Ala Gln Gln Thr Gln Pro Pro Gly Leu Thr Ser Pro Gly Leu
Tyr Pro Ala Ala Thr Thr Ala Lys Gln Gly Lys Thr Gly Ala Glu
Ala Pro Pro Leu Pro Gly Thr Ser Gln Tyr Gly His Glu Arg Thr
Ser Gln Tyr Thr Gly Thr Ser Pro His Pro Ala Thr Ser Pro Pro
                                    205
Ala Gly Ser Ser Arg Pro Pro Met Gln Leu Asp Ser Thr Ser Ala
Glu Asp Thr Ser Pro Ala Leu Ser Ser Gly Ser Ser Lys Pro Arg
Val Ser Ile Pro Met Val Arg Ile Leu Ala Pro Val Leu Val Leu
                245
                                    250
Leu Ser Leu Leu Ser Ala Ala Gly Leu Ile Ala Phe Cys Ser His
                260
Leu Leu Leu Trp Arg Lys Glu Ala Gln Gln Ala Thr Glu Thr Gln
Arg Asn Glu Lys Phe Trp Leu Ser Arg Leu Thr Ala Glu Glu Lys
                290
                                    295
Glu Ala Pro Ser Gln Ala Pro Glu Gly Asp Val Ile Ser Met Pro
                305
Pro Leu His Thr Ser Glu Glu Glu Leu Gly Phe Ser Lys Phe Val
```

Ser Ala

<210> 518

<211> 24

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 518

```
ccctgcagtg cacctacagg gaag 24
       <210> 519
       <211> 24
       <212> DNA
       <213> Artificial Sequence
       <223> Synthetic oligonucleotide probe
       <400> 519
       ctgtcttccc ctgcttggct gtgg 24
      <210> 520
      <211> 47
      <212> DNA
      <213> Artificial Sequence
      <220>
      <223> Synthetic oligonucleotide probe
      <400> 520
       ggtgcaggaa gggtgggatc ctcttctctc gctgctctgg ccacatc 47
113
      <210> 521
      <211> 24
4.3
      <212> DNA
Hand.
      <213> Artificial Sequence
4 4 11
     <220>
i di
     <223> Synthetic oligonucleotide probe
A=b
     <400> 521
i i
      ccagtgcaca gcaggcaacg aagc 24
     <210> 522
Heart,
June
     <211> 24
171
     <212> DNA
1 = 1
     <213> Artificial Sequence
     <220>
     <223> Synthetic oligonucleotide probe
     <400> 522
     actaggctgt atgcctgggt gggc 24
     <210> 523
     <211> 43
     <212> DNA
     <213> Artificial Sequence
    <223> Synthetic oligonucleotide probe
    <400> 523
     gtatgtacaa agcatcggca tggttgcagg agcagtgaca ggc 43
    <210> 524
    <211> 26
    <212> DNA
    <213> Artificial Sequence
    <220>
```

```
<223> Synthetic oligonucleotide probe
<400> 524
aatctcagca ccagccactc agagca 26
<210> 525
<211> 25
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 525
gttaaagagg gtgcccttcc agcga 25
<210> 526
<211> 24
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 526
tatcccaatg cctccccact gctc 24
<210> 527
<211> 24
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 527
gatgaacttg gcgaagggc ggca 24
<210> 528
<211> 30
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 528
agggaggatt atccttgacc tttgaagacc 30
<210> 529
<211> 18
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 529
gaagcaagtg cccagctc 18
<210> 530
<211> 18
<212> DNA
```

```
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 530
 cgggtccctg ctctttgg 18
<210> 531
<211> 24
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 531
caccgtagct gggagcgcac tcac 24
<210> 532
<211> 18
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 532
agtgtaagtc aagctccc 18
```