	ORECOLL
Pages : 4)	MAVELIKARA PIN: 690110 KERALA
	100 SA

P - 7712

_	
Rea No	
ricg. No.	

Name :

First Semester B.Sc. Degree Examination, March 2023 First Degree Programme under CBCSS

Mathematics

Complementary Course for Physics

MM 1131.1 : MATHEMATICS I – CALCULUS AND SEQUENCES AND SERIES

(2021 Admission Onwards)

Time: 3 Hours Max. Marks: 80

- Answer the first ten questions are compulsory. They carry 1 mark each.
- 1. Find $\lim_{x\to 1} (x^7 2x^5 + 1)^{35}$.
- 2. What is the value of $\lim_{x\to -\infty} \tan^{-1} x$?
- 3. Evaluate $\int (x + x^2) dx$.
- 4. What is the integral of $\tan x$?
- 5. Find $\int_{0}^{\pi/2} \frac{\sin x}{5} dx$.
- 6. Find the area under the curve $y = \sin x$ over the interval $[0, \pi/4]$.
- 7. Find $\frac{\partial f}{\partial y}$ for the function $f(x, y) = 2x^3y^2 + 2y + 4x$.

- 8. Define critical point.
- 9. Find the general term of the sequence $\frac{1}{2}$, $\frac{2}{3}$, $\frac{3}{4}$, $\frac{4}{5}$,....
- 10. Find the Maclaurin polynomial P_2 for e^x .

 $(10 \times 1 = 10 \text{ Marks})$

- II. Answer any eight questions. They questions carry 2 marks each.
- 11. Find $\lim_{x \to -4} \frac{2x + 8}{x^2 + x 12}$.
- 12. For what values of x is there a discontinuity in the graph of $y = \frac{2x+3}{(x-5)(x-6)}$?
- 13. Find $\frac{dy}{dx}$ if $y = \sec^{-1}(e^x)$.
- 14. Evaluate $\int \frac{t^2 2t^4}{4} dt$.
- 15. Evaluate $\int \frac{dx}{1+3x^2}$.
- 16. Evaluate $\int \cos^2 x \, dx$.
- 17. Describe the level surfaces of $f(x, y, z) = z^2 x^2 y^2$.
- 18. If $f(x, y) = x^2 y^3 + x^4 y$, find $\frac{\partial^2 f}{\partial y^2}$.
- 19. Consider the sphere $x^2 + y^2 + z^2 = 1$. Find $\frac{\partial z}{\partial x}$ and $\frac{\partial z}{\partial y}$ at the point $\left(\frac{2}{3}, \frac{1}{3}, \frac{2}{3}\right)$.
- 20. Determine whether the sequence $\left\{ \left(-1\right)^{n+1} \frac{n}{2n+1} \right\}_{n=1}^{+\infty}$ converges or diverges.

- 21. Determine whether the series $\sum_{k=1}^{\infty} 3^{2k} 5^{1-k}$ converges or diverges.
- 22. Show that the series $\sum_{k=1}^{\infty} \frac{k}{k+1}$ diverges.

 $(8 \times 2 = 16 \text{ Marks})$.

- III. Answer any six questions. These questions carry 4 marks each,
- 23. Find $\lim_{x\to 1} \frac{x-1}{\sqrt{x}-1}$.
- 24. Find $\lim_{x \to -\infty} \frac{4x^2 x}{2x^3 5}$.
- 25. Evaluate $\int xe^x dx$.
- 26. Evaluate $\int_{1}^{\sqrt{2}} \frac{dx}{x^2 \sqrt{4 x^2}}$.
- 27. Let $f(x, y) = y^2 e^x + y$. Find f_{xyy} .
- 28. Given that $z = e^{xy}$, x = 2u + v, y = u / v. Find $\frac{\partial z}{\partial u}$ and $\frac{\partial z}{\partial v}$ using the chain rule.
- 29. Locate all relative extrema and saddle points of $f(x, y) = 4xy x^4 y^4$.
- 30. Show that the integral test applies and use the integral to determine whether the series $\sum_{k=1}^{\infty} \frac{1}{k^2}$ converge or diverge.
- 31. Use the comparison test to determine whether the series $\sum_{k=1}^{\infty} \frac{1}{2k^2 + k}$ converge or diverge.

$$(6 \times 4 = 24 \text{ Marks})$$

- IV. Answer any two questions. These questions carry 15 marks each.
- 32. (a) Find $\frac{dy}{dx}$ if $y = 3x^8 2x^5 + 6x + 1$.
 - (b) At what points, does the graph of $y = x^3 3x + 4$ have a horizontal tangent line?
 - (c) Find the area of the triangle formed from the coordinate axes and the tangent line to the curve $y = 5x^{-1} \frac{1}{5}x$ at the point (5,0).
- 33. (a) Evaluate $\int \sin^4 x \cos^4 x \, dx$.
 - (b) Evaluate $\int \tan^2 x \sec^4 x \, dx$.
- 34. Use Lagrange multipliers to determine the dimensions of a rectangular box, open at the top, having a volume of 32 ft³ and requiring the least amount of material for its construction.
- 35. (a) Find the nth Maclaurin polynomial for $\frac{1}{1-x}$ and express it in sigma notation.
 - (b) Find the nth Taylor polynomial for $\frac{1}{x}$ about x = 1 and express it in sigma notation.

 $(2 \times 15 = 30 \text{ Marks})$