Homework 3

Create a single MATLAB script with each problem below as a separate section (hint: %%).

- 1. Create a new script
- 2. Create a comment section at the top with your name, date, HW#, class, etc.
- 3. The first script commands should erase all the workspace data, command window output, and close all figures.
- 4. Create separate sections (%%) for each problem

Problem 1:

If *C* and *F* are Celsius and Fahrenheit temperatures, respectively, the formula for conversion from Celsius to Fahrenheit is F = 9C/5 + 32.

(a) Write a script that will ask you for the Celsius temperature and display the Fahrenheit equivalent with some sort of comment, such as:

The Fahrenheit temperature is:...

Try it out on the following Celsius temperatures (answers in parentheses): 0(32), 100(212), -40(-40!), 37 (normal human temperature: 98.6).

(b) Change the script to use vectors and array operations to compute the Fahrenheit equivalents of Celsius temperatures ranging from 20° to 30° in steps of 1°, and display them in two columns with a heading, like this:

Celsius	Fahrenheit
20.00	68.00
21.00	69.80
30.00	86.00

Problem 2:

The electricity accounts of residents in a very small town are calculated as follows:

- If 500 units or fewer are\ used, the cost is 2 cents per unit.
- If more than 500 but not more than 1000 units are used, the cost is \$10 for the first 500 units and 5 cents for every unit in excess of 500.
- If more than 1000 units are used, the cost is \$35 for the first 1000 units plus 10 cents for every unit in excess of 1000.
- A basic service fee of \$5 is charged, no matter how much electricity is used. Write a program that enters the following five consumptions into a vector and uses a for loop to calculate and display the total charge for each one: 200, 500, 700, 1000, 1500. (Answers: \$9, \$15, \$25, \$40, \$90)

Problem 3.

It is useful to work out how the period of a bond repayment changes if you increase or decrease *P*. The formula for *N* is given by:

$$N = \frac{\ln\left(\frac{P}{P - rL/12^{-}}\right)}{12\ln(1 + r/12)}.$$

- (a) Write a new program to compute this formula. Use the built-in function log for the natural logarithm ln. How long will it take to pay off a loan of \$50,000 at \$800 a month if the interest remains at 15%? (Answer: 10.2 years—nearly twice as fast as when paying \$658 a month.)
- (b) Use your program to find out by trial and error the smallest monthly payment that will pay off the loan this side of eternity. Hint: recall that it is not possible to find the logarithm of a negative number, so P must not be less than rL/12.

Turn in the following:

- 1. A Word (.doc, .docx) document created using the MATLAB publish feature to publish your script.
- 2. Your .m script file(s) (these are separate files from the document above). Make sure you use plenty of comments. Before submitting, rename all *.m files to have a .txt extension. For example, rename MyHW6.m to MyHW6.txt before submitting. Submit all files electronically on Blackboard. See syllabus for late assignment policy.

Late submissions will receive a 10% deduction! No submissions will be accepted after one day!