REPORT DOCUMENTATION PAGE

Form Approved OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Aflington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY)	2. REPORT TYPE	3. DATES COVERED (From - To)
22 June 2015	Briefing Charts	19 June 2015 – 22 June 2015
4. TITLE AND SUBTITLE		5a. CONTRACT NUMBER
Optimal Runge-Kutta Schemes for High	n-order Spatial and Temporal	
Discretizations		
		5b. GRANT NUMBER
		5c. PROGRAM ELEMENT NUMBER
6. AUTHOR(S)		5d. PROJECT NUMBER
Mundis, N., Edoh, A. and Sankaran, V.		
		5e. TASK NUMBER
		5f. WORK UNIT NUMBER
		Q12J
7. PERFORMING ORGANIZATION NAME(S	S) AND ADDRESS(ES)	8. PERFORMING ORGANIZATION REPORT NO.
Air Force Research Laboratory (AFMC		
AFRL/RQR		
5 Pollux Drive		
Edwards AFB, CA 93524-7048		
9. SPONSORING / MONITORING AGENCY	NAME(S) AND ADDRESS(ES)	10. SPONSOR/MONITOR'S ACRONYM(S)
Air Force Research Laboratory (AFMC		
AFRL/RQR		11. SPONSOR/MONITOR'S REPORT
5 Pollux Drive		NUMBER(S)
Edwards AFB, CA 93524-7048		AFRL-RQ-ED-VG-2015-268
12 DISTRIBUTION / AVAIL ARILITY STATE	MENIT	

12. DISTRIBUTION / AVAILABILITY STATEMENT

Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

For presentation at 22nd AIAA Computational Fluid Dynamics Conference; Dallas, TX; 22 June 2015

PA Case Number: #15352; Clearance Date: 6/29/2015

14. ABSTRACT

Viewgraphs/Briefing Charts

1	5	SII	IR I	EC	ΤТ	FR	MS

N/A

16. SECURITY CL	ASSIFICATION OF:		17. LIMITATION OF ABSTRACT	18. NUMBER OF PAGES	19a. NAME OF RESPONSIBLE PERSON V. Sankaran
a. REPORT	b. ABSTRACT	c. THIS PAGE	SAR	29	19b. TELEPHONE NO (include area code)
Unclassified	Unclassified	Unclassified	SAK		N/A

Optimal Runge-Kutta Schemes for High-order Spatial and Temporal Discretizations

Nathan L. Mundis – ERC, Inc. Ayaboe K. Edoh – UCLA Venke Sankaran – AFRL/RQ

2015 AIAA SciTech June 23, 2015

Outline

Introduction

Governing Equations

- Spatial Discretizations
- Temporal Discretizations

Von Neumann Analysis (VNA)

Computational Results

- One-dimensional Wave
- Three-dimensional Vortex

Conclusions and Future Work

Introduction

- High-order in space is now commonplace
- High-order in time... not so much...
- Is this sufficient? Is high-order in time needed?
- Limiting Fact: There are no A-stable backward-difference formula (BDF) methods with $> 2^{nd}$ -order accuracy
- Thus, multistage methods, like Runge-Kutta (RK) methods, must be used for 3rd- and higher-order
- Explicit RK methods are not amenable to stiff problems

Objective: To find optimal diagonally-implicit Runge-Kutta time integrators for use with high-order spatial discretizations

Governing Equations

Dual Time Stepping:

$$\frac{\partial \mathbf{Q}}{\partial \tau} + \frac{\partial \mathbf{Q}}{\partial t} + \frac{\partial \mathbf{F}_i}{\partial x_i} = \frac{\partial \mathbf{V}_i}{\partial x_i} + \mathbf{H}$$

$$\mathbf{Q} = \begin{bmatrix} \rho & \rho u_i & \rho e_0 \end{bmatrix}^T$$

$$\mathbf{F}_i = \begin{bmatrix} \rho u_i & \rho u_i u_j + p \delta_{ij} & u_i \rho h_0 \end{bmatrix}^T \text{ where } h_0 = e_0 + \frac{p}{\rho}$$

$$\underline{\mathbf{A}} = \frac{\partial \mathbf{F}_i}{\partial \mathbf{Q}} = \underline{\mathbf{M}} \underline{\mathbf{M}} \underline{\mathbf{M}}^{-1}$$

$$\frac{\partial \mathbf{Q}}{\partial \tau} + \frac{\partial \mathbf{Q}}{\partial t} + \underline{\mathbf{A}} \frac{\partial \mathbf{Q}}{\partial x_i} = \frac{\partial \mathbf{V}_i}{\partial x_i} + \mathbf{H}$$

$$\underline{\Lambda} = diag\left\{u_i + c, u_i, u_i - c\right\}$$

Residual Form:

$$\frac{\partial \mathbf{Q}}{\partial \tau} + \frac{\partial \mathbf{Q}}{\partial t} + \mathbf{R}_s \left(\mathbf{Q} \right) = 0 \quad where \quad \mathbf{R}_s = \frac{\partial \mathbf{F}_i}{\partial x_i} - \frac{\partial \mathbf{V}_i}{\partial x_i} - \frac{\partial \mathbf{Q}_i}{\partial x_$$

Spatial Discretizations

Central Differences with added artificial dissipation

Central differences:

$$\left. \frac{\partial \Upsilon_j}{\partial x_i} \right|_{II} = \frac{\Upsilon_{j+1} - \Upsilon_{j-1}}{2\Delta x_i}$$

$$\left. \frac{\partial \Upsilon_j}{\partial x_i} \right|_{IV} = \frac{-\Upsilon_{j+2} + 8\Upsilon_{j+1} - 8\Upsilon_{j-1} + \Upsilon_{j-2}}{12\Delta x_i}$$

$$\left. \frac{\partial \Upsilon_{j}}{\partial x_{i}} \right|_{VI} = \frac{\Upsilon_{j+3} - 9\Upsilon_{j+2} + 45\Upsilon_{j+1} - 45\Upsilon_{j-1} + 9\Upsilon_{j-2} - \Upsilon_{j-3}}{60\Delta x_{i}}$$

where Υ could be \mathbf{F}_i or \mathbf{Q} depending on the form of the equations

Scalar artificial dissipation:

$$\mathbf{R}_{s} = \frac{\partial \mathbf{F}_{i}}{\partial x_{i}} - \varepsilon_{\eta} \parallel \lambda \parallel \frac{\partial^{\eta} \mathbf{Q}}{\partial x_{i}^{\eta}} - \frac{\partial \mathbf{V}_{i}}{\partial x_{i}} - \mathbf{H}$$

where η is even and one more than the order of accuracy

$$\|\lambda\| = |u_i| + c$$
 $\varepsilon_{II} = \frac{\Delta x_i}{2}, \quad \varepsilon_I$

$$\varepsilon_{II} = \frac{\Delta x_i}{2}, \quad \varepsilon_{IV} = -\frac{\Delta x_i^3}{12}, \quad \varepsilon_{VI} = \frac{\Delta x_i^5}{60}$$

Temporal Discretizations

Runge-Kutta Methods:

a_{1s}	a_{2s}	a_{3s}		$a_{(s-1)s}$	a_{ss}	$\overset{\circ}{q}$	b_s
$a_{1(s-1)}$	$a_{2(s-1)}$	$a_{3(s-1)}$	•••	$a_{(s-1)(s-1)}$	$a_{s(s-1)}$	$\overset{ ext{}}{\hat{b}}_{s-1}$	b_{s-1}
•	•	:		:	:	•	•
a_{13}	a_{23}	a_{33}	• • •	$a_{(s-1)3}$	$a_s 3$	\widetilde{q}^3	\vec{b}_3
a_{12}	a_{22}	a_{32}	•••	$a_{(s-1)2}$	a_{s2}	\widetilde{q}^{2}	\vec{b}_2
a_{11}	a_{21}	a_{31}	•••	$a_{(s-1)1}$	a_{s1}	$\overset{\circ}{b}_1$	b_1
C_1	C_2	C_3		C_{S-1}	C_{S}		

 $\hat{\mathbf{Q}}^{n+1} = \mathbf{Q}^n - \Delta t \sum_{j=1}^s \hat{b}_j \mathbf{R}_s^j(\mathbf{Q}^j)$ $\mathbf{Q}^{n+1} = \mathbf{Q}^n - \Delta t \sum_{j=1}^s b_j \mathbf{R}_s^j(\mathbf{Q}^j)$

 $\mathbf{Q}^k = \mathbf{Q}^n - \Delta t \sum_{j=1}^s a_{kj} \mathbf{R}_s^j(\mathbf{Q}^j)$

 $t^k = t^n + c_k \Delta t$

$$\epsilon^{n+1} = \mathbf{Q}^{n+1} - \hat{\mathbf{Q}}^{n+1}$$

ESDIRK Methods

Explicit first stage Singly-Diagonally Implicit Runge-Kutta

- Stiffly accurate
- Second-order stage accuracy
- FSAL First is the Same As Last

0	0	0		0	~	~ `	p_s
0	0	0	···	~	b_{s-1}	b_{s-1}	b_{s-1}
•	:	:	.•	:	•	•	•
0	0	~	•••	$a_{(s-1)3}$	b_3	\hat{q}^3	\vec{b}_3
0	~						
0	a_{21}	a_{31}		$a_{(s-1)1}$	b_1	$\overset{\circ}{b}_1$	b_1
$c_1 = 0$	C_2	C_3		C_{S-1}	$c_s = 1$		

ESDIRK3 and 4

0	0			1767732205903	4055673282236	1767732205903	$\overline{4055673282236}$
0	0	1767732205903	4055673282236	11266239266428	11593286722821	11266239266428	$\overline{11593286722821}$
0	$\frac{1767732205903}{4055673282236}$	640167445237	$\overline{}$ 6845629431997	4482444167858	$\overline{}$ 7529755066697	4482444167858	7529755066697
0	$\frac{1767732205903}{4055673282236}$	2746238789719	$\overline{10658868560708}$	1471266399579	$\overline{7840856788654}$	1471266399579	7840856788654
0	$\frac{1767732205903}{2027836641118}$	6	lro		Т		

Implicit, Third-order ESDIRK3

0	0	0	0	0	114	114
0	0	0	0	114	$-\frac{2260}{8211}$	$-\frac{2260}{8211}$
0	0	0	114	$\frac{2285395}{8070912}$	$\frac{69875}{102672}$	$\frac{69875}{102672}$
0	0	114	$\frac{174375}{388108}$	$\frac{730878875}{902184768}$	$\frac{15625}{83664}$	$\frac{15625}{83664}$
0	114	$-\frac{1743}{31250}$	$-\frac{654441}{2922500}$	$-\frac{71443401}{120774400}$	0	0
0	114	$\frac{8611}{62500}$	$\frac{5012029}{34652500}$	$\frac{15267082809}{155376265600}$	$\frac{82889}{524892}$	$\frac{82889}{524892}$
0	2 1	$\frac{83}{250}$	$\frac{31}{50}$	$\frac{17}{20}$	\vdash	

Implicit, Fourth-order ESDIRK4

ESDIRK5

Distribution A – Approved for public release; Distribution Unlimited

Von Neumann Analysis

- Often used to study stability of schemes
- Von Neumann analysis is used to compare schemes for accuracy
- Dissipation error
- Dispersion error
- Assumes linear, periodic problems
- VNA theory and more results are in the associated paper

Dissipation, CFL = 1.0

Dispersion, CFL = 1.0

Distribution A - Approved for public release; Distribution Unlimited

Dissipation, CFL = 10.0

Dispersion, CFL = 10.0

Distribution A – Approved for public release; Distribution Unlimited

1-D Acoustic Wave

Unperturbed Mach number of 0.5

$$\rho_{\infty} = 8.7077 \times 10^{-1} \frac{kg}{m^3}$$

$$\rho u_{\infty} = 1.7458 \times 10^2 \frac{kg}{m^2 \cdot s}$$

$$T_{\infty} = 400K$$

$$R_{\infty} = 2.871 \times 10^2 \frac{J}{kg \cdot K}$$

$$\gamma = 1.4$$

Perturbation wave - 20 points per wave resolution

$$Q_o = Q_{\infty} + M\delta\hat{Q}_{u,u\pm c}$$
$$\delta\hat{Q}_{u,u\pm c} = \hat{\delta} \cdot \cos(kx)$$
where $\hat{\delta} = 0.01$

More results in the paper

1-D, CFL = 1.0, 10 Periods

	Dissipati	Dissipation Error	Dispersi	Dispersion Error
Scheme	VNA	Simulation	VNA	Simulation
Crank-N-colson	3.05×10^{-3}	3.05×10^{-3} 1.00×10^{-2}	8.11×10^{-2}	8.11×10^{-2} 8.11×10^{-2}
ESDIRK3	5.02×10^{-2}	5.02×10^{-2} 5.02×10^{-2} 1.51×10^{-3} 1.53×10^{-3}	1.51×10^{-3}	1.53×10^{-3}
ESDIRK4	3.13×10^{-3}	3.13×10^{-3} 3.13×10^{-3}	1.50×10^{-4}	1.50×10^{-4} 1.58×10^{-4}
ESDIRK5	3.14×10^{-3}	3.14×10^{-3} 3.14×10^{-3} 6.78×10^{-5} 6.90×10^{-5}	6.78×10^{-5}	6.90×10^{-5}

1-D, CFL = 10.0, 1 Period

	$\operatorname{Dissipati}$	Dissipation Error	$\operatorname{Dispersion}$	Dispersion Error
Scheme	VNA	Simulation	VNA	Simulation
Crank-Nicolson	9.02×10^{-5}	2.44×10^{-3}	3.61×10^{-1}	3.61×10^{-1}
ESDIRK3	4.99×10^{-1}	4.90×10^{-1}	1.92×10^{-1}	1.92×10^{-1}
ESDIRK4	7.22×10^{-3}	22×10^{-3} 7.25×10^{-3}	4.90×10^{-2}	4.90×10^{-2}
ESDIRK5	5.10×10^{-2}	5.46×10^{-2}	1.38×10^{-2}	1.39×10^{-2}

1-D, CFL = 1.0, 1000 Periods

	Dissipati	Dissipation Error	Dispersion	Dispersion Error
Scheme	VNA	Simulation	VNA	Simulation
Crank-Nicolson	2.63×10^{-1}	2.65×10^{-1}	8.11×10^{0}	8.10×10^{0}
ESDIRK3	9.94×10^{-1}	9.94×10^{-1}	1.51×10^{-1}	1.00×10^{-1}
ESDIRK4	2.69×10^{-1}	69×10^{-1} 1.95×10^{-1}	1.50×10^{-2}	3.00×10^{-2}
ESDIRK5	2.70×10^{-1}	70×10^{-1} 2.01×10^{-1}	6.78×10^{-3}	2.50×10^{-2}

3-D Isentropic Vortex

Free-stream Mach number of 0.5

$$\rho_{\infty} = 1.0 \frac{kg}{m^3}, \quad \rho u_{\infty} = 200.0 \frac{kg}{m^2 \cdot s}, \quad \rho v_{\infty} = 0.0 \frac{kg}{m^2 \cdot s}, \quad \rho w_{\infty} = 0.0 \frac{kg}{m^2 \cdot s}, \quad \rho e_{0,\infty} = 305714.3 \frac{kg}{m \cdot s^2}$$

$$R_{\infty} = 287.11 \frac{J}{kg \cdot K}$$
 and $\gamma = 1.4$

Perturbation - 11 points across the vortex

$$\delta u = -\sqrt{R_{\infty}T_{\infty}} \frac{\alpha}{2\pi} (y - y_0) e^{\phi(1 - r^2)}$$

$$\delta v = \sqrt{R_{\infty} T_{\infty}} \frac{\alpha}{2\pi} (x - x_0) e^{\phi(1 - r^2)}$$

$$\delta T = T_{\infty} \frac{\alpha^2 \left(\gamma - 1 \right)}{16\phi \gamma \pi^2} e^{2\phi \left(1 - r^2 \right)}$$

Vortex center: (x_0, y_0)

11 Points Across the Vortex 3-D, CFL = 1.0, 40 Lengths,

2-2

2-3

5₋0

1.04

dx (log scale)

11111111

Distribution A - Approved for public release; Distribution Unlimited

Different Resolutions

11 Points Across the Vortex 3-D, CFL = 8.0, 40 Lengths,

Distribution A - Approved for public release; Distribution Unlimited

Sneak Peak: Filtering

Conclusions

2nd- and 3rd-order time integrators for 5th-order spatial schemes are inadequate

- The same order of spatial and temporal discretizations is preferable
- However, ESDIRK5 is not much better than ESDIRK4
- 7 implicit stages vs. 5 implicit stages

Higher-order time integrators:

- Do not show significant improvement on coarse grids at CFL of one
- Are better at high CFL number
- Are better on highly refined grids

Spatial error usually dominates for typical CFL numbers and grid resolutions

Central difference plus artificial dissipation schemes are inadequate

Future Work

- Implement more accurate spatial schemes of the same orders of accuracy
- Compact-difference schemes
- Filtering schemes
- desired dissipation and dispersion properties Derive better ESDIRK schemes tailored to the
- advantage of the ESDIRK time integrators for Add preconditioning to take maximum stiff problems
- Improved convergence efficiency
- Improved solution accuracy

Distribution A – Approved for public release; Distribution Unlimited

Questions???

Extra Slides

Distribution A - Approved for public release; Distribution Unlimited

3-D, CFL = 8.0Different Resolutions

