Test nº 3

Exercice 1 (Probabilités).

- 1. Énoncer les formules des probabilités totales et de Bayes associées à un système complet d'événements $(A_i)_{1 \leqslant i \leqslant n}$ et pour un événement quelconque B.
- 2. On considère n urnes numérotées. L'urne k contient k boules rouges et 2k boules vertes. On tire une boule de l'une de ces urnes choisie au hasard : elle est rouge. Quelle est la probabilité d'avoir choisi l'urne k (pour $k \in [1, n]$)? On commencera par définir les événements liés à cette expérience et on justifiera soigneusement son résultat.

Exercice 2 (Géométrie). Dans un repère orthonormé $(O, \overrightarrow{i}, \overrightarrow{j})$ du plan, on considère la courbe \mathcal{C} représentative de la fonction $x \mapsto 1/x$ définie sur \mathbb{R}^* . On considère trois points A, B, C de \mathcal{C} , d'abscisses respectives a, b, c non-nulles.

Rappel: dans un triangle ABC non-plat, les hauteurs sont concourantes. Leur intersection s'appelle l'orthocentre.

- 1. Montrer qu'aucune droite du plan ne coupe C en strictement plus de deux points. Que peut-on en déduire sur les points A, B et C?
- 2. Tracer la courbe C puis placer les points A, B, C pour les valeurs $a = -1, b = \frac{1}{3}$ et c = 3. Construire l'orthocentre du triangle ABC.

Dans la suite a, b et c sont de nouveau **quelconques**.

- 3. Déterminer les équations des droites suivantes :
 - (a) la droite passant par A et orthogonale à (BC);
 - (b) la droite passant par B et orthogonale à (AC).
- 4. Montrer que l'orthocentre du triangle ABC appartient à C.

Exercice 3 (Algèbre linéaire).

Partie I: un cas particulier

Dans cette partie, on se place dans l'espace vectoriel \mathbb{R}^3 et on considère l'application de \mathbb{R}^3 dans \mathbb{R} définie, pour tout $(x,y,z) \in \mathbb{R}^3$, par $\varphi(x,y,z) = x+y+z$.

- 1. Montrer que φ est linéaire.
- 2. Déterminer une base de $\operatorname{Ker}(\varphi)$. L'application est-elle injective ?
- 3. Déterminer $\operatorname{Im}(\varphi)$. L'application est-elle surjective?
- 4. Justifier que $V = \{(x, y, z) \in \mathbb{R}^3 \mid x = y = z\}$ est un sous-espace vectoriel de \mathbb{R}^3 .
- 5. Montrer que $\mathbb{R}^3 = V \oplus \operatorname{Ker}(\varphi)$.

Partie II: cas général

On se place désormais dans un \mathbb{K} -espace vectoriel E quelconque et on considère une forme linéaire f sur E non-nulle. On fixe alors un vecteur $u \in E$ tel que $f(u) \neq 0$.

- 6. Justifier que l'image de f est \mathbb{K} .
- 7. Montrer que $E = \text{Vect}(u) \oplus \text{Ker}(f)$.