Question 1: EM for Gaussian mixture moder

Detive E-step and M-step formulas in a Gaussian mixture model Given a set of data X = \$x,,..., X, }, there are k components tor each \times_n , $P(\times_n) = \frac{k}{2\pi p} N(\times_n | \mu_p, \xi_p)$ $\frac{k}{2\pi n} \pi_p (0 \in \pi_p \leq 1)$ Thus $P(X) = \prod_{n=1}^{N} P(X_n) = \prod_{n=1}^{N} \sum_{k=1}^{K} \mathcal{R}_k \mathcal{N}(X_n | \mu_k, \mathcal{Z}_k)$ Then the log likelihood that is gonna be maximized is: $|nP(X|\mathcal{R}, \mu, \mathcal{Z})| = \sum_{n=1}^{N} \sum_{k=1}^{K} \mathcal{R}_k \mathcal{N}(X_n | \mu_k, \mathcal{Z}_k)$ PLXn) = E P(k) P(xn|k) where Tk=P(k) and P(Xn|k)=N(xn|Mk, Zk) SO $P(P|X_n) = \frac{P(P)P(X_n|P)}{\frac{E}{E}P(X_n|I)P(I)} = \frac{\pi_P N(X_n|M_P, E_P)}{\frac{E}{E}\pi_I N(X_n|M_I, E_P)}$ Set $\frac{\partial InP(X|Z_1M_1, E_P)}{\partial M_P} = -\frac{N}{N-1}P(P|X_n) E_P(X_n-M_P) \qquad equals o$ So Mk = The Zer P(k1xn) Xn Where NK = EN P(k1xn) Then Set $\frac{\partial \ln P(x|z)\mu(z)}{\partial z_h} = 0$ So $\frac{\partial \varphi}{\partial z_h} = \frac{1}{Nk} \sum_{n=1}^{N} \frac{P(k|X_n)(x_n - \mu_k)(x_n - \mu_k)}{\partial z_h}$ Finally, maximize (np(x|z, \mu, 2) with respect to 2 with constraint Thus, $\frac{N}{\sum_{n=1}^{k} \frac{1}{\sum_{n=1}^{k} \frac{1}{\sum_{n=1}^{k$ $\frac{N}{E} = \frac{\sum_{k=1}^{K} \pi_{k} N(x_{n} | M_{k}, \overline{Z}_{k})}{\sum_{k=1}^{K} \pi_{k} N(x_{n} | M_{k}, \overline{Z}_{k})} + \sum_{k=1}^{K} \pi_{k} \lambda > 0$ we can get $\pi_{k} = \frac{N_{k}}{N}$

Therefore

for M,
$$\frac{2}{5}$$
 and $\frac{1}{5}$ initialized,

for E step: evaluate $N_{k} = \frac{N}{5}$ $P(k|X_{n}) = \frac{N}{5}$ $\frac{\frac{7}{5}}{5}$ $\frac{N(x_{n}|M_{k}, \frac{3}{5}k)}{\frac{1}{5}}$

for M step: $M_{k} = \frac{1}{N_{k}} \frac{3}{N_{k}} P(k|X_{n}) X_{n}$
 $\frac{3}{5}$ $\frac{1}{5}$ $\frac{1}{5}$ $\frac{N}{5}$ $\frac{N}{5}$

Question Z: K-means and EM for Gaussian mixture model

tor Gaussian mixture moder

for K-means

distortion measurement (7 = & E rap ||Xn-Mp112

hoods to minimize.

Int = { 1 if Xn is assigned to cluster }

O otherwise

1) tix M, so tak= { | if k = org minj | | xn-mj | | 2 otherwise

(2) fix f, $\frac{\partial J}{\partial \mu} = 0$ so $\mu_{R} = \frac{Z_{n} r_{nR} \chi_{n}}{Z_{n} r_{nR}}$

For each mixture component, Ex=21 when E-> O, EM = k-means.

in this case,
$$\frac{7}{2}$$
 $\frac{1}{2}$ $\frac{1}{2}$

SO $\frac{7kN(x_n|\mu_k, \xi_z)}{\xi}$ could be represented by r_nk Thus, in M Step, $\mu_k = \frac{1}{N_k} \frac{\xi_k}{n_1} \frac{\gamma_k}{\gamma_k} \frac{\gamma_k}$