# Organización del computador

Lógica digital

# Jerarquía de máquina

| Nivel 6 | Usuario                | Programa ejecutables                 |
|---------|------------------------|--------------------------------------|
| Nivel 5 | Lenguaje de alto nivel | C++, Java, Python, etc.              |
| Nivel 4 | Lenguaje ensamblador   | Assembly code                        |
| Nivel 3 | Software del sistema   | Sistema operativo, bibliotecas, etc. |
| Nivel 2 | Lenguaje de máquina    | Instruction Set Architecture (ISA)   |
| Nivel 1 | Unidad de control      | Microcódigo / hardware               |
| Nivel 0 | Lógica digital         | Circuitos, compuertas, memorias      |



- -> Cada nivel funciona como una máquina abstracta que oculta la capa anterior
- Cada nivel es capaz de resolver determinado tipo de problemas a partir de comprender un tipo de instrucciones específico
- ->La capa inferior es utilizada como servicio

# Organización

- ->Recordemos que la organización de un computador refiere al diseño específico de sus componentes, y como estas se coordinan para llevar a cabo una tarea
- ->Un factor decisivo en como se estructuran las componentes (y cómo estas están implementadas a través de circuitos) es cómo está representada la información
- ->Los sistemas modernos (a partir de The First Draft)
   utilizan el sistema binario (de donde proviene la palabra
   bit binary digit)

- ->Los circuitos operan con dos valores eléctricos (CMOS: 0-1/3 VDD y 2/3-1 VDD, con VDD=voltage de alimentación / TTL: 0V-0.8V y 2V-VCC, con VCC=5V+-10%)
  - Pueden ser interpretados como 1 ó 0 y pensarlos como información
  - Pueden ser interpretados como verdadero o falso y pensarlos como valores lógicos

# Algebras de boole

- ->Desarrolló una formalización algebraica en forma de cálculo que modela el razonamiento proposicional (Análisis matemático de la lógica)
- ->El sistema consiste es la declaración de operaciones algebraicas sobre valores booleanos y axiomas que formalizan su comportamiento

#### George Boole



1815 - 1864

#### Operadores booleanos

->Los operadores booleanos están descriptos por un conjunto de axiomas del estilo:

$$\frac{X}{X+Y}$$
  $\frac{Y}{X+Y}$ 

- También pueden ser interpretados como tablas de verdad
- ->Los operadores básicos del álgebra de boole son la conjunción o AND (conocido como producto), la disyunción u OR (conocido como coproducto) y la negación o NOT (conocido como complemento)

| Х                | AN               | DΥ               |
|------------------|------------------|------------------|
| х                | Y                | XY               |
| 0<br>0<br>1<br>1 | 0<br>1<br>0<br>1 | 0<br>0<br>0<br>1 |
| Х                | OF               | Y S              |
| Х                | Y                | X+Y              |
| 0<br>0<br>1      | 0<br>1<br>0      | 0<br>1<br>1      |

| Х | $\overline{\mathbf{x}}$ |
|---|-------------------------|
| 0 | 1                       |
| 1 | 0                       |

NOT X

#### Funciones booleanas

->Usando operadores booleanos se pueden definir funciones booleanas, por ejemplo:

$$f(X, Y, Z) = X.\overline{Z} + Y$$

- Como es usual, el complemento tiene mayor precedencia seguido por el producto
- ->Las variables y variables negadas se denominan literales

| X | Υ | Z | X | - | Z | + | Υ |
|---|---|---|---|---|---|---|---|
| 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
| 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
| 0 | 1 | 0 | 0 | 0 | 1 | 1 | 1 |
| 0 | 1 | 1 | 0 | 0 | 0 | 1 | 1 |
| 1 | 0 | 0 | 1 | 1 | 1 | 1 | 0 |
| 1 | 0 | 1 | 1 | 0 | 0 | 0 | 0 |
| 1 | 1 | 0 | 1 | 1 | 1 | 1 | 1 |
| 1 | 1 | 1 | 1 | 0 | 0 | 1 | 1 |

->Las tablas de verdad se construyen: 1) se deben considerar todas las combinaciones posibles de valores para las variables, 2) se le asignan valores a los literales, y 3) se evalúan los operadores en orden de precedencia (--, ., + salvo que haya paréntesis indicando lo contrario) usando las tablas de cada uno

#### Identidades booleanas

| Identidad    | 1.A=A                             | 0+A=A                             |
|--------------|-----------------------------------|-----------------------------------|
| Neutro       | 0.A=0                             | 1+A=1                             |
| Idempotencia | A.A=A                             | A+A=A                             |
| Inversa      | A.A=0                             | A+A=1                             |
| Conmutativa  | A.B=B.A                           | A+B=B+A                           |
| Asociativa   | (A.B)C=A.(B.C)                    | (A+B)+C=A+(B+C)                   |
| Distributiva | A+B.C=(A+B).(A+C)                 | A.(B+C)=A.B+A.C                   |
| Absorción    | A.(A+B)=A                         | A+A.B=A                           |
| De Morgan    | $\overline{A.B} = \overline{A+B}$ | $\overline{A+B} = \overline{A.B}$ |

#### Identidades booleanas

->Usando las identidades presentadas anteriormente es posible reducir una expresión booleana:

$$f(X, Y, Z) = (X+Y)(X+\overline{Y})\overline{X}\overline{Z}$$

| $(X+Y)(X+\overline{Y})(\overline{X}+Z) =$                       | DeMorgan                  |
|-----------------------------------------------------------------|---------------------------|
| $(XX + X\overline{Y} + YX + Y\overline{Y})(\overline{X} + Z) =$ | Distributiva              |
| $(X + X\overline{Y} + YX + 0) (\overline{X} + Z) =$             | Indempotencia e Inversa   |
| $(X + X(\overline{Y}+Y))(\overline{X}+Z) =$                     | Nula y Distributiva       |
| $(X)(\overline{X}+Z) =$                                         | Inversa, Identidad y Nula |
| $\overline{XX}+XZ =$                                            | Distributiva              |
| XZ                                                              | Inversa e Identidad       |

#### Fórmulas equivalente

- ->El ejemplo anterior muestra que muchas fórmulas, a pesar de ser sintácticamente diferentes poseen la misma tabla de verdad revelando que son equivalentes
- ->En general son preferibles las formas normales, aun cuando pueden no ser la forma más compacta de denotar una cierta fórmula:
  - ->CNF (Conjuntive Normal Form) o producto de sumas:
    f(X, Y, Z) = (X+Y)(X+Z)(X+Y+Z)
  - ->DNF (Disjuntive Normal Form) o suma de productos:
    f(X, Y, Z) = XY+XZ

#### Fórmulas equivalente

- ->Convertir un fórmula cualquiera a suma de productos usando su tabla de verdad es sencillo
- ->Se toman las filas que evalúan a 1 y luego se describe la fórmula a través de los valores de entrada de dichas filas:

$$f(X, Y, Z) = \overline{X}Y\overline{Z} + \overline{X}YZ + X\overline{Y}\overline{Z} + XY\overline{Z} + XYZ$$

| X | Υ | Z | X | - | Z | + | Υ |
|---|---|---|---|---|---|---|---|
| 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
| 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
| 0 | 1 | 0 | 0 | 0 | 1 | 1 | 1 |
| 0 | 1 | 1 | 0 | 0 | 0 | 1 | 1 |
| 1 | 0 | 0 | 1 | 1 | 1 | 1 | 0 |
| 1 | 0 | 1 | 1 | 0 | 0 | 0 | 0 |
| 1 | 1 | 0 | 1 | 1 | 1 | 1 | 1 |
| 1 | 1 | 1 | 1 | 0 | 0 | 1 | 1 |

->Esta forma de codificar funciones booleanas muestra que solo basta \_\_\_, ., + para escribir cualquier resultado en función de las variables de entrada

# Circuitos booleanos

- ->Los circuitos electrónicos implementan funciones booleanas y mientras más simple la función, más pequeño será el circuito siendo a su vez más barato, con menor consumo y hasta más rápido. El álgebra de boole nos permitirá la reducción de circuitos
- ->Los circuitos electrónicos están formados por compuertas que son dispositivos electrónicos que producen un resultado en función de su entrada
- ->Una compuerta está formada por uno o más transistores



# Circuitos booleanos

- ->Los circuitos electrónicos implementan funciones booleanas y mientras más simple la función, más pequeño será el circuito siendo a su vez más barato, consumo y hasta más rápido. El álgebra de
- ->Los circuitos electrónicos están formados por compuertas que son dispositivos electrónicos que producen un resultado en función de su entrada

permitirá la reducción de circuitos

 ->Una compuerta está formada por uno o más transistores

->Las compuertas más simples se corresponden exactamente con los operadores booleanos elementales que vimos anteriormente:



->Una compuerta de gran utilidad es el OR exclusivo XOR

|   | <b>x</b> xc | R Y          |               |
|---|-------------|--------------|---------------|
| х | Y           | X $\oplus$ Y |               |
| 0 | 0           | 0            | х — Х — х ө ч |
| 0 | 1           | 1            | ·             |
| 1 | 0           | 1            | - 12          |
| 1 | 1           | 0            |               |
| _ |             |              |               |

- Dos compuertas de mucha utilidad son las compuertas NAND y NOR
- ->Resultan sumamente baratas y por sí solas son un conjunto adecuado de operadores booleanos (ver que con ellas se puede implementar NOT y OR) y por lo tanto son suficiente para implementar todos los operadores restantes











- Dos compuertas de mucha utilidad son las compuertas NAND y NOR
- ->Resultan sumamente baratas y por sí solas son un conjunto adecuado de operadores booleanos (ver que con ellas se puede implementar NOT y OR) y por lo tanto son suficiente para implementar todos los operadores restantes





# Three-state logic

->Ahora bien ¿Cómo se conectan compuertas para hacer circuitos?



| а | b | a' | b' | С      |
|---|---|----|----|--------|
| 0 | 0 | 0  | 0  | 0      |
| 0 | 0 | 0  | 1  | 0      |
| 0 | 0 | 1  | 0  | 0      |
| 0 | 0 | 1  | 1  | X<br>S |
| 0 | 1 | 0  | 0  | 0      |
| 0 | 1 | 0  | 1  | 0      |
| 0 | 1 | 1  | 0  | 0      |
| 0 | 1 | 1  | 1  |        |

corto circuito

corto circuito

# Three-state logic

->Ahora bien ¿Cómo se conectan compuertas para hacer circuitos?



| а | b | a' | b' | С |
|---|---|----|----|---|
| 0 | 0 | 0  | 0  | 0 |
| 0 | 0 | 0  | 1  | 0 |
| 0 | 0 | 1  | 0  | 0 |
| 0 | 0 | 1  | 1  |   |
| 0 | 1 | 0  | 0  | 0 |
| 0 | 1 | 0  | 1  | 0 |
| 0 | 1 | 1  | 0  | 0 |
| 0 | 1 | 1  | 1  |   |

corto circuito

corto circuito

Three-state buffer



| Α | В | С    |
|---|---|------|
| X | 0 | hi-Z |
| 0 | 1 | 0    |
| 1 | - | 1    |

hi-Z distingue un estado de un circuito en el que no es posible observar ninguno de los estados lógicos 0 ó 1.

La utilización de three-state buffers permite que varios dispositivos compartan una misma salida si se tiene la precaución de que solo uno de estos tenga habilitada la salida.

# Componentes digitales

 Combinando compuertas se pueden implementar funciones booleanas a partir de interpretar las compuertas electrónicas

como los operadores:

$$F(X,Y,Z) = X + \overline{Y}Z$$



 $M(A, B, C) = \overline{A}BC + A\overline{B}C + AB\overline{C} + ABC$ 

| Α | В | С | M |
|---|---|---|---|
| 0 | 0 | 0 | 0 |
| 0 | 0 | 1 | 0 |
| 0 | 1 | 0 | 0 |
| 0 | 1 | 1 | 1 |
| 1 | 0 | 0 | 0 |
| 1 | 0 | 1 | 1 |
| 1 | 1 | 0 | 1 |
| 1 | 1 | 1 | 1 |



- ->Implementan funciones booleanas pues su resultado está determinado por os valores presentes en las entradas del circuito
- ->El tiempo de respuesta es "instantáneo" (existe un tiempo de propagación de la corriente eléctrica a través de la compuerta pero suele ser despreciable en la enorme mayoría de los casos)
- ->La aritmética y la lógica de una CPU está implementada con circuitos combinatorios

#### Half adder

- ->¿Cómo se construye un circuito que sume dos bits?
- f(X, Y) = X + Y
- ->¿Y si hay acarreo?

|   | Inp | uts | Outputs |       |  |  |
|---|-----|-----|---------|-------|--|--|
|   | x   | Y   | Sum     | Carry |  |  |
| ı | 0   | 0   | 0       | 0     |  |  |
| ١ | 0   | 1   | 1       | 0     |  |  |
| ١ | 1   | 0   | 1       | 0     |  |  |
| ١ | 1   | 1   | 0       | 1     |  |  |
| ı |     |     |         |       |  |  |

#### Half adder

- ->¿Cómo se construye un circuito que sume dos bits?
- f(X, Y) = X + Y
- ->¿Y si hay acarreo?

| Inp | uts | Outputs |       |  |  |
|-----|-----|---------|-------|--|--|
| х   | Y   | Sum     | Carry |  |  |
| 0   | 0   | 0       | 0     |  |  |
| 0   | 1   | 1       | 0     |  |  |
| 1   | 0   | 1       | 0     |  |  |
| 1   | 1   | 0       | 1     |  |  |
|     |     |         |       |  |  |





#### Full adder

->Si debemos sumar números de más de 1 bit es necesario que el adder pueda aceptar el acarreo de los bits anteriores ¿Cómo se construye un circuito que sume dos bits?

| 1 | Inpu | ıts         | Outputs |              |  |  |
|---|------|-------------|---------|--------------|--|--|
| x | Y    | Carry<br>In | Sum     | Carry<br>Out |  |  |
| 0 | 0    | 0           | 0       | 0            |  |  |
| 0 | 0    | 1           | 1       | 0            |  |  |
| 0 | 1    | 0           | 1       | 0            |  |  |
| 0 | 1    | 1           | 0       | 1            |  |  |
| 1 | 0    | 0           | 1       | 0            |  |  |
| 1 | 0    | 1           | 0       | 1            |  |  |
| 1 | 1    | 0           | 0       | 1            |  |  |
| 1 | 1    | 1           | 1       | 1            |  |  |

#### Full adder

->Si debemos sumar números de más de 1 bit es necesario que el adder pueda aceptar el acarreo de los bits anteriores ¿Cómo se construye un circuito que sume dos bits?







#### Adder



#### Adder





#### Adder





#### Adder





#### Adder





#### Decoder

- ->Los **Decoders** poseen n entradas y 2<sup>n</sup> salidas.
- Dada una combinación de valores de entrada se activa una única salida correspondiente a la combinación de entradas
- Son fundamentales para seccionar una posición de memoria a partir de una dirección





#### Multiplexers

->Los **Multiplexers** (Mux) seleccionan 1 de n entradas a partir de log2(n) líneas de control.



->Los Demultiplexers (Demux) hacen lo contrario, dada una entrada, seleccionan una de n salidas basándose en log2(n) líneas de control

Multiplexers (Ejemplo)

 $M(A, B, C) = \overline{A}BC + A\overline{B}C + AB\overline{C} + ABC$ 



Multiplexers (Ejemplo)

 $M(A, B, C) = \overline{A}BC + A\overline{B}C + AB\overline{C} + ABC$ 







Multiplexers (Ejemplo)

 $M(A, B, C) = \overline{A}BC + A\overline{B}C + AB\overline{C} + ABC$ 







- ->Construir una **ALU** de 1 bit
- ->3 entradas: A, B, Carry
- ->4 operaciones: AND, OR, NOT, Suma(A, B, Carry)
- ->2 Salidas: Result, Carryout











Circuitos programables en ROM

| Inputs         |                |                |                | Outputs        |                       |                |       |       |                |                |                       |       |
|----------------|----------------|----------------|----------------|----------------|-----------------------|----------------|-------|-------|----------------|----------------|-----------------------|-------|
| I <sub>4</sub> | l <sub>3</sub> | l <sub>2</sub> | I <sub>1</sub> | I <sub>0</sub> | <b>A</b> <sub>7</sub> | $\mathbf{A}_6$ | $A_5$ | $A_4$ | $\mathbf{A}_3$ | A <sub>2</sub> | <b>A</b> <sub>1</sub> | $A_0$ |
| 0              | 0              | 0              | 0              | 0              | 1                     | 0              | 1     | 1     | 0              | 1              | 1                     | 0     |
| 0              | 0              | 0              | 0              | 1              | 0                     | 0              | 0     | 1     | 1              | 1              | 0                     | 1     |
| 0              | 0              | 0              | 1              | 0              | 1                     | 1              | 0     | 0     | 0              | 1              | 0                     | 1     |
| 0              | 0              | 0              | 1              | 1              | 1                     | 0              | 1     | 1     | 0              | 0              | 1                     | 0     |
|                |                |                |                |                |                       |                |       |       |                |                |                       |       |
|                |                |                |                |                |                       |                |       |       |                |                |                       |       |
|                |                |                |                |                |                       |                |       |       |                |                |                       |       |
| 1              | 1              | 1              | 0              | 0              | 0                     | 0              | 0     | 0     | 1              | 0              | 0                     | 1     |
| 1              | 1              | 1              | 0              | 1              | 1                     | 1              | 1     | 0     | 0              | 0              | 1                     | 0     |
| 1              | 1              | 1              | 1              | 0              | 0                     | 1              | 0     | 0     | 1              | 0              | 1                     | 0     |
| 1              | 1              | 1              | 1              | 1              | 0                     | 0              | 1     | 1     | 0              | 0              | 1                     | 1     |

Circuitos programables en ROM

