Stable Homotopy Groups of Spheres [DRAFT]

Contents

1	Introduction	2
2	The Steenrod algebra	3
3	Spectra may not be your friends, but I can introduce you 3.1 Categorical nonsense	
4	The Adams spectral sequence 4.1 Spectral sequences	
5	Calculating stable homotopy groups	8
6	Methods of resolving ambiguities	8
A	AlgebraA.1 Free resolutions	8
В	Topology B.1 Suspension	9

1 Introduction

- Define homotopy groups
- The Eilenberg-MacLane space is K(G, n), and it has the property that

$$\pi_i(K(G, n)) = \begin{cases} \mathbb{Z} & i = n, \\ 0 & i \neq n. \end{cases}$$

They're unique up to weak homotopy equivalence (i.e. if you have another one X, there's a map between them which descends to an isomorphism on homotopy groups)

• Freudenthal's suspension theorem: if $\pi_i(X) = 0$ for $i \leq k$ (i.e. X is k-connected) then the map

$$\pi_n(X) \to \pi_{n+1}(\Sigma X)$$

 $[\gamma: S^n \to X] \mapsto [\Sigma \gamma: \Sigma S^n = S^{n+1} \to \Sigma X]$

is an isomorphism for $n \leq 2k$ and surjective for n = 2k + 1

- This implies $\pi_{n+k}(S^n)$ depends only on k for $n \geq k+2$
- (Obviously be careful with basepoints above)
- Suppose X is k-connected. Then, for $k \ge 0$, $0 = \pi_k(X) \cong \pi_{k+1}(\Sigma X)$, so whenever a space is k-connected its suspension is k + 1-connected.
- As you take suspensions, then, your successive bounds are $n \leq 2k$, $n+1 \leq 2k+2 \implies n \leq 2k+1$, $n \leq 2k+2$, etc ... so the sequence $\pi_n(X) \to \pi_{n+1}(\Sigma X) \to \cdots$ will eventually stabilise.
- Thus, if you take the colimit of that direct system, it'll just equal the stable value, with the higher legs just being the inverse isomorphisms.
- [11], Cor 1.9 [not 100% convinced of how this follows, but believing it for now]: if X is a CW complex of dimension d and Y a (k-1)-connected space, then the suspension homomorphism $[X,Y] \to [\Sigma X, \Sigma Y]$ is bijective if d < 2k-1 and surjective if d = 2k-1.

Miscellaneous facts I might need later:

- Cohomology [possibly only of pointed CW complexes] is representable, and its representing object is the Eilenberg-MacLane space. i.e. $H^n(-; G) \cong \text{Hom}(-, K(G, n))$.
- \mathscr{A}_2 is generated as an algebra by elements Sq^{2^k} ([6], Prop 4L.8).
- The map $\mathscr{A}_2 \to \tilde{H}^*(K(\mathbb{Z}/2\mathbb{Z}, n); \mathbb{Z}/2\mathbb{Z}), Sq^I \mapsto Sq^I(\iota_n)$ is an isomorphism from the degree d part of \mathscr{A}_2 onto $H^{n+d}(K(\mathbb{Z}/2\mathbb{Z}, n); \mathbb{Z}/2\mathbb{Z})$ for $d \geq n$. In particular, the admissible monomials Sq^I form an additive basis for \mathscr{A}_2 . Thus, \mathscr{A}_2 is exactly the algebra of all $\mathbb{Z}/2\mathbb{Z}$ cohomology operations that are stable, commuting with suspension ([7], Cor 5.38).
- "Stable homotopy groups are a homology theory" (whatever that means)
- Hurewicz theorem: for any path-connected space X and n > 0 there exists a group homomorphism $h_*: \pi_n(X) \to H_n(X)$. For n = 1 this induces an isomorphism $\pi_1^{ab}(X) \cong H_1(X)$. For $n \geq 2$, if X is (n-1)-connected then $\tilde{H}_i(X) = 0$ for all i < n, and the map $h_*: \pi_n(X) \to H_n(X)$ is an isomorphism.

[11], [5], [6]

2 The Steenrod algebra

The following is from [6] 4L.

- There are maps $Sq^i: H^n(-; \mathbb{Z}/2\mathbb{Z}) \to H^{n+i}(-; \mathbb{Z}/2\mathbb{Z})$ for each i, and they satisfy the following properties:
 - 1. $Sq_X^i(f^*(\alpha)) = f^*(Sq_Y^i(\alpha))$ for $f: X \to Y$ (i.e. Sq^i is a natural transformation).
 - 2. $Sq_X^i(\alpha+\beta) = Sq_X^i(\alpha) + Sq_X^i(\beta)$ (i.e. Sq_X^i respects the group operation for all X).
 - 3. $Sq^{i}(\alpha \smile \beta) = \sum_{0 \le j \le i} (Sq^{j}(\alpha) \smile Sq^{i-j}(\beta))$ (the Cartan formula)
 - 4. $Sq^i(\sigma(\alpha)) = \sigma(Sq^i(\alpha))$ where $\sigma: H^n(X; \mathbb{Z}/2\mathbb{Z}) \to H^{n+1}(\Sigma X; \mathbb{Z}/2\mathbb{Z})$ is the "suspension isomorphism given by reduced cross product with a generator of $H^1(S^1; \mathbb{Z}/2\mathbb{Z})$ "
 - 5. $Sq^i(\alpha) = \alpha^2$ if $i = |\alpha|$ and $Sq^i(\alpha) = 0$ if $i > |\alpha|$. [Hatcher doesn't explain this notation at all, but I think he means by $|\alpha|$ the degree of α this is what [2] says in C2]
 - 6. $Sq^0 = id$.
 - 7. Sq^1 is the " $\mathbb{Z}/2\mathbb{Z}$ Bockstein homomorphism β associated with the coefficient sequence $0 \to \mathbb{Z}/2\mathbb{Z} \to \mathbb{Z}/4\mathbb{Z} \to \mathbb{Z}/2\mathbb{Z} \to 0$ ".
- Define $Sq := Sq^0 + Sq^1 + \cdots$. Then $Sq(\alpha \smile \beta) = Sq(\alpha) \smile Sq(\beta)$ (since $(Sq(\alpha \smile \beta))_n = \sum_i Sq^i(\alpha) \smile Sq^{n-i}(\beta) = (Sq(\alpha) \smile Sq(\beta))_n$). Thus, Sq is a ring homomorphism.
- Adem relations:

$$Sq^{a}Sq^{b} = \sum_{j} {b-j-1 \choose a-2j} Sq^{a+b-j}Sq^{j} \quad \text{if } a < 2b,$$

where $\binom{m}{n}$ is zero if m or n is negative, or m < n, and $\binom{m}{0} = 1$ for $m \ge 0$.

- The Steenrod algebra \mathscr{A}_2 is the algebra over $\mathbb{Z}/2\mathbb{Z}$ that is the quotient of the algebra of polynomials in the noncommuting variables $Sq^1, Sq^2, ...$ by the two-sided ideal generated by the Adem relations. Thus, for every space X, $H^*(X; \mathbb{Z}/2\mathbb{Z})$ is a module over \mathscr{A}_2 .
- \mathscr{A}_2 is graded, and its elements of degree k are those that map $H^n(X; \mathbb{Z}/2\mathbb{Z})$ to $H^{n_k}(X, \mathbb{Z}/2\mathbb{Z})$ for all n. [Presumably you've fixed a space X while you're doing all this?]

[1], [10], [11], [8], [6], [3]

3 Spectra may not be your friends, but I can introduce you

3.1 Categorical nonsense

- [11]: There is a category \mathcal{H} of finite [because the corollary wanted f.d. CW complexes] based CW complexes, with $\operatorname{Hom}(X,Y) =: [X,Y]$ the set of homotopy classes of base-point preserving maps $X \to Y$.
- There is a category $\mathbf{St}(\mathcal{H})$ of finite[?] based CW complexes, with $\mathrm{Hom}(X,Y) =: \{X,Y\}$ the set $\mathrm{colim}_i[\Sigma^i X, \Sigma^i Y]$ [it's just a colimit of sets, and \mathbf{Set} is cocomplete, so we should be fine. [11] says it's a group?] [Also, how do these guys compose?]

- There is a functor $\mathcal{H} \to \mathbf{St}(\mathcal{H})$. [11] doesn't say what this is but it's presumably the one that is the identity on objects and sends $[f:X\to Y]\in [\Sigma^0X,\Sigma^0Y]$ to whatever it gets sent to in $\{X,Y\}$ using the universal property of the colimit. Uniqueness makes it functorial, etc.
- We have a fully faithful functor $\mathbf{St}(\mathcal{H}) \to \mathbf{St}(\mathcal{H})$ given by the suspension on objects, and the unique isomorphism $\{X,Y\} \to \{\Sigma X, \Sigma Y\}$ on maps (such an isomorphism exists, since both of those things are colimits for $[\Sigma^i X, \Sigma^i Y]$ one of the sequences is cut off at the beginning, but it doesn't matter because both reach the stable value (see above discussion and [11] 1.9), aka the colimit).
- It's not an equivalence, because not every object is isomorphic to a suspension (e.g. anything not connected, since suspensions always connected [?])
- We can formally adjoin desuspensions $\Sigma^{-n}X$ for all n [does this mean just putting the objects there and defining $\operatorname{Hom}(Y, \Sigma^{-n}X) := \operatorname{Hom}(\Sigma^n Y, X)$ and $\operatorname{Hom}(\Sigma^{-n}X, Y) := \operatorname{Hom}(X, \Sigma^n Y)$?], but this category does not have weak colimits (i.e. colimits w/o uniqueness property). [why does it not, and why do we even want that?]
- We instead consider formal sequences of desuspensions $X_0 \to \Sigma^{-1} X_1 \to \cdots$, or sequences (X_n) and maps $\Sigma X_n \to X_{n+1}$, i.e. spectra. [and this fixes the problem?]

3.2 Definitions and examples

Below follows [7], Section 5.2.

DEFINITION 3.2.1. A spectrum is a collection of pointed topological spaces $\{X_n\}_{n\in\mathbb{N}}$, together with basepoint-preserving maps $\sigma_n: \Sigma X_n \to X_{n+1}$.

EXAMPLE 3.2.2. Let X be a topological space. The suspension spectrum of X, denoted by $\Sigma^{\infty}X$, has $X_n = \Sigma^n X$ and $\sigma_n = \mathrm{id} : \Sigma X_n \to X_{n+1}$.

We write $\mathbb{S} := \Sigma^{\infty} S^0$, and call \mathbb{S} the sphere spectrum.

[Define EM spectrum]

DEFINITION 3.2.3. Let $X = \{X_n\}$ be a spectrum. We define $\pi_i(X) = \operatorname{colim}_n \pi_{i+n}(X_n)$, where the map $\pi_{i+n}(X_n) \to \pi_{i+n+1}(X_{n+1})$ is given by the composition

$$\pi_{i+n}(X_n) \xrightarrow{\Sigma} \pi_{i+n+1}(\Sigma X_n) \xrightarrow{(\sigma_n)_*} \pi_{i+n+1}(X_{n+1}).$$

EXAMPLE 3.2.4. If X is a topological space, then $\pi_i(\Sigma^{\infty}X) = \pi_i^S(X)$, the ith stable homotopy group of X.

DEFINITION 3.2.5. A CW spectrum is a spectrum X consisting of CW complexes X_n with the maps $\Sigma X_n \hookrightarrow X_{n+1}$ inclusions of subcomplexes.

Define cells and dimension of a CW spectrum

DEFINITION 3.2.6. A spectrum X is *connective* if its cells have dimensions which are bounded below.

[The above is phrased exactly as in hatcher - presumably he means that there is some absolute bound below which no cell has dimension, rather than a bound dependent on each cell?]

DEFINITION 3.2.7. A CW spectrum is *finite* if it has only finitely many cells, and *of finite* type if it has only finitely many cells in each dimension.

3.3 Homology and cohomology

[From Hatcher: "the inclusions $\Sigma X_n \hookrightarrow X_{n+1}$ induce inclusions $C_*(X_n; G) \hookrightarrow C_*(X_{n+1}; G)$ with a dimension shift to account for the suspension". Below is my vague explanation of what I understand this to mean.

 $C_i(X_n; G)$ is the free abelian group on maps $\Delta^i \to X_n$. I claim $\Sigma \Delta^i \cong \Delta^{i+1}$. If this is true, it gives a map

$$C_i(X_n; G) \to C_{i+1}(\Sigma X_n; G)$$

 $f \mapsto \Sigma f.$

I claim this is an injection. If this is true, we also have an injection $C_{i+1}(\Sigma X_n; G) \to C_{i+1}(X_{n+1}; G)$ induced by the structure map σ_n , so we get an injection $C_i(X_n; G) \hookrightarrow C_{i+1}(X_{n+1}; G)$, which indeed has a dimension shift.

Some issues:

- Everything I've done above is unreduced and unpointed
- The way it's phrased, it seems to be that this is a morphism of chain complexes i.e. these maps commute with the ∂s . Why would they?

[1], [10], [11], [8], [3], [7]

4 The Adams spectral sequence

4.1 Spectral sequences

Some notes from [11] (or maybe not)

How about some notes from [9], C2:

DEFINITION 4.1.1. A differential bigraded module E over a ring R is a collection of Rmodules $\{E^{p,q}\}$, $p,q \in \mathbb{Z}$, together with a map $d: E^{p,q} \to E^{p+s,q-s+1}$ for each p,q and some
fixed $s \in \mathbb{Z}$, satisfying $d^2 = 0$.

We can take the homology of (E, d):

$$H^{p,q}(E^{*,*},d) = \ker(d:E^{p,q} \to E^{p+s,q-s+1})/\operatorname{im}(d:E^{p-s,q+s-1} \to E^{p,q}).$$

DEFINITION 4.1.2. A spectral sequence (of cohomological type) is a collection of differential bigraded R-modules $\{E_r^{*,*}, d_r\}, r \in \mathbb{N}$, with the differentials d_r of bidegree (r, 1 - r). These satisfy the further condition that for all $p, q, r, E_{r+1}^{p,q} \cong H^{p,q}(E_r^{*,*}, d_r)$.

We will sometimes write $d_r^{p,q}$ for the differential $d_r: E^{p,q} \to E^{p+r,q-s+1}$.

Consider the term $E_2^{*,*}$. Define

$$Z_2^{p,q} := \ker d_2^{p,q} \quad \text{and} \quad B_2^{p,q} := \operatorname{im} d_2^{p-2,q+1}.$$

The condition $d^2=0$ implies that $B_2^{p,q}\subseteq Z_2^{p,q}\subseteq E_2^{p,q}$, and by definition we have $E_3^{p,q}\cong Z_2^{p,q}/B_2^{p,q}$.

Now, write

$$Z_3^{p,q} := \ker d_3^{p,q} \quad \text{and} \quad B_3^{p,q} := \operatorname{im} d_3^{p-3,q+2}.$$

Since $Z_3^{p,q}\subseteq E_3^{p,q}$, it can be written as $\overline{Z}_3^{p,q}/B_2^{p,q}$ for some $\overline{Z}_3^{p,q}\subseteq Z_2^{p,q}$. Similarly, $B_3^{p,q}\cong \overline{B}_3^{p,q}/B_2^{p,q}$ for some $\overline{B}_3^{p,q}\subseteq Z_2^{p,q}$. Thus,

$$E_4^{p,q} \cong Z_3^{p,q}/B_3^{p,q} \cong \frac{\overline{Z}_2^{p,q}/B_2^{p,q}}{\overline{B}_3^{p,q}/B_2^{p,q}} \cong \overline{Z}_3^{p,q}/\overline{B}_3^{p,q}.$$

Iterating this process, we present the spectral sequence as an infinite tower of submodules of $E_2^{p,q}$:

$$B_2^{p,q}\subseteq \overline{B}_3^{p,q}\subseteq \cdots \subseteq \overline{B}_n^{p,q}\subseteq \cdots \subseteq \overline{Z}_n^{p,q}\subseteq \cdots \subseteq \overline{Z}_3^{p,q}\subseteq Z_2^{p,q}\subseteq E_2^{p,q},$$

with the property that $E_{n+1}^{p,q} \cong \overline{Z}_n^{p,q}/\overline{B}_n^{p,q}$. The differential $d_{n+1}^{p,q}$ can be taken as a map $\overline{Z}_n^{p,q}/\overline{B}_n^{p,q} \to \overline{Z}_n^{p,q}/\overline{B}_n^{p,q}$ with kernel $\overline{Z}_{n+1}^{p,q}/\overline{B}_n^{p,q}$ and image $\overline{B}_{n+1}^{p,q}$. The short exact sequence induced by d_{n+1} ,

$$0 \to \overline{Z}_{n+1}^{p,q}/\overline{B}_n^{p,q} \to \overline{Z}_n^{p,q}/\overline{B}_n^{p,q} \xrightarrow{d_{n+1}^{p,q}} \overline{B}_{n+1}^{p,q}/\overline{B}_n^{p,q} \to 0,$$

gives rise to isomorphisms $\overline{Z}_n^{p,q}/\overline{Z}_{n+1}^{p,q}\cong \overline{B}_{n+1}^{p,q}/\overline{B}_n^{p,q}$ for all n. Conversely, a tower of submodules of E_2 , together with a set of isomorphisms, gives rise to a spectral sequence.

DEFINITION 4.1.3. An element of $E_2^{p,q}$ survives to the rth stage if lies in $\overline{Z}_r^{p,q}$, having been in the kernel of the previous r-2 differentials, and is bounded by the rth stage if it lies in $\overline{B}_r^{p,q}$. The bigraded module $E_r^{*,*}$ is called the E_r -term of the spectral sequence.

We define

$$Z^{p,q}_{\infty} := \bigcap_{n} \overline{Z}^{p,q}_{n}, \quad B^{p,q}_{\infty} := \bigcup_{n} \overline{B}^{p,q}_{n}.$$

From the tower of inclusions, we see that $B^{p,q}_{\infty} \subseteq Z^{p,q}_{\infty}$, so we define $E^{p,q}_{\infty} := Z^{p,q}_{\infty}/B^{p,q}_{\infty}$.

DEFINITION 4.1.4. A spectral sequence collapses at the Nth term if the differentials $d_r^{p,q} = 0$ for $r \geq N$.

From the short exact sequence

$$0 \to \overline{Z}_r^{p,q}/\overline{B}_{r-1}^{p,q} \to \overline{Z}_{r-1}^{p,q}/\overline{B}_{r-1}^{p,q} \xrightarrow{d_r^{p,q}} \overline{B}_r^{p,q}/\overline{B}_{r-1}^{p,q} \to 0,$$

the condition $d_r^{p,q}$ forces $\overline{Z}_r^{p,q} = \overline{Z}_{r-1}^{p,q}$ and $\overline{B}_r^{p,q} = \overline{B}_{r-1}^{p,q}$. The tower of submodules becomes

$$B_2^{p,q} \subseteq \overline{B}_3^{p,q} \subseteq \cdots \subseteq \overline{B}_{N-1}^{p,q} = B_N^{p,q} = \cdots = B_\infty^{p,q} \subseteq Z_\infty^{p,q} = \cdots = \overline{Z}_N^{p,q} = \overline{Z}_{N-1}^{p,q} \subseteq \cdots \subseteq \overline{Z}_3^{p,q} \subseteq Z_2^{p,q} \subseteq E_2^{p,q}.$$

Thus, $E_{\infty}^{p,q} = E_N^{p,q}$.

4.2 Exact couples

(Following [9], C2)

DEFINITION 4.2.1. Let D, E be R-modules, and let $i: D \to D$, $j: D \to E$, $k: E \to D$ be module homomorphisms. We call $\mathcal{C} = \{D, E, i, j, k\}$ an exact couple if the diagram below is exact.

Let d := jk, and define the following:

$$E' := H(E, d) = \ker d / \operatorname{im} d$$

 $D' := i(D) = \ker j$
 $i' := i|_{i(D)} : D' \to D'$
 $j' := i(x) \mapsto j(x) + dE : D' \to E'$
 $k' := (e + dE) \mapsto k(e) : E' \to D'$

We call $C' = \{D', E'.i', j', k'\}$ the derived couple of C.

PROPOSITION 4.2.2 ([9], Prop 2.7). If $C = \{D, E, i, j, k\}$ is an exact couple, then C' is also an exact couple.

THEOREM 4.2.3 ([9], Thm 2.8). Suppose $D^{*,*} = \{D^{p,q}\}$ and $E^{*,*} = \{E^{p,q}\}$ are bigraded modules equipped with homomorphisms i of bidegree (-1,1), j of bidegree (0,0), and k of bidegree (1,0), such that $\{D^{*,*}, E^{*,*}, i, j, k\}$ is an exact couple. Then these data determine a spectral sequence $\{E_r, d_r\}$ for $r \in \mathbb{Z}_+$ of cohomological type, with $E_r = (E^{*,*})^{(r-1)}$, the (r-1)st derived module of $E^{*,*}$ and $d_r = j^{(r)} \circ k^{(r)}$.

A bigraded exact couple may be displayed in the following diagram, known as a *staircase diagram*:

4.3 The Adams spectral sequence

Things I need before I can set it up (according to Hatcher [7]):

Let X be a CW spectrum of finite type.

- Def: $H^*(X)$.
- Def: EM spectrum.
- Fact: $H^*(X)$ is finitely generated.
- Fact: $H^*(X)$ is an \mathscr{A} -module. [We know that's true for a topological space]
- Fact: We can pick generators α_i for $H^*(X)$ as an \mathscr{A} -module such that there are at most finitely many in each $H^n(X)$.
- Fact: There α_i determine a map $X \to K_0$, where K_0 is a wedge of EM spectra, and K_0 has finite type.

- Fact: We can replace that map with an inclusion
- Fact: A quotient of connective spectra of finite type is again a connective spectrum of finite type.
- Def: A resolution of $H^*(X)$.
- Prop: [7], 5.46.
- Def: The functor $\pi_t^Y(Z) = [\Sigma^t Y, Z]$ for a finite spectrum Y.
- Def: A cofibration.
- Def: A staircase diagram
- Fact: If Y is a finite spectrum and Z is a connective spectrum of finite type, then $\pi_t^Y(Z)$ is finitely generated.
- Fact: I can do this. I have all the necessary skills to pull this off.
- Fact: I'm going to stop listing things I need to do and start actually doing them.

[9], [1], [10], [3], [7], [11], [4]

5 Calculating stable homotopy groups

 $\operatorname{Ext}_A^s(\mathbb{F}_2,\mathbb{F}_2)_t$

[1], [10], [11]

6 Methods of resolving ambiguities

[1], [10]

READ IF YOUR CALCULATIONS AREN'T WORKING:

You are working modulo 2!!!

A Algebra

A.1 Free resolutions

DEFINITION 1.1.1. Let M, N be modules over a ring R. A free resolution F of M is an exact sequence

$$\cdots \rightarrow F_2 \rightarrow F_1 \rightarrow F_0 \rightarrow M \rightarrow 0$$
,

with each F_i a free R-module.

Applying $\operatorname{Hom}_R(-, N)$ gives us a chain complex

$$\cdots \leftarrow \operatorname{Hom}_R(F_2, N) \leftarrow \operatorname{Hom}_R(F_1, N) \leftarrow \operatorname{Hom}_R(F_0, N) \leftarrow \operatorname{Hom}_R(M, N) \leftarrow 0.$$

Dropping the term $\operatorname{Hom}_R(M,N)$ [why?] we get the sequence

$$\cdots \leftarrow \operatorname{Hom}_R(F_2, N) \leftarrow \operatorname{Hom}_R(F_1, N) \leftarrow \operatorname{Hom}_R(F_0, N) \leftarrow 0,$$

and we define $\operatorname{Ext}_{R}^{n}(M,N)$ to be the nth homology group of this chain complex.

[these do not depend on the choice of free resolution of M]

B Topology

B.1 Suspension

- Suspension and loops; the adjunction $\Sigma \dashv \Omega$, where Ω is the loop functor.
- Reduced suspension
- [6] 2.1 Ex 20 and 2.2 Ex 32: $\tilde{H}_n(X) \cong \tilde{H}_{n+1}(SX)$, where S is the (non-reduced) suspension. (MV?)
- Hatcher also says on p219 that $\tilde{H}^n(X;R) \cong \tilde{H}^{n+k}(\Sigma^k X;R)$, where Σ is reduced suspension.

B.2 Other basic constructions

DEFINITION 2.2.1. Let $(X, x_0), (Y, y_0)$ be pointed topological spaces, and consider their product $X \times Y$. The subspaces $X \times \{y_0\} \cong X$ and $\{x_0\} \times Y \cong Y$ intersect at exactly one point, (x_0, y_0) , and so can be identified with the wedge $X \vee Y$. We thus define the *smash product* $X \wedge Y := (X \times Y)/(X \vee Y)$, with the canonical basepoint (x_0, y_0) .

- 'Reduced cylinder'?
- Mapping cones?

B.3 Cell complexes

- The product of cell complexes is a cell complex (maybe only if one of them is finite?)
- The smash product of (pointed?) cell complexes is a cell complex (maybe only if one is them is finite?)
- Cellular maps
- Quotient if a CW complex by a subcomplex is a CW complex, where the quotient map is cellular
- The reduced suspension of a pointed cell complex is a pointed cell complex.
- CW pairs?
- For a CW complex X, $SX \simeq \Sigma X$.
- CW approximation

References

- [1] J. F. Adams. Stable Homotopy and Generalised Homology. TeXromancers, 2022.
- [2] J. F. Adams. Stable Homotopy Theory. Springer, 1969.
- [3] David Barnes and Constanze Roitzheim. Foundations of Stable Homotopy Theory. Cambridge University Press, 2020.
- [4] R. R. Bruner. An Adams Spectral Sequence Primer. 2009. URL: http://www.rrb.wayne.edu/papers/adams.pdf (visited on 08/02/2025).

- [5] Maxine Calle. The Freudenthal Suspension Theorem. 2020. URL: https://bpb-us-w2.wpmucdn.com/web.sas.upenn.edu/dist/0/713/files/2020/08/FSTnotes.pdf (visited on 08/02/2025).
- [6] Allen Hatcher. Algebraic Topology. 2001. URL: https://pi.math.cornell.edu/~hatcher/AT/AT+.pdf.
- [7] Allen Hatcher. Spectral Sequences. URL: https://pi.math.cornell.edu/~hatcher/AT/ATch5.pdf (visited on 01/02/2025).
- [8] H. R. Margolis. Spectra and the Steenrod Algebra. Elsevier Science Publishers B. V., 1983.
- [9] John McCleary. A User's Guide to Spectral Sequences. Cambridge University Press, 2001.
- [10] Douglas C. Ravenel. Complex Cobordism and Stable Homotopy Groups of Spheres. Academic Press. Inc, 1986.
- [11] John Rognes. The Adams Spectral Sequence. 2012. URL: https://www.mn.uio.no/math/personer/vit/rognes/papers/notes.050612.pdf (visited on 08/02/2025).