	(Ulech)
Name:	
Roll No.:	As States Witnesside 2nd Explored
Inviailator's Signature :	

2012 MATHEMATICS - III

Time Allotted: 3 Hours Full Marks: 70

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

GROUP - A (Multiple Choice Type Questions)

1. Choose the correct alternatives for any *ten* of the following:

The period of $\sin 2x$ is

 $10 \times 1 = 10$

	c)	2	d)	2 π.	
ii)	If $F\{f(x)\} = F(s)$ represents the Fourier transform of $f(x)$, then $F\{f(x-a)\}$ (a being a constant) equals				
	a)	$e^{isa}F(s)$	b)	F(s/a)	
	c)	$e^{-isa} F(s)$	d)	$\frac{1}{a^2} F (as).$	
	/T/1	1 6 1 1 0			

iii) The value of α such that $3y - 5 x^2 + \alpha y^2$ is a harmonic function is

a) 5

i)

a)

1

b) 0

b) π

c) - 5

d) 3.

4154 [Turn over

is

a) π

b) – π

c) $-2 \pi i$

- d) $2 \pi i$.
- v) The residue of the function $f(z) = z^2/(z-1)^2(z+2)$ at the pole z = -2 is
 - a) $\frac{9}{4}$

b) $\frac{2}{9}$

c) $\frac{4}{9}$

- d) $\frac{9}{2}$.
- vi) Four coins are tossed simultaneously. The probability of getting 2 heads is
 - a) $\frac{3}{8}$

b) $\frac{1}{8}$

c) $\frac{3}{4}$

- d) $\frac{1}{4}$.
- vii) The random variable X has the following p.d.f.:

$$f(x) = \begin{cases} k, -2 < x < 2 \\ 0, \text{ otherwise} \end{cases}$$

The value of the constant k is

a) $\frac{1}{8}$

b) $\frac{1}{12}$

c) $\frac{1}{2}$

d) $\frac{1}{4}$

viii) The variance of a Poisson distribution with parameter λ is

b) $\frac{1}{\lambda}$

c) λ d) $\frac{1}{\lambda^2}$.

A solution u(x, y) of the PDE $u_{xx} - u = 0$ is ix)

a)
$$A(y) e^{x} + B(y) e^{-x}$$

b)
$$A(x) e^{y} + B(x) e^{-y}$$

c)
$$A(x) e^{y} + B(y) e^{x}$$

- d) none of these.
- The value of $J_{-\frac{1}{2}}(x)$ is x)

a)
$$\sqrt{\frac{2}{\pi x}} \sin x$$
 b) $\sqrt{\frac{2}{\pi x}} \cos x$

b)
$$\sqrt{\frac{2}{\pi x}} \cos x$$

c)
$$-\sqrt{\frac{2}{\pi x}} \left(\frac{\sin x}{x} \right)$$

c)
$$-\sqrt{\frac{2}{\pi x}} \left(\frac{\sin x}{x} \right)$$
 d) $-\sqrt{\frac{2}{\pi x}} \left(\frac{\cos x}{x} \right)$.

- The value of Legendre's polynomial P_1 (x) is xi)
 - a) 0

c) x

- d) x^2 .
- xii) If $\alpha \neq \beta$, then the value of $\int_0^1 x J_n(\alpha x) J_n(\beta x) dx$ is
 - a) $\frac{1}{2} \{J_{n+1}(\alpha)\}^2$
- c) $\frac{1}{2} \{J_n(\alpha)\}^2$
- d) none of these.

- xiii) If $P_n(x)$ is the Legendre's polynomial of degree n, $\int_{-1}^{1} P_n(x) dx$ in
 - 1, when n = 0
- b) 0, when n = 0
 - c) 2, when n = 0 d) none of these.
- xiv) If f(z) = u(x, y) i v(x, y) is analytic, then f'(z)equals
 - a) $\frac{\partial u}{\partial x} i \frac{\partial u}{\partial y}$ b) $\frac{\partial u}{\partial x} + i \frac{\partial u}{\partial y}$
 - c) $\frac{\partial v}{\partial x} i \frac{\partial v}{\partial u}$
- d) none of these.

GROUP - B

(Short Answer Type Questions)

Answer any *three* of the following. $3 \times 5 = 15$

- Find the Fourier series for $f(x) = e^{-x}$ in the interval $0 < x < 2\pi$.
- 3. Find the Fourier transform of the function

$$f(x) = \begin{cases} 1, |x| \le 1 \\ 0, |x| > 1 \end{cases}$$

Hence evaluate $\int_0^\infty \frac{\sin x}{x} dx$.

3 + 2

Show that the polar form of Cauchy - Riemann equations are 4.

$$\frac{\partial u}{\partial r} = \frac{1}{r} \frac{\partial v}{\partial \theta}, \quad \frac{\partial v}{\partial r} = -\frac{1}{r} \frac{\partial u}{\partial \theta}.$$

Deduce that $\frac{\partial^2 u}{\partial r^2} + \frac{1}{r} \frac{\partial v}{\partial r} + \frac{1}{r^2} \frac{\partial^2 u}{\partial \theta^2} = 0$. 3 + 2

4154

6. In a normal distribution, 31% of the items are under 45 and 8% are over 64. Find the mean and S.D. of the distribution.

3 + 2

GROUP - C

(Long Answer Type Questions)

Answer any three of the following questions.

 $3 \times 15 = 45$

- 7. a) If $f(x) = |\cos x|$, expand f(x) as a Fourier series in the interval $(-\pi, \pi)$.
 - b) Using Parseval's identities, prove that

$$\int_0^\infty \frac{dt}{(a^2 + t^2)(b^2 + t^2)} = \frac{\pi}{2ab(a+b)}$$

- c) Find Fourier sine transform of $e^{-|x|}$. Hence show that $\int_0^\infty \frac{x \sin mx}{1+x^2} dx = \frac{\pi e^{-m}}{2}, m > 0.$
- 8. a) Find the analytic function, whose real part is $\sin(2x)/(\cos h(2y) \cos(2x))$. 3+2
 - b) Show that under the transformation $w = \frac{z-i}{z+i}$, real axis in the z plane is mapped into the circle |w| = 1. Which portion of the z plane corresponds to the interior of the circle.
 - c) Evaluate $\int_0^{2+i} (\bar{z})^2 dz$ along (i) the line y = x/2, (ii) the real axis to 2 and then vertically to 2 + i. 2 + 3

4154

- 9. a) A has one share in a lottery in which there is 1 prize and 2 blanks; B has three shares in a lottery in which there are 3 prizes and 6 blanks; compare the probability of A's success to that of B's success.
 - b) In sampling a large number of parts manufactured by a machine, the mean number of defectives in a sample of 20 is 2. Out of 1000 such samples, how many would be expected to contain at least 3 defective parts?
- 10. a) Solve the following equation by the method of separation of variables $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0$

subject to the conditions u(0, y) = u(l, y) = u(x, 0) = 0and $u(x, 0) = \sin \frac{n \pi x}{l}$.

b) Show that the solution of the heat equation

$$K \frac{\partial^2 u}{\partial x^2} = \frac{\partial u}{\partial t}$$
, - $\infty < x < \infty, t > 0$ subject to the condition

$$u(x, t) = 0$$
 at $x = \pm \infty$, $\frac{\partial u}{\partial x} = 0$ at $x = \pm \infty$ and

 $u(x, 0) = f(x), -\infty < x < \infty$ can be written in the form

$$u(x, t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} F(s)e^{-Ks^2t - isx} ds$$

where F(s) is the Fourier transform of f(x). 8 + 7

11. a) Obtain the series rotation of the equation

$$x(1-x)\frac{d^2y}{dx^2}-(1+3x)\frac{dy}{dx}-y=0.$$

4154

- b) Show that $J_n(x) = \frac{1}{\pi} \int_0^{\pi} \cos(n \theta x \sin \theta) d\theta$, *n* being an integer. 8+7
- 12. a) Express $f(x) = x^4 + 3x^3 x^2 + 5x 2$ in terms of Legendre polynomial.
 - b) Show that $\int_{-1}^{1} x^{2} R_{n}(x) R_{n}(x) dx = \frac{2n(n+1)}{n}$

$$\int_{-1}^{1} x^{2} P_{n-1}(x) P_{n+1}(x) dx = \frac{2n(n+1)}{(2n-1)(2n+1)(2n+3)}.$$

8 + 7