Correction du Devoir MINF0501

Exercice 1:

- 1) n est impair, $\exists k \in \mathbb{Z}, n = 2k + 1$ $n^2 + 1 = (2k + 1)^2 + 1 = 4k^2 + 4k + 1 + 1 = 4k^2 + 4k + 2 = 2(2k^2 + 2k + 1)$
- 2) Prenons n = 3, alors $n^2 + 1 = 3^2 + 1 = 10$ et 10 n'est pas divisible par 4. C'est donc faux !
- 3) Il suffit que $a \wedge b = 1$, à savoir que a et b soient premiers entre eux.

Exercice 2:

- 1) $1617 = 520 \times 3 + 57$ $520 = 57 \times 9 + 7$ $57 = 7 \times 8 + 1$ $7 = 1 \times 7 + 0$ On en déduit : PGCD (1617; 520) = 1
- 2) $1 = 57 7 \times 8$ $1 = 57 - (520 - 57 \times 9) \times 8$ $1 = 57 - 520 \times 8 + 57 \times 72$ $1 = 57 \times 73 - 520 \times 8$ $1 = (1617 - 520 \times 3) \times 73 - 520 \times 8$ $1 = 1617 \times 73 - 520 \times 219 - 520 \times 8$ $1 = 1617 \times 73 - 520 \times 227$

Ainsi u = 73 et v = -227 conviennent.

3) Supposons $x \ et \ y$ solutions de (E): 1617x + 520y = 1

$$1617x + 520y = 1617 \times 73 + 520 \times (-227)$$
$$1617(x - 73) = 520(-227 - y) \text{ (*)}$$

et ainsi 1617|520(-227-y) or 1617 et 520 sont premiers entre eux d'après la question 1. D'après le théorème de Gauss, 1617|(-227-y) ainsi $\exists k \in \mathbb{Z}, -227-y=1617k$ En remplaçant dans (*)il vient : (x-73)=520k avec $k \in \mathbb{Z}$ Ainsi si x et y sont solutions on a : x=73+520k et y=-227-1617k avec $k \in \mathbb{Z}$

Réciproquement si x et y ont les valeurs données ci-dessus :

$$1617x + 520y = 1617(73 + 520k) + 520(-227 - 1617k)$$
$$= 1617 \times 73 - 520 \times 227 = 1$$

Donc les solutions sont : $(x; y) = (73 + 520k; -227 - 1617k) avec k \in \mathbb{Z}$

4) On cherche désormais les solutions positives c'est-à-dire les valeurs de k pour que $x \ge 0$ et $y \ge 0$

$$x \ge 0 \Leftrightarrow 73 + 520k \ge 0 \Leftrightarrow k \ge -\frac{73}{520} \Leftrightarrow k \ge 0 \ car \ k \in \mathbb{Z}$$
$$y \ge 0 \Leftrightarrow -227 - 1617k \ge 0 \Leftrightarrow k \le \frac{227}{-1617} \Leftrightarrow k \le 1 \ car \ k \in \mathbb{Z}$$

Au final il n'existe pas de solution vérifiant : $x \ge 0$ et $y \ge 0$

Exercice 3:

- 1) $3150 = 2 \times 3^2 \times 5^2 \times 7$
- 2) 3150 a donc $(1+1) \times (2+1) \times (2+1) \times (1+1) = 2^2 \times 3^2 = 36$ diviseurs.
- 3) Pour obtenir un carré il suffit que tous les exposants des nombres premiers de la décomposition de 3150 soient pairs. Ceci se réalise en multipliant par $14 = 2 \times 7$. (On obtient alors $210^2 = 44100$)

Exercice 4:

- 1) Supposons que p divise a et a + b alors p divise a + b a = b. Donc $p \mid b$
- 2) On vient de voir p est un diviseur de a et de b. Or $p \ge 2$ car $p \in \mathbb{P}$, mais a; b sont premiers entre eux. Ceci induit donc une contradiction car $p \ne 1$. Ainsi a et a + b ne peuvent avoir de diviseurs premiers en commun. Ils sont donc premiers entre eux.
- 3) Supposons que p divise ab et a+b. Alors comme $p \in \mathbb{P}$, p|a ou p|b et on a alors : p divise a et a+b ou p divise b et a+b
- 4) Soit $p \in \mathbb{P}$ tel que p|ab et p|(a+b) D'après la question 3, p|a et a+b ou p|b et a+b D'après les questions 1 et 2 ceci implique que p|a et p|b. Ceci est absurde car a et b sont premiers entre eux. Au final, PGCD(ab, a+b) = 1

Exercice 5:

- 1) Développer.
- 2) $M_n \in \mathbb{P}$. Supposons que $a \geq 3$,

$$M_n = a^n - 1 = (1 + a + a^2 + \dots + a^{n-1})(a-1)$$

Or $a \ge 3$ et $n \ge 2$ donc : $a-1 \ge 2$ et $1+a+a^2+\ldots+a^{n-1} \ge 4$. On a réussi à factoriser M_n en un produit de deux nombres entiers supérieurs ou égaux à 2. Ceci impliquerait que M_n n'est pas premier.

Ceci est absurde et donc a < 3. Or $a \ge 2$ et a = 2

3) Supposons $n = kl \ avec \ k; l \ge 2$

$$M_n = 2^n - 1 = 2^{kl} - 1 = \left(2^k\right)^l - 1 = \left(1 + 2^k + \left(2^k\right)^2 + \dots + \left(2^k\right)^{l-1}\right)(2^k - 1)$$

Et d'après les hypothèses chacun de ces facteurs est supérieur strictement à 1. Ceci est absurde. Il vient donc $M_n \notin \mathbb{P}$.