Miejsce na naklejkę z kodem szkoły

CKE

MATEMATYKA

POZIOM PODSTAWOWY

PRZYKŁADOWY ZESTAW ZADAŃ NR 2

Czas pracy 120 minut

Instrukcja dla zdającego

- Sprawdź, czy arkusz egzaminacyjny zawiera 4 strony (zadania 1-11). Ewentualny brak zgłoś przewodniczącemu zespołu nadzorującego egzamin.
- 2. Rozwiązania zadań i odpowiedzi zamieść w miejscu na to przeznaczonym.
- 3. W rozwiązaniach zadań przedstaw tok rozumowania prowadzący do ostatecznego wyniku.
- 4. Pisz czytelnie. Używaj długopisu/pióra tylko z czarnym tuszem/atramentem.
- 5. Nie używaj korektora, a błędne zapisy przekreśl.
- 6. Pamiętaj, że zapisy w brudnopisie nie podlegają ocenie.
- 7. Obok każdego zadania podana jest maksymalna liczba punktów, którą możesz uzyskać za jego poprawne rozwiązanie.
- 8. Możesz korzystać z zestawu wzorów matematycznych, cyrkla i linijki oraz kalkulatora.

Życzymy powodzenia!

MARZEC ROK 2008

Za rozwiązanie wszystkich zadań można otrzymać łącznie 50 punktów

Wypełnia zdający przed rozpoczęciem pracy										
PESEL ZDAJACEGO										

KOD ZDAJĄCEGO

Zadanie 1. (6 pkt)

Na rysunku jest przedstawiony wykres funkcji f.

- a) Podaj dziedzinę funkcji f.
- b) Podaj wszystkie miejsca zerowe funkcji f.
- c) Odczytaj wartość funkcji f dla argumentu x = 5.
- d) Podaj zbiór wartości funkcji f.
- e) Podaj maksymalny przedział o długości 3, w którym funkcja f jest rosnąca.
- f) Zapisz w postaci sumy przedziałów zbiór wszystkich argumentów, dla których funkcja f
 przyjmuje wartości ujemne.

Zadanie 2. (5 pkt)

Funkcja kwadratowa f jest określona wzorem $f(x) = (2-x)^2$.

- a) Wyznacz najmniejszą i największą wartość funkcji f w przedziale $\langle 0, 5 \rangle$.
- b) Rozwiąż nierówność $f(x)-(2-x) \ge 0$.

Zadanie 3. (4 pkt)

Suma dwóch liczb jest równa $\sqrt{7}$, a ich różnica $\sqrt{3}$. Oblicz iloczyn tych liczb.

Zadanie 4. (4 pkt)

W układzie współrzędnych są dane punkty A = (-4, -2), B = (5, 4).

- a) Oblicz odległość punktu C = (-1,4) od prostej przechodzącej przez punkty A i B.
- b) Uzasadnij, że jeśli $m \neq 0$, to punkty A, B oraz punkt D = (-1, m) są wierzchołkami trójkąta.

Zadanie 5. (6 pkt)

Dany jest wielomian $Q(x) = 2x^3 - 3x^2 - 3x + d$.

- a) Liczba 1 jest pierwiastkiem tego wielomianu. Oblicz d.
- b) Dla d = 2 przedstaw wielomian Q w postaci iloczynu wielomianów stopnia pierwszego.

Zadanie 6. (4 pkt)

Rozwiąż nierówność $\frac{2^{32}-32^2}{2^{16}+32} \cdot x > 2^{10}-2^{21}$. Podaj najmniejszą liczbę całkowitą spełniającą tę nierówność.

Zadanie 7. (4 pkt)

Uzasadnij, że nie istnieje trójkąt prostokątny, w którym przeciwprostokątna ma długość 24, a kąty ostre α i β są takie, że $\cos \alpha = \frac{3}{4}$ i $\operatorname{tg} \beta = \frac{4}{3}$.

Zadanie 8. (6 pkt)

Ciąg arytmetyczny (a_n) jest określony wzorem $a_n = \frac{1}{4}(3n+1)$ dla $n \ge 1$.

- a) Sprawdź, którym wyrazem ciągu (a_n) jest liczba $37\frac{3}{4}$.
- b) Wśród pięćdziesięciu początkowych wyrazów ciągu (a_n) są wyrazy będące liczbami całkowitymi. Oblicz sumę wszystkich tych wyrazów.

Zadanie 9. (4 pkt)

Powierzchnia boczna stożka po rozwinięciu na płaszczyznę jest wycinkiem koła o promieniu 3 i kącie środkowym 120° (zobacz rysunek). Oblicz objętość tego stożka.

Zadanie 10. (4 pkt)

W równoległoboku o obwodzie równym 144, wysokości h_1 i h_2 spełniają warunek $\frac{h_1}{h_2} = \frac{3}{5}$. Oblicz długości boków tego równoległoboku.

Zadanie 11. *(3 pkt)*

Dane są zbiory liczb całkowitych: $\{1,2,3,4,5\}$ i $\{1,2,3,4,5,6,7\}$. Z każdego z tych zbiorów wybieramy losowo po jednej liczbie. Oblicz prawdopodobieństwo, że suma wylosowanych liczb będzie podzielna przez 5.

BRUDNOPIS