A Height-Local Width-2 Program for Excluding Off-Axis Quartets with an Analytic Tail and a Rigorous Certified Outer/Rouché Criterion

Dylan [Surname]

Authorship and AI-use disclosure. The author, Dylan [Surname], designed the framework, chose all constants/normalizations, and validated all mathematics and computations. A generative assistant (GPT-5 Pro) was used only for typesetting assistance, editorial organization, and consistency checks; it is not an author. All claims are the author's responsibility (COPE/ICMJE guidance).

MSC. 11M06; 30C85; 30E20; 65G40.

Keywords. Riemann zeta; functional equation; outer function; Rouché; harmonic measure; conformal trace; interval arithmetic.

Abstract

In the width-2 centered frame u=2s, v=u-1, let $\Lambda_2(u)=\pi^{-u/4}\Gamma(u/4)\zeta(u/2)$ and $E(v)=\Lambda_2(1+v)$. We present a boundary-only, height-local program to exclude off-axis quartets $\{\pm a \pm im\}$ via two complementary routes:

- (1) an analytic tail (uniform in $\alpha \in (0, 1]$) using only: (i) explicit short-side forcing $\geq \pi/2$; (ii) a residual bound for $F = E/Z_{loc}$ with the correct perimeter factor 8δ ; and (iii) an L^2 +harmonic-measure boundary-to-midpoint estimate (no L^{∞} Hilbert transform);
- (2) a rigorous certified outer/Rouché route (C4–O): interval arithmetic on ∂B + validated Poisson + Lipschitz grid \rightarrow continuum enclosure \Rightarrow sup $_{\partial B}|E G_{\rm out}|/|G_{\rm out}| < 1 \Rightarrow$ zero-free box, followed by Bridge 1 (inner collapse $W \equiv e^{i\theta}$) and Bridge 2 (stitching).

We also prove a corner outer interpolation (S1') from continuous Dirichlet data, replacing prior JC/L^{∞} pitfalls. The tail is stated symbolically: for each fixed $\eta \in (0, \frac{1}{2}]$ there exists $M_0(\eta)$ such that no off-axis quartet lies in any $B(\alpha, m, \delta)$ with $\delta = \eta \alpha/(\log m)^2$ for all $m \geq M_0(\eta)$, uniformly in α . Choosing $\eta \leq \min\{\eta_1, \eta_2\}$ so that $M_0(\eta) \leq m_1$ (first nontrivial height in width-2) yields the global on-axis theorem: no off-axis quartets exist at any height; all nontrivial zeros lie on $\text{Re } s = \frac{1}{2}$. The certified route provides an independent rigorous alternative for any finite band. A Symbols & Provenance table and a constants ledger make the paper self-contained.

Symbols & Provenance (at a glance)

Notation hygiene. We reserve ψ for the digamma function and write $\varphi : \mathbb{D} \to B$ for the conformal map used later (to avoid any clash).

Symbol	Definition / role	Provenance / why this form
$\overline{u = 2s, v = u - 1}$	Width-2 frame centered at $\operatorname{Re} u = 1$	Centers functional equation symmetry
$\Lambda_2(u) = \pi^{-u/4} \Gamma(u/4) \zeta(u/2)$	Completed object	Standard; FE for Λ_2 ; width-2 transport
$E(v) = \Lambda_2(1+v)$	Workhorse in v -plane	Even & conjugate-symmetric: $E(v) = E(-v) = \overline{E(\overline{v})}$
$\zeta_2(u) = \zeta(u/2)$	Width-2 zeta	Used in FE and hinge law
$A_2(u), \chi_2(u) = A_2(u)^{-1}$	FE factors for ζ_2	Classical; $\chi_2(u) = \pi^{u/2 - 1/2} \frac{\Gamma((2-u)/4)}{\Gamma(u/4)}$
$B(\alpha, m, \delta)$	$\left[\alpha - \delta, \alpha + \delta\right] \times \left[m - \delta, m + \delta\right]$	Square (width & height 2δ) centered at (α, m)
$\alpha \in (0,1]$	Horizontal center (distance from hinge $\text{Re } v = 0$)	Uniform-in- α statements use worst case $\alpha = 1$
$m \ge 10$	Height parameter	Ensures uniform regimes for DLMF/Titchmarsh/Ivić inputs
$\delta = \frac{\eta \alpha}{(\log m)^2}, \eta \in (0, \frac{1}{2}]$	Half-side length of B	Balances forcing $(\pi/2)$ vs residual $O(\delta \log m)$; uniform in α
∂B	Boundary of $B(\alpha, m, \delta)$	Used for all boundary integrals / suprema
I_{\pm}	Short vertical sides of ∂B	Near/far verticals in forcing budgets
Q	Quiet arcs (horizontal sides of ∂B)	L^2 -controlled in tail estimates
$\begin{array}{ll} Z_{\rm loc} & = \\ \prod_{ \operatorname{Im} \rho - m \le 1} (v - v)^{m_{\rho}} \end{array}$	Local zero/pole factors	De-singularizes E near ∂B
$F = E/Z_{loc}$	Residual analytic factor (nonvanishing near ∂B)	Lemma 2.2: $\sup_{\partial B} \left \frac{F'}{F} \right \le C_1 \log m + C_2$
$G(v) = \frac{E(1+v)}{E(1-v)}$	Odd-lane quotient	Links to hinge via two-point identity (used in §3)
$G_{\text{out}} = e^{U+iV}$	Outer with $ G_{\text{out}} = E $ on ∂B	$U = \log E \in C(\overline{B})$ solves Dirichlet V harmonic conj.
$W = E/G_{\rm out}$	Inner quotient $(W = 1 \text{ a.e. on } \partial B)$	Collapses to unimodular constant under C4–O (Bridge 1)
$v_+^{\star} = \pm (a + im)$	"Dial pair" on centerline	Points of evaluation in the tail (§4)
$\psi(z)$	Digamma function $\Gamma'(z)/\Gamma(z)$	DLMF § 5.5 (reflection), § 5.11 (vertical-strip bounds)
$C_1 = 46, \ C_2 = 8$	Residual envelope constants	From DLMF § 5.11; Titchmarsh § 14; Ivić Ch. 9 (width-2 transport)
$c_0 = \frac{1}{20}$	$Phase {\rightarrow} deficit\ constant$	Conservative Poisson—Jensen/Lipschitz on rectangles
$C_{\mathrm{rect}}, K_{\mathrm{rect}}, C_h, C_h'$	Geometry/ L^2 trace constants	Depend only on rectangle shape; independent of m, α

Sources (for Part I). Digamma: DLMF § 5.5 (reflection), § 5.11 (vertical-strip bounds). ζ'/ζ : Titchmarsh, The Theory of the Riemann Zeta-Function, § 14 (esp. Thms. 14.5–14.9); Ivić, The Riemann Zeta-Function, Ch. 9.

1 Frames, symmetry, and the hinge law

We work in the width-2 centered frame u = 2s, v = u - 1, with

$$\Lambda_2(u) = \pi^{-u/4} \Gamma\left(\frac{u}{4}\right) \zeta\left(\frac{u}{2}\right), \qquad E(v) := \Lambda_2(1+v).$$

Then $E(v) = E(-v) = \overline{E(\bar{v})}$; off-axis zeros appear as quartets $\{\pm a \pm im\}$.

Theorem 1.1 (Hinge–Unitarity). Let $\zeta_2(u) = \zeta(u/2)$ and $\zeta_2(u) = A_2(u)\zeta_2(2-u)$ with

$$\chi_2(u) := A_2(u)^{-1} = \pi^{u/2 - 1/2} \frac{\Gamma(\frac{2 - u}{4})}{\Gamma(\frac{u}{4})}.$$

(i) If $\zeta_2(p) \neq 0$ and $|\zeta_2(2-p)| = |\zeta_2(\overline{p})|$, then $|\chi_2(p)| = 1$ and hence $\operatorname{Re} p = 1$. (ii) If p_0 is a zero of multiplicity $r \geq 1$ and $|\zeta_2^{(r)}(2-p_0)| = |\zeta_2^{(r)}(\overline{p_0})|$, then $\operatorname{Re} p_0 = 1$.

Proof sketch. Apply FE and conjugation to obtain $|\zeta_2(2-p)| = |A_2(p)|^{-1}|\zeta_2(p)| = |\zeta_2(\overline{p})|$, hence $|A_2(p)| = 1$ and $|\chi_2(p)| = 1$. Using the digamma reflection identity $\psi(1-z) - \psi(z) = \pi \cot(\pi z)$ (DLMF § 5.5) and vertical-strip bounds (DLMF § 5.11) one checks Re $u \mapsto \log |\chi_2(u)|$ is strictly monotone with a unique zero at Re u = 1. The zero case follows by differentiating FE r times at p_0 . A fully detailed 8-line proof appears in Appendix A.

(Interpretive; non-load-bearing) Ω -continuum and ray invariance. Let $\Omega(z) = z/|z|$ forget scale. FE-symmetric dilations $T_{\lambda}(u) = 1 + \lambda(u-1)$ preserve rays; $\tan \theta = \operatorname{Im} v/\operatorname{Re} v = m/a$. At a nontrivial zero a = 0, the ray is vertical. This layer is contextual only; the proofs below do not use it.

2 Boxes, de-singularization, residual control, and forcing

Fix $m \geq 10$, $\alpha \in (0, 1]$, and

$$B(\alpha, m, \delta) = \left[\alpha - \delta, \alpha + \delta\right] \times \left[m - \delta, m + \delta\right], \qquad \delta = \frac{\eta \alpha}{(\log m)^2}, \quad \eta \in (0, \frac{1}{2}]. \tag{2.1}$$

Why $m \ge 10$. This ensures uniform applicability of the vertical-strip digamma bounds (DLMF § 5.11) and of the ζ'/ζ expansions on $1/2 \le \sigma \le 1$, $t \ge 3$ (Titchmarsh § 14; Ivić Ch. 9) after width-2 transport (since u = 2s doubles ordinates, $t \ge 3$ corresponds to $m \ge 6$; we take $m \ge 10$ for margin).

Why $\delta = \eta \alpha/(\log m)^2$. This balances the scale-free forcing ($\geq \pi/2$) against residual budgets $O(\delta \log m)$ and yields an L^2 +harmonic-measure upper envelope (in § 4) that is uniformly small in α .

Lemma 2.1 (Short boxes stay in Re v > 0). For $m \ge 10$ and $\eta \le \frac{1}{2}$, we have $\eta/(\log m)^2 \le 0.1$, hence $\delta \le 0.1 \alpha$ and $B(\alpha, m, \delta) \subset \{\text{Re } v > 0\}$.

De-singularization on ∂B . Let

$$Z_{\text{loc}}(v) = \prod_{\rho: |\text{Im } \rho - m| \le 1} (v - \rho)^{m_{\rho}}, \qquad F(v) := \frac{E(v)}{Z_{\text{loc}}(v)}.$$
 (2.2)

Then F is analytic and zero-free on a neighborhood of ∂B .

Boundary contact convention. If a zero/pole meets ∂B , shrink δ by a factor $1 - \varepsilon$ or shift α by $O(\delta)$. All constants/inequalities below (Lemma 2.2, Lemma 2.3) are stable under $O(\delta)$ changes.

Lemma 2.2 (Residual envelope). On ∂B ,

$$\sup_{\partial B} \left| \frac{F'}{F} \right| \le C_1 \log m + C_2, \qquad (C_1, C_2) = (46, 8), \tag{2.3}$$

and

$$\left| \Delta_{\partial B} \arg F \right| \leq 8\delta \left(C_1 \log m + C_2 \right). \tag{2.4}$$

Justification. DLMF § 5.11 controls ψ on vertical strips; Titchmarsh § 14 (esp. Thms. 14.5–14.9) and Ivić Ch. 9 control ζ'/ζ on $1/2 \leq \sigma \leq 1$, $t \geq 3$. After removing local poles via (2.2) and transporting to width-2, we obtain (2.3); (2.4) is perimeter 8δ times the sup.

Lemma 2.3 (Short-side forcing). Let $Z_{pair}(v) = (v - (a + im))(v - (-a + im))$. On the near vertical

$$I_{+} = \{\alpha + iy : |y - m| \le \delta\}, \quad with |\alpha - a| \le \delta,$$

one has

$$\Delta_{I_{+}} \arg Z_{\text{pair}} = 2 \arctan \frac{\delta}{|\alpha - a|} + 2 \arctan \frac{\delta}{\alpha + a} \ge \frac{\pi}{2}.$$
(2.5)

3 Boundary-only criteria, bridges, and corner interpolation

3.1 Two-point Schur/outer criterion (boundary-only)

Let $\varphi : \mathbb{D} \to B$ be a conformal bijection with $\varphi(0)$ the box center and with the boundary map avoiding corners at the two marked points. Define

$$G(v) := \frac{E(1+v)}{E(1-v)}, \qquad \Phi := (G/H) \circ \varphi, \tag{3.1}$$

where H is an outer majorant for G on B: that is, $M \in C(\partial B)$ with $M \geq |G|$ a.e. on ∂B and $H = e^{U+iV}$ where U is the continuous Dirichlet solution with boundary data $\log M$ and V a harmonic conjugate (uniqueness modulo a unimodular constant). Then $\Phi \in H^{\infty}(\mathbb{D})$ with $\|\Phi\|_{\infty} \leq 1$; we call this the two-point Schur/outer criterion.

Remark 3.1 (How the criterion is used). If a verified boundary pattern places $|\Phi|$ at 1 at two designated boundary points (non-corner, in the sense of angular limits) and strictly below 1 on the complementary arcs ("quiet-arc contraction"), then the Carathéodory–Julia theory for angular derivatives yields unimodular boundary pins at those points for Φ ; transporting back to B gives quantitative constraints on $|G(\pm(a+im))|$. We emphasize this is a *criterion*: we do not assert interior unimodularity of Φ . See Duren [?, Chs. II, IV–V] and Garnett [?, Chs. II–III].

Lemma 3.2 (Two-point link for |G| and $|\chi_2|$). For v = a + im one has

$$|G(v)| = |\chi_2(1+v)| \cdot R(v), \qquad R(-v) = R(v)^{-1},$$
 (3.2)

hence

$$|G(a+im)| |G(-a+im)| = |\chi_2(1+a+im)| |\chi_2(1-a+im)|.$$
(3.3)

Here

$$R(v) = \pi^{-a} \left| \frac{\Gamma\left(\frac{2+v}{4}\right)}{\Gamma\left(\frac{2-v}{4}\right)} \right| \left| \frac{\zeta(1+\frac{v}{2})}{\zeta(1-\frac{v}{2})} \right|, \qquad R(-v) = R(v)^{-1}.$$

Proof sketch. Expand Λ_2 at $1 \pm v$ and collect Γ and π factors; the stated identity follows directly; multiplying at $\pm v$ cancels R and yields (3.3). If $|G(\pm(a+im))| = 1$, then $|\chi_2(1 \pm (a+im))| = 1$ and Theorem 1.1 forces a = 0.

3.2 Outer/Rouché Criterion (Certification Path)

Let $U = \log |E| \in C(\overline{B})$ solve the Dirichlet problem on B and let V be a harmonic conjugate fixed by an anchor. Set

$$G_{\text{out}} := e^{U+iV}$$
.

Then G_{out} is analytic and zero-free on B and satisfies $|G_{\text{out}}| = |E|$ nontangentially on ∂B (a.e. with respect to arclength). Existence/uniqueness of G_{out} (up to a unimodular constant) follows from the Dirichlet solution and harmonic conjugation in simply connected domains; see Duren [?, §II.5] and Garnett [?, §II.2].

Proposition 3.3 (Outer/Rouché Criterion). If

$$\sup_{v \in \partial B} \frac{|E(v) - G_{\text{out}}(v)|}{|G_{\text{out}}(v)|} < 1, \tag{3.4}$$

then E is zero-free in B (Rouché's theorem; e.g. Ahlfors [?, §§5–6], Conway [?, Ch. VI]). Consequently the inner quotient $W := E/G_{out}$ is analytic and nonvanishing on B with |W| = 1 a.e. on ∂B .

Proposition 3.4 (Bridge 1: inner collapse). Under (3.4), $\log |W|$ is harmonic with zero boundary trace on B, hence $|W| \equiv 1$ on B. By the open mapping theorem, $W \equiv e^{i\theta_B}$ on B for some real constant θ_B .

Proposition 3.5 (Bridge 2: stitching). If B_1, B_2 overlap and $W \equiv e^{i\theta_{B_j}}$ on B_j (j = 1, 2), then $e^{i\theta_{B_1}} = e^{i\theta_{B_2}}$ on $B_1 \cap B_2$ by analyticity. Hence a band tiled by certified boxes inherits a single unimodular phase.

Remark 3.6 (Certification recipe and reproducibility). The verification of (3.4) is performed by a robust, rigorous pipeline detailed in Appendix G: (i) interval enclosures for |E| and $\arg E$ on ∂B ; (ii) a validated Poisson solver on $\mathbb D$ to reconstruct $U = \log |G_{\text{out}}|$ and transport to B; (iii) an interval reconstruction of $\arg G_{\text{out}}$; and (iv) a grid \rightarrow continuum Lipschitz enclosure using $\sup_{\partial B} |E'/E|$ (Lemma 2.2). Appendix G also pins libraries (e.g. Arb), precisions, and boundary meshes to ensure reproducibility. No interior zero-freeness is assumed unless deduced from (3.4).

3.3 Corner outer interpolation (two-point)

Theorem 3.7 (Corner outer interpolation). Let G be analytic in a neighborhood of \overline{B} . Let $h \in C(\partial B)$ satisfy $h \geq 0$ and $h \equiv 0$ on small boundary arcs containing the two top corners C_{\pm} . Let $H = e^{U+iV}$ be the outer on B with $U|_{-}\partial B = \log |G| + h$. Then the nontangential limits at C_{\pm} exist and

$$|H(C_+)| = |G(C_+)|.$$

Proof sketch. Rectangles are Wiener-regular; continuous boundary data admit a harmonic extension continuous up to \overline{B} (Kellogg, Ch. VI; Axler-Bourdon-Ramey, Thm. 6.12). Since h=0 on arcs about C_{\pm} , $U=\log |G|$ there; exponentiating gives the stated corner modulus equality. Conformal parametrizations and boundary traces for polygons are classical (Ahlfors, Ch. VIII; Pommerenke, §§2–3). A full proof is provided in Appendix F.

Remark 3.8 (Non-circularity in §3). All steps above are boundary-only. In particular, the Schur/outer criterion uses a boundary majorant $M \geq |G|$ and outer synthesis for H; the Outer/Rouché criterion derives interior zero-freeness only from the verified ratio (3.4); and the corner interpolation is a statement about nontangential boundary limits of outer functions with continuous boundary data.

4 Analytic tail (uniform in α)

Setup and notation. Let $\varphi : \mathbb{D} \to B(\alpha, m, \delta)$ be a conformal bijection with $\varphi(0) = \alpha + im$; define the *dial pair* on the horizontal centerline by

$$v_{\pm}^{\star} = \pm (a + im), \qquad z_{\pm} \in \partial \mathbb{D} \text{ with } \varphi(z_{\pm}) = v_{\pm}^{\star}.$$

Split the boundary ∂B into the two quiet arcs Q (horizontal edges) and the two short vertical sides I_{\pm} . Write

$$W:=\frac{E}{G_{\mathrm{out}}}, \qquad f:=W\circ \varphi^{-1}\in H^\infty(\mathbb{D}).$$

(Boundedness: G_{out} is zero-free, W is analytic on the compact B.)

4.1 Upper envelope via L^2 and harmonic measure

Lemma 4.1 (Boundary phase \Rightarrow dial-pair deficit). There exist shape-only constants C_{rect} , $K_{\text{rect}} > 0$ such that, for suitable anchor phases ϕ_0^{\pm} (the harmonic-measure averages of arg W seen from v_{\pm}^{\star}),

$$\left| W(v_{\pm}^{\star}) - e^{i\phi_0^{\pm}} \right| \leq C_{\text{rect}} \left(\sqrt{8\delta} + 2\delta \right) \left(C_1 \log m + C_2 \right) \leq K_{\text{rect}} \left(\sqrt{\eta \alpha} + \frac{\eta \alpha}{\log m} \right). \tag{4.1}$$

Consequently, summing at the two dial points,

$$\mathcal{U}_{hm}(m,\alpha) := \sum_{\pm} \left| W(v_{\pm}^{\star}) - e^{i\phi_0^{\pm}} \right| \leq 2K_{\text{rect}} \left(\sqrt{\eta \alpha} + \frac{\eta \alpha}{\log m} \right). \tag{4.1.1}$$

Proof idea. Apply the Poisson sub-mean inequality to $\log |f - c|$ with $c = e^{i\phi_0^{\pm}}$; use $|e^{i\theta} - 1| \le 2|\sin(\theta/2)|$. Control the quiet arcs in L^2 via the boundary Hilbert transform isometry on $\partial \mathbb{D}$ (M. Riesz; see Duren [?, §§I.3, I.6–I.7]), and the conformal L^2 trace to ∂B on Lipschitz boundaries (Coifman–McIntosh–Meyer). Control the verticals by arclength times $\sup_{\partial B} |E'/E|$ from (2.3) (i.e., (2.3)). Side-lengths give the $\sqrt{\delta}$ and δ factors. Background on harmonic measure and Poisson kernels: Ransford [?, §3.9], Garnett–Marshall [?, Chs. IV–V].

4.2 Lower envelope via forcing and residual budgets

We track phases first for $\arg E$. By Lemma A (short-side forcing; see (2.5)) one has on the near vertical

$$\Delta_{I_{+}} \arg E - \Delta_{I_{-}} \arg E \geq \frac{\pi}{2}$$
 when $|\alpha - a| \leq \delta$.

Subtract vertical residuals using (2.3)–(??) ((2.3)–(2.4)) and bound the horizontal budget for arg G_{out} on Q by the same L^2 method as above. Convert the resulting side gap to a dial-pair modulus deficit for W via a boundary-to-point estimate on rectangles (Poisson–Jensen/Lipschitz).

Lemma 4.2 (Forcing vs budgets \Rightarrow dial-pair deficit). There exist $c_0 \in (0,1)$ and a shape-only constant $C'_h > 0$ such that

$$\mathcal{L}(m,\alpha) := \sum_{+} \left| |W(v_{\pm}^{\star})| - 1 \right| \geq c_0 \frac{\pi}{2} - \delta \left(2c_0(C_1 \log m + C_2) + C_h'(\log m + 1) \right). \tag{4.2}$$

Auxiliary boundary-to-point estimate (used in the proof). If H is harmonic on B, $J \subset \partial B$ is a side, p is the midpoint of the opposite side, $\operatorname{osc}_J H \geq \Delta$, and $\sup_{\partial B} |\nabla H| \leq L$, then

$$|H(p) - H(p_J)| \ge c_{\text{side}} \Delta - C_{\text{side}} (\text{length } \partial B) L,$$
 (4.2.1)

where p_J is the harmonic-measure average of $H|_J$ seen from p, and $c_{\text{side}}, C_{\text{side}} > 0$ depend only on the rectangle aspect. Apply with $H = \log |W|$; absorb constants into c_0, C'_h .

4.3 Tail comparison (analytic, uniform in α)

Theorem 4.3 (Tail Comparison Theorem (analytic)). Fix $\eta \in (0, \frac{1}{2}]$. Define

$$\eta_1 := \left(\frac{c_0 \pi}{8 K_{\text{rect}}}\right)^2.$$

If $\eta \leq \eta_1$, then there exists $M_0(\eta)$ (depending only on η , C_1 , C_2 and the shape-only constants K_{rect}, C'_h) such that, for all $m \geq M_0(\eta)$ and all $\alpha \in (0, 1]$,

$$\mathcal{U}_{hm}(m,\alpha) < \mathcal{L}(m,\alpha).$$

Equivalently: no off-axis quartet can lie in any $B(\alpha, m, \delta)$ with $\delta = \eta \alpha/(\log m)^2$ for $m \ge M_0(\eta)$. The comparison is uniform in α ; the worst case is $\alpha = 1$.

Sketch of constants. From (4.1.1),

$$\mathcal{U}_{hm} \leq 2K_{\text{rect}}\Big(\sqrt{\eta \, \alpha} + \frac{\eta \, \alpha}{\log m}\Big).$$

From (5.2),

$$\mathcal{L} \geq c_0 \frac{\pi}{2} - \eta \alpha \left(\frac{2c_0 C_1 + C_h'}{\log m} + \frac{2c_0 C_2}{(\log m)^2} \right).$$

Choose $\eta \leq \eta_1$ so $2K_{\text{rect}}\sqrt{\eta} \leq \frac{c_0\pi}{4}$; then select $M_0(\eta)$ so the $O(\eta/\log m)$ terms are $<\frac{c_0\pi}{4}$. Uniformity in α follows by taking $\alpha = 1$ as the extremal case.

4.4 Interpretive (non-load-bearing): Ω -neutrality and winding

If ess $\sup_{\partial B} |\arg W - \phi_0| \le \varepsilon$, then $|W(z) - e^{i\phi_0}| \le 2\sin(\varepsilon/2)$ for all $z \in B$. If $\Delta_{\partial B} \arg W = 2\pi N$, then the interior contains exactly N zeros counted with multiplicity (argument principle). Subthreshold budgets force N = 0, i.e., inner collapse $W \equiv e^{i\theta_B}$ (Bridge 3.4). For the Ω -continuum / ray viewpoint, see Appendix J; this layer does not enter any proof in §5.

4.5 Symbolic thresholds and global consequence

Let m_1 be the first nontrivial height in the width-2 frame (Appendix I). In addition to $\eta \leq \eta_1$, define

$$\eta_2 := \frac{c_0 \pi \log m_1}{4 \left(2c_0 C_1 + C_b' \right)}. \tag{4.5}$$

If $\eta \leq \min\{\eta_1, \eta_2\}$, then $M_0(\eta) \leq m_1$ by Theorem 5.3, hence the analytic tail excludes off-axis quartets for all $m \geq m_1$; Appendix I implies there are no nontrivial zeros below m_1 .

Remark 4.4 (Optional variant at the global analytic floor). Let $m_{\min} \in \{6, 10\}$ denote the analytic floor used to ensure the uniform classical inputs (Part I, §2.1). Replacing m_1 by m_{\min} in (4.5) yields

$$\eta_2^{(\text{min})} := \frac{c_0 \pi \log m_{\text{min}}}{4 \left(2c_0 C_1 + C_h' \right)}.$$
(4.5.1)

We do not need (4.5.1) in the final theorem: choosing $\eta \leq \min\{\eta_1, \eta_2\}$ already places the tail threshold below m_1 , which is optimal for translating to the global on-axis statement.

5 Analytic tail (uniform in α)

Setup and notation. Let $\varphi : \mathbb{D} \to B(\alpha, m, \delta)$ be a conformal bijection with $\varphi(0) = \alpha + im$; define the *dial pair* on the horizontal centerline by

$$v_{\pm}^{\star} = \pm (a + im), \qquad z_{\pm} \in \partial \mathbb{D} \text{ with } \varphi(z_{\pm}) = v_{\pm}^{\star}.$$

Split the boundary ∂B into the two quiet arcs Q (horizontal edges) and the two short vertical sides I_{\pm} . Write

$$W:=\frac{E}{G_{\mathrm{out}}}, \qquad f:=W\circ \varphi^{-1}\in H^\infty(\mathbb{D}).$$

(Boundedness: G_{out} is zero-free, W is analytic on the compact B.)

5.1 Upper envelope via L^2 and harmonic measure

Lemma 5.1 (Boundary phase \Rightarrow dial-pair deficit). There exist shape-only constants C_{rect} , $K_{\text{rect}} > 0$ such that, for suitable anchor phases ϕ_0^{\pm} (the harmonic-measure averages of arg W seen from v_{\pm}^{\star}),

$$\left| W(v_{\pm}^{\star}) - e^{i\phi_0^{\pm}} \right| \leq C_{\text{rect}} \left(\sqrt{8\delta} + 2\delta \right) \left(C_1 \log m + C_2 \right) \leq K_{\text{rect}} \left(\sqrt{\eta \alpha} + \frac{\eta \alpha}{\log m} \right). \tag{5.1}$$

Consequently, summing at the two dial points,

$$\mathcal{U}_{hm}(m,\alpha) := \sum_{\pm} \left| W(v_{\pm}^{\star}) - e^{i\phi_0^{\pm}} \right| \leq 2K_{\text{rect}} \left(\sqrt{\eta \alpha} + \frac{\eta \alpha}{\log m} \right). \tag{4.1.1}$$

Proof idea. Apply the Poisson sub-mean inequality to $\log |f - c|$ with $c = e^{i\phi_0^{\pm}}$; use $|e^{i\theta} - 1| \le 2|\sin(\theta/2)|$. Control the quiet arcs in L^2 via the boundary Hilbert transform isometry on $\partial \mathbb{D}$ (M. Riesz; see Duren [?, §§I.3, I.6–I.7]), and the conformal L^2 trace to ∂B on Lipschitz boundaries (Coifman–McIntosh–Meyer). Control the verticals by arclength times $\sup_{\partial B} |E'/E|$ from (2.3) (i.e., (2.3)). Side-lengths give the $\sqrt{\delta}$ and δ factors. Background on harmonic measure and Poisson kernels: Ransford [?, §3.9], Garnett–Marshall [?, Chs. IV–V].

5.2 Lower envelope via forcing and residual budgets

We track phases first for $\arg E$. By Lemma A (short-side forcing; see (2.5)) one has on the near vertical

$$\Delta_{I_{+}} \arg E - \Delta_{I_{-}} \arg E \ge \frac{\pi}{2}$$
 when $|\alpha - a| \le \delta$.

Subtract vertical residuals using (2.3)–(??) ((2.3)–(2.4)) and bound the horizontal budget for arg G_{out} on Q by the same L^2 method as above. Convert the resulting side gap to a dial-pair modulus deficit for W via a boundary-to-point estimate on rectangles (Poisson–Jensen/Lipschitz).

Lemma 5.2 (Forcing vs budgets \Rightarrow dial-pair deficit). There exist $c_0 \in (0,1)$ and a shape-only constant $C'_h > 0$ such that

$$\mathcal{L}(m,\alpha) := \sum_{+} \left| |W(v_{\pm}^{\star})| - 1 \right| \geq c_0 \frac{\pi}{2} - \delta \left(2c_0(C_1 \log m + C_2) + C_h'(\log m + 1) \right). \tag{5.2}$$

Auxiliary boundary-to-point estimate (used in the proof). If H is harmonic on B, $J \subset \partial B$ is a side, p is the midpoint of the opposite side, $\operatorname{osc}_J H \geq \Delta$, and $\sup_{\partial B} |\nabla H| \leq L$, then

$$|H(p) - H(p_J)| \ge c_{\text{side}} \Delta - C_{\text{side}} (\text{length } \partial B) L,$$
 (4.2.1)

where p_J is the harmonic-measure average of $H|_J$ seen from p, and $c_{\text{side}}, C_{\text{side}} > 0$ depend only on the rectangle aspect. Apply with $H = \log |W|$; absorb constants into c_0, C'_h .

5.3 Tail comparison (analytic, uniform in α)

Theorem 5.3 (Tail Comparison Theorem (analytic)). Fix $\eta \in (0, \frac{1}{2}]$. Define

$$\eta_1 := \left(\frac{c_0 \pi}{8 K_{\text{rect}}}\right)^2.$$

If $\eta \leq \eta_1$, then there exists $M_0(\eta)$ (depending only on η , C_1 , C_2 and the shape-only constants K_{rect}, C'_h) such that, for all $m \geq M_0(\eta)$ and all $\alpha \in (0, 1]$,

$$\mathcal{U}_{hm}(m,\alpha) < \mathcal{L}(m,\alpha).$$

Equivalently: no off-axis quartet can lie in any $B(\alpha, m, \delta)$ with $\delta = \eta \alpha/(\log m)^2$ for $m \ge M_0(\eta)$. The comparison is uniform in α ; the worst case is $\alpha = 1$.

Sketch of constants. From (4.1.1),

$$\mathcal{U}_{hm} \leq 2K_{\text{rect}}\Big(\sqrt{\eta \, \alpha} + \frac{\eta \, \alpha}{\log m}\Big).$$

From (5.2),

$$\mathcal{L} \geq c_0 \frac{\pi}{2} - \eta \alpha \left(\frac{2c_0 C_1 + C_h'}{\log m} + \frac{2c_0 C_2}{(\log m)^2} \right).$$

Choose $\eta \leq \eta_1$ so $2K_{\text{rect}}\sqrt{\eta} \leq \frac{c_0\pi}{4}$; then select $M_0(\eta)$ so the $O(\eta/\log m)$ terms are $<\frac{c_0\pi}{4}$. Uniformity in α follows by taking $\alpha = 1$ as the extremal case.

5.4 Interpretive (non-load-bearing): Ω -neutrality and winding

If ess $\sup_{\partial B} |\arg W - \phi_0| \le \varepsilon$, then $|W(z) - e^{i\phi_0}| \le 2\sin(\varepsilon/2)$ for all $z \in B$. If $\Delta_{\partial B} \arg W = 2\pi N$, then the interior contains exactly N zeros counted with multiplicity (argument principle). Subthreshold budgets force N = 0, i.e., inner collapse $W \equiv e^{i\theta_B}$ (Bridge 3.4). For the Ω -continuum / ray viewpoint, see Appendix J; this layer does not enter any proof in §5.

5.5 Symbolic thresholds and global consequence

Let m_1 be the first nontrivial height in the width-2 frame (Appendix I). In addition to $\eta \leq \eta_1$, define

$$\eta_2 := \frac{c_0 \pi \log m_1}{4 \left(2c_0 C_1 + C_b' \right)}. \tag{4.5}$$

If $\eta \leq \min\{\eta_1, \eta_2\}$, then $M_0(\eta) \leq m_1$ by Theorem 5.3, hence the analytic tail excludes off-axis quartets for all $m \geq m_1$; Appendix I implies there are no nontrivial zeros below m_1 .

Remark 5.4 (Optional variant at the global analytic floor). Let $m_{\min} \in \{6, 10\}$ denote the analytic floor used to ensure the uniform classical inputs (Part I, §2.1). Replacing m_1 by m_{\min} in (4.5) yields

$$\eta_2^{(\text{min})} := \frac{c_0 \pi \log m_{\text{min}}}{4 \left(2c_0 C_1 + C_h' \right)}.$$
(4.5.1)

We do not need (4.5.1) in the final theorem: choosing $\eta \leq \min\{\eta_1, \eta_2\}$ already places the tail threshold below m_1 , which is optimal for translating to the global on-axis statement.