

SEQUENCE LISTING

<110> McGill University

<120> Oligonucleotide Inhibitors of MBD2/DNA Demethylase and Uses Thereof

<130> 26473U

<140> 10/518,470

<141> 2003-06-20

<150> 60/389,926

<151> 2002-06-20

<160> 15

<170> FastSEQ for Windows Version 4.0

<210> 1

<211> 2584

<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature

<222> (0)...(0)

<223> cDNA MBD2/dMTase

<400> 1

gggggcgtgg ccccgagaag gcggagacaa gatggccgccc catagcgctt ggaggaccta 60
agaggcggtg gccggggcca cgccccggc aggagggccg ctctgtgcgc gcccgcctca 120
tgcgtttgc ggcgtcccc cgcgcgcgc gctgcgggcg gggcggtct ccgggattcc 180
aagggctcggtt acggaaaga agcgcagcgc cggctggga gggggctgga tgcgcgcgc 240
cccgggggga ggccgctgct gccggagca ggaggagggg gagagtgcgg cggcgccag 300
ccgcgcgtggc ggcgactccg ccatagagca gggggccag ggcagcgcgc tcgcggcg 360
cccggtgagc ggcgtgcgc gggaggcgc tcggggcgc ggccgtggcc gggggcggtg 420
gaagcaggcg ggcggggcg gggcgtctg tggccgtggc cggggccggg gccgtggccg 480
gggacgggga cggggccggg gccggggccg cggccgtccc ccgagtggcg gcagcggcct 540
tggccgcgac ggcggccgct gccggccgcg cggcagcgg ggcggccgcg ccccccggcg 600
ggagccggtc ctttccccgt cggggagcgc gggccgggg cccaggggac cccgggcccac 660
ggagagcggg aagaggatgg attgccccgc cttccccccc gatggaaga aggaggaagt 720
gatccgaaaa tctggctaa gtgctggcaa gagcgatgtc tactacttca gtccaaagtgg 780
taagaagttc agaagcaagc ctcagttggc aaggtacctg gaaaatactg ttgatctcag 840
cagtttgcac ttcaagaactg gaaagatgtatgcctataaa ttacagaaga acaaacagag 900
actgcgaaac gatcctctca atcaaaataa gggtaaacca gacttgaata caacattgcc 960
aattagacaa acagcatcaa tttcaaaaca accggtaacc aaagtccaaa atcatcctag 1020
taataaaatgt aaatcagacc cacaacgaat gaatgaacag ccacgtcagc ttttctggg 1080
gaagaggcta caaggactta gtgcatcaga tggtaacagaa caaattataa aaaccatgga 1140
actacccaaa ggtcttcaag gagttggtcc aggttagcaat qatqaqaccc ttttatctgc 1200
tggccagt gcttgcaca caagctctgc gccaatcaca gggcaagtct ccgctgtgt 1260
ggaaaagaac cctgctgttt ggcttaacac atctcaaccc ctctgcaaaag cttttattgt 1320
cacagatgaa gacatcagga aacaggaaga gcgagttacag caagtacgca agaaattgga 1380
agaagcactg atggcagaca tcttgcgcg agctgctgat acagaagaga tggatattga 1440
aatggacagt ggagatgaag cctaagaata tgatcaggtaa actttcccc gactttcccc 1500

aagagaaaat tcctagaaat tgaacaaaaa tgtttccact ggctttgcc tgtaagaaaa 1560
 aaaatgtacc cgagcacata gagctttta atagcactaa ccaatgcctt ttagatgta 1620
 ttttgatgt atatatctat tattcaaaaa atcatgtta tttgagtc taggactta 1680
 aattagtctt ttgtaatatc aaggcggacc ctaagatgaa gctgagctt tgatgccagg 1740
 tgcaatctac tggaaatgta gcacttacgt aaaacattt tttccccac agtttaata 1800
 agaacagatc aggaattcta aataaatttccagttaaag attattgtga ctctactgta 1860
 tataaacata ttttatact ttattgaaag gggacacctg tacattctt catcatact 1920
 gtaaagacaa ataaatgatt atattcacag actgattgga attcttctg ttgaaaagca 1980
 cacacaataa agaaccctc gttagcctc ctctgattt cattcaactc tgatccctgg 2040
 gccttaggtt tgacatggag gtggaggaag atagcgata tatttgcagt atgaactatt 2100
 gcctctggac gttgtgagaa ttgtcttc accagaattt ctaagaattt ctgctaaata 2160
 tcacctagca tttgtatattt ttttccttgcctgtactt ggacttttga tagttctata 2220
 agaataaggc ttttcttcc cttgggcatg agtcagatac acaaggaccc ttcaggtgtt 2280
 actagaaggc gtccatgtttt attgtttttt aaagaatggtt tggcactctc taacgtccac 2340
 tagcttactg agttatcagg tgcaggtcag actcttggct acagtgagag gcagcttcta 2400
 ggcagagttt cttatgaaa gggtttgtaa tactttacaa accattacct gtacctggcc 2460
 tggcctccaa aatattaaca ttcttttct gttgaaactc gcgagtgtaa ctttcataacc 2520
 acttgaattt attgatattt aattatgaaa actagcatta cattattaaa cgatttctaa 2580
 aatc 2584

<210> 2
 <211> 411
 <212> PRT
 <213> Homo sapiens

<400> 2

Met	Arg	Ala	His	Pro	Gly	Gly	Gly	Arg	Cys	Cys	Pro	Glu	Gln	Glu	Glu
1															15
Gly	Glu	Ser	Ala	Ala	Gly	Gly	Ser	Gly	Ala	Gly	Gly	Asp	Ser	Ala	Ile
															30
Glu	Gln	Gly	Gln	Gly	Ser	Ala	Leu	Ala	Pro	Ser	Pro	Val	Ser	Gly	
															45
Val	Arg	Arg	Glu	Gly	Ala	Arg	Gly	Gly	Arg	Gly	Arg	Gly	Arg	Trp	
															50
Lys	Gln	Ala	Gly	Arg	Gly	Gly	Val	Cys	Gly	Arg	Gly	Arg	Gly	Arg	
															65
Gly	Arg	Gly													
															85
Pro	Pro	Ser	Gly	Ser	Gly	Leu	Gly	Gly	Asp	Gly	Gly	Cys	Gly		
															100
Gly	Gly	Ser	Gly	Gly	Gly	Ala	Pro	Arg	Arg	Glu	Pro	Val	Pro		
															115
Phe	Pro	Ser	Gly	Ser	Ala	Gly	Pro	Gly	Pro	Arg	Gly	Pro	Arg	Ala	Thr
															130
Glu	Ser	Gly	Lys	Arg	Met	Asp	Cys	Pro	Ala	Leu	Pro	Pro	Gly	Trp	Lys
															145
Lys	Glu	Glu	Val	Ile	Arg	Lys	Ser	Gly	Leu	Ser	Ala	Gly	Lys	Ser	Asp
															165
Val	Tyr	Tyr	Phe	Ser	Pro	Ser	Gly	Lys	Lys	Phe	Arg	Ser	Lys	Pro	Gln
															180
Leu	Ala	Arg	Tyr	Leu	Gly	Asn	Thr	Val	Asp	Leu	Ser	Ser	Phe	Asp	Phe
															195
Arg	Thr	Gly	Lys	Met	Met	Pro	Ser	Lys	Leu	Gln	Lys	Asn	Lys	Gln	Arg
															210
Leu	Arg	Asn	Asp	Pro	Leu	Asn	Gln	Asn	Lys	Gly	Lys	Pro	Asp	Leu	Asn
															225
Thr	Thr	Leu	Pro	Ile	Arg	Gln	Thr	Ala	Ser	Ile	Phe	Lys	Gln	Pro	Val

	245	250	255												
Thr	Lys	Val	Thr	Asn	His	Pro	Ser	Asn	Lys	Val	Lys	Ser	Asp	Pro	Gln
			260			265					270				
Arg	Met	Asn	Glu	Gln	Pro	Arg	Gln	Leu	Phe	Trp	Glu	Lys	Arg	Leu	Gln
			275			280					285				
Gly	Leu	Ser	Ala	Ser	Asp	Val	Thr	Glu	Gln	Ile	Ile	Lys	Thr	Met	Glu
			290			295					300				
Leu	Pro	Lys	Gly	Leu	Gln	Gly	Val	Gly	Pro	Gly	Ser	Asn	Asp	Glu	Thr
			305			310			315						320
Leu	Leu	Ser	Ala	Val	Ala	Ser	Ala	Leu	His	Thr	Ser	Ser	Ala	Pro	Ile
			325			330			335						
Thr	Gly	Gln	Val	Ser	Ala	Ala	Val	Glu	Lys	Asn	Pro	Ala	Val	Trp	Leu
			340			345					350				
Asn	Thr	Ser	Gln	Pro	Leu	Cys	Lys	Ala	Phe	Ile	Val	Thr	Asp	Glu	Asp
			355			360					365				
Ile	Arg	Lys	Gln	Glu	Glu	Arg	Val	Gln	Gln	Val	Arg	Lys	Lys	Leu	Glu
			370			375					380				
Glu	Ala	Leu	Met	Ala	Asp	Ile	Leu	Ser	Arg	Ala	Ala	Asp	Thr	Glu	Glu
			385			390			395						400
Met	Asp	Ile	Glu	Met	Asp	Ser	Gly	Asp	Glu	Ala					
			405			410									

<210> 3
<211> 1953
<212> DNA
<213> Mus musculus

<220>
<221> misc_feature
<222> (0)...(0)
<223> cDNA MBD2/dMTase

<400> 3
ggggggcggt gcccagagga ggcggagaca atatggcctc gcccctagct tggaggacct 60
aagaggcgcg gccggggcca cgccccgggc gggagggccg ctctgtgcgc gcccgcctca 120
tcatgtttgc gcgcttcccc cgccgcggc tctgcggggcg gggcggtct ccgggattcc 180
aagggtctgg ttacggaaaga agcgcagagc cggctgggga gggggctggta tgccgcgc 240
cccgggggga ggccgctgtc gcccggagca ggaggagggg gagagcgcgg cggggcggcag 300
cggcgctggc ggcgactccg ccatagagca ggggggcccgg ggcagcgcgc tcgctccgtc 360
cccggtgagc ggcgtgcgc gggaaaggcgc tcggggcgcc ggccgtggcc gggggcggtg 420
gaagcaggcg gcccggggcg gccgcgtctg tggccgtggc cgtggccgtg gccggggtcg 480
ggggcgtggc cggggccggg gccggggccgg cggccgtccc cagagtggcg gcagcggcct 540
tggcgccgac ggcggccggc ggcgcggccgg ctgcggcgcc ggcagcgggtg gcggcgtcgc 600
cccccgccgg gatcctgtcc ctttcccgcc ggggagctcg gggccggggc ccaggggacc 660
ccgggccacg gagagcgggaa agaggatggc ctgccccggcc ctcccccccg gatggaaagaa 720
ggaggaagtg atccgaaaat cagggtctag tgctggcaag agcgatgtct actacttcag 780
tccaagtgtt aagaagttca gaagtaaaccc tcagctggca agatacctgg gaaatgttgt 840
tgaccttagc agttttgact tcaggaccgg caagatgtat cctagtaaat tacagaagaa 900
caagcagaga ctccggaaat accccctcaa tcagaacaag ggttaaaccag acctgaacac 960
aacattgcca attagacaaa ctgcatcaat tttcaagcaa ccagtaacca aattcacgaa 1020
ccacccqaqc aataaqqtqa aqtcqaqacc ccagcggatq aatgaacaac cacgtcagct 1080
tttctggag aagaggctac aaggacttag cgcatcagat gtaacagaac aaattataaa 1140
aaccatggag ctacctaaag gtcttcaagg agtccgtcca ggttagcaatg acgagaccct 1200
tctgtctgtc gtggccagtg ctttacacac aagctctgcg cccatcacag gacaagtctc 1260
tgctgccgtg gaaaagaacc ctgctgtttg gcttaacaca tctcaacccc tctgcaaagc 1320
tttcattgtt acagatgaag acatttagaa acaggaagag cgagtccaaac aagtacgcaa 1380

gaaaactggag gaggcactga tggccgacat cctgtcccg gctgcggaca cgaggaaagt 1440
 agacattgac atggacagtg gagatgaggc gtaagaatat gatcaggtaa ct当地actg 1500
 acctccccca agagcaaatt gctagaaaca gaattaaaac atttccactg ggtttcgcct 1560
 gtaagaaaaa gtgtacctga gcacatacg tttaatagc actaaccaat gccttttag 1620
 atgtatTTTt gatgtatata tctattattc caaatgatgt ttatTTTgaa tccttagact 1680
 taaaatgagt ct当地ataat agcaagcagg gcccttccgg tgcaGTgcag ct当地gaggcc 1740
 aggtgcagtc tactggaaag gtagcactta cgtgaaatat tt当地ccccc cacagTTTA 1800
 atataaacag atcaggagta ccaaataagt tt当地caatta aagattatta tacttcactg 1860
 tatataaaca gatTTTata ct当地attgaa agaagatacc tgc当地attct tccatcatca 1920
 ctgtaaagac aaataaatga ct当地attcac aga 1953

<210> 4
 <211> 414
 <212> PRT
 <213> Mus musculus

<400> 4
 Met Arg Ala His Pro Gly Gly Arg Cys Cys Pro Glu Gln Glu Glu
 1 5 10 15
 Gly Glu Ser Ala Ala Gly Gly Ser Gly Ala Gly Asp Ser Ala Ile
 20 25 30
 Glu Gln Gly Gln Gly Ser Ala Leu Ala Pro Ser Pro Val Ser Gly
 35 40 45
 Val Arg Arg Glu Gly Ala Arg Gly Gly Arg Gly Arg Gly Arg Trp
 50 55 60
 Lys Gln Ala Ala Arg Gly Gly Val Cys Gly Arg Gly Arg Gly Arg
 65 70 75 80
 Gly Arg
 85 90 95
 Pro Gln Ser Gly Ser Gly Leu Gly Gly Asp Gly Gly Gly Ala
 100 105 110
 Gly Gly Cys Gly Val Gly Ser Gly Gly Val Ala Pro Arg Arg Asp
 115 120 125
 Pro Val Pro Phe Pro Ser Gly Ser Ser Gly Pro Gly Pro Arg Gly Pro
 130 135 140
 Arg Ala Thr Glu Ser Gly Lys Arg Met Asp Cys Pro Ala Leu Pro Pro
 145 150 155 160
 Gly Trp Lys Lys Glu Glu Val Ile Arg Lys Ser Gly Leu Ser Ala Gly
 165 170 175
 Lys Ser Asp Val Tyr Tyr Phe Ser Pro Ser Gly Lys Phe Arg Ser
 180 185 190
 Lys Pro Gln Leu Ala Arg Tyr Leu Gly Asn Ala Val Asp Leu Ser Ser
 195 200 205
 Phe Asp Phe Arg Thr Gly Lys Met Met Pro Ser Lys Leu Gln Lys Asn
 210 215 220
 Lys Gln Arg Leu Arg Asn Asp Pro Leu Asn Gln Asn Lys Gly Lys Pro
 225 230 235 240
 Asp Leu Asn Thr Thr Leu Pro Ile Arg Gln Thr Ala Ser Ile Phe Lys
 245 250 255
 Gln Pro Val Thr Lys Phe Thr Asn His Pro Ser Asn Lys Val Lys Ser
 260 265 270
 Asp Pro Gln Arg Met Asn Glu Gln Pro Arg Gln Leu Phe Trp Glu Lys
 275 280 285
 Arg, Leu Gln Gly Leu Ser Ala Ser Asp Val Thr Glu Gln Ile Ile Lys
 290 295 300
 Thr Met Glu Leu Pro Lys Gly Leu Gln Gly Val Gly Pro Gly Ser Asn
 305 310 315 320

Asp Glu Thr Leu Leu Ser Ala Val Ala Ser Ala Leu His Thr Ser Ser
 325 330 335
 Ala Pro Ile Thr Gly Gln Val Ser Ala Ala Val Glu Lys Asn Pro Ala
 340 345 350
 Val Trp Leu Asn Thr Ser Gln Pro Leu Cys Lys Ala Phe Ile Val Thr
 355 360 365
 Asp Glu Asp Ile Arg Lys Gln Glu Glu Arg Val Gln Gln Val Arg Lys
 370 375 380
 Lys Leu Glu Glu Ala Leu Met Ala Asp Ile Leu Ser Arg Ala Ala Asp
 385 390 395 400
 Thr Glu Glu Val Asp Ile Asp Met Asp Ser Gly Asp Glu Ala
 405 410

<210> 5
 <211> 18
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> Antisense oligonucleotide

<400> 5
 ggcaatccat ccttttcc 18

<210> 6
 <211> 18
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> Antisense oligonucleotide

<400> 6
 cttccttcctt cttccatc 18

<210> 7
 <211> 17
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> Antisense oligonucleotide

<400> 7
 caacagtatt tcccagg 17

<210> 8
 <211> 17
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> Antisense oligonucleotide

<400> 8
 tgtagcctct tctccca 17

<210> 9		
<211> 18		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Antisense oligonucleotide		
<400> 9		
atccagcccc ctcccccag		18
<210> 10		
<211> 18		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Antisense oligonucleotide		
<400> 10		
cactctcccc ctcccccct		18
<210> 11		
<211> 20		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Antisense oligonucleotide		
<400> 11		
tcaacagtat ttcccaggtta		20
<210> 12		
<211> 20		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Antisense oligonucleotide		
<400> 12		
ucaacagtat ttcccaggua		20
<210> 13		
<211> 20		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> oligonucleotide		
<400> 13		
auggaccctt tatgacaacu		20
<210> 14		

<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> oligonucleotide

<400> 14
cgattcaatc ctcacacctctc

20

<210> 15
<211> 2792
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (0)...(0)
<223> cDNA MBD2/dMTase

<400> 15

gggggcgtgg ccccgagaag gcggagacaa gatggccgccc catagcgctt ggaggaccta 60
agaggcggtg gccggggcca cgccccgggc aggaggccg ctctgtgcgc gcccgcctta 120
tgcgtctgc ggcgtcccc cgcgcgcgc gctgcggcg gggcggtct ccgggattcc 180
aagggctcggtt acggaaaga agcgcagcgc cggctggga ggggcttggaa tgccgcgc 240
cccgggggga ggccgctgct gcccggagca ggaggagggg gagagtgcgg cgggcggcag 300
cggcgctggc ggcgactccg ccatagagca ggggggcccgg ggcagcgcgc tcgcggcg 360
cccggtgagc ggcgtgcgc gggaaaggcgc tcggggcgc ggcgtggcc gggggcggtg 420
gaagcaggcg ggcggggcg gcccgtctg tggccgtggc cggggccggg gccgtggccg 480
gggacgggga cggggccggg gccggggccgg cggccgtccc cccgagtggcg gcagcggcct 540
tggcgccgac ggcggcggtc gcccggcgg cggcagcggt ggcggcggc ccccccggc 600
ggagccggtc ctttccgt cggggagcgc gggggccggg cccaggggac cccggggccac 660
ggagagcgaa aagaggatgg attgcccggc cctccccccc ggatggaaaga aggaggaagt 720
gatccaaaaa tctggctaa gtgtggcaa gagcgatgtc tactacttca gtccaaagtgg 780
taagaagttc agaagcaagc ctcagttggc aaggtacactg ggaaatactg ttgatctcag 840
cagtttgac ttcaagaactg gaaagatgtat gccttagtaaa ttacagaaga acaaacaagag 900
actgcgaaac gatcctctca atcaaaaataa gctgcgtgg aacactcatc gtcctgcacc 960
atggcatgct cttcaagac tctgctgtc catacgctgt ttgctctgtc tggatgtgc 1020
ttacccctt ccccttcatac tggtaactc ctactcatcc aagaccgcgc ttcatgtct 1080
ccatctctgg gaagcctgcc ctgcataactc caggcagaac caatcctttc ctccataagg 1140
gtaaaccaga cttgaataca acattgccaa tttagacaaac agcatcaatt ttcaaacaac 1200
cggttaaccaa agtcacaaat catccttagta ataaagtgaa atcagaccca caacgaatga 1260
atgaacagcc acgtcagctt ttctgggaga agaggctaca aggacttagt gcatcagatg 1320
taacagaaca aattataaaa accatggAAC tacccaaagg tcttcaaggg gttggtccag 1380
gttagcaatga tgagaccctt ttatctgtc ttgcacacaca agctctgcgc 1440
caatcacagg gcaagtctcc gctgctgtgg aaaagaaccc tgctgtttgg cttaacacat 1500
ctcaacccct ctgcaagact tttattgtca cagatgaaga catcaggaaa caggaagagc 1560
gagtagcaga agtacgcaag aaattggaaag aagcactgtat ggcagacatc ttgtcgcgag 1620
ctgctgatac agaagagatg gatattgaaa tggacagtgg agatgaagcc taagaatatg 1680
atcaggtaac ttgcaccga cttcccaa gagaaaattc cttagaaattt aacaaaaatg 1740
tttccactgg ctttgctg taagaaaaaa aatgtacccg agcacaataga gcttttaat 1800
agcactaacc aatgccttt tagatgtatt tttgtatgtat atatcttata ttcaaaaaat 1860
catgtttatt ttgagtccta ggactaaaaa ttgtctttt gtaatatcaa gcaggaccct 1920
aagatgaagc tgagctttt atgcagggtg caatctactg gaaatgtagc acttacgtaa 1980
aacatttgtt tcccccacag tttataataag aacagatcag gaattctaaa taaatttccc 2040
agttaaagat tattgtgact tcactgtata taaacatatt tttatacttt attgaaagg 2100

gacacctgta cattcttcca tcatcactgt aaagacaaat aatgattat attcacagac 2160
tgatttgaat tctttctgtt gaaaaggcaca cacaataaag aaccctcgtagccttcct 2220
ctgatttaca ttcaactctg atccctgggc cttagggtt acatggaggt ggaggaagat 2280
agcgcatata ttgcagtat gaactattgc ctctggacgt tgtgagaatt gtgcttcac 2340
cagaatttct aagaatttct gctaaatatac accttagcatg tgtaattttt tttccttgcc 2400
tgtgacttgg acttttgata gttctataag aataaggctt ttcttccct tgggcatgag 2460
tcagatacac aaggaccctt caggtgttac tagaaggcgt ccatgtttat tgtttttaa 2520
agaatgttg gcactctcta acgtccacta gcttactgag ttatcaggtg caggtcagac 2580
tcttggctac agtgagaggc agcttctagg cagagttgct taatgaaagg gttttaata 2640
ctttacaaac cattaccgtt acctggcctg gcctccaaaa tattaacatt cttttctgt 2700
tgaaactcgc gagtgtaact ttcataccac ttgaatttat tgatatttaa ttatgaaaac 2760
tagcattaca ttattaaacg atttctaaaa tc 2792