

Limit Computation Using Asymptotic in CMS

UMN HEP Meeting

Tambe E. Norbert

norbert@physics.umn.edu

September 29, 2014

Outline

- Motivation
- Statistical Formalism
- Test Statistics Distribution
- Systematics
- Application Example

Motivation

- Quick computation of limits.
- Study systematic effects.
- Extract experiment sensitivity without generating any Toy Monte Carlo.
- Quantify statistical significance of a signal.

Data Compatibility?

$$p-\text{value} = \left\{ \begin{array}{ll} 5.7 \times 10^{-7}, & \Rightarrow \text{Reject Bkg-Only Hypo} \\ < 0.05, & \Rightarrow \text{Exclude Sig Hypo} \end{array} \right.$$

Statistical Test Formalism

Suppose a Poisson, $\mathcal{P}(n)$ of n observed events with expected mean value $E[n] = \mu s + b$ with systematics θ then;

ProfileLikelihood and ratio

$$egin{aligned} \mathcal{L}(\mu, oldsymbol{b}, heta) &= rac{(\mu oldsymbol{s} + oldsymbol{b})^n}{n!} oldsymbol{e}^{-(\mu oldsymbol{s} + oldsymbol{b})} \cdot \mathcal{L}_{ heta}(heta) \ & \lambda(\mu) &= rac{\mathcal{L}(\mu, \hat{ar{ heta}})}{\mathcal{L}(\hat{\mu}, \hat{ar{ heta}})} \end{aligned}$$

Test Statistics

$$t_{\mu} = \left\{ egin{array}{ll} -2\ln\lambda(\mu), & \hat{\mu} \leq \mu \\ 0, & \hat{\mu} \geq \mu \end{array}
ight.$$

Test Statistics Distribution

Using the test statistics t_{μ} , We "find" the pdf of the test statistics $f(t_{\mu}|\mu)$ assuming a given hypothesis μ .

Asymptotic Method

In Asymptotics, an analytic function of $f(t_{\mu}|\mu)$ through approximation(Walds).

$$\mathit{f}(t_{\mu}|\mu') = \frac{1}{2\sqrt{t_{\mu}}} \frac{1}{\sqrt{2\pi}} \left[\exp\left(-\frac{1}{2}(\sqrt{t_{\mu}} + \frac{\mu - \mu'}{\sigma})^2\right) + \exp\left(-\frac{1}{2}(\sqrt{t_{\mu}} - \frac{\mu - \mu'}{\sigma})^2\right) \right]$$

HybridNew Method

Through Monte Carlo or MCMC computations or toy experiments (frequentest) one computes $f(t_{\mu}|\mu)$ after extracting $f(t_{\mu}|\mu)$ using Bayesian probability methods.

Computing Probabilities

Using $f(t_{\mu}|\mu)$, the probabilities (p-values) are computed as:

p-values

$$p_u = \int_{t_{\mu,obs}}^{\infty} f(t_{\mu}|\mu) dt_{\mu}$$

In the typical case where $\mu=1$ or $\mu=0$ for s+b or b only hypothesis $t=-2\ln(\frac{\mathcal{L}_{s+b}}{\mathcal{L}_b})$ (Tevatron style)

CL_s Technique

$$CL_s = \frac{p_{s+b}}{1 - p_b} = \frac{CL_{s+b}}{CL_b}$$

Systematics

Systematics in Asymptotic

From the definition of $\mathcal{L}(\mu, b, \theta)$, systematics are introduced right on. The approximate formula of the $f(t_{\mu}|\mu)$ analytically computed embeds in it systematics.

However, in HybridNew approach,

Systematics in HybridNew

Integrate out systematics to get $f(t_{\mu}|\mu)$.

$$f(t) = \int f(t|\theta)\pi(\theta)d\theta$$

with $\pi(\theta) \propto \mathcal{L}_{\theta}(\theta)\pi_0(\theta)$ being the prior pdf. This is how systematics are handled by the HybridNew approach.

Application Example

Analysis Result

SM Background/GMSB Signal	Count
Total SM background (b)	1.005 ± 0.001
Data (n _{obs})	1.00
Signal (S)	
GMSB(SPS8) ($\Lambda=180$ TeV, $c au=500$ mm)	2.341
GMSB(SPS8) ($\Lambda=180~\text{TeV}, c_{ au}=1000~\text{mm}$)	4.585
GMSB(SPS8) ($\Lambda=180~\text{TeV}, c au=2000~\text{mm}$)	5.704
GMSB(SPS8) ($\Lambda=180~\text{TeV}, c au=3000~\text{mm}$)	5.386
GMSB(SPS8) ($\Lambda=180~\text{TeV}, c au=6000~\text{mm}$)	4.096
GMSB(SPS8) ($\Lambda=$ 180 TeV, $c au=$ 12000 mm)	2.772

Application Example

Sources of Systematics

Source	Uncertainty(%)
Photon energy scale	< 3.0%
Jet energy scale	< 0.05%
Jet energy resolution	< 1.90%
PDF uncertainty	< 1.70%
MET resolution	< 2.8%
Signal Eff $ imes$ Acceptance	< 10%
ECAL time uncertainty	< 5.0%
Background estimation uncertainty	≤ 20.0%
Luminosity	< 2.2%

Delayed Photon Upper Limit

Figure: Systematics Inc.

Figure: No Systematics

Extracting Upper Limits

Limits from P-values

Asymptotic "Asimov" Dataset

"Asimov" Data"

- Its an alternative way to obtain deviations from MLE $(\hat{\mu})$.
- Is a Toy Monte Carlo data (artificial data set),
- Used to estimate the deviations; σ from the median.
- Also used to evaluate the value of $\hat{\mu}$ and $\hat{\theta}$
- Obtaining the true parameters of the MLE.

References

- Glen Cowan et al, Asymptotic formula for likelihood-based tests of new physics, Eur.Phys.J.C (2011)71:1554
- A.L. Read, J.Phys. G 28, 2693 (2002)
- A. Wald. Tests of statistical hypothesis concerning several parameters when the number of observations is large. Trans. Am. Maths. Soc 54(3), 426-482 (1943)
- Jose Ocariz Probability and Statistics for Particle Physicists, arxiv:1405.3402v1
- CERN Summer School: https://indico.cern.ch/event/117033/material/slides/0?contribId=25