Statistical Models

Dale Barr

University of Glasgow

relationships

multiple relationships

the perfect relationship

today's lecture

- correlations and correlation matrices
- simulating bivariate data
- relationship between correlation and regression

correlation coefficient

Typicaly denoted as ho (Greek symbol 'rho') or r

$$-1 \ge r \le 1$$

- r > 0: positive relationship
- r < 0: negative relationship
- r=0: no relationship

Estimated using Pearson or Spearman (rank) method

```
c-cor(), cor.test(), corrr::correlate()
```

assumptions

- ullet relationship between X and Y is \emph{linear}
- deviations from line of best fit are normally distributed

multiple correlations

For n variables, you have

$$\frac{n!}{2(n-2)!}$$

unique pairwise relationships, where (n!) is the factorial of (n).

choose(n, 2)

```
choose(6, 2)
[1] 15
choose(8, 2)
[1] 28
```

correlation matrices

	IQ	verbal fluency	digit span
IQ	1.00	0.56	0.43
verbal fluency	0.56	1.00	-0.23
digit span	0.43	-0.23	1.00

corrr::correlate()

covariance matrices

- covariance(X,Y): $ho_{xy}\sigma_x\sigma_y$
- covariance(X,X): $ho_{xx}\sigma_x\sigma_x=\sigma^2$

 ho_{xy} : correlation between x, y; σ_x : sd of x

A matrix that characterizes the spread of multivariate values.

$$egin{pmatrix} \sigma_x^{\ 2} &
ho_{xy}\sigma_x\sigma_y \
ho_{yx}\sigma_y\sigma_x & \sigma_y^{\ 2} \end{pmatrix}$$

Usually denoted by Σ ; Must be symmetric and positive definite

bivariate distribution

4x4 matrix

A 4x4 covariance matrix with variables W, X, Y, Z.

$$\begin{pmatrix} \rho_{ww}\sigma_{w}\sigma_{w} & \rho_{wx}\sigma_{w}\sigma_{x} & \rho_{wy}\sigma_{w}\sigma_{y} & \rho_{wz}\sigma_{w}\sigma_{z} \\ \rho_{xw}\sigma_{x}\sigma_{w} & \rho_{xx}\sigma_{x}\sigma_{x} & \rho_{xy}\sigma_{x}\sigma_{y} & \rho_{xz}\sigma_{x}\sigma_{z} \\ \rho_{yw}\sigma_{y}\sigma_{w} & \rho_{yx}\sigma_{y}\sigma_{x} & \rho_{yy}\sigma_{y}\sigma_{y} & \rho_{yz}\sigma_{y}\sigma_{z} \\ \rho_{zw}\sigma_{z}\sigma_{w} & \rho_{zx}\sigma_{z}\sigma_{x} & \rho_{zy}\sigma_{z}\sigma_{y} & \rho_{zz}\sigma_{z}\sigma_{z} \end{pmatrix}$$

4x4 matrix

A 4x4 covariance matrix with variables W, X, Y, Z.

diagonal matrix

$$egin{pmatrix} \sigma_w^{\ 2} & 0 & 0 & 0 \ 0 & \sigma_x^{\ 2} & 0 & 0 \ 0 & 0 & \sigma_y^{\ 2} & 0 \ 0 & 0 & \sigma_z^{\ 2} \end{pmatrix}$$

simulating correlated data

To simulate bivariate (or multivariate) data in R, use MASS::mvrnorm().

```
mvrnorm(n, mu, Sigma, ...)
```

You need the following information:

- ullet means of X and $Y, ar{X}$ and $ar{Y}$
- standard deviations of X and Y, σ_X and σ_Y .
- correlation coefficient ρ_{XY} .

simulating bivariate data

correlation and the GLM

$$Y_i = eta_0 + eta_1 X_i + e_i$$
 $e_i \sim N\left(0, \sigma^2
ight)$

$$eta_1 =
ho_{XY} rac{\sigma_Y}{\sigma_X}$$

$$eta_0 = ar{Y} - eta_1 ar{X}$$