Desigualdad de Chebycheff y Ley de los grandes números

June 11, 2020

Tchebycheff

Sea W una v.a. , y sea $\varepsilon>0$

$$\mathbb{P}(|W - \mathbb{E}[W]| \ge \varepsilon) \le \frac{V[W]}{\varepsilon^2}$$

Tchebycheff aplicado al promedio

Sean
$$(X_i)_{i\geq 1}$$
 iid, $\mathbb{E}\left(X_i\right)=\mu,\,V\left(X_i\right)=\sigma^2$, y sea $\varepsilon>0$
$$\mathbb{P}\left(\left|\bar{X}_n-\mu\right|\geq\varepsilon\right)\leq\frac{\sigma^2/n}{\varepsilon^2}=\frac{\sigma^2}{n\varepsilon^2}$$

Tchebycheff aplicado al promedio de v.a. Bernoulli

Si
$$X_i \sim \mathcal{B}(1,p)$$

$$\mathbb{P}\left(\left|\bar{X}_{n} - p\right| \ge \varepsilon\right) \le \frac{p(1-p)}{n\varepsilon^{2}} \le \frac{1}{4n\epsilon^{2}}$$

Convergencia en probabilidad

Sean $(Y_n)_{n\geq 1}$, Y variables aleatorias. Diremos que $(Y_n)_{n\geq 1}$ converge a Y en probabilidad si para todo $\epsilon>0$

$$\lim_{n \to \infty} \mathbb{P}\left(|Y_n - Y| > \varepsilon\right) = 0$$

Notación: $Y_n o Y$ en probabilidad

Ley de los Grandes Números

Sean $(X_i)_{i\geq 1}$ i.i.d., $\operatorname{con} \mathbb{E}(X_i) = \mu y \, V(X_i) = \sigma^2$, para todo i Entonces, el promedio de $X_1 \dots X_n$ converge a μ en probabilidad: es decir para todo $\varepsilon > 0$ vale que

$$\lim_{n \to \infty} \mathbb{P}\left(\left|\bar{X}_n - \mu\right| > \varepsilon\right) = 0$$

 $\bar{X}_n \to \mu$ en probabilidad

Ejercicio

Consideremos las duraciones de lámparas en días. Sea X_i la duración de la i-ésima lámpara, para $i=1,\ldots,n$. Asumiremos que X_1,\ldots,X_n son v.a.i.i.d. Haga click aquí para obtener datos simulados, introduciendo su número de libreta.

- 1. Indique qué cuenta debe hacer con la muestra (X_1,\ldots,X_n) para estimar $\mu=E(X_1)$ y $\sigma^2=V(X_1)$. Es decir, proponga un estimador $\widehat{\mu}_n$ para μ y un estimador $\widehat{\sigma}_n^2$ para σ^2 . Justifique.
- 2. Considere n=5 datos de duraciones de lámparas y calcule las estimaciónes de μ y σ^2 correspondientes a estos datos. Repita considerando n=30 y n=100. Introducir los resultados en la página y chequear que sean correctos.

Ejercicio

Consideremos las duraciones de lámparas en días. Sea X_i la duración de la i-ésima lámpara, para $i=1,\ldots,n$. Asumiremos que X_1,\ldots,X_n son v.a.i.i.d. Haga click aquí para obtener datos simulados, introduciendo su número de libreta.

- 3. Sea $p=P(X\leq 12)$ con $X\sim X_1$. Indique qué cuenta debe hacer con la muestra (X_1,\ldots,X_n) para estimar p. Es decir, proponga un estimador \widehat{p}_n para p. Justifique.
- 4. Considere n=5 datos de duraciones de lámparas y calcule la estimación de p correspondiente a estos datos. Repita considerando n=30 y n=100.
- 5. Acotar la probabilidad de que el estimador propuesto en c) diste de la verdadera probabilidad p, en menos de 0.01, para $n=5,30,\ 100\ {\rm y}\ 10000$.

Ejercicio

Consideremos las duraciones de lámparas en días. Sea X_i la duración de la i-ésima lámpara, para $i=1,\ldots,n$. Asumiremos que X_1,\ldots,X_n son v.a.i.i.d. Haga click aquí para obtener datos simulados, introduciendo su número de libreta.

6. Supongamos ahora que el parámetro de la exponencial es conocido: $\lambda=1/4$. Se tienen 10 lámparas producidas por esta compañía conectadas en serie, de manera de que cuando una se rompe comienza a funcionar la siguiente. Acotar la probabilidad de que la duración de las 10 lámparas esté entre 20 y 60 días. Comparar con el valor exacto

Resolución

1 -

 $\hat{\mu}_n = \frac{1}{n} \sum_{i=1}^n X_i$

$$\hat{\mu}_n
ightarrow \mu$$
 en probabilidad

$$V(X_1) = E(X_1^2) - E(X_1)^2$$

$$\hat{\sigma}_n^2 = \frac{1}{n} \sum_{i=1}^n X_i^2 - \left(\frac{1}{n} \sum_{i=1}^n X_i\right)^2$$

$Y_1 = 1$ si $X_i \le 12$

 $\hat{p}_n = \overline{Y}_n$

 $Y_1=0 \ \mathrm{si} \ \mathrm{no}$

3 -

 $P(|\overline{Y}_n - p| \ge 0.01) < V(\overline{Y}_n)/\epsilon^2$

 $P(|\overline{Y}_n - p| < 0.01) > 1 - V(\overline{Y}_n)/\epsilon^2 = 1 - p(1-p)/(n/0.01^2)$

 $P(|\overline{Y}_n - p| < 0.01) > 1 - \frac{1}{4n0.01^2}$

6- S es la duración de las 10 lámparas sumadas.

$$S = X_1 + X_2 + \dots X_{10}$$

$$P(20 < S < 60) = ???$$

$$0*4 = 40$$

$$0 * 4 = 40$$
 $0 * 16 = 1$

$$E(S) = \sum_{i=1}^{10} E(X_i) = 10 * 4 = 40$$

$$V(S) = \sum_{i=1}^{10} V(X_i) = 10 * 16 = 160$$

$$P(20 - 40 < S - 40 < 60 - 40) = P(-20 < S - 40 < 20)$$

$$P(|S-40| < 20) > 1 - \frac{V(S)}{400} = 1 - \frac{160}{400} = 0.6$$

Sabemos que la suma de exponenciales es gamma

$$S \sim \Gamma(10, 1/4)$$

$$P(20 < S < 60) = pgamma(60, shape = 10, rate = 1/4) -$$

$$pgamma(20, shape = 10, rate = 1/4) = 0.898$$