1. A compound of formula I,

$$R^{1}$$
 R_{x}
 N
 Y
 O
 N
 $CH_{2})_{n}$
 B

wherein

5

 R^1 represents H, C_{1-4} alkyl (optionally substituted by one or more substituents selected from cyano, halo, OH, C(O)OR^{1a} or C(O)N(R^{1b})R^{1c}) or OR^{1d};

 R^{1d} represents H, $C(O)R^{11}$, $SiR^{12}R^{13}R^{14}$ or C_{1-6} alkyl, which latter group is optionally substituted or terminated by one or more substituent selected from OR^{15} or $(CH_2)_qR^{16}$;

R¹², R¹³ and R¹⁴ independently represent H, phenyl or C₁₋₆ alkyl;

R¹⁶ represents C₁₋₄ alkyl, phenyl, OH, C(O)OR¹⁷ or C(O)N(H)R¹⁸;

R¹⁸ represents H, C₁₋₄ alkyl or CH₂C(O)OR¹⁹;

R¹⁵ and R¹⁷ independently represent H, C₁₋₆ alkyl or C₁₋₃ alkylphenyl;

R^{1a}, R^{1b}, R^{1c}, R¹¹ and R¹⁹ independently represent H or C₁₋₄ alkyl; and

20 q represents 0, 1 or 2;

R_x represents a structural fragment of formula IIa, IIb or IIc,

 R^2 R^4

llc

5 wherein

the dotted lines independently represent optional bonds;

A and E independently represent O or S, CH or CH_2 (as appropriate), or N or $N(R^{21})$ (as appropriate);

D represents -CH₂-, O, S, N(R 12), -(CH₂)₂-, -CH=CH-, -CH₂N(R 22)-,

 $-N(R^{22})CH_2$ -, -CH=N-, $-N=CH_2$ -, $-CH_2O$ -, $-OCH_2$ -, $-CH_2S$ - or $-SCH_2$ -;

 X_1 represents C_{2-4} alkylene; C_{2-3} alkylene interrupted by Z; $-C(O)-Z-A^1-$;

 $-Z-C(O)-A^1-$; $-CH_2-C(O)-A^1-$; $-Z-C(O)-Z-A^2-$; $-CH_2-Z-C(O)-A^2-$;

 $-Z-CH_2-C(O)-A^2-$; $-Z-CH_2-S(O)_m A^2-$; $-C(O)-A^3$; $-Z-A^3-$; or $-A^3-Z-$;

 X_2 represents C_{2-3} alkylene, $-C(O)-A^4$ - or $-A^4-C(O)$ -;

15 X₃ represents CH or N;

 X_4 represents a single bond, O, S, C(O), N(R²³), -CH(R²³)-,

-CH(\mathbb{R}^{23})-CH(\mathbb{R}^{24})- or -C(\mathbb{R}^{23})=C(\mathbb{R}^{24})-;

A¹ represents a single bond or C₁₋₂ alkylene;

 A^2 represents a single bond or $-CH_{21}$;

20 A^3 represents C_{1-3} alkylene;

 A^4 represents C(O) or C_{1-2} alkylene;

Z represents, at each occurrence, O, $S(O)_m$ or $N(R^{25})$;

R² and R⁴ independently represent one or more optional substituents

selected from C_{14} alkyl, C_{14} alkoxy (which latter two groups are optionally substituted by one or more halo substituent), methylenedioxy, halo, hydroxy, cyano, nitro, $S(O)_2NH_2$, $C(O)OR^{26}$, SR^{26} , $S(O)R^{26a}$, $S(O)_2R^{26a}$ or $N(R^{27})R^{28}$;

R³ represents one or more optional substituents selected from OH, C₁₋₄ alkoxy, C₁₋₆ alkyl (optionally substituted by one or more halo group), or N(R^{29a})R^{29b};

 R^{25} , R^{29a} and R^{29b} independently represent H, C_{14} alkyl or $C(O)R^{30}$;

R²⁶ represents H or C₁₋₄ alkyl

10 R^{26a} represents C₁₄ alkyl;

 R^{27} and R^{28} independently represent H, $C_{1.4}$ alkyl or $C(O)R^{30}$, or together represent $C_{3.6}$ alkylene, thus forming a 4- to 7-membered ring, which ring is optionally substituted, on a carbon atom that is α to the nitrogen atom, with an =O group;

15 R²¹, R²², R²³, R²⁴ and R³⁰ independently represent, at each occurrence, H or C₁₋₄ alkyl;

Y represents CH_2 , $(CH_2)_2$, CH=CH (which latter group is optionally substituted by C_{1-4} alkyl), $(CH_2)_3$, $CH_2CH=CH$ or $CH=CHCH_2$ (which latter three groups are optionally substituted by C_{1-4} alkyl, methylene, =O or hydroxy);

 R^y represents H or C_{1-4} alkyl;

25 n represents 0, 1, 2, 3 or 4; and

B represents a structural fragment of formula IIIa or IIIc

$$X^{5}$$
 X^{6}
 X^{7}
 X^{8}
 X^{8}
 X^{8}
 X^{1}
 X^{1}
 X^{1}
 X^{2}
 X^{3}
 X^{1}
 X^{2}
 X^{3}
 X^{4}
 X^{5}
 X^{1}
 X^{2}
 X^{3}
 X^{4}
 X^{5}
 X^{5}
 X^{5}
 X^{6}

Illa

IIIc

wherein

X⁵, X⁶, X⁷ and X⁸ independently represent CII, N or N-O;

R³¹ represents an optional substituent selected from halo, C₁₋₄ alkyl (which group is optionally substituted by one or more halo group), N(R³²)R³³, OR³⁴ or SR³⁵;

 R^{32} and R^{33} independently represent H, C_{14} alkyl or $C(O)R^{36}$;

R³⁴, R³⁵ and R³⁶ independently represent H or C₁₋₄ alkyl; and

one of D¹ and D² represents H, and the other represents H, OR^a, NHR^a,

10 C(=X¹¹)X¹²R⁶, or D¹ and D² together represent a structural fragment of formula IVa:-

 R^a represents H or $-A^5[X^{14}]_n[C(O)]_rR^e$;

 R^b represents $-A^5[X^{14}]_n[C(O)]_rR^e$;

A⁵ represents, at each occurrence, a single bond or C_{1-12} alkylene (which alkylene group is optionally interrupted by one or more O, $S(O)_m$ and/or

Vasosoze dzetot

 $N(R^f)$ group, and is optionally substituted by one or more of halo, OH, $N(H)C(O)R^g$, $C(O)N(R^g)R^h$, C_{3-7} cycloalkyl (which cycloalkyl group is optionally interrupted by one or more O, $S(O)_m$ and/or $N(R^f)$ group and/or is optionally substituted by one or more substituents selected from C_{1-6} alkyl, C_{1-6} alkoxy, halo, =O or =S), Het and C_{6-10} aryl (which aryl and Het groups are themselves optionally substituted by one or more substituents selected from C_{1-6} alkyl (optionally substituted by one or more halo substituent), C_{1-6} alkoxy, halo, cyano, $C(O)OR^g$, $C(O)N(R^g)R^h$ and $N(R^f)R^g$);

 R^c and R^d both represent H; or one of R^c and R^d represents H or C_{1-7} alkoxy and the other represents C_{1-7} alkyl (which alkyl group is optionally interrupted by one or more O atoms); or R^c and R^d together represent C_{3-8} cycloalkyl, which cycloalkyl group is interrupted by one or more O, $S(O)_m$ and/or $N(R^f)$ group;

Re represents, at each occurrence, H, C_{1-12} alkyl (which alkyl group is optionally interrupted by one or more O, $S(O)_m$ and/or $N(R^f)$ group, and/or is optionally substituted by one or more substituents selected from halo, OH, $N(H)C(O)R^g$ and $C(O)N(R^g)R^h$), A^7-C_{3-7} -cycloalkyl (which cycloalkyl group is optionally interrupted by one or more O, $S(O)_m$ and/or $N(R^f)$ group and/or is substituted by one or more substituents selected from C_{1-6} alkyl, C_{1-6} alkoxy, halo, =O and =S), A^7-C_{6-10} aryl or A^7 -Het (which aryl and Het groups are optionally substituted by one or more substituents selected from C_{1-6} alkyl (optionally substituted by one or more halo substituent), C_{1-6} alkoxy, halo, cyano, $C(O)OR^g$, $C(O)N(R^g)R^h$ and $N(R^f)R^g$);

 A^7 represents a single bond or C_{1-7} alkylene (which alkylene group is optionally interrupted by one or more O, $S(O)_m$ and/or $N(R^f)$ group, and/or are optionally substituted by one or more of halo, OH, $N(H)COR^g$ and $CON(R^g)R^h$);

V

15

25

Het represents, at each occurrence, a five- to ten-membered heteroaryl group, which may be aromatic in character, containing one or more nitrogen, oxygen or sulphur atoms in the ring system; n and r independently represent 0 or 1;

 X^{11} , X^{12} and X^{14} independently represent O or S;

X¹³ represents O or N(R^f);

Rf represents, at each occurrence, H, C₁₋₄ alkyl or C(O)Rg;

R^g and R^h independently represent, at each occurrence, H or C₁₋₄ alkyl;

and

m represents, at each occurrence, 0, 1 or 2;

or a pharmaceutically acceptable salt thereof;

provided that:

- (a) A and E do not both represent O or S;
- (b) E and D do not both represent O or S;
- (c) when R¹ represents OR^{1d} and X₁ represents -C(O)-Z-A¹,

-Z-CH₂-S(O)_m-A²- or -Z-C(O)-Z-A², then A¹ or A² (as appropriate) do not

20 represent a single bond;

- (f) when X_4 represents -CH(\mathbb{R}^{23})-, \mathbb{R}^1 does not represent OH;
- (g) when A⁵ represents a single bond, then n and r both represent 0;
- (f) when A^5 represents C_{1-12} alkylene, then n represents 1;
- (g) when A⁵ represents -CH₂-, n is 1 and r is 0, then R^e does not represent

25 H; and

- (h) the compound is not:-
- (S)- or (R)-1-hydroxy-7 methoxytetralin-1-yl-C(O)-Pro-Pab;
- (R)- or (S)-1-hydroxy-7-methoxytetralin-1-yl-C(O)-Pro-Pab;
- (S)- or (R)-1-hydroxy-7-methoxytetralin-1-yl-C(O)-Aze-Pab x HOAc;

```
(R)- or (S)-1-hydroxy-\pi-methoxytetralin-1-yl-C(O)-Aze-Pab;
    1-hydroxy-5-methoxytetralin-1-yl-C(O)-Aze-Pab x HOAc;
    1-hydroxy-5,7-dimeth vltetralin-1-yl-C(O)-Aze-Pab x HOAc;
    1-hydroxy-7-aminotetralin-1-yl-C(O)-Aze-Pab x HOAc;
    1-hydroxytetralin-1-yl-C(O)-Aze-Pab x HOAc;
5
    7-methoxytetralin-1-yl\downarrowC(O)-Aze-Pab x HOAc;
    (R)- or (S)-7-methoxy-1-methyltetralin-1-yl-C(O)-Aze-Pab;
    4-hydroxy-6-methoxychroman-4-yl-C(O)-Aze-Pab x OAc;
    (S)- or (R)-1-hydroxy-4-methoxyindan-1-yl-C(O)-Aze-Pab;
    1-hydroxy-5-methoxytetralin-1-yl-C(O)-Aze-Pab(OH);
10
    (S)- or (R)-1-hydroxy-7-methoxytetralin-1-yl-C(O)-Aze-Pab(OH);
     4-hydroxy-6-methoxychroman-4-yl-C(O)-Aze-Pab(OH);
    4-hydroxy-6-methoxychroman-4-yl-C(O)-Aze-Pab(OMe);
    (S)- or (R)-1-hydroxy-7\frac{1}{1}methoxytetralin-1-yl-C(O)-Aze-Pab-
     (C(O)OCH_2CCl_3);
15
     (S)- or (R)-1-hydroxy-7-methoxytetralin-1-yl-C(O)-Aze-Pab-
     (C(O)OCH<sub>2</sub>CH<sub>3</sub>);
     7-methoxy-1-allyltetralin-1-yl-C(O)-Aze-Pab x HOAc;
     (S)- or (R)-1-hydroxy-7-chlorotetralin-1-yl-C(O)-Pro-Pab;
     1-n-propyl-7-methoxytetralin-1-yl-C(O)-Aze-Pab x HOAc;
20
     6-chloro-4-hydroxychroman-4-yl-C(O)-Aze-Pab x HOAc;
     4-hydroxychroman-4-yl-C(O)-Aze-Pab x HOAc;
     6,8-dichloro-4-hydroxydhroman-4-yl-C(O)-Aze-Pab x HOAc;
     6-fluoro-4-hydroxychroman-4-yl-C(O)-Aze-Pab x HOAc;
     4-hydroxy-6-methylchrdman-4-yl-C(O)-Aze-Pab x HOAc;
25
     8-chloro-4-hydroxy-6-methoxychroman-4-yl-C(O)-Aze-Pab x HOAc;
     6-chloro-4-hydroxy-8-methylchroman-4-yl-C(O)-Aze-Pab x HOAc;
     (S)- or (R)-1-hydroxy-7\frac{1}{2}-methoxytetralin-1-yl-C(O)-Aze-Pab(O-C(O)-i-Pr);
     (S)- or (R)-1-hydroxy-7-methoxytetralin-1-yl-C(O)-Aze-Pab(O-C(O)-Et);
```

15

89

(S)- or (R)-1-hydroxy-7-methoxytetralin-1-yl-C(O)-Aze-Pab(O-C(O)-Ch);

(S)- or (R)-1-hydroxy-7-methoxytetralin-1-yl-C(O)-Aze-Pab(O-allyl);

(S)- or (R)-1-hydroxy-7-methoxytetralin-1-yl-C(O)-Aze-Pab(O-Bzl);

(S)- or (R)-1-hydroxy-7-methoxytetralin-1-yl-C(O)-Aze-Pab-

(CO-O-methallyl);

1-hydroxy-7-aminotetralin-1-yl-C(O)-Aze-Pab(OH);

(S)- or (R)-1-hydroxy-7-methoxytetralin-1-yl-C(O)-Aze-Pab(O-Val);

(S)- or (R)-1-hydroxy-7-methoxytetralin-1-yl-C(O)-Aze-(Me)Pab; or 9-hydroxyfluoren-9-yl-C(O)-Aze-Pab x HOAc.

2. A compound as claimed in Claim 1 wherein R¹ represents OH or C₁₋₄ alkyl (which latter group is optionally substituted by cyano or OH).

3. A compound as claimed in any one of the preceding claims wherein R, represents a structural fragment of formula IIa or IIb.

4. A compound as claimed in any one of the preceding claims wherein, when R, represents a structural fragment of formula IIa, then the dotted lines represent bonds, A and E both represent CH and D represents

-CH = CH -;20

> 5. A compound as claimed in any one of the preceding claims wherein, when R_x represents a structural fragment of formula IIa, X₁ represents optionally unsaturated C2- or C3-alkylene, or -Z-A3 (in which Z represents O, $S(O)_m$ or $N(R^{25})$ (in which R^{25} is as defined in Claim 1 or represents C_{14} alkyl or $C(O)R^{30}$ and m and R^{30} are as defined in Claim 1) and A^3 represents C₁- or C₂-alkylene (which latter group is optionally unsaturated)).

6. A compound as claimed in any one of the preceding claims—wherein Y represents CH_2 , $(CH_2)_2$ or $(CH_2)_3$.

7. A compound as claimed in any one of the preceding claims wherein B represents a structural fragment of formula IIIa in which X^5 , X^6 , X^7 and X^8 all represent CH.

8. A compound as claimed in any one of the preceding claims wherein, when D^1 and D^2 together represent a structural fragment of formula IVa, in which X^{13} is O, then one of R^c and R^d represents H or C_{1-7} alkoxy and the other represents C_{1-7} alkyl.

- 9. A compound as claimed in any one of Claims 1 to 7, wherein, when D^1 or D^2 represents OR^a and R^a represents $-A^5[X^{14}]_n[C(O)]_rR^e$, and
- 15 (i) A⁵ is a single bond, then R^e is:-
 - (1) A^7 -aryl, optionally substituted by one or more halo, C_{1-6} alkoxy, C_{1-6} alkyl or halo- C_{1-6} -alkyl substituents; or
 - (2) H or linear, branched, optionally unsaturated, and/or cyclic, C_{1-12} alkyl, which cyclic alkyl group is optionally interrupted by an O atom and, optionally, a further O atom or $S(O)_m$ group; or when (ii) A^5 is linear or branched C_{1-12} alkylene, X^{14} is O and r is 0, then R^e is C_{1-3} alkyl or A^7 -aryl, in which A^7 is a single bond.
- 10. A compound as claimed in any one of Claims 1 to 7 or 9; wherein,
 when D¹ or D² represents OR^a, then R^a is H or C₁₋₄ alkyl.
 - 11. A compound as claimed in any one of Claims 1 to 7, wherein, when D^1 or D^2 represents $-C(=X^{11})X^{12}R^b$, in which X^{11} represents O and X^{12} represents O or S, and, in which R^b group, A^5 represents a single bond.

then R^e represents optionally unsaturated C_{1-6} alkyl, A^7 - C_{6-10} -aryl (in which A^7 represents a single bond or C_{1-2} alkylene, and which A^7 - C_{6-10} -aryl group is optionally substituted by one or more halo, C_{1-4} alkyl and/or C_{1-4} alkoxy groups), or A^7 - C_{3-7} -cycloalkyl, in which A^7 represents a single bond or linear or branched C_{1-7} alkylene, and which cycloalkyl group is optionally substituted by C_{1-3} alkyl.

12. A compound of formula I, as defined in any one of the preceding elaims, wherein the fragment

10

15

25

5

is in the S-configuration.

- 13. A pharmaceutical formulation including a compound as defined in any one of Claims 1 to 12, or a pharmaceutically acceptable salt thereof, in admixture with a pharmaceutically acceptable adjuvant, diluent or carrier.
- 14. A compound as defined in any one of Claims 1 to 12, or a pharmaceutically acceptable salt thereof, for use as a pharmaceutical.
- 20 15 A compound as defined in any one of Claims 1 to 12, or a pharmaceutically acceptable salt thereof, for use in the treatment of a condition where inhibition of thrombin is required.
 - 16. A compound as defined in any one of Claims 1 to 12, or a pharmaceutically acceptable salt thereof, for use in the treatment of.

thrombosis.

5

10

15

17. A compound as defined in any one of Claims 1 to 12, or a pharmaceutically acceptable salt thereof, for use as an anticoagulant.

18. The use of a compound as defined in any one of Claims 1 to 12, or a pharmaceutically acceptable salt thereof, as active ingredient in the manufacture of a medicament for the treatment of a condition where inhibition of thrombin is required.

19. The use as claimed in Claim 18, wherein the condition is thrombosis.

- 20. The use of a compound as defined in any one of Claims 1 to 12, or a pharmaceutically acceptable salt thereof, as active ingredient in the manufacture of an anticoagulant.
- 21. A method of treatment of a condition where inhibition of thrombin is required which method comprises administration of a therapeutically effective amount of a compound as defined in any one of Claims 1 to 12, or a pharmaceutically acceptable salt thereof, to a person suffering from, or susceptible to, such a condition.
- 22. A method as claimed in Claim 21, wherein the condition is thrombosis.
- 23. A method as claimed in Claim 21, wherein the condition is hypercoagulability in blood and tissues.

24. A process for the preparation of compounds of formula I which.

25

. #

comprises:

(i) the coupling of a compound of formula IV,

$$R^1$$
 R_X OH

93

wherein R^1 and R_x are as defined in Claim 1 with a compound of formula

B)-v,

15

$$V$$

$$O = \begin{pmatrix} V & V & V \\ V & V & V \\ V & V & V \end{pmatrix}$$

$$C = \begin{pmatrix} V & V & V \\ V & V & V \\ V & V & V \end{pmatrix}$$

wherein Ry, Y, n and B are as defined in Claim 1;

(ii) the coupling of a compound of formula VI,

$$R^1$$
 R_X
 N
 VI
 O
 OH

wherein R¹, R_x and Y are as defined in Claim 1 with a compound of formula VII,

$$H(R^y)N-(CH_2)_n-B$$
 VII

wherein Ry, n and B are as defined in Claim 1;

(iii) for compounds of formula I in which D^1 or D^2 represents OR^a or NHR^a , reaction of a compound of formula VIII,

VIII

5

10

15

wherein B1 represents a structural fragment of formula IIId or IIIf

and R^1 , R_x , Y, R^y , n, R^{31} X^5 , X^6 , X^7 and X^8 are as defined in Claim 1 with a compound of formula IX,

 $H_2NX^aR^a$ IX

wherein X^a represents O or NH and R^a is as defined in Claim 1;

- (iv) for compounds of formula I in which D¹ or D² represents OR^a or NHR^a, reaction of a compound of formula I in which D¹ or D² (as appropriate) represents C(O)OR^{b1}, in which R^{b1} represents a protecting group with a compound of formula IX as defined above;
- (v) for compounds of formula I in which D^1 or D^2 represents OR^a or NHR^a , R^a represents $-A^5[X^4]_n[C(O)]_rR^c$, in which A^5 does not represent a single bond, and n represent 1, reaction of a compound of formula I in which D^1 or D^2 (as appropriate) represents OH or NH_2 , with a compound

 $L^{1}A^{5a}[X^{14}][C(O)]_{r}R^{e}$

X

wherein L1 represents a suitable leaving group, A5a represents A5, as defined in Claim 1 except that it does not represent a single bond, and X14, r and Re are as defined in Claim 1;

(vi) for compounds of formula I in which D1 or D2 represents OR2 or NHR^a, R^a represents $-A^5[X^{14}]_0[C(O)]_rR^e$, in which A^5 represents C_{2-12} alkylene, which alkylene group is branched at the carbon atom that is α to the O or N atom of ORa or NHRa (as appropriate), and which group is optionally branched at the carbon atom that is β to that atom, n represents 1, r represents 0 and Re is as defined in Claim 1, reaction of a compound of formula I in which D^1 or D^2 (as appropriate) represents OH or NH_2 , with a compound of formula XI,

XII

or a geometrical isomer thereof, or a mixture of such geometrical isomers, in which Rb1 and Rb3 each represent H or an alkyl group, provided that the total number of carbon atoms provided by Rb1 and Rb3 does not exceed 10, and wherein X14 and Re are as defined in Claim 1;

(vii) for compounds of formula I in which D1 or D2 represents ORa or NHR^a, R^a represents $-A^{5}[X^{14}]_{n}[C(\Phi)]_{r}R^{e}$, in which A⁵ represents a single bond, and Re represents A7-C3-6-cycloalkyl, in which A7 represents a single bond, and the cycloalkyl group is interrupted by at least one O or S atom, which atom is between the carbon atom at the point of attachment to the O or NH group of OR^a or NHR^a, and a carbon atom that is a to that point of attachment, and which cy¢loalkyl group is optionally interrupted by one or more O or S(O)_m group and/or optionally substituted by one or

10

5

25

20

10

15

20

25

more = O group, reaction of a compound of formula I, in which D^1 or D^2 (as appropriate) represents OH or NH_2 , with a compound of formula XII,

wherein X^{15} represents O or S and X^{16} represents C_{1-4} alkylene (which alkylene group is optionally interrupted by one or more O or $S(O)_m$ group and/or optionally substituted by one or more =O group);

(viii) for compounds of formula I in which D^1 or D^2 represents $C(X^{11})X^{12}R^b$, reaction of a compound of formula I in which D^1 and D^2 both represent H with a compound of formula XIII,

$$L^2-C(X^{11})X^{12}R^b$$
 XIII

wherein L² represents a suitable leaving group, and X¹¹, X¹² and R^b are as defined in Claim 1;

(ix) for compounds of formula I in which D^1 and D^2 together represent a structural fragment of formula IVal reaction of a corresponding compound of formula I in which D^1 or D^2 represents OH or NHR^f (in which R^f is as defined in Claim 1), with a compound of formula XV,

$$(R^{c})(R^{d})\dot{q}(R^{c1})(R^{c2}) \qquad \qquad XV$$

wherein R^{c1} and R^{c2} both represent $-OR^{c3}$, in which R^{c3} represents C_{1-3} alkyl, or together represent =O, and R^{c} and R^{d} are as defined in Claim 1;

- (x) for compounds of formula I in which one or more of X^5 , X^6 , X^7 and X^8 represent N-O, oxidation of a corresponding compound of formula I in which X^5 , X^6 , X^7 and/or X^8 (as appropriate) represent(s) N; or
- (xi) for compounds of formula I in which any one of Z, X_1 , R^2 , R^4 , A^5 , A^7 , R^c , R^d and/or R^e comprises or includes a S(O) or a S(O)₂ group, oxidation of a corresponding compound of formula I (or a compound corresponding to a compound of formula I) wherein Z, X_1 , R^2 , R^4 , A^5 , A^7 , R^c , R^d and/or R^e (as appropriate) comprise(s) or include(s) a S group;

(xii) for compounds of formula I in which D^1 and D^2 both represent H, removal of a OR^a , NHR^a or $C(=X^{11})X^{12}R^b$ group (in which R^a , R^b , X^{11} and X^{12} are as defined in Claim 1), or removal of a structural fragment of formula IVa as defined in Claim 1, from a corresponding compound of formula I; or

(xiii) introduction and/or interconversion of a substituent on an aromatic and/or non-aromatic, carbocyclic and/or heterocyclic ring in a corresponding compound of formula I.

10