Olympiades Françaises de Mathématiques 2014-2015

Envoi Numéro 4

À renvoyer au plus tard le samedi 14 février

Les consignes suivantes sont à lire attentivement :

Le groupe B est constitué des élèves nés en 2000 ou après, avec les exceptions suivantes :

- * les élèves de Terminale sont dans le groupe A,
- * les élèves de Seconde et Première qui étaient à l'OFM en 2013-2014 sont dans le groupe A. Les autres élèves sont dans le groupe A.
- Les exercices classés « Groupe B » ne sont à chercher que par les élèves du groupe B.
- Les exercices classés « communs » sont à chercher par tout le monde.
- Les exercices classés « Groupe A » ne sont à chercher que par les élèves du groupe A.
- Les exercices doivent être cherchés de manière individuelle.
- Utiliser des feuilles différentes pour des exercices différents.
- Respecter la numérotation des exercices.
- Bien préciser votre nom sur chaque copie.

Exercices du groupe B

Exercice 1. Soit a, b et c des réels tels que

$$|a-b| \ge |c|$$
, $|b-c| \ge |a|$ et $|c-a| \ge |b|$.

Prouver que l'un des trois nombres a, b et c est la somme des deux autres.

Exercice 2. Déterminer tous les nombres irrationnels x pour lesquels les deux nombres $x^2 + x$ et $x^3 + 2x^2$ sont des entiers.

Exercice 3. Soit x un réel strictement positif tel que $x^5 - x^3 + x \ge 3$. Prouver que $x^6 \ge 5$.

Exercice 4. Déterminer tous les réels t pour lesquels le polynôme

$$P(x) = x^3 + 3tx^2 + (4t - 1)x + t$$

possède deux racines réelles dont la différence est égale à 1.

Exercices communs

Exercice 5. D éterminer toutes les fonctions $f: \mathbb{Z} \to \mathbb{Z}$ telles

$$f(2m + f(m) + f(m)f(n)) = nf(m) + m$$

pour tous les entiers m et n.

Exercice 6. Soit P un polynôme à coefficients entiers, de degré n, avec $n \le 10$. On suppose que |P(10) - P(0)| < 1000 et que, pour tout $k \in \{1, ..., 10\}$, il existe un entier m tel que P(m) = k. Montrer que, pour tout entier k il existe un entier m tel que P(m) = k.

Exercices du groupe A

Exercice 7. Soit $n \ge 0$ un entier, et x_1, x_2, \dots, x_{n+1} des réels strictement positifs tels que $\prod_{k=1}^{n+1} x_i = 1$.

Prouver que

$$\sqrt[x_1]{n} + \sqrt[x_2]{n} + \dots + \sqrt[x_{n+1}]{n} \geqslant n \sqrt[n]{x_1} + n \sqrt[n]{x_2} + \dots + n \sqrt[n]{x_{n+1}}.$$

Exercice 8. Déterminer toutes les fonctions $f : \mathbb{R}^{+*} \longmapsto \mathbb{R}^{+*}$ telles que

$$f\left(\frac{y}{f(x+1)}\right) + f\left(\frac{x+1}{xf(y)}\right) = f(y)$$

pour tous $x, y \in \mathbb{R}_+^*$.

Exercice 9. Soit $a \in]0; 1[$ et n > 0 un entier. On note f_n la fonction définie sur \mathbb{R} par $f_n(x) = x + \frac{x^2}{n}$, pour tout réel x. Prouver que

$$\frac{\alpha(1-\alpha)n^2+2\alpha^2n+\alpha^3}{(1-\alpha)^2n^2+\alpha(2-\alpha)n+\alpha^2}<\underbrace{(f_n\circ f_n\circ \dots \circ f_n)}_n(\alpha)<\frac{\alpha n+\alpha^2}{(1-\alpha)n+\alpha}.$$

Exercice 10. Déterminer tous les polynômes P à coefficients entiers pour lesquels l'ensemble $P(\mathbb{N})$ contient une suite géométrique infinie de raison \mathfrak{a} avec $\mathfrak{a} \notin \{-1,0,1\}$ et de premier terme non nul.