Transcriptome profiling in *Leishmania* amazonensis promastigotes associated with virulence attenuation

Gabriela Flavia Rodrigues-Luiz¹, Mariana Costa Duarte², Daniel Menezes-Souza², Ricardo Toshio Fujiwara¹, Eduardo Antonio Ferraz Coelho², Daniella Castanheira Bartholomeu¹

¹Instituto de Ciencias Biologicas Universidade Federal de Minas Gerais, ²Colegio Tecnico Universidade Federal de Minas Gerais

Leishmaniasis is one of the most important neglected tropical diseases an it is known that in vitro cultivation of Leishmania spp. for long periods results in a progressive loss of virulence. The focus of this work was to integrate -omic data with bioinformatics resources to contribute to a better understanding of an important biological aspect of this parasite: the loss of virulence after successive periods of in vitro cultivation. For this purpose, we evaluated by RNA-seq the difference in expression profile of L. amazonensis promastigates freshly isolated from experimentally infected mice (R0) and parasites that were cultured after 30 passages in vitro in Schneider's Insect Medium (R30). We have identified 683 genes with significant differential expression, 64.12% of which with decreased expression in R30 compared with R0. This study showed that the loss of virulence in L. amazonensis after successive periods of in vitro cultivation are likely to be associated with parasitehost interactions mediated by parasite surface proteins, stress tolerance and metabolism of amino acids and fatty acids. Furthermore, we disclosed several other genes that are possibly associated with Leishmania virulence and are good candidates for further functional studies. In this study we have also investigate the presence of viral sequences in the L. amazonensis RNA-seq reads. To this end, we assembled reads that were not mapped against the Leishmania amazonensis reference genome using the Trinity software and performed a Blast search against the NCBI non-redundant database. The results were manually filtered by length and e-value. We identified 35 putative viral unigenes and, based on their sequence similarity, the sequences belong to Picornavirales order and Baculoviridae family. Further studies are necessary to confirm the identity and phylogeny of these putative virus sequences. Once the virus identity is confirmed, the impact of these viruses on the virulence of *L. amazonensis* will be investigated.