Quantum Field Theory

May 28, 2008

Contents

1	Derivation from the Standard Model			
	1.1	Electroweak Standard Model		
		1.1.1	Higgs Terms	
		1.1.2	Yukawa terms	
		1.1.3	Gauge terms	
	1.2	OED		

1 Derivation from the Standard Model

1.1 Electroweak Standard Model

Lagrangian with a global $SU(2) \times U(1)$ symmetry:

$$L=i\bar{L}^{(l)}\gamma_{\mu}\partial^{\mu}L^{(l)}+i\bar{e}_{R}\gamma_{\mu}\partial^{\mu}e_{R}+\frac{1}{2}\partial_{\mu}\Phi^{*}\partial^{\mu}\Phi-m^{2}\Phi^{*}\Phi-\frac{1}{4}\lambda(\Phi^{*}\Phi)^{2}-h_{e}\bar{L}^{(l)}\Phi e_{R}-\text{h.c.}$$

where $l = e, \mu, \tau$ and a = 1, 2.

Local $SU(2) \times U(1)$ symmetry:

This consists of two things. First changing the partial derivatives to covariant ones:

$$\partial^{\mu} \rightarrow D^{\mu} = \partial^{\mu} - \frac{i}{2}g\tau_k A_k^{\mu} - \frac{i}{2}g'YB^{\mu}$$

and second adding the kinetic terms

$$-\frac{1}{4}F^a_{\mu\nu}F^{a\mu\nu} - \frac{1}{4}B_{\mu\nu}B^{\mu\nu}$$

of the vector gauge particles to the lagrangian.

$$\begin{split} F^a_{\mu\nu} &= \partial_\mu A^a_\nu - \partial_\nu A^a_\mu + g \epsilon^{abc} A^b_\mu A^c_\nu \\ B_{\mu\nu} &= \partial_\mu B_\nu - \partial_\nu B_\mu \end{split}$$

$$\Phi = e^{\frac{i}{v}\pi^a(x)\tau^a} \begin{pmatrix} 0 \\ \frac{1}{\sqrt{2}}(v + H(x)) \end{pmatrix}$$

This breaks the gauge invariance. The $\partial^{\mu}\pi^a$ are going to be added to A^a_{μ} so we can set $\pi_a=0$ now.

1.1.1 Higgs Terms

$$L_{Higgs} = \frac{1}{2} \partial_{\mu} \Phi^* \partial^{\mu} \Phi - m^2 \Phi^* \Phi - \frac{1}{4} \lambda (\Phi^* \Phi)^2$$

Plugging in the covariant derivatives and Φ in U-gauge (symmetry breaking):

$$\begin{split} L_{Higgs} &= \frac{1}{2} \Phi^+ (\overleftarrow{\partial}_{\mu} + igA_{\mu}^a \frac{\tau^a}{2} + ig'YB_{\mu}) (\overrightarrow{\partial}^{\mu} + igA^{a\mu} \frac{\tau^a}{2} + ig'YB^{\mu}) \Phi - \lambda (\Phi^+ \Phi - \frac{v^2}{2})^2 = \\ &= \Phi_U^+ (\overleftarrow{\partial}_{\mu} + igA_{\mu}^a \frac{\tau^a}{2} + ig'YB_{\mu}) (\overrightarrow{\partial}^{\mu} + igA^{a\mu} \frac{\tau^a}{2} + ig'YB_{\mu}) \Phi_U - \lambda (\Phi_U^+ \Phi_U - \frac{v^2}{2})^2 = \\ &= \frac{1}{2} \partial_{\mu} H \partial^{\mu} H - \lambda v^2 H^2 - \lambda v H^3 - \frac{1}{4} \lambda H^4 + \\ &+ \frac{1}{8} (v + H)^2 \left(2g^2 \frac{A_{\mu}^1 + iA_{\mu}^2}{\sqrt{2}} \frac{A^{1\mu} - iA^{2\mu}}{\sqrt{2}} + (g^2 + 4Y^2 g'^2) \frac{gA_{\mu}^3 - 2Yg'B_{\mu}}{\sqrt{g^2 + 4Y^2 g'^2}} \frac{gA^{3\mu} - 2Yg'B^{\mu}}{\sqrt{g^2 + 4Y^2 g'^2}} \right) = \\ &= \frac{1}{2} \partial_{\mu} H \partial^{\mu} H - \lambda v^2 H^2 - \lambda v H^3 - \frac{1}{4} \lambda H^4 + \frac{1}{8} (v + H)^2 \left(2g^2 W_{\mu}^- W^{+\mu} + (g^2 + 4Y^2 g'^2) Z_{\mu} Z^{\mu} \right) = \\ &= \frac{1}{2} \partial_{\mu} H \partial^{\mu} H - \lambda v^2 H^2 + \frac{1}{4} g^2 v^2 W_{\mu}^- W^{+\mu} + \frac{1}{8} (g^2 + 4Y^2 g'^2) Z_{\mu} Z^{\mu} - \lambda v H^3 - \frac{1}{4} \lambda H^4 + \\ &+ \frac{1}{2} v H g^2 W_{\mu}^- W^{+\mu} + \frac{1}{4} v H (g^2 + 4Y^2 g'^2) Z_{\mu} Z^{\mu} + \frac{1}{4} H^2 g^2 W_{\mu}^- W^{+\mu} + \frac{1}{8} H^2 (g^2 + 4Y^2 g'^2) Z_{\mu} Z^{\mu} \end{split}$$
 Where we put

$$W_{\mu}^{\pm} = \frac{1}{\sqrt{2}} (A_{\mu}^{1} \mp i A_{\mu}^{2})$$

$$Z_{\mu} = \frac{g}{\sqrt{g^{2} + 4Y^{2}g'^{2}}} A_{\mu}^{3} - \frac{2Yg'}{\sqrt{g^{2} + 4Y^{2}g'^{2}}} B_{\mu}$$

Now we define θ_W by the relation

$$\cos \theta_W = \frac{g}{\sqrt{g^2 + 4Y^2 g'^2}}$$

so that we can then write:

$$Z_{\mu} = \cos \theta_W A_{\mu}^3 - \sin \theta_W B_{\mu}$$

1.1.2 Yukawa terms

$$\begin{split} L_{Yukawa} &= -h_l \bar{L} \Phi e_R - \text{h.c.} = -h_l \bar{L} \Phi_U e_R - \text{h.c.} = \\ &= -\frac{1}{\sqrt{2}} h_l (v+H) (\bar{e}_L e_R + \bar{e}_R e_L) = -\frac{1}{\sqrt{2}} h_l (v+H) \bar{e}e = \\ &= -\frac{1}{\sqrt{2}} h_l v \bar{e}e - \frac{1}{\sqrt{2}} h_l \bar{e}eH \end{split}$$

1.1.3 Gauge terms

$$L_{Gauge} = -\frac{1}{4}F^a_{\mu\nu}F^{a\mu\nu} - \frac{1}{4}B_{\mu\nu}B^{\mu\nu}$$

1.2 QED

The QED Lagrangian density is

$$L = \bar{\psi}(ic\gamma^{\mu}D_{\mu} - mc^2)\psi - \frac{1}{4}F_{\mu\nu}F^{\mu\nu}$$

where

$$\psi = (\psi_1 \psi_2 \psi_3 \psi_4)$$

and

$$D_{\mu} = \partial_{\mu} + ieA_{\mu}$$

is the gauge covariant derivative and (e is the elementary charge, which is 1 in atomic units)

$$F_{\mu\nu} = \partial_{\mu}A_{\nu} - \partial_{\nu}A_{\mu}$$

is the electromagnetic field tensor. It's astonishing, that this simple Lagrangian can account for all phenomena from macroscopic scales down to something like 10^{-13} cm. So of course Feynman, Schwinger and Tomonaga received the 1965 Nobel Prize in Physics for such a fantastic achievement.

Plugging this Lagrangian into the Euler-Lagrange equation of motion for a field, we get:

$$(ic\gamma^{\mu}D_{\mu} - mc^{2})\psi = 0$$
$$\partial_{\nu}F^{\nu\mu} = -ec\bar{\psi}\gamma^{\mu}\psi$$

The first equation is the Dirac equation in the electromagnetic field and the second equation is a set of Maxwell equations $(\partial_{\nu}F^{\nu\mu}=-ej^{\mu})$ with a source $j^{\mu}=c\bar{\psi}\gamma^{\mu}\psi$, which is a 4-current comming from the Dirac equation.

The fields ψ and A^{μ} are quantized. The first approximation is that we take ψ as a wavefunction, that is, it is a classical 4-component field. It can be shown that this corresponds to taking three orders in the perturbation theory.

The first component A_0 of the 4-potential is the electric potential, and because this is the potential that (as we show in a moment) is in the Schrödinger equation, we denote it by V:

$$A_{\mu} = \left(\frac{V}{ec}, A_1, A_2, A_3\right)$$

So in the non-relativistic limit, the $\frac{V}{e}$ corresponds to the electric potential. We multiply the Dirac equation by γ^0 from left to get:

$$0 = \gamma^0 (ic\gamma^\mu D_\mu - mc^2)\psi = \gamma^0 (ic\gamma^0 (\partial_0 + i\frac{V}{c}) + ic\gamma^i (\partial_i + ieA_i) - mc^2)\psi =$$
$$= (ic\partial_0 + ic\gamma^0 \gamma^i \partial_i - \gamma^0 mc^2 - V - ce\gamma^0 \gamma^i A_i)\psi$$

and we make the following substitutions (it's just a formalism, nothing more): $\beta = \gamma^0$, $\alpha^i = \gamma^0 \gamma^i$, $p_j = -i\partial_j$, $\partial_0 = \frac{1}{c} \frac{\partial}{\partial t}$ to get

$$(i\frac{\partial}{\partial t} - c\alpha^{i}p_{i} - \beta mc^{2} - V - ce\alpha^{i}A_{i})\psi = 0.$$

This, in most solid state physics texts, is usually written as

$$i\frac{\partial\psi}{\partial t} = H\psi\,,$$

where the Hamiltonian is given by

$$H = c\alpha^{i}(p_{i} + eA_{i}) + \beta mc^{2} + V.$$

The right hand side of the Maxwell equations is the 4-current, so it's given by:

$$j^{\mu} = c\bar{\psi}\gamma^{\mu}\psi$$

Now we make the substitution $\psi=e^{-imc^2t}\varphi$, which states, that we separate the largest oscillations of the wavefunction and we get

$$j^{0} = c\bar{\psi}\gamma^{0}\psi = c\psi^{\dagger}\psi = c\varphi^{\dagger}\varphi$$
$$j^{i} = c\bar{\psi}\gamma^{i}\psi = c\psi^{\dagger}\alpha^{i}\psi = c\varphi^{\dagger}\alpha^{i}\varphi$$

The Dirac equation implies the Klein-Gordon equation:

$$(-ic\gamma^{\mu}D_{\mu} - mc^{2})(ic\gamma^{\nu}D_{\nu} - mc^{2})\psi = (c^{2}\gamma^{\mu}\gamma^{\nu}D_{\mu}D_{\mu} + m^{2}c^{4})\psi =$$
$$= (c^{2}D^{\mu}D_{\mu} - ic^{2}[\gamma^{\mu}, \gamma^{\nu}]D_{\mu}D_{\nu} + m^{2}c^{4})\psi = 0$$

Note however, the ψ in the true Klein-Gordon equation is just a scalar, but here we get a 4-component spinor. Now:

$$\begin{split} D_{\mu}D_{\nu} &= (\partial_{\mu} + ieA_{\mu})(\partial_{\nu} + ieA_{\nu}) = \partial_{\mu}\partial_{\nu} + ie(A_{\mu}\partial_{\nu} + A_{\nu}\partial_{\mu} + (\partial_{\mu}A_{\nu})) - e^{2}A_{\mu}A_{\nu} \\ \\ [D_{\mu}, D_{\nu}] &= D_{\mu}D_{\nu} - D_{\nu}D_{\mu} = ie(\partial_{\mu}A_{\nu}) - ie(\partial_{\nu}A_{\mu}) \end{split}$$

We rewrite $D^{\mu}D_{\mu}$:

$$D^{\mu}D_{\mu} = g^{\mu\nu}D_{\mu}D_{\nu} = \partial^{\mu}\partial_{\mu} + ie((\partial^{\mu}A_{\mu}) + 2A^{\mu}\partial_{\mu}) - e^{2}A^{\mu}A_{\mu} =$$

$$= \partial^{\mu}\partial_{\mu} + ie((\partial^{0}A_{0}) + 2A^{0}\partial_{0} + (\partial^{i}A_{i}) + 2A^{i}\partial_{i}) - e^{2}(A^{0}A_{0} + A^{i}A_{i}) =$$

$$= \partial^{\mu}\partial_{\mu} + i\frac{1}{c^{2}}\frac{\partial V}{\partial t} + 2i\frac{V}{c^{2}}\frac{\partial}{\partial t} + ie(\partial^{i}A_{i}) + 2ieA^{i}\partial_{i} - \frac{V^{2}}{c^{2}} - e^{2}A^{i}A_{i}$$

We use the identity $\frac{\partial}{\partial t} \left(e^{-imc^2t} f(t) \right) = e^{-imc^2t} \left(-imc^2 + \frac{\partial}{\partial t} \right) f(t)$ to get:

$$L = c^2 \partial^{\mu} \psi^* \partial_{\mu} \psi - m^2 c^4 \psi^* \psi = \frac{\partial}{\partial t} \psi^* \frac{\partial}{\partial t} \psi - c^2 \partial^i \psi^* \partial_i \psi - m^2 c^4 \psi^* \psi =$$

$$= (imc^{2} + \frac{\partial}{\partial t})\varphi^{*}(-imc^{2} + \frac{\partial}{\partial t})\varphi - c^{2}\partial^{i}\varphi^{*}\partial_{i}\varphi - m^{2}c^{4}\varphi^{*}\varphi =$$

$$= 2mc^{2} \left[\frac{1}{2}i(\varphi^{*}\frac{\partial\varphi}{\partial t} - \varphi\frac{\partial\varphi^{*}}{\partial t}) - \frac{1}{2m}\partial^{i}\varphi^{*}\partial_{i}\varphi + \frac{1}{2mc^{2}}\frac{\partial\varphi^{*}}{\partial t}\frac{\partial\varphi}{\partial t} \right]$$

The constant factor $2mc^2$ in front of the Lagrangian is of course irrelevant, so we drop it and then we take the limit $c \to \infty$ (neglecting the last term) and we get

$$L = \frac{1}{2}i(\varphi^* \frac{\partial \varphi}{\partial t} - \varphi \frac{\partial \varphi^*}{\partial t}) - \frac{1}{2m} \partial^i \varphi^* \partial_i \varphi$$

After integration by parts we arrive at

$$L = i\varphi^* \frac{\partial \varphi}{\partial t} - \frac{1}{2m} \partial^i \varphi^* \partial_i \varphi$$

The nonrelativistic limit can also be applied directly to the Klein-Gordon equation:

$$\begin{aligned} 0 &= (c^2D^\mu D_\mu + m^2c^4)\psi = \\ &= \left(c^2\partial^\mu\partial_\mu + i\frac{\partial V}{\partial t} + 2iV\frac{\partial}{\partial t} + iec^2(\partial^iA_i) + 2iec^2A^i\partial_i - V^2 - e^2c^2A^iA_i + m^2c^4\right)e^{-imc^2t}\varphi = \\ &= \left(\frac{\partial^2}{\partial t^2} - c^2\nabla^2 + 2iV\frac{\partial}{\partial t} + i\frac{\partial V}{\partial t} + iec^2(\partial^iA_i) + 2iec^2A^i\partial_i - V^2 - e^2c^2A^iA_i + m^2c^4\right)e^{-imc^2t}\varphi = \\ &= e^{-imc^2t}\left((-imc^2 + \frac{\partial}{\partial t})^2 - c^2\nabla^2 + 2iV(-imc^2 + \frac{\partial}{\partial t}) + i\frac{\partial V}{\partial t} + iec^2(\partial^iA_i) + 2iec^2A^i\partial_i - V^2 + e^2c^2A^iA_i + m^2c^4\right)\varphi = \\ &= e^{-imc^2t}\left(-2imc^2\frac{\partial}{\partial t} + \frac{\partial^2}{\partial t^2} - c^2\nabla^2 + 2Vmc^2 + 2iV\frac{\partial}{\partial t} + i\frac{\partial V}{\partial t} + iec^2(\partial^iA_i) + 2iec^2A^i\partial_i - V^2 + e^2c^2A^iA_i\right)\varphi = \\ &= -2mc^2e^{-imc^2t}\left(i\frac{\partial}{\partial t} + \frac{\nabla^2}{2m} - V - \frac{1}{2mc^2}\frac{\partial^2}{\partial t^2} - \frac{i}{2mc^2}\frac{\partial V}{\partial t} + \frac{V^2}{2mc^2} - \frac{iV}{mc^2}\frac{\partial}{\partial t} + e^2c^2A^iA_i\right)\varphi + e^2c^2A^iA_i + e^2c^2A^iA_i\right)\varphi = \\ &= -2mc^2e^{-imc^2t}\left(i\frac{\partial}{\partial t} + \frac{\nabla^2}{2m} - V - \frac{1}{2mc^2}\frac{\partial^2}{\partial t^2} - \frac{i}{2mc^2}\frac{\partial V}{\partial t} + \frac{V^2}{2mc^2} - \frac{iV}{mc^2}\frac{\partial}{\partial t} + e^2c^2A^iA_i\right)\varphi + e^2c^2A^iA_i + e^2c^2A^iA_i\right)\varphi = \\ &= -2mc^2e^{-imc^2t}\left(i\frac{\partial}{\partial t} + \frac{\nabla^2}{2m} - V - \frac{1}{2mc^2}\frac{\partial^2}{\partial t^2} - \frac{i}{2mc^2}\frac{\partial V}{\partial t} + \frac{V^2}{2mc^2} - \frac{iV}{mc^2}\frac{\partial}{\partial t} + e^2c^2A^iA_i\right)\varphi + e^2c^2A^iA_i + e^2c^2A^iA_i\right)\varphi = \\ &= -2mc^2e^{-imc^2t}\left(i\frac{\partial}{\partial t} + \frac{\nabla^2}{2m} - V - \frac{1}{2mc^2}\frac{\partial^2}{\partial t^2} - \frac{i}{2mc^2}\frac{\partial V}{\partial t} + \frac{V^2}{2mc^2} - \frac{iV}{mc^2}\frac{\partial}{\partial t} + e^2c^2A^iA_i\right)\varphi + e^2c^2A^iA_i + e^2c^2A^iA_i\right)\varphi = \\ &= -2mc^2e^{-imc^2t}\left(i\frac{\partial}{\partial t} + \frac{\nabla^2}{2m} - V - \frac{1}{2mc^2}\frac{\partial^2}{\partial t^2} - \frac{i}{2mc^2}\frac{\partial V}{\partial t} + \frac{V^2}{2mc^2} - \frac{iV}{mc^2}\frac{\partial}{\partial t} + e^2c^2A^iA_i\right)\varphi + e^2c^2A^iA_i + e^2c^2A^iA_i\right)\varphi = \\ &= -2mc^2e^{-imc^2t}\left(i\frac{\partial}{\partial t} + \frac{\nabla^2}{2m} - V - \frac{1}{2mc^2}\frac{\partial^2}{\partial t^2} - \frac{i}{2mc^2}\frac{\partial V}{\partial t} + \frac{V^2}{2mc^2} - \frac{iV}{mc^2}\frac{\partial}{\partial t} + e^2c^2A^iA_i\right)\varphi + e^2c^2A^iA_i\right)\varphi = \\ &= -2mc^2e^{-imc^2t}\left(i\frac{\partial}{\partial t} + \frac{\partial^2}{\partial t^2} - \frac{\partial^2}{\partial t^2} -$$

Taking the limit $c \to \infty$ we again recover the Schrödinger equation:

$$i\frac{\partial}{\partial t}\varphi = \left(-\frac{\nabla^2}{2m} + V + \frac{ie}{2m}\partial^i A_i + \frac{ie}{m}A^i\partial_i - \frac{e^2}{2m}A^iA_i\right)\varphi \,,$$

we rewrite the right hand side a little bit:

$$i\frac{\partial}{\partial t}\varphi = \left(\frac{1}{2m}(\partial^i\partial_i + ie\partial^iA_i + 2ieA^i\partial_i - e^2A^iA_i) + V\right)\varphi,$$

$$i\frac{\partial}{\partial t}\varphi = \left(\frac{1}{2m}(\partial^i + ieA^i)(\partial_i + ieA_i) + V\right)\varphi\,,$$

And we get the usual form of the Schrödinger equation for the vector potential $\mathbf{A} = (A_1, A_2, A_3)$:

$$i\frac{\partial}{\partial t}\varphi = \left(-\frac{(\nabla + ie\mathbf{A})^2}{2m} + V\right)\varphi\,.$$