GMNS¹: A Specification for Sharing Routable Road Networks

8 January 2023

General Modeling Network Specification

Origins

- Recognized need in the travel modeling community
 - Zephyr Foundation 2017 "shark tank"
 - Winner: to develop a "General Travel Network Format Specification"
- FHWA interest in developing a routable network specification that would aid in multi-resolution and multi-modal network modeling
- Efforts came together in 2018
 - FHWA funding for staff support (Office of Planning)
 - Zephyr Foundation provided a project management group, interested stakeholders (MPO and industry) volunteering their time to provide guidance and some development support

GMNS will...

- Support multi-resolution modeling projects
- Encourage more consistent practices by state and local governments for coding facilities, to ease automated processing of public data
- Support multi-modal (car, truck, transit, pedestrian, bike) improvements
- Bring time-varying varying networks into transportation planning, to better incorporate the effects of transportation system management and operations (e.g., varying lane configurations and tolls)

High level requirements

- I. GMNS is a data specification, not tied to any specific software tool
- 2. GMNS is extensible, not universal
 - The only required files are nodes and links, to support static network assignment
- 3. Extensions include data needed for dynamic, multi-modal networks
- 4. GMNS reflects infrastructure, services and policies:
 - physical roads
 - intersections
 - traffic controls
 - tolls
 - time-of-day restrictions
- 5. GMNS is human and machine readable

Required elements

Node— a point that connects links

- Required fields: node_id,x_coord,y_coord
- Optional fields: name, node_type, ctrl_type, zone_id, parent_node_id
- Any GMNS element can have user defined fields

Link— a directed or undirected line object in a network, defined by the nodes it travels from and to.

- Required fields: link_id, from_node_id, to_node_id, directed
- Optional fields: name, geometry_id, geometry, parent_link_id, dir_flag, length, grade, facility_type, capacity, free_speed, lanes, bike_facility, ped_facility, parking, allowed_uses, toll, jurisdiction, row_width
- Any GMNS element can have user defined fields
- Links are directed for vehicle travel, undirected for pedestrian travel

Segments and Lanes

Segment—portion of a link defined by linear references

Lane— Lanes are numbered left to right with I as the left-most through lane. Left turn lane is -I. A bike lane is a lane with allowed_uses = BIKE

Turn pockets are defined via segments.

Multimodal accommodation

The **allowed_uses** field indicates what may flow on a **link** or **lane** (e.g., walk, bike, bus, truck, auto, hov2, hov3+), as well as non-travel uses (shoulder, parking)

Location—a point that is associated with a specific location along a link, using a linear reference

Links include fields for **ped_facility**, **bike_facility**.

Sidewalks and crosswalks may optionally be handled via their own undirected links.

Parent-child relationships:

- Sidewalk with associated road
- Crosswalk and intersection nodes

Separated bike facilities may also be handled as their own pairs of directed links

Multimodal example

- Color coding
 - General purpose
 - Auto and bike lane
 - Bike ■■■■■
 - Pedestrian (undirected)
- East-west street with conventional bike lanes
- North-south street with protected two-way sidepath
- Bike and pedestrian paths entering from the north

Movements

 Movements define connections and traffic control types (none, yield, stop, signal) between inbound and outbound links or lanes at an intersection.

• Example:

- Pedestrian movements in green
- General traffic (red) and bike (blue)
 movements are shown from the south

Traffic signals

- **Signal_controller**—association of one or more intersections whose signals use the same controller
- **Signal_phase_mvmt** signal_phase mapped to its associated traffic movements and pedestrian links (e.g., crosswalks)
- **Signal_timing_phase**—timing and concurrency information for each signal phase
- **Signal_timing_plan**—timing plan for the signal, by controller, time period
- **Signal_coordination**—coordination for several signal controllers, associated with a timing plan
- **Signal_detector**—traffic detector associated with a controller, a phase and a group of lanes

Time of day

Link, Lane, Segment, Movement, and Traffic Signal phasing/timing characteristics may all vary by time-of-day and day-of-week.

Lane

<u>Link_id</u>	<u>lane_num</u>	allowed_uses
12	1	AUTO
12	2	AUTO,TRUCK,BUS
12	3	AUTO,TRUCK,BUS
12	4	SHOULDER

Lane_TOD

link_id	Lane_num	TOD	allowed_uses			
12	4	Wkdy_PM_Peak	AUTO, BUS			

Time_Set_Definitions

TOD	M	Т	W	Th	Fr	Sa	Su	Hol	Start	End
Wkdy_PM_Peak	ı	I	I	I	ı	0	0	0	1500	1900

Work in progress

- Inclusion of lane offsets (important for microsimulation)
- Improved multi-modal examples

It takes a community...

tools that work with GMNS

We improve the specification by using it

Network synthesis:

osm2gmns for nodes, links, movements signal4gmns for traffic signals

Multiresolution network expansion:

net2cell

Validation tools:

gmnspy for format validation (does the network conform to the spec?) Graph validation (is the network connected?)

Shortest path and routing:

path4gmns, with connection to DTALite AequilibraE

With thanks to Xuesong Zhou, Pedro Camargo, Elizabeth Sall and others

For more information

The specification (in markdown and json), examples, and validation tools are available on GitHub: https://github.com/zephyr-data-specs/GMNS

Scott Smith scott.smith@dot.gov

lan Berg ian.berg@dot.gov

www.volpe.dot.gov

