Variable selection by an approximation of the L_0 norm in Poisson log-normal (PLN) model

Application in the study of microbial communities in milk production processes

KIOYE Jean Yves¹

joint work with GROLLEMUND P. M.^{1,2}; CHASSARD C.¹ and CHAUVET J.³

UMRF¹, LMBP², LARIS³

July 6, 2023

Context and motivations

Understand what underlies milk quality

- Sensorial quality and biochemical composition
- Prairie biodiversity and livestock farming practices
- Relationship between different microbial communities

Context and motivations

Understand what underlies milk quality

- Sensorial quality and biochemical composition
- Prairie biodiversity and livestock farming practices
- Relationship between different microbial communities

Improving approaches at agri-food system level

- Impact of farming practices
- Upstream and downstream microbial flows
- Identification of determining factors

Modelisation

- Studying the joint abundances of bacteria
- Evaluating the influence of environmental factors
- Understanding the structural interactions between bacteria
- Take account sampling effort
- Variable selection

The Poisson log-normal (PLN) model

PLN model ¹: special case of generalized linear model

- ullet $Y \in \mathbb{N}^{n imes p}$: response matrix
- $\mathbf{X} \in \mathbb{R}^{n \times d}$: environmental variables matrix
- $\mathbf{0} \in \mathbb{N}^{n \times p}$: offsets matrix
- $oldsymbol{o}$ $oldsymbol{B} \in \mathbb{R}^{d imes p}$: regressor matrix
- $\Sigma \in \mathbb{R}^{p \times p}$: covariance matrix

PLN model is:

$$m{Y}_i \mid m{Z}_i \sim \mathcal{P}ig(\exp(m{Z}_i) ig) \qquad ext{(observation layer)} \ m{Z}_i \sim \mathcal{N}_pig(m{o}_i + m{x}_i^ op m{B}, m{\Sigma} ig) \qquad ext{(latent layer)}$$

^{1.} John AITCHISON et CH Ho. « The multivariate Poisson-log normal distribution ». In: *Biometrika* 76.4 (1989), p. 643-653.

PLN Inference

Estimate : $\theta = (B, \Sigma)$

July 6, 2023

^{2.} Dimitris Karlis. « EM algorithm for mixed Poisson and other discrete distributions ». In: ASTIN Bulletin: The Journal of the IAA 35.1 (2005), p. 3-24

^{3.} Julien CHIQUET, Mahendra MARIADASSOU et Stéphane ROBIN. « The Poisson-lognormal model as a versatile framework for the joint analysis of species abundances ». In: Frontiers in Ecology and Evolution 9 (2021), p. 588292

PLN Inference

Estimate : $\theta = (B, \Sigma)$

Marginal likelihood

$$\log p_{ heta}(oldsymbol{Y}) = \int_{\mathbb{R}_p} p_{ heta}(oldsymbol{Y}, oldsymbol{Z}) \, \mathrm{d}oldsymbol{Z}$$

July 6, 2023

^{2.} Dimitris Karlis. « EM algorithm for mixed Poisson and other discrete distributions ». In: ASTIN Bulletin: The Journal of the IAA 35.1 (2005), p. 3-24

^{3.} Julien CHIQUET, Mahendra MARIADASSOU et Stéphane ROBIN. « The Poisson-lognormal model as a versatile framework for the joint analysis of species abundances ». In: Frontiers in Ecology and Evolution 9 (2021), p. 588292

PLN Inference

Estimate :
$$\theta = (B, \Sigma)$$

Marginal likelihood

$$\log p_{ heta}(oldsymbol{Y}) = \int_{\mathbb{R}_p} p_{ heta}(oldsymbol{Y}, oldsymbol{Z}) \, \mathrm{d}oldsymbol{Z}$$

EM algorithm

$$\mathbb{E}_{\theta}[\log p_{\theta}(\boldsymbol{Y}, \boldsymbol{Z})|\boldsymbol{Y}]$$
, but $p_{\theta}(\boldsymbol{Z}|\boldsymbol{Y}) = \prod_{i=1}^{n} p_{\theta}(\boldsymbol{Z}_{i}|\boldsymbol{Y}_{i})$ is intractable

To solve intractability:

- Numerical integration or Monte-Carlo integration²
- Variational approximations³
- 2. Dimitris Karlis. « EM algorithm for mixed Poisson and other discrete distributions ». In: ASTIN Bulletin: The Journal of the IAA 35.1 (2005), p. 3-24
 3. Julien Chiquet, Mahendra Mariadassou et Stéphane Robin. « The

Poisson-lognormal model as a versatile framework for the joint analysis of species abundances ». In: Frontiers in Ecology and Evolution 9 (2021), p. 588292

July 6, 2023 4 / 17

Variational inference of the PLN model

Variational approximation

- Approximate $p_{\theta}(\mathbf{Z}_i|\mathbf{Y}_i)$ with a multivariate gaussian distribution q_i with mean \mathbf{m}_i and variance $\mathbf{s}^2{}_i$
- Replace $p_{\theta}(\boldsymbol{Z}|\boldsymbol{Y})$ with $\prod_{i} \mathcal{N}(\boldsymbol{Z}_{i}; \boldsymbol{m}_{i}, \operatorname{diag}(\boldsymbol{s}_{i}^{2}))$

```
\psi = (\textbf{\textit{M}}, \textbf{\textit{S}}) : variational parameters
```

Variational inference of the PLN model

Variational approximation

- Approximate $p_{\theta}(\mathbf{Z}_i|\mathbf{Y}_i)$ with a multivariate gaussian distribution q_i with mean \mathbf{m}_i and variance \mathbf{s}^2_i
- Replace $p_{\theta}(\boldsymbol{Z}|\boldsymbol{Y})$ with $\prod_{i} \mathcal{N}(\boldsymbol{Z}_{i}; \boldsymbol{m}_{i}, \operatorname{diag}(\boldsymbol{s}_{i}^{2}))$

 $\psi = ({\it M}, {\it S})$: variational parameters

Evidence Lower Bound (ELBO) of PLN

$$egin{aligned} J(oldsymbol{Y}, heta,oldsymbol{\psi}) &= \log p_{ heta}(oldsymbol{Y}) - \mathsf{KL}[q_{\psi}(oldsymbol{Z})||p_{ heta}(oldsymbol{Z}|oldsymbol{Y})] \ &= \mathbb{E}_{q_{\psi}}[\log p_{ heta}(oldsymbol{Y},oldsymbol{Z})] - \mathbb{E}_{q_{\psi}}[\log q_{\psi}(oldsymbol{Z})] \end{aligned}$$

Variational EM

- ullet VE step : Optimization of ψ for θ fixed
- ullet VM step : Optimization of heta for ψ fixed

Variable selection

- Regularization of the regression coefficients matrix B
- Methods used: Smooth Information Criterion (SIC) 4
- ullet θ : model parameters
- $oldsymbol{ ilde{ heta}}$: parameters to be regularized
- k : number of unregulated parameters
- $\ell(\theta)$: log-likelihood

$$\mathsf{SIC} = -2\ell(\boldsymbol{\theta}) + \lambda \Big[\|\widetilde{\boldsymbol{\theta}}\|_{0,\varepsilon} + k \Big]$$

where $\lambda = 2$ (respectively $\lambda = \log(n)$) for AIC (respectively BIC)

4. Meadhbh O'NEILL et Kevin Burke. « Variable selection using a smooth information criterion for distributional regression models ». In: *Statistics and Computing* 33.3 (2023), p. 71.

Smooth Information Criterion (SIC)

• $\|\widetilde{\theta}\|_{0,\varepsilon} = \sum_{j=1}^d \phi_{\varepsilon}(\theta_j)$ is an aproximation of the « L_0 norm », with

$$\phi_{\varepsilon}(x) = \frac{x^2}{x^2 + \varepsilon^2}$$

• ϕ_{ε} is differentiable for $\varepsilon > 0$, and $\lim_{\varepsilon \to 0} \phi_{\varepsilon}(x) = \|x\|_{0}$

July 6, 2023

Smooth Information Criterion (SIC)⁵

ε -telescoping approach for stable optimization procedure

- ε -telescoping : decreasing sequence of ε values
- Avoids the best tuning parameter selection problem
- No requirement to adjust many models

SIC Algorithm

- 1: Input : objective, parameters $oldsymbol{ heta}$
- 2: decreasing sequence of ε values
- 3: For each ε value in sequence

Optimization

$$-2\ell(\boldsymbol{\theta}) + \log(n) \Big[\|\boldsymbol{\theta}\|_{0,\varepsilon} + k \Big]$$

4: Output : heta

- Computationally advantageous
- 5. Meadhbh O'NEILL et Kevin Burke. « Variable selection using a smooth information criterion for distributional regression models ». In: Statistics and Computing 33.3 (2023), p. 71

Our contributions

How to adapt the SIC approach to the PLN model?

- Complex model and multivariate responses
- Coupling ε -telescoping for each optimization step

Variable selection using SIC in PLN model

PLN ELBO 6:

$$J(m{Y},m{ heta},m{\psi}) = m{I}_n \Big[m{Y} \odot (m{O} + m{M}) - m{A} + rac{1}{2} \log(m{S}^2) \Big] m{I}_p + rac{n}{2} \log |\Omega| \\ - rac{n}{2} \mathrm{trace} \Big(\Omega \Big[(m{M} - m{X}m{B})^{ op} (m{M} - m{X}m{B}) + \mathrm{diag}(m{I}_n^{ op} m{S}^2) \Big] \Big) \\ + \mathrm{const}$$

ELBO penalized with SIC:

$$J^{pen}(\mathbf{Y}, \boldsymbol{\theta}, \boldsymbol{\psi}) = J(\mathbf{Y}, \boldsymbol{\theta}, \boldsymbol{\psi}) - \lambda \|\mathbf{B}\|_{0,\varepsilon}$$

July 6, 2023

^{6.} Julien CHIQUET, Stephane ROBIN et Mahendra MARIADASSOU. « Variational inference for sparse network reconstruction from count data ». In: International Conference on Machine Learning. PMLR. 2019, p. 1162-1171

Proposed algorithm

Input : $\pi^0 = (B^0, \Sigma^0, M^0, S^0)$, $E = (\varepsilon_1, \dots, \varepsilon_T)$ with $\varepsilon_t = \varepsilon_1 r^{t-1}$ and $r \in]0, 1[$ Output : $\pi^T = (B^T, \Sigma^T, M^T, S^T)$

 \triangleright Start ε -telescoping

For t in 1 to T

⊳ Start VEM

Repeat

E step : Variational parameters optimization $\psi = (\textbf{\textit{M}}, \textbf{\textit{S}})$

M step : Parameters optimization $\theta = (B, \Sigma)$

$$\frac{dJ^{pen}(\boldsymbol{Y}, \boldsymbol{\theta}, \boldsymbol{\psi})}{d\boldsymbol{B}} = (\boldsymbol{X}^{\top}\boldsymbol{X})^{-1}\boldsymbol{X}^{\top}\boldsymbol{M} - \frac{\log(n)}{2}\phi_{\varepsilon_t}^{'}(\boldsymbol{B})$$
$$\frac{dJ^{pen}(\boldsymbol{Y}, \boldsymbol{\theta}, \boldsymbol{\psi})}{d\boldsymbol{\Sigma}} = \cdots$$

until convergence;

$$\pi^t = (oldsymbol{B}^t, oldsymbol{\Sigma}^t, oldsymbol{M}^t, oldsymbol{S}^t)$$

⊳ End VEM

 \triangleright End ε -telescoping

Simulation studies

Simulation process:

ullet Variables (n=10000, d=6) following $oldsymbol{x}_i \sim \mathcal{U}_{[0.5,1.5]}$

Different regression parameter values B

- No effect (0)
- weak effect (0.5)
- strong effect (1)

Diagonal covariance matrix

Count data according to PLN

Simulation studies

Simulation process:

• Variables (n=10000, d=6) following $\mathbf{x}_i \sim \mathcal{U}_{[0.5,1.5]}$

Different regression parameter values B

- No effect (0)
- weak effect (0.5)
- strong effect (1)

Diagonal covariance matrix

Count data according to PLN

Aims:

- Decreases the values of non-active variables to zero
- Minimise the errors in the estimated coefficients

Simulation Results

Table – Real coefficients (estimated coefficients with PLN)

	species 1	species 2	species 3	species 4
<i>x</i> ₁	0 (0.159)	0.5 (0.546)	1 (1.120)	1 (1.048)
<i>X</i> ₂	1 (1.107)	0 (0.161)	0.5 (0.559)	1 (1.007)
<i>X</i> 3	1 (1.143)	0 (0.089)	0.5 (0.649)	0 (0.026)
X4	1 (1.148)	1 (1.037)	1 (1.111)	0 (0.098)
<i>X</i> 5	1 (1.136)	1 (1.034)	1 (1.127)	0.5 (0.571)
<i>X</i> ₆	0 (0.098)	0 (0.096)	0 (0.090)	0 (0.095)

Simulation Results

Table – Real coefficients (estimated coefficients with PLN)

	species 1	species 2	species 3	species 4
<i>x</i> ₁	0 (0.159)	0.5 (0.546)	1 (1.120)	1 (1.048)
<i>x</i> ₂	1 (1.107)	0 (0.161)	0.5 (0.559)	1 (1.007)
<i>X</i> 3	1 (1.143)	0 (0.089)	0.5 (0.649)	0 (0.026)
X4	1 (1.148)	1 (1.037)	1 (1.111)	0 (0.098)
<i>X</i> ₅	1 (1.136)	1 (1.034)	1 (1.127)	0.5 (0.571)
<i>X</i> ₆	0 (0.098)	0 (0.096)	0 (0.090)	0 (0.095)

Table - Real coefficients (estimated coefficients with PLN SIC PLN)

	species 1	species 2	species 3	species 4
<i>X</i> ₁	0 (0.059)	0.5 (0.446)	1 (1.020)	1 (0.948)
<i>X</i> ₂	1 (1.006)	0 (0.061)	0.5 (0.459)	1 (0.907)
<i>X</i> ₃	1 (1.043)	0 (0)	0.5 (0.549)	0 (0)
X4	1 (1.048)	1 (0.937)	1 (1.011)	0 (0)
<i>X</i> 5	1 (1.036)	1 (0.934)	1 (1.027)	0.5 (0.471)
<i>X</i> ₆	0 (0)	0 (0)	0 (0)	0 (0)

Estimation error

• Estimation error for with PLN \hat{B}

$$\frac{\|\boldsymbol{B} - \widehat{\boldsymbol{B}}\|_F}{\|\boldsymbol{B}\|_F} = 0.136$$

Estimation error with SIC PLN B

$$\frac{\|\boldsymbol{B} - \widehat{\boldsymbol{B}}\|_F}{\|\boldsymbol{B}\|_F} = 0.058$$

Estimation accuracy of true coefficients

Prediction accuracy

Holoflux metaprogram: 3 projects on microbial flows in agri-food systems

Project amont saint nectaire

Holoflux metaprogram: 3 projects on microbial flows in agri-food systems

Project amont saint nectaire

• Sample size : 536

Bacteria 1458

Abundance : between 0 and 39671

Holoflux metaprogram: 3 projects on microbial flows in agri-food systems

Project amont saint nectaire

- Sample size : 536
- Bacteria 1458
- Abundance : between 0 and 39671

categorical environmental variables

Holoflux metaprogram: 3 projects on microbial flows in agri-food systems

Project amont saint nectaire

- Sample size : 536
- Bacteria 1458
- Abundance : between 0 and 39671

Other data

- Project MINDS : botanical diversity
- Project TANDEM : agricultural practices

categorical environmental variables

Holoflux metaprogram: 3 projects on microbial flows in agri-food systems

Project amont saint nectaire

• Sample size : 536

Bacteria 1458

Abundance : between 0 and 39671

Other data

- Project MINDS : botanical diversity
- Project TANDEM : agricultural practices

categorical environmental variables

What environmental variables and farming practices explain microbial community abundances?

Conclusion & perspectives

Conclusion

- Extension of SIC to the PLN model
- Identifies relevant continuous variables by stepwise approximation of the L₀ norm
- Selection by maximising an information criterion

Perspectives

- Penalized coefficients matrix and covariance matrix
- How SIC works on categorical data?

Thank you for your attention!!!

"All models are wrong, but some are useful." George E. P. Box