

Intro to InfoSec -Authentication

Stefan Axelsson, Nov. 2020

Today - Authentication

- Chapter 2.1 in Pfleeger et.al. Security in Computing, 5th ed.
- Authentication The art of proving who you are
 - Authentication
 - The three bases of authentication
 - Knowledge, characteristics, possessions
 - Strength of an authentication mechanism

Introduction

- We're starting from the beginning
- These are tools that touches on many areas and techniques of security (not just info sec)
- You've heard of a security policy
 - What are the parts?
 - Who, what, how
 - Who (subject) can access
 - What (object)
 - How (method)
- Here we'll focus on the "who" Subjects

Today - Authentication

- The first step if determining "who"
 - You'll of course have to have mechanism to do that – If you have no way of limiting access, then it doesn't matter
 - More about that later
- So first:
 - Identification
 - Authentication
 - (Authorization)

Identification

- Identification Asserting who you are
 - Doesn't have to be a person
 - Could be a "computer" or "email adress" or something similar
 - Often we don't think about it
 - When you send an email you'll include a return email adress saying who it's from
 - Also telephone number, bank account number, Swedish ID number (personnummer)
 - So we often conflate it with authentication but it's distinct

Identification

Identification

- But note, this doesn't prove who you are
 - Person to person it's implicit We recognise each other, but remotely it's difficult
- Identities are most often public
- They're not secure Many people could claim to be you by using your identifiers
 - Many security problems stem from accepting identification as authentic

Authentication

- Authentication Should be private
 - This is proving who you are
 - There are in general three ways
 - Something you know Shared secret
 - Something you are Biometrics
 - Something you intrinsically are
 - The way you do something
 - Something you have Token
 - (OK so four ways then...)

Authentication

- Authentication
 - Something you know Shared secret
 - Passwords, PIN, passphrase, a secret handshake, mother's maiden name
 - Something you are Biometrics
 - Something you intrinsically are
 - Fingerprint, iris pattern, look of **face**
 - The way you do something
 - Pattern of your voice, walk, sign your signature,
 - Something you have Token
 - Identity badge/card, physical key, uniform

Authentication

- Authentication Note that
 - Face In person and
 - Voice On the phone
- Are the main two ways we identify people known to us – and have for a long time
- And we're quite happy with them, they rarely fail even though one is probably better than the other
 - It's more difficult to fool someone with a mask in person, than on the phone

- When we can't do face-to-face failures abound
- We'll look in detail at shared secrets –
 Something you know
- A problem here is that while passwords can be secure what do you do when it's been forgotten?
 - You ask "security questions"
 - Supposed to be easy to remember facts about the person
 - Mother's maiden name, favourite colour, father's middle name

- Security questions
- Problem with these are that they're not necessarily secret
- So George Bronk (and others) trawled facebook for email addresses and also clues to their security questions
- Then contacted email providers and pretended to be user that had lost password
 - Was often successful in guessing answers to security questions
- Then checked sent email for explicit/embarrasing photographs

- How do passwords work?
 - User supply identification and passwords
 - Given PW is compared for PW on file for given identification
- So as we saw: Autenticators need to be secret
- Other problems
 - Use Supplying a password for each access to an object is inconvenenient(!)
 - Disclosure If user discloses PW then game is up
 - Revocation Someone must change PW
 - Causing same problem as disclosure

- Loss If user forgets/discloses PW then new one needs to be assigned
 - Need to ensure that this isn't same as before

Passwords

How secure are passwords?

- They are often limited in the number of bits they provide
- And, worse, users don't even use all the available bits – They chose passwords from a limited set, and passwords that are easy to guess
- Security of passwords rely on attacker not being able to brute force or guess passwords
 - Brute force Try all possible combinations

Passwords – Attacks

- Steps to try:
 - No password
 - The same as User ID
 - is or derived from the user's name
 - On a common word list (e.g. password, secret, private) plus common names or patterns (e.g. qwerty, aaaaa, 123456)
 - Contained in short college dictionary
 - Contained in complete English word list
 - Contained in common non-Englishlanguage dictionaries

Passwords – Attacks

- Steps to try cont.
 - Contained in short college dictionary with capitalizations (PaSsWorD) or substitutions (digit 0 for letter O a.s.o)
 - Contained in complete English dictionary with capitalizations or substitutions
 - Same but common non-English dictionaries
 - Brute force trying all alphabetic characters
 - Brute force trying all possible combinations from the full character set

Passwords - Attacks

- Note that the last step will of course
 (eventually) succeed But it's so costly that it's
 supposed to be impossible in practice
- But the other approaches are often successfull
 - There is SW Password crackers That help automate this process
 - They often rely on being able to make an infinite number of tries (more later)
 - These come with dictionaries including sci-fi character names, mythological names, Chinese words etc.
 - They also make "obvious" substitutions
 0→0, 1→l etc.

Passwords – Attacks

- Password crackers also typically include
 - Passwords based on user I.e. user name, full name, etc.
 - Other SW do e.g. web crawl to find names of relatives, areas of special interests etc. and seed their PW lists based on these
 - At NSA: Username Kirk "And then type your password, 'Captain'."
 - "How do you know my password???"

Passwords - Attacks

- People are often crap at choosing passwords:
 - Imperva analyzed 34 million Facebook PW 2009
 - 30% fewer than 7 chars
 - 50% used names, slang words, dictionary words and trivial passwords
 - Consecutive digits, adjacent chars on keyboard etc.
 - 12345, 123456, "password", "iloveyou"
 - Realise that there are a lot fewer words than possible passwords!

Passwords – How to store them?

- Just list with all passwords? No! Horrible idea!
 - Encrypt them

TABLE 2-2 Sample Password
Table

Identity	Password	
Jane	qwerty	
Pat	aaaaaa	
Phillip	oct31witch	
Roz	aaaaaa	
Herman	guessme	
Claire	aq3wm\$oto!4	

TABLE 2-3 Sample Password Table with Concealed Password Values

Identity	Password
Jane	0x471aa2d2
Pat	0x13b9c32f
Phillip	0x01c142be
Roz	0x13b9c32f
Herman	0x5202aae2
Claire	0x488b8c27

Passwords – How to store them?

- But does encryption in itself work?
 - No, salt them as well To stop dictionary attack

TABLE 2-4 Sample Rainbow Table for Common Passwords

Original Password	Encrypted Password
asdfg	0x023c94fc
p@55w0rd	0x04ff38d9
aaaaaa	0x13b9c32f
password	0x2129f30d
qwerty	0x471aa2d2
12345678	0x4f2c4dd8
123456	0x5903c34d
aaaaa	0x8384a8c8
	etc.

TABLE 2-5 Sample Password Table with Personalized Concealed Password Values

Identity	ID+password (not stored in table)	Stored Authentication Value
Jane	Jan+qwerty	0x1d46e346
Pat	Pat+aaaaaa	0x2d5d3e44
Phillip	Phi+oct31witch	0xc23c04d8
Roz	Roz+aaaaaa	0xe30f4d27
Herman	Her+guessme	0x8127f48d
Claire	Cla+aq3wm\$oto!4	0x5209d942

/Stefan Axelsson, DSV

Passwords - How to store them?

- So long passwords (passphrase), use "all" characters, different passwords for all uses
- Don't tell anyone Even if they say they're support
 - Called "social engineering"
- Book says not to write down
 - True if that means "post IT on screen"
 - False if it means PW safe software
 - Recommendation is to use said
 - E.g. any of the KeePass variants

Passwords – Usability

Stockholm University

- This is a problem
 - One would be OK
 - Hundreds not so much
 - Also all or nothing You must remember it perfectly
 - That's now how human memory works
 - To be good it has to have no structure
 - Be "random"
 - This is even harder to remember

Other things you know

- Other things have been proposed
 - Mobile phone pattern screen unlock
 - Various patterns using images (image selection)
- Not well researched and haven't become very popular (with one or two exceptions)
 - Security can also be lacking
 - This is esp. True with "security questions"
 - Don't use them Or mangle them (i.e. add four numbers a.s.o)

Stefan Axelsson, Nov. 2020

- Biological properties that you can measure
 - Hence Bio-Metrics
- Non exhaustive list of things that can be measured and are used:
 - Fingerprint, hand geometry, retina and iris (eye), voice,
 - handwriting, signature, hand motion, typing characteristics, blood vessels in the finger/hand, face, facial features (nose shape/eye spacing)

Examples Hand geometry, and hand vein reader

FIGURE 2-2 Hand Geometry Reader (Graeme Dawes/Shutterstock)

FIGURE 2-3 Hand Vein Reader (Permission for image provided courtesy of Fujitsu Frontech)

Biometrics - Problems

- Relatively new Some find it intrusive
 - Laser beam in the eye someone?
- Costly Some devices (fingerprint readers) are cheaper now
 - But then not as good? And how do you know?
- Single point of failure
 - I can get a new password, but not a new eye, or finger
 - Also not always secret Face recognition?
- They sample and hence no exact match
 - What about damaged finger, or cold voice

Biometrics - Problems

Stockholm University

- Failure to enroll Failure to acquire
 - Not in book (by these names) Not everybody have the feature, at least not all the time
 - Injury, temperature, humidity etc.
- Speed can limit accuracy
 - Many samples can increase accuracy, but takes time we may not have
- There are forgeries
 - Not the person Its a signal from a sensor
 - If you can fool sensor you can fool system
 - Fake finger, picture of face, etc.
 - Brazilian doctor with 16 fingers...

/Stefan Axelsson, DSV

Binary decision theory

Stockholm University

False positive, false negative etc.

Binary test	Is person	Is not person
Test postitive (Match)	True positive	False positive
Test negative (No match)	False negative	True negative

- Positive/Negative is the test
- False/True is the reality
- Hence, False Positive = Test says match, but that's not true,
 i.e. false
 - Also specificity, sensitivity, accuracy etc. Read book

Binary decision theory

Stockholm University

- ROC Curve
 - Often we can adjust the sensitivity of a test
 - More sensitive, then more (true) hits, but also more false hits (nervous system)
 - Less sensitive, fewer (true)
 hits, but also less false hits
 (phlegmatic system)
- If you plot TP rate vs. FP-rate you get a ROC curve
 - Receiver Operating Characteristics

FIGURE 2-4 ROC Curves

- Inexact match leads to many problems
 - Too exact it won't work
 - Too loose too many false matches
 - Note iPhone fingerprint reader that requires
 PIN auth regularly
 - And higher risk of forgeries
- Also these systems are often not as good as people think
 - DNA match is good if
 - DNA is not degraded
 - We're not doing drag net searches
 - 1/11 million only if one match
 - With 6 million possibilities then ½...

- Same with fingerprints
 - Madrid bombing had false match
 - Brandon Mayfield, U.S. lawyer in Oregon arrested by FBI – They called it 100%, but was obviously not

- So, have advantages
 - Can't forget a biometric
- But also problems
 - Can be forged as they're often not secret and matches have to be inexact
 - Can't be changed if they do leak
 - Not everyone have them, at least not all the time, and they can change over time
 - Hair colour in passport... (I used to be blond...)
 - There are statistical problems when you try a match against a large database of possible matches
 - Identification+authentication or just identification

Tokens

Stefan Axelsson, Nov. 2020

Tokens - Something you have

- Now we come to the last part Something you have
- This means a physical object that demonstrates that you are who you say you are
 - A (physical) key
 - Conflated with autorization Possession of the key means you're allowed access
 - Authentication is an after thought
 - Drivers licence
 - Also authorizes when you drive
 - Access badge/card
 - Uniform Police, customs, firefighter etc.
 - Passport Perhaps the quintessential authenticator

Tokens - Active/Passive

- Tokens come in two forms
 - Passive
 - Doesn't change Driver's license, photo, key
 - Active
 - Interacts with its surroundings and changes
 - Subway card with balance on mag-stripe
- This leads to Static/Dynamic distinction
 - Static Values remains fixed
 - Keys, ID card, credit card etc.
 - Most useful for on-site ID
 - It's easy to check e.g. photo etc. when you're right in front of guard

Tokens - Static/Dynamic

- Dynamic These change, in reply to some challenge typically
 - Needed for remote authentication
 - Guard can't easily verify your face is same as ID remotely
 - Image could be faked (mask?) etc.
- Why do we need them?
 - Static tokens vulnerable to skimming
 - Attacker copies information on token and then reuses it
 - C.f. credit card number from mag-stripe at
 ATM then forge card and use elsewhere

Tokens - Dynamic

- Dynamic tokens change, so that isn't possible
 - Either challenge response
 - You'll have to wait until after crypto
 - Or just change
 - RSA Secure ID token changes once a minute and generates a new "unpredictable" six digit code – Attacker has one minute to skim and use

Wrapping up

- Federated ID management/Single Sign On
 - But we drown in autentication ourselves all the time
 - Wouldn't it be nice if we could do it once and for all?
 - Federated ID/Single Sign On (Usage not that strict)

FIGURE 2-7 Federated Identity Manager

Wrapping up - Multi factor

- What if it doesn't work
 - You lose your token? Overheard password? Faked image?
 - Multifactor Authentication
 - Use two (most popular) or more different kinds of authentication
 - I.e. not two passwords, but e.g. PIN and (chip based)Card (aka "PIN and Chip")
 - Old idea Passports and Driver's licence contain you signature and picture
 - People can check signature and photo (two kinds of biometric) and that you have card (token)

Summary

- Identification, authentication, (authorization)
- Something you
 - Know Shared secret
 - Are Biometric
 - Do Biometric
 - Have Token based
- Multi factor Use two or more different kinds
- Think about attacks and how to thwart them