LINEAR ALGEBRA EXERCISES

WEEK 1: COMPLEX NUMBERS

Dr. Phan Thi Huong

HoChiMinh City University of Technology
Faculty of Applied Science, Department of Applied Mathematics
Email: huongphan@hcmut.edu.vn

TP. HCM — 2020.

ALGEBRAIC FORM

- ALGEBRAIC FORM
- 2 TRIGONOMETRIC FORM

- ALGEBRAIC FORM
- 2 TRIGONOMETRIC FORM
- **3** POWER AND NTH ROOT

- ALGEBRAIC FORM
- 2 TRIGONOMETRIC FORM
- POWER AND NTH ROOT
- 4 FUNDAMENTAL THEOREM OF ALGEBRA

Find $z \in \mathbb{C}$ such that $Re(z(1+i)) + z\bar{z} = 0$.

Solution: Let z = a + bi, $a, b \in \mathbb{R}$, then

$$Re(z(1+i)) = Re[(a+bi)(1+i)] = a-b,$$

and $z\bar{z} = a^2 + b^2$. It is equivalent to find $a, b \in \mathbb{R}$ such that

$$a - b + a^2 + b^2 = 0$$

$$\Leftrightarrow \qquad \left(a + \frac{1}{2}\right)^2 + \left(b - \frac{1}{2}\right)^2 = \qquad \frac{1}{2}$$

Hence, the solutions (a, b) are the points of the circle with centered in $\left(\frac{-1}{2}, \frac{1}{2}\right)$ and radius $\sqrt{2}/2$.

Find
$$z \in \mathbb{C}$$
 such that $Re(z^2) + i Im(\bar{z}(1+2i)) = -3$

Summary:

- The algebraic form: z = a + bi, where a is the real part and b is the imaginary part.
- $\bar{z} = a bi$ is the conjugate of z.
- $z\bar{z} = a^2 + b^2$.
- $z_1 = a + bi$, $z_2 = c + di$ then $z_1 \pm z_2 = (a \pm c) + (b \pm d)i$
- $i^2 = -1$

EXAMPLE

Write in the "trigonometric" form $r(\cos(\alpha) + i\sin(\alpha))$ the following complex number $-\sqrt{3} + i$

Trigonometric form: $z = r(\cos \varphi + i \sin \varphi)$,

$$r = \sqrt{a^2 + b^2}$$
: modulus of z ;

 φ : argument of z, $\cos(\varphi) = \frac{a}{r}$, $\sin(\varphi) = \frac{b}{r}$, $0 \le \varphi < 2\pi$, $or -\pi \le \varphi < \pi$

Solution:
$$a = -\sqrt{3}$$
, $b = 1$, then $r = \sqrt{a^2 + b^2} = 2$ and
$$\begin{cases} \cos(\alpha) = \frac{-\sqrt{3}}{2} \\ \sin(\alpha) = \frac{1}{2} \end{cases}$$
 Hence $\alpha = \frac{5\pi}{6}$ and $-\sqrt{3} + i = 2\left(\cos\frac{5\pi}{6} + \sin\frac{5\pi}{6}\right)$.

Let $z = 9\left(\cos\left(\frac{\pi}{7}\right) + i\sin\left(\frac{\pi}{7}\right)\right)$. Find the minimum positive integer n such that z^n is a real number.

Power form:

If $z = a + bi = r(\cos \varphi + i \sin \varphi)$ is any complex number, then z can be expressed in the exponential form $z = re^{i\varphi}$.

THEOREM

If $z \in \mathbb{C}$ *and* n *is a positive integer then*

$$z^{n} = r^{n}e^{in\varphi} = r^{n}\left(\cos(n\varphi) + i\sin(n\varphi)\right)$$

Let $z = (2-2i)(3+3\sqrt{3}i)$. Compute z^{100} .

Find all points on the complex plane which represent the complex numbers $w = (\sqrt{3} - 1)z + 1 - 2i$, given by $z = 2e^{i\phi}$, $\forall \phi \in \mathbb{R}$.

Find the square roots of the following complex numbers and illustrate the roots on the complex plane

①
$$z = -1 - i$$

THEOREM

Let $z = a + bi = r(\cos \varphi + i \sin \varphi)$ and let n be a positive integer. Then z has the n distinct nth roots

$$\sqrt[n]{z} = z_k = \sqrt[n]{r} \left(\cos \left(\frac{\varphi + k2\pi}{n} \right) + i \sin \left(\frac{\varphi + k2\pi}{n} \right) \right)$$

where
$$k = 0, ..., n - 1$$

Solution:

$$z = -i = \cos\left(\frac{-\pi}{2}\right) + i\sin\left(\frac{-\pi}{2}\right)$$

Then the \sqrt{z} has 2 values

$$\sqrt{z} = z_1 = \cos\left(\frac{-\pi}{4}\right) + i\sin\left(\frac{-\pi}{4}\right)$$
$$= \frac{\sqrt{2}}{2} - i\frac{\sqrt{2}}{2} = e^{-i\frac{\pi}{4}}$$

and

$$\sqrt{z} = z_2 = \cos\left(\frac{3\pi}{4}\right) + i\sin\left(\frac{3\pi}{4}\right)$$
$$= -\frac{\sqrt{2}}{2} + i\frac{\sqrt{2}}{2} = e^{i\frac{3\pi}{4}}$$

Summary:

- The trigonometric form: $z = r(\cos(\varphi) + i\sin(\varphi))$
- The exponential form: $z = re^{i\varphi}$
- The power of z: $z^n = r^n (\cos(n\varphi) + i \sin(n\varphi))$, $n \in N$
- The nth of *z*:

$$\sqrt[n]{z} = z_k = \sqrt[n]{r} \left(\cos \left(\frac{\varphi + k2\pi}{n} \right) + i \sin \left(\frac{\varphi + k2\pi}{n} \right) \right)$$

where k = 0, ..., n - 1.

Find all solutions of the following equation $z^4 - 2z^3 + 6z^2 - 2z + 5 = 0$ given that z = i is a root.

FUNDAMENTAL THEOREM OF ALGEBRA

THEOREM

The equation $a_n x^n + a_{n-1} x^{n-1} + \cdots + a_1 x + a_0$ where $n \in \mathbb{N}^*$, $a_n \neq 0$, $a_k \in \mathbb{C}$, k = 0, ..., n has exactly n roots(real, complex and multiple roots).

THEOREM

if $x = x_0$ is a root of the equation $a_n x^n + a_{n-1} x^{n-1} + \cdots + a_1 x + a_0$ where $n \in \mathbb{N}*$, $a_n \neq 0$, $a_k \in \mathbb{R}$, k = 0, ..., n. Then $x = \bar{x}_0$ is also a root of this equation.

<u>Solution:</u> Note that equation (a) has all real coefficients, hence if z = i is a root, z = -i is also another root. We factor (a) as

$$(z-i)(z+i)(Az^2 + Bz + C) = z^4 - 2z^3 + 6z^2 - 2z + 5$$

Then we have
$$\begin{cases} A = 1 \\ B = -2 \\ C = 5 \end{cases}$$

It means that we have to find roots for $z^2 - 2z + 5 = 0$. It leads to

$$z^{2}-2z+5 = 0$$

$$\Leftrightarrow (z^{2}-2z+1)-1+5 = 0$$

$$\Leftrightarrow (z-1)^{2} = 4i^{2}$$

$$\Leftrightarrow z = 1+2i \text{ or } z = 1-2i$$

Find $a \in \mathbb{R}$ such that z = i is a root for the polynomial $P(z) = z^3 - z^2 + z + 1 + a$. Furthermore, for such value of a find all solutions of the equation P(z) = 0.