Introduction to Logic Lecture 5: Sets, Relations, Functions

Davide Grossi

4 December 2023

Overview

Sets

Relations

Functions

Overview

Sets

Relations

Functions

The beginning of Set Theory

Georg Cantor

Beiträge zur Begründung der transfiniten Mengenlehre (1869)

Contributions to the Founding of the Theory of Transfinite Numbers (1915)

https://archive.org/details/contributionstof00cant

Set (classical definition)

By an "aggregate" (Menge) we are to understand any collection into a whole (Zusammenfassung zu einem Ganzen) M of definite and separate objects m of our intuition or our thought. These objects are called the "elements" of M.

Set theory (LPL Section 1.6 and Syllabus, Section 8.1)

Examples of finite sets:

- **▶** {1, 2, 3}
- ► {aristoteles, plato, socrates}
- ▶ {mars, merkel, mounteverest, 42}
- ► {1, {2,3}, {4, {5,6}}}

Set theory (LPL Section 1.6 and Syllabus, Section 8.1)

Examples of finite sets:

- ► {1, 2, 3}
- ► { aristoteles, plato, socrates }
- ▶ {mars, merkel, mounteverest, 42}
- ► {1, {2, 3}, {4, {5, 6}}}

Examples of infinite sets:

- ightharpoonup N, the set of natural numbers $0, 1, 2, \dots$
- $ightharpoonup \mathbb{Z}$, the set of integers $\ldots, -2, -1, 0, 1, 2, \ldots$

Set theory (LPL Section 1.6 and Syllabus, Section 8.1)

Examples of finite sets:

- **▶** {1, 2, 3}
- { aristoteles, plato, socrates}
- ▶ {mars, merkel, mounteverest, 42}
- ► {1, {2,3}, {4, {5,6}}}

Examples of infinite sets:

- ightharpoonup, the set of natural numbers $0, 1, 2, \dots$
- $ightharpoonup \mathbb{Z}$, the set of integers $\ldots, -2, -1, 0, 1, 2, \ldots$

Examples which are not sets:

- ► ⟨1, 2, 3⟩
- **▶** ⟨2, 1, 3⟩
- $\triangleright P \land Q$
- ► Large()

- ▶ Notation: $a \in b$.
- "a is in b" or "a is an element of b" or "a is a member of b"
- ▶ For "a is not in b" we write $a \notin b$ (or $\neg(a \in b)$).

- ▶ Notation: $a \in b$.
- "a is in b" or "a is an element of b" or "a is a member of b"
- ▶ For "a is not in b" we write $a \notin b$ (or $\neg(a \in b)$).

Giuseppe Peano Arithmetices Prinicipia Nova Methodo Exposita (1889)

When is the sentence $a \in b$ true?

A sentence of the form $a \in b$ is true if and only if b is a set, and a is an element of that set.

When is the sentence $a \in b$ true?

A sentence of the form $a \in b$ is true if and only if b is a set, and a is an element of that set.

Example

Given:

a: 2

 $b: \{2,4,6\}$

 $c: \{2, \{2, 4, 6\}\}$

When is the sentence $a \in b$ true?

A sentence of the form $a \in b$ is true if and only if b is a set, and a is an element of that set.

 $a \in a$

Example

Given: Then we have:

a: 2

 $b: \{2,4,6\}$

 $c: \{2, \{2, 4, 6\}\}$

When is the sentence $a \in b$ true?

A sentence of the form $a \in b$ is true if and only if b is a set, and a is an element of that set.

Example

Given: Then we have:

a: 2 $a \in a$ FALSE Note: 2 is not the same as $\{2\}$.

b: {2, 4, 6}

 $c: \{2, \{2, 4, 6\}\}$

When is the sentence $a \in b$ true?

A sentence of the form $a \in b$ is true if and only if b is a set, and a is an element of that set.

Example

Given: Then we have:

a: 2 $a \in a$ FALSE Note: 2 is not the same as $\{2\}$.

b: $\{2,4,6\}$ $a \in b$

c: {2, {2, 4, 6}}

When is the sentence $a \in b$ true?

A sentence of the form $a \in b$ is true if and only if b is a set, and a is an element of that set.

Example

Given: Then we have:

 $a \in a$ FALSE Note: 2 is not the same as $\{2\}$. a: 2

 $a \in b$ TRUE

 $b: \{2, 4, 6\}$ $c: \{2, \{2, 4, 6\}\}$

When is the sentence $a \in b$ true?

A sentence of the form $a \in b$ is true if and only if b is a set, and a is an element of that set.

Example

Given: Then we have:

a: 2 $a \in a$ FALSE Note: 2 is not the same as $\{2\}$.

b: $\{2, 4, 6\}$ $a \in b$ TRUE

c: $\{2, \{2, 4, 6\}\}\$ $b \in a$

When is the sentence $a \in b$ true?

A sentence of the form $a \in b$ is true if and only if b is a set, and a is an element of that set.

Example

Given: Then we have:

a: 2 $a \in a$ FALSE Note: 2 is not the same as $\{2\}$.

b: $\{2, 4, 6\}$ $a \in b$ TRUE

c: $\{2, \{2, 4, 6\}\}\$ $b \in a \text{ FALSE}$

When is the sentence $a \in b$ true?

A sentence of the form $a \in b$ is true if and only if b is a set, and a is an element of that set.

Example

Given: Then we have:

a: 2 $a \in a$ FALSE Note: 2 is not the same as $\{2\}$.

b: $\{2, 4, 6\}$ $a \in b$ TRUE

b: $\{2,4,6\}$ c: $\{2,\{2,4,6\}\}$ $b \in a \text{ FALSE}$

 $b \in b$

When is the sentence $a \in b$ true?

A sentence of the form $a \in b$ is true if and only if b is a set, and a is an element of that set.

Example

Given: Then we have:

a: 2 $a \in a$ FALSE Note: 2 is not the same as $\{2\}$.

b: $\{2,4,6\}$ $a \in b$ TRUE $b \in a$ FALSE

c: $\{2, \{2, 4, 6\}\}\$ $b \in a \text{ FALSE}$ $b \in b \text{ FALSE}$

When is the sentence $a \in b$ true?

A sentence of the form $a \in b$ is true if and only if b is a set, and a is an element of that set.

Example

Given: Then we have:

a: 2 $a \in a$ FALSE Note: 2 is not the same as $\{2\}$.

b: $\{2,4,6\}$ $a \in b$ TRUE $b \in a$ FALSE

c: $\{2, \{2, 4, 6\}\}\$ $b \in a \text{ FALSE}$ $b \in b \text{ FALSE}$

D C D TALSE

 $a \in c$

When is the sentence $a \in b$ true?

A sentence of the form $a \in b$ is true if and only if b is a set, and a is an element of that set.

Example

Given: Then we have:

a: 2 $a \in a$ FALSE Note: 2 is not the same as $\{2\}$.

b: $\{2,4,6\}$ $a \in b \text{ TRUE}$

c: $\{2, \{2, 4, 6\}\}\$ $b \in a \text{ FALSE}$

 $b \in b$ FALSE

 $a \in c \mathsf{TRUE}$

When is the sentence $a \in b$ true?

A sentence of the form $a \in b$ is true if and only if b is a set, and a is an element of that set.

Example

Given: Then we have: $a \in a \text{ FALSE Note: } 2 \text{ is not the same as } \{2\}.$ $a \in b \text{ TRUE}$ $b \in a \text{ FALSE}$ $b \in b \text{ FALSE}$ $a \in c \text{ TRUE}$ $b \in c$

When is the sentence $a \in b$ true?

A sentence of the form $a \in b$ is true if and only if b is a set, and a is an element of that set.

Example

Given: Then we have: $a \in a \text{ FALSE Note: } 2 \text{ is not the same as } \{2\}.$ $a \in b \text{ TRUE}$ $b \in a \text{ FALSE}$ $b \in b \text{ FALSE}$ $a \in c \text{ TRUE}$ $b \in c \text{ TRUE}$

Definition

A = B iff A and B contain exactly the same elements.

That is, for all x it holds that: $x \in A$ if and only if $x \in B$.

Definition

A = B iff A and B contain exactly the same elements.

That is, for all x it holds that: $x \in A$ if and only if $x \in B$.

$$\{1,2\}$$
 $\{2,1\}$

Definition

A = B iff A and B contain exactly the same elements.

That is, for all x it holds that: $x \in A$ if and only if $x \in B$.

$$\{1,2\}=\{2,1\}$$

Definition

A = B iff A and B contain exactly the same elements.

That is, for all x it holds that: $x \in A$ if and only if $x \in B$.

$$\{1,2\} = \{2,1\}$$

 $\{1,2\}$ $\{1,1,2\}$

Definition

A = B iff A and B contain exactly the same elements.

That is, for all x it holds that: $x \in A$ if and only if $x \in B$.

$$\{1,2\} = \{2,1\}$$

 $\{1,2\} = \{1,1,2\}$

Definition

A = B iff A and B contain exactly the same elements.

That is, for all x it holds that: $x \in A$ if and only if $x \in B$.

Definition

A = B iff A and B contain exactly the same elements.

That is, for all x it holds that: $x \in A$ if and only if $x \in B$.

Definition

A = B iff A and B contain exactly the same elements.

That is, for all x it holds that: $x \in A$ if and only if $x \in B$.

Definition

A = B iff A and B contain exactly the same elements.

That is, for all x it holds that: $x \in A$ if and only if $x \in B$.

$$\{1,2\} = \{2,1\}$$

$$\{1,2\} = \{1,1,2\}$$

$$\{1,2\} \neq \{1,2,3\}$$

$$\{1,2\} \neq \{\{1,2\}\}$$

Relations between sets: Empty set & Inclusion

Definition

 \emptyset The empty set \emptyset or \varnothing is the set that contains no elements. That is, there is no x such that $x \in \emptyset$.

Relations between sets: Empty set & Inclusion

Definition

- \emptyset The empty set \emptyset or \emptyset is the set that contains no elements. That is, there is no x such that $x \in \emptyset$.
- \subseteq Set A is a subset of B, written $A \subseteq B$, iff all elements of A are also elements of B.

That is, for all x it holds that (if $x \in A$ then $x \in B$).

Relations between sets: Empty set & Inclusion

Definition

- \emptyset The empty set \emptyset or \varnothing is the set that contains no elements. That is, there is no x such that $x \in \emptyset$.
- \subseteq Set A is a subset of B, written $A \subseteq B$, iff all elements of A are also elements of B.
 - That is, for all x it holds that (if $x \in A$ then $x \in B$).
- \subsetneq Set A is a proper subset, written $A \subsetneq B$, iff A is a subset of B, but B has at least one additional element. That is, $A \subseteq B$ and there is an x s.t. $(x \in B \text{ and } x \notin A)$.

Relations between sets: Empty set & Inclusion

Definition

- \emptyset The empty set \emptyset or \varnothing is the set that contains no elements. That is, there is no x such that $x \in \emptyset$.
- \subseteq Set A is a subset of B, written $A \subseteq B$, iff all elements of A are also elements of B. That is, for all x it holds that (if $x \in A$ then $x \in B$).
- \subsetneq Set A is a proper subset, written $A \subsetneq B$, iff A is a subset of B,
 - but B has at least one additional element. That is, $A \subseteq B$ and there is an x s.t. $(x \in B \text{ and } x \notin A)$. Note: LPL and old exams use ' \subset ' for proper subsets.

We have for all sets A and B:

▶ $\emptyset \subseteq A$ and $A \subseteq A$

Relations between sets: Empty set & Inclusion

Definition

- \emptyset The empty set \emptyset or \varnothing is the set that contains no elements. That is, there is no x such that $x \in \emptyset$.
- \subseteq Set A is a subset of B, written $A \subseteq B$, iff all elements of A are also elements of B.
 - That is, for all x it holds that (if $x \in A$ then $x \in B$).
- \subsetneq Set A is a proper subset, written $A \subsetneq B$, iff A is a subset of B, but B has at least one additional element. That is, $A \subseteq B$ and there is an x s.t. $(x \in B \text{ and } x \notin A)$.

Note: LPL and old exams use '⊂' for proper subsets.

We have for all sets A and B:

- ▶ $\emptyset \subseteq A$ and $A \subseteq A$
- ▶ if $A \subseteq B$ and $B \subseteq A$ then A = B
- ▶ if $A \subseteq \emptyset$ then $A = \emptyset$

Relations between sets: Empty set & Inclusion

Definition

- \emptyset The empty set \emptyset or \varnothing is the set that contains no elements. That is, there is no x such that $x \in \emptyset$.
- \subseteq Set A is a subset of B, written $A \subseteq B$, iff all elements of A are also elements of B.

That is, for all x it holds that (if $x \in A$ then $x \in B$).

 \subseteq Set A is a proper subset, written $A \subseteq B$, iff A is a subset of B, but B has at least one additional element. That is, $A \subseteq B$ and there is an x s.t. $(x \in B \text{ and } x \notin A)$.

Note: LPL and old exams use '⊂' for proper subsets.

We have for all sets A and B:

- ▶ $\emptyset \subseteq A$ and $A \subseteq A$
- ▶ if $A \subseteq B$ and $B \subseteq A$ then A = B
- ▶ if $A \subseteq \emptyset$ then $A = \emptyset$
- ▶ $A \subseteq A$ never holds
- \triangleright $A \subseteq \emptyset$ never holds

Intersection
$$A \cap B$$
 is $\{x \mid x \in A \text{ and } x \in B\}$
Union $A \cup B$ is $\{x \mid x \in A \text{ or } x \in B\}$

```
Intersection A \cap B is \{x \mid x \in A \text{ and } x \in B\}
Union A \cup B is \{x \mid x \in A \text{ or } x \in B\}
Difference A \setminus B is \{x \mid x \in A \text{ and } x \notin B\}
```

```
Intersection A \cap B is \{x \mid x \in A \text{ and } x \in B\}
Union A \cup B is \{x \mid x \in A \text{ or } x \in B\}
Difference A \setminus B is \{x \mid x \in A \text{ and } x \notin B\}
(alternative notation: A - B)
```

Intersection
$$A \cap B$$
 is $\{x \mid x \in A \text{ and } x \in B\}$
Union $A \cup B$ is $\{x \mid x \in A \text{ or } x \in B\}$
Difference $A \setminus B$ is $\{x \mid x \in A \text{ and } x \notin B\}$
(alternative notation: $A - B$)

We often work in a large set ${\it U}$ called *universe* of discourse. If ${\it U}$ is given, then we can define:

Complement
$$A^c := U \setminus A = \{x \in U \mid x \notin A\}$$

Overview of Symbols

You should know by now:

- **>** (
- ▶ ∉
- ightharpoonup
- **▶** ⊊
- **▶** ∅
- ▶
- ****

Overview of Symbols

You should know by now:

- $ightharpoonup \in \setminus in$
- ▶ ∉ \notin
- ightharpoonup \subseteq
- ightharpoonup \subseteq \subsetneq
- ▶ ∅ \emptyset
- ▶ ∩ \cap
- ▶ ∪ \cup
- \ \setminus

Next to the symbols you can see their LATEX commands.

A very useful tool/website if you are looking for symbol commands: https://detexify.kirelabs.org/.

Building sets: Abstraction

Let E be any property, for example "being an even number", "being a mathematical entity", "being nice", ...

General abstraction says:

There exists a set A such that for any x, $x \in A$ if and only if E(x)

We write this new set as:

$$\{x \mid E(x)\}$$

That is, the set of all objects with property E.

Building sets: Abstraction

Let E be any property, for example "being an even number", "being a mathematical entity", "being nice", ...

General abstraction says:

There exists a set A such that for any x, $x \in A$ if and only if E(x)

We write this new set as:

$$\{x \mid E(x)\}$$

That is, the set of all objects with property E.

Abstraction can also be relative to a set, for example:

$$\{x \in \mathbb{N} \mid Even(x)\}$$

Building sets: Abstraction examples

Examples of general abstraction:

- $\{x \mid Loud(x) \land InGroningen(x)\} = \{martiniToren, forum, \ldots\}$

Building sets: Abstraction examples

Examples of general abstraction:

- $\{x \mid Loud(x) \land InGroningen(x)\} = \{martiniToren, forum, \ldots\}$

Examples of relative abstraction:

- $\{x \in \mathbb{N} \mid Odd(x)\} = \{1, 3, 5, 7, \ldots\}$
- $\{x \in \{1, 23, 42\} \mid Even(x)\} = \{42\}$

Using general abstraction, let R be the set defined by the property "not being a member of itself"

$$R := \{x \mid x \not\in x\}$$

Then we have for any $x: x \in R$ iff $x \notin x$

Using general abstraction, let R be the set defined by the property "not being a member of itself"

$$R := \{x \mid x \notin x\}$$

Then we have for any $x: x \in R$ iff $x \notin X$ What about R itself? Does R belong to R? Do we have $R \in R$?

Using general abstraction, let R be the set defined by the property "not being a member of itself"

$$R := \{x \mid x \notin x\}$$

Then we have for any $x: x \in R$ iff $x \notin X$ What about R itself? Does R belong to R? Do we have $R \in R$?

Using general abstraction, let R be the set defined by the property "not being a member of itself"

$$R := \{x \mid x \notin x\}$$

Then we have for any $x: x \in R$ iff $x \notin X$ What about R itself? Does R belong to R? Do we have $R \in R$?

 $R \in R \text{ iff } R \notin R$

Using general abstraction, let R be the set defined by the property "not being a member of itself"

$$R := \{ x \mid x \notin x \}$$

Then we have for any $x: x \in R$ iff $x \notin X$ What about R itself? Does R belong to R? Do we have $R \in R$?

 $R \in R$ iff $R \notin R$ Contradiction! Such a set R cannot exist!

Using general abstraction, let R be the set defined by the property "not being a member of itself"

$$R := \{x \mid x \notin x\}$$

Then we have for any $x: x \in R$ iff $x \notin X$ What about R itself? Does R belong to R? Do we have $R \in R$?

 $R \in R$ iff $R \notin R$ Contradiction! Such a set R cannot exist! Moral: General abstraction $\{x \mid \dots\}$ is "dangerous"! Only relative abstraction is safe: $\{x \in A \mid \dots\}$.

Bertrand Russell (1872–1970)

Either a thing is true or it isn't.

If it is true, you should believe it.

And if it isn't you shouldn't.

Bertrand Russell

Logicomix: An Epic Search for Truth by Papadimitriou et al. https://www.logicomix.com/

Overview

Sets

Relations

Functions

Ordered pairs

Ordered pair of a and b is written as $\langle a, b \rangle$.

Main property: $\langle a,b \rangle = \langle c,d \rangle$ if and only if a=c and b=d

Ordered pairs

Ordered pair of a and b is written as $\langle a, b \rangle$.

Main property: $\langle a, b \rangle = \langle c, d \rangle$ if and only if a = c and b = d

Order matters:

$$\langle 1,2\rangle \neq \langle 2,1\rangle$$

Recall that order does not matter for sets:

$$\{1,2\} = \{2,1\}$$

Definition

A (binary) relation is a set of ordered pairs.

Definition

A (binary) relation is a set of ordered pairs.

Example:

$$\{\langle 1,2\rangle,\langle 1,3\rangle,\langle 2,3\rangle\}$$

Definition

A (binary) relation is a set of ordered pairs.

The domain of R is the set $\{x \mid \langle x,y \rangle \in R, \text{ for some } y\}$. The codomain (range) of R is the set $\{y \mid \langle x,y \rangle \in R, \text{ for some } x\}$.

Example:

$$\{\langle 1,2\rangle,\langle 1,3\rangle,\langle 2,3\rangle\}$$

Definition

A (binary) relation is a set of ordered pairs.

The domain of R is the set $\{x \mid \langle x,y \rangle \in R, \text{ for some } y\}.$ The codomain (range) of R is the set $\{y \mid \langle x,y \rangle \in R, \text{ for some } x\}.$

The Cartesian product of A and B is $A \times B := \{\langle x, y \rangle \mid x \in A \text{ and } y \in B\}$. This is the largest relation with domain A and codomain B.

A relation on A is a subset of $A \times A$. Notation: $R \subseteq A \times A$.

Example: $\{\langle 1, 2 \rangle, \langle 1, 3 \rangle, \langle 2, 3 \rangle\}$

Definition

A (binary) relation is a set of ordered pairs.

The domain of R is the set $\{x \mid \langle x,y \rangle \in R, \text{ for some } y\}$. The codomain (range) of R is the set $\{y \mid \langle x,y \rangle \in R, \text{ for some } x\}$.

The Cartesian product of A and B is $A \times B := \{\langle x, y \rangle \mid x \in A \text{ and } y \in B\}$. This is the largest relation with domain A and codomain B.

A relation on A is a subset of $A \times A$. Notation: $R \subseteq A \times A$.

Example: $\{\langle 1, 2 \rangle, \langle 1, 3 \rangle, \langle 2, 3 \rangle\}$

Some relations on \mathbb{N} are =, \leq , \geq , < and >.

Properties of relations

Let R be a relation on some set A, i.e. $R \subseteq A \times A$.

We define the following properties:

```
reflexivity for all x \in A: \langle x, x \rangle \in R symmetry for all x, y \in A: if \langle x, y \rangle \in R, then \langle y, x \rangle \in R. transitivity for all x, y, z \in A: if \langle x, y \rangle \in R and \langle y, z \rangle \in R, then \langle x, z \rangle \in R. density for all x, y \in A: if \langle x, y \rangle \in R, then there is a z \in A such that \langle x, z \rangle \in R and \langle z, y \rangle \in R.
```

Properties of relations

Let R be a relation on some set A, i.e. $R \subseteq A \times A$.

We define the following properties:

```
reflexivity for all x \in A: \langle x, x \rangle \in R symmetry for all x, y \in A: if \langle x, y \rangle \in R, then \langle y, x \rangle \in R. transitivity for all x, y, z \in A: if \langle x, y \rangle \in R and \langle y, z \rangle \in R, then \langle x, z \rangle \in R. density for all x, y \in A: if \langle x, y \rangle \in R, then there is a z \in A such that \langle x, z \rangle \in R and \langle z, y \rangle \in R.
```

functionality for all $x, y, z \in A$: if $\langle x, y \rangle \in R$ and $\langle x, z \rangle \in R$, then y = z.

Overview

Sets

Relations

Functions

functionality For all $x, y, z \in A$: if $\langle x, y \rangle \in R$ and $\langle x, z \rangle \in R$, then y = z.

functionality For all $x, y, z \in A$: if $\langle x, y \rangle \in R$ and $\langle x, z \rangle \in R$, then y = z.

▶ If a relation *R* on *A* is functional, it is a partial function on *A*.

functionality For all $x, y, z \in A$: if $\langle x, y \rangle \in R$ and $\langle x, z \rangle \in R$, then y = z.

- ▶ If a relation R on A is functional, it is a partial function on A.
- ▶ If a relation R on A is functional and its domain is A, then R is a (total) function on A.

functionality For all $x, y, z \in A$: if $\langle x, y \rangle \in R$ and $\langle x, z \rangle \in R$, then y = z.

- ▶ If a relation *R* on *A* is functional, it is a partial function on *A*.
- ▶ If a relation R on A is functional and its domain is A, then R is a (total) function on A.
- ▶ To denote functions (functional relations), we often use f, g, h, \ldots (rather than R).

functionality For all $x, y, z \in A$: if $\langle x, y \rangle \in R$ and $\langle x, z \rangle \in R$, then y = z.

- ▶ If a relation R on A is functional, it is a partial function on A.
- If a relation R on A is functional and its domain is A, then R is a (total) function on A.
- ▶ To denote functions (functional relations), we often use f, g, h, \ldots (rather than R).
- ▶ Instead of $\langle x, y \rangle \in f$, we often write f(x) = y or y = f(x).

Functions

functionality For all $x, y, z \in A$: if $\langle x, y \rangle \in R$ and $\langle x, z \rangle \in R$, then y = z.

- ▶ If a relation R on A is functional, it is a partial function on A.
- If a relation R on A is functional and its domain is A, then R is a (total) function on A.
- ▶ To denote functions (functional relations), we often use f, g, h, \ldots (rather than R).
- ▶ Instead of $\langle x, y \rangle \in f$, we often write f(x) = y or y = f(x).
- ▶ $f: A \rightarrow B$ means: f is a (total) function with domain A and range $\subseteq B$.

Let $f: A \to B$ be a (total) function with domain A and range $\subseteq B$. Such a function f my have some additional properties:

If f: A → B is such that the range of f is B, then f is called a surjection.

Let $f : A \to B$ be a (total) function with domain A and range $\subseteq B$. Such a function f my have some additional properties:

- If f: A → B is such that the range of f is B, then f is called a surjection.
- ▶ If $f: A \to B$ is such that: for all $x, y, z \in A$: if $\langle x, y \rangle \in R$ and $\langle z, y \rangle \in R$, then x = z,

then f is called an injection.

Let $f : A \to B$ be a (total) function with domain A and range $\subseteq B$. Such a function f my have some additional properties:

- ▶ If $f: A \rightarrow B$ is such that the range of f is B, then f is called a surjection.
- ▶ If $f: A \to B$ is such that: for all $x, y, z \in A$: if $\langle x, y \rangle \in R$ and $\langle z, y \rangle \in R$, then x = z,

then f is called an injection.

▶ If f is both an injection and a surjection, then f is a bijection. If there is such a bijection from A to B, then A and B have equal size.

Let $f : A \to B$ be a (total) function with domain A and range $\subseteq B$. Such a function f my have some additional properties:

- ▶ If $f: A \rightarrow B$ is such that the range of f is B, then f is called a surjection.
- ▶ If $f: A \to B$ is such that: for all $x, y, z \in A$: if $\langle x, y \rangle \in R$ and $\langle z, y \rangle \in R$, then x = z,

then f is called an injection.

- ▶ If f is both an injection and a surjection, then f is a bijection. If there is such a bijection from A to B, then A and B have equal size.
- ▶ There are also binary functions such as + and \times , as well as n-ary functions $f: (A_1 \times \cdots \times A_n) \to B$.

Let $f : A \to B$ be a (total) function with domain A and range $\subseteq B$. Such a function f my have some additional properties:

- ▶ If $f: A \rightarrow B$ is such that the range of f is B, then f is called a surjection.
- ▶ If $f: A \to B$ is such that: for all $x, y, z \in A$: if $\langle x, y \rangle \in R$ and $\langle z, y \rangle \in R$, then x = z,

then f is called an injection.

- ▶ If f is both an injection and a surjection, then f is a bijection. If there is such a bijection from A to B, then A and B have equal size.
- ► There are also binary functions such as + and \times , as well as n-ary functions $f: (A_1 \times \cdots \times A_n) \to B$.

Note: This was not in past exams, but may be used now!

Functions in First-order logic

We can add function symbols to the language of first-order logic.

Examples:

- ▶ father(x): the father of x
- mother(x): the mother of x
- \triangleright x + y: the sum of x and y

Note: function symbols, just like constants, start with a lower-case letter, except special functions in infix notation such as +.

Functions in First-order logic

We can add function symbols to the language of first-order logic.

Examples:

- ▶ father(x): the father of x
- mother(x): the mother of x
- \triangleright x + y: the sum of x and y

Note: function symbols, just like constants, start with a lower-case letter, except special functions in infix notation such as +.

(Constants, for example 5 or mary, are 0-place function symbols.)

Functions can be nested: father(mother(max)) is a term.

Functions can be nested: father(mother(max)) is a term.

Definition

Terms in FOL are defined inductively:

```
BASIS 1 constants a, b, c, d, e, n_1, n_2, \ldots are terms;
```

BASIS 2 variables t, u, v, w, x, y, z are terms;

Functions can be nested: father(mother(max)) is a term.

Definition

Terms in FOL are defined inductively:

BASIS 1 constants $a, b, c, d, e, n_1, n_2, ...$ are terms;

BASIS 2 variables t, u, v, w, x, y, z are terms;

CONSTRUCTION If $t_1, ..., t_n$ are terms and f is an n-ary function symbol, then $f(t_1, ..., t_n)$ is also a term;

Functions can be nested: father(mother(max)) is a term.

Definition

Terms in FOL are defined inductively:

BASIS 1 constants $a, b, c, d, e, n_1, n_2, \ldots$ are terms;

BASIS 2 variables t, u, v, w, x, y, z are terms;

CONSTRUCTION If $t_1, ..., t_n$ are terms and f is an n-ary function symbol, then $f(t_1, ..., t_n)$ is also a term;

CLOSURE Nothing else is a term that is not constructed in finitely many steps from rules BASIS 1, BASIS 2, CONSTRUCTION.

Functions can be nested: father(mother(max)) is a term.

Definition

Terms in FOL are defined inductively:

BASIS 1 constants $a, b, c, d, e, n_1, n_2, \ldots$ are terms;

BASIS 2 variables t, u, v, w, x, y, z are terms;

CONSTRUCTION If $t_1, ..., t_n$ are terms and f is an n-ary function symbol, then $f(t_1, ..., t_n)$ is also a term;

CLOSURE Nothing else is a term that is not constructed in finitely many steps from rules BASIS 1, BASIS 2, CONSTRUCTION.

Example: a(OlderThan(b)) is not a term.

Functions can be nested: father(mother(max)) is a term.

Definition

Terms in FOL are defined inductively:

BASIS 1 constants $a, b, c, d, e, n_1, n_2, \ldots$ are terms;

BASIS 2 variables t, u, v, w, x, y, z are terms;

CONSTRUCTION If $t_1, ..., t_n$ are terms and f is an n-ary function symbol, then $f(t_1, ..., t_n)$ is also a term;

CLOSURE Nothing else is a term that is not constructed in finitely many steps from rules BASIS 1, BASIS 2, CONSTRUCTION.

Example: a(OlderThan(b)) is not a term.

Complex terms are used just like names/constants, to refer to objects in the domain of discourse.

Function symbols give more expressivity to FOL

Note that function symbols give extra expressivity to FOL:

► The set of atomic formulas is extended to include expressions with function symbols.

Example: Older(father(max), max) is an atomic sentence.

Function symbols give more expressivity to FOL

Note that function symbols give extra expressivity to FOL:

► The set of atomic formulas is extended to include expressions with function symbols.

Example: Older(father(max), max) is an atomic sentence.

► Functions can be nested. Note: predicates cannot be nested.

Example

father(mother(max)) is a term.

Loves(father(mother(max)), mary) is a sentence.

Older(Loves(juliet, romeo)) is not well-formed.

Function symbols give more expressivity to FOL

Note that function symbols give extra expressivity to FOL:

► The set of atomic formulas is extended to include expressions with function symbols.

Example: Older(father(max), max) is an atomic sentence.

► Functions can be nested. Note: predicates cannot be nested.

Example

```
father(mother(max)) is a term.

Loves(father(mother(max)), mary) is a sentence.

Older(Loves(juliet, romeo)) is not well-formed.
```

You can express more properties using function symbols.
Example: "Everyone's paternal grandmother is older and nicer than one's father"
∀x(OlderThan(mother(father(x)), father(x)) ∧
NicerThan(mother(father(x)), father(x)))

Example exercise from the 2019 exam

Given are the following five sets:

$$A=\{1,2\},\ B=\{\{1\},\{2\}\},\ C=\{1,\{1\}\},\ R=\{\langle 1,2\rangle,\langle 2,1\rangle\}$$
 and
$$S=\{1,\langle 2,2\rangle\}.$$

For each of the following statements, determine whether it is true or false. You are not required to explain the answer.

- **1**. *C* ⊆ *A*
- **2**. ∅ ∈ *B*
- 3. $R \subseteq A$
- 4. $A \cap C \subseteq S$

- 5. $(A \cap C) \in (B \cap C)$
- 6. $C \subseteq A \cup B$
- 7. $A \cap S = \emptyset$
- 8. R is transitive

Next lecture

Wednesday 6 December 15:00 to 17:00

Coming soon

Quantification: meaning, translation, proof rules