Generated on 2025-04-15 17:48:01 by gEcon version 1.2.1 (2023-01-18) Model name: baseline_NK

1 CONSUMER

1.1 Optimisation problem

$$\max_{C_t, K_t^s, I_t, B_t, L_t^s} U_t = \beta E_t \left[U_{t+1} \right] + (1 - \eta)^{-1} \left(C_t^{\mu} (1 - L_t^s)^{1 - \mu} \right)^{1 - \eta}$$
(1.1)

s.t.:

$$C_t + I_t + B_t R_t^{-1} = D \dot{w}_t - T_t + B_{t-1} \pi_t^{-1} + K_{t-1}^{s} r_t + L_t^{s} W_t \quad (\lambda_t)$$
(1.2)

$$K_t^{s} = I_t + K_{t-1}^{s} (1 - \delta) \quad (q_t)$$
 (1.3)

1.2 Identities

$$Q_t = \lambda_t^{-1} q_t \tag{1.4}$$

1.3 First order conditions

$$-\lambda_t + \mu C_t^{-1+\mu} (1 - L_t^s)^{1-\mu} \left(C_t^{\mu} (1 - L_t^s)^{1-\mu} \right)^{-\eta} = 0 \quad (C_t)$$
 (1.5)

$$-q_t + \beta \left((1 - \delta) E_t \left[q_{t+1} \right] + E_t \left[\lambda_{t+1} r_{t+1} \right] \right) = 0 \quad (K_t^s)$$
(1.6)

$$-\lambda_t + q_t = 0 \quad (I_t) \tag{1.7}$$

$$\beta E_t \left[\lambda_{t+1} \pi_{t+1}^{-1} \right] - \lambda_t R_t^{-1} = 0 \quad (B_t)$$
(1.8)

$$\lambda_t W_t + (-1 + \mu) C_t^{\mu} (1 - L_t^s)^{-\mu} \left(C_t^{\mu} (1 - L_t^s)^{1 - \mu} \right)^{-\eta} = 0 \quad (L_t^s)$$
(1.9)

2 FIRM

2.1 Optimisation problem

$$\max_{K_t^{\rm d}, L_t^{\rm d}} t_t^{\rm j} = -r_t K_t^{\rm d} - L_t^{\rm d} W_t \tag{2.1}$$

s.t.:

$$Y_t^{\mathbf{j}} = Z_t K_t^{\mathbf{d}^{\alpha}} L_t^{\mathbf{d}^{1-\alpha}} \quad (mc_t) \tag{2.2}$$

2.2 First order conditions

$$-r_t + \alpha m c_t Z_t K_t^{\mathrm{d}^{-1+\alpha}} L_t^{\mathrm{d}^{1-\alpha}} = 0 \quad \left(K_t^{\mathrm{d}}\right) \tag{2.3}$$

$$-W_t + mc_t Z_t (1 - \alpha) K_t^{\mathrm{d}^{\alpha}} L_t^{\mathrm{d}^{-\alpha}} = 0 \quad (L_t^{\mathrm{d}})$$

$$(2.4)$$

3 PRICE SETTING PROBLEM

3.1 Identities

$$g_t^1 = \eta_t^{\rm p} + g_t^2 (1 + \lambda^{\rm p}) \tag{3.1}$$

$$g_t^1 = \lambda_t \pi_t^* Y_t + \beta \xi^{\mathbf{p}} \pi_t^* \mathbf{E}_t \left[g_{t+1}^1 \pi_{t+1}^{*-1} \left(\pi_{t+1}^{-1} \pi_t^{\gamma^{\mathbf{p}}} \right)^{-\lambda^{\mathbf{p}-1}} \right]$$
(3.2)

$$g_t^2 = \beta \xi^{\rm p} E_t \left[g_{t+1}^2 \left(\pi_{t+1}^{-1} \pi_t^{\gamma^{\rm p}} \right)^{-\lambda^{\rm p-1} (1+\lambda^{\rm p})} \right] + \lambda_t m c_t Y_t$$
(3.3)

4 PRICE EVOLUTION

4.1 Identities

2

$$1 = \xi^{p} \left(\pi_{t}^{-1} \pi_{t-1} \gamma^{p} \right)^{-\lambda^{p-1}} + (1 - \xi^{p}) \pi_{t}^{\star - \lambda^{p-1}}$$

$$\tag{4.1}$$

5 PRODUCT AGGREGATION

5.1 Identities

$$Y_t^{\rm s} = Y_t^{\rm j} \tag{5.1}$$

$$\nu_t^{\rm p} = (1 - \xi^{\rm p}) \, \pi_t^{\star - \lambda^{\rm p-1}(1 + \lambda^{\rm p})} + \xi^{\rm p} \nu_{t-1}^{\rm p} \left(\pi_t^{-1} \pi_{t-1} \gamma^{\rm p} \right)^{-\lambda^{\rm p-1}(1 + \lambda^{\rm p})}$$

$$(5.2)$$

$$\nu_t^{\mathrm{p}} Y_t = Y_t^{\mathrm{s}} \tag{5.3}$$

6 EQUILIBRIUM

6.1 Identities

$$K_t^{\mathbf{d}} = K_{t-1}^{\mathbf{s}} \tag{6.1}$$

$$L_t^{\rm d} = L_t^{\rm s} \tag{6.2}$$

$$B_t = 0 (6.3)$$

$$Dw_t = Y_t - L_t^{\mathrm{d}} W_t - r_t K_t^{\mathrm{d}} \tag{6.4}$$

7 MONETARY POLICY AUTHORITY

7.1 Identities

$$abbr^{\pi} + \log\left(R_{ss}^{-1}R_{t}\right) = \eta_{t}^{R} + \rho\log\left(R_{ss}^{-1}R_{t-1}\right) + (1-\rho)\left(\log\pi_{t}^{obj} + r^{\pi}\left(-\log\pi_{t}^{obj} + \log\left(\pi_{ss}^{-1}\pi_{t-1}\right)\right) + r^{Y}\log\left(Y_{ss}^{-1}Y_{t}\right)\right)$$
(7.1)

$$\log \pi_t^{\text{obj}} = \eta_t^{\pi} + \rho^{\pi^{\text{bar}}} \log \pi_{t-1}^{\text{obj}} + \log \alpha h h^{\pi^{\text{obj}}} \left(1 - \rho^{\pi^{\text{bar}}} \right)$$

$$(7.2)$$

8 GOVERNMENT

8.1 Identities

$$G_t = G^{\text{bar}} \epsilon_t^{G} \tag{8.1}$$

$$G_t + B_{t-1}\pi_t^{-1} = T_t + B_t R_t^{-1} \tag{8.2}$$

9 GOVERNMENT SPENDING SHOCK

9.1 Identities

$$\log \epsilon_t^{G} = \eta_t^{G} + \rho^{G} \log \epsilon_{t-1}^{G} \tag{9.1}$$

10 TECHNOLOGY

10.1 Identities

$$Z_t = e^{\epsilon_t^{\mathrm{Z}} + \rho^{\mathrm{a}} \log Z_{t-1}} \tag{10.1}$$

11 Equilibrium relationships (after reduction)

$$-B_t = 0 (11.1)$$

$$-\lambda_t + q_t = 0 \tag{11.2}$$

$$-\lambda_t + \mu C_t^{-1+\mu} (1 - L_t^s)^{1-\mu} \left(C_t^{\mu} (1 - L_t^s)^{1-\mu} \right)^{-\eta} = 0$$
(11.3)

$$-q_t + \beta \left((1 - \delta) \,\mathcal{E}_t \left[q_{t+1} \right] + \mathcal{E}_t \left[\lambda_{t+1} r_{t+1} \right] \right) = 0 \tag{11.4}$$

$$-r_t + \alpha m c_t Z_t K_{t-1}^{s}^{-1+\alpha} L_t^{s}^{1-\alpha} = 0$$
(11.5)

$$-G_t + G^{\text{bar}} \epsilon_t^{G} = 0 \tag{11.6}$$

$$-Q_t + \lambda_t^{-1} q_t = 0 (11.7)$$

$$-W_t + mc_t Z_t (1 - \alpha) K_{t-1}^s {}^{\alpha} L_t^{s-\alpha} = 0$$
(11.8)

$$-Y_t^{j} + Z_t K_{t-1}^{s} {}^{\alpha} L_t^{s1-\alpha} = 0 (11.9)$$

$$Y_t^{j} - Y_t^{s} = 0 (11.10)$$

$$Y_t^{\rm s} - \nu_t^{\rm p} Y_t = 0 (11.11)$$

$$-Z_t + e^{\epsilon_t^{\mathbf{Z}} + \rho^{\mathbf{a}} \log Z_{t-1}} = 0 \tag{11.12}$$

$$\beta E_t \left[\lambda_{t+1} \pi_{t+1}^{-1} \right] - \lambda_t R_t^{-1} = 0 \tag{11.13}$$

$$\lambda_t W_t + (-1 + \mu) C_t^{\mu} (1 - L_t^s)^{-\mu} \left(C_t^{\mu} (1 - L_t^s)^{1 - \mu} \right)^{-\eta} = 0$$
(11.14)

$$-1 + \xi^{p} \left(\pi_{t}^{-1} \pi_{t-1} \gamma^{p} \right)^{-\lambda^{p-1}} + (1 - \xi^{p}) \pi_{t}^{\star - \lambda^{p-1}} = 0$$
(11.15)

$$\eta_t^{\rm p} - g_t^1 + g_t^2 (1 + \lambda^{\rm p}) = 0 \tag{11.16}$$

$$\eta_t^{\mathcal{G}} - \log \epsilon_t^{\mathcal{G}} + \rho^{\mathcal{G}} \log \epsilon_{t-1}^{\mathcal{G}} = 0 \tag{11.17}$$

$$-g_t^1 + \lambda_t \pi_t^* Y_t + \beta \xi^p \pi_t^* \mathcal{E}_t \left[g_{t+1}^1 \pi_{t+1}^{*-1} \left(\pi_{t+1}^{-1} \pi_t^{\gamma^p} \right)^{-\lambda^{p-1}} \right] = 0$$
 (11.18)

$$-g_t^2 + \beta \xi^{P} E_t \left[g_{t+1}^2 \left(\pi_{t+1}^{-1} \pi_t^{\gamma^{P}} \right)^{-\lambda^{P-1} (1+\lambda^{P})} \right] + \lambda_t m c_t Y_t = 0$$
(11.19)

$$-\nu_t^{\mathbf{P}} + (1 - \xi^{\mathbf{P}}) \pi_t^{\star - \lambda^{\mathbf{P}^{-1}}(1 + \lambda^{\mathbf{P}})} + \xi^{\mathbf{P}} \nu_{t-1}^{\mathbf{P}} \left(\pi_t^{-1} \pi_{t-1} \gamma^{\mathbf{P}} \right)^{-\lambda^{\mathbf{P}^{-1}}(1 + \lambda^{\mathbf{P}})} = 0$$
(11.20)

$$I_t - K_t^{s} + K_{t-1}^{s} (1 - \delta) = 0 (11.21)$$

$$U_t - \beta E_t \left[U_{t+1} \right] - (1 - \eta)^{-1} \left(C_t^{\mu} (1 - L_t^s)^{1 - \mu} \right)^{1 - \eta} = 0$$
(11.22)

_

$$\eta_t^{\pi} - \log \pi_t^{\text{obj}} + \rho^{\pi^{\text{bar}}} \log \pi_{t-1}^{\text{obj}} + \log \operatorname{alt} r^{\pi^{\text{obj}}} \left(1 - \rho^{\pi^{\text{bar}}} \right) = 0$$

$$\left(1 - \rho^{\pi^{\text{bar}}}\right) = 0 \tag{11.23}$$

$$-D\dot{w}_t + Y_t - K_{t-1}^{s} r_t - L_t^{s} W_t = 0 (11.24)$$

$$-G_t + T_t - B_{t-1}\pi_t^{-1} + B_t R_t^{-1} = 0 (11.25)$$

$$-\alpha k r^{\pi} + \eta_{t}^{R} - \log(R_{ss}^{-1}R_{t}) + \rho \log(R_{ss}^{-1}R_{t-1}) + (1-\rho)\left(\log \pi_{t}^{obj} + r^{\pi}\left(-\log \pi_{t}^{obj} + \log(\pi_{ss}^{-1}\pi_{t-1})\right) + r^{Y}\log(Y_{ss}^{-1}Y_{t})\right) = 0$$
(11.26)

$$-C_t + D\dot{w}_t - I_t - T_t + B_{t-1}\pi_t^{-1} + K_{t-1}^s r_t - B_t R_t^{-1} + L_t^s W_t = 0$$
(11.27)

12 Steady state relationships (after reduction)

$$-B_{\rm ss} = 0 \tag{12.1}$$

$$-\lambda_{\rm ss} + q_{\rm ss} = 0 \tag{12.2}$$

$$-\lambda_{\rm ss} + \mu C_{\rm ss}^{-1+\mu} (1 - L_{\rm ss}^{\rm s})^{1-\mu} \left(C_{\rm ss}^{\mu} (1 - L_{\rm ss}^{\rm s})^{1-\mu} \right)^{-\eta} = 0$$
 (12.3)

$$-q_{\rm ss} + \beta \left(\lambda_{\rm ss} r_{\rm ss} + q_{\rm ss} \left(1 - \delta\right)\right) = 0 \tag{12.4}$$

$$-r_{ss} + \alpha m c_{ss} Z_{ss} K_{ss}^{s-1+\alpha} L_{ss}^{s-1-\alpha} = 0$$
 (12.5)

$$-G_{\rm ss} + G^{\rm bar} \epsilon_{\rm ss}^{\rm G} = 0 \tag{12.6}$$

$$-Q_{\rm ss} + \lambda_{\rm ss}^{-1} q_{\rm ss} = 0 ag{12.7}$$

$$-W_{\rm ss} + mc_{\rm ss}Z_{\rm ss}(1-\alpha)K_{\rm ss}^{\rm s}{}^{\alpha}L_{\rm ss}^{\rm s}{}^{-\alpha} = 0$$
(12.8)

$$-Y_{ss}^{j} + Z_{ss}K_{ss}^{s} L_{ss}^{l} = 0$$
 (12.9)

$$Y_{cc}^{j} - Y_{cc}^{s} = 0$$
 (12.10)

$$Y_{\rm ss}^{\rm s} - \nu_{\rm ss}^{\rm p} Y_{\rm ss} = 0$$
 (12.11)

$$-Z_{\rm ss} + e^{\rho^{\rm a}\log Z_{\rm ss}} = 0 {12.12}$$

$$-\lambda_{\rm ss}R_{\rm ss}^{-1} + \beta\lambda_{\rm ss}\pi_{\rm ss}^{-1} = 0 \tag{12.13}$$

$$\lambda_{\rm ss} W_{\rm ss} + (-1 + \mu) C_{\rm ss}^{\ \mu} (1 - L_{\rm ss}^{\rm s})^{-\mu} \left(C_{\rm ss}^{\ \mu} (1 - L_{\rm ss}^{\rm s})^{1-\mu} \right)^{-\eta} = 0 \tag{12.14}$$

$$-1 + \xi^{p} \left(\pi_{ss}^{-1} \pi_{ss}^{\gamma^{p}} \right)^{-\lambda^{p-1}} + (1 - \xi^{p}) \pi_{ss}^{\star - \lambda^{p-1}} = 0$$
 (12.15)

$$-g_{ss}^{1} + g_{ss}^{2} (1 + \lambda^{p}) = 0 (12.16)$$

$$-\log \epsilon_{\rm ss}^{\rm G} + \rho^{\rm G} \log \epsilon_{\rm ss}^{\rm G} = 0 \tag{12.17}$$

$$-g_{ss}^{1} + \lambda_{ss}\pi_{ss}^{\star}Y_{ss} + \beta\xi^{p}g_{ss}^{1}\left(\pi_{ss}^{-1}\pi_{ss}^{\gamma^{p}}\right)^{-\lambda^{p-1}} = 0$$
(12.18)

೮

$$-g_{ss}^2 + \lambda_{ss} m c_{ss} Y_{ss} + \beta \xi^p g_{ss}^2 \left(\pi_{ss}^{-1} \pi_{ss}^{\gamma^p} \right)^{-\lambda^{p-1} (1+\lambda^p)} = 0$$
(12.19)

$$-\nu_{\rm ss}^{\rm p} + (1 - \xi^{\rm p}) \,\pi_{\rm ss}^{\star - \lambda^{\rm p-1}(1 + \lambda^{\rm p})} + \xi^{\rm p} \nu_{\rm ss}^{\rm p} \left(\pi_{\rm ss}^{-1} \pi_{\rm ss}^{\gamma^{\rm p}}\right)^{-\lambda^{\rm p-1}(1 + \lambda^{\rm p})} = 0 \tag{12.20}$$

$$I_{\rm ss} - K_{\rm ss}^{\rm s} + K_{\rm ss}^{\rm s} (1 - \delta) = 0 \tag{12.21}$$

$$U_{\rm ss} - \beta U_{\rm ss} - (1 - \eta)^{-1} \left(C_{\rm ss}^{\ \mu} (1 - L_{\rm ss}^{\rm s})^{1 - \mu} \right)^{1 - \eta} = 0 \tag{12.22}$$

$$-\log \pi_{\rm ss}^{\rm obj} + \rho^{\pi^{\rm bar}} \log \pi_{\rm ss}^{\rm obj} + \log \omega \partial r^{\pi^{\rm obj}} \left(1 - \rho^{\pi^{\rm bar}} \right) = 0 \tag{12.23}$$

$$-D\dot{w}_{ss} + Y_{ss} - r_{ss}K_{ss}^{s} - L_{ss}^{s}W_{ss} = 0$$
(12.24)

$$-G_{\rm ss} + T_{\rm ss} - \pi_{\rm ss}^{-1} B_{\rm ss} + B_{\rm ss} R_{\rm ss}^{-1} = 0$$
(12.25)

$$-\alpha k b r^{\pi} + (1 - \rho) \left(\log \pi_{ss}^{obj} - r^{\pi} \log \pi_{ss}^{obj} \right) = 0$$

$$(12.26)$$

$$-C_{\rm ss} + D\dot{w}_{\rm ss} - I_{\rm ss} - T_{\rm ss} + \pi_{\rm ss}^{-1}B_{\rm ss} + r_{\rm ss}K_{\rm ss}^{\rm s} - B_{\rm ss}R_{\rm ss}^{-1} + L_{\rm ss}^{\rm s}W_{\rm ss} = 0$$
(12.27)

13 Calibrating equations

 $-1 + \pi_{\rm ss}^{\rm obj} = 0 \tag{13.1}$

$$-0.18 + G_{ss}Y_{ss}^{-1} = 0 (13.2)$$

$$\pi_{\rm ss} - \pi_{\rm ss}^{\rm obj} = 0 \tag{13.3}$$

14 Parameter settings

6

$$\alpha = 0.3 \tag{14.1}$$

$$\beta = 0.99 \tag{14.2}$$

$$\delta = 0.025 \tag{14.3}$$

$$\eta = 2 \tag{14.4}$$

$$\gamma^{\mathbf{p}} = 0.469 \tag{14.5}$$

$$\lambda^{\mathbf{p}} = 0.5 \tag{14.6}$$

$$\mu = 0.3 \tag{14.7}$$

$$r^{\pi} = 1.684 \tag{14.8}$$

$$r^{Y} = 0.099 \tag{14.9}$$

$$\rho = 0.961 \tag{14.10}$$

$$\rho^{\pi^{\text{bar}}} = 0.924 \tag{14.11}$$

$$\rho^{G} = 0.949 \tag{14.12}$$

$$\rho^{\rm a} = 0.823 \tag{14.13}$$

$$\xi^{\rm p} = 0.908 \tag{14.14}$$

15 Steady-state values

	Steady-state value
$\epsilon^{ m G}$	1
g^1	7.3514
g^2	4.9009
λ	1.5467
mc	0.6667
$ u^{ m p}$	1
π	1
π^{\star}	1
$\pi^{ m obj}$	1
q	1.5467
r	0.0351
B	0
C	0.3255
Div	0.1601
G	0.0865
I	0.0684
$K^{ m s}$	2.7374
$L^{ m s}$	0.2279
Q	1
R	1.0101
T	0.0865
U	-167.8256
W	0.9837
Y	0.4804
$Y^{ m j}$	0.4804
Y^{s}	0.4804
Z	1

16 The solution of the 1st order perturbation

Matrix P

Matrix Q

Matrix R

	$\epsilon_{t-1}^{\mathrm{G}}$	$ u_{t-1}^{ ext{p}}$	π_{t-1}	$\pi^{ ext{obj}}_{t-1}$	B_{t-1}	K_{t-1}^{s}	R_{t-1}	Z_{t-1}
g_t^1	$\int 0.1474$	0.9164	-1.9772	5.4585	0	-0.8826	-15.6826	-0.8627
g_t^2	0.1474	0.9164	-1.9772	5.4585	0	-0.8826	-15.6826	-0.8627
λ_t	0.1179	0.1359	0.8044	-2.1906	0	-0.2745	9.2056	-0.0385
mc_t	0.0862	4.9707	-10.2156	28.5786	0	-4.181	-122.7414	-4.7402
π_t^\star	-0.0012	0.5419	-1.3251	3.3865	0	-0.3941	-11.0059	-0.636
q_t	0.1179	0.1359	0.8044	-2.1906	0	-0.2745	9.2056	-0.0385
r_t	0.2504	9.6818	-19.1237	53.542	0	-8.6795	-230.1009	-7.5809
C_t	-0.0534	0.9651	-2.6415	7.3533	0	-0.6513	-31.4584	-0.8022
Div_t	-0.0082	-7.9544	11.5232	-32.1937	0	4.8635	138.1234	6.6399
G_t	0.949	0	0	0	0	0	0	0
I_t	0.2078	22.1074	-49.9721	140.272	0	-21.4622	-604.0515	-16.1258
$L_t^{ m s}$	0.2346	6.7301	-12.7258	35.662	0	-5.4264	-153.3707	-5.2337
Q_t	0	0	0	0	0	0	0	0
T_t	0.949	0	0	0	11.5637	0	0	0
U_t	-0.0107	-0.0272	-0.0234	0.0592	0	0.0226	-0.1954	0.0162
W_t	0.0158	2.9517	-6.3979	17.88	0	-2.2531	-76.7302	-2.3471
Y_{t}	0.1642	3.803	-8.9081	24.9634	0	-3.4985	-107.3595	-2.8406
Y_t^{j}	0.1642	4.711	-8.9081	24.9634	0	-3.4985	-107.3595	-2.8406
Y_t^{s}	0.1642	4.711	-8.9081	24.9634	0	-3.4985	-107.3595	-2.8406

Matrix S

17 Model statistics

17.1 Basic statistics

	Steady-state value	Std. dev.	Variance	Loglin
ϵ^{G}	1	1.3033	1.6986	Y
g^1	7.3514	20.4264	417.2364	Y
g^2	4.9009	20.4261	417.2261	Y
λ	1.5467	12.2819	150.8456	Y
mc	0.6667	127.9129	16361.6994	Y
$ u^{ m p}$	1	0	0	Y
π	1	1.2289	1.5103	Y
π^{\star}	1	11.8863	141.285	Y
$\pi^{ m obj}$	1	1.2958	1.6792	Y
q	1.5467	12.2819	150.8456	Y
r	0.0351	246.1531	60591.3569	Y
B	0	0	0	N
C	0.3255	30.8464	951.4999	Y
Div	0.1601	145.1625	21072.1497	Y
G	0.0865	1.3033	1.6986	Y
I	0.0684	635.6189	404011.446	Y
K^{s}	2.7374	20.0049	400.1958	Y
L^{s}	0.2279	161.2555	26003.3342	Y
Q	1	0	0	Y
R	1.0101	0.6891	0.4749	Y
T	0.0865	1.3033	1.6986	Y
U	-167.8256	0.5474	0.2997	Y
W	0.9837	77.7077	6038.4897	Y
Y	0.4804	110.761	12268.0006	Y
$Y^{ m j}$	0.4804	110.761	12268.0006	Y
Y^{s}	0.4804	110.761	12268.0006	Y
Z	1	1.227	1.5056	Y

17.2 Correlation matrix

	$\epsilon^{ m G}$	g^1	g^2	λ	mc	π	π^{\star}	$\pi^{ m obj}$	q	r	C	Div	G	I
$\epsilon^{ m G}$	1	0.009	0.009	0.013	0	-0.001	-0.001	0	0.013	0.001	-0.003	0.001	1	0
g^1		1	1	-0.134	0.94	0.771	0.958	0.148	-0.134	0.959	0.828	-0.947	0.009	0.948
g^2			1	-0.134	0.94	0.771	0.958	0.148	-0.134	0.959	0.828	-0.947	0.009	0.948
λ				1	-0.445	-0.626	-0.411	-0.243	1	-0.387	-0.659	0.426	0.013	-0.422
mc					1	0.899	0.994	0.109	-0.445	0.998	0.967	-1	0	1
π						1	0.888	0.283	-0.626	0.881	0.933	-0.894	-0.001	0.891
π^{\star}							1	0.189	-0.411	0.994	0.952	-0.995	-0.001	0.994
$\pi^{ m obj}$								1	-0.243	0.095	0.161	-0.105	0	0.103
q									1	-0.387	-0.659	0.426	0.013	-0.422
r										1	0.949	-0.999	0.001	0.999
C											1	-0.961	-0.003	0.96
Div												1	0.001	-1
G													1	0
I														1
K^{s}														
L^{s}														
R														
T														
U														
W														
Y														
$Y^{ m j}$														
Y^{s}														
Z														

17.3 Cross correlations with the reference variable (π)

	$\sigma[\cdot]$ rel. to $\sigma[\pi]$	π_{t-5}	π_{t-4}	π_{t-3}	π_{t-2}	π_{t-1}	π_t	π_{t+1}	π_{t+2}	π_{t+3}	π_{t+4}	π_{t+5}
$\epsilon_t^{ m G}$	1.061	0	-0.001	-0.001	-0.001	-0.002	-0.001	-0.001	0	0	0	0
g_t^1	16.621	0.015	0.037	0.075	0.152	0.329	0.771	-0.358	-0.245	-0.186	-0.146	-0.116
$\left. egin{array}{c} g_t^1 \ g_t^2 \end{array} \right $	16.621	0.015	0.037	0.075	0.152	0.328	0.771	-0.358	-0.245	-0.186	-0.146	-0.116
λ_t	9.994	0.276	0.32	0.342	0.301	0.081	-0.626	-0.476	-0.367	-0.278	-0.204	-0.142
mc_t	104.084	-0.076	-0.072	-0.047	0.034	0.265	0.899	-0.161	-0.113	-0.091	-0.077	-0.067
π_t	1	-0.116	-0.113	-0.083	0.011	0.277	1	0.277	0.011	-0.083	-0.113	-0.116
π_t^\star	9.672	-0.066	-0.059	-0.031	0.051	0.277	0.888	-0.196	-0.121	-0.09	-0.075	-0.065
π_t^{\star} π_t^{obj}	1.054	-0.051	-0.035	-0.009	0.035	0.116	0.283	0.21	0.147	0.095	0.052	0.018
q_t	9.994	0.276	0.32	0.342	0.301	0.081	-0.626	-0.476	-0.367	-0.278	-0.204	-0.142
r_t	200.298	-0.058	-0.051	-0.024	0.056	0.278	0.881	-0.2	-0.143	-0.113	-0.094	-0.079
C_t	25.1	-0.142	-0.151	-0.137	-0.057	0.199	0.933	0	0.009	0.003	-0.007	-0.016
Div_t	118.121	0.07	0.065	0.04	-0.041	-0.27	-0.894	0.173	0.122	0.098	0.083	0.071
G_t	1.061	0	-0.001	-0.001	-0.001	-0.002	-0.001	-0.001	0	0	0	0
I_t	517.212	-0.068	-0.064	-0.038	0.043	0.27	0.891	-0.177	-0.126	-0.1	-0.084	-0.072
K_t^{s}	16.278	-0.275	-0.319	-0.341	-0.299	-0.077	0.633	0.476	0.365	0.276	0.202	0.14
L_t^{s}	131.216	-0.069	-0.064	-0.039	0.042	0.27	0.893	-0.175	-0.124	-0.099	-0.084	-0.072
R_t	0.561	0.256	0.305	0.336	0.308	0.109	-0.559	-0.395	-0.297	-0.226	-0.17	-0.123
T_t	1.061	0	-0.001	-0.001	-0.001	-0.002	-0.001	-0.001	0	0	0	0
U_t	0.445	-0.27	-0.321	-0.358	-0.351	-0.22	0.253	0.606	0.467	0.359	0.269	0.194
W_t	63.232	-0.099	-0.1	-0.078	0.003	0.244	0.917	-0.107	-0.072	-0.06	-0.054	-0.05
Y_t	90.128	-0.083	-0.081	-0.057	0.024	0.258	0.905	-0.145	-0.101	-0.081	-0.07	-0.062
Y_t^{j}	90.128	-0.083	-0.081	-0.057	0.024	0.258	0.905	-0.145	-0.101	-0.081	-0.07	-0.062
Y_t^{s}	90.128	-0.083	-0.081	-0.057	0.024	0.258	0.905	-0.145	-0.101	-0.081	-0.07	-0.062
Z_t	0.998	0.009	0.003	-0.006	-0.02	-0.04	-0.071	-0.047	-0.027	-0.013	-0.002	0.006

17.4 Autocorrelations

	Lag 1	Lag 2	Lag 3	Lag 4	Lag 5
$\epsilon^{ m G}$	0.713	0.471	0.271	0.109	-0.017
g^1	-0.071	-0.04	-0.035	-0.037	-0.04
g^2	-0.071	-0.04	-0.035	-0.037	-0.04
λ	0.681	0.438	0.246	0.095	-0.022
mc	-0.121	-0.08	-0.062	-0.052	-0.045
π	0.277	0.011	-0.083	-0.113	-0.116
π^{\star}	-0.142	-0.08	-0.056	-0.045	-0.039
$\pi^{ m obj}$	0.703	0.456	0.253	0.092	-0.032
q	0.681	0.438	0.246	0.095	-0.022
r	-0.124	-0.082	-0.063	-0.053	-0.045
C	-0.034	-0.024	-0.028	-0.036	-0.042
Div	-0.122	-0.081	-0.063	-0.052	-0.045
G	0.713	0.471	0.271	0.109	-0.017
I	-0.122	-0.081	-0.063	-0.053	-0.045
K^{s}	0.677	0.433	0.242	0.093	-0.023
L^{s}	-0.123	-0.081	-0.063	-0.052	-0.045
R	0.651	0.406	0.221	0.078	-0.031
T	0.713	0.471	0.271	0.109	-0.017
U	0.832	0.539	0.308	0.125	-0.016
W	-0.105	-0.07	-0.056	-0.049	-0.045
Y	-0.117	-0.078	-0.061	-0.052	-0.045
$Y^{ m j}$	-0.117	-0.078	-0.061	-0.052	-0.045
Y^{s}	-0.117	-0.078	-0.061	-0.052	-0.045
Z	0.644	0.368	0.159	0.006	-0.102

Figure 1: Impulse responses (π, C) to $\epsilon^{\mathbf{Z}}$ shock

Figure 3: Impulse responses (π, C) to η^{R} shock

Figure 2: Impulse responses (π, C) to η^p shock

Figure 4: Impulse responses (π, C) to η^{π} shock

Figure 5: Impulse responses (π,C) to $\eta^{\rm G}$ shock

Figure 6: Impulse responses (π, C) to $\epsilon^{\mathbf{Z}}$ shock

Figure 8: Impulse responses (π, C) to η^{R} shock

Figure 7: Impulse responses (π, C) to η^p shock

Figure 9: Impulse responses (π, C) to η^{π} shock

Figure 10: Impulse responses (π, C) to η^{G} shock

Figure 11: Impulse responses (π, C) to $\epsilon^{\mathbb{Z}}$ shock

Figure 13: Impulse responses (π, C) to η^{R} shock

Figure 12: Impulse responses (π, C) to η^{p} shock

Figure 14: Impulse responses (π, C) to η^{π} shock

Figure 15: Impulse responses (π, C) to η^{G} shock

1 5 10 15 20 25 30 35 40

Periods

Periods

Periods

Periods

Figure 16: Impulse responses (π, C) to $\epsilon^{\mathbb{Z}}$ shock

Figure 17: Impulse responses (π, C) to η^{p} shock

Figure 18: Impulse responses (π, C) to η^{R} shock

Figure 19: Impulse responses (π, C) to η^{π} shock

Figure 20: Impulse responses (π, C) to η^{G} shock

Figure 21: Impulse responses (π,C,R) to $\epsilon^{\mathbf{Z}}$ shock

Figure 22: Impulse responses (π, C, R) to η^{p} shock

Figure 23: Impulse responses (π, C, R) to η^{R} shock

Figure 24: Impulse responses (π, C, R) to η^{π} shock

Figure 25: Impulse responses (π, C, R) to η^{G} shock