DIALOG(R) File 351:Derwent WPI (c) 2004 Thomson Derwent. All rts. reserv.

008444016 **Image available**
WPI Acc No: 1990-331016/ 199044

XRAM Acc No: C91-077003 XRPX Acc No: N91-136655

Multi-cell photovoltaic device - with wavelength selective reflection film between solar cells

Patent Assignee: MITSUBISHI DENKI KK (MITQ)
Number of Countries: 002 Number of Patents: 002

Patent Family:

Applicat No Patent No Kind Date Kind Date Week JP 2237172 19900919 JP 8958761 Α Α 19890310 199044 B US 5021100 Α 19910604 US 89449009 Α 19891212 199125

Priority Applications (No Type Date): JP 8958761 A 19890310

Abstract (Basic): JP 2237172 A

Electronic parts sealed with polyarylenesulphide are characterised in that the interface between sealing resin compsn. (1) and lead wire and/or lead frame of electronic parts is sealed with one-package type silicone rubber (2) cured at room temp. by de-alcoholysis and having a pre-cure viscosity of 0.1-800 poise at 25 deg.C.

(1) is pref. polyphenylenesulphide resin contg. fibrous inorganic filler; (2) is pref. de-alcoholysis type silicone resin rubber obtd. by de-alcoholysis between silanol and alkoxysilane.

USE/ADVANTAGE - Excellent moisture resistance of sealed electronic parts is obtd. due to good sealing of the interface between sealing resin and lead frame and/or lead wire with silicone rubber which shows good adhesivity to metal made wire or lead frame and sealing resin. Good solder resistance is also obtd. (8pp)

Title Terms: MULTI; CELL; PHOTOVOLTAIC; DEVICE; WAVELENGTH; SELECT; REFLECT; FILM; SOLAR; CELL

Derwent Class: A85; L03; U12; X15

International Patent Class (Additional): H01L-031/04

File Segment: CPI; EPI

Manual Codes (CPI/A-N): A12-E11; L03-E05

Manual Codes (EPI/S-X): U12-A02A2; U12-A02A4; X15-A02A

Plasdoc Codes (KS): 0202 0231 1306 1307 2513 2549 2588 2592 2654 2718 3278 Polymer Fragment Codes (PF):

001 014 04- 05- 229 38- 39- 435 477 506 507 516 517 521 57& 575 596 623 627

THIS PAGE BLANK (USPTO)

① 特許出願公開

◎ 公 開 特 許 公 報(A) 平2-237172

௵Int. Cl. ⁵

識別記号

庁内整理番号

每公開 平成2年(1990)9月19日

H 01 L 31/04

7522-5F H 01 L 31/04

w ·

審査請求 未請求 請求項の数 2 (全6頁)

の発明の名称 多層構造太陽電池

②特 願 平1-58761

②出 願 平1(1989)3月10日

⑫発 明 者 石 原 隆 兵庫県伊丹市瑞原 4 丁目 1 番地 三菱電機株式会社光・マ

イクロ波デバイス研究所内

⑫発 明 者 佐 々 木 騒 兵庫県伊丹市瑞原4丁目1番地 三菱電機株式会社光・マ

イクロ波デバイス研究所内

@発 明 者 相 賀 正 夫 兵庫県伊丹市瑞原 4 丁目 1 番地 三菱電機株式会社光・マ

イクロ波デバイス研究所内

東京都千代田区丸の内2丁目2番3号

個代 理 人 弁理士 早瀬 憲一

明知苦

1. 発明の名称

多層構造太陽電池

- 2. 特許請求の範囲
- (1) 直列接続された第一層と第二層からなる多 隨構造太陽電池において、

上記第一層と第二層との間に、第二層で吸収できる短波長光を選択的に反射し、一方第二層では吸収できず第一層で吸収できる長波長光を透過させることができるように膜厚を制御した導電性の選択反射膜を備えたことを特徴とする多層構造太陽電池。

(2) 上記選択反射膜は誘電体であり、その所望部分は上記第一層と第二層を直列接続するために除去されていることを特徴とする請求項1記載の多層構造太陽電池。

3. 発明の詳細な説明

〔産業上の利用分野〕

この発明は多層構造太陽電池の高効率化に関するものである。

(従来の技術)

第5図は例えば、テクニカル ダイジェスト オブ セカンド インターナショナル フォトヴォルティック サイエンス アンド エンジニマリング コンファランス (Technical Digest of 2nd International Photovoltaic Science and Engineering Conference) (PVSEC ー II, 1986 北京) の395 頁に示された従来の多層構造太型型であり、図において、1 はアモルファスシリコン、2は n型アモルファスシリコン、3 は n型アモルファスシリコン、4 は i 型アモルリコン、5 は n型微結晶化シリコン、1 は アモルファスシリコン、6 透明ファスシリコン、5 は n型微結晶化シリコン、1 は 現下モルファスシリコン、6 は 明本の人類であり、光は透電 極 6 側より入射する。1 1 は 第一の太陽電池、1 は 第二の太陽電池であり、これら2 つの太陽電池は 直列に 接続されている。

次に動作について説明する。入射した光は透明 導電膜6を通り、まず短波長光が第二の太陽電池 12の1型のアモルファスシリコン4で光キャリ アとなり、長波長光は第一の太陽電池11のp型 ボリシリコン1で光キャリアになる。これらの光キャリアがそれぞれの接合部へ流れること収収厚はなれること収収厚になる。第二の太陽電池12で吸みを厚ければ増加させることは可能であるが、i型アモルファスシリコン4の膜質が不十分である。第二の大場であるi型アモルカのずとその膜厚は制限される。2の大場であるi型アモルカンドギャップより大き電池11へと透過し、第一層で発生電流に寄与する。(****発展である。

第一層と第二層が直列接続されたこのような太陽電池では、外部電流は発生電流の少ないいずれかのセル電流で制限される。ところが、通常第二層に用いられるアモルファスシリコンのpinセルでは、短絡電流は約15~17mA/cd程度である。しかるに第一層の結晶シリコンセルの短絡

電流は約36~40mA/四もあり、第二層で吸

収されずに透過した光だけで約20~25mA/

この短緒電流を発生する。このため外部電流は第二層の発生電流である15~17mA/cd程度となり、直列セル発生電流のバランスが取れなくなり、光電変換効率の上昇を阻害するという問題点があった。この場合の変換効率は14~16%程度となる。

一方、特開昭59-96777号に記載されているように、透明膜を第一と第二の太陽電池間に、この膜による反射特性を考慮せずに挿入したのみでは、電流のバランスをとることはやはりできず、光電変換効率の向上は望めない。

また、特開昭60-35580号では、第一と第二の太陽電池の間に膜厚1000~1500人の1TO(インジウム・スズ酸化物)を挿入している。第6図はこの場合の反射特性を示し、同図から明らかなように、光入射側のセルにとっては都合よく反射光を利用できるが、下層セルにとっては1TO膜を挿入することによって入射光量が極端に減少するという致命的な問題が発生する。

さらに、特開昭63-77167号に記載されているよ

うに、ITOの膜厚が100~2000人であっても光の有効利用を図ることは不可能である。特に、上記特開昭63-77167号の実施例に記載されているITOの膜厚600人では、第7図に示すごとくその反射特性はプロードとなり、下層セルの長波長側の感度も同時に大きく低下することになり、光の有効利用は不可能である。

この発明は上記のような従来のものの問題点を 解消するためになされたもので、選択反射膜の膜 厚を最適に制御することによって、各々の層で発 生する電流のバランスをとり、光電変換効率を向 上させることができる多層構造太陽電池を得るこ とを目的とする。

[課題を解決するための手段]

この発明に係る多層構造太陽電池は、直列接続されている第一層と第二層の間に、第二層で吸収できる短波長光を選択的に反射し、一方第二層では吸収できず第一層で吸収できる長波長光を透過させることができるように膜厚を制御した導電性の選択反射膜を挿入したものである。

また、上記選択反射膜が誘電体の場合は、その 所望部分に開口部を設けるようにしたものである。 (作用)

この発明における多層構造太陽電池では、。直列接統されている第一層と第二層の間に挿入された。 第二階で吸収できる短択反射膜が、第二層では吸収できる短沢のに反射し、一方第二層では吸収できる長波長光を透過させることにより、第一層で発生する電流を増加えての第二層で発生する電流を増加えてきるとができる。

また、上記選択反射膜が誘電体の場合は、その所望部分に開口部を設けたので、該開口部を通して第一層と第二層を容易に直列接続することができる。

(実施例)

以下、この発明の一実施例を図について説明する。

第1図はこの発明の一実施例による多層構造太

陽貫池を示す断面図である。図において、1は厚 さ約10~400μmのp型のポリシリコン、2 は厚さ約100~2000人のn型のアモルファ スもしくは微結晶シリコン、3は厚さ約100~ 500人のp型のアモルファスもしくは微結晶シ リコン、4は厚さ約3000~600人の1型 アモルファスシリコン、5.は厚さ約100~30 0人の n型のアモルファスもしくは微結晶シリコ ン、6は厚さ約500~800人の透明導電膜、 7は裏面A L 電極、8はITOよりなる膜厚約2 500人の選択反射膜である。11は第一の太陽 電地、12は第二の太陽電池であり、選択反射膜 8を介してこれら2つの太陽電池は直列に接続さ れている。ここで、p型ポリシリコン1は通常用 いられるキャスティング法、CVD (Chemical V apor Deposition) 法、LPE (Liquid Phase E pitaxy) 法等の手法により形成し、アモルファス ・微結晶膜2~5は、PCVD (Plasma Chemica l Vapor Deposition) 法、光CVD法、ECR (Electron Cyclotron Resonance) - C V D 法等

によって形成する。また、透明導電膜 6 はスパッタ法、電子ビーム蒸着法等により形成する。

以下、動作について説明する。

光は透明導電膜6を通り、第二の太陽電池12 へ入射する。この時、約500nm以下の短波長 光はほとんど全て吸収され、それより長波長の光 の一部は第二の太陽電池12を透過していくが、 その下の選択反射膜8において、第二の太陽電池 が吸収できる波長の光のみが選択的に反射される。

ここで、選択反射膜の反射率の計算方法を説明する。計算式は、例えばプロシーディングス オブ ザ セカンド フォトボルタイック サイエンス アンド エンジニアリング コンファランス イン ジャパン、1980;ジャパニーズジャーナル オブ アプライド フィジックス、ボリューム 20(1981). サブリメント 20-2, pp99-103(Proceedings of the 2nd Photovoltaic Science and Engineering Conferance in Japan, 1980; Japanese Journal of Applied Physics, Volume 20(1981) Suppleme

nt 20-2, pp 99-103) に記載されているような通常の計算式を用いる。その式を以下に示す。

$$R(\lambda) = \frac{A}{B}$$

A = $r_1^2 + r_2^2 + r_3^2 + r_1^2 r_2^2 r_3^2$ + $2r_1r_2(1 + r_3^2) \cos 2\theta_1$ + $2r_2r_3(1 + r_1^2) \cos 2\theta_2$ + $2r_1r_3 \cos 2(\theta_1 + \theta_2)$ + $2r_1r_2^2r_3 \cos 2(\theta_1 - \theta_2)$ B = $1 + r_1^2r_2^2 + r_1^2r_2^2 + r_2^2r_3^2$ + $2r_1r_2(1 + r_3^2) \cos 2\theta_1$ + $2r_2r_3(1 + r_1^2) \cos 2\theta_2$ + $2r_1r_2 \cos 2(\theta_1 + \theta_2)$ + $2r_1r_2^2r_3 \cos 2(\theta_1 + \theta_2)$ + $2r_1r_2^2r_3 \cos 2(\theta_1 + \theta_2)$

上式において、R(人) - 波長人の時の反射率

 $r_1 = (n_0 - n_1)/(n_0 + n_1)$

 $r_x = (n_1 - n_2)/(n_1 + n_2)$

 $r_3 = (n_1 - n_3)/(n_2 + n_3)$

 $\theta_{i} = 2 \pi n_{i} d_{i} / \lambda$

 $\theta = 2 \pi n_z d_z / \lambda$

であり、no.n.n.n.n. はそれぞれ空気、シリコン、選択反射膜、シリコンのそれぞれの屈折率、d., d.は光入射側のシリコン、選択反射膜のそれぞれの膜厚である。本実施例では計算の単純化のため、上下から屈折率3.8のシリコンにより挟まれた屈折率1.77の1TOを選択反射膜として計算した。

第2図に上記選択反射膜の反射率の計算データを示す。図からわかるように、ITOの膜厚を2500人程度にすることにより最も効果のある約600nmに反射のピークを持ってくることができる。

一方、この選択反射膜を用いた場合、第一の太陽電池11で吸収できる約700nm以上の波長の光に対しては反射率を低く抑えることが同時に可能となり、第二の太陽電池12では理論的に吸収できない長波長光を有効に第一の太陽電池12の電流を増加させるとともに、第一の太陽電池11の電流の減少を抑えられることにより、

二つの太陽電池の電流を平衡状態に近づけること ができ、従って多層構造太陽電池の効率を向上さ せることが可能である。この場合の変換効率は、 電流が17~19mA/吐となることにより、従 来の14~16%から16~18%へと大幅に上 見する。

なお、この実施例では選択反射膜8としてIT 〇を用い、膜厚が約2500人のものについて説 明したが、この膜厚は2500人±150人の範 囲であれば上記実施例とほぼ同様の効果を得るこ とができる。

また、選択反射膜8の材料としては、導電性が あり長波長光に対して透明度の高いものであれば、 膜厚の最適化をそれぞれについて図ることにより 使用可能である。

例えば、酸化亜鉛 (n=1.41) であれば3 200人±150人、酸化チタン (n = 2.30) であれば1950人±150人、スズ(n=2. O) であれば2250A±100Aとすることに より、ITOを用いた場合と同様の効果を奏する。

第3図は本発明の第2の実施例による多層構造 太陽電池を示す断面図である。図において、第1 図と同一符号は同一または相当部分を示し、9は 選択反射膜8に開けられた開口部である。本実施 例では、選択反射膜8として二酸化シリコンを用 い、その膜厚は3100人である。このように、 2つの太陽電池11,12の間に510。等の誘 電体からなる選択反射膜8を挿入すると、該2つ の太陽電池の直列接統が不可能になるため、この 選択反射膜8には開口部9を設け、ここを通して 電気的接続を達成させる。

次に動作について説明する。

光は透明導電膜6を通り、第二の太陽電池12 へ入射する。この時、約500m以下の短波長 光はほとんど全て吸収され、それより長波長の光 の一部は第二の太陽電池12を透過していくが、 その下の選択反射膜8において、第二の太陽電池 が吸収できる波長の光のみが選択的に反射される.

この選択反射膜の反射率の計算データを第4図 に示す。計算式は第1の実施例と同じである。本

実施例では計算の簡略化のため、上下から屈折率 3. 8 のシリコンによりはさまれた屈折率1. 4 6のSiOzを選択反射膜とした時の結果を示し ている。図からわかるように、SiOェ膜厚を3 100人程度にすることにより、約600ヵmに 反射のピークを持ってくることができる。

一方、この選択反射膜を用いた場合、第一の太 陽電池 1 1 で吸収できる約 7 0 0 n m 以上の波長 の光に対しては反射率を低く抑えることが同時に 達成できることになり、第二の太陽電池12では 理論的に吸収できない長波長光を有効に第一の太 陽電池内に導入できる。これらの効果により、第 二の太陽電池12の電流を増加させるとともに、 第一の太陽質池11の電流の減少を抑えられるこ とにより、二つの太陽電池の電流を平衡状態に近 づけることができ、従って多層構造太陽電池の効 率を向上させることが可能である。この場合は、 選択反射膜にITOを用いた時よりも反射透過特 性が優れているため、電流は18~20mA/dd とさらに大きくなり、従って変換効率も17~1

9%とさらに大きく上昇する。

この第2の実施例では、p型ポリシリコン1、 アモルファス・微結晶シリコン膜2~5、透明導 電膜6の形成方法は第1の実施例と同様である。 また、選択反射膜8は、シリコンラダー溶剤のよ うな塗布性のある物質を用いてスクリーン印刷に より形成すると、開口部9も同時に形成すること ができ、工程の短縮化が図れる。もちろん他の成 膜方法によって全面に誘電体膜を形成したのち、 通常の写真製版技術を用いて開口部を形成するこ とも可能である。また、誘電体膜形成時にマスク 堆積技術を用いることにより開口部を形成するこ とも可能である。

なお、この第2の実施例では、選択反射膜8と してSiO。を用い、その膜厚を3100Aとし たが、この膜厚は3100人±150人の範囲で あれば同様の効果を得ることができる。

また、選択反射膜8の材料としては、長波長光 に対して透明度の高いものであれば、膜厚の最適 化をそれぞれの膜について図ることにより使用可 能である。例えば窒化シリコン(n = 2.0)であれば2300 A ± 150 A、酸化タンタル(n = 2.20)であれば2050 A ± 150 A、炭化シリコン(n = 2.59)であれば1750 A ± 150 A とすることにより、SiO:を用いた場合と同様の効果を奏する。

なお、上記第1及び第2の実施例では第一の太 陽電池にp型のポリシリコンを用いたが、p型の 単結晶シリコンを用いても同様の効果を奏する。

さらに、上記第1及び第2の実施例では光入射側よりnipnpという構造としたが、全く逆のp*inpnという構造をとっても同様の効果が得られるのは言うまでもない。

さらに、上記第1及び第2の実施例では裏面側の電極としてAឧを用いたが、Aឧ以外の金属、例えばAg、Au、Ni、Cu、Ti、Cr、Pd等導電性があればこれらの単体、合金を問わず何を用いても同様の効果が得られるのは明らかである。

(発明の効果)

○ AのITOを選択反射膜として用いた時の反射 特性を示す図、第3図はこの発明の第2の実施例 による多層構造太陽電池を示す断面図、第4図は 厚さ約3100人のSiOzを選択反射膜として 用いた時の反射特性を示す図、第5図は従来の多 層構造太陽電池の断面図、第6図は厚さ約100 0人~1500人のITOを選択反射膜として用いた従来例の反射特性を示す図、第7図は厚さ約 600人のITOを選択反射膜として用いた従来 例の反射特性を示す図である。

1 … p 型ポリシリコン、 2 … n 型アモルファスもしくは微結晶シリコン、 3 … p 型アモルファスもしくは微結晶シリコン、 4 … i 型アモルファスシリコン、 5 … n 型アモルファスもしくは微結晶シリコン、 6 … 透明導電膜、 7 … 裏面 A 4 電極、8 … 選択反射膜、 1 0 … 閉口部、 1 1 … 第一の太陽電池、 1 2 … 第二の太陽電池。

なお図中同一符号は同一又は相当部分を示す。

代理人 早 湖 憲 一

以上のように、 この発明に係る多層協造工商の間に、 この発明に係る第一層と第二層の間に ののでは 第二層で 取収できず 第一層 で 発生する を しん ので まって と が で 発生する 電流を 増加 さ せる ことが で きんか ら 1 6 ~ 1 9 %程度へと上昇させる。

また、上記選択反射膜が誘電体の場合は、その 所望部分に開口部を設けたので、上記効果に加え て、第一層と第二層の電気的接続を容易に行うこ とができる。

4. 図面の簡単な説明

第1図はこの発明の第1の実施例による多層構造太陽電池を示す断面図、第2図は厚さ約250

-435-

第 1 図

第3图 12 9 11 6 5 4 3 8 2 1 7

1:P*型/オツシソコン*

2:n *雪りのアモルファス そしくはり飲まま最<i>シリ*コン

3:P*型アモルファス そしいよれ*は結晶シリコン

4:1*型アモルファス* シリコン

5 :n*型'のアモルファス そしくは 推り結晶シリコン*

6:途明禅雹膜

7:夏面AI電板

8:選択反射膜

9:*絹口部*

11:第1の太陽電池 12:第2の太陽電池 第 7 図

