#### Obliczenia Naukowe

O arytmetyce komputerów, Czyli jak nie dać się zaskoczyć

> Bartek Wilczyński bartek@mimuw.edu.pl

> > 28. lutego 2022 r.

#### Plan semestru

- Arytmetyka komputerów, wektory, macierze i operacje na nich
- Kreślenie funkcji, graficzna reprezentacja danych
- Rozwiązywanie układów równań liniowych, metoda najmniejszych kwadratów
- Wartości własne i wektory własne macierzy
- Interpolacje i aproksymacje funkcji
- Rozwiązywanie równań nieliniowych
- Podstawy przetwarzania sygnałów, filtry, reprezentacja obrazów
- Rozwiązywanie równań różniczkowych, kwadratury
- Obliczenia symboliczne

# Założenia i wymagania

- Mamy zapoznać się z narzędziami ułatwiającymi dokonywanie obliczeń w programach komputerowych
- Przy okazji szlifujemy nasze umiejętności programistyczyczne
- Celem jest praktyczna znajomość narzędzi przy jednoczesnej znajomości podstaw działania metod numerycznych
- Opieramy się głównie na języku python (w wersji 3)
- Podstawą do zaliczenia będą projekty programistyczne wykonywane samodzielnie, kolokwium oraz egzamin

### Kryteria zaliczenia

- I Projekt do 10. IV 10 pkt
- II Projekt − do 9. V − 15 pkt
- III Projekt do 6. VI 25 pkt
- Za projekty oddane po terminie max. 50% punktów
- Kolokwium 30. V 15 pkt
- Egzamin pisemny 35 pkt
- Dopuszczenie do egzaminu: >36 punktów
- Prace domowe i zadanie bonusowe ok. 5-10 punktów

### Materialy

- Dostępnych jest wiele książek pokrywających tematyke metod numerycznych
- Będziemy też korzystać z materiałów online: http://smurf.mimuw.edu.pl/?q=metody\_numeryczne
- Moje slajdy i zadania publikowane będą na stronie www:

http://regulomics.mimuw.edu.pl/wp/category/teaching/ona/









## O co chodzi z tą arytmetyką?

- Wiedzą Państwo z zajęć WdI w poprzednim semestrze, że komputery dysponują skończoną pamięcią
- Skądinąd wiedzą Państwo, że liczby mogą być dowolnie duże, więc nie każda liczba zmieści się w pamięci komputera
- Stąd potrzeba jest ustalenia reguł jak wykonywać obliczenia w komputerze, mimo pewnych nieuchronnych ograniczeń
- Dobrze, aby zbyt często nie powodowały one błędów

# Pomyłki w obliczeniach?

- W 1991 r. wyrzutnia rakiet patriot w Arabii Saudyjskiej chybiła celu, w związku z czym zginęło 28 żołnierzy, powód – niedokładna reprezentacja liczby 0.1 w komputerze
- W 1995 r. rakieta Ariane rozpadła się podczas startu z powodu przepełnienia wartości numerycznej
- W 1991 r. zapadła się platforma wiertnicza Sleipner, z powodu błędu w obliczeniach konstrukcyjnych (niedoszacowanie obciążenia o 47% z powodu błędu numerycznego).
- W 1999 Mars Climate orbiter rozbił się o powierznię marsa z powodu błędu arytmetycznego

# Jak komputer liczy?

- Ile to będzie
  - 2021/10e309?
  - 2.021/10e306?
  - (2021/1000) / (10e309/1000) ?
  - 2021/10\*\*309?
  - 2021/10.\*\*309 ?
- A co z ułamkami?
  - 0.1?
  - -0.1+0.1?
  - -0.1+0.1+0.1?
  - 3 \* 0.1 ?
  - 5 \* 0.1 ?

### Cecha i mantysa

Liczby możemy reprezentować jako ciąg bitów:



- Wartością takiej liczby jest (-1)<sup>S</sup> \* M..M<sup>E..E</sup>
- Ta liczba ma reprezentację binarną (nie dziesiętną)
- Ułatwia nam to operacje na takich liczbach

#### Standard IEEE-754

- Standard IEEE-754 (ostatnia wersja z 2008r.)
  opisuje jak zapisywane są liczby w większości
  procesorów na świecie
- Dodatkowo, mamy tu różne precyzje liczb i obciążenie (ang. "bias"), które pozwala łatwiej porównywać liczby w różnych reprezentacjach

| Name       | Common name         | Base | Digits | Decimal digits | Exponent bits | Decimal<br>E max | Exponent<br>bias <sup>[6]</sup> | E min  | E max  | Notes     |
|------------|---------------------|------|--------|----------------|---------------|------------------|---------------------------------|--------|--------|-----------|
| binary16   | Half precision      | 2    | 11     | 3.31           | 5             | 4.51             | 24-1=15                         | -14    | +15    | not basic |
| binary32   | Single precision    | 2    | 24     | 7.22           | 8             | 38.23            | 2 <sup>7</sup> -1=127           | -126   | +127   |           |
| binary64   | Double precision    | 2    | 53     | 15.95          | 11            | 307.95           | 2 <sup>10</sup> -1=1023         | -1022  | +1023  |           |
| binary128  | Quadruple precision | 2    | 113    | 34.02          | 15            | 4931.77          | 2 <sup>14</sup> -1=16383        | -16382 | +16383 |           |
| decimal32  |                     | 10   | 7      | 7              | 7.58          | 96               | 101                             | -95    | +96    | not basic |
| decimal64  |                     | 10   | 16     | 16             | 9.58          | 384              | 398                             | -383   | +384   |           |
| decimal128 |                     | 10   | 34     | 34             | 13.58         | 6144             | 6176                            | -6143  | +6144  |           |

# Problemy arytmetyki zmiennoprzecinkowej

- Błąd reprezentacji:
  - Epsilon maszynowy
  - Nadmiary i niedomiary
- Podczas wykonywania działań
  - Utrata cyfr znaczących podczas dodawania
  - Utrata cyfr znaczących podczas odejmowania
- Porównania liczb zmiennoprzecinkowych dają niespodziewane wyniki...

## Epsilon maszynowy

- Warto zauważyć, że każda arytmetyka zmiennoprzecinkowa może reprezentować jedynie skończenie wiele liczb, więc istnieją "przerwy" pomiędzy nimi
- epsilon maszynowy to najmniejsza liczba, którą można "efektywnie" dodać do jedynki w danej realizacji arytmetyki
- Odległość między najbliższymi liczbami reprezentowanymi w tej arytmetyce w okolicy liczby x, to szacunkowo 2\*epsilon\*|x|

# Wartości specjalne

- Co się stanie, jeśli chcemy reprezentować liczby większe niż możemy zmieścić w reprezentacji bitowej?
   → wartości Inf oraz -Inf
- A co, jeśli liczby te będą za małe? → 0.0
- Co jeśli nadal będziemy wykonywać operacje na liczbach "nieskończonych"? → Not a Number, czyli NaN
- To nie musi dziać się z liczbami całkowitymi: w pythonie, liczby całkowite mają dużo większą precyzję.

# "Lepsze" reprezentacje liczb w pythonie

- Liczby całkowite w pythonie 3 mogą być arbitralnie duże (tak jak bignum w pythonie2).
   Oczywiście pamięć nadal nas ogranicza
- Pakiet **Decimal**, opisujący liczby dziesiętne w formacie cecha+mantysa w zadanej dokładności
- Pakiet Fractions opisujący liczby wymierne jako ułamki liczb całkowitych
- Oba działają znacznie wolniej od arytmetyki IEEE-754

### Pakiet mpmath

- Zewnętrzny względem python'a pakiet liczb zmiennoprzecinkowych
- Dowolna precyzja, zoptymalizowany kod
- Dodatkowe funkcje pozwalające na mniejsze błędy zaokrągleń (zwiększenie precyzji podczas wykonywania operacji).