Magnetic Field Lab

Name:		Section: 4BL	Date performed:/_	/
Lab station:	Partners:			

Part A

Measurements (for each run, indicate which side of the magnet is red and the direction of the current $(\odot \text{ or } \otimes)$):

$$L_2 = \underline{\qquad} \pm \underline{\qquad}$$

<i>I</i> (A)	scale (gwt)	$F_{\rm mag} \ ({\rm gwt})$
0		XXXX

<i>I</i> (A)	scale (gwt)	$F_{\rm mag} \ ({\rm gwt})$
0		XXXX

Attach F_{mag} vs. I graphs from Excel.

$$slope_2 = (\underline{\qquad \pm \qquad}) \frac{gwt}{A}$$

$$B_2 = (\underline{\qquad \pm \qquad}) \frac{gwt}{A cm}$$

Calculations and comparison:

Part B

Choose one of your runs from Part A and indicate the following on the diagram below:

- which side is red
- direction of current
- ullet does scale reading increase or decrease with increasing current
- direction of force on magnet
- direction of force on wire
- \bullet direction of magnetic field
- which side is north

Explain your reasoning:

The red side of the magnet is [north / south].