$11a_{262} \ (K11a_{262})$

Ideals for irreducible components² of X_{par}

$$\begin{split} I_1^u &= \langle -1.26359 \times 10^{15} u^{52} - 1.96443 \times 10^{17} u^{51} + \dots + 2.39123 \times 10^{17} b - 1.89562 \times 10^{13}, \\ &- 289619771524 u^{52} + 18666048239996 u^{51} + \dots + 239122974590735869 a - 438392119644066415, \\ &u^{53} + u^{52} + \dots + 3 u - 1 \rangle \end{split}$$

* 1 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 53 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

 $^{^2}$ All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

$$I. \\ I_1^u = \langle -1.26 \times 10^{15} u^{52} - 1.96 \times 10^{17} u^{51} + \dots + 2.39 \times 10^{17} b - 1.90 \times 10^{13}, \ -2.90 \times 10^{11} u^{52} + 1.87 \times 10^{13} u^{51} + \dots + 2.39 \times 10^{17} a - 4.38 \times 10^{17}, \ u^{53} + u^{52} + \dots + 3u - 1 \rangle$$

(i) Arc colorings

$$a_{6} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} 1.21118 \times 10^{-6}u^{52} - 0.0000780605u^{51} + \dots + 3.83847u + 1.83333 \\ 0.00528425u^{52} + 0.821515u^{51} + \dots + 3.16643u + 0.0000792739 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} 0.00254871u^{52} - 0.00326419u^{51} + \dots - 4.41855u - 0.716687 \\ 0.00254880u^{52} - 0.00324345u^{51} + \dots - 3.31660u - 0.0000206367 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} u \\ u \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} u^{2} + 1 \\ u^{2} \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} -2.84090 \times 10^{-6}u^{52} + 0.000195650u^{51} + \dots + 3.13319u + 1.01667 \\ -0.0113905u^{52} + 0.805395u^{51} + \dots + 3.18393u - 0.000198494 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} 0.0000154157u^{52} - 0.00105631u^{51} + \dots + 4.17250u + 1.75000 \\ 0.0622368u^{52} + 0.794538u^{51} + \dots + 3.24677u + 0.00107174 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} -u \\ u^{3} + u \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -u^{5} - 2u^{3} + u \\ u^{7} + 3u^{5} + 2u^{3} + u \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -u^{5} - 2u^{3} + u \\ u^{7} + 3u^{5} + 2u^{3} + u \end{pmatrix}$$

(ii) Obstruction class = -1

(iii) Cusp Shapes = $-\frac{769977140804634968}{239122974590735869}u^{52} - \frac{578599056246783756}{239122974590735869}u^{51} + \cdots - \frac{1896881691414989920}{239122974590735869}u + \frac{1286401897025890394}{239122974590735869}$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1	$u^{53} - 3u^{52} + \dots - u + 1$
c_2, c_4	$u^{53} + u^{52} + \dots + 9u - 1$
<i>c</i> ₃	$u^{53} - 9u^{52} + \dots + u - 1$
c_5, c_6, c_9 c_{10}	$u^{53} + u^{52} + \dots + 3u - 1$
C ₇	$u^{53} + u^{52} + \dots - 721u - 271$
<i>C</i> ₈	$u^{53} - u^{52} + \dots + 37u - 89$
c_{11}	$u^{53} - 11u^{52} + \dots + 1317u - 163$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1	$y^{53} - 9y^{52} + \dots + 3y - 1$
c_2, c_4	$y^{53} - 37y^{52} + \dots - 9y - 1$
c_3	$y^{53} + 3y^{52} + \dots - 9y - 1$
c_5, c_6, c_9 c_{10}	$y^{53} + 59y^{52} + \dots + 3y - 1$
c_7	$y^{53} + 35y^{52} + \dots + 1272679y - 73441$
<i>C</i> ₈	$y^{53} + 59y^{52} + \dots - 255841y - 7921$
c_{11}	$y^{53} + 19y^{52} + \dots + 1976055y - 26569$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.650984 + 0.674299I		
a = 0.257151 - 0.877552I	3.29153 + 3.40743I	13.0359 - 10.0924I
b = -0.137847 + 0.272025I		
u = 0.650984 - 0.674299I		
a = 0.257151 + 0.877552I	3.29153 - 3.40743I	13.0359 + 10.0924I
b = -0.137847 - 0.272025I		
u = 0.224761 + 1.071330I		
a = -0.775347 - 0.428894I	0.20296 + 4.75561I	0
b = -0.275336 + 0.269078I		
u = 0.224761 - 1.071330I		
a = -0.775347 + 0.428894I	0.20296 - 4.75561I	0
b = -0.275336 - 0.269078I		
u = -0.592128 + 0.654438I		
a = 0.84258 + 1.72659I	4.38092 - 11.94560I	6.49757 + 9.10409I
b = 0.076882 - 0.228703I		
u = -0.592128 - 0.654438I		
a = 0.84258 - 1.72659I	4.38092 + 11.94560I	6.49757 - 9.10409I
b = 0.076882 + 0.228703I		
u = -0.509097 + 0.611824I		
a = -1.38091 - 1.15029I	-0.15260 - 6.19554I	4.01481 + 9.36178I
b = -0.296709 - 0.366738I		
u = -0.509097 - 0.611824I		
a = -1.38091 + 1.15029I	-0.15260 + 6.19554I	4.01481 - 9.36178I
b = -0.296709 + 0.366738I		
u = 0.746383 + 0.258308I		
a = 0.0258294 - 0.0088866I	4.51390 + 1.24711I	18.3925 - 3.9738I
b = -0.721551 + 0.170222I		
u = 0.746383 - 0.258308I		
a = 0.0258294 + 0.0088866I	4.51390 - 1.24711I	18.3925 + 3.9738I
b = -0.721551 - 0.170222I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.089202 + 0.749619I		
a = 0.275857 + 1.205170I	-2.80915 + 1.17690I	-3.10474 - 1.38405I
b = -0.410304 - 0.149385I		
u = -0.089202 - 0.749619I		
a = 0.275857 - 1.205170I	-2.80915 - 1.17690I	-3.10474 + 1.38405I
b = -0.410304 + 0.149385I		
u = -0.668726 + 0.300592I		
a = -0.191315 - 0.567088I	5.42859 + 7.69645I	8.91950 - 3.87764I
b = -1.006360 - 0.726730I		
u = -0.668726 - 0.300592I		
a = -0.191315 + 0.567088I	5.42859 - 7.69645I	8.91950 + 3.87764I
b = -1.006360 + 0.726730I		
u = -0.511815 + 0.524420I		
a = -0.75753 - 2.01504I	4.20057 - 3.68117I	11.59505 + 7.70576I
b = 0.349101 + 0.003826I		
u = -0.511815 - 0.524420I		
a = -0.75753 + 2.01504I	4.20057 + 3.68117I	11.59505 - 7.70576I
b = 0.349101 - 0.003826I		
u = 0.429766 + 0.592859I		
a = 0.124286 + 0.894053I	0.14967 + 2.03204I	3.41312 - 3.39800I
b = -0.288153 + 0.342472I		
u = 0.429766 - 0.592859I		
a = 0.124286 - 0.894053I	0.14967 - 2.03204I	3.41312 + 3.39800I
b = -0.288153 - 0.342472I		
u = -0.132734 + 1.284260I		
a = -1.032290 - 0.063941I	0.47934 + 4.72102I	0
b = -0.517989 + 0.093329I		
u = -0.132734 - 1.284260I		
a = -1.032290 + 0.063941I	0.47934 - 4.72102I	0
b = -0.517989 - 0.093329I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.508709 + 0.437255I		
a = 0.568345 - 0.326462I	4.45759 + 0.11922I	13.02951 + 0.69964I
b = 1.029690 + 0.612477I		
u = -0.508709 - 0.437255I		
a = 0.568345 + 0.326462I	4.45759 - 0.11922I	13.02951 - 0.69964I
b = 1.029690 - 0.612477I		
u = 0.440292 + 0.499184I		
a = -3.68961 + 0.83011I	2.13564 + 1.55948I	-19.8548 + 10.4353I
b = 0.12450 - 1.78122I		
u = 0.440292 - 0.499184I		
a = -3.68961 - 0.83011I	2.13564 - 1.55948I	-19.8548 - 10.4353I
b = 0.12450 + 1.78122I		
u = -0.517939 + 0.301061I		
a = 1.028670 + 0.666314I	0.73495 + 2.61446I	6.80748 - 3.27296I
b = 0.280251 + 0.735240I		
u = -0.517939 - 0.301061I		
a = 1.028670 - 0.666314I	0.73495 - 2.61446I	6.80748 + 3.27296I
b = 0.280251 - 0.735240I		
u = 0.392523 + 0.351980I		
a = 1.42826 - 0.06907I	0.839103 + 0.963368I	7.10556 - 5.20772I
b = 0.413573 + 0.275375I		
u = 0.392523 - 0.351980I		
a = 1.42826 + 0.06907I	0.839103 - 0.963368I	7.10556 + 5.20772I
b = 0.413573 - 0.275375I		
u = -0.06198 + 1.50181I		
a = -0.653059 - 0.670228I	-5.03695 + 1.09402I	0
b = -1.79399 - 1.78019I		
u = -0.06198 - 1.50181I		
a = -0.653059 + 0.670228I	-5.03695 - 1.09402I	0
b = -1.79399 + 1.78019I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.11826 + 1.51394I		
a = 0.260990 + 0.435541I	-2.00563 - 1.98586I	0
b = -0.700219 + 0.765497I		
u = -0.11826 - 1.51394I		
a = 0.260990 - 0.435541I	-2.00563 + 1.98586I	0
b = -0.700219 - 0.765497I		
u = 0.147327 + 0.456963I		
a = 2.93201 + 0.62412I	0.94420 + 1.17734I	5.61906 - 3.35640I
b = 0.304651 + 0.556917I		
u = 0.147327 - 0.456963I		
a = 2.93201 - 0.62412I	0.94420 - 1.17734I	5.61906 + 3.35640I
b = 0.304651 - 0.556917I		
u = 0.08159 + 1.53711I		
a = -0.78166 + 1.90967I	-5.71528 + 2.30391I	0
b = -2.08548 + 3.23108I		
u = 0.08159 - 1.53711I		
a = -0.78166 - 1.90967I	-5.71528 - 2.30391I	0
b = -2.08548 - 3.23108I		
u = -0.13998 + 1.54014I		
a = -0.04025 + 2.04781I	-2.69459 - 5.99005I	0
b = -0.40909 + 4.23233I		
u = -0.13998 - 1.54014I		
a = -0.04025 - 2.04781I	-2.69459 + 5.99005I	0
b = -0.40909 - 4.23233I		
u = 0.11703 + 1.54415I		
a = 2.07571 - 3.59104I	-4.76295 + 3.50697I	0
b = 3.41746 - 5.93402I		
u = 0.11703 - 1.54415I		
a = 2.07571 + 3.59104I	-4.76295 - 3.50697I	0
b = 3.41746 + 5.93402I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.14909 + 1.57118I		
a = 0.35071 + 1.51086I	-7.49343 - 8.60231I	0
b = 1.12655 + 3.15217I		
u = -0.14909 - 1.57118I		
a = 0.35071 - 1.51086I	-7.49343 + 8.60231I	0
b = 1.12655 - 3.15217I		
u = 0.12468 + 1.57523I		
a = -0.587299 - 0.654804I	-7.21649 + 4.05118I	0
b = -0.76132 - 1.40539I		
u = 0.12468 - 1.57523I		
a = -0.587299 + 0.654804I	-7.21649 - 4.05118I	0
b = -0.76132 + 1.40539I		
u = 0.20197 + 1.58241I		
a = -0.010726 + 1.358400I	-4.20208 + 6.58081I	0
b = 0.23211 + 2.55470I		
u = 0.20197 - 1.58241I		
a = -0.010726 - 1.358400I	-4.20208 - 6.58081I	0
b = 0.23211 - 2.55470I		
u = -0.18129 + 1.58506I		
a = 0.26732 - 2.26211I	-3.1210 - 14.8139I	0
b = 0.59368 - 4.30095I		
u = -0.18129 - 1.58506I		
a = 0.26732 + 2.26211I	-3.1210 + 14.8139I	0
b = 0.59368 + 4.30095I		
u = -0.02508 + 1.59817I		
a = -0.41143 - 1.74917I	-10.80680 + 0.74411I	0
b = -0.48200 - 3.40640I		
u = -0.02508 - 1.59817I		
a = -0.41143 + 1.74917I	-10.80680 - 0.74411I	0
b = -0.48200 + 3.40640I		

	Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u =	0.03260 + 1.64453I		
a =	0.806611 + 1.109860I	-8.94151 + 5.46940I	0
b =	1.82175 + 2.09258I		
u =	0.03260 - 1.64453I		
a =	0.806611 - 1.109860I	-8.94151 - 5.46940I	0
b =	1.82175 - 2.09258I		
u =	0.232267		
a =	3.13420	2.24636	1.69410
b =	1.23226		

II. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1	$u^{53} - 3u^{52} + \dots - u + 1$
c_2, c_4	$u^{53} + u^{52} + \dots + 9u - 1$
c_3	$u^{53} - 9u^{52} + \dots + u - 1$
c_5, c_6, c_9 c_{10}	$u^{53} + u^{52} + \dots + 3u - 1$
c_7	$u^{53} + u^{52} + \dots - 721u - 271$
<i>c</i> ₈	$u^{53} - u^{52} + \dots + 37u - 89$
c_{11}	$u^{53} - 11u^{52} + \dots + 1317u - 163$

III. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1	$y^{53} - 9y^{52} + \dots + 3y - 1$
c_2, c_4	$y^{53} - 37y^{52} + \dots - 9y - 1$
c_3	$y^{53} + 3y^{52} + \dots - 9y - 1$
c_5, c_6, c_9 c_{10}	$y^{53} + 59y^{52} + \dots + 3y - 1$
c_7	$y^{53} + 35y^{52} + \dots + 1272679y - 73441$
c ₈	$y^{53} + 59y^{52} + \dots - 255841y - 7921$
c_{11}	$y^{53} + 19y^{52} + \dots + 1976055y - 26569$