U	ΛÚ	cu:	ma	opc Vi	۸ 8	hno a	dell cce	a L	Ung	san	coll 80	150 1U	one na	c	н і	ele ave	me	nt				
• (;l;	el	cm	enti CHII	î Pve	ન - \	a 1 A L	ma o Ri	. ρρ ο Ε ,	×	50h < K	o , v	Co >	nSI	den	abi	<i>;</i>					
alc	un:	1	me	tod	•																	
9	et pul ven	(K t () k,v .(k)))	ays m	alu	ic Se	di Key	evivo	ato 1	a val	a G Ive	ch Sso	rav ocig	e ocaī	al tu	V	alv	e	
• U	ey ali	set ics (1	()		re res	stit it.t Litu	USQ v 1SQ SCC	ر د ر	inse ins	key the	;te	ra (ta)	ile vas	. الو د	ορκ 1	test 1. 1	le Lithi <	le i k,	\ V 7	key /alc)) / '	
e pos	þ	oss.	, GI	e,	ir	npl	cm	ent	are	ls		mo	પ્ તુવ્ય	X	cor	~e	3	SCI	し	C	on O	
S; Ske	ی چید	198	C SIE	o p ne	Pla	DI	(NG ()	L,N	J > THE	NTI	'n	ዯቮ C	لنا	il	V	co ,alq	nsi ve	<i>E</i> 77) ပ	nų	۱۵	

TABELLE HASH

Struttura dati che implemente una mappa, che rende più essiciente le operazioni set (), put() e removel).

Se s: usa un array l'accesso, lata la posizione, è costante, poiche l'indice dell'array è la posizione diretta

dala locazione in memoria.

Le chiar; possono essere numen' interi, è possible quindi implementare una tabella HASH, in cui vi e un'assocrazion

CHIAVE - INTERO

la funzione hash è una specie di scarroua NERA, che prende in ingresso Una chiave e da in usota un intero. la functione he costo costante, e

same solo in un verso!!! c: sono molte chiavi relativo ad uno Stesso indice, no un solo indice per ogni chiave,

Nolla scenario che si considera l'array è mai pieno.

La distribuzione dell' Hash dovebse essere -Distabulta

- implementata tale che le collision: (più chimi un indec) SIANO MINING - NON DIPENDERE, a colpo d'occho dal valore

imput?

FUNZIONE HASH

· Mappa chiavi in un intervallo [0... N-1] d'interi -h(x) = x mod N

-h(x) e valore hash di chiave x

· è importante sapen sestire collisioni! les hashing one modulo, -s e s stesso valore hesh)

· come trasformere chav: Now intere ad india? ossetto -> valore intero, ande 64 bit -> indice hash

6 hashCode -gii "vsto" in Java -

ES. SSN. (us.) Si pui indicissare Issn con l'ultime la cire usuali.

ALTP Collisione.

Halia -> codice fiscole (STRINGA) S. Fa pass:

-dato alfanomenco -> Intero (hashCode non linitato de array)
-forzione di Conpressione -> <interi>: [0...N-1]

-h(x) = compress (hashCode(x)) Usata per fere si che ad ogni hashCode (requenze anche di 32 bit, che non potrebbero quindi essere inserite 1:1 sulla

tabella) corrisponde 1 indice per la taibella

•	ogacti	COI	ი {	STESSA	C	HIANE	hav	ne	S	7 5 SS	0	и р вна	0DE
o	la 1						15171	/A ,	cerc	srgo	Ji	ridur	ı
	al m	יווחוא	o le	collis	ioni								
ુંડ.	banz	le											
	chieve	AP	KD.										
-	hash c	0 0 છ	->	intero	~	32 61	t ,	otten	uto	med	liant	e	
				codific	>	ASCII	co	, v	ciasu	ر م	tans:	revc.	
	AB	(D)	ر–	100	sh8	6163	6	(cc	od, C10	~ (ntero	99	Binera
t	unzione	J.	com	pressi	one	>	la	sŁ	4	cha	-	636	
) 	BILE	KA	SHC	10 5									
	stande												
				retato a bu									
				ersa.		7000		O	ar Q	WOOI	' '	wewe	3WW
•	cohve	ころって	יי	inte	src.								
•	80MM	b d	t co	m eon	'nt.	; G	ilto	hur	~er•		alla	ohi	
The	sh Co	de	+ 1	rash		functi	on						
	h 38	hCoc	ا ن	K	24	— <u> </u>	inte	n					
	has	7		in	teni) ×	e [o, N-	17			
									•				

HASH CODE CON POUNONI o adatto a chiari di luggiezzo varabile S: PARTIZIONA la chiare in component: di lunghezza fissa b (8,16,32 bit...) core interi. 53 10010000,00001000, 6=8 a = 10010000 -> 144 a, = 00001000 -> 8 Siano ao, a, ..., an-, le component: ·S. colcolo p(2)= a0+a.2+.,+an-12n-1 S. brascurano eventuali overflow per l'esercizio precedente ad compio p(10)= 14h + 8.10 = 224) Una dei myslior; hashCode C: sono valor: mislione d: 6 e 2 QUANTO COSTA CALCOLO hashCode? n in questo caso, à num bit/scala il costo della somme à lineare, ande se sono considerabili costi lineari

RESOLA DI HORNER

il colcolo p(2) è lineare

$$p(3) = \sum_{i=0}^{n-1} a_i z^i$$

per l'iesimo termino a; z^i saranno necessano i
operazioni, se facessimo cosi sareste

$$\sum_{i=0}^{n-1} = \frac{n(n-1)}{2} \text{ operazioni.}$$

$$p_{i}(z) = \frac{n(n-1)}{2} \text{ operazioni.}$$

$$p_{i}(z) = 2pot anz = a_{n-2} + a_{n-1}z$$

$$p_{2}(z); z(p_{i}) + a_{n-2} = a_{n-3} + a_{n-2}z + a_{n-1}z^2$$

$$p_{n-1}(z) = 2p_{n-2}(z) = a_{0} + a_{1}z + \dots + a_{n-1}z^{n-1}$$

$$\vdots | costo dell' algoritmo e O(n)$$

$$P(h_{1}(x) = i) = \frac{1}{N}$$
Si aggiunjono n chioni nella tabella hesh
$$colcolore velore atteso del nunero di chiavi che regiono assignate a i m

N$$

L' Universo	di ta	He lo	c noss	1811; chi	avi e	GENETALTEN_
TE MOUTO	magen	ORE	delle	possibil	hash	
ES	Kei	16 1K	—)	index &	LO,1000	
Si ha hao	COLLEG	0.11	la	f	A. A.	
hop e Bl		J.A. , P.O	note 12	in 1210he	01 601	moressione
GEST	TONE	Cocu	SIONI			
2 possibilit	La:					
· Liste de	trabaci	6. Oc.	n cells	dell'array		Irsta, alla
V.	S NOOS	- CO)	lisione	21 022 100	se in c	oda.
			NTRO:			
			costo	memoria vicerca di	assint.v	٥
			serve	ricerca di	chiave	> O(h)
· Indirizzo	mant a	anta:	S. ccrc	2 (103 204	ove oce	\a1
1	4		libera,	rulz tabel	le occur	oondo alte
				a. Ind		
			o non	SI UJA	altho :	
			· sche	tipo di	dato a	sjuntivo.
	2 cas	0000	: k.lt .			
		. •	E LINEA	RF.		
		ANSION		PDRATICA		

SCANSIONE UNFARE idea di base che si inserisce la coppia che genera collisione nella prossima posizione (i=(i+1) mod N) Ciò porta ineritabilmente a CLUSTERING, e se si ha la tabelle piena (o quasi-piena, redi fattore di carico) vi è il costo del raddopporo della tabella (REHASHING) remove (kog k): per sestire rimoreion: si può usare l'ossetto DEFUNCT, che rendu la zestione d. eventual) riagionte più semplice. put (K,0). · se tabelle prena: raddoppio - else scorri de h(k) finche non brovo sparao vuoto o DEFUNCT SCANSIONE QUADTRATICA Mouto sinice alla scansione unave, me serve mono dustering in quarto si ossetti si "dispendono" meglio Si coroa la prima colle libera nella posizione (h(k)+i2) mod N per i=1,..., N-1 Se N è primo è garantita la possibilità di trovare una cella lisere con un attore di canco ۷ 0.5

HASHING DOPPIO Si utilizza una seconda Funzione hash d(k), d, repole -d(k) = 9 - kmod q o 9 humers primo · g < N · d(k) G [1, ... 9] e si inscrisce la coppia nella prima posizione d, sponibile a (h(k) + jd(k)) mod N j=0,1,... N-1 KE MASHING & PROBLEMA del RADIOPPIO Fattore di carico (load factor) e la frazione di riempimento della tasella : numkeys/N ed è un ottimo strumento per valutare le prestazion, delle tabelle hish, a daudore per UN BADDOPPIO 221 (6won worms 2 co. 3 {per liste di trabocco λ 20.5) a causa dell ajol o meratione che porta a ralle ntamenti

per il raddoppio va malcoleta solo la finzione d. compressione per l'hash.
Il raddoppio "Sparpaglia" di nuovo le chavi nelle tabella scondo quello che s. è detto sulla distributione hishCode e hash Function. RADDOPPIO Si suppone di partie da un array di dimensione costante. Si vostiono agrungene n elementi, e al riempimento di essa si midoppia la lista, e si CODICINO i valori del vecchio omay.

QUANTO COSTA L'OPERAZIONE? · dato un rehashing, numero di chiavi aggiunte i = i-esimo rehashing o Numero minimo di rehashin i per for spazio a n valori c. zi ≠ n $\frac{1}{\log_{2}(\frac{n}{c})} = \log_{2}(\frac{n}{c})^{-1}$ $C = \sum_{i=1}^{\log_{2}(\frac{n}{c})} 2^{i-1} = \sum_{i=0}^{2} 2^{i-1} = \sum_{i=0}^{2} 2^{i-1}$ costo rehashing O(n)