Let F be a field. Suppose $\{v_1, ..., v_n\}$ is a basis of F^n . Let $A \in M_{n \times n}(F)$ be a nonsingular matrix. Prove that $\{Av_1, ..., Av_n\}$ is also a basis of F^n .

Problem Solving - What are the terms/strategies I may need? What do I know?

Definitions:

A set $\{v_1,\dots,v_n\}$ is linearly independent if and only if $c_1v_1+\dots+c_nv_v=0$ $\Rightarrow c_1=\dots=c_n=0$.

Theorem:

- (i) If a vector space V has dimension n and $\{v_1, \dots, v_n\}$ is a linearly independent set in V, then $\{v_1, \dots, v_n\}$ is a basis for V.
- (ii) $A \in M_{n \times n}(F)$ is a nonsingular matrix if and only if A is invertible.

Let F be a field. Suppose $\{v_1, ..., v_n\}$ is a basis of F^n . Let $A \in M_{n \times n}(F)$ be a nonsingular matrix. Prove that $\{Av_1, ..., Av_n\}$ is also a basis of F^n .

Steps & Process – Try to answer the question writing in many steps to avoid small errors.

Since the set $S = \{Av_1, ..., Av_n\}$ has n elements and F^n has dimension n, to show that S is a basis it sufficed to show that S is a linearly independent set, by theorem basis theorem.

To see that *S* is a linearly independent set observe that

$$c_1 A v_1 + \dots + c_n A v_n = 0$$

$$\Rightarrow A(c_1v_1 + \dots + c_nv_n) = 0,$$

$$\Rightarrow A^{-1}A(c_1v_1 + \cdots + c_nv_n) = A^{-1}0$$
, since A nonsingular iff A is invertible

$$\Rightarrow c_1v_1 + \dots + c_nv_n = 0$$
, since $A^{-1}A = I$, and $A^{-1}0 = 0$

$$\Rightarrow c_1 = \cdots = c_n = 0$$
, since $\{v_1, \dots, v_n\}$ is a linearly independent set

Therefore $\{Av_1, ..., Av_n\}$ is a linearly independent set and is hence a basis of F^n .

Let F be a field. Suppose $\{v_1, ..., v_n\}$ is a basis of F^n . Let $A \in M_{n \times n}(F)$ be a nonsingular matrix. Prove that $\{Av_1, ..., Av_n\}$ is also a basis of F^n .

Solidify Understanding – Explain why the steps makes sense by connecting to math you know.

Is this still true if we remove the assumption that A is nonsingular?

For Video Please click the link below:

<u>Video</u>