Loss function for a Poisson 2D inverse problem of finding a constant unknown forcing

Rajarshi Dasgupta

August 6, 2025

1 The Problem

Find the function $u:\Omega\to\mathbb{R}$ and constant f such that

$$\begin{split} &-\nabla^2 u(x,y)=f & \text{for } (x,y) \text{ in } \Omega \\ &u(x,y)=0.3(1-x^2-y^2) & \text{for } (x,y) \text{ on } \partial \Omega \\ &u(x_d,y_d)=0.3(1-x_d^2-y_d^2) \end{split}$$

where $\Omega = (-1,1) \times (-1,1)$ and (x_d,y_d) is an internal data point in Ω . The solution for this problem is

$$u = 0.3(1 - x^2 - y^2)$$
$$f = 1.2$$

We wish to solve this class of inverse problems in the FEM framework using ML techniques.

2 The loss function

We will be working with a 3 node triangular mesh over the domain Ω . The input for the loss function would be

- 1. the vector u_{out} where the indices are the value of u at each node, which would be the output of a GCN,
- 2. f_{val} , a guess for the unknown constant f, which would be a trainable parameter,
- 3. the stiffness matrix $K \in \mathbb{R}^{n \times n}$,
- 4. data forcing vector $f_d \in \mathbb{R}^n$,
- 5. and forcing vector $f_0 \in \mathbb{R}^n$ assuming a forcing of unity, that is f = 1.

where n is the degree of freedom, that is the number of nodes on which the value of u is unknown. If we have a $N \times N$ total nodes, $n = N^2 - 4N + 3$, as there are 4(N-2) + 4 boundary data points and 1 internal data point.

The loss function we consider is the following.

$$r = Ku_{out} + f_d - f_{val}f_0$$

$$Loss = \sum_{i} r_i^2$$

The derivation can be found in the following section.

3 A derivation for the loss function

Consider the triangular element T as seen in figure 1. Given a point O(x, y) inside the triangle $V_1V_2V_3$, we define ξ and η , the barycentric coordinates.

$$\xi = \frac{\operatorname{area}(OV_2V_3)}{\operatorname{area}(V_1V_2V_3)}$$
$$\eta = \frac{\operatorname{area}(OV_1V_3)}{\operatorname{area}(V_1V_2V_3)}$$

Let the value of the trial function u(x,y) at the vertices V_1 , V_2 and V_3 be u_1 , u_2 and u_3 respectively. Similarly, let the value of the test function v(x,y) at the vertices V_1 , V_2 and V_3 be v_1 , v_2 and v_3 respectively. Now, the points inside or on the triangle are easily parameterised by ξ and η in the following manner.

$$x = N_1 x_1 + N_2 x_2 + N_3 x_3 \tag{1}$$

$$y = N_1 y_1 + N_2 y_2 + N_3 y_3 \tag{2}$$

where

$$N = \begin{bmatrix} N_1 & N_2 & N_3 \end{bmatrix}$$

$$N_1, N_2, N_3 = \xi, \eta, 1 - \xi - \eta$$

Assuming V_1 , V_2 and V_3 to be free nodes, the finite dimensional weak formulation for the Poisson's problem in two dimensions for the triangular element T is to find $\hat{u} = \begin{bmatrix} u_1 & u_2 & u_3 \end{bmatrix}^\mathsf{T}$ such that

$$\int_{T} \frac{\partial v}{\partial x} \frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} \frac{\partial u}{\partial y} dx dy = \int_{T} f v dx dy$$
 (3)

for all $\hat{v} = \begin{bmatrix} v_1 & v_2 & v_3 \end{bmatrix}^\mathsf{T}$, where,

$$u(x(\xi, \eta), y(\xi, \eta)) = N\hat{u}$$
$$v(x(\xi, \eta), y(\xi, \eta)) = N\hat{v}$$

Following standard procedure, to find algebraic equations for the element, we start from $\,$

$$\begin{bmatrix} \partial u/\partial \xi \\ \partial u/\partial \eta \end{bmatrix} = J \begin{bmatrix} \partial u/\partial x \\ \partial u/\partial y \end{bmatrix} \qquad J = \begin{bmatrix} x_1 - x_3 & y_1 - y_3 \\ x_2 - x_3 & y_2 - y_3 \end{bmatrix}$$

$$\implies \begin{bmatrix} \partial u/\partial x \\ \partial u/\partial y \end{bmatrix} = J^{-1} \begin{bmatrix} \partial u/\partial \xi \\ \partial u/\partial \eta \end{bmatrix}$$

$$= J^{-1} \begin{bmatrix} u_1 - u_3 \\ u_2 - u_3 \end{bmatrix}$$

Therefore,

$$\begin{bmatrix} \partial u/\partial x \\ \partial u/\partial y \end{bmatrix} = B\hat{u} \tag{4}$$

$$\begin{bmatrix} \partial v/\partial x \\ \partial v/\partial y \end{bmatrix} = B\hat{v} \tag{5}$$

(6)

where,

$$B = \frac{1}{\det J} \begin{bmatrix} y_2 - y_3 & y_3 - y_1 \\ x_3 - x_2 & x_1 - x_3 \end{bmatrix} \begin{bmatrix} 1 & 0 & -1 \\ 0 & 1 & -1 \end{bmatrix}$$

So, the LHS of equation 3 is the following.

$$\int_{T} (B\hat{v})^{\mathsf{T}} (B\hat{u}) dx dy$$
$$= \hat{v}^{\mathsf{T}} B^{\mathsf{T}} B \hat{u} \int_{T} dx dy$$
$$= \hat{v}^{\mathsf{T}} K_{e} \hat{u}$$

where,

$$K_e = \frac{\det J}{2} B^\mathsf{T} B$$

The RHS of equation 3 is the following.

$$\int_{T} f \hat{v}^{\mathsf{T}} \begin{bmatrix} N_{1} \\ N_{2} \\ N_{3} \end{bmatrix} \det J d\xi d\eta$$
$$= f \hat{v}^{\mathsf{T}} \hat{f}_{0}$$

where $\hat{f}_0 = \det J/6 \begin{bmatrix} 1 & 1 & 1 \end{bmatrix}^\mathsf{T}$.

Figure 1: The triangular element T in the computational domain is shown on the left while its reference element T' is shown on the right.

Figure 2: To define parameters ξ and η we form three triangles OV_2V_3 , OV_3V_1 , and OV_1V_2 which put together form the triangle $V_1V_2V_3$.