Contents 6.9 Simplex . 6.10Berlekamp Massey Programming 1 Basic Construction 1.1 Shell Script 1.2 Default Code 6.12Euclidean 15 15 1.3 Increase Stack Size . 15 1.4 Debug Macro 6.15General Purpose Numbers 16 1.5 Pragma / FastIO . . . 1.6 Divide* 7 Polynomial Theoretic 7.1 Number 2 Data Structure Transform . 2.1 Leftist Tree 7.2 Fast Fourier Transform 2.2 Splay Tree 7.3 Primes 2.3 Link Cut Tree 7.4 Polynomial Operations 7.5 Fast Linear Recursion 7.6 Fast Walsh Transform 18 8 Geometry 8.1 Basic 18 3 Flow / Matching 8.2 Heart 18 8.3 External Bisector . . 18 8.4 Intersection of Segments 18 3.3 Kuhn Munkres 8.5 Intersection of Circle 3.4 Hopcroft Karp and Line 3.5 SW Min Cut 8.6 Intersection of Circles 19 3.6 Gomory Hu Tree . . . 8.7 Intersection of Poly-3.7 Blossom gon and Circle . . . 8.8 Tangent Lines of Cir-19 3.8 Min Cost Circulation 3.9 Flow Model cle and Point . . 8.9 Tangent Lines of Circles 19 4 Graph 8.10Point In Convex . . . 19 4.1 Heavy-Light Decomposi-8.11Point In Circle . . . tion 8.12Point Segment Distance 19 4.2 Centroid Decomposition 8.13Convex Hull 19 8 8.14Minimum Enclosing Circle 20 8.15Union of Circles . . 8.16Union of Polygons . . Square Tree 4.5 SCC / 2SAT 8.17Polar Angle Sort* . . 8.18Rotating Caliper* . . 8.19Rotating SweepLine . 4.6 Virtual Tree 4.7 Directed MST 4.8 Dominator Tree . . . 20 8.20Half Plane Intersection 21 4.9 Bipartite Edge Coloring 9 8.21Minkowski Sum . . . 4.10Edge Coloring 8.22Vector In Polygon . 4.11Maximum Clique . . . 8.23Delaunay Triangulation 8.24Triangulation Vonoroi 22 8.253D Point 8.263D Convex Hull . . . 5.1 Aho-Corasick Automaton 10 5.2 KMP Algorithm 11 5.3 Z Algorithm 5.4 Manacher 11 9 Else 11 9.1 Pbds 5.5 Suffix Array 5.6 SAIS 9.2 Bit Hack 9.3 Dynamic Programming Condition 23 9.3.1 Totally Monotone (Concave/Convex) 23 9.3.2 Monge Condition (Concave/Convex) 23 9.3.3 Optimal Split Point 6.1 Miller Rabin / Pollard 9.4 Smawk Algorithm . . . 9.5 Slope Trick 6.3 Chinese Remainder The-9.6 ALL LCS 9.7 Hilbert Curve 13 6.5 Linear Function Mod Min 13 9.10Min Plus Convolution 9.11Matroid Intersection 9.12Python Misc

Basic

1.1 Shell Script

```
#!/usr/bin/env bash
g++ -std=c++17 -DABS -O2 -Wall -Wextra -Wshadow $1.cpp
    -o $1 && ./$1
for i in {A..J}; do cp tem.cpp $i.cpp; done;
cpp hash.cpp -dD -P -fpreprocessed | tr -d "[:space:]"
    | md5sum | cut -c -6
```

1.2 Default Code [d41d8c]

```
#include <bits/stdc++.h>
using namespace std;
typedef long long 11;
#define pb push_back
#define pii pair<int, int>
#define all(a) a.begin(), a.end()
#define sz(a) ((int)a.size())
```

1.3 Increase Stack Size [d41d8c]

```
const int size = 256 << 20;</pre>
register long rsp asm("rsp");
char *p = (char*)malloc(size) + size, *bk = (char*)rsp;
 _asm__("movq %0, %%rsp\n"::"r"(p));
// main
__asm__("movq %0, %%rsp\n"::"r"(bk));
1.4 Debug Macro [d41d8c]
void db() { cout << endl; }</pre>
template <typename T, typename ...U>
void db(T i, U ...j) { cout << i << ' ', db(j...); }</pre>
#ifdef ABS
#define bug(x...) db("[" + string(#x) + "]", x)
#else
#define bug(x...) void(0)
#endif
1.5 Pragma / FastIO
#pragma GCC optimize("Ofast,inline,unroll-loops")
#pragma GCC target("bmi,bmi2,lzcnt,popcnt,avx2")
#include<unistd.h>
char OB[65536]; int OP;
inline char RC() {
  static char buf[65536], *p = buf, *q = buf;
  return p == q \&\& (q = (p = buf) + read(0, buf, 65536)
      ) == buf ? -1 : *p++;
inline int R() {
  static char c;
  while((c = RC()) < '0'); int a = c ^ '0';</pre>
  while((c = RC()) >= '0') a *= 10, a += c ^ '0';
  return a:
inline void W(int n) {
  static char buf[12], p;
  if (n == 0) OB[OP++]='0'; p = 0;
while (n) buf[p++] = '0' + (n % 10), n /= 10;
  for (--p; p >= 0; --p) OB[OP++] = buf[p];
  if (OP > 65520) write(1, OB, OP), OP = 0;
```

1.6 Divide*

```
11 floor(ll a, ll b) {
  return a / b - (a < 0 && a % b);</pre>
ll ceil(ll a, ll b) {
  return a / b + (a > 0 && a % b);
a / b < x -> floor(a, b) + 1 <= x
a / b \ll x \rightarrow ceil(a, b) \ll x
x < a / b \rightarrow x <= ceil(a, b) - 1
x \ll a / b \rightarrow x \ll floor(a, b)
```

Data Structure 2

2.1 Leftist Tree [d41d8c]

```
struct node {
  ll rk, data, sz, sum;
  node *1, *r;
  node(11 \ k) : rk(0), data(k), sz(1), l(0), r(0), sum(k)
11 sz(node *p) { return p ? p->sz : 0; }
11 rk(node *p) { return p ? p->rk : -1; }
11 sum(node *p) { return p ? p->sum : 0; }
node *merge(node *a, node *b) {
  if (!a || !b) return a ? a : b;
  if (a->data < b->data) swap(a, b);
  a->r = merge(a->r, b);
  if (rk(a->r) > rk(a->l)) swap(a->r, a->l);
  a \rightarrow rk = rk(a \rightarrow r) + 1;
  a->sz = sz(a->1) + sz(a->r) + 1;
  a\rightarrow sum = sum(a\rightarrow 1) + sum(a\rightarrow r) + a\rightarrow data;
  return a;
void pop(node *&o) {
  node *tmp = o;
  o = merge(o->1, o->r);
  delete tmp;
```

2.2 Splay Tree [d41d8c]

```
struct Splay {
  int pa[N], ch[N][2], sz[N], rt, _id;
  11 v[N];
  Splay() {}
  void init() {
    rt = 0, pa[0] = ch[0][0] = ch[0][1] = -1;
    sz[0] = 1, v[0] = inf;
  int newnode(int p, int x) {
    int id = _id++;
    v[id] = x, pa[id] = p;
ch[id][0] = ch[id][1] = -1, sz[id] = 1;
  void rotate(int i) {
    int p = pa[i], x = ch[p][1] == i;
    int gp = pa[p], c = ch[i][!x];
    sz[p] -= sz[i], sz[i] += sz[p];
    if (\sim c) sz[p] += sz[c], pa[c] = p;
    ch[p][x] = c, pa[p] = i;
    pa[i] = gp, ch[i][!x] = p;
    if (~gp) ch[gp][ch[gp][1] == p] = i;
  void splay(int i) {
    while (~pa[i]) {
      int p = pa[i];
      if (~pa[p]) rotate(ch[pa[p]][1] == p ^ ch[p][1]
          == i ? i : p);
      rotate(i);
    }
    rt = i;
  int lower_bound(int x) {
    int i = rt, last = -1;
    while (true) {
      if (v[i] == x) return splay(i), i;
      if (v[i] > x) {
        last = i;
        if (ch[i][0] == -1) break;
        i = ch[i][0];
      else {
        if (ch[i][1] == -1) break;
        i = ch[i][1];
      }
    }
    splay(i);
    return last; // -1 if not found
  void insert(int x) {
    int i = lower_bound(x);
    if (i == -1) {
      // assert(ch[rt][1] == -1);
      int id = newnode(rt, x);
      ch[rt][1] = id, ++sz[rt];
      splay(id);
    else if (v[i] != x) {
      splay(i);
      int id = newnode(rt, x), c = ch[rt][0];
      ch[rt][0] = id;
      ch[id][0] = c;
      if (~c) pa[c] = id, sz[id] += sz[c];
      ++sz[rt];
      splay(id);
  }
};
```

2.3 Link Cut Tree [d41d8c]

```
// weighted subtree size, weighted path max
struct LCT {
  int ch[N][2], pa[N], v[N], sz[N];
 int sz2[N], w[N], mx[N], _id;
 // sz := sum of v in splay, sz2 := sum of v in
      virtual subtree
 // mx := max w in splay
 bool rev[N];
 LCT() : _id(1) {}
 int newnode(int _v, int _w) {
```

```
int x = _id++;
ch[x][0] = ch[x][1] = pa[x] = 0;
  v[x] = sz[x] = _v;
  sz2[x] = 0;
  w[x] = mx[x] = w;
 rev[x] = false;
  return x;
void pull(int i) {
  sz[i] = v[i] + sz2[i];
  mx[i] = w[i];
  if (ch[i][0]) {
    sz[i] += sz[ch[i][0]];
    mx[i] = max(mx[i], mx[ch[i][0]]);
  if (ch[i][1]) {
    sz[i] += sz[ch[i][1]];
    mx[i] = max(mx[i], mx[ch[i][1]]);
 }
}
void push(int i) {
 if (rev[i]) reverse(ch[i][0]), reverse(ch[i][1]),
      rev[i] = false;
void reverse(int i) {
 if (!i) return;
  swap(ch[i][0], ch[i][1]);
  rev[i] ^= true;
bool isrt(int i) {// rt of splay
 if (!pa[i]) return true;
  return ch[pa[i]][0] != i && ch[pa[i]][1] != i;
void rotate(int i) {
 int p = pa[i], x = ch[p][1] == i;
  int c = ch[i][!x], gp = pa[p];
  if (ch[gp][0] == p) ch[gp][0] = i;
  else if (ch[gp][1] == p) ch[gp][1] = i;
  pa[i] = gp, ch[i][!x] = p, pa[p] = i;
  ch[p][x] = c, pa[c] = p;
 pull(p), pull(i);
void splay(int i) {
 vector<int> anc;
  anc.push_back(i);
  while (!isrt(anc.back()))
    anc.push_back(pa[anc.back()]);
  while (!anc.empty())
    push(anc.back()), anc.pop_back();
  while (!isrt(i)) {
    int p = pa[i];
    if (!isrt(p)) rotate(ch[p][1] == i ^ ch[pa[p]][1]
         == p ? i : p);
    rotate(i);
 }
void access(int i) {
 int last = 0;
  while (i) {
    splay(i);
    if (ch[i][1])
      sz2[i] += sz[ch[i][1]];
    sz2[i] -= sz[last];
    ch[i][1] = last;
    pull(i), last = i, i = pa[i];
void makert(int i) {
 access(i), splay(i), reverse(i);
void link(int i, int j) {
  // assert(findrt(i) != findrt(j));
  makert(i);
 makert(j);
 pa[i] = j;
sz2[j] += sz[i];
  pull(j);
void cut(int i, int j) {
 makert(i), access(j), splay(i);
  // assert(sz[i] == 2 && ch[i][1] == j);
  ch[i][1] = pa[j] = 0, pull(i);
```

```
// 2D range add, range sum in Log^2
  int findrt(int i) {
                                                               struct seg {
    access(i), splay(i);
                                                                 int 1, r;
    while (ch[i][0]) push(i), i = ch[i][0];
                                                                 11 sum, 1z;
                                                                 seg *ch[2]{};
    splay(i);
                                                                 seg(int _1, int _r) : 1(_1), r(_r), sum(0), lz(0) {}
    return i;
  }
                                                                 void push() {
};
                                                                   if (lz) ch[0]->add(l, r, lz), ch[1]->add(l, r, lz),
                                                                         1z = 0:
2.4
      Treap [d41d8c]
                                                                 void pull() { sum = ch[0]->sum + ch[1]->sum; }
                                                                 void add(int _1, int _r, ll d) {
struct node {
  int data, sz;
                                                                   if (_1 <= 1 && r <= _r) {</pre>
  node *1, *r;
                                                                     sum += d * (r - 1), 1z += d;
  node(int k) : data(k), sz(1), l(0), r(0) {}
                                                                     return;
  void up() {
    sz = 1:
                                                                   if (!ch[0]) ch[0] = new seg(l, l + r >> 1), ch[1] =
    if (1) sz += 1->sz;
                                                                         new seg(l + r >> 1, r);
    if (r) sz += r->sz;
                                                                   push();
  }
                                                                   if (_l < l + r >> 1) ch[0]->add(_l, _r, d);
  void down() {}
                                                                   if (1 + r >> 1 < _r) ch[1]->add(_1, _r, d);
};
                                                                   pull();
// delete default code sz
int sz(node *a) { return a ? a->sz : 0; }
                                                                 il qsum(int _1, int _r) {
   if (_1 <= 1 && r <= _r) return sum;
}</pre>
node *merge(node *a, node *b) {
  if (!a || !b) return a ? a : b;
                                                                   if (!ch[0]) return lz * (min(r, _r) - max(1, _1));
  if (rand() % (sz(a) + sz(b)) < sz(a))
                                                                   push();
    return a->down(), a->r = merge(a->r, b), a->up(),a;
                                                                   11 \text{ res} = 0;
  return b->down(), b->l = merge(a, b->l), b->up(), b;
                                                                   if (_1 < 1 + r >> 1) res += ch[0]->qsum(_1, _r);
                                                                   if (1 + r >> 1 < _r) res += ch[1]->qsum(_1, _r);
void split(node *o, node *&a, node *&b, int k) {
                                                                   return res;
  if (!o) return a = b = 0, void();
                                                                 }
  o->down();
                                                               };
  if (o->data <= k)
                                                               struct seg2 {
    a = o, split(o \rightarrow r, a \rightarrow r, b, k), <math>a \rightarrow up();
                                                                 int 1, r;
  else b = o, split(o->1, a, b->1, k), b->up();
                                                                 seg v, lz;
                                                                 seg2 *ch[2]{};
void split2(node *o, node *&a, node *&b, int k) {
                                                                 seg2(int _1, int _r) : l(_1), r(_r), v(0, N), lz(0, N
 if (sz(o) <= k) return a = o, b = 0, void();
  o->down();
                                                                    if (1 < r - 1) ch[0] = new seg2(1, 1 + r >> 1), ch
  if (sz(o->1) + 1 <= k)
                                                                        [1] = new seg2(1 + r >> 1, r);
   a = o, split2(o->r, a->r, b, k - <math>sz(o->l) - 1);
  else b = o, split2(o->1, a, b->1, k);
                                                                 void add(int _1, int _r, int _12, int _r2, 11 d) {
  v.add(_12, _r2, d * (min(r, _r) - max(1, _1)));
 o->up();
                                                                   if (_1 <= 1 && r <= _r)
node *kth(node *o, int k) {
                                                                      return lz.add(_12, _r2, d), void(0);
  if (k <= sz(o->1)) return kth(o->1, k);
                                                                   if (_l < l + r >> 1)
  if (k == sz(o\rightarrow 1) + 1) return o;
                                                                        ch[0]->add(_1, _r, _12, _r2, d);
  return kth(o->r, k - sz(o->l) - 1);
                                                                   if (1 + r >> 1 < _r)
                                                                        ch[1]->add(_l, _r, _l2, _r2, d);
int Rank(node *o, int key) {
  if (!o) return 0:
                                                                 11 qsum(int _1, int _r, int _12, int _r2) {
  if (_1 <= 1 && r <= _r) return v.qsum(_12, _r2);
  ll d = min(r, _r) - max(1, _1);</pre>
  if (o->data < key)</pre>
    return sz(o->1) + 1 + Rank(o->r, key);
  else return Rank(o->1, key);
                                                                   ll res = lz.qsum(_12, _r2) * d;
                                                                   if (_1 < 1 + r >> 1)
bool erase(node *&o, int k) {
                                                                        res += ch[0]->qsum(_1, _r, _12, _r2);
  if (!o) return 0;
                                                                   if (1 + r >> 1 < _r)
  if (o->data == k) {
                                                                        res += ch[1]->qsum(_1, _r, _12, _r2);
    node *t = o;
                                                                   return res;
    o->down(), o = merge(o->1, o->r);
                                                                 }
    delete t;
                                                              };
    return 1;
                                                               2.6 vEB Tree* [d41d8c]
  node *&t = k < o->data ? o->l : o->r;
  return erase(t, k) ? o->up(), 1 : 0;
                                                               using u64=uint64_t;
                                                               constexpr int lsb(u64 x)
void insert(node *&o, int k) {
                                                               { return x?__builtin_ctzll(x):1<<30; }
  node *a, *b;
                                                               constexpr int msb(u64 x)
  o->down(), split(o, a, b, k)
                                                               { return x?63-__builtin_clzll(x):-1; }
 o = merge(a, merge(new node(k), b));
                                                               template<int N, class T=void>
                                                               struct veb{
                                                                 static const int M=N>>1;
void interval(node *&o, int 1, int r) {
                                                                 veb<M> ch[1<<N-M];</pre>
 node *a, *b, *c; // [l, r)
                                                                 veb<N-M> aux;
 o->down();
                                                                 int mn, mx;
  split2(o, a, b, 1), split2(b, b, c, r - 1);
                                                                 veb():mn(1<<30),mx(-1){}
 // operate
                                                                 constexpr int mask(int x){return x&((1<<M)-1);}</pre>
 o = merge(a, merge(b, c)), o->up();
                                                                 bool empty(){return mx==-1;}
                                                                 int min(){return mn;}
                                                                 int max(){return mx;}
```

bool have(int x){

2.5 2D Segment Tree* [d41d8c]

```
return x==mn?true:ch[x>>M].have(mask(x));
  void insert_in(int x){
    if(empty()) return mn=mx=x,void();
    if(x<mn) swap(x,mn);</pre>
    if(x>mx) mx=x;
    if(ch[x>>M].empty()) aux.insert_in(x>>M);
    ch[x>>M].insert_in(mask(x));
  void erase_in(int x){
    if(mn==mx) return mn=1<<30, mx=-1, void();</pre>
    if(x==mn) mn=x=(aux.min()<<M)^ch[aux.min()].min();</pre>
    ch[x>>M].erase_in(mask(x));
    if(ch[x>>M].empty()) aux.erase_in(x>>M);
    if(x==mx){
      if(aux.empty()) mx=mn;
      else mx=(aux.max()<<M)^ch[aux.max()].max();</pre>
  void insert(int x){
    if(!have(x)) insert_in(x);
  void erase(int x){
    if(have(x)) erase_in(x);
  int next(int x){//} >= x
    if(x>mx) return 1<<30;
    if(x<=mn) return mn;</pre>
    if(mask(x)<=ch[x>>M].max())
      return ((x>>M)<<M)^ch[x>>M].next(mask(x));
    int y=aux.next((x>>M)+1);
    return (y<<M)^ch[y].min();</pre>
  int prev(int x){// <x</pre>
    if(x<=mn) return -1;</pre>
    if(x>mx) return mx;
    if(x<=(aux.min()<<M)+ch[aux.min()].min())</pre>
      return mn;
    if(mask(x)>ch[x>>M].min())
      return ((x>>M)<<M)^ch[x>>M].prev(mask(x));
    int y=aux.prev(x>>M);
    return (y<<M)^ch[y].max();</pre>
};
template<int N>
struct veb<N,typename enable_if<N<=6>::type>{
 u64 a:
  veb():a(0){}
  void insert_in(int x){a|=1ull<<x;}</pre>
  void insert(int x){a|=1ull<<x;}</pre>
  void erase_in(int x){a&=~(1ull<<x);}</pre>
  void erase(int x){a&=~(1ull<<x);}</pre>
  bool have(int x){return a>>x&1;}
  bool empty(){return a==0;}
  int min(){return lsb(a);}
  int max(){return msb(a);}
  int next(int x){return lsb(a&~((1ull<<x)-1));}</pre>
  int prev(int x){return msb(a&((1ull<<x)-1));}</pre>
```

2.7 Range Set* [d41d8c]

```
struct RangeSet { // [l, r)
  set <pii> S;
  void cut(int x) {
    auto it = S.lower_bound({x + 1, -1});
    if (it == S.begin()) return;
    auto [1, r] = *prev(it);
    if (1 >= x || x >= r) return;
    S.erase(prev(it));
    S.insert({1, x});
    S.insert({x, r});
 }
 vector <pii> split(int l, int r) {
    // remove and return ranges in [l, r)
    cut(1), cut(r);
    vector <pii> res;
    while (true) {
     auto it = S.lower_bound({1, -1});
      if (it == S.end() || r <= it->first) break;
     res.pb(*it), S.erase(it);
```

```
return res:
  void insert(int 1, int r) {
    // add a range [l, r), [l, r) not in S
    auto it = S.lower_bound({1, r});
    if (it != S.begin() && prev(it)->second == 1)
      1 = prev(it)->first, S.erase(prev(it));
    if (it != S.end() && r == it->first)
     r = it->second, S.erase(it);
    S.insert({1, r});
  bool count(int x) {
    auto it = S.lower_bound(\{x + 1, -1\});
    return it != S.begin() && prev(it)->first <= x</pre>
            && x < prev(it)->second;
};
```

Flow / Matching 3

```
3.1 Dinic [d41d8c]
template <typename T>
struct Dinic { // 0-base
  const T INF = 1 << 30;</pre>
  struct edge {
    int to, rev;
T cap, flow;
  };
  vector<edge> adj[N];
  int s, t, dis[N], cur[N], n;
  T dfs(int u, T cap) {
    if (u == t || !cap) return cap;
    for (int &i = cur[u]; i < adj[u].size(); ++i) {</pre>
      edge &e = adj[u][i];
      if (dis[e.to] == dis[u] + 1 && e.flow != e.cap) {
        T df = dfs(e.to, min(e.cap - e.flow, cap));
        if (df) {
          e.flow += df;
          adj[e.to][e.rev].flow -= df;
          return df:
        }
      }
    dis[u] = -1;
    return 0;
  bool bfs() {
    fill_n(dis, n, -1);
    queue<int> q;
    q.push(s), dis[s] = 0;
    while (!q.empty()) {
      int v = q.front(); q.pop();
      for (auto &u : adj[v])
        if (!~dis[u.to] && u.flow != u.cap) {
          q.push(u.to);
          dis[u.to] = dis[v] + 1;
    return dis[t] != -1;
  T solve(int _s, int _t) {
    s = _s, t = _t;
    T flow = 0, df;
    while (bfs()) {
      fill_n(cur, n, 0);
      while ((df = dfs(s, INF))) flow += df;
    return flow;
  void init(int _n) {
    for (int i = 0; i < n; ++i) adj[i].clear();</pre>
  void reset() {
    for (int i = 0; i < n; ++i)</pre>
      for (auto &j : adj[i]) j.flow = 0;
  void add_edge(int u, int v, T cap) {
    adj[u].pb(edge{v, (int)adj[v].size(), cap, 0});
    adj[v].pb(edge\{u, (int)adj[u].size() - 1, 0, 0\});
```

|};

3.2 Min Cost Max Flow [d41d8c]

```
template <typename T1, typename T2>
struct MCMF { // T1 -> flow, T2 -> cost, 0-based
  const T1 INF1 = 1 << 30;</pre>
  const T2 INF2 = 1 << 30;</pre>
  struct edge {
    int v; T1 f; T2 c;
  } E[M << 1];
  vector <int> adj[N];
  T2 dis[N], pot[N];
  int rt[N], vis[N], n, m, s, t;
  // bool DAG()...
  bool SPFA() {
    fill_n(rt, n, -1), fill_n(dis, n, INF2);
fill_n(vis, n, false);
    queue <int> q;
    q.push(s), dis[s] = 0, vis[s] = true;
    while (!q.empty()) {
      int v = q.front(); q.pop();
      vis[v] = false;
      for (int id : adj[v]) {
         auto [u, f, c] = E[id];
         T2 ndis = dis[v] + c + pot[v] - pot[u];
         if (f > 0 && dis[u] > ndis) {
           dis[u] = ndis, rt[u] = id;
           if (!vis[u]) vis[u] = true, q.push(u);
      }
    return dis[t] != INF2;
  bool dijkstra() {
    fill_n(rt, n, -1), fill_n(dis, n, INF2);
    priority_queue <pair <T2, int>, vector <pair <T2,</pre>
         int>>, greater <pair <T2, int>>> pq;
    dis[s] = 0, pq.emplace(dis[s], s);
    while (!pq.empty()) {
      auto [d, v] = pq.top(); pq.pop();
       if (dis[v] < d) continue;</pre>
      for (int id : adj[v]) {
         auto [u, f, c] = E[id];
         T2 ndis = dis[v] + c + pot[v] - pot[u];
         if (f > 0 && dis[u] > ndis) {
           dis[u] = ndis, rt[u] = id;
           pq.emplace(ndis, u);
         }
      }
    return dis[t] != INF2;
  pair <T1, T2> solve(int _s, int _t) {
    s = _s, t = _t, fill_n(pot, n, 0);
T1 flow = 0; T2 cost = 0; bool fr = true;
    while ((fr ? SPFA() : dijkstra())) {
       for (int i = 0; i < n; i++)</pre>
         dis[i] += pot[i] - pot[s];
      T1 add = INF1;
      for (int i = t; i != s; i = E[rt[i] ^ 1].v)
      add = min(add, E[rt[i]].f);
for (int i = t; i != s; i = E[rt[i] ^ 1].v)
         E[rt[i]].f -= add, E[rt[i] ^ 1].f += add;
       flow += add, cost += add * dis[t], fr = false;
      for (int i = 0; i < n; ++i) swap(dis[i], pot[i]);</pre>
    return make pair(flow, cost);
  void init(int _n) {
    n = _n, m = 0;
for (int i = 0; i < n; ++i) adj[i].clear();</pre>
  void reset() {
    for (int i = 0; i < m; ++i) E[i].f = 0;</pre>
  void add_edge(int u, int v, T1 f, T2 c) {
    adj[u].pb(m), E[m++] = \{v, f, c\};
    adj[v].pb(m), E[m++] = {u, 0, -c};
};
```

3.3 Kuhn Munkres [d41d8c]

```
template <typename T>
struct KM { // 0-based
  const T INF = 1 << 30;</pre>
  T w[N][N], hl[N], hr[N], slk[N];
  int fl[N], fr[N], pre[N], n;
  bool v1[N], vr[N];
  queue <int> q;
  KM () {}
  void init(int _n) {
    n = _n;
    for (int i = 0; i < n; ++i)</pre>
      for (int j = 0; j < n; ++j) w[i][j] = -INF;</pre>
  void add_edge(int a, int b, T wei) { w[a][b] = wei; }
  bool check(int x) {
    if (vl[x] = 1, \sim fl[x])
      return q.push(fl[x]), vr[fl[x]] = 1;
    while (\sim x) swap(x, fr[fl[x] = pre[x]]);
    return 0;
  void bfs(int s) {
    fill(slk, slk + n, INF), fill(vl, vl + n, 0);
    fill(vr, vr + n, 0);
    while (!q.empty()) q.pop();
    q.push(s), vr[s] = 1;
    while (true) {
      T d;
      while (!q.empty()) {
        int y = q.front(); q.pop();
        for (int x = 0; x < n; ++x)
          if (!vl[x] \&\& slk[x] >= (d = hl[x] + hr[y] -
              w[x][y])
            if (pre[x] = y, d) slk[x] = d;
            else if (!check(x)) return;
      d = TNF:
      for (int x = 0; x < n; ++x)
        if (!v1[x] && d > s1k[x]) d = s1k[x];
      for (int x = 0; x < n; ++x) {
        if (v1[x]) h1[x] += d;
        else slk[x] -= d;
        if (vr[x]) hr[x] -= d;
      for (int x = 0; x < n; ++x)
        if (!v1[x] && !slk[x] && !check(x)) return;
    }
  T solve() {
    fill(fl, fl + n, -1), fill(fr, fr + n, -1);
    fill(hr, hr + n, 0);
    for (int i = 0; i < n; ++i)</pre>
     hl[i] = *max_element(w[i], w[i] + n);
    for (int i = 0; i < n; ++i) bfs(i);</pre>
    T res = 0;
    for (int i = 0; i < n; ++i) res += w[i][fl[i]];</pre>
    return res;
};
```

3.4 Hopcroft Karp [d41d8c]

```
struct HopcroftKarp { // 0-based
  const int INF = 1 << 30;</pre>
  vector<int> adj[N];
  int match[N], dis[N], v, n, m;
  bool matched[N], vis[N];
  bool dfs(int x) {
    vis[x] = true;
    for (int y : adj[x])
      if (match[y] == -1 \mid | (dis[match[y]] == dis[x] +
          1 && !vis[match[y]] && dfs(match[y]))) {
        match[y] = x, matched[x] = true;
        return true;
    return false;
  bool bfs() {
    memset(dis, -1, sizeof(int) * n);
    queue<int> q;
    for (int x = 0; x < n; ++x) if (!matched[x])</pre>
      dis[x] = 0, q.push(x);
```

```
int mx = INF:
  while (!q.empty()) {
   int x = q.front(); q.pop();
   if (match[y] == -1) {
       mx = dis[x];
       break;
      } else if (dis[match[y]] == -1)
       dis[match[y]] = dis[x] + 1, q.push(match[y]);
   }
  return mx < INF;</pre>
int solve() {
 int res = 0;
  memset(match, -1, sizeof(int) * m);
 memset(matched, 0, sizeof(bool) * n);
  while (bfs()) {
   memset(vis, 0, sizeof(bool) * n);
   for (int x = 0; x < n; ++x) if (!matched[x])
     res += dfs(x);
  return res;
void init(int _n, int _m) {
 n = _n, m = _m;
  for (int i = 0; i < n; ++i) adj[i].clear();</pre>
void add_edge(int x, int y) {
 adj[x].pb(y);
```

3.5 SW Min Cut [d41d8c]

```
template <typename T>
struct SW { // 0-based
  const T INF = 1 << 30;</pre>
  T g[N][N], sum[N]; int n;
  bool vis[N], dead[N];
  void init(int _n) {
    n = _n;
    for (int i = 0; i < n; ++i) fill_n(g[i], n, 0);</pre>
    fill(dead, dead + n, false);
  void add_edge(int u, int v, T w) {
    g[u][v] += w, g[v][u] += w;
  T solve() {
    T ans = INF;
    for (int round = 0; round + 1 < n; ++round) {</pre>
      fill(vis, vis + n, false), fill(sum, sum + n, 0);
      int num = 0, s = -1, t = -1;
      while (num < n - round) {</pre>
        int now = -1;
         for (int i = 0; i < n; ++i)</pre>
           if (!vis[i] && !dead[i] &&
            (now == -1 \mid | sum[now] > sum[i])) now = i;
        s = t, t = now;
        vis[now] = true, num++;
        for (int i = 0; i < n; ++i)</pre>
           if (!vis[i] && !dead[i]) sum[i] += g[now][i];
      ans = min(ans, sum[t]);
      for (int i = 0; i < n; ++i)</pre>
        g[i][s] += g[i][t], g[s][i] += g[t][i];
      dead[t] = true;
    }
    return ans;
  }
};
```

3.6 Gomory Hu Tree [d41d8c]

```
vector <array <int, 3>> GomoryHu(Dinic <int> flow) {
   // Tree edge min = mincut (0-based)
   int n = flow.n;
   vector <array <int, 3>> ans;
   vector <int> rt(n);
   for (int i = 1; i < n; ++i) {
      int t = rt[i];
      flow.reset();
   }
}</pre>
```

```
ans.pb({i, t, flow.solve(i, t)});
  flow.bfs();
  for (int j = i + 1; j < n; ++j)
    if (rt[j] == t && flow.dis[j] != -1) rt[j] = i;
}
return ans;
}</pre>
```

```
3.7 Blossom [d41d8c]
struct Matching { // 0-based
  int fa[N], pre[N], match[N], s[N], v[N], n, tk;
  vector <int> g[N];
  queue <int> q;
  int Find(int u) {
    return u == fa[u] ? u : fa[u] = Find(fa[u]);
  int lca(int x, int y) {
    tk++;
    x = Find(x), y = Find(y);
    for (; ; swap(x, y)) {
  if (x != n) {
        if (v[x] == tk) return x;
        v[x] = tk;
        x = Find(pre[match[x]]);
      }
    }
  }
  void blossom(int x, int y, int 1) {
    while (Find(x) != 1) {
      pre[x] = y, y = match[x];
      if (s[y] == 1) q.push(y), s[y] = 0;
      if (fa[x] == x) fa[x] = 1;
      if (fa[y] == y) fa[y] = 1;
      x = pre[y];
    }
  bool bfs(int r) {
    for (int i = 0; i <= n; ++i) fa[i] = i, s[i] = -1;</pre>
    while (!q.empty()) q.pop();
    q.push(r);
    s[r] = 0;
    while (!q.empty()) {
      int x = q.front(); q.pop();
      for (int u : g[x]) {
        if (s[u] == -1) {
          pre[u] = x, s[u] = 1;
           if (match[u] == n) {
             for (int a = u, b = x, last; b != n; a =
                 last, b = pre[a])
               last = match[b], match[b] = a, match[a] =
                    b:
            return true;
          q.push(match[u]);
          s[match[u]] = 0;
        } else if (!s[u] && Find(u) != Find(x)) {
          int 1 = lca(u, x);
          blossom(x, u, 1);
          blossom(u, x, 1);
        }
      }
    return false;
  int solve() {
    int res = 0;
    for (int x = 0; x < n; ++x) {
      if (match[x] == n) res += bfs(x);
    return res;
  void init(int _n) {
    n = _n, tk = 0;
for (int i = 0; i <= n; ++i) match[i] = pre[i] = n;</pre>
    for (int i = 0; i < n; ++i) g[i].clear(), v[i] = 0;</pre>
  void add_edge(int u, int v) {
```

g[u].push_back(v), g[v].push_back(u);

};

3.8 Min Cost Circulation [d41d8c]

```
struct MinCostCirculation { // 0-base
  struct Edge {
    11 from, to, cap, fcap, flow, cost, rev;
  } *past[N];
  vector<Edge> G[N];
  11 dis[N], inq[N], n;
  void BellmanFord(int s) {
    fill_n(dis, n, INF), fill_n(inq, n, 0);
    queue<int> q;
    auto relax = [&](int u, ll d, Edge *e) {
      if (dis[u] > d) {
        dis[u] = d, past[u] = e;
        if (!inq[u]) inq[u] = 1, q.push(u);
    };
    relax(s, 0, 0);
    while (!q.empty()) {
      int u = q.front();
      q.pop(), inq[u] = 0;
      for (auto &e : G[u])
        if (e.cap > e.flow)
          relax(e.to, dis[u] + e.cost, &e);
    }
  void try_edge(Edge &cur) {
    if (cur.cap > cur.flow) return ++cur.cap, void();
    BellmanFord(cur.to);
    if (dis[cur.from] + cur.cost < 0) {</pre>
      ++cur.flow, --G[cur.to][cur.rev].flow;
      for (int i = cur.from; past[i]; i = past[i]->from
          ) {
        auto &e = *past[i];
        ++e.flow, --G[e.to][e.rev].flow;
      }
    ++cur.cap:
  void solve(int mxlg) {
    for (int b = mxlg; b >= 0; --b) {
      for (int i = 0; i < n; ++i)</pre>
        for (auto &e : G[i])
          e.cap *= 2, e.flow *= 2;
      for (int i = 0; i < n; ++i)</pre>
        for (auto &e : G[i])
          if (e.fcap >> b & 1)
            try_edge(e);
    }
  void init(int _n) { n = _n;
  for (int i = 0; i < n; ++i) G[i].clear();</pre>
  void add_edge(ll a, ll b, ll cap, ll cost) {
    G[a].pb(Edge{a, b, 0, cap, 0, cost, sz(G[b]) + (a
         == b)});
    G[b].pb(Edge{b, a, 0, 0, 0, -cost, sz(G[a]) - 1});
} mcmf; // O(VE * ELogC)
```

3.9 Flow Model

- Maximum/Minimum flow with lower bound / Circulation problem
 - 1. Construct super source ${\cal S}$ and sink ${\cal T}$.
 - 2. For each edge (x,y,l,u), connect $x\to y$ with capacity u-l. 3. For each vertex v, denote by in(v) the difference between the sum of incoming lower bounds and the sum of outgoing lower bounds.
 - 4. If in(v)>0, connect $S\to v$ with capacity in(v), otherwise, connect $v \to T$ with capacity -in(v).
 - To maximize, connect $t \to s$ with capacity ∞ (skip this in circulation problem), and let f be the maximum flow from S to T. If $f \neq \sum_{v \in V, in(v) > 0} in(v)$, there's no solution. Otherwise, the maximum flow from s to t is
 - the answer. To minimize, let f be the maximum flow from S to T. Connect $t \to s$ with capacity ∞ and let the flow from S to T be f'. If $f+f' \neq \sum_{v \in V, in(v)>0} in(v)$, there's no solution. Otherwise, f' is the answer.
 - 5. The solution of each edge e is $l_e + f_e$, where f_e corresponds to the flow of edge e on the graph.
- ullet Construct minimum vertex cover from maximum matching M on bipartite graph (X,Y)
 - 1. Redirect every edge: $y \to x$ if $(x,y) \in M$, $x \to y$ otherwise.
 - 2. DFS from unmatched vertices in X.

- 3. $x \in X$ is chosen iff x is unvisited.
- 4. $y \in Y$ is chosen iff y is visited.
- Minimum cost cyclic flow
 - 1. Consruct super source ${\cal S}$ and sink ${\cal T}$
 - 2. For each edge (x,y,c), connect $x \to y$ with (cost,cap)=(c,1) if c>0, otherwise connect $y \to x$ with (cost,cap)=(-c,1)
 - 3. For each edge with c<0, sum these cost as K, then increase d(y) by 1, decrease d(x) by 1
 4. For each vertex v with d(v)>0, connect $S\to v$ with
 - (cost, cap) = (0, d(v))
 - 5. For each vertex v with d(v) < 0, connect v o T with $(\cos t, \cos p) = (0, -d(v))$
 - 6. Flow from S to T, the answer is the cost of the flow C+K
- Maximum density induced subgraph
 - 1. Binary search on answer, suppose we're checking answer ${\cal T}$
 - 2. Construct a max flow model, let K be the sum of all weights
 - 3. Connect source $s \to v$, $v \in G$ with capacity K
 - 4. For each edge (u,v,w) in G, connect $u \to v$ and $v \to u$ with capacity w
 - 5. For $v\in G$, connect it with sink $v\to t$ with capacity $K+2T-(\sum_{e\in E(v)}w(e))-2w(v)$
 - 6. T is a valid answer if the maximum flow f < K |V|
- Minimum weight edge cover
 - 1. For each $v \in V$ create a copy v', and connect u' o v' with weight w(u, v).
 - 2. Connect $v \to v'$ with weight $2\mu(v)$, where $\mu(v)$ is the cost of the cheapest edge incident to \widehat{v} .
 - 3. Find the minimum weight perfect matching on G^\prime .
- Project selection problem
 - 1. If $p_v > 0$, create edge (s,v) with capacity p_v ; otherwise, create edge (v,t) with capacity $-p_v$.
 - 2. Create edge $\left(u,v\right)$ with capacity w with w being the cost of choosing \boldsymbol{u} without choosing \boldsymbol{v} .
 - 3. The mincut is equivalent to the maximum profit of a subset of projects.
- 0/1 quadratic programming

$$\sum_{x} c_{x}x + \sum_{y} c_{y}\bar{y} + \sum_{xy} c_{xy}x\bar{y} + \sum_{xyx'y'} c_{xyx'y'}(x\bar{y} + x'\bar{y'})$$

can be minimized by the mincut of the following graph:

- 1. Create edge (x,t) with capacity c_x and create edge (s,y) with capacity $c_y\,.$
- 2. Create edge (x,y) with capacity c_{xy} .
- 3. Create edge (x,y) and edge (x',y') with capacity $c_{xyx'y'}$.

4 Graph

4.1 Heavy-Light Decomposition [d41d8c]

```
vector <int> g[N];
int dep[N], pa[N], sz[N], ch[N], hd[N], id[N], _id;
void dfs(int i, int p) {
  dep[i] = \sim p ? dep[p] + 1 : 0;
  pa[i] = p, sz[i] = 1, ch[i] = -1;
  for (int j : g[i]) if (j != p) {
  dfs(j, i);
    if (ch[i] == -1 || sz[ch[i]] < sz[j]) ch[i] = j;</pre>
    sz[i] += sz[j];
  }
void hld(int i, int p, int h) {
  hd[i] = h;
  id[i] = _id++;
  if (~ch[i]) hld(ch[i], i, h);
  for (int j : g[i]) if (j != p && j != ch[i])
    hld(j, i, j);
void query(int i, int j) {
  // query2 -> [l, r)
  while (hd[i] != hd[j]) {
    if (dep[hd[i]] < dep[hd[j]]) swap(i, j);</pre>
    query2(id[hd[i]], id[i] + 1), i = pa[hd[i]];
  if (dep[i] < dep[j]) swap(i, j);</pre>
  query2(id[j], id[i] + 1);
```

4.2 Centroid Decomposition [d41d8c]

```
vector <int> g[N];
int dis[N][logN], pa[N], sz[N], dep[N];
bool vis[N];
void dfs_sz(int i, int p) {
  sz[i] = 1;
 for (int j : g[i]) if (j != p && !vis[j])
   dfs_sz(j, i), sz[i] += sz[j];
int cen(int i, int p, int _n) {
 for (int j : g[i])
   if (j != p && !vis[j] && sz[j] > _n / 2)
     return cen(j, i, _n);
void dfs_dis(int i, int p, int d) {
 // from i to ancestor with depth d
 dis[i][d] = \sim p ? dis[p][d] + 1 : 0;
 for (int j : g[i]) if (j != p && !vis[j])
    dfs_dis(j, i, d);
void cd(int i, int p, int d) {
 dfs_sz(i, -1), i = cen(i, -1, sz[i]);
 vis[i] = true, pa[i] = p, dep[i] = d;
 dfs_dis(i, -1, d);
 for (int j : g[i]) if (!vis[j])
    cd(j, i, d + 1);
```

4.3 Edge BCC [d41d8c]

```
vector <int> g[N], _g[N];
// Notice Multiple Edges
int pa[N], low[N], dep[N], bcc_id[N], _id;
vector <int> stk, bcc[N];
bool vis[N], is_bridge[N];
void dfs(int i, int p = -1) {
  low[i] = dep[i] = \sim p ? dep[p] + 1 : 0;
  stk.pb(i), pa[i] = p, vis[i] = true;
   for (int j : g[i]) if (j != p) {
     if (!vis[j])
       dfs(j, i), low[i] = min(low[i], low[j]);
     else low[i] = min(low[i], dep[j]);
  if (low[i] == dep[i]) {
     if (~p) is_bridge[i] = true; // (i, pa[i])
     int id = _id++, x;
     do {
       x = stk.back(), stk.pop_back();
bcc_id[x] = id, bcc[id].pb(x);
     } while (x != i);
  }
void build(int n) {
  for (int i = 0; i < n; ++i) if (!vis[i])</pre>
    dfs(i);
   for (int i = 0; i < n; ++i) if (is_bridge[i]) {</pre>
    int u = bcc_id[i], v = bcc_id[pa[i]];
     _g[u].pb(v), _g[v].pb(u);
}
```

4.4 Vertex BCC / Round Square Tree [d41d8c]

```
vector <int> g[N], _g[N << 1];
// _g: index >= N: bcc, index < N: original vertex</pre>
int pa[N], dep[N], low[N], _id;
bool vis[N];
vector <int> stk;
void dfs(int i, int p = -1) {
  dep[i] = low[i] = \sim p ? dep[p] + 1 : 0;
  stk.pb(i), pa[i] = p, vis[i] = true;
  for (int j : g[i]) if (j != p) {
    if (!vis[j]) {
      dfs(j, i), low[i] = min(low[i], low[j]);
      if (low[j] >= dep[i]) {
        int id = _id++, x;
          x = stk.back(), stk.pop_back();
           g[id + N].pb(x), g[x].pb(id + N);
         } while (x != j);
        g[id + N].pb(i), g[i].pb(id + N);
```

```
} else low[i] = min(low[i], dep[j]);
}
bool is_cut(int x) {return _g[x].size() != 1;}
vector <int> bcc(int x) {return _g[x + N];}
int pa2[N << 1], dep2[N << 1];
void dfs2(int i, int p = -1) {
   dep2[i] = ~p ? dep2[p] + 1 : 0, pa2[i] = p;
   for (int j : _g[i]) if (j != p) {
      dfs2(j, i);
   }
}
int bcc_id(int u, int v) {
   if (dep2[u] < dep2[v]) swap(u, v);
   return pa2[u] - N;
}
void build(int n) {
   for (int i = 0; i < n; ++i) if (!vis[i])
      dfs(i), dfs2(i);
}</pre>
```

4.5 SCC / 2SAT [d41d8c]

```
struct SAT {
  vector <int> g[N << 1], stk;</pre>
  int dep[N << 1], low[N << 1], scc_id[N << 1];</pre>
  int n, _id, _t;
  bool is[N];
  SAT() {}
  void init(int _n) {
    n = _n, _id = _t = 0;
    for (int i = 0; i < 2 * n; ++i)
      g[i].clear(), dep[i] = scc_id[i] = -1;
    stk.clear();
  void add_edge(int x, int y) { g[x].push_back(y); }
  int rev(int i) { return i < n ? i + n : i - n; }</pre>
  void add_ifthen(int x, int y)
  { add_clause(rev(x), y); }
  void add_clause(int x, int y)
{ add_edge(rev(x), y), add_edge(rev(y), x); }
  void dfs(int i) {
    dep[i] = low[i] = _t++, stk.pb(i);
for (int j : g[i]) if (scc_id[j] == -1) {
      if (dep[j] == -1) dfs(j);
      low[i] = min(low[i], low[j]);
    if (low[i] == dep[i]) {
      int id = _id++, x;
        x = stk.back(), stk.pop_back(), scc_id[x] = id;
      } while (x != i);
    }
  bool solve() {
    // is[i] = true -> i, is[i] = false -> -i
    for (int i = 0; i < 2 * n; ++i) if (dep[i] == -1)
      dfs(i);
    for (int i = 0; i < n; ++i) {</pre>
      if (scc_id[i] == scc_id[i + n]) return false;
      if (scc_id[i] < scc_id[i + n]) is[i] = true;</pre>
       else is[i] = false;
    return true;
  }
};
```

4.6 Virtual Tree [d41d8c]

```
// need Lca
vector <int> _g[N], stk;
int st[N], ed[N];
void solve(vector<int> v) {
   auto cmp = [&](int x, int y) {return st[x] < st[y];};
   sort(all(v), cmp);
   int sz = v.size();
   for (int i = 0; i < sz - 1; ++i)
       v.pb(lca(v[i], v[i + 1]));
   sort(all(v), cmp);
   v.resize(unique(all(v)) - v.begin());
   stk.clear(), stk.pb(v[0]);
   for (int i = 1; i < v.size(); ++i) {</pre>
```

```
int x = v[i];
while (ed[stk.back()] < ed[x]) stk.pop_back();
    _g[stk.back()].pb(x), stk.pb(x);
}
// do something
for (int i : v) _g[i].clear();
}</pre>
```

4.7 Directed MST [d41d8c]

```
using D = int;
struct edge {
  int u, v; D w;
// 0-based, return index of edges
vector<int> dmst(vector<edge> &e, int n, int root) {
  using T = pair <D, int>;
  using PQ = pair <pri>priority_queue <T, vector <T>,
      greater <T>>, D>;
  auto push = [](PQ &pq, T v) {
    pq.first.emplace(v.first - pq.second, v.second);
  auto top = [](const PQ &pq) -> T {
    auto r = pq.first.top();
    return {r.first + pq.second, r.second};
  auto join = [&push, &top](PQ &a, PQ &b) {
    if (a.first.size() < b.first.size()) swap(a, b);</pre>
    while (!b.first.empty())
      push(a, top(b)), b.first.pop();
  vector<PQ> h(n * 2);
  for (int i = 0; i < e.size(); ++i)</pre>
    push(h[e[i].v], {e[i].w, i});
  vector\langle int \rangle a(n * 2), v(n * 2, -1), pa(n * 2, -1), r(
      n * 2);
  iota(all(a), 0);
  auto o = [&](int x) { int y;
    for (y = x; a[y] != y; y = a[y]);
    for (int ox = x; x != y; ox = x)
      x = a[x], a[ox] = y;
    return y;
  };
  v[root] = n + 1;
  int pc = n;
  for (int i = 0; i < n; ++i) if (v[i] == -1) {</pre>
    for (int p = i; v[p] == -1 || v[p] == i; p = o(e[r[
        p]].u)) {
      if (v[p] == i) {
        int q = p; p = pc++;
          h[q].second = -h[q].first.top().first;
           join(h[pa[q] = a[q] = p], h[q]);
        } while ((q = o(e[r[q]].u)) != p);
      v[p] = i;
      while (!h[p].first.empty() && o(e[top(h[p]).
           second].u) == p)
        h[p].first.pop();
      r[p] = top(h[p]).second;
  vector<int> ans;
  for (int i = pc - 1; i >= 0; i--)
    if (i != root && v[i] != n) {
      for (int f = e[r[i]].v; f != -1 && v[f] != n; f =
           pa[f]) v[f] = n;
      ans.pb(r[i]);
  return ans:
}
```

4.8 Dominator Tree [d41d8c]

```
struct Dominator_tree {
  int n, id, sdom[N], dom[N];
  vector <int> adj[N], radj[N], bucket[N];
  int vis[N], rev[N], pa[N], rt[N], mn[N], res[N];
  // dom[s] = s, dom[v] = -1 if s -> v not exists
  Dominator_tree () {}
  void init(int _n) {
    n = _n, id = 0;
```

```
for (int i = 0; i < n; ++i)</pre>
      adj[i].clear(), radj[i].clear(), bucket[i].clear
           ();
    fill_n(dom, n, -1), fill_n(vis, n, -1);
  void add_edge(int u, int v) {adj[u].pb(v);}
  int query(int v, int x) {
    if (rt[v] == v) return x ? -1 : v;
    int p = query(rt[v], 1);
    if (p == -1) return x ? rt[v] : mn[v];
    if (sdom[mn[v]] > sdom[mn[rt[v]]])
      mn[v] = mn[rt[v]];
    rt[v] = p;
    return x ? p : mn[v];
  void dfs(int v) {
    vis[v] = id, rev[id] = v;
rt[id] = mn[id] = sdom[id] = id, id++;
    for (int u : adj[v]) {
      if (vis[u] == -1) dfs(u), pa[vis[u]] = vis[v];
      radj[vis[u]].pb(vis[v]);
    }
  void build(int s) {
    dfs(s):
    for (int i = id - 1; ~i; --i) {
      for (int u : radj[i]) {
        sdom[i] = min(sdom[i], sdom[query(u, 0)]);
      if (i) bucket[sdom[i]].pb(i);
      for (int u : bucket[i]) {
        int p = query(u, 0);
        dom[u] = sdom[p] == i ? i : p;
      if (i) rt[i] = pa[i];
    }
    fill_n(res, n, -1);
    for (int i = 1; i < id; ++i) {</pre>
      if (dom[i] != sdom[i]) dom[i] = dom[dom[i]];
    for (int i = 1; i < id; ++i)</pre>
        res[rev[i]] = rev[dom[i]];
    res[s] = s;
    for (int i = 0; i < n; ++i) dom[i] = res[i];</pre>
};
```

4.9 Bipartite Edge Coloring [d41d8c]

```
struct BipartiteEdgeColoring { // 1-based
  // returns edge coloring in adjacent matrix G
  int col[N][N], G[N][N], n, m;
  int find_col(int x) {
    int c = 1;
    while (col[x][c]) c++;
  void dfs(int v, int c1, int c2) {
    if (!col[v][c1]) return col[v][c2] = 0, void(0);
    int u = col[v][c1];
    dfs(u, c2, c1);
    col[v][c1] = 0, col[v][c2] = u, col[u][c2] = v;
  void init(int _n, int _m) {
    n = _n, m = _m;
for (int i = 1; i <= n + m; ++i) {</pre>
      for (int j = 1; j \le n + m; ++j) G[i][j] = 0;
      for (int j = 1; j <= max(n, m); ++j) col[i][j] =</pre>
          0;
  void solve(vector <pii> edge) { // (l-index, r-index)
    for (auto [u, v] : edge) {
      v += n;
      int c1 = find_col(u), c2 = find_col(v);
      dfs(u, c2, c1);
      col[u][c2] = v, col[v][c2] = u;
    for (int i = 1; i <= n + m; ++i)</pre>
      for (int j = 1; j <= max(n, m); ++j)</pre>
        if (col[i][j])
          G[i][col[i][j]] = G[col[i][j]][i] = j;
```

```
4.10 Edge Coloring [d41d8c]
```

};

```
struct Vizing { // 1-based
  // returns edge coloring in adjacent matrix G
  int C[N][N], G[N][N], X[N], vst[N], n;
  void init(int _n) {
    n = _n;
    for (int i = 1; i <= n; ++i)</pre>
      for (int j = 1; j <= n; ++j)</pre>
        C[i][j] = G[i][j] = 0;
  }
  void solve(vector<pii> &E) {
    auto update = [&](int u)
    { for (X[u] = 1; C[u][X[u]]; ++X[u]); };
    auto color = [&](int u, int v, int c) {
      int p = G[u][v];
      G[u][v] = G[v][u] = c;
      C[u][c] = v, C[v][c] = u;
      C[u][p] = C[v][p] = 0;
      if (p) X[u] = X[v] = p;
      else update(u), update(v);
      return p;
    };
    auto flip = [&](int u, int c1, int c2) {
      int p = C[u][c1];
      swap(C[u][c1], C[u][c2]);
      if (p) G[u][p] = G[p][u] = c2;
      if (!C[u][c1]) X[u] = c1;
      if (!C[u][c2]) X[u] = c2;
      return p;
    fill_n(X + 1, n, 1);
    for (int t = 0; t < E.size(); ++t) {</pre>
      auto [u, v0] = E[t];
      int v = v0, c0 = X[u], c = c0, d;
      vector<pii> L;
      fill_n(vst + 1, n, 0);
      while (!G[u][v0]) {
        L.emplace_back(v, d = X[v]);
        if (!C[v][c]) {
          for (int a = sz(L) - 1; a >= 0; --a)
            c = color(u, L[a].first, c);
        } else if (!C[u][d]) {
          for (int a = sz(L) - 1; a >= 0; --a)
            color(u, L[a].first, L[a].second);
        } else if (vst[d]) break;
        else vst[d] = 1, v = C[u][d];
      if (!G[u][v0]) {
        for (; v; v = flip(v, c, d), swap(c, d));
        if (int a; C[u][c0]) {
          for (a = sz(L) - 2; a >= 0 && L[a].second !=
              c; --a);
          for (; a >= 0; --a) color(u, L[a].first, L[a
              ].second);
        else --t;
      }
   }
 }
};
```

4.11 Maximum Clique [d41d8c]

```
struct MaxClique { // Maximum Clique
  bitset<N> a[N], cs[N];
  int ans, sol[N], q, cur[N], d[N], n;
  void init(int _n) {
    n = _n;
    for (int i = 0; i < n; i++) a[i].reset();
  }
  void add_edge(int u, int v) { a[u][v] = a[v][u] = 1;
    }
  void csort(vector<int> &r, vector<int> &c) {
    int mx = 1, km = max(ans - q + 1, 1), t = 0;
    int m = r.size();
    cs[1].reset(), cs[2].reset();
    for (int i = 0; i < m; i++) {
        int p = r[i], k = 1;
    }
}</pre>
```

```
while ((cs[k] & a[p]).count()) k++;
       if (k > mx) mx++, cs[mx + 1].reset();
       cs[k][p] = 1;
       if (k < km) r[t++] = p;
    c.resize(m);
    if (t) c[t - 1] = 0;
     for (int k = km; k <= mx; k++)</pre>
      for (int p = cs[k]._Find_first(); p < N;</pre>
               p = cs[k]._Find_next(p))
         r[t] = p, c[t] = k, t++;
  void dfs(vector<int> &r, vector<int> &c, int 1,
    bitset<N> mask) {
     while (!r.empty()) {
       int p = r.back();
       r.pop_back(), mask[p] = 0;
       if (q + c.back() <= ans) return;</pre>
       cur[q++] = p;
       vector<int> nr, nc;
       bitset<N> nmask = mask & a[p];
       for (int i : r)
         if (a[p][i]) nr.push_back(i);
       if (!nr.empty()) {
         if (1 < 4) {
           for (int i : nr)
             d[i] = (a[i] & nmask).count();
           sort(nr.begin(), nr.end(),
             [&](int x, int y) { return d[x] > d[y]; });
         csort(nr, nc), dfs(nr, nc, l + 1, nmask);
       } else if (q > ans) ans = q, copy_n(cur, q, sol);
       c.pop_back(), q--;
  int solve(bitset<N> mask = bitset<N>(
                string(N, '1'))) { // vertex mask
     vector<int> r, c;
     ans = q = 0;
     for (int i = 0; i < n; i++)</pre>
      if (mask[i]) r.push_back(i);
     for (int i = 0; i < n; i++)</pre>
       d[i] = (a[i] \& mask).count();
     sort(r.begin(), r.end(),
    [&](int i, int j) { return d[i] > d[j]; });
csort(r, c), dfs(r, c, 1, mask);
return ans; // sol[0 ~ ans-1]
};
```

5 String

5.1 Aho-Corasick Automaton [d41d8c]

```
struct AC {
  int ch[N][26], to[N][26], fail[N], sz;
  vector <int> g[N];
  int cnt[N];
  AC () \{sz = 0, extend();\}
  void extend() {fill(ch[sz], ch[sz] + 26, 0), sz++;}
  int nxt(int u, int v) {
    if (!ch[u][v]) ch[u][v] = sz, extend();
    return ch[u][v];
  int insert(string s) {
    int now = 0;
    for (char c : s) now = nxt(now, c - 'a');
    cnt[now]++;
    return now;
  void build_fail() {
    queue <int> q;
    for (int i = 0; i < 26; ++i) if (ch[0][i]) {
      q.push(ch[0][i]);
      g[0].push_back(ch[0][i]);
    while (!q.empty()) {
      int v = q.front(); q.pop();
      for (int j = 0; j < 26; ++j) {</pre>
        to[v][j] = ch[v][j] ? v : to[fail[v]][j];
      for (int i = 0; i < 26; ++i) if (ch[v][i]) {</pre>
```

```
int u = ch[v][i], k = fail[v];
   while (k && !ch[k][i]) k = fail[k];
   if (ch[k][i]) k = ch[k][i];
   fail[u] = k;
   cnt[u] += cnt[k], g[k].push_back(u);
   q.push(u);
  }
}
int match(string &s) {
  int now = 0, ans = 0;
  for (char c : s) {
    now = to[now][c - 'a'];
    if (ch[now][c - 'a']) now = ch[now][c - 'a'];
    ans += cnt[now];
}
return ans;
}
};
```

5.2 KMP Algorithm [d41d8c]

```
vector <int> build_fail(string s) {
  vector <int> f(s.length() + 1, 0);
  int k = 0:
  for (int i = 1; i < s.length(); ++i) {</pre>
   while (k && s[k] != s[i]) k = f[k];
    if (s[k] == s[i]) k++;
    f[i + 1] = k;
 }
  return f;
int match(string s, string t) {
 vector <int> f = build_fail(t);
  int k = 0, ans = 0;
  for (int i = 0; i < s.length(); ++i) {</pre>
   while (k \&\& s[i] != t[k]) k = f[k];
    if (s[i] == t[k]) k++;
   if (k == t.length()) ans++, k = f[k];
  return ans;
```

5.3 Z Algorithm [d41d8c]

```
vector <int> buildZ(string s) {
  int n = s.length();
  vector <int> Z(n);
  int l = 0, r = 0;
  for (int i = 0; i < n; ++i) {
    Z[i] = max(min(Z[i - 1], r - i), 0);
    while (i + Z[i] < n && s[Z[i]] == s[i + Z[i]]) {
        l = i, r = i + Z[i], Z[i]++;
    }
  }
  return Z;
}</pre>
```

5.4 Manacher [d41d8c]

```
// return value only consider string tmp, not s
vector <int> manacher(string tmp) {
   string s = "&";
   for (char c : tmp) s.pb(c), s.pb('%');
   int l = 0, r = 0, n = s.size();
   vector <int> Z(n);
   for (int i = 0; i < n; ++i) {
      Z[i] = r > i ? min(Z[2 * l - i], r - i) : 1;
      while (s[i + Z[i]] == s[i - Z[i]]) Z[i]++;
      if (Z[i] + i > r) l = i, r = Z[i] + i;
   }
   for (int i = 0; i < n; ++i) {
      Z[i] = (Z[i] - (i & 1)) / 2 * 2 + (i & 1);
   }
   return Z;
}</pre>
```

5.5 Suffix Array [d41d8c]

```
int sa[N], tmp[2][N], c[N], rk[N], lcp[N];
void buildSA(string s) {
  int *x = tmp[0], *y = tmp[1], m = 256, n = s.size();
  for (int i = 0; i < m; ++i) c[i] = 0;</pre>
```

```
for (int i = 0; i < n; ++i) c[x[i] = s[i]]++;
  for (int i = 1; i < m; ++i) c[i] += c[i - 1];</pre>
  for (int i = n - 1; ~i; --i) sa[--c[x[i]]] = i;
  for (int k = 1; k < n; k <<= 1) {
    for (int i = 0; i < m; ++i) c[i] = 0;</pre>
    for (int i = 0; i < n; ++i) c[x[i]]++;</pre>
    for (int i = 1; i < m; ++i) c[i] += c[i - 1];</pre>
    int p = 0;
    for (int i = n - k; i < n; ++i) y[p++] = i;
    for (int i = 0; i < n; ++i) if (sa[i] >= k)
      y[p++] = sa[i] - k;
    for (int i = n - 1; ~i; --i)
      sa[--c[x[y[i]]]] = y[i];
    y[sa[0]] = p = 0;
    for (int i = 1; i < n; ++i) {</pre>
      int a = sa[i], b = sa[i - 1];
      if (!(x[a] == x[b] \&\& a + k < n \&\& b + k < n \&\& x)
           [a + k] == x[b + k])) p++;
      y[sa[i]] = p;
    }
    if (n == p + 1) break;
    swap(x, y), m = p + 1;
void buildLCP(string s) {
  // lcp[i] = LCP(sa[i - 1], sa[i])
  // lcp(i, j) = query_lcp_min[rk[i] + 1, rk[j] + 1)
  int n = s.length(), val = 0;
  for (int i = 0; i < n; ++i) rk[sa[i]] = i;</pre>
  for (int i = 0; i < n; ++i) {</pre>
    if (!rk[i]) lcp[rk[i]] = 0;
    else {
      if (val) val--;
      int p = sa[rk[i] - 1];
      while (val + i < n && val + p < n && s[val + i]
           == s[val + p]) val++;
      lcp[rk[i]] = val;
  }
}
```

5.6 **SAIS** [d41d8c]

```
int sa[N << 1], rk[N], lcp[N];</pre>
// string ASCII value need > 0
namespace sfx {
bool _t[N << 1];</pre>
int _s[N << 1], _c[N << 1], x[N], _p[N], _q[N << 1];</pre>
void pre(int *sa, int *c, int n, int z) {
  fill_n(sa, n, 0), copy_n(c, z, x);
void induce(int *sa, int *c, int *s, bool *t, int n,
    int z) {
  copy_n(c, z - 1, x + 1);
  for (int i = 0; i < n; ++i)</pre>
    if (sa[i] && !t[sa[i] - 1])
      sa[x[s[sa[i] - 1]]++] = sa[i] - 1;
  copy_n(c, z, x);
  for (int i = n - 1; i >= 0; --i)
    if (sa[i] && t[sa[i] - 1])
      sa[--x[s[sa[i] - 1]]] = sa[i] - 1;
void sais(int *s, int *sa, int *p, int *q, bool *t, int
     *c, int n, int z) {
  bool uniq = t[n - 1] = true;
  int nn = 0, nmxz = -1, *nsa = sa + n, *ns = s + n,
      last = -1;
  fill_n(c, z, 0);
for (int i = 0; i < n; ++i) uniq &= ++c[s[i]] < 2;
  partial_sum(c, c + z, c);
  if (uniq) {
    for (int i = 0; i < n; ++i) sa[--c[s[i]]] = i;</pre>
    return;
  for (int i = n - 2; i >= 0; --i)
    if(s[i] == s[i + 1]) t[i] = t[i + 1];
    else t[i] = s[i] < s[i + 1];</pre>
  pre(sa, c, n, z);
  for (int i = 1; i <= n - 1; ++i)
    if (t[i] && !t[i - 1])
      sa[--x[s[i]]] = p[q[i] = nn++] = i;
  induce(sa, c, s, t, n, z);
```

```
for (int i = 0; i < n; ++i)
  if (sa[i] && t[sa[i]] && !t[sa[i] - 1]) {</pre>
       bool neq = last < 0 || !equal(s + sa[i], s + p[q[</pre>
            sa[i]] + 1], s + last);
       ns[q[last = sa[i]]] = nmxz += neq;
  sais(ns, nsa, p + nn, q + n, t + n, c + z, nn, nmxz + 
        1);
  pre(sa, c, n, z);
  for (int i = nn - 1; i >= 0; --i)
    sa[--x[s[p[nsa[i]]]]] = p[nsa[i]];
  induce(sa, c, s, t, n, z);
void buildSA(string s) {
 int n = s.length();
  for (int i = 0; i < n; ++i) _s[i] = s[i];</pre>
  _s[n] = 0;
  sais(_s, sa, _p, _q, _t, _c, n + 1, 256);
for (int i = 1; i <= n; ++i) sa[i - 1] = sa[i];</pre>
} // buildLCP()...
```

5.7 Suffix Automaton [d41d8c]

```
struct SAM {
  int ch[N][26], len[N], link[N], pos[N], cnt[N], sz;
  // node -> strings with the same endpos set
  // length in range [len(link) + 1, len]
  // node's endpos set -> pos in the subtree of node
  // link -> longest suffix with different endpos set
  // len -> longest suffix
  // pos -> end position
           -> size of endpos set
  // cnt
  SAM () \{len[0] = 0, link[0] = -1, pos[0] = 0, cnt[0]
       = 0, sz = 1;
  void build(string s) {
    int last = 0;
    for (int i = 0; i < s.length(); ++i) {</pre>
       char c = s[i];
       int cur = sz++;
       len[cur] = len[last] + 1, pos[cur] = i + 1;
       int p = last;
      while (~p && !ch[p][c - 'a'])
  ch[p][c - 'a'] = cur, p = link[p];
       if (p == -1) link[cur] = 0;
       else {
         int q = ch[p][c - 'a'];
         if (len[p] + 1 == len[q]) {
           link[cur] = q;
         } else {
           int nxt = sz++;
           len[nxt] = len[p] + 1, link[nxt] = link[q];
           pos[nxt] = 0;
           for (int j = 0; j < 26; ++j)
           ch[nxt][j] = ch[q][j];
while (~p && ch[p][c - 'a'] == q)
  ch[p][c - 'a'] = nxt, p = link[p];
           link[q] = link[cur] = nxt;
      }
      cnt[cur]++;
      last = cur;
    vector <int> p(sz);
    iota(all(p), 0);
    sort(all(p),
      [&](int i, int j) {return len[i] > len[j];});
    for (int i = 0; i < sz; ++i)</pre>
       cnt[link[p[i]]] += cnt[p[i]];
  }
} sam;
```

5.8 Minimum Rotation [d41d8c]

```
string rotate(const string &s) {
  int n = s.length();
  string t = s + s;
  int i = 0, j = 1;
  while (i < n && j < n) {
    int k = 0;
    while (k < n && t[i + k] == t[j + k]) ++k;
    if (t[i + k] <= t[j + k]) j += k + 1;</pre>
```

```
else i += k + 1;
  if (i == j) ++j;
}
int pos = (i < n ? i : j);
return t.substr(pos, n);</pre>
```

5.9 Palindrome Tree [d41d8c]

```
struct PAM {
  int ch[N][26], cnt[N], fail[N], len[N], sz;
  string s;
  // 0 -> even root, 1 -> odd root
  PAM () {}
  void init(string s) {
    sz = 0, extend(), extend();
    len[0] = 0, fail[0] = 1, len[1] = -1;
    int lst = 1;
    for (int i = 0; i < s.length(); ++i) {
  while (s[i - len[lst] - 1] != s[i])</pre>
        lst = fail[lst];
       if (!ch[lst][s[i] - 'a']) {
         int idx = extend();
         len[idx] = len[lst] + 2;
         int now = fail[lst];
        while (s[i - len[now] - 1] != s[i])
          now = fail[now];
         fail[idx] = ch[now][s[i] - 'a'];
        ch[lst][s[i] - 'a'] = idx;
      lst = ch[lst][s[i] - 'a'], cnt[lst]++;
    }
  void build_count() {
    for (int i = sz - 1; i > 1; --i)
      cnt[fail[i]] += cnt[i];
  int extend() {
    fill(ch[sz], ch[sz] + 26, 0), sz++;
    return sz - 1;
};
```

5.10 Main Lorentz [d41d8c]

```
int to_left[N], to_right[N];
vector <array <int, 3>> rep; // l, r, len.
// substr( [l, r], len * 2) are tandem
void findRep(string &s, int 1, int r) {
  if (r - 1 == 1) return;
  int m = 1 + r >> 1;
  findRep(s, 1, m), findRep(s, m, r);
  string sl = s.substr(1, m - 1);
  string sr = s.substr(m, r - m);
  vector <int> Z = buildZ(sr +
  for (int i = 1; i < m; ++i)</pre>
    to_right[i] = Z[r - m + 1 + i - 1];
  reverse(all(sl));
  Z = buildZ(s1);
  for (int i = 1; i < m; ++i)</pre>
    to_left[i] = Z[m - i - 1];
  reverse(all(sl));
for (int i = 1; i + 1 < m; ++i) {
    int k1 = to_left[i], k2 = to_right[i + 1];
    int len = m - i - 1;
if (k1 < 1 || k2 < 1 || len < 2) continue;</pre>
    int tl = max(1, len - k2), tr = min(len - 1, k1);
    if (tl <= tr) rep.pb({i + 1 - tr, i + 1 - tl,len});</pre>
  Z = buildZ(sr);
  for (int i = m; i < r; ++i) to_right[i] = Z[i - m];</pre>
  reverse(all(sl)), reverse(all(sr));
Z = buildZ(sl + "#" + sr);
  for (int i = m; i < r; ++i)</pre>
    to_left[i] = Z[m - l + 1 + r - i - 1];
  reverse(all(sl)), reverse(all(sr));
  for (int i = m; i + 1 < r; ++i) {</pre>
    int k1 = to_left[i], k2 = to_right[i + 1];
    int len = i - m + 1;
    if (k1 < 1 || k2 < 1 || len < 2) continue;</pre>
    int tl = max(len - k2, 1), tr = min(len - 1, k1);
    if (tl <= tr)</pre>
```

```
rep.pb({i + 1 - len - tr, i + 1 - len - tl,len});
}
Z = buildZ(sr + "#" + sl);
for (int i = l; i < m; ++i)
    if (Z[r - m + 1 + i - l] >= m - i)
        rep.pb({i, i, m - i});
}
```

6 Math

6.1 Miller Rabin / Pollard Rho [d41d8c]

```
11 mul(ll x, ll y, ll p) {return (x * y - (ll)((long
double)x / p * y) * p + p) % p;} // __int128
vector<ll> chk = {2, 325, 9375, 28178, 450775, 9780504,
     1795265022};
ll Pow(ll a, ll b, ll n) \{
  11 \text{ res} = 1;
  for (; b; b >>= 1, a = mul(a, a, n))
    if (b & 1) res = mul(res, a, n);
  return res;
bool check(ll a, ll d, int s, ll n) {
  a = Pow(a, d, n);
  if (a <= 1) return 1;</pre>
  for (int i = 0; i < s; ++i, a = mul(a, a, n)) {</pre>
    if (a == 1) return 0;
    if (a == n - 1) return 1;
  }
  return 0:
bool IsPrime(ll n) {
  if (n < 2) return 0;
  if (n % 2 == 0) return n == 2;
  11 \dot{d} = n - 1, s = 0;
  while (d % 2 == 0) d >>= 1, ++s;
  for (ll i : chk) if (!check(i, d, s, n)) return 0;
  return 1:
const vector<ll> small = {2, 3, 5, 7, 11, 13, 17, 19};
11 FindFactor(11 n) {
  if (IsPrime(n)) return 1;
  for (ll p : small) if (n % p == 0) return p;
  11 x, y = 2, d, t = 1;
  auto f = [&](11 a) {return (mul(a, a, n) + t) % n;};
  for (int 1 = 2; ; 1 <<= 1) {
    x = y;
    int m = min(1, 32);
    for (int i = 0; i < 1; i += m) {</pre>
      d = 1;
      for (int j = 0; j < m; ++j) {</pre>
        y = f(y), d = mul(d, abs(x - y), n);
      ll g = \_gcd(d, n);
      if (g == n) {
        1 = 1, y = 2, ++t;
        break;
      if (g != 1) return g;
    }
  }
map <11, int> res;
void PollardRho(ll n) {
  if (n == 1) return;
  if (IsPrime(n)) return ++res[n], void(0);
  11 d = FindFactor(n);
  PollardRho(n / d), PollardRho(d);
```

6.2 Ext GCD [d41d8c]

```
//a * p.first + b * p.second = gcd(a, b)
pair<ll, ll> extgcd(ll a, ll b) {
  pair<ll, ll> res, tmp;
  ll f = 1, g = 1;
  if (a < 0) a *= -1, f *= -1;
  if (b < 0) b *= -1, g *= -1;
  if (b == 0) return {f, 0};
  tmp = extgcd(b, a % b);
  res.first = tmp.second * f;
  res.second = (tmp.first - tmp.second * (a / b)) * g;</pre>
```

```
6.3 Chinese Remainder Theorem [d41d8c]
```

```
11 CRT(11 x1, 11 m1, 11 x2, 11 m2) {
    11 g = gcd(m1, m2);
    if ((x2 - x1) % g) return -1; // no sol
    m1 /= g, m2 /= g;
    pair <11, 11> p = extgcd(m1, m2);
    11 lcm = m1 * m2 * g;
    11 res = p.first * (x2 - x1) * m1 + x1;
    // be careful with overflow
    return (res % lcm + lcm) % lcm;
}
```

6.4 PiCount [d41d8c]

return res:

```
const int V = 10000000, N = 100, M = 100000;
vector<int> primes;
bool isp[V];
int small_pi[V], dp[N][M];
void sieve(int x){
  for(int i = 2; i < x; ++i) isp[i] = true;</pre>
   isp[0] = isp[1] = false;
   for(int i = 2; i * i < x; ++i) if(isp[i])</pre>
   for(int j = i * i; j < x; j += i) isp[j] = false;
for(int i = 2; i < x; ++i) if(isp[i]) primes.pb(i);</pre>
void init(){
  sieve(V);
   small_pi[0] = 0;
   for(int i = 1; i < V; ++i)</pre>
     small_pi[i] = small_pi[i - 1] + isp[i];
   for(int i = 0; i < M; ++i) dp[0][i] = i;
for(int i = 1; i < N; ++i) for(int j = 0; j < M; ++j)</pre>
     dp[i][j] = dp[i - 1][j] - dp[i - 1][j / primes[i -
          1]];
11 phi(ll n, int a){
   if(!a) return n;
   if(n < M && a < N) return dp[a][n];
if(primes[a - 1] > n) return 1;
   if(111 * primes[a - 1] * primes[a - 1] >= n && n < V)</pre>
     return small_pi[n] - a + 1;
   return phi(n, a - 1) - phi(n / primes[a - 1], a - 1);
11 PiCount(11 n){
   if(n < V) return small_pi[n];</pre>
   int s = sqrt(n + 0.5), y = cbrt(n + 0.5), a =
        small_pi[y];
   ll res = phi(n, a) + a - 1;
   for(; primes[a] <= s; ++a) res -= max(PiCount(n /</pre>
       primes[a]) - PiCount(primes[a]) + 1, 0ll);
   return res;
}
```

6.5 Linear Function Mod Min [d41d8c]

```
11 topos(11 x, 11 m)
{ x \%= m; if (x < 0) x += m; return x; }
//min value of ax + b \pmod{m} for x \in [0, n - 1]. O(
    Log m)
11 min_rem(ll n, ll m, ll a, ll b) {
  a = topos(a, m), b = topos(b, m);
  for (ll g = \_gcd(a, m); g > 1;) return g * min_rem(n
       m / g, a / g, b / g) + (b % g);
  for (11 nn, nm, na, nb; a; n = nn, m = nm, a = na, b
      = nb) {
    if (a <= m - a) {
      nn = (a * (n - 1) + b) / m;
      if (!nn) break;
      nn += (b < a);
      nm = a, na = topos(-m, a);
      nb = b < a ? b : topos(b - m, a);
    } else {
      ll lst = b - (n - 1) * (m - a);
      if (lst >= 0) {b = lst; break;}
      nn = -(1st / m) + (1st % m < -a) + 1;
      nm = m - a, na = m % (m - a), nb = b % (m - a);
    }
  return b;
```

```
}
//min value of ax + b (mod m) for x \in [0, n - 1],
    also return min x to get the value. O(log m)
//{value, x}
pair<ll, ll> min_rem_pos(ll n, ll m, ll a, ll b) {
    a = topos(a, m), b = topos(b, m);
    ll mn = min_rem(n, m, a, b), g = __gcd(a, m);
    //ax = (mn - b) (mod m)
    ll x = (extgcd(a, m).first + m) * ((mn - b + m) / g)
        % (m / g);
    return {mn, x};
}
```

6.6 Floor Sum [d41d8c]

6.7 Quadratic Residue [d41d8c]

```
int Jacobi(int a, int m) {
  int s = 1;
  for (; m > 1; ) {
    a %= m;
    if (a == 0) return 0;
    const int r = __builtin_ctz(a);
if ((r & 1) && ((m + 2) & 4)) s = -s;
    if (a & m & 2) s = -s;
    swap(a, m);
  }
  return s;
int QuadraticResidue(int a, int p) {
  if (p == 2) return a & 1;
  const int jc = Jacobi(a, p);
  if (jc == 0) return 0;
  if (jc == -1) return -1;
  int b, d;
  for (; ; ) {
    b = rand() % p;
d = (111 * b * b + p - a) % p;
    if (Jacobi(d, p) == -1) break;
  11 	ext{ f0} = b, f1 = 1, g0 = 1, g1 = 0, tmp;
  for (int e = (p + 1) >> 1; e; e >>= 1) {
    if (e & 1) {
      tmp = (g0 * f0 + d * (g1 * f1 % p)) % p;
      g1 = (g0 * f1 + g1 * f0) % p;
      g0 = tmp;
    tmp = (f0 * f0 + d * (f1 * f1 % p)) % p;
    f1 = (2 * f0 * f1) % p;
    f0 = tmp;
  return g0;
}
```

6.8 Discrete Log [d41d8c]

```
ll DiscreteLog(ll a, ll b, ll m) {
   const int B = 35000;
   ll k = 1 % m, ans = 0, g;
   while ((g = gcd(a, m)) > 1) {
      if (b == k) return ans;
      if (b % g) return -1;
      b /= g, m /= g, ans++, k = (k * a / g) % m;
   }
   if (b == k) return ans;
   unordered_map <ll, int> m1;
   ll tot = 1;
   for (int i = 0; i < B; ++i)
      m1[tot * b % m] = i, tot = tot * a % m;</pre>
```

```
ll cur = k * tot % m;
for (int i = 1; i <= B; ++i, cur = cur * tot % m)</pre>
     if (m1.count(cur)) return i * B - m1[cur] + ans;
   return -1:
6.9 Simplex [d41d8c]
struct Simplex { // 0-based
   using T = long double;
   static const int N = 410, M = 30010;
   const T eps = 1e-7;
   int n, m;
   int Left[M], Down[N];
   // Ax <= b, max c^T x
   // result : v, xi = sol[i]
   T a[M][N], b[M], c[N], v, sol[N];
  bool eq(T a, T b) {return fabs(a - b) < eps;}
bool ls(T a, T b) {return a < b && !eq(a, b);}</pre>
   void init(int _n, int _m) {
     n = _n, m = _m, v = 0;

for (int i = 0; i < m; ++i)
       for (int j = 0; j < n; ++j) a[i][j] = 0;</pre>
     for (int i = 0; i < m; ++i) b[i] = 0;</pre>
     for (int i = 0; i < n; ++i) c[i] = sol[i] = 0;</pre>
   void pivot(int x, int y) {
     swap(Left[x], Down[y]);
     T k = a[x][y]; a[x][y] = 1;
     vector <int> nz;
     for (int i = 0; i < n; ++i) {</pre>
       a[x][i] /= k;
       if (!eq(a[x][i], 0)) nz.push_back(i);
     b[x] /= k;
     for (int i = 0; i < m; ++i) {
       if (i == x || eq(a[i][y], 0)) continue;
       k = a[i][y], a[i][y] = 0;
       b[i] -= k * b[x];
       for (int j : nz) a[i][j] -= k * a[x][j];
     if (eq(c[y], 0)) return;
     k = c[y], c[y] = 0, v += k * b[x];
     for (int i : nz) c[i] -= k * a[x][i];
   // 0: found solution, 1: no feasible solution, 2:
       unbounded
   int solve() {
     for (int i = 0; i < n; ++i) Down[i] = i;</pre>
     for (int i = 0; i < m; ++i) Left[i] = n + i;</pre>
     while (true) {
       int x = -1, y = -1;
       for (int i = 0; i < m; ++i) if (ls(b[i], 0) && (x
             == -1 \mid \mid b[i] < b[x]) x = i;
       if (x == -1) break;
       for (int i = 0; i < n; ++i) if (ls(a[x][i], 0) &&</pre>
             (y == -1 \mid | a[x][i] < a[x][y])) y = i;
       if (y == -1) return 1;
       pivot(x, y);
     while (true) {
       int x = -1, y = -1;
       for (int i = 0; i < n; ++i) if (ls(0, c[i]) && (y
             == -1 \mid \mid c[i] > c[y])) y = i;
       if (y == -1) break;
       for (int i = 0; i < m; ++i)</pre>
         if (ls(0, a[i][y]) && (x == -1 || b[i] / a[i][y
              ] < b[x] / a[x][y])) x = i;
       if (x == -1) return 2;
       pivot(x, y);
     for (int i = 0; i < m; ++i) if (Left[i] < n)</pre>
       sol[Left[i]] = b[i];
     return 0;
  }
};
6.10 Berlekamp Massey [d41d8c]
```

// need add, sub, mul

1}, 0-based

vector <1l> BerlekampMassey(vector <1l> a) {

// find min |c| such that $a_n = sum c_j * a_{n - j - j}$

```
// O(N^2), if |c| = k, |a| >= 2k sure correct auto f = [&](vector<11> v, 11 c) {
    for (11 &x : v) x = mul(x, c);
    return v;
  vector <11> c, best;
  int pos = 0, n = a.size();
  for (int i = 0; i < n; ++i) {
    ll error = a[i];
    for (int j = 0; j < c.size(); ++j)</pre>
       error = sub(error, mul(c[j], a[i - 1 - j]));
     if (error == 0) continue;
    11 inv = mpow(error, mod - 2);
     if (c.empty()) {
       c.resize(i + 1), pos = i, best.pb(inv);
     } else {
       vector <ll> fix = f(best, error);
fix.insert(fix.begin(), i - pos - 1, 0);
       if (fix.size() >= c.size()) {
         best = f(c, sub(0, inv));
         best.insert(best.begin(), inv);
         pos = i, c.resize(fix.size());
       for (int j = 0; j < fix.size(); ++j)</pre>
         c[j] = add(c[j], fix[j]);
    }
  }
  return c;
}
```

6.11 Linear Programming Construction

Standard form: maximize $\mathbf{c}^T\mathbf{x}$ subject to $A\mathbf{x} \leq \mathbf{b}$ and $\mathbf{x} \geq \mathbf{0}$. Dual LP: minimize $\mathbf{b}^T\mathbf{y}$ subject to $A^T\mathbf{y} \geq \mathbf{c}$ and $\mathbf{y} \geq \mathbf{0}$. $\bar{\mathbf{x}}$ and $\bar{\mathbf{y}}$ are optimal if and only if for all $i \in [1,n]$, either $\bar{x}_i = 0$ or $\sum_{j=1}^m A_{ji} ar{y}_j = c_i$ holds and for all $i \in [1,m]$ either $ar{y}_i = 0$ or $\sum_{j=1}^{n} A_{ij} \bar{x}_j = b_j$ holds.

- 1. In case of minimization, let $c_i^\prime = -c_i$
- 2. $\sum_{1 \le i \le n} A_{ji} x_i \ge b_j \to \sum_{1 \le i \le n} -A_{ji} x_i \le -b_j$
- 3. $\sum_{1 \le i \le n}^{-1} A_{ji} x_i = b_j$
 - $\sum_{1 \le i \le n} A_{ji} x_i \le b_j$ $\sum_{1 \le i \le n} A_{ji} x_i \ge b_j$
- 4. If x_i has no lower bound, replace x_i with $x_i x_i'$

6.12 Euclidean

- $m = \lfloor \frac{an+b}{2} \rfloor$
- Time complexity: $O(\log n)$

$$\begin{split} g(a,b,c,n) &= \sum_{i=0}^n i \lfloor \frac{ai+b}{c} \rfloor \\ &= \begin{cases} \lfloor \frac{a}{c} \rfloor \cdot \frac{n(n+1)(2n+1)}{6} + \lfloor \frac{b}{c} \rfloor \cdot \frac{n(n+1)}{2} \\ +g(a \mod c, b \mod c, c, n), & a \geq c \vee b \geq c \\ 0, & n < 0 \vee a = 0 \\ \frac{1}{2} \cdot (n(n+1)m - f(c, c-b-1, a, m-1) \\ -h(c, c-b-1, a, m-1)), & \text{otherwise} \end{cases} \end{split}$$

$$\begin{split} h(a,b,c,n) &= \sum_{i=0}^n \lfloor \frac{ai+b}{c} \rfloor^2 \\ &= \begin{cases} \lfloor \frac{a}{c} \rfloor^2 \cdot \frac{n(n+1)(2n+1)}{6} + \lfloor \frac{b}{c} \rfloor^2 \cdot (n+1) \\ + \lfloor \frac{a}{c} \rfloor \cdot \lfloor \frac{b}{c} \rfloor \cdot n(n+1) \\ + h(a \bmod c, b \bmod c, c, n) \\ + 2 \lfloor \frac{a}{c} \rfloor \cdot g(a \bmod c, b \bmod c, c, n) \\ + 2 \lfloor \frac{b}{c} \rfloor \cdot f(a \bmod c, b \bmod c, c, n), & a \geq c \lor b \geq c \\ 0, & n < 0 \lor a = 0 \\ nm(m+1) - 2g(c, c-b-1, a, m-1) \\ - 2f(c, c-b-1, a, m-1) - f(a, b, c, n), & \text{otherwise} \end{cases} \end{split}$$

6.13 Theorem

Kirchhoff's Theorem

Denote L be a $n \times n$ matrix as the Laplacian matrix of graph G, where $L_{ii}=d(i)$, $L_{ij}=-c$ where c is the number of edge (i,j) in

- The number of undirected spanning in G is $|\det(\tilde{L}_{11})|$.
- The number of directed spanning tree rooted at r in G is $|\mathsf{det}(ilde{L}_{rr})|$.

• Tutte's Matrix

Let D be a n imes n matrix, where $d_{ij} = x_{ij}$ (x_{ij} is chosen uniformly at random) if i < j and $(i,j) \in E$, otherwise $d_{ij} = -d_{ji}$. $rac{rank(D)}{2}$ is the maximum matching on G.

- Cayley's Formula
 - Given a degree sequence d_1, d_2, \ldots, d_n for each labeled vertices, there are

$$\frac{(n-2)!}{(d_1-1)!(d_2-1)!\cdots(d_n-1)!}$$

spanning trees

- Let $T_{n,\,k}$ be the number of labeled forests on n vertices with k components, such that vertex $1,2,\ldots,k$ belong to different components. Then $T_{n,k}=kn^{n-k-1}$.
- Erdős-Gallai Theorem

A sequence of non-negative integers $d_1 \geq d_2 \geq \ldots \geq d_n$ can be represented as the degree sequence of a finite simple graph on nvertices if and only if $d_1+d_2+\ldots+d_n$ is even and

$$\sum_{i=1}^k d_i \le k(k-1) + \sum_{i=k+1}^n \min(d_i, k)$$

holds for all $1 \leq k \leq n$.

• Burnside's Lemma

Let X be a set and G be a group that acts on X. For $g \in G$, denote by X^g the elements fixed by g:

$$X^g = \{ x \in X \mid gx \in X \}$$

Then

$$|X/G| = \frac{1}{|G|} \sum_{g \in G} |X^g|.$$

• Gale-Ryser theorem

A pair of sequences of nonnegative integers $a_1 \geq \cdots \geq a_n$ and b_1,\ldots,b_n is bigraphic if and only if $\sum_{i=1}^n a_i = \sum_{i=1}^n b_i$ and $\sum_{i=1}^k a_i \leq a_i$

 $\sum \min(b_i,k)$ holds for every $1 \leq k \leq n$. Sequences a and b called bigraphic if there is a labeled simple bipartite graph such that \boldsymbol{a} and \boldsymbol{b} is the degree sequence of this bipartite graph.

• Fulkerson-Chen-Anstee theorem

A sequence $(a_1,b_1),\ldots,(a_n,b_n)$ of nonnegative integer pairs with $a_1 \geq \cdots \geq a_n$ is digraphic if and only if $\sum_{i=1}^n a_i = \sum_{i=1}^n b_i$ and

$$\sum_{i=1}^k a_i \leq \sum_{i=1}^k \min(b_i,k-1) + \sum_{i=k+1}^n \min(b_i,k) \text{ holds for every } 1 \leq k \leq n$$

Sequences \boldsymbol{a} and \boldsymbol{b} called digraphic if there is a labeled simple directed graph such that each vertex \boldsymbol{v}_i has indegree \boldsymbol{a}_i and outdegree b_i .

• Pick's theorem

For simple polygon, when points are all integer, we have $A=\#\{\text{lattice points in the interior}\}+\frac{\#\{\text{lattice points on the boundary}\}}{2}-1$

• Möbius inversion formula

-
$$f(n) = \sum_{d|n} g(d) \Leftrightarrow g(n) = \sum_{d|n} \mu(d) f(\frac{n}{d})$$

- $f(n) = \sum_{n|d} g(d) \Leftrightarrow g(n) = \sum_{n|d} \mu(\frac{d}{n}) f(d)$

- Spherical cap

 - A portion of a sphere cut off by a plane. r: sphere radius, a: radius of the base of the cap, h: height of the cap, θ : $\arcsin(a/r)$. $\operatorname{Volume} = \pi h^2(3r-h)/3 = \pi h(3a^2+h^2)/6 = \pi r^3(2+\cos\theta)(1-\cos\theta)^2/3$. $\operatorname{Area} = 2\pi r h = \pi(a^2+h^2) = 2\pi r^2(1-\cos\theta)$.

6.14 Estimation

- The number of divisors of n is at most around 100 for n<5e4, 500 for n<1e7, 2000 for n<1e10, 200000 for n<1e19.
- The number of ways of writing n as a sum of positive integers, disregarding the order of the summands. 1,1,2,3,5,7,11,15,22,30for $n=0\sim 9$, 627 for n=20, $\sim 2e5$ for n=50, $\sim 2e8$ for
- Total number of partitions of n distinct elements: 1, 1, 2, 5, 15, 52, 203, 877, 4140, 21147, 115975, 678570, 4213597,27644437, 190899322,

6.15 General Purpose Numbers

• Bernoulli numbers

$$\begin{split} B_0 &= 1, B_1^{\pm} = \pm \tfrac{1}{2}, B_2 = \tfrac{1}{6}, B_3 = 0 \\ \sum_{j=0}^m \binom{m+1}{j} B_j &= 0 \text{, EGF is } B(x) = \tfrac{x}{e^x-1} = \sum_{n=0}^\infty B_n \frac{x^n}{n!} \,. \\ S_m(n) &= \sum_{k=1}^n k^m = \frac{1}{m+1} \sum_{k=0}^m \binom{m+1}{k} B_k^+ n^{m+1-k} \end{split}$$

- Stirling numbers of the second kind Partitions of \boldsymbol{n} distinct elements into exactly k groups.

$$\begin{split} S(n,k) &= S(n-1,k-1) + kS(n-1,k), S(n,1) = S(n,n) = 1 \\ S(n,k) &= \frac{1}{k!} \sum_{i=0}^k (-1)^{k-i} {k \choose i} i^n \\ x^n &= \sum_{i=0}^n S(n,i)(x)_i \end{split}$$

• Pentagonal number theorem

$$\prod_{n=1}^{\infty} (1 - x^n) = 1 + \sum_{k=1}^{\infty} (-1)^k \left(x^{k(3k+1)/2} + x^{k(3k-1)/2} \right)$$

Eulerian numbers

Number of permutations $\pi \in S_n$ in which exactly k elements are greater than the previous element. k j:s s.t. $\pi(j) > \pi(j+1)$, k+1 j:s s.t. $\pi(j) \geq j$, k j:s s.t. $\pi(j) > j$. E(n,k) = (n-k)E(n-1,k-1) + (k+1)E(n-1,k) E(n,0) = E(n,n-1) = 1 $E(n,k) = \sum_{j=0}^k (-1)^j {n+1 \choose j} (k+1-j)^n$

7 Polynomial

7.1 Number Theoretic Transform [d41d8c]

```
// mul, add, sub, mpow
// ll -> int if too slow
struct NTT {
  11 w[N];
  NTT() {
     ll dw = mpow(G, (mod - 1) / N);
     w[0] = 1;
     for (int i = 1; i < N; ++i)</pre>
       w[i] = mul(w[i - 1], dw);
  void operator()(vector<ll>& a, bool inv = false) { //
       \theta \leftarrow a[i] \leftarrow P
     int x = 0, n = a.size();
     for (int j = 1; j < n - 1; ++j) {
  for (int k = n >> 1; (x ^= k) < k; k >>= 1);
       if (j < x) swap(a[x], a[j]);</pre>
     for (int L = 2; L <= n; L <<= 1) {
       int dx = N / L, dl = L >> 1;
       for (int i = 0; i < n; i += L) {</pre>
         for (int j = i, x = 0; j < i + d1; ++j, x += dx
            ll tmp = mul(a[j + dl], w[x]);
            a[j + dl] = sub(a[j], tmp);
           a[j] = add(a[j], tmp);
       }
     if (inv) {
       reverse(a.begin() + 1, a.end());
11 invn = mpow(n, mod - 2);
       for (int i = 0; i < n; ++i)</pre>
         a[i] = mul(a[i], invn);
  }
} ntt;
```

7.2 Fast Fourier Transform [d41d8c]

```
using T = complex <double>;
const double PI = acos(-1);
struct NTT {
   T w[N];
   FFT() {
        T dw = {cos(2 * PI / N), sin(2 * PI / N)};
        w[0] = 1;
        for (int i = 1; i < N; ++i) w[i] = w[i - 1] * dw;
   }
   void operator()(vector<T>& a, bool inv = false) {
```

```
// see NTT, replace ll with T
if (inv) {
    reverse(a.begin() + 1, a.end());
    T invn = 1.0 / n;
    for (int i = 0; i < n; ++i) a[i] = a[i] * invn;
    }
}
} ntt;
// after mul, round i.real()</pre>
```

7.3 Primes

```
Prime
                 Root
                        Prime
                                                Root
                        167772161
7681
                 17
12289
                        104857601
40961
                        985661441
65537
                        998244353
786433
                 10
                        1107296257
                                                10
5767169
                        2013265921
                                                31
7340033
                        2810183681
                                                11
23068673
                        2885681153
469762049
                        605028353
2061584302081
                        1945555039024054273
2748779069441
                        9223372036737335297
```

7.4 Polynomial Operations [d41d8c]

```
vector <ll> Mul(vector <ll> a, vector <ll> b, int bound
     = N) {
  int m = a.size() + b.size() - 1, n = 1;
  while (n < m) n <<= 1;</pre>
  a.resize(n), b.resize(n);
  ntt(a), ntt(b);
  vector <11> out(n);
  for (int i = 0; i < n; ++i) out[i] = mul(a[i], b[i]);</pre>
  ntt(out, true), out.resize(min(m, bound));
  return out:
vector <ll> Inverse(vector <ll> a) {
  // O(NLogN), a[0] != 0
  int n = a.size();
  vector <11> res(1, mpow(a[0], mod - 2));
  for (int m = 1; m < n; m <<= 1) {
    if (n < m * 2) a.resize(m * 2);</pre>
    vector <11> v1(a.begin(), a.begin() + m * 2), v2 =
         res;
    v1.resize(m * 4), v2.resize(m * 4);
    ntt(v1), ntt(v2);
    for (int i = 0; i < m * 4; ++i)</pre>
      v1[i] = mul(mul(v1[i], v2[i]), v2[i]);
    ntt(v1, true);
    res.resize(m * 2);
    for (int i = 0; i < m; ++i)</pre>
    res[i] = add(res[i], res[i]);
for (int i = 0; i < m * 2; ++i)
      res[i] = sub(res[i], v1[i]);
  res.resize(n);
  return res;
pair <vector <ll>, vector <ll>> Divide(vector <ll> a,
    vector <ll> b) {
  // a = bQ + R, O(NlogN), b.back() != 0
  int n = a.size(), m = b.size(), k = n - m + 1;
  if (n < m) return {{0}, a};</pre>
  vector \langle 11 \rangle ra = a, rb = b;
  reverse(all(ra)), ra.resize(k);
  reverse(all(rb)), rb.resize(k);
  vector <11> Q = Mul(ra, Inverse(rb), k);
  reverse(all(Q));
  vector <ll> res = Mul(b, Q), R(m - 1);
for (int i = 0; i < m - 1; ++i)</pre>
    R[i] = sub(a[i], res[i]);
  return {Q, R};
vector <1l> SqrtImpl(vector <1l> a) {
  if (a.empty()) return {0};
  int z = QuadraticResidue(a[0], mod), n = a.size();
  if (z == -1) return {-1};
  vector <ll> q(1, z);
  const int inv2 = (mod + 1) / 2;
  for (int m = 1; m < n; m <<= 1) {</pre>
    if (n < m * 2) a.resize(m * 2);</pre>
    q.resize(m * 2);
    vector <ll> f2 = Mul(q, q, m * 2);
for (int i = 0; i < m * 2; ++i)</pre>
```

```
f2[i] = sub(f2[i], a[i]);
    f2 = Mul(f2, Inverse(q), m * 2);
for (int i = 0; i < m * 2; ++i)
      q[i] = sub(q[i], mul(f2[i], inv2));
  q.resize(n);
  return q;
vector <11> Sqrt(vector <11> a) {
  // O(NlogN), return {-1} if not exists
  int n = a.size(), m = 0;
 while (m < n && a[m] == 0) m++;</pre>
 if (m == n) return vector <11>(n);
 if (m & 1) return {-1};
 vector <ll> s = SqrtImpl(vector <ll>(a.begin() + m, a
      .end()));
 if (s[0] == -1) return {-1};
  vector <ll> res(n);
  for (int i = 0; i < s.size(); ++i)</pre>
   res[i + m / 2] = s[i];
  return res;
vector <ll> Derivative(vector <ll> a) {
  int n = a.size();
  vector <1l> res(n - 1);
  for (int i = 0; i < n - 1; ++i)</pre>
   res[i] = mul(a[i + 1], i + 1);
  return res;
vector <ll> Integral(vector <ll> a) {
 int n = a.size();
  vector \langle 11 \rangle res(n + 1);
  for (int i = 0; i < n; ++i)</pre>
   res[i + 1] = mul(a[i], mpow(i + 1, mod - 2));
  return res;
vector <1l> Ln(vector <1l> a) {
 // O(NlogN), a[0] = 1
  int n = a.size();
  if (n == 1) return {0};
 vector <1l> d = Derivative(a);
 a.pop_back();
 return Integral(Mul(d, Inverse(a), n - 1));
vector <ll> Exp(vector <ll> a) {
 // O(NlogN), a[0] = 0
  int n = a.size();
  vector \langle 11 \rangle q(1, 1);
  a[0] = add(a[0], 1);
  for (int m = 1; m < n; m <<= 1) {
    if (n < m * 2) a.resize(m * 2);</pre>
    vector <ll> g(a.begin(), a.begin() + m * 2), h(all(
        q));
   h.resize(m * 2), h = Ln(h);

for (int i = 0; i < m * 2; ++i)
      g[i] = sub(g[i], h[i]);
    q = Mul(g, q, m * 2);
  q.resize(n);
 return q;
vector <ll> Pow(vector <ll> a, ll k) {
  int n = a.size(), m = 0;
  vector <11> ans(n, 0);
  while (m < n && a[m] == 0) m++;</pre>
  if (k \&\& m \&\& (k >= n \mid \mid k * m >= n)) return ans;
  if (m == n) return ans[0] = 1, ans;
  ll lead = m * k;
  vector <1l> b(a.begin() + m, a.end());
  11 base = mpow(b[0], k), inv = mpow(b[0], mod - 2);
  for (int i = 0; i < n - m; ++i)</pre>
   b[i] = mul(b[i], inv);
  b = Ln(b);
 for (int i = 0; i < n - m; ++i)</pre>
   b[i] = mul(b[i], k % mod);
  b = Exp(b);
  for (int i = lead; i < n; ++i)</pre>
    ans[i] = mul(b[i - lead], base);
  return ans;
vector <ll> Evaluate(vector <ll> a, vector <ll> x) {
 if (x.empty()) return {};
```

```
int n = x.size();
   vector <vector <11>> up(n * 2);
   for (int i = 0; i < n; ++i)</pre>
     up[i + n] = {sub(0, x[i]), 1};
   for (int i = n - 1; i > 0; --i)
  up[i] = Mul(up[i * 2], up[i * 2 + 1]);
   vector <vector <11>> down(n * 2);
   down[1] = Divide(a, up[1]).second;
   for (int i = 2; i < n * 2; ++i)</pre>
     down[i] = Divide(down[i >> 1], up[i]).second;
   vector <11> y(n);
   for (int i = 0; i < n; ++i) y[i] = down[i + n][0];</pre>
vector <ll> Interpolate(vector <ll> x, vector <ll> y) {
   int n = x.size();
   vector <vector <11>> up(n * 2);
   for (int i = 0; i < n; ++i)</pre>
     up[i + n] = {sub(0, x[i]), 1};
  for (int i = n - 1; i > 0; --i)
  up[i] = Mul(up[i * 2], up[i * 2 + 1]);
   vector <ll> a = Evaluate(Derivative(up[1]), x);
   for (int i = 0; i < n; ++i)</pre>
     a[i] = mul(y[i], mpow(a[i], mod - 2));
   vector <vector <11>> down(n * 2);
   for (int i = 0; i < n; ++i) down[i + n] = {a[i]};</pre>
   for (int i = n - 1; i > 0; --i) {
     vector <1l> lhs = Mul(down[i * 2], up[i * 2 + 1]);
     vector <1l> rhs = Mul(down[i * 2 + 1], up[i * 2]);
     down[i].resize(lhs.size());
     for (int j = 0; j < lhs.size(); ++j)</pre>
       down[i][j] = add(lhs[j], rhs[j]);
  return down[1];
vector <ll> TaylorShift(vector <ll> a, ll c) {
   // return sum a_i(x + c)^i;
   // fac[i] = i!, facp[i] = inv(i!)
   int n = a.size();
   for (int i = 0; i < n; ++i) a[i] = mul(a[i], fac[i]);</pre>
   reverse(all(a)):
   vector <ll> b(n);
   11 w = 1;
   for (int i = 0; i < n; ++i)</pre>
     b[i] = mul(facp[i], w), w = mul(w, c);
  a = Mul(a, b, n), reverse(all(a));
for (int i = 0; i < n; ++i) a[i] = mul(a[i],facp[i]);</pre>
   return a;
vector <ll> SamplingShift(vector <ll> a, ll c, int m) {
   // given f(0), f(1), ..., f(n-1)
   // return f(c), f(c + 1), ..., f(c + m - 1)
   int n = a.size();
   for (int i = 0; i < n; ++i) a[i] = mul(a[i], facp[i]);</pre>
   vector <11> b(n);
   for (int i = 0; i < n; ++i) {</pre>
     b[i] = facp[i];
     if (i & 1) b[i] = sub(0, b[i]);
   a = Mul(a, b, n);
   for (int i = 0; i < n; ++i) a[i] = mul(a[i], fac[i]);</pre>
   reverse(all(a));
   11 w = 1:
   for (int i = 0; i < n; ++i)</pre>
     b[i] = mul(facp[i], w), w = mul(w, sub(c, i));
   a = Mul(a, b, n);
   reverse(all(a));
   for (int i = 0; i < n; ++i) a[i] = mul(a[i], facp[i]);</pre>
   a.resize(m), b.resize(m);
   for (int i = 0; i < m; ++i) b[i] = facp[i];</pre>
   a = Mul(a, b, m);
   for (int i = 0; i < m; ++i) a[i] = mul(a[i], fac[i]);</pre>
   return a;
}
```

7.5 Fast Linear Recursion [d41d8c]

```
11 FastLinearRecursion(vector <1l> a, vector <1l> c, 1l
    k) {
    // a_n = sigma c_j * a_{n - j - 1}, 0-based
    // O(NlogNlogK), |a| = |c|
    int n = a.size();
```

```
if (k < n) return a[k];</pre>
  vector <ll> base(n + 1, 1);
  for (int i = 0; i < n; ++i)</pre>
    base[i] = sub(0, c[n - i - 1]);
  vector <11> poly(n);
  (n == 1 ? poly[0] = c[n - 1] : poly[1] = 1);
  auto calc = [&](vector <ll> p1, vector <ll> p2) {
    // O(n^2) bruteforce or O(nlogn) NTT
    return Divide(Mul(p1, p2), base).second;
  vector \langle 11 \rangle res(n, 0); res[0] = 1;
  for (; k; k >>= 1, poly = calc(poly, poly)) {
    if (k & 1) res = calc(res, poly);
  11 \text{ ans} = 0;
  for (int i = 0; i < n; ++i)</pre>
    (ans += res[i] * a[i]) %= mod;
  return ans;
}
```

7.6 Fast Walsh Transform

```
void fwt(vector <int> &a) {
  // and : x += y * (1, -1)
  // or : y += x * (1, -1)
  // xor : x = (x + y) * (1, 1/2)
 // y = (x - y) * (1, 1/2)
int n = __lg(a.size());
  for (int i = 0; i < n; ++i) {</pre>
    for (int j = 0; j < 1 << n; ++j) if (j >> i & 1) {
  int x = a[j ^ (1 << i)], y = a[j];</pre>
       // do something
    }
 }
vector<int> subs_conv(vector<int> a, vector<int> b) {
  // c_i = sum_{j & k = 0, j | k = i} a_j * b_k
int n = __lg(a.size());
  vector<vector<int>> ha(n + 1, vector<int>(1 << n));
vector<vector<int>> hb(n + 1, vector<int>(1 << n));</pre>
  vector<vector<int>> c(n + 1, vector<int>(1 << n));
  for (int i = 0; i < 1 << n; ++i) {</pre>
    ha[__builtin_popcount(i)][i] = a[i];
    hb[__builtin_popcount(i)][i] = b[i];
  for (int i = 0; i <= n; ++i)</pre>
    or_fwt(ha[i]), or_fwt(hb[i]);
  for (int i = 0; i <= n; ++i)</pre>
    for (int j = 0; i + j <= n; ++j)</pre>
       for (int k = 0; k < 1 << n; ++k)
         // mind overflow
         c[i + j][k] += ha[i][k] * hb[j][k];
  for (int i = 0; i <= n; ++i) or_fwt(c[i], true);</pre>
  vector <int> ans(1 << n);</pre>
  for (int i = 0; i < 1 << n; ++i)</pre>
    ans[i] = c[__builtin_popcount(i)][i];
  return ans;
```

8 Geometry

8.1 Basic

```
const double eps = 1e-8, PI = acos(-1);
int sign(double x)
{    return fabs(x) <= eps ? 0 : (x > 0 ? 1 : -1); }
double norm(double x) {
    while (x < -eps) x += PI * 2;
    while (x > PI * 2 + eps) x -= PI * 2;
    return x;
}
struct Pt {
    double x, y;
    Pt (double _x, double _y) : x(_x), y(_y) {}
    Pt operator + (Pt o) {return Pt(x + o.x, y + o.y);}
    Pt operator * (double k) {return Pt(x * k, y * k);}
    Pt operator / (double k) {return Pt(x * k, y * k);}
    double operator * (Pt o) {return x * o.x + y * o.y;}
    double operator ^ (Pt o) {return x * o.y - y * o.x;}
};
struct Line { Pt a, b; };
```

```
struct Cir { Pt o; double r; };
double abs2(Pt o) { return o * o; }
double abs(Pt o) { return sqrt(abs2(o)); }
int ori(Pt o, Pt a, Pt b)
{ return sign((o - a) ^ (o - b)); }
bool btw(Pt a, Pt b, Pt c) // c on segment ab?
{ return ori(a, b, c) == 0 \& sign((c - a) * (c - b))
int pos(Pt a)
{ return sign(a.y) == 0 ? sign(a.x) < 0 : a.y < 0; }
double area(Pt a, Pt b, Pt c)
{ return fabs((a - b) ^ (a - c)) / 2; }
double angle(Pt a, Pt b)
{ return norm(atan2(b.y - a.y, b.x - a.x)); }
Pt unit(Pt o) { return o / abs(o); }
Pt rot(Pt a, double o) { // CCW
  double c = cos(o), s = sin(o);
  return Pt(c * a.x - s * a.y, s * a.x + c * a.y);
Pt perp(Pt a) {return Pt(-a.y, a.x);}
Pt proj_vec(Pt a, Pt b, Pt c) { // vector ac proj to ab return (b - a) * ((c - a) * (b - a)) / (abs2(b - a));
Pt proj_pt(Pt a, Pt b, Pt c) { // point c proj to ab
  return proj_vec(a, b, c) + a;
```

8.2 Heart [d41d8c]

```
Pt circenter(Pt p0, Pt p1, Pt p2) {
  // radius = abs(center)
  p1 = p1 - p0, p2 = p2 - p0;
  double x1 = p1.x, y1 = p1.y, x2 = p2.x, y2 = p2.y;
  double m = 2. * (x1 * y2 - y1 * x2);
  Pt center(0, 0);
center.x = (x1 * x1 * y2 - x2 * x2 * y1 + y1 * y2 * (
      y1 - y2)) / m;
  center.y = (x1 * x2 * (x2 - x1) - y1 * y1 * x2 + x1 *
       y2 * y2) / m;
  return center + p0;
Pt incenter(Pt p1, Pt p2, Pt p3) {
  // radius = area / s * 2
  double a = abs(p2 - p3), b = abs(p1 - p3), c = abs(p1
        - p2);
  double s = a + b + c;
return (p1 * a + p2 * b + p3 * c) / s;
Pt masscenter(Pt p1, Pt p2, Pt p3)
{ return (p1 + p2 + p3) / 3; }
Pt orthocenter(Pt p1, Pt p2, Pt p3)
{ return masscenter(p1, p2, p3) * 3 - circenter(p1, p2,
     p3) * 2; }
```

8.3 External Bisector [d41d8c]

```
Pt external_bisector(Pt p1, Pt p2, Pt p3) { //213
Pt L1 = p2 - p1, L2 = p3 - p1;
L2 = L2 * abs(L1) / abs(L2);
return L1 + L2;
}
```

8.4 Intersection of Segments [d41d8c]

```
Pt LinesInter(Line a, Line b) {
    double abc = (a.b - a.a) ^ (b.a - a.a);
    double abd = (a.b - a.a) ^ (b.b - a.a);
    if (sign(abc - abd) == 0) return b.b;// no inter
    return (b.b * abc - b.a * abd) / (abc - abd);
}
vector<Pt> SegsInter(Line a, Line b) {
    if (btw(a.a, a.b, b.a)) return {b.a};
    if (btw(a.a, a.b, b.b)) return {b.b};
    if (btw(b.a, b.b, a.a)) return {a.a};
    if (btw(b.a, b.b, a.b)) return {a.b};
    if (ori(a.a, a.b, b.a) * ori(a.a, a.b, b.b) == -1 &&
        ori(b.a, b.b, a.a) * ori(b.a, b.b, a.b) == -1)
        return {LinesInter(a, b)};
    return {};
}
```

8.5 Intersection of Circle and Line [d41d8c]

8.6 Intersection of Circles [d41d8c]

8.7 Intersection of Polygon and Circle [d41d8c]

```
double _area(Pt pa, Pt pb, double r){
  if (abs(pa) < abs(pb)) swap(pa, pb);</pre>
  if (abs(pb) < eps) return 0;</pre>
  double S, h, theta;
  double a = abs(pb), b = abs(pa), c = abs(pb - pa);
  double cosB = pb * (pb - pa) / a / c, B = acos(cosB);
  double cosC = (pa * pb) / a / b, C = acos(cosC);
  if (a > r) {
    S = (C / 2) * r * r;
    h = a * b * sin(C) / c;
    if (h < r && B < pi / 2) S -= (acos(h / r) * r * r</pre>
         - h * sqrt(r * r - h * h));
  } else if (b > r) {
    theta = pi - B - asin(sin(B) / r * a);
    S = 0.5 * a * r * sin(theta) + (C - theta) / 2 * r
  } else S = 0.5 * sin(C) * a * b;
  return S;
double area_poly_circle(vector<Pt> poly, Pt 0, double r
    ) {
  double S = 0; int n = poly.size();
  for (int i = 0; i < n; ++i)
S += _area(poly[i] - 0, poly[(i + 1) % n] - 0, r) *</pre>
          ori(0, poly[i], poly[(i + 1) % n]);
  return fabs(S);
}
```

8.8 Tangent Lines of Circle and Point [d41d8c]

8.9 Tangent Lines of Circles [d41d8c]

```
vector <Line> tangent(Cir c1, Cir c2, int sign1) {
  // sign1 = 1 for outer tang, -1 for inter tang
  vector <Line> ret;
  double d_sq = abs2(c1.0 - c2.0);
```

```
if (sign(d_sq) == 0) return ret;
double d = sqrt(d_sq);
Pt v = (c2.o - c1.o) / d;
double c = (c1.r - sign1 * c2.r) / d;
if (c * c > 1) return ret;
double h = sqrt(max(0.0, 1.0 - c * c));
for (int sign2 = 1; sign2 >= -1; sign2 -= 2) {
   Pt n = Pt(v.x * c - sign2 * h * v.y, v.y * c +
        sign2 * h * v.x);
   Pt p1 = c1.o + n * c1.r;
   Pt p2 = c2.o + n * (c2.r * sign1);
   if (sign(p1.x - p2.x) == 0 && sign(p1.y - p2.y) ==
        0)
        p2 = p1 + perp(c2.o - c1.o);
   ret.pb({p1, p2});
}
return ret;
```

8.10 Point In Convex [d41d8c]

8.11 Point In Circle [d41d8c]

8.12 Point Segment Distance [d41d8c]

8.13 Convex Hull [d41d8c]

```
National Taiwan University std_abs
                                                                   for (int j = 0; j < sz; ++j) {
  Pt c = poly[i][(j + st) % sz];</pre>
    reverse(all(pt));
                                                                     Pt d = poly[i][(j + st + 1) % sz];
                                                                     if (sign((a - b) ^ (c - d)) != 0) {
  if (ans.size() > 1) ans.pop_back();
                                                                       int ok1 = ori(c, a, b) == 1;
  return ans;
                                                                       int ok2 = ori(d, a, b) == 1;
                                                                       if (ok1 ^ ok2) event.emplace_back(LinesInter
8.14 Minimum Enclosing Circle [d41d8c]
                                                                           ({a, b}, {c, d}), ok1 ? 1 : -1);
                                                                     } else if (ori(c, a, b) == 0 && sign((a - b) *
Cir min_enclosing(vector<Pt> &p) {
                                                                         (c - d)) > 0 && i <= cid) {
  random_shuffle(all(p));
                                                                       event.emplace_back(c, -1);
  double r = 0.0;
                                                                       event.emplace back(d, 1);
  Pt cent = p[0];
  for (int i = 1; i < p.size(); ++i) {</pre>
                                                                  }
    if (abs2(cent - p[i]) <= r) continue;</pre>
                                                                }
    cent = p[i], r = 0.0;
                                                                 sort(all(event), [&](pair <Pt, int> i, pair <Pt,</pre>
    for (int j = 0; j < i; ++j) {</pre>
                                                                     int> j) {
      if (abs2(cent - p[j]) <= r) continue;</pre>
                                                                   return ((a - i.first) * (a - b)) < ((a - j.first)</pre>
      cent = (p[i] + p[j]) / 2, r = abs2(p[j] - cent);
                                                                        * (a - b));
      for (int k = 0; k < j; ++k) {
                                                                 });
        if (abs2(cent - p[k]) <= r) continue;</pre>
                                                                 int now = 0;
        cent = circenter(p[i], p[j], p[k]);
                                                                 Pt lst = a;
        r = abs2(p[k] - cent);
                                                                 for (auto [x, y] : event) {
                                                                   if (btw(a, b, lst) && btw(a, b, x) && !now)
ans += lst ^ x;
   }
 }
                                                                   now += y, 1st = x;
  return {cent, sqrt(r)};
                                                                }
                                                              };
                                                              for (int i = 0; i < n; ++i) {</pre>
8.15 Union of Circles [d41d8c]
                                                                int sz = poly[i].size();
                                                                 for (int j = 0; j < sz; ++j)
vector<pair<double, double>> CoverSegment(Cir a, Cir b)
                                                                   solve(poly[i][j], poly[i][(j + 1) % sz], i);
  double d = abs(a.o - b.o);
                                                              return ans / 2;
  vector<pair<double, double>> res;
  if (sign(a.r + b.r - d) == 0);
  else if (d <= abs(a.r - b.r) + eps) {
                                                            8.17 Polar Angle Sort* [d41d8c]
   if (a.r < b.r) res.emplace_back(0, 2 * pi);</pre>
 } else if (d < abs(a.r + b.r) - eps) {</pre>
                                                            void PolarAngleSort(vector <Pt> &pts) {
    double o = acos((a.r * a.r + d * d - b.r * b.r) /
                                                              sort(all(pts), [&](Pt a, Pt b) {return pos(a) == pos(
        (2 * a.r * d));
                                                                   b) ? sign(a ^ b) > 0 : pos(a) < pos(b); });
    double z = norm(atan2((b.o - a.o).y, (b.o - a.o).x)
    double l = norm(z - o), r = norm(z + o);
                                                            8.18 Rotating Caliper* [d41d8c]
    if (1 > r) res.emplace_back(1, 2 * pi), res.
                                                            void RotatingCaliper(vector <Pt> &pts) {
        emplace_back(0, r);
    else res.emplace_back(1, r);
                                                              int n = pts.size();
 }
                                                              for (int i = 0, j = 2; i < n; ++i) {
 return res;
                                                                 int ni = (i + 1) % n;
                                                                 while (true) {
double CircleUnionArea(vector<Cir> c) { // circle
                                                                   int nj = (j + 1) \% n;
                                                                   if (area(pts[j], pts[i], pts[ni]) < area(pts[nj],</pre>
    should be identical
  int n = c.size();
                                                                        pts[i], pts[ni])) {
  double a = 0, w;
                                                                     j = nj;
 for (int i = 0; w = 0, i < n; ++i) {</pre>
                                                                   } else {
    vector<pair<double, double>> s = {{2 * pi, 9}}, z;
                                                                     break;
    for (int j = 0; j < n; ++j) if (i != j) {</pre>
      z = CoverSegment(c[i], c[j]);
      for (auto &e : z) s.push_back(e);
                                                                 // do something
                                                           }
    sort(s.begin(), s.end());
    auto F = [&] (double t) { return c[i].r * (c[i].r *
                                                            8.19
                                                                    Rotating SweepLine [d41d8c]
         t + c[i].o.x * sin(t) - c[i].o.y * cos(t)); };
    for (auto &e : s) {
                                                            void RotatingSweepLine(vector <Pt> &pt) {
      if (e.first > w) a += F(e.first) - F(w);
                                                              int n = pt.size();
      w = max(w, e.second);
                                                              vector <int> ord(n), cur(n);
   }
                                                              vector <pii> line;
                                                              for (int i = 0; i < n; ++i)</pre>
  return a * 0.5;
                                                                 for (int j = 0; j < n; ++j) if (i ^ j)</pre>
                                                                   line.emplace_back(i, j);
                                                              sort(all(line), [&](pii i, pii j) {
        Union of Polygons [d41d8c]
                                                                 Pt a = pt[i.second] - pt[i.first];
                                                                 Pt b = pt[j.second] - pt[j.first];
double polyUnion(vector <vector <Pt>> poly) {
                                                                 if (pos(a) == pos(b)) return sign(a ^ b) > 0;
 int n = poly.size();
  double ans = 0;
                                                                 return pos(a) < pos(b);</pre>
```

});

});

iota(all(ord), 0);

sort(all(ord), [&](int i, int j) {

[j].x : pt[i].y < pt[j].y);

for (int i = 0; i < n; ++i) cur[ord[i]] = i;</pre>

return (sign(pt[i].y - pt[j].y) == 0 ? pt[i].x < pt</pre>

auto solve = [&](Pt a, Pt b, int cid) {

int st = 0, sz = poly[i].size();

while (st < sz && ori(poly[i][st], a, b) != 1)</pre>

vector <pair <Pt, int>> event; for (int i = 0; i < n; ++i) {

if (st == sz) continue;

st++;

```
National Taiwan University std_abs
  for (auto [i, j] : line) {
       point sort by the distance to line(i, j)
    tie(cur[i], cur[j], ord[cur[i]], ord[cur[j]]) =
         make_tuple(cur[j], cur[i], j, i);
  }
}
8.20 Half Plane Intersection [d41d8c]
pair <11, 11> area_pair(Line a, Line b)
{ return {(a.b - a.a) ^ (b.a - a.a), (a.b - a.a) ^ (b.b
      · a.a)}; }
bool isin(Line 10, Line 11, Line 12) {
  // Check inter(l1, l2) strictly in l0
  auto [a02X, a02Y] = area_pair(10, 12);
  auto [a12X, a12Y] = area_pair(l1, l2);
  if (a12X - a12Y < 0) a12X *= -1, a12Y *= -1;
return a02Y * a12X - a02X * a12Y > 0; // C^4
/* Having solution, check size > 2 */
/* --^-- Line.a --^-- Line.b --^-- */
vector<Line> HalfPlaneInter(vector<Line> arr) {
                                                             };
  sort(all(arr), [&](Line a, Line b) {
    Pt A = a.b - a.a, B = b.b - b.a;
    if (pos(A) != pos(B)) return pos(A) < pos(B);</pre>
    if (sign(A ^ B) != 0) return sign(A ^ B) > 0;
    return ori(a.a, a.b, b.b) < 0;</pre>
  });
  deque<Line> dq(1, arr[0]);
  auto same = [&](Pt a, Pt b)
  { return sign(a ^ b) == 0 && pos(a) == pos(b); };
  for (auto p : arr) {
    if (same(dq.back().b - dq.back().a, p.b - p.a))
      continue
    while (sz(dq) \ge 2 \& !isin(p, dq[sz(dq) - 2], dq.
         back())) dq.pop_back();
    while (sz(dq) >= 2 \&\& !isin(p, dq[0], dq[1]))
      dq.pop_front();
    dq.pb(p);
  while (sz(dq) >= 3 \&\& !isin(dq[0], dq[sz(dq) - 2], dq
       .back())) dq.pop_back();
  while (sz(dq) >= 3 \&\& !isin(dq.back(), dq[0], dq[1]))
    dq.pop_front();
  return vector<Line>(all(dq));
8.21 Minkowski Sum [d41d8c]
void reorder(vector <Pt> &P) {
  rotate(P.begin(), min_element(all(P), [&](Pt a, Pt b)
        { return make_pair(a.y, a.x) < make_pair(b.y, b.
       x); }), P.end());
vector <Pt> Minkowski(vector <Pt> P, vector <Pt> Q) {
  // P, Q: convex polygon, CCW order
  reorder(P), reorder(Q);
  int n = P.size(), m = Q.size();
  P.pb(P[0]), P.pb(P[1]), Q.pb(Q[0]), Q.pb(Q[1]);
  vector <Pt> ans;
  for (int i = 0, j = 0; i < n || j < m; ) {
  ans.pb(P[i] + Q[j]);</pre>
    auto val = (P[i + 1] - P[i]) ^ (Q[j + 1] - Q[j]);
    if (val >= 0) i++;
    if (val <= 0) j++;</pre>
  }
  return ans;
8.22 Vector In Polygon [d41d8c]
// ori(a, b, c) >= 0, valid: "strict" angle from a-b to
     a-c
bool btwangle(Pt a, Pt b, Pt c, Pt p, int strict) {
  return ori(a, b, p) >= strict && ori(a, p, c) >=
       strict;
// whether vector{cur, p} in counter-clockwise order
    prv, cur, nxt
bool inside(Pt prv, Pt cur, Pt nxt, Pt p, int strict) {
  if (ori(cur, nxt, prv) >= 0)
    return btwangle(cur, nxt, prv, p, strict);
```

return !btwangle(cur, prv, nxt, p, !strict);

8.23 Delaunay Triangulation [d41d8c]

```
/* Delaunay Triangulation:
Given a sets of points on 2D plane, find a
triangulation such that no points will strictly
inside circumcircle of any triangle.
find : return a triangle contain given point
add_point : add a point into triangulation
A Triangle is in triangulation iff. its has_chd is 0.
Region of triangle u: iterate each u.edge[i].tri,
each points are u.p[(i+1)\%3], u.p[(i+2)\%3]
Voronoi diagram: for each triangle in triangulation,
the bisector of all its edges will split the region.
nearest point will belong to the triangle containing it
const 11 inf = MAXC * MAXC * 100;// Lower_bound unknown
struct Tri;
struct Edge {
  Tri* tri; int side;
  Edge(): tri(0), side(0){}
  Edge(Tri* _tri, int _side): tri(_tri), side(_side){}
struct Tri {
  Pt p[3];
  Edge edge[3];
  Tri* chd[3];
  Tri() {}
  Tri(const Pt &p0, const Pt &p1, const Pt &p2) {
    p[0] = p0; p[1] = p1; p[2] = p2;
    chd[0] = chd[1] = chd[2] = 0;
  bool has_chd() const { return chd[0] != 0; }
  int num_chd() const {
    return !!chd[0] + !!chd[1] + !!chd[2];
  bool contains(const Pt &q) const {
    for (int i = 0; i < 3; ++i)</pre>
      if (ori(p[i], p[(i + 1) % 3], q) < 0)
        return 0;
    return 1;
  }
} pool[N * 10], *tris;
void edge(Edge a, Edge b) {
  if(a.tri) a.tri->edge[a.side] = b;
  if(b.tri) b.tri->edge[b.side] = a;
struct Trig { // Triangulation
  Trig() {
    the_root = // Tri should at least contain all
      new(tris++) Tri(Pt(-inf, -inf), Pt(inf + inf, -
          inf), Pt(-inf, inf + inf));
  Tri* find(Pt p) { return find(the_root, p); }
  void add_point(const Pt &p) { add_point(find(the_root
       p), p); }
  Tri* the root;
  static Tri* find(Tri* root, const Pt &p) {
    while (1) {
      if (!root->has_chd())
        return root;
      for (int i = 0; i < 3 && root->chd[i]; ++i)
        if (root->chd[i]->contains(p)) {
          root = root->chd[i];
          break:
        }
    assert(0); // "point not found"
  void add_point(Tri* root, Pt const& p) {
    Tri* t[3];
    /* split it into three triangles */
    for (int i = 0; i < 3; ++i)
      t[i] = new(tris++) Tri(root->p[i], root->p[(i +
    1) % 3], p);
for (int i = 0; i < 3; ++i)
      edge(Edge(t[i], 0), Edge(t[(i + 1) % 3], 1));
    for (int i = 0; i < 3; ++i)
      edge(Edge(t[i], 2), root->edge[(i + 2) % 3]);
    for (int i = 0; i < 3; ++i)</pre>
      root->chd[i] = t[i];
    for (int i = 0; i < 3; ++i)</pre>
```

```
flip(t[i], 2);
  void flip(Tri* tri, int pi) {
    Tri* trj = tri->edge[pi].tri;
    int pj = tri->edge[pi].side;
    if (!trj) return;
    if (!in_cc(tri->p[0], tri->p[1], tri->p[2], trj->p[
        pj])) return;
    /* flip edge between tri,trj */
    Tri* trk = new(tris++) Tri(tri->p[(pi + 1) % 3],
         trj->p[pj], tri->p[pi]);
    Tri* trl = new(tris++) Tri(trj->p[(pj + 1) % 3],
        tri->p[pi], trj->p[pj]);
    edge(Edge(trk, 0), Edge(trl, 0));
edge(Edge(trk, 1), tri->edge[(pi + 2) % 3]);
    edge(Edge(trk, 2), trj->edge[(pj + 1) % 3]);
    edge(Edge(trl, 1), trj->edge[(pj + 2) % 3]);
edge(Edge(trl, 2), tri->edge[(pi + 1) % 3]);
    tri->chd[0] = trk; tri->chd[1] = trl; tri->chd[2] =
         0;
    trj->chd[0] = trk; trj->chd[1] = trl; trj->chd[2] =
         0;
    flip(trk, 1); flip(trk, 2);
    flip(trl, 1); flip(trl, 2);
 }
vector<Tri*> triang; // vector of all triangle
set<Tri*> vst;
void go(Tri* now) { // store all tri into triang
  if (vst.find(now) != vst.end())
    return;
  vst.insert(now);
  if (!now->has_chd())
    return triang.pb(now);
  for (int i = 0; i < now->num_chd(); ++i)
    go(now->chd[i]);
void build(vector <Pt> &arr) { // build triangulation
  int n = arr.size();
  tris = pool; triang.clear(); vst.clear();
  random shuffle(all(arr));
  Trig tri; // the triangulation structure
  for (int i = 0; i < n; ++i)</pre>
    tri.add_point(arr[i]);
  go(tri.the_root);
```

8.24 Triangulation Vonoroi [d41d8c]

```
vector<Line> ls[N];
Line make_line(Pt p, Line 1) {
 Pt d = 1.b - 1.a; d = perp(d);
  Pt m = (1.a + 1.b) / 2; // remember to *2
  1 = \{m, m + d\};
 if (ori(1.a, 1.b, p) < 0) swap(1.a, 1.b);
void solve(vector <Pt> &oarr) {
 int n = oarr.size();
 map<pair <11, 11>, int> mp;
  vector <Pt> arr = oarr;
  for (int i = 0; i < n; ++i)</pre>
  mp[{arr[i].x, arr[i].y}] = i;
build(arr); // Triangulation
  for (auto *t : triang) {
    vector<int> p;
    for (int i = 0; i < 3; ++i) {
      pair <11, 11> tmp = \{t->p[i].x, t->p[i].y\};
      if (mp.count(tmp)) p.pb(mp[tmp]);
    for (int i = 0; i < sz(p); ++i)</pre>
      for (int j = i + 1; j < sz(p); ++j) {
        Line 1 = {oarr[p[i]], oarr[p[j]]};
        ls[p[i]].pb(make_line(oarr[p[i]], 1));
        ls[p[j]].pb(make_line(oarr[p[j]], 1));
      }
  for (int i = 0; i < n; ++i)</pre>
    ls[i] = HalfPlaneInter(ls[i]);
```

8.25 3D Point

```
struct Pt {
  double x, y, z;
  Pt(double _x = 0, double _y = 0, double _z = 0): x(_x
      ), y(_y), z(_z)\{\}
  Pt operator + (const Pt &o) const
  { return Pt(x + o.x, y + o.y, z + o.z); }
  Pt operator - (const Pt &o) const
  { return Pt(x - o.x, y - o.y, z - o.z); }
  Pt operator * (const double &k) const
  { return Pt(x * k, y * k, z * k); }
  Pt operator / (const double &k) const
  { return Pt(x / k, y / k, z / k); }
  double operator * (const Pt &o) const
  { return x * o.x + y * o.y + z * o.z; }
  Pt operator ^ (const Pt &o) const
  { return \{Pt(y * o.z - z * o.y, z * o.x - x * o.z, x \}
      * o.y - y * o.x)}; }
double abs2(Pt o) { return o * o; }
double abs(Pt o) { return sqrt(abs2(o)); }
Pt cross3(Pt a, Pt b, Pt c)
{ return (b - a) ^ (c - a); }
double area(Pt a, Pt b, Pt c)
{ return abs(cross3(a, b, c)); }
double volume(Pt a, Pt b, Pt c, Pt d)
{ return cross3(a, b, c) * (d - a);
bool coplaner(Pt a, Pt b, Pt c, Pt d)
{ return sign(volume(a, b, c, d)) == 0; }
Pt proj(Pt o, Pt a, Pt b, Pt c) // o proj to plane abc
{ Pt n = cross3(a, b, c);
return o - n * ((o - a) * (n / abs2(n)));}
Pt LinePlaneInter(Pt u, Pt v, Pt a, Pt b, Pt c) {
  // intersection of line uv and plane abc
  Pt n = cross3(a, b, c);
  double s = n * (u - v);
  if (sign(s) == 0) return {-1, -1, -1}; // not found
  return v + (u - v) * ((n * (a - v)) / s);
```

8.26 3D Convex Hull [d41d8c]

```
struct CH3D {
  struct face{int a, b, c; bool ok;} F[8 * N];
  double dblcmp(Pt &p,face &f)
  {return cross3(P[f.a], P[f.b], P[f.c]) * (p - P[f.a])
  int g[N][N], num, n;
  Pt P[N];
  void deal(int p,int a,int b) {
    int f = g[a][b];
    face add;
    if (F[f].ok) {
      if (dblcmp(P[p],F[f]) > eps) dfs(p,f);
        add.a = b, add.b = a, add.c = p, add.ok = 1, g[
             p][b] = g[a][p] = g[b][a] = num, F[num++]=
             add;
    }
  }
  void dfs(int p, int now) {
    F[now].ok = 0;
    deal(p, F[now].b, F[now].a), deal(p, F[now].c, F[
        now].b), deal(p, F[now].a, F[now].c);
  bool same(int s,int t){
    Pt &a = P[F[s].a];
    Pt \&b = P[F[s].b];
    Pt &c = P[F[s].c];
    return fabs(volume(a, b, c, P[F[t].a])) < eps &&</pre>
        fabs(volume(a, b, c, P[F[t].b])) < eps && fabs(</pre>
        volume(a, b, c, P[F[t].c])) < eps;</pre>
  void init(int _n){n = _n, num = 0;}
  void solve() {
    face add;
    num = 0;
    if(n < 4) return;</pre>
    if([&](){
        for (int i = 1; i < n; ++i)</pre>
        if (abs(P[0] - P[i]) > eps)
        return swap(P[1], P[i]), 0;
        return 1;
```

```
}()[&](){
                                                                         y - p1.y) * (p3.x - p1.x);
      for (int i = 2; i < n; ++i)
                                                                     double d = 0 - (a * p1.x + b * p1.y + c * p1.z)
      if (abs(cross3(P[i], P[0], P[1])) > eps)
                                                                     double temp = fabs(a * p.x + b * p.y + c * p.z
      return swap(P[2], P[i]), 0;
                                                                         + d) / sqrt(a * a + b * b + c * c);
      return 1;
      }() || [&](){
                                                                     rt = min(rt, temp);
      for (int i = 3; i < n; ++i)</pre>
      if (fabs(((P[0] - P[1]) ^ (P[1] - P[2])) * (P
                                                                 return rt;
           [0] - P[i])) > eps)
                                                              }
      return swap(P[3], P[i]), 0;
                                                           };
      return 1:
      }())return;
                                                            9
                                                                  Else
  for (int i = 0; i < 4; ++i) {
    add.a = (i + 1) % 4, add.b = (i + 2) % 4, add.c =
                                                            9.1 Pbds
         (i + 3) % 4, add.ok = true;
    if (dblcmp(P[i],add) > 0) swap(add.b, add.c);
                                                            #include <ext/pb_ds/priority_queue.hpp>
                                                            #include <ext/pb_ds/assoc_container.hpp>
    g[add.a][add.b] = g[add.b][add.c] = g[add.c][add.
                                                            using namespace __gnu_pbds;
        a] = num;
    F[num++] = add;
                                                            #include <ext/rope>
                                                            using namespace __gnu_cxx;
                                                              _gnu_pbds::priority_queue <int> pq1, pq2;
  for (int i = 4; i < n; ++i)</pre>
    for (int j = 0; j < num; ++j)</pre>
                                                            pq1.join(pq2); // pq1 += pq2, pq2 = {}
                                                            cc_hash_table<int, int> m1;
      if (F[j].ok && dblcmp(P[i],F[j]) > eps) {
        dfs(i, j);
                                                            tree<int, null_type, less<int>, rb_tree_tag,
                                                                 tree_order_statistics_node_update> oset;
        break:
                                                            oset.insert(2), oset.insert(4);
  for (int tmp = num, i = (num = 0); i < tmp; ++i)</pre>
                                                             *oset.find_by_order(1), oset.order_of_key(1);// 4 0
    if (F[i].ok) F[num++] = F[i];
                                                            bitset <100> BS;
                                                            BS.flip(3), BS.flip(5);
                                                            BS._Find_first(), BS._Find_next(3); // 3 5
double get_area() {
                                                            rope <int> rp1, rp2;
  double res = 0.0;
  if (n == 3)
                                                            rp1.push_back(1), rp1.push_back(3);
    return abs(cross3(P[0], P[1], P[2])) / 2.0;
                                                            rp1.insert(0, 2); // pos, num
                                                            rp1.erase(0, 2); // pos, len
  for (int i = 0; i < num; ++i)</pre>
    res += area(P[F[i].a], P[F[i].b], P[F[i].c]);
                                                            rp1.substr(0, 2); // pos, len
  return res / 2.0;
                                                            rp2.push_back(4);
                                                            rp1 += rp2, rp2 = rp1;
                                                            rp2[0], rp2[1]; // 3 4
double get_volume() {
  double res = 0.0;
                                                            9.2 Bit Hack
  for (int i = 0; i < num; ++i)</pre>
    res += volume(Pt(0, 0, 0), P[F[i].a], P[F[i].b],
                                                            long long next_perm(long long v) {
        P[F[i].c]);
                                                              long long t = v | (v - 1);
  return fabs(res / 6.0);
                                                              return (t + 1) | (((~t & -~t) - 1) >> (__builtin_ctz(
                                                                   v) + 1));
int triangle() {return num;}
                                                            }
int polygon() {
  int res = 0;
                                                            9.3 Dynamic Programming Condition
  for (int i = 0, flag = 1; i < num; ++i, res += flag</pre>
      , flag = 1)
                                                            9.3.1 Totally Monotone (Concave/Convex)
    for (int j = 0; j < i && flag; ++j)</pre>
                                                            \forall i < i', j < j', B[i][j] \leq B[i'][j] \Longrightarrow B[i][j'] \leq B[i'][j']
9. 3. 2; Monge; Gondition (Concave Economy)
      flag &= !same(i,j);
  return res;
                                                            \forall i < i', j < j', B[i][j] + B[i'][j'] \ge B[i][j'] + B[i']
9. 3. 3, \forall optimal, Split, Point, j' + B[i'][j]
Pt getcent(){
                                                                       B[i][j] + B[i+1][j+1] \ge B[i][j+1] + B[i+1][j]
  Pt ans(0, 0, 0), temp = P[F[0].a];
  double v = 0.0, t2;
                                                            then
  for (int i = 0; i < num; ++i)</pre>
                                                                                 H_{i,j-1} \le H_{i,j} \le H_{i+1,j}
    if (F[i].ok == true) {
      Pt p1 = P[F[i].a], p2 = P[F[i].b], p3 = P[F[i].
                                                            9.4 Smawk Algorithm [d41d8c]
          c];
      t2 = volume(temp, p1, p2, p3) / 6.0;
                                                            11 f(int 1, int r) { }
                                                            bool select(int r, int u, int v) {
  // if f(r, v) is better than f(r, v), return true
      if (t2>0)
        ans.x += (p1.x + p2.x + p3.x + temp.x) * t2,
             ans.y += (p1.y + p2.y + p3.y + temp.y)
                                                               return f(r, u) < f(r, v);
             t2, ans.z += (p1.z + p2.z + p3.z + temp.z
             ) * t2, v += t2;
                                                            // For all 2x2 submatrix:
                                                            // If M[1][0] < M[1][1], M[0][0] < M[0][1]
  ans.x /= (4 * v), ans.y /= (4 * v), ans.z /= (4 * v)
                                                            // If M[1][0] == M[1][1], M[0][0] <= M[0][1]
                                                            // M[i][ans_i] is the best value in the i-th row
      );
  return ans;
                                                            vector<int> solve(vector<int> &r, vector<int> &c) {
                                                              const int n = r.size();
double pointmindis(Pt p) {
                                                              if (n == 0) return {};
  double rt = 99999999;
                                                              vector <int> c2;
  for(int i = 0; i < num; ++i)</pre>
                                                              for (const int &i : c) {
    if(F[i].ok == true) {
                                                                 while (!c2.empty() && select(r[c2.size() - 1], c2.
      Pt p1 = P[F[i].a], p2 = P[F[i].b], p3 = P[F[i].
                                                                     back(), i)) c2.pop_back();
          c];
                                                                 if (c2.size() < n) c2.pb(i);</pre>
      double a = (p2.y - p1.y) * (p3.z - p1.z) - (p2.
          z - p1.z) * (p3.y - p1.y);
                                                              vector <int> r2:
      double b = (p2.z - p1.z) * (p3.x - p1.x) - (p2.
                                                              for (int i = 1; i < n; i += 2) r2.pb(r[i]);</pre>
           x - p1.x) * (p3.z - p1.z);
                                                              const auto a2 = solve(r2, c2);
      double c = (p2.x - p1.x) * (p3.y - p1.y) - (p2.
                                                              vector <int> ans(n);
```

```
National Taiwan University std_abs
 for (int i = 0; i < a2.size(); i++)</pre>
   ans[i * 2 + 1] = a2[i];
  int j = 0;
                                                                       r);
 for (int i = 0; i < n; i += 2) {
    ans[i] = c2[j];
                                                                   slope += 1;
    const int end = i + 1 == n ? c2.back() : ans[i +
       1];
    while (c2[j] != end) {
                                                                 return res;
     i++:
      if (select(r[i], ans[i], c2[j])) ans[i] = c2[j];
                                                               assert(0);
   }
 }
                                                          };
  return ans;
                                                           9.6 ALL LCS [d41d8c]
vector<int> smawk(int n, int m) {
  vector<int> row(n), col(m);
  iota(all(row), 0), iota(all(col), 0);
                                                             iota(all(h), 0);
  return solve(row, col);
                                                               int v = -1;
9.5 Slope Trick [d41d8c]
                                                                   swap(h[c], v);
template<typename T>
struct slope_trick_convex {
 T minn = 0, ground_1 = 0, ground_r = 0;
 priority_queue<T, vector<T>, less<T>> left;
  priority_queue<T, vector<T>, greater<T>> right;
  slope_trick_convex() {left.push(numeric_limits<T>::
      min() / 2), right.push(numeric_limits<T>::max() /
       2);}
  void push_left(T x) {left.push(x - ground_1);}
  void push_right(T x) {right.push(x - ground_r);}
                                                             11 \text{ res} = 0;
 //add a line with slope 1 to the right starting from
                                                               int rx = (x \& s) > 0;
  void add_right(T x) {
   T l = left.top() + ground_l;
    if (1 <= x) push_right(x);</pre>
                                                               if (ry == 0) {
    else push_left(x), push_right(1), left.pop(), minn
                                                                 swap(x, y);
                                                               }
  //add a line with slope -1 to the left starting from
                                                             }
                                                             return res:
  void add_left(T x) {
                                                           } // n = 2^k
    T r = right.top() + ground_r;
    if (r >= x) push_left(x);
                                                           9.8 Random
    else push_right(x), push_left(r), right.pop(), minn
         += x - r;
                                                           struct custom_hash {
  //val[i]=min(val[j]) for all i-l<=j<=i+r
  void expand(T 1, T r) {ground_1 -= 1, ground_r += r;}
  void shift_up(T x) {minn += x;}
 T get_val(T x) {
                                                               return x ^ (x >> 31);
    T l = left.top() + ground_l, r = right.top() +
        ground r;
```

if (x >= 1 && x <= r) return minn;

T cur_val = minn, slope = 1, res;

trash.push_back(left.top());

1 = left.top() + ground_l;

for (auto i : trash) left.push(i);

T cur_val = minn, slope = 1, res;

trash.push_back(right.top());

if (right.top() + ground_r >= x) {

res = cur_val + slope * (x - r);

if (left.top() + ground_l <= x) { res = cur_val + slope * (1 - x);

cur_val += slope * (1 - (left.top() + ground_1)

if (x < 1) {

while (1) {

vector<T> trash;

left.pop();

);

slope += 1;

vector<T> trash;

right.pop();

break;

return res;

while (1) {

if (x > r) {

cur_val += slope * ((right.top() + ground_r) r = right.top() + ground_r; for (auto i : trash) right.push(i); void all_lcs(string s, string t) { // 0-base vector<int> h(t.size()); for (int a = 0; a < s.size(); ++a) {</pre> for (int c = 0; c < t.size(); ++c)</pre> if (s[a] == t[c] || h[c] < v)</pre> // LCS(s[0, a], t[b, c]) = // c - b + 1 - sum([h[i] >= b] | i <= c)// h[i] might become -1 !! 9.7 Hilbert Curve [d41d8c] 11 hilbert(int n, int x, int y) { for (int s = n / 2; s; s >>= 1) { int ry = (y & s) > 0; res += s * 111 * s * ((3 * rx) ^ ry); if (rx == 1) x = s - 1 - x, y = s - 1 - y; static uint64_t splitmix64(uint64_t x) { x += 0x9e3779b97f4a7c15; $x = (x ^ (x >> 30)) * 0xbf58476d1ce4e5b9;$ $x = (x ^ (x >> 27)) * 0x94d049bb133111eb;$ size_t operator()(uint64_t a) const { static const uint64_t FIXED_RANDOM = chrono:: steady_clock::now().time_since_epoch().count(); return splitmix64(i + FIXED_RANDOM); } }; unordered_map <int, int, custom_hash> m1; random_device rd; mt19937 rng(rd()); 9.9 Line Container [d41d8c] // only works for integer coordinates!! maintain max struct Line { mutable 11 a, b, p; bool operator<(const Line &rhs) const { return a <</pre> rhs.a; } bool operator<(11 x) const { return p < x; }</pre> }; struct DynamicHull : multiset<Line, less<>>> { static const ll kInf = 1e18; ll Div(ll a, ll b) { return a / b - ((a ^ b) < 0 && a % b); } bool isect(iterator x, iterator y) { if (y == end()) { x->p = kInf; return 0; }

if (x->a == y->a) x->p = x->b > y->b? kInf : -kInf

else x -> p = Div(y -> b - x -> b, x -> a - y -> a);

return x->p >= y->p;

```
void addline(ll a, ll b) { // ax + b
   auto z = insert({a, b, 0}), y = z++, x = y;
   while (isect(y, z)) z = erase(z);
   if (x != begin() && isect(--x, y)) isect(x, y =
        erase(y));
   while ((y = x) != begin() && (--x)->p >= y->p)
        isect(x, erase(y));
}
ll query(ll x) {
   auto l = *lower_bound(x);
   return l.a * x + l.b;
}
};
```

9.10 Min Plus Convolution [d41d8c]

9.11 Matroid Intersection

Start from $S=\emptyset$. In each iteration, let

- $Y_1 = \{x \notin S \mid S \cup \{x\} \in I_1\}$ • $Y_2 = \{x \notin S \mid S \cup \{x\} \in I_2\}$
- If there exists $x\in Y_1\cap Y_2$, insert x into S. Otherwise for each $x\in S, y\not\in S$, create edges
 - $x \rightarrow y$ if $S \{x\} \cup \{y\} \in I_1$. • $y \rightarrow x$ if $S - \{x\} \cup \{y\} \in I_2$.

Find a shortest path (with BFS) starting from a vertex in Y_1 and ending at a vertex in Y_2 which doesn't pass through any other vertices in Y_2 , and alternate the path. The size of S will be incremented by 1 in each iteration. For the weighted case, assign weight w(x) to vertex x if $x \in S$ and -w(x) if $x \notin S$. Find the path with the minimum number of edges among all minimum length paths and alternate it.

9.12 Python Misc

```
from [decimal, fractions, math, random] import *
arr = list(map(int, input().split())) # input
setcontext(Context(prec=10, Emax=MAX_EMAX, rounding=
    ROUND_FLOOR))
Decimal('1.1') / Decimal('0.2')
Fraction(3, 7)
Fraction(Decimal('1.14'))
Fraction('1.2').limit_denominator(4).numerator
Fraction(cos(pi / 3)).limit_denominator()
S = set(), S.add((a, b)), S.remove((a, b)) # set
if not (a, b) in S:
D = dict(), D[(a, b)] = 1, del D[(a, b)] # dict
for (a, b) in D.items():
arr = [randint(1, C) for i in range(N)]
choice([8, 6, 4, 1]) # random pick one
shuffle(arr)
print(*arr, sep=' ')
```