Knowledge Representation

- AI agents deal with knowledge (data)
 - Facts (believe & observe knowledge)
 - Procedures (how to knowledge)
- Meaning (relate & define knowledge)
- · Right representation is crucial
 - Early realisation in AI
 - Wrong choice can lead to project failure
 - Active research area

Some General Representations

- 1. Logical Representations
- 2. Production Rules
- 3. Semantic Networks
 - · Conceptual graphs, frames
- 4. Description Logics

Choosing a Representation

- For certain problem solving techniques
 - 'Best' representation already known
 - Often a requirement of the technique
 - Or a requirement of the programming language (e.g. Prolog)
- Examples
 - First order theorem proving... first order logic
 - Inductive logic programming... logic programs
 - Neural networks learning... neural networks
- Some general representation schemes
 - Suitable for many different (and new) AI applications

What is a Logic?

- A language with concrete rules
 - No ambiguity in representation (may be other errors!)
 - Allows unambiguous communication and processing
 - Very unlike natural languages e.g. English
- · Many ways to translate between languages
- A statement can be represented in different logics
- And perhaps differently in same logic
- Expressiveness of a logic
- How much can we say in this language?
- Not to be confused with logical reasoning
 - Logics are languages, reasoning is a process (may use logic)

Syntax and Semantics

- Syntax
 - Rules for constructing legal sentences in the logic
 - Which symbols we can use (English: letters, punctuation)
 - How we are allowed to combine symbols
- Semantics
 - How we interpret (read) sentences in the logic
 - Assigns a meaning to each sentence
- Example: "All lecturers are seven foot tall"
 - A valid sentence (syntax)
 - And we can understand the meaning (semantics)
 - This sentence happens to be false (there is a counterexample)

Predicate Logic

- Propositional logic combines atoms
 - An atom contains no propositional connectives
 - Have no structure (today_is_wet, john_likes_apples)
- Predicates allow us to talk about objects
 - Properties: is_wet(today)
 - Relations: likes(john, apples)
 - True or false
- In predicate logic each atom is a predicate
 - e.g. first order logic, higher-order logic

Propositional Logic

- Syntax
 - Propositions, e.g. "it is wet"
 - Connectives: and, or, not, implies, iff (equivalent)

$$\wedge \vee \neg \rightarrow \leftrightarrow$$

- Brackets, T (true) and F (false)
- Semantics (Classical AKA Boolean)
 - Define how connectives affect truth
 - "P and Q" is true if and only if P is true and Q is true
- Use truth tables to work out the truth of statements

First Order Logic

- More expressive logic than propositional
- Used in this course (Lecture 6 on representation in FOL)
- Constants are objects: john, apples
- Predicates are properties and relations:
- likes(john, apples)
- Functions transform objects:
 - likes(john, fruit_of(apple_tree))
- Variables represent any object: likes(X, apples)
- Quantifiers qualify values of variables
- True for all objects (Universal): $\forall X$. likes(X, apples)
- Exists at least one object (Existential): ∃X. likes(X, apples)

Example: FOL Sentence

• "Every rose has a thorn"

$$\forall X. (rose(X) \rightarrow \exists Y. (has(X, Y) \land thorn(Y)))$$

- For all X
 - if (X is a rose)
 - then there exists Y
 - (X has Y) and (Y is a thorn)

Higher Order Logic

- · More expressive than first order
- Functions and predicates are also objects
 - Described by predicates: binary(addition)
 - Transformed by functions: differentiate(square)
 - Can quantify over both
- E.g. define red functions as having zero at 17

$$\forall F.(red(F) \leftrightarrow F(0) = 17)$$

• Much harder to reason with

Example: FOL Sentence

 "On Mondays and Wednesdays I go to John's house for dinner"

$$\forall X. \big((is_mon(X) \lor is_wed(X)) \rightarrow eat_meal(me, houseOf(john), X) \big)$$

- Note the change from "and" to "or"
 - Translating is problematic

Beyond True and False

- · Multi-valued logics
 - More than two truth values
 - e.g., true, false & unknown
 - Fuzzy logic uses probabilities, truth value in [0,1]
- · Modal logics
 - Modal operators define mode for propositions
 - Epistemic logics (belief)
 - e.g. □p (necessarily p), ◊p (possibly p), ...
 - Temporal logics (time)
 - e.g. $\Box p$ (always p), $\Diamond p$ (eventually p), ...

Logic is a Good Representation

- Fairly easy to do the translation when possible
- · Branches of mathematics devoted to it
- It enables us to do logical reasoning
 - Tools and techniques come for free
- · Basis for programming languages
 - Prolog uses logic programs (a subset of FOL)
 - λProlog based on HOL

Propositional and First-Order Logic

Some material adopted from notes by Andreas Geyer-Schulz and Chuck Dyer

Logic roadmap overview

- Propositional logic (review)
- Problems with propositional logic
- First-order logic (review)
 - Properties, relations, functions, quantifiers, ...
 - Terms, sentences, wffs, axioms, theories, proofs, \dots
- Extensions to first-order logic
- Logical agents
 - $-\,Reflex\,\,agents$
- Representing change: situation calculus, frame problem
- Preferences on actions
- Goal-based agents

Big Ideas

- Logic is a great knowledge representation language for many AI problems
- **Propositional logic** is the simple foundation and fine for some AI problems
- First order logic (FOL) is much more expressive as a KR language and more commonly used in AI
- There are many variations: horn logic, higher order logic, three-valued logic, probabilistic logics, etc.

Propositional logic

- Logical constants: true, false
- Propositional symbols: P, Q,... (atomic sentences)
- Wrapping parentheses: (...)
- Sentences are combined by **connectives**:

∧ and [conjunction]∨ or [disjunction]

⇒ implies [implication / conditional]

⇔ is equivalent[biconditional]¬ not [negation]

• Literal: atomic sentence or negated atomic sentence P, ¬ P

Propositional logic (PL)

- Simple language for showing key ideas and definitions
- User defines set of propositional symbols, like P and Q
- User defines **semantics** of each propositional symbol:
- $-\,P$ means "It is hot", Q means "It is humid", etc.
- A sentence (well formed formula) is defined as follows:
- A symbol is a sentence
- If S is a sentence, then \neg S is a sentence
- If S is a sentence, then (S) is a sentence
- If S and T are sentences, then (S \vee T), (S \wedge T), (S \rightarrow T), and (S \leftrightarrow T) are sentences
- A sentence results from a finite number of applications of the rules

Examples of PL sentences

• $(P \land Q) \rightarrow R$

"If it is hot and humid, then it is raining"

 $\bullet Q \rightarrow P$

"If it is humid, then it is hot"

• Q

"It is humid."

• We're free to choose better symbols, btw:

Ho = "It is hot"

Hu = "It is humid"

R = "It is raining"

Some terms

- The meaning or **semantics** of a sentence determines its **interpretation**
- Given the truth values of all symbols in a sentence, it can be "evaluated" to determine its **truth value** (True or False)
- A **model** for a KB is a *possible world* an assignment of truth values to propositional symbols that makes each sentence in the KB True

Model for a KB

- Let the KB be $[P \land Q \rightarrow R, Q \rightarrow P]$
- What are the possible models? Consider all possible assignments of T|F to P, Q and R and check truth tables

P: it's hot

Q: it's humid

R: it's raining

- -FFF: OK
- -FFT: OK
- -FTF: NO
- -FTT: NO
- -TFF: OK
- -TFT: OK
- -TTF: NO
- -TTT: OK
- If KB is $[P \land Q \rightarrow R, Q \rightarrow P, Q]$, then the only model is TTT

Truth tables

- Truth tables are used to define logical connectives
- and to determine when a complex sentence is true given the values of the symbols in it

Truth tables for the five logical connectives

P	ϱ	¬p	$P \wedge Q$	$P \lor Q$	$P\Rightarrow Q$	$P \Leftrightarrow Q$
Fell se	Fed se	Trace	Fulse	Folse	Trise	True
Fell se Time	True Fed se	Tinte False	False False	True True	True False	Folse Folse
Time	Tirse	Rilse	True	True	True	True

Example of a truth table used for a complex sentence

P H	$P \lor H$	$(P \lor H) \land \neg H$	$((P \vee H) \wedge \neg H) \implies P$
Folse	Folse True True True	Folse Folse True Folse	True True True True

More terms

- A **valid sentence** or **tautology** is a sentence that is True under all interpretations, no matter what the world is actually like or what the semantics is. Example: "It's raining or it's not raining"
- An inconsistent sentence or contradiction is a sentence that is False under all interpretations. The world is never like what it describes, as in "It's raining and it's not raining."
- P entails Q, written $P \models Q$, means that whenever P is True, so is Q. In other words, all models of P are also models of Q.

On the implies connective: $P \rightarrow Q$

- Note that \rightarrow is a logical connective
- So $P \rightarrow Q$ is a logical sentence and has a truth value, i.e., is either true or false
- If we add this sentence to the KB, it can be used by an inference rule, *Modes Ponens*, to derive/infer/prove Q if P is also in the KB
- Given a KB where P=True and Q=True, we can also derive/infer/prove that $P\rightarrow Q$ is True

$P \rightarrow Q$

- When is $P \rightarrow Q$ true? Check all that apply
 - □ P=Q=true
 - ☐ P=Q=false
 - ☐ P=true, Q=false
 - ☐ P=false, Q=true

Inference rules

- Logical inference creates new sentences that logically follow from a set of sentences (KB)
- An inference rule is **sound** if every sentence X it produces when operating on a KB logically follows from the KB
- -i.e., inference rule creates no contradictions
- An inference rule is **complete** if it can produce every expression that logically follows from (is entailed by) the KB.
 - -Note analogy to complete search algorithms

$P \rightarrow Q$

- When is $P \rightarrow Q$ true? Check all that apply
 - **■** P=Q=true
 - **■** P=Q=false
 - ☐ P=true, Q=false
 - P=false, Q=true
- We can get this from the truth table for \rightarrow
- Note: in FOL it's much harder to prove that a conditional true.
 - -Consider proving prime(x) \rightarrow odd(x)

Sound rules of inference

- Here are some examples of sound rules of inference
- Each can be shown to be sound using a truth table

RULE	PREMISE	CONCLUSION
Modus Ponens	$A, A \rightarrow B$	В
And Introduction	A, B	$A \wedge B \\$
And EliminationA ∧ l	B A	
Double Negation	$\neg \neg A$	A
Unit Resolution	$A \vee B, \neg B$	A
Resolution	$A \vee B, \neg B \vee C$	$\mathbf{A} \vee \mathbf{C}$

Soundness of modus ponens

A	В	$A \rightarrow B$	OK?
True	True	True	1
True	False	False	1
False	True	True	√
False	False	True	1

Resolution

- A KB is actually a set of sentences all of which are true, i.e., a conjunction of sentences.
- To use resolution, put KB into *conjunctive normal form* (CNF), where each sentence written as a disjunction of (one or more) literals

Example

Tautologies

 $(A \rightarrow B) \leftrightarrow (\sim A \lor B)$ $(A \lor (B \land C)) \leftrightarrow (A \lor B) \land (A \lor C)$

- KB: $[P \rightarrow Q, Q \rightarrow R \land S]$
- KB in CNF: [~PVQ, ~QVR, ~QVS]
- Resolve KB(1) and KB(2) producing: $\sim P \lor R$ (i.e., $P \rightarrow R$)
- Resolve KB(1) and KB(3) producing: $\sim P \lor S$ (i.e., $P \rightarrow S$)
- New KB: $[\sim P \lor Q$, $\sim Q \lor \sim R \lor \sim S$, $\sim P \lor R$, $\sim P \lor S$]

Resolution

- **Resolution** is a valid inference rule producing a new clause implied by two clauses containing *complementary literals*
- A literal is an atomic symbol or its negation, i.e., P, ∼P
- Amazingly, this is the only interference rule you need to build a sound and complete theorem prover
 - Based on proof by contradiction and usually called resolution refutation
- The resolution rule was discovered by Alan Robinson (CS, U. of Syracuse) in the mid 60s

Soundness of the resolution inference rule

etiz	β	γ	$\alpha \vee \beta$	$\neg \beta \lor \gamma$	α∀γ
Follow	Folke	Folse	Folse	True	False
Folise	Feikse	True	Felse	True	True
Folise	True	Follow	Тэне	Folise	False
Follow	Time	Tine	<u>True</u>	True	Type
True	<u>Folkse</u>	<u>Follse</u>	Trice	Truse	Time
True	<u> Fakse</u>	True	True	Truse	True
True	True	False	Тэне	False	Tsnc
True	True	Trne	True	True	Time

From the rightmost three columns of this truth table, we can see that

 $(\alpha \lor \beta) \land (\beta \lor \gamma) \leftrightarrow (\alpha \lor \gamma)$

is valid (i.e., always true regardless of the truth values assigned to $\alpha,\,\beta$ and γ

Proving things

- A **proof** is a sequence of sentences, where each is a premise or is derived from earlier sentences in the proof by an inference rule
- The last sentence is the **theorem** (also called goal or query) that we want to prove
- Example for the "weather problem"

1 Hu premise "It's humid"

2 Hu→Ho premise "If it's humid, it's hot"

3 Ho modus ponens(1,2) "It's hot"

4 (Ho∧Hu)→R premise "If it's hot & humid, it's raining"

5 Ho. Hu and introduction(1,3) "It's hot and humid"

6 R modus ponens(4,5) "It's raining"

saa an Hann alawaa ha

Horn sentences

• A Horn sentence or Horn clause has the form:

 $P1 \wedge P2 \wedge P3 \dots \wedge Pn \rightarrow Qm \text{ where } n \ge 0, \text{ m in}\{0,1\}$

- Note: a conjunction of 0 or more symbols to left of
 → and 0-1 symbols to right
- Special cases:

-n=0, m=1: P (assert P is true)

-n>0, m=0: $P \land Q \rightarrow$ (constraint: both P and Q can't be true)

- n=0, m=0: (well, there is nothing there!)

• Put in CNF: each sentence is a disjunction of literals with at most one non-negative literal

$$\neg P1 \lor \neg P2 \lor \neg P3 \dots \lor \neg Pn \lor Q$$

$(P \to O) = (\neg P \lor O)$

Significance of Horn logic

- We can also have horn sentences in FOL
- Reasoning with horn clauses is much simpler
- Satisfiability of a propositional KB (i.e., finding values for a symbols that will make it true) is NP complete
- -Restricting KB to horn sentences, satisfiability is in P
- For this reason, FOL Horn sentences are the basis for Prolog and Datalog
- What Horn sentences give up are handling, in a general way, (1) negation and (2) disjunctions

Entailment and derivation

- Entailment: KB |= Q
 - −Q is entailed by KB (set sentences) iff there is no logically possible world where Q is false while all the sentences in KB are true
 - -Or, stated positively, Q is entailed by KB iff the conclusion is true in every logically possible world in which all the premises in KB are true
- Derivation: KB |- Q
 - -We can derive Q from KB if there's a proof consisting of a sequence of valid inference steps starting from the premises in KB and resulting in Q

Two important properties for inference

Soundness: If KB |- Q then KB |= Q

- -If Q is derived from KB using a given set of rules of inference, then Q is entailed by KB
- Hence, inference produces only real entailments, or any sentence that follows deductively from the premises is valid

Completeness: If KB |= Q then KB |- Q

- -If Q is entailed by KB, then Q can be derived from KB using the rules of inference
- -Hence, inference produces all entailments, or all valid sentences can be proved from the premises

Problems with Propositional Logic

Propositional logic: pro and con

- Advantages
 - -Simple KR language sufficient for some problems
 - -Lays the foundation for higher logics (e.g., FOL)
 - -Reasoning is decidable, though NP complete, and efficient techniques exist for many problems
- Disadvantages
 - -Not expressive enough for most problems
 - -Even when it is, it can very "un-concise"

PL is a weak KR language

- Hard to identify "individuals" (e.g., Mary, 3)
- Can't directly talk about properties of individuals or relations between individuals (e.g., "Bill is tall")
- Generalizations, patterns, regularities can't easily be represented (e.g., "all triangles have 3 sides")
- First-Order Logic (FOL) is expressive enough to represent this kind of information using relations, variables and quantifiers, e.g.,
 - Every elephant is gray: $\forall \ x \ (elephant(x) \rightarrow gray(x))$
 - *There is a white alligator*: $\exists x (alligator(X) \land white(X))$

PL Example

- Consider the problem of representing the following information:
 - -Every person is mortal.
 - -Confucius is a person.
 - -Confucius is mortal.
- How can these sentences be represented so that we can infer the third sentence from the first two?

Hunt the Wumpus domain

• Some atomic propositions:

S12 = There is a stench in cell (1,2) B34 = There is a breeze in cell (3,4)

W22 = Wumpus is in cell (2,2) V11 = We've visited cell (1,1)

OK11 = Cell(1,1) is safe.

...

• Some rules:

 $(R1) \neg S11 \rightarrow \neg W11 \land \neg W12 \land \neg W21$

 $(R2) \neg S21 \rightarrow \neg W11 \land \neg W21 \land \neg W22 \land \neg W31$

 $(R3) \neg S12 \rightarrow \neg W11 \land \neg W12 \land \neg W22 \land \neg W13$

(R4) $S12 \rightarrow W13 \lor W12 \lor W22 \lor W11$

...

• The lack of variables requires us to give similar rules for each cell!

PL Example

- In PL we have to create propositional symbols to stand for all or part of each sentence, e.g.:
 - P = "person"; Q = "mortal"; R = "Confucius"
- The above 3 sentences are represented as:

$$P \rightarrow Q; R \rightarrow P; R \rightarrow Q$$

- The 3rd sentence is entailed by the first two, but we need an explicit symbol, R, to represent an individual, Confucius, who is a member of the classes *person* and *mortal*
- Representing other individuals requires introducing separate symbols for each, with some way to represent the fact that all individuals who are "people" are also "mortal"

After the third move

We can prove that the Wumpus is in (1,3) using the four rules given.

See R&N section 7.5

14.4	10.4	la 4	14.4
1,4	2,4	3,4	4,4
1,3 W1	2,3	9,3	4,3
1,2 S OK	2,2 OK	3,2	4.2
1,1 V GK	2,1 B V OK	3,1 P!	4,1

G = Glitter, Gold
OK = Safe square
P = Pit
S = Sterich

A = Agent

B = Breeze

S = Stench
V = Visited
W = Wumpus

Proving W13

```
Apply MP with ¬S11 and R1:

¬ W11 ∧ ¬ W12 ∧ ¬ W21

Apply And-Elimination to this, yielding 3 sentences:

¬ W11, ¬ W12, ¬ W21

Apply MP to ~S21 and R2, then apply And-elimination:

¬ W22, ¬ W21, ¬ W31

Apply MP to S12 and R4 to obtain:

W13 ∨ W12 ∨ W22 ∨ W11

Apply Unit resolution on (W13 ∨ W12 ∨ W22 ∨ W11) and ¬W11:

W13 ∨ W12 ∨ W22

Apply Unit Resolution with (W13 ∨ W12 ∨ W22) and ¬W22:

W13 ∨ W12

Apply UR with (W13 ∨ W12) and ¬W12:

W13

QED
```

Propositional logic summary

- Inference is the process of deriving new sentences from old
 - Sound inference derives true conclusions given true premises
 - Complete inference derives all true conclusions from a set of premises
- A valid sentence is true in all worlds under all interpretations
- If an implication sentence can be shown to be valid, then—given its premise—its consequent can be derived
- Different logics make different **commitments** about what the world is made of and what kind of beliefs we can have
- **Propositional logic** commits only to the existence of facts that may or may not be the case in the world being represented
 - Simple syntax and semantics suffices to illustrate the process of inference
 - Propositional logic can become impractical, even for very small worlds

Propositional Wumpus hunter problems

- Lack of variables prevents stating more general rules
 - We need a set of similar rules for each cell
- Change of the KB over time is difficult to represent
 - -Standard technique is to index facts with the time when they're true
 - -This means we have a separate KB for every time point