Stability Analysis on Replicator Games with Perturbations

Wen Perng
Dept. of Electrical Engineering
National Taiwan University, Taiwan, ROC

Motivation

 The <u>oscillation</u> of Shapley's Game (rock-paper-scissor game)

- The phase portrait of <u>replicator</u> dynamics $\frac{d}{dt}p_i^t = \alpha\beta \cdot p_i^t(u_{i\sigma}^t \overline{u}_{\cdot\sigma}^t)$
- Convergence with inclusion of decreasing perturbations (Gibbs entropy)

Approach

- Control theory approach Stability Analysis
 - What are the stability/asymptotic stability criteria?
 - Linearization around stationary points
 - State space analysis via eigenvalue decomposition
 - Meaning of the game Nash equilibria.
- System modification under perturbation
 - What are the effects/explanation of perturbation
 - Payoff modification via perturbations
 - MATLAB simulations

Tasks

Replicator Dynamics and Stability Analysis:

Meaning of stable/unstable stationary points.

- -2x2 game with single Nash.
- -2x2 the game of chicken (saddle mixed strategy, cold war).
- 3x3 Shapley's game (oscillatory).

Stability with Gibbs entropy as Perturbation

- Reasoning and meaning.
- Stability criteria.

Expected Results

- Description and meaning of:
 - Nash equilibrium in replicator dynamics.
 - Instability/Stability in replicator dynamics.
 - Oscillations
- Demonstration of asymptotic stability with inclusion of perturbation
- Constraints on perturbation
- An physical explanation for the perturbation

Main References

- Replicator Dynamics
 - https://www.ma.imperial.ac.uk/~svanstri/GamesAn dDynamics/The%20Replicator%20Dynamic%20(Dra ft).pdf
 - https://www.cs.ubc.ca/~kevinlb/teaching/cs532a%20-%202004-5/Class%20projects/Tim.pdf
 - https://www.pnas.org/doi/10.1073/pnas.1400823111
- Smoothed Fictitious Play
 - https://justinkang221.github.io/files/paper5.pdf
- Prof. CCW's course on Linear Systems, NTU