We also have

$$(b^{-1}a^{-1})(ab) = b^{-1}(a^{-1}(ab))$$
 associativity
 $= b^{-1}((a^{-1}a)b)$ associativity
 $= b^{-1}(eb)$ a^{-1} is the inverse of a
 $= b^{-1}b$ e is the identity element
 $= e$. b^{-1} is the inverse of b .

Therefore $b^{-1}a^{-1}$ is the inverse of ab.

Observe that the inverse of ba is $a^{-1}b^{-1}$. Proposition 2.3 implies that the set of invertible elements of a monoid M is a group, also with identity element e.

Definition 2.2. If a group G has a finite number n of elements, we say that G is a group of order n. If G is infinite, we say that G has infinite order. The order of a group is usually denoted by |G| (if G is finite).

Given a group G, for any two subsets $R, S \subseteq G$, we let

$$RS = \{r \cdot s \mid r \in R, \ s \in S\}.$$

In particular, for any $g \in G$, if $R = \{g\}$, we write

$$gS = \{g \cdot s \mid s \in S\},\$$

and similarly, if $S = \{g\}$, we write

$$Rg = \{r \cdot g \mid r \in R\}.$$

From now on, we will drop the multiplication sign and write g_1g_2 for $g_1 \cdot g_2$.

Definition 2.3. Let G be a group. For any $g \in G$, define L_g , the *left translation by* g, by $L_g(a) = ga$, for all $a \in G$, and R_g , the *right translation by* g, by $R_g(a) = ag$, for all $a \in G$.

The following simple fact is often used.

Proposition 2.4. Given a group G, the translations L_g and R_g are bijections.

Proof. We show this for L_g , the proof for R_g being similar.

If $L_g(a) = L_g(b)$, then ga = gb, and multiplying on the left by g^{-1} , we get a = b, so L_g injective. For any $b \in G$, we have $L_g(g^{-1}b) = gg^{-1}b = b$, so L_g is surjective. Therefore, L_g is bijective.

Definition 2.4. Given a group G, a subset H of G is a subgroup of G iff

(1) The identity element e of G also belongs to H ($e \in H$);