Twitter Sentiment Analysis for Stock Market Prediction at Scale

Kirby Bloom, Ravi Ayyappan, Nishant Velagapudi, Brandon Cummings University of California, Berkeley, W251 - Scaling Up, Really Big Data

Introduction

- Role of Social Media in capturing people's sentiments
 - Warehouse of emotions
 - o People share their happiness, sadness, frustrations and anger
 - o Provides an excellent platform to understand and react to consumer attitudes
- Case Study Stock market prediction

Goal

- Build a framework that obtains, analyzes and classifies sentiments of a stream of tweets
 - Scalable
- Proof of concept tie tagged tweets to external data of interest
 - Case study stock prices
 - Analytics
 - Prediction

Data Source & Elements

Live Twitter Stream

Filtering based on S&P 100 company names

~ 600,000 tweets per day

Case: Stock Data Collection

S&P 100 Companies, resulting in 102 stock ticker symbols

300,000 Per Minute Stock Changes Collected

Daily cron worker at 5:01pm to submit spark job

https://api.iextrading.com/1.0/stock/aapl/chart/1d?format=json (per minute open json API)

Infrastructure

Approach

Gather

2 Store

3 Optimize

4 Analyze

Topology (SJC)

Gather

Mongo
Cluster

Mongo
Cluster

Mongo
Sign 4 Core
25GB Storage
300 GB Storage

Mongo Cluster


```
sharding version: {
   "minCompatibleVersion" : 5,
   "clusterId" : ObjectId("5bfe35e53d216d3bf77d1c17")
     ___id" : "stock-tweet-5", "host" : "stock-tweet-5/169.53.133.180:27022", "state" : 1 }
active mongoses:
   "4.0.4" : 1
   Currently enabled: yes
balancer:
   Currently enabled: yes
   Currently running: no
   Failed balancer rounds in last 5 attempts: 0
   Migration Results for the last 24 hours:
        No recent migrations
```


Mongo Cluster


```
Quantitative (Stocks)
```

```
qualitative_stock_db.tweets
shard key: { "tweet_id" : "hashed" }
unique: false
balancing: true
chunks:
stock-tweet-2 21
stock-tweet-3 22
stock-tweet-4 21
stock-tweet-5 22
```

Optimize

Mongo Connector 5.6
Kibana

ElasticSearch

Optimize

Mongo Connector 5.6 Kibana

ElasticSearch

```
{
  "namespaces": {
    "db.included_collection": true,
    "db.filtered_collection1": {
        "includeFields": ["included_field", "included.nested.field"]
    },
    "db.filtered_collection2": {
        "excludeFields": ["excluded_field", "excluded.nested.field"]
    },
    "filtered_database.*": {
        "includeFields": ["included_field", "included.nested.field"]
    },
    "filtered_renamed_database.*": {
        "rename": "new_filtered_database.*",
        "includeFields": ["included_field", "included.nested.field"]
    }
}
```

```
root@search1:~# curl "169.53.133.184:9200/ cat/indices"
yellow open quantitative stock db SHrR0gx5TvCunxDirJbwsQ 5 1 358020
yellow open qual copy
                                  8chgQDmrSi2hnIyWltidgg 5 1 3384227 762647
                                                                              4.8gb
yellow open mongodb meta
                                  d9GsGQl5S5WWKu357lK4oQ 5 1 4321678 1478649 230.6mb 230.6mb
yellow open .kibana
                                  Za3HvpyGRcmRATt9nPyZcg 1 1
                                                                             45.3kb
                                                                                     45.3kb
                                  mtzdmPBwQdi z3Dm27bndw 5 1 35802
yellow open cleanedstocks
                                                                       6302
                                                                                 4mb
                                                                                         4mb
yellow open qual conv stock db
                                  QEyP5592ToG8P3TboH54zQ 5 1 3665277 1022863
                                                                              5.5gb
                                                                                      5.5gb
yellow open qualitative stock db
                                  Oy9zedxbQhiDb4vQUdLrPA 5 1 3673550 1544783
                                                                              6.3gb
yellow open config
                                  8jzeYFHzTieq5xcfqeFYrA 5 1
                                                                          70 235.4kb 235.4kb
yellow open testdb
                                  pENPlfDTRvCSnu3DorwWNA 5 1 210972
                                                                       40668 325.6mb 325.6mb
```

Throughput

OuantCount

QuantCount
Count

35,802

Tweet Count

3,665,277

Reflection

- Pros
 - Fault tolerant
 - Node failure
 - Replay / restructure
 - Very flexible
 - Lot of configuration points
 - Various secondary data sources
 - Horizontally scalable
 - Built as cluster(s)

- Cons
 - Longer setup time
 - Larger footprint to maintain
 - Nodes
 - Daemons
 - Cost
 - Overbuilt in spots

Analysis

Sentiment

Sentiment was calculated using the Stanford CoreNLP pipeline

- Base sentence represented as a tree
- Sentiment of each node is calculated using a pre-trained RNN for continuous scores
 - Sub-tree elements aggregated into a document-level score
- Outputs range from 1-5
 - Unusual to find 4 and 5 scores
- Concerns about CoreNLP Sentiment Annotation RNN suitability for twitter

Analysis - Prediction

RNN for stock price change prediction:

- Aggregate data into arbitrary granularity
- Single-layer LSTM architecture
- Predict price of one ticker symbol
 - Uses variable amount of data
- Stock only Poor performance
 - 9 days of data for train+eval
 - Test time periods show behavior unseen in training
- Improved performance with Sentiment

RNN Results

	Amazon		Facebook		Apple	
Minutes	Avg_shift	RMSE	Avg_shift	RMSE	Avg_shift	RMSE
1	0.0166	0.012	0.0105	0.61	0.0023	0.031
3	0.0494	0.0287	0.0317	0.104	0.00684	0.124
5	0.0833	0.13	0.0525	0.134	0.0122	0.0224
10	0.166	0.114	0.106	0.109	0.022	0.258
30 + Sentiment	0.352	0.309	0.325	0.171	0.386	0.783

Visualizations - Wordcloud (All words)

Visualizations - Wordcloud (Positive Sentiment)

Visualizations - Wordcloud (Negative Sentiment)

Visualizations

Conclusion

- Created scalable architecture for tweet collection, scoring, analysis
- Collected ~3.6m tweets (~360k/day)
- Calculated sentiment for incoming tweets using pretrained RNN
- Developed Kibana dashboards for exploratory analysis on sentiment & stock prices
- Trained RNN for stock price prediction
 - Using only historical stock price poor performance
 - Using historical prices + related tweet sentiments better performance
- Future work: challenge the infrastructure with more data

Thanks