sequences let us do calculus!

a sequence is an indexed set of objects.

$$\{a_n\}_{n=1}^N = \{a_1, a_2, a_3, \dots, a_N\}$$

we can make sequences in any space we want, not just the real numbers \mathbb{R} .

$${a_n}_{n=1}^{\infty} = {a_1, a_2, a_3, \dots}$$

$$\left\{\frac{1}{n}\right\}_{1}^{\infty} = \left\{1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \dots\right\}$$

a sequence has a limit at L if the entries a_n get arbitrarily close to L as $n \to \infty$.

$$\lim_{n \to \infty} a_n = L$$

$$\lim_{n\to\infty} a_n = L$$

 \hookrightarrow for every positive number $\epsilon...$

$$\lim_{n\to\infty} a_n = L$$

- \hookrightarrow for every positive number $\epsilon...$
- \hookrightarrow we can choose a big index N, where...

$$\lim_{n\to\infty} a_n = L$$

 \hookrightarrow for every positive number ϵ ...

 \hookrightarrow we can choose a big index N, where...

 \hookrightarrow for every index m bigger than N...

$$\lim_{n\to\infty} a_n = L$$

 \hookrightarrow for every positive number $\epsilon...$

 \hookrightarrow we can choose a big index N, where...

 \hookrightarrow for every index m bigger than N...

 \hookrightarrow the distance from a_m to L is less than ϵ .

$$\lim_{n \to \infty} a_n = L$$
 \iff

$$\forall \epsilon > 0, \exists N \in \mathbb{N} \text{ s.t. } \forall m > N, |a_m - L| < \epsilon$$

$$\lim_{n \to \infty} a_n = L$$
 \iff

$$\underbrace{\forall \epsilon > 0}_{\text{for every positive number }\epsilon}, \ \exists N \in \mathbb{N} \ \text{ s.t. } \ \forall m > N \ , \ |a_m - L| < \epsilon$$

$$\lim_{n\to\infty}a_n=L$$

$$\iff$$
 we can choose a big index N
$$\forall \epsilon>0\ ,\ \exists N\in\mathbb{N}\ \text{ s.t. }\ \forall m>N\ ,\ |a_m-L|<\epsilon$$
 for every positive number ϵ

$$\lim_{n\to\infty}a_n=L$$

$$\iff$$
 we can choose a big index N
$$\forall \epsilon>0\ , \ \exists N\in\mathbb{N}\ \text{ s.t. } \ \forall m>N\ , \ |a_m-L|<\epsilon$$
 for every positive number ϵ where, for every m bigger than N

$$\lim_{n\to\infty}a_n=L$$

$$\iff$$
 we can choose a big index N the distance from a_m to L is less than ϵ .
$$\forall \epsilon>0\ , \ \exists N\in\mathbb{N} \ \text{ s.t. } \ \forall m>N\ , \ |a_m-L|<\epsilon$$
 for every positive number ϵ where, for every m bigger than N

$$L=0, \epsilon=1/10$$

$$L = 0, \epsilon = 1/10$$

if we choose N=10, then for m>10,

$$L = 0, \epsilon = 1/10$$

if we choose N=10, then for m>10,

$$\frac{1}{m} = a_m \quad a_N = \frac{1}{10}$$

$$L = 0, \epsilon = 1/10$$

if we choose N=10, then for m>10,

$$\frac{1}{m} = a_m < a_N = \frac{1}{10}$$

$$|a_N - L| = \left| \frac{1}{10} - 0 \right|$$
$$= \frac{1}{10}$$
$$= \epsilon$$

$$|a_m - L| = \left| \frac{1}{m} - 0 \right|$$

$$|a_m - L| = \left| \frac{1}{m} - 0 \right|$$

$$< \left| \frac{1}{10} - 0 \right|$$

$$|a_m - L| = \left| \frac{1}{m} - 0 \right|$$

$$< \left| \frac{1}{10} - 0 \right|$$

$$= \frac{1}{10}$$

$$|a_m - L| = \left| \frac{1}{m} - 0 \right|$$

$$< \left| \frac{1}{10} - 0 \right|$$

$$= \frac{1}{10}$$

$$= \epsilon$$

if we can do this for every $\epsilon>0...$

if we can do this for every $\epsilon > 0...$

then our sequence converges to 0.

big picture:

our sequence has a limit at L if the elements eventually get really close to L.

an important type of sequence is called a *Cauchy* sequence.

in a Cauchy sequence, the elements get arbitrarily close to *each other*.

 $\{a_n\}_{n=1}^{\infty}$ is Cauchy when:

 $\{a_n\}_{n=1}^{\infty}$ is Cauchy when:

 \hookrightarrow for every positive number $\epsilon...$

$$\{a_n\}_{n=1}^{\infty}$$
 is Cauchy when:

- \hookrightarrow for every positive number $\epsilon...$
- \hookrightarrow we can choose a big index N, where...

$$\{a_n\}_{n=1}^{\infty}$$
 is Cauchy when:

- \hookrightarrow for every positive number ϵ ...
- \hookrightarrow we can choose a big index N, where...
- \hookrightarrow for every index p bigger than N and every index q bigger than $N\dots$

$\{a_n\}_{n=1}^{\infty}$ is Cauchy when:

- \hookrightarrow for every positive number $\epsilon...$
- \hookrightarrow we can choose a big index N, where...
- \hookrightarrow for every index p bigger than N and every index q bigger than N...
- \hookrightarrow the distance from a_p to a_q is less than ϵ .

$$\{a_n\}_{n=1}^\infty$$
 is Cauchy

$$\iff$$

$$\forall \epsilon > 0, \exists N \in \mathbb{N} \text{ s.t. } \forall p, q > N, |a_p - a_q| < \epsilon$$

$$\{a_n\}_{n=1}^{\infty}$$
 is Cauchy \iff

$$\underbrace{\forall \epsilon > 0}_{\text{for every positive number }\epsilon}, \ \exists N \in \mathbb{N} \ \text{ s.t. } \ \forall p,q > N \ , \ |a_p - a_q| < \epsilon$$

$$\{a_n\}_{n=1}^{\infty}$$
 is Cauchy

$$\iff$$

we can choose a big index N

$$\forall \epsilon > 0 \,, \; \overrightarrow{\exists N \in \mathbb{N}} \; \text{ s.t. } \; \forall p,q > N \,, \; |a_p - a_q| < \epsilon$$

for every positive number $\boldsymbol{\epsilon}$

$$\{a_n\}_{n=1}^{\infty}$$
 is Cauchy

$$\iff$$

we can choose a big index ${\cal N}$

$$\forall \epsilon > 0 \,, \, \exists N \in \mathbb{N} \, \text{ s.t. } \, \forall p,q > N \,, \, |a_p - a_q| < \epsilon$$

for every positive number ϵ where, for every p and q bigger than N

$$\{a_n\}_{n=1}^{\infty}$$
 is Cauchy

$$\iff$$

we can choose a big index ${\cal N}$

the distance from a_p to a_q is less than ϵ .

$$\forall \epsilon > 0$$
, $\exists N \in \mathbb{N}$ s.t. $\forall p, q > N$, $|a_p - a_q| < \epsilon$

for every positive number ϵ where, for every p and q bigger than N

$$\left\{\sin\left(\frac{\pi\cdot n}{2}\right)\cdot e^{\frac{1/10}{n}}\right\}_{n=0}^{\infty}$$

$$N=2, \epsilon=rac{\pi}{2}$$
 $\Longrightarrow |a_p-a_q|<rac{\pi}{2}$ (when p and q are bigger than 2)

let p = 5 and q = 7:

$$|a_p - a_q|$$

let p=5 and q=7:

$$|a_p - a_q| = \left| \sin\left(\frac{\pi \cdot 5}{2}\right) \cdot e^{\frac{1/10}{5}} - \sin\left(\frac{\pi \cdot 7}{2}\right) \cdot e^{\frac{1/10}{7}} \right|$$

let p=5 and q=7:

$$|a_p - a_q| = \left| \sin\left(\frac{\pi \cdot 5}{2}\right) \cdot e^{\frac{1/10}{5}} - \sin\left(\frac{\pi \cdot 7}{2}\right) \cdot e^{\frac{1/10}{7}} \right|$$

 $\approx |2.177 - 1.074|$

let p=5 and q=7:

$$|a_p - a_q| = \left| \sin\left(\frac{\pi \cdot 5}{2}\right) \cdot e^{\frac{1/10}{5}} - \sin\left(\frac{\pi \cdot 7}{2}\right) \cdot e^{\frac{1/10}{7}} \right|$$

 $\approx |2.177 - 1.074|$
 $= 1.103$

let p = 5 and q = 7:

$$|a_p - a_q| = \left| \sin\left(\frac{\pi \cdot 5}{2}\right) \cdot e^{\frac{1/10}{5}} - \sin\left(\frac{\pi \cdot 7}{2}\right) \cdot e^{\frac{1/10}{7}} \right|$$

$$\approx |2.177 - 1.074|$$

$$= 1.103$$

$$< \frac{\pi}{2} \quad (\approx 1.5708)$$

let p = 5 and q = 7:

$$|a_p - a_q| = \left| \sin\left(\frac{\pi \cdot 5}{2}\right) \cdot e^{\frac{1/10}{5}} - \sin\left(\frac{\pi \cdot 7}{2}\right) \cdot e^{\frac{1/10}{7}} \right|$$

$$\approx |2.177 - 1.074|$$

$$= 1.103$$

$$< \frac{\pi}{2} \quad (\approx 1.5708)$$

$$= \epsilon$$

think about the sequence

$${a_n} = {3, 3.1, 3.14, 3.141, 3.1415, 3.14159, \dots}$$

think about the sequence

$${a_n} = {3, 3.1, 3.14, 3.141, 3.1415, 3.14159, \dots}$$

$$\lim_{n\to\infty} a_n = \pi$$

think about the function $f(x) = x^2$

think about the function $f(x) = x^2...$ but force the domain of f to be the rational numbers \mathbb{Q} .

the intermediate value theorem says that

on [a,b], f(x) takes on any value between f(a) and f(b) in [a,b].

if a = 1 and b = 2, then f(a) = 1 and f(b) = 4...

if a=1 and b=2, then f(a)=1 and f(b)=4...

$$f(a) < \pi < f(b)$$

... but if we take

$$\{f(\sqrt{a_n})\} = \{f(\sqrt{3}), f(\sqrt{3.14}), f(\sqrt{3.141})\}$$

$$\lim_{n \to \infty} f(\sqrt{a_n}) = f(\sqrt{\pi}) = \pi$$

 $1 < \pi < 4$

$$\lim_{n \to \infty} f(\sqrt{a_n}) = f(\sqrt{\pi}) = \pi$$

$$1 < \pi < 4$$

... but is π a rational number?

the intermediate value theorem fails.

the real numbers $\mathbb R$ are *complete*:

the real numbers \mathbb{R} are *complete*:

every Cauchy sequence converges to a real number.