Chap. 8 (added) DNS Security

- □ DNS Service
- □ DNS Attacks
- □ DNSSEC (DNS Security)

DNS name service

- □ Domain: a subtree of a domain name space
- □ Zone: some part of the domain name space
 - Authoritative name servers have complete information about a zone
- Distributedmanagement thrudelegation

DNS name servers

- □ Distributed database: no server has all name-to-IP address mappings
- □ local name servers:
 - each ISP, company has local (default) name server
 - host DNS query first goes to local name server
- □ authoritative name server:
 - keeps DNS info. for hosts within a specific zone
 - can perform name/address translation for that host's name

DNS name servers

□ root name server:

- contacted by local name server that can not resolve name
- contacts authoritative name server if name mapping not known
- gets mapping
- returns mapping to local name server
- dozen root name servers worldwide

DNS: iterated queries

- ☐ Resolver:
 - queries the name server
 - interpret the responses
 - return result to user
- □ recursive query:
 - puts burden of name resolution on contacted name server
- □ iterated query:
 - contacted server replies with name of server to contact

DNS: caching records

□ DNS caching

- Once name server learns mapping, it caches mapping
- cache entries timeout (disappear) after some time

DNS Resource Records

□ DNS: distributed DB storing resource records (RR)

RR format: (name, value, type,ttl)

- □ Type=A
 - name is hostname
 - value is IP address
- ☐ Type=NS
 - name is domain
 - value: IP addr of authoritative name server for this domain

- ☐ Type=CNAME
 - name is an alias name for some "canonical" name
 - value is canonical name
- □ Type=MX
 - value is hostname of mailserver associated with a name (domain name)

DNS protocol, messages

□ DNS protocol : query and reply messages, both with

same message format

- □ msg header
 - identification: 16 bit # to match query and reply
 - flags:
 - query or reply
 - recursion desired
 - recursion available
 - reply is authoritative

	N=-					
identification	flags					
number of questions	number of answer RRs					
number of authority RRs	number of additional RRs					
questions (variable number of questions)						
answers (variable number of resource records)						
authority (variable number of resource records)						
additional information						

DNS query

- ☐ Troubleshooting tools for DNS
 - nslookup
 - dig (domain information gopher)

```
$ dig cic.ulsan.ac.kr ; looks up A records for
; cic.ulsan.ac.kr
$ dig ulsan.ac.kr mx
; looks up MX records for
; ulsan.ac.kr
$ dig @a.root-servers.net . ns
; queries a.root-servers.net (name server)
; for NS records for . domain
```

DNS query

qr: query packet

ra: recursion available

```
gslacks[pts/3]:~> dig www.cse.ucsc.edu
; <<>> DiG 8.2 <<>> www.cse.ucsc.edu
;; res options: init recurs defnam dnsrch
;; got answer:
;; ->>HEADER<<- opcode: RESPONSE, status: NOERROR, id: 4
;; flags: aa rd ra; QUERY: 1, ANSWER: 2, AUTHORITY: 2, ADDITIONAL: 2
:: QUERY SECTION:
     www.cse.ucsc.edu, type = A, class = IN
:: ANSWER SECTION:
www.cse.ucsc.edu.
                     1D IN CNAME
                                      ftp.cse.ucsc.edu.
ftp.cse.ucsc.edu. 1D IN A
                                 128.114.48.173
:: AUTHORITY SECTION:
                                 services.cse.ucsc.edu.
cse.ucsc.edu.
                   1D IN NS
cse.ucsc.edu.
                   1D IN NS
                                 fs1.cse.ucsc.edu.
;; ADDITIONAL SECTION:
services.cse.ucsc.edu. 1D IN A
                                  128,114,48,10
fs1.cse.ucsc.edu.
                   1D IN A
                                 128,114,48,11
```

DNS query

```
gslacks[pts/3]:~> dig www.cse.ucsc.edu
: <<>> DiG 8.2 <<>> www.cse.ucsc.edu
;; res options: init recurs defnam dnsrch
;; got answer:
;; ->>HEADER<<- opcode: RESPONSE, status: NOERROR, id: 4
;; flags: rd ra; QUERY: 1, ANSWER: 2, AUTHORITY: 2, ADDITIONAL: 2
;; QUERY SECTION:
       www.cse.ucsc.edu, type = A, class = IN
:: ANSWER SECTION:
www.cse.ucsc.edu. 23h59m57s IN CNAME ftp.cse.ucsc.edu.
ftp.cse.ucsc.edu. 23h59m57s IN A 128.114.48.173
;; AUTHORITY SECTION:
                  15h54m19s IN NS services.cse.ucsc.edu.
cse.ucsc.edu.
cse.ucsc.edu.
                      15h54m19s IN NS fs1.cse.ucsc.edu.
;; ADDITIONAL SECTION:
services.cse.ucsc.edu. 15h54m19s IN A 128.114.48.10
                 15h54m19s IN A 128.114.48.11
fs1.cse.ucsc.edu.
```

• • • • •

Zone transfer

■ Name servers for a zone

- Primary (master) name server: reads zone data from a file on its host
- Secondary (slave) name server: gets zone data from primary name server that is authoritative for the zone

☐ Zone transfer:

 When a slave name server starts up, it contacts its master server and pulls the zone data over

```
$ dig @192.168.1.85 dumb.target.net axfr
; transfer zone dumb.target.net from 192.168.1.85
```

DNS Package: BIND

- □ DNS package in unix: BIND
 - it has many security problem history

- □ DNS daemon in unix
 - a process called "named"
 - Configuration file: /etc/named.conf

DNS configuration: /etc/named.conf

```
// Config file for name server
options {
        directory "/var/named"; zone file directory
        version "bla bla bla"
                                           secondary name server
        allow-transfer {192.154.1.30};
};
zone "." in {
        type hint;
                                 contains name and IP address of
        file "root.hints";
                                 root name server
};
                                         For converting from name to address
zone "foobar.brian.edu" in {
        type master
        file "pz/db.foobar.brian.edu"
                                         For converting from address to name
zone "1.154.192.in-addr.arpa" in {
        type master;
        file "pz/db.192.154.1";
};
```

DNS Operation – Normal

dns.hacker.com

- □ Normally, DNS is resolved with an authoritative server
- □ (Not shown is lookup to .com root server)

resolving www.bank.com

DNS Cache Poisoning

- □ URL spoofing attack:
 - register a similar name of someone you are attacking
 - e.g., www.ibn.com, ...
- □ Cache poisoning is a more sophisticated version of the same idea

- ☐ The two key ideas for the attack are:
 - The query number (and reply id) are often predictable if you can learn earlier IDs
 - DNS caches previous results

Old Version of the Attack

- On older versions of BIND, replies that came in could include additional lookup information (additional info section)
- This additional lookup information would be stored for future use

Old Version of the Attack

passwords, etc.

The Attack - more

- ☐ The first step of the attack is to learn victim.com's current query id number
- ☐ The simplest way to do that is to get the victim to query the attacker's DNS machine
- This querying can be repeated many times to know how the query ids change over time

The Attack - more

- □ Early versions of DNS servers deterministically incremented the ID field; it was patched by random query IDs
- □ Birthday attack
 - 16-bit query ID (only 65,536 options)
 - the resolver sends many queries, with different IDs, at the same time
 - Send hundreds of reply with random transaction IDs at the same time
 - Increase the probability of making a correct guess

Defenses

- New versions of BIND have harder to predict query IDs
- □ DNSSEC : RFC 2535
 - a secure version of DNS with RSA signed DNS records
- Authentication of DNS responses
 - Each DNS response has a signature of the requested RR
 - Resolver authenticates response using the public key of the authoritative name server

Defenses

□ Split-split defense:

- One DNS server for resolving names for users inside your domain; this server doesn't respond to outside queries
- Another separate DNS server is setup for responding to queries from outsiders
- The two never exchange information
- Your users are not subject to poisoned information

Defenses in /etc/named.conf

```
// name server config file
options {
        directory "/var/named";
        version "version bla bla"
        allow-transfer {192.154.1.30};
                                                  Global access control list
        allow-query { any; };
                                                  (ACL): Only this subnet
        allow-recursion { 192.154.1.0/24; };
                                                  can query us
};
zone "foobar.brian.edu" in {
        type master
        file "pz/db.foobar.brian.edu"
        allow-query { 192.154.1.0/24; }
                                                  Zone specific ACL: take
};
                                                  precedence over a global ACL
zone "1.154.192.in-addr.arpa" in {
        type master;
        file "pz/db.192.154.1";
        allow-query { 192.154.1.0/24; }
};
```

Homework #3

□ BIND package 기능 조사:

- BIND package 기능
- /etc/named.conf 설정파일 기능
- 호스트에서 name resolution 하는 과정: OS별(windows, linux) 조사
- 파일 제출: "hw3-학번-이름.hwp"

□ DNSSEC:

- Security extension of DNS service
- Authoritative name servers secure their zones by performing zone signing
- provides end-to-end authentication using digital signatures b/w a resolver and an authoritative server
- defines a set of new resource record types and modifications to the existing DNS protocol
- RFC 4033, 4034, 4035

□ DNSSEC:

□ DNSSEC:

- each DNSSEC-enabled authoritative NS can have two public keys
- ZSK (Zone Signing Key):
 - -used to sign the RRset of the Zone
- KSK (Key Signing Key):
 - used to sign DNSKEY RRs
 - -can be used as a trust anchor

□ DNSSEC Resource Records:

DNSKEY resource record: defines the public key

						Alg	Public key
corpxyz.com domain name	1296000 TTL	IN Class	DNSKEY Type	257 Flags	3 Proto	5	20181231235959hiZsq1gPtql 4vSymSxBsqzueQW4jrjCBsC ZBvwQMgE07dxaOeTpwpaq I7XhOjlarzM8nTf1PJ+4av1Kr 0EfwS0tEAwD7Isvt2vW24cE

Flags: DNSKEY-flag(bit7), KEY-type(bit15: ZSK or KSK);

256 (ZSK), 257 (KSK)

Proto: DNSSEC protocol type (3)

Alg: type of the public key algorithm

(RSA/MD5, DSA, RSA/SHA1, etc.)

□ DNSSEC Resource Records:

RRSIG resource record: defines the signature of an RRset

Type covered: RR type covered by the RRSIG record
Alg: cryptographic algorithm used to create the DS (RSA/MD5, RSA/SHA-1, ...)
Num of labels: the number of labels in the owner name of the signed records
Key tag: key tag value of the DNSKEY RR that validates the signature
RRset TTL: TTL value of the RRset covered by the RRSIG record

DS: Base64 encoding of the digital signature

□ DNSSEC Resource Records:

- DS (Delegation Signer) resource record:
 - contains a hash of a child zone's KSK and can be used as a trust anchor
 - creates a secure delegation point for a signed subzone

Key tag: key tag value of the DNSKEY RR to which this DS RR refers Alg: the algorithm of the DNSKEY RR to which this DS RR refers Digest type: algorithm used to create the digest; 1 (SHA-1), 2 (SHA-256) Digest: digest value of the DNSKEY RR to which this DS RR refers

□ DNSSEC Resource Records:

 a chain of trust thru DS (Delegation Signer) resource record

□ Validation process:

- A DNS server receives RRset and DNSKEY, RRSIG RRs
- uses the DNSKEY RR to validate responses from the authoritative DNS server by decrypting digital signatures

☐ Zone signing process:

