研究室紹介 Newton Fest. 2024

物性基礎論

創発量子物性研究室

Emergent Quantum Matter Group

HP: https://sites.google.com/view/eqm-phys-kyushu-u/

研究キーワード:強相関電子系、エキゾチック超伝導、量子スピン系、トポロジカル物性

Member

教授	笠原裕一	
助教	村山陽奈子	
学部4年 (特別研究生)	木下淳嗣 野上大輝	

🛂 教員プロフィール

笠原裕一 教授

出身地:神奈川県逗子市

今年の4月に着任しました。これまで九州とは縁もゆかりもありませんでしたが、新天地で私生活だけでなく研究/教育においてもたくさん刺激をいただいています。自身は学部4年生から一貫して超伝導や磁性を中心とした固体物理(凝縮系物理)の実験研究を行ってきました。九州大学に異動して間もなくであり、まだ研究室は立ち上げ最中ですが、すぐに研究を軌道にのせてメンバーとともに独自の成果をあげていきたいと意気込んでいます。学部/修士/博士でそれぞれ異なる国立/私立の大学を卒業するというやや特殊な経歴をもっており、その後もさまざまな現場を見てきた経験から、フレキシブルに対応できるほうかと僭越ながら思っています。物性実験の魅力は、思いがけない発見があったり自然界にない状態を人の手やアイディアで作り出せたりすることだと思います。研究テーマに沿って測定手法や物質開発の方法は最適なものを選択していくというのが研究室のスタイルであり、

「型」にはまらない研究ができればと思います。研究内容を見て興味を持たれた方は、是非、研究室 見学にお越しください。

村山陽奈子 助教

出身地:北海道札幌市

専門分野:固体物理(超伝導・量子スピン液体)

京都大学での学生生活、理化学研究所でのポスドク経験を経て、今年の10月に着任しました。学生時代は極低温での熱測定等の物性測定を行っていましたが、ポスドクになってからは結晶合成にも取り組んできました。協力し合って大きなものを作り上げるのが実験系研究室の醍醐味だと思っています。みんなで知恵を絞って面白い研究をしましょう!好きな食べ物はトマト、趣味は今年生まれたばかりの息子を抱っこして散歩することです。

創発量子物性研究室 Newton Fest. 2024

アピールポイント

新研究室

本研究室は今年度に発足しました。新しく研究室を立ち上げている最中です。そのため研究室の雰囲気や歴史は、これから配属さ れる皆さんに作り上げていただくことになります。装置立ち上げは、さまざまなことを学ぶ貴重な機会であり、他にはできない経 験ができます。まだメンバーも少ないので、配属時にはひとり1台机とモニターを使っていただけます。

柔軟な研究スタイル

私たちが行うのは固体中の電子やスピンが示す物理現象の実験的研究です。研究のアプローチは精密測定を軸としつつ、物質合成、 新物質開発、装置開発などと多岐にわたっています。興味のある電子状態や物理現象に狙いを定めたら、その解明/発見に最短距離 となる手法を吟味して選択し実験を行う、というのが基本的な研究スタイルです。特にコアタイムはなく、ゼミやセミナーは皆の都 合の良い日程に合わせています。

スタンダードだが最先端を狙う

測定する物理量は聞いたことがあるようなスタンダードなもので、比熱、磁化、電気抵抗、熱伝導などになります。しかし測定技術 を工夫して測定精度を世界最高水準まで高めることなどにより、大規模施設で行う実験では得られないような新しい知見が得られる ことが多くあります。そのため、装置開発などにも積極的に取り組みます。

イベント

年間スケジュール

新メンバー歓迎会 4月 前期打ち上げ/物性若手夏の学校/大学院入試 8月 日本物理学会 9月

忘年会 12月

卒論、修論、D論打ち上げ 2月

3月 日本物理学会/アメリカ物理学会/送別会

随時 国際会議

定例イベント

週一回 (通年)

研究進捗報告会/セミナー[論文紹介](全体)

週一回 (前期)

ゼミ[輪読] (B4, M1)

磁性、超伝導、電子物性などから興味のあるトピックスを 学生中心に選択。今年度はトポロジカル物性や超伝導。

不定期開催

量子物性セミナー(外部研究者)

研究進捗報告会/セミナー/ゼミは所属学生の予定に合わせて決めています。それぞれ 1~2コマ分くらいを目安に行っています。今年度発足したばかりの新しい研究室です ので、イベントはメンバーの活力になるようなものを次々と増やしていきたいと考えて います。未来のメンバーの方々も含め、学生の皆さんにイベント等を通じて研究室の歴 史と雰囲気を作り上げていただきたいと願っています。

Message

- 、 器用な人でも不器用な人でも、全く問題ありません。少しです 測定だけでなく、装置開発や物質合成/開発も行っています。 |全く問題ありません。少しでも「手を動かす」ことが好きな人は、是非!
- ・机とモニターはひとり1台あります。

学部4年 野上

特別研究生は、研究室のテーマにそって輪読やセミナーで学習を進めることができ、先生方からのキャッチアップも多く、日々様々な学びが得られます。また、創発量子物性研究室はまだ発足 1 年目なので、ぜひぜ ひ研究室立ち上げという、他では得られないチャレンジングな経験を共にしましょう! 学部4年 木下

準粒子は素粒子のようなもので、1つの素粒子には対応するラグランジアンがあるように、系のハミルトニアンがその性質を決めます。ハミルトニアンには結晶構造や相互作用の様子、対称性を反映され、それらを工夫することで、自然界では観測の難しい、マヨラナフェルミオンや非可換エニオン、分数電荷などの粒子を実現することができます。まだ人数の少ない創発量子物性なら、これらの不思議な準粒子たちの第1発見 者になれるかもしれません。

創発量子物性研究室 Newton Fest. 2024

実 績

 \cdot T. Yokoi, Y. Kasahara et al., "Half-integer quantized anomalous thermal Hall effect in the Kitaev material candidate α -RuCl3", Science 373, 568-572 (2021).

プレスリリース:「量子コンピューターのワイルドカードとなる粒子を解明」 https://www.kyoto-u.ac.jp/ja/research-news/2021-08-02-0

·H. Murayama, Y. Kasahara et al., "Bond Directional Anapole Order in a Spin-Orbit Coupled Mott Insulator Sr2(Ir1-xRhx)O4", Phys. Rev. X 11, 011021 (2021).

プレスリリース: 「物質中における極のないナノ電磁石の発見 -原子間ループ電流が引き起こす新しい電子状態を観測-」 https://www.kyoto-u.ac.jp/ja/research-news/2021-02-05-0

·Y. Kasahara, T. Ohnishi et al., "Majorana quantization and half-integer thermal quantum Hall effect in a Kitaev spin liquid", Nature 550, 227-231 (2018).

Hot Paper (Top 0.1%) & Highly Cited Paper (Top 1%), Web of Science/Clarivate Analytics プレスリリース:「幻の粒子「マヨラナ粒子」の発見 ートポロジカル量子コンピューターの実現に期待一」https://www.kyoto-u.ac.jp/ja/research-news/2018-07-12

表彰

研究

第27回井上研究奨励賞(2010年/笠原) 日本物理学会若手奨励賞(2018年/笠原) 第6回ヤマト科学賞(2019年/笠原) 第13回京都大学たちばな賞(2021年/村山) 第39回井上研究奨励賞(2023年/村山)

進学先 (特研生)

内部進学/東大(九大)

進学先 (修士課程)

内部進学(京大)

就職先 (修士課程) パナソニック、キーエンス、富士通、新日鉄、村田製作所、三菱電機、日立製作所、NEC、IBM、他多数(京大)

就職先 (博士課程) ポスドク[国内、海外]、助教[国内]、コニカミノルタ、 東陽テクニカ、テルモ(京大)

上記は笠原の前職である京都大学の実績を含みます。これまで多数の修士/博士の学生を指導し、卒業生はアカデミックから企業の研究職など、さまざまな分野で活躍しています。博士課程の学生には、在学中の海外留学(半年から1年)を奨励し、渡航費などをできるだけ支援したいと考えています。

研究内容

本研究室では、固体中に存在する膨大な数の電子やスピンが示す量子力学的多体現象、具体的には高温超伝導を含む非従来型超伝導、重い電子状態、量子臨界現象、量子スピン液体、トポロジカル現象などに興味を持って研究しています。強く相互作用する量子多体系においては、電子やスピンといった構成要素の性質だけでは理解できないような質的に新しい性質や現象が出現することがあり、これが研究室名の由来でもある「創発性」になります。そして新しい量子現象や量子状態を実験的に開拓・解明することに挑戦しています。

研究分野はひとことで言うと「固体物理学」になりますが、上記の研究対象には「強相関」、「対称性の破れ」、「トポロジー」といった、現代物理学のエッセンスが詰まっています。また、研究テーマによっては統計物理、量子情報や量子計算、素粒子物理や原子核物理、さらには応用物理などさまざまな研究分野と密接な関係をもっていて、さまざまな展開が期待されることもこの研究分野の大きな魅力だと思います。

興味のある量子現象はしばしば低温で現れるため、数ケルビン以下の極低温環境を用い、強磁場や強電場により物質の状態がどのような応答を示すかを調べます。したがって、**多重極限環境下における精密物性測定**が中心的な研究アプローチで、研究テーマに応じて電気輸送測定、熱輸送測定、熱力学量測定、磁気測定などのさまざまな測定手法を駆使しています。また、新しい実験手法および計測技術の開発や、物質開発にも取り組んでいます。従来の化学的な物質合成だけでなく、最先端の薄膜作製技術を用いた人工超格子により自然界には存在しない物質系の作製にも挑戦しています

非従来型超伝導

超伝導はゼロ抵抗を示す状態であり、リニアモーターカーやMRIなどの応用に用いられていることはご存知の方も多いのではないでしょうか。量子現象が巨視的(マクロ)なスケールで現れる物理学の中でも最も劇的な現象のひとつであり、電子が対(クーパーペア)を形成しボーズ・アインシュタイン凝縮することで起こります。発見から100年以上の歴史があるものの、現代物理の中心課題のひとつとして依然として活発な研究が行われています。超伝導の基礎的な理解は50年以上前に発表されたBCS理論により確立したものの、BCS理論の枠組みを超えて不思議な性質を示す非従来型超伝導体が次々と発見されています。非従来型超伝導体には銅酸化物や鉄系化合物における高温超伝導体も含まれており、その超伝導状態の理解や発現機構の解明は物性物理学における大きな課題です。非従来型超伝導の研究における重要なキーワードは、「対称性の破れ」と「新奇超伝導状態」です。前者は物理学における重要かつ普遍的な概念であり、超伝導はゲージ対称性の破れた状態として特徴づけられます。しかし近年、ゲージ対称性以外の対称性が破れた超伝導が次々と発見されています。後者はクーパーペアが重心運動量をもつ超伝導状態(図1)やトポロジカル超伝導体があります。それぞれ現実物質における実現/実証は議論の的になっています。なかでも重心運動量を持つクーパーペア形成は中性子星でも議論されるなど、原子核物理とも関連しています。精密物性測定により、対称性の破れを決定し新奇超伝導状態を探索します。

図1:(左) 通常のクーパーペア、(右) 重心運動量を持つクーパーペア

量子スピン液体

磁性体中のスピンは通常、温度を下げていくと物質と同様に凍結します。しか し量子揺らぎが支配的になるとスピンが絶対零度まで凍結せず液体状態にとど まり、このような状態は**量子スピン液体**と呼ばれます。磁性体におけるスピン 励起を量子化した準粒子としてスピン波の量子化であるマグノンがよく知られ ていますが、量子スピン液体においてはさらにエキゾチックな準粒子の出現が 提唱されており、自然界には存在しない未知の粒子ともみなせるため、それら の探索および解明を目的とした研究を行っています。一例として、我々の研究 グループの最近の成果を紹介します。対象としたのはキタエフ量子スピン液体 と呼ばれる特殊な量子スピン液体状態です。この量子スピン液体状態において は、粒子と反粒子が同一という特殊な性質を持つ中性フェルミ粒子、マヨラナ 粒子が準粒子として現れるため、大きな注目を集めています。マヨラナ粒子に 由来する非可換エニオンを利用した量子計算が提案され、ニュートリノがマヨ ラナ粒子の候補ともされていますが、理論的予言から80年以上もその存在の確 証が得られていませんでした。我々はキタエフ量子スピン液体の候補物質であ る磁性絶縁体において半整数熱量子ホール効果を観測し、物質中にマヨラナ粒 子が存在することを実験的に証明しました(図2)。量子ホール効果はトポロジカ ル現象の代表例であり、量子スピン液体においてトポロジーによって保護され た量子状態が実現していることを初めて示したことにもなります。マヨラナ粒 子の理解はまさにこれからであり、今後は発現機構や普遍性を探索します。さ らに量子計算も含めた応用展開に向けて、マヨラナ粒子の検出技術の開発にも 取り組んでいます。

図2:キタエフ量子スピン液体候補物質において観測された 半整数熱量子ホール効果とその模式図

図3: PLD, MBE装置と人工超格子の例

物質合成、人工構造による物質開発

複数の種類の結晶格子の重ね合わせにより、その周期構造が基本単位格子より長くなった結晶格子は超格子と呼ばれますが、これを人為的に異なる物質を交互積層したものが人工超格子です。人工超格子により、前例のない組み合わせの積層構造、すなわち自然界に存在しない物質の作製が可能となり、興味のある量子状態の次元性制御や空間反転対称性の破れの人工導入、さらには界面を通じた電子状態の変調により、各構成要素には見られなかった新奇な量子相の出現が期待されます。本研究室では、パルスレーザー堆積法(PLD)や分子線エピタキシー法(MBE)などによる原子層薄膜作製技術を駆使して、新物質開発に挑戦します(図3)。