MATH 220A

Name: Quin Darcy Due Date: NONE Instructor: Dr. Martins Assignment: Midterm 2 Notes

- 1. Let A, B and A_{α} denote subsets of a topological space X. Prove the following:
 - (a) If $A \subset B$, then $\overline{A} \subset \overline{B}$.

Proof. We have that $A \subset B$, and that $B \subset \overline{B}$. And so $A \subset \overline{B}$. This means that \overline{B} is a closed set containing A. Since \overline{A} is defined to be the intersection of all closed sets containing A, then it follows that \overline{B} is in this intersection. Thus $\overline{A} \subset \overline{B}$. \square

(b) $\overline{A \cup B} = \overline{A} \cup \overline{B}$.

Proof. Since $A \subset A \cup B$, then by (a), $\overline{A} \subset \overline{A \cup B}$. Similarly, with $B \subset A \cup B$, it follows that $\overline{B} \subset \overline{A \cup B}$. Therefore, $\overline{A} \cup \overline{B} \subset \overline{A \cup B}$. Now with $\overline{A} \subset \overline{A}$, comes $\overline{A} \subset \overline{A} \cup \overline{B}$. And with $\overline{B} \subset \overline{B}$, comes $\overline{B} \subset \overline{A} \cup \overline{B}$. Thus $\overline{A} \cup \overline{B} \subset \overline{A} \cup \overline{B}$. Hence, by (a), $\overline{A \cup B} \subset \overline{A} \cup \overline{B}$, since $\overline{A} \cup \overline{B}$ is a closed subset as a finite union of closed sets.

(c) $\bigcup_{\alpha \in J} \overline{A}_{\alpha} \subset \overline{\bigcup_{\alpha \in J} A_{\alpha}}$.

Proof. Let $\alpha_0 \in J$ be any fixed element. Then $A_{\alpha_0} \subset \bigcup_{\alpha \in J} A_{\alpha}$. Hence, by (a), $\overline{A}_{\alpha_0} \subset \overline{\bigcup_{\alpha \in J} A_{\alpha}}$. Since this choice of α_0 was arbitrary, then the containment hold for all such $\alpha \in J$. Hence, $\bigcup_{\alpha \in J} \overline{A}_{\alpha} \subset \overline{\bigcup_{\alpha \in J} A_{\alpha \in J}}$.

2. Let A and B be two subsets of a set X. Then $A \cap B \neq \emptyset$ if and only if $(A \times B) \cap \Delta \neq \emptyset$, where $\Delta = \{(x, x) \in X \times X \mid x \in X\}$.

Proof. Suppose that $A \cap B \neq \emptyset$, then there is some $x \in X$ such that $x \in A \cap B$. With $x \in X$, we get that $(x, x) \in \Delta$ and also that $(x, x) \in A \times B$. Hence, $(x, x) \in (A \times B) \cap \Delta$ and thus $(A \times B) \cap \Delta \neq \emptyset$.

Conversely, assume that $(A \times B) \cap \Delta \neq \emptyset$. Then there exists some $(x,y) \in (A \times B) \cap \Delta$. Since $(x,y) \in \Delta$, then we may write x = y and so we have that $(x,x) \in A \times B$. Hence, $x \in A$ and $x \in B$. Therefore, $A \cap B \neq \emptyset$.

3. Show that X is Hausdorff if and only if the diagonal

$$\Delta = \{(x,x) \in X \times X \mid x \in X\}$$

is closed in $X \times X$.

MATH 220A Darcy

Proof. Assume that X is a Hausdorff topological space. We will show that Δ is closed in $X \times X$ by showing that its complement, $X - \Delta$, is open in $X \times X$.

Let $(x,y) \in X - \Delta$. Then $(x,y) \notin \Delta$ which implies that $x \neq y$. Since X is Hausdorff, then we may find open neighborhoods, $U \subset X$, of x, and $V \subset X$, of V, such that $U \cap V = \emptyset$. Hence, $U \times V$ is an open neighborhood of (x,y) in $X \times X$. Further, we recall that $U \cap V = \emptyset$, which by 2., we get that $(U \times V) \cap \Delta = \emptyset$. This implies that $U \times V \subset (X - \Delta)$. Hence, $X - \Delta$ is open.

Suppose now that Δ is closed in $X \times X$. Let x and y be any two distict points in X and consider the pair $(x,y) \in X - \Delta$. Since $X - \Delta$ is open, then there is a neighborhood $U \times V$ of (x,y) contained in $X - \Delta$, where U is a neighborhood of x and Y is a neighborhood of y. With $U \times V$ being a neighborhood in $X - \Delta$, this implies that $(U \times V) \cap \Delta = \emptyset$. Hence, by 2., it follows that $U \cap V = \emptyset$. Therfore, X is Hausdorff.

4. If $A, U \subset X$, we define the boundary of A by:

$$\partial A = \overline{A} \cap \overline{X - A}.$$

(a) Show that \mathring{A} and ∂A are disjoint, and that $\overline{A} = \mathring{A} \cup \partial A$.