Collaborators

Ben Nelson, Corbin Baldwin and I collaborated for this assignment.

- (a) [4] What is the expected number of empty bins?
- (b) [2] Show that the probability that 80% of the bins are empty is $\leq 1/2$.
- (c) [2] Let X_i be the random variable that is 1 if bin i is empty and is 0 otherwise. Are X_1 and X_2 independent? Give an intuitive reasoning.
- (d) [4] Let Z be the random variable defined by $Z = \sum_i X_i$ (i.e., the number of empty bins). Suppose you are told that the variance of Z is $\leq n$. Use this to prove that the probability that 80% of the bins are empty is < 8/n. [Note that this is a much better bound than the one in part (b) when n is large.]

(a)

Let random variable
$$X_i = \begin{cases} 1, & \text{when slot } i \text{ is empty} \\ 0, & \text{otherwise} \end{cases}$$

Number of empty bins $= \sum_{i=1}^n X_i$

$$\mathbb{E}\left[\text{Number of empty bins}\right] = \mathbb{E}\left[\sum_{i=1}^n X_i\right]$$

$$= \sum_{i=1}^n \mathbb{E}\left[X_i\right], \text{ due to linearity of expectation}$$

$$= \sum_{i=1}^n \left(1 \times \Pr\left[X_i = 1\right] + 0 \times \Pr\left[X_i = 0\right]\right)$$

$$= \sum_{i=1}^n \Pr\left[X_i = 1\right]$$

$$= \sum_{i=1}^n \frac{(n-1)^n}{n^n}$$

since n balls can be put into n-1 slots in $(n-1)^n$ ways and n balls can be put into n slots in n^n different ways

$$= n \frac{(n-1)^n}{n^n}$$
$$= \frac{(n-1)^n}{n^{n-1}}$$

(b)
$$\text{Pr}\left[80\% \text{ of the bins are empty}\right] = \text{Pr}\left[\text{Number of empty bins } \geq 0.8n\right]$$

$$= \text{Pr}\left[X_e \geq 0.8n\right], \text{ where } X_e = \text{ number of empty bins}$$

$$= \text{Pr}\left[X_e \geq \frac{0.8n}{\mathbb{E}\left[X_e\right]}\mathbb{E}\left[X_e\right]\right]$$

$$\leq \frac{\mathbb{E}\left[X_e\right]}{0.8n}, \text{ by Markov's Inequality}$$

$$= \frac{(n-1)^n}{n^{n-1}} \frac{1}{0.8n}$$

$$= \frac{1.25(n-1)^n}{n^n}$$

$$= 1.25\left(\frac{(n-1)}{n}\right)^n$$

$$= 1.25\left(1-\frac{1}{n}\right)^n$$

$$= 1.25\frac{1}{e}$$

$$= 0.4598$$

$$\leq \frac{1}{2} \quad \square$$

(c)

(d)

- 1. pick a uniformly random index $i \in \{1, 2, ..., n\}$
- 2. divide the array A[] into two sub-arrays -B[] and C[], where the elements of B[] are all $\leq A[i]$ and the elements of C[] are >A[i].
- 3. if length(B) $\leq k$, we recursively find the kth smallest element in B[]; else we find the k-length(B)'th smallest element in C[].
- (a) [2] Prove that the running time on the array A of length n can be bounded as

$$T(n) \le \max\{T(\operatorname{length}(B)), T(\operatorname{length}(C))\} + O(n).$$

- (b) [3] Give an input A, k, and an unlucky choice of indices i that leads to a running time larger than $n^2/4$.
- (c) [5] Let f(n) denote the *expected running time* on an input array of length n. Derive a "probabilistic recurrence" analogous to the one we saw in class for quicksort, and show that f(n) = O(n). [Hint: use part (a).]

(a) [2] Using a basic implementation (base case being a singleton), find the *constant* in the O() notation for the algorithm above. (You may do this by picking any array, repeatedly running the procedure above, and averaging the values of running time divided by $n \log n$.)

- (b) [2] Now, consider the following procedure: for k = 1, 2, 3, first pick (2k + 1) random indices, and choose their *median* as the pivot. Now report the constant in the O() notation.
- (c) [2] Explain your observations intuitively.

The best known algorithms here are messy and take time $O(n^{2.36...})$. However, the point of this exercise is to prove a simpler statement. Suppose someone gives a matrix C and claims that C = AB, can we quickly verify if the claim is true?

- (a) [4] First prove a warm-up statement: suppose a and b are any two 0/1 vectors of length n, and suppose that $a \neq b$. Then, for a random binary vector $x \in \{0,1\}^n$ (one in which each coordinate is chosen uniformly at random), prove that $\Pr[\langle a, x \rangle = \langle b, x \rangle \pmod{2}] = 1/2$.
- (b) [6] Now, design an $O(n^2)$ time algorithm that tests if C = AB and has a success probability $\geq 1/2$. (You need to prove the probability bound.)
- (c) [2] Show how to improve the success probability to 7/8 while still having running time $O(n^2)$.

Coloring is known to be a very hard problem. Suppose we are OK with something weaker: suppose that we consider an assignment of colors acceptable if $c(u) \neq c(v)$ holds for $\geq 90\%$ of the edges.

- (a) [7] Suppose that we randomly assign a color in the range $\{1, 2, ..., 20\}$ to the vertices. Prove that we obtain an acceptable assignment with probability $\geq 1/2$. (Note that the algorithm is quite remarkable it doesn't even look at the edges of the graph!)
- (b) [3] What happens above when we randomly assign colors in the range $\{1, 2, ..., 11\}$? Can we still obtain an algorithm that succeeds with probability $\geq 1/2$?

References

[1] "24. Single-Source Shortest Paths." *Introduction to Algorithms*, by Thomas H. Cormen et al., MIT Press, 2009, pp. 648-662.