Teorema: Serie de Laurent

Consideremos la región $D: z \in C$ / $r_1 < |z - z_0| < r_2$ (ver figura abajo). r_1 puede tomar el valor de cero y r_2 puede ser infinito. Sea f analítica en la región D. Entonces la serie de Laurent alrededor de z_0 se escribe como

$$f(z) = \sum_{n=0}^{\infty} a_n (z - z_0)^n + \sum_{n=1}^{\infty} \frac{b_n}{(z - z_0)^n},$$

donde ambas series convergen absolutamente en D y uniformemente $\rho_1 < |z - z_0| < \rho_2$ con $r_1 < \rho_1$ y $\rho_2 < r_2$. Si γ es un círculo alrededor z_0 con radio r, donde $r_1 < r < r_2$, entonces los coeficientes estan dados por las expresiones:

$$a_n = \frac{1}{2\pi i} \int_{\gamma} \frac{f(\zeta)}{(\zeta - z)^{n+1}} d\zeta \quad n = 0, 1, 2, 3, \dots$$

 \mathbf{z}

$$b_n = \frac{1}{2\pi i} \int_{\gamma} f(\zeta)(\zeta - z)^{n-1} d\zeta \quad n = 1, 2, 3, \dots$$

 $Haciendo\ b_n = a_{-n}\ entonces\ la\ primera\ fórmula\ cubre\ ambos\ casos.$

Nótese que la serie

$$\sum_{n=0}^{\infty} a_n (z - z_0)^n$$

converge en el interior de la región $|z-z_0|=r_2$ mientras que la serie

$$\sum_{n=1}^{\infty} \frac{b_n}{(z-z_0)^n}$$

converge en el exterior de la región $|z-z_0| = r_1$. Entonces la suma de las dos series como un todo converge solamente en el interior del anillo definido por $r_1 < |z-z_0| < r_2$. Por esta razón los coeficientes de la serie de Laurent no son definidos por la expresión

$$a_n = \frac{f^{(n)}(z_0)}{n!}.$$

pues z_0 esta excluido de la región de validez de la serie.

Demostración e la Serie de Laurent

Sean dos contornos γ_1 y γ_2 contenidos dentro de la región de validez de $r_1 < |z - z_0| < r_2$ (ver figura más adelante). γ_1 es deformable en γ_2 y vice versa. Por tanto podemos decir que

$$a_n = \frac{1}{2\pi i} \int_{\gamma_1} \frac{f(\zeta)}{(\zeta - z)^{n+1}} d\zeta$$

У

$$b_n = \frac{1}{2\pi i} \int_{\gamma_2} f(\zeta)(\zeta - z)^{n-1} d\zeta.$$

Supongamos que los contornos γ_1 y γ_2 son círculares de radios ρ_1 y ρ_2 , respectivamente, tal que $r_1 < \rho_1$ y $\rho_2 < r_2$. Entonces para la región anular entre los dos contornos γ_1 y γ_2 tenemos que

$$f(z) = \frac{1}{2\pi i} \int_{\gamma_2} \frac{f(\zeta)}{\zeta - z} d\zeta - \frac{1}{2\pi i} \int_{\gamma_1} \frac{f(\zeta)}{\zeta - z} d\zeta.$$

Para la expresión arriba hemos usado el teorema de las regiones múltiplemente conexas.

Para ζ sobre γ_2 se tiene

$$\frac{1}{\zeta - z} = \frac{1}{\zeta - z_0} \frac{1}{(1 - \frac{z - z_0}{\zeta - z_0})} = \frac{1}{\zeta - z_0} \sum_{k=0}^{\infty} \left(\frac{z - z_0}{\zeta - z_0} \right)^k.$$

Entonces

$$\frac{1}{2\pi i} \int_{\gamma_2} \frac{f(\zeta)}{\zeta - z} d\zeta = \frac{1}{2\pi i} \int_{\gamma_2} f(\zeta) \frac{1}{\zeta - z_0} \sum_{k=0}^{\infty} \left(\frac{z - z_0}{\zeta - z_0}\right)^k d\zeta = \sum_{k=0}^{\infty} (z - z_0)^k \frac{1}{2\pi i} \int_{\gamma_2} \frac{f(\zeta)}{(\zeta - z_0)^{k+1}} d\zeta
\Rightarrow \frac{1}{2\pi i} \int_{\gamma_2} \frac{f(\zeta)}{\zeta - z} d\zeta = \sum_{k=0}^{\infty} a_k (z - z_0)^k.$$

Por otro lado para ζ sobre γ_1 se tiene

$$\frac{-1}{\zeta - z} = \frac{1}{z - z_0} \frac{1}{(1 - \frac{\zeta - z_0}{z - z_0})} = \frac{1}{z - z_0} \sum_{k=0}^{\infty} \left(\frac{\zeta - z_0}{z - z_0} \right)^k.$$

Entonces

$$-\frac{1}{2\pi i} \int_{\gamma_1} \frac{f(\zeta)}{\zeta - z} d\zeta = \frac{1}{2\pi i} \int_{\gamma_1} f(\zeta) \frac{1}{z - z_0} \sum_{k=0}^{\infty} \left(\frac{\zeta - z_0}{z - z_0}\right)^k d\zeta = \sum_{k=0}^{\infty} \frac{1}{(z - z_0)^{k+1}} \frac{1}{2\pi i} \int_{\gamma_1} f(\zeta) (\zeta - z_0)^k d\zeta$$
$$= \sum_{k'=1}^{\infty} \frac{1}{(z - z_0)^{k'}} \frac{1}{2\pi i} \int_{\gamma_1} f(\zeta) (\zeta - z_0)^{k'-1} d\zeta$$

como k' es muda, entonces hacemos $k' \to k$ para obtener

$$\Rightarrow -\frac{1}{2\pi i} \int_{\gamma_1} \frac{f(\zeta)}{\zeta - z} d\zeta = \sum_{k=1}^{\infty} \frac{b_k}{(z - z_0)^k}.$$

Reuniendo ambos resultados vemos que

$$f(z) = \frac{1}{2\pi i} \int_{\gamma_2} \frac{f(\zeta)}{\zeta - z} d\zeta - \frac{1}{2\pi i} \int_{\gamma_1} \frac{f(\zeta)}{\zeta - z} d\zeta = \sum_{k=0}^{\infty} a_k (z - z_0)^k + \sum_{k=1}^{\infty} \frac{b_k}{(z - z_0)^k}.$$

Por último, se puede demostrar que las expresiones de los coeficientes a_k y b_k se pueden recobrar directamente de la serie de Laurent teniendo en cuenta el siguiente resultado:

$$\int_{\gamma} (z - z_0)^m dz = \begin{cases} 0 & m \neq -1 \\ 2\pi i & m = -1 \end{cases}.$$

Consideremos la serie de Laurent de la forma

$$f(z) = \sum_{n=0}^{\infty} a_k (z - z_0)^n + \sum_{n=1}^{\infty} \frac{b_n}{(z - z_0)^n}.$$

Entonces

$$\frac{f(z)}{(z-z_0)^{k+1}} = \sum_{n=0}^{\infty} a_n (z-z_0)^{n-k-1} + \sum_{n=1}^{\infty} \frac{b_n}{(z-z_0)^{n+k+1}},$$

donde $k \geq 0$. Si hacemos k = n e integramos sobre el contorno γ vemos inmediatamente que

$$\int_{\gamma} \frac{f(z)}{(z-z_0)^{k+1}} dz \bigg|_{k \to n} = \sum_{n=0}^{\infty} a_n \int_{\gamma} (z-z_0)^{n-k-1} dz \bigg|_{k \to n} + \sum_{n=1}^{\infty} b_n \int_{\gamma} \frac{dz}{(z-z_0)^{n+k+1}} \bigg|_{k \to n}$$

$$\Rightarrow \int_{\gamma} \frac{f(z)}{(z-z_0)^{n+1}} dz = 2\pi i a_n \Rightarrow a_n = \frac{1}{2\pi i} \int_{\gamma} \frac{f(z)}{(z-z_0)^{n+1}} dz.$$

De la misma forma si hacemos ahora k negativo, es decir k = -n, entonces obtenemos

$$\int_{\gamma} \frac{f(z)}{(z-z_0)^{k+1}} dz \bigg|_{k \to -n} = \sum_{n=0}^{\infty} a_n \int_{\gamma} (z-z_0)^{n-k-1} dz \bigg|_{k \to -n} + \sum_{n=1}^{\infty} b_n \int_{\gamma} \frac{dz}{(z-z_0)^{n+k+1}} \bigg|_{k \to -n}$$

$$\Rightarrow \int_{\gamma} f(z)(z-z_0)^{n-1} dz = 2\pi i b_n \Rightarrow b_n = \frac{1}{2\pi i} \int_{\gamma} f(z)(z-z_0)^{n-1} dz.$$

Con esto se demuestra que los coeficientes a_n y b_n son determinados de una forma única.