1.	
	Base case, n=1
	VL= 1+3 \$\frac{1}{2} 1(1-1) = 1+3 \cdot 0 = 1
	HL=13=1
	Antas includionsantagande sant for n $n+3 \stackrel{?}{\sim} k(k-1) = n^3$
	1/+3
	Visa indultionsantagandet sant for n+1
	$(n+1)+3$ $= 1+n^3+3(n+1)(n+1-1)=1+n^3+3n^4+3n=(n+1)^3$
2.	
	a) Eftersom varje element i definitionsmångden kan ha två oliha funktionsvärden finns det 2=8 oliha
	Punktioner
	D) Defmangel > Målmångel => Ingen injettiv funktion
	C) Ja! Ex: f: f(1)=1, f(2)=2, f(3)=1
	(-X. (' (1) - 1) (^) - ^) (-) - (-)
3.	
	x-Jagar de åkt båt
	9- Jayar de regt pê amat vis 3 720x+400y=15200 (=> 9x+5y=190
	Sqd (9,5) = 1
	9 (-1) + 5 (2) = 1
	MultiPlicera mad 190=> 9(-190)+5(380)+190 dvs. (20,9)=(-190,380) är en læsning
	Samuliga losningar ges av: (x,y)=(-190-5n,380-9n) Jar n ar ext godtyculight heltal Problemet i sig
	Vithnar om cott x och y måste vara positiva Dessittom säller att -190+5n <380-9n. For att detter ste
	uppfyllas göller det att N=[39,40]
	Vi har slutligen note looningarna: (x, y)=(10,20) can (x, y)=(5,29)
4	
	Anvand Euklides algoritm
	(a) S9d(00 ,748)=11
	b) Sgd(317,70)=1 [317]'=[37]'=[17]=[53] ; Z ₇₀ c) Sgd(31,47)=1 [31]'=[3]': [44] ; Z ₄₇
5	
	28x+36y=100 (=> 7x+9y=25
	Sgd(7,9)=1, elwatonen ar losbar
	Mehla lite så ser man att (x,y)=(1.2) ar en løming Den almanna lømingen ges av
	$(x,y)=(1+9n,2-7n)$ $n\in\mathbb{Z}$
6	Inversen tru 7 i Z, ar 4, ty 4.7=28=1 mad 9
O.	Anton att ab. Skriv med hialp au divisionsalgoritmen a=qib+r, Upprepa med b och r, b=qzr,+rz.
	Fortsatt genewn att dividera den foresående resten med den nya vesten: 1=9312+1/3, 1/2=9413+1/4 etc
	tils du fâr en regt som ar O. Då ar Syd(a,b) den sista nollskilida regten.
	Algoritmen fungerar estessam det i varie stess k gäller cut: Sgd(rk.1,rk)= sgd(qk.1,rk)=
	S9d(rk++,rk)

7.																										
	a)	3	.5.	7·11 2 37																						
	b)	22.	517	2																						
	C	<u>_</u> 1	21.	32																						
)1	J7																						
O																										
8																										
pri	mes	= 2	: 1	filte	ris	Prin	ne[3,	5	.] takev		()															
1SP	rıme	n	= a.	TT ((/0).	(n	moa)) \$	takev	nile	9 (\	p	> p*	p <	= n)	pr	ımes	3								
						-																				
										1																
										-																
										1																
																									-	