Prezime, Ime	JMBAG	Bodovi
		/30

Napredni operacijski sustavi — Međuispit 29. travnja 2021.

- 1. (5 boda ukupno) Komunikacija između protokola procesa.
 - (a) (0.5) Prema čemu procesi znaju da je poruka upućena njima?
 - (b) (0.5) Mogu li već stvoreni procesi međusobno komunicirati preko neimenovanih cjevovoda?
 - (c) (2) Napišite redom sustavske pozive koji se koriste u postupku povezivanja cjevovoda na standarni ulaz.
 - (d) (0.5) Koja je posljedica kvara centralnog čvora u centraliziranom protokolu?
 - (e) (1) Nakon kojih karakterističnih događaja će se povećati vrijednost logičkog sata procesa u protokolu Ricart-Agrawala?
 - (f) (0.5) Koliki je ukupni broj poruka u sustavu s N. čvorova kada proces želi ući u kritični odsječak, a komunikacija između procesa je putem protokola Ricart-Agrawal?
- 2. (5 boda ukupno) Protokol Ricart-Agrawal.

U sustavu se nalaze tri čvora i na svakom čvoru po jedan proces P_1 , P_2 i P_3 koji imaju u svojim lokalnim logičkim satovima vrijednosti $C_1 = 6$, $C_2 = 12$ i $C_3 = 6$ gdje je C_i lokalni logički sat procesa P_i . Sinkronizacija procesa odvija se prema pravilima protokola Ricarta i Agrawala. Svi procesi žele ući u kritični odsječak.

- (a) (1.5) Skicirati protokol.
- (b) (0.5) Kojim redoslijedom su procesi ulazili u kritični odsječak?
- (c) (3) Koje su sve moguće vrijednosti lokalnih logičkih satova na kraju?
- 3. (5 bodova ukupno) Lamportov raspodijeljeni protokol.

Neki sustav sastoji se od 4 čvora i u svakom čvoru nalazi se po jedan proces. Niti jedan od procesa P_1 , P_2 , P_3 i P_4 do trenutka t_1 nije zaželio ući u kritični odsječak. Sinkronizacija procesa odvija se prema pravilima Lamprotovog raspodijeljenog protokola. Između t_1 i t_2 svaki od procesa P_i uđe i izađe iz kritičnog odsječka i puta (proces P_1 jednaput, P_2 dvaput, itd.).

- (a) (1) Koliko je ukupno poruka razaslano u intervalu (t_1, t_2) ?
- (b) (4) Za svaki proces navesti broj poruka koje su razaslali te broj poruke koje su primili u intervalu (t_1, t_2) .
- 4. (3 boda ukupno) Sigurnosni zahtjevi, kriptosustav jednokratne bilježnice, DES i 3DES.
 - (a) (0.5) Kako asimetričnim kriptosustavom osiguravamo neporecivost?
 - (b) (0.5) Možemo li simetričnim kriptosustavom osigurati neporecivost? Ukratko obrazložite.
 - (c) (0.5) Koristimo kriptosustav jednokratne bilježnice (one-time padding). Za jasni tekst P=1001 i skriveni (kriptirani) tekst C=1100 izračunajte ključ K.
 - (d) (0.5) Navedite barem dva nedostatka kriptosustava jednokratne bilježnice.
 - (e) (0.5) Definirajte funkciju kriptiranja kriptosustava 3DES za jasni tekst P i ključeve K_i , $i \in \{1, 2, 3\}$.
 - (f) (0.5) Kada je funkcija kriptiranja kriptosustava 3DES jednaka funkciji kriptiranja kriptosustava DES?
- 5. (4 bodova ukupno) Kriptosustav AES.
 - (a) (1) Navedite dva načina kriptiranja u kojima kriptirani tekst ne ovisi o prethodnim blokovima skrivenog teksta.
 - (b) (0.5) Kako nazivamo strukturu unutar koje su definirane AES funkcije zbrajanja i množenja bajtova bloka?
 - (c) (2.5) Pretpostavimo da kriptiramo dva toka podataka koristeći "Output Feedback" (OFB) tako da u oba toka iskoristimo isti inicijalizacijski vektor (IV). Neka je prvi kriptirani blok jasnog teksta prvog toka $C_1=(10\ 39\ 23\ 3C\ 26)_{Hex}$ i neka je prvi kriptirani blok jasnog teksta drugog toka $C_2=(19\ 3C\ 23\ 30\ 26)_{Hex}$. Ako napadač zna da je jedan od blokova jasnog teksta prvog ili drugog toka jednak $M=(45\ 6C\ 76\ 69\ 73)_{Hex}\in\{M_1,M_2\}$ (ne zna je li M_1 ili M_2), što time može zaključiti o bloku jasnog teksta drugog toka podataka $M'\in\{M_1,M_2\},M'\neq M$? Napadaču je na raspolaganju sljedeća tablica.

ASCII Char	Binary	Hex	ASCII Char	Binary	Hex
E	01000101	45	NUL	00000000	00
1	01101100	6C	FF	00001100	OC
V	01110110	76	DLE	00010000	10
i	01101001	69	9	00111001	39
S	01110011	73	#	00100011	23
L	01001100	4C	<	00111100	3C
HT	00001001	09	&	00100110	26
ENQ	00000101	05	EM	00011001	19
0	00110000	30			

Zbog greške, u tablici nije navedeno slovo "e" pa su se priznavala rješenja bez istog.

- 6. (5 bodova ukupno) Kriptosustav RSA.
 - (a) (0.5) (1) Kako je definirana Eulerova funkcija φ ?
 - (b) (1) Neka je N=p*q umožak dva prosta broja. Može li javni eksponent $e\in\mathbb{Z}_{\varphi(N)}^*$ biti paran broj? Ukratko obrazložite.
 - (c) Pretpostavimo da je riječ o kriptosustavu RSA (bez nadopunjavanja i sažetka) s javnim ključem pk = (5,65) i privatnim ključem sk = (29,65).
 - (1) (0.5) Izračunajte $\varphi(N)$.
 - (2) (0.5) Pokažite da je par (sk, pk) javnog i privatnog ključa korektan.
 - (3) (0.5) Odredite enkripciju jasnog teksta "4".
 - (4) (1.5) Odredite dekripciju skrivenog teksta "17" koristeći algoritam uzastopnog kvadriranja. Obavezno napišite postupak.
- 7. (3 boda ukupno) Sustav digitalnog potpisa.
 - (a) (1) Definirajte sustav digitalnog potpisa.
 - (b) (0.5) Navedite sigurnosna svojstva koja pruža sustav digitalnog potpisa.
 - (c) (1) Jednim primjerom pokažite zašto kriptosustav RSA bez nadopunjavanja i funkcije sažetka nije siguran sustav digitalnog potpisa. Označite sve simbole koje koristite.

(d) (0.5) Zašto je u kriptosustavu RSA, u praksi, provjera potpisa znatno brža od potpisivanja? Ukratko obrazložite.