Handling Infinitely Branching WSTS

Michael Blondin ^{1 2}, Alain Finkel ^{1 &} Pierre McKenzie ^{1 2}

¹LSV, ENS Cachan

²DIRO, Université de Montréal

PV 2015, Madrid, September 4, 2015

Well-structured transition systems (WSTS) encompass a large number of infinite state systems.

Well-structured transition systems (WSTS) encompass a large number of infinite state systems.

Well-structured transition systems (WSTS) encompass a large number of infinite state systems.

Multiple decidability results are known for finitely branching WSTS.

$$S = (X, \rightarrow, \leq)$$
 where

- X set,
- $\rightarrow \subseteq X \times X$
- monotony,
- well-quasi-ordered.

$$S = (X, \rightarrow, \leq)$$
 where

- \blacksquare \mathbb{N}^3 ,
- $\rightarrow \subseteq X \times X$,
- monotony,
- well-quasi-ordered.

$$S = (X, \rightarrow, \leq)$$
 where

- X set,
- $\longrightarrow \subseteq \mathbb{N}^3 \times \mathbb{N}^3$,
- monotony,
- well-quasi-ordered.

$$S = (X, \rightarrow, \leq)$$
 where

- X set,
- $\rightarrow \subseteq X \times X$
- monotony,
- well-quasi-ordered.

$$S = (X, \rightarrow, \leq)$$
 where

- X set,
- $\rightarrow \subseteq X \times X$
- monotony,
- well-quasi-ordered.

$$S = (X, \rightarrow, \leq)$$
 where

- X set,
- $\rightarrow \subseteq X \times X$
- monotony,
- well-quasi-ordered.

$$S = (X, \rightarrow, \leq)$$
 where

- X set,
- $\rightarrow \subseteq X \times X$,
- monotony,
- well-quasi-ordered.

$$S = (X, \rightarrow, \leq)$$
 where

- X set,
- $\rightarrow \subseteq X \times X$,
- transitive monotony,
- well-quasi-ordered.

$$S = (X, \rightarrow, \leq)$$
 where

- X set,
- $\rightarrow \subseteq X \times X$,
- strong monotony,
- well-quasi-ordered.

$$S = (X, \rightarrow, \leq)$$
 where

- X set,
- $\rightarrow \subseteq X \times X$,
- monotony,
- well-quasi-ordered:

$$\forall x_0, x_1, \ldots \exists i < j \text{ s.t. } x_i \leq x_i.$$

A WSTS (X, \rightarrow, \leq) is *finitely branching* if Post(x) is finite for every $x \in X$.

A WSTS (X, \rightarrow, \leq) is *finitely branching* if Post(x) is finite for every $x \in X$.

Some finitely branching WSTS

■ Petri nets, vector addition systems,

A WSTS (X, \rightarrow, \leq) is *finitely branching* if Post(x) is finite for every $x \in X$.

Some finitely branching WSTS

- Petri nets, vector addition systems,
- Counter machines with affine updates,

A WSTS (X, \rightarrow, \leq) is *finitely branching* if Post(x) is finite for every $x \in X$.

Some finitely branching WSTS

- Petri nets, vector addition systems,
- Counter machines with affine updates,
- Lossy channel systems (Abdulla, Cerans, Jonsson & Tsay LICS'96),

A WSTS (X, \rightarrow, \leq) is *finitely branching* if Post(x) is finite for every $x \in X$.

Some finitely branching WSTS

- Petri nets, vector addition systems,
- Counter machines with affine updates,
- Lossy channel systems (Abdulla, Cerans, Jonsson & Tsay LICS'96),
- Much more.

A WSTS (X, \rightarrow, \leq) is *finitely branching* if Post(x) is finite for every $x \in X$.

Some infinitely branching WSTS

■ Inserting FIFO automata (Cécé, Finkel, Iyer IC'96),

A WSTS (X, \rightarrow, \leq) is *finitely branching* if Post(x) is finite for every $x \in X$.

Some infinitely branching WSTS

- Inserting FIFO automata (Cécé, Finkel, Iyer IC'96),
- Inserting automata (Bouyer, Markey, Ouaknine, Schnoebelen, Worrell FAC'12),

A WSTS (X, \rightarrow, \leq) is *finitely branching* if Post(x) is finite for every $x \in X$.

Some infinitely branching WSTS

- Inserting FIFO automata (Cécé, Finkel, Iyer IC'96),
- Inserting automata (Bouyer, Markey, Ouaknine, Schnoebelen, Worrell FAC'12),
- \blacksquare ω -Petri nets (Geeraerts, Heussner, Praveen & Raskin PN'13),

A WSTS (X, \rightarrow, \leq) is *finitely branching* if Post(x) is finite for every $x \in X$.

Some infinitely branching WSTS

- Inserting FIFO automata (Cécé, Finkel, Iyer IC'96),
- Inserting automata (Bouyer, Markey, Ouaknine, Schnoebelen, Worrell FAC'12),
- ω-Petri nets (Geeraerts, Heussner, Praveen & Raskin PN'13),
- Parametric WSTS.

Finite branching is <u>undecidable</u> for post-effective WSTS.

Finite branching is <u>undecidable</u> for post-effective WSTS.

Proof

- Let $S_i = (\mathbb{N}, \rightarrow_{S_i}, \leq)$ be the WSTS such that:
 - $x \rightarrow_{S_i} x + 1$ if TM_i does not halt within $\leq x$ steps,
 - $\mathbf{x} \to_{S_i} 0, 1, 2, \dots$ otherwise.

Finite branching is <u>undecidable</u> for post-effective WSTS.

Proof

- Let $S_i = (\mathbb{N}, \rightarrow_{S_i}, \leq)$ be the WSTS such that:
 - $x \rightarrow_{S_i} x + 1$ if TM_i does not halt within $\leq x$ steps,
 - $\mathbf{x} \to_{S_i} 0, 1, 2, \dots$ otherwise.
- S_i is post-effective (the cardinal of $Post_{S_i}(x)$ is computable).
- S_i has strong and strict monotony since $x \to_{S_i} x + 1$ for every $x \in \mathbb{N}$.

Finite branching is <u>undecidable</u> for post-effective WSTS.

Proof

- Let $S_i = (\mathbb{N}, \rightarrow_{S_i}, \leq)$ be the WSTS such that:
 - $x \rightarrow_{S_i} x + 1$ if TM_i does not halt within $\leq x$ steps,
 - $\mathbf{x} \rightarrow_{S_i} 0, 1, 2, \dots$ otherwise.
- S_i is post-effective (the cardinal of $Post_{S_i}(x)$ is computable).
- S_i has strong and strict monotony since $x \to_{S_i} x + 1$ for every $x \in \mathbb{N}$.
- TM_i halts iff there exist $x \in \mathbb{N}$ and an execution $0 \xrightarrow{*}_{S_i} x$ such that $\mathsf{Post}_{S_i}(x)$ is infinite.
- The halting problem thus Turing-reduces to the infinite branching problem.

Objective

We want to study the usual reachability problems for these infinitely branching systems, e.g.,

Objective

We want to study the usual reachability problems for these infinitely branching systems, e.g.,

■ Termination,

Objective

We want to study the usual reachability problems for these infinitely branching systems, e.g.,

- Termination,
- Coverability,

Objective

We want to study the usual reachability problems for these infinitely branching systems, e.g.,

- Termination,
- Coverability,
- Boundedness.

Termination

Input: (X, \rightarrow, \leq) a WSTS, $x_0 \in X$.

Question: $\exists x_0 \rightarrow x_1 \rightarrow x_2 \rightarrow \dots$?

Termination

Input: (X, \rightarrow, \leq) a WSTS, $x_0 \in X$.

Question: $\exists x_0 \rightarrow x_1 \rightarrow x_2 \rightarrow \dots$?

Theorem (Finkel ICALP'87)

Termination is decidable for finitely branching WSTS with transitive monotony.

Termination

Input: (X, \rightarrow, \leq) a WSTS, $x_0 \in X$.

Question: $\exists x_0 \rightarrow x_1 \rightarrow x_2 \rightarrow \dots$?

Theorem (deduced from Dufourd, Jančar & Schnoebelen ICALP'99)

Termination is <u>undecidable</u> for infinitely branching WSTS.

Strong termination

Input: (X, \rightarrow, \leq) a WSTS, $x_0 \in X$.

Question: $\exists k$ bounding length of executions from x_0 ?

Strong termination

Input: (X, \rightarrow, \leq) a WSTS, $x_0 \in X$.

Question: $\exists k$ bounding length of executions from x_0 ?

Remark

Strong termination and termination are the same in finitely branching WSTS.

Strong termination

Input: (X, \rightarrow, \leq) a WSTS, $x_0 \in X$.

Question: $\exists k$ bounding length of executions from x_0 ?

Theorem

Strong termination is decidable for infinitely branching WSTS under some assumptions.

Issues with finite branching techniques

Some techniques for WSTS based on finite reachability trees; impossible for infinite branching.

Some rely on upward closed sets; what about downward closed, in particular with infinite branching?

Issues with finite branching techniques

Some techniques for WSTS based on finite reachability trees; impossible for infinite branching.

Some rely on upward closed sets; what about downward closed, in particular with infinite branching?

A tool

Develop from the WSTS *completion* introduced by Finkel & Goubault-Larrecq in STACS'09 and ICALP'09.

 $I \subseteq X$ is an *ideal* if

• downward closed: $I = \downarrow I$,

 $I \subseteq X$ is an *ideal* if

- downward closed: $I = \downarrow I$,
- directed: $a, b \in I \implies \exists c \in I \text{ s.t. } a \leq c \text{ and } b \leq c.$

 $I \subseteq X$ is an *ideal* if

- downward closed: $I = \downarrow I$,
- directed: $a, b \in I \implies \exists c \in I \text{ s.t. } a \leq c \text{ and } b \leq c.$

 $I \subseteq X$ is an *ideal* if

- downward closed: $I = \downarrow I$,
- directed: $a, b \in I \implies \exists c \in I \text{ s.t. } a \leq c \text{ and } b \leq c.$

Theorem (Finkel & Goubault-Larrecq ICALP'09; Goubault-Larrecq '14)

$$D$$
 downward closed $\implies D = \bigcup_{\mathsf{finite}} \mathsf{Ideals}$

Theorem (Finkel & Goubault-Larrecq ICALP'09; Goubault-Larrecq '14)

$$D$$
 downward closed $\implies D = \bigcup_{\text{finite}} \text{Ideals}$

Corollary

Every downward closed set decomposes <u>canonically</u> as the union of its maximal ideals.

Completion

The completion of $S=(X,\to_S,\leq)$ is $\widehat{S}=(\widehat{X},\to_{\widehat{S}},\subseteq)$ such that

Completion

The *completion* of $S=(X,\to_S,\leq)$ is $\widehat{S}=(\widehat{X},\to_{\widehat{S}},\subseteq)$ such that

$$\hat{X} = Ideals(X),$$

Completion

The completion of $S=(X,\to_S,\leq)$ is $\widehat{S}=(\widehat{X},\to_{\widehat{S}},\subseteq)$ such that

$$\widehat{X} = Ideals(X),$$

■
$$I \rightarrow_{\widehat{S}} J$$
 if $\downarrow Post(I) = \underbrace{\ldots \cup J \cup \ldots}_{\text{canonical decomposition}}$

Let $S=(X,\to_S,\leq)$ be a WSTS, then $\widehat{S}=(\widehat{X},\to_{\widehat{S}},\subseteq)$ is such that:

 \hat{S} is finitely branching,

Let $S=(X,\to_S,\leq)$ be a WSTS, then $\widehat{S}=(\widehat{X},\to_{\widehat{S}},\subseteq)$ is such that:

- \widehat{S} is finitely branching,
- \widehat{S} has (strong) monotony,

Let $S=(X,\to_S,\leq)$ be a WSTS, then $\widehat{S}=(\widehat{X},\to_{\widehat{S}},\subseteq)$ is such that:

- \hat{S} is finitely branching,
- \widehat{S} has (strong) monotony,
- \hat{S} is not always a WSTS (Jančar IPL'99).

Let $S = (X, \rightarrow_S, \leq)$ be a WSTS, then $\widehat{S} = (\widehat{X}, \rightarrow_{\widehat{S}}, \subseteq)$ is such that:

- \hat{S} is finitely branching,
- \widehat{S} has (strong) monotony,
- \hat{S} is not always a WSTS (Jančar IPL'99).

Jančar IPL'99

A wqo \leq is a ω^2 -wqo iff $\leq^\#$ is a wqo, where $\leq^\#$ is the Hoare ordering defined by $A \leq^\# B$ iff $\uparrow B \subseteq \uparrow A$.

Let $S = (X, \rightarrow_S, \leq)$ be a WSTS, then $\widehat{S} = (\widehat{X}, \rightarrow_{\widehat{S}}, \subseteq)$ is such that:

- \hat{S} is finitely branching,
- \widehat{S} has (strong) monotony,
- \hat{S} is not always a WSTS (Jančar IPL'99).

Jančar IPL'99

A wqo \leq is a ω^2 -wqo iff $\leq^\#$ is a wqo, where $\leq^\#$ is the Hoare ordering defined by $A \leq^\# B$ iff $\uparrow B \subseteq \uparrow A$.

Theorem

Let S be a WSTS, then \hat{S} is a WSTS iff S is a ω^2 -WSTS.

$$\bullet \text{ if } x \xrightarrow{k}_S y,$$

Let $S = (X, \rightarrow_S, \leq)$ be a WSTS, then

 \blacksquare if $x \xrightarrow{k}_S y$, then for every ideal $I \supseteq \downarrow x$

Let $S = (X, \rightarrow_S, \leq)$ be a WSTS, then

• if $x \xrightarrow{k}_S y$, then for every ideal $I \supseteq \downarrow x$ there exists an ideal $J \supseteq \downarrow y$

Let $S = (X, \rightarrow_S, \leq)$ be a WSTS, then

• if $x \xrightarrow{k}_S y$, then for every ideal $I \supseteq \downarrow x$ there exists an ideal $J \supseteq \downarrow y$ such that $I \xrightarrow{k}_{\widehat{S}} J$,

- if $x \xrightarrow{k}_S y$, then for every ideal $I \supseteq \downarrow x$ there exists an ideal $J \supseteq \downarrow y$ such that $I \xrightarrow{k}_{\widehat{S}} J$,
- $\bullet \text{ if } I \xrightarrow{k}_{\widehat{S}} J,$

- if $x \xrightarrow{k}_S y$, then for every ideal $I \supseteq \downarrow x$ there exists an ideal $J \supseteq \downarrow y$ such that $I \xrightarrow{k}_{\widehat{S}} J$,
- if $I \xrightarrow{k}_{\widehat{S}} J$, then for every $y \in J$

- if $x \xrightarrow{k}_S y$, then for every ideal $I \supseteq \downarrow x$ there exists an ideal $J \supseteq \downarrow y$ such that $I \xrightarrow{k}_{\widehat{S}} J$,
- if $I \xrightarrow{k}_{\widehat{S}} J$, then for every $y \in J$ there exists $x \in I$

- if $x \xrightarrow{k}_S y$, then for every ideal $I \supseteq \downarrow x$ there exists an ideal $J \supseteq \downarrow y$ such that $I \xrightarrow{k}_{\widehat{S}} J$,
- if $I \xrightarrow{k}_{\widehat{S}} J$, then for every $y \in J$ there exists $x \in I$ such that $x \xrightarrow{*}_{S} y' \geq y$.

Let $S = (X, \rightarrow_S, \leq)$ be a WSTS with transitive monotony, then

- if $x \xrightarrow{k}_{S} y$, then for every ideal $I \supseteq \downarrow x$ there exists an ideal $J \supseteq \downarrow y$ such that $I \xrightarrow{k}_{\widehat{S}} J$,
- if $I \xrightarrow{k}_{\widehat{S}} J$, then for every $y \in J$ there exists $x \in I$ such that $x \xrightarrow{\geq k}_{S} y' \geq y$.

Let $S = (X, \rightarrow_S, \leq)$ be a WSTS with strong monotony, then

- if $x \xrightarrow{k}_S y$, then for every ideal $I \supseteq \downarrow x$ there exists an ideal $J \supseteq \downarrow y$ such that $I \xrightarrow{k}_{\widehat{S}} J$,
- if $I \xrightarrow{k}_{\widehat{S}} J$, then for every $y \in J$ there exists $x \in I$ such that $x \xrightarrow{k}_{S} y' \geq y$.

Relations between S and \hat{S}

A generality

The completion $\widehat{S} = (\widehat{X}, \rightarrow_{\widehat{S}}, \subseteq)$ computes exactly the downward closure of the reachability set of its original system $S = (X, \rightarrow_S, <)$.

An equality

We have: $\operatorname{Post}_{\widehat{S}}^*(\downarrow x) = \downarrow \operatorname{Post}_{S}^*(x)$.

In fact, it is more exactly:

Theorem

If
$$Post_{\widehat{S}}^*(\downarrow x) = \{J_1, \ldots, J_n\}$$
 then $\downarrow Post_{\widehat{S}}^*(x) = J_1 \cup \ldots \cup J_n$.

Strong termination is decidable for infinitely branching WSTS with transitive monotony and such that \hat{S} is a post-effective WSTS.

Theorem

Strong termination is decidable for infinitely branching WSTS with transitive monotony and such that \widehat{S} is a post-effective WSTS.

Post-effectiveness

Possible to compute cardinality of

$$Post(\bigcirc\bigcirc\bigcirc) = \bigcirc\bigcirc\bigcirc,\bigcirc\bigcirc\bigcirc,\bigcirc\bigcirc\bigcirc\bigcirc,\bigcirc\bigcirc\bigcirc,\dots$$

Theorem

Strong termination is decidable for infinitely branching WSTS with transitive monotony and such that \widehat{S} is a post-effective WSTS.

Proof

Executions bounded in S iff bounded in \hat{S} .

Theorem

Strong termination is decidable for infinitely branching WSTS with transitive monotony and such that \widehat{S} is a post-effective WSTS.

- **Executions** bounded in S iff bounded in \hat{S} .
- \widehat{S} finitely branching, can decide termination in \widehat{S} by Finkel ICALP'87, Finkel & Schnoebelen TCS'01.

Input: (X, \rightarrow, \leq) a WSTS, $x_0, x \in X$.

Question: $x_0 \stackrel{*}{\rightarrow} x' \ge x$?

Input: (X, \rightarrow, \leq) a WSTS, $x_0, x \in X$.

Question: $x_0 \in \uparrow \operatorname{Pre}^*(\uparrow x)$?

Backward method (Abdulla, Cerans, Jonsson & Tsay IC'00)

Compute $\uparrow \operatorname{Pre}^*(\uparrow x)$ iteratively assuming $\uparrow \operatorname{Pre}(\uparrow x)$ computable.

Input: (X, \rightarrow, \leq) a WSTS, $x_0, x \in X$.

Question: $x_0 \in \uparrow \operatorname{Pre}^*(\uparrow x)$?

Backward method (Abdulla, Cerans, Jonsson & Tsay IC'00)

Compute $\uparrow \operatorname{Pre}^*(\uparrow x)$ iteratively assuming $\uparrow \operatorname{Pre}(\uparrow x)$ computable.

Input: (X, \rightarrow, \leq) a WSTS, $x_0, x \in X$.

Question: $x \in J$ Post* (x_0) ?

Input:
$$(X, \rightarrow, \leq)$$
 a WSTS, $x_0, x \in X$.

Question: $x \in J$ Post* (x_0) ?

Forward method

Coverability:

- Enumerate executions $\downarrow x_0 \stackrel{*}{\rightarrow}_{\widehat{S}} I$,
- Accept if $x \in I$.

Input:
$$(X, \rightarrow, \leq)$$
 a WSTS, $x_0, x \in X$.

Question: $x \in \ \downarrow \operatorname{Post}^*(x_0)$?

Forward method

Coverability:

- Enumerate executions $\downarrow x_0 \stackrel{*}{\rightarrow}_{\widehat{S}} I$,
- Accept if $x \in I$.

- Enumerate $D \subseteq X$ downward closed, $x_0 \in D$ and $\downarrow \mathsf{Post}_S(D) \subseteq D$
- Reject if $x \notin D$.

Input:
$$(X, \rightarrow, \leq)$$
 a WSTS, $x_0, x \in X$.

Question: $x \in J$ Post* (x_0) ?

Forward method

Coverability:

- Enumerate executions $\downarrow x_0 \stackrel{*}{\rightarrow}_{\widehat{S}} I$,
- Accept if $x \in I$.

- Enumerate $D = I_1 \cup ... \cup I_k$
- Reject if $x \notin D$.

Input:
$$(X, \rightarrow, \leq)$$
 a WSTS, $x_0, x \in X$.

Question: $x \in J$ Post* (x_0) ?

Forward method

Coverability:

- Enumerate executions $\downarrow x_0 \stackrel{*}{\rightarrow}_{\widehat{S}} I$,
- Accept if $x \in I$.

- Enumerate $D \subseteq X$ downward closed
- Reject if $x \notin D$.

Input:
$$(X, \rightarrow, \leq)$$
 a WSTS, $x_0, x \in X$.

Question: $x \in J$ Post* (x_0) ?

Forward method

Coverability:

- Enumerate executions $\downarrow x_0 \stackrel{*}{\rightarrow}_{\widehat{S}} I$,
- Accept if $x \in I$.

- Enumerate $D \subseteq X$ downward closed, $x_0 \in D$
- Reject if $x \notin D$.

Input:
$$(X, \rightarrow, \leq)$$
 a WSTS, $x_0, x \in X$.

Question: $x \in J$ Post* (x_0) ?

Forward method

Coverability:

- Enumerate executions $\downarrow x_0 \stackrel{*}{\rightarrow}_{\widehat{S}} I$,
- Accept if $x \in I$.

- Enumerate $D \subseteq X$ downward closed, $\downarrow x_0 \subseteq I_1 \cup ... \cup I_k$
- Reject if $x \notin D$.

Input:
$$(X, \rightarrow, \leq)$$
 a WSTS, $x_0, x \in X$.

Question: $x \in J$ Post* (x_0) ?

Forward method

Coverability:

- Enumerate executions $\downarrow x_0 \xrightarrow{*}_{\widehat{S}} I$,
- Accept if $x \in I$.

- Enumerate $D \subseteq X$ downward closed, $\exists j$ s.t. $\downarrow x_0 \subseteq I_j$
- Reject if $x \notin D$.

Input:
$$(X, \rightarrow, \leq)$$
 a WSTS, $x_0, x \in X$.

Question: $x \in J$ Post* (x_0) ?

Forward method

Coverability:

- Enumerate executions $\downarrow x_0 \stackrel{*}{\rightarrow}_{\widehat{S}} I$,
- Accept if $x \in I$.

- Enumerate $D \subseteq X$ downward closed, $x_0 \in D$ and $\downarrow \mathsf{Post}_S(D) \subseteq D$
- Reject if $x \notin D$.

Prebasis computability is *sufficient*, but not *necessary*, to ensure decidability of coverability.

Prebasis computability is *sufficient*, but not *necessary*, to ensure decidability of coverability.

Coverability is decidable in \mathcal{F}_1

The algorithm consists to enumerate strictly increasing reachable sequences until finding an $y \ge x$.

Prebasis computability is *sufficient*, but not *necessary*, to ensure decidability of coverability.

Coverability is decidable in \mathcal{F}_1

The algorithm consists to enumerate strictly increasing reachable sequences until finding an $y \ge x$.

Prebasis is not computable for \mathcal{F}_1

Let $S_i = (\mathbb{N}, \rightarrow_{S_i}, \leq)$ be the WSTS such that:

- $x \rightarrow_{S_i} 0$ if TM_i does not halt on its encoding in $\leq x$ steps,
- $\mathbf{x} \to_{S_i} 1$ otherwise.

Prebasis computability is *sufficient*, but not *necessary*, to ensure decidability of coverability.

Coverability is decidable in \mathcal{F}_1

The algorithm consists to enumerate strictly increasing reachable sequences until finding an $y \ge x$.

Prebasis is not computable for \mathcal{F}_1

Let $S_i = (\mathbb{N}, \rightarrow_{S_i}, \leq)$ be the WSTS such that:

- $x \rightarrow_{S_i} 0$ if TM_i does not halt on its encoding in $\leq x$ steps,
- $\mathbf{x} \to_{S_i} 1$ otherwise.

Then $S_i \in \mathcal{F}_1$ and S_i is effective.

Three Pre sets

- $Pre_{S_i}(0) = \{x \in \mathbb{N} : TM_i \text{ does not halt in } \leq x \text{ steps } \}$,
- $Pre_{S_i}(1) = \{x \in \mathbb{N} : TM_i \text{ halts in } \leq x \text{ steps } \}$,
- $Pre_{S_i}(x) = \emptyset$ for $x \ge 2$.

Three Pre sets

- $Pre_{S_i}(0) = \{x \in \mathbb{N} : TM_i \text{ does not halt in } \leq x \text{ steps } \}$,
- $Pre_{S_i}(1) = \{x \in \mathbb{N} : TM_i \text{ halts in } \leq x \text{ steps } \}$,
- $Pre_{S_i}(x) = \emptyset$ for $x \ge 2$.

Conclusion: prebasis is not computable for \mathcal{F}_1

- Therefore, $\uparrow \operatorname{Pre}_{S_i}(\uparrow 1) = \uparrow \operatorname{Pre}_{S_i}(1) = \operatorname{Pre}_{S_i}(1)$.
- If an algorithm outputting a finite basis of $\uparrow \operatorname{Pre}_{S_i}(\uparrow 1)$ existed, then it would be possible to decide whether $\operatorname{Pre}_{S_i}(1) = \emptyset$.

Three Pre sets

- $Pre_{S_i}(0) = \{x \in \mathbb{N} : TM_i \text{ does not halt in } \leq x \text{ steps } \}$,
- $Pre_{S_i}(1) = \{x \in \mathbb{N} : TM_i \text{ halts in } \leq x \text{ steps } \}$,
- $Pre_{S_i}(x) = \emptyset$ for $x \ge 2$.

Conclusion: prebasis is not computable for \mathcal{F}_1

- Therefore, $\uparrow \operatorname{Pre}_{S_i}(\uparrow 1) = \uparrow \operatorname{Pre}_{S_i}(1) = \operatorname{Pre}_{S_i}(1)$.
- If an algorithm outputting a finite basis of $\uparrow \operatorname{Pre}_{S_i}(\uparrow 1)$ existed, then it would be possible to decide whether $\operatorname{Pre}_{S_i}(1) = \emptyset$.
- But $Pre_{S_i}(1) = \emptyset$ iff TM_i does not halt.
- The halting problem thus Turing-reduces to the prebasis computation.

Boundedness is decidable for post-effective WSTS with strict monotony and a wpo.

Boundedness is decidable for post-effective WSTS with strict monotony and a wpo.

- We build a reachability tree T with root c_0 labelled x_0 .
- If $\operatorname{Post}_S(x_0)$ is infinite, then we return "unbounded", otherwise we mark c_0 and for every $x \in \operatorname{Post}_S(x_0)$ we add a child labelled x to c_0 .

Boundedness is decidable for post-effective WSTS with strict monotony and a wpo.

- We build a reachability tree T with root c_0 labelled x_0 .
- If $\mathsf{Post}_S(x_0)$ is infinite, then we return "unbounded", otherwise we mark c_0 and for every $x \in \mathsf{Post}_S(x_0)$ we add a child labelled x to c_0 .
- If c has an ancestor c' labelled x' such that x' < x, we return "unbounded". Otherwise,
 - if c has an ancestor c' labelled x' such that x' = x, we mark c.
 - Otherwise, if $\operatorname{Post}_S(x)$ is infinite, then we return "unbounded". Otherwise we mark c and for every $y \in \operatorname{Post}_S(x)$ we add a child labelled y to c.

Boundedness is decidable for post-effective WSTS with strict monotony and a wpo.

- We build a reachability tree T with root c_0 labelled x_0 .
- If $\operatorname{Post}_S(x_0)$ is infinite, then we return "unbounded", otherwise we mark c_0 and for every $x \in \operatorname{Post}_S(x_0)$ we add a child labelled x to c_0 .
- If c has an ancestor c' labelled x' such that x' < x, we return "unbounded". Otherwise,
 - if c has an ancestor c' labelled x' such that x' = x, we mark c.
 - Otherwise, if $\mathsf{Post}_S(x)$ is infinite, then we return "unbounded". Otherwise we mark c and for every $y \in \mathsf{Post}_S(x)$ we add a child labelled y to c.
- T is finite and correct.

Introduction
WSTS completion
Applications
Conclusion

Further result for infinitely branching WSTS

Strong maintainability is decidable for WSTS with strong monotony and such that \hat{S} is a post-effective WSTS.

Further work

■ ∃ general class of infinitely branching WSTS with a Karp-Miller procedure?

Further work

- ∃ general class of infinitely branching WSTS with a Karp-Miller procedure?
- Toward the algorithmics of complete WSTS.

Further work

- ∃ general class of infinitely branching WSTS with a Karp-Miller procedure?
- Toward the algorithmics of complete WSTS.
- What else can we do with the WSTS completion?

Thank you!