ATTACHMENT A

Amendments to the Claims

- (Currently Amended) A propylene copolymer composition comprising:
 - a propylene homopolymer; and A)
 - B) . at least one propylene copolymer containing from 12 to 18% by weight of at least one olefin other than propylene,

where the propylene homopolymer A and the propylene copolymer B are present as separate phases, the weight ratio of propylene homopolymer A to the propylene copolymer B is from 80:20 to 60:40 and the propylene copolymer composition has a haze value of ≤ 30%, based on a path length of the propylene copolymer composition of 1 mm, and the brittle/tough transition temperature of the propylene copolymer composition is ≤ -15°C, and the propylene copolymer composition is obtained from a polymerization multiphase process comprising metallocene compound, wherein the metallocene compound is used in each polymerization phase and the metallocene compound is of formula (VIII):

X

U.S. Patent Application Serial No. 10/517,580

T-923 P.009

$$R^5$$
 R^5
 R^5

is zirconium, hafnium or titanium; Μ

> are identical or different and are each, independently of one another, hydrogen or halogen or an -R, -OR, -OSO₂CF₃, -OCOR, -SR, -NR₂ or -PR₂ group, where R is linear or branched C1-C20-alkyl, C3-C20-cycloalkyl which may be substituted by one or more C₁-C₁₀-alkyl radicals, C₆-C₂₀-aryl, C₇-C₂₀-alkylaryl or $C_7 - C_{20}$ arylalkyl and optionally comprise at least one heteroatom of groups 13-17 of the Periodic Table of the Elements or one or more unsaturated bonds, where the two radicals X are optionally joined to one another and form a C4-C40-dienyl ligand, or an -OR'Owhich R' is a divalent group group in selected from the group consisting of C1-C40-

- alkylidene, C_6 - C_{40} -arylidene, C_7 - C_{40} -alkylarylidene and C_7 - C_{40} -arylalkylidene;
- L is a divalent bridging group selected from the group consisting of C₁-C₂₀-alkylidene radicals, C₃-C₂₀-cycloalkylidene radicals, C₆-C₂₀-arylidene radicals, C₇-C₂₀-alkylarylidene radicals and C₇-C₂₀-arylalkylidene radicals, which may contain heteroatoms of groups 13-17 of the Periodic Table of the Elements, or a silylidene group having up to 5 silicon atoms;
- R^1 is preferably unbranched in the α position and is a linear or branched C_1 - C_{10} -alkyl group;
- R^2 is a group of the formula $-C(R^3)_2R^4$;
- are identical or different and are each, independently of one another, linear or branched C₁-C₂₀-alkyl, C₃-C₂₀-cycloalkyl optionally substituted by one or more C₁-C₁₀-alkyl radicals, C₆-C₂₀-aryl, C₇-C₂₀-alkylaryl or C₇-C₂₀-arylalkyl and optionally comprises at least one heteroatom of groups 13-17 of the Periodic Table of the Elements or one or more unsaturated bonds, or two radicals R³ may be joined to form a saturated or unsaturated C₃-C₂₀-ring;
- R⁴ is hydrogen or linear or branched C₁-C₂₀-alkyl, C₃-C₂₀-cycloalkyl optionally substituted by one or more C₁-C₁₀-alkyl radicals, C₆-C₂₀-aryl, C₇-C₂₀-alkylaryl or C₇-

C20-arylalkyl and optionally comprises at least one heteroatom of groups 13-17 of the Periodic Table of the Elements or one or more unsaturated bonds;

are identical or different and are each, independently of one another, hydrogen or halogen or linear or branched C₁-C₂₀-alkyl, C₃-C₂₀-cycloalkyl optionally substituted by at least one C₁-C₁₀-alkyl radicals, C₆-C₂₀-aryl, C₇-C₂₀-alkylaryl or C₇-C₂₀-arylalkyl and optionally comprises at least one heteroatom of groups 13-17 of the Periodic Table of the Elements or one or more unsaturated bonds;

R⁶ is an aryl group of formula (VII):

$$R^7$$
 R^7
 R^8
 R^7
 R^7

are identical or different and are each, independently of one another, hydrogen or halogen or linear or branched C₁-C₂₀-alkyl, C₃-C₂₀-cycloalkyl optionally substituted by at least one C₁-C₁₀-alkyl radicals, C₆-C₂₀-aryl, C₇-C₂₀-alkylaryl or C₇-C₂₀-arylalkyl and optionally comprises at least one heteroatom of groups

- 13-17 of the Periodic Table of the Elements or one or more unsaturated bonds, or two radicals \mathbb{R}^7 are optionally joined to form a saturated or unsaturated C_3 - C_{20} ring; and
- is hydrogen or halogen or linear or branched C₁-C₂₀-alkyl, C₃-C₂₀-cycloalkyl which is optionally substituted by at least one C₁-C₁₀-alkyl radicals, C₆-C₂₀-aryl, C₇-C₂₀-alkylaryl or C₇-C₂₀-arylalkyl and optionally comprises at least one heteroatom of groups 13-17 of the Periodic Table of the Elements or one or more unsaturated bonds.

2. (Cancelled)

- 3. (Previously Presented) The propylene copolymer composition as claimed in claim 1, wherein the propylene homopolymer A has an isotactic structure.
- 4. (Previously Presented) The propylene copolymer composition as claimed in claim 1, wherein the olefin other than propylene in the propylene copolymer B) is ethylene.
- 5. (Previously Presented) The propylene copolymer composition as claimed in claim 1, wherein the value for

stress whitening, determined by the dome method at 23°C, is from 0 to 8 mm.

6. (Cancelled)

(Previously Presented) The propylene copolymer 7. composition as claimed in claim 1, wherein the copolymer B is dispersed in finely divided form in the matrix A.

(Cancelled)

- (Previously Presented) The propylene copolymer 9. composition as claimed in claim 1, comprising from 0.1 to 1% by weight, based on the total weight of the propylene copolymer composition, of a nucleating agent.
- (Previously Presented) The propylene copolymer 10. composition as claimed in claim 1, wherein a glass transition temperature of the propylene copolymer B determined by means of DMTA (dynamic mechanical thermal analysis) is in the range from -20°C to -40°C.
- (Previously Presented) The propylene copolymer 11. composition as claimed in claim 1, wherein a ratio of the

U.S. Patent Application Serial No. 10/517,580

shear viscosity of propylene copolymer B to that of propylene homopolymer A at a shear rate of 100 $\rm s^{-1}$ is in the range from 0.3 to 2.5.

- 12. (Previously Presented) The propylene copolymer composition as claimed in claim 1, wherein a molar mass distribution M_w/M_n is in the range from 1.5 to 3.5.
- 13. (Currently Amended) A process for preparing a propylene copolymer composition comprising:
 - A) a propylene homopolymer; and
 - B) at least one propylene copolymer containing from 12 to 18% by weight of at least one olefin other than propylene,

where the propylene homopolymer A and the propylene copolymer B are present as separate phases, the weight ratio of propylene homopolymer A to the propylene copolymer B is from 80:20 to 60:40 and the propylene copolymer composition has a haze value of $\leq 30\%$, based on a path length of the propylene copolymer composition of 1 mm, and the brittle/tough transition temperature of the propylene copolymer composition is $\leq -15^{\circ}\text{C}$;

the process comprising polymerizing monomers in a multistage polymerization with a catalyst system based on metallocene compounds and the metallocene compound is of formula (VIII):

$$R^{5}$$
 R^{5}
 R^{5}

M is zirconium, hafnium or titanium;

are identical or different and are each, independently of one another, hydrogen or halogen or an -R, -OR, -OSO₂CF₃, -OCOR, -SR, -NR₂ or -PR₂ group, where R is linear or branched C₁-C₂₀-alkyl, C₃-C₂₀-cycloalkyl which may be substituted by one or more C₁-C₁₀-alkyl radicals, C₆-C₂₀-aryl, C₇-C₂₀-alkylaryl or C₇-C₂₀-arylalkyl and optionally comprise at least one heteroatom of groups 13-17 of the Periodic Table of the Elements or one or more unsaturated bonds, where

the two radicals X are optionally joined to one another and form a C_4 - C_{40} -dienyl ligand, or an -OR'Ogroup in which R' is a divalent group selected from the group consisting of C_1 - C_{40} alkylidene, C6-C40-arylidene, C7-C40-alkylarylidene and C₇-C₄₀-arylalkylidene;

- is a divalent bridging group selected from the group consisting of C1-C20-alkylidene radicals, C3-C20cycloalkylidene radicals, C6-C20-arylidene radicals, C₇-C₂₀-alkylarylidene radicals and C₇-C₂₀-arylalkylidene radicals, which may contain heteroatoms of groups 13-17 of the Periodic Table of the Elements, or a silvlidene group having up to 5 silicon atoms;
- R1 is preferably unbranched in the α position and is a linear or branched C1-C10-alkyl group;
- R² is a group of the formula $-C(R^3)_2R^4$;
- \mathbb{R}^3 are identical or different and are each, independently of one another, linear or branched C1-C20-alkyl, C3-C20cycloalkyl optionally substituted by one or more C1-C10-alkyl radicals, C6-C20-aryl, C7-C20-alkylaryl or C7-C20-arylalkyl and optionally comprises at least one heteroatom of groups 13-17 of the Periodic Table of the Elements or one or

U.S. Patent Application Serial No. 10/517,580

unsaturated bonds, or two radicals R^3 may be joined to form a saturated or unsaturated C_3 - C_{20} -ring;

- is hydrogen or linear or branched C₁-C₂₀-alkyl, C₃-C₂₀-cycloalkyl optionally substituted by one or more C₁-C₁₀-alkyl radicals, C₆-C₂₀-aryl, C₇-C₂₀-alkylaryl or C₇-C₂₀-arylalkyl and optionally comprises at least one heteroatom of groups 13-17 of the Periodic Table of the Elements or one or more unsaturated bonds;
- are identical or different and are each, independently of one another, hydrogen or halogen or linear or branched C₁-C₂₀-alkyl, C₃-C₂₀-cycloalkyl optionally substituted by at least one C₁-C₁₀-alkyl radicals, C₆-C₂₀-aryl, C₇-C₂₀-alkylaryl or C₇-C₂₀-arylalkyl and optionally comprises at least one heteroatom of groups 13-17 of the Periodic Table of the Elements or one or more unsaturated bonds;

R⁶ is an aryl group of formula (VII):

$$\mathbb{R}^7$$
 \mathbb{R}^7
 \mathbb{R}^8
 \mathbb{R}^7
 \mathbb{R}^7

. .

- R7 are identical or different and are each, independently of one another, hydrogen or halogen or linear or branched C_1-C_{20} -alkyl, C_3-C_{20} -cycloalkyl optionally substituted by at least one C_1 - C_{10} -alkyl radicals, C_6 - C_{20} -aryl, C_7 - C_{20} -alkylaryl or C_7 - C_{20} -arylalkyl and optionally comprises at least one heteroatom of groups 13-17 of the Periodic Table of the Elements or one or more unsaturated bonds, or two radicals R7 are optionally joined to form a saturated or unsaturated C_3-C_{20} ring; and
- R^B is hydrogen or halogen or linear or branched C1-C20alkyl, C3-C20-cycloalkyl which is optionally substituted by at least one C1-C10-alkyl radicals, C6- C_{20} -aryl, C_7 - C_{20} -alkylaryl or C_7 - C_{20} -arylalkyl and optionally comprises at least one heteroatom of groups 13-17 of the Periodic Table of the Elements or one or more unsaturated bonds.
- 14. (Currently Amended) A process comprising producing a fiber, film or molding from a propylene copolymer composition, the process comprising extruding or injectionmolding the propylene copolymer composition, the propylene copolymer composition comprising
 - A) a propylene homopolymer; and

B) at least one propylene copolymer containing from 12 to 18% by weight of at least one olefin other than propylene,

where the propylene homopolymer A and the propylene copolymer B are present as separate phases, the weight ratio of propylene homopolymer A to the propylene copolymer B is from 80:20 to 60:40 and the propylene copolymer composition has a haze value of ≤ 30%, based on a path length of the propylene copolymer composition of 1 mm, and the brittle/tough transition temperature of the propylene copolymer composition is ≤ -15°C, and the propylene copolymer composition is obtained from a polymerization process comprising multiphase а metallocene compound, wherein the metallocene compound is used in each polymerization phase and the metallocene compound is of formula (VIII):

$$R^{5}$$
 R^{5}
 R^{5

- M is zirconium, hafnium or titanium;
- are identical or different and are each, independently X of one another, hydrogen or halogen or an -R, -OR, -OSO₂CF₃, -OCOR, -SR, -NR₂ or -PR₂ group, where R is linear or branched C1-C20-alkyl, C3-C20-cycloalkyl which may be substituted by one or more C₁-C₁₀-alkyl radicals, C_6-C_{20} -aryl, C_7-C_{20} -alkylaryl or C_7-C_{20} arylalkyl and optionally comprise at least one heteroatom of groups 13-17 of the Periodic Table of the Elements or one or more unsaturated bonds, where the two radicals X are optionally joined to one another and form a C4-C40-dienyl ligand, or an -OR'Ogroup in which R' is a divalent group selected from the group consisting of C1-C40alkylidene, C6-C40-arylidene, C7-C40-alkylarylidene and C₇-C₄₀-arylalkylidene;
- is a divalent bridging group selected from the group consisting of C₁-C₂₀-alkylidene radicals, C₃-C₂₀cycloalkylidene radicals, C6-C20-arylidene radicals, C7-C20-alkylarylidene radicals and C7-C20-arylalkylidene radicals, which may contain heteroatoms of groups 13-

- 17 of the Periodic Table of the Elements, or a silylidene group having up to 5 silicon atoms;
- R^1 is preferably unbranched in the α position and is a linear or branched C₁-C₁₀-alkyl group;
- \mathbb{R}^2 is a group of the formula $-C(R^3)_2R^4$;
- R^3 are identical or different and are each, independently of one another, linear or branched C1-C20-alkyl, C3-C20cycloalkyl optionally substituted by one or more C1-C10-alkyl radicals, C6-C20-aryl, C7-C20-alkylaryl or C7-C20-arylalkyl and optionally comprises at least one heteroatom of groups 13-17 of the Periodic Table of the Elements or one or more unsaturated bonds, or two radicals R3 may be joined to form a saturated or unsaturated C_3-C_{20} -ring;
- R⁴ is hydrogen or linear or branched C1-C20-alkyl, C3-C20cycloalkyl optionally substituted by one or more C_1 - C_{10} -alkyl radicals, C_6 - C_{20} -aryl, C_7 - C_{20} -alkylaryl or C_7 -C20-arylalkyl and optionally comprises at least one heteroatom of groups 13-17 of the Periodic Table of the Elements or one or more unsaturated bonds;
- are identical or different and are each, independently R^5 of one another, hydrogen or halogen or linear or branched C1-C20-alkyl, C3-C20-cycloalkyl optionally

substituted by at least one C1-C10-alkyl radicals, C6- C_{20} -aryl, C_7 - C_{20} -alkylaryl or C_7 - C_{20} -arylalkyl and optionally comprises at least one heteroatom of groups 13-17 of the Periodic Table of the Elements or one or more unsaturated bonds;

R⁶ is an aryl group of formula (VII):

$$R^7$$
 R^7
 R^8
(VII)

R7 are identical or different and are each, independently of one another, hydrogen or halogen or linear or branched C1-C20-alkyl, C3-C20-cycloalkyl optionally substituted by at least one C_1-C_{10} -alkyl radicals, C_6 - C_{20} -aryl, C_7 - C_{20} -alkylaryl or C_7 - C_{20} -arylalkyl and optionally comprises at least one heteroatom of groups 13-17 of the Periodic Table of the Elements or one or more unsaturated bonds, or two radicals R7 are optionally joined to form a saturated or unsaturated C3-C20 ring; and

is hydrogen or halogen or linear or branched C1-C20- R^8 alkyl, C3-C20-cycloalkyl which is optionally substituted by at least one C1-C10-alkyl radicals, C6-

U.S. Patent Application Serial No. 10/517,580

C₂₀-aryl, C₇-C₂₀-alkylaryl or C₇-C₂₀-arylalkyl and optionally comprises at least one heteroatom of groups

13-17 of the Periodic Table of the Elements or one or more unsaturated bonds.

- 15. (Currently Amended) A fiber, film or molding comprising a propylene copolymer composition comprising:
- A) a propylene homopolymer; and
- B) at least one propylene copolymer containing from 12 to 18% by weight of at least one olefin other than propylene, where the propylene homopolymer A and the propylene copolymer B are present as separate phases, the weight ratio of propylene homopolymer A to the propylene copolymer B is from 80:20 to 60:40 and the propylene copolymer composition has a haze value of ≤ 30%, based on a path length of the propylene copolymer composition of 1 mm, and the brittle/tough transition temperature of the propylene copolymer composition is ≤ -15°C, and the propylene copolymer composition is obtained from a multiphase polymerization process comprising a metallocene compound, metallocene compound is used in each the polymerization phase and the metallocene compound is of formula (VIII):

X

U.S. Patent Application Serial No. 10/517,580

$$R^{5}$$
 R^{5}
 R^{5}

M is zirconium, hafnium or titanium;

are identical or different and are each, independently of one another, hydrogen or halogen or an -R, -OR, -OSO₂CF₃, -OCOR, -SR, -NR₂ or -PR₂ group, where R is linear or branched C₁-C₂₀-alkyl, C₃-C₂₀-cycloalkyl which may be substituted by one or more C_1-C_{10} -alkyl radicals, C₆-C₂₀-aryl, C₇-C₂₀-alkylaryl or $C_7 - C_{20}$ arylalkyl and optionally comprise at least one heteroatom of groups 13-17 of the Periodic Table of the Elements or one or more unsaturated bonds, where the two radicals X are optionally joined to one another and form a C4-C40-dienyl ligand, or an -OR'Odivalent in which R' is a group group consisting of C1-C40selected from the group

- U.S. Patent Application Serial No. 10/517,580
- alkylidene, C6-C40-arylidene, C7-C40-alkylarylidene and C7-C40-arylalkylidene;
- is a divalent bridging group selected from the group consisting of C₁-C₂₀-alkylidene radicals, C₃-C₂₀cycloalkylidene radicals, C6-C20-arylidene radicals, C₇-C₂₀-alkylarylidene radicals and C₇-C₂₀-arylalkylidene radicals, which may contain heteroatoms of groups 13-17 of the Periodic Table of the Elements, or a silylidene group having up to 5 silicon atoms;
- R^1 is preferably unbranched in the α position and is a linear or branched C1-C10-alkyl group;
- R² is a group of the formula $-C(R^3)_2R^4$;
- \mathbb{R}^3 are identical or different and are each, independently of one another, linear or branched C1-C20-alkyl, C3-C20cycloalkyl optionally substituted by one or more C1-C10-alkyl radicals, C6-C20-aryl, C7-C20-alkylaryl or C7-C20-arylalkyl and optionally comprises at least one heteroatom of groups 13-17 of the Periodic Table of Elements or one or more the unsaturated bonds, or two radicals R3 may be joined to form a saturated or unsaturated C3-C20-ring;
- Rª is hydrogen or linear or branched C1-C20-alkyl, C3-C20cycloalkyl optionally substituted by one or more C1-C10-alkyl radicals, C6-C20-aryl, C7-C20-alkylaryl or C7-

C20-arylalkyl and optionally comprises at least one heteroatom of groups 13-17 of the Periodic Table of the Elements or one or more unsaturated bonds;

R⁵ are identical or different and are each, independently of one another, hydrogen or halogen or linear or branched C₁-C₂₀-alkyl, C₃-C₂₀-cycloalkyl optionally substituted by at least one C1-C10-alkyl radicals, C6- C_{20} -aryl, C_7 - C_{20} -alkylaryl or C_7 - C_{20} -arylalkyl and optionally comprises at least one heteroatom of groups 13-17 of the Periodic Table of the Elements or one or more unsaturated bonds;

R⁶ is an aryl group of formula (VII):

$$R^7$$
 R^8
 R^7
 R^8
(VII)

R۶ are identical or different and are each, independently of one another, hydrogen or halogen or linear or branched C₁-C₂₀-alkyl, C₃-C₂₀-cycloalkyl optionally substituted by at least one C_1 - C_{10} -alkyl radicals, C_{6} -C20-aryl, C7-C20-alkylaryl or C7-C20-arylalkyl and optionally comprises at least one heteroatom of groups

- 13-17 of the Periodic Table of the Elements or one or more unsaturated bonds, or two radicals R7 are optionally joined to form a saturated or unsaturated C_3-C_{20} ring; and
- R^8 is hydrogen or halogen or linear or branched C1-C20alkyl, C3-C20-cycloalkyl which is optionally substituted by at least one C₁-C₁₀-alkyl radicals, C₆-C20-aryl, C7-C20-alkylaryl or C7-C20-arylalkyl and optionally comprises at least one heteroatom of groups 13-17 of the Periodic Table of the Elements or one or more unsaturated bonds.
- 16. (Cancelled)
- 17. (Cancelled)
- 18. (Cancelled)