Categorical: GLiM wrap-up

Table of contents

1	Goals					
	1.1	Goals	1			
2			2			
	2.1	Review: Interactions in linear regression	2			
	2.2	Interactions in GLiMs	5			
	2.3	Testing interactions in GLiMs	7			
	2.4	Example: JPA data	9			
3	Mediation in GLiMs					
	3.1	Mediation in linear regression	6			
		What is a slope?				
	3.3	Mediation in GLiM	20			
	3.4	Example: JPA data	21			
4	Sum	nmary 2	24			
		Summary	24			

1 Goals

1.1 Goals

1.1.1 Goals of this lecture

- \bullet Interactions in GLiM
 - GLiMs have nonlinear (conditional) effects
 - Interactions are also conditional effects
 - How do those work together?

- Mediation with GLiM
 - Continuous outcomes: Indirect effects are calculated as the product of two regression coefficients from linear regression
 - GLiMs are nonlinear, so what do we use?

2 Interactions in GLiMs

2.1 Review: Interactions in linear regression

2.1.1 Multiple predictors with no interaction

$$\hat{Y} = b_0 + b_1 X_1 + b_2 X_2$$

- b_0 is the intercept
 - \hat{Y} when both X_1 and X_2 are equal to 0
- b_1 is the (partial) effect of X_1
 - The effect of X_1 on \hat{Y} , holding all other predictors constant
- b_2 is the (partial) effect of X_2
 - The effect of X_2 on \hat{Y} , holding all other predictors constant

2.1.2 Figure: 1 continuous and 1 binary, no interaction

2.1.3 Interaction as product term

$$\hat{Y} = b_0 + b_1 X_1 + b_2 X_2 + b_3 X_1 X_2$$

- b_0 is the intercept
 - \hat{Y} when both X_1 and X_2 are equal to 0
- b_3 is the **interaction** term
 - How the effect of X_1 on \hat{Y} varies as a function of X_2 How the effect of X_2 on \hat{Y} varies as a function of X_1

2.1.4 Simple slopes

$$\hat{Y} = (b_0 + b_2 X_2) + (b_1 + b_3 X_2) X_1$$

- Select specific values of X_2 and simplify
 - Determined by variable (binary), values of interest (mean, median, cut-offs), \pm 1 standard deviation (Aiken and West, 1991)
 - Each value of X_2 results in a specific intercept and slope

 $* \ \, \text{Intercept:} \, \, \frac{b_0 + b_2 X_2}{b_1 + b_3 X_2}$ $* \ \, \text{Slope:} \, \, \frac{b_1 + b_3 X_2}{b_1 + b_3 X_2}$

2.1.5 Figure: 1 continuous, 1 binary w/ interaction

2.1.6 Conditional effects

- Simple slopes are conditional effects
 - The effect of $X_1, \ conditional$ on the fact that X_2 takes on a certain value
 - Not a *single* value
 - Varies across values of a variable (here, $X_{2})$

2.1.7 Marginal effect

- We can also talk about the marginal effect of the interaction
 - Single value that reflects the overall effect
 - For linear regression, this is b_3
 - * For 1 continuous and 1 binary predictor, this is the difference in slopes between the groups
 - * For 2 continuous predictors, this is the warp in the 3D regression plane away from flat

2.2 Interactions in GLiMs

2.2.1 How are interactions different in GLiMs?

- Everything we know about interactions from linear regression still applies
 - But only for linear metric of the GLiM
 - * Logit metric for logistic regression
 - * ln(count) metric for Poisson regression
 - We generally use other metrics
 - * Probability metric for logistic regression
 - * Count metric for Poisson regression

2.2.2 How are interactions different in GLiMs?

- Nonlinear GLiM effects without interaction are already conditional
 - Interaction effects are "doubly conditional"
- Interaction depends on more than 1 coefficient
 - No single, marginal interaction effect
- Product term is neither necessary nor sufficient to demonstrate interaction

2.2.3 GLiM effects without interaction are already conditional

- Logistic regression w single predictor: Slope depends on the predictor
 - No single number for the slope (i.e., linear change in outcome)
 - It varies depending on the predictor
- Poisson regression w single predictor: Slope depends on the predictor
 - No single number for the slope (i.e., linear change in outcome)
 - It varies depending on the predictor
- Even without any interaction, effects are conditional on the predictor

2.2.4 Interaction effects are "doubly conditional"

- We can create *simple slopes* for a GLiM, similar to linear regression
 - Conditional effects
- But now they're conditional on **both** predictors
 - The "moderator" variable (usually X_2)
 - The "focal" or "X axis" variable (usually X_1)

2.2.5 Interaction depends on more than 1 coefficient

- Remember the odds ratio $(e^{b_1} \text{ for } X_1)$
 - This is the change in \hat{Y} due to change in X_1
 - But it tells you nothing about where you start and end
 - OR = 2 could be odds of 2 versus 1, or odds of 10 versus 5
 - Have to look at b_0 and b_1 together
- Similarly, with interactions, you can't look at the b_3 coefficient alone
 - Several coefficients together tell you about the interaction

2.2.6 What is "the" interaction effect?

- tl;dr: It's really super complicated and isn't a single value
- The interaction is conditional on values of both X_1 and X_2
 - No single value
- What to do?
 - Evaluate the interaction effect across different values of both predictors

2.2.7 Do I even need the product term?

- tl;dr: Maybe, but also maybe not
- The product term is neither *necessary* nor *sufficient* to determine whether there's an interaction
 - See last slide: Interaction isn't about just product term coefficient anyway
- Compare a model with a product term to a model without a product term

- Use the better model (based on LR test)
- Even the model without a product term will have a doubly conditional effect

2.3 Testing interactions in GLiMs

2.3.1 Part 1. Determine the best model

- Compare model with product term to one without using LR test
 - It may be a model with a product term, but it may not
 - Regardless of which model is best, you can still have an interaction

2.3.2 Part 2. Equations for marginal effect are hard

- The marginal interaction effect is the $second\ derivative$ of the regression equation with respect to both X_1 and X_2
 - Exactly what that looks like depends on whether the predictors are continuous or categorical

• Don't try to do the math here

- Unless you are **very** comfortable with calculus
- They are just to give you an idea of how it works

2.3.3 Why derivatives?

- 1st derivative = Slope
 - Single value for linear
 - $-b_1$

- 1st derivative = Slope
 - ${\bf Not}$ single value for nonlinear $b_1 e^{b_0 + b_1 X}$

2.3.4 Equations for marginal effect

• Two continuous predictors:

$$\beta_3 \dot{g}^{-1} (d(x)^T \beta + (\beta_1 + \beta_3 X_2) (\beta_2 + \beta_3 X_1) \ddot{g}^{-1} (d(x)^T \beta)$$

• One continuous, one categorical predictor:

$$(\beta_2+\beta_3)\dot{g}^{-1}((\beta_2+\beta_3)X_2+\beta_0+\beta_1)-\beta_2\dot{g}^{-1}(\beta_0+\beta_2X_2)$$

• Two categorical predictors:

$$\dot{g}^{-1}(\beta_0+\beta_1+\beta_2+\beta_3) - \dot{g}^{-1}(\beta_0+\beta_1) - \dot{g}^{-1}(\beta_0+\beta_2) + \dot{g}^{-1}(\beta_0)$$

2.3.5 Equations for marginal effect are hard

- Notice that the interaction is a function of a bunch of things: β_1 , β_2 , β_3 , as well as other covariates in the model (β)
- There are also first and second derivatives of the inverse link function
 - Depends on the model (i.e., logistic, Poisson, etc.)

2.3.6 Part 3. Conditional effects are (relatively) easy

- Conditional effects = simple slopes
- With the caveat that, for GLiMs, they are also conditional on the predictor
- As we've already seen for GLiMs

2.4 Example: JPA data

2.4.1 Example data

- Simulated data
 - case: Subject ID
 - sensation: Sensation seeking (1 to 7)
 - gender: 0 = female, 1 = male
 - y: Number of alcoholic beverages consumed on Saturday night

Coxe, S., West, S. G., & Aiken, L. S. (2009). The analysis of count data: A gentle introduction to Poisson regression and its alternatives. *Journal of Personality Assessment*, 91(2), 121-136.

2.4.2 Do we need a product term?

• No product term

```
Call:
glm(formula = y ~ sensation4 + gender, family = poisson(link = "log"),
    data = jpa)
Deviance Residuals:
    Min
             1Q
                 Median
                               ЗQ
                                       Max
-3.3696 -1.5739 -0.4401 0.8383
                                    3.8439
Coefficients:
           Estimate Std. Error z value Pr(>|z|)
                                 3.424 0.000617 ***
(Intercept) 0.25455
                       0.07434
sensation4 0.26085
                       0.03882 6.719 1.83e-11 ***
            0.83947
                      0.06292 13.342 < 2e-16 ***
gender
Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for poisson family taken to be 1)
   Null deviance: 1186.76 on 399 degrees of freedom
Residual deviance: 959.46 on 397 degrees of freedom
AIC: 1888.8
Number of Fisher Scoring iterations: 5
  • With product term (sensation4*gender)
Call:
glm(formula = y ~ sensation4 + gender + gender * sensation4,
    family = poisson(link = "log"), data = jpa)
Deviance Residuals:
             10
                 Median
                               30
                                      Max
-3.4817 -1.7195 -0.5326 0.8161
                                    3.7184
Coefficients:
                 Estimate Std. Error z value Pr(>|z|)
```

0.46454

0.10318

(Intercept)

sensation4

0.10909 4.258 2.06e-05 ***

0.07412 1.392 0.1639

```
gender 0.55540 0.12950 4.289 1.80e-05 *** sensation4:gender 0.21434 0.08694 2.465 0.0137 *
```

Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for poisson family taken to be 1)

Null deviance: 1186.76 on 399 degrees of freedom Residual deviance: 953.47 on 396 degrees of freedom

AIC: 1884.8

Number of Fisher Scoring iterations: 5

2.4.3 Do we need a product term? Count metric

• No product term

• With product term

2.4.4 Do we need a product term? In(count) metric

• No product term

• With product term

2.4.5 Do we need a product term? LR test

```
library(lmtest)
lrtest(jpa_m1, jpa_m2)

Likelihood ratio test

Model 1: y ~ sensation4 + gender

Model 2: y ~ sensation4 + gender + gender * sensation4
    #Df LogLik Df Chisq Pr(>Chisq)
1     3 -941.4
2     4 -938.4     1 5.9874     0.01441 *
---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

2.4.6 Simple slopes: Conditional effects

$$ln(\hat{\mu}) = e^{(0.465 + 0.555gender) + (0.103 + 0.214gender)sensation4}$$

- gender = 0 $- \, ln(\hat{\mu}) = e^{(0.465) + (0.103)sensation4} \label{eq:energy}$

$$* RR = e^{0.103} = 1.109$$

• gender = 1

$$- ln(\hat{\mu}) = e^{(1.02) + (0.318)sensation4}$$

$$* RR = e^{0.318} = 1.374$$

2.4.7 Plot: Conditional effects

2.4.8 Compare predicted counts between groups

- When sensation 4 = 0 (sensation = 4):
 - gender = 0: Predicted count = 1.59
 - gender = 1: Predicted count = 2.77
- When sensation 4 = 1 (sensation = 5):
 - gender = 0: Predicted count = 1.76
 - gender = 1: Predicted count = 3.81
- When sensation 4 = 2 (sensation = 6):
 - gender = 0: Predicted count = 1.96
 - gender = 1: Predicted count = 5.23

2.4.9 No constant effect across groups

sensation4	gender	Predicted count
0	0	1.591
1	0	1.764
2	0	1.956
0	1	2.773
1	1	3.809
2	1	5.233

• Not a constant *multiplicative* effect

$$-2.77 / 1.59 = 1.74$$

$$-3.81 / 1.76 = 2.16$$

$$-5.23 / 1.96 = 2.68$$

• Not a constant additive effect

$$-2.77 - 1.59 = 1.18$$

$$-3.81 - 1.76 = 2.05$$

$$-5.23 - 1.96 = 3.28$$

2.4.10 modglm package

- McCabe, C. J., Halvorson, M. A., King, K. M., Cao, X., & Kim, D. S. (2020). Interpreting interaction effects in generalized linear models of nonlinear probabilities and counts.
 Multivariate Behavioral Research, 1-27. doi: https://doi.org/10.1080/00273171.2020.18
 68966
 - https://github.com/connorjmccabe/modglm
- I have not been able to get this to work for this dataset, but it does work with the simulated data they provide

3 Mediation in GLiMs

3.1 Mediation in linear regression

3.1.1 Mediation model

3.1.2 Mediation equations

a path:

$$\hat{M}=i_{MX}+aX$$

b and c' paths:

$$\hat{Y} = i_{YXM} + bM + c'X$$

c path:

$$\hat{Y} = i_{YX} + cX$$

3.1.3 Mediated effect as product

3.1.4 Mediated effect as product

3.1.5 Mediated effect as product

- The mediated effect is the effect of X on Y via M
 - In SEM, such a path is described as the **product** of the regression coefficients that go into it
 - The a coefficient reflects the $X \to M$ path
 - * Slope for X predicting M
 - The b coefficient reflects the $M \to Y$ path
 - * Slope for M predicting Y
 - The mediated effect is $a \times b$

3.2 What is a slope?

3.2.1 What is a slope?

- 1st derivative = Slope
 - Single value for linear
 - $-b_1$

- 1st derivative = Slope
 - ${\bf Not}$ single value for nonlinear $b_1 e^{b_0 + b_1 X}$

3.2.2 What is a slope?

- Slope as a function of X
 - Slope = 0.304
 - Regardless of x1

- Slope as a function of X

 - Slope = $b_1 e^{b_0 + b_1 X}$ = $0.231 \times e^{0.786 + 0.231 sensation 4}$

3.3 Mediation in GLiM

3.3.1 Nonlinear mediation

• Geldhof, G. J., Anthony, K. P., Selig, J. P., & Mendez-Luck, C. A. (2018). Accommodating binary and count variables in mediation: A case for conditional indirect effects. *International Journal of Behavioral Development*, 42(2), 300-308.

3.3.2 Mediated effect is still a product

- Still consider the mediated effect the **product** of two paths:
 - -X to M
 - -M to Y
- But what do we want from each of those path now?
 - Not just the "slope" (i.e., b_1)
 - Depends on the specific model (i.e., linear, logistic, Poisson)

3.3.3 Slopes as derivatives

• Slopes are the **first derivative** of their respective equations

- In linear regression, slopes simplify to a and b

- In GLiMs, slopes are more complex

* Use the appropriate derivative for your model

3.3.4 Derivatives for each model: X to M

• Table 1 from Geldhof et al. (2018)

Model	Model equation	First derivative
Linear	$\hat{M} = i + aX$	a
Poisson	$\hat{M} = e^{(i+aX)}$	$ae^{(i+aX)}$
Logistic	$\hat{M} = \frac{e^{(i+aX)}}{1+e^{(i+aX)}}$	$\frac{ae^{(i+aX)}}{(1+e^{(i+aX)})^2}$

- Note: i in the table refers to i_{XM} : The intercept for X predicting M

3.3.5 Derivatives for each model: M to Y

• Table 2 from Geldhof et al. (2018)

Model	Model equation	First derivative
Linear	$\hat{Y} = i + bM + c'X$	b
Poisson	- 0	$be^{(i+bM+c'X)}$
Logistic	$\hat{Y} = \frac{e^{(i+bM+c'X)}}{1+e^{(i+bM+c'X)}}$	$\frac{be^{(i+bM+c'X)}}{(1+e^{(i+bM+c'X)})^2}$

• Note: i in the table refers to i_{YXM} : The intercept for X and M predicting Y

3.4 Example: JPA data

3.4.1 Mediation example: JPA

3.4.2 X to M: gender to sensation

• Linear regression

(Intercept) gender 1.242024 -0.118866

• a = -0.119

3.4.3 X to M: gender to sensation

3.4.4 M to Y: sensation to y (drinks)

• Poisson regression

(Intercept) sensation4 gender 0.2545520 0.2608472 0.8394682

 $\bullet \ be^{(i+bM+c'X)} = 0.261e^{(0.255+0.261M+0.839X)}$

3.4.5 M to Y: sensation to y (drinks)

3.4.6 Mediated effect

- Product of two effects
 - $-\ a\times b\times e^{(i+bM+c'X)} = -0.119\times 0.261\times e^{(0.255+0.261M+0.839X)}$
 - Function of X (gender) and M (sensation4)
 - * Conditional on X and M

3.4.7 Conditional indirect effect

- Select values of X based on the variable
 - 0 and 1
- Predict values of M based on the equation for X predicting M
 - See table
- ullet Calculate mediated or indirect effect value based on X and M
- x m ind 1 0 1.242024 -0.05529634 2 1 1.123158 -0.12411010

3.4.8 Conditional indirect effect

- Mediated effect of gender to y (drinks) via sensation4
 - -0.055 for women (gender = 0)
 - -0.124 for men (gender = 1)
- Compare to incorrect, non-conditional approach
 - $-a \times b = -0.119 \times 0.261 = -0.031$
 - Ignores conditional aspect
 - Ignores that the two paths come from different types of models

4 Summary

4.1 Summary

4.1.1 Summary of this week

- Interactions with GLiMs are hard
 - Use conditional effects (simple slopes)
 - Marginal effects are very complex
- Mediation with GLiMs is a little more difficult, but not too bad
 - Conditional indirect effect

4.1.2 Summary of this section

- GLiMs for binary, ordered and unordered categories, counts
 - Nonnormal outcomes
 - Nonlinear models with link functions
 - Different metrics
- Extensions of GLiMs
 - Interactions
 - Mediation

4.1.3 Next week

- Contingency tables
 - "Crosstabs" or frequency tables