ACH2016 – Inteligência Artificial Profa. Patrícia R. Oliveira Estagiário PAE: João Carlos S. de Souza

Lista de Exercícios

- 1. Defina a tarefa de classificação e dê exemplos de aplicação da mesma.
- 2. Defina "aprendizado indutivo".
- 3. Qual a diferença entre aprendizado supervisionado e não supervisionado?
- 4. Considere os seguintes métodos utilizados em aprendizagem de máquina e agrupe nas colunas correspondentes.

Arvores de decisão, Naive Bayes, Rede Neural Perceptron, Rede Neural MLP

Regressão	Classificação

- 5. Considerando que um conjunto de dados rotulados pode ser dividido em conjunto de treinamento e conjunto de teste, comente sobre a utilização dos métodos de amostragem na construção de classificadores.
- 6. Os que são árvores de decisão e a qual tipo de aprendizado estas técnicas estão associadas? Faça o mesmo para as técnicas: Naive Bayes, Rede Neural MLP, Árvores de Decisão e Algoritmos Genéticos.
- 7. Com relação a árvores de decisão, que tipo de informação é encontrada nos "nós internos" e nos "nós folhas"?
- 8. Após o cálculo de entropia de um determinado atributo de um conjunto de dados, obtivemos o valor 0 como resultado. O que podemos afirmar?
- 9. Considerando que as árvores de decisão trabalham com valores de atributos discretos, o que pode ser feito para aplicar essa abordagem a valores contínuos?

10. Considere os seguintes dados levantados em um hospital durante uma epidemia de dengue.

Instâncias	Temperatura	Dor de	Dor nos olhos	Náuseas	Cansaço	Diagnóstico
	_	Cabeça				
PACIENTE1	40	SIM	SIM	NÃO	SIM	DENGUE
PACIENTE2	36	NÃO	NÃO	NÃO	SIM	OUTRA
PACIENTE3	35	NÃO	NÃO	NÃO	SIM	OUTRA
PACIENTE4	39	SIM	SIM	SIM	SIM	DENGUE
PACIENTE5	34	NÃO	SIM	SIM	SIM	OUTRA
PACIENTE6	37	NÃO	SIM	NÃO	SIM	OUTRA
PACIENT7	36	SIM	SIM	SIM SIM		DENGUE
PACIENTE8	38	NÃO	SIM	NÃO	SIM	OUTRA
PACIENTE9	39	SIM	SIM	SIM	NÃO	DENGUE
PACIENTE10	37	SIM	NÃO	NÃO	NÃO	OUTRA

Com o intuito de criar um classificador para agilizar o diagnóstico ...

- a) Informe as classes consideradas no problema e suas respectivas distribuições.
- b) Calcule o erro majoritário do conjunto.
- c) Construa uma árvore de decisão para classificar um novo paciente como portador de DENGUE ou OUTRA doença.
- d) Transforme a árvore de decisão construída no item anterior em uma disjunção de regras.
- e) Considerando o conjunto não rotulado a seguir, utilize a árvore criada anteriormente para descobrir as classes de suas instâncias. Qual foi a acurácia do modelo?

Instâncias	Temperatura	Dor de	Dor nos olhos	Náuseas	Cansaço	Diagnóstico
		Cabeça				
PACIENTE11	39	SIM	SIM	NÃO	SIM	?
PACIENTE12	35	NÃO	NÃO	SIM	NÃO	?
PACIENTE13	35	NÃO	NÃO	NÃO	SIM	?
PACIENTE13	38	SIM	SIM	NÃO	SIM	?

11. Observe a Rede Perceptron a seguir:

Considerando uma taxa de aprendizagem = 0.1, informe os novos valores dos pesos da rede após a apresentação da seguinte entrada:

Instância	X1	X2	Х3	X4	Classe
Entrada1	1	1,8	2	1,6	1

- 12. Considere que a rede MLP a seguir foi modelada para realizar uma tarefa de classificação, de modo que a saída da rede seja interpretada como sendo da classe 1, se a saída do neurônio 6 for maior ou igual à saída do neurônio 7; ou como sendo da classe 2 caso contrário.
 - a. Qual a saída obtida pela rede para a entrada [50, 80]?
 - b. Quais serão os novos pesos da rede após a apresentação dessa entrada?

13. Classifique as instâncias da tabela a seguir utilizando a rede Perceptron dada abaixo.

Instância	1	X1	X2	Х3	X4	Classe
Entrada1	1	1,3	1,2	1,3	1,8	
Entrada2	1	1,1	1,7	1,2	1,2	
Entrada3	1	1,7	1,1	1,8	1,1	
Entrada4	1	1,6	1,8	1,6	1,8	
Entrada5	1	1,2	1,1	1,2	1,2	