

UNIVERSIDADE FEDERAL DE MINAS GERAIS

Programa de Graduação em Engenharia de Sistemas

Teoria da Decisão Trabalho Computacional

Professor: Lucas de Souza Batista

ABORDAGENS ESCALARES DE OTIMIZAÇÃO VETORIAL

Especificação do problema 1: domínio discreto

Uma empresa possui um conjunto $\mathcal T$ com n tarefas a serem realizadas e um conjunto $\mathcal A$ com m agentes disponíveis. Assuma que c_{ij} é o custo de atribuir a tarefa $j\in\mathcal T$ ao agente $i\in\mathcal A$, a_{ij} é a quantidade de recursos necessários ao agente $i\in\mathcal A$ para realizar a tarefa $j\in\mathcal T$, e b_i é a capacidade do agente $i\in\mathcal A$.

Com base nessa especificação, pede-se:

i. Formulação

- (a) Modele uma função objetivo $f_C(\cdot)$ para minimização do custo total de realização de todas as tarefas.
- (b) Modele uma função objetivo $f_Q(\cdot)$ para minimização da quantidade de recursos relacionada ao agente mais ocupado.
- (c) Modele também as restrições do problema: i) a capacidade dos agentes não pode ser violada; ii) cada tarefa deve ser atribuída a um único agente; iii) espaço de variáveis;

- ii. Algoritmo de solução
 - (a) Proponha um algoritmo VNS para resolver as versões mono-objetivo do problema. Considere pelo menos duas (02) estruturas de vizinhança.
- iii. Resultados (considerando a instância apresentada no anexo)
 - (a) Utilize o algoritmo apresentado no item (ii-a) para resolver as versões mono-objetivo do problema. Como o método é estocástico, o mesmo deve ser executado cinco vezes e os cinco resultados obtidos devem ser apresentados.
 - (b) Utilize o algoritmo apresentado no item (ii-a) para resolver a versão multiobjetivo do problema. Empregue as abordagens escalares Soma Ponderada (P_w) e ϵ -restrito (P_ϵ) . Como o método é estocástico, o mesmo deve ser executado cinco vezes e os cinco resultados obtidos devem ser apresentados. A fronteira estimada deve conter no máximo 50 soluções não-dominadas.

ANEXO

Neste problema deve ser considerada a instância com 10 agentes e 50 tarefas fornecida pelo professor. Os dados podem ser obtidos por meio do arquivo **data_10x50.mat**, disponibilizado no formato Matlab R2016a. Neste arquivo:

```
m: número de agentes;
```

n: número de tarefas;

a: matriz onde a posição a(i,j) contém a quantidade de recursos necessários ao agente i para processar a tarefa j;

c: matriz onde a posição c(i,j) contém o custo de atribuição da tarefa j ao agente i;

b: vetor onde a posição b(i) contém a capacidade total do agente i.

Especificação do problema 2: domínio contínuo

O problema abordado neste item está relacionado ao despacho de energia econômico e ambiental. Para compreender melhor esse problema, sugere-se a leitura do artigo em anexo (Liu 2016). Além de contextualizar o problema, os autores discutem também o estudo de caso abordado neste item.

As funções objetivo consideradas envolvem a minimização do custo de combustível (f_1) e a minimização da emissão de poluentes (f_2) .

Tanto o estudo de caso quanto as funções citadas já estão implementadas (Matlab). A função main.m representa a principal, na qual os alunos deverão incorporar a ferramenta de otimização; as demais são apenas para mostrar como as funções objetivo e restrição foram implementadas (nenhuma alteração é necessária nessas funções).

Neste item o aluno deverá especificamente i) apresentar adequadamente a modelagem do problema; ii) propor e implementar uma ferramenta de otimização multiobjetivo para a sua solução (baseada em busca em vizinhança ou população)¹; e iii) obter um conjunto de soluções não-dominadas e comparar com as soluções estimadas pelo professor (em anexo).

NOTA

O atendimento a todos os itens estabelecidos, bem como a apresentação e organização formal deste TC, são fundamentais para uma boa avaliação deste trabalho. Para o texto final, o aluno deve empregar um dos "templates" disponibilizados na página da disciplina. O texto final e código usado no desenvolvimento deverão ser enviados somente via plataforma Moodle.

O trabalho pode ser realizado individualmente, entretanto serão aceitos no máximo 10 grupos.

Bom trabalho!

¹Caso o aluno opte pelo método Simulated Annealing, deve ser elaborada uma versão melhorada em relação ao método disponibilizado pelo professor. A escolha da estratégia de escalarização é livre.