Physical Layer Design for a Narrow Band Communication System

G V V Sharma

Abstract—This a simple document explaining a question about the concept of similar triangles.

Download all python codes from

svn co https://github.com/SiddharthPh/ Summer2020/trunk/geometry/codes

and latex-tikz codes from

svn co https://github.com/gadepall/school/trunk/ncert/geometry/figs

$\begin{bmatrix} s_1 \\ \vdots \\ s_2 \end{bmatrix}$

1 Specifications

1.1 Modulation

1.1.1. See Fig.1.1.1.1 for the constellation diagram. The transmitted symbol set is given by

$$\mathbf{s}_m = \begin{pmatrix} \cos \frac{2m\pi}{8} \\ \sin \frac{2m\pi}{8} \end{pmatrix}, \quad m \in \{0, 1, \dots, 3\}. \quad (1.1.1.1)$$

The numerical values for s_m are listed in Table 1.2.2

1.1.2. See Table 1.2.2 for the encoding scheme.

Fig. 1.1.1.1: constellation diagram

Symbol	Grey Code	In-phase	Quadrature
s_0	00	1	0
<i>s</i> ₁	01	0	1
<i>s</i> ₂	11	-1	0
<i>S</i> ₃	10	0	-1

TABLE 1.1.2

1.2 Demodulation

1.2.1. The received symbol is then obtained as

$$\mathbf{v} = \sqrt{E_s}\mathbf{s} + \mathbf{n} \tag{1.2.1.1}$$

where E_s is the symbol energy and

$$\mathbf{n} \sim \mathcal{N}\left(\mathbf{0}, \frac{N_0}{2}\mathbf{I}\right)$$
 (1.2.1.2)

$$\mathbf{s} \in \{\mathbf{s}_m\}_{m=0}^3 \tag{1.2.1.3}$$

1.2.2. The decision rule is given by Fig.1.2.2.1 and can be expressed as

Minimum distance Criterion:

$$\hat{s} = \min ||\mathbf{v} - \mathbf{s}|| \tag{1.2.2.1}$$

From eq.1.2.2.1, s_0 is chosen if

$$\|\mathbf{y} - \mathbf{s}_0\|^2 < \|\mathbf{y} - \mathbf{s}_1\|^2$$
 (1.2.2.2)

$$\|\mathbf{y} - \mathbf{s}_0\|^2 < \|\mathbf{y} - \mathbf{s}_2\|^2$$
 (1.2.2.3)

$$\|\mathbf{y} - \mathbf{s}_0\|^2 < \|\mathbf{y} - \mathbf{s}_3\|^2$$
 (1.2.2.4)

The above conditions can be simplified to obtain the region

$$(\mathbf{s}_0 - \mathbf{s}_1)^T \mathbf{y} > 0$$
 (1.2.2.5)

Fig. 1.2.2.1: decision regions

$(\mathbf{s}_0 - \mathbf{s}_2)^T \mathbf{y} > 0$	(1.2.2.6)
--	-----------

$$(\mathbf{s}_0 - \mathbf{s}_3)^T \mathbf{y} > 0 \tag{1.2.2.7}$$

Substituting the values of $s_0, s_1, ..., s_7$ in the above

$$\begin{pmatrix} 1 \\ -1 \end{pmatrix}^{T} \mathbf{y} > 0$$

$$\begin{pmatrix} 1 \\ 0 \end{pmatrix}^{T} \mathbf{y} > 0$$

$$\begin{pmatrix} 1 \\ 0 \end{pmatrix} \mathbf{y} > 0$$

$$\begin{pmatrix} 1 \\ 1 \end{pmatrix} \mathbf{y}^{T} > 0$$

$$(1.2.2.9)$$

$$(1.2.2.10)$$

$$\begin{pmatrix} 1 \\ 0 \end{pmatrix}^T \mathbf{y} > 0$$
 (1.2.2.9)

$$\begin{pmatrix} 1 \\ 1 \end{pmatrix} \mathbf{y}^T > 0$$
 (1.2.2.10)

yielding $|y_2| < y1$ i.e D1 region (red) is detected at the receiver.

Similarly, from eq.1.2.2.1

For detecting s_1 , $y_1 > -y_2$ and $y_1 < y_2$ i.e D2 region (blue) is detected at the receiver.

For detecting s_2 , $y_1 < -y_2$ and $y_1 < y_2$ i.e D3 region (green) is detected at the receiver.

For detecting s_3 , $y_1 < -y_2$ and $y_1 > y_2$ i.e D4 region (yellow) is detected at the receiver.

1.2.3. The following code has simulation of QPSk.

codes/qpsk.py

Symbol	Decision region	Decision Rule
s_0	<i>D</i> 1	y1 > y2, y1 > -y2
s_1	D2	y1 < y2, y1 > -y2
s_2	D3	y1 < y2, y1 < -y2
<i>S</i> ₃	D3	y1 > y2, y1 < -y2

TABLE 1.2.2

Fig. 1.2.3.1: Result from Simulation