INTRODUCTION TO ALGEBRAIC NUMBER THEORY

CARSON JAMES

Contents

1. Algebraic Integers

1

1. Algebraic Integers

In the following section, K is taken to be a number field and thus a subfield of $\overline{\mathbb{Q}}$

Definition 1.0.1. Let $\alpha \in K$. Then α is said to be an **algebraic integer** if there exists $f(x) \in \mathbb{Z}[x]$ such that f(x) is monic and $p(\alpha) = 0$. Define $O_K = \{\alpha \in K : \alpha \text{ is an algebraic integer}\}$.

Theorem 1.0.1. Let $\alpha \in K$. Then α is an algebraic integer iff $m_{\alpha,\mathbb{O}}(x) \in \mathbb{Z}[x]$.

Proof. If $m_{\alpha,\mathbb{Q}}(x) \in \mathbb{Z}[x]$, then clearly α is an algebraic integer.

Conversely, suppose that α is an algebraic integer. There exists $f(x) \in \mathbb{Z}[x]$ such that f(x) is monic and $f(\alpha) = 0$. Since $\mathbb{Z}[x]$ is a unique factorization domain and f(x) is not a unit and nonzero, there exist irreducible polynomials $(p_i(x))_{i=1}^n \subset \mathbb{Z}[x]$ such that $f(x) = \prod_{i=1}^n p_i(x)$. Since f(x) is monic, for each $i \in \{1, 2, \dots, n\}$, we may take $p_i(x)$ to be monic. Then there exists $k \in \{1, 2, \dots, n\}$ such that $p_k(\alpha) = 0$. Then $m_{\alpha,\mathbb{Q}}(x)|p_k(x)$ in $\mathbb{Q}[x]$. Thus $p_k(x) = m_{\alpha,\mathbb{Q}}(x)$. Since $p_k(x)$ is monic and irreducible in $\mathbb{Z}[x]$, it is irreducible in $\mathbb{Q}[x]$. Thus $m_{\alpha,\mathbb{Q}}(x) = p_k(x)$.

Lemma 1.0.2. Let M be a finitely generated \mathbb{Z} -submodule of K. Then M is free.

Proof. Since M is finitely generated and torsion-free, the fundamental theorem of finitely generated abelian groups shows that M is free.

Note 1.0.1. The previous result says that anytime we consider M, a finitely generated \mathbb{Z} -submodule of K, we may choose a basis for M.

Theorem 1.0.3. Let $\alpha \in K$. Then $\alpha \in O_K$ iff there exists a finitely generated \mathbb{Z} -submodule M of K such that $\alpha M \subset M$.

Proof. Suppose that $\alpha \in O_K$. Then there exist $(a_i)_{i=0}^{n-1} \subset \mathbb{Z}$ such that such that $\alpha^n + a_{n-1}\alpha^{n-1} + \cdots + a_1\alpha + a_0 = 0$. Then $M = (1, \alpha, \alpha^2, \cdots, \alpha^{n-1})$ is a finitely generated \mathbb{Z} -submodule of K and $\alpha M \subset M$.

Conversely, Suppose that there exists a finitely generated \mathbb{Z} -submodule M of K such that $\alpha M \subset M$. Choose a basis $a = \{\alpha_1, \alpha_2, \cdots, \alpha_n\}$ of M. Thus for each $i, j \in \{1, 2, \cdots, n\}$, there exists $a_{i,j} \in \mathbb{Z}$ such that $\alpha \alpha_j = \sum_{i=1}^n a_{i,j} \alpha_i$. Define $T: M \to M$ by $T(x) = \alpha x$. Then

T is a linear with matrix representation $[T]_a = (a_{i,j})$ and eigen-value α . Thus $f(x) = \det(xI - T) \in \mathbb{Z}$ is a monic polynomial with root α . So $\alpha \in O_K$.

Theorem 1.0.4. Let $\alpha, \beta \in O_K$. Then $\alpha + \beta \in O_K$ and $\alpha\beta \in O_K$.

Proof. Since $\alpha, \beta \in O_K$, there exist finitely generated \mathbb{Z} -submodules M and N of K such that $\alpha M \subset M$ and $\beta N \subset N$. Choose finite sets $X, Y \subset K$ such that M = (X) and N = (Y). Then MN = (XY) is finitely generated. Let $x \in X$ and $y \in Y$. Then $(\alpha + \beta)(xy) = (\alpha x)y + x(\beta y)$ and $(\alpha \beta)(xy) = (\alpha x)(\beta y)$. Since $\alpha x \in M$ and $\beta y \in N$, we have that $(\alpha + \beta)(xy) \in MN$ and $(\alpha \beta)(xy) \in MN$. Hence $(\alpha + \beta)MN \subset MN$, $(\alpha \beta)MN \subset MN$ and thus $\alpha + \beta, \alpha\beta \in O_K$

Corollary 1.0.5. We have that O_K is a ring.

Lemma 1.0.6. Let $\alpha \in O_K$, $(\alpha_i)_{i=1}$ the conjugates of α , $L = \mathbb{Q}(\alpha_1, \alpha_2, \dots, \alpha_n)$ and $\sigma : K \hookrightarrow \overline{\mathbb{Q}}$ an embedding. Then $\sigma(\alpha) \in O_L$

Proof. Since $\alpha \in O_L$, there exists $f(x) \in \mathbb{Z}[x]$ such that f(x) is monic and $f(\alpha) = 0$. Since σ permutes $(\alpha_i)_{i=1}$, $\sigma(\alpha) \in L$. Since σ fixes \mathbb{Q} we haver that

$$f(\sigma(\alpha)) = \sigma(f(\alpha))$$
$$= 0$$

so $\sigma(\alpha) \in O_L$.

Lemma 1.0.7. We have that $O_K \cap \mathbb{Q} = \mathbb{Z}$

Proof. Clearly $\mathbb{Z} \subset O_K \cap \mathbb{Q}$. Let $\alpha \in O_K \cap \mathbb{Q}$. If $\alpha = 0$, then $\alpha \in \mathbb{Z}$. Suppose that $\alpha \neq 0$. Since $\alpha \in \mathbb{Q}$, there exists $a, b \in \mathbb{Z} \setminus \{0\}$ such that $\gcd(a, b) = 1$ and $\alpha = ab^{-1}$. Since $\alpha \in O_K$, there exist $a_0, a_1, \dots, a_{n-1} \in \mathbb{Z}$ such that $\alpha^n + a_{n-1}\alpha^{n-1} + \dots + a_1\alpha + a_0 = 0$. The rational root theorem says that b|1, so $b \in \mathbb{Z}^{\times}$ and thus $\alpha \in \mathbb{Z}$.

Lemma 1.0.8. Let $\alpha \in O_K$, $(\alpha_i)_{i=1}^n \subset \overline{\mathbb{Q}}$ the conjugates of α and $f(X_1, X_2, \dots, X_n) \in \mathbb{Z}[X_1, X_2, \dots, X_n]$ a symmetric polynomial. Then $f(\alpha_1, \alpha_2, \dots, \alpha_n) \in \mathbb{Z}$.

Proof. Since O_K is a ring, it is clear that $f(\alpha_1, \alpha_2, \dots, \alpha_n) \in O_K$. Let $L = \mathbb{Q}(\alpha_1, \alpha_2, \dots, \alpha_n)$. Since O_L is a ring and for each embedding $\sigma : K \hookrightarrow \overline{\mathbb{Q}}$ and $i \in \{1, 2, \dots, n\}, \ \sigma(\alpha_i) \in O_L$, we know that for each embedding $\sigma : K \hookrightarrow \overline{\mathbb{Q}}, \ \sigma(f(\alpha_1, \alpha_2, \dots, \alpha_n)) \in O_L$. For each embedding $\sigma : K \hookrightarrow \overline{\mathbb{Q}}$, there exists $\tau_{\sigma} \in S_n$ such that for each $i \in \{1, 2, \dots, n\}, \ \sigma(\alpha_i) = \alpha_{\tau_{\sigma}(i)}$. So for each embedding $\sigma : K \hookrightarrow \overline{\mathbb{Q}}$, we have

$$\sigma(f(\alpha_1, \alpha_2, \dots, \alpha_n)) = f(\sigma(\alpha_1), \sigma(\alpha_2), \dots, \sigma(\alpha_n))$$

$$= f(\alpha_{\tau_{\sigma(1)}}, \alpha_{\tau_{\sigma(2)}}, \dots, \alpha_{\tau_{\sigma(n)}})$$

$$= f(\alpha_1, \alpha_2, \dots, \alpha_n)$$

which implies that $f(\alpha_1, \alpha_2, \dots, \alpha_n) \in \mathbb{Q}$. Since $\mathbb{Q} \cap O_L = \mathbb{Z}$, we have that $f(\alpha_1, \alpha_2, \dots, \alpha_n) \in \mathbb{Z}$.

Theorem 1.0.9. Let $\alpha \in K$. Then there exists $c \in \mathbb{Z}$ such that $c\alpha \in O_K$.

Proof. Consider $m_{\alpha,\mathbb{Q}}(x) = x^n + a_{n-1}x^{n-1} + \cdots + a_0 \in \mathbb{Q}[x]$. For each $i \in \{1, 2, \cdots, n-1\}$, there exist $b_i, c_i \in Z$ such that $c_i \neq 0$ and $a_i = b_i c_i^{-1}$. Define $c = \text{lcm}\{c_i : i = 1, 2, \cdots, n-1\} \in \mathbb{Z}$ and $f(x) = c^n m_{\alpha,\mathbb{Q}}(c^{-1}x) = x^n + a_{n-1}cx^{n-1} + \cdots + a_1c^{n-1}x + a_0c^n \in \mathbb{Z}[x]$. Then f(x) is monic and $f(c\alpha) = 0$. So $c\alpha \in O_K$.

Corollary 1.0.10. Let K be a number field. Then there exists $\alpha \in O_K$ such that $K = \mathbb{Q}(\alpha)$.

Proof. Since K is a finite extension of \mathbb{Q} , there exists $\theta \in K$ such that $K = \mathbb{Q}(\theta)$. Then the previous result tells us that there exists $c \in \mathbb{Z}$ such that $c\theta \in O_K$. Choose $\alpha = c\theta$. Then $K = \mathbb{Q}(\theta) = \mathbb{Q}(\alpha)$.

2. Elliptic Curves