$11n_{104} (K11n_{104})$

Ideals for irreducible components 2 of X_{par}

$$I_1^u = \langle b - u, \ u^6 - 2u^5 - 9u^4 + 28u^3 - u^2 + 8a + 14u + 1, \ u^8 - 2u^7 - 10u^6 + 30u^5 + 8u^4 - 14u^3 + 2u^2 + 2u - 1 \rangle$$

$$I_2^u = \langle b - 1, \ a^4 - 4a^3 + 4a^2 + 1, \ u + 1 \rangle$$

$$I_3^u = \langle b + 1, \ a^3 + 3a^2 + 3a + 1, \ u - 1 \rangle$$

* 3 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 15 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

² All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

$$I_1^u = \langle b-u,\ u^6-2u^5-9u^4+28u^3-u^2+8a+14u+1,\ u^8-2u^7+\cdots+2u-1
angle$$

(i) Arc colorings

$$a_{1} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} -u^{2} + 1 \\ u^{2} \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} -\frac{1}{8}u^{6} + \frac{1}{4}u^{5} + \dots - \frac{7}{4}u - \frac{1}{8} \\ u \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} -\frac{1}{8}u^{6} + \frac{1}{4}u^{5} + \dots - \frac{11}{4}u - \frac{1}{8} \\ u \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} \frac{1}{8}u^{7} - \frac{1}{4}u^{6} + \dots + \frac{1}{8}u + 1 \\ -u^{2} \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} -u \\ -u^{3} + u \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} \frac{1}{8}u^{7} - \frac{1}{4}u^{6} + \dots + \frac{1}{8}u + 1 \\ -\frac{1}{8}u^{7} + \frac{1}{4}u^{6} + \dots - \frac{7}{4}u^{2} - \frac{1}{8}u \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} -\frac{5}{8}u^{7} + \frac{15}{8}u^{6} + \dots - \frac{65}{8}u + \frac{13}{8} \\ \frac{1}{2}u^{7} - \frac{11}{8}u^{6} + \dots + 4u - \frac{9}{8}u + \frac{9}{8} \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} -\frac{5}{8}u^{7} + \frac{11}{8}u^{6} + \dots - \frac{9}{8}u + \frac{9}{8} \\ \frac{1}{8}u^{7} - \frac{1}{4}u^{6} + \dots + \frac{7}{4}u^{2} + \frac{1}{8}u \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} -\frac{5}{8}u^{7} + \frac{11}{8}u^{6} + \dots - \frac{9}{8}u + \frac{9}{8} \\ \frac{1}{8}u^{7} - \frac{1}{4}u^{6} + \dots + \frac{7}{4}u^{2} + \frac{1}{8}u \end{pmatrix}$$

(ii) Obstruction class = -1

(iii) Cusp Shapes =
$$\frac{1}{2}u^7 - \frac{11}{4}u^6 - \frac{1}{2}u^5 + \frac{121}{4}u^4 - \frac{115}{2}u^3 + \frac{43}{4}u^2 + \frac{43}{2}u - \frac{65}{4}u^3 + \frac{115}{4}u^4 + \frac{115}{4}$$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
$c_1, c_5, c_6 \\ c_7, c_{11}$	$u^8 + 2u^7 - 10u^6 - 30u^5 + 8u^4 + 14u^3 + 2u^2 - 2u - 1$
c_2	$u^{8} + 24u^{7} + 236u^{6} + 1112u^{5} + 870u^{4} + 264u^{3} + 44u^{2} + 8u + 1$
c_3, c_{10}	$u^8 - 4u^7 - 12u^6 + 70u^5 - 54u^4 - 46u^3 + 38u^2 + 10u + 10$
c_4, c_9	$u^8 + 4u^7 + 10u^6 + 16u^5 + 18u^4 + 16u^3 + 10u^2 + 6u + 2$
c ₈	$u^8 + 4u^7 + 8u^6 - 4u^5 - 32u^4 - 48u^3 - 20u^2 + 4u + 4$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_5, c_6 c_7, c_{11}	$y^8 - 24y^7 + 236y^6 - 1112y^5 + 870y^4 - 264y^3 + 44y^2 - 8y + 1$
c_2	$y^8 - 104y^7 + \dots + 24y + 1$
c_3,c_{10}	$y^8 - 40y^7 + \dots + 660y + 100$
c_4, c_9	$y^8 + 4y^7 + 8y^6 - 4y^5 - 32y^4 - 48y^3 - 20y^2 + 4y + 4$
c ₈	$y^8 + 32y^6 - 184y^5 + 296y^4 - 928y^3 + 528y^2 - 176y + 16$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.594812 + 0.065631I		
a = 1.77892 - 0.41529I	-4.20158 + 3.92770I	-10.18918 - 5.00146I
b = -0.594812 + 0.065631I		
u = -0.594812 - 0.065631I		
a = 1.77892 + 0.41529I	-4.20158 - 3.92770I	-10.18918 + 5.00146I
b = -0.594812 - 0.065631I		
u = 0.495898		
a = -1.31523	-1.19322	-8.17950
b = 0.495898		
u = 0.279091 + 0.329009I		
a = -0.414734 - 0.712553I	-0.535301 - 1.039080I	-7.61110 + 6.36007I
b = 0.279091 + 0.329009I		
u = 0.279091 - 0.329009I		
a = -0.414734 + 0.712553I	-0.535301 + 1.039080I	-7.61110 - 6.36007I
b = 0.279091 - 0.329009I		
u = 2.73980 + 1.24096I		
a = 0.621831 - 0.351657I	11.45110 - 7.34942I	-11.27453 + 2.75920I
b = 2.73980 + 1.24096I		
u = 2.73980 - 1.24096I		
a = 0.621831 + 0.351657I	11.45110 + 7.34942I	-11.27453 - 2.75920I
b = 2.73980 - 1.24096I		
u = -3.34406		
a = -0.656809	15.7287	-9.67090
b = -3.34406		

II.
$$I_2^u = \langle b-1, \ a^4-4a^3+4a^2+1, \ u+1 \rangle$$

(i) Arc colorings

$$a_{1} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} 0 \\ -1 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} a \\ 1 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -a + 1 \\ -1 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -a + 1 \\ -1 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} -a + 1 \\ a - 2 \end{pmatrix}$$

$$a_{13} = \begin{pmatrix} -a^{3} + 3a^{2} - 2a \\ a^{3} - 4a^{2} + 5a - 1 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} -a^{2} + 2a - 1 \\ -a + 2 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} -a^{2} + 2a - 1 \\ -a + 2 \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = $4a^2 8a 16$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1, c_2, c_6 c_7	$(u+1)^4$
c_3,c_{10}	$u^4 - 2u^2 + 2$
c_4, c_9	$u^4 + 2u^2 + 2$
c_5, c_{11}	$(u-1)^4$
<i>C</i> ₈	$(u^2 - 2u + 2)^2$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_2, c_5 c_6, c_7, c_{11}	$(y-1)^4$
c_3, c_{10}	$(y^2 - 2y + 2)^2$
c_4, c_9	$(y^2 + 2y + 2)^2$
C ₈	$(y^2+4)^2$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -1.00000		
a = -0.098684 + 0.455090I	-5.75727 + 3.66386I	-16.0000 - 4.0000I
b = 1.00000		
u = -1.00000		
a = -0.098684 - 0.455090I	-5.75727 - 3.66386I	-16.0000 + 4.0000I
b = 1.00000		
u = -1.00000		
a = 2.09868 + 0.45509I	-5.75727 - 3.66386I	-16.0000 + 4.0000I
b = 1.00000		
u = -1.00000		
a = 2.09868 - 0.45509I	-5.75727 + 3.66386I	-16.0000 - 4.0000I
b = 1.00000		

III.
$$I_3^u = \langle b+1, \ a^3+3a^2+3a+1, \ u-1 \rangle$$

(i) Arc colorings

$$a_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_5 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$a_2 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

$$a_3 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$a_7 = \begin{pmatrix} a \\ -1 \end{pmatrix}$$

$$a_8 = \begin{pmatrix} a+1 \\ -1 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} a+1 \\ -1 \end{pmatrix}$$

$$a_6 = \begin{pmatrix} -1 \\ 0 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} a+1 \\ -a-2 \end{pmatrix}$$

$$a_9 = \begin{pmatrix} a+1\\ a^2+2a \end{pmatrix}$$

$$a_4 = \begin{pmatrix} -a^2 - 2a - 1 \\ a + 2 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} 0 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} a+1 \\ -a-2 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} a+1 \\ a^{2}+2a \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} -a^{2}-2a-1 \\ a+2 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} -a^{2}-2a-1 \\ a+2 \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = $4a^2 + 8a 8$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1, c_6, c_7	$(u-1)^3$
c_2, c_5, c_{11}	$(u+1)^3$
c_3, c_4, c_8 c_9, c_{10}	u^3

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
$c_1, c_2, c_5 \\ c_6, c_7, c_{11}$	$(y-1)^3$
c_3, c_4, c_8 c_9, c_{10}	y^3

(vi) Complex Volumes and Cusp Shapes

Solutions to I_3^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 1.00000		
a = -1.00000	-3.28987	-12.0000
b = -1.00000		
u = 1.00000		
a = -1.00000	-3.28987	-12.0000
b = -1.00000		
u = 1.00000		
a = -1.00000	-3.28987	-12.0000
b = -1.00000		

IV. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1, c_6, c_7	$((u-1)^3)(u+1)^4(u^8+2u^7+\cdots-2u-1)$
c_2	$(u+1)^{7}$ $\cdot (u^{8} + 24u^{7} + 236u^{6} + 1112u^{5} + 870u^{4} + 264u^{3} + 44u^{2} + 8u + 1)$
c_3,c_{10}	$u^{3}(u^{4} - 2u^{2} + 2)$ $\cdot (u^{8} - 4u^{7} - 12u^{6} + 70u^{5} - 54u^{4} - 46u^{3} + 38u^{2} + 10u + 10)$
c_4,c_9	$u^{3}(u^{4} + 2u^{2} + 2)(u^{8} + 4u^{7} + \dots + 6u + 2)$
c_5,c_{11}	$((u-1)^4)(u+1)^3(u^8+2u^7+\cdots-2u-1)$
<i>c</i> ₈	$u^{3}(u^{2}-2u+2)^{2}(u^{8}+4u^{7}+\cdots+4u+4)$

V. Riley Polynomials

Crossings	Riley Polynomials at each crossing	
c_1, c_5, c_6 c_7, c_{11}	$(y-1)^{7}$ $\cdot (y^{8} - 24y^{7} + 236y^{6} - 1112y^{5} + 870y^{4} - 264y^{3} + 44y^{2} - 8y + 1)$	
c_2	$((y-1)^7)(y^8 - 104y^7 + \dots + 24y + 1)$	
c_3, c_{10}	$y^{3}(y^{2} - 2y + 2)^{2}(y^{8} - 40y^{7} + \dots + 660y + 100)$	
c_4, c_9	$y^{3}(y^{2} + 2y + 2)^{2}(y^{8} + 4y^{7} + \dots + 4y + 4)$	
c ₈	$y^3(y^2+4)^2(y^8+32y^6+\cdots-176y+16)$	