Types of Regression & Classification

- 1. Ridge Regression
- 2. Lasso Regression
- 3. ElasticNet Regression
- 4. Logistic Regression

▼ Lasso, Ridge and ElasticNet Regression

▼ import libs

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
import seaborn as sb
sb.set(style='whitegrid')
```

▼ import dataset

```
# from google.colab import files
# uploaded = files.upload()
# D7data1.csv
# Boston Housing Dataset

import os
os.chdir(r'C:\Users\surya\Downloads\PG-DBDA-Mar23\Datasets')
os.getcwd()

'C:\\Users\\surya\\Downloads\\PG-DBDA-Mar23\\Datasets'
```

```
1 dataset = pd.read_csv('D7data1.csv')
2 # Boston Housing Dataset
3 dataset.head()
```

	crim	zn	indus	chas	nox	rm	age	dis	rad	tax	ptratio	b	lstat	me
0	0.00632	18.0	2.31	0	0.538	6.575	65.2	4.0900	1	296	15.3	396.90	4.98	2
1	0.02731	0.0	7.07	0	0.469	6.421	78.9	4.9671	2	242	17.8	396.90	9.14	2
2	0.02729	0.0	7.07	0	0.469	7.185	61.1	4.9671	2	242	17.8	392.83	4.03	3
3	0.03237	0.0	2.18	0	0.458	6.998	45.8	6.0622	3	222	18.7	394.63	2.94	3
4	0.06905	0.0	2.18	0	0.458	7.147	54.2	6.0622	3	222	18.7	396.90	5.33	3

1 dataset.shape

(506, 14)

1 dataset.describe()

	crim	zn	indus	chas	nox	rm	age	
count	506.000000	506.000000	506.000000	506.000000	506.000000	506.000000	506.000000	50
mean	3.613524	11.363636	11.136779	0.069170	0.554695	6.284634	68.574901	
std	8.601545	23.322453	6.860353	0.253994	0.115878	0.702617	28.148861	
min	0.006320	0.000000	0.460000	0.000000	0.385000	3.561000	2.900000	
25%	0.082045	0.000000	5.190000	0.000000	0.449000	5.885500	45.025000	
50%	0.256510	0.000000	9.690000	0.000000	0.538000	6.208500	77.500000	
75%	3.677083	12.500000	18.100000	0.000000	0.624000	6.623500	94.075000	
max	88.976200	100.000000	27.740000	1.000000	0.871000	8.780000	100.000000	1:

1 dataset.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 506 entries, 0 to 505

Data columns (total 14 columns):

Jaca	COTUMITS	(cocar 14 corumn	5):
#	Column	Non-Null Count	Dtype
0	crim	506 non-null	float64
1	zn	506 non-null	float64
2	indus	506 non-null	float64
3	chas	506 non-null	int64
4	nox	506 non-null	float64
5	rm	506 non-null	float64
6	age	506 non-null	float64

```
7 dis
             506 non-null
                            float64
 8
    rad
             506 non-null
                            int64
 9
             506 non-null
                            int64
    tax
 10 ptratio 506 non-null
                            float64
11 b
             506 non-null
                            float64
12 lstat
             506 non-null
                            float64
13 medv
             506 non-null
                            float64
dtypes: float64(11), int64(3)
memory usage: 55.5 KB
```

▼ EDA

▼ null check

```
1 dataset.isnull().sum()
    crim
               0
    zn
               0
    indus
               0
    chas
               0
    nox
               0
               0
    rm
               0
    age
    dis
               0
    rad
               0
    tax
               0
    ptratio
               0
               0
    lstat
    medv
               0
    dtype: int64
1 import seaborn as sns
1 sns.pairplot(dataset)
```

c:\users\surya\appdata\local\programs\python\python39\lib\site-packages\seaborn\axisgrid.p
 self._figure.tight_layout(*args, **kwargs)
<seaborn.axisgrid.PairGrid at 0x1fab93ea970>


```
1 plt.figure(figsize=(9, 9))
2 sb.heatmap(dataset.corr(), annot=True)
3 plt.show()
```


1 plt.figure(figsize=(15,15))

2 sb.heatmap(dataset.corr(), annot=True, fmt='.2%')

3 plt.show()


```
1 # To-Do : Visualize correlation of features
```

```
crim
          -0.388305
           0.360445
zn
          -0.483725
indus
           0.175260
chas
          -0.427321
nox
           0.695360
rm
          -0.376955
age
           0.249929
dis
rad
          -0.381626
          -0.468536
tax
          -0.507787
ptratio
           0.333461
          -0.737663
lstat
           1.000000
medv
dtype: float64
```

```
1 corr_medv.abs().sort_values(ascending=False)
```

2 # sorting according to magnitudes

```
medv 1.000000
lstat 0.737663
```

² corr_medv = dataset.corrwith(dataset['medv'])

^{3 #} prints correlation of one column with other columns

⁴ corr_medv

```
0.695360
rm
ptratio
          0.507787
indus
           0.483725
           0.468536
tax
           0.427321
nox
          0.388305
crim
           0.381626
rad
age
           0.376955
           0.360445
zn
b
           0.333461
dis
          0.249929
          0.175260
chas
dtype: float64
```

1 dataset.corr()

^{2 #} prints correlation of all columns with other columns

	crim	zn	indus	chas	nox	rm	age	dis	
crim	1.000000	-0.200469	0.406583	-0.055892	0.420972	-0.219247	0.352734	-0.379670	С
zn	-0.200469	1.000000	-0.533828	-0.042697	-0.516604	0.311991	-0.569537	0.664408	-(
indus	0.406583	-0.533828	1.000000	0.062938	0.763651	-0.391676	0.644779	-0.708027	С
chas	-0.055892	-0.042697	0.062938	1.000000	0.091203	0.091251	0.086518	-0.099176	-C
nox	0.420972	-0.516604	0.763651	0.091203	1.000000	-0.302188	0.731470	-0.769230	(
rm	-0.219247	0.311991	-0.391676	0.091251	-0.302188	1.000000	-0.240265	0.205246	-C
age	0.352734	-0.569537	0.644779	0.086518	0.731470	-0.240265	1.000000	-0.747881	С
dis	-0.379670	0.664408	-0.708027	-0.099176	-0.769230	0.205246	-0.747881	1.000000	-C
rad	0.625505	-0.311948	0.595129	-0.007368	0.611441	-0.209847	0.456022	-0.494588	1
tax	0.582764	-0.314563	0.720760	-0.035587	0.668023	-0.292048	0.506456	-0.534432	С
ptratio	0.289946	-0.391679	0.383248	-0.121515	0.188933	-0.355501	0.261515	-0.232471	С
b	-0.385064	0.175520	-0.356977	0.048788	-0.380051	0.128069	-0.273534	0.291512	-C
Istat	0.455621	-0.412995	0.603800	-0.053929	0.590879	-0.613808	0.602339	-0.496996	С
medv	-0.388305	0.360445	-0.483725	0.175260	-0.427321	0.695360	-0.376955	0.249929	-C

▼ identify X & Y

```
1 # independent vars
2 x = dataset.iloc[: , :13].values
3 x[:2]

array([[6.3200e-03, 1.8000e+01, 2.3100e+00, 0.0000e+00, 5.3800e-01,
6.5750e+00, 6.5200e+01, 4.0900e+00, 1.0000e+00, 2.9600e+02,
1.5300e+01, 3.9690e+02, 4.9800e+00],
[2.7310e-02, 0.0000e+00, 7.0700e+00, 0.0000e+00, 4.6900e-01,
6.4210e+00, 7.8900e+01, 4.9671e+00, 2.0000e+00, 2.4200e+02,
1.7800e+01, 3.9690e+02, 9.1400e+00]])

1 # dependent vars
2 y = dataset.iloc[: , 13].values
3 y[:2]
array([24. , 21.6])
```

Splitting

```
1 from sklearn.model_selection import train_test_split
1 x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.2, random_state=0)
```

Preprocessing

▼ Scaling

-0.48463784, 0.3716906, -0.41100022],

[-0.39709866, -0.49960763, -0.04487755, -0.27288841, -1.24185891,

```
-0.49118121, -1.8355285 , 0.73005474, -0.62464765, -0.57337637, 0.33649132, 0.20501196, -0.38768057]])
```

- ▼ Linear Regression
- ▼ Modeling: Linear Regression

```
1 from sklearn.linear_model import LinearRegression
1 lm = LinearRegression()
```

▼ Training: Linear Regression

```
1 lm.fit(x_train, y_train)

v LinearRegression
LinearRegression()
```

▼ calculating Linear coefficients

```
1 lm_coeff = pd.Series(lm.coef_, index=dataset.columns[: 13])
2 # storing coeffients of Linear Regression model as a Pandas Series
3 lm_coeff

crim    -0.970820
zn     1.057149
```

```
indus
           0.038311
chas
          0.594506
         -1.855148
nox
          2.573219
rm
         -0.087615
age
dis
         -2.880943
          2.112245
rad
tax
         -1.875331
         -2.292767
ptratio
          0.718179
         -3.592455
lstat
dtype: float64
```

▼ visualizing: Linear coefficients

```
1 plt.figure(figsize=(5, 5))
2 lm_coeff.plot(kind='bar')
3 # plotting bar graph
```



```
1 plt.figure(figsize=(5, 5))
2 lm_coeff.plot(kind='barh')
3 # plotting horizontal bar graph
```


▼ Ridge Regression

▼ Modeling: Ridge Regression

```
1 from sklearn.linear_model import Ridge
```

1 rid = Ridge()

▼ Training: Ridge Regression

1 rid.fit(x_train, y_train)

```
v Ridge
```

▼ Calculating Coefficients: Ridge Regression

```
1 rd_coeff = pd.Series(rid.coef_, index=dataset.columns[: 13])
2 # storing coeffients of Linear Regression model as a Pandas Series
3 rd_coeff
   crim
              -0.962257
   zn
              1.040872
   indus
              0.011680
               0.598719
   chas
              -1.820134
   nox
   rm
              2.583786
              -0.095188
   age
              -2.848263
   dis
   rad
              2.036231
              -1.806092
   tax
   ptratio
             -2.283191
              0.718310
   lstat
              -3.576073
   dtype: float64
```

▼ Visualizing Coefficients: Ridge Regression

```
1 plt.figure(figsize=(5, 5))
2 rd_coeff.plot(kind='barh')
3 # plotting bar graph
```


▼ Lasso Regression

▼ Modeling: Lasso Regression

```
1 from sklearn.linear_model import Lasso

1 la = Lasso()
```

▼ Training: Lasso Regression

Lasso()

```
1 la.fit(x_train, y_train)
```

▼ Calculating Coefficients: Lasso Regression

```
1 la_coeff = pd.Series(la.coef_, index=dataset.columns[: 13])
2 # storing coeffients of Linear Regression model as a Pandas Series
3 la_coeff
    crim
              -0.000000
               0.000000
   zn
   indus
              -0.000000
   chas
               0.000000
   nox
              -0.000000
               2.540098
   rm
              -0.000000
   age
    dis
              -0.000000
   rad
              -0.000000
   tax
              -0.171527
```

ptratio -1.784796 b 0.110959 lstat -3.585324 dtype: float64

▼ Visualizing Coefficients: Lasso Regression

```
1 plt.figure(figsize=(5, 5))
2 la_coeff.plot(kind='barh')
3 # plotting bar graph
```


▼ ElasticNet Regression

▼ Modeling: ElasticNet Regression

1 from sklearn.linear_model import ElasticNet

```
1 elnet = ElasticNet()
```

▼ Training: ElasticNet Regression

```
1 elnet.fit(x_train, y_train)

v ElasticNet
ElasticNet()
```

▼ Calculating Coefficients: ElasticNet Regression

```
1 elnet_coeff = pd.Series(la.coef_, index=dataset.columns[: 13])
2 # storing coefficents of Linear Regression model as a Pandas Series
3 elnet_coeff
   crim
              -0.000000
               0.000000
   zn
   indus
              -0.000000
   chas
               0.000000
   nox
              -0.000000
               2.540098
    rm
              -0.000000
    age
    dis
              -0.000000
              -0.000000
   rad
              -0.171527
   tax
    ptratio
             -1.784796
               0.110959
   lstat
              -3.585324
    dtype: float64
```

▼ Visualizing Coefficients: ElasticNet Regression

```
1 plt.figure(figsize=(5, 5))
2 elnet_coeff.plot(kind='barh')
3 # plotting bar graph
```


▼ Predictions

wiiii | | | |

▼ Prediction: Linear Regression

```
1 y_pred_lm = lm.predict(x_test)
2 y_pred_lm[:5]
array([25.87858248, 24.01180946, 30.22835216, 12.34741929, 21.99634736])
```

▼ Prediction: Ridge Regression

```
1 y_pred_rid = rid.predict(x_test)
2 y_pred_rid[:5]
array([25.95510418, 23.95328489, 30.18542863, 12.34271115, 22.00978384])
```

▼ Prediction: Lasso Regression

```
1 y_pred_la = la.predict(x_test)
2 y_pred_la[:5]
```

array([27.20745618, 22.43602729, 26.22245253, 13.77956784, 22.5613402])

▼ Prediction: ElasticNet Regression

```
1 y_pred_elnet = elnet.predict(x_test)
2 y_pred_elnet[:5]
array([26.63669003, 20.77657954, 27.18734277, 13.83177378, 22.9013383 ])
```

Accuracy

```
1 from sklearn import metrics
```

- ▼ Accuracy: Linear Regression
- ▼ mean_squared_error

```
1 mse_lm = metrics.mean_squared_error(y_test, y_pred_lm)
2 mse_lm
3 # Mean Square Error
35.11642077929317
```

▼ r2_score / coefficient of determination

```
1 metrics.r2_score(y_test, y_pred_lm)
2 # model accuracy using R-Square
3 # (coefficient of determination) regression score function.

0.5687450086990026

1 lm.score(x_test, y_test)
2 # accuracy for test dataset using linear model
3 # Return the coefficient of determination of the prediction
```

0.5687450086990026

- ▼ Accuracy: Ridge Regression
- ▼ mean_squared_error

```
1 mse_rid = metrics.mean_squared_error(y_test, y_pred_rid)
2 mse_rid
3 # Mean Square Error
35.18894572750182
```

▼ r2_score / coefficient of determination

```
1 metrics.r2_score(y_test, y_pred_rid)
2 # model accuracy using R-Square
3 # (coefficient of determination) regression score function.

0.5678543499924846

1 rid.score(x_test, y_test)
2 # accuracy for test dataset
3 # Return the coefficient of determination of the prediction
```

▼ Accuracy: Lasso Regression

0.5678543499924846

▼ mean_squared_error

```
1 mse_la = metrics.mean_squared_error(y_test, y_pred_la)
2 mse_la
3 # Mean Square Error
```

40.62043710016924

▼ r2_score / coefficient of determination

```
1 metrics.r2_score(y_test, y_pred_la)
2 # model accuracy using R-Square
```

```
3 # (coefficient of determination) regression score function.

0.5011517159343937

1 la.score(x_test, y_test)
2 # accuracy for test dataset
3 # Return the coefficient of determination of the prediction
```

▼ Accuracy: ElasicNet Regression

0.5011517159343937

▼ mean_squared_error

```
1 mse_elnet = metrics.mean_squared_error(y_test, y_pred_elnet)
2 mse_elnet
3 # Mean Square Error
```

43.25612264808443

▼ r2_score / coefficient of determination

```
1 metrics.r2_score(y_test, y_pred_elnet)
2 # model accuracy using R-Square
3 # (coefficient of determination) regression score function.

0.46878359518592116

1 elnet.score(x_test, y_test)
2 # accuracy for test dataset
3 # Return the coefficient of determination of the prediction
```

Ridge Penalty α value setting

0.46878359518592116

```
1 from sklearn.model_selection import GridSearchCV

1 parameter = {'alpha':[1, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 60, 70, 80, 100]}
```

▼ GridSearchCV

0.7498253962279072

▼ Logistic Regression

• used to classify into two classes

2 # if value of lambda is 10 then it gives best accuracy
3 # Mean cross-validated score of the best estimator

▼ import libs

```
1 import pandas as pd
2 import numpy as np
3 import matplotlib.pyplot as plt
4 import seaborn as sns
```

▼ import dataset

```
1 # from google.colab import files
2 # uploaded = files.upload()
3 # D7data2.csv
4
5 import os
6 os.chdir(r'C:\Users\surya\Downloads\PG-DBDA-Mar23\Datasets')
7 os.getcwd()
```

'C:\\Users\\surya\\Downloads\\PG-DBDA-Mar23\\Datasets'

```
1 dataset = pd.read_csv('D7data2.csv')
2 dataset.head()
```

	AGE	WORKCLASS	FNLWGT	EDUCATION	EDUCATIONNUM	MARITALSTATUS	OCCUPATION	RELATIONSHI	
0	39	State-gov	77516	Bachelors	13	Never-married	Adm- clerical	Not-in-famil	
1	50	Self-emp- not-inc	83311	Bachelors	13	Married-civ- spouse	Exec- managerial	Husbanı	
2	38	Private	215646	HS-grad	9	Divorced	Handlers- cleaners	Not-in-famil	
3	53	Private	234721	11th	7	Married-civ-	Handlers-	Husban	
da+a	dataset shape								

1 dataset.shape

(32561, 15)

1 dataset.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 32561 entries, 0 to 32560
Data columns (total 15 columns):

Data	COTUMNIS (COCAT	13 COTUMNS).	
#	Column	Non-Null Count	Dtype
0	AGE	32561 non-null	int64
1	WORKCLASS	32561 non-null	object
2	FNLWGT	32561 non-null	int64
3	EDUCATION	32561 non-null	object
4	EDUCATIONNUM	32561 non-null	int64
5	MARITALSTATUS	32561 non-null	object
6	OCCUPATION	32561 non-null	object
7	RELATIONSHIP	32561 non-null	object
8	RACE	32561 non-null	object
9	SEX	32561 non-null	object
10	CAPITALGAIN	32561 non-null	int64
11	CAPITALLOSS	32561 non-null	int64

```
12 HOURSPERWEEK 32561 non-null int64
13 NATIVECOUNTRY 32561 non-null object
14 ABOVE50K 32561 non-null int64
dtypes: int64(7), object(8)
memory usage: 3.7+ MB
```

1 dataset.describe()

	AGE	FNLWGT	EDUCATIONNUM	CAPITALGAIN	CAPITALLOSS	HOURSPERWEEK	
count	32561.000000	3.256100e+04	32561.000000	32561.000000	32561.000000	32561.000000	3
mean	38.581647	1.897784e+05	10.080679	1077.648844	87.303830	40.437456	
std	13.640433	1.055500e+05	2.572720	7385.292085	402.960219	12.347429	
min	17.000000	1.228500e+04	1.000000	0.000000	0.000000	1.000000	
25%	28.000000	1.178270e+05	9.000000	0.000000	0.000000	40.000000	
50%	37.000000	1.783560e+05	10.000000	0.000000	0.000000	40.000000	
75%	48.000000	2.370510e+05	12.000000	0.000000	0.000000	45.000000	
max	90.000000	1.484705e+06	16.000000	99999.000000	4356.000000	99.000000	

▼ EDA

▼ EDUCATION column

```
[Text(0, 0, 'Bachelors'),
Text(1, 0, ' HS-grad'),
Text(2, 0, '11th'),
Text(3, 0, 'Masters'),
Text(4, 0, '9th'),
Text(5, 0, ' Some-college'),
Text(6, 0, ' Assoc-acdm'),
Text(7, 0, ' Assoc-voc'),
Text(8, 0, '7th-8th'),
Text(9, 0, 'Doctorate'),
Text(10, 0, ' Prof-school'),
Text(11, 0, '5th-6th'),
Text(12, 0, ' 10th'),
Text(13, 0, ' 1st-4th'),
Text(14, 0, ' Preschool'),
Text(15, 0, ' 12th')]
     10000
      8000
 count
      6000
     4000
      2000
                  HS-grad
                                                        Doctorate
                                                                 5th-6th
                                                                       10th
                                                                           1st-4th
              Bachelors
                       11th
                                                    7th-8th
                                                                                     12th
                            Masters
                                 at
ot
                                     Some-college
                                          Assoc-acdm
                                               Assoc-voc
                                                             Prof-school
                                                                                Preschool
                                           EDUCATION
```

▼ MARITALSTATUS column

```
[Text(0, 0, ' Never-married'),
Text(1, 0, ' Married-civ-spouse'),
Text(2, 0, ' Divorced'),
Text(3, 0, ' Married-spouse-absent'),
```

▼ OCCUPATION column

▼ gender column

▼ RACE column

```
[Text(0, 0, 'White'),
```

▼ AGE column

```
Tay+(1 0 ' Othan')]

1 dataset['AGE'].unique()

array([39, 50, 38, 53, 28, 37, 49, 52, 31, 42, 30, 23, 32, 40, 34, 25, 43, 54, 35, 59, 56, 19, 20, 45, 22, 48, 21, 24, 57, 44, 41, 29, 18, 47, 46, 36, 79, 27, 67, 33, 76, 17, 55, 61, 70, 64, 71, 68, 66, 51, 58, 26, 60, 90, 75, 65, 77, 62, 63, 80, 72, 74, 69, 73, 81, 78, 88, 82, 83, 84, 85, 86, 87], dtype=int64)

1 dataset['AGE'].nunique()
```

1 sns.histplot(x=dataset['AGE'], data=dataset)


```
1 # alt for histogram using pandas DataFrame
2 dataset.iloc[:, 0].hist()
```


▼ HOURSPERWEEK column

https://colab.research.google.com/drive/1iawD9qMJ5RvG3yZmvn03roQ2Yf-Gj20l#printMode=true

1 sns.histplot(x=dataset['HOURSPERWEEK'], data=dataset)

<Axes: xlabel='HOURSPERWEEK', ylabel='Count'>

- 1 # alt for histogram using pandas DataFrame
- 2 dataset.iloc[:, 12].hist()

▼ Null check

```
1 dataset.isnull().sum()
   AGE
                    0
   WORKCLASS
                    0
   FNLWGT
                    0
   EDUCATION
                    0
   EDUCATIONNUM
                    0
   MARITALSTATUS
                    0
   OCCUPATION
                    0
   RELATIONSHIP
                    0
   RACE
                    0
   SEX
                    0
   CAPITALGAIN
   CAPITALLOSS
                    0
   HOURSPERWEEK
                    0
   NATIVECOUNTRY
                    0
   ABOVE50K
   dtype: int64
```

dropping unwanted

```
1 dataset.drop(['FNLWGT', 'EDUCATION', 'MARITALSTATUS', 'RELATIONSHIP', 'CAPITALGAIN', 'CAPITALLOSS', 'NATIVECOUNTRY'], axis=1, inplace=True)
```

1 dataset.head()

	A	AGE	WORKCLASS	EDUCATIONNUM	OCCUPATION	RACE	SEX	HOURSPERWEEK	ABOVE50K	
	0	39	State-gov	13	Adm-clerical	White	Male	40	0	
	1	50	Self-emp-not- inc	13	Exec-managerial	White	Male	13	0	
;	2	38	Private	9	Handlers- cleaners	White	Male	40	0	
	3	53	Private	7	Handlers- cleaners	Black	Male	40	0	

1 dataset.shape

(32561, 8)

```
1 dataset.info()
   <class 'pandas.core.frame.DataFrame'>
   RangeIndex: 32561 entries, 0 to 32560
   Data columns (total 8 columns):
        Column
                     Non-Null Count Dtype
                     -----
        AGE
    0
                     32561 non-null int64
    1
        WORKCLASS
                     32561 non-null object
        EDUCATIONNUM 32561 non-null int64
    2
        OCCUPATION
                     32561 non-null object
        RACE
                     32561 non-null object
    5
                     32561 non-null object
        HOURSPERWEEK 32561 non-null int64
        ABOVE50K
                     32561 non-null int64
   dtypes: int64(4), object(4)
   memory usage: 2.0+ MB
```

▼ identify X & Y

```
1 # independent variables
2 x = dataset.iloc[ : , 6].values
3 x[:5]
    array([40, 13, 40, 40, 40], dtype=int64)

1 # dependent variables
2 y = dataset.iloc[ : , 7].values
3 y[:5]
    array([0, 0, 0, 0, 0], dtype=int64)
```

Splitting

```
1 from sklearn.model_selection import train_test_split

1 x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.2, random_state=0)

1 x_train[:5]

array([40, 54, 50, 40, 40], dtype=int64)
```

```
1 x_test[:5]
    array([44, 40, 40, 40, 76], dtype=int64)

1 y_train[:5]
    array([0, 0, 0, 0, 0], dtype=int64)

1 y_test[:5]
    array([0, 0, 0, 0, 1], dtype=int64)
```

Preprocessing

▼ reshaping

• need to reshape X as it is just single column, so need to reshape from horizontal shape to vertical shape

▼ Modeling

```
1 from sklearn.linear_model import LogisticRegression
```

```
1 model = LogisticRegression()
```

▼ Training

```
1 model.fit(x_train, y_train)

v LogisticRegression
LogisticRegression()
```

▼ Predict

```
1 lr_model_pred = model.predict(x_test)
2 lr_model_pred[:5]
array([0, 0, 0, 0, 1], dtype=int64)
```

▼ Evaluation

▼ accuracy_score

```
1 from sklearn.metrics import accuracy_score
1 accuracy_score(y_test, lr_model_pred)
0.7466605251036389
```

▼ precision_score

```
1 from sklearn.metrics import precision_score
1 precision_score(y_test, lr_model_pred)
```

0.35135135135135137

▼ recall_score

```
1 from sklearn.metrics import recall_score
1 recall_score(y_test, lr_model_pred)
0.04075235109717868
```

▼ f1_score

```
1 from sklearn.metrics import f1_score

1 f1_score(y_test, lr_model_pred)

0.07303370786516854
```

▼ classification_report

```
1 from sklearn.metrics import classification_report

1 print(classification_report(y_test, lr_model_pred))

precision recall f1-score support

0 0.76 0.98 0.85 4918
1 0.35 0.04 0.07 1595
```

▼ Visualize classification

weighted avg

accuracy macro avg

0.55

0.66

- ▼ scatter()
 - for classification

0.51

0.75

0.75

0.46

0.66

6513

6513

6513

```
1 plt.scatter(dataset['HOURSPERWEEK'], dataset['ABOVE50K'])
2 plt.xlabel('HOURSPERWEEK')
3 plt.ylabel('ABOVE50K')
4 # shows data point classified as 0 or 1
```


▼ regplot()

• Regression Line Plot

```
1 sns.regplot(x='HOURSPERWEEK', y='ABOVE50K', color='g', data=dataset)
2 # shows regression is converte into classification
```

<Axes: xlabel='HOURSPERWEEK', ylabel='ABOVE50K'>

→ HW:

AGE vs ABOVE50K logistic regression

1