

Globus Toolkit - 4

Overview

- Grid Architecture
- Globus Toolkit -4 Architecture
- Components in Globus Toolkit -4

fppt.com

Before the Grid

Site B

User

Application

The User is responsible for resolving the complexities of the environment

Network

- independent hardware and software
- independent user ids
- security policy requiring local connection to the machine.

The Grid Today

- Request info from the grid
- Get response

Make selection and submit job

User

Application

2

3

Grid Middleware

Infrastructure

Network

The underlying infrastructure is abstracted into defined APIs thereby simplifying developer and the user access to resources, however, this layer is not intelligent

- Common Middleware
 - independent,
 hardware, software,
 user ids, into a
 service layer with
 defined APIs
 - comprehensive security,
 - allows for site autonomy
 - provides a common infrastructure based on middleware

4

Layered Grid Architecture (By Analogy to Internet Architecture)

"Coordinating multiple resources": ubiquitous infrastructure services, app-specific distributed services

"Sharing single resources": negotiating access, controlling use

"Talking to things": communication (Internet protocols) & security

"Controlling things locally": Access to, & control of, resources

Grid Components

Globus Toolkit

- The Globus project provides open source software tookit that can be used to build computational grids and grid based applications.
- It allows sharing of computing power, databases, and other tools securely online across corporate, institutional and geographic boundaries without sacrificing local autonomy.

Globus Toolkit

Application

Information Services

Execution Management

Data Management

Security

Globus Toolkit: Basic Grid Services

- Globus Toolkit Core
 - Infrastructure for building Grid services
 - Uniform, standard, WS-based protocols
 - Implementations in Java, C, Python, WSRF.NET
- Information Services
 - Discover & monitor dynamic services
- Execution Management
 - Provision environments, execute jobs, manage instruments
- Data management
 - Discover, transfer, & access large data
- Security
 - Authentication & Authorization
 - Credential management tools

From Globus Toolkit version 2 (GT2)

To Globus Toolkit version 4 (GT4) Core Contrib/ **Preview** Grid **Telecontrol** Protocol Community Data Python Scheduling ! WebMDS Delegation Replication **WS** Core Framework **Data Access** Workspace Community Trigger Web **WS** Core **Authorization** & Integration Management **Services** Grid Resourd **Components** Reliable Authentication Java Allocation & Index File **WS** Core Authorizatioh Transfer **Manageme**h Pre-WS Pre-WS Pre-WS C Common Authentication GridFTP Grid Resourd Monitoring Libraries Alloc. & Marr & Discovery Authorization Non-WS **Components** Credential Replica eXtensible www.globus.org Location IO (XIO) Mgmt Execution Info Common **Data Mgmt** Security Mgmt Services Runtime fppt.com

Four Key Protocols

- The Globus Toolkit[™] centers around four key protocols
 - Connectivity layer:
 - **Security:** Grid Security Infrastructure (GSI)
 - Resource layer:
 - Resource Management: Grid Resource Allocation Management (GRAM)
 - Information Services: Grid Resource Information Protocol (GRIP)
 - Data Transfer. Grid File Transfer Protocol
 (GridFTP)

The Globus Toolkit™: Security Services

The Globus Project™

Argonne National Laboratory
USC Information Sciences Institute

http://www.globus.org

GSI Security Layer

- The Grid Security Infrastructure (GSI) provides methods for authentication of Grid users and secure communication.
- It is based on SSL (Secure Sockets Layer), PKI (Public Key Infrastructure) and X.509 Certificate Architecture. The GSI provides services, protocols and libraries to achieve the following aims for Grid security:
 - Single sign-on for using Grid services through user certificates
 - Resource authentication through host certificates
 - Data encryption
 - Authorization
 - Delegation of authority and trust through proxies and certificate chain of trust for Certificate Authorities(CAs)
- Users gain access to resources by having their Grid certificate subjects mapped to an account on the remote machine by its system administrators.

Grid Security Infrastructure (GSI)

- Extensions to standard protocols & APIs
 - Standards: SSL/TLS, X.509 & CA, GSS-API
 - Extensions for single sign-on and delegation
- Globus Toolkit reference implementation of GSI
 - SSLeay/OpenSSL + GSS-API + SSO/delegation
 - Tools and services to interface to local security
 - Simple ACLs; SSLK5/PKINIT for access to K5, AFS; ...
 - Tools for credential management
 - Login, logout, etc.
 - Smartcards
 - MyProxy: Web portal login and delegation
 - K5cert: Automatic X.509 certificate creation

Review of Public Key Cryptography

- Asymmetric keys
 - A private key is used to encrypt data.
 - A public key can decrypt data encrypted with the private key.
- An X.509 certificate includes...
 - Someone's subject name (user ID)
 - Their public key
 - A "signature" from a Certificate Authority (CA) that:
 - Proves that the certificate came from the CA.
 - Vouches for the subject name
 - Vouches for the binding of the public key to the subject

Public Key Based Authentication

- User encodes the data with private key
 - Possession of private key means you can authenticate as subject in certificate
- Public key is used to decode the data.
 - If you can decode it, you know the subject
- Treat your private key carefully!!
 - Private key is stored only in well-guarded places, and only in encrypted form

User Proxies

- Minimize exposure of user's private key
- A temporary, X.509 proxy credential for use by our computations
 - We call this as user proxy certificate
 - Allows process to act on behalf of user
 - User-signed user proxy cert stored in local file
 - Created via "grid-proxy-init" command
- Proxy's private key is not encrypted
 - Rely on file system security, proxy certificate file must be readable only by the owner

Delegation

- Remote creation of a user proxy
- Results in a new private key and X.509 proxy certificate, signed by the original key
- Allows remote process to act on behalf of the user
- Avoids sending passwords or private keys
 across the network

GSI Applications

- Globus Toolkit[™] uses GSI for authentication
- Many Grid tools, directly or indirectly, e.g.
 - Condor-G, SRB, MPICH-G2, Cactus, GDMP, ...
- · Commercial and open source tools, e.g.
 - ssh, ftp, cvs, OpenLDAP, OpenAFS
 - SecureCRT (Win32 ssh client)
- And since we use standard X.509 certificates, they can also be used for
 - Web access, LDAP server access, etc.

The Globus Toolkit™: Resource Management Services

The Globus Project™

Argonne National Laboratory
USC Information Sciences Institute

http://www.globus.org

The Challenge

- Enabling secure, controlled remote access to heterogeneous computational resources and management of remote computation
 - Authentication and authorization
 - Resource discovery & characterization
 - Reservation and allocation
 - Computation monitoring and control
- Addressed by new protocols & services
 - GRAM protocol as a basic building block
 - Resource brokering & co-allocation services
 - GSI for security, MDS for discovery

Resource Management

- The Grid Resource Allocation Management
 (GRAM) protocol and client API allows programs
 to be started on remote resources, despite local
 heterogeneity
- Resource Specification Language (RSL) is used to communicate requirements
- A layered architecture allows application-specific resource brokers and co-allocators to be defined
 in terms of GRAM services
 - Integrated with Condor, PBS, MPICH-G2, ...

Resource Management A RSL Broker specialization **RSL** Queries Information **Application** Service & Info **Ground RSL** Co-allocator Simple ground RSL Local **GRAM GRAM GRAM** resource Condor NQE **LSF** 26 fppt.com

Globus Toolkit Implementation

Gatekeeper

- Single point of entry
- Authenticates user, maps to local security environment, runs service
- In essence, a "secure inetd"

Job manager

- A gatekeeper service
- Layers on top of local resource
 management system (e.g., PBS, LSF, etc.)
- Handles remote interaction with the job

GRAM Components

Job Submission Interfaces

- Globus Toolkit includes several command line programs for job submission
 - globus-job-run: Interactive jobs
 - globus-job-submit: Batch/offline jobs
 - globusrun: Flexible scripting infrastructure
- Others are building better interfaces
 - General purpose
 - Condor-G, PBS, GRD, Hotpage, etc.
 - Application specific
 - ECCE', Cactus, Web portals

The Globus Toolkit™: Information Services

The Globus Project™

Argonne National Laboratory
USC Information Sciences Institute

http://www.globus.org

Grid Information Services

- System information is critical to operation of the grid and construction of applications
 - What resources are available?
 - Resource discovery
 - What is the "state" of the grid?
 - Resource selection
 - How to optimize resource use
 - Application configuration and adaptation?
- We need a general information infrastructure to answer these questions

Examples of Useful Information

- Characteristics of a compute resource
 - IP address, software available, system administrator, networks connected to, OS version, load
- Characteristics of a network
 - Bandwidth and latency, protocols, logical topology
- Characteristics of the Globus infrastructure
 - Hosts, resource managers

Grid Information: Facts of Life

- Information is always old
 - Time of flight, changing system state
 - Need to provide quality metrics
- Distributed state hard to obtain
 - Complexity of global snapshot
- Component will fail
- Scalability and overhead
- Many different usage scenarios
 - Heterogeneous policy, different information organizations, etc.

Grid Information Service

- Provide access to static and dynamic information regarding system components
- A basis for configuration and adaptation in heterogeneous, dynamic environments
- Requirements and characteristics
 - Uniform, flexible access to information
 - Scalable, efficient access to dynamic data
 - Access to multiple information sources
 - Decentralized maintenance

The GIS Problem: Many Information Sources, Many Views

Information Protocols

- Grid Resource Registration Protocol
 - Support information/resource discovery
 - Designed to support machine/network failure
- Grid Resource Inquiry Protocol
 - Query resource description server for information
 - Query aggregate server for information
 - LDAP V3.0 in Globus 1.1.3

GIS Architecture

Standard Resource Description Services

Metacomputing Directory Service

- Use LDAP as Inquiry
- Access information in a distributed directory
 - Directory represented by collection of LDAP servers
 - Each server optimized for particular function
- Directory can be updated by:
 - Information providers and tools
 - Applications (i.e., users)
 - Backend tools which generate info on demand
- Information dynamically available to tools and applications

Two Classes Of MDS Servers

- Grid Resource Information Service (GRIS)
 - Supplies information about a specific resource
 - Configurable to support multiple information providers
 - LDAP as inquiry protocol
- Grid Index Information Service (GIIS)
 - Supplies collection of information which was gathered from multiple GRIS servers
 - Supports efficient queries against information which is spread across multiple GRIS server
 - LDAP as inquiry protocol

Grid Resource Information Service

- Server which runs on each resource
 - Given the resource DNS name, you can find the GRIS server (well known port = 2135)
- Provides resource specific information
 - Much of this information may be dynamic
 - Load, process information, storage information, etc.
 - GRIS gathers this information on demand
- "White pages" lookup of resource information
 - Ex: How much memory does machine have?
- "Yellow pages" lookup of resource options
 - Ex: Which queues on machine allows large jobs?

Grid Index Information Service

- GIIS describes a class of servers
 - Gathers information from multiple GRIS servers
 - Each GIIS is optimized for particular queries
 - Ex1: Which Alliance machines are >16 process SGIs?
 - Ex2: Which Alliance storage servers have >100Mbps bandwidth to host X?
 - Akin to web search engines
- Organization GIIS
 - The Globus Toolkit ships with one GIIS
 - Caches GRIS info with long update frequency
 - Useful for queries across an organization that rely on relatively static information (Ex1 above)
- Can be merged into GRIS

Logical MDS Deploy Grads Gusto **GIIS** ISI 42 fppt.com

Example: Discovering CPU Load

Retrieve CPU load fields of computer resources

% grid-info-search -L "(objectclass=GlobusComputeResource)" \
dn cpuload1 cpuload5 cpuload15

```
dn: hn=lemon.mcs.anl.gov, ou=MCS, o=Argonne National Laboratory,
  o=Globus, c=US
```

cpuload1: 0.48 cpuload5: 0.20 cpuload15: 0.03

```
dn: hn=tuva.mcs.anl.gov, ou=MCS, o=Argonne National Laboratory,
o=Globus, c=US
```

cpuload1: 3.11 cpuload5: 2.64 cpuload15: 2.57

The Globus Toolkit™: Data Management Services

The Globus Project™

Argonne National Laboratory
USC Information Sciences Institute

http://www.globus.org

Data Intensive Issues Include

- Harness [potentially large numbers of] data, storage, network resources located in distinct administrative domains
- Respect local and global policies governing what can be used for what
- Schedule resources efficiently, again subject to local and global constraints
- Achieve high performance, with respect to both speed and reliability.

Desired Data Grid Functionality

- High-speed, reliable access to remote data
- Automated discovery of "best" copy of data
- Manage replication to improve performance
- Co-schedule compute, storage, network
- "Transparency" wrt delivered performance
- Enforce access control on data
- Allow representation of "global" resource
 allocation policies

A Model Architecture for Data Grids

Globus Toolkit Components

Two major Data Grid components:

- 1. Data Transport and Access
 - Common protocol
 - Secure, efficient, flexible, extensible data movement
 - Family of tools supporting this protocol
- 2. Replica Management Architecture
 - Simple scheme for managing:
 - multiple copies of files
 - collections of files

And The Protocol GridFTP

- Why FTP?
 - Ubiquity enables interoperation with many commodity tools
 - Already supports many desired features, easily extended to support others
 - Well understood and supported
- We use the term GridFTP to refer to
 - Transfer protocol which meets requirements
 - Family of tools which implement the protocol
- Note GridFTP > FTP
- Note that despite name, GridFTP is not restricted to file transfer!

GridFTP: Basic Approach

- FTP protocol is defined by several IETF RFCs
- Start with most commonly used subset
 - Standard FTP: get/put etc., 3rd-party transfer
- Implement standard but often unused features
 - GSS binding, extended directory listing, simple restart
- Extend in various ways, while preserving interoperability with existing servers
 - Striped/parallel data channels, partial file,
 automatic & manual TCP buffer setting,
 progress monitoring, extended restart

Replica Management

- Maintain a mapping between <u>logical</u>

 names for files and collections at one or more <u>physical locations</u>
- Important for many applications
 - Example: CERN HLT data
 - Multiple petabytes of data per year
 - Copy of everything at CERN (Tier 0)
 - Subsets at national centers (Tier 1)
 - Smaller regional centers (Tier 2)
 - Individual researchers will have copies

Replica Catalog Structure: A Climate Modeling Example

Replica Catalog

Logical Collection

C02 measurements 1998

Filename: Jan 1998 Filename: Feb 1998 **Logical Collection**

C02 measurements 1999

Location jupiter.isi.edu

Filename: Mar 1998 Filename: Jun 1998

Filename: Oct 1998

Protocol: gsiftp UrlConstructor:

gsiftp://jupiter.isi.edu/

nfs/v6/climate

Location sprite.llnl.gov

Filename: Jan 1998

• • •

Filename: Dec 1998

Protocol: ftp UrlConstructor: ftp://sprite.llnl.gov/

pub/pcmdi

Logical File Parent

Logical File
Jan 1998

Size: 1468762

Logical File Feb 1998

52

Replica Catalog Services as Building Blocks: Example

- Combine with information service to build <u>replica selection</u> services
 - E.g. "find best replica" using performance info from NWS and MDS
 - Use of LDAP as common protocol for info and replica services makes this easier
- Combine with application managers to build <u>data distribution</u> services
 - E.g., build new replicas in response to frequent accesses

For More Information

- Globus Project™
 - www.globus.org
- Grid Forum
 - www.gridforum.org
- Book (Morgan Kaufman)
 - www.mkp.com/grids

