

Limitations of Experiments

- It is necessary to implement the algorithm first, which may be difficult
- Good range of inputs?
 - Real world data
 - Synthetically created data
- In order to compare two algorithms, the same hardware and software environments must be used
- Difficult to be exhaustive, or use enough sample inputs to be able to make reliable claims about the algorithm.
 - There can be some input that completely bogs down your algorithm, but was never tested

4/7/2017

Analysis of Algorithms

5

Theoretical Analysis - Basics

- Uses a high-level description (pseudo code) of the algorithm instead of an actual implementation
- Characterizes running time as a function of the input size, n.
 - We care about very large input sizes, large n
- ◆ Takes into account all possible inputs
- Evaluates algorithm independent of hardware, implementation, input set, etc.
- Count operations not actual clock time

4/7/2017

Analysis of Algorithms

)

Theoretical Analysis - Benefits

- We want to be able to determine how efficient an algorithm is, across all machines, languages, etc.
- Allows us to compare different approaches to the same problem, i.e. "sorting".
- Helps us identify sections of algorithm with high cost where:
 - Can improve.
 - Cannot improve, i.e. lower-bound.
- Asymptotic Analysis Compare running time as a function of the input size in the limit i.e. as n approaches infinity.

4/7/2017 Analysis of Algorithms 7

Pseudocode

- High-level description of an algorithm
- More structured than English prose
- Less detailed than a program
- Preferred notation for describing algorithms
- Hides program design issues

Example: find max element of an array

Algorithm arrayMax(A, n)
Input array A of n integers
Output maximum element of A

 $currentMax \leftarrow A[0]$ for $i \leftarrow 1$ to n-1 do
if A[i] > currentMax then $currentMax \leftarrow A[i]$ return currentMax

4/7/2017

Analysis of Algorithms

8

```
Pseudocode & C++
Algorithm arrayMax(A,n)
                                        int arrayMax(int A[], int n) {
  Input: An array A storing n \ge 1 integers. int currentMax = A[0];
  Output: The maximum element of A.
                                           for(int i = 1; i < n; ++i){</pre>
  currentMax \leftarrow A[0]
                                                if(currentMax < A[i]) {</pre>
                                                    currentMax = A[i];
  for i \leftarrow n to n-1 do
       if currentMax < A[i] then
                                                return currentMax;
          currentMax \leftarrow A[i]
  return currentMax
      4/7/2017
                               Analysis of Algorithms
```


Counting Primitive Operations

By inspecting the pseudocode, we can determine the maximum number of primitive operations executed by an algorithm, as a function of the input size

```
Algorithm printArray(A, n)
i \leftarrow 0
t \rightarrow 0
```


Estimating Running Time

- Algorithm *printArray* executes 3n + 2 primitive operations in the worst case. Define:
 - a = Time taken by the fastest primitive operation
 - **b** = Time taken by the slowest primitive operation
- Let T(n) be worst-case time of *printArray*. Then $a(3n+2) \le T(n) \le b(3n+2)$
- lacktriangle Hence, the running time T(n) is bounded by two linear functions

4/7/2017

Analysis of Algorithms

13


```
More Big-Oh Examples
  ♦ 7n-2
    7n-2 is O(n)
    need c>0 and n_0\geq 1 such that 7n\text{--}2\leq c\text{--}n for n\geq n_0
    this is true for c = 7 and n_0 = 1
  -3n^3 + 20n^2 + 5
    3n^3 + 20n^2 + 5 is O(n^3)
    need c > 0 and n_0 \ge 1 such that 3n^3 + 20n^2 + 5 \le c \bullet n^3 for n \ge n_0
    this is true for c = 4 and n_0 = 21
  ■ 3 log n + log log n
    3 \log n + \log \log n is O(\log n)
    need c > 0 and n_0 \ge 1 such that 3 \log n + \log \log n \le c \bullet \log n for n \ge n_0
     this is true for c = 4 and n_0 = 2
  4/7/2017
                              Analysis of Algorithms
                                                                         23
```

Big-Oh Rules			
♦ If <i>f</i> (1	(n) is a polynomial of degree d , then $f(n)$ is		
O(nd), i.e.,		
1.	Drop lower-order terms		
2.	Drop constant factors		
	$f(n) = 4n^4 + n^3 = > O(n^4)$		
Use	the smallest possible class of functions		
	Say " $2n$ is $O(n)$ " instead of " $2n$ is $O(n^2)$ "		
You	can combine growth rates		
•	O(f(n)) + O(g(n)) = O(f(n) + g(n))		
•	$O(n) + O(n^3 + 5) = O(n + n^3 + 5) = O(n^3)$		

Asympt	otic Algorithm An	alysis
	mptotic analysis of an algornes the running time in big-	
■ We	orm the asymptotic analysis find the worst-case number of prations executed as a function o	orimitive
• We	express this function with Big-O	h notation
4/7/2017	Analysis of Algorithms	25

Rules for Analyzing Running Time Nested Loops - analyze inside out The running time of a statement inside a group of nested loops is the running time of the statement multiplied by the product of the sizes of all loops for (x = 0; x < N; x ++) { for (y = 0; y < N; y ++) { N*N iterations statement 1 1 statements } } O(N*N) = O(N²)

Analysis of Algorithms

4/7/2017

Rules for Analyzing Running Time

♦ if/else statements

The running time is never more than the running time of the test plus the larger of the running times of S1 and S2

29

```
if ( condition ) O(running time of condition)
+
else max ( O(running time of S1),
O(running time of S2) )

4/7/2017 Analysis of Algorithms
```

Analyzing Running Time

◆ In class exercise - give the Big-Oh running time of the following code

```
for ( x = 0; x < N; x ++ )

    array[x] = x*N;

for (x = 0; x < N; x ++ ) {

    if ( x < (N/2) )

        cout << array[x];

    else

    for ( y = 0; y < N; y ++ )

        cout << y*array[x];

}

4/7/2017
Analysis of Algorithms 30
```

```
Calculating Big-Oh

In class exercise - Give the Big-Oh notation for the following functions:

■ n + log (n) =

■ 8n log (n) + n² =

■ 6n² + 2n + 300 =

■ n + n log (n) + log (n) =

■ 40 + 8n + n² =

4/7/2017

Analysis of Algorithms

31
```


Array Big Oh Ru	Jilling Tilles
 Unsorted insert O(1) - add to end Sorted insert O(N) - shift items Num items O(1) - have to keep counter 	 Sorted Remove O(N) - shift items Unsorted Remove O(1) - move last Linear search O(N)
■ Print • O(N)	

