

Machine Learning DSECL ZG565

Dr. Monali Mavani

Pilani Campus

Topics to be covered

- Instance based learning
- K-Nearest Neighbour Learning
- Locally Weighted Regression (LWR) Learning

Tom Mitchell – Ch 8

Model-based learning techniques

Use the input data

$$\begin{bmatrix} x_{1,0} & x_{1,1} & \dots & x_{1,n} \\ x_{2,0} & x_{2,1} & \dots & x_{2,n} \\ \vdots & \vdots & \vdots & \vdots \\ x_{m,0} & x_{m,1} & \dots & x_{m,n} \end{bmatrix} \text{ and } \begin{bmatrix} y_1 \\ y_2 \\ \dots \\ y_m \end{bmatrix}$$

To learn a set of parameters

$$\left[\begin{array}{cccc} \boldsymbol{\theta}_0 & \boldsymbol{\theta}_1 & \cdots & \boldsymbol{\theta}_n \end{array}\right]$$

Which yield a generalized function

$$f(x) = \theta_0 x_0 + \theta_1 x_1 + \theta_2 x_2 + \dots + \theta_n x_n$$

Capable of predicting values or classes on new input data

$$f(x_i) = 39$$
$$f(x_i) = 1$$

Instance-based learning techniques

Store the input data

$$\begin{bmatrix} x_{1,0} & x_{1,1} & \dots & x_{1,n} \\ x_{2,0} & x_{2,1} & \dots & x_{2,n} \\ \vdots & \vdots & \vdots & \vdots \\ x_{m,0} & x_{m,1} & \dots & x_{m,n} \end{bmatrix} \text{ and } \begin{bmatrix} y_1 \\ y_2 \\ \dots \\ y_m \end{bmatrix}$$

When asked to predict a new value (a query)

$$y_i = ?$$

Search for similar data points previously stored

$$\begin{bmatrix} x_{4,1} & x_{4,2} & \cdots & x_{4,n} \\ x_{9,1} & x_{9,1} & \cdots & x_{9,n} \\ x_{15,1} & x_{15,1} & \cdots & x_{15,n} \end{bmatrix} \text{ and } \begin{bmatrix} y_4 \\ y_9 \\ y_{15} \end{bmatrix}$$

And use them to generate your prediction

$$y_i = \frac{y_4 + y_9 + y_{15}}{3}$$

Instance based learning

- Can approximate real-valued or discrete-valued target functions.
- 'lazy learning', as learning is postponed until a new instance is encountered
- Constructs a local approximation to the target function, applicable in the neighbourhood of new instance
- Suitable in cases where target function is complex over the entire input space, but easily describable in local approximations
- A key advantage of this kind of delayed, or lazy, learning is that instead of
 estimating the target function once for the entire instance space, these
 methods can estimate it *locally and differently* for each new instance to
 be classified. E.g Nearest Neighbour and locally weighted regression
- Real world applications found in recommendation systems (amazon).

Eager: generalize before seeing query

- Radial basis function networks, decision trees, back-propagation
- Eager learner must create global approximation

Disadvantages-Instance based approaches

- High cost of classifying new instances
 - nearly all computation takes place at classification time rather than when the training examples are first encountered.
 - Need techniques for efficiently indexing training examples to reduce computation required at query time.

Nearest neighbor approaches

- Key idea: just store all training examples <x_i,f(x_i)>
- Given query instance x_q , first locate nearest training example x_n , then estimate $f^*(x_q)=f(x_n)$

K-nearest neighbor:

- Given x_q, take vote among its k nearest neighbors (if discrete-valued target function)
- Take **mean(or median)** of f values of k nearest neighbors (if **real-valued)** $f^*(x_\alpha) = \sum_{i=1}^k f(x_i)/k$

Nearest Neighbor Classifiers

Basic idea:

If it walks like a duck, quacks like a duck, then it's probably a duck

k-Nearest Neighbor

- Considers all instances as members of n-dimensional space
- Nearest neighbours of an instance is determined based on Euclidean distance
- Distance between two n-dimensional instances x_i and x_j is given by:

$$d(x_i, x_j) \equiv \sqrt{\sum_{r=1}^n (a_r(x_i) - a_r(x_j))^2}$$

Distances

Manhattan Distance

- works if the points are arranged in the form of a grid
- if the input variables are not similar in type (such as age, gender, height, etc.)

Euclidean Distance

$$\sqrt{(x1-x2)^2} + \sqrt{(y1-y2)^2}$$

Euclidean

- Euclidean is commonly used on dense, continuous variables.
- There every dimension matters, and a 20 dimensional space can be challenging
- if the input variables are of similar in type (such as width, height, depth etc.)

Distance Measures: Special Cases of Minkowski

• h = 1: Manhattan (city block, L₁ norm) distance

$$d(i,j) = |x_{i_1} - x_{j_1}| + |x_{i_2} - x_{j_2}| + ... + |x_{i_p} - x_{j_p}|$$

• h = 2: (L₂ norm) Euclidean distance

$$d(i,j) = \sqrt{(|x_{i1} - x_{j1}|^2 + |x_{i2} - x_{j2}|^2 + ... + |x_{ip} - x_{jp}|^2)}$$

- $h \to \infty$. "supremum" (L_{max} norm, L_{∞} norm) distance, Chebyshev distance.
 - This is the maximum difference between any component (attribute) of the vectors

$$d(i,j) = \lim_{h \to \infty} \left(\sum_{f=1}^{p} |x_{if} - x_{jf}|^h \right)^{\frac{1}{h}} = \max_{f} |x_{if} - x_{jf}|$$

Distance Measure: Scale Effects

- Different features may have different measurement scales
 - E.g., patient weight in kg (range [50,200]) vs.
 blood protein values in ng/dL (range [-3,3])
- Consequences
 - Patient weight will have a much greater influence on the distance between samples
 - May bias the performance of the classifier

- X: raw score to be standardized, μ: mean of the population,
 σ: standard deviation
- the distance between the raw score and the population mean in units of the standard deviation
- negative when the raw score is below the mean, "+" when above Where $\gamma = 11$

 $z = \frac{x - \mu}{\sigma}$

 The Standard Scaler assumes data is normally distributed within each feature and scales them such that the distribution centered around 0, with a standard deviation

Min-Max scaler/Normalization

Feature scaling of features x_i consists of rescaling the range of features to scale the range in [0, 1] or [-1, 1] (Do not apply to x_0

$$x_1 = \frac{size - 1000}{2000}$$
 Average value of x1 Maximum value of x1 – min value of x1

$$x_2 = \frac{\#bedrooms - 2}{5}$$

Discrete and Continuous-valued function

discrete-valued target function:

- $f: \mathbb{R}^n \to V$ where V is the finite set $\{v_1, v_2, ..., v_s\}$
- the target function value is the most common value among the k nearest training examples

$$\hat{f}(x_q) \leftarrow \underset{v \in V}{argmax} \sum_{i=1}^k \delta(v, f(x_i))$$

where
$$\delta(a, b) = (a == b)$$

continuous-valued target function:

- algorithm has to calculate the mean value instead of the most common value
- $f: \Re^n \rightarrow \Re$

$$\hat{f}(x_q) \leftarrow \frac{\sum_{i=1}^k f(x_i)}{k}$$

Training algorithm:

• For each training example (x, f(x)), add the example to the list training_examples

Classification algorithm:

- Given a query instance x_q to be classified,
 - Let $x_1 ext{...} x_k$ denote the k instances from training_examples that are nearest to x_q
 - Return

$$\hat{f}(x_q) \leftarrow \underset{v \in V}{\operatorname{argmax}} \sum_{i=1}^k \delta(v, f(x_i))$$

where $\delta(a, b) = 1$ if a = b and where $\delta(a, b) = 0$ otherwise.

^{*} It can be used for Regression as well.

KNN for regression and Classification

k-NN examples

K=5

Voronoi Diagram

query point q_f

nearest neighbor q_i

 Nearest neighbour approach induces a Voronoi tessellation/partition of the input space (all test points falling in a cell will get the label of the training input in that cell)

 For any sample, the nearest sample is determined by the closest Voronoi cell edge

Various issues that affect the performance of kNN:

Performance of a classifier largely depends on the of the hyperparameter k

- Choosing smaller values for K, noise can have a higher influence on the result.
- Larger values of k are computationally expensive

Assigning the class labels can be tricky. For example, in the below case, for (k=5) the point is closer to 'green' classification, but gets classified as 'red' due to higher red votes/majority voting to 'red'

Value of K

- Choosing the value of k:
 - If k is too small, sensitive to noise points
 - If k is too large, neighborhood may include points from other classes

Rule of thumb:

K = sqrt(N)

N: number of training points

Finding K - Elbow method

- Compute sum of squares error (SSE)
 or any other error function for varying
 values of K (1 to a reasonable X) and
 plot against K
- In the plot, the elbow (see pic) gives the value of K beyond which the error function plot almost flattens
- As K approaches the total number of instances in the set, error function drops down to '0',

Distance weighted nearest neighbor

- contribution of each of the k nearest neighbors is weighted accorded to their distance to x_q
 - discrete-valued target functions

$$\hat{f}(x_q) \leftarrow \underset{v \in V}{argmax} \sum_{i=1}^{k} w_i \delta(v, f(x_i))$$

where
$$w_i \equiv \frac{1}{d(x_q,x_i)^2}$$
 and $\hat{f}(x_q) = f(x_i)$ if $x_q = x_i$

continuous-valued target function:

$$\hat{f}(x_q) \leftarrow \frac{\sum_{i=1}^k w_i f(x_i)}{\sum_{i=1}^k w_i}$$

Distance Weighted k-NN

- Give more weight to neighbors closer to the query point
 - $-\mathbf{w}_{i}=\mathbf{K}(\mathbf{d}(\mathbf{x}_{q},\mathbf{x}_{i}))$
 - $-K(d(x_q,x_i)) = 1/d(x_q,x_i)^2$
 - $-K(d(x_q,x_i)) = 1/(d_0+d(x_q,x_i))^2$
 - $-K(d(x_q,x_i)) = \exp(-(d(x_q,x_i)/\sigma_0)^2)$
 - $-d(x_q,x_i)$ is the distance between x_q and x_i
- Variation: Instead of only k-nearest neighbors use all training examples (global method Shepard's method)

Distance Weighted Average

Weighting the error criterion

$$-E(x_{q}) = \sum_{i} (f^{*}(x_{q}) - f(x_{i}))^{2} K(d(x_{i}, x_{q}))$$

Best estimate $f^*(x_q)$ will minimize the cost $E(x_q)$, therefore $\partial E(x_q)/\partial f^*(x_q)=0$

Curse of Dimensionality

- Imagine instances described by 20 attributes but only a few(2) are relevant to target function
- Curse of dimensionality: nearest neighbor is easily misled when instance space is high-dimensional
- First approach:
 - completely eliminate the least relevant attributes from the instance space. This is equivalent to setting some of the z_i scaling factors to zero
 - Use of cross-validation methods for selecting relevant subsets of the attributes

Second approach

- weight each attribute differently when calculating the distance between two instances i.e
 - stretching the axes in the Euclidean space, shortening the axes that correspond to less relevant attributes, and lengthening the axes that correspond to more relevant attributes.
- The amount by which each axis should be stretched can be determined automatically using a cross-validation approach
- To stretch (multiply) the jth axis by some factor z_j , where the values $z_1 \ldots z_n$, are chosen to minimize the true classification error of the learning algorithm

When to Consider Nearest Neighbors

- Suitable for Low dimensional datasets
- Lots of training data (distance-weighted KNN)
 - Training is very fast
 - Learn complex target functions
 - Do not lose information
- Noisy training data (distance-weighted KNN)
 - by taking the weighted average of the k neighbors nearest to the query point, it can smooth out the impact of isolated noisy training examples.

Nearest-Neighbor Classifiers: Issues

- The value of k, the number of nearest neighbors to retrieve
- Choice of Distance Metric to compute distance between records
- They typically consider all attributes of the instances when attempting to retrieve similar training examples from memory.
 - If the target concept depends on only a few of the many available attributes, then the instances that are truly most "similar" may well be a large distance apart.

Nearest Neighbours issues

- Expensive, Slow at query time
 - To determine the nearest neighbour of a query point q, must compute the distance to all N training examples
 - + Pre-sort training examples into fast data structures (kd-trees)
 - + Remove redundant data (condensing)
- Storage Requirements
 - Must store all training data P
 - + Remove redundant data (condensing)
 - Pre-sorting often increases the storage requirements
- High Dimensional Data
 - "Curse of Dimensionality"
 - Required amount of training data increases exponentially with dimension
 - Computational cost also increases dramatically

Locally Weighted Regression

Locally Weighted Regression

- Locally Function approximated based on data near query point
- Weighted Contribution by each training example is weighted by its distance from query point
- Regression- Approximates real-valued target function
- Residual is the error in approximating the target function.

$$\hat{f}(x) - f(x)$$

 Kernel function is the function of distance that is used to determine the weight of each training example. In other words, the kernel function is the function K such that

$$w_i = K(d(x_i, x_q)).$$

Locally Weighted Regression

- The nearest-neighbor approaches described in the previous section can be thought of as approximating the target function f(x) at the single query point $x = x_{q'}$
- Locally weighted regression is a generalization of this approach. It constructs an explicit approximation to f over a local region surrounding \mathbf{x}_{q^*}
- Uses nearby or distance-weighted training examples to form this local approximation to f.
- Approximate the target function in the neighborhood surrounding x, using a linear function, a quadratic function, a multilayer neural network, or some other functional form.
 - More complex functional forms are not often found the cost of fitting more complex functions for each query instance is prohibitively high,
 - these simple approximations model the target function quite well over a sufficiently small subregion of the instance space

Example

3-nearest-neighbors linear regression

locally weighted regression

Locally weighted linear regression

target function is approximated using a linear function

$$\hat{f}(x) = w_0 + w_1 a_1(x) + \dots + w_n a_n(x)$$

- methods like gradient descent can be used to calculate the coefficients $w_0, w_1, ..., w_n$ to minimize the error in fitting such linear functions
- ANNs require a global approximation to the target function
- here, just a local approximation is needed
- ⇒ the error function has to be redefined

Locally weighted linear regression

- possibilities to redefine the error criterion E
 - 1. Minimize the squared error over just the k nearest neighbors

$$E_1(x_q) \equiv \frac{1}{2} \sum_{x \in k \text{ nearest neigbors}} (f(x) - \hat{f}(x))^2$$

2. Minimize the squared error over the entire set D, while weighting the error of each training example by some decreasing function K of its distance from x_q

$$E_2(x_q) \equiv \frac{1}{2} \sum_{x \in D} (f(x) - \hat{f}(x))^2 \cdot K(d(x_q, x))$$

3. Combine 1 and 2

$$E_3(x_q) \equiv \frac{1}{2} \sum_{x \in k \text{ nearest neighbors}} (f(x) - \hat{f}(x))^2 \cdot K(d(x_q, x))$$

Locally weighted linear regression regression

 For a given query point x_q we solve the following weighted regression problem using gradient descent:

$$\mathbf{w}^* = \underset{\mathbf{w}}{\operatorname{argmin}} \sum_{j} \mathcal{K}(Distance(\mathbf{x}_q, \mathbf{x}_j)) (y_j - \mathbf{w} \cdot \mathbf{x}_j)^2$$

$$h(\mathbf{x}_q) = \mathbf{w}^* \cdot \mathbf{x}_q.$$

- Note that we need to solve a new regression problem for every query point—that's what it means to be local.
- In ordinary linear regression, we solved the regression problem once, globally, and then used the same h_w for any query point.

Example

- The upper graphic the set of data points (x,y) (blue dots), query point (green line), local linear model (red line) and prediction (black dot).
- The graphic in the middle shows the activation area of the model.
 - The corresponding weighting kernel (receptive field) is shown in the bottom graphic.

Thank You