Persistent Roles in Online Social Networks ECML-PKDD 2016, M. Revelle, C. Domeniconi, and A. Johri

Contents

- 1 Introduction
- 2 Methodology
- 3 Results
- 4 Conclusion

Introduction

Social Networks

Social Network Analysis

The study of relationship between actors.

The Goal of the Article

Persistent roles should occur in any social network Based on the structure of the network Methodology

The Approach

The Data

Datasets:

- Facebook Wall posts from one user to another
- Scratch Comments on uploaded programming projects

Snapshots

The datasets are split into a total of 26 snapshots:

- 7 from Facebook
- 19 from Scratch

Social Network Graph

$$D = (N, E)$$

Snapshot

$$S_t = (N_t, E_t)$$

Feature Selection

- · In-degree
- Out-degree
- Weighted in-degree
- Weighted out-degree

Feature Selection Reciprocity is the rate

Reciprocity is the rate a user is replayed. The value of this feature is between 1 and 0.

Feature Selection

The *new activity count* feature is the number of new outgoing edges based on the difference of snapshot S_t and S_{t-1}

New Activity Count

$$c = \mathsf{Out}\text{-}\mathsf{degree}_t - \mathsf{Out}\text{-}\mathsf{degree}_{t-1}$$

The feature *social strategy* is the ratio of new outgoing edges over all outgoing edges

Social Strategy

$$\mathsf{S} = rac{\mathsf{New Activity Count}}{\mathsf{Out-degree}}$$

Feature Selection The value of the feat

The value of the feature *betweenness centrality* is the product of the number of shortest paths passing through a vertex

Feature Selection

The feature *PageRank* measures centrality based on ingoing edges

PageRank

$$pr(g) = 1 - d + d(\frac{pr(b)}{2} + \frac{pr(e)}{4} + \frac{pr(f)}{1} + \frac{pr(f)}{4} + \frac{pr(f)}{1})$$

Feature Selection Transitivity measures

Transitivity measures is the local clustering coefficient which gives the probability of a vertexes neighbours being connected

troduction Methodology Results Conclusion

Selected Features

Summary of the features

- In-degree
- Out-degree
- Weighted in-degree
- Weighted out-degree
- Reciprocity
- New activity count
- Social strategy
- Betweenness centrality
- PageRang
- Transitivity

Features omitted from the walk-though

- · Weighted PageRank
- · Weighted transitivity

Feature Extraction

The result of feature extraction is a features × users feature matrix

The features in the matrix is normalized by the use of feature scaling so that all values is within the interval of 1 and 0

Role Discovery

- · Matrix U is role features
- Matrix V is membership weights for the roles for each user

Selection of L

0.08

0.06

0.04

0.02

0

Root Mean Squired Error
$$RMSE = \sqrt{\frac{1}{|X|} \sum_{(u,f) \in X} (X_{u,f} - X'_{u,f})^2}$$

Snapshot 1

Snapshot 4

- Snapshot 7

10

12

Figure: Facebook

0.06 - Snapshot 1 - Snapshot 10 - Snapshot 19 - Snapshot 19 - Snapshot 19

6

Figure: Scratch

rigare. racebook

12

10

troduction Methodology Results Conclusion

Tracing Roles

Cosine Similarity $sim(A_i, B_i) = \frac{\sum_{i=1}^{n} A_i B_i}{\sqrt{\sum_{i=1}^{n} A_i^2} \sqrt{\sum_{i=1}^{n} B_i^2}}$

Cosine similarity returns a value between -1 and 1

- -1 means that the vectors are opposites
- 1 means they are exactly the same

The article sets a threshold on 0.75 that roles from S_t and S_{t+1} must have similarity measure above

Figure: *U*_t

Figure: U_{t+1}

Results

The Roles

Role	Feature Characteristics
Popular	In-degree, Betweenness, PageRank
Friendly	Out-degree
Reciprocated	Reciprocity
Explorer	Social Strategy
Community Member	Transitivity
Active Community Member	Weighted transitivity

Feature Representation of the Roles

Interaction Preferences

roduction Methodology **Results** Conclusion

Evidence of Roles Dependence on Network Structure

Conclusion

Conclusion

This article presents a methodology which identify six different roles that are:

- Persistent throughout the timespan of the datasets
- Independently derived from different datasets

Shortcomings

- They does not argue for their selection of features or give a reference to an article that does.
- I would have appreciated some more examples or are more detailed description of some of their approaches.
- The distribution of snapshots are not consistent.