Lesson 13. Exact Differential Equations

 Exact differential equations If we set the total differential of a function F(y,t) to zero, we get an exact differential equat For example, using F(y,t) = y²t from Example 1, 	al differential of $F(y, t)$ is
• If we set the total differential of a function $F(y,t)$ to zero, we get an exact differential equat • For example, using $F(y,t) = y^2 t$ from Example 1,	
• If we set the total differential of a function $F(y,t)$ to zero, we get an exact differential equat • For example, using $F(y,t) = y^2 t$ from Example 1,	ind the total differential of $F(y, t) = y^2 t$.
• If we set the total differential of a function $F(y,t)$ to zero, we get an exact differential equat • For example, using $F(y,t) = y^2 t$ from Example 1,	
• If we set the total differential of a function $F(y,t)$ to zero, we get an exact differential equat • For example, using $F(y,t) = y^2 t$ from Example 1,	
• For example, using $F(y,t) = y^2 t$ from Example 1,	fferential equations
	et the total differential of a function $F(y,t)$ to zero, we get an exact differential equation :
is an example of an exact differential equation	mple, using $F(y, t) = y^2 t$ from Example 1,
is an example of an exact differential equation	
	ample of an exact differential equation
3 Detecting exact differential equations	g exact differential equations
A differential equation	
M dy + N dt = 0	•
is exact if and only if $M = \partial F/\partial y$ and $N = \partial F/\partial t$ for some function $F(y, t)$	
• A simple test: (*) is exact if and only if $\partial M/\partial t = \partial N/\partial y$	
Example 2. Is the differential equation $2t dy + y dt = 0$ exact?	is the differential equation $2t dv + v dt = 0$ exact?

4 Solving exact differential equations

- An exact differential equation is of the form dF(y, t) = 0 for some function F(y, t)
- ⇒ Its general solution must be of the form
- We can then use this equation to solve for y(t), if desired

Method for solving an exact differential equation

$$M\,dy + N\,dt = 0$$

- **Step 0.** Check that it is exact!
- **Step 1.** Use the fact that $M = \partial F/\partial y$ to find a preliminary version of F:

$$F(y,t) = \int M \, dy + \psi(t)$$

- **Step 2.** Find $\partial F/\partial t$ based on the preliminary version of F found in Step 1. Use this and the fact that $N = \partial F/\partial t$ to find $d\psi/dt$.
- **Step 3.** Integrate $d\psi/dt$ found in Step 2 to find $\psi(t)$.
- **Step 4.** Combine Steps 1 and 3 to find F(y, t). Set F(y, t) = c. Solve for y(t) if desired.

Example 3. Solve the exact differential equation $(t + 2y) dy + (y + 3t^2) dt = 0$.

Example 4. Solve the exact differential equation $2yt dy + y^2 dt = 0$.
5 Integrating factors
• Sometimes we can convert an inexact differential equation into an exact one by multiplying both sides of the equation by an integrating factor
Example 5. In Example 2, we showed that the differential equation $2t dy + y dt = 0$ is inexact. Show that y is an integrating factor for this equation.

- An integrating factor may not always exist
- Integrating factors may be hard to find

6 Solving first-order linear differential equations with variable coefficients

• Last time, we stated that the differential equation

$$\frac{dy}{dt} + u(t)y = w(t)$$
 has general solution $y(t) = e^{-\int u \, dt} \left(A + \int w e^{\int u \, dt} \, dt \right)$

- Let's derive this general solution
- We can rewrite the differential equation as

$$dy + (uy - w) dt = 0$$

• It turns out that $e^{\int u\,dt}$ is an integrating factor, so we have the exact differential equation

$$e^{\int u\,dt}dy + e^{\int u\,dt}(uy - w)\,dt = 0$$

• Let's check that this equation is in fact exact:

Now we can apply th	e four-step method:		