Laboratorium Metod Obliczeniowych

Wydział Elektrotechniki Automatyki i Informatyki Politechnika Świetokrzyska

Politechnika Świętokrzyska	
Studia: Stacjonarne I stopnia	Kierunek: Informatyka
Data wykonania: 08.01.2018	Grupa: 3ID13B
Imię i nazwisko: Bartłomiej Osak	
Numer ćwiczenia:	Temat ćwiczenia:
11	Równania różniczkowe - Simulink

1. Wstęp teoretyczny.

Simulink jest rozszerzeniem pakietu MATLAB – przy pomocy graficznego środowiska możemy konstruować diagramy czasowe, które reprezentują określone procesy dynamiczne. W języku symulacyjnym Simulink wykorzystuje się najczęściej pliki Matlaba typu .m, służące do rozwiązywania układów równań różniczkowych, liniowych oraz nieliniowych. Zamiast pisać kod Matlaba opisujemy procesy w postaci połączonych bloków, wykorzystując odpowiednie komponenty, reprezentujące dane wejściowe, części układu oraz dane wyjściowe.

Stosowane komponenty w wykonanych układach:

1 Constant	Wartość stała
$\frac{1}{s}$ Integrator	Integrator
Scope	Obserwacja sygnału (rezultat)
Sine Wave	Funkcja sinusoidalna (sinus)
simout To Workspace	Zapisanie wyniku do zmiennej (wykorzystanie w Matlab)
Gain	Bramka
×	Produkt - zmienna
Mux	Multiplekser
Sum	Sumator

Równaniem różniczkowym nazywamy równanie, w którym występuje związek funkcji niewiadomej i jej pochodnych. Rząd równania różniczkowego jest równy największemu rzędowi występujących w nim pochodnych. Równaniem różniczkowym zwyczajnym rzędu n nazywamy równanie postaci:

$$F(x, y, y', y'', ..., y^{(n)}) = 0$$

w którym niewiadomą jest funkcja:

$$y = y(x)$$

i w którym występuje pochodna rzędu n tej funkcji wraz z pochodnymi niższych rzędów, tzn:

$$y' = \frac{dy}{dx}, y'' = \frac{d^2y}{dx^2}, y''' = \frac{d^3y}{dx^3}, \dots, y^{(n)} = \frac{d^{(n)}y}{dx^{(n)}}$$

Rozwiązaniem lub całką równania różniczkowego w przedziale [a,b] nazywamy każdą funkcję zmiennej x wyrażoną w postaci jawnej:

$$y = y(x)$$

lub w postaci uwikłanej:

$$h(x,y)=0$$

2. Integrator z wartością inicjującą.

Model symulacyjny:

Konfiguracja:

- Constant→wartość inicjująca: 1
- Integrator → wartość inicjująca: z zewnątrz z bloku Constant

Rezultat:

Integrator → wartość inicjująca: 1 (constant)

Czas symulacji: 10.0

Integrator → wartość inicjująca: 1 (constant)

Czas symulacji: 20.0

Przykładowe zrzuty ekranu:

3. Sinusoida.

Model symulacyjny:

Konfiguracja:

• Integrator → wartość inicjująca wewnętrzna: -1

Rezultat:

Integrator \rightarrow wartość inicjująca wewnętrzna: -1 Czas symulacji: 10.0

Integrator \rightarrow wartość inicjująca wewnętrzna: 2 Czas symulacji: 30.0

Przykładowe zrzuty ekranu:

4. Proste równanie różniczkowe.

Polecenie: Mamy równanie różniczkowe postaci: x = 1. Wiedząc, że rozwiązanie takiego równania to prosta x = t + C (C - stała) stworzyć model symulacyjny.

Model symulacyjny:

Konfiguracja:

• Integrator → wartość inicjująca wewnętrzna: 5

Rezultat – w Simulink:

Integrator → wartość inicjująca wewnętrzna: 5 Czas symulacji: 10.0

Integrator \rightarrow wartość inicjująca wewnętrzna: -2 Czas symulacji: 20.0

Rezultat – w Matlab:

Warunkiem początkowym dla integratora jest zapis "war_pocz", który jest wykorzystywany w skrypcie matlaba.

Kod skryptu:

```
figure;
hold on;
for i=1:10
    war_pocz = i;
    sim('rozniczka1');
    plot(tout,x);
end
```

Rezultat:

Przykładowe zrzuty ekranu:

5. Układ prostych równań różniczkowych.

Polecenie: Dany jest układ dwóch równań różniczkowych:

$$\begin{cases} \dot{x} = 3xy \\ \dot{y} = y - 2x \end{cases}$$

Wykonać odpowiedni model symulacyjny.

Model symulacyjny:

Konfiguracja:

- Integrator → wartość inicjująca wewnętrzna: 1
- Integrator1 → wartość inicjująca wewnętrzna: 1

Rezultat – w Simulink:

Integrator → wartość inicjująca wewnętrzna: 1 Integrator1 → wartość inicjująca wewnętrzna: 1

Czas symulacji: 10.0

Integrator → wartość inicjująca wewnętrzna: 3

Integrator1 → wartość inicjująca wewnętrzna: 2

Czas symulacji: 5.0

Rezultat – w Matlab:

Warunkiem początkowym dla integratora jest zapis "war_pocz", a dla integratora1 "war_pocz1".

Kod skryptu:

Rezultat:

Przykładowe zrzuty ekranu:

