

PROJET : SYNTHESE D'UN BANC DE FILTRES NUMERIQUES

Deuxième séance : Réponse impulsionnelle et réponse harmonique

Didier Achvar mise à jour A.Khellaf Mai 2011

Nous nous intéressons désormais aux signaux échantillonnés à la fréquence de f_E =44,1 kHz sur une durée de 1 seconde. (Fréquence standard en audio, respectant la condition de Shannon))

Afin de valider les observations numériques relatives à certaines expériences, les élèves pourront apprécier le traitement (différents filtrages) de leurs signaux au moyen de la fonction soundsc(x, $f_{\rm E}$) qui permet d'écouter (facultatif) le son produit par les valeurs stockées dans un tableau x en espaçant la durée séparant les échantillons de $1/f_{\rm E}$ seconde.

Pour cela, il convient de se munir d'un écouteur ou d'un casque de baladeur.

NB : fréquences audibles comprises entre 20Hz et 20KHz)

Il s'agit aujourd'hui d'étudier et d'établir le lien entre la réponse impulsionnelle (donc temporelle) et la réponse fréquentielle des filtres mis en œuvre à la séance précédente. Les élèves devront consigner leurs résultats le plus soigneusement possible afin de les restituer et les commenter à la prochaine séance.

Ces résultats sont essentiellement illustrés par le chronogramme et le spectre des signaux d'E/S des filtres étudiés. Le spectre d'un signal x(t) peut être évalué sous Matlab au moyen d'un sous programme de la forme :

où fft(x) désigne la transformée de Fourier de x, power(.,2) une élévation au carré, real(.) et imag(.) la partie réel et la partie imaginaire d'un nombre complexe et conj(.), la conjugaison complexe.

. OBSERVATION DES SIGNAUX ET CALCULS DES SPECTRES

Quelques techniques de calcul sous Matlab

- Q0. Saisir deux vecteurs x et y dans la fenêtre de commande de MATLAB. Exemple : x=[1 2 3] et y=[4 5 6].
- Calculer tour à tour les produits x.*y, x*y' et x*y dans la fenêtre de commande.
- Quelle opération correspond à un produit scalaire ? A un produit terme par terme ? A rien du tout ?
- Relever dans la fenêtre de commande tous les éléments du vecteur z construit comme suit : z=x+y*i.
- En faire de même avec le vecteur conj(z). Commentaires.
- Comment peut-on calculer sous MATLAB le module de tous les éléments d'un vecteur à valeurs complexes comme z ?

Echantillonnage et fenêtrage temporel des signaux

- Q1*. Sachant que l'échantillonnage de nos signaux s'effectue à une vitesse de 44,1 kHz :
- Combien d'échantillons N seront nécessaires pour représenter un signal sur une fenêtre d'une seconde?
- Quelle serait la fréquence maximale f_{MAX} des signaux que nous pouvons produire ou traiter. (Condition de Shannon)

Applications

- **Q2.** Compléter le programme qEcoute.m (champs pointillés) pour générer un sinus à une fréquence réelle de 50Hz (lignes 3,11).
- Justifier la normalisation des fréquences (ligne 4).
- Représenter graphiquement son chronogramme (lignes 24) et son spectre (lignes 27).
- Effectuer le même travail jusqu'à 50kHz et relever au moyen du curseur les fréquences f_B (basse) et f_H (haute) qui apparaissent sur le spectre du signal. Consigner les mesures dans le tableau ci-dessous :

	f(Hz)	20		50		100		500		1,000		2,000		5,000		15,000		20,000		40,000		50,000	
	$f_B(Hz)$																						
ſ	f _H (Hz)																						
	Audible	Y	Ν	Y	Ν	Y	Ν	Y	N	Y	N	Y	N	Y	N	Y	N	Y	Ν	Y	N	Y	N

- Si nécessaire, modifier la dimension des axes de manière à optimiser les représentations graphiques.
- A quoi correspondent f_B et f_H? Comparer ces fréquence à f et à | f_E-f | (ou à | n.f_E-f | avec n : entier).
- Quelle est la fréquence du signal réellement entendu à 40 et à 50kHz (ultrasons !!!) ?
- Q3. Programmer un bruit blanc et observer son spectre.
- Commenter son spectre ainsi que sa perception auditive.
- Relever de la même manière le spectre d'une impulsion.

```
Programme qEcoute.m: Observation des signaux
 1 - clc; clf;
                      %- Nombre d'échantillons=?
     frequence=50;
                      4- Fréquence réelle en Hertz
     f=frequence/...; %- Fréquence normalisée=?
     %---- L'échelle des temps et des fréquences-
     temp=0:(N-1); freq=0:(N-1);
     4 1°) ENTREE SINUSOIDALE
     e=sin(2*pi*f*cemp);
% 2°) ENTREE BRUIT BLANC
12
13
14
           %e=(rand(1,N)-0.5)*2;
     % 3°) ENTREE IMPULSIONNELLE
15
16
17
18
           %e=geros(1,N); t0=3; e(t0)=N;
           %t0=3; e=[seros(1,t0) ones(1,N-t0)];
19 -
     Fe-fft |e|; Se-sqrt (Fe.*conj (Fe) | /N: &Calcul du Spectre--
20 -
     spause;
-Tracé de Spectres-
27 - subplot(4,1,2); semilogx(freq,Se,'r'); title('SPECTRE');
28 - xiabel|'Frequence: : Hs'); ylabel('Se'); grid;
29 %x1im([20 20000]);
```

```
Programme Q5harmonic.m: Réponse à un sinus
      cle: clf:
      frequence...;
                                         &Fréquence réelle en Hertz
      frcoupure=...;
                                         %Frêq. de coupure des l'ordre en He
      froentral ...: deltafreq ...: %Fréq. centrale & LB du passe-bande
             - Normalisations et calcul des constantes de temp
       \begin{array}{ll} \texttt{f=frequence/}_{\text{AL}}, \ \texttt{fc=freoupure/}_{\text{AL}}, \ \texttt{f0=freentrsL/}_{\text{AL}}; \ \texttt{Df=deltafreq/}_{\text{AL}}, \\ \texttt{k=l/(2*pi*fc)}; \ \texttt{k2=l/(2*pi*Df)}; \ \texttt{k1=Df/(2*pi*f0*f0)}; \ \texttt{k=----Ctes} \ \texttt{de} \end{array} 
8 -
10
      temp-O: (N-1): freq-O: (N-1): %-- L'échelle des temps et des fréquen
12
14 -
      16 -
      e=sin(Z*pi*f*temp|;
                                                3-- Exemple d'entrée sinus
18 -
      19
                 ------Programmation des filtres ------
21 -
22 -
          s(t)=...; z(t)=...;
                                                * --- filtres du ler ordre
23 -
24
25 -
      for t-3:N
           ss(t|=,...) so(t|=,...) y(t)=,...) <math>+ --- filtres du Zer ordre
27 -
                              ---Tracé des Chronogrammes
      subplot(4,1,1); plot(temp,e,'r'); grid; ylabel('Entrée'); title('0)
```

II. SYNTHESE DES FILTRES

Fréquences de coupure, largeur de bande et fréquence centrale.

Q4. Nous avons déjà établi la relation entre les réponses en fréquence et les constantes de temps k, k1 et k2 des dérivateurs de chaque filtre :

$$k = \frac{1}{\omega_{\text{C}}}$$
 $k1 = \frac{1}{q \cdot \omega_{\text{O}}}$ $k2 = \frac{q}{\omega_{\text{O}}}$ $q = \frac{\omega_{\text{O}}}{\Delta \omega}$

où ω_C désigne la pulsation de coupure des filtres passe-pas ou passe-haut du premier degré, ω_0 la pulsation centrale du filtre passe-bande, q son facteur de qualité et $\Delta\omega$ sa largeur de bande.

• Exprimer les constantes de temps en fonction des fréquences réelles. On notera : $\Delta \omega = 2.\pi . \Delta f$

Cahier des charges Q5. Terminer la programmation des 5 filtres en complétant le programme qHarmonic.m. On prendra :

- Pour le passe-bas et le passe-haut du l'ordre, une fréquence de coupure égale à 1kHz.
- Pour le passe-bande, une fréquence centrale de 2kHz et une largeur de bande de 20Hz.
- Le passe-bas et le passe-haut du II° ordre seront conçus en s'inspirant de la mise en cascade des filtres du I° ordre mais leur sortie s(t) devrait être explicitée en fonction de l'entrée e(t), e(t-1) ... et de ses valeurs précédentes s(t), s(t-1), s(t-2) ... en éliminant l'expression de la sortie intermédiaire.
- Quel avantage peut-on tirer en programmant les sorties avec cette expression ?

II. APPLICATION A DES SIGNAUX AUDIO-FREQUENCES

Q6. Attaquer les filtres passe-bas et passe-haut (ordre 1 et 2) avec un signal composite de la forme :

 $e(t)=\sin(2\pi f_1 t) + \sin(2\pi f_2 t)$ avec $f_1=50$ Hz et $f_2=10$ kHz.

- Justifier l'allure et le spectre de la sortie de chaque filtre.
- Noter la perception (auditive) des filtrages passe-bas et passe-haut du second ordre sur la séparation des composantes grave et aigu du signal d'entrée en procédant à l'écoute des signaux de sortie.

Q7. Remplacer l'entrée par un bruit blanc uniforme : **e=(rand(1,N)-0.5)*2**; et relever le spectre de la sortie des filtres pour tous les filtres du II° ordre. (Le bruit blanc contient toutes les fréquences). Commentaires.

III. REPONSE IMPULSIONNELLE

Q8. Générer en entrée des filtres une impulsion au moyen d'une commande de la forme : e=zeros(1,N); e(10)=N;

- Commenter les chronogrammes. Mesurer la fréquence des pseudos oscillations en sortie du filtre passe-bande...
- Intégrer les commandes ci-contre pour l'observation des spectres dans un repère logarithmique.
- Relever le spectre des signaux d'E/S de tous les filtres.

```
figure(2);
subplot(4,1,1); semilogx(freq,Se,'r'); grid;
ylabel('Entrée'); title('SPECTRES');
xlim([20 10000]);
subplot(4,1,2);
semilogx(freq,20*log10(Ss),'b',freq,20*log10(Sss),'c');
grid; ylabel ('Passe-bas I et II'); xlim([20 10000]);
subplot(4,1,3);
semilogx(freq,20*log10(Sz),'b',freq,20*log10(Szz),'c');
grid; ylabel ('Passe-bas I et II'); xlim([20 10000]);
subplot(4,1,4); semilogx(freq,20*log10(Sy),'g'); grid;
ylabel ('Passe-bande'); xlabel('Fréq.(Hz)');
klim([20 10000]);
```

• Comparer ces observations aux diagrammes de Bode de chaque filtre en mesurant les fréquences de coupures, la fréquence centrale du passe-bande ainsi que la pente des asymptotes en BF et en HF.