Ultrakurze Laserpulse:

wie sie helfen die Geheimnisse heterogener Katalyse zu entschlüsseln

Robert Scholz

AG Saalfrank Institut für Chemie Universität Potsdam

19. April 2017

Motivation: Die Bedeutung heterogener Katalyse

Chemische Industrie

- Düngemittel
 - Haber-Bosch-Verfahren (NH₃)
 - Ostwald-Verfahren (HNO₃)
- Monomere
 - Ethylenoxid, Acrylsäure, Styrol

Umwelttechnik

- Luftreinhaltung
 - Abgaskatalysatoren
 - Rauchgasentstickung
- Biokraftstoffe
 - Fischer-Tropsch-Synthese

World population and ammonia production

Heterogene Katalyse: Begriffsklärung

Katalyse

- Aktivierungsenergie kleiner
 - \Rightarrow Reaktionen schneller
- auch wichtig: Selektivität (z.B. keine Durchoxidation)

Heterogen

- verschiedene Phasen, meist:
 - Katalysator fest
 - Reaktanden gasförmig / flüssig

Prinzipieller Mechanismus heterogener Katalyse

Besonderheiten von Metall-Adsorbat-Systemen

elektronische Reibung

Ultrakurze Laserpulse

Einteilung

- Pikosekundenlaser
 - 1 ps = 10^{-12} s
 - ab \approx 1 ps Pulsdauer
- Femtosekundenlaser
 - 1 fs = 10^{-15} s
 - typische Pulsdauer: 50 200 fs
- beide: Spitzenleistung ≫ cw-Laser

Erforschung elektronischer Reibung

- Warum reichen ps-Laser nicht?
- Was macht fs-Laser besonders?

?