Operating System Hanging/Freezing Problem

Md Tamjid Hossain CS 646. Fall-2021 University of Nevada, Reno

Outline

INTRODUCTION

PROBLEM DEFINITION AND EXAMPLES

MAJOR REASONS

SOLUTIONS

CONCLUSION

Introduction

- The operating System (OS), and its applications may hang/freeze during
 - boot time
 - startup time
 - run time of a program regardless of the manufacturer
- Application hang
 - single program unresponsiveness

What is Unresponsiveness/hanging/freezing?

- A hang or freeze is an incident when either a process or system ceases to respond to inputs
- Example: The GUI of the MS
 Windows no longer responds
 to the user typing on the
 keyboard or moving the
 mouse
- It may be temporary (if caused by a condition that resolve itself, e.g., slow HW)
- It may also be permanent and need manual intervention (e.g., HW or SW logic error)

Major Causes

Software defects

- Infinite loop
- Long-running uninterruptible computation
- Race condition between processes (deadlock event)
- Misconfiguration
- Driver issues

Hardware defects

- Resource exhaustion (thrashing)
- Under-performing hardware (throttling)
- External events (slow network)
- Compatibility problems

Memory fragmentation

Slow system APIs

Spyware

Major Causes (cont'd)

- HW misconfiguration
- External devices
- Hard drive malfunction
- Too many apps running
- Driver issues
- Insufficient RAM
- BIOS Setting
- OS issues

Related Work

What is System Hang and How to Handle it

Zhu, Yian, et al. "What is system hang and how to handle it." 2012 IEEE 23rd International Symposium on Software Reliability Engineering. IEEE, 2012.

PrtSc Sc Nn

Temporary Solutions

In-depth Analysis & Robust Solutions

• • • • • • • •

Table 1. Performance metrics used to detect system hang

Metrics				Process					disk I/O
Fault	sys	usr	iowait	run	blk	CS	pswpout	memfree	util
Fl						\checkmark			
F2									
F3									
F4					\checkmark				
F5									
F6				\checkmark			$\overline{}$	$\overline{}$	

Image source: [1]

Detection

- Monitoring performance metric
- Improved Watchdog Timer [2]
- System Hang Detector (SHD) [3]
- Monitoring I/O throughput [4]

Recovery

- Analyze and remove any newly installed HW
- Keep OS running through killing the current running process [2]
- Killing the sleeping processes that hold a large piece of memory (which wait for a signal that would never happen) [1]

Self-Healing Framework Concept [1]

Light Detector:

- System performance metrics are obtained dynamically
- Triggers alerts with error code when finds some anomalous metrics

Trigger condition	Error code
sys exceeds its upper bound for consecutive monitor interval and the usr does not reach its lower bound	CPU_ERROR
iowait higher than its upper bound	CPU_ERROR
run surpasses its upper bound	PROC_ERROR
cs is lower than its lower bound	PROC_ERROR
pswpout exceeds its upper bound for consecutive monitor interval	MEM_ERROR

Image source: [1]

Heavy Detector:

Trigger conditions:

- Receiving an alert message from the light detector
- Timeout signal from the timer that is periodically updated by the light detector

Recovery:

- Kill or stop the suspicious process/thread
- Send an NMI (Non-Maskable Interrupt) to a particular CPU to wake up the stalled CPU
- Panic the system and then restart

Error code	Further diagnosis ²	Diagnosis result	Recovery actions
CPU_ERROR	sys,usr	F1,F2,	Send NMI to stalled CPU and kill
		F3,F5	the running task on the CPU
MEM_ERROR		F6	Kill the task consumes memory abnormally ³
MEM_ERROR	iowait, pswpout and memfree	F4,F6	Panic and restart
PROC ERROR	continuous run time of each process	F1,F3	Stop the task runs continuously for a long time ³
PROC_ERROR	run and blk	F6	Panic and restart

Conclusion

OS, whether it is for computer/laptop/mobile or any embedded system, may hang or freeze anytime between booting and shutdown

There can be **many reasons** for this unresponsiveness, e.g., SW fault, HW fault/limitations, Malicious activities, etc.

Some of these problems can be solved automatically (e.g., slow HW) while the others may need manual intervention (e.g., Spyware or infinite loop)

• • • • • • • • •

Q&A

