Staff Solutions to Mini-Quiz 10-7

Problem 1 ().

Let $\{1, 2, 3\}^{\omega}$ be the set of infinite sequences containing only the numbers 1, 2, and 3. For example, some sequences of this kind are:

Prove that $\{1, 2, 3\}^{\omega}$ is uncountable.

Hint: One approach is to define a surjective function from $\{1, 2, 3\}^{\omega}$ to the power set pow(\mathbb{N}).

Solution. Proof. We can define a surjective function from $f:\{1,2,3\}^{\omega}\to pow(\mathbb{N})$ as follows:

$$f(s) ::= \{n \in \mathbb{N} \mid s[n] = 1\}$$

where s[n] is the *n*th element of sequence *s*.

Now if there was a surjective function from $g: \mathbb{N} \to \{1, 2, 3\}^{\omega}$, then the composition of f and g would be a surjective function from \mathbb{N} to pow(\mathbb{N}) contradicting Cantor's Theorem 7.1.10.

Alternatively, to show that $\{1, 2, 3\}^{\omega}$ is uncountable, we can directly use a basic diagonal argument to show that no function, $\sigma : \mathbb{N} \to \{1, 2, 3\}^{\omega}$ is a surjection.

Proof. Let σ be a function from \mathbb{N} to the infinite sequences of 1's, 2's, and 3's, that is,

$$\sigma: \mathbb{N} \to \{1, 2, 3\}^{\omega}$$
.

To show that σ is not a surjection, we will describe a sequence, diag, of 1's, 2's, and 3's that is not in the range of σ .

Let $r: \{1, 2, 3\} \rightarrow \{1, 2, 3\}$ be defined by

$$r(1) := 2,$$

$$r(2) ::= 3,$$

$$r(3) := 1.$$

In particular $r(i) \neq i$ for i = 1, 2, 3. Define a sequence diag $\in \{1, 2, 3\}^{\omega}$ as follows:

$$\operatorname{diag}[n] ::= r(\sigma(n)[n]).$$

Now by definition,

$$\operatorname{diag}[n] \neq \sigma(n)[n],$$

for all $n \in \mathbb{N}$, proving that diag is not equal to $\sigma(n)$ for any $n \in \mathbb{N}$. That is, diag is not in the range of σ as claimed.

Problem 2 (). (a) Use the Pulverizer to find gcd(84, 108)

Solution. Here is the table produced by the Pulverizer:

$\boldsymbol{\mathcal{X}}$	У	rem(x, y)	=	$x - q \cdot y$
108	84	24	=	$1 \cdot 108 - 1 \cdot 84$
84	24	12	=	$-3 \cdot 108 + 4 \cdot 84$
24	12	0		

(b) Find integers x, y with $0 \le y < 84$ such that

$$x \cdot 84 + y \cdot 108 = \gcd(84, 108).$$

Solution. From the table above,

$$4 \cdot 84 - 3 \cdot 108 = \gcd(84, 108).$$

Therefore,

$$(4-108 \cdot k) \cdot 84 + (-3+84 \cdot k) \cdot 108 = \gcd(84, 108).$$

So, letting
$$k = 1$$
, $(x, y) = (4 - 108 \cdot 1, -3 + 84 \cdot 1) = (-104, 81)$ works.

(c) Is there a multiplicative inverse of 84 in \mathbb{Z}_{108} ? If not briefly explain why, otherwise find it.

Solution. There is no inverse of 84 modulo 108. The inverse of a modulo m exists iff gcd(a, m) = 1. Clearly $gcd(84, 108) = 12 \neq 1$, so there is no inverse of 84 modulo 108.

Problem 3 ().

Prove that if k_1 and k_2 are relatively prime to n, then so is $k_1 \cdot_n k_2 := \text{rem}(k_1 \cdot k_2, n)$,

(a) ... using the fact that k is relatively prime to n iff k has an inverse modulo n.

Hint: Recall that $k_1k_2 \equiv k_1 \cdot_n k_2 \pmod{n}$.

Solution. If j_1 is an inverse of k_1 modulo n, that is

$$j_1k_1 \equiv 1 \pmod{n}$$
,

and likewise j_2 is an inverse of k_2 , then it follows immediately that

$$(j_2 j_1)(k_1 k_2) \equiv 1 \pmod{n}$$
.

That is, k_1k_2 also has an inverse. Since we know that $k_1k_2 \equiv k_1 \cdot_n k_2 \pmod{n}$, any inverse of k_1k_2 will also be an inverse of $k_1 \cdot_n k_2$.

(b) ... using the fact that k is relatively prime to n iff k is cancellable modulo n.

Solution. If k_1 and k_2 are cancellable modulo n, then you can cancel k_1k_2 by first cancelling k_1 and then cancelling k_2 . Also, it follows from the Congruence Lemma 8.6.4, that if k is cancellable than so is anything congruent to k modulo n, so by the previous Hint, $k_1 \cdot_n k_2$ is cancellable.

(c) ... using the Unique Factorization Theorem and the basic GCD properties.

Solution. By Unique Factorization, the primes divisors of $k_1 \cdot k_2$ are the same as the prime divisors of k_1 or of k_2 . If k_1 and k_2 are relatively prime to n, they have no prime divisors in common with n, then neither does k_1k_2 , so k_1k_2 is relatively prime to n. This is equivalent to $1 = \gcd(k_1k_2, n)$.

But $k_1 \cdot_n k_2 ::= \text{rem}(k_1 k_2, n)$ and $gcd(n, rem(k_1 k_2, n)) = gcd(k_1 k_2, n)$ by Lemma 8.2.1, so $gcd(n, rem(k_1 k_2, n)) = 1$.