DATA130026.01 Optimization Assignment 2

Due Time: at the beginning of the class, Mar. 30, 2021

- 1. For each of the following sets determine whether they are convex or not (explaining your choice).
 - (a) $C_1 = \{x \in \mathbb{R}^n : ||x||^2 = 1\}.$
 - (b) $C_2 = \{x \in \mathbb{R}^n : \max_{i=1,2,\dots,n} x_i \le 1\}.$
 - (c) $C_3 = \{x \in \mathbb{R}^n : \min_{i=1,2,\dots,n} x_i \le 1\}.$
 - (d) $C_4 = \{x \in \mathbb{R}_{++}^n : \Pi_{i=1}^n x_i \le 1\}$, where $\Pi_{i=1}^n x_i = x_1 x_2 \cdots x_n$.
- 2. Let $C \in \mathbb{R}^n$ be a convex set. Let f be a convex function over C, and let g be a strictly convex function over C. Show that the sum function f + g is strictly convex over C.
- 3. Show that the following functions are convex over the specified domain C:
 - (a) $f(x_1, x_2, x_3) = -\sqrt{x_1 x_2} + 2x_1^2 + 2x_2^2 + 3x_3^2 2x_1 x_2 2x_2 x_3$ over \mathbb{R}^3_{++} .
 - (b) $f(x) = ||x||^4$ over \mathbb{R}^n .
 - (c) $f(x) = \sqrt{x^T Q x + 1}$ over \mathbb{R}^n , where $Q \succeq 0$ is an $n \times n$ matrix.
- 4. [Only required for DATA130026h.01.]
 - (a) Show that the function

$$f(x) = \frac{\|Ax - b\|_2^2}{1 - x^T x}$$

is convex on $\{x \mid x^T x \leq 1\}$.

(b) A quadratic-over-linear composition theorem. Suppose that $f: \mathbb{R}^n \to \mathbb{R}$ is non-negative and convex, and $g: \mathbb{R}^n \to \mathbb{R}$ is positive and concave. Show that the function f^2/g , with domain $\operatorname{dom} f \cap \operatorname{dom} g$, is convex.

1