Example Sheet 4

Isaac Martin

EXERCISE 3. Let $A \subseteq B$ be a subring of B with the property that $B \setminus A$ is a multiplicatively closed set. Show that A is integrally closed in B.

Proof: Let $S = B \setminus A$ and suppose we have some element $x \in B$ integral over A, i.e. such that $x^n + a_{n-1}x^{n-1} + \dots + a_0 = 0$ for some elements $a_0, \dots, a_{n-1} \in A$. Choose n to be as small as possible. This equation implies

$$b\left(b^{n-1} + a_{n-1}b^{n-2} + \dots + a_1\right) = -a_0 \in A.$$

The elements b and $b^{n-1} + a_{n-1}b^{n-2} + ... + a_1$ cannot both avoid A, otherwise their product would also avoid A. If $b \in A$ then we are done, so suppose $b^{n-1} + a_{n-1}b^{n-2} + ... + a_1 \in A$. In particular, by subtracting a_1 , we see that $b^{n-1} + a_{n-1}b^{n-2} + ... + a_2b \in A$. Setting $-a_1' = b^{n-1} + a_{n-1}b^{n-2} + ... + a_2b$, we see that

$$b^{n-1} + a_{n-1}b^{n-2} + \dots + a_2b^1 + a_1' = 0,$$

hence b is the root of a monic polynomial of degree strictly smaller than n. Hence this polynomial is trivial and n = 1, implying that $b \in A$. We conclude that A is integrally closed in B.

EXERCISE 8. Let k be a field, and Γ any totally ordered abelian group. Let $A := k[\Gamma]$ denote the group ring of Γ , i.e. $k[\Gamma]$ is the k-vector space with basis $z^{\gamma} \mid \gamma \in \Gamma$ and multiplication determined by

$$z^{\gamma} \cdot z^{\gamma'} = z^{\gamma + \gamma'}$$
.

Show that *A* is an integral domain.

Define $v_0: A \setminus 0 \to \Gamma$ by

$$v_0\left(\sum_{i\in I}\alpha_iz^{\gamma_i}\right)=\min\{\gamma_i\mid i\in I\}$$

where *I* is a finite index set and $\alpha_i \in k \setminus \{0\}$ for each *i*. Show v_0 satisfies conditions (a) and (b) of Questions 7. Now let *K* be the field of fractions of *A*. Show that v_0 can be extended to $v : K^* \to \Gamma$ so that v is a valuation with value group Γ .