HERMITIAN MODULAR FORMS FOR FIELDS OF LOW DISCRIMINANT

DIPLOMA THESIS in Mathematics

by Albert Zeyer

 $\label{eq:submitted} submitted to the \\ Faculty of Mathematics, Computer Science and Natural Science of \\ RWTH Aachen University$

October 2012 revised version from January 14, 2013

Supervisor: Prof. Dr. Aloys Krieg Second examiner: Dr. Martin Raum

written at the Lehrstuhl A für Mathematik Prof. Dr. A. Krieg

Contents

1	Intro	oduction	3
2	Preliminaries		
	2.1	Siegel modular forms	4
	2.2	Elliptic modular forms	5
	2.3	Hermitian modular forms	5
3	Theory		6
4	Implementation		8
5	Conclusion		9
6	Refe	References 10	

Chapter 1

Introduction

We develop an algorithm to compute Fourier expansions of Hermitian modular forms of degree 2 over $\operatorname{Sp}_2(\mathcal{O})$ for $\mathcal{O}\subseteq\mathbb{Q}(\sqrt{-\Delta})$, $\Delta\in\{3,4,8\}$.

In [PY07], spaces of Siegel modular cusp forms are calculated.

A similar algorithm is also [Rau12, Algorithm 4.3] for Jacobi forms.

We are doing the same for Hermitian modular forms.

4 2 PRELIMINARIES

Chapter 2

Preliminaries

 \mathbb{N} denotes the set $\{1,2,3,\ldots\}$, $\mathbb{N}_0=\mathbb{N}\cup\{0\}$ and \mathbb{Z} are all integers. \mathbb{Q} are all the rational numbers, \mathbb{R} are the real numbers and \mathbb{C} are the complex numbers. $\mathbb{R}^+:=\{x\in\mathbb{R}\mid x>0\}$, \mathbb{R}^\times and \mathbb{C}^\times denotes all non-zero numbers.

Let $\mathrm{M}_n(R)$ be the set of all $n \times n$ matrices over some commutative ring R. Likewise, $\mathrm{M}_n^T(R)$ are the symmetric $n \times n$ matrices. A matrix $Y \in \mathrm{M}_n(\mathbb{C})$ is greater 0 if and only if $\forall x \in \mathbb{C}^n - \{0\} : Y[x] := \overline{x}^T Y x \in \mathbb{R}^+$. Such symmetric matrices are called the **positive definitive matrices**, defined by $\mathcal{P}_n(R) = \{X \in \mathrm{M}_n^T(R) \mid X > 0\}$. For $A, X \in \mathrm{M}_n(\mathbb{C})$, we define $A[X] := \overline{X}^T A X$. For $Z \in \mathrm{M}_n(\mathbb{C})$, we call $\Re(Z) = \frac{1}{2}(Z + \overline{Z}^T) \in \mathrm{M}_n(\mathbb{R})$ the real part and $\Im(Z) = \frac{1}{2i}(Z - \overline{Z}^T) \in \mathrm{M}_n(\mathbb{R})$ the imaginary part of Z and we have $Z = \Re(Z) + i\Im(Z)$. The **denominator** of a matrix $Z \in \mathrm{M}_n(\mathbb{Q})$ is the smallest number $x \in \mathbb{N}$ such that $xZ \in \mathrm{M}_n(\mathbb{Z})$.

The general linear group is defined by $\operatorname{GL}_n(R) = \{X \in \operatorname{M}_n(R) \mid \det(X) \text{ is a unit in } R\}$ and the special linear group by $\operatorname{SL}_n(R) = \{X \in \operatorname{M}_n(R) \mid \det(X) = 1\}$. The orthogonal group is defined by $\operatorname{O}_n(R) = \{X \in \operatorname{GL}_n(R) \mid X^T 1_n X = 1_n\}$.

The symplectic group is defined by $\operatorname{Sp}_n(R) = \{X \in \operatorname{GL}_{2n}(R) \mid X^T J_n X = J_n\}$ where $J_n := \begin{pmatrix} 0 & 1_n \\ -1_n & 0 \end{pmatrix} \in \operatorname{SL}_{2n}(R)$. $\operatorname{Sp}_n(R)$ is also called the **Hermitian modular group** or the **unitary group**.

$$U_n(R) = \left\{ X \in GL_{2n}(R) \mid \overline{X}^T J_n X = J_n \right\}$$

2.1 Siegel modular forms

Let $\mathcal{H}_n := \{Z \in \mathrm{M}_n^T(\mathbb{C}) \mid \Im(Z) > 0\}$ be the **Siegel upper half space**. Thus, \mathcal{H}_1 is the **Poincaré upper half plane**.

A Siegel modular cusp form of degree $n \in \mathbb{N}$ for some $\Gamma \subseteq \operatorname{Sp}_n(\mathbb{Z})$, Γ subgroup of $\operatorname{Sp}_n(\mathbb{Z})$, is a holomorphic function

$$f:\mathcal{H}_n\to\mathbb{C}$$

5

with

(1)
$$f|_k y = f \ \forall \ y \in \Gamma$$

(2) for
$$n = 1$$
: $f(Z) = O(1)$ for $Z \to i\infty$

where

$$\left(f|_k \left(\begin{array}{cc} A & B \\ C & D \end{array} \right) \right)(Z) = f((AZ+B)(CZ+D)^{-1}) \cdot \det(CZ+D)^{-k}$$
 with $Z \in \mathcal{H}_{n,r} \left(\begin{array}{cc} A & B \\ C & D \end{array} \right) \in \Gamma.$

2.2 Elliptic modular forms

 $\Gamma_0(l)$

2.3 Hermitian modular forms

Let $\mathbb{H}_n := \{Z \in \mathrm{M}_n(\mathbb{C}) \mid \Im(Z) > 0\}$ be the Hermitian upper half space.

A **Hermitian modular form** of degree $n \in \mathbb{N}$ is a holomorphic function

$$f: \mathbb{H}_n \to \mathbb{C}$$

with weight $k \in \mathbb{Z}$ for some $\Gamma \subseteq \operatorname{Sp}_n(\mathcal{O})$, Γ subgroup of $\operatorname{Sp}_n(\mathcal{O})$, $\mathcal{O} \subseteq \mathbb{Q}(\sqrt{-\Delta})$, $\Delta \in \mathbb{N}$, $\nu \colon \Gamma \to \mathbb{C}^\times$ is an abel character of $\operatorname{Sp}_n(\mathcal{O})$, with

(1)
$$f(M \cdot Z) = \nu(M) \det(CZ + D)^k f(Z), \quad M = \begin{pmatrix} * & * \\ C & D \end{pmatrix} \in \Gamma, Z \in \mathbb{H}_n,$$

(2) for n = 1: f is holomorphic in all cusps.

 $[\Gamma, k, \nu]$ denotes the vector space of such hermitian modular forms.

In this work, we will concentrate on Hermitian Modular forms of degree 2. We will start with $\Delta \in \{3,4,8\}$.

Note that if Δ is fundamental, we have

$$\begin{split} \mathcal{O} &= \mathbb{Z} + \mathbb{Z} \frac{-\Delta + \sqrt{-\Delta}}{2}, \\ \mathcal{O}^{\#} &= \mathbb{Z} \frac{i}{\sqrt{-\Delta}} + \mathbb{Z} \frac{1 + \sqrt{-\Delta}}{2}. \end{split}$$

From now on, we will always work with Hermitian modular forms of degree 2, i.e. we will always have n=2, except if otherwise stated.

6 3 THEORY

Chapter 3

Theory

Lemma 3.1. Let $f: M_2(\mathbb{C}) \to \mathbb{C}$ be a Hermitian Modular form of weight k. Let $S \in \mathcal{P}_2(\mathbb{C})$. Then, $f(S\tau): \mathbb{H}_1 \subseteq \mathbb{C} \to \mathbb{C}$ is an elliptic modular form of weight 2k to $\Gamma_0(l)$, where l is the denominator of S^{-1} .

Lemma 3.2. Prop 7.3. von Poor für herm Modulformen. $\Gamma(\mathcal{L}) \supseteq \Gamma_0(l)$ for $l \in \mathbb{Z}^+, ls^{-1} \in \mathcal{P}_n(\mathcal{O})$.

We want to calculate a generating set for the Fourier expansions of Hermitian modular forms Now we will formulate the main algorithm of our work.

Algorithm 3.3. We have the Hermitian modular form degree n=2 fixed, as well as some Δ (for now, $\Delta \in \{3,4,8\}$). Then we select some form weight $k \in \mathbb{Z}$ ($k \in \{1,\ldots,20\}$ or so), some $\mathcal{O} \subseteq \mathbb{Q}(\sqrt{-\Delta})$ and some subgroup Γ of $\mathrm{Sp}_2(\mathcal{O})$. Then we select an abel character $\nu \colon \Gamma \to \mathbb{C}^\times$ of $\mathrm{Sp}_2(\mathcal{O})$.

We define the index set

$$\Lambda := \left\{ 0 \le \begin{pmatrix} a & b \\ \overline{b} & c \end{pmatrix} \in \mathcal{M}_2(\mathcal{O}^\#) \, \middle| \, a, c \in \mathbb{Z} \right\}.$$

We start with l = 1 and increase it but only use the square-free numbers.

Fix $B \in \mathbb{N}$ as a limit. Select a precision

$$\mathcal{F} := \left\{ \left(\begin{array}{cc} a & b \\ \overline{b} & c \end{array} \right) \, \middle| \, 0 \leq a, c < B, b \in \mathcal{O}^\# \right\} \subseteq \Lambda.$$

- 1. Set $S = \{\}$,
- 2. Enumerate matrices $S \in \mathrm{M}_2^T(\mathbb{Z})$, and set $\mathcal{S} \leftarrow \mathcal{S} \cup \{S\}$ and for each time you add a new matrix perform the following steps.

3.

$$\begin{split} \mathcal{M}^H_{k,\mathcal{S},\mathcal{F}} &= \big\{ (f[S])_{S \in \mathcal{S}} \, \big| \, f \in \mathbb{Q}^{\mathcal{F}} \text{is } \operatorname{GL}_2(\mathcal{O}) \text{ invariant} \big\} \subseteq \bigoplus_S \mathbb{Q}^{\mathcal{F}(S)}, \\ \mathcal{M}_{k,\mathcal{S}} &= \bigoplus_S \mathcal{FE}_{\mathcal{F}(S)}(\operatorname{M}_k(\Gamma(l_S))) \end{split}$$

4. If

$$\dim \mathcal{M}_{k,\mathcal{S},\mathcal{F}}^H \cap \mathcal{M}_{k,\mathcal{S}} = \dim M_k^H,$$

then we are ready and we can reconstruct the Fourier expansion in the following way:

...

If not, then return to Step 2, and enlarge S.

Chapter 4

Implementation

In this chapter, we are describing the implementation.

Chapter 5

Conclusion

Blub

10 6 REFERENCES

Chapter 6

References

- [PY07] C. Poor and D.S. Yuen. Computations of spaces of siegel modular cusp forms. *Journal of the Mathematical Society of Japan*, 59(1):185–222, 2007.
- [Rau12] M. Raum. Computing Jacobi Forms and Linear Equivalences of Special Divisors. *ArXiv e-prints*, December 2012.