NLP Tasks

CMSC 473/673 - NATURAL LANGUAGE PROCESSING

Slides modified from Dr. Frank Ferraro & Dr. Jason Eisner

Learning Objectives

Define featurization & other ML terminology

Define some "classification" terminology

Distinguish between different text classification tasks

Formalize NLP Tasks at a high-level:

- What are the input/output for a particular task?
- What might the features be?
- What types of applications could the task be used for?

Calculate elementary processes on a dataset

Similar to what HW 1 will be

If there's time

Helpful ML Terminology

Model: the (computable) way to go from **features** (input) to labels/scores (output)

Weights/parameters (θ): vectors of numbers that control how the model produces labels/scores from inputs. These are learned through training.

ML/NLP Framework

instances

features:

K-dimensional vector representations (one per instance)

ML model:

- take in featurized input
- output scores/labels
- contains weights θ

Helpful ML Terminology

Model: the (computable) way to go from **features** (input) to labels/scores (output)

Weights/parameters: vectors of numbers that control how the model produces labels/scores from inputs. These are learned through training.

Objective function: an algorithm/calculation, whose variables are the **weights** of the **model**, that we numerically optimize in order to learn appropriate weights based on the labels/scores. The **model's** weights are adjusted.

Evaluation function: an algorithm/calculation that scores how "correct" the model's predictions are. The model's weights are not adjusted.

Note: The evaluation and objective functions are often different!

(More) Helpful ML Terminology

Learning:

the process of adjusting the model's weights to learn to make good predictions.

Inference / Prediction / Decoding / Classification:

 the process of using a model's existing weights to make (hopefully!) good predictions

ML/NLP Framework for Learning

ML/NLP Framework for Prediction

ML/NLP Framework for Learning & Prediction

First: Featurization / Encoding / Representation

ML Term: "Featurization"

The procedure of extracting features for some input

Often viewed as a K-dimensional vector function f of the input language x

$$f(x) = (f_1(x), ..., f_K(x))$$

Each of these is a feature (/feature function)

12

ML Term: "Featurization"

The procedure of extracting **features** for some input

Often viewed as a K-dimensional vector function f of the input language x $f(x) = (f_1(x), ..., f_K(x))$

In supervised settings, it can equivalently be viewed as a K-dimensional vector function f of the input language x and a potential label y

•
$$f(x, y) = (f_1(x, y), ..., f_K(x, y))$$

Features can be thought of as "soft" rules

E.g., positive sentiments tweets may be more likely to have the word "happy"

Defining Appropriate Features

Feature functions help extract useful features (characteristics) of the data

They turn data into numbers

Features that are not 0 are said to have fired

Defining Appropriate Features

Feature functions help extract useful features (characteristics) of the data

They turn data into numbers

Features that are not 0 are said to have fired

You can define classes of features by templating (we'll come back to this!)

Often binary-valued (0 or 1), but can be real-valued

1. Bag-of-words (or bag-of-characters, bag-of-relations)

Linguistically-inspired features

3. Dense features via embeddings

1. Bag-of-words (or bag-of-characters, bag-of-relations)

sometimes still very useful

2. Linguistically-inspired features

3. Dense features via embeddings

1. Bag-of-words (or bag-of-characters, bag-of-relations)

sometimes still very useful

Linguistically-inspired features

harder to define

helpful for interpretation

 depending on task: conceptually helpful

currently, not freq. used

3. Dense features via embeddings

1. Bag-of-words (or bag-of-characters, bag-of-relations)

easy to define / extract

sometimes still very useful

2. Linguistically-inspired features

harder to define

helpful for interpretation

 depending on task: conceptually helpful

• currently, not freq. used

Dense features via embeddings harder to define

harder to extract (unless there's a model to run)

currently: freq. used

- 1. Bag-of-words (or bag-of-characters, bag-of-relations)
 - Identify unique sufficient atomic sub-parts (e.g., words in a document)
 - Define simple features over these, e.g.,
 - Binary (0 or 1) → indicating presence
 - Natural numbers → indicating number of times in a context
 - Real-valued → various other score (we'll see examples throughout the semester)
- 2. Linguistically-inspired features
- 3. Dense features via embeddings

to assist the authorities in moments of chaos and potential danger: after the Boston bombing in 2013, when the Boston suspects were still at large, and last month in Los Angeles, during an active shooter scare at the airport.

TECH

NOT TECH

Let's make a core assumption: the label can be predicted from counts of individual word types

Electronic alerts have been used to assist the authorities in moments of chaos and potential danger: after the Boston bombing in 2013, when the Boston suspects were still at large, and last month in Los Angeles, during an active shooter scare at the airport.

TECH

NOT TECH

Q: What types of words would be features to predict "Tech" and "not Tech"?

Let's make a core assumption: the label can be predicted from counts of individual word types

Electronic alerts have been used to assist the authorities in moments of chaos and potential danger: after the Boston bombing in 2013, when the Boston suspects were still at large, and last month in Los Angeles, during an active shooter scare at the airport.

feature extraction

TECH

NOT TECH

define V feature functions $f_i(x)$ as

With V word types,

 $f_i(x) = \#$ of times word type *i* appears in document x

Core assumption: the label can be predicted from counts of individual word types

Electronic alerts have been used to assist the authorities in moments of chaos and potential danger: after the Boston bombing in 2013, when the Boston suspects were still at large, and last month in Los Angeles, during an active shooter scare at the airport.

TECH

NOT TECH

feature extraction

$$f(x) = (f_i(x))_i^V$$

With V word types, define V feature functions $f_i(x)$ as $f_i(x) = \#$ of times word type i appears in document x

Core assumption: the label can be predicted from counts of individual word types

Electronic alerts have been used to assist the authorities in moments of chaos and potential danger: after the Boston bombing in 2013, when the Boston suspects were still at large, and last month in Los Angeles, during an active shooter scare at the airport.

feature extraction

TECH

NOT TECH

feature $f_i(x)$	value
alerts	1
assist	1
bombing	1
Boston	2
sniffle	0

Core assumption:
the label can be
predicted from
counts of individual
word types

to assist the authorities in moments of chaos and potential danger: after the Boston bombing in 2013, when the Boston suspects were still at large, and last month in Los Angeles, during an active shooter scare at the airport.

TECH

NOT TECH

f(x): "bag of words"

feature $f_i(x)$	value
alerts	1
assist	1
bombing	1
Boston	2
sniffle	0

w: weights

feature	weight
alerts	.043
assist	-0.25
bombing	0.8
Boston	-0.00001
•••	

- 1. Bag-of-words (or bag-of-characters, bag-of-relations)
 - Identify unique sufficient atomic sub-parts (e.g., words in a document)
 - Define simple features over these, e.g.,
 - Binary (0 or 1) → indicating presence
 - Natural numbers → indicating number of times in a context
 - Real-valued → various other score (we'll see examples throughout the semester)
- 2. Linguistically-inspired features
 - Define features from words, word spans, or linguistic-based annotations extracted from the document
- 3. Dense features via embeddings

- Bag-of-words (or bag-of-characters, bag-of-relations)
 - Identify unique sufficient atomic sub-parts (e.g., words in a document)
 - Define simple features over these, e.g.,
 - Binary (0 or 1) → indicating presence
 - Natural numbers \rightarrow indicating number of times in a context
 - Real-valued → various other score (we'll see examples throughout the semester)
- 2. Linguistically-inspired features
 - Define features from words, word spans, or linguistic-based annotations extracted from the document
- 3. Dense features via embeddings
 - Compute/extract a real-valued vector, e.g., from word2vec, ELMO, BERT, ...

Will be discussed in a future lecture

Second: Classification Terminology

Name	Number of Tasks (Domains) Labels are Associated with	# Label Types	Example
(Binary) Classification			
Multi-class Classification			
Multi-label Classification			
Multi-task Classification			

Name	Number of Tasks (Domains) Labels are Associated with	# Label Types	Example
(Binary) Classification	1	2	Sentiment: Choose one of {positive or negative}
Multi-class Classification			
Multi-label Classification			
Multi-task Classification			

Name	Number of Tasks (Domains) Labels are Associated with	# Label Types	Example
(Binary) Classification	1	2	Sentiment: Choose one of {positive or negative}
Multi-class Classification	1	> 2	Part-of-speech: Choose one of {Noun, Verb, Det, Prep,}
Multi-label Classification			
Multi-task Classification			

Name	Number of Tasks (Domains) Labels are Associated with	# Label Types	Example
(Binary) Classification	1	2	Sentiment: Choose one of {positive or negative}
Multi-class Classification	1	> 2	Part-of-speech: Choose one of {Noun, Verb, Det, Prep,}
Multi-label Classification	1	> 2	Sentiment: Choose multiple of {positive, angry, sad, excited,}
Multi-task Classification			

	Name	Number of	# Label Types	Example
		Tasks (Domains) Labels are Associated with		
	(Binary) Classification	1	2	Sentiment: Choose one of {positive or negative}
	Multi-class Classification	1	> 2	Part-of-speech: Choose one of {Noun, Verb, Det, Prep,}
	Multi-label Classification	1	> 2	Sentiment: Choose multiple of {positive, angry, sad, excited,}
20252	Multi-task Classification	>1	Per task: 2 or > 2 (can apply to binary or multi-class)	Task 1: part-of-speech Task 2: named entity tagging Task 1: document labeling Task 2: sentiment

34

Text Annotation Tasks ("Classification" Tasks)

- 1. Classify the entire document ("text categorization")
- 2. Classify word tokens individually
- 3. Classify word tokens in a sequence
- 4.Identify phrases ("chunking")
- 5. Syntactic annotation (parsing)
- 6.Semantic annotation
- 7. Text generation

Slide courtesy Jason Eisner, with mild edits

Text Annotation Tasks ("Classification" Tasks)

- 1. Classify the entire document ("text categorization")
- 2. Classify word tokens individually
- 3. Classify word tokens in a sequence
- 4.Identify phrases ("chunking")
- 5. Syntactic annotation (parsing)
- 6. Semantic annotation

Slide courtesy Jason Eisner, with mild edits

Text Classification

Assigning subject categories, topics, or genres

Spam detection

Authorship identification

Age/gender identification

Language Identification

Sentiment analysis

. . .

Text Classification

Assigning subject categories, topics, or genres

Spam detection

Authorship identification

Age/gender identification

Language Identification

Sentiment analysis

. . .

Text Classification: Hand-coded Rules?

Assigning subject categories, topics, or genres

Spam detection

Authorship identification

Age/gender identification

Language Identification

Sentiment analysis

Rules based on combinations of words or other features spam: black-list-address OR ("dollars" AND "have been selected")

Accuracy can be high

If rules carefully refined by expert

Building and maintaining these rules is expensive

Can humans faithfully assign uncertainty?

Text Classification: Supervised Machine Learning

Assigning subject categories, topics, or genres

Spam detection

Authorship identification

Age/gender identification

Language Identification

Sentiment analysis

. . .

Text Classification: Supervised Machine Learning

Assigning subject categories, topics, or genres

Spam detection

Authorship identification

Age/gender identification

Language Identification

Sentiment analysis

. . .

a document da fixed set of classes $C = \{c_1, c_2, ..., c_J\}$ a training set of m hand-labeled documents $(d_1, y_1), ..., (d_m, y_m), y$ \in C

Naïve Bayes
Logistic regression
Neural network
Support-vector machines
k-Nearest Neighbors

...

a learned classifier γ that maps documents to classes

Text Annotation Tasks ("Classification" Tasks)

- 1. Classify the entire document ("text categorization")
- 2. Classify word tokens individually
- 3. Classify word tokens in a sequence
- 4.Identify phrases ("chunking")
- 5. Syntactic annotation (parsing)
- 6. Semantic annotation
- 7. Text generation

Slide courtesy Jason Eisner, with mild edi

Word Sense Disambiguation (WSD)

Problem:

The company said the *plant* is still operating ...

- \Rightarrow (A) Manufacturing plant or
- \Rightarrow (B) Living plant

Training Data: Build a special classifier just for tokens of "plant"

Sense	Context		
(1) Manufacturing	union responses to plant closures		
" "	computer disk drive plant located in		
" "	company manufacturing <i>plant</i> is in Orlando		
(2) Living	animal rather than <i>plant</i> tissues can be		
" "	to strain microscopic <i>plant</i> life from the		
" "	and Golgi apparatus of plant and animal cells		

Test Data:

Sense	Context		
???	vinyl chloride monomer <i>plant</i> , which is		
???	molecules found in <i>plant</i> tissue from the		

slide courtesy of D. Yarowsky (modified,

WSD for Machine Translation

 $(English \rightarrow Spanish)$

Problem:

- ... He wrote the last **sentence** two years later ...
 - ⇒ sentencia (legal sentence) or
 - \Rightarrow frase (grammatical sentence)

Training Data: Build a special classifier just for tokens of "sentence"

Translation	Context
(1) sentencia	for a maximum sentence for a young offender
" "	of the minimum sentence of seven years in jail
" "	were under the sentence of death at that time
(2) frase	read the second sentence because it is just as
" "	The next sentence is a very important
" "	It is the second sentence which I think is at

Test Data:

Translation	Context
???	cannot criticize a sentence handed down by
???	listen to this sentence uttered by a former

slide courtesy of D. Yarowsky (modified)

Accent Restoration in Spanish & French

Problem:

```
Input: ... deja travaille cote a cote ...

↓
Output: ... déjà travaillé côte à côte ...
```

Examples:

```
    ... appeler l'autre cote de l'atlantique ...
    ⇒ côté (meaning side) or
    ⇒ côte (meaning coast)
    ... une famille des pecheurs ...
    ⇒ pêcheurs (meaning fishermen) or
    ⇒ pécheurs (meaning sinners)
```

Accent Restoration in Spanish & French

Training Data:

Pattern	Context			
(1) côté	du laisser de cote faute de temps			
" "	appeler l' autre cote de l' atlantique			
,, ,,	passe de notre cote de la frontiere			
(2) côte	vivre sur notre <i>cote</i> ouest toujours			
,, ,,	creer sur la cote du labrador des			
,, ,,	travaillaient cote a cote, ils avaient			

Test Data:

Pattern	Context			
???	passe de notre <i>cote</i> de la frontiere			
???	creer sur la <i>cote</i> du labrador des			

Text-to-Speech Synthesis

Problem:

... slightly elevated lead levels ...

 $\Rightarrow l\epsilon d$ (as in lead mine) or

 \Rightarrow *li:d* (as in *lead role*)

Training Data:

Pronunciation	Context			
(1) l ∈ d	it monitors the <i>lead</i> levels in drinking			
" "	conference on lead poisoning in			
" "	strontium and lead isotope zonation			
(2) li:d	maintained their lead Thursday over			
" "	to Boston and lead singer for Purple			
" "	Bush a 17-point lead in Texas, only 3			

Test Data:

Pronunciation	Context			
???	median blood <i>lead</i> concentration was			
???	his double-digit <i>lead</i> nationwide. The			

slide courtesy of D. Yarowsky (modified

Spelling Correction

Problem:

... and he fired presidential aid/aide Dick Morris after ...

 \Rightarrow aid or

 \Rightarrow aide

Training Data:

Spelling	Context
(1) aid	and cut the foreign aid/aide budget in fiscal 1996
" "	they offered federal aid/aide for flood-ravaged states
(2) aide	fired presidential aid/aide Dick Morris after
" "	and said the chief aid/aide to Sen. Baker, Mr. John

Test Data:

Spelling	Context
???	said the longtime aid/aide to the Mayor of St
???	will squander the aid/aide it receives from the

slide courtesy of D. Yarowsky (modified)

What features? Example: "word to [the] left [of correction]"

Frequency as Frequency as

	Frequency as	Frequency as
Word to left	Aid	Aide
foreign	718	1
federal	297	0
western	146	0
provide	88	0
covert	26	0
oppose	13	0
future	9	0
similar	6	0
presidential	0	63
chief	0	40
longtime	0	26
aids-infected	0	2
sleepy	0	1
disaffected	0	1
indispensable	2	1
practical	2	0
squander	1	0

Spelling correction using an n-gram language model ($n \ge 2$) would use words to left and right to help predict the true word.

Similarly, an HMM would predict a word's class using classes to left and right.

But we'd like to throw in all kinds of other features, too ...

An assortment of possible cues ...

		Position	Collocation	l€d	li:d
N-grams		+1 L	lead level/N	219	0
		-1 W	narrow lead	0	70
(word,	/	+I W	lead in	207	898
lemma,		-1w,+1w	of lead in	162	0
part-of-speech)	-1w,+1w	the lead in	0	301
		+1P,+2P	lead, <noun></noun>	234	7
Wide-contex	,	±k w	$zinc$ (in $\pm k$ words)	235	0
collocations		±k w	$copper$ (in $\pm k$ words)	130	0
Verb-object		-V L	follow/V + lead	0	527
relationships	7	-V L	take/V + lead	1	665

generates a whole bunch of potential cues – use data to find out which ones work best

	Frequency as	Frequency as
Word to left	Aid	Aide
foreign	718	1
federal	297	0
western	146	0
provide	88	0

An assortment of possible cues ...

		Position	Collocation	l€d	li:d
N-grams	/	+1 L	lead level/N	219	0
		-1 W	narrow lead	0	70
(word,		+1 W	lead in	207	898
lemma,		-1w,+1w	of lead in	162	0
part-of-speed	h)	-1w,+1w	the lead in	0	301
		+1P,+2P	lead, <noun></noun>	234	7
Wide-conte	t	±k w	$zinc$ (in $\pm k$ words)	235	0
collocations		±k w	$copper$ (in $\pm k$ words)	130	0
Verb-object	(-V L	follow/V + lead	0	527
relationship	3	-V L	take/V + lead	1	665

This feature is relatively weak, but weak features are still useful, especially since very few features will fire in a given context.

merged ranking of all cues of all these types

L	I	
11.40	follow/V + lead	⇒ li:d
11.20	$zinc$ (in $\pm k$ words)	\Rightarrow l ϵ d
11.10	lead level/N	\Rightarrow l ϵ d
10.66	of lead in	\Rightarrow l ϵ d
	the lead in	⇒ li:d
10.51	lead <i>role</i>	⇒ li:d

slide courtesy of D. Yarowsky (modified

Final decision list for *lead* (abbreviated)

List of all features, ranked by their weight.

(These weights are for a simple "decision list" model where the single highest-weighted feature that fires gets to make the decision all by itself.

However, a log-linear model, which adds up the weights of all features that fire, would be roughly similar.)

LogL	Evidence	Pronunciation
11.40	follow/V + lead	⇒ li:d
11.20	$zinc$ (in $\pm k$ words)	\Rightarrow l ϵ d
11.10	lead level/N	\Rightarrow l ϵ d
10.66	of lead in	\Rightarrow l ϵ d
10.59	the lead in	⇒ li:d
10.51	lead role	⇒ li:d
10.35	$copper$ (in $\pm k$ words)	\Rightarrow l ϵ d
10.28	lead time	\Rightarrow li:d
10.24	lead levels	\Rightarrow l ϵ d
10.16	lead poisoning	\Rightarrow l ϵ d
8.55	big lead	\Rightarrow li:d
8.49	narrow lead	\Rightarrow li:d
7.76	take/V + lead	⇒ li:d
5.99	lead, NOUN	\Rightarrow l ϵ d
1.15	lead in	⇒ li:d
	000	

slide courtesy of D. Yarowsky (modified

Text Annotation Tasks ("Classification" Tasks)

- 1. Classify the entire document ("text categorization")
- 2. Classify word tokens individually
- 3. Classify word tokens in a sequence (i.e., order matters)
- 4.Identify phrases ("chunking")
- 5. Syntactic annotation (parsing)
- 6. Semantic annotation
- 7. Text generation

Slide courtesy Jason Eisner, with mild ed

Part of Speech Tagging

We could treat tagging as a token classification problem

- Tag each word independently given features of context
- And features of the word's spelling (suffixes, capitalization)

Classify each token independently but use as input features, information about the surrounding tokens (sliding window).

60

Classify each token independently but use as input features, information about the surrounding tokens (sliding window).

John saw the saw and decided to take it to the table.

Classify each token independently but use as input features, information about the surrounding tokens (sliding window).

John saw the saw and decided to take it to the table.

NN

Part of Speech Tagging

Or we could use an HMM:

Slide courtesy Jason Eisner, with mild edi

Part of Speech Tagging

We could treat tagging as a token classification problem

- Tag each word independently given features of context
- And features of the word's spelling (suffixes, capitalization)

Or we could use an HMM:

 The point of the HMM is basically that the tag of one word might depend on the tags of adjacent words.

Combine these two ideas??

- We'd like rich features (e.g., in a log-linear model), but we'd also like our feature functions to depend on adjacent tags.
- So, the problem is to predict all tags together.

Slide courtesy Jason Eisner, with mild edi

68

Can We Use Neural, Recurrent Methods?

Text Annotation Tasks ("Classification" Tasks)

- 1. Classify the entire document ("text categorization")
- 2. Classify word tokens individually
- 3. Classify word tokens in a sequence
- 4.Identify phrases ("chunking")
- 5. Syntactic annotation (parsing)
- 6.Semantic annotation
- 7. Text generation

Slide courtesy Jason Eisner, with mild ed

Example: Finding Named Entities

Named entity recognition (NER)

Identify proper names in texts, and classification into a set of predefined categories of interest

- Person names
- Organizations (companies, government organisations, committees, etc.)
- Locations (cities, countries, rivers, etc.)
- Date and time expressions
- Measures (percent, money, weight, etc.),
- email addresses, web addresses, street addresses, etc.
- Domain-specific: names of drugs, medical conditions,
- names of ships, bibliographic references etc.

NE Types

Type	Tag	Sample Categories
People	PER	Individuals, fictional characters, small groups
Organization	ORG	Companies, agencies, political parties, religious groups, sports teams
Location	LOC	Physical extents, mountains, lakes, seas
Geo-Political Entity	GPE	Countries, states, provinces, counties
Facility	FAC	Bridges, buildings, airports
Vehicles	VEH	Planes, trains, and automobiles

Type	Example
People	Turing is often considered to be the father of modern computer science.
Organization	The <i>IPCC</i> said it is likely that future tropical cyclones will become more intense.
Location	The Mt. Sanitas loop hike begins at the base of Sunshine Canyon.
Geo-Political Entity	Palo Alto is looking at raising the fees for parking in the University Avenue dis-
	trict.
Facility	Drivers were advised to consider either the Tappan Zee Bridge or the Lincoln
	Tunnel.
Vehicles	The updated Mini Cooper retains its charm and agility.

Slide courtesy Jim Mart

Named Entity Recognition

CHICAGO (AP) — Citing high fuel prices, United Airlines said Friday it has increased fares by \$6 per round trip on flights to some cities also served by lower-cost carriers. American Airlines, a unit AMR, immediately matched the move, spokesman Tim Wagner said. United, a unit of UAL, said the increase took effect Thursday night and applies to most routes where it competes against discount carriers, such as Chicago to Dallas and Atlanta and Denver to San Francisco, Los Angeles and New York.

Logistics

Finish the Catme – I will assign teams tomorrow!!

I'm working on HW 1 & grad assignment, hoping to release them soon

Text Annotation Tasks ("Classification" Tasks)

- 1. Classify the entire document ("text categorization")
- 2. Classify word tokens individually
- 3. Classify word tokens in a sequence
- 4.Identify phrases ("chunking")
- 5. Syntactic annotation
- 6. Semantic annotation
- 7. Text generation

Slide courtesy Jason Eisner, with mild edits

Document Categorization/Classification

Assigning subject categories, topics, or genres

Spam detection

Authorship identification

Language Identification

Sentiment analysis

• • •

Document Categorization/Classification

Assigning subject categories, topics, or genres

Spam detection

Authorship identification

Language Identification

Sentiment analysis

• • •

Text Annotation Tasks ("Classification" Tasks)

- 1. Classify the entire document ("text categorization")
- 2. Classify word tokens individually
- 3. Classify word tokens in a sequence
- 4.Identify phrases ("chunking")
- 5. Syntactic annotation
- 6. Semantic annotation
- 7. Text generation

Slide courtesy Jason Eisner, with mild edi

p(class | token in context)

Text-to-Speech Synthesis

Problem:

... slightly elevated lead levels ...

 $\Rightarrow l\epsilon d$ (as in lead mine) or

 \Rightarrow *li:d* (as in *lead role*)

Training Data:

Pronunciation	Context		
(1) l <i>ϵ</i> d	it monitors the <i>lead</i> levels in drinking		
" "	conference on lead poisoning in		
" "	strontium and lead isotope zonation		
(2) li:d	maintained their lead Thursday over		
" "	to Boston and lead singer for Purple		
" "	Bush a 17-point lead in Texas, only 3		

Test Data:

Pronunciation	Context		
???	median blood <i>lead</i> concentration was		
???	his double-digit <i>lead</i> nationwide. The		

slide courtesy of D. Yarowsky (modified)

Token Classification

Word pronunciation

Word sense disambiguation (WSD) within or across languages

Accent restoration

. . .

Other examples?

Example of features for token classification

		Position	Collocation	l€d	li:d
N-grams		+1 L	lead level/N	219	0
		-1 W	narrow lead	0	70
(word,	/	+1 W	lead in	207	898
lemma,	l	-1w,+1w	of lead in	162	0
part-of-speech)	-1w,+1w	the lead in	0	301
		+1P,+2P	lead, <noun></noun>	234	7
Wide-contex	t	±k w	$zinc$ (in $\pm k$ words)	235	0
collocations		±k w	$copper$ (in $\pm k$ words)	130	0
Verb-object		-V L	follow/V + lead	0	527
relationships	7	-V L	take/V + lead	1	665

generates a whole bunch of potential cues – use data to find out which ones work best

	Frequency as	Frequency as
Word to left	Aid	Aide
foreign	718	1
federal	297	0
western	146	0
provide	88	0

Example of features for token classification

	Position	Collocation	l€d	li:d
N-grams	+1 L	lead level/N	219	0
	-1 W	narrow lead	0	70
(word,	+1 W	lead in	207	898
lemma,	-1w,+1w	of lead in	162	0
part-of-speech)	-1w,+1w	the lead in	0	301
	+1P,+2P	lead, <noun></noun>	234	7
Wide-context	±k w	$zinc$ (in $\pm k$ words)	235	0
collocations	±k w	$copper$ (in $\pm k$ words)	130	0
Verb-object	-V L	follow/V + lead	0	527
relationships	-VL	take/V + lead	1	665

This feature is relatively weak, but weak features are still useful, especially since very few features will fire in a given context.

merged ranking of all cues of all these types

2/7/2024

	1	
11.40	follow/V + lead	⇒ li:d
11.20	$zinc$ (in $\pm k$ words)	\Rightarrow l ϵ d
11.10	lead level/N	\Rightarrow l ϵ d
	of lead in	\Rightarrow l ϵ d
10.59	the lead in	⇒ li:d
10.51	lead <i>role</i>	⇒ li:d

slide courtesy of D. Yarowsky (modified

87

Final decision list for *lead* (abbreviated)

List of all features, ranked by their "likelihood" from looking at all the features together.

LogL	Evidence	Pronunciation
11.40	follow/V + lead	⇒ li:d
11.20	$zinc$ (in $\pm k$ words)	\Rightarrow l ϵ d
11.10	lead level/N	\Rightarrow l ϵ d
10.66	of lead in	\Rightarrow l ϵ d
10.59	the lead in	⇒ li:d
10.51	lead role	⇒ li:d
10.35	$copper$ (in $\pm k$ words)	\Rightarrow l ϵ d
10.28	lead time	\Rightarrow li:d
10.24	lead levels	\Rightarrow l ϵ d
10.16	lead poisoning	\Rightarrow l ϵ d
8.55	big lead	\Rightarrow li:d
8.49	narrow lead	\Rightarrow li:d
7.76	take/V + lead	⇒ li:d
5.99	lead, NOUN	\Rightarrow l ϵ d
1.15	lead in	⇒ li:d
	000	

slide courtesy of D. Yarowsky (modified)

Text Annotation Tasks ("Classification" Tasks)

- 1. Classify the entire document ("text categorization")
- 2. Classify word tokens individually
- 3. Classify word tokens in a sequence (i.e., order matters)
- 4.Identify phrases ("chunking")
- 5. Syntactic annotation
- 6. Semantic annotation
- 7. Text generation

Slide courtesy Jason Eisner, with mild edi

Token Classification in a Sequence

Part of speech tagging

Part of Speech (POS) Tagging

Classify each token independently but use as input features, information about the surrounding tokens (sliding window).

Token Classification in a Sequence

Part of speech tagging

Word alignment

Machine Translation: Word Alignment

What kinds of features might we want to consider here?

Token Classification in a Sequence

Part of speech tagging

Other examples?

Word alignment

• • •

Text Annotation Tasks ("Classification" Tasks)

- 1. Classify the entire document ("text categorization")
- 2. Classify word tokens individually
- 3. Classify word tokens in a sequence
- 4.Identify phrases ("chunking")
- 5. Syntactic annotation
- 6. Semantic annotation
- 7. Text generation

Slide courtesy Jason Eisner, with mild edi

NE Types

Type	Tag	Sample Categories
People	PER	Individuals, fictional characters, small groups
Organization	ORG	Companies, agencies, political parties, religious groups, sports teams
Location	LOC	Physical extents, mountains, lakes, seas
Geo-Political Entity	GPE	Countries, states, provinces, counties
Facility	FAC	Bridges, buildings, airports
Vehicles	VEH	Planes, trains, and automobiles

Туре	Example
People	Turing is often considered to be the father of modern computer science.
Organization	The IPCC said it is likely that future tropical cyclones will become more intense.
Location	The Mt. Sanitas loop hike begins at the base of Sunshine Canyon.
Geo-Political Entity	Palo Alto is looking at raising the fees for parking in the University Avenue dis-
	trict.
Facility	Drivers were advised to consider either the Tappan Zee Bridge or the Lincoln
	Tunnel.
Vehicles	The updated Mini Cooper retains its charm and agility.

Slide courtesy Jim Mart

Named Entity Recognition

CHICAGO (AP) — Citing high fuel prices, United Airlines said Friday it has increased fares by \$6 per round trip on flights to some cities also served by lower-cost carriers. American Airlines, a unit AMR, immediately matched the move, spokesman Tim Wagner said. United, a unit of UAL, said the increase took effect Thursday night and applies to most routes where it competes against discount carriers, such as Chicago to Dallas and Atlanta and Denver to San Francisco, Los Angeles and New York.

Chunking

Named entity recognition

Information extraction

Example: Information Extraction

As a task:

Filling slots in a database from sub-segments of text.

October 14, 2002, 4:00 a.m. PT

For years, Microsoft Corporation CEO Bill Gates railed against the economic philosophy of open-source software with Orwellian fervor, denouncing its communal licensing as a "cancer" that stifled technological innovation.

Today, Microsoft claims to "love" the opensource concept, by which software code is made public to encourage improvement and development by outside programmers. Gates himself says Microsoft will gladly disclose its crown jewels--the coveted code behind the Windows operating system--to select customers.

"We can be open source. We love the concept of shared source," said <u>Bill Veghte</u>, a <u>Microsoft VP</u>. "That's a super-important shift for us in terms of code access."

Richard Stallman, founder of the Free Software Foundation, countered saying...

NAME	TITLE	ORGANIZATION
Bill Gates	CEO	Microsoft
Bill Veghte	VP	Microsoft
Richard Stallman	founder	Free Soft

Slide from Chris Brew, adapted from slide by William Cohe

Example applications for IE

Classified ads

Restaurant reviews

Bibliographic citations

Appointment emails

Legal opinions

Papers describing clinical medical studies

Task vs application?

Chunking

Named entity recognition

Information extraction

Identifying idioms

. . .

Other examples?

Text Annotation Tasks ("Classification" Tasks)

- 1. Classify the entire document ("text categorization")
- 2. Classify word tokens individually
- 3. Classify word tokens in a sequence
- 4.Identify phrases ("chunking")
- 5. Syntactic annotation (syntax parsing)
- 6. Semantic annotation
- 7. Text generation

Slide courtesy Jason Eisner, with mild ed

Syntax Parsing

Context Free Grammar

```
S \rightarrow NP \ VP PP \rightarrow P \ NP
NP \rightarrow Det \ Noun AdjP \rightarrow Adj \ Noun
NP \rightarrow Noun VP \rightarrow V \ NP
NP \rightarrow Det \ AdjP Noun \rightarrow Baltimore
NP \rightarrow NP \ PP ...
```

Set of rewrite rules, comprised of terminals and non-terminals

Generate from a Context Free Grammar

 $S \rightarrow NP \ VP$ $PP \rightarrow P \ NP$ $NP \rightarrow Det \ Noun$ $AdjP \rightarrow Adj \ Noun$ $NP \rightarrow Noun$ $VP \rightarrow V \ NP$ $NP \rightarrow Det \ AdjP$ $Noun \rightarrow Baltimore$ $NP \rightarrow NP \ PP$

Baltimore is a great city

Assign Structure (Parse) with a Context Free Grammar

Why is it useful?

The old man the boat.

The old man the boat.

[The rat [the cat [the dog chased] killed] ate the malt].

Language can have recursive patterns

Syntactic parsing can help identify those

Text Annotation Tasks ("Classification" Tasks)

- 1. Classify the entire document ("text categorization")
- 2. Classify word tokens individually
- 3. Classify word tokens in a sequence
- 4.Identify phrases ("chunking")
- 5. Syntactic annotation (syntax parsing)
- 6. Semantic annotation
- 7. Text generation

Slide courtesy Jason Eisner, with mild edi

Semantic Parsing

Semantic role labeling (SRL)

Semantic Role Labeling (SRL)

For each <u>predicate</u> (e.g., verb)

- 1. find its arguments (e.g., NPs)
- 2. determine their **semantic roles**

John drove Mary from Austin to Dallas in his Toyota Prius.

The hammer <u>broke</u> the window.

- agent: Actor of an action
- patient: Entity affected by the action
- source: Origin of the affected entity
- destination: Destination of the affected entity
- instrument: Tool used in performing action.
- beneficiary: Entity for whom action is performed

Slide thanks to Ray Mooney (modified

Other Current Semantic Annotation Tasks (similar to SRL)

PropBank – coarse-grained roles of verbs

NomBank – similar, but for nouns

FrameNet – fine-grained roles of any word

TimeBank – temporal expressions

What type of applications might this have?

FrameNet Example

REVENGE FRAME

Slide thanks to CJ Fillmore (modified

Text Annotation Tasks ("Classification" Tasks)

- 1. Classify the entire document ("text categorization")
- 2. Classify word tokens individually
- 3. Classify word tokens in a sequence
- 4.Identify phrases ("chunking")
- 5. Syntactic annotation (syntax parsing)
- 6. Semantic annotation
- 7. Text generation

Slide courtesy Jason Eisner, with mild ed

Text Generation

Question answering (QA)

Speech recognition (ASR)

Machine translation (MT)

Summarization

Generating text from a structured representation

• • •

