Handout 1: The language of optimization: modeling definitions

In what follows are the key definitions for the course. You are responsible for any term below in the glossary that is in **boldface**. If you have questions about any definition, please consult your textbook and/or ask your instructor.

1 Modeling glossary

For the definitions listed, we assume n is a fixed, positive integer. We also use vector notation so that when we write $\mathbf{x} \in \mathbb{R}^n$, we mean that $\mathbf{x} = [x_1, \dots, x_n]$, i.e., \mathbf{x} is an n-dimensional vector with components x_1, \dots, x_n .

- 1. **Constraint**: Any restriction, requirement or interaction that limits the values of the decision variables. Also called a **general constraint**. Some special constraints include:
 - (Closed) linear constraint: A constraint that can be written as a linear function on the decision variables that is set equal to or less than or equal to a constant. We typically omit stating "closed" which is the condition that only weak inequalities and equalities are allowed, e.g., x < 5 is **not** a (closed) linear constraint.
 - Variable bounds: An upper or lower bound on a single decision variable, e.g., $x \ge 0$ or $y \le 3$ for decision variables x and y. Note that a variable bound is also a linear constraint.
- 2. **Decision variable**: An unknown quantity for an optimization model that represents a decision to be made. In this class we work with two kinds of decision variables (note these are constraints!):
 - Continuous variable: Decision variables constrained to be real numbers.
 - Discrete variable: Decision variables constrained to have values from a discrete set. E.g., $x \in \mathbb{Z}$ restricts x to the set of integers.
- 3. Feasible region: The set of allowable values for the decision variables.
- 4. **Feasible problem**: An optimization model is **feasible** if and only if a feasible solution exists for the problem.
- 5. **Feasible solution**: A solution to an optimization problem that satisfies all constraints.
- 6. **Integer program**: An optimization model where one or more of the decision variables must be integer.
- 7. **Linear function**: A function $f: \mathbb{R}^n \to \mathbb{R}$ is linear if, and only if, there are constants $c_1, \ldots, c_n \in \mathbb{R}$ such that for all $\mathbf{x} \in \mathbb{R}^n$,

$$f(\mathbf{x}) = c_1 x_1 + \ldots + c_n x_n.$$

8. **Linear program**: An optimization model where

- (a) the decision variables are **continuous**;
- (b) the objective function is **linear**; and
- (c) there are a finite number of (closed) linear constraints, i.e., only equality and weak inequality linear constraints are permitted.
- 9. (Model) constant: A number in a model formulation that is fixed while solving. Also referred to as simply a constant.
- 10. (Model) parameter: A special kind of constant that is represented with a symbol and fixed while solving. Also referred to as simply a parameter.
- 11. **Nonlinear function**: A function that is not linear.
- 12. **Objective function**: For an optimization problem, a function on the decision variables to be maximized or minimized.
- 13. **Optimal solution**: For an optimization model with objective function f, a solution, $\mathbf{x} \in \mathbb{R}^n$ is optimal if and only if
 - (a) **x** is feasible; and
 - (b) for all feasible solutions \mathbf{y} , $f(\mathbf{x}) \geq f(\mathbf{y})$ for a maximization problem or $f(\mathbf{x}) \leq f(\mathbf{y})$ for a minimization problem.
- 14. Optimization model: Also called an optimization problem or a mathematical program, an optimization model consists of constants, an objective function, and possibly constraints. If the objective function is to be minimized then the problem is called a minimization problem and if the objective function is to be maximized then the problem is called a maximization problem. If the optimization problem has no constraints, we say it is an unconstrained problem. We say the optimization model is over \mathbb{R}^n if there are n decision variables. Optimization models have one of four possible results:
 - (a) **optimal**: A feasible problem where an optimal solution exists for the problem.
 - (b) **infeasible**: No feasible solution exists for the problem.
 - (c) **unbounded**: A feasible problem with objective function f, where for all real numbers, k, there exists a feasible solution $\mathbf{x} \in \mathbb{R}^n$ with $f(\mathbf{x}) \geq k$ for a maximization problem or $f(\mathbf{x}) \leq k$ for a minimization problem.
 - (d) **unsolvable**: A feasible problem where no optimal solutions exist. Note that this result is **not** possible for a linear program!
- 15. Parameterized optimization model: An optimization problem where at least one constant is a parameter. We can write that a given optimization model is parameterized when it is a parameterized optimization model.
- 16. **Set**: A collection of objects, typically numbers, usually denoted by a comma separated list surrounded by curly braces and can be represented by a variable. E.g., The set, S, containing exactly the numbers 0, 4, and -2 could be written $S = \{0, 4, -2\}$. The symbol \in is used to indicate whether an element is contained in a set. E.g., $0 \in S$ but $2 \notin S$. Two sets we use frequently are the set of integers, denoted by \mathbb{Z} , and the set of real numbers, denoted by \mathbb{R} .
- 17. **Solution**: For an optimization model over \mathbb{R}^n , a solution is a specific setting of decision variables.

18. Value: For an optimization model with objective function f, a value or objective value of a given solution $\mathbf{x} \in \mathbb{R}^n$, is the real number $f(\mathbf{x})$.

2 Examples

1. The following optimization problem is an unconstrained problem:

$$\max 2z$$
.

Here n = 1, the decision variable is z and the objective function is f(z) = 2z. There are no constraints. Note that the optimization model is a maximization problem and unbounded. The constant for the problem is the objective function coefficient 2. The optimization problem is not parameterized.

2. Consider the following optimization problem:

max
$$2z$$
 subject to $z \leq 1$.

Again, n=1, the decision variable is z, the objective function is f(z)=2z, and there is a single constraint, $z\leq 1$. Note that the optimization model is a maximization problem and has an optimal result as z=1 is an optimal solution. The value of the optimal solution is 2. The constants for the problem are the objective coefficient 2, and the coefficient 1 on z and the right-hand side 1 of the constraint $z\leq 1$. The optimization problem is not parameterized. It is a linear program because the decision variable is continuous and the objective function and constraint are linear. The feasible region of the problem is the set $\{z\in\mathbb{R}:z\leq 1\}$ and the solutions z=1, z=0, z=-4 are all feasible. The solutions z=2 and z=8 are both infeasible.

3. The following optimization problem:

max
$$2z$$
 subject to $z < 1$.

Again, n = 1, the decision variable is z, the objective function is f(z) = 2z, and there is a single constraint, z < 1. Note that the optimization model is a maximization problem but is unsolvable as no optimal solution exists, since z can be arbitrarily close to 1, but not equal to 1. The constants for the problem are the objective coefficient 2, and the coefficient 1 on z and the right-hand side 1 of the constraint z < 1. The optimization problem is not parameterized and not a linear program because although the objective function is linear, the inequality in the constraint is $\overline{\text{NOT}}$ weak.

4. Let $c \in \mathbb{R}$ be a fixed constant. Then

$$\max \ 2z \quad \text{subject to} \quad z \le c$$

is a parameterized optimization model. Again, n=1, the decision variable is z, the objective function is f(z)=2z, and there is a single constraint, $z \leq c$. Note that the optimization model is a maximization problem with z=c as an optimal solution so the problem has an optimal result. The value of the optimal solution is 2c. The constants for the problem are the objective coefficient 2, and the coefficient 1 on z and the right-hand side c of the constraint $z \leq c$. The optimization problem is also a linear program because the decision variable is continuous, and the objective function and constraint are linear. As is often true for parameterized optimization models, because each $c \in \mathbb{R}$ represents a different optimization model, the formulation represents an infinite number of optimization problems.

- 5. Let f(x,y) = 3x + y, $g(x) = x^2 + y^2$, and h(x) = 5x.
 - (a) The optimization problem over \mathbb{R}^2

$$\max f(x)$$
 subject to $g(x) \le 4$

is not a parameterized optimization model. The objective function is f, and the single constraint is $g(x) \leq 4$. The constants for this function are the coefficients 3 and 1 of f, the exponents 2 for each term in g, the coefficients 1 on both terms in g, and the right-hand side of 4 of the constraint $g(x) \leq 4$. An optimal solution for this maximization problem is x = 2, y = 0 with value 6, so the problem has an optimal result. The optimization model is not a linear program because g is not linear.

(b) The optimization problem, again over \mathbb{R}^2 ,

min
$$g(x)$$
 subject to $h(x) \le 1$ and $h(x) \ge 2$

has objective function g, and two constraints $h(x) \leq 1$ and $h(x) \geq 2$. The constants for this function are the exponents 2 for each term in g, the coefficients 1 on both terms in g, the coefficient 5 in h, and the right-hand sides of 1 and 2 of the constraints $h(x) \leq 1$ and $h(x) \leq 2$, respectively. This minimization problem is infeasible because no $x \in \mathbb{R}$ exists that satisfies both $5x \leq 1$ and $5x \geq 2$. The optimization model is not a linear program because g is not linear.

6. Consider the following optimization problem.

min
$$-x + 4y$$

subject to $x + y = 3$
 $x - y + 5z \ge 1$
 $x \le 0$.

The objective function is -x + 4y. The constraints are x + y = 3, $x - y + 5z \ge 1$, and $x \le 0$. The constants are the coefficients -1 and 4 of the objective function, and the coefficients 1, 1, 3, 1, -1, 5, 1, 1,and 0 of the constraints. The optimization model is not parameterized. The optimization model is a linear program.

7. Consider the following optimization problem.

$$\begin{array}{lll} \min & -x+4y \\ \text{subject to} & x+y & = 3 \\ & x-y+5z & \geq 1 \\ & x & \leq 0 \\ & y \in \{0,1\}. \end{array}$$

This optimization model is the same as the one above, except with the additional constraint $y \in \{0,1\}$. The optimization model is *not* a linear program as y is constrained to be either the integer 0 or 1. In fact, the optimization model is a (linear) integer program.

3 Homework problems

- 1. For each function on x, y, and z, indicate whether it is linear or not.
 - (a) $f(x,y) = x + 5y \log(x)$.
 - (b) f(x,y) = x + 5y.
 - (c) $f(x, y, z) = \pi x \sqrt{3}y + \sin(\log(100))z$.
- 2. Let x, y, and z be decision variables and let a, b, and c be given parameters. Indicate whether each of the following sets of constraints could be in a linear program or not.
 - (a) $x + 5y z \le 54$.
 - (b) $x \ge abc, \log(a) \ge y \ge b, z \le 5.$
 - (c) x > 0.
 - (d) $x^2 + y^2 < 9$.
 - (e) $x + y \le 2, x \in \{0, 1, 2\}.$
- 3. Consider the following optimization problem with decision variables x, y, and z.

$$\begin{array}{ll} \text{min} & 3x + 2y - 4z \\ \text{subject to} & 2x + 4y & \leq 4 \\ & 3y + 2z & \leq 7 \\ & x & \geq 0. \end{array}$$

What is the objective function? What are the constraints? Is the problem an parameterized optimization model? Is the problem a linear program or not? If not, indicate all the reasons the problem is not a linear program.

4. Consider the following optimization problem with decision variables x_1 and x_2 .

$$\begin{array}{lll} \max & c_1x_1+c_2x_2 \\ \text{subject to} & a_{11}x_1+a_{12}x_2 &=b_1 \\ & a_{21}x_1+a_{22}x_2 &=b_2 \\ & x_1 & \geq 0 \\ & x_2 & \geq 0. \end{array}$$

What is the objective function? What are the constraints? Is the problem an parameterized optimization model? Is the problem a linear program or not? If not, indicate all the reasons the problem is not a linear program.

5. Consider the following optimization problem with decision variables x_1 and x_2 .

$$\begin{array}{lll} \max & x_1 + 5x_2 \\ \text{subject to} & x_1 + x_2 - x_1x_2 &= 5 \\ & a_{21}x_1^2 - 2x_2 &\leq 2 \\ & x_1 &\geq 0 \\ & x_2 &\geq 0 \\ & x_1 \in \mathbb{Z}. \end{array}$$

What is the objective function? What are the constraints? Is the problem a parameterized optimization model? Is the problem a linear program or not? If not, indicate all the reasons the problem is not a linear program.

6. Consider the following optimization problem with decision variables x_1 and x_2 .

What is the objective function? What are the constraints? Is the problem a parameterized optimization model? Is the problem a linear program or not? If not, indicate all the reasons the problem is not a linear program.