Project group: Eunkwang Joo and Shaddi Hasan

Our implementation proceeds in phases. In the first phase, we read in the tokenized data and construct our set of features and our set of observations. We chose to only use terms that appeared more than 1000 times in the dataset; this yielded around 10,000 features. After reading in the tokens, we produce two matrices: a matrix containing all the reviews and their associated terms (the document matrix) and a vector containing the ratings for every document. We also produce maps between feature ID's and terms.

Our second phase is training. To perform 10-fold cross validation, we split the original document matrix and ratings vector into 10 blocks, each with approximately 10,000 reviews. Each fold proceeds identically. To train our model, we initially start with a β vector (our per-term weights) of all zeros. We train in blocks of reviews: for each block, we compute the L₂ error with ridge regularization, and then update β accordingly. Updating β for all blocks in our training set constitutes one iteration of our classifier (9 updates to β). We used a Γ value of 0.0000005, and a λ value of 0.1. We chose these values based on trial-and-error, as they seemed to provide the fastest decrease in error. We trained our model for 300 iterations. We computed the mean error-vs-iteration across our ten folds; we present it below. Note, the y-axis on the chart begins at 100000.

The final phase is validation. We performed validation on each of the left out blocks of data in our ten trials. We simply multiply each validation set by the corresponding β , and compare to the known values of these. We present the results of our validation below. Our mean AUC score across all validations was 0.69. Our 1% lift score was 5.0. We present the average ROC of all our validation experiments below; this is computed by averaging the TPR across all ten validation sets for each 0.01% increase in FPR. We also show the corresponding lift plot.

30 most positive and negative features are as below. Since we did not remove stopwords before training the sets, we created another list without stop words. Interestingly, many stopwords are removed from top positive word list, yet top 30 negative words list was not changed at all. That means there was no stopwords in negative words list. Another interesting point is that there are a handful of Spanish words in positive words list. A couple of possible hypotheses can be drawn from it; if Spanish speakers are likely to leave positive reviews, or Spanish books are excellent.

<Top 30 positive and negative words excluding stop words>

Positive Words	Weight	Negative Words	Weight
condition	0.539220273	waste	-0.932127416
que	0.398371726	poorly	-0.745070159
excellent	0.383721173	disappointing	-0.666487336
awesome	0.366281718	disappointment	-0.6291821
arrived	0.315301955	worst	-0.613406837
book	0.31330052	boring	-0.545012176
en	0.310523629	disappointed	-0.458413661
libro	0.309729159	useless	-0.456440419
es	0.288584977	garbage	-0.421924919
у	0.287229359	trash	-0.40516749
great	0.269056618	awful	-0.392378926
pleased	0.261166781	fails	-0.372941524
outstanding	0.251193821	skip	-0.360766917
para	0.250852048	hoping	-0.360411286
el	0.250788033	ridiculous	-0.35848403
delivery	0.245177329	terrible	-0.3472296
loved	0.238798827	sorry	-0.338045597
thank	0.234022632	unfortunately	-0.336393267

thanks	0.232853383	lacks	-0.330875188
timely	0.229029328	tedious	-0.322208315
una	0.224982768	stupid	-0.318461746
hooked	0.219346598	misleading	-0.318363011
de	0.218777731	repetitive	-0.297471374
superb	0.217557445	drivel	-0.292259187
boo	0.215776235	errors	-0.289391369
amazing	0.212290674	unless	-0.288588792
informative	0.209878638	bother	-0.285527825
invaluable	0.208554819	pathetic	-0.285136402
turner	0.205427036	shallow	-0.283490002
fantastic	0.204718933	dull	-0.278490335

<Top 30 positive and negative words>

Positive Words	Weight	Negative Words	Weight
the	1.486795068	waste	-0.932127416
and	0.959186673	poorly	-0.745070159
а	0.66863215	disappointing	-0.666487336
condition	0.539220273	disappointment	-0.6291821
to	0.480947256	worst	-0.613406837
this	0.447643697	boring	-0.545012176
que	0.398371726	disappointed	-0.458413661
excellent	0.383721173	useless	-0.456440419
awesome	0.366281718	garbage	-0.421924919

arrived	0.315301955	trash	-0.40516749
book	0.31330052	awful	-0.392378926
en	0.310523629	fails	-0.372941524
libro	0.309729159	skip	-0.360766917
es	0.288584977	hoping	-0.360411286
у	0.287229359	ridiculous	-0.35848403
great	0.269056618	terrible	-0.3472296
of	0.262968689	sorry	-0.338045597
pleased	0.261166781	unfortunately	-0.336393267
outstanding	0.251193821	lacks	-0.330875188
para	0.250852048	tedious	-0.322208315
el	0.250788033	stupid	-0.318461746
delivery	0.245177329	misleading	-0.318363011
loved	0.238798827	repetitive	-0.297471374
thank	0.234022632	drivel	-0.292259187
thanks	0.232853383	errors	-0.289391369
timely	0.229029328	unless	-0.288588792
una	0.224982768	bother	-0.285527825
hooked	0.219346598	pathetic	-0.285136402
de	0.218777731	shallow	-0.283490002
superb	0.217557445	dull	-0.278490335