# CMU 21-355: Real Analysis I, Spring 2022 Notes and Exam Review

Fan Pu Zeng

 $\mathrm{May}\ 5,\ 2022$ 

# 1: Chapter 1 - The Real and Complex Number System

# 2: Chapter 2 - Basic Topology

**Definition 2.1** (Limit Point). x is a **limit point** of E if  $\forall \varepsilon > 0 \ \exists y \in E \cap N'_{\varepsilon}(x)$ .

**Definition 2.2** (Isolated Point). x is an **isolated point** of E if  $x \in E$  and  $\exists \varepsilon > 0$  such that  $E \cap N'_{\varepsilon}(x) = \emptyset$ .

**Definition 2.3** (Interior Point). x is an interior point of E if  $\exists \varepsilon > 0$  such that  $N_{\varepsilon}(x) \subset E$ .

**Definition 2.4** (Basic Definitions). A set  $E \subset X$  is:

- open if  $\forall x \in E \ \exists \varepsilon > 0$  such that  $N_{\varepsilon}(x) \subset E$ . In other words, every  $x \in E$  is an interior point of E.
- **closed** if *E* contains all its limit points.
- dense in X if every  $x \in X$  is in E, a limit point of E, or both. In other words,  $\overline{E} = X$ .
- bounded if  $\exists M \in \mathbb{R}, x \in E$  such that  $d(x,y) < M \, \forall y \in E$ .

**Definition 2.5** (Basic Definitions, Continued). Given a set E,

- The closure  $\overline{E}$  of E is  $\overline{E} = E \cup E'$ , where E' is the set of all limit points of E.
- The interior  $E^{\circ}$  of E is the set of all interior points of E.
- An open cover of E is a collection  $\{G_{\alpha}\}$  of open sets such that  $E \subset \bigcup_{\alpha} G_{\alpha}$ .
- E is **compact** if every open cover  $\{G_{\alpha}\}$  of E has a finite subcover
- A set  $E \subset Y \subset X$  is **relatively open** in Y if  $\exists G \subset X$  open such that  $E = G \cap Y$ .

**Definition 2.6** (Separated Sets). Two sets A and B are **separated** if  $A \cap \overline{B} = \emptyset$  and  $\overline{A} \cap B = \emptyset$ .

**Definition 2.7** (Connected Sets). A set E is connected if it is not the union of two nonempty separated sets.

**Theorem 2.8** (Properties of closure of sets). Let X be a metric space,  $E \subset X$ . Then

- 1.  $\overline{E}$  is closed.
- 2.  $E = \overline{E} \iff E \text{ is closed.}$
- 3. If  $E \subset F$ , F closed, then  $\overline{E} \subset F$ .

**Theorem 2.9** (Intersection of collection of sets where each finite subcollections has nonempty intersection is nonempty). Let  $\{K_{\alpha}\}$  be a collection of compact sets. Suppose each finite subcollection has nonempty intersection. Then

$$\bigcap_{\alpha} K_{\alpha} \neq \emptyset.$$

Corollary 2.10 (Nested sequence of compact sets must have non-empty intersection). If  $\{K_n\}_{n\in\mathbb{N}}$  is a nested sequence of compact sets, i.e  $K_1 \subset K_2 \subset \cdots$ . Then

$$\bigcap_{n=1}^{\infty} K_n$$

is non-empty.

**Lemma 2.11** (Nested sequence of rectangles is non-empty). If  $R_1 \subset R_2 \subset \cdots$  is a nested sequence of rectangles in  $\mathbb{R}^k$ , then  $\bigcap_{n \in \mathbb{N}} R_n$  is non-empty.

**Lemma 2.12.** Any rectangle  $R \subset \mathbb{R}^k$  is compact.

Proof. AFSOC not compact, so there exists an open cover with no finite subcover.

**Theorem 2.13** (Equivalence of compact sets). Let  $E \subset \mathbb{R}^k$ . Then the following are equivalent:

- 1. E is closed and bounded.
- 2. E is compact
- 3. Every infinite subset of E has a limit point in E ("sequentially compact")

Remark: (a)  $\iff$  (b) is known as the Heine-Borel theorem.

Corollary 2.14 (Weierstrauss). Every bounded infinite subset of  $\mathbb{R}^k$  has a limit point in  $\mathbb{R}^k$ .

#### 3: Chapter 3 - Numerical Sequences

**Theorem 3.1.** Let  $\{x_n\}$  be a sequence in  $\mathbb{R}$ . Then the following holds.

- 1.  $\{x_n\}$  converges to  $x \iff \forall \varepsilon > 0$ , all but finitely many terms of  $\{x_n\}$  are contained.
- 2. If  $x_n \to x$  and  $x_n \to x'$ , then x = x'.
- 3. If  $\{x_n\}$  converges, then it is bounded.
- 4. If  $E \subset \mathbb{R}$  and x is a limit point of E, then  $\exists \{x_n\}$  sequence in E such that  $x_n \to x$ .

**Theorem 3.2** (There exists a subsequential sequence in a compact subset). The following holds:

- 1. If  $\{x_n\}$  is a sequence in a compact subset  $K \subset \mathbb{R}$ , then there exists a subsequence  $\{x_{n_k}\}$  such that  $\{x_{n_k}\} \to x \in K$ .
- 2. Every bounded sequence in  $\mathbb{R}$  has a convergent subsequence.

**Definition 3.3** (Cauchy Sequences). A sequence  $\{x_n\}$  in  $\mathbb{R}$  is Cauchy if for all  $\varepsilon > 0$ ,  $\exists N \in \mathbb{N}$  such that if  $n, m \geq N$ , then  $|x_n - x_m| < \varepsilon$ .

**Theorem 3.4** (Cauchy  $\iff$  sequence converges). Let  $\{x_n\}$  be a sequence in  $\mathbb{R}$ . Then  $\{x_n\}$  is Cauchy  $\iff$   $\{x_n\}$  converges.

**Definition 3.5** (lim sup, lim inf). Given a sequence  $\{x_n\} \subset \mathbb{R}$ ,

$$\limsup_{n \to \infty} x_n = \lim_{n \to \infty} \left( \sup_{m \ge n} x_m \right)$$
$$\liminf_{n \to \infty} x_n = \lim_{n \to \infty} \left( \inf_{m \ge n} x_m \right)$$

**Theorem 3.6** (Equivalent characterization of  $\limsup$ ,  $\liminf$ ). Let  $\{x_n\}$  be a sequence in  $\mathbb{R}$ . Then

$$\limsup_{n \to \infty} x_n = x \in \mathbb{R} \cup \{\pm \infty\}$$

if and only if the following true properties hold:

- 1.  $\exists$  subsequence  $\{x_{n_k}\}$  such that  $x_{n_k} \to x$  (either converges to x if x finite, or diverges to  $\pm \infty$ )
- 2. If y > x,  $\exists N \in \mathbb{N}$  such that if  $n \ge N$ , then  $x_n < y$ . Equivalently,  $\forall \varepsilon > 0$ ,  $\exists N \in \mathbb{N}$  such that if  $n \ge N$ , then  $x_n < x + \varepsilon$ .

The result holds similarly for  $\liminf$ , where in (2) we have that if y < x,  $\exists N \in \mathbb{N}$  such that if  $n \ge N$ , then  $x_n > y$ .

**Theorem 3.7** (Cauchy Criteria for Convergence). Given  $\{a_n\}$  sequence in  $\mathbb{R}$ ,

$$\sum a_n \ converges \ \iff \forall \, \varepsilon > 0, \exists N \in \mathbb{N}$$

such that if  $n, m \ge N$  (WLOG  $n \ge m$ ),

$$\Big|\sum_{k=m}^n a_k\Big| < \varepsilon.$$

Corollary 3.8 (If series converges, elements converge to 0). If  $\sum a_n$  converges, then

$$\lim_{n\to\infty} a_n = 0.$$

**Theorem 3.9** (Comparison Test). *TODO* 

**Theorem 3.10** (Root Test). *TODO* 

Theorem 3.11 (Ratio Test). TODO

#### 4: Chapter 4 - Continuity

**Theorem 4.1** (Sequential Continuity).  $E \subset \mathbb{R}$ ,  $f: E \to \mathbb{R}$ ,  $x_0 \in E$  a limit point of E. Then f is continuous at  $x_0 \iff f(a_n) \to f(x_0)$ .

**Theorem 4.2** (Continuity Closed under Composition). Let  $f: E_1 \to E_2$ ,  $g: E_2 \to \mathbb{R}$ ,  $E_1, E_2 \subset \mathbb{R}$ . If f is continuous at  $x_0 \in E$ , and g is continuous at  $f(x_0)$ , then  $g \circ f$  is continuous at  $x_0$ .

**Theorem 4.3** (Useful Characterization of Continuity).  $f : \mathbb{R} \to \mathbb{R}$  continuous  $\iff f^{-1}[G]$  open for any G open.

**Remark 4.4.** Pre-image of open is open  $\iff$  pre-image of closed is closed. So the same result above holds for any G closed.

**Theorem 4.5** (Continuous Image of Compact Sets is Compact). If  $f: E \to \mathbb{R}$ ,  $K \subset E$  compact, f continuous, then f(K) is compact.

**Theorem 4.6** (Inf and Sup Achieved on Continuous Functions on a Compact Set). Let  $E \subset \mathbb{R}$  be compact,  $f: E \to \mathbb{R}$  continuous. Then f is bounded. Moreover, the infimum and supremum are achieved.

**Theorem 4.7** (Continuous Functions on Compact Sets are Uniformly Continuous).  $E \subset \mathbb{R}$  compact,  $f: E \to \mathbb{R}$  continuous. Then f is uniformly continuous.

**Theorem 4.8** (Monotonic Functions has Left and Right Limits on all points).  $f:[a,b] \to \mathbb{R}$  monotonically increasing (decreasing). Then  $f(x^+)$  and  $f(x^-)$  exists for every  $x \in (a,b)$  and

$$\sup_{a < t < x} f(t) = f(x^{-}) \le f(x) \le f(x^{+}) = \inf_{x < t < b} f(t)$$

**Corollary 4.9** (Monotonic Functions do not have Discontinuities of the Second Kind).  $f:[a,b] \to \mathbb{R}$  monotonic. Then f has no discontinuities of the second kind.

**Corollary 4.10** (Set of Discontinuities in Monotonic Functions Are At Most Countable). f:  $[a,b] \to \mathbb{R}$  monotonic. Then the set of discontinuities of f is at most countable.

# 5: Chapter 5 - Differentiation

**Proposition 5.1** (Differentiatable at x implies Continuous at x).  $f:[a,b] \to \mathbb{R}$ . If f differentiable at  $x \in [a,b]$  then f is continuous at x.

**Proposition 5.2** (Chain Rule). Suppose  $f : [a,b] \to [c,d], g : [c,d] \to \mathbb{R}$ , f continuous. Assume f is differentiable at  $x \in [a,b]$ , g differentiable at f(x). Then  $g \circ f$  is differentiable at x and  $(g \circ f)'(x) = g'(f(x))f'(x)$ .

**Lemma 5.3** (Local Max/Min Has Derivative 0).  $f:[a,b] \to \mathbb{R}$ . If f has a local max/min at  $x \in (a,b)$ , and f is differentiable at x, then f'(x) = 0.

**Theorem 5.4** (Mean Value Theorem). f continuous on [a,b], differentiable on (a,b), then there exists  $x \in (a,b)$  such that

$$f(b) - f(a) = f'(x)(b - a).$$

**Corollary 5.5** (Constant Sign of Gradient Implies Monotonicity). If f differentiable on (a, b) and  $f'(x) \ge 0 \ \forall x \in (a, b)$ , then f monotone increasing.

The equivalent formulation holds for decreasing and constant.

**Theorem 5.6** (Generalized Mean Value Theorem). f, g continuous on [a, b], differentiable on (a, b). There exists  $x \in (a, b)$  such that

$$[f(b) - f(a)]g'(x) = [g(b) - g(a)]f'(x).$$

**Remark 5.7.** In the non-generalized case, we simply had g(t) = t.

**Theorem 5.8** (Like MVT but for gradients).  $f:[a,b] \to \mathbb{R}$  differentiable. Suppose  $f'(a) < \lambda < f'(b)$ . Then there exists  $x \in (a,b)$  such that  $f'(x) = \lambda$ .

**Corollary 5.9** (Differentiable Functions have no Discontinuities of the First Kind). If f differentiable on [a, b], then f has no discontinuities of the first kind.

**Theorem 5.10** (L'Hospital's Rule). Suppose g, f differentiable on  $(a, b), -\infty \le a < b \le +\infty$ . Suppose

1. 
$$f(x) \to 0, g(x) \to 0$$
 as  $x \to a$  (Case A), OR

2. 
$$q(x) \to +\infty$$
 as  $x \to a$  (Case B).

If

$$\frac{f'(x)}{g'(x)} \to A \in \mathbb{R} \cup \{\pm \infty\},\,$$

then

$$\frac{f(x)}{g(x)} \to A.$$

The analogous statement is also true if  $x \to b$ , or if  $g(x) \to -\infty$ .

**Theorem 5.11** (Taylor's Theorem).  $f:[a,b] \to \mathbb{R}, n \in \mathbb{N}$ . Suppose  $f^{(k)}(t)$  is continuous on [a,b] for k=n-1, and  $f^{(n)}$  exists on (a,b).

For  $x_0 \in [a, b]$  define the Taylor polynomial

$$P_{x_0}(t) = \sum_{k=0}^{n-1} \frac{f^{(k)}(x_0)}{k!} (t - x_0)^k$$

for all  $t \in [a, b]$ .

For any  $y \in [a,b]$ ,  $y \neq x$ , there exists  $t_0$  in  $(x_0,y)$  or  $(y,x_0)$  (depending on direction) such that

$$f(y) - P_{x_0}(y) = \frac{f^{(n)}(t_0)}{n!} (y - x_0)^n.$$

# 6: Chapter 6 - The Riemann-Stieltjes Integral

**Lemma 6.1.** If  $P^*$  is a common refinement of P, then

$$L(f,P,\alpha) \leq L(f,P^*,\alpha) \tag{Lower sum can only go up}$$
 
$$U(f,P,\alpha) \geq U(f,P^*,\alpha) \tag{Upper sum can only go down}$$

Lemma 6.2 (Lower Riemann Integral Bounded By Upper Riemann Integral).

$$\int_a^b f d\alpha \le \int_a^{\overline{b}} f d\alpha.$$

**Theorem 6.3** (Useful Characterization of Riemann-Stieltjes Integrability).

$$f \in \mathcal{R}(\alpha)$$

on  $[a,b] \iff \forall \varepsilon > 0 \exists partition P of [a,b] such that$ 

$$0 \le U(f, P, \alpha) - L(f, P, \alpha) < \varepsilon.$$

**Theorem 6.4** (Continuous Functions are Integrable). If f is continuous on [a,b], then  $f \in \mathcal{R}(\alpha)$  on [a,b].

**Theorem 6.5** (Integrability Closed under Composition with Continuous Functions). Suppose  $f \in \mathcal{R}(\alpha)$  on  $[a,b], m \leq f \leq M$ . Suppose g continuous on [m,M]. Then

$$h = g \circ f \in \mathcal{R}(\alpha).$$

**Theorem 6.6** (Functions with only Finitely Many Discontinuities are Integrable). Suppose f has only finitely many points of discontinuities, suppose  $\alpha$  is continuous at each discontinuity point of f. Then  $f \in \mathcal{R}(\alpha)$ .

**Proposition 6.7** (Linearity Properties of Integrals). Pretty much what you would expect, omitted for brevity.

**Theorem 6.8** (Other Properties of Integrals). If  $f, g \in \mathcal{R}(\alpha)$ , then

- 1.  $fg \in \mathcal{R}(\alpha)$ ,
- 2.  $|f| \in \Re(\alpha)$ , and

$$\left| \int_{a}^{b} f d\alpha \right| \le \int_{a}^{b} |f| d\alpha.$$

**Theorem 6.9** (Change of Variables). Suppose  $\varphi$  continuous, strictly increasing on [A, B] with  $\varphi([A, B]) = [a, b]$ . Suppose  $f \in \mathcal{R}(\alpha)$  on [a, b], and set  $g = f \circ \varphi$ ,  $\beta = \alpha \circ \varphi$ . Then  $g \in \mathcal{R}(\beta)$  on [A, B], and

$$\int_{A}^{B} g d\beta = \int_{a}^{b} f d\alpha.$$

**Theorem 6.10.** Suppose  $f \in \mathcal{R}$  on [a,b]. For  $x \in [a,b]$ , let

$$F(x) = \int_{a}^{x} f(t) dt.$$

Then F is continuous on [a,b]. Moreover, if f is continuous at  $x_0 \in [a,b]$ , then F differentiable at  $x_0$ , with  $F'(x_0) = f(x_0)$ .

**Theorem 6.11** (Fundamental Theorem of Calculus). If  $f \in \mathcal{R}$  on [a,b] and if F is differentiable on [a,b] with F'=f, then

$$\int_a^b f(t) dt = F(b) - F(a).$$

**Theorem 6.12** (Integration by Parts). Suppose F, G differentiable on [a, b],  $F' = f \in \mathcal{R}$ ,  $G' = g \in \mathcal{R}$  on [a, b]. Then

$$\int_{a}^{b} f(x)G(x) \, dx = -\int_{a}^{b} F(x)g(x) \, dx + F(b)G(b) - F(a)G(a).$$

# 7: Chapter 7 - Sequences and Series of Functions

**Definition 7.1** (Pointwise Convergence). Suppose  $\{f_n\}$  sequence of functions on  $E \subseteq \mathbb{R}$  (for each  $n \in \mathbb{N}, f_n : E \to \mathbb{R}$ ), and suppose that for each fixed  $x \in E$ , the sequence  $\{f_n\}_{n \in \mathbb{N}}$  converges.

Then we define

$$f = \lim_{n \to \infty} f_n : E \to \mathbb{R}$$

by

$$f(x) = \lim_{n \to \infty} f_n(x).$$

We say that " $f_n$  converges pointwise to f", or "f is the pointwise limit of  $\{f_n\}$ ". Similarly, if  $\sum f_n(x)$  converges for each fixed  $x \in E$ , then we can define

$$g = \sum f_n : E \to \mathbb{R}$$

by

$$g(x) = \sum f_n(x) \quad \forall x \in E.$$

**Example 7.2.** Continuity, integral, and derivatives are not necessarily preserved when limits are taken.

Continuity: consider

$$f_n(x) = \begin{cases} 1 - nx & \text{on } [0, 1/n], \\ 0 & \text{on } [1/n, 1]. \end{cases}$$

Derivatives: consider

$$f_n(x) = \frac{1}{\sqrt{n}\sin(nx)}.$$

Integrals: consider

$$f_n(x) = \begin{cases} 0 & \text{on } [0, 0], \\ n - n^2 x & \text{on } (0, 1/n), \\ 0 & \text{on } [1/n, 1]. \end{cases}$$

#### 7.1: Uniform Convergence

**Definition 7.3** (Uniform Convergence). A sequence of functions  $\{f_n\}$  converges uniformly on E to a function  $f: E \to \mathbb{R}$  if  $\forall \varepsilon > 0$ ,  $\exists N \in \mathbb{N}$  such that  $\forall n \geq N, \forall x \in E$ ,

$$|f_n(x) - f(x)| < \varepsilon.$$

(So for uniform convergence, N is uniform for all  $x \in E$ .)

Likewise, the series  $\sum_{n=1}^{\infty} f_n(x)$  converges uniformly on E if the partial sum  $g_n(x) = \sum_{i=1}^{\infty} f_i(x)$  converge uniformly.

**Theorem 7.4** (Cauchy Criterion for Uniform Convergence). A sequence of functions  $\{f_n\}$  defined on  $E \subseteq \mathbb{R}$  converges uniformly on E if and only if  $\forall \varepsilon > 0, \exists N \ N(\varepsilon) \in \mathbb{N}$  such that  $\forall n, m \geq N, \forall x \in E$ ,

$$|f_n(x) - f_m(x)| < \varepsilon.$$

**Proposition 7.5.** Suppose  $f_n \to f$  pointwise. Let

$$M_n = \sup_{x \in E} |f_n(x) - f(x)|.$$

Then  $f_n \to f$  uniformly  $\iff M_n \to 0$ .

**Theorem 7.6** (Weierstrauss M-Test). Suppose  $\{f_n\}$  sequence of functions on E, define

$$M_n := \sup_{x \in E} |f_n(x)|.$$

Then

$$\sum f_n$$
 converges uniformly  $\iff \sum M_n$  converges.

#### 7.2: Uniform Convergence and Continuity

**Theorem 7.7** (Limit Exchange Theorem). Suppose  $f_n \to f$  uniformly on  $E \subseteq \mathbb{R}$ . Let x be a limit point of E and suppose that

$$\lim_{t \to x} f_n(t) = A_n \qquad \forall n \in \mathbb{N}.$$

Then  $A_n \to A$  and  $\lim_{t\to x} f(t) = A$ .

In other words,

$$\lim_{n \to \infty} \lim_{t \to x} f_n(t) = \lim_{t \to x} \lim_{n \to \infty} f_n(t).$$

Corollary 7.8 (Important Corollary). Suppose  $\{f_n\}$  is a sequence of functions on E and  $\{f_n\} \to f$  uniformly. Then f is continuous.

**Remark 7.9.** The uniformity condition is required, else we can use the counter-examples from before.

**Remark 7.10.** The converse statement is not true: suppose  $f_n \to f$  pointwise,  $f_n, f$  both continuous, it can be the case that  $f_n$  does not converge uniformly to f.

Consider the spike function defined by

$$f_n(x) \begin{cases} nx & x \in [0, \frac{1}{n}], \\ 2 - nx & x \in [\frac{1}{n}, \frac{2}{n}], \\ 0 & x \in [\frac{2}{n}, 1]. \end{cases}$$



Then it converges to  $f \equiv 0$  pointwise, but it is not uniform by the Weierstrauss M-Test, since

$$\sup_{x \in [0,1]} |f_n(x) - f(x)| = M_n = 1.$$

However, we do have a partial converse, which requires that the domain is compact.

**Theorem 7.11** (Partial Converse of Important Corollary). Suppose  $K \subset \mathbb{R}$  compact. Let  $\{f_n\}$  be a sequence of continuous functions on K, f continuous on K,  $f_n \to f$  pointwise. Assume  $f_n(x) \geq f_{n+1}(x)$ .  $\forall x \in K, n \in \mathbb{N}$ . Then  $f_n \to f$  uniformly.

Remark 7.12. Compactness is necessary for the previous theorem, i.e consider

$$f_n(x) = \frac{1}{1 + nx}$$

on (0,1). Then  $f_n \to 0$  on (0,1) but  $f_n \not\to 0$  uniformly.



#### 7.3: Uniform Convergence and Integration

**Theorem 7.13.** Suppose  $\alpha$  monotonically increasing on [a,b],  $f_n \in \mathcal{R}(\alpha)$  on [a,b],  $f_n \to f$  uniformly on [a,b].

Then  $f \in \mathcal{R}(\alpha)$  on [a,b] and

$$\int_{a}^{b} f \, d\alpha = \lim_{n \to \infty} \int_{a}^{b} f_n \, d\alpha.$$

Corollary 7.14. If  $f_n \in \mathcal{R}(\alpha)$  on [a,b] and  $\sum_{n=1}^{\infty} f_n(x)$  converges uniformly on [a,b]. Then

$$\int_{a}^{b} \left( \sum_{n=1}^{\infty} f_n(x) \right) d\alpha = \sum_{n=1}^{\infty} \int_{a}^{b} f_n d\alpha.$$

#### 7.4: Uniform Convergence and Differentiation

**Theorem 7.15.**  $\{f_n\}$  differentiable on [a,b], and suppose  $\{f_n(x_0)\}$  converges for some  $x_0 \in [a,b]$ . If  $\{f'_n\}$  converges uniformly on [a,b] then  $\{f_n\}$  converges uniformly to a function f and

$$\lim_{n \to \infty} f'_n(x) = f'(x).$$

Note that the anchor point  $x_0$  is required, else it may not hold.

**Theorem 7.16** (Weierstrauss Monster Function). There exists a function  $f : \mathbb{R} \to \mathbb{R}$  that is continuous and nowhere differentiable.

#### 7.5: Equicontinuous Families of Functions

**Theorem 7.17** (Uniform convergence on compact domain implies equicontinuous).  $K \subset \mathbb{R}$  compact,  $\{f_n\}$  sequence of continuous functions on K. If  $\{f_n\}$  converges uniformly on K, then  $\{f_n\}$  is equicontinuous.

**Lemma 7.18** (Key Idea of Arzela-Ascoli). If  $\{f_n\}$  is a pointwise bounded sequence of functions on a countable set E, then  $\{f_n\}$  has a subsequence that converges pointwise on E.

**Theorem 7.19** (Arzela-Ascoli).  $K \subset \mathbb{R}$  compact,  $\{f_n\}$  sequence of functions on K that are **pointwise bounded** and **equicontinuous** on K. Then:

- 1.  $\{f_n\}$  is uniformly bounded,
- 2. (Arzela-Ascoli)  $\{f_n\}$  has a uniformly convergent subsequence.

**Theorem 7.20** (Stone-Weierstrass Theorem). Let  $f : [a,b] \to \mathbb{R}$  be continuous. Then there exists a sequence of polynomials  $\{p_n\}$  such that  $p_n \to f$  uniformly.