ECON 210C PROBLEM SET # 3

MINKI KIM

1. Variable labor supply in the RBC model

Figure 1. Impulse responses with varying η

	$\eta = 0.5$	$\eta = 1$	$\eta = 2$	Data
Stdev(Y)	1.54	1.64	1.74	1.72
Stdev(C)	0.97	1.02	1.08	1.27
Stdev(L)	0.23	0.37	0.53	1.59

Table 1. Response to a transitory discount factor shock

As one would expect, the fits get better as we calibrate the Frisch elasticity to bigger values. A large Frisch elasticity generates stronger intertemporal substitution of labor suppply, and hence amplifies the effect of shocks. However, even with a large Frisch elasticity, consumption is too smooth, and the volatility of hours generated from the model falls short of the empirical counterpart.

2. Variable capital utilization in an RBC model

(a) The Lagrangian of the firm's profit maximization problem is:

$$\mathcal{L} = \mathbb{E}_{t} \sum_{s} \left(\prod_{k=1}^{s} (1 + R_{t+k}) \right)^{-1} \times \left[(U_{t+s} K_{t+s-1})^{\alpha} (Z_{t+s} N_{t+s})^{1-\alpha} - W_{t+s} N_{t+s} - I_{t+s} + q_{t+s} (-K_{t+s} + (1 - \delta(U_{t})) K_{t+s-1} + I_{t+s}) \right]$$

2 MINKI KIM

The first order conditions are:

$$\begin{split} &\frac{\partial \mathcal{L}}{\partial N_{t}}: \quad W_{t} = \left(1-\alpha\right)\left(U_{t}K_{t-1}\right)^{\alpha}\left(Z_{t}N_{t}\right)^{-\alpha} \\ &\frac{\partial \mathcal{L}}{\partial I_{t}}: \quad q_{t} = 1 \\ &\frac{\partial \mathcal{L}}{\partial K_{t}}: \quad q_{t} = \mathbb{E}_{t}\frac{1}{1+R_{t+1}}\left[\alpha\left(U_{t+1}K_{t}\right)^{\alpha}\left(Z_{t+1}N_{t+1}\right)^{1-\alpha} + q_{t+1}\left(1-\delta(U_{t+1})\right)\right] \\ &\frac{\partial \mathcal{L}}{\partial U_{t}}: \quad q_{t}\delta'(U_{t})K_{t-1} = \alpha\left(U_{t}K_{t-1}\right)^{\alpha-1}K_{t-1}\left(Z_{t}N_{t}\right)^{1-\alpha} \end{split}$$

Combining the second and the third equations, we get the expression for the rental rate of capital.

$$R_{t+1} = \alpha (U_{t+1}K_t)^{\alpha} (Z_{t+1}N_{t+1})^{1-\alpha} - \delta(U_{t+1})$$

The rental rate depends on U_t because both MPK and depreciation rates depend on U_t .

(b) Log linearized version of $q_t \delta'(U_t) K_{t-1} = \alpha U_t^{\alpha-1} K_{t-1}^{\alpha} \left(Z_t N_t \right)^{1-\alpha}$ is

$$\check{q_t} + \frac{\delta''(\bar{U})\bar{U}}{\delta'(\bar{U})}\check{U}_t + \check{K}_{t-1} = (\alpha - 1)\check{U}_t + \alpha \check{K}_{t-1} + (1 - \alpha)\left(\check{Z}_t + \check{N}_t\right)$$

Using $\check{q}_t = 0$ and $\check{Y}_t = \alpha \left(\check{U}_t + \check{K}_{t-1} \right) + (1 - \alpha) \left(\check{Z}_t + \check{N}_t \right)$, we can express \check{U}_t in terms of \check{Y}_t, \check{K}_t , and Δ .

$$\check{U}_t = \frac{1}{1+\Delta} \left(\check{Y}_t - \check{K}_{t-1} \right)$$

(c) The production function in a log-linear form is:

$$\check{Y}_{t} = \alpha \left(\check{U}_{t} + \check{K}_{t-1} \right) + (1 - \alpha) \left(\check{Z}_{t} + \check{N}_{t} \right)
= \frac{\alpha}{1 + \Delta} \left(\check{Y}_{t} - \check{K}_{t-1} \right) + \alpha \check{K}_{t-1} + (1 - \alpha) \left(\check{Z}_{t} + \check{N}_{t} \right)$$

Isolate \check{Y}_t :

$$\check{Y_t} = \frac{\Delta \alpha}{1 + \Delta - \alpha} \check{K_{t-1}} + \frac{(1 + \Delta)(1 - \alpha)}{1 + \Delta - \alpha} \left(\check{Z_t} + \check{N_t} \right)$$