

# **Roseobacter Screening Of Surface Waters For Viruses**

#### **Matthew Sullivan**

## **Abstract**

Citation: Matthew Sullivan Roseobacter Screening Of Surface Waters For Viruses. protocols.io

dx.doi.org/10.17504/protocols.io.dbt2nm

Published: 02 Feb 2016

## **Guidelines**

#### **Notes:**

Goal initially is to screen several seawater samples on several roseobacter hosts to determine breadth of rosephage present at each location and then to focus on a single site.

Nomenclature for viruses should include a designation for the site of seawater collection followed by a number and the host it was isolated on.

Put information into an Excel worksheet. Create a separate Excel file for each source of virus. Use a different tab in each worksheet for different hosts.

Turbid plaques indicate possible lysogenic phage that may be of interest to Feng Chen's laboratory in Maryland. Keep the plaque plug at  $4^{\circ}$ C. Take 50-100  $\mu$ l from a few and grow up small 1 ml cultures to cryopreserve (glycerol) them. Here trying to get the putative lysogenic cells (prophage containing confers resistance to colonies of cells within the plaque = turbid).

#### **Protocol**

## Growth

#### Step 1.

Pull Roseobacter cultures from freeze and grow in 5 ml broth cultures

#### NOTES

# VERVE Team 09 Jul 2015

Matt has 14 isolates from Wendy Ye in Mary Ann Moran's lab in Georgia. Two of them are from open ocean (CCS1 and CCS2) and they are grown at 20-22°C in 1/10 YTSS. All others are from coastal waters and are grown at 30°C in 1/2 YTSS. For virus screening, grow them to log phase (OD $_{600} = 0.6$  - 0.8). Some will grow quickly (overnight) while others will take 1-4 days to reach a log phase.

# Screening

## Step 2.

Perform virus screening in sterile 96 well flat-bottom tissue culture treated microtiter plates

## NOTES

## VERVE Team 09 Jul 2015

Viruses will be screened from seawater collected from various sources.

### Screening

## Step 3.

Store seawater filtrates at 4°C

#### NOTES

# VERVE Team 09 Jul 2015

Ice crystal formation at -20°C bad.

## Absorption

## Step 4.

Absorb the viruses to the bacteria

## **Absorption**

## Step 5.

Place 15  $\mu$ l of log phase cells and 15  $\mu$ l of seawater filtrate (containing virus) into wells of a 96 well plate

## NOTES

## VERVE Team 09 Jul 2015

Uninfected controls should surround infected wells on each plate in a checkerboard pattern.

# **Absorption**

# Step 6.

Allow the viruses to absorb to the bacteria for 1 hour

## **O** DURATION

01:00:00

## **Absorption**

#### Step 7.

Add 200 µl growth media (1/2 or 1/10 YTSS) to the wells

## **Absorption**

## Step 8.

Seal the plate with parafilm and incubate with shaking

## **Absorption**

## Step 9.

Look for infected wells that show lysis with respect to uninoculated controls

#### Enrichment

## Step 10.

Enrich for viruses by transferring from initial 96 well plate to another 96-well plate containing fresh liquid media ("frogging" into new wells)

## NOTES

## VERVE Team 09 Jul 2015

Does not require fresh log-phase host cells, the cells come with the transfer. Ideally frog **before** cells into stationary phase.

## VERVE Team 09 Jul 2015

Enrichment for viruses may take several rounds of culturing because we're assuming initial concentrations of phages in the seawater are low.

#### **Enrichment**

#### **Step 11.**

Once enriched sufficiently, filter out cells with 0.2um filtration into 1.5ml microfuge tubes

## Enrichment

## Step 12.

Spin for 5 mins. at max to pellet cells

© DURATION

00:05:00

## Enrichment

# Step 13.

Transfer supernatant to fresh tube for storage

#### Enrichment

## Step 14.

Store at 4°C

## Plaque Purification

## Step 15.

Plaque-purify wells containing virus by growing cells plus virus on solid media

#### Plaque Purification

# Step 16.

Prepare solid agar media and 0.5% overlay agar

## Plaque Purification

## Step 17.

Absorb virus to cells using as a starting point, 25  $\mu$ l virus from 96 well plate enrichments and 200  $\mu$ l log-phase host bacteria for 1hr

**O DURATION** 

01:00:00

#### NOTES

# VERVE Team 12 Aug 2015

Try growing lawns first, maybe needs to be up to 1 ml cells.

## Plaque Purification

## Step 18.

Mix the virus-absorbed cells in the 5 ml overlay agar

## Plaque Purification

## Step 19.

Pour over the solid media

## Plague Purification

## Step 20.

Incubate and look for plaque formation

## NOTES

## VERVE Team 12 Aug 2015

Will have several possible results: no plaques (not likely if using virus-enriched cultures from 95 well plates), too many plaques to purify them (in which case, a dilution of virus is made and plaque assay repeated), or well-resolved plaques. If well-resolved plaques, then cored from agar using Pasteur pipet and dispensed into 100µl YTSS broth in 1.5ml tubes.

## Plaque Purification

# Step 21.

Pick representatives of all plague types present and record appearance of the plagues

## **P** NOTES

# VERVE Team 12 Aug 2015

Clear, well-lysed plaques are of the most interest to us. Turbid plaques may indicate lysogenic phage and some should be picked, but these will be sent to another laboratory for further study (see guidelines).

## Plaque Purification

## Step 22.

Store the broth that contains the agar plugs at 4°C and allow the viruses to diffuse out of the agar into the broth

## **DNA Purification Determination**

## Step 23.

Once the viruses are plaque-purified they can be scaled-up in 5 ml broth cultures for DNA purification

## **DNA Purification Determination**

## Step 24.

Take 25  $\mu$ l of the plaque-purified virus (agar plug in 100  $\mu$ l broth) and absorb to 200  $\mu$ l log-phase bacteria for 1 hr

## © DURATION

01:00:00

# **DNA Purification Determination**

## Step 25.

Add to 5 ml broth and grow with shaking

## **DNA Purification Determination**

#### Step 26.

Centrifuge out cells and filter culture through 0.2 µm filter

## **DNA Purification Determination**

### Step 27.

SYBR stain a portion of the filtrate to determine how much virus is present

## NOTES

## VERVE Team 10 Jul 2015

If a lot of virus is present, then may be enough to purify DNA.

## **DNA Purification**

## Step 28.

Purify DNA using the Promega Wizard Lambda DNA kit

## NOTES

## VERVE Team 10 Jul 2015

Goal is to obtain about 1  $\mu$ g DNA for future work. If 5 ml does not yield that amount, will need to grow up more (e.g. 225 ml volume) and repeat DNA purification.