Лабораторная работа 8

Модель TCP/AQM

Туем Гислен

Содержание

1	Цель работы	5
2	Задание	6
3	Выполнение лабораторной работы	7
4	Реализация модели в OpenModelica	11
5	Выводы	13
Список литературы		14

Список иллюстраций

3.1	переменные	7
3.2	модель TCP/AQM в хсоз	8
3.3	Динамика изменения размера TCP окна W (t) и размера очереди Q(t)	8
3.4	Фазовый портрет (W, Q)	9
3.5	Динамика изменения размера TCP окна W (t) и размера очереди Q(t)	
	при С = 0, 9	9
3.6	Фазовый портрет (W, Q) при С = 0, 9	10
4.1	Динамика изменения размера TCP окна W (t) и размера очереди Q(t)	
	при C = 0, 9 в OpenModelica	12
4.2	Фазовый портрет (W, O) при C = 0, 9 в OpenModelica	

Список таблиц

1 Цель работы

Реализовать модель TCP/AQM в xcos и OpenModelica.

2 Задание

- Построить модель TCP/AQM в xcos;
- Построить графики динамики изменения размера TCP окна W(t) и размера очереди Q(t);
- Построить модель TCP/AQM в OpenModelica;

3 Выполнение лабораторной работы

Построим схему хсоs, моделирующую нашу систему, с начальными значениями параметров N=1, R=1, K=5, 3, C=1, W(0)=0, 1, Q(0)=1.Для этого сначала зададим переменные окружения(рис. 3.1).

Рис. 3.1: переменные

Затем реализуем модель TCP/AQM, разместив блоки интегрирования, суммирования, произведения, констант, а также регистрирующие устройства(рис. 3.2)

Рис. 3.2: модель TCP/AQM в xcos

В результате получим динамику изменения размера TCP окна W(t) (зеленая линия) и размера очереди Q(t) (черная линия), а также фазовый портрет, который показывает наличие автоколебаний параметров системы — фазовая траектория осциллирует вокруг своей стационарной точки(рис. 3.3, 3.4)

Рис. 3.3: Динамика изменения размера TCP окна W (t) и размера очереди Q(t)

Рис. 3.4: Фазовый портрет (W, Q)

Уменьшив скорость обработки пакетов С до 0.9 увидим, что автоколебания стали более выраженными(рис. 3.5, 3.6)

Рис. 3.5: Динамика изменения размера TCP окна W (t) и размера очереди Q(t) при $C=0,\,9$

Рис. 3.6: Фазовый портрет (W, Q) при C = 0, 9

4 Реализация модели в OpenModelica

Перейдем к реализации модели в OpenModelica. Зададим параметры, начальные значения и систему уравнений.

```
model lab8

parameter Real N=1;
parameter Real R=1;
parameter Real K=5.3;
parameter Real C=0.9;

Real W(start=0.1);
Real Q(start=1);

equation

der(W)= 1/R - W*delay(W, R)/(2*R)*K*delay(Q, R);
der(Q)= if (Q==0) then max(N*W/R-C,0) else (N*W/R-C);
end lab8;
```

Выполнив симуляцию, получим динамику изменения размера TCP окна W(t)(зеленая линия) и размера очереди Q(t)(черная линия), а также фазовый портрет, который показывает наличие автоколебаний параметров системы — фазовая траектория осциллирует вокруг своей стационарной точки(рис. 4.1, 4.2)

Рис. 4.1: Динамика изменения размера TCP окна W (t) и размера очереди Q(t) при $C=0,\,9$ в OpenModelica.

Рис. 4.2: Фазовый портрет (W, Q) при C = 0, 9 в OpenModelica.

5 Выводы

В процессе выполнения данной лабораторной работы я реализовала модель TCP/AQM в xcos и OpenModelica.

Более подробно в [1,2]

Список литературы

- 1. Chen. L. Duality Model of TCP/AQM. University of COLORADO, 2016. 34 c.
- 2. Dijkstra S. Modeling Active Queue Management algorithms using Stochastic Petri Nets. University of Twente, 2014. 84 c.