

SAM-Path: A Segment Anything Model for Semantic Segmentation in Digital Pathology

Jingwei Zhang¹, Ke Ma², Saarthak Kapse¹, Joel Saltz¹, Maria Vakalopoulou³, Prateek Prasanna¹, Dimitris Samaras¹

¹Stony Brook University; ²Snap Inc.; ³CentraleSupélec, University of Paris-Saclay

Introduction

- Semantic segmentations is very important in computational pathology workflows [1].
- Segment Anything Model (SAM) [2], as a foundation models, has been recently proposed for universal segmentations.

- However, SAM does not work for semantic segmentation in pathology
 - We make it possible using trainable class prompts and an additional pathology encoder
- SAM has some three major limitations:
 - Lacking diverse pathology images in SAM training [3]
 - ->suboptimal performance
 - Requiring manually inputted prompts
 - Lacking semantic predictions
- Our contributions:
- **SAM-Path**: Adapting the vanilla SAM for semantic segmentation tasks using trainable prompts
- Introducing a pathology foundation model as an additional pathology encoder to provide domain-specific information

Method

- **Overview:**
- Removing the prompt decoder of SAM
- Adding a pathology encoder
- Adding trainable class prompt P

- 1. Fed the input image into frozen vanilla SAM encoder and a frozen pathology encoder. We use HIPT [4] as the pathology encoder.
- 3. Concatenate the output features of batches.
- 2. Forward features into the dimensionality reduction layer to adjust the dimensionality of output features.
- 4. Input trainable class prompts to the mask decoder. If we have k classes, we should have k class prompts.
- 5. The mask decoder **predicts** segmentation masks and IOUs of each class.

Loss function:

Two loss weights are optimized using grid search.

Conclusion

- SAM-Path introduces trainable prompts to SAM to identify classes.
- SAM-Path integrates a pathology encoder to incorporate more domainspecific knowledge.
- Our method facilitates semantic segmentation without the need for manual prompts.
- We plan to explore **generic SAM** in digital pathology in future work

Experiments

Datasets:

BCSS [5]: Breast cancer, 20k annotations, 40X magnification

5 classes: Tumor, Stroma, Inflammatory, Necrosis and others

CRAG [6]: Colorectal cancer, 213 images, 20X magnification 1 class: gland

Comparing to vanilla SAM on CRAG:

Methods	Dice	IOU		36-53%
Vanilla SAM*	0.5245	0.3555	T	higher
Vanilla SAM w. post-processing**	0.6598	0.4924	+	22.200/
SAM-Path (ours)	0.8841	0.8831	业	22-39% higher

- * We manually provide a dot annotation to the SAM.
- * We assume all the segmented instances are glands.
- ** Filters out instances occupying more than half of the image as some instances occupy the entire image.

Comparing to fine-tuned SAM:

Methods	BCSS	CRAG	4%
Fine-tuned SAM w.o. pathology encoder	0.7562	0.8414	higher
SAM-Path w.o. SAM encoder	0.7813	0.8191	1-7%
SAM-Path (ours)	0.7949	0.8841	higher

The pathology encoder and vanilla SAM encoder are both necessary

Ablation study on two loss weights:

Qualitative analysis on CRAG*:

- * Black asterisks represent manual dot prompts we provide to the SAM.
- ** PP represents post-processing.

SAM-Path predicts better masks

Qualitative analysis on BCSS

SAM-Path knows semantics and predicts better masks

2123920, the NIH 1R21CA258493-01A1, the NCI UH3CA225021 and Stony Brook University Provost Funds.

Acknowledgements: This work was partially supported by the ANR Hagnodice ANR-21-CE45-0007, the NSF IIS-2212046, the NSF IIS-