Review-1

Decision Tree Solution

	P>=5	G>=100	BP>=65	ST>=25	I=0	BMI>25	DF>=10	A>=32	OutCome
0	TRUE	TRUE	TRUE	TRUE	FALSE	FALSE	FALSE	TRUE	1
1	FALSE	FALSE	TRUE	TRUE	FALSE	FALSE	FALSE	FALSE	0
2	TRUE	TRUE	FALSE	FALSE	TRUE	TRUE	FALSE	TRUE	1
3	FALSE	FALSE	TRUE	FALSE	FALSE	FALSE	FALSE	FALSE	0
4	FALSE	TRUE	FALSE	TRUE	FALSE	FALSE	TRUE	TRUE	1

Decision Tree Solution

OutCome				
0	3			
1	2			

$$Entropy(s) = -\frac{2}{5}log_2(\frac{2}{5}) - \frac{3}{5}log_2(\frac{3}{5})$$

$$Entropy(s) = 0.971$$

Decision Tree Solution

	OutCome				
		0	1		
G>=100	TRUE	0	3		
	FALSE	2	0		

$$Entropy(G>=100, OutCome) = P((G>=100:True)E(0,3) + P((G>=100:Flase)E(2,0)) + P((G>=100, OutCome)) = P((G>=100:True)E(0,3)) + P((G>=100:Flase)E(2,0)) + P((G>=100:Flase)E(2,0$$

$$Entropy(G>=100,OutCome)=0$$

$$Gain(G>=100,OutCome)=Entropy(S)-Entropy(G>=100,OutCome)=Entropy(S)-OutCome$$

Agent

PEAS Description

- Consider an "automated taxi driver"
 - **P**erformance Measure?
 - Safe, fast, obey laws, reach destination, comfortable trip, maximize profits
 - Environment?
 - Roads, other traffic, pedestrians, weather, customers
 - Actuators?
 - Steering, accelerator, brake, signal, horn, speak, display
 - Sensors?
 - Cameras, microphone, sonar, speedometer, GPS, odometer, accelerometer, engine sensors, keyboard

Basic Types of Agent Programs

- Simple reflex agents
 - Condition-action rules on <u>current</u> percept
 - Environment must be fully observable
- Model-based reflex agents
 - Maintain internal state about how world the world evolves and how actions effect the world
- Goal-based agents
 - Use goals and planning to help make decision
- Utility-based agents
 - What makes the agent "happiest"
- Learning agents
 - Makes improvements

Define Problems and Solutions

A problem is defined by four items

- 1. Initial state
- 2. Actions/Operators
- 3. Goal test
- 4. Path cost

A <u>solution</u> is a sequence of operators leading from the initial state to a goal state & Optimal solution has lowest path cost

Search Problems

- Uninformed Search
 - Breadth-first search
 - Uniform-cost search
 - Depth-first search
 - Depth-limited search
 - Iterative deepening search
- Informed Search
 - Greedy search
 - A* Search

A Game Defined as Search Problem

- Initial state
 - Board position
 - Whose move it is
- Operators (successor function)
 - Defines legal moves and resulting states
- Terminal (goal) test
 - Determines when game is over (terminal states)
- Utility (objective, payoff) function
 - Gives numeric value for the game outcome at terminal states
 - $e.g., \{win = +1, loss = -1, draw = 0\}$

Adversarial Search

- In which we examine the problems that arise
 - when we try to plan ahead to get the best result
 - in a world that includes a <u>hostile</u> agent (other agent planning against us).

Minimax

- Perfect play for deterministic, perfect-information games
- Two players: MAX, MIN
 - MAX moves first, then take turns until game is over
 - Points are awarded to winner
- Choose move to position with highest minimax value

Alpha-beta pruning

- Ignore portions of search tree that make no difference to final choice
- Prunes away branches that <u>cannot possibly influence</u> final minimax decision
- Returns <u>same</u> move as general minimax

A Simple Knowledge-Based Agent

- Knowledge base saves:
 - Current state of world
 - How to infer unseen properties of world from percepts
 - How world evolves over time
 - What it wants to achieve
 - What its own actions do in various circumstances

The Language of KB

Syntax:

" $x + 2 \ge y$ " is a sentence

"x2 + y >" is not a sentence

Semantics:

 $x + 2 \ge y$ is true iff the number x + 2 is no less than the number y

 $x + 2 \ge y$ is True in a world where x=7, y=1

 $x + 2 \ge y$ is False in a world where x=0, y=6

Propositional Logic: Syntax

- True, False, S_1, S_2, \dots are sentences
- If S is a sentence, $\neg S$ is a sentence
 - Not (negation)
- $S_1 \wedge S_2$ is a sentence, also $(S_1 \wedge S_2)$
 - And (conjunction)
- $S_1 \vee S_2$ is a sentence
 - Or (disjunction)
- $S_1 \Rightarrow S_2$ is a sentence
 - Implies (conditional)
- $S_1 \Leftrightarrow S_2$ is a sentence
 - Equivalence (biconditional)

Propositional Logic: Semantics

- Semantics defines the rules for determining the truth of a sentence
 - (wrt a particular model)
- ¬S, is true iff S is false
- $S_1 \wedge S_2$ is true iff S_1 is true and S_2 is true
- $S_1 \vee S_2$ is true iff S_1 is true or S_2 is true
- $S_1 \Rightarrow S_2$ is true iff S_1 is false or S_2 is true
- $S_1 \Leftrightarrow S_2$, is true iff $S_1 \Rightarrow S_2$ is true and $S_2 \Rightarrow S_1$ is true
 - $(S_1 \text{ same as } S_2)$

Propositional Inference: Enumeration Method

• Test $((P \lor H) \land \neg H) \Rightarrow P$

P	Н	$P \lor H$	\neg_H	(P ∨ H) ∧¬H	$((P \lor H) \land \neg H) \Rightarrow P$
False	False	False	True	False	True
False	True	True	False	False	True
True	False	True	True	True	True
True	True	True	False	False	True

Inference Rules for Prop. Logic

- Modus Ponens
 - From implication and premise of implication, can infer conclusion

$$\frac{\alpha \Rightarrow \beta, \ \alpha}{\beta}$$

- And-Elimination
 - From conjunction, can infer any of the conjuncts

$$\frac{\alpha_1 \wedge \alpha_2 \wedge \cdots \wedge \alpha_n}{\alpha_i}$$

Inference Rules for Prop. Logic

- And-Introduction
 - From list of sentences, can infer their conjunction

$$\frac{\alpha_1, \alpha_2, \dots, \alpha_n}{\alpha_1 \wedge \alpha_2 \wedge \dots \wedge \alpha_n}$$

- Or-Introduction
 - From sentence, can infer its disjunction with anything else

$$\frac{\alpha_i}{\alpha_1 \vee \alpha_2 \vee \cdots \vee \alpha_n}$$

Inference Rules for Prop. Logic

- Double-Negation Elimination
 - From doubly negated sentence, can infer a positive sentence

$$\frac{\neg \neg \alpha}{\alpha}$$

- Unit Resolution
 - From disjunction, if one of the disjuncts is false, can infer the other is true

$$\frac{\alpha \vee \beta, \neg \beta}{\alpha}$$

- Resolution
 - $-\beta$ cannot be both true and false
 - One of the other disjuncts must be true in one of the premises (implication is transitive)

$$\frac{\alpha \vee \beta, \ \neg \beta \vee \gamma}{\alpha \vee \gamma}$$

Syntax of FOL: Basic Elements

- Constant symbols for specific objects KingJohn, 2, OSU, ...
- Predicate (boolean) properties (unary) / relations (binary+) Brother(), Married(), >, ...
- Functions (return objects)
 Sqrt(), LeftLegOf(), FatherOf(), ...
- Variablesx, y, a, b, ...
- Connectives

$$\wedge \vee \neg \Rightarrow \Leftrightarrow$$

- Equality
 - _
- Quantifiers
 - A 3

Quantifiers

- Currently have logic that allows objects
- Now want to express properties of entire collections of objects
 - Rather than enumerate the objects by name
- Two standard quantifiers
 - Universal ∀
 - Existential 3

Quantifiers

Universal Qualification

- "For all ..." (typically use implication \Rightarrow)
 - Allows for "rules" to be constructed
- ∀ <*variables*> <*sentence*>
 - Everyone at OSU is smart $\forall x \ At(x, OSU) \Rightarrow Smart(x)$

Existential Quantification

- "There exists ..." (typically use conjunction \wedge)
 - Makes a statement about <u>some</u> object (not all)
- ∃ <variables> <sentences>
 - Someone at OSU is smart $\exists x \ At(x, OSU) \land Smart(x)$
- Uniqueness quantifier
 3! x says a <u>unique</u> object exists (i.e. there is exactly one)

Properties of Quantifiers

• <u>Important</u> relations

$$\exists x \ P(x) = \neg \forall x \ \neg P(x)$$

$$\forall x \ P(x) = \neg \exists x \, \neg P(x)$$

$$P(x) \Rightarrow Q(x)$$
 is same as $\neg P(x) \lor Q(x)$

$$\neg (P(x) \land Q(x))$$
 is same as $\neg P(x) \lor \neg Q(x)$

Reduction to Propositional Inference

- Multiple Quantifiers
 - No problem if same type $(\forall x, y \text{ or } \exists x, y)$
 - $-\exists x \forall y$
 - There must be some x for which the sentence is true with every possible y
 - $\forall x \exists y$
 - For every possible x, there must be some y that satisfies the sentence
 - Use a Skolem <u>function</u> instead

Skolem Function

- SK1(x) is effectively a function which returns a person that x loves.
- $\forall x \; \exists y \; Skolem \; Substitution \; Example$
 - 1) $\forall x \exists y \ Person(x) \rightarrow Loves(x,y)$
 - 2) $\forall x \ Person(x) \rightarrow Loves(x, SK1(x))$ [Substitute, $\{y/SK1(x)\}$]
 - 3) $Person(Jack) \rightarrow Loves(Jack, SK1(Jack))$ [Then, $\{x/Jack\}$]

Reduction to Propositional Inference

- Internal Quantifiers should be moved outward
 - $\forall x (\exists y \ Loves(x,y)) \rightarrow Person(x)$
 - $\forall x \neg (\exists y Loves(x,y)) \lor Person(x) [convert to \neg, \lor, \land]$
 - ∀x ∀y ¬Loves(x,y) ∨ Person(x) [move ¬ inward]
 - $\forall x \forall y Loves(x,y) \rightarrow Person(x)$

Forward Chaining

- Forward chaining normally triggered by addition of new fact to KB (using TELL)
- When new fact *p* added to KB:
 - For each rule such that p unifies with a premise
 - If the other premises are known, then add the conclusion to the KB and continue chaining

Forward Chaining: Example

Knowledge Base

 $A \rightarrow B$

 $A \rightarrow D$

 $D \rightarrow C$

 $A \rightarrow E$

 $D \rightarrow F$

 $E \rightarrow G$

Add A:

A, $A \rightarrow B$ gives B [done]

A, $A \rightarrow D$ gives D

D, D \rightarrow C gives C [done]

D, D \rightarrow F gives F [done]

A, $A \rightarrow E$ gives E

 $E, E \rightarrow G \text{ gives } G \text{ [done]}$

[done]

Order of generation B, D, C, F, E, G

Backward Chaining

- Backward chaining designed to find all answers to a question posed to KB (using ASK)
- When a query q is asked:
 - If a matching fact q'is known, return the unifier
 - For each rule whose consequent q' matches q
 - Attempt to prove each premise of the rule by backward chaining

Resolution

- Uses proof by contradiction
 - − To prove *P*:
 - Assume *P* is FALSE
 - Add $\neg P$ to KB
 - Prove a contradiction