```
In [13]:
          import pandas as pd
          import seaborn as sns
          import matplotlib.pyplot as plt
          import numpy as np
          df = pd.read csv("haberman.csv", names=col)
In [14]: #checking the number of datapoints in the dataset
          df.shape
Out[14]: (306, 4)
In [15]:
         col = ['Patient_Age', 'Year_of_operation', 'positive_auxillary_nodes', 'status']
          df = pd.read_csv("haberman.csv",names=col)
          df.head()
In [24]:
Out[24]:
             Patient_Age Year_of_operation positive_auxillary_nodes status
                    30
                                     64
                                                                 1
          0
          1
                     30
                                     62
                                                           3
                                                                 1
          2
                    30
                                     65
                                                           0
                                                                 1
          3
                    31
                                     59
                                                                 1
                    31
                                     65
                                                                 1
          #Checking for balanced and imbalanced dataset
In [17]:
          df["status"].value_counts()
Out[17]:
               225
                81
         Name: status, dtype: int64
          **Observations:**
          1)225 people survived more than or equal to 5 years .
          2)81 people died within 5 years.
In [9]: print(df.columns)
          Index(['Patient_Age', 'Year_of_operation', 'positive_auxillary_nodes',
                 'status'l,
                dtype='object')
```


Observation:

1)It can be roughly said from the above plot mainly patients between the age 40 to 65 have the more number of operations.

In [24]: df.plot(kind='scatter', x='Patient_Age', y= 'positive_auxillary_nodes'); plt.show()

Observation:

1)It can be roughly said that people between the age 35 to 70 has highest number of positive auxillary nodes.

```
In [26]: sns.set_style("whitegrid");
    sns.FacetGrid(df, hue="status", size=5) \
        .map(plt.scatter, "Patient_Age", "Year_of_operation") \
        .add_legend();
    plt.show();
```


observation:

From the plot it can be roughly said that patients who survived less than 5 years are more between the age 42 to 62.

pair plot

Histogram, PDF, CDF

```
In [19]: sns.FacetGrid(df, hue="status", size=5) \
    .map(sns.distplot, "Patient_Age") \
    .add_legend();
plt.show();
```

C:\Users\Yagnapooja\Anaconda3\lib\site-packages\matplotlib\axes_axes.py:6462: UserWarning: The 'normed' kwarg is deprecated, and has been replaced by the 'de nsity' kwarg.

warnings.warn("The 'normed' kwarg is deprecated, and has been "

C:\Users\Yagnapooja\Anaconda3\lib\site-packages\matplotlib\axes_axes.py:6462: UserWarning: The 'normed' kwarg is deprecated, and has been replaced by the 'de nsity' kwarg.

warnings.warn("The 'normed' kwarg is deprecated, and has been "

Observation:

1)In the given dataset people in age from 40 to 50 survived the least.

In [28]: print("Mean age of patients survived:",round(np.mean(df[df['status']==1]['Patient print("Mean age of patients not survived:",round(np.mean(df[df['status']==2]['Pat

Mean age of patients survived: 52 Mean age of patients not survived: 54

```
In [21]: sns.FacetGrid(df, hue="status", size=5) \
    .map(sns.distplot, "Year_of_operation") \
    .add_legend();
plt.show();
```

C:\Users\Yagnapooja\Anaconda3\lib\site-packages\matplotlib\axes_axes.py:6462: UserWarning: The 'normed' kwarg is deprecated, and has been replaced by the 'de nsity' kwarg.

warnings.warn("The 'normed' kwarg is deprecated, and has been "

C:\Users\Yagnapooja\Anaconda3\lib\site-packages\matplotlib\axes_axes.py:6462: UserWarning: The 'normed' kwarg is deprecated, and has been replaced by the 'de nsity' kwarg.

warnings.warn("The 'normed' kwarg is deprecated, and has been "

Observation:

1)Patients operated between the year 1963 and 1967 survived are less.

```
In [22]: sns.FacetGrid(df, hue="status", size=5) \
    .map(sns.distplot, "positive_auxillary_nodes") \
    .add_legend();
plt.show();
```

C:\Users\Yagnapooja\Anaconda3\lib\site-packages\matplotlib\axes_axes.py:6462: UserWarning: The 'normed' kwarg is deprecated, and has been replaced by the 'de nsity' kwarg.

warnings.warn("The 'normed' kwarg is deprecated, and has been "

C:\Users\Yagnapooja\Anaconda3\lib\site-packages\matplotlib\axes_axes.py:6462: UserWarning: The 'normed' kwarg is deprecated, and has been replaced by the 'de nsity' kwarg.

warnings.warn("The 'normed' kwarg is deprecated, and has been "

Observation:

1)It can be clearly seen that people with less number of nodes lived for more than 5 years.

```
In [54]: survival = df[df['status']==1]
    notsurvival = df[df['status']==2]
    plt.plot(survival["Patient_Age"], np.zeros_like(survival['Patient_Age']), 'o')
    plt.plot(notsurvival["Patient_Age"], np.zeros_like(notsurvival['Patient_Age']), '
```

Out[54]: [<matplotlib.lines.Line2D at 0xbc48819b0>]

Observation:

1)From the plot the patients between the age 30 to 36 survived for more than 5 years.

```
In [55]: counts, bin edges = np.histogram(survival['Patient Age'], bins=10,
                                           density = True)
         pdf = counts/(sum(counts))
         print(pdf);
         print(bin_edges);
         cdf = np.cumsum(pdf)
         plt.plot(bin_edges[1:],pdf);
         plt.plot(bin_edges[1:], cdf)
         counts, bin edges = np.histogram(notsurvival['Patient Age'], bins=20,
                                           density = True)
         pdf = counts/(sum(counts))
         cdf = np.cumsum(pdf)
         plt.plot(bin_edges[1:],pdf);
         plt.plot(bin_edges[1:], cdf);
         plt.legend(['sur_pdf','sur_cdf','not_Sur_pdf','not_sur_cdf'])
         plt.xlabel('Patient Age')
         plt.show();
```

```
[0.05333333 0.10666667 0.124444444 0.09333333 0.16444444 0.16444444 0.09333333 0.11111111 0.06222222 0.02666667] [30. 34.7 39.4 44.1 48.8 53.5 58.2 62.9 67.6 72.3 77. ]
```


Observation:

1)patients who are having age above 75 are not survived.

```
In [53]: counts, bin edges = np.histogram(survival['positive auxillary nodes'], bins=10,
                                           density = True)
         pdf = counts/(sum(counts))
         print(pdf);
         print(bin edges);
         cdf = np.cumsum(pdf)
         plt.plot(bin_edges[1:],pdf);
         plt.plot(bin_edges[1:], cdf)
         counts, bin edges = np.histogram(notsurvival['positive auxillary nodes'], bins=20
                                           density = True)
         pdf = counts/(sum(counts))
         cdf = np.cumsum(pdf)
         plt.plot(bin edges[1:],pdf);
         plt.plot(bin_edges[1:], cdf);
         plt.legend(['sur_pdf','sur_cdf','not_Sur_pdf','not_sur_cdf'])
         plt.xlabel('positive_auxillary_nodes')
         plt.show();
         [0.83555556 0.08
                                0.02222222 0.02666667 0.01777778 0.00444444
          0.00888889 0.
                                0.
                                            0.004444441
```


Observation:

1)Patients who are having auxiliary nodes more than 45 are not survived.

In [39]: survival.describe()

Out[39]:

	Patient_Age	Year_of_operation	positive_auxillary_nodes	status
count	225.000000	225.000000	225.000000	225.0
mean	52.017778	62.862222	2.791111	1.0
std	11.012154	3.222915	5.870318	0.0
min	30.000000	58.000000	0.000000	1.0
25%	43.000000	60.000000	0.000000	1.0
50%	52.000000	63.000000	0.000000	1.0
75%	60.000000	66.000000	3.000000	1.0
max	77.000000	69.000000	46.000000	1.0

In [40]: notsurvival.describe()

Out[40]:

	Patient_Age	Year_of_operation	positive_auxillary_nodes	status
count	81.000000	81.000000	81.000000	81.0
mean	53.679012	62.827160	7.456790	2.0
std	10.167137	3.342118	9.185654	0.0
min	34.000000	58.000000	0.000000	2.0
25%	46.000000	59.000000	1.000000	2.0
50%	53.000000	63.000000	4.000000	2.0
75%	61.000000	65.000000	11.000000	2.0
max	83.000000	69.000000	52.000000	2.0

```
In [57]:
         #Median, Quantiles, Percentiles, IQR.
         print("For Patient age")
         print("\nMedians:")
         print(np.median(survival["Patient_Age"]))
         print(np.median(notsurvival["Patient_Age"]))
         print("\nQuantiles:")
         print(np.percentile(survival["Patient_Age"],np.arange(0, 100, 25)))
         print(np.percentile(notsurvival["Patient_Age"],np.arange(0, 100, 25)))
         print("\n90th Percentiles:")
         print(np.percentile(survival["Patient_Age"],90))
         print(np.percentile(notsurvival["Patient_Age"],90))
         from statsmodels import robust
         print ("\nMedian Absolute Deviation")
         print(robust.mad(survival["Patient_Age"]))
         print(robust.mad(notsurvival["Patient_Age"]))
```

For Patient age

Medians:
52.0
53.0

Quantiles:
[30. 43. 52. 60.]
[34. 46. 53. 61.]

90th Percentiles:
67.0
67.0

Median Absolute Deviation
13.343419966550417
11.860817748044816

```
In [62]:
         #Median, Quantiles, Percentiles, IQR.
         print("For positive auxillary nodes")
         print("\nMedians:")
         print(np.median(survival["positive_auxillary_nodes"]))
         print(np.median(notsurvival["positive_auxillary_nodes"]))
         print("\nOuantiles:")
         print(np.percentile(survival["positive_auxillary_nodes"],np.arange(0, 100, 25)))
         print(np.percentile(notsurvival["positive_auxillary_nodes"],np.arange(0, 100, 25)
         print("\n90th Percentiles:")
         print(np.percentile(survival["positive_auxillary_nodes"],90))
         print(np.percentile(notsurvival["positive auxillary nodes"],90))
         from statsmodels import robust
         print ("\nMedian Absolute Deviation")
         print(robust.mad(survival["positive_auxillary_nodes"]))
         print(robust.mad(notsurvival["positive_auxillary_nodes"]))
```

For positive auxillary nodes

```
Medians:
0.0
4.0
Quantiles:
[0. 0. 0. 3.]
[ 0. 1. 4. 11.]
90th Percentiles:
8.0
20.0
Median Absolute Deviation
0.0
5.930408874022408
```

In [51]: sns.boxplot(x='status',y='Patient_Age', data=df)
plt.show()

In [45]: sns.boxplot(x='status',y='positive_auxillary_nodes', data=df)
plt.show()

Observation:

1)From the box plot 'positive auxillary nodes' can be used as a good feature to differentiate status 1 and 2.

In [49]: g = (sns.jointplot("Year_of_operation", "Patient_Age",data=df, color="k").plot_jo

C:\Users\Yagnapooja\Anaconda3\lib\site-packages\matplotlib\axes_axes.py:6462: UserWarning: The 'normed' kwarg is deprecated, and has been replaced by the 'de nsity' kwarg.

warnings.warn("The 'normed' kwarg is deprecated, and has been "

C:\Users\Yagnapooja\Anaconda3\lib\site-packages\matplotlib\axes_axes.py:6462: UserWarning: The 'normed' kwarg is deprecated, and has been replaced by the 'de nsity' kwarg.

warnings.warn("The 'normed' kwarg is deprecated, and has been "

Observation:

1)There are more number of people undergone operation during the year 1960 - 1965 period

and between ages 40 - 62.

2) The correlation between the two attributes is very low.