CPE301 - SPRING 2019

Design Assignment 4B

Student Name: Ricky Perez Student #: 5002297620

Student Email: perezr1@unlv.nevada.edu

Primary Github address: https://github.com/RickyPerez79/submission_da.git

Directory: DA4B

Submit the following for all Labs:

1. In the document, for each task submit the modified or included code (only) with highlights and justifications of the modifications. Also, include the comments.

- 2. Use the previously create a Github repository with a random name (no CPE/301, Lastname, Firstname). Place all labs under the root folder ESD301/DA, sub-folder named LABXX, with one document and one video link file for each lab, place modified asm/c files named as LabXX-TYY.asm/c.
- 3. If multiple asm/c files or other libraries are used, create a folder LabXX-TYY and place these files inside the folder.
- 4. The folder should have a) Word document (see template), b) source code file(s) and other include files, c) text file with youtube video links (see template).

1. COMPONENTS LIST AND CONNECTION BLOCK DIAGRAM w/ PINS

- Xplained Mini
- Bread board
- Stepper Motor
- Servo Motor
- ULN2003
- Power Supply

2. INITIAL/MODIFIED/DEVELOPED CODE OF TASK 1/A

```
* DA4B_Task_1.c
* Created: 4/19/2019 11:19:47 PM
* Author : perezr1
#define F CPU 16000000UL
#include <avr/io.h>
#include <util/delay.h>
#include <avr/interrupt.h>
void adc int(void);
volatile int status_control = 0; // if set to 1, the motor is turned off
volatile unsigned int speed control; // variable used to control delay
int main(void)
DDRB = 0x0F; //Enable output on all of the B pins
   PORTB = 0x00; // initialize to 0v
   TCCR1B = (1 << WGM13) | (1 << WGM12) | (1 << CS11);//set CTC mode & prescaler of 8
   ICR1 = 62258;
adc_int(); // call function to initialize ADC
   while(1){
       while((ADCSRA&(1<<ADIF))==0); // wait for conversion</pre>
       if (ADC >= 820)
       {
           status_control = 1;
       if ((ADC < 820) && (ADC >= 617))
          status_control = 0;
```

```
speed_control = 0x1869;
             if ((ADC < 617) && (ADC >= 414))
                   status_control = 0;
                   speed control = 0x124F;
             if ((ADC < 414) && (ADC >= 211))
                   status_control = 0;
                   speed_control = 0x0C34;
             if ((ADC < 211) && (ADC >= 000))
                   status_control = 0;
                   speed_control = 0x061A;
             }
             OCR1A = speed_control; // set OCR1A to the determined speed
             TCNT1 = 0x00; // reset timer
             // if the status is 1, then the motor will be OFF. If the status is 0 then
the motor will be on and will run a step with a delay.
             if(status_control == 0)
             {
                   while((TIFR1 & 0x2) != 0x2);
                   PORTB = 0x09;
                   TIFR1 = (1 << OCF1A);
                   while((TIFR1 & 0x2) != 0x2);
                   PORTB = 0x03;
                   TIFR1 |= (1<<0CF1A);
                   while((TIFR1 & 0x2) != 0x2);
                   PORTB = 0X06;
                   TIFR1 |= (1<<0CF1A);
                   while((TIFR1 & 0x2) != 0x2);
                   PORTB = 0X0C;
                   TIFR1 |= (1<<0CF1A);
             }
      }
void adc_int(void)
{
      ADMUX = (0<<REFS1) | // Reference Selection Bits
      (1<<REFS0) | // AVcc-external cap at
      (0<<ADLAR) | // ADC Left Adjust Result
      (0<<MUX3)
      (0<<MUX2) | // ANalogChannel Selection Bits
      (0<<MUX1)| // ADC0 (PC0)
      (0 << MUX0);
      ADCSRA = (1 << ADEN) | //ADC Enable
      (1<<ADSC) // ADC Start Conversion
      (1<<ADATE) | // ADC Auto Trigger Enable
      (0<<ADIF) | // ADC Interrupt Flag
      (1<<ADIE) // ADC Interrupt Enable
      (1<<ADPS2) | // ADC Prescaler Select Bits
      (1<<ADPS1)
      (1<<ADPS0);
```

```
3. DEVELOPED MODIFIED CODE OF TASK 2/A
```

```
* da_4b_task2.c
* Created: 4/19/2019 11:21:06 PM
* Author : perezr1
*/
#define F CPU 16000000UL
#include <avr/io.h>
#include <util/delay.h>
#include <avr/interrupt.h>
/*////////////////////////////Function Prototype/////////////////////////////////
void adc int(void);
int check value = 0;
int main(void)
DDRB = 0xFF; //DDRB as an output
    DDRD = 0xFF;
    TCCR1A = (1 < COM1A1) / (1 < COM1B1) / (1 < WGM11); // Set OC1A/OC1B on Compare Match,
clear OC1A/OC1B at BOTTOM (inverting mode)
    TCCR1B = (1 << WGM13) | (1 << WGM12) | (1 << CS11) | (1 << CS10); // set to Fast PWM mode & 64
prescaler
    adc_int(); // call function to initialize ADC
while (1)
    {
        ADCSRA |= (1 << ADSC); // start conversion
        while((ADCSRA & (1 << ADIF))== 0);</pre>
        check_value = ADCH; // temp value
        if(check value == 0) // the minimum value
        {
             OCR1A = 0; //turn 0 degrees
             _delay_ms(1000);
        if(check value == 255) // the max value of the potentiometer
             OCR1A = 535; //servo motor will turn 180 degrees
             _delay_ms(1000);
        }
    }
}
```

```
void adc int(void)
    ADMUX = (0<<REFS1) | // Reference Selection Bits
     (1<<REFS0)| // AVcc-external cap at
     (1<<ADLAR) // ADC Left Adjust Result
     (0<<MUX3)
     (0<<MUX2) | // ANalogChannel Selection Bits
     (0<<MUX1) | // ADC0 (PC0)
     (0<<MUX0);
    ADCSRA = (1 << ADEN) | //ADC Enable
     (0<<ADSC)
    (1<<ADATE) | // ADC Auto Trigger Enable
     (0<<ADIF)
     (0<<ADIE)
    (1<<ADPS2) | // ADC Prescaler Select Bits (64)
    (1<<ADPS1)
    (0<<ADPS0);
```

4. SCHEMATICS

Stepper Motor

Servo Motor

5. SCREENSHOTS OF EACH TASK OUTPUT (ATMEL STUDIO OUTPUT)

6. SCREENSHOT OF EACH DEMO (BOARD SETUP)

7. VIDEO LINKS OF EACH DEMO

Task 1: https://youtu.be/lctroFKpYUM
Task 2: https://youtu.be/V-Hrd6JQ5kl

8. GITHUB LINK OF THIS DA

https://github.com/RickyPerez79/submission da.git

Student Academic Misconduct Policy

http://studentconduct.unlv.edu/misconduct/policy.html

"This assignment submission is my own, original work".

RICKY PEREZ