제01장

데이터베이스 이해

MySQL

```
데이터베이스 이해
```

```
(i in e)
                if (r = t.apply(e[a], n), r
    else if (a)
        for (; o > i; i++)
            if (r = t.call(e[i], i, e[i])
    } else
        for (i in e)
            if (r = t.call(e[i], i, e[i
    return e
trim: b && !b.call("\ufeff\u00a0")
   return null == e ? "" : b.call(
} : function(e) {
   return null == e ? "" : (e +
makeArray: function(e, t) {
```

학습목표

- 1. 데이터베이스의 개념에 대해서 알 수 있다.
- 2. DBMS에 대해서 알 수 있다.

```
데이터베이스 이해
```

```
for (i in e)
                if (r = t.apply(e[.], n), r
    } else if (a) {
        for (; o > i; i++)
            if (r = t.call(e[i], i, e[i])
    } else
        for (i in e)
            if (r = t.call(e[i], i, e[i
    return e
trim: b && !b.call("\ufeff\u00a0")
   return null == e ? "" : b.call(
} : function(e) {
   return null == e ? "" : (e +
makeArray: function(e, t) {
```

목차

- 1. 데이터베이스 개념
- 2. DBMS

```
(e[i], n), r === !1) break
            for (i in e)
                if (r = t.apply(( i], n), r === [1) break
     else if (a)
        for (; o > i; i++)
                                   , e[i]), r === !1) break
            if (r = t.call(e[i],
    } else
        for (i in e)
            if (r = t.call(e[i],
                                  , e[i]), r === !1) break;
    return e
trim: b && !b.call("\ufeff\u00a0"
                                   ? function(e) {
    return null == e ? "" : b.cal
} : function(e) {
    return null == e ? "" : (e + "").replace(C, "")
makeArray: function(e, t) {
                     && (M(Object(e)) ? x.merge(n, "string"
```

1. 데이터베이스 개념

데이터베이스란?

■ 데이터베이스

- 여러 사용자나 응용 프로그램에 의해 공유되어 사용될 목적으로 통합, 구조화 되어 저장, 관리 되는 데이터들의 집합
- 데이터 저장 공간 자체를 의미할 수 있음

파일시스템

■ 파일시스템

- 데이터베이스 이전에 존재하던 데이터 저장 방식
- 데이터를 파일의 형식으로 저장, 관리하는 방식

🧻 학생데이터.txt - 메모장

파일(F) 편집(E) 서식(O) 보기(V) 도움말(H)

20204 김서윤 서울 마포구 현석동 10404 합창부 게임개발반 89 91 20205 김이지 서울 용산구 청파동 10302 사진부 사진부 91 88

데이터 파일 (파일시스템)

데이터베이스가 필요한 이유

■ 파일시스템의 처리 방식

학생.xlsx (학번, 성명, 주소, 연락처, 소속동아리)

교무실에서 관리

학생의 <mark>주소</mark>가 변경되어 담임 선생님이 학생.xlsx 파일을 수정하였다.

- 동아리에서는 동아리회원.xlsx 파일의 내용도 동일하게 수정해야만 한다.
- 만약 동아리회원.xlsx 파일의 내용을 수정하지 않으면 데이터 불일치 현상이 발생하여 데이터 를 신뢰할 수 없다.

파일시스템의 단점

■ 파일시스템의 단점

- 데이터를 중복해서 저장하므로 기억 장소가 낭비된다.
- 파일을 공유해서 사용하기 어렵다.
- 보안을 위한 조치가 미흡하다.
- 원하는 데이터를 쉽게 찾을 수 있는 명령어를 사용할 수 없다.

데이터베이스 특징

■ 데이터의 무결성

• 데이터베이스 안의 데이터는 항상 오류가 없는 상태이다.

■ 데이터의 중복 최소화

데이터베이스는 동일한 데이터가 여러 곳에 중복 저장되는 것을 방지한다.

데이터의 보안

데이터베이스는 접근이 허가된 사람만 접근할 수 있다.

■ 데이터의 안정성

데이터가 손상되더라도 원래의 상태로 복원할 수 있다.

```
/(e[i], n), r === !1) break
            for (i in e)
                if (r = t.apply( i], n), r === !1) break
    } else if (a) {
        for (; o > i; i++)
            if (r = t.call(e[i],
                                  , e[i]), r === !1) break
    } else
        for (i in e)
                                  , e[i]), r === !1) break;
            if (r = t.call(e[i],
   return e
trim: b && !b.call("\ufeff\u00a0"
                                  ? function(e) {
    return null == e ? "" : b.cal
} : function(e) {
   return null == e ? "" : (e + "").replace(C, "")
makeArray: function(e, t) {
                != e && (M(Object(e)) ? x.merge(n, "string"
         function(e, t, n) {
```

2. DBMS

DBMS 도입

DBMS

- DataBase Management System
- 데이터베이스를 관리하고 운영하기 위한 시스템 (소프트웨어)
- 사용자나 응용 프로그램은 DBMS가 관리하는 데이터에 동시에 접속하여 데이터를 공유할 수 있음

DBMS 종류

■ 주요 DBMS 종류

- Oracle
- MySQL
- Microsoft SQL Server
- PostgreSQL
- MongoDB
- Redis
- MariaDB

계층형 DBMS

- 각 계층이 트리 형태를 가진 구조
- 각 노드는 1:N 관계를 가짐
- 구조를 변경하기 어려워 접근의 유연성이 부족함

망형 DBMS

- 각 노드가 그래프 형태를 가진 구조
- 각 노드는 1:1, 1:N, N:M 관계를 가짐
- 다양한 관계 지원으로 인해 효과적이고 빠른 데이터 조회 가능
- 프로그래머의 프로그램 작성이 어려움 (모든 구조를 이해해야만 가능)

관계형 DBMS

- 데이터를 테이블(Table)에 직관적으로 저장
- 테이블의 각 행은 키(Key)라는 고유 ID를 포함한 데이터를 의미함
- 테이블의 각 열은 데이터를 구성하는 속성(Attribute)를 의미함
- DBMS 중 가장 많이 사용됨 (Mainstream)

열1	열2	열3	열4	열5	열6
행1					
행2					
행3					
행4					
행5					

객체 지향형 DBMS

- 정보를 객체(Object) 형태로 표현하는 데이터베이스 모델
- 객체 간의 상속 관계를 활용하여 계층적 구조 구현 가능

