Engineering Design Process

The Antidote - FTC 14320

Engineering Design Process

- A series of steps that engineers follow to design a solution to a problem.
- The engineering design process helps in making decisions by applying the principles of science, math and engineering.

Design Process Steps

- Step 1 ASK Identify the Problem
- Step 2 BRAINSTORM Brainstorm Solutions and Research Ideas
- Step 3 PROTOTYPE Select 2 or 3 Promising Solutions
- Step 4 FABRICATE Construct a Working Model
- Step 5 TEST Test & Evaluate Solutions
- Step 6 IMPROVE Improvise, Adapt, Overcome your Design

Identify the Problem

- Identify what needs to be accomplished
- What are the Restrictions/Constraints
 - Robots must not be taller than 14 inches to cross Sky Bridge
- Functional Requirements
 - The robot must be able to intake stones from all angles
- Analyze game and determine strategies
 - Identify tasks and rank in priority

Design Constraints

- Maximum robot height/weight
 - SkyStone \rightarrow 18x18x14, 42 lbs.
- Number of allowed motors → 8 motors
- Maximum #of game elements
- Allowed Control Systems

Identify and Rank Tasks

- There are numerous tasks to accomplish in each FTC Game
- List them out and analyze their point values and difficulty
 - E = Easy (can be completed ~90%)
 - M = Medium (can be completed ~70%)
 - H = Hard (can be completed ~50%)
 - These difficulties vary for each team!

Tasks	Point Value	Difficulty	Rank
Repositioning	10	4	Н
Navigating	5	1	E
SkyStone Delivery	10	5	н
Stone Delivery	2	3	M
Placing	4	3	М

Brainstorm Ideas

- Come up with numerous ideas to accomplish the task
 - Don't be afraid to produce unique and creative ideas!
 - No idea is a bad idea
- List each idea down on a whiteboard
- Go through the pros/cons of each idea
- Do a lot of research on YouTube
 - Look for real-world solutions
 - FTC teams share their ideas (previous games)

Prototype a Solution

- Select a few promising solutions to prototype
 - Does not need to be perfect
 - Rough idea of how the process works
 - Ex: Using AndyMark Compliant Wheels as an intake
- Use any material!
 - Cardboard, LEGOs, 3D Printing

Copyright 2020 FTCTutorials.com (Last edit 5/29/2020)

Decision Matrix

- Use a Decision Matrix/Weighted Objective Table to help select one method over other ideas in accomplishing a single task
 - Compares each idea regarding different criteria
 - Ex: Different ways to hold on to the SkyStone
- Weights are used to establish the importance of the criteria

Characteristic & Weight		Nub Grabber	Side Clamp	Linear Actuator
Driver Precision/Ease of Alignment	4	3	3	1
Size	3	4	3	1
Reliability	4	1	3	2
Ease to Manufacture	2	4	3	2
RESULT		36	39	19

Fabricate the Design

- Creating the first complete working design of the idea
 - This step is accomplished after any issues in the prototype have been resolved

Use Computer Aided Designing (CAD) software to create the design

- Use any material!
 - Build Kits
 - Actobotics, goBILDA
 - 3D Printing
 - Aluminum

Test the Design

- Often the most rigorous part of the design process
- Involves pushing the design to its limits
 - Does it work?
 - Is it reliable/efficient?
 - Is it robust?
 - Is it too complicated?
 - Does it meet all specifications listed in the Ask phase?
- Record measurements and take notes as the design is tested
- Manipulate only one variable at a time when testing for accurate results
 - Changing too many things at once → Do not know what changed what

Improve and Redesign

- After testing, is there anything that can be changed to be more efficient? reliable? accurate?
- This phase is the 'end' of the process, creating the design process cycle
 - Endless loop of constantly improving the design (aka iterating)
- The process outlined here isn't the only process in designing a robot, each team typically finds a process that works for them

Simpler design → thinner, no screws

Credits

- This lesson was written by The Antidote 14320 for FTCTutorials.com
- You can contact the author at:
 - Website:
 - http://theantidoterobotics.com
 - Twitter:
 - @theantidoteFTC
 - Email:
 - theantidoteftc@gmail.com
- More lessons for FIRST Tech Challenge are available at www.FTCtutorials.com

Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.