SITUATION

Pour déterminer l'écriture explicite d'une suite, on demande souvent de montrer qu'une suite est arithmétique, puis de déterminer son premier terme et sa raison.

ÉNONCÉ

On considère la suite (v_n) définie par $v_0=-1$, $v_1=rac{1}{2}$ et, pour tout entier naturel \emph{n} , par :

$$v_{n+2} = v_{n+1} - rac{1}{4} v_n$$

On considère alors $\left(u_{n}\right)$ la suite définie pour tout entier naturel n :

$$u_n=rac{v_n}{v_{n+1}-rac{1}{2}v_n}$$

On admet que, pour tout entier naturel n, $v_{n+1}-rac{1}{2}v_n
eq 0$. On veut montrer que la suite (u_n) est arithmétique et déterminer sa raison.

Etape 1

Calculer $u_{n+1}-u_n$

Pour tout entier naturel \emph{n} , on calcule et réduit la différence $u_{n+1}-u_n$.

APPLICATION

Soit n un entier naturel. Comme, pour tout entier naturel, $v_{n+1}-rac{1}{2}v_n
eq 0$, on obtient :

$$u_{n+1}-u_n=rac{v_{n+1}}{v_{n+2}-rac{1}{2}v_{n+1}}-rac{v_n}{v_{n+1}-rac{1}{2}v_n}$$

$$u_{n+1}-u_n=rac{v_{n+1}}{v_{n+1}-rac{1}{4}v_n-rac{1}{2}v_{n+1}}-rac{v_n}{v_{n+1}-rac{1}{2}v_n}$$

$$u_{n+1}-u_n=rac{v_{n+1}}{rac{1}{2}v_{n+1}-rac{1}{4}v_n}-rac{v_n}{v_{n+1}-rac{1}{2}v_n}$$

$$u_{n+1}-u_n=rac{v_{n+1}}{rac{1}{2}\left(v_{n+1}-rac{1}{2}v_n
ight)}-rac{v_n}{v_{n+1}-rac{1}{2}v_n}$$

$$u_{n+1}-u_n=rac{2v_{n+1}}{v_{n+1}-rac{1}{2}v_n}-rac{v_n}{v_{n+1}-rac{1}{2}v_n}$$

$$u_{n+1}-u_n=rac{2v_{n+1}-v_n}{v_{n+1}-rac{1}{2}v_n}$$

$$u_{n+1}-u_n=rac{2\left(v_{n+1}-rac{1}{2}v_n
ight)}{v_{n+1}-rac{1}{2}v_n}=2$$

Etape 2

Identifier l'éventuelle raison de la suite

On regarde, si, pour tout entier naturel n, $u_{n+1} - u_n$ est égal à une constante r (un réel fixe, c'est-à-dire indépendant de la variable n).

APPLICATION

En posant r=2 , on a bien, pour tout entier naturel n:

$$u_{n+1} - u_n = r$$

Etape 3

Conclure sur la nature de la suite

Si, pour tout entier naturel n, $u_{n+1}-u_n$ est égal à une constante r, on peut conclure que la suite est arithmétique de raison r. On précise alors son premier terme.

APPLICATION

On peut donc conclure que la suite $\left(u_{n}
ight)$ est une suite arithmétique de raison 2. Son premier terme vaut :

$$u_0 = rac{v_0}{v_1 - rac{1}{2}v_0} = rac{-1}{rac{1}{2} + rac{1}{2}} = -1$$