Condición de estabilidad CFL

Josué Juárez Morales

Observamos que sucede en la convección lineal al variar el número de veces en que se va a discretizar la variable x (y por lo tanto la derivada).

```
[0]: import numpy as np #importa numpy.
    import matplotlib.pyplot as plt #importa la herramienta para graficar
    %matplotlib inline
    #hace que las gráficas aparescan en la siguiente linea
    def pulso(x0, x1, x): #define la función pulso
     if x < x0 or x > x1:
       return(0.0)
      else:
        return(1.0)
    def conveccionlineal(nx):
     L = 2 #el tamaño de nuestro intervalo en x
      dx = L/(nx-1) #la distancia que hay entre cada punto discretizado x (dx)
     T = 1.0 #intervalo total de tiempo
      nt = 51 #número de veces que se discretiza la variable tiempo
      dt = T/(nt-1) #tamaño de los intervalos de tiempo (dt)
      c = 1.0 #velocidad de la onda (e.d.)
      \#CLF = c*dt/dx \#error
      #print("C =", CLF)
     u = np.linspace(0, L, nx) #np.linspace genera un vector con nx entradas que
     →contiene números igualmente espaciados en un intervalo (0,L)
      x = np.linspace(0, L, nx) #qeneramos dos porque uno va a entrar a la funcionu
     \rightarrow pulso
     for i in range(len(x)):
        u[i] = pulso(0.5, 1.0, x[i])
      un = np.zeros(nx) #crea un vector temporal de tamaño nx con entradas ceros
      for n in range(nt): #genera el loop nt veces
        un = u.copy() #copia los elementos de u al vector temporal un
        for i in range(1,nx): #el loop realiza las operaciones para calcular elu
     \rightarrow u^{n+1}_{-1} if, pero comienza con el elemento u[1] y no u[0] (se salta el primer
     \rightarrow elemento)
          u[i] = un[i] - c*dt*(un[i]-un[i-1])/dx
```

plt.plot(x,u)

[0]: conveccionlineal(41)

[0]: conveccionlineal(61)

[0]: conveccionlineal(71)

[0]: conveccionlineal(100)

[0]: conveccionlineal(200)

Al aumentar nx, la derivada se vuelve más precisa, y la onda toma una forma mas cuadrada. Lo que salió mal en el ultimo caso, es que en tales periodos Δt la onda se ha desplazado una distancia mayor que dx (el cual depende de nx). Podemos aumentar la estabilidad si el paso Δt es calculado dependiendo del tamaño de paso dx

$$\sigma = \frac{c\Delta t}{\Delta x} \le \sigma_{\text{max}},\tag{1}$$

siendo c la velocidad de la onda, σ es concido como número de Courant (número CFL), σ_{max} asegurará estabilidad depende de nx.

Realizamos ahora la conveccion lineal utilizando el número CFL, de manera, que el tamaño de los pasos Δt sean adecuados al dx.

```
[0]: def conveccionlinealCFL(nx):

L = 2 #el tamaño de nuestro intervalo en x

dx = L/(nx-1) #la distancia que hay entre cada punto discretizado x (dx)

T = 1.0 #intervalo total de tiempo

nt = 51 #número de veces que se discretiza la variable tiempo

c = 1.0 #velocidad de la onda (e.d.)

sigmamax = 0.5

dt = dx*sigmamax/c

u = np.linspace(0, L, nx) #np.linspace genera un vector con nx entradas que⊔

→contiene números igualmente espaciados en un intervalo (0,L)
```

```
x = np.linspace(0, L, nx) #generamos dos porque uno va a entrar a la funcion
→pulso

for i in range(len(x)):
    u[i] = pulso(0.5, 1.0, x[i])

un = np.zeros(nx) #crea un vector temporal de tamaño nx con entradas ceros
for n in range(nt): #genera el loop nt veces
    un = u.copy() #copia los elementos de u al vector temporal un
    for i in range(1,nx): #el loop realiza las operaciones para calcular el
→u^{n+1}_{i}, pero comienza con el elemento u[i] y no u[o] (se salta el primer
→elemento)
    u[i] = un[i] - c*dt*(un[i]-un[i-1])/dx

plt.plot(x,u)
```

[0]: conveccionlinealCFL(200)

