Practice 11 Solutions

You need R packages gee and MASS for doing this practice. The question focuses on analysing the OME data stored in MASS. Type help(OME) and help(gee) to get details of the data and GEE solver.

The following commands are used to get the analysis results.

```
head(OME)
```

- 1. How many children were included in the data?
 - 77 children were included in the study.

```
length(table(OME$ID)) #[1] 77
head(OME)
```

	ID	Age	OME	Loud	Noise	Correct	Trials
1	1	30	low	35	coherent	1	4
2	1	30	low	35	${\tt incoherent}$	4	5
3	1	30	low	40	coherent	0	3
4	1	30	low	40	${\tt incoherent}$	1	1
5	1	30	low	45	coherent	2	4
6	1	30	low	45	incoherent	2	2

tail(OME)

	ID	Age	OME	Loud	Noise	Correct	Trials
1092	100	18	N/A	45	coherent	1	2
1093	100	18	N/A	45	${\tt incoherent}$	3	4
1094	100	18	N/A	50	coherent	7	7
1095	100	18	N/A	50	${\tt incoherent}$	3	3
1096	100	18	N/A	55	coherent	4	5
1097	100	18	N/A	55	${\tt incoherent}$	5	5

- 2. How many tests did the child with ID=1 attend to in the data? Namely, what is the cluster size associated with child 1?
 - 20 tests were done for the child with ID=1.

```
sum(OME$ID==1) #[1] 20
```

3. Let y_{it} and n_{it} be the number of correct responses and the number of trials, respectively, for the child with ID=i at test t. Define $y_{it}^* = y_{it}/n_{it}$. Write down the marginal model fitted by the GEE approach in this analysis. The model should include the following components: marginal means of y_{it}^* , marginal variances of y_{it}^* , and correlation between y_{ij}^* and y_{ik}^* .

•
$$E(y_{ij}^*|\cdot) = \frac{\exp(\eta_{ij})}{1 + \exp(\eta_{ij})}$$
 with

$$\hat{\eta}_{ij} = -6.954 + 0.167 \cdot \text{Loud} + 0.02 \cdot \text{Age} - 0.097 \cdot \text{OME.high}$$

$$-0.320 \cdot \text{OME.low} + 1.312 \cdot \text{Noise.incoherent.}$$

- $\operatorname{Var}(y_{ij}^*|\cdot) = \frac{\phi}{n_{it}} \cdot \frac{\exp(\eta_{ij})}{[1 + \exp(\eta_{ij})]^2}$ with $\hat{\phi} = 1.116$ and $\hat{\eta}_{ij}$ as above.
- $Corr(y_{ij}^*, y_{ik}^*) = \alpha$ is assumed in this analysis, i.e. exchangeable correlation structure. $\hat{\alpha} = -0.01001777$.

summary(fm)

Coefficients:

```
Estimate Naive S.E.
                                            Naive z Robust S.E.
                                                                  Robust z
(Intercept)
                -6.95403269 0.344815565 -20.1673978 0.244535253 -28.4377512
Loud
                0.16684213 0.007509126 22.2185817 0.005460094
                                                                30.5566395
                0.02003283 0.003699210
                                         5.4154354 0.003425720
Age
                                                                  5.8477724
               -0.09666362 0.168193526 -0.5747167 0.156324984
                                                                -0.6183504
OMEhigh
               -0.32041010 0.133828827 -2.3941785 0.122289621
OMElow
                                                                 -2.6200923
Noiseincoherent 1.31206035 0.095810530 13.6943230 0.098468293
                                                                13.3246988
```

Estimated Scale Parameter: 1.116139 Number of Iterations: 3 Working Correlation

[,1] [,2] [,3] [,4] [,5] [,6] [1,] 1.00000000 -0.01001777 -0.01001777 -0.01001777 -0.01001777 -0.01001777 -0.01001777

fm\$robust.variance

```
(Intercept)
                                       Loud
                                                                OMEhigh
                                                      Age
(Intercept)
                 5.979749e-02 -1.251861e-03 -8.942811e-05 -9.138445e-04
                -1.251861e-03 2.981263e-05 -1.964369e-06 4.984232e-05
Loud
                -8.942811e-05 -1.964369e-06 1.173556e-05 -3.160966e-04
Age
OMEhigh
                -9.138445e-04 4.984232e-05 -3.160966e-04 2.443750e-02
                -4.739901e-04 2.106300e-05 -2.950897e-04 1.191210e-02
OMElow
Noiseincoherent -5.811760e-03 8.403785e-05 -1.016171e-06 -1.114490e-03
                       OMElow Noiseincoherent
(Intercept)
                -0.0004739901
                               -5.811760e-03
Loud
                 0.0000210630
                                 8.403785e-05
Age
                -0.0002950897
                                -1.016171e-06
OMEhigh
                 0.0119121013
                                -1.114490e-03
OMElow
                 0.0149547515
                                -1.079979e-03
Noiseincoherent -0.0010799793
                                 9.696005e-03
```

4. Give the commands for finding the estimates and their robust variance matrix for the regression parameters in the marginal model.

• fm\$robust.variance gives

	Intercept	Loud	Age	OME.high	OME.low	Noise.incoherent
Intercept	0.0598	-0.00125	-0.0000894	-0.000914	-0.000474	-0.00581
Loud		0.0000298	-0.0000196	-0.0000498	0.000021	0.000084
Age			0.0000117	-0.000316	-0.000295	-0.00000102
OME.high				0.0244	0.0119	-0.00111
OME.low					0.01495	-0.00108
Noise.incoherent						0.00967

- 5. Use the R output to estimate the mean and variance of y_{11} , and the covariance between y_{11} and y_{12} .
 - $\hat{\eta}_{11} = (-6.954, 0.167, 0.02, -0.097, -0.32, 1.312) \cdot (1, 35, 30, 0, 1, 0)^T = -0.834.$
 - $\hat{E}(y_{11}^*) = \frac{e^{-0.834}}{1 + e^{-0.834}} = 0.3028$. $n_{11} = 4$. So $\hat{E}(y_{11}) = 4 \times 0.3028 = 1.211214$.
 - $\widehat{\text{Var}}(y_{11}) = n_{11}\hat{\phi}\hat{E}(y_{11}^*)[1 \hat{E}(y_{11}^*)] = 4 \times 1.116 \times 0.3028 \times (1 0.3028)$ = $0.8445 \times 1.1161 = 0.9425282$.

•

$$\widehat{\text{Cov}}(y_{11}, y_{12}) = \sqrt{\widehat{\text{Var}}(y_{11})} \cdot \sqrt{\widehat{\text{Var}}(y_{12})} \cdot \widehat{\text{Corr}}(y_{11}, y_{12})
= \sqrt{0.9425282} \cdot \sqrt{1.318396} \cdot (-0.01001777) = -0.01116712$$

where $\widehat{\text{Var}}(y_{12}) = n_{12}\hat{\phi}\hat{E}(y_{12}^*)[1 - \hat{E}(y_{12}^*)] = 5 \times 1.116 \times 0.6173 \times (1 - 0.6173) = 1.318396.$