

МИНОБРНАУКИ РОССИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования

«МИРЭА – Российский технологический университет»

РТУ МИРЭА

Методические указания к выполнению практических работ

Моделирование информационно-аналитических систем Практическая работа 2

	(наименование дисциплины (модуля) в соответствии с учебным планом)					
Уровень	специалитет					
	(бакалавриат, магистратура, специалитет)					
Форма обучения	очная					
	(очная, очно-заочная, заочная)					
Направление(-я)	10.05.04 Информационно-аналитические системы безопасности,					
подготовки	специализации:					
	специализация №1 "Автоматизация информационно-аналитической					
	деятельности";					
	специализация №3 "Технологии информационно-аналитического					
	мониторинга».					
	(код(-ы) и наименование(-я))					
Институт	Кибербезопасности и цифровых технологий					
	(полное и краткое наименование)					
Кафедра	Информационно-аналитические системы кибербезопасности (КБ-2)					
	(полное и краткое наименование кафедры, реализующей дисциплину (модуль))					
Лектор	к.т.н., доцент Лебедев Владимир Владимирович					
	(сокращенно – ученая степень, ученое звание; полностью – ФИО)					
Используются в да	нной редакции с учебного года 2022/23					
	(учебный год цифрами)					
Проверено и согла	совано «»20г.					
	(подпись директора Института/Филиала					
	с расшифровкой)					

Москва 20__ г.

Практическое занятие №2

Разработка моделей случайных процессов в стохастических

системах методами имитационного моделирования.

<u>Тема:</u> Стационарные случайные процессы с непрерывными распределениями.

<u>**Цель:**</u> Решение задач и закрепление навыков имитационного моделирования.

Стационарным случайным процессом называют случайный процесс, устойчивый во времени.

В частности, если его характеристики, такие как математическое ожидание и дисперсия его значений постоянны на каждом срезе модельного времени, то мы имеем дело со стационарным случайным процессом.

Функция распределения значений одномерного стационарного случайного процесса не зависит от времени.

Задача моделирования:

Разработать имитационную аддитивную модель стационарного случайного процесса вида:

$$S = S[pp(a1,b1)] + Q \cdot S[pp(a2,b2)] + S[\Delta(a3,b3,c)],$$
 где (1)

S[pp(a1, b1)] – равномерный случайный процесс;

S[pp(a2,b2)] – равномерный случайный процесс;

 $S[\Delta(a3,b3,c)]$ - треугольный случайный процесс.

Для моделирования использовать метод обратных функций.

Задание:

- 1). Постройте график функции вероятности треугольного распределения.
- 2). Смоделируйте случайный процесс.
- 3). Разработайте программу расчёта.
- 4). Получите выборку объёмом 200 значений.
- 5). Оцените выборочные характеристики и постройте гистограмму частотного распределения по выборке.

6). Сделайте выводы.

Пояснения к решению задачи

Значения случайных составляющих данного случайного процесса независимы и определяют суммарное случайное значение согласно аддитивной линейной модели (1).

Рассмотрим определение статистических характеристик составляющих модели (1).

1. Составляющие S[pp(a1,b1)] и S[pp(a2,b2)] определяют случайные процессы, которые подчиняются равномерному распределению с отличными, общем случае, параметрами: (a1,b1) и (a2,b2). Формула функции вероятности равномерного закона распределения:

$$F(x) = \frac{x-a}{b-a}, x \in (a, b)$$
, где

(a,b) – диапазон распределения (отрезок);

а – левая граница диапазона значений;

b — правая граница диапазона.

График функции представлен на рис. 1.

Рисунок 1. Функция вероятности равномерного распределения

Распределения — непрерывные, поэтому для имитационного моделирования применяем метод обратных функций.

Формула обратной функции непрерывного закона, используемая при моделировании этих двух составляющих имеет вид:

$$S[pp(a,b)] = x = a + r \cdot (b-a)$$
, где

r — значение равномерного генератора случайных значений в диапазоне (0,1), которое при моделировании имитирует некоторое случайное значение функции вероятности закона F(x).

При вхождении в формулу модели случайное значение процесса S[pp(a2,b2)] умножают на коэффициент $oldsymbol{Q}$.

2. Составляющая модели $S[\Delta(a3,b3,c)]$ определяет случайный процесс, который подчиняется непрерывному треугольному распределению a3, b3, c. Общий вероятности параметрами вид функции плотности треугольного закона распределения произвольного вида $S[\Delta(a,b,c)]$ (с параметрами a, b, c) представлен на графике, см. рис. 2.

Высота треугольника функции плотности вероятности треугольного закона распределения всегда равна: $h = \frac{2}{h-a}$.

Рисунок 2. График функции плотности вероятности произвольного треугольного распределения общего вида: a < c < b

Функция вероятности закона треугольного закона распределения $S[\Delta(a,b,c)]$ произвольного вида:

Левая ветвь:	Правая ветвь		
$P_{\Delta}^{L}(x_{L}) = \frac{(x_{L} - a)^{2}}{(b - a)(c - a)};$	$P_{\Delta}^{R}(x_{R}) = 1 - \frac{(b - x_{R})^{2}}{(b - a)(b - c)};$		
$a \le x_L \le c$	$c \le x_R \le b$		

В точке $x_L = x_R = c$ значения левой и правой функций вероятности равны: $P_{\Delta}^L(c) = P_{\Delta}^R(c) = \frac{c-a}{b-a}$

Функция плотности вероятности треугольного закона распределения $S[\Delta(a,b,c)]$ произвольного вида:

Левая ветвь:	Правая ветвь:		
$f_L = h \frac{x_L - a}{c - a}; \qquad a \le x_L \le c$	$f_R = h \frac{b - x_R}{b - c}; \qquad c \le x_R \le b$		

В точке $x_L = x_R = c$ значения левой и правой функций плотности вероятности равны: $f_L(c) = f_R(c) = h$.

Формула обратной функции треугольного закона распределения $S[\Delta(a,b,c)]$ произвольного вида:

Для левой ветви:	Для правой ветви:
$S[\Delta(a,b,c)] = x_L =$	$S[\Delta(a,b,c)] = x_R =$
$= a + \sqrt{r \cdot (b - a)(c - a)}$	$= b - \sqrt{(1-r)(b-a)(b-c)}$

Симметричная форма треугольного закона распределения имеет место в случае, когда координата вершины треугольника по оси абсцисс равна $c = \frac{a+b}{2}$.

Формулы функции вероятности симметричного треугольного закона распределения $S\left[\Delta\left(a,b,c=\frac{a+b}{2}\right)\right]$:

Для левой ветви:	Для правой ветви:
$y_L = 2\left(\frac{x_L - a}{b - a}\right)^2$	$y_R = 1 - 2\left(\frac{b - x_R}{b - a}\right)^2$

Функция плотности вероятности симметричного треугольного закона распределения $S\left[\Delta\left(a,b,c=\frac{a+b}{2}\right)\right]$:

Для левой ветви:	Для правой ветви:
$f_L = 4 \frac{x_L - a}{(b - a)^2}$	$f_R = 4 \frac{b - x_R}{(b - a)^2}$

Формулы обратной функции симметричного треугольного закона распределения $S\left[\Delta\left(a,b,c=\frac{a+b}{2}\right)\right]$:

Для левой ветви:	Для правой ветви:
$S\left[\Delta\left(a,b,c=\frac{a+b}{2}\right)\right] = x_L$ $= a + (b-a)\sqrt{\frac{r}{2}}$	$S\left[\Delta\left(a,b,c=\frac{a+b}{2}\right)\right] = x_R$ $= b - (b-a)\sqrt{\frac{1-r}{2}}$

Например, график функции плотности вероятности симметричного треугольного закона представлен на графике 3:

Рисунок 3. График функции плотности вероятности симметричного треугольного распределения с заданными параметрами

График функции вероятности симметричного треугольного закона распределения при $a=3\,$ и $b=17\,$ показан на рис. 4.

Рисунок 4. График функции вероятности симметричного треугольного распределения с заданными параметрами a=3 и b=17

Функция гладко сшивается в точке разрыва второго рода функции плотности вероятности при $x=c=\frac{a+b}{2}=\frac{3+17}{2}=10$ (вершина треугольника).

Пример результатов моделирования.

Следующий пример представляет результаты моделирования, когда в составе модели имеется произвольное треугольное распределение.

Были заданы параметры модели случайного процесса:

a1=	3	<i>b1=</i>	20		
a2=	1	<i>b2</i> =	7	Q=	5
a3=	5	<i>b3</i> =	14	c=	11

Алгоритм модели (1):

- 1. Согласно описанному выше алгоритму методом обратных функций получают отдельные составляющие случайного процесса на текущем срезе модельного времени.
 - 2. По формуле (1) получают суммарное значение случайного процесса,

подставляя в неё данные, полученные на шаге 1.

3. Используя метод имитационного моделирования случайных значений процесса на отдельных срезах модельного времени (шаги 1 и2 алгоритма) и метод Монте-Карло численного розыгрыша модели, в вычислительном эксперименте получена выборка результатов моделирования значений процесса объёмом 200 для 200 срезов модельного времени:

Nº	S1	S2	S3	S	
1	6,8173	7,4421	10,7159	24,9753	
2	15,1391	18,7879	8,7879 6,3650		
3	15,0779	6,3767	8,7603	30,2149	
4	7,8487	16,3064	9,9848	34,1399	
196	15,1127	26,2482	12,2568	53,6177	
197	16,9361	8,8841	8,0727	33,8930	
198	10,2993	28,6117	7,2242	46,1353	
199	19,1869	10,3973	10,0813	39,6655	
200	3,4409	21,5583	10,4134	35,4126	

4. Получают выборочные статистические параметры выборки:

Ср. знач. выб.	40,1884
Дисп. выб.	101,8613
Min	18,4923
Max	61,7793
n	200

5. Проводят построение гистограммы для проведения частотного анализа моделируемого распределения.

Параметры разбиения интервала выборки для построения гистограммы:

K	15		
h	3,0919		

Параметры разбиения вычисляем согласно рекомендациям пособия к практическому занятию №1.

Частотные характеристики выборки даны ниже в таблице:

Интервалы	18,4923	21,5843	24,6762	27,7681	30,8600	33,9520	37,0439	40,1358	
Частоты	1	5	8	5	17	24	21	23	
Интервалы	43,2278	46,3197	49,4116	52,5035	55,5955	58,6874	61,7793		
Частоты	19	18	21	9	12	10	7	0	

По данным частотного анализа построена гистограмма процесса, рис. 5:

Рисунок 5. Гистограмма выборки

Частотный характер аддитивного процесса с треугольной составляющей произвольного вида определяется вкладом его составляющих. Анализ влияния отдельных составляющих также представляет интерес при исследовании свойств системы.

Ниже приведён пример текста программы для расчёта выборок составляющих и самого аддитивного процесса, обладающий способностью гибко варьировать параметры модели.

Программа реализует метод имитационного моделирования, а также его воспроизводство в цикле статистического испытания модели (метод Монте-Карло).

Рекомендуется создать программу и затем произвести вычисления. Полученные данные выборки использовать для расчёта выборочных статистических характеристик и построения гистограммы.

Текст программы:

```
Sub Triang_()
a1 = Cells(277, 2): b1 = Cells(277, 4)
a2 = Cells(278, 2): b2 = Cells(278, 4)
a3 = Cells(279, 2): b3 = Cells(279, 4): c = Cells(279, 6)
Q = Cells(278, 6)
R3 = (c - a3) / (b3 - a3)
    For j = 1 To 200
        Randomize
        S1 = a1 + Rnd() * (b1 - a1)
        S2 = Q * (a2 + Rnd() * (b2 - a2))
        Randomize
        r = Rnd()
        Select Case r
            Case 0 To R3
                S3 = a3 + Sqr(r * (b3 - a3) * (c - a3))
            Case R3 To 1
                S3 = b3 - Sqr((1 - r) * (b3 - a3) * (b3 - c))
        End Select
        s = S1 + S2 + S3
        Cells(282 + j, 1) = j
        Cells(282 + j, 2) = S1
        Cells(282 + j, 3) = S2
        Cells(282 + j, 4) = S3
        Cells(282 + j, 5) = s
    Next j
End Sub
```

Список литературы

- 1. Ермакова А. Ю. Моделирование автоматизированных систем в защищённом исполнении. Ч. 1. : учебное пособие / А. Ю. Ермакова, В. В. Лебедев.— М.: РТУ МИРЭА, 2024 (ISBN 978-5-7339-2353-6) [Электронный ресурс: https://ibc.mirea.ru/books/SHARE/5954].
- 2. В.В. Лозовецкий. Защита автоматизированных систем обработки информации и телекоммуникационных сетей: учебное пособие для вузов/ В.В. Лозовецкий, Е.Г. Комаров, В.В. Лебедев; под редакцией В.В. Лозовецкого. Санкт-Петербург: Лань, 2023, 448 с: ил. Текст: непосредственный.