PhoenixSim Parameters

Gouri Dongaonkar <gouri.ece@gmail.com>

PhoenixSim is a photonic network simulator that is used for modeling and understanding photonic interconnection networks. PhoenixSim is implemented using OMNeT++, an open-source C++-based event-driven simulation environment.

Figure 1: PhoenixSim Design Stages

The sequence of design stages we employ for modeling photonic interconnection networks primarily consists of six design steps: 1) specification of the network building blocks, 2) specification of the target application, 3) modeling of the network architecture, 4) system-level performance analysis, 5) physical-layer characterization, and 6) iterative refinement of parameters and design.

We use a level of abstraction by establishing a set of characteristic device parameters that are key to measuring the physical and system metrics which are important to our understanding of photonic interconnection networks.

Figure 2: Parameters for characterizing a photonic model using the Basic Element Device in PhoenixSim

We use a logical routing table to determine the path a message takes through the device. Fig. 2 shows how the routing table can be represented as a length-N vector, where the index represents the ingression port of an optical signal and the value at the index represents the egression port. There are also two tables to represent the latency and optical insertion loss properties of the device.

Each property is represented as a NIN matrix where the row corresponds to the port through which the optical signal ingresses from (input) and the column represents the port from which the optical signal egresses from (output). Each entry in a matrix corresponds to the value used for the particular input/output combination. The latency for a particular input-output port combination is measured as the time between when optical signal enters the input port and when the same optical signal exits the output port. Some of the silicon photonic devices included are: waveguides, couplers, ring resonators, detectors, crossings, filters, modulators, detectors.

Electronic Router Model Parameters:

Clock Rate
Buffer Size
Channel Width
Number of Virtual Channels

Insertion Loss Parameters:

Propagation Loss (Silicon/Other Material)
Waveguide Crossing
Waveguide Bend

Drop Into a Ring Pass By a Ring

Many of the commonly used parameters are saved in optical_aggresive_parameters.ini and optical_realistic_parameters.ini under PhoenixSim/PhoenixSim/parameters.

Common Abbreviations:

BER bit error rate

BERT bit-error-rate tester

CAD computer-aided design

CMOS complimentary metal-oxide semiconductor

CMP chip multi-processor

CPU central processing unit

CW continuous wave

DCA digital communication analyzer

DDR3 third generation double data-rate

DIMM dual in-line memory module

DRAM dynamic random-access memory

DTG data timing generator

DWDM dense wavelength-division multiplexer

EDFA erbium-doped fiber amplifier

FDTD finite-difference time-domain

FLOP floating-point operation

FSR free spectral range

HPC high-performance computing

I/O input-output

IC integrated circuit

ITRS International Technology Roadmap for Semiconductors

LA limiting amplifier

MOD modulator

MPI message-passing interface

MZI Mach-Zehnder interferometry

NoC network-on-chip

OSA optical spectrum analyzer

OSNR optical signal-to-noise ratio

PhoenixSim Photonic and Electronic Network Integration and Execution Simulator

PPG pulse pattern generator

PSE photonic switching element

RIN relative intensity noise

SMF single-mode fiber

SNR signal-to-noise ratio

SOI silicon-on-insulator

TDM time-division multiplexing

VOA variable optical attenuator

WDM wavelength-division multiplexing **WSSR** wavelength-selective spatial routing