

Figure 19.4: The basis functions w_i^0 and w_j^1

19.2 A Two-Dimensional Problem: An Elastic Membrane

Consider an elastic membrane attached to a round contour whose projection on the (x_1, x_2) -plane is the boundary Γ of an open, connected, bounded region Ω in the (x_1, x_2) -plane, as illustrated in Figure 19.5. In other words, we view the membrane as a surface consisting of the set of points (x, z) given by an equation of the form

$$z = u(x),$$

with $x = (x_1, x_2) \in \overline{\Omega}$, where $u : \overline{\Omega} \to \mathbb{R}$ is some sufficiently regular function, and we think of u(x) as the vertical displacement of this membrane.

We assume that this membrane is under the action of a vertical force $\tau f(x)dx$ per surface element in the horizontal plane (where τ is the tension of the membrane). The problem is