# In [1]:

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
%matplotlib inline
```

#### In [2]:

```
df=pd.read_csv('C:\health care diabetes.csv')
df.head()
```

# Out[2]:

|   | Pregnancies | Glucose | BloodPressure | SkinThickness | Insulin | ВМІ  | DiabetesPedigreeFunction |
|---|-------------|---------|---------------|---------------|---------|------|--------------------------|
| 0 | 6           | 148     | 72            | 35            | 0       | 33.6 | 0.62                     |
| 1 | 1           | 85      | 66            | 29            | 0       | 26.6 | 0.35                     |
| 2 | 8           | 183     | 64            | 0             | 0       | 23.3 | 0.67;                    |
| 3 | 1           | 89      | 66            | 23            | 94      | 28.1 | 0.16 <sup>-</sup>        |
| 4 | 0           | 137     | 40            | 35            | 168     | 43.1 | 2.28                     |
| 4 |             |         |               |               |         |      | <b>•</b>                 |

#### In [3]:

```
df.info()
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 768 entries, 0 to 767
Data columns (total 9 columns):
Pregnancies 768 non-n
```

768 non-null int64 Glucose 768 non-null int64 BloodPressure 768 non-null int64 SkinThickness 768 non-null int64 Insulin 768 non-null int64 768 non-null float64 BMI DiabetesPedigreeFunction 768 non-null float64 768 non-null int64 Age 768 non-null int64 Outcome

dtypes: float64(2), int64(7)
memory usage: 54.1 KB

# In [4]:

# df.describe()

# Out[4]:

|       | Pregnancies | Glucose    | BloodPressure | SkinThickness | Insulin    | BMI        | Diabete |
|-------|-------------|------------|---------------|---------------|------------|------------|---------|
| count | 768.000000  | 768.000000 | 768.000000    | 768.000000    | 768.000000 | 768.000000 |         |
| mean  | 3.845052    | 120.894531 | 69.105469     | 20.536458     | 79.799479  | 31.992578  |         |
| std   | 3.369578    | 31.972618  | 19.355807     | 15.952218     | 115.244002 | 7.884160   |         |
| min   | 0.000000    | 0.000000   | 0.000000      | 0.000000      | 0.000000   | 0.000000   |         |
| 25%   | 1.000000    | 99.000000  | 62.000000     | 0.000000      | 0.000000   | 27.300000  |         |
| 50%   | 3.000000    | 117.000000 | 72.000000     | 23.000000     | 30.500000  | 32.000000  |         |
| 75%   | 6.000000    | 140.250000 | 80.000000     | 32.000000     | 127.250000 | 36.600000  |         |
| max   | 17.000000   | 199.000000 | 122.000000    | 99.000000     | 846.000000 | 67.100000  |         |

In [5]:

print("Standard Deviation of each variables are ==> ")
df.apply(np.std)

Standard Deviation of each variables are ==>

# Out[5]:

| Pregnancies              | 3.367384   |  |  |  |  |
|--------------------------|------------|--|--|--|--|
| Glucose                  | 31.951796  |  |  |  |  |
| BloodPressure            | 19.343202  |  |  |  |  |
| SkinThickness            | 15.941829  |  |  |  |  |
| Insulin                  | 115.168949 |  |  |  |  |
| BMI                      | 7.879026   |  |  |  |  |
| DiabetesPedigreeFunction | 0.331113   |  |  |  |  |
| Age                      | 11.752573  |  |  |  |  |
| Outcome                  | 0.476641   |  |  |  |  |
| dtype: float64           |            |  |  |  |  |

localhost:8888/notebooks/project\_task\_week1.ipynb#

# In [6]:

```
plt.figure(figsize=(6,4),dpi=100)
plt.xlabel('Glucose Class')
df['Glucose'].plot.hist()
sns.set_style(style='darkgrid')
print("Mean of Glucose level is :-", df['Glucose'].mean())
print("Datatype of Glucose Variable is:",df['Glucose'].dtypes)
('Mean of Glucose level is :-', 120.89453125)
('Datatype of Glucose Variable is:', dtype('int64'))
   200
   175
   150
   125
   100
    75
    50
In [7]:
```

```
df['Glucose']=df['Glucose'].replace(0,df['Glucose'].mean())
```

#### In [8]:

```
plt.figure(figsize=(6,4),dpi=100)
plt.xlabel('BloodPressure Class')
df['BloodPressure'].plot.hist()
sns.set_style(style='darkgrid')
print("Mean of BloodPressure level is :-", df['BloodPressure'].mean())
print("Datatype of BloodPressure Variable is:",df['BloodPressure'].dtypes)

('Mean of BloodPressure level is :-', 69.10546875)
('Datatype of BloodPressure Variable is:', dtype('int64'))
```

### In [9]:

```
df['BloodPressure']=df['BloodPressure'].replace(0,df['BloodPressure'].mean())
```

# In [10]:

```
plt.figure(figsize=(6,4),dpi=100)
plt.xlabel('SkinThickness Class')
df['SkinThickness'].plot.hist()
sns.set_style(style='darkgrid')
print("Mean of SkinThickness is :-", df['SkinThickness'].mean())
print("Datatype of SkinThickness Variable is:",df['SkinThickness'].dtypes)

('Mean of SkinThickness is :-', 20.536458333333332)
('Datatype of SkinThickness Variable is:', dtype('int64'))
```

### In [11]:

df['SkinThickness']=df['SkinThickness'].replace(0,df['SkinThickness'].mean())

# In [12]:

```
plt.figure(figsize=(6,4),dpi=100)
plt.xlabel('Insulin Class')
df['Insulin'].plot.hist()
sns.set_style(style='darkgrid')
print("Mean of Insulin is :-", df['Insulin'].mean())
print("Datatype of Insulin Variable is:",df['Insulin'].dtypes)

('Mean of Insulin is :-', 79.79947916666667)
('Datatype of Insulin Variable is:', dtype('int64'))
```

#### In [13]:

```
df['Insulin']=df['Insulin'].replace(0,df['Insulin'].mean())
```

### In [14]:

```
plt.figure(figsize=(6,4),dpi=100)
plt.xlabel('BMI Class')
df['BMI'].plot.hist()
sns.set_style(style='darkgrid')
print("Mean of BMI is :-", df['BMI'].mean())
print("Datatype of BMI Variable is:",df['BMI'].dtypes)
```

```
('Mean of BMI is :-', 31.992578124999998)
('Datatype of BMI Variable is:', dtype('float64'))
```



#### In [15]:

```
df['BMI']=df['BMI'].replace(0,df['BMI'].mean())
```

#### In [16]:

```
plt.figure(figsize=(5,3),dpi=100)
plt.title('Checking Missing Value with Heatmap')
sns.heatmap(df.isnull(),cmap='magma',yticklabels=False)
```

### Out[16]:

<matplotlib.axes.\_subplots.AxesSubplot at 0x128b6278>

```
In [17]:
```

df.head()

Out[17]:

|   | Pregnancies | Glucose | BloodPressure | SkinThickness | Insulin    | ВМІ  | DiabetesPedigreeFun |
|---|-------------|---------|---------------|---------------|------------|------|---------------------|
| 0 | 6           | 148.0   | 72.0          | 35.000000     | 79.799479  | 33.6 |                     |
| 1 | 1           | 85.0    | 66.0          | 29.000000     | 79.799479  | 26.6 |                     |
| 2 | 8           | 183.0   | 64.0          | 20.536458     | 79.799479  | 23.3 |                     |
| 3 | 1           | 89.0    | 66.0          | 23.000000     | 94.000000  | 28.1 |                     |
| 4 | 0           | 137.0   | 40.0          | 35.000000     | 168.000000 | 43.1 |                     |
| 4 |             |         |               |               |            |      | <b>•</b>            |

In [18]:

df.tail()

Out[18]:

|     | Pregnancies | Glucose | BloodPressure | SkinThickness | Insulin    | ВМІ  | DiabetesPedigreeF |
|-----|-------------|---------|---------------|---------------|------------|------|-------------------|
| 763 | 10          | 101.0   | 76.0          | 48.000000     | 180.000000 | 32.9 |                   |
| 764 | 2           | 122.0   | 70.0          | 27.000000     | 79.799479  | 36.8 |                   |
| 765 | 5           | 121.0   | 72.0          | 23.000000     | 112.000000 | 26.2 |                   |
| 766 | 1           | 126.0   | 60.0          | 20.536458     | 79.799479  | 30.1 |                   |
| 767 | 1           | 93.0    | 70.0          | 31.000000     | 79.799479  | 30.4 |                   |
| 4   |             |         |               |               |            |      | <b>&gt;</b>       |

In [20]:

df.to\_csv('after\_week1.csv',index=False)

In [ ]: