1 Obyčejné diferenciální rovnice 1. řádu

Řešíme obyčejnou diferenciální rovnici s počáteční podmínkou

$$y'(x) = f(x, y(x)), x \in (a, b)$$

$$y(a) = \alpha,$$
 (1)

kde $y:[a,b]\to\mathbb{R}^n$, $f:[a,b]\times\mathbb{R}^n\to\mathbb{R}^n$ a $\alpha\in\mathbb{R}^n$.

Základním příkladem (skalární) rovnice je

$$y'(x) = \lambda y(x), \qquad y: \mathbb{R} \to \mathbb{R}$$

 $y(a) = \alpha,$ (2)

modelující exponenciální růst (pro $\lambda > 0$), nebo např. radioaktivní rozpad (pro $\lambda < 0$).

Úloha 1. • Vyřešte analyticky rovnici (2). Uvažujte y > 0.

- Výsledné analytické řešení si pro $\lambda > 0$ načrtněte pro několik různých počátečních podmínek.
- Výsledné analytické řešení si pro $\lambda < 0$ načrtněte pro několik různých počátečních podmínek. [Nápověda: převeďte rovnici na tvar $\frac{y'}{y} = \lambda$ a integrujte přes x. Integrační konstantu určete z počáteční podmínky.]

1.1 Základní jednokrokové numerické metody

Interval [a,b] rozdělíme ekvidistantně s krokem $h: x_0 = a, x_1 = a+h, \ldots, x_{\frac{b-a}{h}} = b$. Označíme $y_n \approx y(x_n)$ numerickou aproximaci řešení v x_n . Obecná jednokroková metoda má tvar: $y_{n+1} = y_n + h\Phi(x_n, y_n, h)$ Definujeme jednokroková numerická schémata pro řešení ODR:

Explicitní Eulerovo metoda: $y_{n+1} = y_n + hf(x_n, y_n)$.

Implicitní Eulerovo metoda: $y_{n+1} = y_n + hf(x_{n+1}, y_{n+1}).$

Midpoint metoda (explicitní): $y_{n+1} = y_n + hf\left(x_n + \frac{h}{2}, y_n + \frac{h}{2}f(x_n, y_n)\right).$

Úloha 2. Simulujte numerické řešení rovnice (2) na intervalu [0,2] pro $\lambda = 1$ a počáteční podmínku y(0) = 1. Použijte krok h = 1 a h = 0.5.

- $\bullet \;\; \check{R}e\check{s}te \; nejprve \; pomoc\'i \; explicitn\'i \; Eulerovy \; metody, \; pot\'e \; pomoc\'i \; implicitn\'i \; Eulerovy \; metody.$
- Pokuste se spočtené řešení nakreslit tak, aby vynikl geometrický význam daného schématu, tj. pro každý bod numerického řešení do obrázku přikreslete odpovídající náčrtek schématu.

1.2 Lokální diskretizační chyba, konzistence, řád metody a konvergence pro explicitní metody

Lokální dikretizační chybu $\tau(x,h)$ definujeme jako:

$$\tau(x,h) = \frac{y(x+h) - y(x)}{h} - \Phi(x,y,h) \tag{3}$$

kde všechna y mají význam řešení ODR splňující počáteční podmínku úlohy, tj. $y(a) = \alpha$.

Metoda je konzistentní, jestliže $\Phi(x, y, 0) = f(x, y)$.

Metoda je *řádu p*, jestliže pro všechny x platí, že $\tau(x,h) = O(h^p)$.

Je-li explicitní jednokroková metoda konzistentní, řádu p a Φ je Lipschitzovsky spojitá vzhledem k y, pak nám Věta z přednášky dává odhad na globální chybu

$$\max_{a \le x_n \le b} |y_n - y(x_n)| \le Ch^p \frac{e^{L(b-a)} - 1}{L},\tag{4}$$

kde L>0 je konstanta lipschitzskovskosti Φ v proměnné y a p je řád metody. Jednokroková metoda je konvergentní, pokud $\max_{a\leq x_n\leq b}|y_n-y(x_n)|\to 0$ pro $h\to 0$.

Úloha 3. Ověřte konzistenci a řád 1 explicitní Eulerovy metody. Pro funkci f(x,y) na pravé straně diferenciální rovnice (1) předpokládejte lipschitzovskost vzhledem k proměnné y a spojitost vzhledem k x.

1.3 Metoda polovičního kroku

Podobně jako pro kvadratury, i v případě ODR lze zavést metodu polovičního kroku. Princip je stejný. Místo kroku h použijeme krok velikosti $\frac{h}{2}$. Tato metoda nám znovu pomůže získat aposteriorní odhad v případě, kdy přesné řešení y(x) není známé.

Z předchozího víme, že platí odhad:

$$y_n^{(h)} - y\left(x_n^{(h)}\right) \approx Ch^p,$$

 $y_{2n}^{(h/2)} - y\left(x_{2n}^{(h/2)}\right) \approx C\left(\frac{h}{2}\right)^p.$

Stejně jako v případě kvadratury, budeme předpokládat, že konstanta C je v obou případech stejná. Odečtením předchozích dvou rovnic získáme:

$$y_{2n}^{(h/2)} - y_n^{(h)} \approx C \left(\frac{h}{2}\right)^p (1 - 2^p).$$

Úloha 4. Odvoďte aposteriorní odhad $|y_{2n}^{(h/2)} - y\left(x_{2n}^{(h/2)}\right)|$ metodou polovičního kroku pro obecnou jednokrokovou metodu řádu p.

1.4 Vícekrokové metody

Zvolme $x_n = a + nh$, $n = 0, 1, \ldots, f_n = f(x_n, y_n)$, pak *vícekrokovou metodou* rozumíme předpis

$$\sum_{i=0}^{m} \alpha_i y_{n+i} = h \sum_{i=0}^{m} \beta_i f_{n+i}, \qquad n = 0, 1, \dots,$$
 (5)

kde $\alpha_m \neq 0$ a $|\alpha_0| + |\beta_0| \neq 0$. Hodnotu y_{n+m} tedy spočteme pomocí $y_{n+m-1}, y_{n+m-2}, \dots, y_n$. Jak získáme prvních m prvků?

Vícekrokové metody nejsou vhodné pro adaptivní délku kroku. Pro $\beta_m = 0$ jde o explicitní metody, pro $\beta_m \neq 0$ jde o implicitní metody.

Lokální diskretizační chyba je dána vztahem

$$\tau(x, y, h) := \frac{1}{h} \sum_{i=0}^{m} \alpha_i y(x+ih) - \sum_{i=0}^{m} \beta_i f(x+ih, y(x+ih)).$$

Věta z přednášky nám dává podmínky na volbu koeficientů vícekrokové metody tak, aby její lokální diskretizační chyba měla $\check{r}\acute{a}d~O(h^p)$:

$$\sum_{i=0}^{m} \alpha_i = 0, \qquad \sum_{i=0}^{m} i^j \alpha_i = j \sum_{i=0}^{m} i^{j-1} \beta_i, \ j = 1, \dots, p.$$
 (6)

Metoda je konzistentní, má-li řád alespoň 1.

Vícekroková metoda je 0-stabilni, jestliže pro všechny kořeny ξ jejího charakteristického polynomu $\sum_{i=0}^{m} \alpha_i x^{n+i}$ platí $|\xi| \leq 1$ a zároveň pokud je pro nějaký kořen $|\xi| = 1$, potom je jeho násobnost rovna 1.

Vícekroková metoda je konvergentní právě tehdy, když je 0-stabilní a konzistentní.

Úloha 5. Mějme metody

a)
$$3y_{n+2} - 4y_{n+1} + y_n = 2hf_{n+2}$$
,

b)
$$y_{n+2} + 4y_{n+1} - 5y_n = 4hf_{n+1} + 2hf_n$$
.

Pro každou z metod určete, zda je 0-stabilní, konzistentní a jaký má řád. Dále spočtěte předpis pro y_k , pro úlohu

$$y' = 0, \quad y_0 = 1, \quad y_1 = 1 + \varepsilon.$$

[Nápověda: Z přednášky víme, že $y_n = \sum_{l=1}^m c_l \xi_l^n$, kde pro každé $l \in \{1, \ldots, m\}$ je ξ_l jednoduchý kořen charakteristického polynomu, řeší (5) s f = 0. My chceme takové řešení, které splňuje počáteční podmínky pro y_0 a y_1 .]