

CLOUD COMPUTING APPLICATIONS

Cloud Machine Learning: Workflow Prof. Reza Farivar

Machine Learning Workflow

- AI/ML Life Cycle Workflow
 - 7-step model
- The OSEMN Data Science model
 - Obtain
 - Scrub
 - Explore
 - Model
 - Interpret

- A Taxonomy of Data Science by Hillary Mason and Chris Wiggins
- Most providers offer PaaS solutions for the workflow steps

OSEMN: Obtain

- Data Sources on the cloud
 - Amazon: AES Open Data Registry
 - Azure: Open Datasets
 - Google: Cloud Public Datasets

- APIs (REST, etc.)
- Jupyter notebooks
- Spreadsheets

OSEMN: Obtain

- Structured Data: Rows and Columns
- Tools:
 - Cloud Storage
 - Cloud Databases
 - SQL
 - NoSQL
 - e.g. MongoDB
 - Big Data
 - Parquet
 - HDFS
 - HDF
 - Pig, Hive

OSEMN: Scrub Data

- Data Preparation and Data Wrangling (2 and 3)
- Clean and filter data
- Consolidate multiple files
- Extracting and replacing values
- Split, merge and extract columns
- Jupyter notebooks
- Python, R for data that can fit in one machine
- Spark, MapReduce for Big Data

OSEMN: Explore Data

- Inspect data, data wrangling, analyze data (3 and 4)
- Descriptive statistics
- Test significant variables
 - Correlation
- Feature selection
- Data visualization
- Jupyter notebooks
- If data is small → Python, R
 - Numpy
 - Matplotlib
 - Pandas
 - Scipy
- For Big Data
 - Spark
 - EMR

OSEMN: Model Data (1)

- "Where the magic happens"
 - Train and test model (5 and 6)
- Feature Engineering
 - Dimensionality reduction
- Model training
 - Regression
 - Classification
 - Clustering
 - Frequent Pattern Mining
 - Decision Trees, Random Forests
 - XGBoost
 - Deep Learning

OSEMN: Model Data (2)

- Evaluation
 - Precision
 - Recall
 - F1 Scores
 - Regression
 - MAE (Mean Average Error)
 - RMSE (Root Mean Square Error)
- Small Data: Python, R
 - Scikit Learn
 - H2O
- Big Data
 - Spark Mllib
 - Mahout
 - Google Cloud Dataproc
 - Managed Apache Spark and Hadoop clusters

Hyper Parameter Optimization and AutoML

- Hyperparameters: parameters about the training of the model
 - Number of iterations
 - Topology and Size of a neural network
 - · Learning rate
- Very time consuming to do manually
- The search space can be huge
- AutoML strategies
 - Grid search
 - · Random search
 - Gradient descent
- AutoML vs. Hyperparameter optimization
- Hot competition
 - Azure ML
 - Google AutoML
 - AWS Sagemaker autopilot
 - H2O driverless Al
 - DataRobot

OSEMN: Interpreting Data

- Presentation of the model to a non-technical layman
- Visualizations
- Matplotlib
- Tableau
- D3.js
- Seaborn

Model Deployment

- Model Artifacts
 - Program
 - Parameters
- Keeping the model up to date
 - Data drift detection
 - Model drift detection
 - Version management
- Example: Google AI Platform Prediction

