

Détermination des lois de mouvement - 60 minutes

- **B3-01** Vérifier la cohérence du modèle choisi en confrontant les résultats analytiques et/ou numériques aux résultats expérimentaux.
- **C1-04** Proposer une démarche permettant d'obtenir une loi entrée-sortie géométrique.
- C2-06 Déterminer les relations entre les grandeurs géométriques ou cinématiques.
- **C3-01** Mener une simulation numérique.
- **D2-04** Choisir la grandeur physique à mesurer ou justifier son choix.
- **D2-05** Choisir les entrées à imposer et les sorties pour identifier un modèle de comportement.
- A4-03 Interpréter et vérifier la cohérence des résultats obtenus expérimentalement, analytiquement ou numériquement.
- A4-04 Rechercher et proposer des causes aux écarts constatés.

Objectifs

- Analyser les stratégies de ralliement avec trapèze.
- Déterminer les lois de commandes de chacun des axes pour ces stratégies de ralliement.
- Comparer la commande calculée avec la commande proposée par le logiciel.
- Comparer la commande avec le déplacement réel du bras beta.

Résoudre analytiquement

Résoudre analytiquement

Activité 1. Lois géométriques

- ☐ Réaliser un schéma cinématique minimal paramétré du Control X.
- A partir de la documentation, donner la vitesse maximale de l'axe en translation [ms⁻¹] et la vitesse maximale du moteur en rotation [rad.s⁻¹].
- □ Donner également l'accélération maximale de l'axe en translation [ms⁻²] et l'accélération maximale du moteur en rotation [rad.s⁻²].

ACIIVI

Activité 2. Lois de mouvement sur l'axe

Ecrire la fonction calcule_temps (amax :float, vmax :float, distance :float) -> float, float, float, calculant les temps t₁, t₂ et t₃ dans le cas où le mouvement est régi par un trapèze de vitesse dont l'accélération maximale est amax, la vitesse maximale accessible est vmax, la distance à parcourir est distance.

- Ecrire une fonction calcule_profil(amax,vmax,angle,dt) -> np.array, np.array, np.array retournant:
 - les_t : tableau numpy des temps discrétisés toutes les dt s ;
 - les_x: tableau numpy des positions (en fonction du temps);
 - les_v : tableau numpy des vitesses (en fonction du temps);
 - les a : tableau numpy des accélérations (en fonction du temps).
- Tracer les profils de position, vitesse et accélération de l'axe de translation, pour un déplacement de 100 mm.

Résoudre analytiquement et

Activité 3. Lois de mouvement du moteur

- Ecrire une fonction calcule_moteur (amax,vmax,angle,dt) -> np.array, np.array, np.array retournant:
 - les_t: tableau numpy des temps discrétisés toutes les dt s;
 - les_xr: tableau numpy des positions angulaires (en fonction du temps);
 - les_vr: tableau numpy des vitesses angulaires (en fonction du temps);
 - les_ar: tableau numpy des accélérations angulaires (en fonction du temps).
- Tracer les profils de position, vitesse et accélération de l'axe du moteur, pour un déplacement du chariot de 100 mm.

Analyser les

Activité 4.

- Réaliser un essai en essai en trapèze pour un déplacement de 200 mm. (Analyse temporelle ▶ Trapèze de vitesse).
- Comparer les résultats issus de la modélisation et ceux issus de la simulation.

Réaliser une synthèse dans le but d'une préparation orale :

Comparer les lois de commande pour un mouvement programmé avec les déplacements mesurés.

Pour XENS - CCINP - Centrale - CCMP:

- Donner l'objectif de l'activités.
- Donner un schéma cinématique en couleur et le paramétrage associé.

Pour CCMP:

■ Ajouter les courbes et les conclusions au compte-rendu.