

Chemistry... Chem බී.එස්.: යස්නානායක විදුනලය කෙළඹ 07 Chemistry...

D.S. Senanayake College - Colombo 07

අවසාන වාර පරීක්ෂණය, 2022 ජනවාරි Final Term Test, January 2022

රසායන විදනව Chemistry

12 වන ශේුණිය Grade 12

පැය දෙකයි Two hours

සැලකිය යුතුයි :

- * සියලු ම පුශ්න වලට පිළිතුරු සපයන්න.
- * උත්තර පතුයේ නියමිත ස්ථානයේ ඔබේ විභාග අංකය ලියන්න.
- * උත්තර පතුයේ පිටුපස දී ඇති අනෙක් උපදෙස් ද සැලකිල්ලෙන් කියවා පිළිපදින්න.
- * 1 සිට 50 තෙක් වූ එක් එක් පුශ්නයට (1), (2), (3), (4), (5) යන පිළිතුරු වලින් **නිවැරදි හෝ ඉතාමත්** ගැලපෙන හෝ පිළිතුර තෝරා ගෙන එය උත්තර පතුයේ දක්වෙන උපදෙස් පරිදි කතිරයක් (x) යොදා දක්වන්න.

ප්ලාන්ක් නියතය

සාර්වතු වාසු නියතය $R = 8.314 \, \mathrm{JK^{-1} \, mol^{-1}}$ $h = 6.62 \times 10^{-34} \text{ J}$

ඇවගාඩෝ නියතය

 $N_A = 6.022 \times 10^{23} \text{ mol}^{-1}$ ආලෝකයේ වේගය $C = 3 \times 10^8 \text{ ms}^{-1}$

- 01. භූමි අවස්ථාවේ පවතින Cu පරමාණුවක හර ඉලෙක්ටෝන සංඛ්‍යාව වනුයේ,
 - 1) 10
- 2) 28
- 3) 29
- 4) 12
- 5) 18
- 02. උච්ච තත්ත්ව යටතේ දී විකිරණ ශක්තියට අංශු ධාරාවක් හෙවත් ෆෝටෝන ලෙස හැසිරිය හැකි බවත්, පදාර්ථයට තරංගමය ගුණ පුදර්ශනය කළ හැකි බවත් පෙන්වා දුන් විදාහඥයා වන්නේ,
 - 1) මැක්ස් ප්ලාන්ක්

2) ෆැරැන්සිස් විලියම් ඇස්ටන්

3) නීල්ස් හෙන්ඩුක් බෝර්

4) ලුවී ඩී බුෝග්ලි

- 5) විලියම් කෲක්ස්
- 03. හතරවන ආවර්තයේ මූලදුවා අතරින් භූමි අවස්ථාවේ වැඩිම වියුග්ම ඉලෙක්ටෝන සංඛාාවක් සහිත මූලදුවායේ සංයූජතා කවචයේ ඇති ඉලෙක්ටුෝනයේ (n, l, m_l, m_s) යන ක්වොන්ටම් අංක කුලකය වනුයේ,
 - 1) $3, 0, 0, +\frac{1}{2}$

2) 3, 2, 0, $+\frac{1}{2}$

3) 4, 0, 0, $+\frac{1}{2}$

4) 3, 2, 1, $+\frac{1}{2}$

- 5) 4, 1, 1, $+\frac{1}{2}$
- $04.~{
 m Z}$ නම් මූලදුවායකින් සාදන සල්ෆේටයේ සූතුය ${
 m Z}_2({
 m SO}_4)_3$. මෙම මූලදුවා සාදන වෙනත් සංයෝගයක සූතුය විය හැක්කේ,
 - 1) ZO₃
- $Z(NO_3)_3$
- 3) **ZSO**₃
- ZH_4
- 5) ZF₆
- $05.~{
 m A}$ මූලදුවා (අඳුරු නොකළ ගෝල) හා ${
 m B}$ මූලදුවා (අඳුරු කළ ගෝල) අතර සිදුවන පුතිකිුයාව සඳහා උචිත තුලිත රසායනික සමීකරණය වනුයේ,

1) A + B → AB

2) $A + 3B \longrightarrow AB_3$

3) $A_2 + 3 B_2 \longrightarrow 2 AB_3$

4) $A_2 + 2 B_2 \longrightarrow 2 AB_2$

5) $2A_2 + 2B_2 \longrightarrow 2A_2B_2$

- සියලු ම හිමිකම් ඇවිරිණි. / All Right Reserved] D.S. Senanayake College - Colombo 07 $06. \ \mathrm{sp}^3$ මුහුම්කරණයක් ඇති මධා පරමාණුවක් සහිත අණුවල මධා පරමාණුව වටා පැවතිය හැකි හැඩයන් දුක්වෙන නිවැරදි පිළිතුර වන්නේ, 1) තලීය තිකෝණාකාර, කෝණික, රේඛීය 2) චතුස්තලීය, කෝණික, තුිආනති ද්වීපිරමිඩ 3) තලීය සමචතුරසුාකාර, චතුස්තලීය, තුිආනති ද්විපිරමිඩාකාර 4) නිුආනති ද්වීපිරමිඩ, විකෘති සිසෝ, T හැඩය 5) කෝණික, තිුකෝණාකාර පිරමිඩ, චතුස්තලීය 07. සජල ${
 m MgSO_4}$ රත්කිරීමෙන් එහි ඇති ජල අණු සියල්ල ඉවත් කළ විට එහි ස්කන්ධය 51% කින් අඩුවිය. සජල
- සලප්ෆේටයේ රසායනික සූතුය විය හැක්කේ, (Mg 24, S 32, O 16, H 1)

1) MgSO₄. 10 H₂O

2) MgSO₄. 7 H₂O

MgSO₄. 5 H₂O

4) MgSO₄. H₂O

5) MgSO₄. 2 H₂O

08. CH3 - C - CH2 - CH2 - Cl යන කාබනික සංයෝගයේ IUPAC නාමකරණය වනුයේ CH_2

1) 4-chloro-2-methylbut-1-ene

2) 1-chloro-3-methylbut-3-ene

3) 4-chloro-2-methylbutan-1-ene

4) 4-chlorido-2-methylbut-1-ene

5) 4-chloromethylbut-1-ene

 $09. \ \text{Cr}_2\text{O}_7^{2^-} + \text{HNO}_2 + \text{H}^+ \longrightarrow \ \text{Cr}^{3^+} + \text{NO}_3^- + \text{H}_2\text{O}$ යන ඔක්සිකරණ - ඔක්සිහරණ අයනික පුතිකිුයාව තුලනය කළ විට එක් එක් පුභේදයේ සංගුණක වමේ සිට දකුණට පිළිවෙලින් දක්වෙනුයේ,

1) 1, 2, 5, 2, 3, 4

2) 1, 3, 5, 2, 3, 4

3) 1, 5, 3, 2, 4, 3

4) 1, 3, 2, 5, 3, 4

5) 1, 2, 3, 3, 4, 5

10. හයිඩුජන් වායුව (H_2) ලීටර 10 ක් 7 atm පීඩනයක් යටතේ චලනය විය හැකි පිස්ටනයක් සහිත සිලින්ඩරයක ඇත. එම උෂ්ණත්වයේ දීම එම වායු ස්කන්ධයේ පරිමාව 4l වනතෙක් පිස්ටනය චලනය කරන ලදී. සිලින්ඩරය තුළ පීඩනය වනුයේ,

1) 7 atm

3) 17.5

4) 18.5

5) 35.5

2) 9 atm

atm

atm

atm

11. මැග්නටයිට් (Fe_3O_4) කාබන් මොනොක්සයිඩ් සමග රත් කිරීමෙන් ලෝහ යකඩ ලබාගැනීමේ කිුිියාවලියට අදාල රසායනික සමීකරණය පහත දූක්වේ.

$$Fe_3O_{4(s)} + 4CO_{(g)} \longrightarrow 3Fe_{(s)} + 4CO_{2(g)}$$

85% ක කාර්යසුමතාවයකින් යුත් ඉහත කිුයාවලියෙන් යකඩ $5~{
m kg}$ ලබාගැනීමට මැග්නටයිට් කොපමණ ස්කන්ධයක් යොදාගත යුතු ද? (Fe - 56, O - 16, C - 12)

1) 6.9 kg

2) 8.12 kg 3) 20.8 kg 4) 24.4 kg 5) 9.6 kg

12. 6 mol dm⁻³ HCl 3 cm³ ක් මගින් 1.2 g වන NaHCO₃ හා Na₃CO₃ මිශුණයෙන් NaCl, CO₂, H₂O බවට පත් කරන ලදී, 25°C දී හා 760 Hgmm දී පිටවූ CO2 වායු පරිමාව වනුයේ, (H - 1, O - 16, C - 12, Na - 23)

1) 130 cm^3

2) 0.013 dm^3 3) 3.22 cm^3 4) 322 cm^3 5) 32.2 cm^3

- 13. 398 K දී $\Delta H_{\mathrm{f}}^{\theta} \ [\mathrm{H}_2\mathrm{O}_{(\mathrm{g})}] = -241.8 \text{ kJ mol}^{-1}$ වේ. එම උෂ්ණත්වයේ දී H O හා H H සම්මත බන්ධන විඝටන එන්තැල්පි විපර්යාස පිළිවෙලින් 463 kJ mol⁻¹ හා 435 kJ mol⁻¹ නම් එම උෂ්ණත්වයේ දී O - O බන්ධන විඝටන එන්තැල්පි විපර්යාස kJ mol⁻¹ වලින් වනුයේ,
 - 1) 0
- 2) 249
- 3) 428
- 4) 498
- 5) 489
- 14. සුදු පැහැති ඝන්ධයක් නොමැති ඝන ස්ඵටිකයක් බන්සන් දුල්ලට ඇල්ලූ විට තත්ත්පර 10 කින් පමණ දියවේ. එය ජලයේ දියවන අතර CCl4 වල දිය නොවේ. විලීන දාවණය තුලින් විදාපුතය සන්නයනය නොවේ. එම දුවා වියහැක්කේ,
 - 1) අයනික සංයෝගයකි.

2) නිර්ධැවීය සහසංයුජ සංයෝගයකි.

ධැවීය සහසංයුජ සංයෝගයකි.

4) සංශුද්ධ අලෝහ මූලදුවායකි.

- 5) සංශුද්ධ ලෝහ මූලදුවායකි.
- 15. ඉදිරියෙන් දක්වෙන ගුණය විචලනය නිවැරදිව නිරූපණය නොවන පිළිතුර වන්නේ,
 - 1) $MgO > MgCl_2 > NaCl$
- (දුලිස ශක්තිය)

- 2) LiF > NaF > KF
- (ජල දුාවානාව)
- 3) $BF_3 > PF_3 > ClF_3$
- (බන්ධන කෝණය)
- 4) FH - F > OH -- H > NH - H (H බන්ධන ශක්තිය)
- 5) $Al^{3+} > Mg^{2+} > Na^{+}$
- (ධැවීකරණ බලය)
- 16. නයිටුස් ඔක්සයිඩ්හී සම්පුයුක්ත වූහයන්ගේ ස්ථායීතාව නිවැරදිව නිරූපණය වන පිළිතුර වනුයේ,
 - (a) $: \mathbf{N} \equiv \mathbf{N}^+ \mathbf{O} = \mathbf{N}^+$
- (b) $: \ddot{N}^2 N \stackrel{+}{=} O^+$
- (c) $\ddot{N} = N^{\dagger} = \ddot{O}$

1) a < b < c

2) c < b < a

3) b < c < a

4) c = b < a

- 5) b < a < c
- 17. චාලක අණුක වාදයට පටහැනි පුකාශය වනුයේ,
 - 1) වායු ඉතා කුඩා අංශුවලින් සමන්විත වන අතර නොකඩවා අහඹු චලිතයක යෙදේ.
 - 2) වායු අංශුන්ගේ මධාන චාලක ශක්තිය නිරපේඤ උෂ්ණත්වයට අනුලෝමව සමානුපාතික වේ.
 - 3) වායු අංශු දෙකක් පූර්ණ පුතහාස්ථ ලෙස ඝට්ටනය වීමේ දී අංශු දෙකෙහිම චාලක ශක්තී ඉහළ යයි.
 - 4) අංශු අතර ආකර්ෂණ බල හෝ විකර්ෂණ බල නොමැත.
 - 5) වායු අංශු ලක්ෂීය ස්කන්ධ ලෙස සැලකේ.
- 18. නියත වායු ස්කන්ධයක උෂ්ණත්වය නියත විට වායුවේ පීඩනය හා පරිමාව අතර විචලනය නිවැරදිව නිරූපණය නොවන පිළිතුර වන්නේ.

19. ඉන්ධනයක් ලෙස ජල හුමාලය නිපදවීමේ කිුයාවලිය දැක්වෙන පහත පුතිකිුයාවේ $25~^{
m o}{
m C}$ දී $\Delta {
m G}^{
m heta}=91.43~{
m kJ~mol}^{-1}$ වන අතර $\Delta H^{\theta} = 131.28 \text{ kJ mol}^{-1}$ හා $\Delta S^{\theta} = 133.6 \text{ J K}^{-1} \text{ mol}^{-1}$ වේ.

$$C_{(s, grafite)} + H_2O_{(g)} \rightleftharpoons CO_{(g)} + H_2(g)$$

ඉහත උෂ්ණත්ව පරාසය තුළ $\Delta H^{ ext{t}}$ නොවෙනස්ව පවතී නම් ඉහත පුතිකිුයාව සමතුලිතතාවය පවතින උෂ්ණත්වය වනුයේ.

- 1) 983 °C
- 2) 709 °C 3) 938 °C 4) 709 K

- 5) 938 K
- 20. I + MnO₄ + H₂O → I₂ + MnO₂ + OH හි I : OH මවුල අනුපාතය වනුයේ,
 - 1) 3:4
- 3) 2:1
- 4) 3:2
- 5) 6:1
- 21. ලෝහය $15~\mathrm{g}$ ක් වැඩිපුර HCl සමග පුතිකියා කර AlCl $_3$ හා H $_2$ ලබා දෙයි. 27^{o} C දී හා $688~\mathrm{torr}$ දී ලැබෙන H $_2$ පරිමාව dm^3 වලින් වනුයේ, (Al=27)
 - 1) 2.3
- 2) 0.023
- 3) 23
- 4) 25.5
- 5) 2.55
- 22. Copper(I) arsenide යන IUPAC නාමකරණය සහිත සංයෝගයේ රසායනික සූතුය නිවැරදිව නිරූපණය වන පිළිතුර වනුයේ,
 - 1) Cu₃As
- Cu₃ASO₄
 Cu₅As
- 4) Cu₃As₂
- Cu_3AsO_3
- 23. පුස්ථාරයේ $A,\,B,\,C,\,D$ වලින් දක්වෙන හයිඩුයිඩ පිළිවෙලින් දක්වෙන පිළිතුර වනුයේ, \uparrow
 - 1) CH₄, SiH₄, GeH₄, SnH₄
- 2) NH₃, PH₃, AsH₃, SbH₃
- 3) H_2O , H_2S , H_2Se , H_2Te
- 4) HF, HCl, HBr, HI
- 5) CH₄, NH₃, H₂O, HF

- 24. පහත පුකාශ අතරින් අසතා පුකාශය වනුයේ,
 - 1) සම්මත අවස්ථාවේ දී ඇති මූලදුවා වල ස්ථායී භෞතික අවස්ථාවේ නිරපේඎ එන්තැල්පිය ශුනා ලෙස සැලකේ.
 - 2) සම්මත අවස්ථාවේ දී ඇති මූලදුවා වල ස්ථායී භෞතික අවස්ථාවේ නිරපේඎ එන්ටොපිය ශුනා ලෙස සැලකේ.
 - 3) සම්මත අවස්ථාවේ දී ඇති මූලදුවා වල ස්ථායී භෞතික අවස්ථාවේ නිරපේඤ ගිබ්ස් නිදහස් ශක්තිය ශුනා ලෙස සැලකේ.
 - 4) දියමන්ති මිනිරන් බවට පත්වීමේ ගිබ්ස් ශක්ති විපර්යාසය ඍණ වේ.
 - 5) පුතාාවර්ත සමතුලිත පද්ධතියක ගිබ්ස් ශක්ති විපර්යාසය ශුතා වේ.
- 25. ඉහළින් සඳහන් ජාාමිතියට නොගැලපෙන අණුවක් හෝ අයනයක් අඩංගු පිළිතුර වනුයේ,

	චතුස්තලීය	තලීය තුකෝණාකාර	තිුආනති ද්වීපිරමිඩ	අෂ්ට තලී ය
1)	CH_4	BCl_3	I_3	BrF ₅
2)	SO_4^{2-}	CO_3	$XeOF_2$	$[Cu(H_2O)_6]^{2+}$
3)	OF_2	$AlCl_3$	SF_4	ICl_5
4)	CCl ₄	$BeCl_2$	PCl_5	SF_6
5)	NH_3	SO_2	ICl ₃	XeF_4

26. පහත දත්ත සලකන්න

 $C_2H_5 - S - C_2H_{5(g)}$; $\Delta H_f^{\theta} = -147 \text{ kJ mol}^{-1}$

 $C_2H_5 - S - S - C_2H_{5(g)}$; $\Delta H_f^{\theta} = -202 \text{ kJ mol}^{-1}$

 $\Delta H_{\rm f}^{\theta} = +222 \text{ kJ mol}^{-1}$ $S_{(g)}$

S - S බන්ධනයේ බන්ධන විඝටන එන්නැල්පිය වන්නේ (kJmol⁻¹)

- 1) 55
- 2) 127
- 3) -167
- 4) 167
- 5) 277

27. සුදුපාට ස්ඵටිකරූපී ලවණයක් වන A තනුක H_2SO_4 සමග රත් කළ විට දුඹුරුපාට වායුවක් පිටවේ. A හි ජලීය දුාවණයකට තනුක NaOH එකතු කළ විට සුදු අවක්ෂේපයක් ලැබෙන අතර එම අවක්ෂේපය වැඩිපුර NH3 තුල දිය නොවීය. A යනු,

- 1) KNO₂ 2) KBr
- 3) AlBr₃ 4) $Zn(NO_2)_2$ 5) Al $(NO_2)_3$

28. ජලීය දාවණයක් තුළ Cu^{2+} හා Pb^{2+} අයන පවතී. මින් එක් අයනක් එලෙසම දාවණය තුළ තිබියදී අනෙක් අයනය අවක්ෂේප කිරීම සඳහා යොදාගත හැකි පුතිකාරකය වන්නේ

- 1) KI (aq)

- 2) $H_2S_{(aq)}$ 3) $H_2SO_{4(aq)}$ 4) $HNO_{3(aq)}$ 5) $NH_4NO_{3(aq)}$

29. දී ඇති සංයෝග යුගලවල ආම්ලිකතාව වෙනස්වන ආකාරය නිවැරදිව දක්වා නොමැත්තේ පහත කුමක ද?

1) $CO_2 > CO$

 $SO_3 > SO_2$

3) HClO₃ > HOCl

4) $SiO_2 > CO_2$

5) $N_2O_3 > NO$

30. M නම් මූලදුවාන +3 කැටායනය සාදන ක්ලෝරයිඩයකට අදාල පුතිකියා අනුකුමයක් පහත දක්වේ.

ඇසිටික් පැහැදිලි MCl_{3 (aq)} ආවිලතාවය දුාවණය

M විය හැක්කේ,

- 1) Al³⁺
- 2) Fe³⁺
- 3) Sb^{3+}
- 4) As³⁺
- 5) Au³⁺

A/L æs | papers grp

අංක 31 සිට 40 තෙක් චක් චක් පුශ්නය සඳහා දී ඇත (a), (b), (c) හා (d) යන පුතිචාර හතර අතරින් චකක් හෝ වැඩි ගණනක් හෝ නිවැරදි ය. නිවැරදි පුතිචාරය / පුතිචාර කවරේ දැයි තෝරා ගන්න.

- (a) සහ (b) පමණක් නිවැරදි නම් (1) මත ද,
- (b) සහ (c) පමණක් නිවැරදි නම් (2) මත ද,
- (c) සහ (d) පමණක් නිවැරදි නම් (3) මත ද,
- (d) සහ (a) පමණක් නිවැරදි නම් (4) මත ද,

වෙනත් කිසියම් පුතිචාර සංඛතවක් හෝ සංයෝජනයක් හෝ නිවැරදි නම් (5) මත ද උත්තර පතුයෙහි දැක්වෙන උපදෙස් පරිදි ලකුණු කරන්න.

ඉහත උපදෙස් සම්පිණ්ඩණය

නිවැරදි පුතිචාර	a හා b	b හා c	c හා d	a හා d	වෙනත් කිසියම් පුතිචාරයක් / පුතිචාර නිවැරදිය.
පිළිතුර	1	2	3	4	5

- 31. පරිපූර්ණ වායුවක වර්ග මධානා මූල වේගය සම්බන්ධව සතා වන්නේ,
 - a) එය නිරපේක්ෂ උෂ්ණත්වයට අනුලෝමව සමානුපාතික වේ.
 - b) එය වායුවේ මවුලික ස්කන්ධයේ වර්ග මූලයට පුතිලෝමව සමානුපාතික වේ.
 - c) එය මධාන අණුක චාලක ශක්තිය ඇති අණුවක වේගයට සමාන වේ.
 - d) එය පීඩනයෙන් ස්වායත්ත වේ.
- 32. ClO₃ සහ ClO₄ අයන සම්බන්ධව සතා වනුයේ,
 - a) අයන දෙකෙහිම මධා Cl පරමාණුව sp^3 මුහුම්කරණය ඇත.
 - b) අයන දෙකෙහිම මධා පරමාණුව වටා ඉලෙක්ටෝන යුගල ජාාමිතිය චතුස්තලීය වේ.
 - c) ClO_3 පිරමිඩීය හැඩැති වන අතර ClO_4 චතුස්තලීය වේ.
 - d) අයන දෙකම ජලීය දාවණයේ දී දුබල අම්ල වේ.
- 33. රෙඩොක්ස් පුතිකිුයාවක් වන්නේ මින් කුමන පුතිකිුයාව / පුතිකිුයා ද
 - a) $Cl_2 + H_2O \longrightarrow HOCl + HCl$
 - b) $2 \text{ CuCl} + \text{Cl}_2 \longrightarrow 2 \text{ CuCl}_2$
 - c) $PCl_3 + 3 H_2O \longrightarrow H_3PO_3 + 3 HCl$
 - d) $N_2O_3 + H_2O \longrightarrow 2 HNO_2$
- 34. X නම් අකාබනික සංයෝගය බන්සන් දැල්ලට කොළ පැහැයක් ලබාදේ. එය ජලයෙහි දාවා අතර තනුක නයිටුක් අම්ලය සහ $AgNO_3$ සමග අවක්ෂේපයක් ලබාදේ. X විය හැක්කේ මින් කුමක් / කුමන ඒවා ද?
 - a) BaBr₂

b) $Cu(NO_2)_2$

c) Ba(NO₃)₂

d) CuBr₂

- 35. [Co(NH₃)₆]SO₄ යන සංයෝගය පිළිබඳ සතා වන්නේ,
 - a) සංයෝගයේ IUPAC නම hexaaminecobalt(II) sulphate වේ.
 - b) H2O2 එකතු කළ විට රතු දුඹුරු දුාවණයක් ලැබේ.
 - c) මධා ලෝහ කැටායනයේ ඔක්සිකරණ අංකය +2 වේ.
 - d) මෙම සංයෝගයට ජලය එකතු කරන විට නිල් දුාවණයක් ලැබේ.
- $36. \ \mathrm{PV} = \frac{1}{3} \mathrm{mNC}^2$ යනසමීකරණය සම්බන්ධව පහත කුමන කරුණ / කරුණු සතා නොවේ ද?
 - a) වායුවක පීඩනය එහි ඒකක පරිමාවක ඇති අණු සංඛ්‍යාවට සමානුපාතික බව ගමා වේ.
 - b) මෙහි $\overline{C^2}$ යනු වායුවේ අණුවල වර්ග මධානා වේගය වේ.
 - c) වායුවේ ස්කන්ධය m මගින් ලැබේ.
 - d) වායුවේ අණුවල මුළු චාලක ශක්තිය PV ගුණිතයට සමාන බව සමීකරණයෙන් පෙන්වයි.
- 37. පහත සඳහන් කුමන සංයෝගය / සංයෝග HBr සමග පුතිකියා කරවීමෙන් පුකාශ සකීය සංයෝගයක් ලබාගත හැකි ද?
 - a) $CH_3 CH = CH_2$

b) $C_2H_5CH = CH_2$

c) $CH_3 CH = CH_3 - CH_3$

- d) $C_2H_5 CH = CH CH_3$
- 38. හයිඩුජන් පරමාණුක වර්ණාවලියේ අනුයාත රේඛා ශේණී 2 ක පළමු රේඛා තුන පහත රූපයේ දක්වේ.

- C රේඛාව රතු පාටින් දිස් වේ. පහත කවර පුකාශය සතා වේ ද?
- a) A සිට E දක්වා යැමේදී සංඛ්‍යාතය වැඩිවේ.
- b) C රේඛාවේ තීවුතාවය B රේඛාවේ තීවුතාවයට වඩා වැඩිවේ.
- c) E රේඛාවට අනුරූප ඉලෙක්ටුෝන සංකුමණය වන්නේ $n=5 \rightarrow n=3$ ය.
- d) A හා B රේඛා අතර පරතරය E හා F රේඛා අතර පරතරයට වඩා තරමක් වැඩිවේ.
- 39. තදිත් රත් කළවිට O_2 හෝ N_2 මුදානොහරින්නේ මින් කවර ඒවා ද?
 - a) KClO₃
- b) NH₄NO₃
- c) LiNO₃
- d) AgNO₃
- 40. $200~^{\circ}$ C දී සහ 1~atm හිදී X හි වායුමය කාඛනික සංයෝගයේ $10~cm^3$ ක් මුළුමනින් ම දහනය කිරීමට O_2 වායුව $30~cm^3$ ක් වැය විය. X විය හැක්කේ,
 - a) C₂H₄

- b) C₂H₆O
- c) $C_2H_4O_2$
- d) C_6H_6

.22 A/L &8 [papers grp]

අංක 41 සිට 50 දක්වා චක් චක් පුශ්නය සඳහා පකාශ දෙක බැගින් ඇත. එම පකාශ යුගලයට හොදින් ගැලපෙනුයේ
 පහත වගුවෙහි දැක්වෙන පරිදි 1, 2, 3, 4, සහ 5 යන පතිචාර වලින් කවර පතිචාරය දැයි තෝරා පිළිතුරු පතුයේ
 උචිත ලෙස සලකුණු කරන්න.

පුතිචාරය	පළමුවැනි පුකාශය	දෙවැනි පුකාශය
1	සතෳයයි.	සතෳ වන අතර පළමුවැන්න නිවැරදිව පහදා දෙයි.
2	සතෳයයි.	සතෳ වන නමුත් පළමුවැන්න නිවැරදිව පහදා නොදෙයි.
3	සතෳයයි.	අසතෳයයි.
4	අසතෳයයි.	සතෳයයි.
5	අසතෳයයි.	අසතෳයයි.

	පළමුවැනි පුකාශය	දෙවැනි පුකාශය
41.	ගුණාත්මක විශ්ලේෂණයේ දී IV වන කාණ්ඩයේ දී අවක්ෂේප වන සල්ෆයිඩ සියල්ල d - ගොනුවේ මූලදුවා වල සල්ෆයිඩ වේ.	
42.	1 - chloropropene පාරතිුමාන සමාවයවිකතාවය දක්වයි.	සියලුම පාරතිුමාන සමාවයවික ජාාමිතික සමාවයවික වේ.
43.	කිසියම් කියාවලියක් පියවර වශයෙන් සිදුවේනම් සමස්ථ එන්තැල්පි විපර්යාසය ඒ ඒ පියවර වල එන්තැල්පි විපර්යාසවල එකතුවට සමාන වේ.	
44.	ලුවිස් වසුහයන් මගින් අණුවක පරමාණු සම්බන්ධවී ඇති ආකාරය පිළිබඳව හෙලි කළද අණුවේ හැඩය පිළිබඳව පුකාශ නොකරයි.	
45.	දෙවන කාණ්ඩය ඔස්සේ පහළට යත්ම කැටායනයේ ධැවීකරණ බලය ඉහළ යයි.	BaCO3 වලට වඩා පහසුවෙන් MgCO3 තාප වියෝජනයට ලක්වේ.
46.	වායු දුව බවට පත්වීමේ දී එන්ටුෝපිය අඩුවේ	වායු දුව බවට පත්වන විට අහඹුතාව අඩුවේ.
47.	$\mathrm{CH_3}$ $\mathrm{CH_2}$ - C \equiv CH සහ $\mathrm{CH_3}$ $\mathrm{CH_2}$ CH = $\mathrm{CH_2}$ වෙන්කර හඳුනා ගැනීමට ඇමෝනීය $\mathrm{AgNO_3}$ යොදාගත හැකි ය.	$ ext{CH}_3 ext{ CH}_2 - ext{C} \equiv ext{CH}$ මගින් $ ext{Ag}^+$, $ ext{Ag}$ ලෝහය බවට ඔක්සිහරණය කරයි.
48.	3d මූලදුවා වල පුථම අයනීකරණ එන්තැල්පිය පරමාණුක කුමාංකය සමග වැඩිවේ.	සියලුම 3d මූලදුවාවල පුථම අයනීකරණයේ දී 4s ඉලෙක්ටෝනයක් ඉවත් වේ.
49.	පළමු කාණ්ඩයේ මූලදුවා වලට සාපේඎව එකම ආවර්තයේ ඇති දෙවන කාණ්ඩයේ මූලදුවා ඝනත්වයෙන් වැඩි ය.	දෙවන කාණ්ඩයේ මූලදුවාවල ලෝහක බන්ධන පුබල බව පළමු කාණ්ඩයේ මූලදුවා වලට වඩා වැඩි ය.
50.	ඇල්කීන, ඉලෙක්ටුෝෆයිල සමග පුතිකිුයා කරයි	C = C ද්විත්ව බන්ධනයේ ඇති සිග්මා බන්ධනය පහසුවෙන් ධුැවීකරණයට භාජනය වේ.