Лекция 7 Алгоритмы на графах. Инструменты для анализа сетей

Анализ и разработка алгоритмов

Содержание

- Основные и степенные меры
- 2 Меры расстояния
- Мера плотности
- Модулярность
- 5 Анализ сетей с помощью Gephi

Постановка задачи

Как различать сети (графы)? Какие меры использовать для анализа сетей?

Какие графы называют

- не/ориентированными?
- не/взвешенными?
- не/полными?
- не/связными?
- плотными/разреженными?

Сеть подписчиков группы банка (сеть банка)

Сеть подписчиков группы банка во ВКонтакте, представленная в виде невзвешенного неориентированного связного графа с 15,923 узлами (вершинами) и 200,633 связями (ребрами)

Вопрос: что должен включать анализ этой сети?

Основные и степенные меры

Основные меры:

|V| — число вершин

|E| — число ребер

Степенные меры:

d(v), степень v, — число входящих и исходящих ребер вершины v $d_{\rm in}(v)$, полустепень захода v, — число входящих ребер вершины v $d_{\rm out}(v)$, полустепень исхода v, — число исходящих ребер вершины v $\overline{d}=\frac{1}{|V|}\sum_{v\in V}d(v)$ — средняя степень вершин

Значения для сети банка:

$$|V| = 15,923$$

$$|E| = 200,633$$

$$\bar{d} = 25.20$$

Большая часть вершин: малые d

Малая часть вершин (хабы): большие d

Гипотезы о распредении d?

Меры расстояния

 ${\sf dist}(v,u)$ — расстояние (длина кратчайшего пути) между v и u (G — связный)

Эксцентриситет $\epsilon(\mathbf{v}) = \max_{u \in \mathbf{V}} \operatorname{dist}(\mathbf{v}, u)$ — наибольшее расстояние между \mathbf{v} и другими вершинами

Радиус $r = \min_{v \in V} \epsilon(v)$ — минимальный эксцентриситет по всем вершинам

Диаметр $D = \max_{v \in V} \epsilon(v)$ — максимальный эксцентриситет по всем вершинам, т.е. тах расстояние между парой вершин

Средняя длина пути $\ell = \frac{1}{|V|\cdot(|V|-1)} \sum_{v\neq u} \operatorname{dist}(v,u)$ ("эффективность передачи информации по сети")

Значения для сети банка:

$$r = 5$$

$$D = 9$$

$$\ell=3.48$$

Мера плотности

Плотность ρ — частное |E| и числа возможных ребер с тем же |V|, т.е. числа ребер в полном графе с |V| вершинами:

$$ho = rac{2|E|}{|V|(|V|-1)}$$
 (если $ho pprox 0 \Rightarrow$ граф разреженный)

Полный граф

если
$$|V| = 15,923$$
, то $|E| = 126,763,003$

Значения для сети банка:

$$|V| = 15,923$$

 $|E| = 200,633$
 $\rho = 0.002$

Алгоритмы Лекция 7

Модулярность

Модулярность Q — мера разбиения графа на кластеры (подграфы, модули). Графы с высокой модулярностью Q>0 имеют плотные внутрикластерные связи и разреженные межкластерные связи. Q сравнивает количество ребер в кластерах исходного графа с количеством случайных ребер.

Значение для сети банка:

Q = 0.463

Далее G — неориентированный невзвешенный граф с матрицей смежности A

Случайное распределение ребер между вершинами

Конфигурационная модель (КМ)

Для графа G, где каждая вершина v имеет степень d(v), в KM каждое ребро сначала разрезается на две части (каждая называется обрубком) и затем каждый обрубок случайно соединяется с другим обрубком в G. При этом d(v)-распределение сохраняется, но получается новый случайный граф G.

Ожидаемое число ребер между ${\pmb v}, {\pmb u} \in {\pmb { ilde G}}$

В графе \tilde{G} всего $\sum_{w \in V} d(w) = 2|E|$ обрубков. Для $i=1,\ldots,d(v)$ пусть $I_i=1$, если i-й обрубок v соединен с одним из обрубков u, иначе $I_i=0$. Посколько i-й обрубок v может быть соединен с равной вероятностью с любым из 2|E|-1 обрубков и посколько u имеет d(u) обрубков,

$$\mathbb{E}[I_i] = \frac{d(u)}{2|E|-1}$$
.

Между v и u всего $J_{vu} = \sum_{i=1}^{d(v)} I_i$ ребер, так что

$$\mathbb{E}[J_{vu}] = \sum_{i=1}^{d(v)} \mathbb{E}[I_i] = \frac{d(v)d(u)}{2|E|-1} pprox \frac{d(v)d(u)}{2|E|}$$
 (для больших $|E|$).

Алгоритмы Лекция 7 9 /

Вычисление модулярности Q

Разность между числом ребер A_{uv} между v и u в исходном графе G (из матрицы A) и ожидаемым числом ребер в случайном графе \tilde{G} равна

$$\Delta(u,v):=A_{vu}-\frac{d(v)d(u)}{2|E|}.$$

Пусть C — разбиение G на кластеры, а $c(\cdot)$ обозначает кластер вершины \cdot .

- Если c(v) = c(u), то Q должна возрастать при $\Delta(u,v) > 0$ и убывать в противном случае.
- Если $c(v) \neq c(u)$, то Q не должна меняться.

После нормализации получаем:

Модулярность (Newman and Girvan, 2004; Newman, 2006)

$$Q(C) = \frac{1}{2|E|} \sum_{v, u \in V} \left(A_{vu} - \frac{d(v)d(u)}{2|E|} \right) \mathbb{1} \left(c(v) = c(u) \right),$$

$$Q = \max_{C} Q(C).$$

Для подсчета Q нужно найти разбиение C, доставляющиее максимум Q(C). Методы численной оптимизации в этой задаче: Fast Greedy, Louvain и др.

Алгоритмы Лекция 7

Анализ сетей с помощью Gephi

"Gephi — ведущее ПО для визуализации и анализа всех видов графов и сетей. Gephi имеет открытый код и бесплатно." — https://gephi.org/

- Выберите сеть из базы https://snap.stanford.edu/data/
- При необходимости измените формат данных на тот, с которым работает Gephi (.csv, .xls, etc.)

Импорт данных

Обработка данных

Раскладка графа

Подсчет мер

Спасибо за внимание!