

A = AT (A is a symmetric mateix), then all eigenvalues of A are real, and it has a full set (n) of mutually orthogonal eigenvectors $A = A^{T}$, $A_{V_{1}} = V_{1} \lambda_{1}$, $\lambda_{i} \in \mathbb{R}$ $A_{V_{2}} = V_{2} \lambda_{2}$, $V_{i}^{T}V_{j}^{T} =$ V; V; = O, i≠j x; x; = 1 Avn = MAn $V = \left(V_1 \ V_2 \ \dots \ V_n \right)$ VY = I = VV A [v. v. ...vn] [x.]

Diagonal

Natur

Makix AV= VI AVV = VAVT T A= VAVT — Eigenvalue Decomposition A is positive semi-definite if $x^TAx > 0 \ \forall x \ (A>0)$ A is positive definite if $x^TAx > 0 \ \forall x \ (A>0)$ Equivalent to saying that all its eigenvalues > 0 $X^{T}w = y, \text{ min} || x^{T}w - y||^{2}$ $\Rightarrow XX^{T}w = Xy$ positive semi-definite $A = aa^{T}, x^{T}Ax = x^{T}GA^{T}x = z^{T}z > 0 \quad (z = a^{T}x)$

any nation of this form is positive semi-definite
Singular Value Decomposition (SVD)
Eigenvalue De composition réquires 17 to de Square Real, Square, Commetaire matrices have eigenvalue decomposition:
SYD exists for ALL matrices
SYD of A: A = UZVT, UZV are orthogonal m>n A= m[v,vzvm] v, v, v, v, v, v, v, v, v, v
UNT = U U = I VNT = V V = I D is diagonal O, > 02 > on > 0