Практика №1 по курсу «Дискретная математика» «Бинарные отношения и матрицы»

Группы ФТ-203

Бинарным отношением ρ между множествами A и B называется произвольное подмножество $\rho \subseteq A \times B$. Основной список свойств бинарного отношения ρ между элементами множества M:

- рефлексивность: $\forall x \in M : x \rho x$,
- антирефлексивность: $\forall x \in M : \neg(x \rho x)$,
- симметричность: $\forall x, y \in M : (x \rho y) \Rightarrow y \rho x$,
- антисимметричность: $\forall x, y \in M : (x \rho y \land y \rho x) \Rightarrow x = y$,
- транзитивность: $\forall x, y, z \in M : (x \rho y \land y \rho z) \Rightarrow x \rho z$,
- полнота: $\forall x, y \in M : x \rho y \vee y \rho x$

Вопрос 1. Бинарное отношение ρ над M называется ассиметричным, если $\forall x, y \in M : \neg(x\rho y) \Rightarrow y\rho x$. В чем отличие антисимметричных отношений от асимметричных? Правда ли, что произвольное антисимметричное отношение является ассиметричным? А наоборот?

Выделяют некоторые полезные наборы свойств, которые часто встречаются для бинарных отношений:

- рефлексивное, симметричное, транзитивное отношение отношение эквивалентности
- рефлексивное, антисимметричное, транзитивное отношение отношение порядка
- антирефлексивное, антисимметричное, транзитивное отношение отношение строгого порядка
- полное, антисимметричное, транзитивное отношение отношение линейного порядка

Задание 2. Исследуем несколько отношений на наличие перечисленных выше свойств:

- 1. $M = \{1, 2, 3, 4, 5, 6, 7, 8, 9\}, x \rho y \Leftrightarrow x \leq y$
- 2. $M = \{1, 2, 3, 4, 5, 6, 7, 8, 9\}, x\rho y \Leftrightarrow x|y,$
- 3. $M = \{1, 2, 3, 4, 5, 6, 7, 8, 9\}, x\rho y \Leftrightarrow 4|(y x)|$
- 4. $M = \{1, 2, 3, 4, 5, 6, 7, 8, 9\}, x\rho y \Leftrightarrow |x y| < 4$
- 5. $M = \{1, 2, 3, 4, 5, 6, 7, 8, 9\}, x \rho y \Leftrightarrow gcd(x, y) = 1$
- 6. $M = \{1, 2, 3, 4, 5, 6, 7, 8, 9\}, x \rho y \Leftrightarrow gcd(x, y) \neq 1$
- 7. $M = \{1, 2, 3, 4, 5, 6, 7, 8, 9\}, x \rho y \Leftrightarrow \frac{x}{y} \in \mathbb{Z}$

Вопрос 3. Сколько существует рефлексивных, симметричных, транзитивных и **полных** отношений над множеством из n элементов?

Обратным отношением к $\rho \subseteq M^2$ называется отношение $\rho^{-1} = \{(y,x) \mid (x,y) \in \rho\}.$

Определим также композицию бинарных отношений $\alpha \subseteq A \times B$ и $\beta \subseteq B \times C$ как отношенение $\gamma = \alpha\beta = \{(x,z) \mid \exists y : (x,y) \in \alpha \land (y,z) \in \beta\}.$

Разберём определённые операции над бинарными отношениями на примере следующей задачи:

Задание 4. По отношению ρ найти бинарные отношения $\rho^{-1}, \rho^2, \rho \rho^{-1}, \rho^{-1} \rho$:

 $\bullet \ \rho = \{(x,y) \in \mathbb{N}^2 \mid y|x\}$

Матрицей бинарного отношения ρ на элементах конечного множества $M=\{a_1,a_2,\ldots,a_n\}$ называется бинарная матрица M_{ρ} такая, что $M_{\rho}[i,j]=1\Leftrightarrow (a_i,a_j)\in \rho$. Матрица построена над кольцом с элементами $\{0,1\}$, где в качестве сложения используется операция $\max\{a,b\}$, а в качестве умножение $-\min\{a,b\}$ (или же логическое ИЛИ и логическое И, что эквивалентно).

Некоторые свойства бинарного отношения ρ с матрицей M_{ρ} имеют естественную интерпретацию в матричном виде:

- 1. рефлексивность на диагонали стоят только единицы $(tr(M_{\rho}) = n)$,
- 2. антирефлексивность на диагонали стоят только нули $(tr(M_{\rho}) = 0)$,

- 3. симметричность $M_{\rho} = M_{\rho}^{t}$,
- 4. матрица обратного отношения ho^{-1} транспонированная матрица $M_{
 ho}^{-1},$
- 5. матрица композции отношений α, β произведение соответствующих бинарных матриц $M_{\alpha} \cdot M_{\beta}$.

Задание 5. Представим в матричном виде несколько простых бинарных отношений:

- 1. $M = \{-2, -1, 0, 1, 2\}, x\rho y \Leftrightarrow xy > 0,$
- 2. $M = \{-2, -1, 0, 1, 2\}, x \rho y \Leftrightarrow xy = y^2$

А также проверим на истинность следующие общие утверждения:

- 1. Для любой пары отношений α, β на M верно, что $(\alpha\beta)^{-1} = \beta^{-1}, \alpha^{-1}$,
- 2. Для любых отношений α, β, γ на M верно, что $(\alpha\beta)\gamma = \alpha(\beta\gamma)$,
- 3. Для любой пары отношений α, β на M верно, что $\alpha\beta = \beta\alpha$.

Помимо теоретико-множественной и матричной интерпретаций бинарных отношений, существует также графовая интерпретация. Так, любому бинарному отношению ρ над множеством M можно поставить в соответствие ориентированный граф (орграф) $G_{\rho}=(V,E)$, где V=M и $E=\rho$. Каждая из интерпретаций имеет свои преимущества и в зависимости от ситуации является более подходящей для решения конкретной задачи.

Вопрос 6. Назовём отношение ρ функциональным, если существует такая функция $f: M \mapsto M$, что $\rho = \{(x, f(x)) \mid x \in M\}$. Охарактеризиуйте класс функциональных отношений используя графовую интерпретацию.

Оператором замыкания на M называется функция $Cl:2^M\mapsto 2^M$ удовлетворяющая следующим свойствам:

- 1. $X \subseteq Cl(X)$ экстенсивность,
- 2. $X \subseteq Y \Rightarrow Cl(X) \subseteq Cl(Y)$ монотонность,
- 3. Cl(Cl(X)) = Cl(X) идемпотентность

Задания для самостоятельного решения

Задание 1. По отношению ρ найти бинарные отношения $\rho^{-1}, \rho^2, \rho \rho^{-1}, \rho^{-1} \rho$:

- 1. $\rho = \{(x, y) \in \mathbb{N}^2 \mid y = x^2\}$
- 2. $\rho = \{(x, y) \in \mathbb{R}^2 \mid x + y = 0\}$
- 3. $\rho = \{(x, y) \in \mathbb{R}^2 \mid 2x < 2y\}$

Задание 2. Пусть M — некоторое множество, $\delta_M = \{(a,a) \mid a \in M\}, \alpha \subseteq M^2$. Доказать, что следующие высказывания равносильны:

- 1. α антисимметрично и $\alpha \cap \alpha^{-1} \subseteq \delta_M$
- 2. α линейно и $\alpha \cup \alpha^{-1} = M^2$

Задание 3. Верно ли, что ни одна пара из трёх свойств — рефлексивность, сииметричность, транзитивность — не влечёт третье?

Задание 4. Пусть $M=\{1,2,3,\dots,25\}, \alpha=\{(x,y)\in M^2\mid \exists k,l\in\mathbb{N}: x^k=y^l\}$. Доказать, что α — отношение эквивалентности и построить соответствующее разбиение.