What Are Parameters?

Consider some probability distributions:

$$\theta = p$$

$$\theta = \lambda$$

• Multinomial(
$$p_1, p_2, ..., p_m$$
) $\theta = (p_1, p_2, ..., p_m)$

$$\theta = (p_1, p_2, ..., p_m)$$

$$\theta = (\alpha, \beta)$$

• Normal(
$$\mu$$
, σ^2)

$$\theta = (\mu, \sigma^2)$$

- Etc.
- Call these "parametric models"
- Given model, parameters yield actual distribution
 - Usually refer to parameters of distribution as θ
 - Note that θ that can be a vector of parameters

Why Do We Care?

- In real world, don't know "true" parameters
 - But, we do get to observe data
 - E.g., number of times coin comes up heads, lifetimes of disk drives produced, number of visitors to web site per day, etc.
 - Need to estimate model parameters from data
 - "Estimator" is random variable estimating parameter
- Want "point estimate" of parameter
 - Single value for parameter as opposed to distribution
- Estimate of parameters allows:
 - Better understanding of process producing data
 - Future predictions based on model
 - Simulation of processes

Recall Sample Mean

- Consider n I.I.D. random variables X₁, X₂, ... X_n
 - X_i have distribution F with $E[X_i] = \mu$ and $Var(X_i) = \sigma^2$
 - We call sequence of X_i a <u>sample</u> from distribution F
 - Recall sample mean: $\overline{X} = \sum_{i=1}^{n} \frac{X_i}{n}$ where $E[\overline{X}] = \mu$
 - Recall variance of sample mean: $Var(\overline{X}) = \frac{\sigma^2}{n}$
 - Clearly, sample mean X is a random variable

Sampling Distribution

- Note that sample mean X is random variable
 - "Sampling distribution of mean" is the distribution of the random variable X
 - Central Limit Theorem tells us sampling distribution of X is approximately normal when sample size, n, is large
 - $_{\circ}$ Rule of thumb for "large" n: n > 30, but larger is better (> 100)
 - Can use CLT to make inference about sample mean

Confidence Interval for Mean

- Consider I.I.D. random variables X₁, X₂, ...
 - X_i have distribution F with $E[X_i] = \mu$ and $Var(X_i) = \sigma^2$

• Let
$$\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$$
 $Var(\overline{X}) = \frac{\sigma^2}{n}$ $S^2 = \sum_{i=1}^{n} \frac{(X_i - \overline{X})^2}{n-1}$

• For large n, $100(1 - \alpha)\%$ confidence interval is:

$$\left(\overline{X}-z_{\alpha/2}\frac{S}{\sqrt{n}}, \ \overline{X}+z_{\alpha/2}\frac{S}{\sqrt{n}}\right)$$

where $\Phi(z_{\alpha/2}) = 1 - (\alpha/2)$

- \circ E.g.: $\alpha = 0.05$, $\alpha/2 = 0.025$, $\Phi(z_{\alpha/2}) = 0.975$, $z_{\alpha/2} = 1.96$
- Meaning: $100(1-\alpha)\%$ of time that confidence interval is computed from some sample, true μ would be in interval
 - $_{\circ}$ **Not**: μ is 100(1 α)% likely to be in this particular interval

Example of Confidence Interval

- Idle CPUs are the bane of our existence
 - Large (unnamed) company wants to estimate average number of idle hours per CPU
 - 225 computers are monitored for idle hours
 - Say $\overline{X} = 11.6$ hrs., $S^2 = 16.81$ hrs²., so S = 4.1 hrs.
 - Estimate μ, mean idle hrs./CPU, with 90% conf. interval

$$\alpha = 0.10, \ \alpha/2 = 0.05, \ \Phi(z_{\alpha/2}) = 0.95, \ z_{\alpha/2} = 1.645$$

$$\left(\overline{X} - z_{\alpha/2} \frac{S}{\sqrt{n}}, \overline{X} + z_{\alpha/2} \frac{S}{\sqrt{n}}\right)$$

$$\left(11.6 - 1.645 \frac{4.1}{\sqrt{225}}, \ 11.6 + 1.645 \frac{4.1}{\sqrt{225}}\right) = \left(11.15, \ 12.05\right)$$

• 90% of time that such an interval computed, true μ is in it

Method of Moments

Recall: n-th moment of distribution for variable X:

$$m_n = E[X^n]$$

- Consider I.I.D. random variables X₁, X₂, ..., X_n
 - X_i have distribution F

• Let
$$\hat{m}_1 = \frac{1}{n} \sum_{i=1}^n X_i$$
 $\hat{m}_2 = \frac{1}{n} \sum_{i=1}^n X_i^2$... $\hat{m}_k = \frac{1}{n} \sum_{i=1}^n X_i^k$

- \hat{m}_i are called the "sample moments"
 - Estimates of the moments of distribution based on data
- Method of moments estimators
 - Estimate model parameters by equating "true" moments to sample moments: $m_i \approx \hat{m}_i$

Examples of Method of Moments

- Recall the sample mean: $\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i = \hat{m}_1 \approx E[X]$
 - This is method of moments estimator for E[X]
- Method of moments estimator for variance
 - Estimate second moment: $\hat{m}_2 = \frac{1}{n} \sum_{i=1}^n X_i^2$
 - $Var(X) = E[X^2] (E[X])^2$
 - Estimate: $Var(X) \approx \hat{m}_2 (\hat{m}_1)^2$

$$= \left(\frac{1}{n}\sum_{i=1}^{n}X_{i}^{2}\right) - \overline{X}^{2} = \frac{1}{n}\sum_{i=1}^{n}X_{i}^{2} - \frac{1}{n}\sum_{i=1}^{n}\overline{X}^{2} = \frac{\sum_{i=1}^{n}(X_{i}^{2} - \overline{X}^{2})}{n}$$

Recall sample variance:

$$S^{2} = \sum_{i=1}^{n} \frac{(X_{i} - \overline{X})^{2}}{n-1} = \sum_{i=1}^{n} \frac{(X_{i}^{2} - 2X_{i}\overline{X} + \overline{X}^{2})}{n-1} = \frac{\sum_{i=1}^{n} (X_{i}^{2} - \overline{X}^{2})}{n-1} = \frac{n}{n-1} (\hat{m}_{2} - (\hat{m}_{1})^{2})$$

Small Samples = Problems

- What is difference between sample variance and MOM estimate for variance?
 - Imagine you have a sample of size n = 1
 - What is sample variance?

$$S^{2} = \sum_{i=1}^{n} \frac{(X_{i} - \overline{X})^{2}}{n-1} = \text{undefined}$$

- i.e., don't really know variability of data
- What is MOM estimate of variance?

$$\frac{\sum_{i=1}^{n} (X_i^2 - \overline{X}^2)}{n} = \frac{\sum_{i=1}^{n} (X_i^2 - X_i^2)}{1} = 0$$

- i.e., have complete certainty about distribution!
 - There is no variance

Estimator Bias

- Bias of estimator: $E[\hat{\theta}] \theta$
 - When bias = 0, we call the estimator "unbiased"
 - A biased estimator is not necessarily a bad thing
 - Sample mean $\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$ is unbiased estimator
 - Sample variance $S^2 = \sum_{i=1}^n \frac{(X_i \overline{X})^2}{n-1}$ is unbiased estimator
 - MOM estimator of variance = $\frac{n-1}{n}S^2$ is biased
 - $_{\circ}$ Asymptotically less biased as $n \rightarrow \infty$
 - For large n, either sample variance or MOM estimate of variance is fine.

Estimator Consistency

- Estimator "consistent": $\lim_{n\to\infty} P(|\hat{\theta}-\theta|<\varepsilon)=1$ for $\varepsilon>0$
 - As we get more data, estimate should deviate from true value by at most a small amount
 - This is actually known as "weak" consistency
 - Note similarity to weak law of large numbers:

$$\lim_{n\to\infty} P(|\overline{X}-\mu|\geq\varepsilon)\to 0$$

Equivalently:

$$\lim_{n\to\infty} P(|\overline{X} - \mu| < \varepsilon) \to 1$$

- Establishes sample mean as consistent estimate for μ
- Generally, MOM estimates are consistent

Method of Moments with Bernoulli

- Consider I.I.D. random variables X₁, X₂, ..., X_n
 - X_i ~ Ber(p)
- Estimate p

$$p = E[X_i] \approx \hat{m}_1 = \overline{X} = \frac{1}{n} \sum_{i=1}^n X_i = \hat{p}$$

- Can use estimate of p for X ~ Bin(n, p)
- If you know what n is, you don't need to estimate that

Method of Moments with Poisson

- Consider I.I.D. random variables X₁, X₂, ..., X_n
 - X_i ~ Poi(λ)
- Estimate λ

$$\lambda = E[X_i] \approx \hat{m}_1 = \overline{X} = \frac{1}{n} \sum_{i=1}^n X_i = \hat{\lambda}$$

- But note that for Poisson, $\lambda = Var(X_i)$ as well!
- Could also use method of moments to estimate:

$$\lambda = E[X_i^2] - E[X_i]^2 \approx \hat{m}_2 - (\hat{m}_1)^2 = \frac{\sum_{i=1}^n (X_i^2 - \overline{X}^2)}{n} = \hat{\lambda}$$

- Usually, use first (lowest) moment estimate
- More generally, use the one that's easiest to compute

Method of Moments with Normal

- Consider I.I.D. random variables X₁, X₂, ..., X_n
 - $X_i \sim N(\mu, \sigma^2)$
- Estimate μ

$$\mu = E[X_i] \approx \hat{m}_1 = \overline{X} = \frac{1}{n} \sum_{i=1}^n X_i = \hat{\mu}$$

• Now estimate σ^2

$$\sigma^{2} \approx \hat{m}_{2} - (\hat{m}_{1})^{2}$$

$$= \left(\frac{1}{n} \sum_{i=1}^{n} X_{i}^{2}\right) - \hat{\mu}^{2} = \frac{1}{n} \sum_{i=1}^{n} X_{i}^{2} - \frac{1}{n} \sum_{i=1}^{n} \overline{X}^{2} = \frac{\sum_{i=1}^{n} (X_{i}^{2} - \overline{X}^{2})}{n}$$

Method of Moments with Uniform

- Consider I.I.D. random variables X₁, X₂, ..., X_n
 - X_i ~ Uni(α , β)
 - Estimate mean:

$$\mu \approx \hat{m}_1 = \frac{1}{n} \sum_{i=1}^n X_i = \hat{\mu}$$

Estimate variance:

$$\sigma^{2} \approx \hat{m}_{2} - (\hat{m}_{1})^{2} = \frac{\sum_{i=1}^{n} (X_{i}^{2} - \overline{X}^{2})}{n} = \hat{\sigma}^{2}$$

- For Uni(α , β), know that: $\mu = \frac{\alpha + \beta}{2}$ and $\sigma^2 = \frac{(\beta \alpha)^2}{12}$
- Solve (two equations, two unknowns):
 - $_{\circ}$ Set $\beta = 2\mu \alpha$, substitute into formula for σ^2 and solve:

$$\hat{\alpha} = \overline{X} - \sqrt{3}\hat{\sigma}$$
 and $\hat{\beta} = \overline{X} + \sqrt{3}\hat{\sigma}$