## Remember to check your calculations using LTSpice

1. For the network below, sketch  $v_o$  and  $i_R$ 



- 2. **a.** Given  $P_{\text{max}} = 14 \text{ mW}$  for each diode at Fig. 2.172, determine the maximum current rating of each diode (using the approximate equivalent model).
  - **b.** Determine *I* max for the parallel diodes.
  - **c.** Determine the current through each diode at  $V_{imax}$  using the results of part (b).
  - **d.** If only one diode were present, which would be the expected result?



3. Sketch  $v \circ$  for the network below and determine the dc voltage available.



4. Determine  $v_0$  for each network shown below, for the input shown.



5. Sketch i R and v o for the network shown below for the input shown.



- 6. For the network shown below:
  - a. Calculate 5t.
  - **b.** Compare 5*t* to half the period of the applied signal.
  - **c.** Sketch  $v_o$ .



7. Design a clamper to perform the function indicated



- **8.** a. Design the network shown below to maintain VL at 12 V for a load variation (IL) from 0 mA to 200 mA. That is, determine R s and VZ.
  - **b.** Determine  $P z \max$  for the Zener diode of part (a).

