STAT 401A - Statistical Methods for Research Workers Simple linear regression

Jarad Niemi (Dr. J)

Iowa State University

last updated: October 11, 2014

Simple Linear Regression

Recall the One-way ANOVA model:

$$Y_{ij} \stackrel{ind}{\sim} N(\mu_i, \sigma^2)$$

where Y_{ij} is the observation for individual j in group i.

The simple linear regression model is

$$Y_i \stackrel{ind}{\sim} N(\beta_0 + \beta_1 X_i, \sigma^2)$$

where Y_i and X_i are the response and explanatory variable, respectively, for individual i.

Terminology (all of these are equivalent):

response	
outcome	
dependent	
endogenous	

explanatory covariate independent exogenous

```
Warning: package 'abd' was built under R version 3.1.1
Warning: package 'mosaic' was built under R version 3.1.1
Warning: package 'car' was built under R version 3.1.1
```


Interpretation

$$E[Y_i|X_i=x] = \beta_0 + \beta_1 x \qquad V[Y_i|X_i=x] = \sigma^2$$

- If $X_i = 0$, then $E[Y_i|X_i = 0] = \beta_0$. β_0 is the expected response when the explanatory variable is zero.
- If X_i increases from x to x + 1, then

$$E[Y_i|X_i = x + 1] = \beta_0 + \beta_1 x + \beta_1$$

$$-E[Y_i|X_i = x] = \beta_0 + \beta_1 x$$

$$= \beta_1$$

 β_1 is the expected increase in the response for each unit increase in the explanatory variable.

 \bullet σ is the standard deviation of the response for a fixed value of the explanatory variable.

Remove the mean:

$$Y_i = \beta_0 + \beta_1 X_i + e_i$$
 $e_i \stackrel{iid}{\sim} N(0, \sigma^2)$

So

$$e_i = Y_i - (\beta_0 + \beta_1 X_i)$$

which we approximate by the residual

$$r_i = \hat{\mathbf{e}}_i = Y_i - (\hat{\beta}_0 + \hat{\beta}_1 X_i)$$

The least squares, maximum likelihood, and Bayesian estimators are

$$\hat{\beta}_{1} = \frac{SXY}{SXX}$$

$$\hat{\beta}_{0} = \overline{Y} - \hat{\beta}_{1}\overline{X}$$

$$\hat{\sigma}^{2} = \frac{SSE}{(n-2)} \quad \text{d.f.} = n-2$$

$$SXY = \sum_{i=1}^{n} (X_{i} - \overline{X})(Y_{i} - \overline{Y})$$

$$SXX = \sum_{i=1}^{n} (X_{i} - \overline{X})(X_{i} - \overline{X}) = \sum_{i=1}^{n} (X_{i} - \overline{X})^{2}$$

$$SSE = \sum_{i=1}^{n} r_{i}^{2}$$

$$\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_{i}$$

$$\overline{Y} = \frac{1}{n} \sum_{i=1}^{n} X_{i}$$

$$\overline{Y} = \frac{1}{n} \sum_{i=1}^{n} X_{i}$$

How certain are we about $\hat{\beta}_0$ and $\hat{\beta}_1$ being equal to β_0 and β_1 ?

We quantify this uncertainty using their standard errors:

$$\begin{split} SE(\beta_0) &= \hat{\sigma} \sqrt{\frac{1}{n} + \frac{\overline{X}^2}{(n-1)s_X^2}} & d.f. = n-2 \\ SE(\beta_1) &= \hat{\sigma} \sqrt{\frac{1}{(n-1)s_X^2}} & d.f. = n-2 \\ s_X^2 &= \frac{SXX}{(n-1)} \\ s_Y^2 &= \frac{SYY}{(n-1)} \\ SYY &= \sum_{i=1}^n (Y_i - \overline{Y})^2 \\ r_{XY} &= \frac{\frac{SXY}{(n-1)}}{s_X s_Y} & \text{correlation coefficient} \\ R^2 &= r_{XY}^2 &= \frac{SYY}{(n-1)} \\ SST &= SYY = \sum_{i=1}^n (Y_i - \overline{Y})^2 \end{split}$$

The coefficient of determination is the percentage of the total response variation explained by the explanatory variable(s).

Telomere length vs years post diagnosis

Pvalues and confidence interval

We can compute two-sided pvalues via

$$2P\left(t_{n-2} > \left| \frac{\hat{\beta_0}}{SE(\beta_0)} \right| \right) \qquad \text{and} \qquad 2P\left(t_{n-2} > \left| \frac{\hat{\beta_1}}{SE(\beta_1)} \right| \right)$$

These test the null hypothesis that the corresponding parameter is zero.

We can construct $100(1-\alpha)\%$ confidence intervals via

$$\hat{eta}_0 \pm t_{n-2}(1-lpha/2)SE(eta_0)$$
 and $\hat{eta}_1 \pm t_{n-2}(1-lpha/2)SE(eta_1)$

These provide ranges of the parameter consistent with the data.

```
DATA t:
```

INFILE 'telomeres.csv' DSD FIRSTOBS=2; INPUT years length;

PROC REG DATA=t;

MODEL length = years; RUN:

The REG Procedure Model: MODEL1 Dependent Variable: length

Number of Observations Read 39 Number of Observations Used 39

Analysis of Variance

			Sum of	Mean		
	Source	DF	Squares	Square	F Value	Pr > F
	Model	1	0.22777	0.22777	8.42	0.0062
	Error	37	1.00033	0.02704		
	Corrected Total	38	1.22810			
Root MSE		0.16443	R-Square	0.1855		
	Depen Coeff	dent Mean Var	1.22026 13.47473	Adj R-Sq	0.1634	

Parameter Estimates Standard

Variable	DF	Estimate	Error	t Value	Pr > t	95% Confiden	ce Limits
Intercept	1	1.36768	0.05721	23.91	<.0001	1.25176	1.48360
years	1	-0.02637	0.00909	-2.90	0.0062	-0.04479	-0.00796

Daramotor

Summary

• The simple linear regression model is

$$Y_i \stackrel{ind}{\sim} N(\beta_0 + \beta_1 X_i, \sigma^2)$$

where Y_i and X_i are the response and explanatory variable, respectively, for individual i.

- Know how to use SAS/R to obtain $\hat{\beta}_0$, $\hat{\beta}_1$, $\hat{\sigma}^2$, R^2 , pvalues, CIs, etc.
- Interpret SAS output
 - At a value of zero for the explanatory variable $(X_i = 0)$, β_0 is the expected value for the response (Y_i) .
 - For each unit increase in the explanatory variable value, β_1 is the expected increase in the response.
 - At a constant value of the explanatory variable, σ^2 is the variance of the responses.
 - The coefficient of determination (R^2) is the percentage of the total response variation explained by the explanatory variable(s).