Infinite Games: Example Sheet 2

Otto Pyper

- (14) (i) Suppose $f:\omega^{\omega}\to\omega^{\omega}$ is continuous. We construct a coherent $c:\omega^{<\omega}\to\omega^{<\omega}$ defined inductively as follows:
 - $c(\emptyset) = \emptyset$
 - Let $s \in \omega^{\omega}$ and $m \in \omega$, and suppose c(s) is defined. If there exists some m' such that $x \in [sm] \implies f(x) \in [c(s)m']$ then let c(sm) = c(s)m'. Otherwise, let c(sm) = c(s).

This construction can be done for any f and always gives c increasing; we will show that continuity of f implies boundedness of c:

Suppose c is not unbounded. Then there exists some x for which $c(x \upharpoonright n) = c(x \upharpoonright N)$, of length M, for all $n \ge N$ for some $N \in \omega$. Thus for each $n \ge N$ there exists some $y_n \in \omega^{\omega}$ such that $x \upharpoonright n = y_n \upharpoonright n$ but $f(x) \upharpoonright M + 1 \ne f(y_n) \upharpoonright M + 1$. But then $y_n \to x$, and so $f(y_n) \to f(x)$, contradiction.

Lastly, we have that $f = f_c$. Indeed, for any $x \in \omega^{\omega}$, $c(x \upharpoonright n) \subseteq f(x)$ for all n, and hence $\bigcup c(x \upharpoonright n) \subseteq f(x)$, but the union lies in ω^{ω} and so they are equal. Hence $f = f_c$.

- (ii) We have a coherent c such that $f = f_c$; let $x_n \to x \in \omega^{\omega}$. Suppose for contradiction that there is some M for which $f(x_n) \upharpoonright M \neq f(x) \upharpoonright M$ for infinitely many n.
 - Since c is unbounded, there is some $M' \in \omega$ such that $\bigcup_{m \in M'} c(x \upharpoonright m)$ has length M. But now since c is increasing, if $x_n \upharpoonright M' = x \upharpoonright M'$ then $f(x) \upharpoonright M = f(x') \upharpoonright M$; this must happen eventually for all x_n , since $x_n \to x$. Contradiction.
- (15) $\underline{(i)} \Longrightarrow \underline{(ii)}$: Suppose player I has played string x_n and player II has played string y_n , which has pass-concatenation y_n^* , and assume that $x \in [x_n] \Longrightarrow f(x) \in [y_n^*]$. Now suppose player I plays $m \in \omega^{\omega}$. Either we have some m' such that $x \in [x_n m] \Longrightarrow f(x) \in [y_n^* m]$, in which case II plays m', or no such m' exists, in which case player II passes. Such an m' must eventually exist by continuity of f (same as above).

Perhaps more precisely: $f = f_c$ for some c. Define τ for player II as follows. Suppose player I has played a sequence $x = x_0 x_1 \dots x_n$ and player II has played $y = y_0 y_1 \dots y_{n-1}$. If there exists $m \in \omega^{\omega}$ such that $y^* m \subseteq c(x)$, then $\tau(x_0 y_0 \dots x_n) = m$. Otherwise $\tau(x_0 y_0 \dots x_n) = \text{pass}$.

Then at each stage we have $y^* \subseteq c(x)$, so taking the union we see that the run y'^* of player II lies in the union of all the c(x)s, which equals f(x') for x' the run of player I.

(ii) \Longrightarrow (i): Suppose player II has a winning strategy τ . Define c coherent by letting c(s) be the pass-concatenation of $\tau(s_i)$: $i \leq \ell h(s)$. Suppose player I produces x, player II produces y. Then for each n, we have $c(x \upharpoonright n) = (y \upharpoonright n)^*$. Then $f_c(x) = \bigcup c(x \upharpoonright n) = \bigcup (y \upharpoonright n)^* = y^* = f(x)$. So $f = f_c$.

If we do not require the possibility of pass moves, we still have that (ii) \Longrightarrow (i) by the argument above, but the other direction is more complicated.

Suppose player I starts by playing m. Then player II must play the start of a sequence inside f([m]). Suppose the earlier condition stated does not hold. Then $\forall m' \exists x (x \in [m] \land f(x) \notin [m'])$. So if player II plays m', then player I picks such a run x such that $x \upharpoonright 1 = m$ but $f(x) \notin [m']$. Then player I wins.

Indeed, if there is any position s for which this is the case, that is, if player I has played s and player II t and there is some m such that for all m', there exists $x \in [sm]$ such that $f(x) \notin [tm']$, then player I wins.

So in order for II to be able to win, we have this more strict condition on f, which is that $f = f_c$ for some coherent c satisfying $\ell h(c(s)) \geq \ell h(s)$. Equivalently, there is some coherent c with $\ell h(c(s)) = \ell h(s)$ for all s.

(16) $\Sigma_0^2(\mathbb{Q})$ is the collection of sets which are countable unions of closed sets, *i.e.* every $A \subseteq \mathbb{Q}$ since singletons are closed. So $\Pi_0^2(\mathbb{Q}) = \mathbb{P}\mathbb{Q}$ also, hence $\Delta_2^0(\mathbb{Q}) = \mathbb{P}\mathbb{Q}$.

Let $B \subseteq \mathbb{Q}$ be dense with dense complement. Now suppose that there is some $A \in \Delta_2^0$ such that $A \cap \mathbb{Q} = B$. We must have $A = \bigcap_{n \in \mathbb{N}} A_n = \bigcup_{n \in \mathbb{N}} B_n$ for open sets A_n and closed sets B_n .

We have $B \subseteq A_n$ for each n. Consider A_n^c . This is nowhere dense: if it is dense in some interval (a,b), then there is some $q \in B$ that lies within the interval, and hence some ε such that $(q-\varepsilon,q+\varepsilon) \subseteq A_n \cap (a,b)$. So A_n^c not dense in $(q-\varepsilon,q+\varepsilon)$. So A_n^c is meagre.

We have $A^c = \bigcap_{n \in \mathbb{N}} B_n^c$, B_n^c open also. But B^c dense, so applying exactly the same argument as above gives that A is meagre. Hence $A \cup A^c$ is meagre, but $A \cup A^c = \mathbb{R}$, which is not meagre by the Baire Category Theorem.

- (17) We can write $F = \bigcup_{n \in \mathbb{N}} F_n$, where $F_n = [-n, n] \cap F$ is closed and bounded, hence has a sequentially closed image, which is thus closed in a metric space. Hence $f[F] = \bigcup f[F_n]$ is a countable union of closed sets, hence is Σ_2^0 .
- (18) Base case: need to show Σ_1^1 closed under countable union (intersection is easy).

Let A_n be a family of analytic sets, such that $A_n = pB_n$ for $B_n \in \Pi_1^0(\omega^\omega \times \omega^\omega)$. Define $C_n = \{(nx,y) : (x,y) \in B_n\}$. Then C_n is closed, since convergent sequences in C_n clearly inherit from convergent sequences in B_n . But now $\bigcup C_n$ is closed because a sequence can only converge if the first letter is eventually constant, meaning the sequence must get stuck in exactly one of the disjoint C_n s. Then $\bigcup A_n = p \bigcup C_n$ is analytic.

Now suppose Π_n^1 is closed under countable union. Then if A_n is a family of Σ_{n+1}^1 sets, $A_n = pB_n$, $\bigcup A_n = \bigcup pB_n = p \bigcup B_n \in \Sigma_{n+1}^1$. Exact same argument for countable intersection. The $\Sigma \to \Pi$ case is clear, and similarly for Δ s.

We have $\Pi_1^0 = \Pi_0^1 \subseteq \Delta_1^1$, hence $\Sigma_1^0 \subseteq \Delta_1^1$ also. It is then easy to see inductively that every Borel class is a subset of Δ_1^1 .

In (17), we found that $\Sigma_1^1(\mathbb{R}) \subseteq \Sigma_2^0(\mathbb{R})$. Hence $\Delta_1^1 \subseteq \neq \Sigma_1^1 \subseteq \Sigma_2^0$, so not every Borel set is Δ_1^1 in \mathbb{R} . The problem here, morally, is that in \mathbb{R} bounded and closed \iff compact; continuous images of compact sets are compact, which are closed in metric spaces. But ω^{ω} does not have the property that closed and bounded \implies compact, so this issue does not occur (indeed, every set is bounded, the entire space itself is closed and not compact).

- (19) Hmm...
- (20) A_n, B_m are Borel separable by C_{nm} . Then A_n and $\bigcup B_n$ are Borel separable by $D_n := \bigcap_m C_{nm}$, since Borel sets are closed under countable intersection (they all lie in some Π^0_{α} , say, with α countable since ω_1 regular).

Then $\bigcup A_n, \bigcup B_n$ are separable by $\bigcup_n D_n$, which is again Borel.

(21) The first part is done in stages, by building up a sequence of inseparable trees to find a sequence that must lie in their intersection.

Given this, we already have Borel $\subseteq \Delta_1^1$ and need to show that $A \subseteq \Delta_1^1 \implies A$ is Borel. But A, A^c are both analytic, hence Borel separable - but the only separating set is A. Hence A is Borel.

(22) Suppose that R is Lebesgue-measurable, and let $x \in A$. Let $A^{< x} = \{y : yRx\}$. $A^{< x}$ has order-type less than κ , and since κ is initial we must then have that $A^{< x}$ has strictly smaller cardinality than κ and is hence null.

Thus $A^{>x}$ is not null for any x, since otherwise $A^{\leq x} = A \setminus A^{>x}$ is a smaller non-null set. So $\{x: A^{>x} \text{ not null}\} = A$, which is not null.

So then $N := \{x : A^{< x} \text{ not null}\}$ is also not null. But $A^{< x}$ is null for all x, so this set is empty and hence null. Contradiction.

(23) (i) $\underline{\longleftarrow}$: If such a p exists, then player I plays p, and $[p] \setminus A = \bigcup_{n \in \omega} A_n$, for A_n all nowhere dense. In particular then, for all $q \in \omega^{\leq} \omega$, there exists $x_1 \in [pq]$ such that x_1 cannot be approached from within A_1 . Thus there is some m for which $[x_1 \upharpoonright m] \cap A_1 = \emptyset$. Player I then plays to any position $\exists x_1 \upharpoonright m$, and then $[x_1 \upharpoonright m] \setminus A \subseteq \bigcup_{n>1} A_n$.

Player I then repeats this process, eliminating the losing runs in set A_n on move n+1. So if x is the run and player I has lost, then $x \in A_m$ for some m - but this cannot be the case by player I's strategy.

Note that specifying the strategy entirely here has used choice.

 \implies Suppose player I has a winning strategy σ , and let $p = \sigma(\emptyset)$. Consider the game $G^{**}(A_p^c)$. The second player of this game has a winning strategy by following σ in the first game, hence by (ii) A_p^c is meagre.

 $A_p^c = \{x : px \notin A\} = \bigcup A_n$, A_n nowhere dense. Then $pA_n := \{px : x \in A_n\}$ is also nowhere dense, hence $\bigcup pA_n = pA_p^c = \{px : px \notin A\} = [p] \setminus A$ is meagre.

(ii) $\underline{\longleftarrow}$: If A is meagre, then $A = \bigcup A_n$, A_n nowhere dense. Suppose player I plays p. Then by the same process as in (i), player II can ensure the run does not lie in A_n for any n; so player II has a winning strategy.

 \Longrightarrow : Suppose player II has a winning strategy τ , and that A is not meagre. Then if $A = \bigcup_{n \in \omega} A_n$, there must be some A_n that is somewhere dense. That is to say, A_n is dense in some [p], $p \in \omega^{<\omega}$.

Then $A = \bigcup_n [n] \cap A$, so wlog say $[n] \cap A$ is somewhere dense in [n]. Then there is some $p \ni n$ such that A is dense in [p]. Then A is dense in [pq] for any q.

- (24) not too bad, I think the answer is $AC_{X<\omega}(X)$
- (25) just a bit fiddly