最是展 2021年27日

(1) 设 $\langle G, * \rangle$ 是一个独异点,并且对于 G 中的每一个元素 x 都有 x*x=e,其中 e 是幺元,证明 $\langle G, * \rangle$ 是一个阿贝尔群。

(4) 设 $G = \{[1], [2], [3], [4], [5], [6]\}, G$ 上的二元运算 \times_{τ} 如表 5-5.3 所示。

问 $\langle G, \times_7 \rangle$ 是循环群吗?若是,试找出它的生成元。

\times_7	[1]	[2]	[3]	[4]	[5]	[6]
[1]	[1]	[2]	[3]	[4]	[5]	[6]
[2]	[2]	[4]	[6]	[1]	[3]	[5]
[3]	[3]	[6]	[2]	[5]	[1]	[4]
[4]	[4]	[1]	[5]	[2]	[6]	[3]
[5]	[5]	[3]	[1]	[6]	[4]	[2]
[6]	[6]	[5]	[4]	[3]	[2]	[1]
1		7 - 7 - 7			7-	

(G. X) 2循环群型[3],[5] 显现元

(2) 设 $\langle Z_6, +_6 \rangle$ 是一个群,这里 $+_6$ 是模 6 加法, $Z_6 = \{[0],[1],[2],[3],[4],[5]\}$,试写出 $\langle Z_6, +_6 \rangle$ 中每个子群及其相应的左陪集。

(5) 设 $\langle H, * \rangle$ 是群 $\langle G, * \rangle$ 的子群,如果 $A = \{x \mid x \in G, x * H * x^{-1} = H\}$ 证明 $\langle A, * \rangle$ 是 $\langle G, * \rangle$ 的一个子群。

易知ASG且<A,*>减足结合律.

=>
$$\chi^{-1} \star H \star \chi = H$$

:. A中每个孙美选元标品

P221 (2), (3)

(2) 设 $\langle G, * \rangle$ 是一个群,而 $a \in G$,如果 f 是从 G 到 G 的映射,使得对于每一个 $x \in G$,都有

$$f(x) = a * x * a^{-1}$$

试证明 f 是一个从 G 到 G 上的自同构。

V Kinhi €G

$$f(\Lambda_1 * \Lambda_2) = A * (\Lambda_1 * \Lambda_2) * A^{-1}$$

$$= A * \Lambda_1 * A^{-1} * A * \Lambda_2 * A^{-1}$$

·· fl G到 G的同志映新

二十满射

二十分制

ं रेट देश दिल किया की

		表 5-8.9		
*	p ₁	P ₂	<i>p</i> ₃	p
p ₁	p ₁	p ₂	P 3	p
p ₂	p_2	p_1	P4	p:
p ₃	p_3	P4	p_1	P:
P4	P4	p 3	p_2	Þ
		$\langle G, \bigstar \rangle$		201 - 20
*	q_1	q_2	q_3	q
q_1	q_3	q_4	q_1	q_{i}
q_2	q_4	q_3	q_2	q_1
q_3	q_1	q_2	q_3	q_{ϵ}
q_4	q_2	q_1	q_4	q_3

使得 Yar,azeG