Parallel Computation of Simple Arithmetic using Peptide- Antibody Interactions

M. Sakthi Balan Kamala Krithivasan

Theoretical Computer Science Lab
Department of Computer Science and
Engineering
Indian Institute of Technology Madras
Chennai – 600036.

Email: sakthi@cs.iitm.ernet.in kamala@itm.ernet.in

TCS Lab, IITM

Organization

- DNA Computing
- Peptide Computing
- Proposed Model
- Addition Algorithm
- Subtraction Algorithm
- Discussion

- Uses DNA strands and Watson-Crick Complementarity as operation
- Highly non-deterministic
- Massive parallelism
- Solves NP- Complete Problems quite efficiently

Peptide Computing

- Uses peptides and antibodies
- Operation binding of antibodies to epitopes in peptides
- Epitope The site in peptide recognized by antibody
- Highly non-deterministic
- Massive parallelism

Peptide Computing Contd..

- Peptides sequence of amino acids
- Twenty amino acids.
 Example Glycine, Valine
- Connected by covalent bonds

- Antibodies recognizes epitopes by binding to it
- Binding of antibodies to epitopes has associated power called *affinity*
- Higher priority to the antibody with larger affinity power

Computing DNA Vs Peptide

- Four building blocks Adenine (A), Guanine(G), Cytosine (C), Thiamine (T) Only one reverse complement -Watson-Crick Complement Complement (A) = Tand Complement (G)
- Twenty building blocks (20 amino acids)
- Example: Glycine,
 Valine
- Different antibodies can recognize different epitopes
- Binding affinity of

TCS Lab, ITantibodies can be

 $= \mathbf{C}$

Proposed Model

- Consists of a peptide and set of antibodies
- Peptide sequence has n position specific epitopes
- Epitopes $ep_i = y_i x_i z_i$, y_i and z_i are switching epitopes for the i^{th} bit.

 $X_4 \quad Z_4$ $\boldsymbol{X}_0 \qquad \boldsymbol{Z}_0$ Peptide Sequence for a 5-bit number

Antibodies

•
$$\mathcal{A} = \{A_0, A_1, ..., A_{n-1}\}$$

•
$$\mathcal{B} = \{B_0, B_1, ..., B_{n-1}\}$$

•
$$T_{AB0} = \{T_{AB0}, T_{AB1}, ..., T_{AB(n-1)}\}$$

•
$$T_{BA} = \{T_{BA0}, T_{BA1}, ..., T_{BA(n-1)}\}$$

Binding Sites

$$T_{ABi} \longrightarrow Z_i T_{BAi} \longrightarrow y_i$$

Affinity

- $aff(T_{ABi}) > aff(A_i)$
- $aff(T_{BAi}) > aff(B_i)$
- $aff(T_{ABi}) = aff(T_{BAi})$

What it denotes?

- A_i denotes ith bit is zero
- B_i denotes ith bit is one
- T_{ABi} used to switch ith bit from zero to one
- T_{BAi} used to switch ith bit from one to zero

Representation of Binary Numbers

- If the ith bit is 0 then the antibody A_i is bounded to the epitope $y_i x_i$
- If the ith bit is 1 then the antibody B_i is bounded to the epitope $x_i z_i$

10101

TCS Lab, IITM

Addition of Two Binary Numbers

$$A = a_{n-1}a_{n-2}...a_0$$

$$B = b_{n-1}b_{n-2}...b_0$$

$$C = c_n c_{n-1} c_{n-2} \dots c_0$$

XOR

	$\mathbf{a}_{\mathbf{i}}$	b _i	c _i
1	0	0	0
2	0	1	1
3	1	0	1
4	1	1	0

Addition (Contd..)

- First step guessing equivalent to XOR gate.
- The bit c_n is initialized to zero.
- Carry propagation.

Addition (Contd..)

- Carry occurs only when both the bits a_i and b_i are 1.
- Carry is propagated to the left until both the bits a_i and $b_i(j > i)$ are 0.
- If no such j exists then propagation stops making nth bit 1.
- j.j-1....i+1 is called the carry block.
- For each carry block j.j-1....i+1 invert the digits c_k (i+1 $\leq k \leq j$)

Algorithm

- 1. Add antibodies A_i where $a_i = 0$ and $b_i = 0$ or a_i = 1 and $b_i = 1$.
- 2. Add antibodies B_i where $a_i = 0$ and $b_i = 1$ or $a_i = 1$ and $b_i = 0$.
- 3. For all carry block $j_k j_k 1 ... i_k + 1$ do the following in parallel. For $i_k + 1 \le s \le j_k$
 - a) Add antibodies T_{ABs} ,
 - b) Add antibodies B_s,
 - c) Add antibodies T_{BAs} , and
 - d) Add antibodies A_s.

TCS Lab, IITM

Example

Example (Contd..)

101101

Example (Contd..)

101001

Algorithm

ADD(A, B, C)

- 1. XOR(A,B,C)
- 2. BlockInversion($I_1,I_2,...I_k$,C) where I_j are carry blocks and k is the number of carry blocks.

Algorithm - Same(C)

To get the peptide sequence with antibodies in workable form

- 1. Add excess of epitopes y_i
- 2. Add antibodies A_i
- 3. Add excess of eptiopes z_i
- 4. Add antibodies B_i

Algorithm - Subtraction SUB(A,B,C)

- BlockInversion($I_{1,}$, B, B') where $I_{1} = n-1...0$
- ADD(B', ONE, B'') where $ONE = a_{n-1}a_{n-2}...a_11, a_i = 0$
- ADD(A, B", C)
- Inverttozero(C,n)

TCS Lab, IITM

Algorithm - Inverttozero

Inverttozero(C,i)

- Same(C)
- Add antibody T_{ABi}
- Add antibody A_i

Discussion

- To extract numbers from this system NMR can be used or X-ray crystallography
- Limitations
 Obtaining monoclonal antibodies
 Manual process
- Implementation?
- Universal operations ?

Acknowledgments

Authors thank

Saravanakumar Narayanan,

TU- Munchen, Germany

for helpful discussions

"They were built by 3 billion years of evolution, and we're just beginning to tap their potential to serve non-biological purposes. Nature has given us an incredible toolbox, and we're starting to explore what we might build"

Leonard Adleman

mank be