```
In [1]: from matplotlib import pyplot as plt
import numpy as np
import pandas as pd
```

In [2]: df = pd.read_csv('nutrientcomposition_new.csv')

In [3]: df.head()

Out[3]:

	S.No	Protein	Fat	vitaminC	Fibre	Product
0	1	0.452369	1.170926	1.079271	1.702960	Amaranth leaves, cooked, boiled, drained, with
1	2	2.321087	0.706856	0.350088	0.658249	Bacon and beef sticks
2	3	0.884554	1.186571	2.428544	1.984562	Apples, frozen, unsweetened, unheated (Include
3	4	0.715501	0.577599	0.270925	0.369266	Alcoholic beverage, beer, light, BUD LIGHT
4	5	0.132610	0.544521	0.116884	0.557309	Alcoholic beverage, daiquiri, canned

In [4]: df.iloc[:,1:5].describe()

Out[4]:

	Protein	Fat	vitaminC	Fibre
count	1746.000000	1746.000000	1746.000000	1746.000000
mean	0.922470	0.900091	0.900146	0.900830
std	0.627128	0.634617	0.623847	0.626875
min	0.000128	0.000267	0.000029	0.002579
25%	0.435853	0.394784	0.419103	0.389124
50%	0.813025	0.804687	0.796290	0.820783
75%	1.295106	1.298988	1.280870	1.295732
max	4.016890	3.979364	4.013322	3.570331

In [5]: data = df.iloc[:,1:5]

In [6]: data.head()

Out[6]:

	Protein	Fat	vitaminC	Fibre
0	0.452369	1.170926	1.079271	1.702960
1	2.321087	0.706856	0.350088	0.658249
2	0.884554	1.186571	2.428544	1.984562
3	0.715501	0.577599	0.270925	0.369266
4	0.132610	0 544521	0 116884	0.557309

```
In [7]: from scipy.cluster.hierarchy import dendrogram, linkage
In [8]: wardlink = linkage(data, method = 'ward')
In [9]: dend = dendrogram(wardlink)
```



```
In [11]: from scipy.cluster.hierarchy import fcluster
In [12]: # Method 1
    clusters = fcluster(wardlink, 3, criterion = 'maxclust')
    clusters
Out[12]: array([1, 1, 2, ..., 1, 1, 3], dtype=int32)
In [13]: # Methods 2
    clusters = fcluster(wardlink, 23, criterion= 'distance')
    clusters
Out[13]: array([1, 1, 2, ..., 1, 1, 3], dtype=int32)
In [14]: df['clusters'] = clusters
```

In [15]: df.head()

Out[15]:

	S.No	Protein	Fat	vitaminC	Fibre	Product	clusters
0	1	0.452369	1.170926	1.079271	1.702960	Amaranth leaves, cooked, boiled, drained, with	1
1	2	2.321087	0.706856	0.350088	0.658249	Bacon and beef sticks	1
2	3	0.884554	1.186571	2.428544	1.984562	Apples, frozen, unsweetened, unheated (Include	2
3	4	0.715501	0.577599	0.270925	0.369266	Alcoholic beverage, beer, light, BUD LIGHT	1
4	5	0.132610	0.544521	0.116884	0.557309	Alcoholic beverage, daiquiri, canned	1

In [16]: | df.to_csv('hc.csv')

In []: