Université Badji Mokhtar Annaba 3^{ième} année licence Académique Module: Mesure et intégration

Département de Mathématiques 2021/2022

Enseignante : E. Zerouki

Série 3

<u>Exercice</u> 1. Les fonctions suivantes sont-elles boréliennes (mesurables pour la tribu borélienne) ou non?

-
$$f_1: \mathbb{R} \to \mathbb{R}$$
 telle que $f_1(x) = \begin{cases} 0 & : si \ x \le 0 \\ 1/x & : si \ x > 0. \end{cases}$

- $f_2: \mathbb{R} \to \mathbb{R}$ telle que $f_2(x) = x \exp(\cos x)$.

- $f_3: \mathbb{R} \to \mathbb{R}$ telle que $f_3(x) = \mathbb{I}_{\mathbb{Q}}$.

Exercice 2. Soit $f: E \to \mathbb{R}$ une fonction. Montrer que f est mesurable si et seulement si les ensembles $\{x \in E \mid f(x) > r\}$ le sont pour tout $r \in \mathbb{Q}$.

Exercice 3. Soient (E, A), (F, B) et (G, C) trois espaces mesurables. Soient $f : E \to F$ mesurable et $g : F \to G$ mesurable, alors la fonction $g \circ f$ est aussi mesurable.

Exercice 4. Soit $f:(X,\mathcal{F},\mu)\to(\mathbb{R},\mathcal{B}(\mathbb{R}))$ une fonction mesurable.

- 1) Montrer que si $\mu(X) \neq 0$, alors il existe $A \in \mathcal{F}$ avec $\mu(A) \neq 0$, tel que f soit bornée sur A.
- 2) Montrer que si $\mu(\{f \neq 0\}) \neq 0$, alors il existe $B \in \mathcal{F}$ avec $\mu(B) \neq 0$ et m > 0 tel que $|f(x)| \geq m$ sur B.

Exercice 5. Soient f et $g:(E, A) \to \overline{\mathbb{R}}$ deux fonction mesurables.

- 1- Montrer que la fonction $h:(E,\mathcal{A})\to\overline{\mathbb{R}}^2$ définie par h(x)=(f(x),g(x)) est mesurable.
- 2- En déduire que les fonctions (f+g), αf , f.g, $\sup\{f,g\}$, $\inf\{f,g\}$ sont mesurables.

Exercice 6. (*) Soit $f:(E, A) \to \overline{\mathbb{R}}_+$ mesurable. Montrer que f est une limite d'une suite $\{f_n\}_{n\geq 1}$ croissante de fonctions mesurables étagées et positives.

Indication: on pose

$$f_n(x) = \begin{cases} k2^{-n} : \frac{k}{2^n} \le f(x) < \frac{k}{2^{n+1}} & \text{et } k = 0, 1, \dots, n2^n - 1 \\ n : f(x) \ge n. \end{cases}$$

Exercice 7. (*) Montrer que toute fonction croissante de \mathbb{R} dans \mathbb{R} est borélienne. (Indication: Montrer dans ce cas qu'en tout point de discontinuité les limites à gauche et à droite sont finies.)

N.B.Les exercices comprenant le signe (*) sont supplmentaires.

Résolution

Rappels. (voir le chapitre 2 du cours)

- $f: (X, A) \longrightarrow (Y, B)$ mesurable $\stackrel{def}{\Leftrightarrow} \forall B \in \mathcal{B}, f^{-1}(B) \in A$.
- f est une fonction borélienne $\stackrel{\text{déf}}{\Leftrightarrow} f : \mathbb{R} \longrightarrow \mathbb{R}$ est mesurable par rapport à la tribu borélienne $\mathcal{B}(\mathbb{R})$.
- Si f est continue alors f est mesurable.
- La fonction indicatrice qu'on note par \mathbb{I}_A est mesurable $\Leftrightarrow A$ est mesurable.

Exercice 1. – On peut écrire $f_1(x) = \frac{1}{x} \mathbb{I}_{]0,+\infty[}(x) + 0.\mathbb{I}_{]-\infty,0]}(x)$. Comme $x \longmapsto \frac{1}{x}$ est continue sur \mathbb{R}^* , donc mesurable sur \mathbb{R} et comme $]0,+\infty[$ et $]-\infty,0] \in \mathcal{B}(\mathbb{R})$ alors leurs fonctions indicatrices sont mesurables. Par conséquent f_1 est mesurable sur \mathbb{R} .

- $-f_2 = x \exp(\cos(x))$ est continue sur $\mathbb{R} \Rightarrow f_2$ est mesurable (borélienne).
- Comme \mathbb{Q} est dénombrable alors $\mathbb{Q} \in \mathcal{B}(\mathbb{R})$, ainsi $f_3 = \mathbb{I}_{\mathbb{Q}}$ est borélienne.

Exercice 2.

- \Rightarrow) Supposons $f:(E,\mathcal{A}) \longrightarrow (\mathbb{R},\mathcal{B}(\mathbb{R}))$ mesurable, alors $\forall B \in \mathcal{B}(\mathbb{R})$ on a $f^{-1}(B) \in \mathcal{A}$. Comme $\{x \in E: f(x) > r\} = f^{-1}(]r, +\infty[)$ et $]r, +\infty[\in \mathcal{B}(\mathbb{R}); \forall r \in \mathbb{Q}, \text{ alors } f^{-1}(]r, +\infty[)$ est mesurable $\forall r \in \mathbb{Q}$.
- \Leftarrow) Supposons maintenant que

$$f^{-1}(|r, +\infty|) \in \mathcal{A}, \text{ pour tout } r \in \mathbb{Q}$$
 (1)

et montrons que f est mesurable, i. e.

$$f^{-1}\left[\mathcal{B}(\mathbb{R})\right] \stackrel{?}{\subset} \mathcal{A}. \tag{2}$$

On pose $\Sigma = \{ [r, +\infty[: r \in \mathbb{Q}] \} \}$. Sachant que (voir l'exercice 8 de la Série 1)

$$\mathcal{B}(\mathbb{R}) = \{ [r, +\infty[: r \in \mathbb{Q}] \} = \sigma(\Sigma).$$
 (3)

Alors d'après la série 1 exercice 7 on a

$$\sigma\left(f^{-1}[\Sigma]\right) = f^{-1}[\sigma(\Sigma)] = f^{-1}\left[\mathcal{B}(\mathbb{R})\right]. \tag{4}$$

Mais $\sigma(f^{-1}[\Sigma])$ est la plus petite tribu contenant $f^{-1}[\Sigma]$ alors d'après (1) et (4) $f^{-1}(\mathcal{B}(\mathbb{R})) \subset \mathcal{A}$ c'est-à-dire f est mesurable.

Exercice 3. Supposons que $f:(E,\mathcal{A}) \longrightarrow (F,\mathcal{B})$ et $g:(F,\mathcal{B}) \longrightarrow (G,\mathcal{C})$ mesurables et montrons que $g \circ f:(E,\mathcal{A}) \longrightarrow (G,\mathcal{C})$ est mesurable.

Soit $C \in \mathcal{C}$, comme g est une fonction mesurable on a $g^{-1}(C) \in \mathcal{B}$, de même, en utilisant la mesurabilité de f on obtient $f^{-1}(g^{-1}(C)) \in \mathcal{A}$.

Mais $f^{-1}(g^{-1}(C)) = (g \circ f)^{-1}(C)$, par conséquent $(g \circ f)^{-1}(C) \in \mathcal{A}$. c'est-à-dire $g \circ f$ est mesurable.

Exercice 4. Soit $f:(X,\mathcal{F},\mu)\to(\mathbb{R},\mathcal{B}(\mathbb{R}))$ une fonction mesurable.

1) On suppose $\mu(X) > 0$. Posons $E_n = \{x \in X : |f(x)| \le n\} = f^{-1}([-n, n]) \in \mathcal{F}$ car f est mesurable. On a $X = \bigcup_{n \in \mathbb{N}} E_n$.

Comme $n < n+1 \Rightarrow E_n \subset E_{n+1} \Rightarrow f^{-1}([-n,n]) \subset f^{-1}([-(n+1),n+1]) \Rightarrow \{E_n\}_{n \in \mathbb{N}} \text{ est une suite croissante et majorée par } X. \text{ Donc } \lim_{n \to +\infty} E_n := \bigcup_{n \in \mathbb{N}} E_n = X. \text{ Alors d'après la}$

continuité monotone croissante de μ on obtient : $\lim_{n \to +\infty} \mu\left(E_n\right) = \mu\left(\lim_{n \to +\infty} E_n\right) = \mu(X) \Leftrightarrow$

$$(\forall \epsilon > 0, \exists n_0 \in \mathbb{N}, \ tel \ que : \forall n \geq n_0 \ on \ a \ |\mu(E_n) - \mu(X)| < \epsilon) \iff$$

$$(\forall \epsilon > 0, \exists n_0 \in \mathbb{N}, \ tel \ que : \forall n \ge n_0 \ on \ a \ \mu(X) - \epsilon < \mu(E_n) < \mu(X) + \epsilon)$$

Choisissons ε tel que $\mu(X) > \epsilon$, (cela est possible car $\mu(X) \neq 0$), alors pour

$$n = n_0$$
 et $A = E_{n_0} \in \mathcal{F}$ on, $a \mid 0 < \mu(A) < \mu(X) + \epsilon$.

Donc $\mu(A) \neq 0$ et f est bornée par n_0 sur A, car par définition on a $A = E_{n_0} = \{x \in X : |f(x)| \leq n_0\}$. D'où le résultat voulu.

2) Notons $\forall n \geq 1, F_n = \left\{ x \in X : |f(x)| > \frac{1}{n} \right\}$. Il est clair que $F_n \in \mathcal{F}, \ \forall n \geq 1, \ car$ $F_n = f^{-1}\left(\left[-\infty, -\frac{1}{n} \left[\cup \right] \frac{1}{n}, +\infty \right] \right) \in \mathcal{F}, \ (f \ est \ mesurable.)$

Donc pour $x \in F_n$ on $a: |f(x)| > \frac{1}{n} > \frac{1}{n+1} > 0 \Rightarrow x \in F_{n+1} \Leftrightarrow F_n \subset F_{n+1} \Leftrightarrow \{F_n\}_{n\geq 1}$ est une suite croissante donc elle converge et nous avons: $\lim_{n\to +\infty} F_n = \bigcup_{n\geq 1} F_n = \{x \in X: |f(x)| \neq 0\} = F \Rightarrow \lim_{n\to +\infty} \mu(F_n) = \mu(F) > 0 \text{ (car } \mu(F) \neq 0 \text{ par hypothèse)} \Leftrightarrow$

$$(\forall \epsilon > 0, \exists n_1 \in \mathbb{N}, \ tel \ que : \forall n \ge n_1 \ on \ a \ |\mu(F_n) - \mu(F)| < \epsilon).$$

Choisissons ε tel que $\mu(F) > \epsilon$, donc $\exists n_1 \in \mathbb{N}$ tel que :

$$0 < \mu(F) - \epsilon < \mu(F_{n_1}) < \mu(F) + \epsilon.$$

Posons: $B = F_{n_1} \in \mathcal{F} \ donc \ \mu(B) > 0 \Rightarrow |f(x)| > \frac{1}{n_1} = m, \forall x \in B. \ D'où \ le \ résultat voulu.$

Exercice 5.

1- On montre que $h:(E,\mathcal{A}) \longrightarrow \overline{\mathbb{R}}^2$ définie par h(x)=(f(x),g(x)) est mesurable. Sachant que

$$\mathcal{B}(\overline{\mathbb{R}}^2) = \sigma\left(\left\{[a, b] \times [c, d], \ a < b \in \overline{\mathbb{R}} \ et \ c < d \in \overline{\mathbb{R}}\right\}\right),$$

alors pour montrer que h est mesurable, il suffit de montrer que $h^{-1}([a,b] \times [c,d]) \in \mathcal{A}$ pour tout $a < b \in \overline{\mathbb{R}}$ et $\forall c < d \in \overline{\mathbb{R}}$.

Montrant d'abord que

$$h^{-1}([a,b] \times [c,d]) \stackrel{?}{=} f^{-1}([a,b]) \cap g^{-1}([c,d]) \in \mathcal{A}, pour \ tout \ a < b \in \overline{\mathbb{R}} \ \ et \ \forall c < d \in \overline{\mathbb{R}}.$$

$$Soit \ x \in h^{-1}\left([a,b] \times [c,d]\right) \Leftrightarrow \begin{cases} \exists y_1 \in [a,b] \ tel \ que : \ y_1 = f(x) \\ \land \\ \exists y_2 \in [c,d] \ tel \ que : \ y_2 = g(x) \end{cases}$$

$$\Leftrightarrow \left(x \in f^{-1}([a,b]) \ et \ x \in g^{-1}([c,d])\right) \Leftrightarrow h^{-1}\left([a,b] \times [c,d]\right) = f^{-1}\left([a,b]\right) \cap g^{-1}\left([c,d]\right) \in \mathcal{A}$$

$$car \ f \ et \ g \ sont \ mesurables. \ D'où \ le \ résultat \ voulu.$$

2- (a) On définit les fonctions k_1, k_2, k_3 par :

$$k_1 : \overline{\mathbb{R}}^2 \longrightarrow \overline{\mathbb{R}}$$

 $(x,y) \longmapsto k_1(x,y) = x + y,$
 $k_2 : \overline{\mathbb{R}}^2 \longrightarrow \overline{\mathbb{R}}$
 $(x,y) \longmapsto k_2(x,y) = xy$

et

$$k_3: \overline{\mathbb{R}} \longrightarrow \overline{\mathbb{R}}$$

 $x \longmapsto k_3(x) = \alpha x, \ (\alpha \in \mathbb{R}).$

Alors on peut écrire que

$$(f+g)(x) = f(x) + g(x) = k_1 (f(x), g(x)) = (k_1 \circ h)(x),$$
$$(fg)(x) = k_2 (f(x), g(x)) = (k_2 \circ h)(x)$$

et

$$(\alpha f)(x) = k_3(f(x)) = (k_3 \circ f)(x).$$

Les fonctions k_1, k_2, k_3 sont continues donc boréliennes et comme f, g, h sont mesurables alors on a la mesurabilité des fonctions f + g, f.g et αf .

(b) La fonction sup $\{f,g\}: (E,\mathcal{A}) \longrightarrow \overline{\mathbb{R}}$. est définie par

$$\sup \{ f(x), g(x) \} = \begin{cases} f(x) & si \ f(x) \ge g(x) \\ g(x) & si \ f(x) < g(x) \end{cases} = f(x). \mathbb{I}_{f \ge g}(x) + g(x). \mathbb{I}_{f < g}(x).$$

Comme $\{f \geq g\} = \{x \in E : f(x) - g(x) \geq 0\} = (f - g)^{-1}([0, +\infty]) \in \mathcal{A}$ (car f - g est mesurable et $[0, +\infty] \in \mathcal{B}(\overline{\mathbb{R}})$) $\Rightarrow \mathbb{I}_{f \geq g}$ est mesurable.

$$\{f < g\} = \{x \in E : (f - g)(x) < 0\} = (f - g)^{-1} ([-\infty, 0]) \in \mathcal{A} \Rightarrow \mathbb{I}_{f < g} \text{ est mesurable}$$

Par conséquent la fonction sup $\{f,g\}$ est une fonction mesurable.

De même pour inf $\{f,g\} = f.\mathbb{I}_{f \leq g} + g.\mathbb{I}_{f > g}$ est mesurable pour les mêmes raisons.

Exercice 6. Soit $f:(X,\mathcal{A}) \longrightarrow \overline{\mathbb{R}}_+$ une fonction mesurable. On pose

$$f_n(x) = \begin{cases} \frac{k}{2^n} & \text{si } \frac{k}{2^n} \le f(x) < \frac{k+1}{2^n}; \ k \in \{0, 1, \dots\} \\ n & \text{si } f(x) \ge n \end{cases}$$

Montrons que f_n est une fonction étagée positive; $\forall n \in \mathbb{N}$. Posons

$$A_{nk} = \left\{ x \in X \text{ telle que } \frac{k}{2^n} < f(x) < \frac{k+1}{2^n} \right\}; k = \{0, 1, ..., n2^n - 1\}$$

et

$$B_n = \{x \in X \text{ telel que } f(x) \ge n\}.$$

Alors on peut écrire que :

$$f_n(x) = \sum_{k=0}^{n2^n - 1} \frac{k}{2^n} \mathbb{I}_{A_{nk}}(x) + n \mathbb{I}_{B_n}(x) \ge 0.$$

En plus, comme $A_{nk} = f^{-1}\left(\left[\frac{k}{2^n}, \frac{k+1}{2^n}\right]\right) \in \mathcal{A} \ et \ B_n = f^{-1}\left([n, +\infty[) \in \mathcal{A} \ (car \ f \ est \ mesurable), \right)\right)$ on a la mesurabilité de la fonction f_n , pour tout $n \geq 0$.

Montrons maintenant que $\{f_n\}_{n\in\mathbb{N}}$ est une suite croissante \Leftrightarrow

$$\forall x \in X : f_n(x) \le f_{n+1}(x); pour tout n \in \mathbb{N}.$$

- S'il existe un entier n tel que f(x) < n, alors

$$\exists k > 0 : \frac{k}{2^n} \le f(x) < \frac{k+1}{2^n} \text{ et dans ce cas on a } f_n(x) = \frac{k}{2^n}.$$

Ce qui nous permet d'écrire que

$$\begin{array}{ccc} \frac{k}{2^n} & \leq & f(x) < \frac{k+1}{2^n} \Longleftrightarrow \frac{2k}{2^{n+1}} \leq f(x) < \frac{2(k+1)}{2^{n+1}} \Longleftrightarrow \\ \frac{2k}{2^{n+1}} & \leq & f(x) < \frac{2k+1}{2^{n+1}} \ ou \ bien \ \frac{2k1}{2^{n+1}} \leq f(x) < \frac{2k+2}{2^{n+1}}. \end{array}$$

Donc $f_{n+1}(x) = \frac{2k}{2^{n+1}} = \frac{k}{2^n} = f_n(x)$ ou bien $f_{n+1}(x) = \frac{2k+1}{2^{n+1}} = \frac{k}{2^n} + \frac{1}{2^{n+1}} > f_n(x)$. En conclusion si f(x) < n: $f_n(x) \le f_{n+1}(x)$.

- $-Si f(x) \ge n \text{ on } a n \le f(x) < n+1 \text{ ou bien } f(x) \ge n+1$
 - Dans le cas ou : $f(x) \ge n+1 \Rightarrow f_{n+1}(x) = n+1 = f_n(x)+1 \Leftrightarrow f_{n+1}(x) > f_n(x)$
 - Dans le cas ou $n \le f(x) < n+1$, ,alors $\exists k \in \{0, 1, ..., (n+1)2^{n+1} 1\}$ tel que :

$$f_n(x) = n < \frac{k}{2^{n+1}} \le f(x) < \frac{k+1}{2^{n+1}} \implies f_{n+1}(x) = \frac{k}{2^{n+1}} \ge f_n(x).$$

En conclusion si $f(x) \ge n$: $f_n(x) \le f_{n+1}(x)$.

- Montrons que $\lim_{n \to +\infty} f_n(x) = f(x); \ \forall x \in X.$
 - Supposons $\forall n \in \mathbb{N} : f(x) \geq n \Rightarrow f(x) = +\infty$. D'autre part, on a $f(x) \geq n \Rightarrow f_n(x) = n$ c'est-à-dire $\lim_{n \to +\infty} f_n(x) = +\infty = f(x)$ Dans le cas où $\exists n_0 \in \mathbb{N}$ tel que : $f(x) < n_0$, alors pour tout $n \geq n_0$ on a $f(x) < n_0 \leq n$,
 - donc

$$\forall n \ge n_0; \exists k \in \mathbb{N} \ tel \ que : \frac{k}{2^n} \le f(x) < \frac{k+1}{2^n},$$

dans ce cas $f_n(x) = \frac{k}{2^n}$, d'où $\forall n \ge n_0$: $f_n(x) \le f(x) = \frac{k}{2^n} < f_n(x) + \frac{1}{2^n}$. En passant à la limite on obtient

$$\lim_{n \to +\infty} f_n(x) \le f(x) \le \lim_{n \to +\infty} \left(f_n(x) + \frac{1}{2^n} \right) = \lim_{n \to +\infty} f_n(x).$$

Donc $\lim_{n \to +\infty} f_n(x) = f(x)$.

Exercice 7. Soit $f: \mathbb{R} \longrightarrow \mathbb{R}$ une fonction croissante, montrons que f est borélienne.

1) Soit x un point de discontinuité de f. On doit montrer que : f(x+0) et f(x-0) existent et elles sont finies, où :

$$f(x+0) = \lim_{\substack{h \to 0 \\ > 0}} f(x+h) = \lim_{\substack{n \to +\infty}} f\left(x + \frac{1}{n}\right)$$

$$f(x-0) = \lim_{h \to 0} f(x+h) = \lim_{n \to +\infty} f\left(x - \frac{1}{n}\right).$$

Posons: $U_n = f\left(x + \frac{1}{n}\right)$ et $V_n = f\left(x - \frac{1}{n}\right)$; $\forall n \geq 1$. Comme f est croissante alors

$$f\left(x - \frac{1}{n}\right) \le f\left(x - \frac{1}{n+1}\right) \le f(x) \le f\left(x + \frac{1}{n+1}\right) \le f\left(x + \frac{1}{n}\right).$$

Ainsi $(U_n)_{n\geq 1}$ est croissante et minorée par f(x) et $(V_n)_{n\geq 1}$ est décroissante et majorée par $f(x) \Rightarrow (U_n)_{n\geq 1}$ et $(V_n)_{n\geq 1}$ sont convergentes $\Rightarrow \lim_{n\to +\infty} \overline{U}_n$ et $\lim_{n\to +\infty} V_n$ existent et elles sont finies, par conséquent f(x+0) et f(x-0) existent et elles sont finies.

2) Posons $A = \{x \in \mathbb{R} : f(x+0) - f(x-0) > 0\}$, l'ensemble des points de discontinuité de f. Montrons que A est au plus dénombrable.

Considérons l'ensemble $A_n = \left\{ x \in \mathbb{R} \ / \ f(x+0) - f(x-0) > \frac{1}{n} \right\}$, pour $n \in \mathbb{N}^*$, alors on a $A = \bigcup_{n \geq 1} A_n$. Montrons que A_n est au plus dénombrable $\forall n \geq 1$. Pour cela nous allons raisonner par l'absurde.

Supposons qu'il existe $n_0 \ge 1$ tel que : A_{n_0} est non dénombrable (infini). Alors $\exists n_1 \in \mathbb{N}^*$ tel que : $B = A_{n_0} \cap [n_1, n_1 + 1]$ soit non dénombrable, alors

$$\forall x \in B : f(n_1) \le f(x) \le f(n_1 + 1).$$

Comme B est non dénombrable on peut construire une suite $\{x_n\}_{n\geq 1}\subset B$ strictement croissante telle que :

$$\forall n \ge 1, \ f(x_1) + \frac{n}{n_0} \le f(x_n - 0) < f(x_n + 0) \le f(n_1 + 1).$$

On a en plus, $f(n_1) \le f(x_1)$, alors $f(n_1+1) - f(n_1) \ge \frac{n}{n_0}$, doù $n_0 (f(n_1+1) - f(n_1)) \ge n$, pour tout $n \ge 1$.

Contradiction avec le faite qu'il existe un entier n tel que $n_0(f(n_1+1)-f(n_1)) < n$, car d'aprés la propriété d'Archimède on a

$$\forall x \in \overline{\mathbb{R}}_+, \exists N \in \mathbb{N}^* \ x < N.$$

Donc A est au plus dénombrable ce qui nous permet de dire que $A \in \mathcal{B}(\mathbb{R})$.

3) On peut écrire que $f = f.\mathbb{I}_A + f.\mathbb{I}_{A^c}$ Comme $A \in \mathcal{B}(\mathbb{R}) \Rightarrow A^c \in \mathcal{B}(\mathbb{R})$ par conséquent \mathbb{I}_A et \mathbb{I}_{A^c} sont des fonctions boréliennes.

On a
$$f.\mathbb{I}_A = \sum_{i \in \mathbb{N}} f_i \mathbb{I}_{A_i}$$
, où $A_i = \{x_i\}$ et $f_i = f(x_i)$, alors $f.\mathbb{I}_A$ est mesurable.

Comme f est continue sur $A^c \Rightarrow f.\mathbb{I}_{A^c}$ est aussi mesurable. Par conséquent f est borélienne.

BONNE CHANCE