Import Libraries

```
import numpy as np
import pandas as pd
%matplotlib inline
import matplotlib.pyplot as plt
import seaborn as sns

import warnings
warnings.filterwarnings("ignore")
```

Import Dataset

In [4]:	data	<pre>dataset= pd.read_csv('health care diabetes.csv')</pre>										
In [5]:	data	<pre>dataset.head()</pre>										
Out[5]:	Р	regnancies	Glucose	BloodPressure	SkinThickness	Insulin	вмі	DiabetesPedigreeFunction	Age			
	0	6	148	72	35	0	33.6	0.627	50			
	1	1	85	66	29	0	26.6	0.351	31			
	2	8	183	64	0	0	23.3	0.672	32			
	3	1	89	66	23	94	28.1	0.167	21			
	4	0	137	40	35	168	43.1	2.288	33			
4									•			
In [6]:	data	dataset.shape										
Out[6]:	(768	3, 9)										

Project Task: Week 1 - Data Exploration and Missing Values Treatment

```
In [7]:
        dataset.isnull().any()
        Pregnancies
                                     False
Out[7]:
        Glucose
                                     False
                                      False
        BloodPressure
        SkinThickness
                                     False
        Insulin
                                     False
                                     False
        DiabetesPedigreeFunction
                                     False
                                     False
        Age
        Outcome
                                      False
        dtype: bool
```

Out[12]:

Since there is no null value. It means 0 represent as missing value, so let us find how many have missing value in pecentage.

```
(dataset['Glucose'][dataset['Glucose']==0].count()/768)*100
 In [8]:
          0.6510416666666667
 Out[8]:
         0.65 of data having missing value, so we can ignore it.
          (dataset['BloodPressure'][dataset['BloodPressure']==0].count()/768)*100
 In [9]:
          4.557291666666666
 Out[9]:
          (dataset['SkinThickness'][dataset['SkinThickness']==0].count()/768)*100
In [10]:
          29.55729166666668
Out[10]:
In [11]:
          (dataset['Insulin'][dataset['Insulin']==0].count()/768)*100
          48.69791666666667
Out[11]:
          (dataset['BMI'][dataset['BMI']==0].count()/768)*100
In [12]:
```

1.43 of data having missing value, so we can ignore it.

1.432291666666665

The data of BloodPressure, SkinThickness and Insulin having high missing value, so lets try to fill up.

```
In [13]:
         plt.hist(dataset['BloodPressure'],edgecolor='black')
         (array([ 35.,
                               2., 13., 107., 261., 243., 87., 14.,
                         1.,
Out[13]:
                  0., 12.2, 24.4, 36.6, 48.8, 61., 73.2, 85.4, 97.6,
                 109.8, 122. ]),
          <BarContainer object of 10 artists>)
          250
         200
         150
         100
          50
                      20
                            40
                                                 100
                                   60
                                          80
                                                        120
         plt.hist(dataset['SkinThickness'],edgecolor='black')
In [14]:
```

```
Out[14]: (array([231., 107., 165., 175., 78., 9., 2., 0., 0., 1.]),
array([0., 9.9, 19.8, 29.7, 39.6, 49.5, 59.4, 69.3, 79.2, 89.1, 99.]),
<BarContainer object of 10 artists>)
```



```
In [15]: plt.hist(dataset['Insulin'],edgecolor='black')
```

Out[15]: (array([487., 155., 70., 30., 8., 9., 5., 1., 2., 1.]), array([0. , 84.6, 169.2, 253.8, 338.4, 423. , 507.6, 592.2, 676.8, 761.4, 846.]), <BarContainer object of 10 artists>)


```
In [16]: dataset[dataset['BloodPressure']!=0]['BloodPressure'].describe()
```

```
733.000000
          count
Out[16]:
          mean
                    72.405184
                    12.382158
          std
                    24.000000
          min
                    64.000000
          25%
          50%
                    72.000000
          75%
                    80.000000
                   122.000000
```

Name: BloodPressure, dtype: float64

```
In [17]: dataset[dataset['SkinThickness']!=0]['SkinThickness'].describe()
```

```
count
                  541.000000
Out[17]:
         mean
                   29.153420
         std
                   10.476982
                    7.000000
         min
         25%
                   22.000000
         50%
                   29.000000
         75%
                   36.000000
                   99.000000
         max
         Name: SkinThickness, dtype: float64
         dataset[dataset['Insulin']!=0]['Insulin'].describe()
In [18]:
                  394.000000
         count
Out[18]:
         mean
                  155.548223
         std
                  118.775855
                   14.000000
         min
         25%
                   76.250000
         50%
                  125.000000
         75%
                  190.000000
                  846.000000
         max
         Name: Insulin, dtype: float64
         mean value of BloodPressure = 72.405184, mean value of SkinThickness =
         29.153420, mean value of Insulin = 155.548223. Lets replace 0 with mean
         value.
         from numpy import nan
In [19]:
         dataset imp = dataset.copy()
         dataset_imp[['BloodPressure','SkinThickness','Insulin']]=dataset_imp[['BloodPressure'
         dataset_imp.fillna(dataset_imp.mean(), inplace=True)
In [20]:
         plt.hist(dataset_imp['BloodPressure'],edgecolor='black')
In [21]:
         (array([ 3.,
                         2., 35., 118., 261., 214., 105., 18., 10.,
                                                                         2.]),
Out[21]:
          array([ 24. , 33.8, 43.6, 53.4, 63.2, 73. , 82.8, 92.6, 102.4,
                 112.2, 122. ]),
          <BarContainer object of 10 artists>)
          250
         200
         150
         100
```

100

120

40

60

80

50

20

In [23]: plt.hist(dataset_imp['Insulin'],edgecolor='black')

Out[23]: (array([142., 517., 55., 29., 7., 10., 4., 1., 2., 1.]), array([14. , 97.2, 180.4, 263.6, 346.8, 430. , 513.2, 596.4, 679.6, 762.8, 846.]), <BarContainer object of 10 artists>)

In [24]: dataset.describe()

Out[24]:		Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	ВМІ	DiabetesPedigr
	count	768.000000	768.000000	768.000000	768.000000	768.000000	768.000000	
	mean	3.845052	120.894531	69.105469	20.536458	79.799479	31.992578	
	std	3.369578	31.972618	19.355807	15.952218	115.244002	7.884160	
	min	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	
	25%	1.000000	99.000000	62.000000	0.000000	0.000000	27.300000	
	50%	3.000000	117.000000	72.000000	23.000000	30.500000	32.000000	
	75%	6.000000	140.250000	80.000000	32.000000	127.250000	36.600000	
	max	17.000000	199.000000	122.000000	99.000000	846.000000	67.100000	

In [25]: dataset_imp.describe()

Out[25]:		Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	ВМІ	DiabetesPedigr
	count	768.000000	768.000000	768.000000	768.000000	768.000000	768.000000	
	mean	3.845052	120.894531	72.405184	29.153420	155.548223	31.992578	
	std	3.369578	31.972618	12.096346	8.790942	85.021108	7.884160	
	min	0.000000	0.000000	24.000000	7.000000	14.000000	0.000000	
	25%	1.000000	99.000000	64.000000	25.000000	121.500000	27.300000	
	50%	3.000000	117.000000	72.202592	29.153420	155.548223	32.000000	
	75%	6.000000	140.250000	80.000000	32.000000	155.548223	36.600000	
	max	17.000000	199.000000	122.000000	99.000000	846.000000	67.100000	
4								>
In [26]:	datase	t_imp.info(()					
	Range In Data co # Co O Pi 1 Gi 2 Bi 3 SI 4 In 5 Bi 6 Di 7 Ag 8 Ou dtypes	'pandas.co ndex: 768 e plumns (tot plumn regnancies lucose loodPressur kinThicknes nsulin MI iabetesPedi ge utcome : float64(5 usage: 54.	entries, 0 ral 9 colum re s greeFuncti), int64(4	to 767 ns): Non-Null 768 non-n	ull int64 ull int64 ull float6 ull float6 ull float6 ull float6 ull float6 ull int64	54 54 54		
In [27]:	datase	t_imp[' <mark>Gluc</mark>	cose'].valu	e_counts().pl	ot.bar(figsiz	ze=(30,8))		
Out[27]:	<axessı< th=""><th>ubplot:></th><th></th><th></th><th></th><th></th><th></th><th></th></axessı<>	ubplot:>						
In [28]: Out[28]:		ssssassassassass t_imp['Blocubplot:>	assagaga និង្សិក្សិក និង s odPressure'].value_count	s().plot.bar	Makakakakakakakakakakakakakakakakakakak	######################################	を

```
dataset_imp['SkinThickness'].value_counts().plot.bar(figsize=(20,4))
In [29]:
      <AxesSubplot:>
Out[29]:
        dataset_imp['Insulin'].value_counts().plot.bar(figsize=(35,8))
In [30]:
      <AxesSubplot:>
Out[30]:
      In [31]:
      dataset_imp['BMI'].value_counts().plot.bar(figsize=(30,8))
      <AxesSubplot:>
Out[31]:
```


Project Task: Week 2 - Data Exploration and Analysis, Plots.

In [32]:	Positive=dataset_imp[dataset_imp['Outcome']==1]									
In [33]:	Positive.head()									
Out[33]:	Pregnancies Glucose BloodPressure SkinThickness Insulin BMI DiabetesPedigreeFunction									
	0	6	148	72.0	35.00000	155.548223	33.6	0.627		
	2	8	183	64.0	29.15342	155.548223	23.3	0.672		
	4	0	137	40.0	35.00000	168.000000	43.1	2.288		
	6	3	78	50.0	32.00000	88.000000	31.0	0.248		
	8	2	197	70.0	45.00000	543.000000	30.5	0.158		
4								•		
In [34]:	Negative=d	ataset	t_imp[d	ataset_imp['(Outcome']==0]					
In [35]:	Negative.h	ead()								
Out[35]:	Pregnancies Glucose BloodPressure SkinThickness Insulin BMI DiabetesPedigreeFuncti									
	1	1	85	66.000000	29.00000	155.548223	26.6	0.351		
	3	1	89	66.000000	23.00000	94.000000	28.1	0.167		
	5	5	116	74.000000	29.15342	155.548223	25.6	0.201		
	7	10	115	72.405184	29.15342	155.548223	35.3	0.134		
	10	4	110	92.000000	29.15342	155.548223	37.6	0.191		
4)		
In [36]:	plt.hist(P	ositi	ve[' <mark>Gl</mark> u	cose'],histty	/pe='stepfille	ed',edgeco	lor='E	Black')		
Out[36]:	<pre>(array([2., 0., 0., 1., 13., 54., 63., 51., 45., 39.]), array([0. , 19.9, 39.8, 59.7, 79.6, 99.5, 119.4, 139.3, 159.2,</pre>									


```
In [38]: plt.hist(Positive['SkinThickness'],histtype='stepfilled',edgecolor='Black')
```

Out[38]: (array([6., 32., 154., 54., 19., 1., 1., 0., 0., 1.]), array([7., 16.2, 25.4, 34.6, 43.8, 53., 62.2, 71.4, 80.6, 89.8, 99.]), [<matplotlib.patches.Polygon at 0x20e9eab2df0>])


```
plt.hist(Positive['Insulin'],histtype='stepfilled',edgecolor='Black')
In [39]:
         (array([ 16., 196., 28., 13., 3., 7., 3., 1.,
Out[39]:
          array([ 14. , 97.2, 180.4, 263.6, 346.8, 430. , 513.2, 596.4, 679.6,
                 762.8, 846. ]),
          [<matplotlib.patches.Polygon at 0x20e9eb1a6d0>])
          200
         175
         150
          125
         100
           75
          50
           25
            0
                        200
                                  400
                                             600
                                                       800
         plt.hist(Positive['BMI'],histtype='stepfilled',edgecolor='Black')
In [40]:
         (array([ 2., 0., 0., 16., 99., 97., 41., 10., 2., 1.]),
Out[40]:
          array([ 0. , 6.71, 13.42, 20.13, 26.84, 33.55, 40.26, 46.97, 53.68,
                 60.39, 67.1 ]),
          [<matplotlib.patches.Polygon at 0x20e9eb7af70>])
          100
          80
           60
           40
           20
                     10
                                         40
                                               50
                                  30
                                                      60
In [41]: sns.set(style="ticks", color_codes=True)
         g = sns.pairplot(dataset_imp,hue="Outcome")
```


In [42]: sns.set(style="ticks", color_codes=True)
g = sns.pairplot(Positive[['Pregnancies','Glucose','BloodPressure','SkinThickness','Ir

In [43]: sns.set(style="ticks", color_codes=True)
g = sns.pairplot(Negative[['Pregnancies','Glucose','BloodPressure','SkinThickness','Ir

In [44]: dataset_imp.corr()

Out[44]:

	Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	ВМІ	D
Pregnancies	1.000000	0.129459	0.208522	0.082989	0.056027	0.017683	
Glucose	0.129459	1.000000	0.217728	0.182455	0.407699	0.221071	
BloodPressure	0.208522	0.217728	1.000000	0.192816	0.072517	0.233123	
SkinThickness	0.082989	0.182455	0.192816	1.000000	0.158139	0.480496	
Insulin	0.056027	0.407699	0.072517	0.158139	1.000000	0.149468	
ВМІ	0.017683	0.221071	0.233123	0.480496	0.149468	1.000000	
DiabetesPedigreeFunction	-0.033523	0.137337	-0.002763	0.100966	0.098634	0.140647	
Age	0.544341	0.263514	0.324595	0.127872	0.136734	0.036242	
Outcome	0.221898	0.466581	0.166074	0.215299	0.214411	0.292695	

```
In [45]: plt.subplots(figsize=(8,8))
    sns.heatmap(dataset_imp.corr(),annot=True)
```

Out[45]: <AxesSubplot:>

Correlation Results:

1)There are not much multicolinearity 2)Pregnancies and Age have some positive corelation 3)Glucose has some positive corelation with the outcome variable 4)Skin thickness and BMI has some positive corelation 5)Insulin and Glucose has some positive corelation

Project Task: Week 3 - Data Modelling

```
In [47]: features = dataset_imp.iloc[:,[0,1,2,3,4,5,6,7]].values
label = dataset_imp.iloc[:,8].values
```

Train test split

```
from sklearn.model_selection import train_test_split
x_train,x_test,y_train,y_test = train_test_split(features,label,test_size=0.2,random_s
```

Logistic Regression Model

```
In [100...
          #Create model
          from sklearn.linear_model import LogisticRegression
          logRegModel = LogisticRegression()
          logRegModel.fit(x train,y train)
          C:\Users\Satyajeet Himanshu\anaconda3\lib\site-packages\sklearn\linear model\ logisti
          c.py:814: ConvergenceWarning: lbfgs failed to converge (status=1):
          STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.
          Increase the number of iterations (max iter) or scale the data as shown in:
              https://scikit-learn.org/stable/modules/preprocessing.html
          Please also refer to the documentation for alternative solver options:
              https://scikit-learn.org/stable/modules/linear model.html#logistic-regression
            n iter i = check optimize result(
          LogisticRegression()
Out[100]:
In [178... y_pred = logRegModel.predict(x_test)
In [179...
          y pred
          array([1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0,
Out[179]:
                 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 1,
                 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 1, 1,
                 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1,
                 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1,
                 0, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0,
                 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0]
                dtype=int64)
          y_test
In [180...
          array([1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1,
Out[180]:
                 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1,
                 1, 0, 0, 1, 1, 1, 0, 0, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 1, 1, 1,
                 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0,
                 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1,
                 0, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0,
                 0, 1, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0].
                dtype=int64)
In [182...
          import matplotlib.pyplot as plt
          from sklearn import metrics
          confusion matrix = metrics.confusion matrix(y test,y pred)
          confusion matrix = metrics.ConfusionMatrixDisplay(confusion matrix = confusion matrix,
          confusion_matrix.plot()
          plt.show()
```


In [183... from sklearn.metrics import accuracy_score
accuracy_score(y_test,y_pred)

Out[183]: 0.7987012987012987

In [184... from sklearn.metrics import classification_report
 print(classification_report(y_test, y_pred))

	precision	recall	f1-score	support
0	0.83	0.89	0.86	107
1	0.70	0.60	0.64	47
accuracy			0.80	154
macro avg	0.77	0.74	0.75	154
weighted avg	0.79	0.80	0.79	154

Decision Tree Model

```
from sklearn.tree import DecisionTreeClassifier
In [134...
          dtree=DecisionTreeClassifier()
          dtree.fit(x_train,y_train)
          DecisionTreeClassifier()
Out[134]:
In [185...
          y_pred2 = dtree.predict(x_test)
In [186... y_pred2
          array([1, 1, 0, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 1, 0, 0, 0, 1, 0,
Out[186]:
                 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 1, 1, 0,
                 1, 0, 0, 0, 1, 0, 0, 1, 1, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0,
                 0, 0, 0, 1, 0, 0, 0, 1, 1, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0,
                 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0,
                 1, 0, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0,
                 0, 1, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0]
                dtype=int64)
```

import matplotlib.pyplot as plt

```
from sklearn import metrics
confusion_matrix = metrics.confusion_matrix(y_test,y_pred2)
confusion_matrix = metrics.ConfusionMatrixDisplay(confusion_matrix = confusion_matrix,
confusion_matrix.plot()
plt.show()
```


In [189... from sklearn.metrics import accuracy_score
 accuracy_score(y_test,y_pred2)

Out[189]:

0.7402597402597403

In [190... from sklearn.metrics import classification_report
 print(classification_report(y_test, y_pred2))

support	f1-score	recall	precision	
107	0.81	0.79	0.83	0
47	0.60	0.64	0.57	1
154	0.74			accuracy
154	0.70	0.71	0.70	macro avg
154	0.74	0.74	0.75	weighted avg

Random Forest Model

```
In [191... from sklearn.ensemble import RandomForestClassifier
    rfc=RandomForestClassifier(n_estimators=60)
    rfc.fit(x_train,y_train)
```

Out[191]: RandomForestClassifier(n_estimators=60)

```
In [192... y_pred3 = rfc.predict(x_test)
In [193... y_pred3
```

```
import matplotlib.pyplot as plt
from sklearn import metrics
confusion_matrix = metrics.confusion_matrix(y_test,y_pred3)
confusion_matrix = metrics.ConfusionMatrixDisplay(confusion_matrix = confusion_matrix, confusion_matrix.plot()
plt.show()
```



```
In [197... from sklearn.metrics import accuracy_score
    accuracy_score(y_test,y_pred3)
```

Out[197]: 0.7922077922077922

In [198... from sklearn.metrics import classification_report
 print(classification report(y test, y pred2))

	precision	recall	f1-score	support
0	0.83	0.79	0.81	107
1	0.57	0.64	0.60	47
accuracy			0.74	154
macro avg	0.70	0.71	0.70	154
weighted avg	0.75	0.74	0.74	154

KNN Model

```
In [170... from sklearn.neighbors import KNeighborsClassifier
knn=KNeighborsClassifier(n_neighbors=3)
knn.fit(x_train,y_train)
```

Out[170]: KNeighborsClassifier(n_neighbors=3)

```
In [173...
          y pred4 = knn.predict(x test)
In [174...
          y_pred4
          Out[174]:
                 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 1,
                                                    0, 1, 1, 0, 1, 1, 0, 0, 0, 1,
                 1, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 1, 1,
                 1, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0,
                 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 1, 0, 1,
                 0, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0,
                 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0]
                dtype=int64)
In [175...
          import matplotlib.pyplot as plt
          from sklearn import metrics
          confusion matrix = metrics.confusion matrix(y test,y pred4)
          confusion matrix = metrics.ConfusionMatrixDisplay(confusion matrix = confusion matrix,
          confusion matrix.plot()
          plt.show()
                                                     70
                        84
                                       23
            False
                                                    60
          True label
                                                    - 50
                        20
                                       27
             True -
                                                     30
                       False
                                       True
                           Predicted label
          from sklearn.metrics import accuracy score
In [176...
          accuracy_score(y_test,y_pred3)
          0.8116883116883117
Out[176]:
          from sklearn.metrics import classification report
In [177...
          print(classification_report(y_test, y_pred2))
                        precision
                                     recall f1-score
                                                        support
                                       0.79
                     0
                             0.83
                                                 0.81
                                                            107
                     1
                             0.57
                                       0.64
                                                 0.60
                                                             47
              accuracy
                                                 0.74
                                                            154
                                       0.71
                                                 0.70
                                                            154
             macro avg
                             0.70
          weighted avg
                             0.75
                                       0.74
                                                 0.74
                                                            154
          # Compare Algorithms
In [232...
          import pandas
          import matplotlib.pyplot as plt
          from sklearn import model selection
```

```
from sklearn.linear model import LogisticRegression
from sklearn.tree import DecisionTreeClassifier
from sklearn.neighbors import KNeighborsClassifier
from sklearn.ensemble import RandomForestClassifier
from sklearn.svm import SVC
# Load dataset
array = dataset_imp.values
X = array[:,0:8]
Y = array[:,8]
# prepare configuration for cross validation test harness
seed = 7
# prepare models
models = []
models.append(('LR', LogisticRegression()))
models.append(('KNN', KNeighborsClassifier()))
models.append(('CART', DecisionTreeClassifier()))
models.append(('RFC', RandomForestClassifier()))
models.append(('SVM', SVC()))
# evaluate each model in turn
results = []
names = []
scoring = 'accuracy'
for name, model in models:
    kfold = model selection.KFold(n splits=20, random state=None)
    cv_results = model_selection.cross_val_score(model, X, Y, cv=kfold, scoring=scoring)
    results.append(cv_results)
    names.append(name)
    msg = "%s: %f (%f)" % (name, cv results.mean(), cv results.std())
    print(msg)
# boxplot algorithm comparison
fig = plt.figure(figsize=(10,8))
fig.suptitle('Algorithm Comparison')
ax = fig.add subplot(111)
plt.boxplot(results)
ax.set xticklabels(names)
plt.show()
LR: 0.764642 (0.067946)
```

LR: 0.764642 (0.067946)
KNN: 0.708839 (0.089025)
CART: 0.695918 (0.090867)
RFC: 0.760931 (0.098413)
SVM: 0.758266 (0.075581)

Project Task: Week 4 - Data Modelling

Logistic Regression

```
In [255...
         from sklearn.metrics import roc_auc_score
          from sklearn.metrics import roc_curve
          logit_roc_auc = roc_auc_score(y_test, logRegModel.predict(x_test))
          fpr, tpr, thresholds = roc_curve(y_test, logRegModel.predict_proba(x_test)[:,1])
          plt.figure(figsize=(15,8))
          plt.plot(fpr, tpr, label='Logistic Regression (area = %0.2f)' % logit_roc_auc)
          plt.plot([0, 1], [0, 1], 'r--')
          plt.xlim([0.0, 1.0])
          plt.ylim([0.0, 1.05])
          plt.xlabel('False Positive Rate')
          plt.ylabel('True Positive Rate')
          plt.title('Receiver operating characteristic')
          plt.legend(loc="lower right")
          plt.savefig('Log_ROC')
          print('AUC: %.3f' % logit_roc_auc)
          plt.show()
```

12/19/22, 3:29 AM Healthcare Project

Decision Tree Model

```
In [254...
         from sklearn.metrics import roc auc score
          from sklearn.metrics import roc curve
          dt_roc_auc = roc_auc_score(y_test, dtree.predict(X_test))
          fpr, tpr, thresholds = roc_curve(y_test, dtree.predict_proba(x_test)[:,1])
          plt.figure(figsize=(15,8))
          plt.plot(fpr, tpr, label='Decision Tree (area = %0.2f)' % dt roc auc)
          plt.plot([0, 1], [0, 1], 'r--')
          plt.xlim([0.0, 1.0])
          plt.ylim([0.0, 1.05])
          plt.xlabel('False Positive Rate')
          plt.ylabel('True Positive Rate')
          plt.title('Receiver operating characteristic')
          plt.legend(loc="lower right")
          plt.savefig('DT_ROC')
          print('AUC: %.3f' % dt_roc_auc)
          plt.show()
```

12/19/22, 3:29 AM Healthcare Project

Random Forest Model

```
In [253...
         from sklearn.metrics import roc auc score
          from sklearn.metrics import roc curve
          rf_roc_auc = roc_auc_score(y_test, rfc.predict(x_test))
          fpr, tpr, thresholds = roc_curve(y_test, rfc.predict_proba(x_test)[:,1])
          plt.figure(figsize=(15,8))
          plt.plot(fpr, tpr, label='Random Forest (area = %0.2f)' % rf roc auc)
          plt.plot([0, 1], [0, 1], 'r--')
          plt.xlim([0.0, 1.0])
          plt.ylim([0.0, 1.05])
          plt.xlabel('False Positive Rate')
          plt.ylabel('True Positive Rate')
          plt.title('Receiver operating characteristic')
          plt.legend(loc="lower right")
          plt.savefig('RF_ROC')
          print('AUC: %.3f' % rf_roc_auc)
          plt.show()
```

12/19/22, 3:29 AM Healthcare Project

KNN Model

```
In [252...
         from sklearn.metrics import roc auc score
          from sklearn.metrics import roc curve
          rf_roc_auc = roc_auc_score(y_test, knn.predict(x_test))
          fpr, tpr, thresholds = roc_curve(y_test, knn.predict_proba(x_test)[:,1])
          plt.figure(figsize=(15,8))
          plt.plot(fpr, tpr, label='KNN (area = %0.2f)' % rf roc auc)
          plt.plot([0, 1], [0, 1], 'r--')
          plt.xlim([0.0, 1.0])
          plt.ylim([0.0, 1.05])
          plt.xlabel('False Positive Rate')
          plt.ylabel('True Positive Rate')
          plt.title('Receiver operating characteristic')
          plt.legend(loc="lower right")
          plt.savefig('RF_ROC')
          print('AUC: %.3f' % rf_roc_auc)
          plt.show()
```

