

# **Automated Property Valuation Model**

### **Commercial Real Estate Service Firm**

Developed and deployed an Automated Property Valuation Model using Historical sales data and external attributes such as local economic & demographic indicators and places of interest data to predict price/sq. ft., Cap rates, expected rent etc..

### Automated property valuation model for real estate firm

#### Situation

- Client saw an opportunity to automate property valuations as manual process was considered time-consuming, subjective & expensive.
- Partnered with the client to develop an Automated Valuation Model (AVM) using Historical Property Sales and other Attributes such as local Economic & Demographic Indicators and Places of Interest data.

#### **Accordion Value Add**

- Developed a Customized Valuation Framework that delivers business interpretable outcomes following a comprehensive review of all existing manual valuation methods for different property types (Residential, Office, Industrial and Retail).
- Trained a Machine Learning Valuation Model that offers flexibility to appraisers to identify comparable properties in a certain geography such as county, city & state.
- Enriched the outcomes of valuation model through integrating various relevant third-party data sources for Geographical Location, Places of Interest near the property, Locally prevailing Demographics and Economics, Rental Data etc.
- Built Machine Learning models to estimate key property valuation drivers such as Capitalization rate, Rent, Expected Gross Income and Net Operating Income for each property.

### **Impact**

- Client can now value properties at scale in less than one hour for a valuation compared to five days previously.
- Model is extended to the top-12 revenue generating States in the US producing consistent results.

### Model approach and methodology



- 1. Effective Gross Income generated from a property
- 2. Net Operating Income generated from a property
- 3. Model performance is evaluated by measuring **Median error** of the test set. Error is the absolute deviation in percentage of the predicted value from the actual value.
- 4 MdAPE (Median Absolute Percentage Error) accounts for the presence of outliers and provides realistic model performance

### Data sources used by the valuation model framework



PROPERTY - SPECIFIC FEATURES1



DEMOGRAPHIC/ECONOMIC
INDICATORS¹



LOCATION FACTORS1

**Data Sources** 

VIEW data, Axiometric

#### **Key Features-**

- Year built
- Primary building area
- No. of units, bathrooms
- Parking space
- Building condition etc.

ESRI, Zillow

### **Key Features-**

- Per capita income(PCI)
- PCI growth
- Unemployment rate

**Open Street Maps** 

### **Key Features-**

- Access to hospitals, schools and shopping malls
- Access to transport network i.e. highways, docks, airports, rails

ΔCCORDION © 2024 Accordion CONFIDENTIAL

<sup>1-</sup> Specific features within these major categories can differ based on the type of property being evaluated. The list of features are indicative.

### **Output from optimizer model**

Optimizer assigns weights to features to arrive at the best comparable set



## Model performance across states



<sup>1</sup> Cap rate and EGI data from VIEW for the period 2015 - 2019 was used for training and testing the model.

© 2024 Accordion

CONFIDENTIAL

<sup>2</sup> EGI is the Effective Gross Income generated from a property

<sup>3</sup> The rent for properties is Annual rent per sq. ft. as on 2019Q3 from the Axiometrics dataset

<sup>4</sup> Model performance is evaluated by measuring median error of the test set of Multifamily properties