BIRLA INSTITUTE OF TECHNOLOGY AND SCIENCE, PILANI – HYDERABAD CAMPUS SECOND SEMESTER 2024-2025

Course Handout (Part II)

Date 06-01-2025

In addition to part-I (General Handout for all courses appended to the time table), this portion gives further specific details regarding the course.

Course No. : ME F220
Course Title : Heat Transfer
Instructor-in-charge : SATISH K DUBEY
Lecture Instructors : Satish K Dubey, S P Datta

Team of Instructors: Mrinal K Jagirdar, S P Datta, Supradeepan K Shaik Gouse Ahammad, Dhoni

Nagaraj, Kiran S., Suhas Shreekrishna, PSSVV Srihari, Nikhil

Fundamental concepts of heat transfer; steady-state and unsteady-state heat conduction; analytical and empirical relations for forced and free convection heat transfer; heat exchanger analysis and design; Heat transfer by radiation; condensation and boiling, associated laboratory.

1. Scope and Objective:

This course is designed to make the students familiar with the concepts of heat and their applications in engineering. As a part of this course, students have to do the experiments through which they can correlate with their theoretical knowledge on the subject.

2. Text Books:

T1: Frank P. Incropera, David P. Dewitt, et al., Incropera's Principles of Heat and Mass Transfer, Wiley India Edition, 2018

3. Reference Books:

R1 : J.P. Holman, Heat Transfer, McGraw Hill, 2002, 9th Edition.,

R2 : F. Kreith & M. S. Bohn, Principles of Heat Transfer, Brooks Cole, 2000, 6th edition.

4. Course Plan:

Lecture No.	Learning Objectives	Reference Chap/Sec in Textbook/ Ref. Book		
1	To revise the basic concepts of transport phenomena	Introduction to heat and mass transfer	Lecture notes 1.1-1.5 (T1)	
2 – 3	To learn the basics of conduction heat transfer	Heat conduction equation	2.1-2.5 (T1)	
4 – 5	To understand the analysis of one- dimensional steady state heat conduction	1D steady state heat conduction	3.1-3.5 (T1)	
6–7	To understand the heat transfer from extended surfaces	Finned Surfaces	3.6 (T1)	
8–10	To do the analysis of multidimensional steady state heat conduction	Two-dimensional steady state heat conduction, General consideration, method of separation of variables	4.1, 4.2 (T1)	
11-13	To do the analysis of multidimensional steady state heat conduction	Finite difference method for heat conduction	4.4 -4.5(T1) and Lecture notes	
14– 17	To learn heat transfer analysis of unsteady-state conduction	Lumped system analysis; analytical methods of analysis, numerical methods.	5.1-5.10 (T1)	
18-21	To learn the principles of convection heat transfer	Concepts and basic relations in convection heat transfer	6.1-6.7 (T1) and Lecture notes	
22-24	To understand the forced convection heat transfer for External Flow	Analytical solutions for flow over flat plate, and empirical relations for external flow	7.1-7.3 (T1) and Lecture notes	
25-28	To understand the forced convection heat transfer for flow internal flow	Analytical solution and empirical relations for forced convection heat transfer	8.1-8.5 (T1) and Lecture notes	
29-31	To understand the heat transfer analysis of natural convection systems	Analytical solutions and empirical correlation	9.1-9.4 (T1) and Lecture notes	

32-34	To learn the design and analysis of heat	Types of heat exchangers; LMTD and	11.1-11.6(T1)	
	exchangers	NTU method of analysis		
35-36	To understand the basic laws of radiation	Basic laws and nature of thermal	12.1-12.8, (T1)	and
		radiation	Lecture notes	
37-38	To learn the principles of radiation heat	Radiation heat exchange between	13.1-13.3 (T1)	and
	transfer	surfaces; radiation shields	Lecture notes	
39 - 40	To learn the principles condensation and	Film wise, dropwise condensation,	Chapter 10,	and
	boiling	pool boiling, flow boiling basics	Lecture notes	
41-42	Introduction to mass transfer	Analogy between heat and mass	Chapter 14,	and
		transfer, mass diffusion, Fick's law of	Lecture notes	
		diffusion, transient mass diffusion,		
		mass convection, limitations of heat		
		and mass transfer analogy.		

5. List of Experiments:

The list of experiments and complete modalities of operation of the laboratory such as the exact titles of experiments, reports submission and evaluation methodology etc. shall be announced at the beginning of laboratory session by the lab instructors.

6. Evaluation Schedule:

Evaluation Component	Duration (minute)	Weightage (%)	Marks	Date & Time	Nature of Component
Mid Semester Test	90	20	60	03/03 2.00 - 03.30PM	СВ
Tutorial Test(s)	25 minutes	15	45	Evenly spaced throughout the semester during tutorial hour	ОВ
Lecture Quiz(s)	10 minutes	10	30	Evenly spaced throughout the semester during Lecture hour (Surprise in nature)	ОВ
Lab work *	-	25	60	Evenly spaced throughout the semester during Practical	ОВ
Comprehensive Exam	180	30	90	02/05FN	СВ

*Lab work

Evaluation Component	Duration (minute)	Weightage (%)	Date & Time	Nature of Component
Lab Reports	1	10%	Continuous During Practical hour	ОВ
Lab Viva/ quiz	-	10 %	Continuous During Practical hour	ОВ
Project	-	5 %	Continuous	ОВ

NOTE:

- 7. Chamber Consultation Hour: To be announced in the class room.
- **Notices**: All notices concerning this course shall be displayed on the <u>LMS</u> Students are advised to visit regularly <u>LMS</u> (institute's web-based course management system) for updates on the course matters.
- **9. Make-up Policy**: Make-up shall be given only to the genuine cases with prior intimation. <u>No make-up will be given for the TUTORIAL and Lecture tests.</u>
- **10. Academic Honesty and Integrity Policy**: Academic honesty and integrity are to be maintained by all the students throughout the semester and any type of academic dishonesty is not acceptable.

Instructor-in-charge ME F220