Metody optymalizacji L1

Gabriel Budziński 254609

March 28, 2023

1 Zadanie 1

1.1 Opis Modelu

1.1.1 Zmienne decyzyjne

Zmienne decyzyjne mają postać wektora \boldsymbol{x} spełniającego nierówność $\boldsymbol{x}\geqslant \boldsymbol{0}.$

1.1.2 Ograniczenia

Zadany jest zestaw równań liniowych postaci

$$Ax = b$$

gdzie

$$a_{ij} = \frac{1}{i+j-1}, i,j \in [n]$$

$$c_i = b_i = \sum_{j=1}^{n} \frac{1}{i+j-1}, i \in [n]$$

1.1.3 Funkcja celu

Funkcja celu ma postać min $c^T x$, gdzie c to wektor współczynników kosztu.

1.2 Wyniki i interpretacja

Prawidłowym rozwiązaniem zadania jest x = 1, ale przez macierz A zadanie jest źle uwarunkowane. Rozwiązano model dla wartości n ze zbioru $\{1, 2, \dots, 10\}$:

n	$ x - \tilde{x} _2 / x _2$
2	$1.10933564796705 \cdot 10^{-30}$
3	$1.34804824480736 \cdot 10^{-29}$
4	$1.06939716107966 \cdot 10^{-25}$
5	$1.12318763722721 \cdot 10^{-23}$
6	$4.66947802820021 \cdot 10^{-21}$
7	$2.81798474577652 \cdot 10^{-16}$
8	0.26425662687595
9	0.466367895688764
10	0.980867548324338

Jak widzimy, błąd względny jest niewielki dla x=2, ale rośnie coraz szybciej i dla x=10 jest już ponad 1%. Z dokładnością do co najmniej dwóch cyfr można obliczyć dla $n\leqslant 9$.

2 Zadanie 2

2.1 Opis Modelu

2.1.1 Zmienne decyzyjne

W modelu mamy trójwymiarową macierz zmiennych decyzyjnych $x \in \mathbb{R}^{n \times n \times 2}$, gdzie x_{ijk} oznacza liczbę dźwigów typu k przetransportowanych z miasta i do miasta j.

2.1.2 Ograniczenia

Zgodnie z treścią zadania zaprogramowano trzy ograniczenia:

• Z miasta nie może wyjechać więcej dźwigów typu k niż jest ich w nadmiarze (dwuwymiarowa macierz $s \in \mathbb{N}^{n \times 2}$, zatem

$$(\forall i \in 0, \dots, n-1, k \in \{I, II\}) \left(\sum_{j=0}^{n-1} x_{ijk} \leqslant s_{ik} \right)$$

• Każde miasto powinno dostać co najmniej tyle dźwigów typu II ile jest deficytu (dwuwymiarowa macierz $d \in \mathbb{N}^{n \times 2}$)

$$(\forall i \in 0, \dots, n-1) \left(\sum_{j=0}^{n-1} x_{jiII} \geqslant d_{iII} \right)$$

 Suma wszystkich dźwigów przetransportowanych do miasta powinna być równa co najmniej sumie deficytów wszystkich typów

$$(\forall i \in 0, \dots, n-1) \left(\sum_{j=0, k=I}^{n-1, II} x_{jik} \geqslant \sum_{k=I}^{II} d_{ik} \right)$$

2.1.3 Funkcja celu

Funkcją celu jest koszt transportu dźwigów pomiędzy miastami, który należy zminimalizować. Do rozwiązania modelu wprowadzono odległości między podanymi miastami pobrane z Google Maps.

2.2 Wyniki i interpretacja

W poniższych tabelach przedstawiono obliczone wartości zmiennych decyzyjnych. W kolumnach wypisano miasta do których transportowane były dźwigi, a w wierszach te, z których te dźwigi pochodziły.

	Opole	Brzeg	Nysa	Prudnik	Strzelce	Koźle	Racibórz
Opole	-	4	-	-	-	3	-
Brzeg	-	-	-	-	-	-	-
Nysa	-	5	-	1	-	-	-
Prudnik	-	-	-	-	-	-	-
Strzelce	-	-	-	-	-	5	-
Koźle	-	-	-	-	-	-	-
Racibórz	-	-	-	-	-	-	-

Table 1: Dźwigi typu I

	Opole	Brzeg	Nysa	Prudnik	Strzelce	Koźle	Racibórz
Opole	-	-	-	-	-	-	_
Brzeg	-	1	-	-	-	-	_
Nysa	2	-	-	-	-	-	_
Prudnik	-	-	-	3	4	2	1
Strzelce	-	-	-	-	-	-	_
Koźle	-	-	-	-	-	-	_
Racibórz	-	-	-	-	-	-	_

Table 2: Dźwigi typu I

Ograniczenie całkowitoliczbowości nie jest konieczne, ponieważ model zwraca to samo rozwiązanie z nim oraz bez niego.

3 Zadanie 3

- 3.1 Opis Modelu
- 3.1.1 Zmienne decyzyjne
- 3.1.2 Ograniczenia
- 3.1.3 Funkcja celu
- 3.2 Wyniki i interpretacja

4 Zadanie 4

- 4.1 Opis Modelu
- 4.1.1 Zmienne decyzyjne
- 4.1.2 Ograniczenia
- 4.1.3 Funkcja celu
- 4.2 Wyniki i interpretacja