CSE 331 / EEE 332 / ETE 332/EEE 453 Microprocessor and Interfacing

DR. SHAIKH ASIF MAHMOOD PROFESSOR, EEE, BUET

DR. S. A. MAHMOOD

1

Topics

- 1. Fundamentals of microprocessor and computer design, processor data path, architecture, microarchitecture, complexity, metrics, and benchmark; complexity, metrics, and benchmark, Instruction Set Architecture, introduction to CISC and RISC,
- 2. Assembly language programming of Arm Cortex M / RISC-V based embedded microprocessors (jump, call-return, stack, push and pop, shift, rotate, logic instructions, port operations, serial communication and interfacing), system clock, exceptions and interrupt handling.
- 3. Instruction-Level Parallelism, pipelining, pipelining hazards and data dependency, branch prediction, exceptions and limits, super-pipelined vs superscalar processing; Memory hierarchy and management, Direct Memory Access.
- 4. Introduction to embedded systems design, software concurrency and Realtime Operating Systems, Arm Cortex M / RISC-V microcontroller architecture, registers and I/O, memory map and instruction sets, endianness and image

DR. S. A. MAHMOOD

Books

- 1. Sarah Harris, David Harris "Digital Design and Computer Architecture", ARM Edition, Morgan Kaufmann (2015)
- David A. Patterson and John L. Hennessy, "Computer Organization and Design

 The Hardware / Software Interface ARM edition" Morgan Kaufmann
- 3. Yifeng Zhu "Embedded Systems with ARM Cortex-M Microcontrollers with Assembly Language and C"

DR. S. A. MAHMOOD

Marks Distribution

Category	Marks	Percentage
Attendance (Class+Lab)	5+5	10%
Quiz (2 out of 3)	10 each	20%
Mid-term	20	20%
Lab	20	20%
Final	30	30%

DR. S. A. MAHMOOL

Course Objective

Upon the completion of the course, the student should

- 1) Understand the architecture, instruction set, memory and input/output interface of a ARM Microprocessor and different principles of Embedded Systems
- 2) Construct simple microprocessor systems using state-of-theart tools like Arm Assembly compiler and VerilogHDL understanding the limitations
- 3) Illustrate emerging technologies and trends in Microprocessor design to recognize the need to always learn the state-of-the art

DR. S. A. MAHMOO

5

Instructor-in-charge

Dr. Shaikh Asif Mahmood (SAMd)

Adjunct Professor, ECE, NSU

Office: SAC 1145

Office hours (tentative): RA 2:30 PM-3:30 PM

Email for appointment:

shaikh.mahmood@northsouth.edu

DR. S. A. MAHMOOD

TABLE 1-4. EQUIVALENCES

Hexadecimal	Binary	Decimal
0	0000	0
1	0001	1
2	0010	2
3	0011	3
4	0100	4
5	0101	5
6	0110	6
7	0111	7
8	1000	8
9	1001	9
A	1010	10
В	1011	11
C	1100	12
D	1101	13
E	1110	14
F	1111	15

DR. S. A. MAHMOOI

7

CMOS Logic Gates (Not Gate)

Half-Adder

TABLE 6-1. HALF-ADDER

A	В	CARRY	SUM
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0

$$SUM = A \oplus B$$
$$CARRY = AB$$

DR. S. A. MAHMOOD

11

Full-Adder

 $SUM = A \oplus B \oplus C$ CARRY = AB + AC + BC(6-

(6-8) (6-9)

TABLE 6-2. FULL ADDER

A	\boldsymbol{B}	C	CARRY	SUM
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

Fig. 6-2 Full adder.

DR. S. A. MAHMOOI

Signed Numbers

- For computers, desirable to represent everything as bits.
- Three types of signed binary number representations: signed magnitude, 1's complement, 2's complement.
- In each case: left-most bit indicates sign: positive (0) or negative (1).

Consider signed magnitude:

R. S. A. MAHMOOD

One's Complement

The one's complement of a binary number involves inverting all bits.

- 1's comp of 00110011 is 11001100
- 1's comp of 10101010 is 01010101

To find negative of 1's complement number take the 1's complement.

DR. S. A. MAHMOOD

1

Two's Complement

The two's complement of a binary number involves inverting all bits and adding 1.

- 2's comp of 00110011 is 11001101
- 2's comp of 10101010 is 01010110

To find negative of 2's complement number take the 2's complement.

DR. S. A. MAHMOOD

2's Complement Adder/Subtractor

- Subtraction can be done by addition of the 2's Complement.
 - 1. Complement each bit (1's Complement.)
 - 2. Add 1 to the result.
- The circuit shown computes A + B and A B:
- For S = 1, subtract, the 2's complement of B is formed by using XORs to form the 1's comp and adding the 1 applied to C₀.

For S = 0, add, B is passed through unchanged

↓ ↓ ↓ S₃ **S**₂

Flip-Flops, Registers, and Counters

(REVIEW)

DR. S. A. MAHMOOI

Combinational vs Sequential Logic

- In **combinational circuits,** the value of each output depends solely on the current values of signals applied to the inputs.
- In **sequential circuits**, the values of the outputs depend not only on the present values of the inputs but also on the past behavior of the circuit.
- Such circuits include storage elements that store the values of logic signals. The contents of the storage elements are said to represent the state of the circuit.
- Over time, the network changes through a sequence of states as a result of changes in the inputs.

DR. S. A. MAHMOO

1

A Memory Element

Figure 5.1 Control of an alarm system

Figure 5.2 A simple memory element

If we assume that A = 0, then B = 1. The circuit will maintain these values indefinitely because of the feedback loop.

DR. S. A. MAHMOOI

Flip-Flops (FF)

- In the **level-sensitive latches**, the state of the latch keeps changing according to the values of input signals during the period when the clock signal is active.
- So Q may change **more than once** during a Clk cycle for a latch.
- Flip-flops are storage elements that can change their states no more than once during one clock cycle.
- Type of Flip-flops:
- Edge-triggered flip-flop is affected only by the input values present when the active edge of the clock occurs. It can be positive edge-triggered or negative edge-triggered.
- Master-slave flip-flop is built with two gated latches (one master and one slave).

DR. S. A. MAHMOOL

2

Master-Slave D Flip-Flop (Negative Edge-triggered) •Two gated D latches (One master, One Slave) ·It is typically built with 8 NAND gates (4 for each latch) •Master changes state when Clk=1 •Slave changes state when Clk=0 •Qm follows any change in D while Clk=1 •Qm does not change while Clk=0 •Qm is output of Master and input of Slave •So, Qs changes at most once during a clock (b) Timing diagram cycle (When Clk goes from 1 to 0) As Q=Qs, from outside, it seems that Q follows D only at negative edge of Clk ·So this D flip-flop is negative edge-triggered

Synchronous vs Asynchronous Reset

Figure 7.15 Synchronous reset for a D flip-flop.

- The previous two flip-flops used Asynchronous Clear
- Add an AND gate to combine the Clr signal with the D input to achieve Synchronous Clear
- If Clr=1, D/ = D, usual flip-flop operation
- If Clr=0, D/ = 0, flip-flop output (Q) will be zero on next Clk edge
- As Clr depend on Clk, it is an example of Synchronous Clear

MOOD

Registers

- A **flip-flop** stores one bit of information.
- When a set of n flip-flops is used to store n bits of information, such as an n-bit number, we refer to these flip-flops as a **register**.
- A common clock is used for each flip-flop in a register

DR. S. A. MAHMOO

35

4-bit Register

- A register is a circuit capable of storing data
- An n-bit register consists of n Flip-Flops and stores n bits
- Common clock: data is loaded in parallel at the same clock edge
- Common reset: All Flip-Flops are reset in parallel

R. S. A. MAHMOOD

Register Load (or Enable)

- Question: How to control the loading of data into a register?
- Solution: Introduce a register Load (or Enable) signal
- If the register is enabled, load the data into the register
- Otherwise, do not change the value of the register
- Question: How to implement register Load?

DR. S. A. MAHMOOI

3

The main application of three-state switches is to convert the two-state output of a register to a three-state output. For instance, Fig. 8-24 shows a three-state buffer register, so called because of the three-state switches on the output lines. When *ENABLE* is low, the *Y* outputs float. But when *ENABLE* is high, the *Y* outputs equal the *Q* outputs; therefore,

$$Y = Q$$

DR. S. A. MAHMOO

4

Z (high

impedance) Z(high

impedance)

0

1

0

Tri-state Buffer Register

Fig. 8-24 Three-state buffer register.

R. S. A. MAHMOO

• Read-only memory (ROM) is a type of non-volatile memory that permanently stores data and programs needed for a device to function.

Register	Address	Word
R_0	0	0111
R_1	1	1000
R_2	2	1011
R_3	3	1100
R_4	4	0110
R_5	5	1001
R_6	6	0011
R_7	7	1110

41

ROM with On-Chip Decoding

1-of-8 decoder produces a high output to one of the registers. For instance, if

ADDRESS =
$$A_2A_1A_0 = 100$$

the 1-of-8 decoder applies a high voltage to the $R_{\rm 4}$ register, and the ROM output is

$$D = 0110$$

R. S. A. MAHMOOD

RAM – Random Access Memory

Memory	ROM	RAM
Туре	Non-volatile	Volatile
Read-write	Slow	Fast
Cost	Low	High

Fig. 9-4 (a) Static cell; (b) dynamic cell.

D C V VVVHVVOOD

47

Semiconductor RAMs

Semiconductor RAMs may be *static* or *dynamic*. The static RAM uses bipolar or MOS flip-flops; data is retained indefinitely as long as power is applied to the flip-flops. On the other hand, a dynamic RAM uses MOSFETs and capacitors that store data. Because the capacitor charge leaks off, the stored data must be *refreshed* (recharged) every few milliseconds. In either case, the RAMs are volatile; turn off the power and you lose the stored data.

DR. S. A. MAHMOOI