18-660: Numerical Methods for Engineering Design and Optimization

Xin Li
Department of ECE
Carnegie Mellon University
Pittsburgh, PA 15213

Slide 1

Overview

- Principal Component Analysis (PCA)
 - ▼ Correlation decomposition
 - Dimension reduction

Monte Carlo Analysis

- Monte Carlo analysis for f(X)
 - Randomly select M samples for X
 - Evaluate function f(X) at each sampling point
 - Estimate distribution of f using these M samples

We assume that random samples can be easily created from a random number generator

Slide 3

Monte Carlo Analysis

- A random number generator creates a pseudo-random sequence for which the period is extremely large
 - MATLAB function "randn(•)": period is ~2⁶⁴
 - MATLAB function "rand(•)": period is ~2¹⁴⁹²

■ All samples in {x⁽¹⁾,x⁽²⁾,...} are "almost" independent

Monte Carlo Analysis

Example: sample independent random variables x and y

Random Number Generator

 $\{x^{(1)},y^{(1)},x^{(2)},y^{(2)},...\}$

- Generate random sequence {x⁽¹⁾,y⁽¹⁾,x⁽²⁾,y⁽²⁾,...}
- ▼ Create sampling pair {(x⁽¹⁾,y⁽¹⁾),(x⁽²⁾,y⁽²⁾),...}
- x(i) and y(i) in each pair are independent

However, how can we sample correlated random variables?

Slide 5

Monte Carlo Analysis

- Correlated random variables cannot be directly sampled by a random number generator
- We can decompose correlated random variables to a set of independent variables, if they are jointly Normal
 - ▼ Focus of this lecture
- Other techniques also exist to sample correlated variables
 - Details can be found in many text books on Monte Carlo analysis

Fishman, A First Course In Monte Carlo, 2006

Correlation Decomposition

- Key idea: given the correlated random variables $\{x_1, x_2, ...\}$, find a linear transform Y = P·X such that $\{y_1, y_2, ...\}$ are independent
 - Only applicable to jointly Normal random variables for which {y₁,y₂,...} just need to be uncorrelated
 - Otherwise, if the random variables are not jointly Normal, such a linear transform may not exist

Slide 7

Principal Component Analysis (PCA)

■ Given a set of jointly Normal random variables

$$X = \begin{bmatrix} x_1 & x_2 & x_3 \end{bmatrix}^T$$

- Assume that all x_i's have zero mean
- Covariance matrix is

$$E[X \cdot X^{T}] = E\begin{bmatrix} x_{1}^{2} & x_{1}x_{2} & x_{1}x_{3} \\ x_{1}x_{2} & x_{2}^{2} & x_{2}x_{3} \\ x_{1}x_{3} & x_{2}x_{3} & x_{3}^{2} \end{bmatrix}$$

The covariance matrix has many important properties, e.g., it is symmetric

- **■** Covariance matrix is positive semi-definite
- A symmetric matrix A is called positive semi-definite if

 $Q^T A Q \ge 0$ for any real-valued vector Q

Why is a covariance matrix positive semi-definite?

Slide 9

Principal Component Analysis (PCA)

Assume that $X = [x_1 \ x_2 \ ... \ x_N]^T$ are N random variables with zero mean

ro mean
$$y = Q^T \times$$
 $4 \times \text{vector}$
 5caler

$$E[y^2] = E[(q^2x)^2x + q^2y] = E[(q^2x)]^2 \cdot (q^2x)^2$$

$$= x^2q$$

■ To remove correlation, we decompose the covariance matrix by eigenvalues & eigenvectors

$$A = E[X \cdot X^{T}]$$

$$Av; = V; I;$$

$$eigenvector \quad \forall eigenvalue$$

$$A[V], V_{2} = [Av; Av_{2} =] = [Y, 2 \quad \forall_{2} \quad Z_{2} =]$$

$$= [V, V_{2} =] \quad [Z, Z_{2} =]$$

$$AV=V \ge$$
Slide 11

Principal Component Analysis (PCA)

- The eigen-decomposition of a covariance matrix A has a number of important properties
 - ¬ A is symmetric → all eigenvalues are real
 - ¬A is symmetric → all eigenvectors are real and orthogonal

V: orthogonal martrix

 $A \cdot V = V \cdot \Sigma$

 $V^TV = I$

Identity matrix

- The eigen-decomposition of a covariance matrix A has a number of important properties
 - ▼A is positive semi-definite
 → all eigenvalues are non-negative.

$$A \cdot V = V \cdot \Sigma \qquad V^{T}V = I$$

$$A \vee ' \vee ' = \vee \Sigma \vee '$$

$$f \qquad \qquad \vee = [\vee, \vee_{2}, \dots]$$

$$A = \vee \Sigma \vee ' \qquad \qquad \Sigma = [^{2}, Z_{2}, \dots]$$

Slide 13

Principal Component Analysis (PCA)

■ Define new random variables Y (principal components)
$$Y = \Sigma^{-0.5} \cdot V^T \cdot X$$

$$X = V \cdot \Sigma^{0.5} \cdot Y$$

$$X = P^{-1} \cdot Y$$

- All principal components (also called principal factors) are jointly Normal
 - ▼ They are linear combination of jointly Normal random variables
- We will theoretically prove that all principal components are independent and standard Normal

■ All principal components have zero mean

$$Y = \Sigma^{-0.5} \cdot V^{T} \cdot X$$

$$E \left[\begin{array}{c} \chi \end{array} \right] = \left[\begin{array}{c} -0.5 \\ \chi \end{array} \right] \left[\begin{array}{c} \chi \end{array} \right]$$

$$= \sum_{i=0}^{-0.5} \sqrt{i} \left[\begin{array}{c} \chi \end{array} \right]$$

$$= 0$$

Slide 15

Principal Component Analysis (PCA)

All principal components are independent and standard Normal

$$Y = \Sigma^{-0.5} \cdot V^{T} \cdot X$$

$$V = \Sigma^{-0.5} \cdot V^{T} \cdot X$$

$$E[Y \cdot Y^{T}] = \Sigma^{-0.5} \cdot V^{T} \cdot E[X \cdot X^{T}] \cdot V \cdot \Sigma^{-0.5}$$

$$E[Y \cdot Y^{T}] = \Sigma^{-0.5} \cdot V^{T} \cdot E[X \cdot X^{T}] \cdot V \cdot \Sigma^{-0.5}$$

$$= \Sigma^{-0.5} \cdot V^{T} \cdot V \cdot \Sigma^{-0.5}$$

$$= \Sigma^{-0.5} \cdot \Sigma^{-0.5}$$

$$= \Sigma^{-0.5} \cdot \Sigma^{-0.5}$$

$$= \Sigma^{-0.5} \cdot \Sigma^{-0.5}$$

"Uncorrelated" = "independent" for jointly Normal random variables

Slide 17

Principal Component Analysis (PCA)

■ Example: x₁ and x₂ are zero mean and jointly Normal

$$x = \begin{bmatrix} x_1 \\ \lambda_2 \end{bmatrix}$$

$$E[X \cdot X^T] = \begin{bmatrix} 5 & 4 \\ 4 & 5 \end{bmatrix}$$

Eigen decomposition

$$\Sigma = \begin{bmatrix} 1 & 0 \\ 0 & 9 \end{bmatrix} \quad and \quad V = \begin{bmatrix} -1/\sqrt{2} & 1/\sqrt{2} \\ 1/\sqrt{2} & 1/\sqrt{2} \end{bmatrix}$$

■ Example (continued):

$$\Sigma = \begin{bmatrix} 1 & 0 \\ 0 & 9 \end{bmatrix} \quad and \quad V = \begin{bmatrix} -1/\sqrt{2} & 1/\sqrt{2} \\ 1/\sqrt{2} & 1/\sqrt{2} \end{bmatrix}$$

$$Y = \Sigma^{-0.5} \cdot V^T \cdot X = \begin{bmatrix} 1 & 0 \\ 0 & 1/3 \end{bmatrix} \cdot \begin{bmatrix} -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{bmatrix} \cdot X$$

$$\Sigma = \begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{bmatrix} \cdot X$$

$$\Sigma = \begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{bmatrix} \cdot X$$

$$\Sigma = \begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{bmatrix} \cdot X$$

Slide 19

Principal Component Analysis (PCA)

■ Example (continued):

$$Y = \begin{bmatrix} -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{3\sqrt{2}} & \frac{1}{3\sqrt{2}} \end{bmatrix} \cdot X$$

$$E[Y \cdot Y^{T}] = \begin{bmatrix} -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{3\sqrt{2}} & \frac{1}{3\sqrt{2}} \end{bmatrix} \cdot E[X \cdot X^{T}] \cdot \begin{bmatrix} -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{3\sqrt{2}} & \frac{1}{3\sqrt{2}} \end{bmatrix}^{T}$$

Example (continued):

$$E[Y \cdot Y^{T}] = \begin{bmatrix} -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{3\sqrt{2}} & \frac{1}{3\sqrt{2}} \end{bmatrix} \cdot E[X \cdot X^{T}] \cdot \begin{bmatrix} -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{3\sqrt{2}} & \frac{1}{3\sqrt{2}} \end{bmatrix}^{T} \qquad E[X \cdot X^{T}] = \begin{bmatrix} 5 & 4 \\ 4 & 5 \end{bmatrix}$$

$$E[Y \cdot Y^{T}] = \begin{bmatrix} -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{3\sqrt{2}} & \frac{1}{3\sqrt{2}} \end{bmatrix} \cdot \begin{bmatrix} 5 & 4 \\ 4 & 5 \end{bmatrix} \cdot \begin{bmatrix} -\frac{1}{\sqrt{2}} & \frac{1}{3\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{3\sqrt{2}} \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

All principal components in Y are independent and standard Normal

Slide 21

Principal Component Analysis (PCA)

- The decomposition for independence is not unique
 - **▼** Define

$$Z = U \cdot Y$$

$$\exists U \text{ is an orthogonal matrix,}$$

$$\exists i.e., U^TU = I$$

$$\exists [ZZ^T] = E[U \cdot Y \cdot (UY)^T] = E[UYY^TU^T]$$

$$= U \cdot E[YY^T] \quad U^T = U \cdot U^T = F$$

$$T$$

All random variables in Z are also independent and standard Normal

Dimension Reduction by PCA

■ Example: x₁, x₂ and x₃ are zero mean and jointly Normal

$$E[X \cdot X^T] = \begin{bmatrix} 5 & 4 & 3 \\ 4 & 5 & 3 \\ 3 & 3 & 2 \end{bmatrix}$$

Eigen decomposition

$$\Sigma = \begin{bmatrix} 11 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix} \quad and \quad V = \begin{bmatrix} 0.6396 & 0.7071 & 0.3015 \\ 0.6396 & -0.7071 & 0.3015 \\ 0.4264 & 0 & -0.9045 \end{bmatrix}$$

One of the eigenvalues is 0

Slide 23

Dimension Reduction by PCA

- Example (continued):
 - In this case, the 3x3 covariance matrix has a rank of 2
 - Only 2 independent principal components (Y) are required to EXACTLY represent the 3-dimensional random space

$$X = V \cdot \Sigma^{0.5} \cdot Y = \begin{bmatrix} 0.6396 & 0.7071 & 0.3015 \\ 0.6396 & -0.7071 & 0.3015 \\ 0.4264 & 0 & -0.9045 \end{bmatrix} \cdot \begin{bmatrix} \sqrt{11} & 0 & 0 \\ 0 & \sqrt{1} & 0 \\ 0 & 0 & 0 \end{bmatrix} \cdot Y$$

Only y_1 and y_2 are required $X = \begin{bmatrix} 2.1213 & 0.7071 & 0 \\ 2.1213 & -0.7071 & 0 \\ 1.4142 & 0 & 0 \end{bmatrix} \begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix}$

y₃ does not affect X

Dimension Reduction by PCA

- In general, if some of the eigenvalues are small, they can be ignored to reduce the random space dimension
 - Allows us to use a compact set of independent principal components to approximate the original high-dimensional space
 - E.g., only two random variables y_1 and y_2 are required to represent the variations of x_1 , x_2 and x_3 in the previous example
- PCA is useful to reduce problem size in many applications
 - But applicable to jointly Normal variables only

Slide 25

Summary

- Principal component analysis (PCA)
 - ▼ Correlation decomposition
 - ▼ Dimension reduction

204 Village Ball Ball Ball Ball

- to in general, if some of the eigenvalues are small, they can be ignored to reduce the random apace dimension
- Allows us to use a compact set of independent principal
 components to enproximate the original high-dimensional apace
- E.g., only two random variables y₁ and y₂ are required to represent the variations of x₁, x₂ and x₃ in the previous example.
 - as PCA is useful to reduce problem size in many applications
 - But applicable to jointly Normal variables only

visining?

- se Principal component analysis (PCA)
 - Correlation decomposition
 - and houton and married of