Результаты выполнения алгоритма k-means

Набор данных

Набор данных состоит из 16 точек в 4-мерном пространстве (X_1, X_2, X_3, X_4) :

Точка	X_1	X_2	X_3	X_4
x_0	-5	-12	12	10
x_1	-4	-5	9	-15
x_2	-3	-7	11	7
x_3	-4	-11	-5	13
x_4	-20	-18	0	19
x_5	-11	3	17	3
x_6	18	-10	1	11
x_7	2	-5	9	8
x_8	17	18	-20	2
x_9	12	0	1	-1
x_{10}	-13	-4	-7	-17
x_{11}	-20	0	-10	8
x_{12}	10	-18	12	-3
x_{13}	3	-13	-5	8
x_{14}	-17	1	-4	-5
x_{15}	-3	-5	16	12

Таблица 1: Набор данных

Параметры

- Количество кластеров: k = 3
- Инициализация: Forgy (случайный выбор точек x_0, x_6, x_8)
- Начальные центроиды:

$$-\mu_1 = [-5, -12, 12, 10]$$

$$-\mu_2 = [18, -10, 1, 11]$$

$$-\mu_3 = [17, 18, -20, 2]$$

Формулы

1. Евклидово расстояние между точкой $x_i = [x_{i1}, x_{i2}, x_{i3}, x_{i4}]$ и центроидом $\mu_j = [\mu_{j1}, \mu_{j2}, \mu_{j3}, \mu_{j4}]$:

$$d(x_i, \mu_j) = \sqrt{\sum_{m=1}^{4} (x_{im} - \mu_{jm})^2}$$

2. Обновление центроида для кластера S_j , содержащего $|S_j|$ точек:

$$\mu_j = \frac{1}{|S_j|} \sum_{x_i \in S_j} x_i$$

1

где
$$\mu_{jm} = \frac{1}{|S_i|} \sum_{x_i \in S_i} x_{im}, m = 1, 2, 3, 4.$$

Итерация 1

Распределение точек

Для каждой точки x_i вычисляется евклидово расстояние до центроидов μ_1, μ_2, μ_3 , и точка присваивается кластеру с минимальным расстоянием.

Пример для $x_0 = [-5, -12, 12, 10]$:

До
$$\mu_1 = [-5, -12, 12, 10]$$
:

$$d(\mathbf{x}_0, \mu_1) = \sqrt{(-5 - (-5))^2 + (-12 - (-12))^2 + (12 - 12)^2 + (10 - 10)^2} = \sqrt{0} = 0$$

До
$$\mu_2 = [18, -10, 1, 11]$$
:

$$d(\mathbf{x}_0, \mu_2) = \sqrt{(-5 - 18)^2 + (-12 - (-10))^2 + (12 - 1)^2 + (10 - 11)^2}$$

$$= \sqrt{(-23)^2 + (-2)^2 + 11^2 + (-1)^2} = \sqrt{529 + 4 + 121 + 1} = \sqrt{655} \approx 25.59$$

До
$$\mu_3 = [17, 18, -20, 2]$$
:

$$d(\mathbf{x}_0, \mu_3) = \sqrt{(-5 - 17)^2 + (-12 - 18)^2 + (12 - (-20))^2 + (10 - 2)^2}$$

$$= \sqrt{(-22)^2 + (-30)^2 + 32^2 + 8^2} = \sqrt{484 + 900 + 1024 + 64} = \sqrt{2472} \approx 49.72$$

Метка: $cluster_labels[0] = 1$.

Итоговые метки: [1, 1, 1, 1, 1, 1, 2, 1, 3, 2, 1, 1, 2, 1, 1, 1].

Кластеры

- Кластер 1 (S_1) : точки 0, 1, 2, 3, 4, 5, 7, 10, 11, 13, 14, 15 $(|S_1| = 12)$
- Кластер 2 (S_2) : точки 6, 9, 12 $(|S_2|=3)$
- Кластер 3 (S_3) : точка 8 $(|S_3|=1)$

Обновление центроидов

Для S_1 :

$$\mu_1 = \frac{1}{12} \sum_{i \in \{0,1,2,3,4,5,7,10,11,13,14,15\}} x_i$$

- X_1 : $-5+(-4)+(-3)+(-4)+(-20)+(-11)+2+(-13)+(-20)+3+(-17)+(-3)=-95, \ \mu_{1,1}=\frac{-95}{12}\approx -7.9167$
- X_2 : -12+(-5)+(-7)+(-11)+(-18)+3+(-5)+(-4)+0+(-13)+1+(-5)=-76, $\mu_{1,2}=\frac{-76}{12}\approx -6.3333$
- X_3 : 12 + 9 + 11 + (-5) + 0 + 17 + 9 + (-7) + (-10) + (-5) + (-4) + 16 = 43, $\mu_{1,3} = \frac{43}{12} \approx 3.5833$
- X_4 : 10 + (-15) + 7 + 13 + 19 + 3 + 8 + (-17) + 8 + 8 + (-5) + 12 = 51, $\mu_{1,4} = \frac{51}{12} = 4.25$

$$\mu_1 \approx [-7.9167, -6.3333, 3.5833, 4.25]$$

Для S_2 :

$$\mu_2 = \frac{1}{3} \sum_{i \in \{6,9,12\}} x_i$$

- X_1 : 18 + 12 + 10 = 40, $\mu_{2,1} = \frac{40}{3} \approx 13.3333$
- X_2 : -10 + 0 + (-18) = -28, $\mu_{2,2} = \frac{-28}{3} \approx -9.3333$
- X_3 : 1+1+12=14, $\mu_{2,3}=\frac{14}{3}\approx 4.6667$
- X_4 : 11 + (-1) + (-3) = 7, $\mu_{2,4} = \frac{7}{3} \approx 2.3333$

$$\mu_2 \approx [13.3333, -9.3333, 4.6667, 2.3333]$$

Для S_3 : $\mu_3 = [17, 18, -20, 2]$.

Сходимость

 $\mu_1 \neq [-7.9167, -6.3333, 3.5833, 4.25]$, поэтому converges = False. Новые центроиды:

$$\mu_1 \approx [-7.9167, -6.3333, 3.5833, 4.25], \quad \mu_2 \approx [13.3333, -9.3333, 4.6667, 2.3333], \quad \mu_3 = [17, 18, -20, 2]$$

Итерация 2

Распределение точек

Пример для $x_6 = [18, -10, 1, 11]$:

$$μ_0 μ_1 = [-7.9167, -6.3333, 3.5833, 4.25]:$$

$$d(x_6, μ_1) = \sqrt{(18 - (-7.9167))^2 + (-10 - (-6.3333))^2 + (1 - 3.5833)^2 + (11 - 4.25)^2}$$

$$= \sqrt{(25.9167)^2 + (-3.6667)^2 + (-2.5833)^2 + (6.75)^2}$$

$$= \sqrt{671.67 + 13.44 + 6.67 + 45.56} = \sqrt{737.34} \approx 27.15$$

До
$$\mu_2 = [18, -10, 1, 11]$$
:

$$d(x_6, \mu_2) = \sqrt{(18 - 13.3333)^2 + (-10 - (-9.3333))^2 + (1 - 4.6667)^2 + (11 - 2.3333)^2}$$

$$= \sqrt{(4.6667)^2 + (-0.6667)^2 + (-3.6667)^2 + (8.6667)^2}$$

$$= \sqrt{21.78 + 0.44 + 13.44 + 75.11} = \sqrt{110.77} \approx 10.52$$

Метка: $cluster_labels[6] = 2$.

Метки: [1, 1, 1, 1, 1, 1, 2, 1, 3, 2, 1, 1, 2, 1, 1, 1].

Кластеры

Не изменились.

Обновление центроидов

Центроиды идентичны:

$$\mu_1 \approx [-7.9167, -6.3333, 3.5833, 4.25], \quad \mu_2 \approx [13.3333, -9.3333, 4.6667, 2.3333], \quad \mu_3 = [17, 18, -20, 2]$$

Сходимость

converges = True.

Финальные результаты

- ullet Метки кластеров: [1,1,1,1,1,1,2,1,3,2,1,1,2,1,1,1]
- Центроиды:

$$\begin{split} \mu_1 &\approx [-7.9167, -6.3333, 3.5833, 4.25] \\ \mu_2 &\approx [13.3333, -9.3333, 4.6667, 2.3333] \\ \mu_3 &= [17, 18, -20, 2] \end{split}$$

Примечания

Результаты зависят от начальной инициализации. Для другого выбора центроидов кластеры могут отличаться.