Autovalores e Autovetores de Matrizes Tridiagonais Simétricas - O Algoritmo QR

EP1 - MAP3121 - Data de entrega: 27/06/2021

May 31, 2021

Regras do Jogo

- Você deve implementar o exercício programa em C/C++ ou Python3.7 (alunos da elétrica preferencialmente em C, os demais preferencialmente em Python)
- Python:
 - Pode usar: Matplotlib, NumPy (apenas para trabalhar com aritmética de vetores, matrizes, leitura/escrita de dados), bibliotecas básicas auxiliares: sys, time, datetime, os, math.
 - Não pode usar: SciPy ou outras bibliotecas de algebra linear computacional
- C, C++:
 - ${\bf N\tilde{a}o}$ pode usar recursos de versões além de C/C++14.
 - − Pode usar qualquer biblioteca nativa do gcc/g++ (que não exiga instalção adicional).
- Incluir, obrigatoriamente, um arquivo LEIAME.txt com instruções de compilação e execução, indicando versão de interpretador/compilador necessário.
- O exercício pode ser feito em duplas. As duplas podem ser formadas livremente, com alunos de turmas e / ou engenharias distintas.
- Apenas um aluno deve entregar o exercício, destacando no relatório e no código o nome de ambos os alunos.
- A entrega deve conter o relatório (em .pdf), contendo a análise do problema estudado, e o código usado para as simulações computacionais (arquivos fonte). A entrega deve ser feita em um arquivo compactado único.
- O relatório deve apresentar resultados e análises de todas as tarefas descritas neste enunciado.
- O seu código deve estar bem documentado, de forma a facilitar a correção. Rodar os testes também deve ser fácil para o usuário do seu programa, sem que este tenha que editar seu código. Ou seja, você deve pedir como entrada qual teste o usuário quer rodar, qual método e os parâmetros para o teste.

1 Introdução

Matrizes reais simétricas, e em particular as tridiagonais, aparecem comumente em aplicações e seus auto-valores e auto-vetores carregam informações relevantes. Neste exercíco-programa estudaremos como calcular autovalores e autovetores de matrizes tridiagonais simétricas e seu uso em uma aplicação prática. Este método é também relevante para matrizes simétricas em geral e será utilizado também no segundo exercício programa.

Recordemos que matrizes reais simétricas $n \times n$ são tais que todos os seus autovalores são reais e os respectivos autovetores podem ser escolhidos de maneira a formar uma base *ortonormal* do \mathbb{R}^n .

Sejam então $\{\lambda_1, \lambda_2, \dots, \lambda_n\}$ os autovalores da matriz simétrica $A \in \mathbb{R}^{n \times n}$, contando multiplicidade, e $\{q_1, q_2, \dots, q_n\}$ respectivos autovetores formando uma base ortonormal do \mathbb{R}^n . Então temos

$$A\mathbf{q}_i = \lambda_i \mathbf{q}_i, \ 1 \le i \le n, \quad \text{e} \quad \mathbf{q}_i^T \mathbf{q}_j = \begin{cases} 0 & \text{se } i \ne j \\ 1 & \text{se } i = j \end{cases},$$

e todo $\boldsymbol{x} \in \mathbb{R}^n$ pode ser representado como

$$oldsymbol{x} = \sum_{j=1}^n (oldsymbol{q}_j^T oldsymbol{x}) oldsymbol{q}_j.$$

A matriz A pode ser escrita na sua decomposição espectral

$$A = \sum_{j=1}^{n} \lambda_j q_j q_j^T$$
 ou $A = Q\Lambda Q^T$,

onde Λ é a matriz diagonal cujos elementos na sua diagonal são os autovalores $\{\lambda_i\}_{i=1}^n$ e Q é a matriz de $\mathbb{R}^{n\times n}$ cuja j-ésima coluna é o autovetor q_j , $1\leq j\leq n$. Note que Q é uma matriz ortogonal: $Q^T=Q^{-1}$ (ou $Q^TQ=QQ^T=I$, onde I é a matriz identidade).

Nosso objetivo é calcular os autovalores e autovetores de A. Apresentaremos um dos métodos mais eficientes, que pode ser usado em situações mais gerais do que aqui, em que usaremos algumas particularidades de matrizes tridiagonais simétricas. Trata-se de um método iterativo, como em princípio são todos os esquemas utilizados para este fim.

2 O Método da Potência

Antes de apresentarmos o algoritmo QR, veremos primeiro o Método da Potência. Este é um método simples para a aproximação do auto-valor dominante de uma matriz e um respectivo auto-vetor. O algoritmo consiste em aplicar repetidas vezes a matriz A em um vetor, com alguma normalização para se evitar o possível crescimento indeterminado de vetores. Suponha que os autovalores da matriz simétrica A estejam ordenados decrescentemente em módulo e que o autor-valor de maior módulo seja simples,

$$|\lambda_1| > |\lambda_2| \ge |\lambda_3| \ge \cdots \ge |\lambda_n|,$$

e que v seja um vetor do \mathbb{R}^n cuja projeção na direção do autovetor q_1 é diferente de zero. Então v pode ser representado como

$$\mathbf{v} = c_1 \mathbf{q}_1 + c_2 \mathbf{q}_2 + \dots + c_n \mathbf{q}_n$$
, onde $c_1 \neq 0$.

Da representação espectral de A segue então que, para todo inteiro $k \geq 0$, temos

$$A^{k}\boldsymbol{v} = c_{1}\lambda_{1}^{k}\boldsymbol{q}_{1} + c_{2}\lambda_{2}^{k}\boldsymbol{q}_{2} + \dots + c_{n}\lambda_{n}^{k}\boldsymbol{q}_{n} = \lambda_{1}^{k} \left[c_{1}\boldsymbol{q}_{1} + c_{2} \left(\frac{\lambda_{2}}{\lambda_{1}} \right)^{k} \boldsymbol{q}_{2} + \dots + c_{n} \left(\frac{\lambda_{n}}{\lambda_{1}} \right)^{k} \boldsymbol{q}_{n} \right].$$

Como $|\lambda_j/\lambda_1| < 1$, $2 \le j \le n$, vemos que à medida que k cresce, as componentes do vetor $A^k v$ nas direções de $\{q_j\}_{j=2}^n$ tendem a zero e ele tende a ficar paralelo a q_1 . Logo, se normalizarmos os vetores após cada iteração, teremos um algoritmo para aproximar λ_1 e q_1 (ou $-q_1$):

Dado
$$\hat{\boldsymbol{v}}^0$$
 itere:

$$k = 0$$

repita

$$\begin{split} & \boldsymbol{v}^{k+1} = A \widehat{\boldsymbol{v}}^k \\ & \widehat{\boldsymbol{v}}^{k+1} = \frac{\boldsymbol{v}^{k+1}}{\|\boldsymbol{v}^{k+1}\|} \quad (aproximação \ do \ autovetor) \\ & \widehat{\lambda}_{k+1} = (\widehat{\boldsymbol{v}}^{k+1})^T A \widehat{\boldsymbol{v}}^{k+1} \quad (aproximação \ do \ autovalor) \end{split}$$

até a convergência

No pseudocódigo acima $\|\boldsymbol{x}\| = (\sum_{i=1}^n x_i^2)^{1/2}$ é a norma Euclideana de um vetor do \mathbb{R}^n . Note que $\lambda_1 = \boldsymbol{q}_1^T A \boldsymbol{q}_1$, pois \boldsymbol{q}_1 é unitário, e como $\widehat{\boldsymbol{v}}_{k+1}$ é um vetor unitário cuja direção se aproxima da direção de \boldsymbol{q}_1 , a última igualdade nos dá uma aproximação para λ_1 . A taxa de convergência do algoritmo é proporcional a $|\lambda_2/\lambda_1|$.

3 Rotações de Givens e a fatoração QR de uma matriz tridiagonal

Apresentamos a fatoração QR de matrizes $n \times n$ tridiagonais simétricas por rotações de Givens, parte importante do método QR para a determinação dos seus auto-valores. Rotações de Givens são transformações lineares ortogonais de \mathbb{R}^n em \mathbb{R}^n . Recordemos inicialmente que uma transformação linear Q dada por uma matriz $n \times n$ é ortogonal se $Q^TQ = QQ^T = I$. Note que o produto de duas matrizes ortogonais também é ortogonal. Lembremos que uma transformação de \mathbb{R}^2 em \mathbb{R}^2 dada por

$$Q = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$$

representa uma rotação em torno da origem por um ângulo θ em sentido anti-horário. Uma tal transformação é claramente ortogonal. Rotações de Givens são transformações ortogonais $Q(i,j,\theta)$ de \mathbb{R}^n em \mathbb{R}^n tais que para $y=Q(i,j,\theta)x$ obtemos $y_k=x_k$, para $k\neq i$ e $k\neq j$, $y_i=\cos\theta x_i-\sin\theta x_j$ e $y_j=\sin\theta x_i+\cos\theta x_j$. Ou seja, tal transformação corresponde a uma rotação no plano das coordenadas i e j, deixando as outras invariantes. Ao aplicarmos uma rotação de Givens $Q(i,j,\theta)$ a uma matriz $A_{n\times n}$ apenas as linhas i e j de A são modificadas. Denotando $c=\cos\theta$ e $s=\sin\theta$ teremos após a aplicação da transformação que as linhas i e j da matriz resultante $B=Q(i,j,\theta)A$ serão dadas por

$$b_{i,k} = ca_{i,k} - sa_{j,k}$$
 e $b_{j,k} = sa_{i,k} + ca_{j,k}$, $k = 1, ..., n$ (1)

enquanto que as linhas restantes não se alteram.

Vamos detalhar como transformar uma matriz A tridiagonal simétrica em uma matriz $R_{n\times n}$ triangular superior através de rotações de Givens. Inicialmente notemos que podemos armazenar apenas os elementos não nulos de A em vetores α , β e γ tal que

$$A = \begin{bmatrix} \alpha_1 & \gamma_1 & 0 & \dots & 0 \\ \beta_1 & \alpha_2 & \gamma_2 & 0 & \vdots \\ 0 & \ddots & \ddots & \ddots & 0 \\ \vdots & 0 & \beta_{n-2} & \alpha_{n-1} & \gamma_{n-1} \\ 0 & \dots & 0 & \beta_{n-1} & \alpha_n \end{bmatrix}.$$

Note que quando A é simétrica, temos $\beta = \gamma$.

Começamos aplicando transformação de Givens $Q_1 = Q(1, 2, \theta_1)$ a A de forma a zerar a posição β_1 da matriz. Para tanto, basta definir adequadamente o valor de θ_1 , ou equivalentemente, de $c_1 = \cos \theta_1$ e de $s_1 = \sin \theta_1$. Escolhendo (para k = 1)

$$c_k = \frac{a_k}{\sqrt{a_k^2 + b_k^2}}$$
 e $s_k = -\frac{b_k}{\sqrt{a_k^2 + b_k^2}}$

teremos o efeito desejado.

Por exemplo, considere a matriz:

$$A = \left[\begin{array}{cccc} 2 & 1 & 0 & 0 \\ 1 & 2 & 1 & 0 \\ 0 & 1 & 2 & 1 \\ 0 & 0 & 1 & 2 \end{array} \right] \quad .$$

Temos que $c_1 = 2/\sqrt{5}$ e $s_1 = -1/\sqrt{5}$ e após a aplicação da transformação obtemos (verifique!) :

$$Q_1 A = \begin{bmatrix} 5/\sqrt{5} & 4/\sqrt{5} & 1/\sqrt{5} & 0\\ 0 & 3/\sqrt{5} & 2/\sqrt{5} & 0\\ 0 & 1 & 2 & 1\\ 0 & 0 & 1 & 2 \end{bmatrix} .$$
 (2)

Note que desta forma zera-se o elemento abaixo da diagonal na segunda linha e surge um elemento não nulo na posição (1,3) da matriz. Com transformações do tipo $Q_k = Q(k,k+1,\theta_k), k=2,\ldots,n-1$ zera-se sucessivamente os elementos abaixo da diagonal, ao mesmo tempo em que a matriz ganha uma nova diagonal não nula, nas posições $(k,k+2), k=1,\ldots,n-2$. A matriz resultante é triangular superior.

Observe que só precisamos de mais um vetor para armazenar esta nova diagonal, sem necessidade de armazenar toda a matriz.

Observação: Uma forma essencialmente equivalente (os sinais de c_k e s_k podem ser trocados), mas numericamente mais estável, de determinar valores de c_k e s_k (no passo k) é a seguinte: Se $|a_k| > |b_k|$ defina

$$\tau = -b_k/a_k, c_k = 1/\sqrt{1+\tau^2} \text{ e } s_k = c_k \tau$$
 (3)

Caso contrário, defina

$$\tau = -a_k/b_k, s_k = 1/\sqrt{1+\tau^2} \text{ e } c_k = s_k \tau.$$
 (4)

As sucessivas transformações de Givens $Q_1, Q_2, ..., Q_{n-1}$ são tais que $Q_{n-1} ... Q_2 Q_1 A = R$, onde R é triangular superior. Como as transformações de Givens são ortogonais, teremos que A = QR, com Q ortogonal dada por $Q = Q_1^T Q_2^T ... Q_{n-1}^T$.

4 O algoritmo QR

O algoritmo QR para a determinação dos auto-valores de uma matriz simétrica $A \in \mathbb{R}^{n \times n}$ é dado por

$$A^{(0)} = A; V^{(0)} = I_{n \times n}$$

k = 0

repita

$$\begin{array}{ll} A^{(k)} \rightarrow Q^{(k)} R^{(k)} & \quad & (fatoraç\~ao \ \mathrm{QR} \ de \ A^{(k)}) \\ A^{(k+1)} = R^{(k)} Q^{(k)} & \quad & (atualizaç\~ao \ da \ matriz) \\ V^{(k+1)} = V^{(k)} Q^{(k)} & \quad & (atualizaç\~ao \ dos \ autos vetores) \end{array}$$

até a convergência

Como $A^{(k+1)} = R^{(k)}Q^{(k)} = (Q^{(k)})^TQ^{(k)}R^{(k)}Q^{(k)} = (Q^{(k)})^TA^{(k)}Q^{(k)}$, segue que $A^{(k+1)}$ e $A^{(k)}$ são (ortogonalmente) semelhantes.

Vamos agora considerar as particularidades do algoritmo quando aplicado a uma matriz tridiagonal simétrica. Vimos na seção anterior que:

$$Q_{n-1}\dots Q_2Q_1A=R,$$

quando A é tridiagonal, as matrizes Q_j representam rotações de Givens e a matriz resultante R é triangular superior, com elementos não nulos apenas na diagonal principal e nas duas diagonais imediatamente acima desta. No algoritmo QR devemos notar que $A^{(k)} = Q^{(k)}R^{(k)}$, com $Q^{(k)} = (Q_{n-1}^{(k)})^T \dots (Q_1^{(k)})^T$. Devemos formar a nova matriz $A^{(k+1)} = R^{(k)}Q^{(k)}$, ou seja,

$$A^{(k+1)} = R^{(k)} (Q_1^{(k)})^T \dots (Q_{n-1}^{(k)})^T ...$$

Teremos

$$A^{(k+1)} = Q_{n-1}^{(k)}(\dots(Q_1^{(k)}A^{(k)}(Q_1^{(k)})^T)\dots)(Q_{n-1}^{(k)})^T ,$$

e portanto $A^{(k+1)}$ também é simétrica. Este fato pode, e deve, ser usado na implementação do algoritmo. Para facilitar a compreensão, vejamos um exemplo, com a seguinte matriz:

$$A^{(0)} = \left[\begin{array}{ccc} 4 & 3 & 0 \\ 3 & 4 & 3 \\ 0 & 3 & 4 \end{array} \right] \quad .$$

Temos então que $c_1 = 4/5$ e $s_1 = -3/5$. Após aplicar a primeira rotação de Givens à matriz obtemos:

$$Q_1^{(0)}A = \left[\begin{array}{ccc} 5 & 24/5 & 9/5 \\ 0 & 7/5 & 12/5 \\ 0 & 3 & 4 \end{array} \right] .$$

Para a segunda rotação de Givens temos $c_2 = 7/\sqrt{274}$ e $s_2 = -15/\sqrt{274}$ (com a forma mais estável teríamos os sinais de c_2 e s_2 trocados) e obtemos

$$Q_2^{(0)}Q_1^{(0)}A = R = \begin{bmatrix} 5 & 24/5 & 9/5 \\ 0 & 54.8/\sqrt{274} & 76.8/\sqrt{274} \\ 0 & 0 & -8/\sqrt{274} \end{bmatrix} .$$

No proximo passo avaliamos

$$R^{(0)}(Q_1^{(0)})^T = \begin{bmatrix} 172/25 & 21/25 & 9/5\\ 32.88/\sqrt{274} & 43.84/\sqrt{274} & 76.8/\sqrt{274}\\ 0 & 0 & -8/\sqrt{274} \end{bmatrix} .$$

Por fim, completamos o cálculo de $A^{(1)} = R^{(0)}Q^{(0)}$:

$$A^{(1)} = R^{(0)} (Q_1^{(0)})^T (Q_2^{(0)})^T = \begin{bmatrix} 172/25 & 32.88/\sqrt{274} & 0\\ 32.88/\sqrt{274} & 1458.88/274 & -120/274\\ 0 & -120/274 & -56/274 \end{bmatrix}.$$

Todos os resultados apresentados neste exemplo são exatos, procure verificar como foram obtidos. As contas devem ajudá-lo a entender os comentários que seguem.

Agora vejamos alguns fatos que serão úteis para a implementação. O primeiro deles é que tudo que precisamos armazenar (durante cada iteração) de informação sobre cada rotação de Givens são os respectivos valores de c_k e s_k , para o que basta o uso de dois vetores. Numa nova iteração pode-se utilizar os mesmos vetores, as rotações de Givens da iteração anterior não mais serão utilizadas. As sucessivas aplicações das transpostas das rotações de Givens $Q_i^{(k)}$ à direita alteram apenas as colunas i e i+1 da matriz $R^{(k)}$. Como a matriz $R^{(k)}$ é triangular superior, a cada multiplicação à direita por $(Q_i^{(k)})^T$ surge um elemento não nulo na primeira diagonal abaixo da diagonal principal (na posição (i+1,i) da matriz), com o restante da matriz abaixo dessa subdiagonal permanecendo nulo. Como a matriz resultante $R^{(k)}Q^{(k)}$ será simétrica e o elemento atualizado não mais será modificado nos passos seguintes, já sabemos que o elemento da posição (i,i+1) será igual a ele, sem necessidade de recalculá-lo. Também da simetria, deduzimos que os elementos não nulos que haviam surgido na segunda diagonal acima da principal (no exemplo, o valor 9/5 na posição (1,3)), voltará a ser zero. Segue portanto que a nova matriz $A^{(k+1)}$ também é tridiagonal simétrica e que no seu armazenamento em vetores (como descrito anteriormente) teremos novamente $\gamma=\beta$. Procure perceber que se usarmos o valor final da subdiagonal β para atualizar o valor da sobrediagonali γ , o elemento 9/5 da matriz do exemplo não precisaria sequer ter sido calculado. Isso pode ser usado na implementação do algoritmo.

Para o cálculo da matriz $V^{(k)}$ contendo os auto-vetores em suas colunas, inicia-se com a matriz $V^{(0)} = I$ e a cada iteração se multiplica sucessivamente por $(Q_1^{(k)})^T$, $(Q_2^{(k)})^T$, ..., $(Q_{n-1}^{(k)})^T$. Após este cálculo, na nova iteração pode-se utilizar os mesmos vetores usados para armazenar c_k e s_k sobrescrevendo-os.

No exemplo acima teremos:

$$V^{(0)}(Q_1^{(0)})^T = \begin{bmatrix} 4/5 & -3/5 & 0\\ 3/5 & 4/5 & 0\\ 0 & 0 & 1 \end{bmatrix}$$

е

$$V^{(1)} = V^{(0)}(Q_1^{(0)})^T (Q_2^{(0)})^T = \begin{bmatrix} 4/5 & -4.2/\sqrt{274} & 9/\sqrt{274} \\ 3/5 & 5.6/\sqrt{274} & -12/\sqrt{274} \\ 0 & 15/\sqrt{274} & 7/\sqrt{274} \end{bmatrix}.$$

Observamos novamente que a multiplicação à esquerda por $(Q_i^{(k)})^T$ altera apenas as colunas $i \in i+1$ da matriz.

4.1 Convergência do Algoritmo QR

Apresentamos aqui uma demonstração simples da convergência do algoritmo, sob certas hipóteses. O método é convergente mesmo removendo algumas destas hipóteses, porém a demonstração é mais envolvida. Vocês podem ver por exemplo o livro clássico *Matrix Computations*, de Gene Golub e Charles Van Loan.

A demonstração seguinte é para o caso em que A é simétrica positiva definida com auto-valores distintos $\lambda_1 > \lambda_2 > \cdots > \lambda_n > 0$. Vamos ainda supor que a transposta da matriz ortogonal V, cujas colunas são os auto-vetores correspondentes (ou seja $AV = V\Lambda$, sendo Λ a matriz diagonal com os auto-valores de A), possua uma decomposição $V^T = LU$, com L triangular unitária inferior e U triangular superior.

Já observamos que $A^{(k+1)} = (Q^{(k)})^T A^{(k)} Q^{(k)}$. Usando esta igualdade recursivamente temos que:

$$A^{(k+1)} = (Q^{(k)})^T (Q^{(k-1)})^T \dots (Q^{(0)})^T A Q^{(0)} \dots Q^{(k-1)} Q^{(k)} .$$
 (5)

Vamos agora mostrar por indução que potências da matriz A satisfazem a relação:

$$A^{k+1} = Q^{(0)} \dots Q^{(k-1)} Q^{(k)} R^{(k)} R^{(k-1)} \dots R^{(0)} .$$

A base da indução, para k=0 decorre do fato de que $A=A^{(0)}=Q^{(0)}R^{(0)}$. Temos então que

$$A^{k+1} = AA^k = A(Q^{(0)} \dots Q^{(k-1)} R^{(k-1)} \dots R^{(0)}),$$

da hipótese de indução e de (5) que

$$Q^{(0)} \dots Q^{(k-1)} A^{(k)} = A Q^{(0)} \dots Q^{(k-1)}$$
.

Substituindo esta igualdade na equação anterior obtemos

$$A^{k+1} = Q^{(0)} \dots Q^{(k-1)} A^{(k)} R^{(k-1)} \dots R^{(0)} = Q^{(0)} \dots Q^{(k-1)} Q^{(k)} R^{(k)} R^{(k-1)} \dots R^{(0)}.$$

Com V a matriz ortogonal dos auto-vetores de A, temos então que

$$A^{k} = V\Lambda^{k}V^{T} = V\Lambda^{k}LU = Q^{(0)}\dots Q^{(k-1)}R^{(k-1)}\dots R^{(0)},$$

de onde obtemos que (multiplicando à direita por $U^{-1}\Lambda^{-k}$)

$$V\Lambda^k L\Lambda^{-k} = Q^{(0)} \dots Q^{(k-1)} R^{(k-1)} \dots R^{(0)} U^{-1} \Lambda^{-k}$$
.

Observemos agora que $\Lambda^k L \Lambda^{-k}$ é triangular unitária inferior (com 1's na diagonal) e seus elementos abaixo da diagonal são $l_{i,j}(\frac{\lambda_i}{\lambda_j})^k$, com i>j. Segue que para k tendendo a infinito, esta matriz converge à identidade. Denotemos por $\tilde{Q}^{(k)}=Q^{(0)}\dots Q^{(k-1)}$ e por $\tilde{R}^{(k)}=R^{(k-1)}\dots R^{(0)}U^{-1}\Lambda^{-k}$, notando que $\tilde{Q}^{(k)}$ é ortogonal e $\tilde{R}^{(k)}$ é triangular superior, ou seja $\tilde{Q}^{(k)}\tilde{R}^{(k)}$ é a decomposição QR de $V\Lambda^k L\Lambda^{-k}$. Logo obtemos que:

$$V\Lambda^k L\Lambda^{-k} = \tilde{Q}^{(k)}\tilde{R}^{(k)} \to V$$
.

No limite, temos que $\tilde{Q}^{(k)}\tilde{R}^{(k)}$ tende à decomposição QR de V e portanto $\tilde{Q}^{(k)}$ tende a V e $\tilde{R}^{(k)}$ à identidade. Portanto $Q^{(k)}$ tende à identidade e de (5) obtemos que $A^{(k+1)} = (\tilde{Q}^{(k)})^T A \tilde{Q}^{(k)}$ tende a $V^T A V = \Lambda$, mostrando o que queríamos.

4.2 O algoritmo QR com deslocamentos espectrais

Nesta seção apresentaremos o algoritmo QR a ser implementado. Uma última melhoria será proposta. Como a taxa de convergência depende da razão $|\lambda_{j+1}/\lambda_j|$ entre os módulos dos autovalores, ela pode ser lenta se estiver próxima de 1. Podemos acelelar a convergência se subtrairmos da matriz um múltiplo da identidade, μ_k (variando a cada iteração) próximo a um autovalor.

Vamos argumentar heuristicamente. Sendo $\alpha_i^{(k)}$, $1 \le i \le n$, e $\beta_i^{(k)}$, $1 \le i \le n-1$, os coeficientes da matriz tridiagonal simétrica $A^{(k)}$ da iteração k do algoritmo QR, se fizermos as iterações na forma

$$A^{(k)} - \mu_k I \to Q^k R^{(k)}$$
$$A^{(k+1)} = R^{(k)} Q^{(k)} + \mu_k I$$

a taxa de convergência de $\alpha_j^{(k)}$ para λ_j (ou de $\beta_{j-1}^{(k)}$ para 0) será proporcional a $|(\lambda_j - \mu_k)/(\lambda_{j-1} - \mu_k)|$. Portanto, se μ_k estiver perto de λ_n , esperamos que $\beta_{n-1}^{(k)}$ tenda a zero mais rápido do que $\beta_j^{(k)}$ para j < n-1, e que $\alpha_n^{(k)}$ convirja rapidamente para λ_n . Mudamos μ_k a cada passo, de acordo com a heurística de Wilkinson:

com
$$d_k = (\alpha_{n-1}^{(k)} - \alpha_n^{(k)})/2$$
 defina $\mu_k = \alpha_n^{(k)} + d_k - sgn(d_k)\sqrt{d_k^2 - (b_{n-1}^{(k)})^2}$,

onde sgn(d) = 1 se $d \ge 0$ e sgn(d) = -1 caso contrário.

Observemos que se $A^{(k)} - \mu_k I = Q^k R^{(k)}$ então

$$A^{(k+1)} = R^{(k)}Q^{(k)} + \mu_k I = (Q^{(k)})^T (Q^{(k)}R^{(k)} + \mu_k I)Q^{(k)} = (Q^{(k)})^T A^{(k)}Q^{(k)},$$

e portanto as matrizes $A^{(k)}$ são todas semelhantes a A. Se chegarmos a $\beta_{n-1}^{(k)}=0$ então $\alpha_n^{(k)}$ é auto-valor de A. Assim, na prática, quando $\beta_{n-1}^{(k)}<\epsilon$ consideramos $\beta_{n-1}=0$ (convergência), já determinamos um dos auto-valores de A e podemos proceder da mesma forma com a submatriz tridiagonal $n-1\times n-1$, com os correntes valores de $\beta_i^{(k)}$, $j=1,\ldots,n-2$ e $\alpha_j^{(k)}, j=1,\ldots,n-1$. O segundo auto-valor estará determinado quando $\beta_{n-2}^{(k)} < \epsilon$. Considerando este valor como nulo, reduzimos a dimensão para n-2 e assim por diante, até obtermos todos os auto-valores. O algoritmo então é o seguinte:

Algoritmo QR tridiagonal com deslocamento

- 1: Sejam $A^{(0)}=A\in\mathbb{R}^{n\times n}$ uma matriz tridiagonal simétrica, $V^{(0)}=I$ e $\mu_0=0$. O algoritmo calcula a sua forma diagonal semelhante $A = V\Lambda V^T$.
- 2: k = 0
- 3: **para** m = n, n 1, ..., 2 **faça**
- 4: repita
- se k > 0 calcule μ_k pela heurística de Wilkinson 5:
- $A^{(k)} \mu_k I \to Q^{(k)} R^{(k)}$ 6:
- $A^{(k+1)} = R^{(k)}Q^{(k)} + \mu_k I$ 7:
- $V^{(k+1)} = V^{(k)}Q^{(k)}$ 8:
- k = k + 19:
- até que $\beta_{m-1}^{(k)} < \epsilon$
- 11: fim do para
- 12: $\Lambda = A^{(k)}$
- 13: $V = V^{(k)}$

Aplicação - Modos de vibração de sistemas massa-mola 5

Como aplicação do cálculo de auto-vetores e auto-valores de matrizes tridiagonais simétricas iremos considerar um sistema massa-mola. Sistemas massa-mola são utilizados na modelagem de vigas, alguns sistemas elétricos e outras aplicações. Os auto-vetores representam os modos naturais de vibração do sistema e os auto-valores determinam as frequências de vibração.

Inicialmente recordemos que uma equação diferencial do tipo

$$x''(t) + \lambda x(t) = 0$$

com λ positivo tem como solução geral

$$x(t) = a\cos(\omega t) + b\sin(\omega t)$$

com a frequência $\omega = \sqrt{\lambda}$. Dadas condições iniciais x(0) = x0 e x'(0) = d0 determina-se $a \in b$ de maneira única. Para um sistema de equações

$$X''(t) + AX(t) = 0$$

com $X(t) = (x_1(t), x_2(t), ..., x_n(t))^T$ e A uma matriz simétrica positiva definida (portanto real diagonalizável) consideremos inicialmente $AQ = Q\Lambda$, onde Q é a matriz ortogonal cujas colunas são os auto-vetores de A e Λ matriz diagonal composta pelos auto-valores de A. Temos portanto que

$$X''(t) + Q\Lambda Q^T X(t) = 0.$$

Definindo $Y(t) = Q^T X(t)$ (ou seja, X(t) = QY(t)), o sistema equivale a

$$Y''(t) + \Lambda Y(t) = 0 ,$$

que é composto por n equações escalares desacopladas como a descrita anteriormente. Cada uma destas componentes de Y(t) está associada a uma frequência determinada por um auto-valor de A. Assim, se X(0) é escolhido como um múltiplo de um dos auto-vetores de A, todas as massas se movem na mesma frequência, correspondente ao auto-valor respectivo. Temos então o modo de vibração associado a esta frequência.

5.1 Descrição do sistema com n massas e n+1 molas

Consideremos um sistema com n massas pontuais iguais (com m kg), localizadas numa linha reta entre dois anteparos fixos. Cada duas massas consecutivas são conectadas por uma mola, e há também uma mola em cada extremo conectando a primeira e última mola aos anteparos. Temos assim n+1 molas no sistema, cada uma com sua respectiva constante elástica k_i . O deslocamento de cada massa em relação à posição de equilíbrio no instante t é dado pela função $x_i(t)$, para $i=1,\ldots,n$. As massas se movimentam sobre uma superfície plana sem qualquer atrito ou outra força de amortecimento. Assim, as massas se movem em linha reta, entre os dois anteparos.

O sistema de equações diferenciais que descreve o movimento das n massas é dado por

$$x_{1}''(t) = \frac{1}{m}(-k_{1}x_{1}(t) + k_{2}(x_{2}(t) - x_{1}(t))),$$

$$x_{i}''(t) = \frac{1}{m}(k_{i}(x_{i-1}(t) - x_{i}(t)) + k_{i+1}(x_{i+1}(t) - x_{i}(t))), \text{ (para } 2 \le i \le n - 1)$$

$$x_{n}''(t) = \frac{1}{m}(k_{n}(x_{n-1}(t) - x_{n}(t)) + k_{n+1}x_{n}(t)),$$

$$(6)$$

que em forma matricial se escreve como

$$X''(t) + AX(t) = 0 (7)$$

onde $X(t) = (x_1(t), x_2(t), ..., x_n(t))^T$. A matriz A é dada por

e é tridiagonal simétrica positiva definida.

5.2 Tarefa

Vocês devem implementar o álgoritmo QR com deslocamento espectral para o cálculo dos auto-valores e auto-vetores de uma matriz tridiagonal simétrica $n \times n$.

a) Como um primeiro teste, considere as matrizes com diagonal principal constante igual a 2 ($\alpha_k = 2$) e subdiagonal igual a -1 ($\beta_k = -1$). Os auto-valores e auto-vetores desta matriz são conhecidos analiticamente. Temos que

$$\lambda_j = 2(1 - \cos(\frac{j\pi}{n+1})), j = 1, \dots n$$

com os auto-vetores correspondentes

$$v_j = (sin(\frac{j\pi}{n+1})), sin(\frac{2j\pi}{n+1})), \dots, sin(\frac{nj\pi}{n+1}))$$
.

Calcule os auto-valores e auto-vetores neste caso para n=4,8,16 e 32, usando o valor de $\epsilon=10^{-6}$ no critério de parada do esquema. Compare o número de iterações até a convergência nestes casos com o obtido pelo método QR sem deslocamentos (a única diferença é que neste caso o valor de μ_k é definido como zero em todas as etapas).

- b) Considere o sistema massa-mola com 5 massas de 2kg e as molas com $k_i = (40+2i) \text{ N/m}, i = 1, \dots, 6$. Faça gráficos da evolução da solução, mostrando os deslocamentos de cada mola em relação a sua posição de equilíbrio, por 1 minuto iniciando com os seguintes deslocamentos, com velocidade inicial nula:
 - X(0) = -2, -3, -1, -3, -1
 - X(0) = 1, 10, -4, 3, -2
 - \bullet X(0) correspondente ao modo de maior frequência

Determine as frequências e seus respectivos modos de vibração.

c) Considere o sistema massa-mola com 10 massas de 2kg e as molas com $k_i = (40 + 2(-1)^i)$ N/m, i = 1, ..., 11. Realize as mesmas tarefas do item anterior (com velocidade inicial nula), sendo que nas definicões de X(0) use $x_{i+5} = x_i$, com os valores $x_i, i = 1, ..., 5$ dados no item anterior.