Theoretische Physik 1 WiSe20-21 Aufgabenblatt 8 Tutorin: Thea Budde Nico Haaf, Tobias Leander Leonhard, Simon Skade

\sum	A8.1	A8.2	A8.3	A8.4	A

${\bf Aufgabe~8.1}$

Offensichtlich kann das lategral umgeschrieben werden:

Stansichtlich kann das lategral umgeschrieben werden:

The min (tite)

Vo In (m-ati) dt!

Falls t > te

Für diesen Teil des Integrals wird sabatitairet: $U = m - \alpha t' \qquad \frac{dt'}{du} = -\frac{1}{\alpha}$ $= V_0 \int -\ln(u)(-\frac{1}{\alpha}) du = \left[\frac{V_0}{\alpha} \left(u \ln(u) - u \right) \right] u(0)$ Resubst. $= \frac{V_0}{\pi} \left(m_0 - \alpha t' \right) \left(\ln \left(m_0 - \alpha t' \right) - 1 \right)$ Figer wir alle Teile des Integrals wieder zusammen ergibt sich: $z(t) = v_0 t \left(\ln(\omega_0) + \ln(\omega_E) \right) - \frac{g}{2} t^2 + \frac{v_0}{\alpha} \left[\left(\ln_0 - \alpha t' \right) \left(\ln(\omega_0 - \alpha t') - 1 \right) \right]^{m_0 t_0}$ d) In höchsten Pearlet of dre Greschwindigkert O. Außerdem onws der Zeitpunkt, wo die Rockete am höchsten ist größer als te sen (th>te), ala vozmogzmeg Sount gilt: v(th) = vo ln(mo -xtE)-gth (=> tn = Vo la (mo - a tE) e) Fir Vo < 2 ware rechnerach die Beschleunigung am Antong negative. De aber davon auszugehen it, dass die Rakote auf dem Boden stell, startet die Rakete sobald vo = m(t) g (bzw. startet nie, falls vo & ME 9). Die Form der Trajectorie siehit der Trajectorie bei vo = mog relatio ahalith (zuwiedest in dem Zeitraum, in dem die Raketen in der Luft sind.) (Søy für den hässlichen besser. 11) Aufschrieb. Nachstes und wind's wieder

Aufgabe 8.2

Theo 8.2 c) g1:(t1x) (+41, Rx + 61+v+t) g2: (t(x))→)(t+4, Rx+b,+4) g20g1(t1x) = g2(t+4,1 R1x+b1+v1t) = (t+631R3 x+13t+63) mit c3 = C1+C2; R3 = R2R1; V3 = R2V1+ V2; b3 = R2b1+b, + V2C1 t, C; ER, livi=1:2:3 RiEO(3), für i=1,2,3 MVi, bi EIR3 für i=1,2,3 d) 1. Untergruppe (UG): Potation (nur Rotation), gi: (t,x),-)(t, Rix) Rie O(3) RIRE bel., aber RIR, # 11 =) milt abeloch, da R, Rz = Rz R, X+O X, O EIRS =) R1R, x + R2R1X 2. UG: new Translation: 9: 1 (+1x) (++(1,x+bi) citility =) abelichida t+circj = t+cj+cj = cj+t+cj = ~ x+bi+bj = bj+x+bi=... und 3. UG Boost gi: (tix) +) (tjx+vit) vit 183 =>abelseh, da vit+x=x+vit

Aufgabe 8.3 Jedes eindimensionale zeitunabhängige Kraftfeld ist konservativ, es gilt hier also:

$$E = \frac{m}{2}\dot{x} + V(x) = \frac{m}{2}\dot{x} + A|x|^{n}.$$

Nun gilt es die Dauer einer Schwingung des Massepunkts vom Umkehrpunkt $x_2 < 0$ in den Umkehrpunkt $x_1 > 0$ zu berechnen. Für diese gilt $V(x_i) = E$. Also für $x_1 > 0$

$$E = V(x_1) = A|x_1|^n = Ax_1^n \implies x_1 = \sqrt[n]{\frac{E}{A}}.$$

Ferner folgt:

$$\dot{x} = \sqrt{\frac{2}{m}(E - V(x))} \implies dt = \frac{dx}{\sqrt{\frac{2}{m}(E - V(x))}}$$

$$\implies t = \int \frac{dx}{\sqrt{\frac{2}{m}(E - V(x))}}.$$

Für die Gesuchte Dauer T(E) gilt also: bei (1) benutzen wir die Substitution $x \mapsto -x$ und benützen $x_2 = -x_1$

$$T(E) = \int_{x_2}^{x_1} \frac{\mathrm{d}x}{\sqrt{\frac{2}{m}(E - V(x))}} = \int_{x_2}^{x_1} \frac{\mathrm{d}x}{\sqrt{\frac{2}{m}(E - A|x|^n)}}$$

$$\stackrel{(1)}{=} 2\frac{\sqrt{m}}{\sqrt{2}} \int_0^{x_1} \frac{\mathrm{d}x}{\sqrt{(E - A|x|^n)}}$$

$$= \sqrt{2m} \int_0^{\sqrt[n]{\frac{E}{A}}} \frac{\mathrm{d}x}{\sqrt{(E - A|x|^n)}}$$

$$y = \frac{x}{x_1} \sqrt{\frac{2m}{E}} \cdot \sqrt[n]{\frac{A}{E}} \int_0^1 \frac{\mathrm{d}y}{\sqrt{1 - y^n}}.$$

Ferner gilt für $t = y^n$ und somit $t^{\frac{n-1}{n}} = y^{n-1}$

$$\int_{0}^{1} \frac{\mathrm{d}y}{\sqrt{1-y^{n}}} = \frac{1}{n} \int_{0}^{1} \frac{t^{\frac{1-n}{n}}}{\sqrt{1-t}}$$

$$= \frac{1}{n} \int_{0}^{1} \frac{t^{\frac{1}{n}-1}}{(1-t)^{\frac{3}{2}-1}} \mathrm{d}t$$

$$= B(\frac{1}{n}, \frac{3}{2}) = \frac{\Gamma(\frac{1}{n}) \cdot \Gamma(\frac{3}{2})}{\Gamma(\frac{1}{n} + \frac{3}{2})} = \text{const}_{n} > 0.$$

Aufgabe 8.4

(a) (i) Es gilt $\varepsilon^{ijk} = 0 \iff i = j \text{ oder } j = k \text{ oder } k = i. \text{ Mit } (\varepsilon^{ijk})^2 = |\varepsilon^{ijk}| \text{ folgt:}$

$$\begin{split} \varepsilon^{ijk} \varepsilon^{ijk} &= \sum_{i=1}^{3} \sum_{j=1}^{3} \sum_{k=1}^{3} (\varepsilon^{ijk})^2 \\ &= \sum_{i=1}^{3} \sum_{j=1}^{3} \sum_{k=1}^{3} |\varepsilon^{ijk}| \\ &= |\varepsilon^{123}| + |\varepsilon^{312}| + |\varepsilon^{231}| + |\varepsilon^{132}| + |\varepsilon^{213}| + |\varepsilon^{321}| = 6. \end{split}$$

(ii) Wir bestimmen α sodass $\varepsilon^{ijk}\varepsilon^{ljk} = \alpha\delta^{il}$: kontrahieren der Indizes durch δ^{il} liefert:

$$\delta^{il}\varepsilon^{ijk}\varepsilon^{ljk} = \varepsilon^{ijk}\varepsilon^{ijk} = 6.$$

Sowie:

Tutorin: Thea Budde

$$\delta^{il}\alpha\delta^{il} = \alpha(\delta^{11} + \delta^{22} + \delta^{33}) = 3\alpha.$$

Es folgt $3\alpha = 6$ also $\alpha = 2$.

(iii) Wir bestimmen α, β, γ sodass:

$$\varepsilon^{ijk}\varepsilon^{lmk} = \alpha\delta^{ij}\delta^{lm} + \beta\delta^{il}\delta^{jm} + \gamma\delta^{im}\delta^{jl}.$$

Kontrahieren mit δ^{jm} liefert:

$$\delta^{jm} \varepsilon^{ijk} \varepsilon^{lmk} = \varepsilon^{ijk} \varepsilon^{ljk} = 2\delta^{il}$$
.

Sowie:

$$\begin{split} \delta^{jm}(\alpha\delta^{ij}\delta^{lm} + \beta\delta^{il}\delta^{jm} + \gamma\delta^{im}\delta^{jl}) &= \alpha\delta^{ij}\delta^{lj} + \beta\delta^{il}\delta^{jj} + \gamma\delta^{ij}\delta^{jl} \\ &= \alpha\delta^{li} + 3\beta\delta^{il} + \gamma\delta^{il} \\ &= (\alpha + 3\beta + \gamma)\delta^{il}. \end{split}$$

Also gilt $(\alpha + 3\beta + \gamma) = 2$. Kontrahieren mit δ^{ij} liefert:

$$\delta^{ij}\varepsilon^{ijk}\varepsilon^{lmk} = \varepsilon^{iik}\varepsilon^{lmk} = 0.$$

Sowie:

$$\delta^{ij}(\alpha\delta^{ij}\delta^{lm} + \beta\delta^{il}\delta^{jm} + \gamma\delta^{im}\delta^{jl}) = \alpha\delta^{ii}\delta^{lm} + \beta\delta^{il}\delta^{im} + \gamma\delta^{im}\delta^{il}$$
$$= (3\alpha + \beta + \gamma)\delta^{lm}.$$

Also gilt $3\alpha + \beta + \gamma = 0$. Kontrahieren mit δ^{im} liefert:

$$\delta^{im} \varepsilon^{ijk} \varepsilon^{lmk} = \varepsilon^{ijk} \varepsilon^{lik} = -\varepsilon^{jik} \varepsilon^{lik} = 2\delta^{jl}$$

Sowie:

$$\delta^{im}(\alpha\delta^{ij}\delta^{lm} + \beta\delta^{il}\delta^{jm} + \gamma\delta^{im}\delta^{jl}) = \alpha\delta^{ij}\delta^{li} + \beta\delta^{il}\delta^{ji} + \gamma\delta^{ii}\delta^{jl}$$
$$= (\alpha + \beta + 3\gamma)\delta^{jl}.$$

Also gilt bereits $\alpha + \beta + 3\gamma = -2$. Wir erhalten folgendes LGS:

$$\begin{pmatrix} 1 & 3 & 1 \\ 3 & 1 & 1 \\ 1 & 1 & 3 \end{pmatrix} \begin{pmatrix} \alpha \\ \beta \\ \gamma \end{pmatrix} = \begin{pmatrix} 2 \\ 0 \\ -2 \end{pmatrix}.$$

Das Gauß-Eliminationsverfahren liefert durch Rechnung $\alpha = 0, \beta = 1$ und $\delta = -1$.

(b) (i) Explizite Rechnung liefert für i = 1, 2, 3:

$$\begin{split} (\vec{a}\times(\vec{b}\times\vec{c}))^i &= \varepsilon^{ijk}a^j(\vec{b}\times\vec{c})^k \\ &= \varepsilon^{ijk}a^j\varepsilon^{klm}b^lc^m \\ &= \varepsilon^{ijk}\varepsilon^{klm}b^lc^m \\ &= \varepsilon^{ijk}\varepsilon^{lmk}a^jb^lc^m \\ &= (\delta^{il}\delta^{jm} - \delta^{im}\delta^{jl})a^jb^lc^m \\ &= \delta^{il}\delta^{jm}a^jb^lc^m - \delta^{im}\delta^{jl}a^jb^lc^m \\ &= (\delta^{jm}a^jc^m)b^i - (\delta^{jl}a^jb^l)c^i \\ &= (\vec{a}\cdot\vec{c})b^i - (\vec{a}\cdot\vec{b})c^i. \end{split}$$

Aus der Gleichheit aller Einträge folgt Gleichheit der Vektoren.

(ii) Explizite Rechnung liefert:

$$\begin{split} (\vec{a}\times\vec{b})\cdot(\vec{a}\times\vec{b}) &= (\vec{a}\times\vec{b})^i(\vec{a}\times\vec{b})^i\\ &= \varepsilon^{ijk}a^jb^k\varepsilon^{ilm}a^lb^m\\ &= \varepsilon^{jki}\varepsilon^{lmi}a^jb^ka^lb^m\\ &= (\delta^{jl}\delta^{km} - \delta^{jm}\delta^{kl})a^jb^ka^lb^m\\ &= \delta^{jl}\delta^{km}a^jb^ka^lb^m - \delta^{jm}\delta^{kl}a^jb^ka^lb^m\\ &= (a^ja^j)(b^kB^k) - (a^jb^j)(b^ka^k)\\ &= |\vec{a}|^2|\vec{b}|^2 - (\vec{a}\cdot\vec{b})(\vec{a}\cdot\vec{b}) \end{split}$$