// ProceduralTerrain

```
float height11 = 0f;
                          We then divide our current x coordinate
float amplitude = 1f;
float frequency = 1f;
                          by the product of Scale * frequency
                                                     Example
for (int i = Octaves; i > 0; i--) {
  float octave_x0 = [x / Scale * frequency;
                                                     Scale = 15 x = [3]
  float octave z0 = z / Scale * frequency;
  float octave_x1 = (x + 1f) / Scale * frequency;
                                                     15 \times 1f = 15 \quad \boxed{3} / 15 = 0.2f
  float octave_z1 = (z + 1f) / Scale * frequency;
  height00 += Mathf.PerlinNoise(octave_x0, octave_z0) * amplitude;
  height01 += Mathf.PerlinNoise(octave_x0, octave_z1) * amplitude;
  height10 += Mathf.PerlinNoise(octave_x1, octave_z0) * amplitude;
  height11 += Mathf.PerlinNoise(octave_x1, octave_z1) * amplitude;
  amplitude *= Persistance;
  frequency *= Lacunarity;
int x0 = x * CellSize;
```

// ProceduralTerrain

```
float height11 = 0f;
float amplitude = 1f;
float frequency = 1f;
for (int i = Octaves; i > 0; i--) {
 float octave_x0 = x / Scale * frequency;
 Do the same for z
 float octave_x1 = (x + 1f) / Scale * frequency;
 float octave_z1 = (z + 1f) / Scale * frequency;
 height00 += Mathf.PerlinNoise(octave_x0, octave_z0) * amplitude;
 height01 += Mathf.PerlinNoise(octave_x0, octave_z1) * amplitude;
 height10 += Mathf.PerlinNoise(octave_x1, octave_z0) * amplitude;
 height11 += Mathf.PerlinNoise(octave_x1, octave_z1) * amplitude;
 amplitude *= Persistance;
 frequency *= Lacunarity;
int x0 = x * CellSize;
```