

Optimizing the Gillespie algorithms for simulating spreading phenomena in higher-order networks

Universidade Federal de Viçosa

Hugo P. Maia¹, Wesley Cota¹ and Silvio C. Ferreira^{1,2}

¹Departamento de Física, Universidade Federal de Viçosa - Viçosa, MG, Brazil ²Instituto Nacional de Ciência e Tecnologia de Sistemas Complexos - INCT-SC

hugo.maia@ufv.br, wesley.cota@ufv.br, silviojr@ufv.br

Introduction

Higher order networks are a generalization on traditional pairwise networks. Instead of only edges connecting pairs of nodes, systems may now include mth-order hyperedges that represents group interactions between m+1 nodes.

Higher-Order Contagion

A hypergraph $\mathcal{H} = \{\mathcal{N}, \mathcal{E}\}$ is a type of higher-order network defined by a set of nodes $\mathcal{N} = \{i_1, i_2, i_3, ..., i_N\}$ and a set of hyperedges $\mathcal{E} = \{h_1, h_2, h_3, ..., h_H\}$.

A node's generalized degree or m-degree $k_i^{(m)}$ refers to the number of *i*'s m-hyperedges. A hyperdegree is defined as the set of generalized degrees, $\mathbf{k_i} = \{k_i^{(1)}, k_i^{(2)}, k_i^{(3)}, \ldots\}$, each node having $K_i = \sum_m k_i^{(m)}$ interactions in total.

Fig. 1: Example of the Hyper-SIS contagion model on a higher-order network. Susceptible nodes ($\sigma_i = 0$) are indicated in gray and infected ones ($\sigma_i = 1$) in red.

The Hyper-SIS model with critical mass threshold assumes that only $\theta_m \in [1, m]$ from all m + 1 agents are necessary to activate an m-order hyperedge and transmit the infection at a rate $\beta^{(m)}$. A hyperedge h is active if $\sum_{i \in h} \sigma_i \geq \theta_m$. Events are represented by the equations

$$I \xrightarrow{\alpha} S$$
, and $\theta_m I + S \xrightarrow{\beta^{(m)}} (\theta_m + 1) I$.

We employ a vector notation for higher order parameters, such as the spreading rates $\beta = \{\beta^{(1)}, \beta^{(2)}, \beta^{(3)}, ...\}$ and hyperdegrees $\mathbf{k} = \{k^{(1)}, k^{(2)}, k^{(3)}, ...\}$.

Generating Higher-Order Networks

The bipartite configuration model is used to create synthetic higher-order networks with predefined number of interactions and order distribution.

Fig. 2: Steps employed to construct higher-order networks via the bipartite configuration model.

- 1. Create sets of nodes with distributions P_k^A and P_k^B . The total sum of degrees in A must be equal to that of B, i.e $S_k^A = \sum_{i \in A}^{N_A} k_i = S_k^B = \sum_{i \in B}^{N_B} k_i$.
- 2. Randomly connect nodes from both partitions.

 Nodes from partition *A* and *B* must connect to each other at most only once, and no hyperedges of the same order can contain the same sets of nodes.
- 3. The resulting bipartite graph is reinterpreted as a higher-order network with the predefined interaction and order distributions.

Results

Hyperedge-Based Optimized Gillespie Algorithm

For the HB-OGA, a list $\Lambda^{(act)}$ contains all active hyperedges $(\sigma_h^{(act)} = 1)$. We overestimate the number of possible processes by assuming that an active hyperedge spreads the infection to $\omega_m = m + 1 - \theta_m$ of its nodes at a rate $\beta^{(m)}$, resulting in a total infection rate

$$B = \sum_{h=1}^{H} eta_h \omega_h \sigma_h^{(act)} = \sum_m eta^{(m)} \omega_m N_{
m act}^{(m)}.$$

For infection events, a hyperedge is selected from the list $\Lambda^{(\text{act})}$ and accepted proportionally to $\beta_h \omega_h$, then with probability $n_h^{(S)}/\omega_h$ one of its susceptible nodes is infected, otherwise resulting in a phantom process. Whatever the outcome, time is incremented by $\tau = -\ln u/(\alpha N_{\text{inf}} + B)$.

Node-Based Optimized Gillespie Algorithm

For the NB-OGA, a list $\Lambda^{(\text{qui})}$ contains all nodes that belong to active hyperedges ($\sigma_i^{(\text{qui})}=1$). It is assumed that quiescent nodes acquire the infection at a rate $\beta^{(m)}$ from every $k_i^{(m)}$ of its m-order hyperedges, resulting in an overestimated total infection rate

$$B = \sum_{i=1}^{N} \left(\sum_{m} \beta^{(m)} k_i^{(m)} \right) \sigma_i^{(\text{qui})} = \sum_{m} \beta^{(m)} N_e^{(m)}.$$

For infection events, a quiescent node is selected from the list $\Lambda^{(\text{qui})}$ and accepted proportionally to $\vec{\beta} \cdot \tilde{\mathbf{k}}_i$, then the node i is infected with probability $\vec{\beta} \cdot \tilde{\mathbf{n}}_i / \vec{\beta} \cdot \tilde{\mathbf{k}}_i$, otherwise resulting in a phantom process. Time is incremented by $\tau = -\ln u/(\alpha N_{\text{inf}} + B)$.

Fig. 3: Algorithm comparison for the simulation of the hyper-SIS model on higher-order networks with power-law interaction $P_K \sim K^{-\gamma_k}$ and order $P_m \sim m^{-\gamma_m}$ distributions. Figures above are CPU time with relation to network size, and figures below are schemes for the points tested in the simulation. Numerical data is shown in a table below.

	GA	GA+		HB-OGA (IOGA)			NB-OGA (IOGA)		
N	8000	8000	32000	8000	32000	128000	8000	32000	128000
$\overline{Homogeneous^{(a)}}$	308	3.83	54.0	0.16	0.77	3.51	0.32	1.38	6.05
$Homogeneous^{(b)}$	_	23.9	_	0.65	3.00	14.0	0.54	2.36	10.3
Simplicial Complex (a)	_	164	_	0.61	3.01	12.5	0.58	2.58	13.7
Simplicial Complex $^{(b)}$	_	49.3	_	0.33	1.47	6.28	0.32	1.49	7.79
PL, $\gamma_m = 6.0^{(a)}$	210	9.73	181	0.15 (0.16)	0.66 (0.72)	3.68 (3.41)	0.34 (0.26)	1.87 (1.15)	12.0 (6.89)
PL, $\gamma_m = 3.0^{(b)}$	545	13.1	223	2.11 (0.66)	18.1 (3.38)	158 (19.1)	0.63 (0.42)	3.91 (1.98)	23.3 (9.12)
PL, $\gamma_m = 2.5^{(c)}$	379	11.7	186	5.17 (1.16)	56.4 (6.98)	-(50.1)	0.51 (0.32)	3.73 (1.58)	29.3 (7.72)
$\overline{\hspace{1cm}}$ hyperblob $^{(a)}$	1142	10.3	162	8.72 (7.50)	138 (115)	- (-)	0.86	15.0	247
$hyperblob^{(b)}$	_	31.8	652	1073 (34.0)	- (569)	- (-)	0.86	15.0	247

Conclusions

- Higher-order systems are the next step in network sciences, filled with new and unique emergent phenomena.
- The algorithms proposed here optimizes simulation of higher-order contagion processes by orders of magnitude and for several types of networks with different levels of heterogeneity.
- Optimizations can be adapted and employed for a multitude of contagion models with different rules and compartments.

References

- [1] F. Battiston, E. Amico, A. Barrat, G. Bianconi, G. Ferraz de Arruda, B. Franceschiello, I. Iacopini, S. Kéfi, V. Latora, Y. Moreno, et al., "The physics of higher-order interactions in complex systems," *Nature Physics*, vol. 17, no. 10, pp. 1093–1098, 2021.
- [2] W. Cota and S. C. Ferreira, "Optimized gillespie algorithms for the simulation of markovian epidemic processes on large and heterogeneous networks," *Computer Physics Communications*, vol. 219, pp. 303–312, 2017.
- [3] G. Cencetti, D. A. Contreras, M. Mancastroppa, and A. Barrat, "Distinguishing simple and complex contagion processes on networks," *Phys. Rev. Lett.*, vol. 130, p. 247401, 2023.