Computer Organization(H)

Southern University of Science and Technology Mengxuan Wu 12212006

Theory Assignment 4

Mengxuan Wu

Problem 1

a)

For a 256 byte cache, 8 words per block, with 32-bit byte addresses, there are 8 blocks in the cache. The offset is $\log_2 8*4=5$ bits, the index is $\log_2 8=3$ bits, and the tag is 32-5-3=24 bits.

Tag: 31-8 Index: 7-5 Offset: 4-0

b)

Address	Tag	Index	Offset	Hit/Miss	Replacement
0x000	0x0	0x0	0x0	Miss	Block 0 replaced by Mem[0x000-0x01F]
0x004	0x0	0x0	0x4	Hit	-
0x010	0x0	0x0	0x10	Hit	-
0x084	0x0	0x4	0x4	Miss	Block 4 replaced by $Mem[0x080-0x09F]$
0x0E8	0x0	0x7	0x8	Miss	Block 7 replaced by Mem[0x0E0-0x0FF]
0x0A0	0x0	0x5	0x0	Miss	Block 5 replaced by Mem[0x0A0-0x0BF]
0x400	0x4	0x0	0x0	Miss	Block 0 replaced by Mem[0x400-0x41F]
0x01E	0x0	0x0	0x1E	Miss	Block 0 replaced by Mem[0x000-0x01F]
0x08C	0x0	0x4	0xC	Hit	-
0xC1C	0xC	0x0	0x1C	Miss	Block 0 replaced by Mem[0xC00-0xC1F]
0x0B4	0x0	0x5	0x14	Hit	-
0x884	0x8	0x4	0x4	Miss	Block 4 replaced by Mem[0x880-0x89F]

 $\mathbf{c})$

The hit rate is $4/12 \approx 33.33\%$.

d)

The valid content of the cache is as follows:

Index	Tag	Data
0	0xC	Mem[0xC00-0xC1F]
4	0x8	Mem[0x880-0x89F]
5	0x0	Mem[0x0A0-0x0BF]
7	0x0	Mem[0x0E0-0x0FF]

Problem 2

a)

For a 3-way set associative cache, 2 words per block, 48 words in size, there are 24 blocks, 8 sets in the cache. Then the offset is 1 bit, the index is 3 bits, and the tag is 28 bits. Hence, the range of offset is 0, the range of indexes is 3-1, and the range of tag is 31-4.

Tag: 31-4 Index: 3-1 Offset: 0

b)

For a 3-way set associative cache, 2 words per block, 24 words in size, there are 12 blocks, 4 sets in the cache. Then the offset is 1 bit, the index is 2 bits, and the tag is 29 bits.

Address	Tag	Index	Offset	$\mathrm{Hit}/\mathrm{Miss}$	Replacement
0x03	0x0	0x1	0x1	Miss	Set 1 Block 0 replaced by Mem[0x00-0x03]
0xb4	0x16	0x2	0x0	Miss	Set 2 Block 0 replaced by Mem[0xB4-0xB7]
0x2b	0x5	0x1	0x1	Miss	Set 1 Block 1 replaced by Mem[0x28-0x2B]
0x02	0x0	0x1	0x0	Hit	-
0xbe	0x17	0x3	0x0	Miss	Set 3 Block 0 replaced by Mem[0xBC-0xBF]
0x58	0xB	0x0	0x0	Miss	Set 0 Block 0 replaced by Mem[0x58-0x5B]
0xbf	0x17	0x3	0x1	Hit	-
0x0e	0x1	0x3	0x0	Miss	Set 3 Block 1 replaced by Mem[0x0C-0x0F]
0x1f	0x3	0x3	0x1	Miss	Set 3 Block 2 replaced by Mem[0x1C-0x1F]
0xb5	0x16	0x2	0x1	Hit	-
0xbf	0x17	0x3	0x1	Hit	-
0xba	0x17	0x1	0x0	Miss	Set 1 Block 2 replaced by Mem[0xB8-0xBB]
0x2e	0x5	0x3	0x0	Miss	Set 3 Block 1 replaced by Mem[0x2C-0x2F]
0xce	0x19	0x3	0x0	Miss	Set 3 Block 2 replaced by Mem[0xCC-0xCF]

The final valid content of the cache is as follows:

Set	Tag	Data
0	0xB NA NA	Mem[0x58-0x5B] NA NA
1	0x0 0x5 0x17	Mem[0x00-0x03] Mem[0x28-0x2B] Mem[0xB8-0xBB]
2	0x16 NA NA	Mem[0xB4-0xB7] NA NA
3	0x17 0x5 0x19	$\begin{array}{c} \operatorname{Mem}[0xBC\text{-}0xBF] \\ \operatorname{Mem}[0x2C\text{-}0x2F] \\ \operatorname{Mem}[0xCC\text{-}0xCF] \end{array}$

c)

For a fully associative cache, 1 word per block, 8 words in size, there are 8 blocks in the cache. Then the offset is 3 bits, the index is 0 bits, and the tag is 29 bits.

Address	Tag	Offset	Hit/Miss	Replacement
0x03	0x0	0x3	Miss	Block 0 replaced by Mem[0x00-0x07]
0xb4	0x16	0x4	Miss	Block 1 replaced by Mem[0xB0-0xB7]
0x2b	0x5	0x3	Miss	Block 2 replaced by Mem[0x28-0x2F]
0x02	0x0	0x2	Hit	-
0xbe	0x17	0x6	Miss	Block 3 replaced by Mem[0xB8-0xBF]
0x58	0xB	0x0	Miss	Block 4 replaced by Mem[0x58-0x5F]
0xbf	0x17	0x7	Hit	-
0x0e	0x1	0x6	Miss	Block 5 replaced by Mem[0x08-0x0F]
0x1f	0x3	0x7	Miss	Block 6 replaced by Mem[0x18-0x1F]
0xb5	0x16	0x5	Hit	-
0xbf	0x17	0x7	Hit	-
0xba	0x17	0x2	Hit	-
0x2e	0x5	0x6	Hit	_
0xce	0x19	0x6	Miss	Block 7 replaced by Mem[0xC8-0xCF]

The final valid content of the cache is as follows:

Tag	Data
0x0	Mem[0x00-0x07]
0x16	Mem[0xB0-0xB7]
0x5	Mem[0x28-0x2F]
0x17	Mem[0xB8-0xBF]
0xB	Mem[0x58-0x5F]
0x1	Mem[0x08-0x0F]
0x3	Mem[0x18-0x1F]
0x19	Mem[0xC8-0xCF]

Problem 3

a)

For a 2GHz processor, the clock cycle time is $\frac{1s}{2\times10^9} = 0.5$ ns.

Then, if we miss in the cache, the penalty is $100 \text{ns} \div 0.5 \text{ns} = 200$ cycles. The new CPI will be:

$$CPI = 1.5 + 7\% \times 200 = 15.5$$

b)

$$CPI = 1.5 + 7\% \times 12 + 3.5\% \times 200 = 9.34$$

c)

$$CPI = 1.5 + 7\% \times 28 + 1.5\% \times 200 = 6.46$$

d)

$$CPI = 1.5 + 7\% \times (12 + 3.5\% \times 200) = 2.83$$

Problem 4

a)

Given the formula $2^p \ge d + p + 1$, and we know the data is 128 bits, then d = 128. Then we can solve the minimum value of p is 8. Since we add an extra parity bit for double error detection, the total number of parity bits is 9.

b)

Since 0x375 is 0011 0111 0101 in binary, we calculate the parity bits as follows:

$$p_1 = 0 \oplus 1 \oplus 0 \oplus 1 \oplus 0 \oplus 0 = 0$$

$$p_2 = 0 \oplus 1 \oplus 1 \oplus 1 \oplus 1 \oplus 1 \oplus 0 = 0$$

$$p_4 = 1 \oplus 0 \oplus 1 \oplus 1 \oplus 1 = 0$$

$$p_8 = 1 \oplus 0 \oplus 1 \oplus 0 \oplus 1 = 1$$

Hence, there is an error in the data because p_8 is not 0. It means the error is in the 8th bit. The correct data is $0011\ 0110\ 0101 = 0x365$.

Problem 5

a)

Since each page is 4KB, the offset is $\log_2 4 \times 2^{10} = 12$ bits.

Address	Virtual Page Number	TLB Hit/Miss	Page Table Hit/Miss	Page Fault
0x123d	0x1	Miss	Miss	True
0x08b3	0x0	Miss	Hit	False
0x365c	0x3	Hit	Hit	False
0x871b	0x8	Miss	Miss	True
0xbee6	0xB	Miss	Hit	False
0x3140	0x3	Hit	Hit	False
0xc049	0xC	Miss	Miss	True

The content of TLB and page table is as follows:

Valid	Tag	Physical Page Number	Time Since Last Access
1	0x8	14	4
1	0xB	12	3
1	0x3	6	2
1	0xC	15	1

Valid	Physical Page or In Disk
1	5
1	13
0	Disk
1	6
1	9
1	11
0	Disk
1	4
1	14
0	Disk
1	3
1	12
1	15

b)

Address	Virtual Page Number	Index	Tag	TLB Hit/Miss	Page Table Hit/Miss	Page Fault
0x123d	0x1	0x1	0x0	Miss	Miss	True
0x08b3	0x0	0x0	0x0	Miss	Hit	False
0x365c	0x3	0x1	0x1	Miss	Hit	False
0x871b	0x8	0x0	0x4	Miss	Miss	True
0xbee6	0xB	0x1	0x5	Miss	Hit	False
0x3140	0x3	0x1	0x1	Hit	Hit	False
0xc049	0xC	0x0	0x6	Miss	Miss	True

The content of TLB and page table is as follows:

Valid	Tag	Index	Physical Page Number	Time Since Last Access
1	0x4	0x0	14	4
1	0x6	0x0	12	3
1	0x5	0x1	6	2
1	0x1	0x1	15	1

Valid	Physical Page or In Disk			
1	5			
1	13			
0	Disk			
1	6			
1	9			
1	11			
0	Disk			
1	4			
1	14			
0	Disk			
1	3			
1	12			
1	15			