

# FACULTY OF INFORMATION TECHNOLOGY DEPARTMENT OF COMPUTER SCIENCE

## **HOMEWORK**

Discrete Mathematics

TUT-02: Problem Set 02

Instructor: Ms. Nguyen Thi Huong

Release Date: September 10, 2021

Semester: Fall 2021

#### Problem 1

Prove that if x is irrational then  $\frac{1}{x}$  is irrational.

#### Problem 2

Prove that given a nonnegative integer n, there is a unique nonnegative integer m such that  $m^2 \le n < (m+1)^2$ .

#### Problem 3

Show that  $p_1, p_2, p_3, p_4, p_5$  can be shown to be equivalent by proving that the conditional statements  $p_1 \to p_4, p_4 \to p_2, p_2 \to p_5, p_5 \to p_3, p_3 \to p_1$  are true.

#### Problem 4

Prove that there is no positive integer n such that  $n^2 + n^3 = 100$ .

#### Problem 5

Prove that if  $x^3$  is irrational and  $x \ge 0$  then the square root of x is irrational.

#### Problem 6

Prove that if m is a power of 3 and n is a power of 3 then m + n is never a power of 3.

#### Problem 7

Assume that a and b are both integers and that  $a \neq 0$  and  $b \neq 0$ . Explain why  $\frac{(b-a)}{(ab^2)}$  must be a rational number.

#### Problem 8

Prove by contraposition: For all positive integers n, r and s, if  $rs \leq n$ , then  $r \leq \sqrt{n}$  or  $s \leq \sqrt{n}$ .

#### Problem 9

Prove that  $\sqrt{2} + \sqrt{3}$  is irrational.

#### Problem 10

Prove that  $\forall n \in \mathbb{Z}$ , if n > 2 then there is a prime number p such that n . (Hint: Use the theorem: "Any integer <math>n > 1 is divisible by a prime number". Prove that: p|(n!-1), if  $p \leq n$ , then  $p = 1 \to \text{contradiction}$ . Therefore, n ).

### References

- [1] K. H. Rosen, Discrete Mathematics and Its Applications, McGraw-Hill, 7th edition, 2011.
- [2] S. S. Epp, Discrete Mathematics with Applications, Cengage-Learning, 4th edition, 2010.
- [3] T. W. Judson and R. A. Beezer, *Abstract Algebra: Theory and Applications*, Free Software Foundation, 2017, [Online; accessed 08-September-2017].