Pogojna verjetnost

IZREK O POLNI VERJETNOSTI: Če H_1, H_2, H_3, \ldots tvorijo **popoln sistem dogodkov** (tj. vedno se zgodi natanko eden izmed njih), velja:

$$P(A) = P(H_1)P(A|H_1) + P(H_2)P(A|H_2) + P(H_3)P(A|H_3) + \cdots$$

BAYESOVA FORMULA: Če H_1, H_2, H_3, \ldots tvorijo popoln sistem dogodkov, velja:

$$P(H_i|A) = \frac{P(H_i)P(A|H_i)}{P(H_1)P(A|H_1) + P(H_2)P(A|H_2) + P(H_3)P(A|H_3) + \cdots}$$

Definicija: Dogodka A in B sta ${\bf neodvisna},$ če velja $P(A\cap B)=P(A)P(B).$

Kvantili

DEFINICIJA: Število x_{α} je **kvantil** slučajne spremenljivke X za verjetnost α , če velja:

$$P(X < x_{\alpha}) \le \alpha, \quad P(X \le x_{\alpha}) \ge \alpha.$$

Kvantilu za verjetnost 1/2 pravimo mediana, kvantiloma za verjetnosti 1/3 in 2/3 pravimo prvi in drugi tercil, kvantili za verjetnosti 1/4, 2/4, 3/4 so $\textbf{kvartili}, \text{ kvantili za verjetnosti } 0.1, 0.2, \dots, 0.9 \text{ so } \textbf{decili}, \text{ kvantili za verjetnosti } 0.01, 0.02, \dots, 0.09 \text{ pa so } \textbf{centili ali percentili}.$

Če je X zvezno porazdeljena in je x_{α} kvantil za verjetnost α , velja kar $F_X(x_{\alpha}) = \alpha$. Če ima X v okolici točke x_{α} strogo pozitivno gostoto, je x_{α} edini kvantil za verjetnost α. Brž, ko je torej gostota na nekem intervalu strogo pozitivna, izven tega intervala pa enaka noč, so kvantili za vse verjetnosti iz (0,1) natančno določeni.

Slučajne spremenljivke

IZREK: Naj bo X zvezno porazdeljena slučajna spremenljivka z zalogo vrednosti v odprti množici $A \subseteq \mathbb{R}^n$ in gostoto f_X . Nadalje naj bo dana zvezno odvedljiva bijekcija $h:A\longrightarrow B$, pri čemer naj bo $h'(x)\neq 0$ za vse $x\in A$. Tedaj ima slučajni vektor Y:=h(X) gostoto:

$$f_Y(y) = \begin{cases} f_X(h^{-1}(y))|(h^{-1})'(y)| & y \in B\\ 0 & \text{sicer} \end{cases}$$

IZREK: Naj bo X zvezno porazdeljena slučajna spremenljivka z gostoto f_X , skoncentrirana na dovolj lepi množici A. Če je $h:A\longrightarrow \mathbb{R}$ lokalno Lipschitzeva:

$$|h(x) - h(y)| \le k|x - y|$$

in $P(h \vee X \text{ ni odvedljiva ali } h'(X) = 0) = 0$, je slučajna spremenljivka Y porazdeljena zvezno z gostoto

$$f_Y(y) = \sum_{x \in A; h(x) = y} \frac{f_X(x)}{|h'(x)|}.$$

DEFINICIJA: Porazdelitev slučajnega vektorja (X,Y) podamo z verjetnostmi P((X,Y)=(x,y))=P(X=x,Y=y) (skupna ali navzkrižna porazdelitev slučajnih spremenljivk X in Y). Porazdelitve komponent imenujemo robne porazdelitve: $P(X=x)=\sum_y P(X=x,Y=y)$, $P(Y=y) = \sum_{x} P(X=x, Y=y)$. X in Y sta **neodvisni**, brž ko za poljuvna x in y velja P(X=x, Y=y) = P(X=x)P(Y=y).

POSLEDICA: Će sta $S \sim Bin(m,p)$ in $T \sim Bin(n,p)$ neodvisni slučajni spremenljivki, je $U := S + T \sim Bin(m+n,p)$.

 $\text{Posledica:} \check{\text{Ce}} \text{ sta } S \sim NegBin(m,p) \text{ in } T \sim NegBin(n,p) \text{ neodvisni slučajni spremenljivki, je } U := S + T \sim NegBin(m+n,p).$

DEFINICIJA: Porazdelitev zveznega dvorazsežnega vektorja (X,Y) lahko opišemo z dvorazsežno gostoto $f_{X,Y}$, za katero velja:

$$P(a \le X \le b, c \le Y \le d) = \int_a^b \int_c^d f_{X,Y}(x, y = dy dx.$$

Splošneje, porazdelitev zveznega slučajnega vektorja $X \in \mathbb{R}^n$ lahko opišemo z n-razsežno gostoto f_X , ki ima to lastnost, da za vsako merljivo množico $A \subseteq \mathbb{R}^n$ velja:

$$P(X \in A) = \int_{A} f_X(x) dx.$$

Seveda velja: $\int_{\mathbb{R}^n} f_X(x) dx = 1$.

Če sta X in Y slučajna vektorja z vrednostmi v \mathbb{R}^m in \mathbb{R}^n in je slučajni vektor (X,Y) porazdeljen zvezno z (m+n)-razsežno **skupno** gostoto $f_{X,Y}$, sta tudi njegovi komponenti X in Y porazdeljeni zvezno, in sicer z **robnima gostotama**:

$$f_X(x) = \int_{\,\mathbb{R}^n} f_{X,Y}(x,y) dy \qquad f_Y(y) = \int_{\,\mathbb{R}^m} f_{X,Y}(x,y) dx.$$

Zvezno porazdeljena slučajna vektorja X in Y sta neodvisna natanko tedaj, ko je tudi slučajni vektor (X,Y) porazdeljen zvezno z gostoto: $f_{X,Y}(x,y)$ $f_X(x)f_Y(y)$.

IZREK: Naj bo X zvezno porazdeljen slučajni vektor z zalogo vrednosti v odprti množici $A \subseteq \mathbb{R}^n$ in gostoto f_X . Nadalje naj bo $h: A \longrightarrow B$ difeomorfizem razreda $C^{(1)}$. Tedaj ima slučajni vektor Y := h(X) gostoto:

$$f_Y(y) = \begin{cases} f_X(h^{-1}(y))|J(h^{-1})(y)| & y \in B\\ 0 & \text{sicer} \end{cases}$$

IZREK: Naj bo X zvezno porazdeljen n-razsežen slučajni vektor z gostoto f_X , skoncentriran na merljivi množici A. Če je $h:A\longrightarrow \mathbb{R}^n$ lokalno Lipschitzeva in $P(h \vee X \text{ nidiferenciabilna ali } Jh(X) = 0) = 0$, je slučajni vektor Y porazdeljena zvezno z gostoto

$$f_Y(y) = \sum_{x \in A; h(x) = y} \frac{f_X(x)}{|Jh(x)|}$$

PORAZDELITEV VSOTE IN RAZLIKE:

- $\begin{array}{l} \bullet \ \ Z=X+Y\colon f_Z(z)=\int_{-\infty}^{\infty}f_{X,Y}(x,z-x)dx=\int_{-\infty}^{\infty}f_{X,Y}(z-y,y)dy\\ \bullet \ \ W=X-Y\colon f_W(w)=\int_{-\infty}^{\infty}f_{X,Y}(x,x-w)dx=\int_{-\infty}^{\infty}f_{X,Y}(w+y,y)dy \end{array}$

DEFINICIJA: Za diskretne slučajne spremenljivke: $E(X) = \sum_x x P(X=x)$, $E[h(X)] = \sum_x h(x) P(X=x)$. Če je vrednosti neskončno, matematično upanje obstaja, če je vrsta absolutno konvergentna.

Velja: E(aX + b) = aE(X) + b.

DEFINICIJA: Za zvezne slučajne spremenljivke: $E(X) = \int_{-\infty}^{\infty} x f_X(x) dx$, $x \in [h(X)] = \int_{-\infty}^{\infty} h(x) f_X(x) dx$. Spet le-to obstaja, če integral absolutno konvergira.

DEFINICIJA: Varianca (disperzija): $var(X) = E((X - E(X))^2) = E(X^2) - (E(X))^2$. Standardni odklon: $\sigma(X) = \sqrt{var(X)}$.

Velja: $var(aX + b) = a^2 var(X)$.

$$E[h(X,Y)] = \sum_{x} \sum_{y} h(x,y)P(X=x,Y=y)$$

$$E[h(X,Y)] = \iint_{\mathbb{R}^2} h(x,y)f_{X,Y}(x,y)dxdy.$$

$$E(X+Y) = E(X) + E(Y)$$

DEFINICIJA: **Indikator** dogodka je slučajna spremenljivka, ki je na danem dogodku enaka 1, zunaj njega pa 0. Indikator dogodka A bomo označevali z $\mathbb{1}_{\mathcal{A}}$. Indikator dogodka, da je izjava \mathcal{A} pravilna, bomo označevali z $\mathbb{1}(\mathcal{A})$. Velja $E(\mathbb{1}_{\mathcal{A}}) = P(\mathcal{A})$.

DEFINICIJA: Slučajni spremenljivki X in Y sta **nekorelirani**, če velja E(XY) = E(X)E(Y). Poljubni neodvisni slučajni spremenljivki sta nekorelirani, obratno pa ni nujno res!

Slučajni spremenljivki X in Y sta zagotovo neodvisni v naslednjih treh primerih:

- če sta nekorelirani in posamezna slučajna spremenljivka lahko zavzame kvečjemu dve vrednosti;
- če sta nekorelirani in je njuna skupna porazdelitev dvorazsežna normalna;
- ullet če za poljubni omejeni merljivi funkciji g in h velja, da sta slučajni spremenljivki g(X) in h(Y) nekorelirani.

Brž ko sta X in Y nekorelirani in imata varianco, velja: var(X + Y) = var(X) + var(Y).

Definicija: Kovarianca: cov(X,Y) := E((X-E(X))(Y-E(Y))) = E(XY) - E(X)E(Y).

Velja cov(X, X) = var(X) in cov(X, Y) = cov(Y, X). Če sta a in b konstanti, velja cov(X + a, Y + b) = cov(X, Y) in cov(aX + bY, Z) = acov(X, Z) + bcov(Y, Z).

Slučajni spremenljivki X in Y sta nekorelirani natanko tedaj, ko je cov(X,Y)=0.

Definicija: Korelacijski koeficient: $\operatorname{corr}(X,Y) = \frac{\operatorname{cov}(X,Y)}{\sigma(X)\sigma(Y)}$.

Velja: $-1 \le \operatorname{corr}(X,Y) \le 1$. Če so a,b,c in d konstante ter a,c>0, velja $\operatorname{corr}(aX+b,cY+d) = \operatorname{corr}(X,Y)$.

POGOJNE PORAZDELITVE

DEFINICIJA: **Pogojno porazdelitev** slučajne spremenljivke X glede na dogodek B opišemo s pogojnimi verjetnostmi $P(X \in C|B)$, kjer C preteče vse merljive množice. Če je X diskretna, lahko njeno pogojno porazdelitev opišemo s **pogojno porazdelitveno shemo**:

$$\begin{pmatrix} a_1 & a_2 & \cdots \\ P(X = a_1|B) & P(X = a_2|B) & \cdots \end{pmatrix}$$

DEFINICIJA: Za vsako realno slučajno spremenljivko in vsak dogodek B s pozitivno verjetnostjo lahko pogojno porazdelitev slučajne spremenljivke X glede na B opišemo s **pogojno kumulativno porazdelitevno funkcijo**:

$$F_{X|B}(x) = P(X \le x|B).$$

Če je pogojna porazdelitev zvezna, obstaja tudi pogojna porazdelitvena gostota:

$$f_{X|B}(x) = F'_{X|B}(x).$$

 $\operatorname{Brž}$ ko je X zvezno porazdeljena, je tudi njena pogojna porazdelitev zvezna glede na vsak dogodek s pozitivno verjetnostjo.

Če je X porazdeljena zvezno z gostoto f_X in $P(X \in C) > 0$, je:

$$f_{X|X \in C}(x) = \begin{cases} \frac{f_X(x)}{P(X \in C)}; & x \in C \\ 0; & \text{sicer} \end{cases}$$

Podobno velja tudi za zvezne slučajne vektorje.

DEFINICIJA: **Pogojno matematično upanje** slučajne spremenljivke X glede na dogodek B je matematično upanje, ki pripada ustrezni pogojni porazdelitvi, in ga označimo z E(X|B). Tako velja:

$$E(X|B) = \sum_{x} xP(X = x|B)$$

in splošneje:

$$E(h(X)|B) = \sum_{x} h(X)P(X = x|B)$$

Pogojno matematično upanje ima vse lastnosti običajnega matematičnega upanja, npr. linearnost.

IZREK: Za vsako slučajno spremenljivko X z matematičnim upanjem in vsak popoln sistem dogodkov H_1, H_2, H_3, \ldots velja **izrek o polnem matematičnem upanju**:

$$E(X) = P(H_1)E(X|H_1) + P(H_2)E(X|H_2) + P(H_3)E(X|H_3) + \cdots$$