

Presented by Mark Benhaim

PROBLEM STATEMENT

Project Focus: This project aims to forecast the price of Bitcoin by examining correlations between technical indicators and public sentiment from Bitcoin-related tweets, leveraging machine learning for optimal model efficiency. The project utilizes historical Bitcoin price data and a large collection of tweets about Bitcoin to build predictive models.

ESTIMATE IMPACT OF SOLUTION

- Uncover the weight of public sentiment on Bitcoin prices
- Equip investors and traders with models offering a comprehensive market view incorporating sentiment through twitter data
- Enrich understanding of social media's role in financial market dynamics.

DATASET AFTER CLEANING

	Colmn Name	Data Type	Description
0	Time	String	Time in days
1	Open	Float	Open price of bitcoin
2	Percent change in price (close/open)	Float	The percent change of the open price to the cl
3	Close	Float	Close price of bitcoin
4	BTC Dominance Open	Float	The opening percent marketshare of Bitcoin
5	Percent change in dominance (close/open)	Float	The percent change in Bitcoin marketshare each
6	BTC Dominance Close	Float	The closing percent marketshare of Bitcoin
7	Volume	Float	The total bitcoin volume per day on the exchan
8	RSI (relative strength index)	Float	The Relative Strength Index (RSI) is a well ve
9	HV (historical volatility)	Float	Historical volatility is a statistical measure
10	Cleantext	String	Text of each individual tweet
11	bitcoin_tweetcount	Integer	Total tweets including the keyword bitcoin per
12	btc_tweetcount	Integer	Total tweets including the keyword btc per day
13	crypto_tweetcount	Integer	Total tweets including the keyword crypto per day
14	cryptocurrency_tweetcount	Integer	Total tweets including the keyword cryptocurre
15	project_tweetcount	Integer	Total tweets including the keyword project per
16	total count_tweetcount	Integer	Total tweets per day
17	Sentiment Polarity_tweetcount	Float	The polarity score of the tweets per day

Preprocessing Overview

Sentiment Analysis of Bitcoin Tweets

Random Forest Feature Importance

Predicted vs. Actual Scatter Plot

Model Comparison

R-squared Scores:

Decision Tree: 0.7099

Random Forest: 0.7967

XGBoost: 0.8460

Neural Network 0.6368

Mean Squared Error Scores:

Decision Tree: 28958357.8903

Random Forest: 20295357.6543

XGBoost: 15368174.1812

Neural Network 36254296.1425

Mean Absolute Error Scores:

Decision Tree: 2706.7700

Random Forest: 2427.7511

XGBoost: 2117.9323

Neural Network 3654.3021

Model Performance

XGBoost: highest R-squared score and lowest MSE and MAE, closely followed by Random Forest.

This suggests that these two models have the best predictive performance among the tested models for this dataset.

Decision Tree: moderately high R-squared score but lags behind XGBoost and Random Forest.

Neural Network: lowest R-squared score, indicating it has the weakest predictive power among the four models for this dataset.

K-Fold Cross Validation: similar results same outcome

R-squared Scores for Different Models

Neural Network Vulnerability

Data Size:

- Neural Networks thrive with ample data.
- Our dataset's limited size hinders the model's ability to capture intricate relationships.

Result:

- Reduced R-squared values
- Increased MSE
- Increased MAE

Recommendation:

- Further investigation into the model is crucial as we gather more data.

Model Interpretation

Key Takeaways:

- Strong correlation found between Bitcoin tweets' sentiment and price patterns
- Twitter sentiment acts as a real-time indicator, potentially preceding traditional indicators

Recommendations:

- 1. Twitter Data: Integrate into analysis for an edge in market movement predictions
- 2. XGBoost: Prioritize for immediate forecasting
- 3. Neural Network: Refine model through enlarging the dataset

Final Thought:

- Blending financial metrics with Twitter sentiment data can provide deeper insights, potentially maximizing returns and minimizing risks in the ever-evolving cryptocurrency landscape