Izračunljivost in računska zahtevnost

1. Turingov stroj

- teza o izračunljivosti
- Turingov stroj
 - o Turingovem stroju
 - trenutni opis
- uporaba Turingovega stroja
 - računanje vrednosti funkcij (k-mestna lastna funkcija)
 - razpoznavanje množic (sprejeta beseda, sprejet jezik, množica S)
 - generiranje množice (generator, jezik generiran z TM, izračunljivo preštevni jeziki)
- razširitve Turingovih strojev
- univerzalni Turingov stroj
 - kodiranje TM
 - oštevilčenje TM

2. Neodločljivost

- računski problemi (odločitveni, problemi iskanja, problemi štetja, problemi generiranja)
- odločitveni problemi
 - jezik odločitvenega problema
 - kodirna funkcija
 - povezava/enakovrednost med odločitvenimi problemi in množicami/jeziki
 - razpoznavnost L(D) in rešljivost problema D
- problem ustavitve
 - problem ustavitve
 - univerzalni jezik
 - diagonalni jezik
- osnovne vrste odločitvenih problemov
 - razred vseh odločitvenih problemov
 - vrste odločitvenega problema D
- komplementarne množice in odločitveni problemi
- izreki iz teorije izračunljivosti (odločljivost in polodločljivost množic/jezikov)
- neizračunljiv problem problem garača (busy beaver)

3) Teorija računske zahtevnosti

- deterministična časovna zahtevnost (razred zahtevnosti DTIME)
 - TM M
 - jezik L in razred vseh takih jezikov
 - odločitveni problem in razred vseh takih odločitvenih problemov
- nedeterministična časovna zahtevnost (razred zahtevnosti NTIME)
 - TM N
 - jezik L in razred vseh takih jezikov
 - odločitveni problem in razred vseh takih odločitvenih problemov
- deterministična prostorska zahtevnost (razred zahtevnosti DSPACE)
 - TM M
 - jezik L in razred vseh takih jezikov
 - odločitveni problem in razred vseh takih odločitvenih problemov
- nedeterministična prostorska zahtevnost (razred zahtevnosti NSPACE)
 - TM N
 - jezik L in razred vseh takih jezikov
 - odločitveni problem in razred vseh takih odločitvenih problemov
- stiskanje trakov, linearna pohitritev, zmanjševanje števila trakov
- relacije med DTIME, DSPACE, NTIME in NSPACE
 - relacije med različnimi razredi zahtevnosti
 - lepe, pohlevne funkcije zahtevnosti
 - prostorsko predstavljiva funkcija S(n)
 - časovno predstavljiva funkcija T(n)
- razredi zahtevnosti P, NP, PSPACE, NPSPACE
- osnovne relacije med P, NP, PSPACE, NPSPACE
- NP-poln in NP-težek problem
 - polinomsko-časovna prevedba
 - NP-težek problem
 - NP-poln problem
 - dokazovanje NP-polnih problemov
 - $P \neq NP$

Izračunljivost in računska zahtevnost

1) Turingov stroj

• teza o izračunljivosti (Church-Turingova teza)

Osnovni koncepti računanja so formalizirani:

- algoritem je formaliziran z Turingovim programom
- računanje je formalizirano z izvršitvijo Turingovega programa v Turingovem stroju
- funkcija izračunljivosti je formalizirana z Turingovo izračunljivo funkcijo

Vse, kar je možno izračunati v intuitivnem smislu, je mogoče izračunati z enim od standardnih univerzalnih modelov računanja in obratno.

Turingov stroj

- o Turingovem stroju

Turingov stroj ima kontrolno enoto, ki vsebuje Turingov program; trak sestavljen iz celic in premično okno čez trak, ki je povezano z kontrolno enoto.

Celica vsebuje tračni simbol, ki pripada tračni abecedi.

Vhodni podatki so vsebovani v vhodni besedi.

Kontrolna enota je vedno v nekem stanju iz končne množice stanj.

Turingov program je funkcija prehodov.

TM je sedmerica $T = (Q, \Sigma, \Gamma, \delta, q_1, B, F)$.

Q ... končna množica stanje

 Σ ... končna množica vhodnih simbolov

 $\Gamma \dots$ množica tračnih simbolov

 δ ... funkcija prehodov: $\mathbf{Q} \times \Gamma \rightarrow \mathbf{Q} \times \Gamma \times \{\mathbf{L}, \mathbf{R}, \mathbf{S}\}$

q1 ... začetni simbol

B ... prazen simbol

F ... množica končnih stanj

- trenutni opis TM

To je niz I = $\alpha_1 q \alpha_2$, če je trenutna konfiguracija TM takšna, da je okno nad prvim simbolom niza α_2 in da se α_2 konča na najbolj desnem nepraznem simbolu.

 $I = (abq_icd)$ in $J = (aq_ibed)$.

Nariši M, ko velja I in ko velja J.

Kdaj se I lahko neposredno spremeni v J.

ID I lahko neposredno preide v J I \vdash J -- če obstaja navodilo v TM programu, čigar izvedba, I preide v J.

Ali je relacija ⊢ neposredne spremembe tranzitivna?

Ni tranzitivna, saj iz $a \vdash b$ in $b \vdash c$ ne sledi $a \vdash c$, ker opisuje posamezno spremembo, ki definira začetno in končno stanje v vsakem koraku, torej iz $a \vdash b$ sledi natanko samo $a \vdash b$.

Kaj pomeni Kleenejevo zaprtje ⊢*.

Vsi trenutni opisi TM, ki se jih da po preslikovalni funkciji po x >= 0 potezah iz nekega trenutnega stanja doseči.

• uporaba Turingovega stroja

- računanje vrednosti funkcij

(Dana je funkcija φ in argumenti a_1 , ..., a_k , izračunaj $\varphi(a_1$, ..., a_k). Dana je k-mestna lastna funkcija $\varphi: (\Sigma^*)^k \to \Sigma^*$, poišči TM T, ki lahko izračuna vrednosti φ . Dan je φ , kontruirati moramo TM T za katerega velja $\varphi_T = \varphi$.)

K-mestna lastna funkcija T - ja je funkcija φ_T : $(\Sigma^*)^k \to \Sigma^*$

Če je vhod T-ja sestavljen iz k besed $u_1,\ldots,u_k\in \Sigma^*$, potem je vrednost φ_T pri u_1,\ldots,u_k definirana

$$\varphi_T(u_1,...,u_k) :=$$

- v, če se T ustavi in vrne na trak besedo $v \in \Sigma^*$
- \uparrow , če se T ne ustavi ali trak nima besede v Σ^*

Funkcija φ :

- izračunljiva: če obstaja tak TM, ki lahko izračuna vrednosti φ za vsak argument
- delno izračun
ljiva: če obstaja tak TM, ki lahko izračuna vrednosti φ kadar
koli je φ definirana
- neizračunljiva: če ne obstaja noben tak TM, ki bi lahko izračunal vrednosti φ kadarkoli je φ definirana

- razpoznavanje množic

(Dana je množica $S \subseteq \Sigma^*$, poišči TM T, ki sprejme S. Dan je jezik (množica) S, konstruirati moramo TM T, za katerega velja L(T) = S.)

Beseda w je sprejeta z TM T, če $q_1 w \vdash^* \alpha_1 p \alpha_2$, za nek $p \in F$ in $\alpha_1 \alpha_2 \in \Gamma^*$.

(Beseda povzroči, da T vstopi v končno stanje, $w \in \Sigma^*$ niz.)

Jezik L sprejet z TM T je množica $L(T) = \{w \mid w \in \Sigma^* \land w \text{ je sprejet z } T\}.$

(Jezik sprejet z T je sestavljen iz točno takih besed.)

Množica/jezik $S \subseteq \Sigma^*$ (sposobnost TM-ja razpoznavati množice):

- odločljiv: če obstaja tak TM, ki odgovori z DA/NE na "Je $x \in S$?" za vsak $x \in \Sigma^*$
- polodločljiva: če obstaja tak TM, ki odgovori z DA na "Je x ∈ S?" kadarkoli x ∈ S
- neodločljiva: če ne obstaja noben TM, ki odgovori z DA/NE na "Je x \in S?" za vsak x \in Σ^*

- generiranje množic

(Dana je množica S, generiraj seznam x_1, x_2, x_3, \dots , ki so točno elementi S. Dan je jezik (množica) S, konstruirati moramo TM T za katerega velja G(T) = S.)

TM T je **generator**, če piše na trak besede iz Σ^* , v zaporedju in razmejevano (delimited) z #.

Jezik generiran z TM T je množica $G(T) = \{w \mid w \in \Sigma^* \land T \text{ sčasoma zapiše } w \text{ na trak}\}.$

Izračunljivo preštevni jeziki (množice)

Množica S je **izračunljivo preštevna** (c.e.), če je S = G(T) za nek TM T (če je S lahko generirana z Turingovim strojem).

Množica S je izračunljivo preštevna iff S je polodločljiva.

• razširitve Turingovih strojev

- TM s končnim pomnilnikom
- TM z večslednim trakom
- TM z dvosmernim trakom
- TM z večtračnim trakom
- TM z večdimenzionalnim trakom
- TM z nedeterminističnim programom

Turingov program δ dodeli vsakemu (q_i, z_r) končno množico alternativnih prehodov.

Stroj nedeterministično izbere prehod iz množice in ga naredi.

Z njim definiramo minimalno število korakov, ki jih potrebujemo, da izračunamo rešitev (če rešitev obstaja). To je pomembno, ko preiskujemo računsko zahtevnost problema.

• univerzalni Turingov stroj (UTM)

Univerzalni TS izračuna vse kar je izračunljivo z kakšnim drugim Turingovim strojem.

Kot vhod sprejme TM (njegovo kodo) in njegov vhod (besedi w), ter ta stroj na podanem vhodu simulira.

- kodiranje TM

TM predstavimo z besedo nad neko kodirno abecedo. Šifra < T > TM T je identificirana z < δ >.

- oštevilčenje TM

<T> lahko interpretiramo kot binarno kodo nekega naravnega števila. To število je indeks T - ja. Vsako naravno število je indeks točno enega Turingovega stroja.

Oštevilčenje osnovnih Turingovih strojev (zaporedje TM) dobimo, če gre n čez $0, 1, 2 \dots T_0, T_1, T_2, T_3, T_4, T_5$

...

2) Neodločljivost

- računski problemi
 - odločitveni problemi (rešitev je odgovor DA ali NE)
 - **problemi iskanja** (rešitev je element množice)
 - **problemi štetje** (rešitev je naravno število)
 - **problemi generiranja** (rešitev je zaporedje elementov množice)

• odločitveni problemi

- jezik odločitvenega problema

Povezava med odločitvenimi problemi in množicami/jeziki, zato lahko skrčimo vprašanja o odločitvenih problemih na vprašanja o množicah.

D je odločitveni problem in množica vseh možnih primerkov d D-ja. **Primerek d** je lahko pozitiven/negativen, če je odgovor za d DA/NE.

Kodirna funkcija (code): $D \to \Sigma^*$, spremeni vsak primerek D-ja v besedo iz Σ^* . **code** (**D**) oz. <**d**> je množica kod vseh primerkov problema D.

Jezik odločitvenega problema D je množica L(D), ki je definirana z $L(D) = \{ \langle d \rangle \in \Sigma^* \mid d \text{ je pozitiven primerek problema D} \}.$

Povezava/enakovrednost med odločitvenimi problemi in množicami/jeziki (*):

$$d \in D$$
 je pozitiven $\iff \langle d \rangle \in L(D)$

Reševanje odločitvenega problema D je lahko zreducirano v razpoznavanje množice L(D) v Σ^* .

Odgovor za primer d problema D lahko najdemo, če določimo, kako je <d> povezan z L(D).

- razpoznavnost L(D) in rešljivost problema D

• L(D) je odločljiv <--> D je odločljiv (izračunljiv)

Obstaja algoritem, ki za vsak d ∈ D, odgovori z DA ali NE.

(Obstaja TM, ki se za vsak <d $> \in \Sigma$ *, odloči, ali je ali ni <d $> \in L(D)$.)

• L(D) je polodločljiv <--> D je polodločljiv

Obstaja algoritem, ki

- za vsako pozitivni primerek d ∈ D, odgovori z DA
- za negativen primerek d ∈ D, v končnem času lahko odgovori z NE ali pa ne odgovori z NE

(Obstaja TM, ki za vsak <d $> \in L(D)$ sprejme <d>. Če <math><d $> \notin L(D)$, algoritem lahko zavrže ali ne zavrže <d> v končnem času.)

• L(D) je neodločljiv <--> D je neodločljiv (neizračunljiv)

Ne obstaja algoritem, ki bi za vsak d ∈ D odgovoril z DA ali NE.

(Ne obstaja TM, ki je sposoben odločanja, za vsak $\leq d \leq \Sigma^*$, ali je ali ni $\leq d \leq L(D)$.)

*D je odločljiv, če je L(D) odločljiva množica.

• problem ustavitve (neizračunljiv problem)

- problem ustavitve

 $\mathbf{D}_{\mathsf{Halt}}$ = "Dan je TM T in w $\in \Sigma^*$, ali se T ustavi na w?"

Ne obstaja noben algoritem, ki bi bil sposoben za poljuben T in w, odgovoriti na vprašanje "Ali se T ustavi na w?"

- univerzalni jezik (jezik problema ustavitve)

$$L_{\mathbf{u}} = L(D_{Halt}) = \{ \langle T, w \rangle \mid T \text{ se ustavi na } w \}$$

Dan je poljuben vhod $\langle T, w \rangle$, stroj mora simulirati T na w, in $\check{c}e$ se simulacija ustavi, mora stroj vrniti DA in se ustaviti. Če tak stroj obstaja, bo odgovoril z DA $iff \langle T, w \rangle \in ?K_0$

 $D_{\overline{Halt}}$ = Dan je TM T in beseda w, ali se T nikoli ne ustavi na w?

- diagonalni jezik, D_H

 $L_d = \{ \langle T, T \rangle | T \text{ se ustavi na } \langle T \rangle \} // \text{ dobimo ga iz univerzalnega z uvedbo } w = <T > D_{\overline{H}} = Dan \text{ je TM T, ali se T nikoli ne ustavi na } \langle T \rangle ?$

Dokaz

Dokažemo, da je L_d neodločljiva množica, kar implicira na to, da je L_u neodločljiva, posledično je D_{Halt} neodločljiv problem.

• osnovne vrste odločitvenih problemov

- neodločljivi in nepolodločljivi: komplement L_u (komplement D_{Halt}) in komplement L_d
 (kompelement D_H)
- nedoločljivi in polodločljivi: $L_u(D_{Halt})$, $L_d(D_H)$

Razred vseh odločitvenih problemov je sestavljen iz

- razred odločljivih problemov
- razred neodločljivih problemov

Obstaja še treji razred, razred **polodločljivih** problemov (vsebuje vse odločljive in nekaj neodločljivih problemov).

Odločitveni problem D je lahko

odločljiv

Obstaja algoritem (**odločevalec** problema D), ki lahko reši poljubni primerek d ∈ D.

• polodločljivo neodločljiv

Ne obstaja algoritem (**prepoznalec** problema D), ki bi rešil poljuben primerek d ∈ D, ampak obstaja algoritem, ki lahko reši poljubnen pozitiven primerek d ∈ D.

· ni polodočljiv

Za poljuben algoritem obstaja pozitiven in negativen primerek d ∈ D, tak, da ju algoritem ne more rešiti.

· komplementarne množice in odločitveni problemi

- S in komplement S sta odločljiva
- S in komplement S sta neodločljiva; en je pododločljiv in drugi ni
- S in komplement S sta neodločljiva; noben od njiju ni polodločljiv

• izreki iz teorije izračunljivosti (odločljivost in polodločljivost množic/jezikov)

$$S$$
 je odločljiv $\Longrightarrow S$ je polodločljiv S je odločljiv $\Longrightarrow S$ je odločljiv S in \overline{S} sta polodločljiva $\Longrightarrow S$ je odločljiv A in B sta polodločljiva $\Longrightarrow A \cap B$ in $A \cup B$ sta polodločljiva

 $A \text{ in } B \text{ sta odločljiva} \implies A \cap B \text{ in } A \cup B \text{ sta odločljiva}$

Komplement polodločljivega ampak neodločljivega jezika ne more biti polodločljiv.

• neizračunljiv problem - problem garača (busy beaver)

 \mathcal{T}_n (za $n \ge 1$) je razred vseh TM, ki imajo:

- neomejen trak v obe smeri
- n ne-končnih stanj (vključno $\boldsymbol{q}_1)$ in 1 končno stanje \boldsymbol{q}_{n+1}
- $\Sigma = \{0,1\}$ in $\Gamma = \{0,1,\sqcup\}$
- δ piše samo simbol 1 in premika okno v levo ali v desno

TM T $\in \mathcal{T}_n$ je stroj, ki se ustavi, če se T ustavi pri praznem vhodu.

3) Teorija računske zahtevnosti

Koliko časa ali prostora potrebuje algoritem, da reši odločitveni problem? Koliko korakov ali tračnih celic potrebuje TM, da prepozna jezik L(D) odločitvenega problema D?

DTIME(T (n)) = {odločitveni problemi deterministično rešljivi v času T(n)}

DSPACE(S (n)) = {odločitveni problemi deterministično rešljivi na prostoru S(n)}

NTIME(T (n)) = {odločitveni problemi nedeterministično rešljivi v času T(n)}

NSPACE(S (n)) = {odločitveni problemi nedeterministično rešljivi na prostoru S(n)}

• deterministična časovna zahtevnost (razred zahtevnosti DTIME)

 $M = (Q, \Sigma, \Gamma, \delta, q_1, \sqcup, F)$ DTM z k ≥ 1 dvosmernimi neskončnimi trakovi.

- TM M

M je deterministične časovne zahtevnosti T(n), če za vsak vhod $w \in \Sigma^*$ dolžine n,

M naredi $\leq T(n)$ korakov pred ustavitvijo.

$$(w \in ? L(M) v \leq T(|w|) \text{ korakih})$$

Privzeto je, da M prebere vse w - je ... $T(|w|) \ge |w| + 1$, $T(n) \ge n + 1$. T(n) je najmanj linearen.

- jezik L in razred vseh takih jezikov

Jezik L je deterministične časovne zahtevnosti T(n), če obstaja DTM M deterministične časovne zahtevnosti T(n), da velja L = L(M).

DTIME(T(n)) = $\{L \mid L \text{ je jezik } \land L \text{ je deterministične časovne zahtevnosti T (n)} \}$ (vsi L-ji za katere je problem w \in ? L lahko deterministično rešljiv v \in T (|w|) času)

- odločitveni problem in razred vseh takih odločitvenih problemov

Odločitveni problem D je deterministične časovne zahtevnosti T(n), če je njegov jezik L(D) deterministične časovne zahtevnosti T(n).

DTIME(T(n)) = {D | D je odločitveni problem \land D je deterministične časovne zahtevnosti T(n)}

(vsi D - ji čigar primerki d so lahko deterministično rešljivi $v \le T(|\langle d \rangle|)$ času)

nedeterministična časovna zahtevnost (razred zahtevnosti NTIME)

 $N = (Q, \Sigma, \Gamma, \delta, q1, \sqcup, F)$ nedeterministični NTM.

- TM N

N je nedeterministične časovne zahtevnosti T(n), če za vsak vhod $w \in \Sigma^*$ dolžine n,

N naredi $\leq T(n)$ korakov pred ustavitvijo.

- jezik L in razred vseh takih jezikov

Jezik L je nedeterministične časovne zahtevnosti T(n), če obstaja NTM N nedeterministične časovne zahtevnosti T(n), da velja L = L(N).

NTIME(T(n)) = {L | L je jezik \land L je nedeterministične časovne zahtevnosti T(n)}

- odločitveni problem in razred vseh takih odločitvenih problemov

Odločitveni problem D je nedeterministične časovne zahtevnosti T(n), če je njegov jezik L(D) nedeterministične časovne zahtevnosti T(n).

NTIME(T(n)) = {D | D je odločitveni problem \land D je nedeterministične časovne zahtevnosti T(n)}

• deterministična prostorska zahtevnost (razred zahtevnosti DSPACE)

 $M = (Q, \Sigma, \Gamma, \delta, q1, \sqcup, F)$ DTM z 1 vhodnim trakom in k ≥ 1 delovnimi trakovi.

- TM M

M je deterministične prostorske zahtevnosti S(n), če, za vsak vhod $w \in \Sigma^*$ dolžine n,

M pred zaustavitvijo uporabi ≤ S(n) celic na vsakem delovnem traku.

 $(S(n) \text{ se lahko odloči } w \in ? L(M) \text{ na prostoru } \leq S(n)).$

M uporabi najmanj celico pod začetnim položajem okna. S(n) je najmanj konstantna funkcija 1.

- jezik L in razred vseh takih jezikov

Jezik L je deterministične prostorske zahtevnosti S(n), če obstaja DTM M deterministične prostorske zahtevnosti S(n), da velja L = L(M).

DSPACE(S(n)) = $\{L \mid L \text{ je jezik } \land L \text{ je deterministične prostorske zahtevnosti } S(n)\}$ (vsi L-ji za katere je lahko problem w \in ? L deterministično rešljiv na \in S(|w|) prostoru)

- odločitveni problem in razred vseh takih odločitvenih problemov

Odločitveni problem D je deterministične prostorske zahtevnosti S(n), če ima njegov jezik L(D) deterministično prostorsko zahtevnost S(n).

DSPACE(S(n)) = $\{D \mid D \text{ je odločitveni problem } \land D \text{ je deterministične prostorske zahtevnosti S(n)}\}$

(vsi D-ji čigar primerki d so lahko deterministično rešljivi na \leq S ($\langle d \rangle$) prostoru)

• nedeterministična prostorska zahtevnost (razred zahtevnosti NSPACE)

 $N = (Q, \Sigma, \Gamma, \delta, q1, \sqcup, F)$ nedeterministični NTM z 1 vhodnim trakom in $k \ge 1$ delovnimi trakovi.

- TM N

N je nedeterministične prostorske zahtevnosti S(n), če za vsak vhod $w \in \Sigma^*$ dolžine n, N pred ustavitvijo uporabi $\leq S(n)$ celic na vsakem delovnem traku.

- jezik L in razred vseh takih jezikov

Jezik L je nedeterministične prostorske zahtevnosti S(n), če obstaja NTM N nedeterministične prostorske zahtevnosti S(n), da velja L = L(N).

NSPACE(S(n)) = $\{L \mid L \text{ je jezik } \land L \text{ je nedeterministične prostorske zahtevnosti S (n)}\}$

- odločitveni problem in razred vseh takih odločitvenih problemov

Odločitveni problem D je nedeterministične prostorske zahtevnosti S(n), če ima njegov jezik L(D) nedeterministično prostorsko zahtevnost S(n).

NSPACE(S(n)) = {D | D je odločitveni problem \land D je nedeterministične prostorske zahtevnosti S (n)}

• stiskanje trakov, linearna pohitritev, zmanjševanje števila trakov

Prostorsko/časovno zahtevnost je lahko vedno zmanjšana z konstantnim faktorjem (z zakodiranjem večih tračnih simbolov v enega/z združitvijo nekaj korakov v enega).

- stiskanje trakov (prostor)

Če ima L prostorsko zahtevnost S(n), potem za vsak c > 0, ima L časovno zahtevnost c S(n). Za vsak c > 0 je DSPACE(S(n)) = DSPACE(cS(n)) in NSPACE(S(n)) = NSPACE(cS(n)).

- linearna pohitritev (čas)

Izpolnjena morata biti **2 pogoja**: k > 1 in $\inf_{n \to \infty} T(n)/n = \infty$ (T(n) raste hitreje kot n).

Če ima L časovno zahtevnosti T(n), potem ima za vsak c > 0, L časovno zahtevnost cT(n).

Če je inf $T(n)/n = \infty$, potem za vsak c > 0 velja:

DTIME(T(n)) = DTIME(cT(n)) in NTIME(T(n)) = NTIME(cT(n)).

 $DTIME(n^2) = DTIME(4n^2) = ... D$ ima deterministično časovno zahtevnost reda $O(n^2)$.

- zmanjševanje števila trakov

• zmanjševanje števila k vpliva na časovno zahtevnost

Če je $L \in DTIME(T(n))$, potem je L sprejet v času $O(T^2(n))$ z 1-tračnim TM.

Če je L ∈ NTIME(T(n)), potem je L sprejet v času $O(T^2(n))$ z 1-tračnim NTM.

Če je $L \in DTIME(T(n))$, potem je L sprejet v času $O(T(n) \log T(n))$ z 2-tračnima TM.

Če je L ∈ NTIME(T(n)), potem je L sprejet v času $O(T(n) \log T(n))$ z 2-tračnima NTM.

• zmanjševanje števila k ne vpliva na prostorsko zahtevost

Če je L sprejet z **k**-delovnimi traki TM prostorske zahtevnosti S(n), potem je L sprejet z **1**-delovnim trakom TM prostorske zahtevnosti S(n).

• relacije med DTIME, DSPACE, NTIME in NSPACE

Zamenjava ned. algoritma z det. povzroči največ **eksponento** rast v časovni zahtevnosti in največ **kvadratno** rast v prostorski zahtevnosti.

- relacije med različnimi razredi zahtevnosti

$DTIME(T(n)) \subseteq DSPACE(T(n))$

Kar je lahko rešljivo v *času* O(T(n)), je lahko rešljivo tudi na *prostoru* O(T(n)).

$L \in DSPACE(S(n)) \land S(n) \ge log, n \Rightarrow \exists c : L \in DTIME(c^{S(n)})$

Kar je lahko rešljivo na *prostoru* O(S(n)), je lahko tudi rešljivo *(največ) v času* $O(c^{S(n)})$. (Tukaj je c odvisen od L.)

$L \in NTIME(T(n)) \Rightarrow \exists c : L \in DTIME(c^{T(n)})$

Kar je lahko rešljivo v *nedeterminističnem času* O(T(n)), je lahko rešljivo v *največ* determinističnem času $O(c^{T(n)})$. Zamenjava nedeterminističnega algoritma z determinističnim povzroči največ <u>eksponentno</u> rast potrebnega časa za rešitev problema.

$NSPACE(S(n)) \subseteq DSPACE(S^2(n))$, if $S(n) \ge \log_2 n \land S(n)$ je lepa, pohlevna funkcija

Kar je lahko rešljivo na *nedeterminističnem prostoru* O(S(n)), je lahko rešljivo na *determinističnem prostoru* $O(S^2(n))$. Posledično, zamenjava nedeterminističnega algoritma z determinističnim povzroči največ <u>kvadratno</u> rast na prostoru, ki je potreben za reševanje problema.

- lepe, pohlevne funkcije zahtevnosti

• prostorsko predstavljiva funkcija S(n)

Funkcija S(n) je **prostorsko predstavljiva**, če obstaja TM M prostorske zahtevnosti S(n), da za vsak n, obstaja vhod dolžine n na katerem M uporabi točno S(n) tračnih celic. Funkcija S(n) je **popolnoma prostorsko predstavljiva**, če za vsak n, M uporabi točno S(n) celic za vsak vhod dolžine n, potem rečemo.

• časovno predstavljiva funkcija T(n)

Funkcija T(n) je **časovno predstavljiva**, če obstaja TM M časovne zahtevnosti T(n), da za vsak n, obstaja vhod dolžine n na katerem M uporabi točno T(n) prehodov. Funkcija S(n) je **popolnoma časovno predstavljiva**, če za vse n, M naredi točno T(n) prehodov za vsak vhod dolžine n.

• razredi zahtevnosti P, NP, PSPACE, NPSPACE

Razredi zahtevnosti DTIME(T(n)), NTIME(T(n)), DSPACE(S(n)), NSPACE(S(n)), ki imajo funkcije zahtevnosti T(n) in S(n) so polinomi.

$$P = \bigcup_{i>1} DTIME(n^i)$$

je razred vseh odločitvenih problemov rešljivih v determinističnem polinomskem času $\mathbf{NP} = \cup_{i=1}^{n} \mathbf{NTIME}(n^i)$

je razred vseh odločitvenih problemov rešljivih *nedeterministično v polinomskem času* $PSPACE = \bigcup_{i \ge 1} DSPACE(n^i)$

je razred vseh odločitvenih problemov *determinističmo* rešljivih na *polinomskem prostoru* **NPSPACE** = $\bigcup_{i>1}$ **NSPACE** (n^i)

je razred vseh odločitvenih problemov nedeterministično rešljivih na polinomskem prostoru

i (1 do neskončnosti, velikost primerka, ki se rešuje; npr. n²)

• osnovne relacije med P, NP, PSPACE, NPSPACE

$$P \subseteq NP \subseteq PSPACE = NPSPACE$$

$(P \subseteq NP)$

Vsak deterministični TM polinomske časovne zahtevnosti si lahko predstavljamo kot (trivialni) nedeterministični TM enake časovne zahtevnosti.

$(NP \subseteq PSPACE)$

Če je $L \in NP$, potem obstaja tak $\exists k$, da je $L \in NTIME(n^k)$.

Zaradi izreka je $L \in NSPACE(n^k)$, in posledično (Savitch) je $L \in DSPACE(n^{2k})$. Potem je $L \in PSPACE$.

(PSPACE = NPSPACE)

PSPACE ⊆ NPSPACE

Druga smer: NSPACE = (def) = \cup NSPACE(n^i) \subseteq (Savitch) \cup DSPACE(n^i) \subseteq PSPACE.

Če je prostorska zahtevnost polinomska, nedeterminizem ne doda nič k računski moči.

• NP-poln in NP-težek problem

- polinomsko-časovna prevedba

Problem $D \in \text{NP}$ je **polinomsko-časovno prevedljiv** na problem D', $D \in PD'$, če obstaja deterministični TM M polinomske časovne zahtevnosti, ki za vsak $d \in D$, vrne $d' \in D'$, tako, da je, d pozitiven \iff d'je pozitiven. Relacija $\leq P$ je **polinomsko-časovna prevedba**.

- NP-težek problem

Problem D* je NP-težek, če D \leq p D*, za vsak D \in NP (D* je ali ni v NP).

- NP-poln problem

Problem D* je NP -poln:

- *D** ∈ NP
- $D \le p D^*$, za vsak $D \in NP$ (največ tako težek kot D^*)

Primer: problem SAT (problem izpolnjivosti), particije

D* je NP-poln, če je D* v NP in D* je NP-težek.

- dokazovanje NP-polnih problemov

Naj bo D ≤p D'. Potem:

- D' $\in P \Rightarrow D \in P$
- D' \in NP \Rightarrow D \in NP

Vsak problem D, ki je lahko **<p-zmanjšan** na problem v P (ali v NP), je tudi v P (ali v NP).

Relacija $\leq p$ je tranzitivna: $D \leq p \ D' \wedge D' \leq p \ D'' \Rightarrow D \leq p \ D''$.

D* je NP-težek ∧ D*
$$\leq$$
p D\$\times\$ je NP-težek

D* je NP-poln ∧ D* \leq p D\$\times\$ ∧ D\$\times\$ ∈ NP \Rightarrow D\$\times\$ je NP-poln

- $P \neq NP$

NPC je razred vseh NP-polnih problemov.

NPI je razred vseh NP-vmesnih problemov (problem v NP, ki ni niti v P niti v NPC).

Noben problem v NPC ali NPI nima zahtevnosti polinomskega časa.

Problemi v P so obvladljivi. Drugi računski problemi so neobvladljivi (za NPC in NPI ni jasno).

