

751-6212-00L Angewandte Zuchtwertschätzung für Nutztiere

Birgit Gredler-Grandl

Frage zum Linkage Disequilibrium Kopplung

- Annahme: Marker und QTL sind in räumlicher Nähe und werden gemeinsam vererbt (Kopplung)
- Beispiel:
 - Kuh mit 2 Loci M und Q
 - Genotyp M1M2 und Q1Q2
 - Wird Allel M1 gehäuft mit Allel Q1 vererbt, sprechen wir von Kopplung

Väterlicher Mütterlicher Haplotyp

Kopplungsgleichgewicht und Kopplungsungleichgewicht

- Kopplungsgleichgewicht (*Linkage equilibrium*)
 - Zufällige Weitergabe von Allelen an 2 Loci
 - Zufällige Beziehung zwischen 2 Loci

- Kopplungsungleichgewicht (*Linkage disequilibrium*)
 - Nicht zufällige Beziehung/Weitergabe von Allelen an 2 Loci
 - Wichtige Voraussetzung für QTL-Mapping und Genomische Selektion

Kopplungsgleichgewicht

			Marker A	
		A1	A2	Häufigkeit
Marker B	B1			0.5
	B2			0.5
	Häufigkeit	0.5	0.5	

Kopplungsgleichgewicht

		Marker A		
		A1	A2	Häufigkeit
Marker B	B1	0.25	0.25	0.5
	B2	0.25	0.25	0.5
	Häufigkeit	0.5	0.5	

Kopplungsungleichgewicht

		Marker A		
		A1	A2	Häufigkeit
Marker B	B1	0.4	0.1	0.5
	B2	0.1	0.4	0.5
	Häufigkeit	0.5	0.5	

Abweichung von 0.25 bedeutet Kopplungsungleichgewicht!

Kopplungsungleichgewicht

		Marker A		
		A1	A2	Häufigkeit
	B1	0.4	0.1	0.5
Marker B	B2	0.1	0.4	0.5
	Häufigkeit	0.5	0.5	

Masszahlen:

D (Hill, 1981)

$$D = freq(A_1 _B_1) * freq(A_2 _B_2) - freq(A_1 _B_2) * freq(A_2 _B_1)$$

■ r² (Hill and Roberston, 1968)

$$r^{2} = \frac{D^{2}}{freq(A_{1}) * freq(A_{2}) * freq(B_{1}) * freq(B_{2})}$$

Werte zwischen 0 und 1

Kopplungsungleichgewicht eine Geschichte

- Im Dorf gibt es die junge Schönheit Michaela und vier junge Männer (Urs, Beat, Franz, Peter)
- Bei Festen sieht man Michaela jeweils mit einem von den jungen Männern; keiner wird bevorzugt -Michaela und die Männer sind im Kopplungsgleichgewicht
- Sieht man Michaela öfter mit Urs als mit den anderen dreien, dann sind Michaela und Urs im Kopplungsungleichgewicht

Kopplungsungleichgewicht eine Geschichte

- Gehen beide miteinander und man sieht Michaela nur noch mit Urs, dann ist das Kopplungsungleichgewicht vollständig
- Folgerung für Aussenstehende:
 - Man sieht Michaela und denkt: "bestimmt ist der Urs in der Nähe" bzw. "die ist doch immer mit dem Urs unterwegs"
 - Man weiss gar nichts über Urs, aber Michaela blüht plötzlich sichtlich auf – man vermutet: "wahrscheinlich ist sie im Kopplungsungleichgewicht mit einem, der einen guten Einfluss auf sie hat!" ©

Kopplungsungleichgewicht

Kopplungsungleichgewicht beim Milchrind

Genomische Selektion und genomische Zuchtwertschätzung

Genomische Zuchtwerte – Vorteile

- Mit genomischen Zuchtwerten sind mehr und genauere Informationen über die genetische Veranlagung von Zuchttieren zu einem früheren Zeitpunkt im Leben dieser Tiere verfügbar
- Insbesondere haben genomische Zuchtwerte einen entscheidenden Vorteil gegenüber Abstammungszuchtwerten.

Angewandte Zuchtwertschätzung

Abstammungszuchtwert

- ½ Zuchtwert Vater + ½ Zuchtwert Mutter
- Der Abstammungszuchtwert ist der wahrscheinlichste Zuchtwert eines Nachkommens
- In Wirklichkeit kann der wahre Zuchtwert eines Nachkommens auch bedeutend höher oder tiefer sein

Genomische Zuchtwerte – Vorteile

Vorteil von genomischen Zuchtwerten gegenüber Abstammungszuchtwerten:

 Durch Genomik lässt sich genauer abschätzen wo ein einzelnes Tier innerhalb der natürlichen bei der Fortpflanzung generierten Variabilität liegt

ertschätzung | 22. Mai 2017

15

Beispiel: 5 Vollgeschwister

NIRVANA

X

Cinderella

Abstammungszuchtwert: +714 kg Milch

Folie von Schuler und Seefried, 2016

Höheres Risiko beim Einsatz genomischer Jungstiere?

- Sicherheit GOZW von Jungstieren niedriger als von geprüften Stieren
- Risikomanagement beim Einsatz von genomischen Jungstieren
 - Höheres Zuchtwertniveau
 - Einsatz mehrerer Jungstiere am Betrieb

17

Qualitas AG Birgit Gredler-Grandl Angewandte Zuchtwertschätzung | 22. Mai 2017

Verteilung wahre ZW bei einem geschätzen ZW von 500 kg Milch mit unterschiedlichen Sicherheiten

(wahre $s_a = 565kg$ Braunvieh)

$$s_{ZW|\hat{Z}W} = s_{ZW} \cdot \sqrt{1 - r_{ZW.\hat{Z}W}^2}$$

Verteilung des wahren ZW

Verteilung wahre ZW bei einem geschätzen ZW von 500 kg Milch mit unterschiedlichen Sicherheiten (wahre $s_a = 565$ kg Braunvieh)

95%-Konfidenzintervall

Sicherheit	Untere Grenze	Obere Grenze
30%	-427	1427
50%	-283	1283
70%	-107	1107
90%	150	850
99%	389	611

22. Mai 2017

Jungstier mit GOZW 130 und Sicherheit 60% Geprüfter Stier mit ZW 130 und Sicherheit 90%

Qu: 22. Mai 2017

20

ETH zürich

Wahrscheinlichkeit, dass wahre ZW ≤ 120 sind beim Jungstier 9% und 0.5% beim geprüften Stier

Höheres Zuchtwertniveau

Jungstier mit GOZW 140 und Sicherheit 60% Wahrscheinlichkeit, dass wahre ZW ≤ 120 ist nun bei beiden Stieren 0.5%

vertellung des wanten zw

22

Genomische Selektion im Zuchtprogramm

ORIGINAL ARTICLE

Strategy for applying genome-wide selection in dairy cattle

L.R. Schaeffer

Summary

Department of Anima

Canada

Animals can be genotyped for thousands of single nucleotide polymorphisms (SNPs) at one time, where the SNPs are located at roughly 1-cM intervals throughout the genome. For each contiguous pair of SNPs there are four possible haplotypes that could be inherited from the sire. The effects of each interval on a trait can be estimated for all intervals simultaneously in a model where interval effects are random factors. Given the estimated effects of each haplotype for every interval in the genome, and given an animal's genotype, a 'genomic' estimated breeding value is obtained by summing the estimated effects for that genotype. The accuracy of that estimator of breeding values is around 80%. Because the genomic estimated breeding values can be calculated at birth, and because it has a high accuracy, a strategy that utilizes these advantages was compared with a traditional progeny testing strategy under a typical Canadian-like dairy cattle situation. Costs of proving

under a typical Canadian-like dairy cattle situation. Costs of proving bulls were reduced by 92% and genetic change was increased by a factor of 2. Genome-wide selection may become a popular tool for genetic improvement in livestock.

23

Genomische Selektion im Zuchtprogramm

Zuchtfortschritt (ZF):

$$ZF/Jahr = \frac{\sigma_a * i * r_{A\hat{A}}}{G}$$

- • O_a = additive genetische Standardabweichung
- i = Selektionsintensität
- $r_{A\hat{A}}$ = Sicherheit Zuchtwert (Korrelation zw. geschätztem und wahrem Zuchtwert)
- G = Generationsintervall

Konventionelles Zuchtprogramm

Birgit Gredler-Grandl

Zeit (Monate)	Massnahme
0	Stiermutter wird besamt
9	Stierkalb geboren
27	Prüfbesamungen der jungen Stiere werden durchgeführt
36	Töchter der Prüfstiere werden geboren
54	Töchter der Prüfstiere werden besamt
63	Töchter kalben ab und beginnen 1. Laktation
68	Erste Milchzuchtwerte aus Testtagsmodell vorhanden
73	Töchter schliessen 1. Laktation ab Stierenklassierung

Leben

Tod

22. Mai 2017

6 Jahre

Konventionelles Zuchtprogramm

Genomisches Zuchtprogramm

$$ZF/Jahr = \frac{\sigma_a * i * r_{A\hat{A}}}{G}$$

$$ZF/Jahr = \frac{\sigma_a * i * r_{A\hat{A}}}{G}$$

$$ZF/Jahr = \frac{\sigma_a * i * r_{A\hat{A}}}{G}$$

$$ZF/Jahr = \frac{\sigma_a * i * r_{A\hat{A}}}{G}$$

