Homework 2

Ryan Coyne

February 10, 2024

Theorem 1: Let (G, \circ) be a group, and let $g, h \in G$. Then

$$(g \circ h)^{-1} = h^{-1} \circ g^{-1}.$$

PROOF: First, we compose $(g \circ h)^{-1}$ with $(g \circ h)$. This gives us,

$$(g \circ h)^{-1} \circ (g \circ h) = e.$$

Next compose $g^{-1} \circ h^{-1}$ with $(g \circ h)$. This gives us

$$(h^{-1} \circ g^{-1}) \circ (g \circ h) = h^{-1} \circ (g^{-1} \circ g) \circ h$$
$$= h^{-1} \circ h$$
$$= e.$$

Now, since $(g \circ h)^{-1} \circ (g \circ h) = (h^{-1} \circ g^{-1}) \circ (g \circ h)$, it follows that $(g \circ h)^{-1} = h^{-1} \circ g^{-1}$.

Theorem 2: Let $\mathbb{Z}_N = 0, 1, 2, \dots, N-1$. Show that the operation $\circ : \mathbb{Z}_N \times \mathbb{Z}_N \to \mathbb{Z}_N$ defined by

$$a \circ b := \begin{cases} a+b, & a+b < N \\ a+b-N, & a+b \ge N \end{cases}$$

is associative. i.e. Show that for any $a, b, c \in \mathbb{Z}_N$, we have

$$(a \circ b) \circ c = a \circ (b \circ c)$$

Proof: Case 1: \blacksquare