Билет 26

Условие существования конечного предела функции

Теорема

f — возрастающая на X

 $a\in\overline{\mathbb{R}}$ — точка сгущения X и $a=\sup X,$ если X ограничено сверху и $a=+\infty$ иначе

$$f(X)$$
 — ограничено сверху $\Rightarrow \exists \lim_{x \to a-0} f(x) \in \mathbb{R}$

Аналогично для убывающей и ограниченной снизу f

Аналогично ещё два случая, но с $a = \inf X$ или $-\infty$

Доказательство

Возьмём возрастающую последовательность $\{x_n\} \subset X \setminus \{a\}$, сходящуюся к a

$$f(X)$$
 — ограничено сверху \Rightarrow $\{f(x_n)\}$ — ограничена сверху $f, \{x_n\}$ — возрастающие \Rightarrow $(\forall n \in \mathbb{N}) \ x_{n+1} \ge x_n \land (\forall x_1, x_2 \in X : x_1 < x_2) \ f(x_1) \le f(x_2) \Rightarrow \Rightarrow (\forall n \in \mathbb{N}) \ f(x_{n+1}) \ge f(x_n) \Rightarrow \exists \lim_{n \to \infty} f(x_n) =: g \land (\forall n \in \mathbb{N}) \ f(x_n) \le g$

Возьмём теперь произвольную последовательность $\{z_n\}\subset X\setminus\{a\}$, сходящуюся к a

$$\forall \varepsilon > 0 \ \exists k : |f(x_k) - g| < \varepsilon \Rightarrow 0 \le g - f(x_k) < \varepsilon$$

$$\Box \ \eta = |x_k - a| \ \exists N : (\forall n > N) \ |z_n - a| < \eta = |x_k - a| \Rightarrow$$

$$\Rightarrow a - z_n < a - x_k \Rightarrow z_n > x_k \Rightarrow f(z_n) \ge f(x_k) \Rightarrow$$

$$\Rightarrow 0 \le g - f(z_n) \le g - f(x_k) < \varepsilon \Rightarrow \lim_{n \to \infty} f(z_n) = g \Rightarrow \lim_{z \to a - 0} f(z) = g \ \Box.$$

Теорема

$$\exists \lim_{x \to a} f(x) \Leftrightarrow \forall \{x_n\} ((\forall n \in \mathbb{N}) \ x_n \neq a \land x_n \to a) \exists \lim_{n \to \infty} f(x_n)$$

Необходимость

По определению □.

Достаточность

Возьмём $\{x_n\}$ и $\{x'_n\}$

$$(\forall n \in \mathbb{N}) \ x_n \neq a \land x_n \to a \Rightarrow \exists \lim_{n \to \infty} f(x_n) =: g \qquad (\forall n \in \mathbb{N}) \ x_n' \neq a \land x_n' \to a \Rightarrow \exists \lim_{n \to \infty} f(x_n') =: g'$$

Возьмём теперь $\{z_n\}:=\{x_1,x_1',x_2,x_2',...\}$, по условию $f(z_n)\to g_z$

$$\{f(x_n)\}$$
 и $\{f(x_n')\}$ — подпоследовательности $\{f(z_n)\}\Rightarrow g=g_z\wedge g'=g_z\Rightarrow g=g'$

To есть любая последовательность сходится к одному и тому же пределу $\Rightarrow \exists \lim_{x \to a} f(x) \square$.