Skew-T & Group-T Copula

I-Lun Tu

4/26/2022

Content

- Research Motivation and Possible Contribution
- Skew-T Copula and Group-T Copula
- Copula Estimation Process
- Application to Financial Data
- Unconditional Coverage of VaR
- Possible Improvement

Research Motivation and Possible Contribution

- Straightforward way to generalize copula to higher dimensions
 - More parsimonious model than Vine based Copula
 - Easier Interpretation shape, dispersion, and skewness
 - Bivariate Student-T is effective for pairs of stocks
- Captures stylized facts of financial markets
 - Asymptotic tail dependence
 - Asymmetry joint lower-tailed events
- Empirical results to support skew-T Copula in market risk
 - One-stage estimation usually does not select skew-T over standard T
 - Modern unconditional tests for tail risk model
 - High computational costs and accuracy of skewness parameter

Skew-T Copula and Group-T Copula

Skew-T Distribution:

$$X = \gamma V^{-1} + V^{-\frac{1}{2}} \mathbf{Z}$$

where V is $G(\frac{\nu}{2}, \frac{\nu}{2})$, γ is skewness parameter vector.

- General Hyperbolic Distribution Normal mean-variance mixture distribution
- When $\gamma = 0$, it reduces to Student-T distribution
- Mhen $\nu \to \infty$, it becomes Normal distribution (not skew Normal)
- ho u > 4 to have finite covariance difficulty in application
- Skew-T Copula:

$$C_{\nu,P,\gamma}^t$$

where P is the correlation matrix.

- ► Same copula for different dispersion and location
- lacktriangle Different u, γ to form skew and group copula (generalized T)

Skew-T Copula and Group-T Copula

Copula Estimation Process

- ► Two Stage Estimation:
 - Forming pseudo observations from the copula
 - Parametric estimation
 - Non-parametric estimation (empirical distribution function)
 - ► Maximum likelihood estimation for the copula parameters
- Difficulty:
 - When maximizing copula density, marginal quantile functions have to be calculated n * d times
 - ▶ No close form quantile function for univariate skew-T
 - Empirical quantile functions has to be simulated for a large number
 - Positive semi-definiteness of the correlation matrix is not guaranteed
 - Empirical correlation using Kendall's tau might not work
- Recent Advancement (Toshinao Yoshiba 2018):
 - Monotone interpolator (100 interpolating quantiles)
 - ► Reparameterize the Cholesky decomposed triangular matrix with trigonometric functions

- Establish VaR for stock portfolio on financial institution
 - Consumer finance, commercial banking, brokerage and investment management
 - Dependence modelling for 15 stocks (5 each) equal weight portfolio
 - Simulate VaR to set up threshold for loss distribution
 - Measure the dependence structure

Copula Estimation Process

- Data Preprocess: unfiltered 5 years weekly log-returns for stocks (serial uncorrelated)
- Pseudo copula observations: nonparametric estimation $\frac{1}{n+1} \sum_{t=1}^{n} I_{(X_{t,i<=x})}$ (McNeil 2015)
- Copula estimation: use the recently proposed method to estimate ν, γ, P (equal-skewness)

Pseudo Copula

Copula Estimation

- ► Substantial improvement in log-likelihood
- Skewness parameter is warranted

	T-copula	Skew-T copula
nu	5.658878	5.9137642
gamma	NA	-0.2259792
log_lik	734.429860	851.7734165
AIC	-1256.859720	-1489.5468330
BIC	-843.470601	-1072.2578162

Application to Financial Data Copula Estimation - copula

Banking Portfolio

Copula Simulation - Aggregate Loss

In-sample Testing for Aggregate Weekly Loss

	99%	95%	90%	85%
% VaR	-1.19	-0.58	-0.37	-0.26
Empirical Violation Percentage	0.06	0.14	0.21	0.28

One Stage EM Estimation

Application to Financial Data One Stage EM Estimation

In-sample Testing for Aggregate Weekly Loss

	99%	95%	90%	85%
% VaR	-0.08	-0.04	-0.03	-0.02
Empirical Violation Percentage	0.01	0.06	0.10	0.14

Possible Improvement

- Omission of skewness information on pseudo copula
- $\blacktriangleright \nu$ is close to boundary group-T copula construction
- ► Semi-parametric estimation on the marginals
- Dynamic P&L and VaR modeling through t-Garch models
- More comprehensive backtesting methods Risk Map

Reference

- McNeil, A. J., R. Frey, and P. Embrechts (2015) Quantitative Risk Management: Concepts, Techniques, and Tools, Princeton University Press, revised ed
- Demarta, S. and A. J. McNeil (2005) "The t copula and related copulas," International Statistical Review, 73(1), 111–129.
- Toshinao Yoshiba Maximum likelihood estimation of skew- t copulas with its applications to stock returns May 2018 Journal of Statistical Computation and Simulation 88(2):1-18
- ➤ Colletaz, G., Hurlin, C. and Perignon, C. (2013). The risk map: A new tool for validating risk models. Journal of Banking and Finance, 37, 3843-3854