Lezione 9 Geometria I

Federico De Sisti 2024-03-20

1 Rimembranze dalla scorsa lezione

V spazio vettoriale. Un prodotto scalare su V è una funzione bilineare simetirca $<\cdot$, $\cdot>:V\times V\to\mathbb{R}$ tale che:

$$< v, v > \ge 0 \quad \forall v.$$

$$\langle v, v \rangle = 0 \Leftrightarrow v = 0.$$

2 Nuova effettiva lezione

Dimostriamo alcune proprietà del prodotto scalare:

Lemma 1

1.
$$||v|| \ge 0$$
 e $||v|| = 0$ se e solo se $v = 0$..

2.
$$||\alpha v|| = |\alpha| \cdot ||v|| \quad \alpha \in \mathbb{R}, v \in V.$$

3.
$$||v+w|| \le ||v|| + ||w|| \quad \forall v, w \in V$$
.

Dimostrazione

1. seque dalla definizione

2.
$$||\alpha v|| = \sqrt{\langle \alpha v, \alpha v \rangle} = \sqrt{\alpha^2 \langle v, v \rangle} = |\alpha| \cdot ||v||$$

3.
$$||v+w||^2 = \langle v+w, v+w \rangle =$$

$$= < v, v > + < w, v > + < v, w > + < w, w > =$$

$$= ||v||^2 + 2 < v, w > + ||w||^2 \le ||v||^2 + 2||v||w|| + ||w||^2 = (||v|| + ||w||)^2$$

Ci basta ora prendere le radici quadrate del primo e del secondo termine (possiamo farlo poiché sono entrambi positivi

Definizione 1 (Versore)

 $Sia\ v \in V\ tale\ che\ ||v|| = 1\ allora\ v\ \grave{e}\ un\ versore$

Oss

Dat $u \neq 0$, $\frac{u}{||u||}$ è un versore

$$\left| \left| \frac{u}{||u||} \right| \right| = \frac{1}{||u||} \cdot ||u|| = 1.$$

Proposizione 1

Sia $\{v_1, \ldots, v_k\}$ un insieme ortogonale allora v_1, \ldots, v_k sono linearmente indipendenti. In particolare se $\dim(V) = n$, un insieme ortogonale di n vettori è una base

Dimostrazione

 $\begin{aligned} &Supponiamo \ \alpha_1 v_1 + \ldots \alpha_k v_k = 0 \\ &< \alpha_1 v_1 + \ldots + \alpha_k v_k, v_i > = < 0, v_i > = 0 \\ &= \alpha_1 < v_1, v_i > + \ldots + \alpha_k < v_k, v_i > \\ &= \alpha_i < v_i, v_i > \end{aligned}$

Dato che $\langle v_i, v_i \rangle > 0$ poiché $v_i \neq 0$ per ipotesi, dunque $\alpha_i = 0$, dato che posso scepliere qualunque v_i

Osservazioni

1. La base standard di \mathbb{R}^n è ortonormale rispetto al prodotto scalare standard

2. Sia g=<,> un prodotto scalare su V, Se $B=\{v_1,\ldots,v_n\}$ è una base g-ortonormale allora $[g]_B=Id_n$ ovvero $g(v_i,v_j)=\delta_{i,j}$

Inoltre, se $X = [v]_B$, $Y = [Id]_B$ $g(v, w) = X^t[g]_B Y = X^t Y$ (sempre con B ortonormale)

Proposizione 2

Se $\{v_1, \ldots, v_n\}$ è una base ortonormale, per ogni $v \in V$ risulta

$$v = \sum_{i=1}^{n} \langle v, v_i \rangle v_i.$$

Dimostrazione

(1) Sia $v = \sum_{j=1}^{n} a_j v_j$

$$< v, v_i > = < \sum_{j=1}^{n} a_j v_j, v_i > = \sum_{j=1}^{n} a_j < v_j, v_i > = \sum_{j=1}^{n} a_j \delta_{ij} = a_i$$

Basta poi sostituire in (1) a_i con $\langle v, v_i \rangle$

Nomenclatura 2

Dato $v \neq 0$ viene detto coefficiente di Fourier di $w \in V$ risptto a v

$$a_v(w) = \frac{\langle v, w \rangle}{\langle v, v \rangle}.$$

Nota

In sostanza il coefficiente di Fourier è il modulo della proiezione di w rispetto a v (moltiplicato quindi per il versore di v otteniamo il vettore della proiezione) Abbiamo quindi una definizione canonica della proiezione.

Abbiamo quindi una definizione canonica della proiezione.
$$< w - a_v(w)v, v> = < w - \frac{< v, w>}{< v, v>} v, v> = < w, v> - \frac{< v, w>}{< v, v>} \cdot < v, v>$$

3 Procedimento di ortogonalizzazione di Gram-Schmidt

Lemma 2

Sia v_1, v_2, \ldots una successione di vettori in V spazio vettoriale euclideo. Allora:

1. Esiste una successione w_1, w_2, \ldots in V tale che per ogni $k \geq 1$

a)
$$\langle v_1, \dots, v_K \rangle = \langle w_1, \dots, w_k \rangle$$
.

b)
$$\langle w_i, w_j \rangle = 0 \text{ se } i \neq j.$$

2. Se u_1, u_2, \ldots è un'altra successione che verifica le proprietà a e b, allora esistono non nulli $\gamma_1, \gamma_2, \ldots$ tali che

$$u_k = \gamma_k w_k, \quad k = 1, 2, \dots$$

Dimostrazione

Costruiamo i w_i per induzione su k.

Base k = 1

$$v_1 \rightarrow w_1 = v_1 \text{ verifica } a, b.$$

Supponiamo per induzione di aver costruito $w_1, \dots w_t, t > 1$ verificanti a e b e costruiamo w_{t+1}

$$\emptyset w_{t+1} = v_{t+1} - \sum_{i=1}^{t} a_{w_i}(v_{t+1})w_i.$$

Verifichiamo a

$$v_{t+1} = w_{t+1} + \sum_{i=1}^{t} a_{w_i}(v_{t+1})w_i.$$

per induzione $v_i \in \langle w_1, \dots, w_t \rangle \subseteq \langle w_1, \dots, w_{t+1} \rangle$ $1 \leq i \leq t$ dunque

$$\langle v_1, \dots, v_{t+1} \rangle \subseteq \langle w_1, \dots, w_{t+1} \rangle$$
.

D'altra parte $w_{t+1} \in \langle w_{1,t}, v_{t+1} \rangle = \langle v_1, \dots, v_{t+1} \rangle$ perché per induzione $w_i \in \langle v_1, \dots, v_t \rangle$ $1 \le i \le t$

 $Quindi < w_1, \ldots, w_{t+1} > \subseteq < v_1, \ldots, v_{t+1} > e quindi le proprietà a è verificata$

Verifichiamo ora b, sia $w_i \neq 0$

$$\langle w_{t+1}, w_i \rangle = \langle v_{t+1} - \sum_{j=1}^{\iota} a_{w_j}(v_{t+1})w_j, w_i \rangle =$$

$$= < v_{t+1}, w_i > -a_{w_j} < (v_{t+1})w_j, w_j > =$$

$$=<\boldsymbol{v}_{t+1},\boldsymbol{w}_i>-\frac{<\boldsymbol{v}_{t+1},\boldsymbol{w}_i>}{\leq \boldsymbol{w}_i,\boldsymbol{w}_i>}\leq \boldsymbol{w}_i,\boldsymbol{w}_i>=0$$

2. Di nuovo procedo per induzione su k, con base ovvia k=1Supponiamo t>1 e apponiamo che esistano γ_1,\ldots,γ_t con $u_k=\delta_k w_k$ per ogni $k\leq t$. per (a)

$$\begin{array}{ll} u_{t+1} = z + \gamma_{t+1} w_{t+1} & z \in < w_1, \dots, w_t > = < u_1, \dots, u_t > . \\ D'altra\ parte, < u_{t+1}, z > = < w_{t+1}, z > = = 0 \\ Quindi < u_{t+1} - \gamma_{t+1} w_{t+1}, w > = 0\ ovvero < z, z > \\ \Rightarrow z = 0\ e\ u_{t+1} = \gamma_{t+1} w_{t+1} \end{array}$$