ECE/CS 559 - Fall 2018 - Midterm #2.

	Full Name:	ID Number:
Q1	For all questions, answers without any justification (10 pts). Given $x, y \in \mathbb{R}^{2\times 1}$, let $K(x, y) = (x^T y)^2$. Fix $[x]^T \phi(y)$ for every x and y .	
and	(15 pts). Consider a two-neuron Hopfield network with the $sgn(\cdot)$ activation function; i.e., $sgn(x) = 1$ if $x \ge 0$, and the square of the probability of the square	and $sgn(x) = -1$, otherwise.
(a)	(5 pts) Consider the initial state $x = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$. Find the nex	t state using the synchronous update rule.
(b)	(5 pts) Consider the initial state $x = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$. Does the netw	ork state converge with synchronous updates
(c)	(5 pts) Consider the initial state $x = \begin{bmatrix} +1 \\ -1 \end{bmatrix}$. Does the updates?	e network state converge with asynchronou

Q5 (30 pts). Consider classes $C^- = \{ \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \end{bmatrix}, \begin{bmatrix} -1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ -1 \end{bmatrix}, \}$, and $C^+ = 9C^- = \{ \begin{bmatrix} 9 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 9 \end{bmatrix}, \begin{bmatrix} -9 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ -9 \end{bmatrix},$

(a) (5 pts) Are the classes C^+ and C^- linearly separable?

(b) (10 pts) Find a feature mapping ϕ so that $C_0^- = \{\phi(x) : x \in C^-\}$ and $C_0^+ = \{\phi(x) : x \in C^+\}$ are linearly separable.

(c) (10 pts) Solve the linear SVM in the corresponding feature space for classes C_0^- and C_0^+ . The result will be a discriminator function $g(x) = \operatorname{sgn}((\phi(x))^T w + \theta)$ such that g(x) > 0 for $x \in \mathcal{C}^+$ and g(x) < 0 for $x \in \mathcal{C}^-$. Indicate your discriminator g(x).

(d) (5 pts) Indicate the support vectors in your solution in (c).

Q6 (25 pts). The state transition diagram of a two-neuron Hopfield network with the asynchronous update rule is shown below:

- (a) (5 pts) What are the steady state(s) of the network?
- (b) (5 pts) What are the urstate(s) of the network?
- (c) **(5 pts)** True or False: The energy of state 1 -1 is less than or equal to that of state 1 1.
- (d) (5 pts) True or False: The energy of state 1 -1 is less than or equal to that of state -1 -1.
- (e) (5 pts) Draw the state transition diagram for the synchronous update scenario.