

Detection of Cognitive Impairment from Cognitive Instrument Metadata Using Machine Learning

Ryoma Kawakami¹, Douglas W Scharre² and **Xia Ning**^{1, 3, 4}

¹ Computer Science Department, The Ohio State University
 ² Department of Neurology, The Ohio State University
 ³ Biomedical Informatics Department, The Ohio State University

⁴ Translational Data Analytics Institute, The Ohio State University

Disclosure

Dr. Doug Scharre sits on the BrainTest® Scientific Advisory Board

Background

- Cognitive impairment (CI) and dementia (DM) including neurodegenerative disorders like Alzheimer's disease (AD) affect millions of people worldwide [1].
 - It is estimated that in 2022, 6.5 million Americans ages 65 or older lived with AD, and 5 million among the same population had mild cognitive impairment (MCI).
 - It is projected that by 2025, the number of AD cases will reach 7.2 million.
 - By 2050, the number of people age 65 and older with Alzheimer's dementia is projected to reach 12.7 million.
- The costs of long-term healthcare for individuals with AD or other dementias are substantial [1].
 - The total payments in 2022 for all individuals with AD or other dementias were estimated to be \$321 billion.
 - By 2050, the annual payments for AD healthcare will total almost \$1 trillion.
- Unfortunately, there are currently no cures.

Background

- Identification of cognitive impairment in the MCI stage is critical [1].
 - A treatment that slows the progression of MCI to dementia would have a significant impact on quality of life, caregiver burden, and cost of care.
 - Early diagnosis of AD during the MCI stage could save the US as much as \$7 trillion in health and long-term care expenditures.
- There are significant disparities in the prevalence of AD and access to healthcare.
 - Black and Hispanic individuals are disproportionately more likely than White individuals to have AD ^[2].
 - Socioeconomic disadvantages impede the early detection of MCI or AD [3].

Research Objective

Leverage the electronic Self-Administered Gerocognitive Examination (eSAGE) [4], a variety of metadata collected during eSAGE testing, and machine learning (ML) techniques to facilitate early MCI detection [5]

Self-Administered Gerocognitive Examination

Self Administered Gerocognitive Examination - SAGE Form 2

How Well Are You Thinking?

Please complete this form in inl

How far did you get in school I am Asian Have you had any problems v Have you had any blood relat Do you have balance problen If yes, do you know the ca

Have you ever had a major st Do you currently feel sad or c Have you had any change in ! Do you have more difficulties

1. What is today's date? (fr

2. Name the following pictu

©2007-2021 The Ohio State Univ D. Scharre MD, version 6.13 http:/

Review this example (this circle to another starting at 1

10. Do the following: Drav letters in order before ending

©2007-2021 The Ohio State Un D. Scharre MD, version 6.13 http

Answer these questions: 3. How are a corkscrew

- 4. How many quarters are 5. You are buying \$1.95
- 6. Memory Test (memor At the bottom of the
- 7. Copy this picture:

8. Drawing test

- Draw a large face of a
- Position the hands for
- On your clock, label

©2007-2021 The Ohio State D. Scharre MD. version 6.13 h

amination (SAGE) [4]:

Each line must be part of a complete square (no extra lines)

©2007-2021 The Ohio State University. All Rights Reserved. D. Scharre MD, version 6.13 http://sagetest.osu.edu Page 4 of 5 ecutive

personnel

ently

STOP

eSAGE

eSAGE: a digital version of SAGE [6]

eSAGE Metadata + Machine Learning

eSAGE measures

- Cognitive function in the domains of
 - Orientation (date: 4 points), language (picture naming: 2 points and verbal uency: 2 points), memory (2 points), executive function (modified Trails B: 2 points and problem solving task: 2 points), abstraction (2 points), calculations (2 points), and visuospatial abilities (copying 3-dimentional constructions: 2 points and clock drawing: 2 points).
- Non-scored items include
 - Demographic information (birthdate, educational achievement, ethnicity, and sex), and questions regarding the individual's past history of strokes and head trauma, family history of cognitive impairment, and current symptoms of memory, balance, mood, personality changes, and impairments of activities of daily living.

Goal of this study:

- Investigate ML techniques to predict an individual's cognitive impairment (CI) stage from eSAGE scores and metadata
- Evaluate behavioral features (metadata) during eSAGE tests as novel biomarkers

eSAGE Metadata and Feature Engineering

- Behavioral features
 - Timing-based features
 - Backtracking-based features
 - Drawing-based features

- eSAGE scores
- In total, 102 features

eSAGE Metadata and Feature Engineering

Feature Name	Description
X Time	The time spent on question X.
X Pages Back	The number of times the subject went back X pages.
X Total Strokes	The total number of strokes used to answer drawing problem X.
X Total Length	The total length of the drawing for drawing problem X.
X Average Stroke Length	The average length per stroke for drawing problem X.
X Average Stroke Speed	The average speed per stroke for drawing problem X.
X Stroke Straightness	The average straightness per stroke for drawing problem X, where straightness is the straight-line distance between the endpoints of a given stroke divided by the stroke length.
X Convex Hull Area	The area of the convex hull around the response for drawing problem X.
X Convex Hull Perimeter	The perimeter of the convex hull around the response for drawing problem X.

Machine Learning from eSAGE Features

- Logistic regression (LR):
 - Binary classifiers that output the probability of the input data being part of the "positive" class (as opposed to the "negative" class), where the probability is calculated via a logistic function.
 - Elasticnet regularization (i.e., both l_1 -norm and l_2 -norm regularization) can be utilized to penalize larger weight parameters so as to prevent overfitting to the training data and conduct feature selection.
- Gradient Boosting Tree Classifier (GBC):
 - An ensemble of decision trees.
 - Begin with a constant model and to iteratively add decision trees to the model. These new decision trees are fit to the residual errors in the model at that step, in order to learn parts of the problem that the model hasn't figured out yet.

Machine Learning from eSAGE Features

Classification tasks:

- (Task 1) Cl vs. NC
- (Task 2) MCI vs. NC
- (Task 3) DM vs. NC
- (Task 4) DM vs. MCI
- (Task 5) DM vs. nDM

Diagnosis	NC	MCI	DM
Number of Subjects	21	24	21

eSAGE features:

- F-b: Behavioral features only
- F-s: scoring features only
- F-bs: both behavioral and scoring features

Evaluation metrics:

accuracy (acc), precision (prec), recall (rec), F1, AUC

Overall Performance

Task	Classes	Features	Acc	Prec	Rec	F1	AUC
		F-b	0.6824	0.7005	0.9422	0.8001	0.7343
1	CI vs. NC	F-s	0.7846	0.8378	0.8622	0.8434	0.8888
		F-bs	0.7945	0.8393	0.8756	0.8507	0.8951
		F-b	0.5889	0.6046	0.7500	0.6530	0.7050
2	MCI vs. NC	F-s	0.7045	0.7702	0.6810	0.6927	0.8310
		F-bs	0.7111	0.7793	0.6780	0.6997	0.8400
		F-b	0.7575	0.8269	0.6680	0.7037	0.8183
3	DM vs. NC	F-s	0.9570	0.9960	0.9190	0.9518	0 9684
		F-bs	0.9410	0.9920	0.8910	0.9316	0.9812
	DM vs. MCI	F-b	0.6400	0.6518	0.4440	0.5019	0.7060
4		F-s	0.7845	0.8248	0.7170	0.7463	0.8930
		F-bs	0.7800	0.8139	0.7290	0.7469	0.8900
	DM vs. nDM	F-b	0.7007	0.4723	0.2170	0.2785	0.7666
5		F-s	0.8429	0.8090	0.6790	0.7199	0.9182
		F-bs	0.8545	0.8167	0.7080	0.7397	0.9223

Important Features (behavioral + scores)

	01		Important Features in F-b		Important features in F-bs			
Task	Classes	Model	Feature	Weight	Model	Feature	Weight	
			Executive Modified Trails B Task Average Stroke Length	0.6396		Verbal Fluency Score	-0.7862	
	CI vs.		Date Question Time	0.4764	I D (12)	Executive Modified Trails B Task Score	-0.7644	
1		LR (I1, I2)	Orientation Questions Time	0.4511	LR (I2)	Memory Question Score	-0 7465	
	NC		Language Questions Time	0.4009		Executive Modified Trails B Task Average Stroke Length	-0.5380	
			Verbal Fluency Question Time	0.3818	_	Language Questions Score	-0.5167	
	MCI vs.	LR (I1, I2)	Executive Modified Trails B Task Average Stroke Length	-1.0601	LR (I2)	Verbal Fluency Score	-1.0734	
			Date Question Time	1.0049		Executive Modified Trails B Task Average Stroke Length	-0.7724	
2			Language Questions Time	0.6159		Visuospatial Construction Copy Task Score	-0.7561	
	110		Verbal Fluency Question Time 0.5365		Executive Modified Trails B Task Score	-0.7248		
			Picture Naming Question 1 Time	0.3681		Language Questions Score	-0.6245	
			Month Question Time	1.2820		Memory Question Score	-1.6942	
			Executive Modified Trails B Task Stroke Straightness	-1.2468		Executive Modified Trails B Task Score	-1.1135	
	DM vs.		4 Pages Back Count	1.1878	LR (I1, I2)	Date Question Score	-0.9361	
3	NC	LR (I1, I2)	Task Time	1.1300	LIX (II, IZ)	Picture Naming Question 1 score	-0.8951	
			Executive Modified Trails B Task Average Stroke Length	-0.9523		Verbal Fluency Question Score	-0.8796	

Important Features (behavioral + scores)

	Classes	Important Features in F-b			Important features in F-bs			
Task		Model	Feature	Weight	Model	Feature	Weight	
			Executive Modified Trails B Task Stroke Straightness	-1.4562	LR (I1, I2)	Calculation Question 2 score	-1.0417	
4	DM vs.	LR (I2)	Visuospatial Construction Copy Task Time	1.1103		Visuospatial Clock Drawing Task Score	-0.6179	
	MCI	` '	Race Question Time	-0.9712		Date Question Score	-0.5509	
	IVIOI		Education Question Time	0.8656		Similarity Question Score	-0.5126	
			4 Pages Back Count	0.8229		Orientation Questions Score	-0.4448	
			Executive Modified Trails B Task Stroke Straightness	-1.1585		Calculation Question 2 score	-1.0730	
	DM vs.		Visuospatial Construction Copy Task Time	0.8232		Memory Question Score	-0.9127	
5		LR (I2)	Month Question Time	0.7795	LR (I2)	Similarity Question Score	-0.7243	
	nDM		4 Pages Back Count	0.7818		Visuospatial Clock Drawing Task Score	-0 7234	
			Memory Problems Question Time	-0.5987		4 Pages Back Count	0.8229	

Potential New Markers in eSAGE

Top Most Important Features

Task	Classes	Features	Acc	Prec	Rec	F1	AUC
		F-s	0.7846	0.8378	0.8622	0.8434	0.8888
1	CI vs. NC	F-bs	0.7945	0.8393	0.8756	0.8507	0.8951
		top-5	0.8023	0.8661	0.8511	0.8520	0.9182
		F-s	0.7045	0.7702	0.6810	0.6927	0.8310
2	MCI vs. NC	F-bs	0.7111	0.7793	0.6780	0.6997	0.8400
		top-5	0.7533	0.8111	0.7260	0.7405	0.8895
		F-s	0.9570	0.9960	0.9190	0.9518	0.9684
3	DM vs. NC	F-bs	0.9410	0.9920	0.8910	0.9316	0.9812
		top-5	0.9455	0.9490	0.9540	0.9465	0.9721
		F-s	0.7845	0.8248	0.7170	0.7463	0.8930
4	DM vs. MCI	F-bs	0.7800	0.8139	0.7290	0.7469	0.8900
		top-5	0.7867	0.8574	0.6960	0.7290	0.8950
	DM vs. nDM	F-s	0.8429	0.8090	0.6790	0.7199	0.9182
5		F-bs	0.8545	0.8167	0.7080	0.7397	0.9223
		top-5	0.8698	0.8609	0.7120	0.7504	0.9466

Conclusions

- Behavioral features in eSAGE can be used to better detect cognitive impairment.
- There is the potential to identify additional behavioral features to improve the predictive ability to identify different stages of cognitive impairment.
- The utility of those identified as important behavioral features, would need further validation in clinical settings.
- New versions of eSAGE with such features and underlying predictive analysis could benefit the general public in the early and accurate detection of cognitive decline.

References

- [1] 2022 Alzheimer's disease facts and figures. Alzheimer's & Dementia 18, 700–789 (2022).
- [2] Gillis, C., Montenigro, P., Nejati, M. & Maserejian, N. Estimating prevalence of early Alzheimer's disease in the United States, accounting for racial and ethnic diversity. Alzheimer's & Dementia, (2022).
- [3] Majoka, M. A. & Schimming, C. Effect of social determinants of health on cognition and risk of Alzheimer disease and related dementias. Clin Ther 43, 922–929 (2021).
- [4] Scharre, D.W., Chang, S.I., Murden, R.A., Lamb, J., Beversdorf, D.Q., Kataki, M., Bornstein, R.A.: Self-administered gerocognitive examination (SAGE): a brief cognitive assessment instrument for mild cognitive impairment (mci) and early dementia. Alzheimer Dis. Assoc. Disord. 24(1), 64-71 (2010)
- [5] Kawakami, Y., Scharre, D.W., and Ning, X.: Detection of cognitive impairment from cognitive instrument metadata using machine learning. Alzheimer Disease & Associated Disorders An International Journal (under revision), (2023).
- [6] Scharre, D. W., Chang, S. I., Nagaraja, H. N., Vrettos, N. E. & Bornstein, R. A. Digitally translated Self-Administered Gerocognitive Examination (eSAGE): Relationship with its validated paper version, neuropsychological evaluations, and clinical assessments. Alzheimers Res Ther 9, 44 (2017).

Thank You! Questions?

Xia.Ning@osumc.edu