Dištančné orákula pre grafy reprezentujúce cestovné poriadky

František Hajnovič

FMFI UK

April 9, 2013

Supervisor: doc. RNDr. Rastislav Královič PhD.

Content

- Introduction
- 2 Contribution
 - Underlying shortest paths
 - USP-OR
 - USP-OR-A
 - Results and comparison
 - Neural networks
- Conclusion

Introduction

- ullet Given a timetable, we query (a,t,b) for
 - Earliest arrival (EA) $t^*_{(a,t,b)}$
 - Optimal connection (OC) $c^*_{(a,t,b)}$

What is it about?

- Given a timetable, we query (a, t, b) for
 - Earliest arrival (EA) $t^*_{(a,t,b)}$
 - Optimal connection (OC) $c^*_{(a,t,b)}$

- Motivation: large-scale timetable search engines (cp.sk, imhd.sk...)
- Approach: (distance) oracle-based approach [TZ05] pre-computation

Timetable and underlying graph

Place		Time		
From	To	Departure	Arrival	
Α	В	10:00	10:45	
В	C	11:00	11:30	
В	C	11:30	12:10	
В	Α	11:20	12:30	
C	Α	11:45	12:15	

Table : **Timetable** - a set of **elementary** connections (between pairs of cities)

Figure: Underlying graph

Timetable and underlying graph

Place		Time		
From	То	Departure	Arrival	
Α	В	10:00	10:45	
В	C	11:00	11:30	
В	C	11:30	12:10	
В	Α	11:20	12:30	
C	Α	11:45	12:15	

Table : **Timetable** - a set of **elementary connections** (between pairs of **cities**)

 $\textbf{Figure}: \ \textbf{Underlying graph}$

- Goals:
 - Devise methods to tackle EA/OC problem
 - Analyse properties of real-world timetables

Contribution

Contribution

Idea

• "Usually we go through the same sequence of cities"

- p is **USP** $\iff \exists t : path(c^*_{(a,t,b)}) = p$
- ullet we have USP p: $expand(p)
 ightarrow c^*_{(a,t,b)}$

Odchod	Príchod	Dĺžka cesty*	Použité linky	Zóny	Cena*
21:59	22:10	11 min	95	-	0,70 €
22:09	22:20	11 min	95	-	0,70 €
22:19	22:30	11 min	95	-	0,70 €
22:29	22:40	11 min	95	-	0,70 €
22:39	22:50	11 min	95	-	0,70 €

Idea

• "Usually we go through the same sequence of cities"

- p is **USP** $\iff \exists t : path(c^*_{(a,t,b)}) = p$
- ullet we have USP p: $expand(p)
 ightarrow c_{(a,t,b)}^*$
- Overtaking [MHSWZ07] causes problems, but can be easily removed

Odchod	Príchod	Dĺžka cesty*	Použité linky	Zóny	Cena*
21:59	22:10	11 min	95	-	0,70 €
22:09	22:20	11 min	95	-	0,70 €
22:19	22:30	11 min	95	-	0,70 €
22:29	22:40	11 min	95	-	0,70 €
22:39	22:50	11 min	95	-	0,70 €

Name	Overtaken edges (%)
air01	1%
cpru	2%
cpza	2%
montr	1%
sncf	2%
sncf-ter	2%
sncf-inter	8%
zsr	0%

USP-OR

- Pre-compute all conn. space $\mathcal{O}(h \; n^2 \gamma)$
 - ullet γ the average OC size
 - daily height usually 200 < h < 800

USP-OR

- Pre-compute all conn. space $\mathcal{O}(h n^2 \gamma)$
 - γ the average OC size
 - daily height usually 200 < h < 800
- Pre-compute all USPs space $\mathcal{O}(\tau n^2 \gamma)$
 - $\tau(x, y)$ # of USPs between x and y

Name	avg $ au$	$\max \tau(x,y)$	γ
air01	5.8	30	3.0
cpru	7.0	64	13.8
cpza	5.1	42	11.1
montr	4.3	30	20.3
sncf	4.3	24	10.5
sncf-inter	0.6	19	7.9
sncf-ter	6.1	33	10.8
zsr	2.5	19	13.7
		•	

Table: Daily, 200 station timetables

USP-OR	prep	size	qtime	stretch
guaranteed	$\mathcal{O}(hn^2(\log n + \delta))$	$\mathcal{O}(\tau n^2 \gamma)$	avg. $\mathcal{O}(au\gamma)$	1
τ const., $\gamma \leq \sqrt{n}$, $\delta \leq \log n$	$\mathcal{O}(hn^2 \log n)$	$\mathcal{O}(n^{2.5})$	avg. $\mathcal{O}(\sqrt{n})$	1

Table : δ - the UG density $\frac{m}{n}$

USP-OR

• Pre-compute all conn. - space $\mathcal{O}(h \; n^2 \gamma)$

- $oldsymbol{\circ}$ γ the average OC size
- daily height usually 200 < h < 800
- Pre-compute all USPs space $\mathcal{O}(\tau \ n^2 \gamma)$
 - $\tau(x, y)$ # of USPs between x and y

Name	avg $ au$	$\max \tau(x,y)$	γ
air01	5.8	30	3.0
cpru	7.0	64	13.8
cpza	5.1	42	11.1
montr	4.3	30	20.3
sncf	4.3	24	10.5
sncf-inter	0.6	19	7.9
sncf-ter	6.1	33	10.8
zsr	2.5	19	13.7

Table: Daily, 200 station timetables

USP-OR	prep	size	qtime	stretch
guaranteed	$\mathcal{O}(hn^2(\log n + \delta))$	$\mathcal{O}(\tau n^2 \gamma)$	avg. $\mathcal{O}(au\gamma)$	1
τ const., $\gamma \leq \sqrt{n}$, $\delta \leq \log n$	$\mathcal{O}(hn^2 \log n)$	$\mathcal{O}(n^{2.5})$	avg. $\mathcal{O}(\sqrt{n})$	1

Table : δ - the UG density $\frac{m}{n}$

• Space $\mathcal{O}(n^{2.5})$ too big anyway

$USP-OR - \tau$ evolution

Figure : Changing of τ with increased time range in air01 dataset. 1 day = about 800 in height

Figure : Changing of τ with increased # of stations in sncf dataset

USP-OR-A

- Pre-compute USPs only among some cities in UG: (r₁, r₂, r₃) access node set
 - Small size: $|\mathcal{A}| \leq r_1 \cdot \sqrt{n}$
 - Small node neighbourhoods: $avg(|neigh(x)|)^2 \le r_2 \cdot n$
 - Few local access nodes: $|lan_A(x)| \le r_3$

USP-OR-A

USP-OR-A and access nodes

USP-OR-A	guaranteed	τ, r_1, r_2, r_3 const., $\gamma \leq \sqrt{n}, \delta \leq \log n$
prep	$\mathcal{O}(f(n) + (r_1 + r_2)(\delta + \log n)hn^{1.5})$	$\mathcal{O}(f(n) + hn^{1.5} \log n)$
size	$\mathcal{O}(r_2n^{1.5} + r_1^2\tau_{\mathcal{A}}\gamma_{\mathcal{A}}n)$	$\mathcal{O}(n^{1.5})$
qtime	avg. $\mathcal{O}(r_2r_3\sqrt{n}(\log(r_2n)+\delta)+r_3^2\tau_{\mathcal{A}}\gamma_{\mathcal{A}})$	avg. $\mathcal{O}(\sqrt{n}\log n)$
stretch	1	1

Much depends on choosing good AN set

USP-OR-A

USP-OR-A and access nodes

USP-OR-A	guaranteed	τ, r_1, r_2, r_3 const., $\gamma \leq \sqrt{n}, \delta \leq \log n$
prep	$\mathcal{O}(f(n) + (r_1 + r_2)(\delta + \log n)hn^{1.5})$	$\mathcal{O}(f(n) + hn^{1.5} \log n)$
size	$\mathcal{O}(r_2n^{1.5} + r_1^2\tau_{\mathcal{A}}\gamma_{\mathcal{A}}n)$	$\mathcal{O}(n^{1.5})$
qtime	avg. $\mathcal{O}(r_2 r_3 \sqrt{n}(\log(r_2 n) + \delta) + r_3^2 \tau_A \gamma_A)$	avg. $\mathcal{O}(\sqrt{n}\log n)$
stretch	1	1

- Much depends on choosing good AN set
- Minimize $|\mathcal{A}|$ s.t. $\forall x : |neigh_{\mathcal{A}}(x)| \leq \sqrt{n} \rightarrow \mathsf{NP}\text{-complete}$
- Choose ANs based on degree/betweenness centrality

Figure : $|A| = r_1 \sqrt{n} \approx r_1 51$ (sncf).

Figure :
$$|\mathcal{A}| = r_1 \sqrt{n} \approx r_1 30$$
 (cpru).

Locsep

Select AN that locally separates many vertices

Figure : $|\mathcal{A}| = r_1 \sqrt{n} \approx r_1 51$ (sncf).

Results and comparison

Results

• Time-dependent Dijkstra's algorithm with Fibonacci heap priority queue $\mathcal{O}(m + n \log n)$

30 TD Dijkstra - USP-ORA - USP-OR - USP

Figure: *USP-OR-A* + *Locsep* vs. *USP-OR* vs. *TD Dijkstra* on *sncf* dataset. Changing *n*.

Figure: *USP-OR-A* + *Locsep* vs. *USP-OR* vs. *TD Dijkstra* on *zsr* dataset. Changing time range.

Existing methods

- Time-dependent SHARC [Del08], Time-dependent CH [BDSV09]
 - Speed-ups of about 26 / 1500, respectively (EA only)

Contribution

- Meant for time-dependent routing in road networks
- Time-expanded approach [DPW09]

Name	USP-OR	USP-OR-A
срги	14.5	1.7
cpza	14.3	1.7
montr	8.8	1.5
sncf	64.8	5.4
sncf-inter	27.0	3.6
sncf-ter	78.3	6.3
zsr (daily)	19.3	2.14

Table: Speed-up of USP-OR and USP-OR-A with Locsep

- Max speed-up of 56 (Railways with 30000 stations!)
- Remodelling unimportant stations in TE graphs
- Theory vs. practice difference: transfers, cost of travel...

Neural networks

Neural network approaches

- Multi-layer perceptron, back propagation
- Input layer = events + cities.
- $\bullet \ \, \mathsf{Output} \, \, \mathsf{layer} = \mathsf{arcs} \, \, \mathsf{of} \, \, \mathsf{UG} \to \mathsf{USP} \, \,$

- Tendency to remember USPs
- Long training times

Name	Conn.	Found	Was optimum (%)
air01	931	573	18.7%
cpru	481	281	48%
montr	527	346	86.7%
zsr	672	307	76.2%

Table: Timetables with 30 cities

Conclusion

- Trying out novel approaches to find optimal connections in timetables
 - USP-OR: Exact and very quick answers (speed-up \approx 60) but high space
 - USP-OR-A: Exact and quick answers (speed-up \approx 6) less space-consuming
 - NN: Problem too challenging for NN/try different types of network
- Application created to carry out analysis of real-world timetables:
 - Degrees, connectivity, BC, high. dimension, overtaking, USPs...
 - Running & evaluating tests of oracles

Figure : It's blazing fast!

Bibliography I

- [BDSV09] Gernot Veit Batz, Daniel Delling, Peter Sanders, and Christian Vetter, Time-dependent contraction hierarchies. In Irene Finocchi and John Hershberger, editors, ALENEX, pages 97-105, SIAM, 2009.
 - Daniel Delling. Time-dependent sharc-routing. In Dan Halperin and Kurt Mehlhorn, editors, ESA, [Del08] volume 5193 of Lecture Notes in Computer Science, pages 332-343. Springer, 2008. ISBN 978-3-540-87743-1
- [DPW09] Daniel Delling, Thomas Paior, and Dorothea Wagner. Engineering time-expanded graphs for faster timetable information. In Ravindra Ahuja, Rolf Möhring, and Christos Zaroliagis, editors, Robust and Online Large-Scale Optimization, volume 5868 of Lecture Notes in Computer Science, pages 182-206. Springer Berlin / Heidelberg, 2009. ISBN 978-3-642-05464-8.
- [MHSWZ07] Matthias Müller-Hannemann, Frank Schulz, Dorothea Wagner, and Christos Zaroliagis. Algorithmic Methods for Railway Optimization, volume 4359 of Lecture Notes in Computer Science, chapter Timetable Information: Models and Algorithms, pages 67 - 90, Springer, 2007.
 - [TZ05] Mikkel Thorup and Uri Zwick, Approximate distance oracles, J. ACM, 52(1):1-24, 2005.

Thank you for the attention

