LEPTONS

e

$$J=\frac{1}{2}$$

Mass $m=(548.5799110\pm0.0000012)\times10^{-6}$ u Mass $m=0.510998902\pm0.000000021$ MeV $\begin{aligned} |m_{e^+}-m_{e^-}|/m < & 8\times10^{-9}, \text{ CL} = 90\% \\ |q_{e^+}+q_{e^-}|/e < & 4\times10^{-8} \\ \text{Magnetic moment } \mu=1.001159652187\pm0.000000000004 \ \mu_B \\ (g_{e^+}-g_{e^-}) & / \ g_{\text{average}} = (-0.5\pm2.1)\times10^{-12} \\ \text{Electric dipole moment } d=(0.07\pm0.07)\times10^{-26} \ e\,\text{cm} \\ \text{Mean life } \tau &> & 4.6\times10^{26} \ \text{yr, CL} = 90\% \ [a] \end{aligned}$

 ${m \mu}$

$$J=\frac{1}{2}$$

Mass $m=0.1134289168\pm0.0000000034$ u Mass $m=105.658357\pm0.000005$ MeV Mean life $\tau=(2.19703\pm0.00004)\times10^{-6}$ s $\tau_{\mu^+}/\tau_{\mu^-}=1.00002\pm0.00008$ $c\tau=658.654$ m Magnetic moment $\mu=1.0011659160\pm0.0000000006$ $e\hbar/2m_{\mu}$ ($g_{\mu^+}-g_{\mu^-}$) / $g_{\rm average}=(-2.6\pm1.6)\times10^{-8}$ Electric dipole moment $d=(3.7\pm3.4)\times10^{-19}$ e cm

Decay parameters [b]

$$\begin{split} \rho &= 0.7518 \pm 0.0026 \\ \eta &= -0.007 \pm 0.013 \\ \delta &= 0.749 \pm 0.004 \\ \xi P_{\mu} &= 1.003 \pm 0.008 \,^{\text{[c]}} \\ \xi P_{\mu} \delta / \rho &> 0.99682, \, \text{CL} = 90\% \,^{\text{[c]}} \\ \xi' &= 1.00 \pm 0.04 \\ \xi'' &= 0.7 \pm 0.4 \\ \alpha / \text{A} &= (0 \pm 4) \times 10^{-3} \\ \alpha' / \text{A} &= (0 \pm 4) \times 10^{-3} \\ \beta / \text{A} &= (4 \pm 6) \times 10^{-3} \\ \beta' / \text{A} &= (2 \pm 6) \times 10^{-3} \\ \overline{\eta} &= 0.02 \pm 0.08 \end{split}$$

 μ^+ modes are charge conjugates of the modes below.

μ^- DECAY MODES	Fraction (Γ_i/Γ)) Confidence level	<i>р</i> (MeV/ <i>c</i>)				
$e^-\overline{ u}_e u_\mu$	pprox 100%		53				
$e^-\overline{ u}_e u_\mu\gamma$	[d] $(1.4\pm0.4)\%$	1	53				
$e^-\overline{ u}_e u_\mue^+e^-$	[e] $(3.4\pm0.4) \times$	10^{-5}	53				
Lepton Family number (LF) violating modes							
${ m e}^- u_{ m e}\overline{ u}_{\mu}$ LF	[f] < 1.2	90%	53				
$e^-\gamma$ LF	< 1.2 ×	10^{-11} 90%	53				
$e^-e^+e^-$ LF	< 1.0 ×	10^{-12} 90%	53				
$e^-2\gamma$	< 7.2 ×	10^{-11} 90%	53				

au

$$J=\frac{1}{2}$$

Mass
$$m=1776.99^{+0.29}_{-0.26}~{\rm MeV}$$
 $(m_{\tau^+}-m_{\tau^-})/m_{\rm average} < 3.0\times 10^{-3},~{\rm CL}=90\%$ Mean life $\tau=(290.6\pm 1.1)\times 10^{-15}~{\rm s}$ $c\tau=87.11~\mu{\rm m}$ Magnetic moment anomaly >-0.052 and $<0.058,~{\rm CL}=95\%$ ${\rm Re}(d_{\tau})>-3.1~{\rm and}<3.1\times 10^{-16}~{\rm e\,cm},~{\rm CL}=95\%$ ${\rm Im}(d_{\tau})<1.8\times 10^{-16}~{\rm e\,cm},~{\rm CL}=95\%$

Weak dipole moment

$${\rm Re}(d_{\tau}^w) < 0.56 \times 10^{-17}~{\rm e\,cm,~CL} = 95\% \\ {\rm Im}(d_{\tau}^w) < 1.5 \times 10^{-17}~{\rm e\,cm,~CL} = 95\%$$

Weak anomalous magnetic dipole moment

$$\mathrm{Re}(\alpha_{\tau}^{\mathit{w}})<~4.5\times10^{-3}$$
 , $\mathrm{CL}=90\%$ $\mathrm{Im}(\alpha_{\tau}^{\mathit{w}})<~9.9\times10^{-3}$, $\mathrm{CL}=90\%$

Decay parameters

See the au Particle Listings for a note concerning au-decay parameters.

$$\begin{split} \rho^{\tau}(e \text{ or } \mu) &= 0.745 \pm 0.008 \\ \rho^{\tau}(e) &= 0.747 \pm 0.010 \\ \rho^{\tau}(\mu) &= 0.763 \pm 0.020 \\ \xi^{\tau}(e \text{ or } \mu) &= 0.985 \pm 0.030 \\ \xi^{\tau}(e) &= 0.994 \pm 0.040 \\ \xi^{\tau}(\mu) &= 1.030 \pm 0.059 \\ \eta^{\tau}(e \text{ or } \mu) &= 0.013 \pm 0.020 \\ \eta^{\tau}(\mu) &= 0.094 \pm 0.073 \\ (\delta \xi)^{\tau}(e \text{ or } \mu) &= 0.746 \pm 0.021 \\ (\delta \xi)^{\tau}(e) &= 0.734 \pm 0.028 \\ (\delta \xi)^{\tau}(\mu) &= 0.778 \pm 0.037 \\ \xi^{\tau}(\pi) &= 0.993 \pm 0.022 \\ \xi^{\tau}(\rho) &= 0.994 \pm 0.008 \\ \xi^{\tau}(a_1) &= 1.001 \pm 0.027 \\ \xi^{\tau}(\text{all hadronic modes}) &= 0.995 \pm 0.007 \end{split}$$

 au^+ modes are charge conjugates of the modes below. " h^\pm " stands for π^\pm or K^\pm . " ℓ " stands for e or μ . "Neutrals" stands for γ 's and/or π^0 's.

			Scale factor/	p			
$ au^-$ DECAY MODES	F	Fraction (Γ_i/Γ)	Confidence level	(MeV/c)			
Modes with one charged particle							
particle ⁻ ≥ 0 neutrals $\geq 0 K^0 \nu_{\tau}$ ("1-prong")		(85.35 ± 0.07) %	S=1.1	_			
particle $^- \geq 0$ neutrals $\geq 0 K_L^0 \nu_{ au}$		$(84.71\pm0.07)\%$	S=1.1	_			
$\mu^- \overline{ u}_\mu u_ au$	[g]	$(17.37\pm0.06)~\%$		885			
$\mu^-\overline{ u}_\mu u_ au\gamma$	[e]	(3.6 ± 0.4) \times 10	₀ –3	_			
$e^-\overline{ u}_e u_ au$	[g]	(17.84 ± 0.06) %		888			
$e^-\overline{ u}_e u_ au\gamma_{ar{a}}$	[e]	$(1.75\pm0.18)\%$		_			
$h^- \geq 0 K_L^0 \ u_ au$		(12.30 ± 0.10) %	S=1.4	_			
$\mathit{h}^- u_ au$		(11.75 ± 0.10) %	S=1.4	_			
$\pi^- u_{ au}$	[g]	(11.06 ± 0.11) %	S=1.4	883			
$\mathcal{K}^- u_ au$	[g]	$(6.86\pm0.23)\times10^{-2}$	₀ –3	820			
$\mathit{h}^- \geq 1$ neutrals $ u_ au$		$(36.91\pm0.14)\%$	S=1.1	_			
$\mathit{h}^-\pi^0 u_ au$		$(25.86\pm0.13)~\%$	S=1.1	_			
$\pi^-\pi^0 u_ au$	[g]	(25.41 ± 0.14) %	S=1.1	878			
$\pi^-\pi^0$ non- $ ho$ (770) $ u_ au$		(3.0 ± 3.2) \times 10	₀ –3	878			
$\mathit{K}^-\pi^0 u_ au$	[g]	$(4.50\pm0.30)\times10$	₀ –3	814			

Modes with three charged particles

Wodes With		-	a. Pca Pai	110100		
$h^- h^- h^+ \geq 0$ neutrals $\geq 0 K_L^0 \nu_{ au}$		(1	15.20 ± 0.07	%	S=1.1	_
$\mathit{h^-h^-h^+} \geq 0$ neutrals $ u_{ au} ^{-} $		(1	14.57 ± 0.07	%	S=1.1	_
(ex. $K^0_S ightarrow \pi^+\pi^-$)						
("3-prong")						
$h^- h^- h^+ u_{ au}$		(1	10.01 ± 0.09	%	S=1.2	_
$h^- h^- h^+ \nu_{\tau} (\text{ex.} K^0)$		(9.65 ± 0.09)	%	S=1.2	_
$h^- h^- h^+ \nu_{\tau} (\text{ex.} K^0, \omega)$		(9.61 ± 0.09)	%	S=1.2	_
$\pi^-\pi^+\pi^- u_{ au}$		(9.52 ± 0.10	%	S=1.2	_
$\pi^{-}\pi^{+}\pi^{-}\nu_{\tau}(\text{ex}.K^{0})$		(9.22 ± 0.10	%	S=1.2	_
$\pi^{-}\pi^{+}\pi^{-}\nu_{\tau}$ (ex. K^{0}),		<	2.4	%	CL=95%	_
non-axial vector						
$\pi^-\pi^+\pi^- u_ au$ (ex. K^0 , ω)	[g]	($9.17\!\pm\!0.10)$	%	S=1.2	_
$h^-h^-h^+ \geq 1$ neutrals $ u_ au$		($5.18\!\pm\!0.10)$	%	S=1.3	_
$h^-h^-h^+ \geq 1$ neutrals $ u_ au$		($4.92\!\pm\!0.10)$	%	S=1.3	_
(ex. $K_S^0 ightarrow \pi^+\pi^-$)						
$\mathit{h^-h^-h^+\pi^0} u_{ au}$		($4.53 \pm 0.09)$	%	S=1.3	_
$h^- h^- h^+ \pi^0 u_ au (ext{ex.} {\cal K}^0)$		(4.35 ± 0.09)	%	S=1.3	_
$h^- h^- h^+ \pi^0 u_ au$ (ex. K^0 , ω)		($2.62 \pm 0.09)$	%	S=1.2	_
$\pi^-\pi^+\pi^-\pi^0 u_ au$		($4.37 \pm 0.10)$	%	S=1.3	_
$\pi^-\pi^+\pi^-\pi^0 u_ au$ (ex. \mathcal{K}^0)		($4.24 \pm 0.10)$	%	S=1.3	_
$\pi^-\pi^+\pi^-\pi^0 u_ au$ (ex. \mathcal{K}^0 , ω)	[g]	(2.51 ± 0.09)	%	S=1.2	_
$\mathit{h^-h^-h^+2\pi^0 u_ au}$		(5.5 ± 0.4)	$\times 10^{-3}$		_
$h^- h^- h^+ 2 \pi^0 u_ au (ext{ex.} {\cal K}^0)$		(5.4 ± 0.4)	$\times 10^{-3}$		_
$h^- h^- h^+ 2\pi^0 \nu_{\tau} (\text{ex.} K^0, \omega, \eta)$	[g]	(1.1 ± 0.4)	$\times 10^{-3}$		_
$\mathit{h^-h^-h^+3\pi^0 u_ au}$	[g]	(2.3 ± 0.8)	$\times10^{-4}$	S=1.6	_
$\mathit{K}^-\mathit{h}^+\mathit{h}^- \geq 0$ neutrals $ u_ au$		(6.5 ± 0.5)	$\times 10^{-3}$	S=1.4	_
$\mathit{K}^-\mathit{h}^+\pi^- u_ au$ (ex. K^0)		(4.4 ± 0.5)	$\times 10^{-3}$	S=1.5	_
$K^- h^+ \pi^- \pi^0 \nu_{ au} (ext{ex}. K^0)$		($1.10\pm0.22)$	$\times 10^{-3}$		_
${\it K}^-\pi^+\pi^- \geq$ 0 neutrals $ u_{ au}$		(4.5 ± 0.5)	\times 10 ⁻³	S=1.4	_
$K^-\pi^+\pi^- \geq 0\pi^0 u_ au$ (ex. K^0)		(3.5 ± 0.5)	$\times 10^{-3}$	S=1.4	_
$0\pi^0 u_ au$ (ex. \mathcal{K}^0)						
$\mathcal{K}^-\pi^+\pi^- u_ au$		($3.3\ \pm0.5\)$	$\times 10^{-3}$	S=1.5	_
$\mathcal{K}^-\pi^+\pi^- u_ au$ (ex. \mathcal{K}^0)	[g]	(2.8 ± 0.5)	\times 10 ⁻³	S=1.5	_
$\mathcal{K}^- ho^0 u_{ au} o$		($1.3\ \pm0.5\)$	\times 10 ⁻³		_
$\mathcal{K}^-\pi^+\pi^- u_ au$						
$\mathcal{K}^-\pi^+\pi^-\pi^0 u_ au$		($1.23 \!\pm\! 0.25)$	\times 10 ⁻³		_
$K^-\pi^+\pi^-\pi^0\nu_{\tau}({\rm ex}.K^0)$			$7.0\ \pm2.4\)$			_
$K^-\pi^+\pi^-\pi^0\nu_{\tau}(\text{ex.}K^0,\eta)$	[g]	(_		_
$K^-\pi^+K^- \geq 0$ neut. $ u_ au$		<		\times 10 ⁻⁴	CL=95%	_
${\it K}^-{\it K}^+\pi^- \geq 0$ neut. $ u_ au$			$2.00 \pm 0.23)$			_
${\sf K}^- {\sf K}^+ \pi^- u_ au$	[g]	($1.60 \pm 0.19)$	\times 10 ⁻³		685

$\begin{array}{c} K^-K^+\pi^-\pi^0\nu_\tau\\ K^-K^+K^-\geq 0 \text{ neut. } \nu_\tau\\ K^-K^+K^-\nu_\tau\\ \pi^-K^+\pi^-\geq 0 \text{ neut. } \nu_\tau\\ e^-e^-e^+\overline{\nu}_e\nu_\tau\\ \mu^-e^-e^+\overline{\nu}_\mu\nu_\tau \end{array}$	$[g] (4.0 \pm 1.6) \times 10^{-4}$ $< 2.1 \times 10^{-3}$ $< 1.9 \times 10^{-4}$ $< 2.5 \times 10^{-3}$ $(2.8 \pm 1.5) \times 10^{-5}$ $< 3.6 \times 10^{-5}$	CL=95% CL=90% CL=95%	- - - 888 885
Modes witl	h five charged particles		
$3h^-2h^+ \geq 0$ neutrals $ u_{ au}$ (ex. $K_S^0 o \pi^-\pi^+$) ("5-prong")	$(1.00\pm0.06)\times10^{-3}$		-
$3h^{-}2h^{+}\nu_{\tau}(\text{ex}.K^{0})$ $3h^{-}2h^{+}\pi^{0}\nu_{\tau}(\text{ex}.K^{0})$ $3h^{-}2h^{+}2\pi^{0}\nu_{\tau}$	[g] (8.2 ± 0.6) $\times 10^{-4}$ [g] (1.81 ± 0.27) $\times 10^{-4}$ $< 1.1 \times 10^{-4}$	CL=90%	- - -
Miscellaneo	us other allowed modes		
$(5\pi)^- u_ au$ $4h^-3h^+\geq 0$ neutrals $ u_ au$ ("7-prong")	$(8.0 \pm 0.7) \times 10^{-3}$ < 2.4 $\times 10^{-6}$	CL=90%	- -
$X^{-}(S=-1)\nu_{\tau}$	$(2.86\pm0.09)\%$	S=1.1	_
$K^*(892)^- \geq 0$ neutrals $\geq 0K_L^0 u_ au$	$(1.42\pm0.18)\%$	S=1.4	_
$K^*(892)^-\nu_{\tau}$	$(1.29\pm0.05)\%$		665
$K^*(892)^0 K^- \geq 0$ neutrals $\nu_{ au}$ $K^*(892)^0 K^- \nu_{ au}$	$(3.2 \pm 1.4) \times 10^{-3}$		-
$\overline{K}^*(892)^0\pi^- \geq 0$ neutrals $\nu_{ au}$	$(2.1 \pm 0.4) \times 10^{-3}$ $(3.8 \pm 1.7) \times 10^{-3}$		539
$\frac{(692)^{n}}{K^{*}}(892)^{0}\pi^{-}\nu_{\tau}$	$(2.2 \pm 0.5) \times 10^{-3}$		653
$(\overline{K}^*(892)\pi)^-\nu_{\tau} \rightarrow \pi^-\overline{K}^0\pi^0\nu_{\tau}$	$(1.0 \pm 0.4) \times 10^{-3}$		_
$K_1(1270)^- u_ au$	$(4.7 \pm 1.1) \times 10^{-3}$		433
$K_1(1400)^- u_ au$	$(1.7 \pm 2.6) \times 10^{-3}$	S=1.7	335
$K^*(1410)^- u_ au$	$(1.5 \ ^{+1.4}_{-1.0}) \times 10^{-3}$		_
$K_0^*(1430)^- \nu_{ au}$	$< 5 \times 10^{-4}$	CL=95%	_
$K_2^*(1430)^- \nu_{\tau}$	$< 3 \times 10^{-3}$	CL=95%	317
$\eta \pi^- \nu_{\tau}$	$< 1.4 \times 10^{-4}$	CL=95%	798
$\eta \pi^{-} \pi^{0} \nu_{\tau}$	[g] $(1.74\pm0.24)\times10^{-3}$		778
$\eta\pi^-\pi^0\pi^0 u_ au$ $\eta \mathcal{K}^- u_ au$	$(1.5 \pm 0.5) \times 10^{-4}$ [g] $(2.7 \pm 0.6) \times 10^{-4}$		746
$\eta K^* (892)^- \nu_{\tau}$	[g] $(2.7 \pm 0.6) \times 10^{-4}$ $(2.9 \pm 0.9) \times 10^{-4}$		720 —
$ \frac{\eta K^{-} \pi^{0} \nu_{\tau}}{\eta K^{0} \pi^{-} \nu_{\tau}} $	$(2.3 \pm 0.3) \times 10^{-4}$ $(2.2 \pm 0.7) \times 10^{-4}$		- -

Lepton Family number (LF), Lepton number (L), or Baryon number (B) violating modes (In the modes below, ℓ means a sum over e and μ modes)

L means lepton number violation (e.g. $\tau^- \to e^+\pi^-\pi^-$). Following common usage, LF means lepton family violation and not lepton number violation (e.g. $\tau^- \to e^-\pi^+\pi^-$). B means baryon number violation.

$e^-\gamma$	LF	< 2.7	$\times10^{-6}$	CL=90%	888
$\mu^-\gamma$	LF	< 1.1	\times 10 ⁻⁶	CL=90%	885
$e^-\pi^0$	LF	< 3.7	\times 10 ⁻⁶	CL=90%	883
$\mu^-\pi^0$	LF	< 4.0	$\times 10^{-6}$	CL=90%	880
e^-K^0	LF	< 1.3	\times 10 ⁻³	CL=90%	819
$\mu^ K^0$	LF	< 1.0	\times 10 ⁻³	CL=90%	815
$e^-\eta$	LF	< 8.2	$\times 10^{-6}$	CL=90%	804
$\mu^-\eta_1$	LF	< 9.6	\times 10 ⁻⁶	CL=90%	800
$e^-\rho^0$	LF	< 2.0	$\times 10^{-6}$	CL=90%	721
$\mu^- ho^0$	LF	< 6.3	$\times 10^{-6}$	CL=90%	717
$e^- K^* (892)^0$	LF	< 5.1	$\times 10^{-6}$	CL=90%	663
$\mu^- K^* (892)^0$	LF	< 7.5	\times 10 ⁻⁶	CL=90%	657
$e^{-}\overline{K}^{*}(892)^{0}$	LF	< 7.4	$\times 10^{-6}$	CL=90%	663
$\mu^- \overline{K}^* (892)^0$	LF	< 7.5	$\times 10^{-6}$	CL=90%	657
$e^-\phi$	LF	< 6.9	$\times 10^{-6}$	CL=90%	596

				-		
$\mu^-\phi_{\perp}$	LF	< 7	7.0	\times 10 ⁻⁶	CL=90%	590
$e^{-}e^{+}e^{-}$	LF	< 2	2.9	$\times 10^{-6}$	CL=90%	888
$e^{-}\mu^{+}\mu^{-}$	LF	< 1	1.8	$\times 10^{-6}$	CL=90%	882
$e^{+}\mu^{-}\mu^{-}$	LF	< 1	1.5	\times 10 ⁻⁶	CL=90%	882
$\mu^-e^+e^-$	LF	< 1	1.7	$\times 10^{-6}$	CL=90%	885
$\mu^+e^-e^-$	LF	< 1	1.5	$\times 10^{-6}$	CL=90%	885
$\mu^-\mu^+\mu^-$	LF	< 1	1.9	$\times 10^{-6}$	CL=90%	873
$e^{-}\pi^{+}\pi^{-}$	LF	< 2	2.2	$\times 10^{-6}$	CL=90%	877
$e^{+}\pi^{-}\pi^{-}$	L	< 1	1.9	\times 10 ⁻⁶	CL=90%	877
$\mu^{-}\pi^{+}\pi^{-}$	LF	< 8	8.2	$\times 10^{-6}$	CL=90%	866
$\mu^{+}\pi^{-}\pi^{-}$	L	< 3	3.4	$\times 10^{-6}$	CL=90%	866
$e^-\pi^+K^-$	LF	< 6	6.4	$\times 10^{-6}$	CL=90%	813
$e^-\pi^-K^+$	LF	< 3	3.8	$\times 10^{-6}$	CL=90%	813
$e^+\pi^-K^-$	L	< 2	2.1	$\times 10^{-6}$	CL=90%	813
$e^-K^+K^-$	LF	< 6	6.0	$\times 10^{-6}$	CL=90%	739
$e^+K^-K^-$	L	< 3	3.8	$\times 10^{-6}$	CL=90%	739
$\mu^-\pi^+K^-$	LF	< 7	7.5	$\times 10^{-6}$	CL=90%	800
$\mu^-\pi^-K^+$	LF	< 7	7.4	$\times 10^{-6}$	CL=90%	800
$\mu^+\pi^-K^-$	L	< 7	7.0	$\times 10^{-6}$	CL=90%	800
$\mu^- K^+ K^-$	LF	< 1	1.5	$\times10^{-5}$	CL=90%	699
μ^+ K $^-$ K $^-$	L	< 6	6.0	$\times 10^{-6}$	CL=90%	699
$e^{-}\pi^{0}\pi^{0}$	LF	< 6	6.5	$\times 10^{-6}$	CL=90%	878
$\mu^-\pi^0\pi^0$	LF	< 1	1.4	$\times 10^{-5}$	CL=90%	867
$e^-\eta\eta$	LF	< 3	3.5	$\times10^{-5}$	CL=90%	700
$\mu^- \eta \eta$	LF	< 6	6.0	$\times10^{-5}$	CL=90%	654
$e^{-\pi^0\eta}$	LF	< 2	2.4	$\times10^{-5}$	CL=90%	798
$\mu^-\pi^0\eta$	LF	< 2	2.2	$\times10^{-5}$	CL=90%	784
$\overline{p}\gamma$	L,B	< 3	3.5	$\times10^{-6}$	CL=90%	641
$\frac{1}{p}\pi^0$	L,B	< 1	1.5	$\times 10^{-5}$	CL=90%	632
$\frac{1}{p}2\pi^0$	L,B	< 3	3.3	$\times10^{-5}$	CL=90%	_
$\overline{p}\eta$	L,B	< 8	8.9	$\times 10^{-6}$	CL=90%	476
$\frac{7}{p}\pi^0\eta$	L,B		2.7	$\times10^{-5}$	CL=90%	_
e−light boson	LF		2.7	$\times10^{-3}$	CL=95%	_
μ^- light boson	LF		5	$\times10^{-3}$	CL=95%	_
, 0						

Heavy Charged Lepton Searches

 L^{\pm} – charged lepton

Mass m > 100.8 GeV, CL = 95% [h] Decay to νW .

 L^{\pm} – stable charged heavy lepton

Mass m > 102.6 GeV, CL = 95%

Neutrinos

See the notes in the Neutrino Particle Listings for discussions of neutrino masses, flavor changes, and the status of experimental searches.

$$J=\frac{1}{2}$$

The following results are obtained using neutrinos associated with e^+ or e^- . See the Note on "Electron, muon, and tau neutrinos" in the Particle Listings.

Mass m < 3 eV Interpretation of tritium beta decay experiments is complicated by anomalies near the endpoint, and the limits are not without ambiguity.

Mean life/mass, $\tau/m_{\nu} > 7 \times 10^9$ s/eV ^[i] (solar) Mean life/mass, $\tau/m_{\nu} > 300$ s/eV, CL = 90% ^[i] (reactor) Magnetic moment $\mu < 1.5 \times 10^{-10}~\mu_B$, CL = 90%

$$J=\frac{1}{2}$$

The following results are obtained using neutrinos associated with μ^+ or μ^- . See the Note on "Electron, muon, and tau neutrinos" in the Particle Listings.

Mass m < 0.19 MeV, CL = 90%

Mean life/mass, $au/m_{
u}~>~15.4$ s/eV, CL =~90%

Magnetic moment $\mu < 6.8 imes 10^{-10}~\mu_B$, CL = 90%

$$u_{oldsymbol{ au}}$$

$$J=\frac{1}{2}$$

The following results are obtained using neutrinos associated with τ^+ or τ^- . See the Note on "Electron, muon, and tau neutrinos in the Particle Listings.

Mass m<18.2 MeV, CL = 95% Magnetic moment $\mu<3.9\times10^{-7}~\mu_B$, CL = 90% Electric dipole moment $d<5.2\times10^{-17}$ ecm, CL = 95%

Number of Neutrino Types and Sum of Neutrino Masses

Number $N=2.994\pm0.012$ (Standard Model fits to LEP data) Number $N=2.92\pm0.07$ (Direct measurement of invisible Z width)

Neutrino Mixing

There is now compelling evidence that neutrinos have nonzero mass from the observation of neutrino flavor change, both from the study of atmospheric neutrino fluxes by SuperKamiokande, and from the combined study of solar neutrino cross sections by SNO (charged and neutral currents) and SuperKamiokande (elastic scattering).

Solar Neutrinos

Detectors using gallium ($E_{\nu}\gtrsim 0.2\,\mathrm{MeV}$), chlorine ($E_{\nu}\gtrsim 0.8\,\mathrm{MeV}$), and Ĉerenkov effect in water ($E_{\nu}\gtrsim 5\,\mathrm{MeV}$) measure significantly lower neutrino rates than are predicted from solar models. From the determination of the $^8\mathrm{B}$ solar neutrino flux via elastic scattering (SuperKamiokande and SNO), via the charged-current process (SNO) and via the neutral-current process (SNO), one can determine the flux of non- ν_e active neutrinos to be $\phi(\nu_{\mu\tau})=(3.45^{+0.65}_{-0.62})\times 10^6\,\mathrm{cm}^{-2}\,\mathrm{s}^{-1}$, providing a $5.5\,\sigma$ evidence for neutrino flavor change. A global analysis of the solar neutrino data favors large mixing angles and values for $\Delta(m^2)$ ranging from 10^{-3} to $10^{-5}\,\mathrm{eV}^2$. See the Notes "Neutrino Physics as Explored by Flavor Change" and "Solar Neutrinos" in the Listings.

Atmospheric Neutrinos

Underground detectors observing neutrinos produced by cosmic rays in the atmosphere have measured a $\nu_{\mu}/\nu_{\rm e}$ ratio much less than expected and also a deficiency of upward going ν_{μ} compared to downward. This can be explained by oscillations leading to the disappearance of ν_{μ} with $\Delta m^2 \approx (2\text{--}4) \times 10^{-3} \, {\rm eV}^2$ and almost full mixing between ν_{μ} and $\nu_{\tau}.$ See the Note "Neutrino Physics as Explored by Flavor Change" in the Listings.

Heavy Neutral Leptons, Searches for

For excited leptons, see Compositeness Limits below.

Stable Neutral Heavy Lepton Mass Limits

```
Mass m > 45.0 GeV, CL = 95\% (Dirac)
Mass m > 39.5 GeV, CL = 95\% (Majorana)
```

Neutral Heavy Lepton Mass Limits

```
Mass m>90.3 GeV, CL = 95% (Dirac \nu_L coupling to e, \mu, \tau; conservative case(\tau)) Mass m>80.5 GeV, CL = 95% (Majorana \nu_L coupling to e, \mu, \tau; conservative case(\tau))
```

NOTES

- [a] This is the best limit for the mode $e^- \rightarrow \nu \gamma$. The best limit for "electron disappearance" is 6.4×10^{24} yr.
- [b] See the "Note on Muon Decay Parameters" in the μ Particle Listings for definitions and details.
- [c] P_{μ} is the longitudinal polarization of the muon from pion decay. In standard V-A theory, $P_{\mu}=1$ and $\rho=\delta=3/4$.
- [d] This only includes events with the γ energy > 10 MeV. Since the $e^-\overline{\nu}_e\nu_\mu$ and $e^-\overline{\nu}_e\nu_\mu\gamma$ modes cannot be clearly separated, we regard the latter mode as a subset of the former.
- [e] See the relevant Particle Listings for the energy limits used in this measurement.
- [f] A test of additive vs. multiplicative lepton family number conservation.
- [g] Basis mode for the τ .
- [h] L^{\pm} mass limit depends on decay assumptions; see the Full Listings.
- [i] Limit assumes radiative decay of neutrino.