12.6.3 Level Limit Turn Performance Correction

A limit turn is one in which the aircraft performs a level turn beginning from maximum speed and maximum load factor and continues to decelerate at the N_{zb} limit until reaching the maximum C_L . At this point, the aircraft continues its level turning deceleration at the lift limit. This maneuver is also known as a "slow-down" turn.

Test day limit turn data is corrected to a standard specific excess power (P_s) for each given combination of altitude, Mach number and load factor (or AOA) limit. The following correction accounts for changes in trim drag, weight, and atmospheric affects on thrust.

$$P_{s_s} = P_{s_t} + \Delta P_s$$
 where
$$P_{s_t} = \frac{\left(F_{ex_t}\right)V_{T_t}}{W_t} = \frac{\left(m_t a_{xw_t}\right)V_{T_t}}{W_t} = \frac{\left(\frac{W_t a_{xw_t}}{g}\right)V_{T_t}}{W_t} = N_{xw_t}V_{T_t} = Ma_o\sqrt{\theta_t}N_{xw_t}$$
 and
$$\Delta P_s = Ma_o\left\{\left(F_{g_s}\cos\alpha_{F_s} + F_e\right)\frac{\sqrt{\theta_s}}{W_s} - \left(F_{g_t}\cos\alpha_{F_t} + F_e\right)\frac{\sqrt{\theta_t}}{W_t} + SC_{D_o}\left[\frac{q_t\sqrt{\theta_t}}{W_t} - \frac{q_s\sqrt{\theta_s}}{W_s}\right] + \frac{Sq_t\sqrt{\theta_t}}{W_t}\left(m\left[\frac{N_{zw_t}W_t - F_{g_{t_t}}\sin\alpha_{F_t}}{q_tS}\right]^2 + \Delta C_{D_{trim_t}}\right) - \frac{Sq_s\sqrt{\theta_s}}{W_s}\left(m\left[\frac{N_{zw_t}W_s - F_{g_s}\sin\alpha_{F_s}}{q_sS}\right]^2 + \Delta C_{D_{trim_s}}\right)\right\}$$
 where
$$\alpha_{F_t} = i_{T_t} - \frac{C_{L_{o\alpha}}}{a} + \frac{N_{zw_t}W_t - F_{g_t}\sin\alpha_{F_t}}{aq_tS} \qquad (Eq'n 12.33)$$
 and
$$\alpha_{F_s} = i_{T_s} - \frac{C_{L_{o\alpha}}}{a} + \frac{N_{zw_s}W_s - F_{g_s}\sin\alpha_{F_s}}{aq_sS}$$

As with the sustained level turn case, one cannot solve explicitly for α_F , so either assume an approximate value or iterate until a solution converges.

In For the simplified case where $\delta_t = \delta_s$, $cg_t = cg_{std}$, and $\sin \alpha_F = 0$, then the above equation reduces to

$$\Delta P_{s} = Ma_{o} \left\{ \frac{\sqrt{\theta_{s}}}{W_{s}} \left[F_{n_{s}} - qSC_{D_{o}} - \frac{(N_{zv_{s}}W_{s})^{2}}{qSz \neq Re} \right] - \frac{\sqrt{\theta_{t}}}{W_{t}} \left[F_{n_{t}} - qSC_{D_{o}} - \frac{(N_{zv_{t}}W_{t})^{2}}{qSz \neq Re} \right] \right\}$$
 (Eq'n 12.34)