Functional Programming Language Design

Christian J. Rudder

January 2025

Contents

Contents			1
1	Fun	actional Programming	7
	1.1	Introduction	7
	1.2	Development Environment with OCaml	10
		Preparing the Environment	14
		Creating and Using an OPAM Switch	14
		Updating OPAM and Installing Essential Packages	15
		Creating a Dune Project: Hello, World!	۱6
Bibliography		graphy 2	21

Big thanks to **Professor Nathan Mull** for teaching CS320: Concepts of Programming Languages at Boston University [2].

Content in this document is based on content provided by Mull.

Prerequisite Definitions

This text assumes that the reader has a basic understanding of programming languages and grade-school mathematics along with a fundamentals grasp of discrete mathematics. The following definitions are provided to ensure that the reader is familiar with the terminology used in this document.

Definition 0.1: Token

A **token** is a basic, indivisible unit of a programming language or formal grammar, representing a meaningful sequence of characters. Tokens are the smallest building blocks of syntax and are typically generated during the lexical analysis phase of a compiler or interpreter.

Examples of tokens include:

- keywords, such as if, else, and while.
- identifiers, such as x, y, and myFunction.
- literals, such as 42 or "hello".
- operators, such as +, -, and =.
- punctuation, such as (,), {, and }.

Tokens are distinct from characters, as they group characters into meaningful units based on the language's syntax.

Definition 0.2: Non-terminal and Terminal Symbols

Non-terminal symbols are placeholders used to represent abstract categories or structures in a language. They are expanded or replaced by other symbols (either terminal or non-terminal) as part of generating valid sentences in the language.

• **E.g.**, "Today is $\langle \text{name} \rangle$'s birthday!!!", where $\langle \text{name} \rangle$ is a non-terminal symbol, expected to be replaced by a terminal symbol (e.g., "Alice").

Terminal symbols are the basic, indivisible symbols in a formal grammar. They represent the actual characters or tokens that appear in the language and cannot be expanded further. For example:

• +, 1, and x are terminal symbols in an arithmetic grammar.

CONTENTS 5

Definition 0.3: Symbol "::="

he symbol ::= is used in formal grammar notation, such as Backus-Naur Form (BNF), to mean "is defined as" or "can be expanded as". It is used to define the syntactic structure of a language by specifying how non-terminal symbols can be replaced or expanded into other symbols.

For example:

$$\langle \exp r \rangle ::= \langle \exp r \rangle + \langle \exp r \rangle \mid \langle \operatorname{number} \rangle$$

This states that the non-terminal symbol $\langle \exp r \rangle$ can be defined as either:

- An expression followed by a '+' and another expression, or
- A single number.

The pipe symbol (|) indicates alternatives, while the symbol \Rightarrow is used to denote derivations, showing the step-by-step application of the grammar rules to expand non-terminals into terminals.

Correct Derivations:

- $\langle \exp r \rangle \Rightarrow \langle \exp r \rangle + \langle number \rangle$
- $\langle \exp r \rangle \Rightarrow 5 + \langle \text{number} \rangle$
- $\langle \exp r \rangle \Rightarrow 5 + 3$
- $\langle \text{number} \rangle \Rightarrow 8$
- $\langle \exp r \rangle \Rightarrow \langle \text{number} \rangle$
- $\langle \exp r \rangle \Rightarrow 8$

Incorrect Derivations:

- $8 \Rightarrow \langle \text{number} \rangle$
- $8 \Rightarrow 5 + \langle \text{number} \rangle$
- $8 \Rightarrow 5 + 3$

Incorrect derivations arise when the direction of derivation is reversed or when terminal symbols are treated as if they can be expanded further. Terminals, such as 8, cannot act as non-terminals and do not expand into other symbols.

CONTENTS CONTENTS

Definition 0.4: Symbol ":="

The symbol := is used in programming and mathematics to denote "assignment" or "is assigned the value of". It represents the operation of giving a value to a variable or symbol.

For example:

$$x := 5$$

This means the variable x is assigned the value 5.

In some contexts, := is also used to indicate that a symbol is being defined, such as:

$$f(x) := x^2 + 1$$

This means the function f(x) is defined as $x^2 + 1$.

Functional Programming

1.1 Introduction

Programming Languages (PL) from the perspective of a programmer can be thought of as:

- A tool for programming
- A text-based way of interacting with hardware/a computer
- A way of organizing and working with data

However <u>This text concerns the design of PLs</u>, not the sole use of them. It's the difference between knowing how to fly an aircraft vs. designing one. We instead <u>think in terms of mathematics</u>, describing and defining the specifications of our language. Our program some mathematical object, a function with strict inputs and outputs.

Definition 1.1: Well-formed Expression

An expression (sequence of symbols) that is constructed according to established rules (syntax), ensuring clear and unambiguous meaning.

Definition 1.2: Programming Language

A Programming Language (PL) consists of three main components:

- Syntax: Specifies the rules for constructing well-formed expressions or programs.
- Type System: Defines the properties and constraints of possible data and expressions.
- Semantics: Provides the meaning and behavior of programs or expressions during evaluation.

Example 1.1: Syntax for Addition

If e_1 is a well-formed expression and e_2 is a well-formed expression, then $e_1 + e_2$ is also a well-formed expression. We can formalize this using the following rule for expressions, where $\langle \exp \rangle$ acts as a placeholder for arbitrary expressions:

$$\langle \exp r \rangle ::= \langle \exp r \rangle + \langle \exp r \rangle$$

Programmers may have some intuition about what a **variable** is, often thinking of it as a container for data. However, within this context, variables can represent entire expressions and are, in a sense, immutable.

Definition 1.3: Meta-variables

Meta-variables are placeholders that represent arbitrary expressions in a formal syntax. They are used to generalize the structure of expressions or programs within a language.

Example 1.2: Meta-variables:

An expression e could be represented as 3 (a literal) or 3+4 (a compound expression). In this context, variables serve as shorthand for expressions rather than as containers for mutable data.

Before talking about types we must understand "context" when working with PLs.

Definition 1.4: Context and Typing Environment

In type theory, a context defines an environment which establishes data types for variables. In particular, an environment Γ is a set of ordered list of pairs $\langle x : \tau \rangle$, usually written as $x : \tau$, where x is a variable and τ is its type. We now write a **judgment**, a formal assertion about an expression or program within a given context. We denote:

$$\Gamma \vdash e : \tau$$

which reads "in the context Γ , the expression e has type τ ". We may also write judgments for functions, denoting the type of the function and its arguments.

$$f: \tau_1, \tau_2, \ldots, \tau_n \to \tau$$

where f is a function taking n arguments $(\tau_1, \tau_2, \dots, \tau_n)$, outputting the type τ .

[1]

Tip: Symbol names and command in IATEX used above are as follows:

- Γ reads as "Gamma" (\Gamma).
- ⊢ reads as "turnstile" (\vdash).
- τ reads as "tau" (\tau).

1.1. INTRODUCTION 9

Definition 1.5: Rule of Inference

In formal logic and type theory, an **inference rule** provides a formal structure for deriving conclusions from premises. Rules of inference are usually presented in a **standard form**:

$$\frac{\text{Premise}_1, \quad \text{Premise}_2, \quad \dots, \quad \text{Premise}_n}{\text{Conclusion}} \text{ (Name)}$$

- Premises (Numerator): The conditions that must be met for the rule to apply.
- Conclusion (Denominator): The judgment derived when the premises are satisfied.

[3]

• Name (Parentheses): A label for referencing the rule.

Now we may begin to create a type system for our language, starting with some basic rules.

Example 1.3: Typing Rule for Integer Addition

Consider the typing rule for integer addition for which the inference rule is written as:

$$\frac{\Gamma \vdash e_1 : \text{int} \quad \Gamma \vdash e_2 : \text{int}}{\Gamma \vdash e_1 + e_2 : \text{int}} \text{ (addInt)}$$

This reads as, "If e_1 is an **int** (in the context Γ) and e_2 is an **int** (in the context Γ), then $e_1 + e_2$ is an **int** (in the same context Γ)".

Therefore: let $\Gamma = \{x : \text{int}, y : \text{int}\}$. Then the expression x + y is well-typed as an **int**, since both x and y are integers in the context Γ .

Example 1.4: Typing Rule for Function Application

If f is a function of type $\tau_1 \to \tau_2$ and e is of type τ_1 , then f(e) is of type τ_2 .

$$\frac{\Gamma \vdash f : \tau_1 \to \tau_2 \quad \Gamma \vdash e : \tau_1}{\Gamma \vdash f(e) : \tau_2} \text{ (appFunc)}$$

This reads as, "If f is a function of type $\tau_1 \to \tau_2$ (in the context Γ) and e is of type τ_1 (in the context Γ), then f(e) is of type τ_2 (in the same context Γ)".

Therefore: let $\Gamma = \{f : \text{int} \to \text{bool}, x : \text{int}\}$. Then the expression, f(x), is well-typed as a **bool**, since f is a function that takes an integer and returns a boolean, and x is an integer in the context Γ .

Finally, we can define the semantics of our language, which describes the behavior of programs during evaluation:

Example 1.5: Evaluation Rule for Integer Addition (Semantics)

Consider the evaluation rule for integer addition. This rule specifies how the sum of two expressions is computed. If e_1 evaluates to the integer v_1 and e_2 evaluates to the integer v_2 , then the expression $e_1 + e_2$ evaluates to the integer $v_1 + v_2$. The rule is written as:

$$\frac{e_1 \Downarrow v_1 \quad e_2 \Downarrow v_2}{e_1 + e_2 \Downarrow v_1 + v_2} \text{ (evalInt)}$$

Read as, "If e_1 evaluates to the integer v_1 and e_2 evaluates to the integer v_2 , then $e_1 + e_2$ evaluates to $v_1 + v_2$."

Example Evaluation:

- 2 \ \ 2
- 3 ↓ 3
- $2+3 \downarrow 5$
- 4+5 ↓ 9
- $(2+4)+(4+5) \downarrow 15$

Here, the integers 2 and 3 evaluate to themselves, and their sum evaluates to 5 based on the evaluation rule. Additionally e_1 could be a compound expression, such as (2+4), which evaluates to 6.

1.2 Development Environment with OCaml

In this section, we introduce **OCaml** as our programming language of choice for exploring the principles of **functional programming**. Functional programming emphasizes a declarative style, where programs describe *what to do* rather than *how to do it*, in contrast to the imperative programming paradigm, which many programmers are familiar with.

To better understand these differences, we will compare functional programming in OCaml with imperative programming in Python. This will give us a practical perspective on how the two paradigms approach problem-solving and help us appreciate the unique features of functional programming.

Definition 2.1: OCaml

OCaml is a general-purpose programming language from the ML family, known for its strong static type system, type inference, and support for functional, imperative, and object-oriented programming. It is widely used in areas like compilers, financial systems, and formal verification due to its safety, performance, and expressive syntax. The **Ocaml Extension** is .ml

In addition to using Ocaml we will use Dune and Opam.

Definition 2.2: Dune

Dune is a build system for **OCaml** projects, designed to simplify the compilation and management of code. It automates tasks such as building executables, libraries, and tests, while handling dependencies efficiently. Dune is widely used in the OCaml ecosystem due to its ease of use and minimal configuration.

Definition 2.3: OPAM

OPAM (OCaml Package Manager) is the standard package manager for the OCaml programming language. It simplifies the installation, management, and sharing of OCaml libraries and tools, providing developers with a convenient way to manage dependencies and project environments.

If you are familiar with **npm** or **yarn**, **OPAM** serves a similar purpose but is specifically designed for the **OCaml** ecosystem. Like npm and yarn, OPAM is a package manager that simplifies the installation and management of libraries and dependencies. Additionally, it offers features tailored to OCaml development, such as managing multiple compiler versions and isolating project environments.

<u>Window Users:</u> It may be easier to use WSL or a Linux VM to run OCaml and Dune rather than a native install. This text will use **Ubuntu** distro. If using WSL, make sure the terminal is running the distro, it will give you a fresh file system to work with. If you are a Mac user, you may use **Homebrew** to install OCaml and Dune.

WSL Installation: https://learn.microsoft.com/en-us/windows/wsl/setup/environment

Tip: If you plan to use github as your repository manager, you may have to create a personal access token to connect your account to your local machine.

Creating a Personal Access Token: https://docs.github.com/en/authentication/kee...

We use the terminal in this text, but an IDE could be used with additional setup.

Definition 2.4: Basic Terminal Commands

• Navigation:

- cd <directory>: Change to a specified directory.
- cd : Navigate to the home directory.
- cd ../: Move up one level in the directory hierarchy.
- pwd: Print the current working directory.

• Viewing and Listing:

- ls: List the contents of the current directory.
- ls -1: Display detailed information about files and directories.
- cat <file>: Display the contents of a file.
- tree <directory>: Prettier ls -1, install: sudo apt install tree

• Creating:

- mkdir <directory> : Create a new directory.
- touch <file>: Create an empty file.

• Deleting:

- rm <file>: Delete a file.
- rm -r <directory>: Delete a directory and its contents recursively.

• Renaming and Moving:

- mv file.txt /path/to/new/directory/
- mv <oldname> <newname> : Rename or move a file.

• File Properties:

- chmod <permissions> <file> : Change the permissions of a file.
- chmod u+rwx file.txt: Gives u (owner) read, write, and execute permissions.
- chmod g-w file.txt: Removes g (group) write permission.
- file <file>: Determine the type of a file.

Vim will be our text-editor of choice. We will write code, and edit files using Vim.

Definition 2.5: Vim Common Commands

• Starting and Exiting:

- vim <file>: Open or a create a file in Vim.
- :w: Save (write) changes to the file.
- :q: Quit Vim.
- :wq: Save changes and quit Vim.
- | :q! : Quit without saving changes.

• Modes:

- i : Switch to *Insert Mode* to start editing text.
- Esc: Return to *Normal Mode*, read-only mode for **navigation** and **commands**.

• Navigation:

- h (left), j (down), k (up), 1 (right): Moves the cursor.
- :- ine number>: Jump to a specific line in the file.
- G: Jump to the end of the file.
- gg: Jump to the beginning of the file.

• Editing:

- x: Delete the character under the cursor.
- dd: Delete the current line.
- yy : Copy (yank) the current line.
- p: Paste copied or deleted text.
- u : Undo the last change.
- Ctrl+r: Redo the undone change.

• Searching:

- /text: Search for text in the file.
- n: Jump to the next occurrence of the search term.
- N: Jump to the previous occurrence of the search term.

:help: for more Vim commands and options.

Preparing the Environment

Next we enable our machine to compile and run OCaml code. Choose a line below that corresponds to your operating system, and run it in the terminal.

Listing 1.1: Installing OPAM on Various Systems

```
# Homebrew (macOS)
2
       brew install opam
3
       # MacPort (macOS)
4
5
       port install opam
6
       # Ubuntu
       apt install opam
9
       # Debian
       apt-get install opam
12
        # Arch Linux
13
14
        pacman -S opam
```

Before we can use OPAM to manage OCaml libraries and tools, we need to prepare the system by running the opam init command. This sets up OPAM by:

Listing 1.2: Initializing OPAM

```
# Initialize OPAM
opam init

# Configure your shell environment
eval $(opam env)

# Verify OPAM is ready to use
opam --version
```

After these steps, OPAM will be ready to manage OCaml dependencies, compilers, and project environments.

<u>Important:</u> With every new terminal, eval \$(opam env) must be ran for OCaml use. Without it, the terminal might not recognize OPAM-installed tools or compilers.

Creating and Using an OPAM Switch

To manage different versions of OCaml and keep project dependencies isolated, OPAM provides a feature called a **switch**. A switch is an environment tied to a specific OCaml compiler version and a unique set of installed packages. This is especially useful for working on multiple projects with different requirements.

For this setup, we will create a new switch to ensure a clean environment with the required version of OCaml. Follow these steps:

Listing 1.3: Creating and Activating an OPAM Switch

```
# Step 1: Create a new switch named "my_switch" with OCaml version 5.2.1
       opam switch create my_switch 5.2.1
2
3
       # Step 2: Activate the newly created switch
4
       opam switch my_switch
5
6
       # Step 3: Update your terminal environment to reflect the switch
       eval $(opam env)
8
9
       # Step 4: Verify the switch is active
       opam switch
12
       # (Or / Optionally) Check the OCaml version
13
       ocaml -version
14
```

Once these commands are executed, your terminal will be configured to use the OCaml version and environment defined by the switch <code>my_switch</code>.

Updating OPAM and Installing Essential Packages

After initializing OPAM and creating a switch, the next step is to update OPAM's package repository and install the tools we'll need for development. These packages provide essential utilities for OCaml programming and project management. Run the following commands:

Listing 1.4: Updating OPAM and Installing Packages

```
# Step 1: Update OPAM to fetch the latest package information
opam update

# Step 2: Install essential development tools
opam install dune utop ounit2 menhir ocaml-lsp-server

# Step 3: Install the custom library for this course
opam install stdlib320/.
```

Here's what each package does:

- dune: A modern build system for OCaml projects. It automates the compilation and management of OCaml code.
- utop: A user-friendly OCaml REPL (Read-Eval-Print Loop) for testing and experimenting with OCaml code interactively.
- ounit2: A testing framework for OCaml, similar to JUnit for Java, used for writing and running unit tests.
- menhir: A parser generator for OCaml, often used for developing compilers and interpreters.

- ocaml-lsp-server: A Language Server Protocol (LSP) implementation for OCaml, enabling features like autocompletion, type inference, and error checking in editors.
- stdlib320/: A custom library created for the CS320 course at Boston University by Nathan Mull. It provides It's a very small subset of the OCaml Standard Library with a bit more documentation. Documentation: https://nmmull.github.io/CS320/....

These will be the main tools used throughout this text.

Creating a Dune Project: Hello, World!

To understand how dune structures projects and facilitates OCaml development, we'll create a simple project called hello_dune. This hands-on example will demonstrate the purpose of each folder and guide you through building, running, and testing an OCaml project.

Step 1: Prepare Your Environment

Before starting, ensure OPAM and your environment are set up. Run the following command to prepare the shell:

Listing 1.5: Preparing Your OPAM Environment

```
eval $(opam env)
```

This ensures that your terminal is configured correctly to work with OCaml and dune.

Step 2: Create the Project

Run the following commands to create a new dune project called hello_dune:

Listing 1.6: Creating the Project

```
mkdir demo # Create a new folder named hello_dune for our project

cd demo # Move into the project directory

dune init project hello_dune # Initialize a new dune project
```

This will generate the following project structure inside the demo folder:

Listing 1.7: Generated Project Structure

For now, we will focus on the bin/ and lib/ folders.

Step 3: Build and Verify the Project

To ensure everything is set up correctly, use the following command to build the project:

Listing 1.8: Building the Project

dune build

This command:

- Compiles the OCaml source files in your project.
- Resolves dependencies and ensures libraries and executables are built in the correct order.
- Creates a build cache to speed up future builds.
- Verifies that your project is configured correctly.

Important Notes:

- You must run dune build every time you make changes to your code to ensure the build reflects your edits.
- Running dune build from any subdirectory within redirect to the project root and build.
- If there are any issues (e.g., syntax errors, missing files, or incorrect configurations), dune will report them.

Step 4: Modify and Run the Program

To modify the program, first open the file bin/main.ml using Vim:

Listing 1.9: Opening the File in Vim

```
vim bin/main.ml
```

This opens the <u>main executable file</u> in the Vim editor. Once the file is open, press i to switch to *Insert Mode* and replace its contents with the following code:

Listing 1.10: Hello, Dune Program

```
let () = print_endline "Hello, Dune!"
```

After editing, press Esc to return to *Normal Mode*, then type :wq to save the changes and exit Vim. Now, run the program using the following command:

Listing 1.11: Running the Program

```
dune exec ./bin/main.exe
```

You should see the output:

Hello, Dune!

Step 5: Add a Library and Explore Its Use

The <code>lib/</code> folder is reserved for reusable code that can be shared across different parts of a project. In object-oriented programming languages like Java, this is analogous to creating static utility classes (e.g., a <code>Math</code> class for reusable mathematical functions).

Steps to Add and Use the Library:

1. Create a new file in the lib/ folder. Important: The name of the file must match the project name. If your project is named hello_dune, the file should be named:

```
vim lib/hello_dune.ml
```

2. Add a reusable function to lib/hello_dune.ml (^ concats strings, + is strictly for integers):

```
let greet name = "Hello, " ^ name ^ "!"
```

3. Verify or update the lib/dune file to expose the library. The name in the dune file should also match the project name:

```
(library (name hello_dune))
```

If this file is already configured with the above content, no changes are needed.

4. Interactively use the library in utop:

```
dune utop
```

Once inside utop, you can interact with the library:

Listing 1.12: Using the Library in Utop

```
Hello_dune.greet "Testing123";;
```

You should see the output:

```
- : string = "Hello, Testing123!".
```

<u>Important</u>: Despite <u>lib/hello_dune.ml</u> being lowercase, it's referenced as <u>Hello_dune</u> in utop (capitalized). More on <u>utop</u> will be discussed later. But you may think of it as a calculator where we can access our functions and libraries.

5. To quit utop, type #quit;; or press Ctrl+d.

Listing 1.13: Quitting utop

#quit;;

6. We may also modify bin/main.ml to use the library:

Listing 1.14: Using the Library in Main

```
let () = print_endline (Hello_dune.greet "Library")
```

7. Build and run the program:

```
dune build
dune exec ./bin/main.exe
```

The output should now be:

```
Hello, Library!
```

What Are Dune Files?

As you explore the project, you'll notice dune files in various folders such as bin/ and lib/. These files are configuration files used by the *Dune build system* to manage how your project is compiled and linked.

1. Dune File in lib/:

Listing 1.15: Library Dune File

```
(library (name hello_dune))
```

This file defines the hello_dune library. Dune compiles the code in lib/hello_dune.ml into a reusable module named Hello_dune, which can be used in other parts of the project.

2. Dune File in bin/:

Listing 1.16: Executable Dune File

```
(executable
(public_name hello_dune)
(name main)
(libraries hello_dune))
```

This file specifies the executable program:

- public_name hello_dune: Defines the name of the program, which you can run with dune exec hello_dune.
- name main: Points to bin/main.ml, which serves as the entry point.
- libraries hello_dune : Links the hello_dune library to the executable.

Step 6: Add Tests

To test the library, we use the test/ folder:

1. Create a new test file:

```
touch test/test_hello.ml
```

2. Add the following code to test/test_hello.ml:

Listing 1.17: Test Code

```
let () =
let open Alcotest in
check string "same message" "Hello from the library!" Hello.message
```

3. Update the test/dune file to include the test:

Listing 1.18: Test Dune File

```
(test
(name test_hello)
(libraries hello alcotest))
```

4. Run the tests:

```
dune runtest
```

If everything is set up correctly, the test will pass.

Summary of Roles

- bin/: Contains the main executable code (e.g., main.ml). - lib/: Contains reusable library code. - test/: Contains tests to verify the project works as expected.

This step-by-step guide demonstrates how **dune** organizes projects and how each folder contributes to OCaml development. By creating and running your own project, you'll gain a deeper understanding of the tools and structure used in OCaml programming.

Bibliography

- [1] Wikipedia contributors. Typing environment wikipedia, the free encyclopedia, 2023. Accessed: 2023-10-01.
- [2] Nathan Mull. Cs320: Concepts of programming languages. Lecture notes, Boston University, Spring Semester, 2025. Boston University, CS Department.
- [3] Wikipedia contributors. Rule of inference Wikipedia, The Free Encyclopedia, 2025. [Online; accessed 22-January-2025].