Зважена лінійна регресія— це регресія, у якій ми по-різному оцінюємо помилку для кожного з навчальних прикладів. Для навчання зваженої лінійної регресії нам потрібно мінімізувати функцію втрат виду:

$$J(\theta) = \frac{1}{2} \sum_{i=1}^{m} \omega^{(i)} (\theta^{\mathsf{T}} x^{(i)} - y^{(i)})^2$$

а) Покажіть, що функція втрат зваженої лінійної регресії $J(\theta)$ також може бути записана у такому вигляді: $J(\theta) = (X\theta - \vec{y})^{\top} W(X\theta - \vec{y})$ де X, \vec{y} визначені так само, як на лекції, а W — діагональна матриця. Поясніть, що таке матриця W та якими будуть її елементи.

Відповідь:

Використаємо той факт, що для будь-якого вектора $z:z^{\top}z=\sum_{i}z_{i}^{2}$, тоді $J(\theta)=\sum_{i=1}^{m}\omega^{(i)}(\theta^{\top}x^{(i)}-y^{(i)})^{2}=(X\theta-\vec{y})^{\top}W(X\theta-\vec{y}), \text{ де }W=\begin{bmatrix}\omega^{(1)}&0&\ddots&0\\0&\omega^{(2)}&\ddots&0\\\ddots&\ddots&\ddots&\ddots&\ddots\\0&\ddots&\ddots&\omega^{(m)}\end{bmatrix},$

діагональна матриця розмірністю $m \times m$

/---/

b) Якщо всі $\omega^{(i)}=1$, тоді, як ми бачили на лекції, нормальне рівняння має вигляд: $X^{\top}X\theta=X^{\top}\vec{y}$, а значення θ , що мінімізує функцію втрат і дає найвищу точність передбачення: $\theta=(X^{\top}X)^{-1}X^{\top}\vec{y}$

Виведіть вираз для знаходження θ у зваженій лінійній регресії. Знайдіть градієнт $\nabla_{\theta}J(\theta)$ і, прирівнявши його до нуля, виведіть нормальне рівняння для знаходження θ . Вираз буде залежати від X,W і \vec{y}

Відповідь:

$$rac{\partial}{\partial heta} J(heta) = 0$$
, тоді $(X^{ op} WX heta - X^{ op} WY) = 0$, отже $heta = (X^{ op} WX)^{-1} (X^{ op} WY)$