## (19)日本国特許庁 (JP)

# 四公開特許公報 四

## (11)特許出願公開番号 特開2002-116500

(P2002-116500A) (43)公開日 平成14年4月19日(2002.4.19)

(51) Int. Cl. <sup>7</sup>

識別記号

FΙ

テーマコート (参考)

G03B 21/00

HO4N 5/74

G03B 21/00

E 5C058

H04N 5/74

D

審査請求 未請求 請求項の数5 OL (全9頁)

(21)出願番号

特願2000-306486(P2000-306486)

(22)出願日

平成12年10月 5 日(2000.10.5)

(71)出願人 000000376

オリンパス光学工業株式会社

東京都渋谷区幡ヶ谷2丁目43番2号

(72) 発明者 井岡 健

東京都渋谷区幡ヶ谷2丁目43番2号 オリ

ンパス光学工業株式会社内

(74)代理人 100076233

弁理士 伊藤 進

Fターム(参考) 5C058 BA23 BA24 BB13 EA03 EA31

## (54) 【発明の名称】画像投影表示装置

#### (57)【要約】

【課題】複数のプロジェクタを用いてシームレスな大画面を実現する際に、オーバーラップ部分の継ぎ目をより一層目立たせなくすることができ、よりシームレスな高精細で高画質な投射画像を実現すること。

【解決手段】複数のプロジェクタの投影画像を貼り合わせて構成する高精細大画面投影表示装置において、全ての複数のプロジェクタ3a~3dからスクリーン4の全ての投影領域にテスト画像を実際に投影した状態で、投影画像を画像撮影部5にて撮影し、該撮影テスト画像が重複領域を含めた全投影領域で目標とする明るさになるように、補正データ算出部16で補正データを算出するものであり、これにより、重複領域とそうでない領域の明るさがスムーズになるように補正することができ、よりシームレスで高精細・高画質な投射画像を得ることが可能となる。具体的には、全投影領域で均一な明るさ又は連続した明るさになるように補正する。



1

#### 【特許請求の範囲】

【請求項1】複数のプロジェクタと、

互いに重複領域を有する複数のプロジェクタの投影画像 の結像面としての投影スクリーンと、

所定のテスト画像を記憶するテスト画像記憶部と、

前記所定のテスト画像を前記それぞれのプロジェクタに より前記投影スクリーンに投影した投影テスト画像を取 得する画像撮影部と、

取得したテスト画像から、重複領域を含めた全投影領域 で目標とする明るさになるように、前記各プロジェクタ 10 の入力画像を補正するための補正データを算出する補正 データ算出部と、

算出した補正データを記憶する補正データ記憶部と、 前記補正データを用いてそれぞれのプロジェクタに入力 される画像に対して補正を行なう画像補正部と、

を有したことを特徴とする画像投影表示装置。

【請求項2】前記補正データ算出部は、重複領域を含め た全投影領域で均一な明るさになるように、前記各プロ ジェクタの入力画像を補正するための補正データを算出 することを特徴とする請求項1記載の画像投影表示装 置。

【請求項3】前記補正データ算出部は、重複領域を含め た全投影領域で連続した明るさになるように、前記各プ ロジェクタの入力画像を補正するための補正データを算 出することを特徴とする請求項1記載の画像投影表示装 置。

【請求項4】前記補正データ記憶部は初期状態では第1 の補正データとして初期化補正データを記憶しており、 前記補正データ算出部は、所定のテスト画像を第1の補 正データで補正して投影させ該投影画像を前記画像撮影 30 部で撮影した画像から、第2の補正データを算出し、第 2の補正データから新たに第1の補正データを更新する 必要があるかどうかを判断し、必要と判断した場合、前 記第2の補正データと第1の補正データの乗算結果を新 たな第1の補正データとして前記補正データ記憶部に記 億することを特徴とする請求項1記載の画像投影表示装 置。

【請求項5】前記補正データ算出部は、第2の補正デー タから新たに第1の補正データを作成する必要がないと 判断されるまで、第1の補正データを更新する作業を繰 40 り返し行うことを特徴とする請求項4記載の画像投影表 示装置。

#### 【発明の詳細な説明】

#### [0001]

【発明の属する技術分野】本発明は、複数のプロジェク タを用いて、シームレスな高精細で高画質な投射画像を 得るための画像投影表示装置に関するものである。

#### [0002]

【従来の技術】従来、画像をスクリーン上に拡大して映

投射型ディスプレイ装置がある。

【0003】また、近年は液晶パネルをライトバルブと して用いた液晶投射型ディスプレイ装置が開発されてい る。このような液晶投射型ディスプレイ装置は、二次元 表示を行う液晶パネルにビデオ信号を再生し、光源から の光を上記液晶パネルに再生した二次元映像で変調し て、これを光学系でスクリーン上に拡大投射するもので ある。

【0004】一方、従来、大画面の投射画像を実現する

ために、複数の液晶プロジェクタを用いたマルチスクリ ーン方式の投射型ディスプレイ装置がある。この方式 は、複数のプロジェクタそれぞれに対応した複数のスク リーンが縦横に配列されて大画面が構成されている。し かしながら、マルチスクリーン方式の投射型ディスプレ イ装置では、各スクリーンには枠が設けられており、各 スクリーン間の境界部分が目立つという欠点があった。 【0005】そこで、近年では、複数の液晶プロジェク タを用いて1枚のスクリーン上に各プロジェクタ画像を 並べて投影し大画面に表示する画像投影システムが開発 20 されている。このような画像投影システムとして、特開 平9-326981号公報に記載されているものがあ る。該公報には、複数のプロジェクタからの画像を1枚 のスクリーン上に貼り付ける際に各投射画像の隣接部分 はオーバーラップさせ、オーバーラップ部分を目立たせ ないように大画面を実現する方法や、各プロジェクタの スクリーンに対する配置位置の違いによる投射画像の幾 何的な歪みを補正する方法が述べられている。

【0006】しかしながら、上記の特開平9-3269 81号公報の図3 (e) に述べられている、複数の投射 画像のオーバーラップ部分を目立たせないようにするた めの補正係数の算出技術は、各画像を個別にスクリーン 投射した画像の明るさレベルに基づいてオーバーラップ 部分の明るさレベルは両画像の明るさレベルを加算した ものになるとの仮定の基に補正係数を求め、オーバーラ ップ部分の各投影画像にそれぞれの補正係数をかけて補 正を行うものであるため、実際に全ての複数のプロジェ クタから1つのスクリーン上の全投影領域に投影した画 像間に生じるオーバーラップ部分(継ぎ目)を完全に目 立たなくさせることは出来なかった。

#### [0007]

【発明が解決しようとする課題】上記の如く、複数の液 晶プロジェクタを用いて1枚のスクリーン上に各プロジ ェクタ画像を並べて投影し大画面に表示する画像投影シ ステムでは、複数の投射画像のオーバーラップ部分を必 ずしも完全に目立たせなくせることは出来なかった。

【0008】そこで、本発明は上記の問題に鑑みてなさ れたもので、複数のプロジェクタを用いてシームレスな 大画面を実現する際に、オーバーラップ部分の継ぎ目を より一層目立たせなくすることができ、よりシームレス し出す投射型の画像表示装置として、陰極線管を用いた 50 な高精細で高画質な投射画像を得ることができる画像投 影表示装置を提供することを目的とするものである。 【0009】

【課題を解決するための手段】請求項1の発明による画像投影表示装置は、複数のプロジェクタと、互いに重複領域を有する複数のプロジェクタの投影画像の結像面としての投影スクリーンと、所定のテスト画像を記憶するテスト画像記憶部と、前記所定のテスト画像を前記それぞれのプロジェクタにより前記投影スクリーンに投影した投影テスト画像を取得する画像撮影部と、取得したテスト画像から、重複領域を含めた全投影領域で目標とす 10 る明るさになるように、前記各プロジェクタの入力画像を補正するための補正データを算出する補正データ算出部と、算出した補正データを記憶する補正データ記憶部と、前記補正データを用いてそれぞれのプロジェクタに入力される画像に対して補正を行なう画像補正部と、を有したことを特徴とする。

【0010】請求項2の発明は、請求項1の画像投影表示装置において、前記補正データ算出部は、重複領域を含めた全投影領域で均一な明るさになるように、前記各プロジェクタの入力画像を補正するための補正データを20算出することを特徴とする。

【0011】請求項3の発明は、請求項1記載の画像投 影表示装置において、前記補正データ算出部は、重複領 域を含めた全投影領域で連続した明るさになるように、 前記各プロジェクタの入力画像を補正するための補正デ ータを算出することを特徴とする。

【0012】請求項1~3の発明によれば、各画像を個別に投射した画像のレベルに基づいて補正係数を求め、重複領域(オーバーラップ部分)の各投影画像にそれぞれの補正係数をかけて補正を行う従来の技術と比べると、本発明では、全ての複数のプロジェクタから全ての投影領域に実際にテスト画像を投影した状態で、オーバーラップ部分を含めた全投影領域で目標とする明るさいなるように、補正データを算出するものであり、よりでなるように、補正データを算出するものであり、よりになる。具体的には、オーバーラップ部分を含めた全投影領域で連続した明るさになるように補正したりする。

【0013】請求項4の発明は、請求項1の画像投影表 40 示装置において、前記補正データ記憶部は初期状態では 第1の補正データとして初期化補正データを記憶してお り、前記補正データ算出部は、所定のテスト画像を第1 の補正データで補正して投影させ該投影画像を前記画像 撮影部で撮影した画像から、第2の補正データを算出し、第2の補正データから新たに第1の補正データを更 新する必要があるかどうかを判断し、必要と判断した場合、前記第2の補正データと第1の補正データの乗算結果を新たな第1の補正データとして前記補正データ記憶 部に記憶することを特徴とする。 50

【0014】請求項5の発明は、請求項4記載の画像投 影表示装置において、前記補正データ算出部は、第2の 補正データから新たに第1の補正データを作成する必要 がないと判断されるまで、第1の補正データを更新する 作業を繰り返し行うことを特徴とする。

【0015】請求項4及び5の発明によれば、第1の補正データで補正したテスト画像を投影させ、その投影画像を画像撮影部で撮影した画像から、第2の補正データを算出し、その算出値が目標となる明るさの所定の誤差範囲内か否かを判断し、所定範囲内に入っていなければ、第2の補正データに最初の第1の補正データを掛けて、新たな第1の補正データとして前記補正データ記憶部に記憶させ、入力テスト画像に対して再び補正をかけるようにする。そして、第2の補正データから新たに第1の補正データを作成する必要がないと判断されるまで(即ち第2の補正データが所定の誤差範囲内に入るまで)、第1の補正データを更新する作業を繰り返し行う。このようなフィードバック補正を行うことにより、全投影領域におけるオーバーラップ部分(輝度むら部分)をより目立たなくさせることが可能となる。

#### [0016]

【発明の実施の形態】発明の実施の形態について図面を 参照して説明する。図1で本発明の一実施の形態の画像 投影表示装置の要部構成を説明する前に、図2を参照し て本発明に係る画像投影表示装置の概略構成を説明す る。

【0017】図2に示されるように、本実施の形態に係 る画像投影システムは、大きく分けて、高精細な画像デ ータを生成する画像生成部としてのパーソナルコンピュ ータ(以下、パソコンと略記する)1と、パソコン1か らの高精細画像データを複数(図では4つ)の使用する プロジェクタに応じて処理・分割して出力すると共に投 影されたスクリーン画像を撮影した画像に基づいて各分 割出力に対して重複領域(オーバーラップ部分)を含め た全投影領域で目標とする明るさになるように補正を行 なうコントローラ部2と、複数のプロジェクタ3a~3 dと、スクリーン4に投影されたテスト画像などを撮影 するためのディジタルカメラなどの画像撮影部5とで構 成されている。上記のプロジェクタ3a~3dとして は、液晶プロジェクタ、或いはDLP (Digital Light Processingの略で、光半導体であるDMD(Digital Microm irror Device)を中核としたデジタル映像技術) が使用 される。

【0018】このような構成において、パソコン1で作成・出力された高精細画像データはコントローラ部2へと出力される。コントローラ部2では、各プロジェクタに高精細画像データのどの部分を出力するかが決められ、各プロジェクタ画像に対して補正データを用いてオーバーラップ部分を含めた全投影領域で目標とする明る50 さになるように補正の処理が行われる。必要な前記補正

6

データは、予め各プロジェクタからテスト画像をスクリーン4に投影し、その投影画像を画像情報取得用カメラ5で撮影し、その撮影画像データに基づいて補正データが作成される。補正データの算出方法については後述する。

【0019】図1は本発明の一実施の形態の画像投影表示装置のブロック図を示している。図2と同一部分には同一符号を付して説明する。

【0020】図1に示す画像投影表示装置は、例えばパ ソコンからの高精細画像データが入力される入力端子1 10 1と、複数のプロジェクタ (3 a ~ 3 d) からなるプロ ジェクタ部14と、入力画像を各プロジェクタに対応し て分割する入力画像分割部12と、前記補正データを用 いてそれぞれのプロジェクタに入力される画像に対して 補正を行なう画像補正部13と、互いにオーバーラップ 領域を有する複数のプロジェクタの投影画像の結像面と しての投影スクリーン4と、所定のテスト画像を記憶す るテスト画像記憶部15と、所定テスト画像を前記それ ぞれのプロジェクタにより上記投影スクリーン4に投影 した投影画像を取得する画像撮影部5と、取得したテス 20 ト画像から、オーバーラップ領域を含めた全投影領域で 目標とする明るさになるように、前記各プロジェクタの 入力画像を補正するための補正データを算出する補正デ ータ算出部16と、算出した当該補正データを記憶する 補正データ記憶部17と、を有して構成されている。

【0021】このような構成において、入力端子11に入力された高精細画像データは入力画像分割部12で各プロジェクタに対応して分割される。各プロジェクタに対応して分割された画像データは画像補正部13にてオーバーラップ領域を含めた全投影領域で目標とする明る 30 さになるように補正データを用いて補正処理される。

【0022】なお、ここで述べる本画像投影表示装置では、各プロジェクタ間の色差やガンマ特性が予め補正されているものとし、その上で画像補正部13にて投影画像の明るさがオーバーラップ部分を含めた全投影領域で目標とする明るさになるように補正を行うものである。

【0023】補正処理されたプロジェクタ毎の画像データは、さらに図示しないD/A変換部にてアナログ信号へ変換された後、プロジェクタ部 14のそれぞれのプロジェクタ( $3a\sim3d$ )に供給される。そして、各プロ 40ジェクタ( $3a\sim3d$ )により各プロジェクタ画像がスクリーン4上に投影される。

【0024】テスト画像記憶部15は、各プロジェクタから投影するための単色画像である中間調のグレーや白色のテスト画像を記憶している。上記の補正データは、上記テスト画像記憶部15から読み出したテスト画像をスクリーン4上に投影し、投影されたテスト画像をデジタルカメラ等の画像撮影部5にて撮影し、撮影した画像データから補正データ算出部16でオーバーラップ部分を含めた全投影領域で目標とする明るさになるように各50

プロジェクタの入力画像を補正する補正値を算出することによって求められる。そして、算出した補正データを補正データ記憶部17に記憶する。補正データ算出部16における補正データの算出方法については、後述する。

【0025】上記投影スクリーン4は、図2に示したような平面型スクリーンのほか、図3(a)に示すような円筒面型(アーチ型という)、図3(b)に示すような球面型(ドーム型という)であってもよい。

【0026】上記テスト画像記憶部15には、スクリーンの全投影領域での明るさ補正を行うためのグレー或いは白色のテスト画像が記憶されている。しかし、各プロジェクタ間のR, G, B各色についての色差やガンマ特性を補正した後であれば、R, G, Bどの色を用いてもよい。ただし、R, G, Bの色の特性に多少の差がどうしてもあることが考えられるので、そのときはR, G, Bの色が全て含まれているグレーとか白色光で補正することが望ましい。なお、オーバーラップ部分の明るさを概略的に補正するのに遮光板を使用する場合には、プロジェクタ投影画像のバイアス(バイアスとは、入力信号が0レベルの黒信号を入力したときに投影画像が黒にならず明るさ(所謂、オフセット)を持っているが、そのオフセット量)補正を行うための黒色画像を、テスト画像としてさらに記憶しておく必要がある。

【0027】上記のオーバーラップ部分を含めた全投影 領域で目標とする明るさになるように各プロジェクタの 入力画像を補正する補正データを算出するには、(1)オーバーラップ部分を含めた全投影領域で均一な明るさに なるように補正データを算出する方法と、(2)オーバーラップ部分を含めた全投影領域で連続した明るさになるように補正データを算出する方法と、がある。

【0028】何れの補正データ算出方法を採るにせよ、 複数の投影画像におけるオーバーラップ部分では、少な くとも2つの投影画像が重なるので、明るさが2倍以上 になると考えられる。このオーバーラップ部分での明る さ倍増は、2つのプロジェクタからそれぞれ黒色画像 (即ち各プロジェクタへの入力信号が 0 レベルの黒画 像)を入力した時にも同様に前述の各プロジェクタのオ フセット量に基づき2倍の明るさを持って表示される。 そこで、元来、黒色投影時のオフセットに基づくオーバ ーラップ領域の明るさ倍増を補正するために、オーバー ラップ部分の投影光の一部を遮光板にて遮光することが 行われている。これは黒色時のオフセットは入力信号が 0 レベルであるにもかかわらず発生するものであるの で、該オフセットを入力信号自体のレベルをこれ以上下 げて補正することは不可能である。それ故、物理的に投 影光を遮光する方法でオフセットを補正することにな り、投射レンズを通過した投影光路中に光の一部を遮る ための遮光板を入れることが行われている。

【0029】以上のことを図4及び図5を用いて説明す

る。図2に示したように複数のプロジェクタからの画像 がスクリーン4上で重なり合うように投影した場合に生 ずるオーバーラップ部分については、例えば2つのプロ ジェクタ3a, 3bに入力する信号レベルを共に最低レ ベル即ち黒レベルとしたときには、図4(a) に示す ように黒色画像がスクリーン上で重なり、図4(b)の 実線に示すように各プロジェクタ3a, 3bのオフセッ トに基づき上記オーバーラップ部分の明るさはオフセッ ト量が倍増した明るさとなるが、上記オーバーラップ部 分の明るさを下げようとして各プロジェクタの入力画像 10 信号を下げようとしても入力信号レベルをこれ以上下げ て補正することはできない。

【0030】しかしながら、各プロジェクタのオフセッ トに基づくオーバーラップ部分の明るさを補正するに は、2つの方法が考えられている。第1の方法は、オー バーラップ部分の入力信号を0にできないので、逆にオ ーバーラップ部分以外部分の明るさを持ち上げてオーバ ーラップ部分と同等の明るさ(図4(b)の二点鎖線C にて示す)とすることにより、複数のプロジェクタによ る全投影領域に亘って明るさをフラットにするものであ 20 る。この第1の方法で複数のプロジェクタ全投影領域の バイアスを補正するには、1つのプロジェクタについて 上記黒レベルの画像をスクリーン4に投影し(このとき 測定するプロジェクタ以外の他のプロジェクタは電源を 切るか或いはレンズキャップをして完全に遮光する)、 その投影画像を画像撮影部5としてのカメラで撮影し、 撮影した画像データを補正データ算出部16内のメモリ に記憶する。次に同様にして、他のプロジェクタについ て上記黒レベルの画像をスクリーン4に投影し(このと き測定するプロジェクタ以外の他のプロジェクタは電源 30 ある。 を切るか或いはレンズキャップをして完全に遮光す る)、その投影画像を画像撮影部5で撮影し、撮影した 画像データを補正データ算出部16内のメモリに記憶す る。そして、補正データ算出部16にて2つのプロジェ クタの撮影データを加算することで、オーバーラップ部 分の明るさを算出する。そして、算出されたオーバーラ ップ部分の明るさにより、各プロジェクタの投影画像に おけるオーバーラップ部分以外の明るさレベルをオーバ ーラップ部分の明るさレベルと同じにする補正データを 作成し、得られた補正データを用いて入力信号に対して 40 補正をかけることによってオーバーラップ部分以外の部 分の明るさをオーバーラップ部分と同等の明るさにする ことができる。しかし、この方法はオフセットに基づく 明るさの不均一は解消されるものの、オフセットが除か れるものではないため入力画像が黒色であるのに真黒に ならないという難点がある。第2の方法は、複数のプロ ジェクタから投影される画像のオーバーラップ部分に相 当する光路を物理的に遮光するものである。具体的に は、図5に示すように各プロジェクタ3a、3bの投射 レンズを通して投射された光路上に遮光板31,32を 50 出された明るさの例えば平均値である。補正データ算出

設けてオーバーラップ部分の光量を減らし(図4 (b) の点線Dにて示す)、黒色時のオフセットを補正する (フラットな特性にする)。

【0031】ところで、上記の第2の方法である遮光板 によるオフセット補正では、図4(b)の点線Dにて示 すように、明るさがフラットな特性に補正されればよい が、実際には図4(c)に示すようにオーバーラップ部 分の明るさがフラットにならず変動分を持った明るさレ ベルとなったり、或いは遮光板31,32をそれぞれ投 射光路中に深く入れ過ぎて図4(d)に示すようにオー バーラップ部分の明るさがオーバーラップ部分以外の領 域の明るさよりも逆に下がってしまうという不具合を生 じる。

【0032】それ故、遮光板を用いてオーバーラップ部 分の明るさを補正することができるが、図4 (c) や図 4 (d) のように完全なものとはならず図4 (b) の点 **線Dのようにフラットにするためには遮光板を何度も調** 整しなければならず困難である。その結果、各プロジェ クタからテスト画像を投影してオーバーラップ部分を含 めた全投影領域の明るさ補正を行うためには、オーバー ラップ部分については遮光板を用いて概略フラットな特 性にしておき、その他の画面全体に亘って存在する明る さのむら(オーバーラップ部分の補正できずに存在する 明るさむらも含む)についてはその全投影された状態で の補正データを得るようにする。つまり、実際に全画面 に投影された画像を撮影した状態のままで画面全域に亘 る明るさの目標値を設定して該目標値になるように補正 をかけることにより、画面の全領域に亘るどのような明 るさのむら形状に対してもフラットにすることが可能で

【0033】まず、(1)オーバーラップ部分を含めた全 投影領域で均一な明るさになるように補正データを算出 する方法について、図6を参照して説明する。

【0034】図6は本発明における補正データ算出方法 の第1の実施の形態を示している。説明を簡単にするた めに、図5に示すように2つのプロジェクタ3a,3b の図示しない投射レンズを通して投射された光路上に遮 光板31,32を設けてオーバーラップ部分に物理的に オフセット補正をかける構成について説明する。

【0035】図6において、横軸はスクリーン4上の投 影領域、縦軸は明るさ(輝度)を示している。曲線Aは プロジェクタ3aの輝度変化、曲線Bはプロジェクタ3 bの輝度変化を示している。曲線A, Bのそれぞれの輝 度は、遮光板の影響でオーバーラップ領域で光量が減少 している。曲線Cは測定したオーバーラップ領域の明る さを示している。そして、直線Hは投影領域の明るさを 均一にする、目標となる明るさの目標値を示している。 この目標値Hは、画像情報取得用カメラ5で取得した全 投影領域の画像データを基に補正データ算出部16で算

50

部16では、オーバーラップ領域を含めて測定した輝度 レベルA, C, Bと輝度の目標値Hとの差分を求め、こ の輝度差分値をそのまま補正データとして或いは該差分 値を解消する補正係数をさらに求めて補正データとし、 全投影領域について補正処理を行なう。これにより、オ ーバーラップ領域とそれ以外の領域とで輝度を同じにす ることができ、2つの投影画像の境界となるオーバーラ ップ部分は目立たなくなる。

【0036】次に、(2)オーバーラップ部分を含めた全 投影領域で連続した明るさになるように補正データを算 10 出する方法について、図7を参照して説明する。

【0037】図7は本発明における補正データ算出方法 の第2の実施の形態を示している。図7において、横軸 はスクリーン4上の投影領域、縦軸は明るさ(輝度)を 示している。曲線Aはプロジェクタ3aの輝度変化、曲 線Bはプロジェクタ3bの輝度変化を示している。曲線 A, Bのそれぞれの輝度は、遮光板の影響でオーバーラ ップ領域で光量が減少している。曲線Cは測定したオー バーラップ領域の明るさを示している。そして、曲線C 1 はオーバーラップ領域の輝度変化Cがオーバーラップ 20 部分以外の2つの領域における輝度変化A, Bとスムー ズにつなぐための目標とする輝度変化を示しており、オ ーバーラップ領域の境界a, bを適当な曲線でつないだ ものである。補正データ算出部16では、輝度変化A, Bとスムーズにつなぐための目標となるオーバーラップ 領域での輝度変化C1 を輝度変化A, Bを参照して求 め、測定した輝度レベルCと輝度の目標曲線C1 との差 分を算出し、この輝度差分値をそのまま補正データとし て或いは該差分値を解消する補正係数をさらに求めて補 正データとし、オーバーラップ領域について補正処理を 30 行なう。これにより、オーバーラップ領域とそれ以外の 領域とで輝度変化がスムーズに(滑らかに)変化し、2 つの投影画像の境界となるオーバーラップ部分を目立た なくすることができる。

【0038】図8は本発明における補正データ算出方法 の第3の実施の形態を示している。図8において、横軸 はスクリーン4上の投影領域、縦軸は明るさ(輝度)を 示している。曲線Aはプロジェクタ3aの輝度変化、曲 線Bはプロジェクタ3bの輝度変化を示している。曲線 A, Bのそれぞれの輝度は、遮光板の影響でオーバーラ 40 ップ領域で光量が減少している。曲線Cは測定したオー バーラップ領域の明るさを示している。そして、直線C 2 はオーバーラップ領域の輝度変化Cがオーバーラップ 部分以外の2つの領域における輝度変化A, Bとスムー ズにつなぐための目標とする輝度変化を示しており、オ ーバーラップ領域の境界a, bを直線でつないだもので ある。補正データ算出部16では、輝度変化A、Bとス ムーズにつなぐための目標となるオーバーラップ領域で の直線輝度変化C2 を隣接領域の輝度変化A, Bに基づ いて求め、測定した輝度レベルCと目標輝度レベルC2

との差分を算出し、この輝度差分値をそのまま補正デー タとして或いは該差分値を解消する補正係数をさらに求 めて補正データとし、オーバーラップ領域について補正 処理を行なう。これにより、オーバーラップ領域とそれ 以外の領域とで輝度変化がスムーズに (滑らかに)変化 し、2つの投影画像の境界となるオーバーラップ部分を 目立たなくすることができる。

【0039】なお、図9は、従来の補正データを得る際 の各プロジェクタの投影方法を説明する図を示してい る。複数の投射画像のオーバーラップ部分を目立たせな いようにするための補正係数の従来の算出技術では、各 画像を個別にスクリーン投射した画像の明るさレベルに 基づいてオーバーラップ部分の明るさレベルは両画像の 明るさレベルを加算したものになるとの仮定の基に補正 係数を求める際に、各プロジェクタ3a, 3bからの各 画像を個別にスクリーン投射して画像の明るさレベルを 測定する必要があったが、その際測定するプロジェクタ 以外のプロジェクタにレンズキャップ33をして、完全 に遮光する必要があり、作業が複雑であった。

【0040】図10は図1の実施の形態を本発明の他の 実施の形態の画像投影表示装置のブロック図を示してい る。図1と同一部分には同一符号を付して説明する。

【0041】図10に示す画像投影表示装置は、例えば パソコンからの髙精細画像データが入力される入力端子 11と、複数のプロジェクタ(3a~3d)からなるプ ロジェクタ部14と、入力画像を各プロジェクタに対応 して分割する入力画像分割部12と、前記補正データを 用いてそれぞれのプロジェクタに入力される画像に対し て補正を行なう画像補正部13Aと、互いにオーバーラ ップ領域を有する複数のプロジェクタの投影画像の結像 面としての投影スクリーン4と、所定のテスト画像を記 憶するテスト画像記憶部15と、所定テスト画像を前記 それぞれのプロジェクタにより上記投影スクリーン4に 投影した投影画像を取得する画像撮影部5と、取得した テスト画像から、オーバーラップ領域を含めた全投影領 域で目標とする明るさになるように、前記各プロジェク タの入力画像を補正するための補正データを算出する補 正データ算出部16と、算出した当該補正データを記憶 する補正データ記憶部17と、を有して構成されてい る。

【0042】図10において図1と異なる点は、(1)画 像補正部13Aに対しては、パソコン等の画像生成部か らの高精細画像を投影する際に、入力画像分割部12か らの各プロジェクタ用の入力画像を入力し、入力した各 プロジェクタ用の入力画像を補正データ記憶部17から の補正データにて補正して各プロジェクタに供給する構 成としているが、図10ではそのほかに、投影スクリー ン4における全投影領域での明るさ補正を行う際におい ても、画像補正部13Aに対してテスト画像記憶部15 からのテスト画像を入力し、入力した各プロジェクタ用 のテスト画像を補正データ記憶部17からの補正データにて補正して各プロジェクタに供給する構成としていること、(2)補正データ記憶部17は、第1の補正データ記憶部17Aと初期状態での補正データ(何も補正しない状態での補正データであるので、例えば補正係数

'1'の補正データ)を記憶している初期化補正データ 記憶部17Bとで構成されていることと、(3)補正デー 夕算出部16は、第2の補正データ算出部16Aと第1 の補正データ更新判断部16Bと第1と第2の補正デー 夕掛け算部16Cとで構成されていること、である。

【0043】このような図10の構成においては、図1の場合とは、テスト画像を投影することによって補正データを算出する方法が異なってくるので、補正データの作成動作を中心に、図11のフローチャートを参照して説明する。

【0044】まず、ステップS1において、補正データ 記憶部17内の第1の補正データを初期化補正データに て初期化する。次に、ステップS2では、所定のテスト 画像を画像補正部13Aにて第1の補正データで補正し て、各プロジェクタからスクリーン4に投影する。そし 20 て、投影したテスト画像を画像撮影部5にて撮影する

(ステップS 3)。ステップS 4では、補正データ算出 部16は、画像撮影部5で撮影した画像から、第2の補 正データを算出し、ステップS 5に進む。ステップS 5では、算出した第2の補正データから新たに第1の補正 データを更新する必要があるかどうかを判断する。S 5で更新が必要と判断された場合、前記第2の補正データと第1の補正データとを乗算する(ステップS 6)。そして、ステップS 7において、乗算結果を新たな第1の補正データとして補正データ記憶部17に記憶する。そ 30して、ステップS 2に戻り、再び第1の補正データでテスト画像を補正し、投影する。その後は、ステップS 2~S 7の動作を繰り返し、S 5で第2の補正データから新たに第1の補正データを作成する必要がないと判断されるまで、第1の補正データを更新する作業を繰り返し行う。

【0045】図1の補正データの作成動作では、テスト 画像を各プロジェクタに一度投影するだけで、画像撮影 部にて取得したテスト画像から全投影領域で目標とする 明るさとなるような補正データを作成するものであっ た。これに対して、図10の補正データの作成動作で は、図1の補正データの作成動作を一歩進めて、一度作成して得られた補正データによってテスト画像を補正 し、再びその補正したテスト画像を投影し、再度、画像 撮影部5にて取得したテスト画像の明るさが全投影領域 で目標となる明るさのしきい範囲(つまり許容範囲)に 入っているか否かを見てその範囲になければ最初の第1 の補正データを更に高い精度の補正データとするように フィードバック補正を行うものである。

#### [0046]

【発明の効果】以上述べたように本発明の画像投影表示装置によれば、複数のプロジェクタを用いてシームレスな大画面を実現する際に、オーバーラップ部分の継ぎ目をより一層目立たせなくすることができ、よりシームレスな高精細で高画質な投射画像を実現することができる。

### 【図面の簡単な説明】

10 【図1】本発明の一実施の形態の画像投影表示装置のブロック図。

【図2】本発明に係る画像投影システムの概略構成を示す図。

【図3】図1における投影スクリーンの曲面形状のものを示す図。

【図4】遮光板によるオーバーラップ部分の明るさ補正 を説明する図。

【図5】黒色画像がスクリーン上で重なった場合の、各 プロジェクタのオフセットに基づくオーバーラップ部分 のオフセット量、及びオーバーラップ部分の倍増オフセ ット量を補正する方法を説明する図。

【図6】図1の実施の形態における全投影領域での明る さ補正方法の第1の実施の形態を説明する図。

【図7】図1の実施の形態における全投影領域での明る さ補正方法の第2の実施の形態を説明する図。

【図8】図1の実施の形態における全投影領域での明る さ補正方法の第3の実施の形態を説明する図。

【図9】従来の補正データを得る際の各プロジェクタの 投影方法を説明する図。

0 【図10】本発明の他の実施の形態の画像投影表示装置 のブロック図。

【図11】図10の実施の形態における補正データ作成動作を説明するフローチャート。

#### 【符号の説明】

3 a ~ 3 d … プロジェクタ

4…投影スクリーン

5…画像撮影部

11…画像データ入力端子

12…入力画像分割部

0 13…画像補正部

14…プロジェクタ部

15…テスト画像記憶部

16…補正データ算出部

16A…第2の補正データ算出部

16B…第1の補正データ更新判断部

16 C…第1と第2の補正データ掛け算部

17…補正データ記憶部

17A…第1の補正データ記憶部

12





【図10】



【図11】

