Практические задания по курсу "Нейронные сети"

Слеповичев И.И. 01.10.2021

Общие требования к выполнению заданий

- 1. Допустимые языки реализации: C#, Python, C++.
- 2. Каждое задание реализуется отдельной программой. Рекомендуемые названия nntask1, nntask2, и т.д.
- 3. Программа запускается в консольном режиме с параметрами: nntask1 input1=имя_входного_файла1 input2=имя_входного_файла2 output1=имя_выходного_файла1 output2=имя_выходного_файла2 Если второй входной файл или второй выходной файл отсутствуют соответствующий параметр пропускается.
- 4. Игнорировать лишние пробелы и символы табуляции во входном файле. Кодировка входного/выходного файла задания UTF-8.
- 5. Результат выполнения практических заданий должен быть оформлен в виде отчета. Форма отчета: титульный лист, описания задач, пример исполнения программы по каждому заданию.

Описание заданий

1. Создание ориентированного графа

На входе: текстовый файл с описанием графа в виде списка дуг:

где a_i - начальная вершина дуги i, b_i - конечная вершина дуги i, n_i - порядковый номер дуги в списке всех заходящих в вершину b_i дуг.

На выходе:

- а) Ориентированный граф с именованными вершинами и линейно упорядоченными дугами (в соответствии с порядком из текстового файла).
 - б) Сообщение об ошибке в формате файла, если ошибка присутствует.

Способ проверки результата:

а) Сериализованная структура графа в формате XML или JSON.

Пример:

б) Сообщение об ошибке с указанием номера строки с ошибкой во входном файле.

2. Создание функции по графу

На входе: ориентированный граф с именованными вершинами как описано в задании 1.

На выходе: линейное представление функции, реализуемой графом в префиксной скобочной записи:

Способ проверки результата:

- а) выгрузка в текстовый файл результата преобразования графа в имя функции.
- б) сообщение о наличии циклов в графе, если они присутствуют.

3. Вычисление значения функции на графе

На входе:

- а) Текстовый файл с описанием графа в виде списка дуг (смотри задание 1).
- б) Текстовый файл соответствий арифметических операций именам вершин:

```
a_1: операция_1a_2: операция_2
```

...

a_n: операция_n

где а_і - имя і-й вершины, операция_і - символ операции, соответствующий вершине а_і.

Допустимы следующие символы операций:

- + сумма значений,
- * произведение значений,

ехр – экспонирование входного значения,

число – любая числовая константа.

На выходе: значение функции, построенной по графу а) и файлу б).

Способ проверки результата: результат вычисления, выведенный в файл.

4. Построение многослойной нейронной сети

На входе:

а) Текстовый файл с набором матриц весов межнейронных связей:

```
\begin{split} &M1:[M1[1,1],\,M1[1,2],...,\,M1[1,n]],\,...,\,[M1[m,1],\,M1[m,2],...,M1[m,n]]\\ &M2:[M2[1,1],\,M2[1,2],...,\,M2[1,n]],\,...,\,[M2[m,1],\,M2[m,2],...,M2[m,n]]\\ &...\\ &Mp:[Mp[1,1],\,Mp[1,2],...,\,Mp[1,n]],\,...,\,[Mp[m,1],\,Mp[m,2],...,Mp[m,n]] \end{split}
```

б) Текстовый файл с входным вектором в формате:

На выходе:

а) Сериализованная многослойная нейронная сеть (в формате XML или JSON) с полносвязной межслойной структурой.

Файл с выходным вектором – результатом вычислений НС в формате:

в) Сообщение об ошибке, если в формате входного вектора или файла описания НС допущена ошибка.

5. Реализация метода обратного распространения ошибки для многослойной HC

На входе:

- а) Текстовый файл с описанием НС (формат см. в задании 4).
- б) Текстовый файл с обучающей выборкой:

```
[x11, x12, ..., x1n] -> [y11, y12, ..., y1m] ...
[xk1, xk2, ..., xkn] -> [yk1, yk2, ..., ykm]
```

Формат описания входного вектора x и выходного вектора y соответствует формату из задания 4.

в) Число итераций обучения (в строке параметров).

На выходе:

Текстовый файл с историей N итераций обучения методом обратного распространения ошибки:

1 : Ошибка1 2 : Ошибка2

...

N : ОшибкаN