Homework 5

Mu-Ruei Tseng

September 10, 2024

1 Question 1

Your mobile robot wants to travel from x_I to x_G in the environment below.

- 1. Show the path that would be followed if the robot executed the **Bug1** algorithm for this navigation task. Draw neatly, especially if the path overlaps itself so that your answer is unambiguous. Label the hit points as $H_1, H_2, ...$ and the leave points as $L_1, L_2, ...$
- 2. Show the path that would be followed if the robot executed the **Bug2** algorithm for this navigation task. Draw neatly, especially if the path overlaps itself so that your answer is unambiguous. Label the hit points as $H_1, H_2, ...$ and the leave points as $L_1, L_2, ...$

1.1 Solution

1.1.1 Bug1 Algorithm

Bug 1 algorithm can be broken down into 4 steps:

- 1. Move toward the goal until reaching an obstacle.
- 2. Turn left and follow the obstacle boundary. Keep track of which point on the boundary is closest to the goal.
- 3. Return to this point, following the obstacle boundary in whichever direction is shorter.
- 4. Repeat to 1. until the robot reaches the goal.

To illustrate, we introduce several notations:

• H_i : The Hit point to obstacle i.

- L_i : The Leave point, i.e. the point on the obstacle i boundary that is closest to x_G
- d_i^L : The distance traveled when making a left turn at point H_i to travel to L_i .
- d_i^R : The distance traveled when making a right turn at point H_i travel to L_i .

Figure 1 shows the navigation when we hit the first obstacle. Here is a step-by-step breakdown:

Figure 1: When the robot encounters the first obstacle. The number indicates the path sequence that the robot takes.

The robot first follows the shortest available path from x_I to H_G and reaches obstacle 1 at H_1 . It then travels around obstacle 1 and records that the closest point on the boundary of obstacle 1 to x_G is at L_1 . The robot returns back to H_1 and knows that $d_1^L > d_1^R$. Therefore, the robot turns right to travel back to L_1 and leaves obstacle 1 in a direction that is closest to x_G .

The robot will next encounter obstacle 2, see Figure 5

Figure 2: When the robot encounters the second obstacle.

Similar to the situation when the robot meets obstacle 1, it first travels the shortest available path to H_G until reaching the obstacle at H_2 . The robots then turn left and travel around the obstacle until reaching back to H_2 while tracking the closest point to the goal (L2). After coming back to H_2 , it knows that $d_2^L < d_2^R$ and turns left to travel to L_2 . The robot leaves at L_2 and can directly reach the goal x_G .

The robot's full route to travel from x_I to x_G using the Bug1 algorithm is shown in Figure 3.

Figure 3: Navigation route from x_I to x_G using Bug1's algorithm.

1.1.2 Bug2 Algorithm

Bug 2 algorithm can be broken down into 4 steps:

- 1. Move toward the goal until reaching an obstacle.
- 2. Turn left and follow this obstacle until it returns to the line **connecting the start and goal** positions
- 3. If the robot can leave the obstacle toward the goal from this point **and** it is closer to the goal than the hit point, then leave toward the goal. Otherwise, continue around the obstacle.
- 4. Repeat to 1. until the robot reaches the goal.

Figure 4 shows the navigation when we hit the first obstacle. Here is a step-by-step breakdown:

Figure 4: When the robot encounters the first obstacle. The number indicates the path sequence that the robot takes.

The robot first follows the shortest available path from x_I to H_G and reaches obstacle 1 at H_1 . It turns left and travels around obstacle 1 until reaching L_1 , which is on the line that connects the H_1 and the goal x_G . Since the robot can leave at L_1 and L_1 is also closer to x_G than H_1 , the robot can leave obstacle 1 at L_1 .

The robot will next encounter obstacle 2, see Figure 5

Figure 5: When the robot encounters the second obstacle.

Similar to the situation when the robot meets obstacle 1, it first travels the shortest available path to H_G until reaching the obstacle at H_2 . The robots then turn left and travel around the obstacle until reaching back to the line connecting H_2 and x_G , i.e. L_2 in the graph. Since the robot can leave at L_2 and L_2 is also closer to x_G than H_2 , the robot can leave obstacle 2 at L_2 .

The robot's full route to travel from x_I to x_G using the Bug2 algorithm is shown in Figure 6.

Figure 6: Navigation route from x_I to x_G using Bug2's algorithm.