1. Double and Total Complexes

Definition 1.1 (Double complex). A double complex (or bicomplex) in an abelian category \mathcal{A} is a family $\{C_{p,q}\}$ of objects of \mathcal{A} , together with maps

$$d^h: C_{p,q} \to C_{p-1,q}$$
 and $d^v: C_{p,q} \to C_{p,q-1}$

such that $d^h \circ d^h = d^v \circ d^v = d^v d^h + d^h d^v = 0$.

It is useful to picture the double complex as a lattice in which the maps d^h go horizontally, the maps d^v go vertically, and each square anticommutes.

Each row C_{*q} and each columns C_{p*} is a chain complex.

We say that the double complex C is bounded if C has only finitely many nonzero terms along each diagonal line p + q = n. For example, if C is concentrated in the first quadrant of the plane (a first quadrant double complex).

1.0.1. Sign Trick. Are the maps d^v and d^h maps in Ch?

Because of anticommutativity, the chain map conditions fail, but we can construct chain maps f_{*q} from $C_{*,q}$ to $C_{*,q-1}$ by introducing signs:

$$f_{p,q} = (-1)^p d_{p,q}^v \colon C_{p,q} \to C_{p,q-1}.$$

Using this sign trick, we can identify the category of double complexes with the category Ch (Ch).

1.0.2. Total Complexes. To see why the anticommutativity condition $d^v d^h + d^h d^v = 0$ is useful, we define the total complexes $\text{Tot}(C) = Tot^{\prod}(C)$ and $\text{Tot}^{\oplus}(C)$ as follows:

Definition 1.2 (Total complexes). We define

$$\operatorname{Tot}^{\prod}(C)_n = \prod_{p+q=n} C_{p,q} \text{ and } \operatorname{Tot}^{\oplus}(C)_n = \bigoplus_{p+q=n} C_{p,q}.$$

The formula $d = d^h + d^v$ define maps

$$d \colon \operatorname{Tot}^{\prod}(C)_n = \prod_{p+q=n} C_{p,q} \text{ and } d \colon \operatorname{Tot}^{\oplus}(C)_n \to \operatorname{Tot}^{\oplus}(C)_{n-1}$$

such that $d \circ d = 0$, making $\text{Tot}^{\Pi}(C)$ and $\text{Tot}^{\oplus}(C)$ into chain complexes.

Exercise 1.3. Check that $d = d^h + d^v$ define maps as claimed.

Solution. Let $(\alpha_{p,q}) \in \text{Tot}^{\prod}(C)_n$, so p+q=n. Then $d((\alpha_{p,q}))=d^h((\alpha_{p,q}))+d^v((\alpha_{p,q}))=(\alpha_{p-1,q})+(\alpha_{p,q-1})\in \prod_{p+q=n-1}C_{p,q}$. Clearly, this also works for direct products since the number of non-zero terms under d just multiplies by 2, hence is still finite. We also want to show that $d \circ d = 0$. For this, note that

$$\begin{split} d\circ d\left(\alpha\right) &= d\left(d^h(\alpha) + d^v(\alpha)\right) = d^h\left(d^h(\alpha) + d^v(\alpha)\right) + d^v\left(d^h(\alpha) + d^v(\alpha)\right) \\ &= d^hd^h(\alpha) + d^hd^v(\alpha) + d^vd^h(\alpha) + d^vd^v(\alpha) \\ &= 0. \end{split}$$

1.1. Exact Couples.

Definition 1.4 (Exact Couple). An *exact couple* is an exact sequence of abelian groups of the form

where i, j and k are group homomorphisms. Define $d: B \to B$ by $d = j \circ k$. Then $d^2 = j(kj)k = 0$, so $H(B) := \ker d/\operatorname{im} d$ is defined - in particular, since A and B are abelian, the quotient H(B) is well-defined and a group.

Definition 1.5 (Derived Couple). Out of a given exact couple, we can construct a new exact couple, called the *derived couple*:

where we define

- (1) A' = i(A) and B' = H(B).
- (2) i' is the induced map $i' := i|_{A'} : A' \to A'$ by i'(ia) = i(ia)
- (3) We define j' by j'a' = [ja] where a' = ia for some a in A.
- (4) k' is defined by $k'[b] = kb \in i(A)$.

With these definitions, the derived couple is an exact couple.

Exercise 1.6. Check that the maps are well-defined and that the derived sequence is exact.

Proof. We must check that j' and k' are well-defined maps.

Suppose $a'=ia=i\tilde{a}$. Then $a-\tilde{a}\in\ker i=\operatorname{im} k$ so $a-\tilde{a}=k[b]$. Hence Then $ja-j\tilde{a}=jk[b]=d[b]\in\operatorname{im} d$, so $[ja]=[j\tilde{a}]$.

Next, suppose $[b] = [\tilde{b}]$, so $b - \tilde{b} \in \text{im } d$, i.e., $b - \tilde{b} = jk(\bar{b})$. Then $kb - k\tilde{b} = kjk(\bar{b}) = 0$, so $k'[b] = k'[\tilde{b}]$.

Lastly, exactness at B': suppose k'[b] = 0. Then kb = 0, so by exactness of the original exact couple, there exists some $a \in A$ such that j(a) = b. Then let a' = i(a), so j'(a') = [j(a)] = [b], hence $\ker k' \subset \operatorname{im} j'$.

Conversely, k'j'(a') = k'[ja] = kja = 0, by exactness at B of the original couple.

1.2. The Spectral Sequence of a Filtered Complex.

Definition 1.7 (Differential Complex). A differential complex K with differential operator D is an abelian group K together with a group homomorphism $D: K \to K$ such that $D^2 = 0$.

Let K be a differential complex with differential operator D. Usually K comes with a grading $K = \bigoplus_{k \in \mathbb{Z}} C^k$ and $D \colon C^k \to C^{k+1}$ increases the degree by 1, but the grading is not absolutely necessary.

Definition 1.8 (Subcomplex). A subcomplex K' of K is a graded subgroup such that $DK' \subset K'$.

Definition 1.9 (Filtration, Associated Graded Complex). A sequence of subcomplexes

$$K = K_0 \supset K_1 \supset K_2 \supset K_3 \supset \dots$$

is called a filtration on K. This makes K into a filtered complex, with associated graded complex

$$GK = \bigoplus_{p=0}^{\infty} K_p / K_{p+1}.$$

For notational reasons, we usually extend the filtration to negative indices by defining $K_p = K$ for p < 0.

Example 1.10. If $K = \bigoplus K^{p,q}$ is a double complex with horizontal operator δ and vertical operator d (which we assume to commute), we can form a single complex out of it by setting $C^k = \bigoplus_{p+q=k} K^{p,q}$ and then letting $K = \bigoplus C^k$ and the differential operator $D: C^k \to C^{k+1}$ to be $D = \delta + (-1)^p d$. Then letting

$$K_p = \bigoplus_{i \ge p} \bigoplus_{q \ge 0} K^{i,q}$$

we obtain a filtration on K.

Suppose now that we have a general filtered complex $K = K_0 \supset K_1 \supset ...$, and let A be the group defined by

$$A = \bigoplus_{p \in \mathbb{Z}} K_p$$

 $A=\bigoplus_{p\in\mathbb{Z}}K_p.$ Then A is again a differential complex with operator D. Let $i\colon A\to A$ be the inclusion $K_{p+1} \hookrightarrow K_p$ on each p. Let B be the cokernel of $i: A \to A$. Then $B = GK = \bigoplus_{p=0}^{\infty} K_p/K_{p+1}$, and we have an exact sequence

$$0 \to A \stackrel{i}{\to} A \stackrel{j}{\to} GK \to 0.$$

2. Introduction to Spectral Sequences

Consider the problem of computing the homology of the total chain complex $T_* = \text{Tot}(E_{**})$ where E_{**} is a first quadrant double complex.

Firstly, it is convenient to forget the horizontal differentials and add a superscript zero, retaining only the vertical differentials d^v along the columns E_{p*}^0 .

Let E_{pq}^1 be the vertical homology $H_q\left(E_{p*}^0\right)$ at the (p,q) spot.

3. Filtrations

Definition 3.1 (Filtered *R*-module). A filtered *R*-module is an *R*-module *A* with an increasing sequence of submodules $\{F_p\}_{p\in\mathbb{Z}}$ such that $F_pA \subset F_{p+1}A$ for all p and such that $\bigcup_p F_pA = A$ and $\bigcap_p F_pA = \{0\}$.

A filtration is said to be bounded if $F_pA = \{0\}$ for p sufficiently small and $F_pA = A$ for p sufficiently larger.

Definition 3.2 (Associated graded module). The associated graded module is defined by $G_pA = F_pA/F_{p-1}A$.

Definition 3.3 (Filtered chain complex). A filtered chain complex is a chain complex (C_*, ∂) together with a filtration $\{F_pC_i\}_{p\in\mathbb{Z}}$ of each C_i such that the differential preserves the filtration, i.e., s.t. $\partial (F_pC_i) \subset F_pC_{i-1}$.

Note that we, in particular, obtain an induced differential $\partial: G_pC_i \to G_pC_{i-1}$ by the universal property of cokernels

$$F_{p}C_{i} \xrightarrow{\partial} F_{p}C_{i-1}$$

$$\downarrow \qquad \qquad \downarrow$$

$$F_{p-1}C_{i} \xrightarrow{\partial} F_{p-1}C_{i-1}$$

$$\downarrow^{\text{coker}} \qquad \downarrow^{\text{coker}}$$

$$G_{p}C_{i} \xrightarrow{\cdots} G_{p}C_{i-1}$$

so we obtain an associated graded chain complex G_pC_* .

The filtration on C_* also induces a filtration on the homology of C_* by

$$F_p H_i(C_*) = \{ \alpha \in H_i(C_*) \mid (\exists x \in F_p C_i) : \alpha = [x] \}.$$

This filtration has associated graded pieces $G_pH_i(C_*)$ which, in favorable cases, determine $H_i(C_*)$.

3.1. **Example.** Suppose we have a chain complex C_* and a filtration consisting of a single F_0C_* , so $F_nC_*=0$ if n<0 and $F_nC_*=F_0C_*$ if $n\geq 0$. Then $G_nC_*=0$ for $n\neq 0$ and $G_0C_*=F_0C_*$ and