Computational Fluid Dynamics Problem Set 5

Daniel M. Siegel
Perimeter Institute for Theoretical Physics
Department of Physics, University of Guelph

Problem 1 (Project: Riemann solver for the Euler equations)

Implement (in a language of your choice, but excluding Fortran) an 'exact' Riemann solver to solve the Riemann problem for the one-dimensional time-dependent Euler equations for ideal gases. To verify your implementation and explore solutions, use an adiabatic constant of $\gamma = 1.4$ and consider the following initial data for the primitives $\mathbf{w} = (\rho, v, p)$:

Problem	$ ho_l$	v_l	p_l	$ ho_r$	u_r	p_r
1	1.0	0.0	1.0	0.125	0.0	0.1
2	1.0	-2.0	0.4	1.0	2.0	0.4

Problem 1 results in a left rarefaction wave and a right shock, while Problem 2 results in a two-rarefaction wave solution. Plot density, pressure, velocity and internal energy at time t=0.25 for Problem 1 and t=0.15 for Problem 2 on a domain $x \in [-1,1]$ and verify that the behavior of these quantities across the three non-linear wave structures looks as expected.

Hints:

- 1. Follow the solution strategy as discussed in the lectures. You will find additional detail in Chap. 4 of Toro's book. You can check your solutions against Tabs. 4.2 and 4.3 in Toro's book.
- 2. First, find the pressure in the star region p^* , using a Newton-Raphson scheme on the pressure function f(p) discussed in the lectures. You may use $p_{\text{guess}}^* = \frac{1}{2}(p_l + p_r)$ as initial guess for p^* and a relative tolerance of 10^{-6} for the root-finding procedure.
- 3. Second, compute the solution for the primitives $\mathbf{w}(x,t) = (\rho(x,t), v(x,t), p(x,t))$. Use a spatial grid $x \in [-1,1]$ with the initial discontinuity at x = 0. Due to the self-similar nature of the solution, sample the solution for the primitives $\mathbf{w}(x,t)$ as a function of the 'speed' S = x/t. The corresponding solutions were discussed in the lectures. Once you specify the time t, the solution profiles become a function of x only.

Problem 2 (Bonus question—discrete entropy condition)

Consider the situation of the Lax-Wendroff theorem and assume that the conservative scheme is consistent with the discrete entropy condition. Show that the scheme then converges to a weak solution of the conservation law that satisfies the entropy condition.

Hint: The proof is similar to the proof of the Lax-Wendroff theorem.