

A Multi-Modal Graph Learning Framework to Capture the Evolution of Global Terrorism

Background

Terrorist attacks are the most concrete consequence of terrorists' decision making processes ⇒ the combination of weapons and targets and timing constitutes a group's *operating profile* (McCormick 2003)

Groups' operating profiles are constrained by a number of factors:

- Material resources (Dolnik 2007; Koehler-Derrick and Milton 2019)
- Support (Polo and Gleditsch 2016)
- Goals (Polo 2020)
- Ideology (Drake 1998; Asal et al. 2009)
- + research on terrorists' life cycle reveal temporal variations in goals, resources, strategies, and therefore **attacks** (Clauset and Gleditsch 2012; Yang, Pah, and Uzzi 2019)

Research Gap

Lack of fundamental knowledge about operational and behavioral similarity patterns across different organizations. (Some) Unanswered questions:

- How wide is the behavioral complexity spectrum of terrorist behaviors at the global level?
- What overall trends can be observed about global terrorism from a comparative perspective?
- Are there behavioral connections between groups that operate in very different geographical contexts and for very different motives?

Research Gap

Lack of fundamental knowledge about operational and behavioral similarity patterns across different organizations. (Some) Unanswered questions:

- How wide is the behavioral complexity spectrum of terrorist behaviors at the global level?
- What overall trends can be observed about global terrorism from a comparative perspective?
- Are there behavioral connections between groups that operate in very different geographical contexts and for very different motives?

To answer these questions, we leverage multi-modal networks to represent terrorist behaviors at the yearly level:

- Multi-modality as an approach to capture different (non necessarily correlated) dimensions of terrorist attacks
- Dynamic component to observe behavioral variations over the years

Data

- Main Source: Global Terrorism Database (+ BAAD, TRAC, EDTG)
- Sample: terrorist actors responsible for at least 50 attacks from 1997 to 2018: 105 groups (42,000+ events)
- Focus: each group's yearly deployed tactics, attacked targets, utilized weapons

Computational Methodology: Overview/1

Computational Methodology: Overview/2

Why Iterative Refining?

- Terrorist actors display extremely skewed activity
- Outliers being very active (10 groups account for \sim 60% of total attacks)
- Parallelly, critical mass of groups characterized by low frequency but distinct distributions of feature weights
- ⇒ Refined procedure allows to disentangle more nuanced patterns in the "critical mass" yearly subsamples

RBG Multi-modal Unipartite Nets

NA PRODUCTION OF THE PROPERTY OF THE PROPERTY

- Transformation from bipartite to unipartite nets to compute mode-weighted resolution-corrected modularity
- Radius Ball Graph: variant of the nearest neighbor problem in computational geometry
- Radius optimization using Euclidean distance
- ⇒ Result: modal weighted networks connecting groups which are operationally similar with respect to a particular mode

Results: Dynamics of RBG Networks

- RBG networks anticipate cluster trends: all modes document increasing density and clustering coefficient.
 Stable N of components → reduction in heterogeneity of behaviors?
- Asynchronous trends in degree assortativity → different network structures in each mode highlight importance of evaluating behaviors in a multi-modal framework

Results: Detected Clusters

- The number of clusters oscillates from 3 to 10, no clear pattern
- ullet In line with RBG network dynamics: ratio clusters/groups shows a downward trend ullet increase of homogeneity at the global level

Results: Co-clustering Stability

- High stability from 2009 to 2018 and from 2002 to 2006
- Co-clustering similarity not always higher for closer years: some groups change their behaviors temporarily
 and then switch back to previous operating profiles, e.g. sim[C(2013; 2018)] > sim[C(2017; 2018)]
- Before 2002: high variability

Results: Drivers of Similarity/1

What are the drivers/correlates of co-clustering, aka operational similarity?

Results: Drivers of Similarity/1

What are the drivers/correlates of co-clustering, aka operational similarity?

Analytical Strategy: Exponential Random Graph Models (ERGM) on the $group \times cluster$ bipartite yearly networks

Results: Drivers of Similarity/2

- Sum of Feature Weights: is overall activity a driver of co-clustering?
- Diff in N of non-zero features: is similarity in repertoire diversity a driver of co-clustering?
- Diff in "N of non-zero features to weights" ratio: is diversity in relation to overall activity a driver of co-clustering?
- Most Common Target: are groups with the same target preference more similar?
- Most Common Tactic: are groups with the same tactical preference more similar?
- Most Common Weapon: are groups with the same weapon preference more similar?
- Region: are groups operating in the same region more similar?
- **Ideology:** are groups sharing the same ideology more similar?

Results: What Drives Co-clustering?/3

- Sum of Feature Weights: Is the amount of resources/activity a driver of co-clustering? YES!
- N of non-zero features: is repertoire diversity a driver of co-clustering? YES!
- Diff in "N of non-zero features to weights" ratio: is diversity in relation to overall activity a driver of co-clustering? YES!
- Most Common Target: are groups with the same target preference more similar? Not Really
- Most Common Tactic: are groups with the same tactical preference more similar? Not Really
- Most Common Weapon: are groups with the same weapon preference more similar? Really
- Region: are groups operating in the same region more similar? Not Really
- Ideology: are groups sharing the same ideology more similar? NO!

Model Convergence & Overall Robustness

- ERGM Diagnostics: convergence has been assessed and confirmed for all the estimated models √
- Results Robustness: tested on enlarged sample including organizations that have plotted at least 30 attacks from 1997 to 2018 (164 groups, \sim 57% increase) \rightarrow all outcomes have been confirmed \checkmark

Limitations

- Yearly focus may obscure micro-temporal patterns → future work should experiment with more restricted time windows
- This framework does not consider exogenous components (e.g., military campaigns, regime change) → very limited power in causal explanations

Conclusions

- Increasing homogeneity of behaviors over the years
- Higher stability of co-clustering after 2002, corroborating diminished heterogeneity patterns
- We report organizations' ability to switch back to previously adopted operating profiles, highlighting relevance of dynamic behavioral monitoring
- Operational similarity between pairs of groups is driven by:
 - groups' overall amount of activity;
 - 2 similarity in repertoire diversity
 - 3 similarity in both activity and repertoire diversity combined

Co-Authors

Dr. Iain J Cruickshank
Carnegie Mellon University
&
US Army AI Task Force

Prof. Kathleen M. Carley Carnegie Mellon University

Artwork References

Title Slide: Flow, Siyon Jin (2011)

Closing Slide: The Persistence of Memory, Salvador Dalì (1931)

Bibliography I

- Victor H. Asal et al. (July 2009). "The Softest of Targets: A Study on Terrorist Target Selection". In: Journal of Applied Security Research 4.3. Publisher: Routledge _eprint: https://doi.org/10.1080/19361610902929990, pp. 258–278. ISSN: 1936-1610. DOI: 10.1080/19361610902929990. URL: https://doi.org/10.1080/19361610902929990 (visited on 05/10/2021).
- Aaron Clauset and Kristian Skrede Gleditsch (Nov. 2012). "The Developmental Dynamics of Terrorist Organizations". en. In: *PLOS ONE* 7.11. Publisher: Public Library of Science, e48633. ISSN: 1932-6203. DOI: 10.1371/journal.pone.0048633. URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0048633 (visited on 04/29/2021).
- Adam Dolnik (Apr. 2007). *Understanding Terrorist Innovation: Technology, Tactics and Global Trends*. en. Routledge. ISBN: 978-1-134-09825-5.
- C. J. M. Drake (1998). "Ideology". en. In: Terrorists' Target Selection. Ed. by C. J. M. Drake. London: Palgrave Macmillan UK, pp. 16–34. ISBN: 978-0-230-37467-6. DOI: 10.1057/9780230374676_3. URL: https://doi.org/10.1057/9780230374676_3 (visited on 04/29/2021).

Bibliography II

- Gabriel Koehler-Derrick and Daniel James Milton (Sept. 2019). "Choose Your Weapon: The Impact of Strategic Considerations and Resource Constraints on Terrorist Group Weapon Selection". en. In: *Terrorism and Political Violence* 31.5, pp. 909–928. ISSN: 0954-6553, 1556-1836. DOI: 10.1080/09546553.2017.1293533. URL: https://www.tandfonline.com/doi/full/10.1080/09546553.2017.1293533 (visited on 05/10/2021).
- Gordon H. McCormick (2003). "Terrorist Decision Making". In: Annual Review of Political Science 6.1. _eprint: https://doi.org/10.1146/annurev.polisci.6.121901.085601, pp. 473–507. DOI: 10.1146/annurev.polisci.6.121901.085601. URL: https://doi.org/10.1146/annurev.polisci.6.121901.085601 (visited on 05/01/2021).
- Sara MT Polo (Mar. 2020). "The quality of terrorist violence: Explaining the logic of terrorist target choice". en. In: *Journal of Peace Research* 57.2, pp. 235–250. ISSN: 0022-3433, 1460-3578. DOI: 10.1177/0022343319829799. URL:

http://journals.sagepub.com/doi/10.1177/0022343319829799 (visited on 05/10/2021).

Bibliography III

Sara MT Polo and Kristian Skrede Gleditsch (Nov. 2016). "Twisting arms and sending messages: Terrorist tactics in civil war". en. In: *Journal of Peace Research* 53.6, pp. 815–829. ISSN: 0022-3433, 1460-3578. DOI: 10.1177/0022343316667999. URL: http://journals.sagepub.com/doi/10.1177/0022343316667999 (visited on 05/10/2021).

Yang Yang, Adam R. Pah, and Brian Uzzi (Oct. 2019). "Quantifying the future lethality of terror organizations". en. In: *Proceedings of the National Academy of Sciences* 116.43. Publisher: National Academy of Sciences Section: Social Sciences, pp. 21463–21468. ISSN: 0027-8424, 1091-6490. DOI: 10.1073/pnas.1901975116. URL: https://www.pnas.org/content/116/43/21463 (visited on 04/29/2021).