CLAIMS

1. a countermeasure method for implementation in implementing a public-key electronic component algorithm comprising exponentiation cryptography computation, with a left-to-right type exponentiation algorithm, of the type y=g^d, where g and y are elements of the determined group G written is a multiplicative notation, and d predetermined number, said countermeasure method being characterized in that it includes a random draw step, at the start of or during execution of said exponentiation algorithm in deterministic or in probabilistic manner, so as to mask the accumulator A.

15

10

- 2. A countermeasure method according to claim 1, characterized in that the group G is written in additive notation.
- 3. A countermeasure method according to claim 1, characterized in that the group G is the multiplicative group of a finite field written GF(q^n), where n is an integer.
- 25 4. A countermeasure method according to claim 3, characterized in that the integer is n equal to 1: n=1.
 - 5. A countermeasure method according to claim 4, characterized in that it comprises the following steps:

__

- 1) Determine an integer k defining the security of the masking and give d by the binary representation (d(t), d(t-1), ..., d(0))
- 2) Initialize the accumulator A with the integer 1
- 3) For i from t down to 0, do the following:
- 3a) Draw a random integer λ lying in the range 0 to k-1 and replace the accumulator A with A+ λ .q (modulo k.q)
- 10 3b) Replace A with A^2 (modulo k.q)
 - 3c) If d(i)=1, replace A with A.g (modulo k.q)
 - 4) Return A (modulo q).

- 6. A countermeasure method according to claim 4, characterized in that it comprises the following steps:
 - 1) Determine an integer k defining the security of the masking, and give d by the binary representation (d(t), d(t-1), ..., d(0))
- 2) Draw a random integer λ lying in the range 0 to k-1 and initialize the accumulator A with the integer 1+ λ .q (modulo k.q)
 - 3) For i from t-1 down to 0, do the following:
 - 3a) Replace A with A^2 (modulo k.g)
- 25 3b) If d(i)=1, replace A with A.g (modulo k.q)
 - 4) Return A (modulo q).

	7.	A	cour	ter	meas	sure	e me	ethod	accord	ling	to	claim	2,
chara	cte	riz	ed	in	tha	t	the	ex	ponenti	atic	n	algorit	hm
appli	es	to	the	gr	oup	G	of	the	points	of	an	ellipt	cic
curve defined on the finite field GF(q^n).													

5

10

15

- 8. A countermeasure method according to claim 7, characterized in that it comprises the following steps:
 - 1) Initialize the accumulator $A=(A_x,A_y,A_z)$ with the (x,y,1) triplet and give d by the binary signed-digit representation (d(t+1), d(t), ..., d(0)) with d(t+1)=1
 - 2) For i from t down to 0, do the following:
 - Draw a random non-zero element λ from GF(q^n) and replace the accumulator $A=(A_x,A_y,A_z) \text{ with } (\lambda^2.A_x,\lambda^3.A_y,\lambda.A_z)$
 - 2b) Replace $A=(A_x,A_y,A_z)$ with $2*A=(A_x,A_y,A_z)$ in Jacobian representation, on the elliptic curve
 - 2c) If d(i) is non-zero, replace $A=(A_x,A_y,A_z)$ with $(A_x,A_y,A_z)+d(i)*(x,y,1)$ in Jacobian representation on the elliptic curve
 - 3) If $A_z=0$, return the point at infinity; otherwise return $(A_x/(A_z)^2, A_y/(A_z)^3)$.
- 9. A countermeasure method according to claim 7, characterized in that it comprises the following steps:
 - 1) Draw a non-zero random element λ from GF(q^n) and initialize the accumulator $A=(A_x,A_y,A_z)$ with the $(\lambda^2.x,\lambda^3.y,\lambda)$ triplet and give d by

	the binary signed-digit representation
	(d(t+1), d(t),, d(0)) with $d(t+1)=1$
2)	For i from t down to 0, do the following:
2a)	Replace $A=(A_x,A_y,A_z)$ with $2*A=(A_x,A_y,A_z)$
	in Jacobian representation, on the
	elliptic curve
2b)	If $d(i)$ is non-zero, replace $A=(A_x,A_y,A_z)$
	with $(A_x, A_y, A_z) + d(i) * (x, y, 1)$ in Jacobian
	representation on the elliptic curve
3)	If $A_z=0$, return the point at infinity;
	otherwise return $(A_x/(A_z)^2, A_y/(A_z)^3)$.
10.	A countermeasure method according to claim 7,
characteri	zed in that it comprises the following steps:
1)	Initialize the accumulator $A=(A_x,A_y,A_z)$ with
	the $(x,y,1)$ triplet and give d by the binary
	signed-digit representation $(d(t+1), d(t),,$
	d(0)) with $d(t+1)=1$
2)	For i from t down to 0, do the following:
2a)	Draw a random non-zero element λ from
	$GF(q^n)$ and replace the accumulator
	$A = (A_x, A_y, A_z)$ with $(\lambda.A_x, \lambda.A_y, \lambda.A_z)$
2b)	Replace $A = (A_x, A_y, A_z)$ with $2*A = (A_x, A_y, A_z)$
,	in homogeneous representation, on the
	elliptic curve
2c)	If $d(i)$ is non-zero, replace $A=(A_x,A_y,A_z)$
,	with $(A_x, A_y, A_z) + d(i) * (x, y, 1)$ in
	homogeneous representation on the
	2a) 2b) 3) 10. characteri 1)

elliptic curve

- 3) If $A_z=0$, return the point at infinity; otherwise return $(A_x/A_z,\ A_y/A_z)$.
- 11. A countermeasure method according to claim 7,
 5 characterized in that it comprises the following steps:

10

- 1) Draw a non-zero random element λ from GF(q^n) and initialize the accumulator $A=(A_x,A_y,A_z)$ with the $(\lambda.x,\lambda.y,\lambda)$ triplet and give d by the binary signed-digit representation (d(t+1),d(t),...,d(0)) with d(t+1)=1
- 2) For i from t down to 0, do the following:
- 2a) Replace $A=(A_x,A_y,A_z)$ with $2*A=(A_x,A_y,A_z)$ in homogeneous representation, on the elliptic curve
- - 3) If $A_z=0$, return the point at infinity; otherwise return $(A_x/A_z,\ A_y/A_z)$.
 - 12. An electronic component using the countermeasure method according to any preceding claim.