SEMAINE DU 19/11 AU 23/11

1 Cours

Équations différentielles linéaires

Notion d'équation différentielle Exemples. Ordre d'une équation différentielle. Problème de Cauchy. Équations différentielles linéaires homogènes et avec second membre. Structure de l'ensemble des solutions (solution particulière + solution de l'équation homogène). Principe de superposition.

EDL du premier ordre Solution d'une EDL homogène. Solution d'une EDL avec second membre. Méthode de variation de la constante. Unicité de la solution d'un problème de Cauchy.

EDL du second ordre à coefficients constants Équation caractéristique. Solution d'une EDL homogène (cas réel et complexe). Unicité de la solution d'un problème de Cauchy. Recherche d'une solution particulière : second membre de la forme P(t)e^{kt} (P polynomiale), passage en complexe dans le cas de fonctions trigonométriques.

Compléments Problèmes de raccord. Résolution par changement de variable.

2 Méthodes à maîtriser

- ▶ Résoudre une EDL d'ordre un avec second membre :
 - 1. Résoudre l'équation homogène.
 - 2. Rechercher une solution particulière (utilisation éventuelle de la méthode de variation de la constante).
 - 3. En déduire l'ensemble des solutions de l'équation avec second membre.
 - 4. Prise en compte d'une condition initiale éventuelle.
- ▶ Résoudre une EDL d'ordre deux à coefficients constants avec second membre :
 - 1. Résoudre l'équation homogène via l'équation caractéristique.
 - 2. Recherche d'une solution particulière (utilisation éventuelle du principe de superposition)
 - (a) second membre $P(t)e^{\alpha t} \rightarrow \text{solution particulière } O(t)e^{\alpha t}$
 - (b) dans le cas de fonctions trigonométriques, passage en complexe pour se ramener au premier cas.
 - 3. En déduire l'ensemble des solutions de l'équation avec second membre.
 - 4. Prise en compte des conditions initiales éventuelles.
- ▶ Réviser la résolution des équations du second degré à coefficients complexes pour résoudre des EDL d'ordre à coefficients constants complexes.
- ▶ Réviser les techniques de calcul de primitives (IPP, changement de variable, ...)

3 Questions de cours

► Banque CCP exo 42

On considère les deux équations différentielles suivantes :

(H):
$$2xy' - 3y = 0$$

(E): $2xy' - 3y = \sqrt{x}$

- 1. Résoudre l'équation (H) sur l'intervalle $]0; +\infty[$.
- 2. Résoudre l'équation (E) sur l'intervalle $]0; +\infty[$.
- 3. L'équation (E) admet-elle des solutions sur l'intervalle $[0; +\infty[$?

► Equation fonctionnelle de l'exponentielle

Déterminer les fonctions f dérivables sur $\mathbb R$ telles que

$$\forall (x,y) \in \mathbb{R}^2, \ f(x+y) = f(x)f(y)$$

▶ Exemple d'utilisation de l'unicité de la solution d'un problème de Cauchy

Soit a et b des fonctions impaires continues sur \mathbb{R} . Montrer que toute solution de l'équation différentielle y' + ay = b est paire.