Code is available at "PA2.m". Also I superimpose the curves of spectrum for each process in Figure 4, 5 and 6.

Process 1

Let $t_s = 0.4$. Then x[n] = 1 if $n \in \{0, 1, \dots, 25\}$ otherwise x[n] = 0.

$$X(\omega) = \sum_{n=-\infty}^{+\infty} x[n]e^{-j\omega n} = \sum_{n=0}^{25} e^{-j\omega n} = \frac{1 - e^{26j\omega}}{1 - e^{j\omega}}.$$

Then |X| reads:

$$|X(\omega)| = \left| \frac{\sin 13\omega}{\sin(\omega/2)} \right|.$$

Figure 1 and 4 are the diagrams of process 1. I use f[n] = 1 if $n \in \{0, 1, \dots, 101\}$ to represent rectangle function x(t) approximately and use f(1:sample:end) to sample.

Process 2

After shiftted, x[n] = 1 if $n \in \{1, 2, \dots, 25\}$ otherwise x[n] = 0. Similarly,

$$|X(\omega)| = \left| \frac{\sin 12.5\omega}{\sin(\omega/2)} \right|.$$

Figure 2 and 4 are the diagrams of proces 2. There are subtle differences between 1 and 2: $x[0] = 1 \rightarrow x[0] = 0$.

Process 3

In MATLAB, I use "[b,a] = butter(order, Wn); filt = filtfilt(b,a,shiftted);" to filter the rectangle function where order = 9 and Wn = 0.1. Then $x(t) = \mathcal{F}^{-1}[2\sin(5\omega)/\omega \cdot \mathrm{Butter}(\omega_0)]$ and

$$X(\omega) = \mathcal{F}\left\{\mathcal{F}^{-1}\left[\frac{2\sin(5\omega)}{\omega} \cdot \text{Butter}(\omega_0)\right] \cdot \sum_{k=-\infty}^{+\infty} \delta(t - kT_s)\right\}$$
 (1)

This entails

$$X(\omega) = \left[\frac{2\sin(5\omega)}{\omega} \cdot \text{Butter}(\omega_0) \right] * \left[\frac{2\pi}{T_s} \sum_{k=-\infty}^{+\infty} \delta\left(\omega - k \frac{2\pi}{T_s}\right) \right]$$
 (2)

It is noteworthy that the Eq.2 has no simple analytic form and $X(\omega)$ is a periodic function. However, if $\omega_0 < 2\pi/T_s$, then $X(\omega) = 2\sin(5\omega)/(T_s\omega)$ · Butter(ω_0) approximately. Figure 3 and 4 are the diagrams of proces 3.

Appendix

