1. (20 points, tracking a reflected r.w.) Assume the signal X_n is a simple reflected r.w. on $A = [0, 20] \cap \mathbf{Z}$ straiten at 10. Let W_0, W_1, \ldots be a sequence of i.i.d. taking two values with prob. 1/2:

$$\mathbf{P}(W_1 = \pm L) = 1/2,$$

The observation Y_n is defined by

$$Y_n = \min \{ \max \{X_n + W_n, 0\}, 20 \}.$$

(It is hidden Markov model with $\gamma(x,w) = \min \left\{ \max \left\{ x + w, 0 \right\}, 20 \right\}$) Simulate X_n, Y_n , and the best estimate

$$\hat{X}_n = \frac{\sum_{a \in A} a \phi_n^a}{\sum_{r \in A} \phi_n^r}$$

in time interval [0, 200], for L=1; L=3; L=5; L=10; L=15; L=18; L=20. Plot X_n and \hat{X}_n and also $X_n, \hat{X}_n, Y_n, \ 0 \leq n \leq 200.$

2. (5 points). Assume we have three coins $\{1,2,3\}$ with the following probabilities

$$\begin{array}{cccc} & 1 & 2 & 3 \\ P(H) & 0.3 & 0.5 & 0.7 \\ P(T) & 0.7 & 0.5 & 0.3 \end{array}$$

At n=0 a coin is randomly selected and tossed, then the tossing of the same coin continues. Assume we observed $Y_{[0,4]}=(H,H,H,T,T)$.

The "signal" $X_n \in \{1, 2, 3\}$ is the chosen coin (it has a constant "trajectory" only initial distribution is random: it is 1,2 or 3 with prob. 1/3)

Find
$$\phi_n^a = \phi_n^a (Y_{[0,n]})$$
, and $\pi_n^a = \pi_n^a (Y_{[0,n]})$, $a \in \{1,2,3\}$, $n = 0,1,2,3,4$.