

Maximising the Happiness score and allotting the wings to different wingie groups

WING ALLOTMENT USING MAXIMUM BIPARTITE MATCHING

PRESENTED BY ROVEENA, SATYAM, GAURAV

PROBLEM STORY

- Wing allotment occurs at the end of each academic year
- During this procedure, many students feel dissatisfied since they do not receive their preferred wing

Aim:

 Implementing a system of allocating wings in such a way that the happy faces are maximised

- A wing leader is chosen from each group of wingies
- A form is floated for the wings wherein the wing leader of every wingie group needs to fill their most preferred wing names

Happiness Score - describes the happiness level of each wingie group after the allotment

Happiness Score = 10 if they got their first preferred wing

Happiness Score =5 if they got their second preferred wings

Happiness Score = 0 If they didn't get any of their preferred wings

GOAL:

Allot the wings to the wingies in such a way so that the HAPPINESS SCORE is maximized

ASSUMPTIONS:

- 1. Every wing has the same number of rooms.
- 2. The number of wings is equal to the number of wingie groups.
- 3. No wing can be allotted to two wingie groups.
- 4. The wing preference form contains two choices for the most preferred wings

APPROACH

- Construct a complete bipartite graph
 G = (V,E)
- 2. VI as set of wingies and V2 as set of wings
- 3. Also we have $V1 \cap V2 = \emptyset$ and $V1 \cup V2 = V$
- 4. weight function for edges as W(e):
 - W(e) = 10, e = (v1, v2) where v1 ∈ V1 and v2 ∈
 V2 and v1 is first preference of v2
 - W(e) = 5, e = (v1, v2) where v1 ∈ V1 and v2 ∈
 V2 and v1 is first preference of v2
 - W(e) = 0, otherwise
- 5. Finding the perfect matching inside complete bipartite graph which gives maximum happiness score.

HUNGARIAN ALGORITHM

STEP 1:

Finding an **initial feasible labeling** is simple. Just use:

$$\forall y \in Y, \ell(y) = 0,$$

 $\forall x \in X, \ell(x) = \max y \in Y \{w(x, y)\}$

Y_{1} 0 Eq Graph+Matching

STEP 2:

Finding an equality graph with the label matchings generated previously.

If M perfect, stop. Otherwise pick free vertex $u \in X$.(The free vertex u tells us the conflicting vertices) Set $S = \{u\}$, $T = \emptyset$.

Here:
$$S = \{x1\}, T = \emptyset$$
.

EXAMPLE CONTINUED.....

- Since $N\ell(S) != T$, do step 4.
- Choose $y2 \in N\ell(S) T$.
- y2 is matched so grow tree by adding (y2, x2)
- $S = \{x1, x2\}, T = \{y2\}$
- At this point $N\ell(S) = T$, so goto 3.

CASES:

STEP 3/CASE 1:

If
$$N_{\ell}(S) = T$$
, update labels (forcing $N_{\ell}(S) \neq T$)
$$\alpha_{\ell} = \min_{s \in S, \ y \not\in T} \left\{ \ell(x) + \ell(y) - w(x,y) \right\}$$

$$\ell'(v) = \begin{cases} \ell(v) - \alpha_{\ell} & \text{if } v \in S \\ \ell(v) + \alpha_{\ell} & \text{if } v \in T \\ \ell(v) & \text{otherwise} \end{cases}$$

STEP 4/CASE 2:

If
$$N_{\ell}(S) \neq T$$
, pick $y \in N_{\ell}(S) - T$.

- If y free, u-y is augmenting path. Augment M and go to 2.
- If y matched, say to z, extend alternating tree: $S = S \cup \{z\}, T = T \cup \{y\}$. Go to 3.

UPDATING LABEL VALUES:

Y_{1 0} Y_{2 2} Y_{3 0} 6 8 8 X_{1 4} X_{2 6} X_{3 4} new Eq Graph

EXAMPLE CONTINUED:

• Calculate α_{ℓ}

$$\alpha_{\ell} = \min_{x \in S, y \notin T} \begin{cases} 6+0-1, & (x_1, y_1) \\ 6+0-0, & (x_1, y_3) \\ 8+0-0, & (x_2, y_1) \\ 8+0-6, & (x_2, y_3) \end{cases}$$

$$= 2$$

- Reduce labels of S by 2;
 Increase labels of T by 2.
- Now $N_{\ell}(S) = \{y_2, y_3\} \neq \{y_2\} = T$.

FINAL STEP

- $S = \{x_1, x_2\}, N_{\ell}(S) = \{y_2, y_3\}, T = \{y_2\}$
- Choose $y_3 \in N_{\ell}(S) T$ and add it to T.
- y₃ is **not** matched in M so we have just found an alternating path x₁, y₂, x₂, y₃ with two free endpoints. We can therefore augment M to get a larger matching in the new equality graph. This matching is perfect, so it must be optimal.
- Note that matching (x_1, y_2) , (x_2, y_3) , (x_3, y_1) has cost 6 + 6 + 4 = 16 which is exactly the sum of the labels in our final feasible labelling.

COMPLEXITY

- augment() runs for n loops.
- In each loop:
 - Slack is initialized in n iterations
 - In step 3, min delta can be calculated in n iterations and this will be done for at max n iterations, so maximum n*n iterations in this step.
 - o In step 4, while adding vertices to S, each time we update slack which takes n iterations, so at max n*n iterations in this step.
- So overall, n*n*n iterations in worst case. Hence the complexity is O(n^3).

THANK YOU!!