Lecture 10: Neural Networks: Fundamentals

Readings: ISL (Ch. 10), ESL (Ch. 11), Bach (Ch. 9)

Soon Hoe Lim

September 25, 2025

Outline

- 1 Neural Networks (NNs): Universal Function Approximators
- 2 Multi-Layer Perceptrons (MLPs) and Deep Learning
- **3** Optimizing MLPs with Gradient Descent: Backpropagation
- 4 Optimizing and Regularizing MLPs: Tricks of the Trade
- **5** Example: The MNIST Toy Task
- 6 Deep Learning: When Should We Use It
- Texercises
- 8 Appendix: Architectures for Structured Data: CNNs, RNNs & Transformers

Neural Networks (NNs): Introduction

The goal of supervised learning is to learn a map $f : \mathbb{R}^d \to \mathbb{R}$ to predict an output Y for a given input X from labeled data. So far we have considered:

- Linear basis models (parametric): Linear in explicit (fixed) features or implicit features via kernels.
- ▶ Decision trees (non-parametric): Use data-adaptive features; complexity grows with data.

Neural Networks (NNs): A flexible class of functions for nonlinear predictions

- Learn non-linear mappings via layers of simple units (neurons¹).
- Non-linear generalization of linear models: instead of $f(X) = \beta_0 + \beta^T X$, apply multiple transformations to learn features from data.
- **Parametric**, but non-linear in parameters.
- ► Hidden layers build intermediate features; outputs depend on these.
- **Layered structure** ⇒ high flexibility. Can approximate any continuous function (Universal Approximation Theorems) but harder to optimize.
- ► Multiple layers ⇒ deep NNs (deep learning).

¹Inspired by neuroscience, but best viewed as flexible function approximators trained by optimization.

Deep Learning

- 1980s: Neural networks gain popularity; successes, hype, and major conferences (NIPS/NeurIPS, Snowbird).
- ▶ 1990s: SVMs, Random Forests, boosting rise; NNs fade into background.
- ➤ ~2010: NNs re-emerge as Deep Learning²; by 2020s, dominant and highly successful, marking the modern AI era.
- Success driven by more compute (GPUs), more data, and software frameworks (TensorFlow, PyTorch) enabling more complex architectures.
- ► Key pioneers: LeCun, Hinton, and Bengio (2019 ACM Turing Award).
- ▶ 2024 Nobel Prizes in Physics & Chemistry highlight Al's scientific impact.

ImageNet Classification with Deep Convolutional Neural Networks

Alex Krizhevsky University of Toronto kriz@cs.utoronto.ca Ilya Sutskever University of Toronto ilya@cs.utoronto.ca Geoffrey E. Hinton University of Toronto hinton@cs.utoronto.ca

²We will try to cover some important aspects of deep learning; for a fuller yet brief intro, see, e.g. https://fleuret.org/francois/lbdl.html or the additional resources in the course plan.

Single Layer (Shallow) Neural Networks

- **Q** We will focus on **fully connected NNs**; other designs handle structured data. Let's start with single layer NNs. A NN with one hidden layer, fed with inputs $X = (X_1, \ldots, X_d) \in \mathbb{R}^d$, can be described in two stages of computation:
 - 1. **Hidden Layer:** Each hidden unit m = 1, ..., M computes

$$h_m(X) = \sigma\left(\sum_{j=1}^d w_{mj}X_j + b_m\right) =: \sigma(w_m^TX + b_m),$$

where $\sigma(\cdot)$ is a non-linear **activation function**, w_{mj} and b_m are input weights and biases. Hidden layer derives nonlinear features from the inputs.

2. **Output Layer:** The network output is a linear combination of the hidden activations, with output weights β_m and bias b_0 (set to zero for simplicity):

$$f(X) = \sum_{m=1}^{M} \beta_m h_m(X).$$

All (d+2)M parameters $\theta := \{b_m, w_{mj}, \beta_m \mid m=1,\ldots,M, j=1,\ldots,d\}$ are learned in **fully connected feed-forward NNs**,

Why Activation Functions Matter

Activation functions introduce **non-linearity**, enabling NNs to learn complex patterns. The activations $A_k = h_k(X)$ act as **derived features**. Popular choices are:

- ▶ **Sigmoid:** $\sigma(z) = \frac{1}{1+e^{-z}}$. Range: (0,1). Suffer from vanishing gradients.
- ▶ **Tanh:** $\sigma(z) = \tanh(z)$. Range: (-1,1). Also vanishes for large |z|.
- ▶ **ReLU:** $\sigma(z) = \max(0, z)$. Most common today; efficient (why?), avoids vanishing gradients for z > 0. Risk: "dying" ReLUs if z < 0 (mitigated by Leaky ReLU; smoother alternatives include soft-plus and GeLU).

Linear vs. Nonlinear Approximations

A shallow neural network (SNN) corresponds to the following hypothesis space:

$$\mathcal{H}_{\mathsf{SNN},M} = \left\{ f: f(x) = \sum_{j=1}^{M} \beta_j \, \sigma\big(w_j^\top x + b_j\big) \,, w_j \in \mathbb{R}^d, \,\, \beta_j \in \mathbb{R}, \,\, b_j \in \mathbb{R} \right\}.$$

On the other hand, the linear basis equivalent is

$$\mathcal{H}_{\mathsf{linear}} = \left\{ f: f(x) = \sum_{j=1}^{M} eta_j \, \sigma(w_j^ op x + b_j), \,\, eta_j \in \mathbb{R}
ight\}$$

with a **fixed** collection of $w_i \in \mathbb{R}^d$, $b_i \in \mathbb{R}$ for j = 1, ..., M.

() What is the difference between linear and nonlinear hypothesis spaces? See blackboard for an example.

Universal Approximation Theorems (UATs)

Single layer NNs are universal function approximators, i.e., given enough hidden units, they can approximate any function to arbitrary accuracy.

There are different versions of universal approximation results depending on the choice of activation, network architecture, and function space. We state here without proof a simple version for continuous functions.

Theorem 1: Universal Approximation Theorem

Let $C \subset \mathbb{R}^d$ be closed and bounded and $f^*: C \to \mathbb{R}$ be continuous. Assume that the activation function σ is sigmoidal, i.e.

$$\lim_{z \to +\infty} \sigma(z) = 1, \quad \lim_{z \to -\infty} \sigma(z) = 0.$$

Then, for every $\varepsilon > 0$ there exists $f \in \bigcup_{M=1}^{\infty} \mathcal{H}_{SNN,M}$ such that

$$\max_{x \in C} |f(x) - f^*(x)| < \varepsilon.$$

^{*}The proof follows from an application of the Hahn-Banach theorem and the Riesz-Markov representation theorem, together with an argument based on the nondegenerate properties of σ . Under mild extensions, NNs can also approximate measurable functions in L^p space, not just continuous ones.

Multi-Layer NNs/Multi-Layer Perceptrons (MLPs)

- ⚠ UATs provide strong approximation guarantees, but they do not address³ how such networks can be trained (optimization), how large they must be, or what the generalization properties are.
 - ► The number of hidden units (width) required in a single layer NN may be very large for complex functions.
 - In practice, increasing **depth** (achieved by stacking multiple hidden layers) is often more effective than just increasing width. See also Exercise 10.1.
 - Fully connected feed-forward NNs with multiple layers are also called multi-layer perceptrons (MLPs).
- Is going deeper always beneficial for all settings?

³For theoretical analysis of these aspects, see Ch. 9 in Bach.

MLPs: Mathematical Formulation

- ► MLPs extend SNNs by iterating/composing the structure of SNN L times. Here, L is the number of hidden layers (depth) of the MLP.
- ► The hypothesis space made up by MLPs⁴ is:

$$\mathcal{H}_{MLP} = \left\{ f : f(x) = \beta^T f_L(x), \ \beta \in \mathbb{R}^{d_L} \right\}$$

where:

$$f_{l+1}(x) = \sigma(\mathbf{W}_{\mathbf{I}}f_l(x) + \mathbf{b}_{\mathbf{I}}), \quad \mathbf{W}_{\mathbf{I}} \in \mathbb{R}^{d_{l+1} \times d_l}, \ \mathbf{b}_{\mathbf{I}} \in \mathbb{R}^{d_{l+1}}$$

for l = 0, ..., L-1 with $d_0 = d$, $f_0(x) = x$. The activation in the (l+1)th layer is denoted as $A^{(l)} := f_{l+1}(x)$.

- ► Trainable parameters: $\theta_{MLP} := \{\mathbf{W_0}, \dots, \mathbf{W_{L-1}}, \mathbf{b_0}, \dots, \mathbf{b_{L-1}}, \beta\}.$
- ▶ Activation function is applied **element-wise**: $[\sigma(z)]_i = \sigma(z_i)$

Soon Hoe Lim Lecture 10: Neural Networks: Fundamentals

 $^{^4}$ Just like SNNs, MLPs have the universal approximation property if L is large enough, provided that the width of each layer is not too small.

A Schematic of MLPs

Optimizing MLPs: The ERM

▶ In practice, the ERM problem can be written as an optimization problem over certain trainable parameters, i.e., we assume that the hypothesis space admits a parameterization:

$$\mathcal{H} = \{ f : f(x) = f_{\theta}(x), \ \theta \in \Theta \},$$

where Θ is the allowed set of trainable parameters.

▶ In the case of SNNs, $\theta = (\beta_m, w_{mj}, b_m) \in \Theta = \mathbb{R}^p$ with p = (d+2)M. The ERM is then:

$$\min_{\theta \in \mathbb{R}^p} \hat{R}(\theta) = \min_{\theta \in \mathbb{R}^p} \frac{1}{N} \sum_{i=1}^N \hat{R}^{(i)}(\theta),$$

where $\hat{R}^{(i)}(\theta) = L(f_{\theta}(x_i), y_i)$ for some loss function L.

Common loss functions include squared loss for regression and cross-entropy loss for classification.

Gradient Descent (GD)

Except for simple cases (such as least squares), the ERM does not admit an explicit solution. To solve the ERM, it is typical to use iterative approximation methods – the simplest one is the **gradient descent (GD)** algorithm.

- ► The gradient vector $\nabla \hat{R}(\theta)$ always points in the steepest ascent direction in the parameter space. Thus, to decrease $\hat{R}(\theta)$, we go in the opposite direction, the steepest descent direction $-\nabla \hat{R}(\theta)$.
- Step size is controlled by the **learning rate** $\eta > 0$, which is typically small (e.g., 0.001) to ensure stability of the algorithm.
- **Learning rate schedules:** instead of keeping η fixed, one often decreases it over time (e.g. step decay, exponential decay, cosine schedule) to balance fast initial progress with stable convergence.

The GD Algorithm

Algorithm: Gradient Descent

- ▶ Hyperparameters: K (iterations), η (learning rate)
- ▶ Initialize: $\theta^{(0)} \in \mathbb{R}^p$
- For k = 0, 1, ..., K 1:

$$\theta^{(k+1)} = \theta^{(k)} - \eta \nabla \ell(\theta^{(k)})$$

Return $\theta^{(K)}$

If \hat{R} is sufficiently well-behaved (e.g. $\nabla \hat{R}$ globally Lipschitz), then one can show that $\|\nabla \hat{R}(\theta^{(k)})\| \to 0$ as $k \to \infty$ for sufficiently small η . Thus, GD converges to a **stationary point**.

 \triangle But we aim to minimize R, not just find any stationary point. The key question is: **does GD converge to a minimum?** First, we need to distinguish between **local** and **global** minima.

Local vs Global Minima

Definition 1: Local and Global Minima

Let $\hat{R}: \mathbb{R}^p \to \mathbb{R}$ be a function. We say that θ^* is a **local minimum** of \hat{R} if there exists $\varepsilon > 0$ such that

$$\hat{R}(\theta^*) \leq \hat{R}(\theta)$$
 for all $\theta \in \mathbb{R}^p$ with $\|\theta - \theta^*\| \leq \varepsilon$.

We say that θ^* is a **global minimum** if

$$\hat{R}(\theta^*) \leq \hat{R}(\theta) \quad \forall \theta \in \mathbb{R}^p.$$

Under general conditions, gradient descent almost always converges to a local minimum. In general it does not converge to a global minimum unless we assume additional structure.

Convexity

Definition 2: Convex Functions

A function $\hat{R}: \mathbb{R}^p \to \mathbb{R}$ is **convex** if $\hat{R}(\lambda \theta + (1-\lambda)\theta') \le \lambda \hat{R}(\theta) + (1-\lambda)\hat{R}(\theta')$ for all $\theta, \theta' \in \mathbb{R}^p$ and $\lambda \in [0, 1]$.

If \hat{R} is convex, then every local minimum is automatically a global minimum.

Proposition 1: Convex \implies Local = Global

If \hat{R} is convex, then every local minimum of \hat{R} is also a global minimum.

Proof.

See blackboard.

 \P As long as \hat{R} is convex, GD⁵ can solve the ERM. But \hat{R} is typically non-convex, with many local minima. The solution found depends on the starting values.

⁵For convex functions one can actually give a rate at which GD converges: to reach an error of ε in the function value, we roughly require at most $O(\varepsilon^{-1})$ GD iterations. If stronger conditions are assumed on \hat{R} (e.g. strong convexity), then this rate can be faster.

Non-Convex Functions and GD

Consider the objective shown in the plot: $R(\theta) = \frac{1}{2} \sum_{i=1}^{n} (y_i - f_{\theta}(x_i))^2$.

- ▶ Start with an initial guess $\theta^{(0)}$ and set t = 0.
- ▶ Iterate until $R(\theta)$ stops decreasing:
 - 1. Find a small update δ such that

$$\theta^{(t+1)} = \theta^{(t)} + \delta, \quad R(\theta^{(t+1)}) < R(\theta^{(t)}).$$

- 2. Update $t \leftarrow t + 1$.
- ▶ In the toy example (1-D), we reached the global minimum. But if initialized differently, GD may converge to a local minimum.
- In high dimensions, it is much harder to tell if we are at a global or local minimum.

From GD to Stochastic (Mini-Batch) GD

So far we treated GD in general optimization. In ERM, the objective has special structure:

$$\hat{R}(\theta) = \frac{1}{N} \sum_{i=1}^{N} \hat{R}^{(i)}(\theta), \quad \nabla \hat{R}(\theta) = \frac{1}{N} \sum_{i=1}^{N} \nabla \hat{R}^{(i)}(\theta).$$

- ightharpoonup Computing the full gradient requires N terms infeasible when N is large.
- ▶ **SGD idea**⁶: use a random mini-batch of size $B \ll N$ to form an unbiased estimate $g_k = \frac{1}{B} \sum_{j=1}^{B} \nabla \hat{R}^{(ij)}(\theta^{(k)})$.
- ▶ Saves computation: B is typically ≤ 100 while N may be millions.
- ▶ Trade-off: g_k is noisy. While $\mathbb{E}[g_k|\theta^{(k)}] = \nabla \hat{R}(\theta^{(k)})$, its variance affects convergence behavior (see Ch. 5 in Bach).
- **Epoch:** one full pass over all N training samples (i.e. $\approx N/B$ mini-batch updates).
- In practice, adaptive optimizers such as RMSprop and Adam are commonly used to train deep NNs; see https://arxiv.org/abs/1609.04747.

⁶https://www.microsoft.com/en-us/research/wp-content/uploads/2012/01/tricks-2012.pdf

Soon Hoe Lim Lecture 10: Neural Networks: Fundamentals

Stochastic (Mini-Batch) GD

Stochastic Gradient Descent (SGD⁷): uses minibatches drawn at random at each step instead of full dataset to accelerate GD.

Algorithm: Stochastic (Mini-Batch) Gradient Descent

- ▶ Hyperparameters: K (iterations), η (learning rate), B (batch size)
- ▶ Initialize: $\theta^{(0)} \in \mathbb{R}^p$
- ▶ For k = 0, 1, ..., K 1:
 - ▶ Sample mini-batch $\{i_1, \ldots, i_B\} \subset \{1, \ldots, N\}$ uniformly
 - Compute gradient estimate $g_k = \frac{1}{B} \sum_{i=1}^{B} \nabla \ell_{i}(\theta^{(k)})$
- \triangleright Return θ_{κ}

lnitialization matters: in convex problems any starting point converges to the global minimum, but in deep networks the choice of $\theta^{(0)}$ affects convergence speed and quality. Common schemes: small random values, Xavier/Glorot, He initialization.

 $^{^{7}}$ Understanding the learning dynamics and performance of GD and SGD under different settings, as well as their implications for deep learning, is an active research area; see Ch. 5 in Bach for some basic results and the review paper of Bottou et. al.: https://arxiv.org/abs/1606.04838.

Backpropagation: Chain Rule and Forward Recursion

⚠ Given that we have many trainable parameters, how can we compute the gradient efficiently?

Consider the sample-wise objective: $\hat{R}(W;x,y) = L(\beta^{\top}f_L(x),y)$, with f_L computed by the iteration rule. Parameters are of the form $\theta = \{W_0,\ldots,W_{L-1},b_0,\ldots,b_{L-1},\beta\}$. For simplicity, we drop biases (absorbed into weights by augmenting x with 1).

- We can rewrite the iteration rule (without biases) for a single sample (x, y) as $x_{\ell+1} = g_{\ell}(x_{\ell}, W_{\ell}), \quad \ell = 0, \dots, L, \quad x_0 = x.$
- ► For MLPs, $g_{\ell}(x, W) = \sigma(Wx)$ for $\ell < L$, and $g_{L}(x, W) = Wx$. The loss function has the form $\hat{R}(W; x, y) = L(x_{L+1}, y)$.
- ▶ This formulation also covers general recursive architectures since g_{ℓ} can be any feed-forward mapping.

Chain Rule and Backward Recursion

- ▶ To compute the derivative $\nabla_{W_{\ell}} \hat{R}$, observe that due to feed-forward structure, given $x_{\ell+1}$, $x_{\ell+1}$ does not depend on W_s for $s < \ell$.
- ► Thus, $\hat{R}(W; x, y) = L(x_{\ell+1}(x; W_0, ..., W_{\ell}), W_{\ell+1}, ..., W_{\ell}), y)$.
- ▶ By the chain rule, $\nabla_{W_\ell} \hat{R} = \left[\nabla_{W_\ell} g_\ell(x_\ell, W_\ell) \right]^\top \nabla_{x_{\ell+1}} L(x_{L+1}, y)$.
- ▶ Define $p_{\ell} = \nabla_{x_{\ell}} L(x_{L+1}, y)$.
- ► Then the recursion is:

$$egin{aligned}
abla_{W_\ell} \hat{R} &= \left[
abla_{W_\ell} g_\ell(x_\ell, W_\ell)
ight]^ op
ho_{\ell+1}, \ p_\ell &= \left[
abla_{x_\ell} g_\ell(x_\ell, W_\ell)
ight]^ op
ho_{\ell+1}, \quad p_{L+1} &=
abla_{x_{L+1}} L(x_{L+1}, y). \end{aligned}$$

- ▶ Thus, p_{ℓ} can be computed via a backward pass using the chain rule.

Backpropagation Algorithm

Algorithm: Backpropagation (For a Single Point (x,y))

- ▶ Initialize: $x_0 = x \in \mathbb{R}^d$
- ▶ Forward pass: for $\ell = 0, 1, ..., L$, $x_{\ell+1} = g_{\ell}(x_{\ell}, W_{\ell})$
- ▶ Initialize backward: $p_{L+1} = \nabla_{x_{L+1}} \hat{R}(x_{L+1}, y)$
- ▶ Backward pass: for $\ell = L, L 1, ..., 1$:
- ▶ Return $\{\nabla_{W_{\ell}}\hat{R}: \ell = 0, \dots, L\}$
- How does the choice of activation affect backprop? See Exercise 10.2. Try to work the algorithm⁸ out for some examples. See Exercise 10.3.
- What type of solution should we expect from GD? See Exercise 10.4.

⁸Backprop can be connected to optimal control theory as a special case of the sweeping algorithm based on Pontryagin's maximum principle. The variables p_t are called co-states and can be interpreted as Lagrange multipliers. See https://new.math.uiuc.edu/MathMLseminar/seminarPapers/LeCunBackprop1988.pdf.

Backprop as Reverse-Mode Differentiation

- Backpropagation is reverse-mode automatic differentiation (AD).
- ► Two AD modes:
 - ► Forward mode: propagate derivatives forward. Efficient if #inputs ≪ #outputs.
 - ► Reverse mode: propagate sensitivities backward. Efficient if #outputs ≪ #inputs (e.g. NNs).
- Neural networks: one scalar output (loss), many parameters ⇒ reverse mode is ideal.
- ▶ In backprop, the recursion $p_{\ell} = [\nabla_{x_{\ell}} g_{\ell}(x_{\ell}, W_{\ell})]^{\top} p_{\ell+1}$ is exactly the reverse-mode update.
- ▶ Backprop computes all gradients at a cost independent of the number of parameters (\approx 1–2 forward passes). This efficiency makes training deep networks feasible.

Packprop differentiates the **computational graph**: each node stores forward values, and gradients are propagated backward using the chain rule. Modern frameworks (e.g. PyTorch) build this graph dynamically — calling loss.backward() triggers reverse-mode AD.

Tricks of the Trade

Neural networks have a very large number of parameters, making them prone to overfitting, especially with small datasets.

- ▶ With too many hidden units or too many training epochs, the model can perfectly fit the training data, including its noise.
- ► This leads to poor generalization performance on unseen test data.

In practice, people have found certain tricks⁹ to be effective in dealing with the issue of overfitting.

Soon Hoe Lim Lecture 10: Neural Networks: Fundamentals

⁹Understanding why these work well (and when they fail) in various settings is an active research area.

Tricks of the Trade

- ► **Early stopping**: Monitor validation error and stop training before overfitting.
- ▶ Weight penalties: Ridge (L^2) and Lasso (L^1) shrink weights at each layer.
- ▶ **Dropout:** At each SGD update, randomly drop units with probability ϕ , scale weights of retained units by $1/(1-\phi)$ to compensate.
- ▶ Data augmentation: Perturb inputs while keeping labels fixed (e.g., add Gaussian noise, rotate/flip/crop images). Creates a "cloud" around each training sample, improves robustness, and in simple settings is equivalent to ridge regularization. Especially effective with SGD for CNNs.

Weight Decay

Definition 3: Weight Decay (L2 Regularization)

The penalized loss function is:

$$R_{\sf pen}(heta) = R(heta) + rac{\lambda}{2} J(heta)$$

where $\lambda \geq 0$ is the complexity parameter and $J(\theta)$ is a penalty on the weights. The standard choice is an L2 penalty:

$$J(\theta) = \sum_{k,m} \beta_{km}^2 + \sum_{m,l} \alpha_{ml}^2$$

- ► This is equivalent to placing a Gaussian prior on the weights in a Bayesian framework.
- Encourages smaller weights, leads to a smoother, less complex function fit.
- The gradient update rule becomes:

$$\theta^{t+1} \leftarrow \theta^t - \eta(\nabla R(\theta^t) + \lambda \theta^t) = (1 - \eta \lambda)\theta^t - \eta \nabla R(\theta^t)$$

Early Stopping

Early Stopping: A simple and effective form of regularization that avoids explicit penalty terms.

Algorithm:

- 1. Split data into training and validation sets.
- 2. Train the network on the training set.
- 3. At each epoch, monitor the prediction error on the validation set.
- 4. Stop training when the validation error stops decreasing (and begins to increase).
- 5. Return the weights from the epoch with the lowest validation error.
- Early stopping implicitly restricts the model complexity. The number of training epochs acts as a regularization parameter.

Dropout

Dropout: A random fraction of neurons are dropped during each training step.

- At each SGD update, randomly remove units with probability ϕ , and scale the retained activations by $\frac{1}{1-\phi}$ to keep the expectation fixed.
- ► In simple settings (e.g. linear regression), this is equivalent to **ridge regularization** (see Exercise 10.5).
- Like ridge, dropout makes other units compensate for the missing ones, pulling their weights closer together.
- ► Analogy: similar to randomly omitting variables when growing trees in random forests.

Tuning and Model Selection

Several hyperparameters need to be chosen, typically via cross-validation.

- ▶ Number of Hidden Units (Width): Too few limits model flexibility; too many increases risk of overfitting and computational cost. It is often better to choose a relatively large width and rely on regularization.
- Number of Hidden Layers (Depth): Deeper networks can learn more complex hierarchical features but are harder to train.
- ▶ **Regularization Tuning Parameters:** Weight decay parameter (λ) and dropout rate (ϕ) at each layer.
- ▶ Optimizer¹⁰ Tuning Parameters: Learning rate (η) , batch size (B), number of epochs.
- ⚠ Due to the non-convex nature of the optimization, it is good practice to train the network multiple times from different random starting weights and average the predictions.
- 10.6). Train a simple NN yourself and try these tricks out (see Exercise 10.6).

¹⁰Other popular tricks to improve optimization include using batch normalization, layer normalization, adaptive optimizers (Adam, RMSprop), learning rate scheduling.

Example: The MNIST Classification Task

See ISL Ch. 10.2 for more details on the dataset and Ch. 10.9 for the lab session. Here, we are learning a map $f: \mathbb{R}^{784} \to \mathbb{R}^{10}$:

3

Handwritten digits 28×28 grayscale images 60K train, 10K test images Features are the 784 pixel grayscale values $\in (0, 255)$ Labels are the digit class 0-9

- Goal: build a classifier to predict the image class.
- We build a two-layer network with 256 units at first layer, 128 units at second layer, and 10 units at output layer.
- Along with intercepts (called *biases*) there are 235,146 parameters (referred to as *weights*)

Output Layer and Loss Function (MNIST Example)

Output layer (ISL notation):

$$Z_m = \beta_{m0} + \sum_{\ell=1}^{128} \beta_{m\ell} A_{\ell}^{(2)}, \quad m = 0, 1, \dots, 9.$$

Softmax activation for the output layer:

$$f_m(X) = \Pr(Y = m \mid X) = \frac{e^{Z_m}}{\sum_{i=0}^9 e^{Z_i}}, \quad m = 0, \dots, 9.$$

Training: minimize the negative multinomial log-likelihood (cross-entropy):

$$\hat{R}(\theta) = -\sum_{i=1}^{N} \sum_{m=0}^{9} y_{im} \log f_m(x_i),$$

where $y_{im} = 1$ if true class of observation i is m (one-hot encoded), else 0, and $f_m(x_i)$ is the model's estimate of $P(G = m|X = x_i)$.

If we use a batch size of 128, then how many updates per epoch do we have?

MNIST Results and Insights

Method	Test Error
Neural Network + Ridge Regularization	2.3%
Neural Network + Dropout Regularization	1.8%
Multinomial Logistic Regression	7.2%
Linear Discriminant Analysis	12.7%

Notes:

- Early success for NNs in 1990s.
- ► There are 235,146 learnable parameters, which is almost 4x the number of samples (60k), i.e., the model is **overparametrized**. With many parameters, **regularization is essential** to reduce overfitting.
- Very overworked dataset: state-of-the-art < 0.5% error!</p>
- ▶ Human error rate $\sim 0.2\%$ (20 mistakes in 10K test images).
- O How about classification tasks on more challenging datasets (CIFAR100, ImageNet, etc.)? How about other tasks such as speech/language modeling on structured datasets such as audio, text and time series data?

When to Use Deep Learning

Deep Learning Successes:

- ► CNNs: Image classification and modeling; now used in medical diagnosis (mammography, ophthalmology, MRI, digital X-rays).
- **RNNs:** Speech recognition, language translation, forecasting.
- ► **Transformers:** State-of-the-art in natural language processing, powering LLMs, and increasingly used in vision, speech, and multi-modal learning.

But should we always use deep learning?

- Best results often when signal-to-noise ratio is high and datasets are large (less overfitting).
- For noisier data, simpler models can perform just as well (or better).
- Examples (in ISL Ch. 10):
 - ▶ NYSE data: $AR(5) \approx RNN$.
 - ► IMDB reviews: linear glmnet ≥ neural net > RNN.
- ➤ Occam's razor: prefer simpler, more interpretable models if they perform equally well.

Exercises

Exercise 10

- 1. The Expressive Power of Depth: The XOR Problem. The XOR function classifies inputs $x = (x_1, x_2)$ where $x_i \in \{0, 1\}$ as follows: f(0, 0) = 0, f(1, 1) = 0 (Class 0), and f(0, 1) = 1, f(1, 0) = 1 (Class 1).
 - (a) Prove that the four XOR data points are not linearly separable.
 - (b) Consider a hidden layer with two ReLU neurons, $\sigma(z) = \max(0, z)$, that transforms the input x into a new feature space $a^{(1)} = (a_1, a_2)$:

$$a_1 = \sigma(x_1 + x_2 - 1.5)$$
 and $a_2 = \sigma(-x_1 - x_2 + 0.5)$

Show that the XOR points, when mapped into this new feature space, become linearly separable. Provide the weights (v_1, v_2) and bias c for an output neuron $f(x) = v_1 a_1 + v_2 a_2 + c$ that correctly classifies the transformed points.

(c) Using your results, explicitly state all weight matrices and bias vectors $(W^{(1)}, b^{(1)}, W^{(2)}, b^{(2)})$ for a two-layer MLP that computes the XOR function.

Exercises

Exercise 10

2. Choice of Activation Function. We compare three activation functions:

$$h(x) = \begin{cases} 1, & x > 0, \\ 0, & x \le 0, \end{cases}$$
 $\sigma(x) = \frac{e^x}{1 + e^x},$ $\text{ReLU}(x) = \max\{0, x\}.$

Consider a one-layer feed-forward network with cross-entropy loss.

- (a) Why is the hard threshold *h* problematic for gradient-based training? Illustrate using the backpropagation chain rule.
- (b) The logistic function σ is differentiable, but what problem arises when |x| is large? How does this affect training?
- (c) Explain why ReLU is often preferred in practice compared to h and σ . What advantages does it offer, and what drawbacks can still occur?

Exercises

Exercise 10

3. **Deriving Gradients in Backpropagation.** For a two-layer fully connected NN with one hidden layer, derive the gradients of the squared-error loss for a single data point (x_i, y_i) using the chain rule, assume identity output activation.

Loss (single sample):
$$R_i(\theta) = \frac{1}{2} \sum_{k=1}^{K} (y_{ik} - f_k(x_i))^2$$
.

Forward pass:
$$A^{(1)} = x_i$$
, $a_{\ell}^{(2)} = w_{\ell 0}^{(2)} + \sum_{j=1}^{K_1} w_{\ell j}^{(2)} A_j^{(1)}$, $A_{\ell}^{(2)} = \sigma(a_{\ell}^{(2)})$,

$$f_k(x_i) = \beta_{0k} + \sum_{\ell=1}^{K_2} \beta_{k\ell} A_{\ell}^{(2)}.$$

Backward pass:
$$\delta_k = \frac{\partial R_i}{\partial f_k} = f_k(x_i) - y_{ik}, \ s_\ell = \frac{\partial R_i}{\partial a_\ell^{(2)}} = \sigma'(a_\ell^{(2)}) \sum_{k=1}^K \beta_{k\ell} \delta_k.$$

Gradients:
$$\frac{\partial R_i}{\partial \beta_{k\ell}} = \delta_k A_\ell^{(2)}, \quad \frac{\partial R_i}{\partial \beta_{0k}} = \delta_k, \quad \frac{\partial R_i}{\partial w_{\ell j}^{(2)}} = s_\ell A_j^{(1)}, \quad \frac{\partial R_i}{\partial w_{\ell 0}^{(2)}} = s_\ell.$$

- (a) Verify each step via the chain rule.
- (b) Extend to the full gradient ∇R by summing over all N data points.
- (c) Derive the forward and backward propagation equations for a scalar output with the sigmoid output activation.
- (d) Consider instead the cross-entropy loss for a *K*-class classification problem. Repeat (c) for an output with the softmax activation.

Exercises

Exercise 10

- 4. Implicit Regularization of Gradient Descent. Consider the underdetermined system Ax = b where $A \in \mathbb{R}^{m \times n}$ with m < n and A has full row rank. We minimize $R(x) = \frac{1}{2} \|Ax b\|_2^2$ using gradient descent with the initial iterate x_0 .
 - (a) Show that any $x \in \mathbb{R}^n$ can be decomposed uniquely as

$$x = x_{\text{row}} + x_{\text{null}}, \quad x_{\text{row}} \in \text{row}(A), \ x_{\text{null}} \in \mathcal{N}(A),$$

and that $\|x\|^2 = \|x_{\text{row}}\|^2 + \|x_{\text{null}}\|^2$, where row(A) denotes the subspace of \mathbb{R}^n spanned by the rows of A. Conclude that the minimum-norm solution must lie entirely in row(A).

- (b) Show that $\nabla R(x) = A^{\top}(Ax b)$ always belongs to row(A).
- (c) The gradient descent update is $x_{k+1} = x_k \eta \nabla R(x_k)$. If $x_0 = 0$, explain why all iterates remain in row(A).
- (d) Combine the above to argue that gradient descent from $x_0 = 0$ converges to the unique minimum-norm solution $x^* = A^+b$.
- (e) What does gradient descent converge to if x_0 is not zero?

Exercises

Exercise 10

- 5. Dropout as Adaptive Regularization. In its modern implementation, a hidden vector $h \in \mathbb{R}^d$ is transformed to $\tilde{h} = \frac{m \odot h}{2}$, where $m_i \sim \text{Bernoulli}(p)$ are independent random mask entries and p is the keep probability.
 - (a) Show that the expected activation is unchanged, i.e., $\mathbb{E}[\tilde{h}] = h$.
 - (b) Consider a linear layer $v = w^{\top} \tilde{h}$ that follows the dropout layer. Show that the expected squared loss (the expectation is over the random mask m) can be decomposed into the original loss plus a regularization term:

$$\mathbb{E}[(y-y^*)^2] = (w^{\top}h - y^*)^2 + \frac{1-p}{p}\sum_{j=1}^d w_j^2 h_j^2.$$

- (c) Explain how the second term acts as an adaptive L2 regularizer and why this helps reduce overfitting.
- 6. [Experimental] Solve Exercise 10.10.7 in ISL and then Exercise 11.7 in ESL. For the tasks, implement the tricks of the trade introduced in this lecture and see whether they are effective.

Appendix: Deep Learning for Structured Data

- lacktriangle Any input data can be flattened into vector \mathbb{R}^d
- Problems with flattening:
 - No canonical means of flattening
 - Arbitrarily chosen flattening may destroy structured information
 - ► Two different image classes become harder to distinguish when flattened
- Solution: Build models that work directly on structured data
- Respect intrinsic structures and symmetries
- Examples: Images (spatial structure), time series (temporal structure)
- Challenge of Image Data: Standard MLPs are not well-suited for high-dimensional data like images.
- ➤ A 1000x1000 pixel image has 1 million input features. An MLP would require billions of parameters.
- MLPs¹¹ also ignore the crucial spatial structure of images.

Soon Hoe Lim Lecture 10: Neural Networks: Fundamentals

¹¹However, MLP-Mixers can be quite competitive; see https://arxiv.org/abs/2105.01601

Convolutional Neural Networks (CNNs): Introduction

Major success story for classifying images (e.g., CIFAR100, ImageNet).

- ► CNNs build image representations in a hierarchical fashion.
- Early layers detect simple features such as **edges and corners**.
- Intermediate layers combine these into **shapes and patterns**.
- ▶ Deeper layers assemble complex structures to recognize the **target object**.
- ► This hierarchy is enabled by two key operations:
 - ► Convolution layers: learn spatial feature detectors.
 - **Pooling layers**: downsample to achieve translation invariance.

Convolution - Mathematical Foundation

- **Continuous Definition:** Two real-valued functions $x, w : \mathbb{R} \to \mathbb{R}$
- ► Convolution w * x: $(w * x)(\tau) = \int_{-\infty}^{\infty} w(t)x(\tau t)dt$
- Basic properties:
 - **Commutativity**: w * x = x * w
 - ► Linearity: $w * (\lambda_1 x_1 + \lambda_2 x_2) = \lambda_1 w * x_1 + \lambda_2 w * x_2$
- **Discrete convolution** for infinite vectors $w = \{w(i) : i \in \mathbb{Z}\}$, $x = \{x(i) : i \in \mathbb{Z}\}$:

$$(w*x)(k) = \sum_{i=-\infty}^{\infty} w(i)x(k-i)$$

- Properties preserved: commutativity, linearity, smoothing
- ► Cross-correlation (common in ML): $(w * x)(k) = \sum_{i=-\infty}^{\infty} w(i)x(k+i)$
- Often called "convolution" in ML literature (just flipped kernel)

Convolution Intuitions and Finite Convolutions

Intuitions:

- ▶ **Probability perspective**: If U, V are random variables with densities w(u), x(v), then density of U + V at value τ is w * x "fuzzy addition"
- ➤ **Smoothing perspective**: If *w* is smooth bump function, *x* is rough function, then *w* * *x* smooths out *x* (like myopic vision)
- ► Filters out high frequency components via convolution theorem: $\mathcal{F}(w*x) = \mathcal{F}(w)\mathcal{F}(x)$

Convolution Intuitions and Finite Convolutions

Finite Convolutions - Boundary Conditions:

- Finite vectors: w length m, x length n (assume m < n)
- ▶ w: kernel/filter, x: signal
- ▶ Circular convolution: $(w * x)(k) = \sum_{i=0}^{m-1} w(i)x(k+i), k = 0, ..., n-1$ with x periodically extended
- ▶ Valid convolution: $(w * x)(k) = \sum_{i=0}^{m-1} w(i)x(k+i), k = 0, ..., n-m$, output size n-m+1
- ▶ Same zero padding: $(w*x)(k) = \sum_{i=0}^{m-1} w(i)x(k+i-\lfloor m/2 \rfloor)$, x padded with zeros, output size n
- ► 2D convolutions for images:

$$(w*x)(k,\ell) = \sum_{i=-\infty}^{\infty} \sum_{j=-\infty}^{\infty} w(i,j)x(k+i,\ell+j)$$

CNN Core Concepts

Image Data Representation:

- ▶ Input image $x \in \mathbb{R}^{d \times d}$ (discrete samples from continuous image)
- lacktriangle Pixel intensity typically in $\{0,1,\ldots,255\}$ or normalized to [0,1]
- **Monochrome**: Single channel, c = 1
- **Color (RGB)**: Three channels, c = 3
- ▶ General representation: Rank-3 tensor $x_k(i,j)$ where $i,j=0,\ldots,d-1,$ $k=0,\ldots,c-1$

Core CNN Concepts:

- ► Local Receptive Fields: Each neuron connects only to a small, localized region of the input
- Convolution and Kernels (Filters): Small matrix of weights slides across input, computing dot products
- ▶ Parameter Sharing: Same kernel used across all spatial locations

Convolution Layer:

- ▶ "Matrix" W of convolution filters: each W_{lk} is 2D filter of size $m \times m$
- ▶ Basic transformation: $\sigma(\sum_k W_{lk} * x_k + b_l)$
- \triangleright σ : point-wise nonlinearity, b_l : biases
- Output: Collection of images arranged in channels

Convolution Filters in CNNs

- A filter (kernel) is itself a small image, representing shapes, edges, or textures.
- ▶ It is **slid across** the input image, computing a dot product at each location.
- ▶ High score ⇒ local patch matches the filter; low score ⇒ mismatch.
- ▶ This produces a **feature map** that highlights where the pattern occurs.
- Filters are not hand-crafted they are learned automatically during training.

Input Image =
$$\begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \\ j & k & l \end{bmatrix}$$
 Convolution Filter =
$$\begin{bmatrix} \alpha & \beta \\ \gamma & \delta \end{bmatrix}$$
.
$$\begin{bmatrix} a\alpha + b\beta + d\gamma + e\delta & b\alpha + c\beta + e\gamma + f\delta \end{bmatrix}$$

$$\text{Convolved Image} = \begin{bmatrix} a\alpha + b\beta + d\gamma + e\delta & b\alpha + c\beta + e\gamma + f\delta \\ d\alpha + e\beta + g\gamma + h\delta & e\alpha + f\beta + h\gamma + i\delta \\ g\alpha + h\beta + j\gamma + k\delta & h\alpha + i\beta + k\gamma + l\delta \end{bmatrix}$$

Convolution: Finding Patterns

- Convolution with a filter detects common patterns across the image.
- Example: vertical- or horizontal-stripe filters.
- ▶ The result is a new **feature map** showing where the pattern occurs.
- ► For color images (RGB): each filter spans all 3 channels, and the dot-products are summed.
- Filter weights are learned during training, not predefined.

Why Convolutions?

Weight Sharing:

- Convolution is linear operation can be written as matrix multiplication
- ▶ 1D example: length-3 filter w on signal $x \in \mathbb{R}^5$ (circular):

$$w * x = \begin{pmatrix} w_0 & w_1 & w_2 & 0 & 0 \\ 0 & w_0 & w_1 & w_2 & 0 \\ 0 & 0 & w_0 & w_1 & w_2 \\ w_2 & 0 & 0 & w_0 & w_1 \\ w_1 & w_2 & 0 & 0 & w_0 \end{pmatrix} \begin{pmatrix} x_0 \\ x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix}$$

- ► Matrix *C_w* is Toeplitz matrix, with much fewer parameters than fully connected layers
- ▶ Sparse matrix when filter length ≪ signal length

Translation Equivariance:

- ▶ Let *T* be translation operation on signal
- **Equivariance property**: w * (Tx) = T(w * x)
- If input signal shifted: output is just shifted version of original output
- General: convolutions and translations commute
- ▶ Point-wise nonlinearity $z \mapsto \sigma(z)$ also translation equivariant

Translation Invariance and Pooling Operations

Translation Invariance:

- ▶ Function f is **invariant** under transformation T if: f(Tx) = f(x) for all x
- **Example:** $f(x) = \sum_{i} x(i)$ (sum of all elements)
- **Key insight**: If g is equivariant and f is invariant w.r.t. T, then $f \circ g$ is invariant
- ▶ For sequence of equivariant functions $\{g_j\}$ and invariant $f: f \circ g_1 \circ \cdots \circ g_J$ is invariant
- Many vision tasks need translation invariance: translated cat is still cat
- Build hypothesis space where all functions respect same symmetry/invariance

Pooling Layers in CNNs

- Another way to build invariance through signal transformations
- ▶ Max pooling with stride p (1D): $(T_{mp}x)(k) = \max_{i=kp,...,(k+1)p} x(i)$
- ► Stride *p*: length of pooling window
- Decreases signal size by factor of p
- ► Invariance to local deformations: within each pooling window, permuting pixel values leaves output unchanged
- ▶ Other variants: average pooling, un-strided pooling

$$\text{Max pool} \begin{bmatrix} 1 & 2 & 5 & 3 \\ 3 & 0 & 1 & 2 \\ 2 & 1 & 3 & 4 \\ 1 & 1 & 2 & 0 \end{bmatrix} \rightarrow \begin{bmatrix} 3 & 5 \\ 2 & 4 \end{bmatrix}$$

- **Example:** each non-overlapping 2×2 block is replaced by its maximum.
- Sharpens feature identification by keeping strongest activations.
- Provides **translation invariance**: feature detected regardless of small shifts.
- ▶ Reduces spatial dimension: factor of 2 in each dimension (overall factor of 4).

Complete CNN Architecture

A typical CNN is a sequence of stacked layers:

- Convolutional Layer: Applies multiple kernels to the input, producing a stack of feature maps.
- 2. Activation (e.g., ReLU) Layer: Applies activation element-wise.
- 3. **Pooling Layer:** Downsamples the feature maps (e.g., max pooling), reducing spatial dimensions and making the representation more compact.
- 4. **Fully Connected Layer:** The final feature maps are "flattened" and fed into a standard MLP for final classification or regression.

Mathematically, for a basic deep CNN structure starting with multi-channel image $x \in \mathbb{R}^{d \times d \times c}$:

- $x^0 = x$
- $x^{t+1} = T_{mp} T_{conv} x^t, \quad t = 0, ..., T-1$
- $ightharpoonup f(x) = T_{fc}x^T$
- $ightharpoonup T_{conv}$: convolution layer, T_{mp} : max pooling layer, T_{fc} : fully connected layer
- ► Training: GD/SGD with backpropagation
- ► Trainable: convolution weights, biases, fully connected weights

CNN Architectures: Depth and Filters

- ► Modern CNNs stack many **convolution** + **pooling layers**.
- ▶ Convolution filters are typically small (e.g. 3×3 per channel).
- Each filter produces a new **channel** (feature map).
- As spatial size decreases (pooling), the number of channels is usually increased.
- ▶ Modern CNNs are often made very deep using residual connections (ResNets); e.g. ResNet-50 has 50 layers, trained on ImageNet (1000 classes).

Recurrent Neural Networks (RNNs): Introduction

Time Series Data Motivation:

- CNNs are for spatial data, but for sequential data (text, speech, time series), the order is critical
- ► A standard feed-forward network treats each input in a sequence independently, ignoring temporal relationships
- ▶ Time series input: $x = \{x(\tau) : \tau = 1, ..., \tau_{max}\}$
- ▶ Each $x_{\tau} \in \mathbb{R}^d$ (can have additional structure like images for video)
- Two types of outputs:
 - ► **Type 1**: *y* is scalar/class for entire sequence
 - ▶ **Type 2**: *y* is also time series, predict for every time step

RNN: Basic Architecture

- ▶ An RNN has loops, allowing it to process a sequence one element at a time
- ▶ The key component is the **hidden state**, h_t , which acts as a "memory"
- RNNs model relationship via learned hidden dynamical system:
- $h_{\tau+1} = g(h_{\tau}, x_{\tau+1}, \theta), o_{\tau} = u(h_{\tau}, \phi)$
- At each time step t: $h_t = f(W_{hh}h_{t-1} + W_{xh}x_t + b_h)$

♀ For RNNs, **tokenization and word embeddings** are crucial for handling text data; see ESL for examples of RNN applications including document classification (IMDB reviews) and time series forecasting (NYSE data).

RNN Parameter Sharing

The same weights are used at each step in the sequence — hence the term recurrent.

Parameter Sharing:

- ightharpoonup Trainable parameters: θ, ϕ
- ▶ Output sequence: $\{o_{\tau} : \tau = 1, ..., \tau_{max}\}$
- ▶ Train θ , ϕ so $\{o_{\tau}\}$ approximates y_{τ}
- ► Single output: use only $o_{\tau_{max}}$
- Simplest RNN: 1-layer NNs

- ► **Key difference**: Parameter sharing in time direction (unlike deep feedforward networks with different parameters per layer)
- ► Similar to CNNs sharing parameters in spatial direction

RNN: Training

Training - Backpropagation Through Time (BPTT):

- Training similar to feedforward networks
- Key step: Unroll computational graph to feedforward-like structure
- ► After unrolling: weights tied/shared across unrolled layers
- Apply standard backpropagation on unrolled network
- ▶ Forward pass through time to compute $\{h_{\tau}\}$, $\{o_{\tau}\}$
- Backward pass through time to compute gradients
- Same parameter gradients accumulated across all time steps
- ► RNNs are notorious the the vanishing and exploding gradient issues; gated versions such as LSTM and GRU are standard to mitigate this issue

Property There is a rich research area at the interface of RNNs and dynamical systems, aiming to improve architectures for long-range sequence modeling. This has led to modern variants such as Antisymmetric RNNs, Lipschitz RNNs, and Structured State-Space Models (S4, S5, Mamba, etc.), which are now competitive with another class of models that we will discuss next − the Transformers.

Transformers: Introduction

RNN Limitations:

- Sequential processing prevents parallelization
- ▶ Difficulty with long-range dependencies despite LSTM/GRU improvements
- Vanishing gradients in very long sequences
- Computational bottleneck for long sequences

CNN Limitations for Sequences:

- Fixed receptive field requires deep networks for long-range dependencies
- Not naturally suited for variable-length sequences

Transformer Solution: "Attention is All You Need" (Vaswani et al., 2017)

- ▶ Rely entirely on attention mechanisms
- Dispense with recurrence and convolutions entirely
- Enable parallel processing of entire sequences
- Core Idea: Allow each position to directly attend to all positions in input sequence

Attention Mechanism - Core Concepts

Query-Key-Value Framework:

- Query (Q): "What information am I looking for?"
- ► Key (K): "What information do I contain?"
- ▶ Value (V): "What information should I send?"
- ▶ Database Analogy: Query searches through database of key-value pairs, return values corresponding to keys that match query. In attention: soft matching with weighted combination.

Attention

Scaled Dot-Product Attention:

- ► **Mathematical Formulation**: Attention(Q, K, V) = softmax $\left(\frac{QK^T}{\sqrt{d_k}}\right)V$
- Components:
 - $Q \in \mathbb{R}^{n \times d_k}$: Query matrix (*n* queries, dimension d_k)
 - $K \in \mathbb{R}^{m \times d_k}$: Key matrix $(m \text{ keys, dimension } d_k)$
 - $V \in \mathbb{R}^{m \times d_v}$: Value matrix (*m* values, dimension d_v)
- ▶ **Steps**: (1) Compute dot products QK^T , (2) Scale by $\sqrt{d_k}$, (3) Apply softmax, (4) Weight values by multiplying with V
- ▶ Output dimension: $\mathbb{R}^{n \times d_v}$

Why Scaling by $\sqrt{d_k}$?

- ▶ For large d_k , dot products have large magnitude, pushing softmax into saturation
- Scale by $\sqrt{d_k}$ to normalize variance to 1, preventing extremely small gradients

Multi-Head Attention and Attention Types

Multi-Head Attention:

- Motivation: Single attention head may not capture all types of relationships
- ▶ **Formulation**: MultiHead(Q, K, V) = Concat(head₁,..., head_h) W^O where head_i = Attention(QW_i^Q, KW_i^K, VW_i^V)
- **Parameter matrices**: W_i^Q, W_i^K, W_i^V for projections, W^O for output
- ▶ Typical choice: h = 8, $d_k = d_v = d_{model}/h = 64$ (for $d_{model} = 512$)
- ▶ Benefit: Different heads can attend to different types of relationships

Attention Types:

- ▶ **Self-Attention**: *Q*, *K*, *V* all derived from same input sequence. Each position can attend to all positions in same sequence.
- ► Cross-Attention (Encoder-Decoder Attention): *Q* from decoder, *K* and *V* from encoder. Decoder positions attend to encoder positions.
- ► Masked Self-Attention: Used in decoder to prevent positions from attending to future positions. Mask out illegal connections before softmax.

Complete Transformer Architecture

Encoder-Decoder Structure:

- ightharpoonup Encoder: Stack of N=6 identical layers
- ightharpoonup Decoder: Stack of N=6 identical layers
- ► Each layer has sub-layers with residual connections

Encoder Layer:

- Multi-head self-attention mechanism
- ▶ Position-wise fully connected feed-forward network
- Residual connection around each sub-layer
- ▶ Layer normalization: LayerNorm(x + Sublayer(x))

Complete Transformer Architecture

Decoder Layer:

- Masked multi-head self-attention
- ► Multi-head cross-attention over encoder output
- Position-wise feed-forward network
- Residual connections and layer normalization around each sub-layer

Position-wise Feed-Forward Networks:

- Structure: $FFN(x) = max(0, xW_1 + b_1)W_2 + b_2$
- ▶ Dimensions: Input/output: $d_{model} = 512$, Inner layer: $d_{ff} = 2048$
- Applied to each position separately and identically
- ▶ Provides non-linear transformation after attention

Transformers: Properties

- Universal Approximation: Transformers are universal approximators for sequence-to-sequence functions
- Expressivity: Can represent complex dependencies that RNNs struggle with
- ► Optimization Landscape: Generally easier to optimize than RNNs
- Inductive Biases: Less inductive bias than CNNs/RNNs, relies more on data and scale
- Scaling Laws: Performance improves predictably with model size, data, compute

Positional Encoding and Key Innovations

Positional Encoding:

- ▶ **Problem**: Attention mechanism is permutation invariant
- ▶ **Solution**: Add positional encodings to input embeddings
- ▶ Sinusoidal Encoding: $PE_{(pos,2i)} = \sin\left(\frac{pos}{10000^{2i/d_{model}}}\right)$ $PE_{(pos,2i+1)} = \cos\left(\frac{pos}{10000^{2i/d_{model}}}\right)$ where pos is position, i is dimension
- ► Each dimension corresponds to different frequency
- Can extrapolate to longer sequences than seen during training

Key Innovations:

- ► Parallelization: All positions processed simultaneously (vs sequential in RNNs)
- ▶ Long-range Dependencies: Direct connections between any two positions
- ▶ Computational Efficiency: Self-attention: $O(n^2 \cdot d)$ vs RNN: $O(n \cdot d^2)$
- **Path Length**: Maximum path length between positions is O(1) vs O(n) in RNNs
- ▶ Interpretability: Attention weights provide insights into model behavior

Transformer Impact, Extensions and Limitations

Impact and Applications:

- ▶ NLP: Machine translation, language modeling (GPT, BERT, T5), text classification, QA
- Computer Vision: Vision Transformer (ViT), DETR object detection, image generation
- Other Domains: Protein folding (AlphaFold 2), code generation, multimodal models

Limitations and Challenges:

- **Computational Complexity**: $O(n^2)$ scaling with sequence length
- ▶ Memory Requirements: Attention matrices can be very large
- ▶ Long Sequences: Quadratic scaling problematic for very long sequences
- ➤ **Solutions Being Developed**: Sparse attention patterns (Longformer, BigBird), linear attention approximations, hierarchical attention, state space models (Mamba)
- ▶ Data Efficiency: Requires large amounts of data compared to more structured approaches

Key Takeaways and Summary

- Neural networks learn basis functions from data (vs fixed basis functions)
- ▶ Universal approximation theorem: can approximate any continuous function
- ▶ Optimization challenges: local vs global minima, convexity important
- ▶ SGD enables training on large datasets with computational efficiency
- Deep networks: hierarchical feature learning via composition
- ▶ Back-propagation: efficient gradient computation using chain rule
- CNNs exploit spatial structure via convolution and translation equivariance
- RNNs handle temporal data via parameter sharing in time
- ► Transformers revolutionize sequence modeling via attention mechanisms
- Architecture design crucial: match model structure to data structure
- ▶ Rich connections to optimal control, differential equations, signal processing