# Chapitre 1 : Le champ électrique

## I La charge électrique

#### A) Définition – propriétés

On trouve deux types d'électricité dans les corps :

- l'électricité résineuse (ambre)
- l'électricité vitreuse (verre)

L'expérience montre que deux corps d'électricités différentes s'attirent, et deux corps de même électricité se repoussent. On attribue alors (arbitrairement) un signe - à l'électricité résineuse, et + à l'électricité vitreuse.

L'action électrique est une grandeur extensive ; on attribue à tout corps chargé une intensité de charge en Coulomb (C).

La charge est quantifiée :

 $Q = ne, n \in \mathbb{Z}$ , où e est la charge élémentaire,  $e = 1,6022.10^{-19}$  C

(électron : charge -e; proton : charge e)

#### B) Densité de charge

La quantification de la charge est insensible à l'échelle macroscopique. On peut donc la considérer comme une quantité continue.

#### 1) Distribution volumique de charge

Charges réparties en volume :

$$\delta V \times M$$
 matière chargée

( $\delta V$ : volume mésoscopique)

 $\rho(M,t)$ : densité volumique de charge en M

$$= \frac{\sum_{i \in \delta V} q_i}{\delta V}$$

On le note aussi 
$$\rho(M) = \frac{\delta Q}{\delta V} = \frac{dq}{dV}$$
, ou  $dq = \rho(M)dV_{(M)}$ .  $[\rho] = \text{C.m}^{-3}$ .

Dans un volume V chargé de dimension macroscopique, on a alors :

Q<sub>V</sub> =" 
$$\sum_{\substack{dV \text{ qui} \\ \text{composent} \\ V}} dq$$
" =  $\iiint_V dq = \iiint_V \rho(M) dV_{(M)}$ 



#### 2) Distribution surfacique de charges

 $e \approx 1 \mu \text{m}$  (pour un conducteur par exemple)

On assimile cette distribution à une distribution surfacée en supposant que les charges ne sont présentes que sur la surface du corps chargé.



 $\sigma(M,t)$ : densité surfacique de charges

$$= \frac{\delta Q}{\delta S} = \frac{dq}{dS}$$
$$dq = \sigma(M)dS_{(M)} \cdot [\sigma] = \text{C.m}^{-2}.$$

Charge totale portée par une surface macroscopique S:

$$Q_{S} = \sum_{\substack{dS \text{ qui} \\ \text{composent} \\ S}} dq'' = \iint_{S} \sigma(M) dS_{(M)}.$$

## 3) Distribution linéique de charges



# II Loi de Coulomb

## A) Cadre de l'électrostatique

- Les particules chargées sont assimilées à des points ponctuels de position M, de charge q. (condition : la distance entre les corps doit être très grande devant le dimension propre de ces atomes)
- Tous les champs sont indépendants du temps.  $\frac{\partial \bullet}{\partial t} = 0$ .

En particulier,  $\rho, \sigma, \lambda$  sont indépendants du temps.

#### B) Loi de Coulomb

Soient deux charges ponctuelles  $q_1, q_2$  en  $M_1, M_2$ .



L'interaction électrique entre deux charges dans le vide est décrite par la loi de Coulomb :

$$\vec{F}_{1\to 2} = K \frac{q_1 q_2}{M_1 M_2^2} \vec{u}_{12} \,.$$

K: constante caractéristique de l'attraction électrique (K > 0)

$$K = \frac{1}{4\pi\epsilon_0} = 9.10^9 \text{SI (N.m}^2.\text{C}^{-2})$$
.  $\epsilon_0$ : permittivité électrique du vide.

La loi de Coulomb reste valable dans un matériau isolant à condition de remplacer  $\varepsilon_0$  par  $\varepsilon$ , permittivité électrique du milieu.

 $\varepsilon = \varepsilon_r \varepsilon_0$  ( $\varepsilon_r$ : permittivité relative du milieu, sans dimension)

 $\varepsilon_r = 1$  pour le vide ;  $\varepsilon_r = 1,00058$  pour l'air ;  $\varepsilon_r = 80$  pour l'eau.

# III Le champ électrique

A) Champ créé par une charge ponctuelle



On pose 
$$\vec{E}_{Q}(M) = \frac{Q}{4\pi\varepsilon_0 AM^2} \vec{u}_{AM}$$
.

 $\vec{E}_{\mathcal{Q}}(M)$  est défini en tout point de l'espace. On l'appelle le champ électrique créé au point M par la charge Q en A.

Ainsi, 
$$\vec{F}_{A \to M} = q \vec{E}_Q(M)$$
.

Interprétation:

La charge Q crée un champ  $\vec{E}_Q$  dans tout l'espace et c'est ce champ qui interagit localement en M avec une charge q.



C'est un champ radial, c'est-à-dire que les lignes de champ sont des  $\frac{1}{2}$  droites d'origine Q. Les surfaces équipotentielles sont ici les sphères centrées en Q.

# B) Principe de superposition des champs créés par une distribution de charges quelconques

#### 1) Distribution discrète

On considère un ensemble de charges  $q_i$  en  $M_i$ ,  $i \in [1, n]$ .

$$\begin{split} & \underset{q_{1}}{\overset{M_{i}}{\underset{q_{1}}{\times}}} \overset{M_{i}}{\underset{q_{2}}{\times}} \overset{M_{3}}{\underset{q_{3}}{\times}} & \underset{x}{\overset{M}{\underset{q}{\times}}} \\ & \underset{q_{2}}{\overset{M_{i}}{\underset{q_{2}}{\times}}} & \underset{q_{3}}{\overset{M_{3}}{\underset{x}{\times}}} & \underset{q}{\overset{M}{\underset{q}{\times}}} \\ & \overset{M_{i}}{\underset{q_{2}}{\times}} & \underset{q_{3}}{\overset{M_{i}}{\underset{x}{\times}}} & \underset{q}{\overset{M_{i}}{\underset{x}{\times}}} \\ & \vec{F}_{\{q_{i}\} \rightarrow q} = \sum_{i=1}^{n} \vec{F}_{q_{i} \rightarrow q} = \sum_{i=1}^{n} \frac{1}{4\pi\varepsilon_{0}} \frac{q_{i}q}{M_{i}M^{2}} \vec{u}_{M_{i}M} \text{ avec } \vec{u}_{M_{i}M} = \frac{\overrightarrow{M_{i}M}}{M_{i}M} \end{split}$$

$$= q \sum_{i=1}^{n} \frac{1}{4\pi\varepsilon_{0}} \frac{q_{i}}{M_{i}M^{2}} \vec{u}_{M_{i}M}$$

Définition:

Le champ  $\vec{E}_{\{q_i\}}(M)$  créé par  $\{q_i\}$  en M est défini par :  $\vec{F}_{\{q_i\}\to q}=q\vec{E}_{\{q_i\}}(M)$ 

Ainsi, 
$$\vec{E}_{\{q_i\}}(M) = \sum_{i=1}^n \frac{1}{4\pi\varepsilon_0} \frac{q_i}{M_i M^2} \vec{u}_{M_i M} = \sum_{i=1}^n \vec{E}_{q_i}(M)$$
.

Ainsi, le champ créé par les *n* charges est la superposition des champs créés par chacun des champs agissant seuls.

#### 2) Distribution volumique de charges



 $dV_{(P)}$  peut être considéré comme une charge ponctuelle.

 $dq = \rho(P)dV_{(P)}$ . Cette charge, située en P, crée en M un champ électrique  $d\vec{E}(M)$  ou  $d_{dq}\vec{E}(M) = \frac{1}{4\pi\varepsilon_0}\frac{dq}{PM^2}\vec{u}_{PM}$ .

D'où

$$\vec{E}_{V}(M) = \iiint_{V} d\vec{E}(M) = \iiint_{V} \frac{1}{4\pi\varepsilon_{0}} \frac{dq}{PM^{2}} \vec{u}_{PM} = \iiint_{V} \frac{1}{4\pi\varepsilon_{0}} \frac{\rho(V)dV_{(P)}}{PM^{2}} \vec{u}_{PM}$$

Ce champ existe en l'absence de charge en M, mais si on ajoute une charge q en M,  $\vec{F}_{V\to q}=q\vec{E}_V(M)$ 

## 3) Distribution surfacique de charges



L'élément  $dS_{(P)}$  est une charge ponctuelle  $dq = \sigma(P)dS_{(P)}$  en P qui crée un champ en M:  $d\vec{E}(M) = \frac{1}{4\pi\varepsilon_0}\frac{\sigma(P)dS_{(P)}}{PM^2}\vec{u}_{PM}$ .

D'où 
$$\vec{E}_S(M) = \iint_S \frac{1}{4\pi\varepsilon_0} \frac{\sigma(V)dS_{(P)}}{PM^2} \vec{u}_{PM}$$

# 4) Distribution linéique de charges

$$\begin{array}{cccc}
\lambda(P) & & & & \\
A & P & & & \times M
\end{array}$$

$$\vec{E}_{\text{A-B}}(M) = \int_{\text{A-B}} \frac{1}{4\pi\varepsilon_0} \frac{\lambda(P)dl_{(P)}}{PM^2} \vec{u}_{PM}$$

# **IV Symétries**

# A) Symétries et antisymétries de la distribution de charges

On considère une distribution de charge volumique  $\{\rho\}$ 

$$\{\rho\}: V \to \mathbb{R}$$
 $P \mapsto \rho(P)$ 

Rappel : rotation d'axe  $\Delta$  orienté et d'angle  $\alpha$  :



On considère une isométrie s :

translations  $t.\vec{u}$ 

 $\begin{cases} \text{symétries planes } s_p \end{cases}$ 

rotations d'axe  $\Delta$  orienté, d'angle  $\alpha$ 

Alors:

s est une symétrie pour  $\{\rho\} \Leftrightarrow$  pour tout point P de l'espace,  $\rho(P') = \rho(P)$ . s est une antisymétrie pour  $\{\rho\} \Leftrightarrow$  pour tout point P de l'espace,  $\rho(P') = -\rho(P)$ . (où P' = s(P))

Exemples:

 $t.\vec{a}$ ,  $t.\vec{b}$  sont des symétries pour cette distribution de charges.  $t.\frac{1}{2}\vec{a}$ ,  $t.\frac{1}{2}\vec{b}$  sont des antisymétries.



Les symétries sont toutes les rotations d'axe  $\Delta$  et d'angle  $\alpha \in [0,2\pi[$ ; c'est une symétrie cylindrique. Pour tout plan P contenant  $\Delta$ ,  $s_P$  est aussi une symétrie (on dit aussi que P est un plan de symétrie pour  $\{\rho\}$ )

# B) Symétrie et antisymétrie plane : direction de $^{E}$ .

#### 1) Théorème (admis)

Si  $\pi$  est un plan de symétrie pour  $\{\rho\}$ , alors c'en est aussi un pour  $\{\vec{E}\}$ , (c'est-à-dire que pour tout point P de l'espace,  $\vec{E}(P') = \vec{s}_{\pi}(\vec{E}(P))$ ;  $\vec{s}_{\pi}$ : symétrie plane vectorielle)



Ainsi, en tout point M de  $\pi$ ,  $\vec{E}(M)$  est parallèle au plan.

#### 2) Autre théorème

Si  $\pi$  est un plan d'antisymétrie pour  $\{\rho\}$ , alors  $\pi$  est un plan d'antisymétrie pour  $\{\vec{E}\}$ .  $(\forall M \in \mathcal{E}, \vec{E}(M') = -\vec{s}_{\pi}(\vec{E}(M)))$ 



$$\vec{E}(M) = \vec{E}_{//} + \vec{E}_{\perp}$$

$$\vec{E}(M') = -\vec{s}_{\pi}(\vec{E}(M)) = -\vec{E}_{H} + \vec{E}_{\perp}$$

Cas particulier:

Si 
$$M \in \pi$$
, alors  $M' = M$ , et  $\vec{E}(M') = -\vec{s}_{\pi}(\vec{E}(M))$ , soit  $\vec{E}_{//} = \vec{0}$ .

Donc  $\vec{E}(M)$  est perpendiculaire au plan  $\pi$  en tout point M du plan.

#### 3) Exemples



Tout les plans  $\pi$  qui contiennent  $\Delta$  sont des plans de symétrie pour  $\{\rho\}$ .

Si  $M \in \Delta \subset \pi$ , alors  $\vec{E}(M)//\pi$ .

On choisit deux plans  $\pi$ ,  $\pi'$  distincts contenant  $\Delta$ .

Alors  $\vec{E}(M) \subset \pi \cap \pi'$ , donc  $\vec{E}(M)//\Delta$ 



Distribution linéique de charge  $\lambda(P) = \lambda_0 \cos \theta$ .

Le plan yOz est un plan de symétrie pour  $\{\lambda\}$ :

Si *P* est un point du cercle,  $\lambda(P') = \lambda_0 \cos(\pi - \theta) = -\lambda_0 \cos \theta = -\lambda(P)$ 

Sinon,  $\lambda(P') = 0 = -\lambda(P)$ 

Ainsi, pour  $M \in (O_V, \vec{E}(M) \perp yO_Z$ .

De même, si  $M \in (Ox, \vec{E}(M)//xOz$ .

# C) Invariance par symétrie : dépendance avec les variables d'espace 1) Invariance par translation de direction u.

Définition:

 $\{\rho\}$  est invariante par translation de direction  $\vec{u} \Leftrightarrow \forall \lambda \in \mathbb{R}, t_{\lambda,\vec{u}}$  est une symétrie pour  $\{\rho\}$ .

Exemple:

$$\vec{k} P : \lambda(P) = \lambda_0$$

Un fil infini uniformément chargé, de densité linéique de charge  $\lambda_0$  constante. Cette distribution est invariante par toute translation de direction  $\vec{k}$ .

Théorème:

Les coordonnées cartésiennes  $E_x$ ,  $E_y$ ,  $E_z$  du champ  $\vec{E}$  ne dépendent pas de la coordonnée repérant la position dans la direction d'invariance : ici, z.

Ou :  $\forall M \in \mathcal{E}, \vec{E}(M) = \vec{E}(x,y,z) = E_x(x,y,t).\vec{i} + E_y(x,y,t).\vec{j} + E_z(x,y,t).\vec{k}$ Démonstration :

 $\forall x,y,z,z' \in \mathbb{R}$ , pour M(x,y,z),M'(x,y,z') points de l'espace, on a  $M'=t_{(z'-z)\bar{k}}(M)$ .

C'est une symétrie pour  $\{\vec{E}\}\$ .

Donc 
$$\vec{E}(M') = \vec{t}_{(z'-z)\bar{k}}(\vec{E}(M)) = \vec{E}(M)$$

(Un vecteur est inchangé par translation...)

Àinsi,

$$\vec{E}(M') = E_x(x, y, z')\vec{i} + E_y(x, y, z')\vec{j} + E_z(x, y, z')\vec{k}$$

$$= \vec{E}(M) = E_x(x, y, z)\vec{i} + E_y(x, y, z)\vec{j} + E_z(x, y, z)\vec{k}$$

Et en projetant, on trouve le résultat voulu.

Remarque:

En coordonnées cylindriques  $M(\rho, \theta, z)$ , de base locale  $(\vec{e}_{\rho}, \vec{e}_{\theta}, \vec{k})$ :

$$\vec{E}(M(\rho,\theta,z)) = E_{\rho}(\rho,\theta)\vec{e}_{\rho} + E_{\theta}(\rho,\theta)\vec{e}_{\theta} + E_{z}(\rho,\theta)\vec{k}$$

# 2) Invariance par rotation autour de $\Delta = (Oz)$

On dit que  $\{\rho\}$  possède une symétrie cylindrique par rapport à  $\Delta$  lorsque  $\{\rho\}$  est invariante par toutes les rotations  $r_{\Delta,\alpha},\alpha\in[0,2\pi[$ .

Théorème:

Les composantes cylindriques  $E_{\rho}, E_{\theta}, E_z$  sont indépendantes de  $\theta$  (attention,  $\vec{E}$  en dépend quand même par l'intermédiaire de  $\vec{e}_{\rho}, \vec{e}_{\theta}$ )

# 3) Invariance par rotation d'axe passant par O.

On dit que  $\{\rho\}$  possède une symétrie sphérique lorsque pour tout axe  $\Delta$  passant par O, pour tout angle  $\alpha \in [0,2\pi[$ ,  $r_{\Delta,\alpha}$  est symétrique pour  $\{\rho\}$ .

Théorème:

Les composantes sphériques de  $\vec{E}$   $(E_r,E_\theta,E_\varphi)$  ne dépendent que de r=OM; on a même  $E_\theta=E_\varphi=0$ . (Voir chapitre 3 pour les coordonnées sphériques)

Exemple: Une charge ponctuelle.

# V Calculs de champ

A) Champ électrique créé par un segment uniformément chargé dans son plan médiateur

On prend un segment [AB], de longueur AB = 2l, un point M appartenant au plan médiateur.

Chapitre 1 : Le champ électrique

On représente ici le plan passant par A, B, M:



 $\forall P \in [AB], \lambda(P) = \lambda_0$  constante.

# 1) Direction de $\vec{E}(M)$

•  $\pi = yOz$  est un plan de symétrie.

Comme  $M \in \pi$  , on a  $\vec{E}(M) \in \pi$  , ou  $E_x = \vec{E}(M) \cdot \vec{i} = 0$  .

•  $\pi' = xOz$  est aussi un plan de symétrie.

Comme  $M \in \pi'$ , on a  $\vec{E}(M) \in \pi'$ , ou  $E_{y} = \vec{E}(M) \cdot \vec{j} = 0$ 

Ainsi,  $\vec{E}(M) = E_z(M)\vec{k} = E_z(z)\vec{k}$  (puisque  $M \in (Oz)$ )

• P = xOy est aussi un plan de symétrie.

On note  $M' = s_P(M)$ . Comme P est un plan de symétrie, on a :

$$\vec{E}(M') = \vec{s}_{P}(\vec{E}(M)), \text{ soit } E_{z}(-z)\vec{k} = \vec{s}_{P}(E_{z}(z)\vec{k}) = E_{z}(z)\vec{s}_{P}(\vec{k}) = -E_{z}(z)\vec{k}.$$

Donc  $E_z$  est une fonction impaire.

#### 2) Calcul de $E_z$ .



On considère un élément infinitésimal de fil repéré par le point P d'abscisse  $x_P$  ou x, et de longueur dx. Cet élément crée en M un champ :

$$d\vec{E}(M) = \frac{\lambda_0 dx}{4\pi\varepsilon_0 PM^2} \vec{u}_{PM}$$
, où  $\vec{u}_{PM} = \frac{\overrightarrow{PM}}{PM} = \frac{\overrightarrow{PO} + \overrightarrow{OM}}{PM}$ 

Donc  $\vec{E}(M) = \int_{A \cap R} d\vec{E}(M)$ .

Or,  $\vec{E}(M) = E_z(z)\vec{k}$ .

$$\text{Donc } E_z(z) = \vec{E}(M) \cdot \vec{k} = \int_{\mathcal{A}B} d\vec{E}(M) \cdot \vec{k} \; \; ; \; \vec{u}_{PM} \cdot \vec{k} = \frac{PO + OM}{PM} \cdot \vec{k} = \frac{z}{PM} \; .$$

Donc

$$E_{z}(z) = \int_{A \cap B} \frac{z \lambda_{0} dx}{4\pi \varepsilon_{0} (x^{2} + z^{2})^{3/2}} = \int_{-l}^{l} \frac{z \lambda_{0} dx}{4\pi \varepsilon_{0} (x^{2} + z^{2})^{3/2}} = \frac{\lambda_{0} z}{4\pi \varepsilon_{0}} \int_{-l}^{l} \frac{dz}{(x^{2} + z^{2})^{3/2}}$$

Une primitive de  $x \mapsto \frac{1}{(x^2 + z^2)^{3/2}}$  est  $x \mapsto \frac{1}{z^2} \frac{x}{\sqrt{x^2 + z^2}}$ .

Donc 
$$E_z(z) = \frac{\lambda_0}{4\pi\varepsilon_0 z} \left( \frac{l}{\sqrt{l^2 + z^2}} - \frac{-l}{\sqrt{l^2 + z^2}} \right) = \frac{2\lambda_0 l}{4\pi\varepsilon_0 z \sqrt{l^2 + z^2}}$$
  
Soit  $\vec{E}(M) = \frac{2\lambda_0 l}{4\pi\varepsilon_0 z \sqrt{l^2 + z^2}} \vec{k}$ .

Si z >> l, le segment correspond alors à une charge ponctuelle. Vérification :

$$\vec{E}(M) = \frac{2\lambda_0 l}{4\pi\varepsilon_0 z \sqrt{l^2 + z^2}} \vec{k} \approx \frac{2\lambda_0 l}{4\pi\varepsilon_0 z^2} \vec{k} \approx \frac{q_{AB}}{4\pi\varepsilon_0 z^2} \vec{k}$$

# B) Champ créé par un disque uniformément chargé



On considère un disque d'axe (Oz, de rayon R, ayant une distribution uniforme de charge  $\sigma_0$  constante.

On cherche le champ en  $M \in (Oz$ .

# 1) Symétries

xOz est un plan de symétrie pour  $\{\sigma\}$ , et M est dans ce plan.

Donc 
$$E_v(M) = 0$$

De même avec 
$$yOz$$
,  $E_x(M) = 0$ 

Donc 
$$\vec{E}(M) = E_z(M)\vec{k} = E_z(z)\vec{k}$$

## 2) Calcul de $E_z$ .

Découpage de la distribution de charges :





On considère un élément infinitésimal repéré par  $P(r,\theta)$  et de longueur  $dr,d\theta$ . Cet élément a pour aire  $ds = dr \times rd\theta$  (en assimilant les arcs à la corde correspondante, de longueur  $rd\theta$ ).

Il porte la charge  $dq = \sigma(P)dS = \sigma_0 dr \times rd\theta$ .

$$d\vec{E}(M) = \frac{\sigma_0 r dr \times d\theta}{4\pi \varepsilon_0 P M^2} \vec{u}_{PM}.$$

Donc 
$$\vec{E}(M) = \iint_{D(O,R)} d\vec{E}(M)$$
, et  $\vec{E}(M) = E_z(z)\vec{k}$ 

Donc 
$$E_z(z) = \iint_{D(O,R)} d\vec{E}(M) \cdot \vec{k}$$

$$\vec{u}_{PM} \cdot \vec{k} = \frac{\overrightarrow{PM} \cdot \vec{k}}{PM} = \frac{z}{PM}$$

Donc 
$$E_z(z) = \iint_{D(O,R)} \frac{z\sigma_0 r dr \times d\theta}{4\pi\varepsilon_0 (r^2 + z^2)^{3/2}} = \int_{\theta=0}^{2\pi} \int_{r=0}^{R} \frac{z\sigma_0 r dr \times d\theta}{4\pi\varepsilon_0 (r^2 + z^2)^{3/2}}$$

Ainsi, en intégrant d'abord par rapport à  $\theta$ :

$$E_{z}(z) = 2\pi \int_{0}^{R} \frac{z\sigma_{0}rdr}{4\pi\varepsilon_{0}(r^{2} + z^{2})^{3/2}}$$

Une primitive de 
$$r \mapsto \frac{r}{(r^2 + z^2)^{3/2}}$$
 est  $r \mapsto \frac{-1}{\sqrt{r^2 + z^2}}$ 

Donc 
$$E_z(z) = \frac{2\pi\sigma_0 z}{4\pi\varepsilon_0} \left( \frac{-1}{\sqrt{R^2 + z^2}} + \frac{1}{|z|} \right)$$

Soit 
$$\vec{E}(M) = \frac{2\pi\sigma_0 z}{4\pi\varepsilon_0} \left( \frac{1}{|z|} - \frac{1}{\sqrt{R^2 + z^2}} \right) \vec{k}$$

Lorsque  $z \gg R$  (et z > 0):

$$\begin{split} \vec{E}(M) &= \frac{2\pi\sigma_0}{4\pi\varepsilon_0} \left( 1 - \frac{z}{\sqrt{R^2 + z^2}} \right) \vec{k} = \frac{2\pi\sigma_0}{4\pi\varepsilon_0} \left( \frac{\sqrt{R^2 + z^2} - z}{\sqrt{R^2 + z^2}} \right) \vec{k} \\ &= \frac{2\pi\sigma_0}{4\pi\varepsilon_0} \left( \frac{z\left(\sqrt{1 + R^2/z^2} - 1\right)}{\sqrt{R^2 + z^2}} \right) \vec{k} \approx \frac{2\pi\sigma_0}{4\pi\varepsilon_0} \left( \frac{z\left(R^2/2z^2\right)}{z} \right) \vec{k} \\ &\approx \frac{\pi\sigma_0 R^2}{4\pi\varepsilon_0 z^2} \vec{k} = \frac{q_D}{4\pi\varepsilon_0 z^2} \vec{k} \end{split}$$