

- Tipos de memória (RAM, ROM...)
- FirmWare
- Encapsulamento de memória cache(DIP, TQFP...)
- Clock
- Tecnologias de memória RAM (EDO, SDRAM, RDRAM...)
- Memória Principal x Memória Secundária x Memória Virtual
- Memória Expandida x Memória Estendida

Visão Geral

Visão Geral

Figura 2:Exemplo de um típico depósito que funciona de modo semelhante a uma memória.

- A memória é organizada de maneira hierárquica.
- O nível superior (mais próximo do processador) é constituído de registradores do processador.
- Em seguida, vem um ou dois níveis de memória cache.
- Depois vem a memória principal, que normalmente usa módulos de memória dinâmica de acesso aleatório. São consideradas internas ao sistema de computação.
- A hierarquia continua com a memória externa, na qual o nível seguinte é tipicamente composto por um disco rígido, e com os níveis abaixo constituídos de meios removíveis, tais como cartuchos ZIP, discos ópticos e fitas magnéticas.

- A medida que descemos pela hierarquia, o custo por bit torna-se menor, a capacidade de memória fica maior e o tempo de acesso mais lento.
- O ideal seria usar apenas a memória mais rápida; entretanto como essas memórias são as mais caras, o tempo de acesso é sacrificado em favor de um custo mais baixo, utilizando memórias mais lentas.
- A idéia é organizar dados e programas na memória de maneira que as palavras de memória requeridas geralmente sejam encontradas nas memórias mais rápidas.

Memória

Assim sendo, as três características principais da memória – custo, capacidade e tempo de acesso – são conflitantes.

- Tempo de acesso maior → custo por bit maior
- Capacidade maior → custo por bit menor
- Capacidade maior → tempo de acesso menor

Figura 3: Hierarquia de memória.

- Em geral, é provável que a maioria dos acessos futuros à memória principal pelo processador sejam as posições de memória usadas recentemente.
- Assim, a memória cache mantém automaticamente uma cópia de algumas palavras de memória DRAM usadas recentemente.
- Com um projeto adequado, as palavras requisitadas pelo processador estarão, na maioria das vezes, armazenadas na memória cache.

- A memória é dividida sistematicamente em pequenas áreas, chamadas endereços.
- As memórias têm tempos de acesso bem distintos, sendo esses medidos em nanosegundos (ns).

Organização Típica de Memória

Figura 6: Organização típica de memória

Operações realizadas em um Memória

(a) Operação de escrita — O valor 11110 é transferido (uma cópia) da UCP—para a MP e armazenado na célula de endereço 1000, apagando o conteúdo anterior (00110).

(b) Operação de leitura — O valor 10011, armazenado no endereço da MP 0110 é transferido (cópia) para a UCP, apagando o valor anterior (11110) e armazenando no mesmo local.

- Pode-se realizar duas ações distintas:
- Guardar o elemento (armazenar); e
- Retirar o elemento (recuperar).
- Sendo essas denominadas:
- escrita ou gravação ou armazenamento(write ou record); e
- Leitura ou recuperação (read ou retrieve)

Figura 7: Operações realizadas em uma memória

Memória

Tipos de Memória RAM (Random Access Memory)

- Tipo de memória de leitura e escrita de acesso aleatório.
- Na memória o processador irá buscar programas e armazenar dados.
- A memória RAM é volátil. Cortando-se sua alimentação elétrica, apagamos os dados que estavam nela armazenados.

Memória

Tecnologias de Memória RAM

- Fast Page Mode (FPM)
- Extended Data Out (EDO)
- Synchronous Dynamic RAM (SDRAM)
 - PC-66
 - PC-100
 - PC-133
- Double Data Date SDRAM (DDR SDRAM ou SDRAM II)
- Enhanced SDRAM (ESDRAM)
- RAMBUS (RDRAM)
- Synclink (SLDRAM)

Memória

Tecnologias de Memória RAM

Figura 8: Tipos de memória.

Memória

Tipos de Memória ROM (Read Only Memory)

- Uma memória apenas de leitura, na qual os dados não são apagados quando desligamos a alimentação.
- Esse tipo de memória como o nome sugere, só pode ser lido, portanto os dados são inalteráveis.

Chip de memória ROM

Figura 9: Exemplo de memória ROM

Memória

Tipos de Memória RAM x ROM

- O acesso do processador à RAM ou ROM é diferente.
- A diferença é que a RAM aceita escrita em seus endereços, sobrepondose os dados lá armazenados anteriormente; a ROM, ao contrário, não aceita escrita em seus endereços – mesmo que o processador envie uma informação para tal.

Memória

Tipo de Memória	Categoria	Mecanismo de apagamento	Mecanismo de escrita	Volatilidade
RAM (memória de acesso aleatório)	Memória de leitura e escrita	Eletricamente, em nível de Bytes	Eletricamente	volátil
ROM (memória apenas de leitura)	Memória	Não á possíval	Máscaras	A = 1
PROM (ROM programável)	apenas de leitura	Não é possível	1.77	Não-volátil
EPROM (PROM apagável)		Luz UV, em nível de pastilha	Eletricamente	
Memória Flash	Memória principalmente de leitura	Eletricamente, em nível de blocos		
EEPROM (PROM eletricamente apagável)	do loitara	Eletricamente, em nível de Bytes		

Tabela 1: Visão geral de memória

Memória

O que é Firmware?

- Um programa (Software), quando armazenado em ROM, recebe o nome de firmware.
- A idéia do firmware é ser um programa inalterável a ser executado sempre.
- Dentro da memória ROM do micro, há basicamente três programas (firmwares):
 - BIOS (Basic Input/Output System)
 - POST (Power-On Self-Test Autoteste ao Ligar)
 - SETUP (Configuração)

Memória

BIOS

- Basic Input/Output System Sistema Básico de Entrada e Saída.
- Ensina o processador a trabalhar com os periféricos mais básicos do sistema, tais como os circuitos de apoio, a unidade de disquete e o vídeo em modo texto.

Memória

POST

- Power-On Self-Test Autoteste ao Ligar
- Um autoteste feito sempre que ligamos o micro. Você já deve ter reparado que, ao ligar o micro, há um teste de memória feito pelo POST. O POST executa as seguintes rotinas, sempre que o micro é ligado:
 - Identifica a configuração instalada.
 - Inicializa todos os circuitos periféricos de apoio (chipset) da placamãe e o vídeo.
 - Testa a memória e o teclado.
 - Carrega o sistema operacional para a memória.
 - Entrega o controle do processador ao sistema operacional.

Memória

SETUP

- Configuração
- Programa de configuração de hardware do computador; normalmente chamamos esse programa apertando um conjunto de teclas durante o POST.

Memória

Tecnologia de Memórias

- Mask ROM: Esta é a tecnologia mais tradicional e usada até o lançamento das primeiras placas-mãe soquete 7. Este tipo de circuito vem programado de fábrica e não há como reprogramá-lo, a não ser trocando o circuito da placa.
- Flash ROM: Essa é a tecnologia mais moderna para circuitos de memória ROM, pois permite que o circuito seja reprogramado eletronicamente, isto é, através de software. Com isso, você mesmo pode reprogramar um circuito de memória ROM sem a necessidade de trocar peças, como é o caso do upgrade de BIOS em placas-mãe mais modernas.

Memória

Cache

- É a utilização de uma pequena quantidade de memória RAM de alto desempenho, chamada memória estática, como intermediária na leitura e escrita de dados na memória RAM.
- Com isso, o micro ganha desempenho, pois o processador é capaz de trocar dados com a memória estática em sua velocidade máxima.
- Cache Interna x Cache Externa

Figura 10: Organização da memória cache.

Memória

Cache

Figura 11: Exemplos de memória cache

Memória

Quantidades de Memória Cache

Processador	Cache L1	Cache L2	Cache L2 na placa-mãe
286	-	-	
386DX		- 1 - 1	64/128/256 KB
486DX/DX2/SX/SX2	8 KB		128/256/512 KB
PENTIUM COMUM	16 KB	-	256/512 KB
PENTIUM MMX	32 KB	Calmer Thus	256/512 KB
PENTIUM II/III*	64 KB*	512 KB*	512 KB*
K6-2 / K6-III	64 KB	-	256/512 KB
P4 / ATHLON*	128 KB*	-	256/512/1024 KB*

Tabela 2: Quantidades de memória cache

Memória

Desempenho

- Entre as técnicas implantadas visando obter maiores velocidades, podemos citar:
 - Aumento do Clock;
 - Aumento do número de bits internos;
 - Aumento do número de bits externos;
 - Uso de cache interna e externa;
 - Redução do número de ciclos para executar uma instrução;
 - Execução de instruções em paralelo.

Memória

Clock (Freqüência)

- O clock faz o sincronismo entre todos os circuitos que constituem o computador. Todos os circuitos trocarão informações no momento em que o clock permitir.
- Como os circuitos eletrônicos são rápidos, a freqüência com que o clock fica ativo é alta. Normalmente essa freqüência – também chamada freqüência de operação – está na casa dos Megahertz (Mhz).
- Clock Interno x Clock Externo

Memória

Memória Principal x de Massa (secundária) x virtual

- Memória Principal É a memória RAM tipo de memória de escrita e leitura de acesso aleatório.
- Memória de Massa (Secundária) É a utilização de meio magnéticos (não volátil) como Discos, Fitas para armazenar informações.

Memória

Memória Principal x de Massa (secundária) x virtual

- Memória Virtual Essa memória é feito através de um arquivo no HD, chamado arquivo de troca (swap file).
 - Quando a memória RAM do micro "estoura", o processador comanda uma troca entre uma área da RAM que esteja sendo menos utilizada com uma área do arquivo de troca que esteja vazia,
 - Dessa forma uma porção de memória RAM ficará vazia, e não será emitida mensagem de erro,
 - Isso faz com que o erro de "estouro" de memória seja menos comum

Memória (Métodos de Acesso)

Memória Expandida x Memória Estendida

- A diferença entre elas, diz respeito ao método de acesso de memória acima de 1 MB que o processador utilizará e será diretamente baseada em seu modo de operação.
- Então, a memória expandida é uma técnica para acessar a memória estendida.

Memória Expandida	Memória Estendida
Modo Real	Modo Protegido
Necessita driver gerenc. de memória (emm386.exe)	Necessita especificador (himem.sys)

Tabela 3: Métodos de acesso a memória

Questões sobre Memória

- 1. Posso misturar módulos com tempos de acesso diferentes em um mesmo micro?
- Posso misturar módulos com tecnologias diferentes em uma única placa-mãe?
- 3. O micro fica mais rápido se eu instalar mais memória RAM?
- 4. O que é memória cache Write Back?
- 5. Há problemas em ter um micro com memória cache Write Back?
- 6. O que é Firmware? Descreva os tipos?
- 7. A memória é organizada de maneira hierárquica. Sabendo disso, defina como é constituído hierarquicamente essa organização.