Model-Oriented Specifications & Language Z

http://d3s.mff.cuni.cz

Pavel Parízek

Model-oriented specifications

- Model: internal state & operations
- Implementation
 - Iterative refinement of specifications
 - "coding from scratch"
 - Tests generated from the model
- Target domain: complex state
 - databases, file systems
- Popular languages: Z, B, VDM
 - set theory + first-order logic + programming languages

Language Z

 Based on: sets, relations, predicates, and formulas in the first-order logic

- Specification
 - Informal description (plain text)
 - Formal chunks (graphical notation)

• Examples: bank account, file system

Schemas

Structure: name, declarations, constraints

- System state schema
- Schema of operation

- Notation for variable names
 - input arguments (name?) versus output (name!)
 - pre-state (plain: a) versus post-state (primed: a')

Schema calculus and composition

- Combining schemas
 - logic connectives (and, or, not)

• Including schemas

Benefits: modularity & reuse

Process of creating specifications in Z

- Main steps
 - Informal description (plain text)
 - Schemas for the system state
 - Sets of necessary information about subject world
 - Schemas for operations
- Recommended approach
 - First standard control flow and valid inputs
 - Then incorrect inputs and handling errors
- Proving some claims
 - Using axioms and inference rules

Other features of Z

Generic schemas

Sequences

Tool support

https://formalmethods.wikia.org/wiki/Z notation#Tool support

http://czt.sourceforge.net/

Literature

- J.M. Spivey. The Z Notation: A Reference Manual. Oxford
 - https://spivey.oriel.ox.ac.uk/wiki/files/zrm/zrm.pdf

 J. Bowen. Formal Specification and Documentation using Z: A Case Study Approach.

