Digitaltechnik Wintersemester 2017/2018 8. Übung

Andreas Engel, Raad Bahmani

KW50

Die Präsenzübungen werden in Kleingruppen während der wöchentlichen Übungsstunde bearbeitet. Bei Fragen hilft Ihnen Ihr Tutor gerne weiter. Mit der angegebenen Bearbeitungszeit für die einzelnen Aufgaben können Sie Ihren Leistungsstand besser einschätzen.

Die mit "Zusatzaufgabe" gekennzeichneten Aufgaben sind zur zusätzlichen Vertiefung für interessierte Studierende gedacht und daher nicht im Zeitumfang von 90 Minuten einkalkuliert.

Übung 8.1 Flip-Flops - Wiederholung

[15 min]

Gegeben ist folgendes Schaltwerk mit synchron zurücksetzbaren Daten-Flip-Flops (DFF) und den Verzögerungszeiten

$$t_{\rm pd,NOT} = t_{\rm cd,NOT} = 1 \, \mathrm{ns}, \quad t_{\rm pd,AND} = t_{\rm cd,AND} = 2 \, \mathrm{ns}, \quad t_{\rm pd,XOR} = t_{\rm cd,XOR} = 3 \, \mathrm{ns}, \quad \mathrm{und} \quad t_{\rm pd,DFF} = t_{\rm cd,DFF} = 2 \, \mathrm{ns}$$

a) Vervollständigen Sie folgendes Timing-Diagramm.

- b) Welche Funktionalität realisiert dieses Schaltwerk?
- c) Markieren Sie alle Störimpulse im Timing-Diagramm. Müssen diese verhindert werden, um die Korrektheit der Schaltung sicher zu stellen?
- d) Ließe sich das gleiche Schaltverhalten auch mit Daten-Latches realisieren?

Übung 8.2 Realisierung endlicher Automaten

[25 min]

Gegeben ist folgende Zustandsübergangs- und Ausgangstabelle:

S	a_1	a_0	S'	S	a_1	a_0	у
K	0	*	M	K	0	0	0
K	1	0	L	K	0	1	1
K	1	1	K	K	1	*	1
L	*	*	M	L	*	*	0
M	*	0	K	M	0	*	1
M	0	1	L	M	1	0	0
M	1	* 0 1 * 0 1 1 1	M	M	1	0 1 * * 0 1	1

a) Zeichnen Sie das zugehörige FSM-Diagramm.

b)	Zeichnen Sie das zugehörige Schaltwerk. Verwenden Sie dabei eine Zustandskodierung, die dem Zustand mit der meisten eingehenden Kanten die wenigsten Einsen zuordnet. Jede eingehende Kante muss dabei mit der Anzah der Eingangs-Minterme ihrer Bedingung gewichtet werden. Dies reduziert die Anzahl der Minterme, welche durch die next state logic abgedeckt werden muss.

Übung 8.3 Analyse eines Timing-Diagramms

[3 min]

Das folgende Timing-Diagramm beschreibt das Verhalten eines Zustandsautomaten mit zwei Eingängen (a_1, a_0) und zwei Ausgängen (y_1, y_0) . Handelt es sich dabei um einen Mealy- oder Moore-Automaten? Begründen Sie Ihre Antwort.

Übung 8.4 Mealy vs. Moore Automat

[15 min]

Gegeben ist folgender endlicher Automat mit einem Eingang a und einem Ausgang y:

- a) Handelt es sich um einen Moore- oder einen Mealy-Automat? Begründen Sie Ihre Antwort.
- b) Transferieren Sie den gegebenen Automaten in einen äquivalenten Automaten des anderen Typs.

c) Vergleichen Sie das zeitliche Verhalten der beiden Automaten in folgendem Timing-Diagramm.

Übung 8.5 Entwurf endlicher Automaten

[20 min]

Entwerfen Sie einen endlichen Automaten für einen Fahrkartenverkauf mit Geldeinwurf. Dieser hat drei Ein- und vier Ausgaben mit folgender Spezifikation:

- $a_1 = 1 \Leftarrow$ eine $1 \in$ Münze eingeworfen
- $a_2 = 1 \Leftarrow$ eine $2 \in$ Münze eingeworfen
- $a_5 = 1 \Leftarrow \text{ein } 5 \in \text{Schein eingezogen}$

- $y_1 = 1 \Rightarrow$ eine $1 \in$ Münze auswerfen
- $y_2 = 1 \Rightarrow$ eine $2 \in$ Münze auswerfen
- $y_T = 1 \Rightarrow$ ein Ticket auswerfen
- $y_S = 1 \Rightarrow$ Geldeingabe sperren

Nach Einwurf von insgesamt 5 € soll das Ticket und ggf. überschüssiges Wechselgeld ausgegeben werden. Solange die Geldrückgabe nicht abgeschlossen ist, muss die Eingabe von weiterem Geld verhindert werden. Für das Auszahlen ist von beiden Münzensorten beliebig viel vorrätig.

a) Entwerfen Sie ein FSM Diagramm (Mealy oder Moore) mit möglichst wenigen Zuständen für diesen Automaten. Sie können dabei annehmen, dass niemals zwei Eingabesignale gleichzeitig aktiv sein können. Es dürfen aber mehrere Ausgabesignale gleichzeitig aktiv sein.

b) Geben Sie die Zustandsübergangs- und Ausgabetabellen (ohne Zustandskodierung) an.

Übung 8.6 Zerlegung endlicher Automaten - Zusatz

Zerlegen Sie folgenden Moore-Automaten in zwei unabhängige Moore-Automaten mit jeweils nur einem Ein- und Ausgang.

*