

Bacteria Object Detection on Agar: A proof of concept

By Dietrich Nigh

Team

Dietrich Nigh
B.A. Biology, University of Pennsylvania
Data Science Certification, Flatiron School

Manual Classification is time and resource intensive

The Model

The Business Problem

Agar Plates are a staple of the lab

- Invented 1880s
- Used for culturing and isolation
 - o Bacteria and Fungi
- 85 millions used annually
- Wide range of applications

Laborious

- Hand Counts
 - o 30 to 300
- Easy to over or under seed
- Verification counts needed

Time intensive

- Years of training
- 4 to 24 hours
- Making the plates

How can bacteria classification be more accurate, yet require less training?

Automation!!!

- Several steps already automized
- Pretrained model
- Less counting
- Fast, accurate classification

Data Overview

Data Used

- NeuroSYS Research data
 - o academic license.
- 13000 images
- five different microorganisms
 - S.aureus
 - B.subtilis
 - P.aeruginsoa
 - o E.coli
 - o C.albicans
- Limitations

The Model

YOLO: You Only Look Once

mAP50: 97%

mAP50-95: 70 %

Precision: 97 $\,\%$

Example:

• 91 *C. Albicans* colonies

Example:

- 91 *C. Albicans* colonies
- Returns label colonies and count
- Less than 2 seconds

Demo of Flask Deployment: < 30 seconds

Future Steps

Thank you

Any Questions?