1

计算理论导论

习题八: 可归约性(1)

中国人民大学 信息学院 崔冠宇 2018202147

1. 5.7 Show that if *A* is Turing-recognizable and $A \leq_m \overline{A}$, then *A* is decidable.

证明: 因为 $A \leq_m \overline{A}$,因此存在归约函数 f,使得 $w \in A \Leftrightarrow f(w) \in \overline{A}$,即 $w \in \overline{A} \Leftrightarrow w \notin A \Leftrightarrow$ $f(w) \notin \overline{A} \Leftrightarrow f(w) \in A$,因此 $\overline{A} \leq_m A$ 。又因为 A 是 RE 的,因此 \overline{A} 也是 RE 的,即 A 是 co-RE 的,从 而 A 是可判定的。

- 2. **5.9** Let $T = \{\langle M \rangle | M \text{ is a TM that accepts } w^{\mathcal{R}} \text{ whenever it accepts } w \}$. Show that T is undecidable. 证明: \mathbb{H} Rice's Theorem,
 - 1. 先说明 T 是一个性质 (property): 若有两个 TM M_1 和 M_2 满足 $L(M_1) = L(M_2)$,则 $\langle M_1 \rangle \in T \Leftrightarrow (\forall w(w \in L(M_1) \to w^{\mathcal{R}} \in L(M_1))) \Leftrightarrow (\forall w(w \in L(M_2) \to w^{\mathcal{R}} \in L(M_2))) \Leftrightarrow \langle M_2 \rangle \in T$,因此 T 是性质。
 - 2. 再说明 T 是非平凡 (non-trivial) 的,只需要说明 $\exists M_1(\langle M_1 \rangle \in T)$ 且 $\exists M_2(\langle M_2 \rangle \notin T)$: 显然,可以取 M_1 判定 0*1*, M_2 判定 0*。

根据 Rice's Theorem, T是不可判定的。

3. 5.22 Show that A is Turing-recognizable iff $A \leq_m A_{\mathsf{TM}} \circ$

证明:

- (⇒) 设 A 是可识别的,因此存在 TM M 识别 A。将 A 归约到 A_{TM} ,归约函数 f 满足 $f(w) = \langle M, w \rangle$,显然 f 是可计算的,而且 $w \in A \Leftrightarrow f(w) = \langle M, w \rangle \in A_{\mathsf{TM}}$ 。
- (⇐) 因为 A_{TM} 是可识别的,根据 [Sipser, P237, Theorem 5.28],A 也是可识别的。

4. Prove that the following language L is not recursively enumerable:

$$L = \{ \langle M_1, M_2 \rangle | L(M_1) \subseteq L(M_2) \}$$

The strings in L encode two Turing machines M_1 and M_2 such that the language of M_1 is a subset of the language of M_2 . To prove this result you may use the fact that the language $L_{\rm ALL}$ is not recursively enumerable, where $L_{\rm ALL} = \{\langle M \rangle | L(M) = \Sigma^* \}$.

证明: 将 L_{ALL} 归约到 L。

首先很容易构造 L 的一个实例 M_{ALL} 接受所有输入 w,于是满足 $L(M_{ALL}) = \Sigma^*$ 。归约函数 f 定义为 $f(\langle M \rangle) = \langle M_{ALL}, M \rangle$,显然 f 是可计算的,而且

1.
$$\langle M \rangle \in L_{\text{ALL}} \Leftrightarrow L(M) = \Sigma^* \Leftrightarrow \Sigma^* = L(M_{\text{ALL}}) \subseteq L(M) = \Sigma^* \Leftrightarrow f(\langle M \rangle) \in L;$$

2.
$$\langle M \rangle \notin L_{\text{ALL}} \Leftrightarrow L(M) \neq \Sigma^* \Leftrightarrow L(M_{\text{ALL}}) \not\subseteq L(M) \Leftrightarrow f(\langle M \rangle) \notin L_{\circ}$$

因此 $L_{ALL} \leq_m L$, 但是因为 L_{ALL} 不是 RE 的,于是 L 同样不是 RE 的。

- 5. Let OVERLAP_{DFA,TM} = $\{\langle D, M \rangle | D \text{ is a DFA and } M \text{ is a TM and } L(D) \cap L(M) \neq \emptyset\}$.
- (a) Prove that OVERLAP_{DFA,TM} is undecidable.
- **(b)** Prove that OVERLAP_{DFA,TM} is Turing-recognizable.
- (c) Is OVERLAP_{DFA,TM} Turing-recognizable? Prove or disprove.

证明:

(a) 将 $\overline{E_{\mathsf{TM}}}$ 归约到 OVERLAP_{DFA,TM}。

归约函数 f 为 $f(\langle M \rangle) = \langle D_{\mathsf{ALL}}, M \rangle$,其中 DFA D_{ALL} 满足 $L(D_{\mathsf{ALL}}) = \Sigma^*$ 。显然 f 是可计算的,而且 $\langle M \rangle \in \overline{E_{\mathsf{TM}}} \Leftrightarrow L(M) \neq \emptyset \Leftrightarrow L(D_{\mathsf{ALL}}) \cap L(M) \neq \emptyset \Leftrightarrow f(\langle M \rangle) = \langle D_{\mathsf{ALL}}, M \rangle \in \mathsf{OVERLAP_{\mathsf{DFA},\mathsf{TM}}}$,从而 $\overline{E_{\mathsf{TM}}} \leq_m \mathsf{OVERLAP_{\mathsf{DFA},\mathsf{TM}}}$ 。由于 $\overline{E_{\mathsf{TM}}}$ 不可判定,因此 $\mathsf{OVERLAP_{\mathsf{DFA},\mathsf{TM}}}$ 不可判定。

(b) 构建识别器 M_{OVERLAP} 识别 OVERLAP_{DFA,TM}。

 $M_{\text{OVERLAP}} =$ "

- 1. 设 Σ^* 上的所有字符串被排成 $w_1, w_2, \cdots, w_n, \cdots$;
- 2. 在第 i 轮,模拟 D 和 M 分别运行 $w_1 \sim w_i$ 至多 i 步;
- 3. 若有字符串同时被 D 和 M 接受,则 $M_{OVERLAP}$ 接受。"
- (c) OVERLAP_{DFA,TM} 不是可识别的。若它是可识别的,则 OVERLAP_{DFA,TM} 是补-可识别 (co-RE) 的,又因为 OVERLAP_{DFA,TM} 是可识别的,从而 OVERLAP_{DFA,TM} 是可判定的,矛盾,因而 OVERLAP_{DFA,TM} 不是可识别的。
- **6.** Prove or disprove each of the following claims.
- (a) $A \leq_m A$.
- **(b)** If $A \leq_m B$ and $B \leq_m C$, then $A \leq_m C$.
- (c) If $A \leq_m B$ then $\overline{A} \leq_m \overline{B}$.
- (d) If A is recursive, then $A \leq_m a^*b^*$.
- (e) If $A \leq_m B$ then $B \leq_m A$.
- **(f)** If $A \leq_m B$ and $B \leq_m A$ then A = B.

解:

- (a) 正确。取恒等映射 f(x) = x,显然 f 是可计算的,而且 $x \in A \Leftrightarrow f(x) = x \in A$ 。
- **(b)** 正确。设 f 和 g 是 A 到 B 以及 B 到 C 的归约,断言 g(f) 是 A 到 C 的归约,因为 g(f) 显然是可计算的,而且 $w \in A \Leftrightarrow f(w) \in B \Leftrightarrow g(f(w)) \in C$ 。
- (c) 正确。设 f 是 A 到 B 的一个归约,根据定义它是可计算的,而且 $w \in A \Leftrightarrow f(w) \in B$,从而有 $w \in \overline{A} \Leftrightarrow w \notin A \Leftrightarrow f(w) \notin B \Leftrightarrow f(w) \in \overline{B}$,因此 f 本身就是 \overline{A} 到 \overline{B} 的一个归约。

(d) 正确。因为 A 是可判定的,设 M 是它的判定器,构造函数

$$f(w) = \begin{cases} \mathbf{a} & \text{如果 } M \text{ 接受 } w \\ \\ \mathbf{ba} & \text{如果 } M \text{ 拒绝 } w \end{cases}$$

显然 f 是可计算的,而且 $w \in A \Leftrightarrow f(w) = \mathbf{a} \in \mathbf{a}^*\mathbf{b}^*$ 。

- - 1. 显然有 $A_{\mathsf{DFA}} \leq_m A_{\mathsf{TM}}$,归约函数 f 满足 $f(\langle D, w \rangle) = \langle M, w \rangle$,其中 M 是模拟 D 的 TM 。因为 f 是可计算的,而且 $\langle D, w \rangle \in A_{\mathsf{DFA}} \Leftrightarrow f(\langle D, w \rangle) = \langle M, w \rangle \in A_{\mathsf{TM}}$ 。
 - 2. 但是却有 $A_{\mathsf{TM}} \not \leq_m A_{\mathsf{DFA}}$,因为 A_{TM} 是不可判定的,而 A_{DFA} 是可判定的。
- (f) 不一定。考虑反例 $\Sigma = \{a,b\}$, $A = \{a^n | n \ge 0\}$, $B = \{b^n | n \ge 0\}$,f(w) ="将 w 中的 a 与 b 互换"。显然 f 是可计算的,而且
 - 1. $A \leq_m B$, 因为 $w = \mathbf{a}^n \in A \Leftrightarrow f(w) = \mathbf{b}^n \in B_{\circ}$
 - 2. $B \leq_m A$, 因为 $w = \mathbf{b}^n \in B \Leftrightarrow f(w) = \mathbf{a}^n \in A_\circ$

但 $A \neq B$ 。