COMP 680 Statistics for Computing and Data Science

Week 3: Statistical Inference Overview

Su Chen, Assistant Teaching Professor, Rice D2K Lab

Outline

• Fundamental Concepts

Asymptotic Theory

Code Demo

Probability and Statistics

- Probability:
 - given a data generating process, what are the properties of the outcomes?
 - formal language of uncertainty
 - theoretical foundation of statistical inference

Probability and Statistics

Probability:

- given a data generating process, what are the properties of the outcomes?
- formal language of uncertainty
- theoretical foundation of statistical inference

Statistics:

- given the outcomes, what can we say about the process that generated the data?
- "reverse process" of probability

Probability and Statistics

- Probability:
 - given a data generating process, what are the properties of the outcomes?
 - formal language of uncertainty
 - theoretical foundation of statistical inference
- Statistics:
 - given the outcomes, what can we say about the process that generated the data?
 - "reverse process" of probability
- Data mining and machine learning are close cousins of Statistics.

Population and Samples

- Population distribution: a census.
 - if the population distribution is known, no statistical inference needed!

Population and Samples

- Population distribution: a census.
 - if the population distribution is known, no statistical inference needed!
- Sample: data generated from the population distribution
 - most of the time, assume i.i.d sample

Population and Samples

- Population distribution: a census.
- if the population distribution is known, no statistical inference needed!
- Sample: data generated from the population distribution
 - most of the time, assume i.i.d sample
- Statistical inference: make conclusion of population based on a random sample (the data you get to observe)

4 D > 4 B > 4 E > 4 E > 9 4 C

Inference

- Statistical inference:
 - given a sample $X_1, X_2, \dots X_n \stackrel{\text{i.i.d.}}{\sim} F$, how do we infer the data generating mechanism, i.e. the population distribution cdf $F_X(\cdot)$
 - may want to infer only some feature of F_X such as its mean

Inference

- Statistical inference:
 - given a sample $X_1, X_2, \dots X_n \overset{\text{i.i.d.}}{\sim} F$, how do we infer the data generating mechanism, i.e. the population distribution cdf $F_X(\cdot)$
 - may want to infer only some feature of F_X such as its mean
- Parametric models:
 - if F can be parameterized by a finite number of parameters
 - this often means we know the distribution family of *F* (or willing to make the assumption)

Inference

- Statistical inference:
 - given a sample $X_1, X_2, \dots X_n \stackrel{\text{i.i.d.}}{\sim} F$, how do we infer the data generating mechanism, i.e. the population distribution cdf $F_X(\cdot)$
 - may want to infer only some feature of F_X such as its mean
- Parametric models:
 - if F can be parameterized by a finite number of parameters
 - this often means we know the distribution family of F (or willing to make the assumption)
- Nonparametric models:
 - infinite number of parameters!
 - for example F can be any cdf that is continuous

Statistics and Sampling Distribution

- What is a statistic?
 - a function of data, a quantity that depends on data
 - examples: sample mean, median, variance, quantile, max and min...

Statistics and Sampling Distribution

- What is a statistic?
 - a function of data, a quantity that depends on data
 - examples: sample mean, median, variance, quantile, max and min...
- The sampling distribution of a statistic:
 - different values and associated probabilities of the statistic
 - based on ALL possible random samples from the population

Statistics and Sampling Distribution

- What is a statistic?
 - a function of data, a quantity that depends on data
 - examples: sample mean, median, variance, quantile, max and min...
- The sampling distribution of a statistic:
 - different values and associated probabilities of the statistic
 - based on ALL possible random samples from the population
- The sampling distribution quantify the uncertainty:
 - why is there uncertainty?
 - what if you get another random sample?

Outline

Fundamental Concepts

Asymptotic Theory

Code Demo

Theoretical Justification

- Asymptotic theory, or large sample theory, or limit theory
 - what happens if we have more and more data: $n \to \infty$

Theoretical Justification

- Asymptotic theory, or large sample theory, or limit theory
 - what happens if we have more and more data: $n \to \infty$
- Intuition: "more" data → better inference
 - i.e. we get closer to the "truth" the population distribution
 - "more" in both quantity and quality

Theoretical Justification

- Asymptotic theory, or large sample theory, or limit theory
 - what happens if we have more and more data: $n \to \infty$
- Intuition: "more" data → better inference
 - i.e. we get closer to the "truth" the population distribution
 - "more" in both quantity and quality
- Major theorems:
 - Law of Large Numbers
 - Central Limit Theorem

Convergence of Random Variables

- lacksquare A sequence of random variables X_1, X_2, \cdots converges to X
 - converge in probability $X_n \stackrel{\mathbb{P}}{\to} X$ if $\mathbb{P}(|X_n X| > \epsilon) \to 0$ for any $\epsilon > 0$

Convergence of Random Variables

- ullet A sequence of random variables X_1, X_2, \cdots converges to X
 - converge in probability $X_n \overset{\mathbb{P}}{\to} X$ if $\mathbb{P}(|X_n X| > \epsilon) \to 0$ for any $\epsilon > 0$
 - converge in distribution $X_n \stackrel{\mathbb{D}}{\to} X$ if $F_{X_n}(t) \to F_X(t)$ at all t for which $F_X(\cdot)$ is continuous

Convergence of Random Variables

- lacksquare A sequence of random variables X_1, X_2, \cdots converges to X
 - converge in probability $X_n \overset{\mathbb{P}}{\to} X$ if $\mathbb{P}(|X_n X| > \epsilon) \to 0$ for any $\epsilon > 0$
 - converge in distribution $X_n \stackrel{\mathbb{D}}{\to} X$ if $F_{X_n}(t) \to F_X(t)$ at all t for which $F_X(\cdot)$ is continuous
 - converge in quadratic mean $X_n \stackrel{qm}{\to} X$ if $\mathbb{E}[(X_n X)^2] \to 0$

Convergence of Random Variables

- lacksquare A sequence of random variables X_1, X_2, \cdots converges to X
 - converge in probability $X_n \overset{\mathbb{P}}{\to} X$ if $\mathbb{P}(|X_n X| > \epsilon) \to 0$ for any $\epsilon > 0$
 - converge in distribution $X_n \stackrel{\mathbb{D}}{\to} X$ if $F_{X_n}(t) \to F_X(t)$ at all t for which $F_X(\cdot)$ is continuous
 - converge in quadratic mean $X_n \stackrel{qm}{\to} X$ if $\mathbb{E}[(X_n X)^2] \to 0$

FIGURE 5.2. Relationship between types of convergence.

Law of Large Numbers

• **IF** $X_1, X_2, \cdots X_n \overset{\text{i.i.d.}}{\sim} f_X(\cdot)$, then the sample mean converges to population mean in probability, i.e. $\bar{X}_n \overset{\mathbb{P}}{\to} \mu$.

◄□▶◀圖▶◀분▶◀분▶ 분 9Q€

Law of Large Numbers

- **IF** $X_1, X_2, \cdots X_n \overset{\text{i.i.d.}}{\sim} f_X(\cdot)$, then the sample mean converges to population mean in probability, i.e. $\bar{X}_n \overset{\mathbb{P}}{\to} \mu$.
- Mild assumption about $f_X(\cdot)$ required:

Law of Large Numbers

- **IF** $X_1, X_2, \cdots X_n \overset{\text{i.i.d.}}{\sim} f_X(\cdot)$, then the sample mean converges to population mean in probability, i.e. $\bar{X}_n \overset{\mathbb{P}}{\to} \mu$.
- Mild assumption about $f_X(\cdot)$ required:
- Proof: one line using Chebyshev's inequality:

4 ロ ト 4 個 ト 4 重 ト 4 重 ト 9 Q (C)

Central Limit Theorem

• **IF** $X_1, X_2, \dots X_n \overset{\text{i.i.d.}}{\sim} f_X(\cdot)$ with mean μ and variance σ^2 , then the sample mean converges in distribution to a normal distribution:

$$\bar{X}_n \stackrel{\mathbb{D}}{\to} N(\mu, \sigma^2/n)$$

Central Limit Theorem

• **IF** $X_1, X_2, \dots X_n \overset{\text{i.i.d.}}{\sim} f_X(\cdot)$ with mean μ and variance σ^2 , then the sample mean converges in distribution to a normal distribution:

$$\bar{X}_n \stackrel{\mathbb{D}}{\to} N(\mu, \sigma^2/n)$$

equivalently:

$$\frac{\sqrt{n}(\bar{X}_n - \mu)}{\sigma} \stackrel{\mathbb{D}}{\to} Z \sim N(0, 1)$$

Central Limit Theorem

- known as the "asymptotic normality of sample mean":
 - regardless of the population distribution
 - even discrete population: Bernoulli, Poisson...

Central Limit Theorem

- known as the "asymptotic normality of sample mean":
 - regardless of the population distribution
 - even discrete population: Bernoulli, Poisson...
- "asymptotic" means for any finite sample, it is an approximation:
 - for example, Bernoulli $0 \le \bar{X}_n \le 1$, can not be exact normal!

Central Limit Theorem

- known as the "asymptotic normality of sample mean":
 - regardless of the population distribution
 - even discrete population: Bernoulli, Poisson...
- "asymptotic" means for any finite sample, it is an approximation:
 - for example, Bernoulli $0 \le \bar{X}_n \le 1$, can not be exact normal!
- CLT still holds if replace σ^2 with sample variance s^2

$$\frac{\sqrt{n}(\bar{X}_n - \mu)}{s} \stackrel{\mathbb{D}}{\to} Z \sim N(0, 1)$$

Central Limit Theorem

Week 3

- known as the "asymptotic normality of sample mean":
 - regardless of the population distribution
 - even discrete population: Bernoulli, Poisson...
- "asymptotic" means for any finite sample, it is an approximation:
 - for example, Bernoulli $0 \le \bar{X}_n \le 1$, can not be exact normal!
- CLT still holds if replace σ^2 with sample variance s^2

$$\frac{\sqrt{n}(\bar{X}_n - \mu)}{s} \stackrel{\mathbb{D}}{\to} Z \sim N(0, 1)$$

- only for sample mean, not any other statistics!
 - empirical demonstration of the CLT using simulation

12 / 16

COMP 680

Central Limit Theorem

Special case when population is Normal, then normality holds exactly:

• if
$$X_1, X_2, \cdots X_n \stackrel{\text{i.i.d.}}{\sim} N_X(x|\mu, \sigma^2)$$
, then

$$\frac{\sqrt{n}(\bar{X}_n - \mu)}{\sigma} = Z$$

Central Limit Theorem

- Special case when population is Normal, then normality holds exactly:
 - if $X_1, X_2, \cdots X_n \stackrel{\text{i.i.d.}}{\sim} N_X(x|\mu, \sigma^2)$, then

$$\frac{\sqrt{n}(\bar{X}_n - \mu)}{\sigma} = Z$$

• Replace σ^2 with s^2 , you get the Student's-t distribution:

$$\frac{\sqrt{n}(\bar{X}_n - \mu)}{s} = t_{df=n-1}$$

Examples of Application

• If you toss a fair coin 100 times, what is the probability of getting 70 heads or more?

Examples of Application

- If you toss a fair coin 100 times, what is the probability of getting 70 heads or more?
 - remember we have some upper bounds using Markov and Chebyshev's inequality

4□▶ 4□▶ 4 글 ▶ 4 글 ▶ 9 Q C

Examples of Application

- If you toss a fair coin 100 times, what is the probability of getting 70 heads or more?
 - remember we have some upper bounds using Markov and Chebyshev's inequality
- $X_1, X_2, \cdots X_n \overset{\text{i.i.d.}}{\sim} \text{Bernoulli}(p = 0.5)$
 - $\mu = 0.5$
 - $\sigma^2 = p(1-p) = 0.25$

Examples of Application

- If you toss a fair coin 100 times, what is the probability of getting 70 heads or more?
 - remember we have some upper bounds using Markov and Chebyshev's inequality

•
$$X_1, X_2, \cdots X_n \stackrel{\text{i.i.d.}}{\sim} \text{Bernoulli}(p = 0.5)$$

• $\mu = 0.5$
• $\sigma^2 = p(1-p) = 0.25$

$$\mathbb{P}(\sum_{i=1}^{100} X_i \ge 70) = \mathbb{P}(\bar{X}_{100} \ge 0.7)$$

$$= \mathbb{P}(\frac{\sqrt{100}(\bar{X}_{100} - 0.5)}{\sqrt{0.25}} \ge \frac{\sqrt{100}(0.7 - 0.5)}{\sqrt{0.25}})$$

$$= \mathbb{P}(Z > 4) \approx 0.003\%$$

Examples of Application

 You would like to know the percentage p in general population that support certain legislation. You start a poll online to randomly survey 100 people for a Yes/No question and you estimate the proportion of Yes in the survey response.

Examples of Application

- You would like to know the percentage p in general population that support certain legislation. You start a poll online to randomly survey 100 people for a Yes/No question and you estimate the proportion of Yes in the survey response.
- How accurate is this estimate?
 - $X_1, X_2, \cdots X_n \stackrel{\text{i.i.d.}}{\sim} \text{Bernoulli}(p)$
 - estimate p by $\bar{X}_n = \sum_{i=1}^n X_i/n$
 - apply CLT:

Outline

Fundamental Concepts

Asymptotic Theory

Code Demo

