Công thức phân cực ánh sáng (Vật lí 2, 3)

Sự phân cực ánh sáng

Định luật Malus và phân cực ánh sáng	Khi ánh sáng tự nhiên đi qua kính
	phân cực, cường độ sáng giảm 1 nửa
	$I_1 = \frac{1}{2}I_0$
	Khi đi qua cả kính phân cực và kính
	phân tích, cường độ sáng là
	$I_2 = I_1 \cos^2 \alpha = \frac{1}{2} I_0 \cdot \cos^2 \alpha$
Góc giới hạn phản xạ toàn phần	$\sin i_{gh} = \frac{n_2}{n_1}$ với n_1 là môi trường chứa
	tia tới, n² chứa tia khúc xạ
Góc tới Brewster (cho tia phản xạ phân cực toàn phần)	$tan i_{gh} = \frac{n_2}{n_1}$ với n_1 là môi trường chứa
	tia tới, n ₂ chứa tia khúc xạ

Phân cực do lưỡng chiết

Hiệu quang lộ giữa tia thường và tia bất	$\Delta L = (n_0 - n_e)d$
thường	()
Bản 1/4 bước sóng	$\Delta L = (n_0 - n_e)d = (2k+1)\frac{\lambda}{4}$
Bản 1/2 bước sóng	$\Delta L = \left(n_0 - n_e\right)d = \left(2k + 1\right)\frac{\lambda}{2}$
Bản 1 bước sóng	$\Delta L = (n_0 - n_e)d = k\lambda$
Sự quay do mặt phẳng phân cực	$\varphi = \alpha d$