Личные записи по алгебре $^{\beta}$

@keba4ok

12 октября 2021г.

Я не помню алгебру первого курса, поэтому вспоминал её. Скоро занесу сюда то, что интересно, с нынешный алгебры. Можете не обращать внимания на эту бета-версию.

Содержание

Алгебраические структуры	2
Начала линала	3
Начала теории групп.	3
Векторные пространства.	5
Линейные операторы.	7
Тензорная алгебра.	10
Опять ёбаные группы.	12
Тензорная алгебра.	13
Функторы.	14
Естественные преобразования	15
Лемма Йонеды	16
Сопряжённые функторы	16

Алгебраические структуры

Определение 1. *Абелева группа* - множество A с операцией сложения, обладающей следующими свойствами:

- a + b = b + a;
- (a+b) + c = a + (b+c);
- существует нуль $(a + 0 = a \ \forall a)$;
- для всех a существует противоположный элемент (a + (-a) = 0).

Определение 2. *Кольцом* называется множество K с операциями сложения и умножения, обладающими следующими свойствами:

- относительно сложения K есть абелева группа;
- дистрибутивна по умножению относительно сложения.

Определение 3. *Полем* называется коммутативное ассоциативное кольцо с единицей, в котором каждый ненулевой элемент обратим.

Определение 4. Подмножество L кольца K называется *подкольцом*, если

- L является подгруппой аддитивной группы кольца K;
- L замкнуто относительно умножения.

Определение 5. Векторным пространством над полем K называется множество V с операциями сложения и умножения на элементы поля K, обладающими следующими свойствами:

- \bullet относительно сложения V есть абелева группа;
- $\lambda(a+b) = \lambda a + \lambda b$ для любых $\lambda \in K$, $a,b \in V$;
- $(\lambda + \mu)a = \lambda a + \mu a$;
- $(\lambda \mu)a = \lambda(\mu a)$;
- 1a = a.

Определение 6. *Алгеброй* над полем K называется множество A с операциями сложения, умножения и умноженияна эементы поля K, обладающими следующими свойствами:

- ullet относительно сложения и умножения на элементы поля A есть векторное пространство;
- относительно сложения и умножения А есть кольцо;
- $(\lambda a)b = a(\lambda b) = \lambda(ab)$ для любых $\lambda \in K$ и $a,b \in A$.

Начала линала

Определение 7. Система уравнений называется *совемстной*, если она имеет хотя бы одно решение, и *несовместной* в противном случае.

Определение 8. Совместная система линейных уравнений называется *определённой*, если она имеет единстванное решение, и *неопределённой*, если она имеет более одного решения.

Теорема 1 (*Теорема Кронекера-Капелли*). Система линейных уравнений совместна тогда и только тогда, когда ранг матрицы её коэффициентов равен рангу расширенной матрицы.

Теорема 2. Совместная система линейных уравнений является определённой тогда, когда ранг матрицы её коэффициентов равен числу неизвестных.

Теорема 3. Размерность пространства решений системы однородных уравнений с n неизвестными и матрицей коэффициентов A равна $n - \operatorname{rk} A$.

Примечание 1. Всякий базис пространства решений система однородных линейных уравнений называется фундаментальной системой решений.

Теорема 4. Ранг системы строк любой матрицы равен рангу системы её столбцов.

Определение 9. Квадратная матрица A порядка n называется невырожденной, если $\operatorname{rk} A = n$.

Начала теории групп.

Определение 10. *Группой преобразований* множества X нахывается всякая совокупность G его биективных преобразований, удовлетворяющая следующим условиям:

- если $\varphi \psi \in G$, то $\varphi \psi \in G$;
- если $\varphi \in G$, то $\phi^{-1} \in G$;
- $id \in G$.

Определение 11. Группа G называется $uu\kappa nuveckou$, если существует такой элемент $q \in G$, что $\langle q \rangle$. Всякий такой элемент называется nopochedarouuum элементом группы G.

Определение 12. Говорят, что группа G порождается своим подмножеством S или что S - система порождающих группы G, если $G = \langle S \rangle$.

Примечание 2. Пусть G - группа и H - её подгруппа. Будем говорить, что элементы $g_1, g_2 \in G$ сравнимы по модулю H, и писать

$$g_1 \equiv_H g_2$$
,

если

$$q_1^{-1}q_2 \in H$$
.

Определение 13. Классы по отношению сравнимости называются *(левыми) смежными классами* группы G по подгруппе H.

к содержанию к списку объектов 4

Определение 14. Множество левых смежных классов группы G по подгруппе H обозначается как G/H. Число смежных классов группы G по H (безразлично, левых или правых), если оно конечно, называется $\underbrace{uhdekcom}$ подгруппы H и обозначается через |G:H|.

Теорема 5 (*Теорема Лагранэка*). Если G - конечная группа u H - любая её подгруппа, то |G| = |G:H||H|.

Следствие 1. Порядок любой подгруппы или элемента конечной группы делит порядок группы.

Определение 15. Орбитой точки называется множество

$$Gx = \{gx : g \in G\}.$$

Cтабилизатором точки x называется подгруппа

$$G_x = \{ g \in G : gx = x \}.$$

Теорема 6. Имеется взаимно-однозначное соответствие между орбитой Gx и множеством смежных классов G/G_x , при котором точке $y=gx\in Gx$ чоответствует смежный класс gG_x .

Определение 16. Число элементов орбиты Gx, если оно конечно, называется её $\partial \Lambda u h o u$ и обозначается через |Gx|.

Определение 17. Подгруппа H группы G называется *нормальной*, если

$$gH = Hg \, \forall g \in G.$$

В этом случае пишут $H \triangleleft G$.

Определение 18. *Гомоморфизмом* группы G в группу H называется отображение f : $G \to H$, удовлетворяющее условию

$$f(ab) = f(a) f(b) \forall a, b \in G.$$

Определение 19. Гоморфизм группы в себя называется её эндоморфизмом. Изоборфизм (биекция) группы на себя называется её автоморфизмом.

Теорема 7 (*Теорема о гомоморфизме групп*). Пусть $f: G \to H$ - гомоморфизм групп. Тогда

$$\operatorname{Im} f \simeq G / \operatorname{Ker} f$$
.

Более точно, имеется изоморфизм

$$\varphi : \operatorname{Im} f \tilde{\to} G / \operatorname{Ker} f,$$

ставящий в соответствие каждому элементу $h=f(g)\in {\rm Im}\, f$ смежный класс g ${\rm Ker}\, f.$

Векторные пространства.

Определение 20. Базис пространства V называется *согласованным* с подпространством U, если U является линейной оболочкой какой-то части базисных векторов.

Определение 21. Суммой U+W подпространств называется совокупность векторов вида u+w, где $u\in U,\,w\in W.$

Теорема 8. Для всякой пары подпространств $U, W \subset V$ существует бзис пространства V, согласованный с каждым из подпространств U, W.

Следствие 2.

$$\dim(U+W) = \dim U + \dim W - \dim(U \cap W).$$

Определение 22. Подпространства U_1, \ldots, U_k называюєтся *линейно независимыми*, если из равенства $u_1 + \ldots + u_k = 0$ ($u_i \in U_i$) следует, что $u_1 = \ldots = u_k = 0$.

Определение 23. Говорят, что векторное пространтво V разлагается в *прямую сумму подпространств*, если

- подпространства U_1, \ldots, U_k линейно независимы;
- $\bullet \ U_1 + \ldots + U_k = V.$

В этом случае пишут

$$V = U_1 \oplus \ldots \oplus U_k$$
.

Определение 24. Пусть V и U - векторные пространства над полем K. Отображение $\varphi:V\to U$ называется линейным, если

- $\varphi(a+b) = \varphi(a) + \varphi(b)$;
- $\varphi(\lambda a) = \lambda \varphi(a)$.

Теорема 9. Если в каких-то базисах пространств V и U линейное отображение $\varphi: V \to U$ имеет матрицу A, то

$$\dim\operatorname{Im}\varphi=\operatorname{rk}A.$$

Теорема 10.

$$\dim \operatorname{Im} \varphi + \dim \operatorname{Ker} \varphi = \dim V.$$

Определение 25. Линейной функцией (или линейной формой) на векторном пространстве V называется всякая функция $\alpha: V \to K$, обладающая свойствами

- $\alpha(x+y) = \alpha(x) + \alpha(y)$;
- $\alpha(\lambda x) = \lambda \alpha(x)$.

Определение 26. *Следом* квадратной матрицы называется сумма её диагональных элементов. След матрицы обозначается через $\operatorname{tr} x$.

Определение 27. Пространства линейных функций на V называется *сопрежённым пространством* по отношению к V и обозначается через V^* .

Теорема 11. Отображение $x \mapsto f_x$ является изоморфизмом пространства V на пространство V^{**} .

Примечание 3.

$$f_x(\alpha) = \alpha(x).$$

Определение 28. *Аннулятором* подпространства $U \subset V$ называется подпространство

$$U^0 = \{ \alpha \in V^* : \alpha(x) = 0 \,\forall x \in U \}.$$

Определение 29. Билинейной функцией (или билинейной формой) на векторном пространстве V называется функция $\alpha: V \times V \to X$, линейная по каждому аргументу.

Определение 30. \mathcal{A} *ором* билинейной функции α называется подпространство

$$\operatorname{Ker} \alpha = \{ y \in V : \ \alpha(x, y) = 0 \ \forall x \in V \}.$$

Функция называется невыроженной, если $\operatorname{Ker} \alpha = 0$.

Определение 31. Билинейная функция α называется *симметрической* (соответственно, кососимметрической), если $\alpha(x,y) = \alpha(y,x)$ (соответственно, $\alpha(x,y) = -\alpha(y,x)$) для любых $x,y \in V$.

Определение 32. Пусть α - симметрическая билинейная функция над полем K характеристики $\neq 2$. Функция $q: V \to K$, определяемая по формуле

$$q(x) = \alpha(x, x),$$

называется $\kappa вадратичной функцией (или <math>\kappa вадратичной формой)$, ассоциированной с функцикй α .

Определение 33. Пусть q - квадратичная функция, которая соответствует α . Восстановление α при помощи следующего выражения:

$$\alpha(x,y) = \frac{1}{2} [q(x,y) - q(x) - q(y)],$$

называется поляризацией квадратичной функции q.

Определение 34. *Ортогональным дополнением* к подространству U (относительно α) называется подпространство

$$U^\perp=\{y\in V:\ \alpha(x,y)=0\ \forall x\in U\}.$$

Теорема 12. Если функция α невырожденна, то

$$\dim U^{\perp} = \dim V - \dim U.$$

Определение 35. Подпространство U называется *невырожденным* относительно билинейной функции α , если её ограничение на U невырожденно.

Теорема 13. Для любой симметрической билинейной функции существует ортогональный базис.

Примечание 4. Не хочется писать про ортогонализацию Грама-Шмидта.

Определение 36. Вещественная квадратичная функция q называется положительно определённой, если q(x) > 0 при $x \neq 0$. Вещественная симметрическая билинейная функция называется положительно определёной, если соответствующая ей квадратичная функция определена положительно.

Теорема 14. Вещественная квадратичная функция является положительно определённой тогда и только тогда, когда все угловые миноры её матрицы положительны.

Определение 37. Пусть V - комплексное векторное пространство, Функция $\alpha: V \times V \to \mathbb{C}$ называется *полуторалинейной*, если она линейна по второму аргументу и антилинейна по первому. Последнее означает, что

$$\alpha(x_1 + x_2, y) = \alpha(x_1, y) + \alpha(x_2, y),$$

$$\alpha(\lambda x, y) = \overline{\lambda}\alpha(x, y).$$

Определение 38. Полуторалиинейная функция α называется эрмитовой (соответственно, косоэрмитовой), если $\alpha(y,x) = \overline{\alpha(x,y)}$ (соответственно, $\alpha(y,x) = -\overline{\alpha(x,y)}$).

Линейные операторы.

Определение 39. *Линейным оператором* в векторном пространстве V называется линейное отображение пространства V в себя.

Утверждение 1. Рассмотрим как преобразовывается матрица линейного оператора при переходе к другому базису

$$(e'_1, \ldots, e'_n) = (e_1, \ldots, e_n)C.$$

В силу линейности оператора A имеем

$$(Ae'_1, \dots, Ae'_n) = (Ae_1, \dots, Ae_n)C = (e_1, \dots, e_n)AC = (e'_1, \dots, e'_n)C^{-1}AC,$$

так и получается, что

$$A' = C^{-1}AC$$
.

Определение 40. Подпространство $U \subset V$ называется *инвариантным* относительно оператора A, если

$$AU \subset U$$
.

 $Утверждение 2. \ Im A$ - ранг линейного оператора, который обозначается как rk A и равен ранг матрицы оператора. Определитель же матрицы линейного оператора обозначается как $\det A$ и не зависит от выбора базиса.

Определение 41. Ненулевой вектор $e \in V$ называется собственным вектором оператора A, если $Ae = \lambda e$. Число $\lambda \in K$ называется при этом собственным значением оператора A, отвечающим собственному вектору e.

Определение 42. Многочлен

$$f_A(t) = (-1)^n \det(A - tE) = \det(tE - A)$$

называется xарактеристическим многочленом оператора A.

Теорема 15. Собственные значения линейного оператора - это в точности корни его характеристического многочлена.

Следствие 3. Любой линейный оператор в комплексном векторном пространстве имеет собственный вектор.

Теорема 16. Для любого линейного оператора над полем вещественных чисел существует одномерное или двумерное инвариантное подпространство.

Теорема 17. Собственные подпространства, отвечающие различным собственным значениям $\lambda_1, \ldots, \lambda_k$ оператора A, линейно независимы.

Следствие 4. Если характеристический многочлен $f_A(t)$ имеет n различных корней, то существует базис из собственных векторов оператора A.

Утверждение 3. Характеристический многочлен ограничения линейного оператора на инвариантное подпространство делит характеристический многочлен самого оператора.

Следствие 5. Размерность собственного подпространства линейного оператора не превосходит кратности соответствующего корня характеристического многочлена.

Теорема 18. Для существования базиса из собственных векторов линейного оператора А необходимо и достаточно, чтобы выполнялись следующие условия:

- характеристический многочлен разлагается на линейные множители;
- размерность каждого собственного подпространства равна кратности соответствующего корня характеристического многочлена.

Определение 43. Линейный оператор называется *сопряжённым* по отношению к A, если выполнено тождество

$$(A^*x, y) = (x, Ay).$$

Симметрический операторы соответствуют тождеству $A^* = A$, а кососимметричные - то же самое, только с минусом.

Определение 44. Оператор А ортогонален, если

$$(Ax, Ay) = (x, y).$$

Теорема 19. Для любого симметрического оператора A существует ортонормированный базис из собственных векторов.

Определение 45. Вектор $e \in V$ называется *корневым вектором* линейного оператора A, отвечающим числу $\lambda \in K$, если

$$(A - \lambda E)^m e = 0$$

для некоторого $\mu \in \mathbb{Z}_+$. Наименьшее из таких m называется $\mathit{высотой}$ корневого вектора e.

Примечание 5. Корневые векторы, отвечающие корню λ , образуют подпространство, которое называется κ и обозначается $V^{\lambda}(A)$. Ясно, что

$$V^{\lambda}(A) \supset V_{\lambda}(A)$$
.

(последнее, напомним, собственное подпространство для λ) Также можно нетрудно заметить, что

$$\operatorname{Ker}(A - \lambda E) \subset \operatorname{Ker}(A - \lambda E)^2 \subset \dots$$

Утверждение 4. Размерность корневого подпространства равна кратности соответствующего корня характеристического многочлена.

Утверждение 5. Корневые подпространства, отвечающие различным корням $\lambda_1, \ldots, \lambda_k$, линейно независимы.

Теорема 20. Если характеристический многочлен $f_A(t)$ разлагается на линейные множители, тогда

$$V = \bigoplus_{i=1}^{s} V^{\lambda_i}(A),$$

где $\lambda_1, \ldots, \lambda_s$ - различные корни характеристического многочлена.

Определение 46. Линейный оператор N называют *нильпотентным*, если существует такое $m \in \mathbb{Z}_+$, что $N^m = 0$. Наименьшее из таких m называют *высотой* нильпотентного оператора N.

Утверждение 6. Если $e \in V$ - вектор высоты m, то векторы

$$e, Ne, N^2e, \dots, N^{m-1}e$$

линейно независимы, а подпространтство, являющееся их линейной оболочкой называется $uu\kappa_nuuec\kappa um$ подпространством нильпотентного оператора N, порождённым вектором e.

Утверждение 7. Пусть у нас имеется U - циклическое подпространство, тогда существует инвариантное подпространство $W \subset V$, дополнительное к U (т.е. такое, что $VU \oplus W$).

Теорема 21. Пространство V может быть разложено в прямую сумму циклических подпространств оператора N. Количество слагаемых в таком разложении равно $\dim \operatorname{Ker} N$.

Определение 47. В циклическов подпространствк нильпотентного оператора $N=(A-\lambda E)|_{V^{\lambda}(A)}$ оператор A задаётся матрицей вида

$$\begin{pmatrix} \lambda & 1 & 0 & \dots & 0 & 0 \\ 0 & \lambda & 1 & \dots & 0 & 0 \\ 0 & 0 & \lambda & \dots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \dots & \lambda & 1 \\ 0 & 0 & 0 & \dots & 0 & \lambda \end{pmatrix},$$

называемой *эсордановой клеткой. Жордановой матрицей* же называется матрица, на диогонали которй расположены жордановы клетки, а всё остальное - нули.

Теорема 22. Если характеристический многочлен $f_A(t)$ разлагается на линейные множители, то существует базис, в котором матрица оператора A жорданова.

Утверждение 8. Среди всех линейных операторов может быть лишь конечное число линейно независимых при предположении, что пространство, из них состоящее, конечномерно. Следовательно, существуют такие ненулевые многочлены f, что f(A) = 0, которые называются аннулирующими. Аннулирующий многочлен наименьшей степени называется минимальным.

Пемма 1. Минимальный многочлен жордановой клетки порядка m c собстввенным значением λ равен $(1-\lambda)^m$.

Теорема 23. Минимальный многочлен оператора А равен

$$m_A(t) = \prod_{i=1}^s (t - \lambda_i)^{m_i},$$

где m_i - максимальный порядок жордановых клеток с собственным значением λ_i в жордановой форме матрицы оператора A.

 $Cnedcmeue\ 6$. Жорданова форма матрицы оператора A диагональна тогда и только тогда, когда его минимальный многочлен не имеет кратных корней.

Следствие 7. Если жорданова форма оператора A диагональны, то и жорданова форма его ограничения $A|_U$ на любое инвариантное подпространство $U \subset V$ диагональна.

Теорема 24 (Гамильтона-Кэли). $f_A(A) = 0$.

Тензорная алгебра.

Определение 48. Пусть V_1, \ldots, V_p и U - векторные пространства над полем K. Отображение

$$\varphi: V_1 \times \ldots \times V_p \to U$$

называется *полилинейным*, если оно линейно по каждому из p аргументов при фиксированных значениях других элементов. Такие отображения образуют пространство всевозможных таковых отображений, которое обозначается через $\operatorname{Hom}(V_1, \ldots, V_p; U)$. ТЕсли же U = K, то мы получаем пространство *полилинейных функций*.

Утверждение 9. Пусть V и W - векторные пространства с базисами $\{e_i\}$ и $\{f_i\}$ соответственно. Следующие свойства билинейного отображения $\varphi: V \times W \to U$ эквивалентны:

- ullet векторы $\varphi(e_i,f_i)$ составляют базис пространства Uж
- каждый вектор $x \in U$ единственным образом представляется в виде $z = \sum_i \varphi(e_i, y_i)$;
- ullet каждый вектор $x\in U$ единственным образом представляется в виде $z=\sum_j \varphi(x_j,f_j).$

Определение 49. *Тензорным произведением* двух векторных пространств V и W называется векторное пространство T вместе с билинейным отображением

$$\otimes: V \times W \to T, (x, y) \to x \otimes y,$$

удовлетворяющим следующему условию: если $\{e_i\}$ и $\{f_j\}$ - базисы пространств V и W соответственно, то $\{e_i\otimes f_j\}$ - базис пространства T.

Примечание 6. Тензорное произведение единственно с точностью до единственного изоморфизма, который можно задать на базисных векторах.

Утверждение~10.~Для произвольного билинейного отображения $\varphi: V \times W \to U$ существует единственное линейное отображение $\psi: V \otimes W \to U$ такое, что

$$\varphi(x,y) = \psi(x \otimes y)$$

для любых $x \in V$ и $y \in W$.

Определение 50. Элемент $z \in V \otimes W$ называется *разложимым*, если он представляется в виде

$$z = x \otimes y \ (x \in V, y \in W).$$

Утверждение~11.~Всякий ненулевой элемент $z \in V \otimes W$ представляется в виде

$$z = \sum_{k=1}^{r} v_k \otimes w_k,$$

где векторы v_i , а также векторы w_i линейно независимы.

Утверждение 12 (Основной принцип тензорной алгебры). Для любого p-линейного отображения $\varphi: V_1 \times \ldots \times V_p \to U$ существует единственное линейное отображение $\psi: V_1 \otimes \ldots \otimes V_p \to U$, удовлетворяющее условию

$$\varphi(x_1,\ldots,x_p)=\psi(x_1\otimes\ldots\otimes x_p).$$

Определение 51. Пространство

$$T_q^p(V) = \underbrace{V \otimes \ldots \otimes V}_p \otimes \underbrace{V^* \otimes \ldots \otimes V^*}_q$$

называется пространством mензоров muna (p,q) на V.

Определение 52. Свёртка - линейное отображение

$$T_q^p(V) \to T_{q-1}^{p-1}(V),$$

определяемое следующим образом:

$$(x_1,\ldots,x_p,\alpha_1,\ldots,\alpha_q) \to \alpha_1(x_1)(x_2\otimes\ldots\otimes x_p\otimes\alpha_2\otimes\ldots\otimes\alpha_q).$$

Утверждение 13. Любой тензор T типа (p,q) может быть выражен через бразис пространства $T^p_q(V)$, то есть

$$\{e_{i_1} \otimes \ldots \otimes e_{j_p} \otimes \varepsilon_{j_1} \otimes \ldots \otimes \varepsilon_{j_q}\},\$$

следующим образом:

$$T = \sum_{i_1, \dots, i_p, j_1, \dots, j_p} T_{i_1 \dots i_p j_1 \dots j_p} e_{i_1} \otimes \dots \otimes e_{i_p} \otimes \varepsilon_{j_1} \otimes \dots \otimes \varepsilon_{j_q}$$

или, как его обычно записывают,

$$T = T_{i_1...i_p}^{j_1...j_p} e_{i_1} \otimes \ldots \otimes e_{i_p} \otimes \varepsilon^{j_1} \otimes \ldots \otimes \varepsilon^{j_q}.$$

Это - координаты тензора T в базисе $\{e_i\}$ пространства V.

Определение 53. В евклидовом векторном пространстве V имеется выделенный тензор $g \in T_2^0(V)$, определяющий скалярное умножение. Он называется метрическим тензором пространства V. Свёртка метрического тензора с любым тензором $T \in T_q^p(V)$ по любому индексу тензора g и первому верхнему индексу тензора T есть тензор $\tilde{T} \in T_{q_1}^{p-1}(V)$, координаты которого находятся по формуле

$$\tilde{T}^{i_2\dots i_p}_{jj_1\dots j_p} = g_{jk} T^{ki_2\dots i_p}_{j_1\dots j_p}.$$

Переход от тензора T к тензору \tilde{T} называется *спуском* первого верхнего *индекса* тензора T. Аналогично определяется спуск любого верхнего индекса. Обратная операция называется *подъёмом индекса*.

Определение 54. Тензоры типа (p,0) называются контрвариантными тензорами степени p. Аналогично, тензоры типа (0,p) называют ковариантными тензорами степени p.

Определение 55. Алгебра

$$T_*(V) = \bigoplus_{p=0}^{\infty} T_p(V)$$

называется алгеброй полилинейных функций на V.

Определение 56. Полилинейное отображение называется симметрическим, если

$$\varphi(x_{i_1},\ldots,x_{i_p})=\varphi(x_1,\ldots,x_p)$$

для любой перестановки (i_1, \ldots, i_p) чисел от 1 до p.

Определение 57. Векторное пространство Λ вместе с кососимметрическим p-линейным отображением

$$V \times \ldots \times V \to \Lambda$$
, $(x_1, \ldots, x_p) \mapsto x_1 \wedge \ldots \wedge x_p$,

называется p-й внешней степенью пространства V, если векторы $e_{i_1} \wedge \ldots \wedge e_{i_p}$ с $i_1 < \ldots < i_p$ составляют базис пространства Λ . Обозначается через $\Lambda^p(V)$, а элементы этого пространства называются поливекторами.

Операция \wedge превращает $\Lambda(V)$ в градуированную алгебру, которая называется внешней алгеброй пространства V.

Опять ёбаные группы.

[но на этот раз сложнее]

Определение 58. Говорят, что группа G разлагается в *прямое произведение* своих подгрупп G_1, \ldots, G_k , если

- каждый элемент $g \in G$ единственным образом представляется в виде $g = g_1 \dots g_k$, где $g_i \in G_i$;
- $g_ig_j = g_jg_i$ при $i \neq j$.

В этом случае пишут $G = G_1 \times \ldots \times G_k$.

Лемма 2. Пусть G_1 и G_2 - нормальные подгруппы группы G, причём $G_1 \cap G_2 = \{e\}$. Тогда $g_1g_2 = g_2g_1$ для любых $g_1 \in G_1$, $g_2 \in G_2$.

Утверждение 14. Группа G разлагается в прямое произведение своих подгрупп G_1 и G_2 тогда и только тогда, когда

- подгруппы G_1 и G_2 нормальны;
- $G_1 \cap G_2 = \{e\};$

• $G = G_1G_2$, то есть, каждый элемент $g \in G$ представляется в виде $g = g_1g_2$, где $g_1 \in G_1$, $g_2 \in G_2$.

Определение 59. *Прямым произведением* групп G_1, \ldots, G_k называется совокупность последовательностей (g_1, \ldots, g_k) , где $g_i \in G_i$, с покомпонентной операцией умножения.

Определение 60. Говорят, что группа G разлагается в *прямое полупроизведение* групп N и H, если

- N нормальная подгруппа;
- $N \cap H = \{e\};$
- NH = G.

При этом пишут G = N > H.

Определение 61. Пусть G - какая-либо группа. *Коммутатором* элементов $x,y\in G$ называется элемент

$$(x,y) = xyx^{-1}t^{-1}$$
.

Подгруппа, порождённая всеми коммутаторами, называется коммутантом группы G и обозначается (G,G) или G'.

Теорема 25. Коммутант G' группы G является наименьшей нормальной подгруппой, факторгруппа по которой абелева.

Определение 62. Действием группы G на множестве X называется любой гомоморфизм

$$\alpha: G \to S(X)$$
.

Иначе говоря, задать действие на G на X - это значит поставить в соответствие каждому $g \in G$ преобразование $\alpha(g) \in S(X)$ таким образом, что

$$\alpha(qh) = \alpha(q)\alpha(h).$$

[потом можно дописать, но пока что хватит основного]

Тензорная алгебра.

Определение 63. Категория C - это

- класс Ob C, элементы которого называются *объектами*;
- попарно непересекающиеся множества *морфизмов* $\operatorname{Hom}(X,Y)$ для любых двух X и Y из $\operatorname{Ob} \mathcal{C}$;
- операция композиции \circ : $\operatorname{Hom}(Y,Z) \times \operatorname{Hom}(X,Y) \to \operatorname{Hom}(X,Z)$, удовлетворяющая двум аксиомам.

Аксиомы композиции:

• ассоциативность $(f \circ q) \circ h = f \circ (q \circ h)$;

• для любого A из C существует $\mathrm{id}_A \in \mathrm{Hom}(A,A)$ такое, что $f \circ \mathrm{id}_A = f$, $\mathrm{id}_A \circ f = f$ для любого осмысленного f.

Определение 64. Два объекта X и Y в категории $\mathcal C$ называются изоморфными, если $\exists f \in \operatorname{Hom}(X,Y)$ и $g \in \operatorname{Hom}(Y,X)$ такие, что $f \circ g = \operatorname{id}_Y, \ g \circ f = \operatorname{id}_X.$ f и g в этом случае называются изоморфизмами.

Определение 65. Объект A в категории \mathcal{C} называется *терминальным* (*инициальным*), если для любого X из \mathcal{C} $|\operatorname{Hom}(X,A)| = 1$ ($|\operatorname{Hom}(A,X)| = 1$)

Утверждение 15. Если терминальный (инициальный) объект существует, то он единственен с точностью до единственного изоморфизма.

Определение 66. Для категории \mathcal{C} определим следующую категорию \mathcal{C}^{op} , которую будем называть двойственной (противоположной): $\mathrm{Ob}\,\mathcal{C}^{op} = \mathrm{Ob}\,\mathcal{C}$, $\mathrm{Hom}_{\mathcal{C}^{op}}(X,Y) = \mathrm{Hom}_{\mathcal{C}}(Y,X)$, $f^{op} \circ^{op} g^{op} = g \circ f$.

Определение 67. *Произведением* объектов X и Y в категории $\mathcal C$ называется объект $X \times Y$, обладающий следующим универсальным свойством: фиксированы морфизмы $pr_X: X \times Y \to X$ и $pr_Y: X \times Y \to Y$ и для любого объекта Z с морфизмами $f: Z \to X$ и $g: Z \to Y$, существует единственный морфизм $h: Z \to X \times Y$, делающий диаграмму коммутативной: $pr_X \circ h = f$, $pr_Y \circ h = g$.

Определение 68. Копроизведением объектов X и Y в категории $\mathcal C$ называется объект $X \coprod Y$, обладающий следующим универсальным свойством: фиксированы морфизмы i_X : $X \coprod Y \leftarrow X$ и $i_Y: X \coprod Y \leftarrow Y$ и для любого объекта Z с морфизмами $f: Z \leftarrow X$ и $g: Z \leftarrow Y$, существует единственный морфизм $h: Z \leftarrow X \coprod Y$, делающий диаграмму коммутативной: $h \circ i_X = f, \ h \circ i_Y = g$.

Функторы.

Определение 69. Φ *унктором* \mathcal{F} называется отображение между двумя категориями \mathcal{C} и \mathcal{D} (определённое и на объектах, и на морфизмах) со свойствами:

- Если $f \in \text{Hom}(X,Y)$, то $\mathcal{F}(f) \in \text{Hom}(\mathcal{F}(X),\mathcal{F}(Y))$;
- $\bullet \ \mathcal{F}(f\circ g)=\mathcal{F}(f)\circ \mathcal{F}(g);$
- $\mathcal{F}(\mathrm{id}_A) = \mathrm{id}_{\mathcal{F}(A)}$.

Утверждение 16. $A \simeq B \Rightarrow F(A) \simeq F(B)$.

Примечание 7. \simeq в этом случае означает, что существуют $f:A\to B$ и $g:B\to A$ такие, что $f\circ g=\mathrm{id}_B$ и $g\circ f=\mathrm{id}_A.$

Определение 70. Контрвариантный функтор из C в D - это функтор из C^{op} в D: $A \in \mathrm{Ob}\, C \Rightarrow F(A) \in \mathrm{Ob}\, D, \ f: A \to B \Rightarrow F(f): F(B) \to F(a)$ и $F(f \circ g) = F(g) \circ F(f), F(\mathrm{id}_A) = \mathrm{id}_{F(A)}.$

Определение 71. Представимый функтор - это такой функтор $h_A: C^{Op} \to Sets, A \in Ob C$, действующий по правилу: $h_A(X) = Hom(X, A), h_A(f): \varphi \mapsto \varphi \circ f$.

Определение 72. Гомоморфизм f называется *мономорфизмом*, если «на него можно сокращать слева», т.е. $f \circ g = f \circ h \Rightarrow g = h$.

Определение 73. Гомоморфизм $f: X \to Y$ называется *расщепимым мономорфизмом*, если $\exists r: Y \to X$ такой, что $r \circ f = \mathrm{id}_X$

Примечание 8. Функторы не сохраняют обычные мономорфизмы, но сохраняют расщепимые.

Определение 74. Гомоморфизм f называется эпиморфизмом, если «на него можно сокращать справа», т.е. $g \circ f = h \circ f \Rightarrow g = h$.

Определение 75. Гомоморфизм $f: X \to Y$ называется расщепимым эпиморфизмом, если $\exists s: Y \to X$ такой, что $f \circ s = \mathrm{id}_Y$.

Естественные преобразования.

Определение 76. Пусть F и G — ковариантные функторы из категории C в D. Тогда ecmecmsehoe преобразование сопоставляет каждому объекту X категории C морфизм $\eta_X \colon F(X) \to G(X)$ в категории D, называемый компонентой η в X, так, что для любого морфизма $f \colon X \to Y$ диаграмма, изображённая на рисунке ниже, коммутативна. В случае контравариантных функторов C и D определение совершенно аналогично (необходимо только обратить горизонтальные стрелки, учитывая, что их обращает контравариантный морфизм).

$$F(X) \xrightarrow{F(f)} F(Y)$$

$$\eta_X \downarrow \qquad \qquad \eta_Y \downarrow$$

$$G(X) \xrightarrow{G(f)} G(Y)$$

Определение 77. Есть три функтора $F, G, H: C \to D$ и два естественных преобразования: $\alpha: F \to G$ и $\beta: G \to H$. Композиция (вертикальная) естественных преобразований это естественное преобразование $\beta \circ \alpha: F \to H \mid (\beta \circ \alpha)_A = \beta_A \circ \alpha_A$.

Определение 78. Есть четыре функтора $F,G:C\to D,\ H,K:D\to E$ и два естественных преобразования: $\alpha:F\to G$ и $\beta:H\to E$. Композиция (горизнтальная) естественных преобразований - это естественное преобразование $\beta\bullet\alpha:H\circ F\to K\circ G\mid (\beta\bullet\alpha)_A:H(F(A))\to K(G(A)),$ последнее работает следующим образом: $H(\alpha_A):H(F(A))\to H(G(A)),$ $(\beta\bullet\alpha)_A=\beta_{G(A)}(H(\alpha_A)).$

Определение 79. Категории C и D называются эквивалентными, если $\exists F: C \to D$ и $G: D \to C$, причем есть естественные преобразования $\alpha: \mathrm{id}_G \to F \circ G$, $\alpha^{-1}: F \circ G \to \mathrm{id}_G$ и $\beta: \mathrm{id}_C \to G \circ F$, $\beta^{-1}: G \circ F \to \mathrm{id}$ такие, что $\alpha \circ \alpha^{-1} = \mathrm{id}$, $\alpha^{-1} \circ \alpha = \mathrm{id}$ и $\beta \circ \beta^{-1} = \mathrm{id}$, $\beta^{-1} \circ \beta = \mathrm{id}$.

Теорема 26 (Критерий эквивалентности категорий). $F: C \to D$ задаёт эквивалентность категорий тогда и только тогда, когда выполнены следующие три условия:

- F унивалентен, то есть отображение $Hom(X,Y) \to Hom(F(X),F(Y))$ инъективно;
- F полон, то есть отображение $Hom(X,Y) \to Hom(F(X),F(Y))$ сюръективно;
- F существенно сюръективен: $\forall A \in D \ \exists X \in C : A \cong F(X)$.

Лемма 3. $A \cong B$, $C \cong D$, тогда $Hom(A,C) \cong Hom(B,D)$, причём каждому морфизму слева сопоставляется единственный морфизм, делающий диаграмму из этого морфизма и двух фиксированных изоморфизмов коммутативной.

Определение 80. Категория скелетная, если в ней изоморфные объекты совпадают.

Определение 81. Скелет категории C - скелетная полная подкатегория D (для любого объекта из C есть изоморфный ему из D).

- В каждой категории существует скелет;
- Скелет эквивалентен исходной категории;
- Скелетные категории эквивалентны тогда и только тогда, когда изоморфны;
- Две категории эквивалентны 👄 их скелеты изоморфны.

Лемма Йонеды

Лемма 4 (Лемма Йонеды). В произвольной категории C бозначим за h_A ковариантный функтор Hom(A, -), а за Nat(F, G) все естественные преобразования функторов F и G. Тогда теорема утверждает, что $Nat(h_a, F) \simeq F(A)$, где F действует из некоторой категории C в Sets.

Следствие 8 (Вложение Йонеды). $h_-: C \to Set^{C^{Op}}$ - полный унивалентный ковариантный функтор, который действует следующим образом: $A \mapsto h_A, \ f: B \to A \mapsto Hom(f, -)$

Определение 82. Постоянный функтор - это функтор $\mathrm{const}_Z: D \to C, Z \in Ob\ C$, действующий следующим образом: $A \mapsto Z, f \mapsto \mathrm{id}$.

Определение 83. Категория D называется малой категорией (диаграммой), если ее объекты составляют множество.

Определение 84. D - малая категория, $F: D \to C$ - функтор. $\square peden$ - это объект $\lim F$, представляющий функтор, который действует следующим образом: $Z \mapsto Nat(\operatorname{const}_Z, F)$.

Определение 85. Копредел $F: D \to C$ - это объект, копредставляющий функтор $G: Z \mapsto Nat(F, \mathrm{const}_Z)$. Копредставляющий в том смысле, что $G \simeq Hom(\mathrm{colim}\, F, -)$.

Определение 86. Категория C называется *полной*, если в C есть все (малые) пределы. Т.е. $\forall D$ - малой и $\forall F: D \to C \; \exists \lim F$.

Теорема 27. C - полная \Leftrightarrow в C существуют произведения и уравнители.

Сопряжённые функторы

Определение 87. Функторы $F: C \longrightarrow D$ и $G: D \longrightarrow C$ называются *сопряжёнными*, если задан естественный изоморфизм бифункторов: $Hom_D(F(X), Y) \simeq Hom_C(X, G(Y))$. F в этом случае сопряжённый *слева* к G.

Теорема 28. Если $F: C \longrightarrow D$ сопряжённый слева $\kappa G: D \longrightarrow C$, то G сохраняет пределы, а F - копределы, то есть $G(\lim K) \simeq \lim (G \circ K)$.

Теорема 29 (*Теорема Фрейда*). Пусть D полна, $G:D \longrightarrow C$ сохраняет пределы u выполнено условие $(*): \forall X \in C \exists \{A_i\}_{i \in I(X)}, \ \textit{где } I(X)$ - множество объектов D, вместе c $f_i: X \longrightarrow G(A_i)$, такое что для любых $A \in D$ u $f: X \longrightarrow G(A)$, $\exists \phi_i: A_i \longrightarrow A: f = G(\phi_i) \circ f_i$. Тогда y G есть сопряжённый слева.

Теорема 30 (*Теорема Фрейда?*). $G: D \to C$ - функтор, причем D - полная, сохраняющий пределы u со следующим свойством: $\forall X \in Ob \ C \ \exists \{A_i\}_{i \in I}$ - множество объектов D вместе c множеством стрелок $X \xrightarrow{f_i} G(A_i)$ такое, что $\forall A \in Ob \ D \ u \ \forall f: X \to G(A) \ \exists i \in I \ u \ \exists \phi_i: A_i \to A$ такие, что следующий треугольник коммутативен:

Лемма 5. $F: C \xrightarrow{\leftarrow} D: G$ - сопряжены $\Leftrightarrow \exists \eta: \mathrm{id}_C \to GF \ u \ \exists \varepsilon: FG \to \mathrm{id}_D \ makue, что следующие две диаграммы коммутативны:$

Предметный указатель

Абелева группа, 2	Оператор
Автоморфизм, 4	нильпотентный, 9
Алгебра, 2	ортогональный, 8
внешняя, 12	сопряжённый, 8
полилинейных функций, 12	Орбита, 4
Аннулятор, 6	Ортогональное дополнение, 6
Вектор	Отображение
корневой, 8	линейное, 5
Вложение Йонеды, 16	полилинейное, 10
Внешняя степень, 12	Подгруппа
Гомоморфизм	нормальная, 4
групп, 4	Подкольцо, 2
Группа	Подпространства
преобразований, 3	линейно независимые, 5
циклическая, 3	Подпространство
Двойственная категория, 14	инвариантное, 7
Действие группы, 13	корневое, 8
Длина	невырожденное, 6
орбиты, 4	циклическое, 9
Жорданова	Поле, 2
клетка, 9	Поливектор, 12
Изоморфные объекты, 14	Полнота функтора, 15
Индекс подгруппы, 4	Поляризация, 6
Категория, 13	Постоянный функтор, 16
полная, 16	Предел, 16
Класс	Представимый функтор, 14
смежный, 3	Преобразование
Кольцо, 2	естественное, 15
Коммутатор, 13	Произведение
Композиция (вертикальная) естественных пре-	групп, прямое, 12
образований, 15	полупрямое, групп, 13
Композиция(горизнтальная) естественных	тензорное, 10
преобразований, 15	Произведение объектов, 14
Контрвариантый функтор, 14	Пространство
Копредел, 16	векторное, 2
Копроизведение объектов, 14	сопряжённое, 5
Критерий	тензоров типа $(p,q), 11$
эквивалентности категорий, 15	Прямая сумма подпространств, 5
Лемма	Расщепимый мономорфизм, 15
Йонеды, 16	Расщепимый эпиморфизм, 15
Линейный оператор, 7	Свёртка, 11
Малая категория(диаграмма), 16	Система
Матрица	определённая, 3
невырожденная, 3	совместная, 3
Многочлен	Система порождающих, 3
аннулирующий, 9	Скелет, 16
характеристическим, 7	Скелетная категория, 16

След, 5
Собственное значение, 7
Собственный вектор, 7
Сопряжённые функторы, 16
Спуск индекса, 12
Стабилизатор, 4
Тензор
контрвариантный, 12
метрический, 11
Теорема
Гамильтона-Кэли, 10
Кронекера-Капелли, 3
Лагранжа, 4
Φ рейда, 16
о гомоморфизме групп, 4
Терминальный объект, 14
Унивалентность функтора, 15
Функтор, 14
Функция
билинейная, 6
квадратичная, 6
линейная, 5
полилинейная, 10
полуторалинейная, 7
симметрическая, 6
эрмитова, 7
Эквивалентность категорий, 15
Эндоморфизм, 4
Эпиморфизм, 15
Ядро, 6
мономорфизм, 14