SEQUENCE LISTING

```
<110> GOTO, Masaaki
      TSUDA, Eisuke
      MOCHIZUKI, Shin'ichi
      YANO, Kazuki
      KOBAYASHI, Fumie
      SHIMA, Nobuyuki
      YASUDA, Hisataka
      NAKAGAWA, Nobuaki
      MORINAGA, Tomonori
      UEDA, Masatsugu
      HIGASHIO, Kanji
<120> Novel Proteins and Methods for Producing the Proteins
<130> 16991.016
<150> US 10/232,858
<151> 2002-09-03
<150> US 08/915,004
<151> 1997-08-20
<150> PCT/JP96/00374 ·
<151> 1996-02-20
<150> JP 207508/1995
<151> 1995-07-21
<150> JP 054977/1995
<151> 1995-02-20
<160>
      108
<170> PatentIn version 3.1
<210> 1
<211>
       6
<212>
       PRT
<213>
      Homo sapiens
<220>
<221> MISC FEATURE
<222> (1)..(1)
\langle 223 \rangle X = unknown
<400> 1
Xaa Tyr His Phe Pro Lys
                5
<210> 2
<211> 14
```

<212> PRT

```
<213> Homo sapiens
<220>
<221> MISC FEATURE
<222> (1)..(1)
\langle 223 \rangle X = unknown
<220>
<221> MISC_FEATURE
<222> (5)..(5)
\langle 223 \rangle X = unknown
<220>
<221> MISC FEATURE
<222> (13)..(13)
\langle 223 \rangle X = unknown
<400> 2
Xaa Gln His Ser Xaa Gln Glu Gln Thr Phe Gln Leu Xaa Lys
                5
<210> 3
<211> 12
<212> PRT
<213> Homo sapiens
<220>
<221> MISC FEATURE
<222> (1)..(1)
\langle 223 \rangle X = unknown
<400> 3
Xaa Ile Arg Phe Leu His Ser Phe Thr Met Tyr Lys
                 5
                                      10
<210> 4
<211> 380
<212> PRT
<213> Homo sapiens
<400> 4
Glu Thr Phe Pro Pro Lys Tyr Leu His Tyr Asp Glu Glu Thr Ser His
                 5
                                      10
Gln Leu Leu Cys Asp Lys Cys Pro Pro Gly Thr Tyr Leu Lys Gln His
            20
                                  25
                                                       30
```

Cys Thr Ala Lys Trp Lys Thr Val Cys Ala Pro Cys Pro Asp His Tyr Tyr Thr Asp Ser Trp His Thr Ser Asp Glu Cys Leu Tyr Cys Ser Pro Val Cys Lys Glu Leu Gln Tyr Val Lys Gln Glu Cys Asn Arg Thr His Asn Arg Val Cys Glu Cys Lys Glu Gly Arg Tyr Leu Glu Ile Glu Phe Cys Leu Lys His Arg Ser Cys Pro Pro Gly Phe Gly Val Val Gln Ala Gly Thr Pro Glu Arg Asn Thr Val Cys Lys Arg Cys Pro Asp Gly Phe Phe Ser Asn Glu Thr Ser Ser Lys Ala Pro Cys Arg Lys His Thr Asn Cys Ser Val Phe Gly Leu Leu Thr Gln Lys Gly Asn Ala Thr His . Asp Asn Ile Cys Ser Gly Asn Ser Glu Ser Thr Gln Lys Cys Gly Ile Asp Val Thr Leu Cys Glu Glu Ala Phe Phe Arg Phe Ala Val Pro Thr Lys Phe Thr Pro Asn Trp Leu Ser Val Leu Val Asp Asn Leu Pro Gly Thr Lys Val Asn Ala Glu Ser Val Glu Arg Ile Lys Arg Gln His Ser Ser Gln Glu Gln Thr Phe Gln Leu Leu Lys Leu Trp Lys His Gln Asn Lys Asp Gln Asp Ile Val Lys Lys Ile Ile Gln Asp Ile Asp Leu Cys

Glu Asn Ser Val Gln Arg His Ile Gly His Ala Asn Leu Thr Phe Glu 260 265 Gln Leu Arg Ser Leu Met Glu Ser Leu Pro Gly Lys Lys Val Gly Ala Glu Asp Ile Glu Lys Thr Ile Lys Ala Cys Lys Pro Ser Asp Gln Ile 295 Leu Lys Leu Ser Leu Trp Arg Ile Lys Asn Gly Asp Gln Asp Thr 310 305 315 Leu Lys Gly Leu Met His Ala Leu Lys His Ser Lys Thr Tyr His Phe 325 330 Pro Lys Thr Val Thr Gln Ser Leu Lys Lys Thr Ile Arg Phe Leu His 340 345 Ser Phe Thr Met Tyr Lys Leu Tyr Gln Lys Leu Phe Leu Glu Met Ile 355 360 Gly Asn Gln Val Gln Ser Val Lys Ile Ser Cys Leu 370 <210> 5 <211> 401 <212> PRT <213> Homo sapiens <400> 5 Met Asn Asn Leu Cys Cys Ala Leu Val Phe Leu Asp Ile Ser Ile 5 10 Lys Trp Thr Thr Gln Glu Thr Phe Pro Pro Lys Tyr Leu His Tyr Asp Glu Glu Thr Ser His Gln Leu Leu Cys Asp Lys Cys Pro Pro Gly Thr Tyr Leu Lys Gln His Cys Thr Ala Lys Trp Lys Thr Val Cys Ala Pro 55 Cys Pro Asp His Tyr Tyr Thr Asp Ser Trp His Thr Ser Asp Glu Cys 70 75

Leu Tyr Cys Ser Pro Val Cys Lys Glu Leu Gln Tyr Val Lys Gln Glu Cys Asn Arg Thr His Asn Arg Val Cys Glu Cys Lys Glu Gly Arg Tyr Leu Glu Ile Glu Phe Cys Leu Lys His Arg Ser Cys Pro Pro Gly Phe Gly Val Val Gln Ala Gly Thr Pro Glu Arg Asn Thr Val Cys Lys Arg Cys Pro Asp Gly Phe Phe Ser Asn Glu Thr Ser Ser Lys Ala Pro Cys Arg Lys His Thr Asn Cys Ser Val Phe Gly Leu Leu Thr Gln Lys Gly Asn Ala Thr His Asp Asn Ile Cys Ser Gly Asn Ser Glu Ser Thr Gln Lys Cys Gly Ile Asp Val Thr Leu Cys Glu Glu Ala Phe Phe Arg Phe Ala Val Pro Thr Lys Phe Thr Pro Asn Trp Leu Ser Val Leu Val Asp Asn Leu Pro Gly Thr Lys Val Asn Ala Glu Ser Val Glu Arg Ile Lys Arg Gln His Ser Ser Gln Glu Gln Thr Phe Gln Leu Leu Lys Leu Trp Lys His Gln Asn Lys Asp Gln Asp Ile Val Lys Lys Ile Ile Gln Asp Ile Asp Leu Cys Glu Asn Ser Val Gln Arg His Ile Gly His Ala Asn Leu Thr Phe Glu Gln Leu Arg Ser Leu Met Glu Ser Leu Pro Gly

Lys Lys Val Gly Ala Glu Asp Ile Glu Lys Thr Ile Lys Ala Cys Lys 305 310 315 320 Pro Ser Asp Gln Ile Leu Lys Leu Ser Leu Trp Arg Ile Lys Asn 325 330 335 Gly Asp Gln Asp Thr Leu Lys Gly Leu Met His Ala Leu Lys His Ser 340 345 350 Lys Thr Tyr His Phe Pro Lys Thr Val Thr Gln Ser Leu Lys Lys Thr 355 Ile Arg Phe Leu His Ser Phe Thr Met Tyr Lys Leu Tyr Gln Lys Leu 375 Phe Leu Glu Met Ile Gly Asn Gln Val Gln Ser Val Lys Ile Ser Cys 385 390 395 Leu <210> 6 <211> 1206 <212> DNA <213> Homo sapiens <400> 6 atgaacaact tgctgtgctg cgcgctcgtg tttctggaca tctccattaa gtggaccacc 60 caggaaacgt ttcctccaaa gtaccttcat tatgacgaag aaacctctca tcagctqttq 120 tgtgacaaat gtcctcctgg tacctaccta aaacaacact gtacagcaaa gtggaagacc 180 gtgtgcgccc cttgccctga ccactactac acagacagct ggcacaccag tgacgagtgt 240 ctatactgca gccccgtgtg caaggagctg cagtacgtca agcaggagtg caatcgcacc 300 cacaaccgcg tgtgcgaatg caaggaaggg cgctaccttg agatagagtt ctgcttgaaa 360 cataggaget geeeteetgg atttggagtg gtgcaagetg gaaceccaga gegaaataca 420 gtttgcaaaa gatgtccaga tgggttcttc tcaaatgaga cgtcatctaa agcaccctgt 480 agaaaacaca caaattgcag tgtctttggt ctcctgctaa ctcagaaagg aaatgcaaca 540 cacgacaaca tatgttccgg aaacagtgaa tcaactcaaa aatgtqqaat aqatgttacc 600

660

ctgtgtgagg aggcattctt caggtttgct gttcctacaa agtttacgcc taactggctt

agtgtcttgg tagacaattt gcctggcacc aaagtaaacg cagagagtgt agaqaqqata 720 aaacggcaac acagctcaca agaacagact ttccagctgc tgaagttatg qaaacatcaa 780 aacaaagacc aagatatagt caagaagatc atccaagata ttgacctctg tgaaaacaqc 840 gtgcagcggc acattggaca tgctaacctc accttcgagc agcttcgtag cttgatggaa 900 agcttaccgg gaaagaaagt gggagcagaa gacattgaaa aaacaataaa ggcatgcaaa 960 cccagtgacc agatcctgaa gctgctcagt ttgtggcgaa taaaaaatgg cgaccaagac 1020 accttgaagg gcctaatgca cgcactaaag cactcaaaga cgtaccactt tcccaaaact 1080 gtcactcaga gtctaaagaa gaccatcagg ttccttcaca gcttcacaat gtacaaattg 1140 tatcagaagt tattttaga aatgataggt aaccaggtcc aatcagtaaa aataagctgc 1200 ttataa 1206

<210> 7

<211> 15

<212> PR3

<213> Homo sapiens

<400> 7

Glu Thr Phe Pro Pro Lys Tyr Leu His Tyr Asp Glu Glu Thr Ser
1 5 10 15

<210> 8

<211> 1185

<212> DNA

<213> Homo sapiens

<400> 8

atgaacaact tgctgtgctg cgcgctcgtg tttctggaca tctccattaa gtggaccacc 60 caggaaacgt ttcctccaaa gtaccttcat tatgacgaag aaacctctca tcagctgttg 120 tgtgacaaat gtcctcctgg tacctaccta aaacaacact gtacagcaaa gtggaagacc 180 gtgtgcgccc cttgccctga ccactactac acagacagct ggcacaccag tgacgagtgt 240 ctatactgca gccccgtgtg caaggagtgc aatcgcaccc acaaccgcgt gtgcgaatgc 300 aaggaagggc gctaccttga gatagagttc tgcttgaaac ataggagctg ccctcctqqa 360 tttggagtgg tgcaagctgg aaccccagag cgaaatacag tttgcaaaag atgtccagat 420 gggttcttct caaatgagac gtcatctaaa gcaccctgta gaaaacacac aaattgcagt 480 gtetttggte teetgetaae teagaaagga aatgeaacae aegacaacat atgtteegga 540 aacagtgaat caactcaaaa atgtggaata gatgttaccc tgtgtgagga ggcattcttc 600 aggtttgctg ttcctacaaa gtttacgcct aactgqctta gtqtcttgqt aqacaatttq 660 cctggcacca aagtaaacgc agagagtgta gagaggataa aacggcaaca caqctcacaa 720 gaacagactt tccagctgct gaagttatgg aaacatcaaa acaaagacca agatatagtc 780 aagaagatca tccaagatat tgacctctgt gaaaacagcg tgcagcggca cattggacat 840 gctaacctca ccttcgagca gcttcgtagc ttgatggaaa gcttaccggg aaagaaagtg 900 ggagcagaag acattgaaaa aacaataaag gcatgcaaac ccagtgacca gatcctgaag 960 ctgctcagtt tgtggcgaat aaaaaatggc gaccaagaca ccttgaaqqq cctaatgcac 1020 gcactaaagc actcaaagac gtaccacttt cccaaaactg tcactcaqaq tctaaaqaaq 1080 accatcaggt teetteacag etteacaatg tacaaattgt atcagaagtt atttttagaa 1140 atgataggta accaggtcca atcagtaaaa ataagctgct tataa 1185

<210> 9

<211> 394

<212> PRT

<213> Homo sapiens

<400> 9

Met Asn Asn Leu Cys Cys Ala Leu Val Phe Leu Asp Ile Ser Ile $1 \hspace{1cm} 5 \hspace{1cm} 10 \hspace{1cm} 15$

Lys Trp Thr Thr Gln Glu Thr Phe Pro Pro Lys Tyr Leu His Tyr Asp
20 25 30

Glu Glu Thr Ser His Gln Leu Leu Cys Asp Lys Cys Pro Pro Gly Thr 35 40 45

Tyr Leu Lys Gln His Cys Thr Ala Lys Trp Lys Thr Val Cys Ala Pro 50 55 60

Cys Pro Asp His Tyr Tyr Thr Asp Ser Trp His Thr Ser Asp Glu Cys 70 75 80

Leu Tyr Cys Ser Pro Val Cys Lys Glu Cys Asn Arg Thr His Asn Arg 85 90 95

Val Cys Glu Cys Lys Glu Gly Arg Tyr Leu Glu Ile Glu Phe Cys Leu 100 105 110

Lys	His	Arg 115	Ser	Cys	Pro	Pro	Gly 120	Phe	Gly	Val	Val	Gln 125	Ala	Gly	Thr
Pro	Glu 130	Arg	Asn	Thr	Val	Cys 135	Lys	Arg	Cys	Pro	Asp 140	Gly	Phe	Phe	Ser
Asn 145	Glu	Thr	Ser	Ser	Lys 150	Ala	Pro	Cys	Arg	Lys 155	His	Thr	Asn	Cys	Ser 160
Val	Phe	Gly	Leu	Leu 165	Leu	Thr	Gln	Lys	Gly 170	Asn	Ala	Thr	His	Asp 175	Asn
Ile	Cys	Ser	Gly 180	Asn	Ser	Glu	Ser	Thr 185	Gln	Lys	Cys	Gly	Ile 190	Asp	Val
Thr	Leu	Cys 195	Glu	Glu	Ala	Phe	Phe 200	Arg	Phe	Ala	Val	Pro 205	Thr	Lys	Phe
Thr	Pro 210	Asn	Trp	Leu	Ser	Val 215	Leu	Val	Asp	Asn	Leu 220	Pro	Gly	Thr	Lys
Val 225	Asn	Ala	Glu	Ser	Val 230	Glu	Arg	Ile	Lys	Arg 235	Gln	His	Ser	Ser	Gln 240
Glu	Gln	Thr	Phe	Gln 245	Leu	Leu	Lys	Leu	Trp 250	Lys	His	Gln	Asn	Lys 255	Asp
Gln	Asp	Ile	Val 260	Lys	Lys	Ile	Ile	Gln 265	Asp	Ile	Asp	Leu	Cys 270	Glu	Asn
Ser	Val	Gln 275	Arg	His	Ile	Gly	His 280	Ala	Asn	Leu	Thr	Phe 285	Glu	Gln	Leu
Arg	Ser 290	Leu	Met	Glu	Ser	Leu 295	Pro	Gly	Lys	Lys	Val 300	Gly	Ala	Glu	Asp
Ile 305	Glu	Lys	Thr	Ile	Lys 310	Ala	Cys	Lys	Pro	Ser 315	Asp	Gln	Ile	Leu	Lys 320
Leu	Leu	Ser	Leu	Trp 325	Arg	Ile	Lys	Asn	Gly 330	Asp	Gln	Asp	Thr	Leu 335	Lys
Gly	Leu	Met	His	Ala	Leu	Lys	His	Ser	Lys	Thr	Tyr	His	Phe	Pro	Lys

340 345 350

Thr Val Thr Gln Ser Leu Lys Lys Thr Ile Arg Phe Leu His Ser Phe 355 360 365

Thr Met Tyr Lys Leu Tyr Gln Lys Leu Phe Leu Glu Met Ile Gly Asn $370 \hspace{1cm} 375 \hspace{1cm} 380$

Gln Val Gln Ser Val Lys Ile Ser Cys Leu 385 390

<210> 10

<211> 1089

<212> DNA

<213> Homo sapiens

<400> 10

atgaacaagt tgctgtgctg cgcgctcgtg tttctggaca tctccattaa gtggaccacc 60 caggaaacgt ttcctccaaa gtaccttcat tatgacgaag aaacctctca tcaqctgttq 120 tgtgacaaat gtcctcctgg tacctaccta aaacaacact gtacagcaaa gtggaagacc 180 gtgtgcgccc cttgccctga ccactactac acagacagct qgcacaccag tqacqaqtqt 240 ctatactgca gccccgtgtg caaggagctg cagtacqtca agcaggagtg caatcqcacc 300 cacaaccgcg tgtgcgaatg caaggaaggg cgctaccttg agatagagtt ctgcttgaaa 360 cataggaget geeeteetgg atttggagtg gtgcaagetg gaaceecaga gegaaataca 420 gtttgcaaaa gatgtccaga tgggttcttc tcaaatgaga cgtcatctaa agcaccctqt 480 agaaaacaca caaattgcag tgtctttggt ctcctgctaa ctcagaaagg aaatgcaaca 540 cacgacaaca tatgttccgg aaacagtgaa tcaactcaaa aatgtggaat agatgttacc 600 ctgtgtgagg aggcattctt caggtttgct gttcctacaa agtttacqcc taactqqctt 660 agtgtcttgg tagacaattt gcctggcacc aaagtaaacg cagagagtgt agagaggata 720 aaacggcaac acagctcaca agaacagact ttccagctgc tgaagttatg gaaacatcaa 780 aacaaagacc aagatatagt caagaagatc atccaagata ttgacctctg tgaaaacagc 840 gtgcagcggc acattggaca tgctaacctc aqtttqtqqc qaataaaaaa tqqcqaccaa 900 gacaccttga agggcctaat gcacgcacta aagcactcaa agacgtacca ctttcccaaa 960 actgtcactc agagtctaaa gaagaccatc aggttccttc acagcttcac aatgtacaaa 1020 ttgtatcaga agttatttt agaaatgata ggtaaccagg tccaatcagt aaaaataagc 1080 tgcttataa 1089

<210> 11

<211> 362

<212> PRT

<213> Homo sapiens

<400> 11

Met Asn Lys Leu Cys Cys Ala Leu Val Phe Leu Asp Ile Ser Ile 1 5 10 15

Lys Trp Thr Thr Gln Glu Thr Phe Pro Pro Lys Tyr Leu His Tyr Asp 20 25 30

Glu Glu Thr Ser His Gln Leu Leu Cys Asp Lys Cys Pro Pro Gly Thr 35 40 45

Tyr Leu Lys Gln His Cys Thr Ala Lys Trp Lys Thr Val Cys Ala Pro 50 60

Cys Pro Asp His Tyr Tyr Thr Asp Ser Trp His Thr Ser Asp Glu Cys 70 75 80

Leu Tyr Cys Ser Pro Val Cys Lys Glu Leu Gln Tyr Val Lys Gln Glu 85 90 95

Cys Asn Arg Thr His Asn Arg Val Cys Glu Cys Lys Glu Gly Arg Tyr 100 105 110

Leu Glu Ile Glu Phe Cys Leu Lys His Arg Ser Cys Pro Pro Gly Phe 115 120 125

Gly Val Val Gln Ala Gly Thr Pro Glu Arg Asn Thr Val Cys Lys Arg 130 135 140

Cys Pro Asp Gly Phe Phe Ser Asn Glu Thr Ser Ser Lys Ala Pro Cys 145 150 155 160

Arg Lys His Thr Asn Cys Ser Val Phe Gly Leu Leu Leu Thr Gln Lys
165 170 175

Gly Asn Ala Thr His Asp Asn Ile Cys Ser Gly Asn Ser Glu Ser Thr 180 185 190

GIn	ьуs	Cys 195	Gly	lle	Asp	val	200	Leu	Cys	Glu	GLu	A1a 205	Phe	Phe	Arg	
Phe	Ala 210	Val	Pro	Thr	Lys	Phe 215	Thr	Pro	Asn	Trp	Leu 220	Ser	Val	Leu	Val	
Asp 225	Asn	Leu	Pro	Gly	Thr 230	Lys	Val	Asn	Ala	Glu 235	Ser	Val	Glu	Arg	Ile 240	
Lys	Arg	Gln	His	Ser 245	Ser	Gln	Glu	Gln	Thr 250	Phe	Gln	Leu	Leu	Lys 255	Leu	
Trp	Lys	His	Gln 260	Asn	Lys	Asp	Gln	Asp 265	Ile	Val	Lys	Lys	Ile 270	Ile	Gln	
Asp	Ile	Asp 275	Leu	Cys	Glu	Asn	Ser 280	Val	Gln	Arg	His	Ile 285	Gly	His	Ala	
Asn	Leu 290	Ser	Leu	Trp	Arg	Ile 295	Lys	Asn	Gly	Asp	Gln 300	Asp	Thr	Leu	Lys	
Gly 305	Leu	Met	His	Ala	Leu 310	Lys	His	Ser	Lys	Thr 315	Tyr	His	Phe	Pro	Lys 320	
Thr	Val	Thr	Gln	Ser 325	Leu	Lys	Lys	Thr	Ile 330	Arg	Phe	Leu	His	Ser 335	Phe	
Thr	Met	Tyr	Lys 340	Leu	Tyr	Gln	Lys	Leu 345	Phe	Leu	Glu	Met	Ile 350	Gly	Asn	
Gln	Val	Gln 355	Ser	Val	Lys	Ile	Ser 360	Cys	Leu							
<210 <211 <212 <213	L> 4 2> [2 165 DNA Homo	sapi	lens												
<400 atga		.2 agt t	gcto	gtgct	g ct	cgct	cgto	g ttt	ctg	jaca	tcto	catt	aa q	gtgga	accacc	60
cag	jaaac	gt t	tcct	ccaa	aa gt	acct	tcat	tat	gac	jaag	aaac	cctct	ca t	cago	ctgttg	120
tata	iacaa	aat o	rtcct	ccto	an ta	octa	ecct =			an a t	at a	2200		x+ a a -	20200	100

gtgtgcgccc cttgccctga ccactactac acagacagct ggcacaccag tgacgagtgt 240 ctatactgca gccccgtgtg caaggagctg cagtacgtca agcaggagtg caatcgcacc 300 cacaaccgcg tgtgcgaatg caaggaaggg cgctaccttg agatagagtt ctgcttgaaa 360 cataggagct gccctcctgg atttggagtg gtgcaagctg gtacgtgtca atgtgcagca 420 aaattaatta ggatcatgca aagtcagata gttgtgacag tttag 465

<210> 13

<211> 154

<212> PRT

<213> Homo sapiens

<400> 13

Met Asn Lys Leu Cys Cys Ser Leu Val Phe Leu Asp Ile Ser Ile $1 \hspace{1.5cm} 5 \hspace{1.5cm} 10 \hspace{1.5cm} 15$

Lys Trp Thr Thr Gln Glu Thr Phe Pro Pro Lys Tyr Leu His Tyr Asp 20 25 30

Glu Glu Thr Ser His Gln Leu Leu Cys Asp Lys Cys Pro Pro Gly Thr 35 40 45

Tyr Leu Lys Gln His Cys Thr Ala Lys Trp Lys Thr Val Cys Ala Pro 50 55 60

Cys Pro Asp His Tyr Tyr Thr Asp Ser Trp His Thr Ser Asp Glu Cys 65 70 75 80

Leu Tyr Cys Ser Pro Val Cys Lys Glu Leu Gln Tyr Val Lys Gln Glu 85 90 95

Cys Asn Arg Thr His Asn Arg Val Cys Glu Cys Lys Glu Gly Arg Tyr 100 105 110

Leu Glu Ile Glu Phe Cys Leu Lys His Arg Ser Cys Pro Pro Gly Phe 115 120 125

Gly Val Val Gln Ala Gly Thr Cys Gln Cys Ala Ala Lys Leu Ile Arg 130 135

Ile Met Gln Ser Gln Ile Val Val Thr Val 145 150

<210> 14 <211> 438 <212> DNA <213> Homo sapiens <400> 14 atgaacaagt tgctgtgctg cgcgctcgtg tttctggaca tctccattaa gtggaccacc caggaaacgt ttcctccaaa gtaccttcat tatgacgaag aaacctctca tcaqctqttq tgtgacaaat gtcctcctgg tacctaccta aaacaacact gtacagcaaa gtggaagacc gtgtgcgccc cttgccctga ccactactac acaqacagct ggcacaccag tgacqagtgt ctatactgca gccccgtgtg caaggagctg cagtacgtca agcaggagtg caatcgcacc cacaaccgcg tgtgcgaatg caaggaaggg cgctaccttg agatagagtt ctgcttgaaa cataggaget geeeteetgg atttggagtg gtgcaagetg gatgeaggag aagacecaag ccacagatat gtatctga <210> 15 <211> 145 <212> PRT <213> Homo sapiens <400> 15 Met Asn Lys Leu Cys Cys Ala Leu Val Phe Leu Asp Ile Ser Ile 10 Lys Trp Thr Thr Gln Glu Thr Phe Pro Pro Lys Tyr Leu His Tyr Asp 20 25 30 Glu Glu Thr Ser His Gln Leu Leu Cys Asp Lys Cys Pro Pro Gly Thr 35 40 45 Tyr Leu Lys Gln His Cys Thr Ala Lys Trp Lys Thr Val Cys Ala Pro Cys Pro Asp His Tyr Tyr Thr Asp Ser Trp His Thr Ser Asp Glu Cys 70 Leu Tyr Cys Ser Pro Val Cys Lys Glu Leu Gln Tyr Val Lys Gln Glu 85 Cys Asn Arg Thr His Asn Arg Val Cys Glu Cys Lys Glu Gly Arg Tyr

60

120

180

240

300

360

420

438

105

100

Leu	Glu	Ile 115	Glu	Phe	Cys	Leu	Lys 120	His	Arg	Ser	Cys	Pro 125	Pro	Gly	Phe	
Gly	Val 130	Val	Gln	Ala	Gly	Cys 135	Arg	Arg	Arg	Pro	Lys 140	Pro	Gln	Ile	Cys	
Ile 145																
<210 <211 <212 <213	.> ?>	16 20 DNA Arti:	ficia	al Se	equei	nce										
<220 <223		Syntl	netio	c Sed	quenc	ce										
<400 aatt		16 cct (cacta	aaag	gg							•				20
<210 <211 <212 <213	!> ?>	17 22 DNA Arti:	ficia	al Se	equer	nce										
<220 <223		Syntl	netio	c Sed	quen	се										
<400 gtaa		17 gac 1	tcact	tataq	gg g¢	c										22
<210 <211 <212 <213	!> ?>	18 20 DNA Arti:	ficia	al Se	equei	nce										
<220 <223		Syntl	hetio	c Sed	quen	ce										
<400 acat		18 aac a	aaaga	accaa	ag											20
<210 <211 <212 <213	\ ?>	19 20 DNA Arti:	ficia	al Se	equei	nce										
<220 <223		Syntl	heti	c Se	quen	ce										

<400> tcttgg	19 tott tgttttgatg	20
<210><211><211><212><213>	20	
<220> <223>	Synthetic Sequence	
<400> ttattc	20 gcca caaactgagc	20
<210> <211> <212> <213>	DNA	
<223>	Synthetic Sequence	
<400> ttgtga	21 agct gtgaaggaac	20
<210><211><211><212><213>	20 DNA	
<220> <223>	Synthetic Sequence	
<400> gctcag	22 tttg tggcgaataa	20
<210><211><211><212><213>	23 20 DNA Artificial Sequence	
<220> <223>	Synthetic Sequence	
<400> gtggga	23 gcag aagacattga	20
<210><211><211><212><213>		

<220> <223>	Synthetic Sequence	
<400> aatgaa	24 caac ttgctgtgct	20
<210> <211> <212>	20 DNA	
<220>	Artificial Sequence Synthetic Sequence	
<400>		20
- J		20
<210><211><211><212><213>	20	
<220> <223>	Synthetic Sequence	
	26 gtac caggaggaca	20
<210><211><211><212><213>	20	
<220> <223>	Synthetic Sequence	
<400>	27	
	ecct cetggatttg	20
<210><211><211><212><213>	28 20 DNA Artificial Sequence	
<220> <223>	Synthetic Sequence	
<400> caaact	28 gtat ttcgctctgg	20
<210>	29	

<211> <212> <213>	20 DNA Artificial Sequence	
<220> <223>	Synthetic Sequence	
<400> gtgtgag	29 ggag gcattettea	20
<210> <211>	30 32	
	DNA Artificial Sequence	
<220>		
<223>	Synthetic Sequence	
<400>	30 actc aaaaaagtgg aatagatgtt ac	32
<210>	31	
<211> <212>	32 DNA	
	Artificial Sequence	
<220>		
<223>	Synthetic Sequence	
<400>	31	
gtaacat	tcta ttccactttt ttgagttgat tc	32
<210>	32	
<211>	30	
<212>	DNA	
<213>	Artificial Sequence	
<220> <223>	Synthetic Sequence	
<400> atagato	32 gtta ccctgagtga ggaggcattc	30
<210>	33	
<211> <212>	30 DNA	
<212>	DNA Artificial Sequence	
<220>		
<223>	Synthetic Sequence	
<400>	33	
gaatgc	ctcc tcactcaggg taacatctat	30

```
<210> 34
<211> 31
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Sequence
<400> 34
caagatattg acctcagtga aaacagcgtg c
                                                                     31
<210> 35
<211> 31
<212> DNA
<213> Artificial Sequence
<220>
<223>
      Synthetic Sequence
<400> 35
gcacgctgtt ttcactgagg gcaatatctt g
                                                                     31
<210> 36
<211> 31
<212> DNA
<213> Artificial Sequence
<220>
<223>
      Synthetic Sequence
<400> 36
aaaacaataa aggcaagcaa acccagtgac c
                                                                     31
<210> 37
<211> 31
<212> DNA
<213> Artificial Sequence
<220>
<223>
      Synthetic Sequence
<400> 37
ggtcactggg tttgcttgcc tttattgttt t
                                                                     31
<210> 38
<211> 31
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Sequence
```

<400> tcagta	aaaa taagcagctt ataactggcc a	31
<210><211><211><212><213>	31 DNA	
<220> <223>	Synthetic Sequence	
<400> tggcca	39 gtta taagctgctt atttttactg a	31
<210> <211> <212> <213>		
<220> <223>	Synthetic Sequence	
<400> ttgggg	40 ttta ttggaggaga tg	22
<210> <211> <212> <213>	36 DNA	
<220> <223>	Synthetic Sequence	
<400> accacc	41 cagg aacettgeee tgaceactae tacaea	36
<210><211><211><212><213>		
<220> <223>	Synthetic Sequence	
<400> gtcagg	42 gcaa ggtteetggg tggteeaett aatgga	36
<210><211><211><212><213>	43 36 DNA Artificial Sequence	

<220> <223>	Synthetic Sequence	
<400> accgtg	43 tgcg ccgaatgcaa ggaagggcgc tacctt	36
<210><211><211><212><213>	36	
<220>	Synthetic Sequence	
<400> ttcctt	44 gcat teggegeaca eggtetteea etttge	36
<210><211><211><212><213>	DNA	
<220> <223>	Synthetic Sequence	
<400> aaccgc	45 gtgt gcagatgtcc agatgggttc ttctca	36
<211> <212>	46 36 DNA Artificial Sequence	
<220> <223>	Synthetic Sequence	
<400> atctgg	46 acat ctgcacacgc ggttgtgggt gcgatt	36
<210><211><211><212><213>		
<220> <223>	Synthetic Sequence	
<400> acagtt	47 tgca aatccggaaa cagtgaatca actcaa	36
<210>	48	

<211>	36	
<212>	DNA	
<213>	Artificial Sequence	
	•	
<220>		
	Curthatia Caguanaa	
\ 2237	Synthetic Sequence	
<400>	48	
actgtt	tccg gatttgcaaa ctgtatttcg ctctgg	36
<210>	49	
<211>		
<212>		
<213>	Artificial Sequence	
<220>		
<223>	Synthetic Sequence	
<400>	49	
		2.0
aatgtg	gaat agatattgac ctctgtgaaa acagcg	36
<210>	50	
<211>	36	
<212>	DNA	
	Artificial Sequence	
12101	merrical sequence	
40005		
<220>		
<223>	Synthetic Sequence	
<400>	50	
agaggt	caat atctattcca catttttgag ttgatt	36
2 22		
<210>	51	
<211>		
<212>		
<213>	Artificial Sequence	
<220>		
<223>	Synthetic Sequence	
	-1	
<400>	51	
agatca	tcca agacgcacta aagcactcaa agacgt	36
<210>	52	
<211>	36	
<212>		
	Artificial Sequence	
\L1J/	Artificial Sequence	
40.00		
<220>		
<223>	Synthetic Sequence	
<400>	52	
acttta	gtac atcttagata atcttcttga ctatat	36

```
<210> 53
<211> 29
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Sequence
<400> 53
ggctcgagcg cccagccgcc gcctccaag
                                                                    29
<210> 54
<211> 20
<212> DNA
<213> Artificial Sequence
<220>
<223>
      Synthetic Sequence
<400> 54
tttgagtgct ttagtgcgtg
                                                                    20
<210> 55
<211> 30
<212>
      DNA
<213>
      Artificial Sequence
<220>
<223>
      Synthetic Sequence
<400> 55
tcagtaaaaa taagctaact ggaaatggcc
                                                                    30
<210> 56
<211> 30
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Sequence
<400> 56
ggccatttcc agttagctta tttttactga
                                                                    30
<210> 57
<211> 29
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Sequence
```

<400> ccggat	57 cctc agtgctttag tgcgtgcat	29
<210><211><212><212><213>	29	
<220> <223>	Synthetic Sequence	
<400> ccggat	58 cctc attggatgat cttcttgac	29
<210><211><211><212><213>	29	
<220> <223>	Synthetic Sequence	
<400> ccggat	59 . cctc atattccaca tttttgagt	29
<210> <211> <212> <213>	29 DNA	
<220> <223>	Synthetic ₍ Sequence	
<400> ccggat	60 cctc atttgcaaac tgtatttcg	29
<210><211><211><212><213>	29 DNA	
<220> <223>	Synthetic Sequence	
<400> ccggat	61 cctc attcgcacac gcggttgtg	29
<210><211><211><212><213>	PRT	

<400>	62
-------	----

Met Asn Asn Leu Leu Cys Cys Ala Leu Val Phe Leu Asp Ile Ser Ile $1 \hspace{1.5cm} 5 \hspace{1.5cm} 10 \hspace{1.5cm} 15$

Lys Trp Thr Thr Gln Glu Thr Phe Pro Pro Lys Tyr Leu His Tyr Asp 20 25 30

Glu Glu Thr Ser His Gln Leu Leu Cys Asp Lys Cys Pro Pro Gly Thr 35 40 45

Tyr Leu Lys Gln His Cys Thr Ala Lys Trp Lys Thr Val Cys Ala Pro 50 . 60

Cys Pro Asp His Tyr Tyr Thr Asp Ser Trp His Thr Ser Asp Glu Cys 65 70 75 80

Leu Tyr Cys Ser Pro Val Cys Lys Glu Leu Gln Tyr Val Lys Gln Glu 85 90 95

Cys Asn Arg Thr His Asn Arg Val Cys Glu Cys Lys Glu Gly Arg Tyr 100 105 110

Leu Glu Ile Glu Phe Cys Leu Lys His Arg Ser Cys Pro Pro Gly Phe 115 120 125

Gly Val Val Gln Ala Gly Thr Pro Glu Arg Asn Thr Val Cys Lys Arg 130 135 140

Cys Pro Asp Gly Phe Phe Ser Asn Glu Thr Ser Ser Lys Ala Pro Cys 145 150 155 160

Arg Lys His Thr Asn Cys Ser Val Phe Gly Leu Leu Thr Gln Lys 165 170 175

Gly Asn Ala Thr His Asp Asn Ile Cys Ser Gly Asn Ser Glu Ser Thr 180 185 190

Gln Lys Ser Gly Ile Asp Val Thr Leu Cys Glu Glu Ala Phe Phe Arg 195 .200 205

Phe Ala Val Pro Thr Lys Phe Thr Pro Asn Trp Leu Ser Val Leu Val 210 215 220

Asp Asn Leu Pro Gly Thr Lys Val Asn Ala Glu Ser Val Glu Arg Ile 225 Lys Arg Gln His Ser Ser Gln Glu Gln Thr Phe Gln Leu Leu Lys Leu 245 250 Trp Lys His Gln Asn Lys Asp Gln Asp Ile Val Lys Lys Ile Ile Gln 260 265 270 Asp Ile Asp Leu Cys Glu Asn Ser Val Gln Arg His Ile Gly His Ala 275 280 Asn Leu Thr Phe Glu Gln Leu Arg Ser Leu Met Glu Ser Leu Pro Gly 290 295 Lys Lys Val Gly Ala Glu Asp Ile Glu Lys Thr Ile Lys Ala Cys Lys 305 310 315 320 Pro Ser Asp Gln Ile Leu Lys Leu Leu Ser Leu Trp Arg Ile Lys Asn Gly Asp Gln Asp Thr Leu Lys Gly Leu Met His Ala Leu Lys His Ser 345 Lys Thr Tyr His Phe Pro Lys Thr Val Thr Gln Ser Leu Lys Lys Thr 360 365 Ile Arg Phe Leu His Ser Phe Thr Met Tyr Lys Leu Tyr Gln Lys Leu 370 375 380 Phe Leu Glu Met Ile Gly Asn Gln Val Gln Ser Val Lys Ile Ser Cys 385 390 Leu <210> 63 <211> 401 <212> PRT <213> Homo sapiens

<400> 63

Met Asn Asn Leu Leu Cys Cys Ala Leu Val Phe Leu Asp Ile Ser Ile Lys Trp Thr Thr Gln Glu Thr Phe Pro Pro Lys Tyr Leu His Tyr Asp Glu Glu Thr Ser His Gln Leu Leu Cys Asp Lys Cys Pro Pro Gly Thr Tyr Leu Lys Gln His Cys Thr Ala Lys Trp Lys Thr Val Cys Ala Pro 55 Cys Pro Asp His Tyr Tyr Thr Asp Ser Trp His Thr Ser Asp Glu Cys Leu Tyr Cys Ser Pro Val Cys Lys Glu Leu Gln Tyr Val Lys Gln Glu Cys Asn Arg Thr His Asn Arg Val Cys Glu Cys Lys Glu Gly Arg Tyr 100 105 110 Leu Glu Ile Glu Phe Cys Leu Lys His Arg Ser Cys Pro Pro Gly Phe 115 120 Gly Val Val Gln Ala Gly Thr Pro Glu Arg Asn Thr Val Cys Lys Arg 135 Cys Pro Asp Gly Phe Phe Ser Asn Glu Thr Ser Ser Lys Ala Pro Cys 145 150 155 Arg Lys His Thr Asn Cys Ser Val Phe Gly Leu Leu Thr Gln Lys 165 170 Gly Asn Ala Thr His Asp Asn Ile Cys Ser Gly Asn Ser Glu Ser Thr 180 Gln Lys Cys Gly Ile Asp Val Thr Leu Ser Glu Glu Ala Phe Phe Arg 195 200 Phe Ala Val Pro Thr Lys Phe Thr Pro Asn Trp Leu Ser Val Leu Val 210 220 Asp Asn Leu Pro Gly Thr Lys Val Asn Ala Glu Ser Val Glu Arg Ile 225 230 235 240

Lys Arg Gln His Ser Ser Gln Glu Gln Thr Phe Gln Leu Leu Lys Leu 245 250 255

Trp Lys His Gln Asn Lys Asp Gln Asp Ile Val Lys Lys Ile Ile Gln 260 265 270

Asp Ile Asp Leu Cys Glu Asn Ser Val Gln Arg His Ile Gly His Ala 275 280 285

Asn Leu Thr Phe Glu Gln Leu Arg Ser Leu Met Glu Ser Leu Pro Gly 290 295 300

Lys Lys Val Gly Ala Glu Asp Ile Glu Lys Thr Ile Lys Ala Cys Lys 305 310 315

Pro Ser Asp Gln Ile Leu Lys Leu Leu Ser Leu Trp Arg Ile Lys Asn 325 330 335

Gly Asp Gln Asp Thr Leu Lys Gly Leu Met His Ala Leu Lys His Ser 340 345 350

Lys Thr Tyr His Phe Pro Lys Thr Val Thr Gln Ser Leu Lys Lys Thr 355 360 365

Ile Arg Phe Leu His Ser Phe Thr Met Tyr Lys Leu Tyr Gln Lys Leu 370 375 380

Phe Leu Glu Met Ile Gly Asn Gln Val Gln Ser Val Lys Ile Ser Cys 385 390 395 400

Leu

<210> 64

<211> 401

<212> PRT

<213> Homo sapiens

<400> 64

Met Asn Asn Leu Leu Cys Cys Ala Leu Val Phe Leu Asp Ile Ser Ile 1 5 10 15

Lys Trp Thr Thr Gln Glu Thr Phe Pro Pro Lys Tyr Leu His Tyr Asp Glu Glu Thr Ser His Gln Leu Leu Cys Asp Lys Cys Pro Pro Gly Thr Tyr Leu Lys Gln His Cys Thr Ala Lys Trp Lys Thr Val Cys Ala Pro Cys Pro Asp His Tyr Tyr Thr Asp Ser Trp His Thr Ser Asp Glu Cys Leu Tyr Cys Ser Pro Val Cys Lys Glu Leu Gln Tyr Val Lys Gln Glu Cys Asn Arg Thr His Asn Arg Val Cys Glu Cys Lys Glu Gly Arg Tyr Leu Glu Ile Glu Phe Cys Leu Lys His Arg Ser Cys Pro Pro Gly Phe Gly Val Val Gln Ala Gly Thr Pro Glu Arg Asn Thr Val Cys Lys Arg Cys Pro Asp Gly Phe Phe Ser Asn Glu Thr Ser Ser Lys Ala Pro Cys Arg Lys His Thr Asn Cys Ser Val Phe Gly Leu Leu Thr Gln Lys Gly Asn Ala Thr His Asp Asn Ile Cys Ser Gly Asn Ser Glu Ser Thr Gln Lys Cys Gly Ile Asp Val Thr Leu Cys Glu Glu Ala Phe Phe Arq Phe Ala Val Pro Thr Lys Phe Thr Pro Asn Trp Leu Ser Val Leu Val Asp Asn Leu Pro Gly Thr Lys Val Asn Ala Glu Ser Val Glu Arg Ile

Lys Arg Gln His Ser Ser Gln Glu Gln Thr Phe Gln Leu Leu Lys Leu 245 Trp Lys His Gln Asn Lys Asp Gln Asp Ile Val Lys Lys Ile Ile Gln 265 Asp Ile Asp Leu Ser Glu Asn Ser Val Gln Arg His Ile Gly His Ala 280 Asn Leu Thr Phe Glu Gln Leu Arg Ser Leu Met Glu Ser Leu Pro Gly 290 295 Lys Lys Val Gly Ala Glu Asp Ile Glu Lys Thr Ile Lys Ala Cys Lys 310 315 320 Pro Ser Asp Gln Ile Leu Lys Leu Leu Ser Leu Trp Arg Ile Lys Asn 325 330 335 Gly Asp Gln Asp Thr Leu Lys Gly Leu Met His Ala Leu Lys His Ser 340 345 350 Lys Thr Tyr His Phe Pro Lys Thr Val Thr Gln Ser Leu Lys Lys Thr 355 Ile Arg Phe Leu His Ser Phe Thr Met Tyr Lys Leu Tyr Gln Lys Leu 375 Phe Leu Glu Met Ile Gly Asn Gln Val Gln Ser Val Lys Ile Ser Cys 390 395 Leu <210> 65 <211> 401 <212> PRT <213> Homo sapiens <400> 65 Met Asn Asn Leu Leu Cys Cys Ala Leu Val Phe Leu Asp Ile Ser Ile 5 10 15 Lys Trp Thr Thr Gln Glu Thr Phe Pro Pro Lys Tyr Leu His Tyr Asp

25

20

Glu Glu Thr Ser His Gln Leu Leu Cys Asp Lys Cys Pro Pro Gly Thr Tyr Leu Lys Gln His Cys Thr Ala Lys Trp Lys Thr Val Cys Ala Pro Cys Pro Asp His Tyr Tyr Thr Asp Ser Trp His Thr Ser Asp Glu Cys Leu Tyr Cys Ser Pro Val Cys Lys Glu Leu Gln Tyr Val Lys Gln Glú Cys Asn Arg Thr His Asn Arg Val Cys Glu Cys Lys Glu Gly Arg Tyr . 100 Leu Glu Ile Glu Phe Cys Leu Lys His Arg Ser Cys Pro Pro Gly Phe Gly Val Val Gln Ala Gly Thr Pro Glu Arg Asn Thr Val Cys Lys Arg Cys Pro Asp Gly Phe Phe Ser Asn Glu Thr Ser Ser Lys Ala Pro Cys Arg Lys His Thr Asn Cys Ser Val Phe Gly Leu Leu Thr Gln Lys Gly Asn Ala Thr His Asp Asn Ile Cys Ser Gly Asn Ser Glu Ser Thr Gln Lys Cys Gly Ile Asp Val Thr Leu Cys Glu Glu Ala Phe Phe Arg Phe Ala Val Pro Thr Lys Phe Thr Pro Asn Trp Leu Ser Val Leu Val Asp Asn Leu Pro Gly Thr Lys Val Asn Ala Glu Ser Val Glu Arg Ile Lys Arg Gln His Ser Ser Gln Glu Gln Thr Phe Gln Leu Leu Lys Leu

Trp Lys His Gln Asn Lys Asp Gln Asp Ile Val Lys Lys Ile Ile Gln 260 265 Asp Ile Asp Leu Cys Glu Asn Ser Val Gln Arg His Ile Gly His Ala 280 Asn Leu Thr Phe Glu Gln Leu Arg Ser Leu Met Glu Ser Leu Pro Gly 290 295 Lys Lys Val Gly Ala Glu Asp Ile Glu Lys Thr Ile Lys Ala Ser Lys 305 Pro Ser Asp Gln Ile Leu Lys Leu Leu Ser Leu Trp Arg Ile Lys Asn 330 Gly Asp Gln Asp Thr Leu Lys Gly Leu Met His Ala Leu Lys His Ser 345 Lys Thr Tyr His Phe Pro Lys Thr Val Thr Gln Ser Leu Lys Lys Thr 355 360 365 Ile Arg Phe Leu His Ser Phe Thr Met Tyr Lys Leu Tyr Gln Lys Leu 370 375 Phe Leu Glu Met Ile Gly Asn Gln Val Gln Ser Val Lys Ile Ser Cys 385 390 Leu <210> 66 <211> 401 <212> PRT <213> Homo sapiens <400> 66 Met Asn Asn Leu Cys Cys Ala Leu Val Phe Leu Asp Ile Ser Ile 5

Lys Trp Thr Thr Gln Glu Thr Phe Pro Pro Lys Tyr Leu His Tyr Asp

Glu Glu Thr Ser His Gln Leu Leu Cys Asp Lys Cys Pro Pro Gly Thr

20

32

40 45

35

Tyr Leu Lys Gln His Cys Thr Ala Lys Trp Lys Thr Val Cys Ala Pro 50 60

Cys Pro Asp His Tyr Tyr Thr Asp Ser Trp His Thr Ser Asp Glu Cys 65 70 75 80

Leu Tyr Cys Ser Pro Val Cys Lys Glu Leu Gln Tyr Val Lys Gln Glu 85 90 95

Cys Asn Arg Thr His Asn Arg Val Cys Glu Cys Lys Glu Gly Arg Tyr 100 105 110

Leu Glu Ile Glu Phe Cys Leu Lys His Arg Ser Cys Pro Pro Gly Phe 115 120 125

Gly Val Val Gln Ala Gly Thr Pro Glu Arg Asn Thr Val Cys Lys Arg 130 135 140

Cys Pro Asp Gly Phe Phe Ser Asn Glu Thr Ser Ser Lys Ala Pro Cys 145 150 155 160

Arg Lys His Thr Asn Cys Ser Val Phe Gly Leu Leu Leu Thr Gln Lys 165 170 175

Gly Asn Ala Thr His Asp Asn Ile Cys Ser Gly Asn Ser Glu Ser Thr 180 185 190

Gln Lys Cys Gly Ile Asp Val Thr Leu Cys Glu Glu Ala Phe Phe Arg 195 200 205

Phe Ala Val Pro Thr Lys Phe Thr Pro Asn Trp Leu Ser Val Leu Val 210 215 220

Asp Asn Leu Pro Gly Thr Lys Val Asn Ala Glu Ser Val Glu Arg Ile 225 230 235 240

Lys Arg Gln His Ser Ser Gln Glu Gln Thr Phe Gln Leu Leu Lys Leu 245 250 255

Trp Lys His Gln Asn Lys Asp Gln Asp Ile Val Lys Lys Ile Ile Gln 260 265 270

Asp Ile Asp Leu Cys Glu Asn Ser Val Gln Arg His Ile Gly His Ala 275 280 Asn Leu Thr Phe Glu Gln Leu Arg Ser Leu Met Glu Ser Leu Pro Gly 290 295 Lys Lys Val Gly Ala Glu Asp Ile Glu Lys Thr Ile Lys Ala Cys Lys 310 315 Pro Ser Asp Gln Ile Leu Lys Leu Leu Ser Leu Trp Arg Ile Lys Asn 325 330 Gly Asp Gln Asp Thr Leu Lys Gly Leu Met His Ala Leu Lys His Ser 340 345 350 Lys Thr Tyr His Phe Pro Lys Thr Val Thr Gln Ser Leu Lys Lys Thr 355 360 Ile Arg Phe Leu His Ser Phe Thr Met Tyr Lys Leu Tyr Gln Lys Leu 370 375 380 Phe Leu Glu Met Ile Gly Asn Gln Val Gln Ser Val Lys Ile Ser Ser 390 Leu <210> 67 <211> 360 <212> PRT <213> Homo sapiens <400> 67 Met Asn Asn Leu Cys Cys Ala Leu Val Phe Leu Asp Ile Ser Ile

Lys Trp Thr Thr Gln Glu Pro Cys Pro Asp His Tyr Tyr Thr Asp Ser

Trp His Thr Ser Asp Glu Cys Leu Tyr Cys Ser Pro Val Cys Lys Glu 40

45

Leu	Gln 50	Tyr	Val	Lys	Gln	Glu 55	Cys	Asn	Arg	Thr	His 60	Asn	Arg	Val	Cys
Glu 65	Cys	Lys	Glu	Gly	Arg 70	Tyr	Leu	Glu	Ile	Glu 75	Phe	Cys	Leu	Lys	His 80
Arg	Ser	Cys	Pro	Pro 85	Gly	Phe	Gly	Val	Val 90	Gln	Ala	Gly	Thr	Pro 95	Glu
Arg	Asn	Thr	Val 100	Cys	Lys	Arg	Cys	Pro 105	Asp	Gly	Phe	Phe	Ser 110	Asn	Glu
Thr	Ser	Ser 115	Lys	Ala	Pro	Cys	Arg 120	Lys	His	Thr	Asn	Cys 125	Ser	Val	Phe
Gly	Leu 130	Leu	Leu	Thr	Gln	Lys 135	Gly	Asn	Ala	Thr	His 140	Asp	Asn	Ile	Cys
Ser 145	Gly	Asn	Ser	Glu	Ser 150	Thr	Gln	Lys	Cys	Gly 155	Ile	Asp	Val	Thr	Leu 160
Cys	Glu	Glu	Ala	Phe 165	Phe	Arg	Phe	Ala	Val 170	Pro	Thr	Lys	Phe	Thr 175	Pro
Asn	Trp	Leu	Ser 180	Val	Leu	Val	Asp	Asn 185	Leu	Pro	Gly	Thr	Lys 190	Val	Asn
Ala	Glu	Ser 195	Val	Glu	Arg	Ile	Lys 200	Arg	Gln	His	Ser	Ser 205	Gln	Glu	Gln
Thr	Phe 210	Gln	Leu	Leu	Lys	Leu 215	Trp	Lys	His	Gln	Asn 220	Lys	Asp	Gln	Asp
Ile 225	Val	Lys	Lys	Ile	Ile 230	Gln	Asp	Ile	Asp	Leu 235	Cys	Glu	Asn	Ser	Val 240
Gln	Arg	His	Ile	Gly 245	His	Ala	Asn	Leu	Thr 250	Phe	Glu	Gln	Leu	Arg 255	Ser
Leu	Met	Glu	Ser 260	Leu	Pro	Gly	Lys	Lys 265	Val	Gly	Ala	Glu	Asp 270	Ile	Glu
Lys	Thr	Ile	Lys	Ala	Cys	Lys	Pro	Ser	Asp	Gln	Ile	Leu	Lys	Leu	Leu

275 280 285

Ser Leu Trp Arg Ile Lys Asn Gly Asp Gln Asp Thr Leu Lys Gly Leu 290 295 300

Met His Ala Leu Lys His Ser Lys Thr Tyr His Phe Pro Lys Thr Val 305 310 315 320

Thr Gln Ser Leu Lys Lys Thr Ile Arg Phe Leu His Ser Phe Thr Met 325 330 335

Tyr Lys Leu Tyr Gln Lys Leu Phe Leu Glu Met Ile Gly Asn Gln Val\$340\$ \$350\$

Gln Ser Val Lys Ile Ser Cys Leu 355 360

<210> 68

<211> 359

<212> PRT

<213> Homo sapiens

<400> 68

Met Asn Asn Leu Leu Cys Cys Ala Leu Val Phe Leu Asp Ile Ser Ile 1 5 10 15

Lys Trp Thr Thr Gln Glu Thr Phe Pro Pro Lys Tyr Leu His Tyr Asp 20 25 30

Glu Glu Thr Ser His Gln Leu Leu Cys Asp Lys Cys Pro Pro Gly Thr 35 40 45

Tyr Leu Lys Gln His Cys Thr Ala Lys Trp Lys Thr Val Cys Ala Glu 50 55 60

Cys Lys Glu Gly Arg Tyr Leu Glu Ile Glu Phe Cys Leu Lys His Arg 65 70 75 80

Ser Cys Pro Pro Gly Phe Gly Val Val Gln Ala Gly Thr Pro Glu Arg 85 90 95

Asn Thr Val Cys Lys Arg Cys Pro Asp Gly Phe Phe Ser Asn Glu Thr 100 105 110

Ser Ser Lys Ala Pro Cys Arg Lys His Thr Asn Cys Ser Val Phe Gly Leu Leu Thr Gln Lys Gly Asn Ala Thr His Asp Asn Ile Cys Ser Gly Asn Ser Glu Ser Thr Gln Lys Cys Gly Ile Asp Val Thr Leu Cys Glu Glu Ala Phe Phe Arg Phe Ala Val Pro Thr Lys Phe Thr Pro Asn Trp Leu Ser Val Leu Val Asp Asn Leu Pro Gly Thr Lys Val Asn Ala Glu Ser Val Glu Arg Ile Lys Arg Gln His Ser Ser Gln Glu Gln Thr Phe Gln Leu Leu Lys Leu Trp Lys His Gln Asn Lys Asp Gln Asp Ile Val Lys Lys Ile Ile Gln Asp Ile Asp Leu Cys Glu Asn Ser Val Gln Arg His Ile Gly His Ala Asn Leu Thr Phe Glu Gln Leu Arg Ser Leu Met Glu Ser Leu Pro Gly Lys Lys Val Gly Ala Glu Asp Ile Glu Lys Thr Ile Lys Ala Cys Lys Pro Ser Asp Gln Ile Leu Lys Leu Leu Ser Leu Trp Arg Ile Lys Asn Gly Asp Gln Asp Thr Leu Lys Gly Leu Met His Ala Leu Lys His Ser Lys Thr Tyr His Phe Pro Lys Thr Val Thr Gln Ser Leu Lys Lys Thr Ile Arg Phe Leu His Ser Phe Thr Met Tyr

Lys Leu Tyr Gln Lys Leu Phe Leu Glu Met Ile Gly Asn Gln Val Gln 345 Ser Val Lys Ile Ser Cys Leu 355 <210> 69 <211> 363 <212> PRT <213> Homo sapiens <400> 69 Met Asn Asn Leu Leu Cys Cys Ala Leu Val Phe Leu Asp Ile Ser Ile Lys Trp Thr Thr Gln Glu Thr Phe Pro Pro Lys Tyr Leu His Tyr Asp Glu Glu Thr Ser His Gln Leu Leu Cys Asp Lys Cys Pro Pro Gly Thr Tyr Leu Lys Gln His Cys Thr Ala Lys Trp Lys Thr Val Cys Ala Pro 50 55 Cys Pro Asp His Tyr Tyr Thr Asp Ser Trp His Thr Ser Asp Glu Cys 70 75 80 Leu Tyr Cys Ser Pro Val Cys Lys Glu Leu Gln Tyr Val Lys Gln Glu 85 95

Cys Asn Arg Thr His Asn Arg Val Cys Arg Cys Pro Asp Gly Phe Phe 100 105 110

Ser Asn Glu Thr Ser Ser Lys Ala Pro Cys Arg Lys His Thr Asn Cys 115 120 125

Ser Val Phe Gly Leu Leu Thr Gln Lys Gly Asn Ala Thr His Asp 130 135 140

Asn Ile Cys Ser Gly Asn Ser Glu Ser Thr Gln Lys Cys Gly Ile Asp 145 150 155 160

Val Thr Leu Cys Glu Glu Ala Phe Phe Arg Phe Ala Val Pro Thr Lys 165 170 175

Phe Thr Pro Asn Trp Leu Ser Val Leu Val Asp Asn Leu Pro Gly Thr 180 185 Lys Val Asn Ala Glu Ser Val Glu Arg Ile Lys Arg Gln His Ser Ser Gln Glu Gln Thr Phe Gln Leu Leu Lys Leu Trp Lys His Gln Asn Lys 215 220 Asp Gln Asp Ile Val Lys Lys Ile Ile Gln Asp Ile Asp Leu Cys Glu 225 230 235 Asn Ser Val Gln Arg His Ile Gly His Ala Asn Leu Thr Phe Glu Gln 245 250 255 Leu Arg Ser Leu Met Glu Ser Leu Pro Gly Lys Lys Val Gly Ala Glu 260 265 Asp Ile Glu Lys Thr Ile Lys Ala Cys Lys Pro Ser Asp Gln Ile Leu 275 280 Lys Leu Leu Ser Leu Trp Arg Ile Lys Asn Gly Asp Gln Asp Thr Leu 295 Lys Gly Leu Met His Ala Leu Lys His Ser Lys Thr Tyr His Phe Pro 315 Lys Thr Val Thr Gln Ser Leu Lys Lys Thr Ile Arg Phe Leu His Ser 325 330 335 Phe Thr Met Tyr Lys Leu Tyr Gln Lys Leu Phe Leu Glu Met Ile Gly 340 345 350 Asn Gln Val Gln Ser Val Lys Ile Ser Cys Leu 355 360 <210> 70 <211> 359 <212> PRT <213> Homo sapiens <400> 70

Met Asn Asn Leu Cys Cys Ala Leu Val Phe Leu Asp Ile Ser Ile Lys Trp Thr Thr Gln Glu Thr Phe Pro Pro Lys Tyr Leu His Tyr Asp Glu Glu Thr Ser His Gln Leu Leu Cys Asp Lys Cys Pro Pro Gly Thr Tyr Leu Lys Gln His Cys Thr Ala Lys Trp Lys Thr Val Cys Ala Pro Cys Pro Asp His Tyr Tyr Thr Asp Ser Trp His Thr Ser Asp Glu Cys Leu Tyr Cys Ser Pro Val Cys Lys Glu Leu Gln Tyr Val Lys Gln Glu Cys Asn Arg Thr His Asn Arg Val Cys Glu Cys Lys Glu Gly Arg Tyr Leu Glu Ile Glu Phe Cys Leu Lys His Arg Ser Cys Pro Pro Gly Phe Gly Val Val Gln Ala Gly Thr Pro Glu Arg Asn Thr Val Cys Lys Ser Gly Asn Ser Glu Ser Thr Gln Lys Cys Gly Ile Asp Val Thr Leu Cys Glu Glu Ala Phe Phe Arg Phe Ala Val Pro Thr Lys Phe Thr Pro Asn Trp Leu Ser Val Leu Val Asp Asn Leu Pro Gly Thr Lys Val Asn Ala Glu Ser Val Glu Arg Ile Lys Arg Gln His Ser Ser Gln Glu Gln Thr Phe Gln Leu Leu Lys Leu Trp Lys His Gln Asn Lys Asp Gln Asp Ile Val Lys Lys Ile Ile Gln Asp Ile Asp Leu Cys Glu Asn Ser Val Gln Arg His Ile Gly His Ala Asn Leu Thr Phe Glu Gln Leu Arg Ser Leu 245 250 255

Met Glu Ser Leu Pro Gly Lys Lys Val Gly Ala Glu Asp Ile Glu Lys 260 265 270

Thr Ile Lys Ala Cys Lys Pro Ser Asp Gln Ile Leu Lys Leu Leu Ser 275 280 285

Leu Trp Arg Ile Lys Asn Gly Asp Gln Asp Thr Leu Lys Gly Leu Met 290 295 300

His Ala Leu Lys His Ser Lys Thr Tyr His Phe Pro Lys Thr Val Thr 305 310 315 320

Gln Ser Leu Lys Lys Thr Ile Arg Phe Leu His Ser Phe Thr Met Tyr 325 330 335

Lys Leu Tyr Gln Lys Leu Phe Leu Glu Met Ile Gly Asn Gln Val Gln 340 345 350

Ser Val Lys Ile Ser Cys Leu 355

<210> 71

<211> 326

<212> PRT

<213> Homo sapiens

<400> 71

Met Asn Asn Leu Cys Cys Ala Leu Val Phe Leu Asp Ile Ser Ile 1 5 10 15

Lys Trp Thr Thr Gln Glu Thr Phe Pro Pro Lys Tyr Leu His Tyr Asp 20 25 30

Glu Glu Thr Ser His Gln Leu Leu Cys Asp Lys Cys Pro Pro Gly Thr 35 40 45

Tyr Leu Lys Gln His Cys Thr Ala Lys Trp Lys Thr Val Cys Ala Pro 50 55 60

Cys 65	Pro	Asp	His	Tyr	Tyr 70	Thr	Asp	Ser	Trp	His 75	Thr	Ser	Asp	Glu	Cys 80
Leu	Tyr	Cys	Ser	Pro 85	Val	Cys	Lys	Glu	Leu 90	Gln	Tyr	Val	Lys	Gln 95	Glu
Cys	Asn	Arg	Thr 100	His	Asn	Arg	Val	Cys 105	Glu	Cys	Lys	Glu	Gly 110	Arg	Tyr
Leu	Glu	Ile 115	Glu	Phe	Cys	Leu	Lys 120	His	Arg	Ser	Cys	Pro 125	Pro	Gly	Phe
Gly	Val 130	Val	Gln	Ala	Gly	Thr 135	Pro	Glu	Arg	Asn	Thr 140	Val	Cys	Lys	Arg
Cys 145	Pro	Asp	Gly	Phe	Phe 150	Ser	Asn	Glu	Thr	Ser 155	Ser	Lys	Ala	Pro	Cys 160
Arg	Lys	His	Thr	Asn 165	Cys	Ser	Val	Phe	Gly 170	Leu	Leu	Leu	Thr	Gln 175	Lys
Gly	Asn	Ala	Thr 180	His	Asp	Asn	Ile	Cys 185	Ser	Gly	Asn	Ser	Glu 190	Ser	Thr
Gln	Lys	Cys 195	Gly	Ile	Asp	Ile	Asp 200	Leu	Cys	Glu	Asn	Ser 205	Val	Gln	Arg
His	Ile 210	Gly	His	Ala	Asn	Leu 215	Thr	Phe	Glu	Gln	Leu 220	Arg	Ser	Leu	Met
Glu 225	Ser	Leu	Pro	Gly	Lys 230	Lys	Val	Gly	Ala	Glu 235	Asp	Ile	Glu	Lys	Thr 240
Ile	Lys	Ala	Cys	Lys 245	Pro	Ser	Asp	Gln	Ile 250	Leu	Lys	Leu	Leu	Ser 255	Leu
Trp	Arg	Ile	Lys 260	Asn	Gly	Asp	Gln	Asp 265	Thr	Leu	Lys	Gly	Leu 270	Met	His
Ala	Leu	Lys 275	His	Ser	Lys	Thr	Tyr 280	His	Phe	Pro	Lys	Thr 285	Val	Thr	Gln

Ser Leu Lys Lys Thr Ile Arg Phe Leu His Ser Phe Thr Met Tyr Lys 290 295 300

Leu Tyr Gln Lys Leu Phe Leu Glu Met Ile Gly Asn Gln Val Gln Ser 310 315 320

Val Lys Ile Ser Cys Leu 325

<210> 72

<211> 327

<212> PRT

<213> Homo sapiens

<400> 72

Met Asn Asn Leu Cys Cys Ala Leu Val Phe Leu Asp Ile Ser Ile 1 5 10 15

Lys Trp Thr Thr Gln Glu Thr Phe Pro Pro Lys Tyr Leu His Tyr Asp 20 25 30

Glu Glu Thr Ser His Gln Leu Leu Cys Asp Lys Cys Pro Pro Gly Thr 35 40 45

Tyr Leu Lys Gln His Cys Thr Ala Lys Trp Lys Thr Val Cys Ala Pro 50 55 60

Cys Pro Asp His Tyr Tyr Thr Asp Ser Trp His Thr Ser Asp Glu Cys 65 70 75 80

Leu Tyr Cys Ser Pro Val Cys Lys Glu Leu Gln Tyr Val Lys Gln Glu 85 90 95

Cys Asn Arg Thr His Asn Arg Val Cys Glu Cys Lys Glu Gly Arg Tyr 100 105 110

Leu Glu Ile Glu Phe Cys Leu Lys His Arg Ser Cys Pro Pro Gly Phe 115 120 125

Gly Val Val Gln Ala Gly Thr Pro Glu Arg Asn Thr Val Cys Lys Arg 130 135 140

Cys Pro Asp Gly Phe Phe Ser Asn Glu Thr Ser Ser Lys Ala Pro Cys 145 150 155 160 Arg Lys His Thr Asn Cys Ser Val Phe Gly Leu Leu Leu Thr Gln Lys Gly Asn Ala Thr His Asp Asn Ile Cys Ser Gly Asn Ser Glu Ser Thr Gln Lys Cys Gly Ile Asp Val Thr Leu Cys Glu Glu Ala Phe Phe Arg 200 205 Phe Ala Val Pro Thr Lys Phe Thr Pro Asn Trp Leu Ser Val Leu Val 210 215 Asp Asn Leu Pro Gly Thr Lys Val Asn Ala Glu Ser Val Glu Arg Ile 225 230 235 Lys Arg Gln His Ser Ser Gln Glu Gln Thr Phe Gln Leu Leu Lys Leu 245 250 255 Trp Lys His Gln Asn Lys Asp Gln Asp Ile Val Lys Lys Ile Ile Gln 260 Asp Ala Leu Lys His Ser Lys Thr Tyr His Phe Pro Lys Thr Val Thr 280 Gln Ser Leu Lys Lys Thr Ile Arg Phe Leu His Ser Phe Thr Met Tyr 295 300 Lys Leu Tyr Gln Lys Leu Phe Leu Glu Met Ile Gly Asn Gln Val Gln 305 310 315 Ser Val Lys Ile Ser Cys Leu 325 <210> 73 <211> 399 <212> PRT <213> Homo sapiens <400> 73 Met Asn Asn Leu Leu Cys Cys Ala Leu Val Phe Leu Asp Ile Ser Ile

10

Glu Glu Thr Ser His Gln Leu Leu Cys Asp Lys Cys Pro Pro Gly Thr Tyr Leu Lys Gln His Cys Thr Ala Lys Trp Lys Thr Val Cys Ala Pro Cys Pro Asp His Tyr Tyr Thr Asp Ser Trp His Thr Ser Asp Glu Cys Leu Tyr Cys Ser Pro Val Cys Lys Glu Leu Gln Tyr Val Lys Gln Glu Cys Asn Arg Thr His Asn Arg Val Cys Glu Cys Lys Glu Gly Arg Tyr Leu Glu Ile Glu Phe Cys Leu Lys His Arg Ser Cys Pro Pro Gly Phe Gly Val Val Gln Ala Gly Thr Pro Glu Arg Asn Thr Val Cys Lys Arg Cys Pro Asp Gly Phe Phe Ser Asn Glu Thr Ser Ser Lys Ala Pro Cys Arg Lys His Thr Asn Cys Ser Val Phe Gly Leu Leu Thr Gln Lys Gly Asn Ala Thr His Asp Asn Ile Cys Ser Gly Asn Ser Glu Ser Thr Gln Lys Cys Gly Ile Asp Val Thr Leu Cys Glu Glu Ala Phe Phe Arg Phe Ala Val Pro Thr Lys Phe Thr Pro Asn Trp Leu Ser Val Leu Val Asp Asn Leu Pro Gly Thr Lys Val Asn Ala Glu Ser Val Glu Arg Ile Lys Arg Gln His Ser Ser Gln Glu Gln Thr Phe Gln Leu Leu Lys Leu

Lys Trp Thr Thr Gln Glu Thr Phe Pro Pro Lys Tyr Leu His Tyr Asp

245	250	255
	200	200

Trp	Lys	His	Gln	Asn	Lys	Asp	Gln	Asp	Ile	Val	Lys	Lys	Ile	Ile	Gln
			260					265					270		

- Asp Ile Asp Leu Cys Glu Asn Ser Val Gln Arg His Ile Gly His Ala 275 280 285
- Asn Leu Thr Phe Glu Gln Leu Arg Ser Leu Met Glu Ser Leu Pro Gly 290 295 300
- Lys Lys Val Gly Ala Glu Asp Ile Glu Lys Thr Ile Lys Ala Cys Lys 305 310 315 320
- Pro Ser Asp Gln Ile Leu Lys Leu Leu Ser Leu Trp Arg Ile Lys Asn 325 330 335
- Gly Asp Gln Asp Thr Leu Lys Gly Leu Met His Ala Leu Lys His Ser 340 345 350
- Lys Thr Tyr His Phe Pro Lys Thr Val Thr Gln Ser Leu Lys Lys Thr 355 360 365
- Ile Arg Phe Leu His Ser Phe Thr Met Tyr Lys Leu Tyr Gln Lys Leu 370 375 380
- Phe Leu Glu Met Ile Gly Asn Gln Val Gln Ser Val Lys Ile Ser 385 390 395
- <210> 74
- <211> 351
- <212> PRT
- <213> Homo sapiens
- <400> 74
- Met Asn Asn Leu Leu Cys Cys Ala Leu Val Phe Leu Asp Ile Ser Ile $1 \hspace{1.5cm} 5 \hspace{1.5cm} 10 \hspace{1.5cm} 15$
- Lys Trp Thr Thr Gln Glu Thr Phe Pro Pro Lys Tyr Leu His Tyr Asp
 20 25 30
- Glu Glu Thr Ser His Gln Leu Leu Cys Asp Lys Cys Pro Pro Gly Thr 35 40 45

Tyr Leu Lys Gln His Cys Thr Ala Lys Trp Lys Thr Val Cys Ala Pro Cys Pro Asp His Tyr Tyr Thr Asp Ser Trp His Thr Ser Asp Glu Cys Leu Tyr Cys Ser Pro Val Cys Lys Glu Leu Gln Tyr Val Lys Gln Glu Cys Asn Arg Thr His Asn Arg Val Cys Glu Cys Lys Glu Gly Arg Tyr Leu Glu Ile Glu Phe Cys Leu Lys His Arg Ser Cys Pro Pro Gly Phe Gly Val Val Gln Ala Gly Thr Pro Glu Arg Asn Thr Val Cys Lys Arg Cys Pro Asp Gly Phe Phe Ser Asn Glu Thr Ser Ser Lys Ala Pro Cys Arg Lys His Thr Asn Cys Ser Val Phe Gly Leu Leu Leu Thr Gln Lys Gly Asn Ala Thr His Asp Asn Ile Cys Ser Gly Asn Ser Glu Ser Thr Gln Lys Cys Gly Ile Asp Val Thr Leu Cys Glu Glu Ala Phe Phe Arg Phe Ala Val Pro Thr Lys Phe Thr Pro Asn Trp Leu Ser Val Leu Val Asp Asn Leu Pro Gly Thr Lys Val Asn Ala Glu Ser Val Glu Arg Ile Lys Arg Gln His Ser Ser Gln Glu Gln Thr Phe Gln Leu Leu Lys Leu Trp Lys His Gln Asn Lys Asp Gln Asp Ile Val Lys Lys Ile Ile Gln

Asp Ile Asp Leu Cys Glu Asn Ser Val Gln Arg His Ile Gly His Ala 275 Asn Leu Thr Phe Glu Gln Leu Arg Ser Leu Met Glu Ser Leu Pro Gly 295 Lys Lys Val Gly Ala Glu Asp Ile Glu Lys Thr Ile Lys Ala Cys Lys 310 315 Pro Ser Asp Gln Ile Leu Lys Leu Leu Ser Leu Trp Arg Ile Lys Asn 330 Gly Asp Gln Asp Thr Leu Lys Gly Leu Met His Ala Leu Lys His 345 <210> 75 <211> 272 <212> PRT <213> Homo sapiens <400> 75 Met Asn Asn Leu Leu Cys Cys Ala Leu Val Phe Leu Asp Ile Ser Ile 10 Lys Trp Thr Thr Gln Glu Thr Phe Pro Pro Lys Tyr Leu His Tyr Asp 20 25 Glu Glu Thr Ser His Gln Leu Leu Cys Asp Lys Cys Pro Pro Gly Thr 35 Tyr Leu Lys Gln His Cys Thr Ala Lys Trp Lys Thr Val Cys Ala Pro 50 55 Cys Pro Asp His Tyr Tyr Thr Asp Ser Trp His Thr Ser Asp Glu Cys Leu Tyr Cys Ser Pro Val Cys Lys Glu Leu Gln Tyr Val Lys Gln Glu Cys Asn Arg Thr His Asn Arg Val Cys Glu Cys Lys Glu Gly Arg Tyr 100 105 110 Leu Glu Ile Glu Phe Cys Leu Lys His Arg Ser Cys Pro Pro Gly Phe

125

120

115

Gly Val Val Gln Ala Gly Thr Pro Glu Arg Asn Thr Val Cys Lys Arg 130 135 Cys Pro Asp Gly Phe Phe Ser Asn Glu Thr Ser Ser Lys Ala Pro Cys 150 Arg Lys His Thr Asn Cys Ser Val Phe Gly Leu Leu Thr Gln Lys 165 170 Gly Asn Ala Thr His Asp Asn Ile Cys Ser Gly Asn Ser Glu Ser Thr 180 185 Gln Lys Cys Gly Ile Asp Val Thr Leu Cys Glu Glu Ala Phe Phe Arq 195 200 Phe Ala Val Pro Thr Lys Phe Thr Pro Asn Trp Leu Ser Val Leu Val 210 215 Asp Asn Leu Pro Gly Thr Lys Val Asn Ala Glu Ser Val Glu Arg Ile 225 230 Lys Arg Gln His Ser Ser Gln Glu Gln Thr Phe Gln Leu Leu Lys Leu 245 250 Trp Lys His Gln Asn Lys Asp Gln Asp Ile Val Lys Lys Ile Ile Gln 265 260 <210> 76 <211> 197 <212> PRT <213> Homo sapiens <400> 76 Met Asn Asn Leu Leu Cys Cys Ala Leu Val Phe Leu Asp Ile Ser Ile 10 Lys Trp Thr Thr Gln Glu Thr Phe Pro Pro Lys Tyr Leu His Tyr Asp 20 25 Glu Glu Thr Ser His Gln Leu Leu Cys Asp Lys Cys Pro Pro Gly Thr 35 40

Tyr Leu Lys Gln His Cys Thr Ala Lys Trp Lys Thr Val Cys Ala Pro Sys Pro Asp His Tyr Tyr Thr Asp Ser Trp His Thr Ser Asp Glu Cys 80

Leu Tyr Cys Ser Pro Val Cys Lys Glu Leu Gln Tyr Val Lys Gln Glu 95

Cys Asn Arg Thr His Asn Arg Val Cys Glu Cys Lys Glu Gly Arg Tyr 100 105 110

Leu Glu Ile Glu Phe Cys Leu Lys His Arg Ser Cys Pro Pro Gly Phe 115 120 125

Gly Val Val Gln Ala Gly Thr Pro Glu Arg Asn Thr Val Cys Lys Arg 130 135 140

Cys Pro Asp Gly Phe Phe Ser Asn Glu Thr Ser Ser Lys Ala Pro Cys 145 150 155 160

Arg Lys His Thr Asn Cys Ser Val Phe Gly Leu Leu Leu Thr Gln Lys 165 170 175

Gly Asn Ala Thr His Asp Asn Ile Cys Ser Gly Asn Ser Glu Ser Thr 180 185 190

Gln Lys Cys Gly Ile 195

<210> 77 <211> 143

<212> PRT

<213> Homo sapiens

<400> 77

Met Asn Asn Leu Cys Cys Ala Leu Val Phe Leu Asp Ile Ser Ile
1 5 10 15

Lys Trp Thr Thr Gln Glu Thr Phe Pro Pro Lys Tyr Leu His Tyr Asp 20 25 30

Glu Glu Thr Ser His Gln Leu Leu Cys Asp Lys Cys Pro Pro Gly Thr $35 \hspace{1cm} 40 \hspace{1cm} 45$

Tyr Leu Lys Gln His Cys Thr Ala Lys Trp Lys Thr Val Cys Ala Pro 50 55 60

Cys Pro Asp His Tyr Tyr Thr Asp Ser Trp His Thr Ser Asp Glu Cys 65 70 75 80

Leu Tyr Cys Ser Pro Val Cys Lys Glu Leu Gln Tyr Val Lys Gln Glu 85 90 95

Cys Asn Arg Thr His Asn Arg Val Cys Glu Cys Lys Glu Gly Arg Tyr 100 105 110

Leu Glu Ile Glu Phe Cys Leu Lys His Arg Ser Cys Pro Pro Gly Phe 115 120 125

Gly Val Val Gln Ala Gly Thr Pro Glu Arg Asn Thr Val Cys Lys 130 135 140

<210> 78

<211> 106

<212> PRT

<213> Homo sapiens

<400> 78

Met Asn Asn Leu Cys Cys Ala Leu Val Phe Leu Asp Ile Ser Ile $1 \hspace{1cm} 5 \hspace{1cm} 10 \hspace{1cm} 15$

Lys Trp Thr Thr Gln Glu Thr Phe Pro Pro Lys Tyr Leu His Tyr Asp 20 25 30

Glu Glu Thr Ser His Gln Leu Leu Cys Asp Lys Cys Pro Pro Gly Thr 35 40 45

Tyr Leu Lys Gln His Cys Thr Ala Lys Trp Lys Thr Val Cys Ala Pro 50 60

Cys Pro Asp His Tyr Tyr Thr Asp Ser Trp His Thr Ser Asp Glu Cys 70 75 80

Leu Tyr Cys Ser Pro Val Cys Lys Glu Leu Gln Tyr Val Lys Gln Glu 85 90 95 Cys Asn Arg Thr His Asn Arg Val Cys Glu 100 105

<210> 79

<211> 393

<212> PRT

<213> Homo sapiens

<400> 79

Met Asn Asn Leu Leu Cys Cys Ala Leu Val Phe Leu Asp Ile Ser Ile 1 5 10 15

Lys Trp Thr Thr Gln Glu Thr Phe Pro Pro Lys Tyr Leu His Tyr Asp 20 25 30

Glu Glu Thr Ser His Gln Leu Leu Cys Asp Lys Cys Pro Pro Gly Thr 35 40 45

Tyr Leu Lys Gln His Cys Thr Ala Lys Trp Lys Thr Val Cys Ala Pro 50 60

Cys Pro Asp His Tyr Tyr Thr Asp Ser Trp His Thr Ser Asp Glu Cys 70 75 80

Leu Tyr Cys Ser Pro Val Cys Lys Glu Leu Gln Tyr Val Lys Gln Glu 85 90 95

Cys Asn Arg Thr His Asn Arg Val Cys Glu Cys Lys Glu Gly Arg Tyr 100 105 110

Leu Glu Ile Glu Phe Cys Leu Lys His Arg Ser Cys Pro Pro Gly Phe 115 120 125

Gly Val Val Gln Ala Gly Thr Pro Glu Arg Asn Thr Val Cys Lys Arg 130 135 140

Cys Pro Asp Gly Phe Phe Ser Asn Glu Thr Ser Ser Lys Ala Pro Cys 145 150 155 160

Arg Lys His Thr Asn Cys Ser Val Phe Gly Leu Leu Leu Thr Gln Lys 165 170 175

Gly Asn Ala Thr His Asp Asn Ile Cys Ser Gly Asn Ser Glu Ser Thr 180 185 190

Gln Lys Cys Gly Ile Asp Val Thr Leu Cys Glu Glu Ala Phe Phe Arg 195 200 Phe Ala Val Pro Thr Lys Phe Thr Pro Asn Trp Leu Ser Val Leu Val Asp Asn Leu Pro Gly Thr Lys Val Asn Ala Glu Ser Val Glu Arg Ile 235 Lys Arg Gln His Ser Ser Gln Glu Gln Thr Phe Gln Leu Leu Lys Leu 245 250 Trp Lys His Gln Asn Lys Asp Gln Asp Ile Val Lys Lys Ile Ile Gln 260 265 Asp Ile Asp Leu Cys Glu Asn Ser Val Gln Arg His Ile Gly His Ala 275 280 Asn Leu Thr Phe Glu Gln Leu Arg Ser Leu Met Glu Ser Leu Pro Gly 290 295 Lys Lys Val Gly Ala Glu Asp Ile Glu Lys Thr Ile Lys Ala Cys Lys Pro Ser Asp Gln Ile Leu Lys Leu Leu Ser Leu Trp Arg Ile Lys Asn 330 Gly Asp Gln Asp Thr Leu Lys Gly Leu Met His Ala Leu Lys His Ser 340 345 350 Lys Thr Tyr His Phe Pro Lys Thr Val Thr Gln Ser Leu Lys Lys Thr 355 360 Ile Arg Phe Leu His Ser Phe Thr Met Tyr Lys Leu Tyr Gln Lys Leu 370 375 380 Phe Leu Glu Met Ile Gly Asn Leu Val 385 390 <210> 80 <211> 321

<212> PRT

<213> Homo sapiens

<400> 80

Met Asn Asn Leu Cys Cys Ala Leu Val Phe Leu Asp Ile Ser Ile 1 5 10 15

Lys Trp Thr Thr Gln Glu Thr Phe Pro Pro Lys Tyr Leu His Tyr Asp $20 \hspace{1.5cm} 25 \hspace{1.5cm} 30$

Glu Glu Thr Ser His Gln Leu Leu Cys Asp Lys Cys Pro Pro Gly Thr 35 40 45

Tyr Leu Lys Gln His Cys Thr Ala Lys Trp Lys Thr Val Cys Ala Pro 50 55 60

Cys Pro Asp His Tyr Tyr Thr Asp Ser Trp His Thr Ser Asp Glu Cys 70 75 80

Leu Tyr Cys Ser Pro Val Cys Lys Glu Leu Gln Tyr Val Lys Gln Glu 85 90 95

Cys Asn Arg Thr His Asn Arg Val Cys Glu Cys Lys Glu Gly Arg Tyr 100 105 110

Leu Glu Ile Glu Phe Cys Leu Lys His Arg Ser Cys Pro Pro Gly Phe
115 120 125

Gly Val Val Gln Ala Gly Thr Pro Glu Arg Asn Thr Val Cys Lys Arg 130 135 140

Cys Pro Asp Gly Phe Phe Ser Asn Glu Thr Ser Ser Lys Ala Pro Cys 145 150 155

Arg Lys His Thr Asn Cys Ser Val Phe Gly Leu Leu Leu Thr Gln Lys 165 170 175

Gly Asn Ala Thr His Asp Asn Ile Cys Ser Gly Asn Ser Glu Ser Thr 180 185 190

Gln Lys Cys Gly Ile Asp Val Thr Leu Cys Glu Glu Ala Phe Phe Arg 195 200 205

Phe Ala Val Pro Thr Lys Phe Thr Pro Asn Trp Leu Ser Val Leu Val

210 215 220

Asp Asn Leu Pro Gly Thr Lys Val Asn Ala Glu Ser Val Glu Arg Ile 225 230 235 240

Lys Arg Gln His Ser Ser Gln Glu Gln Thr Phe Gln Leu Leu Lys Leu 245 250 255

Trp Lys His Gln Asn Lys Asp Gln Asp Ile Val Lys Lys Ile Ile Gln 260 265 270

Asp Ile Asp Leu Cys Glu Asn Ser Val Gln Arg His Ile Gly His Ala 275 280 285

Asn Leu Thr Phe Glu Gln Leu Arg Ser Leu Met Glu Ser Leu Pro Gly 290 295 300

Lys Lys Val Gly Ala Glu Asp Ile Glu Lys Thr Ile Lys Ala Ser Leu 305 310 315 320

Asp

<210> 81

<211> 187

<212> PRT

<213> Homo sapiens

<400> 81

Met Asn Asn Leu Leu Cys Cys Ala Leu Val Phe Leu Asp Ile Ser Ile 1 5 10 15

Lys Trp Thr Thr Gln Glu Thr Phe Pro Pro Lys Tyr Leu His Tyr Asp $20 \hspace{1cm} 25 \hspace{1cm} 30$

Glu Glu Thr Ser His Gln Leu Leu Cys Asp Lys Cys Pro Pro Gly Thr 35 40 45

Tyr Leu Lys Gln His Cys Thr Ala Lys Trp Lys Thr Val Cys Ala Pro 50 55 60

Cys Pro Asp His Tyr Tyr Thr Asp Ser Trp His Thr Ser Asp Glu Cys 70 75 80

Leu Tyr Cys Ser Pro Val Cys Lys Glu Leu Gln Tyr Val Lys Gln Glu 85 90 95

Cys Asn Arg Thr His Asn Arg Val Cys Glu Cys Lys Glu Gly Arg Tyr 100 105 110

Leu Glu Ile Glu Phe Cys Leu Lys His Arg Ser Cys Pro Pro Gly Phe 115 120 125

Gly Val Val Gln Ala Gly Thr Pro Glu Arg Asn Thr Val Cys Lys Arg 130 135 140

Cys Pro Asp Gly Phe Phe Ser Asn Glu Thr Ser Ser Lys Ala Pro Cys 150 155 160

Arg Lys His Thr Asn Cys Ser Val Phe Gly Leu Leu Leu Thr Gln Lys 165 170 175

Gly Asn Ala Thr His Asp Asn Ile Cys Ser Gly 180 185

<210> 82

<211> 84

<212> PRT

<213> Homo sapiens

<400> 82

Met Asn Asn Leu Cys Cys Ala Leu Val Phe Leu Asp Ile Ser Ile 1 5 10 15

Lys Trp Thr Thr Gln Glu Thr Phe Pro Pro Lys Tyr Leu His Tyr Asp 20 25 30

Glu Glu Thr Ser His Gln Leu Leu Cys Asp Lys Cys Pro Pro Gly Thr 35 40 45

Tyr Leu Lys Gln His Cys Thr Ala Lys Trp Lys Thr Val Cys Ala Pro 50 55 60

Cys Pro Asp His Tyr Tyr Thr Asp Ser Trp His Thr Ser Asp Glu Cys 70 75 80

Leu Tyr Leu Val

<210> 83 <211> 1206 <212> DNA <213> Homo sapiens

<400> 83 atgaacaact tgctgtgctg cgcgctcgtg tttctggaca tctccattaa gtggaccacc 60 caggaaacgt ttcctccaaa gtaccttcat tatgacgaag aaacctctca tcagctqttq 120 tgtgacaaat gtcctcctgg tacctaccta aaacaacact gtacagcaaa gtggaagacc 180 gtgtgcgccc cttgccctga ccactactac acagacagct ggcacaccag tgacgagtgt 240 ctatactgca gccccgtgtg caaggagctg cagtacgtca agcaggagtg caatcgcacc 300 cacaaccgcg tgtgcgaatg caaggaaggg cgctaccttg agatagagtt ctgcttgaaa 360 cataggaget geceteetgg atttggagtg gtgeaagetg gaaceeeaga gegaaataea 420 gtttgcaaaa gatgtccaga tgggttcttc tcaaatgaga cgtcatctaa agcaccctgt 480 agaaaacaca caaattgcag tgtctttggt ctcctgctaa ctcagaaagg aaatgcaaca 540 cacgacaaca tatgttccgg aaacagtgaa tcaactcaaa aaagtggaat agatgttacc 600 ctgtgtgagg aggcattett caggtttget gtteetacaa agtttaegee taaetggett 660 720 agtgtcttgg tagacaattt gcctggcacc aaagtaaacg cagagagtgt agagaggata aaacggcaac acagctcaca agaacagact ttccagctgc tgaagttatg gaaacatcaa 780 aacaaagacc aagatatagt caagaagatc atccaagata ttgacctctg tgaaaacagc 840 gtgcagcggc acattggaca tgctaacctc accttcgagc agcttcgtag cttgatggaa 900 agcttaccgg gaaagaaagt gggagcagaa gacattgaaa aaacaataaa ggcatgcaaa 960 cccagtgacc agatcctgaa gctgctcagt ttgtggcgaa taaaaaatgg cgaccaagac 1020 accttgaagg gcctaatgca cgcactaaag cactcaaaga cgtaccactt tcccaaaact 1080 gtcactcaga gtctaaagaa gaccatcagg ttccttcaca gcttcacaat gtacaaattg 1140 tatcagaagt tatttttaga aatgataggt aaccaggtcc aatcagtaaa aataagctgc 1200 ttataa 1206

<210> 84 <211> 1206 <212> DNA <213> Homo sapiens

<400> 84					
atgaacaact tgctgtgctg	cgcgctcgtg	tttctggaca	tctccattaa	gtggaccacc	60
caggaaacgt ttcctccaaa	gtaccttcat	tatgacgaag	aaacctctca	tcagctgttg	120
tgtgacaaat gtcctcctgg	tacctaccta	aaacaacact	gtacagcaaa	gtggaagacc	180
gtgtgcgccc cttgccctga	ccactactac	acagacagct	ggcacaccag	tgacgagtgt	240
ctatactgca gccccgtgtg	caaggagctg	cagtacgtca	agcaggagtg	caatcgcacc	300
cacaaccgcg tgtgcgaatg	caaggaaggg	cgctaccttg	agatagagtt	ctgcttgaaa	360
cataggagct gccctcctgg	atttggagtg	gtgcaagctg	gaaccccaga	gcgaaataca	420
gtttgcaaaa gatgtccaga	tgggttcttc	tcaaatgaga	cgtcatctaa	agcaccctgt	480
agaaaacaca caaattgcag	tgtctttggt	ctcctgctaa	ctcagaaagg	aaatgcaaca	540
cacgacaaca tatgttccgg	aaacagtgaa	tcaactcaaa	aatgtggaat	agatgttacc	600
ctgagtgagg aggcattctt	caggtttgct	gttcctacaa	agtttacgcc	taactggctt	660
agtgtcttgg tagacaattt	gcctggcacc	aaagtaaacg	cagagagtgt	agagaggata	720
aaacggcaac acagctcaca	agaacagact	ttccagctgc	tgaagttatg	gaaacatcaa	780
aacaaagacc aagatatagt	caagaagatc	atccaagata	ttgacctctg	tgaaaacagc	840
gtgcagcggc acattggaca	tgctaacctc	accttcgagc	agcttcgtag	cttgatggaa	900
agcttaccgg gaaagaaagt	gggagcagaa	gacattgaaa	aaacaataaa	ggcatgcaaa	960
cccagtgacc agatcctgaa	gctgctcagt	ttgtggcgaa	taaaaaatgg	cgaccaagac	1020
accttgaagg gcctaatgca	cgcactaaag	cactcaaaga	cgtaccactt	tcccaaaact	1080
gtcactcaga gtctaaagaa	gaccatcagg	ttccttcaca	gcttcacaat	gtacaaattg	1140
tatcagaagt tatttttaga	aatgataggt	aaccaggtcc	aatcagtaaa	aataagctgc	1200
ttataa					1206
<210> 85 <211> 1206 <212> DNA <213> Homo sapiens					
<400> 85 atgaacaact tgctgtgctg	cgcgctcgtg	tttctggaca	tctccattaa	gtggaccacc	60
caggaaacgt ttcctccaaa	gtaccttcat	tatgacgaag	aaacctctca	tcagctgttg	120
tgtgacaaat gtcctcctgg	tacctaccta	aaacaacact	gtacagcaaa	gtggaagacc	180
gtgtgcgccc cttgccctga	ccactactac	acagacagct	ggcacaccag	tgacgagtgt	240

ctatactgca	gccccgtgtg	caaggagctg	cagtacgtca	agcaggagtg	caatcgcacc	300
cacaaccgcg	tgtgcgaatg	caaggaaggg	cgctaccttg	agatagagtt	ctgcttgaaa	360
cataggagct	gccctcctgg	atttggagtg	gtgcaagctg	gaaccccaga	gcgaaataca	420
gtttgcaaaa	gatgtccaga	tgggttcttc	tcaaatgaga	cgtcatctaa	agcaccctgt	480
agaaaacaca	caaattgcag	tgtctttggt	ctcctgctaa	ctcagaaagg	aaatgcaaca	540
cacgacaaca	tatgttccgg	aaacagtgaa	tcaactcaaa	aatgtggaat	agatgttacc	600
ctgtgtgagg	aggcattctt	caggtttgct	gttcctacaa	agtttacgcc	taactggctt	660
agtgtcttgg	tagacaattt	gcctggcacc	aaagtaaacg	cagagagtgt	agagaggata	720
aaacggcaac	acagctcaca	agaacagact	ttccagctgc	tgaagttatg	gaaacatcaa	780
aacaaagacc	aagatatagt	caagaagatc	atccaagata	ttgacctcag	tgaaaacagc	840
gtgcagcggc	acattggaca	tgctaacctc	accttcgagc	agcttcgtag	cttgatggaa	900
agcttaccgg	gaaagaaagt	gggagcagaa	gacattgaaa	aaacaataaa	ggcatgcaaa	960
cccagtgacc	agatcctgaa	gctgctcagt	ttgtggcgaa	taaaaaatgg	cgaccaagac	1020
accttgaagg	gcctaatgca	cgcactaaag	cactcaaaga	cgtaccactt	tcccaaaact	1080
gtcactcaga	gtctaaagaa	gaccatcagg	ttccttcaca	gcttcacaat	gtacaaattg	1140
tatcagaagt	tatttttaga	aatgataggt	aaccaggtcc	aatcagtaaa	aataagctgc	1200
ttataa						1206

<210> 86

<211> 1206

<212> DNA

<213> Homo sapiens

<400> 86

atgaacaact tgctgtgctg cgcgctcgtg tttctggaca tctccattaa gtggaccacc 60 caggaaacgt ttcctccaaa gtaccttcat tatgacgaag aaacctctca tcagctgttg 120 tgtgacaaat gtcctcctgg tacctaccta aaacaacact gtacagcaaa gtggaagacc 180 gtgtgcgccc cttgccctga ccactactac acagacagct ggcacaccag tgacgagtgt 240 ctatactgca gccccgtgtg caaggagctg cagtacgtca agcaggagtg caatcgcacc 300 cacaaccgcg tgtgcgaatg caaggaaggg cgctaccttg agatagagtt ctgcttgaaa 360 cataggaget geeeteetgg atttggagtg gtgeaagetg gaaceecaga gegaaataca 420 gtttgcaaaa gatgtccaga tgggttcttc tcaaatgaga cgtcatctaa agcaccctgt 480 agaaaacaca caaattgcag tgtctttggt ctcctgctaa ctcagaaagg aaatgcaaca 540 cacgacaaca tatgttccgg aaacagtgaa tcaactcaaa aatgtggaat agatgttacc 600 ctgtgtgagg aggcattctt caggtttgct gttcctacaa agtttacgcc taactggctt 660 agtgtcttgg tagacaattt gcctggcacc aaagtaaacg cagagagtgt agagaggata 720 aaacggcaac acagctcaca agaacagact ttccagctgc tgaagttatg gaaacatcaa 780 aacaaagacc aagatatagt caagaagatc atccaagata ttgacctctg tgaaaacagc 840 gtgcagcggc acattggaca tgctaacctc accttcgagc agcttcgtag cttgatggaa 900 agcttaccgg gaaagaaagt gggagcagaa gacattgaaa aaacaataaa ggcaagcaaa 960 cccagtgacc agatectgaa getgeteagt ttgtggegaa taaaaaatgg egaceaagae 1020 accttgaagg gcctaatgca cgcactaaag cactcaaaga cgtaccactt tcccaaaact 1080 gtcactcaga gtctaaagaa gaccatcagg ttccttcaca gcttcacaat gtacaaattg 1140 tatcagaagt tatttttaga aatgataggt aaccaggtcc aatcagtaaa aataagctgc 1200 ttataa 1206

<210> 87

<211> 1206

<212> DNA

<213> Homo sapiens

<400> 87

atgaacaact tgctgtgctg cgcgctcgtg tttctggaca tctccattaa gtggaccacc 60 caggaaacgt ttcctccaaa gtaccttcat tatgacgaag aaacctctca tcagctgttg 120 tgtgacaaat gtcctcctgg tacctaccta aaacaacact gtacagcaaa gtggaagacc 180 gtgtgcgccc cttgccctga ccactactac acagacagct ggcacaccag tgacgagtgt 240 ctatactgca gccccgtgtg caaggagctg cagtacgtca agcaggagtg caatcgcacc 300 cacaaccgcg tgtgcgaatg caaggaaggg cgctaccttg agatagagtt ctgcttgaaa 360 cataggaget geeeteetgg atttggagtg gtgcaagetg gaaceccaga gegaaataca 420 gtttgcaaaa gatgtccaga tgggttcttc tcaaatgaga cgtcatctaa agcaccctgt 480 agaaaacaca caaattgcag tgtctttggt ctcctgctaa ctcagaaagg aaatgcaaca 540 cacgacaaca tatgttccgg aaacagtgaa tcaactcaaa aatgtggaat agatgttacc 600 ctgtgtgagg aggcattett caggtttget gtteetacaa agtttaegee taactggett 660 agtgtcttgg tagacaattt gcctggcacc aaagtaaacg cagagagtgt agagaggata 720

aaacggcaac acagctcaca agaacagact ttccagctgc tgaagttatg gaaacatcaa 780 aacaaagacc aagatatagt caagaagatc atccaagata ttgacctctg tgaaaacagc 840 gtgcagcggc acattggaca tgctaacctc accttcgagc agcttcgtag cttgatggaa 900 agcttaccgg gaaagaaagt gggagcagaa gacattgaaa aaacaataaa ggcatgcaaa 960 cccagtgacc agatcctgaa gctgctcagt ttgtggcgaa taaaaaatgg cgaccaaqac 1020 accttgaagg gcctaatgca cgcactaaag cactcaaaga cgtaccactt tcccaaaact 1080 gtcactcaga gtctaaagaa gaccatcagg ttccttcaca gcttcacaat gtacaaattg 1140 tatcagaagt tatttttaga aatgataggt aaccaggtcc aatcagtaaa aataagcagc 1200 ttataa 1206

<210> 88

<211> 1083

<212> DNA

<213> Homo sapiens

<400> 88

atgaacaact tgctgtgctg cgcgctcgtg tttctggaca tctccattaa gtggaccacc 60 caggaacctt gccctgacca ctactacaca gacagctggc acaccagtga cgagtgtcta 120 tactgcagcc ccgtgtgcaa ggagctgcag tacgtcaagc aggagtgcaa tcgcacccac 180 aaccgcgtgt gcgaatgcaa ggaagggcgc taccttgaga tagagttctg cttgaaacat 240 aggagetgee etectggatt tggagtggtg caagetggaa eeccagageg aaataeagtt 300 tgcaaaagat gtccagatgg gttcttctca aatgagacgt catctaaagc accctgtaga 360 aaacacacaa attgcagtgt ctttggtctc ctgctaactc agaaaggaaa tgcaacacac 420 gacaacatat gttccggaaa cagtgaatca actcaaaaat gtggaataga tgttaccctg 480 tgtgaggagg cattcttcag gtttgctgtt cctacaaagt ttacgcctaa ctggcttagt 540 gtcttggtag acaatttgcc tggcaccaaa gtaaacgcag agagtgtaga gaggataaaa 600 eggeaacaca geteacaaga acagaettte cagetgetga agttatggaa acateaaaac 660 aaagaccaag atatagtcaa gaagatcatc caagatattg acctctgtga aaacagcgtg 720 cagcggcaca ttggacatgc taacctcacc ttcgagcagc ttcgtagctt gatggaaagc 780 ttaccgggaa agaaagtggg agcagaagac attgaaaaaa caataaaggc atgcaaaccc 840 agtgaccaga teetgaaget geteagtttg tggegaataa aaaatggega eeaagacace 900 ttgaagggcc taatgcacgc actaaagcac tcaaagacgt accactttcc caaaactgtc 960

actcagagtc	Laaayaayac	caccaygiic	CEECacage	icacaatyta	Cadaligiat	1020
cagaagttat	ttttagaaat	gataggtaac	caggtccaat	cagtaaaaat	aagctgctta	1080
taa						1083
<210> 89 <211> 1080 <212> DNA <213> Homo) o sapiens					
<400> 89	tactatacta	agagat agt g	++++++	t at a a a t t a a		60
atyaacaact	tgetgtgetg	cgcgctcgtg	tttttggaca	totocattaa	geggaccacc	60
caggaaacgt	ttcctccaaa	gtaccttcat	tatgacgaag	aaacctctca	tcagctgttg	120
tgtgacaaat	gtcctcctgg	tacctaccta	aaacaacact	gtacagcaaa	gtggaagacc	180
gtgtgcgccg	aatgcaagga	agggcgctac	cttgagatag	agttctgctt	gaaacatagg	240
agctgccctc	ctggatttgg	agtggtgcaa	gctggaaccc	cagagcgaaa	tacagtttgc	300
aaaagatgtc	cagatgggtt	cttctcaaat	gagacgtcat	ctaaagcacc	ctgtagaaaa	360
cacacaaatt	gcagtgtctt	tggtctcctg	ctaactcaga	aaggaaatgc	aacacacgac	420
aacatatgtt	ccggaaacag	tgaatcaact	caaaaatgtg	gaatagatgt	taccctgtgt	480
gaggaggcat	tcttcaggtt	tgctgttcct	acaaagttta	cgcctaactg	gcttagtgtc	540
ttggtagaca	atttgcctgg	caccaaagta	aacgcagaga	gtgtagagag	gataaaacgg	600
caacacagct	cacaagaaca	gactttccag	ctgctgaagt	tatggaaaca	tcaaaacaaa	660
gaccaagata	tagtcaagaa	gatcatccaa	gatattgacc	tctgtgaaaa	cagcgtgcag	720
cggcacattg	gacatgctaa	cctcaccttc	gagcagcttc	gtagcttgat	ggaaagctta	780
ccgggaaaga	aagtgggagc	agaagacatt	gaaaaaacaa	taaaggcatg	caaacccagt	840
gaccagatcc	tgaagctgct	cagtttgtgg	cgaataaaaa	atggcgacca	agacaccttg	900
aagggcctaa	tgcacgcact	aaagcactca	aagacgtacc	actttcccaa	aactgtcact	960
cagagtctaa	agaagaccat	caggttcctt	cacagettea	caatgtacaa	attgtatcag	1020
aagttatttt	tagaaatgat	aggtaaccag	gtccaatcag	taaaaataag	ctgcttataa	1080
<210> 90 <211> 1092 <212> DNA <213> Homo	e o sapiens					

atgaacaact tgctgtgctg	cgcgctcgtg	tttctggaca	tctccattaa	gtggaccacc	60
caggaaacgt ttcctccaaa	gtaccttcat	tatgacgaag	aaacctctca	tcagctgttg	120
tgtgacaaat gtcctcctgg	tacctaccta	aaacaacact	gtacagcaaa	gtggaagacc	180
gtgtgcgccc cttgccctga	ccactactac	acagacagct	ggcacaccag	tgacgagtgt	240
ctatactgca gccccgtgtg	caaggagctg	cagtacgtca	agcaggagtg	caatcgcacc	300
cacaaccgcg tgtgcagatg	tccagatggg	ttcttctcaa	atgagacgtc	atctaaagca	360
ccctgtagaa aacacacaaa	ttgcagtgtc	tttggtctcc	tgctaactca	gaaaggaaat	420
gcaacacacg acaacatatg	ttccggaaac	agtgaatcaa	ctcaaaaatg	tggaatagat	480
gttaccctgt gtgaggaggc	attcttcagg	tttgctgttc	ctacaaagtt	tacgcctaac	540
tggcttagtg tcttggtaga	caatttgcct	ggcaccaaag	taaacgcaga	gagtgtagag	600
aggataaaac ggcaacacag	ctcacaagaa	cagactttcc	agctgctgaa	gttatggaaa	660
catcaaaaca aagaccaaga	tatagtcaag	aagatcatcc	aagatattga	cctctgtgaa	720
aacagcgtgc agcggcacat	tggacatgct	aacctcacct	tcgagcagct	tcgtagcttg	780
atggaaagct taccgggaaa	gaaagtggga	gcagaagaca	ttgaaaaaac	aataaaggca	840
tgcaaaccca gtgaccagat	cctgaagctg	ctcagtttgt	ggcgaataaa	aaatggcgac	900
caagacacct tgaagggcct	aatgcacgca	ctaaagcact	caaagacgta	ccactttccc	960
aaaactgtca ctcagagtct	aaagaagacc	atcaggttcc	ttcacagctt	cacaatgtac	1020
aaattgtatc agaagttatt	tttagaaatg	ataggtaacc	aggtccaatc	agtaaaaata	1080
agctgcttat aa					1092

<210> 91 <211> 1080

<212> DNA <213> Homo sapiens

<400> 91

atgaacaact tgctgtgctg cgcgctcgtg tttctggaca tctccattaa gtggaccacc 60
caggaaacgt ttcctccaaa gtaccttcat tatgacgaag aaacctctca tcagctgttg 120
tgtgacaaat gtcctcctgg tacctaccta aaacaacact gtacagcaaa gtggaagacc 180
gtgtgcgccc cttgccctga ccactactac acagacagct ggcacaccag tgacgagtgt 240
ctatactgca gccccgtgtg caaggagctg cagtacgtca agcaggagtg caatcgcacc 300
cacaaccgcg tgtgcgaatg caaggaaggg cgctaccttg agatagagtt ctgcttgaaa 360

cataggaget geeeteetgg atttggagtg gtgeaagetg gaacceeaga gegaaataca 420 gtttgcaaat ccggaaacag tgaatcaact caaaaatgtg gaatagatgt taccctgtgt 480 gaggaggcat tcttcaggtt tgctgttcct acaaagttta cgcctaactg gcttagtgtc 540 ttggtagaca atttgcctgg caccaaagta aacgcagaga gtgtagagag gataaaacgg 600 caacacagct cacaagaaca gactttccag ctgctgaagt tatggaaaca tcaaaacaaa 660 gaccaagata tagtcaagaa gatcatccaa gatattgacc tctgtgaaaa caqcqtqcaq 720 eggeacattg gaeatgetaa ceteacette gageagette gtagettgat ggaaagetta 780 ccgggaaaga aagtgggagc agaagacatt gaaaaaaacaa taaaggcatg caaacccaqt 840 gaccagatee tgaagetget cagtttgtgg egaataaaaa atggegaeca agacaeettg 900 aagggcctaa tgcacgcact aaagcactca aagacgtacc actttcccaa aactgtcact 960 cagagtctaa agaagaccat caggttcctt cacagcttca caatgtacaa attgtatcag 1020 aagttatttt tagaaatgat aggtaaccag gtccaatcag taaaaataag ctgcttataa 1080

<210> 92

<211> 981

<212> DNA

<213> Homo sapiens

<400> 92 atgaacaact tgctgtgctg cgcgctcgtg tttctggaca tctccattaa gtggaccacc 60 caggaaacgt ttcctccaaa gtaccttcat tatgacgaag aaacctctca tcagctgttg 120 tgtgacaaat gtcctcctgg tacctaccta aaacaacact gtacagcaaa gtggaagacc 180 gtgtgcgccc cttgccctga ccactactac acagacagct ggcacaccag tgacgagtgt 240 ctatactgca gccccgtgtg caaggagctg cagtacgtca agcaggagtg caatcgcacc 300 cacaaccgcg tgtgcgaatg caaggaaggg cgctaccttg agatagagtt ctgcttgaaa 360 cataggaget geceteetgg atttggagtg gtgeaagetg gaaceeeaga gegaaataea 420 gtttgcaaaa gatgtccaga tgggttcttc tcaaatgaga cgtcatctaa agcaccctgt 480 agaaaacaca caaattgcag tgtctttggt ctcctgctaa ctcagaaagg aaatgcaaca 540 cacgacaaca tatgttccgg aaacagtgaa tcaactcaaa aatgtggaat agatattgac 600 ctctgtgaaa acagcgtgca gcggcacatt ggacatgcta acctcacctt cgagcagctt 660 cgtagcttga tggaaagctt accgggaaag aaagtgggag cagaagacat tgaaaaaaca 720 ataaaggcat gcaaacccag tgaccagatc ctgaagctgc tcagtttgtg gcgaataaaa 780

aatggcgacc	aagacacctt	gaagggccta	atgcacgcac	taaagcactc	aaagacgtac	840
cactttccca	aaactgtcac	tcagagtcta	aagaagacca	tcaggttcct	tcacagcttc	900
acaatgtaca	aattgtatca	gaagttattt	ttagaaatga	taggtaacca	ggtccaatca	960
gtaaaaataa	gctgcttata	a				981
<210> 93 <211> 984 <212> DNA <213> Homo	o sapiens					
<400> 93 atgaacaact	tgctgtgctg	cgcgctcgtg	tttctggaca	tctccattaa	gtggaccacc	60
caggaaacgt	ttcctccaaa	gtaccttcat	tatgacgaag	aaacctctca	tcagctgttg	120
tgtgacaaat	gtcctcctgg	tacctaccta	aaacaacact	gtacagcaaa	gtggaagacc	180
gtgtgcgccc	cttgccctga	ccactactac	acagacagct	ggcacaccag	tgacgagtgt	240
ctatactgca	gccccgtgtg	caaggagctg	cagtacgtca	agcaggagtg	caatcgcacc	300
cacaaccgcg	tgtgcgaatg	caaggaaggg	cgctaccttg	agatagagtt	ctgcttgaaa	360
cataggagct	gccctcctgg	atttggagtg	gtgcaagctg	gaaccccaga	gcgaaataca	420
gtttgcaaaa	gatgtccaga	tgggttcttc	tcaaatgaga	cgtcatctaa	agcaccctgt	480
agaaaacaca	caaattgcag	tgtctttggt	ctcctgctaa	ctcagaaagg	aaatgcaaca	540
cacgacaaca	tatgttccgg	aaacagtgaa	tcaactcaaa	aatgtggaat	agatgttacc	600
ctgtgtgagg	aggcattctt	caggtttgct	gttcctacaa	agtttacgcc	taactggctt	660
agtgtcttgg	tagacaattt	gcctggcacc	aaagtaaacg	cagagagtgt	agagaggata	720
aaacggcaac	acagctcaca	agaacagact	ttccagctgc	tgaagttatg	gaaacatcaa	780
aacaaagacc	aagatatagt	caagaagatc	atccaagacg	cactaaagca	ctcaaagacg	840
taccactttc	ccaaaactgt	cactcagagt	ctaaagaaga	ccatcaggtt	ccttcacagc	900
ttcacaatgt	acaaattgta	tcagaagtta	tttttagaaa	tgataggtaa	ccaggtccaa	960
tcagtaaaaa	taagctgctt	ataa				984
<210> 94 <211> 1200 <212> DNA <213> Homo) o sapiens					
	tgctgtgctg	cgcgctcgtg	tttctggaca	tctccattaa	gtggaccacc	60

caggaaacgt	ttcctccaaa	gtaccttcat	tatgacgaag	aaacctctca	tcagctgttg	120
tgtgacaaat	gtcctcctgg	tacctaccta	aaacaacact	gtacagcaaa	gtggaagacc	180
gtgtgcgccc	cttgccctga	ccactactac	acagacagct	ggcacaccag	tgacgagtgt	240
ctatactgca	gccccgtgtg	caaggagctg	cagtacgtca	agcaggagtg	caatcgcacc	300
cacaaccgcg	tgtgcgaatg	caaggaaggg	cgctaccttg	agatagagtt	ctgcttgaaa	360
cataggagct	gccctcctgg	atttggagtg	gtgcaagctg	gaaccccaga	gcgaaataca	420
gtttgcaaaa	gatgtccaga	tgggttcttc	tcaaatgaga	cgtcatctaa	agcaccctgt	480
agaaaacaca	caaattgcag	tgtctttggt	ctcctgctaa	ctcagaaagg	aaatgcaaca	540
cacgacaaca	tatgttccgg	aaacagtgaa	tcaactcaaa	aatgtggaat	agatgttacc	600
ctgtgtgagg	aggcattctt	caggtttgct	gttcctacaa	agtttacgcc	taactggctt	660
agtgtcttgg	tagacaattt	gcctggcacc	aaagtaaacg	cagagagtgt	agagaggata	720
aaacggcaac	acagctcaca	agaacagact	ttccagctgc	tgaagttatg	gaaacatcaa	780
aacaaagacc	aagatatagt	caagaagatc	atccaagata	ttgacctctg	tgaaaacagc	840
gtgcagcggc	acattggaca	tgctaacctc	accttcgagc	agcttcgtag	cttgatggaa	900
agcttaccgg	gaaagaaagt	gggagcagaa	gacattgaaa	aaacaataaa	ggcatgcaaa	960
cccagtgacc	agatcctgaa	gctgctcagt	ttgtggcgaa	taaaaaatgg	cgaccaagac	1020
accttgaagg	gcctaatgca	cgcactaaag	cactcaaaga	cgtaccactt	tcccaaaact	1080
gtcactcaga	gtctaaagaa	gaccatcagg	ttccttcaca	gcttcacaat	gtacaaattg	1140
tatcagaagt	tatttttaga	aatgataggt	aaccaggtcc	aatcagtaaa	aataagctaa	1200

<210> 95 <211> 1056

<400> 95

atgaacaact tgctgtgctg cgcgctcgtg tttctggaca tctccattaa gtggaccacc 60 caggaaacgt ttcctccaaa gtaccttcat tatgacgaag aaacctctca tcagctgttg 120 tgtgacaaat gtcctcctgg tacctaccta aaacaacact gtacagcaaa gtggaagacc 180 gtgtgcgccc cttgccctga ccactactac acagacagct ggcacaccag tgacgagtgt 240 ctatactgca gccccgtgtg caaggagctg cagtacgtca agcaggagtg caatcgcacc 300 cacaaccgcg tgtgcgaatg caaggaaggg cgctaccttg agatagagtt ctgcttgaaa 360

<212> DNA

<213> Homo sapiens

cataggaget geceteetgg atttggagtg gtgeaagetg gaaceeeaga gegaaataea 420 gtttgcaaaa gatgtccaga tgggttcttc tcaaatgaga cgtcatctaa agcaccctgt 480 agaaaacaca caaattgcag tgtctttggt ctcctgctaa ctcagaaagg aaatgcaaca 540 cacgacaaca tatgttccgg aaacagtgaa tcaactcaaa aatgtggaat agatgttacc 600 ctgtgtgagg aggcattett caggtttget gtteetacaa agtttaegee taactggett 660 agtgtcttgg tagacaattt gcctggcacc aaagtaaacg cagagagtgt agagaggata 720 aaacggcaac acagctcaca agaacagact ttccagctgc tgaagttatg gaaacatcaa 780 aacaaagacc aagatatagt caagaagatc atccaagata ttgacctctg tgaaaacagc 840 gtgcagcggc acattggaca tgctaacctc accttcgagc agcttcgtag cttgatggaa 900 agcttaccgg gaaagaaagt gggagcagaa gacattgaaa aaacaataaa ggcatgcaaa 960 cccagtgacc agatcctgaa gctgctcagt ttgtggcgaa taaaaaatgg cgaccaagac 1020 accttgaagg gcctaatgca cgcactaaag cactga 1056

<210> 96 <211> 819

<211> 019

<213> Homo sapiens

<400> 96

atgaacaact tgctgtgctg cgcgctcgtg tttctggaca tctccattaa gtggaccacc 60 caggaaacgt ttcctccaaa gtaccttcat tatgacgaag aaacctctca tcagctgttg 120 tgtgacaaat gtcctcctgg tacctaccta aaacaacact gtacagcaaa gtggaagacc 180 gtgtgcgccc cttgccctga ccactactac acagacagct ggcacaccag tgacgagtgt 240 ctatactgca gccccgtgtg caaggagctg cagtacgtca agcaggagtg caatcgcacc 300 cacaaccgcg tgtgcgaatg caaggaaggg cgctaccttg agatagagtt ctgcttgaaa 360 cataggaget geeeteetgg atttggagtg gtgeaagetg gaaceecaga gegaaataca 420 gtttgcaaaa gatgtccaga tgggttcttc tcaaatgaga cgtcatctaa agcaccctgt 480 agaaaacaca caaattgcag tgtctttggt ctcctgctaa ctcagaaagg aaatgcaaca 540 cacgacaaca tatgttccgg aaacagtgaa tcaactcaaa aatgtggaat agatgttacc 600 ctgtgtgagg aggcattett caggtttget gtteetacaa agtttaegee taactggett 660 agtgtcttgg tagacaattt gcctggcacc aaagtaaacg cagagagtgt agagaggata 720 aaacggcaac acageteaca agaacagaet ttecagetge tgaagttatg gaaacateaa 780

aacaaag	gacc	aagatatagt	caagaagatc	atccaatga			819
<210> <211> <212> <213>	97 594 DNA Homo	o sapiens					
<400>	97						
atgaaca	act	tgctgtgctg	cgcgctcgtg	tttctggaca	tctccattaa	gtggaccacc	60
caggaaa	acgt	ttcctccaaa	gtaccttcat	tatgacgaag	aaacctctca	tcagctgttg	120
tgtgaca	aaat	gtcctcctgg	tacctaccta	aaacaacact	gtacagcaaa	gtggaagacc	180
gtgtgcg	gece	cttgccctga	ccactactac	acagacagct	ggcacaccag	tgacgagtgt	240
ctatact	gca	gccccgtgtg	caaggagctg	cagtacgtca	agcaggagtg	caatcgcacc	300
cacaaco	gcg	tgtgcgaatg	caaggaaggg	cgctaccttg	agatagagtt	ctgcttgaaa	360
catagga	agct	gccctcctgg	atttggagtg	gtgcaagctg	gaaccccaga	gcgaaataca	420
gtttgca	aaaa	gatgtccaga	tgggttcttc	tcaaatgaga	cgtcatctaa	agcaccctgt	480
agaaaac	caca	caaattgcag	tgtctttggt	ctcctgctaa	ctcagaaagg	aaatgcaaca	540
cacgaca	aca	tatgttccgg	aaacagtgaa	tcaactcaaa	aatgtggaat	atga	594
<210> <211> <212> <213>	98 432 DNA Homo	o sapiens					
<400> atgaaca	98 act	tgctgtgctg	cgcgctcgtg	tttctggaca	tctccattaa	gtggaccacc	60
caggaaa	cgt	ttcctccaaa	gtaccttcat	tatgacgaag	aaacctctca	tcagctgttg	120
tgtgaca	aat	gtcctcctgg	tacctaccta	aaacaacact	gtacagcaaa	gtggaagacc	180
gtgtgcg	gece	cttgccctga	ccactactac	acagacagct	ggcacaccag	tgacgagtgt	240
ctatact	gca	gccccgtgtg	caaggagctg	cagtacgtca	agcaggagtg	caatcgcacc	300
cacaaco	gcg	tgtgcgaatg	caaggaaggg	cgctaccttg	agatagagtt	ctgcttgaaa	360
catagga	agct	gccctcctgg	atttggagtg	gtgcaagctg	gaaccccaga	gcgaaataca	420
gtttgca	aat	ga					432
<210> <211> <212>	99 321 DNA						

<213> Homo sapiens <400> 99 atgaacaact tgctgtgctg cgcgctcgtg tttctggaca tctccattaa gtggaccacc caggaaacgt ttcctccaaa gtaccttcat tatgacgaag aaacctctca tcagctgttg tgtgacaaat gtcctcctgg tacctaccta aaacaacact gtacagcaaa gtggaagacc gtgtgcgccc cttgccctga ccactactac acagacagct ggcacaccag tgacqagtqt

60

120

180

240

300

321

cacaaccgcg tgtgcgaatg a <210> 100

ctatactgca gccccgtgtg caaggagctg cagtacgtca agcaggagtg caatcgcacc

<211> 1182 <212> DNA <213> Homo sapiens

<400> 100 atgaacaact tgctgtgctg cgcgctcgtg tttctggaca tctccattaa gtggaccacc caggaaacgt ttcctccaaa gtaccttcat tatgacgaag aaacctctca tcagctgttg

60 120 tgtgacaaat gtcctcctgg tacctaccta aaacaacact gtacagcaaa gtggaagacc 180 240 gtgtgcgccc cttgccctga ccactactac acagacagct ggcacaccag tgacgagtgt ctatactgca gccccgtgtg caaggagctg cagtacgtca agcaggagtg caatcgcacc 300 cacaaccgcg tgtgcgaatg caaggaaggg cgctaccttg agatagagtt ctgcttgaaa 360 cataggaget geceteetgg atttggagtg gtgeaagetg gaaceecaga gegaaataca 420 gtttgcaaaa gatgtccaga tgggttcttc tcaaatgaga cgtcatctaa agcaccctgt 480 agaaaacaca caaattgcag tgtctttggt ctcctgctaa ctcagaaagg aaatgcaaca 540 cacgacaaca tatgttccgg aaacagtgaa tcaactcaaa aatgtggaat agatgttacc 600 ctgtgtgagg aggcattett caggtttget gtteetacaa agtttaegee taaetggett 660 agtgtcttgg tagacaattt gcctggcacc aaagtaaacg cagagagtgt agagaggata 720 aaacggcaac acagctcaca agaacagact ttccagctgc tgaagttatg gaaacatcaa 780 aacaaagacc aagatatagt caagaagatc atccaagata ttgacctctg tgaaaacagc 840 900

gtgcagcggc acattggaca tgctaacctc accttcgagc agcttcgtag cttgatggaa agcttaccgg gaaagaaagt gggagcagaa gacattgaaa aaacaataaa ggcatgcaaa 960 cccagtgacc agatectgaa getgeteagt ttgtggegaa taaaaaatgg egaceaagae 1020 accttgaagg gcctaatgca cgcactaaag cactcaaaga cgtaccactt tcccaaaact 1080

gtcactcaga	gtctaaagaa	gaccatcagg	ttccttcaca	gcttcacaat	gtacaaattg	1140
tatcagaagt	tatttttaga	aatgataggt	aacctagtct	ag		1182
<210> 101 <211> 966 <212> DNA <213> Homo	sapiens					
<400> 101 atgaacaact	tgctgtgctg	cgcgctcgtg	tttctggaca	tctccattaa	gtggaccacc	60
caggaaacgt	ttcctccaaa	gtaccttcat	tatgacgaag	aaacctctca	tcagctgttg	120
tgtgacaaat	gtcctcctgg	tacctaccta	aaacaacact	gtacagcaaa	gtggaagacc	180
gtgtgcgccc	cttgccctga	ccactactac	acagacagct	ggcacaccag	tgacgagtgt	240
ctatactgca	gccccgtgtg	caaggagctg	cagtacgtca	agcaggagtg	caatcgcacc	300
cacaaccgcg	tgtgcgaatg	caaggaaggg	cgctaccttg	agatagagtt	ctgcttgaaa	360
cataggagct	gccctcctgg	atttggagtg	gtgcaagctg	gaaccccaga	gcgaaataca	420
gtttgcaaaa	gatgtccaga	tgggttcttc	tcaaatgaga	cgtcatctaa	agcaccctgt	480
agaaaacaca	caaattgcag	tgtctttggt	ctcctgctaa	ctcagaaagg	aaatgcaaca	540
cacgacaaca	tatgttccgg	aaacagtgaa	tcaactcaaa	aatgtggaat	agatgttacc	600
ctgtgtgagg	aggcattctt	caggtttgct	gttcctacaa	agtttacgcc	taactggctt	660
agtgtcttgg	tagacaattt	gcctggcacc	aaagtaaacg	cagagagtgt	agagaggata	720
aaacggcaac	acagctcaca	agaacagact	ttccagctgc	tgaagttatg	gaaacatcaa	780
aacaaagacc	aagatatagt	caagaagatc	atccaagata	ttgacctctg	tgaaaacagc	840
gtgcagcggc	acattggaca	tgctaacctc	accttcgagc	agcttcgtag	cttgatggaa	900
agcttaccgg	gaaagaaagt	gggagcagaa	gacattgaaa	aaacaataaa	ggctagtcta	960
gactag						966
<210> 102 <211> 564 <212> DNA <213> Homo	sapiens					
<400> 102 atgaacaact	tgctgtgctg	cgcgctcgtg	tttctggaca	tctccattaa	gtggaccacc	60
caggaaacgt	ttcctccaaa	gtaccttcat	tatgacgaag	aaacctctca	tcagctgttg	120

tgtgacaaat	gtcctcctgg	tacctaccta	aaacaacact	gtacagcaaa	gtggaagacc	180
gtgtgcgccc	cttgccctga	ccactactac	acagacagct	ggcacaccag	tgacgagtgt	240
ctatactgca	gccccgtgtg	caaggagctg	cagtacgtca	agcaggagtg	caatcgcacc	300
cacaaccgcg	tgtgcgaatg	caaggaaggg	cgctaccttg	agatagagtt	ctgcttgaaa	360
cataggagct	gccctcctgg	atttggagtg	gtgcaagctg	gaaccccaga	gcgaaataca	420
gtttgcaaaa	gatgtccaga	tgggttcttc	tcaaatgaga	cgtcatctaa	agcaccctgt	480
agaaaacaca	caaattgcag	tgtctttggt	ctcctgctaa	ctcagaaagg	aaatgcaaca	540
cacgacaaca	tatgttccgg	ctag				564
<210> 103 <211> 255 <212> DNA <213> Homo	o sapiens					
atgaacaact	tgctgtgctg	cgcgctcgtg	tttctggaca	tctccattaa	gtggaccacc	60
caggaaacgt	ttcctccaaa	gtaccttcat	tatgacgaag	aaacctctca	tcagctgttg	120
tgtgacaaat	gtcctcctgg	tacctaccta	aaacaacact	gtacagcaaa	gtggaagacc	180
gtgtgcgccc	cttgccctga	ccactactac	acagacagct	ggcacaccag	tgacgagtgt	240
ctatacctag	tctag					255
<210> 104 <211> 1317 <212> DNA <213> Homo	o sapiens					
	ataacttgaa	cacttggccc	tgatggggaa	gcagctctgc	agggactttt	60
tcagccatct	gtaaacaatt	tcagtggcaa	cccgcgaact	gtaatccatg	aatgggacca	120
cactttacaa	gtcatcaagt	ctaacttcta	gaccagggaa	ttaatggggg	agacagcgaa	180
ccctagagca	aagtgccaaa	cttctgtcga	tagcttgagg	ctagtggaaa	gacctcgagg	240
aggctactcc	agaagttcag	cgcgtaggaa	gctccgatac	caatagccct	ttgatgatgg	300
tggggttggt	gaagggaaca	gtgctccgca	aggttatccc	tgccccaggc	agtccaattt	360
tcactctgca	gattctctct	ggctctaact	accccagata	acaaggagtg	aatgcagaat	420
agcacgggct	ttagggccaa	tcagacatta	gttagaaaaa	ttcctactac	atggtttatg	480
taaacttgaa	gatgaatgat	tgcgaactcc	ccgaaaaggg	ctcagacaat	gccatgcata	540

aagaggggcc	ctgtaatttg	aggtttcaga	acccgaagtg	aaggggtcag	gcagccgggt	600
acggcggaaa	ctcacagett	tcgcccagcg	agaggacaaa	ggtctgggac	acactccaac	660
tgcgtccgga	tcttggctgg	atcggactct	cagggtggag	gagacacaag	cacagcagct	720
gcccagcgtg	tgcccagccc	tcccaccgct	ggtcccggct	gccaggaggc	tggccgctgg	780
cgggaagggg	ccgggaaacc	tcagagcccc	gcggagacag	cagccgcctt	gttcctcagc	840
ccggtggctt	tttttcccc	tgctctccca	ggggacagac	accaccgccc	cacccctcac	900
gccccacctc	cctgggggat	cctttccgcc	ccagccctga	aagcgttaat	cctggagctt	960
tctgcacacc	ccccgaccgc	tcccgcccaa	gcttcctaaa	aaagaaaggt	gcaaagtttg	1020
gtccaggata	gaaaaatgac	tgatcaaagg	caggcgatac	ttcctgttgc	cgggacgcta	1080
tatataacgt	gatgagcgca	cgggctgcgg	agacgcaccg	gagegetege	ccagccgccg	1140
cctccaagcc	cctgaggttt	ccggggacca	caatgaacaa	gttgctgtgc	tgcgcgctcg	1200
tggtaagtcc	ctgggccagc	cgacgggtgc	ccggcgcctg	gggaggctgc	tgccacctgg	1260
tctcccaacc	tcccagcgga	ccggcgggga	aaaaggctcc	actcgctccc	tcccaag	1317

<210> 105

<400> 105

gettactttg tgccaaatet cattaggett aaggtaatac aggaetttga gtcaaatgat 60 actgttgcac ataagaacaa acctattttc atgctaagat gatgccactg tgttcctttc 120 tecttetagt ttetggacat etceattaag tggaceaece aggaaaegtt teeteeaaag 180 taccttcatt atgacgaaga aacctctcat cagctgttgt gtgacaaatg tcctcctggt 240 300 acctacctaa aacaacactg tacagcaaag tggaagaccg tgtgcgcccc ttgccctgac cactactaca cagacagetg geacaceagt gaegagtgte tataetgeag eeeegtgtge 360 aaggagetge agtacgteaa geaggagtge aategeacee acaacegegt gtgegaatge 420 aaggaagggc gctaccttga gatagagttc tgcttgaaac ataggagctg ccctcctgga 480 tttggagtgg tgcaagctgg tacgtgtcaa tgtgcagcaa aattaattag gatcatgcaa 540 agtcagatag ttgtgacagt ttaggagaac acttttgttc tgatgacatt ataggatagc 600 aaattgcaaa ggtaatgaaa cctgccaggt aggtactatg tgtctggagt gcttccaaag 660 gaccattgct cagaggaata ctttgccact acagggcaat ttaatgacaa atctcaaatg 720

<211> 10190

<212> DNA

<213> Homo sapiens

cagcaaatta	ttctctcatg	agatgcatga	tggtttttt	ttttttttt	aaagaaacaa	780
actcaagttg	cactattgat	agttgatcta	tacctctata	tttcacttca	gcatggacac	840
cttcaaactg	cagcactttt	tgacaaacat	cagaaatgtt	aatttatacc	aagagagtaa	900
ttatgctcat	attaatgaga	ctctggagtg	ctaacaataa	gcagttataa	ttaattatgt	960
aaaaaatgag	aatggtgagg	ggaattgcat	ttcattatta	aaaacaaggc	tagttcttcc	1020
tttagcatgg	gagctgagtg	tttgggaggg	taaggactat	agcagaatct	cttcaatgag	1080
cttattcttt	atcttagaca	aaacagattg	tcaagccaag	agcaagcact	tgcctataaa	1140
ccaagtgctt	tctcttttgc	attttgaaca	gcattggtca	gggctcatgt	gtattgaatc	1200
ttttaaacca	gtaacccacg	tttttttct	gccacatttg	cgaagcttca	gtgcagccta	1260
taacttttca	tagcttgaga	aaattaagag	tatccactta	cttagatgga	agaagtaatc	1320
agtatagatt	ctgatgactc	agtttgaagc	agtgtttctc	aactgaagcc	ctgctgatat	1380
tttaagaaat	atctggattc	ctaggctgga	ctcctttttg	tgggcagctg	tcctgcgcat	1440
tgtagaattt	tggcagcacc	cctggactct	agccactaga	taccaatagc	agtccttccc	1500
ccatgtgaca	gccaaaaatg	tcttcagaca	ctgtcaaatg	tcgccaggtg	gcaaaatcac	1560
tcctggttga	gaacagggtc	atcaatgcta	agtatctgta	actattttaa	ctctcaaaac	1620
ttgtgatata	caaagtctaa	attattagac	gaccaatact	ttaggtttaa	aggcatacaa	1680
atgaaacatt	caaaaatcaa	aatctattct	gtttctcaaa	tagtgaatct	tataaaatta	1740
atcacagaag	atgcaaattg	catcagagtc	ccttaaaatt	cctcttcgta	tgagtatttg	1800
agggaggaat	tggtgatagt	tcctactttc	tattggatgg	tactttgaga	ctcaaaagct	1860
aagctaagtt	gtgtgtgtgt	cagggtgcgg	ggtgtggaat	cccatcagat	aaaagcaaat	1920
ccatgtaatt	cattcagtaa	gttgtatatg	tagaaaaatg	aaaagtgggc	tatgcagctt	1980
ggaaactaga	gaattttgaa	aaataatgga	aatcacaagg	atctttctta	aataagtaag	2040
aaaatctgtt	tgtagaatga	agcaagcagg	cagccagaag	actcagaaca	aaagtacaca	2100
ttttactctg	tgtacactgg	cagcacagtg	ggatttattt	acctctccct	ccctaaaaac	2160
ccacacagcg	gttcctcttg	ggaaataaga	ggtttccagc	ccaaagagaa	ggaaagacta	2220
tgtggtgtta	ctctaaaaag	tatttaataa	ccgttttgtt	gttgctgttg	ctgttttgaa	2280
atcagattgt	ctcctctcca	tattttattt	acttcattct	gttaattcct	gtggaattac	2340
ttagagcaag	catggtgaat	tctcaactgt	aaagccaaat	ttctccatca	ttataatttc	2400

acattttgcc tggcaggtta taatttttat atttccactg atagtaataa ggtaaaatca 2460 ttacttagat ggatagatct ttttcataaa aagtaccatc agttatagag ggaagtcatg 2520 ttcatgttca ggaaggtcat tagataaagc ttctgaatat attatgaaac attagttctg 2580 tcattcttag attcttttg ttaaataact ttaaaagcta acttacctaa aagaaatatc 2640 tgacacatat gaacttotoa ttaggatgoa ggagaagaco caagocacag atatgtatot 2700 gaagaatgaa caagattett aggeeeggea eggtggetea eatetgtaat eteaagagtt 2760 tgagaggtca aggcgggcag atcacctgag gtcaggagtt caagaccagc ctggccaaca 2820 tgatgaaacc ctgcctctac taaaaataca aaaattagca gggcatggtg gtgcatgcct 2880 gcaaccctag ctactcagga ggctgagaca ggagaatctc ttgaaccctc gaggcggagg 2940 ttgtggtgag ctgagatccc tctactgcac tccagcctgg gtgacagaga tgagactccg 3000 tecetgeege egeeceegee tteceeceea aaaagattet tetteatgea gaacataegg 3060 cagtcaacaa agggagacct gggtccaggt gtccaagtca cttatttcga gtaaattagc 3120 aatgaaagaa tgccatggaa tccctgccca aatacctctg cttatgatat tgtagaattt 3180 gatatagagt tgtatcccat ttaaggagta ggatgtagta ggaaagtact aaaaacaaac 3240 acacaaacag aaaaccctct ttgctttgta aggtggttcc taagataatg tcagtgcaat 3300 gctggaaata atatttaata tgtgaaggtt ttaggctgtg ttttcccctc ctgttctttt 3360 tttctgccag ccctttgtca tttttgcagg tcaatgaatc atgtagaaag agacaggaga 3420 tgaaactaga accagtccat tttgcccctt tttttatttt ctggttttgg taaaagatac 3480 aatgaggtag gaggttgaga tttataaatg aagtttaata agtttctgta gctttgattt 3540 ttctctttca tatttgttat cttgcataag ccagaattgg cctgtaaaat ctacatatgg 3600 atattgaagt ctaaatctgt tcaactagct tacactagat ggagatattt tcatattcag 3660 atacactgga atgtatgatc tagccatgcg taatatagtc aagtgtttga aggtatttat 3720 ttttaatagc gtctttagtt gtggactggt tcaagttttt ctgccaatga tttcttcaaa 3780 tttatcaaat atttttccat catgaagtaa aatgcccttg cagtcaccct tcctgaagtt 3840 tgaacgactc tgctgtttta aacagtttaa gcaaatggta tatcatcttc cgtttactat 3900 gtagcttaac tgcaggctta cgcttttgag tcagcggcca actttattgc caccttcaaa 3960 agtttattat aatgttgtaa atttttactt ctcaaggtta gcatacttag gagttgcttc 4020 acaattagga ttcaggaaag aaagaacttc agtaggaact gattggaatt taatgatgca 4080 gcattcaatg ggtactaatt tcaaagaatg atattacagc agacacacag cagttatctt 4140

gattttctag gaataattgt atgaagaata tggctgacaa cacggcctta ctgccactca 4200 geggaggetg gactaatgaa caccetacce ttettteett teeteteaca ttteatgage 4260 gttttgtagg taacgagaaa attgacttgc atttgcatta caaggaggag aaactggcaa 4320 aggggatgat ggtggaagtt ttgttctgtc taatgaagtg aaaaatgaaa atgctagagt 4380 tttgtgcaac ataatagtag cagtaaaaac caagtgaaaa gtctttccaa aactgtgtta 4440 agagggcatc tgctgggaaa cgatttgagg agaaggtact aaattgcttq qtattttccq 4500 taggaacccc agagcgaaat acagtttgca aaagatgtcc agatgggttc ttctcaaatg 4560 agacgtcatc taaagcaccc tgtagaaaac acacaaattg cagtgtcttt ggtctcctgc 4620 taactcagaa aggaaatgca acacacgaca acatatgttc cggaaacagt gaatcaactc 4680 aaaaatgtgg aataggtaat tacattccaa aatacgtctt tgtacgattt tgtagtatca 4740 tetetetete tgagttgaac acaaggeete cagecacatt ettggteaaa ettacatttt 4800 ccctttcttg aatcttaacc agctaaggct actctcgatg cattactgct aaagctacca 4860 ctcagaatct ctcaaaaact catcttctca cagataacac ctcaaagctt gattttctct 4920 cctttcacac tgaaatcaaa tcttgcccat aggcaaaggg cagtgtcaag tttgccactg 4980 agatgaaatt aggagagtcc aaactgtaga attcacgttg tgtgttatta ctttcacqaa 5040 tgtctgtatt attaactaaa gtatatattg gcaactaaga agcaaagtga tataaacatg 5100 atgacaaatt aggccaggca tggtggctta ctcctataat cccaacattt tggggggcca 5160 aggtaggcag atcacttgag gtcaggattt caagaccagc ctgaccaaca tggtgaaacc 5220 ttgtctctac taaaaataca aaaattagct gggcatggta gcaggcactt ctagtaccag 5280 ctactcaggg ctgaggcagg agaatcgctt gaacccagga gatggaggtt gcagtgagct 5340 gagattgtac cactgcactc cagtctgggc aacagagcaa gatttcatca cacacacaca 5400 cacacacaca cacacaca ttagaaatgt gtacttggct ttgttaccta tggtattagt 5460 gcatctattg catggaactt ccaagctact ctggttgtgt taagctcttc attgggtaca 5520 ggtcactagt attaagttca ggttattcgg atgcattcca cggtagtgat gacaattcat 5580 caggctagtg tgtgtgttca ccttgtcact cccaccacta gactaatctc agaccttcac 5640 tcaaagacac attacactaa agatgatttg cttttttgtg tttaatcaag caatggtata 5700 aaccagettg acteteeca aacagttttt egtactacaa agaagtttat gaagcagaga 5760 aatgtgaatt gatatatata tgagattcta acccagttcc agcattgttt cattgtgtaa 5820

5880 ttgaaatcat agacaagcca ttttagcctt tgctttctta tctaaaaaaa aaaaaaaaa aatgaaggaa ggggtattaa aaggagtgat caaattttaa cattctcttt aattaattca 5940 tttttaattt tactttttt catttattgt gcacttacta tgtggtactg tgctatagag 6000 gctttaacat ttataaaaac actgtgaaag ttgcttcaga tgaatatagg tagtagaacg 6060 6120 gcagaactag tattcaaagc caggtctgat gaatccaaaa acaaacaccc attactccca ttttctggga catacttact ctacccagat gctctgggct ttgtaatgcc tatgtaaata 6180 acatagtttt atgtttggtt attttcctat gtaatgtcta cttatatatc tgtatctatc 6240 tcttgctttg tttccaaagg taaactatgt gtctaaatgt gggcaaaaaa taacacacta 6300 ttccaaatta ctgttcaaat tcctttaagt cagtgataat tatttgtttt gacattaatc 6360 atgaagttcc ctgtgggtac taggtaaacc tttaatagaa tgttaatgtt tgtattcatt 6420 ataagaattt ttggctgtta cttatttaca acaatatttc actctaatta gacatttact 6480 aaactttctc ttgaaaacaa tgcccaaaaa agaacattag aagacacgta agctcagttg 6540 gtctctgcca ctaagaccag ccaacagaag cttgatttta ttcaaacttt gcattttagc 6600 atattttatc ttggaaaatt caattgtgtt ggttttttgt ttttgtttgt attgaataga 6660 ctctcagaaa tccaattgtt gagtaaatct tctgggtttt ctaacctttc tttagatgtt 6720 accetgtgtg aggaggeatt etteaggttt getgtteeta caaagtttae geetaactgg 6780 cttagtgtct tggtagacaa tttgcctggc accaaagtaa acgcagagag tgtagagag 6840 ataaaacggc aacacagctc acaagaacag actttccagc tgctgaagtt atggaaacat 6900 caaaacaaag accaagatat agtcaagaag atcatccaag gtaattacat tccaaaatac 6960 gtctttgtac gattttgtag tatcatctct ctctctgagt tgaacacaag gcctccagcc 7020 acattottgg tcaaacttac attttccctt tottgaatct taaccagcta aggctactct 7080 cgatgcatta ctgctaaagc taccactcag aatctctcaa aaactcatct tctcacagat 7140 aacacctcaa agettgattt teteteettt eacactgaaa teaaatettg eecataggea 7200 aagggcagtg tcaagtttgc cactgagatg aaattaggag agtccaaact gtagaattca 7260 cgttgtgtgt tattactttc acgaatgtct gtattattaa ctaaagtata tattggcaac 7320 taagaagcaa agtgatataa acatgatgac aaattaggcc aggcatggtg gcttactcct 7380 ataatcccaa cattttgggg ggccaaggta ggcagatcac ttgaggtcag gatttcaaga 7440 ccagcctgac caacatggtg aaaccttgtc tctactaaaa atacaaaaat tagctgggca 7500 tggtagcagg cacttctagt accagctact cagggctgag gcaggagaat cgcttgaacc 7560

caggagatgg aggttgcagt gagctgagat tgtaccactg cactccagtc tgggcaacag 7620 agcaagattt catcacacac acacacaca acacacaca acacattaga aatgtgtact 7680 tggctttgtt acctatggta ttagtgcatc tattgcatgg aacttccaag ctactctggt 7740 tgtgttaagc tcttcattgg gtacaggtca ctagtattaa gttcaggtta ttcggatgca 7800 ttccacggta gtgatgacaa ttcatcaggc tagtgtgtgt gttcaccttg tcactcccac 7860 cactagacta atctcagacc ttcactcaaa gacacattac actaaagatg atttqctttt 7920 ttgtgtttaa tcaagcaatg gtataaacca gcttgactct ccccaaacag tttttcgtac 7980 tacaaagaag tttatgaagc agagaaatgt gaattgatat atatatgaga ttctaaccca 8040 gttccagcat tgtttcattg tgtaattgaa atcatagaca agccatttta gcctttgctt 8100 tcttatctaa aaaaaaaaa aaaaaaatga aggaaggggt attaaaagga gtgatcaaat 8160 tttaacattc tctttaatta attcatttt aattttactt tttttcattt attgtgcact 8220 tactatgtgg tactgtgcta tagaggcttt aacatttata aaaacactgt gaaagttgct 8280 tcagatgaat ataggtagta gaacggcaga actagtattc aaagccaggt ctgatgaatc 8340 caaaaacaaa cacccattac tcccattttc tgggacatac ttactctacc cagatgctct 8400 gggctttgta atgcctatgt aaataacata gttttatgtt tggttatttt cctatgtaat 8460 gtctacttat atatctgtat ctatctcttg ctttgtttcc aaaggtaaac tatgtgtcta 8520 aatgtgggca aaaaataaca cactattcca aattactgtt caaattcctt taagtcagtg 8580 ataattattt gttttgacat taatcatgaa gttccctgtg ggtactaggt aaacctttaa 8640 tagaatgtta atgtttgtat tcattataag aatttttggc tgttacttat ttacaacaat 8700 atttcactct aattagacat ttactaaact ttctcttgaa aacaatgccc aaaaaagaac 8760 attagaagac acgtaagctc agttggtctc tgccactaag accagccaac agaagcttga 8820 ttttattcaa actttgcatt ttagcatatt ttatcttgga aaattcaatt gtgttggttt 8880 tttgtttttg tttgtattga atagactctc agaaatccaa ttgttgagta aatcttctgg 8940 gttttctaac ctttctttag atattgacct ctgtgaaaac agcgtgcagc ggcacattgg 9000 acatgctaac ctcaccttcg agcagcttcg tagcttgatg gaaagcttac cgggaaagaa 9060 agtgggagca gaagacattg aaaaaacaat aaaggcatgc aaacccagtg accagatcct 9120 gaagctgctc agtttgtggc gaataaaaaa tggcgaccaa gacaccttga agggcctaat 9180 gcacgcacta aagcactcaa agacgtacca ctttcccaaa actgtcactc agagtctaaa 9240

qaaqaccatc aggttccttc acagcttcac aatgtacaaa ttgtatcaga agttatttt 9300 agaaatgata ggtaaccagg tccaatcagt aaaaataagc tgcttataac tggaaatggc 9360 cattgagctg tttcctcaca attggcgaga tcccatggat gagtaaactg tttctcaggc 9420 acttgaggct ttcagtgata tctttctcat taccagtgac taattttgcc acagggtact 9480 aaaagaaact atgatgtgga gaaaggacta acatctcctc caataaaccc caaatgqtta 9540 atccaactgt cagatotgga togttatota otgactatat tttcccttat tactgcttgc 9600 agtaattcaa ctggaaatta aaaaaaaaaa actagactcc actgggcctt actaaatatg 9660 ggaatgtcta acttaaatag ctttgggatt ccagctatgc tagaggcttt tattagaaag 9720 ccatattttt ttctgtaaaa gttactaata tatctgtaac actattacag tattgctatt 9780 tatattcatt cagatataag atttggacat attatcatcc tataaagaaa cggtatgact 9840 taattttaga aagaaaatta tattctgttt attatgacaa atgaaagaga aaatatatat 9900 ttttaatgga aagtttgtag catttttcta ataggtactg ccatatttt ctgtgtggag 9960 tatttttata attttatctg tataagctgt aatatcattt tatagaaaat gcattattta 10020 gtcaattgtt taatgttgga aaacatatga aatataaatt atctgaatat tagatgctct 10080 gagaaattga atgtacctta tttaaaagat tttatqqttt tataactata taaatgacat 10140 tattaaagtt ttcaaattat tttttattgc tttctctgtt gcttttattt 10190

<210> 106

<211> 391

<212> PRT

<213> Homo sapiens

<400> 106

Phe Leu Asp Ile Ser Ile Lys Trp Thr Thr Gln Glu Thr Phe Pro Pro 1 5 10 15

Lys Tyr Leu His Tyr Asp Glu Glu Thr Ser His Gln Leu Leu Cys Asp 20 25 30

Lys Cys Pro Pro Gly Thr Tyr Leu Lys Gln His Cys Thr Ala Lys Trp $35 \hspace{1cm} 40 \hspace{1cm} 45$

Lys Thr Val Cys Ala Pro Cys Pro Asp His Tyr Tyr Thr Asp Ser Trp 50 55 60

His Thr Ser Asp Glu Cys Leu Tyr Cys Ser Pro Val Cys Lys Glu Leu

Gln Tyr Val Lys Gln Glu Cys Asn Arg Thr His Asn Arg Val Cys Glu 85 90 95

65

- Cys Lys Glu Gly Arg Tyr Leu Glu Ile Glu Phe Cys Leu Lys His Arg 100 105 110
- Ser Cys Pro Pro Gly Phe Gly Val Val Gln Ala Gly Thr Pro Glu Arg 115 120 125
- Asn Thr Val Cys Lys Arg Cys Pro Asp Gly Phe Phe Ser Asn Glu Thr 130 140
- Ser Ser Lys Ala Pro Cys Arg Lys His Thr Asn Cys Ser Val Phe Gly 145 150 155 160
- Leu Leu Leu Thr Gln Lys Gly Asn Ala Thr His Asp Asn Ile Cys Ser 165 170 175
- Glu Glu Ala Phe Phe Arg Phe Ala Val Pro Thr Lys Phe Thr Pro Asn 195 200 205
- Trp Leu Ser Val Leu Val Asp Asn Leu Pro Gly Thr Lys Val Asn Ala 210 215 220
- Glu Ser Val Glu Arg Ile Lys Arg Gln His Ser Ser Gln Glu Gln Thr 225 230 235 240
- Phe Gln Leu Leu Lys Leu Trp Lys His Gln Asn Lys Asp Gln Asp Ile \$245\$ \$250\$ \$255\$
- Val Lys Lys Ile Ile Gln Asp Ile Asp Leu Cys Glu Asn Ser Val Gln 260 265 270
- Arg His Ile Gly His Ala Asn Leu Thr Phe Glu Gln Leu Arg Ser Leu 275 280 285
- Met Glu Ser Leu Pro Gly Lys Lys Val Gly Ala Glu Asp Ile Glu Lys 290 295 300

```
305
                    310
Leu Trp Arg Ile Lys Asn Gly Asp Gln Asp Thr Leu Lys Gly Leu Met
His Ala Leu Lys His Ser Lys Thr Tyr His Phe Pro Lys Thr Val Thr
                                 345
Gln Ser Leu Lys Lys Thr Ile Arg Phe Leu His Ser Phe Thr Met Tyr
                             360
Lys Leu Tyr Gln Lys Leu Phe Leu Glu Met Ile Gly Asn Gln Val Gln
    370
                         375
                                              380
Ser Val Lys Ile Ser Cys Leu
385
                    390
<210> 107
<211> 20
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Sequence
<220>
<221> misc_feature
<222> (12)..(12)
\langle 223 \rangle n = unknown
<400> 107
cargarcara cnttycaryt
                                                                         20
<210> 108
<211> 21
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Sequence
<220>
<221> misc_feature
<222> (10)..(10)
\langle 223 \rangle n = unknown
```

Thr Ile Lys Ala Cys Lys Pro Ser Asp Gln Ile Leu Lys Leu Leu Ser

```
<220>
<221> misc_feature
<222> (16)..(16)
<223> n = unknown

<400> 108
yttrtacatn gtraanswrt g
```