Lecture 16

# EECS 483: COMPILER CONSTRUCTION

#### **Announcements**

- Midterm
  - Grades will be released after we review the results on Wednesday's class (3/20).
- HW4: OAT v.1.0
  - Parsing & translation to LLVM IR
  - Helps to start early!
  - Due: Tuesday, March 26<sup>th</sup>

#### **Personal Announcement**

- My wife and I are having a baby
  - Due date: March 30, but could be any day now
  - We will have guest lectures (by our GSI Eric or a guest professor) for at least 4 lectures after the baby comes.
  - I will have my regularly scheduled office hours remote only, will not be available for scheduled office hours.

#### **Implementing First-Class Functions**

- First attempt: Functions as Code
  - Represent a function value as its code
  - What about local function definitions?
    - let  $f = fun x \rightarrow fun y \rightarrow x + y$
  - Every time we call f 0, f 5, f 256, we get a different function
  - In an substitution-based interpreter, we substitute a value in and get a different term each time we call the function.
  - Compilation
    - Infeasible to implement all of these possible functions statically in memory, impossible if the domain of the function is infinite!
    - Requires runtime code generation, which itself has high runtime overhead.
    - Usually not used for arbitrary first class functions, only in specialized situations

#### **Implementing First-Class Functions**

- Closures
  - Consider
    - let  $f = fun x \rightarrow fun y \rightarrow x + y$
  - Each function f 0, f 5, f 256,... is implemented by substitution:
    - $(fun y -> x + y) \{ 0 / x \}$
    - $(\text{fun y -> x + y}) \{ 5 / x \}$
    - (fun y -> 256 + y) { 256 / x }
  - Idea: represent a first-class function as a pair of
    - A piece of code with **free** variables
    - An **environment** that provides all of the values of the free variables
  - In compilation
    - The code with free variables can be a code pointer to code that takes the environment as an argument
      - fun (env, y) -> env.x + y
    - The environment can be implemented in multiple ways
      - Array: fast access in the function
      - Linked list: more sharing between different closures

See fun.ml, cc.ml from lec15.zip

# CLOSURES AND CLOSURE CONVERSION

#### **Closure Conversion Summary**

- A *closure* is a pair of an environment and a code pointer
  - the environment is a map data structure binding variables to values
  - environment could just be a list of the values (with known indices)
- Building a closure value:
  - code pointer is a function that takes an extra argument for the environment:  $A \rightarrow B$  becomes (Env \*  $A \rightarrow B$ )
  - body of the closure "projects out" then variables from the environment
  - creates the environment map by bundling the free variables
- Applying a closure:
  - project out the environment, invoke the function (pointer) with the environment and its "real" argument
- Hoisting:
  - Once closure converted, all functions can be lifted to the top level

Scope, Types, and Context

#### **SEMANTIC ANALYSIS**

#### **Compilation in a Nutshell**

```
Source Code
(Character stream)
if (b == 0) \{ a = 1; \}
                                                             Lexical Analysis
Token stream:
 if
           b
                                     а
                                          =
                                                                   Parsing
Abstract Syntax Tree:
         Ιf
                                    Intermediate code:
                                                                Analysis &
                                     %cnd = icmp eq i64 %b,
                                                             Transformation
     Εq
              Assn
                         None
                                     br i1 %cnd, label %12,
                                    label %13
                                     store i64* %a, 1
                                     br label %13
                                                                  Backend
                                    13:
Assembly Code
11:
 cmpg %eax, $0
```

jeq 12 jmp 13

12:

#### Most of the Remainder of the Course



#### **Variable Scoping**

- Consider the problem of determining whether a programmer-declared variable is in scope.
- Issues:
  - Which variables are available at a given point in the program?
  - Shadowing is it permissible to re-use the same identifier, or is it an error?
- Example: The following program is syntactically correct but not wellformed. (y and q are used without being defined anywhere)

```
int fact(int x) {
  var acc = 1;
  while (x > 0) {
    acc = acc * y;
    x = q - 1;
    }
  return acc;
}
```

Q: Can we solve this problem by changing the parser to rule out such programs?

# **Static Program Analysis**

- Static program analysis is analysis of a program at compile-time
- Used for two main purposes in the compiler:
  - Last stage of the frontend: "Type checking" or "Semantic Analysis"
    - Not every program that passes parsing is valid

```
- int main() { return x; }
- int main() { return "hello world"; }
```

- If the type checker fails, the program is rejected, like a parse error
- After the program passes the frontend, we consider it well-formed and will compile it.
- During optimization: "static analysis"
  - We can do more optimizations if we know more about the program
  - Are these equivalent programs?

```
- int main() { int y = f(); return 0; }
- int main() { return 0; }
```

- We can optimize the first to the second if we establish that f is side-effect free.
- Since they take place after the frontend, the analysis never rejects the program
- Next few weeks: type checking, after that optimization and analyis

# **Type Checking as Grammar**

|               | Specification                           | Implementation                                                |
|---------------|-----------------------------------------|---------------------------------------------------------------|
| Lexing        | Regular Expressions                     | DFA                                                           |
| Parsing       | CFG<br>LL(1) grammars<br>LR(1) grammars | Pushdown automata<br>Recursive descent<br>Shift/reduce parser |
| Type checking | Inference rules                         | Manual recursive descent                                      |

#### **Inference Rules**

- We can read a judgment G ⊢ e as "the expression e is well scoped and has free variables in G"
- For any environment G, expression e, and statements  $s_1$ ,  $s_2$ .

$$G \vdash if (e) s_1 else s_2$$

holds if  $G \vdash e$  and  $G \vdash s_1$  and  $G \vdash s_2$  all hold.

More succinctly: we summarize these constraints as an inference rule:

Premises 
$$G \vdash e \quad G \vdash s_1 \quad G \vdash s_2$$

Conclusion  $G \vdash if (e) s_1 else s_2$ 

• Such a rule can be used for *any* substitution of the syntactic metavariables G, e,  $s_1$  and  $s_2$ .

# **Judgments**

- A judgment is a (meta-syntactic) notation that names a relation among one or more sets.
  - The sets are usually built from object-language syntax elements and other "math" sets (e.g., integers, natural numbers, etc.)
  - We usually describe them using metavariables that range over the sets.
  - Often use domain-specific notation to ease reading.
  - The meaning of judgments, *i.e.*, which sets they represent, is defined by (collections of) inference rules
- Example: When we say "G ⊢ e is a judgment where G is a context of variables and e is a term, defined by these [...] inference rules" that is shorthand for this "math speak":
  - Let Var be the set of all (syntactic) variables
  - Let Exp be the set {e | e is a term of the untyped lambda calculus}
  - Let  $\mathcal{P}(Var)$  be the (finite) powerset of variables (set of all finite sets)
  - Define well-scoped  $\subseteq (\mathcal{P}(Var), Exp)$  to be a relation satisfying the properties defined by the associated inference rules [...]
  - Then "G  $\vdash$  e" is notation that means that (G, e) ∈ well-scoped

#### **Scope-Checking Lambda Calculus**

- Consider how to identify "well-scoped" lambda calculus terms
  - Given: G, a set of variable identifiers, e, a term of the lambda calculus
  - Judgment:  $G \vdash e$  "the free variables of e are included in G"

"the variable x is free, but in scope"

$$\frac{G \vdash e_1 \qquad G \vdash e_2}{G \vdash e_1 e_2}$$

"G contains the free variables of e<sub>1</sub> and e<sub>2</sub>"

$$G \cup \{x\} \vdash e$$
$$G \vdash \mathsf{fun} \ x \to e$$

"x is available in the function body e"

# **Scope-checking Code**

- Compare the OCaml code to the inference rules:
  - structural recursion over syntax
  - the check either "succeeds" or "fails"

```
let rec scope_check (g:VarSet.t) (e:exp) : unit =
  begin match e with
  | Var x -> if VarSet.member x g then () else failwith (x ^ "not in scope")
  | App(e1, e2) -> ignore (scope_check g e1); scope_check g e2
  | Fun(x, e) -> scope_check (VarSet.union g (VarSet.singleton x)) e
  end
```

$$x \in G$$
  $G \vdash e_1$   $G \vdash e_2$   $G \cup \{x\} \vdash e$   $G \vdash x$   $G \vdash e_1 e_2$   $G \vdash fun x \rightarrow e$  
$$G \vdash x$$
 
$$APP$$
 
$$FUN$$

- The inference rules are a *specification* of the intended behavior of this scope checking code.
  - they don't specify the order in which the premises are checked

#### **Example Derivation Tree**



- Note: the OCaml function scope\_check verifies the existence of this tree. The structure of the recursive calls when running scope\_check is the same shape as this tree!
- Note that  $x \in E$  is implemented by the function VarSet.mem

#### **Example Failed Derivation**



- This program is *not* well scoped
  - The variable z is not bound in the body of the left function.
  - The typing derivation fails because the VAR rule cannot succeed
  - (The other parts of the derivation are OK, though!)

#### Uses of the inference rules

- We can do proofs by induction on the structure of the derivation.
- For example:

**Lemma:** If  $G \vdash e$  then  $fv(e) \subseteq G$ .

Proof.

By induction on the derivation that  $G \vdash e$ .

x ∈ G G ⊢ x

- case: VAR then we have e = x (for some variable x) and  $x \in G$ . But  $fv(e) = fv(x) = \{x\}$ , but then  $\{x\} \subseteq G$ .
- case: APP then we have  $e = e_1 e_2$  (for some  $e_1 e_2$ ) and, by induction, we have  $fv(e_1) \subseteq G$  and  $fv(e_2) \subseteq G$ , so  $fv(e_1 e_2) = fv(e_1) \cup fv(e_2) \subseteq G$

 $\frac{G \vdash e_1 \quad G \vdash e_2}{G \vdash e_1 e_2}$ 

 $G \cup \{x\} \vdash e_1$ 

- case: FUN then we have  $e = (fun \ x \rightarrow e_1)$  for some x,  $e_1$  and, by induction, we have  $fv(e_1) \subseteq G \cup \{x\}$ , but then we also have  $fv(fun \ x \rightarrow e_1) = fv(e_1) \setminus \{x\} \subseteq ((G \cup \{x\}) \setminus \{x\}) \subseteq G$ 

 $G \vdash \mathsf{fun} \ x \to e_1$ 

See tc.ml

# STATICALLY RULING OUT PARTIALITY: TYPE CHECKING

# Adding Integers to Lambda Calculus

```
\begin{array}{lll} exp ::= & & & & & & & \\ & | & n & & & & \\ & | exp_1 + exp_2 & & & & \\ & | binary \ arithmetic \ operation \\ & val ::= & & & \\ & | fun \ x \ -> exp & & functions \ are \ values \\ & | n & & integers \ are \ values \\ & | n & & integers \ are \ values \\ & (e_1 + e_2)\{v/x\} & = (e_1\{v/x\} + e_2\{v/x\}) & substitute \ everywhere \\ \end{array}
```

$$\exp_1 \Downarrow n_1 \exp_2 \Downarrow n_2$$
 $\exp_1 + \exp_2 \Downarrow (n1 [+] n_2)$ 
Object-level '+'

Meta-level '+'

**NOTE:** there are no rules for the case where exp1 or exp2 evaluate to functions! The semantics is *undefined* in those cases.

# **Type Checking / Static Analysis**

Recall the interpreter from the Eval3 module:

- The interpreter might fail at runtime.
  - Not all operations are defined for all values (e.g., 3/0, 3 + true, ...)
- A compiler can't generate sensible code for this case.
  - A naïve implementation might "add" an integer and a function pointer

# **Type Judgments**

- In the judgment: E ⊢ e : t
  - E is a typing environment or a type context
  - E maps variables to types. It is just a set of bindings of the form:  $x_1:t_1, x_2:t_2, ..., x_n:t_n$
- For example:  $x : int, b : bool \vdash if (b) 3 else x : int$
- What do we need to know to decide whether "if (b) 3 else x" has type int in the environment x : int, b : bool?

```
- b must be a bool i.e. x : int, b : bool \vdash b : bool
```

- 3 must be an int i.e. x : int, b : bool + 3 : int
- x must be an int i.e.  $x : int, b : bool \vdash x : int$

#### Simply-typed Lambda Calculus

• For the language in "tc.ml" we have five inference rules:

VAR  $X:T \in E$   $E \vdash e_1: int$   $E \vdash e_2: int$   $E \vdash i: int$   $E \vdash x:T$   $E \vdash e_1 + e_2: int$ 

FUN

 $E, x : T \vdash e : S$ 

 $E \vdash \text{fun } (x:T) -> e : T -> S$ 

APP

 $E \vdash e_1 : T \rightarrow S \quad E \vdash e_2 : T$ 

 $E \vdash e_1 e_2 : S$ 

Note how these rules correspond to the code.

# **Type Checking Derivations**

- A derivation or proof tree has (instances of) judgments as its nodes and edges that connect premises to a conclusion according to an inference rule.
- Leaves of the tree are axioms (i.e. rules with no premises)
  - Example: the INT rule is an axiom
- Goal of the typechecker: verify that such a tree exists.
- Example: Find a tree for the following program using the inference rules on the previous slide:

$$\vdash$$
 (fun (x:int) -> x + 3) 5 : int

#### **Example Derivation Tree**

```
x : int \in x : int

x : int \vdash x + 3 : int

x : int \vdash x + 3 : int

x : int \vdash x + 3 : int

x : int \vdash x + 3 : int

x : int \vdash x + 3 : int

x : int \vdash x + 3 : int

x : int \vdash x + 3 : int

x : int \vdash x + 3 : int

x : int \vdash x + 3 : int

x : int \vdash x + 3 : int

x : int \vdash x + 3 : int

x : int \vdash x + 3 : int

x : int \vdash x + 3 : int

x : int \vdash x + 3 : int

x : int \vdash x + 3 : int

x : int \vdash x + 3 : int

x : int \vdash x + 3 : int

x : int \vdash x + 3 : int

x : int \vdash x + 3 : int

x : int \vdash x + 3 : int
```

- Note: the OCaml function typecheck verifies the existence of this tree. The structure of the recursive calls when running typecheck is the same shape as this tree!
- Note that  $x : int \in E$  is implemented by the function lookup

#### Notes about this Typechecker

- The interpreter evaluates the body of a function only when it's applied.
- The typechecker always checks the body of the function
  - even if it's never applied
  - We assume the input has some type (say  $t_1$ ) and reflect this in the type of the function ( $t_1 \rightarrow t_2$ ).
- Dually, at a call site  $(e_1 e_2)$ , we don't know what *closure* we're going to get.
  - But we can calculate  $e_1$ 's type, check that  $e_2$  is an argument of the right type, and determine what type  $e_1$  will return.
- Question: Why is this an approximation?
- Question: What if well\_typed always returns false?