

transition state binding
[E-S] [‡]
R = aglycon residue

FIG. 1

7 R =
$$CH_3$$

8 R =
$$CH_2CH_3$$

4 R =
$$CH_3$$

5 R =
$$(CH_2)_3CH_3$$

FIG. 2

			K; (µM)		-	1
	α-glucosidase ^a	eta -glucosidas $ ilde{e}^{b}$	β-N-acetylglucosaminidase	eta- N -acetylhexosaminidase	ninidase	1
compd	compd Saccaromyces sp	sweet almond	bovine kidney ^c	human placenta A ^d	þ	1
1/	330	. 50	4	•	1	
73	28	2.6		,	1	
ಣ	380	% *	2.9×10^{-1}	2.2×10^{-1}	2.6×10^{-1}	
4	ij	ü	1.1 × 10 ⁻¹	1.4×10^{-1}	8.0×10^{-2}	3 /
ĸ	'n	ïā	1.3	5.1×10^{-1}	2.4×10^{-1}	20
9	*	2.2	*		1	
7	*	45	*	•	•	
∞	.i	120	niʻ	•	ı	
6	53	37	•	1	1	

 a $K_{\rm m}=0.30$ mM, $V_{\rm max}=0.7$ (μ M/s)/mg. b $K_{\rm m}=3.2$ mM, $V_{\rm max}=3.2$ (μ M/s)/mg. c $K_{\rm m}=4.1$ mM, $V_{\rm max}=6.4$ (μ M/s)/mg. d $K_{\rm m}=2.5$ mM, $V_{\rm max}=2.3$ (μ M/s)/mg. J Preliminary assay result using photometric assay gave $K_{\rm i}$ values: 430 and 18 μ M for compound 1 and 7.2 and 7.6 μ M for compound 2 toward α-glucosidase and β-glucosidase, respectively. See also refs 6a and 19. 8*: poor inhibitor with IC₅₀ above 0.5 mM. 6-: not tested. 6 in: not inhibitor.

FIG. 4

WO 00/68194

a $Ph_3P^+=CHCO_2Me^+$ OAc / benzene; b DIBAL / CH_2Cl_2 ; c TBDMSCI - Et_3N -DMAP / DMF; d $CICH_2SO_2CI$ - Pyr.; e CsOAc - 18-crown-6 / toluene; f NaOMe; g 1N-HCI / THF; h t-BuOOH - $Ti(O-i-Pr)_4$ - L-(+)-diethyltartrate - MS 4A / CH_2Cl_2 ; i t-BuOOH - $Ti(O-i-Pr)_4$ - D-(-)-diethyltartrate - MS 4A / CH_2Cl_2 ; j NaN₃ / DMF; k Ph_3P / THF; / H_2 - Pd/C / MeOH.

a $(Boc)_2O - Et_3N / CH_2Cl_2$; b $Pb(OAc)_4 / toluene$; c $DIBAL / CH_2Cl_2$; d $MsCl - Et_3N / CH_2Cl_2$; e NaN_3 / DMF ; f 1) $LiAlH_4 / THF$, 2) $(Boc)_2O - Et_3N / CH_2Cl_2$; g $H_2 - Pd/C / MeOH$; h $Ac_2O - Pyr$.; i 1) $H_2 - Pd/C / MeOH - HCl$, 2) TFA; j TFA; k CH_2O or $CH_3(CH_2)_2CHO - NaBH_3CN / MeOH$; l $H_2 - Pd/C / MeOH - HCl$; m TsCl - Pyr.; n $BnBr - Ag_2O - Kl / DMF$; o 1) CH_2O or $CH_3CHO - NaBH_3CN / MeOH$, 2) $H_2 - Pd/C / MeOH - HCl$.

 $a\ \ NH_4OAc$ - $NaBH_3CN$ / MeOH; $b\ \ (Boc)_2O$ - Et_3N / $CH_2Cl_2;$ c 1) Pd/C / MeOH - HCl, 2) TFA.

SUBSTITUTE SHEET (RULE 26)

SUBSTITUTE SHEET (RULE 26)

4.15

	HO NH HO NHAC	HO-N-Me HO-NHAC	HO NH HO NHAC 103	HO-N-Me HO-N-Me NHAC
芝		24nM		
	HO NH HO NHAC	HQN NHAC 106	HO 0H 0HO 101	11/20 SOHOHOH
室	1200nM	860nM	IC ₅₀ MUG C<sub 50MUGS ~ 10µm	IC ₅₀ MUG=100µm IC ₅₀ MUGS<10µm
	Not assayed yet			
			1 -	

isopropenyl acetate, 85% from 113; f. O₃, Me₂S; g. DHAP, RAMA, pH=6.5; acid pase 37°C, pH=4.7; 44% for (R), 30% for (S); a. Me₃S⁺I/NaH, DMSO/THF; b. NaN₃, acetone/H₂O, 82% from 110: c. MsCl, Pyr. 96%; d. HMTA, NaI/EtOH; HCl, 65°C; e. h. Pd-C/H₂, 80%; i. CH₂O, Pd-C/H₂, 90%.

a. MsCl, Pyr, NaN₃, CH₂Cl₂, 87% for 2 steps; b. PPh₃, THF; Ac₂O, Pyr. 87% from 118; c. Pd-C/H₂ 50 psi, 89%.

a. H₂O₂, PhCN; NaN₃, pH=7.5; Ac₂O, Pyr. 76% for 3 steps; b. PS-80, pH=7.0, 45%, 98%ee; c. Ph₃P, toluene, 120°C; d. Ac₂O, K₂CO₃, 30% for 2 steps; e. NaN₃, ZnCl₂/Et₂O, DMF 75°C, 62%; f. pH=1, 45°C; DHAP, RAMA, pH=6.5; pH=4.7, acid pase, 37°C, 55% for 3 steps; g. Pd-C/H₂, 87%; CH₂O, Pd-C/H₂, 92%.

a. Lawesson's reagent, toluene, 80°C; b. MeONa/MeOH, 85% for 2 steps; c. SO₃·NMe₃, Pyr. 0°C, 87%.

a. TBDMSCI, TEA, 0°C, DMF, overnight, 88%; b. Ac₂O, Pyridine, 0°C-rt. ; c. AcOH/H₂O/THF(5:1:3), 50°C. overnight, 75% for two steps; d. SO₃/Pyr, pyridine, 25 °C. 82%; e. cat. MeONa, MeOH, 85%

a. TBDMSOTf, TEA, 0 °C, DMF, 1.0 h, 90%; b. BnBr, NaH, 0 °C - 25 °C, 90%; c. TBAF, THF, 0 °C - 25 °C, 4h, 80%; d. SO₃/Pyr, pyridine, 25 °C, 80%; e. Pd(OH)₂/C, H₂, 75%

-IG. 19

a. MeOH, 50°C, 1h, 90%; b. MeONa (cat.), MeOH, 3h, 80%.