Es02B: Circuito RC - Filtri passivi

Gruppo 1G.BT Lorenzo Cavuoti, Francesco Sacco

October 13, 2018

1 Filtro passa basso

1.1

Usando il multimetro digitale abbiamo misurato il valore di $R1 = 3.29 \pm 0.03$ e il valore di $C1 = 9.9 \pm 0.4$, la frequenza di taglio teorica risulta quindi $F_{T,teorica} = 4.9 \pm 0.2$ con errore dominato dall'incertezza sulla misura della capacità del condensatore. Sempre dalla teoria sappiamo che il guadagno è dato da

$$A_f = \frac{1}{\sqrt{1 + (f/f_T)^2}} \tag{1}$$

Per $f\approx 0$ $A_f\approx 1$, ovvero a bassa frequenza il filtro non attenua il segnale, per f=2kHz $A_{Vteorica}=0.93\pm0.02$ invece per f=20kHz $A_{Vteorica}=0.238\pm0.006$

1.2

Dalla misura con l'oscilloscopio risulta $A_V(2kHz)_{mis} = 0.92 \pm 0.05$ e $A_V(20kHz)_{mis} = 0.241 \pm 0.013$ entrambi compatibili entro una barra di errore dalla misura teorica.

La frequenza di taglio misurata vedendo la frequenza a -3dB risulta $f_T = 4.83 \pm 0.05 kHz$ con errore dominato dall'incertezza sulla scelta della frequenza, anche in questo caso il risultato è compatibile con il valore teorico atteso.

f[Hz]	$V_{in}[V]$	$\sigma[V]$	$V_{out}[V]$	$\sigma[V]$	A_V	σ
56	12.5	0.5	12.4	0.5	0.99	0.06
100	12.5	0.5	12.5	0.5	1.00	0.06
194	12.5	0.5	12.5	0.5	1.00	0.06
467	12.5	0.5	12.4	0.5	0.99	0.06
$2.08 \mathrm{\ k}$	12.5	0.5	11.7	0.5	0.94	0.06
$4.85~\mathrm{k}$	12.5	0.5	8.9	0.4	0.71	0.04
$8.56~\mathrm{k}$	12.5	0.5	6.2	0.3	0.50	0.03
20.0 k	12.5	0.5	3.01	0.13	0.241	0.015
$22.5 \mathrm{\ k}$	12.5	0.5	2.68	0.11	0.214	0.012
$76.1 \mathrm{\ k}$	12.5	0.5	0.80	0.04	0.064	0.004
$96.4~\mathrm{k}$	12.5	0.5	0.63	0.03	0.050	0.003
$294 \mathrm{\ k}$	12.5	0.5	0.21	0.01	0.0167	0.0009
$1.07~\mathrm{M}$	12.5	0.5	0.055	0.002	0.0044	0.0003

Table 1: Valori di tensione in entrata e in uscita in funzione della frequenza misurati per il filtro passa basso