Step 1 - Launching

import pandas as pd dataset = pd.read_csv("general_data.csv") dataset Out[3]: Age Attrition ... YearsSinceLastPromotionYearsWithCurrManager 0 51 No ... 0 0 31 Yes ... 4 1 2 32 No ... 0 3 3 38 No ... 7 5 4 32 No ... 0 4405 42 No ... 0 2 4406 29 No ... 0 2 4407 25 No ... 1 2 7 4408 42 No ... 8 4409 40 No ... 3 9 [4410 rows x 24 columns] head() - To get first 5 records of dataset we use head() dataset.head() Out[4]: Age Attrition ... YearsSinceLastPromotion YearsWithCurrManager 0 51 No ... 1 31 Yes ... 1 4

0

7

3

5

2 32

3 38

No ...

No ...

4 32 No ... 0 4

[5 rows x 24 columns]

columns - To get columns in dataset we use columns

dataset.columns

Out[5]:

Index(['Age', 'Attrition', 'BusinessTravel', 'Department', 'DistanceFromHome',

'Education', 'EducationField', 'EmployeeCount', 'EmployeeID', 'Gender',

'JobLevel', 'JobRole', 'MaritalStatus', 'MonthlyIncome',

'NumCompaniesWorked', 'Over18', 'PercentSalaryHike', 'StandardHours',

'StockOptionLevel', 'TotalWorkingYears', 'TrainingTimesLastYear',

'YearsAtCompany', 'YearsSinceLastPromotion', 'YearsWithCurrManager'],

dtype='object')

<u>Step 2 – Data Treatment</u>

isnull() - To check null records in dataset we use isnull()

dataset.isnull()

Out[6]:

Age Attrition ... YearsSinceLastPromotion YearsWithCurrManager

) False False ... False False

1 False False ... False False

2 False False ... False False

3 False False ... False

4 False False ... False False

...

4405 False False ... False False

```
4406FalseFalseFalseFalse4407FalseFalseFalseFalse4408FalseFalseFalseFalse4409FalseFalseFalseFalse[4410rows x 24 columns]
```

duplicated() - To check duplicate records in dataset we use duplicated()

dataset.duplicated()

Out[7]:

- 0 False
- 1 False
- 2 False
- 3 False
- 4 False
- 4405 False
- 4406 False
- 4407 False
- 4408 False
- 4409 False

Length: 4410, dtype: bool

drop_duplicates() - To drop duplicate records in dataset we use drop_duplicates()

dataset.drop_duplicates()

Out[8]:

Age Attrition ... YearsSinceLastPromotion YearsWithCurrManager

0	51	No	0	0
1	31	Yes	1	4
2	32	No	0	3
3	38	No	7	5

4 3	2 1	No	0	4		
4405	42	No	0	2		
4406	29	No	0	2		
4407	25	No	1	2		
4408	42	No	7	8		
4409	40	No	3	9		
[4410 rows x 24 columns]						

Step 3 - Univariate Analysis

describe() - gives all results like count, mean, std, min, 25%, 50%, 75%, max etc.

 $\label{lem:companies} dataset \cite{Companies} dataset \cite{Companie$

Out[9]:

	Age YearsW	'ithCurrManager			
count	4410.000000	4410.000000			
mean	36.923810	4.123129			
std	9.133301	3.567327			
min	18.000000	0.000000			
25%	30.000000	2.000000			
50%	36.000000	3.000000			
75%	43.000000	7.000000			
max	60.000000	17.000000			
[8 rows x 11 columns]					

mean() - finds average values

dataset[['Age','DistanceFromHome','Education','MonthlyIncome', 'NumCompaniesWorked', 'PercentSalaryHike','TotalWorkingYears', 'TrainingTimesLastYear', 'YearsAtCompany','YearsSinceLastPromotion', 'YearsWithCurrManager']].mean()

Out[10]:

Age 36.923810

DistanceFromHome 9.192517

Education 2.912925

MonthlyIncome 65029.312925

NumCompaniesWorked 2.694830

PercentSalaryHike 15.209524

TotalWorkingYears 11.279936

TrainingTimesLastYear 2.799320

YearsAtCompany 7.008163

YearsSinceLastPromotion 2.187755

YearsWithCurrManager 4.123129

dtype: float64

median() - Finds middle value

'Years At Company', 'Years Since Last Promotion', 'Years With Curr Manager']]. median ()

Out[11]:

Age 36.0

DistanceFromHome 7.0

Education 3.0

MonthlyIncome 49190.0

NumCompaniesWorked 2.0

PercentSalaryHike 14.0

TotalWorkingYears 10.0

TrainingTimesLastYear 3.0

YearsAtCompany 5.0

YearsSinceLastPromotion 1.0

YearsWithCurrManager 3.0

dtype: float64

mode() - Finds most repeated value

dataset[['Age','DistanceFromHome','Education','MonthlyIncome', 'NumCompaniesWorked', 'PercentSalaryHike','TotalWorkingYears', 'TrainingTimesLastYear', 'YearsAtCompany','YearsSinceLastPromotion', 'YearsWithCurrManager']].mode()

Out[12]:

Age DistanceFromHome ... YearsSinceLastPromotion YearsWithCurrManager

0 35 2 ... 0 2

[1 rows x 11 columns]

var() - Measures the variability of data

dataset[['Age','DistanceFromHome','Education','MonthlyIncome', 'NumCompaniesWorked', 'PercentSalaryHike','TotalWorkingYears', 'TrainingTimesLastYear',

'YearsAtCompany', 'YearsSinceLastPromotion', 'YearsWithCurrManager']].var()

Out[13]:

Age 8.341719e+01

DistanceFromHome 6.569144e+01

Education 1.048438e+00

MonthlyIncome 2.215480e+09

NumCompaniesWorked 6.244436e+00

PercentSalaryHike 1.338907e+01

TotalWorkingYears 6.056298e+01

TrainingTimesLastYear 1.661465e+00

YearsAtCompany 3.751728e+01

YearsSinceLastPromotion 1.037935e+01

YearsWithCurrManager 1.272582e+01

dtype: float64

std() - Finds consistency of data

dataset[['Age','DistanceFromHome','Education','MonthlyIncome', 'NumCompaniesWorked', 'PercentSalaryHike','TotalWorkingYears', 'TrainingTimesLastYear',

'YearsAtCompany', 'YearsSinceLastPromotion', 'YearsWithCurrManager']].std()

Out[14]:

Age 9.133301

DistanceFromHome 8.105026

Education 1.023933

MonthlyIncome 47068.888559

NumCompaniesWorked 2.498887

PercentSalaryHike 3.659108

TotalWorkingYears 7.782222

TrainingTimesLastYear 1.288978

YearsAtCompany 6.125135

YearsSinceLastPromotion 3.221699

YearsWithCurrManager 3.567327

dtype: float64

skew() - finds symmentricness of data

'YearsAtCompany', 'YearsSinceLastPromotion', 'YearsWithCurrManager']].skew()

Out[15]:

Age 0.413005

DistanceFromHome 0.957466

Education -0.289484

MonthlyIncome 1.368884

NumCompaniesWorked 1.026767

PercentSalaryHike 0.820569

TotalWorkingYears 1.116832

TrainingTimesLastYear 0.552748

YearsAtCompany 1.763328

YearsSinceLastPromotion 1.982939

YearsWithCurrManager 0.832884

dtype: float64

kurt() - finds peakness

dataset[['Age','DistanceFromHome','Education','MonthlyIncome', 'NumCompaniesWorked', 'PercentSalaryHike','TotalWorkingYears', 'TrainingTimesLastYear', 'YearsAtCompany','YearsSinceLastPromotion', 'YearsWithCurrManager']].kurt()

Out[17]:

Age -0.405951

DistanceFromHome -0.227045

Education -0.560569

MonthlyIncome 1.000232

NumCompaniesWorked 0.007287

PercentSalaryHike -0.302638

TotalWorkingYears 0.912936

TrainingTimesLastYear 0.491149

YearsAtCompany 3.923864

YearsSinceLastPromotion 3.601761

YearsWithCurrManager 0.167949

dtype: float64

Outliers -

There's no regression found while plotting Age, MonthlyIncome, YearsAtCompany on a scatter plot.

import matplotlib.pyplot as plt

box_plot = dataset.MonthlyIncome

plt.boxplot(box_plot)

Out[22]:

{'whiskers': [<matplotlib.lines.Line2D at 0x22f2587bc88>,

<matplotlib.lines.Line2D at 0x22f2587bf48>],

'caps': [<matplotlib.lines.Line2D at 0x22f258ca048>,

<matplotlib.lines.Line2D at 0x22f250d71c8>],

'boxes': [<matplotlib.lines.Line2D at 0x22f2587bcc8>],

'medians': [<matplotlib.lines.Line2D at 0x22f25882a08>],

'fliers': [<matplotlib.lines.Line2D at 0x22f258c9808>],

'means': []

MonthlyIncome is Right skewed with several outliers.

Age is normally distributed without any outliers.

 $Years At Company is \ right \ skewed \ with \ several \ outliers.$