Towards Superalignment via Weak-to-Strong Generation

Runyi Hu

2025.4.23

Overview

- Background
- Weak-to-Strong Generation (Paper 1-3)
- Weak-to-Strong Deception (Paper 4)
- Future Direction

Alignment

- Targets
 - "3H": Helpfulness, Harmlessness, Honesty.
- Methods
 - SFT, RLHF, RLAIF, DPO.
- Focuses
 - Constructing Higher-quality Data.
 - Improving Optimization Algorithms.

Superalignment

- What is it?
 - Aligning superintelligent AI systems, who vastly surpass human intelligence.
- Challenges
 - Limited High-quality Data.
 - Human-determined Upper Bound.
 - Assessment Difficulty.

Weak-to-Strong (W2S)

Humans supervising Superhuman models

Weak models supervising Strong models

Image Source: https://arxiv.org/abs/2312.09390

Why W2S Possible?

- Strong models should already have good **representations** of the alignment-relevant tasks we care about.
- The weak supervisor can elicit what the strong model already knows.

Overview

- Background
- Weak-to-Strong Generation (Paper 1-3)
- Weak-to-Strong Deception (Paper 4)
- Future Direction

Weak-to-Strong Generation Overview

WEAK-TO-STRONG GENERALIZATION: ELICITING STRONG CAPABILITIES WITH WEAK SUPERVISION

Collin Burns* Pavel Izmailov* Jan Hendrik Kirchner* Bowen Baker* Leo Gao*

Leopold Aschenbrenner* Yining Chen* Adrien Ecoffet* Manas Joglekar*

Jan Leike Ilya Sutskever Jeff Wu*

OpenAI

ICML 2024

Motivation

• Explore whether simply using a weak model to provide incomplete or flawed SFT signals to a strong model can be effective.

Method

Setting

- Tasks
 - NLP Tasks
 - Chess Puzzles
 - Reward Modeling
- Metrics
 - Accuracy and Performance Gap Recovered (PGR)

Main Results

Improving Methods (Bootstrapping)

$$\mathcal{M}_1 \to \mathcal{M}_2 \to \ldots \to \mathcal{M}_n$$

Improving Methods (Auxiliary Confidence Loss)

$$L_{\text{conf}}(f) = (1 - \alpha) \cdot \text{CE}(f(x), f_w(x)) + \alpha \cdot \text{CE}(f(x), \hat{f}_t(x))$$

Improving Methods (Generative FT: UnSFT via LM Loss)

• Improving the concept saliency.

Weak-to-Strong Search: Align Large Language Models via Searching over Small Language Models

Zhanhui Zhou*†, Zhixuan Liu*, Jie Liu, Zhichen Dong, Chao Yang, Yu Qiao

*Core Contribution, †Corresponding Author asap.zzhou@gmail.com

Code: https://github.com/ZHZisZZ/weak-to-strong-search

Motivation

• The difference between small tuned and untuned language models can be adopted to guide the decoding of a large model.

Method

• Using the small model to guide the generation of optimal semantic chunk combinations for the final response.

Setting

- Tasks
 - Controlled-sentiment generation
 - Summarization
 - Instruction-following
- Metric
 - RM
 - GPT-4-Turbo as the Judge

Results

- Weak Model: GPT2 (124M)
- Strong Model: GPT2-large (774M), GPT2-xl (1.5B)

Results

MACPO: Weak-to-Strong Alignment via Multi-Agent Contrastive Preference Optimization

Yougang Lyu¹ Lingyong Yan² Zihan Wang¹

Dawei Yin² Pengjie Ren³ Maarten de Rijke¹ Zhaochun Ren^{4*}

¹University of Amsterdam ²Baidu Inc. ³Shandong University {youganglyu,lingyongy,zihanwang.sdu}@gmail.com, yindawei@acm.org

jay.ren@outlook.com, m.derijke@uva.nl, z.ren@liacs.leidenuniv.nl

Motivation

• Weak models and strong model can learn from each other and make progress together.

Method

- Initialization.
- Iteration:
 - Producing samples.
 - DPO tunning (positive agents).

Setting

- Tasks
 - Preference alignment
- Metric
 - RM
 - GPT-4 as the judge
 - Human

Results

Method	HH-Helpful	HH-Harmless	PKU-SafeRLHF	Average
Strong-to-weak alignment				
RLAIF	45.26	56.37	59.21	53.61
RLCD	52.77	59.23	53.77	55.26
Self-alignment				
SPIN (iter1)	40.71	58.63	55.52	51.62
SPIN (iter2)	38.81	58.28	40.97	46.02
Self-rewarding (iter1)	48.32	57.27	59.29	54.96
Self-rewarding (iter2)	51.79	57.77	60.14	56.57
Self-rewarding (iter3)	49.27	57.22	60.38	55.62
Weak-to-strong alignment				
Naive SFT	38.30	58.49	51.44	49.41
Confident loss	37.09	59.29	50.83	49.07
MACPO (iter1)	58.06	59.20	61.16	59.47
MACPO (iter2)	69.08	69.55	63.43	67.35
MACPO (iter3)	69.81	70.25	63.49	67.85

	HH-Helpful			HH-Harmless			PKU-SafeRLHF			
Method	Win	Tie	Lose	Win	Tie	Lose	Win	Tie	Lose	Avg. gap
Strong-to-weak alignment MACPO vs RLAIF MACPO vs RLCD	87.00* 69.00*	5.00 16.00	8.00 15.00	76.00* 66.00*		8.00 22.00	49.00* 67.00*		16.00 8.00	+60.00 +52.33
Self-alignment MACPO vs SPIN MACPO vs Self-rewarding	87.00* 77.00*	9.00 13.00	4.00 10.00	75.00* 72.00*		9.00 12.00	62.00* 44.00*		7.00 18.00	+68.00 +51.00
Weak-to-strong alignment MACPO vs Naive SFT MACPO vs Confident loss	89.00* 87.00*	9.00 10.00	2.00 3.00	76.00* 80.00*		10.00 7.00	83.00* 76.00*		2.00 3.00	+78.00 +76.67

	HH-Helpful			HH-Harmless			PKU-SafeRLHF			
Method	Win	Tie	Lose	Win	Tie	Lose	Win	Tie	Lose	Avg. gap
Strong-to-weak alignment MACPO vs RLCD	74.00*	14.00	12.00	50.00*	27.00	23.00	80.00*	15.00	5.00	+54.67
Self-alignment MACPO vs Self-rewarding	80.00*	9.00	11.00	66.00*	15.00	19.00	56.00*	28.00	16.00	+52.00
Weak-to-strong alignment MACPO vs Confident loss	91.00*	6.00	3.00	69.00*	17.00	14.00	90.00*	9.00	1.00	+77.33

Overview

- Background
- Weak-to-Strong Generation (Paper 1-3)
- Weak-to-Strong Deception (Paper 4)
- Future Direction

SUPER(FICIAL)-ALIGNMENT: STRONG MODELS MAY DECEIVE WEAK MODELS IN WEAK-TO-STRONG GENERALIZATION

Wenkai Yang¹, Shiqi Shen², Guangyao Shen², Wei Yao¹, Yong Liu¹, Zhi Gong², Yankai Lin^{1*}, Ji-Rong Wen¹

¹Gaoling School of Artificial Intelligence, Renmin University of China, Beijing, China

²WeChat, Tencent Inc., Beijing, China

Weak-to-Strong Deception

Multi-objective Alignment

Method

Setting

- Weak-to-Strong Alignment Objectives
 - No Conflict: harmlessness

$$\tilde{\boldsymbol{\theta}}_{s}^{w} = \operatorname*{arg\,min}_{\boldsymbol{\theta}_{s}} \mathbb{E}_{x \sim D_{weak}} \mathcal{L}_{CE} \big(M_{\boldsymbol{\theta}_{s}}(x), M_{\boldsymbol{\theta}_{w}^{gt}}(x) \big).$$

• Implicit Conflict: harmlessness and helpfulness

$$\boldsymbol{\theta}_{s}^{w} = \underset{\boldsymbol{\theta}_{s}}{\operatorname{arg\,min}} \left[\mathbb{E}_{x \sim D_{weak}} \mathcal{L}_{CE} \left(M_{\boldsymbol{\theta}_{s}}(x), M_{\boldsymbol{\theta}_{w}^{gt}}(x) \right) + \mathbb{E}_{x \sim D_{helpful}} \mathcal{L}_{CE} \left(M_{\boldsymbol{\theta}_{s}}(x), 1 \right) \right].$$

• Explicit Conflict: harmlessness and harmfulness

$$\boldsymbol{\theta}_{s}^{w} = \operatorname*{arg\,min}_{\boldsymbol{\theta}_{s}} \mathbb{E}_{x \sim D_{weak}} \left[\mathcal{L}_{CE} \left(M_{\boldsymbol{\theta}_{s}}(x), M_{\boldsymbol{\theta}_{w}^{gt}}(x) \right) + \alpha \mathcal{L}_{CE} \left(M_{\boldsymbol{\theta}_{s}}(x), 0 \right) \cdot \mathbb{I}_{\{M_{\boldsymbol{\theta}_{s}}(x) < 0.5\}} \right],$$

Setting

- Tasks
 - Reward Modeling
 - Preference Alignment
- Metrics

$$\text{Deception Score } = \frac{|\{M_{\tilde{\boldsymbol{\theta}}_{s}^{w}}(x) \geq 0.5, M_{\boldsymbol{\theta}_{s}^{w}}(x) < 0.5, x \in S_{k} \cap W_{uk}\}|}{|\{M_{\tilde{\boldsymbol{\theta}}_{s}^{w}}(x) \geq 0.5, M_{\boldsymbol{\theta}_{s}^{w}}(x) < 0.5\}|},$$

Results

Reward Modeling

Preference Alignment

Analysis

Stronger models themselves
 tend to be more prone to
 deceiving weak models in
 weak model's unknown areas.

How to Tackle Weak-to-Strong Deception?

 Bootstrapping can indeed mitigate the deception issue to some extent.

Fix the ultimate strong model to Mistral-7B

Overview

- Background
- Weak-to-Strong Generation (Paper 1-3)
- Weak-to-Strong Deception (Paper 4)
- Future Direction

Weak-to-Strong's Direction

- How to make the setup more analogous?
- How can we thoroughly understand precisely when and why our methods work?
- How to obtain a stronger foundation model?
- How to evaluate?
- How to mitigate deception?

Weak-to-Strong is Not Enough

The Way to ASI?

- Reducing human intervention can actually enhance model capabilities.
 - Expert Feature Data Experience (Pre LLM LLM ?)
 - AlphaZero (37 moves), R1-Zero (aha moment)
- Safety alignment may still requires human intervention (rules or data).

Thanks!