

09	120	174	222	270	318	366	414	462
GGCGGCCGCA GCCTCGGCTA CAGCTTCGGC GGCGAAGGTC AGCGCCGACG GCAGCCGGCA	CCTGACGGCG TGACCGACCC GAGCCGATTT CTCTTGGATT TGGCTACACA CTTATAGATC	TTCTGCACTG TTTACAGGCA CAGTTGCTGA TATGTGTTCA AG ATG AGT GGG ATG Met Ser Gly Met	GGA GAA AAT ACC TCT GAC CCC TCC AGG GCA GAG ACA AGA AAG CGC AAG Gly Glu Asn Thr Ser Asp Pro Ser Arg Ala Glu Thr Arg Lys 5	GAA TGT CCT GAC CAA CTT GGA CCC AGC CCC AAA AGG AAC ACT GAA AAA Glu Cys Pro Asp Gln Leu Gly Pro Ser Pro Lys Arg Asn Thr Glu Lys 30	CGT AAT CGT GAA CAG GAA AAT AAA TAT ATA GAA GAA CTT GCA GAG TTG Arg Asn Arg Glu Gln Glu Asn Lys Tyr Ile Glu Glu Leu Ala Glu Leu 45	ATT TTT GCA AAT TTT AAT GAT ATA GAC AAC TTT AAC TTC AAA CCT GAC Ile Phe Ala Asn Phe Asn Asp Ile Asp Asn Phe Asn Phe Lys Pro Asp 65	AAA TGT GCA ATC TTA AAA GAA ACT GTG AAG CAA ATT CGT CAG ATC AAA Lys Cys Ala Ile Leu Lys Glu Thr Val Lys Gln Ile Arg Gln Ile Lys 75	GAA CAA GAG AAA GCA GCA GCT GCC AAC ATA GAT GAA GTG CAG AAG TCA Glu Gln Glu Lys Ala Ala Ala Ala Asn Ile Asp Glu Val Gln Lys Ser 85

FIG.1A

LOBEND BESTEPPE

510	558	909	654	702	750	798	846
			•				
666 61y	CTG Leu	AGG Arg	CAT His	ATA 11e 180	CAT His	GAG Glu	CAG G1n
CTG Leu 115	AAC Asn	CTA Leu	TTG Leu	TCT Ser	AGC Ser 195	GAA G1u	ATG Met
GCG Ala	GTG Val 130	TAT Tyr	ATC Ile	AAG Lys	AAC Asn	TCA Ser 210	ACT Thr
GAT Asp	GTA Val	CAG G1n 145	AGC Ser	CCA Pro	CGG Arg	GAT Asp	GAA G1u 225
AAG	TTT Phe	ACA Thr	TAT Tyr 160	CTG Leu	AGG Arg	CCT Pro	TAT Tyr
GAC Asp	TTC	GTG Val	GTA Val	CTG Leu 175	CCG Pro	TTA Leu	AAA Lys
ATC Ile 110	TTC Phe	AAT Asn	AGT Ser	AAC Asn	CCT Pro 190	CCT Pro	CAG Gln
GTC Val	666 61y 125	GAG G1u	AAA Lys	AAA Lys	GAA G1u	AAA Lys 205	CAT His
GGT Gly	GAT Asp	TCA Ser 140	AAC Asn	GTC Val	66C 61y	GTA Val	GCT Ala 220
CAG G1n	CTT	GTG Val	ATG Met 155	Phe	TCT Ser	CTG Leu	GAA G1u
666 61y	GCC Ala	TTT Phe	CTG Leu	GAA G1u 170	TGG Trp	ATG Met	CAG G1n
ACA Thr 105	GAG G1u	GTG Val	GAG G1u	ACG Thr	TCT Ser 185	CGG Arg	AAC Asn
TCT Ser	CTT Leu 120	GTT Val	GAA G1u	CAC His	GGA G1y	TGT Cys 200	GAT Asp
TCC Ser	ATG	AAC Asn 135	CAA G1n	GAC Asp	666 61y	AAT Asn	CAT His 215
GTA Val	ATG Met	66C 61y	AAC Asn 150	666 61y	AAT Asn	TTC Phe	GGT Gly
GAT Asp	CCT	GAA Glu	TAT Tyr		GTA Val	ACC Thr	GAG G1u

FIG.1B

coates assess

894	942	066	1038	1086	1134	1182	1230
GAT Asp	GAA G1u 260	CTC Leu	ATG Met	CAT His	CAT His	TCC Ser 340	ATC Ile
GAA Glu	AAG Lys	GAT Asp 275	GCC Ala	TTC	CAT His	Phe	CTC Leu 355
GGA G13	ATG Met	CAG G1n	GCA Ala 290	AAG Lys	CAT His	CGT Arg	AAA Lys
GAA G1u	CCC Pro	CGC Arg	AGA. Arg	CAG G1n 305	AGG Arg	TAT Tyr	AGC Ser
GAA G1u 240	GTT Val	ACT Thr	ATG Met	ATT	AAG Lys 320	ATC Ile	AAG Lys
AAA Lys	AGA Arg 255	ACT Thr	ACC Thr	TGT Cys	GCT Ala	CAA G1n 335	ACG Thr
ATC Ile	AGA Arg	TTT Phe 270	AGC Ser	AGG Arg	TAT	AGT Ser	CAA G1n 350
TCC Ser	GCA Ala	AGT Ser	ACC Thr 285	AGA Arg	TCC Ser	TTC Phe	GCA Ala
AAG Lys	GTG Val	GAA G1u	GAT Asp	GTA Val 300	GTG Val	GCA Ala	GCT Ala
CCA Pro 235	TGC Cys	TCA Ser	CTG	CTG Leu	TCT Ser 315	TTG	GTT Val
CAA G1n	ATT Ile 250	TCA Ser	TCT Ser	GAC Asp	GAA G1u	GGA G1y 330	CTT
TCT Ser	TTG Leu	CCC Pro 265	ACG Thr	GAG Glu	GGA Gly	CAA G1n	ACT Thr 345
GTC Val	TGC Cys	CTT	ATC Ile 280	TGG Trp	GAA G1u	AGA Arg	66C 61y
GCT Ala	TCC Ser	GTT Val	AAG Lys	66C 61y 295	CAT His	CTG Leu	GAT Asp
TTC Phe 230	CAG G1n	CCA Pro	66C 61y	CCA Pro	CAG Gln 310	GTA Val	TCT
7GC Cys	TTG Leu 245	AGA Arg	CAA G1n	AAA Lys	GCG Ala	GAA G1u 325	TTG Leu

FIG.1C

Loasto, asserato

1278	1326	1374	1422	1470	1518	1566	1614
GTA ATA TCT TTA CAT ATG Val Ile Ser Leu His Met 370	AAT CCG GAT CTG ACT GGA Asp Leu Thr Gly 385	AGC TCT AAC AGC CCT GCC Ser Ser Asn Ser Pro Ala 400	CAG GAC ATG ACC CTC AGT Gln Asp Met Thr Leu Ser 415	AAG GAA CAA ATG GGC ATG Lys Glu Gln Met Gly Met 435	ATG AAC CAT GTG TCA GGC Met Asn His Val Ser Gly 450	TAT GCA CTC AAA ATG AAC Tyr Ala Leu Lys Met Asn 465	CCA GGA CAG CCC ACC TCC Pro Gly Gln Pro Thr Ser 480
T CAA CTT o G1n Leu 365	T GTG ATG s Val Met 0	T CCA ATT n Pro Ile	C CCA GGT n Pro Gly	T GGC CCA n Gly Pro 430	T GGG GGA r Gly Gly 445	T AGT AAC y Ser Asn	S ATG AAT / Met Asn
AAT GAA CCT Asn Glu Pro	AAT GTG TGT Asn Val Cys 380	CCA CTG AAT Pro Leu Asn 395	AGT GGG AAC Ser Gly Asn 410	CCC ATA AAT Pro Ile Asn	GGT GGT TCT Gly Gly Ser	CCT CAG GGT Pro Gln Gly 460	AGC CCT GGC Ser Pro Gly 475
ACT ACT A Thr Thr A 360	GAG CAG A Glu Gln A	GGG AAG CI Gly Lys P	CTG TGC A(Leu Cys S(AAT TTT CO Asn Phe Pi 425	AGG TTT GG Arg Phe G	ACC ACT CC Thr Thr Pr	caa agc ag Gln Ser Se
CGT TCT CAG Arg Ser Gln	CTT CAC AGA Leu His Arg 375	CAA ACG ATG Gln Thr Met 390	CAT CAG GCC His Gln Ala 405	AGC AAT ATA , Ser Asn Ile ,	CCC ATG GGC / Pro Met Gly /	ATG CAA GCA / Met Gln Ala 455	AGC CCC TCA (Ser Pro Ser (470
•			<u> </u>	401	<u> О</u> Ц	~~	40)

FIG. 1D

COBHES " SEELABOT

1662	1710	1758	1806	1854	1902	1950	1998
CCT Pro 500	CCT Pro	AGC Ser	TTA Leu	AAC Asn	77G Leu 580	ACA Thr	ACA Thr
AGC Ser	TCC Ser 515	AAC Asn	TCA Ser	CAA G1n	AGC Ser	GGT G1 <i>y</i> 595	GAA G1u
66C 61y	CAT His	ACC Thr 530	GTC Val	TTG Leu	GGA Gly	GAA G1u	AAG Lys 610
GCT Ala	TTG Leu	TAT Tyr	666 61y 545	AAT Asn	ATG Met	TCT Ser	CAA G1n
GTG Val	AGC Ser	AGT Ser	CAC His	66C 61y 560	AAG Lys	CCC	GAG G1u
66A 61y 495	GGA Gly	CAT	666 G1y	ATG Met	AGC Ser 575	GAG G1u	66A G1y
CCT Pro	GCA Ala 510	AGC Ser	GAG G1u	AAA Lys	CTC Leu	666 61y 590	CCT Pro
AGC Ser	CCT Pro	AAT Asn 525	AGC Ser	CTA Leu	CCA Pro	TAT Tyr	CAT His 605
ATG Met	TCC	GGA G1y	CTC Leu 540	GAC Asp	CCC Pro	CTA Leu	TGC Cys
CGC Arg	TTT Phe	ACA Thr	GCC Ala	CCA Pro 555	CCT Pro	GGA G1y	AGC Ser
CAT His 490	CAG G1n	AGC Ser	CAG G1n	TCA	AAT Asn 570	TTT	AGC Ser
AGG Arg	AGT Ser 505	AGC Ser	CTT	GCT Ala	ATG Met	TGT Cys 585	GAG G1u
CCA	CCC Pro	TGC Cys 520	GCA Ala	TTG Leu	AAT Asn	GAC Asp	GCA Ala 600
TCA	CCA Pro	GTT Val	AAT Asn 535	TCG Ser	GTT Va.l	AAA Lys	CAA G1n
CTT Leu	ATC Ile	66A 61y	CTC	TCA Ser 550	CCA Pro	TCA Ser	GGA G1y
ATG Met 485	CGA Arg	GTG Val	TCC Ser	666 61y	TCC Ser 565	GAC Asp	ACT Thr

FIG.1E

COSTACT SERVING TO THE PROPERTY OF THE PROPERT

2046	2094	2142	2190	2238	2286	2334	2382
666 61y	CTG Leu	TCT Ser 660	666 61y	AGA Arg	GCA Ala	CCT Pro	AAA Lys 740
GAC Asp	CAG G1n	AGC Ser	TCT Ser 675	CAC His	ACA Thr	GCT Ala	AAG Lys
GCT Ala	CTG	GCC Ala	.GGT G1y	TTG Leu 690	TTA Leu	ACA Thr	AAG Lys
AGA Arg 625	CTC	TTA	CCT Pro	ATT Ile	AAG Lys 705	AGC Ser	CCC Pro
GAG Glu	AAA Lys 640	CCC Pro	TTG Leu	AAA Lys	GCC A1a	AGC Ser 720	AGC Ser
AGT Ser	ACC Thr	TCG Ser 655	AGC Ser	CAT His	TTG Leu	TCC Ser	GTG Val 735
AGC Ser	CAG G1n	CCC Pro	GGT G1y 670	AAG Lys	GAC Asp	GAG G1u	CCG Pro
GTG Val	666 61y	GAG G1u	ACA Thr	GAG G1u 685	GTG Val	CAG G1n	GAG G1u
GCC A1a 620	AAA Lys	ATG Met	TCC Ser	AAG Lys	CCT Pro 700	AGC Ser	CAA G1n
CCG Pro	AGC Ser 635	CAG G1n	GAC Asp	CTC	TCC Ser	CTG Leu 715	AAA Lys
CCC Pro	GAC Asp	GAT ASP 650	AAA Lys	TCG Ser	AGT Ser	GAC Asp	ATT 11e 730
CTG Leu	CAT His	TCT	AAC Asn 665	ACC Thr	AGC Ser	AAA	ACT Thr
AAC Asn	CTG	AAA Lys	ACA	GGA G1y 680	GAC Asp	66C 61y	GTG Val
CCC Pro 615	AGA Arg	ACC Thr	GAT Asp	CAT His	CAG Gln 695	ACA Thr	GAA Glu
GAC Asp	AGC Ser 630	ACC	TCG Ser	ACA Thr	TTG	GCC Ala 710	TCA Ser
AAT Asn	CAG G1n	CTG Leu 645	TTG	TCT Ser	CTC	GAA Glu	GGA G1y 725

FIG.1F

COMPAGE SERVICE

2430	2478	2526	2574	2622	2670	2718	2766
AAT GCA CTA CTT CGC TAT TTG CTA GAT AAA GAT GAT ACT AAA GAT Asn Ala Leu Leu Arg Tyr Leu Leu Asp Lys Asp Asp Thr Lys Asp 750	GGT TTA CCA GAA ATA ACC CCC AAA CTT GAG AGA CTG GAC AGT AAG Gly Leu Pro Glu Ile Thr Pro Lys Leu Glu Arg Leu Asp Ser Lys 760	GAT CCT GCC AGT AAC ACA AAA TTA ATA GCA ATG AAA ACT GAG AAG Asp Pro Ala Ser Asn Thr Lys Leu Ile Ala Met Lys Thr Glu Lys 775	GAG ATG AGC TTT GAG CCT GGT GAC CAG CCT GGC AGT GAG CTG GAC Glu Met Ser Phe Glu Pro Gly Asp Gln Pro Gly Ser Glu Leu Asp 790	TTG GAG GAG ATT TTG GAT GAT TTG CAG AAT AGT CAA TTA CCA CAG Leu Glu Glu Ile Leu Asp Asp Leu Gln Asn Ser Gln Leu Pro Gln 820	TTC CCA GAC ACG AGG CCA GGC GCC CCT GCT GGA TCA GTT GAC AAG Phe Pro Asp Thr Arg Pro Gly Ala Pro Ala Gly Ser Val Asp Lys 835	GCC ATC ATC AAT GAC CTC ATG CAA CTC ACA GCT GAA AAC AGC CCT Ala Ile Ile Asn Asp Leu Met Gln Leu Thr Ala Glu Asn Ser Pro 840	ACA CCT GTT GGA GCC CAG AAA ACA GCA CTG CGA ATT TCA CAG AGC Thr Pro Val Gly Ala Gln Lys Thr Ala Leu Arg Ile Ser Gln Ser 855
GAG G1u	ATT	ACA Thr	GAG G1u	AAC Asn 805	CTT	CAA G1n	GTC Val

FIG. 10

TOBETO BUTANTED

2814	2862	2910	2958	3006	3054	3102	3150
SC AGG TTA TTG CCA AAC Y Arg Leu Leu Pro Asn 880	ic cca act ggt gct gga ir Pro Thr Gly Ala Gly 15	C TCA GTG ATA CCT CAG r Ser Val Ile Pro Gln 915	A AAC CAA GGA AAT TTA y Asn Gln Gly Asn Leu 930	it gct tct cgg cct Act r Ala Ser Arg Pro Thr 945	GCT GTG AGA GTC , Ala Val Arg Val 960	A GTC CAA GGA GGT ATG o Val Gln Gly Gly Met 5	G CCC AGC AGC CAG CCT g Pro Ser Ser Gln Pro 995
CAA CTG GGC Gln Leu Gly	TTG CAA AGC Leu G1n Ser 895	AGT CCC TAC Ser Pro Tyr 910	ATG ATA GGA Met Ile Gly 925	GGT AAC AGT Gly Asn Ser	CAG AGT TCG Gln Ser Ser	AAC CGG CCA Asn Arg Pro 975	CCC ATG AGG Pro Met Arg 990
CGA CCA GGG Arg Pro Gly 875	AC ATC ACA	ia AAC AGT ig Asn Ser	NT CAA GGG In Gln Gly	A ATG ATT y Met Ile 940	ig gca ccg p Ala Pro 955	T GCC ATG r Ala Met 0	c AGC ATC a Ser Ile
AAC CCA CG Asn Pro Ar	CCA CTT GAC Pro Leu Asp 890	CCA ATC AGA Pro Ile Arg 905	ATG GGT AAT Met Gly Asn 920	AGC ACA GGA Ser Thr Gly	GGA GAA TGG Gly Glu Trp	ACC ACC AGT Thr Thr Ser	CCA GCA GCC Pro Ala Ala 985
ACT TTT AAT Thr Phe Asn 870	CAG AAT TTA Gln Asn Leu 885	CCT TTC CCA Pro Phe Pro	CCA GGA ATG Pro Gly Met	GGG AAC AGT Gly Asn Ser 935	ATG CCA TCT Met Pro Ser 950	TGT GCT GCT Cys Ala Ala 965	ATT CGG AAC Ile Arg Asn

FIG.1H

TOBETOS COTEDA

GEG CAA AGA CAG ACG CTT CAG TCT CAG GTC ATG AAT ATA GGG CCA TCT 1005 SAA TTA GAG ATG AAC ATG GGG GGA CCT CAG TAT AGC CAA CAA CAA GCT 31U Leu Glu Met Asn Met Gly Gly Pro Gln Tyr Ser Gln Gln Gln Ala 1015 SCT CCA AAT CAG ACT GCC CCA TGG CCT GAA AGC ATC CTG CCT ATA GAC ACA CAA CAA GCA TCT CCA AAT CAG ACT GCC CCA TGG CCT GAA AGC ATC CTG CCT ATA GAC ACT GCC CAA AAC AGG CAG CAT TG CCT ATA GAC ACT GCC CAA AAC AGG CAG CCA TTT GGC AGT TCT CCA ATT GCC AAT CAG CAA AAC AGG CAG CCA TTT GGC AGT TCT CCA ATT GCC AGC CAA AAC AGG CAG CCA TTT GGC AGT TCT CCA ATT GCC AGC CAA AAC AGG CAG CCA TTT GGC AGT TCT CCA ATT GCC AGC CAA AAC AGG CAG CCA TTT GGC AGT TCT CCA ATT GCC AGC CAG TTT GCC AGC CAG ATT GAT AGA GCC TTG GGC ATT GAT AGA GCC TTG GGA ATT CCA ACT GCC CAG GCC CAG GTA GTA GAT GAT GAT GAT GAT GAT GAT G	3198	3246	3294	3342	3390	3438	3486	3534
SS SE SEL 94 99 91 48	AGA CAG ACG CTT CAG TCT CAG GTC ATG Arg Gln Thr Leu Gln Ser Gln Val Met 1000	GAG ATG AAC ATG GGG GGA CCT CAG TAT AGC CAA CAA GAU Glu Met Asn Met Gly Gly Pro Gln Tyr Ser Gln Gln Gln 1015	SAG ACT GCC CCA TGG CCT GAA AGC ATC CTG CCT ATA Sln Thr Ala Pro Trp Pro Glu Ser Ile Leu Pro Ile 1035	TTT GCC AGC CAA AAC AGG CAG CCA TTT GGC AGT TCT Phe Ala Ser Gln Asn Arg Gln Pro Phe Gly Ser Ser 1050	CTA TGT CCA CAT CCT GCA GCT GAG TCT CCG Leu Cys Pro His Pro Ala Ala Glu Ser Pro 1065	AAT TTT GAT Asn Phe Asp 1090	GAG ATT GAT AGA GCC TTA GGA ATA CCC GAA CTG GTC AGC Glu Ile Asp Arg Ala Leu Gly Ile Pro Glu Leu Val Ser 1095	CAG GAT TCC AAC Gln Asp Ser Asn 1120

FIG.11

DOBHEESS . DHESD1

3582 3630 3726 3774	3870 3918
ATG CTG GAG CAG AAG GCG CCC GTT TTC CCA CAG TAT GCA TCT CAG Met Leu Glu Gln Lys Ala Pro Val Phe Pro Gln Gln Tyr Ala Ser Gln 1125 GCA CAA ATG GCC CAG GGT AGC TAT TCT CCC ATG CAA GAT CCA AAC TTT Ala Gln Met Ala Gln Gly Ser Tyr Ser Pro Met Gln Asp Pro Asn Phe 1145 CAC ACC ATG GGA CAG CCT AGT TAT GCC ACA CTC CGT ATG CAG CCC His Thr Met Gly Gln Arg Pro Ser Tyr Ala Thr Leu Arg Met Gln Pro 1150 AGA CCG GGC CTC AGG CCC ACG GGC CTA GTG CAG AAC CAG CCA AAT CAA Arg Pro Gly Leu Arg Pro Thr Gly Leu Val Gln Asn Gln Pro Asn Gln 1175 CTA AGA CTT CAA CTT CAG CAT CGC CTC CAA GCA CAG CAG AAT CAA Arg Pro Gly Leu Gln His Arg Leu Gln Ala Gln Asn Arg Gln CCA ATG CAG CAG CAG AAT CAG CAG CAG AAT CAG CAG CAG CAG AAT CAG CAG CAG AAT CAG CAG CAG AAT CAG CAG CAG CAG AAT CAG CAG CAG AAT CAG	1220 CTG GCC Leu Ala 1235 CAA ATG Gln Met

FIG.1J

Togates azzateo

3966	4014	4062	4110	4158	4206	4254	4302
CAT CAG CAA CAG CAA GTT CAG CAA CGA ACT TTG ATG ATG AGA GGA CAA His Gln Gln Gln Val Gln Gln Arg Thr Leu Met Met Arg Gly Gln 1255	GGG TTG AAT ATG ACA CCA AGC ATG GTG GCT CCT AGT GGT ATG CCA GCA 40 Gly Leu Asn Met Thr Pro Ser Met Val Ala Pro Ser Gly Met Pro Ala 1270	SCC CAG GCA AAT GCA CAG CAG TTT CCA Pro Gln Ala Asn Ala Gln Gln Phe Pro 1295	AT CCA GGC TTT ACT sp Pro Gly Phe Thr 1315	GGG GCT ACG ACT CCC CAG AGC CCA CTT ATG TCA CCC CGA ATG GCA CAT Gly Ala Thr Thr Pro Gln Ser Pro Leu Met Ser Pro Arg Met Ala His 1320	4G 1n	GCC CCC TCC GAC ATA AAT GGA TGG GCG CAG GGG AAC ATG GGC GGA AAC Ala Pro Ser Asp Ile Asn Gly Trp Ala Gln Gly Asn Met Gly Gly Asn 1350	AGC ATG TTT TCC CAG CAG TCC CCA CCA CAC TTT GGG CAG CAA GCA AAC 430 Ser Met Phe Ser Gln Gln Ser Pro Pro His Phe Gly Gln Gln Ala Asn 1365

FIG. 1K

TO9540" 95224860

.c 4350 Ir	.c 4398 r	T 4446	A 4494	A 4542 r 60	4594	TGA 4654	CCA 4714	ACA 4774	
ACC AGC ATG TAC AGT AAC AAC ATG AAC ATC AAT GTG TCC ATG GCG ACC Thr Ser Met Iyr Ser Asn Asn Met Asn Ile Asn Val Ser Met Ala Thr 1390	GGT GGC ATG AGC ATG AAC CAG ATG ACA GGA CAG ATC AGC Gly Gly Met Ser Ser Met Asn Gln Met Thr Gly Gln Ile Ser 1400	G CTG TCC TCC ATG GGT y Leu Ser Ser Met Gly 1425	CCC GAG CAG GTT AAT GAT CCT GCT CTG AGG GGA GGC AAC CTG TTC CCA Pro Glu Gln Val Asn Asp Pro Ala Leu Arg Gly Gly Asn Leu Phe Pro 1430	AAC CAG CTG CCT GGA ATG GAT ATG ATT AAG CAG GAG GGA GAC ACA ACA Asn Gln Leu Pro Gly Met Asp Met Ile Lys Gln Glu Gly Asp Thr Thr 1445	CTTCAG CTGACCGGGC	TCACTTGCTC AAAACACTTC CAGTCTGGAG AGCTGTGTCT ATTTGTTTCA ACCCAACTGA	CCTGCCAGCC GGTTCTGCTA GAGCAGACAG GCCTGGCCCT GGTTCCCAGG GTGGCGTCCA	CTCGGCTGTG GCAGGAGGAG CTGCCTCTTC TCTTGACAGT CTGAAGCTCG CATCCAGACA	
AAC ATG AAC ATC AA Asn Met Asn Ile As 1390	AGC ATG AAC CAG ATG Ser Met Asn Gln Me 1405	ATG ACC TCA GTG ACC TCC GTG TCT ACG TCA GGG CTG TCC TCC ATG Met Thr Ser Val Thr Ser Val Ser Thr Ser Gly Leu Ser Ser Met 1420	CCT GCT CTG AGG GG/ Pro Ala Leu Arg Gly 1435	GAT ATG ATT AAG CA(Asp Met Ile Lys Glr 145	CGG AAA TAT TGC TGACACTGCT GAAGCCAGTT GCTTCTTCAG CTGACCGGGC Arg Lys Tyr Cys	GTCTGGAG AGCTGTGTCI	GCAGACAG GCCTGGCCCT	GCCTCTTC TCTTGACAGI	
C ATG TAC AGT AAC r Met Tyr Ser Asn 1385	A GGT GGC ATG AGC r Gly Gly Met Ser 1400	C TCA GTG ACC TCC r Ser Val Thr Ser 1415	s CAG GTT AAT GAT u Gln Val Asn Asp 30	s CTG CCT GGA ATG n Leu Pro Gly Met 1450	A TAT TGC TGACACTC S Tyr Cys	3CTC AAAACACTTC CA	\GCC GGTTCTGCTA GA	IGTG GCAGGAGGAG CT	
ACC AG Thr Se	AAC ACA (Asn Thr (ATG AC Met Th	CCC GA(Pro G1u	AAC CA(Asn Glr 1445	CGG AA/ Arg Lys	TCACTT	CCTGCC/	CTCGGCT	

FIG. 11

TOWELD 9524660

5794	AATTTATATG	CATAAAATCC	TTGTAAGGTA	AGCCGAAGTT	TITITIAGCA GTGCTGACTA AGCCGAAGTT TTGTAAGGTA CATAAAATCC AATTTATATG	TTTTTAGCA
5734	TTTTATTTG	GCCATGTGTT	TTTAACCTCT	TCACGACAGA	GTTTAAATTG ATAGCAGATA TCACGACAGA TTTAACCTCT GCCATGTGTT TTTTATTTTG	GTTTAAATTG
5674	ACGCCAGTGT	AATGGGAGAA	TGGCCTCCAA	CCAGCAACTC	AAGCATGTTT ATTCTGTTCC CCAGCAACTC TGGCCTCCAA AATGGGAGAA ACGCCAGTGT	AAGCATGTTT
5614	сствстттвв	GCTAAGGATA	TACCAATCGA	TAAGGCTTGA	GGCAAGGAGA AGAGCAAAGT TAAGGCTTGA TACCAATCGA GCTAAGGATA CCTGCTTTGG	GGCAAGGAGA
5554	TGCATTTACT	AAAAAAAAA	TGAATTTCAG	TGCTAAGTAT	TTTGCCAGCC ACTTACCAAT TGCTAAGTAT TGAATTTCAG AAAAAAAAA TGCATTTACT	TTTGCCAGCC
5494	CCTTAAATGT	CCCTTTATTT	ACCAGGTAAG	AGCTACAGAA	CITITITAAA AAATAATATA AGCTACAGAA ACCAGGTAAG CCCTTTATIT CCTTAAATGI	CTTTTTTAAA
5434	ATTTTCATTC	CATACTCCCT	TCTCATTCCC	ссттсссстс	CCCTGTCAGC CTGACTCTTC CCTTCCCCTC TCTCATTCCC CATACTCCCT ATTTTCATTC	CCCTGTCAGC
2425	ATCTCTTCTT	TTGAATCAGC	ATCAGACAGC	TTTTAGTTTG	TCATTICTAA ATTAAGTCCC TTTTAGTTTG ATCAGACAGC TTGAATCAGC ATCTCTTCTT	TCATTTCTAA
531	GAAATAATTT	GAATTGAGAA	CCTGAATCAT	AACTGGTTCA	ITITITICITI GITAAAACCA AACTGGITCA CCTGAATCAT GAATTGAGAA GAAATAATT	TTTTTCTTT
525	TTTTTCCTTG	TAGCAAATAT	CTGTTAACAT	TGTGAGAGGG	TGAACAGATG AAAAGGAGCC TGTGAGAGGG CTGTTAACAT TAGCAAATAT TTTTTCCTTG	TGAACAGATG
519	CTCCAGTTAC	TGGAAAGAGT	AAGACCATGT	GAAAGCTCTA	AAGTCACAGT CGTATCTCTA GAAAGCTCTA AAGACCATGT TGGAAAGAGT CTCCAGTTAC	AAGTCACAGT
513	AAGACCAACA	CCAGTGCGTG	ACAGACACAC	CGCTGTATTT	AGGACAGACA CCGTGGACAG CGCTGTATTT ACAGACACAC CCAGTGCGTG AAGACCAACA	AGGACAGACA
201	GGATGGAAGC	CCTGAATTTG	TAAGCTAAAG	AAAGATGTTT	ATTITITAAA AAATTAAACT AAAGATGTIT TAAGCTAAAG CCTGAATTTG GGATGGAAGC	ATTTTTAAA
501	AAAGAAAAGA	TATCTGGGGG	ATTAAGATTT	AGTGCCAAAG	ITTICCCTGG CTAACAGICT AGTGCCAAAG ATTAAGATTT TATCTGGGGG AAAGAAAGA	TTTTCCCTGG
495	TCTTGCTTTG	GACACTGGTT	TTCGGTTCCA	TCTGTTCCTG	AAGGAGAACC ATGCTCTTGT TCTGTTCCTG TTCGGTTCCA GACACTGGTT TCTTGCTTTG	AAGGAGAACC
489	GTATGTATTT	GTATTTAAAT	CAGATTGAAT	ATACCCATGT	AATGTTGACA GGCCAATTTC ATACCCATGT CAGATTGAAT GTATTTAAAT GTATGTATTT	AATGTTGACA

FIG.1M

TOSENO" SSZZKB60

6156			<u> </u>
6154	TTCTTAATG AACCTTAGAA AGACTACATG TTACTAAGCA GGCCACTTTT ATGGTTGTTT	AACCTTAGAA	TTCTTAATG
6094	VATCTATATG ATATGCAGCC GCTGTAGGAA CCAATTCTTG ATTTTTATAT GTTTATATTC	ATATGCAGCC	VATCTATATG
6034	IGTAGACTTA AGACTTTTTA TTTTCTAAAC CTTGTGATTC TGCTTATAAG TCATTTATCT	AGACTTTTTA	IGTAGACTTA
5974	ATÄGCAATGT CTCCTAAAGG TGTTTTGTAA AGGATATCAA TGCCTTGATT AGACCTAATT	CTCCTAAAGG	ATÄGCAATGT
5914	TATACATATT GTGGAATTGA CTCAAAAATG AGGTACTTCA GTATTAAATT AGATATCTTC	GTGGAATTGA	TATACATATT
5854	TAAACAAGCA ATAATTTAAG TTGAGAACTT ATGTGTTTTA ATTGTATAAT TTTTGTGAGG	ATAATTTAAG	TAAACAAGCA

FIG.1N

FIG.2C

TIF2 NLS NLS	1 MSGMGENTS <u>OPSPAETRKRKECPDQLGPSPKRNTEKRNREGENKYTEELAELIFANFNDIDNFNFKPDKCATLKETVKQTRQTKGGER</u> AAAANIDEVQKS 01 DVSSTGGCVIDKDALGPMALEALDGFFFVVNLEGNVVFVSENVTQYLRYNQEELMNKSVYSTLHVGDHTEFVKNLLPKSTVNGGSWSGEPPRRNSHTFNC 01 RMLVKPLPDSEEGHDNQEAHQKYETMQCFAVSQPKSTKEGGEDLQSCLICVARRVPMKERPVLPSSESFTTRQDLQGKTTSLDTSTMRAAMKPGWEDLV 01 RRCTQKFHAQHEGESVSYAKRHHHEVLRQCLAFSQTYRFSLSDGTLVAAQTKSKLIRSQTTNEPQLVTSLHMLHREQNVCVMNPDLTGQTMCKPLNPTSS	: :: .:: MSIPRVNPSVNPSISPAHGVARSSTLPPS SRC-1	OI NSPAHQALCSGNPGQDMTLSSNINFPINGPKEQMCMPNGRFGGSGGMNHVSGMQATTPQGSNYALKNINSPSQSSPGMNPGQPTSMLSPRHRNISPGV	97 AGSPRIPPSOFSPAGS.LHSPVGVCSSTGNSHSYTNSSLNALQALSEGHGVSLGSSLASPDLKMGNLQNSPVNMNPPPLSKMGSLDSKDCFGLYGEPS	94 EGTIGQAESSCHPCEQKETNDPNLPPAVSSERADGQSRLHDSKGQTKLLQLL TTKSDQMEPSPLASSLSDTNKDSTGSLPGSGSTHGTSLKE	86 KHKILHRLQDSSSPVDLAKLTAEATGKDLSQESSSTAPGSEVTIKQEPVSPKKKENALLRYLLDKDDTKDIGLPEITPKLERLDSKTDP	76 ASNTKLIAMKTEKEEMSFEPGDQPGSELDNLEEILDDLQN.SQLPQLFPDTRPGAPAGSVDKQAIINDLMQLTAENSPVTPVGAQKTALRISQSTFNNPR

FIG.3A

TOBETO SERVEDT

875 PCQLGRLLPNQNLPLDITLQSPTGAGPFPPIRNSSPYSVIPQPGMMGNQGMIGNQGNLGNSSTGMIGNSASRPTMPSGEWAPQSSAVRVTCAATTSAMNR
481PTSRLNR
975 PVQCCMIRNPAASIPWRPSSQPGQRQTLQSQVMNIGPSELEMNMCGPQYSQQQAPPNQTAPWPESILPIDQASFASQNRQPFGSSPDDLLCPHPAAESPS
488
EIDRALGIPELV. SOSOAVDPEOFSSODSNIMLEOKAPVFPQQYASQAQMAQGSYSPWQDPNFHT
11 111 11 11 11 11 11 11 11 11 11 11 11
1170 MQ. PRPGLRPTGLVQNQPNQLRLQLQHRLQAQQNRQPLMNQISNVSNVNLTLRPGVPTQAPINAQMLAQRQREILNQHLR
643 VQVTPPRCAFSPCMCMQPRQTLNRPPA/APNOLRLQCQQQLIHQNRQAILNQFAATAPVCINMRSCMQQQITPQPPLNAQMLAQRQRELYSQQHR
NMTPSM
743 <u> GROLIQ OORAMI MRO</u> OSFGNNLPPSSCLPVQTGNPRLPQCAPQQFPYPPNYGTNPGTPPASTSPFSQLAANPEASLANRNSMVSRGMTGNIGGO
1307ISQQPDPGFTGATTPQSPLMSPRMAHTQSPNMXQQSQANPAYQAPSDINCWAQGNMSGGNSMFQQSPPHFGQQANTSMYSN
837 FGTGINPQMQQNVFQYPCAGMVPQCEANFAPSLSPGSSMVPMPIPPPQSSLLQQTPPASGYQSP.DMKAWQQCAIGNNNVFSQAVQNQ.PTPAQPCVY.N
——— dnSRC—1 1387 <u>INMN I NVSMATNTGCMSSMNQMTGQ I SMTSVTSVSTSCLSS</u> MCPEQVNDPALRCGNLFPNQLPCMDM I KQEGDTTRKYC∗

FIG.3B

FIG.3C

1 2 3 4 Induction 1 12 32 47

FIG.5A

FIG.5B

FIG.5C

FIG. 5E

FIG.6A

RECEPTORS	1	462		1	467
RAR α1	A1 B C D E/F		RXRα	AB CD	467 E
RAR β2	A2 B C D E/F		RXRβ	AB CD	448 E
RAR γ1	A1 B C D E/F		RXRγ	AB C D	463 E
RARα∆A	BCD E/F	462 	RXRα∆AB	C D	467
RARα1ΔB	1 60 86 A1 C D E/F		RXRαC160A	1 160C - A AB C D	467 E
RARαΔAB	84 CDE/F	462 (dnRXRα	1 AB CD	448 E
RAR a1C88G	1 880 C G E/F	462 396	dnRXR α∆A B	140 C D 139	448 E 463
dnRARα1	A1 B C D E		RXRγ∆AB	CD	<u>E</u>
RAR α1 –ER.Cos	1 83 154 A1 B C D E		dnRXR β	1 [AB C D	429 E
	RAR a1 / ER \ RAR a 185 250		JnRXRβ∆AB	123 [C D]	429 E
RAR α1(AB)—ER(C	RARα1 ER	f	RXRα(AB)-ER(C)	1 139 176 282 AB C RXRα ER	
RAR\$2(AB)-ER(C	1 80 176282 A2 B C RARγ2 ER	f	RXRβ(AB)-ER(C)	1 122 176 282 AB C RXRØ ER	
RARy1(AB)-ER(C	1 89 176 282 (A1 B C) RAR γ1 ER	F	RXRγ(AB)–ER(C)	1 138176 282 AB C RXRy ER	

FIG.6B

FIG.6C

FIG.7A

FIG.7B

FIG.7D

FIG.7E

FIG.8A

NR box

TIFΙα	724	- RSILTSLLLNSS - 735
RIP140	933	- FNVLKQLLLSEN - 944
TRIP3	95	- SATURSLLUNPH - 106
TIF2(I)	638	- QTKLLQLLTTKS - 648
TIF2(II)	687	- HKILHRLLQDSS - 698
TIF2(III)	742	- NALLRYLLDKDD - 753

FIG.8B

		5,	(SST-		
TIF2 construct	Mutated motif	INPUT	ER - E2	RAR - RA		Ligand
TIF2.1		_	•	-	-	
TIF2.1m1	(I)	•	_	•		
TIF2.1m2	(II)	_	-			
TIF2.1m3	(III)	_		-		
TIF2.1m12	(I +II)	<u>, </u>	-			
TIF2.1m13	(I + III)	-			_	
TIF2.1m23	(11 + 111)		-			·
TIF2.1m123	(I + II + III)		_			

1 2 3 4 5 6 7 8

FIG.8D

FIG.8E

TIF2 ■ % STIMULATION OF AF-2 ACTIVITY CONSTRUCT RA ☐ % INTERACTION WITH NR LBD NONE NONE 2.1 + 2.1m1 2.1m2 + Gal-RXR OR GST-RXR H 2.1m3 + 2.1m12 2.1m13 + 2.1m23 + 2.1m123 + 20 0 40 60 80 100 120

FIG.8F

DRAIC DRAI	± + ±	-S1107		+ (+ +	pu (+)
LAELDRALGIDKL					 -
909-ISSQLDELLCPPTTVEGRNDEKALLEQLVSFLSGKDETE 1056-FGSSPDDLLCPHPAAESPSDEGALLDQLYLAL 1037-LRNSLDDLLGPPSNAEGQSDERALLDQLHTFLSNTDATG	AA				DEGALLDOLYLAL DEGAADQAYLAL DEGALLAALYLAL FIG.9A
909-1SSQLDELLCPPTTV	1011P ~ 2 P 1011P 1011P ~ 2 P 1011P 1011P	1011P	1011P——————————————————————————————————		
SRC-1 TIF2 p/CIP	T1F2.13 T1F2.13(LLL) T1F2.13(DQ)	TIF2.14 TIF2.15 TIF2.16 TIF2.17	11F2.19 11F2.20 11F2.21 11F2.24	11F2.29 11F2.30 11F2.31	TIF2.32 TIF2.32(LL) TIF2.32(00)

Fold Induction of (17m)5-TATA-CAT

	(**************************************	
GAL-TIF	Cos-1	HeLa
2.13	462 ± 9	704 ± 33
2.14	392 ± 13	674 ± 23
2.15	279 ±21	316 ± 49
2.16	390 ±34	597 ± 54
2.17	389 ±50	581 ± 58
2.18	314 ±16	432 ± 19
2.19	341 ±67	777 ± 30
2.20	107 ±11	314 ± 27
2.21	129 <u>+</u> 8	173 <u>+</u> 22
2.24	< 2	< 2
2.27	< 2	< 2
2.29	< 2	< 2
2.30	98 ± 13	117 ± 6
2.31	35 ± 3	34 ± 3
2.32	2.8 ± 0.2	5.9 ± 0.9
2.32(LLL)	1.4 ± 0.2	1.5 ± 0.1
2.32(DQ)	1.7 ± 0.3	1.2 ± 0.2

FIG.9B

FIG.9C

FIG.10C

FIG.12B

FIG.12A

GAL-RAR (DEF) Cos-1 HeLa TIF2 TIF2.1 TIF2.5 TIF2 TIF2.1 TIF2.5 ٦٢ 7 T-RA $(1\mu M)$ 2 3 6 8 10 11 12 13 14 relative CAT 1.0 1.7 0.8 1.8 2.0 0.4 0.1 1.0 1.5 0.9 1.4 1.1 0.3 0.1 activity

FIG.12D