Дифференицальная геометрия. Неофициальный конспект

Лектор: Нина Дмитриевна Лебедева Конспектировал Леонид Данилевич

IV семестр, весна 2024 г.

Оглавление

1	Рим	анова геометрия	2
	1.1	Гладкие многообразия	2
		1.1.1 Гладкие отображения	3
		1.1.2 Касательное пространство	5
		1.1.3 Структура векторного пространства на T_pM	6
	1.2	Касательное расслоение	_
		1.2.1 Дифференциал гладкого отображения	6
	1.3	Гладкие векторные поля	7
	1.4	Гладкие подмногообразия	8
	1.5	Риманова геометрия	ć
		1.5.1 Отсупление в метрические пространства	1 1

Глава 1

Риманова геометрия

Лекция I 14 февраля 2024 г.

1.1 Гладкие многообразия

Определение 1.1.1 (Топологическое многообразие). Хаусдорфово топологическое пространство M со счётной базой, такое что $\forall x \in M: \exists U \ni x: U \sim \mathbb{R}^n$. Данное число n называется размерностью многообразия, пишут $\dim M = n$, или часто пишут это число верхним индексом: M^n .

Далее пусть M^n — топологическое многообразие.

Определение 1.1.2 (Карта). Пара из открытого $U \subset M^n$, и гомеоморфизма $\phi: U \to \Omega$, где открытое $\Omega \subset \mathbb{R}^n$. U называется носителем карты.

«В половине случаев в литературе картой называется обратное отображение».

Определение 1.1.3 (Атлас). Набор карт (U_i,ϕ_i) , таких, что $\bigcup_i U_i=M$.

Пусть даны две карты (U,ϕ) и (V,ψ) . Далее удобно считать, что их носители пересекаются: $U\cap V\neq\varnothing$, иначе определение не несёт смысла.

Определение 1.1.4 (Отображение перехода). Отображение $\psi \circ \phi^{-1}: \phi(U \cap V) \to \psi(U \cap V)$. Обозначается $f_{\phi\psi}$

Определение 1.1.5 (Карты (U,ϕ) и (V,ψ) согласованы). Отображение перехода и ему обратное гладкие.

Определение 1.1.6 (Гладкий атлас). Атлас, такой, что любые две карты согласованы.

Далее все атласы предполагаются гладкими.

Определение 1.1.7 (Атласы эквивалентны). Их объединение (то есть все карты из первого и из второго атласа вместе взятые) — тоже гладкий атлас.

Предложение 1.1.1. Эквивалентность атласов — отношение эквивалентности.

Определение 1.1.8 (Гладкая структура на многообразии). Максимальный гладкий атлас (атлас, к которому нельзя добавить карт).

Замечание. К атласу можно добавить произвольное количество карт, согласованных с теми, что в атласе, и они будут согласованы между собой. В частности, для задания гладкой структуры достаточно произвольного атласа A: в A можно добавить всевозможные карты, согласованные с картами из A, и он станет максимальным.

Определение 1.1.9 (Гладкое многообразие). Многообразие с гладкой структурой.

Примеры (Атласы).

- Стандартная гладкая структура на \mathbb{R}^n задаётся атласом $\{(\mathbb{R}^n,\mathrm{id})\}.$
- В частности, стандартная структура на \mathbb{R}^1 задаётся атласом $\{(\mathbb{R}^1, [x \mapsto x])\}$.
- Можно задать нестандартную структуру на \mathbb{R}^1 : $\{(\mathbb{R}^1, [x \mapsto x^3])\}$.

Предостережение. Это действительно гладкая структура, хотя обратное отображение $[x \mapsto x^{1/3}]$ не гладкое. Тем не менее, определение и не требует гладкости от него.

ullet Пусть $f=egin{cases} x,&x\geqslant 0\ rac{1}{2}x,&x\leqslant 0 \end{cases}$. Тогда $\{(\mathbb{R}^1,f)\}$ — тоже гладкий атлас на \mathbb{R}^1 .

Тем не менее, любые два атласа из приведённых выше атласов на \mathbb{R}^1 не эквивалентны — отображения перехода получаются не гладкими.

• Гладкая структура на сфере задаётся двумя картами: пусть S^2 — сфера с северным полюсом N и южным S, пусть f,g — стереографические проекции с данными полюсами. Тогда $\{(S^2\setminus\{N\},f),(S^2\setminus\{S\},g)\}$ — атлас.

Замечание. Если M — гладкое многообразие, и открытое $W \subset M$, то на W естественным образом определена гладкая структура, наследующаяся с M.

1.1.1 Гладкие отображения

Пусть M^m, N^n — гладкие многообразия, A_M, A_N — соответствующие атласы. Рассмотрим отображение $f: M \to N$.

Определение 1.1.10 (Координатное представление f в картах (U,ϕ) на M и (V,ψ) на N). Такое $\widetilde{f}:\phi(U)\to\psi(V)$, что диаграмма коммутативна везде, где определена (то есть $\widetilde{f}=\psi\circ f\circ\phi^{-1}$ на $\phi(U\cap f^{-1}(V))$).

$$\begin{array}{ccc} U & \stackrel{f}{\longrightarrow} V \\ \downarrow^{\phi} & & \downarrow^{\psi} \\ \phi(U) & \stackrel{\widetilde{f}}{\longrightarrow} \psi(V) \end{array}$$

Далее считаем, что $f:M\to N$ непрерывна (эквивалентно, все координатные представления непрерывны).

Определение 1.1.11 (f гладкое). Любое координатное представление — гладкое.

Определение 1.1.12 (f — гладкое в точке $x \in M$). Найдётся окрестность $U_x \ni x$ и карты (U, ϕ) , (V, ψ) (где $V \ni y := f(x)$), такие, что $U_x \subset U$ и сужение на U_x координатного представления f — гладко.

Свойства (Гладкие отображения).

- Гладкость в точке не зависит от выбора карт.
- Гладкость отображения не зависит от выбора атласа в одном классе эквивалентности.
- Отображение гладкое 👄 оно гладкое в любой точке. На лекции было доказательство ⇐.
- Пусть $f:M \to N, g:N \to K$ гладкие. Тогда их композиция $g \circ f$ гладкая.
- Тождественное отображение гладкое, если в образе и прообразе выбраны эквивалентные атласы.
- Определение гладкости отображения совпадает с определением гладкости из матанализа (если считать, что $M \subset \mathbb{R}^n$ открыто, и порождающий атлас состоит из тождественной карты)

Определение 1.1.13 (Диффеоморфизм $f: M \to N$). Гладкое f, такое, что f^{-1} — тоже гладкое.

Определение 1.1.14 (Многообразия M и N диффеоморфны). Между ними существует диффеоморфизм.

Понятно, что диффеоморфность — отношение эквивалентности.

Утверждение 1.1.1. *Если* $M^m \stackrel{\partial u\phi}{\sim} N^n$, то m = n.

Доказательство. Рассмотрим произвольную $x\in M$. Пусть $f:M\to N$ — диффеоморфизм, пусть $\widetilde f$ — его координатное представление. Тогда $\widetilde f^{-1}$ — координатное представление f^{-1} , откуда $\widetilde f^{-1}$ — тоже гладкое. Рассмотрим дифференциал $\mathrm{d}_x\widetilde f(_)$, это изоморфизм векторных пространств, значит, m=n.

По умолчанию всегда считается, что на \mathbb{R}^m введена стандартная гладкая структура.

Предложение 1.1.2. Пусть M- гладкое многообразие, тогда карта — диффеоморфизм между U и $\phi(U)$. Обратно, любой диффеоморфизм между открытым подмножеством $W\subset M$ и областью $\Omega\subset \mathbb{R}^m-$ карта.

Доказательство.

Гладкость карты, как диффеоморфизма, эквивалентна тому, что карта согласована с остальными в атласе: пунктирная стрелка $\psi(U\cap V)\to\phi(U\cap V)$ одновременно является и отображением перехода между картами (U,ϕ) и (V,ψ) , и координатным представлением ϕ в картах (V,ψ) , (U,id) .

Следствие 1.1.1. Диффеоморфизм $f: M \to N$ задаёт естественную биекцию между картами M и картами N (а ещё между (максимальными) атласами M и (максимальными) атласами N).

Лекция II

21 февраля 2024 г.

Пример (Диффеоморфизм). Ранее приводились неэквивалентные карты (\mathbb{R} , id) и (\mathbb{R} , [$x \mapsto x^3$]). Вещественные прямые с данными картами диффеоморфны: [$x \mapsto x^3$] — диффеоморфизм, ему обратный [$x \mapsto \sqrt[3]{x}$] (где, как в школе, $\sqrt[3]{x} = \begin{cases} \sqrt[3]{x}, & x \geqslant 0 \\ -\sqrt[3]{-x}, & x < 0 \end{cases}$).

Таким образом, создать две недиффеоморфные структуры на одном и том же многообразии не то чтобы просто.

Интересный факт. Пусть M-n-мерное многообразие.

Если $\begin{cases} n < 4, & \text{на нём существует единственная гладкая структура} \\ n = 4, & \text{на нём существует бесконечно много гладких структур}. \\ n > 4, & \text{на нём существует конечное число гладких структур} \end{cases}$

В частности, при n > 4: если $M^n = \mathbb{R}^n$, то гладкая структура единственна.

1.1.2 Касательное пространство

Пусть M — гладкое многообразие, $p \in M$. Пусть $\alpha, \beta : (\varepsilon, +\varepsilon) \to M$ — гладкие (естественно, в смысле отображения многообразий) кривые, такие, что $\alpha(0) = p = \beta(0)$.

Определение 1.1.15 (α и β соприкасаются в p). В любой карте (U, ϕ) (где $U \ni p$) их производные в нуле совпадают: $(\phi \circ \alpha)'(0) = (\phi \circ \beta)'(0)$.

Предостережение. Определение требует совпадение векторов скорости, а не просто параллельности или сонаправленности.

Свойства (Соприкасающиеся кривые).

- Соприкасаемость кривых в какой-то конкретной точке отношение эквивалентности.
- Соприкасаемость не зависит от выбора карты: достаточно проверить в любой одной, содержащей p.

Доказательство. Пусть $(U,\phi),\,(V,\psi)$ — две карты, содержащие точку p, отображение $f_{\phi\psi}=\psi\circ\phi^{-1}$ гладкое, значит, оно переводит равные векторы в равные.

Определение 1.1.16 (Касательный вектор в точке $p \in M$). Класс эквивалентности соприкасающихся в точке p кривых.

Множество всех касательных векторов — κ асательное пространство, обозначают $T_p M$.

Координаты касательного вектора

Пусть $p \in M$, и (U, ϕ) — карта, содержащая p.

Определение 1.1.17 (Координатное представление вектора $v = [\alpha] \in T_p M$). Вектор скорости данной кривой в данной карте $v_{\phi} \stackrel{def}{=} (\phi \circ \alpha)'(0)$.

Понятно, что определение не зависит от выбора представителя — кривой α .

Также координаты v_{ϕ} в \mathbb{R}^{n} называют координатами v в карте ϕ .

Свойства (Координатное представление).

• $\forall p \in M, \forall (U, \phi) : p \in U \Rightarrow$ координатное представление — биекция $T_pM \to \mathbb{R}^n$ $v \mapsto v_\phi$.

Доказательство. Это инъекция, так как если образы u,v равны, то по определению u и v соприкасаются.

Это сюръекция: $\forall w \in \mathbb{R}^n$ можно рассмотреть кривую $\gamma(t) \coloneqq wt + \phi(p)$. Координаты $[\phi^{-1} \circ \gamma]$ в карте ϕ как раз окажутся равными w.

Преобразование координатного представления в зависимости от карты

Утверждение 1.1.2. Пусть $M^n\ni p$ — гладкое многообразие и точка, (U,ϕ) и (V,ψ) — карты, содержащие p. Тогда $v_\psi=\mathrm{d}_{\phi(p)}f_{\phi\psi}(v_\phi)$.

Доказательство. Пусть $v=[\alpha]$. Тогда $v_\phi=(\phi\circ\alpha)'(0),\ v_\psi=(\psi\circ\alpha)'(0),\ и$ действительно, так как $f_{\phi\psi}=\psi\circ\phi^{-1},$ то $v_\psi=(f_{\phi\psi}\circ\phi\circ\alpha)'(0).$ Дифференцируя композицию, получаем утверждение.

Следствием данного утверждения является альтернативное определение касательного вектора:

Определение 1.1.18 (Касательные векторы в точке $p \in M$). Отображение из множества всех карт, содержащих точку p (обозначим их \mathcal{M}_p) в \mathbb{R}^n

$$\mathcal{M}_n \to \mathbb{R}^n$$

такое, что выполнены соотношения (утверждение 1.1.2).

Это определение сродни тому определению тензора, которое говорит: «Тензор — это многомерная матрица чисел, преобразующихся при замене базиса следующим образом...»

1.1.3 Структура векторного пространства на $T_p M$

Зафиксируем $p \in M$, и карту (U, ϕ) , содержащую p. Пусть $v, w \in T_pM$.

Определение 1.1.19 (Сумма векторов v и w). Такой вектор v+w, что $(v+w)_{\phi}=v_{\phi}+w_{\phi}$.

Определение 1.1.20 (Растяжение вектора v с коэффициентом α). Такой вектор αv , что $(\alpha v)_{\phi} = \alpha \cdot v_{\phi}$.

Иными словами, у нас была биекция T_pM с векторным пространством, и мы просто перенесли структуру векторного пространства с \mathbb{R}^n на T_pM . Определение не зависит от выбора карты, так как замена координат касательных векторов при переходе между картами — изоморфизм векторных пространств (дифференциал — линейный оператор).

Замечание. Из определения получается, что $v o v_\phi$ — изоморфизм векторных пространств.

1.2 Касательное расслоение

Как множество, $T(M) = \bigsqcup_{p \in M} T_p M$. Оказывается, на T(M) можно естественно ввести топологию и гладкую структуру размерности 2n. Преобразуем определение атласа так, чтобы это случилось одновременно.

Утверждение 1.2.1 (Атлас для множества). Пусть X — множество с картами (U, ϕ) , то есть парами (U, ϕ) где $U \subset X$, и каждая ϕ — биекция $U \to \mathbb{R}^n$. При этом $X = \bigcup U$

Потребуем для любых двух карт (U,ϕ) и (V,ψ) : $\phi(U\cap V)$ открыто (в частности, $\phi(U)$ открыто), и потребуем, чтобы все функции перехода $f_{\phi\psi}=\psi\circ\phi^{-1}$ были гладкими.

Введём на X топологию: $W \subset X$ открыто, если $\forall (U,\phi): \phi(U\cap W)$ открыто, и предположим, что топология получилась хаусдорфовой, и на X есть счётная база.

Tогда утверждается, что данная процедура задаёт на X одновременно и топологию, и глад-кую структуру.

Зададим такую гладкую структуру на T(M). Обозначим $TU = \bigsqcup_{p \in U} T_p M$. Можно рассматривать $TU = \{(p,v) | p \in U, v \in T_p M\}$.

Пусть имеется карта (U, ϕ) на M. Построим по ней карту

$$\Phi: TU \to \mathbb{R}^n \times \mathbb{R}^n$$
$$(p, v) \mapsto (\phi(p), v_{\phi})$$

Проверим согласованность: пусть (U,ϕ) и (V,ψ) — две карты на M. По ним построены карты (TU,Φ) и (TV,Ψ) соответственно. Тогда $(\Psi\circ\Phi^{-1})(p,v)=((\psi\circ\phi^{-1})(p),\mathrm{d}_{\phi(p)}f_{\phi\psi}(v))$, видно, что $\Psi\circ\Phi^{-1}$ гладко.

Упражнение 1.2.1. Получилось хаусдорфовое пространство со счётной базой.

1.2.1 Дифференциал гладкого отображения

Пусть M и N — гладкие многообразия, и есть гладкое отображение $f:M\to N$. Зафиксируем $p\in M$.

Определение 1.2.1 (Дифференциал f в точке p). Отображение $d_p f: T_p M \to T_{f(p)} N$, заданное следующим образом: $d_p f: [\alpha] \mapsto [f \circ \alpha]$.

Утверждение 1.2.2. Определение дифференциала не зависит от выбора представителей.

Доказательство. Пусть $\alpha \sim \beta$ — две кривые, $\alpha(0) = \beta(0) = p$, $\alpha'(0) = \beta'(0) = v$.

Проверим, что $f \circ \alpha \sim f \circ \beta$. Достаточно проверить, что совпадают координатные представления.

Выберем две карты (U,ϕ) и (V,ψ) (где $U\ni p,\ V\ni f(p)$). Координатное представление f — это $\widetilde{f}=\psi\circ f\circ \phi^{-1}$.

Дифференциал \widetilde{f} переносит координаты представления векторов из T_pM в координаты представления векторов из $T_{f(p)}N$:

$$\psi \circ f \circ \alpha = \widetilde{f} \circ \phi \circ \alpha \quad \text{и} \quad \psi \circ f \circ \beta = \widetilde{f} \circ \phi \circ \beta$$

$$(\psi \circ (f \circ \alpha))'(0) = \mathrm{d}_{\phi(p)} \widetilde{f}((\phi \circ \alpha)'(0)) = \mathrm{d}_{\phi(p)} \widetilde{f}((\phi \circ \beta)'(0)) = (\psi \circ (f \circ \beta))'(0) \qquad \square$$

Нетрудно заметить, что $(d_p f(v))_{\psi} = (d_{f(p)} \widetilde{f})(v_{\phi})$ в обозначениях из доказательства выше $(u \ v = [\alpha]).$

Следствие 1.2.1. $d_p f$ — линейное отображение.

${\displaystyle \prod_{28\ { m февраля}}\ {\displaystyle \coprod_{2024\ { m r.}}}}$

Замечание. Можно естественным определить дифференциал на всём пространстве $Tf:TM\to TN$. На вектор $v\in T_pM$ Tf действует понятным образом: $v\mapsto \mathrm{d}_pf(v)$.

Если $U \subset \mathbb{R}^n$, то касательное пространство TU естественным образом отождествляется с $U \times \mathbb{R}^n$.

1.3 Гладкие векторные поля

Пусть M — гладкое многообразие, выберем произвольное подмножество $A\subset M$.

Определение 1.3.1 (Непрерывное векторное поле на A). Непрерывное отображение $X:A\to TM$, такое, что $\forall p\in A: X(p)\in T_pM$.

Определение 1.3.2 (Гладкое векторное поле на A). Векторное поле $X:A\to TM$, такое, что \exists открытое $U\subset M:U\supset A$, и X продолжается на U, как гладкое векторное поле (то есть гладкое отображение, являющееся непрерывным векторным полем).

Для гладкого многообразия M будем обозначать пространство всех гладких векторных полей за $\mathcal{X}(M)$.

Пусть в M имеется карта (U, ϕ) .

Определение 1.3.3 (Координатное векторное поле, соответствующее i-й координате). Векторное поле $V_i: U \to TM$, такое, что $\mathrm{d}\phi(V_i) = e_i \ (V_i(p) = e_i)$ Или что-то похожее, я не очень понял

Лемма 1.3.1. Пусть имеется открытое $U \subset \mathbb{R}^n$, и компактное $K \subset U$. Утверждается, что $\forall V \supset K: \operatorname{Cl} V \subset U \Rightarrow$ можно построить гладкую функцию $f: \mathbb{R}^n \to \mathbb{R}$, такую, что $f\big|_K = 1$, $f\big|_{\mathbb{R}^n \setminus V} = 0$.

Доказательство. На лекции шло без доказательства. $\mathbb{R}^n\setminus V$ замкнуто, $d\coloneqq \mathrm{dist}(\mathbb{R}^n\setminus V,K)>0$, свернём $\chi todo$

Следствие 1.3.1. Пусть V_i — координатное поле карты (U,ϕ) . Тогда $\forall K \subset U: \exists$ векторное поле $\widetilde{V}_i: \widetilde{V}_i|_K = V_i, \widetilde{V}_i|_{M \setminus U} \equiv 0$.

Иными словами, всегда немного уменьшив карту, можно продолжить координатное векторное поле на всё многообразие.

1.4 Гладкие подмногообразия

Пусть M^m — гладкое многообразие размерности m.

Определение 1.4.1 (Гладкое подмногообразие размерности $n \leq m$). Подмножество $N \subset M$, такое, что $\forall x \in N : \exists$ выпрямляющая карта (U, ϕ) (карта на M), такая, что $U \ni p$ и $\phi(U) \cap \mathbb{R}^n = \phi(N \cap U)$.

Здесь имеется в виду, что ϕ действует в \mathbb{R}^m , где как-то введены координаты, и имеется определённое вложение $\mathbb{R}^n \hookrightarrow \mathbb{R}^m$.

Утверждение 1.4.1. На N каноническим образом индуцируется гладкая структура из M. Карты на N- сужения выпрямляющих карт (карте (U,ϕ) отвечает карта $N\cap U,\psi$, где $\psi:N\cap U\to\mathbb{R}^n\subset\mathbb{R}^m,\ \psi(x)=\phi(x)$).

Доказательство. Согласованность карт на N следует из согласованности карт на M. \square

Пусть N^n, M^m — гладкие многообразия.

Определение 1.4.2 (Погружение $f:N\to M$). Гладкое отображение $f:N\to M$, такое, что $\forall p\in N:\mathrm{d}_p f$ — инъекция. Само f не обязано быть инъекцией.

Понятно, что такое возможно только при $n\leqslant m.$

Определение 1.4.3 (Вложение $f: N \to M$). Погружение $f: N \to M$, которое является топологическим вложением, то есть гомеоморфизмом на образ.

Примеры.

- В случае поверхностей размерности 2 погружение подмногообразия размерности 1 кривой называлось регулярной параметризацией.
- Петля слева является погружением, но даже инъективная петля справа вложением не является: в выделенной точке топология не совпадает с топологией интервала.

Предложение 1.4.1.

- 1. Погружение локально является вложением: $\forall x \in N: \exists U_x \ni x: f\big|_{U_x}$ вложение.
- 2. Образ вложения гладкое подмногообразие.

C доказательством этого очевидного предположения возникли неожиданные проблемы, я что-то написал ниже, за правильность не ручаюсь.

Доказательство. Достаточно доказать для случая открытых $N \subset \mathbb{R}^n$, $M = \mathbb{R}^m$, потому что карты — диффеоморфизмы, и определения сохраняются при диффеоморфизмах.

Зафиксируем $x \in N$. Введём координаты в \mathbb{R}^m , выделив первые n координат, так, чтобы подпространство, натянутое на них, совпадало с $d_x f(\mathbb{R}^n)$.

Также домножим пространство, содержащее N, на \mathbb{R}^{m-n} .

Лемма 1.4.1. Существует $W\ni x,W'\ni f(x),\phi:W\to W':\phi\big|_{N\cap W}=f$ ($W\in\mathbb{R}^m,W'\in\mathbb{R}^m$).

Доказательство леммы.

Обозначим координаты в $\mathbb{R}^n \times \mathbb{R}^{m-n}$ за (ξ, ζ) , и определим $\phi(x+\xi, \eta) = f(x) + f(\xi) + (0, \eta)$. Действительно, дифференциал $d_x \phi = (df, id)$ невырожден.

По теореме об обратной функции $\exists W:\phiig|_W$ — диффеоморфизм.

- 1. Образ $f\big|_{N\cap W}$ подмногообразие $W\cap \mathbb{R}^n\subset N.$ $\phi^{-1}\big|_{W'}$ выпрямляющая карта,
- 2. ϕ гомеоморфизм на образ \Rightarrow $f|_{N\cap W}$ топологическое вложение и гомеоморфизм. Значит, локально погружение вложение.

3. Так как f — топологическое вложение, то f(N) — подмногообразие.

Лекция IV

6 марта 2023 г.

Контрпример. Тождественное отображение между прямыми $(\mathbb{R}, x^3) \to (\mathbb{R}, \mathrm{id})$ — не вложение (и даже не погружение).

Пусть $N\subset M$ — гладкое подмногообразие. Отображение in : $N\hookrightarrow M$ можно рассматривать, как вложение многообразия.

Утверждение 1.4.2. Следующие определения подмногообразия равносильны:

- ullet Подмножество $N\subset M$ с выпрямляющими картами.
- Образ вложения некоторого многообразия.

 $\mathit{Интересный}\ \phi a \kappa m$ (Теорема Уитни). Для любого гладкого многообразия M^m существует вложения $M^m \hookrightarrow \mathbb{R}^{2m}$.

1.5 Риманова геометрия

Пусть дано гладкое многообразие M^m .

Определение 1.5.1 (Риманова структура на M^m). Совокупность (положительно определённых) скалярных произведений $\{g_x\}_{x\in M}$ $(g_x:T_xM\times T_xM\to\mathbb{R},g_x=\langle_,_\rangle_x)$). Иначе это называют метрическим тензором.

Напомним, что $\mathcal{X}(M)$ — пространство гладких векторных полей на M.

Определение 1.5.2 (Гладкая риманова структура на M^m). Такая риманова структура, что $\forall X,Y\in\mathcal{X}(M):M\to\mathbb{R}$

$$x\mapsto \langle X_x,Y_x
angle_x$$
 гладко

Далее везде будем говорить *риманово многообразие* для многообразия с гладкой римановой структурой.

Пример. Пример (гладкого) метрического тензора для поверхностей — первая квадратичная форма.

Пусть заданы два римановых многообразия (M_1, g_1) и (M_2, g_2) .

Определение 1.5.3 (Изометрия между M_1 и M_2). Диффеоморфизм $f: M_1 \to M_2$, сохраняющий скалярные произведения: $\forall x \in M_1: \forall v, w \in T_x M_1: \langle v, w \rangle = g_{f(x)}(\mathrm{d}_x f(v), \mathrm{d}_x f(w)).$

Примеры.

• Пусть имеется вложение гладкого многообразия $f:M^m\to \mathbb{R}^n$. В соответствии с ним на M^m можно естественным образом задать риманову метрику:

$$\forall x \in M : \forall v, w \in T_x M : \langle v, w \rangle_x := \langle d_x f(v), d_x f(w) \rangle_{f(x)}$$

Так как $d_n f$ инъективен, то скалярное произведение получится невырожденным.

В предыдущем семестре в точности это происходило с вложением поверхности в \mathbb{R}^3 .

• Пусть на многообразии N^n задана риманова структура, и имеется вложение $f:M^m \to \mathbb{R}^n$. Тогда абсолютно аналогично можно задать риманову метрику на M^m :

$$\forall x \in M : \forall v, w \in T_x M : \langle v, w \rangle_x := \langle d_x f(v), d_x f(w) \rangle_{f(x)}$$

• В обеих пунктах можно ослабить требования на f: достаточно, чтобы f было погружением.

Пусть (M^m,g) — риманово многообразие, (U,ϕ) — карта: $\phi:U\to\phi(U)\subset\mathbb{R}^m$. Выберем в \mathbb{R}^m ортонормированный базис $(e_i)_{1\leqslant i\leqslant m}$. Базисный вектор e_i — координатное представление вектора $\mathrm{d}_x\phi^{-1}(e_i)$, и $(\mathrm{d}_x\phi^{-1}(e_i))_{1\leqslant i\leqslant m}$ — базис T_xM .

Значит, можно записать координаты метрического тензора g_x в данных базисных векторах $\mathrm{d}_x\phi^{-1}(e_i)$, получатся метрические коэффициенты для карты $(U,\phi)\colon (g_{i,j})_{1\leqslant i,j\leqslant m}$. Для векторов $X=X_1\,\mathrm{d}_x\phi^{-1}(e_1)+\cdots+X_m\,\mathrm{d}_x\phi^{-1}(e_m)$ и $Y=Y_1\,\mathrm{d}_x\phi^{-1}(e_1)+\cdots+Y_m\,\mathrm{d}_x\phi^{-1}(e_m)$: $\langle X,Y\rangle=\sum_{i,j}X_ig_{i,j}Y_j$.

Теорема 1.5.1. $g_{i,j}$ — гладкие во всех картах \iff метрический тензор g гладок.

Доказательство.

 \Leftarrow . Не успел нормально записать Рассмотрим карту (U, ϕ) .

В определении гладкого метрического тензора были $X,Y\in \mathcal{M}$, но на прошлой лекции мы обсудили, что можно считать, что для компакта $K\subset U$, сколь угодно близкого приближающего $U,\dots g(\overline{X}_i,\overline{Y}_i)$ — гладкая функция, совпадает с $g_{i,j}$ на компакте.

Проверяем гладкость в какой-то конкретной точке, точку можно захватить компактом, получается, верно для всех точек.

 \Rightarrow . Рассмотрим гладкие векторные поля $X,Y\in \mathcal{X}(M)$.

Проверим гладкость в точке $x\in M$. Рассмотрим произвольную карту (U,ϕ) , содержащую x, Распишем $X=\sum_i \xi_i X_i, Y=\sum_j \eta_j X_j$. Понятно, что $\xi_i,\eta_j:M\to \mathbb{R}$ — гладкие функции.

Получается,
$$\left\langle X,Y\right\rangle _{x}=\sum_{i,j}\xi_{i}\eta_{j}\left\langle X_{i},X_{j}\right\rangle =\sum_{i,j}\xi_{i}\eta_{j}g_{i,j}.$$

Пример. Пусть многообразие M^m покрыто одной картой (M,ϕ) . Можно ввести $m\times m$ гладких метрических коэффиицентов $g_{i,j}:M\to\mathbb{R}$ так, что матрица $(g_{i,j})$ всюду положительно определена.

В случае покрытия M несколькими картами так может не получиться, надо ещё проверять согласованность, что может быть неудобно.

Аналогично поверхностям, определим длину путей.

Пусть $v \in T_x M$.

Определение 1.5.4 (Длина вектора v). $|v| \stackrel{def}{=} \sqrt{\langle v, v \rangle_x}$.

Теперь $\gamma:[a,b] \to M$ — кусочно-гладкая кривая (имеется разбиение $a=t_0\leqslant t_1\leqslant\ldots\leqslant t)n=b$, такое, что $\gamma\big|_{[t_i,t_{i+1}]}$) — гладкая.

Определение 1.5.5 (Длина кривой). $L(\gamma) = \sum_{i}^{t_{i+1}} |\gamma'(t)| \, \mathrm{d}t$. Длина γ' определена: из гладкости $\forall t \in (t_i, t_{i+1}) : \gamma'(t) \in T_{\gamma(t)}M$.

Пусть (M,g) — связное риманово многообразие, $x,y\in M$ — две точки.

Определение 1.5.6 (Расстояние между точками x,y). $d_l(x,y) \stackrel{def}{=} \inf_{\gamma} l(\gamma)$, где инфимум берётся по всем кусочно гладким $\gamma:[a,b] \to M$, таким, что $\gamma(a)=x,\gamma(b)=y$.

Теорема 1.5.2. 1. d_l — метрика

2. Топология, порождённая d_l совпадает с исходной топологией ΩM .

Доказательство.

- 1. Проверим три аксиомы метрики.
 - Меняя направление пути, получаем $d_l(x,y) = d_l(y,x)$.
 - Выберем $\varepsilon > 0$, найдутся две кусочно гладкие кривые $\gamma_{x,y}$ и $\gamma_{y,z}$, почти оптимально соединяющие x,y и y,z соответственно $(l(\gamma_{x,y}) \leqslant d(x,y) + \varepsilon;\ l(\gamma_{y,z}) \leqslant d(y,z) + \varepsilon)$. Конкатенируя $\gamma_{x,y} \cdot \gamma_{y,z}$, получаем $d_l(x,z) \leqslant d_l(x,y) + d_l(y,z) + 2\varepsilon$. Устремляя $\varepsilon \to 0$, получаем неравенство треугольника.
 - Проверим положительную определённость.

Лемма 1.5.1. $\forall x \in M: \exists \ \kappa$ арта (U, ϕ) , содержащая x, такая, что $\forall \varepsilon > 0: \exists V \subset U \ (V \ni x)$, причём $\phi|_{V}: V \to \phi(V) \ (1 \pm \varepsilon)$ -билипшицево:

$$\forall a, b \in V : (1 - \varepsilon)|\phi(a) - \phi(b)| \le d_l(a, b) \le (1 + \varepsilon)|\phi(a) - \phi(b)|$$

Отсюда сразу получается, что $\forall \gamma : [c,d] \rightarrow V$:

$$(1 - \varepsilon) \cdot l(\phi \circ \gamma) \leqslant l(\gamma) \leqslant (1 + \varepsilon) \cdot l(\phi \circ \gamma)$$

Доказательство леммы.

Выберем ортонормированный базис X_1, \dots, X_m в $T_x M$ (такой найдётся, так как скалярное произведение положительно определено).

Выберем произвольную карту (U,ϕ) , содержащую $x.\ \mathrm{d}_x\phi(X_1),\ldots,\mathrm{d}_x\phi(X_m)$ — базис в \mathbb{R}^m , его можно линейным преобразованием L перевести в ортонормированный. Далее считаем, что он уже ортонормирован (можно заменить карту ϕ на $T\circ\phi$).

Коэффициенты метрического тензора в этой карте $g_{i,j}$ таковы, что $g_{i,j}(x)=\delta_{i,j}.$

Из непрерывности $g_{i,j}: \forall \varepsilon>0: \exists \underset{\ni x}{V}\subset U: \forall y\in V, v\in T_yM: |\operatorname{d}_x\phi(v)|=(1\pm\varepsilon)|v|.$

2. Применяем (лемма 1.5.1) для $\varepsilon={}^1\!/2$. Из билипшицевости сразу получается совпадение топологий.

1.5.1 Отсупление в метрические пространства

Более частым случаем является определение расстояние, как инфимум длин всех кривых, а не только кусочно-гладких.

Пусть (X,d) — метрическое пространство, $\gamma:(c,d)\to X$ — (непрерывный) путь. Здесь длина определяется по формуле $L_d(\gamma)=\sup\sum_i d(\gamma(t_i),\gamma(t_{i+1}))$, где супремум берётся по всем разбиениям $c=t_0\leqslant t_1\leqslant\ldots\leqslant t_n=d$.

Определение 1.5.7 (Спрямляемая кривая γ). $L_d(\gamma) < \infty$.

Пусть $x, y \in X$.

Определение 1.5.8 (Внутренняя метрика, порождённая метрикой d). $d_I(x,y) \stackrel{def}{=} \inf_{\gamma} l(\gamma)$, где инфимум берётся по всем кусочно гладким $\gamma : [a,b] \to M$, таким, что $\gamma(a) = x, \gamma(b) = y$.

Из неравенства треугольника $d_I \geqslant d$.

Интересный факт. $(d_I)_I = d_I$.

Определение 1.5.9 (Внутренняя метрика). Метрика d, совпадающая с внутренней метрикой, порождённой d.

Пример (Не внутернняя метрика). Рассмотрим окружность $S^1\subset\mathbb{R}^2$. Метрика, индуцированная с \mathbb{R}^2 на S^1 — не внутренняя.

 $extit{Интересный факт.} \ d_l$ — внутренняя метрика, и $l=L_{d_l}.$

Для доказательства стоит использовать (лемма 1.5.1).