

Cooperative Coevolutionary Negatively Correlated Natural Evolution Strategy

基于合作协同的负相关自然进化策略

计算机科学与技术 陈驿来



## Table of contents

# 1.Background & NCNES framework



2. Cooperative Coevolutionary Framework

3. Experiments

4. Conclusion





# Negatively Correlated Search





TANG K, YANG P, YAO X. Negatively correlated search[J]. IEEE Journal on Selected Areas in Communications, 2016, 34(3): 542-550

Negatively Correlated Search (NCS) 是一种进化算法,通过迭代方式寻找最优解。其核心思想是生成多样化的种群,在搜索空间中进行负相关的探索,从而更有效地找到最优解。

缺点: 根据直觉构思, 缺乏数学解释







# NCNES framework

NCNES通过数学公式推导,来定义了NCS的具体搜索过程:在种群的初始化和每次种群的生成时使用了概率分布,每次迭代的目标是更新概率分布的参数。

$$p(\theta_i) = \mathcal{N}(\boldsymbol{m}_i, \boldsymbol{\Sigma}_i)$$

目标函数: ]

适应度模型: F

多样性模型: D

迭代目标: 通过对目标函数求梯度来更新概率分布

的参数

$$J = F + D = \sum_{i=1}^{\lambda} f(\theta_i) + \sum_{i=1}^{\lambda} d(p(\theta_i))$$

$$F = \sum_{i=1}^{\lambda} \int f(x)p(x|\theta_i)dx = \sum_{i=1}^{\lambda} f(\theta_i)$$

$$D = \sum_{i=1}^{\lambda} \sum_{j=1, i \neq j}^{\lambda} -C(p(\theta_i), p(\theta_j)) = \sum_{i=1}^{\lambda} d(p(\theta_i))$$

$$C(p(\theta_i), p(\theta_j)) = -\log\left(\int \sqrt{p(x|\theta_i)p(x|\theta_j)} dx\right)$$

YANGP, YANGQ, TANGK, et al. Parallel exploration via negatively correlated search[J]. Fron tiers of Computer Science, 2021, 15:1-13.







## NCNES flow chart

对于新NCS框架的实例化:将高斯分布带入适应性模型和多样性模型,每次迭代过程中更新高斯分布参数。



## Pseudo-code



### 初始化种群

初始化学习率, 权重值

对于每个种群 评估 排序

计算Utility

25: end while

对于均值计算fitness梯度 对于方差计算fitness梯度 对于均值计算diversity梯度 对于方差计算diversity梯度

括号里值与标准差成反比,容易 过大.用Fisher矩阵归一化

```
Algorithm 1 Pseudo-code of proposed NCNES
   1: for i = 1 to \lambda do
               Initialize a Gaussian distribution for the ith Search Process as N(m_i, \Sigma_i)
   3: end for
   4: T_{\text{cur}} = 0;
   5: while T_{\rm cur} < T_{\rm max} do
          \eta_m \leftarrow \eta_m^{\text{init}} \cdot \frac{e - e^{\frac{T_{\text{cur}}}{T_{\text{max}}}}}{e - 1}
           \begin{split} \eta_{\Sigma} &\leftarrow \eta_{\Sigma}^{\text{init}} \cdot \frac{e - e^{\frac{T_{\text{cur}}}{T_{\text{max}}}}}{e^{-1}}; \\ \varphi &\leftarrow \varphi \text{init} \cdot e^{-\frac{e^{T_{\text{cur}}}}{T_{\text{max}}} \cdot e^{-1}} \end{split}
                for i = 1 to \lambda do
                      Generate \mu solutions \mathbf{x}_i^k \leftarrow N(m_i, \Sigma_i), \forall k = 1, \dots, \mu
  10:
                      Evaluate the fitness f(x_i^k), \forall k = 1, \dots, \mu;
  11:
                     T_{\rm cur} \leftarrow T_{\rm cur} + \mu;
 12:
                     Update x^* as the best solution ever found;
 13:
                      Rank the kth solution in terms of its fitness f(x_k) as \pi(k), \forall k = 1, ..., \mu;
 14:
                     Set U_i(\pi(k)) = \frac{\max\{0,\log(\frac{\mu}{2}+1)-\log(\pi(k))\}}{\sum_{k=1}^{\mu}\max\{0,\log(\frac{\mu}{2}+1)-\log(k)\}} - \frac{1}{\mu};
 15:
                    \nabla_{m_i} f \leftarrow \frac{1}{\mu} \sum_{k=1}^{\mu} \sum_{i=1}^{\mu} (x_i^k - m_i) \cdot U_i(\pi(k));
\nabla_{\Sigma_i} f \leftarrow \frac{1}{2\mu} \sum_{k=1}^{\mu} (\sum_{i=1}^{\mu} (x_i^k - m_i)(x_i^k - m_i)^T \sum_{i=1}^{\mu} \sum_{i=1}^{\mu} (U_i(\pi(k));
                   \nabla_{m_i} d \leftarrow \frac{1}{4} \sum_{j=1}^{\lambda} \left( \frac{\Sigma_i + \Sigma_j}{2} \right)^{-1} (m_i - m_j);
                  \nabla_{\Sigma_i} d \leftarrow \frac{1}{4} \sum_{j=1}^{\lambda} \left( \left( \frac{\Sigma_i + \Sigma_j}{2} \right)^{-1} - \frac{1}{4} \left( \frac{\Sigma_i + \Sigma_j}{2} \right)^{-1} (m_i - m_j) (m_i - m_j)^T \left( \frac{\Sigma_i + \Sigma_j}{2} \right)^{-1} - \Sigma_i^{-1} \right);
                     F_{m_i} \leftarrow \frac{1}{\mu} \sum_{k=1}^{\mu} \sum_{i=1}^{-1} (x_i^k - m_i)(x_i^k - m_i)^T \sum_{i=1}^{-1};
20:
                     F_{\Sigma_i} \leftarrow \frac{1}{4\mu} \sum_{k=1}^{\mu} \left( \sum_i^{-1} (x_i^k - m_i) (x_i^k - m_i)^T \sum_i^{-1} - \sum_i^{-1} \right) \left( \sum_i^{-1} (x_i^k - m_i) (x_i^k - m_i)^T \sum_i^{-1} - \sum_i^{-1} \right)^T;
                    m_{i} \leftarrow m_{i} + \eta_{m} \cdot F_{m_{i}}^{-1}(\nabla_{m_{i}}f + \varphi \cdot \nabla_{m_{i}}d);
\Sigma_{i} \leftarrow \Sigma_{i} + \eta_{\Sigma} \cdot F_{\Sigma_{i}}^{-1}(\nabla_{\Sigma_{i}}f + \varphi \cdot \nabla_{\Sigma_{i}}d);
              end for
```





# NCNES的缺点

随着搜索空间的增加(解的维度),性能表现显著下降。

# 引入Cooperative Coevolution 框架

- 分治思想,将每个解根据维度拆分为不同低维度的子问题,分别优化。
- 目的: 使不同的子问题尽可能相互独立互不干涉,降低相关性,从而增加优化效率。
- 如何评估低维度的子问题? 使用不同的补充向量(确保负相关性)。



## Pseudo-code



- 1.将原先的单个解分为<u>M个</u>(子解)
- 2.对于每个待优化的当前子解,通过分布函数产生具体参数
- 3.将当前子解补充完整(使用父代的对应维度的均值)
- 4.对于合并的解个体进行NCNES的评估和优化

#### Algorithm 3 CC-NCNES

- 1: Initialize  $\lambda$  solutions  $x_i$  randomly,  $i = 1, \ldots, \lambda$ .
- 2: while stop criteria are not met do
- : Divide the D-dimensional problem into M sub-problems.
- for j = 1 to M do
- 5: **for** i = 1 to  $\lambda$  **do**
- 6: Generate an offspring solution  $x'_{i,j}$  from the distribution  $p_{i,j} \sim N(x_{i,j}, \Sigma_{i,j})$ .
- 7: Complement  $x'_{i,j}$  as  $[x'_{i,j}; v_{i,j}]$ , where  $v_{i,j}$  is the mean of the remaining dimensions of the parent
- 8: Take  $f([x'_{i,j}; v_{i,j}])$  as the new individual and do the NCNES steps to evaluate the qualities of  $x'_{i,j}$ .
- 9: end for
- 10: end for
- 11: Update the distribution function of the dimension corresponding to this round
- 12: end while





# Experiments

# Southern University of Science and Technology

## NCNES复现并在CEC2017测试集上的表现(低维):

|               | Table 2 CEC 2017 Benchmark                               |             |      |  |  |
|---------------|----------------------------------------------------------|-------------|------|--|--|
|               |                                                          |             |      |  |  |
| Serial Number | Function Description Search Range                        |             |      |  |  |
| F1            | Shifted and Rotated Bent Cigar Function.                 | [-100, 100] | 100  |  |  |
| F3            | Shifted and Rotated Zakharov Function.                   | [-100, 100] | 300  |  |  |
| F4            | Shifted and Rotated Rosenbrock's Function.               | [-100, 100] | 400  |  |  |
| F5            | Shifted and Rotated Rastrigin's Function.                | [-100, 100] | 500  |  |  |
| F6            | Shifted and Rotated Expanded Scaffer's F6 Function.      | [-100, 100] | 600  |  |  |
| F7            | Shifted and Rotated Lunacek Bi-Rastrigin's Function.     | [-100, 100] | 700  |  |  |
| F8            | Shifted and Rotated Non-Continuous Rastrigin's Function. | [-100, 100] | 800  |  |  |
| F9            | Shifted and Rotated Levy Function.                       | [-100, 100] | 900  |  |  |
| F10           | Shifted and Rotated Schwefel's Function.                 | [-100, 100] | 1000 |  |  |
| F11           | Hybrid Function 1.                                       | [-100, 100] | 1100 |  |  |
| F12           | Hybrid Function 2.                                       | [-100, 100] | 1200 |  |  |
| F13           | Hybrid Function 3.                                       | [-100, 100] | 1300 |  |  |
| F14           | Hybrid Function 4.                                       | [-100, 100] | 1400 |  |  |
| F15           | Hybrid Function 5.                                       | [-100, 100] | 1500 |  |  |
| F16           | Hybrid Function 6.                                       | [-100, 100] | 1600 |  |  |
| F17           | Hybrid Function 7.                                       | [-100, 100] | 1700 |  |  |
| F18           | Hybrid Function 8.                                       | [-100, 100] | 1800 |  |  |
| F19           | Hybrid Function 9.                                       | [-100, 100] | 1900 |  |  |
| F20           | Hybrid Function 10.                                      | [-100, 100] | 2000 |  |  |
| F21           | Composition Function 1.                                  | [-100, 100] | 2100 |  |  |
| F22           | Composition Function 2.                                  | [-100, 100] | 2200 |  |  |
| F23           | Composition Function 3.                                  | [-100, 100] | 2300 |  |  |
| F24           | Composition Function 4.                                  | [-100, 100] | 2400 |  |  |
| F25           | Composition Function 5.                                  | [-100, 100] | 2500 |  |  |
| F26           | Composition Function 6.                                  | [-100, 100] | 2600 |  |  |
| F27           | Composition Function 7.                                  | [-100, 100] | 2700 |  |  |
| F28           | Composition Function 8.                                  | [-100, 100] | 2800 |  |  |
| F29           | Composition Function 9.                                  | [-100, 100] | 2900 |  |  |
| F30           | Composition Function 10.                                 | [-100, 100] | 3000 |  |  |

| Table 3 NCNES on CEC 2017 Benchmark D = 10 |            |            |             |            |
|--------------------------------------------|------------|------------|-------------|------------|
| Serial Number                              | Best       | Worst      | Mean        | variance   |
| <i>F</i> 1                                 | 5.8147E+02 | 3.0335E+04 | 8.1647E+03  | 4.1988E+03 |
| F2                                         | 2.0000E+02 | 3.8725E+04 | 2.0076E+02  | 2.2938E+02 |
| F3                                         | 3.0848E+02 | 3.0922E+02 | 3.0862E+02  | 5.5929E-02 |
| F4                                         | 4.0257E+02 | 4.0886E+02 | 4.0851E+02  | 5.5075E-00 |
| F5                                         | 5.0000E+02 | 5.0000E+02 | 5.0000E+02  | 4.9958E-07 |
| F6                                         | 6.2122E+02 | 6.4587E+02 | 6.2750E+02  | 3.7227E+00 |
| F7                                         | 7.1681E+02 | 7.2886E+02 | 7.2041E+02  | 4.3002E+00 |
| F8                                         | 8.0000E+02 | 8.0000E+02 | 8.0000E+02  | 2.5532E-09 |
| F9                                         | 9.4236E+02 | 1.9038E+03 | 1.0064E+03  | 7.7422E+00 |
| F10                                        | 1.0013E+03 | 1.0010E+03 | 1.0072E+03  | 1.2067E+01 |
| F11                                        | 4.9412E+04 | 6.3254E+04 | 5.2397E+04  | 1.1421E+03 |
| F12                                        | 1.4339E+03 | 9.9384E+03 | 3.1044E+04  | 1.4634E+03 |
| F13                                        | 1.3309E+03 | 7.3298E+03 | 4.7792E+03  | 4.7515E+03 |
| F14                                        | 2.4715E+03 | 8.2932E+04 | 7.7572E+04  | 4.9593E+04 |
| F15                                        | 1.5010E+03 | 1.5293E+03 | 1.5174E+03  | 2.5552E+01 |
| F16                                        | 1.6047E+03 | 1.6021E+03 | 1.16125E+03 | 4.6921E+00 |
| F18                                        | 1.8204E+03 | 1.8657E+04 | 8.7459E+03  | 6.5805E+03 |
| F19                                        | 1.9376E+03 | 1.9855E+03 | 1.9489E03   | 8.4205E+00 |
| F21                                        | 2.1000E+03 | 2.1000E+03 | 2.1000E+03  | 4.3271E-03 |
| F22                                        | 2.2000E+03 | 2.2000E+03 | 2.2000E+03  | 2.6050E-05 |
| F23                                        | 2.3000E+03 | 2.3000E+03 | 2.3000E+03  | 2.0114E-03 |
| F24                                        | 2.8784E+03 | 2.8801E+03 | 2.8798E+03  | 8.1228E-01 |
| F25                                        | 2.5000E+03 | 2.5000E+03 | 2.5000E+03  | 2.5767E-03 |
| F26                                        | 2.9672E+03 | 2.9673E+03 | 2.9672E+03  | 6.4629E-05 |
| F27                                        | 2.7000E+03 | 2.7031E+03 | 2.7014E+03  | 2.5546E+00 |
| F28                                        | 3.8025E+03 | 3.9521E+03 | 3.8715E+03  | 7.4365E+03 |

旋转、位移

### NCNES复现并在CEC2022测试集上的表现(低维):

| 表 4 CEC 2022 Benchmark |                                                          |              |         |  |
|------------------------|----------------------------------------------------------|--------------|---------|--|
| Serial Number          | Function Description                                     | Search Range | Optimum |  |
| $\overline{F1}$        | Shifted and Rotated Zakharov Function.                   | [-100, 100]  | 300     |  |
| F2                     | Shifted and Rotated Rosenbrock's Function.               | [-100, 100]  | 400     |  |
| F3                     | Shifted and Rotated Expanded Scaffer's F6 Function.      | [-100, 100]  | 600     |  |
| F4                     | Shifted and Rotated Non-Continuous Rastrigin's Function. | [-100, 100]  | 800     |  |
| F5                     | Shifted and Rotated Levy Function.                       | [-100, 100]  | 900     |  |
| F6                     | Hybrid Function 1.                                       | [-100, 100]  | 1800    |  |
| F7                     | Hybrid Function 2.                                       | [-100, 100]  | 2000    |  |
| F8                     | Hybrid Function 3.                                       | [-100, 100]  | 2200    |  |
| F9                     | Composition Function 1.                                  | [-100, 100]  | 2300    |  |
| F10                    | Composition Function 2.                                  | [-100, 100]  | 2400    |  |
| F11                    | Composition Function 3.                                  | [-100, 100]  | 2600    |  |
| F12                    | Composition Function 4.                                  | [-100, 100]  | 2700    |  |

#### 表 5 NCNES on CEC 2022 Benchmark D = 10

| Serial Number | Best       | Worst      | Mean       | variance   |
|---------------|------------|------------|------------|------------|
|               |            |            |            |            |
| F1            | 3.2195E+03 | 5.2663E+04 | 4.3101E+03 | 8.7391E+02 |
| F2            | 4.0701E+02 | 4.0723E+02 | 4.0712E+02 | 1.3621E-01 |
| F3            | 6.0000E+02 | 6.0000E+02 | 6.0000E+02 | 1.1504E-12 |
| F4            | 8.1554E+02 | 8.2231E+02 | 8.1983E+02 | 2.7654E-00 |
| F5            | 9.0000E+02 | 9.0000E+02 | 9.0000E+02 | 6.6536E-09 |
| F6            | 3.4482E+04 | 4.2531E+04 | 3.8994E+04 | 3.4928E+03 |
| F7            | 2.0100E+03 | 2.0431E+03 | 2.0242E+03 | 4.8023E+00 |
| F8            | 2.2225E+03 | 2.5674E+03 | 2.2422E+03 | 1.1012E+02 |
| F9            | 2.6680E+03 | 2.6690E+03 | 2.6684E+03 | 2.9461E-01 |
| F10           | 2.6221E+03 | 2.8453E+03 | 2.6275E+03 | 4.7241E+00 |
| F11           | 2.6005E+03 | 2.8632E+03 | 2.7815E+03 | 1.3976E+02 |
| F12           | 2.8664E+03 | 2.8665E+03 | 2.8664E+03 | 2.1092E-02 |



- 相当一部分的Function都优化到了最优值,但是其最差值,均值可能还没来得及在迭代结束前达到最优,从而导致较大的方差,这些都表明NCNES的性能与主流的优化算法比较,还有上升空间。
- 另外,注意到F9和F12,函数在没有达到最优解时提前收敛了,很小的方差表明了函数在每次训练时都陷入了相同的局部最优,这意味着NCNES在多样性指标上,对于全局搜索的比重需要增加,后期需要去优化这个平衡fitness和diversity的动态权重。



### NCNES/CC-NCNES复现并在CEC2017测试集上的表现(高维):

Table 7 NCNES on CEC 2017 Benchmark D = 30

| Serial Number | Best       | Worst      | Mean       | variance   |
|---------------|------------|------------|------------|------------|
| F1            | 5.8152E+09 | 8.0213E+09 | 6.6773E+09 | 7.5142E+08 |
| F2            | 1.1645E+05 | 1.6321E+05 | 1.357E+05  | 7.7314E+03 |
| F3            | 9.888E+02  | 1.3425E+03 | 1.2298E+03 | 1.5408E+02 |
| F4            | 2.533E+03  | 4.231E+06  | 3.179E+04  | 3.0434E+02 |
| F5            | 5.0000E+02 | 5.0000E+02 | 5.0000E+02 | 3.9213E-03 |
| F6            | 1.6989E+05 | 3.1621E+05 | 2.2461E+05 | 2.2426E+05 |
| F7            | 1.1075E+03 | 1.3211E+03 | 1.153E+03  | 2.5382E+02 |
| F8            | 8.1869E+02 | 8.3263E+02 | 8.2184E+02 | 2.4415E-00 |
| F9            | 7.477E+04  | 9.2131E+04 | 8.3454E+04 | 3.5473E+02 |
| F10           | 2.0865E+04 | 3.1298E+05 | 2.4754E+05 | 3.1935E+04 |
| F11           | 1.0532E+07 | 3.8231E+08 | 1.6550E+07 | 2.6097E+07 |
| F12           | 1.7975E+07 | 9.3584E+07 | 6.189E+07  | 2.224E+07  |
| F13           | 2.919E+07  | 8.6466E+07 | 5.20E+07   | 1.730E+07  |
| F14           | 8.4644E+04 | 5.3356E+05 | 3.1680E+05 | 2.2005E+05 |
| F15           | 1.4921E+04 | 2.0137E+04 | 1.7094E+04 | 1.533E+03  |
| F16           | 3.240E+05  | 9.3142E+07 | 3.881E+07  | 3.8410E+07 |
| F17           | 1.56E+05   | 1.1209E+06 | 2.27E+05   | 1.051E+05  |
| F18           | 1.9196E+05 | 5.2389E+05 | 2.501E+05  | 4.8926E+04 |
| F19           | 3.150E+03  | 3.6142E+03 | 3.338E+03  | 1.06E+02   |
| F20           | 6.143E+03  | 6.754E+03  | 6.515E+03  | 2.6853E+02 |
| F21           | 2.401E+03  | 2.411E+03  | 2.410E+03  | 5.737E-00  |
| F22           | 6.849E+03  | 1.2385E+04 | 8.069E+03  | 6.3581E+02 |
| F23           | 5.172E+03  | 6.0502E+03 | 5.552E+03  | 2.3051E+02 |
| F24           | 3.043E+03  | 3.213E+03  | 3.145E+03  | 4.0913E+01 |
| F25           | 3.419E+03  | 3.421E+03  | 3.425E+03  | 3.8312E+00 |
| F26           | 3.196E+03  | 3.1542E+03 | 3.219E+03  | 1.244E+01  |
| F27           | 3.208E+03  | 2.226E+03  | 3.214E+03  | 4.4224E+00 |
| F28           | 1.1107E+08 | 3.1289E+09 | 1.9667E+09 | 8.8536E+08 |

Table 8 CC-NCNES on CEC 2017 Benchmark D = 30

| Serial Number | Best       | Worst      | Mean        | variance   |
|---------------|------------|------------|-------------|------------|
| F1            | 4.639E+10  | 7.1856E+10 | 5.169E+10   | 4.209E+09  |
| F2            | 6.789E+04  | 9.866E+04  | 8.333E+04   | 9.251E+03  |
| F3            | 5.163E+03  | 1.211E+04  | 8.944E+03   | 1.822E+03  |
| F4            | 4.3246E+04 | 7.5542E+04 | 5.305E+04   | 5.189E+03  |
| F5            | 5.0002E+02 | 5.0011E+02 | 5.0003E+02  | 3.1910E-03 |
| F6            | 1.7288E+06 | 1.9881E+06 | 1.8324E+06  | 7.7238E+04 |
| F7            | 1.330E+03  | 1.8666E+03 | 1.417E+03   | 4.6203E+01 |
| F8            | 8.3418E+02 | 8.4001+02  | 8.3942E+02  | 3.021E+00  |
| F9            | 7.305E+03  | 7.813E+03  | 7.766E+03   | 2.2005E+02 |
| F10           | 7.957E+05  | 3.1222E+06 | 2.274E+06   | 9.310E+05  |
| F11           | 3.4614E+09 | 5.2376E+08 | 4.4774E+09  | 7.2617E+08 |
| F12           | 2.429E+09  | 7.5662E+06 | 5.1387E+09  | 1.471E+06  |
| F13           | 6.9032E+05 | 1.8642E+06 | 1.4286E+06  | 4.49E+05   |
| F14           | 9.8705E+08 | 1.5233E+09 | 1.52128E+09 | 4.9080E+08 |
| F15           | 4.7308E+07 | 2.0120E+08 | 1.9192E+08  | 1.213E+08  |
| F19           | 2.143E+03  | 2.451E+03  | 2.265E+03   | 7.2452E+01 |
| F20           | 2.699E+03  | 2.919E+03  | 2.810E+03   | 7.0991E+01 |
| F21           | 2.219E+03  | 2.2375E+03 | 2.2260E+03  | 2.464E+00  |
| F22           | 3.296E+04  | 3.842E+03  | 3.733E+04   | 3.4289E+03 |
| F23           | 2.437E+04  | 2.8324E+03 | 2.703E+03   | 1.990E+03  |
| F24           | 5.339E+03  | 6.5231E+03 | 6.312E+03   | 6.2237E+02 |
| F25           | 3.988E+03  | 4.068E+03  | 4.001E+03   | 8.1512E+00 |
| F26           | 2.963E+03  | 3.002E+03  | 2.977E+03   | 4.521E+01  |
| F27           | 3.012E+03  | 3.243E+03  | 3.185E+03   | 5.0184E+00 |
| F28           | 3.2105E+07 | 1.0025E+09 | 8.2586E+08  | 6.0178E+08 |

结合了CC框架之后 在相同的迭代次数下 NCNES较多在更多的 Function上更为接近 最优值。 并且更小的标准差

表明其可以在相同 条件下获得更稳定的 解。



### CC-NCNES比NCNES更具有优势的体现:

Table 9 Main advantages of CC-NCNES on CEC 2017 Benchmark D = 30

| Serial Number   | CC-NCNES   | CC-NCNES   | NCNES      | NCNES      |
|-----------------|------------|------------|------------|------------|
| Serial Pallicer | Best       | Mean       | Best       | Mean       |
| F2              | 6.789E+04  | 8.333E+04  | 1.1645E+05 | 1.357E+05  |
| F5              | 5.0002E+02 | 5.0003E+02 | 5.0000E+02 | 5.0000E+02 |
| F8              | 8.3418E+02 | 8.3942E+02 | 8.1869E+02 | 8.0237E+02 |
| F9              | 7.305E+03  | 7.766E+03  | 7.477E+04  | 8.3454E+04 |
| F19             | 2.143E+03  | 2.265E+03  | 3.150E+03  | 3.338E+03  |
| F20             | 2.699E+03  | 2.810E+03  | 6.143E+03  | 6.515E+03  |
| F21             | 2.219E+03  | 2.2260E+03 | 2.401E+03  | 2.410E+03  |
| F24             | 5.339E+03  | 6.312E+03  | 3.043E+03  | 3.145E+03  |
| F26             | 2.963E+03  | 2.977E+03  | 3.196E+03  | 3.219E+03  |
| F27             | 3.012E+03  | 3.185E+03  | 3.208E+03  | 3.214E+03  |
| F28             | 3.2105E+07 | 8.2586E+08 | 1.1107E+08 | 1.9667E+09 |

CC-NCNES在大多数测试函数上(例如F2, F9, F19, F20, F21, F26, F27, F28)的"Best"和"Mean"值都明显优于NCNES。这表明CC-NCNES在这些函数上能够找到更好的解决方案,并且具有更稳定的性能。







本项目从数学原理上实现了NCS(负相关搜索)称为NCNES。他同时建模并最大化下一代种群的多样性模型(用于探索)和适应度模型(用于优化)。两个模型都可以通过对每个搜索过程执行梯度下降来最大化。并使其在Benchmark2017和Benchmark2022上测试,获得了较好的结果,但是在优化效率和全局最优的搜索上还有上升空间。

另一篇论文《Evolutionary Reinforcement Learning via Cooperative Coevolutionary Negatively Correlated Search 》提出了<u>合作进化负相关搜索</u>,用于训练百万个连接权重的神经网络,主要思路是<u>将决策变量分成多个独立组,并分别用进化算法解决较小的子问题(即决策变量组)</u>来扩展进化算法。

在拓展现有NCS算法的基础上,本项目进一步结合了Cooperative Coevolutionary框架,将单个高维度解分解为多个低维子解进行负相关优化。这种策略不仅显著提升了高维问题的求解效率,同时也在复杂度和计算资源方面表现出色,使得我们能够在更短的时间内找到更优的解决方案。

# 参考文献



[1] TANGK, YANGP, YAOX.Negatively correlated search[J]. IEEE Journal on Selected Areas in Communications, 2016, 34(3):542-550

[2] YANGP,ZHANGH,YUY,etal. Evolutionary reinforcement learning via cooperative coevolutionary negatively correlated search[J]. Swarm and Evolutionary Computation, 2022, 68:100974

[3] YANGP, YANGQ, TANGK, et al. Parallel exploration via negatively correlated search [J]. Fron tiers of Computer Science, 2021, 15:1-13.

[4] YANGZ, TANGK, YAOX. Largescale evolutionary optimization using cooperative coevolution [J]. Information sciences, 2008, 178(15):2985-2999



