Электротехника Домашняя работа № 1 Образец выполнения

Задание

Номер варианта соответствует двум последним цифрам номера студенческого билета

- 1. Определить токи во всех ветвях методом непосредственного применения законов Кирхгофа.
 - Для проверки полученных токов составить баланс мощностей.
- 2. Определить токи во всех ветвях методом контурных токов.
- 3. Определить токи во всех ветвях методом узловых потенциалов.
- 4. Результаты расчётов пунктов 1, 2 и 3 свести в таблицу:

Метод	I_1	I_2	I ₃	I ₄	I ₅	I_6
Кирхгоф						
M.K.T.						
М.У.П.						

- 5. Определить ток I1 методом эквивалентного генератора.
- 6. Начертить потенциальную диаграмму для любого замкнутого контура, включающего обе ЭДС

<u>Замечание</u>: общее условие и общий рисунок в Ваш отчёт вставлять необязательно!

В отчёте должны быть рисунок и данные, соответствующие Вашему варианту.

Методические указания по выполнению расчёта Пример расчёта

1. ОПРЕДЕЛИТЬ ТОКИ ВО ВСЕХ ВЕТВЯХ МЕТОДОМ НЕПОСРЕДСТВЕННОГО ПРИМЕНЕНИЯ ЗАКОНОВ КИРХГОФА.

СОСТАВИТЬ БАЛАНС МОЩНОСТЕЙ

1.1. Определить токи во всех ветвях методом непосредственного применения законов Кирхгофа

Отметим для удобства две дополнительные точки: m и n (см. рис. 1) в ветвях, содержащих источники ЭДС.

Подсчитаем количество ветвей: ba, bd, bc, amd, dc, anc — итого 6 ветвей. Поскольку в цепи отсутствуют источники токов, всего имеется 6 неизвестных токов ветвей: I1, ..., I6. Следовательно, необходимо составить систему 6 уравнений для 6 неизвестных токов.

Расчёт количества уравнений по 1-му закону Кирхгофа: в цепи имеется 4 узла (a, b, c, d), следовательно, максимальное количество независимых уравнений по 1-му закону Кирхгофа составляет 4 - 1 = 3. Составим 3 уравнения по 1-му закону Кирхгофа.

Расчёт количества уравнений по 2-му закону Кирхгофа: поскольку всего нужно составить 6 уравнений, из которых 3 уравнения будут составлены по 1-му закону Кирхгофа, следовательно, по 2-му закону Кирхгофа необходимо составить 6 - 3 = 3 уравнения.

Составление уравнений по 1-му закону Кирхгофа:

Составим уравнения для узлов a, b, c. 1-ый закон Кирхгофа возьмём в формулировке: «Алгебраическая сумма токов узла равна нулю». За положительное направление токов выберем направление «к узлу», то есть в

уравнении по 1-му закону Кирхгофа «втекающие» в узел токи будем брать со знаком «+», а «вытекающие» из узла — со знаком «-»:

узел a: -I1 - I4 - I6 = 0узел b: +I1 + I2 + I3 = 0узел c: -I3 + I5 + I6 = 0

Составление уравнений по 2-му закону Кирхгофа:

Составим уравнения для простейших контуров. 2-ый закон Кирхгофа возьмём в формулировке: «Алгебраическая сумма напряжений на элементах (в данном случае — на сопротивлениях) контура равна алгебраической сумме ЭДС». За положительное направление обхода контура выберем направление «по часовой стрелке»:

контур abdma: $+ I1 \cdot R1 - I2 \cdot R2 - I4 \cdot R4 = - E4$ контур dbcd: $+ I2 \cdot R2 - I3 \cdot R3 - I5 \cdot R5 = 0$ контур amdcna: $+ I4 \cdot R4 + I5 \cdot R5 - I6 \cdot R6 = + E4 - E6$

Таким образом, получаем систему 6 уравнений с 6 неизвестными:

$$\begin{cases}
-I1 - I4 - I6 = 0 \\
+I1 + I2 + I3 = 0 \\
-I3 + I5 + I6 = 0 \\
+I1R1 - I2R2 - I4R4 = -E4 \\
+I2R2 - I3R3 - I5R5 = 0 \\
+I4R4 + I5R5 - I6R6 = +E4 - E6
\end{cases}$$

Полученная система решается любым удобным методом. С учётом, что в системе 6 неизвестных. Решения обычными методами весьма трудоёмко, поэтому рекомендуется использовать системы компьютерной математики.

Для удобства расчёта можно представить систему в матричном виде, а её решение найти через матричные операции:

$$(R)(I) = (E).$$

После подстановки значений, получим:

$$\begin{pmatrix} -1 & 0 & 0 & -1 & 0 & -1 \\ 1 & 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & -1 & 0 & 1 & 1 \\ 94 & -72 & 0 & -1 & 0 & 0 \\ 0 & 72 & -36 & 0 & -12 & 0 \\ 0 & 0 & 0 & 1 & 12 & -72 \end{pmatrix} \begin{pmatrix} I1 \\ I2 \\ I3 \\ I4 \\ I5 \\ I6 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ -28 \\ 0 \\ 28 - 11 \end{pmatrix}$$

После решения данной системы, получим следующие значения токов:

$$I1 = -0.214;$$

 $I2 = 0.1038;$
 $I3 = 0.1103;$
 $I4 = 0.396;$
 $I5 = 0.292;$
 $I6 = -0.1819$

1.2. Составить баланс мошностей.

Уравнение баланса мощностей для цепи постоянного тока имеет вид:

$$\sum_{n} R_n I_n^2 = \sum_{k} \pm I_k E_k$$

В левой части уравнения стоит алгебраическая сумма всех мощностей, которые потребляется резистивными элементами, в правой части стоит мощность, которую дают все источники ЭДС цепи.

В левой части все мощности положительные, т.к. потребляемая резистивным элементом мощность не зависит от направления тока (ток в выражении возведён во втору степень). Знак правой части определяется соотношением направлений тока и ЭДС — если направления тока и ЭДС совпадают, то ставится знак «+», если не совпадают, то «—» (в этом случае говорят об «активной нагрузке», в качестве примера можно привести аккумулятор во время зарядки).

Для цепи рис. 1 уравнение баланса мощностей имеет вид:

$$R_1I_1^2 + R_2I_2^2 + R_3I_3^2 + R_4I_4^2 + R_5I_5^2 + R_6I_6^2 = I_4E_4 + I_6E_6$$

Подставив числовые значения и проведя вычисления, получим:

$$94 * (-0.214)^{2} + 72 * 0.1038^{2} + 36 * 0.1103^{2} + 11 * 0.396^{2} + 12 * 0.292^{2} + 72 * (-0.1819)^{2} = 0.396 * 28 + (-0.1819) * 11 9.09 = 9.09$$

Баланс сошёлся!

2. ОПРЕДЕЛИТЬ ТОКИ ВО ВСЕХ ВЕТВЯХ МЕТОДОМ КОНТУРНЫХ ТОКОВ

По методу контурных токов (МКТ) сначала нужно найти контурные токи (I_{11} , I_{22} , I_{33} на рис. 1), а затем уже по ним рассчитать токи в ветвях.

Систему уравнений для контурных токов будем сразу составлять в матричном виде.

Уравнение в матричной форме имеет вид:

$$\begin{pmatrix} r11 & -r12 & \cdots & -r1N \\ -r21 & r22 & \cdots & \vdots \\ \vdots & \vdots & \ddots & \vdots \\ -rN1 & -rN2 & \cdots & rNN \end{pmatrix} \begin{pmatrix} I_{11} \\ I_{22} \\ \vdots \\ I_{NN} \end{pmatrix} = \begin{pmatrix} E_{11} \\ E_{22} \\ \vdots \\ E_{NN} \end{pmatrix}$$

Здесь: гіі – сумма сопротивлений і-го контура;

 $r_{ij}\;\;-$ сумма общих сопротивлений і-го и j-го контуров;

 I_{kk} – искомый (неизвестный) контурный ток k-го контура;

 E_{nn} — алгебраическая (с учётом направления обхода) сумма ЭДС n-го контура.

Применительно к рассматриваемой цепи на рис. 1 уравнение будет иметь следующий вид:

$$\begin{pmatrix} R1 + R2 + R4 & -R2 & -R4 \\ -R2 & R2 + R3 + R5 & -R5 \\ -R4 & -R5 & R4 + R5 + R6 \end{pmatrix} \begin{pmatrix} I_{11} \\ I_{22} \\ I_{33} \end{pmatrix} = \begin{pmatrix} -E4 \\ 0 \\ E4 - E6 \end{pmatrix}$$

Решение этого уравнения (системы уравнений) методом определителей:

$$I_{11} = \frac{\Delta_1}{\Delta}, I_{22} = \frac{\Delta_2}{\Delta}, I_{33} = \frac{\Delta_3}{\Delta}$$

где Δ — главный определитель матрицы;

 Δ_{j} – определитель матрицы, в которой j-ый столбец заменён на столбец, стоящий в правой части уравнения.

Токи в ветвях рассчитываются как алгебраическая сумма контурных токов, замыкающихся через данную ветвь. Для упрощения расчёта и единообразия с расчётом по методу непосредственного применения законов Кирхгофа, знак контурного тока определяем относительно ранее заданного условно-положительного направления тока в ветви (с точки зрения метода в этом нет необходимости, но позволит нам упростить анализ результатов).

Связь между токами в ветвях и контурными токами:

$$I_1 = I_{11}; I_2 = -I_{11} + I_{22}; I_3 = -I_{22}; I_4 = -I_{11} + I_{33}; I_5 = -I_{22} + I_{33}; I_6 = -I_{33}.$$
 Подставляя числовые значения, получим уравнение:

$$\begin{pmatrix} 167 & -72 & -1 \\ -72 & 120 & -12 \\ -1 & -12 & 85 \end{pmatrix} \begin{pmatrix} I11 \\ I22 \\ I33 \end{pmatrix} = \begin{pmatrix} -28 \\ 0 \\ 17 \end{pmatrix}$$

Значения определителей:

$$\Delta_1 = -264840;$$

 $\Delta_2 = -136404;$
 $\Delta_3 = 225000;$
 $\Delta = 1236864$

Значения контурных токов:

$$I_{11} = -0.214;$$

 $I_{22} = -0.1103;$
 $I_{33} = 0.1819$

Значения токов в ветвях:

$$I1 = -0.214;$$

 $I2 = 0.1038;$
 $I3 = 0.1103;$
 $I4 = 0.396;$
 $I5 = 0.292;$
 $I6 = -0.1819$

Поскольку исходные величины (сопротивления и ЭДС) были заданы в основных единицах (Ом и В), то и результат (токи) также получены в основных единицах (А).

3. ОПРЕДЕЛИТЬ ТОКИ ВО ВСЕХ ВЕТВЯХ МЕТОДОМ УЗЛОВЫХ ПОТЕНЦИАЛОВ.

По методу узловых потенциалов (МУП) сначала нужно найти потенциалы узлов цепи (ϕa , ϕb , ϕc , ϕd на рис. 1), а затем уже по ним рассчитать токи в ветвях.

Систему уравнений для узловых потенциалов будем сразу составлять в матричном виде.

Уравнение в матричной форме имеет вид:

$$\begin{pmatrix} g11 & -g12 & \cdots & -g1N \\ -g21 & g22 & \cdots & \vdots \\ \vdots & \vdots & \ddots & \vdots \\ -gN1 & -gN2 & \cdots & gNN \end{pmatrix} \begin{pmatrix} \varphi1 \\ \varphi2 \\ \vdots \\ \varphi N \end{pmatrix} = \begin{pmatrix} \Sigma1 \\ \Sigma2 \\ \vdots \\ \Sigma N \end{pmatrix}$$

Здесь:

g_{ii} – сумма проводимостей ветвей і-го узла;

 g_{ij} – сумма проводимостей ветвей, соединяющих i-ый и j-ый узлы;

 ϕ_N — искомый (неизвестный) потенциал k-го узла (принимаем, что узел «а» имеет номер 1, узел «b» — номер 2 и т.д.);

 Σ_{N} – алгебраическая сумма по всем активным ветвям N-го узла величин E/R (E – алгебраическая сумма ЭДС ветви, R – сопротивление ветви) для ветвей с ЭДС, или I_{u} (I_{u} – источник тока ветви). Если E или I_{u} направлены к узлу, соответствующее слагаемое в Σ_{N} берётся со знаком «+».

Нужно помнить, что размерность матрицы на 1 меньше количества узлов в цепи. В нашем случае узлов 4 (a, b, c, d), значит размерность матрицы 3х3.

Уровень отсчёта потенциала выбирается произвольно. Примем потенциал точки d за ноль: $\phi d = 0$. Осталось найти d неизвестных потенциала: d d d0. Осталось найти d3 неизвестных потенциала: d4 d5 d6.

Применительно к рассматриваемой цепи на рис. 1 уравнение по методу контурных токов будет иметь следующий вид:

$$\begin{pmatrix} \frac{1}{R1} + \frac{1}{R4} + \frac{1}{R6} & -\frac{1}{R1} & -\frac{1}{R6} \\ -\frac{1}{R1} & \frac{1}{R1} + \frac{1}{R2} + \frac{1}{R3} & -\frac{1}{R3} \\ -\frac{1}{R6} & -\frac{1}{R3} & \frac{1}{R3} + \frac{1}{R5} + \frac{1}{R6} \end{pmatrix} \begin{pmatrix} \varphi a \\ \varphi b \\ \varphi c \end{pmatrix} = \begin{pmatrix} -\frac{E4}{R4} - \frac{E6}{R6} \\ 0 \\ \frac{E6}{R6} \end{pmatrix}$$

Решение этого уравнения (системы уравнений) методом определителей:

$$\varphi a = \frac{\Delta 1}{\Delta}, \varphi b = \frac{\Delta 2}{\Delta}, \varphi c = \frac{\Delta 3}{\Delta}$$

где

 Δ – главный определитель матрицы;

 $\Delta_{j}-$ определитель матрицы, в которой j-ый столбец заменён на столбец, стоящий в правой части уравнения.

Связь между токами в ветвях и узловыми потенциалами – по закону Ома для активной ветви. Для цепи на рис.1:

$$I1 = \frac{\varphi_a - \varphi_b}{R1}$$
; ...; $I4 = \frac{\varphi_a + E4}{R4}$; ...; $I6 = \frac{\varphi_a - \varphi_c + E6}{R6}$

Подставляя числовые значения, получим уравнение:

$$\begin{pmatrix} 1,025 & -0,01064 & -0,01389 \\ -0,01064 & 0,0523 & -0,0278 \\ -0,01389 & -0,0278 & 0,1250 \end{pmatrix} \begin{pmatrix} \varphi a \\ \varphi b \\ \varphi c \end{pmatrix} = \begin{pmatrix} -28,2 \\ 0 \\ 0,1528 \end{pmatrix}$$

Значения определителей:

$$\Delta_1 = -0.1622;$$

 $\Delta_2 = -0.0439;$
 $\Delta_3 = 0.0206;$
 $\Delta = 0.00588$

Значения узловых потенциалов:

$$\varphi_a = -27.6$$
; $\varphi_b = -7.48$; $\varphi_c = -3.51$

Токи в ветвях рассчитываются по закону Ома для активного или пассивного участка цепи. Для упрощения расчёта и единообразия с расчётом по методу непосредственного применения законов Кирхгофа и по методу контурных токов, знак напряжения и ЭДС определяем относительно ранее заданного условно-положительного направления тока в ветви (с точки зрения метода в этом нет необходимости, но позволит нам упростить анализ результатов).

Значения токов в ветвях:

$$I1 = -0.214;$$

 $I2 = 0.1038;$
 $I3 = 0.1103;$
 $I4 = 0.396;$
 $I5 = 0.292;$
 $I6 = -0.1819$

Поскольку исходные величины (сопротивления и ЭДС) были заданы в основных единицах (Ом и В), то и результат (токи) также получены в основных единицах (А).

4. РЕЗУЛЬТАТЫ РАСЧЁТОВ ПУНКТОВ 1, 2 И 3 СВЕСТИ В ТАБЛИЦУ

Метод	I_1	I_2	I_3	I_4	I_5	I_6
Кирхгоф	-0,214	0,1038	0,1103	0,396	0,292	-0,1819
M.K.T.	-0,214	0,1038	0,1103	0,396	0,292	-0,1819
М.У.П.	-0,214	0,1038	0,1103	0,396	0,292	-0,1819

5. ОПРЕДЕЛИТЬ ТОК І1 МЕТОДОМ ЭКВИВАЛЕНТНОГО ГЕНЕРАТОРА

Чтобы определить ток I1 методом эквивалентного генератора, выделим сопротивление R1, по которому протекает ток I1, а остальную часть цепи поместим в двухполюсник (активный):

Рис. 2.

сводится К тому, чтобы задача определить внутреннее сопротивление Rвн и внутреннюю ЭДС Евн двухполюсника:

5.1. Определение внутреннего сопротивления двухполюсника

Внутреннее сопротивление двухполюсника – это сопротивление между зажимами двухполюсника, из которого удалены все источники. То есть искомое внутреннее сопротивление – это эквивалентное сопротивление между точками а и в цепи:

Данная цепь называется мостовым соединением. Для расчёта её эквивалентного сопротивления можно воспользоваться, например, заменой «треугольник-звезда». «Треугольник», образованный сопротивлениями R2-R3-R5, заменим на «звезду» Rd-Rb-Rc, как показано на рисунке:

Формулы перехода «треугольник-звезда» (берутся из справочника или учебника) для рассматриваемой цепи и расчёт соответствующих сопротивлений:

$$Rb = \frac{R2R3}{R2 + R3 + R5} = \frac{72 * 36}{72 + 36 + 12} = 21,6$$

$$Rc = \frac{R3R5}{R2 + R3 + R5} = \frac{36 * 12}{72 + 36 + 12} = 3,6$$

$$Rd = \frac{R2R5}{R2 + R3 + R5} = \frac{72 * 12}{72 + 36 + 12} = 7,2$$

Теперь эквивалентное сопротивление между точками а и b можно рассчитать методом последовательных преобразований (эквивалентных сопротивлений):

$$Rd4 = Rd + R4 = 7,2 + 1 = 8,2$$

$$Rc6 = Rc + R6 = 3,6 + 72 = 75,6$$

$$Rd4c6 = \frac{Rd4Rc6}{Rd4 + Rc6} = \frac{8,2 * 75,6}{8,2 + 75,6} = 7,3976$$

$$Rab = Rb + Rd4c6 = 21,6 + 7,3976 = 29$$

Подставив численные значения, получим

$$R_{BH} = Rab = 29,0 O_{M}$$

5.2. Определение внутренней ЭДС двухполюсника

Внутренняя ЭДС двухполюсника Евн равняется напряжению холостого хода Uxx на его зажимах:

Рис. 6.

Рассматриваемый двухполюсник выглядит следующим образом:

Данная цепь имеет только 2 узла: d и c, так как в точках b и а соединяются только 2 элемента и потому эти точки узлами не являются. По методу двух узлов межузловое напряжение Udc:

жузловое напряжение одс.
$$Udc = \frac{\frac{E4 - E6}{R4 + R6}}{\frac{1}{R4 + R6} + \frac{1}{R5} + \frac{1}{R2 + R3}} = \frac{\frac{28 - 11}{1 + 72}}{\frac{1}{1 + 72} + \frac{1}{12} + \frac{1}{72 + 36}} = \frac{0,2329}{0,01 + 0,08 + 0,009} = 2.19$$

Найдём токи Ia и Ib, воспользовавшись законом Ома для активной ветви:

$$Ia = \frac{E4 - E6 - Udc}{R4 + R6} = 0,203 A$$

$$Ib = \frac{Udc}{R2 + R3} = 0,0203 A$$

Чтобы найти Uxx, запишем уравнение по 2-му закону Кирхгофа для незамкнутого контура abdma:

$$Uxx - R2 \cdot Ib - R4 \cdot Ia = -E4$$

Отсюда

$$Uxx = R2 \cdot Ib + R4 \cdot Ia - E4 = -26,3 B = Евн$$

5.2. Определение тока I1

Подключив сопротивление R1 к двухполюснику (см. рис. 3), найдём:

$$I1 = \frac{E_{\rm BH}}{R1 + R_{\rm BH}} = -0.214 \,\text{A}$$

Данный результат совпадает с результатами пунктов 2 и 3.

6. НАЧЕРТИТЬ ПОТЕНЦИАЛЬНУЮ ДИАГРАММУ ДЛЯ ЛЮБОГО ЗАМКНУТОГО КОНТУРА, ВКЛЮЧАЮЩЕГО ОБЕ ЭДС

Потенциальная диаграмма контура цепи постоянного тока — это график зависимости потенциала от сопротивления при обходе контура.

Выберем контур amdcna, включающий обе ЭДС (см. рис. 1).

Размах графика по оси абсцисс — не менее суммы сопротивлений контура: R4+R5+R6=85 Ом.

Для определения размаха графика по оси ординат, мы должны знать значения всех потенциалов. Потенциалы узлов a, d, c нам уже известны (из метода МУП): -27.6 B; -0.8; -3.51 B, соответственно.

Рассчитаем потенциалы точек m и n. Это можно сделать различными способами:

$$\varphi_m = \begin{cases} \varphi_a - R4I4 = -28 \text{ B} \\ \varphi_d - E4 = -28 \text{ B} \end{cases}$$

$$\varphi_n = \begin{cases} \varphi_a - R6I6 = -14,51 \text{ B} \\ \varphi_c - E6 = -15,51 \text{ B} \end{cases}$$

Таким образом, потенциалы контура amdcna изменяются в диапазоне от 0 до $-28~\mathrm{B}.$

При построении потенциальной диаграммы будем придерживаться следующих правил:

- 1. Оси графика имеют линейный масштаб, все оси начинаются с «нуля».
- 2. Оси имеют стандартизованный масштаб: 1, 2, 4 или 5 умножить на 10 в целой степени единиц в одном делении. Пример: допустимые масштабы: 10 В/см; 0,2 А/дел.; 500 Ом/мм; недопустимые масштабы: 3 В/мм; 2,154 А/дел.
- 3. На осях должны быть отмечены (только!) 3 позиции: название, через запятую единицы измерения, масштаб.
- 4. График представляет собой ломаную линию, вершины которой соответствуют точкам контура в порядке его обхода. В этом случае любой отрезок графика соответствует одному из элементов контура. Длина

вертикальной проекции любого отрезка равна (в масштабе) напряжению на соответствующем элементе, длина горизонтальной проекции – внутреннему сопротивлению элемента.

Исходя из перечисленных правил и результатов расчётов, получим следующий график:

