Total No. of Questions: 6 Total No. of Printed Pages:3

Enrol	lment	No.	•••••	•••••	•••••	•••••	••••

Faculty of Engineering

End Sem (Even) Examination May-2022 CB3CO14 Artificial Intelligence

Branch/Specialisation: CSBS Programme: B.Tech.

Duration: 3 Hrs. Maximum Marks: 60

of

	_	estions are compulsory. Interna should be written in full instead	al choices, if any, are indicated. Answed of only a, b, c or d.	rs c		
Q.1	i.	Artificial intelligence is: (a) The embodiment of human intellectual capabilities within a computer (b) A set of computer programs that produce output that would be considered to reflect intelligence if it were generated by humans (c) The study of mental faculties through the use of mental models				
		implemented on a compu	ter			
	ii.	(d) All of these Which of the following is/are	the composition for AI agents?	1		
	11.	(a) Program only	(b) Architecture only	1		
		(c) Both (a) and (b)	(d) None of these			
	iii.	What is the evaluation function		1		
	111.	on mill approach.	•			
		(a) Heuristic function(b) Path cost from start node	to current node			
			to current node + Heuristic cost			
		(d) Average of Path cost from start node to current the Heuristic cost				
	iv.	Hill climbing sometimes called	ed because it grabs a good	1		
			ng ahead about where to go next.			
		(a) Needy local search	(b) Heuristic local search			
		(c) Greedy local search	(d) Optimal local search			
	v.	In alpha-beta pruning,	is used to cut off the search at	1		
		maximizing level only and search at minimizing level on	is used to cut off the aly.			
		(a) Alpha, beta	(b) Beta, alpha			
		(c) Alpha, alpha	(d) Beta, beta			
			P.T.O).		

Differentiate between depth first search and breath first search 3

OR

Q.3 i.

techniques.

- 1	7	п.
	1 1	П
	_	

	ii.	Write down the A* Algorithm. Also, justify the statement that "A* algorithm is optimal when heuristic function is admissible".					
OR	iii.	Explain hill-climbing and simulated annealing algorithms.					
Q.4	i.	Define constraint satisfaction problem problems. Give some examples of constraint satisfaction problems.	3				
	ii.	Solve the following crypt-arithmetic problem: 7 CROSS					
		+ ROADS					
		DANGER					
OR	iii.	Explain game playing with the help of min-max search algorithm.	7				
Q.5	Q.5 i. Differentiate between procedural and declarative knowledge.						
	ii.	Define propositional logic and predicate logic. Consider the	8				
		following sentences and translate these sentences into formulas in					
		predicate logic:					
		(a) John likes all kinds of food.					
		(b) Apples are food.					
		(c) Chicken is food(d) Anything anyone eats and isn't killed by is food.					
		(e) Bill eats peanuts and is still alive					
		(f) Sue eats everything Bill eats.					
OR	iii.	•	8				
		monotonic reasoning with a suitable example.					
Q.6	i.	Describe Bayes' Theorem. Show how it is useful in handling	Δ				
۷.۰	1.	uncertain knowledge.	•				
	ii.	Describe Dempster-Shafer theory in detail with an example.	6				
OR	iii.	Define expert system. Also, explain architecture of expert system	6				
		with a neat diagram.					

Marking Scheme CB3CO14 Artificial Intelligence

Q.1	•							
	(d) All of theseii. Which of the following is/are the composition for AI agents?							
		Which of the following is/are the composition for AI agents? (c) Both (a) and (b)						
	iii.	What is the evaluation function in A* approach?		1				
		(c) Path cost from start node to current node + Heur	ristic cost					
	iv. Hill climbing sometimes called because it grabs a							
		Neighbor state without thinking ahead about where to go next.						
		(c) Greedy local search						
	v.	In alpha-beta pruning, is used to cut off the search at						
		maximizing level only and is used to cut off the						
		search at minimizing level only.						
	***	(b) Beta, alpha In constraint satisfaction problem, constraints can be stated as						
	vi. In constraint satisfaction problem, constraints can be state							
		(a) Arithmetic equations and inequalities that bind the values of						
	variables							
	vii. Translate the following statement into FOL.							
		ter degree"						
	(a) ∀ a PhD(a) -> Master(a)							
	Viii.	Which of the following is not a type of inheritance knowledge						
		representation technique? (c) Predicate logic						
	ix.	What does the Bayesian network provide?		1				
	(a) Complete description of the domain							
	х.	An expert system shell is an expert system without:						
	(a) Domain Knowledge							
Q.2	i.	Definition	1 mark	2				
		Two characteristics	1 mark					
	ii.	Definition	1 mark	3				
		Two characteristics	2 marks					
	iii.	Complete space with the help of water-jug problem		5				
0.5		As per explanation	5 marks	_				
OR	iv.	Definition	2 marks	5				

		Any three features	3 marks	
Q.3	i.	Any three Difference (1 mark * 3)	3 marks	3
	ii.	A* Algorithm	4 marks	7
		Justification with example	3 marks	
OR	iii.	Hill-climbing algorithm	4 marks	7
		Simulated annealing algorithm	3 marks	
Q.4	i.	Definition	1 mark	3
		Examples	2 marks	
	ii.	As per Solution	7 marks	7
OR	iii.	Game playing	3 marks	7
		Min-max search algorithm with example	4 marks	
Q.5	i.	Differences	2 marks	2
	ii.	Propositional logic and predicate logic	2 marks	8
		Six logic statements (1 mark * 6)	6 marks	
OR	iii.	Forward and backward reasoning (at least 4)	4 marks	8
	Monotonic and non-monotonic reasoning with example		cample	
			4 marks	
Q.6	i.	Bayes' Theorem	2 marks	4
		Justification	2 marks	
	ii.	Dempster-Shafer theory in detail with an exampl	e	6
		As per explanation	6 marks	
OR	iii.	lso, explain architecture of expert system with a	neat diagram.	6
		Definition	2 marks	
		Architecture with diagram	4 marks	
		ale ale ale ale ale ale		
