Lecture 5: Multiple Linear Regression

Nancy R. Zhang

Statistics 203, Stanford University

January 19, 2010

Agenda

- Today: multiple linear regression.
- This week: comparing nested models in multiple linear regression.
- Finish diagnostics slides next lecture.

How does land use affect river pollution?

Nitrogen = $\beta_0 + \beta_1 Agr + \beta_2 Forest + \beta_3 Rsdntial + \beta_4 ComIndl + error$

Multiple Linear Regression

Design matrix:

$$X = \begin{pmatrix} 1 & X_{11} & X_{21} & \cdots & X_{p1} \\ 1 & X_{12} & X_{22} & & X_{p2} \\ \vdots & \cdots & \ddots & \vdots & \\ 1 & X_{1n} & X_{2n} & & X_{pn} \end{pmatrix} \quad y = \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix}$$

Squared error loss function:

$$L(\beta) = \sum_{i=1}^{n} \left(y_i - \beta_0 - \sum_{j=1}^{p} \beta_j X_{ij} \right)^2.$$

In matrix notation:

$$L(\beta) = (y - X\beta)'(y - X\beta).$$

Linear Subspaces and Projections

With *p* predictors we have p + 1 vectors in \Re^n :

$$X_i = \begin{pmatrix} X_{i1} \\ X_{i2} \\ \vdots \\ X_{in} \end{pmatrix}, \quad i = 0, \dots, p.$$

From now on we will always let X_0 be the vector of ones.

We denote by $\mathcal{L}(X_0,\ldots,X_p)$ the linear space spanned by the vectors X_0,\ldots,X_p :

$$\mathcal{L}(X_0,\ldots,X_p)=\left\{\sum_{i=0}^p a_iX_i:(a_0,\ldots,a_p)\in\Re^{p+1}\right\}.$$

This is a linear subspace of \Re^n . We use the shorthand $\mathcal{L}(X)$.

• The *dimension* of $\mathcal{L}(X_0,\ldots,X_p)$ is equivalent to the rank of the matrix

$$X = \begin{pmatrix} X_{01} & X_{11} & \cdots & X_{p,1} \\ X_{02} & X_{12} & & X_{p,2} \\ \vdots & \cdots & \ddots & \vdots \\ X_{0n} & X_{1n} & & X_{p,n} \end{pmatrix}$$

- The rank of a matrix is equal to the number of linearly independent columns.
- The linear map that projects any vector $v \in \Re^n$ onto $\mathcal{L}(X)$ can be obtained by

$$P_X = X(X'X)^{-1}X'$$

.

Projection Matrices

Thus, for any $n \times p + 1$ matrix X, we can construct a projection matrix $P_X = X(X'X)^{-1}X'$ that projects vectors onto the column space of X. Projection matrices enjoy some special properties:

- $P_X^2 = P_X$.
- 2 $rank(P_X) = rank(X)$.
- **③** For any $v \in \mathcal{L}(X)$, $P_X v = v$.

For any linear space \mathcal{L}_X , its *null* space is the set

$$\mathcal{L}(X^{\perp}) = \{ v \in \Re^n : Xv = 0 \}$$

. Th

The projection matrix onto $\mathcal{L}(X^{\perp})$ is $I - P_X$.

Linear Regression by Least Squares = Projection

Project
$$\begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix}$$
 onto $\begin{pmatrix} 1 \\ 1 \\ \vdots \\ 1 \end{pmatrix}$, $\begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}$.

Multiple Linear Regression

The solution

$$\hat{\beta} = (X'X)^{-1}X'Y$$

can also be obtained directly from the concept of a projection:

$$\hat{y} = X\hat{\beta} = X(X'X)^{-1}X'y$$
$$\Rightarrow \hat{\beta} = (X'X)^{-1}X'y$$

.

Calculating variances

Multivariate Gaussians

Let $Z \sim N(\mu, \Sigma)$, and ${\boldsymbol a} \in \Re^n$, B an $n \times n$ matrix, then

$$a + BZ \sim N(a + B\mu, B\Sigma B')$$
.

$$\hat{\beta} = (X'X)^{-1}X'y, \quad y \sim N(X\beta, \sigma^2 I)$$

$$\Rightarrow E(\hat{\beta}) = \beta$$

$$Var(\hat{\beta}) = \sigma^2(X'X)^{-1}$$

Calculating variance

Multivariate Gaussians

Let Z $N(\mu, \Sigma)$, and $\mathbf{a} \in \mathbb{R}^n$, B an $n \times n$ matrix, then

$$a + BZ \sim N(a + B\mu, B\Sigma B').$$

$$\hat{y} = P_X y$$

$$\Rightarrow E(\hat{y}) = X\beta$$

$$Var(\hat{y}) = \sigma^2 P_X$$

The diagonal of P_X are the leverage values from last lecture.

t-tests for $\hat{\beta}_i$

$$\hat{\beta} \sim N(\beta, \sigma^2(X'X)^{-1}).$$

As before, estimate σ^2 using

$$\hat{\sigma}^2 = SSE/(n-p-1)$$

Then, we can construct t-test by:

$$t_{\hat{eta}_i} = rac{\hat{eta}_i}{s.e.(\hat{eta}_i)}.$$

As before, reject the hypothesis $H_{i,0}$: $\hat{\beta}_i = 0$ at level α if

$$t_{\hat{\beta}_i} > t(n-p-1, \alpha/2).$$

Interpreting the $\hat{\beta}_i$'s

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \dots + \beta_p X_p$$

The $\hat{\beta}_i$ obtained from a multiple regression is sometimes called partial regression coefficients because they correspond to a simple regression of Y on X_i , after taking out the effects of X_j : $j \neq i$.

- Regress X_i on $\{X_j : j \neq i\}$, get residuals $r^i = X_i \hat{X}_i$.
- 2 Regress Y_i on $\{X_j : j \neq i\}$, get residuals $r^Y = Y \hat{Y}_{\sim i}$.
- **1** Do simple linear regression of r^Y on r^i , the slope will give you $\hat{\beta}_i$.

This gives us:

$$Var(\hat{\beta}_i) = \sigma^2/||r^i||^2.$$

High correlation among the X's can "mask" out each other's effects.

Goodness of fit

Sums of squares

$$SSE = \sum_{i=1}^{n} (Y_i - \widehat{Y}_i)^2 = \sum_{i=1}^{n} (Y_i - \widehat{\beta}_0 - \widehat{\beta}_1 X_i)^2$$

$$SSR = \sum_{i=1}^{n} (\overline{Y} - \widehat{Y}_i)^2 = \sum_{i=1}^{n} (\overline{Y} - \widehat{\beta}_0 - \widehat{\beta}_1 X_i)^2$$

$$SST = \sum_{i=1}^{n} (Y_i - \overline{Y})^2 = SSE + SSR$$

$$R^2 = \frac{SSR}{SST} = 1 - \frac{SSE}{SST}.$$

 $R = \sqrt{R^2}$ is called the multiple correlation coefficient. R^2 is large: a lot of the variability in Y is explained by X.

Large R^2 may not indicate a good model.

Hypothetical scenario:

n observations, *n* linearly independent covariates.

What would you get for R^2 ?

As you add predictors to the model, R^2 will always increase, no matter what those predictors are!

"Goodness of Fit" Measures

R provides the following measures:

$$R^{2} = \frac{SSR}{SST} = 1 - \frac{SSE}{SST}.$$

$$R_{a}^{2} = 1 - \frac{SSE/(n-p-1)}{SST/(n-1)} = 1 - \frac{n-1}{n-p-1}(1-R^{2})$$

- ② R^2 does not adjust for the model size, while R_a^2 does. When comparing models of different sizes, use R_a^2 .
- Mowever, for hypothesis testing the F statistic should be used.

F-tests for R²

Assume model has intercept (design matrix has *p* columns).

$$F = \frac{SSR/(p+1)}{SSE/(n-p-1)}$$

F-distribution

If $W \sim \chi_q^2$ is independent of $Z \sim \chi_r^2$, then

$$rac{W/q}{Z/r} \sim F_{q,r}.$$

F-Table

Source	Sum of Squares	d.f.	Mean Square	F
Regression	SSR	p + 1	$MSR = \frac{SSR}{p+1}$	$F = \frac{MSR}{MSE}$
Residuals	SSE	n - p - 1	$MSE = \frac{SSE}{n-p-1}$	

Reject at level α if $F > F(p+1, n-p-1, \alpha)$.

This tests the hypothesis $H_0: \beta_1 = \beta_2 = \cdots = \beta_p = 0$.

Nested models

Test the hypothesis that a *subset* of β_i 's are zero:

$$H_0: \beta_1 = \beta_2 = \cdots = \beta_r = 0.$$

That is, we have the model

$$RM: Y = \beta_{r+1}X_{r+1} + \cdots + \beta_pX_p + \text{error}$$

nested within

$$FM: Y = \beta_1 X_1 + \cdots + \beta_p X_p + \text{error}$$

Does X_1, \ldots, X_r have a significant marginal effect, after adjusting for the other predictors?

Nested models

$$RM: Y = \beta_{r+1}X_{r+1} + \cdots + \beta_pX_p + \text{error}$$

$$FM: Y = \beta_1 X_1 + \cdots + \beta_p X_p + \text{error}$$

.

$$\Delta df = df(FM) - df(RM)$$

$$F = \frac{[SSE(RM) - SSE(FM)]/[\Delta df]}{SSE(FM)/[n - df(FM)]}.$$

$$F \sim F_{\Delta df, n-df(FM)}$$
.

Testing Constraints

In some situations you want to test that your model parameters satisfy some constraint. Say you have model:

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \text{error},$$

and want to test:

$$H_0: \beta_1 = \beta_2.$$

This is equivalent to the model:

$$Y = \beta_0 + \beta_1(X_1 + X_2) + \text{error.}$$

.

Fit these two models, apply F test with $\Delta df = 1$.

Testing Constraints – Another example

Another example:

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \text{error},$$

and want to test:

$$H_0: \beta_1 + \beta_2 = 1.$$

This is equivalent to the model:

$$Y = \beta_0 + \beta_1 X_1 + (1 - \beta_1) X_2 + \text{error.}$$

which can be simplified to:

$$Y - X_2 = \beta_0 + \beta_1(X_1 - X_2) + \text{error.}$$

Fit these two models, apply F test with $\Delta df = 1$. Usually Δdf equals the number of constraints.

Influence of Outliers

How much influence does the data point have on the model fit?

Different measures of Influence

• How much influence does observation *i* have on its own fit?

$$(DFFITS)_i = \frac{\hat{y}_i - \hat{y}_{i(i)}}{\sqrt{MSE_{(i)}h_{ii}}}$$

DFFITS exceeding $2\sqrt{p/n}$ is considered large.

② How much influence does observation i have on the fitted β 's?

$$(\textit{DFBETAS})_i = rac{\hat{eta}_1 - \hat{eta}_{1(i)}}{\sqrt{\textit{MSE}_{(i)} c_{11}^{-1}}},$$

where $c_{11} = \sum_{i} (x_i - \bar{x})^2$. *DFBETA* exceeding $2/\sqrt{n}$ is considered large.

These conventional rules work for "reasonably sized" data sets.

Different measures of Influence: Cook's Distance

Cook's distance is defined as:

$$D_{i} = \frac{\sum_{j=1}^{n} (\hat{y}_{j} - \hat{y}_{j(i)})^{2}}{(p+1)MSE}$$

- Considers the influence of Y_i on all of the fitted values, not just the i-th case.
- 3 It can be shown that D_i is equivalent to

$$\frac{\tilde{r}_i^2}{p+1}\frac{h_{ii}}{1-h_{ii}}.$$

4 Compare D_i to the $F_{p+1,n-p-1}$ distribution.