NumberTheory 10

王胤雅

201911010205

201911010205@mail.bnu.edu.cn

2024年5月31日

ROBEM I Assume p, q are odd primes, a > 1 is integal. Prove:

- 1. $q \mid a^p 1 \implies q \mid a 1 \text{ or } 2p \mid q 1$.
- 2. $q \mid a^p + 1 \implies q \mid a + 1 \text{ or } 2p \mid q 1$.
- SOUTION. 1. Consider $a \in \mathbb{Z}_q^*$. Since $a^p 1 = 0$ in \mathbb{Z}_q^* , then $o(a) \mid p$. So o(a) = 1 or o(a) = p. If o(a) = 1, then $a \equiv 1 \pmod{q}$, then $q \mid a 1$. If o(a) = p, then $p = o(a) \mid o(\mathbb{Z}_q^*) = q 1$. Since $2 \mid q 1$, (p, 2) = 1, then $2p \mid q 1$.
 - 2. Consider $-a \in \mathbb{Z}_q^*$. Since $(-a)^p 1 = 0$ in \mathbb{Z}_q^* , then $o(-a) \mid p$. So o(-a) = 1 or o(-a) = p. If o(-a) = 1, then $-a \equiv 1 \pmod{q}$, then $q \mid a+1$. If o(-a) = p, then $p = o(-a) \mid o(\mathbb{Z}_q^*) = q-1$. Since $2 \mid q-1$, (p,2) = 1, then $2p \mid q-1$.

ROBEM II Find primitive root for each number 7, 49, 343, 686.

SOUTION. 1. Obviously, 3 is the primitive root of 7.

- 2. 3 is the primitive root of 49.
- 3. 3 is the primitive root of 343.
- 4. Since the primitive root of 686 is the odd one of 3, 3 + 343, then 3 is the primitive root of 686.