Finite Automata

Finite automata model systems with a *fixed* amount of memory, e.g, door controller

- Three components:
 - front pad, door, rear pad
 - door swings open to the rear
- Door is in two possible states: CLOSED or OPEN
- Four possible *signals* (or *inputs*): FRONT, REAR, BOTH, NEITHER
- ullet When CLOSED: NEITHER or BOTH o CLOSED, FRONT o OPEN; REAR o CLOSED
- ullet When OPEN: NEITHER o CLOSED; FRONT or REAR o OPEN; BOTH o OPEN

Finite Automata

• Door controller can be represented by a *state diagram*.

Other Examples

- Lexical analyzer of a compiler for detecting identifiers, keywords, and punctuation
- Model checking techniques for verifying finite state systems (e.g., communication protocols, hardware systesms)
- In the probabilistic setting, Markov chains (e.g. for PageRank)

Example of Finite Automata

	0	1
q_1	q_1	q_2
q_2	q_3	q_2
q_3	q_2	q_2

Start state is q_1 . Accept state is q_2 .

Other examples:

- counting mod *n*
- $M = \{w \in \{0,1\}^* \mid w \text{ ends with a } 1\}.$
- complement

Formal Definition

A finite automaton (FA) is a structure $M = (Q, \Sigma, \delta, q_0, F)$, where

- Q is a finite set of states,
- Σ is the input symbols or alphabet,
- ullet δ , the transition function, e.g., $\delta(q,a)=q'$ where $q,q'\in Q$ and $a\in \Sigma$
- $q_0 \in Q$ is the start state,
- \bullet F is a subset of Q; elements of F are called accept states or final states.
- The *language of* the machine M is the set L of all strings that M accepts. We write L(M) = L and say M accepts (or recognizes) L. If the machine M accepts no strings then $L(M) = \emptyset$.

Formal Definition of Computation (Acceptance)

Let $M=(Q,\Sigma,\delta,q_0,F)$ be a finite automaton, and let $w=w_1w_2...w_n$ be a string over Σ .

Then M accepts w if there is a sequence of states $r_0, ..., r_n$ in Q s.t.

- 1. $r_0 = q_0$
- 2. $\delta(r_i, w_{i+1}) = r_{i+1}$
- 3. $r_n \in F$

M accepts or recognizes L if $L = L(M) = \{w \in \Sigma^* \mid M \text{ accepts } w\}$. A language is called a regular language if some finite automaton accepts it.

More Examples

Construct a finite automaton accepting the following language:

 $\{x \in \{a,b\}^* \mid x \text{ contains a substring of 3 consecutive } a's\}$

Another Example

Construct a finite automaton accepting the following language:

 $\{x \in \{a,b\}^* \mid x \text{ does not contain a substring of 3 consecutive } a's\}$

Operations on Languages

Recall:

- A *language* is set of strings over an alphabet.
- We may apply set operations like union, intersection, and set difference to languages.
- The *union* of L and M is denoted $L \cup M$, and is the set of strings that are in either L or M.
- The complement of a language L is $\Sigma^* L = \{x \in \Sigma^* \mid x \notin L\}$, denoted \bar{L} if Σ is understood.

Operations on Languages (cont'd)

• If L_1 and L_2 are languages over Σ their concatenation is

$$L_1L_2 = L_1 \cdot L_2 = \{ w \in \Sigma^* \mid w = xy \text{ for some } x \in L_1 \text{ and } y \in L_2 \}.$$

• The *Kleene star* of a language L is the set of all strings obtained by concatenating zero or more strings from L. Thus,

$$L^* = \{ w \in \Sigma^* \mid w = w_1...w_k \text{ for some } k \ge 0 \text{ and } w_1, ..., w_k \in L \}.$$

Closure Properties of Regular Languages

A set is *closed* under some operation if applying that operation to elements of the set returns in another element of the set.

Theorem: If L_1 and L_2 are regular languages then so is $L_1 \cup L_2$.

Proof Idea: Let $M_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$ and $M_2 = (Q_2, \Sigma, \delta_2, q_2, F_2)$ be the automata that recognize L_1 and L_2 , respectively. We construct $M = (Q, \Sigma, \delta, q_0, F)$ which recognizes $L_1 \cup L_2$ by *simulating* both of these machines *concurrently*, and accepting if one of them accepts.

Union Construction

- 1. $Q = \{(r_1, r_2) \mid r_1 \in Q_1, r_2 \in Q_2\}$
- 2. For each $(r_1,r_2)\in Q$ and each $a\in \Sigma$, $\delta((r_1,r_2),a)=(\delta_1(r_1,a),\delta_2(r_2,a)).$
- 3. $q_0 = (q_1, q_2)$
- 4. $F = \{(r_1, r_2) \mid r_1 \in F_1 \text{ or } r_2 \in F_2\}.$

Why this construction works: remembers the pairs of states the machine is in ("concurrent execution".) Similarly, closed under intersection.

Closed Under Concatenation

Theorem: If L_1 and L_2 are regular languages, then so is $L_1 \cdot L_2$.

Product construction doesn't help here... need to do two strings consecutively, not concurrently.