Perturbation-Stable Maximum Cut

Yuchong Pan

UBC Beyond Worst-Case Analysis Seminars

June 30, 2020

MAXIMUM CUT

Problem (MAXIMUM CUT)

Input: An undirected graph G = (V, E) with edge weights $w_e > 0$ for each $e \in E$.

Goal: A cut (A, B) that maximizes the weight of the *crossing* edges.

MAXIMUM CUT

Problem (MAXIMUM CUT)

Input: An undirected graph G = (V, E) with edge weights $w_e > 0$ for each $e \in E$.

Goal: A cut (A, B) that maximizes the weight of the *crossing* edges.

► MAXIMUM CUT is a type of 2-clustering problem (e.g. weights measure dissimilarities).

Problem (MAXIMUM CUT, Decision Version)

Input: An undirected graph G = (V, E) with edge weights

 $w_e > 0$ for each $e \in E$, and a positive integer W.

Output: Yes iff. there is a set $S \subseteq V$ such that the weight of the

crossing edges is at least W.

Problem (MAXIMUM CUT, Decision Version)

Input: An undirected graph G = (V, E) with edge weights $w_e > 0$ for each $e \in E$, and a positive integer W.

Output: Yes iff. there is a set $S \subseteq V$ such that the weight of the

crossing edges is at least W.

Problem (PARTITION, Decision Version)

Input: $(c_1,\ldots,c_n)\in\mathbb{Z}^n$.

Output: Yes iff. there is $I \subseteq [n]$ such that $\sum_{i \in I} c_i = \sum_{i \notin I} c_i$.

Problem (MAXIMUM CUT, Decision Version)

Input: An undirected graph G = (V, E) with edge weights $w_e > 0$ for each $e \in E$, and a positive integer W.

Output: Yes iff. there is a set $S \subseteq V$ such that the weight of the *crossing* edges is at least W.

Problem (PARTITION, Decision Version)

Input: $(c_1,\ldots,c_n)\in\mathbb{Z}^n$.

Output: Yes iff. there is $I \subseteq [n]$ such that $\sum_{i \in I} c_i = \sum_{i \notin I} c_i$.

Proof Sketch (PARTITION \leq_P MAXIMUM CUT)

- $ightharpoonup G = K_n$.
- $ightharpoonup w_{ij} = c_i c_j$ for all $i, j \in V, i \neq j$.
- $W = \lceil \frac{1}{4} \sum_{i} c_i^2 \rceil.$

► MINIMUM CUT is *not NP*-hard and can be solved by the Maximum-Flow Minimum-Cut Theorem.

- ► MINIMUM CUT is *not NP*-hard and can be solved by the Maximum-Flow Minimum-Cut Theorem.
- ► **Question:** Can't we negate the edge weights, yielding a MINIMUM CUT instance?

- ► MINIMUM CUT is *not NP*-hard and can be solved by the Maximum-Flow Minimum-Cut Theorem.
- ► **Question:** Can't we negate the edge weights, yielding a MINIMUM CUT instance?
- ▶ No! Polynomial-time algorithms solving MINIMUM CUT require nonnegative edge weights.

Beyond Worst-Case: Exact Recovery

▶ **Theme:** To recover the optimal solution in polynomial time in γ -perturbation-stable instances, where γ is as small as possible.

Beyond Worst-Case: Exact Recovery

▶ **Theme:** To recover the optimal solution in polynomial time in γ -perturbation-stable instances, where γ is as small as possible.

Definition (γ -Perturbation-Stability)

For $\gamma \geq 1$, an instance of MAXIMUM CUT is γ -perturbation-stable if a cut (A,B) is the *unique* optimal solution to all γ -perturbations, where each original edge weight w_e is replaced with an edge weight $w'_e \in \left[\frac{1}{\gamma}w_e, w_e\right]$.

▶ Question: Can we use an LP relaxation similar to the one for MINIMUM CUT, i.e.

$$\begin{array}{ll} \max & \sum_{e \in E} w_e x_e \\ \text{s.t.} & x_e \geq \left| d_u - d_v \right|, \qquad \forall e = uv \in E. \\ & x_e \in [0,1], \qquad \qquad \forall e \in E. \\ & d_v \in [0,1], \qquad \qquad \forall v \in V. \end{array}$$

▶ Question: Can we use an LP relaxation similar to the one for MINIMUM CUT, i.e.

$$\begin{array}{ll} \max & \sum_{e \in E} w_e x_e \\ \\ \text{s.t.} & x_e \geq \left| d_u - d_v \right|, \qquad \forall e = uv \in E. \\ \\ & x_e \in [0,1], \qquad \qquad \forall e \in E. \\ \\ & d_v \in [0,1], \qquad \qquad \forall v \in V. \end{array}$$

No! $x_e = 1$ for each $e \in E$ is a feasiable solution and maximizes the objective value.

▶ Question: Can we use an LP relaxation similar to the one for MINIMUM CUT, i.e.

$$\begin{array}{ll} \max & \sum_{e \in E} w_e x_e \\ \text{s.t.} & x_e \geq |d_u - d_v| \,, \qquad \forall e = uv \in E. \\ & x_e \in [0,1], \qquad \qquad \forall e \in E. \\ & d_v \in [0,1], \qquad \qquad \forall v \in V. \end{array}$$

- No! $x_e = 1$ for each $e \in E$ is a feasiable solution and maximizes the objective value.
- ▶ Question: What about $x_e \le d_u d_v$ and $x_e \le d_v d_u$?

▶ Question: Can we use an LP relaxation similar to the one for MINIMUM CUT, i.e.

$$\begin{array}{ll} \max & \sum_{e \in E} w_e x_e \\ \\ \text{s.t.} & x_e \geq \left| d_u - d_v \right|, \qquad \forall e = uv \in E. \\ \\ & x_e \in [0,1], \qquad \qquad \forall e \in E. \\ \\ & d_v \in [0,1], \qquad \qquad \forall v \in V. \end{array}$$

- No! $x_e = 1$ for each $e \in E$ is a feasiable solution and maximizes the objective value.
- ▶ **Question:** What about $x_e \le d_u d_v$ and $x_e \le d_v d_u$?
- ▶ This forces $x_e = 0$, instead of $x_e \le |d_u d_v|$.

Let $x_{ij} \in \{0,1\}$ denote whether or not i,j are on different sides of the cut, for all distinct $i,j \in V$. We denote by x_{ij} and x_{ij} the same variable.

- Let $x_{ij} \in \{0,1\}$ denote whether or not i,j are on different sides of the cut, for all distinct $i,j \in V$. We denote by x_{ij} and x_{ji} the same variable.
- ▶ **Intuition:** If *i*, *j* are on different sides, and *i*, *k* are also on different sides, then *j*, *k* must be on the same sides.

- Let $x_{ij} \in \{0,1\}$ denote whether or not i,j are on different sides of the cut, for all distinct $i,j \in V$. We denote by x_{ij} and x_{ji} the same variable.
- ▶ **Intuition:** If *i*, *j* are on different sides, and *i*, *k* are also on different sides, then *j*, *k* must be on the same sides.
- ▶ For any distinct $i, j, k \in V$, at most two of x_{ij}, x_{ik}, x_{jk} are 1.

- Let $x_{ij} \in \{0,1\}$ denote whether or not i,j are on different sides of the cut, for all distinct $i,j \in V$. We denote by x_{ij} and x_{ji} the same variable.
- ▶ **Intuition:** If *i*, *j* are on different sides, and *i*, *k* are also on different sides, then *j*, *k* must be on the same sides.
- ▶ For any distinct $i, j, k \in V$, at most two of x_{ij}, x_{ik}, x_{jk} are 1.

$$x_{ij} + x_{ik} + x_{jk} \le 2,$$
 $\forall i, j, k \in V$ distinct.

- Let $x_{ij} \in \{0,1\}$ denote whether or not i,j are on different sides of the cut, for all distinct $i,j \in V$. We denote by x_{ij} and x_{ji} the same variable.
- ▶ **Intuition:** If *i*, *j* are on different sides, and *i*, *k* are also on different sides, then *j*, *k* must be on the same sides.
- ▶ For any distinct $i, j, k \in V$, at most two of x_{ij}, x_{ik}, x_{jk} are 1.

$$x_{ij} + x_{ik} + x_{jk} \le 2,$$
 $\forall i, j, k \in V$ distinct.

▶ **Intuition:** If i, j are on the same side, and i, k are on the same side, then j, k are on the same side.

- Let $x_{ij} \in \{0,1\}$ denote whether or not i,j are on different sides of the cut, for all distinct $i,j \in V$. We denote by x_{ij} and x_{ji} the same variable.
- ▶ **Intuition:** If *i*, *j* are on different sides, and *i*, *k* are also on different sides, then *j*, *k* must be on the same sides.
- ▶ For any distinct $i, j, k \in V$, at most two of x_{ij}, x_{ik}, x_{jk} are 1.

$$x_{ij} + x_{ik} + x_{jk} \le 2,$$
 $\forall i, j, k \in V$ distinct.

- ▶ **Intuition:** If i, j are on the same side, and i, k are on the same side, then j, k are on the same side.
- For any distinct $i, j, k \in V$, $x_{ij} = x_{ik} = 0$ implies $x_{jk} = 0$.

- Let $x_{ij} \in \{0,1\}$ denote whether or not i,j are on different sides of the cut, for all distinct $i,j \in V$. We denote by x_{ij} and x_{ji} the same variable.
- ▶ **Intuition:** If *i*, *j* are on different sides, and *i*, *k* are also on different sides, then *j*, *k* must be on the same sides.
- ▶ For any distinct $i, j, k \in V$, at most two of x_{ij}, x_{ik}, x_{jk} are 1.

$$x_{ij} + x_{ik} + x_{jk} \le 2,$$
 $\forall i, j, k \in V$ distinct.

- ▶ **Intuition:** If i, j are on the same side, and i, k are on the same side, then j, k are on the same side.
- For any distinct $i, j, k \in V$, $x_{ij} = x_{ik} = 0$ implies $x_{jk} = 0$.

$$x_{jk} \le x_{ij} + x_{ik}$$
, $\forall i, j, k \in V$ distinct.

► Hence we obtain the LP relaxation (LP-MAXCUT):

$$\begin{aligned} \max & & \sum_{(i,j) \in E} w_{ij} x_{ij} \\ \text{s.t.} & & x_e \geq |d_u - d_v| \,, \quad \forall e = uv \in E. \\ & x_{ij} + x_{ik} + x_{jk} \leq 2, & \forall i,j,k \in V \text{ distinct.} \\ & x_{jk} \leq x_{ij} + x_{ik}, & \forall i,j,k \in V \text{ distinct.} \\ & x_{ij} \in [0,1], & \forall i,j \in V \text{ distinct.} \end{aligned}$$

Main Theorem

Theorem

There is a constant c > 0 such that in every $(c \log n)$ -perturbation-stable instance of MAXIMUM CUT with n vertices, (LP-MAXCUT) solves to integers.