

SEQUENCE LISTING

<110> KE, Zhaoxi

<120> ISOLATED HUMAN KINASE PROTEINS, NUCLEIC
ACID MOLECULES ENCODING HUMAN KINASE PROTEINS, AND USES
THEREOF

<130> CL001313-DIV

<160> 4

<170> FastSEQ for Windows Version 4.0

<210> 1

<211> 1338

<212> DNA

<213> Homo sapiens

<400> 1

atgggggaga tgcagggcgc gctggccaga gcccggctcg agtccctgct gcggccccgc 60
cacaaaaaga gggccgaggc gcagaaaagg agcgagtct tcctgcttag cgactggct 120
ttcatgaagc agaggaggat gggctgaac gactttattc agaagattgc caataactcc 180
tatgcattgca aacaccctga agttcagtcc atcttgaaga tctcccaacc tcaggagcct 240
gagtttatga atgccaacccc ttctcctcca ccaagtccctt cttagcaaataa caacccggc 300
ccgtcgatcca atcctcatgc taaaccatct gactttcaact tcttgaagaat gatcgaaag 360
ggcagtttg gaaaggttct tctagcaaga cacaaggcag aagaagtgtt ctatgcagtc 420
aaagttttac agaagaaagc aatcctgaaa aagaaagagg agaagcatat tatgtcggag 480
cggaatgttc tgtaaagaa tgtgaagcac ctttccttgg tggcccttca cttctcttcc 540
cagactgctg acaaattgtt ctttcctta gactacatta atgggtggaga gttgttctac 600
catctccaga gggAACGCTG cttccggaa ccacgggctc gtttctatgc tgctgaaata 660
gccagtgctt tggcttaccc gcatttactg aacatcgaaa atagagactt aaaaccagag 720
aatattttgc tagattcaca gggacacatt gtccttactg acttcggact ctgcaaggag 780
aacattgaac acaacagcac aacatccacc ttctgtggca cgccggagta tctcgacact 840
gaggtgcttc ataagcagcc ttatgacagg actgtggact ggtgggtgcct gggagctgtc 900
ttgttatgaga tgctgtatgg cctgcccct tttatagcc gaaacacagc tgaaatgtac 960
gacaacattc tgaacaagcc tctccagctg aaaccaata ttacaaattc cgcaagacac 1020
ctcctggagg gcctcctgca gaaggacagg acaaagcggc tcggggccaa ggatgacttc 1080
atggagatata agagtcatgt cttctctcc ttaattaact gggatgatct catataataag 1140
aagattactc ccccttttaa cccaaatgtg agtggggccca acgacacctacg gcactttgac 1200
cccgagtttca ccgaagagcc tgccttccaaac tccattggca agtcccctga cagcgtcctc 1260
gtcacagcca gctcaaggaa agtggccgag gctttccctag gctttcccta tgccctccc 1320
acggactctt tcctctga 1338

<210> 2

<211> 445

<212> PRT

<213> Homo sapiens

<400> 2

Met Gly Glu Met Gln Gly Ala Leu Ala Arg Ala Arg Leu Glu Ser Leu
1 5 10 15
Leu Arg Pro Arg His Lys Lys Arg Ala Glu Ala Gln Lys Arg Ser Glu
20 25 30
Ser Phe Leu Leu Ser Gly Leu Ala Phe Met Lys Gln Arg Arg Met Gly
35 40 45
Leu Asn Asp Phe Ile Gln Lys Ile Ala Asn Asn Ser Tyr Ala Cys Lys
50 55 60
His Pro Glu Val Gln Ser Ile Leu Lys Ile Ser Gln Pro Gln Glu Pro
65 70 75 80
Glu Leu Met Asn Ala Asn Pro Ser Pro Pro Pro Ser Pro Ser Gln Gln
85 90 95
Ile Asn Leu Gly Pro Ser Ser Asn Pro His Ala Lys Pro Ser Asp Phe
100 105 110
His Phe Leu Lys Val Ile Gly Lys Gly Ser Phe Gly Lys Val Leu Leu
115 120 125
Ala Arg His Lys Ala Glu Glu Val Phe Tyr Ala Val Lys Val Leu Gln
130 135 140
Lys Lys Ala Ile Leu Lys Lys Glu Glu Lys His Ile Met Ser Glu
145 150 155 160
Arg Asn Val Leu Leu Lys Asn Val Lys His Pro Phe Leu Val Gly Leu
165 170 175
His Phe Ser Phe Gln Thr Ala Asp Lys Leu Tyr Phe Val Leu Asp Tyr
180 185 190
Ile Asn Gly Gly Glu Leu Phe Tyr His Leu Gln Arg Glu Arg Cys Phe
195 200 205
Leu Glu Pro Arg Ala Arg Phe Tyr Ala Ala Glu Ile Ala Ser Ala Leu
210 215 220
Gly Tyr Leu His Ser Leu Asn Ile Val Tyr Arg Asp Leu Lys Pro Glu
225 230 235 240
Asn Ile Leu Leu Asp Ser Gln Gly His Ile Val Leu Thr Asp Phe Gly
245 250 255
Leu Cys Lys Glu Asn Ile Glu His Asn Ser Thr Thr Ser Thr Phe Cys
260 265 270
Gly Thr Pro Glu Tyr Leu Ala Pro Glu Val Leu His Lys Gln Pro Tyr
275 280 285
Asp Arg Thr Val Asp Trp Trp Cys Leu Gly Ala Val Leu Tyr Glu Met
290 295 300
Leu Tyr Gly Leu Pro Pro Phe Tyr Ser Arg Asn Thr Ala Glu Met Tyr
305 310 315 320
Asp Asn Ile Leu Asn Lys Pro Leu Gln Leu Lys Pro Asn Ile Thr Asn
325 330 335
Ser Ala Arg His Leu Leu Glu Gly Leu Leu Gln Lys Asp Arg Thr Lys
340 345 350
Arg Leu Gly Ala Lys Asp Asp Phe Met Glu Ile Lys Ser His Val Phe
355 360 365
Phe Ser Leu Ile Asn Trp Asp Asp Leu Ile Asn Lys Lys Ile Thr Pro
370 375 380

Pro	Phe	Asn	Pro	Asn	Val	Ser	Gly	Pro	Asn	Asp	Leu	Arg	His	Phe	Asp
385					390					395				400	
Pro	Glu	Phe	Thr	Glu	Glu	Pro	Val	Pro	Asn	Ser	Ile	Gly	Lys	Ser	Pro
						405				410				415	
Asp	Ser	Val	Leu	Val	Thr	Ala	Ser	Val	Lys	Glu	Ala	Ala	Glu	Ala	Phe
						420			425					430	
Leu	Gly	Phe	Ser	Tyr	Ala	Pro	Pro	Thr	Asp	Ser	Phe	Leu			
						435			440					445	

<210> 3
<211> 10573
<212> DNA
<213> Homo sapiens

<400> 3

tctggctcg tcttcatgt catctcagag ttccagctta tcagaggcat gtagcaggga 60
ggcttattcc agccataact gggcttacc tccagcctcc agaagtaatc cccaacctgc 120
atatcctgg gcaacccgaa gaatgaaaga agaagctata aaacccccc ttgaaaggttc 180
gtacttaccg tactatattt tgcatgtcc tcaaaggatt tggggttact tggcatgggg 240
aaggcacata aggtgggtg taggagaggg tctctgggtt taggtttctt aatttaatgt 300
ttgaaaacaa acatgcaaaa gtctgtgtgc aggttgatgt ttctggcag cctgagcaaa 360
atttgctctc tcaagaggga aaggaaccag gtgggagcag agctaggctg ggctaggcta 420
gttgaatggg gggacatgac atacgggtgg cactggcaat aacaagtca cattctatga 480
agattccctg caagaggaag cagacatggg ccagttactg tgattgaaa ttgcctaaac 540
attgcttagt gttggcatgt caatttcagg tactagtgtt tttttgttt ttgtttttgt 600
tttgggggtt tttgtttgtt tggttgaga cggagtctcg ctctgttgcc aggctggagt 660
gcagtggcgt gatctcggtc cactgcaacc tccgcctccc gggttcaagc gattctcctg 720
cctcagcctc ccgagtaact gggactacag gcgcacgccca ccacgcctgg ctaattttc 780
tattttcagt agagacgggg tttcaccatg ttagccagga tggtctcgat ctcttgacct 840
cgtgatccgc ccgccttggc ctccccaaat gctgggatata caggcgttag ccactgcgcc 900
cgcccccaat aaatgctttt tataagtgtg ggcactgagc aaactttccc agccagactc 960
caggagagag aatgtgttc cttctctcg gttggggct gttgcaacaa agcaaaccaa 1020
ggagttgaga ctagagctca cttagggca agtgggggtg gttttgcctg caaaacaaac 1080
ccctgccccaa gaccaaggaa aaggcgttt acatgctatt cctgggttga cagctggat 1140
ttcgggactg tgccagatcc agtaggcaac tttaaaatgg cagagcctt gtagcaaga 1200
ggcatggca gggcagccac cgccagacagc aacagcggc gcccaggatc tggccctgc 1260
aatagtggta acttgtaact gcccgcctcg gcccagtcg ctgtgctcgc ggcttcccg 1320
ccagcactgg ctacgtccc cgccgcggcg gtcaggctgc ggctccaga catccccag 1380
ccgcgggggtt actggaaggc accggcatcg ctgttgcac gggccgggc cgccgcctcg 1440
agcttccctc tcttcctgc ttctgcagc ggagtccatcc ggtaatctt tcaggataaa 1500
gtcacagtt atgtggact cacataaaaga ggcggcggg tggcaaaact aagaagccct 1560
ggggcagcct tgagttaaac ccaggaggg tagggacat ttaagacca tgtatcatga 1620
cctgcagggt tttcaggtgg gacagcggga gaggagcagg cccacagag gaatcgagga 1680
tgcccggttc acgcccaggc tgccccccggg caaagctacc cctcccttcg ttgttacct 1740
cctcacgtgt tcttggcatg gcagagatta aaaatgcaag gaaaaaaatt acatcgaa 1800
cgacaaaat gttctcagag attacttcag aaaaaaaaaa gtgaaatgca gattgtactt 1860
cttccttag tgcagagacg acttttattt ccgccttc cctccat tcctgaccc 1920
tccctcccccc tttccctct ttcttcctt cttccctt cttccaatg ctgggatttt 1980
tcagccttgc ttgggtttgg cccaaagcac aaaaaaggcg ttttcggaaag cgacccgacc 2040
gtgcacaagg gccatttgc ttgtttggc ctcggggcag gaaatcttgc ccggcctgag 2100

tcacggcgcc tccttcaagg aaacgtcagt gtcgcccgt cgctctcgac tgccgcgc 2160
 cccgcgcgc cgtccccatg ggggagatgc agggcgcgct ggccagagcc cggctcgagt 2220
 ccctgctcg gccccgcac aaaaagaggg ccgaggcgca gaaaaggagc gagtccttcc 2280
 tgctgagcgg actggtaag cgccgcccgc ggccccgctg ggggcttggc tcacttcccc 2340
 agagcggctt ggaggcaggg gcccgttgc gtcggagttc tcggggccgg ggtcccggcg 2400
 gcgggaacgg gaggacctgg cggcgaggt cgccgcgcac ggccctgcgc ccaggataa 2460
 accccggagg gtggcgccca cccggcgctc gggttgggaa ggagggtggg agtccggccg 2520
 caggacggcg cctggccggg gagagggtat ctgcaggac acgtgagcga gccaccgtgg 2580
 cccgcgcaca cccgcggga agcgcttcgg cgctgcgaac ccggctttct ccggcggcgg 2640
 aataaatgag agaggtggaa aactaccccg ggctctccgg ccctccccgc gccctccgca 2700
 ggcgcgttct ctctctcctg ccccaggacg cgtatggagac tgataacggc cctgcgcccag 2760
 gccgtccccg ggcggctctc ggcgcgcgc ccggggctcg ccctctcaat ggggacagaa 2820
 cccgcgcgc caggcagcgt agccggcagc aaaccgcgag ggggtcgggg cggggcggagg 2880
 ggcgaggcga agggcgggc cacttctcac tgcgcgcag gccccggccc cgcgcgggtg 2940
 ctttttat aaggccgagc ggcggcctg ggcagcata cggcagccg gtcttgagc 3000
 gctaacgtct ttctgtctcc cccgggtggt gatgacggtg aaaactgagg ctgctaaggg 3060
 caccctact tactccagga tgagggcat ggtggcaatt ctatcggtg agtgcaggaa 3120
 tcttgccggaa cttctgtctcc aggagacgca aagtggaaat ttttgaaag tccggatca 3180
 gattagtgtg tgtggcgccg gacgttatga agccgtctaa acgtttctt atttctcctc 3240
 cttcatccac agctttcatg aagcagagga ggatgggtct gaacgacttt attcagaaga 3300
 ttgccaataa ctcctatgca tgcaaacagt aagtttgacc ggatttgagg aaataactag 3360
 tatagttga atttgccagc ggtaaacatt ctcatacagg cggttatcgaa gggcgaag 3420
 acttcttctg ggggtgggat ctcatttctc cttaaattct aatatattt acacatttt 3480
 aacattaaag ttaatttgct gatttggctt gaaactggaga tgaagataa atgggtcggt 3540
 ttggccgaat tcacggcctt tctccatgag caacaatcct tatttctgtt ttaatgggg 3600
 tttatttattt tcttaactg actaatgtat tgggtattt tcagtttaaa cagtaatta 3660
 tccgggtaga agtcggtaga gccaggaaac tcactttga tgggtgtg ccccttagtg 3720
 gcgagctgaa ttctaaatcg tgcccttcat tccctgcagc cctgaagttc agtccatctt 3780
 gaagatctcc caacctcagg agcctgagct tatgaatgcc aacccttctc ctccagtaag 3840
 tttttgtatg tgccgtgcat ctgtggagaa ctgtaaaggaa gtcagttgtt attcctacat 3900
 taatggatta aaatagcatt tctagaaattt agtatacagg caggaatgct tcattatggc 3960
 ataacaagtg atataaatat ttaagtattt agtcagagta ttatttattt ttttcctgg 4020
 gcatattttt cctccaaagt ggttattttt aaaggcatat ttcataaaaaa ggttttatct 4080
 gtctgaaaca acatgactgt gtgcagtttc catactcatt tggaaatgtga tggaaatgtag 4140
 ttttgaatgt ttatagatgt atggtcattt gcatcagtca ttgttagatg taacatttc 4200
 tacatcgttt atgttataga tgtctcctt tgaagcaatg gtattaaaag aaattctttt 4260
 ttttttttc tagccaaatgc cttctcagca aatcaacattt ggcccgctcg ccaatcctca 4320
 tgctaaacca tctgactttc acttcttgcgaa agtgcgttgcgaa aaggcagttt tggaaaggt 4380
 aatttcaaat ctgaagatct tttggtacac ttccttcattt tcctctttt tatttctccct 4440
 ggatgaggat agaaaaatga tttttttaaa ttgaaatttc agttcttctt agcaagacac 4500
 aaggcagaag aagtgttcta tgcagtcata gtttacaga agaaagcaat cctgaaaaag 4560
 aaagaggtat gagatgtgct tgcgttgcgaa ggcattggcg gttagacactc cttgaataat 4620
 cttgattctg gaatgttggt gccaagttga aacatgcac taaatctgaa tcgtcatttt 4680
 cctaggagaa gcatattatg tcggagcggaa atgttctgtt gaagaatgtg aagcaccctt 4740
 tcctggtggg ccttcacttc tctttccaga ctgcgtacaa attgtacttt gtccttagact 4800
 acattaaatgg tggagaggtg agcagggggg atagaagtca actcttagtg tctctgcaca 4860
 gcctgctttt ttttagttt agaaaaaaatg tttcaaaatg tttgggtggg gagaatgtta 4920
 ccagaattag catttccttc aacctgtcag gtttatagtt aatagattac ttggggccac 4980
 ttcctgcagt tgggttttgc tgcgttatgt caaaactaat taaatttattt tgcaacccag 5040
 aatgacttttgc ttctgtctcc tgcagttgtt ctaccatctc cagagggaaac gtcgttccct 5100
 ggaaccacgg gtcgtttctt atgctgctga aatagccagt gccttggcgtt acctgcattc 5160

actgaacatc gtttataagg aagcctgaga gctcttcagg ctaccagtt tggtataaaag 5220
gagacgtgc actggctgtt tcatagggcc taaaataat ttgtgtttat ttgcaacttg 5280
gttgcctaaa accagatccc ctagcacgtg agctggctt acttaagtgc caagggggaa 5340
ccagccaagt aggattgtgc ctaatccaga atagatgagc agaacaaggg ctccctttt 5400
tcttcactac acaactacag tgaacctaaa atgcctctaa tacctttagc aattatctt 5460
aagaggatat cttatgaagt gaaattaact tgtcaacta ctttctatt cacttttta 5520
cagagactt aaaccagaga atatttgc agattcacag ggacacattt tccttactga 5580
cttcggactc tgcaaggaga acattgaaca caacagcaca acatccaccc tctgtggcac 5640
gccggaggtt ggcgtgtct tgggttgtt cctggtttac ccccgccctt caagagagag 5700
atgtacaatc atgcacttaa ctacaaaaaa gagtaaactc ctctcagaga cttcttaata 5760
cagttcagtg caaataaaaat acatttgctg tttgatgttag catgagaaat cccaagtcc 5820
tctgttcctt tactgaaaag tagcttttgc taagtaagat ctgcataaaaactttct 5880
aaatccctaa gtaagagata tcaagtgc 5940
tagccagtc 5940
ccctcaaaaaa gtccagcagt tttatcgga aggaatctaa agatatctat 6000
cttccaagct ggctctgggt ctctcagctt tttcaaacta aatgtgttgtt cgtggattt 6060
cttgctttcg caggttctaa acgctgttcc cctggctgtt ttttcagttt ctcgcaccc 6120
aggtgcttca taagcagcct tatgacagga ctgtggactt gtgggtgcctt ggagctgtct 6180
tgtatgagat gctgtatggc ctggtgagtg gcacattttttt aaccatggaa cactgcctgc 6240
tccctacaat attgcctca cacagccat gcttggccat ggtgtcttgc ctttaccagg 6300
acgcttatca aaagcagcta agaggcatat tgggtatattt atagttcata agaataatca 6360
cttacctggc tcttttgtc atttcacatt ttactagata ggaccacattt gaacctgtgt 6420
gggtgtgaaa aactaccact tattaaacatc tacccttcac ccctccacac acacacacac 6480
aaacacacac acgggttgca aagtagacac ttaaatagca agggaaaaga aagcatttgag 6540
gtggggagag tttctcaat cgacccat atttatttgc gtttatatct ttttctctac 6600
tgtaatgtg tgccatatga aacttccaat taagtctaaa gtaatttcc ctttcttca 6660
gccgccttt tatagccaa acacagctga aatgtacgac aacattctga acaaggctct 6720
ccagctgaaa ccaaataatca caaattccgc aagacacccctc ctggaggggcc tcctgcagaa 6780
ggacaggaca aagcggctcg gggccaagga tgacttcgtt agtgatgttt tcctgtcc 6840
ctggggccgc cggacgtgc actagaccc cctggccat ttaaatgcac ctgtctaaat 6900
taatcttggg tttcttatca acagatggag attaagagtc atgtcttctt ctttcttcaatt 6960
aactggatg atctcattaa taagaagatt actccccctt ttaacccaaa tgtgtgagt 7020
atctgtctt cttctaagta tagagaagcc caaaggccat ttatTTTaaat tcagaattgt 7080
ctgggggagg gttggaagga atacatttgc agatgttttcc tccataaaacc tgttatTTT 7140
cctacataaa aagcacattt ttgtgtccca acaaggctcc cataattttt agacacattt 7200
atcaattcga agcacaaaaa ggcaacaagt gaacattattt cttatgttta actgtgtgt 7260
gcctttttagg attttgc tgaagtgggtt gattatggaa gttgatataa gactaaact 7320
tggtatTTTaa agcctggc tca agattttcc tgcctgtgtc tagtgtgagt tcttgacaag 7380
agtgttttc ctttccgc acagatggg cccaaacgacc tacggcactt tgaccccgag 7440
tttaccgaag agcctgtccc caactccattt ggcaagtccc ctgacagcgtt cctcgta 7500
gccagcgtca aggaagctgc cgaggcttc ctggctttt cctatgcgc tccacggac 7560
tcttcctctt gaaccctgtt agggcttggg tttaaaggat tttatgtgtg tttccgaatg 7620
ttttagtttag cttttgggtt gagccgcag ctgacaggac atcttacaag agaatttgca 7680
catctctgca agcttagcaa tcttatttgc cactgttgc tggaaagcttt ttgaagagca 7740
cattctccctc agttagctca tgaggttttcc attttatttcc ttcccttccaa cgtgtgtct 7800
tctctgaaac gagcgtttaga gtggccctt agacggaggc aggagtttgc ttggaaagcg 7860
gacgctgttc taaaaaggat ctcctgcaga tctgtctggg ctgtgtatgc gaatattatg 7920
aaatgtgcct tttctgaaga gattgtgtt gctccaaagc ttttccatc gcagtgtttc 7980
agttctttat tttccctgtt ggatatgtgt tttgtgttgc tttgtgttgc tttgtatgcct 8040
gatcacagat ggattttgtt ataagcatca atgtgacact tgcaaggacac tacaacgtgg 8100
gacattgtttt gtttcttcca tatttggaaat ataaattttt gtgttagactt ttttggtaaga 8160
tacggtaat aactaaaattt tattggaaatg gtcttgcattt gactcgttattt cagatgc 8220

aagaaaagcat tgctgctaca aatatttcta ttttagaaaa gggttttat ggaccaatgc 8280
cccagggttc agtcagagcc gttgggttt ttcattgttt aaaatgtcac ctgtaaaatg 8340
ggcattattt atgtttttt ttttgatttc ctgataattg tatgtattgt ataaagaacg 8400
tctgtacatt gggttataac actagtatat ttaaacttac aggcttattt gtaatgtaaa 8460
ccaccattt aatgtactgt aattaacatg gttataatac gtacaatcct tccctcatcc 8520
catcacacaa cttttttgt gtgtgataaa ctgattttgg tttgcaataa aaccttgaaa 8580
aatatttaca tatattgtgt catgtttat tttgtatatt ttggtaagg gggtaatcat 8640
gggttagtt aaaattgaaa accatgaaaa tcctgctgta atttcctgct tagtggttg 8700
ctcccaacag cagtggttc tgactccagg ggagtatagg atggctttaa agccaaccta 8760
cgttccaggc cttttagca gcattttatg gtgtctgtca ttcataaattc catccaagga 8820
aatccttgc aatttactca tcttgcagg attgctatga agtaatgctt cctgtattt 8880
ttgcctgtcc tgtgaagttg gactattgt cctgacattt ggcttgtctt cagttacagg 8940
taattcttc cagaaatatt tgaaagccta ctctgggctc tattgcaggt gctcaggata 9000
tcgttagtggc caaagcagac aacttcgccc ttccagagcc ttagtgaagaa ggccgaccta 9060
aagcagttag ttgagatggc aattgagaaa tagtctgtga agtttaggag aatgccacac 9120
aagagggtga gaattttttt tttttttt tttttttt agacacggc ttactctgtc 9180
gcccaggctg gagtgcatgt gtgtgatctt ggttcactgc agcctccgccc tcctgggttc 9240
atgtgatccc cccatctcag cctcctgagt agctggact acaggcatgc accaccatgc 9300
ctggctaatt tttgtatttt agtagagatg ggatttcacc atgtgggcca ggctggtctc 9360
gaatccctgg cctcaagtga tctgtctgcc tcggcttccc taagtgtgg ggagaatgtt 9420
ttaaataagt ggatatgttc ccaaaaagct gacctggctg ggacatctgg tttctgagag 9480
tacctggagt tgacccaggt ctagagttag ctcagtaaag ggaccctgaa ggagctcatc 9540
cctagcttgg actgaagctt cttgagccag tgtctaccta gcaccctaaag ggcccagcag 9600
gctctggggc tgtgtggcag agcccactcc tagagctcac cccactgtga tattacctgt 9660
gggagaaaagc gaggtggcac catccttggc gatcttgagt ccaaagggtt ggacttttc 9720
actcttctag gccttccaca caaatactta acaaataatc aggaatccc caaacagttg 9780
atgttgcgtc tgccttaatt gcaaaaagcac cctgttaggcc tgctgcaccc cgcctaccct 9840
gacctccag ttcgcacagg gatttttttca agggaaagct gtgagctttt ttccctttat 9900
ccttgctctt gggtctcacc tcacttgc tca gtttttttcc ttccttaccc cacaaggttt 9960
ccaagggcca aacaggtgtt cagagataac cgagttcttc tccctcatga tctaattgaag
10020
gaagaagatg aaaacgagtc gatagcttt tgctcaaggt gggccaccgg tcatgctctg
10080
ctgttgactt actgctctac aggcatcgtc tacgtgttca attccctacc gggccctagg
10140
gacaaataaa gagtccaaag caagggccagg cacgggtggct cacgcttgc atcccagcac
10200
tttggggaggc cgaggcgggc agatcacgag gtcaggagat cgagaccatc ctggctaaaca
10260
tggtaaaacc ccgtctctac taaaaataca aaaaaattttt ccggggcgtgg tggtggcgc
10320
ctgttagtccc agctactcgg gaggctgagg caggagaatg gctgtacccca gggaggcgg
10380
gcttgctcgtg agccgagatc gcaccactgc actccagcct gggcgacaga gcaagactct
10440
gtctcaaaaa acaaaaacaaa acaaaaagcat gtatccctt attaaagatt gatgccggct
10500
ctaacataga gactcattgc atattcccc tcattctcat tctcaataac agttatgaat
10560
tcctccatcga aca
10573

<210> 4
<211> 407
<212> PRT
<213> Homo sapiens

<400> 4
Ile Ala Phe Met Lys Gln Arg Arg Met Gly Leu Asn Asp Phe Ile Gln
1 5 10 15
Lys Ile Ala Asn Asn Ser Tyr Ala Cys Lys His Pro Glu Val Gln Ser
20 25 30
Ile Leu Lys Ile Ser Gln Pro Gln Glu Pro Glu Leu Met Asn Ala Asn
35 40 45
Pro Ser Pro Pro Pro Ser Pro Ser Gln Gln Ile Asn Leu Gly Pro Ser
50 55 60
Ser Asn Pro His Ala Lys Pro Ser Asp Phe His Phe Leu Lys Val Ile
65 70 75 80
Gly Lys Gly Ser Phe Gly Lys Val Leu Leu Ala Arg His Lys Ala Glu
85 90 95
Glu Val Phe Tyr Ala Val Lys Val Leu Gln Lys Lys Ala Ile Leu Lys
100 105 110
Lys Lys Glu Glu Lys His Ile Met Ser Glu Arg Asn Val Leu Leu Lys
115 120 125
Asn Val Lys His Pro Phe Leu Val Gly Leu His Phe Ser Phe Gln Thr
130 135 140
Ala Asp Lys Leu Tyr Phe Val Leu Asp Tyr Ile Asn Gly Gly Glu Leu
145 150 155 160
Phe Tyr His Leu Gln Arg Glu Arg Cys Phe Leu Glu Pro Arg Ala Arg
165 170 175
Phe Tyr Ala Ala Glu Ile Ala Ser Ala Leu Gly Tyr Leu His Ser Leu
180 185 190
Asn Ile Val Tyr Arg Asp Leu Lys Pro Glu Asn Ile Leu Leu Asp Ser
195 200 205
Gln Gly His Ile Val Leu Thr Asp Phe Gly Leu Cys Lys Glu Asn Ile
210 215 220
Glu His Asn Ser Thr Thr Ser Thr Phe Cys Gly Thr Pro Glu Tyr Leu
225 230 235 240
Ala Pro Glu Val Leu His Lys Gln Pro Tyr Asp Arg Thr Val Asp Trp
245 250 255
Trp Cys Leu Gly Ala Val Leu Tyr Glu Met Leu Tyr Gly Leu Pro Pro
260 265 270
Phe Tyr Ser Arg Asn Thr Ala Glu Met Tyr Asp Asn Ile Leu Asn Lys
275 280 285
Pro Leu Gln Leu Lys Pro Asn Ile Thr Asn Ser Ala Arg His Leu Leu
290 295 300
Glu Gly Leu Leu Gln Lys Asp Arg Thr Lys Arg Leu Gly Ala Lys Asp
305 310 315 320
Asp Phe Met Glu Ile Lys Ser His Val Phe Phe Ser Leu Ile Asn Trp
325 330 335

Asp Asp Leu Ile Asn Lys Lys Ile Thr Pro Pro Phe Asn Pro Asn Val
340 345 350
Ser Gly Pro Asn Asp Leu Arg His Phe Asp Pro Glu Phe Thr Glu Glu
355 360 365
Pro Val Pro Asn Ser Ile Gly Lys Ser Pro Asp Ser Val Leu Val Thr
370 375 380
Ala Ser Val Lys Glu Ala Ala Glu Ala Phe Leu Gly Phe Ser Tyr Ala
385 390 395 400
Pro Pro Thr Asp Ser Phe Leu
405