

$$(C_i)^2 = (Y_i - (q_2c_i + b))^2$$

$$SCE = \sum_{i=1}^{\infty} \left(y_i - \left(a x_i + b \right)^2 = m \left(y^2 - 2 a x y - 2 b y + q^2 x^2 + 2 a b x + b^2 \right)$$

Conditionnement

Capteur passif - actif

Rôle du conditionneur

- Alimentation (passif)
- Amplification (actif, passif)
- Adaptation d'impédance
- Mesure Différentielle
- Modulation
- Linéarisation

Courant vs Tension

Capteur passif résistif Rc

Pont diviseur

Capteur passif résistif Rc

$$i = \frac{V_{our}}{RI + Rc} = \frac{V_{our}}{Rc}$$

$$V_{our} = \frac{V_{our}}{R_1 + R_c}$$

Rappel Millman

Rappel Principe de superposition

$$V = \sqrt{A} + \sqrt{B}$$

VA=> VION et V3 OFF

P

Rappel Principe de superposition

Générateur non idéal

Générateur et système de mesure non idéals

Application numérique

Un capteur de déplacement rectiligne est constitué d'un potentiomètre linéaire schématisé sur la figure 1.1. On désigne par Δx la valeur du déplacement du curseur par rapport à la position milieu que l'on prend pour origine de l'axe x.

- 1) La course utile du potentiomètre est 2l = 10 cm et sa résistance totale est $2R_0$. En déduire l'expression des résistances $R_b(\Delta x)$ et $R_h(\Delta x)$ du potentiomètre (voir figure 1.1) pour un déplacement Δx du curseur par rapport à la position milieu.
- 2) Le potentiomètre est monté suivant le schéma de la figure 1.1. La tension de mesure V_{mes} , image de la position du curseur, est mesurée par une électronique d'impédance d'entrée R_{app} . Exprimer V_{mes} en fonction de $R_b(\Delta x)$, $R_h(\Delta x)$, R_g , R_{app} et V_g .
- 3) Que devient cette expression pour $R_{app} \gg R_0$?
- 4) En déduire la sensibilité S_{mes} de la mesure.
- 5) Quelle valeur doit-on donner à R_g pour que cette sensibilité soit maximale? Que deviennent dans ce cas V_{mes} et S_{mes} ? Calculer la sensibilité réduite S_r.

Application numérique

Si
$$\Delta_{x} = 0$$
 $R_{H}(\Delta_{x}) = R_{0}$ $R_{0}(\Delta_{1}) = R_{0}$
Si $\Delta_{2} = 1$ $R_{H}(\Delta_{2}) = 6$ $R_{0}(\Delta_{2}) = 2R_{0}$
 $\Delta_{1} = 1$ $R_{1}(\Delta_{2}) = 2R_{0}$ $R_{2}(\Delta_{2}) = 0$
 $\Delta_{3} = 1$ $R_{1}(\Delta_{2}) = 1$ $R_{2}(\Delta_{2}) = 0$
 $R_{3}(\Delta_{2}) = 0$ $R_{4}(\Delta_{2}) = 0$ $R_{5}(\Delta_{2}) = 0$
 $R_{1}(\Delta_{2}) = R_{1}(\Delta_{2}) = 0$ $R_{2}(\Delta_{2}) = 0$ $R_{3}(\Delta_{2}) = 0$ $R_{4}(\Delta_{2}) = 0$ $R_{5}(\Delta_{2}) = 0$ $R_{6}(\Delta_{2}) = 0$ $R_{6}(\Delta_{2}) = 0$ $R_{6}(\Delta_{2}) = 0$ $R_{7}(\Delta_{2}) = 0$ $R_{8}(\Delta_{2}) = 0$ $R_{8}(\Delta_{2}) = 0$

RB (
$$\Delta_{2L}$$
)=Ro
RB (Δ_{2L})= O
RB (Δ_{2L}) A
RB (Δ_{2L}) A
RB (Δ_{2L}) A
RB (Δ_{2L}) = $Ro + Ro$ (Δ_{2L})

Application numérique

Application numérique

$$\frac{1}{\frac{R_o}{R_{g+}} Z R_o} + \frac{\frac{R_o N_{oc}}{R_{g+} Z R_o}}{\frac{R_o}{R_{g+}} Z R_o} + \frac{1}{\frac{R_o}{R_{g+}} Z R_o}$$

Amplificateur Opérationnel

Rappel sur l'AOP idéal

Amplificateur Opérationnel

1

- Amplificateur inverseur
- Amplificateur non inverseur
- Amplificateur suiveur
- Amplificateur différentiel

