Assignment #3: Chapter 9 Questions 20, 46, 56, 70, 82

Question 9.20: If Y has a binomial distribution with n trials and success probability p, show that $\frac{Y}{n}$ is a consistent estimator of p.

If Y has a binomial distribution as stated, then

$$E[Y] = np$$

$$\frac{E[Y]}{n} = \frac{np}{n}$$

$$E\left[\frac{Y}{n}\right] = p$$

Furthermore,

$$\operatorname{Var}[Y] = npq$$

$$\frac{\operatorname{Var}[Y]}{n^2} = \frac{npq}{n^2}$$

$$\operatorname{Var}\left[\frac{Y}{n}\right] = \frac{pq}{n}$$

Finally,

$$\lim_{n \to \infty} \operatorname{Var} \left[\frac{Y}{n} \right] = \lim_{n \to \infty} \frac{pq}{n} = 0$$

Since the variance of the estimator goes to 0 as $n \to \infty$, it shows that $\frac{Y}{n}$ is a consistent estimator of p.

Question 9.46: If Y_1, Y_2, \ldots, Y_n denote a random sample from an exponential distribution with mean β , show that $f(\mathcal{Y} \mid \beta)$ is in the exponential family and that \bar{Y} is sufficient for β .

Let $Y \sim \text{Exp}(\beta)$. Then the likelihood function $L(\theta)$ of the sample is the joint distribution

$$L(y_{1}, y_{2}, \dots, y_{n} \mid \theta) = f(\mathcal{Y} \mid \theta) = f(y_{1}, y_{2}, \dots, y_{n} \mid \theta)$$

$$= f(y_{1} \mid \theta) \times f(y_{2} \mid \theta) \times \dots \times f(y_{n} \mid \theta)$$

$$= \left(\frac{1}{\beta}e^{-\frac{y_{1}}{\beta}}\right) \times \left(\frac{1}{\beta}e^{-\frac{y_{2}}{\beta}}\right) \times \dots \times \left(\frac{1}{\beta}e^{-\frac{y_{n}}{\beta}}\right)$$

$$= \frac{1}{\beta^{n}}e^{-\frac{y_{1}}{\beta}}e^{-\frac{y_{2}}{\beta}} \dots e^{-\frac{y_{n}}{\beta}} = \frac{1}{\beta^{n}}e^{-\frac{1}{\beta^{n}}(y_{1}+y_{2}+\dots+y_{n})}$$

$$= \frac{1}{\beta^{n}}e^{-\frac{n\bar{y}}{\beta^{n}}}$$

 $f(\mathcal{Y} \mid \beta)$ is in the exponential family where the parameter β is now β^n and the realization is $n\bar{y}$. Furthermore, since $f(\mathcal{Y} \mid \beta)$ can be broken into $g(\bar{y}, \beta)$ and $h(y_1, \dots, y_n)$, where

$$g(\bar{y}, \beta) = \frac{1}{\beta^n} e^{-\frac{n\bar{y}}{\beta^n}}$$
 and $h(y_1, \dots, y_n) = 1$

 \bar{Y} is sufficient for β .

Question 9.56: Let $Y_1, Y_2, ..., Y_n$ denote a random sample from a normal distribution with mean μ and variance σ^2 . If μ is known and σ^2 is unknown, then $\sum_{i=1}^n (Y_i - \mu)^2$ is sufficient for σ^2 . Find an MVUE of σ^2 .

If $\sum_{i=1}^{n} (Y_i - \mu)^2$ is sufficient for σ^2 , then by the Rao-Blackwell theorem, there exists $\hat{\sigma}^{2*} = \mathbb{E}\left[\hat{\sigma^2} \mid \sum_{i=1}^{n} (Y_i - \mu)^2\right]$, where $\hat{\sigma^2}$ is an unbiased estimator for σ^2 , such that

$$E\left[\hat{\theta}^*\right] = \sigma^2 \text{ and } Var\left[\hat{\theta}^*\right] \leq Var\left[\hat{\theta}\right]$$

First find the sufficient estimator for σ^2 .

The likelihood function is

$$L(y_1, y_2, \dots, y_n \mid \sigma^2) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(y_1 - \mu)^2}{2\sigma^2}} \times \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(y_2 - \mu)^2}{2\sigma^2}} \times \dots \times \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(y_n - \mu)^2}{2\sigma^2}}$$

$$= \frac{1}{(2\pi)^{\frac{n}{2}} (\sigma^2)^{\frac{n}{2}}} e^{-\frac{1}{2\sigma^2} ((y_1 - \mu)^2 + (y_2 - \mu)^2 + \dots + (y_n - \mu)^2)}$$

$$= \underbrace{\frac{1}{(\sigma^2)^{-\frac{n}{2}}} e^{-\frac{\sum_{i=1}^n (y_i - \mu)^2}{2\sigma^2}}}_{g(\sum_{i=1}^n (y_i - \mu)^2, \sigma^2)} \times \underbrace{\frac{1}{(2\pi)^{-\frac{n}{2}}}}_{h(y_1, y_2, \dots, y_n)}$$

The sufficient estimator for σ^2 is $\hat{\theta} = \sum_{i=1}^n (y_i - \mu)^2$. Now find $\hat{\theta}^*$ such that

$$\mathrm{E}\left[\hat{\theta}^*\right] = \theta = \sigma^2 \text{ and } \mathrm{Var}\left[\hat{\theta}^*\right] \leq \mathrm{Var}\left[\sum_{i=1}^n (y_i - \mu)^2\right]$$

A simple elegant solution would be the sample variance, a function of the sufficient statistic itself,

$$\hat{\theta}^* = \frac{1}{n} \sum_{i=1}^{n} (y_i - \mu)^2$$

since its expected value is indeed the population variance and the variance of this quantity would be $\frac{1}{n^2}$ times smaller than the variance of the sufficient statistic $\hat{\theta}$. Therefore this quantity is the MVUE of σ^2 .

Question 9.70: Suppose that Y_1, Y_2, \ldots, Y_n constitute a random sample from a Poisson distribution with mean λ . Find the method of moments estimator of λ .

If $Y \sim \text{Poisson}(\lambda)$, then $E[Y] = \lambda$. Note that the first moment of a random variable taken about the origin is

$$\mu' = \mathrm{E}[Y]$$

which in this case is

$$\mu' = \lambda$$

Now, the corresponding first sample moment of any random variable is the average

$$\mu' = m' = \frac{1}{n} \sum_{i=1}^{n} Y_i$$

Thus the method of moments estimator of λ can be found by equating the two.

$$\mu' = m'$$

$$\lambda = \frac{1}{n} \sum_{i=1}^{n} Y_i$$

$$= \bar{Y}$$

Thus the method of moments estimator of λ is

$$\hat{\lambda} = \bar{Y}$$

Question 9.82: Let Y_1, Y_2, \ldots, Y_n denote a random sample from the density function given by

$$f(y \mid \theta) = \begin{cases} \left(\frac{1}{\theta}\right) r y^{r-1} e^{-y^r/\theta} & \text{if } \theta > 0, \ y > 0 \\ 0 & \text{otherwise} \end{cases}$$

where r is a known positive constant.

a. Find a sufficient statistic for θ . First find the likelihood function $L(y_1, \ldots, y_n \mid \theta)$.

$$L(y_{1},...,y_{n} \mid \theta) = f(y_{1},...,y_{n} \mid \theta)$$

$$= \left(\frac{1}{\theta}ry_{1}^{r-1}e^{-\frac{y_{1}^{r}}{\theta}}\right) \times \left(\frac{1}{\theta}ry_{2}^{r-1}e^{-\frac{y_{2}^{r}}{\theta}}\right) \times ... \times \left(\frac{1}{\theta}ry_{n}^{r-1}e^{-\frac{y_{n}^{r}}{\theta}}\right)$$

$$= \frac{1}{\theta^{n}}r^{n}(y_{1}y_{2}...y_{n})^{r-1}e^{-\frac{y_{1}^{r}+y_{2}^{r}+...+y_{n}^{r}}{\theta}}$$

This can be broken into $g(\sum_i y_i^r, \theta)$ and $h(y_1, \dots, y_n)$ where

$$g(\sum_{i} y_i^r, \theta) = \frac{1}{\theta^n} r^n e^{-\frac{\sum_{i} y_i^r}{\theta}}$$
 and $h(y_1, \dots, y_n) = (y_1 y_2 \dots y_n)^{r-1}$

Therefore a sufficient statistic for θ is

$$\hat{\theta} = \sum_{i} y_i^r$$

b. Find the MLE of θ .

To find the MLE, first take the natural log of the likelihood function.

$$\ln L(y_1, \dots, y_n \mid \theta) = -n \ln \theta + n \ln r + (r - 1) \ln(y_1 y_2 \dots y_n) - \frac{y_1^r + y_2^r + \dots + y_n^r}{\theta}$$

Differentiate this with respect to θ and equate it to 0.

$$-\frac{n}{\theta} + \frac{y_1^r + y_2^r + \dots + y_n^r}{\theta^2} = 0$$

Solve for θ .

$$\frac{n}{\theta} = \frac{y_1^r + y_2^r + \dots + y_n^r}{\theta^2}$$

$$n\theta^2 = \theta(y_1^r + y_2^r + \dots + y_n^r)$$

$$\theta = \frac{y_1^r + y_2^r + \dots + y_n^r}{n}$$

Thus the MLE of θ is

$$\hat{\theta} = \frac{y_1^r + y_2^r + \dots + y_n^r}{n}$$

c. Is the estimator in part (b) an MVUE for θ ?

In part(a), it was found that $\sum_i y_i^r$ was a sufficient statistic for θ . Furthermore,

$$\hat{\theta} = \frac{y_1^r + y_2^r + \dots + y_n^r}{n} = \frac{\sum_i y_i^r}{n}$$

is a function of the sufficient statistic. This shows that the estimator in part (b) is an MVUE for θ .