Formale Systeme, Automaten, Prozesse

Peter Rossmanith

Theoretische Informatik, RWTH Aachen

14. April 2020

Termine

Vorlesung über Zoom und Videoaufzeichnungen

- Mittwoch, 10:30 12:00 Uhr
- Freitag, 10:30 12:00 Uh

Fragestunden gegen Ende der Vorlesungen

Tutorübungen

- Montag, 8:30 10:00 Uhr
- Dienstag, 8:30 10:00 Uhr
- Dienstag, 10:30 12:00 Uhr

Globalübung

Dienstag, 14:30 - 16:00 Uhr

Homepage: https://tcs.rwth-aachen.de/lehre/FSAP/SS2020

Anmeldungen über RWTH Online

Tutorübungen

Ablauf einer Doppelstunde

- Ausgabe der Übungsblätter am Montag 8 Uhr in Moodle
- Abgabe der Hausaufgaben bis Montag 8 Uhr in Moodle
- Gemeinsames Bearbeiten der Tutoraufgaben in Zoom
- Miniprüfung (15 Minuten), an Tutor schicken
- Rückgabe der korrigierten Hausaufgaben in Moodle

Anmeldungen über RWTH Online

Erste reguläre Tutorübung am 20. April

Weitere Angebote

Peter Rossmanith Es wird eine Sprechstunde über Videokonferenz geben

Henri Lotze, Daniel Mock, Tim Hartmann Sprechzeiten: Donnerstag, 10:30 - 11:30 Uhr und nach Vereinbarung

Globalübung Dienstag 14:30 - 16:00

Zur Vorlesung wird es ein einfaches Skript geben, das sich eng an die Vorlesung hält

Email: tcs-teaching@cs.rwth-aachen.de Verwenden Sie nur diese Email-Adresse!

Prüfungen

- 1. Klausur
- Montag, 17. August, 8:30 10:30 Uhr
- 2. Klausur

Mittwoch, 16. September, 10:30 – 12:30 Uhr

Teilnahmevoraussetzungen (BSc. Informatik)

- Regelmäßige Teilnahme an Tutorübungen und Hausaufgaben
 - 50% der Punkte bei den Hausaufgaben
 - 50% der Punkte bei den Miniprüfungen

Einleitendes Beispiel

Betrachte folgendes Problem:

Eingabe: Ein String w aus 0en und 1en

Frage: Sind diese beiden Eigenschaften erfüllt?

- Es kommt 11 nicht als Unterwort in w vor.
- Als Binärzahl ist w durch drei teilbar.

Beispiele: 0101, 1001, 00110, 0101010

Gesucht:

Ein Programm, das w bekommt und 0 oder 1 zurückgibt.

Eine mögliche Lösung:

```
int F[] = { 1,0,0,0,1,0,0}; int delta[][2] = {{ 0,1},{ 3,6},{ 3,4},{ 2,5},{ 0,6},{ 2,6},{ 6,6}}; int drei_not_11(char * w) { int q = 0; while(*w) q = delta[q][*w++ - '0']; return F[q]; }
```

Das Programm simuliert...

einen sogenannten endlichen Automaten.

Vergleiche:


```
int F[] = { 1,0,0,0,1,0,0};
int delta[][2] = {{ 0,1}, { 3,6}, { 3,4}, { 2,5}, { 0,6}, { 2,6}, { 6,6}};
int drei_not_11(char * w)
{
   int q = 0;
   while(*w) q = delta[q][*w++ - '0'];
   return F[q];
}
```

Wie effizient ist dieses Programm?

```
drei_not_11:
movsbl (%rdi), %eax
xorl %edx, %edx
testb %al, %al
je .L2
.L3:
subl $48, %eax
addq $1, %rdi
cltq
```

```
leaq (%rax,%rdx,2), %rax
movslq delta(,%rax,4), %rdx
movsbl (%rdi), %eax
testb %al, %al
jne .L3
.L2:
movl F(,%rdx,4), %eax
ret
```

Etwas besser zu verstehender MIPS-Code (RISC-Prozessor):

```
drei_not_11:
                               lw $3,0($3)
  1b $2,0($4)
                             .L2:
  beq $2,$0,.L2
                               lui $4, %hi(F)
  move $3,$0
                               addiu $4,$4,%lo(F)
  lui $5,%hi(delta)
                               sll $3,$3,2
  addiu $5,$5,%lo(delta)
                               addu $3,$3,$4
.L3:
                               i $31
  sll $3,$3,1
                               lw $2.0($3)
  addu $3.$3.$2
                             delta:
  addiu $4,$4,1
                               .word 0, 1, 3, 6, 3
  addiu $3,$3,-48
                               .word 4, 2, 5, 0, 6
  1b $2,0($4)
                               .word 2, 6, 6, 6
  sll $3,$3,2
                             F:
  addu $3,$5,$3
                               .word 1, 0, 0, 0, 1
  bne $2,$0,.L3
                               .word 0, 0
```

Zeichnen von Pflanzen

Zeichenprogramm, das diese Befehle kennt:

- F: Zeichne eine kurze Linie.
- -: Drehe dich ein wenig nach rechts.
- +: Drehe dich ein wenig nach links.
- [: Merke dir die augenblickliche Position und Richtung.
-]: Kehre zur letzten gemerkten Position und Richtung zurück.

F[+FF][--F]F[+FF][--F]FF[+FF][--F]F][--F]F]F[+FF][--F]F[+FF][--F]F]F[+FF][--F]F[+FF][--F]F]F[+FF][--F]F[+FF][--F]F[+FF][--F]F]F[+FF][--F]F[+FF][--F]F[+FF][--F]F[+FF][--F]F[+FF][--F]F[+FF][--F]F[+FF][--F]F[+FF][--F]F[+FF][--F]F[+FF][--F]F[+FF][--F]F[--F]F[+FF][--F]F[--F]F[+F[+FF][--F]FF[+FF][--F]F][--F[+FF][--F]F]F[+FF][--F]FF[+FF][--F] -FIFF(+FF)(--FIF)(--FIFF)(--FIFF)(--FIFF)(--FIFF)(--FIFF) F|F|F|+FF| [--F|F|+F|+FF| [--F|F|+FF| [--F|FF|+FF] [--F|F| [--F|F] [--F|F] [--F]FF[+FF][--F]F[+FF][--F]FF[+FF][--F]F][--F[+FF][--F]F]F[+FF] +F[+FF][--F]FF[+FF][--F]F][--F]F][--F]F]F[+FF][--F]FF[+FF][--F]FF[+FF]] [--F]F]F[+FF] [--F]F] [--F[+FF] [--F]F[+FF] [--F]F] [--F]F] [--F]F] 4] 9[9--] [99+] 9[9[9--] [99+] 9--] [9[9--] [99+] 99[9--] [99+] 91 [9--] [99+] 91-] [99+] 91-]] [--F]F[+FF][--F]FF[+FF][--F]F] [--F]FF[+FF][--F]FF[-FF] [--F]FF[+FF] [--F]F] [--F]FF] [--F]F]F[+FF] [--F]F] [--F]F] [--F]F[+FF] [--F]F[+FF]F]F[+FF]F]F FF[+FF][--F]F][--F[+FF][--F]F]F[+FF][--F]F]F[+FF][--F]F[+FF][--F]FF[+FF] (414--) [44+) 4[4[4--] [44+] 4--] [4[4--] [44+] 44[4--] [44+] 4+] 4[4--] [44+] 44[4--] [44+ F]F[+F[+FF][--F]FF[+FF][--F]F][--F]F]F[+FF][--F]F Starte mit F und wende $F \mapsto F[+FF][--F]F$ an!

$$n = 5$$

$$\delta = 25.7$$

$$F \mapsto F[+F]F[-F]F$$

$$n = 5$$

$$\delta = 20$$

$$F \mapsto F[+F]F[-F][F]$$

$$\begin{split} n &= 4 \\ \delta &= 22.5 \\ F &\mapsto \\ FF - \left[-F + F + F \right] + \left[+F - F - F \right] \end{split}$$

Buch:

P. Prusinkiewicz

A. Lindenmayer

The Algorithmic Beauty of Plants

http://algorithmicbotany.org/papers/abop/abop.pdf

Einführung

Empfohlene Literatur

Introduction to Automata Theory, Languages, and Computation (2nd Edition)

by John E. Hopcroft, Rajeev Motwani, Jeffrey D. Ullman

"Einzelplatzlizenz" im RWTH-Netz:

https://ebookcentral.proquest.com/lib/rwthaachen-ebooks/detail.action?docID=5832060

Introduction to Formal Language Theory by Michael A. Harrison

Compilers: Principles, Techniques, and Tools by Alfred V. Aho, Ravi Sethi, Jeffrey D. Ullman

Wörter und Sprachen

Was ist ein Wort, was ist eine Sprache?

Informelle Antwort:

- Ein Wort ist eine Aneinanderkettung von Symbolen aus einem Alphabet.
- 2 Eine Sprache ist eine Menge von Wörtern.

Beispiele:

```
01, 101001, \epsilon sind Wörter über dem Alphabet \{0,1\} \{0,1,101,1001\} \text{ und } \{\epsilon,0,1,00,01,10,11,000,001,\dots\} \text{ sind Sprachen über dem Alphabet } \{0,1\}.
```

Wie sieht eine formale, mathematisch korrekte Formalisierung dieser Begriffe aus?

Definition

- Eine Halbgruppe (H, \circ) besteht aus einer Menge H und einer assoziativen Verknüpfung $\circ: H \times H \to H$.
- ② Ein *Monoid* ist eine Halbgruppe mit einem neutralen Element.
- ③ Sei (M, \circ) ein Monoid und $E \subseteq M$. E ist ein Erzeugendensystem von (M, \circ) , falls jedes $m \in M$ als $m = e_1 \circ \cdots \circ e_n$ mit $e_i \in E$ dargestellt werden kann.

Ein neutrales Element e ist links- und rechtsneutral. Für jedes x gilt $e \circ x = x \circ e = x$.

Frage: Ist das neutrale Element in einem Monoid eindeutig?

Ja, denn $e_1 \circ e_2 = e_1$ und $e_1 \circ e_2 = e_2$.

Beispiele

- \bullet (**Z**, +) ist ein Monoid. $\{-1,1\}$ ein Erzeugendensystem.
- $(N_0, +)$ ist ein Monoid. {1} ein Erzeugendensystem.
- (\mathbf{Z}_8, \cdot) ist ein Monoid. $\{2,3,5\}$ ein Erzeugendensystem.

Frage:

Ist $\{-16, 17, 18\}$ ein Erzeugendensystem für $(\mathbf{Z}, +)$?

Ist $\{3, 5, 7\}$ ein Erzeugendensystem für $(\mathbf{Z_8}, \cdot)$?

Freie Erzeugendensysteme

Definition

Ein Erzeugendensystem E für ein Monoid (M, \circ) ist frei, falls jedes $m \in M$ auf nur eine Art als $m = e_1 \circ \cdots \circ e_n$ mit $e_i \in E$ dargestellt werden kann.

Falls E ein freies Erzeugendensystem für (M, \circ) ist, dann sagen wir, daß (M, \circ) das von E frei erzeugte Monoid ist.

Frage:

Ist das korrekt?

Beispiele

 $(\mathbf{Z},+)$ ist von $\{-1,1\}$ nicht frei erzeugt:

$$2 = 1 + 1 = 1 + 1 + (-1) + 1$$

•
$$0 = (-1) + 1 = 1 + (-1)$$

 $(\mathbf{N}_0,+)$ ist von $\{1\}$ frei erzeugt.

Frage: Wie kann das neutrale Element erzeugt werden?

Frage: $(\mathbf{N}_0, +)$ von $\{1\}$ frei erzeugt. Wie wird 0 erzeugt?

Isomorphismen zwischen Monoiden

Definition

Zwei Monoide (M_1, \bullet) und (M_2, \circ) sind isomorph, falls es eine Abbildung $h \colon M_1 \to M_2$ gibt mit

- h ist bijektiv.
- ② h ist ein Homomorphismus, d.h. $h(u \bullet v) = h(u) \circ h(v)$ für alle $u, v \in M_1$.

Wir nennen h einen Isomorphismus.

Theorem

Es sei Σ ein Alphabet. Dann ist das von Σ frei erzeugte Monoid bis auf Isomorphismus eindeutig.

Beweis.

 (M_1, \bullet) , (M_2, \circ) von Σ frei erzeugte Monoide.

$$h: M_1 \to M_2, \ u = u_1 \bullet \cdots \bullet u_n \mapsto u_1 \circ \cdots \circ u_n$$

 $g: M_2 \to M_1, \ v = v_1 \circ \cdots \circ v_m \mapsto v_1 \bullet \cdots \bullet v_m$

mit $w_1, \ldots, w_n \in \Sigma$. h(g(w)) = w, also h bijektiv.

$$h(u \bullet v) = h(u_1 \bullet \cdots \bullet u_n \bullet v_1 \bullet \cdots \bullet v_m) = u_1 \circ \cdots \circ u_n \circ v_1 \circ \cdots \circ v_m = h(u) \circ h(v),$$

also ist h ein Homomorphismus.

Definition

Es sei Σ ein Alphabet.

Dann ist (Σ^*, \cdot) das von Σ frei erzeugte Monoid.

Die Elemente von Σ^* nennen wir *Wörter* (über Σ).

Falls $L \subseteq \Sigma^*$, dann nennen wir L eine *Sprache* (über Σ).

Falls $u, v \in \Sigma^*$, dann schreiben wir auch uv statt $u \cdot v$.

Das neutrale Element von (Σ^*, \cdot) bezeichnen wir mit ϵ .

Theorem

Es seien Σ und Γ Alphabete. Jede Abbildung $\Sigma \to \Gamma^*$ läßt sich eindeutig auf einen Homomorphismus $\Sigma^* \to \Gamma^*$ erweitern.

Beweis.

Es sei $h: \Sigma^* \to \Gamma^*$ ein Homomorphismus. Dann ist $h(w) = h(w_1 \dots w_n)$ mit $w_1, \dots, w_n \in \Sigma = h(w_1) \dots h(w_n)$ weil h ein Homomorphismus ist.

Wenn wir einen Homomorphismus definieren wollen, genügt es, seine Wirkung auf Symbole zu beschreiben.

Reguläre Ausdrücke

Definition

Es sei Σ ein Alphabet.

- ∅ ist ein regulärer Ausdruck.
- \bullet ist ein regulärer Ausdruck.
- **3** a ist ein regulärer Ausdruck, falls $a \in \Sigma$.
- rs ist ein regulärer Ausdruck, falls r und s reguläre Ausdrücke sind.

Definition

Es seien $A, B \subseteq \Sigma^*$ und $w \in \Sigma^*$.

- $AB := \{ uv \mid u \in A \text{ und } v \in B \}$
- $wA := \{w\}A \text{ und } Aw := A\{w\}$

$$\bullet \ A^i := \begin{cases} \{\epsilon\} & \text{falls } i = 0 \\ A & \text{falls } i = 1 \\ AA^{i-1} & \text{falls } i > 1 \end{cases}$$

- $\bullet \ A^* := \bigcup_{n \geq 0} A^n$
- $A^+ := \bigcup_{n \ge 1} A^n$

Die Sprache eines regulären Ausdrucks

Definition

Wir ordnen jedem regulärer Ausdruck r seine $Sprache\ L(r)\ zu$:

$$2 L(\epsilon) = \{\epsilon\}$$

3
$$L(a) = \{a\}$$

$$L(rs) = L(r)L(s)$$

$$L(r+s) = L(r) \cup L(s)$$

$$L(r^*) = L(r)^*$$

Beispiele

- Der reguläre Ausdruck 0*(10*10*)* bezeichnet die Sprache aller Wörter über {0,1}, die eine gerade Anzahl von 1en enthalten.
- 1*0* sind die Wörter über {0,1} die nicht 01 als Unterwort enthalten.
- $(0+(11)^*+(10(1+(00)^*)^*01))^*(0+11+(10(1+00)^*01))^*$ sind die durch drei teilbaren Binärzahlen.

