Tutorial 5 Monday, 18 March 2024 (s+1)(s+2)(s+3) + k = 0 $^{\circ}$ $s^3 + 6s^2 + 11s + 6 + k = 0$ 5^{2} 6 6+k 6 6 8 8 8 60-k/6 0 8 8 8 60-k/6 0 8 8 6 (-6,60) b) $s^2 + 3s + 2 + ks - k = 0$ S^2 1 2-k 0.00 k+3 >0 ; 2-k >0 1 2-K

4:28 PM

 $^{\circ}_{\circ}$ $S^{4} + \frac{43s^{3}}{2} + \left(\frac{61}{2} + k\right)s^{2} + 10(1+k)s + 21k = 0$

 $\frac{S+1}{}$ => $S^2 + 5s + 6 + ks + k$

 s^2 1 6+k % k>-5//

 $% k \rightarrow \frac{-p^2-p}{(p-1)} % k \rightarrow 0$

e) $\frac{(s+2)}{s} = s^3 + (p+1)s^2 + ps + ks + 2k$

1 5 4+k $80 k \in \left(-4, \frac{9}{4}\right)$

 $\mathcal{E} = +$ $000 - (K+\mathcal{E}) > 0$, k > 0

% K+& < 0 % K < - E , K > O

« No such K exists

 $0.0 - 5^2 - 1 = 0$

:. 25

(s+2)(s+3)

1 6+K

S(S+1)(S+P)

f) $S^4 + 5s^2 + 4 + K$

4

4+K 0

2. & = Z-1

1 3k-1

(2-1) 2 (2+1)

Z - (K+E)/E O

8⁵ 1 16 15 $5^4 - 7 - 16 - 9$

1 -9 0 0

1 K

OLHP

ORHP 1

 s^5 1 2 9

 s^2 1 9 0 s -8 0 0

\$4 1 2 9

jR

OLHP jÆ

ORHP

5³ 32 0

 $5^2 - 24 2$

W) 2 ORHP, 2 OLHP

 $4.4s^2 + cs + (2-c) = 0$

b) Zeros => nonp, dodp

d) No, this will not be happening

6.a) $R_2 - \frac{j}{\omega c}$; $R_2 + \left(\frac{\omega^2 L C - 1}{\omega L}\right) j$

5 8/3 1 2

e) Yes

s2 10/4 4+K S 9-4k 0

10

b) $1 column{2}{c} column{2}{c$

 $z^2 \in k +$

3.1) $5^5 - 75^4 + 165^3 - 165^2 + 155 - 9$

 $g^{2} q_{6/7} q_{6/7} 0 1 1 0$

 $\frac{S^2 - 9 - 9 \ 0}{S \ 2 \ 0 \ 0} -1 -1 \ 0$

 $-s^2-1$ Other

 $s^4 + 2s^2 + 9$ Other

iii) $2s^3 - 24s + 32$ $32s^3 - 24s^2 + 2$

% 2-c > 0, -c < 0 % c > 0, c < 2 $c \in (0,2)$

 $e = G_{1}y$ $\frac{1}{G_{1}+C} = \frac{d_{c}dp}{n_{c}dp+n_{p}d_{c}}$ $0 G_{1}y = g_{1}-C_{2}y$

1 6₁ (¹₁ω)1 45°

2 ORHP , 1 OLHP

0

 $|i| s^{6} + s^{5} + 2s^{4} + 2s^{3} + 9s^{2} + 9s = s \left(s^{5} + s^{4} + 2s^{3} + 2s^{2} + 9s + 9\right)$

 $3.5^{4} + 25^{2} + 9$

% 453 + 45

 z^2 1 3k-1 ... k>0 , 3k-1>0

z k D $0 \times (\frac{1}{3}, \infty)$

 S^{2} $\frac{2583+46k}{86}$ $\frac{21k}{86}$ 0 % $k \in (0, 2.245) \cup (25.014, \infty)$ S * 0 0 = 1 21k 0 0

$$4:28 \text{ PM}$$
 $= 0$
 $6 + k = 0$

$$k = 0$$

$$60 - k > 6$$

$$k > -6$$

$$60-k > 0$$
 $6 > 6$
 $6 > 6$

$$60-k > 60 - k > 60$$

$$60-k > 0$$
 $60-k > 0$
 $60-k > 0$

$$(-6,60)$$
 $+3>0$
 $(-3,2)$

$$(-6,60)$$
 $+3>0;2$
 $(-3,2)$

*460 k^2 - 12539k + 25830 > 0

b)
$$s^{2} + 3s + 2 + ks - k = 0$$

 $s^{2} \quad 1 \quad 2-k \quad 0 \quad k+3 > 0 \quad 2-k > 0$
 $s \quad k+3 \quad 0 \quad k \in (-3,2)$
 $1 \quad 2-k$
c) $(s^{2} + \frac{s}{2})(s+1)(s+20) + k(s+3)(s+7) = 0$

c) $\frac{\text{knp}}{\text{dp+knp}}$, $\frac{\text{dp}}{\text{kdp+np}}$ \rightarrow Yes 9t will also happen here

8. a) $\frac{S+0.1}{S+0.05}$ => Lag compensator, Low pass filter, All-pass filter $\frac{1}{2} \left(\frac{1}{s - j\omega} - \frac{1}{s + j\omega} \right) = \frac{A}{s + j\omega} + \frac{B}{s - j\omega}$

Let the plant region have impedance = Z(s) Forward path =) $\frac{R_1Z}{1+R_1Z}$; Back path =) $\frac{Z}{1+R_1Z}$

e) $\frac{|G_1(j\omega)|}{(s+1)(s+2)(s+3)}$

 $\frac{1}{3} = \frac{20 \log(3)}{1} = \frac{1 \operatorname{G}(j\omega)}{3} = -90^{\circ} = 20 \operatorname{G}(j\omega)$

 \Rightarrow $|G(j\omega)| \cos(\omega t + T/2) = -|G(j\omega)| Sin \omega t$

 $30 \text{ y}(t) = 12(j\omega)1 \sin(\omega t + LZ(j\omega))$

b) $\frac{S+8}{S+20}$ => Lead compensator, High pass filter 9. Sin wt $\stackrel{L}{\longrightarrow}$ $\frac{\omega}{\omega^2 + s^2}$ $\frac{\omega}{(s+j\omega)(s-j\omega)}$. Given $\frac{\omega}{(s+j\omega)(s-j\omega)}$.

 $\Rightarrow A = -|\underline{G}(\underline{j}\underline{\omega})| = |\underline{G}(\underline{j}\underline{\omega})| \hat{j} = |\underline{G}(\underline{j}\underline{\omega})| e^{-\underline{j}\pi/2}$ $\Rightarrow B = |\underline{G}(\underline{j}\underline{\omega})| = -|\underline{G}(\underline{j}\underline{\omega})| \hat{j} = |\underline{G}(\underline{j}\underline{\omega})| e^{\underline{j}\pi/2}$ $\stackrel{?}{=} \frac{|\underline{G}(\underline{j}\underline{\omega})|}{2} \stackrel{?}{=} -|\underline{G}(\underline{j}\underline{\omega})| \hat{j} = |\underline{G}(\underline{j}\underline{\omega})| e^{\underline{j}\pi/2}$ $\stackrel{?}{=} \frac{|\underline{G}(\underline{j}\underline{\omega})|}{2} \stackrel{?}{=} -|\underline{G}(\underline{\omega}t + \pi/2)| + e^{\underline{j}(\underline{\omega}t + \pi/2)}$

10. $I(s) \Rightarrow \frac{\omega}{s^2 + \omega^2} Z(s)$