Basically anything we put on the board

1 Asumptions

$R_{\rm inflow} \ll R_{\rm outflow}$			
$p_{\text{chamber}} = p$			
$IOP < P_{chamber}$			
$\Delta_p = \text{Constant}$	osmotic pressure difference accross the mem-		
	brane		
$C_{p_2} \approx 2$	protein concentration in aqueous humor at mem-		
	brane output		
$\sigma_p = 1$	reflection coefficients for protein		
$C_1, C_2 < \varepsilon$	total molar concentration of low molecular com-		
	ponents in the blood (1) and in the intraocular		
	fluid (2) $<$ some ε		
$T_1 \ll T_2$	Diffusion time ≪ dwell time		
dV = dU	d total volume = d Volume of aqueous humor in		
	the chambers		
$dV_3 = 0$	average over rapid oscillation of blood in the		
	choroid		

2 model

$$\frac{\mathrm{d}V}{\mathrm{d}t} = L_p \left((p_a - p) - \sigma_p \Delta \Pi_p - \sigma_s \rho (C_1 - C_2) \right) - \frac{p - p_e}{R}$$

$$f(v, p) = 0$$

$$V^* \frac{\mathrm{d}C_2}{\mathrm{d}t} = -\xi_s (C_2 - C_1) + J + (1 - \sigma_s) L_p \left((p_a - p) - \sigma_p \Delta \Pi_p - \sigma_s \rho (C_1 - C_2) \right) \frac{C_1 + C_2}{2}$$

Resolution? (stationary state?)

$$p\left(L_{p} + \frac{1}{R}\right) = L_{p}\left(pa - \sigma_{p}\Delta\Pi_{p} - \sigma_{s}\rho C_{1}\right) + \frac{p_{e}}{R} + \sigma_{s}\rho C_{2}$$

$$p = \alpha_{1} + \alpha_{2}C_{2}$$

$$\alpha_{1} = \frac{1}{L_{p} + \frac{1}{R}}\left(L_{p}\left(p_{a} - \sigma_{p}\Delta\Pi_{p} - \sigma_{s}\rho C_{1}\right) + \frac{p_{e}}{R}\right)$$

$$\alpha_{2} = \frac{\sigma_{s}\rho}{L_{p} + \frac{1}{R}}$$

$$\Delta\Pi_{s} = \rho(C_{1} - C_{2})$$

then

$$C_1 = \frac{\Delta \Pi_s}{\rho} + C_2$$

Resolution: non stationary state?

$$V = V_0 + \alpha(p - \beta) - \beta P$$
$$\frac{dV}{dt} = \alpha \frac{dp}{dt}$$

But we're gonna go with ODE system

$$\alpha \frac{\mathrm{d}p}{\mathrm{d}t} = f(p, C_2)$$

with

$$V^* \frac{\mathrm{d}C_2}{\mathrm{d}t} = g(p, C_2)$$

3 values

L_p	$0.3mm^{3}$	p_a	30-35 mmHg (Healthy)
σ_p	1	$\Delta\Pi_p$	25 mmHg
σ_s	0.02-0.2	$\sigma_s = \sigma_s(R)$	≈ 0.032
p = p(R)		$F_h = F_h(R)$	
C_1	??	$\mid p_e \mid$	4-8 mmHg
??	$2.5-5$ mmHg min / mm 3	$\mid \rho \mid$	gaz constant \times absolute temperature
J	0.04 - $0.18~\mu$ mol/min	ξ	?

4 Goal

- 1. Paper values $\rightarrow p$
- 2. R, L_p, σ_s
- 3. as 2/ for $p_a = 20 \dots 40$
- 4. R = R(p)
- 5. V_3 choroid
- 6. connect with retina