Skriftlig eksamen på Økonomistudiet Vinteren 2016 - 2017

MATEMATIK B

Onsdag den 8. februar 2017

3 timers skriftlig prøve med hjælpemidler. Alle sædvanlige hjælpemidler må benyttes, dog ikke lommeregnere eller cas-værktøjer.

Dette sæt omfatter 3 sider med 4 opgaver ud over denne forside

OBS: Bliver du syg under selve eksamen på Peter Bangs Vej, skal du kontakte eksamenstilsynet og blive registeret som syg af vedkommende eksamensvagt. Derefter afleverer du en blank besvarelse i systemet og forlader eksamen. Når du kommer hjem, skal du kontakte din læge og indsende en lægeerklæring til Det Samfundsvidenskabelige Fakultet senest en uge efter eksamensdagen.

Københavns Universitet. Økonomisk Institut

1. årsprøve 2017 V-1B rx

Skriftlig eksamen i Matematik B

Onsdag den 8. februar 2017

3 sider med 4 opgaver.

Løsningstid: 3 timer.

Alle sædvanlige hjælpemidler må benyttes, dog ikke lommeregnere eller casværktøjer.

Opgave 1. For ethvert tal $s \in \mathbf{R}$ betragter vi 3×3 matricen

$$A(s) = \left(\begin{array}{ccc} 1 & s & 1 \\ s & 2 & 1 \\ 1 & 1 & 0 \end{array}\right).$$

- (1) Udregn determinanten for matricen A(s), og bestem de $s \in \mathbf{R}$, for hvilke A(s) er regulær.
- (2) Vis, at matricen A(s) er indefinit for ethvert $s \in \mathbf{R}$.
- (3) Udregn matricen $(A(s))^2 = A(s)A(s)$.

Vi betragter en symmetrisk $n \times n$ matrix, M, som vi antager har egenværdien λ med egenvektoren $v \neq \underline{0}$.

- (4) Vis, at matricen $M^2=MM$ har egenværdien λ^2 med egenvektoren $v\neq 0.$
- (5) Godtgør, at matricen $B(0) = A(0)A(0) = (A(0))^2$ er positiv definit.

Opgave 2. Vi betragter mængden

$$D = \{(x,y) \in \mathbf{R}^2 \mid x > 0 \, \land \, y > 0\}$$

og den funktion $f: D \to \mathbf{R}$, som er givet ved forskriften

$$\forall (x,y) \in D : f(x,y) = \frac{x^4}{x^2 + y^2}.$$

- (1) Vis, at funktionen f er homogen, og angiv homogenitetsgraden.
- (2) Løs ligningen f(x,y) = 1.
- (3) Bestem de partielle afledede

$$\frac{\partial f}{\partial x}(x,y)$$
 og $\frac{\partial f}{\partial y}(x,y)$

af første orden for funktionen f i et vilkårligt punkt $(x, y) \in D$.

- (4) Bestem eventuelle stationære punkter for funktionen f.
- (5) Bestem værdimængden for funktionen f.

Vi betragter den funktion $g: D \to \mathbf{R}$, som er defineret ved udsagnet

$$\forall (x,y) \in D : g(x,y) = f\left(\frac{1}{x}, \frac{1}{y}\right).$$

(6) Bestem en forskrift for funktionen g, og vis, at g er homogen, og angiv homogenitetsgraden.

Opgave 3. Vi betragter differentialligningen

$$\frac{dx}{dt} + (6t^2 + 12t^3)x = 6t^2e^{-3t^4}.$$

- (1) Bestem den fuldstændige løsning til differentialligningen (*).
- (2) Bestem den specielle løsning $\tilde{x} = \tilde{x}(t)$ til (*), så betingelsen $\tilde{x}(0) = 2$ er opfyldt.
- (3) Bestem differentialkvotienten

$$\frac{d\tilde{x}}{dt}(1),$$

og begrund, at der findes et ikke-tomt, åbent interval U, hvor $1 \in U$, så løsningen $\tilde{x} = \tilde{x}(t)$ er aftagende på dette interval.

Opgave 4. Vi betragter mængden

$$D = \{(x, y) \in \mathbf{R}^2 \mid x > 0\}$$

og den funktion $f: D \to \mathbf{R}$, som er givet ved forskriften

$$\forall (x,y) \in D : f(x,y) = 5x - y^2 + \frac{11}{8} \ln x - x^2 + y.$$

(1) Bestem de partielle afledede

$$\frac{\partial f}{\partial x}(x,y)$$
 og $\frac{\partial f}{\partial y}(x,y)$

af første orden for funktionen f i et vilkårligt punkt $(x, y) \in D$.

- (2) Bestem eventuelle stationære punkter for funktionen f.
- (3) Bestem Hessematricen f''(x,y) for funktionen f i et vilkårligt punkt $(x,y) \in D$, og vis, at f er strengt konkav overalt på D.
- (4) Bestem værdimængden for funktionen f.
- (5) Godtgør, at mængden

$$S = \{(x, y, z) \in \mathbf{R}^3 \mid (x, y) \in D \land -100 \le z \le f(x, y)\}$$

er konveks.