,	1.	Ame	thou for constitucting a first image and a second image of an offinivergent
2	sterec	image	e pair, comprising:
3		rotatir	ng a deflector about a rotation axis, the deflector positioned a distance from
4	the ro	tation a	axis and having plural deflection regions;
5		position	oning a receptor proximate to the rotation axis, the receptor comprising a
6	first po	ortion o	of sensors and a second portion of sensors;
7		deflec	cting a first input received at a first deflection region of the deflector to the
8	first p	ortion o	of sensors;
9		deflec	cting a second input received at a second deflection region of the deflector
O	to a s	econd	portion of sensors;
		deter	mining the first image based at least in part on the first input;
2		deter	mining the second image based at least in part on the second input; and
3		deter	mining a first omnivergent stereo pair based at least in part on the first
POTI	image	e and tl	he second image.
# 5 -			
1 6		2.	The method of claim 1, further comprising:
17		where	ein both the first image and the second image are omnivergent images.
18			
19		3.	The method of claim 1, further comprising:
20		selec	ting a view point; and
21		rende	ering a three dimensional imaged based at least in part on the view point
22	and th	he first	omnivergent stereo pair.

23

ı	4.	The method of claim 1, wherein the distance is fixed.		
2				
3	5.	The method of claim 1, further comprising:		
4	perfor	ming the method at a first location to determine the first omnivergent stered		
5.	pair;			
6	perfor	ming the method at a second location to determine a second omnivergent		
7	stereo pair;	and		
8	synthesizing an environment model based at least in part on the first omnivergen			
9	stereo pair a	nd the second omnivergent stereo pair.		
10				
14	6.	The method of claim 5, wherein the first location is proximate to the		
	second locat	ion.		
14	7.	The method of claim 5, wherein a first region defined by rotating the		
14 15 15	deflector about the axis at the first location abuts a second region defined by rotating			
16 	the deflector about the axis at the second location.			
17				
18	8.	The method of claim 1, further comprising:		
19	receiv	ing a configuration input; and		
20	setting	g the distance with respect to the configuration input.		
21				
22	9.	The method of claim 8, wherein the configuration input corresponds to a		
23	desired size	for a region in which a viewpoint may be selected.		

	1	
	2	
	3	
	4	
	5	
	6	
	7	
	8	
	9	
# # 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0 1 4 1 2 1 3	
	410500	
ź	2	

2	10.	The method of claim 9, further comprising:
3	receivi	ng a viewpoint selection; and

rendering a three dimensional image based on the viewpoint selection and the first and the second image.

11. A method for constructing an omnivergent stereo image pair, comprising:

defining a cylindrical region having an axis of rotation perpendicular to a rotation

plane, the cylindrical region defined with respect to an array of sensors disposed

parallel to the axis of rotation, and a prism disposed parallel to the vertical array; and

determining an environment about the cylindrical region by rotating the cylindrical

region through rotational positions, and while rotating:

receiving a first input at a first face of the prism for a rotational position of the cylindrical region, the first input having a first travel path tangential to the cylindrical region and corresponding to a first portion of the environment, and

receiving a second input at a second face of the prism for the rotational position of the cylindrical region, the second input having a second travel path tangential to the cylindrical region and corresponding to a second portion of the environment.

19

20

21

22

23

17

18

↑ 10. The method of claim 9, further comprising:

storing the first input and the second input for each of plural rotational positions of the cylindrical region;

selecting a view point within the cylindrical region; and

J	
6	
7	
8	
9	
14 15 16 17	
18	

19

20

21

22

constructing a convergent stereo image of the environment with respect to the
selected view point and the stored first and second inputs for the plural rotational
positions of the cylindrical region.

12

1

2

3

4

5

11. The method of claim 9, wherein the first travel path is opposite of the second travel path.

IN

12. The method of claim 9, wherein the first and second travel paths are parallel to the rotation plane.

ľγ

13. An article of manufacture, comprising:

a machine accessible medium having associated data, which when accessed by the machine, results in the machine performing:

rotating a deflector rotably mounted a distance from a rotation axis, the deflector having plural deflection regions for deflecting inputs to a receptor positioned proximate to the rotation axis, the receptor comprising a first portion of sensors and a second portion of sensors;

determining the first image based at least in part on a first input received at a first deflection region of the deflector that is deflected towards the receptor;

determining the second image based at least in part on a second input received at a second deflection region of the deflector that is deflected towards the receptor;

1	determining a first omnivergent stereo pair based at least in part on the		
2	first image and the second image.		
3			
4	14. The apparatus of claim 13, wherein both the first image and the second		
5	image are omnivergent images.		
6			
7	15. The apparatus of claim 13, QQQ:		
8	selecting a view point; and		
9	rendering a three dimensional imaged based at least in part on the view point		
10	and the first omvivergent stereo pair.		
13 15	(A		
10 11 11 11 11 11 11 11 11 11 11 11 11 1	16. The apparatus of claim 13, wherein the distance is fixed.		
13	La		
	17. The apparatus of claim 13, QQQ		
	performing the method at a first location to determine the first omnivergent stereo		
16	pair;		
17	performing the method at a second location to determine a second omnivergent		
18	stereo pair; and		
19	synthesizing an environment model based at least in part on the first omnivergen		
20	stereo pair and the second omnivergent stereo pair.		
21	ı, ^O		
22	18. The apparatus of claim 17, wherein the first location is proximate to the		

second location.

23

1	
2	
3	
4	
5	
6	
7	
8	
9	
4 15 1	
16	

<u>}</u>∔ 17

18

19

20

21

19.	The apparatus of claim 17, wherein a first region defined by rotating the
deflector abo	out the axis at the first location abuts a second region defined by rotating
the deflector	about the axis at the second location.

20. The apparatus of claim 13, QQQ: receiving a configuration input; and

setting the distance with respect to the configuration input.

21. The apparatus of claim 20, wherein the configuration input corresponds to a desired size for a region in which a viewpoint may be selected.

τ h

22. The apparatus of claim 21, QQQ:
receiving a viewpoint selection; and

rendering a three dimensional image based on the viewpoint selection and the first and the second image.

ηń

23. An apparatus comprising a machine accessible medium having instructions associated therewith for constructing a first image and a second image of a convergent stereo image pair, the instructions capable of directing a machine to perform:

1	defining a cylindrical region having an axis of rotation perpendicular to a rotation
2	plane, the cylindrical region defined with respect to an array of sensors disposed
3	parallel to the axis of rotation, and a prism disposed parallel to the vertical array;
4	determining an environment about the cylindrical region by rotating the cylindrical
5,	region through rotational positions, and while rotating:
6	receiving a first input at a first face of the prism for a rotational position of
7	the cylindrical region, the first input having a first travel path tangential to the cylindrical
8	region and corresponding to a first portion of the environment, and
9	receiving a second input at a second face of the prism for the rotational
D	position of the cylindrical region, the second input having a second travel path tangential
	to the cylindrical region and corresponding to a second portion of the environment.
	1.6 24. The apparatus of claim 23, the instructions comprising further instructions
4	capable of directing a machine to perform:
5	storing the first input and the second input for each of plural rotational positions
7	of the cylindrical region;
17	selecting a view point within the cylindrical region; and
18	constructing a convergent stereo image of the environment with respect to the
19	selected view point and the stored first and second inputs for the plural rotational
20	positions of the cylindrical region.
21	₂ , \(\)

22

23

^v 25. The method of claim 23, wherein the first travel path is opposite of the second travel path.

1	
2	26. $^{\imath \claim}$ The method of claim 23, wherein the first and second travel paths are
3	parallel to the rotation plane.
4	
5	27. An apparatus for acquiring input for a first image and a second image of a
6	convergent stereo image pair, comprising:
7	a deflector rotably mounted a distance from a rotation axis, the deflector having
8	plural deflection regions;
9	a receptor positioned proximate to the rotation axis, the receptor comprising a
1 0	first portion of sensors and a second portion of sensors;
13	a first memory for storing a first input received at a first deflection region of the
12	deflector and deflected towards the first portion of sensors; and
	a second memory for storing a second input received at a second deflection
4-0500	region and deflected towards the second portion of sensors;
,ū	3 U
16 	28. The apparatus of claim 27, further comprising:
17	an image constructor which determines the first image based at least in part on
18	the first input, and the second image based at least in part on the second input.
19	71
20	29. The apparatus of claim 28, further comprising:

a renderer for rendering a three dimensional imaged based at least in part on the selected view point, the first image, and the second image.

an interface for receiving a selected view point; and

21

- 30. ^{7*} The apparatus of claim 27, wherein the deflector rotates about the rotation axis, and while rotating, subsequent first and second inputs are received, deflected, and stored in the first memory and the second memory.
 - 31. The apparatus of claim 27, further comprising: an interface for receiving a configuration input; and setting the distance with respect to the configuration input.
- 32. The apparatus of claim 31, wherein the configuration input corresponds to a selected one of a desired depth of field for the convergent stereo image, and a desired size for a region in which a viewpoint may be selected.