第二章作业答案

作业答案

一无限长均匀带电的圆柱面,半径为 R,面电荷密度为

σ·假设沿轴线将其切开,求其中一半圆柱面单位长度 所受的力。 由州第 由州籍的半径分别为 ρ

2.3) 有 4 个导体板,如图所示,每个板带电量分别为 + 5 C、 +1 C、+1 C 和 + 2 C,近似认为板为无限大,则 8 个面 的电荷分别为多少?用一根导线把中间两个板接通,则 6 个面(A、B、C、F、G 和 H)的电量分别为多少?

25 种 对于阿内沃森 取 契揭阿示西州10年 68 + 6c = 0	-A
19 34 60+ 6E =0	
6r7 6a=0	
极内的电场强度为0 有	
6A-66-6-66-66-69-6A-66-0	
01=16A160)S=15C	
Q== (6c1 60) S=+1 C	
03= (6R+6p) S=+ C	
0+=(66+ 64) S =-2C	

联立解得:	OA = +4:TC	OE = -1.5°C
\rightarrow	QB= +atc	OF=+25C
	Qc = -0.5C	06= -250
	G0 = +1.5C	On = 1450
(2) 接近年代后	Go = QE =0	
联立(1)中的	5 4 i	
联交(1)中的 (Qa=14.5c		
联交的中的 (QA=14.5C	5#1 B∈=0 Of=+>50	

2.5 两根平行的输电线半径均为 a 和 b,它们之间的距离为 d,假设 $d\gg a$, $d\gg b$,求单位长度的电容值。

			B#-a		r	4
	Cd I	(産あ E=	27.5. (r + a-1	E) b	•	a
∫ Ē·dī =	u - v	IREO (F	- + d-r) dr			
Í) W					
7 (0	-b (1 a	1,	A (d-a)	(d-b) A	, d²	
2/L E0) 0		d-r) dr =	en at	> ≈ 2/CE	Inab	
	Fide =	$\int \vec{E} \cdot d\vec{l} = \int_{a}^{d+b} -\frac{1}{2\pi\epsilon_{0}} \int_{a}^{d+b} \left(-\frac{1}{r} + \frac{1}{r} + \frac{1}{r} + \frac{1}{r} \right)$	$\int \vec{E} \cdot d\vec{l} = \int_{a}^{d-b} \frac{\lambda}{2\pi \epsilon_{o}} (\frac{1}{r}) dr =$	$\int \vec{E} \cdot d\vec{l} = \int_{a}^{d-b} \frac{\lambda}{2\pi \epsilon_{o}} (\vec{r} \cdot \vec{d} + \vec{d} +) dr$ $\frac{\lambda}{2\pi \epsilon_{o}} \int_{a}^{d-b} (\vec{r} \cdot \vec{d} + \vec{d} +) dr = \frac{\lambda}{2\pi \epsilon_{o}} \ln \frac{(d-a)}{al}$	$ \frac{\lambda}{2\pi\epsilon_0} \int_{a}^{d-b} \left(\frac{1}{\Gamma} + \frac{1}{d-\Gamma} \right) d\Gamma = \frac{\lambda}{2\pi\epsilon_0} \int_{a}^{d-a} \left(\frac{(d-a)(d-b)}{ab} \right) \approx \frac{\lambda}{2\pi\epsilon_0} $	C . Cd-b

- 2.7 假设电容器电容为 C, 充电前两个极板均带有正电量 Q, 然后将其与电源电压为 U 的电池组连接充电,则最后两个极板上的电量是否等量异号?请用 Q, C 和 U 表示充电后极板的电量。
- 2.7. 解: 无电后两极极内表面电荷量 Qm = ±CU 极极外表面电荷转移至电源而不带电荷 最终两极极上的电量等量异号, 电量为 CU.

(2.8) 一个球形电容器由三个很薄的同心导体壳组成,它们的 半径分别为 a,b,d。一根绝缘细导线通过中间壳层的 一个小孔把内外球壳连接起来。忽略小孔的边缘效应。 (1) 求此系统的电容;(2) 若在中间球壳上放置任意电量 Q,确定中间球壳内外表面上的电荷分布。

2.9 两块长与宽均为 a 和 b 的导体平板在制成平行板电容器时稍有偏斜,使两板间距一端为 d,另一端为 d+h,且 $h \ll d$,求该电容器的电容。

$$2.9.$$
 解: 将两极极划分为无数长为 a , 宽为 dx 陷猢微长条.
$$E = \frac{\sigma}{\varepsilon_0} = \frac{dQ}{\varepsilon_0 a dx}$$

$$U = Ed = \frac{dQ}{\varepsilon_0 a dx} \cdot (d + x \frac{h}{b})$$

$$dC = \frac{dQ}{U} = \frac{\varepsilon_0 a dx}{d + x \cdot b}$$

$$C = \int_0^b dC = \int_0^b \frac{\varepsilon_0 a dx}{d + x \cdot b} = \frac{\varepsilon_0 a b}{h} \ln(\frac{h + d}{d})$$

2. 16 水分子是有极分子,一个水分子的电偶极矩为 0.61 × 10⁻³⁰ C·m,若所有的水分子电矩都朝同一方向。(1) 试估算水的极化强度;(2) 直径为 1 mm 的水滴的电偶 极矩有多大? 距水 10 cm 处的电场强度有多大?

(1)
$$D = S_1 E_1 = C_1 E_2$$
, $E_1 = S_{y_1} C_2$, $E_2 = S_{y_2} C_2$
 $D = G = 7$ $E_1 = \frac{G}{L_1}$ $E_2 = \frac{G}{L_2}$
 $P_1 = D - S_2 \cdot E_1 = \frac{1}{2} \cdot G$ $P_2 = D - S_2 \cdot E_2 = \frac{1}{3} \cdot G$
(2) $0 < C_1 < C_2 \cdot C_3$, $U(L) = \frac{G}{2L_2} \cdot C_2 \cdot C_4$ (1-0.01)
(3)
$$\frac{S_1 - \frac{G}{2L_2} \cdot G_2}{E_1 - \frac{G}{2L_2} \cdot G_3} \cdot G_4 = \frac{1}{3} \cdot G$$

$$\frac{S_1 - \frac{G}{2L_2} \cdot G_4}{E_1 - \frac{G}{2L_2} \cdot G_4} \cdot G_4 = \frac{1}{3} \cdot G$$

$$\frac{S_2 - \frac{G}{2} \cdot G_4}{G_2 - \frac{G}{2} \cdot G_5} \cdot G_4 = \frac{1}{3} \cdot G$$

$$\frac{S_2 - \frac{G}{2} \cdot G_5}{G_2 - \frac{1}{3} \cdot G_5} \cdot G_5 = \frac{1}{3} \cdot G$$

$$\frac{S_2 - \frac{G}{2} \cdot G_5}{G_2 - \frac{1}{3} \cdot G_5} \cdot G_5 = \frac{1}{3} \cdot G$$

17 一个半径为 a 的导体球面套有一层厚度为 b-a 的均匀电介质,电介质的介电常数为 ϵ ,求空间的电势分布。

$$U = U_a \frac{q}{4\pi \epsilon_{0b}} + \frac{q}{4\pi \epsilon} \left(\frac{1}{a} - \frac{1}{b} \right)$$

2.19 赫兹型喷墨打印机是利用喷流束上施加强电场时产生的静电雾化现象而制成的。喷射的角度随电压的变化而变化。如图所示,假设墨滴的半径为 $r=25~\mu$ m,电量为 $q=10^{-13}$ C,从喷嘴飞出的初速度为 $u_0=10~\mathrm{m}\cdot\mathrm{s}^{-1}$,加速电压为 $U=2~\mathrm{kV}$,极板的间距为 $d=5~\mathrm{mm}$,长 $L=1~\mathrm{cm}$,求墨滴飞行距离L后的偏离y和偏向角 θ 。

2.20 球形电容器由半径为 R₁的导体和与它同心的导体球

壳构成,壳的内半径为 R_2 ,其间有两层均匀介质,分界面的半径为 a,相对介电常量分别为 ε_1 和 ε_2 。(1)求电容 C;(2) 当内球带电荷 -Q 时,求介质表面上极化电荷的面密度 σ' 。

(1)
$$E_1 = \frac{Q}{4\pi \epsilon \cdot \epsilon_1}$$
 $V_1 = \frac{Q}{4\pi \epsilon \cdot \epsilon_1}$
 $V_2 = \frac{Q}{4\pi \epsilon \cdot \epsilon_2}$
 $V_3 = \frac{Q}{4\pi \epsilon \cdot \epsilon_1}$
 $V_4 = \frac{Q}{4\pi \epsilon \cdot \epsilon_2}$
 $V_5 = \frac{Q}{4\pi \epsilon \cdot \epsilon_2}$
 $V_6 = \frac{Q}{V_6}$
 $V_7 = \frac{Q}{V_6}$
 $V_7 = \frac{Q}{V_6}$
 $V_8 = \frac{Q}{V_7 = \frac{Q}{V_7}}$
 $V_8 = \frac{Q}{V_7 = \frac{$

这道题很多同学写错了方向,务必要明白极化电荷何时取正何时取负 (作业上并未扣分,请同学们自行核查)

2.21 如图所示,在内外半径为 a,b 的球形电容器的两个极 板之间的区域中,一半充满绝对介电常量为 ε,、另一半充满绝对介电常量为 ε, 为 θ 板自由电荷带电量分别为+Q和-Q,求;(1) 两种介质中的电场强度;(2) 系统的电容。

习题 2.21 图

2.21. 解: (1) 两种介质中的电压相因, 两电场强度相风. 由高斯芒理:
$$\epsilon_1 \, E \cdot 2\pi \Gamma^2 + \epsilon_2 \cdot E \cdot 2\pi \Gamma^2 = Q$$

$$E = \frac{Q}{2\pi (\epsilon_1 + \epsilon_2) \Gamma^2}$$
(2) $U = \int_{a}^{b} E \cdot dr = \frac{Q}{2\pi (\epsilon_1 + \epsilon_2) ab}$

$$C = \frac{Q}{b} = \frac{2\pi (\epsilon_1 + \epsilon_2) ab}{b-a}$$

2.22 如图所示,一导体球外充满两半无限电介质,介电常量分别为ε1 和ε2,介质界面为通过球心的无限平面。设导体球半径为 R,总电荷为 q,求空间电场分布和导体球表面的自由面电荷分布。

习题 2.22 图

2.22. 解:	由于	站体	南等	勢体	由	高斯	室理			
		274°+								
		9		, ,,,,						
	ΕΞ	2 / Cr*(8	ıτει							
	6ı =	D ₁ =	٤,	È						
	62 =	D ₂ =	٤,	Ę.						
		81								
			45	ri ta	er *	**	由右	0 -	ε	
		\$ €,						V1 -	274	क्षा
	另一.	*姚「	市中	荷(), = :	E27	te.			

23 半径为 R 的金属球,外面包有一层相对介电常数为 ε_r = 2 的均匀电解质材料,内外半径分别为 $R_1 = R$, R_2 = 2R,介质球内均匀分布着电量为 q_0 的自由电荷,金属球接地,求介质外表面的电势。

2.23.	· 设金属谜带电荷为Q
	球体分的电场分布为: E= Q19
	计算得介电球体外表面电势为 φ= Q+9 875R
	对于介电域内由高斯宣理: D 4tt = Q+ $\frac{\Gamma^2 R^2}{7R^3}$ 9 $E = \frac{D}{6.6}$
	由全层域分表面电势为0 计等得 φ=-f [#] E dF = Q19
	=> Q = - 1/4 q
	$\Phi \varphi = \frac{59}{168768}$

2.26 一同心球形电容器由两个同心薄球壳构成,外球壳半径为5 cm,内球壳半径可以任意选择,两球壳之间充满各向同性的均匀介质,电介质的击穿强度为2.0×10⁷V·m⁻¹,求该电容器所能承受的最大电压。

2.26. 起:	由高斯定理、介质中的电场强度
	E = Q 4ner ²
	$U = \int_{R_1} \frac{Q}{4\pi \epsilon r^2} dr$
	= Q (R - R) Q = E·r' E最大值在R处取住、Emax·Ri= Q 4元E
	$\Rightarrow U = E \cdot R^2 \left(\frac{1}{R^2} - \frac{1}{R^2} \right) = -\frac{E}{R^2} R^2 + ER$
	\$ R1= \(\frac{R_2}{2}\) Bt. Umax= \(\frac{1}{4}\) Emax \(R_2=2\) \(\frac{1}{2}\) \(\frac{1}{2}\)

2.28 真空中电荷 q 均匀分布在半径为 a 的球内,假设球的相对介电常数为 ϵ_r ,求电场的储能。

$$E = \begin{cases} \frac{4}{4\pi \varepsilon I^{2}} & (Y > A) \\ \frac{4}{4\pi \varepsilon \varepsilon \varepsilon r} & (Y < A) \end{cases}$$

$$D = \begin{cases} \frac{4}{4\pi r^{2}} & (Y > A) \\ \frac{4}{4\pi a^{2}} & (Y > A) \end{cases}$$

$$W = \frac{1}{2} \int_{0}^{\infty} \frac{1}{e^{2}} = \frac{1}{2} \int_{0}^{\infty} \frac{1}{e^{2}} \frac{1}{e^{2}} V + \frac{1}{2} \int_{0}^{\infty} \frac{1}{e^{2}} \frac{1}{e^{2}} V = \frac{1}{2} \int_{0}^{\infty} \frac{1}{e^{2}} \frac{1}{e^{2}} V + \frac{1}{2} \int_{0}^{\infty} \frac{1}{e^{2}} \frac{1}{e^{2}} V = \frac{1}{2} \int_{0}^{\infty} \frac{1}{e^{2}} \frac{1}{e^{2}} V + \frac{1}{2} \int_{0}^{\infty} \frac{1}{e^{2}} \frac{1}{e^{2}} V = \frac{1}{2} \int_{0}^{\infty} \frac{1}{e^{2}} V = \frac{1}{2} \int_{0$$

2.31 半径为 R 的一个雨滴(假设雨滴为导体),带有电量 Q,今将它打破成两个完全相同的雨滴,并分开到很远,静电能改变多少?如果分成 n 个完全相同的小雨滴,最终分散到无限远处,则静电能又改变了 多少?

2.31
$$W_{1} = \frac{Q^{2}}{9\pi ER} \qquad nfell \qquad Y = \frac{R}{\sqrt{n}}$$

$$W_{1} = \frac{1}{2} I q_{1}(U_{1} = \frac{1}{2} \cdot \frac{Q}{n} \cdot \frac{Q}{\sqrt{n}} \cdot \frac{1}{r} = \frac{Q^{2} \cdot \sqrt{n}}{9\pi E}$$

$$\Delta W = \left(\frac{\sqrt{n}}{n} - 1\right) \frac{Q^{2}}{9\pi E}$$

$$\left(\sqrt{2} \frac{1}{2} \frac{1}{4} \frac{1}{2} \frac{1}{4} \frac{1}{2} \frac{1}{4} \frac{1}{4} \frac{1}{2} \frac{1}{4} \frac{1}{4}$$

2.36 已知在内半径为 R₁、外半径为 R₂的接地金属球壳内部充满着均匀空间电荷密度 ρ₀ 求;(1) 系统的静电能;(2) 球心处的电势

2.38 一个半径为 a 的带电球,其体电荷密度在球内随离球心距离 r 的变化关系为 $\rho = Ar^{1/2}$,式中 A 为常数。求: (1) 球内和球外各处的电场;(2) 球内和球外各处的电势;(3) 该球的自能。

	E. 47.1" = 2		0-A	_
	Σ9 = ∫,	47CF dr 3	<u>8⊼A</u> . 7	r≨
	E,= 2A			
	在 r>a		F TO	
	E. 474" = 3		0=0=5	
	Σ9= 50	0.4π r `dr =	7	
	E= 1 Aa 7 80	<u>r</u> ²		
				74.J
(2)	在 r>a 时			
	在 oerealt	. U= ∫r [∞]		
				2A a -
(3)	W≈±∭vUūŕ	·p(F)·dV		
	$=\frac{1}{2}\int_{0}^{\Omega}\left(\frac{2A}{3E_{0}}\right)$	a = - 4A r2	J. Ar 5. 4	tr'dr
	= 4742 26			

(4) FR U = 2A a		承	U2=	2A 780
$Q = \frac{8xAa^{\frac{1}{2}}}{7}$			Q=	8xAa
c= 0 =	20x 80Q		C' =	47.E

谢谢!

