

planetmath.org

Math for the people, by the people.

Cochran's theorem

Canonical name CochransTheorem
Date of creation 2013-03-22 14:33:01
Last modified on 2013-03-22 14:33:01

Owner CWoo (3771) Last modified by CWoo (3771)

Numerical id 8

Author CWoo (3771)
Entry type Theorem
Classification msc 62J10
Classification msc 62H10
Classification msc 62E10

Defines Fisher's theorem

Let X be multivariate normally distributed as $N_p(0,I)$ such that

$$\mathbf{X}^{\mathrm{T}}\mathbf{X} = \sum_{i=1}^{k} Q_i,$$

where each

- 1. Q_i is a quadratic form
- 2. $Q_i = \mathbf{X}^{\mathrm{T}} \mathbf{B}_i \mathbf{X}$, where \mathbf{B}_i is a p by p square matrix
- 3. \mathbf{B}_i is positive semidefinite
- 4. $\operatorname{rank}(\mathbf{B}_i) = r_i$

Then any two of the following imply the third:

- 1. $\sum_{i=1}^{k} r_i = p$
- 2. each Q_i has a http://planetmath.org/ChiSquaredRandomVariablechi square distribution with r_i of freedom, $\chi^2(r_i)$
- 3. Q_i 's are mutually independent

As an example, suppose ${X_1}^2 \sim \chi^2(m_1)$ and ${X_2}^2 \sim \chi^2(m_2)$. Furthermore, assume ${X_1}^2 \geq {X_2}^2$ and $m_1 > m_2$, then

$$X_1^2 - X_2^2 \sim \chi^2(m_1 - m_2).$$

This corollary is known as Fisher's theorem.