Autómatas y Lenguajes formales Ejercicio Semanal 7

Sandra del Mar Soto Corderi Edgar Quiroz Castañeda

21 de marzo del 2019

- 1. Para cada ANFD, resuelve los siguientes incisos.
 - (a) Construye un autómata mínimo equivalente, mostrando paso a paso el proceso de construcción.
 - (b) Da una expresión regular α correspondiente al lenguaje aceptado por el autómata usando el método de ecuaciones características.

1. Autómata 1

Figure 1: El autómata M

2. Autómata 2

Figure 2: El autómata A

(a) Autómata mínimo

Comencemos con la partición inducida por $[\equiv_0] = \{A = F, B = Q \setminus F\}$. Evaluando δ para obtener las clases de \equiv_1

A	q_2	q_4	
a	B	B	
b	B	B	

B	q_0	q_1	q_3	q_5	q_6
a	B	B	A	B	B
b	B	A	B	B	B

A no cambia, y de B se refinan tres nuevas clases.

Por lo que $[\equiv_1] = \{A, C = \{q_0, q_5, q_6\}, D = \{q_1\}, E = \{q_3\}\}.$

Cómo D y E son unitarios, sólo hay que evaluar δ en los elementos de C para obtener las clases de \equiv_2 .

C	q_0	q_5	q_6
a	D	C	C
b	E	C	C

Entonces $[\equiv_1] = \{A, D, E, G = \{q_0\}, H = \{q_5, q_6\}\}$. Evaluando δ sobre H para obtener las clases de \equiv_3

H	q_5	q_6
a	H	H
b	Н	H

Por lo que no se generó ningún refinanmiento, por lo que el proceso ya ha acabado. El autómata mínimo entonces es