חדו"א 1 סמסטר א' תשפד עבודת בית 7: חקירת פונקציות

שאלה 1

הגדר מהי אסימפטוטה משופעת של פונקציה ומצא את האסימפטוטות המשופעות של הפונקציות הבאות:

$$f(x) = x + \sqrt{x^2 + 1} \qquad (x)$$

$$f(x) = \frac{x^2}{x - 1} \qquad \textbf{(a)}$$

$$f(x) = x - e^x \tag{3}$$

$$f(x) = -(x+2)^2$$
 שאלה 2 שרטטו את שרטטו שאלה 2

$$f(x) = x^2(x-2)^2$$
 שאלה 3 שרטטו את הפונקציה 3

$$f(x)=rac{x}{x^2+9}$$
 שאלה 4 שרטטו את הפונקציה 4

שאלה 5

$$f(x) = rac{x-1}{(x+1)^2}$$
 חקרו באופן מלא את הפונקציה

שאלה 6

$$f(x)=rac{2x^3}{x^2-4}$$
 חקרו באופן מלא את הפונקציה

שאלה 7

$$f(x)=x^2e^{1-x}$$
 חקרו באופן מלא את הפונקציה

שאלה 8

$$f(x) = rac{e^x}{x+1}$$
 חקרו באופן מלא את הפונקציה

שאלה 9

$$f(x) = (x+2)e^{1/x}$$
 חקרו את הפונק מלא את מלא

$$f(x) = rac{\sqrt{x^2-9}}{x}$$
 חקרו באופן מלא את הפונקציה

שאלה 11

$$f(x) = rac{\ln x}{\sqrt{x}}$$
 חקרו באופן מלא את הפונקציה

.
$$f(x) = \frac{x^4 - x^3 - 2x^2}{(x-3)^2}$$
 שאלה שרטטו את הגרף של הפונקציה 12

שאלה 13 (סמסטר ב תשע"ח מועד ב שאלה 1

חקרו באופן מלא את הפונקציה

$$f(x) = \frac{x^2}{x+1}$$

(תחום הגדרה, חיתוך עם הצירים, סימני הפונקציה, אסימפטוטות, תחומי עליה וירידה, נקודות קיצון, תחומי קמירות ונקודות פיתול) וצייר את סקיצת הגרף של הפונקציה.

שאלה 14 (סמסטר א תשע"ח מועד א שאלה 1

חקרו באופן מלא את הפונקציה

$$f(x) = \frac{(x+2)^2}{x-2}$$

(תחום הגדרה, חיתוך עם הצירים, סימני הפונקציה, אסימפטוטות, תחומי עליה וירידה, נקודות קיצון, תחומי קמירות ונקודות פיתול) וצייר את סקיצת הגרף של הפונקציה.

שאלה 15 חקור באופן מלא את הפונקציה (סמסטר א תשע"ט מועד ב שאלה 1

$$f(x) = \frac{2 - x^2}{e^x}$$

(תחום הגדרה, חיתוך עם הצירים, סימני הפונקציה, אסימפטוטות, תחומי עליה וירידה, נקודות קיצון, תחומי קמירות ונקודות פיתול) וצייר את סקיצת הגרף של הפונקציה.

$$f(x) = rac{x^4}{x^2 + 9}$$
 שאלה 16 שרטטו את שאלה 16

$$f(x)=rac{2-x}{x-1}$$
 שאלה 17 שאלה שרטטו שרטטו שרטטו

$$a>0$$
 באשר $f(x)=rac{x^2}{\sqrt{x^2-a^2}}$ שאלה שרטטו את הפונקציה שאלה

$$a>0$$
 באשר $f(x)=rac{x^4}{\sqrt{x^2-a^2}}$ שאלה שרטטו את הפונקציה

$$a>0$$
 כאשר $f(x)=rac{x^2}{\sqrt{x^2-3a^2}}$ שרטטו את הפונקציה שאלה 20

$$a>0$$
 כאשר $f(x)=rac{4}{x^2-4a^2}$ שאלה 21 שרטטו את הפונקציה

חקרו באופן מלא את הפונקציה הפונקציה $f(x)=\dfrac{(x+2)^2}{x^2+4x}$ (תחום הגדרה, נקודות חיתוך עם הצירים, סימני הפונקציה, אסימפטוטות, תחומי עליה וירידה, נקודות קיצון, תחומי קמירות ונקודות פיתול) וציירו את סקיצת הגרף של הפונקציה.

$$a>0$$
 כאשר $f(x)=\sqrt{x^2-a^2}$ שאלה שאלה שרטטו את שרטטו את שאלה

שאלה 24

חקרו באופן מלא את הפונקציה $f(x)=\dfrac{(x+4)^2}{x-3}$ (תחום הגדרה, נקודות חיתוך עם הצירים, סימני הפונקציה, אסימפטוטות, תחומי עליה וירידה, נקודות קיצון, תחומי קמירות ונקודות פיתול) וציירו את סקיצת הגרף של הפונקציה.

$$a>0$$
 באשר ער $y=rac{x^2}{x^2-a^2}$ שרטטו את הפונקציה שאלה 25

שאלה 26 (סמסטר א תש"ף מועד א שאלה 1) חקור באופן מלא את הפונקציה

$$f(x) = \frac{x^2 - 2x + 1}{x - 2}$$

(תחום הגדרה, חיתוך עם הצירים, סימני הפונקציה, אסימפטוטות, תחומי עליה וירידה, נקודות קיצון, תחומי קמירות ונקודות פיתול) וצייר את סקיצת הגרף של הפונקציה.

תשובות

שאלה 1

קו ישר $m\cdot x+n$ אם המרחק בין גרף הפונקציה לבין קו ישר $y=m\cdot x+n$ אם ישר קו ישר אסימפטוטה אסימפטוטה שואף ל ∞ או $y=m\cdot x+n$ הקו $y=m\cdot x+n$ שואף ל

במידה ש n ו m אז m ו m אסימפטוטה משופעת אסימפטוטה אסימפטוטה אסימפטוטה אז y=mx+n

$$m = \lim_{x \to \infty} \frac{f(x)}{x}$$
, $n = \lim_{x \to \infty} [f(x) - mx]$

(אותו דבר עבור $\infty - \infty$). אם m,n מספרים סולפיים, אז קיימת אסימפטוטה משופעת.

$$f(x) = x + \sqrt{x^2 + 1}$$

$$m = \lim_{x \to \pm \infty} \frac{x + \sqrt{x^2 + 1}}{x} = 2$$

 $n = \lim_{x \to \pm \infty} (f(x) - mx) = \lim_{x \to \pm \infty} \left(x + \sqrt{x^2 + 1} - 2x \right) = 0.$

 $\pm\infty$ -ב אסימפטוט אסימפטוט y=2x

$$f(x) = \frac{x^2}{x-1}$$
 (2

$$m = \lim_{x \to \pm \infty} \frac{x^2}{x(x-1)} = 1$$

$$n = \lim_{x \to \pm \infty} (f(x) - mx) = \lim_{x \to \pm \infty} \left(\frac{x^2}{x-1} - x\right) = 1.$$

 $\pm\infty$ -באסימפטוט המשופעת y=x+1 לכן

$$f(x) = x - e^x \qquad (3)$$

$$m = \lim_{x \to \infty} \frac{x - e^x}{x} = -\infty$$

 $+\infty$ -אין אסימפטוט המשופעת ב

$$m = \lim_{x \to -\infty} \frac{x - e^x}{x} = 1$$

$$n = \lim_{x \to -\infty} (f(x) - mx) = \lim_{x} \to -\infty (x - e^x - x) = 0.$$

 $-\infty$ -לכן y=x אסימפטוט המשופעת ב

שאלה 2

x שלב 1 תחום הגדרה: כל

x-מלב 2 נקודת חיתוך עם ציר ה-

. (-2,0) נאשר x=-2 ולכן נקודת חיתוך עם ציר א y=0

y-מקודת חיתוך עם ציר ה

x=0 היא ביר עם אית חיתוך ולכן נקודת ולכן x=0 כאשר y=-4

בכל מקום בתחום. $y \le 0$

שלב 3 הפונקציה מוגדרת בכל נקודה בתחום.

<u>שלב 4</u>

$$\lim_{x\to +\infty} \left\{ -(x+2)^2 \right\} = -\infty \ , \qquad \lim_{x\to -\infty} \left\{ -(x+2)^2 \right\} = -\infty \ .$$

<u>שלב 5</u>

x שלב תחום הגדרה: כל

x- מקודת חיתוך עם ציר ה-

x=0 ו- (0,0) ו- (0,0)

y-נקודות חיתוך עם ציר ה

(0,0) איא y -היא עם איר חיתוך ולכן נקודת ולכן x=0 כאשר y=0

בכל מקום בתחום. $y \ge 0$

שלב 3 הפונקציה מוגדרת בכל נקודה בתחום.

<u>שלב 4</u>

$$\lim_{x\to +\infty} \left\{ x^2 (x-2)^2 \right\} = +\infty \ , \qquad \lim_{x\to -\infty} \left\{ x^2 (x-2)^2 \right\} = +\infty \ .$$

<u>שלב 5</u>

שאלה 4

x שלב 1 תחום הגדרה: כל

x-טלב 2 נקודת חיתוך עם ציר ה

x=0 כאשר x=0 נקודת חיתוך עם איר ה-x=0 כאשר ולכן y=0

y-מקודות חיתוך עם ציר ה

(0,0) איא y-ה עם איר חיתוך לכן נקודת y=0 לכן נקבל x=0 בפונקציה ונקבל

y	x
y > 0	x > 0
y < 0	x < 0
.y = 0	x = 0

שלב 3 אינן נקודות בהן הפונקציה לא מוגדרת.

שלב 4

$$\lim_{x\to +\infty}\frac{x}{x^2+9}=\lim_{x\to +\infty}\frac{x}{x^2}=\lim_{x\to +\infty}\frac{1}{x}=0\ ,\qquad \lim_{x\to -\infty}\frac{x}{x^2+9}=\lim_{x\to -\infty}\frac{x}{x^2}=\lim_{x\to -\infty}\frac{1}{x}=0\ .$$

<u>שלב 5</u>

שאלה 5

$$f(x) = \frac{x-1}{(x+1)^2}$$

 $.x \neq -1$:תחום הגדרה תחום שלב

(0,-1),(1,0) נקודות חיתוך וסימני הפונקציה:

x	x < -1	-1 < x < 1	x > 1
f(x)	_	_	+

x=-1 :שלב אסימפטוטה אנכית

 $\pm\infty$ ב y=0 ב אסימפטוטה אופקית:

שלב 5 אסימפטוטה משופעת: אין.

$$.igg(3,rac{1}{8}igg)$$
 -ב נקודות קריטית - $f'(x)=rac{3-x}{(1+x)^3}$ נקודות קריטית -

x	x < -1	x = -1	-1 < x < 3	x = 3	x > 3
f'(x)	_	∄	+	0	_
f(x)	¥	לא מוגדר	7	מקסימום	X

$$.igg(5,rac{1}{9}igg)$$
 נקודות פיתול: $.f''(x)=rac{2(x-5)}{(x+1)^4}$:תחומי קמירות:

x	x < -1	x = -1	-1 < x < 5	x = 5	x > 5
f''(x)	_	לא מוגדר	_	0	+
f(x)	↓ קמורה	לא מוגדר	↓ קמורה	נקודת פיתול	למורה ↑

שלב 8 שרטוט:

$$f(x) = \frac{2x^3}{x^2 - 4}$$
.

 $x \neq \pm 2$:תחום הגדרה תחום שלב

שלב 2 נקודות חיתוך וסימני הפונקציה: (0,0).

Ī	x	x < -2	-2 < x < 0	0 < x < 2	x > 2
	f(x)	_	+	_	+

x=2 -ו x=-2 ו-x=-2 שלב 3

שלב 4 אסימפטוטה אופקית: אין.

שלב 5 אסימפטוטה משופעת:

$$m_2 = \lim_{x \to -\infty} \frac{f(x)}{x} = \lim_{x \to -\infty} \frac{2x^3}{x^2 - 4} = 2 ,$$

$$n_2 = \lim_{x \to -\infty} (f(x) - m_2 \cdot x) = \lim_{x \to -\infty} \left(\frac{2x^3}{x^2 - 4} - 2x \right) = \lim_{x \to -\infty} \frac{2x^3 - 2x(x^2 - 4)}{x^2 - 4} = 0 .$$

 $-\infty$ - אסימפטוטה משופעת אסימפטוטה y=2x

יו-
$$(-2\sqrt{3},-6\sqrt{3})$$
 , $(0,0)$ ב- תחומי עליה וירידה: $f'(x)=\frac{2x^2\left(x^2-12\right)}{\left(x^2-4\right)^2}$:. $(2,\sqrt{3},6\sqrt{3})$

x	$<-2\sqrt{3}$	$x = -2\sqrt{3}$	$\in (-2\sqrt{3}, -2)$	$\in (-2,0)$	x = 0	$\in (0,2)$	$\in (2,2\sqrt{3})$	$x = 2\sqrt{3}$	$x > 2\sqrt{3}$
f'(x)	+	0	_	_	0	_	_	0	+
f(x)	7	מקס	7	>	פיתול	¥	>	מינימום	7

 $f''(x)=rac{16x\left(x^2+12
ight)}{\left(x^2-4
ight)^3}$ ביתול ב- $f''(x)=rac{16x\left(x^2+12
ight)}{\left(x^2-4
ight)^3}$

x	x < -2	$x \in (-2,0)$	$x \in (0,2)$	x > 2
f''(x)	_	+	_	+
f(x)	↓ קמורה	ל קמורה	↓ קמורה	† קמורה

שלב 8 שרטוט:

שאלה 7

$$f(x) = x^2 e^{1-x} .$$

 $x \in (-\infty, \infty)$:תחום הגדרה שלב 1

(0,0) נקודות חיתוך וסימני הפונקציה:

 $f(x) \geq 0$ לכל

אין אסימפטוטה $x=-\infty$ ב- $x=+\infty$ אסימפטוטה אופקית: הישר y=0 אסימפטוטה אופקית: אופקית.

שלב 5 אסימפטוטה משופעת: אין.

ב- שלב $f'(x)=-e^{1-x}(x-2)x$ ישנו נקודות קריטיות ב- שלב $f'(x)=-e^{1-x}(x-2)$

(2,4/e) -1 (0,0)

x	x < 0	x = 0	0 < x < 2	x=2	x > 2
f'(x)	_	0	+	0	_
f(x)	\searrow	מינימום	7	מקסימום	\searrow

שלב 7 תחומי קמירות:

$$f''(x)=e^{1-x}\left(x^2-4x+2
ight)=e^{1-x}\left(x-2+\sqrt{2}
ight)\left(x-2-\sqrt{2}
ight)$$
יש נקודת פיתול ב- $x=2+\sqrt{2}$ ו- $x=2+\sqrt{2}$

x	$x < 2 - \sqrt{2}$	$x \in (2 - \sqrt{2}, 2 + \sqrt{2})$	$x > 2 + \sqrt{2}$
f''(x)	+	_	+
f(x)	ל קמורה ל	↓ קמורה	למורה ↑

שלב 8 שרטוט:

$$f(x) = \frac{e^x}{x+1} \ .$$

 $x \neq -1$ מחום הגדרה: תחום ה

(0,1) נקודות חיתוך וסימני הפונקציה:

x	x < -1	x > -1
f(x)	_	+

x = -1 שלב 3 אסימפטוטה אנכית:

שלב y=0 אסימפטוטה אופקית: ב- אין אסימפטוטה אופקית: ב- אין אסימפטוטה אופקית: ב- אין אסימפטוטה אופקית: ב- $x=+\infty$

שלב 5 אסימפטוטה משופעת: אין.

-שלב
$$f'(x)=rac{e^xx}{(x+1)^2}$$
 :ישנו נקודות קריטיות ב תחומי עליה וירידה $f'(x)=rac{e^xx}{(x+1)^2}$

x	x < -1	-1 < x < 0	x = 0	x > 0
f'(x)	_	_	0	+
f(x)	¥	\searrow	מינימום	7

שלב 7 תחומי קמירות:

$$f''(x) = \frac{e^x (x^2 + 1)}{(x+1)^3}$$

נקודת פיתול: אין.

x	x < -1	x < -1
f''(x)	_	+
f(x)	↓ קמורה	למורה ↑

שלב 8 שרטוט:

$$f(x) = (x+2)e^{1/x} .$$

 $x \neq 0$:תחום הגדרה תחום תחום

(0,1) נקודות חיתוך וסימני הפונקציה: נקודות עלב 2

x	x < -2	x > -2
f(x)	_	+

x=0 :שלב אסימפטוטה אנכית

שלב <u>4</u> אסימפטוטה אופקית: אין.

 $x=-\infty$ -ב וב- $x=+\infty$ אסימפטוטה משופעת: הישר y=x+3 אסימפטוטה משופעת:

-ב ישנו נקודות קריטיות - ישנו $f'(x)=rac{e^{1/x}\left(x^2-x-2
ight)}{x^2}$: ישנו נקודות קריטיות - שלב ב

$$(2,4\sqrt{e})$$
 -1 $\left(-1,rac{1}{e}
ight)$

x	x < -1	x = -1	-1 < x < 0	0 < x < 2	x=2	x > 2
f'(x)	+	0	_	_	0	+
f(x)	7	מקסימום	>	V	מינימום	7

שלב 7 תחומי קמירות:

$$f''(x)=rac{e^{1/x}(5x+2)}{x^4}$$
נקודת פיתול ב- $\left(-rac{2}{5},rac{8}{5e^{5/2}}
ight)$ אין.

x	$x < -\frac{2}{5}$	$x = -\frac{2}{5}$	$x > -\frac{2}{5}$
f''(x)	_	0	+
f(x)	↓ קמורה	נקודת פיתול	למורה ↑

:שלב <u>8</u> שרטוט

$$f(x) = \frac{\sqrt{x^2 - 9}}{x} \ .$$

 $.(-\infty,-3]$ ו $[3,\infty)$ תחום הגדרה: תחום ה

.(-3,0) ו (3,0) נקודות חיתוך וסימני הפונקציה: נקודות חיתוך ו

x	x < -3	-3 < x < 3	x > 3
f(x)	_	∄	+

שלב 3 אסימפטוטה אנכית: אין.

שלב 4 אסימפטוטה אופקית:

$$\lim_{x \to \infty} f(x) = 1$$

 $+\infty$ ב אסימפטוטה אופקית ב y=1 ולפיו

$$\lim_{x \to infty} f(x) = -1$$

 $-\infty$ ב אסימפטוטה אופקית ב y=-1 ולפיו

שלב 5 אסימפטוטה משופעת: אין.

. אינן נקודות קריטיות. $f'(x) = \frac{9}{x^2 \sqrt{x^2 - 9}}$ אינן נקודות קריטיות. שלב

x	x < -3	-3 < x < 3	x > 3
f'(x)	+	∄	+
f(x)	7		7

שלב 7 תחומי קמירות:

$$f''(x) = -\frac{27(x^2 - 6)}{x^3(x^2 - 9)^{3/2}}$$

אינו נקודות פיתול בתופ הגדרתה של הפונקציה.

x	x < -3	x > 3
f''(x)	+	_
f(x)	ל קמורה	↓ קמורה

:שלב 8 שרטוט

שאלה 11

$$f(x) = \frac{\ln x}{\sqrt{x}} \ .$$

x > 0 :מלב תחום הגדרה

(1,0) נקודות חיתוך וסימני הפונקציה: נקודות שלב 2

x	0 < x < 1	x = 1	x > 1
f(x)	_	0	+

x=0 :שלב אסימפטוטה אנכית

שלב 4 אסימפטוטה אופקית:

$$\lim_{x\to\infty}f(x)=0$$

ולפיו הקוy=0 אסימפטוטה אופקית.

שלב <u>5</u> אסימפטוטה משופעת: אין.

 $.ig(e^2,rac{2}{e}ig)$ -ב קריטית קריטית יש נקודת $.f'(x)=rac{2-\log(x)}{2x\cdot\sqrt{x}}$: יש נקודת הייטית שלב $.f'(x)=rac{2-\log(x)}{2x\cdot\sqrt{x}}$

x	$0 < x < e^2$	$x = e^2$	$x > e^2$
f'(x)	+	0	_
f(x)	7	מקסימום	7

שלב 7 תחומי קמירות:

$$f''(x) = \frac{3\log(x) - 8}{4x^{5/2}}$$

 $.ig(e^{8/3},rac{8}{3e^{4/3}}ig)$ -- יש נקודת פיתול

x	$0 < x < e^{8/3}$	$x = e^{8/3}$	$x > e^{8/3}$
f''(x)	_	0	+
f(x)	↓ קמורה	נקודת פיתול	למורה ↑

:שלב 8 שרטוט

שלב 1) תחום הגדרה:

$$.x \neq 3$$

שלב 2) נקודות חיתוך:

$$f(x) = \frac{x^2(x+1)(x-2)}{(x-3)^3}$$

(2,0) ו- (-1,0), (0,0) וה חיתוך חיתוך שהנקודות שהנקודות

סימני הפונקציה

y	x
y < 0	x < -1
y > 0	-1 < x < 0
y > 0	0 < x < 2
y < 0	2 < x < 3
y > 0	x > 3

שלב 3) אסימפטוטות אנכיות

$$.x = 3$$

$$\lim_{x \to 3^-} f(x) = -\infty , \qquad \lim_{x \to 3^+} f(x) = +\infty .$$

שלב 4) אסימפטוטות אופקיות

$$\lim_{x \to +\infty} f(x) = +\infty \ , \qquad \lim_{x \to -\infty} f(x) = -\infty \ .$$

שלב 5) אסימפטוטות משופעת

$$m = \lim_{x \to \infty} \frac{f(x)}{x} = 1$$
$$n = \lim_{x \to \infty} (f(x) - mx) = 8$$

 $-x o +\infty$ הוא אסימפטוטה משופעת אחר y=x+8 לכן הישר

$$m = \lim_{x \to -\infty} \frac{f(x)}{x} = 1$$

$$n = \lim_{x \to -\infty} (f(x) - mx) = 8$$

 $-\infty$ הישר משופעת הישר אסימפטוטה הוא y=x+8 לכן הישר

 $.x \neq -1$:תחום הגדרה תחום תחום

(0,0) נקודות חיתוך וסימני הפונקציה:

x	x < -1	-1 < x < 0	x > 0
f(x)	_	+	+

x=-1 :שלב אסימפטוטה אנכית

שלב 4 אסימפטוטה אופקית: אין.

שלב 5 אסימפטוטה משופעת:

$$m = \lim_{x \to \infty} \frac{f(x)}{x} = 1$$
, $n = \lim_{x \to \infty} (f(x) - m \cdot x) = -1$.

 $-x o \infty$ אסימפטוטה משופעת בתהליך אסימפטוטה אסימפטוטה אסימפטוטה אסימפטוטה אסימפטוטה אסימפטוטה אסימפטוטה אסימפטוטה

ב-. אותו הדבר $x o -\infty$

שלב 6 תחומי עליה וירידה:

$$f'(x) = \frac{x(x+2)}{(x+1)^2}$$

.(0,0) -ו (-2,-4) :נקודות קריטיות

x	x < -2	x = -2	-2 < x < -1	-1 < x < 0	x = 0	x > 0
f'(x)	+	0	_	_	0	+
f(x)	7	מקס	¥	\searrow	מינימום	7

שלב 7 תחומי קמירות:

$$f''(x) = \frac{2}{(x+1)^3}$$

נקודות פיתול: אין.

x	x < -1	x > -1
f''(x)	_	+
f(x)	↓ קמורה	למורה ↑

:שלב 8 שרטוט

<u>שאלה 14</u>

 $.x \neq 2$:תחום הגדרה תחום

.(0,-2) ו- (-2,0) ו- (-2,0) ו- נקודות חיתוך וסימני הפונקציה:

x	x < -2	-2 < x < 2	x > 2
f(x)	_	_	+

x=2 :שלב אסימפטוטה אנכית

שלב 4 אסימפטוטה אופקית: אין.

שלב 5 אסימפטוטה משופעת:

$$m = \lim_{x \to \infty} \frac{f(x)}{x} = 1$$
, $n = \lim_{x \to \infty} (f(x) - m \cdot x) = 6$.

 $x o \infty$ אסימפטוטה משופעת בתהליך כאשר אסימפטוטה לכן הקו

ב-. אותו הדבר $x o -\infty$

שלב 6 תחומי עליה וירידה:

$$f'(x) = \frac{(x-6)(x+2)}{(x-2)^2}$$

.(6,16) -ו.(-2,0) נקודות קריטיות:

x	x < -2	x = -2	-2 < x < 2	2 < x < 6	x = 6	x > 6
f'(x)	+	0	_	_	0	+
f(x)	7	מקס	>	V	מינימום	7

שלב 7 תחומי קמירות:

$$f''(x) = \frac{32}{(x-2)^3}$$

נקודות פיתול: אין.

x	x < 2	x > 2
f''(x)	_	+
f(x)	↓ קמורה	ל קמורה

שלב 8 שרטוט:

<u>שאלה 15</u>

x בלב תחום הגדרה: כל

.(0,2), $(-\sqrt{2},0)$, $(\sqrt{2},0)$: שלב 2 נקודות חיתוך וסימני הפונקציה:

x	x < -1	-1 < x < 0	x > 0
f(x)	_	+	+

שלב 3 אסימפטוטה אנכית: אין.

y=0 :שלב אסימפטוטה אופקית

שלב 5 אסימפטוטה משופעת: אין.

שלב 6 תחומי עליה וירידה:

$$f'(x) = \frac{x^2 - 2x - 2}{e^x}$$

נקודות קריטיות:

-1

$$(1 - \sqrt{3}, 3.04437) = (-0.732051, 3.04437)$$

 $(1+\sqrt{3},-0.355635) = (2.73205,-0.355635)$.

x	$x < 1 - \sqrt{3}$	$x = 1 - \sqrt{3}$	$1 - \sqrt{3} < x < 1 + \sqrt{3}$	$x = 1 + \sqrt{3}$	$x > 1 + \sqrt{3}$
f'(x)	+	0	_	0	+
f(x)	7	מקס	¥	מינימום	7

שלב 7 תחומי קמירות:

$$f''(x) = -\frac{x(x-4)}{e^x}$$

.(4,-0.256419) ו- .(0,2) נקודות פיתול:

x	x < 0	x = 0	0 < x < 4	x = 4	x > 4
f''(x)	_	0	+	0	_
f(x)	↓ קמורה	פיתול	למורה ↑	פיתול	↓ קמורה

שלב 8 שרטוט:

<u>שאלה 16</u>

x טלב תחום הגדרה: כל

x- נקודת חיתוך עם ציר ה-x- נקודת

.(0,0) איא xעם עם חיתוך נקודת ולכן .
 x=0ראשר y=0

y-מקודות חיתוך עם ציר ה

(0,0) נציב x=0 בפונקציה ונקבל y=0. לכן נקודת חיתוך עם ציר y=0

y	x
y > 0	x > 0
y > 0	x < 0
.y = 0	x = 0

שלב 3 אינן נקודות בהן הפונקציה לא מוגדרת.

שלב 4

$$\lim_{x \to +\infty} \frac{x^4}{x^2 + 9} = \lim_{x \to +\infty} \frac{x^4}{x^2} = \lim_{x \to +\infty} x^2 = +\infty \ , \qquad \lim_{x \to -\infty} \frac{x^4}{x^2 + 9} = \lim_{x \to -\infty} \frac{x^4}{x^2} = \lim_{x \to -\infty} x^2 = +\infty \ .$$

<u>שלב 5</u>

שאלה 17

 $x \neq 1$ שלב תחום הגדרה: כל

x-טלב 2 נקודת חיתוך עם ציר ה-

.(2,0) איא xעם עם חיתוך נקודת ולכן .
גx=2 היא y=0

y-נקודות חיתוך עם ציר ה

.(0,-2) היא yעם ציר חיתוך לכן אכן .y=-2 ונקבל בפונקציה בפונקציה x=0

y	x
y > 0	1 < x < 2
y < 0	x > 2
y < 0	x < 1
y = 0	x=2

x=1 בנקודה x=1 הפונקציה לא מוגדרת ולכן קיימת אסימפטוטה אנכית ב- x=1

מצד ימין:

$$\lim_{x \to 1^+} \frac{2 - x}{x - 1} = +\infty \ .$$

מצד שמאל:

$$\lim_{x\to 1^-}\frac{2-x}{x-1}=-\infty\ .$$

שלב 4

$$\lim_{x\to +\infty}\frac{2-x}{x-1}=\lim_{x\to +\infty}\frac{-x}{x}=-1\ ,\qquad \lim_{x\to -\infty}\frac{2-x}{x-1}=\lim_{x\to -\infty}\frac{-x}{x}=-1\ .$$

x=-1 -לכן קיימת אסימפטוטה אופקית

שלב 5

שאלה 18

. $\{x>a\cap x<-a\}$:תחום הגדרה שלב ב

.(0,0):xים ציר ה-x נקודת חיתוך עם איר ה-

נקודת חיתוך עם ציר ה-y: אין

. חיובי בכל נקודה בתחום הגדרת הפונקציה. \boldsymbol{y}

x=-a ו- x=+a ו- x=+a ו- x=+a ו- x=+a ו- x=+a ו- x=+a בקטע מצד שמאל של הפונקציה לא מוגדרת ולפיו קיימות אסימפטוטות מצד שמאל של הx=-a

$$\lim_{x\to a^-}\frac{x^2}{\sqrt{x^2-a^2}}=+\infty\ .$$

x = +a מצד ימין של

$$\lim_{x \to a^+} \frac{x^2}{\sqrt{x^2 - a^2}} = +\infty \ .$$

<u>של</u>ב 4

$$\lim_{x\to +\infty} \frac{x^2}{\sqrt{x^2-a^2}} = +\infty \ , \qquad \lim_{x\to -\infty} \frac{x^2}{\sqrt{x^2-a^2}} = +\infty \ .$$

שלב 5

שאלה 19

 $\{x > a \cap x < -a\}$:שלב תחום הגדרה שלב 1

.(0,0):xים ביר ה-x נקודת חיתוך עם איר ה-x נקודת שלב 2

נקודת חיתוך עם ציר הy: אין

. חיובי בכל נקודה בתחום הגדרת הפונקציה. \boldsymbol{y}

x=-a ו- x=+a ו- בקטע אנכיות אסימפטוטות ולפיו קיימות אמוגדרת א הפונקציה לא הפונקציה לא מוגדרת מצד שלב בקטע אסימפטוטות אנכיות בשפות א הפונקציה לא מוגדרת ולפיו קיימות מצד שמאל של הא

$$\lim_{x \to -a^-} \frac{x^4}{\sqrt{x^2 - a^2}} = +\infty \ .$$

 $\mathbf{x}=+a$ מצד ימין של

$$\lim_{x\to a^+}\frac{x^4}{\sqrt{x^2-a^2}}=+\infty\ .$$

שלב 4

$$\lim_{x\to +\infty} \frac{x^4}{\sqrt{x^2-a^2}} = +\infty \ , \qquad \lim_{x\to -\infty} \frac{x^4}{\sqrt{x^2-a^2}} = +\infty \ .$$

שלב 5

 $\left\{x>\sqrt{a}\cap x<-\sqrt{3}a
ight\}$ מחום הגדרה: שלב 1

שלב x: אין עם איר היתוד עם נקודת אין

נקודת חיתוך עם ציר ה-y: אין

. בכל נקודה בתחום הגדרת הפונקציה. y>0

 $x=+\sqrt{3}a$ שלב בקטע אנכיות אנכיות הפונקציה לא מוגדרת ולפיו הפונקציה לא $-\sqrt{3}a \leq x \leq \sqrt{3}a$ שלב בקטע . $x=-\sqrt{3}a$

,
$$x=-\sqrt{3}a$$
 מצד שמאל של

$$\lim_{x \to -\sqrt{3}a^{-}} \frac{x^{2}}{\sqrt{x^{2} - 3a^{2}}} = +\infty \ .$$

, $x=+\sqrt{a}$ מצד ימין של

$$\lim_{x \to \sqrt{3}a^+} \frac{x^2}{\sqrt{x^2 - 3a^2}} = +\infty \ .$$

<u>שלב 4</u>

$$\lim_{x\to +\infty} \frac{x^2}{\sqrt{x^2-3a^2}} = +\infty \ , \qquad \lim_{x\to -\infty} \frac{x^2}{\sqrt{x^2-3a^2}} = +\infty \ .$$

שלב 5

 $\{x \neq 2a \cap x \neq -2a\}$:תחום הגדרה שלב 1

.אין. xים ציר ה-xים עם אין. נקודת חיתוך עם אין.

$$.\left(0,-rac{1}{a^2}
ight): \underline{y}$$
ים ציר ה-צי ויתוך חיתוך נקודת

y > 0	x < -2a
y < 0	-2a < x < 2a
y > 0	x > 2a

ו- $x=\pm 2a$ הפונקציה אסימפטוטות אסימפטוטות הפונקציה לא הפונקציה אסימפטוטות בנקודות בנקודות בנקודות הפונקציה לא מוגדרת ולפיו $x=\pm 2a$ הפונקציה לא בנקודות בנקודות הפונקציה לא מוגדרת ולפיו

x = -2a מצד שמאל של

$$\lim_{x \to -2a^-} \frac{4}{x^2 - 4a^2} = \lim_{x \to -2a^-} \frac{4}{(x+2a)(x-2a)} = \left(\lim_{x \to -2a^-} \frac{2}{x+2a}\right) \cdot \left(\lim_{x \to -2a^-} \frac{2}{x-2a}\right) = +\infty$$

x = -2a מצד ימין של

$$\lim_{x \to -2a^+} \frac{4}{x^2 - 4a^2} = \lim_{x \to -2a^+} \frac{4}{(x+2a)(x-2a)} = \left(\lim_{x \to -2a^+} \frac{2}{x+2a}\right) \cdot \left(\lim_{x \to -2a^+} \frac{2}{x-2a}\right) = -\infty$$

 $\cdot r = +2a$ מאד שמאל של

$$\lim_{x \to 2a^-} \frac{4}{x^2 - 4a^2} = \lim_{x \to 2a^-} \frac{4}{(x + 2a)(x - 2a)} = \left(\lim_{x \to 2a^-} \frac{2}{x + 2a}\right) \cdot \left(\lim_{x \to 2a^-} \frac{2}{x - 2a}\right) = -\infty$$

 $x = \pm 2a$ מאד ימיו של

$$\lim_{x \to 2a^+} \frac{4}{x^2 - 4a^2} = \lim_{x \to 2a^+} \frac{4}{(x + 2a)(x - 2a)} = \left(\lim_{x \to 2a^+} \frac{2}{x + 2a}\right) \cdot \left(\lim_{x \to 2a^+} \frac{2}{x - 2a}\right) = +\infty$$

שלב 4

$$\lim_{x\to +\infty} \frac{x^4}{\sqrt{x^2-a^2}} = +\infty \ , \qquad \lim_{x\to -\infty} \frac{x^4}{\sqrt{x^2-a^2}} = +\infty \ .$$

<u>שלב 5</u>

 $x \neq 0, -4$:תחום הגדרה תחום שלב

(-2,0) נקודות חיתוך וסימני הפונקציה:

x	x < -4	-4 < x < 0	x > 0
f(x)	+	_	+

x=0 -ו x=-4 ו- אסימפטוטה אנכית:

שלב 4 אסימפטוטה אופקית: אין.

שלב 5 אסימפטוטה משופעת:

$$m = \lim_{x \to \infty} \frac{f(x)}{x} = 0$$
, $n = \lim_{x \to \infty} (f(x) - m \cdot x) = 1$.

 $x o \infty$ אסימפטוטה משופעת בתהליך כאשר אסימפטוטה לכן הקו

ב- $\infty - \infty$ אותו הדבר.

שלב 6 תחומי עליה וירידה:

$$f'(x) = -\frac{8(x+2)}{x^2(x+4)^2}$$

(-2,0) נקודות קריטיות:

x	x < -4	-4 < x < -2	x = -2	-2 < x < 0	x > 0
f'(x)	+	+	0	_	_
f(x)	7	7	מקסימום	¥	>

שלב 7 תחומי קמירות:

$$f''(x) = \frac{8(3x^2 + 12x + 16)}{x^3(x+4)^3}$$

נקודות פיתול: אין.

x	x < -4	-4 < x < 0	x > 0
f''(x)	+	_	+
f(x)	ל קמורה ל	↓ קמורה	למורה ↑

:שלב 8 שרטוט

שאלה 23

 $\{x \le -a \cap x \ge a\}$ מלב 1 תחום הגדרה:

 $x=\pm a$:x- שלב 2 נקודת חיתוך עם ציר ה-2

. נקודת חיתוך עם ציר הy: אין

y > 0	x < -a
y > 0	x > a

שלב בקטע הפונקציה מכיוון אחימפטוטות אבל אינן מוגדרת, אבל מוגדרת, הפונקציה אוגדרת הפונקציה אוגדרת בשפות בקטע בקטע -a < x < aבקודות ב-a - a - aו ביקודות ביקודות ביקודות האוגדרת ביקודות האוגדרת האוגדרת ביקודות האוגדרת ה

$$\lim_{x\to +\infty} \sqrt{x^2-a^2} = +\infty \ , \qquad \lim_{x\to -\infty} \sqrt{x^2-a^2} = +\infty \ .$$

<u>שלב 5</u>

שלב 4

 $x \neq 3$ מחום הגדרה: 1 שלב

 $.ig(0,-rac{16}{3}ig)$ -ו (-4,0) ו- וסימני הפונקציה: נקודות חיתוך וסימני הפונקציה

x	x < -4	-4 < x < 3	x > 3
f(x)	_	_	+

x=3 :שלב אסימפטוטה אנכית

שלב 4 אסימפטוטה אופקית: אין.

שלב 5 אסימפטוטה משופעת:

$$m = \lim_{x \to \infty} \frac{f(x)}{x} = 1$$
, $n = \lim_{x \to \infty} (f(x) - m \cdot x) = 11$.

 $x o \infty$ אסימפטוטה משופעת בתהליך כאשר y = x + 11 לכן הקו

ב- $\infty - \infty$ אותו הדבר.

שלב 6 תחומי עליה וירידה:

$$f'(x) = \frac{(x-10)(x+4)}{(x-3)^2}$$

.(10,28) -ו .(-4,0) נקודות קריטיות:

x	x < -4	x = -4	-4 < x < 3	3 < x < 10	x = 10	x > 10
f'(x)	+	0	_	_	0	+
f(x)	7	מקס	>	¥	מינימום	7

שלב 7 תחומי קמירות:

$$f''(x) = \frac{98}{(x-3)^3}$$

נקודות פיתול: אין.

x	x < 3	x > 3
f''(x)	_	+
f(x)	↓ קמורה	ל קמורה

<u>שאלה 25</u>

 $\{x \leq -a \cap x \geq a\}$. תחום הגדרה:

.(0,0): בקודת חיתוך עם ציר ה- \underline{x} 2 שלב 2

.(0,0):עם ציר ה-yנקודת חיתוך עם ציר איר

y > 0	x < -a
y < 0	-a < x < a
y > 0	x > a

. מוגדרת לא הפונקציה $x=\pm a$ בנקודות שלב 3

$$x=-a$$
 מצד שמאל של

$$\lim_{x \to -a^{-}} \frac{x^2}{x^2 - a^2} = +\infty$$

$$\mathbf{x} = -a^+$$
 מצד ימין של

$$\lim_{x \to -a^+} \frac{x^2}{x^2 - a^2} = -\infty$$

x=+a מצד שמאל של

$$\lim_{x \to a^-} \frac{x^2}{x^2 - a^2} = -\infty$$

x = +a מצד ימין של

$$\lim_{x \to a^+} \frac{x^2}{x^2 - a^2} = +\infty$$

שלב 4

$$\lim_{x\to +\infty} \frac{x^2}{\sqrt{x^2-a^2}} = +\infty \ , \qquad \lim_{x\to -\infty} \frac{x^2}{\sqrt{x^2-a^2}} = +\infty \ .$$

<u>שלב 5</u>

שאלה 26 שים לב

$$f(x) = \frac{x^2 - 2x + 1}{x - 2} = f(x) = \frac{(x - 1)^2}{x - 2}$$

 $.x \neq 2$:תחום הגדרה תחום תחום

 $.(0,-rac{1}{2})$,(1,0) נקודות חיתוך וסימני הפונקציה: (1,0)

x	x < 1	1 < x < 2	x > 2
f(x)	_	_	+

x=2 :שלב אסימפטוטה אנכית

שלב 4 אסימפטוטה אופקית: אין.

שלב 5 אסימפטוטה משופעת:

$$m = \lim_{x \to \infty} \frac{f(x)}{x} = \lim_{x \to \infty} \frac{(x-1)^2}{x(x-2)} = 1.$$

$$n = \lim_{x \to \infty} (f(x) - m \cdot x) = \lim_{x \to \infty} \left(\frac{(x-1)^2}{x-2} - x \right) = \lim_{x \to \infty} \frac{(x-1)^2 - x(x-2)}{x-2} = 0.$$

 $x=\infty$ -באסימפטוטה משופעת y=x

$$m = \lim_{x \to -\infty} \frac{f(x)}{x} = \lim_{x \to -\infty} \frac{(x-1)^2}{x(x-2)} = 1.$$

$$(x-1)^2 \qquad (x-1)^2 - x(x-1)^2 = 1.$$

$$n = \lim_{x \to -\infty} \left(f(x) - m \cdot x \right) = \lim_{x \to -\infty} \left(\frac{(x-1)^2}{x-2} - x \right) = \lim_{x \to -\infty} \frac{(x-1)^2 - x(x-2)}{x-2} = 0 \ .$$

 $x=-\infty$ -אסימפטוטה משופעת שy=x

שלב 6 תחומי עליה וירידה:

$$f'(x) = \frac{(x-3)(x-1)}{(x-2)^2}$$

נקודות קריטיות:

(3,4) -1 (1,0)

x	x < 1	x = 1	1 < x < 2	2 < x < 3	x = 3	x > 3
f'(x)	+	0	_	_	0	+
f(x)	7	מקס	¥	¥	מינימום	7

שלב 7 תחומי קמירות:

$$f''(x) = \frac{2}{(x-2)^3}$$

נקודות פיתול: אין.

x	x < 2	x > 2
f''(x)	_	+
f(x)	↓ קמורה	למורה ↑

:שלב <u>8</u> שרטוט

