NORMALIZERS OF PARABOLIC SUBGROUPS OF COXETER GROUPS

DANIEL ALLCOCK

ABSTRACT. We improve a bound of Borcherds on the virtual cohomological dimension of the non-reflection part of the normalizer of a parabolic subgroup of a Coxeter group. Our bound is in terms of the types of the components of the corresponding Coxeter subdiagram rather than the number of nodes. A consequence is an extension of Brink's result that the non-reflection part of a reflection centralizer is free. Namely, the non-reflection part of the normalizer of parabolic subgroup of type D_5 or $A_{m \text{ odd}}$ is either free or has a free subgroup of index 2.

Suppose Π is a Coxeter diagram, J is a subdiagram and $W_J \subset$ $W_{\rm II}$ is the corresponding inclusion of Coxeter groups. The normalizer $N_{W_{\Pi}}(W_J)$ has been described in detail by Borcherds [3] and Brink-Howlett [5]. Such normalizers have significant applications to working out the automorphism groups of Lorentzian lattices and K3 surfaces; see [3] and its references. $N_{W_{\Pi}}(W_J)$ falls into 3 pieces: W_J itself, another Coxeter group W_{Ω} , and a group Γ_{Ω} of diagram automorphisms of W_{Ω} . The last two groups are called the "reflection" and "non-reflection" parts of the normalizer. Borcherds bounded the virtual cohomological dimension of Γ_{Ω} by |J|. Our theorems 1, 3 and 4 give stronger bounds, in terms of the types of the components of J rather than the number of nodes. There are choices involved in the definition of W_{Ω} and Γ_{Ω} , and our bound in theorem 3 applies regardless of how these choices are made (theorem 1 is a special case). Theorem 4 improves this bound when W_{Ω} is "maximal". In this case, when $J = D_5$ or $A_{m \text{ odd}}$, Γ_{Ω} turns out to either be free or have an index 2 subgroup that is free. This extends Brink's result [4] that Γ_{Ω} is free when $J=A_1$.

The author is grateful to the Clay Mathematics Institute, the Japan Society for the Promotion of Science, and Kyoto University for their support and hospitality.

We follow the notation of [3], and refer to [6] for general information about Coxeter groups. Suppose (W_{Π}, Π) is a Coxeter system, which is

Date: May 2, 2011.

2000 Mathematics Subject Classification. 20F55.

to say that W_{Π} is a Coxeter group and Π is a standard set of generators. The Coxeter diagram is the graph whose nodes are Π , with an edge between $s_i, s_j \in \Pi$ labeled by the order m_{ij} of $s_i s_j$, when $m_{ij} > 2$. W_{Π} acts isometrically on a real inner product space V_{Π} with basis (the simple roots) Π and inner products defined in terms of the m_{ij} . The (open) Tits cone K is an open convex subset of V_{Π}^* on which W_{Π} acts properly discontinuously with fundamental chamber C_{Π} . (Our C_{Π} and K are "missing" the faces corresponding to infinite parabolic subgroups of W_{Π} .) The standard generators act on V_{Π}^* by reflections across the hyperplanes containing the facets of C_{Π} , and they also act on V_{Π} by reflections. For a root α (i.e., a W_{Π} -image of a simple root) we write α^{\perp} for α 's mirror, meaning the fixed-point set in K of the reflection associated to α .

Now let $J \subseteq \Pi$ be a spherical subdiagram, i.e., one corresponding to a finite subgroup of W_{Π} , and let W_{\min} be the group generated by the reflections in W_{Π} that act trivially on $V_J \subseteq V_{\Pi}$. This is the "reflection" part of $N_{W_{\Pi}}(W_J)$, or rather the strictest possible interpretation of this idea. It corresponds to Borcherds' W_{Ω} in the case that the groups he calls Γ_{Π} and Γ_{J} are trivial; see the discussion after lemma 2. Let $J^{\perp} := \cap_{\alpha \in J} \alpha^{\perp}$, pick a component C_{\min}° of the complement of W_{\min} 's mirrors in J^{\perp} , and define C_{\min} as its closure (in J^{\perp}). By definition, W_{\min} is a Coxeter group, and the general theory of these groups shows that C_{\min} is a chamber for it. The "non-reflection" part of $N_{W_{\Pi}}(W_J)$ means the subgroup Γ_{\min} of W_{Π} preserving J (regarded as a set of roots) and sending C_{\min} to itself. The reason for the first condition is to discard the trivial part of $N_{W_{\Pi}}(W_J)$, namely W_J itself. That is, W_{\min} : Γ_{\min} is a complement to W_J in $N_{W_{\Pi}}(W_J)$. We write Γ_{\min}^{\vee} for the subgroup of Γ_{\min} acting trivially on J (equivalently, on V_J). The reason for passing to this (finite-index) subgroup is that Γ_{\min} often contains torsion and therefore has infinite cohomological dimension for boring

Theorem 1. Γ_{\min}^{\vee} acts freely on a contractible cell complex of dimension at most

(1)
$$\#A_1 + \#D_{m>4} + \#E_6 + \#I_2(5) + 2(\#A_{m>1} + \#D_4)$$

where $\#X_m$ means the number of components of J isomorphic to a given Coxeter diagram X_m . In particular, Γ_{\min}^{\vee} 's cohomological dimension is at most (1).

Borcherds' result [3, thm. 4.1] has |J| in place of (1), but treats a more general group Γ_{Ω} , of which Γ_{\min} is a special case. The more general case follows from this one, in theorem 3 below.

Proof. First we prove for $x \in C_{\min}^{\circ}$ that its stabilizer $\Gamma_{\min,x}^{\vee}$ is trivial. The W_{Π} -stabilizer of x is some W_{Π} -conjugate W_x of a spherical parabolic subgroup of W_{Π} . So W_x acts on V_{Π} as a finite Coxeter group. It is well-known that any vector stabilizer in such an action is generated by reflections, so the subgroup $W_{x,J}$ fixing J pointwise is generated by reflections. Observe that any reflection in $W_{x,J}$ lies in W_{\min} . Since x lies in the interior C_{\min}° of C_{\min} , it is fixed by no reflection in W_{\min} , so there can be no reflection in $W_{x,J}$, so $W_{x,J} = 1$. It is easy to see that $W_{x,J}$ contains $\Gamma_{\min,x}^{\vee}$, so we have proven that Γ_{\min}^{\vee} acts freely on C_{\min}° .

 C_{\min}° is contractible because it is convex, and it obviously admits an equivariant deformation-retraction to its dual complex. So it suffices to show that the dual complex has dimension at most (1). Suppose $\phi \subseteq J^{\perp}$ is a face of a chamber of W_{Π} , with codimension in J^{\perp} larger than (1); we must show $\phi \cap C_{\min}^{\circ} = \emptyset$. For some $w \in W_{\Pi}$, $w\phi$ is a face of C_{Π} whose corresponding set of simple roots $I' \subseteq \Pi$ contains $J' := w(J) \cong J$. By the codimension hypothesis on ϕ , |I'| - |J'| is more than (1). Applying the lemma below to J' and I', we see that $W_{I'}$ contains a reflection r fixing J' pointwise. Since $r \in W_{I'}$, its mirror contains $w\phi$. So $w^{-1}rw$ is a reflection fixing J pointwise (so it lies in W_{\min}), whose mirror contains ϕ . Since C_{\min}° is a component of the complement of the mirrors of W_{\min} , it is disjoint from ϕ , as desired. \square

Lemma 2. If J lies in a spherical Coxeter diagram $I \subseteq \Pi$, whose cardinality exceeds that of J by more than (1), then W_I contains a reflection fixing J pointwise.

Remark. Equality in (1) holds when I extends the A_m , D_m , E_6 and $I_2(5)$ components of J by $A_1 \to A_2$, $A_{m>1} \to D_{m+2}$, $D_4 \to E_6$, $D_{m>4} \to D_{m+1}$, $E_6 \to E_7$ and $I_2(5) \to H_3$. One can check in this case that the conclusion of the lemma fails.

Proof. We may suppose $I=\Pi$, by discarding the rest of Π . Working one component at a time, it suffices to prove the lemma under the additional hypothesis that Π is connected. We now consider the various possibilities for Π , and suppose W_{Π} contains no reflections fixing V_J pointwise. That is, we assume $W_{\min}=1$. In each case we will show that $|\Pi|-|J|$ is at most (1).

The $\Pi = A_n$ case is a model for the rest. Suppose the component of J nearest one end of Π has type A_m and does not contain that end. Then it must be adjacent to that end (since $W_{\min} = 1$), so together with the end it forms an A_{m+1} . We conjugate by the long word in $W(A_{m+1})$, which exchanges the two A_m diagrams in A_{m+1} and fixes the roots in the other components of J. The result is that we may suppose without loss that J contains that end of Π . Repeating the argument to move the other components of J toward that end, we may suppose that there is exactly one node of Π between any two consecutive components of J. And the other end of Π is either in J or adjacent to it. It is now clear that $|\Pi| - |J|$ is the number of components of J, or one less than this. Since every component of J has type A, $|\Pi| - |J|$ is at most (1). This finishes the proof in the $\Pi = A_n$ case.

If $\Pi = B_n = C_n$ then we begin by shifting any type A components of J as far as possible from the double bond. If J has no B_m then J contains one end of the double bond, and we get $|\Pi| - |J|$ equal to the number of components of J, all of which have type A. If J has a B_m then the node after it (if there is one) must be adjacent to some type A component of J. This is because $W(B_{m+1})$ contains a reflection acting trivially on V_{B_m} . This is easy to see in the model of $W(B_{m+1})$ as the isometry group of \mathbb{Z}^{m+1} . It follows that $|\Pi| - |J|$ is the number of components of J of type A.

In the $\Pi = D_{n>3}$ case, one can use the shifting trick to reduce to one of the cases

where the filled nodes are those in J and the dashes indicate a chain of nodes with no two consecutive unfilled nodes. (Except for the dashes on the left in the last 3 diagrams, which indicate chains of filled nodes.) In every case we get

$$|\Pi| - |J| \le \#A_1 + \#D_{m \ge 4} + 2 \#A_{m > 1}.$$

The most interesting case is $A_{n-2} \to D_n$, at the top left.

We will treat the case $\Pi = E_8$ and leave the similar E_6 and E_7 cases to the reader. If J has a D_4 , D_5 or E_6 component, then it must also have a type A component, and then $|\Pi| - |J| \le 2 \# D_4 + \# D_5 + \# A_{m \ge 1}$, as desired. J cannot be D_6 or E_7 , because then W_{\min} would contain the reflection in the lowest root of E_8 , which extends E_8 to the affine diagram \tilde{E}_8 . So we may suppose J's components have type A. In order for $|\Pi| - |J|$ to exceed (1), we must have $J = A_{m \le 5}$, $A_3 A_1$, $A_2 A_1$ or $A_1^{m \le 3}$. But none of these cases can occur, because in each of them we may shift J's components around so that some node of Π is not joined to J.

The remaining cases are $\Pi = F_4$, H_3 , H_4 and I_2 , the last case including $G_2 = I_2(6)$. The facts required to treat these cases are that if $J = B_2$ or B_3 in $\Pi = F_4$ then W_{\min} contains a reflection, and similarly in the $J = H_3 \subseteq H_4 = \Pi$ case. The first fact is visible inside a B_3 or

 B_4 root system inside F_4 . To see the second, observe that the root stabilizer in H_4 contains Coxeter groups of types A_2 and $I_2(5)$, visible in the centralizers of the two end reflections of H_4 (which are conjugate). So the root stabilizer can only be $W(H_3)$, which is to say that the H_3 root system is orthogonal to a root.

The greater generality obtained by Borcherds is the following. Let Γ_{Π} be a group of diagram automorphisms of Π , acting on V_{Π} and K in the obvious way. The goal is to understand $N_{W_{\Pi}:\Gamma_{\Pi}}(W_J)$. Again we discard the boring part of this normalizer by passing to the subgroup W'_J preserving the set of roots $J \subseteq \Pi$. Let W_{Ω} be any subgroup of W'_J which contains W_{\min} and is generated by elements which act on J^{\perp} by reflections. We define C_{Ω}° , C_{Ω} and Γ_{Ω} as for C_{\min}° , C_{\min} and Γ_{\min} , and define Γ_{Ω}^{\vee} as the subgroup of $\Gamma_{\Omega} \cap W_{\Pi}$ acting trivially on J. (Borcherds left Γ_{Ω}^{\vee} unnamed and defined W_{Ω} in terms of auxiliary groups $R \subseteq \Gamma_J \subseteq \operatorname{Aut} J$; his W_{Ω} has the properties assumed here.) The inclusion $W_{\min} \subseteq W_{\Omega}$ is the source of the subscript "min", but note that C_{\min} and Γ_{\min} are larger than C_{Ω} and Γ_{Ω} . We can now recover Borcherds' result [3, thm. 4.1] with our (1) in place of |J|.

Theorem 3. Theorem 1 holds with Γ_{\min}^{\vee} replaced by Γ_{Ω}^{\vee} .

Proof. The freeness of the action follows from the same argument. (This is why Γ_{Ω}^{\vee} is defined as a subgroup of $\Gamma_{\Omega} \cap W_{\Pi}$ rather than just Γ_{Ω} .) The essential point for the rest of the proof is that W_{Ω} contains W_{\min} , so the decomposition of J^{\perp} into chambers of W_{Ω} refines that of W_{\min} . This shows $C_{\Omega}^{\circ} \subseteq C_{\min}^{\circ}$. So the dual complex of C_{Ω}° has dimension at most that of C_{\min}° , and we can apply theorem 1.

The point of considering W_{Ω} rather than W_{\min} is that it is larger and so Γ_{Ω} will be smaller than Γ_{\min} . This is good since the nonreflection part is more mysterious than the reflection part. So it is natural to define W_{\max} by setting $\Gamma_{\Pi} = 1$ and taking W_{Ω} as large as possible, i.e., W_{\max} is the subgroup of W'_J generated by the transformations which act on J^{\perp} by reflections.

This is the largest possible "universal" W_{Ω} , although a larger W_{Ω} is possible if Π admits suitable diagram automorphisms. For example, Γ_{Π} might contain elements acting on C_{Π} by reflections. I don't know other examples, although probably there are some.

We define C_{max}° , C_{max} , Γ_{max} and $\Gamma_{\text{max}}^{\vee}$ as above. The next theorem follows from lemma 5 in exactly the same way that theorem 1 follows from lemma 2.

Theorem 4. The dimension of the dual complex of C_{max}° , hence the cohomological dimension of $\Gamma_{\text{max}}^{\vee}$, is bounded above by

(3)
$$\#D_5 + \#A_{m \text{ odd}} + 2 \#A_{m \text{ even}}.$$

Remarks. (i) If J has no A_m or D_5 component then $\Gamma_{\max}^{\vee} = 1$ and Γ_{\max} is finite. This is Borcherds' [3, example 5.6]. (ii) If $J = D_5$ or $A_{m \text{ odd}}$ then $\Gamma_{\max}^{\vee} \subseteq N_{W_{\Pi}}(W_J)$ is free. Also, since $|\operatorname{Aut} J| \leq 2$, Γ_{\max}^{\vee} has index 1 or 2 in Γ_{\max} . Therefore the non-reflection part Γ_{\max} of $N_{W_{\Pi}}(W_J)$ has a free subgroup of index 1 or 2. (iii) If $J = A_1$ then $\Gamma_{\min} = \Gamma_{\min}^{\vee} = \Gamma_{\max} = \Gamma_{\max}^{\vee}$ has cohomological dimension ≤ 1 . This recovers Brink's result [4] that Γ_{\min} is free. (iv) If $J = A_{m \text{ even}}$ then the conclusion dim(dual of C_{\min}°) ≤ 2 suggests that Γ_{\max} is often comprehensible, like the $J = A_6$ example of [3, example 5.4].

Lemma 5. If J lies in a spherical Coxeter diagram $I \subseteq \Pi$, whose cardinality exceeds that of J by more than (3), then W_I contains an element preserving the set J of roots and acting on J^{\perp} by a reflection.

Proof. This is essentially the same as for lemma 2, using the following additional ingredients. For example, when $I = D_n$ one can use them to show that the 5th, 7th, 8th and 10th cases of (2) are impossible, while the first can only occur when n is even.

First, if $J = E_6 \subseteq E_7 = I$ then W_I contains the negation of V_I , which we follow by the long word in W_J to send -J back to J. The composition is the claimed element of W_I . The same argument applies if $J = I_2(5) \subseteq H_3 = I$.

Second, if $J = A_{m \text{ odd}} \subseteq D_{m+2} = I$ as in the first diagram of (2), then consider the long word in W_I . It negates J and exchanges and negates the two simple roots in I - J. Following this by the long word in W_J yields the claimed element of W_I . (When m is even, the long word in W_I negates the simple roots in I - J without exchanging them, so it doesn't act on J^{\perp} by a reflection.)

Third, if $J = D_{m\geq 3} \subseteq D_{m+1} = I$ then consider the model of W_I as the group generated by permutations and evenly many negations of m+1 coordinates, with W_J the corresponding subgroup for the first m coordinates. Letting σ be the negation of the last two coordinates, and following it by the element of W_J sending $\sigma(J)$ back to J, gives the claimed element of W_I .

There is a nice geometrical interpretation of the freeness of Γ_{\min} in the case $J=A_1$, developed further in [1]. Namely, the natural map $C_{\min}^{\circ} \to C_{\min}^{\circ}/\Gamma_{\min} \subseteq K/W_{\Pi} = C_{\Pi}$ is the universal cover of its image.

The image is got by discarding all the codimension 2 faces of C_{Π} corresponding to even bonds in Π , discarding all codimension 3 faces, and taking the component corresponding to J. This identifies Γ_{\min} with the fundamental group of J's component of the "odd" subgraph of Π in a natural manner.

One can extend this picture to the case $J \neq A_1$, but complications arise. First, one must take W_{Ω} to be normal in W_{Π} : Γ_{Π} . Second, while $C_{\Omega}^{\circ} \to C_{\Omega}^{\circ}/\Gamma_{\Omega}^{\vee}$ is a covering space, the image $C_{\Omega}^{\circ}/\Gamma_{\Omega}$ of C_{Ω}° in C_{Π} is the quotient of $C_{\Omega}^{\circ}/\Gamma_{\Omega}^{\vee}$ by the finite group $\Gamma_{\Omega}/\Gamma_{\Omega}^{\vee}$. Usually, $C_{\Omega}^{\circ} \to C_{\Omega}^{\circ}/\Gamma_{\Omega}$ is only an orbifold cover since Γ_{Ω} often has torsion. The top-dimensional strata of $C_{\Omega}^{\circ}/\Gamma_{\Omega}^{\vee}$ correspond to the "associates" of the inclusion $J \to \Pi$ in the sense of [3] and [5]. Suppose $J' \subseteq \Pi$ is (the image of) an associate and I' is a spherical diagram containing it. Then the face of C_{Π} corresponding to I', minus lower-dimensional faces, lies in $C_{\Omega}^{\circ}/\Gamma_{\Omega}$ just if $W_{I'}$ contains no element preserving J', acting on it in a manner constrained by the choice of W_{Ω} , and acting on J'^{\perp} by a reflection. From this perspective, lemmas 2 and 5 amount to working out two cases of Borcherds' notion of "R-reflectivity". The orbifold structure on $C_{\Omega}^{\circ}/\Gamma_{\Omega}$ is essentially the same information as Borcherds' classifying category for Γ_{Ω} .

References

- [1] Allcock, Daniel, Reflection centralizers in Coxeter groups, in preparation.
- [2] Borcherds, Richard, Automorphism groups of Lorentzian lattices, *J. Algebra* 111 (1987) no. 1, 133–153.
- [3] Borcherds, Richard E., Coxeter groups, Lorentzian lattices, and K3 surfaces, *Internat. Math. Res. Notices* 1998, no. 19, 1011–1031.
- [4] Brink, Brigitte, On centralizers of reflections in Coxeter groups, Bull. London Math. Soc. 28 (1996) no. 5, 465–470
- [5] Brink, Brigitte and Howlett, Robert B., Normalizers of parabolic subgroups in Coxeter groups, *Invent. Math.* **136** (1999) no. 2, 323–351.
- [6] Humphreys, James E., Reflection Groups and Coxeter Groups, Cambridge Studies in Advanced Mathematics 29. Cambridge University Press, Cambridge, 1990

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF TEXAS, AUSTIN *E-mail address*: allcock@math.utexas.edu

URL: http://www.math.utexas.edu/~allcock