

Vehicle color recognition

Purpose

Car detection

Feature extraction

Conclusions

با استفاده از مدل ترین شده yolo برای تشخیص خودرو، در تصویر ورودی تمام خودروها شناسایی می شوند و با استفاده از طبقه بندی رنگها با الگوریتم های KNN رنگ خودرو در ۱۰ رنگ تشخیص داده میشود.

Car detection with yolo

با استفاده از cv2.calcHist هیستوگرام رنگی برای هر تصویر از رنگ مورد نظر ، مقادیر غالب (مقدار پیک تعداد پیکسل برای کانالهای رنگی) را برای R, G, B بدست می آوریم و به همراه لیبل رنگ داخل فایل train.data قرار میدهیم. چرا که KNN یک supervised linear هست .

G, argmax=66

R, argmax=167

برای مثال با استفاده از نمودار مقدار پیک در کانال R=R=167 و کانال G=66=6 و کانال E=60 شد. و داخل فایل E=10 قرار میدهیم.

پس از ترین رنگها (train.data)و نمونه تست(test.data) در الگوریتم KNN با محاسبه فاصله اقلیدسی در دیتای تست و ترین و پیدا کردن نزدیکترین سطر در فایل ترین به نمونه تست تشخیص رنگ صورت میگیرد.

استفاده از تعداد زیاد از تصویر رنگها و البته نزدیک به دنیای واقعی و تصاویر روشن می تواند کاتیجه بهتری داشته باشد.

تعداد نمونه رنگ استفاده شده برای ترین:

Color	n ·
Black	25
Blue	79
Brown	75
Green	77
Grey	48
Orange	77 .
Red	101
Violet	93
White	80
Yellow	89

Thank you