Decidability

In the last lecture...

- Discussed the definition of algorithm
 - Church-Turing thesis
- Established terminology for describing TMs
 - Format and notation:
 - Encoding in terms of strings
- Looked at an example

 Let A be the language consisting of all strings representing undirected graphs that are connected. That is,

A = {<G> | G is a connected undirected graph}

 The following (next slide) is a high-level description of a TM M that decides A

TM that decides A

- M = "On input $\langle G \rangle$, the encoding of a graph G:
 - 1. Select the first node of G and mark it.
 - 2. Repeat the following stage until no new nodes are marked:
 - **3.** For each node in *G*, mark it if it is attached by an edge to a node that is already marked.
 - **4.** Scan all the nodes of G to determine whether they all are marked. If they are, accept; otherwise, reject."

Just a bit of implementation detail on M...

$$\langle G \rangle =$$
 (1,2,3,4)((1,2),(2,3),(3,1),(1,4))

Encoding

Some details of M...

- Input check:
 - node list (distinct elements)
 - edge list (pairs drawn from node list)
- Stags 1 -- 3:
 - Markings
- Stage 4:
 - Scanning

Today's lecture: Decidability

- Our objective is to explore the limits of algorithmic solvability
 - Certain problems can be solved algorithmically, and others cannot
- Why bother study unsolvability?
 - 1. Practice
 - → (Re)formulation of problem
 - 2. Perspective
 - → A glimpse of the unsolvable may stimulate imagination

Decidable languages

- Will look at decidable problems concerning
 - Finite automata
 - Acceptance
 - Emptiness
 - Equivalence
 - Context-free grammars
 - Generation
 - Emptiness
- Will cover results on FA today, and those on CFG next lecture

1) Finite Automata: Acceptance Problem (DFA)

Let:

A_{DFA}= {<B,w> | B is a DFA that accepts input string w}

(**Note**: we choose to represent computation problems by languages. In the case above, the problem of testing whether a DFA B accepts an input w is the same as the problems of testing whether $\langle B, w \rangle$ is a member of the language A_{DFA})

Theorem: A_{DFA} is a decidable language

We simply need to present a TM M that decides A_{DFA}

M = "On input $\langle B, w \rangle$, where B is a DFA and w is a string:

- 1. Simulate B on input w.
- 2. If the simulation ends in an accept state, accept. If it ends in a nonaccepting state, reject."

A few implementation details...

- < < B, w >
 - A reasonable representation of B may be its
 5 components (Q,Σ,δ,q₀ and F)
- Simulation
 - M may do this directly

2) Finite Automata: Acceptance Problem (NFA)

We can prove a similar theorem for NFA

Let:

 $A_{NFA} = \{ \langle B, w \rangle \mid B \text{ is an NFA that represents input string } w \}$

Theorem:

A_{NFA} is a decidable language

- We present a TM N that decides A_{NFA}.
- Instead of making N simulate an NFA, we will make it use
 M (the DFA) as a subroutine.

N = "On input $\langle B, w \rangle$, where B is an NFA and w is a string:

- 1. Convert NFA B to an equivalent DFA C, using the procedure for this conversion given in Theorem 1.39.
- **2.** Run TM M from Theorem 4.1 on input $\langle C, w \rangle$.
- **3.** If *M* accepts, *accept*; otherwise, *reject*."

Thm 1.39: every NFA has an equivalent DFA

Thm 4.1: *A*_{DFA} is decidable

3) Regular expression: Generation

We can prove similar result for determining whether a regular expression generates a given string.

Let:

A_{REX} = {<R,w> | R is a regular expression that generates string w}

Theorem:

A_{REX} is a decidable language

The following TM P decides A_{REX}

P = "On input $\langle R, w \rangle$, where R is a regular expression and w is a string:

- 1. Convert regular expression R to an equivalent NFA A by using the procedure for this conversion given in Theorem 1.54.
- **2.** Run TM N on input $\langle A, w \rangle$.
- 3. If N accepts, accept; if N rejects, reject."

Thm 1.54: a language is regular iff some regular expression describes it

What did we observe so far?

- The previous three results illustrate that, for decidability purposes, it is equivalent to present the TM with a DFA, an NFA or a regular expression because the machine can convert one form of encoding to another.
- Next we see two different kinds of problems concerning FA:
 - Emptiness testing
 - Equivalence of two DFAs

4) Finite Automata: Emptiness

Let:

 $E_{DFA} = \{ \langle A \rangle \mid A \text{ is a DFA and } L(A) = \emptyset \}$

Theorem:

E_{DFA} is a decidable language

- A DFA accepts some string iff reaching an accept state from the start state by traveling along the arrows of the DFA is possible.
- To test this condition, we can design a TM T that uses a marking algorithm similar to the example on *connected graphs* we saw at the beginning of this lecture.

T = "On input $\langle A \rangle$, where A is a DFA:

- **1.** Mark the start state of *A*.
- 2. Repeat until no new states get marked:
- 3. Mark any state that has a transition coming into it from any state that is already marked.
- **4.** If no accept state is marked, *accept*; otherwise, *reject*."

5) Finite Automata: Equivalence

Let:

 $EQ_{DFA} = \{ \langle A,B \rangle \mid A \text{ and } B \text{ are DFAs and } L(A) = L(B) \}$

Theorem:

EQ_{DFA} is a decidable language

- To prove this theorem, we use the previous theorem (emptiness)
- We construct a new DFA C from A and B, where C accepts only those strings that are accepted by either A or B but not by both.
- Thus if A and B recognize the same language, C will accept nothing.
- The language L(C) is the symmetric difference between L(A) and L(B)

$$L(C) = (L(A) \cap L(B)^{-}) \cup (L(A)^{-} \cap L(B))$$

Notation:

X⁻⁻ denotes complement of X

F = "On input $\langle A, B \rangle$, where A and B are DFAs:

- 1. Construct DFA C as described.
- **2.** Run TM T from Theorem 4.4 on input $\langle C \rangle$.
- **3.** If T accepts, accept. If T rejects, reject."

Thm 4.4: E_{DFA} is a decidable language