

DRMAN SINGH BHATI ZEVILLION

Department of Computer Science and Engineering

Program: BE

	1 10 Brain.		
Date	18 June 2024	Maximum Marks	50
Course Code	CD343AI	Duration	90 min
4 th Sem	IV Semester	CIE-I	

Design and Analysis of Algorithms

(Common to AIML/CSE/CD/CY/ISE)

Sl. No.	Test Questions	M	L	co
1a	Summarise the framework for analysis of algorithms.	05	L1	CO2
1b	With suitable notations and graphs, explain the different asymptotic notations. Give two examples in each case.	05	L2	CO1
2a	Design a recursive algorithm to find the sum of cubes of first $'n'$ natural numbers. Set up a recurrence, solve and determine the time complexity of the algorithm.	05	L2	CO1
2b	Write an algorithm to arrange the numbers in ascending order using Selection Sort. Evaluate the time complexity. Compare it with merge-sort algorithm.	05	L1	соз
3a	Sort the following functions in the increasing order of growth. n^3 , 2^n , $\log_5 n$, $3n$, $\log_2 n$, \sqrt{n} , $n \log n$ Indicate how much the functions value will change if its argument is increased four-fold.	05	L2	CO2
3b	Write the pseudocode for merge sort and describe the process. Setup a recurrence and decide the time complexity.	05	L2	CO1
(4a)	Apply Master's theorem to following recurrence and indicate the efficiency class. $i.T(n) = 2T\left(\frac{n}{2}\right) + n \qquad ii. T(n) = 8T\left(\frac{n}{2}\right) + 5n^2$	04	L3	CO1
4b	Derive the worst-case efficiency class for the quick sort. Show the first split for the following array by considering the leftmost element as the pivot: 38, 81, 22, 48, 18, 50, 31, 58	06	L3	CO2
5a	Mention the 3 variations of decrease-and-conquer and give an example algorithm in each case.	04	L1	cos
(5b)	 Consider the graph shown in Fig 5b. i. Apply DFS algorithm by considering vertex '1' as the source and write the traversal sequence. Show the contents of stack during DFS and also draw the DFS forest. 	06	L3	cos

Course Outcomes

CO1	Apply knowledge of computing and mathematics to algorithm analysis and design								
CO2	Analyze a p	problem	and	identify	the	computing	requirements	appropriate	for
	solution								7.60

Date	July 2024	Maximum Marks	10+50
Course Code	CD343AI	Duration	120 min
Sem	IV	CIE-II	
	Design and Analysi	s of Algorithms	

(Common to AIML/CSE/CD/CY/ISE)

	AND THE RESIDENCE OF THE PARTY			
Si. No.	Questions	M	L	CO
	PART A			
1.1	Is it possible to find transitive closure of a digraph using Depth First Search (DFS) or Breadth-first search (BFS)? Justify the answer	2	L3	CO2
1.2	Given a text of length n=30 and a pattern of length m=4, how many shifts will the Horspool algorithm perform in the worst case?	2	L3	CO2
1.3	In a max heap containing n elements, the smallest element can be found in worst time	2	L1	CO1
1.4	Why Floyd-Warshall Algorithm better for Dense Graphs and not for Sparse Graphs?	2	L3	CO2
1.5	List any four limitations of Distribution Counting Sort	2	L2	CO1
	PART B			
1a	Apply DFS traversal to find the topological order of the graph shown in figure 1a from the vertex p (break the ties by the alphabetical order of the vertices)	06	L3	CO3
∴1b	Compare the brute force approach and Instance simplification variant of transform and conquer approach to solve checking element uniqueness in an array.		L1	CO1

2a	comparison counting sort for the list: 94, 73, 26, 11, 05, 77, 31 to sort the elements in non-decreasing order.	06	L2						
2b	Write the pseudocode of Warshall's algorithm and prove that the time efficiency of warshall's algorithm is cubic.	04	L2						
3a	Apply heapsort to arrange the list 8, 12, 15, 3, 5, 1, 43, -7 in ascending order by using array representation of heap.	06	L3						
3b	Compute binomial coefficient of ⁵ C ₃ using dynamic programming	04	L2						
	Apply floyd's algorithm to find all pairs shortest path for the digraph shown in with the weight matrix $ \begin{pmatrix} 0 & 2 & \infty & 1 & 8 \end{pmatrix} $								
4.	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	10	.L3						
	(3 ∞ ∞ ∞ 0)								
5	Use input enhancement technique for the pattern RNARNAKARNA and apply Boyer Moore algorithm to find the occurrence of this pattern in the text RAVANAKARNA_RAMAYANA_EPIC _SEETHA NNARNA_RNARNAKARNA	10	L3						
Cour	se Outcomes								
CO1	Apply knowledge of computing and mathematics to algorithm analy	sis an	d desig						
CO2	Analyze a problem and identify the computing requirements ap	propri	ate for						
	solution								
CO3	Apply mathematical foundations, algorithmic principles, and co	mpute	r scier						
	theory to the modeling, and evaluation of computer-based solution	is in a	way th						
A STEER BOOK	demonstrates comprehension of the trade one involved in design of	-32303.	emonstrates comprehension of the trade-offs involved in design choices.						

Show the state of each pass and final array after applying

RV College of Engineering® Mysore Road, RV Vidyaniketan Post, Bengaluru - 560059, Karnataka, India

PAMAN STAUM BHOST JOURS MAMAR

24578

Department of Computer Science and Engineering

Program: BE

	110514111	. DL	
Date	26 Aug 2024	Maximum Marks	60
Course Code	CD343AI	Duration	90 min
4 th Sem	IV Semester	CIE-I	
	Design and Analysis		
	(C) AD (T) (C	GE (GD (GY/IGE)	

(Common to AIML/CSE/CD/CY/ISE)

fine spanning tree. Ind the compression ratio for the second tree. B = 40%, B = 2 = 10%, C = 100%, C = 100%.	r the giver	a data		2	1
= 8 = 40%, $B = 2 = 10%$, $C = 10%$	r the give	a data			
ing Huffman coding the cha	= 4 = 20% racters ar	D = 3 = 15	5%,_ = 3 = 15%	2	2
	A	0			
	В	100		1	
	C	110			
	D	101			
	W. Jake Way	111	A STATE OF THE STA		
olain how Dijkrasta's algori	ithm diffe	r from Prin	n's algorithm	2	2
				2	1
	0 00			2	1
p	lain how Dijkrasta's algori	A B C D lain how Dijkrasta's algorithm difference a state-space tree in the context	A 0 B 100 C 110 D 101 _ 111 lain how Dijkrasta's algorithm differ from Principle a state-space tree in the context of the back	A 0 B 100 C 110 D 101 _ 111 lain how Dijkrasta's algorithm differ from Prim's algorithm ine a state-space tree in the context of the backtracking algorithm	A 0 B 100 C 110 D 101

Sl.	Improvement Test Questions	M	L
No.	Apply 0/1 Knapsack, find the maximum profit for the given data C= 5 Wi 2 1 3 2 Pi 8 6 16 11	10	3
A SHOW	Pi 8 6 16 11 Apply Prim's algorithm to find the Minimum Spanning Tree (MST) for the given graph. Write the spanning tree after finding the MST	10	3

	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$						
3 a	Compare Backtracking and Branch & bound.	4	2	2			
3 b	Write the decision tree for finding minimum of three numbers.						
	Consider an assignment problem where you have to assign n people to n jobs in such a way that the total cost of the assignment is minimized. The cost matrix for assigning each person to each job is given below:						
	Job/Person Job 1 Job 2 Job 3 Job 4 Person 1 9 2 7 8						
4	Person 2 6 4 3 7	10	3	3			
	Person 3 5 8 1 8						
	Person 4 7 6 9 4						
	(a) Calculate the lower bound for this assignment problem. (b) Find the solution using branch and bound						
5:	Briefly discuss P and NP problems used in problem solving	6	2	2			
5	Define greedy technique, how it differs from dynamic programming?	4	2	1			