Coleman Extensions Examples

Sachi Hashimoto and Travis Morrison

February 6, 2020

Abstract

This shows some example calculations using the Coleman Extensions Magma library for computing Coleman integrals to number field points and run effective Chabauty for curves with known infinite order divisors.

1 A curve without an infinite order rational point

To load the code you must load both the Coleman library of Balakrishnan and Tuitman as well as the Coleman Extensions library:

```
> load "coleman.m";
> load "colemanextensions.m";
```

In this example we consider the Chabauty-Coleman calculation for the curve with the plane model $y^3 = x^4 + 7x^3 + 3x^2 - x$. First we compute the rank using RankBounds.

```
> f:=x^4 + 7*x^3 + 3*x^2 - x;
> RankBounds(f,3:ReturnGenerators:=true)
1 1 [*
        x^3 + 3*x^2 + 3*x - 1,
        x^3 + 3/4*x^2 + 3/16*x - 1/64,
        x,
        x^3 + 7*x^2 + 3*x + 1,
        x^3 + 3*x^2 - 2*x + 1,
        x^3 - x^2 + 3*x - 1,
        x^3 + 6*x^2 + 3*x - 1
```

Since x represents a torsion divisor, we have to choose an infinite order divisor which is a sum of points defined over a degree three extension of \mathbb{Q} . Note that many degree three options also represent torsion divisors, for example $x^3 + 6x^2 + 3x - 1 = f - x^2$ and is torsion. We can check whether a divisor is torsion by taking Coleman integrals on basis differentials over the divisor: if the integrals are all zero to p-adic precision, the divisor is torsion.

For example we check if $x^3 + 7 * x^2 + 3 * x + 1$ is torsion. First we define g and f and find the prime over which we can define the divisor for g, by finding the first split prime not dividing the discriminant of the curve. The Q-divs function searches for rational points to a given bound and computes their associated data also computes divisor g and its associated data in the form recognized by the code.

```
> f:=x<sup>4</sup> + 7*x<sup>3</sup> + 3*x<sup>2</sup> - x;
> g:=x<sup>3</sup> + 7*x<sup>2</sup> + 3*x + 1;
> first_split_prime(g,33264270000);
```

```
47
> p:=47;
> data:=coleman_data(y^3-f,p,10);
> Qdivs:=Q_divs(data,1000,g);
   For example, here we get a point at [0,0,1], the point at infinity, and also the divisor q.
> Qdivs;
    rec<recformat<x, b, inf, xt, bt, index, divisor, L> |
        x := [0],
        b := [
            [1 + 0(47^10), 0, 0]
        ],
        inf := false,
        divisor := false,
        L := Rational Field>,
    rec<recformat<x, b, inf, xt, bt, index, divisor, L> |
        x := [0],
        b := [
            [1 + 0(47^10), 0, 0]
        ],
        inf := true,
        divisor := false,
        L := Rational Field>,
    rec<recformat<x, b, inf, xt, bt, index, divisor, L> |
        x := [-14141859620773563 + 0(47^10), 14932373399921992 + 0(47^10),
            -790513779148436 + 0(47^10), -14141859620773563 + 0(47^10),
            14932373399921992 + 0(47^10), -790513779148436 + 0(47^10)],
        b := [
            [1 + 0(47^10), 5427448791236738 + 0(47^10), 14141859620773562 +
                0(47^10)],
            [1 + 0(47^10), -1029226802316704 + 0(47^10), -14932373399921993 +
                0(47^10)],
            [1 + 0(47^{10}), -4398221988920032 + 0(47^{10}), 790513779148435 +
                0(47^10) ].
            [1 + 0(47^10), 5427448791236738 + 0(47^10), 14141859620773562 +
                0(47^10)],
            [1 + 0(47^10), -1029226802316704 + 0(47^10), -14932373399921993 +
                0(47^10)],
            [1 + 0(47^10), -4398221988920032 + 0(47^10), 790513779148435 +
                0(47^10)
        ],
        inf := false,
        divisor := true,
        L := Number Field with defining polynomial x^6 + 42*x^5 + 655*x^4 +
            4620*x^3 + 14095*x^2 + 13482*x + 4657 over the Rational Field>
1
   We can integrate over the divisor g on basis differentials to check if it is torsion using the following
commands:
> inf:=Qdivs[2];
> gdiv:=Qdivs[3];
> coleman_integrals_on_basis_to_div(inf,gdiv,data:e:=450);
(-10613812882497*47 + 0(47^9) 123401116565*47 + 0(47^9) -5409192954888*47 +
    0(47^9) 482515211169635 + 0(47^9) -198795405305749 + 0(47^9)
    -352379965042056 + O(47^9)
9
```

Showing Div(g) is non-torsion. This can be done automatically using the is_torsion function:

```
> is_torsion(data,400,g);
false
> h:=x^3 + 6*x^2 + 3*x - 1;
> p:=first_split_prime(h,33264270000);
> is_torsion(data,200,h);
true
```

We will run Chabauty-Coleman using the divisor g.

We can construct the splitting field of g and set the divisor corresponding to g manually (instead of using Q-div shown above) by computing the b_0^i vector $[1, y, y^2]$ using the following code. We start by defining the Coleman data from the Balakrishnan and Tuitman code, then we compute the points to set in the divisor.

```
> p:=47;
> N:=10;
> data:=coleman_data(y^3-f,p,N);
> L, roots:=SplittingField(x^3 + 7*x^2 + 3*x + 1);
> bvals:=[];
> for r in roots do
for> bool,b:=IsPower(Evaluate(f,r),3);
for> bvals:=Append(bvals,[1,b,b^2]);
for> end for;
> bvals;
Γ
    Г
        1,
        1/2096*(3*L.1^5 + 109*L.1^4 + 1382*L.1^3 + 7174*L.1^2 + 13647*L.1 +
        1/1048*(-3*L.1^4 - 84*L.1^3 - 682*L.1^2 - 1840*L.1 - 1807)
    ],
        1,
        1/262*(-L.1^4 - 28*L.1^3 - 271*L.1^2 - 1050*L.1 - 646),
        1/524*(3*L.1^4 + 84*L.1^3 + 682*L.1^2 + 1316*L.1 + 235)
   ],
        1/2096*(-3*L.1^5 - 101*L.1^4 - 1158*L.1^3 - 5006*L.1^2 - 5247*L.1 +
            3035),
        1/1048*(-3*L.1^4 - 84*L.1^3 - 682*L.1^2 - 792*L.1 + 5529)
    ]
]
> OL:=MaximalOrder(L);
> p_splitting:=Factorization(p*OL);
> prime_over_p:=p_splitting[1][1];
> inf:=false;
> divisor:=true;
> D:=set_bad_div(roots,bvals,inf,data,L,prime_over_p,divisor);
rec<recformat<x, b, inf, xt, bt, index, divisor, L> |
    x := [-790513779148436 + 0(47^10), -14141859620773563 + 0(47^10),
        14932373399921992 + 0(47^10)],
    b := [
        [1 + 0(47^{10}), -4398221988920032 + 0(47^{10}), 790513779148435 + 0(47^{10})]
        [1 + 0(47^10), 5427448791236738 + 0(47^10), 14141859620773562 +
```

While manually setting divisor provides mroe flexibility, in most cases the user will want to set $\mathrm{Div}(g) - 3\infty$ as a divisor on f by simply defining the usual Coleman data from Balakrishnan and Tuitman and then run the Q_divs function:

```
> g:=x^3 + 7*x^2 + 3*x + 1;
> bound:=1000;
> Qdivs:=Q_divs(data, bound, g);
```

We can run effective Chabauty using this known infinite order divisor to compute the vanishing differential using the function

```
> L,v:=effective_chabauty_with_Qdiv(data:Qpoints:=Qdivs,e:=200);
```

As in the code of Balakrishnan and Tuitman this returns a list of candidate points and annihilating differentials:

```
> L;
rec<recformat<x, b, inf, xt, bt, index> |
        x := 0(47^6),
        b := [1 + 0(47^10), 0(47^4), 0(47^2)],
        inf := true>,
    rec<recformat<x, b, inf, xt, bt, index> |
        x := 0(47^6),
        b := [1 + 0(47^{10}), 0(47^{2}), 0(47^{4})],
        inf := false>,
    rec<recformat<x, b, inf, xt, bt, index> |
        x := 4246669284 + 0(47^6),
        b := [1 + 0(47^{10}), 0(47^{2}), 0(47^{4})],
        inf := false>,
    rec<recformat<x, b, inf, xt, bt, index> |
        x := 1 + 0(47^2),
        b := [1 + 0(47^10), 584 + 0(47^2), 870 + 0(47^2)],
        inf := false>
]
> v;
Γ
    [1 + 0(47^3), 0(47^3), 31133 + 0(47^3)],
    [0(47^3), 1 + 0(47^3), -41418 + 0(47^3)]
1
```

The vanishing differentials are computed by finding regular one-forms which vanishes on the integral over D as well as all known rational points; this integral over D is computed by summing over the integrals to all points in the support of the divisor Div(g) from the basepoint ∞ .

2 An endomorphism example

One can also use the code to compute integrals to number field points, for example to check if a point is torsion. Here we exhibit another example of points on a Picard curve which are not explained by

torsion or linearity, but instead come from the presence of extra endomorphisms of the curve. The curve is a rank 2 Picard curve given by the plane model $y^3 - (x^4 - 2)$ and we can run Chabauty as in the example above at p = 5 to get 5-adic points which can be recognized as global points $Q_1 = [i, -1, 1]$ and $Q_2 = [-i, -1, 1]$.

There is a function which computes basis integrals to number field points, allowing one to quickly test relations with Coleman integrals:

For example, this shows that $Q_1 + Q_2 - 2\infty$ is torsion while $Q_i - \infty$ is not torsion. More generally, one can use compute_integrals to easily compute all basis integrals between an enumerated sequence of rational points (replacing the empty sequence) and an enumerated sequence of points over a number field K.