« Bi-inductive Structural Semantics »

Patrick Cousot

École normale supérieure 45 rue d'Ulm

75230 Paris cedex 05, France

Patrick.Cousot@ens.fr www.di.ens.fr/~cousot

Radhia Cousot

École polytechnique & CNRS Route de Saclay

91128 Palaiseau Cedex, France

Radhia.Cousot@polytechnique.fr www.polytechnique.edu/Radhia.Cousot

Fourth Workshop on Structural Operational Semantics SOS 2007 — Wroclaw, Poland July 9th, 2007

Contents

Motivation	3
Bi-inductive structural definitions	5
Example: semantics of the eager λ -calculus	8
Abstraction	43
Conclusion	16

1. Motivation

Motivation

We look for a formalism to specify abstract program semantics

from definitional semantics ... to static program analysis algorithms

- coping with termination & non-termination,
- handling the many different styles of presentations found in the literature (rules, fixpoint, equations, constraints, ...) in a uniform way
- A simple generalization of inductive definitions from sets to posets seems adequate.

2. Bi-inductive Structural Definitions

Inductive definitions

Set-theoretic [Acz77]

$$\langle \wp(\mathcal{U}), \subseteq \rangle$$

$$rac{P}{c} \in \mathcal{R} \quad (P \in \wp(\mathcal{U}), c \in \mathcal{U})$$

$$F(X) riangleq \left\{ c \; \middle| \; \exists rac{P}{c} \in \mathcal{R} : P \subseteq X
ight\}$$

$$\mathsf{lfp}^\subseteq F \in \wp(\mathcal{U})$$

$$\subseteq$$
-least $X:F(X)=X$

$$\subseteq$$
-least $X: F(X) \subseteq X$

$$\left\{rac{X}{c} \;\middle|\; X \subseteq \mathcal{U} \land c \in F(X)
ight\}$$

universe

rules

transformer

fixpoint def.

equational def.

constraint def.

rules

Inductive definitions

Set-theoretic [Acz77]

$$\langle \wp(\mathcal{U}), \subseteq \rangle$$

$$rac{P}{c} \in \mathcal{R} \quad (P \in \wp(\mathcal{U}), c \in \mathcal{U}) \qquad \qquad rac{P}{C} \in \mathcal{R} \quad (P, C \in \mathcal{D})$$

$$F(X) riangleq \left\{ c \; \middle| \; \exists rac{P}{c} \in \mathcal{R} : P \subseteq X
ight\}$$

$$\mathsf{lfp}^\subseteq F \in \wp(\mathcal{U})$$

$$\subseteq$$
-least $X: F(X) = X$

$$\subseteq$$
-least $X: F(X) \subseteq X$

$$\left\{rac{X}{c} \;\middle|\; X \subseteq \mathcal{U} \land c \in F(X)
ight\}$$

$$\langle \mathcal{D}, \sqsubseteq
angle$$

$$rac{P}{C} \in \mathcal{R} \quad (P, C \in \mathcal{D})$$

$$F(X) riangleq \left\{ c \mid \exists rac{P}{c} \in \mathcal{R} : P \subseteq X
ight\} \; F(X) riangleq igsqcup \left\{ C \mid \exists rac{P}{c} \in \mathcal{R} : P \sqsubseteq X
ight\} \; ext{transformer}$$

$$\mathsf{lfp}^{\sqsubseteq}\,F\in\mathcal{D}$$

$$\sqsubseteq$$
-least $X:F(X)=X$

$$\sqsubseteq$$
-least $X: F(X) \sqsubseteq X$

$$\Big\{rac{X}{F(X)}\ \Big|\ X\in\mathcal{D}\Big\}$$

3. Semantics of the Eager λ -calculus

Syntax

Syntax of the Eager λ -calculus

Trace Semantics

Example I: Finite Computation

function argument
$$((\lambda x \cdot x \times x) (\lambda y \cdot y)) ((\lambda z \cdot z) 0)$$

$$\rightarrow \qquad \qquad \text{evaluate function}$$

$$((\lambda y \cdot y) (\lambda y \cdot y)) ((\lambda z \cdot z) 0)$$

$$\rightarrow \qquad \qquad \text{evaluate function, cont'd}$$

$$(\lambda y \cdot y) ((\lambda z \cdot z) 0)$$

$$\rightarrow \qquad \qquad \text{evaluate argument}$$

$$(\lambda y \cdot y) 0$$

$$\rightarrow \qquad \qquad \text{apply function to}$$

$$0 \qquad \text{a value!} \qquad \text{argument}$$

Example II: Infinite Computation

```
function argument
(\lambda \times \cdot \times \times) (\lambda \times \cdot \times \times)
\rightarrow \qquad \text{apply function to argument}
(\lambda \times \cdot \times \times) (\lambda \times \cdot \times \times)
\rightarrow \qquad \text{apply function to argument}
(\lambda \times \cdot \times \times) (\lambda \times \cdot \times \times)
\rightarrow \qquad \text{apply function to argument}
```

non termination!

Example III: Erroneous Computation

a runtime error!

Finite, Infinite and Erroneous Trace Semantics

Traces

- \mathbb{T}^* (resp. \mathbb{T}^+ , \mathbb{T}^{ω} , \mathbb{T}^{∞} and \mathbb{T}^{∞}) be the set of finite (resp. nonempty finite, infinite, finite or infinite, and nonempty finite or infinite) sequences of terms
- $-\epsilon$ is the empty sequence $\epsilon \cdot \sigma = \sigma \cdot \epsilon = \sigma$.
- $-|\sigma| \in \mathbb{N} \cup \{\omega\}$ is the length of $\sigma \in \mathbb{T}^{\infty}$. $|\epsilon| = 0$.
- If $\sigma \in \mathbb{T}^+$ then $|\sigma| > 0$ and $\sigma = \sigma_0 \bullet \sigma_1 \bullet \ldots \bullet \sigma_{|\sigma|-1}$.
- If $\sigma \in \mathbb{T}^{\omega}$ then $|\sigma| = \omega$ and $\sigma = \sigma_0 \bullet \ldots \bullet \sigma_n \bullet \ldots$

Operations on Traces

- For $a \in \mathbb{T}$ and $\sigma \in \mathbb{T}^{\infty}$, we define $a@\sigma$ to be $\sigma' \in \mathbb{T}^{\infty}$ such that $\forall i < |\sigma| : \sigma'_i = a \ \sigma_i$

Operations on Traces (Cont'd)

- Similarly for $a \in \mathbb{T}$ and $\sigma \in \mathbb{T}^{\infty}$, $\sigma @ a$ is σ' where $\forall i < |\sigma| : \sigma'_i = \sigma_i \ a$

Finite and Infinite Trace Semantics

Note: $a[x \leftarrow b]$ is the capture-avoiding substitution of b for all free occurrences of x within a. We let FV(a) be the free variables of a. We define the call-by-value semantics of closed terms (without free variables) $\overline{\mathbb{T}} \triangleq \{a \in \mathbb{T} \mid FV(a) = \varnothing\}.$

$$\begin{array}{c}
a[x \leftarrow v] \bullet \sigma \in \vec{S} \\
\hline
(\lambda x \cdot a) v \bullet a[x \leftarrow v] \bullet \sigma \in \vec{S} \\
\hline
(\lambda x \cdot a) v \bullet a[x \leftarrow v] \bullet \sigma \in \vec{S} \\
\hline
(\lambda x \cdot a) v \bullet a[x \leftarrow v] \bullet \sigma \in \vec{S} \\
\hline
(\lambda x \cdot a) v \bullet a[x \leftarrow v] \bullet \sigma \in \vec{S} \\
\hline
(\lambda x \cdot a) v \bullet a[x \leftarrow v] \bullet \sigma \in \vec{S} \\
\hline
(\alpha v) \bullet \sigma' \in \vec{S} \\$$

Note: $a[x \leftarrow b]$ is the capture-avoiding substitution of b for all free occurrences of x within a. We let FV(a) be the free variables of a. We define the call-by-value semantics of closed terms (without free variables) $\overline{\mathbb{T}} \triangleq \{a \in \mathbb{T} \mid FV(a) = \varnothing\}.$

$$\begin{array}{c}
a[x \leftarrow v] \bullet \sigma \in \vec{S} \\
\hline
(\lambda x \cdot a) v \bullet a[x \leftarrow v] \bullet \sigma \in \vec{S} \\
\hline
(\lambda x \cdot a) v \bullet a[x \leftarrow v] \bullet \sigma \in \vec{S}
\end{array} \sqsubseteq, v \in \mathbb{V} \\
\hline
\frac{\sigma \in \vec{S}^{\omega}}{a@\sigma \in \vec{S}} \sqsubseteq, a \in \mathbb{V} \\
\hline
\frac{\sigma \bullet v \in \vec{S}^{+}, (a v) \bullet \sigma' \in \vec{S}}{(a@\sigma) \bullet (a v) \bullet \sigma' \in \vec{S}} \sqsubseteq, v, a \in \mathbb{V} \\
\hline
\frac{\sigma \in \vec{S}^{\omega}}{\sigma@b \in \vec{S}} \sqsubseteq \\
\hline
\frac{\sigma \bullet v \in \vec{S}^{+}, (v b) \bullet \sigma' \in \vec{S}}{(\sigma@b) \bullet (v b) \bullet \sigma' \in \vec{S}} \sqsubseteq, v \in \mathbb{V}
\end{array}$$

Note: $a[x \leftarrow b]$ is the capture-avoiding substitution of b for all free occurences of x within a. We let FV(a) be the free variables of a. We define the call-by-value semantics of closed terms (without free variables) $\overline{\mathbb{T}} \triangleq \{a \in \mathbb{T} \mid FV(a) = \varnothing\}.$

$$\begin{array}{c}
a[x\leftarrow v] \bullet \sigma \in \vec{S} \\
\hline
(\lambda x \cdot a) v \bullet a[x\leftarrow v] \bullet \sigma \in \vec{S} \\
\hline
(\lambda x \cdot a) v \bullet a[x\leftarrow v] \bullet \sigma \in \vec{S}
\end{array} \sqsubseteq, v \in \mathbb{V} \\
\frac{\sigma \in \vec{S}^{\omega}}{a@\sigma \in \vec{S}} \sqsubseteq, a \in \mathbb{V} \\
\frac{\sigma \bullet v \in \vec{S}^{+}, (a v) \bullet \sigma' \in \vec{S}}{(a@\sigma) \bullet (a v) \bullet \sigma' \in \vec{S}} \sqsubseteq, v, a \in \mathbb{V} \\
\frac{\sigma \in \vec{S}^{\omega}}{\sigma@b \in \vec{S}} \sqsubseteq \\
\frac{\sigma \bullet v \in \vec{S}^{+}, (v b) \bullet \sigma' \in \vec{S}}{(\sigma@b) \bullet (v b) \bullet \sigma' \in \vec{S}} \sqsubseteq, v \in \mathbb{V}
\end{array}$$

Note: $a[x \leftarrow b]$ is the capture-avoiding substitution of b for all free occurences of x within a. We let FV(a) be the free variables of a. We define the call-by-value semantics of closed terms (without free variables) $\overline{\mathbb{T}} \triangleq \{a \in \mathbb{T} \mid FV(a) = \varnothing\}.$

The Computational Lattice

Given $S, T \in \wp(\mathbb{T}^{\infty})$, we define

$$-S^+ \triangleq S \cap \mathbb{T}^+$$

finite traces

$$-S^{\omega} \triangleq S \cap \mathbb{T}^{\omega}$$

infinite traces

$$-S \sqsubseteq T \triangleq S^+ \subseteq T^+ \land S^\omega \supseteq T^\omega$$
 computational order

$$-\langle \wp(\mathbb{T}^{\infty}), \sqsubseteq, \mathbb{T}^{\omega}, \mathbb{T}^{+}, \sqcup, \sqcap \rangle$$
 is a complete lattice

$$\begin{array}{c}
a[x \leftarrow v] \bullet \sigma \in \vec{S} \\
\hline
(\lambda x \cdot a) v \bullet a[x \leftarrow v] \bullet \sigma \in \vec{S} \\
\hline
(\lambda x \cdot a) v \bullet a[x \leftarrow v] \bullet \sigma \in \vec{S}
\end{array} \sqsubseteq, v \in \mathbb{V} \\
\hline
\frac{\sigma \in \vec{S}^{\omega}}{a@\sigma \in \vec{S}} \sqsubseteq, a \in \mathbb{V} \\
\hline
(a@\sigma) \bullet (a v) \bullet \sigma' \in \vec{S}} \sqsubseteq, v, a \in \mathbb{V}$$

$$\frac{\sigma \in \vec{\mathbb{S}}^{\omega}}{\sigma @b \in \vec{\mathbb{S}}} \sqsubseteq$$

$$\frac{\sigma \cdot \mathsf{v} \in \vec{\mathbb{S}}^+, \ (\mathsf{v} \ \mathsf{b}) \cdot \sigma' \in \vec{\mathbb{S}}}{(\sigma @ \mathsf{b}) \cdot (\mathsf{v} \ \mathsf{b}) \cdot \sigma' \in \vec{\mathbb{S}}} \sqsubseteq, \ \mathsf{v} \in \mathbb{V}$$

Note: $a[x \leftarrow b]$ is the capture-avoiding substitution of b for all free occurrences of x within a. We let FV(a) be the free variables of a. We define the call-by-value semantics of closed terms (without free variables) $\overline{\mathbb{T}} \triangleq \{a \in \mathbb{T} \mid FV(a) = \emptyset\}.$

Note: $a[x \leftarrow b]$ is the capture-avoiding substitution of b for all free occurrences of x within a. We let FV(a) be the free variables of a. We define the call-by-value semantics of closed terms (without free variables) $\overline{\mathbb{T}} \triangleq \{a \in \mathbb{T} \mid FV(a) = \emptyset\}.$

Fixpoint big-step maximal trace semantics

The bifinitary trace semantics is

$$ec{\mathbb{S}} = \mathsf{lfp}^{\sqsubseteq} ec{F}$$

where $ec{F} \in \wp(\overline{\mathbb{T}}^{\infty}) \mapsto \wp(\overline{\mathbb{T}}^{\infty})$ is

$$\begin{split} \vec{F}(S) &\triangleq \{\mathsf{v} \in \overline{\mathbb{T}}^{\infty} \mid \mathsf{v} \in \mathbb{V}\} \cup \\ &\{(\boldsymbol{\lambda} \, \mathsf{x} \cdot \mathsf{a}) \, \mathsf{v} \cdot \mathsf{a} [\mathsf{x} \leftarrow \mathsf{v}] \cdot \boldsymbol{\sigma} \mid \mathsf{v} \in \mathbb{V} \wedge \mathsf{a} [\mathsf{x} \leftarrow \mathsf{v}] \cdot \boldsymbol{\sigma} \in S\} \cup \\ &\{\sigma @ \mathsf{b} \mid \boldsymbol{\sigma} \in S^{\omega}\} \cup \\ &\{(\sigma @ \mathsf{b}) \cdot (\mathsf{v} \, \mathsf{b}) \cdot \boldsymbol{\sigma}' \mid \boldsymbol{\sigma} \neq \boldsymbol{\epsilon} \wedge \boldsymbol{\sigma} \cdot \mathsf{v} \in S^{+} \wedge \mathsf{v} \in \mathbb{V} \wedge (\mathsf{v} \, \mathsf{b}) \cdot \boldsymbol{\sigma}' \in S\} \cup \\ &\{\mathsf{a} @ \boldsymbol{\sigma} \mid \mathsf{a} \in \mathbb{V} \wedge \boldsymbol{\sigma} \in S^{\omega}\} \cup \\ &\{(\mathsf{a} @ \boldsymbol{\sigma}) \cdot (\mathsf{a} \, \mathsf{v}) \cdot \boldsymbol{\sigma}' \mid \mathsf{a}, \mathsf{v} \in \mathbb{V} \wedge \boldsymbol{\sigma} \neq \boldsymbol{\epsilon} \wedge \boldsymbol{\sigma} \cdot \mathsf{v} \in S^{+} \wedge (\mathsf{a} \, \mathsf{v}) \cdot \boldsymbol{\sigma}' \in S\} \end{split}.$$

Relational Semantics

Trace Semantics

Relational Semantics = α (Trace Semantics)

Relational Semantics

Abstraction to the Bifinitary Relational Semantics of the Eager λ -calculus

remember the input/output behaviors, forget about the intermediate computation steps

Bifinitary Relational Semantics of the Eager λ -calculus

$$egin{aligned} \mathbf{v} &\Rightarrow \mathbf{v}, \quad \mathbf{v} \in \mathbb{V} \\ & \frac{\mathsf{a} \Rightarrow \bot}{\mathsf{a} \mathsf{b} \Rightarrow \bot} & \frac{\mathsf{b} \Rightarrow \bot}{\mathsf{a} \mathsf{b} \Rightarrow \bot} & \mathsf{e}, \quad \mathsf{a} \in \mathbb{V} \\ & \frac{\mathsf{a}[\mathsf{x} \leftarrow \mathsf{v}] \Rightarrow r}{(\lambda \mathsf{x} \cdot \mathsf{a}) \quad \mathsf{v} \Rightarrow r} & \mathsf{e}, \quad \mathsf{v} \in \mathbb{V}, \ r \in \mathbb{V} \cup \{\bot\} \\ & \frac{\mathsf{a} \Rightarrow \mathsf{v}, \quad \mathsf{v} \ \mathsf{b} \Rightarrow r}{\mathsf{a} \ \mathsf{b} \Rightarrow r} & \mathsf{e}, \quad \mathsf{v} \in \mathbb{V}, \ r \in \mathbb{V} \cup \{\bot\} \\ & \frac{\mathsf{b} \Rightarrow \mathsf{v}, \quad \mathsf{a} \ \mathsf{v} \Rightarrow r}{\mathsf{a} \ \mathsf{b} \Rightarrow \mathsf{v}, \quad \mathsf{a} \ \mathsf{v} \Rightarrow r} & \mathsf{e}, \quad \mathsf{a} \in \mathbb{V}, \ \mathsf{v} \in \mathbb{V}, \ r \in \mathbb{V} \cup \{\bot\} \end{array}$$

Natural Semantics

Natural Semantics = α (Relational Semantics)

Abstraction to the Natural Big-Step Semantics of the Eager λ -calculus

remember the finite input/output behaviors, forget about non-termination

$$egin{aligned} lpha(T) \stackrel{ ext{def}}{=} igcup \{lpha(\sigma) \mid \sigma \in T\} \ & \ lpha(\sigma_0 \Longrightarrow \sigma_n) \stackrel{ ext{def}}{=} \{\sigma_0 \Longrightarrow \sigma_n\} \ & \ lpha(\sigma_0 \Longrightarrow ot) \stackrel{ ext{def}}{=} arnothing \end{aligned}$$

Natural Big-Step Semantics of the Eager λ -calculus [Kah88]

$$egin{aligned} \mathbf{v} &\Longrightarrow \mathbf{v}, \quad \mathbf{v} \in \mathbb{V} \ & \dfrac{\mathbf{a}[\mathbf{x} \leftarrow \mathbf{v}] \Longrightarrow r}{(oldsymbol{\lambda} \mathbf{x} \cdot \mathbf{a}) \quad \mathbf{v} \Longrightarrow r} \subseteq, \quad \mathbf{v} \in \mathbb{V}, \ r \in \mathbb{V} \ & \dfrac{\mathbf{a} \Longrightarrow \mathbf{v}, \quad \mathbf{v} \ \mathbf{b} \Longrightarrow r}{\mathbf{c}} \subseteq, \quad \mathbf{v} \in \mathbb{V}, \ r \in \mathbb{V} \ & \dfrac{\mathbf{b} \Longrightarrow \mathbf{v}, \quad \mathbf{a} \ \mathbf{v} \Longrightarrow r}{\mathbf{c}} \subseteq, \quad \mathbf{a} \in \mathbb{V}, \ \mathbf{v} \in \mathbb{V}, \ r \in \mathbb{V} \ . \end{aligned}$$

Transition Semantics

Transition Semantics = α (Trace Semantics)

Abstraction to the Transition Semantics of the Eager λ -calculus

remember execution steps, forget about their sequencing

$$egin{aligned} lpha(T) \stackrel{ ext{def}}{=} igcup_{\{lpha(\sigma) \mid \sigma \in T\}} \ & \ lpha(\sigma_0 ullet \sigma_1 ullet \ldots ullet \sigma_n) \stackrel{ ext{def}}{=} \{\sigma_i igcup_{i+1} \mid 0 \leqslant i \land i < n\} \ & \ lpha(\sigma_0 ullet \ldots ullet \sigma_n ullet \ldots) \stackrel{ ext{def}}{=} \{\sigma_i igcup_{i+1} \mid i \geqslant 0\} \end{aligned}$$

Transition Semantics of the Eager λ -calculus [Plo81]

$$((\lambda \times \cdot a) \vee) \longrightarrow a[x \leftarrow v]$$

$$a_0 \longrightarrow a_1$$

$$a_0 \longrightarrow a_1 \longrightarrow a_1$$

$$b_0 \longrightarrow b_1$$

$$v \mapsto b_0 \longrightarrow v \mapsto b_1$$

Approximation

4. Abstraction

Kleenian abstraction

$$-\langle \mathcal{D}, \sqsubseteq, \perp, \sqcup \rangle, \langle \mathcal{D}^{\sharp}, \sqsubseteq^{\sharp}, \perp^{\sharp}, \sqcup^{\sharp} \rangle$$
 dcpos

$$- F \in \mathcal{D} \mapsto \mathcal{D}, F^{\sharp} \in \mathcal{D}^{\sharp} \mapsto \mathcal{D}^{\sharp}$$
 monotone

$$-\alpha \in \mathcal{D} \mapsto \mathcal{D}^{\sharp}$$
 strict and continuous on chains of \mathcal{D}

 $-\alpha \circ F = F^{\sharp} \circ \alpha$, commutation condition

$$\Longrightarrow lpha(\operatorname{lfp}^{\sqsubseteq} F) = \operatorname{lfp}^{\sqsubseteq^{\sharp}} F^{\sharp}$$

OK for abstracting finite behaviors, not infinite ones

Tarskian abstraction

$$-\langle \mathcal{D}, \sqsubseteq, \perp, \sqcup \rangle, \langle \mathcal{D}^{\sharp}, \sqsubseteq^{\sharp}, \perp^{\sharp}, \sqcup^{\sharp} \rangle$$
 dcpos

$$- F \in \mathcal{D} \mapsto \mathcal{D}, F^{\sharp} \in \mathcal{D}^{\sharp} \mapsto \mathcal{D}^{\sharp}$$
 monotone

$$-\alpha \in \mathcal{D} \mapsto \mathcal{D}^{\sharp}$$
 preserves meets

$$-F^{\sharp}\circ\alpha\sqsubseteq^{\sharp}\alpha\circ F$$
, semi-commutation condition

$$egin{array}{lll} -\ orall y\in \mathcal{D}^{\sharp}: (F^{\sharp}(y)\ \sqsubseteq^{\sharp}\ y) \implies (\exists x\in \mathcal{D}: lpha(x)=y \land F(x)\sqsubseteq x \end{array}$$

$$\implies lpha(\mathsf{lfp}^{\sqsubseteq}F) = \mathsf{lfp}^{\sqsubseteq^{\sharp}}F^{\sharp}$$

OK for abstracting infinite behaviors, not finite ones \Rightarrow abstract by parts.

5. Conclusion

Conclusion

- Both finite and infinite semantics are needed in static analysis (such as strictness, [Myc80]), typing [Cou97, Ler06], etc;
- Such static analyzes must be proved correct with respect to a semantics chosen at an various level of abstraction (small-step/big-step trace/relational/natural semantics);
- Static analyzes use various equivalent presentations (fixpoints, equational, constraints and inference rules)
- The bifinite extension of SOS should satisfy these needs.

THE END, THANK YOU

Bibliography

- [Acz77] P. Aczel. An introduction to inductive definitions. In J. Barwise, editor, *Handbook of Mathematical Logic*, volume 90 of *Studies in Logic and the Foundations of Mathematics*, pages 739–782. Elsevier, 1977.
- [Cou97] P. Cousot. Types as abstract interpretations, invited paper. In 24th POPL, pages 316–331, Paris, FR, Jan. 1997. ACM Press.
- [Kah88] G. Kahn. Natural semantics. In K. Fuchi and M. Nivat, editors, *Programming of Future Generation Computers*, pages 237–258. Elsevier, 1988.
- [Ler06] X. Leroy. Coinductive big-step operational semantics. In P. Sestoft, editor, *Proc.* 15th ESOP '2006, Vienna, AT, LNCS 3924, pages 54–68. Springer, 27–28 Mar. 2006.
- [Myc80] A. Mycroft. The theory and practice of transforming call-by-need into call-by-value. In B. Robinet, editor, *Proc.* 4th Int. Symp. on Programming, Paris, FR, 22–24 Apr. 1980, LNCS 83, pages 270–281. Springer, 1980.
- [Plo81] G.D. Plotkin. A structural approach to operational semantics. Technical Report DAIMI FN-19, Aarhus University, DK, Sep. 1981.