An \mathcal{X} -cluster character

joint work with Jan E. Grabowski

Matthew Pressland

Université de Caen-Normandie جامعة كان نور ماندي

The theory of cluster algebras and its applications

جامعة نيويورك أبوظبي 18.12.2024

Slides: https://bit.ly/mdp-abu-dhabi

General philosophy

- ▶ Start with a \mathbb{K} -linear, Krull–Schmidt, Frobenius, stably 2-Calabi–Yau, algebraic extriangulated category \mathcal{C} , with cluster-tilting subcategories.
- ightharpoonup Extract various pieces of data from $\mathcal C$ and its cluster-tilting subcategories.

General philosophy

- ▶ Start with a \mathbb{K} -linear, Krull–Schmidt, Frobenius, stably 2-Calabi–Yau, algebraic extriangulated category \mathcal{C} , with cluster-tilting subcategories.
- ightharpoonup Extract various pieces of data from $\mathcal C$ and its cluster-tilting subcategories.
- Explain how this data transforms under mutation of cluster-tilting subcategories.
- Show that, under the correct additional assumptions, we recover cluster-theoretic data in the sense of Fomin–Zelevinsky.
- ▶ Covers **g**-vectors, **c**-vectors, *B*-matrices, \mathcal{F} -polynomials, \mathcal{A} -cluster variables, $\underline{\mathcal{X}}$ -cluster variables and L-matrices.

General philosophy

- ▶ Start with a \mathbb{K} -linear, Krull–Schmidt, Frobenius, stably 2-Calabi–Yau, algebraic extriangulated category \mathcal{C} , with cluster-tilting subcategories.
- ightharpoonup Extract various pieces of data from $\mathcal C$ and its cluster-tilting subcategories.
- Explain how this data transforms under mutation of cluster-tilting subcategories.
- ▶ Show that, *under the correct additional assumptions*, we recover cluster-theoretic data in the sense of Fomin–Zelevinsky.
- ▶ Covers **g**-vectors, **c**-vectors, *B*-matrices, \mathcal{F} -polynomials, \mathcal{A} -cluster variables, \mathcal{X} -cluster variables¹ and \mathcal{L} -matrices.
- ▶ **Disclaimer:** Many results are due to other authors under more restrictive assumptions.

 $^{^1}$ Fock–Goncharov $\mathcal{A}=$ Fomin–Zelevinsky x, Fock–Goncharov $\mathcal{X}=$ Fomin–Zelevinsky y

Grothendieck groups

- Simplifying assumptions for today:
 - \triangleright \mathcal{C} is Hom-finite,
 - ▶ has cluster-tilting objects (~> finite rank cluster algebras), and
 - $\blacktriangleright \ \mathbb{K} = \overline{\mathbb{K}} \ (\leadsto \text{skew-symmetric exchange matrices}).$

Grothendieck groups

- Simplifying assumptions for today:
 - \triangleright \mathcal{C} is Hom-finite,
 - ▶ has cluster-tilting objects (→ finite rank cluster algebras), and
 - $ightharpoonup \mathbb{K} = \overline{\mathbb{K}} \ (\leadsto skew-symmetric exchange matrices).$
- ▶ Let $\mathcal{T} \subseteq \mathcal{C}$ be cluster-tilting:

$$\mathcal{T} = \{X \in \mathcal{C} : \mathsf{Ext}^1_\mathcal{C}(X,\mathcal{T}) = 0\} = \{X \in \mathcal{C} : \mathsf{Ext}^1_\mathcal{C}(\mathcal{T},X)\}$$

▶ \leadsto Grothendieck groups $K_0(\mathcal{T})$ and $K_0(\operatorname{fd} \mathcal{T})$, for $\operatorname{fd} \mathcal{T} = \{M \colon \mathcal{T}^{\operatorname{op}} \to \operatorname{fd} \mathbb{K}\} = \operatorname{finite-dimensional} \mathcal{T}\text{-modules}.$

Grothendieck groups

- Simplifying assumptions for today:
 - C is Hom-finite,
 - ▶ has cluster-tilting objects (~> finite rank cluster algebras), and
 - $\mathbb{K} = \overline{\mathbb{K}}$ (\leadsto skew-symmetric exchange matrices).
- ▶ Let $\mathcal{T} \subseteq \mathcal{C}$ be cluster-tilting:

$$\mathcal{T} = \{X \in \mathcal{C} : \mathsf{Ext}^1_{\mathcal{C}}(X, \mathcal{T}) = 0\} = \{X \in \mathcal{C} : \mathsf{Ext}^1_{\mathcal{C}}(\mathcal{T}, X)\}$$

- ▶ \leadsto Grothendieck groups $\mathrm{K}_0(\mathcal{T})$ and $\mathrm{K}_0(\mathrm{fd}\,\mathcal{T})$, for $\mathrm{fd}\,\mathcal{T} = \{\mathit{M} \colon \mathcal{T}^\mathrm{op} \to \mathrm{fd}\,\mathbb{K}\} = \mathrm{finite}\text{-dimensional}\,\,\mathcal{T}\text{-modules}.$
- ▶ Both free of (finite) rank #(indec \mathcal{T}), each $\mathcal{T} \in \text{indec } \mathcal{T}$ indexes dual basis vectors $[\mathcal{T}] \in \mathrm{K}_0(\mathcal{T})$ and $[\mathcal{S}_{\mathcal{T}}^{\mathcal{T}}] \in \mathrm{K}_0(\text{fd } \mathcal{T})$:

$$S_T^T(T') = \begin{cases} \mathbb{K}, & T' = T \\ 0, & \text{otherwise.} \end{cases}$$

Index and coindex

▶ Fix $\mathcal{T} \subseteq \mathcal{C}$ cluster-tilting, and let $X \in \mathcal{C}$. Then there are conflations

$$\underbrace{K_{\mathcal{T}}X \rightarrowtail R_{\mathcal{T}}}_{\in \mathcal{T}}X \twoheadrightarrow X \dashrightarrow X \rightarrowtail \underbrace{L_{\mathcal{T}}X \twoheadrightarrow C_{\mathcal{T}}X}_{\in \mathcal{T}} \dashrightarrow .$$

 $ightharpoonup \sim \operatorname{ind}^{\mathcal{T}} X = [R_{\mathcal{T}}X] - [K_{\mathcal{T}}X], \operatorname{coind}^{\mathcal{T}} X = [L_{\mathcal{T}}X] - [C_{\mathcal{T}}X] \in \mathrm{K}_0(\mathcal{T}).$

Index and coindex

▶ Fix $\mathcal{T} \subseteq \mathcal{C}$ cluster-tilting, and let $X \in \mathcal{C}$. Then there are conflations

$$\underbrace{K_{\mathcal{T}}X \rightarrowtail R_{\mathcal{T}}}_{\in \mathcal{T}}X \twoheadrightarrow X \dashrightarrow X \rightarrowtail \underbrace{L_{\mathcal{T}}X \twoheadrightarrow C_{\mathcal{T}}X}_{\in \mathcal{T}} \dashrightarrow .$$

- $ightharpoonup \sim \operatorname{ind}^{\mathcal{T}} X = [R_{\mathcal{T}}X] [K_{\mathcal{T}}X], \operatorname{coind}^{\mathcal{T}} X = [L_{\mathcal{T}}X] [C_{\mathcal{T}}X] \in \mathrm{K}_0(\mathcal{T}).$
- $\blacktriangleright \ \, \text{For} \,\, \mathcal{T}, \mathcal{U} \subseteq \mathcal{C} \,\, \text{cluster-tilting, ind}_{\mathcal{U}}^{\mathcal{T}}, \text{coind}_{\mathcal{U}}^{\mathcal{T}} \colon \mathrm{K}_0(\mathcal{U}) \to \mathrm{K}_0(\mathcal{T}).$

Theorem (Dehy–Keller '08)

 $\operatorname{ind}_{\mathcal{U}}^{\mathcal{T}}$ and $\operatorname{coind}_{\mathcal{T}}^{\mathcal{U}}$ are inverse isomorphisms.

Index and coindex

▶ Fix $T \subseteq C$ cluster-tilting, and let $X \in C$. Then there are conflations

$$\underbrace{K_{\mathcal{T}}X \rightarrowtail R_{\mathcal{T}}}_{\in \mathcal{T}}X \twoheadrightarrow X \dashrightarrow X \rightarrowtail \underbrace{L_{\mathcal{T}}X \twoheadrightarrow C_{\mathcal{T}}X}_{\in \mathcal{T}} \dashrightarrow .$$

- $ightharpoonup \sim \operatorname{ind}^{\mathcal{T}} X = [R_{\mathcal{T}}X] [K_{\mathcal{T}}X], \operatorname{coind}^{\mathcal{T}} X = [L_{\mathcal{T}}X] [C_{\mathcal{T}}X] \in \mathrm{K}_0(\mathcal{T}).$
- ▶ For $\mathcal{T}, \mathcal{U} \subseteq \mathcal{C}$ cluster-tilting, $\operatorname{ind}_{\mathcal{U}}^{\mathcal{T}}$, $\operatorname{coind}_{\mathcal{U}}^{\mathcal{T}} \colon \mathrm{K}_0(\mathcal{U}) \to \mathrm{K}_0(\mathcal{T})$.

Theorem (Dehy-Keller '08)

 $\operatorname{ind}_{\mathcal{U}}^{\mathcal{T}}$ and $\operatorname{coind}_{\mathcal{T}}^{\mathcal{U}}$ are inverse isomorphisms.

- ▶ Duality (over \mathbb{Z}): $\overline{\operatorname{ind}}_{\mathcal{U}}^{\mathcal{T}} := (\operatorname{coind}_{\mathcal{T}}^{\mathcal{U}})^* : \operatorname{K}_0(\operatorname{fd} \mathcal{T}) \xrightarrow{\sim} \operatorname{K}_0(\operatorname{fd} \mathcal{U}),$ $\overline{\operatorname{coind}}_{\mathcal{U}}^{\mathcal{T}} := (\operatorname{ind}_{\mathcal{T}}^{\mathcal{U}})^*.$
- ▶ Cluster dictionary: ind \leftrightarrow **g**-vector, ind \leftrightarrow **c**-vector.

▶ All of the above applies to the triangulated stable category \underline{C} , with $\{\mathcal{T} \subseteq \mathcal{C} \text{ cluster-tilting}\} = \{\underline{\mathcal{T}} \subseteq \underline{C} \text{ cluster-tilting}\}$

▶ All of the above applies to the triangulated stable category $\underline{\mathcal{C}}$, with $\{\mathcal{T} \subseteq \mathcal{C} \text{ cluster-tilting}\} = \{\underline{\mathcal{T}} \subseteq \underline{\mathcal{C}} \text{ cluster-tilting}\}$

Proposition (Keller–Reiten, Koenig–Zhu, Palu, Fu–Keller,...)

Let $\mathcal{T} \subseteq \mathcal{C}$ be cluster-tilting. Then $E^{\mathcal{T}} = \mathsf{Ext}^1_{\mathcal{C}}(-,\mathcal{T}) \colon \mathcal{C}/\mathcal{T} \overset{\sim}{\to} \mathsf{fd}\,\underline{\mathcal{T}}$, and there is a linear map $\beta_{\mathcal{T}} \colon \mathrm{K}_0(\mathsf{fd}\,\underline{\mathcal{T}}) \to \mathrm{K}_0(\mathcal{T})$ such that

$$\beta_{\mathcal{T}}[E^{\mathcal{T}}X] = \mathsf{coind}^{\mathcal{T}}(X) - \mathsf{ind}^{\mathcal{T}}(X).$$

▶ All of the above applies to the triangulated stable category $\underline{\mathcal{C}}$, with $\{\mathcal{T} \subseteq \mathcal{C} \text{ cluster-tilting}\} = \{\underline{\mathcal{T}} \subseteq \underline{\mathcal{C}} \text{ cluster-tilting}\}$

Proposition (Keller-Reiten, Koenig-Zhu, Palu, Fu-Keller,...)

Let $\mathcal{T} \subseteq \mathcal{C}$ be cluster-tilting. Then $E^{\mathcal{T}} = \mathsf{Ext}^1_{\mathcal{C}}(-,\mathcal{T}) \colon \mathcal{C}/\mathcal{T} \xrightarrow{\sim} \mathsf{fd}\,\underline{\mathcal{T}}$, and there is a linear map $\beta_{\mathcal{T}} \colon \mathrm{K}_0(\mathsf{fd}\,\underline{\mathcal{T}}) \to \mathrm{K}_0(\mathcal{T})$ such that

$$\beta_{\mathcal{T}}[E^{\mathcal{T}}X] = \mathsf{coind}^{\mathcal{T}}(X) - \mathsf{ind}^{\mathcal{T}}(X).$$

Theorem (Palu '09, ..., Grabowski-P '24+)

For any cluster-tilting $\mathcal{T},\mathcal{U}\subseteq\mathcal{C}$, there are commutative diagrams

$$\begin{array}{cccc} \mathrm{K}_0(\mathsf{fd}\,\underline{\mathcal{U}}) & \xrightarrow{\beta_{\mathcal{U}}} & \mathrm{K}_0(\mathcal{U}) & \mathrm{K}_0(\mathsf{fd}\,\underline{\mathcal{U}}) & \xrightarrow{\beta_{\mathcal{U}}} & \mathrm{K}_0(\mathcal{U}) \\ & & & & & & & & & & & & & \\ \hline \underline{\mathsf{ind}}_{\mathcal{U}}^{\mathcal{T}} & & & & & & & & & \\ \mathrm{K}_0(\mathsf{fd}\,\underline{\mathcal{T}}) & \xrightarrow{\beta_{\mathcal{T}}} & \mathrm{K}_0(\mathcal{T}) & & & & & & & & \\ \end{array}$$

Theorem (Palu '09, ..., Grabowski-P '24+)

For any cluster-tilting $\mathcal{T},\mathcal{U}\subseteq\mathcal{C}$, there are commutative diagrams

Corollary

For $\mathcal T$ and $\mathcal U$ related by mutation (away from loops or 2-cycles), the matrices of $\beta_{\mathcal T}$ and $\beta_{\mathcal U}$ with respect to the standard bases are related by Fomin–Zelevinsky matrix mutation.

Theorem (Palu '09, ..., Grabowski-P '24+)

For any cluster-tilting $\mathcal{T},\mathcal{U}\subseteq\mathcal{C}$, there are commutative diagrams

Corollary

For \mathcal{T} and \mathcal{U} related by mutation (away from loops or 2-cycles), the matrices of $\beta_{\mathcal{T}}$ and $\beta_{\mathcal{U}}$ with respect to the standard bases are related by Fomin–Zelevinsky matrix mutation.

Warning: $\operatorname{ind}_{\mathcal{U}}^{\mathcal{T}} \circ \operatorname{ind}_{\mathcal{V}}^{\mathcal{U}} \neq \operatorname{ind}_{\mathcal{V}}^{\mathcal{T}} \text{ etc. (but } \beta_{\mathcal{T}} \circ \operatorname{ind}_{\mathcal{U}}^{\mathcal{U}} \circ \operatorname{ind}_{\mathcal{V}}^{\mathcal{U}} = \beta_{\mathcal{T}} \circ \operatorname{ind}_{\mathcal{V}}^{\mathcal{T}}).$

Corollary

For $\mathcal T$ and $\mathcal U$ related by mutation (away from loops or 2-cycles), the matrices of $\beta_{\mathcal T}$ and $\beta_{\mathcal U}$ with respect to the standard bases are related by Fomin–Zelevinsky matrix mutation.

$$\mathcal{U}:\ 1\to 2\to 3 \qquad \qquad \underset{\begin{pmatrix}1&0&0\\1&-1&0\\0&-1&0\end{pmatrix}}{\operatorname{K}_0(\operatorname{fd}\underline{\mathcal{U}})} \xrightarrow{\begin{pmatrix}0&1&1&0\\-1&0&1\\0&-1&0\end{pmatrix}} \operatorname{K}_0(\mathcal{U}) \\ \begin{pmatrix}1&0&0\\1&-1&0\\0&0&1\end{pmatrix} \downarrow \qquad \qquad \downarrow \begin{pmatrix}1&1&0\\0&-1&0\\0&0&1\end{pmatrix} \\ \mathcal{T}=\mu_2\mathcal{U}:\ 1 \xrightarrow[2]{} 3 \qquad \qquad \underset{\begin{pmatrix}0&-1&1\\1&0&-1\\-1&1&0\end{pmatrix}}{\operatorname{K}_0(\operatorname{fd}\underline{\mathcal{T}})} \xrightarrow{\begin{pmatrix}0&-1&1\\1&0&-1\\-1&1&0\end{pmatrix}} \operatorname{K}_0(\mathcal{T})$$

Corollary

For \mathcal{T} and \mathcal{U} related by mutation (away from loops or 2-cycles), the matrices of $\beta_{\mathcal{T}}$ and $\beta_{\mathcal{U}}$ with respect to the standard bases are related by Fomin–Zelevinsky matrix mutation.

$$\mathcal{U}: \ 1 \rightarrow 2 \rightarrow 3 \qquad \qquad \underset{\begin{pmatrix} 1 & 0 & 0 \\ 1 & -1 & 0 \\ 0 & 0 & 1 \end{pmatrix}}{\operatorname{K}_0(\operatorname{fd} \underline{\mathcal{U}})} \xrightarrow{\begin{pmatrix} 0 & 1 & 0 \\ -1 & 0 & 1 \\ 0 & -1 & 0 \end{pmatrix}} \operatorname{K}_0(\mathcal{U}) \\ \downarrow \begin{pmatrix} 1 & 1 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \\ \mathcal{T} = \mu_2 \mathcal{U}: \ 1 \xrightarrow[2]{} \xrightarrow{2} 3 \qquad \qquad \underset{K_0(\operatorname{fd} \underline{\mathcal{T}})}{\operatorname{K}_0(\operatorname{fd} \underline{\mathcal{T}})} \xrightarrow{\begin{pmatrix} 0 & -1 & 1 \\ 1 & 0 & -1 \\ -1 & 1 & 0 \end{pmatrix}} \operatorname{K}_0(\mathcal{T})$$

Definition

Say $(\mathcal{C}, \mathcal{T})$ has a cluster structure if the quiver of \mathcal{U} has no loops or 2-cycles for any $\mathcal{U} \stackrel{\mathsf{mut}}{\sim} \mathcal{T}$.

A-cluster character reminder

▶ $M \in \operatorname{fd} \mathcal{T}$ has \mathcal{F} -polynomial

$$\mathcal{F}(M) = \sum_{[L] \in \mathrm{K}_0(\mathsf{fd}\,\mathcal{T})} \chi(\mathrm{Gr}_{[L]}(M)) x^{[L]} \in \mathbb{K} \mathrm{K}_0(\mathsf{fd}\,\underline{\mathcal{T}}).$$

A-cluster character reminder

▶ $M \in \operatorname{fd} \mathcal{T}$ has \mathcal{F} -polynomial

$$\mathcal{F}(M) = \sum_{[L] \in \mathrm{K}_0(\mathsf{fd}\, \underline{\mathcal{T}})} \chi(\mathrm{Gr}_{[L]}(M)) x^{[L]} \in \mathbb{K} \mathrm{K}_0(\mathsf{fd}\, \underline{\mathcal{T}}).$$

Example

$$\mathcal{T}: \ \ ^1 \underset{2}{\longleftrightarrow} \ \ ^3 \qquad M = \ \ ^\mathbb{K} \underset{1}{\longleftrightarrow} \underset{\mathbb{K}}{\longleftrightarrow} \ \ ^0 \ \oplus \ \ ^0 \underset{\mathbb{K}}{\longleftrightarrow} \ \ ^0$$

$$\mathcal{F}(M) = 1 + 2x_2 + x_2^2 + x_1x_2 + x_1x_2^2 = (1 + x_2 + x_1x_2)(1 + x_2)$$

 $X \in \mathcal{C}$ has A-cluster character

$$CC_{\mathcal{A}}^{\mathcal{T}}(X) = x^{\operatorname{ind}^{\mathcal{T}}(X)}(\beta_{\mathcal{T}})_{*}\mathcal{F}(E^{\mathcal{T}}X)$$

$$= a^{\operatorname{ind}^{\mathcal{T}}(X)} \sum_{[L] \in K_{0}(\operatorname{fd}\mathcal{T})} \chi(\operatorname{Gr}_{[L]}(E^{\mathcal{T}X})) a^{\beta_{\mathcal{T}}[L]} \in \mathbb{K}K_{0}(\mathcal{T}).$$

\mathcal{A} -cluster character reminder

 $ightharpoonup M \in \operatorname{fd} \mathcal{T}$ has \mathcal{F} -polynomial

$$\mathcal{F}(M) = \sum_{[L] \in \mathrm{K}_0(\mathsf{fd}\,\mathcal{T})} \chi(\mathrm{Gr}_{[L]}(M)) x^{[L]} \in \mathbb{K} \mathrm{K}_0(\mathsf{fd}\,\mathcal{T}).$$

 $X \in \mathcal{C}$ has A-cluster character

$$\mathsf{CC}_{\mathcal{A}}^{\mathcal{T}}(X) = x^{\mathsf{ind}^{\mathcal{T}}(X)} (\beta_{\mathcal{T}})_{*} \mathcal{F}(\mathbf{E}^{\mathcal{T}}X)$$

$$= a^{\mathsf{ind}^{\mathcal{T}}(X)} \sum_{[L] \in K_{0}(\mathsf{fd}\,\mathcal{T})} \chi(\mathrm{Gr}_{[L]}(\mathbf{E}^{\mathcal{T}X})) a^{\beta_{\mathcal{T}}[L]} \in \mathbb{K}K_{0}(\mathcal{T}).$$

\mathcal{A} -cluster character reminder

 $ightharpoonup M \in \operatorname{fd} \mathcal{T}$ has \mathcal{F} -polynomial

$$\mathcal{F}(M) = \sum_{[L] \in \mathrm{K}_0(\mathsf{fd}\,\mathcal{T})} \chi(\mathrm{Gr}_{[L]}(M)) x^{[L]} \in \mathbb{K} \mathrm{K}_0(\mathsf{fd}\,\underline{\mathcal{T}}).$$

 $X \in \mathcal{C}$ has A-cluster character

$$CC_{\mathcal{A}}^{\mathcal{T}}(X) = x^{\operatorname{ind}^{\mathcal{T}}(X)}(\beta_{\mathcal{T}})_{*}\mathcal{F}(E^{\mathcal{T}}X)$$

$$= a^{\operatorname{ind}^{\mathcal{T}}(X)} \sum_{[L] \in K_{0}(\operatorname{fd}\mathcal{T})} \chi(\operatorname{Gr}_{[L]}(E^{\mathcal{T}X})) a^{\beta_{\mathcal{T}}[L]} \in \mathbb{K}K_{0}(\mathcal{T}).$$

$$\mathbf{E}^{\mathcal{T}}X = \begin{array}{cccc} \mathbb{K} & \longleftarrow & \mathbf{0} & \longleftarrow & \mathbf{0} & \longleftarrow & \mathbf{0} \\ & \searrow & \mathbb{K} & \nearrow & \mathbf{0} & \oplus & \mathbf{0} & \longleftarrow & \mathbf{0} \end{array} \qquad \beta_{\mathcal{T}} = \begin{pmatrix} \mathbf{0} & -1 & 1 \\ 1 & \mathbf{0} & -1 \\ -1 & 1 & \mathbf{0} \end{pmatrix}$$

$$\mathcal{F}(\mathbf{E}^{\mathcal{T}}X) = 1 + 2x_2 + x_2^2 + x_1x_2 + x_1x_2^2$$

$$\mathsf{CC}_{\mathcal{A}}^{\mathcal{T}}(X) = a_1a_2^{-2}a_3(1 + 2a_1^{-1}a_3 + a_1^{-2}a_3^2 + a_1^{-1}a_2 + a_1^{-2}a_2a_3)$$

\mathcal{X} -cluster character

- ▶ Inputs to the \mathcal{X} -cluster character are $M \in \text{fd} \, \underline{\mathcal{U}}$ for $\mathcal{U} \subseteq \mathcal{C}$ cluster-tilting.
- $lackbox{} \sim M_{\mathcal{U}}^{\pm} \in \mathcal{U}$ such that $eta_{\mathcal{U}}[M] = [M_{\mathcal{U}}^+] [M_{\mathcal{U}}^-]$.

$$\mathsf{CC}^{\mathcal{T},\mathcal{U}}_{\mathcal{X}}(M) = x^{\overline{\mathrm{ind}}_{\mathcal{U}}^{\mathcal{T}}[M]} \frac{\mathcal{F}(\mathrm{E}^{\mathcal{T}} M_{\mathcal{U}}^{+})}{\mathcal{F}(\mathrm{E}^{\mathcal{T}} M_{\mathcal{U}}^{-})} \in \mathsf{Frac}(\mathbb{K}\mathrm{K}_{0}(\mathsf{fd}\,\underline{\mathcal{T}})).$$

\mathcal{X} -cluster character

- ▶ Inputs to the \mathcal{X} -cluster character are $M \in \operatorname{fd} \underline{\mathcal{U}}$ for $\mathcal{U} \subseteq \mathcal{C}$ cluster-tilting.
- $ightharpoonup \sim M_{\mathcal{U}}^{\pm} \in \mathcal{U}$ such that $\beta_{\mathcal{U}}[M] = [M_{\mathcal{U}}^+] [M_{\mathcal{U}}^-].$

$$\mathsf{CC}^{\mathcal{T},\mathcal{U}}_{\mathcal{X}}(M) = x^{\underline{\mathrm{ind}}_{\mathcal{U}}^{\mathcal{T}}[M]} \frac{\mathcal{F}(\mathrm{E}^{\mathcal{T}} M_{\mathcal{U}}^{+})}{\mathcal{F}(\mathrm{E}^{\mathcal{T}} M_{\mathcal{U}}^{-})} \in \mathsf{Frac}(\mathbb{K}\mathrm{K}_{0}(\mathsf{fd}\,\underline{\mathcal{T}})).$$

Proposition

$$[M] = [L] + [N] \implies \mathsf{CC}_{\mathcal{X}}^{\mathcal{T},\mathcal{U}}(M) = \mathsf{CC}_{\mathcal{X}}^{\mathcal{T},\mathcal{U}}(L) \, \mathsf{CC}_{\mathcal{X}}^{\mathcal{T},\mathcal{U}}(N).$$

ightharpoonup consider the values of $CC_{\mathcal{X}}^{\mathcal{T},\mathcal{U}}$ on simple U-modules.

\mathcal{X} -cluster character

- ▶ Inputs to the \mathcal{X} -cluster character are $M \in \operatorname{fd} \underline{\mathcal{U}}$ for $\mathcal{U} \subseteq \mathcal{C}$ cluster-tilting.
- $lackbox{} \sim M_\mathcal{U}^\pm \in \mathcal{U}$ such that $eta_\mathcal{U}[M] = [M_\mathcal{U}^+] [M_\mathcal{U}^-].$

$$\mathsf{CC}^{\mathcal{T},\mathcal{U}}_{\mathcal{X}}(M) = x^{\underline{\mathrm{ind}}_{\mathcal{U}}^{\mathcal{T}}[M]} \frac{\mathcal{F}(\mathrm{E}^{\mathcal{T}} M_{\mathcal{U}}^{+})}{\mathcal{F}(\mathrm{E}^{\mathcal{T}} M_{\mathcal{U}}^{-})} \in \mathsf{Frac}(\mathbb{K}\mathrm{K}_{0}(\mathsf{fd}\,\underline{\mathcal{T}})).$$

Proposition

$$[M] = [L] + [N] \implies \mathsf{CC}_{\mathcal{X}}^{\mathcal{T},\mathcal{U}}(M) = \mathsf{CC}_{\mathcal{X}}^{\mathcal{T},\mathcal{U}}(L) \, \mathsf{CC}_{\mathcal{X}}^{\mathcal{T},\mathcal{U}}(N).$$

ightharpoonup ightharpoonup consider the values of $CC_{\mathcal{X}}^{\mathcal{T},\mathcal{U}}$ on simple *U*-modules.

Theorem (Grabowski-P '24+)

Assume (C, \mathcal{T}) has a cluster structure. Then the $CC_{\mathcal{X}}^{\mathcal{T},\mathcal{U}}(S_{U}^{\mathcal{U}})$, for all $\mathcal{U} \stackrel{mut}{\sim} \mathcal{T}$ and $U \in \text{indec } \mathcal{U}$, are the \mathcal{X} -cluster variables of the cluster algebra associated to the quiver of \mathcal{T} .

Remarks

Theorem (Grabowski–P '24+)

Assume (C, T) has a cluster structure. Then the $CC_{\mathcal{X}}^{T,\mathcal{U}}(S_U^{\mathcal{U}})$, for all $\mathcal{U} \stackrel{\text{mut}}{\sim} \mathcal{T}$ and $U \in \text{indec } \mathcal{U}$, are the \mathcal{X} -cluster variables of the cluster algebra associated to the quiver of \underline{T} .

- The map implicit in the theorem is surjective but not injective, but induces a bijection between exchange pairs for (C, T) and \mathcal{X} -cluster variables (thanks to Cao–Keller–Qin '24).
- ▶ For $S = S_{\mathcal{U}}^{\mathcal{U}}$, the objects $S_{\mathcal{U}}^{\pm}$ are the middle terms of exchange conflations $U^* \rightarrowtail S_{\mathcal{U}}^+ \twoheadrightarrow U$, $U \rightarrowtail S_{\mathcal{U}}^- \twoheadrightarrow U^*$.

Remarks

Theorem (Grabowski-P '24+)

Assume (C, \mathcal{T}) has a cluster structure. Then the $CC_{\mathcal{X}}^{\mathcal{T},\mathcal{U}}(S_U^{\mathcal{U}})$, for all $\mathcal{U} \stackrel{\text{mut}}{\sim} \mathcal{T}$ and $U \in \text{indec}\,\mathcal{U}$, are the \mathcal{X} -cluster variables of the cluster algebra associated to the quiver of $\underline{\mathcal{T}}$.

- The map implicit in the theorem is surjective but not injective, but induces a bijection between exchange pairs for (C, T) and \mathcal{X} -cluster variables (thanks to Cao–Keller–Qin '24).
- ▶ For $S = S_{\mathcal{U}}^{\mathcal{U}}$, the objects $S_{\mathcal{U}}^{\pm}$ are the middle terms of exchange conflations $U^* \rightarrowtail S_{\mathcal{U}}^+ \twoheadrightarrow U$, $U \rightarrowtail S_{\mathcal{U}}^- \twoheadrightarrow U^*$.
- ▶ To include \mathcal{X} -variables at frozen vertices, we give an ad hoc definition of $\mathsf{CC}_{\mathcal{X}}^{\mathcal{T},\mathcal{U}}$ on simple modules at these vertices.

Remarks

Theorem (Grabowski-P '24+)

Assume (C, T) has a cluster structure. Then the $CC_{\mathcal{X}}^{\mathcal{T},\mathcal{U}}(S_{U}^{\mathcal{U}})$, for all $\mathcal{U} \stackrel{\text{mut}}{\sim} \mathcal{T}$ and $U \in \text{indec } \mathcal{U}$, are the \mathcal{X} -cluster variables of the cluster algebra associated to the quiver of $\underline{\mathcal{T}}$.

- The map implicit in the theorem is surjective but not injective, but induces a bijection between exchange pairs for (C, T) and \mathcal{X} -cluster variables (thanks to Cao–Keller–Qin '24).
- ▶ For $S = S_{\mathcal{U}}^{\mathcal{U}}$, the objects $S_{\mathcal{U}}^{\pm}$ are the middle terms of exchange conflations $U^* \rightarrowtail S_{\mathcal{U}}^+ \twoheadrightarrow U$, $U \rightarrowtail S_{\mathcal{U}}^- \twoheadrightarrow U^*$.
- ▶ To include \mathcal{X} -variables at frozen vertices, we give an ad hoc definition of $\mathsf{CC}_{\mathcal{X}}^{\mathcal{T},\mathcal{U}}$ on simple modules at these vertices.
- ► For $M \in \operatorname{fd} \underline{\mathcal{U}}$, we have $(\beta_{\mathcal{T}})_* \operatorname{CC}_{\mathcal{X}}^{\mathcal{T},\mathcal{U}}(M) = \frac{\operatorname{CC}_{\mathcal{X}}^{\mathcal{U}}(M_U^+)}{\operatorname{CC}_{\mathcal{X}}^{\mathcal{U}}(M_U^-)}$.

$$\mathcal{U}:\ 1 \to 2 \to 3$$
 $\mathcal{T} = \mu_2 \mathcal{U}:\ \frac{1}{\nwarrow_2} \xrightarrow{\swarrow} 3$

$$\mathcal{U}:\ 1
ightarrow 2
ightarrow 3 \qquad \mathcal{T} = \mu_2 \mathcal{U}:\ 1 \xrightarrow{\nwarrow} 3$$

$$\begin{split} \overline{\operatorname{ind}}_{\mathcal{U}}^{\mathcal{T}}[S_{1}^{\mathcal{U}}] &= [S_{1}^{\mathcal{T}}] + [S_{2}^{\mathcal{T}}] & (S_{1})_{\mathcal{U}}^{+} = 0 & (S_{1})_{\mathcal{U}}^{-} = U_{2} \\ \overline{\operatorname{ind}}_{\mathcal{U}}^{\mathcal{T}}[S_{2}^{\mathcal{U}}] &= -[S_{2}^{\mathcal{T}}] & (S_{2})_{\mathcal{U}}^{+} = U_{1} & (S_{1})_{\mathcal{U}}^{-} = U_{3} \\ \overline{\operatorname{ind}}_{\mathcal{U}}^{\mathcal{T}}[S_{3}^{\mathcal{U}}] &= [S_{3}^{\mathcal{T}}] & (S_{3})_{\mathcal{U}}^{+} = U_{2} & (S_{1})_{\mathcal{U}}^{-} = 0 \end{split}$$

 $\overline{\operatorname{ind}}_{\mathcal{U}}^{\mathcal{T}}[S_3^{\mathcal{U}}] = [S_3^{\mathcal{T}}]$

$$\mathcal{U}: \ 1 \to 2 \to 3 \qquad \mathcal{T} = \mu_2 \mathcal{U}: \ \stackrel{1}{\swarrow} \xrightarrow{2} \ \stackrel{3}{\swarrow}$$

$$\overline{\operatorname{ind}}_{\mathcal{U}}^{\mathcal{T}}[S_1^{\mathcal{U}}] = [S_1^{\mathcal{T}}] + [S_2^{\mathcal{T}}] \qquad (S_1)_{\mathcal{U}}^+ = 0 \qquad (S_1)_{\mathcal{U}}^- = U_2$$

$$\overline{\operatorname{ind}}_{\mathcal{U}}^{\mathcal{T}}[S_2^{\mathcal{U}}] = -[S_2^{\mathcal{T}}] \qquad (S_2)_{\mathcal{U}}^+ = U_1 \qquad (S_1)_{\mathcal{U}}^- = U_3$$

$$E^{\mathcal{T}}(U_{1}) = 0 \qquad CC_{\mathcal{X}}^{\mathcal{T},\mathcal{U}}(S_{1}^{\mathcal{U}}) = x_{1}x_{2}(\frac{1}{1+x_{2}}) = x_{1}x_{2}(1+x_{2})^{-1}$$

$$E^{\mathcal{T}}(U_{2}) = S_{2}^{\mathcal{T}} \qquad CC_{\mathcal{X}}^{\mathcal{T},\mathcal{U}}(S_{2}^{\mathcal{U}}) = x_{2}^{-1}(\frac{1}{1}) = x_{2}^{-1}$$

$$E^{\mathcal{T}}(U_{3}) = 0 \qquad CC_{\mathcal{X}}^{\mathcal{T},\mathcal{U}}(S_{3}^{\mathcal{U}}) = x_{3}(\frac{1+x_{2}}{1}) = x_{3}(1+x_{2})$$

 $(S_3)_{11}^+ = U_2$

 $(S_1)_{i,i}^- = 0$

$$\mathcal{U}:\ 1\to 2\to 3 \qquad \ \mathcal{T}=\Sigma\mathcal{U}:\ 1\to 2\to 3$$

$$\mathcal{U}: \ 1 \to 2 \to 3$$
 $\mathcal{T} = \Sigma \mathcal{U}: \ 1 \to 2 \to 3$ $(S_1)^+_{\mathcal{U}} = 0$ $(S_1)^-_{\mathcal{U}} = U_2$ $\overline{\operatorname{ind}}_{\mathcal{U}}^{\mathcal{T}}[S_2^{\mathcal{U}}] = -[S_2^{\mathcal{T}}]$ $(S_2)^+_{\mathcal{U}} = U_1$ $(S_1)^-_{\mathcal{U}} = U_3$ $\overline{\operatorname{ind}}_{\mathcal{U}}^{\mathcal{T}}[S_3^{\mathcal{U}}] = -[S_3^{\mathcal{T}}]$ $(S_3)^+_{\mathcal{U}} = U_2$ $(S_1)^-_{\mathcal{U}} = 0$

$$\begin{array}{llll} \mathcal{U}: & 1 \rightarrow 2 \rightarrow 3 & \mathcal{T} = \Sigma \mathcal{U}: & 1 \rightarrow 2 \rightarrow 3 \\ \\ \overline{\operatorname{ind}}_{\mathcal{U}}^{\mathcal{T}}[S_{1}^{\mathcal{U}}] = -[S_{1}^{\mathcal{T}}] & (S_{1})_{\mathcal{U}}^{+} = 0 & (S_{1})_{\mathcal{U}}^{-} = U_{2} \\ \\ \overline{\operatorname{ind}}_{\mathcal{U}}^{\mathcal{T}}[S_{2}^{\mathcal{U}}] = -[S_{2}^{\mathcal{T}}] & (S_{2})_{\mathcal{U}}^{+} = U_{1} & (S_{1})_{\mathcal{U}}^{-} = U_{3} \\ \\ \overline{\operatorname{ind}}_{\mathcal{U}}^{\mathcal{T}}[S_{3}^{\mathcal{U}}] = -[S_{3}^{\mathcal{T}}] & (S_{3})_{\mathcal{U}}^{+} = U_{2} & (S_{1})_{\mathcal{U}}^{-} = 0 \end{array}$$

$$\begin{split} \mathbf{E}^{\mathcal{T}}(U_1) &= \mathbb{K} \to 0 \to 0 & \mathsf{CC}^{\mathcal{T},\mathcal{U}}_{\mathcal{X}}(S_1^{\mathcal{U}}) = x_1^{-1}(\frac{1}{1+x_2+x_1x_2}) \\ \mathbf{E}^{\mathcal{T}}(U_2) &= \mathbb{K} \stackrel{1}{\to} \mathbb{K} \to 0 & \mathsf{CC}^{\mathcal{T},\mathcal{U}}_{\mathcal{X}}(S_2^{\mathcal{U}}) = x_2^{-1}(\frac{1+x_1}{1+x_3+x_2x_3+x_1x_2x_3}) \\ \mathbf{E}^{\mathcal{T}}(U_3) &= \mathbb{K} \stackrel{1}{\to} \mathbb{K} \stackrel{1}{\to} \mathbb{K} & \mathsf{CC}^{\mathcal{T},\mathcal{U}}_{\mathcal{X}}(S_3^{\mathcal{U}}) = x_3^{-1}(1+x_2+x_1x_2) \end{split}$$

$$\mathcal{U}: \ 1 \to 2 \to 3$$
 $\mathcal{T} = \Sigma \mathcal{U}: \ 1 \to 2 \to 3$ $\overline{\operatorname{Ind}}_{\mathcal{U}}^{\mathcal{T}}[S_{1}^{\mathcal{U}}] = -[S_{1}^{\mathcal{T}}]$ $(S_{1})_{\mathcal{U}}^{+} = 0$ $(S_{1})_{\mathcal{U}}^{-} = U_{2}$ $\overline{\operatorname{Ind}}_{\mathcal{U}}^{\mathcal{T}}[S_{2}^{\mathcal{U}}] = -[S_{2}^{\mathcal{T}}]$ $(S_{2})_{\mathcal{U}}^{+} = U_{1}$ $(S_{1})_{\mathcal{U}}^{-} = U_{3}$ $\overline{\operatorname{Ind}}_{\mathcal{U}}^{\mathcal{T}}[S_{3}^{\mathcal{U}}] = -[S_{3}^{\mathcal{T}}]$ $(S_{3})_{\mathcal{U}}^{+} = U_{2}$ $(S_{1})_{\mathcal{U}}^{-} = 0$

$$\begin{split} \mathrm{E}^{\mathcal{T}}(U_1) &= \ \mathbb{K} \to 0 \to 0 & \mathsf{CC}^{\mathcal{T},\mathcal{U}}_{\mathcal{X}}(S_1^{\mathcal{U}}) = x_1^{-1}(\frac{1}{1+x_2+x_1x_2}) \\ \mathrm{E}^{\mathcal{T}}(U_2) &= \ \mathbb{K} \overset{1} \to \ \mathbb{K} \to 0 & \mathsf{CC}^{\mathcal{T},\mathcal{U}}_{\mathcal{X}}(S_2^{\mathcal{U}}) = x_2^{-1}(\frac{1+x_1}{1+x_3+x_2x_3+x_1x_2x_3}) \\ \mathrm{E}^{\mathcal{T}}(U_3) &= \ \mathbb{K} \overset{1} \to \ \mathbb{K} \overset{1} \to \ \mathbb{K} & \mathsf{CC}^{\mathcal{T},\mathcal{U}}_{\mathcal{X}}(S_3^{\mathcal{U}}) = x_3^{-1}(1+x_2+x_1x_2) \end{split}$$

Thank you! / ! شكراً / 谢谢!

Bonus slide

$$T_2$$
 ---- U_4 ---- U_2 ---- T_2 ---

 T_1 ---- U_3 ---- U_1 ---- T_1
 Z_1 ---- Z_3 ---- Z_2 ---- Z_1 ---

 Z_2 ---- Z_1 ---- Z_3 ---- Z_2
 U_3 ---- U_1 ---- U_2 ---- U_3 ---

 $T_2 \longrightarrow T_1 \bigcirc \sim \text{no cluster structure!}$

Bonus slide

$$T_2$$
 ---- U_4 ---- U_2 ---- T_2 ---

 T_1 ---- U_3 ---- U_1 ---- T_1
 Z_1 ---- Z_3 ---- Z_2 ---- Z_1 ---

 Z_2 ---- Z_1 ---- Z_3 ---- Z_2 ---- Z_3 ---- Z_2 ---- Z_3 ---- Z_2 ---- Z_3 ---- Z_3 ---- Z_3 ---- Z_4 ----- Z_4 ---- Z_4 ----- Z_4 ---- Z_4 ----

- $CC_{\mathcal{A}}^{\mathcal{T}}(U_1) = a_1^{-1}(1 + a_2 + a_2^2),$ $CC_{\mathcal{A}}^{\mathcal{T}}(U_2) = a_2^{-1}(1 + a_1^{-1} + a_1^{-1}a_2 + a_1^{-1}a_2^2),...$
- ➤ generalised cluster variables (Chekhov–Shapiro)