Target 5 Register Map 7/23/2012

1 Memory Map:

1.1 Target 5 Memory Map

Registers:

- 1. Channel 0 Trigger configuration register
- Channel 1 Trigger configuration register
- 3. Channel 2 Trigger configuration register
- 4. Channel 3 Trigger configuration register
- 5. Channel 4 Trigger configuration register
- 6. Channel 5 Trigger configuration register
- 7. Channel 6 Trigger configuration register
- 8. Channel 7 Trigger configuration register
- 9. Channel 8 Trigger configuration register
- 10. Channel 9 Trigger configuration register
- 11. Channel 20 Trigger configuration register
- 12. Channel 11 Trigger configuration register
- 13. Channel 12 Trigger configuration register
- 14. Channel 13 Trigger configuration register
- 15. Channel 14 Trigger configuration register
- 16. Channel 15 Trigger configuration register
- 17. ITbias, control supply bias for 5 voltages: TRGGbias, Vbias, TRGsumBias, TRGbias, Wbials
- 18. TRGGbias, control supply bias for the first preamp of the Trigger input
- 19. Vbias, control supply bias for the first preamp of the Data input
- 20. TRGsumBias, control supply bias for the second summing amp of the 4 Trigger inputs
- 21. TRGbias, control supply bias for the analog to digital conversion buffer
- 22. Wbials, control width of digital trigger output
- 23. TTbias, control supply bias for the 2 voltages related to the FOURTH group of four: PMTref4 and Thresh
- 24. PMTref4, reference voltage for summing amp supplied by TRGsumBias, FOURTH group
- 25. Thresh, reference voltage for activating digital one-shot, supplied by TRGbias, FOURTH group
- 26. TTbias, control supply bias for the 2 voltages related to the THIRD group of four: PMTref4 and Thresh
- 27. PMTref4, reference voltage for summing amp supplied by TRGsumBias, THIRD group
- 28. Thresh, reference voltage for activating digital one-shot, supplied by TRGbias, THIRD group
- TTbias, control supply bias for the 2 voltages related to the SECOND group of four: PMTref4 and Thresh

- 30. PMTref4, reference voltage for summing amp supplied by TRGsumBias, SECOND group
- 31. Thresh, reference voltage for activating digital one-shot, supplied by TRGbias, SECOND group
- 32. TTbias, control supply bias for the 2 voltages related to the FIRST group of four: PMTref4 and Thresh
- 33. PMTref4, reference voltage for summing amp supplied by TRGsumBias, FIRST group
- 34. Thresh, reference voltage for activating digital one-shot, supplied by TRGbias, FIRST group
- 35. TTbias, control supply bias for the 2 voltages related to the Sum of 16 group of four: PMTref4 and Thresh
- 36. PMTref4, reference voltage for summing amp supplied by TRGsumBias, Sum of 16
- 37. Thresh, reference voltage for activating digital one-shot, supplied by TRGbias, Sum of 16
- 38. Sbuff, control supply bias for 2 voltages: SBbias and MonTRGthresh
- 39. SBbias, control supply bias for ramp bufer
- 40. MonTRGthresh, reference voltage (threshold) for digital trigger input. Since digital trigger will always have same amplitude, is not clear what is function of this register
- 41. WCbuff, control supply bias for 2 voltages: CMPbias and PUbias
- 42. CMPbias, control current through ramp comparator logic
- 43. PUbias, control load of pull-up of ramp comparator logic, and as result control relative voltage switch point
- 44. Random Bits (SGN, CloadP/N, MUX_SSX,MUX_RCO)
- 45. WAbuff, control supply bias for 2 voltages: VadjN and VadjP
- 46. VadjN, (old VdlyN) control delay on low to high transition of sampling delay circuit
- 47. VadjP, (old VdlyP) control delay on high to low transition of sampling delay circuit
- 48. DBbias, control supply bias for 2 voltages: Isel and Vdischarge
- 49. Isel, control current to ramp slope circuit
- 50. Vdischarge, control starting voltage of ramp
- 51. PRObuff, control supply bias for 1 voltages: Vdly
- 52. Vdly, control speed of Wilkinson ADC
- 53. Unused
- 54. Unused
- 55. Unused
- 56. Unused
- 57. Unused
- 58. Unused
- 59. Unused
- 60. Unused
- 61. Unused
- 62. Unused
- 63. Unused

64. Start digital trigger-in signal

To store data in preliminary buffer register Sin = 0 and PCLK pulse.

To store data in destination register Sin = 1 and PCLK pulse.

Channel 0(1,2,..15) Trigger configuration register: Address 0x0 (0x1, 0x2, .. 0x15)

Bits	Function	R/W	Default
11-9	Unused	RW	0
8	Select source of trigger output 0 - PMTref, 1- gain adjusted channel input	RW	0
7	Unused	RW	0
6	Select trigger gain. Nominal resistor 5K, when set to 1 and bits 2 and 4 set to 1, Nominal resistor 5K/4	RW	0
5	Unused	RW	0
4	Select trigger gain. Nominal resistor 5K, when set to 1 and bit 2 set to 1, Nominal resistor 5K/3	RW	0
3	Unused	RW	0
2	Select trigger gain. Nominal resistor 5K, when set to 1, Nominal resistor 5K/2	RW	0
1-0	Unused	RW	0

Figure 1: Channel 0(1,2,..15) Trigger configuration register: Address 0x0 (0x1, 0x2, ... 0x15)

ITbias, control supply bias: Address 0x10

Bits	Function	R/W	Default
11-0	DAC value, supply voltage for TRGGbias, Vbias, TRGsumBias, TRGbias, Wbials buffers	RW	0

Figure 2: ITbias, control supply bias, 0x10

TRGGbias, control supply bias: Address 0x11

Bits	Function	R/W	Default
11-0	DAC value, supply voltage for the first preamp of the Trigger input	RW	0

Figure 3: TRGGbias, control supply bias: Address 0x11

Vbias, control supply bias: Address 0x12

Bits	Function	R/W	Default
11-0	DAC value, control supply bias for the first preamp of the Data input	RW	0

Figure 4: Vbias, control supply bias: Address 0x12

TRGsumBias, control supply bias: Address 0x13

Bits	Function	R/W	Default
11-0	DAC value, control supply bias for the second summing amp of the 4	RW	0

Page 5 of 12

Trigger	input
---------	-------

Figure 5: TRGsumBias, control supply bias: Address 0x13

TRGbias, control supply bias: Address 0x14

Bits	Function	R/W	Default
11-0	DAC value, control supply bias for the analog to digital conversion buffer	RW	0

Figure 6: TRGbias, control supply bias: Address 0x14

Wbials, control supply bias: Address 0x15

Bits	Function	R/W	Default
11-0	DAC value, control width of digital trigger output	RW	0

Figure 7: Wbials, control supply bias: Address 0x15

TTbias 3, control supply bias: Address 0x16

Bits	Function	R/W	Default
11-0	DAC value, , control supply bias for the 2 voltages related to the FOURTH group (channels12-15) of four: PMTref4 and Thresh	RW	0

Figure 8: TTbias_3, control supply bias, 0x16

PMTref4_3, control supply bias: Address 0x17

Bits	Function	R/W	Default
11-0	DAC value, reference voltage for summing amp supplied by TRGsumBias, FOURTH group (channels 12-15)	RW	0

Figure 9: PMTref4_3, control supply bias: Address 0x17

Thresh_3, control supply bias: Address 0x18

Bits	Function	R/W	Default
11-0	DAC value, reference voltage for activating digital one-shot, supplied by TRGbias, FOURTH group(channels 12-15)	RW	0

Figure 10: Thresh_3, control supply bias: Address 0x18

TTbias_2, control supply bias: Address 0x19

Bits	Function	R/W	Default
11-0	DAC value, , control supply bias for the 2 voltages related to the THIRD group (channels8-11) of four: PMTref4 and Thresh	RW	0

Figure 11: TTbias_2, control supply bias, 0x19

PMTref4_2, control supply bias: Address 0x1A

Bits	Function	R/W	Default
11-0	DAC value, reference voltage for summing amp supplied by TRGsumBias, THIRD group (channels 8-11)	RW	0

Figure 12: PMTref4 2, control supply bias: Address 0x1A

Thresh_2, control supply bias: Address 0x1B

Bits	Function	R/W	Default
11-0	DAC value, reference voltage for activating digital one-shot, supplied by TRGbias, THIRD group(channels 8-11)	RW	0

Figure 13: Thresh_2, control supply bias: Address 0x1B

TTbias 1, control supply bias: Address 0x1C

Bits	Function	R/W	Default
11-0	DAC value, , control supply bias for the 2 voltages related to the SECOND group (channels4-7) of four: PMTref4 and Thresh	RW	0

Figure 14: TTbias_1, control supply bias, 0x1C

PMTref4_1, control supply bias: Address 0x1D

Bits	Function	R/W	Default
11-0	DAC value, reference voltage for summing amp supplied by TRGsumBias, SECOND group (channels 4-7)	RW	0

Figure 15: PMTref4_1, control supply bias: Address 0x1D

Thresh_1, control supply bias: Address 0x1E

В	Bits	Function	R/W	Default
11	1-0	DAC value, reference voltage for activating digital one-shot, supplied by TRGbias, SECOND group(channels 4-7)	RW	0

Figure 16: Thresh 1, control supply bias: Address 0x1E

TTbias 0, control supply bias: Address 0x1F

Bits	Function	R/W	Default
11-0	DAC value, , control supply bias for the 2 voltages related to the FIRST group (channels0-3) of four: PMTref4 and Thresh	RW	0

Figure 17: TTbias_0, control supply bias, 0x1F

PMTref4_0, control supply bias: Address 0x20

Bits	Function	R/W	Default
11-0	DAC value, reference voltage for summing amp supplied by TRGsumBias, FIRST group (channels 0-3)	RW	0

Figure 18: PMTref4_0, control supply bias: Address 0x20

Thresh_0, control supply bias: Address 0x21

Bits	Function	R/W	Default
11-0	DAC value, reference voltage for activating digital one-shot, supplied by TRGbias, FIRST group(channels 0-3)	RW	0

Figure 19: Thresh 0, control supply bias: Address 0x21

TTbias_Summory, control supply bias: Address 0x22

Bits	Function	R/W	Default
11-0	DAC value, , control supply bias for the 2 voltages related to the sum of all 16 channels: PMTref4 and Thresh	RW	0

Figure 20: TTbias_Summory, control supply bias, 0x22

PMTref4 Summory, control supply bias: Address 0x23

Bits	Function	R/W	Default
11-0	DAC value, reference voltage for summing amp supplied by TRGsumBias, sum of all 16 channels	RW	0

Figure 21: PMTref4_Summory, control supply bias: Address 0x23

Thresh_Summory, control supply bias: Address 0x24

Bits	Function	R/W	Default
11-0	DAC value, reference voltage for activating digital one-shot, supplied by TRGbias, sum of all 16 channels	RW	0

Figure 22: Thresh_Summory, control supply bias: Address 0x24

Sbuff, control supply bias: Address 0x25

Bits	Function	R/W	Default
11-0	DAC value, , control supply bias for the 2 : SBbias and MonTRGthresh	RW	0

Figure 23: Sbuff, control supply bias: Address 0x25

SBbias, control supply bias: Address 0x26

Bits	Function	R/W	Default
11-0	DAC value, control supply bias for ramp buffer	RW	0

Figure 24: SBbias, control supply bias: Address 0x26

MonTRGthresh, control supply bias: Address 0x27

Bits	Function	R/W	Default
11-0	DAC value reference voltage (threshold) for digital trigger input. Since digital trigger will always have same amplitude, is not clear what is	RW	0
	function of this register		

Figure 25: MonTRGthresh, control supply bias: Address 0x27

WCbuff, control supply bias: Address 0x28

Bits	Function	R/W	Default
11-0	DAC value, , control supply bias for the 2 : CMPbias and PUbias	RW	0

Figure 26: WCbuff, control supply bias: Address 0x28

1. CMPbias, control supply bias: Address 0x29

Bits	Function	R/W	Default
11-0	DAC value, control current through ramp comparator logic	RW	0

Figure 27: CMPbias, control supply bias: Address 0x29

2. PUbias, control supply bias: Address 0x2a

Bits	Function	R/W	Default
11-0	DAC value, control load of pull-up of ramp comparator logic, and as result control relative voltage switch point	RW	0

Figure 28: PUbias, control supply bias: Address 0x2a

Random bit register: Address 0x2b

Bits	Function	R/W	Default
11-8	Unused	RW	0
7	Select output between SST/SSP (0) and RCO(1)	RW	0
6	Unused	RW	0
5	Select output between SST and SSP , $0-SST,1-SSP\mid0-SSP_RCO,1-SSt_RCO$	RW	0
4	Unused	RW	0
3	Select additional load capacitor for sampling logic, 0 – 1GHz sampling, 1 – 400MHz sampling	RW	0
2	Unused	RW	0
1	SGN bit, select sign bit of trigger edge, 0 – rising edge, 1 - falling	RW	0
0	Unused	RW	0

Figure 29: Random bit register: Address 0x2b

VAbuff, control supply bias: Address 0x2C

Bits	Function	R/W	Default
11-0	DAC value, , control supply bias for the 2 : VadjN and VadjP	RW	0

Figure 30: VAbuff, control supply bias: Address 0x2c

VadjN, control supply bias: Address 0x2D

Bits	Function	R/W	Default
11-0	DAC value, (old VdlyN) control delay on low to high transition of sampling delay circuit	RW	0

Figure 31: VadjN, control supply bias: Address 0x2D

VadjP, control supply bias: Address 0x2E

Bits	Function	R/W	Default
11-0	DAC value, (old VdlyP) control delay on high to low transition of	RW	0

Target based AGIS Electronic Systems - Conceptual Design

sampling delay circuit comparator logic, and as result control relative	
voltage switch point	

Page 9 of 12

Figure 32: VadjP, control supply bias: Address 0x2E

DBbias, control supply bias: Address 0x2F

Bits	Function	R/W	Default
11-0	DAC value, , control supply bias for the 2 : : Isel and Vdischarge	RW	0

Figure 33: DBbias, control supply bias: Address 0x2F

Isel, control supply bias: Address 0x30

Bits	Function	R/W	Default
11-0	DAC value, control current to ramp slope circuit	RW	0

Figure 34: Isel, control supply bias: Address 0x30

Vdischarge, control supply bias: Address 0x31

Bits	Function	R/W	Default
11-0	DAC value, control starting voltage of ramp	RW	0

Figure 35: Vdischarge, control supply bias: Address 0x31

PRObuff, control supply bias: Address 0x32

Bits	Function	R/W	Default
11-0	DAC value, , control supply bias for 1 voltages : Vdly	RW	0

Figure 36: DBbias, control supply bias: Address 0x32

Vdly, control supply bias: Address 0x33

Bits	Function	R/W	Default
11-0	DAC value, control speed of Wilkinson ADC	RW	0

Figure 37: Vdly, control supply bias: Address 0x33

Unused, Address 0x34-0x3e

	Bits	Function	R/W	Default
	11-0	Unused	RW	0

Figure 38: Unused, Address 0x34-0x3e

Start digital trigger-in signal, control supply bias: Address 0x3f

Bits	Function	R/W	Default
11-0	Unused, Only write to this register generate inter trigger signal	RW	0

Figure 39: Start digital trigger-in signal, control supply bias: Address 0x3f

 Target based AGIS Electronic Systems - Conceptual Design	Page 10 of 12

Trigger Gain Estimate:

2.1 Gain Amp 0

V2=V+=VinV1= V-=VrefN Rfb=55K, R1=5K Vout0 = [(55+10)/10]Vin - (55/10)VrefN = 6.5Vin - 5.5VrefNSo, if VrefN = Vin, Vout0 = VinOr is we want Vout0=0, and Vin = 1.5V then VrefN = 1.772dV = 0.010V => Vout0 = 0.069V

2.2 Gain Amp 1

V2=V+=Vref4

V1 = V = Vout0

Rfb = 54.6K

R1 = 10K, or 7.5K, or 6.67K, or 6.25K (gain selection)

 $Vout = [(54.6+10)/10]Vref4 - (54.6/10)[Vout0_0 + Vout0_1 + Vout0_2 + Vout0_3]$

Example:

II. $Vin_1 = Vin_2 = Vin_3 = Vin_0 = Vin = 1.5V$, $VrefN = 1.772 \Rightarrow Vout0 = 0$ And if Vref4 = 0, then Vout1 = 0

With dV on one channel Vout1 = 0 - 5.46*0.069 = 0.373V (if dV is negative transition. With dV on all 4 channels Vout1 = 0 - 4*5.46*0.069 = 1.5V (if dV is negative transition) For positive transition we need to set Vout to Maximum, or 2.5/6.46 = 0.387V.

3 Modification on Evaluation board:

- 1. TRGin was replaced by RCO. So RCO on pin 117
- 2. RCO was replaced by VdlyN. So VdlyN on pin 122
- 3. SSPout was replaced by VdlyP. So VdlyP on pin 124
- 4. RegClr on pin 38 exchanged with Shout on pin 99. So Shout now on pin 38, and RegClr on pin 99.

To run external VdlyP/N if required the following mods need to be done:

- 1. Disconnect Vped wire from TP29 and TP30
- 2. Connect TP29 to TP26 for VdlyN
- 3. Connect TP30 to TP23 for VdlyP
- 4. Add decupling caps
- 5. Change firmware to control external DAC for VdlyN and VdlyP
- 6. Disable output buffer by forcing output buffer bias on both signals to 0 at location 0x2C (VAbuff). Could enforced through firmware.