Masters Project Report

linc 2908

March 21, 2014

Abstract

This will be a lovely abstract. Text currently here to ensure that the layout is correct.

1 Introduction

- broad aim of project
 - Construct a simple model of CO2 flux in the equatorial Pacific
 - Focus on Carbon flux during ENSO
- Description of ENSO
 - Definition El Nino
 - Definition El Nina
 - Definition ENSO
 - describe thermocline
 - describe ocean atmosphere coupling
 - diagram of coupling
 - idea that ENSO is due to perturbations in the thermocline depth
 - describe Kelvin and Rossby waves
- why is this project important?
 - ocean is a huge store of CO2
 - important to understand ocean atmosphere transfer in order to forcast atmospheric CO2 levels
 - This region is especially important as the GCMs struggle to accurately represent ENSO
- detailed goals of project
 - model should be physically intuitive
 - model should be as simple as possible both conceptually and computationally

2 Experimental Method

- basic outline of model
 - split flux into two main components
 - expect the temperature of the water at the surface to effect the amount of carbon that can be dissolved within it, and so crfeate a flux
 - expect that the cold, carbon rich water being upwelled will release carbon as it warms up in the upper layer

- note what we have ignored
 - * biology
 - * horizontal currents
- approximation that these are independent
- ullet contribution due to sst..... explanation + equations
 - We expect changes in the temperature of the water to effect both the solubility of the water and the partial pressure of the CO2 dissoled in it
 - present equation for flux from sst
 - graph of solubility of CO2 in water
 - approximate the solubility of CO2 in sea water as eqn in this temperature range
 - approximate pCO2 ocean as eqn
 - talk about the gas transfer constant
 - rewrite full equation
- contribution due to upwelling explanation + equations
 - cold upwelled water is carbon rich
 - as it warms we expect an amount of carbon to be released
 - equation
- summary of full model
 - -eqn
- test on globe???
 - redo these graphs and see if they are interesting
 - global plot for flux due to sst
 - compare with data
 - global plot for flux due to upwelling
 - compare with data
- one to get this in terms of just 1 parameter
 - wish to see how the carbon flux is effected by ENSO
 - need a model based only on some ENSO strength parameter
 - will choose thermocline height

- from data, 20 degree isotherm height will 3 act as a standin
- we hope that all variables can be characterised in terms of this
- look for correlations in data
 - analysis of data to obtain anomaly data
 - look for correlations between isotherm anomaly and other variables
 - plots go here???
- model for upwelling
 - there is no recorded data for the upwelling velocity
 - we must construct a model from the variables availiable
 - assumption that heat should be the same everywhere
 - we calculate a volume of cold water from the difference
 - we create an replenishment rate R
 - we use this to calculate an aproximate upwelling rate
- comparison with data to obtain constants
 - fetch data for true carbon flux
 - fix parameters such that the mean values agree
- final summary of the model
 - putting everything together
 - -eqn
- model of thermocline height
 - to test the dynamics, we need a simple model of thermocline height
 - outline the simple delay model
 - descibe chosen forcing
 - show iterative solution for h
 - this h can now be used as the variable for the flux model

3 Results

- plot of carbon flux over time at one grid point real data
 - time series 3 lines, sst, upwelling, total
 - phase space diagram
 - power spectrum
- plot of carbon flux over time at one grid point model h data
 - time series 3 lines, sst, upwelling, total
 - phase space diagram
 - power spectrum
- time averaged carbon flux over the basin
 - sst flux
 - upwelling flux
 - total
 - real data plot

4 Analysis

5 Conclusions

6 Bibliography