Fachabitur 2011 Mathematik T Infinitesimalrechnung A I

Gegeben sind die reellen Funktionen $f_a: x \mapsto \frac{x^2 + 2a \, x + 1}{2x + 4a}$ mit $a \in \mathbb{R}$ in der maximalen Definitionsmenge D_a . Der Graph einer solchen Funktion wird mit G_a bezeichnet.

Teilaufgabe 1.1 (4 BE)

Geben Sie D_a an und bestimmen Sie die Art der Definitionslücke.

Teilaufgabe 1.2 (6 BE)

Ermitteln Sie, für welche Parameterwerte a die Funktion f_a zwei verschiedene Nullstellen, genau eine Nullstelle bzw. keine Nullstelle hat, und geben Sie die entsprechenden Nullstellen jeweils an.

Teilaufgabe 1.3 (6 BE)

Untersuchen Sie das Verhalten der Funktionswerte $f_a(x)$ für $|x| \to \infty$ und bestimmen Sie die Gleichungen aller Asymptoten des Graphen G_a .

Teilaufgabe 1.4 (8 BE)

Bestimmen Sie die maximalen Monotonieintervalle der Funktion f_a und ermitteln Sie damit Art und Lage der Extrempunkte des Graphen G_a .

[Mögliches Teilergebnis:
$$f'_a(x) = \frac{(x+2a)^2 - 1}{2(x+2a)^2}$$
]

Teilaufgabe 1.5 (3 BE)

Zeigen Sie, dass unabhängig von a der Tiefpunkt $T_a(-2a+1; -a+1)$ und der Hochpunkt $H_a(-2a-1; -a-1)$ des Graphen G_a immer denselben Abstand voneinander haben.

Teilaufgabe 1.6 (5 BE)

Setzen Sie a=-1 und zeichnen Sie den Graphen G_{-1} mit seinen Asymptoten für $-3 \le x \le 6$ in ein kartesisches Koordinatensystem. Maßstab: 1 LE = 1 cm.

Für a = -1 erhält man nach entsprechender Umformung die Funktion $f_{-1}: x \mapsto \frac{x}{2} + \frac{1}{2x-4}$ in ihrer maximalen Definitionsmenge D_{-1} .

Der Graph G_{-1} begrenzt mit den drei Geraden mit den Gleichungen $y=0\,,\ x=k$ und x=k+1 mit $k\in\mathbb{R}$ und k>2 ein Flächenstück A_k .

Teilaufgabe 1.7.1 (9 BE)

Kennzeichnen Sie für k=3 das Flächenstück A_3 im Schaubild der Aufgabe 1.6 und zeigen Sie, dass für die von k abhängige Flächenmaßzahl F des Flächenstücks A_k gilt:

$$F(k) = \frac{1}{2} \cdot \left(k + \frac{1}{2} + \ln \frac{k-1}{k-2}\right)$$

Teilaufgabe 1.7.2 (9 BE)

Bestimmen Sie den Parameterwert k so, dass die Flächenmaßzahl F ihren absolut kleinsten Wert annimmt.

Nach einem Modell des britischen Ökonomen Thomas Malthus kann die Zahl B der Weltbevölkerung in Abhängigkeit von der Zeit t (in Jahren) näherungsweise durch folgende Funktionsgleichung beschrieben werden. (Einheiten werden nicht mitgeführt.)

$$B(t) = B_0 \cdot e^{r \cdot t}$$
, wobei gilt: $t \in \mathbb{R}$ und $t \ge 0$ sowie $r \in \mathbb{R}$ und $r > 0$.

Dabei gibt B_0 die Bevölkerungszahl zum Zeitpunkt t = 0 am 1.1.1800 an und r ist ein Maß für die Wachstumsrate der Bevölkerung.

Am 1.1.1950 betrug die Weltbevölkerung der Bevölkerung etwa 3,7 Milliarden Menschen, und am 1.1.2050 werden etwa 9,5 Milliarden Menschen weltweit erwartet.

Teilaufgabe 2.1 (5 BE)

Zeigen Sie, dass für die Werte B_0 und r gilt: $B_0 \approx 0,90 \cdot 10^9$ und $r \approx 9,43 \cdot 10^{-3}$.

Teilaufgabe 2.2 (3 BE)

Stellen Sie die Entwicklung der Weltbevölkerung zwischen 1.1.1800 und 1.1.2050 mit einem geeigneten Maßstab grafisch dar.

Teilaufgabe 2.3 (5 BE)

Entnehmen Sie einer entsprechenden Markierung im Diagramm der Aufgabe 2.2 zu einem beliebigen Zeitpunkt t das Zeitintervall Δt , für das folgende Bedingung gilt: $B(t+\Delta t)=2\cdot B(t)$ Zeigen Sie durch Rechnung, dass das Zeitintervall Δt unabhängig vom Zeitpunkt t ist, und berechnen Sie Δt auf eine Nachkommastelle gerundet.

Teilaufgabe 2.4 (7 BE)

Die natürliche Tragfähigkeitsgrenze der Erde ist der Zeitpunkt t_{TG} , an dem die Maßzahl der zur Verfügung stehenden Nahrungsmittel

$$N(t) = 2, 5 \cdot 10^7 \cdot t + 2, 0 \cdot 10^9$$
 mit $t \in \mathbb{R}$ und $t \ge 0$ (t in Jahren)

nicht mehr größer ist als die Zahl der Weltbevölkerung B(t).

(Eine Nahrungsmitteleinheit entspricht zur Vereinfachung dabei einer Bevölkerungseinheit.)

Bestimmen Sie mithilfe des Newton-Verfahrens den Zeitpunkt $t_{\rm TG}$. Benutzen Sie als Startwert $t_0=210$, führen Sie nur einen Näherungsschritt durch, runden Sie das Ergebnis auf ganze Jahre und geben Sie auch das entsprechende Jahr unserer Zeitrechnung an.