Introduction

Software

- Q: If you have to write a 10,000 line program in C to solve a problem, how long will it take?
 - Answers: generally range from 2-4 months
 - Let us analyze the productivity
 - Productivity = output/input resources
 - In SW output is considered as LOC
 - Input resources is effort person months; overhead cost modeled in rate for person month
 - Though not perfect, some productivity measure is needed, as project has to keep it high

Software ...

- The productivity is 2.5-5 KLOC/PM
- Q: What is the productivity in a typical commercial SW organization?
- A: Between 100 to 1000 LOC/PM
- Q: Why is it low, when your productivity is so high? (people like you work in the industry)
- A: What the student is building and what the industry builds are two different things

- In a univ a student system is built while the commercial org builds industrial strength sw
- What is the difference between a student program and industrial strength sw for the same problem?
- Software (IEEE): collection of programs, procedures, rules, and associated documentation and data

Software...

Student

- Developer is the user
 - bugs are tolerable
 - UI not important
 - No documentation

Industrial Strength

- Others are the users
 - bugs not tolerated
 - UI v. imp. issue
 - Documents needed for the user as well as for the organization and the project

Software...

<u>Student</u>

- SW not in critical use
- Reliability, robustness not important
- No investment
- Don't care about portability

Industrial Strength

- Supports important functions / business
- Reliability , robustness are very important
- Heavy investment
- Portability is a key issue here

Industrial strength software

- Student programs for a problem & industrial strength software are two different things
- Key difference is in quality (including usability, reliability, portability, etc.)
- Brooks thumb-rule: Industrial strength sw costs 10 time more than student sw
- In this course, software means industrial strength software
- This software has some characteristics

Is Expensive

- Let us look at costs involved
 - Productivity = Appx 1000 LOC/PM
 - Cost = \$3K to \$10K/PM
 - Cost per LOC = \$5 to \$15
 - I.e, each line of delivered code costs many \$s
- A simple application for a business may have 20KLOC to 50KLOC
 - Cost = \$100K to \$2.25Million
 - Can easily run on \$10K-\$20K hardware
 - So HW costs in an IT solution are small as compared to SW costs.

Requires tight Schedule

- Business requirements today demand short delivery times for software
- In the past, software products have often failed to be completed in time
- Along with cost, cycle time is a fundamental driving force

Productivity – for cost and schedule

- An industrial strength software project is driven by cost and schedule
- Both can be modeled by productivity, measured in terms of output per unit effort (e.g. LOC per person month)
 - Higher productivity leads to lower cost
 - Higher productivity leads to lower cycle time
- Hence, for projects (to deliver software), quality and productivity are basic drivers

- Along with productivity, quality is the other major driving factor
- Developing high Q sw is a basic goal
- Quality of sw is harder to define

Quality – ISO standard

- ISO std has six attributes
 - Functionality
 - Reliability
 - Usability
 - Efficiency
 - Maintainability
 - Portability

- Multiple dimensions mean that not easy to reduce Q to a single number
- Concept of Q is project specific
 - For some reliability is most important
 - For others usability may be more important
- Reliability is generally considered the main Q criterion

Quality...

- Reliability = Probability of failure
 - hard to measure
 - approximated by no. of defects in software
 - To normalize Quality = Defect density
 - Quality = No. of defects delivered / Size
 - Defects delivered approximated with no. of defects found in operation
 - Current practices: less than 1 def/KLOC
 - What is a defect? Project specific!

- Once sw delivered, it enters the maintenance phase, in which
 - Residual errors are fixed this is corrective maintenance
 - Upgrades and environment changes are done this is adaptive maintenance
- Maintenance can consume more effort than development over the life of the software (can even be 20:80 ratio!)
- Hence maintainability is another quality attribute of great interest

Quality and Productivity

- Hence, quality and productivity (Q&P) are the basic drivers in a sw project
- The aim of most methodologies is to deliver software with a high Q&P
- Besides the need to achieve high Q&P there are some other needs

- Only constant in business is change!
- Requirements change, even while the project is in progress
- In a project, up to 40% of development effort may go in implementing changes
- Practices used for developing software must accommodate change

Scale

- Most industrial strength software tend to be large and complex
- Methods for solving small problems do not often scale up for large problems
- Two clear dimensions in a project
 - engineering
 - project management
- For small, both can be done informally, for large both have to be formalized

Scale...

Scale...

- An illustration of issue of scale is counting the number of people in a room vs taking a census
 - Both are counting problems
 - Methods used in first not useful for census
 - For large scale counting problem, must use different techniques and models
 - Management will become critical

Scale: Examples

Gcc	980KLOC	C, C++, yacc
Perl	320 KLOC	C, perl, sh
Appache	100 KLOC	C, sh
Linux	30,000 KLOC	C, c++
Windows XP	40,000 KLOC	C, C++

 As industry strength software tends to be large, hence methods used for building these must be able to scale up

 For much of the discussion, we will high Q&P as the basic objective

- The problem domain for SE is industrial strength software
- SE aims to provide methods for systematically developing (industrial strength) software
- Besides developing software the goal is to achieve high quality and productivity (Q&P)
- Methods used must accommodate changes, and must be able to handle large problems