Algebra homologiczna, Lista 1

- 1. Podaj trzy inne niż na wykładzie przykłady kategorii (w tym co najmniej jeden naturalny i co najmniej jeden sztuczny).
- 2. Podaj trzy inne niż na wykładzie przykłady funktorów (w tym co najmniej jeden kowariantny i co najmniej jeden kontrawariantny).

Funktor (kowariantny) $F: \mathbb{C} \to \mathbb{D}$ to odwzorowanie $F: Ob \mathbb{C} \to Ob \mathbb{D}$ oraz kolekcja funkcji $\operatorname{Hom}(X,Y) \to \operatorname{Hom}(F(X),F(Y))$ spełniająca warunki:

(a)
$$F(\phi \circ \psi) = F(\phi) \circ F(\psi)$$
, (b) $F(id_X) = id_{F(X)}$.

- 3. Czy w powyższej definicji warunek (b) wynika z warunku (a)?
- 4. Czy jest funktorem z kategorii grup w kategorię grup: (a) komutant, (b) abelianizacja, (c) centrum?
- 5. Niech C_G będzie grupą G zintepretowaną jako kategoria. Czym jest w standardowej terminologii matematycznej kowariantny funktor (a) $C_G \to Set$; (b) $C_G \to Vect_K$?
- 6. Uzasadnij, że kategorie \mathtt{C}_G i \mathtt{C}_G^{op} są izomorficzne.
- 7. Obiektami kategorii Mat_K są dodatnie liczby całkowite, $Hom(k, n) = M_{n \times k}(K)$, a składanie to mnożenie macierzy. Uzasadnij, że ta kategoria jest izomorficzna ze swoją kategorią odwrotną.

Morfizm $f \in Hom(X,Y)$ nazywamy izomorfizmem, jeśli istnieje $g \in Hom(Y,X)$, taki że $f \circ g = id_Y$, $g \circ f = id_X$. Ów morfizm g nazywamy odwrotnym do f. Obiekty nazywamy izomorficznymi, jeśli istnieje miedzy nimi izomorfizm.

- 8. Udowodnij, że $id_X \in \text{Hom}(X, X)$ jest jednoznacznie wyznaczony przez warunki $id_X \circ f = f, g \circ id_X = g$. Udowodnij, że izomorfizm ma jedyny morfizm odwrotny.
- 9. Uzasadnij, że jeśli A i B są izomorficznymi obiektami kategorii C, zaś $F: C \to D$ jest funktorem, to F(A) i F(B) też są izomorficzne.

Obiektem początkowym kategorii C nazywamy taki jej obiekt A, że dla każdego jej obiektu B istnieje jedyny morfizm $A \to B$. Obiektem końcowym kategorii C nazywamy taki jej obiekt Z, że dla każdego jej obiektu B istnieje jedyny morfizm $B \to Z$.

- 10. Uzasadnij, że obiekt początkowy (końcowy) kategorii jest jedyny z dokładnościa do izomorfizmu (o ile w ogóle istnieje).
- 11. Przejrzyj swoją listę przykładów kategorii w których istnieją obiekty początkowe, a w których końcowe?
- 12. Opisz obiekt początkowy kategorii pierścieni przemiennych (z jedynką) z wyróżnionym elementem.