MATH868C - Several Complex Variables

Taught by Tamás Darvas Notes taken by Haoran Li 2018 Fall

Department of Mathematics University of Maryland

Contents

1	Subharmonic functions	2
2	Cauchy's formula	4
3	Hartogs phenomenon	6
4	Plurisubharmonicity	9
5	Iomeworks	11
	5.1 Homework1	11
	5.2 Homework2	13
	5.3 Homework3	14
	5.4 Homework4	15
	5.5 Homework5	16
	5.6 Homework6	17
Tn	ov.	19

1 Subharmonic functions

Definition 1.1. $\Omega \subseteq \mathbb{C}$ is an open set, $h \in C^2(\Omega)$ is harmonic if $\Delta h = \frac{4\partial^2}{\partial z \partial \bar{z}} h = 0$, denote the set of harmonic functions $H(\Omega)$

Definition 1.2. $u: \Omega \to [-\infty, +\infty)$ is subharmonic, denoted $u \in SH(\Omega)$ if

- u is upper semi-continuous, i.e. $\{u < r\}$ is open
- For any compact $K \subseteq \Omega$, and $h \in H(\operatorname{Int} K) \cap C(K)$ such that $u \leq h$ on ∂K , then $u \leq h$ on K

Theorem 1.3. $\{u_j\} \subseteq SH(\Omega), \ v = \sup_j u_j$. If v is upper semi-continuous, then $v \in SH(\Omega)$, $u = \inf_j u_j$ is upper semi-continuous generally doesn't imply $u \in SH(\Omega)$, but if $\{u_j\}$ is decreasing, then $u \in SH(\Omega)$

Theorem 1.4. $u:\Omega\to[-\infty,+\infty)$ is upper semi-continuous. The following are equivalent

- 1. $\mathbf{u} \in SH(\Omega)$
- 2. For any $\overline{D} \subseteq \Omega$, and any polynomial f(z), if $u \leq \operatorname{Re} f$ on ∂D , then $u \leq \operatorname{Re} f$
- 3. $\Omega_{\delta} = \{ z \in \Omega | \operatorname{dist}(z, \partial \Omega) > \delta \} \subseteq \Omega$, for $z \in \Omega_{\delta}$

$$2\pi u(z)\int_0^\delta d\mu(r) \leq \int_0^\delta \int_0^{2\pi} u(z+r\mathrm{e}^{i heta})d heta d\mu(r)$$

here $d\mu$ is any measure on $[0, \delta]$, take $d\mu(r) = rdr$, the average of the disk, take $d\mu(r)$ to be Dirac measure, the average of the circle

Proof. 1. \Rightarrow 2. is by definition. 2. \Rightarrow 3.

- If $p(z) = \sum_{j=0}^k a_j z^j$, then $2\pi \operatorname{Re} p(z) \int_0^\delta d\mu(r) = \int_0^\delta \int_0^{2\pi} \operatorname{Re} p(z + r e^{i\theta} d\theta d\mu(r))$
- $\varphi \in C(\partial D(z,r))$, $r \in [0,\delta]$ such that $u \leq \varphi$ on $\partial D(z,r)$. Fourier: $\exists p_k = \sum_{j=0}^l \alpha_j^k z^j$ such that $\varphi \leq \operatorname{Re} p_k \leq \varphi + \frac{1}{k}$ (Rudin). $u \leq \operatorname{Re} p_k$ on $\partial D(z,r)$, by 2. $u(z) \leq \operatorname{Re} p_k(z)$, then $2\pi u(z) \leq 2\pi \operatorname{Re} p_k(z) = \int_0^{2\pi} \operatorname{Re} p_k(z + re^{i\theta}) d\theta \to \int_0^{2\pi} \varphi(z + re^{i\theta}) d\theta$ as $k \to \infty$
- $u: X \to [-\infty, \infty)$ is upper semi-continuous and bounded above, $\{f_j\} \subseteq C(X)$ such that $f_j \searrow u$, then there exists $\{\varphi_j\} \subseteq C(\partial D(z,r))$ such that $\varphi_j \searrow u$ on $\partial D(z,r)$, then $2\pi u(z) \le \int_0^{2\pi} \varphi_j(z+re^{i\theta})d\theta \to \int_0^{2\pi} u(z+re^{i\theta})d\theta$, integrate this over $[0,\delta]$ of $d\mu$
- 3. \Rightarrow 1. Assume 1. doesn't hold, $\exists K \subseteq \Omega$ compact, $h \in C(K) \cap H(\operatorname{Int} K)$ such that $u \leq h$ on ∂K but u(z) > h(z) for some $z \in K$, define $F = \{z \in K | u(z) = \max_K (u h)\} \neq \emptyset$ and closed, compact, thus $\exists x \in F$ such that $\operatorname{dist}(x, \partial K)$ is a minimizer. For some r, an open part of $\partial D(z, r)$ lies outside F, $\int_0^{2\pi} (u h)(x + re^{i\theta}) d\theta < (u h)(x)$ which is a contradiction

Corollary 1.5. $f \in \mathcal{O}(\Omega) \Rightarrow \log |f| \in SH(\Omega)$, if f = 0, $\log |f| = -\infty$

Proof.
$$\overline{D} \subseteq \Omega$$
, $p = \sum_{j=0}^k a_j z^j$, if $\log |f| \leq \operatorname{Re} p$ on ∂D , then $|f| \leq e^{\operatorname{Re} p} \Leftrightarrow |f| \leq |e^p|$ on $\partial D \Rightarrow |\frac{f}{e^p}| \leq 1$ on $\partial D \Rightarrow \cdots$

Corollary 1.6. $\varphi : \mathbb{R} \to \mathbb{R}$ is convex and increasing, $u \in SH(\Omega)$, then $\varphi \circ u \in SH(\Omega)$

Proof. Sub-mean value inequality + Jensen inequality

Theorem 1.7. $u \in SH(\Omega)$ $u \not\equiv -\infty$ on a component of Ω , then $u \in L^1_{loc}(\Omega)$. $\Delta u \geq 0$ as a distribution, i.e. $\int_{\Omega} u \Delta v \geq 0 \ \forall v \in C^2_0(\Omega)$, $v \geq 0$

Theorem 1.8 (Implicit function theorem). $(w,z)=(w_1,\cdots,w_m,z_1,\cdots,z_n), f_j(w,z)$ are analytic in a neighborhood of $(w^0,z^0)\in\mathbb{C}^{m+n}$, suppose $f_j(w^0,z^0)=0$, $\det(\frac{\partial f_j}{\partial w_k})\neq 0$ at (w^0,z^0) , then $\exists w(z)$ analytic in a neighborhood of z^0 with $w(z^0)=w^0$, F(w(z),z)=0

2 Cauchy's formula

Definition 2.1. $D = D(x_1, r_1) \times \cdots \times D(x_n, r_n)$ is called a *polydisc*. $\partial_0 D = \partial D_1 \times \cdots \times \partial D_n \subsetneq \partial D$ is the *distinguished boundary* of D

Theorem 2.2. $u \in C(\overline{D}) \cap O(D)$, then

$$u(z) = \frac{1}{(2\pi i)^n} \int_{\partial D} \frac{u(\xi_1, \cdots, \xi_n)}{(\xi_1 - z_1) \cdots (\xi_n - z_n)} d\xi_1 \cdots d\xi_n, \forall z \in D$$

Proof.

$$u(z_1,\cdots,z_{n-1},z)=\frac{1}{2\pi i}\int_{\partial D_n}\frac{u(z_1,\cdots,z_{n-1},\xi)}{\xi_n-z_n}d\xi$$

 $z_{n-1}\mapsto u(z_1,\cdots,z_{n-2},z_{n-1},z_n^k)\Rightarrow z_{n-1}\mapsto u(z_1,\cdots,z_{n-2},z_{n-1},\xi_n) \text{ is uniform convergence } \quad \square$

Theorem 2.3. $K \subseteq K$ is compact, $\exists C_{K,\alpha} > 0$ such that

$$\sup_K |\partial^\alpha u| \le C_{K,\alpha} \sup_K |u|$$

Proof. If $K = D_1 \times \cdots \times D_n$, in general, cover K with a finite number of polydisks

Corollary 2.4. $\{u_k\} \subseteq \mathcal{O}(\Omega)$

- 1. (Montel) $\{u_k\}$ uniformly bounded on every compact $K \subseteq \Omega$, then $\exists u \in \mathcal{O}(\Omega), k_j \in \mathbb{N}$ such that $u_{k_i} \Rightarrow u$ uniformly on compact subsets
- 2. If $u_i \Rightarrow u$, then $u \in \mathcal{O}(\Omega)$

Proof.

1. $\{\partial^{\alpha}u_{j}\}\$ are equicontinuous(Arzela-Ascoli), $\{\partial^{\alpha}u_{j}\}\$ is relatively compact w.r.t. uniform convergence. To finish, exhaust Ω by compact subsets, and take a diagonal process to assure relative compactness for all partial derivatives, Cauchy-Riemann conditions is satisfied for the limit

Theorem 2.5 (Cauchy's estimates). If $|u(z)| \leq M$ on D, $|\partial^j u(0)| \leq Mj_1! \cdots j_m! \frac{1}{r_m^{j_1}} \cdots \frac{1}{r_m^{j_m}}$

Theorem 2.6 (Hartogs' theorem). $f: \Omega \to \mathbb{C}^n$, f is holomorphic in every variable separately, then $f \in \mathcal{O}(\Omega)$

Example 2.7. $f(x,y) = \begin{cases} \frac{xy}{x^2+y^2} \\ 0 \end{cases}$, this can't be a counterexample in complex variables since $z_1^2 + z_2^2 = 0$ at points other than (0,0)

Theorem 2.8 (Cauchy-Pompeiu formula). $f \in C^1(\overline{U}), \ \int_{\partial U} f dz = \int_U d(f dz) = \int_U \bar{\partial} f \wedge dz = \int_U \frac{\partial f}{\partial \bar{z}}$

Theorem 2.9. $f \in C_0^\infty(\mathbb{C}), \ \frac{\partial u}{\partial z} = f$ always has a solution $u \in C^\infty(\mathbb{C})$

Proof.

$$u(z) = \frac{1}{2\pi i} \int_{\mathbb{C}} \frac{f(\xi)}{\xi - z} d\xi \wedge d\bar{\xi}$$

Theorem 2.10. $f = \sum f_j d\bar{z}_j$, $f_j \in C_0^{\infty}(\mathbb{C}^n)$, $\bar{\partial} f = 0$, then there exists unique $u \in C_0^{\infty}(\mathbb{C}^n)$ such that $\bar{\partial} u = f$

Proof.

$$u(z) = \frac{1}{2\pi i} \int_{\mathbb{C}} \frac{1}{\tau - z_1} f_1(\tau, z - 2, \dots, z_n) d\tau \wedge d\bar{\tau}$$
$$\bar{\partial} f = 0 \Leftrightarrow \frac{\partial f_j}{\partial \bar{z}_k} = \frac{\partial f_k}{\partial \bar{z}_j}$$

Need to show $\frac{\partial u}{\partial \bar{z}_k} = f_k$. k = 1, Cauchy-Pompeiu implies $\frac{\partial u}{\partial \bar{z}_1} f_1(z_1, \dots, z_n)$, k > 1, $\frac{\partial u}{\partial \bar{z}_k} = \frac{1}{2\pi i} \int_{\mathbb{C}} \frac{1}{\tau} \frac{\partial f_k}{\partial \bar{z}_1} (z_1 - \tau, z_2, \dots, z_n) d\tau \wedge d\bar{\tau} = \frac{1}{2\pi i} \int_{\mathbb{C}} \frac{1}{\tau - z_1} \frac{\partial f_k}{\partial \bar{z}_1} (z_1 - \tau, z_2, \dots, z_n) d\tau \wedge d\bar{\tau}$ Why is u compactly supported

3 Hartogs phenomenon

Theorem 3.1 (Hartogs phenomenon). $\Omega \subseteq \mathbb{C}^n$ is open, n > 1, $K \subseteq \Omega$ is compact, $f \in \mathcal{O}(\Omega \setminus K)$, then there exists $g \in \mathcal{O}(\Omega)$ such that $f \equiv g$ on $\Omega \setminus K$

Remark 3.2. Holomorphic functions with more than one variable don't have isolated poles. The zero set of a holomorphic function with more than one variable is not contained in a compact set

Proof. $\varphi \in C_0^{\infty}(\Omega)$ such that $\varphi \equiv 1$ on a neighborhood of K, $v = \bar{\partial}(1-\varphi)f = -f\bar{\partial}\varphi \in (C_0^{\infty})_{0,1}(\mathbb{C}^n)$, $\bar{\partial}v = \bar{\partial}(-f\bar{\partial}\varphi) = -f\bar{\partial}\bar{\partial}\varphi = 0 \Rightarrow \exists_1 u \in C_0^{\infty}(\mathbb{C}^n)$ such that $\bar{\partial}g = -f\bar{\partial}\varphi - \bar{\partial}u = 0 \Rightarrow g \in \Theta(\Omega)$, on $\partial\Omega$, $1 - \varphi \equiv 1$, $u \equiv 0$, then use the identity theorem

Definition 3.3. Ω is a domain of holomorphy if there exists $f \in \mathcal{O}(\Omega)$ such that f doesn't extend to Ω' where $\Omega \subsetneq \Omega' \subseteq \mathbb{C}^n$

Question 3.4. Characterize the domains of holomorphy

Consider $f(z) = \sum_{\alpha > 0} \alpha_{\alpha} z^{\alpha}$, D is the domain of convergence satisfies

- 1. D is polycircular, i.e. $z \in D \Rightarrow (e^{i\theta_1}z_1, \dots, e^{i\theta_n}z_n) \in D$
- 2. D is log-convex, i.e. if $z^1, z^2 \in D$, then $(z^1)^{\beta}(z^2)^{1-\beta} \in D$, $0 < \beta < 1$, here $z^{\beta} = (z_1^{\beta}, \dots, z_n^{\beta})$, note that $a^{\alpha}b^{1-\alpha} \leq \alpha\alpha + (1-\alpha)b$ is Young's inequality

Definition 3.5. D is Reinhardt if D is polycircular. D is log-convex Reinhardt if D also satisfies

• $D^* = \log |D| = \{(t_1, \dots, t_n) \in \mathbb{R}^n | (e^{t_1}, \dots, e^{t_n}) \in D\}$ is a convex set of \mathbb{R}^n and $D^* + (\mathbb{R}_-)^n \subseteq D^*$

If D is Reinhardt, then $\hat{D} = \bigcap \{ \tilde{D} \text{ Reinhardt and log convex}, D \subseteq \tilde{D} \}$ is the log-convex cover of D

Theorem 3.6. If $0 \in D \subseteq \mathbb{C}^m$ is connected Reinhardt, $f \in \mathcal{O}(D)$, then there exists $g \in \mathcal{O}(\hat{D})$ such that $g|_{D} = f$

Proof. $f(z) = \sum_{\alpha \geq 0} \alpha_{\alpha} z^{\alpha}$ in $D(0, \delta)^m$ extends to D, use the fact that the domain of absolute convergence of $\sum_{\alpha \geq 0} \alpha_{\alpha} z^{\alpha}$ is a log convex Reinhardt domain containing D

Definition 3.7. Domain $\Omega \subseteq \mathbb{C}^n$ is a domain of holomorphy if there are no open sets Ω_1 , Ω_2 such that

• $\varnothing \neq \Omega_1 \subseteq \Omega_2 \cap \Omega$

• For any $f \in \mathcal{O}(\Omega)$, there exists $g \in \mathcal{O}(\Omega_2)$ such that $f|_{\Omega_1} = g|_{\Omega_1}$

Remark 3.8. Local property of $\partial\Omega$, to rule out anomalies from slit type domain

Definition 3.9. $K \subseteq \Omega$ is compact, its holomorphically convex hull is

$$\hat{K}_{\Omega} = \left\{ z \in \Omega \middle| |f(z)| \le \sup_{K} |f|, \forall f \in \mathcal{O}(\Omega) \right\}$$

Note. $K \subseteq \hat{K}_{\Omega}$

Remark 3.10. \hat{K}_{Ω} is contained in the convex hull of K

Proof. Let $L(\mathbb{C}^n)$ be the set of complex linear functionals of \mathbb{C}^n , $L_{\mathbb{R}}(\mathbb{C}^n)$ be the set of real linear functionals of \mathbb{C}^n , Re $L(\mathbb{C}^n) = L_{\mathbb{R}}(\mathbb{C}^n)$

$$\begin{split} \operatorname{convex}(K) & \xrightarrow{\operatorname{Hahn-Banach}} \ \{z \in \Omega | \Lambda(z) \leq \sup_K \Lambda, \Lambda \in L_{\mathbb{R}}(\mathbb{C}^n) \} \\ &= \{z \in \Omega | e^{\Lambda(z)} \leq e^{\sup_K \Lambda(z)}, \Lambda \in L_{\mathbb{R}}(\mathbb{C}^n) \} \\ &= \{z \in \Omega | e^{\operatorname{Re}\beta(z)} \leq e^{\sup_K \operatorname{Re}\beta(z)}, \beta \in L(\mathbb{C}^n) \} \\ &= \{z \in \Omega | | e^{\beta(z)} | \leq \sup_K | e^{\beta} |, \beta \in L(\mathbb{C}^n) \} \end{split}$$

Remark 3.11. $K \subseteq \Omega$ is compact and convex, then $\widehat{\partial K_{\Omega}} = K$. Maximal principle: $K \subseteq \widehat{K_{\Omega}} = K$

$$Proof. \ \widehat{\partial K_{\Omega}} \subseteq \operatorname{convex}(\partial K) \xrightarrow{\operatorname{Milman-Kreim}} K$$

Lemma 3.12. Let D be a polydisk centered at $0 \in \mathbb{C}^n$, $\Delta^D_{\Omega}(z) = \sup\{r > 0, s.t.z + rD \subseteq \Omega\}$ is the "weighted" L^{∞} distance of z to $\partial\Omega$. $r=\inf_{z\in K}\Delta_{\Omega}^{D}(z)>0,\ K\subseteq\Omega$ is compact. Let $\xi\in\hat{K}_{\Omega}$, if $u \in \mathcal{O}(\Omega)$, then the power series expansion of u at ξ

$$f(z) = \sum_{\alpha} \frac{1}{\alpha!} \frac{\partial^{\alpha} u(\xi)}{\partial \xi^{\alpha}} (z - \xi)^{\alpha}$$

is convergent for any $z \in \xi + rD$

 $\begin{array}{l} \textit{Proof. } \sup_{K} u(z) \leq M, \text{ then } |\frac{\partial^{\alpha} u(z)}{\partial z^{\alpha}}| \leq \frac{\alpha! M}{(r-\epsilon)^{|\alpha|}} \text{ for any } z \in K, \Rightarrow |\frac{\partial^{\alpha} u(\xi)}{\partial \xi^{\alpha}}| \leq \frac{\alpha! M}{(r-\epsilon)^{|\alpha|}}, \text{ then } |u(z)| = \\ |\sum \frac{1}{\alpha!} \frac{\partial^{\alpha} u(\xi)}{\partial \xi^{\alpha}} (z-\xi)^{\alpha}| \leq \sum_{\alpha} \frac{M}{|r-\epsilon|^{\alpha}} (z-\xi)^{\alpha} \xrightarrow{\text{Abel's criterion}} \text{ absolutely convergent for } z \in \xi + (r-\epsilon)D, \\ \text{then let } \epsilon \searrow 0 \end{array}$

Definition 3.13. $\Omega \subseteq \mathbb{C}^n$ is holomorphically convex if for any $K \subseteq \Omega$ compact, \hat{K}_{Ω} is also compact **Theorem 3.14.** $\Omega \subseteq \mathbb{C}^n$ is open, the following are equivalent

- (i) Ω is a domain of holomorphy
- (ii) $K \subseteq \Omega$ compact $\Rightarrow \hat{K}_{\Omega} \subseteq \Omega$ is compact, i.e. $K \subseteq \Omega$ is holomorphically compact
- (iii) $\exists f \in \mathcal{O}(\Omega)$ such that doesn't extend over any point $\in \partial\Omega$ holomorphically

Proof. (i)
$$\Rightarrow$$
(ii): $r = \inf_{z \in K} \Delta_{\Omega}^{D}(z) > 0 \xrightarrow{Lemma3.12} \hat{K}_{\Omega} + rD \subseteq \Omega$ (iii) \Rightarrow (i): Trivial

(ii) \Rightarrow (iii): Let M be a dense, countable set in Ω . Let ξ, \dots, ξ_n, \dots be a sequence containing each element of M infinitely many times. Let $K = K^1 \subseteq K^2 \subseteq \cdots \subseteq \Omega$ is another compact exhaustion of Ω , by (ii), we have $\hat{K}^1_{\Omega} \subseteq \hat{K}^2_{\Omega} \subseteq \cdots \subseteq \Omega$ is another compact exhaustion of Ω .

exhaustion of
$$\Sigma$$
, by (ii), we have $K_{\Omega} \subseteq K_{\Omega} \subseteq \cdots \subseteq \Sigma$ is another compact exhaustion of Σ .

$$D_{\xi} = \xi + \Delta_{\Omega}^{D}(\xi)D \subseteq \Omega. \text{ For any } \xi_{j}, \exists z_{j} \in D_{\xi_{j}} \text{ such that } z_{j} \in \hat{K}_{\Omega}^{j} \text{ because it's compact. } \exists f \in O(\Omega)$$

such that
$$\begin{cases} |f_{j}(z_{j})| = 1 \\ \sup_{z \in K_{j}} |f_{j}(z)| < 1 - \epsilon \end{cases} \xrightarrow{\text{manipulate power}} \begin{cases} f_{j}(z_{j}) = 1 \\ \sup_{z \in K_{j}} |f_{j}(z)| < \frac{1}{2^{j}} \end{cases} \cdot f(z) = \prod_{j=1}^{\infty} (1 - f_{j})^{j}.$$

Claim: $f \in O(\Omega)$. $z \in \Omega \Rightarrow z + \epsilon D \subseteq K_{j}$ for all $j \geq j_{0}$. $\log \prod_{j \geq j_{0}} (1 - f_{j})^{j} = \sum_{j \geq j_{0}} j \log(1 - f_{j}),$

thus $|\log(1-f_j(z))| \le C|f_j(z)|$, then $\sum_{j \ge j_0} j |\log(1-f_j)| \le \sum_{j \ge j_0} j C|f_j| \le C \sum_{j \ge j_0} \frac{j}{2^j} < \infty$

Exercise 3.15. f is not identically zero, but $f(z_j) = 0$, $\frac{\partial^{\alpha} f}{\partial z^{\alpha}}(z_j) = 0$, for all $|\alpha| \leq j$. Assume f extends across $\partial \Omega$, contradiction

Example 3.16. $\Omega \subseteq \mathbb{C}^n$ convex and open $\Rightarrow \Omega$ is a domain of holomorphy. Pf: Only need to show $K \subset\subset \Omega \Rightarrow \hat{K}_{\Omega} \subset\subset \Omega$. $\hat{K}_{\Omega} \subset \operatorname{convex}(K) \subseteq \Omega \Rightarrow \hat{K}_{\Omega}$ is closed and bounded $\Rightarrow \hat{K}_{\Omega}$ is compact

Reinhardt domains: $0 \in \Omega$ is a connected Reinhardt domain, $\Omega^* = \{ \xi \in \mathbb{R}^n | (e^{\xi_1}, \dots, e^{\xi_n}) \in \Omega \}$. Ω is log convex $\Leftrightarrow \Omega^*$ is convex, and for any $\xi \in \Omega^*$, $\eta_i \leq \xi_i \Rightarrow \eta \in \Omega^*$

Theorem 3.17. Ω is a Reinhardt domain, then the following are equivalent

- (i) Ω is a domain of holomorphy
- (ii) Ω is log-convex

some $l \in \{1, \dots, k\}$

Proof. (i) \Rightarrow (ii): $\exists f \in \Theta(\Omega)$ that does not extend through any boundary point \Rightarrow power series expansion of f at 0 absolutely converges exactly on $D\Rightarrow D$ is log-convex (ii) \Rightarrow (i): Take $K\subset\subset\Omega$, $\exists \mathcal{E}^j$ such that $K\subseteq\cup_{j=1}^k D(0,\mathcal{E}^j_1)\times\cdots\times D(0,\mathcal{E}^j_n)$, $z\in K\Rightarrow |z_1|^{\alpha_1}\cdots|z_n|^{\alpha_n}\leq \sup_{1\leq j\leq k}|\mathcal{E}^j_1|^{\alpha_1}\cdots|\mathcal{E}^j_n|^{\alpha_n}$ which holds for $\alpha\in\mathbb{Q}^n_+$, by density, it also holds for $\alpha\mathbb{R}^n_+$, thus also holds for $z\in\hat{K}_\Omega$, assume that $z_1,\cdots,z_j\neq 0$, $z_{j+1}=\cdots=z_n=0$. Take $\alpha=(\alpha_1,\cdots,\alpha_j,0,\cdots,0), |z_1|^{\alpha_1}\cdots|z_j|^{\alpha_j}\leq \sup_{1\leq l\leq k}(\alpha_1\log|\mathcal{E}^l_1|+\cdots+\alpha_j\log|\mathcal{E}^l_j|)$. claim (HW): $(\log|z_1|,\cdots,\log|z_j|)$ is in the convex hull of vectors $(\log\eta_1,\cdots,\log\eta_j)$ such that $\eta_j\leq\mathcal{E}^l_j$ for

Lemma 3.18. $f \in \mathcal{O}(\Omega)$ such that $|f(z)| \leq \Delta_{\Omega}^{D}(z) = \sup\{r > 0 | z + rD \subseteq \Omega\}$, $z \in K$, $\xi \in \hat{K}_{\Omega}$, $u \in \mathcal{O}(\Omega)$, then the power series expansion of u near ξ absolutely converges in $\xi + |f(\xi)|D$

4 Plurisubharmonicity

Definition 4.1. $\Omega \subseteq \mathbb{C}^n$, $u:\Omega \to [-\infty,\infty)$ is plurishbharmonic if

- 1. u is upper semi-continuous on Ω , $\limsup_{z\to z_0} u(z) \leq u(z_0)$
- 2. $w \in \mathbb{C}^n$, $z \in \Omega$, then $\tau \mapsto u(z + \tau w)$ is subharmonic, for all $\tau \in \mathbb{C}$ such that $z + \tau w \in \Omega$

Exercise 4.2. $f \in \mathcal{O}(\Omega) \Rightarrow \log |f| \in PSH(\Omega)$

Theorem 4.3. $u \in C^2(\Omega)$, then $u \in PSH(\Omega)$ iff $z \in \Omega$, $D^2u(z)$ is semi-positive definite \Rightarrow Pseudo-convexity

Proof. Restrict on one line,
$$\frac{\partial^2}{\partial \tau \partial \bar{\tau}} u \geq 0$$

 $\begin{array}{lll} \textbf{Theorem 4.4.} & u \in PSH(\Omega), \; \varphi \in C_0^{\infty}(\mathbb{C}^n), \; \varphi(z) = \varphi(|z|), \; \mathrm{supp} \, \varphi \subseteq \overline{B(0,1)}. \quad \int_{\mathbb{C}^n} \varphi d\lambda = 1. \\ u_{\epsilon}(z) = \frac{1}{\epsilon^{2n}} \int_{\mathbb{C}} u(z-\eta) \varphi(\frac{\eta}{\epsilon}) d\lambda(\eta), \; z \in \Omega_{\epsilon} = \{z \in \Omega | d(z,\Omega^c) > \epsilon\}, \; u_{\epsilon} \in PSH(\Omega_{\epsilon}) \cap C^{\infty}(\Omega_{\epsilon}), \\ \forall z \in \Omega, \; u_{\epsilon}(z) \searrow u(z) \; \mathrm{as} \; \epsilon \searrow 0 \end{array}$

Proposition 4.5. $u_i \in PSH$ decreasing, then $v(x) = \lim_i u_i(x) \in PSH$

Theorem 4.6. $\Omega \subseteq \mathbb{C}^n$, $\Omega' \subseteq \mathbb{C}^m$, $f: \Omega \to \Omega'$ is holomorphic, $u \in PSH(\Omega')$, then $u \in PSH(\Omega)$ (subharmonicity define on complex manifold)

Proof. Check
$$u \in PSH(\Omega') \cap C^2(\Omega')$$
, $\frac{\partial^2}{\partial z_j \partial \bar{z}_k} (u \circ f(z)) = \frac{\partial^2 u}{\partial \xi_p \partial \bar{\xi}_q} \frac{\partial f_p}{\partial z_j} \overline{\frac{\partial f_q}{\partial z_k}} = \operatorname{Hess}_{\mathbb{C}}(u)(\partial f, \bar{\partial} f) \geq 0$. $K \subseteq \Omega$ is compact, $\hat{K}^p_{\Omega} = \{z \in \Omega | u(z) \leq \sup_{y \in K} u(y), \forall u \in PSH(\Omega)\} \Rightarrow \hat{K}^p_{\Omega} \subseteq \hat{K}_{\Omega}$ (PSH-hull). Ω is pseudo-convex if $\forall K \subseteq \Omega$ compact, $\hat{K}^p_{\Omega} \subseteq \Omega$ is also compact. Ω convex $\Rightarrow \Omega$ pseudoconvex $\Rightarrow \Omega$ is holomorphically convex

Theorem 4.7. $\Omega \subseteq \mathbb{C}^n$ is open, the following are equivalent

- (i) $z \mapsto -\log \delta(z, \Omega^c) \in PSH(\Omega)$
- (ii) $\exists u \in PSH(\Omega) \cap C(\Omega)$ such that $\Omega^u_c = \{z \in \Omega | u(z) \le c\} \subseteq \Omega$ compact
- (iii) $K \subseteq \Omega$ compact $\Rightarrow \hat{K}_{\Omega}^p \subseteq \Omega$ compact

Remark 4.8. If u satisfies (ii), then to is called a PSH exhaustion of Ω

Proof. (ii) \Rightarrow (iii): $K \subseteq \Omega$ compact, $\sup_{y \in K} u(y) = M < \infty$, $\hat{K}^p_{\Omega} \subseteq \{z \in \Omega | u(z) \leq M\} = \Omega^u_M \subseteq \Omega$

(i) \Longrightarrow (ii): $u(z) = -\log \delta(z, \Omega^c)$, check that $z \mapsto \delta(z, \Omega^c)$ is continuous, take $F(\tau)$ to be a polynomial, such that $-\log(z + \tau w, \Omega^c) \le \operatorname{Re} F(\tau)$ on $\partial\Omega$, then there exists polynomial f such that $f(z + \tau w) = F(\tau)$, then $\delta(z + \tau w, \Omega^c) \ge |e^{-f(z + \tau w)}|$ on ∂D , by Theorem 2.5.4, Inequality holds on $\widehat{\partial D} \supseteq \Omega$

Theorem 4.9. $\Omega \subseteq \mathbb{C}^n$ is pseudoconvex, $K \subseteq \Omega$ is compact, $\mathbf{z} \in \widehat{H^p_\Omega}^c$ ($\Rightarrow \widehat{K^p_\Omega} \subseteq \Omega$ compact), then there exists $\mathbf{u} \in C^\infty(\Omega)$ such that

- (a) $u \in PSH(\Omega)$ and $i\partial \bar{\partial} u > \delta \sum_{j=1}^{n} dz_j \wedge d\bar{z}_j$
- (b) $\Omega_c = \{u \leq c\} \subseteq \Omega$ is compact for any $c \in \mathbb{R}$
- (c) |u| < 0 on K and u(z) > 0

Remark 4.10. You can find $v \in PSH(\Omega) \cap C(\Omega)$ such that (b) and (c) holds for v (to make v smooth)

Proof. $\Omega_c\{v < c\}$, $v_j(z) = \int_{\Omega_{j+1}} v(\xi) \frac{1}{\epsilon^{2n}} \varphi(\frac{z-\xi}{\epsilon}) d\lambda(\xi) + \epsilon |z|^2$, ϵ small enough such that $v_j \in PSH(\Omega_j)$. Pick smooth function $\chi : \mathbb{R} \to \mathbb{R}$ non-decreasing and convex, $\chi(t) = 0$, $\forall t \leq 0$, $\chi(t) > 0$, $\forall t > 0$, $\chi'(t) > 0$, $\forall t > 0$. Recall: $\phi \in PSH \Rightarrow \chi \circ \phi \in PSH$ (Section 1.6). $\chi(v_j(z)-j+1) = 0$, $\forall z \in \Omega_{j-2}$, $u_k(z) = v_0(z) + a_1\chi(v_1(z)) + a_2\chi(v_2(z)-1) + \cdots + a_k\chi(v_k(z)-j+1)$, here $v_0(z)$ is PSH in Ω_{-1} , $a_1\chi(v_1(z))$ is PSH on Ω_0 provided a_1 is big enough, \cdots , thus $u_k \xrightarrow[C^{\infty}]{} u \in C^{\infty}(\Omega) \cap PSH(\Omega)$

Example 4.11. Ω_1, Ω_2 pseudoconvex $\Rightarrow \Omega_1 \cap \Omega_2$ pseudoconvex

Proof. u_1, u_2 are PSH exhaustions for $\Omega_1, \Omega_2, v = \max(u_1|_{\Omega_1 \cap \Omega_2}, u_2|_{\Omega_1 \cap \Omega_2}) \in PSH(\Omega_1 \cap \Omega_2)$ is an exhaustion of $\Omega_1 \cap \Omega_2$

Theorem 4.12. $\Omega \subseteq \mathbb{C}^n$ is open bounded, pseudoconvex. $\forall \mathbf{z} \in \bar{\Omega}, \exists B \ni \mathbf{z}$ open ball such that $\Omega \cap B$ is pseudoconvex (HW: Show that balls are pseudoconvex)

Proof. ⇒ is trivial. \Leftarrow : $\partial\Omega$ is compact, $\exists \tilde{B}_j \subset \subset B_j$ such that $\delta(y, (B_j \cap \Omega)^c) = \delta(y, \Omega^c)$ for all $y \in \tilde{B}_j$, $B_j \cap \Omega$ pseudoconvex ⇒ $-\log \delta(z, B_j^c)$ is PSH, thus $-\log(z, \Omega^c)$ is PSH on \tilde{B}_j , finite cover $\tilde{B}_1, \dots, \tilde{B}_k$, $\exists F \subseteq \Omega$ closed such that $-\log(z, \Omega^c) \in PSH(\Omega \setminus F)$, $\exists M > -\log \delta(z, \Omega^c)$ on F, max $(-\log \delta(z, \Omega^c), M) \in PSH(\Omega)$

Definition 4.13. A densely defined operator on Hilbert spaces H_1 is $T: \text{Dom } T \leq H_1 \to H_2$ linear, Dom T dense in H_1 , graph of T is closed

Theorem 4.14. $H_1 \xrightarrow{T} H_2 \xrightarrow{S} H_3$, the following hold

- $H_2 = (\ker S \cap \ker T^*) \oplus \overline{\operatorname{im} T} \oplus \overline{\operatorname{im} S^*}$
- $\ker S = (\ker S \cap \ker T^*) \oplus \overline{\operatorname{im} T}$
- If $||T^*x||_1^2 + ||Sx||_3^2 \ge C||x||_2^2$, $\forall x \in \text{Dom } S \cap \text{Dom } T^* \le H_2$. then im $T = \ker S$, moreover, $\forall v \in \ker S$, $\exists u \in T$, such that Tu = v with $||u||_1^2 \le \frac{1}{C}||v||_2^2$

5 Homeworks

5.1 Homework1

Problem 5.1. Let (X, d) be a metric space

- 1. Let $f_j: X \to [-\infty, \infty)$ be a decreasing sequence of upper semi-continuous functions. Show that $f_j := \lim f_j$ is also upper semi-continuous
- 2. Let $f: X \to [-\infty, \infty)$ be an upper semi-continuous function such that $f(x) \le M \in \mathbb{R}$ for all $x \in X$. Show that there exist a decreasing sequence of continuous functions such that $f_j \setminus f$ pointwise everywhere on X. [Hint: Show that the functions $f_j(x) := \sup_{y \in X} (f(y) jd(y, x))$ satisfy the requirements]

Solution.

- 1. The infinimum of a family of upper semicontinuous functions is again upper semicontinuous
- 2. Consider $f_n(x) = \sup_{y \in X} (f(y) nd(y, x))$ which surely is monotone decreasing, for any fixed x, it is obvious $f(x) \leq f_n(x)$, suppose $\lim_{n \to \infty} f_n(x) > f(x)$, then $\exists y_n, f(y_n) nd(y_n, x) f(x) > \eta$ for some $\eta > 0$, hence $d(y_n, x) < \frac{f(y_n) f(x) \eta}{n} \leq \frac{M f(x) \eta}{n}$, thus $\lim_{n \to \infty} y_n = x$, since f is semicontinuous, $\exists \delta > 0$, such that $f(y) < f(x) + \eta, \forall y \in B(x, \delta)$, thus $\exists N$, such that $f(y_n) < f(x) + \eta, \forall n > N$, but then $\eta > f(y_n) f(x) \geq f(y_n) nd(y_n, x) f(x) > \eta$ which is a contradiction. Therefore, $\lim_{n \to \infty} f_n(x) = f(x)$. Next we will prove that f_n is indeed continuous, since $f_n(x)$ could be seen as the supremum of a family of continuous functions in x over the family $\{f(y) nd(y, x)\}_{y \in X}$, it is lower semicontinuous. To show that f_n is also upper semicontinuous, we only need to show that, $\forall x \in \{f_n < a\}, \exists \delta > 0$, such that $B(x, \delta) \in \{f_n < a\}$. we have $f(z) nd(z, y) \leq f(z) nd(x, z) + nd(y, x) \leq f_n(x) + nd(y, x) < a \Rightarrow f_n(y) < a$, as long as δ is small enough

Problem 5.2. Let $\Omega \subset \mathbb{R}^n$ and $f \in C^2(\Omega)$ a real valued. If $x \in \Omega$ show that

$$\lim_{r\to 0}\frac{\int_{\mathbb{S}^{n-1}}f(x+r\xi)d\xi-f(x)}{r^2\mu(\mathbb{S}^{n-1})}=\frac{1}{n}\Delta f(x):=\frac{1}{n}\sum_{j=1}^n\frac{\partial^2}{\partial^2x_i}f(x),$$

where $d\xi$ is the surface measure of the unit sphere $\mathbb{S}^{n-1} \subset \mathbb{R}^n$, and $\mu(\mathbb{S}^{n-1})$ is the surface area of the unit sphere. [Hint: Use Taylor's formula and some linear algebra wisdom. Also, it was pointed out to me that the constant $\frac{1}{n}$ may need to adjusted in front of $\Delta f(x)$ on the right hand side. I leave it up to you to find the correct constant, which your precise calculations should naturally yield]

Solution.

$$\begin{split} \int_{\mathbb{S}^{n-1}} f(x+r\xi) \mathrm{d}\xi - \mu(\mathbb{S}^{n-1}) f(x) &= \int_{\mathbb{S}^{n-1}} \left(f(x+r\xi) - f(x) \right) \\ &= \int_{\mathbb{S}^{n-1}} \left(r\xi^T D f(x) + \frac{r^2}{2} \xi^T D^2 f(\eta) \xi \right) \\ &= \int_{\mathbb{S}^{n-1}} \frac{r^2}{2} \xi^T D^2 f(\eta) \xi \end{split}$$

Where $\eta = x + \theta r \xi$, $0 < \theta < 1$ depends on $r \xi$. Then we have

$$\begin{split} \lim_{r\to 0} \frac{\int_{\mathbb{S}^{n-1}} f(x+r\xi) \mathrm{d}\xi - \mu(\mathbb{S}^{n-1}) f(x)}{r^2 \mu(\mathbb{S}^{n-1})} &= \frac{1}{2\mu(\mathbb{S}^{n-1})} \lim_{r\to 0} \int_{\mathbb{S}^{n-1}} \xi^T D^2 f(\eta) \xi \\ &= \frac{1}{2\mu(\mathbb{S}^{n-1})} \int_{\mathbb{S}^{n-1}} \xi^T D^2 f(x) \xi \\ &= \frac{1}{2\mu(\mathbb{S}^{n-1})} \int_{\mathbb{S}^{n-1}} \xi^T P^T \begin{pmatrix} \frac{\partial^2 f}{\partial x_1^2}(x) & & \\ & \ddots & \\ & \frac{\partial^2 f}{\partial x_n^2}(x) \end{pmatrix} P \xi \\ &= \frac{1}{2\mu(\mathbb{S}^{n-1})} \int_{\mathbb{S}^{n-1}} \xi^T \begin{pmatrix} \frac{\partial^2 f}{\partial x_1^2}(x) & & \\ & \ddots & \\ & \frac{\partial^2 f}{\partial x_n^2}(x) \end{pmatrix} \zeta \\ &= \frac{1}{2\mu(\mathbb{S}^{n-1})} \int_{\mathbb{S}^{n-1}} \frac{\partial^2 f}{\partial x_1^2}(x) \xi_1^2 + \dots + \frac{\partial^2 f}{\partial x_n^2}(x) \xi_n^2 \\ &= \frac{1}{2\mu(\mathbb{S}^{n-1})} \int_{\mathbb{S}^{n}} \mathrm{div} V \\ &= \frac{1}{2\mu(\mathbb{S}^{n-1})} \int_{\mathbb{S}^n} \mathrm{div} V \\ &= \frac{1}{2\mu(\mathbb{S}^{n-1})} \int_{\mathbb{S}^n} \Delta f(x) \\ &= \frac{1}{2n} \Delta f(x) \end{split}$$

$$\text{Where } P \in O(n), \ \xi := P \xi, \ V = \left(\frac{\partial^2 f}{\partial x_1^2}(x) \xi_1, \dots, \frac{\partial^2 f}{\partial x_n^2}(x) \xi_n \right)^T$$

5.2 Homework2

Problem 5.3 (Unique analytic continuation). Let $\Omega \subset \mathbb{C}^n$ open and connected, and $f,g \in A(\Omega)$. If f = g on an open subset of Ω show that f = g everywhere on Ω

Problem 5.4. Show that the function $u \in C_0^k(\mathbb{C}^n)$ constructed in Theorem 2.3.1 is unique

5.3 Homework3

Problem 5.5. Let $\Omega \subset \mathbb{C}^n$ be open and let P be a polydisk, whose closure is contained in Ω . Show that $\widehat{\partial_0 P_\Omega} = \overline{P}$, where $\partial_0 P$ is the distinguished boundary of P

Problem 5.6. Argue precisely why the function f constructed in the proof of Theorem 2.5.5 can not be identically zero!

Problem 5.7. \mathbb{C}^n can be viewed as a 2n-dimensional real vector space and an n-dimensional complex vector space. Show that any \mathbb{R} -linear functional on \mathbb{C}^n is the real part of a \mathbb{C} -linear functional on \mathbb{C}^n

5.4 Homework4

Problem 5.8. Let $\lambda := (\lambda_1, \dots, \lambda_j)$, $z := (z_1, \dots, z_j)$ and $\xi := (\xi_1, \dots, \xi_j)$ be as in the proof of Corollary 2.5.8. Show that

$$\sum_{i=1}^{j} \lambda_i \log |z_i| \leq \sup_{\xi \in k} \sum_{i=1}^{j} \lambda_j \log |\xi_i|, \ \forall \lambda \in \mathbb{R}_+^n \quad \text{with} \ \lambda_1 + \ldots + \lambda_j = 1$$

is equivalent with $(\log |z_1|, \ldots, \log |z_j|)$ being in the convex hull of the set of all points (η_1, \ldots, η_j) such that $\eta_i \leq \log |\xi_i|$ for $1 \leq i \leq j$. [Hint: One direction is easy. For show that being in the convex hull implies the inequality use the fact that a closed convex set is always the intersection of half spaces]

Problem 5.9. Let δ as defined by Hörmander on page 37. Show that $\mathbf{z} \to \delta(\mathbf{z}, \Omega^c)$ is a continuous on \mathbb{C}^n , where Ω is an open subset of \mathbb{C}^n

5.5 Homework5

Problem 5.10. In Theorem 1.1 of Chapter VIII.1 (Demailly's textbook): argue carefully that $T^{**}=T$ and $Ker\ T^{\perp}=\overline{Im\ T^*}$

5.6 Homework6

Problem 5.11. Given a Hermitian metric $h:=\sum_{j,k}h_{j,\bar{k}}dz_j\wedge \overline{dz_k}$ on a complex manifold Ω , show that it is possible to define a Hermitian metric on the vector bundle of (p,\bar{q}) -forms on Ω

References

- $[1]\ An \ Introduction \ to \ Complex \ Analysis \ in \ Several \ Variables$ Lars Hörmander
- $[2] \ \ Complex \ Analytic \ and \ Differential \ Geometry$ Jean-Pierre Demailly

Index

Densely defined operator, 10 Polydisc, 4 Distinguished boundary, 4

Harmonic function, 2 Reinhardt, 6