Diagnosing Respiratory Disease from Chest X-Rays

Final Presentation

Group 3: Alex Herron, Ilias Arvanitakis, Isi Filipovic, Eug Fomitcheva

The Problem and Clinical Significance

Motivation & Problem

- Inspiration from failed U of Minnesota case study in x-ray Al for COVID
- Originally interested in diagnosing COVID from chest x-rays as an alternative approach to nasal swabs due to supply chain shortages

We have broadened the problem we seek to address to diagnosing respiratory disease from chest x-rays via a survey of approaches that include supervised and self-supervised learning methods.

Clinical Significance

- Diagnosing respiratory diseases using x-rays could aid in reducing risk of infection transmission between patients and healthcare workers
- COVID and other respiratory diseases are known to move from upper (e.g. nasal) to lower (e.g. lungs) respiratory tract making COVID nasal swabs insufficient
- X-rays are a non-invasive tool for monitoring progress of the disease
- X-rays are fast and can be cost effective
- Utilizing Al-based approaches can help diagnose patients more quickly and accurately, which can be life-saving

D

Data

COVID-19 Radiography Database

- X-rays collected from a variety of sources (raw images)
- Four-class dataset:
 - Healthy (10,192 images)
 - COVID (3,616 images)
 - Viral Pneumonia (1,345 images)
 - Lung opacity (6,012 images)

Relevant Work in Diagnosing Diseases from X-Rays

Though the pandemic reiterated the importance of DL applications in radiology imaging, many studies were plagued by data scale, single-source datasets that limited generalizability, and quality issues.

- Deep learning algorithms detect patterns in X-rays that are indicative of COVID-19 (such as ground-glass opacities and other lung abnormalities)
 - Convolutional Neural Networks (CNNs) learn to detect patterns
 - Recurrent Neural Networks (RNNs) analyze sequential chest X-rays to identify changes over time
 - Vision Transformers (ViTs) leverage transformer architecture to capture global information of an image using patch and positional embeddings
 - Variational Autoencoders (VAEs) relatively stable generative model that is capable of improving performance on downstream tasks by learning useful latent representations of images
- Transfer learning techniques address limitations of data by enabling
 - Supervised pre-training of classical CNN architectures (ResNet50, VGG16, etc.)
 - Pre-trained on ImageNet data
 - Self-supervised learning of image representations as pre-trained weights
 - Masked Autoencoders (MAEs), Bootstrap Your Own Latent (BYOL), self-Distillation w/ NO labels (DINO), MOmentum COntrast (MOCO), etc.

Our Approach – Survey of Models

Four-Class Classification Problem

CNN 1 - ResNet18

CNN 2 - VGG16

Ensemble VAE

MAE-ViT

Architecture

- CNNs have been extensively used for image classification and have demonstrated success when fine-tuned for downstream tasks (transfer learning)
- Fine-tuning these architectures is relatively time/cost efficient
- Able to learn hierarchical representations of images while generalizing well to unseen data

- EVAE-Net proposed by Addo et al. (2022) leverages ensemble learning with ResNet and VGG + high-quality latent representations from VAE for a SOTA model
- Combining the feature maps produced by both CNNs could allow EVAE to learn more information

- Zhou et al. (2023) demonstrate SOTA performance of ViT on chest X-ray disease classification when pre-trained using MAE
- ViT self-attention layer embeds information globally across the image which is essential in the medical domain where anatomical structure is particularly important

Baseline Results

Feature Engineering from masked images

 $Lung\ Fraction = rac{Number\ of\ Lung\ Pixels}{Total\ Number\ of\ Pixels}$

 $Left/Right\ Lung\ Size = abs(\frac{Number\ of\ Left\ Lung\ Pixels}{Number\ of\ Right\ Lung\ Pixels} - 1)$

 $Symmetricalness = \frac{\textit{Number of Pixels Mirrored over center of } x-axis}{\textit{Total Number of Pixels}}$

Binary Classification (Normal vs. COVID)

Model	AUC	Accuracy	Precision	Recall	F-1 Score
Logistic Regression	0.607	67.7%	0.387	0.381	0.384
Decision Tree	0.574	72.3%	0.470	0.247	0.324
XGBoost	0.675	70.3%	0.437	0.431	0.434
Naive Bayes	0.652	70.0%	0.431	0.424	0.427
KNN	0.600	73.1%	0.473	0.166	0.246
SVM	0.658	72.2%	0.472	0.465	0.469
Random Forest	0.680	71.8%	0.465	0.458	0.462

ResNet18 CNN

Architecture

- ResNet18 (PyTorch)
- Main idea: Skip connections

Binary Classification

Predicting Normal vs. COVID Comparison to baseline machine learning results:

- Best AUC for baseline machine learning was from the Random Forest model:
 0.68
- AUC for fine-tuned ResNet (with limited training): 0.93

Multiclass Classification

Predicting Normal/ COVID/ Lung Opacity/Viral Pneumonia

Two different training variations

- Trained from scratch
- Fine-tuned ResNet (pretrained on ImageNet)
 - For each class, the fine-tuned model outperformed the model trained from scratch by ~0.01 AUC

VGG16 CNN

Architecture

- Deep and highly effective CNN
- Utilizes 16 layers
- Softmax activation for multi-class tasks
- Utilizes cross-entropy loss

CNNs use layers to detect features, reduce dimensions, and classify. They are trained with backpropagation and gradient descent to minimize loss functions.

VGG16 Scratch-trained

- The overall AUC plateaued at ~83%
- Very computationally intensive and inefficient

VGG16 Fine-tuned

- Managed to strike a balance between correctly identifying positive instances and minimizing false positives.
- Overall AUC stood at 93% in the test set

Ensemble VAE Scratch Implementation

An ensemble variational autoencoder deep learning network that combines the high-quality latent representations generated by VAE and ensemble learning

MAE-VIT SSL

A ViT encoder, composed of a patch embedding layer, position embedding, and transformer blocks, constitutes the backbone for both pre-training and downstream tasks.

Results & Takeaways

Inference on Test Set		ResNet (FT)	VGG (FT)	EVAE	MAE-VIT	Observations	
Multiclass AUC	viral	0.87	0.88	0.89	0.86	There is an argument for transf	
	normal	0.85	0.88	0.80	0.72	 There is an argument for transobserved in performance of C 	
	opacity	0.92	0.92	0.79	0.77	the fine-tuned and scratch-train	
	COVID	0.96	0.99	0.65	0.53	 Different model architectures has 	
Multiclass Accuracy	viral	0.90	0.93	0.97	0.95	distributions of predictive perfor classes	
	normal	0.89	0.91	0.80	0.72		
	opacity	0.93	0.93	0.82	0.71	 ResNet & VGG demonstra while EVAE & MAE shared 	
	COVID	0.97	0.99	0.85	0.82	similarities	
Overall Precision		0.85	0.88	0.71	0.58	EVAE / MAE-ViT did not achieve	
Overall Recall		0.85	0.87	0.66	0.59	than CNN architectures and con constraints presented challenge	
Overall F-1		0.85	0.87	0.67	0.53	- ○ More complex architectur	
·		·	·		·	5 Hore complex dicflicectary	

- fer learning as IN architectures in ned settings
- nave different ormance over
 - rated similar results ed some distribution
- e better results mputational les
 - ures have many parts that are subject to optimization / hyperparameter tuning

Future Work

1. **Data Preprocessing and Augmentation** to address class imbalances

2. Ensemble VAE

- Several simplifying implementation choices made could impact performance: (i) the depth of the decoder, (ii) upsampling method, (iii) loss function construction and weighting
- Further hyperparameter tuning
- Parallelization of training to multiple GPUs

MAE-ViT

- Pre-training implementation adjustments: (i) rescaling input images to avoid loss of granularity, (ii) alternative position embeddings as experimental suggests may improve reconstruction, (iii) longer training to obtain better image representations, etc.
- End task implementation choices such as **freeze vs. trainable layers**

4. Radiologist Evaluation

- Test radiologists on subsample of test data and compare performance with that of models
- Potentially test performance of radiologists who have been informed by model predictions