Алгоритмы и модели вычислений.

Задание 1: Алгоритмы и оценка сложности

Сергей Володин, 272 гр.

задано 2014.02.13

(каноническое) Задача 1

$$f(n) \stackrel{\text{def}}{=} \sum_{i=1}^n \tfrac{1}{i}, \ g(n) = \log n. \ \text{Доказать:} \ f = \Theta(g) \Leftrightarrow \begin{cases} f = O(g) \\ g = O(f) \end{cases} \Leftrightarrow \begin{cases} \exists C_1, n_1 \colon \forall n \geqslant n_1 \hookrightarrow f(n) \leqslant C_1 g(n) & (1) \\ \exists C_2, n_2 \colon \forall n \geqslant n_2 \hookrightarrow g(n) \leqslant C_2 f(n) & (2) \end{cases}$$

1. Докажем утверждение: пусть $f(n),g(n)\colon \exists n_0,C_1>0\colon \forall n\geqslant n_0\hookrightarrow\underbrace{f(n+1)-f(n)}_{\Delta_f(n)}\leqslant C_1\underbrace{g(n+1)-g(n)}_{\Delta_g(n)}$. Тогда f=0

O(g). Действительно, выберем $C_2 > 0$ таким образом, что $f(n_0) \leqslant C_2 g(n_0)$ (всегда можно сделать). Возьмем C для определения O как $C = \max(C_1, C_2)$. Докажем по индукции $\forall n \geqslant n_0 \hookrightarrow f(n) \leqslant Cg(n)$:

- (a) $f(n_0) \leqslant C_2 g(n_0) \leqslant C g(n_0) \blacksquare$
- (b) Пусть $f(n) \leqslant Cg(n)$. Докажем для n+1: по условию $\Delta_f(n) = f(n+1) f(n) \leqslant C_1(g(n+1) g(n)) \leqslant C(g(n+1) g(n))$. Перегруппируем, получим $f(n+1) Cg(n+1) \leqslant f(n) Cg(n) \leqslant 0$, т.е. $f(n+1) \leqslant Cg(n+1) \blacksquare$
- 2. Докажем (1).
 - (a) $\not \preceq \Delta_f(n) \stackrel{\text{def}}{=} f(n+1) f(n) = \frac{1}{n+1} \leqslant \frac{1}{n}$
 - (b) $\not \leq \Delta_g(n) \stackrel{\text{def}}{=} g(n+1) g(n) = \log(n+1) \log n = \log \frac{n+1}{n} = \log(1+\frac{1}{n}) = \frac{1}{n} + \bar{o}(\frac{1}{n}) = \boxed{*}, \, n \to \infty.$ Но по определению $\bar{o} \exists n_1 : \forall n \geqslant n_1 \hookrightarrow \boxed{*} \geqslant \frac{1}{n}(1-\frac{1}{2}) = \frac{1}{2}\frac{1}{n}.$ Тогда $\frac{1}{n} \leqslant 2\boxed{*} = 2(g(n+1)-g(n))$
 - (c) Получаем $\Delta_f(n) = f(n+1) f(n) \leqslant \frac{1}{n} \leqslant 2(g(n+1) g(n)) = 2\Delta_g(n)$, и по 1 получаем f = O(g).
- 3. Докажем (2).
 - $(a) \ \not <\Delta_f(n) = \tfrac{1}{n+1}. \ \text{Докажем, что это больше, чем } \ \tfrac{1}{2} \tfrac{1}{n} \colon \tfrac{1}{n+1} \tfrac{1}{2} \tfrac{1}{n} = \tfrac{2n-n-1}{2n(n+1)} = \tfrac{n-1}{2n(n+1)} \geqslant 0, \ n \geqslant 1. \ \text{Итак, } \Delta_f(n) \geqslant \tfrac{1}{2} \tfrac{1}{n} = \tfrac{n-1}{2n(n+1)} = \tfrac{n-1}{2n(n+1)} = \tfrac{n-1}{2n(n+1)} \geqslant 0, \ n \geqslant 1. \ \texttt{Итак, } \Delta_f(n) \geqslant \tfrac{1}{2} \tfrac{1}{n} = \tfrac{n-1}{2n(n+1)} = \tfrac{n-1}{2n(n+1)} \geqslant 0, \ n \geqslant 1. \ \texttt{Итак, } \Delta_f(n) \geqslant \tfrac{1}{2} \tfrac{1}{n} = \tfrac{n-1}{2n(n+1)} = \tfrac{n-1}{2n(n+1)} \geqslant 0, \ n \geqslant 1. \ \texttt{Итак, } \Delta_f(n) \geqslant \tfrac{1}{2} \tfrac{1}{n} = \tfrac{n-1}{2n(n+1)} = \tfrac{n-1}{2n(n+1)} \geqslant 0, \ n \geqslant 1. \ \texttt{Итак, } \Delta_f(n) \geqslant \tfrac{1}{2} \tfrac{1}{n} = \tfrac{n-1}{2n(n+1)} = \tfrac{n-1}{2n(n+1)} \geqslant 0, \ n \geqslant 1. \ \texttt{Итак, } \Delta_f(n) \geqslant \tfrac{1}{2} \tfrac{1}{n} = \tfrac{n-1}{2n(n+1)} = \tfrac{n-1}{2n(n+1)} \geqslant 0, \ n \geqslant 1. \ \texttt{Итак, } \Delta_f(n) \geqslant \tfrac{1}{2} \tfrac{1}{n} = \tfrac{n-1}{2n(n+1)} = \tfrac{n-1}{2n(n+1)} \geqslant 0, \ n \geqslant 1. \ \texttt{Итак, } \Delta_f(n) \geqslant \tfrac{1}{2} \tfrac{1}{n} = \tfrac{n-1}{2n(n+1)} = \tfrac{n-1}{2n(n+1)} \geqslant 0, \ n \geqslant 1. \ \texttt{UTak, } \Delta_f(n) \geqslant \tfrac{1}{2} \tfrac{1}{n} = \tfrac{n-1}{2n(n+1)} = \tfrac{n-1}{2n(n+1)} \geqslant 0, \ n \geqslant 1. \ \texttt{UTak, } \Delta_f(n) \geqslant \tfrac{1}{2} \tfrac{1}{n} = \tfrac{n-1}{2n(n+1)} = \tfrac{n-1}{2n(n+1)} \geqslant 0.$
 - (b) $2b\Rightarrow \Delta_g(n)=\frac{1}{n}+\bar{\bar{o}}(\frac{1}{n})\leqslant \frac{1}{n}(1+\frac{1}{2})$ при $n\geqslant n_2>1.$ Значит, $\frac{3}{2}\frac{1}{n}\geqslant \Delta_g(n)$
 - (c) $\Delta_g(n) \overset{3b}{\leqslant} \frac{3}{2} \frac{1}{n} \overset{3a}{\leqslant} \frac{3}{2} \cdot 2 \cdot \Delta_f(n)$ при $n \geqslant n_2$, и по 1 получаем g = O(f).

(каноническое) Задача 2

 $f(n) \stackrel{\text{def}}{=} C_n^{2n} \equiv \frac{(2n)!}{n!n!}. \text{ Тогда } \ln f(n) = \ln(2n)! - 2\ln n! \boxed{=}. \text{ По формуле Стирлинга } \boxed{=}(2n)\ln(2n) - 2n + O(\ln(2n)) - n\ln n + n - O(\ln n). \text{ Поскольку } O(\ln(2n)) - O(\ln n) \leqslant O(\ln(2n)) = O(\ln 2 + \ln n) = O(\ln n), \text{ получим } \boxed{=} 2n(\ln 2 + \ln n) - n - n\ln n + O(\ln n) = n\ln n - n(1-2\ln 2) + O(\ln n). \text{ Тогда } f(n) = e^{\cdots} = e^{n\ln n - n(1-2\ln 2) + O(\ln n)} = O(\frac{n^{n+1}}{e^n}), \text{ так как } 1-2\ln 2 > 1. \text{ ДОПИСАТЬ!}$ Либо: $n! = \Theta(\sqrt{2\pi n}(\frac{n}{e})^n) = \Theta(\sqrt{n}(\frac{n}{e})^n), \text{ поэтому } f(n) \equiv \frac{(2n)!}{(n!)^2} = \Theta(\frac{\sqrt{2n}(\frac{2n}{e})^{2n}}{n(\frac{n}{e})^{2n}}) = \Theta(\frac{4^n}{\sqrt{n}})$

Otbet: $C_n^{2n} = \Theta(\frac{4^n}{\sqrt{n}})$

(каноническое) Задача 3

- 1. $T(n) = 9T(\frac{n}{3}) + f(n), f(n) = \Theta(n^2 \log n).$
 - (a) Докажем, что теорема неприменима. $a = 9, b = 3 \Rightarrow \log_b a = \log_3 9 = 2$.
 - і. Если $\exists \varepsilon > 0$: $f(n) = O(n^{2-\varepsilon})$, то $\exists C > 0 \exists n_0$, для $n \geqslant n_0$ получим $f(n)/n^{2-\varepsilon} \leqslant C > 0$, то есть $n^2 \log n/n^{2-\varepsilon} \equiv n^\varepsilon \log n \leqslant C$, что неверно (функция неограничена сверху).
 - ії. Если $f = \Theta(n^2)$, то $\exists n_0 \exists C > 0 \colon f \leqslant C n^2$ для $n \geqslant n_0$, и $\log n \leqslant C$, что неверно (функция неограничена сверху).
 - іїі. Если $\exists \varepsilon > 0 \colon f = \Omega(n^{2-\varepsilon})$, то $\exists n_0 \colon \forall n \geqslant n_0 \hookrightarrow f \geqslant Cn^{2+\varepsilon}$, и $\log n \geqslant Cn^\varepsilon$, откуда $\frac{\log^n}{n^\varepsilon} \geqslant C > 0$, что неверно, так как $\forall \varepsilon > 0 \hookrightarrow \lim_{n \to \infty} \frac{\log n}{n^\varepsilon} = +0$
 - (b) Найдем ответ через дерево рекурсии. В корне (i=0) выполняется $n^2 \log n$ операций, у каждой вершины 9 детей, на уровне i+1 $n_{i+1}=n_i/3$. У листьев (по индукции по высоте дерева) $1=n_h=\frac{n}{3^h}$, поэтому высота дерева (не считая корня) $h=\log_3 n$. Найдем суммарное время:

$$T(n) = \Theta(n^2 \log n + 9(\frac{n}{3})^2 \log \frac{n}{3} + 9^2(\frac{n}{3^2})^2 \log \frac{n}{3^2} + \dots + 9^{h-1}(\frac{n}{3^{h-1}})^2 \log \frac{n}{3^{h-1}}) + 9^h T(1)$$

Найдем сумму в аргументе Θ : $\sum_{i=0}^{h-1} 9^i (\frac{n}{3^i})^2 \log \frac{n}{3^i} = n^2 \sum_{i=0}^{h-1} (\log n - i \log 3) = n^2 \log n (h-1) - n^2 \frac{h-1}{2} \log 3 = n^2 \log n (\log_3 n - 1) - n^2 \frac{\log_3 n - 1}{2} \log 3 = n^2 \log^2 n - n^2 \log n - n^2 \log n + Cn^2 = \Theta(n^2 \log^2 n).$ Найдем $9^hT(1)=C9^{\log_3 n}=Cn^2$. Имеем $T(n)=\Theta(n^2\log^2 n)+Cn^2=\Theta(n^2\log^2 n)$

- $2. \ T(n) = 16T(\frac{n}{4}) + f(n), \ f(n) = \Theta(n^2). \ a = 16, \ b = 4. \$ Применим второй пункт Теоремы: $\Theta(n^{\log_b a}) \equiv \Theta(n^2), \$ поэтому $f(n) = \Theta(n^{\log_b a})$, и отсюда $T(n) = \Theta(n^2 \log n)$
- 3. $T(n)=4T(\frac{n}{2})+\Theta(\underbrace{\frac{n^2\sqrt{n}}{\log^2 n}})$. $a=4,\ b=2\Rightarrow \log_b a=2$. Возьмем $\varepsilon=\frac{1}{4}$ и применим третий пункт Теоремы: $f(n)\stackrel{?}{=}\Omega(n^{2+\varepsilon})$.

Рассмотрим $\frac{f(n)}{n^{2+\varepsilon}} = \frac{n^{2}\sqrt{n}}{n^{2}n^{\varepsilon}\log^{2}n} = \frac{n^{\frac{1}{2}-\varepsilon}}{\log^{2}n} = \frac{n^{1/4}}{\log^{2}n} = (\frac{n^{1/8}}{\log^{2}n})^{2} \xrightarrow{n \to \infty} +\infty$, поэтому $\exists C > 0 \exists n_{0} > 0 \colon \forall n \geqslant n_{0} \hookrightarrow f(n) \geqslant Cn^{2+\varepsilon}$. Докажем, что $\exists 0 < C < 1 \exists n_{1} \colon af(n/b) \leqslant Cf(n)$. $f = \Theta(g) \Rightarrow \exists n_{2} \colon \forall n \geqslant n_{2} \hookrightarrow C_{1}g(n) \leqslant f(n) \leqslant C_{2}g(n)$. Тогда $af(\frac{n}{b}) \leqslant 4C_{2}\frac{(\frac{n}{2})^{\frac{5}{2}}}{\log^{2}(\frac{n}{2})} = \frac{C_{2}}{\sqrt{2}C_{1}}\frac{\log^{2}n}{\log^{2}(\frac{n}{2})}C_{1}\frac{n^{2}\sqrt{n}}{\log^{2}(\frac{n}{2})}f(n)$. Значит, оценка верна, и по теореме получаем $T(n) = \Theta(\frac{n^{5/2}}{\log^{2}n})$

Сравним первую и вторую функции: $\frac{n^2\log^2 n}{n^2\log n} = \log n \xrightarrow{n \to \infty} +\infty$, поэтому первый алгоритм хуже. Сравним вторую и третью функции: $\frac{n^2\sqrt{n}}{\log^2 n}\frac{1}{n^2\log n} = \frac{n^{1/2}}{\log^3 n} = (\frac{n^{1/6}}{\log n})^3 \xrightarrow{n \to \infty} +\infty$, поэтому третий алгоритм хуже. Ответ: второй алгоритм имеет наименьшую асимптотическую стоимость.

(каноническое) Задача 4

- $1. \ T(n) = 2T(\frac{n}{2}) + \underbrace{n}_{f(n)}. \ \text{Воспользуемся пунктом (2) Теоремы: } \log_b a = \log_2 2 = 1, \ \text{поэтому } f(n) \equiv n = \Theta(n^{\log_b a}) \equiv \Theta(n).$ Ответ: $\boxed{T(n) = \Theta(n \log n)}.$
- 2. $T(n) = 3T(\frac{n}{3}) + \underbrace{n^2}$. Воспользуемся пунктом (3) Теоремы: $\log_b a = 1$, $\lim_{n \to \infty} \frac{f(n)}{n^{\log_b a + \varepsilon}} = \lim_{n \to \infty} n^{1-\varepsilon} = +\infty$ например при $\varepsilon = \frac{1}{2}$. Поэтому из определения предела для $\varepsilon_{\lim} = 1 \, \exists n_0 > 0 \colon \forall n \geqslant n_0 \hookrightarrow f(n) \geqslant \varepsilon_{\lim} n^{1+\varepsilon}$, значит, $f(n) = \Omega(n^{1+\varepsilon})$. Докажем условие регулярности: $af(\frac{n}{b}) \equiv 2\frac{n^2}{2^2} = \frac{1}{2}n^2 = \frac{1}{2}f(n) \leqslant \frac{1}{2}f(n)$, т.е. условие выполняется с $c = \frac{1}{2} < 1$. Otbet: $T(n) = \Theta(n^2)$
- 3. $T(n)=4T(\frac{n}{2})+\underbrace{\frac{n}{\log n}}$. Воспользуемся пунктом (1) Теоремы: $\log_b a=\log_2 4=2$.

Рассмотрим $\lim_{n\to\infty} \frac{f(n)}{n^{\log_b a-\varepsilon}} = \lim_{n\to\infty} \frac{1}{n^{1-\varepsilon}\log n} = 0$ например при $\varepsilon=\frac{1}{2}$. Из определения предела для

$$\varepsilon_{\lim} = 1 \,\exists n_0 \colon \forall n \geqslant n_0 \hookrightarrow f(n) \leqslant \varepsilon_{\lim} n^{2-\varepsilon},$$

откуда следует $f(n) = O(n^{2-\varepsilon})$. Ответ: $T(n) = \Theta(n^2)$

(каноническое) Задача 5

 $M(m) \stackrel{\text{def}}{=} Mult(m), A(m) \stackrel{\text{def}}{=} Add(m).$

Элементарная битовая операция — конъюнкция, дизъюнкция, сложение, умножение двух бит. Описание алгоритма. Пусть даны числа $p=a+bx,\ q=c+dx$. Пусть числа a,b,c,d-m-битные, $x=2^m$. Требуется найти pq.

Ho
$$pq=(a+bx)(c+dx)=ac+x(ad+bc)+bdx^2$$
. Рассмотрим
$$\begin{cases} t_1 &= ac \\ t_2 &= bd \\ t_3 &= (a+b)(c+d) \end{cases}$$
. Тогда $pq=t_1+(t_3-t_1-t_2)x+t_2x^2$.

- 1. Для получения t_i необходимо 2 умножения чисел по m бит, одно умножение чисел по m+1 бит, два сложения чисел по m бит: 2M(m) + M(m+1) + A(m). Для вычисления pq таким образом требуется еще два сложение чисел длиной менее m+1 и битовые сдвиги (их не считаем). Получаем M(2m)=2M(m)+M(m+1)+A(m)+2A(m+1).
- 2. Докажем, что A(m+1) = A(m): пусть нужно сложить числа p и q по m+1 бит. Представим их в виде $p = a_1 + t_1 x$, $a_2 + t_2 x$, где $x=2^m$, и t_i — соответствующие старшие биты. Полусим $p+q=(a_1+a_2)+(t_1+t_2)x$. Сумму a_1+a_2 вычислим за A(m), сложение t_1+t_2 — за константу (всего 4 возможных случая), далее вычислим p+q за константу. Получаем A(m+1) = A(m) + O(1), откуда A(m+1) = O(A(m))
- 3. Поскольку $M(m) \leq M(m+1)$, получим $M(2m) \leq 3M(m+1) + A(m) + 2A(m+1)$, и по предыдущему пункту

$$M(2m) \leqslant 3M(m+1) + O(A(m))$$

4. Поскольку $A(m) = O(m), M(2m) \leqslant 3M(m+1) + O(m),$ т.е.

$$M(m) \leqslant 3M(\frac{m}{2}+1) + f(m)$$
, где $f(m) = O(m)$.

5. Из определения O(m) получаем $\exists m_0 \, \exists C > 0 \colon \forall m \geqslant m_0 \hookrightarrow f(m) \leqslant Cm$

6. Дерево рекурсии:

Найдем элементы последовательности аргументов f:

$$a_{i+1} = \frac{a_i}{2} + 1$$
. $a_0 = m$. По индукции докажем $a_i \stackrel{?}{=} a_i' = \frac{m}{2^i} + \sum_{k=0}^{i-1} \frac{1}{2^k}$.

(a) База: $a_0 = n, a'_0 = m \blacksquare$

(b) Переход. Пусть
$$a'_l = a_l$$
. Тогда $a'_{l+1} - a_{l+1} = \frac{m}{2^{i+1}} + \sum_{k=0}^{l} \frac{1}{2^k} - \frac{a_l}{2} - 1$ Но $a_l = a'_l$, поэтому

$$\boxed{\equiv} \frac{m}{2^{i+1}} + \sum_{k=0}^{l} \frac{1}{2^k} - \frac{m}{2^{i+1}} - \sum_{k=0}^{l-1} \frac{1}{2^{k+1}} - 1. \text{ Cymma } \sum_{k=0}^{l-1} \frac{1}{2^{k+1}} = \sum_{k=1}^{l} \frac{1}{2^k}, \text{ поэтому } \boxed{\equiv} \sum_{k=0}^{l} \frac{1}{2^k} - 1 - \sum_{k=1}^{l} \frac{1}{2^k} = 0 \blacksquare$$

Высота дерева $h \leqslant C \log_2 m$ обосновать!

Последовательность
$$a_l = \frac{m}{2^l} + \sum_{i=0}^{l-1} 2^{-i} \leqslant \frac{m}{2^l} + 2$$
. Получаем $M(m) \leqslant \sum_{k=0}^{h-1} 3^k f(\frac{m}{2^k} + 2) + 3^h M(2) \leqslant Cm \sum_{k=0}^{h-1} (\frac{3}{2})^k + 2C \sum_{k=0}^{h-1} 3^k + 2C \sum_{k=$

$$3^hM(2)$$
. Первая сумма $\sum\limits_{k=0}^{h-1}(\frac{3}{2})^k=\frac{1-(3/2)^{h-1}}{1-3/2}\stackrel{!}{\leqslant}2((3/2)^{\log_2 m})-2=2m^{\log_2\frac{3}{2}}-2$

Вторая сумма
$$\sum_{k=0}^{h-1} 3^k = \frac{3^{h-1}-1}{2} \leqslant \frac{1}{2} (m^{\log_2 3} - 1)$$

Тогда
$$M(m) \leqslant Cm(2m^{\log_2 \frac{3}{2}} - 2) + 2C\frac{1}{2}(m^{\log_2 3} - 1) + m^{\log_2 3}T(2) = O(m^{\log_2 3})$$
, так как $m^{1 + \log_2 (3/2)} = m^{\log_2 3}$

Ответ: $Mult(m) = O(m^{\log_2 3})$

Задача 1

1. $T(n) = 2T(\frac{n}{3}) + f(n), f(n) = \Theta(n^2)$. Дерево рекурсии:

Рассмотрим рекуррентность. Последовательно подставляя T(n) в правую часть, получим некоторую сумму $T(n) = \sum\limits_{i=0}^{h-1} C_i \cdot f(\frac{n}{3^i}) + C_h T(1)$. Она конечна, так как аргумент $T(\cdot)$ в правой части меньше, чем в левой, причем в 3 раза. Прекращаем подставлять, когда аргумент станет равен 1. C_i — некоторые коэффициенты, найти которые можно при помощи дерева слева. Корень соответствует i=0 (база), та, каждый i-й уровень соответствует i-му слагаемому суммы. ДОПИСАТЬ ФОРМАЛЬНО При последней, h-й подстановке $\frac{n}{2h}=1$, откуда $h=\log_3 n$.

Таким образом, $T(n) = \sum_{k=0}^{n-1} 2^k f(\frac{n^2}{3^{2k}}) + 2^h T(1).$

(a) Обозначим $g(n) = n^2$, по условию $f(n) = \Theta(g(n))$. Из определения Θ получаем

$$\exists n_0 > 0, C_2 > C_1 > 0 \colon \forall n \geqslant n_0 \hookrightarrow C_1 g(n) \leqslant f(n) \leqslant C_2 g(n)$$

. Рассмотрим первую сумму S при $n \geqslant n_0$:

$$n^{2}C_{1}\sum_{k=0}^{h-1} \frac{2^{k}}{3^{2k}} \leqslant \sum_{k=0}^{h-1} 2^{k} f(\frac{n^{2}}{3^{2k}}) \leqslant n^{2}C_{2}\sum_{k=0}^{h-1} \frac{2^{k}}{3^{2k}}$$

$$(1)$$

Рассмотрим $S_1(n) \stackrel{\text{def}}{=} \sum_{k=0}^{h-1} \frac{2^k}{3^{2k}} \stackrel{\text{геом.}}{\stackrel{\text{прогр.}}{=}} \frac{1-\frac{2^{h-1}}{9^{h-1}}}{1-\frac{2}{9}} \stackrel{n\to\infty}{\longrightarrow} \frac{1}{1-2/9} = \frac{9}{7} \stackrel{\text{def}}{=} l$. Здесь использовалось $h = \log_3 n \stackrel{n\to\infty}{\longrightarrow} +\infty$. Определение предела:

$$\forall \varepsilon > 0 \,\exists n_1(\varepsilon) \colon \forall n \geqslant n_1 \hookrightarrow S_1(n) \in U_{\varepsilon}(l)$$

Фиксируем $\varepsilon = \varepsilon_0 = l/2$, определим $n \stackrel{\text{def}}{=} \max n_2(\varepsilon_0), n_0$. Тогда $\forall n \geqslant n_2 \hookrightarrow 0 < l - \varepsilon \leqslant S_1(n) \leqslant l + \varepsilon$.

Снова рассмотрим (1):при $n\geqslant n_2$: $n^2C_1(l-\varepsilon)\leqslant n^2C_1\sum\limits_{k=0}^{h-1}\frac{2^k}{3^{2k}}\leqslant \sum\limits_{k=0}^{h-1}2^kf(\frac{n^2}{3^{2k}})\leqslant n^2C_2\sum\limits_{k=0}^{h-1}\frac{2^k}{3^{2k}}\leqslant n^2C_2(l+\varepsilon)$. Получаем

$$S(n) = \Theta(n^2)$$

- (b) Рассмотрим $2^h T(1) = 2^{\log_3 n} T(1) = n^{\log_3 2} \underbrace{T(1)}_{\text{const}} = \Theta(n^{\log_3 2})$
- (c) Получаем $T(n) = \Theta(n^2) + \Theta(n^{\log_3 2}) = \Theta(n^2)$. Доказательство последнего равенства в конце работы (1) (2 > 1 > $\log_3 2$, поэтому $n^{\log_3 2} = \bar{o}(n^2)$)

Otbet: $T(n) = \Theta(n^2)$

2. $T(n) = 4T(\frac{n}{3}) + f(n), f(n) = \Omega(n)$. Дерево рекурсии (все ветвления не показаны):

Высота дерева $h = \log_3 n, \ T(n) = \sum_{k=0}^{h-1} 4^k f(\frac{n}{3^k}) + 4^h T(1)$. Из определения $\Omega \ \exists n_0 \exists C > 0 \colon \forall n \geqslant n_0 \hookrightarrow \sum_{k=0}^{h-1} 4^k f(\frac{n}{3^k}) \geqslant 0$

$$Cn\sum_{k=0}^{h-1}\tfrac{4^k}{3^k} \mathop{=}\limits_{\text{прогр.}}^{\text{геом.}} Cn\tfrac{(4/3)^{h-1}-1}{4/3-1} = 3Cn(\tfrac{3}{4}(\tfrac{4}{3})^{\log_3 n}-1) = 3Cn(\tfrac{4}{3}\tfrac{n^{\log_3 4}}{n}-1) = 4Cn^{\log_3 4}-3Cn. \text{ Также } 4^h = 4^{\log_3 n} = n^{\log_3 4},$$
 поэтому $T(n)\geqslant 4Cn^{\log_3 4}-3Cn+n^{\log_3 4}T(1),$ откуда $T(n)=\Omega(n^{\log_3 4}).$

Асимптотическую оценку сверху получить не удастся, так как $T(n) \geqslant f(n)$, и нет верхней оценки для f(n).

Otbet: $T(n) = \Omega(n^{\log_3 4})$

3. $T(n) = 2T(\frac{n}{3}) + f(n), f(n) = O(n)$. Дерево рекурсии:

Высота дерева $h = \log_3 n$. Получаем $T(n) = \sum_{k=0}^{n-1} 2^k f(\frac{n}{3^k}) + 2^h T(1)$. По определению $O \ \exists n_0 > 0 \ \exists C > 0 \colon \forall n \geqslant n_0 \hookrightarrow n_0 \hookrightarrow n_0 \hookrightarrow n_0$

 $\sum_{k=0}^{h-1} 2^k f(\frac{n}{3^k}) \leqslant C n \sum_{k=0}^{h-1} (\frac{2}{3})^k \leqslant C n \frac{1}{1-2/3} = 3C n = O(n). \text{ Оценим } 2^h T(1) = 2^{\log_3 n} T(1) = n^{\log_3 2} T(1) = O(n^{\log_3 2}).$ Получаем $T(n) \leqslant O(n) + O(n^{\log_3 2}).$ Но $\log_3 2 < 1$, поэтому $n^{\log_3 2} = \bar{o}(n)$, и по 2 получаем T(n) = O(n).

С другой стороны, $T(n) \geqslant 2^h T(1) = \Omega(n^{\log_3 2}).$

Ответ: $T(n) = O(n), T(n) = \Omega(n^{\log_3 2})$

Задача 2

Задача 3

Вспомогательные утверждения

1. Пусть $f_1 = \Theta(g_1), \ f_2 = \Theta(g_2), \ g_2 = \bar{o}(g_1), g_2(n) > 0$. Тогда $f_1 + f_2 = \Theta(g_1)$. Доказательство: Из определения Θ получаем $\exists n_0 \ \exists C_i^j > 0, (i,j) \in \overline{1,2}^2 \colon \forall n \geqslant n_0 \left\{ \begin{array}{l} C_1^1 g_1(n) & \leqslant & f_1(n) & \leqslant & C_2^1 g_1(n) \\ C_1^2 g_2(n) & \leqslant & f_2(n) & \leqslant & C_2^2 g_2(n) \end{array} \right.$ (n_0 — максимальное из двух определений). Тогда

$$C_1^1 \overset{n \to \infty}{\longleftarrow} C_1^1 + C_1^2 \frac{g_2(\mathbf{p})}{g_1(n)}^0 = \frac{C_1^1 g_1(n) + C_1^2 g_2(n)}{g_1(n)} \leqslant \frac{f_1(n) + f_2(n)}{g_1(n)} \leqslant \frac{C_2^1 g_1(n) + C_2^2 g_2(n)}{g_1(n)} = C_2^1 + C_2^2 \frac{g_2(\mathbf{p})}{g_1(n)}^0 \overset{n \to \infty}{\longrightarrow} C_2^1$$

Здесь использовалось определение \bar{o} . Из определения предела для $\varepsilon = \varepsilon_0 = \min(C_1^1, C_2^1)/2$ получаем при $n \geqslant n_0(\varepsilon)$ $(C_1^1 - \varepsilon)g_1(n) \leqslant f_1(n) + f_2(n) \leqslant (C_2^1 + \varepsilon)g_1(n)$, а из этого следует $f_1 + f_1 = \bar{o}(g_1)$

2. Пусть $f_1 = O(g_1)$, $f_2 = O(g_2)$, $g_2 = \bar{o}(g_1)$, $g_2(n) > 0$. Тогда $f_1 + f_2 = O(g_1)$. Доказательство выше (нужно взять правую часть большого неравенства).