The guts of MixSIAR

Brian Stock

NWFSC

August 29, 2014

Mix data

- 1. Random effects
- 2. Fixed effects
- 3. Continuous effect
- 4. Individuals as RE
- 5. Hierarchy / nested

Source data

- 6. Source by factor
- 7. Concentration dependence
- 8. "Raw" or "means"
- 9. MCMC parameters
- 10. Error structure

Inside the black box

User options

```
if(mix$n.re > 0){ # at least 1 random effect
cat("
    fac1.sig ~ dunif(0,20);
    fac1.invSig2 <- 1/(fac1.sig*fac1.sig);
    # draw the fac1 (region) specific ILR terms (random effect)
    for(f1 in 1:factor1_levels) {
        for(src in 1:(n.sources-1)) {
            ilr.fac1[f1,src] ~ dnorm(0,fac1.invSig2);
        }
    }
    ", file=filename, append=T)}</pre>
```

JAGS \longrightarrow R

```
if(resid_err){
cat("

    # Additive residual error (SIAR)
    for(iso in 1:n.iso){
    resid.prcsn[iso] ~ dgamma(.001,.001);
    resid.var[iso] <- 1/resid.prcsn[iso];
    }

", file=filename, append=T)</pre>
```

write_JAGS_model.r

Mix data options

- 1. Random effects
- 2. Fixed effects
- 3. Continuous effect
- 4. Individuals as RE
- 5. Hierarchy / nested

Previously (w/o random or fixed effects):

$$p = [20\%, 50\%, 20\% 10\%]$$

Assumes that all consumers have the same diet

Consumer δ^{13} C

Consumer δ¹³C

Random effects:

- Suspect levels come from global/overall distribution
- Interested in global/overall as well as specific levels
 - With multiple RE, can get info on relative importance of each
- At least 3 levels (ideally more)

Fixed effects:

- Suspect levels are unrelated
- Interested in specific levels only, not a broader distribution
- Only 2 (or 3) levels

Note: SIAR can run one fixed effect ("group")

$$\delta_c : p_1 :_1 + p_2 s_2 + \dots p_i s_i$$

$$p_1 = B_o + B_1 * Predictor_c$$

Issues

- Must select "Individuals as random effect"
- Covariate should be standardized first
- Can be finicky

Caution: extreme shrinkage!

Issues

- Can't really estimate individual diets with n=1
- Confounding with residual error term (choose one or the other)
- Greatly increases number of parameters
- Default = FALSE

5) hierarchy / nested

5) hierarchy / nested


```
Yes ilr.fac2.tot[f2,src] <- ilr.global[src] + ilr.fac1[factor1_lookup[f2],src] + ilr.fac2[f2,src];

No ilr.fac2.tot[f2,src] <- ilr.global[src] + ilr.fac2[f2,src];
```

5) hierarchy / nested

• Look at results when Region, Pack nested vs. not

Source data options

- 6. Source by factor / effect
- 7. Concentration dependence
- 8. "Raw" or "means + SD" (+ n)

6) Source by factor

6) Source by factor


```
Yes src_mu[,iso,Factor.1[i]],p.ind[i,])
No [src_mu[,iso],p.ind[i,])
```

7) Concentration dependence

Yes

$$X_{ij} = \frac{\sum_{k=1}^{K} p_k q_{jk} (s_{jk} + c_{jk})}{\sum_{k=1}^{K} p_k q_{jk}}$$

No

$$X_{ij} = \frac{\sum_{k=1}^{K} p_{k} q_{jk} (s_{jk} + c_{jk})}{\sum_{k=1}^{K} p_{k} q_{jk}}$$

See Geese example

"raw"

	d13C	d15N
Reef	-15.084	15.47462
Reef	-15.026	14.95905
Reef	-11.0315	13.70018
Reef	-15.171	15.18441
Reef	-15.2272	15.33783
Reef	-15.3472	15.67877
Reef	-15.9438	15.3765
Reef	-15.9573	15.21001
Reef	-14.9398	15,2757

See Palmyra example

"raw"

```
# uninformed priors on source means and precisions
for(src in 1:n.sources){
    for(iso in 1:n.iso){
        src_mu[src,iso] ~ dnorm(0,.001)
        src_tau[src,iso] ~ dgamma(.001,.001)
```

See Palmyra example

"means + SD" (+ n)

	Region	Meand130	SDd13C	Meand15	SDd15N	n
Deer	1	-26.88	1.1	3.07	1.35	24
Deer	2	-27.15	0.67	2.8	1.14	37
Deer	3	-27.47	0.75	2.76	2.32	9
Salmon	1	-18.58	1.34	12.26	1.18	6
Salmon	2	-22.38	2.85	11.92	1.12	5
Salmon	3	-22.38	2.85	11.92	1.12	5
Marine Ma	1	-14.7	1.08	16.26	1.06	7
Marine Ma	2	-14.47	0.95	15.55	1.69	6
Marine Ma	3	-12.48	0.75	16.21	1.78	6

See Wolves example

"means + SD" (+ n)

```
for(src in 1:n.sources){
  for(iso in 1:n.iso){
    src_mu[src,iso] ~ dnorm(MU_array[src,iso], n_array[src]/SIG2_array[src,iso]);
    tmp.X[src,iso] ~ dchisqr(n_array[src]);
    src_tau[src,iso] <- tmp.X[src,iso]/(SIG2_array[src,iso]*(n_array[src] - 1));</pre>
```

9) MCMC parameters


```
run=="test") mcmc <- list(chainLength=1000, burn=500, thin=1, chains=3, calcDIC=TRUE)
run=="very short") mcmc <- list(chainLength=10000, burn=5000, thin=5, chains=3, calcDIC=TRUE)
run=="short") mcmc <- list(chainLength=50000, burn=25000, thin=25, chains=3, calcDIC=TRUE)
run=="normal") mcmc <- list(chainLength=100000, burn=50000, thin=50, chains=3, calcDIC=TRUE)
run=="long") mcmc <- list(chainLength=300000, burn=200000, thin=100, chains=3, calcDIC=TRUE)
run=="very long") mcmc <- list(chainLength=1000000, burn=700000, thin=300, chains=3, calcDIC=TRUE)
run=="extreme") mcmc <- list(chainLength=3000000, burn=2700000, thin=300, chains=3, calcDIC=TRUE)
!exists("mcmc")) mcmc <- run  # if the user has entered custom mcmc parameters, use them</pre>
```

10) error structure

MixSIR SIAR

LETTER

Incorporating uncertainty and prior information into stable isotope mixing models

Moore and Semmens (2008)

MixSIR

TECHNICAL COMMENT

Erroneous behaviour of MixSIR, a recently published Bayesian isotope mixing model: a discussion of Moore & Semmens (2008)

Jackson et al. (2009)

TECHNICAL COMMENT

Improving Bayesian isotope mixing models: a response to Jackson *et al.* (2009)

SIAR

Semmens et al. (2009)

Source Partitioning Using Stable Isotopes: Coping with Too Much Variation

Andrew C. Parnell¹, Richard Inger², Stuart Bearhop², Andrew L. Jackson³*

MixSIR

$$X_{ij}$$
 $N\left(\sum_{k=1}^{K} p_k(\mu_{jk} + \lambda_{jk}), \left[\sum_{k=1}^{K} p_k^2(\omega_{jk}^2 + \tau_{jk}^2)\right]\right)$

MixSIR

$$X_{ij} \sim N \left[\sum_{k=1}^{K} p_k (\mu_{jk} + \lambda_{jk}) \right] \left[\sum_{k=1}^{K} p_k^2 (\omega_{jk}^2 + \tau_{jk}^2) \right]$$

MixSIR

$$X_{ij} \sim N\left(\sum_{k=1}^{K} p_k(\mu_{jk} + \lambda_{jk}), \left[\sum_{k=1}^{K} p_k^2(\omega_{jk}^2 + \tau_{jk}^2)\right]\right)$$

MixSIR

 $\sigma^2_{\text{process}}$

Medium variance

MixSIR $\sigma^2_{process}$ High variance

SIAR
$$\sigma^2_{process} + \sigma^2_{resid}$$
 High variance

SIAR

$$X_{ij} \sim N\left(\sum_{k=1}^{K} p_k(\mu_{jk} + \lambda_{jk}), \left[\sum_{k=1}^{K} p_k^2(\omega_{jk}^2 + \tau_{jk}^2)\right] + \sigma_j^2\right)$$

SIAR $\sigma^2_{process} + \sigma^2_{resid}$ Low variance

MixSIAR $\sigma^2_{\text{process}} * \varepsilon$ Low variance $\varepsilon < 1$

MixSIAR $\sigma^2_{\text{process}} * \varepsilon$ High variance $\varepsilon > 1$


```
MixSIR \sigma^2_{process}

SIAR \sigma^2_{process} + \sigma^2_{resid}

MixSIAR \sigma^2_{process} * \varepsilon (not yet)
```

Issues:

- Default = SIAR (+ residual)
- Do not include both SIAR error and "Indiv as RE"
 - NOTE: must include "Indiv as RE" for continuous effect
- MixSIR error may be slightly better than SIAR for small variance

Happy mixing!

b1stock@ucsd.edu