Feuille d'exercices 9

23 novembre 2019

Les exercices avec une \star sont des exercices plus difficiles.

Sur cette matière, vous serez aussi évalués sur la qualité de votre rédaction. Pratiquez-vous dès maintenant à bien rédiger!

Exercice 1. Déterminer si les sous-ensembles suivants sont une base de \mathbb{R}^2 .

- 1. $\{(1,2),(1,3),(1,4)\}$
- 2. $\{(2, -3), (1, 5)\}$
- 3. $\{(2,4),(-3,-6)\}$

Exercice 2. Soit U et V deux sous-espaces vectoriels. Montrer que

$$U + V = {\vec{u} + \vec{v} \text{ tel que } \vec{u} \in U \text{ et } \vec{v} \in V}$$

est aussi un sous-espace vectoriel.

Exercice 3. Soit $\overrightarrow{v_1} = (1,0,1)$, $\overrightarrow{v_2} = (0,1,1)$, $\overrightarrow{v_3} = (0,1,0)$. Soit H le sous-ensemble de \mathbb{R}^3 des vecteurs dont la deuxième et la troisième coordonnées sont égales.

- 1. Montrer que H est un sous-espace vectoriel de \mathbb{R}^3 .
- 2. Montrer que tout vecteur de H peut être écrit comme combinaison linéaire de $\overrightarrow{v_1}, \overrightarrow{v_2}, \overrightarrow{v_3}$.
- 3. Est-ce que $\{\overrightarrow{v_1}, \overrightarrow{v_2}, \overrightarrow{v_3}\}$ est une base de H?

Exercice 4. Soit $H = \{(x, y, z) \in \mathbb{R}^3 \text{ tels que } x + y = z\}$

- 1. Montrer que H est un sous-espace vectoriel de \mathbb{R}^3 .
- 2. Soit $\overrightarrow{v_1} = (1,0,1)$ et $\overrightarrow{v_2} = (0,1,1)$. Montrer que tout vecteur de H s'écrit comme combinaison linéaire de $\overrightarrow{v_1}$ et $\overrightarrow{v_2}$.
- 3. Montrer que $\{\overrightarrow{v_1}, \overrightarrow{v_2}\}$ est une base de H.
- 4. Quelle est la dimension de H?

Exercice 5 (\star). On donne les sous-espaces vectoriel de \mathbb{R}^3 suivants. Pour chacun d'eux, trouver une base et donner sa dimension.

- 1. $H = \{(x, y, z) \in \mathbb{R}^3 \text{ tels que } x = 2y 3z\}$
- 2. $G = \{(x, y, z) \in \mathbb{R}^3 \text{ tels que } y = -x \text{ et } z = 2x\}$

Indication : La démarche est la même qu'aux questions 2. et 3. de l'exercice 4. sauf que vous devez trouver les vecteurs vous-même.