Problem 7.17. Let UNARY-SSUM be the subset sum problem in which all numbers are represented in unary. Why does the NP-completeness proof for SUBSET-SUM fail to show UNARY-SSUM is NP-complete? Show that UNARY- $SSUM \in P$.

Part a. Why does the NP-completeness proof for SUBSET-SUM fail to show UNARY-SSUM is NP-complete?

Part b. Show that UNARY- $SSUM \in P$.

Proof Idea. The UNARY-SSUM problem involving $S = \{x_1, \dots, x_k\}$, and t reduces to testing if $t \in S^*$. For example, let $S_1 = \{\varepsilon, 11, 1111\}$, and $t_1 = 111111$. Clearly, $t_1 \in S_1^*$, therefore $\langle S_1, t_1 \rangle \in UNARY$ -SSUM. S is finite, therefore membership in S, $MEMBER_S = \{t \mid t \in S\}$ can be decided in polynomial time. $MEMBER_S \in P$, and P is closed under the star operation S_1 , therefore S_2 therefore S_3 therefore $S_$

Proof. Let

$$UNARY$$
- $SSUM = \{\langle S, t \rangle \mid S = \{x_1, \dots, x_k\}, \text{ and for some } \{y_1, \dots, y_l\} \subseteq \{x_1, \dots, x_k\}, \text{ we have } \Sigma y_i = t,$ and x_i, y_j and t are represented in unary $\}$.

To show UNARY- $SSUM \in P$, we give a polynomial time reduction from UNARY-SSUM to $MEMBER_S$ as described above.

F = "On input $\langle S, t \rangle$, where $S = \{x_1, \dots, x_k\}$, each x_i and t is a non-negative number represented in unary:

- 1. If $t = \varepsilon$ and $\varepsilon \notin S$, then output $\langle \{11\}, 1 \rangle$.
- 2. Output $\langle S, t \rangle$."

¹See solution to Problem 7.15.