6 Álgebra

El álgebra utiliza símbolos para expresar los procesos matemáticos. Pero antes de llegar ahí, ha recorrido un largo camino.

¿Cuántas ovejas tengo si he esquios babilonios, los egipcios y los antiguos griegos practicalado la mitad del rebaño más la terban el álgebra retórica: todo se describía con el lenguaje cera parte de la otra mitad y aún corriente. me faltan 8 ovejas por esquilar? atemáticos como **Pitágoras** (siglo v a.C.), **Euclides** (siglo ııı a.C.) y Al-Jwarizmi (siglo ıx), en muchos casos, recurrieron a representaciones geométricas para justificar relaciones algebraicas y para resolver ecuaciones. A esto se lo llamó álgebra geométrica. Esquiladas ¿Total? Sin esquilar ubo que esperar a la Edad Moderna para que los franceses Vieta (siglo xvı) y Descartes (siglo xvıı) dotaran al álgebra de un lenguaje definitivamente simbólico, prácticamente igual al que usamos en la actualidad. ÁLGEBRA SIMBÓLICA UN TERCIO осно DE LA MITAD $x = \frac{x}{2} + \frac{1}{3} \cdot \frac{x}{2} + 8$

Nombre y apellidos:	Fecha:

El álgebra: ¿para qué sirve?

El **álgebra** abarca la parte de las matemáticas en la que se utilizan letras para expresar números de valor desconocido, variable o indeterminado. Constituye un **lenguaje** que facilita la construcción y la descripción de los procesos matemáticos. Veamos algunos ejemplos de las aplicaciones del álgebra.

Expresar propiedades aritméticas

• La suma es asociativa, pero la resta no.

$$(a + b) + c = a + (b + c)$$
 $(a - b) - c \neq a - (b - c)$

• La multiplicación es distributiva respecto de la suma.

$$a \cdot (b + c) = a \cdot b + a \cdot c$$

Generalizar series numéricas (Término general)

Ejemplo

$$\begin{vmatrix}
a_1 & a_2 & a_3 & a_4 & a_5 & \dots \\
\downarrow & \downarrow & \downarrow & \downarrow & \downarrow & \\
0 & 2 & 6 & 12 & 20 & \dots
\end{vmatrix}
a_n = (n-1) \cdot n$$

Así, si queremos saber, por ejemplo, el décimo término de la serie:

$$a_{10} = 9 \cdot 10 = 90$$

O bien:
$$a_{10} = 10^2 - 10 = 90$$

Expresar relaciones entre magnitudes (Fórmulas)

• El valor, V, de la fracción, $\frac{a}{b}$, de una cantidad, c.

$$V = (c:b) \cdot a$$

• El espacio, *e*, recorrido en un tiempo, *t*, por un móvil que lleva una velocidad, *v*.

$$e = v \cdot t$$

• El interés, I, que produce un capital, C, al r% anual, en t meses.

$$I = \frac{C \cdot r \cdot t}{12 \cdot 100}$$

Expresar y operar números de valor indeterminado (Expresiones algebraicas)

Ejemplos

- El siguiente $\longrightarrow a+1$
- El doble del siguiente \longrightarrow 2 · (a + 1)
- El cuadrado del siguiente \longrightarrow $(a + 1)^2$

89

Grupo Anaya, S. A. Material fotocopiable autorizado.

Expresar relaciones que facilitan la resolución de problemas (Ecuaciones)

Problema resuelto

Manuel es camarero. La mitad de los cafés que ha servido esta mañana eran con leche; la tercera parte, cortados, y los siete restantes, solos. ¿Cuántos cafés ha servido Manuel?

Llamamos x al número de cafés que Manuel ha servido esta mañana.

CON LECHE + CORTADOS + SOLOS = TOTAL
$$\frac{x}{2} + \frac{x}{3} + 7 = x \rightarrow x = 42$$

Comprobación = $\frac{42}{2} + \frac{42}{3} + 7 = 42$

Solución: Manuel ha servido 42 cafés.

Piensa y practica

1. ¿Cuál de estas identidades corresponde al enunciado de la propiedad asociativa de la multiplicación?

Si al multiplicar tres o más números se agrupan de diferentes formas, el resultado no varía.

$$a \cdot b \cdot c = c \cdot a \cdot b$$

$$(a \cdot b) \cdot c = a \cdot (b \cdot c)$$

$$a \cdot (c+1) = a \cdot c + a$$

2. Copia y completa las casillas vacías.

1	2	3	4	5	 n
			10		 3n - 2

3. Escribe los cinco primeros elementos de la serie cuyo término general es $a_n = \frac{3n+1}{2}$.

4. Escribe el término general de estas series:

a) 1 - 4 - 9 - 16 - 25 - ...
$$\rightarrow a_n = ?$$

b) 0 - 3 - 8 - 15 - 24 - ...
$$\rightarrow b_n = ?$$

5. La suma de los n primeros números naturales es:

$$1 + 2 + 3 + 4 + \dots + n = \frac{n^2 + n}{2}$$

Calcula la suma 1 + 2 + 3 + ... + 50.

6. Traduce en tu cuaderno a lenguaje algebraico las edades de los miembros de esta familia:

	EDAD
Sara Tiene <i>x</i> años.	x
Rosa (hermana mayor) Le saca 2 años a Sara.	
Ana (madre) Tenía 25 años cuando Sara nació.	
Joaquín (padre) Triplica la edad de Rosa.	

90

Nombre y apellidos: Fecha:

Expresiones algebraicas

Una expresión formada por letras y números recibe el nombre de expresión algebraica.

Empecemos estudiando las más sencillas: los monomios.

onomios

Un **monomio** es el *producto* indicado de un valor conocido (**coeficiente**) por uno o varios valores desconocidos, representados por letras (parte literal).

Ejemplo

Practica el reconocimiento de los elementos de un monomio.

■ GRADO DE UN MONOMIO

Se llama grado de un monomio al número de factores que forman la parte

$$4a^2 \rightarrow \begin{cases} \text{MONOMIO DE} \\ \text{SEGUNDO GRADO} \end{cases}$$
 $a \cdot a$

$$4a^2 \to \begin{cases} \text{MONOMIO DE} \\ \text{SEGUNDO GRADO} \end{cases} \qquad 5x^2y^2 \to \begin{cases} \text{MONOMIO DE} \\ \text{CUARTO GRADO} \end{cases}$$

■ VALOR NUMÉRICO DE UN MONOMIO

Es el valor del monomio cuando las letras toman valores concretos.

El valor numérico de
$$2ab^2$$
 para $a = 1$ y $b = 2$ es 8.
$$\begin{cases} 2ab^2 & \xrightarrow{a=1} \\ b=2 \end{cases} \rightarrow 2 \cdot 1 \cdot 2^2 = 8$$

MONOMIOS SEMEJANTES

Se dice que dos monomios son semejantes cuando tienen la parte literal idéntica.

$$3a \xrightarrow{\text{SON}} -2a$$

$$3a \xrightarrow{\text{SON}} -2a \qquad 4x^2y \xrightarrow{\text{SON}} \frac{1}{5}x^2y$$

uma de monomios

- Dos monomios solo se pueden sumar si son semejantes. En ese caso, se suman los coeficientes, dejando la misma parte literal.
- Si los monomios no son semejantes, la suma queda indicada.

iemplos

Grupo Anaya, S. A. Material fotocopiable autorizado

Practica la suma y la resta de monomios.

- 5a + 2a = 7a
- $3x + 2x^2 \longrightarrow$ queda indicada
- $8x^2 3x^2 = 5x^2$ $a^2 a + a^2 = 2a^2 a$ queda indicada

91

Nombre y apellidos:

1. Copia en tu cuaderno y completa.

мономіо	8 <i>a</i>	-3x	a^2b	$\frac{2}{3}xy^4$	
COEFICIENTE			1		$\frac{1}{4}$
PARTE LITERAL					ab
GRADO					

2. Ejercicio resuelto

Sumar las siguientes expresiones:

$$a)x + x = 2x$$

b)
$$a^2 + a^2 = 2a^2$$

$$c) 3x + x = 4x$$

$$d)4x^2 + 3x^2 = 7x^2$$

$$e)\,\frac{1}{3}x+x=\frac{4}{3}x$$

3. Suma los siguientes monomios:

a)
$$x + x + x$$

b)
$$n + n + n + n$$

c)
$$x^2 + x^2$$

d)
$$a^3 + a^3 + a^3 + a^3$$

e)
$$4a + 2a$$

f)
$$4m + 4m$$

g)
$$3x^2 + 6x^2$$

h)
$$5a^2 + a^2 + 2a^2$$

i)
$$m^3 + 2m^3 + 4m^3$$

$$j) 3x^4 + 6x^4 + 2x^4$$

4. Ejercicio resuelto

Restar las siguientes expresiones:

$$a)5x - x = 4x$$

b)
$$2a - 6a = -4a$$

c)
$$4a^2 - a^2 = 3a^2$$

$$d)5x^3 - 2x^3 = 3x^3$$

5. Resta estos monomios:

a)
$$8x - 3x$$

b)
$$8a - 7a$$

c)
$$11x^2 - 6x^2$$

d)
$$5a^2 - 9a^2$$

e)
$$m^3 - 5m^3$$

$$f) \frac{5}{6}x - \frac{1}{6}x$$

6. Ejercicio resuelto

Reducir.

a)
$$5x + 3 + x - 7 = 5x + x + 3 - 7 = 6x - 4$$

b)
$$3a + 2a^2 - 5a + a^2 = 2a^2 + a^2 + 3a - 5a =$$

$$= 3a^2 - 2a$$

7. Reduce todo lo posible.

a)
$$3x + x + 2 + 6$$

b)
$$4a + 2a - 7 + 5$$

c)
$$3a + 3 - 2a + 1$$

d)
$$5 - 3x + 4x - 4$$

e)
$$5x + 2 - 3x + x$$

f)
$$2a - 3 - 2 + 3a$$

g)
$$7 - 4a - 7 + 5a$$

h)
$$4x - 3 - 4x + 2$$

8. Reduce.

a)
$$x^2 + 4 + x^2 + 1$$

b)
$$5x^2 - 3 - 4x^2 + 1$$

c)
$$x^2 - 6x + 2x + x^2$$

d)
$$3x + 4x^2 - x^2 + x$$

e)
$$x^2 + 4x + 1 + 2x + 3$$

f)
$$5x^2 + 3x - 4x^2 - 2x + 1$$

9. Ejercicio resuelto

Eliminar paréntesis y reducir.

a)
$$(5x + 1) - (2x - 3) = 5x + 1 - 2x + 3 =$$

$$=5x-2x+1+3=3x+4$$

b)
$$(4x^2-6)-(x^2-2x+1)=4x^2-6-x^2+2x-1=$$

$$= 4x^2 - x^2 + 2x - 6 - 1 = 3x^2 + 2x - 7$$

10. Quita paréntesis y reduce.

a)
$$3x + (2x - 1)$$

b)
$$7x - (5x - 4)$$

c)
$$6x - (4x + 2)$$

d)
$$3x - (x + 5)$$

e)
$$(x-5) + (x-3)$$

f)
$$(4x + 2) - (3x + 2)$$

11. Quita paréntesis y reduce.

a)
$$(3x^2 - 5x + 2) + (x^2 - 2x + 1)$$

b)
$$(5x^2 - 2x - 3) - (4x^2 + 3x - 1)$$

c)
$$(x-3) + (x^2 + 2x + 1)$$

d)
$$(6x^2 - x) - (3x^2 - 5x + 6)$$

12. Calcula.

- a) El valor numérico de $5x^2$ para x = 1.
- b) El valor numérico de $-4x^2$ para x = -3.
- c) El valor numérico de -2xy para x = 3 e y = -5.

bserva

El grado del producto es igual a la suma de los grados de los factores.

ultiplicación de monomios

Recordando que un monomio es un producto de números y letras, deducimos que el producto de dos monomios es otro monomio.

Ejemplos

•
$$(3a) \cdot (2a) = 3 \cdot 2 \cdot a \cdot a = 6a^2$$

•
$$(5x) \cdot (-3x^2) = 5 \cdot (-3) \cdot x \cdot x^2 = -15x^3$$

•
$$(3a) \cdot \left(\frac{5}{6}ab\right) = 3 \cdot \frac{5}{6} \cdot a \cdot a \cdot b = \frac{15}{6}a^2b = \frac{5}{2}a^2b$$

División de monomios

El cociente de dos monomios puede ser un número, otro monomio o una fracción.

Ejemplos

•
$$(6a^2b): (3a^2b) = \frac{2 \cdot 3a^2b}{3a^2b} = 2$$
 (número)

•
$$(15x^4): (3x^3) = \frac{5 \cdot 3x^3 \cdot x}{3x^3} = 5x$$
 (monomio)

•
$$(2ab)$$
: $(6b^2) = \frac{\cancel{2} \cdot a \cdot \cancel{b}}{\cancel{2} \cdot 3 \cdot \cancel{b} \cdot b} = \frac{a}{3b} \longrightarrow \text{(fracción)}$

En la web

Practica la multiplicación y la división de monomios.

Teniendo en cuenta que las letras representan números, en las operaciones con expresiones algebraicas se conservan todas las propiedades de las operaciones numéricas.

Piensa y practica

13. Haz las multiplicaciones siguientes:

a)
$$(3x) \cdot (5x)$$

b)
$$(-a) \cdot (4a)$$

c)
$$(4a) \cdot (-5a^2)$$

d)
$$\left(\frac{x^2}{2}\right) \cdot (6x)$$

e)
$$\left(\frac{x^2}{3}\right) \cdot \left(\frac{x^2}{2}\right)$$

f)
$$(5a) \cdot \left(-\frac{1}{5}a^2\right)$$

14. Ejercicio resuelto

Multiplicar.

$$(2ab^2) \cdot (3a^2b^2) = 2 \cdot 3 \cdot a \cdot a^2 \cdot b^2 \cdot b^2 = 6a^3b^4$$

15. Multiplica estos monomios:

a)
$$(3x) \cdot (5xy)$$

b)
$$(-2ab) \cdot (4b)$$

c)
$$(4x^3y) \cdot (xy)$$

$$d$$
) $\left(-\frac{2}{3}ab\right)\cdot\left(-\frac{3}{2}ab\right)$

16. Simplifica como en los ejemplos.

•
$$\frac{20x^3}{4x^2} = \frac{5 \cdot 4 \cdot x^2 \cdot x}{4 \cdot x^2} = \frac{5x}{1} = 5x$$

$$\frac{3a}{15a^2} = \frac{3 \cdot a}{3 \cdot 5 \cdot a \cdot a} = \frac{1}{5a}$$

a)
$$\frac{4x}{2}$$

b)
$$\frac{3}{3a}$$

c)
$$\frac{5x}{10x}$$

d)
$$\frac{12a^2}{4a}$$
 e) $\frac{15x}{3x^2}$

e)
$$\frac{15x}{3x^2}$$

f)
$$\frac{8a^2}{8a^3}$$

17. Divide.

a)
$$(10x) : (2x)$$

b)
$$(5a^2)$$
: $(15a^2)$

c)
$$(14a^2)$$
 : $(-7a)$

d)
$$(6x^3)$$
: $(9x^2)$

e)
$$(10x^2)$$
 : $(5x^3)$

f)
$$(-5a)$$
: $(-5a^3)$

g)
$$(-16a^4)$$
 : $(8a^6)$

h)
$$(27x^3)$$
: $(-9x)$

93

Grupo Anaya, S. A. Material fotocopiable autorizado

Polinomios

- La suma (o resta) indicada de dos monomios es un binomio.
- La suma (o resta) indicada de tres monomios es un trinomio.
- En general, la suma (o resta) de varios monomios es un **polinomio.**

Ejemplos

$$\begin{cases} x + y \\ a^{2} - 1 \end{cases}$$
 BINOMIOS
$$\begin{cases} x^{2} - 3x + 1 \\ a^{2} - ab + 2 \end{cases}$$
 TRINOMIOS
$$5x^{4} - 3x^{3} + 2x - 1$$

■ GRADO DE UN POLINOMIO

El grado de un polinomio es el mayor de los grados de los monomios que lo forman.

Ejemplo

■ VALOR NUMÉRICO DE UN POLINOMIO

Cuando en un polinomio las letras toman valores concretos, también el polinomio toma un valor concreto.

Ejemplo

Dado el polinomio $3x^2 - 2x + 5$:

• Para
$$x = 0 \rightarrow 3 \cdot 0^2 - 2 \cdot 0 + 5 = 0 - 0 + 5 = 5$$

El valor numérico de $3x^2 - 2x + 5$ para $x = 0$ es 5.

• Para
$$x = -2 \rightarrow 3 \cdot (-2)^2 - 2 \cdot (-2) + 5 = 12 + 4 + 5 = 21$$

El valor numérico de $3x^2 - 2x + 5$ para $x = -2$ es 21.

Observa que el valor numérico de un polinomio depende del valor que tomen las letras.

Piensa y practica

1. Indica el grado de cada polinomio.

a)
$$x^2 - 3x + 7$$

b)
$$x^4 - 2$$

a)
$$x^2 - 3x + 7$$
 b) $x^4 - 2$ c) $5x^3 - 3x^2$

d)
$$9x^6 + 2x$$

e)
$$v^5 - 2v$$

e)
$$x^5 - 2x^2$$
 f) $6x^4 - 3x^4$

2. Calcula el valor numérico de
$$x^3 - 5x^2 - 11$$
.

- a) Para x = 1.
- b) Para x = -1.
- **3.** Calcula el valor numérico de $3ab^2 5a + 3b$ para a = 2 y b = -1.
- **4.** Calcula, por tanteo, los valores de x que anulan cada polinomio.

a)
$$x^2 - 2x + 1$$
 b) $x^3 - 8$

b)
$$x^3 - 8$$

c)
$$x^4 - x^3$$

© Grupo Anaya, S. A. Material fotocopiable autorizado.

Nombre y apellidos: . Fecha:

Regla práctica

Para sumar dos (o más) polinomios, se coloca uno bajo el otro, haciendo coincidir, en la misma columna, los monomios semejantes.

uma de polinomios

Para sumar dos o más polinomios, tendremos en cuenta lo que ya sabemos sobre la suma de monomios.

Por ejemplo, sumemos los polinomios $A = 2x^3 - 3x^2 + 6$ y $B = x^2 - 5x + 4$.

• Con lo que ya sabemos, podríamos actuar así:

$$A + B = (2x^3 - 3x^2 + 6) + (x^2 - 5x + 4) = 2x^3 - 3x^2 + 6 + x^2 - 5x + 4 =$$

$$= 2x^3 - 3x^2 + x^2 - 5x + 6 + 4 = 2x^3 - 2x^2 - 5x + 10$$

• En la práctica, se suele hacer de la siguiente manera:

Regla práctica

Para restar dos polinomios, se suma el primero con el opuesto del segundo. Es decir, se le cambia el signo al segundo y se suman.

En la web

Practica la suma y la resta de polinomios.

Resta de polinomios

Restemos los mismos polinomios A y B de antes.

• Con lo que ya sabemos, podríamos actuar como sigue:

$$A - B = (2x^3 - 3x^2 + 6) - (x^2 - 5x + 4) = 2x^3 - 3x^2 + 6 - x^2 + 5x - 4 =$$

$$= 2x^3 - 3x^2 - x^2 + 5x + 6 - 4 = 2x^3 - 4x^2 + 5x + 2$$

• En la práctica, se suele hacer así:

Producto de un polinomio por un número

Recuerda que para multiplicar un número por una suma, debemos multiplicar el número por cada sumando (propiedad distributiva).

Ejemplo

$$\frac{x^3 - 4x^2 + 5x - 1}{\times 2} \rightarrow (x^3 - 4x^2 + 5x - 1) \cdot 2 = 2x^3 - 8x^2 + 10x - 2$$

$$2x^3 - 8x^2 + 10x - 2$$

Piensa y practica

5. Copia y completa.

a)
$$x^2 + 5x - 7$$

 $+ x^2 - 8x + 5$
 $- - -$

c)
$$-x^2 + 3x - 9$$

 $+ \boxed{-} - \boxed{+} + \boxed{}$
 $3x^2 + 2x - 5$

b) $3x^3 - 6x^2 + 8x + 2$

d)
$$x^3 - 4x^2 - \square - 1$$

 $+ \square - \square + x + \square$
 $- 3x^3 - 6x^2 - 5x + 3$

6. Calcula las siguientes operaciones con estos polinomios:

$$A = 3x^3 - 5x^2 - 4x + 4$$

$$B = 2x^3 - x^2 - 7x - 1$$

$$B = 2x^3 - x^2 - 7x - 1$$

$$b)A - B$$

7. Calcula.

a)
$$3 \cdot (2x + 5)$$

b)
$$5 \cdot (x^2 - x)$$

c)
$$7 \cdot (x^3 - 1)$$

d)
$$(-2) \cdot (5x - 3)$$

Grupo Anaya, S. A. Material fotocopiable autorizado.

Extracción de factor común

Cuando hablamos de extraer *factor común* nos referimos a una transformación a la que se pueden someter ciertas sumas y restas y que resulta muy útil en el cálculo algebraico.

Observa la siguiente expresión:

$$a \cdot b + a \cdot c - a \cdot d$$
 = Es una suma cuyos sumandos son productos. Todos los productos tienen el *factor común a*.

Entonces, podemos transformar la suma en un producto **sacando factor común** y colocando un paréntesis.

$$a \cdot b + a \cdot c - a \cdot d = a \cdot (b + c - d)$$

Observa que la transformación no es otra cosa que la aplicación de la propiedad distributiva.

Ejemplos

a)
$$4 \cdot a + 4 \cdot b = 4 \cdot (a + b)$$

b)
$$a^2 + ab = a \cdot a + a \cdot b = a \cdot (a + b)$$

c)
$$x^3 - 2x^2 + 5x = x^2 \cdot x - 2x \cdot x + 5 \cdot x = (x^2 - 2x + 5) \cdot x$$

Como caso particular, podemos estudiar qué ocurre cuando el factor común a extraer coincide con uno de los sumandos.

En este caso, en su lugar en la suma queda la unidad.

$$a + ab = a \cdot 1 + ab = a \cdot (1 + b)$$

Ejemplos

a)
$$a^2 + 5a^3 = a^2 \cdot (1 + 5a)$$

b)
$$x^3 + 6x^2 - x = (x^2 + 6x - 1) \cdot x$$

c)
$$3m^2n - 2mn^2 + mn = mn \cdot (3m - 2n + 1)$$

Piensa y practica

1. Copia y completa.

a)
$$7x + 7y = 7 \cdot (+)$$

b)
$$6a - 9b = 3 \cdot (-)$$

c)
$$2x + xy = x \cdot (\square + \square)$$

e)
$$5x^2 + 10xy + 15x = 5x \cdot (+ + +)$$

2. Extrae factor común.

a)
$$8x + 8y$$

b)
$$3a + 3b$$

c)
$$5x + 10$$

d)
$$8 + 4a$$

e)
$$x^2 + xy$$

f)
$$2a^2 + 6a$$

96

Nombre y apellidos: Fecha:

Utiliza el lenguaje algebraico

- **1.** \blacksquare Si llamamos x a un número cualquiera, escribe una expresión algebraica para cada enunciado.
 - a) El triple de *x*.
 - b) El resultado de sumarle 3 unidades.

Ejercicios y problemas

- c) La mitad de un número 3 unidades mayor que x.
- d) El triple del número que resulta de sumar 5 unida-
- e) Un número 5 unidades mayor que el triple de x.
- 2. Copia en tu cuaderno y completa.

1	2	3	4	5	 n
		22			 $3n^2 - 5$
1	2	3	4	5	 n

3. Siguiendo la lógica de la tabla, completa en tu cuaderno las casillas vacías.

1	2	3	5	10	15	20	n
0	3	8	24			399	
1	2	3	5	10	20	25	n
1	4	7	13			73	

4. 🗖 🔀 Copia y completa la tabla en tu cuaderno sabiendo que los valores a, b y c se relacionan mediante la fórmula:

$$a = \frac{3b + 2c}{5}$$

b	0	0	2	3	4
С	0	5	7	3	9
а					

Monomios

5. Copia y completa.

мономіо	8 <i>a</i>	$\frac{2}{3}xy$	
COEFICIENTE			1
PARTE LITERAL			a^3b
GRADO			

- **6. 1** Opera.
 - a) 2x + 8x
- b) 7a 5a
- c) 8x 6 3x 1
- d) 6a 2 5a 1
- e) 2x + 3 9x + 1
- f) a 6 2a + 7
- 7. Quita paréntesis y reduce.
 - a) x (x 2)
- b) 3x + (2x + 3)
- c) (5x-1) (2x+1)
- d) (7x-4) + (1-6x)
- e) (1-3x)-(1-5x)
- f) 2x (x 3) (2x 1)
- **8.** Opera y reduce.
 - a) $3x \cdot 4x$
- b) 12x : 3x
- c) $\frac{2}{3}x \cdot 6x$
- d) $\frac{3}{4}x^2 : \frac{1}{4}x$
- e) $3x \cdot 5x^{3}$
- f) $15x^6:5x^4$
- g) $(-2x^2) \cdot (-3x^4)$
- h) $(-20x^8):5x^7$

Polinomios

- 9. Indica el grado de estos polinomios:
 - a) $x^3 + 3x^2 + 2x 6$ b) $4 3x^2$
 - c) $2x^5 4x^2 + 1$
- d) $7x^4 x^3 + x^2 + 1$
- **10. 10** Reduce.

a)
$$x^2 - 6x + 1 + x^2 + 3x - 5$$

b)
$$3x - x^2 + 5x + 2x^2 - x - 1$$

c)
$$5x^3 - 1 - x + x^3 - 6x^2 - x^2 + 4$$

11. Quita paréntesis y reduce.

a)
$$(3x^2 - 5x + 6) + (2x - 8)$$

b)
$$(9x^2 - 5x + 2) - (7x^2 - 3x - 7)$$

c)
$$(3x^2 - 1) - (5x + 2) + (x^2 - 3x)$$

12. Copia y completa.

$$3x^2 - 5x - 5$$

$$+ \square x^2 + \square x - \square$$

$$5x^2 - x - 6$$

13. Considera los siguientes polinomios y calcula.

$$A = 3x^3 - 6x^2$$

 $A = 3x^3 - 6x^2 + 4x - 2$ $B = x^3 - 3x + 1$

- a) A + B
- b) A B
- **14. 1** Reduce.

a)
$$2(3x-1) + 3(x+2)$$

b)
$$3(x^2 - 2x - 1) - 2(x + 5)$$

c)
$$6(3x^2 - 4x + 4) - 5(3x^2 - 2x + 3)$$

97

Ejercicios y problemas

Extracción de factor común

15. Extrae factor común.

a)
$$3x + 3y + 3z$$

$$b) 2x - 5xy + 3xz$$

c)
$$a^2 + 3a$$

d)
$$3a - 6b$$

e)
$$2x + 4y + 6z$$

f)
$$4x - 8x^2 + 12x^3$$

g)
$$9a + 6a^2 + 3a^3$$

h)
$$2a^2 - 5a^3 + a^4$$

Relaciona y aplica tus conocimientos

Llamando C a la cantidad de agua que tendrá un estanque dentro de *m* minutos, asocia cada estanque con la expresión que le corresponde.

ESTANQUE M: Contiene 4500 litros de agua y se abre un grifo que le aporta 4 litros por minuto.

ESTANQUE N: Contiene 4500 litros de agua y se le conecta una bomba que extrae 4 litros por minuto.

ESTANQUE P: Contiene 4 metros cúbicos de agua y se conecta a una tubería que aporta 4,5 metros cúbicos a la hora.

ESTANQUE Q: Contiene 4 metros cúbicos de agua y se abre una boca de riego que extrae 4,5 metros cúbicos a la hora.

$$C = 4000 + \frac{4500 \cdot m}{60}$$

$$C = 4500 - 4 \cdot m$$

$$C = 4000 - \frac{4500 \cdot m}{60}$$

$$C = 4500 + 4 \cdot m$$

Autoevaluación 👝 🌣

1. Completa en tu cuaderno las casillas vacías, siguiendo la lógica de la tabla.

1	3	5	8	10		15	n
2	12	22	37		57		

- **2.** Llamando x a un número, expresa en lenguaje algebraico.
 - a) Su doble.
 - b) El siguiente de su doble.
 - c) El doble de su siguiente.
 - d) El triple de su mitad.
- 3. ¿Cuáles son el coeficiente y el grado del monomio $-\frac{2}{3}xy^2$?
- **4.** Calcula el valor numérico del polinomio $2x^3 7x 2$.

a) Para
$$x = 0$$

b) Para
$$x = 1$$

5. Reduce estas expresiones:

a)
$$2x + 4 + x - 6$$

b)
$$5x^2 + 2 + 6x - x - 3x^2 + 1$$

c)
$$6x^3 + 7x - 2x^2 + x^2 - 5x^3 + 17$$

6. Opera y reduce.

a)
$$3 \cdot (-5x)$$

b)
$$2x \cdot 3x^2$$

c)
$$6x^4 : 3x$$

d)
$$10x^5 : 5x^3$$

7. Opera y reduce.

a)
$$(5x-3)-(4x-5)$$

b)
$$2(2x + 1) - 3(x + 2)$$

8. Observa los siguientes polinomios y calcula:

$$A = 3x^3 + 5x^2 - 6x + 8$$
 $B = x^3 - 5x^2 + 1$

$$B = x^3 - 5x^2 +$$

a)
$$A + B$$

b)
$$A - B$$

9. Saca factor común.

a)
$$3a^2 + 6a$$

b)
$$4x^3 + 6x^2 - 2x$$

10. ¿Cuál de las siguientes fórmulas sirve para calcular la suma, S, de los primeros n múltiplos de 5?

a)
$$\frac{4n+n^2}{5}$$

b)
$$\frac{5n^2 + n^2}{2}$$

a)
$$\frac{4n+n^2}{5}$$
 b) $\frac{5n^2+n}{2}$ c) $\frac{5(n^2+n)}{2}$

98

Nombre y apellidos: ..

Fecha: