

UNITED STATES PATENT AND TRADEMARK OFFICE

CLC

UNITED STATES DEPARTMENT OF COMMERCE
United States Patent and Trademark Office
Address: COMMISSIONER FOR PATENTS
P.O. Box 1450
Alexandria, Virginia 22313-1450
www.uspto.gov

APPLICATION NO.	FILING DATE	FIRST NAMED INVENTOR	ATTORNEY DOCKET NO.	CONFIRMATION NO.
10/659,473	09/10/2003	Brett P. Monia	ISPH-0772	8586
27180	7590	11/16/2005	EXAMINER	
ISIS PHARMACEUTICALS INC 1896 RUTHERFORD RD. CARLSBAD, CA 92008			SCHULTZ, JAMES	
			ART UNIT	PAPER NUMBER
			1635	

DATE MAILED: 11/16/2005

Please find below and/or attached an Office communication concerning this application or proceeding.

Office Action Summary	Application No.	Applicant(s)	
	10/659,473	MONIA ET AL.	
	Examiner	Art Unit	
	J. D. Schultz, Ph.D.	1635	

-- The MAILING DATE of this communication appears on the cover sheet with the correspondence address --

Period for Reply

A SHORTENED STATUTORY PERIOD FOR REPLY IS SET TO EXPIRE 3 MONTH(S) FROM THE MAILING DATE OF THIS COMMUNICATION.

- Extensions of time may be available under the provisions of 37 CFR 1.136(a). In no event, however, may a reply be timely filed after SIX (6) MONTHS from the mailing date of this communication.
- If the period for reply specified above is less than thirty (30) days, a reply within the statutory minimum of thirty (30) days will be considered timely.
- If NO period for reply is specified above, the maximum statutory period will apply and will expire SIX (6) MONTHS from the mailing date of this communication.
- Failure to reply within the set or extended period for reply will, by statute, cause the application to become ABANDONED (35 U.S.C. § 133). Any reply received by the Office later than three months after the mailing date of this communication, even if timely filed, may reduce any earned patent term adjustment. See 37 CFR 1.704(b).

Status

- 1) Responsive to communication(s) filed on 27 May 2004.
- 2a) This action is FINAL. 2b) This action is non-final.
- 3) Since this application is in condition for allowance except for formal matters, prosecution as to the merits is closed in accordance with the practice under *Ex parte Quayle*, 1935 C.D. 11, 453 O.G. 213.

Disposition of Claims

- 4) Claim(s) 1,2 and 4-15 is/are pending in the application.
- 4a) Of the above claim(s) _____ is/are withdrawn from consideration.
- 5) Claim(s) _____ is/are allowed.
- 6) Claim(s) 1,2 and 4-15 is/are rejected.
- 7) Claim(s) _____ is/are objected to.
- 8) Claim(s) _____ are subject to restriction and/or election requirement.

Application Papers

- 9) The specification is objected to by the Examiner.
- 10) The drawing(s) filed on _____ is/are: a) accepted or b) objected to by the Examiner.
Applicant may not request that any objection to the drawing(s) be held in abeyance. See 37 CFR 1.85(a).
Replacement drawing sheet(s) including the correction is required if the drawing(s) is objected to. See 37 CFR 1.121(d).
- 11) The oath or declaration is objected to by the Examiner. Note the attached Office Action or form PTO-152.

Priority under 35 U.S.C. § 119

- 12) Acknowledgment is made of a claim for foreign priority under 35 U.S.C. § 119(a)-(d) or (f).
 - a) All b) Some * c) None of:
 1. Certified copies of the priority documents have been received.
 2. Certified copies of the priority documents have been received in Application No. _____.
 3. Copies of the certified copies of the priority documents have been received in this National Stage application from the International Bureau (PCT Rule 17.2(a)).

* See the attached detailed Office action for a list of the certified copies not received.

Attachment(s)

- | | |
|--|---|
| 1) <input checked="" type="checkbox"/> Notice of References Cited (PTO-892) | 4) <input type="checkbox"/> Interview Summary (PTO-413) |
| 2) <input type="checkbox"/> Notice of Draftsperson's Patent Drawing Review (PTO-948) | Paper No(s)/Mail Date. _____. |
| 3) <input checked="" type="checkbox"/> Information Disclosure Statement(s) (PTO-1449 or PTO/SB/08)
Paper No(s)/Mail Date <u>10 September 2003</u> . | 5) <input type="checkbox"/> Notice of Informal Patent Application (PTO-152) |
| | 6) <input type="checkbox"/> Other: _____. |

DETAILED ACTION

Claim Rejections - 35 USC § 112

The following is a quotation of the first paragraph of 35 U.S.C. 112:

The specification shall contain a written description of the invention, and of the manner and process of making and using it, in such full, clear, concise, and exact terms as to enable any person skilled in the art to which it pertains, or with which it is most nearly connected, to make and use the same and shall set forth the best mode contemplated by the inventor of carrying out his invention.

1. Claims 1, 2, 4-15 are rejected under 35 U.S.C. 112, first paragraph, as failing to comply with the written description requirement. The claim(s) contains subject matter which was not described in the specification in such a way as to reasonably convey to one skilled in the relevant art that the inventor(s), at the time the application was filed, had possession of the claimed invention.

The subject matter of the instantly claimed invention is drawn to antisense compounds that target the 3'-untranslated region or full length (as in claim 11) of human PKA RII- β and inhibit its expression, and to chemical modifications and pharmaceutically acceptable diluents thereof. The claims are also drawn to methods of use of such antisense compounds.

At the outset it is noted that the rejected claims do not recite any sequence identifier relating to human PKA RII- β . The sequences are thus considered to be defined by their function (i.e. PKA RII- β activity), rather than by any specific structure. Accordingly the claim embraces antisense directed to any sequence of any human PKA RII- β , or any such mRNAs or genomic sequences or fragments known or yet to be discovered that provide for analogous PKA RII- β activity, along with any related isoform or allele present within any PKA RII- β , or any variant,

polymorphic or otherwise, that is reasonably similar to PKA RII- β that retains PKA RII- β like activity.

To satisfy the written-description requirement, the specification must describe every element of the claimed invention in sufficient detail so that one of ordinary skill in the art would recognize that the inventor possessed the claimed invention at the time of filing. Thus, an applicant complies with the written-description requirement by describing the invention, with all its claimed limitations, and by using such descriptive means as words, structures, figures, diagrams, formulas, etc., that set forth the claimed invention. To provide adequate written description and evidence of possession of a claimed genus, the specification must provide sufficient distinguishing identifying characteristics of the genus. The factors to be considered include disclosure of complete or partial structure, physical and/or chemical, structure/function correlation, methods of making the claimed product, and any combination thereof. The representative sample requirement may be satisfied by supplying structural or functional information, or a combination of both, such that one of skill in the art would be satisfied that applicants were in possession of the genus as claimed. Further, the size of the representative sample required is an inverse function of the unpredictability of the art.

In order to synthesize the antisense compounds claimed that are directed to the genus of all full length or 3' untranslated regions of any human PKA RII- β mRNA, one of skill would first need to know the specific sequence in order to synthesize said antisense compounds. However, the specification does not teach a common core structure that is shared by a representative sample of all such members of the genus. Although the prior art does teach a single full length sequence relating to human PKA RII- β , and also other truncated versions, there is no evidence

that there is a shared sequence that defines a genus of all such PKA RII- β sequences. In fact, each sequence is considered to be unique, and not predictive of any other sequence. Thus, in the lack of such a teaching, the presence of one or even few sequences is not considered to meet the requirements for disclosure of a representative sample of structures that correlate to the genus of any molecule encompassing any human PKA RII- β mRNA, because knowledge of a few examples of related PKA RII- β sequences in the prior art is not considered to be predictive of other sequences that might encode for polypeptides with related activity. Accordingly, because one of skill in the art could not envision a representative sample of all target sequences of any human PKA RII- β other than the examples provided in the prior art, it follows that one of skill would not be persuaded that applicants were in possession of all antisense sequence against the a full length or a 3'-untranslated region of human PKA RII- β mRNA sequence that is heretofore undescribed.

2. Claim 15 is rejected under 35 U.S.C. 112, first paragraph, because the specification, while being enabling for antisense-mediated inhibition of PKA RII- β expression *in vitro*, does not reasonably provide enablement for antisense-mediated inhibition of PKA RII- β expression *in vivo*, or for methods of treating diseases associated with its expression *in vivo*. The specification does not enable any person skilled in the art to which it pertains, or with which it is most nearly connected, to make and use the invention commensurate in scope with these claims.

The above invention is drawn to methods of inhibiting the expression of PKA RII- β in cells or tissues comprising contacting said cells or tissues with antisense compositions that

inhibit the expression of PKA RII- β wherein the language of said claims encompasses both *in vivo* and *in vitro* activity.

The specification teaches prophetic methods of treatment using antisense oligos targeted to PKA RII- β with broad treatment regimens that include pharmaceutical formulations, and treatment regimens comprising, for example, antisense administration at concentrations between 0.01 Tg to 100 g per kg of body weight, from once or more daily, weekly, monthly, or yearly, or even once every 2 to 20 years. The specification provides exemplifies only for methods of using the claimed compositions to inhibit the expression of PKA RII- β in cultured cells *in vitro*.

The specification as filed does not provide sufficient guidance or appropriate examples that would enable a skilled artisan to use the disclosed compounds or methods of using said compounds in *in vivo* environments. Additionally, a person skilled in the art would recognize that predicting the efficacy of an antisense compound *in vivo* based solely on its performance *in vitro* is unpredictable. Thus, although the specification prophetically considers and discloses general methodologies of using the claimed constructs *in vivo* or in methods of inhibition or treatment, such a disclosure would not be considered enabling since the state of antisense-mediated gene inhibition is highly unpredictable. The factors listed below have been considered in the analysis of enablement:

- (A) The breadth of the claims;
- (B) The nature of the invention;
- (C) The state of the prior art;
- (D) The level of one of ordinary skill;
- (E) The level of predictability in the art;
- (F) The amount of direction provided by the inventor;
- (G) The existence of working examples; and
- (H) The quantity of experimentation needed to make or use the invention based on the content of the disclosure.

The following references are cited herein to illustrate the state of the art of antisense treatment.

A recent (2002) review article by Braasch et al. concludes that major obstacles persist in the art of using antisense oligos in treating disease: “gene inhibition by antisense oligomers has not proven to be a robust or generally reliable technology. Many researchers are skeptical about the approach, and it has been suggested that many published studies are at least partially unreliable” (Pg. 4503, para. 1 and 2). Braasch et al. specifically identify 3 factors that contribute to the unpredictable efficacy of using antisense compounds in general: 1) the variable capability of antisense oligonucleotides to access sites within the mRNA to be targeted; 2) problems pertaining to the delivery and uptake of the antisense oligos by cells, with the result that “the difference in oligonucleotide dose required to inhibit expression is often not much different than doses that lead to nonselective toxicity and cell death”; and 3), that “oligonucleotides can bind to proteins and produce artifactual phenotypes that obscure effects due to the intended antisense mechanism.

Regarding the difficulties of predicting whether antisense oligonucleotides can access sites within their target mRNA, Braasch et al. elaborates, “it has been difficult to identify oligonucleotides that act as potent inhibitors of gene expression, primarily due to difficulties in predicting the secondary structures of RNA (Pg. 4503, para. 1 and 2). Branch adds that “internal structures of target RNAs and their associations with cellular proteins create physical barriers, which render most potential binding sites inaccessible to antisense molecules” (Page 45, third column). Additionally, in a review of the potential use of antisense oligos as therapeutic agents, Gewirtz et al. teach that the inhibitory activity of an oligo depends unpredictably on the sequence and structure of the nucleic acid target site and the ability of the oligo to reach its target, and that

Art Unit: 1635

“[a]ttempts to describe the *in vivo* structure of RNA, in contrast to DNA, have been fraught with difficulty.” (Page 3161, second column).

The uptake of oligonucleotides by cells has been addressed by Agrawal, who states that “[o]ligonucleotides must be taken up by cells in order to be effective....several reports have shown that efficient uptake of oligonucleotides occurs in a variety of cell lines, including primary cells whereas other reports indicate negligible cellular uptake of oligonucleotides. Cellular uptake of oligonucleotides is complex process; it depends on many factors, including the cell type, the stage of the cell cycle, the concentration of serum. It is therefore, difficult to generalize that all oligonucleotides are taken up in all cells with the same efficiency” (Page 378). “[M]icroinjection or using lipid carriers to supply an oligonucleotide in cell culture increases the potency of the oligonucleotide in cell culture, but it is not clear how relevant this approach is for *in vivo* situations.” (Page 379). Gewirtz adds that [t]he other major problem in this field is the ability to deliver ODN (oligodeoxynucleotides) into cells and have them reach their target . Without this ability, it is clear that even an appropriately targeted sequence is not likely to be efficient.”

Branch et al. discuss the problems pertaining to non-specific oligo interactions that lead to artifactual phenotypes during *in vivo* antisense administration: “non-antisense effects are not currently predictable, rules for rational design cannot be applied to the production of non-antisense drugs, These effects must be explored on a case by case basis” (Page 50), while Tamm et al. states that “[i]mmune stimulation is widely recognized as an undesirable side-effect...the immunostimulatory activity of a phosphorothioate-modified oligonucleotide is largely unpredictable and has to be ascertained experimentally” (page 493, right column).

Further, regarding the therapeutic benefit of antisense technology in general, Branch states that "in fact, nucleic acid drugs should not be thought of as magic bullets. Their therapeutic use will require vigilant monitoring. Compared to the dose response curves of conventional drugs, which typically span two to three orders of magnitude, those of antisense drugs extend only across a narrow concentration range. Both *in vitro* and *in vivo*, less than a factor of ten often separates the concentration producing no antisense effect from that producing the full antisense effect. Steep dose-response curves commonly indicate that a drug has multiple, synergistic mechanisms of action. A drug with a narrow therapeutic window can be potent and extremely valuable, but can also be tricky to use safely. Since the ratio of antisense to non-antisense effects drops sharply outside a restricted concentration range, it will be challenging to obtain consistent therapeutic benefit (Page 46, second column).

Tamm et al. concludes by stating that until "the therapeutic activity of an antisense oligonucleotide is defined by the antisense sequence, and thus is to some extent predictable... antisense will not be better than other drug development strategies, most of which depend on an empirical approach."

Finally, Branch states that "[i]t is not yet clear whether *in vitro* screening techniques of the sort used by Milner and co-workers will identify ODNs that are effective *in vivo*. With so many possible sequences to choose from, and the likelihood that *in vitro* studies will not always predict *in vivo* efficacy, straightforward new screening techniques need to be developed for use in cells."

Thus, it is maintained that the prior art at the time of applicants' filing would not enable the use of *in vitro* antisense screening techniques to support claims directed to the *in vivo* use of

antisense, let alone claims directed to therapeutic use *in vivo*. Accordingly, one skilled in the art, being unable to use the prior art for such guidance, must necessarily find such guidance from the specification. However, one of skill would not find the guidance provided in the specification in the form of *in vitro* examples and broad prophetic treatment regimens enough to overcome the unpredictability and challenges of applying results from *in vitro* experiments to the *in vivo* treatment of disease, or *in vivo* methods of inhibition, as exemplified in the references above.

This is particularly true in view of the fact that the specification as filed fails to provide any particular guidance which resolves the known unpredictability in the art associated with appropriate *in vivo* delivery of the antisense administered, and specifically regarding the instant compositions and methods claimed.

In order to practice the invention using the specification and the state of the prior art as outlined above, the quantity of experimentation required to practice the invention as claimed *in vivo* would require the *de novo* determination of those sequences that are successfully delivered to target sites in appropriate cells and /or tissues such that inhibition is achieved. Since the specification fails to provide any real guidance for the methods of using antisense *in vivo*, and since resolution of the various complications in regards to targeting a particular gene in an organism is unpredictable, one of skill in the art would have been unable to practice the invention without engaging in undue trial and error experimentation. In the absence of any real guidance from the specification, the amount of experimentation would be undue, and one would have been unable to practice the invention over the scope claimed.

Claim Rejections - 35 USC § 102

The following is a quotation of the appropriate paragraphs of 35 U.S.C. 102 that form the basis for the rejections under this section made in this Office action:

A person shall be entitled to a patent unless –

(b) the invention was patented or described in a printed publication in this or a foreign country or in public use or on sale in this country, more than one year prior to the date of application for patent in the United States.

3. Claim 11 is rejected under 35 U.S.C. 102(b) as being anticipated by Tortora et al. (Proc. Natl. Acad. Sci., 1990, 87:705-708).

Claim 11 is drawn to a compound 8 to 50 nucleobases in length that specifically hybridizes with at least an 8-nucleobase portion of an active site on a nucleic acid molecule encoding PKA regulatory subunit RII beta.

Tortora et al. teaches an antisense compound 21 nucleobases in length that specifically hybridizes with at least an 8-nucleobase portion of an active site on a nucleic acid molecule encoding PKA regulatory subunit RII beta.

Claim Rejections - 35 USC § 103

The following is a quotation of 35 U.S.C. 103(a) which forms the basis for all obviousness rejections set forth in this Office action:

(a) A patent may not be obtained though the invention is not identically disclosed or described as set forth in section 102 of this title, if the differences between the subject matter sought to be patented and the prior art are such that the subject matter as a whole would have been obvious at the time the invention was made to a person having ordinary skill in the art to which said subject matter pertains. Patentability shall not be negated by the manner in which the invention was made.

4. Claims 1, 2, and 4-14 are rejected under 35 U.S.C. 103(a) as being unpatentable over Tortora as applied to claim 11 above, and further in view of JahnSEN et al. (U.S. Patent Number

5,097,026, reference "α" of applicant's IDS), Taylor et al. Drug Disc. Today, 1999. 4(12)562-567, Baracchini *et al.* (U. S. Patent Number 5,801,154) and Bennett (U. S. Patent Number 5,998,148).

The invention of the above claims is drawn to antisense compounds that target PKA RII- β , and to said compounds comprising internucleoside (i.e. phosphorothioate), sugar (i.e. 2'-O-methoxyethyl), nucleobase (i.e. 5-methylcytosine) and to chimeras of said compounds, and compositions comprising said compounds and pharmaceutically acceptable diluents or colloidal dispersion systems thereof, and methods of use.

Tortora et al. teach antisense compounds and methods that target PKA RII- β and inhibit its expression. Tortora et al. does not teach antisense sequences targeting the 3'-untranslated region comprising internucleoside, nucleobase, and 2' modifications, chimeras, or compositions comprising said compounds and pharmaceutically acceptable diluents or delivery systems thereof.

Jahnsen et al. teach the cDNA sequence encoding PKA RII- β .

Taylor et al. teach that antisense oligonucleotides 7-30 nucleotides long can be synthesized to inhibit the expression of any protein provided the cDNA sequence is known. Taylor *et al.* also indicate that making and using such oligos are available to those of ordinary skill in the art, that it is common practice to chemically modify the such oligonucleotides to prolong their bioactivity, and also teach that with software analysis and high affinity oligos, one needs to screen only 3-6 oligos to find one that inhibits its target 66-95% (p. 565).

Baracchini *et al.* teach that antisense oligonucleotides can be used for research purposes, and also teach that preferred antisense oligonucleotides are modified in their sugar, backbone

linkage and nucleobase composition (col. 6). Baracchini teaches that such modifications are desirable in antisense oligos because these modifications have desirable properties such as enhanced cellular uptake, enhanced affinity for nucleic acid targets and increased stability in the presence of nucleases. Baracchini et al provide specific embodiments of such modifications at columns 6-8 and in Example 1. These specific examples taught by Baracchini et al include the presently claimed phosphorothioate linkages, 2'-O-methoxyethyl sugars, 5-methylcytosine and chimeric oligonucleotides. Tables 1-4 show the successful design and use of modified oligonucleotides in cells in culture. Table 1 exemplifies the successful practice of general antisense design taught at columns 8-10. Column 4 teaches various carriers for antisense delivery. Baracchini *et al.* also teaches at column 8 that antisense oligonucleotides are preferably 8 to 30 nucleotides and that it is more preferable to make antisense oligonucleotides that are 12 to 25 nucleotides in length. Baracchini is considered to comprise a detailed blueprint for how to make and use inhibitory antisense oligos to target any known gene.

The teachings of Bennett *et al.* are considered to parallel those of Baracchini *et al.* Bennett *et al.* teaches general antisense targeting guidelines at columns 3-4. Bennett *et al.* also teaches targeting 5'-untranslated regions, start codons, coding regions, and 3'-untranslated regions of a desired target. Bennett teaches, in column 5, for example, that antisense compounds are commonly used as research reagents and diagnostics. Column 5 indicates that antisense oligonucleotides 8-30 nucleotides in length are particularly preferred. Columns 6-7 teach that preferred antisense oligonucleotides contain modified internucleoside linkages including phosphorothioate linkages, among others. Columns 7-8 teach that preferred antisense oligonucleotides comprise modified sugar moieties including 2'-O-methoxyethyl. Bennett *et al.*

also teach one of ordinary skill to modify nucleobases in antisense oligonucleotides, including the teaching of 5-methylcytosine (col. 8-9), and also to use chimeric antisense oligonucleotides (col. 9-10). Bennett *et al.* teach that the above modifications are known in the art to provide beneficial attributes to antisense oligonucleotides such as increased hybridization and nuclease protection, for example. Columns 10-24 teach numerous “carriers” for antisense oligonucleotides. Table 1 teaches the successful targeting of those regions taught in columns 3-4 with chimeric phosphorothioate oligonucleotides having 2'-MOE (a 2'-O-methoxyethyl modification). Thus, Bennett *et al.* is also considered to comprise a detailed blueprint for how to make and use inhibitory antisense oligos to target any known gene.

It would have been obvious to one of ordinary skill in the art to use the cDNA sequence of Jahnsen et al. to generate antisense sequences targeting the 3' untranslated region as taught by both Baracchini et al. and Bennett et al. for the inhibition of PKA RII- β expression as taught by Tortora. Further, it would have been obvious to one of ordinary skill in the art to incorporate modifications as taught by Taylor, Baracchini *et al.* and Bennett *et al.* into said antisense compounds.

One would have been motivated to create such compounds because Tortora expressly teach antisense compounds that target and hybridize to PKA RII- β . One of skill would have been motivated to target the 3'-untranslated region because both Bennett and Baracchini et al. teach that the 3'-untranslated region is a preferred targeting region. One would have been motivated to modify said antisense compounds as taught by Baracchini *et al.* and Bennett *et al.*, because both

Art Unit: 1635

teach that such modifications increase an antisense compound's cellular uptake, target affinity and resistance to degradation.

Finally, one would have a reasonable expectation of success given that Taylor teaches that with software analysis and high affinity oligos, one needs to screen only 3-6 oligos to find one that inhibits its target 66-95%, and since Baracchini *et al.* and Bennett *et al.* both teach making modified antisense compounds targeted to distinct regions of a target gene, the steps of which are routine to one of ordinary skill in the art.

Thus in the absence of evidence to the contrary, the invention as a whole would have been *prima facie* obvious to one of ordinary skill in the art at the time the invention was made.

Conclusion

5. Any inquiry of a general nature or relating to the status of this application or proceeding should be directed to (571) 272-0547.

Any inquiry concerning this communication or earlier communications from the examiner should be directed to J. Douglas Schultz, Ph.D. whose telephone number is 571-272-0763. The examiner can normally be reached on 8:00-4:30 M-F. If attempts to reach the examiner by telephone are unsuccessful, the examiner's supervisor, Andrew Wang can be reached at 571-272-0811. The fax phone number for the organization where this application or proceeding is assigned is 703-872-9306.

Information regarding the status of an application may be obtained from the Patent Application Information Retrieval (PAIR) system. Status information for published applications may be obtained from either Private PAIR or Public PAIR. Status information for unpublished applications is available through Private PAIR only. For more information about the PAIR system, see <http://pair-direct.uspto.gov>. Should you have questions on access to the Private PAIR system, contact the Electronic Business Center (EBC) at 866-217-9197 (toll-free).

Patent applicants with problems or questions regarding electronic images that can be viewed in the Patent Application Information Retrieval system (PAIR) can now contact the USPTO's Patent Electronic Business Center (Patent EBC) for assistance. Representatives are available to answer your questions daily from 6 am to midnight (EST). The toll free number is (866) 217-9197. When calling please have your application serial or patent number, the type of document

Art Unit: 1635

you are having an image problem with, the number of pages and the specific nature of the problem. The Patent Electronic Business Center will notify applicants of the resolution of the problem within 5-7 business days. Applicants can also check PAIR to confirm that the problem has been corrected. The USPTO's Patent Electronic Business Center is a complete service center supporting all patent business on the Internet. The USPTO's PAIR system provides Internet-based access to patent application status and history information. It also enables applicants to view the scanned images of their own application file folder(s) as well as general patent information available to the public.

For all other customer support, please call the USPTO Call Center (UCC) at 800-786-9199.

JDS

**J.D. SCHULTZ, Ph.D.
PATENT EXAMINER**