DATA SCIENTIST #4

2026

ML 4 : Recommender Systems

KIT APPRENANT

OBJECTIFS

Objectifs pédagogiques

A l'issue de ce module, vous serez capable de :

- Implémenter, entraîner et évaluer un modèle de recommandation par factorisation de matrice avec la librairie Keras
- Produire des recommandations d'items pour des utilisateurs à partir de notes attribuées à un sous ensemble de ces items (des films dans le cas étudié)
- Visualiser les représentations (embeddings) des items produites par le modèle
- Réutiliser ces représentations pour d'autres tâches, comme classifier les items

Compétences développées :

Vous apprendrez à vous familiariser avec une librairie de deep learning (Keras), en implémentant un modèle de recommandation de films, et à manipuler et réutiliser les représentations vectorielles (embeddings) des films et des utilisateurs pour produire les recommandations.

Démarche pédagogique (projet, ressources ...)

- Durée du projet : 3 jours
- Travail en autonomie, mais échangez autant que possible entre vous!
- Produire vos propres scripts et mémos individuels pour terminer le projet

DATA SCIENTIST #4

#4 2026

ML 4 : Recommender Systems

KIT APPRENANT

Compétences

- Maîtriser les bases de la librairie Keras
- Recommander des items aux utilisateurs
- Visualiser et interpréter les représentations vectorielles des items
- Réutiliser ces représentations vectorielles dans un problème de classification

DATA SCIENTIST #4

2026

ML 4 : Recommender Systems

KIT APPRENANT

MODALITÉS

Durée

3 jours soit 21 heures au total. Lancement le 15/10/25 et clotûre le 17/10/25.

Formateur(s)

Marta Rybczynska

Modalités

- Travail individuel en autonomie
- 3 jours en présentiel

Livrables

☐ Le notebook rempli sur Git

Ressources

- Matrix Factorization techniques for Recommender Systems, Koren (2009): https://courses.ischool.berkeley.edu/i290-dm/s11/SECURE/Koren_Matrix_Factorization.pdf
- Hands on Machine Learning with scikit-learn and tensorflow: https://drive.google.com/file/d/1t0rc3x5YQBgLXVLET6BzR4jn5vzMI_m0/view?usp=sharing
- The movieLens dataset: https://grouplens.org/datasets/movielens/
- Keras Functional API doc: https://keras.io/guides/functional_api/