A 1.25 GHz 0.23 pJ 4-bit Absolute-Value Detector for use in Neural Spike Sorting

Aaron Lim Prathyush Sivakumar

Design Summary

- Optimized 3-Bit Ripple-Carry Adder + Comparator, Static CMOS + Pass Transistor Logic (PTL)
- Moderate Area, Fast, Compact Design (Extra Room for Additional Logic)

*VDD = 1V

Schematic	Layout size	Energy	Verification
$t_{p_X0\to OUT} = 778 \text{ ps}$	X= 21.6 μm	Sch E = 204 fJ	Func: Y / N
$t_{p_X1 \to OUT} = 620 \text{ ps}$	Y= 19.5 μm	Layout E = 226 fJ	DRC: Y / N
$t_{p_{X2}\to OUT} = 524 \text{ ps}$	A = 421.2 μm ²		LVS: Y / N
t _{p_X3→OUT} = 599 ps	AR = 1.11		
t _p = 778 ps			

Critical Path Analysis

Design Optimization

- Isolated high fan-out using sized output buffer (i.e. two sized inverters) to minimize delay
- Simplified adder design by realizing classes of inputs. Resulted in much fewer logic gates
- Used PTL for MUX and XOR to reduce no. of transistors to implement logic
- Used only 2 1-bit MUXs by realizing that MSB and LSB are always the same

Functionality Check (Schematic)

Absolute-Value Detector Layout

Discussion

Three most important features of your design

- Isolation of large load capacity / high fan-out using sized output buffer
- PTL for MUX and XOR for reduced power consumption
- Compact and systematic layout with room for extra logic

Given another chance, 3 things you would do different

- Perform further sizing analysis to achieve optimum propagation delay
- Optimize critical path by reordering transistors