

Optimal control for walking robots

Theory and practice with Crocoddyl

Nicolas Mansard

Gepetto, LAAS-CNRS & ANITI

#02: Optimal control and its optimality principles

Autonomous Driving

Information Theoretic Model Predictive Control [Williams et al. 2018]

OC with Linear Inverted Pendulum Model [Herdt et al. 2010]

OC with Centroidal Momentum Dynamics and Full Body Kinematics [Ponton et al. 2018], [Carpentier et al. 2018], [Dai et al. 2014], [Herzog et al. 2015]

Synthesis and stabilization of complex behaviors with online trajectory optimization

Yuval Tassa, Tom Erez and Emo Todorov

Movement Control Laboratory
University of Washington

IROS 2012

[Tassa et al. 2010]
DDP with Full-Body Dynamics
(realtime control)

Discovery of complex behaviors through Contact-Invariant Optimization

Igor Mordatch, Emo Todorov and Zoran Popovic

Movement Control Laboratory and GRAIL University of Washington

SIGGRAPH 2012

[Mordatch et al. 2012] Nonlinear Optimization for Multi-Contact Tasks

Problem definition

$$\min_{\{x\},\{u\}} \int_0^T l(x(t), u(t)) dt + l_T(x(T))$$

so that
$$x_0 = \hat{x}$$
 $\forall t, \ \dot{x}(t) = f(x(t), u(t))$

• {x} and {u} are functions of t:

$$\{x\}: t \in \mathbb{R} \to x(t) \in \mathbb{R}^{nx}$$

 $\{u\}: t \in \mathbb{R} \to u(t) \in \mathbb{R}^{nu}$

• The terminal time *T* is fixed (for now)

Starting example

Original artwork by Michele Carminati, commissioned by Marco M. Nicotra (U. Colorado Boulder)

Starting example

Original artwork by Michele Carminati, commissioned by Marco M. Nicotra (U. Colorado Boulder)

Starting example

$$\min_{\substack{\{x\}=(Q,\dot{Q}),\\\{u\}=\tau}} \int_0^T \sum_l l(x_t,u_t) dt$$

so that
$$\forall t, \ \dot{x}(t) = f(x(t), u(t))$$

Original artwork by Michele Carminati, commissioned by Marco M. Nicotra (U. Colorado Boulder)

$$x_0=\widehat{x}$$
 initial dynamics $\dot{x}(t)=f(x(t),u(t))$ deterministic dynamics $g(x(t),u(t))\geq 0$ state and control constraints

Optimal control problem (discretized)

$$x_0 = \hat{x}$$

 $x_0 = \hat{x}$ $x_t = f(x_t, u_t)$

$$g(x_t, u_t) \ge 0$$

initial dynamics

deterministic dynamics

state and control constraints

Transcribing: "representing" the reality

$$\min_{\underline{x}:t \to x(t) \atop \underline{u}:t \to u(t)} \int_0^T l(x(t), u(t))dt + l_T(x(T))$$
s.t. $\forall t, \dot{x}(t) = f(x(t), u(t))$

Optimal control problem (OCP) with continuous variables (infinite-dimension)

$$\min_{\substack{\underline{x}:t\to x(t)\\\underline{u}:t\to u(t)}} \int_0^T l(x(t),u(t))dt + l_T(x(T)) \qquad \min_{\substack{\underline{x}=\theta_{x1}...\theta_{xn}\\\underline{u}=\theta_{u1}...\theta_{un}}} \sum_t l(x(t|\theta),u(t|\theta))dt + l_T(x(T|\theta))$$
s.t. at some $t,\dot{x}(t|\theta) = f(t|\theta_x,\theta_y)$

Nonlinear optimization problem (NLP) with static variables (finite dimension)

 θ_{x} θ_{u} represents the continuous $\underline{x},\underline{u}$ trajectories

$$\{x'\} = x_0', \dots, x'_T$$

 $\{u'\} = u'_0, \dots, u'_{T-1}$

 $\{u\}^*$ the optimal control trajectory $\pi^*(x)$ the optimal control policy

How can we find the optimal control?

• The Principle of Optimality breaks down the problem

Subpath of optimal paths are also optimal for then own subproblem

How can we find the optimal control?

The Principle of Optimality breaks down the problem

Function

Optimal Cost to Go or Value
$$V_t(x_t) = \min_{u_t, \cdots, u_{N-1}} \sum_{k=t}^{T-1} l_k(x_k, u_k) + l_T(x_T)$$

Bellman's Principle of **Optimality**

$$V_t(x_t) = \min_{u_t} l_t(x_t, u_t) + V_{t+1}(x_{t+1})$$

$$x_{t+1} = f_t(x_t, u_t)$$

$$V_t(x_t) = \min_{u_t} l_t(x_t, u_t) + V_{t+1}(x_{t+1})$$

$$V_t(x_t) = \min_{u_t} l_t(x_t, u_t) + V_{t+1}(x_{t+1})$$

$$V_t(x_t) = \min_{u_t} l_t(x_t, u_t) + V_{t+1}(x_{t+1})$$

Bellman Equation
$$V_t(x_t) = \min_{u_t} l_t(x_t, u_t) + V_{t+1}(x_{t+1})$$

Problems:

- Curse of dimensionality
- minimization in Bellman equation

⇒ Approximate solution to Bellman equation
 (DDP, trajectory optimization, reinforcement learning, etc)

Solving Bellman's Equations

- [1] Bonnali'19 ArX:1903.00155
- [2] Mordach'14 DOI:2185520.2185539
- [3] Posa'14 DOI:0278364913506757
- [4] Winkler'18 IEEE:2798285
- [5] Rajamaki'17 DOI:3099564.3099579

$$\min_{\{x\},\{u\}} \int_0^T l\big(x(t),u(t)\big) dt + l_T\big(x(T)\big)$$
 Find control inputs stage costs to minimize cost

$$x_0=\widehat{x}$$
 initial dynamics $\dot{x}(t)=f(x(t),u(t))$ deterministic dynamics $g(x(t),u(t))\geq 0$ state and control constraints

Optimality principles

- Hamiltonien $H(x, u,) = l(x, u) + \langle \lambda | f(x, u) \rangle$
- Hamilton Jacobi Belman equation

$$u^*(x) = \min_{u} H\left(x , u, -\frac{\partial V}{\partial x}(x)\right)$$

Pontryagin Maximum principle

$$u^*(t) = \min_{u} H(x(t), u, \lambda(t))$$

Optimality principles

Curse of dimensionality

- Solved in particular cases
 - Nonholonomic car-like robots
 - Reachability sets

