Learning Partitions with Optimal Query and Round Complexities

Conference on Learning Theory (COLT) 2025

Hadley Black UCSD

Arya Mazumdar UCSD

Barna Saha UCSD

Clustering via Crowdsourcing

Are these animals in the same genus?

 Can we offload the work of computing a clustering by asking simple questions to external individuals?

• Pairwise same-cluster queries: Are these two points of the same type?

Learning Partitions with Queries

Problem statement

- Set U of n elements Hidden k-partition $X_1 \sqcup \cdots \sqcup X_k = U$
 - Learn $X_1, ..., X_k$ exactly using same-set queries

Perspective & motivation

Practical clustering model:

- Leveraging crowd responses to simple questions enables
 - (a) Label-invariance
 - (b) Simple combinatorial setting where geometry has been removed ("offloaded" to the oracle)

Theoretical motivation:

- Partition learning is a fundamental problem
- Key aspects remained unexplored

Query profile

"No."

"Yes!"

Learned clustering

Learning Partitions with Queries

Problem statement

- Set U of n elements Hidden k-partition $X_1 \sqcup \cdots \sqcup X_k = U$
 - Learn $X_1, ..., X_k$ exactly using same-set queries

Considerations in this work

- (1) Query complexity
- (2) Round complexity
 - Responses may be slow
 - Important to parallelize queries as much as possible
- (3) "Size" complexity
 - Consider generalized subset queries
 - Oracle may not be able to handle large subsets

Query profile

"No."

"Yes!"

Learned clustering

Learning Partitions with Pair Queries

Reyzin-Srivastava [ALT 07], Mazumdar-Saha [NeuIPS 17], Mazumdar-Saha [AAAI 17], Mazumdar-Pal [NeurIPS 17], Mitzenmacher-Tsouraskis [16], Saha-Subramanian [ESA 19], Pia-Ma-Tzamos [COLT 22], Bressan-Cesa-Bianchi-Lattanzi-Paudice [NeurlPS 20], Huleihal-Mazumdar-Médard-Pal [NeurlPS 19], etc...

- Set U of n elements Hidden k-partition $X_1 \sqcup \cdots \sqcup X_k = U$
 - Learn $X_1, ..., X_k$ exactly using same-set queries

Tight query complexity bound

 $\Theta(nk)$

Upper bound Reyzin-Srivastava 07

Lower bound Davidson-Khanna-Milo-Roy 14

Classic algorithm of Reyzin-Srivastava:

Learn clusters one-by-one

Question

What is the minimum number of rounds that suffice to achieve O(nk) queries?

Question

Given a budget of *r* rounds, what is the optimal query complexity?

Result 1: Round Complexity of Pair Queries

- Set U of n elements Hidden k-partition $X_1 \sqcup \cdots \sqcup X_k = U$
 - Learn $X_1, ..., X_k$ exactly using same-set queries

Theorem $\left(n^{1+\frac{1}{2^r-1}}\cdot k^{1-\frac{1}{2^r-1}}\right)$

 $O(\log \log n)$

rounds of adaptivity

r rounds?

A double exponential improvement when $k \ge n^{0.01}$

Fine print:

- Algorithm and lower bound are deterministic
- lower bound matches exactly for r = O(1)
 - ... but only ever off by a $r = O(\log \log n)$ factor

Non-adaptive

1 round of adaptivity

Algorithm: r = 2

- Split into $(n/k)^{2/3}$ sets of size $n^{1/3}k^{2/3}$
- Round 1: Run non-adaptive algorithm in each
- R_i = one representative from each cluster found in U_i
- Round 2: Run non-adaptive algorithm on $\bigcup_i R_i$
 - Combine partitions computed in round 1 using information in gained in round 2

Round 1 queries

$$(n/k)^{2/3} \cdot (n^{1/3}k^{2/3})^2 = n^{4/3}k^{2/3}$$

Round 2 queries

$$(k \cdot (n/k)^{2/3})^2 = n^{4/3}k^{2/3}$$

Algorithm: general r

- Split into $(n/k)^{1-\varepsilon(r)}$ sets of size $n^{\varepsilon(r)}k^{1-\varepsilon(r)}$
- Round 1: Run non-adaptive algorithm in each
- R_i = one representative from each cluster found in U_i
- Round 2,..., r: Run r-1 round algorithm on $\bigcup_i R_i$

Round 1 queries

$$(n/k)^{1-\varepsilon(r)} \cdot \left(n^{\varepsilon(r)}k^{1-\varepsilon(r)}\right)^2 = n^{1+\varepsilon(r)}k^{1-\varepsilon(r)}$$

Round $2, \dots, r$ queries

$$|R|^{1+\varepsilon(r-1)}k^{1-\varepsilon(r-1)} = (k \cdot (n/k)^{1-\varepsilon(r)})^{1+\varepsilon(r-1)}k^{1-\varepsilon(r-1)}$$

$$= n^{1+\varepsilon(r)}k^{1-\varepsilon(r)} \quad \text{Ugly expression... but the math works out}$$

Note: setting constants appropriately allows to avoid an additional r factor in final query complexity

Lower bound high level ideas

- Consider arbitrary **deterministic** algorithm
- Queries appearing in r rounds $Q = Q_1 \cup Q_2 \cup \cdots \cup Q_r \subseteq \begin{pmatrix} 0 \\ 2 \end{pmatrix}$ Depend on previous query responses

 $\Omega\left(\frac{1}{r} \cdot n^{1 + \frac{1}{2^{r} - 1}} \cdot k^{1 - \frac{1}{2^{r} - 1}}\right)$ $\forall k \ge r + 2$

ullet View queries as **edges** in a graph over U

Idea: If $Z \subset U$ is

- (a) an independent set (IS), and
- (b) every query that touches Z has returned "not same set",

then we have **not learned anything** about partition in \boldsymbol{Z}

Turán's theorem:

 $q \ge n$ queries so far \Longrightarrow G contains an IS of size $\approx n^2/q$

(The query graph after 2 rounds)

Varm-up:
$$\Omega\left(n^{1+\frac{1}{2^r-1}}\right), k \ge r+2$$

Cannot distinguish

Base case: r = 1, k = 3:

If
$$|Q| \ll n^2$$
, there exists $(x, y) \in \binom{U}{2} \backslash Q$

VS.

Induction: r > 1, k = r + 2:

If $|Q_1| \ll n^{1+\frac{1}{2^r-1}}$, there exists an **IS** Z_1 in G_1 of size $\approx n^{1-\frac{1}{2^r-1}}$ by **Turán's theorem**

- Fix $U \setminus Z_1$ as one cluster
- Remaining r-1 rounds restricted in Z:
 - By induction, if $|Q_2\cup\cdots\cup Q_r|\ll |Z_1|^{1+\frac{1}{2^{r-1}-1}}=n^{1+\frac{1}{2^r-1}}$, then there exists two partitions P_1,P_2 over Z_1 into r+1 sets that are **not distinguished**

Bringing in dependence on k is significantly more challenging, but core ideas are similar

Generalizing to Subset Queries

Chakrabarty-Liao [FSTTCS 24], Black-Lee-Mazumdar-Saha [NeurIPS 24]

- Set U of n elements Hidden k-partition $X_1 \sqcup \cdots \sqcup X_k = U$
- How many subset queries of size at most s to learn $X_1, ..., X_k$ exactly?

Strong

Weak

Returns full description of partition on S

Returns # clusters intersecting S

O(n) adaptive [CL24] $\Omega(n)$ info-theory O(n) non-adaptive [BLMS24]

Question: What is the minimum query size s needed to achieve O(n) queries?

Basic observation: s^2 pair queries simulate 1 strong subset query

$$\Longrightarrow$$

 $\Omega(nk/s^2)$ adaptive

 $\Omega(n^2/s^2)$ non-adaptive

$$\Omega(nk/s^2 + n)$$
 adaptive

$$\Omega(n^2/s^2+n)$$
 non-adaptive

Result 2: Size Complexity of Subset Queries

(Non-adaptive)

Strong

Returns full description of partition on S

$$\Omega(n^2/s^2) \xrightarrow{+ \text{ info theory}} \Omega(n^2/s^2 + n)$$

Weak

Returns # clusters intersecting S

$$\Omega(n^2/s^2+n)$$

Question

When $s \leq \sqrt{n}$, are weak queries just as useful as strong queries?

Question

Is the information-theoretic optimum attainable with only \sqrt{n} -sized queries?

Yes!* Despite, exponentially less information from weak queries

Up to log-factors

Theorem (non-adaptive)

 $O(n^2/s^2)$ strong queries for all $s \le n$

Theorem (non-adaptive)

$$\widetilde{O}(n^2/s^2)$$
 weak queries for all $s \le \sqrt{n}$

General theorems for r-rounds, s-size

Theorem (strong queries)

$$\Theta\left(\max\left(\frac{n^{1+\frac{1}{2^r-1}}k^{1-\frac{1}{2^r-1}}}{s^2},\frac{n}{s}\right)\right)$$

Theorem (weak queries)

$$\widetilde{\Theta}\left(\max\left(\frac{n^{1+\frac{1}{2^r-1}}k^{1-\frac{1}{2^r-1}}}{s^2},n\right)\right)$$

Info-theory bounds

Equal for *s* up until info-theory bound is reached for weak queries:

$$s \le \sqrt{n^{\frac{1}{2^r - 1}} \cdot k^{1 - \frac{1}{2^r - 1}}}$$

Summary

- We revisit the classic problem of partition learning with pair-wise queries / crowdsource clustering
 - Obtain tight bounds in terms of round-complexity
 - Practical consideration: query parallelization
- Consider generalized **subset** queries
 - Obtain tight bounds in terms of allowed query size
 - Practical consideration: large queries infeasible
 - Up to reasonable size threshold:
 - Oracle that counts # intersected clusters "as useful" as oracle that returns entire clustering

Unexplored direction

What is the right **noise model** for subset queries?

