CLAIMS

What is claimed is:

10

2

1. A method for searching for an optimal solution to an optimization problem using a
2 computer-implemented process based on a genetic model, comprising:

generating, during each of a series of generations of the computerimplemented process, a set of child chromosomes, each child chromosome
comprising at least one gene;

examining the child chromosomes for undesirable gene combinations;
altering the undesirable gene combinations to produce a set of

putatively corrected child chromosomes; and

evaluating the fitness as the optimal solution of each of the putatively corrected child chromosomes prior to updating a chromosome pool for use in the successive generation.

- 2. The method of claim 1, wherein the undesirable gene combinations are identified based on a priori knowledge of constraints on the optimization problem.
- The method of claim 1, wherein the undesirable gene combinations are identified
 by use of a statistical technique.
- The method of claim 3, wherein the statistical technique comprises training a
 neural network on at least one gene subset within the child chromosomes.

- 5. The method of claim 1, wherein the undesirable gene combinations are identified
 based on a combination of a priori knowledge of constraints on the optimization
 problem and the use of a statistical technique.
- The method of claim 1, wherein altering the undesirable gene combinations to
 produce a set of putatively corrected child chromosomes comprises
 deterministically altering at least one undesirable gene combination based on a
 priori knowledge of constraints on the optimization problem.
- 7. The method of claim 1, wherein altering the undesirable gene combinations to
 2 produce a set of putatively corrected child chromosomes comprises randomly altering at least one undesirable gene combination.
- 8. The method of claim 1, wherein altering the undesirable gene combinations to
 produce a set of putatively corrected child chromosomes comprises altering at
 least one undesirable gene combination in accordance with a greedy optimization.
- 9. The method of claim 1, wherein the optimization problem comprises optimizing at
 least one characteristic of an integrated circuit.
- 10. A method for searching for an optimal solution to an optimization problem using a
 computer-implemented process based on a genetic model, comprising:
 - representing candidates for the optimal solution as a chromosome pool,
- 4 each chromosome in the chromosome pool comprising at least one gene; and

14

16

2

	performing the following steps iteratively during each of a series of
6	generations until a chromosome is determined to be the optimal solution to the
	optimization problem:
8	generating, through a reproduction process, a set of child

generating, through a reproduction process, a set of child chromosomes,

assigning a fitness score to each child chromosome,
examining the child chromosomes for undesirable gene
combinations,

altering the undesirable gene combinations to produce a set of putatively corrected child chromosomes,

assigning an updated fitness score to each putatively corrected child chromosome, and

updating the chromosome pool for the successive generation.

- 11. The method of claim 10, wherein the undesirable gene combinations are identified
 based on a priori knowledge of constraints on the optimization problem.
- 12. The method of claim 10, wherein the undesirable gene combinations are identified
 by use of a statistical technique.
 - 13. The method of claim 12, wherein the statistical technique comprises training a neural network on at least one gene subset within the child chromosomes.

- 14. The method of claim 10, wherein the undesirable gene combinations are identified
 based on a combination of priori knowledge of constraints on the optimization
 problem and the use of a statistical technique.
- 15. The method of claim 10, wherein altering the undesirable gene combinations to
 produce a set of putatively corrected child chromosomes comprises
 deterministically altering at least one undesirable gene combination based on a
 priori knowledge of constraints on the optimization problem.
- 16. The method of claim 10, wherein altering the undesirable gene combinations to
 produce a set of putatively corrected child chromosomes comprises randomly altering at least one undesirable gene combination.
- 17. The method of claim 10, wherein altering the undesirable gene combinations to
 produce a set of putatively corrected child chromosomes comprises altering at least one undesirable gene combination in accordance with a greedy optimization.
 - 18. The method of claim 10, wherein the optimization problem comprises optimizing at least one characteristic of an integrated circuit.
 - 19. A system programmed to perform the following method:

2

generating, during each of a series of generations of a computerimplemented process based on a genetic model for solving an optimization

problem, a set of child chromosomes, each child chromosome comprising at least one gene;

6	examining the child chromosomes for undesirable gene combinations;
	altering the undesirable gene combinations to produce a set of
8	putatively corrected child chromosomes; and
	evaluating the fitness as a solution to the optimization problem of each
10	of the putatively corrected child chromosomes prior to updating a
	chromosome pool for use in the successive generation.
	20. The system of claim 19, wherein the system comprises a plurality of networked
2	processing nodes.
	21. A system programmed to perform the following method:
2	representing candidates for an optimal solution to an optimization
	problem as a chromosome pool, each chromosome in the chromosome pool
4	comprising at least one gene; and
	performing the following steps iteratively during each of a series of
6	generations of a process based on a genetic model until a chromosome is
	determined to be the optimal solution to the optimization problem:
8	generating, through a reproduction process, a set of child
	chromosomes,
10	assigning a fitness score to each child chromosome,
	examining the child chromosomes for undesirable gene
12	combinations,

putatively corrected child chromosomes,

14

altering the undesirable gene combinations to produce a set of

2

4

6

8

10

12

	assigning an updated fitness score to each putatively corrected
16	child chromosome, and
	updating the chromosome pool for the successive generation.

- 22. The system of claim 21, wherein the system comprises a plurality of networked processing nodes.
- 23. A system for searching for an optimal solution to an optimization problem using a
 computer-implemented process based on a genetic model, comprising:

means for generating, during each of a series of generations of the computer-implemented process, a set of child chromosomes, each child chromosome comprising at least one gene;

means for examining the child chromosomes for undesirable gene combinations;

means for altering the undesirable gene combinations to produce a set of putatively corrected child chromosomes; and

means for evaluating the fitness as the optimal solution of each of the putatively corrected child chromosomes prior to updating a chromosome pool for use in the successive generation.

24. A computer-readable storage medium containing program code to solve an
 optimization problem according to a process based on a genetic paradigm,
 comprising:

4	a first code segment configured to generate, during each of a series of
	generations of the process, a set of child chromosomes, each child
6	chromosome comprising at least one gene;
	a second code segment configured to examine the child chromosomes
8	for undesirable gene combinations;
	a third code segment configured to alter the undesirable gene
10	combinations to produce a set of putatively corrected child chromosomes; and
	a fourth code segment configured to evaluate the fitness as a solution
12	to the optimization problem of each of the putatively corrected child
	chromosomes prior to updating a chromosome pool for use in the successive
14	generation.