Solution for Quantum Computation and Quantum Information by Nielsen and Chuang

August 5, 2017

Contents

2	ntroduction to quantum mechanics	1
	1	1
	2	1
	3	1
	4	2
	.6	2
	7	2
	8	2
	9	3
	10	3
	11	3
	12	4
	13	4
	14	5
	15	5
	16	5
	.18	6
	19	6
	20	6
	26	6

2 Introduction to quantum mechanics

2.1

$$\begin{bmatrix} 1 \\ -1 \end{bmatrix} + \begin{bmatrix} 1 \\ 2 \end{bmatrix} - \begin{bmatrix} 2 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

2.2

$$A |0\rangle = A_{11} |0\rangle + A_{21} |1\rangle = |1\rangle \Rightarrow A_{11} = 0, \ A_{21} = 1$$

$$A |1\rangle = A_{12} |0\rangle + A_{22} |1\rangle = |0\rangle \Rightarrow A_{12} = 1, \ A_{22} = 0$$

$$\therefore A = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$

input: $\{|0\rangle, |1\rangle\}$, output: $\{|1\rangle, |0\rangle\}$

$$A |0\rangle = A_{11} |1\rangle + A_{21} |0\rangle = |1\rangle \Rightarrow A_{11} = 1, \ A_{21} = 0$$

$$A |1\rangle = A_{12} |1\rangle + A_{22} |0\rangle = |0\rangle \Rightarrow A_{12} = 0, \ A_{22} = 1$$

$$A = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

2.3

$$A |v_i\rangle = \sum_j A_{ji} |w_j\rangle$$
$$B |w_j\rangle = \sum_k B_{kj} |x_k\rangle$$

Thus

$$BA |v_{i}\rangle = B\left(\sum_{j} A_{ji} |w_{j}\rangle\right)$$

$$= \sum_{j} A_{ji} B |w_{j}\rangle$$

$$= \sum_{j,k} A_{ji} B_{kj} |x_{k}\rangle$$

$$= \sum_{k} \left(\sum_{j} B_{kj} A_{ji}\right) |x_{k}\rangle$$

$$= \sum_{k} (BA)_{ki} |x_{k}\rangle$$

$$\therefore (BA)_{ki} = \sum_{j} B_{kj} A_{ji}$$

2.4

$$I |v_j\rangle = \sum_i I_{ij} |v_i\rangle = |v_j\rangle, \ \forall j.$$

$$\Rightarrow I_{ij} = \delta_{ij}$$

2.6

$$\left(\sum_{i} \lambda_{i} |w_{i}\rangle, |v\rangle\right) = \left(|v\rangle, \sum_{i} \lambda_{i} |w_{i}\rangle\right)^{*}$$

$$= \left[\sum_{i} \lambda_{i} (|v\rangle, |w_{i}\rangle)\right]^{*} (\because \text{ linearlity in the 2nd arg.})$$

$$= \sum_{i} \lambda_{i}^{*} (|v\rangle, |w_{i}\rangle)^{*}$$

$$= \sum_{i} \lambda_{i}^{*} (|w_{i}\rangle, |v\rangle)$$

2.7

$$\langle w|v\rangle = \begin{bmatrix} 1 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ -1 \end{bmatrix} = 1 - 1 = 0$$

$$\frac{|w\rangle}{|||w\rangle||} = \frac{|w\rangle}{\sqrt{\langle w|w\rangle}} = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

$$\frac{|v\rangle}{|||v\rangle||} = \frac{|v\rangle}{\sqrt{\langle v|v\rangle}} = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ -1 \end{bmatrix}$$

2.8

If k = 1,

$$|v_{2}\rangle = \frac{|w_{2}\rangle - \langle v_{1}|w_{2}\rangle |v_{1}\rangle}{\||w_{2}\rangle - \langle v_{1}|w_{2}\rangle |v_{1}\rangle\|}$$

$$\langle v_{1}|v_{2}\rangle = \langle v_{1}|\left(\frac{|w_{2}\rangle - \langle v_{1}|w_{2}\rangle |v_{1}\rangle}{\||w_{2}\rangle - \langle v_{1}|w_{2}\rangle |v_{1}\rangle\|}\right)$$

$$= \frac{\langle v_{1}|w_{2}\rangle - \langle v_{1}|w_{2}\rangle \langle v_{1}|v_{1}\rangle}{\||w_{2}\rangle - \langle v_{1}|w_{2}\rangle |v_{1}\rangle\|}$$

$$= 0.$$

Suppose $\{v_1, \dots v_n\}$ $(n \le d-1)$ is a orthonormal basis. Then

$$\begin{split} \langle v_j | v_{n+1} \rangle &= \langle v_j | \left(\frac{|w_{n+1}\rangle - \sum_{i=1}^n \langle v_i | w_{n+1}\rangle \, |v_i\rangle}{|||w_{n+1}\rangle - \sum_{i=1}^n \langle v_i | w_{n+1}\rangle \, |v_i\rangle ||} \right) \quad (j \leq n) \\ &= \frac{\langle v_j | w_{n+1}\rangle - \sum_{i=1}^n \langle v_i | w_{n+1}\rangle \, \langle v_j | v_i\rangle}{|||w_{n+1}\rangle - \sum_{i=1}^n \langle v_i | w_{n+1}\rangle \, |v_i\rangle ||} \\ &= \frac{\langle v_j | w_{n+1}\rangle - \sum_{i=1}^n \langle v_i | w_{n+1}\rangle \, \delta_{ij}}{|||w_{n+1}\rangle - \sum_{i=1}^n \langle v_i | w_{n+1}\rangle \, |v_i\rangle ||} \\ &= \frac{\langle v_j | w_{n+1}\rangle - \langle v_j | w_{n+1}\rangle}{|||w_{n+1}\rangle - \sum_{i=1}^n \langle v_i | w_{n+1}\rangle \, |v_i\rangle ||} \\ &= 0. \end{split}$$

Thus Gram-Schmidt procedure produces an orthonormal basis.

2.9

$$\begin{split} \sigma_0 &= I = |0\rangle \langle 0| + |1\rangle \langle 1| \\ \sigma_1 &= X = |0\rangle \langle 1| + |1\rangle \langle 0| \\ \sigma_2 &= Y = -i |0\rangle \langle 1| + i |1\rangle \langle 0| \\ \sigma_3 &= Z = |0\rangle \langle 0| - |1\rangle \langle 1| \end{split}$$

2.10

$$\begin{split} \left| v_{j} \right\rangle \left\langle v_{k} \right| &= I_{V} \left| v_{j} \right\rangle \left\langle v_{k} \right| I_{V} \\ &= \left(\sum_{p} \left| v_{p} \right\rangle \left\langle v_{p} \right| \right) \left| v_{j} \right\rangle \left\langle v_{k} \right| \left(\sum_{q} \left| v_{q} \right\rangle \left\langle v_{q} \right| \right) \\ &= \sum_{p,q} \left| v_{p} \right\rangle \left\langle v_{p} \middle| v_{j} \right\rangle \left\langle v_{k} \middle| v_{q} \right\rangle \left\langle v_{q} \middle| \\ &= \sum_{p,q} \delta_{pj} \delta_{kq} \left| v_{p} \right\rangle \left\langle v_{q} \middle| \right. \end{split}$$

Thus

$$(\left|v_{j}\right\rangle \left\langle v_{k}\right|)_{pq} = \delta_{pj}\delta_{kq}$$

2.11

$$X = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}, \ \det(X - \lambda I) = \det\left(\begin{bmatrix} -\lambda & 1 \\ 1 & -\lambda \end{bmatrix} \right) = 0 \Rightarrow \lambda \pm 1$$

If $\lambda = -1$,

$$\begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

Thus

$$|\lambda = -1\rangle = \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} = \frac{1}{\sqrt{2}} \begin{bmatrix} -1 \\ 1 \end{bmatrix}$$

If $\lambda = 1$

$$|\lambda = 1\rangle = \frac{1}{\sqrt{2}} \begin{bmatrix} 1\\1 \end{bmatrix}$$

$$X = \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix}$$
 w.r.t. $\{ |\lambda = -1\rangle, |\lambda = 1\rangle \}$

2.12

$$\det\left(\begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix} - \lambda I\right) = (1 - \lambda)^2 = 0 \Rightarrow \lambda = 1$$

Therefore the eigenvector associated with eigenvalue $\lambda = 1$ is

$$|\lambda=1\rangle = \begin{bmatrix} 0\\1 \end{bmatrix}$$

Because
$$|\lambda=1\rangle \langle \lambda=1|=\begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$$
,
$$\begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix} \neq c \, |\lambda=1\rangle \, \langle \lambda=1|=\begin{bmatrix} 0 & 0 \\ 0 & c \end{bmatrix}$$

2.13

Suppose $|\psi\rangle$, $|\phi\rangle$ are arbitrary vectors in V.

$$(|\psi\rangle, (|w\rangle\langle v|) |\phi\rangle)^* = ((|w\rangle\langle v|)^{\dagger} |\psi\rangle, |\phi\rangle)^*$$
$$= (|\phi\rangle, (|w\rangle\langle v|)^{\dagger} |\psi\rangle)$$
$$= \langle\phi| (|w\rangle\langle v|)^{\dagger} |\psi\rangle.$$

On the other hand,

$$(|\psi\rangle, (|w\rangle\langle v|) |\phi\rangle)^* = (\langle \psi|w\rangle\langle v|\phi\rangle)^*$$

= $\langle \phi|v\rangle\langle w|\psi\rangle$.

Thus

$$\begin{split} \left\langle \phi\right| (\left|w\right\rangle \left\langle v\right|)^{\dagger} \left|\psi\right\rangle &= \left\langle \phi|v\right\rangle \left\langle w|\psi\right\rangle \text{ for arbitrary vectors } \left|\psi\right\rangle, \ \left|\phi\right\rangle \\ & \therefore (\left|w\right\rangle \left\langle v\right|)^{\dagger} = \left|v\right\rangle \left\langle w\right| \end{split}$$

2.14

$$((a_i A_i)^{\dagger} | \phi \rangle, | \psi \rangle) = (| \phi \rangle, a_i A_i | \psi \rangle)$$

$$= a_i (| \phi \rangle, A_i | \psi \rangle)$$

$$= a_i (A_i^{\dagger} | \phi \rangle, | \psi \rangle)$$

$$= (a_i^* A_i^{\dagger} | \phi \rangle, | \psi \rangle)$$

$$\therefore (a_i A_i)^{\dagger} = a_i^* A_i^{\dagger}$$

2.15

$$((A^{\dagger})^{\dagger} | \psi \rangle, | \phi \rangle) = (| \psi \rangle, A^{\dagger} | \phi \rangle)$$

$$= (A^{\dagger} | \phi \rangle, | \psi \rangle)^{*}$$

$$= (| \phi \rangle, A | \psi \rangle)^{*}$$

$$= (A | \psi \rangle, | \phi \rangle)$$

$$\therefore (A^{\dagger})^{\dagger} = A$$

2.16

$$P = \sum_{i} |i\rangle \langle i|.$$

$$P^{2} = \left(\sum_{i} |i\rangle \langle i|\right) \left(\sum_{j} |j\rangle \langle j|\right)$$

$$= \sum_{i,j} |i\rangle \langle i|j\rangle \langle j|$$

$$= \sum_{i} |i\rangle \langle j| \delta_{ij}$$

$$= \sum_{i} |i\rangle \langle i|$$

$$= P$$

2.18

Suppose $|v\rangle$ is a eigenvector with corresponding eigenvalue λ .

$$\begin{split} U \, |v\rangle &= \lambda \, |v\rangle \,. \\ 1 &= \langle v | v\rangle \\ &= \langle v | \, I \, |v\rangle \\ &= \langle v | \, U^\dagger U \, |v\rangle \\ &= \lambda \lambda^* \, \langle v | v\rangle \\ &= \|\lambda\|^2 \\ \therefore \lambda &= e^{i\theta} \end{split}$$

2.19

$$X^2 = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = I$$

2.20

$$\begin{split} U &\equiv \sum_{i} \left| w_{i} \right\rangle \left\langle v_{i} \right| \\ A_{ij}^{'} &= \left\langle v_{i} | A | v_{j} \right\rangle \\ &= \left\langle v_{i} | U U^{\dagger} A U U^{\dagger} | v_{j} \right\rangle \\ &= \sum_{p,q,r,s} \left\langle v_{i} | w_{p} \right\rangle \left\langle v_{p} | v_{q} \right\rangle \left\langle w_{q} | A | w_{r} \right\rangle \left\langle v_{r} | v_{s} \right\rangle \left\langle w_{s} | v_{j} \right\rangle \\ &= \sum_{p,q,r,s} \left\langle v_{i} | w_{p} \right\rangle \delta_{pq} A_{qr}^{''} \delta_{rs} \left\langle w_{s} | v_{j} \right\rangle \\ &= \sum_{p,r} \left\langle v_{i} | w_{p} \right\rangle \left\langle w_{r} | v_{j} \right\rangle A_{pr}^{''} \end{split}$$

2.26