Algoritmos Numéricos 2^a edição

Capítulo 6: Raízes de equações

Capítulo 6: Raízes de equações

- 6.1 Isolamento de raízes
- 6.2 Método da bisseção
- 6.3 Métodos baseados em aproximação linear
- 6.4 Métodos baseados em aproximação quadrática
- 6.5 Métodos baseados em tangente
- 6.6 Comparação dos métodos para cálculo de raízes
- 6.7 Exemplos de aplicação: juros de financiamento e cabo suspenso
- 6.8 Exercícios

Raízes de equações

 \bullet Encontrar valores de $x=\xi$ que satisfaçam

$$f(x) = 0.$$

• Valores especiais: raízes da equação f(x) = 0 ou zeros da função f(x).

Cálculo analítico de uma raiz

- Equações algébricas de grau até quatro podem ter suas raízes calculadas por meio de uma expressão.
- Por exemplo,

$$x = (-b \pm \sqrt{b^2 - 4ac})/2a$$

para determinar as duas raízes de $f(x) = ax^2 + bx + c = 0$.

- Equações algébricas de grau superior a quatro e grande maioria das equações transcendentes.
- Raízes não podem ser calculadas analiticamente.
- Métodos que encontrem uma solução aproximada para as raízes.

Etapas para cálculo de uma raiz

- Problema de calcular uma raiz pode ser dividido em duas fases:
 - 1. Isolamento da raiz, isto é, encontrar um intervalo [a, b] que contenha uma, e somente uma, raiz de f(x) = 0 (ver figura).
 - 2. Refinamento da raiz, ou seja, a partir de um valor inicial $x_0 \in [a, b]$, gerar uma seqüência $\{x_0, x_1, x_2, \dots, x_k, \dots\}$ que convirja para uma raiz exata ξ de f(x) = 0.
- Maioria dos métodos para cálculo de raízes necessita que a mesma esteja confinada em um dado intervalo.
- Essa raiz deve ser única em tal intervalo.
- Teoremas da Álgebra fornecem informações sobre polinômios.
- Isolamento de raízes: equações algébricas e equações transcendentes.

Equações algébricas

• Equação algébrica de grau $n, n \ge 1$,

$$P(x) = c_n x^n + c_{n-1} x^{n-1} + c_{n-2} x^{n-2} + \dots + c_2 x^2 + c_1 x + c_0 = 0$$
 (1)

- ullet coeficientes c_i reais e
- \bullet $c_n \neq 0$.

Avaliação de polinômio

• Valor de um polinômio

$$P(x) = c_n x^n + c_{n-1} x^{n-1} + c_{n-2} x^{n-2} + \dots + c_2 x^2 + c_1 x + c_0$$

 \bullet em um ponto x=a,

$$P(a) = c_n a^n + c_{n-1} a^{n-1} + c_{n-2} a^{n-2} + \dots + c_2 a^2 + c_1 a + c_0.$$

 \bullet Avaliar P(x) de grau n, em x=a: $\frac{n(n+1)}{2}$ multiplicações e n adições.

Exemplo de avaliação de polinômio na forma de potências

Exemplo 1 Avaliar
$$P(x) = 3x^5 - 2x^4 + 5x^3 + 7x^2 - 3x + 1$$
 em $x = 2$.

$$P(2) = 3 \times 2^5 - 2 \times 2^4 + 5 \times 2^3 + 7 \times 2^2 - 3 \times 2 + 1 = 127.$$

• Requer 15 multiplicações e 5 adições.

Método de Horner

- Maneira mais eficiente de avaliar um polinômio.
- Consiste em reescrever o polinômio de forma a evitar potências:

$$P(x) = c_n x^n + c_{n-1} x^{n-1} + c_{n-2} x^{n-2} + \dots + c_2 x^2 + c_1 x + c_0,$$

$$(c_n x^{n-1} + c_{n-1} x^{n-2} + c_{n-2} x^{n-3} + \dots + c_2 x + c_1) x + c_0,$$

$$((c_n x^{n-2} + c_{n-1} x^{n-3} + c_{n-2} x^{n-4} + \dots + c_2) x + c_1) x + c_0,$$

$$\dots$$

$$P(x) = \underbrace{(\dots (c_n x + c_{n-1})x + c_{n-2})x + \dots + c_2)x + c_1)x + c_0.$$

ullet Requer apenas n multiplicações e n adições para avaliar polinômio de grau n.

Exemplo de avaliação de polinômio pelo método de Horner

Exemplo 2 Avaliar $P(x) = 3x^5 - 2x^4 + 5x^3 + 7x^2 - 3x + 1$ em x = 2 usando o processo de Horner.

$$P(x) = ((((3x - 2)x + 5)x + 7)x - 3)x + 1,$$

$$P(2) = ((((3 \times 2 - 2) \times 2 + 5) \times 2 + 7) \times 2 - 3) \times 2 + 1 = 127.$$

• Requer 5 multiplicações e 5 adições.

Algoritmo do método de Horner para avaliar polinômio

```
Algoritmo Horner { Objetivo: Avaliar um polinômio de grau n no ponto a } parâmetros de entrada n, c, a { grau, coeficientes e ponto a ser avaliado, onde c é tal que } { P(x) = c(1)x^n + c(2)x^{n-1} + \cdots + c(n)x + c(n+1) } parâmetro de saída y { ordenada P(a) } y \leftarrow c(1) para i \leftarrow 2 até n+1 faça y \leftarrow y*a + c(i) fimpara fimalgoritmo
```

©2009 FFCf

Exemplo de uso do algoritmo

Exemplo 3 Avaliar o polinômio $P(x) = 3x^5 - 2x^4 + 5x^3 + 7x^2 - 3x + 1$ do Exemplo 2, em x = 2 usando o algoritmo.

```
% Os parametros de entrada
n = 5
c = 3    -2    5    7    -3    1
a = 2
% produzem o resultado
y = 127
```

©2009 FFCf

Propriedades gerais

Teorema 1 Uma equação algébrica de grau n tem exatamente n raízes, reais ou complexas, contando cada raiz de acordo com a sua multiplicidade.

• Uma raiz ξ de (1) tem multiplicidade m se

$$P(\xi) = P'(\xi) = P''(\xi) = \dots = P^{m-1}(\xi) = 0$$
 e

$$P^m(\xi) \neq 0,$$

• sendo

$$P^{i}(\xi) = \frac{d^{i}P(x)}{dx^{i}} \bigg|_{x = \xi, i = 1, 2, ..., m}$$

Exemplo de raiz com multiplicidade

Exemplo 4 Seja

$$P(x) = x^{4} + 2x^{3} - 12x^{2} + 14x - 5 \rightarrow P(1) = 0,$$

$$P'(x) = 4x^{3} + 6x^{2} - 24x + 14 \rightarrow P'(1) = 0,$$

$$P''(x) = 12x^{2} + 12x - 24 \rightarrow P''(1) = 0 \text{ e}$$

$$P'''(x) = 24x + 12 \rightarrow P'''(1) = 36.$$

- $\xi = 1$ é uma raiz de multiplicidade m = 3.
- Sendo P(-5) = 0, o polinômio de grau 4 escrito na forma fatorada é

$$P(x) = (x-1)^3(x+5).$$

Raízes complexas

Teorema 2 Se os coeficientes de uma equação algébrica forem reais, então suas raízes complexas serão complexos conjugados em pares, ou seja, se $\xi_1 = a + bi$ for uma raiz de multiplicidade m, então $\xi_2 = a - bi$ também será uma raiz e com a mesma multiplicidade.

Exemplo 5 As raízes de $P(x) = x^2 - 4x + 13 = 0$ são

$$\xi = \frac{4 \pm \sqrt{(-4)^2 - 4 \times 1 \times 13}}{2} \to \begin{cases} \xi_1 = 2 + 3i \\ \xi_2 = 2 - 3i. \end{cases}$$

Corolário 1 Uma equação algébrica de grau ímpar com coeficientes reais tem, no mínimo, uma raiz real.

Exemplo 6 As raízes da equação $P(x) = x^3 - 9x^2 + 33x - 65 = 0$ são $\xi_1 = 5, \ \xi_2 = 2 + 3i \ e \ \xi_3 = 2 - 3i.$

• Esta equação de grau 3 tem uma raiz real.

Relações de Girard

- Sendo ξ_i , $i = 1, 2, \ldots, n$ as raízes de P(x) = 0.
- Polinômio na forma fatorada

$$P(x) = c_n(x - \xi_1)(x - \xi_2) \dots (x - \xi_n) = 0.$$

• Multiplicando os fatores,

$$P(x) = c_n x^n - c_n (\xi_1 + \xi_2 + \dots + \xi_n) x^{n-1}$$

$$+ c_n (\xi_1 \xi_2 + \xi_1 \xi_3 + \dots + \xi_1 \xi_n + \xi_2 \xi_3 + \dots + \xi_2 \xi_n + \dots + \xi_{n-1} \xi_n) x^{n-2}$$

$$- c_n (\xi_1 \xi_2 \xi_3 + \xi_1 \xi_2 \xi_4 + \dots + \xi_1 \xi_2 \xi_n + \xi_1 \xi_3 \xi_4 + \dots + \xi_{n-2} \xi_{n-1} \xi_n) x^{n-3}$$

$$+ \dots (-1)^n c_n (\xi_1 \xi_2 \xi_3 \dots \xi_n) = 0.$$

Relações de Girard

cont.

- Comparando com P(x) = 0 escrita na forma de potências.
- Condição de igualdade das equações algébricas.
- Relações entre as raízes e os coeficientes de uma equação algébrica:

$$\xi_{1} + \xi_{2} + \dots + \xi_{n} = -\frac{c_{n-1}}{c_{n}},$$

$$\xi_{1}\xi_{2} + \xi_{1}\xi_{3} + \dots + \xi_{1}\xi_{n} + \xi_{2}\xi_{3} + \dots + \xi_{2}\xi_{n} + \dots + \xi_{n-1}\xi_{n} = \frac{c_{n-2}}{c_{n}},$$

$$\xi_{1}\xi_{2}\xi_{3} + \xi_{1}\xi_{2}\xi_{4} + \dots + \xi_{1}\xi_{2}\xi_{n} + \xi_{1}\xi_{3}\xi_{4} + \dots + \xi_{n-2}\xi_{n-1}\xi_{n} = -\frac{c_{n-3}}{c_{n}},$$

$$\dots$$

$$\xi_1 \xi_2 \xi_3 \dots \xi_n = (-1)^n \frac{c_0}{c_n}.$$

• Relações válidas também para as raízes complexas.

Exemplo das relações de Girard

Exemplo 7 As raízes da equação do Exemplo 6, $P(x) = x^3 - 9x^2 + 33x - 65 = 0$, são $\xi_1 = 5$, $\xi_2 = 2 + 3i$ e $\xi_3 = 2 - 3i$.

• Relações de Girard:

$$5 + (2+3i) + (2-3i) = 9 = -\frac{-9}{1},$$

$$5(2+3i) + 5(2-3i) + (2+3i)(2-3i) = 33 = \frac{33}{1} \text{ e}$$

$$5(2+3i)(2-3i) = 65 = (-1)^3 \frac{-65}{1}.$$

Exemplo com os polinômios de Legendre

Exemplo 8 Sejam as equações algébricas de Legendre definidas a partir de $L_0(x) = 1$ e $L_1(x) = x$:

$$L_2(x) = \frac{3x^2 - 1}{2} = 0,$$

$$L_3(x) = \frac{5x^3 - 3x}{2} = 0,$$

$$L_4(x) = \frac{35x^4 - 30x^2 + 3}{8} = 0,$$

$$L_5(x) = \frac{63x^5 - 70x^3 + 15x}{8} = 0.$$

- Todas as equações possuem $c_{n-1}=0$: a soma das raízes é nula, pois as raízes são simétricas em relação à origem.
- As equações de grau împar possuem $c_0 = 0$: elas têm uma raiz nula.

Limites das raízes reais

Teorema 3 (Lagrange) Dada a equação

$$P(x) = c_n x^n + c_{n-1} x^{n-1} + c_{n-2} x^{n-2} + \dots + c_2 x^2 + c_1 x + c_0 = 0,$$

se $c_n > 0$ e k ($0 \le k \le n - 1$) for o maior índice de coeficiente escolhido dentre os coeficientes negativos, então o limite superior das raízes positivas de P(x) = 0 pode ser dado por

$$L = 1 + \sqrt[n-k]{\frac{B}{c_n}},$$

onde B é o valor absoluto do maior coeficiente negativo em módulo.

• Se ξ_p for a maior das raízes positivas de P(x) = 0, então $\xi_p \leq L$.

Exemplo de limite da raiz positiva

Exemplo 9 Seja $P(x) = x^4 + 2x^3 - 13x^2 - 14x + 24 = 0$.

- Coeficientes negativos: $c_2 = -13$ e $c_1 = -14$.
- Então k = 2, pois 2 > 1, B = |-14| e

$$L = 1 + \sqrt[4-2]{\frac{14}{1}} \rightarrow L = 4,74.$$

- Teorema de Lagrange garante que P(x) = 0 não tem raiz maior que 4,74.
- Se $c_i > 0$ (i = 0, 1, ..., n), então P(x) = 0 não tem raízes positivas, pois $P(x) = \sum_{i=0}^{n} c_i x^i > 0 \text{ para } c_i > 0 \text{ e } x > 0.$

Equações auxiliares

• Para os limites superiores e inferiores das raízes positivas e negativas

$$P_1(x) = x^n P(1/x) = 0,$$

$$P_2(x) = P(-x) = 0$$
 e

$$P_3(x) = x^n P(-1/x) = 0.$$

• Sendo ξ_i , $i=1,2,\ldots,n$, as raízes de P(x)=0, então P(x) na forma fatorada

$$P(x) = c_n(x - \xi_1)(x - \xi_2) \dots (x - \xi_n).$$

Raízes de $P_1(x) = 0$

$$P(x) = c_n(x - \xi_1)(x - \xi_2) \dots (x - \xi_n).$$

$$P_1(x) = x^n P(1/x) = 0,$$

$$P_1(x) = c_n x^n (1/x - \xi_1)(1/x - \xi_2) \dots (1/x - \xi_n),$$

$$P_1(x) = c_n(1 - x\xi_1)(1 - x\xi_2)\dots(1 - x\xi_n).$$

• Raízes: $1/\xi_1, 1/\xi_2, \dots, 1/\xi_n$.

Raízes de $P_2(x) = 0$

$$P(x) = c_n(x - \xi_1)(x - \xi_2) \dots (x - \xi_n).$$

$$P_2(x) = P(-x) = 0,$$

$$P_2(x) = c_n(-x - \xi_1)(-x - \xi_2) \dots (-x - \xi_n).$$

• Raízes: $-\xi_1, -\xi_2, ..., -\xi_n$.

Raízes de $P_3(x) = 0$

$$P(x) = c_n(x - \xi_1)(x - \xi_2) \dots (x - \xi_n).$$

$$P_3(x) = x^n P(-1/x) = 0,$$

$$P_3(x) = c_n x^n (-1/x - \xi_1)(-1/x - \xi_2) \dots (-1/x - \xi_n),$$

$$P_3(x) = c_n(-1 - x\xi_1)(-1 - x\xi_2) \dots (-1 - x\xi_n).$$

• Raízes: $-1/\xi_1, -1/\xi_2, \dots, -1/\xi_n$.

Exemplo de raízes das equações auxiliares

Exemplo 10 Seja
$$P(x) = x^4 - 6x^3 - 5x^2 + 42x + 40 = 0$$
, com raízes $\xi_1 = -2$, $\xi_2 = -1$, $\xi_3 = 4$ e $\xi_4 = 5$.

• Equações auxiliares e suas respectivas raízes

$$P_1(x) = x^4 P(1/x) = 40x^4 + 42x^3 - 5x^2 - 6x + 1,$$

$$(\xi_1 = -0.5; \ \xi_2 = -1, \ \xi_3 = 0.25; \ \xi_4 = 0.2),$$

$$P_2(x) = P(-x) = x^4 + 6x^3 - 5x^2 - 42x + 40,$$

 $(\xi_1 = 2, \ \xi_2 = 1, \ \xi_3 = -4, \ \xi_4 = -5),$

$$P_3(x) = x^4 P(-1/x) = 40x^4 - 42x^3 - 5x^2 + 6x + 1,$$

 $(\xi_1 = 0.5; \ \xi_2 = 1, \ \xi_3 = -0.25; \ \xi_4 = -0.2).$

Limite inferior das raízes positivas de P(x) = 0

- Se $1/\xi_q$ for a maior das raízes positivas de $P_1(x) = 0$, então ξ_q será a menor das raízes positivas de P(x) = 0 (ver Exemplo 10).
- Sendo L_1 o limite superior das raízes positivas de $P_1(x) = 0$, calculado pelo Teorema 3,

$$\frac{1}{\xi_q} \le L_1 \to \xi_q \ge \frac{1}{L_1}.$$

- Limite inferior das raízes positivas de P(x) = 0 é $1/L_1$.
- Se P(x) = 0 possuir raízes positivas ξ^+ , elas estarão no intervalo

$$\frac{1}{L_1} \le \xi^+ \le L.$$

Limite inferior das raízes negativas de P(x) = 0

- Se $-\xi_r$ for a maior das raízes positivas de $P_2(x) = 0$, então ξ_r será a menor das raízes negativas de P(x) = 0 (ver Exemplo 10).
- Sendo L_2 o limite superior das raízes positivas de $P_2(x) = 0$, dado pelo Teorema 3

$$-\xi_r \le L_2 \to \xi_r \ge -L_2.$$

Limite superior das raízes negativas de P(x) = 0

- Se $-1/\xi_s$ for a maior das raízes positivas de $P_3(x) = 0$, então ξ_s será a maior das raízes negativas de P(x) = 0 (ver Exemplo 10).
- Sendo L_3 o limite superior das raízes positivas de $P_3(x) = 0$, dado pelo Teorema 3

$$-\frac{1}{\xi_s} \le L_3 \to \xi_s \le -\frac{1}{L_3}.$$

• Se P(x) = 0 tiver raízes negativas ξ^- , elas estarão no intervalo

$$-L_2 \le \xi^- \le -\frac{1}{L_3},$$

• Os limites não garantem a existência das raízes reais, mas tão somente informam onde as raízes reais estarão caso existam.

Limites das raízes reais de uma equação algébrica

Exemplo dos limites das raízes reais

Exemplo 11 Calcular os limites das raízes reais de

$$P(x) = x^4 + 2x^3 - 13x^2 - 14x + 24 = 0$$
 do Exemplo 9.

$$P_1(x) = x^4 P\left(\frac{1}{x}\right) = x^4 \left(\frac{1}{x^4} + \frac{2}{x^3} - \frac{13}{x^2} - \frac{14}{x} + 24\right) = 0 \to$$

$$P_1(x) = 24x^4 - 14x^3 - 13x^2 + 2x + 1 = 0,$$

$$L_1 = 1 + \sqrt[4-3]{\frac{14}{24}} \rightsquigarrow \frac{1}{L_1} = 0.63,$$

Exemplo dos limites das raízes reais cont.

$$P_2(x) = P(-x) = (-x)^4 + 2(-x)^3 - 13(-x)^2 - 14(-x) + 24 = 0 \rightarrow$$

$$P_2(x) = x^4 - 2x^3 - 13x^2 + 14x + 24 = 0,$$

$$L_2 = 1 + \sqrt[4-3]{\frac{13}{1}} \leadsto -L_2 = -14 \text{ e}$$

$$P_3(x) = x^4 P\left(\frac{1}{-x}\right) = x^4 \left(\frac{1}{(-x)^4} + \frac{2}{(-x)^3} - \frac{13}{(-x)^2} - \frac{14}{(-x)} + 24\right) = 0 \to 0$$

$$P_3(x) = 24x^4 + 14x^3 - 13x^2 - 2x + 1 = 0,$$

$$L_3 = 1 + \sqrt[4-2]{\frac{13}{24}} \rightsquigarrow -\frac{1}{L_3} = -0.58.$$

• Limites das raízes reais: $0.63 \le \xi^+ \le 4.74 \text{ e} - 14 \le \xi^- \le -0.58$.

Dispositivo prático

- Primeiro bloco: define os coeficientes de P(x) = 0 e de suas três equações auxiliares $P_1(x) = 0$, $P_2(x) = 0$ e $P_3(x) = 0$:
 - 1. colocar os coeficientes de P(x) = 0 na coluna P(x), com c_n no topo,
 - 2. inverter a ordem dos coeficientes da coluna P(x) e colocá-los em $P_1(x)$,
 - 3. trocar o sinal dos coeficientes de P(x), cujos índices sejam ímpares e atribuí-los a $P_2(x)$,
 - 4. inverter a ordem dos coeficientes da coluna $P_2(x)$ e colocá-los em $P_3(x)$ e
 - 5. se algum $c_n < 0$, então trocar o sinal de todos os coeficientes da coluna para garantir que $c_n > 0$, conforme exigência do Teorema 3.

Dispositivo prático

cont.

- Segundo bloco: atribui os parâmetros necessários para aplicar o Teorema 3 a cada uma das quatro equações:
 - -k é o índice do primeiro coeficiente negativo,
 - -n é o grau do polinômio,
 - -B é o valor absoluto do maior coeficiente negativo em módulo,
 - $-L_i$ é o limite superior das raízes positivas de $P_i(x)=0$ dado pelo Teorema 3 e
 - $-L_{\xi}$ são os limites superiores e inferiores das raízes positivas e negativas de P(x)=0, sendo que $L_{\xi(P)}=L$, $L_{\xi(P_1)}=1/L_1$, $L_{\xi(P_2)}=-L_2$ e $L_{\xi(P_3)}=-1/L_3$.

Exemplo do dispositivo prático

Exemplo 12 Calcular os limites das raízes de $P(x)=x^4+2x^3-13x^2-14x+24=0$ do Exemplo 11 usando o dispositivo prático.

n=4	P(x)	$P_1(x)$	$P_2(x)$	$P_3(x)$
c_4	1	24	1	24
c_3	2	-14	-2	14
c_2	-13	-13	-13	-13
c_1	-14	2	14	-2
c_0	24	1	24	1
k	2	3	3	2
n-k	2	1	1	2
B	-14	-14	-13	-13
L_i	4,74	1,58	14	1,74
L_{ξ}	4,74	0,63	-14	-0,58

Algoritmo para achar os limites das raízes reais pelo teorema de Lagrange

```
Algoritmo LimitesRaízes
{ Objetivo: Achar os limites das raízes reais de uma equação polinomial }
parâmetros de entrada n, c { grau do polinômio e coeficientes, sendo }
   \{ P(x) = c(1)x^n + c(2)x^{n-1} + \cdots + c(n)x + c(n+1) \}
parâmetro de saída L
   { limites inferior e superior das raízes positivas e negativas, respectivamente }
   se c(1) = 0 então escreva "coeficiente c(1) nulo", abandone, fim se
   t \leftarrow n+1; c(t+1) \leftarrow 0
   repita \{ se c(n+1) \text{ for nulo, então o polinômio é deflacionado } \}
      se c(t) \neq 0 então interrompa, fimse; t \leftarrow t - 1
   fim repita
    { cálculo dos quatro limites das raízes reais }
   para i \leftarrow 1 até 4 faca
      se i = 2 ou i = 4 então { inversão da ordem dos coeficientes }
         para j \leftarrow 1 até t/2 faça; Aux \leftarrow c(j); c(j) \leftarrow c(t-j+1); c(t-j+1) \leftarrow Aux, fim para
      senão
          se i = 3 então
             { reinversão da ordem e troca de sinais dos coeficientes }
             para j \leftarrow 1 até t/2 faça; Aux \leftarrow c(j); c(j) \leftarrow c(t-j+1); c(t-j+1) \leftarrow Aux, fimpara
             para i \leftarrow t - 1 até 1 passo -2 faça c(i) \leftarrow -c(i), fim para
         fimse
      fimse
      { se c(1) for negativo, então é trocado o sinal de todos os coeficientes }
      se c(1) < 0 então
         para j \leftarrow 1 até t faça c(j) \leftarrow -c(j), fim para
      fimse
                \{ \text{ cálculo de } k, \text{ o maior índice dos coeficientes negativos } \}
      k \leftarrow 2
         se c(k) < 0 ou k > t então interrompa, fim se
          k \leftarrow k + 1
      fimrepita { cálculo de B, o maior coeficiente negativo em módulo }
      se k \leq t então
          B \leftarrow 0
          para i \leftarrow 2 até t faça
             \operatorname{se} c(j) < 0 \operatorname{e} \operatorname{abs}(c(j)) > B \operatorname{ent\tilde{a}o} B \leftarrow \operatorname{abs}(c(j)), \operatorname{fim} \operatorname{se}
          fim para
          { limite das raízes positivas de P(x) = 0 e das equações auxiliares }
         L(i) \leftarrow 1 + \sqrt[k-1]{B/c(1)}
      senão, L(i) \leftarrow 10^{100}, fim se
   fim para { limites das raízes positivas e negativas de P(x) = 0 }
   Aux \leftarrow L(1); L(1) \leftarrow 1/L(2); L(2) \leftarrow Aux; L(3) \leftarrow -L(3); L(4) \leftarrow -1/L(4)
fim algoritmo
```

||←

Exemplo de uso do algoritmo

Exemplo 13 Calcular os limites das raízes reais da equação polinomial $P(x) = x^4 + 2x^3 - 13x^2 - 14x + 24 = 0$ do Exemplo 11 usando o algoritmo.

Gráficos do polinômio
$$P(x) = x^4 + 2x^3 - 13x^2 - 14x + 24$$

|⊭

• Quatro raízes isoladas nos intervalos: [-5, -3], [-3, -1], [0, 2] e [2, 4].

Número de raízes reais

Teorema 4 (Regra de sinais de Descartes) O número de raízes reais positivas n^+ de P(x) = 0 é igual ao número de variações de sinais na seqüência dos coeficientes ou é menor que este número por um inteiro par, sendo as raízes contadas de acordo com a sua multiplicidade e não sendo considerados os coeficientes nulos.

Corolário 2 Se P(x) = 0 não possuir coeficientes nulos, então o número de raízes reais negativas n^- (contando multiplicidades) é igual ao número de permanências de sinais na seqüência dos coeficientes ou é menor que este número por um inteiro par.

- Regra de sinais de Descartes discerne as raízes positivas das negativas.
- Não consegue distingüir as raízes reais das complexas, as quais aparecem em pares conjugados (Teorema 2).
- Por exemplo, se o número de variações de sinais for 5: $n^+ = 5$ ou 3 ou 1.

Exemplo da regra de sinais de Descartes

Exemplo 14 Para
$$P(x) = x^4 + 2x^3 - 13x^2 - 14x + 24 = 0$$
, tem-se que $n^+ = 2$ ou 0 , e $n^- = 2$ ou 0 .

• Se existirem duas raízes positivas, elas satisfarão a

$$0.63 \le \xi^+ \le 4.74.$$

• Se houver duas negativas, elas estarão no intervalo

$$-14 \le \xi^- \le -0.58.$$

- Ver Exemplo 11 e figura.
- Combinando a Regra de sinais de Descartes e o Teorema de Lagrange, conseguem-se importantes informações para o isolamento das raízes.

Exemplo de limites e número de raízes reais

Exemplo 15 Calcular os limites e o número de raízes reais de $P(x) = x^3 - 3x^2 - 6x + 8 = 0$.

n=3	P(x)	$P_1(x)$	$P_2(x)$	$P_3(x)$
c_3	1	8	-1	8
c_2	-3	- 6	-3	6
c_1	-6	-3	6	-3
c_0	8	1	8	-1
k				
n-k				
B				
L_i				
L_{ξ}				

Trocar sinal $de P_2(x)$

n=3	P(x)	$P_1(x)$	$P_2(x)$	$P_3(x)$
c_3	1	8	1	8
c_2	-3	-6	3	6
c_1	-6	-3	-6	-3
c_0	8	1	-8	-1
k	2	2	1	1
n-k	1	1	2	2
B	-6	-6	-8	-3
L_i	7	1,75	3,83	1,61
L_{ξ}	7	0,57	-3,83	-0,62

- Limites das raízes: $0.57 \le \xi^+ \le 7 \text{ e } -3.83 \le \xi^- \le -0.62$.
- Número de raízes reais: $n^+ = 2$ ou 0 e $n^- = 1$.
- Existe uma raiz real negativa e as outras duas serão ou reais positivas ou complexas.

Exemplo de limites e número de raízes reais

Exemplo 16 Achar os limites e o número de raízes reais de

$$P(x) = x^6 - 5x^5 + 7x^4 + 19x^3 - 98x^2 - 104x = (x^5 - 5x^4 + 7x^3 + 19x^2 - 98x - 104)x = 0.$$

n=5	P(x)	$P_1(x)$	$P_2(x)$	$P_3(x)$
c_5	1	-104	-1	-104
c_4	-5	- 98	-5	98
c_3	7	19	-7	19
c_2	19	7	19	-7
c_1	- 98	-5	98	-5
c_0	-104	1	-104	-1
\overline{k}				
n-k				
B				
L_i				
L_{ξ}				

Trocar sinal de
$$P_1(x), P_2(x), P_3(x)$$

n=5	P(x)	$P_1(x)$	$P_2(x)$	$P_3(x)$
c_5	1	104	1	104
c_4	-5	98	5	-98
c_3	7	-19	7	-19
c_2	19	-7	-19	7
c_1	- 98	5	- 98	5
c_0	-104	-1	104	1
k	4	3	2	4
n-k	1	2	3	1
B	-104	-19	-98	-98
L_i	105	1,43	5,61	1,94
L_{ξ}	105	0,70	-5,61	-0,51

- Limites das raízes: $0.70 \le \xi^+ \le 105 \text{ e} -5.61 \le \xi^- \le -0.51$.
- Número de raízes reais: $n^+ = 3$ ou 1 e $n^- = 2$ ou 0.

Equações transcendentes

- Equações transcendentes não dispõem de teoremas que forneçam informações sobre os limites e o número de raízes reais.
- Uma equação transcendente pode ter um número infinito de raízes:

$$f(x) = \operatorname{sen}(x) = 0,$$

• ou mesmo não ter raízes:

$$f(x) = sen(x) - 2 = 0.$$

- Método gráfico: maneira mais simples para achar um intervalo que contenha uma única raiz.
- Esboço da função no intervalo de interesse.
- Dificuldade em determinar este intervalo.
- Na prática: usar a intuição, o conhecimento a respeito da função e o método da tentativa e erro.

Algoritmo para achar um intervalo onde função troca de sinal

- Fornece um intervalo [a, b], no qual uma função f(x) troca de sinal, ou seja, f(a)f(b) < 0.
- A raiz não esta necessariamente isolada, pois pode haver um número ímpar de raízes.

```
Algoritmo TrocaSinal
{ Objetivo: Achar um intervalo [a, b] onde uma função troca de sinal }
parâmetros de entrada z
   { ponto a partir do qual o intervalo será gerado }
parâmetros de saída a, b, CondErro
    limite inferior e superior do intervalo e condição de erro, sendo
    CondErro = 0 se f(a)f(b) \le 0 e CondErro = 1 se f(a)f(b) > 0.
   se z = 0 então
      a \leftarrow -0.05: b \leftarrow 0.05
   senão
      a \leftarrow 0.95 * z; b \leftarrow 1.05 * z
   fimse
   Iter \leftarrow 0; Aureo \leftarrow 2/(\operatorname{raiz}_2(5) - 1)
   Fa \leftarrow f(a); Fb \leftarrow f(b) { avaliar a função em a \in b }
   escreva Iter, a, b, Fa, Fb
   repita
      se Fa * Fb < 0 ou Iter > 20 então interrompa, fim se
                                                                                    l⊭
      Iter \leftarrow Iter + 1
     se abs(Fa) < abs(Fb) então
         a \leftarrow a - Aureo * (b - a)
         Fa \leftarrow f(a) { avaliar a função em a }
      senão
         b \leftarrow b + Aureo * (b - a)
         Fb \leftarrow f(b) { avaliar a função em b }
      escreva lter, a, b, Fa, Fb
   fim repita
   se Fa * Fb < 0 então
      CondErro \leftarrow 0
   senão
      CondErro \leftarrow 1
   fimse
fim algoritmo
```

(c)2009 FFCf

Exemplo de uso do algoritmo

Exemplo 17 Achar um intervalo, a partir de z = 5, onde $f(x) = 2x^3 - \cos(x+1) - 3$ troca de sinal, utilizando o algoritmo.

```
% O parametro de entrada
% produz os resultados
Determinação de intervalo onde ocorre troca de sinal
iter
                  b
                              Fa
                                          Fb
    4.7500
                 5.2500
                       210.4826
                                      285.4068
 0
              5.2500
 1 3.9410
                       119.1909
                                      285.4068
   1.8229
                 5.2500
                        10.0655
                                      285.4068
      -3.7221
                                      285.4068
                 5.2500
                          -105.2218
a = -3.7221
b = 5.2500
CondErro = 0
```

• A função muda de sinal no intervalo [-3,7221; 5,2500]:

$$f(-3,7221) = -105,2218$$
 e $f(5,2500) = 285,4068$.

©2009 FFCf

Esboços da função
$$f(x) = 2x^3 - \cos(x+1) - 3$$

Exemplo de isolamento gráfico de raízes

Exemplo 18 Isolar, graficamente, os zeros da função $f(x) = 0.05x^3 - 0.4x^2 + 3 \operatorname{sen}(x)x$.

- Intervalos: $-20 \le x \le 20 \text{ e } -4 \le x \le 12$.
- Intervalos das raízes: [-4, -2], [-1, 1], [2, 4], [6, 8], [8, 10] e [10, 12].

Convergência da raiz

- Seja a raiz ξ isolada em um intervalo [a, b].
- Gerar uma seqüência $\{x_0, x_1, x_2, \dots, x_k, \dots, \xi\} \in [a, b]$ que convirja para a raiz exata ξ de f(x) = 0.
- Critério de parada baseado em teorema.

Teorema 5 Sejam ξ uma raiz exata e x_k uma raiz aproximada de f(x) = 0, sendo ξ e $x_k \in [a,b]$ e $|f'(x)| \ge m > 0$ para $a \le x \le b$, com

$$m = \min_{a \le x \le b} |f'(x)|.$$

Então, o erro absoluto satisfaz

$$|x_k - \xi| \le \frac{|f(x_k)|}{m}.$$

Exemplo de critério de parada

Exemplo 19 Avaliar o erro absoluto cometido ao considerar $x_k = 2,23$ como aproximação da raiz positiva de $f(x) = x^2 - 5 = 0$ no intervalo [2, 3].

$$m = \min_{2 \le x \le 3} |2x| = 4.$$

$$|2,23-\xi| \le \frac{0,0271}{4} = 0,0068 \to$$

$$2,23-0,0068 \le \xi \le 2,23+0,0068 \quad (\xi = \sqrt{5} \approx 2,2361).$$

Critério de parada

- O Teorema 5 é de aplicação muito restrita.
- Requer que seja avaliado o mínimo da derivada primeira da função f(x).
- Seqüência é interrompida quando seus valores satisfizerem a pelo menos um dos critérios

$$|x_k - x_{k-1}| \le \varepsilon, \tag{2}$$

$$\left| \frac{x_k - x_{k-1}}{x_k} \right| \le \varepsilon, \tag{3}$$

$$|f(x_k)| \le \varepsilon, \tag{4}$$

 \bullet ε : tolerância fornecida.

Ordem de convergência

- Definir a rapidez com que a seqüência gerada por um dado método, $\{x_0, x_1, x_2, \ldots, x_k, \ldots\}$, converge para a raiz exata ξ .
- Seja o erro da k-ésima iteração

$$\epsilon_k = x_k - \xi, \tag{5}$$

- diferença entre a raiz ξ e a sua estimativa x_k .
- Critério para avaliar a convergência

$$\lim_{k \to \infty} |\epsilon_{k+1}| = K|\epsilon_k|^{\gamma} \tag{6}$$

- K: constante de erro assintótico.
- \bullet γ : ordem de convergência do método gerador da seqüência.
- Quanto maior o valor de γ , mais rápida a seqüência convergirá para a raiz ξ .

Método da bisseção

- Seja f(x) contínua no intervalo [a,b], sendo ξ a única raiz de f(x)=0 neste intervalo.
- O método da bisseção consiste em subdividir o intervalo ao meio a cada iteração.
- Manter o subintervalo que contenha a raiz, ou seja, aquele em que f(x) tenha sinais opostos nos extremos.

Interpretação gráfica do método da bisseção

Método da bisseção

• Sequência de intervalos encaixados

$$\{[a_1, b_1], [a_2, b_2], [a_3, b_3], \dots, [a_k, b_k]\}$$

$$f(a_i)f(b_i) < 0, i = 1, 2, \dots k.$$

$$(7)$$

• Na k-ésima iteração

$$b_k - a_k = \frac{b - a}{2^k}. (8)$$

- Seqüência $\{a_1, a_2, a_3, \dots, a_k\}$ é monotônica não decrescente limitada.
- Seqüência $\{b_1, b_2, b_3, \dots, b_k\}$ é monotônica não crescente limitada.
- \bullet Por (8), essas duas seqüências possuem um limite comum ξ

$$\lim_{k \to \infty} a_k = \lim_{k \to \infty} b_k = \xi.$$

- Passando ao limite da desigualdade (7) com $k \to \infty$ e
- considerando que f(x) é contínua: $[f(\xi)]^2 \le 0 \to f(\xi) = 0$,
- ou seja, ξ é uma raiz de f(x) = 0.

Número de iterações

- O método da bisseção tem convergência garantida se f(x) for contínua em [a,b] e se $\xi \in [a,b]$.
- É possível determinar a priori o número de iterações necessárias para calcular a raiz com uma tolerância ε a partir de um intervalo [a,b].
- Substituindo $x_k = (b_k a_k)/2$ em (8),

$$|x_k - x_{k-1}| = \frac{b-a}{2^{k+1}}.$$

• Utilizando o critério (2),

$$\frac{b-a}{2k+1} \le \varepsilon.$$

ullet Número de iterações para calcular uma raiz no intervalo [a,b] com tolerância arepsilon

$$k \ge \log_2\left(\frac{b-a}{\varepsilon}\right) - 1. \tag{9}$$

Algoritmo do método da bisseção

```
Algoritmo Bisseção
{ Objetivo: Calcular a raiz de uma equação pelo método da bisseção }
parâmetros de entrada a, b, Toler, IterMax
  { limite inferior, limite superior, tolerância e número máximo de iterações }
parâmetros de saída Raiz, Iter, CondErro
    raiz, número de iterações gastas e condição de erro, sendo }
    CondErro = 0 se a raiz foi encontrada e CondErro = 1 em caso contrário.
  Fa \leftarrow f(a); Fb \leftarrow f(b) { avaliar a função em a \in b }
  se Fa * Fb > 0 então
     escreva "função não muda de sinal nos extremos do intervalo dado"
     abandone
  fimse
  DeltaX \leftarrow abs(b-a)/2; Iter \leftarrow 0
  repita
     x \leftarrow (a+b)/2; Fx \leftarrow f(x) { avaliar a função em x }
     escreva Iter, a, Fa, b, Fb, x, Fx, DeltaX
     se (DeltaX < Toler e abs(Fx) < Toler) ou Iter > IterMax então
       interrompa
     fimse
     se Fa * Fx > 0 então
       a \leftarrow x; Fa \leftarrow Fx
     senão
       b \leftarrow x
     fimse
     DeltaX \leftarrow DeltaX/2; Iter \leftarrow Iter + 1
  fimrepita
  Raiz \leftarrow x
  { teste de convergência }
  se DeltaX < Toler e abs(Fx) < Toler então
     CondErro \leftarrow 0
  senão
     CondErro \leftarrow 1
  fimse
fimalgoritmo
```

|**⊭**

% Os parametros de entrada

Exemplo do método da bisseção

Exemplo 20 Calcular a raiz de $f(x) = 2x^3 - \cos(x+1) - 3 = 0$ do Exemplo 17, que está no intervalo [-1, 2], com $\varepsilon \le 0.01$ pelo algoritmo do método da bisseção.

```
a = -1
b = 2
Toler = 0.0100
IterMax = 100
% produzem os resultados
            Calculo de raiz de equacao pelo metodo da bissecao
                  Fa
                             b
                                       Fb
                                                            Fx
                                                                       Delta_x
        a
                                                  X
iter
     -1.00000
               -6.00000
                           2.00000
                                    13.98999
                                                0.50000
                                                         -2.8207e+00
                                                                       1.50000
      0.50000
               -2.82074
                           2.00000
                                    13.98999
                                                1.25000
                                                          1.5344e+00
                                                                       0.75000
                                                0.87500
      0.50000
               -2.82074
                           1.25000
                                    13.98999
                                                         -1.3606e+00
                                                                       0.37500
      0.87500
                                    13.98999
                                                         -1.2895e-01
              -1.36062
                           1.25000
                                                1.06250
                                                                       0.18750
      1.06250
               -0.12895
                           1.25000
                                    13.98999
                                                1.15625
                                                          6.4419e-01
                                                                       0.09375
      1.06250
               -0.12895
                           1.15625
                                    13.98999
                                                1.10938
                                                          2.4356e-01
                                                                       0.04688
      1.06250
               -0.12895
                           1.10938
                                    13.98999
                                                1.08594
                                                          5.3864e-02
                                                                       0.02344
      1.06250
               -0.12895
                           1.08594
                                    13.98999
                                                         -3.8393e-02
                                                                      0.01172
                                                1.07422
      1.07422
               -0.03839
                                                          7.5211e-03
                           1.08594
                                    13.98999
                                                1.08008
                                                                      0.00586
Raiz
            1.08008
```

CondErro = 0

Iter

Observações sobre os resultados

- A raiz é $\xi \approx x_8 = 1,08008$.
- Por (9), o número de iterações $k \ge \log_2((2-(-1))/0.01) 1 \approx 7.23$.
- Para alcançar o critério de parada (2) $|x_k x_{k-1}| \le \varepsilon$ (ver coluna **Delta_x**) foram necessárias 8 iterações.
- Poderiam ser gastas mais iterações para atender ao outro critério de parada (4): $|f(x_k)| \le \varepsilon$.

Exemplo do método da bisseção

Exemplo 21 Determinar a maior raiz de $f(x) = 0.05x^3 - 0.4x^2 + 3 \operatorname{sen}(x)x = 0 \operatorname{com} \varepsilon \le 0.005$, usando o algoritmo.

• Pela figura do Exemplo 18, tem-se que $\xi \in [10, 12]$.

```
% Os parametros de entrada
a = 10
b = 12
Toler = 0.0050
IterMax = 100
% produzem os resultados
            Calculo de raiz de equacao pelo metodo da bissecao
                  Fa
                                                           Fx
                                      Fb
                                                                     Delta_x
iter
                                                       -1.4850e+01
     10.00000
               -6.32063
                         12.00000
                                    9.48337
                                             11.00000
                                                                     1.00000
    11.00000 -14.84968
                         12.00000
                                    9.48337
                                             11.50000
                                                       -7.0594e+00
                                                                     0.50000
    11.50000 -7.05935
                        12.00000
                                    9.48337
                                             11.75000
                                                        2.0128e-01
                                                                    0.25000
     11.50000
               -7.05935
                        11.75000
                                    9.48337
                                             11.62500
                                                       -3.6975e+00
                                                                     0.12500
     11.62500
              -3.69752
                        11.75000
                                    9.48337
                                             11.68750
                                                       -1.8136e+00
                                                                    0.06250
                                             11.71875
                                                       -8.2229e-01
     11.68750
              -1.81359
                        11.75000
                                    9.48337
                                                                    0.03125
     11.71875
              -0.82229
                         11.75000
                                             11.73438
                                                       -3.1451e-01
                                    9.48337
                                                                    0.01562
                                             11.74219
     11.73438
               -0.31451
                        11.75000
                                    9.48337
                                                       -5.7611e-02
                                                                    0.00781
    11.74219
              -0.05761 11.75000
                                    9.48337
                                             11.74609
                                                        7.1585e-02
                                                                    0.00391
     11.74219
               -0.05761 11.74609
                                    9.48337
                                             11.74414
                                                         6.9247e-03
                                                                    0.00195
     11.74219
              -0.05761 11.74414
                                    9.48337
                                             11.74316
                                                       -2.5359e-02
                                                                    0.00098
     11.74316
              -0.02536
                        11.74414
                                             11.74365
                                                       -9.2209e-03
                                    9.48337
                                                                    0.00049
    11.74365
              -0.00922 11.74414
                                    9.48337
                                             11.74390
                                                       -1.1491e-03 0.00024
         = 11.74390
Raiz
Iter
         = 12
CondErro = 0
```

©2009 FFCf

Observações sobre o método da bisseção

- O método da bisseção é robusto.
- Ele não é eficiente devido à sua convergência lenta.
- O valor de f(x) não decresce monotonicamente.
- Somente o sinal de $f(x_{k-1})$ é usado para o cálculo do próximo x_k , sem levar em consideração o seu valor.
- O método da bisseção é mais usado para reduzir o intervalo antes de usar um outro método de convergência mais rápida.

©2009 FFCf

Métodos baseados em aproximação linear

- Consistem em aproximar f(x) por um polinômio linear no intervalo $[x_0, x_1]$.
- Se o intervalo for pequeno, essa aproximação é válida para a maioria das funções.
- \bullet Uma estimativa da raiz ξ é tomada como o valor onde a reta cruza o eixo das abscissas.

Métodos baseados em aproximação linear cont.

• Equação do polinômio de grau 1 que passa pelos pontos de coordenadas $[x_0, f(x_0)]$ e $[x_1, f(x_1)]$:

$$y = f(x_1) + \frac{f(x_1) - f(x_0)}{x_1 - x_0}(x - x_1).$$

• Abscissa x_2 , para a qual y=0, tomada como aproximação da raiz

$$x_2 = x_1 - \frac{f(x_1)}{f(x_1) - f(x_0)}(x_1 - x_0).$$

- Na próxima iteração, um dos pontos extremos do intervalo $[x_0, x_1]$ será substituído por x_2 .
- Família de métodos baseados em aproximação linear: secante, *regula falsi* (posição falsa) e pégaso, entre outros.

Método da secante

• Usa os pontos obtidos nas duas últimas iterações como pontos-base por onde passará o polinômio linear.

|⊭

Algoritmo do método da secante

```
Algoritmo Secante
{ Objetivo: Calcular a raiz de uma equação pelo método da secante }
parâmetros de entrada a, b, Toler, IterMax
  { limite inferior, limite superior, tolerância e número máximo de iterações }
parâmetros de saída Raiz, Iter, CondErro
   { raiz, número de iterações gastas e condição de erro, sendo }
   \{ CondErro = 0 \text{ se a raiz foi encontrada e } CondErro = 1 \text{ em caso contrário. } \}
  Fa \leftarrow f(a); Fb \leftarrow f(b)  { avaliar a função em a \in b }
  se abs(Fa) < abs(Fb) então
    t \leftarrow a; a \leftarrow b; b \leftarrow t; t \leftarrow Fa; Fa \leftarrow Fb; Fb \leftarrow t
  fimse
  Iter \leftarrow 0: x \leftarrow b: Fx \leftarrow Fb
  repita
    DeltaX \leftarrow -Fx/(Fb-Fa)*(b-a)
    x \leftarrow x + DeltaX; Fx \leftarrow f(x) { avaliar a função em x }
                                                                                                  ||←
    escreva Iter, a, Fa, b, Fb, x, Fx, DeltaX
    \mathbf{se} \ (abs(DeltaX) \leq Toler \ \mathbf{e} \ abs(Fx) \leq Toler) \ \mathbf{ou} \ Iter \geq IterMax \ \mathbf{ent\tilde{ao}}
       interrompa
    fimse
    a \leftarrow b: Fa \leftarrow Fb: b \leftarrow x: Fb \leftarrow Fx: Iter \leftarrow Iter + 1
  fimrepita
  Raiz \leftarrow x
  { teste de convergência }
  se abs(DeltaX) \leq Toler e abs(Fx) \leq Toler então
     CondErro \leftarrow 0
  senão
     CondErro \leftarrow 1
  fimse
fimalgoritmo
```

Exemplo do método da secante

Exemplo 22 Determinar a raiz de $f(x) = 2x^3 - \cos(x+1) - 3 = 0$ do Exemplo 17 pelo algoritmo do método da secante, com $\varepsilon \le 0.01$, sabendo-se que $\xi \in [-1, 2]$.

```
% Os parametros de entrada
a = -1
b = 2
Toler = 0.0100
IterMax = 100
% produzem os resultados
             Calculo de raiz de equacao pelo metodo da secante
                 Fa
                                      Fb
                                                         Fx
                                                                   Delta_x
                            b
                                                X
iter
        a
              13.98999
                         -1.00000
                                   -6.00000
                                             -0.09955 -3.623e+00 9.005e-01
      2.00000
    -1.00000
              -6.00000
                         -0.09955
                                   -3.62323
                                              1.27313 1.773e+00 1.373e+00
                                              0.82210 -1.640e+00 -4.510e-01
    -0.09955 -3.62323
                         1.27313
                                  1.77312
     1.27313
              1.77312
                                  -1.64011
                                              1.03883 -3.068e-01 2.167e-01
                         0.82210
                                                      7.576e-02
     0.82210
              -1.64011
                          1.03883
                                   -0.30676
                                                                 4.986e-02
                                              1.08869
      1.03883
              -0.30676
                          1.08869
                                    0.07576
                                              1.07881 -2.438e-03 -9.875e-03
Raiz
         = 1.07881
Iter
CondErro = 0
```

©2009 FFCf

Observações sobre o método da secante

- O método da secante pode apresentar alguns problemas.
- Se a função não for, aproximadamente, linear no intervalo que contém a raiz, uma aproximação sucessiva pode sair deste intervalo.
- Ver figura.

©2009 FFCf

Método da regula falsi

- Maneira de evitar problemas é garantir que a raiz esteja isolada no intervalo inicial e continue dentro dos novos intervalos gerados.
- Método da *regula falsi* retém o ponto no qual o valor da função tem sinal oposto ao valor da função no ponto mais recente.

Algoritmo do método da $regula\ falsi$

```
Algoritmo RegulaFalsi
{ Objetivo: Calcular a raiz de uma equação pelo método da regula falsi }
parâmetros de entrada a, b, Toler, IterMax
   { limite inferior, limite superior, tolerância e número máximo de iterações }
parâmetros de saída Raiz, Iter, CondErro
    raiz, número de iterações gastas e condição de erro, sendo }
    CondErro = 0 se a raiz foi encontrada e CondErro = 1 em caso contrário.
   Fa \leftarrow f(a); Fb \leftarrow f(b); { avaliar a função em a \in b }
   se Fa * Fb > 0 então
     escreva "função não muda de sinal nos extremos do intervalo dado"
     abandone
  fimse
  se Fa > 0 então
     t \leftarrow a; a \leftarrow b; b \leftarrow t; t \leftarrow Fa; Fa \leftarrow Fb; Fb \leftarrow t
   fimse
   Iter \leftarrow 0; x \leftarrow b; Fx \leftarrow Fb
  repita
     DeltaX \leftarrow -Fx/(Fb - Fa) * (b - a)
     x \leftarrow x + \underbrace{Delta\dot{X}}_{:} \underbrace{Fx} \leftarrow \underline{f}(x); \{ \text{ avaliar a função em } x \}
                                                                                                ||⇐
     escreva Iter, a, Fa, b, Fb, x, Fx, DeltaX
     se (abs(DeltaX) \leq Toler e abs(Fx) \leq Toler) ou Iter > IterMax então
        interrompa
     fimse
     se Fx < 0 então
        a \leftarrow x; Fa \leftarrow Fx
     senao
        b \leftarrow x; Fb \leftarrow Fx
     fimse: lter \leftarrow lter + 1
  fimrepita
   Raiz \leftarrow x
   { teste de convergência }
  se abs(DeltaX) \leq Toler e abs(Fx) \leq Toler então
     CondErro ← 0
  senão
     CondErro \leftarrow 1
  fimse
fimalgoritmo
```

Exemplo do método da regula falsi

Exemplo 23 Achar a raiz de $f(x) = 2x^3 - \cos(x+1) - 3 = 0$ do Exemplo 17 usando o algoritmo do método da *regula falsi*, com $\varepsilon \le 0.01$, sabendo-se que $\xi \in [-1, 2]$.

```
% Os parametros de entrada
a = -1
b = 2
Toler = 0.0100
IterMax = 100
% produzem os resultados
          Calculo de raiz de equacao pelo metodo da regula falsi
                  Fa
                                      Fb
iter
                                                Х
                                                         Fx
                                                                   Delta_x
     -1.00000
               -6.00000
                                   13.98999
                                             -0.09955 -3.623e+00 -2.100e+00
                          2.00000
     -0.09955
              -3.62323
                          2.00000
                                   13.98999
                                              0.33235 -3.163e+00
                                                                  4.319e-01
      0.33235 -3.16277
                                  13.98999
                                              0.63985 -2.407e+00
                          2.00000
                                                                  3.075e-01
      0.63985
              -2.40710
                          2.00000
                                   13.98999
                                              0.83952 -1.551e+00
                                                                 1.997e-01
     0.83952 -1.55114
                          2.00000
                                   13.98999
                                              0.95534 -8.810e-01 1.158e-01
      0.95534 - 0.88102
                          2.00000
                                  13.98999
                                              1.01723 -4.631e-01 6.189e-02
                          2.00000
                                   13.98999
     1.01723
              -0.46306
                                              1.04872 -2.333e-01 3.149e-02
                                  13.98999
     1.04872
              -0.23328
                                              1.06432 -1.150e-01 1.560e-02
                          2.00000
                                              1.07195 -5.607e-02 7.628e-03
 8
     1.06432
              -0.11498
                          2.00000
                                  13.98999
     1.07195
              -0.05607
                                   13.98999
                          2.00000
                                              1.07565 -2.719e-02 3.704e-03
 10
      1.07565
              -0.02719
                                   13.98999
                                              1.07745 -1.315e-02 1.793e-03
                          2.00000
11
      1.07745 -0.01315
                          2.00000 13.98999
                                              1.07831 -6.355e-03 8.666e-04
Raiz
         = 1.07831
         = 11
Iter
CondErro = 0
```

Observações sobre o método da regula falsi

- No exemplo, a convergência para a raiz só se fez de um lado do intervalo.
- Isto torna o método mais lento que o método da secante.
- No entanto, mais robusto.
- Quanto mais longe o ponto fixo for da raiz, mais lenta será a convergência.
- Método da *regula falsi* tem ordem de convergência menor que o método da secante.
- Ponto mantido fixo não é geralmente um dos mais recentes.

Método pégaso

• Seqüência $\{x_i\}$ é obtida pela fórmula de recorrência

$$x_{k+1} = x_k - \frac{f(x_k)}{f(x_k) - f(x_{k-1})} (x_k - x_{k-1}), \ k = 1, 2, 3, \dots$$

- Pontos $[x_{k-1}, f(x_{k-1})]$ e $[x_k, f(x_k)]$ são escolhidos de modo que $f(x_{k-1})$ e $f(x_k)$ tenham sempre sinais opostos, garantindo assim que $\xi \in [x_{k-1}, x_k]$.
- Para evitar a retenção de um ponto, valor de $f(x_{k-1})$ é reduzido pelo fator

$$\frac{f(x_k)}{f(x_k) + f(x_{k+1})}.$$

• Reta pode ser traçada por um ponto não pertencente à curva de f(x).

Interpretação gráfica do método pégaso

• Estimativa x_4 obtida usando os pontos $[x_3, f(x_3)]$ e $[x_1, p]$, sendo

$$p = f(x_1) \times \frac{f(x_2)}{f(x_2) + f(x_3)}.$$

• x_4 é uma melhor aproximação da raiz do que x_4' (regula falsi).

 \models

||←

Algoritmo do método pégaso

```
Algoritmo Pégaso
{ Objetivo: Calcular a raiz de uma equação pelo método pégaso }
parâmetros de entrada a, b, Toler, IterMax
  { limite inferior, limite superior, tolerância e número máximo de iterações }
parâmetros de saída Raiz, Iter, CondErro
   raiz, número de iterações gastas e condição de erro, sendo }
    CondErro = 0 se a raiz foi encontrada e CondErro = 1 em caso contrário.
  Fa \leftarrow f(a); Fb \leftarrow f(b); \{ \text{ avaliar a função em } a \in b \}
  x \leftarrow b; Fx \leftarrow Fb; Iter \leftarrow 0
  repita
    DeltaX \leftarrow -Fx/(Fb - Fa) * (b - a)
    x \leftarrow x + DeltaX; Fx \leftarrow f(x); { avaliar a função em x } escreva Iter, a, Fa, b, Fb, x, Fx, DeltaX
    \mathbf{se} \ (abs(DeltaX) \le Toler \ \mathbf{e} \ abs(Fx) \le Toler) \ \mathbf{ou} \ Iter \ge IterMax \ \mathbf{ent\tilde{ao}}
       interrompa
    fimse
    se Fx * Fb < 0 então
       a \leftarrow b; Fa \leftarrow Fb
    senão
       Fa \leftarrow Fa * Fb/(Fb + Fx)
    fimse
    b \leftarrow x: Fb \leftarrow Fx
    lter \leftarrow lter + 1
  fimrepita
  Raiz \leftarrow x
  { teste de convergência }
  se abs(DeltaX) \leq Toler e abs(Fx) \leq Toler então CondErro \leftarrow 0
  senão CondErro \leftarrow 1, fimse
fimalgoritmo
```

Exemplo do método pégaso

Exemplo 24 Calcular com $\varepsilon \le 0.01$, a raiz de $f(x) = 2x^3 - \cos(x+1) - 3 = 0$ do Exemplo 17, pelo algoritmo do método pégaso, sabendo-se que $\xi \in [-1, 2]$.

```
% Os parametros de entrada
a = -1
b = 2
Toler = 0.0100
IterMax = 100
% produzem os resultados
               Calculo de raiz de equacao pelo metodo pegaso
                  Fa
                                      Fb
                            b
                                                         Fx
                                                                   Delta_x
iter
        a
                                                X
               -6.00000
                          2.00000
                                   13.98999
                                             -0.09955 -3.623e+00 -2.100e+00
    -1.00000
      2.00000
              13.98999
                         -0.09955
                                   -3.62323
                                              0.33235 -3.163e+00 4.319e-01
      2.00000
              7.46964
                          0.33235
                                  -3.16277
                                              0.82842 -1.608e+00 4.961e-01
                                  -1.60817
      2.00000
              4.95180
                          0.82842
                                              1.11563 2.954e-01 2.872e-01
     0.82842
               -1.60817
                          1.11563
                                    0.29537
                                              1.07106 -6.294e-02 -4.457e-02
      1.11563
                0.29537
                          1.07106
                                   -0.06294
                                              1.07889 -1.807e-03 7.828e-03
Raiz
         = 1.07889
Iter
```

©2009 FFCf

CondErro = 0

Exemplo do método pégaso

Exemplo 25 Achar o ponto de máximo μ do polinômio $P(x) = x^4 + 2x^3 - 13x^2 - 14x + 24$, pelo método pégaso, com $\varepsilon \le 10^{-5}$, sabendo-se que $\mu \in [-1, 1]$, de acordo com a figura.

- Condição de máximo de f(x): derivada primeira se anule e derivada segunda seja negativa.
- Problema equivalente a calcular uma raiz de $P'(x) = 4x^3 + 6x^2 26x 14 = 0$.

```
% Os parametros de entrada
a = -1
Toler = 1.0000e-05
IterMax = 100
% produzem os resultados
              Calculo de raiz de equacao pelo metodo pegaso
                 Fa
                                    Fb
                                                                Delta_x
iter
 0 -1.00000 14.00000
                       1.00000 -30.00000 -0.36364 -3.944e+00 -1.364e+00
 1 -1.00000 12.37317 -0.36364 -3.94440
                                          -0.51746 5.064e-01 -1.538e-01
                                0.50640
 2 -0.36364 -3.94440 -0.51746
                                          -0.49996 -1.135e-03 1.750e-02
             0.50640 -0.49996 -0.00114
 3 -0.51746
                                          -0.50000 4.764e-08 -3.914e-05
             -0.00114 -0.50000
                                0.00000
                                          -0.50000 0.000e+00 1.643e-09
Raiz
        = -0.50000
Iter
CondErro = 0
```

• $P''(x) = 12x^2 + 12x - 26$ e P''(-0.5) = -29 < 0: $\mu \approx x_4 = -0.5$ é um ponto de máximo.

©2009 FFCf

Ordem de convergência

• Seja uma estimativa x_2 da raiz ξ obtida por uma reta passando pelos pontos $[x_0, f(x_0)]$ e $[x_1, f(x_1)]$

$$x_2 = x_1 - \frac{f(x_1)}{f(x_1) - f(x_0)}(x_1 - x_0) = \frac{x_1 f(x_0) - x_0 f(x_1)}{f(x_0) - f(x_1)}.$$

• Expandindo $f(x_k)$ em série de Taylor com relação à raiz ξ e considerando o erro da k-ésima iteração dado por (5),

$$\epsilon_{2} + \xi = \frac{(\epsilon_{1} + \xi) \left(\epsilon_{0} f'(\xi) + \epsilon_{0}^{2} \frac{f''(\xi)}{2} + \cdots\right) - (\epsilon_{0} + \xi) \left(\epsilon_{1} f'(\xi) + \epsilon_{1}^{2} \frac{f''(\xi)}{2} + \cdots\right)}{(\epsilon_{0} - \epsilon_{1}) f'(\xi) + (\epsilon_{0}^{2} - \epsilon_{1}^{2}) \frac{f''(\xi)}{2} + \cdots}.$$

Simplificando

$$\epsilon_2 = \frac{\frac{f''(\xi)}{2} \epsilon_0 \epsilon_1 (\epsilon_0 - \epsilon_1) + \cdots}{f'(\xi) (\epsilon_0 - \epsilon_1) + \frac{f''(\xi)}{2} (\epsilon_0 - \epsilon_1) (\epsilon_0 + \epsilon_1) + \cdots}.$$

Ordem de convergência do método da $regula\ falsi$

• Dividindo por $f'(\xi)(\epsilon_0 - \epsilon_1)$

$$\epsilon_{2} = \frac{\frac{f''(\xi)}{2f'(\xi)}\epsilon_{0}\epsilon_{1} + \cdots}{1 + \frac{f''(\xi)}{2f'(\xi)}(\epsilon_{0} + \epsilon_{1}) + \cdots},$$

$$\epsilon_{2} \approx \frac{f''(\xi)}{2f'(\xi)}\epsilon_{0}\epsilon_{1}.$$
(10)

- No método da regula falsi a raiz deve ficar sempre isolada em um intervalo.
- x_0 será geralmente fixo durante várias iterações.
- \bullet O erro ϵ_0 também será fixo resultando que o erro da k-ésima iteração será

$$\epsilon_{k+1} = K_r \epsilon_k.$$

• Por (6), o método da *regula falsi* apresenta convergência de primeira ordem.

Ordem de convergência do método da secante

- Os valores de x_k e x_{k-1} são sempre atualizados.
- Generalizando (10)

$$\epsilon_{k+1} = C\epsilon_{k-1}\epsilon_k.$$

• Por (6)

$$|\epsilon_{k+1}| = K |\epsilon_k|^{\gamma}$$
.

• Usando esta equação na equação anterior,

$$K|\epsilon_k|^{\gamma} = |C||\epsilon_k| \left(\frac{|\epsilon_k|}{K}\right)^{\frac{1}{\gamma}}.$$

• Rearranjando,

$$K^{1+\frac{1}{\gamma}}|\epsilon_k|^{\gamma} = |C||\epsilon_k|^{1+\frac{1}{\gamma}}.$$

 \bullet A ordem de convergência γ deve ser positiva e pela equação acima

$$\gamma = 1 + \frac{1}{\gamma} \longrightarrow \gamma^2 - \gamma - 1 = 0 \Longrightarrow \gamma = \frac{1 + \sqrt{5}}{2} \approx 1,61803.$$

Ordem de convergência dos métodos da secante e pégaso

- O método da secante tem ordem de convergência igual à relação áurea.
- Além disso,

$$K^{1+\frac{1}{\gamma}} = |C|.$$

• Como $1 + \frac{1}{\gamma} = \gamma$,

$$K^{\gamma} = |C| \longrightarrow K = |C|^{\frac{1}{\gamma}} = |C|^{\gamma - 1}.$$

• Por (6) e (10), o método da secante apresenta

$$|\epsilon_{k+1}| \approx \left| \frac{f''(\xi)}{2f'(\xi)} \right|^{\gamma - 1} |\epsilon_k|^{\gamma}.$$

- Segundo Dowell e Jarratt, o método pégaso tem ordem de convergência 1,642.
- Resumindo: $\gamma_{regula\ falsi} = 1$, $\gamma_{secante} = 1,618$ e $\gamma_{pégaso} = 1,642$.

Métodos baseados em aproximação quadrática

- Métodos para cálculo de raízes baseados na aproximação de f(x) por polinômio de grau 1.
- Estimativa da raiz é o ponto onde a reta intercepta o eixo das abscissas.
- Estimativa da raiz de f(x) = 0 pode ser ainda melhor se for utilizado um polinômio de grau 2.
- Métodos: Muller e de van Wijngaarden-Dekker-Brent.

Método de Muller

- Consiste em aproximar f(x), na vizinhança da raiz $\xi \in [x_0, x_2]$, por um polinômio quadrático.
- Polinômio construído de modo a passar pelos três pontos:

$$[x_0, f(x_0)], [x_1, f(x_1)] \in [x_2, f(x_2)].$$

- Zero do polinômio usado como uma estimativa da raiz ξ de f(x) = 0.
- Processo é repetido usando sempre os três pontos mais próximos da raiz.
- Polinômio de segundo grau que passa pelos três pontos

$$[x_{i-2}, f(x_{i-2})], [x_{i-1}, f(x_{i-1})] \in [x_i, f(x_i)],$$

• na forma

$$P_2(v) = av^2 + bv + c (11)$$

• onde $v = x - x_{i-1}$ pode ser construído de acordo com a figura.

Interpretação gráfica do método de Muller

 \models

Método de Muller cont.

• Para cada um dos três pontos,

$$P_2(x_{i-2}) = f(x_{i-2}) \to a(x_{i-2} - x_{i-1})^2 + b(x_{i-2} - x_{i-1}) + c = f(x_{i-2}),$$

$$P_2(x_{i-1}) = f(x_{i-1}) \to a(0)^2 + b(0) + c = f(x_{i-1}) \to c = f(x_{i-1}) \text{ e} \quad (12)$$

$$P_2(x_i) = f(x_i) \to a(x_i - x_{i-1})^2 + b(x_i - x_{i-1}) + c = f(x_i).$$

Definindo

$$h_1 = x_i - x_{i-1}$$
 e
 $h_2 = x_{i-1} - x_{i-2}$.

• Por (12), é obtido o sistema linear

$$h_2^2a - h_2b = f(x_{i-2}) - f(x_{i-1}),$$

$$h_1^2 a + h_1 b = f(x_i) - f(x_{i-1}).$$

Método de Muller

• Solução do sistema linear

$$a = \frac{1}{h_1(h_1 + h_2)} (f(x_i) - (r+1)f(x_{i-1}) + rf(x_{i-2}))$$
 (13)

cont.

• sendo $r = h_1/h_2$ e

$$b = \frac{1}{h_1}(f(x_i) - f(x_{i-1})) - ah_1, \tag{14}$$

- onde a é dado por (13).
- ullet Os dois zeros do polinômio de grau 2 em v (11) são

$$z = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}.$$

• Raiz mais próxima de x_{i-1} : sinal na expressão escolhido de modo a tornar o numerador o menor possível.

Método de Muller

cont.

 \bullet Em vista da transformação $v=x-x_{i-1},$ a próxima estimativa da raiz ξ é

$$x_{i+1} = x_{i-1} + \frac{-b + \operatorname{sinal}(b)\sqrt{b^2 - 4ac}}{2a}$$

- \bullet onde a, b e c são dados por (13), (14) e (12).
- ullet Na próxima iteração, devem ser utilizados os três pontos mais próximos de ξ .

Algoritmo do método de Muller

```
Algoritmo Muller
{ Objetivo: Calcular a raiz de uma equação pelo método de Muller }
parâmetros de entrada a, c, Toler, IterMax
   { limite inferior, limite superior, tolerância e número máximo de iterações }
parâmetros de saída Raiz, Iter, CondErro
     raiz, número de iterações gastas e condição de erro, sendo }
     CondErro = 0 se a raiz foi encontrada e CondErro = 1 em caso contrário.
    avaliar a função em a, c e b }
   Fa \leftarrow f(a); Fc \leftarrow f(c); b \leftarrow (a+c)/2; Fb \leftarrow f(b)
  x \leftarrow b; Fx \leftarrow Fb; DeltaX \leftarrow c - a; Iter \leftarrow 0
  repita
     h_1 \leftarrow c - b; h_2 \leftarrow b - a; r \leftarrow h_1/h_2; t \leftarrow x
     A \leftarrow (Fc - (r+1) * Fb + r * Fa)/(h_1 * (h_1 + h_2))
     B \leftarrow (Fc - Fb)/h_1 - A * h_1
     C = Fb; z \leftarrow (-B + \text{sinal}(B) * \text{raiz}_2(B^2 - 4 * A * C))/(2 * A)
     x \leftarrow b + z; DeltaX \leftarrow x - t; Fx \leftarrow f(x); { avaliar a função em x }
     escreva lter, a, b, c, x, Fx, DeltaX
     se (abs(DeltaX) \le Toler \ e \ abs(Fx) \le Toler) \ ou \ lter \ge lterMax \ então
        interrompa
     fimse
     se x > b então
        a \leftarrow b; Fa \leftarrow Fb
     senão
        c \leftarrow b; Fc \leftarrow Fb
     b \leftarrow x; Fb \leftarrow Fx; Iter \leftarrow Iter + 1
  fimrepita
   Raiz \leftarrow x
   { teste de convergência }
  se abs(DeltaX) \leq Toler \ e \ abs(Fx) \leq Toler \ então
      CondErro \leftarrow 0
   senão
      CondErro \leftarrow 1
   fimse
fimalgoritmo
```

||←

Exemplo do método de Muller

Exemplo 26 Calcular com $\varepsilon \le 0.01$, a raiz de $f(x) = 2x^3 - \cos(x+1) - 3 = 0$ do Exemplo 17, pelo método de Muller apresentado no algoritmo, sabendo-se que $\xi \in [-1, 2]$.

```
% Os parametros de entrada
a = -1
b = 2
Toler = 0.0100
IterMax = 100
% produzem os resultados
           Calculo de raiz de equacao pelo metodo de Muller
                                                              Delta_x
iter
                   b
                                                 Fx
        a
                              C
                                        X
  0
     -1.00000 0.50000
                            2.00000 0.86331 -1.42476e+00 3.63315e-01
      0.50000 0.86331
                            2.00000
                                                           1.91564e-01
                                     1.05488 -1.86933e-01
 2
      0.86331 1.05488
                            2.00000
                                      1.07803 -8.58214e-03
                                                           2.31508e-02
      1.05488
               1.07803
                            2.00000
                                      1.07912 -4.55606e-05
                                                           1.08694e-03
```

```
Raiz = 1.07912

Iter = 3

CondErro = 0
```

©2009 FFCf

Exemplo do método de Muller

Exemplo 27 Achar a raiz de $f(x) = 0.05x^3 - 0.4x^2 + 3 \operatorname{sen}(x)x = 0$ do Exemplo 18, com $\varepsilon \le 10^{-10}$, que se encontra no intervalo [10, 12], usando o método de Muller.

```
% Os parametros de entrada
a = 10
b = 12
Toler = 1.0000e-10
IterMax = 100
% produzem os resultados
           Calculo de raiz de equacao pelo metodo de Muller
iter
        a
                   b
                                                 Fx
                                                             Delta_x
     10.00000
               11.00000
                         12.00000
                                     11.74014 -1.25090e-01 7.40141e-01
  0
     11.00000
               11.74014
                          12.00000
                                     11.74398 1.54925e-03 3.83681e-03
     11.74014
               11.74398 12.00000
                                     11.74393 -1.45315e-07 -4.68547e-05
               11.74393
     11.74014
                           11.74398
                                      11.74393 1.06581e-14 4.39453e-09
 4
     11.74393
               11.74393
                           11.74398
                                     11.74393 1.06581e-14 0.00000e+00
```

Raiz = 11.74393 Iter = 4 CondErro = 0 ©2009 FFCf

Ordem de convegência

• Hildebrand mostrou que a expressão (6) apresenta a forma

$$|\epsilon_{k+1}| \approx \left| \frac{f'''(\xi)}{6f'(\xi)} \right|^{\frac{\gamma-1}{2}} |\epsilon_k|^{\gamma}$$

ullet onde γ é a raiz positiva da equação

$$\gamma = 1 + \frac{1}{\gamma} + \frac{1}{\gamma^2} \longrightarrow \gamma^3 - \gamma^2 - \gamma - 1 = 0.$$

• Método de Muller tem ordem de convergência $\gamma \approx 1,8393$.

Método de van Wijngaarden-Dekker-Brent

- Resultado da combinação da interpolação inversa quadrática e da bisseção.
- Garante que a raiz continue sempre isolada.
- Interpolação quadrática: $P_2(x) \approx f(x) = y$ determinado a partir de três pontos:

$$[x_{i-2}, f(x_{i-2})], [x_{i-1}, f(x_{i-1})] \in [x_i, f(x_i)].$$

- Valor aproximado de f(t): avaliar $P_2(t)$.
- Interpolação inversa quadrática: polinômio interpolador de grau 2

$$\Pi_2(y) \approx f^{-1}(y) = x \tag{15}$$

• construído a partir dos três pontos:

$$[f(x_{i-2}), x_{i-2}], [f(x_{i-1}), x_{i-1}] \in [f(x_i), x_i].$$

• Valor aproximado de $f^{-1}(z)$: avaliar $\Pi_2(z)$.

Método de van Wijngaarden-Dekker-Brent cont.

• Polinômio $\Pi_2(y)$ obtido por interpolação de Lagrange

$$\Pi_{2}(y) = x_{i-2} \frac{(y - f(x_{i-1}))(y - f(x_{i}))}{(f(x_{i-2}) - f(x_{i-1}))(f(x_{i-2}) - f(x_{i}))}$$

$$+ x_{i-1} \frac{(y - f(x_{i-2}))(y - f(x_{i}))}{(f(x_{i-1}) - f(x_{i-2}))(f(x_{i-1}) - f(x_{i}))}$$

$$+ x_{i} \frac{(y - f(x_{i-2}))(y - f(x_{i-1}))}{(f(x_{i}) - f(x_{i-2}))(f(x_{i}) - f(x_{i-1}))}.$$

- Como $y = f(x) \longrightarrow x = f^{-1}(y)$.
- Aproximação da raiz ξ de f(x) = 0 é o ponto de abscissa correspondente à $f^{-1}(0)$.
- Por (15), esta aproximação é dada por $x = \Pi_2(0)$.

||⇐

Algoritmo do método de van Wijngaarden-Dekker-Brent

```
Algoritmo van Wijngaarden-Dekker-Brent
{ Objetivo: Calcular a raiz pelo método de van Wijngaarden-Dekker-Brent }
parâmetros de entrada a, b, Toler, IterMax
    [limite inferior, limite superior, tolerância e número máximo de iterações]
parâmetros de saída Raiz, Iter, CondErro
     raiz, número de iterações gastas e condição de erro, sendo }
     CondErro = 0 se a raiz foi encontrada e CondErro = 1 em caso contrário.
   Fa \leftarrow f(a); Fb \leftarrow f(b); { avaliar a função em a \in b }
   se Fa * Fb > 0 então
       escreva "a função não muda de sinal nos extremos do intervalo dado"
       abandone
   fimse
   c \leftarrow b; Fc \leftarrow Fb; Iter \leftarrow 0
   repita
        \{ altera a, b \in c \text{ para que } b \text{ seja a melhor estimativa da raiz } \}
       se Fb * Fc > 0 então c \leftarrow a, Fc \leftarrow Fa, d \leftarrow b - a, e \leftarrow d, fim se
       se abs(Fc) < abs(Fb) então
          a \leftarrow b; b \leftarrow c; c \leftarrow a; Fa \leftarrow Fb; Fb \leftarrow Fc; Fc \leftarrow Fa
       fimse
       Tol \leftarrow 2 * Toler * \max(abs(b), 1); z \leftarrow (c - b)/2
       escreva lter, a, c, b, Fb, z
       { teste de convergência }
      se abs(z) \le Tol ou Fb = 0 ou Iter \ge IterMax então interrompa, fim se
       { escolha entre interpolação e bisseção
      se abs(e) \ge Tol e abs(Fa) > abs(Fb) então
          s \leftarrow Fb/Fa
          se a = c então { interpolação linear }
              p \leftarrow 2 * z * s; q \leftarrow 1 - s
          senão { interpolação inversa quadrática }
             q \leftarrow Fa/Fc; r \leftarrow Fb/Fc; p \leftarrow s * (2 * z * q * (q - r) - (b - a) * (r - 1))
             q \leftarrow (q-1) * (r-1) * (s-1)
          fimse
          se p > 0 então q \leftarrow -q, senão p \leftarrow -p, fim se
          se 2*p < \min(3*z*q - abs(Tol*q), abs(e*q)) então { aceita interpolação }
             e \leftarrow d; d \leftarrow p/q
          senão { usa bisseção devido à falha na interpolação }
             d \leftarrow z: e \leftarrow z
          fimse
       senão { bisseção }
          d \leftarrow z: e \leftarrow z
       fimse
       a \leftarrow b; Fa \leftarrow Fb
       se abs(d) > Tol então b \leftarrow b + d, senão b \leftarrow b + \text{sinal}(z) * Tol, fim se
       Iter \leftarrow Iter + 1; Fb \leftarrow f(b) { avaliar a função em b }
    fim repita
   Raiz \leftarrow b
   se abs(z) \le Tol ou Fb = 0 então CondErro \leftarrow 0, senão CondErro \leftarrow 1, fim se
fim algoritmo
```

% Os parametros de entrada

Exemplo do método de van Wijngaarden-Dekker-Brent

Exemplo 28 Calcular pelo método de van Wijngaarden-Dekker-Brent, descrito no algoritmo, a menor raiz de $P(x) = x^4 + 2x^3 - 13x^2 - 14x + 24 = 0$ do Exemplo 11, com $\varepsilon \le 10^{-10}$, sabendo-se que $\xi \in [-5, -3]$.

```
a = -5
b = -3
Toler = 1.0000e-10
IterMax = 100
% produzem os resultados
  Calculo de raiz pelo metodo de van Wijngaarden-Dekker-Brent
                                        Fb
iter
                    С
         a
                                                      Z
                -5.00000
                                     -2.40000e+01
     -5.00000
                           -3.00000
                                                   -1.00000e+00
     -3.00000
                -5.00000
                           -3.28571
                                     -2.47397e+01 -8.57143e-01
     -3.28571
                -3.28571
                           -4.14286
                                     1.12453e+01 4.28571e-01
  3
     -4.14286
                -4.14286
                           -3.87500
                                     -7.85522e+00 -1.33929e-01
                -4.14286
     -3.87500
                           -3.98516
                                     -1.02599e+00 -7.88495e-02
                                     2.26777e-02
     -3.98516
                -3.98516
                           -4.00032
                                                  7.58292e-03
  6
     -4.00032
                -4.00032
                           -4.00000
                                     -2.86125e-04 -1.63983e-04
     -4.00000
                -4.00032
                           -4.00000
                                     -7.80927e-08 -1.61940e-04
     -4.00000
                -4.00032
                           -4.00000
                                      0.00000e+00 -1.61940e-04
Raiz
        = -4.00000
Iter
CondErro = 0
```

Exemplo do método de van Wijngaarden-Dekker-Brent

Exemplo 29 Calcular a raiz de $f(x) = 0.05x^3 - 0.4x^2 + 3 \operatorname{sen}(x)x = 0$ do Exemplo 18, com $\varepsilon \le 10^{-10}$, que se encontra no intervalo [10, 12], utilizando o método de van Wijngaarden-Dekker-Brent.

```
% Os parametros de entrada
a = 10
b = 12
Toler = 1.0000e-10
IterMax = 100
% produzem os resultados
 Calculo de raiz pelo metodo de van Wijngaarden-Dekker-Brent
                                        Fb
iter
                              b
        a
                   С
                                                      Z
     12.00000
                12.00000 10.00000
                                     -6.32063e+00
                                                    1.00000e+00
 0
     10.79988
                10.79988
                          12.00000
                                    9.48337e+00 -6.00061e-01
     12.00000
                12.00000
                          11.54358
                                    -5.94963e+00 2.28208e-01
     11.54358
                12.00000
                           11.71954
                                     -7.96853e-01
                                                    1.40231e-01
     11.71954
                11.71954
                           11.74464
                                    2.34449e-02 -1.25507e-02
  4
     11.74464
                11.74464
                           11.74392 -2.86520e-04 3.58711e-04
     11.74392
                11.74464
                           11.74393
                                     -1.00128e-07
                                                    3.54380e-04
     11.74393
                11.74393
                           11.74393
                                      1.06581e-14 -1.51400e-09
Raiz
        = 11.74393
Iter
CondErro = 0
```

Observações

- Segundo Brent, a convergência pelo método é garantida desde que haja uma raiz no intervalo.
- Combinação da certeza de convergência do método da bisseção com a rapidez de um método de ordem de convergência maior como o da interpolação inversa quadrática.
- Esquema robusto e eficiente.
- Método de van Wijngaarden-Dekker-Brent é recomendado como o mais adequado para calcular zero de função quando a derivada não estiver disponível.

Métodos baseados em tangente

- Bisseção.
- Aproximação de f(x) por polinômio linear e quadrático.
- ullet Métodos baseados no cálculo da tangente à curva de f(x): Newton e Schröder.

©2009 FFCf

Método de Newton

- Seja ξ a única raiz de f(x) = 0 no intervalo [a, b].
- Seja x_k uma aproximação desta raiz, sendo $x_0 \in [a, b]$.
- As derivadas f'(x) e f''(x) devem existir, ser contínuas e com sinal constante neste intervalo.
- Geometricamente, o método de Newton é equivalente a aproximar um arco da curva por uma reta tangente traçada a partir de um ponto da curva.
- Conhecido também como método das tangentes.

Interpretação gráfica do método de Newton

• Tangentes

$$\tan(\alpha) = \frac{f(x_0)}{x_0 - x_1} = f'(x_0) \longrightarrow x_1 = x_0 - \frac{f(x_0)}{f'(x_0)}$$
e
$$\tan(\beta) = \frac{f(x_1)}{x_1 - x_2} = f'(x_1) \longrightarrow x_2 = x_1 - \frac{f(x_1)}{f'(x_1)}.$$

• Generalizando: fórmula de recorrência do método de Newton

$$x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)}, \quad k = 0, 1, 2, \dots$$

Dedução analítica do método de Newton

• Seja

$$\xi = x_k + \delta_k \tag{17}$$

- \bullet tal que δ_k tenha um valor pequeno.
- Fazendo uma expansão em série de Taylor

$$f(\xi) = f(x_k + \delta_k) \approx f(x_k) + f'(x_k)\delta_k = 0 \rightarrow \delta_k = -\frac{f(x_k)}{f'(x_k)}.$$

• Substituindo essa correção em (17), obtém-se

$$x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)}, \quad k = 0, 1, 2, \dots$$

Condição de convergência

- Pela figura, seqüência produzida por (16) convergirá para a raiz ξ se o valor inicial for $x_0 = b$.
- Processo pode não convergir se $x_0 = a$, pois ter-se-á $x_1' \not\in [a, b]$.
- Escolha do valor inicial de modo a garantir a convergência para a raiz:

Teorema 6 Se f(a)f(b) < 0, e f'(x) e f''(x) forem não nulas e preservarem o sinal em [a,b], então partindo-se da aproximação inicial $x_0 \in [a,b]$ tal que $f(x_0)f''(x_0) > 0$ é possível construir, pelo método de Newton, uma seqüência $\{x_i\}$ que convirja para a raiz ξ de f(x) = 0.

- Valor inicial x_0 deve ser um ponto no qual a função tenha o mesmo sinal de sua derivada segunda.
- Se $f''(x_0) > 0$: x_0 é tal que $f(x_0) > 0$.
- Se $f''(x_0) < 0$: $f(x_0) < 0$.

Algoritmo do método de Newton

```
Algoritmo Newton
{ Objetivo: Calcular a raiz de uma equação pelo método de Newton }
parâmetros de entrada x0, Toler, IterMax
  { valor inicial, tolerância e número máximo de iterações }
parâmetros de saída Raiz, Iter, CondErro
   raiz, número de iterações gastas e condição de erro, sendo }
    CondErro = 0 se a raiz foi encontrada e CondErro = 1 em caso contrário.
   avaliar a função e sua derivada em 🗷 }
  Fx \leftarrow f(x0); DFx \leftarrow f'(x0); x \leftarrow x0; Iter \leftarrow 0
  escreva lter, x, DFx, Fx
  repita
    DeltaX \leftarrow -Fx/DFx; x \leftarrow x + DeltaX
    Fx \leftarrow f(x); DFx \leftarrow f'(x); { avaliar a função e sua derivada em x }
    lter \leftarrow lter + 1
                                                                                            l⊭
    escreva lter, x, DFx, Fx, DeltaX
    \mathbf{se} \ (abs(DeltaX) \leq Toler \ \mathbf{e} \ abs(Fx) \leq Toler) \ \mathbf{ou} \ DFx = 0 \ \mathbf{ou} \ Iter \geq IterMax
       então interrompa
    fimse
  fimrepita
  Raiz \leftarrow x
  { teste de convergência }
  se abs(DeltaX) \leq Toler e abs(Fx) \leq Toler então
    CondErro \leftarrow 0
  senão
    CondErro \leftarrow 1
  fimse
fimalgoritmo
```

Exemplo do método de Newton

Exemplo 30 Determinar a maior raiz de $P(x) = x^4 + 2x^3 - 13x^2 - 14x + 24 = 0$ com $\varepsilon \le 10^{-5}$, utilizando o método de Newton.

- $\xi \in [2,4], f(2) < 0 \text{ e } f(4) > 0.$
- Derivadas: $P'(x) = 4x^3 + 6x^2 26x 14$ e $P''(x) = 12x^2 + 12x 26 > 0, 2 \le x \le 4$.
- Valor inicial: $x_0 = 4$, pois P(4)P''(4) > 0.

Exemplo do método de Newton cont.

```
% Os parametros de entrada x0 = 4
Toler = 1.0000e-05
IterMax = 100
% produzem os resultados
```

Calculo de raiz de equacao pelo metodo de Newton

iter	x	DFx	Fx	Delta_x
0	4.00000	2.34000e+02	1.44000e+02	
1	3.38462	1.21825e+02	3.64693e+01	-6.15385e-01
2	3.08526	8.03682e+01	6.40563e+00	-2.99358e-01
3	3.00555	7.06567e+01	3.90611e-01	-7.97036e-02
4	3.00003	7.00030e+01	1.80793e-03	-5.52830e-03
5	3.00000	7.00000e+01	3.93537e-08	-2.58264e-05
6	3.00000	7.00000e+01	1.42109e-14	-5.62196e-10

Raiz = 3.00000

Iter = 6

CondErro = 0

©2009 FFCf 103

Exemplo do método de Newton

Exemplo 31 Calcular o ponto de inflexão i da função $f(x) = 2x^3 + 3x^2 - e^x + 3$ com $\varepsilon \le 10^{-5}$ pelo método de Newton, usando o algoritmo.

- Condição de ponto de inflexão de f(x): derivada segunda se anule.
- Deve-se achar uma raiz de f''(x) = 0: $g(x) = f''(x) = 12x e^x + 6 = 0$.

• $i \in [-2, 1]$.

Exemplo do método de Newton cont.

- Derivadas: $g'(x) = 12 e^x e g''(x) = -e^x < 0 \ \forall \ x$.
- Função nos limites: $g(-2) \approx -1{,}1353 < 0 \text{ e } g(1) \approx 5{,}2817 > 0.$
- Valor inicial: $x_0 = -2$ porque g(-2)g''(-2) > 0.

```
% Os parametros de entrada
x0 = -2
Toler = 1.0000e-05
IterMax = 100
% produzem os resultados
     Calculo de raiz de equacao pelo metodo de Newton
                      DFx
                                                    Delta_x
 iter
                                     Fx
           X
        -2.00000
                   1.18647e+001
                                  -1.81353e+01
    0
        -0.47148
                  1.13759e+001
                                 -2.81878e-01
                                                 1.52852e+00
        -0.44671
                  1.13603e+001
                                  -1.93175e-04
                                                 2.47785e-02
   3
        -0.44669
                  1.13603e+001
                                  -9.24905e-11
                                                1.70045e-05
        -0.44669
                   1.13603e+001
                                  0.00000e+00
                                                 8.14158e-12
```

Raiz = -0.44669Iter = 4CondErro = 0

• Ponto de inflexão: $i \approx x_4 = -0.44669$.

Ordem de convergência

• Considere (16)

$$x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)}.$$

• Em vista do erro da k-ésima iteração

$$\epsilon_{k+1} = \epsilon_k - \frac{f(x_k)}{f'(x_k)}. (18)$$

• Expandindo $f(x_k)$ em série de Taylor em torno da raiz ξ

$$f(x_k) = f(\xi) + \epsilon_k f'(\xi) + \epsilon_k^2 \frac{f''(\xi)}{2} + \cdots,$$

$$f'(x_k) = f'(\xi) + \epsilon_k f''(\xi) + \cdots$$

©2009 FFCf

Ordem de convergência

cont.

• Substituindo as duas expressões acima em (18)

$$\epsilon_{k+1} = \epsilon_k - \frac{\epsilon_k f'(\xi) + \epsilon_k^2 \frac{f''(\xi)}{2} + \cdots}{f'(\xi) + \epsilon_k f''(\xi) + \cdots}$$

$$\epsilon_{k+1} = \frac{\epsilon_k f'(\xi) + \epsilon_k^2 f''(\xi) + \dots - \epsilon_k f'(\xi) - \epsilon_k^2 \frac{f''(\xi)}{2} - \dots}{f'(\xi) + \epsilon_k f''(\xi) + \dots}$$

$$|\epsilon_{k+1}| \approx \frac{f''(\xi)}{2f'(\xi)} |\epsilon_k|^2.$$

- Método de Newton tem convergência quadrática.
- Nas proximidades da raiz, o número de dígitos corretos da estimativa da raiz praticamente dobra a cada iteração.

Método de Schröder

- Método de Newton apresenta uma convergência apenas linear quando uma raiz tem multiplicidade m>1.
- Pela fórmula

$$x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)}$$

- à medida que $f(x_k) \to 0$, o denominador $f'(x_k) \to 0$
- ullet Modificação simples permite o cálculo de raiz de multiplicidade m, mantendo a convergência quadrática

$$x_{k+1} = x_k - m \frac{f(x_k)}{f'(x_k)}, \ k = 0, 1, 2, \dots$$
 (19)

- Algoritmo do método de Schröder é basicamente o de Newton da figura.
- ullet Utiliza um parâmetro extra m para definir a multiplicidade.

Exemplo do método de Schröder

Exemplo 32 Calcular a raiz de $P(x) = x^4 + 2x^3 - 12x^2 + 14x - 5 = 0$ de multiplicidade m = 3, com tolerância $\varepsilon \le 10^{-5}$, pelo método de Schröder usando o algoritmo adaptado.

- $\xi \in [0,5,1,5]$.
- $P'(x) = 4x^3 + 6x^2 24x + 14 \text{ e } P''(x) = 12x^2 + 12x 24 > 0 \ \forall \ x > 1.$
- $x_0 = 1.5$.
- P(1,5)P''(1,5) > 0.

Exemplo do método de Schröder cont.

```
% Os parametros de entrada
m = 3
x0 = 1.5
Toler = 1.0000e-05
IterMax = 100
% produzem os resultados
     Calculo de raiz de equacao pelo metodo de Schroder
                      DFx
 iter
           X
                                     Fx
                                                   Delta x
         1.50000
                    5.00000e+00
                                  8.12500e-01
    0
         1.01250
                  2.82031e-03
                                 1.17432e-05
                                                -4.87500e-01
         1.00001
                  1.34883e-09
                                 4.44089e-15
                                                -1.24913e-02
                    2.68212e-11
                                                -9.87718e-06
    3
         1.00000
                                 0.00000e+00
```

Raiz = 1.00000 Iter = 3 CondErro = 0

- $\xi = x_3 = 1$.
- Método de Newton gasta 26 iterações.

©2009 FFCf

Comparação dos métodos para cálculo de raízes

- Estudo comparativo do desempenho de métodos utilizando uma série de equações está longe de ser perfeito.
- Pode existir uma dependência do resultado na escolha dessas equações.
- Determinação da ordem de convergência é mais adequada.
- Não é baseada em nenhum empirismo.
- Interessante verificar o desempenho dos métodos.

Equações de teste

• Cinco equações e intervalos que isolam as raízes:

$$f_1(x) = 2x^4 + 4x^3 + 3x^2 - 10x - 15 = 0, \ \xi \in [0, 3].$$

$$f_2(x) = x^5 - 2x^4 - 9x^3 + 22x^2 + 4x - 24 = 0, \ \xi \in [0, 5], \ \text{com } m = 3.$$

$$f_3(x) = 5x^3 + x^2 - e^{1-2x} + \cos(x) + 20 = 0, \ \xi \in [-5, 5].$$

$$f_4(x) = \operatorname{sen}(x)x + 4 = 0, \ \xi \in [1, 5].$$

$$f_5(x) = (x-3)^5 \log_e(x) = 0, \ \xi \in [2, 5], \ \text{com } m = 5.$$

Observações sobre os testes

- Número máximo de iterações = 500.
- Tolerância $\varepsilon = 10^{-10}$.
- Critério de parada: $|x_k x_{k-1}| < \varepsilon$ e $|f(x_k)| < \varepsilon$.
- Método de van Wijngaarden-Dekker-Brent usa critério ligeiramente diferente.
- Método de Newton: x_0 foi escolhido como o ponto médio do intervalo dado, sem considerar o Teorema 6.

©2009 FFCf

$$f_1(x) = 2x^4 + 4x^3 + 3x^2 - 10x - 15$$

Método	Raiz	Iter	Erro	$oxed{t_{rel}}$
bisseção	1,49288	37		1,00
secante	-1,30038	8	\sin	$ 0,\!28 $
regula falsi	1,49288	77		2,06
pégaso	1,49288	10		0,35
Muller	1,49288	4		0,25
W-D-Brent	1,49288	9		0,63
Newton	1,49288	4		0,20

$$f_2(x) = x^5 - 2x^4 - 9x^3 + 22x^2 + 4x - 24$$

Método	Raiz	Iter	Erro	t_{rel}
bisseção	1,99999	35		1,00
secante	2,00000	47		1,36
regula falsi	1,82374	500	\sin	13,42
pégaso	1,99999	60		1,76
Muller	2,00001	500	sim	17,85
W-D-Brent	2,00001	57		3,59
Newton	2,00001	37		1,55
Schröder	2,00000	4	sim	0,23

$$f_3(x) = 5x^3 + x^2 - e^{1-2x} + \cos(x) + 20$$

Método	Raiz	Iter	Erro	t_{rel}
bisseção	-0,92956	41		1,00
secante	-0,92956	21		0,56
regula falsi	0,69661	500	sim	12,33
pégaso	-0,92956	19		0,57
Muller	-0,92956	32		1,16
W-D-Brent	-0,92956	8		0,51
Newton	-0,92956	11		0,48

$$f_4(x) = \operatorname{sen}(x)x + 4$$

Método	Raiz	Iter	Erro	$oxed{t_{rel}}$
bisseção	4,32324	36		1,00
secante	4,32324	7		$ 0,\!27 $
regula falsi	4,32324	9		0,32
pégaso	4,32324	7		0,28
Muller	4,32324	6		0,35
W-D-Brent	4,32324	7		$ 0,\!57 $
Newton	4,32324	6		0,30

$$f_5(x) = (x-3)^5 \log_e(x)$$

Método	Raiz	Iter	Erro	t_{rel}
bisseção	3,00000	34		1,00
secante	3,00000	137		3,90
regula falsi	2,67570	500	sim	13,89
pégaso	3,00000	187		5,47
Muller	3,01289	500	sim	18,82
W-D-Brent	3,00000	80		5,45
Newton	3,00000	95		4,45
Schröder	3,00000	4		0,26

Observações sobre os métodos para cálculo de raízes de equações

- Bisseção mostrou sua robustez, pois não falhou apesar de não ser o mais eficiente.
- Secante, embora seja rápida, encontrou uma raiz fora do intervalo dado.
- Regula falsi apresentou uma convergência muito lenta e falhou três vezes.
- Pégaso, além de ser robusto, foi competitivo com relação ao sofisticado van Wijngaarden-Dekker-Brent.
- Muller não foi robusto, embora eficiente, pois falhou nos casos onde a raiz possui multiplicidade.
- van Wijngaarden-Dekker-Brent foi robusto, mas também foi menos eficiente na presença de multiplicidade.
- Schröder é uma efetiva modificação do método de Newton para evitar problemas com raízes de multiplicidade.

Algoritmos Numéricos 2^a edição

Capítulo 6: Raízes de equações

Fim