36. Вродени имунодефицитни заболявания. С. Лалчев

Вродените (първични) имунодефицити (ИД) са изключително хетерогенна група заболявания. Дължат се на мутации в различни гени, контролиращи узряването, диференциация на имунните клетки, междуклетъчното коопериране, синтеза на антитела, хуморални фактори или клетъчни рецептори.

Първичните имунодефицити са сравнително по-редки от вторичните, които се наблюдават при пациенти със СПИН, при такива, подложени на лъчетерапия или лечение с имуносупресори. Фенотипно показват твърде голямо сходство.

С малки изключения първичните ИД се проявяват клинично още в детската възраст с чести рецидивиращи инфекции с различна локализация – бронхопневмонии, отити, ентерити, кожни инфекции и др. При засягане на хуморалния отговор водещи са бактериалните инфекции, а при дефекти на Т-клетъчния отговор – вирусните, гъбичните, вътреклетъчно бактериалните (туберкулоза, лепра и др.).

Родословният анализ показва най-често спорадични случаи, а генните дефекти, с малки изключения се предават автозомно-рецесивно или X-рецесивно. Сред родствениците на болните може да се наблюдава повишена честота на авто-имунни и атопични заболявания. Друга особеност на тези ИД е, че при някои форми, като синдрома на Вискот-Олдрич, Брутон, атаксия-телеангиектазия, болните имат повишен риск да развият злокачествени онкохематологични заболявания. Диагностиката на имунодефицитите е изключително лабораторна, тъй като клиничната симптоматика при отделните синдроми е сходна.

Познати са три основни групи ИД: засягащи специфичния имунен отговор, фагоцитозата и системата на комплемента. Първите от своя страна могат да бъдат комбинирани (КИД) и с предимно засягане на хуморалния отговор.

36.1. Комбинирани имунодефицити (КИД)

Групата е хетерогенна, като до сега са известни редица добре дефинирани форми. Част от тях се представят като тежки комбинирани имунодефицити (ТКИД), при които се засягат ранните етапи на диференциация на Т и В лимфоцитите (Табл. 36.1.). Техният брой може да бъде значително намален, както и продукцията на антителата. Известни са два типа ТКИД: тип (Т-В-) със значимо намаление на двата вида лимфоцити и тип (Т-В+), при който В лимфоцитите могат да бъдат нормални по брой, но функционално неактивни.

Таблица 36.1. Тежки комбинирани имунодефицити (ТКИД)

	Лимфоцити		Серум	Патогенетичен	Тип на
Заболяване	Т	В	ни Ig	механизъм	унаследя ване
1. <i>ТКИД mun</i> <i>T-B-</i>					
a.RAG1/RAG 2	↓	↓	↓	Дефект на VDJ генната рекомбинация	AP
б.АDА дефицит	1	1	\	Нарушена диференциация на Т и В клетките от лимфотоксични метаболити	AP
в.ДНК PKcs дефицит	1	1	\downarrow	Дефект на рекомбиназа репариращ протеин	AP
2.ТКИД mun T-B+					
а.ЈАК3(тироз инкиназа) дефицит	\	норм ални	↓	Нарушено предаване на сигнал от ILR	AP
б. үс дефицит	↓	норм ални	↓	Дефект на γ веригата на рецепторите за IL-2,4,7,9,15,21	XP
в.IL-7Rα дефицит	↓	норм ални	↓	Дефект на α веригата на IL-7 рецептора	AP
г. CD45 дефицит	\	норм ални	↓	Дефект в CD45	AP

3.ТКИД с нарушена HLA експресия					
а. HLA клас I дефицит б. HLA класII дефицит	↓CD8 ↓CD4	норм ални норм ални	нормал -ни нормал -ни	Мутации в гените-TAP1,TAP2 или TAPBP Мутации в гени, кодиращи транскрипционни фактори (C2TA,RFX5,RFXAP,RFXANK)	AP AP
4.ТКИД при PNP недостатъч ност -пурин нуклеозид фосфорилаза	↓	норм ални	нормал ни или ↓	Нарушена Т клетъчна диференциация от токсични метаболити	AP
5.ТКИД с ZAP-70 дефицит	↓CD8 CD4 норм.	норм ални	нормал ни	Дефицит на ZAP-70 сигнална киназа на комплекса TCR/CD3	AP

36.1.1. ТКИД с недостатъчност на АДА

Това е един от първите идентифицирани ТКИД, срещащ се при около 20-25% от болните в тази подгрупа.

Етииологията му е свързана с мутации в гена, кодиращ ензима аденозин деаминаза (АДА), картиран в хромозома 20q13. Установени са както точкови мутации, така и микроделеции, водещи до нулев алел.

Патогенезата е в пряка зависимост от намалената или липсващата продукция на АДА с последващо нарушение на метаболизма на пурините и метилирането, образуване на токсични метаболити и потискане на Т и В клетъчната пролиферация.

Клиника: Клинично заболяването се характеризира с типичните за КИД тежки инфекции на дихателната система, червата, кожата, започващи в първите месеци след раждането. В редки случаи заболяването може да започне по-късно. Имунологичните изследвания показват значимо и прогресиращо намаление на Т и В лимфоцитите, а също и на серумните имуноглобулини, поради което ИД е в тип Т-В-. Силно намаление до липсваща АДА активност се установява в еритроцитите. Голяма част от болните загиват в първите 1-2 години.

Лечение: Терапията, освен прилагането на подходящи антимикробни средства, включва периодично преливане на еритроцитна маса или ежеседмично въвеждане на пречистен АДА, куплиран с етилен гликол. Това позволява обаче само временно подобряване на пациентите и не е подход за радикално лечение. Висок процент на възстановяване на имунологичните показатели се постига при трансплантиране на костен мозък на НLА идентичен донор. АДА дефицитът е първото генетично заболяване, при което се предприеха клинични опити за генна терапия чрез трансфер на нормален АДА ген в лимфоцити или стволови хемопоетични клетки.

Медико-генетичното консултиране се базира на автозомно-рецесивния тип на унаследява с риск за потомството 25%. Хетерозиготните носители могат да се докажат с висока степен на вероятност чрез изследване АДА активността в еритроцитите, както и чрез изследване на ензимния му полиморфизъм.

Пренаталната диагностика е възможна чрез определяне на АДА във фетални еритроцити, доказване на лимфопения с намален отговор на митогени и индиректен ДНК анализ с използване на полиморфни маркери в информативни семейства.

Други форми на ТКИД

Около 20% от пациентите с ТКИД, тип (Т-В-) имат нормална АДА активност и също автозомно-рецесивен (АР) тип на унаследяване, което показва участието на други генни мутации в етиологията на ТКИД заболяването. При част от тези болни са установени мутации в RAG1 и RAG2 гените, които активират генната рекомбинация и формирането на V-D-J сегментите на TCR и Ід рецепторите. Неправилното рекомбиниране на тези гени в лимфоидните прекурсори с настъпването на делеции в D и J секвенциите нарушава формирането на клетъчните антигенни рецептори и спира диференциацията им. Освен лимфопения, значимо е понижен и Ід синтеза.

Почти половината от всички болни с ТКИД показват X-рецесивно унаследяване и са от тип (T-B+). При тях е налице дефектна Т клетъчна диференциация, докато тази на В клетките е запазена, но те са функционално неактивни. Тази група вероятно също е хетерогенна, като един от отговорните гени, локализиран в Xq13 е открит неотдавна. Той кодира обща γ верига за рецепторите на различни цитокини като IL-2, IL-4, IL-7 и др. Точковите мутации в екзоните и такива, водещи до формиране на ранни стоп-кодони обуславят синтез на аномална верига и липсва сигнал за Т клетъчна диференциация.

При други пациенти с подобен фенотип се установяват мутации, водещи до нарушен синтез на вътреклетъчна тирозин киназа (JAK3), което блокира вътреклетъчното предаване на сигналите от IL рецепторите. Много редки са вариантите на ТКИД с дефицит на CD3 γ , CD8, CD25, CD40, CD40 лиганда и

при дефицит на DOCK8 (инициатор на цитокинезис 8 протеина-протича с хипер IgE и изразена атопия, тежки кожни вирусни и бактериални инфекции и риск за злокачествени заболявания).

Клиничната картина при тези ТКИД в общи линии не показва съществени различия от другите форми.

Терапия на избор е костномозъчната трансплантация.

Медико-генетична консултация се провежда съобразно установения ход на унаследяване, АР или ХР. При ХР форма хетерозиготните носители могат да се докажат чрез неслучайната Х хромозомна инактивация или с полиморфни тясно скачени ДНК маркери. Този подход може да се приложи и за пренатална лиагностика в някои семейства.

36.1.2. КИД при синдрома на Вискот-Олдрич (WAS)

Генетика: Заболяването се унаследява X рецесивно. Етиологията му е свързана с мутации в ген, локализиран в Xp11, кодиращ специфичен протеин (WASP). До сега при болните от този ИД са идентифицирани над 100 различни мутации, основно миссенс и нонсенс тип.

Патогенезата не е напълно изяснена, но има данни, че специфичният протеин взаимодейства с други протеини, свързани с контрола на активния цитоскелет и процеса на актиновата полимеризация. Нарушенията на последната възпрепятстват свързването на повърхностните рецептори за клетъчната активация.

Клиника: Клинично синдромът се характеризира с тромбоцитопения, често изразяваща се с кръвоизливи след раждането, атипична екзема и имунодефицит. Имунологичните изследвания показват прогресиращо намаление на различните Т клетъчни субпопулации, липса на CD43 маркер и понижен синтез на IgM антитела, предимно към полизахаридни бактериални антигени. Често са повишени IgA и IgE. Пациентите са с висока чувствителност към пневмококови инфекции. Наблюдават се както тежки, така и по-леки форми, но до сега няма ясна корелация с типа на намерените мутации. Болните са с повишен риск за развитие на лимфоми и автоимунни заболявания.

Медико-генетична консултация се провежда съобразно XP тип на унаследяване и възможността за доказване на хетерозиготите. При тях също настъпва неслучайна инактивация на X хромозомата, предимно на мутантната.

Пренатална диагностика е възможна, тъй като са известни полиморфни ДНК маркери, тясно скачени с гена.

Имунодефицити на хуморалния отговор

Тази група включва разнообразни ИД, при които се засяга основно диференциацията на В лимфоцитите в по-ранните или по-късните етапи и се характеризира с нарушения в синтеза на антителата. Като група тези ИД са найчести и някои от тях могат да се срещнат и при възрастни. На табл. 36.2 са представени някои от тях с основните им характеристики.

36.2. Агамаглобулинемия тип Брутон

Етиологията на този ИД е свързана с различни, над 130 мутации, точкови или микроделеции на гена (btk), картиран в Xq21.3. Той нормално контролира синтеза на специфична тирозин-киназа (btk), твърде близка до scr цитоплазмените протеин кинази. Локализацията на гена в X хромозомата определя XP тип на унаследяване.

Патогенезата на заболяването включва ранно блокиране на В клетъчната диференциация на стадий пре-В лимфоцити, поради невъзможност за предаване на сигнал от клетъчния рецептор чрез btk. В много случаи е нарушена VH генната рекомбинация с образуването на скъсени D-J генни сегменти.

Клинично заболяването се проявява най-често след 6-тия месец, когато се изчерпват трансплацентарно предадените майчини IgG. Рецидивиращите инфекции са основно бактериални: на дихателната система, отити, септични артрити и др.

Таблица 36.2. Имунодефицити на хуморалния отговор

Заболяване	В лимфо- цити	Серумни Ig	Патогенетичен механизъм	Тип на унаследя- ване
1.Агамаглобулин е-мия а. Вtk дефицит (тип Брутон)	↓	↓ (от всички класове)	Мутации в гена ВТК (тирозинкин аза)-за предаване на сигнал от рецептора; блокирана на ниво пре-В клетъчна диференциация	XP

б.Дефицит на µ тежката верига за IgM	1	↓ (от всички класове)	Мутации в гена CH за IgM; блокирана на ниво пре-В клетъчна дифе- ренциация	AP
2.Селективни имунодефицити на отделни класове Ig				
а.селективен IgA дефицит	Нормал- ни	↓ IgA	Нарушена крайната диференциация на В лимфоцитите	Вариабилен (АР, АД, спорадично)
б.селективен дефицит на IgG подкласове	Нормал- ни	↓IgG подкласове най-често при деца ↓ IgG2; при възрастни;↓ IgG4	Нарушено изотипно прев- ключване на Ig	Вариабилен (АР, АД, спорадично)
3.Чест вариабилен имунодефицит(C VID)	Нормал- ни	↓IgG и ↓IgA ↓IgM или нормален	Нарушена клетъчна диференциация и Ід секреция Генетично хетерогенен.	AP
4.Хипер IgM синдром				
а.CD40L дефицит	Има само В клетки с мембран ни IgM и IgD	↓IgG, ↓IgA ↑IgM	Мутации в гена CD40(TNFSF5) Нарушен синтез на лиганда CD40 и блокирано	XP

			изотипно Ig превключване	
б.CD40 дефицит	Има само В клетки с	↓IgG, ↓IgA ↑IgM	Мутации в гена CD40L(TNFRSF 5)	AP
	мембран ни IgM и IgD		Нарушено изо- типно превключ- ване на Ig	

Клетъчно медиираният отговор е запазен, поради което няма проблеми с вирусни инфекции. Показателна е хипоплазията на тонзилите и ретикулярната хиперплазия в лимфните възли.

Характерни имунологични показатели са липсата на зрели В лимфоцити с мембранно експресирани Ig и силно редуциране на плазматичните клетки.

Серумните имуноглобулини от всички изотипове липсват или са изключително ниски, неоткриваеми концентрации.

Болните имат повишен риск за развитие на лимфобластни левкози.

Терапия чрез периодично вливане на гамаглобулин позволява само временно подобрение на състоянието, но крие опасност от настъпване на вторични имунни усложнения.

Медико-генетична консултация съответства на XP тип на унаследяване с 50% риск за момчетата. Хетерозиготните носителки могат да се докажат благодарение на неслучайната X хромозомна инактивация, като в В клетките е активна само нормалната X хромозома. Тъй като са известни тясно скачени ДНК маркери до гена за пренатална диагностика може да се приложи индиректен ДНК анализ. Директен ДНК анализ е възможен при предварително доказана вътрегенна делеция.

Съвсем наскоро беше установен автозомно-рецесивен вариант на агамагло-булинемия при момичета, като резултат на мутация в C_H гена за тежката верига на IgM. Това нарушава мембранната експресия на IgM и по-нататъшната диференциация на B лимфоцитите. Той трябва да се има предвид в диференциално-диагностичен план с агамаглобулинемия тип Брутон.

Други изключително редки АР форми на имунодефицити с намаление на всички изотипове имуноглобулини и предразположеност към тежки бакте-

риални инфекции включват: λ5 дефицита(мутации в гена IGLL1, дефицит на Igα, дефицит на Igβ и BLNK дефицит).

Селективен IgA имунодефицит

Този имунодефицит е пример за нарушение в терминалната диференциация на В лимфоцитите и е един от най-често срещаните, честота 1/500-1/700.

Генетика: Генетичната природа на дефекта не е изяснена и вероятно се касае за сборна група дефекти. При някои пациенти се установява положителна асоциация с HLA хаплотип – A1, B8, DR3, при други делеция или нулев алел в гените за комплемента – C2 и C4A, локализирани в HLA генната фамилия. Такъв дефицит е описан и при някои пациенти с 18р-хромозомна делеция. Това предполага наличието на различни контролиращи генни локуси, мутации в които водят до намален синтез или секретиране на IgA или блокиране диференциацията на IgA плазматичните клетки.

Клинично характерни са бактериалните инфекции на дихателната система, интестинални инфекции, отити, синуити и други инфекции на лигавиците. Болните са с предразположение да развият атопични и автоимунни заболявания. От имунологичните показатели водещи са липсата или ниското ниво на серумния и секреторния IgA. Броят на Т и В лимфоцитите обикновено е нормален, макар че голяма част от В лимфоцитите с мембранно експресиран IgA, проявяват също IgM и IgD, които маркери са характерни за по-ранните етапи на развитието на В лимфоцитите.

Лечение: Заместващата терапия с имуноглобулин крие опасност от изработване на анти IgA антитела.

Чест вариабилен имунодефицит(CVID)

Групата е извънредно хетерогенна и се характеризира с хипогамаглобулинемия и нарушен синтез на антитела към различни антигени.

Генетика: известни са варианти на заболяването от CVID1 до CVID10. Дължат се съответно на мутации в гените: ICOS, TACI, CD19, BAFFR, CD81, CD21, LRBA, PRKCD и NFKB2. Унаследяването е AP, като в 10-20% от пациентите имат фамилна история за повтарящи се инфекции. Общата честота е между 1:10,000 и 1:100,000.

Клинично се проявява най-често с рецидивиращи бактериални респираторни и гастроинтестинални инфекции, обикновено след 10-годишна възраст. Началото на инфекциите може да бъде във всяка възраст, но се наблюдават два пика – през първото и третото десетилетие.

Лечение: възможно заместваща терапия при част от случаите.

Имунодефицити на фагоцитозата

Тази група неспецифични ИД също е значително хетерогенна. Познати са дефекти на адхезията, химиотаксиса и вътреклетъчното убиване на фагираните микроорганизми. Сравнително добре са изяснени някои от дефектите на бактерицидните системи на фагоцитите.

36.3. Хронична грануломатозна болест (ХГБ)

Този ИД е класически пример за дефект във вътреклетъчното убиване. Дълги години беше известен като X рецесивно заболяване, но в последните години беше установен и при момичета и се доказа генетичната му хетерогенност.

Проучванията при голям брой болни от различни страни показват, че XP форма е с честота около 65-70%, а останалите са AP варианти.

Генетика: До сега са известни и картирани 4 гена, които кодират субединици на сложна мембранно свързана и специфична за гранулоцитите NADPH зависима окислителна система, включваща специфичен цитохром B558 (фиг.). Основната единица, гликопротеин 91 кД се кодира върху X хромозомата (Xp21), а останалите протеини върху различни автозоми – p22 върху 16p24, p47 върху 7q11 и p67 върху хромозома 1q25.

В тези гени са идентифицирани различни мутации – делеции, инсерции, миссенс и нонсенс, както и дефекти в РНК сплайсинга.

 Π атогенезата на заболяването е свързана с невъзможност за активиране на тази сложна ензимна система при липса на някои от посочените компоненти. В резултат не могат да се образуват активни бактерицидни субстанции като H_2O_2 , супероксидни йони и др. Поради това фагираните микроорганизми остават живи и инфекциите се дисеминират и довеждат до сепсис.

Клинично заболяването започва често веднага след раждането с пиодермия, гнойни лимфаденити, рецидивиращи бронхопневмонии, отити и др. Често в резултат на разпространението на инфекциите се развиват дълбоки абцеси в тъканите, в черния дроб и др. В резултат на хроничните инфекции се образуват неспецифични грануломи. Голяма част от болните с тежки варианти на ХГБ загиват до 1-2 години, вследствие на менингит и сепсис. Особено характерно е, че инфекциите се предизвикват само от каталаза (+) микроорганизми – стафилококи, Е. coli, клебсиела, салмонела, гъбички.

Имунологичните изследвания показват нормален Т и В клетъчен имунен отговор с развитие на хипер-Ig в резултат на антигенното дразнене. Показателно за диагнозата е изследването на бактерицидния капацитет на гранулоцитите. Чрез сравнително несложния цитохимичен нитроблу тетразолов тест (НТБ) могат отчетливо да се разграничат болните от здравите, а също така и хетерозиготните носителки, но само при XP форма.

Медико-генетична консултация и определяне на риска за сибсите зависи от типа на унаследяване.

Пренаталната диагностика чрез НБТ теста е възможна чрез изследване на фетална кръв. При предварително доказан тип на мутацията в семейството е възможна и директна ДНК диагностика.

36.4. Дефекти на левкоцитната адхезия(LAD)

Левкоцитните адхезионни протеини са клас мембранно свързани глюкопротеини, познати като интегрини (ITG). Те са хетеродимери от α и β вериги. Познати са 14 различни α и δ вериги. Комбинацията между тях образуват различни интегринови молекули характерни за различен тип клетки.

Генетика: В тази група добре познати дефекти с нарушена левкоцитна адхезия са: LAD1, LAD2 и LAD3. При първия мутациите засягат гена *ITGB2* за β2 интегриновата веригата(CD18 антиген) от мембранно свързания протеин (CD11-CD18) на левкоцитите.

Клиника: Фенотипната изява е вариабилна и най-тежко протича при количество на протеина под 1%. Летален изход настъпва в ранното детство, ако не се приложи костномозъчна трансплантация.. Пациентите показват дефект в началните етапи на фагоцитозата (хемотаксис, адхезия, ендоцитоза) и са предразположени към рецидивиращи инфекции на кожата, лигавиците, периодонтити, перианални абсцеси и фистули, дълбоки възпалителни процеси без образуване на гной, трудно заздравяващи рани, забавяно отделяне на пъпната връв след раждането. Най-чести причинители на инфекциите са стафилококи, грам(-) чревни бактерии, гъбички. При изследване се установява значима левкоцитоза. Доказателство за диагнозата са различни мутации (точкови, делеции, инсерции) в β2 интегриновия ген (картиран на 21-ва хромозома) или липсваща иРНК от гена. Унаследява се автозомно- рецесивно.

При дефекта на левкоцитната адхезия тип 2(LAD2) клиничната картина е подобна на LAD1, но е по-лека и допълнително има изоставане във физическото и умственото развитие. Дължи се на мутации в гена FUCT1 и нарушение на метаболизма на фукозата. Унаследява се автозомно-рецесивно.

Дефектът LAD3 е известен още, като вариант на LAD1(LAD1V). Дължи се на мутации в гена *KINDLIN3*, чиито продукт е вътреклетъчен протеин, взаимодействащ с интегрините в хемопоетичните клетки. Нарушена е адхезията както на левкоцитите, така и на тромбоцитите. Клиничната картина е подобна на LAD1, но има и склонност към кървене (петехии, носни кръвоизливи и такива по лигавиците), подобни на тези при тромбастенията на Glanzmann. Унаследява се автозомно-рецесивно.

36.5. Дефекти в системата на комплемента

Генетика: Познати са генетични дефекти на почти всички компоненти на класическия (С1q, С1r, С1s, С4, С2, С3, С5, С6, С7, С8, С9) и алтернативния (фактор1, фактор H, фактор D, пропердин) път на активиране на комплемента. Всички се унаследяват автозомно-рецесивно с изключение на дефицита на пропердина – ХР. Предразположение към рецидивиращи пиогенни инфекции се наблюдава при дефицит на С1, С3, С2 и С4, като при последните два дефектът се комбинира с лупус-подобен синдром и автоимунни заболявания. Дефицитът на последните компоненти от алтернативния път (С5-С9), както и на пропердина и фактор D предразполага към нейсерийни инфекции. Недостигът на компонентите от алтернативния път- фактор 1 и фактор Н също предразполага към пиогенни инфекции и заболявания с отлагане на имунни комплекси-гломерулонефрити и др. За компонентите от двата пътя на активация на комплемента е характерен широк генетичен полиморфизъм.