Tarea #2 Sistemas Lineales

Jorge Gómez Reus

Índice

1.	Sistema Lineal	1
2.	Ejemplos	2
	2.1. Determinar si el sistema es lineal	2
	2.2 Determinar și el sistema es lineal	3

1. Sistema Lineal

Es aquel que posee le propiedad de superposición: Si una entrada consiste en la suma ponderada de varias señales, entonces la salida es simplemente la suma ponderada (superposición) de las respuestas del sistema a cada una de las señales.

Propiedades:

1. Aditividad:

2. Escalamiento u Homogeniedad

Las dos propiedades que definen un sistema lineal combinadas se conocen como superposición:

■ Tiempo continuo: $ax_1(t) + bx_2(t) \rightarrow ay_1(t) + by_2(t)$

$$y[n] = \sum_{k} = a_k x_k[n] = a_1 x_1[n] + a_2 x_2[n] + a_3 x_3[n] + \dots$$

■ Tiempo Discreto: $ax_1[n] + bx_2[n] \rightarrow ay_1[n] + by_2[n]$

$$y[n] = \sum_{k} = a_k y_k[n] = a_1 y_1[n] + a_2 y_2[n] + a_3 y_3[n] + \dots$$

Una consecuencia directa de la propiedad de superposición es que para sistemas lineales, una entrada que sea cero en todo tiempo da una salida de en todo tiempo.

2. Ejemplos

2.1. Determinar si el sistema es lineal

$$y(t) = t^2 + tx(t) \tag{1}$$

Se consideran dos entradas arbitrarias $x_1(t)$ y $x_2(t)$

$$x_1(t) \to y_1(t) = t^2 + tx_1(t)$$
 (2)

$$x_2(t) \to y_2(t) = t^2 + tx_2(t)$$
 (3)

Sea $x_3(t)$ una combinación lineal de $x_1(t)$ y $x_2(t)$. Esto es:

$$x_3(t) = ax_1(t) + bx_2(t) (4)$$

Sea $y_s(t)$ una combinación lineal de $y_1(t)$ y $y_2(t)$. Esto es:

$$y_s(t) = at^2 + atx_1(t) + bt^2 + btx_2(t)$$
(5)

$$= t^2(a+b) + t(ax_1 + bx_2) (6)$$

Donde a y b son escalares arbitrarios. Si $x_3(t)$ es la entrada a S, entonces la salida correspondiente se expresa como

$$y_3(t) = a(t + tx_1(t)) + b(t^2 + tx_2(t))$$
(7)

$$= at^2 + atx_1(t) + bt^2 + btx_2(t)$$
(8)

$$= t^{2}(a+b) + t(ax_{1}(t) + bx_{2}(t))$$
(9)

Ya que $y_s=y_3$, se concluye que el sistema es lineal

2.2. Determinar si el sistema es lineal

$$y(t) = x^2(t) + tx(t) \tag{1}$$

Se consideran dos entradas arbitrarias $x_1(t)$ y $x_2(t)$

$$x_1(t) \to y_1(t) = x_1^2(t) + tx_1(t)$$
 (2)

$$x_2(t) \to y_2(t) = x_2^2(t) + tx_2(t)$$
 (3)

Sea $x_3(t)$ una combinación lineal de $x_1(t)$ y $x_2(t)$. Esto es:

$$x_3(t) = ax_1(t) + bx_2(t) (4)$$

Sea $y_s(t)$ una combinación lineal de $y_1(t)$ y $y_2(t)$. Esto es:

$$y_s(t) = ax_1^2(t) + atx_1(t) + bx_2^2(t) + btx_2(t)$$
(5)

Donde a y b son escalares arbitrarios. Si $x_3(t)$ es la entrada a S, entonces la salida correspondiente se expresa como

$$x_3(t) \to y_3(t) = x_3^2(t) + tx_3(t)$$
 (6)

$$= (ax_1(t) + bx_2(t))^2 + t(ax_1(t) + bx_2(t))$$
(7)

$$= a^2 x_1^2(t) + b^2 x_2^2(t) + 2abx_1(t)x_2(t) + atx_1(t) + btx_2(t)$$
(8)

Claramente el sistema no es lineal