New Syllabus NESA Questions:

- 1) C
- 2) D
- 3) B
- 4)

Marking guidelines:

Criteria	Marks
 Correctly draws vector arrows to show the directions and relative magnitudes of the linear velocities and centripetal forces 	3
 Correctly draws vector arrows to show the direction of the linear velocities and/or centripetal forces 	2
Provides some relevant information	1

Sample answer:

5)

Marking guidelines (a):

	Criteria	Marks
•	Correctly uses the gradient of the graph to determine the mass of the car	3
•	Provides some correct steps in calculating the mass of the car	2
•	Provides a correct step in calculating the mass of the car	1

From graph, gradient =
$$\frac{3.1-0}{25-2}$$
 = 0.135

$$F = \frac{mv^2}{r}$$

gradient =
$$\frac{F}{v^2} = \frac{m}{r}$$

$$0.135 = \frac{m}{0.25}$$

$$m = 0.25 \times 0.135 = 0.034 \text{ kg}$$

Marking guidelines (b):

Criteria	Marks
Identifies possible errors in the data	4
Outlines how to reduce their effects	4
Identifies possible errors in the data	3
Outlines how to reduce the effect of one source of error in the data	
Identifies possible errors in the data	
OR	2
Outlines how to reduce the effect of one source of error in the data	
Provides some relevant information	1

Sample answer:

The sensor will produce a systematic error if it has not been zeroed or calibrated correctly. The sensor error can be minimised by zeroing it and checking it against a known force such as the force of gravity on a 1-kg mass.

If a manual stopwatch were used to time the rotations, allowing the linear velocity to be calculated using $v = r\omega$, then random errors would arise due to judgement or reaction times. The timing/random error can be minimised by measuring the time for several rotations at a constant ω and then dividing the time by the number of rotations.

2017:

15) B

Question 22 (a)

Criteria	Marks
Provides TWO ways of increasing torque	2
 Provides ONE way of increasing torque 	1

Sample answer:

The torque can be increased by increasing the applied force or by increasing the distance between the nut and the point of the applied force.

2016: 18) C
2015: 14) C
2014: 3) D
2010: 5) D
2009: 2) A

Before 2009 there were no answers given for short answer please use a book like Excel Physics

<u> 2007:</u> 1) A

<u>2006:</u>

2) B

2003: 2) A