315M 无线直接对接锁协议

2014-11-10

一. 特点:

- 1. 直接无线对接,不要中间对接的模块(例如 485 模块,电压模块)
- 2. 可以实现无线开关锁,开锁信息的反馈,反馈的信息包括:开锁者的编号(三位),电池的电量,门锁被撬的报警信息(带防撬开关的锁才有),破门的报警信息(带门磁开关的锁才有)。
- 3. 使用滚动码,不可复制破译。
- 4. 每个用户可以设置自己的无线密码,用于加密通信,可以确保不同用户之间的信息加密。
- 5. 控制器和门锁之间的控制方式可以多对多。
- 6. 采用固定长度的编码,长度固定为 100US.

二. 对硬件的要求

- 1. 必须有 315M 的发射模块,调制模式为 OOK(100% ASK),发射使能直接接到 MCU 的管脚,MCU 能够直接控制 315M RF 信号的发送,也就是说,中间不能经过 2262 之类的编码芯片。
- 2. 必须有 315M 的接收模块,调制模式也是 ASK,当空中有 315M 的信号时,此模块输出高电平,当空中没有 315M 的信号时,此模块输出低电平,电平直接输出到 MCU 的管脚,中间不能经过 2272 之类的解码芯片。接收模块的速率要能达到 5K.

三. 无线密码的设置:

- 1. 无线密码用于保证终端和锁之间的安全通信,双方设定的密码一定要相同才可以通信。
- 2. 锁的无线密码的设置,也就是设置一个以 000000 开头的 14 位密码的过程,后 8 位即是无线密码。步骤如下:
 - (1)在键盘上按下"*"键后,再按"#"键。如果设置了管理用户,锁内语音会报:"请输入管理用户",此时,输入我们设置过的管理用户,语音会报"添加管理用户请按 1",如果没有设置过管理用户,语音会直接报"添加管理用户请按 1".
 - (2)按下按键 1,语音接着会报"请输入三位的用户的编号",此时,我们输入一个三位的自定义的编号。语音会报"请输入要添加的密码,卡,指纹或无线设备",
 - (3)输入一个以 000000 开头的 14 位密码,例如,我们要设置的无线密码是 12345678 的话,我们应该输入"00000012345678+"#",此时,语音会报"请再次输入同一密码"。
 - (4)再次输入同一密码,例如 "00000012345678+"#"" 此时,语音会报"操作成功"
 - (5)连续按"*"键,让设置程序退出来。操作完毕。
- 3. 终端的无线密码的设置,在原代码中修改,把函数 GetRecCode 中的变量 crc 改成想要的密码,如果密码为 12345678,则改成 crc=0x12345678;

四. 数据的发送流程:

五. 数据的接收:

- 1. 由于我们的数据过短,一般发送数据都不是只发送一次数据(发送函数中有一个 入口参数用于决定发送数据的次数)。所以我们的接收时间大于两帧数据则一定可 以从中取出一帧完整的数据。
- 2. 接收函数的过程先是调用函数 RxBit,用于接收来自 315M 接收模块的码流,按位存放:如果接收到一个 100US 的低电平,则写 0 入缓冲区,如果接收到一个 100US 的高电平,则写 1 入缓冲区。RxBit 接收足够多的位后,会自动退出,如果接收过程中没有错误,则函数的返回值是 0 或 1,如果接收过程中出现错误,则返回其它的值。

3. RxBit 函数先是测量来自 315M RF 模块的接收引脚的电平,然后通过分析电平的长短来判断这是一个位来还两个位,再通过分析电平的高低来判断这是 1 还是 0.然后保存它。

4. RxBit 函数的流程图如下:

- 5. 函数 RfRx(u8 *ptr,u8 n),参数 ptr 是接收到的数据存放的缓冲区首地址,而 n 是这个缓冲区的大小,单位是字节,当接收到的数据大于 n 时,函数会返回错误的标志。
- 6. 函数 RfRx,先是调用 RxBit 收取数据位,再作分析,如果函数返回 OK(OK=0),则表示接收成功,如果函数返回 RX_REC_ERROR(RX_REC_ERROR=0X22),则表示无线密码错误。

六. 发射数据的格式:

调用函数 RfTx 发射数据之前,要发射的数据要先存放于 Data 中,格式如下:

内容	TYPE	ID	SNR	CMD	DATA
长度(字节)	1字节	3字节	4 字节	1字节	N 字节
名词解释	设备的类型	设备的ID	通信的流水号	命令码	数据
说明	如果是锁,此	此 ID 用于区别不	用作通信的流水	不同的命令	不同的命令
	值为0XFC,如果	同的设备, 请务必	号,每次发送数	有不同命令	可能带有不
	是 315 终端,	保证两个不同的	据,此值要加一,	码。详见下	同长度的数
	此值应为 0xC0	设备此值不能相	要保证后面的数	表。	据。此长度作
	到 0XCF 中的其	同。	据帧此值要大于		为参数输入
	中一个值。	/	前面的数据值。		函数 RfTx 中。

	命令	1	2	3	4	5	6	7	8	9	20	28
	码		-	Z								
	内容	开	关	查	关	关联设备(发自锁), <mark>如果是</mark>	关联	开	非 法	删除指定用户	门被	某个
	<	锁	锁	询	锁	关联无线设备, DATA 的内容	锁	锁	用户	编号的用户,	撬	编号
	7			/	信	为空,如果是添加了其它的	(发	信		DATA 的内容是	(发	的用
		5			息	用户(不是无线设备), DATA	给	息		用户的编号	自	户被
1						的内容是此用户的编号	锁)				锁)	清空

注:

- 1.开锁, 关锁, 查询, 关联锁, 非法用户 这些命令只有命令码, 无数据
- 2.开锁信息,关锁信息命令除了有命令码外,还有两个字节的数据,此数据内容是用户的编号。开锁信息命令的命令码最低四位为 7,最高位用于表示电池电

- 量,如果为1,则表示低电量,为0表示电量足。次高位用于表示门的状态(要求门锁有门磁开关),为1,则表示门已锁好,为0,则表示门没有锁好
- 3.当锁每添加一个用户时,就会发出一个关联设备的命令,如果是关联无线设备, DATA 的内容为空,如果是添加了其它的用户(不是无线设备),DATA 的内容是此用户的编号。
- 4.非法用户,有一个字节的数据,此数据内容是用户的类形

2	数据	10	14	17
	用户	本	密码	指纹
3	类型			

5.某个编号的用户被清空,有两个字节的数据,此数据内容是被清空的用户,如果所有的用户都被清空,则用户的编号为 **OXEEEE**.

七. 接收数据的格式

当调用完函数 RfRx 成功收到数据后,数据存放于 ptr 中。格式如下:

内容	NUM	LEN	TYPE	ID	SNR	CMD	DATA
长度(字节)	1字节	1字节	1字节	3 字节	4 字节	1字节	N 字节
名词解释	帧号	帧长	设备的类型	设备的 ID	通信的流水号	命令码	数据
说明	表示后面还有 多少帧和此帧 一样的数据, 用于等待数据 的发送完毕	此帧数 据的长 度	同上表	同上表	同上表	同上表	同上表。

八. 关联锁的过程:

- 1. 让锁进入配用户的状态。详见锁说明书。
- 2. 315 终端发送一帧"关联锁"(命令码等于 6)。
- 3. 锁会回一帧"关联设备"(命令码等于5),此时锁语音会报"操作成功"。

九. 代码的修改:

由于范例中所使用的 MCU 是 ATMEL 公司的 AVR 系列,但是客户所用的 MCU 可能不一样,所以,和硬件相关的那部分代码应作相应的改动。

- 1. 发射部分:
- (1) RfTxON():置高 315 发射模块的引脚。
- (2) RfTxOFF();置低 315 发射模块的引脚。
- (3) while(!TMREIF);等待定时器的溢出标志到来。
- (4) ClrTmlf();清定时器的溢出标志。
- (5) TimerOnRf();启动定时器,让定时器循环计数,周期为 100US,每个周期设置一次定时器的溢出标志。
- 2.接收部分:
- (1) TimerOn(MAX_2BIT_TIME);启动定时器,让定时器计数,设定最大定时为 2 个数据位允许的最大时间。定时器是倒计时的。
 - (2) BITC(PIN RECEIVE DATA, RECEIVE DATA);读取 315 接收模块的引脚的电平。
 - (3) TMR=TCNT1;读取定时器的值。
 - (4) TimerOff();关闭定时器。

调试

1. 由于发射部分相对接收部分比较简单,所以先调试发射部分,在发射部分代码编写完成后,我们可以用示波器观察一下315发射模块的控制脚,如果我们看到的只有100US或是200US的脉冲,那么我们编码就有可能

是正确的,可以有其它时间长度的脉冲,则编码有可能是错误的。

2. 锁进入测试模式后,(一般是按一下锁的清空按键有响声后马上放手)一旦收到编码正确的 315 信号就会发出响声,而不管无线密码、设备 ID 和流水号是否正确。

3. 每次开锁,锁都会发出一个包含开锁信息的信号,315 接收模块就会收到一串 100US 或是 200US 的脉冲串,如果在 315 接收模块的输出引脚上观察不到这串脉冲,或是电平的长度不是 100US 或是 200US,则此接收模块可能工作不正常。

