ROLL NO . - 20075107

BRANCH - LSE (B-TECH)

$$\begin{cases} \{v\} = \frac{1}{2h} e^{-|x-M|/h} \\ = \infty < x < \infty ; (h > 0) \end{cases}$$

$$\Rightarrow 86 \text{ find } :- (\text{numulants of the Raplace distribution}) :-$$

$$\text{Cumulant generating function}, \quad K(t) = \text{Int} \left[e^{tX} \right] \text{ future } \\ X = 8 \cdot v \text{ for each of the raplace distribution}$$

$$\text{New}_{1} \quad E\left[e^{tX} \right] = \int_{0}^{\infty} f(v) e^{tv} dv \qquad (v \cdot v = yandam) \\ \text{Substitute of the raplace of the$$

= Mt + (nt)2+ (nt)4+ (nt)6+---

The cumulants can be obtained as - (2)
$$K(t) = \sum_{n=1}^{\infty} K_n \frac{t^n}{n!} = K_1 \frac{t}{1!} + K_2 \frac{t^2}{2!} + K_3 \frac{t^3}{3!} + \cdots \text{ (2)}$$

By comparing the coefficients in ea 0 and eq 0. we get $|K_1 = M|$, $|K_2 = 2h^2|$, $|K_3 = 0|$, $|K_4 = 12h^4|$...

$$K_{2n+1} = D$$
 $N = 1, 2, 3...$
 $K_{2n} = (2n)! \quad h$
 $N = 1, 2, 3, ...$
 $N = 1, 2, 3, ...$

Ige
$$y$$
 in y = y =

$$f_{y|x}(y|x) = f_{x,y}(y|y) = \begin{cases} \frac{(y+y)}{(y+1/2)} \\ 0 \end{cases}$$
; $0 \le y \le y \le 1$

$$E(X|Y = Y) = \int_{-\infty}^{\infty} \pi \cdot f_{X|Y}(x|y) dx$$

$$= \int_{-\infty}^{\infty} \pi \cdot f_{X|Y}(x|y) dx$$

$$= \int_{-\infty}^{\infty} \pi \cdot f_{X|Y}(x|y) dx + \int_{-\infty}^{\infty} \pi \cdot f_{X|Y}(x|y) dx$$

$$= \left(\frac{x^3}{3} + \frac{x^2}{4} + \frac{y}{2}\right) \Big|_{x=0}^{x=0} = \left(\frac{y^3}{3} + \frac{y^2}{4} + \frac{y}{2}\right)$$

$$E(X|Y=Y) = 3y+2 3(2y+1)$$

(b) CONDITIONAL EXPECTATION OF Y GIVEN X:

$$E(Y|X=n) = \int_{-\infty}^{\infty} y \cdot f_{Y|X}(y|x) \cdot dy$$

$$= \int_{-\infty}^{\infty} y \cdot o \cdot dy + \int_{0}^{\infty} y \cdot \frac{(x+y)}{x+1/2} dy + \int_{0}^{\infty} y \cdot o \cdot dy$$

$$= \frac{y^{3}|_{3} + xy^{2}|_{2}}{x+1/2} \Big|_{y=0}^{1} = \frac{(y_{3} + x_{1}|_{2})}{z+1/2}$$

$$E(Y|X=n) = \frac{2+3n}{3(2n+1)}$$

$$E(X|Y = Y) = \frac{3y+2}{3(2y+1)}$$

$$E(Y|X = X) = \frac{3x+2}{3(2x+1)}$$

$$= \frac{3x+2}{3(2x+1)}$$

[93.] Ginen: - X and Y are independent binomial variates (5)

B(n₁, p) and B(n₂, p) suspertively

Prome that :- Their sum U= X+V is a binomial B(n₁+n₂, p)

PROOF: - For a Binomial Distribution B(n,p), the moment generating function (MGF) is

 $M(1) = E(e^{tn})$ $= \sum_{s=0}^{\infty} e^{ts} n_{C_s} p^{n} (1-p)^{n-s}$ $= \sum_{s=0}^{\infty} n_{C_s} (pe^{t})^{n} (1-p)^{n-s}$ $= [(1-p) + pe^{t}]^{n} = [p(e^{t-1}) + 1]^{n}$

Thursen, $M_{\mathbf{x}}(t) = (p(e^{t-1}) + 1)^{m_1}$ and $M_{\mathbf{y}}(t) = (p(e^{t-1}) + 1)^{m_2}$ Brine, \mathbf{x} and \mathbf{y} are independent random variables.

:. MGF for U = X + Y, $I\hat{S}$ $MU(t) = M_{X+Y}(t) = M_{X}[t] \cdot M_{Y}[t]$ $= (p(e^{t}-1)+1)^{m_{1}} \cdot (p(e^{t}-1)+1)^{m_{2}}$ $= (p(e^{t}-1)+1)^{m_{1}+m_{2}}$

Thus, the MGF (manual generating function) for U=x+y is that of Birronnial distribution with parameters (n_1+n_2,p) Thurfull, $U=x+y \sim B(n_1+n_2,p)$

Promed

$$f(x) = \begin{cases} e^{-x/2} (x/2)^{\frac{n}{2}-1} \\ \frac{2\Gamma(n/2)}{2} \end{cases}, x > 0$$

Characteristic function :-

$$X(t) = E(e^{itx})$$

$$= \int_{\infty}^{\infty} e^{itx} f(n) dx = \int_{\infty}^{\infty} e^{itn} dn dx + \int_{\infty}^{\infty} e^{itn} e^{-n/2} (\frac{\pi}{2})^{\frac{n-1}{2}} dn$$

$$= \int_{\infty}^{\infty} e^{itx} f(n) dx = \int_{\infty}^{\infty} e^{itn} dn dx + \int_{\infty}^{\infty} e^{itn} e^{-n/2} (\frac{\pi}{2})^{\frac{n-1}{2}} dn$$

$$= \int_{\infty}^{\infty} e^{itn} f(n) dx = \int_{\infty}^{\infty} e^{itn} dn dx + \int_{\infty}^{\infty} e^{itn} e^{-n/2} dn dx$$

$$= \int_{\infty}^{\infty} e^{itn} f(n) dx = \int_{\infty}^{\infty} e^{itn} dn dx + \int_{\infty}^{\infty} e^{itn} e^{-n/2} dn dx$$

$$= \int_{\infty}^{\infty} e^{itn} f(n) dx = \int_{\infty}^{\infty} e^{itn} dn dx + \int_{\infty}^{\infty} e^{itn} e^{-n/2} dn dx$$

$$= \int_{\infty}^{\infty} e^{itn} f(n) dx = \int_{\infty}^{\infty} e^{itn} dn dx + \int_{\infty}^{\infty} e^{itn} dn dx + \int_{\infty}^{\infty} e^{-n/2} dn dx$$

$$= \int_{\infty}^{\infty} e^{itn} f(n) dx + \int_{\infty}^{\infty} e^{-n/2} dn dx + \int_{\infty}^{\infty} e^{-$$

Now, Marrient of Kth order
$$\chi_{k} = \frac{1}{2} \times \frac{1}{2} \times$$

We know :=
$$\frac{m \cdot am}{\sqrt{amainu}} = \alpha_1 = \frac{\pi}{\sqrt{1 - 1}}$$

Varianu = $\alpha_2 - \alpha_1^2 = n(n+2) - n^2 = (2n)$

wody $\Rightarrow f'(n) = 0$

$$\frac{e^{-n/2} \cdot (n/2)^{\frac{n}{2}-1}}{2\Gamma(n/2)} + (\frac{n}{2}-1) \cdot e^{-n/2} \cdot (\frac{n}{2}-1)^{\frac{n}{2}-1} = 0$$
 $\Rightarrow e^{-n/2} \cdot (\frac{n}{2})^{\frac{n}{2}-2} \cdot (\frac{n}{2}-1) \cdot e^{-n/2} \cdot (\frac{n}{2}-1) \cdot e^{-n/2}$

$$\Rightarrow e^{-n/2} \cdot (\frac{n}{2})^{\frac{n}{2}-2} \cdot (\frac{n}{2}-1) \cdot e^{-n/2} \cdot (\frac{n}{2}-1) \cdot e^{-n/2}$$

$$\frac{1}{n^{2}} + \frac{n}{2} - 1 = 0$$

$$(n = n - 2)$$

$$\Rightarrow Mode = n - 2$$

Mun=
$$\frac{n}{2n}$$

Vounainu = $\frac{2n}{n-2}$

Modi = $\frac{n-2}{n-2}$

quies :- x1, x2, ..., xn are mutually independent. (8) 85. X1 ~ N (011) 1 = 1,21 ... M Show that: - X12+ X2+ -.. + Xu2 supresents a X2 distribution miles n-digner of fundam > X1, X2, ..., Xn are mutually independent sanders vasiables X1°~ N(011) =1,2,...4 ." - 1 x; 2 ~ Γ (1/2) Gamma (1/2) distribution, 1=1,2,-1 fxi(x) = 1 e - 1/2 {Xi~ N(0,1), - 0 < 4 < 00} for Y: = 1 x12 dy = x for 0< 2< 00, (y is momotonic) By Transformation of random vaniable, $f_{Y_i}(y) = \left| \frac{dx}{dy} \right| f_{Y_i}(x) = \frac{1}{2\pi i} \cdot e^{-x^2/2}$ = 1 · 1 · e · y = $\frac{1}{2} \cdot \frac{e^{-\frac{1}{2}}}{\Gamma(1|2)} = \frac{1}{\sqrt{12}}$ New, fx; (x) is symmetric about n=0, Thurson du to symmetrally fx, (y) = 2.1. egy'12-1 fx,14) = e-y 1/2-1 , ocy 200 > Y~ \(\((1/2)\) distribution. Now, Birle & Xi2N [(1/2) , 1=1,2,3,--4.

Naw, Bind $\frac{1}{2} \times_{1}^{2} \times_{1}^$

{ ×~ Γ(m) , Y~ Γ(n) } ≥ ×+ y ~ Γ(m+n) of xv r(n/2) variate, then Y=2x is X2 distribution @

$$\therefore \quad \partial \stackrel{\sim}{Z} \stackrel{1}{=} \stackrel{1}{=} \chi_i^2 \sim \chi^2(n) \quad \Rightarrow \quad \stackrel{\sim}{\Xi} \chi_i^{*2} \sim \chi^2(n)$$

$$f(y) = \begin{cases} e^{-\chi} & y/2 - 1 \\ \hline \Gamma(y/2) \end{cases}$$

$$0 \leq y \leq \infty$$

By Fransformation of random Variables,

$$f_{Y}(y) = \left| \frac{dy}{dy} \right| f_{X}(y) = \frac{1}{2} \cdot \frac{e^{-y} \cdot x^{n/2-1}}{\Gamma(n|2)}, o(x < \infty)$$

$$= \frac{1}{2} \cdot \frac{e^{-y/2} \cdot (y/2)^{n/2-1}}{\Gamma(n|2)}, o(y < \infty)$$

Aut X1, X2, X3, Xn be independent and identically distributed vandom variables such that all of them have the same mean (M) and standard deviation (o) that is \rightarrow (Xin N(N, o); i=1,2,..., n)

New,

CENTRAL LIMIT THEOREM States that for $S_n = x_1 + x_2 + \cdots + x_n = \sum_{i=1}^n x_i^n \sim N\left(n\mu_i, \sigma + \overline{n}\right)$

By standardization, $\frac{5n-nM}{8\sqrt{n}} \sim N(0,1)$ [Standard Normal Distribution] $\frac{5n-M}{8\sqrt{n}} \sim N(0,1)$

Let \overline{X}_n be a nandom vaniable denoting anunage | man of x_i $\overline{X}_n = \underbrace{X_1 + X_2 + \dots + X_n}_{n} = \underbrace{\sum_{i=1}^n X_i^i}_{n} = \underbrace{\left(\frac{5n}{n}\right)}_{n}$

Xn-M ~ N(DII) as M > 00

> XNN(MIG)

⇒ as (n) gets large (or as n→00), Xn appoinate much like a Normal dispribution with mean M and smaller variance of 15 i.e. as n→∞ 1 ×n→M.

Therefore, Central limit Theorem implies law of large Number Theorem.

Let \overline{X}_n be the nandom variable denoting mean of n random variables $\overline{X}_n = \underbrace{X_1 + X_2 + \cdots + X_N}_N$

Kan of Karge Numbers states that as a increases (or $n \to \infty$) $\times_n \to M$.

but this downst anything about the distribution of Xn.

i. Varu of Karge Numbers during imply

Lentral kimit Theorem,

(2) To wrify: mueture sample variance is an

Otherwise dative the unbiased estimate of population

variane

> For independent and identically distributed sandom variables X1, X2, ..., Xn each with mean M and

Variance J^{\perp} : $E(x_i) = M$ $\delta^2 = E(x_i^2) - (E(x_i))^2 \qquad (i^2 = 1_1 2_1 3_1 - i_1 4_1)$ $\delta^2 = E(x_i^2) - M^2$

E(x12) = 82+ M2

According to central kimit Theorem:

X~N(M, 5) where X is sandom variable form

:. E(X)= M

Vaniance $(\bar{x}) = \delta^2$ (using above entation)

 $E(X^2) = \sqrt{2 + M^2}$

Now, Bample Variance is

 $\xi^2 = \pm \sum_{n} (x_i - \overline{x})^2$ (summation limits are from i = 1 to i)

= 1 2 (x12) - 1 2 x Exi+ 1 - 4 x 2

 $= \frac{1}{n} \left(\Sigma (Xi^2) - 2\overline{X} (n\overline{X}) + n\overline{X}^2 \right) \qquad \left(\overline{X} = \Sigma \frac{Xi}{n} \right)$

 $= \frac{1}{n} \left(\sum (x_i^2) - n \overline{x}^2 \right)$

 $E(\xi^2) = E\left(\frac{1}{n}\left(\sum(xi^2) - n\bar{x}^2\right)\right)$

= # [EE(xi2) - E(nx2)]

= $\frac{1}{n} \left[\sum E(xi^2) - nE(\overline{x}^2) \right]$

 $= \frac{1}{N} \left[N\delta^2 + NM^2 - \delta^2 - NM^2 \right] = (N-1)/N \cdot \delta^2$

Henre, \$2 is a consistent estimator of 52 mit is (3) hinsed to 82 as $E(5^2) - 8^2 \times 0$

Thurson, if we calculate 5^2 using (n-1) as denominator i.e. $5^2 = \frac{\sum (x_1^2 - \bar{x})^2}{n-1}$

$$E(s^{2}) = E\left(\frac{\Sigma(x_{1}-\overline{x})^{2}}{N-1}\right) = E\left(\frac{N}{N-1} \cdot \frac{\Sigma(x_{1}-\overline{x})^{2}}{N}\right)$$

$$= \frac{N}{N-1} E\left(\frac{\Sigma(x_{1}-\overline{x})^{2}}{N}\right) = \frac{N}{N-1} \cdot \frac{N}{N} \cdot \delta^{2} = \delta^{2}$$

is $S^2 = \frac{\sum (x_1^2 - \overline{x})^2}{n-1}$ is a good consistent estimator of S^2 and is unbiased estimate of S^2 .

$$\Rightarrow t = (\overline{x} - m) \cdot \overline{m} = (\overline{x} - m)$$

$$t = \sqrt{x - m} \cdot \sqrt{x \cdot (\overline{x})} = \sqrt{x^2} \cdot \sqrt{x}$$

$$t = \sqrt{x - m} \cdot \sqrt{x \cdot (\overline{x})} = \sqrt{x^2} \cdot \sqrt{x}$$

$$t = \sqrt{x - m} \cdot \sqrt{x \cdot (\overline{x})} = \sqrt{x^2} \cdot \sqrt{x}$$

$$t = \sqrt{x - m} \cdot \sqrt{x \cdot (\overline{x})} = \sqrt{x^2} \cdot \sqrt{x}$$

$$t = \sqrt{x - m} \cdot \sqrt{x \cdot (\overline{x})} = \sqrt{x^2} \cdot \sqrt{x}$$

$$t = \sqrt{x - m} \cdot \sqrt{x \cdot (\overline{x})} = \sqrt{x^2} \cdot \sqrt{x}$$

$$t = \sqrt{x - m} \cdot \sqrt{x \cdot (\overline{x})} = \sqrt{x \cdot m}$$

$$t = \sqrt{x - m} \cdot \sqrt{x \cdot (\overline{x})} = \sqrt{x \cdot m}$$

$$\begin{split} \Xi(x_{i}-m)^{2} &= \Xi((x_{i}-\overline{x})+(\overline{x}-m))^{2} \quad \text{wints from } i=1 \pm 0 \text{ m.} \\ &= \Xi(x_{i}-\overline{x})^{2}+2\Xi(x_{i}-\overline{x})(\overline{x}-m)+\Xi(\overline{x}-m)^{2} \\ &= \Xi(x_{i}-\overline{x})^{2}+0+n(\overline{x}-m)^{2} \quad \{\circ\circ \Xi(x_{i}-\overline{x})=0\} \\ &= \Xi(x_{i}^{\circ}-\overline{x})^{2}+n(\overline{x}-m)^{2} \end{split}$$

Dividing by
$$\delta^2$$
,
$$\Xi\left(\frac{x_i-m}{\delta}\right)^2 = \Xi\left(\frac{x_i-x}{\delta}\right)^2 + \left(\frac{x-m}{\delta\sqrt{\sqrt{n}}}\right)^2$$

$$\Rightarrow \begin{array}{c} x_{1}^{2} \sim N(m_{1} \sigma) \\ \Rightarrow \begin{array}{c} x_{1}^{2} - m = N(0_{1}) \\ \Rightarrow \end{array} \\ \Rightarrow \begin{array}{c} \sum_{n=1}^{\infty} \sum_{n=1}^{$$

$$= \frac{(n-1)}{\sigma^2} \cdot \frac{1}{n-1} \sum_{n=1}^{\infty} \left(\frac{x_1 - x_2}{x_1 - x_2} \right)^2 \qquad \Rightarrow \qquad \frac{x-m}{\sigma/\sqrt{3n}} \sqrt{x} \sqrt{x}$$

$$= \frac{(n-1)}{\sigma^2} \cdot \frac{1}{n-1} \sum_{n=1}^{\infty} \left(\frac{x_1 - x_2}{x_1 - x_2} \right)^2 \sqrt{x} \sqrt{x}$$

$$U = V + W \qquad \text{where} \qquad U \sim \chi^{2}(n)$$

$$V = (n-1)5^{2}$$

$$W \sim \chi^{2}(1)$$

$$\frac{1}{(1-2t)^{N/2}} = M_{v}(t). \frac{1}{(1-2t)^{V_2}}$$

$$M_{\vee}(t) = \frac{1}{(1-2t)^{\frac{n-1}{2}}} \Rightarrow \boxed{\vee \vee \chi^{2}(m-1)}$$

" X~ N (m, 8/12)

(1 degree of freedom)

Thurson from purious proof, (M-1)52 ~ x2(m-1) Nuw, $t = \frac{U}{5/8} = \frac{U}{(n-1)5^2} = \frac{U}{\chi^2/(n-1)}$ where $\chi^2 = (\frac{n-1}{5^2}) = \frac{V}{\chi^2/(n-1)}$ distribute and X ~ N (m, 8) > " (UN N(0,1)) > t = Noumal Distribution (0,1) Thi-square distribution with (n-1) degree of freedom . t v t-distribution with (n-1) degree of feurdonn $\begin{cases} t = \frac{U}{\sqrt{\chi^2/(n-1)}} \rightarrow t^2 = \frac{U^2}{\chi^2/(n-1)} \end{cases}$ $\frac{t^{2}}{n-1} = \frac{1/2}{1/2} \frac{V^{2}}{\chi^{2}} = \frac{Gamma(1/2) \Gamma(1/2)}{Gamma(n-1/2) \Gamma(n-1/2)} = \beta_{2}(1/2, n-1/2)$

Now, f(t) at = F'(t) at = dF(t)

 $^{\circ}_{\circ}$ dF = f(t). dt = $(t^2/n-1)^{1/2-1}$ $\beta(1/2, \frac{n-1}{2}) \cdot (1+t^2/n-1)^{n/2} \cdot \frac{2t}{(n-1)} \cdot dt$

(01 +2 ×00) $df = \frac{2}{\sqrt{n-1} \cdot \beta(\frac{1}{2}, \frac{n-1}{2}) (1 + \frac{t^2}{n-1})^{n/2}} dt$, (0< +2<0)

 $dF = \frac{dt}{\sqrt{n-1} \beta(\frac{1}{2}, \frac{n-1}{2})(1 + \frac{1}{n-1})^{n/2}}$, (axt < 00)

 $f(t) = \left(\sqrt{1 - 1} \cdot \beta(\frac{1}{2}, \frac{n-1}{2}) \cdot \left(1 + \frac{1}{n-1} \right) \frac{n}{2} \right)^{-1}$, $-\infty < t < \infty$

> tot distribution with (n-1) degree of fundam.

$$\frac{\sqrt{(x,0)}}{\sqrt{(x,0)}} = \frac{x^{p-1} \cdot e^{-x/0}}{\sqrt{(p)}}$$

The likelihood function is

$$L(x_{1},x_{2},x_{3},...,x_{n}) = f(x = x_{1},0) \cdot f(x = x_{2},0) \cdot ... \cdot f(x = x_{n},0)$$

$$= \frac{(x_{1},x_{2},...,x_{n})}{(pp)^{n} \cdot (r(p))^{n}}$$

$$= \frac{n}{x_{1}^{n} p^{-1} \cdot e^{-\frac{n}{1-1}} x_{1}^{n} p^{-1} \cdot e^{-\frac{n}{1-1}} x_{1}^{n} p^{-1}}$$

$$= \frac{n}{p^{n} p \cdot (r(p))^{n}}$$

For maximum likelihood estimate, me mill maximize ln L, (:: L>0)

$$\frac{\partial}{\partial \theta} (\ln L) : -\frac{\partial}{\partial \theta} ($$

Since x is a good and consistent and unbiased estimate of population mean.

estimate.

$$P(x-i') = \frac{1}{1+M} \left(\frac{M}{1+M} \right)^{i}, \quad M > 0 \quad \text{for } i = 0,1,2,\dots$$

The likelihood function is -

$$L(x_0, x_1, x_2, \dots, x_n) = P(x = x_0), P(x = x_1), P(x = x_2), \dots, P(x = x_n)$$

$$= \frac{1}{(1+M)} \min_{M \in \mathcal{M}} \frac{M}{(1+M)} \frac{X_0 + X_1 + X_2 + \dots + X_n}{(1+M)}$$

$$= \frac{1}{(1+M)} \min_{M \in \mathcal{M}} \frac{X_1}{(1+M)} \frac{X_1}{(1+M)}$$

For maximum likelihood estimate, we will maximise en L

$$\frac{\partial}{\partial \mu} \left(\ln L \right) = 0 \qquad (\circ: L>0)$$

$$\frac{\partial}{\partial \mu} \left(\ln \left[\frac{M}{(1+M)} \sum_{x_1'+n+1} \right] \right) = 0 \qquad \rightarrow \frac{2}{\partial \mu} \left(\ln \left[\frac{M}{(1+M)} \sum_{x_1'+n+1} \right] \right) = 0$$

$$\frac{\partial}{\partial \mu} \left[\sum_{x_1'} \sum_{x_1'} \ln \mu - \left(\sum_{x_1'+n+1} \ln \left(1+\mu \right) \right) \right] = 0$$

$$\frac{\sum_{x_1'}}{M} - \frac{\sum_{x_1'} + \mu + 1}{1+\mu} = 0$$

$$\frac{\overline{X}}{M} - \frac{\overline{X} + 1}{1+\mu} = 0$$

$$\overline{X} \left(1+\mu \right) = \left(\overline{X} + 1 \right) \mu \qquad \Rightarrow \left(\overline{X} = \mu \right)$$

$$\widehat{\mu} = \overline{X}$$

Bunce \overline{x} is an unbiased and consistent estimate of mean parameter M.