Selected Topics in ChIP-seq data analysis

Tamás Schauer

03.03.2021

Overview

- Introduction
- ► ChIP-seq Coverage
- Normalization Methods
- Peak Overlaps
- ► Statistical Analysis

Source: https://github.com/tschauer/ChIPseq_Talk

Introduction

Peter J. Park, 2009

Introduction

Nature Reviews | Genetics

Peter J. Park, 2009

Overview

- Introduction
- ► ChIP-seq Coverage
- Normalization Methods
- ▶ Peak Overlaps
- Statistical Analysis

ChIP Coverage

Catherine Regnard

ChIP Coverage

Alessandro Scacchetti

ChIP Coverage

Andrea Lukacs

Overview

- Introduction
- ChIP-seq Coverage
- Normalization Methods
- Peak Overlaps
- Statistical Analysis

ChIP-seq Normalization

- ▶ **Sub-sampling**: random selection of certain number of reads
- ► Counts Per Million (CPM): divide by the total number reads
- Background: remove compostional bias
- ▶ Spike-In: add constant amount of foreign chromatin

Background Normalization

- ▶ use large bins (10 kb)
- ► TMM trimmed mean of M-values
- trim away extreme values
- Bioconductor: csaw package (Lun and Smyth)

Background Normalization

Background Normalization

- ► Spike-In chromatin:
 - synthetic
 - different species
- ▶ Cell number and chromatin amounts have to be constant!
- ► Apply CPM or BG normalization on Spike-In reads

- ▶ When to use Spike-Ins?
 - global effect
 - effect has to be larger than variability
 - more replicates might be required

Overview

- Introduction
- ► ChIP-seq Coverage
- Normalization Methods
- ▶ Peak Overlaps
- Statistical Analysis

overlap counting rules

reviewers question: is this significant?

▶ 2x2 contingency table

H2Av / H3K36me3	Yes	No
Yes	1957	1784
No	1899	NA

- what should be the number of unbound regions?
- use gene-based approach (unbound genes)?
- ► formula?

$$n = \frac{\textit{GenomeSize} * (\textit{Fraction}_{\textit{coding}} + \textit{Fraction}_{\textit{regulatory}})}{(2 * \textit{PeakWidth})}$$

H2Av / H3K36me3	Yes	No
Yes	1957	1784
No	1899	8966

Odds Ratio 95% CI = 4.77 - 5.62

Fisher's exact test p-value < 2.2 e-16

► What is wrong here?

H2Av / H3K36me3	Yes	No
Yes	1957	1784
No	1899	2000

Odds Ratio 95% CI = 1.06 - 1.27

Fisher's exact test p-value < 1.7 e- 03

► What is wrong here?

- Fisher's exact test
 - ▶ hard to interpret such p-values
 - p-value is highly dependent on 'N'
 - main problem: 'N' is number of peaks
 - peaks are likely not independent
 - no information about replicates

NOT recommended

► Jaccard Similarity Index

$$\textit{Jaccard} = \frac{\textit{Length}_{\textit{intersect}}}{\textit{Length}_{\textit{set1}} + \textit{Length}_{\textit{set2}} - \textit{Length}_{\textit{intersect}}} = \frac{\textit{Length}_{\textit{intersect}}}{\textit{Length}_{\textit{union}}}$$

▶ Value: 0 - 1

Example: 0.69

H3K36me3 vs H2Av vs HP1

Overview

- Introduction
- ► ChIP-seq Coverage
- Normalization Methods
- Peak Overlaps
- Statistical Analysis

reviewers question: is this significant?

What is wrong here?

- Wilcoxon rank sum test
 - ► What is N?

$$N_{class1} = 230, N_{class2} = 2067$$

- peaks are likely not independent
- no replicate information!

► NOT recommended

linear mixed effect model

Acknowledgements

- **▶** BMC, Bioinformatics
 - ► Tobias Straub
- ► BMC, Molecular Biology
 - Alessandro Scacchetti
 - Andrea Lukacs
 - Catherine Regnard

