

Fast Recovery Epitaxial Diode (FRED)

DSEI 120

 $I_{FAVM} = 126 A$

 $V_{RRM} = 600 V$

 $t_{rr} = 35 \text{ ns}$

600	600	DSEI 120-06A	
V	V		
\mathbf{V}_{RSM}	\mathbf{V}_{RRM}	Туре	

A = Anode, C = Cathode

Symbol	Test Conditions	Maximum	Ratings
I _{FRMS} I _{FAVM} ① I _{FAV} ②	$T_{VJ} = T_{VJM}$ $T_{C} = 70^{\circ}\text{C}$; rectangular, $d = 0.5$ $T_{C} = 110^{\circ}\text{C}$; rectangular, $d = 0.5$ $t_{p} < 10 \ \mu\text{s}$; rep. rating, pulse width limited by T_{VJM}	100 126 77 tbd	A A A
I _{FSM}	T _{VJ} = 45°C; t = 10 ms (50 Hz), sine t = 8.3 ms (60 Hz), sine	600 660	A A
	$T_{VJ} = 150$ °C; $t = 10$ ms (50 Hz), sine $t = 8.3$ ms (60 Hz), sine	540 600	A A
l²t	$T_{VJ} = 45$ °C $t = 10$ ms (50 Hz), sine $t = 8.3$ ms (60 Hz), sine	1800 1800	A ² s A ² s
	$T_{VJ} = 150$ °C; $t = 10$ ms (50 Hz), sine $t = 8.3$ ms (60 Hz), sine	1450 1500	A²s A²s
T _{VJ} T _{VJM} T _{stg}		-40+150 150 -40+150	°C °C °C
P _{tot}	T _C = 25°C	357	W
M _d	Mounting torque	0.81.2	Nm
Weight		6	g

Symbol Test Conditions		Characteristic Values		
		typ.	max.	
I _R	$\begin{array}{lll} T_{_{VJ}} = 25^{\circ}C & V_{_{R}} &= V_{_{RRM}} \\ T_{_{VJ}} = 25^{\circ}C & V_{_{R}} &= 0.8 \bullet V_{_{RRM}} \\ T_{_{VJ}} = 125^{\circ}C & V_{_{R}} &= 0.8 \bullet V_{_{RRM}} \end{array}$		3 0.75 20	mA mA mA
V _F	$I_F = 70 \text{ A};$ $T_{VJ} = 150^{\circ}\text{C}$ $T_{VJ} = 25^{\circ}\text{C}$		1.12 1.3	V V
\mathbf{V}_{T0} \mathbf{r}_{T}	For power-loss calculations only $T_{v,j} = T_{v,j,m}$		0.85 3.5	V mΩ
R_{thJC} R_{thCK} R_{thJA}		0.25	0.35 35	K/W K/W K/W
t _{rr}	$I_F = 1 \text{ A}; -di/dt = 200 \text{ A/}\mu\text{s}; V_R = 30 \text{ V}; T_{VJ} = 25^{\circ}\text{C}$	35	50	ns
I _{RM}	$V_R = 350 \text{ V}; I_F = 80 \text{ A}; \text{-di}_F/\text{dt} = 200 \text{ A}/\mu\text{s}$ L $\leq 0.05 \mu\text{H}; T_{VJ} = 100^{\circ}\text{C}$	17	21	А

Features

- International standard package JEDEC TO-247 AD
- · Planar passivated chips
- · Very short recovery time
- · Extremely low switching losses
- Low I_{RM}-values
- Soft recovery behaviour
- Epoxy meets UL 94V-0

Applications

- Antiparallel diode for high frequency switching devices
- Anti saturation diode
- · Snubber diode
- Free wheeling diode in converters and motor control circuits
- Rectifiers in switch mode power supplies (SMPS)
- · Inductive heating and melting
- Uninterruptible power supplies (UPS)
- Ultrasonic cleaners and welders

Advantages

- · High reliability circuit operation
- Low voltage peaks for reduced protection circuits
- · Low noise switching
- Low losses
- Operating at lower temperature or space saving by reduced cooling

Dimensions

See DSEI 60-12 page D5 - 27

Data according to IEC 60747

IXYS reserves the right to change limits, test conditions and dimensions

 $[\]ensuremath{\textcircled{1}}$ Chip capability, $\ensuremath{\textcircled{2}}$ limited to 70 A by leads

Fig. 1 Forward current I_F versus V_F

Fig. 2 Reverse recovery charge Q_r versus -di_F/dt

Fig. 3 Peak reverse current I_{RM} versus $-\text{di}_{\text{F}}/\text{dt}$

Fig. 4 Dynamic parameters Q_r , I_{RM} versus T_{VJ}

Fig. 5 Recovery time t_{rr} versus $-di_{F}/dt$

Fig. 6 Peak forward voltage $\rm V_{FR}$ and $\rm t_{fr}$ versus $\rm di_{\it f}/dt$

Fig. 7 Transient thermal resistance junction to case at various duty cycles

Constants for Z_{thJC} calculation:

i	R _{thi} (K/W)	t _, (s)
1	0.017	0.00038
2	0.0184	0.0026
3	0.1296	0.0387
4	0.185	0.274