UNIVERSIDAD MAYOR DE SAN SIMÓN FACULTAD DE CIENCIAS Y TECNOLOGÍA DEPARTAMENTO DE ELÉCTRICA-ELECTRÓNICA

LABORATORIO DE CIRCUITOS ELÉCTRICOS I INFORME No. 6

TEOREMA DE SUPERPOSICIÓN

Estudiante:

Caballero Burgoa, Carlos Eduardo.

Carrera:

Ing. Electromecánica.

Docente:

Ing. Marco Antonio Vallejo Camacho.

Grupo: 3E.

Fecha de entrega: 11 de Junio del 2024.

Cálculos previos 1.

re-informe

1) Resulua el circuito de le figura aplicando el teorema de Millman y encientre los velores de Vsoo, Uzso, U1k, I1, I2 e I3.

$$V_{M} = \frac{15}{600} + \frac{10}{1000} = \frac{40}{3} [v] \qquad R_{eq} = \frac{500 \times 1000}{500 + 1000} = \frac{1000}{3} [50]$$

$$\frac{1}{500} + \frac{1}{1000}$$

$$V_{250} = V_{11} = \frac{250}{250 + R_{eq}} = \frac{40}{3} = \frac{250}{250 + \frac{1000}{3}} = \frac{40}{7} = 5.71 [V]$$

$$V_{600} = 15 - \frac{40}{7} = \frac{67}{7} = 9.29 [v]$$

$$V_{in} = 10 - \frac{40}{7} = \frac{30}{7} = 4.29 [0]$$

$$I_1 = \frac{V_{500}}{500} = 67 = 0.019$$
 [A]

$$I_{2} = \frac{V_{1K}}{1000} = \frac{3}{700} = 0.0043 [A]$$

$$I_{3} = \frac{V_{250}}{250} = \frac{4}{175} = 0.023$$
 [A]

- 2) Realice la simulación del circuito de la figura y encuentre los valores de Vsoo, Vaso, Vak, II, Iz e Iz. Registre los resultados obtenidos en la tabla.
- 3) Resuelve el circuito de la figura por superposición y encuentra los velores de Vsoo, Vzso, Vie, II, Iz e I3. Registre los resultados obtenidos en la

$$\frac{-\frac{1}{1}}{\frac{1}{1000}} + \frac{\frac{1}{1000}}{\frac{1}{1000}} + \frac{\frac{1}{1000}}{\frac{1}{1000}} = 0$$

$$\frac{7 \vee 3}{1000} = \frac{3}{100} \qquad \forall 3 = \frac{30}{7}$$

$$i_1^{"} = -0.0029 \text{ [A]}$$
 $V_{500}^{"} = -1.43 \text{ [U]}$
 $i_2^{"} = 0.0086 \text{ [A]}$
 $V_{1x}^{"} = 8.57 \text{ [V]}$
 $i_3^{"} = 0.0057 \text{ [A]}$
 $V_{250}^{"} = 1.43 \text{ [U]}$

$$i_1 = i_1' + i_1'' = 0.0186 \text{ [A]}$$
 $V_{500} = V_{500} + V_{500} = 9.286 \text{ [V]}$
 $i_2 = i_2' + i_2'' = 0.004286 \text{ [A]}$
 $V_{1n} = V_{1n}' + V_{1n}'' = 4.286 \text{ [V]}$
 $i_3 = i_3' + i_3'' = 0.02286 \text{ [A]}$
 $V_{250} = V_{250} + V_{250}'' = 5.71 \text{ [V]}$

2. Simulación

Se utilizó el software *Quite Universal Circuit Simulator*. para simular los circuitos, estos pueden verse en la figura (1), (2) y (3).

Figura 1: Simulación del circuito con la fuente de 15[V].

Figura 2: Simulación del circuito con la fuente de 10[V].

Figura 3: Simulación del circuito con las dos fuentes de tensión.

3. Tablas y mediciones

En la figura (4), se adjunta la hoja de resultados provista en la guía de laboratorio, rellenada con la información teórica, simulada y las mediciones realizadas en laboratorio.

PRÁCTICA 6 MARTES	14:47 Hora	3 E Grupo	ОН 106124 Fecha	I / 24 Gestión	
CABALLERO BURGOA	CAR		EDUARDO mbie(s)		VoBo Docente Laboratorio

V, = 15 V				V ₂ = 10 V							
500 Ω			250 Ω 1			kΩ					
h' (A)		4" [A]		l3, [V]		I₃" [A]		12' [4]		1," [4]	
0.621	0.0214	-2.29 ×10	286<10	0,017	0.0171	5.7×10	5.71×103	4.29×10	429×10	8.6 ×10	8.57×10
TEÓRICO	SPAULACIÓN	TEÓRICO	SIMULACIÓN	TEÓRICO	SIMULACIÓN	TEÓRICO	SEMULACIÓN	TEÓRICO	GENULACIÓN	TEÓRICO	SEMULACIÓN
	1, = 1," + 1,"				$ _3 = _3$	' + ₃ " ₂ = ₂ " + ₂ "					
0.01	0.0186 [A] 0.0186 [A]		0.02286 [A] 0.0229 [A]		4.286 × 103 [4] 0.00 429 [[4] \$24				
TE	TEÓRICO SIMULACIÓN		TEÓRICO SIMULACIÓN		TEÓRICO		SIMULACIÓN				
\ \	V _{soo} ' [v]		00" [V]	V	250' [V]	V250" [V]		Vik' [v]		Vik" EV]	
10.71	10.7	-1.43	-1.43	4.29	4.29	1.43	1.43	-4.29	-4.29	8.57	8.57
TEÓRICO	SIMULACIÓN	TEÓRICO	SIMULACIÓN	TEÓRICO	SIMULACIÓN	TEÓRICO	SIMULACIÓN	TEÓRICO	SMULACIÓN	TEÓRICO	SIMULACIÓN
$V_{500} = V_{500}' + V_{500}''$				$V_{250} = V_{250}' + V_{250}''$			$V_{1k} = V_{1k}' + V_{1k}''$				
9.286	9.286 [0] 9.29 [0]		15.7	1 [1]	5.71 [1]		4.286 [v]		4.29 EU]		
TE	TEÓRICO SIMULACIÓN		TEC	intco	SIMULACIÓN TEÓRICO		SIMU	LACIÓN			

Tabla 6.1.

	(15V) V, =	15,1 [v]	(10V) V2 = 9.99 [V7			
R _{soo}	= 521 [sv]	R ₂₆₁	m = 257 [w]	R _{1k0} = 1046[JV]		
CORRIENTES		The state of the s				
14.6 [mA]		22.7 EmA]		12 4.1 [mA]		
1,' 20.9 [mA]	-2.6 [mA]	16.9 [mA]	1," 5.5 [mA]	12' -4[mA]	8.2[mA]	
1,"+1," = 18.3 [mA]		13' + 13" = 22.4 [rA_	12'+12" = 4.2 [mA]		
VOLTAJES						
V ₅₀₀ 9.60 [U]		V ₂₅₀ 5.60 [∪]		V _{1k} 4.35 [u]		
V 500' 10.97[v]	V600" -1.37[v]	V _{25a} ' 4.22 [v]	V ₂₅₀ " 1.38[v]	V _{1k} ' -4.22 [v]	V,," 8.56[v]	
V _{soo} " + V _{soo} " = 9.6 [v]		V250" + V250" = 5,6[v]		V1134 [V]		

Tabla 6.2.

Figura 4: Tabla de resultados.

4. Cuestionario

1. En el circuito presentado en la figura a continuación, determine el valor del parámetro adimensional α , aplicando el teorema de superposición, tal que el voltaje $V_x = 0[V]$.

Se calcula V_x para la fuente de corriente de 6[A]:

Usando el método de tensiones de malla con la supermalla, se obtiene:

$$3\alpha i_1 + \alpha i_2 - V_0 + 2\alpha i_2 = 0 \tag{1}$$

Se sabe que $i_2 = 6$, por tanto:

$$i_2 - i_1 = V_0$$

 $i_1 = 6 - V_0$ (2)

Reemplazando (2) en (1):

$$3\alpha(6 - V_0) + 6\alpha - V_0 + 12\alpha = 0$$

$$18\alpha - 3\alpha V_0 + 6\alpha - V_0 + 12\alpha = 0$$

$$36\alpha - 3\alpha V_0 - V_0 = 0$$

$$V_0(3\alpha + 1) = 36\alpha$$

$$V_0 = \frac{36\alpha}{3\alpha + 1}$$
(3)

Se calcula V_x en función de α :

$$V_x = 3\alpha i_1$$

$$V_x = 3\alpha (6 - V_0) \tag{4}$$

Reemplazando (3) en (4):

$$V_x = 3\alpha \left(6 - \frac{36\alpha}{3\alpha + 1} \right) \tag{5}$$

Se calcula V_x para la fuente de tensión de 12[V]:

Usando el método de tensiones de malla, se obtiene:

$$-12 + 3\alpha i_1 + V_{V_0} = 0 ag{6}$$

Se sabe que $i_1 = V_0$ y que $V_{V_0} = V_0$, por tanto:

$$-12 + 3\alpha V_0 + V_0 = 0$$

$$3\alpha V_0 + V_0 = 12$$

$$V_0(3\alpha + 1) = 12$$

$$V_0 = \frac{12}{3\alpha + 1}$$
(7)

Se calcula V_x en función de α :

$$V_x = 3\alpha i_1$$

$$V_x = 3\alpha V_0 \tag{8}$$

Reemplazando (7) en (8):

$$V_x = \frac{36\alpha}{3\alpha + 1} \tag{9}$$

Para que $V_x = 0$:

$$3\alpha \left(6 - \frac{36\alpha}{3\alpha + 1}\right) + \frac{36\alpha}{3\alpha + 1} = 0$$

$$18\alpha - \frac{108\alpha}{3\alpha + 1} + \frac{36\alpha}{3\alpha + 1} = 0$$

$$18\alpha = \frac{72\alpha}{3\alpha + 1}$$

$$3\alpha + 1 = 4$$

$$\alpha = 1$$
(10)

5. Conclusiones

Se demostró experimentalmente el principio de superposición, mediante la medición de circuitos tanto en laboratorio, como mediante una simulación.

Es de destacar en las mediciones de laboratorio, que la suma algebraica de las tensiones y las corrientes, son muy precisas respecto a la medición con las dos fuentes de tensión, esto puede deberse al correcto manejo de las escalas en el multímetro, y las cantidades pequeñas involucradas en el experimento.

	Dos fuentes	Fuente 15[V]	Fuente 10[V]	Suma algebraica	Error
$V_{500[\Omega]}$	9.60[V]	10.97[V]	-1.37[V]	9.6[V]	0 %
$V_{250[\Omega]}$	5.60[V]	4.22[V]	1.38[V]	5.6[V]	0 %
$V_{1[k\Omega]}$	4.35[V]	-4.22[V]	8.56[V]	4.34[V]	0.23%

	Dos fuentes	Fuente 15[V]	Fuente $10[V]$	Suma algebraica	Error
I_1	18.6[mA]	20.9[mA]	-2.6[mA]	18.3[mA]	0.016 %
I_2	22.7[mA]	16.9[mA]	5.5[mA]	22.4[mA]	0.013%
I_3	4.1[mA]	-4[mA]	8.2[mA]	4.2[mA]	0.024%