3. Линейни операции с вектори

Твърдение: Ако ν е вектор и O е точка, то съществува единствена точка P, такава че $\overrightarrow{OP} = \nu$.

Доказателство:

Нека \overrightarrow{AB} е представител на ν . Ако $\nu=0$, то $P\equiv O$. Нека O не е върху правата AB, то P е единствена точка, за която ABPO е успоредник. Следователно $\overrightarrow{OP}=\nu$.

Ако O е върху AB, то е ясно че има единствена точка P, такава че $OP \cong AB$ и $\overrightarrow{OP} \uparrow \uparrow \overrightarrow{AB}$, т.е. $\overrightarrow{OP} = \overrightarrow{AB} = \nu$.

Дефиниция. 1: Нека \overrightarrow{AB} е представител на ν . Тогава векторът с представител \overrightarrow{BA} се нарича противоположен на ν и се бележи с $-\nu$.

Събиране на свободни вектори. $Cyma\ a+b$ на два свободни вектора a,b наричаме свободния вектор, получен чрез пренасяне на a в произволна точка O, получаваме насочената отсечка $\overrightarrow{OA} = a$, в точката A пренасяме b и получаваме насочената отсечка $\overrightarrow{AB} = b$. Насочената отсечка \overrightarrow{OB} определя свободен вектор, който наричаме сума на двата свободни вектора и го означаваме с a+b.

Ще покажем, че дефиницията не зависи от избора на точката O. Нека O' е друга точка, $\overrightarrow{O'A'} = \mathbf{a}$, $\overrightarrow{A'B'} = \mathbf{b}$. Следователно $\overrightarrow{OA} = \overrightarrow{O'A'}$, $\overrightarrow{AB} = \overrightarrow{A'B'} \Rightarrow \overrightarrow{OO'} = \overrightarrow{AA'}$ и $\overrightarrow{AA'} = \overrightarrow{BB'}$. Следователно $\overrightarrow{OO'} = \overrightarrow{BB} \Rightarrow \overrightarrow{OB} = \overrightarrow{O'B'}$, т.е. \overrightarrow{OB} и $\overrightarrow{O'B'}$ дефинитрат един и същ клас н аеквивалентност и дефиницията е коректна.

Теорема. 1: Операцията събиране на свободни вектори притежава следните свойства:

- 1) $\mathbf{a} + \mathbf{b} = \mathbf{b} + \mathbf{a}$;
- 2) a+0=a;
- 3) a+(-a)=0;
- 4) (a+b)+c=a+(b+c);

Доказатлство:

1) Нека $\overrightarrow{OA} = \mathbf{a}$ и $\overrightarrow{AB} = \mathbf{b}$. $\overrightarrow{OA} + \overrightarrow{AB} = \overrightarrow{OB} = \mathbf{a} + \mathbf{b}$;

Нека $\overrightarrow{OC} = \mathbf{b}$ или $\overrightarrow{AB} = \overrightarrow{OC}$, следователно $\overrightarrow{OA} = \overrightarrow{CB} \Rightarrow \overrightarrow{CB} = \mathbf{a}$. Следователно имаме $\overrightarrow{OC} + \overrightarrow{CB} = \overrightarrow{OB} = \mathbf{b} + \mathbf{a}$ или $\mathbf{a} + \mathbf{b} = \mathbf{b} + \mathbf{a}$;

- 2) Нека $\overrightarrow{OA} = \mathbf{a}$, имаме $\overrightarrow{AA} = \mathbf{0} \Rightarrow \overrightarrow{OA} = \mathbf{a} + \mathbf{0}$. Следователно $\mathbf{a} + \mathbf{0} = \mathbf{a}$;
- 3) Нека $\overrightarrow{OA} = \mathbf{a}$. Тогава $\overrightarrow{AO} = -\mathbf{a} \Rightarrow \overrightarrow{OO} = \mathbf{a} \mathbf{a} \Rightarrow \mathbf{a} + (-\mathbf{a}) = \mathbf{0}$;

4) Нека
$$\overrightarrow{OA} = \mathbf{a}, \overrightarrow{AB} = \mathbf{b} \Rightarrow \overrightarrow{OB} = \mathbf{a} + \mathbf{b}.$$

Нека $\overrightarrow{BC} = \mathbf{c} \Rightarrow \overrightarrow{OC} = (\mathbf{a} + \mathbf{b}) + \mathbf{c}, \overrightarrow{AB} = \mathbf{a} \Rightarrow \overrightarrow{AC} = \mathbf{b} + \mathbf{c} \Rightarrow \overrightarrow{OC} = \mathbf{a} + (\mathbf{b} + \mathbf{c}).$
Следователно $\overrightarrow{OC} = (\mathbf{a} + \mathbf{b}) + \mathbf{c} = \mathbf{a} + (\mathbf{b} + \mathbf{c}).$

От тези свойства следва, че ако име сума на вектори $a_1, a_2, ..., a_n$, то тя не зависи от тяхната подредба или от това как са поставени скобите. Затова скобите могат да се изпуснат.

Умножение на реално число със свободен вектор Нека \mathbf{a} е вектор, а $\lambda \in \mathbb{R}$. Произведение на \mathbf{a} с λ се нарича свободния вектор $\lambda \mathbf{a} = \mathbf{a}\lambda$, който е колинеарен с \mathbf{a} и дължината му е $|\lambda \mathbf{a}| = |\lambda| |\mathbf{a}|$; ако $\lambda > 0$, двата вектора са еднопосочно колинеарни, ако $\lambda < 0$, двата вектора са разнопосочно колинеарни. Ако $\mathbf{a} = \mathbf{0}$ или $\lambda = 0$, считаме че $\lambda \mathbf{a} = \mathbf{0}$.

Теорема. 2: Операцията умножение на реално число със свободен вектор притежава следните свойства:

- 5) 1a = a;
- 6) $(\lambda + \mu)\mathbf{a} = \lambda \mathbf{a} + \mu \mathbf{a};$
- 7) $\lambda(\mathbf{a}+\mathbf{b}) = \lambda\mathbf{a} + \mu\mathbf{b}$;
- 8) $\lambda(\mu \mathbf{a}) = \lambda \mu \mathbf{a}$.

Тук **а** и **b** са произволни свободни вектори, а λ , μ - произволни реални числа. Доказателство:

- 5) Следва от дефиницията.
- 6) Да предположим $\lambda > 0$, $\mu < 0$ и нека $\lambda + \mu > 0$. Аналогично се третират и останалите случаи. Нека $\overrightarrow{AB} = \mathbf{a}$, $\overrightarrow{AC} = \lambda \mathbf{a}$, $\overrightarrow{CD} = \mu \mathbf{a}$. Следователно $\overrightarrow{AC} + \overrightarrow{CD} = \overrightarrow{AD} = \lambda \mathbf{a} + \mu \mathbf{a}$. Тъй като $\lambda + \mu > 0$ следва че т. D е между т. A и C. Тогава $\overrightarrow{AD} \uparrow \uparrow \overrightarrow{AB}$ и $|\overrightarrow{AD}| = |\lambda + \mu| |\mathbf{a}|$, т.е. $\overrightarrow{AD} = (\lambda = \mu)\mathbf{a}$. С това 6) е доказано.
- 7) Нека $\overrightarrow{AB} = \mathbf{a}$, $\overrightarrow{BC} = \mathbf{b}$. Тогава $\overrightarrow{AC} = \mathbf{a} + \mathbf{b}$. При $\lambda > 0$ построяваме $\overrightarrow{AB_1} = \lambda \mathbf{a}$, $\overrightarrow{AC_1} = \lambda (\mathbf{a} + \mathbf{b})$. Триъгълниците \overrightarrow{ABC} и $\overrightarrow{AB_1C_1}$ са подобни. Тогава $\overrightarrow{B_1C_1} = \lambda \mathbf{b}$ и насочената отсечка $\overrightarrow{AC_1} = \overrightarrow{AB_1} + \overrightarrow{B_1C_1}$. С това 7) е доказано.

Аналогично при $\lambda < 0$.

8) Тук непосредствено се разглеждат случайте: $\lambda>0, \mu>0; \lambda<0, \mu<0; \lambda<0, \mu>0; \lambda>0, \mu<0.$

В множеството на свободните вектори дефинирахме операциите събиране на свободни вектори и умножение на реално число със свободен вектор. Условията 1)-8) доказват следната теорема:

Теорема. 2: Множеството на свободните вектори е векторно пространство над полето на реалните числа.

Дефиниция. 2: Векторите $a_1, a_2, ..., a_n$ наричаме *линейно зависими*, ако съществуват числа $\lambda_1, \lambda_2, ..., \lambda_n$), поне едно от които е различно от нула, такива че:

$$\lambda_1 \ a_1 + \lambda_2 \ a_2 + ... + \lambda_n \ a_n = 0.$$

Ако векторите не са линейно зависими, казваме че те са линейно независими. Ак δ $a_1, a_2, ..., a_n$ са линейно независими и за тях е изпълнено горното равемство, то

$$\lambda_1 = \lambda_2 = \dots = \lambda_n = 0.$$

Дефиниция. 3: Вектор р, за който важи представянето

$$\mathbf{p} = \lambda_1 \ a_1 + \lambda_2 \ a_2 + \dots + \lambda_m \ a_m,$$

казваме че е линейна комбинация на векторите $a_1, a_2, ..., a_m$. Ако $a \neq 0$, то векторът

$$\mathbf{a'} = \frac{\mathbf{a}}{|a|}.$$

е единиен по посоката на вектора а.