Introduction to R

Jan-Philipp Kolb

22 Mai, 2019

Introduction round

Please tell us shortly...

- ▶ Where are you from? What are you studying/working?
- ▶ What are your expectations of this course?
- ▶ Where do you think you can use Machine Learning in the future?

PRELIMINARIES

- ▶ This topic is huge we concentrate on presenting the applications in R
- Usually we have big differences in knowledge and abilities of the participants - please tell, if it is too fast or slow.
- We have many exercises because at the end you can only learn on your own
- We have many examples try them!
- ▶ If there are questions always ask
- R is more fun together ask your neighbor

Content of the course - day 1

- ▶ The first section is about laying the foundations in R. We will need all things covered later on.
- ▶ The second section is an introduction to the field of machine learning.
- ▶ The third part is on regression and classification.

Why R is a good choice ...

- because it is an open source language
- outstanding graphs graphics, graphics, graphics
- relates to other languages R can be used in combination with other programs - e.g. data linking
- ...R can be used for automation
- Vast Community you can use the intelligence of other people ;-) and new statistical methodologies are implemented quite fast
- ▶ Because R can be combined with other programs like PostgreSQL or Python

Constraints

NEWER MODULES IN PYTHON

- Machine learning is a field that changes rapidly.
- ▶ Some new tools are first developed in Python.
- The package reticulate offers the possibility to use these modules from an R environment.
- Good news Python is also Open Source

BIG DATA

- Especially if you work with web data, you quickly have to deal with large amounts of data.
- ► Therefore one must fall back on databases and parallelization strategies, which can be used in R.

R IS MODULAR

```
Install packages from CRAN Server.
install.packages("lme4")
Install packages from Bioconductor Server.
source("https://bioconductor.org/biocLite.R")
biocLite(c("GenomicFeatures", "AnnotationDbi"))
Install packages from Github
install.packages("devtools")
library(devtools)
devtools::install github("koalaverse/vip")
```

PREPARATION - PACKAGES

```
library(dplyr)
library(magrittr)
```

IMPORT .CSV DATA

THE READ.CSV COMMAND

▶ Use read.csv2 for German data

```
?read.csv
?read.csv2
```

Using a path to import data

```
path1<-"https://raw.githubusercontent.com/"
path2<- "thomaspernet/data_csv_r/master/data/"
dname <- "titanic_csv.csv"
titanic <- read.csv(paste0(path1,path2,dname))</pre>
```

SAVE THE DATASET

```
save(titanic,file="../data/titanic.RData")
```

THE TITANIC DATASET

kable(head(titanic))

Χ	pclass	survived	name	sex	age	sibsp	parch	ticket	fare	cabir		
1	1	1	Allen,	Allen, Miss. Elisabeth Walton								
2	1	1	Allison	Allison, Master. Hudson Trevor								
3	1	0	Allison, Miss. Helen Loraine									
4	1	0	Allison, Mr. Hudson Joshua Creighton									
5	1	0	Allison, Mrs. Hudson J C (Bessie Waldo Daniels)							fema		
6	1	1	Anderson, Mr. Harry									

THE DOWNLOAD THE DATA FROM UCI.

```
path1 <- "http://archive.ics.uci.edu/ml/"
path2 <- "machine-learning-databases/00243/"
dname <- 'yacht_hydrodynamics.data'
url<- paste0(path1,path2,dname)
Yacht_Data <- readr::read_table(file = url)</pre>
```

Built in datasets

- ► A sample dataset is often provided to demonstrate the functionality of a package.
- ▶ These records can be loaded using the data command.

data(iris)

▶ There is also a **RStudio Add-In** that helps to find a built-in dataset.

```
install.packages("datasets.load")
```

EXKURS RSTUDIO ADDINS

Oben rechts befindet sich ein Button Addins

EXERCISE

Load the the built-in dataset swiss and answer the following questions:

- ▶ How many observations and variables are available?
- ▶ What is the scale level of the variables?

Create an interactive data table

THE FUNCTION SCAN TO IMPORT DATA

scan has an easy way to distinguish comments from data

?scan

Example dataset

```
cat("TITLE extra line", "# a comment","2 3 5 7", "11 13 17",
    file = "../data/ex.data", sep = "\n")
```

IMPORT DATA AND SKIP THE FIRST LINE

THE R-PACKAGE DATA. TABLE

GET AN OVERVIEW

```
data(airquality)
head(airquality)
```

```
##
     Ozone Solar.R Wind Temp Month Day
        41
               190
                    7.4
                           67
                                  5
## 1
## 2
        36
               118 8.0
                           72
                                       3
## 3
        12
               149 12.6
                           74
                                  5
        18
               313 11.5
                           62
                                       4
## 4
                                       5
## 5
        NA
                NA 14.3
                           56
## 6
        28
                NA 14.9
                           66
                                       6
```

OVERVIEW WITH DATA. TABLE

```
library(data.table)
(airq <- data.table(airquality))</pre>
##
       Ozone Solar.R Wind Temp Month Day
          41
                           67
                                  5
##
    1:
                 190
                     7.4
##
    2:
          36
                 118 8.0 72
                                  5
##
   3:
          12
                149 12.6 74
                                      3
                                  5
##
   4:
       18
                 313 11.5 62
                                  5
                                      5
##
   5:
          NA
                  NA 14.3
                           56
##
##
  149:
          30
                 193 6.9
                           70
                                     26
## 150:
          NA
                 145 13.2
                           77
                                     27
## 151:
          14
                 191 14.3
                           75
                                     28
## 152:
          18
                 131 8.0
                           76
                                     29
## 153:
          20
                 223 11.5
                           68
                                     30
```

HOW TO GET HELP

► I use duckduckgo:

R-project + "what I want to know"

this works of course for all search engines!

R-project + "what I want to know"

EXERCISE

- Draw 8 rabdom numbers from the uniform distribution and save them in a vector x
- ► Compute the logarithm of x, return suitably lagged and iterated differences,
- compute the exponential function and round the result

```
## [1] 1.7 1.6 0.6 1.1 0.7 1.9 0.5
```

THE PIPE OPERATOR

```
library(magrittr)

# Perform the same computations on `x` as above
x %>% log() %>%
    diff() %>%
    exp() %>%
    round(1)

## [1] 1.7 1.6 0.6 1.1 0.7 1.9 0.5
```

HOW TO DEAL WITH MISSING VALUES

?na.omit airq ## Ozone Solar.R Wind Temp Month Day ## 41 190 7.4 67 5 1: 1 ## 2: 36 118 8.0 72 5 2 ## 3: 12 149 12.6 74 5 3 18 5 4 ## 4: 313 11.5 62 5 5 ## 5: NA NA 14.3 56 ## ## 149: 30 193 6.9 70 26 ## 150: NΑ 145 13.2 77 27 ## 151: 14 191 14.3 75 28 ## 152: 18 131 8.0 76 29 ## 153: 223 11.5 68 30 20

THE COMMAND NA.OMIT

na.omit(airq)

##		Ozone	Solar.R	Wind	Temp	${\tt Month}$	Day
##	1:	41	190	7.4	67	5	1
##	2:	36	118	8.0	72	5	2
##	3:	12	149	12.6	74	5	3
##	4:	18	313	11.5	62	5	4
##	5:	23	299	8.6	65	5	7
##							
##	107:	14	20	16.6	63	9	25
##	108:	30	193	6.9	70	9	26
##	109:	14	191	14.3	75	9	28
##	110:	18	131	8.0	76	9	29
##	111:	20	223	11.5	68	9	30

CLEAN THE TITANIC DATA SET

- ► Add label to the variable pclass.
- ▶ 1 becomes Upper, 2 becomes MIddle and 3 becomes lower

FACTOR(SURVIVED, ...:

- Add label to the variable survived.
- ▶ 1 Becomes No and 2 becomes Yes
- ▶ na.omit(): Remove the NA observations

GET AN OVERVIEW OF THE DATA

```
glimpse(clean_titanic)
## Observations: 1,045
## Variables: 13
## $ X
                                                <int> 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13,
## $ pclass <fct> Upper, Upper
## $ survived <fct> Yes, Yes, No, No, Yes, Yes, No, Yes, No
## $ name
                                                <fct> "Allen, Miss. Elisabeth Walton", "Allison,
## $ sex
                                         <fct> female, male, female, male, female, male, f
## $ age
                                                <dbl> 29.0000, 0.9167, 2.0000, 30.0000, 25.0000,
## $ sibsp <int> 0, 1, 1, 1, 1, 0, 1, 0, 2, 0, 1, 1, 0, 0, 0
## $ parch
                                                <int> 0, 2, 2, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0
## $ ticket
                                                <fct> 24160, 113781, 113781, 113781, 113781, 1995
## $ fare
                                                <dbl> 211.3375, 151.5500, 151.5500, 151.5500, 151
## $ cabin <fct> B5, C22 C26, C22 C26, C22 C26, C22 C26, E12
## $ embarked <fct> S, S, S, S, S, S, S, S, S, C, C, C, C, S, S
## $ home.dest <fct> "St Louis, MO", "Montreal, PQ / Chestervill
```

EXAMPLE DATA - HOUSING VALUES IN SUBURBS OF BOSTON

library(MASS)
data <- Boston</pre>

kable(head(data))

crim	zn	ind	dus	chas	no	x rm	age	dis	rad	tax	ptratio	bla	ck
0.0063	2	18	2.3	31	0	0.538	6.575	65	.2	4.0900	1	296	1
0.0273	1	0	7.0) 7	0	0.469	6.421	78	.9	4.9671	2	242	1
0.0272	9	0	7.0) 7	0	0.469	7.185	61	.1 4	4.9671	2	242	1
0.0323	7	0	2.1	18	0	0.458	6.998	45	.8	6.0622	3	222	1
0.0690	15	0	2.1	18	0	0.458	7.147	54	.2	6.0622	3	222	1
0.0298	5	0	2.1	18	0	0.458	6.430	58	.7	6.0622	3	222	1

NORMALIZE YOUR DATA

```
maxs <- apply(data, 2, max)
mins <- apply(data, 2, min)
scaled <- as.data.frame(scale(data, center = mins, scale = maxs)</pre>
```

THE COMMAND SAMPLE

- ▶ We can use this command to draw a sample.
- We need the command later to split our dataset into a test and a training dataset.

```
sample(1:10,3,replace=T)
## [1] 7 5 8
sample(1:10,3,replace=T)
## [1] 7 5 2
```

SET A SEED

- set.seed is the recommended way to specify seeds.
- ▶ If we set a seed, we get the same result for random events.
- ▶ This function is mainly required for simulations.

```
set.seed(234)
sample(1:10,3,replace=T)
## [1] 1 2 2
set.seed(234)
sample(1:10,3,replace=T)
## [1] 1 2 2
```

TIME MEASUREMENT

```
start_time <- Sys.time()
ab <- runif(10000000)
end_time <- Sys.time()
end_time - start_time
## Time difference of 0.7230411 secs</pre>
```

HOW MANY CORES ARE AVAILABLE

```
library(doParallel)
detectCores()
## [1] 4
```

Make Cluster

```
cl <- makeCluster(detectCores())</pre>
registerDoParallel(cl)
start_time <- Sys.time()</pre>
ab <- runif(10000000)
end time <- Sys.time()
end time - start time
## Time difference of 0.6960402 secs
stopCluster(cl)
?parallel::makeCluster
```

THE SWIRL PACKAGE

```
install.packages("swirl")
library("swirl")
swirl()
```

RESOURCES

▶ Course materials for the Data Science Specialization