

UNIVERZITET U TUZLI FAKULTET ELEKTROTEHNIKE

Dizajn logičkih sklopova na bazi osnovnih/složenih logičkih kola II

Dr. Sc. Asmir Gogić, vanr. prof.

Tuzla, 2020

Sekvencijalni sklopovi

- Sekvencijalni sklopovi predstavljaju posebnu konfiguraciju/spoj logičkih kola koja imaju sposobnost privremenog storiranja/pamćenja binarnih informacija.
- Pamćenje informacija u sekvencijalnim sklopovima se izvodi kroz posebne logičke krugove koje nazivamo bistabili/flip flopovi.
- Izlaz sekvencijalnog sklopa je funkcija trenutnih vrijednosti ulaza kao i prošlih vrijednosti izlaza.
- Stanje sekvencijalnog sklopa predstavlja binarnu kombinaciju koja je zapisana u sam sekvencijalni sklop
- ... sekvencijalni sklopovi se nazivaju i mašine sa konačnim brojem stanja Final State Machine FSM.
- Tranzicija iz jednog stanja u drugo u sekvencijalnom sklopu je u skladu sa promjenom ulaza i nekog globalnog dijeljenog signala, sekvencijalne sklopove dijelimo na
 - SINHRONI koji reaguju na promjenu ulaza nakon promjene sinhronizacijskog signala,
 - ASINHRONE koji reaguju samo na promjenu ulaza.

Sekvencijalni sklopovi

00000

- Sinhronizacijski signala povorka pravouganih impulsa tvz taktni signal (Clock Pulse CP).
- ... gradivna komponenta sekvencijalnog sklopa je bistabil.
- Bistabil predstavlja elektronički sklop koji ima dva stabilna stanja.
- ... tranzicija iz jednog u drugo stabilno stanje izvodi se pod utjecajem vanjske pobude.

Sekvencijalni sklopovi - bistabili

- Tranzistori u sklopu bistabila rade u prekidačkom režimu tj mogu biti u stanju zakočenja ili zasićenja.
- Možemo primijetiti da imamo dva tranzistorska stepena koji su povezani povratnim spregama.
- ... povratna sprega je sredstvo kojim se osigurava da se informacija sa izlaza kola koristi u cilju stabilizacije/de-stabilizacije izlaza.
- Radne tačke tranzistora će ostati u datim oblastima sve dok ne djeluje vanjska pobuda (negativan signal na diodama D1 i D2).
- Bistabil možemo na jednostavna način implementirati sa dva logička kola-invertor koji su povezani povratnim spregama.

Sekvencijalni sklopovi - bistabili

Bistabil možemo implementirati i sa NOR ili NAND logičkim kolima...

Sekvencijalni sklopovi - bistabili

В	Q_n	\overline{Q}_n
0	Q_{n-1}	\overline{Q}_{n-1}
1	1	0
0	0	1
1	0 ili 1	1 ili 0
	0	$0 Q_{n-1}$ $1 1$ $0 0$

Sinhroni bistabili

 Predstavljaju grupu bistabila kod kojih se promjena izlaza Q odvija samo u tačno određenim vremenskim intervalima definiranim takt impulsima (rastuća ili opdajuća ivica/brid).

- U grupu sinhronih bistabila spadaju:
 - SR bistabil,
 - JK bistabil,
 - T bistabil,
 - D bistabil,
 - MS bistabil.
- Jednačina stanja SR FF je: $Q_{n+1} = S + Q_n \overline{R}$

Sinhroni bistabili

 $\bullet\;$ Za ispravan rad SR FF-a neophodno je osigurati da je $S\cdot R=0$

\overline{S}	R	Q_n	Q_{n+1}
0	0	0	0
0	1	0	0
1	0	0	1
1	1	0	?
0	0	1	1
0	1	1	0
1	0	1	1
1	1	1	?

Sinhroni bistabili - JK

- JK FF predstavlja FF kod koga nemamo zabranjenih stanja.
- Problem zabranjenih stanja je riješen na taj način da stanje J=1 i K=1 invertuju trenutno stanje izlaza.

Sinhroni bistabili - JK

lacktriangle Jednačina stanja JK-FF: $Q_{n+1}=J\overline{Q_n}+Q_n\overline{K}$

J	K	Q_n	Q_{n+1}
0	0	0	0
0	1	0	0
1	0	0	1
1	1	0	1
0	0	1	1
0	1	1	0
1	0	1	1
1	1	1	0

Sinhroni bistabili - T

• Jednačina stanja T-FF: $Q_{n+1} = Q_n \overline{T} + T \overline{Q_n}$

T	Q_n	Q_{n+1}
0	0	0
0	1	1
1	0	1
1	1	0

Sinhroni bistabili - D

• Jednačina stanja D-FF: $Q_{n+1} = D$

D	Q_n	Q_{n+1}
0	0	0
0	1	0
1	0	1
1	1	1

Sinhroni bistabili - MS

- Nedostatak svih FF je transparentnost na ulazne podatke tokom trajanja CP.
-vrijednost ulaza u trenutku tranzicije takt impulsa (rastuća ili opadajuća ivica) se uzima u obzir.
- Drugi problem je oscilacija izlaza bistabila koji koriste isti izvor takt impulsa.
- Rješenje ⇒ dodati linije za kašnjenje veće od perioda takt impulsa.
- Sve navedene probleme možemo riješiti koristeći MS (Maste Slave) FF-a.

Primjer - T FF

Odrediti talasni oblik T-FF koji okida na negativnu ivicu ako je početno stanje 0.

Primjer - D FF

Odrediti talasni oblik D-FF koji okida na pozitivnu ivicu ako je početno stanje 1.

Registri

- Registri predstavljaju sekvencijalne logičke sklopove koji imaju mogućnost da privremeno pamte¹ binarne informacije.
- Osnovna gradivna komponenta registra je FF a broj FF-ova definira broj bita koje može registar da zapamti.
- Stanje registra će ostati nepromijenjeno sve dok je napajanje aktivno uz pretpostavku mirovanja ulaza.
- makon prekida napajanja stanje registra će biti poništeno.
- Inicijalno stanje registra je neodređeno i zbog toga se stanje registra uvijek briše tokom inicijalizacije logičkog sklopa.
- Klasifikacija registara se izvodi sobzirom na način kako se informacije upisuju u čitaju:
 - Registri sa paralelnim ulazom i serijski izlazom,
 - Registri sa paralelnim ulazom i paralelnim izlazom,
 - Registri sa serijski ulazom i paralelnim izlazom,
 - Registri sa serijski ulazom i serijski izlazom.

Dvobitni registar - PIPO

Serijski registar

- Serijski registri nazivaju se još shift ili posmačni registri.
- upis bita izvodi preko jedne zajedničke podatkovne linije.
- Prednost paralelnih registara u odnosu na serijske je činjenici da se upis/čitanje informacija izvod N puta brže, gdje je N širina podatka koji se upisuje (byte, halfword, word).
- Prednost serijskih registara je u činjenici da se prijenos izvodi preko jedne komunikacijske linije (plus zajednički GND vod) pa je broj vodova neophodnih za komunikaciju reduciran sa N na 1.
- Serijsko-paralelni registri, registri sa serijskim ulazom i paralelnim izlazom (i obrnuto) se najčešće koriste za konverziju oblika prijenosa binarnih podataka tvz serijsko-paralelna konverzija i obrnuto.
- Serijske registre karakterizira činjenica da su bistabili (FF-ovi) povezani serijski, drugačije rečeno izlaz prethodnog bistabila veže se na ulaz narednog.
- ... svi biti će propagirati (proći) kroz prvi FF u registru (zbog čega su dobili i naziv posmačni).

Dvobitni registar - SIPO

Digitalni brojači

- Sekvencijalni sklop koji pod utjecajem takt impulsa prolazi kroz unaprijed utvrđen redoslijed stanja (binarne kombinacije).
- Kao i kod registara, osnovna gradivna komponenta brojača je bistabil.
- Broj stanja brojača određen je brojem bistabila koji čine brojač.
- lacktriangle Maksimalni broj stanja brojača je 2^N gdje je N broj bistabila u brojaču.
- Ukupan broj stanja brojila se ujedno naziva i modulo brojača.
- Način na koji bistabili okidaju, brojila dijelimo na:
 - SINHRONA svi FF-ovi okidaju u isto vrijeme pa je cjelokupno kašnjenje brojača jednako kašnjenju jednog FF-a.
 - ASINHRONA izlaz prethodnog FF-a predstavlja izvor takt impulsa narednog FF-a. Kašnjenje brojača je N puta veće u odnosu na sinhrona brojila. Asinhroni brojači su po svojoj konstrukciji jednostavniji.

Digitalni brojači - sinhroni

 Ako je redoslijed stanja brojača jednak redoslijedu binarnih kombinacija u prirodnom binarnom kodu, kažemo da se radi o binarnom brojilu.

CP	SLIJED BROJANJA ULAZI FF-ov					FF-ova		
	В3	B2	B1	B0	T0	T1	T2	T3
1	0	0	0	0	1	0	0	0
2	0	0	0	1	1	1	0	0
3	0	0	1	0	1	0	0	0
4	0	0	1	1	1	1	1	0
5	0	1	0	0	1	0	0	0
6	0	1	0	1	1	1	0	0
7	0	1	1	0	1	0	0	0
8	0	1	1	1	1	1	1	1
9	1	0	0	0	1	0	0	0
10	1	0	0	1	1	1	0	0
11	1	0	1	0	1	0	0	0
12	1	0	1	1	1	1	1	0
13	1	1	0	0	1	0	0	0
14	1	1	0	1	1	1	0	0
15	1	1	1	0	1	0	0	0
16	1	1	1	1	1	1	1	1

Digitalni brojači - sinhroni binarni brojač

Digitalni brojači - sinhroni dekadski brojač

- Predstavlja binarni brojač modula 10
- Početno stanje je nula a brojač prolazi sve binarne kombinacije od 0000 do 1010.

CP	SL	IJED B	ROJAN	IJΑ		ULAZI FF-ova			R
	В3	B2	B1	B0	T0	T1	T2	T3	
1	0	0	0	0	1	0	0	0	0
2	0	0	0	1	1	1	0	0	0
3	0	0	1	0	1	0	0	0	0
4	0	0	1	1	1	1	1	0	0
5	0	1	0	0	1	0	0	0	0
6	0	1	0	1	1	1	0	0	0
7	0	1	1	0	1	0	0	0	0
8	0	1	1	1	1	1	1	1	0
9	1	0	0	0	1	0	0	0	0
10	1	0	0	1	1	0	0	1	0
11	1	0	1	0	Х	х	х	х	1
12	1	0	1	1	Х	х	х	х	0
13	1	1	0	0	Х	х	х	х	0
14	1	1	0	1	Х	х	х	х	0
15	1	1	1	0	Х	х	х	х	0
16	1	1	1	1	х	Х	Х	х	0

Digitalni brojači - sinhroni dekadski brojač

Digitalni brojači - asinhroni brojač

- Asinhrona brojila predstavljaju digitalna binarna brojila kod koga se okidanje bistabila (tranzicija iz jednog u drugo stanje) ne izvodi sinhrono.
- ...izlaz prethodnog bistabila služi kao izvor takt impulsa narednog FF-a.

CP	B2	B1	B0
0	0	0	0
1	1	1	1
2	1	1	0
3	1	0	1
4	1	0	0
5	0	1	1
6	0	1	0
7	0	0	1

Digitalni brojači - asinhroni dekadski brojač

Oizajnirati asinhrono brojilo modula 10 ako je početno stanje 0000.

CP	B3	B2	B1	B0
0	0	0	0	0
1	0	0	0	1
2	0	0	1	0
3	0	0	1	1
4	0	1	0	0
5	0	1	0	1
6	0	1	1	0
7	0	1	1	1
8	1	0	0	0
9	1	0	0	1
RESET	1	0	1	0

Digitalni brojači - asinhroni dekadski brojač

Literatura

- Digital Systems Design Using VHDL 2 nd Edition, by Charles H. Roth, Jr. and Lizy Hurian John, Thomson, 2007.
- The Designer's Guide to VHDL, Third Edition, Peter J. Ashenden, 2008.
- U. Peruško, Digitalna elektronika, ŠK Zagreb 1995.
- S. Tešić, Integrisana digitalna elektronika, NK Beograd 1990.
- N. Nosović, Uvod u digitalne računare, ETF Sarajevo 2003.

