ECE 3210 Midterm 2

Week of: November 8, 2024

Student's name:		
Instructor:		
Eric Gibbons		
ericgibbons@weber.edu		
801-626-6861		

You have 2.5 hours for 5 problems.

- Show enough (neat) work in the clear spaces on this exam to convince us that you derived, not guessed, your answers.
- Put your final answers in the boxes at the bottom of the page.

You may use two US letter-style size page of notes, front and back.

Problem	Score	Possible Points
1		20
2		20
3		20
4		20
5		20
Total score		100

1 Differential equations

Consider the following differential equation

$$\frac{d^2y}{dt} + 6\frac{dy}{dt} + 34y(t) = 10\frac{df}{dt}$$

with initial conditions $y(0^-)=0$ and $y'(0^-)=5$ as well as an input $x(t)=\delta(t)$.

(a) Find the zero-input response using the Laplace transform.

$$y_{zi}(t) =$$

(b) Find the zero-state response using the Laplace transform.

 $y_{zs}(t) =$

(c) Find the total response.

y(t) =

2 Block diagrams

(a) Consider the transfer function

$$H(s) = \frac{2s^2 - 1}{s^3 + 2s^2 + s}.$$

Draw the canonical block diagram for this system.

(b) Consider the block diagram below.

(i) What is the transfer function H(s)? Hint: see if you can identify the second order system in the block diagram rather than trying to describe it entirely in terms of first order systems.

$$H(s) =$$

(ii) What is its impulse response h(t)?

h(t) =

3 Demodulation with an ideal sampler

Multiplying a signal f(t) with $\cos(\omega_c t)$ produces a modulated signal

$$z(t) = f(t)\cos(\omega_c t)$$

where ω_c is the carrier frequency. In class we learned that one way to demodulate this signal and recover f(t) is to multiply z(t) by $\cos(\omega_c t)$, and lowpass filter the result.

An alternative approach uses an ideal sampler. The block diagram of the receiver is where the ideal

sampler is drawn as a switch that closes instantaneously every T seconds to acquire a new sample.

(a) Assume that

$$f(t) = \frac{1}{2\pi} \operatorname{sinc}^2\left(\frac{t}{4}\right).$$

Find an expression for the Fourier transform $F(\omega)$.

$$F(\omega)=$$

(b) Assume that the carrier frequency of the modulating cosine is $\omega_c = 2$. Sketch the spectrum of the modulated signal $Z(\omega)$.

(c) Draw the spectrum of the signal right before the lowpass filter, $R(\omega)$. Assume we are sampling at a rate of $\frac{1}{\pi}$ Hz.

(d) What is the largest sampling period T at which the sampler can operate, and still recover f(t)?

T =

4 Transfer functions

Consider the following circuit. The input is f(t) and the output is y(t).

(a) Derive the transfer function H(s) for this circuit.

$$H(s) =$$

(b) Find the impulse response h(t) for this system.

h(t) =

(c) Given an input x(t) = u(t), find the zero-state response for y(t).

 $y_{zsr}(t) =$

5 DFT and circular convolution

(a) Consider the following discrete-time signal

$$x[k] = \begin{cases} 0.5 + \cos(\pi k) + \sin\left(\frac{7\pi k}{4}\right) & \text{for } 0 \le k \le 7\\ 0 & \text{otherwise} \end{cases}$$

Find the 8-point DFT X[r] for $0 \le k \le 8$.

$$X_0 =$$

$$X_1 =$$

$$X_2 =$$

$$X_3 =$$

$$X_4 =$$

$$X_5 =$$

$$X_6 =$$

$$X_7 =$$

(b) Consider the following discrete signals

$$f_k = \{2, -1, 3, 1, 1\}$$

 $g_k = \{1, -2, 1\}.$

(i) Find the linear convolution of f_k and g_k .

 $y_{k,\mathrm{lin}} =$

(ii) Find the 5-point circular convolution of f_k and g_k .

 $y_{k, \text{cir}} =$