Assignment No: 08

Title/ Problem Statement:

Write C++/Java program to draw a concave polygon and fill it with desired pattern using scan line algorithm.

Prerequisites:

Objectives:

- 1. To understand Scan Line drawing algorithms used for polygon filling computer graphics.
- 2. To understand concept of different line styles using line algorithms for filling polygon with desired pattern.

Theory:

Scan-line Polygon Fill

- For each scan-line:
 - Locate the intersection of the scan
 - line with the edges (y=ys)
 - Sort the intersection points from left to right.
 - Draw the interiors intersection points pairwise. (a-b), (c-d)
- Problem with corners. Same point counted twice or not?

• a, b, c and d are intersected by 2 line segments each.

• Count b,c twice but a and d once. Why?

Solution: Make a clockwise or counter -clockwise traversal on edges. Check if y is monotonically increasing or decreasing. If direction changes, double intersection, otherwise single intersection.

Basic algorithm:

– Assume scan line start from the left and is outside the polygon.

- When intersect an edge of polygon, start to color each pixel (because now we're inside the polygon), when intersect another edge, stop coloring ...

- Odd number of edges: inside

- Even number of edges: outside

• Advantage of scan-line fill: It does fill in the same order as rendering, and so can be pipelined.

Scan-Line Polygon Fill Algorithm

• Odd-parity rule

Calculate span extrema (intersections) on each scan line
Using parity rule to determine whether or not a point is inside a region
Parity is initially even
\$\phi\$each intersection encountered thus inverts the parity bit
parity is odd -> interior point (draw)
parity is even-> exterior point (do not draw)

setlinestyle

Syntax

```
#include <graphics.h>
```

voidsetlinestyle(intlinestyle, unsigned upattern, int thickness);

Description

setlinestyle sets the style for all lines drawn by line, lineto, rectangle, drawpoly, and so on. The linesettingstype structure is defined in graphics.h as follows:

```
structlinesettingstype
{
intlinestyle;
unsignedupattern;
int thickness;
};
```

linestyle specifies in which of several styles subsequent lines will be drawn (such as solid, dotted, centered, dashed). The enumeration line_styles, which is defined in graphics.h, gives names to these operators:

Name Value Description

SOLID_LINE	0	Solid line
DOTTED_LINE	1	Dotted line
CENTER_LINE	2	Centered line
DASHED_LINE	3	Dashed line
LICEDDITE LINE	4	TT 1 C 1

USERBIT_LINE 4 User-defined line style

thickness specifies whether the width of subsequent lines drawn will be normal or thick.

Name Value Description

```
NORM_WIDTH 1 1 pixel wide
THICK_WIDTH 3 3 pixels wide
```

upattern is a 16-bit pattern that applies only if linestyle is USERBIT_LINE (4). In that case, whenever a bit in the pattern word is 1, the corresponding pixel in the line is drawn in the current drawing color. For example, a solid line corresponds to aupattern of 0xFFFF (all pixels drawn), and a dashed line can correspond to a upattern of 0x3333 or 0x0F0F. If the linestyle parameter to setlinestyle is not USERBIT_LINE (in other words, if it is not equal to 4), you must still provide the upattern parameter, but it will be ignored.

Note: The linestyle parameter does not affect arcs, circles, ellipses, or pie slices. Only the thickness parameter is used.

Return Value

If invalid input is passed to setlinestyle, graphresult returns -11, and the current line style remains unchanged. **Output:**

Polygon is filled with pattern.

Conclusion: Thus we have studied C++/Java program to draw a concave polygon and fill it with desired pattern using scan line algorithm.