Теортест-1 (Вариант 50)

Тема – определенный интеграл

Задача 1

Пусть f интегрируема и $f \ge 0$ на [a,b]. Выберите все достаточные условия для того, чтобы $\int_a^b f(x) dx > 0$:

- 1. f > 0 на [a, b];
- 2. f возрастает (нестрого) на [a, b] и f(b) = 1;
- 3. f непрерывна в точке a и f(b) = 1;
- 4. f непрерывна на [a,b] и f((a+b)/2)=1;

Пример ввода: 3, 1, 4 (введите "0", если верных утверждений нет)

Задача 2

Пусть функция u=u(x) – первообразная для функции v=v(x) на [a,b]. Выберите все верные на [a,b] утверждения (C – произвольная постоянная):

- 1. v = u';
- 2. v = u' + C:
- 3. v' = u + C;
- 4. udt = dv:

Пример ввода: 3, 1, 4 (введите "0", если верных утверждений нет)

Задача 3

Выберите все верные утверждения (множества A и B имеют площадь):

- 1. площадь A всегда неотрицательна;
- 2. площадь одной точки равна нулю;
- 3. площадь $A \cup B$ равна сумме площадей A и B;
- 4. площадь A всегда положительна;

Задача 4

Функция $f \in R[0,10]$ и $-1 \le f(x) \le 10$ на [0,10]. Выберите отрезки, содержащие значение интеграла $\int_e^{e^3} \frac{f(x)}{x} dx$:

- 1. [-10, 20];
- 2. [-1, 10];
- 3. [-2, 10];
- 4. [-2, 20];

Пример ввода: 3, 1, 4 (введите "0", если верных утверждений нет)

Задача 5

Выберите все верные утверждения:

- 1. Длина замкнутой кривой равна нулю;
- 2. Длина любого пути не меньше длины вписанной в его носитель ломаной;
- 3. Длина кривой определяется как супремум длин всевозможных параметризаций кривой;
- 4. Кусочно-гладкая кривая спрямляема;
- 5. Длина спрямляемой кривой конечна;

Пример ввода: 3, 1, 4 (введите "0", если верных утверждений нет)

Задача 6

Пусть $f:[a,b]\to\mathbb{R};\ \sigma_{\tau}(\xi)$ — интегральная сумма для f, построенная по разбиению τ с оснащением $\xi;\ s_{\tau},\ S_{\tau}$ — нижняя и верхняя суммы Дарбу. Выберите все верные утверждения:

- 1. $\forall \tau \ \exists \xi \colon S_{\tau} = \sigma_{\tau}(\xi);$
- 2. $\forall \tau \ \exists \xi : \ s_{\tau} \leq \sigma_{\tau}(\xi) \leq S_{\tau};$
- 3. $\forall \tau \ \forall \varepsilon > 0 \ \exists \xi : \ \sigma_{\tau}(\xi) > S_{\tau} \varepsilon;$
- 4. $\forall \tau : s_{\tau} < S_{\tau}$:

Задача 7

Пусть f(x), x(t) – дифференцирумые функции. Выберите все верные утверждения (при соответствующей замене) :

- 1. $\int f(x)d(2x) = \int \frac{f(\sqrt{t})}{\sqrt{t}}dt;$
- 2. $\int f(1/x)dx = -\int \frac{f(t)dt}{t^2}$;
- 3. $\int f(x)dx = \int \frac{f(\ln t)}{t}dt$;
- 4. $\int f(x)dx = \int f(\ln t)tdt$;

Пример ввода: 3, 1, 4 (введите "0", если верных утверждений нет)

Задача 8

Выберите все функции, имеющие дробно-рациональные первообразные:

- 1. $\frac{x^2-1}{x^2+1}$;
- 2. $\frac{2x+1}{x^2+x+1}$;
- 3. $\frac{x^4}{x^2-1}$;
- 4. $\frac{x^9}{x^5+1}$;

Пример ввода: 3, 1, 4 (введите "0", если верных утверждений нет)

Задача 9

Пусть $f \in R[a,b], F(x) = \int_a^x f(t)dt$. Выберите все верные утверждения:

- 1. F имеет разрывы в точках разрыва функции f;
- 2. Если $f \ge 0$ на [a, b], то F не убывает на [a, b];
- 3. Если f кусочно-непрерывна на [a,b], то F обобщенная первообразная для f на [a,b];
- 4. F ограничена на [a, b];

Задача 10

Пусть $f \in R[a,b], \, a < b.$ Выберите все верные утверждения:

- 1. Если f > 0 на [a, b], то $\int_a^b f(x) dx > 0$;
- 2. Если $\int_a^b |f(x)| dx < A$, то $\left| \int_a^b f(x) dx \right| < A$;
- 3. Если $f \geq 0$ на [a,b] и $\exists c \in [a,b] \colon f(c) > 0$, то $\int_a^b f(x) dx > 0$;
- 4. Если $f \ge 0$ на [a,b], то $\int_a^b f(x) dx \ge 0$;