הרצאה 8 לוגיקה

```
X \vdash \alpha אז X \vDash \alpha מטרה:
                                                                                                נאותות:
                                                                                   X \vDash \alpha in X \vdash \alpha
                                                                                   X \nvdash \alpha או X \nvDash \alpha
                                                                                                 למה 1:
                                                עקבית אל עקבית סופית על תת־קבוצה כל עקבית X
                                                                                                 :2 למה
                                                                      X \nvdash \alpha \Leftrightarrow X \bigcup \{ \neg \alpha \}
                                                                                                 למה 3:
                                                                        אם X ספיקה אז X עקבית
                                                                                                  מטרה:
                                                                             להוכיח את הכיוון ההפוך
                                                                    עקבית אז X ספיקה צ"ל
                                                                                                 הגדרנו:
X dash \neg lpha או או מקסימלית מחד מהבאים בדיוק אחד לכל מכל אם ורק אם אם עקבית עקבית עקבית אם או או או
                                                                                                 :5 למה
                    X\subseteq Yעך שי , Y מקסימלית עקבית קבוצה קיימת קיימת קיימת לכל קבוצה עקבית א
                                                                                                 למה 6:
                                                                               X לכל קבוצת פסוקים
                                                                   עקבית אם ורק אם X ספיקה X
                                                                                         _{3} עס' למה _{\Rightarrow}
                                                                                    נתון X עקבית
                                               עס' למה 5 קיימת X\subseteq Y סך אקסימלית עס'
                                                                                   :v נגדיר השמה
                         Y \vdash p_i \Leftrightarrow v(p_i) = T
                         Y \vdash \neg p_i \Leftrightarrow v(p_i) = F
                                                                                   מוגדרת היטב v
                                                                                              <u>:טענה</u>
                                                                    .v \vDash Y מתקיים lpha \in Y לכל
                                                                         כלומר v \models Y לא נוכיח.
                                                               אז v \vDash X והראינו שיv \vDash X אז
                                                    .v \vDash \alpha ולכן \alpha \in Y אז \alpha \in X נסתכל על
```

משפט השלמות:

 $X \vdash \alpha$ אז $X \vDash \alpha$ אם

הוכחה:

 $X
ot \vdash \alpha$ נתון השלילה בדרך ונניח בדרך נתון $X \models \alpha$ עקבית עס' למה ' $X \bigcup \{ \neg \alpha \}$ עקבית ולכן למה v כלומר קיימת ע

$$v \vDash X$$

$$v \vDash \neg \alpha$$

$$v \vDash \alpha$$

$$X \vDash \alpha \Rightarrow v \vDash \alpha$$

 $X \vdash \alpha$ מסקנה

מסקנה ממשפט השלמות והנאותות

 $\vdash \alpha \Leftrightarrow \vDash \alpha$

סיכום של הוכחת משפט השלמות

$$X \vdash \alpha \Leftarrow X \vDash \alpha$$

רצינו:

$$\begin{array}{ccc} X \nvDash \alpha & \Leftarrow & X \nvDash \alpha \\ & \uparrow & \downarrow \\ (\mathrm{Sfika})X \bigcup \{\neg \alpha\} & \Leftrightarrow & (\mathrm{Ikvit})X \bigcup \{\neg \alpha\} \end{array}$$

 $\{v \vDash X$ קבוצת ההשמות v כך ש־ $\{v \vDash X$ קבוצת האמות על א היא מודל של על על על על על על על על איא מודל של על על

משפט הקומפקטיות

לקבוצת פסוקים X יש מודל (היא ספיקה) אם ורק אם לכל תת־קבוצה סופית שלה יש מודל (היא ספיקה).

הוכחה:

. עקבית א פיקה א ספיקה X

כל תת קבוצה סופית שלה עקבית \Leftrightarrow

⇔ כל תת קבוצה סופית שלה היא ספיקה.

דוגמא לשמוש בקומפקטיות

נתונות שתי קבוצות של פסוקים Σ_2 ו־ Σ_2 כך ש־

 Σ_2 אין השמה שמספקת גם את גו אין גו .1 אין השמה שמספקת $M(\Sigma_1) \bigcap M(\Sigma_2) = \emptyset$

 Σ_2 או את Σ_1 או את מספקת מספקת 2.

```
דוגמא פשוטה:
```

$$\Sigma_2=\left\{\neg p_0\vee\neg p_1\right\}, \Sigma_1=\left\{p_0\wedge p_1\right\}$$
 כאשר Σ_2 , Σ_2 , Σ_2 במקרה סופיות בריך להוכיח:
$$v\vDash p_1\Leftrightarrow v\vDash \Sigma_1: v$$
 שקולה לו כלומר לכל v בסוק p_1 שקול לי $\Sigma_1: v$

שאלה:

האם
$$p_1 = \bigwedge_{lpha \in \Sigma_1} lpha$$
 האם האם Σ_1 היא אינסופית.

דוגמא:

דוגמה:

 $lpha_M:M$ נוסחה פסוקים שמתארת את המערכת נוסכחה נוסכחה פסוקים שמתארת את המפרט $lpha_M \wedge
eg \varphi$ פפיקה י כך: מצאנו באג \star

לא: המערכת נכונה. \star

מכרכת עם 2 תהליכים p_1 ו־ p_2 שיש להם בקשות ויש ארביטר שמחליט מי יקבל את בקשתו. מי יקבל את דגל:

 $(ext{request})$ מציג בקשה $P_i:R_1 \star$

. דגל של הארביטר. דגל של הארביטר: G_1 הוא G_1 מקבל את התור. כש־ G_2 הוא G_2 או התור.

לארביטר יש גם משתנים:

. הקודמת קבל את התור בפעם הקודמת. p_1 ־ D_1 \star

. הקודמת קבל את התור בפעם הקודמת. p_2 - D_2 \star

תאור המערכת:

$$\begin{split} \text{EXEC} &= \\ (\overset{1}{G_1} \leftrightarrow (\overset{1}{R_1} \wedge (\overset{0}{\neg R_2} \vee \overset{1}{D_2}))) \\ (\overset{1}{G_2} \leftrightarrow (\overset{1}{R_2} \wedge (\overset{0}{\neg R_1} \vee \overset{1}{D_1}))) \end{split}$$

מפרט:

$$\varphi_1 = \neg(G_1 \wedge G_2)$$
 EXEC $_1$ $\overbrace{G_1}$ $\overbrace{G_2}$ $\overbrace{G_2}$ שלילת המפרט פיקי פיקי פיקי פיקי החדשה EXEC $_1$ $\neg(D_1 \wedge D_2) = \alpha_M'$ נבדוק $\alpha_M' \wedge (G_1 \wedge G_2)$ שלילת המפרט פיקי $\underline{\alpha}_M'$

מסקנה:

 $. \lnot (G_1 \land G_2)$ המערכת את מספקת מספקת המתוקנת ניח שהנוסחה ספיקה נניח שהנוסחה המיקה

$$v \models \mathbf{EXEC} \land \neg (D_1 \land D_2)$$

$$\land (G_1 \land G_2)$$

$$\Rightarrow \overline{v}(G_1) = T \quad \overline{v}(G_2) = T$$

$$\Rightarrow \overline{v}(R_1 \land (\neg R_2 \lor D_2)) = T$$

$$\Rightarrow \overline{v}(R_1) + T$$

$$* \overline{v}(\neg R_2 \lor D_2) = T$$

$$\overline{v}(G_2) = T \Rightarrow \overline{v}(R_2) = T$$

$$**\overline{v}(\neg R_2) = F$$

$$\Rightarrow \overline{v}(D_2) = T$$

מפרט דרישה

$$\varphi_2=(R_1\wedge\neg R_2\to G_1)$$
 עלילת המפרט
$$\alpha_M'\wedge(R_1\wedge\neg R_2\wedge\neg G_1)$$