МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА) Кафедра МО ЭВМ

ОТЧЕТ

по лабораторной работе №5

по дисциплине «Качество и метрология программного обеспечения»

Тема: Оценка параметров надежности программ по временным моделям
обнаружения ошибок

Студент гр. 7304	Петруненко Д.А
Преподаватель	Ефремов М.А.

Санкт-Петербург 2021

Задание.

Выполнить исследование показателей надежности программ, характеризуемых моделью обнаружения ошибок Джелинского-Моранды, для различных законов распределения времен обнаружения отказов и различного числа используемых для анализа данных. Для проведения исследования требуется:

- 1. Сгенерировать массивы данных $\{Xi\}$, где Xi случайное значение интервала между соседними (i-1)—ой и i—ой ошибками (i=[1,30], также смотри примечание в п.3), в соответствии с:
- А) равномерным законом распределения в интервале [0,20]; при этом средний интервал между ошибками будет mpaвн = 10, CKO spaвн = 20/(2*sqrt(3)) = 5.8.
- Б) экспоненциальным законом распределения

W(y) = b*exp(-b*y), y>=0, c параметром b=0.1 и соответственно mэксп=sэксп= 1/b=10.

Значения случайной величины Y с экспоненциальным законом распределения с параметром «b» можно получить по значениям случайной величины t, равномерно распределенной в интервале [0,1], по формуле [1]: $Y = -\ln(t) / b$ B) релеевским законом распределения

 $W(y) = (y/c^2)*exp(-y^2/(2*c^2)), y>=0, c$ параметром c=8.0 и соответственно mpeл = c*sqrt(/2), speл= c*sqrt(2-/2).

Значения случайной величины Y с релеевским законом распределения с параметром «с» можно получить по значениям случайной величины t, равномерно распределенной в интервале [0,1], по формуле [1]: Y = c * sqrt(-2*ln(t)).

2. Каждый из 3-х массивов {Xi} интервалов времени между соседними ошибками упорядочить по возрастанию. 3

3. Для каждого из 3-х массивов $\{Xi\}$ оценить значение первоначального числа ошибок в программе В. При этом для каждого закона использовать 100%, 80% и 60% входных данных (то есть в массивах $\{Xi\}$ использовать n=30,24 и 18 элементов).

Примечание: для каждого значения п следует генерировать и сортировать новые массивы.

- 4. Если В>n, оценить значения средних времен Xj, j=n+1,n+2..., n+k до обнаружения $k \le 5$ следующих ошибок и общее время на выполнение тестирования.
- 5. Результаты вычислений представить в виде двух таблиц, одна из которых содержит оценки первоначального числа ошибок, а другая оценки полных времен проведения тестирования для разных законов распределения времен между отказами и разного числа используемых данных.
- 6. Сравнить и объяснить результаты, полученные для различных законов распределения времени между соседними отказами и различного числа используемых для анализа данных.

Ход выполнения.

1. Равномерный закон

а. Равномерный закон распределения (100% входных данных)

i	X	i	X	i	X
1	0,481	11	7,138	21	12,326
2	1,257	12	7,332	22	12,864
3	1,942	13	7,674	23	13,443
4	2,354	14	8,842	24	14,253
5	2,796	15	9,246	25	14,965
6	3,571	16	9,433	26	15,583
7	3,993	17	10,054	27	16,094
8	4,032	18	10,716	28	17,454
9	5,537	19	11,224	29	18,542
10	6,413	20	11,698	30	19,875

Была выполнена оценка средних времён до завершения тестирования и полного времени тестирования для этого набора данных:

$$A = \frac{\sum_{i=1}^{n} i * X_i}{\sum_{i=1}^{n} X_i} = 20,446$$

$$A > \frac{n-1}{2}$$

20,446 > 15.5 - существует конечное решение

$$f(m) = \sum_{i=1}^{n} \frac{1}{m-i}$$

$$g(m,A) = \frac{n}{m-A}$$

m	f(m)	g(m, A)	f - g
31	3.994987	2.842616	1.152371
32	3.027245	2.59658	0.430665
33	2.558495	2.389742	0.168754
34	2.255465	2.213425	0.04204
35	2.034877	2.061337	0.026461
36	1.863448	1.928807	0.065359

Минимум при m=35, B = m-1=34

$$K = \frac{n}{(B-1)*\sum_{i=1}^{n} X_i - \sum_{i=1}^{n} i*X_i} = 0.0085004$$

$$X^{\wedge} = \frac{1}{K * (B-n)}$$

i	X
31	29.4102917
32	39.21372
33	58.820583
34	117.6411667

Время до полного завершения тестирования: 245.086 дней

Полное время тестирования: 526.218 дней

b. Равномерный закон распределения (80% входных данных)

i	X	i	X	i	X
1	0.645	9	7.742	17	13.548
2	1.935	10	8.387	18	14.839
3	2.581	11	9.032	19	15.484
4	3.871	12	10.323	20	16.129
5	4.516	13	10.968	21	16.129
6	5.807	14	11.613	22	17.419

7	6.452	15	12.258	23	18.065
8	7.097	16	12.903	24	19.355

Была выполнена оценка средних времён до завершения тестирования и полного времени тестирования для этого набора данных:

$$A = \frac{\sum_{i=1}^{n} i * X_i}{\sum_{i=1}^{n} X_i} = 16.102$$

$$A > \frac{n-1}{2}$$

16.102 > 12.5 — существует конечное решение

$$f(m) = \sum_{i=1}^{n} \frac{1}{m-i}$$

$$g(m,A) = \frac{n}{m-A}$$

m	f(m)	g(m, A)	f - g
25	3.775958	2.697097	1.078861
26	2.815958	2.424621	0.391337
27	2.35442	2.202147	0.152273
28	2.058123	2.017068	0.041055
29	1.843837	1.726811	0.01685
30	1.67832	1.928807	0.04849

Минимум при m=29, B = m-1=28

$$K = \frac{n}{(B-1)*\sum_{i=1}^{n} X_i - \sum_{i=1}^{n} i*X_i} = 0.0089$$

$$X^{\wedge} = \frac{1}{K * (B-n)}$$

i	X
25	28.125167

26	37.50022
27	56.25033
28	112.50066

Время до полного завершения тестирования: 234.376 дней

Полное время тестирования: 482.119 дней

с. Равномерный закон распределения (60% входных данных)

i	X	i	X	i	X
1	1.29	7	8.387	13	14.839
2	2.581	8	9.032	14	15.487
3	3.226	9	10.323	15	16.774
4	4.516	10	11.613	16	17.419
5	5.806	11	12.903	17	18.71
6	7.097	12	13.548	18	19.355

Была выполнена оценка средних времён до завершения тестирования и полного времени тестирования для этого набора данных:

$$A = \frac{\sum_{i=1}^{n} i * X_i}{\sum_{i=1}^{n} X_i} = 12.2174$$

$$A > \frac{n-1}{2}$$

12.2173 > 9.5 - существует конечное решение

$$f(m) = \sum_{i=1}^{n} \frac{1}{m-i}$$

$$g(m,A) = \frac{n}{m-A}$$

m	f(m)	g(m, A)	f - g
19	3.495108	2.653846	0.841262
20	2.54774	2.312849	0.23489
21	2.09774	2.049505	0.048235
22	1.812025	1.84	0.027975
23	1.60748	1.669355	0.061875
24	1.450958	1.527675	0.076717

Минимум при m=22, B = m-1=21

$$K = \frac{n}{(B-1)*\sum_{i=1}^{n} X_i - \sum_{i=1}^{n} i*X_i} = 0.01199$$

$$X^{\wedge} = \frac{1}{K * (B-n)}$$

i	X
19	27.80167
20	41.70251
21	83.40502

Время до полного завершения тестирования: 152.909 дней

Полное время тестирования: 345.812 дней

2. Экспоненциальный закон

а. Экспоненциальный закон (100% входных данных)

i	X	i	X	i	X
1	0.133	11	1.962	21	5.698
2	0.213	12	3.164	22	7.852
3	0.467	13	3.182	23	8.033
4	0.506	14	3.276	24	8.729
5	0.612	15	3.36	25	10.316
6	0.873	16	3.535	26	10.81
7	0.97	17	3.84	27	11.262

8	1.01	18	4.954	28	13.489
9	1.276	19	5.538	29	21.098
10	1.529	20	5.628	30	35.49

Была выполнена оценка средних времён до завершения тестирования и полного времени тестирования для этого набора данных:

$$A = \frac{\sum_{i=1}^{n} i * X_i}{\sum_{i=1}^{n} X_i} = 23.846$$

$$A > \frac{n-1}{2}$$

23.846 > 15.5 - существует конечное решение

$$f(m) = \sum_{i=1}^{n} \frac{1}{m-i}$$

$$g(m,A) = \frac{n}{m-A}$$

m	f(m)	g(m, A)	f - g
31	3.994987	4.193536	0.198549
32	3.027245	3.679236	0.65199

Минимум при m=31, B=m-1=30

$$K = \frac{n}{(B-1)* \sum_{i=1}^{n} X_i - \sum_{i=1}^{n} i* X_i} = 0.03255$$

$$X^{\wedge} = \frac{1}{K * (B-n)}$$

Т.к. B=n => Время до полного завершения тестирования: <math>0 дней

Полное время тестирования: 178.809 дней

b. Экспоненциальный закон (80% входных данных)

i	X	i	X	i	X
1	0.092	9	4.189	17	14.531
2	0.877	10	5.563	18	15.322
3	1.187	11	6.887	19	17.17
4	2.714	12	8.445	20	18.466
5	3.446	13	9.784	21	22.9
6	3.524	14	10.959	22	24.745
7	3.842	15	13.128	23	32.485
8	3.972	16	13.219	24	34.455

Была выполнена оценка средних времён до завершения тестирования и полного времени тестирования для этого набора данных:

$$A = \frac{\sum_{i=1}^{n} i * X_i}{\sum_{i=1}^{n} X_i} = 17.9864$$

$$A > \frac{n-1}{2}$$

17.986 > 12.5 - существует конечное решение

$$f(m) = \sum_{i=1}^{n} \frac{1}{m-i}$$

$$g(m,A)=\frac{n}{m-A}$$

m	f(m)	g(m, A)	f - g
25	3.775958	3.421915	0.354043
26	2.815958	2.994903	0.178945
27	2.354419	2.662638	0.308219

Минимум при m=26, B = m-1=25

$$K = \frac{n}{(B-1)*\sum_{i=1}^{n} X_i - \sum_{i=1}^{n} i*X_i} = 0.0147$$

$$X^{\wedge} = \frac{1}{K * (B-n)}$$

i	X
25	28.125167

Время до полного завершения тестирования: 68.129 дней

Полное время тестирования: 340.029 дней

с. Экспоненциальный закон (60% входных данных)

i	X	i	X	i	X
1	0.656	7	8.457	13	15.109
2	1.714	8	9.048	14	21.063
3	2.88	9	9.11	15	23.252
4	3.608	10	10.382	16	25.867
5	5.328	11	11.438	17	28.063
6	6.657	12	14.056	18	38.709

Была выполнена оценка средних времён до завершения тестирования и полного времени тестирования для этого набора данных:

$$A = \frac{\sum_{i=1}^{n} i * X_i}{\sum_{i=1}^{n} X_i} = 12.9107$$

$$A > \frac{n-1}{2}$$

12.9107 > 9.5 - существует конечное решение

$$f(m) = \sum_{i=1}^{n} \frac{1}{m-i}$$

$$g(m,A) = \frac{n}{m-A}$$

m	f(m)	g(m, A)	f - g
19	3.495108	2.956012	0.539097
20	2.54774	2.539043	0.008697
21	2.09774	2.225165	0.127427

Минимум при m=20, B = m-1=19

$$K = \frac{n}{(B-1)*\sum_{i=1}^{n} X_i - \sum_{i=1}^{n} i*X_i} = 0.0279$$

$$X^{\wedge} = \frac{1}{K * (B-n)}$$

i	X
19	35.883857

Время до полного завершения тестирования: 35.884 дней

Полное время тестирования: 162.799 дней

3. Релеевский закон

а. Релеевский закон (100% входных данных)

слесьский закон (10070 входных данных)					
i	X	i	X	i	X
1	1.3	11	4.803	21	11.627
2	2.138	12	6.234	22	11.978
3	2.539	13	6.312	23	13.068
4	2.812	14	6.666	24	13.563
5	3.06	15	7.709	25	14.01
6	3.718	16	7.975	26	14.976
7	3.755	17	8.878	27	16.891
8	4.13	18	9.155	28	17.743
9	4.494	19	9.83	29	17.848
10	4.776	20	10.346	30	18.721

Была выполнена оценка средних времён до завершения тестирования и полного времени тестирования для этого набора данных:

$$A = \frac{\sum_{i=1}^{n} i * X_i}{\sum_{i=1}^{n} X_i} = 20.5732$$

$$A > \frac{n-1}{2}$$

20.5732 > 15.5 -существует конечное решение

$$f(m) = \sum_{i=1}^{n} \frac{1}{m-i}$$

$$g(m,A)=\frac{n}{m-A}$$

m	f(m)	g(m, A)	f - g
31	3.994987	2.877194	1.117793
32	3.027245	2.625401	0.401844
33	2.558495	2.414132	0.144363
34	2.255465	2.234333	0.021132
35	2.034877	2.07946	0.044583

Минимум при m=34, B = m-1=33

$$K = \frac{n}{(B-1) * \sum_{i=1}^{n} X_i - \sum_{i=1}^{n} i * X_i} = 0.010057$$

$$X^{\wedge} = \frac{1}{K * (B-n)}$$

i	X
31	33.14491
32	49.71737
33	99.43473

Время до полного завершения тестирования: 182.297 дней

Полное время тестирования: 443.353 дней

b. Релеевский закон (80% входных данных)

i	X	i	X	i	X
1	1.389	9	9.827	17	14.843
2	3.972	10	9.998	18	15.596
3	4.343	11	10.768	19	16.688
4	5.529	12	11.621	20	17.167
5	6.69	13	12.203	21	17.628
6	7.017	14	12.634	22	18.348
7	7.367	15	13.141	23	21.368
8	8.688	16	13.861	24	23.475

Была выполнена оценка средних времён до завершения тестирования и полного времени тестирования для этого набора данных:

$$A = \frac{\sum_{i=1}^{n} i * X_i}{\sum_{i=1}^{n} X_i} = 15.7094$$

$$A > \frac{n-1}{2}$$

 $A > \frac{n-1}{2}$ 15.7094 > 12.5 - существует конечное решение

$$f(m) = \sum_{i=1}^{n} \frac{1}{m-i}$$

$$g(m,A) = \frac{n}{m-A}$$

m	f(m)	g(m, A)	f - g
25	3.775958	2.583260	1.192698
26	2.815958	2.332227	0.483729
27	2.35442	2.1256648	0.228754
28	2.058123	1.952714	0.105409

29	1.843838	1.80579	0.038048
30	1.67832	1.679427	0.001107
31	1.544987	1.569593	0.024606

Минимум при m=30, B = m-1=29

$$K = \frac{n}{(B-1)*\sum_{i=1}^{n} X_i - \sum_{i=1}^{n} i*X_i} = 0.0147$$

$$X^{\wedge} = \frac{1}{K * (B-n)}$$

i	X
25	29.103999
26	36.379999
27	48.506666
28	72.759999
29	145.51999

Время до полного завершения тестирования: 332.271 дней Полное время тестирования: 616.429 дней

с. Релеевский закон (60% входных данных)

i	X	i	X	i	X
1	1.508	7	5.563	13	10.026
2	2.919	8	6.053	14	10.122
3	3.181	9	6.358	15	10.522
4	3.244	10	7.192	16	11.532
5	3.94	11	7.582	17	14.252
6	4.949	12	9.026	18	20.213

Была выполнена оценка средних времён до завершения тестирования и полного времени тестирования для этого набора данных:

$$A = \frac{\sum_{i=1}^{n} i * X_i}{\sum_{i=1}^{n} X_i} = 12.3605$$

$$A > \frac{n-1}{2}$$

12.3605 > 9.5 – существует конечное решение

$$f(m) = \sum_{i=1}^{n} \frac{1}{m-i}$$

$$g(m,A) = \frac{n}{m-A}$$

m	f(m)	g(m, A)	f - g
19	3.495108	2.711038	0.784071
20	2.54774	2.356168	0.191572
21	2.09774	2.083448	0.014291
22	1.812025	1.867312	0.055287

Минимум при m=21, B = m-1=20

$$K = \frac{n}{(B-1) * \sum_{i=1}^{n} X_i - \sum_{i=1}^{n} i * X_i} = 0.0196$$

$$X^{\wedge} = \frac{1}{K * (B-n)}$$

i	X
19	25.484528
20	50.969055

Время до полного завершения тестирования: 76.454 дней

Полное время тестирования: 214.633 дней

4. Полученные результаты

Закон распределения	n = 30	n = 24	n = 18
Равномерный	34	28	21
Экспоненциальный	30	25	19
Релеевский	33	29	20

Таблица 1 – Оценка первоначального числа ошибок

Закон распределения	n = 30	n = 24	n = 18
Равномерный	526.218	482.119	345.812
Экспоненциальный	178.809	340.029	162.799
Релеевский	443.353	616.429	214.633

Таблица 2 – Оценка полного времени проведения тестирования

Выводы.

В ходе выполнения лабораторной работы были исследованы показатели надёжности программ, характеризуемые моделью обнаружения ошибок Джелинского-Моранды для различных законов распределения времён обнаружения отказов и различного числа используемых для анализа данных.

По результатам экспериментов наилучший результат показывает экспоненциальный закон распределения. При любых входных данных показывает наименьшее общее время полного тестирования. При 80% входных данных релеевское распределение демонстрирует наихудшие результаты полного времени проведения тестирования, но при 100% и 60% входных данных наихудшие результаты показывает равномерное распределение, хотя по первоначальному количеству ошибок релеевское и равномерное распределение примерно равны.