DATA423 Assignment3

Jiangwei Wang (19364744)

Data description

This assignment 3 data consists of 1280 observations and 21 variables. The target variable is "Y".

There are 1 date variable, 1 nominal variable and all the rest 19 variables, including the target variable, are all numeric variable.

There are missing values in all of the "Reagent" prefixed numeric variables, and they visually missing random. There are no excessively missing variables or observations.

From "Dfsummary", numeric variables are seemed normal distributed, apart from "y".

The numeric predict variables with "Reagent" prefix and the target variable all have uni-variable outliers, but not significant for the predict variables, the outliers disappeared when the IQR multipliers reaches 2.3. The target variable's outliers are showing a little bit more significant as they won't disappear until the IQR multiplier reaches to 3.

The nominal variable blood type has a low cardinality of 4.

From the boxplot we can determine the numeric data has 3 levels variety of scales. The first 4 numeric variables variate between 0 and 12, 'Alcohol' has the least variety to 4. The "Reagent" prefixed numeric variables variate from just over 100 to under 1100. The target variable variates the most, between over 2000 and below -4000.

Blocks of numeric predict variables are highly correlated to each other. These variables all have a similar name prefix as "Reagent". There are 4 blocks: L, N, F, J, D and H; E and M; B and K; A, G, C and I.

The date formatted character variable format is YYYY-mm-dd. It covers from 2008-10-18 to 2019-06-28 almost 11 years' time period.

The pair plots show some unlinear relationships between some of the predict variables and the target variable, especially 'ReagentH', ReagentJ', ReagentK', ReagentL', ReagentM', ReagentN'.

Strategies

Missing data

There are no excessively missing variables or observations to eliminate. There are only "Reagent" prefixed variables have missing values, most of them are missing around 5%, only "ReagentE" is missing just over 6%. These are shown in the "DfSummary".

Because we have a raw obs/parametres ratio of 60, we can do a partial deletion if needed.

For the methods, we could use either naomit or knn with neighbour equals to 5 imputation as a default process approach. However, mode imputation has the same result as naomit after we employed, the mode imputation will reserve all the information from the data rather than delete, I would prefer to use mode imputation. Knn imputation has better result than mode imputation, once this approach selected, bag imputation can improve the result more or less in most models.

Since there are no missing target values, we don't need to eliminate these observations.

Outliers

The uni-variable outliers from predict variables are not significant, it is not necessary to delete any observations. However, we can consider using robust method to make sure catch any information outliers can offer.

Processing

Center and scaling are necessary due to the variety from the numeric predict variables are different, especially the difference between the first 4 variables and the rest. It is much the same to implement them before or after the knn imputation. Once this is selected, the best model will improve slightly either before or after in some of the models, apart from tree models or some other models.

PLS processing approach, which creates one or more new dimensions on numeric variables, work well on Tree-Based methods and some general linear methods.

To nomalize data by using YeoJohnson processing approach works well on Tree-Based method as well.

The date variable was converted to decimal, day-of-week, month, year. It has a significant impact on some models' accuracy improvement.

The correlation between some of the numeric variables can be broken by implementing PLA, ICA processing approaches. However, ICA is useful on fewer models, especially the two best models: gaussprPoly and cubist, ICA add brilliance to their present splendor.

NZV processing is useful on highly sparse and unbalanced data, which is not quite useful here.

Other processing isn't quite useful here as well, which will classify infrequently occurring data into an 'other' category.

Every single method is used dummy encoding for the treatment on low cardinality nominal variable blood type.

Mode imputation can't be used if PCA is used at the mean time.

A static test set of 20% will be set aside to evaluate the best model using stratified sampling based upon the target.

The hyper-parameters will be tuned by using 10 fold cross-validation resampling by default. The distribution of metrics will be plotted below.

Methods

The following method were tried:

Method	Characteristics	Notes	Reason chosen
glmnet – glmnet	Generalized Linear	Failed when missing	
	Model	still present.	
	Implicit Feature	Failed when nominal	
	Selection	still present.	
	L1 Regularization	2 hyperparameters	
	L2 Regularization		
	Linear Classifier		
	Linear Regression		
pls – Partial Least	Partial Least Squares	1 hyperparameter	
Squares	Feature Extraction	, ,	
- 4	Linear Classifier		
	Linear Regression		
rpart – CART	Tree-Based Model	1 hyperparameter	
	Implicit Feature		
	Selection		
	Handle Missing		
	Predictor Data		
	Accepts Case Weights		
randomGLM –	Generalized Linear	1 hyperparameter	Search for another glm
Ensembles of	Model	Crashed	method again after
Generalized Linear	Linear Classifier	missing parameter	glmnet performing well
Models	Ensemble Model	'length'	
	Bagging		
bayesglm – Bayesian	Generalized Linear	no hyperparameter	Search for another glm
Generalized Linear	Model		method after glmnet
Model	Logistic Regression		performing well

	Linear Classifier		
	Bayesian Model		
	Accepts Case Weights		
glmStepAIC –	Generalized Linear	Failed when missing	Search for another glm
Generalized Linear	Model	still present.	method again after
Model with Stepwise	Feature Selection	No hyperparameter	glmnet performing well
Feature Selection	Wrapper	, to try per parameter	SS
	Linear Classifier		
	Implicit Feature		
	Selection		
	Two Class Only		
	Accepts Case Weights		
plsRglm – Partial Least	Generalized Linear	Failed when nominal	Search for another glm
Squares Generalized	Models	still present.	method again after
Linear Models	Partial Least Squares	2 hyperparameters	glmnet performing well
	Two Class Only	Slow to train	
ANFIS – Adaptive-	Rule-Based Model	Failed when missing	Random example of
Network-Based Fuzzy		still present.	neural network based
Inference System		Failed when nominal	method
		still present.	
		2 hyperparameters	
		Aborted	
		More than 2 hours to	
		train	
qrnn – Quantile	Neural Network	Failed when missing	Search for neural
Regression Neural	L2 Regularization	still present.	network based method
Network	Quantile Regression	Failed when nominal	due to previous failed
	Bagging	still present.	method
	Ensemble Model	3 hyperparameters	
	Robust Model	Aborted	
		took too long to train	
brnn – Bayesian	Bayesian Model	Failed when missing	Search for neural
Regularized Neural	Neural Network	still present.	network based method
Networks	Regularization	Failed when nominal	due to previous failed
		still present.	method
		1 hyperparameter	
		Aborted	
		took too long to train	
avNNet – Model	Neural Network	Failed when missing	Search for neural
Averaged Neural	Ensemble Model	still present.	network based method
Network	Bagging	3 hyperparameters	

	L2 Regularization		due to previous failed
	Accept case weights		method
knn – k-Nearest	Prototype Model	Failed when missing	Random example of
Neighbours		still present.	simple kernel based
		Failed when nominal	method we most
		still present.	familiar with
		1 hyperparameter	
		Slow to train	
rf – Random Forest	Random Forest	Failed when missing	Random example of
	Ensemble Model	still present.	most common tree
	Bagging	1 hyperparameter	based method
	Implicit Feature	Slow to train	
	Selection		
kernelpls – Partial Least	Partial Least Squares	1 hyperparameter	Random example of
Squares	Feature Extraction	Fast to train	ordinary least squares
	Kernel Method		based method
	Linear Classifier		
	Linear Regression		
rlm – Robust Linear	Linear Regression	2 hyperparameters	Random example of
Model	Robust Model	Fast to train	robust method
	Accepts Case Weights		
rqlasso – Quantile	Linear Regression	Failed when nominal	Random example of
Regression with LASSO	Quantile Regression	still present.	Quantile Regression
penalty	Implicit Feature	1 hyperparameter	
	Selection		
	L1 Regularization		
cubist – Cubist	Rule-Based Model	2 hyperparameters	Random example of
	Boosting		Rule-Based method
	Ensemble Model		
	Prototype Models		
	Model Tree		
	Linear Regression		
	Implicit Feature		
	Selection		
gaussprPoly – Gaussian	Gaussian Process with	Failed when missing	Random example of
Process with	Polynomial Kernel	still present.	Gaussian Process
Polynomial Kernel		Failed when nominal	method, choose the
		still present.	one with 'poly' in terms
		2 hyperparameters	of unlinear relationship
			discovered before

gaussprRadial –	Kernel Method	Failed when nominal	Search for Gaussian
Gaussian Process with	Gaussian Process	still present.	Process method due to
Radial Basis Function	Radial Basis Function	·	
Kernel	Radial Dasis FullCulli	1 hyperparameter Slow to train	previous gaussprPoly
Kerriei		Slow to train	method's outstanding
	Vorsal Mathed	Failed when missing	performance
gaussprLinear –	Kernel Method	Failed when missing	Search for Gaussian
Gaussian Process	Gaussian Process	still present.	Process method due to
	Linear Classifier	Failed when nominal	previous gaussprPoly
		still present.	method's outstanding
		No hyperparameter	performance
svmPoly – Support	Kernel Method	Failed when nominal	Searching for
Vector Machines with	Support Vector	still present.	polynomial method
Polynomial Kernel	Machines	3 hyperparameters	due to previous
	Polynomial Model		gaussprPoly method's
	Robust Methods		outstanding
			performance
krlsPoly – Polynomial	Kernel Method	Failed when missing	Searching for
Kernel Regularized	L2 Regularization	still present.	polynomial method
Least Squares	Polynomial Model	Failed when nominal	due to previous
		still present.	gaussprPoly method's
		2 hyperparameters	outstanding
			performance
rvmPoly - Relevance	Kernel Method	Failed when missing	Searching for
Vector Machines with	Relevance Vector	still present.	polynomial method
Polynomial Kernel	Machines	Failed when nominal	due to previous
	Polynomial Model	still present.	gaussprPoly method's
	Robust Methods	Failed when	outstanding
		heteroscedastic still	performance
		present.	
		2 hyperparameters	
		Slow to train	
rfRules - Random	Random Forest	2 hyperparameters	Search for tree based
Forest Rule-Based	Ensemble Model	Aborted	method to find out if it
Model	Bagging	took too long to train	can do any better than
	Implicit Feature	10011 100 10115 10 114111	rf and it is a Rule-Based
	Selection		method, in terms of
	Rule-based Model		cubist method's
	Maic basea Wiodei		outstanding
			performance
qrf - Quantile Random	Random Forest	Failed when missing	Search for tree based
•		_	
Forest	Ensemble Model	still present.	method again to find

	Dagging	1 hyporparameter	out if it can do any
	Bagging	1 hyperparameter Slow to train	•
	Implicit Feature	Slow to train	better than rf, and it is
	Selection		a robust method
	Quantile Regression		
	Robust Model		
ranger - random forest	Random Forest	3 hyperparameters	Search for tree based
	Ensemble Model	Slow to train	method again to find
	Bagging		out if it can do any
	Implicit Feature		better than 'rf', and it
	Selection		is an ensemble method
	Accepts Case Weights		in terms of 'cubist'
			method's outstanding
			performance
M5 - Model Tree	Rule-Based Model	3 hyperparameters	Searching for Rule-
	Tree-Based Model	Crashed	Based method due to
	Linear Regression	Rweka library can't find	previous cubist
	Implicit Feature	'JVM'	method's outstanding
	Selection		performance
	Model Tree		
M5Rules - Model Tree	Rule-Based Model	2 hyperparameters	Searching for Rule-
	Linear Regression	Crashed	Based method due to
	Implicit Feature	Rweka library can't find	previous cubist
	Selection	'JVM'	method's outstanding
	Model Tree		performance
HYFIS - Hybrid Neural	Rule-Based Model	2 hyperparameters	Searching for Rule-
Fuzzy Inference System		Aborted	Based method due to
		took too long to train	previous cubist
			method's outstanding
			performance
xgbLinear - eXtreme	Linear Classifier Models	Failed when nominal	Searching for ensemble
Gradient Boosting	Linear Regression	still present.	method with boosting
	Models	4 hyperparameters	due to previous cubist
	L1 Regularization	Slow to train	method's outstanding
	Models		performance
	L2 Regularization		
	Models		
	Boosting		
	Ensemble Model		
	Selection		
	Implicit Feature		

blackboost - Boosted	Tree-Based Model	2 hyperparameters	Searching for ensemble
Tree	Ensemble Model	Slow to train	method and boosting
	Boosting		with Tree-Based
	Accepts Case Weights		method rather than
			linear method due to
			previous cubist
			method's outstanding
			performance
gbm_h2o - Gradient	Tree-Based Model	Failed when missing	Searching for ensemble
Boosting Machines	Boosting	still present.	method and boosting
	Ensemble Model	5 hyperparameters	with Tree-Based
	Implicit Feature	Crashed	method rather than
	Selection	no active connection to	linear method due to
		an H2o cluster	previous cubist
			method's outstanding
			performance
bstSm - Boosted	Ensemble Model	Failed when missing	Searching for ensemble
Smoothing Spline	Boosting	still present.	method with boosting
	Implicit Feature	Failed when nominal	due to previous cubist
	Selection	still present.	method's outstanding
		2 hyperparameters	performance
		Crashed	
		'tol' must be strictly	
		positive and finite	
bagEarthGCV - Bagged	Multivariate Adaptive	Failed when missing	Searching for ensemble
MARS using gCV	Regression Splines	still present.	method with boosting
Pruning	Ensemble Model	Failed when nominal	due to previous cubist
	Implicit Feature	still present.	method's outstanding
	Selection	1 hyperparameter	performance
	Bagging		
	Accepts Case Weights		

Neural network methods all seem take a long time to train, especially the ones that need to import 'frbs' library. They consist most of the Rule-Based methods, which are not very successful, either from package issue, or taking too long to train. I tried my best to train all the other methods after few unsuccessful attempts.

Models

The following models were successfully trained. A visual summary of the models is showing below. Models that perform worse than null model have been omitted.

Model	Processing steps	Resampled performance
cubist	bag	RMSE 19.52
	center	$R^2 = 1.00$
	scale	MAE = 14.08
	ica	
	date	
	dummy	
gaussprPoly	bag	RMSE = 23.87
	center	$R^2 = 1.00$
	scale	MAE = 17.88
	ica	
	date	
	dummy	
blackboost	bag	RMSE = 67.54
	date	$R^2 = 1.00$
	dummy	MAE = 49.45
xgbLinear	bag	RMSE = 73.05
	pls	$R^2 = 1.00$
	YeoJohnson	MAE = 52.26
	date	
	dummy	
glmnet	naomit	RMSE = 85.37
	center	$R^2 = 1.00$
	scale	MAE = 61.41
	date	
	dummy	
gaussprLinear	mode	RMSE = 86.44

	date	$R^2 = 1.00$
	dummy	MAE = 62.75
pls	mode	RMSE = 86.49
·	center	$R^2 = 1.00$
	scale	MAE = 62.78
	date	
	dummy	
kernelpls	mode	RMSE = 86.59
	center	$R^2 = 1.00$
	scale	MAE = 62.95
	date	
	dummy	
bayesglm	mode	RMSE = 87.06
	date	$R^2 = 1.00$
	dummy	MAE = 63.41
rlm	bag	RMSE = 87.49
	center	$R^2 = 1.00$
	scale	MAE = 61.01
	date	
	dummy	
plsRglm	bag	RMSE = 88.03
	ica	$R^2 = 1.00$
	date	MAE = 63.64
	dummy	
ranger	bag	RMSE = 88.64
	YeoJohnson	$R^2 = 1.00$
	dummy	MAE = 65.37
rf	bag	RMSE = 93.33
	YeoJohnson	$R^2 = 1.00$
	dummy	MAE = 69.66
rqlasso	mode	RMSE = 90.06
	center	$R^2 = 1.00$
	scale	MAE = 57.67
	date	
	dummy	
svmPloy	bag	RMSE = 90.38
	dummy	$R^2 = 1.00$
		MAE = 70.98
glmStepAIC	bag	RMSE = 91.36
	pls	$R^2 = 1.00$
	ica	MAE = 66.71

	date	
	dummy	
rvmPoly	bag	RMSE = 93.28
	YeoJohnson	$R^2 = 1$
	center	MAE = 70.28
	scale	
	dummy	
bagEarthGCV	naomit	RMSE = 96.08
	dummy	$R^2 = 1.00$
		MAE = 70.74
qrf	knn	RMSE = 99.06
	YeoJohnson	$R^2 = 1.00$
	pls	MAE = 73.31
	dummy	
rpart	bag	RMSE = 118.93
	pls	$R^2 = 0.99$
	date	MAE = 89.20
	dummy	
gaussprRadial	bag	RMSE = 126.69
	center	$R^2 = 1.00$
	scale	MAE = 83.69
	ica	
	dummy	
knn	bag	RMSE = 827.60
	center	$R^2 = 0.80$
	scale	MAE = 427.79
	ica	
	dummy	
krlsPoly	knn	RMSE = 1737.66
	pls	$R^2 = 0.08$
	dummy	MAE = 1162.38
avNNet	knn	RMSE = 1768.55
	center	$R^2 = 0.66$
	scale	MAE = 1297.49
	dummy	

Bag imputation process approach takes a long time, but it worth the waiting, it boosts the resampled performance better than the knn imputation pre-process in most models. Especially on 'rvmPoly' model, bag imputation process took a huge impact on its resampled performance. It also even pushed the RMSE of 'cubist' model to the top against 'gaussprPoly' model, which cubist was my second-best model originally, before bag imputation pre-preocess kicked in.

Bag imputation, date and dummy is my outstanding pre-processing combination. It depends on the method, if it is a tree-based method, we won't apply center and scale pre-processing approaches, cos they won't work. However, my best pre-process combination is bag imputation, center, scale, ica, date and dummy. Center, scale and ica combination seem work well in some methods when they are appropriate. Especially with my top two performed models, which are shown above, this combination boosted the resampled performance much better than the third model, which center, scale and ica won't take an effect.

Avnnet model has been omitted since its resampled performance is worse than null model

KrlsPoly and knn models' resampled performance are both fall behind other models. Their metrics boxplots all have long tails and notches.

Rpart, gaussprRadial and qrf models' RMSE and MAE metrics boxplots all have tails, but they are much better than krlsPoly and knn models. GaussprRadial's R squared metrics has a little variation shown, which is the same as bagEarthGCV, rvmPoly and blackboost models.

RvmPoly and glmnet models' MAE and RMSE metrics boxplots have an outlier towards the optimistic side. However, glmStepAIC and xgbLinear metrics boxplots have outliers towards the opposite side.

Best Model

Resampled performance:

neighbors RMSE Rsquared

Cubist model resampled performance plot

79 0 19.52 1.00 14.08 2.22 0.00 1.71

RMSESD

RsquaredSD

Cubist model performance on unseen data

My best model supposes be cubist upon RMSE. However, its RMSE metrics boxplot is showing a variation with a wider body than the second-best model, gaussprPoly, which is performing slightly worse than cubist model based upon RMSE. When I took a look on cubist's performance on unseen data, the performance dropped a lot down to about 42.76 on RMSE. Then I realized there are massive outliers on the training residual already when the IQR multiplier is 1.5. Thus, this caused significant outliers on the test residual. This must due to the training and test split from the very beginning. Hence, I re-split the dataset as 70% training with 30% test, and 80% training with 20% testing again to make sure.

Cubist model resampled performance plot with 70% training and 30% testing split

RsquaredSD

Resampled performance: neighbors

RMSE

committees

MAE

RMSESD

Cubist model performance on unseen data with 70% training and 30% testing split

Unseen data results for chosen model: cubist

Now we can see the RMSE value is stable on both resampled performance and unseen data performance, the training residual largely reduced that helped reducing the test residual outliers a lot, there are only 5 outliers on test residual boxplot when IQR multiplier is 1.5 as well.

MAESD

Cubist model resampled performance plot with 80% training and 20% testing split

RsquaredSD

Resampled performance: committees neighbors RMSE R

Rsquared

MAE

RMSESD

Cubist model performance on unseen data with 80% training and 20% testing split

Unseen data results for chosen model: cubist

Again, after re-split with 80% and 20%, it shows slightly better RMSE on resampled performance and there are only two outliers in test residual boxplot, where the training residual is controlled. The test residual outliers are disappeared when we increase the IQR multiplier to 1.9, so they are not significant. But still, it is a sign that these two observations do not fit our model when the IQR multiplier is 1.5, we need to go back and check the raw data's quality to reassure our model's quality.

Successfully trained models with updated cubist model

The MAE metric boxplot of cubist model has a outlier towards the optimistic side, but the outlier from RMSE metric boxplot is opposite, but still not significant at all.

GaussprPoly model resampled performance plot

The best hyperparameter here is when it takes polynomial degree as 2 and 0.59 on scale.

GaussprPoly model performance on unseen data

The 4 test residual outliers disappeared when IQR multiplier is 2.4, which is not significant.

Our best model is still cubist model, it is slightly statistically better than gaussprPoly model. We can try an ensemble of both of them might perform slightly better than any of them.

Method description

The best model uses method cubist. Cubist is a rule—based model that is an extension of Quinlan's M5 model tree. A tree is grown where the terminal leaves contain linear regression models. These models are based on the predictors used in previous splits. Also, there are intermediate linear models at each step of the tree. A prediction is made using the linear regression model at the terminal node of the tree, but is "smoothed" by taking into account the prediction from the linear model in the previous node of the tree (which also occurs recursively up the tree). The tree is reduced to a set of rules, which initially are paths from the top of the tree to the bottom. Rules are eliminated via pruning and/or combined for simplification.

This method seems work well with this data because the data has a linear relationship with the predictors, it ensembled both linear method and tree-based method's advantages and captured most of the underline true between the predictors and the outcomes. The second-best model, gaussprPoly, utilised the non-linear relationships and captured the underline truth pretty well too. If we ensemble these two, the results will be better in most chances. However, cubist method has much better transparency than gaussprPoly method, from the resampled performance detail, cubist model with a good explanation of how this model is trained, with a lot of detail. Especially the blood type seems has a great control on the training flow. This nominal variable is utilised by tree-based method was another reason why this model has the best statistical performance. Cubist with a tree-based method would give us a variable importance detail, which can't be reached than gaussprPoly model.

In conclusion, cubist model is statistically the best as well as the best transparency model.