

m 顔画像

画素をスキャン ベクトルを生成

pixels

行列Lの列に ベクトルを配置

L =

pixels

同様にℓ枚の対象 画像を順にLに配置

Lの各列が1枚の 画像に対応

各画像から 平均画像を引く

サイズ: $m \times n$

画素数: $pixels = m \times n$

Lの各行の画素値 の平均値を算出し 平均画像を生成

平均画像

L =

l

pixels

■固有顔の生成(共分散行列)

① Lから共分散行列 Cを生成

$$C = LL^T$$

②下式に基づきCの固有値 λ と固有ベクトル ν を算出

$$Cv = \lambda v$$

【注意点】

Cのサイズは (pixels \times pixels). m = 112, n = 92とすると, pixels=10304, pixels \times pixels =106172416 (約1億) このような巨大なサイズの行列 の固有値問題を解くのは困難. 別の解法が必要. ③ $C = LL^T$ ではなく L^TL の固有値,固有ベクトルを求めることを考える.

$$(L^{T}L)u = \lambda u$$

$$L(L^{T}Lu) = L(\lambda u)$$

$$LL^{T}(Lu) = L(\lambda u)$$

$$C(Lu) = \lambda(Lu)$$

$$\overline{v}$$

 L^TL の固有ベクトルuを求めた後,LをかければCの固有ベクトルvが求められる.

 $\ell = 240$ とすると、行列 L^TL のサイズは、 $(\ell \times \ell = 57600)$. 左と比べると圧倒的に小さい. これなら計算可能.

■固有顔の生成(行列,ベクトルのサイズ1)

■固有顔の生成(行列,ベクトルのサイズ2)

重み係数
$$W$$
 ℓ $W = v^T L^{-k}$

WとSの比較

をW内で検索→認識結果