

General Purpose I/O Device (GPIO)

Technical Data Sheet

Part Number: T-CS-PE-0002-100

Document Number: I-IPA01-0025-USR Rev 04

October 2002

General Purpose I/O Device (GPIO)

©1999 Cadence Design Foundry (UK) Ltd. All rights reserved

Proprietary Notice

In the U.S. and numerous other countries, Cadence and the Cadence logo are registered trademarks and Cadence Design Foundry is a trademark of Cadence Design Systems, Inc. All other products or services mentioned herein may be trademarks of their respective owners.

Neither the whole nor any part of the information contained in, or the product described in this document may be adapted or reproduced in any material form except with the prior written permission of the copyright owner.

The product described in this document is subject to continuous developments and improvements and is supplied "AS IS". All warranties implied or expressed including but not limited to implied warranties or merchantability, or fitness for purpose, are excluded. Cadence Design Foundry, Inc shall not be liable for any loss or damage arising from the use of any information in this document, or any error or omission in such information, or any incorrect use of the product. Cadence Design Foundry products are not authorized for use as critical components in life support devices or systems without the express written approval of an authorized officer of Cadence Design Foundry, Inc. As used herein:

- 1) Life support devices or systems are devices of systems that are (a) intended for surgical implant into the body or (b) support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- 2) A critical component is any component of a life support device or system or system whose failure to perform can reasonably be expected to cause the failure of the life support device or system, or to affect its safety or effectiveness."

General Purpose I/O Device (GPIO)

Features

- Up to 32 independently programmable I/O ports
- Each port provides input, output and output enable for bi-directional I/O pins
- Each port can be programmed as input or output
- Each port can be bypassed to or from a separate peripheral device
- Each port can separately trigger the GPIO interrupt on several event types
- Interfaces to AMBA version 2.0 APB
- Supports 100 MHz APB, when synthesized using 0.25 µm technology

Description

The GPIO module provides up to 32 programmable I/O ports. Each port can be independently programmed.

Modes

The following modes control the flow of data through the module. Bypass mode and GPIO mode are mutually exclusive per pin. Input mode and output mode are mutually exclusive per pin.

Bypass Mode

A direct through path between the I/O port and the bypass port is made. The signals are not latched or registered. Both directions are bypassed.

GPIO Mode

The I/O port is available to programmable registers.

Input mode

Data is routed through from the I/O port to either the input_value register or to both the input value register and the bypass port.

Output mode

Data is routed through to the I/O port from either the output_value register or the bypass port.

Output Enable

An output enable can be set for each pin. This can be used by external circuitry to control bidirectional pads.

Interrupts

An interrupt trigger is generated for each pin if a pre-defined event type is seen on the pin input. The event can be specified as high or low level, rising or falling edge, or any edge. The event type that triggers an interrupt is defined in registers int_type, int_value and int_on_any. The event is recorded in a read-only register int_status. This register is cleared whenever it is read.

An interrupt is output if an interrupt trigger is seen for any pin, whose int_mask register bit is clear.

Signal Interfaces

AMBA APB Interface

Signal Name	I/O	Function
n_p_reset	Ι	AMBA reset (npreset). This signal is negated asynchronously with pclk to reset the module, and asserted synchronously to allow the module to clock.
pclk	I	Peripheral bus clock (pclk).
psel	I	Peripheral Select for the GPIO (psel). This indicates that a valid access is being made to a peripheral register.
penable	I	Peripheral enable (penable). This indicates the second clock cycle of an access and indicates that the write data may be strobed into a register on the next rising edge of pclk, or that the read data is expected to be valid at the next rising edge of pclk.
pwrite	Ι	Peripheral write strobe (pwrite). This indicates that a write access is taking place (if psel is active).
paddr[5:0]	I	Address bus of selected master (paddr). This indicates which register is being accessed.
pwdata[31:0]	I	Write data. Data to be written into the addressed register.
prdata[31:0]	О	Read data. Data read from the addressed register.

Bypass Interface

Signal Name	I/O	Function
n_gpio_bypass_oe[N:0]	I	Bypass mode output enable control. Indicates that the relevant bit of gpio_bypass_out is valid
gpio_bypass_out[N:0]	I	Bypass mode output value.
gpio_bypass_in[N:0]	О	Bypass mode input data value

GPIO Interface

Signal Name		Function
n_gpio_pin_oe[N:0]		Output enable signal to the pin
gpio_pin_out[N:0]	О	Output value to the pin
gpio_pin_in [N:0]	I	Input data value from the pin
gpio_int	О	Interrupt indicating input pin event

Test Interface

Signal Name		Function
scan_out	О	Scan chain output data
scan_in	I	Scan chain input data
scan_en	I	Enable scan shift
tri_state_enable[N:0]	I	Disables each output enable

Timing Requirements

APB/GPIO Timings

Parameter	Description	Min	Max	Unit
Tclk	Clock period, T01 (Note 1)	25	DC	ns
Tclkh	Clock high	40%	-	× T0
Tclkl	Clock low	40%	-	× T0
Tihnres	n_p_reset hold after pclk	5%	-	× T0
Tisnres	n_p_reset setup before pclk	35%	-	× T0
Tihpen	penable hold after pclk	5%	-	× T0
Tispen	penable setup before pclk	35%	-	× T0
Tihpsel	psel hold after pclk	5%	-	× T0
Tispsel	psel setup before pclk	35%	-	× T0
Tihpa	paddr hold after pclk	5%	-	× T0
Tispa	paddr setup before pclk	35%	-	× T0
Tihpw	pwrite hold after pclk	5%	-	× T0
Tispw	pwrite setup before pclk	35%	-	× T0
Tihpwd	pwdata hold after pclk	5%	-	× T0

Parameter	Description	Min	Max	Unit
Tispwd	pwdata setup before pclk	35%	-	× T0
Tihgpi	gpio_pin_in hold after read access	5%	-	× T0
Tisgpi	gpio_pin_in setup before read access (Note 2)	35%	3	cycles
Tohprd	prdata hold after pclk	5%	-	× T0
Tovprd	prdata valid after pclk	-	35%	× T0
Tohgpvo	gpio_pin_out hold after pclk	5%	-	× T0
Tovgpvo	gpio_pin_out valid after pclk	-	40%	× T0
Tohgpoe	n_gpio_pin_oe hold after pclk	5%	-	× T0
Tovgpoe	n_gpio_pin_oe hold after pclk	-	40%	× T0

Note 1: All timings are specified relative to the target clock speed T0. These are coded into the provided synthesis script. These have been achieved with a typical technology, but are for guidance only.

Note 2: The inputs gpio_pin_in are asynchronous with pclk. There is a latency of 2 or 3 cycles before a change will be available for an APB read cycle.

Interrupt Timing

Parameter	Description	Min	Max	Unit
Tihgpi	gpio_pin_in hold after read access	0	-	cycles
Tisgpi	gpio_pin_in setup before read access (see Note)	2	3	cycles
Tohint	gpio_int hold after pclk	5%	-	× T0
Tovint	gpio_int valid after pclk	-	40%	× T0

Note:

The inputs gpio_pin_in are asynchronous with pclk. There is a latency of 2 or 3 cycles before a change will be available for an APB read cycle.

Programming Interface

The following registers can be configured to determine the functionality of the pin. Each pin has a register within each address and is of the format shown below. The maximum value of N is 31, where (N+1) is the number of I/O pins configured for the device.

Bit	31:~~	N:1	0
Field	Reserved (N<31)	Pin N:Pin 1	Pin 0

Register Map

Offset	Name	Access	Reset Value	Description
0x00	bypass_mode	RW	[N:0]	If bit I is 1: set pin I to bypass mode. If bit I is 0: set pin I to GPIO mode.
0x04	direction_mode	RW	[N:0]	If bit I is 1: set pin I to input mode. If bit I is 0: set pin I to output mode.
0x08	output_enable	RW	[N:0]	If bit I is 1: set pin I to output enabled. If bit I is 0: set pin I to output disabled. Ignored if the pin is set to bypass mode.
0x0C	output_value	RW	[N:0]	This register contains the value to be driven out of the pins. The output will only appear at the port if the pin is set to GPIO and output modes.
0x10	input_value	RO	[N:0]	The input value is read from this register, regardless of the pin mode.

Offset	Name	Access	Reset Value	Description
0x14	int_mask	RO	[N:0]	This register is used to mask interrupt events being signalled by gpio_int. If Bit I is 1, bit I of int_status is ignored. If Bit I is 0 an event on Bit I will set an interrupt. Bits are set and cleared using the registers int_enable and int_disable.
0x18	int_enable	WO	[N:0]	If bit I is 1, bit I of int_mask is cleared.
0x1C	int_disable	WO	[N:0]	If bit I is 1, bit I of int_mask is set.
0x20	int_status	RO	[N:0]	If bit I is 1 an interrupt-generating event has occurred on bit I of input_value (int_status is set regardless of int_mask).
0x24	int_type	RW	[N:0]	If bit I is 1, interrupt is level triggered. If bit I is 0, interrupt is edge triggered.
0x28	int_value	RW	[N:0]	If bit I is 1, interrupt is triggered on high level or rising edge, depending on int_type value. If bit I is 0, interrupt is triggered on low level or falling edge, depending on int_type value.
0x2C	int_on_any	RW	[N:0]	If bit I is 1 edge triggering occurs on any edge, otherwise edge specified in int_value triggers an interrupt (int_on_any is ignored if int_type=1).

Physical Estimates

Gate count ~230 2i/p NAND equivalents per GPIO pin

FF count

13 FFs per GPIO pin
SOC-Internal pins (in)

13 + 4 per GPIO pin
SOC-Internal pins (out)

2 + 2 per GPIO pin
SOC-External pins (in)

1 per GPIO pin
SOC-External pins (out)

2 per GPIO pin

Verification

All our IP modules are verified to one of the following levels.

Gold IP has been to target silicon.
Silver IP has been to silicon in FPGA.

Bronze IP has been verified in simulation with logical timing closure.

In development IP has not yet been verified.

Please contact the IPGalleryTM (ipgallery@cadence.com) for the latest verification information.

Deliverables

The full IP package comes complete with:

- Verilog HDL
- Envisia (BuildGates) and Synopsys Design Compiler synthesis scripts
- Verilog testbench
- GPIO User Guide with full programming interface, parameterization instructions and synthesis instructions

Cadence Design Foundry

Cadence Design Foundry, a division of Cadence Design Systems, Inc. (NYSE:CDN), is a leading provider of electronic design and supply chain management services. Leading and emerging technology companies around the globe leverage Cadence Design Foundry's engineering services and intellectual property for the design of complex integrated circuits and systems-on-chip (SoC). Cadence is head quartered in San Jose, California. For more information, please contact us: North America 1 877 473 2924, Europe +44 (0) 1506 595955, Asia +81 (0) 454 757756, by e-mail IPGallery@cadence.com, or visit us on the World Wide Web at: http://www.cadence.com.