GPHT: Generative Pretrained Hierarchical Transformer for Time Series Forecasting

https://arxiv.org/pdf/2402.16516

O. Introduction

- 시계열 예측에서 기존 모델들은 일반화 성능과 예측 유연성에 한계가 있음.
- 단일 데이터셋에 의존하거나, 고정된 예측 범위를 갖는 모델들이 많음.
- 이러한 문제를 해결하기 위해, 다양한 데이터셋을 혼합하여 사전 학습하고, 자기회귀 방식으로 예측하는 새로운 모델인 Generative Pretrained Hierarchical Transformer (GPHT)를 제안함.
- GPHT는 하나의 모델로 다양한 예측 범위에 대응할 수 있으며, 사전 학습을 통해 데이터 셋 간 공통 패턴을 학습하여 일반화 성능을 향상시킴.
- 8개의 벤치마크 데이터셋에서 실험한 결과, GPHT는 기존 모델들을 능가하는 성능을 보였음.

1. Overview

- GPHT는 다양한 시계열 데이터셋에서 공통 패턴을 학습하도록 사전 학습(pretraining) 된 Transformer 모델
- 계층적 구조로 시계열 패턴을 장기, 단기 수준에서 동시에 모델링
- 자기회귀 방식으로 유연하게 다양한 예측 범위에 대응
- 단일 모델로 여러 데이터셋과 예측 범위에 일반화 가능
- 목표는 기존 모델 대비 장기 예측 안정성과 데이터셋 간 일반화 성능 향상

2. Challenges

• 기존 시계열 모델들은 단일 데이터셋이나 고정 예측 범위에 최적화되어 일반화 어려움

- 장기 예측에서 정확도와 안정성을 동시에 확보하기 어려움
- 다양한 도메인과 시계열 길이를 동시에 다루기 위해 모델 구조와 학습 전략 설계 필요
- 자기회귀 방식 사용 시 누적 오차 문제 발생 가능
- 사전 학습(pretraining) 시 데이터셋 간 패턴 차이로 인한 학습 불안정성 존재
- 효율적인 학습과 추론 속도 유지하면서 높은 예측 성능 확보가 과제

3. Method

- 다양한 시계열 데이터셋을 혼합하여 사전 학습(pretraining) 진행
- 계층적 Transformer 구조 사용 장기 패턴과 단기 패턴을 동시에 모델링
- 입력 시계열을 패치 단위로 나누어 임베딩 후 Transformer에 투입
- 자기회귀 방식으로 시점별 예측 수행, 이전 예측값을 다음 입력에 반영
- 사전 학습 단계에서 데이터셋 간 공통 패턴 학습, 미세 조정(fine-tuning) 시 특정 도메 인 적합
- 학습 과정에서 예측 범위와 도메인에 따라 유연하게 대응 가능
- 모델 구조 변경 최소화, 기존 Transformer 모듈 활용 가능

4. Experiments

- 평가에 사용된 데이터셋 8개 전력, 기상, 금융, 교통 등 다양한 도메인 포함
- 시계열 길이와 샘플 수가 다른 고차원 데이터셋 혼합
- 사전 학습(pretraining) 후 특정 도메인 데이터로 미세 조정(fine-tuning) 수행
- Ablation study 준비 사전 학습 제거, 계층적 구조 단순화, 자기회귀 제거 등 조건별 성 능 확인
- 장기 및 단기 예측 모두 평가되도록 데이터셋 구성

5. Results

Methods		GP	НТ	FF	Т	Patcl	hTST	DLinear		
M	etric	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	
e,	96	0.098	0.219	0.104	0.226	0.102	0.227	0.169	0.316	
gu	192	0.183	0.305	0.218	0.333	0.205	0.325	0.230	0.374	
Exchange	336	0.321	0.411	0.391	0.460	0.362	0.440	0.334	0.444	
Ex	720	0.824	0.682	0.978	0.734	0.991	0.745	0.560	0.591	
	96	0.411	0.291	0.447	0.331	0.433	0.314	0.453	0.328	
£	192	0.435	0.302	0.461	0.335	0.447	0.319	0.464	0.330	
Traffic	336	0.460	0.316	0.477	0.343	0.465	0.329	0.481	0.340	
	720	0.521	0.353	0.503	0.356	0.504	0.354	0.506	0.351	
	96	0.202	0.244	0.216	0.264	0.207	0.259	0.239	0.297	
he	192	0.248	0.283	0.260	0.301	0.257	0.299	0.275	0.325	
Weather	336	0.306	0.324	0.328	0.351	0.340	0.350	0.323	0.360	
3	720	0.389	0.377	0.414	0.403	0.414	0.402	0.392	0.405	

Dataset	Variables	Frequency	Length	Scope			
ETTh1/ETTh2	7	1 Hour	17420	Energy			
ETTm1/ETTm2	7	15 Minutes	69680	Energy			
Electricity	321	1 Hour	26304	Energy			
Exchange	8	1 Day	7588	Finance			
Traffic	862	1 Hour	17544	Transportation			
Weather	21	10 Minutes	52696	Weather			

Type Ours				Self-supervised								Supervised									
Methods		GP	HT*	GP	HT	PatchTST FPT		т	Sim	MTM	Time	TimeMAE		PatchTST		iTransformer		TimesNet		near	
N	etric	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE
<u>~</u>	96	0.128	0.219	0.128	0.219	0.132	0.225	0.139	0.238	0.133	0.223	0.133	0.230	0.138	0.233	0.132	0.228	0.177	0.281	0.141	0.238
Electricity	192	0.147	0.236	0.146	0.236	0.148	0.241	0.155	0.252	0.147	0.237	0.150	0.246	0.153	0.247	0.154	0.249	0.193	0.295	0.154	0.251
븅	336	0.165	0.255	0.165	0.255	0.167	0.260	0.170	0.267	0.166	0.265	0.166	0.265	0.170	0.263	0.172	0.267	0.206	0.306	0.170	0.269
置	720	0.206	0.292	0.207	0.292	0.205	0.292	0.208	0.299	0.203	0.297	0.199	0.296	0.206	0.295	0.204	0.296	0.223	0.320	0.205	0.302
9	96	0.096	0.216	0.087	0.207	0.088	0.207	0.098	0.222	0.100	0.226	0.229	0.352	0.094	0.216	0.099	0.225	0.166	0.305	0.087	0.217
Exchange	192	0.183	0.304	0.172	0.296	0.186	0.308	0.209	0.327	0.210	0.332	0.653	0.581	0.191	0.311	0.206	0.329	0.303	0.413	0.164	0.298
- 4 9	336	0.322	0.410	0.309	0.400	0.374	0.446	0.398	0.463	0.389	0.460	1.524	0.887	0.343	0.427	0.370	0.448	0.445	0.511	0.333	0.437
超	720	0.833	0.685	0.808	0.669	0.857	0.692	1.010	0.747	1.104	0.800	2.525	1.193	0.888	0.706	0.963	0.746	1.389	0.899	0.988	0.749
	96	0.348	0.236	0.346	0.234	0.382	0.262	0.388	0.279	0.368	0.262	0.365	0.252	0.395	0.272	0.361	0.266	0.600	0.323	0.411	0.284
ű.	192	0.374	0.248	0.371	0.246	0.385	0.261	0.411	0.287	0.373	0.251	0.383	0.260	0.411	0.278	0.378	0.271	0.612	0.327	0.423	0.289
Traffic	336	0.392	0.259	0.388	0.256	0.409	0.275	0.423	0.293	0.395	0.254	0.399	0.269		0.284	0.390	0.274	0.628	0.344	0.437	0.297
	720	0.428	0.284	0.423	0.279	0.438	0.291	0.449	0.307	0.432	0.290	0.438	0.291	0.453	0.300	0.424	0.291	0.657	0.349	0.467	0.316
ا ـ	96	0.155	0.196	0.154	0.196	0.148	0.196	0.152	0.201	0.152	0.201	0.151	0.208	0.147	0.197	0.162	0.212	0.168	0.225	0.176	0.236
Weather	192	0.203	0.240	0.201	0.240	0.193	0.240	0.197	0.244	0.198	0.245	0.198	0.256	0.191	0.240	0.205	0.251	0.218	0.268	0.217	0.275
Vea	336	0.259	0.283	0.257	0.283		0.279				0.285	0.246	0.294		0.282	0.257	0.291		0.301		0.315
2	720	0.338	0.337	0.335	0.337	0.321	0.334	0.329	0.340	0.324	0.335	0.316	0.351	0.320	0.334	0.325	0.337	0.340	0.350	0.325	0.364
[96	0.378	0.388	0.363		0.384	0.401	0.388	0.405	0.383	0.411	0.431	0.450		0.403	0.405	0.419		0.438	0.10.1.0	0.396
ETTh1	192	0.425	0.416	0.405	0.408	0.427		0.422			0.432	0.484	0.486		0.423	0.448	0.447		0.479		0.437
ᇤ	336	0.456	0.432	0.430	0.423	0.461		0.442			0.439	0.515	0.507			0.482	0.470		0.505		0.449
	720	0.454	0.449	0.414	0.435	0.460	0.465	0.469	0.473	0.437	0.456	0.595	0.577	0.470	0.475	0.560	0.537	0.527	0.510	0.505	0.514
	96	0.307	0.347	0.296	0.340	0.297	0.354	0.291			0.350	0.294		0.286	0.342	0.305	0.361		0.408		0.360
ETTh2	192	0.373	0.389	0.363	0.384	0.388	0.406	0.356			0.388	0.352	0.397		0.389	0.391	0.412		0.434		0.423
H	336	0.399	0.414	0.392	0.410	0.392		0.387			0.410		0.427			0.418	0.433		0.434		0.460
	720	0.412	0.429	0.407	0.427	0.413	0.442	0.415	0.448	0.412	0.435	0.539	0.510	0.406	0.440	0.437	0.455	0.443	0.465	0.700	0.592
_	96	0.301	0.345	0.291	0.339	0.281	0.341	0.290	0.346	0.296	0.349	0.301	0.348	0.298	0.345	0.306	0.360	0.331	0.372	0.303	0.346
ETTm1	192	0.347	0.374	0.337	0.368	0.326	0.372	0.330			0.373	0.351	0.383		0.374	0.345	0.382				0.368
E	336	0.388	0.401	0.377	0.393		0.384			0.371	0.398	0.390	0.408			0.378	0.402	0.457			0.393
	720	0.465	0.441	0.452	0.433	0.399	0.418	0.416	0.421	0.418	0.425	0.457	0.446	0.428	0.431	0.443	0.439	0.526	0.481	0.428	0.423
	96	0.179	0.257	0.170	0.250	0.171	0.257	0.171	0.261	0.173	0.264	0.180	0.267		0.261	0.174	0.266	0.190	0.276	0.170	0.264
邁	192	0.242	0.298	0.230	0.291	0.236	0.304	0.231			0.299	0.243	0.312		0.307	0.247	0.315		0.311		0.311
ETTm2	336	0.300	0.334	0.285	0.327	0.291		0.288			0.332	0.308	0.355			0.292	0.343		0.349		0.358
	720	0.400	0.393	0.380	0.386	0.388	0.404	0.389	0.406	0.374	0.390	0.395	0.407	0.373	0.401	0.375	0.395	0.406	0.406	0.423	0.437
#1 (Counts		8	4	1	1	3	0)		4	3	3	1	0		0	0)	4	4

Po	Portion 5%								10%												
Methods Metric		GF	ΉT	F	PT	Siml	МТМ	Patel	hTST	iTrans	former	GF	ΉT	FF	T	SimN	ИТМ	Patel	hTST	iTrans	former
		MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE
>	96	0.143	0.237	0.148	0.246	0.152	0.255	0.188	0.292	0.155	0.256	0.140	0.233	0.149	0.248	0.146	0.246	0.147	0.245	0.148	0.247
Electricity	192		0.254	0.163	0.259	0.167	0.268	0.202		0.172	0.272		0.250					0.162		0.167	0.266
ect	336		0.275	0.181	0.277	0.187	0.287	0.219	0.318	0.197	0.295		0.271			0.184		0.181	0.276	0.192	0.290
回	720	0.238	0.321	0.231	0.315	0.240	0.326	0.264	0.351	0.261	0.344	0.231	0.313	0.234	0.318	0.242	0.325	0.230	0.315	0.244	0.329
	96	0.383	0.390	0.478	0.474	0.537	0.502	0.505	0.481	0.580	0.520	0.382	0.391	0.453	0.454	0.482	0.467	0.450	0.448	0.557	0.514
ETThi	192	0.426		0.705	0.577	0.580	0.525	0.576			0.557		0.418					0.523	0.489	0.668	0.562
Ħ	336		0.430	0.736	0.571	0.603	0.543	0.672		0.726	0.577		0.443					0.523	0.494	0.684	0.559
_	720	0.433	0.440	0.718	0.579	0.708	0.597	0.759	0.625	0.802	0.626	0.427	0.442	0.574	0.535	0.734	0.617	0.508	0.502	0.709	0.587
	96	0.298	0.343	0.476	0.457	0.381	0.401	0.502	0.475	0.395	0.420	0.298	0.343	0.330	0.371	0.332	0.373	0.320	0.366	0.365	0.398
ETTh2	192		0.386	0.714	0.573	0.435	0.435	0.569		0.448	0.453		0.387							0.432	0.439
-	336		0.412	0.683	0.573	0.431	0.441	0.540		0.453	0.462		0.413					0.405	0.425	0.437	0.450
_	720	0.417	0.429	0.648	0.557	0.450	0.459	0.506	0.494	0.483	0.484	0.409	0.428	0.506	0.485	0.448	0.460	0.483	0.474	0.463	0.471
_	96	0.513	0.438	0.395	0.409	0.446	0.434	0.376	0.395	0.434	0.436	0.506	0.427	0.403	0.411	0.442	0.430	0.386	0.401	0.420	0.427
Ē	192	0.552	0.464	0.410	0.417	0.461		0.391			0.456	0.563								0.472	0.456
ETTm	336	0.609	0.491	0.453	0.440	0.500			0.431		0.486	0.634								0.530	0.486
_	720	0.685	0.581	0.742	0.566	0.590	0.503	0.549	0.495	0.615	0.527	0.721	0.534	0.665	0.526	0.715	0.539	0.499	0.464	0.629	0.533
	96	0.186	0.271	0.196	0.278	0.216	0.293	0.196	0.276	0.211	0.295	0.173	0.256	0.198	0.275	0.203	0.283	0.191	0.270	0.198	0.284
m2	192	0.248	0.311	0.263	0.316	0.267	0.324	0.258	0.315	0.269	0.322	0.234	0.297	0.263	0.315	0.256	0.315	0.252	0.308	0.254	0.318
ETTm2	336	0.307		0.336	0.363	0.315	0.356	0.318		0.325	0.370		0.335						0.345	0.305	0.352
щ	720	0.412	0.409	0.453	0.430	0.406	0.406	0.447	0.427	0.441	0.434	0.398	0.395	0.426	0.412	0.397	0.398	0.398	0.397	0.405	0.408

• GPHT는 8개 데이터셋 대부분에서 기존 Transformer 기반 모델보다 높은 예측 정확 도 달성

- 장기 예측에서도 안정적인 성능 유지
- 사전 학습(pretraining) 단계가 모델 일반화 성능 향상에 기여
- Ablation study에서 계층적 구조 제거 시 성능 하락, 자기회귀 제거 시 장기 예측 정확 도 감소
- 도메인별 분석 전력과 금융 데이터에서 성능 향상폭이 가장 큼, 교통과 기상 데이터에서 는 개선폭이 상대적으로 작음
- 전반적으로 GPHT 구조가 다양한 도메인과 예측 범위에 일반화 성능 개선에 효과적임

6. Insight

- GPHT는 사전 학습과 계층적 Transformer 구조로 장기 및 단기 예측 성능과 일반화 능력 향상
- 자기회귀 방식과 패치 단위 임베딩이 다양한 데이터셋에서 유연하게 대응 가능
- 사전 학습 단계가 데이터셋 간 공통 패턴 학습에 기여, 미세 조정으로 특정 도메인 성능 강화
- 장점 장기 예측 안정성, 다양한 도메인 일반화, 구조적 효율성
- 비판적 시야 데이터셋 간 차이가 큰 경우 사전 학습이 오히려 불안정성 유발 가능
- 계산 비용과 메모리 사용량이 계층적 구조와 자기회귀 결합으로 증가할 수 있음
- 향후 개선 가능성 데이터셋 차이를 반영한 사전 학습 전략, 계산 효율 개선, 실시간 예측 적용 연구 필요