H **PATENT OFFICE** JAPAN

03.09.2004

REC'D 28 OCT 2004

PCT

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出願年月日 Date of Application:

9月22日 2003年

出 願 Application Number:

人

特願2003-329457

[ST. 10/C]:

[JP2003-329457]

出 Applicant(s):

シャープ株式会社

PRIORITY DOCUMENT

SUBMITTED OR TRANSMITTED IN COMPLIANCE WITH RULE 17.1(a) OR (b)

2004年10月15日

特許庁長官 Commissioner, Japan Patent Office

【書類名】 特許願
【整理番号】 03J03151
【あて先】 特許庁長官 殿
【国際特許分類】 G02B 7/28
G03B 3/00
G03B 13/36
H04N 5/232

【発明者】

【住所又は居所】 大阪府大阪市阿倍野区長池町22番22号 シャープ株式会社内 【氏名】 林 宏之

【発明者】

【特許出願人】

【住所又は居所】 000005049 【氏名又は名称】 シャープ株式会社

【代理人】

【識別番号】 100109553

【弁理士】

【氏名又は名称】 工藤 一郎

【手数料の表示】

【予納台帳番号】 100322 【納付金額】 21,000円

【提出物件の目録】

【物件名】 特許請求の範囲 1

 【物件名】
 明細書 1

 【物件名】
 図面 1

 【物件名】
 要約書 1

【書類名】特許請求の範囲

【請求項1】

映像信号を取得する映像信号取得部と、

前記映像信号取得部が映像信号を取得している最中である取得期間内にフォーカスレンズを移動させるフォーカスレンズ移動部と、

前記映像信号取得部が取得する映像信号を前記フォーカスレンズ移動部により移動されるフォーカスレンズ位置と関連付けた情報である位置依存映像信号を保持する保持部と、前記保持部で保持されている位置依存映像信号に基づいて撮影のためのフォーカスレンズ位置である撮影レンズ位置を決定する撮影レンズ位置決定部と、

を有する撮影レンズ位置制御装置。

【請求項2】

前記取得期間は、1フレーム分の映像信号を取得するための期間である請求項1に記載 の撮影レンズ位置制御装置。

【請求項3】

前記フォーカスレンズの移動は、間欠移動である請求項1又は2に記載の撮影レンズ位 置制御装置。

【請求項4】

前記位置依存映像信号は、前記間欠移動するフォーカスレンズが停止状態の際に取得した映像信号である請求項3に記載の撮影レンズ位置制御装置。

【請求項5】

前記映像信号取得部は、縦横マトリックス状に配列された撮像素子を縦方向スキャンすることで映像信号を取得する縦方向スキャン手段を有する請求項1から4いずれかーに記載の撮影レンズ位置制御装置。

【請求項6】

前記映像信号取得部は、縦横マトリックス状に配列された撮像素子を横方向スキャンすることで映像信号を取得する横方向スキャン手段を有する請求項1から4のいずれかーに記載の撮影レンズ位置制御装置。

【請求項7】

前記映像信号取得部は、前記縦方向スキャン手段と、前記横方向スキャン手段とを切り 替えるスキャン方向切替手段を有する請求項5又は6に記載の撮影レンズ位置制御装置。

【請求項8】

前記映像信号は、輝度信号であることを特徴とする請求項1から7のいずれか―に記載 の撮影レンズ位置制御装置。

【請求項9】

前記映像信号は、RGB信号であることを特徴とする請求項1から8のいずれか―に記載の撮影レンズ位置制御装置。

【請求項10】

前記映像信号は、CMYG信号であることを特徴とする請求項1から8のいずれか一に記載の撮影レンズ位置制御装置。

【書類名】明細書

【発明の名称】撮影レンズ位置制御装置

【技術分野】

[0001]

本発明は、カメラのフォーカスレンズ位置の決定、制御に関する。

【背景技術】

[0002]

従来、カメラには撮影時に自動で被写体に焦点を合わせる機能、いわゆるオートフォー カス機能が実装されている。そのオートフォーカスの方式の一つに「コントラスト検出方 式」と言うものがあり、これは「焦点が合っている状態」を「コントラストがはっきりし ている状態」と考える方式である。この方式の具体的な一例としては、特許文献1で開示 される方法がある。ここで開示される技術では、1フレーム(または1フィールド)ごと にフォーカスレンズの位置を移動させ、その位置ごとに1フレームのコントラストデータ を合焦判定値として取得する。そしてその合焦判定値からフォーカスレンズ位置を決定す る方式である。

【特許文献1】第2523011号特許公報

【発明の開示】

【発明が解決しようとする課題】

[0003]

しかし上記のように、従来技術では1フレームごとに1つのレンズ位置の合焦判定値し か取得していなかった。つまり、あるレンズ位置における合焦判定値は、そのレンズ位置 における1フレーム内の画像を走査してコントラストデータの基となる映像信号を取得す ることで得られており、その処理がそれぞれのレンズ位置において行われることになる。 したがって、被写体に焦点が合っているフォーカスレンズ位置を決定する処理に時間を要 する、という課題がある。そのため、このコントラスト検出方式を多く採用しているデジ タルカメラは一瞬のシャッターチャンスを逃すこともある。

【課題を解決するための手段】

[0004]

上記課題を解決するために、本発明では、映像信号を取得する映像信号取得部と、前記 映像信号取得部が映像信号を取得している最中である取得期間内にフォーカスレンズを移 動させるフォーカスレンズ移動部と、位置依存映像信号を保持する保持部と、位置依存映 像信号に基づいて撮影のためのフォーカスレンズ位置である撮影レンズ位置を決定する撮 影レンズ位置決定部と、を有する撮影レンズ位置制御装置を提供する。なお、「フォーカ スレンズ」とは、カメラにおいて被写体に焦点を合わせるためにその位置を移動するレン ズをいう。また「フォーカスレンズ位置」とは、撮影装置の撮影機構中におけるフォーカ スレンズの位置をいう。

【発明の効果】

[0005]

以上のような構成をとる本発明は、映像信号を取得している最中にフォーカスレンズを 移動させるので、撮影レンズ位置を決定するための映像信号を取得する時間が従来よりも 短縮される、という効果がある。したがって、一瞬のシャッターチャンスもより確実に捉 えることができるようになる。

[0006]

なお、本発明のカメラとは静止画を撮影するカメラのみならず、例えば動画を撮影する ビデオカメラなどレンズを利用して焦点を合わせる撮影装置全般を含むものとする。

【発明を実施するための最良の形態】

[0007]

以下に、図を用いて本発明の実施の形態を説明する。なお、本発明はこれら実施の形態 に何ら限定されるものではなく、その要旨を逸脱しない範囲において、種々なる態様で実 施しうる。

[0008]

なお、実施例 1 は、主に請求項 1, 2, 3, 4, 8, 9, 10 について説明する。また 、実施例2は、主に請求項5,6,7について説明する。

[0009]

(実施例1の概念) 実施例1で説明するのは、映像信号を取得して ≪実施例1≫ いる最中にフォーカスレンズを移動させることでフォーカスレンズ位置を決定する撮影レ ンズ位置制御装置である。以下に、この撮影レンズ位置制御装置の構成について説明する

[0010]

図1に示すのは、本実施例の撮影レンズ位置制御装置の機能ブロ (実施例1の構成) ックを表す図である。この図にあるように、本実施例の「撮影レンズ位置制御装置」(0 100)は、「映像信号取得部」(0101)と、「フォーカスレンズ移動部」(010 2)と、「保持部」(0103)と、「撮影レンズ位置決定部」(0104)と、を有す る。まず、上記構成に従って本実施例の撮影レンズ位置制御装置の構成要件について説明 する。

[0011]

「映像信号取得部」(0101)は、映像信号を取得する機能を有する。「映像信号」 とは、レンズが捕えた光の強さなどを電気信号に変換するCCDやCMOSイメージャ、 色フィルターなどのカメラのデバイスによって生成された色や輝度などを示す信号である 。この映像信号は、例えば、輝度信号(Y)や、その輝度信号と赤色成分の差(U)、輝 度信号と青色成分の差(V)の3つの情報で色を表す信号であるYUV信号や、色を赤(R) ・緑(G)・青(B) の三原色の組み合わせとして表現するRGB信号や、補色関係 であるCyaan (藍)、Magenta (紅)、Yellow (黄)、Green (緑) の4色を示すСMYG信号などが挙げられる。

[0012]

また、この映像信号取得部での取得は、例えば前記のようにCCDやCMOSイメージ ャなどのデバイスを利用して、フォトダイオードなどが被写体のそれぞれの画素における 光の強さを輝度信号(Y)などの映像信号に変換して取得することで行われる。

[0013]

「フォーカスレンズ移動部」(0102)は、取得期間内にフォーカスレンズを移動さ せる機能を有する。「取得期間」とは、映像信号取得部(0101)が映像信号を取得し ている最中をいい、例えば1フレーム分の映像信号を取得するための期間などが挙げられ る。図2に示すのは、上記映像信号取得部と、このフォーカスレンズ移動部との関係を説 明するための図である。この図にあるように、CCDやCMOSイメージャで取得した映 像を矢印で示すように走査し、それぞれの画素(図では画素0から画素1000まで)の 映像信号を映像信号取得部で取得する。そしてその際、図中のグラフに示すように、フォ ーカスレンズ移動部により(縦軸で示す)フォーカスレンズ位置が移動しながら(横軸に 示す) 画素 0 から画素 1 0 0 0 までの映像信号を取得することになる。

[0014]

あるいは、この映像信号の取得に際するフォーカスレンズの移動は間欠移動であり、そ の間欠移動するフォーカスレンズが停止状態の際に映像信号の取得が行われても良い。「 間欠移動」とは、移動状態と停止状態が所定の間隔で交互に繰り返されることをいう。図 3に示すのは、この間欠移動をする場合の上記映像信号取得部と、このフォーカスレンズ 移動部との関係を説明するための図である。この図にあるように、まず、フォーカスレン ズ位置 α の時に矢印(1)で示す部分の走査が行われ映像信号の取得が行われる。その後 フォーカスレンズが移動されるが、その移動中に矢印(2)で示す部分のスキャンが行わ れる。続いて移動先のフォーカスレンズ位置 eta において矢印(3)で示す部分の走査と映 像信号の取得が行われる。そして同様にフォーカスレンズが位置 γ に移動され、その移動 中に矢印(4) の部分のスキャンが行われ、その後フォーカスレンズが位置γ において矢 印(5)で示す部分の走査と映像信号の取得が行われる。

[0015]

また、この間欠移動による位置依存映像信号の取得は、位置依存映像信号を取得する処 理の回数がNフレームよりも多い、と言い換える事もできる。すなわち、2フレームの間 に3つの位置依存映像信号が取得される形態もあり得る。

[0016]

このように、従来は一つのフォーカスレンズ位置において1フレーム全体の走査し映像 信号の取得を行っていたのに対し、本実施例では1フレーム内でフォーカスレンズ位置を 移動させながら、または間欠移動させながら映像信号を取得しているので、映像信号の取 得処理の時間を短縮することができる。

[0017]

なお、このフォーカスレンズ移動部は、例えば、カメラのボディ(本体)に内蔵された ボディ内移動装置であっても良いし、交換レンズ内に搭載されたレンズ内移動装置であっ ても良い。またその移動装置は、例えば、駆動回路がシンプルな直流モーターや、振動を 回転力に変える超音波モーターなどと、そのモーターの回転数を制御するマイクロプロセ ッサなどの制御回路とにより実現されうる。

[0018]

「保持部」(0103)は、位置依存映像信号を保持する機能を有する。「位置依存映 像信号」とは、映像信号取得部(0101)が取得する映像信号をフォーカスレンズ移動 部(0102)により移動されるフォーカスレンズ位置と関連付けた情報をいう。映像信 号は、上記説明したように、例えば輝度信号(Y)やRGB信号、CMYG信号などで示 される信号あり、フォーカスレンズ位置は、例えばモーターのパルス数や回転数あるいは 実際のレンズの移動距離などの数値で示される情報が挙げられる。この保持部ではこれら の情報が、関連付けられ、位置依存映像信号として保持される。なおこの保持部は、例え ば、メモリなどの記憶媒体により実現されうる。

[0019]

「撮影レンズ位置決定部」(0104)は、保持部(0103)で保持されている位置 依存映像信号に基づいて撮影のためのフォーカスレンズ位置である撮影レンズ位置を決定 する機能を有する。図4に示すのは、この撮影レンズ位置決定部での撮影レンズ位置の決 定を説明するための図である。まず、上記説明した各構成要件により取得された映像信号 に基づいてフォーカスレンズ位置ごとのコントラストデータ(合焦判定値)が算出される 。そしてこの図に示すように、レンズ位置ごとにその算出されたコントラストデータをプ ロットしていく。すると、フォーカスレンズ位置yでピークを描く(プロットされたコン トラストデータの傾きがプラスからマイナスに転じる)ので、そのピークとなるフォーカ スレンズ位置yを最もコントラストが強い、すなわち焦点が合っているとして撮影レンズ 位置として決定する。もちろんこれは一例であり、例えば、ピークが複数表れる場合は、 そのピークのうち最大点となるものでも良いし、ピークのうち手前(レンズが被写体の手 前のものを合焦している) のものをフォーカスレンズ位置と決定しても良い。なお、映像 信号からコントラストデータを取得する方法については、後述のカメラ装置の実装におい て説明する。

[0020]

以上が本実施例の撮影レンズ位置制御装置の構成要件についての説明である。続いて、 本実施例の撮影レンズ位置制御装置がカメラに実装された際の具体的な装置構成例を示し 、コントラストデータの取得に関する説明を行う。

[0021]

図5に示すのは、本実施例の撮影レンズ位置制御装置をカメラに実装した際の装置構成 の一例である。なお本装置構成例では、上記説明した構成要件の「映像信号取得部」は、 図5中の「CCD」(0502)によって実現される。そして、「フォーカスレンズ移動 部」である「駆動装置」(0508)によりフォーカスレンズが移動又は間欠移動されな がらCCDにおいて映像信号が取得される。そしてその映像信号がフォーカスレンズ位置 と関連付けられ、「保持部」である「メモリ」(図示省略)に位置依存映像信号として保

持される。そして、その位置依存映像信号から、図5中の「周波数抽出回路」(0503)及び「フーリエ変換回路」(0504)及び「バンドパスフィルター」(0505)及 び「範囲積分値算出回路」(0506)での処理によってコントラストデータが算出され る。そして「撮影レンズ位置決定部」である「レンズ位置決定回路」(0507)が、そ のコントラストデータに基づいて撮影レンズ位置を決定し、「駆動装置」によってその決 定されたフォーカスレンズ位置にフォーカスレンズを移動し焦点を合わせることができる

[0022]

図6に示すのは、上記装置構成例において撮影レンズ位置の決定に必要なコントラスト データ(合焦判定値)の取得を説明するための図である。この図は画素の輝度信号を周波 数成分としてフーリエ変換し処理する方法を示している。この図にあるように、まず「フ ォーカスレンズ」(0501)を通過した映像の光から「CCD」(0502)で映像信 号である輝度信号を取得する。次に「周波数抽出回路」(0503)でCCDにより取得 した映像から輝度信号を周波数成分として抽出する(図6中1で示す。以下同様)。続い て「フーリエ変換回路」(0504)で、その輝度信号の周波数成分をフーリエ変換する (2)。さらにフーリエ変換された輝度信号を「バンドパスフィルター」(0505)に 通し(3)、その周波数成分の高周波成分、すなわちコントラストとなる部分を抽出する (4)。そして、「範囲積分値算出回路」(0506)において、コントラストデータと なる抽出した範囲(縦線部分)の積分値を求め(5)、その積分値をコントラストデータ としてレンズ位置に関連付けてプロットする(6)。

[0023]

このようにして算出されたコントラストデータを利用して撮影レンズ位置を決定するが 、本装置では、映像信号の取得が「駆動装置」によってフォーカスレンズが移動又は間欠 移動されながら行われるので、従来よりも早くその取得処理を行うことが可能となる。し たがって、最終的な撮影レンズ位置の決定処理も従来よりも早く行うことができる。

[0024]

(本実施例の映像信号の例) なお、上記装置構成例では映像信号として輝度信号を 利用した。なぜならば、輝度信号は前記積分値のピークが最もよくあらわれる信号と考え られるからである。もちろん映像信号としてこの輝度信号以外にもRGBで示される色信 号やCMYG信号を利用してもよい。例えば、色信号RGBは、「Y=0. 299R+0. 587G+0. 114B+16」などの変換式によって輝度信号Yに変換することがで きる。したがって上記変換式を利用してRGB信号から輝度信号の値を算出しコントラス ト情報を取得する方法などが挙げられる。また、図7に示すのは、СМҮG信号を説明す るための図である。この図にあるように、Суаап(藍)はBlue-Greenであ り、Magenta (紅) はRed-Blueであり、Yellow (黄) は、Gree n-Redである。そしてこのCMYの3色にGreen(緑)を加えた4色の組み合わ せからそれぞれの色を減数(引いて)し、RGBを割り出すことができる。例えばRed を求めるには、Red=Yellow-Green、Red=Magenta-Blue の計算式が成り立つ。このCMYG信号を取得する補色CCDは光に反応する感度が良い ため感度を重要視するデジタルカメラに多く採用されている。したがって、本発明でも、 このCMYG信号を映像信号として取得することも想定している。

[0025]

(実施例1の処理の流れ) 図8に示すのは、本実施例の処理の流れの一例を表すフ ローチャートである。なお、以下に示す処理の流れは、方法、計算機に実行させるための プログラム、またはそのプログラムが記録された読み取り可能な記録媒体として実施され うる。この図にあるように、まず、フォーカスレンズの移動を開始する(ステップS08 01)。また、映像信号の取得を開始する(ステップS0802)。続いて、前記ステッ プS0802で取得した映像信号と、前記ステップS0801で移動したフォーカスレン ズ位置とを関連付けた情報である位置依存映像信号を保持する(ステップS0803)。 次に、前記ステップS0801で開始したフォーカスレンズの移動を終了する(ステップ S0804)。また、前記ステップS0802で開始した映像信号の取得を終了する(ス テップS0805)。最後に、前記ステップS0803で保持された位置依存映像信号に 基づいて撮影レンズ位置を決定する(ステップS0806)。

[0026]

(実施例1の効果の簡単な説明) 以上のように本実施例によって、より早く被写体 に対して焦点の合ったフォーカスレンズ位置を決定することができ、したがって一瞬のシ ャッターチャンスを捉える可能性も高くなる。

[0027]

(実施例2の概念) 実施例2では、実施例1の撮影レンズ位置制御 ≪実施例2≫ 装置に関して、その映像信号を取得する際のスキャンの方法について限定した撮影レンズ 位置制御装置の説明を行う。具体的には、本実施例の撮影レンズ制御装置の映像信号取得 部は縦方向スキャン手段を有し、縦横マトリックス状に配列された撮像素子を縦方向スキ ャンすることで映像信号を取得する。あるいは横方向スキャン手段を有し、縦横マトリッ クス状に配列された撮像素子を横方向スキャンすることで映像信号を取得する。

[0028]

実施例2の基本的な構成は、実施例1で説明した撮影レンズ制 (実施例2の構成) 御装置と同様であり、説明は省略する。そしてその特徴点としては、その映像信号取得部 が、「縦方向スキャン手段」、または「横方向スキャン手段」を有する点である。

[0029]

図9に示すのは、本実施例のスキャン方法を説明するための図である。この図にあるよ うに、例えば「青空の上方に飛行機が写っている」場合など横方向にスキャンを行うと、 グラフで示すように上手くコントラストデータのピークを検出することができない可能性 がある。なぜならば本実施例はレンズを動かしながらスキャンを行うという特性上、スキ ャン開始点、すなわちフォーカスレンズの移動開始点付近にエッジ成分を強く持つ被写体 (飛行機) があるとまだ焦点が合っていない場合が多いので強いコントラストデータが算 出されない可能性がある。そして、その後の空や雲ではエッジ成分がほとんど無いので、 やはり強いコントラストデータが算出されないためである。そこで本実施例では、図10 に示すように縦横マトリックス状に配列された撮像素子を縦方向スキャンする縦方向スキ ャン手段を有する。それにより、上記のような場合でも、強いピークを有するコントラス トデータを算出することが可能となる。

[0030]

図11に示すのは、本実施例のその他のスキャン方法を説明するための図である。この 図11の(1)にあるように、例えば「青空の左側にロケットが写っている」場合など今 度は上記例とは逆に縦方向にスキャンを行うと、やはり同様に上手くコントラストデータ のピークを検出することができない可能性がある。そこで、本実施例のその他の例では、 図11の(2)に示す縦横マトリックス状に配列された撮像素子を縦方向スキャンする縦 方向スキャン手段を有する。それにより、上記のような場合でも、強いピークを有するコ ントラストデータを算出することが可能となる。

[0031]

(実施例2の効果の簡単な説明) このように、実施例1で説明した撮影レンズ制御 装置が縦方向スキャン手段、または横方向スキャン手段を有することにより、幅広いシチ ュエーションに対応して被写体に焦点を合わせることが可能となる。

[0032]

(実施例2のその他の例) また、さらに実施例2の撮影レンズ制御装置が、縦方向 スキャン手段と横方向スキャン手段の双方を有していても良い。そしてその縦方向スキャ ン手段と横方向スキャン手段とを切り替えるスキャン方向切替手段を有していても良い。 この「スキャン方向切替手段」は、例えば、スイッチを押すなど撮影者の意図により切り 替えられる装置によって実現されても良い。また、コントラストデータのピークが上手く 検出できない(前記傾きのプラスからマイナスへの変化の絶対値が所定値より小さいなど)場合に、自動的に切り替える装置によって実現されても良い。あるいは縦方向スキャン 手段によるスキャン結果が算出された後、このスキャン方向切替手段によって横方向スキ ャン手段によるスキャンが実行され、縦横双方のスキャン結果によるコントラストデータ から撮影レンズ位置を決定しても良い。

[0033]

これにより、さらに幅広く、様々なシチュエーションに対応して被写体に焦点を合わせ ることが可能となる。

【図面の簡単な説明】

- [0034]
 - 【図1】実施例1の撮影レンズ制御装置の機能ブロックの一例を表す図
 - 【図2】実施例1の撮影レンズ位置制御装置の映像信号取得部とフォーカスレンズ移 動部との関係を説明するための図
 - 【図3】実施例1の撮影レンズ位置制御装置の、間欠移動をする場合における上記映 像信号取得部とフォーカスレンズ移動部との関係を説明するための図
 - 【図4】実施例1の撮影レンズ位置制御装置の撮影レンズ位置決定部での撮影レンズ 位置の決定を説明するための図
 - 【図5】実施例1の撮影レンズ位置制御装置をカメラに実装した際の装置構成の一例
 - 【図6】実施例1の装置構成例において撮影レンズ位置の決定に必要なコントラスト データの取得を説明するための図
 - 【図7】実施例1の撮影レンズ位置制御装置の映像信号取得部で取得される映像信号 であるCMYG信号を説明するための図
 - 【図8】実施例1の撮影レンズ位置制御装置における処理の流れの一例を表すフロー チャート
 - 【図9】実施例2の撮影レンズ位置制御装置のスキャン方法を説明するための図
 - 【図10】実施例2の撮影レンズ位置制御装置のスキャン方法を説明するための図
 - 【図11】実施例2の撮影レンズ位置制御装置のその他のスキャン方法を説明するた めの図

【符号の説明】

- [0035]
- 0100 撮影レンズ位置制御装置
- 0 1 0 1 映像信号取得部
- 0102 フォーカスレンズ移動部
- 0103 保持部
 - 0104 撮影レンズ位置決定部

【書類名】図面【図1】

【図2】

【図3】

フォーカス レンズ位置

【図4】

【図5】

⑥コントラストを衷す曲線で 囲まれた範囲の積分値を レンズ位置に関連付けてプロットする

【図8】 Start S 0 8 0 1 フォーカスレンズの移動を開始する S0802 映像信号の取得を開始する S0803 . 前記ステップSO802で取得した映像信号と、 前記ステップSO801で移動したフォーカスレンズ位置と を関連付けた情報である位置依存映像信号を保持する。 80804 前記ステップS0801で開始した フォーカスレンズの移動を終了する S0805 前記ステップSO802で開始した 映像信号の取得を終了する

前記ステップS0803で保持された位置依存映像信号

End

に基づいて撮影レンズ位置を決定する

S 0 8 0 6

【図11】

(1)

(2)

【課題】

従来のコントラスト検出方式では、それぞれのレンズ位置において各レンズ位置の1フ レーム内の画像を走査して映像信号を取得し合焦判定値を算出することで撮影レンズ位置 を決定する。従って被写体に焦点が合っているフォーカスレンズ位置を決定する処理に時 間を要する。

【解決手段】

上記課題を解決するために、本発明では、映像信号を取得する映像信号取得部と、前記 映像信号取得部が映像信号を取得している最中にフォーカスレンズを移動させるフォーカ スレンズ移動部と、位置依存映像信号を保持する保持部と、位置依存映像信号に基づいて 撮影レンズ位置を決定する撮影レンズ位置決定部と、を有する撮影レンズ位置制御装置を 提供する。このように映像信号を取得している最中にフォーカスレンズを移動させるので 、撮影レンズ位置を決定するための映像信号を取得する時間が従来よりも短縮できる。

【選択図】 図1

認定・付加情報

特許出願の番号 特願2003-329457

受付番号 50301559051

書類名 特許願

担当官 北原 良子 2413

作成日 平成15年10月 2日

<認定情報・付加情報>

【提出日】 平成15年 9月22日

【特許出願人】

【識別番号】 000005049

【住所又は居所】 大阪府大阪市阿倍野区長池町22番22号

【氏名又は名称】 シャープ株式会社

【代理人】 申請人

【識別番号】 100109553

【住所又は居所】 東京都千代田区有楽町1丁目7番1号 有楽町電

気ビル南館 9階

【氏名又は名称】 工藤 一郎

特願2003-329457

出願人履歴情報

識別番号

[000005049]

1. 変更年月日

1990年 8月29日

[変更理由]

新規登録

住 所

大阪府大阪市阿倍野区長池町22番22号

氏 名 シャープ株式会社

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record.

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:
BLACK BORDERS
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
☐ FADED TEXT OR DRAWING
☐ BLURRED OR ILLEGIBLE TEXT OR DRAWING
☐ SKEWED/SLANTED IMAGES
☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS
☐ GRAY SCALE DOCUMENTS
☐ LINES OR MARKS ON ORIGINAL DOCUMENT
☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
Потиер.

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.