Содержание

Ι	Teo	ремы	3
	1.	Теорема о свойствах неопределённого интеграла	3
	2.	Лемма об ускоренной сходимости	4
	3.	Правило Лопиталя	5
	4.	«Теорема Гаусса»	5
	5.	Пример неаналитической функции	6
	6.	Теорема Штольца	6
	7.	Интегрирование неравенств, теорема о среднем	8
	8.	Теорема Барроу	9
	9.	Формула Ньютона – Лейбница	10
	10.	Свойства определённого интеграла	11
	11.	Неравенство Чебышёва	12
	12.	Иррациональность числа пи	13
	13.	Формула Тейлора с остатком в интегральной форме	15
	14.	Лемма о трёх хордах	16
	15.	Теорема об односторонней дифференцируемости выпуклой	
		функции	17
	16.	Описание выпуклости с помощью касательных	17
	17.	Дифференциальные критерии выпуклости	19
	18.	Теорема о вычислении аддитивной функции промежутка	
		по плотности \dots	20
	19.	Свойства верхнего и нижнего пределов	20
	20.	Техническое описание верхнего предела	22
	21.	Теорема о существовании предела в терминах верхнего и	
		нижнего пределов	23
	22.	Теорема о характеризации верхнего предела как частичного	24
	23.	Площадь криволинейного сектора: в полярных координа-	
		тах и для параметрической кривой	25
	24.	Изопериметрическое неравенство	26
	25.	Обобщённая теорема о плотности	29
	26.	Объём фигур вращения	30
	27.	Вычисление длины гладкого пути	30
	28.	Теорема о функциях ограниченной вариации	32
	29.	Интеграл как предел интегральных сумм	32
	30.	Теорема об интегральных суммах центральных прямоуголь-	
		ников и трапеций	33
	31.	Формула Эйлера – Маклорена, асимптотика степенных сумм	35
	32.	Асимптотика частичных сумм гармонического ряда	36
	33.	Формула Валлиса	37

	34.	Φ ормула Стирлинга	39
	35.	Три леммы о сверхограниченных множествах	40
	36.	Компактность и конечные эпсилон-сети	41
	37.	Простейшие свойства несобственного интеграла	41
	38.	Признаки сравнения сходимости несобственного интеграла	43
	39.	Изучение сходимости интеграла $\int_{10}^{\infty} \frac{dx}{x^{\alpha}(\ln x)^{\beta}}$	45
	40.	Интеграл Эйлера – Пуассона	47
	41.	Гамма-функция Эйлера, простейшие свойства	49
II	Опр	еделения и формулировки	50
	1.	Первообразная, неопределённый интеграл	50
	2.	Теорема о существовании первообразной	50
	3.	Таблица первообразных	50
	4.	Площадь, аддитивность площади, ослабленная аддитивность	50
	5.	Положительная и отрицательная срезки	51
	6.	Определённый интеграл	51
	7.	Среднее значение функции на промежутке	52
	8.	Выпуклая функция	53
	9.	Выпуклое множество	54
	10.	Надграфик	54
	11.	Опорная прямая	54
	12.	Кусочно-непрерывная функция, интеграл от неё	55
	13.	Почти первообразная	55
	14.	Функция промежутка, аддитивная функция промежутка .	56
	15.	Плотность аддитивной функции промежутка	56
	16.	Верхний и нижний пределы последовательности	56
	17.	Частичный предел	57
	18.	Дробление отрезка, ранг дробления, оснащение	57
	19.	Кривая Пеано	57
	20.	Гладкий путь, вектор скорости, носитель пути	58
	21.	Длина гладкого пути	58
	22.	Вариация функции на промежутке	59
	23.	Эпсилон-сеть, сверхограниченное множество	59
	24.	Hecoбственный интеграл, сходимость, расходимость	59
	25.	Критерий Больцано-Коши сходимости несобственного ин-	
		теграла	59
	26.	Гамма-функция Эйлера	60

I Теоремы

1. Теорема о свойствах неопределённого интеграла

Теорема. Пусть F — первообразная f на $\langle a,b \rangle$. Тогда:

- 1. $\forall C \in \mathbb{R}$ F + C тоже первообразная,
- 2. Если G ещё одна первообразная f на $\langle a,b \rangle$, то $G-F=C \in \mathbb{R}$.

Доказательство. Тривиально:

- 1. (F+C)'=F'=f,
- 2. $(G-F)'=0 \Rightarrow G-F=C \in \mathbb{R}$ (так как G-F возрастает и убывает одновременно).

Теорема. Пусть f и g имеют первообразные на $\langle a, b \rangle$. Тогда:

1. $\int (f+g) = \int f + \int g, \quad \forall \alpha \in \mathbb{R} \quad \int (\alpha f) = \alpha \int f,$

2. Пусть $\varphi \colon \langle c, d \rangle \to \langle a, b \rangle$ дифференцируема. Тогда

$$\int f(\varphi(t))\varphi'(t)dt = \int f(x)dx \bigg|_{x=\varphi(t)} = F(\varphi(t)) + C,$$

3. $\forall \alpha, \beta \in \mathbb{R}, \ \alpha \neq 0 \quad \int f(\alpha x + \beta) = \frac{1}{\alpha} F(\alpha x + \beta) + C,$

4. Пусть f, g дифференцируемы на $\langle a, b \rangle$ и пусть f'g имеет первообразную на $\langle a, b \rangle$. Тогда fg' тоже имеет первообразную, и

$$\int fg' = fg - \int f'g.$$

Доказательство. Для доказательства первых трёх свойств возьмём производную от обеих частей и увидим, что получилось одно и то же. Доказательство четвёртого свойства:

$$\left(fg - \int f'g\right)' = f'g + fg' - f'g = fg'.$$

Замечание (ко второму свойству). Пусть $x=\varphi(t)$ обратима, $t=\varphi^{-1}(x)$. Тогда

$$F(x) = \int f(x)dx = \left(\int f(\varphi(t))\varphi'(t)dt \right) \bigg|_{t := \varphi^{-1}(x)}.$$

2. Лемма об ускоренной сходимости

Лемма. Пусть $f,g\colon D\subset X\to\mathbb{R},\ a-n$ редельная точка D. Пусть также $\exists U(a)\mid \forall x\in \dot{U}(a)\ f(x)\neq 0,\ g(x)\neq 0$ и

$$\lim_{x \to a} f(x) = 0, \ \lim_{x \to a} g(x) = 0. \tag{*}$$

Тогда

$$\forall (x_n) \mid x_n \to a, \ \exists (y_n) \mid y_n \to a, \ makas, \ umo \ \lim_{n \to +\infty} \frac{g(y_n)}{g(x_n)}, \ \lim_{n \to +\infty} \frac{f(y_n)}{g(x_n)}.$$

$$x_n \in D, \qquad y_n \in D,$$

$$x_n \neq a \qquad y_n \neq a$$

Доказательство. Будем искать (y_n) как подпоследовательность (x_n) : зафиксируем n и выберем в качестве y_n такое x_k , что

$$\left| \frac{g(x_k)}{g(x_n)} < \frac{1}{n} \right|, \left| \frac{f(x_k)}{g(x_n)} < \frac{1}{n} \right|.$$

В силу условия (*) такое x_k найдётся для всех n.

Замечание. Если условие (*) заменить на

$$\lim_{x \to a} f(x) = +\infty, \ \lim_{x \to a} g(x) = +\infty,$$

лемма останется верна.

Доказательство (авторское). Члены (y_n) опять будем искать в (x_n) : зафиксируем n и положим $y_n = x_n$. Будем искать такое x_{n+p} , что

$$\left| \frac{g(x_n)}{g(x_{n+p})} < \frac{1}{n} \right|, \left| \frac{f(x_n)}{g(x_{n+p})} < \frac{1}{n} \right|.$$

После этого положим $y_{n+p}=y_{n+p-1}=\ldots=y_n=x_n$ и проделаем то же самое с y_{n+1} .

3. Правило Лопиталя

Теорема. Пусть $f,g:(a,b)\to\mathbb{R}$, f,g дифференцируемы на (a,b), где $a\in\overline{\mathbb{R}}$, $u\ g'\neq 0$ на (a,b). Пусть также

$$\lim_{x \to a} \frac{f(x)}{g(x)} = \left[\frac{0}{0}, \frac{\infty}{\infty} \right], \ \lim_{x \to a} \frac{f'(x)}{g'(x)} = L \in \mathbb{R}.$$

Тогда $\lim_{x\to a} \frac{f(x)}{g(x)}$ существует и равен L.

Доказательство. $g' \neq 0 \Rightarrow g'$ постоянного знака $\Rightarrow g$ монотонна.

Рассмотрим $(x_n) \mid x_n \to a, x_n \in (a,b)$ и проверим, что $\lim_{n \to \infty} \frac{f(x_n)}{g(x_n)} = L.$

Для (x_n) построим (y_n) из леммы об ускоренной сходимости. По теореме Коши $\exists c_n \in (x_n, y_n)$ такое, что

$$\frac{f(x_n) - f(y_n)}{g(x_n) - g(y_n)} = \frac{f'(c_n)}{g'(c_n)}.$$

Выразим отсюда $\frac{f(x_n)}{g(x_n)}$:

$$\frac{f(x_n)}{g(x_n)} = \frac{f(y_n)}{g(x_n)} + \frac{f'(c_n)}{g'(c_n)} \left(1 - \frac{g(y_n)}{g(x_n)} \right).$$

В силу леммы об ускоренной сходимости $\frac{f(y_n)}{g(x_n)}\xrightarrow[n\to\infty]{}0, \frac{g(y_n)}{g(x_n)}\xrightarrow[n\to\infty]{}0.$ Тогда $\frac{f(x_n)}{g(x_n)}\xrightarrow[n\to\infty]{}L.$

4. «Теорема Гаусса»

Теорема. Справедливо следующее равенство:

$$1+2+\ldots+n=\frac{n(n+1)}{2}.$$

Доказательство.

$$f(x) = 1 + x + x^{2} + \dots + x^{n} = \frac{x^{n+1} - 1}{x - 1}$$

$$\left(x\frac{d}{dx}\right)f(x) = x + 2x + 3x^{2} + \dots + nx^{n}$$

$$\left(x\frac{d}{dx}\right)^{2}f(x) = x + 2^{2}x + 3^{2}x^{2} + \dots + n^{2}x^{n}$$

$$\dots$$

$$g(x) := \left(x\frac{d}{dx}\right)^k f(x) = 1^k x + 2^k x + 3^k x^2 + \dots + n^k x^n$$

5. Пример неаналитической функции

Пример. Пусть

$$f(x) = \begin{cases} e^{-\frac{1}{x}}, & x < 0\\ 0, & x \geqslant 0 \end{cases}$$

Тогда $\forall k \in \mathbb{N} \quad f^{(k)}(0) = 0.$

Доказательство. ДОДЕЛАТЬ

6. Теорема Штольца

Теорема. Пусть $(x_n), (y_n)$ — вещественные последовательности, $x_n \to 0$, $y_n \to 0$, причём y_n стремится монотонно. Пусть

$$\lim_{n \to \infty} \frac{x_n - x_{n-1}}{y_n - y_{n-1}} = a \in \overline{\mathbb{R}}^1.$$

Tогда $\lim_{n\to\infty} \frac{x_n}{y_n} = a$.

Лемма (о смешной сумме). Пусть a, b, c, d, m, M > 0, пусть также

$$m < \frac{a}{b} < M,$$

$$m < \frac{c}{d} < M.$$

Тогда
$$m < \frac{a+c}{b+d} < M$$
.

 $^{^{1}}$ Если a=0, требуем, чтобы x_{n} тоже стремилось к нулю монотонно.

Доказательство леммы. Имеем

$$\begin{cases} mb < a < Mb \\ md < c < Md. \end{cases}$$

Сложим неравенства, разделим все части на b+d и получим, что требовалось. \Box

Доказательство теоремы. Рассмотрим различные значения а:

1. Пусть $0 < a < +\infty$ и, НУО², $x_n, y_n > 0$. Имеем

orall arepsilon > 0 (можно считать, что arepsilon < a) $\exists N_{arepsilon} \ \ orall N > N_{arepsilon} \ \ \ \forall n > N \dots$

$$\dots a - \varepsilon < \frac{x_{N+1} - x_N}{y_{N+1} - y_N} < a + \varepsilon,$$

$$a - \varepsilon < \frac{x_{N+2} - x_{N+1}}{y_{N+2} - y_{N+1}} < a + \varepsilon,$$

$$\dots$$

$$a - \varepsilon < \frac{x_n - x_{n-1}}{y_n - y_{n-1}} < a + \varepsilon.$$

Смешно сложим дроби и заметим, что сумма выходит телескопической. Получившееся неравенство будет иметь такой вид:

$$a - \varepsilon < \frac{x_n - x_N}{y_n - y_N} < a + \varepsilon.$$

Выполним предельный переход при $n \to \infty$. По условию $x_n \to 0$, $y_n \to 0$, значит, имеем

$$a - \varepsilon < \frac{x_N}{y_N} < a + \varepsilon.$$

Читаем цветной текст и видим определение предела.

 $^{^2}$ Так как $\frac{x_n-x_{n-1}}{y_n-y_{n-1}} \to a>0$, по теореме о стабилизации знака $\exists K \ \forall N>K\dots$

 $[\]dots \frac{x_n-x_{n-1}}{y_n-y_{n-1}}>0$. В силу монотонности $(y_n), (x_n)$ тоже монотонна, причём одинаково с y_n . А так как последовательности стремятся к нулю, с какого-то момента они имеют одинаковый знак. Если $x_n<0$ и $y_n<0$, сменим у обеих знак — их предела это не изменит.

- 2. Пусть теперь $-\infty < a < 0$. Это значит, что, НСНМ, либо $x_n > 0$ и $y_n < 0$, либо $x_n < 0$ и $y_n > 0$. Сменим знак отрицательной последовательности она по-прежнему будет стремиться к нулю, а дробь $\frac{x_n x_{n-1}}{y_n y_{n-1}}$ свой знак сменит (соответственно, a тоже). Таким образом, мы переходим к случаю 1.
- 3. Случай $a = +\infty$ аналогичен первому. Действительно, имеем

$$\forall E > 0 \quad \exists N_E \quad \forall N > N_E \quad \forall n > N \dots$$

$$\dots E < \frac{x_{N+1} - x_N}{y_{N+1} - y_N},
E < \frac{x_{N+2} - x_{N+1}}{y_{N+2} - y_{N+1}},
\dots
E < \frac{x_n - x_{n-1}}{y_n - y_{n-1}}.$$

Опять смешно складываем дроби, выполняем предельный переход и получаем определение предела.

- 4. Случай $a = -\infty$ аналогичен третьему.
- 5. Пусть теперь a=0. Так как в первой сноске мы дополнительно потребовали монотонность (x_n) , можем говорить, что $\frac{x_n-x_{n-1}}{y_n-y_{n-1}}$ стремится к нулю слева или справа. «Перевернём» её, поменяв числитель и знаменатель местами, и попадём либо в случай 3, либо в случай 4.

Итак, теорема доказана для всех значений a из $\overline{\mathbb{R}}$.

7. Интегрирование неравенств, теорема о среднем

Теорема. Пусть f, g непрерывны на [a, b]. Тогда если $f \leqslant g$, то

$$\int_{a}^{b} f \leqslant \int_{a}^{b} g.$$

Доказательство. По определению

$$\int_{a}^{b} f = \sigma(\Pi\Gamma(f^{+}, [a, b])) - \sigma(\Pi\Gamma(f^{-}, [a, b])),$$
$$\int_{a}^{b} g = \sigma(\Pi\Gamma(g^{+}, [a, b])) - \sigma(\Pi\Gamma(g^{-}, [a, b])).$$

Поскольку $f\geqslant g$, то $\Pi\Gamma(f^+,[a,b])\subseteq\Pi\Gamma(g^+,[a,b])$. А значит, $\sigma(\Pi\Gamma(f^+,[a,b]))\leqslant\sigma(\Pi\Gamma(g^+,[a,b]))$. С отрицательной срезкой наоборот, но в силу того, что её ослабленная площадь σ вычитается, неравенство остаётся справедливым.

Теорема. Пусть f непрерывны на [a,b]. Тогда

$$\min(f) \cdot (b-a) \leqslant \int_{a}^{b} \leqslant \max(f) \cdot (b-a)^{3}$$

Доказательство. Заметим, что, так как $\min(f)$ — константа,

$$\int_{a}^{b} \min(f) = \min(f) \cdot (b - a).$$

Аналогично для $\max(f)$. Тогда проинтегрируем неравенство $\min(f) \leqslant f \leqslant \max(f)$ по [a,b]:

$$\int_{a}^{b} \min(f) \leqslant \int_{a}^{b} f \leqslant \int_{a}^{b} \max(f)$$
$$\min(f) \cdot (b - a) \leqslant \int_{a}^{b} f \leqslant \max(f) \cdot (b - a).$$

8. Теорема Барроу

Теорема. Пусть f непрерывна на [a,b]. Введём на [a,b] функцию Φ^4 :

$$\Phi(x) = \int_{a}^{x} f.$$

Тогда Φ дифференцируема на [a,b] и $\forall x \in [a,b]$ $\Phi'(x) = f(x)$.

³В данной теореме обсуждаются минимум и максимум f на промежутке [a, b].

 $^{^4}$ Функция Φ называется интегралом c переменным верхним пределом.

Доказательство (полуавторское). Если $x \neq b$, вычислим Φ'_+ :

$$\Phi'_{+} = \lim_{y \to x+0} \frac{\Phi(y) - \Phi(x)}{y - x} = \lim_{y \to x+0} \frac{1}{y - x} \cdot \int_{x}^{y} f.$$

По теореме о среднем имеем:

$$\min_{[x,y]}(f) \leqslant \frac{1}{y-x} \cdot \int_x^y f \leqslant \max_{[x,y]}(f).$$

Теперь перейдём к пределу:

$$\lim_{y \to x+0} \min_{[x,y]}(f) = f(x) \leqslant \lim_{y \to x+0} \frac{1}{y-x} \cdot \int_{x}^{y} f \leqslant \lim_{y \to x+0} \max_{[x,y]}(f) = f(x).$$

Выходит, $\Phi'_+ = f$. Аналогично для левой производной при $x \neq a$.

9. Формула Ньютона – Лейбница

Теорема. Пусть f непрерывна на [a,b], F — первообразная f на [a,b]. Тогда

$$\int_{a}^{b} = F(b) - F(a).$$

Доказательство. Введём интеграл с переменным верхним пределом Ф. По теореме Барроу $\Phi'(x) = f(x)$ для любого x из [a,b]. Заметим, что $\Phi(x) = F(x) + C$, где $C \in \mathbb{R}$, а также что $\Phi(a) = 0$. Тогда имеем:

$$\int_{a}^{b} f = \Phi(b) = \Phi(b) - \Phi(a) = (F(b) + C) - (F(a) + C) = F(b) - F(a).$$

Замечание. Выходит, что определённый интеграл не зависит от выбора ослабленной площади σ .

Замечание. Приращение F(b) - F(a) первообразной обычно записывают в виде $F(x)\Big|_{x=a}^{x=b}$ или в краткой форме $F(x)\Big|_{a}^{b}$.

10. Свойства определённого интеграла

Теорема. Пусть f, g непрерывны на $[a, b], \alpha, \beta \in \mathbb{R}$. Тогда:

1.

$$\int_{a}^{b} \alpha f + \beta g = \alpha \int_{a}^{b} f + \beta \int_{a}^{b} g,$$

2. Если к тому же f, g дифференцируемы на [a, b], то

$$\int_{a}^{b} fg' = fg \bigg|_{a}^{b} - \int_{a}^{b} f'g,$$

3. Пусть $\varphi:\langle \alpha,\beta\rangle \to \langle a,b\rangle$ дифференцируема на $\langle \alpha,\beta\rangle$, пусть также $[p,q]\subset \langle \alpha,\beta\rangle$. Тогда

$$\int_{p}^{q} f(\varphi(t))\varphi'(t)dt = \int_{\varphi(p)}^{\varphi(q)} f(x)dx.$$

Доказательство. Докажем свойства по отдельности:

- 1. Следует из того, что если F,G первообразные f,g соответственно, то $\alpha F + \beta G$ первообразная $\alpha f + \beta g$.
- 2. Имеем:

$$\int_{a}^{b} fg' = fg \Big|_{a}^{b} - \int_{a}^{b} f'g$$

$$\int_{a}^{b} fg' + \int_{a}^{b} f'g = fg \Big|_{a}^{b}$$

$$\int_{a}^{b} (fg' + f'g) = fg \Big|_{a}^{b}$$

Последнее равенство очевидно.

3. Пусть F — первообразная функции f на [a,b]. Так как $(F(\varphi(t)))'=F'(\varphi(t))\varphi(t)=f(\varphi(t))\varphi(t)$, то $F(\varphi(t))$ — первообразная

 $f(\varphi(t))\varphi(t)$ на $\langle \alpha, \beta \rangle$. Дважды использую формулу Ньютона – Лейбница, получим нужное равенство:

$$\int_{p}^{q} f(\varphi(t))\varphi'(t)dt = F(\varphi(t))\Big|_{p}^{q} = F(\varphi(q)) - F(\varphi(t)) = \dots$$

$$\dots = F(x)\Big|_{\varphi(p)}^{\varphi(q)} = \int_{\varphi(p)}^{\varphi(q)} f(x)dx.$$

11. Неравенство Чебышёва

Теорема. Пусть f, g непрерывны на [a,b] и монотонны, причём одинаково монотонны. Пусть I_f — среднее значение функции f. Тогда

$$I_f \cdot I_g \leqslant I_{fg}$$
.

 $\ \ \, \mathcal{A}$ оказательство. Так как f,g монотонны одинаково, справедливо следующее:

$$\forall x, y \in [a, b] \quad (f(x) - f(y)) \cdot (g(x) - g(y)) \geqslant 0.$$

Раскроем скобки:

$$f(x)g(x) - f(x)g(y) - f(y)g(x) + f(y)g(y) \geqslant 0.$$

Проинтегрируем неравенство по x на [a, b]:

$$\int_{a}^{b} fg - \int_{a}^{b} f \cdot g(y) - f(y) \cdot \int_{a}^{b} g + (b - a) \cdot f(y)g(y) \geqslant 0$$

и разделим на b-a:

$$I_{fg} - I_f \cdot g(y) - f(y) \cdot I_g + f(y)g(y) \geqslant 0.$$

Теперь проинтегрируем по y на том же промежутке и опять разделим на b-a:

$$I_{fg} - I_f \cdot I_g - I_f \cdot I_g + I_{fg} \geqslant 0.$$

Приведём подобные и получим требуемый результат.

12. Иррациональность числа пи

Теорема. Число пи иррационально.

Доказательство. Рассмотрим последовательность (H_n) :

$$H_n = \frac{1}{n!} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \left(\frac{\pi^2}{4} - t^2\right)^n \cos(t) dt.$$

Нам интересно выразить n-й член последовательности через предыдущие. Сперва проинтегрируем H_n по частям: представим подынтегральное выражение как fg', где $f=\left(\frac{\pi^2}{4}-t^2\right)^n$, а $g'=\cos(t)$. Следовательно, $f'=-2t\cdot n\cdot \left(\frac{\pi^2}{4}-t^2\right)^{n-1}$, а $g=\sin(t)$. Тогда

$$H_n = \frac{1}{n!} \left(\frac{\pi^2}{4} - t^2 \right)^n \sin(t) \Big|_{-\frac{\pi}{2}}^{\frac{\pi}{2}} - \frac{2}{(n-1)!} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} t \left(\frac{\pi^2}{4} - t^2 \right)^{n-1} \sin(t) dt.$$

Первое слагаемое зануляется, оставшееся опять проинтегрируем по частям: на этот раз $f=t\left(\frac{\pi^2}{4}-t^2\right)^{n-1}$, а $g'=\sin(t)$. Следовательно, $f'=\left(\frac{\pi^2}{4}-t^2\right)^{n-1}-2t^2(n-1)\left(\frac{\pi^2}{4}-t^2\right)^{n-2}$, а $g=-\cos(t)$. Немного подправим f'— во втором слагаемом вместо множителя t^2 запишем $\left(t^2-\frac{\pi^2}{4}\right)+\frac{\pi^2}{4}$, то есть f' примет такой вид:

$$\left(\frac{\pi^2}{4}-t^2\right)^{n-1}-2\left(\left(t^2-\frac{\pi^2}{4}\right)+\frac{\pi^2}{4}\right)(n-1)\left(\frac{\pi^2}{4}-t^2\right)^{n-2},$$
 или
$$\left(\frac{\pi^2}{4}-t^2\right)^{n-1}+2\left(\left(\frac{\pi^2}{4}-t^2\right)-\frac{\pi^2}{4}\right)(n-1)\left(\frac{\pi^2}{4}-t^2\right)^{n-2}.$$

Раскроем скобки:

$$\left(\frac{\pi^2}{4}-t^2\right)^{n-1}+2(n-1)\left(\frac{\pi^2}{4}-t^2\right)^{n-1}-2(n-1)\frac{\pi^2}{4}\left(\frac{\pi^2}{4}-t^2\right)^{n-2},$$

и приведём подобные:

$$(2n-1)\left(\frac{\pi^2}{4}-t^2\right)^{n-1}-(n-1)\frac{\pi^2}{2}\left(\frac{\pi^2}{4}-t^2\right)^{n-2}.$$

Запишем, наконец, результат интегрирования по частям $\left(fg\Big|_{-\frac{\pi}{2}}^{\frac{\pi}{2}}\right)$ снова занулится, поэтому его писать не будем :

$$H_{n} = -\frac{2}{(n-1)!} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} (2n-1) \left(\frac{\pi^{2}}{4} - t^{2}\right)^{n-1} (-\cos(t)) dt + \dots$$

$$\dots + \frac{2}{(n-1)!} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} (n-1) \frac{\pi^{2}}{2} \left(\frac{\pi^{2}}{4} - t^{2}\right)^{n-2} (-\cos(t)) dt = \dots$$

$$\dots = \frac{4n-2}{(n-1)!} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \left(\frac{\pi^{2}}{4} - t^{2}\right)^{n-1} \cos(t) dt - \dots$$

$$\dots - \frac{\pi^{2}}{(n-2)!} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \left(\frac{\pi^{2}}{4} - t^{2}\right)^{n-2} \cos(t) dt = \dots$$

$$\dots = (4n-2) H_{n-1} + \pi^{2} H_{n-2}.$$

Итак, мы нашли рекуррентную формулу для H_n . Теперь мы можем выразить любой член последовательности, кроме нулевого и первого. Вычислим их непосредственно (при вычислении H_1 придётся два раза проинтегрировать по частям):

$$H_{0} = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \cos(t)dt = 2,$$

$$H_{1} = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \left(\frac{\pi^{2}}{4} - t^{2}\right) \cos(t)dt = \left(\frac{\pi^{2}}{4} - t^{2}\right) \sin(t) \Big|_{-\frac{\pi}{2}}^{\frac{\pi}{2}} + \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} 2t \sin(t)dt = \dots$$

$$\dots = 2 \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} t \sin(t)dt = -2t \cos(t) \Big|_{-\frac{\pi}{2}}^{\frac{\pi}{2}} + 2 \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \cos(t)dt = 4.$$

Используем же, наконец, всё это, чтобы доказать, что π (и даже π^2) иррационально. Заметим, что H_n — многочлен с целыми коэффициентами от π^2 , причём степени не больше, чем n. Действительно, чтобы по полученной ранее рекурентной формуле разложить H_n до целых чисел H_0 и H_1 , потребуется применить её n-1 раз, соответственно π^2 может входить в получившийся в результате разложения многочлен в степени уж точно не больше, чем n. Обозначим этот многочлен как $P_n(\pi^2)$.

не больше, чем n. Обозначим этот многочлен как $P_n(\pi^2)$. Предположим теперь, что π^2 — рациональное число, то есть $\pi^2 = \frac{p}{q}$, где $p,q \in \mathbb{N}$. Заметим, что тогда $q^n P_n(\pi^2)$ — целое число (так как домножением на q^n мы сократили все знаменатели). Мы также знаем, что

 $P_n(\pi^2) = H_n > 0$, так как подынтегральная функция в H_n равна нулю в точках $-\frac{\pi}{2}$ и $\frac{\pi}{2}$ и положительна в остальных. Следовательно, $q^n P_n(\pi^2)$ — это как минимум единица. Запишем подробнее:

$$q^{n}P_{n}(\pi^{2}) = q^{n}H_{n} = \frac{q^{n}}{n!} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \left(\frac{\pi^{2}}{4} - t^{2}\right)^{n} \cos(t)dt \geqslant 1.$$

Оценим нашу функцию сверху, пользуясь теоремой о среднем, только для простоты возьмём немного завышенный максимум: $\left(\frac{\pi^2}{4} - t^2\right) \leqslant 4$ при любом t из $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$. Так как $|\cos(t)| \leqslant 1$, подынтегральное выражение не превосходит 4^n , а интеграл как интеграл константы не превосходит $4^n\pi$. Имеем следующее:

$$\frac{q^n}{n!} 4^n \pi \geqslant \frac{q^n}{n!} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \left(\frac{\pi^2}{4} - t^2\right)^n \cos(t) dt \geqslant 1.$$

Так как это справедливо для любого натурального n, устремим его в бесконечность:

$$1 \leqslant \frac{q^n}{n!} 4^n \pi \xrightarrow[n \to \infty]{} 0.$$

Получили противоречие.

13. Формула Тейлора с остатком в интегральной форме

Теорема. Пусть $a,b \in \overline{\mathbb{R}}$, функция f дифференцируема n+1 раз на $\langle a,b \rangle, x_0 \in \langle a,b \rangle$. Тогда

$$f(x) = \sum_{k=0}^{n} \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k + \frac{1}{n!} \int_{x_0}^{x} (x - t)^n f^{(n+1)}(t) dt.$$

Доказательство. Докажем индукцией по n. База — n = 0:

$$f(x) = f(x_0) + \int_{x_0}^{x} f'(t)dt$$

$$\int_{x_0}^{x} f'(t)dt = f(x) - f(x_0).$$

Последнее равенство — формула Ньютона — Лейбница для f'(x).

Индукционный переход от n к n+1 осуществляется интегрированием по частям n-го остатка, в результате которого мы получим (n+1)-й остаток и очередное слагаемое многочлена Тейлора. Возьмём $f^{(n+1)}(t)$ в качестве f и $(x-t)^n$ в качестве g':

$$\frac{1}{n!} \int_{x_0}^x (x-t)^n f^{(n+1)}(t) dt = \dots$$

$$\dots = \frac{1}{n!} \left(-\frac{(x-t)^{n+1}}{n+1} f^{(n+1)}(t) \right) \Big|_{x_0}^x + \frac{1}{(n+1)!} \int_{x_0}^x (x-t)^{n+1} f^{(n+2)}(t) dt = \dots$$

$$\dots = \frac{(x-x_0)^{n+1}}{(n+1)!} f^{(n+1)}(x_0) + \frac{1}{(n+1)!} \int_{x_0}^x (x-t)^{n+1} f^{(n+2)}(t) dt.$$

14. Лемма о трёх хордах

Теорема. Пусть $f:\langle a,b\rangle\to\mathbb{R}$. Тогда следующие утверждения эквивалентны:

- 1. Функция f выпукла на $\langle a, b \rangle$,
- 2. Для любых $x_1, x_2, x_3 \in \langle a, b \rangle$, таких, что $x_1 < x_2 < x_3$, справедливо:

$$\frac{f(x_2) - f(x_1)}{x_2 - x_1} \leqslant \frac{f(x_3) - f(x_1)}{x_3 - x_1} \leqslant \frac{f(x_3) - f(x_2)}{x_3 - x_2}.$$

Доказательство. Докажем равносильность сначала для левой части двойного неравенства, а потом для правой. Напомним определение выпуклости:

$$f(x) \leqslant \frac{x_3 - x}{x_3 - x_1} f(x_1) + \frac{x - x_1}{x_3 - x_1} f(x_3), \quad x \in (x_1, x_3).$$

Подставим в него x_2 и получим

$$f(x_2) \leqslant t f(x_1) + (1 - t) f(x_3),$$

где $t=\frac{x_3-x_2}{x_3-x_1},\ 1-t=\frac{x_2-x_1}{x_3-x_1}.$ Преобразуем неравенство двумя способами. С одной стороны,

$$f(x_2) \le f(x_1) + (1-t)(f(x_3) - f(x_1)) = f(x_1) + (x_2 - x_1) \frac{f(x_3) - f(x_1)}{x_3 - x_1},$$

что равносильно левой части двойного неравенства. С другой стороны,

$$f(x_2) \le f(x_3) - t(f(x_3) - f(x_1)) = f(x_3) - (x_3 - x_2) \frac{f(x_3) - f(x_1)}{x_3 - x_1},$$

что равносильно правой части двойного неравенства.

15. Теорема об односторонней дифференцируемости выпуклой функции

Теорема. Пусть функция f выпукла вниз на $\langle a,b \rangle$. Тогда для любой точки $x \in (a,b)$ существуют конечные $f'_{-}(x)$ и $f'_{+}(x)$, причём $f'_{-}(x) \leqslant f'_{+}(x)$.

Доказательство. Возьмём $x \in (a,b)$ и положим

$$g(\xi) = \frac{f(\xi) - f(x)}{\xi - x}, \qquad \xi \in \langle a, b \rangle \setminus \{x\}.$$

По лемме о трёх хордах g возрастает на $\langle a,b \rangle \setminus \{x\}$. Поэтому если $a < \xi < x < \eta < b$, то

$$\frac{f(\xi) - f(x)}{\xi - x} \leqslant \frac{f(\eta) - f(x)}{\eta - x}.$$

Следовательно, g ограничена на $\langle a, x \rangle$ сверху, а на $\langle x, b \rangle$ — снизу. По теореме о пределе монотонной функции существуют конечные пределы g(x-) и g(x+), которые по определению являются односторонними производными $f'_{-}(x)$ и $f'_{+}(x)$. Устремляя ξ к x слева, а η к x справа, получаем, что $f'_{-}(x) \leqslant f'_{+}(x)$.

ВОЗМОЖНО, ПЕРЕПИСАТЬ (ДОДЕЛАТЬ) ПО КОНСПЕКТУ ЛЕК-ЦИЙ

16. Описание выпуклости с помощью касательных

Теорема. Пусть функция f дифференцируема на $\langle a,b \rangle$. Тогда f выпукла вниз на $\langle a,b \rangle$ в том и только том случае, когда график f лежит не ниже любой своей касательной, то есть для любых $x, x_0 \in \langle a,b \rangle$:

$$f(x) \ge f(x_0) + f'(x_0)(x - x_0).$$
 (*)

Доказательство. Докажем необходимость и достаточность отдельно.

 \Rightarrow Пусть f выпукла вниз, $x, x_0 \in \langle a, b \rangle$. Если $x > x_0$, то по лемме о трёх хордах для любого $\eta \in (x_0, x)$

$$\frac{f(\eta) - f(x_0)}{\eta - x_0} \leqslant \frac{f(x) - f(x_0)}{x - x_0}.$$

Устремляя η к x_0 , получаем неравенство

$$f'(x_0) \leqslant \frac{f(x) - f(x_0)}{x - x_0},$$

равносильное (*).

Если $x < x_0$, то по лемме о трёх хордах для любого $\xi \in (x, x_0)$

$$\frac{f(\xi) - f(x_0)}{\xi - x_0} \geqslant \frac{f(x) - f(x_0)}{x - x_0}.$$

Устремляя ξ к x_0 , получаем неравенство

$$f'(x_0) \geqslant \frac{f(x) - f(x_0)}{x - x_0},$$

равносильное (*).

 \Leftarrow Пусть для любых $x, x_0 \in \langle a, b \rangle$ верно неравенство (*). Возьмём $x_1, x_2 \in \langle a, b \rangle \mid x_1 < x_2$, и $x \in (x_1, x_2)$. Применяя неравенство (*) дважды: сначала к точкам x_1 и x, а затем — к x_2 и x, получаем

$$f(x_1) \ge f(x) + f'(x)(x_1 - x), \qquad f(x_2) \ge f(x) + f'(x)(x_2 - x),$$

что равносильно

$$\frac{f(x_1) - f(x)}{x_1 - x} \leqslant f'(x) \leqslant \frac{f(x_2) - f(x)}{x_2 - x}.$$

Крайние части составляют неравенство, равносильное неравенству из определения выпуклости. Действительно, домножим обе части на знаменатели, выразим f(x) и получим требуемое неравенство.

ВОЗМОЖНО, ДОДЕЛАТЬ ПРО СЛЕДСТВИЕ

17. Дифференциальные критерии выпуклости

Теорема. Пусть функция f непрерывна на (a, b). Тогда:

- 1. Если f дифференцируема на (a,b), то f (строго) выпукла вниз на $\langle a,b\rangle$ в том и только том случае, когда f' (строго) возрастает на $\langle a,b\rangle$.
- 2. Если f дважды дифференцируема на (a,b), то f выпукла вниз в том и только том случае, когда $f''(x) \ge 0$ для всех $x \in (a,b)$.

Доказательство. Докажем критерии по отдельности.

- 1. Докажем сперва необходимость, а потом достаточность.
 - \Rightarrow Возьмём $x_1, x_2 \in (a,b) \mid x_1 < x_2$. Согласно описанию выпуклости с помощью касательных, имеем

$$f'(x_1) \leqslant \frac{f(x_2) - f(x_1)}{x_2 - x_1} \leqslant f'(x_2).$$
 (1)

Действительно, сначала запишем неравенство для касательной в точке x_1 и подставим в него x_2 , получив левую часть, а потом запишем неравенство для касательной в точке x_2 и подставим в него x_1 , получив правую часть. Но ведь получившееся неравенство и означает возрастание f'.

$$\frac{f(x) - f(x_1)}{x - x_1} = f'(c_1), \qquad \frac{f(x_2) - f(x)}{x_2 - x} = f'(c_2).$$

Тогда $x_1 < c_1 < x < c_2 < x_2$, а f' по условию возрастает, поэтому $f'(c_1) \leqslant f'(c_2)$, то есть

$$\frac{f(x) - f(x_1)}{x - x_1} \leqslant \frac{f(x_2) - f(x)}{x_2 - x},\tag{2}$$

что равносильно неравенству из определения выпуклости (аналогично ситуации в доказательстве описания выпуклости с помощью касательных).

Если f строго выпукла вниз, то оба неравенства в (1) строгие. Обратно, если f' строго возрастает, то неравенство (2) строгое, что влечёт строгую выпуклость f.

2. По пункту 1 выпуклость f равносильна возрастанию f', которое по критерию монотонности равносильно неотрицательности f''.

18. Теорема о вычислении аддитивной функции промежутка по плотности

Теорема. Пусть $\Phi \colon Segm\langle a,b\rangle \to \mathbb{R} - a\partial\partial umu$ вная функция промежутка, $f \colon \langle a,b\rangle \to \mathbb{R} - n$ лотность Φ . Тогда

$$\forall [p,q] \in Segm\langle a,b \rangle \quad \Phi([p,q]) = \int_{p}^{q} f.$$

Доказательство. Зафиксируем $[p,q] \in Segm\langle a,b\rangle$. Рассмотрим функцию F:

$$F(x) = \begin{cases} \Phi([p, x]), & p < x \leq q \\ 0, & x = p. \end{cases}$$

Теперь проверим, что F — первообразная f на [p,q]. Имеем:

$$F'_{+}(x) = \lim_{h \to +0} \frac{\Phi([p, x+h]) - \Phi([p, x])}{h} = \lim_{h \to +0} \frac{\Phi([x, x+h])}{h}.$$

По определению плотности

$$h \cdot \inf_{[x,x+h]}(f) \leqslant \Phi([x,x+h]) \leqslant h \cdot \sup_{[x,x+h]}(f)$$
$$\inf_{[x,x+h]}(f) \leqslant \frac{\Phi([x,x+h])}{h} \leqslant \sup_{[x,x+h]}(f).$$

По теореме Вейерштрасса инфимум и супремум функции на отрезке достигаются, то есть неравенство равносильно

$$\min_{[x,x+h]}(f)\leqslant \frac{\Phi([x,x+h])}{h}\leqslant \max_{[x,x+h]}(f).$$

Перейдём к пределу при $h \to +0$:

$$f(x) \leqslant \frac{\Phi([x, x+h])}{h} \leqslant f(x).$$

Аналогично $F'_{-}(x) = f(x)$. Применим формулу Ньютона – Лейбница и получим требуемый результат:

$$\Phi([p,q]) = F(q) - F(p) = \int_{p}^{q} f.$$

ДОДЕЛАТЬ ПРО ТЕОРЕМУ О ПРОМЕЖУТОЧНОМ ЗНАЧЕНИИ И КОНЦЫ ПРОМЕЖУТКА

19. Свойства верхнего и нижнего пределов

Теорема. Пусть (x_n) — вещественная последовательность. Тогда⁵:

⁵Все пределы обсуждаются при $n \to \infty$.

1.
$$\lim_{n \to \infty} x_n \leqslant \overline{\lim}_{n \to \infty} x_n$$
,

- 2. Если (\widetilde{x}_n) вещественная последовательность, причём для всех $n\ x_n\leqslant \widetilde{x}_n,\ mo\ \varlimsup_{n\to\infty}x_n\leqslant \varlimsup_{n\to\infty}\widetilde{x}_n\ u\ \varliminf_{n\to\infty}x_n\leqslant \varliminf_{n\to\infty}\widetilde{x}_n,$
- 3. Возъмём $\lambda \geqslant 0$, тогда $\overline{\lim}_{n \to \infty} \lambda x_n = \lambda \overline{\lim}_{n \to \infty} x_n u \underline{\lim}_{n \to \infty} \lambda x_n = \lambda \underline{\lim}_{n \to \infty} x_n$, $\frac{1}{1}$
- 4. $\overline{\lim}_{n\to\infty} -x_n = -\underline{\lim}_{n\to\infty} x_n$, $\underline{\lim}_{n\to\infty} -x_n = -\overline{\lim}_{n\to\infty} x_n$,
- 5. $\overline{\lim}_{n\to\infty} x_n + \widetilde{x}_n \leqslant \overline{\lim}_{n\to\infty} x_n + \overline{\lim}_{n\to\infty} \widetilde{x}_n \ u \ \underline{\lim}_{n\to\infty} x_n + \widetilde{x}_n \geqslant \underline{\lim}_{n\to\infty} x_n + \underline{\lim}_{n\to\infty} \widetilde{x}_n,$ где (\widetilde{x}_n) вещественная последовательность,
- 6. Если (t_n) вещественная последовательность, стремящаяся κ $l \in \mathbb{R}, \ mo \lim_{n \to \infty} x_n + t_n = \lim_{n \to \infty} x_n + l,$
- 7. Если (t_n) вещественная последовательность, стремящаяся κ $l \in (0, +\infty)$, то $\overline{\lim}_{n \to \infty} t_n \cdot x_n = l \cdot \overline{\lim}_{n \to \infty} x_n$.

Доказательство. Докажем эти свойства:

- 1. Следует из того, что для всех $n \ z_n \leqslant y_n$,
- 2. В силу того, что для всех $n y_n \leqslant \widetilde{y}_n$ и $z_n \leqslant \widetilde{z}_n$,
- 3. Так как для (λx_n) верхняя огибающая имеет вид (λy_n) , а нижняя (λz_n) ,
- 4. Обозначим как (y_n^-) верхнюю огибающую $(-x_n)$ и как (z_n^-) нижнюю. Тогда

$$y_n^- = \sup(-x_n, -x_{n+1}, -x_{n+2}, \ldots).$$

По определению супремума

$$\forall k \geqslant n \quad y_n^- \geqslant -x_k, \text{ то есть } -y_n^- \leqslant x_k.$$

Получается, что $-y_n^-=\inf(x_n,x_{n+1},x_{n+2},\ldots)$, что равносильно $y_n^-=-\inf(x_n,x_{n+1},x_{n+2},\ldots)=-z_n$. Аналогично $z_n^-=-y_n$.

Перейдём к пределу и получим требуемый результат.

5. ДОДЕЛАТЬ

 $^{^{6}}$ Заметим, что при этом выходит, что $0 \cdot (\pm \infty) = 0$.

6. По условию $t_n \to l \in \mathbb{R}$, то есть

$$\forall \varepsilon > 0 \quad \exists N_0 \quad \forall n > N_0 \quad l - \varepsilon < t_n < l + \varepsilon.$$

Прибавим к неравенству x_n :

$$\forall \varepsilon > 0 \quad \exists N_0 \quad \forall n > N_0 \quad x_n + l - \varepsilon < x_n + t_n < x_n + l + \varepsilon.$$

Перейдём к супремуму в неравенстве (супремумом x_n является y_N , где $N_0 < N < n$):

$$y_N + l - \varepsilon < \sup(x_n + t_n, x_{n+1} + t_{n+1}, x_{n+2} + t_{n+2}, \ldots) < y_N + l + \varepsilon.$$

Устремим N, а значит, и n тоже в бесконечность, а ε — к нулю, и получим нужный результат:

$$\overline{\lim}_{n \to \infty} x_n + l \leqslant \overline{\lim}_{n \to \infty} x_n + t_n \leqslant \overline{\lim}_{n \to \infty} x_n + l.$$

7. Без доказательства.

20. Техническое описание верхнего предела

Теорема. Пусть (x_n) — вещественная последовательность. Тогда:

1.
$$\overline{\lim}_{n\to\infty} x_n = +\infty \Leftrightarrow (x_n)$$
 не ограничена сверху,

2.
$$\overline{\lim}_{n\to\infty} x_n = -\infty \Leftrightarrow x_n \to -\infty$$
,

3. $\overline{\lim}_{n\to\infty}x_n=l$ тогда и только тогда, когда выполняются условия:

(a)
$$\forall \varepsilon > 0 \quad \exists N_0 \quad \forall n > N_0 \quad x_n < l + \varepsilon,$$

$$\forall \varepsilon > 0 \quad \exists \text{бесконечно много } n \quad l - \varepsilon < x_n.$$

Доказательство. Докажем пункты по отдельности:

1. Очевидно:

$$\overline{\lim}_{n \to \infty} x_n = +\infty \Leftrightarrow \lim_{n \to \infty} y_n = +\infty \Leftrightarrow \forall E > 0 \ \exists n \ E < y_n.$$

А так как $y_n = \sup(x_n, x_{n+1}, x_{n+2}, \ldots)$, выражение выше равносильно тому, что (x_n) не ограничена сверху.

 $2. \Rightarrow$ Тоже очевидно:

$$\overline{\lim}_{n \to \infty} x_n = -\infty \Leftrightarrow \lim_{n \to \infty} y_n = -\infty.$$

В силу того, что для всех $n x_n \leq y_n, x_n \to -\infty$,

 \Leftarrow При $n \to \infty$ справедливо:

$$x_n \to -\infty \Rightarrow \sup(x_n, x_{n+1}, x_{n+2}, \ldots) \to -\infty \Leftrightarrow y_n \to -\infty,$$

что и означает, что $\overline{\lim}_{n\to\infty} x_n$.

3. \Rightarrow Имеем, что $y_n \to l$ при $n \to \infty$, то есть

$$\forall \varepsilon > 0 \quad \exists N_0 \quad \forall n > N_0 \quad l - \varepsilon < y_n < l + \varepsilon.$$

Так как для всех $n \ x_n \leqslant y_n$, получаем, что

$$\forall \varepsilon > 0 \quad \exists N_0 \quad \forall n > N_0 \quad x_n < l + \varepsilon,$$

о чём и говорится в пункте (a). Пункт (b) следует из того, что $y_n = \sup(x_n, x_{n+1}, x_{n+2}, \ldots)$ стремится к l.

 \Leftarrow Передём к супремуму в имеющихся неравенствах (напомним, что супремумом x_n при $n \to \infty$ является y_N , где $N_0 < N < n$). Получим, что $l - \varepsilon < y_N < + \varepsilon$ для любого $\varepsilon > 0$ (нижняя граница верна, потому что y_N — супремум обсуждаемого в условии бесконечного множества x_n). Устремим N в бесконечность и получим требуемый результат.

21. Теорема о существовании предела в терминах верхнего и нижнего пределов

Теорема. Пусть (x_n) — вещественная последовательность. Тогда

$$\overline{\lim}_{n \to \infty} x_n = \underline{\lim}_{n \to \infty} x_n \Leftrightarrow \exists \lim_{n \to \infty} x_n.$$

Доказательство. Докажем необходимость и достаточность по отдельности:

⇒ Имеем:

$$\overline{\lim}_{n \to \infty} x_n = \lim_{n \to \infty} y_n, \quad \underline{\lim}_{n \to \infty} x_n = \lim_{n \to \infty} z_n, \quad \forall n \quad z_n \leqslant x_n \leqslant y_n.$$

Получается, (x_n) «зажата» между двумя последовательностями с одинаковым пределом, а значит, по теореме о двух городовых она имеет тот же предел.

 \Leftarrow Пусть $\lim_{n\to\infty}=l,$ то есть

$$\forall \varepsilon > 0 \quad \exists N \quad \forall n > N \quad l - \varepsilon < x_n < l + \varepsilon.$$

Теперь в неравенстве мы можем перейти к супремуму и получить, что верхний предел равен l, и к инфимуму, получив, что нижний предел равен l.

22. Теорема о характеризации верхнего предела как частичного

Теорема. Пусть (x_n) — вещественная последовательность. Тогда

$$\overline{\lim}_{n\to\infty} x_n = l \Rightarrow \exists \lim_{k\to\infty} x_{n_k} = l.$$

Доказательство. Предъявим подходящую подпоследовательность (x_{n_k}) . По техническому определению предела имеем:

1.

$$\forall \varepsilon > 0 \quad \exists N_0 \quad \forall n > N_0 \quad x_n < l + \varepsilon.$$

2.

$$\forall \varepsilon > 0$$
 $\exists \textit{бесконечно много } n \quad l - \varepsilon < x_n.$

Будем выбирать такие x_n , чтобы для них выполнялись оба условия. Так как таких бесконечно много, мы получим подпоследовательность, стремящуюся к l.

23. Площадь криволинейного сектора: в полярных координатах и для параметрической кривой

Теорема. Пусть функция $f(\varphi) \colon [0, 2\pi] \to [0, +\infty]$ непрерывна. Назовём криволинейным сектором $[\alpha, \beta]$ (обозначать будем как Сектор (α, β)), где $\alpha, \beta \in [0, 2\pi]$, множество точек вида $\{(r, \varphi) \mid \alpha \leqslant \varphi \leqslant \beta, \ 0 \leqslant r \leqslant f(\varphi)\}$. Тогда

$$\sigma(\operatorname{Cekmop}(\alpha,\beta)) = \frac{1}{2} \int_{\alpha}^{\beta} f^{2}(\varphi) d\varphi. \tag{3}$$

Доказательство. Проверим, что $\frac{1}{2}f^2$ — плотность аддитивной функции промежутка $\Phi \colon Segm[0,2\pi] \to [0,+\infty]$, где $\Phi([\alpha,\beta]) = \sigma(\mathrm{Cektop}(\alpha,\beta))$. Тогда по теореме о вычислении аддитивной функции промежутка по плотности мы могли бы сразу получить нужный результат.

Возьмём промежуток $\Delta \in Segm[0,2\pi]$. Заметим, что криволинейный сектор Δ можно поместить в круговой сектор Δ с радиусом $\underset{\Delta}{\max} f(\varphi)$ (обозначим его как Сектор $_{\max}(\Delta)$). А в сам криволинейный сектор, в свою очередь, можно поместить круговой сектор с радиусом $\underset{\Delta}{\min} f(\varphi)$ (обозначим его как Сектор $_{\min}(\Delta)$). Минимум и максимум f достигаются по теореме Вейерштрасса, ведь мы рассматриваем непрерывную функцию на отрезке. Так как ослабленная площадь σ монотонна, выполняется неравенство

$$\sigma(\operatorname{Cektop_{min}}(\Delta)) \leqslant \sigma(\operatorname{Cektop}(\Delta)) \leqslant \sigma(\operatorname{Cektop_{max}}(\Delta)),$$

то есть

$$\sigma(\operatorname{Cektop_{min}}(\Delta)) \leqslant \Phi(\Delta) \leqslant \sigma(\operatorname{Cektop_{max}}(\Delta)),$$

Из школьной программы (!) знаем, что площадь кругового сектора $[\alpha,\beta]$ с радиусом r равна $\frac{1}{2}(\beta-\alpha)r^2$. Наше неравенство принимает следующий вид:

$$\frac{1}{2} \cdot |\Delta| \cdot (\min_{\Delta} f(\varphi))^2 \leqslant \Phi(\Delta) \leqslant \frac{1}{2} \cdot |\Delta| \cdot (\max_{\Delta} f(\varphi))^2.$$

Так как f неотрицательна, квадрат максимума/минимума можно заменить максимумом/минимумом квадрата:

$$|\Delta| \cdot \min_{\Delta} \frac{1}{2} f^2(\varphi) \leqslant \Phi(\Delta) \leqslant |\Delta| \cdot \max_{\Delta} \frac{1}{2} f^2(\varphi).$$

Получили определение плотности.

Замечание. Формулу можно приспособить для применения к параметрической кривой.

Прежде заметим, что точка, которая в полярных координатах записывалась как (r,φ) , в декартовых будет выглядеть как $(r\cdot\cos\varphi,r\cdot\sin\varphi)$, то есть $x=r\cdot\cos\varphi,\ y=r\cdot\sin\varphi$. Также ясно, что $r=\sqrt{x^2+y^2}$, а $\varphi=\arctan\frac{y}{r}$.

Пусть теперь мы имеем функции x(t) и y(t), задающие кривую. Тогда имеем $r(t) = \sqrt{x^2(t) + y^2(t)}$ и $\varphi(t) = \arctan \frac{y(t)}{x(t)}$. То есть, зная, как параметрически задаётся кривая в декартовых координатах, мы можем задать её параметрически уже в полярных координатах.

Возьмём имеющуюся формулу (3) и подставим туда r(t) в качестве f и $\varphi(t)$ в качестве φ . Получим

$$\frac{1}{2} \int_{\varphi^{-1}(\alpha)}^{\varphi^{-1}(\beta)} (x^2 + y^2) \left(\operatorname{arctg} \frac{y}{x} \right)' dt = \frac{1}{2} \int_{\varphi^{-1}(\alpha)}^{\varphi^{-1}(\beta)} (x^2 + y^2) \cdot \frac{1}{1 + \frac{y^2}{x^2}} \cdot \frac{y'x - x'y}{x^2} dt.$$

После всех сокращений получим следующую формулу:

$$\frac{1}{2} \int_{\varphi^{-1}(\alpha)}^{\varphi^{-1}(\beta)} y'(t)x(t) - x'(t)y(t)dt.$$

24. Изопериметрическое неравенство

Пример. Пусть $G \subset \mathbb{R}^2$ — замкнутая, ограниченная, выпуклая фигура. Пусть также её диаметр $diam\ G = \sup (\rho(x,y) \mid x,y \in G)^7$ не превосходит единицы. Тогда $\sigma(G) \leqslant \frac{\pi}{4}$.

Доказательство. Заметим, что выпуклую фигуру G можно рассматривать как разность подграфиков функций y_{\min} и y_{\max} , которые задаются следующим образом: спроецируем фигуру на ось абсцисс, возьмём точку x из проекции и начнём «двигаться вверх»; ордината первой точки нашей фигуры, на которую мы наткнёмся, будет значением функции y_{\min} в точке x, а последней — значением y_{\max} в точке x.

Понятно, что y_{\min} выпукла вниз, а y_{\max} — вверх (достаточно посмотреть на надграфик и подграфик соответственно). А значит, в каждой (за исключением счётного числа) точке можно провести касательную.

 $^{^7}$ Супремум достигается, так как G — компакт, а ho непрерывна.

Рис. 1: Продемонстрируем на примере круга

Сделаем это, а также проведём в точке касания прямую, перпендикулярную касательной. Эта прямая будет служить осью полярных координат с началом в точке касания. Далее мы будем рассматривать фигуру относительно этой системы координат.

Пусть фигура задаётся функцией $r(\varphi)$ (задание корректно, потому что луч, выходящий из точки начала координат под углом φ , пересекает фигуру всего один раз). Посчитаем её площадь:

$$\sigma(G) = \frac{1}{2} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} r^2(\varphi) d\varphi.$$

И немного преобразуем нашу формулу:

$$\sigma(G) = \frac{1}{2} \left(\int_{-\frac{\pi}{2}}^{0} r^2(\varphi) d\varphi + \int_{0}^{\frac{\pi}{2}} r^2(\varphi) d\varphi \right).$$

Сделаем в первом интеграле замену переменных: пускай теперь $\varphi=\alpha-\frac{\pi}{2}$. Пределы интегрирования изменятся соответственно на 0 и $\frac{\pi}{2}$. Получим следующее:

$$\sigma(G) = \frac{1}{2} \left(\int_0^{\frac{\pi}{2}} r^2 \left(\alpha - \frac{\pi}{2} \right) d\alpha + \int_0^{\frac{\pi}{2}} r^2(\varphi) d\varphi \right).$$

Букву α , кстати, можно заменить обратно на φ , потому что это всего

лишь название переменной:

$$\sigma(G) = \frac{1}{2} \left(\int_0^{\frac{\pi}{2}} r^2 \left(\varphi - \frac{\pi}{2} \right) d\varphi + \int_0^{\frac{\pi}{2}} r^2 (\varphi) d\varphi \right).$$

Объединим интегралы в один:

$$\sigma(G) = \frac{1}{2} \int_0^{\frac{\pi}{2}} r^2 \left(\varphi - \frac{\pi}{2} \right) + r^2(\varphi) d\varphi.$$

Попробуем теперь оценить площадь G. Для этого сделаем ϕ окуc: из начала координат проведём луч под каким-нибудь углом φ , а потом проведём перпендикулярный ему луч под углом $\varphi-\frac{\pi}{2}$.

Рис. 2: Фокус

Тогда то, что на рисунке отмечено как OB, это не что иное, как $r(\varphi)$, а OC — это $r\left(\varphi-\frac{\pi}{2}\right)$. Но ведь OB и OC — катеты прямоугольного треугольника, а значит $OB^2+OC^2=BC^2$. А так как $BC\leqslant diam\ G\leqslant 1$, то и $r^2(\varphi)+r^2\left(\varphi-\frac{\pi}{2}\right)\leqslant 1$. А это, в свою очередь, значит, что

$$\sigma(G) = \frac{1}{2} \int_0^{\frac{\pi}{2}} r^2 \left(\varphi - \frac{\pi}{2}\right) + r^2(\varphi) d\varphi \leqslant \frac{1}{2} \int_0^{\frac{\pi}{2}} 1 d\varphi = \frac{\pi}{4}.$$

ДОДЕЛАТЬ ПРО ПОЧТИ ДИФФЕРЕНЦИРУЕМОСТЬ (И МБ ПРО ВЫПУКЛЫЙ ПОДГРАФИК) $\hfill \Box$

25. Обобщённая теорема о плотности

Теорема. Пусть $\Phi \colon Segm\langle a,b\rangle \to \mathbb{R}$ — аддитивная функция промежутка, функция $f \colon \langle a,b\rangle \to \mathbb{R}$ непрерывна. Возьмём произвольный отрезок $\Delta \in Segm\langle a,b\rangle$ и введём следующие обозначения: $m_{\Delta} \leqslant \inf_{x \in \Delta} f(x)$ и $M_{\Delta} \geqslant \sup_{x \in \Delta} f(x)$. Тогда если выполняются следующие условия:

1.
$$m_{\Delta}|\Delta| \leq \Phi(\Delta) \leq M_{\Delta}|\Delta|$$
,

2.
$$\forall x \in \Delta \quad m_{\Delta} \leqslant f(x) \leqslant M_{\Delta}$$
,

3.
$$\forall \Delta \mid |\Delta| \to 0 \quad M_{\Delta} - m_{\Delta} \to 0^8$$
,

то f — плотность функции Φ , то есть

$$\forall [p,q] \in Segm\langle a,b\rangle \qquad \Phi([p,q]) = \int\limits_{p}^{q} f.$$

Доказательство. Доказательство (как и теорема) очень-очень похоже на доказательство теоремы о вычислении аддитивной функции промежутка по плотности.

Зафиксируем $[p,q] \in Segm\langle a,b\rangle$. Рассмотрим функцию F:

$$F(x) = \begin{cases} \Phi([p, x]), & p < x \leq q \\ 0, & x = p. \end{cases}$$

Теперь проверим, что F — первообразная f на [p,q]. Имеем:

$$F'_{+}(x) = \lim_{h \to +0} \frac{\Phi([p, x+h]) - \Phi([p, x])}{h} = \lim_{h \to +0} \frac{\Phi([x, x+h])}{h}.$$

Согласно пункту 1, $|\Delta| \cdot m_{\Delta} \leqslant \Phi(\Delta) \leqslant |\Delta| \cdot M_{\Delta}$, то есть $m_{\Delta} \leqslant \frac{\Phi(\Delta)}{|\Delta|} \leqslant M_{\Delta}$, или

$$m_{[x,x+h]} \leqslant \frac{\Phi([x,x+h])}{h} \leqslant M_{[x,x+h]}.$$
 (4)

Согласно пункту 2, для всех x из Δ справедливо $m_{\Delta} \leqslant f(x) \leqslant M_{\Delta}$, то есть $m_{[x,x+h]} \leqslant f(x) \leqslant M_{[x,x+h]}$, или $-M_{[x,x+h]} \leqslant -f(x) \leqslant -m_{[x,x+h]}$. Сложим это неравенство с неравенством (4):

$$m_{[x,x+h]} - M_{[x,x+h]} \leqslant \frac{\Phi([x,x+h])}{h} - f(x) \leqslant M_{[x,x+h]} - m_{[x,x+h]},$$

 $^{^8 {\}rm To}$ есть в контексте теоремы m_Δ — это слегка заниженный инфимум f, а M_Δ — слегка завышенный супремум f.

Наконец, согласно пункту 3, для любого $\Delta \to [x,x]$ справедливо, что $M_\Delta - m_\Delta \to 0$, то есть мы можем перейти к пределу:

$$\lim_{h \to 0} m_{[x,x+h]} - M_{[x,x+h]} \leqslant \lim_{h \to 0} \frac{\Phi([x,x+h])}{h} - f(x) \leqslant \lim_{h \to 0} M_{[x,x+h]} - m_{[x,x+h]}.$$

To есть $F'_+(x) \to f(x)$ при $h \to 0$.

Аналогично $F'_{-}(x) = f(x)$. Применим формулу Ньютона – Лейбница и получим требуемый результат:

$$\Phi([p,q]) = F(q) - F(p) = \int_p^q f.$$

26. Объём фигур вращения

Теорема. ДОДЕЛАТЬ

Доказательство. ДОДЕЛАТЬ

27. Вычисление длины гладкого пути

Теорема. Пусть $\gamma\colon [a,b]\to \mathbb{R}^m$ — гладкий путь, причём инъективный. Тогда

$$l(\gamma) = \int_{a}^{b} ||\gamma'(t)|| dt.$$

Доказательство. Зафиксируем $\Delta \in Segm[a,b]$ и рассмотрим функцию Φ , такую, что $\Phi(\Delta) = l(\gamma|_{\Delta})$. Заметим, что согласно аксиоме 2 Φ — аддитивная функция промежутка. Тогда если мы докажем, что функция $||\gamma'||$ — плотность Φ , то, применив обобщёную теореме о плотности, мы докажем нашу теорему.

Для этого мы должны проверить три условия из теоремы. Сделаем это: для начала нужно предъявить слегка заниженный инфимум (минимум) m_{Δ} и слегка завышенный супремум (максимум) M_{Δ} . Введём следующие обозначения:

$$m_{i\Delta} = \min_{t \in \Delta} |\gamma_i'(t)|,$$
 $M_{i\Delta} = \max_{t \in \Delta} |\gamma_i'(t)|,$ $m_{\Delta} = \sqrt{\sum_{i=1}^{m} m_{i\Delta}^2},$ $M_{\Delta} = \sqrt{\sum_{i=1}^{m} M_{i\Delta}^2},$

где $i \in 1:m.^9$ Теперь начнём проверять необходимые условия:

1. Проверим справедливость верхней границы, справедливость нижней проверяется аналогичным образом. Введём $\widetilde{\gamma} \colon \Delta \to \mathbb{R}^m$, такой, что $\widetilde{\gamma}(t) = (M_{1\Delta} \cdot t, M_{2\Delta} \cdot t, \dots, M_{m\Delta} \cdot t)$. Тогда $C_{\gamma|_{\Delta}}$ и $C_{\widetilde{\gamma}}$ — носители наших путей. Рассмотрим отображение $T \colon C_{\gamma|_{\Delta}} \to C_{\widetilde{\gamma}}$, которое переводит $\gamma(t)$ в $\widetilde{\gamma}(t)$. Проверим, что это растяжение: для любых $t_0, t_1 \in \Delta$ справедливо

$$\rho(\gamma(t_0), \gamma(t_1)) = \sqrt{\sum_{i=1}^{m} (\gamma_i(t_0) - \gamma_i(t_1))^2} = \dots$$

Заметим, что по теореме Лагранжа

$$\gamma_i(t_0) - \gamma_i(t_1) = \frac{\gamma_i(t_0) - \gamma_i(t_1)}{t_0 - t_1}(t_0 - t_1) = \gamma_i'(c_i) \cdot (t_0 - t_1),$$
 где $c_i \in (t_0, t_1).$

Продолжим:

$$\dots = \sqrt{\sum_{i=1}^{m} (\gamma_i'(c_i) \cdot (t_0 - t_1))^2} \leqslant \sqrt{\sum_{i=1}^{m} (M_{i\Delta}(t_0 - t_1))^2} = \rho(\widetilde{\gamma}(t_0), \widetilde{\gamma}(t_1)).$$

Мы доказали, что T — растяжение, а сейчас нам полезно записать результат немного иным образом: для любых $t_0, t_1 \in \Delta$ справедливо

$$\rho(\gamma(t_0), \gamma(t_1)) \leqslant \rho(\widetilde{\gamma}(t_0), \widetilde{\gamma}(t_1)) = \sqrt{\sum_{i=1}^m (M_{i\Delta}(t_0 - t_1))^2} = M_{\Delta}|t_0 - t_1|.$$

Теперь мы можем выбрать любое дробление отрезка Δ — пусть $\eta = \{t_0, t_1, \dots, t_n\}$ — и записать для него следующее неравенство:

$$\sum_{i=1}^{n} \rho(\gamma(t_i), \gamma(t_{i+1})) \leqslant \sum_{i=1}^{n} M_{\Delta} |t_i - t_{i+1}| = M_{\Delta} \sum_{i=1}^{n} |t_i - t_{i+1}|.$$

Если перейти к пределу при ранге дробления, стремящемся к нулю, неравенство выглядит так:

$$\Phi(\Delta) \leqslant M_{\Delta}|\Delta|,$$

а это как раз то, что мы хотели получить.

 $^{^9}$ Минимум и максимум достигаются по теореме Вейерштрасса, так как функция $|\gamma_i'(t)|$ непрерывна как композиция непрерывных функций, а рассматриваем мы её на отрезке.

2. Очевидно следует из определения введённых нами m_{Δ} и M_{Δ} : при всех $t\in \Delta$

$$m_{\Delta} \leqslant ||\gamma'(t)|| \leqslant m_{\Delta}.$$

3. Так как при $|\Delta|\to 0$ $\max_{t\in\Delta}|\gamma_i'(t)|-\min_{t\in\Delta}|\gamma_i'(t)|\to 0$ для всех $i\in 1:m,$ то и $M_\Delta-m_\Delta\to 0.$

28. Теорема о функциях ограниченной вариации

Теорема. ДОДЕЛАТЬ

Доказательство. ДОДЕЛАТЬ

29. Интеграл как предел интегральных сумм

Теорема. Пусть функция $f \colon [a,b] \to \mathbb{R}$ непрерывна. Тогда

$$\forall \varepsilon>0 \quad \exists \delta>0 \quad \forall \tau=\{x_i\}_{i=0}^n \mid \mathit{pane}\ \tau<\delta \quad \forall \mathit{ocнaщehus}\ \{\xi_i\}_{i=1}^n\dots$$

$$\dots \left| \sum_{i=1}^n f(\xi_i)(x_i - x_{i-1}) - \int_a^b f(x) dx \right| < \varepsilon.$$

Доказательство. Так как f непрерывна на отрезке, по теореме Кантора она равномерна непрерывна, то есть

$$\forall \varepsilon > 0 \quad \exists \delta > 0 \quad \forall x_1, x_2 \mid |x_1 - x_2| < \delta \quad |f(x_1) - f(x_2)| < \frac{\varepsilon}{b - a}.$$

Зафиксируем ε и подберём соответствующее δ . Возьмём дробление τ , ранг которого меньше δ .

Теперь немного поработаем над нашими интегралом и суммой. Представим интеграл как сумму интегралов по отрезкам $[x_{i-1}, x_i]$, а слагаемые интегральной суммы $\sum_{i=1}^n f(\xi_i)(x_i-x_{i-1})$ представим как интегралы константы $f(\xi_i)$ по промежутку $[x_{i-1}, x_i]$. Получим следующее:

$$\sum_{i=1}^{n} \int_{x_{i-1}}^{x_i} f(\xi_i) dx - \sum_{i=1}^{n} \int_{x_{i-1}}^{x_i} f(x) dx = \sum_{i=1}^{n} \int_{x_{i-1}}^{x_i} f(\xi_i) - f(x) dx.$$

То есть имеем

$$\left| \sum_{i=1}^{n} \int_{x_{i-1}}^{x_i} f(\xi_i) - f(x) dx \right| \leqslant \sum_{i=1}^{n} \int_{x_{i-1}}^{x_i} |f(\xi_i) - f(x)| dx \leqslant \dots$$

Так как мы подобрали дробление с таким рангом, что для всех $x \in [x_{i-1}, x_i]$ и для любого оснащения $\{\xi_i\}_{i=1}^n |f(\xi_i) - f(x)| < \frac{\varepsilon}{b-a}$, можем продолжить цепочку неравенств:

$$\dots \leqslant \sum_{i=1}^{n} \int_{x_{i-1}}^{x_i} \frac{\varepsilon}{b-a} dx = \int_{a}^{b} \frac{\varepsilon}{b-a} dx = \varepsilon.$$

30. Теорема об интегральных суммах центральных прямоугольников и трапеций

Теорема. Пусть $f \in C^2[a,b]$, $\tau = \{x_i\}_{i=0}^n$ — дробление отрезка [a,b] с рангом δ . Выберем оснащение $\{\xi_i\}_{i=1}^n$, где $\xi_i = \frac{x_i + x_{i-1}}{2}$. Тогда справедливы следующие утверждения:

$$\left| \int_{a}^{b} f(x)dx - \sum_{i=1}^{n} f(\xi_{i})(x_{i} - x_{i-1}) \right| \leqslant \frac{\delta^{2}}{8} \int_{a}^{b} |f''(x)|dx, \tag{5}$$

$$\left| \int_{a}^{b} f(x)dx - \sum_{i=1}^{n} \frac{f(x_i) + f(x_{i-1})}{2} (x_i - x_{i-1}) \right| \leqslant \frac{\delta^2}{8} \int_{a}^{b} |f''(x)| dx.$$
 (6)

Доказательство неравенства (6). Рассмотрим интеграл на отрезке дробления и преобразуем его:

$$\int_{x_{i-1}}^{x_i} f(x)dx = \int_{x_{i-1}}^{x_i} f(x)d(x - \xi_i) = \dots$$

Проинтегрируем его по частям:

$$\dots = f(x)(x - \xi_i) \Big|_{x_{i-1}}^{x_i} - \int_{x_{i-1}}^{x_i} f'(x)(x - \xi_i) dx = \dots$$

Воспоминаем, что $\xi_i = \frac{x_i + x_{i-1}}{2}$:

$$\dots = \frac{f(x_i) + f(x_{i-1})}{2} (x_i - x_{i-1}) - \int_{x_{i-1}}^{x_i} f'(x)(x - \xi_i) dx = \dots$$

Введём функцию $\psi(x)=(x_i-x)(x-x_{i-1})$ и рассмотрим её производную $\psi'(x)=-(x-x_{i-1})+(x_i-x)=-2x+x_{i-1}+x_i$. Заметим, что $-\frac{1}{2}\psi'(x)=x-\xi_i$. Тогда продолжим:

$$\dots = \frac{f(x_i) + f(x_{i-1})}{2} (x_i - x_{i-1}) + \frac{1}{2} \int_{x_{i-1}}^{x_i} f'(x) \cdot \psi'(x) dx = \dots$$

Опять проинтегрируем по частям:

$$\dots = \frac{f(x_i) + f(x_{i-1})}{2} (x_i - x_{i-1}) + \dots$$

$$\dots + \frac{f'(x) \cdot \psi(x)}{2} \Big|_{x_{i-1}}^{x_i} - \frac{1}{2} \int_{x_{i-1}}^{x_i} f''(x) \cdot \psi(x) dx = \dots$$

$$\dots = \frac{f(x_i) + f(x_{i-1})}{2} (x_i - x_{i-1}) - \frac{1}{2} \int_{x_{i-1}}^{x_i} f''(x) \cdot \psi(x) dx$$

Начнём разбираться с нашим неравенством:

$$\left| \int_{a}^{b} f - \sum_{i=1}^{n} c \text{Лагаемо} e_{i} \right| = \left| \sum_{i=1}^{n} \int_{x_{i-1}}^{x_{i}} f - \sum_{i=1}^{n} c \text{Лагаемо} e_{i} \right| = \dots$$

$$\dots = \left| \sum_{i=1}^{n} \int_{x_{i-1}}^{x_{i}} f - c \text{Лагаемо} e_{i} \right| \leqslant \sum_{i=1}^{n} \left| \int_{x_{i-1}}^{x_{i}} f - c \text{Лагаемо} e_{i} \right|.$$

Воспользуемся нашими наработками:

$$\sum_{i=1}^{n} \left| \frac{f(x_i) + f(x_{i-1})}{2} (x_i - x_{i-1}) - \frac{1}{2} \int_{x_{i-1}}^{x_i} f''(x) \cdot \psi(x) dx - c$$
лагаемо $e_i \right| = \dots$
$$\dots = \frac{1}{2} \sum_{i=1}^{n} \left| \int_{x_{i-1}}^{x_i} f''(x) \cdot \psi(x) dx \right| \leqslant \frac{1}{2} \sum_{i=1}^{n} \int_{x_{i-1}}^{x_i} |f''(x) \cdot \psi(x)| dx = \dots$$
$$\dots = \frac{1}{2} \int_{a}^{b} |f''(x) \cdot \psi(x)| dx.$$

Теперь оценим $\psi(x)$. Рассмотрим $\psi(\xi_i) = (x_i - \xi_i)(\xi_i - x_{i-1})$:

$$\psi(\xi_i) = \left(x_i - \frac{x_i + x_{i-1}}{2}\right) \left(\frac{x_i + x_{i-1}}{2} - x_{i-1}\right) = \left(\frac{x_i - x_{i-1}}{2}\right)^2.$$

Так как ранг дробления τ равен δ , справедливо:

$$\psi(\xi_i) \leqslant \frac{\delta^2}{4}.$$

Тогда

$$\frac{1}{2} \int_{a}^{b} |f''(x) \cdot \psi(x)| \, dx \leqslant \frac{\delta^{2}}{8} \int_{a}^{b} |f''(x)| \, dx.$$

31. Формула Эйлера – Маклорена, асимптотика степенных сумм

Теорема. Пусть $f \in C^2[m,n]$, где $m,n \in \mathbb{Z}$. Тогда

$$\int_{m}^{n} f(x)dx = \sum_{i=m}^{n} f(i) - \frac{1}{2} \int_{m}^{n} f''(x)\{x\}(1 - \{x\})dx,$$

причём первое и последнее слагаемые в сумме $\sum\limits_{i=m}^{n}f(i)$ входят в неё с весом $\frac{1}{2}$.

Доказательство. В процессе доказательства формулы трапеций мы установили (сразу перед итоговой оценкой через δ), что

$$\int_{a}^{b} f(x)dx - \sum_{i=1}^{n} \frac{f(x_i) + f(x_{i-1})}{2} (x_i - x_{i-1}) = -\frac{1}{2} \int_{a}^{b} f''(x) \cdot \psi(x) dx$$

(у правой части здесь опять появляется минус, который в прошлой теореме был съеден модулем). Выберем дробление на отрезки вида [i-1,i], где $i\in(m+1):n$. Тогда

$$\sum_{i=1}^{n} \frac{f(x_i) + f(x_{i-1})}{2} (x_i - x_{i-1}) = \sum_{i=m+1}^{n} \frac{f(i-1) + f(i)}{2} = \dots$$

$$\dots = \frac{f(m)}{2} + \frac{f(m+1)}{2} + \frac{f(m+1)}{2} + \dots + \frac{f(n-1)}{2} + \frac{f(n)}{2} = \sum_{i=m}^{n} f(i),$$

причём первое и последнее слагаемые входят в сумму с весом $\frac{1}{2}$, как нам и нужно.

Теперь вспомним, что $\psi(x) = (x_i - x)(x - x_{i-1})$. Так как в нашем случае x_i и x_{i-1} — это соседние целые числа, получаем как раз $\psi(x) = \{x\}(1 - \{x\})$. Теорема доказана, осталось только всё красиво записать.

Пример.

$$1^p + 2^p + \ldots + n^p = \frac{n^p}{2} + \frac{n^{p+1}}{p+1} + O(\max(1, n^{p-1}))$$
 при $p > -1$.

Доказательство. Рассмотрим $f(x) = x^p$. По формуле Эйлера – Маклорена

$$1^{p} + 2^{p} + \ldots + n^{p} = \int_{1}^{n} x^{p} dx + \frac{1}{2} + \frac{n^{p}}{2} + \frac{p(p-1)}{2} \int_{1}^{n} x^{p-2} \{x\} (1 - \{x\}) dx.$$

Возьмём интеграл x^p :

$$\int_{1}^{n} x^{p} dx = \frac{n^{p+1} - 1}{p+1}$$

и оценим второй интеграл:

$$0 \leqslant \int_{1}^{n} x^{p-2} \{x\} (1 - \{x\}) dx \leqslant \frac{1}{4} \cdot \left(\frac{n^{p-1} - 1}{p - 1}\right).$$

Справедливость нижней границы очевидна, так как мы рассматриваем положительные x, а справедливость верхней следует из того, что максимум функции $\{x\}(1-\{x\})$ достигается в точке $x=\frac{1}{2}$, так как это, как говорилось выше, лишь частный случай функции $\psi(x)=(x_i-x)(x-x_{i-1})$, где x_i и x_{i-1} — соседние целые числа.

Понятно, что при при p>1 правая часть превращается в $O(n^{p-1})$, а при -1 — в <math>O(1), то наш интеграл — $O(\max(1,n^{p-1}))$. Отметим, что при p=1, рассуждения заканчиваются в самом начале, так как $\frac{p(p-1)}{2}=0$. Закинем под O все имеющиеся константы и получим, что нужно.

32. Асимптотика частичных сумм гармонического ряда

Пример.

$$1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{n} = \ln n + \gamma + o(1)$$
 при $\gamma \in \left[\frac{4}{8}, \frac{5}{8}\right]$.

Доказательство. Рассмотрим $f(x) = \frac{1}{x}$. По формуле Эйлера – Маклорена

$$1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{n} = \int_{1}^{n} \frac{1}{x} dx + \frac{1}{2} + \frac{1}{2n} + \int_{1}^{n} \frac{1}{x^{3}} \{x\} (1 - \{x\}) dx.$$

Как и в прошлый раз, возьмём интеграл $\frac{1}{x}$:

$$\int_{1}^{n} \frac{1}{x} dx = \ln n.$$

Заметим, что второй интеграл возрастает при увеличении n (подынтегральное выражение положительно, а промежуток интегрирование увеличивается) и оценим его:

$$0 \leqslant \int_{1}^{n} \frac{1}{x^{3}} \{x\} (1 - \{x\}) dx \leqslant \frac{1}{4} \left(-\frac{1}{2n^{2}} + \frac{1}{2} \right) = \frac{1}{8} \left(1 - \frac{1}{n^{2}} \right) \leqslant \frac{1}{8}.$$

Так как имеющаяся у нас $\frac{1}{2n}$ стремится к нулю при $n \to \infty$, получаем:

$$1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{n} = \ln n + \gamma + o(1).$$

В константу γ мы записали $\frac{1}{2}$ и значение интеграла, то есть $\gamma \in \left[\frac{4}{8}, \frac{5}{8}\right]$, а o(1) — это $\frac{1}{2n}$, стремящаяся к нулю при $n \to \infty$.

Замечание. Константа γ называется постоянной Эйлера и равняется примерно $0,577\dots$

33. Формула Валлиса

Лемма. $Ec \Lambda u \ n \in \mathbb{Z}_+, \ mo$

$$\int_0^{\frac{\pi}{2}} \sin^n x \, dx = \frac{(n-1)!!}{n!!} \cdot \begin{cases} \frac{\pi}{2}, & \text{если } n \text{ чётно,} \\ 1, & \text{если } n \text{ нечётно.} \end{cases}$$

Доказательство. Обозначим $I_n = \int_0^{\frac{\pi}{2}} \sin^n x \, dx$. Легко проверить, что $I_0 = \frac{\pi}{2}, \ I_1 = 1.$ При $n-1 \in \mathbb{N}$ проинтегрируем по частям:

$$I_n = \int_0^{\frac{\pi}{2}} \sin^n x \, dx = \int_0^{\frac{\pi}{2}} \sin^{n-1} x \, d(-\cos x) = -\sin^{n-1} x \, \cos x \Big|_0^{\frac{\pi}{2}} + (n-1) \int_0^{\frac{\pi}{2}} \sin^{n-2} x \, \cos^2 x \, dx.$$

Учтём, что двойная подстановка обнуляется, и применим формулу $\cos^2 x = 1 - \sin^2 x$):

$$I_n = (n-1) \left(\int_0^{\frac{\pi}{2}} \sin^{n-2} x \, dx - \int_0^{\frac{\pi}{2}} \sin^n x \, dx \right) = (n-1)(I_{n-2} - I_n).$$

Выражая I_n , получим рекуррентное соотношение

$$I_n = \frac{n-1}{n} I_{n-2}.$$

Теперь, применив его несколько раз, мы можем выразить I_n через I_0 , если n чётно, или через I_1 , если n нечётно. Чётность/нечётность числителя и знаменателя будет сохраняться.

Теорема.

$$\pi = \lim_{n \to \infty} \frac{1}{n} \left(\frac{(2n)!!}{(2n-1)!!} \right)^2.$$

Доказательство. При всех $x\in\left(0,\frac{\pi}{2}\right)$ выполняется неравенство $0<\sin x<1,$ поэтому для любого $n\in\mathbb{N}$

$$\sin^{2n+1} < \sin^{2n} < \sin^{2n-1} x.$$

а тогда и

$$I_{2n+1} < I_{2n} < I_{2n-1}$$
.

Применяя лемму, получаем двойное неравенство

$$\frac{(2n)!!}{(2n+1)!!} < \frac{(2n-1)!!}{(2n)!!} \cdot \frac{\pi}{2} < \frac{(2n-2)!!}{(2n-1)!!},$$

что равносильно

$$\frac{1}{2n+1} \left(\frac{(2n)!!}{(2n-1)!!} \right)^2 < \frac{\pi}{2} < \frac{1}{2n} \left(\frac{(2n)!!}{(2n-1)!!} \right)^2.$$

Обозначим $x_n = \frac{1}{n} \left(\frac{(2n)!!}{(2n-1)!!} \right)^2$. Двойное неравенство принимает вид

$$\frac{n}{2n+1}x_n < \frac{\pi}{2} < \frac{1}{2}x_n.$$

Из правой части получаем, что $\pi < x_n$, из левой — что $x_n < \frac{2n+1}{2n}\pi$. Отсюда имеем $x_n \xrightarrow[n \to \infty]{} \pi$.

34. Формула Стирлинга

Теорема.

$$n! \sim n^n e^{-n} \sqrt{2\pi n} \ npu \ n \to \infty.$$

Доказательство. Рассмотрим $f(x) = \ln x$. По формуле Эйлера – Маклорена

$$\ln 1 + \ln 2 + \ldots + \ln n = \int_1^n \ln x \, dx + \frac{\ln n}{2} - \frac{1}{2} \int_1^n \frac{1}{x^2} \{x\} (1 - \{x\}) \, dx.$$

Интегрированием по частям находим $\int_1^n \ln x \, dx = n \ln n - n + 1$. Заметим, что второй интеграл возрастает с увеличением n и оценим его:

$$0 \leqslant \int_{1}^{n} \frac{1}{x^{2}} \{x\} (1 - \{x\}) \, dx \leqslant \frac{1}{4} \left(1 - \frac{1}{n} \right) \leqslant \frac{1}{4}.$$

Получаем

$$\ln 1 + \ln 2 + \ldots + \ln n = n \ln n - n + \frac{\ln n}{2} + C + o(1).$$

В константу C + o(1) мы записали 1 и значение интеграла, o(1) отражает погрешность.

Так как $\ln 1 + \ln 2 + \ldots + \ln n = \ln(n!)$, возьмём от этого всего экспоненту и получим

$$n! = n^n e^{-n} \sqrt{n} e^{C+o(1)}.$$

Выражение $e^{C+o(1)}$ стремится к какой-то константе, которую мы обозначим за C'. Выясним, чему она равна. Из формулы Валлиса имеем

$$\sqrt{\pi} = \lim_{n \to \infty} \frac{1}{\sqrt{n}} \cdot \frac{(2n)!!}{(2n-1)!!}.$$

Преобразуем эту формулу:

$$\frac{1}{\sqrt{n}} \cdot \frac{(2n)!!}{(2n-1)!!} = \frac{1}{\sqrt{n}} \cdot \frac{2^n \cdot n!}{(2n-1)!!} = \frac{1}{\sqrt{n}} \cdot \frac{2^n \cdot n! \cdot (2n)!!}{(2n)!} = \frac{(2^n \cdot n!)^2}{\sqrt{n} \cdot (2n)!}$$

Теперь можем воспользоваться нашими наработками:

$$\frac{(2^n \cdot n!)^2}{\sqrt{n} \cdot (2n)!} = \frac{(2^n \cdot n^n e^{-n} \sqrt{n} C')^2}{\sqrt{n} \cdot (2n)^{2n} e^{-2n} \sqrt{2n} C'} = \frac{C'}{\sqrt{2}}.$$

То есть $\sqrt{\pi} = \lim_{n \to \infty} \frac{C'}{\sqrt{2}} = \frac{C'}{\sqrt{2}}$, откуда $C' = \sqrt{2\pi}$ и $n! = n^n e^{-n} \sqrt{2\pi n}$.

35. Три леммы о сверхограниченных множествах

Лемма. Множество D сверхограниченно в X тогда и только тогда, когда D сверхограниченно в себе.

Доказательство. Достаточность очевидна, докажем необходимость.

Построим множество $E_X = \{x_0, x_1, \dots, x_n\} \subset X$ — конечную $\frac{\varepsilon}{2}$ -сеть для D. То есть имеем:

$$\forall y \in D \quad \exists x_i \in E_X \quad \rho(x,y) < \frac{\varepsilon}{2}.$$

В кажом шаре $B_{\frac{\varepsilon}{2}}(x_i)$ выберем какое-нибудь y_i . Тогда множество $E_Y=\{y_0,y_1,\ldots,y_m\}\subset D$, где $m\leqslant n,-\varepsilon$ -сеть для D, так как

$$\forall y \in D \quad \exists y_i \in E_Y \quad \rho(y, y_i) \leqslant \rho(y_i, x_i) + \rho(x_i, y) < \varepsilon.$$

Лемма. Сверхограниченность сохраняется при равномерно непрерывном отображении.

Доказательство. Пусть f — равномерно непрерывное отображение. Запишем, что это значит:

$$\forall \varepsilon > 0 \quad \exists \delta > 0 \quad \forall x, x_i \in D \quad \rho(x, x_i) < \delta \quad \rho(f(x), f(x_i)) < \varepsilon.$$

А из этого напрямую следует, что если мы возьмём δ -сеть для D, то её образ будет являться ε -сетью для f(D).

Лемма. Если D сверхограниченно, то u его замыкание Cl(D) сверхограниченно.

Пемма. Множество D сверхограниченно тогда и только тогда, когда любая последовательность из D содержит фундаментальную подпоследовательность.

Доказательство. Докажем необходимость и достаточность:

⇒ Вспомним определение фундаментальной подпоследовательности:

$$\forall \varepsilon > 0 \quad \exists N \quad \forall n, m > N \quad \rho(y_n, y_m) < \varepsilon.$$

Построим $E=\{x_0,x_1,\ldots,x_n\}-\frac{\varepsilon}{2}$ -сеть для D. Рассмотрим последовательность (y_n) . Так как наша сеть конечная, понятно, что в каком-то шаре $B_{\varepsilon}(x_i)$ содержится бесконечно много членов последовательности. Но тогда расстояние между ними всеми меньше ε , а значит они и составляют искомую подпоследовательность.

 \Leftarrow Пусть для какого-то ε не существует конечной ε -сети. Тогда есть такая последовательность, что в каждом шаре содержится только конечное число её членов. А из этого напрямую следует отрицание определения фундаментальной последовательности:

$$\forall N \quad \exists n, m > N \quad \rho(y_n, y_m) \geqslant \varepsilon.$$

36. Компактность и конечные эпсилон-сети

Теорема. Пусть $D \subset X$, где X — полное метрическое пространство. Тогда следующие утверждения равносильны:

- 1. D компактно,
- 2. D сверхограниченно и замкнуто.

Доказательство. Докажем необходимость и достаточность:

- ⇒ В метрическом пространстве компактность равносильна секвенциальной компактности. То есть из любой последовательности мы можем извлечь сходящуюся, а значит, и фундаментальную, подпоследовательность, что равносильно сверхограниченности. Замкнутость следует из компактности.
- \Leftarrow Так как D сверхограниченно, любая последовательность содержит фундаментальную подпоследовательность, которая в силу полноты X сходится к элементу из X. То есть из любой последовательности мы можем извлечь сходяющуся подпоследовательность, что означает секвенциальную компактность D, которая в метрическом пространстве равносильна компактности.

37. Простейшие свойства несобственного интеграла

Теорема. Пусть функция $f:[a,b)\to\mathbb{R}$ допустима. Тогда:

1. Для любого $c \in (a,b)$ сходимость $\int_a^{\to b} f$ равносильна сходимости $\int_c^{\to b} f$ и, если интегралы сходятся,

$$\int_{a}^{\to b} f = \int_{a}^{c} f + \int_{c}^{\to b} f.$$

2. Если g допустима, интегралы $\int_a^{\to b} f$ и $\int_a^{\to b} g$ сходятся, то для любого $\lambda \in \mathbb{R}$ интегралы $\int_a^{\to b} \lambda f$ и $\int_a^{\to b} f \pm g$ также сходятся, причём:

(a)
$$\int_{a}^{\to b} \lambda f = \lambda \int_{a}^{\to b} f,$$
(b)
$$\int_{a}^{\to b} f \pm g = \int_{a}^{\to b} f \pm \int_{a}^{\to b} g.$$

3. Если g допустима, интегралы $\int_a^{\to b} f$ и $\int_a^{\to b} g$ существуют в $\overline{\mathbb{R}}$ (необязательно сходятся) и $f\leqslant g$ на [a,b), то

$$\int_{a}^{\to b} f \leqslant \int_{a}^{\to b} g.$$

4. Если f,g дифференцируемы на [a,b) и f',g' допустимы, то

$$\int_{a}^{\to b} f'g = fg \bigg|_{a}^{\to b} - \int_{a}^{\to b} fg'.$$

Это надо понимать так: если существуют два конечных предела из трёх, то третий предел также существует и конечен, причём имеет место вышеизложенное равенство.

5. Если $\varphi \colon [\alpha, \beta) \to \langle A, B \rangle, \varphi'$ допустима, то

$$\int_{a}^{\to b} f(\varphi)\varphi' = \int_{\varphi(\alpha)}^{\varphi(\beta-)} f.$$

Это надо понимать так: если существует один из интегралов, то существует и другой и имеет место вышеизложенное равенство.

Доказательство. Все свойства доказываются почти одинаковым образом.

1. Для любого $A \in (c,b)$ по свойству аддитивности определённого интеграла

$$\int_{a}^{A} f = \int_{a}^{c} f + \int_{c}^{A} f.$$

При $A \to b-$ предел обеих частей равенства существует или нет одновременно. Перейдём к пределу и получим, что требуется.

2. Для любого $A \in [a,b)$ по свойству линейности определённого интеграла

$$\int_{a}^{A} f \pm g = \int_{a}^{A} f \pm \int_{a}^{A} g \qquad \text{и} \qquad \int_{a}^{A} \lambda f = \lambda \int_{a}^{A} f.$$

Тогда соответствующие интегралы сходятся, а после предельного перехода получаются необходимые равенства.

3. Для любого $A \in [a, b)$ из интегрирования неравенств

$$\int_{a}^{A} f \leqslant \int_{a}^{A} g.$$

Перейдём к пределу и получим, что нужно.

4. Для любого $A \in [a, b)$ справедливо

$$\int_{a}^{A} f'g = fg \bigg|_{a}^{A} - \int_{a}^{A} fg'.$$

Сделаем предельный переход и посмотрим, что вышло.

5. Не будем доказывать, потому что тогда придётся всё аккуратно расписывать, а мы не хотим.

Замечание. Так как мы только что убедились, что свойства несобственного интеграла один в один похожи на свойства определённого, стрелочку писать больше не будем.

38. Признаки сравнения сходимости несобственного интеграла

Лемма. Пусть функция f допустима на $[a,b), f\geqslant 0$. Обозначим $\Phi(A)=\int_a^A f(x)\,dx,$ где $A\in [a,b).$ Тогда следующие утверждения равносильны:

1.
$$\int_a^b f(x) dx$$
 сходится,

2. $\Phi(A)$ ограничена.

Доказательство. Нужно проверить, что конечный предел $\lim_{A\to b^-} \Phi(A)$ существует тогда и только тогда, когда $\Phi(A)$ ограничена. Понятно, что если предел существует, то функция ограничена. Также очевидно, что $\Phi(A)$ возрастает. Значит, по теореме о пределе монотонной функции, её предел существует и конечен.

Теорема. Пусть функции f, g допустимы на $[a, b), f, g \geqslant 0$. Тогда справедливы утверждения:

- 1. Пусть $f \leqslant g$ на [a,b). Тогда:
 - (a) $\int_a^b g \ cxo dumcs \Rightarrow \int_a^b f \ cxo dumcs$,
 - (b) $\int_a^b f \ pacxodumcs \Rightarrow \int_a^b g \ pacxodumcs$.
- 2. Пусть $\lim_{x\to b-}\frac{f(x)}{g(x)}=l$. Тогда:
 - (a) Ecau $l = +\infty$, mo:
 - i. $\int_a^b f \, cxo \partial umcs \Rightarrow \int_a^b g \, cxo \partial umcs$,
 - $ii. \int_a^b g \ pacxodumcs \Rightarrow \int_a^b f \ pacxodumcs.$
 - (b) $Ecnu \ l = 0, \ mo:$
 - $i. \int_a^b g \, cxo \partial umc \mathfrak{A} \Rightarrow \int_a^b f \, cxo \partial umc \mathfrak{A},$
 - $ii. \int_a^b f \ pacxodumcs \Rightarrow \int_a^b g \ pacxodumcs.$
 - (c) Если $l\in(0,+\infty)$, то $\int_a^b f$ и $\int_a^b g$ сходятся и расходятся одновременно.

Доказательство. Докажем утверждения, которые мы наплодили.

- 1. Очевидно следует из леммы.
- 2. (a) Если $\lim_{x\to b-}\frac{f(x)}{g(x)}=+\infty$, то, НСНМ, $g\leqslant f$. Отсылаем к пункту 1.
 - (b) Если $\lim_{x \to b-} \frac{f(x)}{g(x)} = 0$, то, НСНМ, $f \leqslant g$. Опять отсылаем к пункту 1.
 - (c) Существует такое $c \in [a,b)$, что для всех $x \in [c,b)$ выполняется, например,

$$\frac{1}{2}l < \frac{f(x)}{g(x)} < \frac{3}{2}l,$$

то есть

$$\frac{1}{2}l \cdot g(x) < f(x) < \frac{3}{2}l \cdot g(x).$$

Учитывая, что сходимость на [a,b) равносильна сходимости на [c,b), по пункту 1 из правой части получаем, что если $\int_a^b g$ сходится, то и $\int_a^b f$ сходится, а из левой — что если $\int_a^b f$ сходится, то и $\int_a^b g$ сходится. Получили равносильность.

39. Изучение сходимости интеграла $\int_{10}^{\infty} \frac{dx}{x^{\alpha}(\ln x)^{\beta}}$

Лемма (её сюда вставил автор, чтобы ввести понятие эталонного интеграла). Справедливы утверждения:

- 1. Интеграл $\int_a^{+\infty} \frac{1}{x^p}$ сходится при p>1 и расходится в противном случае,
- 2. Интеграл $\int_{-0}^{a} \frac{1}{x^{p}}$ сходится при p < 1 и расходится в противном случае.
- 3. Интеграл $\int_{a}^{+\infty} e^{-px} \cos \theta u m c s \ npu \ p > 0 \ u \ pacxodumcs \ в \ npomuвном случае.$

Доказательство. По пунктам:

1. Имеем

$$\int_a^{+\infty} \frac{1}{x^p} = \lim_{A \to +\infty} \int_a^A \frac{1}{x^p} = \lim_{A \to \infty} \left(\begin{cases} \frac{1}{1-p} \cdot \frac{1}{x^{p-1}}, & \text{если } p \neq 1, \\ \ln x, & \text{если } p = 1 \end{cases} \right) \Big|_a^A.$$

Отсюда ясно, что при p-1>0 конечный предел существует, а в противном случае предел равен бесконечности.

2. Имеем

$$\int_{\to 0}^{a} \frac{1}{x^{p}} = \lim_{A \to 0} \int_{A}^{a} \frac{1}{x^{p}} = \lim_{A \to 0} \left(\begin{cases} \frac{1}{1-p} \cdot \frac{1}{x^{p-1}}, & \text{если } p \neq 1, \\ \ln x, & \text{если } p = 1 \end{cases} \right) \Big|_{A}^{a}.$$

Отсюда ясно, что при p-1<0 конечный предел существует, а в противном случае предел равен бесконечности.

3. Очевидно, если посмотреть на первообразную.

Замечание. Назовём вышеописанные интегралы эталонными.

Пример. Исследуем интеграл $\int_{10}^{+\infty} \frac{dx}{x^{\alpha}(\ln x)^{\beta}}$ на сходимость.

Рассотрим, как на сходимость влияет α

1. Пусть $\alpha > 1$. Запишем $\alpha = 1 + 2a$, где a > 0. Тогда

$$\frac{1}{x^{\alpha}(\ln x)^{\beta}} = \frac{1}{x^{1+a}} \cdot \frac{1}{x^{a}(\ln x)^{\beta}}.$$

Ясно, что $\frac{1}{x^a(\ln x)^\beta} \to 0$ при $x \to \infty$. Почему? При положительном a выражение $x^a \to \infty$ при $x \to \infty$, а логарифм не сможет этому помещать: при $\beta \geqslant 0$ он тоже стремится к бесконечности, а при $\beta < 0$ логарифм просто недостаточно быстро растёт — проверить это можно, вычислив по правилу Лопиталя $\lim_{x \to \infty} \frac{(\ln x)^{-\beta}}{x^a} = \lim_{x \to \infty} \left(\frac{\ln x}{x^{-\frac{a}{\beta}}}\right)^{-\beta}$. Тогда, НСНМ,

$$\frac{1}{x^{1+a}(\ln x)^{\beta}} \cdot \frac{1}{x^a(\ln x)^{\beta}} \leqslant \frac{1}{x^{1+a}}.$$

Интеграл $\int_{10}^{+\infty} \frac{1}{x^{1+a}}$ сходится как эталонный, а значит и рассматриваемый интеграл тоже сходится.

2. Пусть теперь $\alpha < 1$. Запишем $\alpha = 1 - 2b$, где b > 0. Тогда

$$\frac{1}{x^{\alpha}(\ln x)^{\beta}} = \frac{1}{x^{1-b}} \cdot \frac{x^b}{(\ln x)^{\beta}}.$$

Интеграл от $\frac{1}{x^{1-b}}$ расходится, а $\frac{x^b}{(\ln x)^\beta}$ этому не мешает, так как стремится к бесконечности при $x\to\infty$ (опять потому что логарифм растёт медленнее степенной функции). Тогда, НСНМ,

$$\frac{1}{x^{\alpha}(\ln x)^{\beta}} \geqslant \frac{1}{x^{1-b}}.$$

Интеграл $\int_{10}^{+\infty} \frac{1}{x^{1-b}}$ расходится как эталонный, а значит и рассматриваемый интеграл тоже расходится.

3. Пусть $\alpha = 1$, то есть мы исследуем интеграл

$$\int_{10}^{\infty} \frac{dx}{x(\ln x)^{\beta}}$$

Сделаем замену $y = \ln x$:

$$\int_{\ln 10}^{+\infty} \frac{d(e^y)}{e^y y^{\beta}} = \int_{\ln 10}^{+\infty} \frac{d(y)}{y^{\beta}}.$$

Это эталонный интеграл, а значит он сходится при $\beta > 1$ и расходится при $\beta \leqslant 1$.

40. Интеграл Эйлера – Пуассона

Теорема.

$$\int_0^{+\infty} e^{-x^2} dx = \frac{\sqrt{\pi}}{2}.$$

Доказательство. Из выпуклости функции e^x следует, что $e^x \geqslant 1 + x$ (просто провели касательную в точке 0), откуда, в свою очередь, следует неравенство

$$1 - x^2 \leqslant e^{-x^2} \leqslant \frac{1}{1 + x^2}$$

(левая часть очевидна, правая следует из того, что $e^{x^2} \geqslant 1 + x^2$).

Возведём левую часть в n-ю степень и проинтегрируем на отрезке [0,1]:

$$\int_0^1 (1 - x^2)^n \, dx \leqslant \int_0^1 e^{-nx^2} \, dx,$$

а правую тоже возведём в степень n и проинтегрируем уже на $[0, +\infty]$:

$$\int_0^{+\infty} e^{-nx^2} dx \leqslant \int_0^{+\infty} \left(\frac{1}{1+x^2}\right)^n dx.$$

Так как функция e^x положительна, можем объединить эти два неравенства следующим образом:

$$\int_0^1 (1 - x^2)^n \, dx \leqslant \int_0^1 e^{-nx^2} \, dx \leqslant \int_0^{+\infty} e^{-nx^2} \, dx \leqslant \int_0^{+\infty} \left(\frac{1}{1 + x^2}\right)^n \, dx.$$

Левый центальный интеграл опустим, он не пригодится:

$$\int_0^1 (1 - x^2)^n \, dx \le \int_0^{+\infty} e^{-nx^2} \, dx \le \int_0^{+\infty} \left(\frac{1}{1 + x^2}\right)^n \, dx.$$

Теперь посчитаем получившиеся интегралы:

1. В левом сделаем замену $x = \cos t$:

$$\int_0^1 (1-x^2)^n dx = \int_0^{\frac{\pi}{2}} (\sin t)^{2n+1} dt;$$

по лемме из формуле Валлиса

$$\int_0^{\frac{\pi}{2}} (\sin t)^{2n+1} dt = \frac{(2n)!!}{(2n+1)!!}.$$

2. В правом сделаем замену $x = \operatorname{tg} t$:

$$\int_0^{+\infty} \left(\frac{1}{1+x^2}\right)^n dx = \int_0^{\frac{\pi}{2}} (\cos t)^{2n-2} dt;$$

опять по лемме из формуле Валлиса

$$\int_0^{\frac{\pi}{2}} (\cos t)^{2n-2} dt = \frac{(2n-3)!!}{(2n-2)!!} \cdot \frac{\pi}{2}.$$

3. В центральном сделаем замену $x = \frac{t}{\sqrt{n}}$:

$$\int_0^{+\infty} e^{-nx^2} \, dx = \frac{1}{\sqrt{n}} \int_0^{+\infty} e^{-t^2} \, dt.$$

Имеем

$$\frac{(2n)!!}{(2n+1)!!} \leqslant \frac{1}{\sqrt{n}} \int_0^{+\infty} e^{-t^2} dt \leqslant \frac{(2n-3)!!}{(2n-2)!!} \cdot \frac{\pi}{2}.$$

Домножим неравенство на \sqrt{n} :

$$\frac{(2n)!!}{(2n+1)!!} \cdot \sqrt{n} \leqslant \int_0^{+\infty} e^{-t^2} dt \leqslant \frac{(2n-3)!!}{(2n-2)!!} \cdot \frac{\pi}{2} \cdot \sqrt{n}.$$

Иначе говоря,

$$\frac{n}{2n+1} \cdot \frac{(2n)!!}{(2n-1)!!} \cdot \frac{1}{\sqrt{n}} \leqslant \int_0^{+\infty} e^{-t^2} \, dt \leqslant \frac{1}{\underbrace{(2n-2)!!}{(2n-3)!!} \cdot \frac{1}{\sqrt{n-1}}} \cdot \frac{\sqrt{n}}{\sqrt{n-1}} \cdot \frac{\pi}{2}$$

Так как неравентсво справедливо для любого n, устремим его в бесконечность. По формуле Валлиса получим, что выражения слева и справа стремятся к $\frac{\sqrt{\pi}}{2}$ при $n \to \infty$. А значит, наш интеграл равен $\frac{\sqrt{\pi}}{2}$.

41. Гамма-функция Эйлера, простейшие свойства

Теорема. Изучим $\Gamma(t)$ на предмет наличия всяких замечательных свойств:

- 1. $\Gamma(t)$ сходится при t > 0 и расходится в противном случае,
- 2. $\Gamma(t)$ выпукла,
- 3. Для любых $n \in \mathbb{Z}_+ \Gamma(n+1) = n!$,
- *4.* Γραφυκ,

5.
$$\Gamma\left(\frac{1}{2}\right) = \sqrt{\pi}$$
.

Доказательство. Докажем:

1. Заметим, что при $x\to 0$ подынтегральное выражение $x^{t-1}e^{-x}$ эквивалентно $x^{t-1}=\frac{1}{x^{1-t}}.$ Соответственно, при $1-t\geqslant 1$, то есть при $t\leqslant 0$ интеграл расходится.

Проверим, при всех ли других значениях t он сходится. Запишем подынтегральное выражение $x^{t-1}e^{-x}$ как $x^{t-1}e^{-\frac{x}{2}}e^{-\frac{x}{2}}$. Так как показательная функция $e^{-\frac{x}{2}}$ при росте x убывает быстрее, чем растёт степенная x^{t-1} , выражение $x^{t-1}e^{-\frac{x}{2}}$ стремится к нулю, а значит

$$x^{t-1}e^{-\frac{x}{2}}e^{-\frac{x}{2}} \leqslant e^{-\frac{x}{2}}.$$

Интеграл от $e^{-\frac{x}{2}}$ сходится как эталонный, а значит по признаку сравнения $\Gamma(t)$ тоже сходится.

II Определения и формулировки

1. Первообразная, неопределённый интеграл

Определение. Пусть $F, f: \langle a, b \rangle \to \mathbb{R}$. Функция F называется *первообразной* f на $\langle a, b \rangle$, если

$$\forall x \in \langle a, b \rangle$$
 $F'(x) = f(x)$.

Определение. Пусть $f:\langle a,b\rangle\to\mathbb{R}$. Неопределённым интегралом функции f на $\langle a,b\rangle$ (обозначается как $\int f$ или $\int f(x)dx$) называется множество её первообразных, то есть

$$\int f = \{ F + C \mid C \in \mathbb{R} \},\$$

где F — первообразная f на $\langle a, b \rangle$.

2. Теорема о существовании первообразной

Теорема. Всякая непрерывная на промежутке функция имеет на нём первообразную.

3. Таблица первообразных

ДОДЕЛАТЬ

4. Площадь, аддитивность площади, ослабленная аддитивность

Определение. Назовём фигурой ограниченное подмножество в \mathbb{R}^2 . Пусть ε — множество всех фигур. Функция $\sigma \colon \varepsilon \to [0; +\infty)$ называется площадью, если выполнены следующие условия:

- 1. Аддитивность: если $A = A_1 \sqcup A_2$, то $\sigma(A) = \sigma(A_1) + \sigma(A_2)$,
- 2. Нормировка: $\sigma([a, b] \times [c, d]) = (b a)(d c)$.

Замечание. Некоторые свойства σ :

- 1. σ монотонна: $A \subset B \Rightarrow \sigma(A) \leqslant \sigma(B)$,
- 2. A вертикальный отрезок $\Rightarrow \sigma(A) = 0$.

Доказательство. Докажем свойства по отдельности:

- 1. Поскольку $B = A \sqcup (B \setminus A)$, то $\sigma(B) = \sigma(A) + \sigma(B \setminus A) \geqslant \sigma(A)$,
- 2. Рассмотрим A как $[a,b] \times [c,d]$, где $\forall \varepsilon>0$ $(b-a)<\varepsilon$. Значит, $(b-a)=0\Rightarrow \sigma(A)=0$.

Определение. Назовём функцию $\sigma \colon \varepsilon \to [0; +\infty)$ ослабленной площадъю, если выполняются следующие условия:

- 1. Монотонность: если $A \subset B$, то $\sigma(A) \leqslant \sigma(B)$,
- 2. Нормировка: $\sigma([a, b] \times [c, d]) = (b a)(d c),$
- 3. Ослабленная аддитивность. Пусть $A \in \varepsilon$, l вертикальный промежуток, A_{Π} часть A в левой полуплоскости, A_{Π} часть A в правой полуплоскости (заметим, что $A = A_{\Pi} + A_{\Pi}$ и $A_{\Pi} \cap A_{\Pi} \subset l$). Тогда $\sigma(A) = \sigma(A_{\Pi}) + \sigma(A_{\Pi})$.

5. Положительная и отрицательная срезки

Определение. Пусть $f: \langle a,b \rangle \to \mathbb{R}$. Назовём функцию $f^+ = \max(f,0)$ положительной срезкой, а функцию $f^- = \max(-f,0) -$ отрицательной срезкой. Заметим также, что $f = f^+ - f^-$ и $|f| = f^+ + f^-$.

6. Определённый интеграл

Определение. Пусть $f:[a,b]\to [0,+\infty)$. Назовём $no\partial pa \phi u \kappa o M$ на [a,b] (обозначается как $\Pi\Gamma(f,[a,b])$) следующее множество:

$$\{(x,y)\mid x\in [a,b],\ 0\leqslant y\leqslant f(x)\}.$$

Определение. Пусть $f:[a,b] \to \mathbb{R}$ непрерывна, σ — ослабленная площадь. Определённым интегралом f на [a,b] называется

$$\sigma(\Pi\Gamma(f^+, [a, b])) - \sigma(\Pi\Gamma(f^-, [a, b])).$$

Обозначается как

$$\int_{b}^{a} f(x)dx$$
или
$$\int_{b}^{a} f.$$

Замечание. Некоторые свойства и соглашения:

Если
$$f \geqslant 0$$
, то $\int_a^b f \geqslant 0$,

Если
$$f \equiv c \in \mathbb{R}$$
, то $\int_a^b f = c \cdot (b - a)$,

3.

$$\int_{a}^{b} (-f) = -\int_{b}^{a} f,$$

4.

Можно считать, что
$$\int_a^a f = 0$$
,

5.

$$\forall c \in [a, b] \qquad \int_a^b f = \int_a^c f + \int_c^b f.$$

Доказательство. Небольшие пояснения:

- 1. В силу того, что $f^- \equiv 0$,
- 2. Так как подграфик f прямоугольник,
- 3. Поскольку $(-f)^+ = f^-, (-f)^- = f^+,$
- 4. Потому что подграфик f вертикальный отрезок,
- 5. В силу ослабленной аддитивности.

7. Среднее значение функции на промежутке

Определение. Пусть f непрерывна на [a,b]. Тогда

$$\frac{1}{b-a} \int_{a}^{b} f$$

называется $\mathit{cpedhum}$ значением функции f на npome жсутке [a,b].

8. Выпуклая функция

Определение. Функция $f: \langle a, b \rangle \to \mathbb{R}$ называется:

• выпуклой вниз на $\langle a,b \rangle$, если для любых $x_1,x_2 \in \langle a,b \rangle$ и $t \in (0,1)$ выполняется неравенство

$$f(tx_1 + (1-t)x_2) \le tf(x_1) + (1-t)f(x_2);$$

• строго выпуклой вниз на $\langle a,b \rangle$, если для любых $x_1,x_2 \in \langle a,b \rangle$ и $t \in (0,1)$ выполняется неравенство

$$f(tx_1 + (1-t)x_2) < tf(x_1) + (1-t)f(x_2).$$

Если выполняются противоположные неравенства, то функция f называется соответственно выпуклой вверх или сторого выпуклой вверх на $\langle a,b \rangle$.

Часто функции, которые только что были названы выпулыми вниз, называют просто выпуклыми, а те, что были названы выпуклыми вверх, — вогнутыми.

Поясним геометрический смысл производной. Пусть $x_1, x_2 \in \langle a, b \rangle$ и, $\mathrm{HYO^{10}}, \ x_1 < x_2.$ Положим $x = tx_1 + (1-t)x_2.$ Тогда

$$t = \frac{x_2 - x}{x_2 - x_1}$$
 и $1 - t = \frac{x - x_1}{x_2 - x_1}$.

При этом, если $x \in (x_1, x_2)$, то $t \in (0, 1)$, и обратно. Неравенство, определяющее выпуклую функцию, переписывается в виде

$$f(x) \leqslant \frac{x_2 - x}{x_2 - x_1} f(x_1) + \frac{x - x_1}{x_2 - x_1} f(x_2), \quad x \in (x_1, x_2).$$

Правая часть этого неравенства при $x \in [x_1, x_2]$ задаёт уравнение хорды, соединяющей точки $(x_1, f(x_1))$ и $(x_2, f(x_2))$ на графике f. Таким образом, выпуклость функции вниз означает, что график функции лежит не выше любой хорды, соединяющей две его точки. Строгая выпуклость вниз означает, что график лежит ниже любой хорды, за исключением концевых точек. Выпуклость функции вверх, напротив, означает, что график функции лежит не ниже любой хорды.

 $^{^{10}}$ Неравенства в определении не меняются при перемене x_1 и x_2 местами.

9. Выпуклое множество

Определение. Множество A в \mathbb{R}^m называется *выпуклым*, если вместе с любыми точками x,y ему также принадлежит отрезок $[x,y]^{11}$, соединяющий их.

10. Надграфик

Определение. $Hadspa \phi u \kappa o M$ функции f на $\langle a,b \rangle$ называется такое множество:

$$\{(x,y) \mid x \in \langle a,b \rangle, \ y \geqslant f(x) \}.$$

3амечание. Функция f выпукла на $\langle a,b \rangle \Leftrightarrow$ надграфик f на $\langle a,b \rangle$ — выпуклое множество.

Доказательство. Функция f выпукла на $\langle a,b\rangle \Leftrightarrow$ любая хорда принадлежит надграфику f на $\langle a,b\rangle \Leftrightarrow$ надграфик f — выпуклое множество (если работает для хорд, сработает и для остальных отрезков, соединяющих две точки надграфика, потому что эти точки «выше» точек графика).

11. Опорная прямая

Определение. Пусть $f:\langle a,b\rangle\to\mathbb{R},\ x_0\in\langle a,b\rangle$. Прямая, задаваемая уравнением $y=\ell(x)$, называется *опорной* для функции f в точке x_0 , если

$$f(x_0) = \ell(x_0)$$
 и $f(x) \geqslant \ell(x)$ для всех $x \in \langle a, b \rangle$.

Если же

$$f(x_0) = \ell(x_0)$$
 и $f(x) > \ell(x)$ для всех $x \in \langle a, b \rangle \setminus \{x_0\}$,

то прямая называется *строго опорной* для функции f в точке x_0 .

Другими словами, прямая называется опорной к f в точке x_0 , если она проходит через точку $(x_0, f(x_0))$ и лежит не выше графика функции. Строго опорная прямая лежит ниже графика функции во всех точках, кроме $(x_0, f(x_0))$.

 $[\]overline{}^{11}[x,y] = \{x + t(y-x), \ t \in [0,1]\}.$

12. Кусочно-непрерывная функция, интеграл от неё

Определение. Функция $f:[a,b]\to\mathbb{R}$ называется *кусочно-непрерывной*, если она непрерывна всюду, кроме конечного числа точек, в которых имеет разрывы первого рода.

Определение. Пусть f — кусочно-непрерывная функция, \widetilde{f}_k — её сужение на промежуток $[x_{k-1}, x_k]$, то есть

$$\widetilde{f}_k = f|_{[x_{k-1}, x_k]} = \begin{cases} f(x_{k-1} + 0), & x = x_{k-1} \\ f(x), & x \in (x_{k-1}, x_k) \\ f(x_k - 0), & x = x_k. \end{cases}$$

Тогда

$$\int_{a}^{b} f = \sum_{k=1}^{n} \int_{x_{k-1}}^{x_k} \widetilde{f}_k$$

называется интегралом кусочно-непрерывной функции f.

13. Почти первообразная

Определение. Пусть $F, f: [a, b] \to \mathbb{R}$. Функция F называется *почти первообразной* f на [a, b], если F'(x) = f(x) для всех $x \in [a, b]$, кроме конечного числа.

3амечание. Если f — кусочно-непрерывная функция, у неё существует почти первообразная.

Доказательство. Пусть
$$F_k$$
 — первообразная \widetilde{f}_k на $[x_{k-1},x_k]$.
 ДОДЕЛАТЬ

Замечание. Пусть $f:[a,b] \to \mathbb{R}$ — кусочно-непрерывная функция, F — почти первообразная f на [a,b]. Тогда

$$\int_{a}^{b} f = F(b) - F(a).$$

Доказательство. Пусть $a = x_0 < x_1 < \ldots < x_{n-1} < x_n = b$. Тогда

$$\int_{a}^{b} = \sum_{k=1}^{n} \int_{x_{k-1}}^{x_k} \widetilde{f}_k = \sum_{k=1}^{n} F_k(x_k) - F_k(x_{k-1}) = \sum_{k=1}^{n} F(x_k) - F(x_{k-1}).$$

Получили телескопическую сумму, после приведения подобных равную F(a)-F(b). \square

14. Функция промежутка, аддитивная функция промежутка

Определение. Пусть $a, b \in \overline{\mathbb{R}}$, a < b. Обозначим как $Segm\langle a, b \rangle$ множество вида $\{[p,q] \mid [p,q] \subset \langle a,b \rangle\}$. Тогда:

- 1. Функция $\Phi \colon Segm\langle a,b\rangle \to \mathbb{R}$ называется функцией промежутка,
- 2. Функция $\Phi \colon Segm\langle a,b\rangle \to \mathbb{R}$, такая, что

$$\forall [p,q] \in Segm\langle a,b \rangle \quad \forall \in (p,q) \quad \Phi([p,q]) = \Phi([p,c]) + \Phi([c,q]),$$

называется аддитивной функцией промежутка.

Пример. Если функция f непрерывна на $\langle a,b \rangle$, то f — плотность функции Φ , такой, что

$$\Phi([p,q]) = \int_{a}^{b} f.$$

Действительно, по теореме о среднем имеем

$$\inf_{[p,q]}(f)\cdot(q-p)\leqslant \int\limits_{p}^{q}f\leqslant \max_{[p,q]}(f)\cdot(q-p).$$

15. Плотность аддитивной функции промежутка

Определение. Пусть $\Phi \colon Segm\langle a,b\rangle \to \mathbb{R}$ — аддитивная функция промежутка, тогда функция $f:\langle a,b\rangle \to \mathbb{R}$ называется *плотностью* Φ на $\langle a,b\rangle$, если

$$\forall \Delta \in Segm \langle a,b \rangle \quad |\Delta| \inf_{\Delta}(f) \leqslant \Phi(\Delta) \leqslant |\Delta| \sup_{\Delta}(f).$$

16. Верхний и нижний пределы последовательности

Определение. Пусть (x_n) — вещественная последовательность. Тогда последовательность (y_n) , где $y_n = \sup(x_n, x_{n+1}, x_{n+2}, \ldots)$, называется верхней огибающей (x_n) , а (z_n) , где $z_n = \inf(x_n, x_{n+1}, x_{n+2}, \ldots)$, — нижней огибающей (x_n) .

Замечание. Некоторые свойства огибающих:

1. Для всех $n z_n \leqslant x_n \leqslant y_n$,

2. Так как $y_n \geqslant y_{n+1} \geqslant y_{n+2} \geqslant \dots$ и $z_n \leqslant z_{n+1} \leqslant z_{n+2} \leqslant \dots$, то для всех $n z_1 \leqslant y_n$ и $z_n \leqslant y_1$.

Определение. Пусть (x_n) — вещественная последовательность, (y_n) — её верхняя огибающая, а (z_n) — нижняя. Тогда

$$\overline{\lim}_{n\to\infty} x_n = \lim_{n\to\infty} y_n \in \overline{\mathbb{R}}$$

называется верхним пределом (x_n) , а

$$\underline{\lim}_{n \to \infty} x_n = \lim_{n \to \infty} z_n \in \overline{\mathbb{R}} -$$

нижним пределом.

Пример. Если
$$x_n = (-1)^n$$
, то $y_n \equiv 1, z_n \equiv -1$, то есть $\overline{\lim}_{n \to \infty} = 1$, $\underline{\lim}_{n \to \infty} = -1$.

17. Частичный предел

Определение. Пусть (x_n) — последовательность в (метрическом пространстве) X. Тогда $l \in X$ называется *частичным пределом* (x_n) , если существует строго возрастающая последовательность натуральных чисел (n_k) , такая, что $x_{n_k} \to l$ при $k \to \infty$.

Пример. Если $x_n = (-1)^n$, то 1 и -1 — частичные пределы (x_n) .

18. Дробление отрезка, ранг дробления, оснащение

Определение. Дроблением отрезка [a,b] называется возрастающий набор x_i , принадлежащих отрезку [a,b]. Пусть для определённости $a=x_0\leqslant x_1\leqslant \ldots\leqslant x_{n-1}\leqslant x_n=b$. Тогда эти x_i разбивают [a,b] на n соприкасающихся подотрезков $[x_i,x_{i+1}]$.

Определение. Рангом дробления называется длина наибольшего подотрезка $[x_i, x_{i+1}]$, то есть $\max(x_{i+1} - x_i)$, где $i \in 1 : n$.

Определение. Оснащением называется набор точек ξ_i , принадлежащих отрезку [a,b], где $i\in 1:n$ и каждая ξ_i принадлежит уникальному подотрезку дробления.

19. Кривая Пеано

Пример. ДОДЕЛАТЬ

20. Гладкий путь, вектор скорости, носитель пути

Определение. Путь¹² $\gamma:[a,b]\to\mathbb{R}^m$ называется гладким, если каждая из координатных функций γ_i , где $i\in 1:m$, непрерывно дифференцируема.

Определение. Вектором скорости называется производная пути.

Определение. *Носителем пути* C_{γ} называется образ пути γ .

21. Длина гладкого пути

Определение. Функция l, заданная на множестве всех гладкий путей, называется ∂ *линой гладкого пути*, если она обладает следующими свойствами:

- 1. $l \ge 0$,
- 2. l аддитивна, то есть если мы возьмём произвольный путь $\gamma \colon [a,b] \to \mathbb{R}^m$ и произвольную точку $c \in (a,b)$ и рассмотрим функции γ_1 сужение γ на отрезок [a,c], и γ_2 сужение γ на отрезок [c,b], то

$$l(\gamma) = l(\gamma_1) + l(\gamma_2).$$

3. Если носитель $C_{\widetilde{\gamma}}$ пути $\widetilde{\gamma}$ является образом сжатия носителя C_{γ} какого-то пути γ , то длина $\widetilde{\gamma}$ не больше длины γ , то есть если

$$\exists T\colon C_{\gamma}\xrightarrow[\mathrm{Ha}]{} C_{\widetilde{\gamma}},\ makas,\ что\ \forall x,y\in C_{\gamma}\quad \rho(x,y)\geqslant \rho(T(x),T(y)),$$
 то $l(\widetilde{\gamma})\leqslant l(\gamma).$

4. Нормировка: если $\gamma \colon [0,1] \to \mathbb{R}^m$ — линейный путь из A в B, то есть $\gamma(t) = (1-t)A + tB$, то $l(\gamma) = \rho(A,B)$.

Замечание. Отметим некоторые свойства длины:

- 1. Из аксиомы 3 следует, что длина дуги больше длины хорды,
- 2. При растяжении длина растёт,
- 3. При движении длина пути не меняется.

 $^{^{12}}$ Напомним, что nymём из A в B, где A и $B \in \mathbb{R}^m$, называется непрерывная функция $\gamma\colon [a,b] \to \mathbb{R}^m$, такая, что $\gamma(a)=A, \, \gamma(b)=B.$

22. Вариация функции на промежутке

Определение. Пусть $f:[a,b]\to\mathbb{R}$. Выберём дробление $\tau=\{t_i\}_{i=0}^n$ отрезка [a,b]. Вариацией функции f на отрезке [a,b] называется величина

$$\bigvee_{a}^{b} f = \sup_{\tau} \sum_{i=0}^{n} |f(t_{i+1}) - f(t_i)|.$$

3амечание. Если $\bigvee_a^b f < +\infty,$ то f называется функцией ограниченной вариации.

23. Эпсилон-сеть, сверхограниченное множество

Определение. Множество $E \subset X$ называется ε -сетью для D, если

$$\forall x \in D \quad \exists y \in E \quad \rho(x, y) < \varepsilon.$$

Определение. Множество D называется ceepxorpanuчenным в X, если для любого положительного ε существует конечная ε -сеть.

24. Несобственный интеграл, сходимость, расходимость

Определение. Рассмотрим функцию $f:[a,b)\to\mathbb{R}$, которая является кусочно-непрерывной на отрезке [a,A] для любого $A\in(a,b)$ (назовём такую функцию $\operatorname{donycmumoй}$). Символ $\int_a^{\to b} f$ называют $\operatorname{neco6cm}_{a}$ интегралом. По определению

$$\int_{a}^{b} f = \lim_{A \to b-0} \int_{a}^{A} f,$$

если предел существует в $\overline{\mathbb{R}}$. Если предел принадлежит \mathbb{R} , говорят, что несобственный интеграл cxodumcs; в противном случае говорят, что он pacxodumcs.

25. Критерий Больцано-Коши сходимости несобственного интеграла

Теорема. Пусть функция f допустима. Интеграл $\int_a^b f$ сходится тогда u только тогда, когда

$$\forall \varepsilon > 0 \quad \exists \delta \in (a, b) \quad \forall A, B \in (\delta, b) \quad \left| \int_A^B f \right| < \varepsilon.$$

26. Гамма-функция Эйлера

Определение. Функция $\Gamma(t)=\int_0^{+\infty}x^{t-1}e^{-x}\,dx$, называется гамма-функцией Эйлера (причём интеграл сходится при t>0).