Sujet IMT-1

I - Algorithme de Boyer-Moore-Horspool

Soit w ='Bienvenue au concours Mines-Telecom', k ='concours'.

- 1. Donner la fonction de décalage associée à k.
- 2. Compter le nombre de comparaisons effectuées lors de la recherche de k dans w.

II - Décidabilité

Définition: PCP

- Soit Σ un alphabet tel que $|\Sigma| \geq 2$
- Soit $N \in \mathbb{N}$
- Soit $\alpha_1,...,\alpha_N$ et $\beta_1,...,\beta_N$ de listes de mots (finis) sur Σ .

Existe-t-il une suite $(i_k)_{1 \leq k \leq K} \in [\![1,N]\!]^K$ avec $K \in \mathbb{N}^*$ tels que $\alpha_{i_1}...\alpha_{i_K} = \beta_{i_1}...\beta_{i_K}$?

On admet que PCP est indécidable.

- 1. Que dire des instances suivantes?
 - 1. Soit $\Sigma = \{a, b\}$
 - $(\alpha_i) = a, ab, bba$
 - $(\beta_i) = baa, aa, bb$
 - 2. Soit $\Sigma = \{a, b\}$
 - $(\alpha_i) = a, ab, bba$
 - $(\beta_i) = \text{baa}, \text{bb}, \text{aa}$
 - 3. Soit $\Sigma = \{a, b, c\}$
 - $(\alpha_i) = a, b, c$
 - $(\beta_i) = \text{bac}, \text{ca}, \text{bca}$
- 2. Exhiber un algorithme donnant pour tout instance l'existence d'une solution (de taille bornée).

Définition: INTER-G

Soit (G,G') un couple de grammaires sans contextes, existe-t-il un mot w engendré par les deux grammaires?

3. Quel est le type du problème *INTER-G* ?

Soit $N\in\mathbb{N}$. Soit Σ l'alphabet sur lequel sont définies $(u_k)_{0\leq k\leq N}$ et $(v_k)_{0\leq k\leq N}$ deux listes de mots. Soit $\mathbf{A}=\mathbf{A}$ $\{a_0,...,a_{N-1}\}$ des caractères disjoints de Σ (càd $\Sigma \cap A = \emptyset$). On définit les langages suivant, $\forall n \in \mathbb{N}$:

- $\begin{array}{l} \bullet \ \ L_U = \left\{a_{i_0}..a_{i_{n-1}}u_{i_{n-1}}...u_{i_0}, \forall k \in [\![0,n-1]\!], i_k \in [\![0,N]\!]\right\} \\ \bullet \ \ L_V = \left\{a_{i_0}..a_{i_{n-1}}v_{i_{n-1}}...v_{i_0}, \forall k \in [\![0,n-1]\!], i_k \in [\![0,N]\!]\right\} \end{array}$
- 4. Montrer que L_U et L_V sont des langages sans contextes.
- 5. Montrer que *INTER-G* est indécidable.