FÍSICA DEL GRADO DE INFORMÁTICA - SEPTIEMBRE DE 2011

Nombre:

Problema 1 (2p)2: En el circuito de la figura 1 la corriente I=100 mA, la resistencia interna base-emisor es R_{BE} = 200 Ω , la tensión V_{CE} =8V, V_{BE} =0.6V y β=50, calcular el valor de R_A, R_B, y R_C y la ganancia en corriente continua.

Figura 1

Problema 2 (2p) La 20 espiras del circuito (resistencia 60 Ohmios) se mueven por efecto de la gravedad con una velocidad constante de v= 6m/s de una zona en la que existe una campo magnético B= 0.6 Teslas en dirección saliente al papel. Calcular, trabajando con tres decimales:

- 1.-Intensidad que circula por las espiras y sentido.
- 2.- Fuerza necesaria para mantener el movimiento.
- 3.- Potencia eléctrica y mecánica que intervienen en el movimiento.

Figura 2

Problema 3 (2p

a) En estado transitorio, calcular en el circuito Fig 3 la ecuación de la carga Q.

En estado estacionario:

- b) Calcula V_A- V_B
- c) Calcular V_A- V_T sin hallar la intensidad
- d) Calcular V_E V_T .

5kQ 2Ω 20vВ 2Ω 2Ω 20v 2Ω 2Ω $D 2\Omega$ \mathbf{C} 15mF

Fig 3.

e) Calcular el tiempo que tarda el condensador en cargarse.

Cuestión 1 (1p): Los valores que tienen las intensidades de emisor, base y colector, y el valor que ha de tener V_{BE} respecto al potencial de unión base emisor en un transistor pnp, trabajando en saturación, compáralos con los mismos valores trabajando en corte EN UN MÁXIMO DE TRES RENGLONES.

Cuestión 2(1p): El cable que conecta el ordenador a la corriente de la red eléctrica está formado por dos hilos conductores uno que lleva la corriente en un sentido y otro que la lleva en sentido contrario. Obtener la expresión de la fuerza magnética que cada hilo ejerce sobre el otro (\vec{F}_{12} y \vec{F}_{21}). EN UN MÁXIMO DE TRES RENGLONES.

Cuestión 3(1p): Compara la curva del transitorio del potencial V(t) del condensador en un circuito RC con generador y la curva del transitorio de I(t) de la inducción en un circuito RL con generador. EN UN MÁXIMO DE TRES RENGLONES.

Cuestión 4 (1p): Escribe la ecuación que relaciona el vector intensidad magnética H y el vector magnetización M