

Rappel / démonstration des plus courts chemins avec l'algorithme de *Dijkstra* (1959)

Voir https://algs4.cs.princeton.edu/lectures/keynote/44ShortestPaths.pdf

Plus courts chemins (une source unique, toutes les destinations)

Antécédent: G = (V, E), un graphe connexe avec V l'ensemble des sommets et E l'ensemble des arêtes de G

Pour tout $e \in E$, on note l(e) la longueur de l'arête e

On choisit un sommet source $s \in V$

Conséquent: pour tous les sommets u atteignables depuis s, dist(u) est la distance de s à u

Initialisation:

```
\forall u \in V: dist(u) = \infty; prev(u) = nil
 dist(s) = 0
```

```
Procédure:
H = PriorityQueue(V) // compareTo dist()
while !H.isEmpty():
    u = \mathbf{poll}(H)
    foreach e = \{u, v\} \in E:
        if dist(v) > dist(u) + l(u, v):
             dist(v) = dist(u) + l(u, v)
             prev(u) = u
             update(H, v) // remove puis add
```


Complexité

Implémentation du tas (Priority Queue)	poll	update	V x poll + (V + E) x update
Tableau / Liste	O(V)	0(1)	$O(V ^2)$
Tas binaire	$O(\log V)$	$O(\log V)$	$O((V + E)\log V)$
Tas n-aire	$O\left(\frac{n\log V }{\log n}\right)$	$O\left(\frac{\log V }{\log n}\right)$	$O\left((V .n+ E)\frac{\log V }{\log n}\right)$
Tas de Fibonacci	$O(\log V)$	$\mathit{O}(1)$ amorti	$O(V \log V + E)$

Importance des concepts acquis lors du module M313 sur les structures de données! Implémentation des collections ordonnées : voir par exemple l'animation du cours https://www.cs.usfca.edu/~galles/visualization/RedBlack.html

Implémentation Java

http://docs.oracle.com/javase/tutorial/collections/interfaces/queue.html

```
public class Dijkstra {
    public static void computePaths(Vertex source) {
        source.minDistance = 0.;
        PriorityQueue<Vertex> vertexQueue = new PriorityQueue<Vertex>();
        vertexQueue.add(source);
        while (!vertexQueue.isEmpty()) {
            Vertex u = vertexQueue.poll();
            for (Edge e : u.adjacencies) {// Visit each edge exiting u
                Vertex v = e.target;
                double weight = e.weight;
                double distanceThroughU = u.minDistance + weight;
                if (distanceThroughU < v.minDistance) {</pre>
                    vertexQueue.remove(v);
                    v.minDistance = distanceThroughU;
                    v.previous = u;
                    vertexQueue.add(v);
```