Verifica delle Ipotesi

Stefania Bartoletti

3 Giugno 2020

Indice

- Verifica delle ipotesi
- Verifica delle ipotesi sulla media di una popolazione normale
- ▶ Verifica delle ipotesi su una popolazione di Bernoulli

Verifica delle ipotesi

 Disponiamo di un campione di dati estratti da una distribuzione nota, a meno di uno o più parametri

Verifica delle ipotesi

- Disponiamo di un campione di dati estratti da una distribuzione nota, a meno di uno o più parametri
- ► Non siamo interessati a stimare direttamente tali parametri, ma verificare un'ipotesi che dipende da tali parametri

Verifica delle ipotesi

- Disponiamo di un campione di dati estratti da una distribuzione nota, a meno di uno o più parametri
- ► Non siamo interessati a stimare direttamente tali parametri, ma verificare un'ipotesi che dipende da tali parametri
- Esempio: Vogliamo confrontare un nuovo farmaco con un placebo e verificare che il nuovo farmaco è effettivamente migliore del placebo dopo averlo somministrato ad un campione di pazienti.

► H₀: l'ipotesi nulla è l'ipotesi di default per il modello che genera i dati

- ▶ H₀: l'ipotesi nulla è l'ipotesi di default per il modello che genera i dati
- $ightharpoonup H_1$: l'ipotesti alternativa (indicata anche con H_a). Se rifiutiamo l'ipotesi nulla, stiamo di fatto decidendo che l'ipotesi alternativa spiega meglio il campione dei dati.

- ▶ H₀: l'ipotesi nulla è l'ipotesi di default per il modello che genera i dati
- ► H₁: l'ipotesti alternativa (indicata anche con Ha). Se rifiutiamo l'ipotesi nulla, stiamo di fatto decidendo che l'ipotesi alternativa spiega meglio il campione dei dati.
- x: la statistica test, che viene calcolata a partire dai dati

- ▶ H₀: l'ipotesi nulla è l'ipotesi di default per il modello che genera i dati
- H₁: l'ipotesti alternativa (indicata anche con H_a). Se rifiutiamo l'ipotesi nulla, stiamo di fatto decidendo che l'ipotesi alternativa spiega meglio il campione dei dati.
- x: la statistica test, che viene calcolata a partire dai dati
- ullet $f({\sf x}|H_0)$ la distribuzione di probabilità di ${\sf x}$ assumendo H_0

- ► H₀: l'ipotesi nulla è l'ipotesi di default per il modello che genera i dati
- ► H₁: l'ipotesti alternativa (indicata anche con H_a). Se rifiutiamo l'ipotesi nulla, stiamo di fatto decidendo che l'ipotesi alternativa spiega meglio il campione dei dati.
- x: la statistica test, che viene calcolata a partire dai dati
- ullet $f({\sf x}|H_0)$ la distribuzione di probabilità di ${\sf x}$ assumendo H_0
- $ightharpoonup \mathcal{C}$: la regione critica (rejection region). Se $x \in \mathcal{C}$, rifiutiamo H_0

L'ipotesi nulla è solitamente una ipotesi *cauta*. Per essere smentita, ha bisogno di una forte evidenza.

- L'ipotesi nulla è solitamente una ipotesi *cauta*. Per essere smentita, ha bisogno di una forte evidenza.
- Pertanto, la regione critica contiene i valori dei dati che sono estremamente incompatibili con H_0 , ovvero sono sulle code della distribuzione rispetto ai valori più probabili.

- L'ipotesi nulla è solitamente una ipotesi *cauta*. Per essere smentita, ha bisogno di una forte evidenza.
- Pertanto, la regione critica contiene i valori dei dati che sono estremamente incompatibili con H₀, ovvero sono sulle code della distribuzione rispetto ai valori più probabili.
- ▶ Se $x \in \mathcal{C}$, diciamo che i dati non sono compatibili con l'ipotesi nulla.

- ▶ L'ipotesi nulla è solitamente una ipotesi *cauta*. Per essere smentita, ha bisogno di una forte evidenza.
- Pertanto, la regione critica contiene i valori dei dati che sono estremamente incompatibili con H₀, ovvero sono sulle code della distribuzione rispetto ai valori più probabili.
- ▶ Se $x \in \mathcal{C}$, diciamo che i dati non sono compatibili con l'ipotesi nulla.
- In ogni caso non diciamo che un'ipotesi è vera, ma solo se i dati sono compatibili con essa.

Ipotesi semplici e composte

- Una ipotesi si dice semplice se possiamo specificare la corrispondente distribuzione. Per esempio, un parametro assume uno specifico valore.
- Una ipotesi si dice composta se non si può specificare pienamente la sua distribuzione. Ad esempio, il parametro appartiene ad un range di valori.

▶ La qualità di un test di significatività dipende dal livello di significatività e dalla potenza del test. Idealmente, non vorremmo compiere errori, che sono di due tipi:

- ▶ La qualità di un test di significatività dipende dal livello di significatività e dalla potenza del test. Idealmente, non vorremmo compiere errori, che sono di due tipi:
 - ightharpoonup Errore di tipo I (prima specie) rifiuto H_0 quando H_0 è vera

- ▶ La qualità di un test di significatività dipende dal livello di significatività e dalla potenza del test. Idealmente, non vorremmo compiere errori, che sono di due tipi:
 - ▶ Errore di tipo I (prima specie) rifiuto H_0 quando H_0 è vera
 - ightharpoonup Errore di tipo II (seconda specie) non rifiuto H_0 quando H_1 è vera

- ▶ La qualità di un test di significatività dipende dal livello di significatività e dalla potenza del test. Idealmente, non vorremmo compiere errori, che sono di due tipi:
 - ▶ Errore di tipo I (prima specie) rifiuto H_0 quando H_0 è vera
 - ▶ Errore di tipo II (seconda specie) non rifiuto H_0 quando H_1 è vera
- ▶ Definiamo il livello di significatività del test come $\mathbb{P}\left\{\text{rifiuto }H_0|H_0\right\}=\mathbb{P}\left\{\text{Errore di tipo I}\right\}=\alpha$

- ▶ La qualità di un test di significatività dipende dal livello di significatività e dalla potenza del test. Idealmente, non vorremmo compiere errori, che sono di due tipi:
 - ▶ Errore di tipo I (prima specie) rifiuto H_0 quando H_0 è vera
 - ightharpoonup Errore di tipo II (seconda specie) non rifiuto H_0 quando H_1 è vera
- ▶ Definiamo il livello di significatività del test come $\mathbb{P}\left\{\text{rifiuto }H_0|H_0\right\}=\mathbb{P}\left\{\text{Errore di tipo I}\right\}=\alpha$
- ▶ Definiamo la di potenza del test come $\mathbb{P}\left\{\text{rifiuto }H_0|H_1\right\}=1-\mathbb{P}\left\{\text{Errore di tipo II}\right\}=1-\beta$

Indice

- ► Verifica delle ipotesi
- Verifica delle ipotesi sulla media di una popolazione normale
- ► Verifica delle ipotesi su una popolazione di Bernoulli

Supponiamo che x_1, x_2, \ldots, x_n sia un campione aleatorio proveniente da una popolazione normale di parametri μ e σ^2 , con varianza nota .

- 1. Definiamo l'ipotesi nulla $H_0: \mu = \mu_0$
- 2. Definiamo l'ipotesi alternativa $H_1: \mu \neq \mu_0$
- 3. Scegliamo una statistica test Siccome $\overline{\mathbf{x}}$ è lo stimatore puntuale naturale per μ sembra ragionevole accettare H_0 quando \overline{x} non è troppo lontano da μ_0 , guardando quindi a $|\overline{\mathbf{x}} \mu_0|$

4. Definiamo un livello di significatività e quindi la regione critica Scegliamo α e quindi definiamo la regione critica come

$$C = \{x_1, x_2, \dots, x_n : |\overline{x} - \mu_0| > c\}$$

$$\mathbb{P}\{|\overline{x} - \mu_0| > c; \mu = \mu_0\} = \alpha$$

Chi è c?

4. Definiamo un livello di significatività e quindi la regione critica Scegliamo α e quindi definiamo la regione critica come

$$C = \{x_1, x_2, \dots, x_n : |\overline{x} - \mu_0| > c\}$$

$$\mathbb{P}\{|\overline{x} - \mu_0| > c; \mu = \mu_0\} = \alpha$$

Chi è c? Considerando che $\frac{\bar{\mathbf{x}}-\mu_0}{\sigma/\sqrt{n}}\sim\mathcal{N}(0,1)$ assumendo H_0 , allora $c=z_{\alpha/2}\sigma/\sqrt{n}$

4. Definiamo un livello di significatività e quindi la regione critica Scegliamo α e quindi definiamo la regione critica come

$$C = \{x_1, x_2, \dots, x_n : |\overline{x} - \mu_0| > c\}$$

$$\mathbb{P}\{|\overline{x} - \mu_0| > c; \mu = \mu_0\} = \alpha$$

Chi è c?

Considerando che $rac{ar{\mathbf{x}}-\mu_0}{\sigma/\sqrt{n}}\sim\mathcal{N}(0,1)$ assumendo H_0 , allora

$$c=z_{\alpha/2}\sigma/\sqrt{n}$$

Quindi, di fatto,

- Rifiuto H_0 se $\left|\frac{\bar{\mathbf{x}}-\mu_0}{\sigma/\sqrt{n}}\right|>z_{\alpha/2}$
- lacksquare Non rifiuto H_0 (accettazione) se $\left|rac{ar{\mathbf{x}}-\mu_0}{\sigma/\sqrt{n}}
 ight|\leqslant z_{lpha/2}$

Regione critica

Accetto H_0 se

$$\left| \frac{\overline{\mathbf{x}} - \mu_0}{\sigma / \sqrt{n}} \right| \leqslant z_{\alpha/2}$$

- 5. Calcolo la potenza del test
 - Partiamo dalla probabilità di errore di seconda specie, ovvero la probabilità di accettare H_0 quando questa non è vera.

5. Calcolo la potenza del test

- Partiamo dalla probabilità di errore di seconda specie, ovvero la probabilità di accettare H_0 quando questa non è vera.
- lacktriangle Tale probabilità dipende dal valore di μ e quindi definiamo

$$\beta(\mu) = \mathbb{P}\left\{ \left| \frac{\overline{\mathbf{x}} - \mu_0}{\sigma / \sqrt{n}} \right| \leqslant z_{\alpha/2}; \mu \right\}$$

quando
$$\frac{\mathbf{x}-\boldsymbol{\mu}}{\sigma/\sqrt{n}} \sim \mathcal{N}(0,1)$$

5. Calcolo la potenza del test

- Partiamo dalla probabilità di errore di seconda specie, ovvero la probabilità di accettare H_0 quando questa non è vera.
- ightharpoonup Tale probabilità dipende dal valore di μ e quindi definiamo

$$\beta(\mu) = \mathbb{P}\left\{ \left| \frac{\overline{\mathbf{x}} - \mu_0}{\sigma / \sqrt{n}} \right| \leqslant z_{\alpha/2}; \mu \right\}$$

quando
$$\frac{\mathbf{x}-\boldsymbol{\mu}}{\sigma/\sqrt{n}} \sim \mathcal{N}(0,1)$$

La funzione $\beta(\mu)$ è detta curva operativa caratteristica ;

5. Calcolo la potenza del test

- Partiamo dalla probabilità di errore di seconda specie, ovvero la probabilità di accettare H_0 quando questa non è vera.
- lacktriangle Tale probabilità dipende dal valore di μ e quindi definiamo

$$\beta(\mu) = \mathbb{P}\left\{ \left| \frac{\overline{\mathbf{x}} - \mu_0}{\sigma / \sqrt{n}} \right| \leqslant z_{\alpha/2}; \mu \right\}$$

quando
$$\frac{\mathbf{x}-\boldsymbol{\mu}}{\sigma/\sqrt{n}} \sim \mathcal{N}(0,1)$$

- La funzione $\beta(\mu)$ è detta curva operativa caratteristica ;
- La funzione $1-\beta(\mu)$ viene detta funzione di potenza del test e rappresenta la probabilità di rifiutare (correttamente) H_0 quando μ è il valore vero.

5. Calcolo la potenza del test

- Partiamo dalla probabilità di errore di seconda specie, ovvero la probabilità di accettare H_0 quando questa non è vera.
- lacktriangle Tale probabilità dipende dal valore di μ e quindi definiamo

$$\beta(\mu) = \mathbb{P}\left\{ \left| \frac{\overline{\mathbf{x}} - \mu_0}{\sigma / \sqrt{n}} \right| \leqslant z_{\alpha/2}; \mu \right\}$$

quando
$$\frac{\mathbf{x}-\boldsymbol{\mu}}{\sigma/\sqrt{n}} \sim \mathcal{N}(0,1)$$

- La funzione $\beta(\mu)$ è detta curva operativa caratteristica ;
- La funzione $1 \beta(\mu)$ viene detta funzione di potenza del test e rappresenta la probabilità di rifiutare (correttamente) H_0 quando μ è il valore vero.
- Si dimostra che

$$\begin{split} \beta(\mu) &= \mathbb{P}\left\{-z_{\alpha/2} \leqslant \frac{\overline{\mathbf{x}} - \mu_0}{\sigma/\sqrt{n}} \leqslant z_{\alpha/2}; \mu\right\} \\ &= \Phi\Big(\frac{\mu_0 - \mu}{\sigma/\sqrt{n}} + z_{\alpha/2}\Big) - \Phi\Big(\frac{\mu_0 - \mu}{\sigma/\sqrt{n}} - z_{\alpha/2}\Big) \end{split}$$

► La scelta del livello di significatività varia molto a seconda del problema: sto guardando alla quantità di cacao in una barretta o decidendo sul DNA di un omicidio?)

- La scelta del livello di significatività varia molto a seconda del problema: sto guardando alla quantità di cacao in una barretta o decidendo sul DNA di un omicidio?)
- ▶ Nella pratica, spesso si specifica il livello di significatività α e il test si basa sul *p-value*.

- La scelta del livello di significatività varia molto a seconda del problema: sto guardando alla quantità di cacao in una barretta o decidendo sul DNA di un omicidio?)
- ▶ Nella pratica, spesso si specifica il livello di significatività α e il test si basa sul *p-value*.
- Definizione: Il p-value è la probabilità, assumendo l'ipotesi nulla, di ottenere un campione dei dati estremo almeno quanto quello osservato.

- La scelta del livello di significatività varia molto a seconda del problema: sto guardando alla quantità di cacao in una barretta o decidendo sul DNA di un omicidio?)
- ▶ Nella pratica, spesso si specifica il livello di significatività α e il test si basa sul *p-value*.
- Definizione: Il p-value è la probabilità, assumendo l'ipotesi nulla, di ottenere un campione dei dati estremo almeno quanto quello osservato.
- Nelle operazioni che si sono susseguite prima, abbiamo prima calcolato la statistica test e poi confrontato tale statistica con un valore che ci siamo ricavati a partire da α .

- La scelta del livello di significatività varia molto a seconda del problema: sto guardando alla quantità di cacao in una barretta o decidendo sul DNA di un omicidio?)
- ▶ Nella pratica, spesso si specifica il livello di significatività α e il test si basa sul *p-value*.
- Definizione: Il p-value è la probabilità, assumendo l'ipotesi nulla, di ottenere un campione dei dati estremo almeno quanto quello osservato.
- Nelle operazioni che si sono susseguite prima, abbiamo prima calcolato la statistica test e poi confrontato tale statistica con un valore che ci siamo ricavati a partire da α .
- ightharpoonup Di fatto potremmo calcolare la statistica test e la probabilità che una normale standard superi il valore ottenuto con il campione osservato. Tale probabilità è il il p-value del test, si confronta con α per decidere se accettare o meno l'ipotesi.

Un segnale di valore μ trasmesso da una sorgente A, viene raccolto dal ricevente B con un rumore normale di media nulla e varianza 4. Il segnale ricevuto da B ha quindi distribuzione $\mathcal{N}(\mu,4)$. Per ridurre il rumore, viene inviato per 5 volte lo stesso segnale: la media campionaria dei segnali ricevuti $\overline{x}=9.5$. B aveva motivo di supporre che il valore inviato dovesse essere 8. Si verifichi questa ipotesi.

1. Definiamo l'ipotesi nulla $H_0: \mu = 8$

- 1. Definiamo l'ipotesi nulla $H_0: \mu = 8$
- 2. Definiamo l'ipotesi alternativa $H_1: \mu \neq 8$

- 1. Definiamo l'ipotesi nulla $H_0: \mu = 8$
- 2. Definiamo l'ipotesi alternativa $H_1: \mu \neq 8$
- 3. Scegliamo una statistica test $z=\frac{\overline{x}-\mu_0}{\sigma/\sqrt{n}}=\frac{0.5}{2/\sqrt{5}}\simeq 0.559$

- 1. Definiamo l'ipotesi nulla $H_0: \mu = 8$
- 2. Definiamo l'ipotesi alternativa $H_1: \mu \neq 8$
- 3. Scegliamo una statistica test $z=\frac{\overline{x}-\mu_0}{\sigma/\sqrt{n}}=\frac{0.5}{2/\sqrt{5}}\simeq 0.559$
- 4. Calcolo il p-value $p = \mathbb{P}\left\{|{\sf z}| > 0.559\right\} = 2 \times \mathbb{P}\left\{{\sf z} > 0.559\right\} \simeq 2 \times 0.288 = 0.576$

- 1. Definiamo l'ipotesi nulla $H_0: \mu = 8$
- 2. Definiamo l'ipotesi alternativa $H_1: \mu \neq 8$
- 3. Scegliamo una statistica test $z=\frac{\overline{x}-\mu_0}{\sigma/\sqrt{n}}=\frac{0.5}{2/\sqrt{5}}\simeq 0.559$
- 4. Calcolo il p-value $p = \mathbb{P}\left\{|{\sf z}| > 0.559\right\} = 2 \times \mathbb{P}\left\{{\sf z} > 0.559\right\} \simeq 2 \times 0.288 = 0.576$

Un segnale di valore μ trasmesso da una sorgente A, viene raccolto dal ricevente B con un rumore normale di media nulla e varianza 4. Il segnale ricevuto da B ha quindi distribuzione $\mathcal{N}(\mu,4).$ Per ridurre il rumore, viene inviato per 5 volte lo stesso segnale: la media campionaria dei segnali ricevuti $\overline{x}=9.5.$ B aveva motivo di supporre che il valore inviato dovesse essere 8. Si verifichi questa ipotesi.

- 1. Definiamo l'ipotesi nulla $H_0: \mu = 8$
- 2. Definiamo l'ipotesi alternativa $H_1: \mu \neq 8$
- 3. Scegliamo una statistica test $z=\frac{\overline{x}-\mu_0}{\sigma/\sqrt{n}}=\frac{0.5}{2/\sqrt{5}}\simeq 0.559$
- 4. Calcolo il p-value $p = \mathbb{P}\{|\mathbf{z}| > 0.559\} = 2 \times \mathbb{P}\{\mathbf{z} > 0.559\} \simeq 2 \times 0.288 = 0.576$

Sarebbe assurdo eseguire un test con un livello di significatività elevato come 0.576. Accettiamo H_0 .

Caso σ non noto

▶ Quando σ non è noto, anche l'ipotesi $H_0: \mu = \mu_0$ non è un'ipotesi semplice, in quanto non è possibile specificare completamente la distribuzione sotto l'ipotesi nulla.

Caso σ non noto

- ▶ Quando σ non è noto, anche l'ipotesi $H_0: \mu = \mu_0$ non è un'ipotesi semplice, in quanto non è possibile specificare completamente la distribuzione sotto l'ipotesi nulla.
- Anche questa volta l'intuito ci dice di rifiutare l'ipotesi nulla quando \overline{x} cade lontano da μ_0 , ma quanto lontano?

Caso σ non noto

- ▶ Quando σ non è noto, anche l'ipotesi $H_0: \mu = \mu_0$ non è un'ipotesi semplice, in quanto non è possibile specificare completamente la distribuzione sotto l'ipotesi nulla.
- Anche questa volta l'intuito ci dice di rifiutare l'ipotesi nulla quando \overline{x} cade lontano da μ_0 , ma quanto lontano?
- Se nel caso con σ noto guardavamo a $\left|\frac{\overline{x}-\mu_0}{\sigma/\sqrt{n}}\right|$, questa volta considereremo $\left|\frac{\overline{x}-\mu_0}{s/\sqrt{n}}\right|$ con

$$s = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (x_i - \overline{x})^2}$$

Per ottenere un livello di significatività pari ad α , partiamo dalla distribuzione della statistica del test assumendo H_0 e imponiamo che la probabilità di rifiutare l'ipotesi nulla sia α (e non più grande)

$$t = \frac{\overline{x} - \mu_0}{s/\sqrt{n}} \sim t_{n-1}$$

Per ottenere un livello di significatività pari ad α , partiamo dalla distribuzione della statistica del test assumendo H_0 e imponiamo che la probabilità di rifiutare l'ipotesi nulla sia α (e non più grande)

$$t = \frac{\bar{\mathsf{x}} - \mu_0}{s/\sqrt{n}} \sim t_{n-1}$$

► Segue che

si rifiuta
$$H_0$$
 se $\left| rac{\overline{\mathbf{x}} - \mu_0}{s/\sqrt{n}}
ight| > t_{rac{lpha}{2},n-1}$ non si rifiuta H_0 se $\left| rac{\overline{\mathbf{x}} - \mu_0}{s/\sqrt{n}}
ight| \leqslant t_{rac{lpha}{2},n-1}$

- Nel verificare l'ipotesi nulla $\mu=\mu_0$ abbiamo costruito un test che porta ad un rifiuto quando \overline{x} è lontana da μ_0 , ovvero. Cosa accade invece quando $H_0: \mu=\mu_0, \ H_1: \mu>\mu_0$?
- In questo caso valori molto bassi di \overline{x} non ci dovrebbero fare rifiutare l'ipotesi nulla (è più probabile ottenere una \overline{x} piccola quando è vera H_0 che non quando vera H_1)

- 1. Definiamo l'ipotesi nulla $H_0: \mu = \mu_0$
- 2. Definiamo l'ipotesi alternativa $H_1: \mu > \mu_0$
- 3. Scegliamo una statistica test z = $\frac{\overline{x} \mu_0}{\sigma/\sqrt{n}} \sim \mathcal{N}(0, 1)$

4. Definiamo un livello di significatività e quindi la regione critica Scegliamo α e quindi definiamo la regione critica come

$$C = \{x_1, x_2, \dots, x_n : \overline{x} - \mu_0 > c\}$$

$$\mathbb{P} \{\overline{x} - \mu_0 > c; \mu = \mu_0\} = \alpha$$

Chi è c?

4. Definiamo un livello di significatività e quindi la regione critica Scegliamo α e quindi definiamo la regione critica come

$$C = \{x_1, x_2, \dots, x_n : \overline{x} - \mu_0 > c\}$$

$$\mathbb{P} \{\overline{x} - \mu_0 > c; \mu = \mu_0\} = \alpha$$

Chi è c? Considerando che $rac{ar{\mathbf{x}}-\mu_0}{\sigma/\sqrt{n}}\sim\mathcal{N}(0,1)$ assumendo H_0 , allora $c=z_{lpha}\sigma/\sqrt{n}$

4. Definiamo un livello di significatività e quindi la regione critica Scegliamo α e quindi definiamo la regione critica come

$$C = \{x_1, x_2, \dots, x_n : \overline{x} - \mu_0 > c\}$$

$$\mathbb{P} \{\overline{x} - \mu_0 > c; \mu = \mu_0\} = \alpha$$

Chi è c?

Considerando che $\frac{\bar{\mathbf{x}}-\mu_0}{\sigma/\sqrt{n}}\sim\mathcal{N}(0,1)$ assumendo H_0 , allora

$$c=z_{\alpha}\sigma/\sqrt{n}$$

Quindi, di fatto,

- Rifiuto H_0 se $\frac{\bar{\mathbf{x}} \mu_0}{\sigma/\sqrt{n}} > z_{\alpha}$
- ▶ Non rifiuto H_0 (accettazione) se $\frac{\bar{\mathbf{x}} \mu_0}{\sigma / \sqrt{n}} \leqslant z_\alpha$

Regione critica

Accetto H_0 se

$$\frac{\bar{x} - \mu_0}{\sigma / \sqrt{n}} \leqslant z_\alpha$$

Indice

- ► Verifica delle ipotesi
- ► Verifica delle ipotesi sulla media di una popolazione normale
- ▶ Verifica delle ipotesi su una popolazione di Bernoulli

Supponiamo che x_1,x_2,\ldots,x_n sia un campione aleatorio proveniente da una popolazione di Bernoulli con parametro p

1. Definiamo l'ipotesi nulla $H_0: p = p_0$

Supponiamo che x_1,x_2,\ldots,x_n sia un campione aleatorio proveniente da una popolazione di Bernoulli con parametro p

- 1. Definiamo l'ipotesi nulla $H_0: p = p_0$
- 2. Definiamo l'ipotesi alternativa $H_1: p \neq p_0$

Supponiamo che x_1,x_2,\ldots,x_n sia un campione aleatorio proveniente da una popolazione di Bernoulli con parametro p

- 1. Definiamo l'ipotesi nulla $H_0: p = p_0$
- 2. Definiamo l'ipotesi alternativa $H_1: p \neq p_0$
- 3. Scegliamo una statistica test Siccome $\mathbf{y} = \sum_{i=1}^n \mathbf{x}_n \sim \mathsf{Bin}(n,p) \ \mathbf{e} \ \overline{x} = \mathbf{y}/n \ \mathbf{\grave{e}} \ \mathsf{lo} \ \mathsf{stimatore} \ \mathsf{puntuale}$ naturale per p sembra ragionevole accettare H_0 quando \overline{x} non $\mathbf{\grave{e}} \ \mathsf{troppo} \ \mathsf{lontano} \ \mathsf{da} \ p_0$, guardando quindi a $|\mathbf{y} np_0|$

Puando la numerosità del campione è elevata possiamo ottenere un test approssimato con significatività α , utilizzando la distribuzione normale.

- P Quando la numerosità del campione è elevata possiamo ottenere un test approssimato con significatività α , utilizzando la distribuzione normale.
- ▶ Quando n è abbastanza grande y è approssimativamente normale, con $\mathbb{E} \{ \mathbf{y} \} = np$ e varianza $\mathbb{V} \{ \mathbf{y} \} = np(1-p)$

- P Quando la numerosità del campione è elevata possiamo ottenere un test approssimato con significatività α , utilizzando la distribuzione normale.
- ▶ Quando n è abbastanza grande y è approssimativamente normale, con $\mathbb{E} \{y\} = np$ e varianza $\mathbb{V} \{y\} = np(1-p)$
- Segue che $\frac{\overline{x}-p}{\sqrt{p(1-p)/n}} \sim \mathcal{N}(0,1)$

- Puando la numerosità del campione è elevata possiamo ottenere un test approssimato con significatività α , utilizzando la distribuzione normale.
- ▶ Quando n è abbastanza grande y è approssimativamente normale, con $\mathbb{E} \{y\} = np$ e varianza $\mathbb{V} \{y\} = np(1-p)$
- Segue che $\frac{\overline{x}-p}{\sqrt{p(1-p)/n}} \sim \mathcal{N}(0,1)$
- \blacktriangleright Si rifiuta l'ipotesi nulla quando $\left|\frac{\overline{\mathbf{x}}-p_0}{\sqrt{p_0(1-p_0)/n}}\right|\geqslant z_{\alpha/2}$

Supponiamo di avere intervistato un campione casuale di $n=1200\,$ cittadini e che $k=631\,$ di loro abbiano espresso l'intenzione di rieleggere il Sindaco: abbiamo abbastanza evidenza per concludere che il Sindaco dispone di una maggioranza?

1. Definiamo l'ipotesi nulla $H_0: p \leqslant 0.5$

- 1. Definiamo l'ipotesi nulla $H_0: p \leqslant 0.5$
- 2. Definiamo l'ipotesi alternativa $H_1: p > 0.5$

- 1. Definiamo l'ipotesi nulla $H_0: p \leqslant 0.5$
- 2. Definiamo l'ipotesi alternativa $H_1: p > 0.5$
- 3. Scegliamo una statistica test $\overline{x}=k/n=0.52$; la statistica test osservata è $z=\frac{\overline{x}-p_0}{\sqrt{p_0(1-p_0)/n}}=1.79$

- 1. Definiamo l'ipotesi nulla $H_0: p \leqslant 0.5$
- 2. Definiamo l'ipotesi alternativa $H_1: p > 0.5$
- 3. Scegliamo una statistica test $\overline{x}=k/n=0.52$; la statistica test osservata è $z=\frac{\overline{x}-p_0}{\sqrt{p_0(1-p_0)/n}}=1.79$
- 4. Calcolo il p-value $p = \mathbb{P}\left\{z > 1.79\right\} = 0.037$

- 1. Definiamo l'ipotesi nulla $H_0: p \leqslant 0.5$
- 2. Definiamo l'ipotesi alternativa $H_1: p > 0.5$
- 3. Scegliamo una statistica test $\overline{x}=k/n=0.52$; la statistica test osservata è $z=\frac{\overline{x}-p_0}{\sqrt{p_0(1-p_0)/n}}=1.79$
- 4. Calcolo il p-value $p = \mathbb{P}\left\{z > 1.79\right\} = 0.037$

Supponiamo di avere intervistato un campione casuale di $n=1200\,$ cittadini e che $k=631\,$ di loro abbiano espresso l'intenzione di rieleggere il Sindaco: abbiamo abbastanza evidenza per concludere che il Sindaco dispone di una maggioranza?

- 1. Definiamo l'ipotesi nulla $H_0: p \leqslant 0.5$
- 2. Definiamo l'ipotesi alternativa $H_1: p > 0.5$
- 3. Scegliamo una statistica test $\overline{x}=k/n=0.52$; la statistica test osservata è $z=\frac{\overline{x}-p_0}{\sqrt{p_0(1-p_0)/n}}=1.79$
- 4. Calcolo il p-value $p = \mathbb{P}\{z > 1.79\} = 0.037$

Rifiutiamo H_0 con $\alpha=0.05$ e p=0.037

Abbiamo dimostrato nelle lezioni precedenti che un intervallo di confidenza bilaterale ad un livello $1-\alpha$ per la media di una distribuzione normale con varianza nota σ^2 , è dato da

$$\mu \in \left(\overline{\mathbf{X}} - z_{\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}}, \overline{\mathbf{X}} + z_{\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}}\right)$$

Intendendo che

$$\mathbb{P}\left\{\overline{\mathbf{x}} - z_{\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}} \leqslant \mu \leqslant \overline{\mathbf{x}} + z_{\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}},\right\} = 1 - \alpha$$

Eseguendo una verifica sulle ipotesi bilaterali $H_0: \mu=\mu_0$ contro $H_1: \mu\neq\mu_0$ con un livello di significatività α , quello che facciamo è accettare l'ipotesi nulla quando quando

$$\mu_0 \in \left(\overline{\mathbf{x}} - z_{\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}}, \overline{\mathbf{x}} + z_{\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}}\right)$$

Eseguendo una verifica sulle ipotesi bilaterali $H_0: \mu=\mu_0$ contro $H_1: \mu\neq\mu_0$ con un livello di significatività α , quello che facciamo è accettare l'ipotesi nulla quando quando

$$\mu_0 \in \left(\overline{\mathbf{X}} - z_{\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}}, \overline{\mathbf{X}} + z_{\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}}\right)$$

E ritroviamo che

$$\mathbb{P}\left\{\overline{\mathbf{x}} - z_{\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}} \leqslant \mu_0 \leqslant \overline{\mathbf{x}} + z_{\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}},\right\} = 1 - \alpha$$

Eseguendo una verifica sulle ipotesi bilaterali $H_0: \mu=\mu_0$ contro $H_1: \mu\neq\mu_0$ con un livello di significatività α , quello che facciamo è accettare l'ipotesi nulla quando quando

$$\mu_0 \in \left(\overline{\mathbf{X}} - z_{\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}}, \overline{\mathbf{X}} + z_{\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}}\right)$$

E ritroviamo che

$$\mathbb{P}\left\{\overline{\mathbf{x}} - z_{\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}} \leqslant \mu_0 \leqslant \overline{\mathbf{x}} + z_{\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}},\right\} = 1 - \alpha$$

Abbiamo definito gli intervalli di confidenza per la stima del parametro, ma di fatto possiamo costruire un test delle ipotesi partendo dall'intervallo di confidenza con livello $1-\alpha$. Accettiamo l'ipotesi nulla se il parametro rientra all'interno dell'intervallo.

Schema per la verifica di ipotesi

