Fairest Room allocation

What is LP?

- Linear Objectiveand Linear inequalities
- A method of optimising operations with some con-

minimize
$$c^T x$$
subject to $Ax = b$
 $x \geq 0$

where
$$\mathbf{c} \in \mathbb{R}^{\mathbb{N}}$$
, $\mathbf{b} \in \mathbb{R}^{\mathbb{M}}$, and $\mathbf{A} \in \mathbb{R}^{\mathbb{M}*\mathbb{N}}$,

here
$$m{c^T} = [c_1, c_2, ..., c_n],$$
 $m{x} = [x_1, x_2, ..., x_n]^T,$ $m{b} = [b_1, b_2, ..., b_m]^T,$ and $m{A} = \begin{bmatrix} a_{11} & a_{12} & ... & a_{1n} \\ a_{21} & a_{22} & ... & a_{2n} \\ ... & ... & ... & ... \\ a_{m1} & a_{m2} & ... & a_{mn} \end{bmatrix}$

Example

Maximize: Z = 7x + y

Constraints:

$$x + y <= 40$$
,

$$2x + y \le 60$$
,

$$x >= 0, y >= 0$$

Max at (30, 0) ->

Optimal value 210

Maximum Welfare assignment

-aka Maximum Weight Bipartite Matching

Envy-freeness formulation

It's Formulation

X_{ii} is 1 when renter i Renter i's value for room j will be assigned room j **Maximization Problem** A renter can be $i \in N \ j \in M$ allotted at max one room s.t. $\sum x_{ij} \leq 1, \ \forall i \in N^{\circ}$ (2) $j \in M$ A room can be allotted to at $\sum x_{ij} \le 1, \ \forall j \in M^{\circ \circ}$ (3) $x_{ij} \geq 0, \ \forall i \in N, j \in M$ (4)

Real allocation

	Room 1	Room 2	Room 3
Renter 1	6	2	1
Renter 2	2	3	4
Renter 3	2	5	2

Table 3.1: Renter's preference for rooms

	Renter	Room	Rent	
	1	1	4	
Ī	2	3	2	•
	3	2	3	-

Table 3.3: Final Rent assigned