GALOIS THEORY 2019: HW 3

For assessment: Problems 1, 2, 3 Due by noon Tuesday, week 7 of the term

- 1. (a) Let $L: \mathbb{Q}$ be a splitting field extension for $f(X) = (X^2 2)(X^2 + 7)$.
 - (i) Determine the degree of the extension $L:\mathbb{Q}$, justifying vour answer.
 - (ii) Describe the Galois group $Gal(L : \mathbb{Q})$ (that is, give generators and relations for the Galois group).
 - (b) Let $K : \mathbb{Q}$ be a splitting field extension for $g(X) = X^4 5$.
 - (i) Show that $[K:\mathbb{Q}]=8$.
 - (ii) Describe the Galois group $Gal(K : \mathbb{Q})$.
- 2. Suppose that L: K is a normal extension with $K \subseteq L \subseteq \overline{L}$ where \overline{L} is an algebraic closure of L.
 - (a) Suppose $\tau: L \to \overline{L}$ is a K-homomorphism. Show that $\tau(L) = L$.
 - (b) Suppose M: K is a normal extension so that $K \subseteq M \subseteq L$ and $\tau \in Gal(L:K)$. Show that $\tau(M) = M$. (Suggestion: use (a).)
- 3. Suppose that L:K is a splitting field extension for f where f is a monic, separable, irreducible element of K[t] with deg f prime. Suppose that M is a field so that $K \subsetneq M \subsetneq L$ and M:K is a normal extension. The goal is to show that f is irreducible over M.
 - (a) For the sake of contradiction, suppose that $f = f_1 \cdots f_d$ where d > 1 and f_1, \ldots, f_d are monic, irreducible elements of M[t]. Show that for each integer k with $1 < k \le d$, we have $\deg f_k = \deg f_1$. (Suggestion: first use Gal(L:K) to show that for $1 < k \le d$, $\deg f_1 = \deg f_k$; in doing this, you may want to use Problem 1.)
 - (b) Show that the hypothesis of (a) leads to a contradiction (and hence f is irreducible over M). (Suggestion: first explain why M contains no root of f.)
- 4. Suppose K is a field, $S \subseteq K[t]$. Suppose that L:K is a splitting field extension for S with $K \subseteq L$, and that M:K is a splitting field extension for S relative to the embedding $\varphi:K \to M$. Assume $L \subseteq \overline{L}$, $M \subseteq \overline{M}$. Set $A = \{\alpha \in \overline{L}: f(\alpha) = 0 \text{ for some nonconstant } f \in S \}$, and $B = \{\beta \in \overline{M}: \varphi(f)(\beta) = 0 \text{ for some nonconstant } f \in S \}$. (So L = K(A) and M = F(B) where $F = \varphi(K)$.)
 - (a) Explain why there is an isomorphism $\psi: \overline{L} \to \overline{M}$ that extends φ .
 - (b) Show that $\psi(A) = B$.
 - (c) Conclude that $\psi(K(A)) \simeq F(B)$ (and hence $L \simeq M$ since K(A) = L and F(B) = M). [Note that the argument used in the proof of Theorem 5.4 shows that [L:K] = [M:K].]