ESERCIZIO 1

Un test a fatica viene condotto su un materiale in acciaio AISI 304. Lo sforzo medio applicato e di 70 MPa e l'ampiezza del ciclo di sforzo è 210 MPa. Determinare:

- a) I valori del carico massimo di trazione e compressione.
- b) Valutare il rapporto di carico.
- c) Valutare l'intervallo (o range) del ciclo do sforzo.
- d) Rappresentare graficamente, ove possibile, tali parametri in un grafico sforzotempo (ipotesi di carico sinusoidale).

ESERCIZIO 2

Un provino cilindrico di una lega a base di alluminio, ha un diametro di 6,4 mm ed è soggetto ad una serie di carichi ciclici di trazione e compressione lungo il proprio asse. Il carico massimo di trazione a cui è soggetto è di 5340N mentre quello minimo di compressione è do -5340N. Determinare la vita a fatica del materiale usando la curva S-N fornita.

ESERCIZIO 3

I dati a fatica per una lega in acciaio sono forniti nella tabella seguente:

Ampiezza dello sforzo (MPa)	Cicli a fatica
470	10 ⁴
440	3*10 ⁴
390	10 ⁵
350	3*10 ⁵
310	10 ⁶
290	3*10 ⁶
290	10 ⁷
290	10 ⁸

Con i dati forniti:

- A) Disegnare la curva S-N in scala logaritmica.
- B) Determinare il limite a fatica per questa lega.
- C) Determinare la vita a fatica per un'ampiezza dello sforzo di 415MPa e di 275MPa.
- D) Determinare il carico a fatica per un numero di cicli pari a: 2*10⁴ e 6*10⁵.

ESERCIZIO 4

Una piastra di acciaio è soggetta a sforzi ciclici assiali di trazione e di compressione di ampiezza costante e pari rispettivamente a 120 e 30 MPa. La tenacità frattura del pezzo, K_{IC} è di 45MPaVm. Se la piastra contiene una cricca sul bordo uniforme attraverso lo spessore e lunga 1 mm, quanti cicli a fatica sono necessari per provocare la rottura del pezzo? (Y = 1, n= 3, C = $2*10^{-12}$ m $^{1-n/2}$ /MPa n).

ESERCIZIO 5

Tre campioni identici (indicati con A, B e C) sono sottoposti a dei cicli di sollecitazione differenti. La frequenza è la stessa per tutti, i valori del carico massimo e minimo sono riportati nella tabella sottostante.

- a) Classificare la vita a fatica di questi tre campioni dal più lungo al più corto.
- b) Giustificare questa classificazione usando un diagramma S-N.

Specimen	σ_{\max} (MPa)	σ _{min} (MPa)
A	+450	-350
B	+400	-300
C	+340	-340