Module-2: Analysis of Algorithms

Dr. P. Gayathri
Associate Professor
SCOPE, VIT University

Algorithm

- Set of simple instructions to be followed to solve a problem
- Once an algorithm is given for a problem, important step is to determine the time and space requirement of algorithm

Asymptotic notations and their significance

- Estimation of resource usage of an algorithm involves following definition / assymptotic notations / growth functions
 - Big O (O)
 - Big omega (Ω)
 - Theta (Θ)
 - Little O (o)
 - Little omega (ω)

Relations Between Θ , O, Ω

Observations

- For any 2 functions f(n) and g(n), $f(n)=\Theta$ (g(n)) iff f(n) = O (g(n)) and $f(n) = \Omega$ (g(n))
- If a function f(n) = o(g(n)) then f(n) = O(g(n))
 but the converse is not true
- If a function $f(n) = \omega(g(n))$ then $f(n) = \Omega(g(n))$ but converse is not true

Note

 Main idea behind these definitions is to establish relative order among functions.

Problems related to notations – Refer notebook

Time Complexity of an Algorithm

- Best case analysis usage of algorithm is atleast
- Worst case analysis usage of algorithm is atmost
- Average case analysis usage of algorithm is average
- Example: linear search
 - Best searching for first element
 - Worst searching for last element or the element which is not present in the list
 - Average searching for other element which lies between first and last element

Various Computing Times

- C constant
- Log n logarithmic
- Log²n log squared
- N linear
- N² quadratic
- N^3 cubic
- 2ⁿ exponential

Running Time of an Algorithm

```
• Example : \sum_{i=1}^{n} i^3
   Sum (int n)
       int ps;
       ps = 0;
       for (i = 1; i<=n; i++)
               ps = ps + i * i * i
       return ps
   Total RT = 1+1+n+1+n+4n+1 = 6n+4 = O(n)
```

Note

Lower order terms and constants can be ignored in O notation

Example 1: $T(n) = O(2n^2) - wrong$

Correct form is: $T(n) = O(n^2)$

Example 2: $T(n) = O(n + n^2) - wrong$

Correct form is: $T(n) = O(n^2)$

RT Calculation - General Rules

Refer notebook

Running Time of an Algorithm using General Rules

```
• Example : \sum_{i=1}^{n} i^3
   Sum (int n)
       int ps;
       ps = 0;
       for (i = 1; i<=n; i++)
               ps = ps + i * i * i
        return ps
   Total RT = max(O(1), O(n), O(1)) = O(n)
```

Performance Analysis of an Algorithm

- Analysis of iterative algorithms
- Analysis of recursive algorithms

Analysis of iterative algorithms

Detailed analysis of Insertion sort

```
InsertionSort (A)
  for j = 2 to length[A)
      key = A[i]
     //insert A[j] into sorted sequence A[1..j-1]
      i = j - 1;
     while (i > 0) and (A[i] > key)
          A[i+1] = A[i]
          i = i - 1
     A[i+1] = key
```

Insertion sort RT

- Best case O(n)
- Worst case O(n²)
- Average case as bad as worst case depends on how much the elements are already sorted – So, O(n²)

Supplementary exercise

Analysis of selection sort

Best –
$$O(n^2)$$

Worst - $O(n^2)$

Analysis of bubble sort

Best –
$$O(n^2)$$

Worst - $O(n^2)$

Improved bubble sort

```
Best – O(n)
Worst - O(n^2)
```

Analysis of Recursive Algorithms

- Each recursive algorithm has one or more recursive cases and one or more base cases
- Example: Recurrence relation T(n)

$$T(n) = a$$
 if n=1
2 $T(n/2)+b(n)+c$ if n>1

- The portion of definition that does not contain T is called base case
- The portion that contains T is called recursive case

Forming Recurrence Relations

```
Void f (int n)
       if n > 0 {
              Print n;
              f(n-1); }
                      if n=0
T(n) = a
       b+T(n-1) if n>0
Reason:
       If n = 0, one comparison operation
       If n > 0, 2 basic operations (comparison & print), one
       recursive call with parameter n-1
```

Exercise Problem - 1

```
Int g (int n)
     if(n==1)
           return 2;
     else
           return 3*g(n/2)+g(n/2)+5
```

Exercise Problem - 2

```
Fib (int n)
     if (n==1 | n==2)
            return 1
      else
            return fib(n-1) + fib(n-2);
```

Exercise Problem - 3

```
Power (int x, int n)
      if(n==0)
             return 1;
      else if (n==1)
             return x;
      else if (n\%2 == 0)
             return power(x,n/2) * power(x,n/2);
      else
             return x*power(x,n/2)*power(x,n/2);
```

Methods to solve Recurrence Relations

There are many methods to solve recurrence relations. Few are listed below:

- Master Method
- Iterative Method
- Recursion Tree method
- Substitution method
 - Can be applied only in cases when it is easy to guess the solution
 - 2 steps
 - Guess the solution
 - Show that the solution works

Substitution Method – Example

Merge sort:

$$T(n) = c if n=1$$

$$2T(n/2) + n if n>1$$

```
Let solution be T(n) = O(n \log n)

T(n) = 2T(n/2) + n ----- (1)
```

Our aim is to prove $T(n) \le c n \log n$ for c > 0

Let
$$n = n/2$$

 $T(n/2) \le c (n/2 \log n/2)$ ----- (2)

Apply 2 in 1

$$T(n) = 2 (c n/2 log n/2) + n$$

= c n log n/2 + n
= c n log n - c n log2 + n
= c n log n - c n + n (b'coz log2 = 1)
= c n log n (as c>=1)
= O(n log n)
 $T(n) = O(n log n)$

Master Method

- The Master theorem allows us to easily calculate the running time of recursive algorithm in Θ notation
- Not all recurrence relations can be solved with the use of the master theorem
- General syntax of recurrence relation
 T(n) = a T(n/b)+f(n)

Case 1

Generic form: $f(n) = O(n^c)$ where $c < log_b a$ Then, $T(n) = \Theta(n^{log}_b^a)$

Example: $T(n) = 8T(n/2) + 1000n^2$ a = 8, b = 2, $f(n) = 1000n^2$ Next, we see if we satisfy the case 1 condition: $f(n) = O(n^c)$ where c = 2 $Log_b a = Log_2 8 = 3$. So $c < log_b a$ is true Therefore, $T(n) = \Theta(n^{log}_b a) = \Theta(n^{log}_2 8) = \Theta(n^3)$

Case 2

Generic form: $f(n) = \Theta(n^c \log^k n)$ where $c = \log_b a$ and k > = 0Then, $T(n) = \Theta(n^c \log^{k+1} n)$

Example: T(n) = 2T(n/2) + 10n

a = 2, b = 2, f(n) = 10n

Next, we see if we satisfy the case 2 condition:

 $f(n) = \Theta (n^c \log^k n)$ where c = 1 and k = 0

 $Log_ba = Log_22 = 1$. So c = log_ba is true

Therefore, $T(n) = \Theta(n^c \log^{k+1} n) = \Theta(n^1 \log^1 n) = \Theta(n \log n)$

Case 3

Generic form: $f(n) = \Omega(n^c)$ where $c > \log_b a$ Then, $T(n) = \Theta(f(n))$

Example: $T(n) = 2T(n/2) + n^2$

$$a = 2$$
, $b = 2$, $f(n) = n^2$

Next, we see if we satisfy the case 3 condition:

$$f(n) = \Omega (n^c)$$
 where $c = 2$

 $Log_ba = Log_22 = 1$. So c > log_ba is true

Therefore, $T(n) = \Theta(f(n)) = \Theta(n^2)$

Iterative Method

 Factorial Example Int fact (int n) If (n==0)Return 1 Else Return n*fact(n-1);

Recurrence relation and solution

$$T(n) = C$$
 $n=0$
 $b + T(n-1)$ $n>=1$
 $T(0) = C$
 $T(n) = b + T(n-1)$
Let $n=5$, $T(5) = b + T(4)$
 $T(4) = b + T(3)$
 $T(3) = b + T(2)$
 $T(2) = b + T(1)$
 $T(1) = b + D(0)$
 $T(n) = b + D(0)$
 $= nb + C$
 $= O(n)$