# Johns Hopkins Engineering for Professionals

Mathematical Methods for Applied Biomedical Engineering EN. 585.409



# **Polar form for Complex Variables**

**IMG** 

Going back to the Argand diagram and making the usual connections between the Cartesian and polar coordinates we have

between the Cartesian and polar coordinates we have 
$$z = x + iy$$
 
$$x = r\cos\theta, \ y = r\sin\theta$$
 
$$x = r\sin\theta$$

$$z = x + iy$$
  
  $x = r\cos\theta$ ,  $y = r\sin\theta$ 

$$\tan \theta = \frac{y}{x} \rightarrow \theta = \tan^{-1} \frac{y}{x}, -\pi \le \arg(z) = \theta \le \pi$$

$$r^2 = x^2 + y^2 \rightarrow \text{ modulus (or magnitute) } r = \sqrt{x^2 + y^2} \in \text{Real}$$

Therefore 
$$z = x + iy = r\cos\theta + ir\sin\theta = r(\cos\theta + i\sin\theta) = re^{i\theta}$$

Note 
$$|z| = |re^{i\theta}| = |r| \equiv r$$
 since  $|e^{i\theta}| = 1$  as we will soon see.

In general 
$$z^n = (re^{i\theta})^n = r^n e^{in\theta}$$

# Power series in a complex variable

A power series in the complex variable z can be represented as

$$f(z) = \sum_{n=0}^{\infty} a_n z^n = \sum_{n=0}^{\infty} a_n r^n e^{in\theta}$$

The series is absolutely convergent if  $\sum_{n=0}^{\infty} |a_n e^{in\theta}| r^n = \sum_{n=0}^{\infty} |a_n| r^n$  is convergent

Examples of some simple power series

$$\sum_{n=1}^{\infty} \frac{1}{n}$$

$$\sum_{n=1}^{\infty} \frac{(-1)^n}{n}$$

Let's investigate whether they converge or not!

### Test for convergence of a power series

First take a look at

$$\sum_{n=1}^{\infty} \frac{1}{n} = 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{6} \dots = \left(\frac{1}{2} + \frac{1}{2}\right) + \frac{1}{2} + \left(\frac{1}{3} + \frac{1}{6}\right) + \left(\frac{1}{4} + \frac{1}{8} + \frac{1}{12} + \frac{1}{24}\right) + \dots = \frac{1}{2} + \frac{1}{2}$$

$$\frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \cdots$$

Therefore does **NOT CONVERGE** 

Before the next example we introduce a few test for convergence

$$\lim_{n\to\infty} \left| a_n \right| = 0$$

$$\lim_{n \to \infty} \left| \frac{a_{n+1} z^{n+1}}{a_n z^n} \right| = \lim_{n \to \infty} \frac{\left| a_{n+1} \right| \left| z^{n+1} \right|}{\left| a_n \right| \left| z^n \right|} = \lim_{n \to \infty} \frac{\left| a_{n+1} \right|}{\left| a_n \right|} \left| z \right| < 1$$

Note: When |z|=R we need to test each such case individually

**Ratio Test** 

If we have 
$$\lim_{n\to\infty} \frac{\left|a_{n+1}\right|}{\left|a_{n}\right|} = \frac{1}{R}$$
 then we have convergence if  $\left|z\right| < R$  or  $-R < z < R$ 

where R is called the radius of convergence

Cauchy Root Test 
$$\sum_{n=0}^{\infty} |a_n| z^n \text{ converges absolutely provided } \lim_{n\to\infty} |a_n|^{\frac{1}{n}} = \frac{1}{R}$$
 and radius of convergence  $|z| = r < R$ 

The next examples

For 
$$\sum_{n=1}^{\infty} \frac{(-1)^n}{n}$$
 we have  $a_n = \frac{(-1)^n}{n}$ 

Then using the limit test 
$$\lim_{n\to\infty} \left| a_n \right| = \lim_{n\to\infty} \left| \frac{(-1)^n}{n} \right| = \lim_{n\to\infty} \left| \frac{1}{n} \right| = 0$$
 **CONVERGES**

For  $\sum_{n=0}^{\infty} \frac{z^n}{n!}$  using the ratio test we have

$$\lim_{n \to \infty} \frac{\left| a_{n+1} \right| |z^{n+1}|}{\left| a_{n} \right| |z^{n}|} = \lim_{n \to \infty} \frac{\left| \frac{1}{(n+1)!} \right| |z^{n+1}|}{\left| \frac{1}{n!} \right| |z^{n}|} = \lim_{n \to \infty} \frac{\left| \frac{1}{(n+1)!} \right| |z|}{\left| \frac{1}{n!} \right|} = \lim_{n \to \infty} \frac{\left| \frac{1}{(n+1)!} \right| |z|}{\left| \frac{1}{n!} \right|} = \lim_{n \to \infty} \frac{\left| \frac{1}{(n+1)!} \right| |z|}{\left| \frac{1}{n!} \right|} = \lim_{n \to \infty} \frac{\left| \frac{1}{(n+1)!} \right| |z|}{\left| \frac{1}{n!} \right|} = \lim_{n \to \infty} \frac{\left| \frac{1}{(n+1)!} \right| |z|}{\left| \frac{1}{n!} \right|} = \lim_{n \to \infty} \frac{\left| \frac{1}{(n+1)!} \right| |z|}{\left| \frac{1}{n!} \right|} = \lim_{n \to \infty} \frac{\left| \frac{1}{(n+1)!} \right| |z|}{\left| \frac{1}{n!} \right|} = \lim_{n \to \infty} \frac{\left| \frac{1}{(n+1)!} \right| |z|}{\left| \frac{1}{n!} \right|} = \lim_{n \to \infty} \frac{\left| \frac{1}{(n+1)!} \right| |z|}{\left| \frac{1}{n!} \right|} = \lim_{n \to \infty} \frac{\left| \frac{1}{(n+1)!} \right| |z|}{\left| \frac{1}{n!} \right|} = \lim_{n \to \infty} \frac{\left| \frac{1}{(n+1)!} \right| |z|}{\left| \frac{1}{n!} \right|} = \lim_{n \to \infty} \frac{\left| \frac{1}{(n+1)!} \right| |z|}{\left| \frac{1}{n!} \right|} = \lim_{n \to \infty} \frac{\left| \frac{1}{(n+1)!} \right| |z|}{\left| \frac{1}{n!} \right|} = \lim_{n \to \infty} \frac{\left| \frac{1}{(n+1)!} \right| |z|}{\left| \frac{1}{n!} \right|} = \lim_{n \to \infty} \frac{\left| \frac{1}{(n+1)!} \right| |z|}{\left| \frac{1}{n!} \right|} = \lim_{n \to \infty} \frac{\left| \frac{1}{(n+1)!} \right| |z|}{\left| \frac{1}{(n+1)!} \right|} = \lim_{n \to \infty} \frac{\left| \frac{1}{(n+1)!} \right| |z|}{\left| \frac{1}{(n+1)!} \right|} = \lim_{n \to \infty} \frac{\left| \frac{1}{(n+1)!} \right| |z|}{\left| \frac{1}{(n+1)!} \right|} = \lim_{n \to \infty} \frac{\left| \frac{1}{(n+1)!} \right| |z|}{\left| \frac{1}{(n+1)!} \right|} = \lim_{n \to \infty} \frac{\left| \frac{1}{(n+1)!} \right| |z|}{\left| \frac{1}{(n+1)!} \right|} = \lim_{n \to \infty} \frac{\left| \frac{1}{(n+1)!} \right| |z|}{\left| \frac{1}{(n+1)!} \right|} = \lim_{n \to \infty} \frac{\left| \frac{1}{(n+1)!} \right| |z|}{\left| \frac{1}{(n+1)!} \right|} = \lim_{n \to \infty} \frac{\left| \frac{1}{(n+1)!} \right| |z|}{\left| \frac{1}{(n+1)!} \right|} = \lim_{n \to \infty} \frac{\left| \frac{1}{(n+1)!} \right| |z|}{\left| \frac{1}{(n+1)!} \right|} = \lim_{n \to \infty} \frac{\left| \frac{1}{(n+1)!} \right| |z|}{\left| \frac{1}{(n+1)!} \right|} = \lim_{n \to \infty} \frac{\left| \frac{1}{(n+1)!} \right| |z|}{\left| \frac{1}{(n+1)!} \right|} = \lim_{n \to \infty} \frac{\left| \frac{1}{(n+1)!} \right| |z|}{\left| \frac{1}{(n+1)!} \right|} = \lim_{n \to \infty} \frac{\left| \frac{1}{(n+1)!} \right| |z|}{\left| \frac{1}{(n+1)!} \right|} = \lim_{n \to \infty} \frac{\left| \frac{1}{(n+1)!} \right| |z|}{\left| \frac{1}{(n+1)!} \right|} = \lim_{n \to \infty} \frac{\left| \frac{1}{(n+1)!} \right| |z|}{\left| \frac{1}{(n+1)!} \right|} = \lim_{n \to \infty} \frac{\left| \frac{1}{(n+1)!} \right| |z|}{\left| \frac{1}{(n+1)!} \right|} = \lim_{n \to \infty} \frac{\left| \frac{1}{(n+1)!} \right| |z|}{\left| \frac{1}{(n+1)!} \right|} = \lim_{n \to \infty} \frac{\left| \frac{1}{(n+1)!} \right| |z|}{\left| \frac{1}{(n+1)!} \right|} = \lim_{n \to \infty} \frac{\left| \frac{1}{(n+1)!} \right|}{\left| \frac{1}{(n+1)!} \right|} = \lim_{n \to \infty$$

Therefore 
$$\lim_{n\to\infty} \frac{n!|z|}{(n+1)!} = \lim_{n\to\infty} \frac{1}{n+1}|z| = 0 < 1$$

Also note since  $\frac{1}{R} = 0 \rightarrow R$  is  $\pm \infty$ , that is  $|z| < \pm \infty$ 

or  $-\infty < z < \infty$ , that is it converges for all value!

**CONVERGES** 

# Some simple functions of a complex variable

First, let's start with the Taylor expansion for the exponential function in the real domain,

that is 
$$e^x = \sum_{n=0}^{\infty} \frac{1}{n!} x^n$$
 Next replacing x with iy gives us  $e^{iy} = \sum_{n=0}^{\infty} \frac{1}{n!} (iy)^n = \sum_{n=0}^{\infty} \frac{1}{n!} i^n y^n$ 

As we have previously observed it is as relatively straight forward to generate Taylor Expansions for the sine and cosine function. They are

$$\cos y = \sum_{n=0}^{\infty} \frac{(-1)^n}{2n!} y^n, \ \sin y = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)!} y^{2n+1}$$

Finally putting this all together gives us

Euler's Identity!

Now we are ready to define the complex exponential function

$$e^z = e^{x+iy} = e^x e^{iy} = e^x (\cos y + i \sin y)$$

Note the magnitude is 
$$|e^z| = |e^{x+iy}| = |e^x e^{iy}| = |e^x (\cos y + i \sin y)|$$
  
By definition  $|e^x \cos y + i e^x \sin y| = (e^{2x} \cos^2 y + e^{2x} \sin^2 y)^{1/2} = (e^{2x} \cos^2 y + e^{2x} \sin^2 y)^{1/2}$ 

Finally 
$$|e^z| = (e^{2x}(\cos^2 y + \sin^2 y))^{1/2} = (e^{2x}(1))^{1/2} = e^x$$

Also if we were to plot  $e^{iy} = cosy + isiny$  in the Argand plane for different values of y we would quickly see that it would plot out a circle of unit radius.

**KEY** 

Therefore in general the complex exponential functions maps out a circle in the Argand plane of radius e<sup>x</sup>.

Is the complex exponential function analytic? – does it satisfy the Cauchy-Euler conditions

$$e^z = e^{x+iy} = e^x e^{iy} = e^x \cos y + ie^x \sin y$$
  
Therefore  $u(x,y)=e^x \cos y$  and  $v(x,y)=e^x \sin y$ 

Next apply the Cauchy-Riemann conditions

$$e^z = e^{x+iy} = e^x e^{iy} = e^x \cos y + ie^x \sin y$$
  
Therefore  $u(x,y)=e^x \cos y$  and  $v(x,y)=e^x \sin y$ 

Then applying the Cauchy-Riemann condition

$$\frac{\partial u}{\partial x} = \frac{\partial e^{x} \cos y}{\partial x} = e^{x} \cos y \quad \frac{\partial v}{\partial y} = \frac{\partial e^{x} \sin y}{\partial y} = e^{x} \cos y$$
and
$$\frac{\partial v}{\partial x} = \frac{\partial e^{x} \sin y}{\partial x} = e^{x} \sin y \quad -\frac{\partial u}{\partial y} = -\frac{\partial e^{x} \cos y}{\partial y} = -(-e^{x} \sin y) = e^{x} \sin y$$

#### YES, The complex exponential function is analytic!

For non e base, that is  $a^z$  we can use the following standard "trick" from calculus

$$a^z = (e^{\ln a})^z = e^{z \ln a}$$

And we can use any relations involving base e for this case.

In the real domain, that is  $x \in R$  we have Euler's identity  $e^{\pm x} = \cos x \pm i \sin x$ 

Also

$$\sin x = \frac{e^{ix} - e^{-ix}}{2i}$$

$$\cos x = \frac{e^{ix} + e^{-ix}}{2}$$

We can generalize these functions to be functions of a complex variable, that is

$$\cos z = \frac{e^{iz} + e^{-iz}}{2}, \text{ etc.}$$

Also we can generalize the hyperbolic functions from the real to the complex domain, that is for example

$$\cosh x = \frac{e^x + e^{-x}}{2} \rightarrow \cosh z = \frac{e^z + e^{-z}}{2}$$

Finally let's note the following relation between the function. As an example

KEY

$$\cosh(iz) = \frac{e^{iz} + e^{-iz}}{2} = \cos z$$