UNIVERSIDADE FEDERAL DO ABC

DB1BCN0407 Funções de várias variáveis - PROVA 1 - Turma A1 - 27/03/2018

Prof. André Pierro de Camargo

- 1. (1.5) Prove um dê um contra-exemplo:
 - (a) (0.5) Se $\gamma_1, \gamma_2 : [a, b] \to \mathbb{R}^n$ são duas curvas tais que $||\gamma_1(t) \gamma_2(t)|| = k > 0 \ \forall \ t \in [a, b]$, então $L(\gamma_1) = L(\gamma_2)$ (γ_1 e γ_2 possuem o mesmo comprimento).
 - (b) (0.5) Se uma curva $\gamma:[a,b]\to\mathbb{R}^3$ está contida numa reta, então $\gamma'(t)$ é um vetor constante.
 - (c) (0.5) Se a derivada $\gamma'(t)$ de uma curva $\gamma:[a,b]\to\mathbb{R}^3$ é um vetor constante, então γ está contida numa reta.
- 2. (1.5) Calcule o comprimento da curva $y = \frac{1}{3}(x^2+2)^{3/2}, 0 \le x \le 1$.
- 3. (1.5) Considere a função $f(x,y) = \begin{cases} 1+y+x, & y \leq 0, x \leq 0 \\ 1+y-x, & y \leq 0, x > 0 \\ 1-y-x, & y > 0, x \geq 0 \\ 1-y+x, & y > 0, x < 0 \end{cases}$, definida

para todos os pares de números reais (x, y).

- (a) (1.0) Desenhe a curva de nível f(x,y) = -1.
- (b) (0.5) Determine o conjunto de todos os valores de k tais que a curva de nível f(x,y) = k não é um conjunto vazio.
- 4. (1.0) Determine todos os possíveis valores de a e b para que a função $f(x,y,z)=\frac{x^2+ay^2}{bx^2+y^2}$ tenha um limite quando $(x,y)\to (0,0)$.
- 5. (1.0) Uma função $f: \Omega \to \mathbb{R}$ definida em um subconjunto Ω do \mathbb{R}^n é dita Lipschitziana se existe uma constante positiva L tal que $|f(u) f(v)| \le L||u-v|| \ \forall \ u,v \in \Omega$.

- (a) (0.5) Mostre que uma função Lipschitziana é contínua em todos os pontos do seu domínio.
- (b) (0.5) Mostre que, se $f:\Omega\to\mathbb{R}$ e $g:\mathbb{R}\to\mathbb{R}$ são Lipschitzianas, então a função composta $g\circ f$ é Lipschitziana.
- 6. (2.0) Considere a função $f(x,y) = \cos(\sqrt{x^2 + y^2})$ definida para todos os pares de números reais (x,y).
 - (a) (0.5) Calcule as derivadas parciais de f em um ponto genérico $(x_0, y_0) \neq (0, 0)$.
 - (b) (0.5) Calcule as derivadas parciais de f na origem.
 - (c) (1.0) f é diferenciável na origem?
- 7. (1.5) Seja $f: \Omega \to \mathbb{R}$ uma função diferenciável definida em alguma subconjunto Ω de \mathbb{R}^2 . Seja $(x_0, y_0) \in \Omega$. O conjunto das direções de descida de f é o conjunto $\mathcal{D}(f, x_0, y_0)$ formado por todas as direções $\overrightarrow{v} = (v_1, v_2)$ que formam um ângulo maior do que $\pi/2$ com o vetor gradiente $\nabla f(x_0, y_0)$, ou seja $\mathcal{D}(f, x_0, y_0) = \left\{ (v_1, v_2) : v_1 \frac{\partial f}{\partial x}(x_0, y_0) + v_2 \frac{\partial f}{\partial y}(x_0, y_0) < 0 \right\}$.
 - (a) (0.5) Mostre que, se $\nabla f(x_0, y_0) \neq \overrightarrow{0}$, então o conjunto $\mathcal{D}(f, x_0, y_0)$ não é vazio.
 - (b) (1.0) É possível mostrar que, se \overrightarrow{v} é uma direção de descida de f, então, para t>0 suficientemente pequeno, vale $f((x_0,y_0)+t\overrightarrow{v})< f((x_0,y_0))$, ou seja, é possível diminuir o valor de $f((x_0,y_0))$ andando um pouquinho na direção de \overrightarrow{v} .
 - Com base nesse fato, encontre o ponto (x^*, y^*) que minimiza a função $f(x, y) = x^2 + y^2$ definida no conjunto $\Omega = \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 \le 16 \text{ e } x + y \ge 1\}.$
- 8. (1.0) Considere a função $f(x,y) = x^2 + \pi xy + y^2$ definida para todos os pares de números reais (x,y). Determine (x_0,y_0) tal que o plano tangente ao gráfico de f no ponto $(x_0,y_0,f(x_0,y_0))$ é paralelo ao plano z=-3x+5y+7.