Gráfalgoritmusok

Gaskó Noémi

2023 március 19.

Tartalomjegyzék

- Fák (folyt.)
- Legrövidebb utak algoritmusok
 - Dijkstra algoritmusa
 - Best-first search algoritmusa
 - A* algoritmusa
 - Ford algoritmusa
 - Johnson algoritmusa
 - Bellman-Kalaba algoritmusa
 - Floyd-Warshall algoritmusa
- Megszorítások és gráfok
 - Lineáris programozás
 - Megszorítási gráfok

Múlt órán

- hidak, elvágó pontok, kétszeresen összefüggő komponensek
- fák

Steiner fa

- a feladatban meg van adva a csomópontok egy részhalmaza is, a feladat a minimális feszitőfa meghatározása, amely kötelező módon tartalmazza a megadott csomópontokat
- Karp 21 NP-teljes feladatának egyike
- ha két elemet tartalmaz a feladat: minimális út
- ha az összes csomópontot tartalmazza, akkor a feladat megegyezik a minimális feszitőfával

Példa: lásd 4_jegyzet.pdf

Minimális szűk feszítőfa (MBST)

Értelmezés

Egy gráf minimális szűk feszítőfája egy olyan feszítőfa, melynek a legköltségesebb éle minimális.

Tétel

Egy minimális feszítőfa egyben minimális szűk feszítőfa, de egy minimális szűk feszítőfa nem mindig minimális feszítőfa.

Camerini algoritmusa

- divide et impera, két részre osztjuk az élek halmazát, medián alatt és felett
- az A halmaz bejárása a T erdő
- ha T feszítőfa, akkor rekurziv meghívás csak az A-ra
- ha nem, akkor több komponens, összehuzzuk és meghivjuk az összehúzott csomópontokra és a B-re
- O(m) idő

Példa: 4_jegyzet.pdf

Egyéb változatok

- fokszámkorlázozott minimális feszítőfa
- maximális feszítőfa

Egy csúcsból minden csúcsba:

Moore algoritmusa

Egy csúcsból minden csúcsba:

- Moore algoritmusa
- Dijkstra algoritmusa

Egy csúcsból minden csúcsba:

- Moore algoritmusa
- Dijkstra algoritmusa
- Ford algoritmusa

Egy csúcsból minden csúcsba:

- Moore algoritmusa
- Dijkstra algoritmusa
- Ford algoritmusa
- A* algoritmus

Egy csúcsból minden csúcsba:

- Moore algoritmusa
- Dijkstra algoritmusa
- Ford algoritmusa
- A* algoritmus

Minden csúcsból egy csúcsba:

Egy csúcsból minden csúcsba:

- Moore algoritmusa
- Dijkstra algoritmusa
- Ford algoritmusa
- A* algoritmus

Minden csúcsból egy csúcsba:

Bellman-Kalaba algoritmus

Egy csúcsból minden csúcsba:

- Moore algoritmusa
- Dijkstra algoritmusa
- Ford algoritmusa
- A* algoritmus

Minden csúcsból egy csúcsba:

Bellman-Kalaba algoritmus

Minden csúcsból minden csúcsba

Egy csúcsból minden csúcsba:

- Moore algoritmusa
- Dijkstra algoritmusa
- Ford algoritmusa
- A* algoritmus

Minden csúcsból egy csúcsba:

Bellman-Kalaba algoritmus

Minden csúcsból minden csúcsba

- Johnson algoritmus
- Floyd-Warshall algoritmus

útvonaltervezés

- útvonaltervezés
- üzenetek továbbitása hálozatokban

- útvonaltervezés
- üzenetek továbbitása hálozatokban
- pénzváltás mi előnyősebb?

- útvonaltervezés
- üzenetek továbbitása hálozatokban
- pénzváltás mi előnyősebb?
- ütemezések

- útvonaltervezés
- üzenetek továbbitása hálozatokban
- pénzváltás mi előnyősebb?
- ütemezések
- robotok mozgásának a megtervezése

Egy példa

Currency	£	Euro	¥	Franc	\$	Gold
UK Pound	1.0000	0.6853	0.005290	0.4569	0.6368	208.100
Euro	1.4599	1.0000	0.007721	0.6677	0.9303	304.028
Japanese Yen	189.050	129.520	1.0000	85.4694	120.400	39346.7
Swiss Franc	2.1904	1.4978	0.011574	1.0000	1.3941	455.200
US Dollar	1.5714	1.0752	0.008309	0.7182	1.0000	327.250
Gold (oz.)	0.004816	0.003295	0.0000255	0.002201	0.003065	1.0000

Egy példa

Currency	£	Euro		Franc	\$	Gold
UK Pound	1.0000	0.6853	0.005290	0.4569	0.6368	208.100
Euro	1.4599	1.0000	0.007721	0.6677	0.9303	304.028
Japanese Yen	189.050	129.520	1.0000	85.4694	120.400	39346.7
Swiss Franc	2.1904	1.4978	0.011574	1.0000	1.3941	455.200
US Dollar	1.5714	1.0752	0.008309	0.7182	1.0000	327.250
Gold (oz.)	0.004816	0.003295	0.0000255	0.002201	0.003065	1.0000

Hogy lesz ebből gráf?

Egy példa

Currency	£	Euro	¥	Franc	\$	Gold
UK Pound	1.0000	0.6853	0.005290	0.4569	0.6368	208.100
Euro	1.4599	1.0000	0.007721	0.6677	0.9303	304.028
Japanese Yen	189.050	129.520	1.0000	85.4694	120.400	39346.7
Swiss Franc	2.1904	1.4978	0.011574	1.0000	1.3941	455.200
US Dollar	1.5714	1.0752	0.008309	0.7182	1.0000	327.250
Gold (oz.)	0.004816	0.003295	0.0000255	0.002201	0.003065	1.0000

Hogy lesz ebből gráf? csomópont: pénznem élek: a váltási összegek

Jelölések az algoritmusokban

- u kezdőcsúcs
- ullet l(v) v-nek az u-tól való távolsága
- ullet p(v) a legrövidebb úton a v-t megelőző csúcs
- ullet Q egy sor

Legrövidebb út nem irányított gráfokban

Moore algoritmusa - szélességi bejáráson alapul

Legrövidebb út nem irányított gráfokban

Moore algoritmusa - szélességi bejáráson alapul

```
Moore Távolság (G, u)
     l(u) := 0
2. for minden v \in V(G), v \neq u csúcsra do
3.
           l(v) := \infty
4.
     legyen Q egy üres sor
5. u \rightarrow Q
6.
    while Q \neq \emptyset do
7.
            Q \to x
8.
            for minden y \in N(x) do
9.
                 if l(y) = \infty then
10.
                   p(y) := x
11.
                   l(y) := l(x) + 1
12.
                   u \to Q
13.
      return l, p
```

Algoritmus a legrövidebb u–v utak keresésére

```
\mathsf{Moore} \mathsf{\acute{U}t}(l,p,v)
```

- $1. \quad k := l(v)$
- $u_k := v$
- 3. while $k \neq 0$ do
- 4. $u_{k-1} := p(u_k)$
- 5. k := k-1
- 6 return u

Példa

Melyik algoritmus származik tőle?

Gaskó Noémi Gráfalgoritmusok 2023. március 19. 17/0

Dijkstra algoritmus

Dijkstra_queue(G)

```
1: \mathsf{INIT\_S}(\mathsf{G},\mathsf{s})

2: P = \varnothing

3: Q = V

4: \mathsf{while}\ Q \neq \varnothing\ \mathsf{do}

5: u = \mathsf{EXTRACT\_MIN}(Q)

6: P = P \cup \{u\}

7: \mathsf{for}\ v \in G.Adj[u]\ \mathsf{do}

8: \mathsf{RELAX}(\mathsf{u},\mathsf{v},\mathsf{w})
```

Gaskó Noémi Gráfalgoritmusok 2023. március 19.

Dijkstra

INIT_S(G,s)

- 1: for $v \in V$ do
- 2: $v.d = \infty$
- 3: $v.\pi = NIL$
- 4: s.d = 0

RELAX(u, v, w)

- 1: **if** v.d > u.d + w(u, v) **then**
- v.d = u.d + w(u, v)
- 3: $v.\pi = u$

Dijsktra algoritmus - példa

Megoldás: lásd szemináriumon

Gaskó Noémi Gráfalgoritmusok 2023. március 19.

Hogyan gyorsíthatjuk a Dijkstra algoritmust?

Kupacok (Heaps) segítségével.

```
Mi a kupac?
egy adatszerkezet
```

Kupacok típusai:

- bináris kupac
- Fibonacci kupac
- B-kupac
- ...

Műveletek kupacokkal: beszúrás, törlés, stb.

C++-ban használható: priority queue vagy saját implementáció

Gaskó Noémi

Mikor nem működik Dijkstra algoritmusa?

Gaskó Noémi Gráfalgoritmusok 2023. március 19. 22 / 6

Mikor nem működik Dijkstra algoritmusa?

Negatív élek esetén

Mikor nem működik Dijkstra algoritmusa?

Negatív élek esetén Egy példa:

Dijkstra

Tétel (Dijkstra helyessége)

A $Dijkstra_queue(G)$ algoritmus esetén, a G=(V,E) gráfra, mely nem tartalmaz negatív súlyokat és s a kezdő csomópont, a végén $u.d=\delta(s,u), \forall u\in V.$

Best-first search algoritmus

-van egy heurisztikus függvény (h(x)), amley megadja a megbecsült költségét az adott célnak

Milyen tipusú bejárás ?

Milyen tipusú bejárás ?

Milyen tipusú bejárás ?

Best first: Trace

- 1. open=[A5]; closed=[]
- 2. Visit A5; open=[B4,C4,D6]; closed=[A5] Ordered by heuristic values
- 3. Visit B4; open=[C4,E5,F5,D6]; closed=[B4,A5]
- 4. visit C4; open=[H3,G4,E5,F5,D6]; closed=[C4,B4,A5]
- 5. visit H3; open=[02,P3,G4,E5,F5,D6]; closed=[H3.C4.B4.A5]

-best-first search algoritmuson alapul

- -best-first search algoritmuson alapul
- -1968-ban írták le először

A* algoritmus

- -best-first search algoritmuson alapul
- -1968-ban írták le először -megoldás például erre is:

-komplexitása függ a megválasztott heurisztikától

-komplexitása függ a megválasztott heurisztikától

- f(n) = g(n) + h(n)
 - g(n) = "cost from the starting node to reach n"
 - h(n) = "estimate of the cost of the cheapest path from n to the goal node"

Bellman-Ford algoritmus

```
\begin{array}{lll} \textbf{Bellman\_Ford(G)} \\ \textbf{1:} & \mathsf{INIT\_S(G,s)} \\ \textbf{2:} & \textbf{for } i=1 \textbf{ to } |V|-1 \textbf{ do} \\ \textbf{3:} & \textbf{for minden \'elre } \{u,v\} \in E \textbf{ do} \\ \textbf{4:} & \mathsf{RELAX(u,v,w)} \\ \textbf{5:} & \textbf{for minden \'elre } \{u,v\} \in E \textbf{ do} \\ \textbf{6:} & \textbf{if } v.d > u.d + w(u,v) \textbf{ then} \\ \textbf{7:} & \textbf{return FALSE} \\ \textbf{8:} & \textbf{return TRUE} \\ \end{array}
```

Bellman-Ford (II)

$INIT_S(G,s)$

- 1: for $v \in V$ do
- 2: $v.d = \infty$
- 3: $v.\pi = NIL$
- 4: s.d = 0

RELAX(u, v, w)

- 1: **if** v.d > u.d + w(u, v) **then**
- v.d = u.d + w(u, v)
- 3: $v.\pi = u$

Bellman-Ford (III)

- \circ O(VE) futási idő
- ullet INIT_S lépés időtartama $\Theta(V)$
- 2-4 sorok futása $\Theta(E)$
- ullet a for az 5-7 sorokban O(E)

Lemma

Legyen G=(V,E) egy súlyozott irányított gráf s a kezdeti csúcs, $w:E\to\mathbb{R}$ a súlyok, feltétetelezzük, hogy G nem tartalmaz s-ből elérhető negativ kört. A 2-4 sorokban található |V|-1 iterációja után a $Bellman_Ford(G)$ algoritmusnak: $v.d=\delta(s,v)$ minden v csomópontra az s-ből.

Következmény

Legyen G=(V,E) egy súlyozott irányított gráf s a kezdeti csúcs, $w:E\to\mathbb{R}$ a súlyok. Minden $v\in V$ csomópont esetén létezik egy út s-ből v-be akkor és csakis akkor, ha $Bellman\ Ford(G)\ v.d<\infty$ -el fejeződik be.

Bellman-Ford

Tétel (a Bellman-Ford algoritmus helyessége)

Legyen a $Bellman_Ford(G)$ eljárás, melyet a súlyozott és irányított G=(V,E) gráfon futattunk s kezdőpontból, $w:E\to\mathbb{R}$ a súlyföggvény. Ha G nem tartalmaz s-ből elérhető negativ kört, akkor az algoritmus TRUE-t térít vissza, $v.d=\delta(s,v), \forall v\in V$ mig a szülők gráfja G_{π} egy minimáls feszítőfa s gyökérrel. Ha G tartalmaz s-ből elérhető negativ kört, akkor az algoritmus visszatérítési értéke FALSE.

-1977-ben

-1977-ben -negatív élű súlyok esetén is műküdik

- -1977-ben -negatív élű súlyok esetén is műküdik Az algoritmus lépései:
 - hozzáadunk egy új csomópontot (q), amely minden csomóponthoz fog kapcsolódni

- -1977-ben -negatív élű súlyok esetén is műküdik Az algoritmus lépései:
 - hozzáadunk egy új csomópontot (q), amely minden csomóponthoz fog kapcsolódni
 - összekötjük az összes csomóponttal egy-egy 0 költségű éllel
 - lefuttatjuk a Bellman -Ford algoritmust (q a kezdőpont)

- -1977-ben -negatív élű súlyok esetén is műküdik Az algoritmus lépései:
 - hozzáadunk egy új csomópontot (q), amely minden csomóponthoz fog kapcsolódni
 - összekötjük az összes csomóponttal egy-egy 0 költségű éllel
 - lefuttatjuk a Bellman -Ford algoritmust (q a kezdőpont)
 - újrasúlyozuk az éleket: w(u,v) = w(u,v) + h[u] h[v]

- -1977-ben -negatív élű súlyok esetén is műküdik Az algoritmus lépései:
 - hozzáadunk egy új csomópontot (q), amely minden csomóponthoz fog kapcsolódni
 - összekötjük az összes csomóponttal egy-egy 0 költségű éllel
 - lefuttatjuk a Bellman -Ford algoritmust (q a kezdőpont)
 - újrasúlyozuk az éleket: w(u,v) = w(u,v) + h[u] h[v]
 - g-t kiszedjük, és Dijkstra algoritmusát futtatjuk minden csomópontból kiindulva

Gaskó Noémi

$$w(u,v) = w(u,v) + h[u] - h[v]$$

Distances from 4 to 0, 1, 2 and 3 are 0, -5, -1 and 0 respectievely.

Bellman-Kalaba algoritmus

- dinamikus programozás módszere
- negatív súlyok is lehetnek a gráfban
- a gráf szomszédsági mátrixát használja
- negativ köröket is megtalál

Bellman-Kalaba algoritmus

kiválasztunk egy csomópontot (egy oszlopot a szomszédsági mátrixból) és minden csomópontból meghatározzuk a távolságot ebbe a csomópontba.

Ennek a jelölése $V^{(1)}=(V_i^{(1)})_{i=\overline{1,n}}$, a szomszédsági mátrix

 $A=(a_{ij})_{i,j=\overline{1,n}}$, ahol $a_{ij}=d_{ij}^{(0)}$. A szomszédsági mátrix elemei a következőek:

$$a_{ij} = \begin{cases} w(v_i, v_j) & \quad \text{ha } (v_i, v_j) \in E, \\ 0 & \quad \text{ha } i = j, \\ \infty & \quad \text{ha } (v_i, v_j) \notin E. \end{cases}$$

Meghatározzuk k = 1, 2, ..., n esetén:

$$V_i^{(k)} = \min_{i=\overline{1.n}} \{a_{ij} + V_j^{(k-1)}\}, \ \mathrm{minden} \\ i = 1,2,...,n$$

amig $V^{(t)} = V^{(t-1)}$ (t az időpillanatot, iterációt jelöli).

	1	2	3	4	5	6	7	$V^{(1)}$	$V^{(2)}$	$V^{(3)}$	$V^{(4)}$
1	0	2	3	∞	∞	∞	30	30	30	21	21
2	∞	0	∞	5	∞	4	∞	∞	19	19	19
								∞			
4	∞	∞	∞	0	10	10	∞	∞	25	25	25
								∞			
6	∞	∞	∞	∞	∞	0	15	15	15	15	15
7	∞	∞	∞	∞	∞	∞	0	0	0	0	0

Floyd-Warshall algoritmus

Warshall algoritmus

```
\begin{aligned} & \text{Warshall}(D_0) \\ & 1. \quad D := D_0 \\ & 2. \quad \text{for } k := 1 \text{ to } n \text{ do} \\ & 3. \quad \text{for } i := 1 \text{ to } n \text{ do} \\ & 4. \quad \text{for } j := 1 \text{ to n do} \\ & 5. \quad d_{ij} := \min(d_{ij}, d_{ik} + d_{kj}) \\ & 6. \quad \text{return } D \end{aligned}
```

Példa.

1. ábra. Egy súlyozott gráf

Gaskó Noémi

Utak száma gráfokban

```
\begin{aligned} & \mathsf{FW}(A,n) \\ & \mathsf{FW}(A,n) \\ & 1. \quad W := A \\ & 2. \quad \text{for } k := 1 \text{ to } n \text{ do} \\ & 3. \quad \text{for } i := 1 \text{ to } n \text{ do} \\ & 4. \quad \text{for } j := 1 \text{ to n do} \\ & 5. \quad w_{ij} := w_{ij} + w_{ik}w_{kj} \\ & 6. \quad \text{return } W \end{aligned}
```


Az FW-algoritmus alkalmazása után:

Utak meghatározása

A fenti algoritmust a latin-négyzetes módszerrel kombinálva, meghatározhatjuk az utakat is.

Olyan szavakat konkatenálunk, amelyek nem tartalmaznak közös betűket. A szomszédsági mátrix mintájára használjuk az $\mathcal A$ mátrixot, amelynek A_{ij} elemei a gráf csúcsaiból képzett szavak. Kezdetben ezek az éleket jelölik, később az utakat. Kezdetben

$$A_{ij} = \begin{cases} \{a_i a_j\}, & \text{ha } (a_i a_j) \text{ irányított \'el}, \\ \emptyset, & \text{k\"ul\"onben}, \end{cases} \quad i = 1, 2, \dots, n, \ j = 1, 2, \dots, n.$$

Ha \mathcal{A} és \mathcal{B} szóhalmazok, legyen $\mathcal{A}\cdot\mathcal{B}$ az a halmaz, amelyet úgy képezünk, hogy \mathcal{A} elemeit megszorozzuk (konkatenáljuk) \mathcal{B} elemeivel, de csak akkor, ha a két szorzandó szó nem tartalmaz közös betűket.

$$\mathcal{A} \cdot \mathcal{B} = \big\{ ab \, \big| \, a \in \mathcal{A}, b \in \mathcal{B}, a \text{ \'es } b \text{ k\"ul\"o}nb\"oz\~o bet\~ukb\~ol \'all} \big\}.$$

- Az $s = s_1 s_2 \cdots s_p$ szóból képezzük az 's szót úgy, hogy elhagyjuk s első betűjét: $s = s_2 s_3 \cdots s_n$
- Képezzük az A_{ij} halmazt az A_{ij} halmazból, annak minden eleméből elhagyván az első betűt.
- Ekkor az ${}'\mathcal{A}$ mátrix elemei ${}'A_{ij}$.

Floyd-Warshall-Latin(A, n)

- 1. $W \leftarrow A$
- 2 for $k \leftarrow 1$ to n
- 3. for $i \leftarrow 1$ to n
- for $j \leftarrow 1$ to n
- if $W_{ik} \neq \emptyset$ and $W_{kj} \neq \emptyset$ 5.
- then $W_{ij} \leftarrow W_{ij} \cup W_{ik} \cdot' W_{kj}$ 6.
- return W

Egy példa

Gaskó Noémi Gráfalgoritmusok 2023. március 19.

```
 \begin{pmatrix} \emptyset & \{adb, ab\} & \{adbc, abc\} & \{abcd, ad\} & \{ade, adbce, abcde, abce\} \\ \emptyset & \emptyset & \{bc\} & \{bcd\} & \{bcde, bce\} \\ \emptyset & \{cdb\} & \emptyset & \{cd\} & \{cde, ce\} \\ \emptyset & \{db\} & \{dbc\} & \emptyset & \{dbce, de\} \\ \emptyset & \emptyset & \emptyset & \emptyset & \emptyset & \emptyset \end{pmatrix}
```

Gaskó Noémi Gráfalgoritmusok 2023. március 19. 51/62

Algoritmusok bonyolultsága és összefoglaló

Egy csúcsból a többi csúcsba:

- ullet Moore O(n+m) súlyozatlan gráfok esetén
- ullet Dijkstra O(mlogn) nemnegatív költségű élek
- ullet Bellman-Ford $O(n\cdot m)$ akármilyen gráf

Összes csúcsból az összes csúcsba:

- ullet Roy-Floyd-Warshall $O(n^3)$ akármilyen gráf
- ullet Johnson $O(n \cdot mlogn)$ akármilyen gráf

Gaskó Noémi Gráfalgoritmusok 2023. március 19.

Lineáris programozás

Az általános probléma

legyen $A m \times n$ -es mátrix, b egy m méretű és c egy n méretű tömb. Határozzuk meg az x n elemű tömböt, amely maximizálja a következő függvényt

$$\sum_{i=1}^{n} c_i x_i$$

és kielégíti az m megszorításokat:

$$Ax \leq b$$
.

 néhány esetben csak az a fontos, hogy egy a megszorításokat kielgitő megoldást találjunk, vagy pedig azt kimutatni, hogy nincs ilyen megoldás

Megszorítási rendszerek

- ullet egy megszorítási rendszerben minden sor az A mátrixban -1 illetve 1-ket tartalmaz, a többi érték 0
- igy a Ax < b megadott megszorítások m megszorítást tartlamaznak nismeretlennel, a megszorítások a következő egyenlőtlenségek lesznek

$$x_j - x_i \le b_k$$

ahol $1 \le i, j \le n, i \ne j$ és $1 \le k \le m$.

Példa

$$\begin{pmatrix} 1 & -1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & -1 \\ 0 & 1 & 0 & 0 & -1 \\ -1 & 0 & 1 & 0 & 0 \\ -1 & 0 & 0 & 1 & 0 \\ 0 & 0 & -1 & 1 & 0 \\ 0 & 0 & 0 & -1 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{pmatrix} \le \begin{pmatrix} 0 \\ -1 \\ 1 \\ 5 \\ 4 \\ -1 \\ -3 \\ -3 \end{pmatrix}$$

askó Noémi Gráfalgoritmusok 2023. március 19.

Példa (II)

ullet a feladat, hogy olyan x_1, x_2, x_3, x_4, x_5 értékeket találjunk, amelyek kielégítik a 8 megszorítást

$$x_1 - x_2 \le 0,$$

$$x_1 - x_5 \le -1,$$

több megoldás létezik:

$$x = (-5, -3, 0, -1, -4)$$

 $x' = (0, 2, 5, 4, 1)$

Megszorítási rendszerek (II)

Lemma 4.1

legyen $x = (x_1, x_2, ..., x_n)$ egy megoldás $Ax \leq b$ és d egy konstans. Ebben az esetben az $x+d=(x_1+d,x_2+d,...,x_n+d)$ is megoldás a megszorításokra $Ax \leq b$.

Bizonyítás.

minden x_i és x_j esetén $(x_j + d) - (x_i + d) = x_j - x_i$. Ha x teljesíti $Ax \le b$ akkor x + d is egy megoldás.

Megszorítási gráfok

- a megszorításokat kezelhetjük egy gráfként
- o az $Ax \leq b$ megszorítási egyenlőtlenségek esetén, az A mátrix melynek mérete $m \times n$ tekinthető egy incidencia mátrixként melynek n csomópontja és m éle van
- ullet minden $v_i \in V, i=1,2,...,n$ csomópont egy x_i változónak felel meg
- ullet minden $(i,j)\in E$ él egy egyenlőtlenségnek

Értelmezés

legyen $Ax \leq b$ egy megszorítási rendszer, a rendszernek megfelelő gráf egy irányított és súlyozott gráf G=(V,E) ahol $V=\{v_0,v_1,...,v_n\}$ és

$$E = \{(v_1, v_j) | x_j - x_i \le b_k \text{ megszorítás} \}$$

$$\cup \{(v_0, v_1), (v_0, v_2), ..., (v_0, v_n) \}$$

Gaskó Noémi Gráfalgoritmusok 2023. március 19. 58/62

Megszorítási gráfok (II)

- ullet a gráfhoz hozzáadunk egy v_0 csomópontot, amely minden más csomóponthoz kapcsolódik
- $v_i \in V, i = 1, ..., n$
- ha $(x_j x_i \le b_k \text{ akkor } w(v_i, v_j) = b_k$
- $w(v_0, v_i) = 0, \forall i = 1, ..., n$

Gaskó Noémi Gráfalgoritmusok 2023. március 19. 59

Megszorítási gráfok (III)

Tétel

legyenek $Ax \leq b$ megszorítások és G = (V, E) a megszorítások gráfja. Ha G nem tartalmaz negativ kört, akkor

$$x = (\delta(v_0, v_1), \delta(v_0, v_2), ..., \delta(v_0, v_n))$$

egy megoldása az egyenletnek. Ha a gráf tartalmaz egy negativ kört, akkor nem létezik megoldás.

a megoldást megkaphatjuk a legrövidebb út megadásával

Gaskó Noémi Gráfalgoritmusok 2023. március 19. 60 / 62

Példa

- a $\delta(v_0, v_i)$ minden csomópontban megjelenik
- ullet egy lehetséges megoldás x=(-5,-3,0,-1,-4)

Forrásanyag

- http://www.cs.princeton.edu/courses/archive/spr10/cos226
- Kása jegyzet
- Santanu Saha Ray, Graph Theory with Algorithms and its Applications, Springer, 2013.