최적화 공학문제

1. 목적 함수와 제약 조건 분석

목적 함수 (Cost Function)

낙하산의 비용을 최소화하기 위한 목적 함수는 다음과 같습니다:

$$Cost = n(c_0 + c_1\ell + c_2A^2)$$

여기서:

- *n*: 낙하산의 개수
- *c*₀: 고정 비용 (낙하산 자체의 기본 비용)
- c_1 : 줄의 길이에 따른 비용
- c_2 : 낙하산의 표면적에 따른 비용
- ℓ : 줄의 길이 ($\ell=\sqrt{2}r$, 낙하산의 반경 r에 따라 결정됨)
- ullet A: 낙하산의 표면적 ($A=2\pi r^2$)

$$A=2\pi r^2$$

목적 함수의 해석:

• 낙하산의 개수 n이 많을수록 비용이 증가하며, 낙하산의 크기 A가 커질수록 비용이 제 곱으로 증가합니다.

nn

AA

• 줄의 길이 ℓ 역시 낙하산의 반경 r에 의해 영향을 받습니다. 따라서 r이 증가하면 낙하산 표면적과 줄 길이도 커지며, 이로 인해 비용이 증가합니다.

{\ell

rr

rr

제약 조건

제약 조건은 물자가 안전하게 떨어지도록 하는 물리적 한계를 설정합니다:

• 속도 제약:

$$v(t) \leq v_c$$

여기서 $v_c = 20\,m/s$ 는 충격 속도의 상한값입니다. 이는 낙하산이 물자를 안전하게 지면에 착륙시킬 수 있도록 보장하는 중요한 조건입니다.

• 개수 제약:n≥1

n≥1n \geq 1

낙하산의 개수는 최소 1개 이상이어야 하며, 낙하산이 없거나 음수인 경우는 물리적으로 말이 되지 않기 때문에 이러한 제약이 추가됩니다.

2. 속도와 위치에 대한 수식적 모델링

속도 함수 v(t)

낙하산을 통해 떨어지는 물체의 속도는 시간에 따라 변화합니다. 공기의 저항(항력)에 의해속도가 변하는 모델은 다음과 같습니다:

$$v(t) = rac{gm}{c} \left(1 - e^{-rac{ct}{m}}
ight)$$

여기서:

• qqq: 중력 가속도

• mmm: 낙하산에 매달린 물체의 질량

• ccc: 항력 계수 (낙하산의 표면적에 의존함)

이 식은 **속도가 처음에는 빠르게 증가**하지만, 공기 저항에 의해 시간이 지남에 따라 **점점 느 려지는 양상**을 나타냅니다.

위치 함수 z(t)

물체가 시간 t에 따른 위치 변화는 속도 함수의 적분으로 얻을 수 있습니다:

$$z(t)=z_0+rac{gm}{c}t+rac{gm^2}{c^2}\left(e^{-rac{ct}{m}}-1
ight)$$

여기서:

- *z*n: 초기 높이
- z(t): 시간 t에 따른 물체의 위치

이 함수는 물체가 낙하하는 동안의 높이 변화를 나타냅니다. 이를 통해 물체가 지면에 도달하는 데 걸리는 시간을 계산할 수 있습니다.

3. 낙하산 설계 변수의 정의 및 관계식

낙하산의 표면적 A

낙하산의 표면적은 낙하산의 반경 rrr에 의해 결정됩니다. 이때 낙하산의 표면적은 다음과 같이 정의됩니다:

 $A=2\pi r^2$

즉, 반경 r이 커질수록 낙하산의 표면적이 기하급수적으로 증가하며, 이는 항력 계수 c와 낙하 속도에 직접적인 영향을 미칩니다.

줄의 길이 {\ell{

낙하산에 연결된 줄의 길이는 낙하산의 반경에 따라 달라지며, 다음과 같은 관계를 가집니다:

$$\ell = \sqrt{2}r$$

즉, 반경 r이 커질수록 줄의 길이도 증가합니다.

항력 계수 ccc

항력 계수는 낙하산의 표면적에 따라 달라집니다:

$$c = k_c A$$

즉, 낙하산의 표면적이 커지면 항력도 커지며, 이는 속도를 줄이는 데 기여합니다. 그러나 항력이 너무 커지면 비용이 급격히 증가할 수 있습니다.

4. 낙하산 개수 n와 물체의 질량 m

낙하산의 개수 n은 물체의 총 질량을 낙하산의 개수로 나눈 값에 의해 각 낙하산이 감당해야 할 질량을 결정합니다:

$$m = \frac{M_t}{n}$$

여기서 M_t 는 물체의 총 질량입니다. 낙하산의 개수가 많아지면 각 낙하산이 감당해야 할 질량은 줄어들지만, 낙하산의 개수가 많아질수록 비용은 증가합니다. 이 둘 간의 균형을 맞추는 것이 최적화 문제의 핵심입니다.

5. 최적화 문제의 형태와 해결 과정

최적화 문제는 다음과 같은 형태로 정의됩니다:

최적화 문제의 형식화

- 1. 목적 함수:
- 2. $\mathrm{Cost} = n(c_0 + c_1 \ell + c_2 A^2)$ 비용을 최소화하는 것이 최적화 문제의 목적입니다.
- 3. **제약 조건**:
 - 속도 제약: $v(t) \leq v_c$
 - 개수 제약: $n \geq 1$

이 문제를 해결하려면 목적 함수를 최소화하면서 제약 조건을 만족시키는 낙하산의 크기 r와 개수 n를 찾아야 합니다. 이를 해결하기 위해 **라그랑주 승수법**, **수치적 최적화 기법** 등을 사용할 수 있습니다.

6. 함수 계산량 최소화

이 문제에서 낙하산의 크기 r, 개수 n, 줄의 길이 ℓ , 표면적 A, 항력 계수 c 등의 변수들이 상호 종속적이므로, 이를 수학적으로 단순화하는 것이 필요합니다. 함수 계산 수를 줄이기 위해 수치적 근사 방법을 적용하거나, 비선형 최적화 알고리즘을 활용할 수 있습니다.