

Instituto Politécnico de Tomar Escola Superior de Tecnologia de Tomar

ENGENHARIA INFORMÁTICA

Projecto de redes – Trabalho prático n.º 1 2014/2015

Trabalho elaborado por:

Luis Pontes n.º 17670; Ricardo Godinho n.º 11743; Ricardo Lourenço n.º 18155;

Índice

Introdução	3
Objectivos	3
Descrição do problema	
Procedimentos	
Cálculo da linha de vista	5
Equipamento necessário	
Cálculos	
Desafios	8
Conclusão	10
Bibliografia	11
Anexos	12

Introdução

Na visão das comunicações de rádio, uma zona de Fresnel, nomeada a partir do físico Augustin-Jean Fresnel , é um dos elipsóides concêntricos que define os volumes do padrão de radiação (geralmente) de abertura circular. As zonas de Fresnel resultam de difracção por uma abertura circular. Para maximizar o sinal do receptor, é preciso minimizar o efeito da perda de obstrução removendo obstáculos da linha de vista. Os sinais mais fortes estão na linha directa entre o transmissor e o receptor e encontram-se sempre na primeira zona de Fresnel. Caso esta esteja desobstruída, as ondas de rádio irão viajar numa linha recta partindo do transmissor com destino ao receptor. Mas caso existam superfícies reflexivas ao longo do caminho, as ondas de rádio reflectidas nessas superfícies podem chegar fora de fase, reduzindo a potência do sinal recebido. Neste projecto será abordado o cálculo do *link* budget entre vários sites tendo em conta vários aspectos, tais como, a linha de vista, a determinação do EIRP e das perdas em espaço aberto e a diferença entre a potência recebida e a sensibilidade do receptor.

Objectivos

- Análise de soluções tecnológicas para a implementação de redes wireless;
- Projecto de redes wireless de acordo com as tecnologias consideradas adequadas para os requisitos operacionais e para as condicionantes identificadas no terreno;

Descrição do problema

Este trabalho prático visa a implementação de uma rede wireless entre vários edifícios com diferentes localizações (Paços do Concelho, Bombeiros, Piscina, Oficinas e Centro de Interpretação do Alviela), tendo em conta as necessidades de largura de banda em cada site.

• Diagrama da rede:

• Necessidades de largura de banda em cada site:

Local	Largura de banda (camada	Largura de banda (camada	
	de rede)	de rádio)	
Bombeiros	25Mbps	50Mbps	
Piscinas	15Mbps	30Mbps	
Oficina	5Mbps	10Mbps	
CIN	6Mbps	12Mbps	

Procedimentos

Cálculo da linha de vista

1.1.1 Paços do Concelho – Bombeiros

- Distância 154m
- Determinar linha de vista
- Cálculos auxiliares: ver anexo, figura 1;

Local	Distância (metros)	Frequência (GHz)	Raio Zona Fresnel	80% mínimo	Linha de Vista
1.1.1	154	2,4	2,193676746	1,75494139	Sim

1.1.2 Bombeiros - Piscinas

- o Distância 195m
- o Determinar linha de vista
- Cálculos auxiliares: ver anexo, figura 2;

Local	Distância (metros)	Frequência (GHz)	Raio Zona Fresnel	80% mínimo	Linha de Vista
1.1.2	195	2,4	2,468479795	1,97478383	Sim

• Cálculos auxiliares: ver anexo, figura 2;

Local	Distância (metros)	Frequência (GHz)	Raio Zona Fresnel	80% mínimo	Linha de Vista
1.1.3	364	2,4	3,372585457	2,69806836	Sim

1.1.4 Paços do Concelho - Centro de Interpretação do Alviela

- Distância 3974
- Determinar linha de vista
- Cálculos auxiliares: ver anexo, figura 2;

Local	Distância (metros)	Frequência (GHz)	Raio Zona Fresnel	80% mínimo	Linha de Vista
1.1.4	3974	2,4	11,14361765	8,91489412	Não

Foi necessário uma ligação de Pacos do Concelho ao Monte e outra do Monte ao CIN:

Torriccessario anna figurao de l'aços do concerno do Monte e oddra do Monte do City.								
Resolução 1.1.4								
Local	Distância (metros)	Frequência (GHz)	Raio Zona Fresnel	80% mínimo	Linha de Vista			
Paços C - Monte	3974	2,4	11,14361765	8,91489412	Sim			
Monte - CIN	500	2,4	3,952731123	3,162184899	Sim			

Equipamento necessário

Existe a necessidade da obtenção de 10 access points e 10 antenas, visto existir cinco links.

Equipamento	Modelo	Características	Quantidade	Preço	Total
Antena	AIR-ANT2460P-R	Ganho: 6dBi	10	148,99 €/un	1489.9€
Antena	AIN-AINTZ400P-N	Banda de frequência: 2.4 GHz	10	140,33 €/ uii	1403.3€
		Sensibilidade:			
		-93 dBm @ 6 Mbps			
	-90 dBm @ 9 Mbps				
		-88 dBm @ 12 Mbps		852.00€/un	8.520€
Access Point	Cisco Aironet	-85 dBm @ 18 Mbps	10		
	1530	-82 dBm @ 24 Mbps			
		-82 dBm @ 36 Mbps			
		-76 dBm @ 48 Mbps			
		-73 dBm @ 54 Mbps			

Cálculos

Foi então calculada a potência transmitida, potência recebida, perdas em espaço aberto e margem. Como é necessário 10Mbps (camada de rádio) nas Oficinas e este local está ligado às Piscinas, será necessário adicionar estes 10 aos 30 das Piscinas, fazendo com que seja necessário 40Mbps nas Piscinas. A tabela seguinte mostra a largura de banda real necessária em cada *site*, tendo em conta as velocidades suportadas pelo access point.

Local	Largura de banda necessária (camada de rádio)	Largura de banda suportada (camada de rádio)
Bombeiros	50Mbps	54Mbps
Piscinas	40Mbps	48Mbps
Oficina	10Mbps	12Mbps
Monte	12Mbps	12Mbps
CIN	12Mbps	12Mbps

Fórmulas:

LFS = 32,45 + 20LOG10 (Distância em Km) + 20LOG10 (Banda em MHz)

Potência Transmitida = (0,22 x comprimento do cabo em metros) – ganho da antena + EIRP

Potência Recebida = EIRP – LFS + ganho da antena – (0,22 x comprimento do cabo em metros)

Margem = Potência Recebida - Sensibilidade

Tabela de cálculos:

Estação	Potência	Ganho Comprimento Estação Ganho Comprimento LFS	Pot.	nento LFS Pot. Ligação Wireless			ess					
Base T	Transmitida	antena	do cabo		receptora subscritora	antena	do cabo	LFS	Recebida	Distância	Modo	Margem
P.Concelho	16,2	6	10	20	Monte	6	10	110,8708	-87,0708	3,474	12	0,929179
P.Concelho	16,2	6	10	20	Bombeiros	6	20	83,80464	-62,2046	0,154	54	10,79536
P.Concelho	16,2	6	10	20	Piscinas	6	6	30,91073	-66,2307	0,349	48	9,769267
Monte	16,2	6	10	20	CIN Alviela	6	30	94,03362	-74,6336	0,5	12	13,36638
Piscinas	15,32	6	6	20	Oficinas	6	1	91,27625	-65,4963	0,364	12	22,50375

Desafios

1. As normas IEEE 802.11n e IEEE 802.11ac são neste momento as normas usadas em redes sem fios por rádio frequência em ambientes indoor. Compare o princípio de funcionamento destas normas com as normas IEEE 802.11 a/b/g.

A tabela seguinte indica as comparações entre os vários standards:

Standard	Banda (GHz)	Largura de banda (MHz)	Modulação	Tecnologias avançadas	Taxa de dados
802.11a	5	20	OFDM	N/A	54Mbps
802.11b	2.4	20	DSSS	N/A	11Mbps
802.11g	2.4	20	DSSS; OFDM	N/A	54Mbps
802.11n	2.4; 5	20; 40	OFDM	MIMO	600Mbps
802.11ac	5	40; 80; 160	OFDM	MIMO; MU-MIMO	6.93Gbps

MIMO - *Multiple Input Multiple Output*: tecnologia que utiliza múltiplas antenas para resolver de forma coerente mais informação do que é possível utilizar com uma única antena. Isto é possível graças à multiplexação que agrega vários fluxos de dados independentes, transferidos simultaneamente dentro de um canal de largura de banda.

MU-MIMO - é uma tecnologia semelhante à anterior com a característica de se poder utilizar uma (ou mais) antena(s) por cada cliente.

OFDM - técnica de modulação baseada na ideia de multiplexação por divisão de frequência (FDM) onde múltiplos sinais são enviados em diferentes frequências.

DSSS - técnica de dispersão do espectro no qual o sinal original de dados é multiplicado com um código de propagação de pseudo ruído aleatório.

2. Quais os cuidados a ter durante o projecto quando se pretende usar as normas IEEE 802.11n e ac?

Devido ao facto destas normas permitirem grandes velocidades, será necessário que por detrás da rede *wireless* esteja uma rede cablada com velocidades superiores a 1Gbps, assim como uma rápida ligação à Internet. Também é necessário conhecer quais os dispositivos WiFi que se irão ligar à rede (se usam ou não vários streams no transmissor e/ou no receptor), se suportam ou não estas normas, porque uma rede com estas normas têm maior custo que as normas anteriores. Terá que existir uma inspecção ao local para se saber onde se colocam os *access points*, qual o tipo de material existente no edifício (paredes, vidros, etc) porque podem reflectir as ondas. Existe ainda a possibilidade de o país onde se implementa estas normas, não permitir redes *outdoor* a 5GHz, daí e se for esse o caso, terá de se usar a norma 802.11n a 2.4GHz.

Conclusão

Com este projecto entende-se a importância do elipsóide de Fresnel na concepção de redes sem fios, para se saber se existe obstrução de vista. Outras importâncias deste projecto, são o uso específico do tipo de antena (quanto ao ganho e direcção) e qual a potência que deve ser transmitida para não exceder o EIRP, visto que isso pode ter implicações legais, consoante o país onde a rede está a ser projectada. Depois de todos os cálculos concluiu-se que este projecto, caso fosse implementado, funcionaria e teria um custo aproximado de 10.009,90€, apenas em access points e antenas. Entendeu-se também as diferenças entre as várias normas 802.11.

Bibliografia

- Wikipedia, Zona de Fresnel, https://pt.wikipedia.org/wiki/Zona_de_Fresnel
- CISCO, Antenna ant2460, http://www.cisco.com/c/en/us/td/docs/wireless/antenna/installation/guide/a nt2460.html
- CISCO, Access Point Aironet 1530, http://www.cisco.com/c/en/us/products/collateral/wireless/aironet-1530-series/data sheet c78-728356.html

Anexos

Figura 1 - Cálculos auxiliares

Figura 2 - Cálculos auxiliares