Primeiro Exame da Avaliação Contínua / Análise Matemática I

Duração: 1 hora 31 de Outubro de 2008

Notas importantes: 1. Os resultados usados devem ser enunciados com precisão. O rigor das deduções e o cuidado prestado à sua redacção são elementos importantes para a apreciação da qualidade das respostas.

- 2. Não é permitido usar máquinas de calcular, consultar apontamentos ou quaisquer outros elementos.
- 3. Qualquer tentativa de fraude implica (entre outras consequências) a classificação de zero.
- 4. Se tiver dúvidas na interpretação das questões, explicite-as na prova.
- 5. A cotação de cada pergunta está indicada entre parêntesis rectos.
 - 1. [3.0] Caracterize a função inversa da restrição principal da função g, sendo $g(x) = \frac{1}{2} \sin\left(x \frac{\pi}{2}\right)$.
 - 2. [4.5] Considere a função f definida por $f(x) = x \sin\left(\frac{1}{x}\right) + \ln(x^2)$.
 - (a) Determine o domínio de f.
 - (b) Calcule $\lim_{x\to 0} f(x)$.
 - (c) Mostre que a função f admite pelo menos um zero no intervalo $\left[\frac{1}{\pi}, 1\right]$.
 - 3. [4.0] Considere o conjunto $A = [0, 1] \cap \mathbb{Q}$ e indique o seu interior, fronteira, aderência e derivado.
 - 4. [3.0] Determine (justificando) o limite da sucessão $(u_n)_{n\in\mathbb{N}} = \left(\frac{\sin(3n)\sin^2(n)}{n^3+1}\right)_{n\in\mathbb{N}}$.
 - 5. [1.5] Defina sucessão de Cauchy.
 - 6. [4.0] Considere $a, b, c \in \mathbb{R}$ e duas funções reais de variável real $f : \mathbb{R} \to \mathbb{R}$ e $g : \mathbb{R} \to \mathbb{R}$ tais que $\lim_{x \to a} f(x) = b$ e $\lim_{x \to a} g(x) = c$. Demonstre que $\lim_{x \to a} [(f+g)(x)] = b + c$.