Capstone Project: Loan Default Prediction

Final Report

Executive Summary

- Background: banks want to minimize loan defaults and classification models can aid in determining which potential applicants should get a loan
- Objective: build classification models to predict loan defaults using the provided dataset, determine which model should be used, and provide recommendations to the bank based on important data features
- Different data features were explored and visualized
 - Debt-to-income ratio, number of derogatory reports, and number of delinquent credit lines correlated with defaults
- Data was treated using different methods
 - Missing values were filled with median or mode, outliers were either removed or left in dataset
 - Imbalance of outcome variable was addressed using SMOTE analysis

Executive Summary

- Data was separated into categorical dependent variable ('BAD') and independent variables and data was split into training and testing sets 70% to 30%
- Different models were explored:
 - <u>Decision Trees</u>: weights/no weights, 75/25 and 80/20 data splitting, SMOTE analysis, tuning with different hyperparameters
 - Random Forests: weights/no weights, 75/25 and 80/20 data splitting, SMOTE analysis, tuning with different hyperparameters
 - <u>Logistic Regression</u>: with and without Lasso regularization, SMOTE analysis, threshold tuning
 - K Nearest Neighbors: SMOTE analysis, determining K value, tuning with hyperparameters
- Recall, precision, and accuracy were the metrics used to evaluate different models, especially recall to minimize false negatives (applicants who default on loans, but are predicted to repay)
- Tuned decision tree and feature importances were plotted

Executive Summary

Key takeaways:

- Leaving in outliers resulted in greater recall and accuracy as opposed to treating outliers
- Generally, balancing the data with SMOTE analysis resulted in higher recall and accuracy
- After tuning, decision tree, random forest, and KNN models were all able to achieve greater than 70% recall
- The tuned KNN model resulted in the highest recall of 80%, with 95% accuracy and 97% precision on the test data
- Debt-to-income ratio and number of delinquent credit lines were the most important features for predicting defaults; age of oldest credit line, home value, and number of derogatory reports were also important

Next Steps:

- The KNN model could be tuned again to further reduce overfitting the training data
- To improve model further, more data could be collected, especially for debtto-income ratio (which has 21% null values in initial dataset)
- Build a data pipeline to use model with new applicants

Problem and Solution Summary

Problem:

- Banks want to minimize loan defaults, as defaults can result in major profit losses
- Manual reviews of clients can be time-consuming and subject to reviewer biases
- Machine learning models can be built using recent data to automate the process and try and remove biases
- Models should try to minimize false negatives and maximize recall

Solution Design:

- Investigate different data treatment methods and different models and evaluate with recall, precision, and accuracy metrics
- Compare different models on the basis of these metrics, and on the interpretability and implementation of these models
- Make recommendations based on these models

Problem and Solution Summary

Model Comparison:

Model	Train Accuracy	Test Accuracy	Train Recall	Test Recall	Train Precision	Test Precision
K Nearest Neighbors Tuned (k = 3)	1.00	0.95	1.00	0.80	1.00	0.97
Random Forest Initial	1.00	0.94	1.00	0.77	1.00	0.92
Decision Tree Tuned (6 Hyp)	0.85	0.84	0.83	0.77	0.85	0.58
K Nearest Neighbors	0.94	0.88	0.93	0.72	0.94	0.69
Random Forest Tuned (6 Hyp)	0.88	0.87	0.85	0.71	0.91	0.69
Logistic Regression	0.72	0.75	0.67	0.67	0.74	0.43
Logistic Regression with Lasso	0.72	0.75	0.67	0.67	0.74	0.43
Decision Tree Initial	1.00	0.87	1.00	0.64	1.00	0.69
Decision Tree Tuned (3 Hyp)	0.90	0.87	0.87	0.61	0.93	0.70
Random Forest Tuned (3 Hyp)	0.91	0.87	0.88	0.60	0.94	0.71

- Data was treated by filling null values, keeping outliers, splitting data 70/30 into train/test sets and balancing train data with SMOTE
- After tuning, decision tree, random forest and KNN models all had greater than 70% recall
- Tuned KNN had highest test recall, accuracy, and precision despite overfitting the training data
- Tuning sometimes resulted in lower recall when using SMOTE datasets

Problem and Solution Summary

Feature Importance

- Important features are clearly displayed by decision trees
- The decision tree displayed below is cropped
- Number of delinquent credit lines (DELINQ) and debt-toincome ratio (DEBTINC) are the most important features
- Age of oldest credit line (CLAGE), number of derogatory reports (DEROG) and home value (VALUE) are also important
- These features are also important for random forests and logistic regression

- The tuned K nearest neighbors resulted in the highest test recall: 80% alongside 95% accuracy for the test data
 - Although this model overfit the training data to some extent, it still performed well
 on the test data and could be used with incoming loan applicants
- Through model development and visualization, some key features of the data that affect loan defaults/repayment have been determined
 - Number of delinquent credit lines: past delinquency on credit was an important model feature leading to more defaults
 - Debt-to-income ratio: a higher debt-to-income ratio was used to predict a higher likelihood of defaulting
 - Age of oldest credit line: applicants with older credit lines were more likely to repay their loans
 - Other important features: number of derogatory reports, value of home property, number of recent credit inquiries

Key recommendations:

- Use tuned KNN model for future loan applicants
- Build and maintain data pipeline to allow for efficient use of model with new applicants
- Make sure stakeholders understand what information should be collected about new applicants to input into the model

Key actionables for stakeholders:

- For future applicants, collect information on debt-to-income ratio and delinquent credit history, as there were many missing values for both of these features
- If possible collect other information about applicants such as married/family status, education history, while carefully considering possible biases that this data may introduce
- Maintain consistent data pipeline and records for when model is used and with which applicants

Benefits and Costs:

- Benefits: KNN model has high accuracy, is relatively easy to understand (grouping entries by other similar entries), once tuned is not too computationally expensive
- Costs: model is less interpretable compared to some other models such as decision trees, which is why comparison to other models is necessary to extract important features

Risks and Challenges:

- Debt-to-income ratio was one of the most important features, but there was 21% null values for this feature
- The model may be turning away applicants with a high debt-to-income ratio who are looking to consolidate debt and get back on their feet
- Some younger applicants may not have much of a history of credit, debt, or employment and it may be difficult for the model to successfully gauge whether or not they will repay their loans

- Further Analysis/Work:
 - Continue to try and tune models with more hyperparameters to reduce overfitting
 - SMOTE balanced datasets seemed to lead to greater overfitting during tuning
 - If possible, collect more data on recent applicants, especially debt-to-income ratio to improve model
 - Test other data treatment methods with KNN model, other models
 - Possibly fewer features (removing 'REASON' and 'JOB') could result in a more generalizable model