Multimode Conditional Displacements

Motivation

- SNAP Gates take time $\approx 2\pi/\chi$ where $\chi \approx$ MHz is dispersive coupling strength.
- Reducing Gate time → Increasing χ → Reducing lifetime of cavity
- ECD Idea: Keep $\chi \approx 10$ kHz small; But enhance it by displacing cavity (α_0) far from origin
- Effective Gate time $1/\chi\alpha_0$ where $\alpha_0\gg 1$

Achieving Conditional Displacements

Starting Point:
$$H/\hbar = \omega_c a^{\dagger} a + \omega_q \frac{\sigma_z}{2} + \chi a^{\dagger} a \frac{\sigma_z}{2} + H_{drive}$$

Using **frame transformations**, our objective is to **isolate** the following term from the ac-Stark Shift

$$\tilde{H} = \chi (\alpha a^{\dagger} + \alpha^{\star} a) \sigma_i$$

where α is the displacement of the cavity mode. With such a term, we can realize a conditional displacement as follows

$$e^{-i(\chi(\alpha a^{\dagger} + \alpha^{\star} a)\sigma_{i})t} \qquad \qquad \beta = -i \chi \alpha t \qquad \qquad e^{(\beta a^{\dagger} - \beta^{\star} a)\sigma_{i}}$$

Dealing with Unwanted Terms I

- 1. Rotating Frames of oscillator and the qubit
- 2. Displacement transformation $D^+(\alpha(t)) = e^{\alpha^*(t)a \alpha(t)a^+}$ which renders $a \to a + \alpha(t)$

$$H_{disp} = D^{\dagger} H_{rot} D - i \dot{D}^{\dagger} D$$
$$= D^{\dagger} H_{rot} D + i (\dot{\alpha}^{\star} a - \dot{\alpha} a^{\dagger})$$

Cancel terms linear in a, a^+ , such as the oscillator drive $\epsilon(t)a^+ + \epsilon^*(t)a$, by picking the appropriate time dependent displacement frame

$$\dot{\alpha} = -i\epsilon(t) \qquad \qquad \dot{\alpha}^* = i\epsilon^*(t)$$

Implication: Disp. Frame Simulations

Lab Frame

- Large Displacement
- Number of photons $n = |\alpha_0|^2 \approx 900$
- Intractable simulations

Displaced Frame

- Size of Conditional Displacement ($|\alpha_g \alpha_e| \le 5$)
- Number of photons $n = \left|\alpha_g \alpha_e\right|^2 \approx 25$
- Tractable simulations

Dealing with Unwanted Terms II

The **displaced frame** transformation, however, divides the **initial ac-Stark shift** term into the following 3 terms

$$\chi(a^{\dagger} + \alpha^{*})(a + \alpha)\sigma_{z}$$

$$\downarrow$$

$$\chi a^{\dagger} a \sigma_{z} + \chi(\alpha a^{\dagger} + \alpha^{*} a)\sigma_{z} + \chi|\alpha|^{2}\sigma_{z}$$
desired

Sideband Drives

- Make terms oscillate at different frequencies
- Invoke RWA in a frame where only desired term is stationary

Echoed Cond. Displacements

- Terms have different no. of α 's but only a single σ_z
- Clever flipping of α and σ_z can echo out unwanted terms

Sideband Drives

Since α oscillatory,

$$H = \chi a^{+} a \sigma_{z} + \chi (\alpha a^{+} + \alpha^{*} a) \sigma_{z} + \chi |\alpha|^{2} \sigma_{z} + \Omega_{R} \sigma_{\chi}$$

$$\omega = 0 \qquad \omega = \Omega_{R} \qquad \omega = 2\Omega_{R}$$

Frame Transformations:

1.
$$\sigma_{\chi} \leftrightarrow \sigma_{z}$$
 \longrightarrow $\Omega_{R} \sigma_{z}$

2. Rotating Frame of the qubit

$$H = \chi \alpha_0 (a^+ + a) \otimes (\sigma_\chi \cos \delta + \sigma_y \sin \delta) + \dots$$
$$\omega = 0 \qquad \omega \ge \Omega_R$$

https://arxiv.org/pdf/1608.06652.pdf

Echoed Cond. Disp.

Comparison

Sideband Drives

- Oscillating $\epsilon(t)$, $\alpha(t)$
- Continuous Rabi Driving on the qubit
- Rotating Wave Approximation: $e^{i\Omega t}$

Echoed Conditional Gates

- Oscillating, yet stretched $\epsilon(t)$, $\alpha(t)$
- Discrete Qubit pi pulses
- Flipping sign- not fully rotating but hopping on the complex plane (if think of coefficients of unwanted terms as step function)

Implementation: Optimal Parameters

- ECD and Sideband Drives, by themselves, do not offer universal control of both oscillator and qubit
- Sol: Interleave parameterized qubit rotations between CD
- Gate times are dependent on # of layers to realize high fidelity gates

$$CD(\beta) = D\left(\frac{\beta}{2}\right)|g\rangle\langle g| + D\left(-\frac{\beta}{2}\right)|e\rangle\langle e|$$

$$R_{\phi}(\theta) = e^{-i\left(\frac{\theta}{2}\right)(\cos\phi\sigma_x + \sin\phi\sigma_y)}$$

Implementation: Finding Pulses

Task: find wait time t_w and scale intermediate displacement α_0 such that $\chi \alpha_0 t_w = \beta$

ECD

Sideband

ECD: $|g0\rangle \rightarrow |g1\rangle$

Two Mode ECD

 Generalize ECD idea to two modes coupled to an ancilla qubit

Layer Reduction Strategies needed

Two Mode ECD : $|g01\rangle \rightarrow |g10\rangle$

Two Mode ECD: $|g02\rangle \rightarrow |g20\rangle$

Batch Optimizer Fidelity: 0.9219278

Two Mode ECD: Why not Simultaneous Displacements?

$$\eta a^+ a \ b^+ b \qquad \qquad \begin{array}{c} \text{Displaced Frame Transformation} \\ \eta (a^+ + \alpha^*)(a + \alpha)(b^+ + \beta^*)(b + \beta) \end{array}$$

- Produces terms like $\eta \alpha \beta$ a^+b^+ which can be active if α , β are simultaneously nonzero
- Even if we avoid simultaneous displacements, this still leaves us with terms such as $\eta |\alpha|^2 b^+ b$ and $\eta \alpha a^+ b^+ b$
- Thus need small $\eta=2\,\sqrt{\chi_a\chi_b}$

Two Mode ECD

Meta Echoes

Grape

Enter Circle Grape

Sideband Drives (Grap-ified)

- Optimizing over $\delta(t)$ and $\alpha(t)$ --- changing nature of oscillator drive but keeping qubit drive constant

Circle Grape

- Optimizing over $\Omega(t)$ while applying a constant cavity drive.
- These 2 approaches are then opposites