Assignment -4

Python Programming

Assignment Date	28 October 2022
Student Name	MUTHU PANDIYAN G
Student Roll Number	953719104035
Maximum Marks	2 Marks

Question-1:

Download the dataset

Output:

Download the dataset from

https://www.kaggle.com/code/kredy10/simple-lstm-for-text-classification/data

Question-2:

Import required library

Output:

```
[1] import numpy as np
   import pandas as pd
   import matplotlib.pyplot as plt
   import seaborn as sns
   import keras
   from sklearn.model_selection import train_test_split
   from sklearn.preprocessing import LabelEncoder
   from keras.models import Model
   from keras.layers import LSTM, Activation, Dense, Dropout, Input, Embedding
   from keras.optimizers import RMSprop
   from keras.preprocessing.text import Tokenizer
   from keras.preprocessing import sequence
   from keras.utils import to_categorical, pad_sequences
   from keras.callbacks import EarlyStopping
%matplotlib inline
```

Question 3:

Read dataset and do pre-processing

ham

Label

Output:

```
[2] df = pd.read_csv('spam.csv',delimiter=',',encoding='latin-1')
    df.head()
```

	v1	v2	Unnamed: 2	Unnamed: 3	Unnamed: 4
0	ham	Go until jurong point, crazy Available only	NaN	NaN	NaN
1	ham	Ok lar Joking wif u oni	NaN	NaN	NaN
2	spam	Free entry in 2 a wkly comp to win FA Cup fina	NaN	NaN	NaN
3	ham	U dun say so early hor U c already then say	NaN	NaN	NaN
4	ham	Nah I don't think he goes to usf, he lives aro	NaN	NaN	NaN

```
df.drop(['Unnamed: 2', 'Unnamed: 3', 'Unnamed: 4'],axis=1,inplace=True)

df.shape
(5572, 2)

df['v1'].value_counts().plot(kind='bar')
plt.xlabel('Label')
plt.title('Number of ham and spam messages')

Text(0.5, 1.0, 'Number of ham and spam messages')
Number of ham and spam messages

5000
4000
2000
1000
```

```
X = df.v2
Y = df.v1
#label encoding for Y
le = LabelEncoder()
Y = le.fit_transform(Y)
Y = Y.reshape(-1,1)

X_train,X_test,Y_train,Y_test = train_test_split(X,Y,test_size=0.20)

max_words = 1000
max_len = 150
tok = Tokenizer(num_words=max_words)
tok.fit_on_texts(X_train)
sequences = tok.texts_to_sequences(X_train)
sequences_matrix = keras.utils.pad_sequences(sequences,maxlen=max_len)
```

Question 4:

Create Model

Output:

```
model = Model(inputs=inputs,outputs=layer)
```

Question 5:

Add Layers (LSTM, Dense-(Hidden Layers), Output)

Output:

```
inputs = Input(name='inputs',shape=[max_len])
layer = Embedding(max_words,50,input_length=max_len)(inputs)
layer = LSTM(64)(layer)
layer = Dense(256,name='FC1')(layer)
layer = Activation('relu')(layer)
layer = Dropout(0.5)(layer)
layer = Dense(1,name='out_layer')(layer)
layer = Activation('sigmoid')(layer)
```

Question 6:

Compile the Model

Output:

```
model.summary()
model.compile(loss='binary_crossentropy',optimizer=RMSprop(),metrics=['accuracy'])
```

Model: "model"

Layer (type)	Output Shape	Param #
inputs (InputLayer)	[(None, 150)]	0
embedding (Embedding)	(None, 150, 50)	50000
1stm (LSTM)	(None, 64)	29440
FC1 (Dense)	(None, 256)	16640
activation (Activation)	(None, 256)	0
dropout (Dropout)	(None, 256)	0
out_layer (Dense)	(None, 1)	257
activation_1 (Activation)	(None, 1)	0

Total params: 96,337
Trainable params: 96,337

Non-trainable params: 0

Question 7:

Fit the Model

Output:

Question 8:

Save The Model

Output:

```
model.save('spam_lstm_model.h5')
```

Question 9:

Test The Model

Output: