Epreuve de Physique

Session du 02 Août 2022

Durée: 2h15mn

Remarques importantes:

- L'épreuve est composée d'une seule page. Elle est rédigée en français et elle est traduite en arabe (voir verso de la feuille).
- Les réponses doivent être mentionnées sur la fiche de réponse donnée au candidat.
- Le candidat doit se concentrer sur le sujet d'examen sans poser aucune question concernant son contenu.

<u>Electricité</u> (QCM : Marquez la bonne réponse sur la fiche de réponse)

Le montage, schématisé sur la Figure 1, comporte :

- Un générateur idéal de tension de force électromotrice E = 12V;
- Un conducteur ohmique de résistance R;
- Trois condensateurs identiques de capacité C;
- Un conducteur ohmique de résistance réglable R_r ;
- Un générateur ${\it G}$ de tension proportionnelle à l'intensité du courant : $u_{\it G}=k_0~i(t)$;
- Une bobine d'inductance L et de résistance r non négligeable ;
- Des interrupteurs K_1 , K_2 , K_3 et K_4 .

A un instant choisi comme origine des dates (t=0), la tension u(t=0)=0V, l'interrupteur K_1 est mis sur la position (1) et l'interrupteur K_4 est fermé.

- 1. Trouver l'expression de $(i_1(t), i_2(t))$ en fonction de i(t).
- 2. L'équation différentielle vérifiée par la tension u(t) s'écrit sous la forme : $eta RC rac{du(t)}{dt} + u(t) = E$. Donner la valeur de eta.
- 3. Préciser, en fonction des paramètres du circuit, l'expression de (α, τ) pour que la solution de l'équation différentielle précédente s'écrive sous la forme : $u(t) = \alpha(1 e^{-t/\tau})$.
- 4. Déduire la valeur initiale de l'intensité $i_1(t=0)$ en fonction des paramètres du circuit.
- 5. La courbe d'évolution de l'intensité $i_2(t)$ a une tangente à l'instant t=0 d'équation : y=at+b avec a=-20/3 [mA/ms] et b=10 [mA]. Préciser la valeur numérique de $(i(t=0),\tau)$.
- 6. Déduire la valeur de (R, C).

On fixe la valeur de $R_r=50~\Omega$. A un instant choisi comme nouvelle origine des dates (t=0), l'énergie électrique emmagasinée dans le condensateur, ayant à ses bornes la tension u(t), est $E_e(t=0)=0.18~mJ$. L'intensité du courant i(t=0)=0~A, l'interrupteur K_1 est mis sur la position (2) et l'interrupteur K_4 est ouvert. Les interrupteurs K_2 et K_3 sont fermés.

7. Préciser, en fonction des paramètres du montage, les expressions de A et B, pour que l'équation différentielle vérifiée par la tension u(t) soit de la forme :

$$\frac{d^2u(t)}{dt^2} + A\frac{du(t)}{dt} + Bu(t) = 0$$

8. L'évolution de la tension u(t) est pseudopériodique, sa valeur maximale est 12V et elle a une pseudopériode supposée égale à la période propre $T_0=10\ ms$. Trouver la valeur de (L,C). On prend : $\pi^2=10$.

- 9. A un instant choisi comme nouvelle origine des dates (t=0), l'intensité du courant i(t=0)=0 A et on ouvre l'interrupteur K_2 . La courbe sur la Figure 2 représente l'évolution de l'énergie totale E_t du circuit en fonction du temps.
 - Déterminer la valeur de l'énergie magnétique E_m emmagasinée dans la bobine (en μJ) à l'instant t=0.
- 10. Déterminer la valeur de la tension u(t) à l'instant t=0.
- 11. Déterminer la valeur (en μJ) de l'énergie dissipée par effet Joule à l'instant t=20~ms.
- 12. Etablir l'expression de la dérivée par rapport au temps de l'énergie totale E_t du circuit en fonction du courant i(t) et des paramètres du montage.
- 13. La tangente à la courbe (Figure 2) au point $(20 \ ms, 11.25 \ \mu J)$ est horizontale. Quelle est la valeur de la tension u(t) à l'instant $t=20 \ ms$?
- 14. Déterminer l'énergie magnétique emmagasinée dans la bobine (en μJ) à l'instant t=20~ms.

Ondes et Décroissance radioactive (QCM : Marquez la bonne réponse sur la fiche de réponse)

Données : la vitesse de propagation de la lumière dans le vide : $c=3.10^8~m.~s^{-1}$, la demi-vie du carbone $^{14}_{6}C$ est de 5 600 années.

La longueur d'onde de la lumière orange dans le vide est $\lambda_0=624~nm$ (On donne : $1~THz=~10^{12}~Hz$).

- 15. La valeur de la fréquence f (en THz) de cette radiation est d'environ :
- 16. Lorsque cette onde traverse un bloc de diamant d'indice n=2,418, sa longueur d'onde :
- 17. La longueur d'onde λ (en nm) de cette radiation dans ce bloc de diamant vaut environ :
- 18. La vitesse v (en m/s) de propagation de cette lumière dans ce bloc de diamant a pour valeur environ :

On éclaire un cheveu fin d'épaisseur $e=2,4\,mm$, avec un laser émettant une lumière rouge de longueur d'onde $\lambda=600\,nm$. On observe sur un écran placé à une distance $D=2\,m$ du cheveu une tache centrale de largeur L.

- 19. La fréquence (en Hz) de l'onde lumineuse émise par ce laser vaut :
- 20. Lorsque cette lumière rouge se propage dans le verre (indice de réfraction 1,5), la fréquence de cette onde :
- 21. L'écart angulaire θ entre le milieu de la tache centrale et la première tache sombre est donné par (on considère que θ est petit et exprimé en radian) :
- 22. L'écart angulaire θ augmente quand :
- 23. La valeur de l'écart angulaire heta en degré est :
- 24. La largeur de la tache centrale (en cm) a pour valeur :
- 25. En utilisant un laser émettant une lumière bleue, l'écart angulaire θ :

Dans une cuve à onde, un vibreur produit dans un point S, situé à la surface libre de l'eau, une onde périodique de fréquence f=4 Hz, de hauteur maximale 0,2 m et de vitesse de propagation v=4 m. s^{-1} . Cette onde est décrite par l'équation suivante : $z(t)=Acos(\frac{2\pi}{T}(t-\tau))$ tel que z(t) est l'élongation d'un point M de la surface d'eau distant horizontalement de x du point S, A et T sont respectivement l'amplitude et la période propre de l'onde.

- 26. Le retard au est exprimé par la relation suivante :
- 27. La vitesse de déplacement vertical $v_v(t)({\rm en}\,\,m/s)\,$ à l'instant $t=4\,s$ et à un point M de la surface de l'eau distant de $4\,m$ du point S vaut :

- 28. On émet, à l'aide d'un haut-parleur, un signal sonore sinusoïdal. L'onde se propage à la vitesse $v=340\ m.\ s^{-1}$. Cette onde se réfléchit sur un obstacle situé à une distance notée d de la source. L'écho de l'onde sonore est entendu $0,3\ s$ après l'émission du signal. Donner la valeur (en m) de d:
- 29. Une substance radioactive contient de l'Iode 131 de demi-vie 8 jours et du Césium137 de demi-vie 30 ans. La part de l'activité radioactive due à l'iode est de $200\ kBq$ et celle due au césium est de $50\ kBq$. Quelle sera l'activité (en kBq) de cette substance dans 10 mois (1 mois = 30 jours) ?
- 30. Pour un être vivant, on définit le rapport $r=\frac{N_{C14}}{N_{C12}}=10^{-12}$ avec N_{C14} et N_{C12} sont respectivement le nombre d'atomes de carbone 14 et le nombre d'atomes de carbone 12. Après sa mort, ce rapport r décroît et atteint pour un cas d'étude la valeur $0,125.10^{-12}$. Combien d'années se sont écoulées depuis la mort de l'être vivant objet de l'étude ?

Mécanique

On suppose que l'accélération de la pesanteur est constante et égale à $g=10~{
m m/s^2}$, dirigée vers le bas.

Les problèmes I et II sont indépendants.

<u>Problème I</u> (Rédaction : On écrit seulement le résultat final sur la fiche de réponse).

Une bille métallique représentée par un point matériel de masse m passe par le chemin ABCD (Fig.1) tel que : la portion AB est rectiligne horizontale de longueur L; BC est demi-circulaire de rayon R et la portion CD est parabolique. Placée au point D, la bille est ensuite transférée vers son lieu final via une chaine destinée à cette fonction. La position géométrique du point D est définie dans le repère fixe (A, x, y) par les distances données L, d et R. L'étude sera abordée en deux parties 1 et 2, en tenant compte ou non des frottements.

Données et notation :

- m : masse de la bille,
- v₀: vitesse initiale de la bille (vitesse au point de départA).
- Les points O et O' sont fixes
- Les points D et O' sont alignés sur l'horizontale tels que : DO' = d = 2R
- on donne : m = 0.5 kg, R = 1m, L = 3m.

<u>Partie 1</u>: Dans cette partie, les frottements sont négligés, la bille fait son départ du point A avec une vitesse initiale v_0 . <u>Déterminer</u>:

- 31. la vitesse $v_{\mathcal{C}}$ de la bille au point \mathcal{C} en fonction de v_{0} , g et \mathcal{R} .
- 32. la vitesse v_C nécessaire pour que la bille se positionne au point D, en fonction de g et R (On pourra choisir le repère fixe (C, x', y') tel que x' = -x et y' = -y)
- 33. la valeur de $v_0(m/s)$ permettant de positionner la bille en D.
- 34. La valeur du temps en seconde, $t=t_{AB}+t_{CD}$, mis par la bille sur les deux portions de trajet AB et CD, respectivement.

<u>Partie 2</u>: Dans cette partie, les frottements sont considérés le long du trajet de la bille qui fait départ du point A avec une vitesse initiale v_0 . L'action de frottement est notée \vec{f} , cette action s'oppose au mouvement de la bille telle que :

- Sur le trajet AB, cette force \vec{f} est horizontale et constante, d'intensité f = 2N (N: Newton)
- Sur le trajet BC, cette force s'exprime sous la forme : $\vec{f} = -k\vec{v}/||\vec{v}||$, où k est un coefficient constant connu (k=2N), elle est portée par la tangentielle à l'arc du demi-cercle BC, mais opposée à la vitesse
- Sur le trajet CD, la force de frottement $\vec{f} = f\vec{y}$, où f est l'intensité de cette force constante connue (f = 2N).

- 35. Sur le trajet AB, exprimer l'accélération γ de la bille en fonction de f et m.
- 36. Exprimer la vitesse v_B de la bille en B en fonction de f, m, L et v_0 .
- 37. Sur le trajet CD, calculer la vitesse $v_{\mathcal{C}}(m/s)$ en C permettant de positionner la bille au point D.
- 38. Sur le trajet BC, calculer la somme des travaux W(Joule) de la force de frottement et du poids de la bille entre les points B et C, en admettant que le travail de la force de frottement \vec{f} vaut $-2\pi Joule$.
- 39. Calculer la vitesse $v_0(m/s)$ permettant de positionner la bille en D.
- 40. Si le temps mis par la bille entre les points A et B fait 25% du temps total t_t nécessaire entre A et D, calculer le temps t_t (en seconde).

<u>Problème II</u> (QCM : Marquez la bonne réponse sur la fiche de réponse) :

Un système de monte-charge (Fig.2) est composé d'un moteur d'axe fixe Δ , qui fait tourner la poulie (même axe Δ) de rayon R_t , d'un câble inextensible sans masse et de deux poulies d'axes (A, \vec{z}) et (B, \vec{z}) , parallèles et horizontaux (Fig.2), l'ensemble est destiné à soulever la masse m tel que :

- Le câble s'enroule sans glisser sur les gorges des poulies
- Poulie d'axe (A, \vec{z}) , son axe est fixe : Rayon R, Moment d'inertie J par rapport à son axe de rotation, la poulie tourne sans frottement par rapport à son axe, sa vitesse est notée $\dot{\theta}$.
- Poulie d'axe (B, \vec{z}) : Rayon r, Masse négligée, la poulie tourne sans frottement par rapport à son axe, et peut translater verticalement.
- Pour faire monter la masse m d'une hauteur h donnée, la poulie d'axe Δ est animée en rotation selon le schéma de la figure 3 représentant la variation de sa vitesse ω en fonction du temps.

Soit le point M du câble pointé sur la Figure 2. Lors du mouvement, on désigne par x le déplacement du point M, par y le déplacement vertical de la masse m et celui de la poulie d'axe (B,\vec{z}) , à l'instant t=0: x=0 et y=0. On admet le long du problème la relation entre x et y telle que : x=2y. Pour les applications numériques : m=25~kg; $R_t=0,2~m$; R=0,25~m; $J=0,2~kgm^2$; $\omega_t=4~\pi~rad/s$.

- 41. Lors de la phase d'accélération (a-b) (Fig.3), calculer l'accélération $\gamma(m/s^2)$ de la masse m.
- 42. Calculer la distance h(m) parcourue par la masse durant les 8 s (Fig.3).
- 43. Lors de la phase (b-c) (Fig.3), calculer la tension T(N) du câble.
- $a \sqrt{\frac{d}{0}} \frac{1}{1} \sqrt{\frac{d}{8}}$ In phase (a-b), calculer la tension

Fig.3

44. Lors de la montée de la masse dans la phase (a-b), calculer la tension T(N) du câble attaché à la poulie de rayon R_t .

Dans la suite, on considère la figure 4. Pour analyser l'influence des états de marches – arrêts du moteur sur la dynamique du système, on a remplacé une partie du câble par un ressort de raideur $k=10^4N/m$ selon la figure 4. Le reste du câble est inchangé en conservant toutes les hypothèses initialement considérées. On écarte la masse m de sa position d'équilibre "O" vers le bas d'une distance y(t=0)=0,1m, puis on l'abandonne sans vitesse initiale. On considère le point "O" à l'équilibre comme origine des ordonnés y. Déterminer :

- 45. l'allongement du ressort Δl_0 à l'état d'équilibre du système en fonction de m,g et k.
- 46. l'énergie potentielle totale E_p du système en fonction de $k, m, g, \Delta l_0$ et x, en considérant que l'énergie potentielle due à la pesanteur est nulle à l'état d'équilibre du système.
- 47. la valeur de la période propre $T_0(s)$ du système.
- 48. la valeur de l'énergie mécanique $E_m(Joule)$ du système à $t=T_0/4$.

المباراة المشتركة لولوج السنة الاولى ENSAM Maroc مادة الفيزياء

دورة 02 غشت 2022

مدة الإنجاز: ساعتان و 15 دقيقة

ملاحظات هامة:

- يتألف موضوع الامتحان من صفحة واحدة، فهو مُحَرّر بِاللُّغة العربية و مترجم إلى اللُّغة الفرنسية (انظر ظهر الورقة).
 - تكتب الأجوبة في ورقة الإجابة التي تُمنَح للمترشح.
 - على المترشح التركيز على موضوع الامتحان دون طرح أي استفسار يتعلق بمضمونه.

الكهرباء (QCM : نختار الجواب الصحيح من بين الأجوبة المُشار إليها في ورقة الإجابة)

ننجز التركيب الكهربائي الممثل في الشكل 1.

يتكون هذا التركيب من:

- E=12V مولد مؤمثل للتوتر قوته الكهرمحركة ،
 - موصل أومى ذي مقاومة R;
 - ثلاث مكثفات بنفس السعة •
 - موصل أومى ذي مقاومة Rr قابلة للضبط;
- $; u_G = k_0 \ i(t)$ مولد م في توتر يتناسب اطرادا مع شدة التوتر .
 - وشیعة معامل تحریضها $_L$ ومقاومتها $_r$ غیر مهملة ;
 - $.K_4$ و K_3, K_2, K_1 و اطع للتيار .

عند لحظة (t=0)=0 نتخذها أصلا للتواريخ، شدة التوتر u(t=0)=0، نورجح قاطع التيار K_4 الى الموضع (1) ونغلق قاطع التيار K_4 .

.i(t) بدلالة $\left(i_1(t),i_2(t)
ight)$ بدلالة 1-

: المعادلة التفاضلية التي تحققها شدة التوتر اللحظية u(t) تكتب على الشكل eta . eta .

(lpha, au) ، ليكتب حل المعادلة التفاضلية السابقة على $u(t)=lpha(1-e^{-t/ au})$. الشكل

4- استنتج القيمة البدئية لشدة التيارt=0 بدلالة بارامترات الدارة.

مع y=at+b . هي: at+b عند at+b عند اللحظة at+b عند at+b

(R,C) استنتج قيمة (R,C).

نضبط مقاومة الموصل الأومي Ω Ω Ω عند لحظة Ω نتخذها أصلا جديدا للتواريخ، قيمة الطاقة الكهربائية المخزونة في المكثف ذي التوتر u(t) هي: $E_e(t=0)=0.18~mJ$ الكي الموضع Ω , نفتح قاطع التيار Ω و نظق قاطعي التيار Ω و Ω .

7- أوجد، بدلالة بارامترات الدارة، تعبير A و B، لتكتب المعادلة التفاضلية التي يحققها التوتر u(t) على الشكل التالي:

$$\frac{d^2u(t)}{dt^2} + A\frac{du(t)}{dt} + Bu(t) = 0$$

u(t) أن نظام التذبذب شبه دوري و أن قيمة u(t) بين معاينة المنحنى الممثل لتغيرات التوتر u(t) أن نظام التذبذبات يساوي الدور الخاص: u(t) u(t) القصوية هي: u(t) . u(t) أوجد قيمة u(t) .

 $.\pi^2 = 10$ نأخذ:

(t=0) عند لحظة (t=0) نتخذها أصلا جديدا للتواريخ، شدة التيار تساوي i(t=0)=0 و نفتح قاطع التيار K_2 . يمثل منحنى الشكل 2 تغيرات الطاقة الكلية $E_t(t)$ للدارة بدلالة الزمن. أوجد قيمة الطاقة المغناطيسية E_m المخزونة في الوشيعة $E_t(t)$ عند اللحظة $E_t(t)$.

- u(t) عند اللحظة (t=0).
- (t=20ms) عند اللحظة ((μJ) عند اللحظة (t=20ms).
- i(t) الدارة بدلالة شدة التيار الطاقة الكلية $E_t(t)$ للدارة بدلالة شدة التيار الدارة. و بارامترات الدارة.
- $(t=20ms,11.25~\mu J)$ عند النقطة (الشكل 2) عند المستقيم المماس للمنحنى (الشكل 2)
 - t=20ms أفقي. ماهي قيمة شدة التوتر u(t) عند اللحظة
- 14- أوجد قيمة الطاقة المغناطيسية E_m المخزونة في الوشيعة (μJ) عند اللحظة (t=20ms).

الموجات و التناقص الإشعاعي (QCM): نختار الجواب الصحيح من بين الأجوبة المُشار إليها في ورقة الإجابة)

معطیات : سرعة انتشار الضوء في الفراغ هي: $c=3.\,10^8~m.\,s^{-1}$ عمر النصف للكربون $c=3.\,10^8~m.\,s^{-1}$ هو 5600 سنة.

 $\lambda_0 = 624 \ nm$ قيمة طول الموجة للضوء البرتقالي في الفراغ هي $THz = 10^{12} \ Hz$ (نعطي:

- 15- قيمة التردد f (ب THz) لهذا الإشعاع هي تقريبا:
- n=2,418 عندما تنتشر هذه الموجة في كتلة من الماس معامل انكسارها n=2,418 فإن طولها الموجى:
 - 17- قيمة طول الموجة λ (ب nm) لهذا الإشعاع في هذه الكتلة من الماس هي تقريبا:
 - 18- قيمة سرعة انتشار هذا الضوء v (ب m/s) في هذه الكتلة من الماس هي تقريبا:

نضيء شعرة رقيقة سمكها e=2,4~mm بواسطة إشعاع لازر يبعث ضوءا أحمرا طول موجته في الفراغ $\lambda=600~m$. نلاحظ على شاشة موضوعة على مسافة D=2~m من الشعرة بقعة مركزية عرضها D=2~m

- 19- قيمة تردد الضوء (ب Hz) المنبعث من هذا المنبع هى:
- 20- عندما ينتشر هذا الضوء الأحمر في الزجاج (معامل انكساره 1,5)، فإن تردد هذه الموجة:
- 21- تعبير الفرق الزاوي θ بين وسط البقعة المركزية وأول بقعة مظلمة هو (تُعتبر θ زاوية صغيرة معبر عنها بالراديان) :
 - 22- الفرق الزاوي θ يزداد عندما:
 - 23- قيمة الفرق الزاوي θ بالدرجة هي:
 - 24- قيمة عرض البقعة المركزية (ب cm) هي:
 - heta -25 باستخدام منبع لازر ينبعث منه ضوء أزرق، فإن الفرق الزاوي heta :

في حوض الموجات، يحدث هزاز في نقطة S من السطح الحر للماء موجة متوالية ترددها S علوها الأقصى S وسرعة انتشارها S S علوها الأقصى S هذه الموجة بالمعادلة الاتية: S وسرعة S وسرعة انتشارها S هي استطالة نقطة S من سطح الماء تبعد أفقيا عن النقطة S بالمسافة S بالمسافة S هما على التوالي وسع ودور الموجة.

26- يُعبر عن التأخر الزمنى au بالعلاقة الاتية:

من M عند الحركة الرأسية $v_v(t)$ عند اللحظة و t=4 و عند نقطة و t=4 من اللحظة و t=4 و عند نقطة و t=4 من الماء تبعد عن t=4 هي :

28- نبعث إشارة صوتية جيبية عن طريق مكبر للصوت. تنتشر هذه الموجة بسرعة $v=340~m.~s^{-1}$. تنعكس هذه الموجة على عائق يقع على مسافة d من المنبع. يتم سماع صدى الموجة الصوتية بعد $v=340~m.~s^{-1}$ من إرسال الإشارة. أعط قيمة d ($v=340~m.~s^{-1}$):

29- تحتوي مادة مشعة على اليود 131 وله عمر النصف 8 أيام والسيزيوم 137 وله عمر النصف 30 عامًا. حصة النشاط الإشعاعي الناتجة عن اليود هي $200 \ kBq$ ، والناتجة عن السيزيوم $80 \ kBq$ هي $80 \ kBq$. ما هي قيمة النشاط الإشعاعي (ب $80 \ kBq$) لهذه المادة بعد $80 \ kBq$ (شهر واحد $80 \ kBq$)

 N_{C14} و $N_{C14}=10^{-12}=10^{-12}=10^{-12}$ عيث أن $N_{C14}=10^{-12}=10^{-12}$ و حيث أن $N_{C12}=10^{-12}$ هما على التوالي عدد ذرات الكربون 14 و عدد ذرات الكربون 12. بعد وفاته، تتناقص هذه النسبة وتساوي في دراسة حالة $N_{C12}=10^{-12}$. كم سنة مرت على وفاة الكائن الحي محل الدراسة؟

الميكانيك

نفترض أن شدة مجال الثقالة تبقى ثابتة وقيمتها $g=10\ m/s^2$ متجهة الى الأسفل.

المسألتان [و [مستقلتان.

المسألة I - تحرير: نكتب فقط النتيجة النهائية في ورقة الإجابة:

: حيث (الشكل 1) حيث كرية معنية معنية ممثلة بنقطة مادية كتلتها m تمر عبر المسار ABCD (الشكل 1) حيث : BC: L مستقيم أفقي بطول BC: L نصف دانري شعاعه AB والجزء AB

- عتلة الكرية m ullet
- السرعة البدئية للكرية $v_0 ullet$ (السرعة عند نقطة البداية A
 - النقطتان 0 و '0 ثابتتان
- النقطتان D و O مصطفتان D
- $oldsymbol{DO}' = oldsymbol{d} = oldsymbol{2R} :$ افقیا بحیث
 - $m=0.\,5\,kg$: نعطي
- R=1m, L=3mعند وصولها النقطة D ، يتم نقل الكرية إلى موقعها النهائي عبر ناقل مخصص لهذا الغرض. يتم D

تحديد الموقع الهندسي للنقطة D في المرجع الثابت (A, x, y) بالمسافات المعطاة D و D ستتم الدراسة في جزأين D و D ، مع مراعاة الاحتكاك أو إهماله.

الجزء 1: في هذا الجزء ، يتم إهمال الاحتكاكات ، تقوم الكرية بمغادرة النقطة A بسرعة بدئية . v_0

- . Rو g، v_0 بدلالة g، و g و . G النقطة G بدلالة و g
- اللازمة للكرية لوضعها عند النقطة p بدلالة و p و اللازمة للكرية لوضعها عند النقطة p بدلالة و p اللازمة للكرية لوضعها عند النقطة p بدلالة و p اللازمة للكرية لوضعها p و p و p بحيث p بحيث p بحيث p و p بدلالة p و p و p و p بدلالة p و p و p بدلالة p و
 - .D التي تسمح بوضع الكرية عند النقطة $v_0(m/s)$ التي تسمح بوضع الكرية عند النقطة
- : المدة الزمنية اللازمة بالثانية (s) لحركة الكرية على المسارين AB و CD على التوالي . $t=t_{AB}+t_{CD}$

الجزء 2 : في هذا الجزء ، يتم اعتبار الاحتكاكات على طول مسار الكرية التي تنطلق دائما من النقطة f بسرعة بدئية v_0 . نفترض أن الإحتكاكات تكافئ قوة f تؤثر عكس مَنْحَى الحركة بحيث :

- على المسار AB، هذه القوة \overrightarrow{f} أفقية وثابتة، شدتها تساوي f=2N : نيوتن).
- على المسار BC ، يتم التعبير عن هذه القوة بالصيغة $\|\vec{v}\|\|\vec{v}\|$ ، حيث k هو معامل ثابت معروف (k=2N) ، و هي موجهة عكس السرعة مماسيا لنصف الدائرة
- على المسار $\vec{f}=f$ ، حيث \vec{f} هي شدة هذه المسار $\vec{f}=f$ ، حيث $\vec{f}=f$ هي شدة هذه القوة (f=2N).

- M و M بدلالة M بدلالة M بدلالة M بدلالة M بدلالة M
- . fو m, L, v_0 عبر عن السرعة v_B للكرية في النقطة B بدلالة و v_B
- اعتبر D النقطة D النقطة D النقطة D النقطة D النقطة D المسار D المسار D .
- نين بين بين بين بين مجموع الأشغال W(Joule) لقوة الاحتكاك ووزن الكرية بين بين النقطتين E و G باعتبار أن شغل قوة الاحتكاك f يساوي G و G باعتبار أن شغل قوة الاحتكاك f
 - .D التي تسمح بوضع الكرية عند النقطة $v_0(m/s)$ التي تسمح بوضع الكرية عند النقطة
- 40- إذا كانت المدة الزمنية التي تستغرقها الكرية بين النقطتين A و B هي 25% من إجمالي المدة t_t اللازمة بين A و D ، فاحسب t_t بالثانية t_t

المسألة II (OCM : نختار الجواب الصحيح من بين الأجوبة المُشار إليها في ورقة الإجابة):

يتكون نظام رفع حمولة من محرك ذي محور أفقي ثابت Δ ، يقوم بتدوير البكرة (نفس المحور Δ) التي شعاعها R_t (الشكل 2) وكابل ذي كتلة مهملة وغير قابل للإمتداد وبكرتين ذات المحاور (Δ) متوازيين و أفقيين ، يهدف النظام إلى رفع الكتلة Δ ، حيث :

- يلف الكابل دون انزلاق على مجريي البكرات
- البكرة ذات المحور ($A\vec{z}$)، محورها ثابت، شعاعها R ، عزم قصورها بالنسبة لمحور دورانها J ، حركة دوران البكرة حول محورها دون احتكاك ، ونرمز ب $\dot{\theta}$ سرعة دورانها.
- البكرة ذات المحور $(B\vec{z})$ ، $(B\vec{z})$ ، $(B\vec{z})$ عناعها $(B\vec{z})$ محورها دون احتكاك ، يمكن للمحور $(B\vec{z})$ الحركة رأسيا.
- لرفع الكتلة m لارتفاع معين h، يتم تحريك البكرة ذات المحور Δ وفقًا لمخطط سرعتها الزاوية ω الذي تم رسمه بدلالة الزمن (الشكل δ).

لنعتبر النقطة M من الكابل ، المشار إليها في الشكل 2. خلال الحركة، يُعبر x عن إزاحة النقطة M ، و يُعبر y عن إزاحة الكتلة m وكذلك عن إزاحة البكرة y عند اللحظة النقطة y و يُعبر y عند اللحظة y عند اللحظة y و y

، (3 (الشكل (a-b) (الشكل 3) دخلال مرحلة التسارع γ (m/s²) الكتلة الحسب التسارع γ (m/s²)

42-احسب المسافة المقطوعة h(m) من طرف الكتلة خلال ثمان ثواني (8s) (الشكل (8s)).

وتر (الشكل 3)، احسب توتر (b-c) (الشكل 3)، احسب توتر الكابل T(N).

44- عند ارتفاع الكتلة في المرحلة (a-b)، احسب توتر الكابل T(N) ، المشدود الى البكرة التي شعاعها R_t

 ω_t b

شكل 3

في ما يلي ، نعتبر الشكل 4. لدراسة تأثير حالة تردد " تشغيل- توقيف" المحرك على ديناميات النظام ، تم استبدال جزء من الكابل بنابض صلابته $k=10^4\,N/m$ ، وفقًا للشكل 4. تبقى بقية الكابل دون تغيير عن طريق الاحتفاظ بجميع الفرضيات التي تم العمل بها في بداية المسألة. نريح الكتلة m عن حالة توازن $y(t=0)=0,1\,m$ ، ثم نحررها دون سرعة بدئية. نعتبر النقطة $y(t=0)=0.3\,m$ عند التوازن كأصل للأراتيب $y(t=0)=0.3\,m$.

mو، g، k و التوازن بدلالة والنابض و Δl_0 و وg.

46-طاقة الوضع الإجمالية للنظام بدلالة $m,\ g,\ \Delta l_0$, x ، مع الأخذ في الاعتبار أن حالة التوازن حالة مرجعية بالنسبة لطاقة الوضع الثقالية.

. قيمة الدور الخاص $T_0(s)$ للنظام

. $t=T_0/4$ قيمة الطاقة الميكانيكية $E_m(Joule)$ للنظام عند اللحظة

————— Feuille de réponses ————				
Nom: Prénom: Code Massar: Le candidat doit obligatoirement cocher		A K 0 0 0 B L 1 1 1 C M 2 2 2 D N 3 3 3 E O U 4 4 4 F P V 5 5 5 G Q W 6 6 6 H R X 7 7 7	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
(comme suit ■) son co ci-contre		☐I ☐S ☐Y ☐8 ☐8 ☐ ☐J ☐T ☐Z ☐9 ☐9 ☐		
QCM : 1 point pour une réponse juste, O pour une réponse fausse ou plus d'une réponse ou pas de réponse. Question 1 Question 9 \[\begin{align*} \text{Question 9} \\ \text{\$\sum_{16,625}\$} \\ \text{\$\sum_{11,25}\$} \\ \text{\$\sum_{0}\$} \\ \text{\$\sum_{31,25}\$} \end{align*}				
	$ \left \begin{array}{c} \left(\frac{1}{3}i(t), \frac{1}{3}i(t)\right) \\ \left(\frac{2}{3}i(t), \frac{1}{3}i(t)\right) \end{array} \right $	Question 10		
Question 2		Question 11		
$\square \frac{1}{2}$ $\square 3$ Question 3	$ \bigsqcup \overline{2} \bigsqcup \overline{3}$	Question 12	I 🗆 (p. 120)	
Question 4	· -	$\square 2,5V \square 3V$		
		Question 14		
Question 5	[Question 15		
		☐ 481 ☐ 4810	48,1 4,81	
Question 6		Question 16		
	$ \begin{array}{ c c c }\hline (400\Omega , 2, 5\mu F) \\\hline (1, 2k\Omega , 0, 25\mu F) \end{array}$	Augmente Est nulle	Reste constante Diminue	
Question 7		Question 17		
	$\Box A = \frac{L}{r}, B = LC$ $\Box A = \frac{L}{r}, B = \frac{1}{LC}$	☐ 0 ☐ 258 Question 18	624 1509	
Question 8	. , 10			
		Question 19		

Question 20		Question 34	
Augmente Diminue	Est nulle Reste constante		
Question 21		Question 35	
$\square \ rac{\lambda}{2e} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	$\Box \frac{e}{\lambda} \qquad \Big \ \Box \frac{\lambda}{e}$	γ = Question 36	=
Question 22			
	_	v_B	=
\square D augmente \square e diminue	e augmente λ diminue	Question 37	
Question 23		v_c :	=
\square 1,4 \square 0,25 \square Question 24	2,5 0,014	Question 38	=
Question 24		l L	=
	0,1 0,01	Question 39	=
	_	U_0	=
Est nul	Reste constant	Question 40	
Augmente	Diminue	<u> </u>	=
Question 26		ι_t -	
	$\frac{2x}{v} \qquad \boxed{\qquad \frac{x}{v}}$	Question 41	
Question 27			,256 $$ $$ $$ $2,5$ $$ $$ $$ $0,62$
	5,03 10,03	Question 42	
Question 28			$79 \boxed{ } 17,59 \boxed{ } 11$
□ 51 □ 102 □ [112 61	Question 43	
Question 29			00 100 125
	100 134	Question 44	
Question 30		125 1	$53,2 \square 140,7 \square 148,7$
☐ 3868	16800 38683	Question 45	
Important : Pour les questions 31 à 40, écrire la réponse finale. Ne pas toucher à la case (elle est reservée au correcteur). 1,5 Points pour chaque réponse juste		Question 46	$\frac{ng}{k}$ $\left \begin{array}{c} \frac{mg}{2k} \end{array} \right \left \begin{array}{c} \frac{k}{mg} \end{array} \right $
Question 31		$\int \frac{1}{2}k(\Delta l_0)^2 + \frac{mgs}{2}$	$\frac{x}{l}$ $\int \frac{1}{2}k(x+\Delta l_0)^2 + \frac{mgx}{2}$
$v_c = \dots$		$ \frac{1}{2}k(x+\Delta l_0)^2 - $	$\frac{x}{2} \qquad \frac{1}{2}k(x+\Delta l_0)^2 + \frac{mgx}{2}$ $\frac{mgx}{2} \qquad \frac{1}{2}k(\Delta l_0)^2 - \frac{mgx}{2}$
Question 32		Question 47	
$v_c = \dots$			$,19s \boxed{} 5,18s \boxed{} 0,16s$
Question 33		Question 48	
$v_0 = \dots$		$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	01,5 200,78 0