S1. The visualization of clusters of influenza strains on three subtypes H1N1, H3N2 and H5N1 across selected years.

#### a) H1N1







The process of clustering of sequences from each year is described below:

- 1. The raw sequences are split into subsequences that each sequence consists of (n-2) lists of 3-grams as shown in Fig. 3, where n is the length of HA.
- 2. The subsequence of 3-grams is embedded into a 100-dimension vector based on ProtVec and each sequence is represented as the summation of the vector representation of subsequences. Thus, each sequence is presented as a vector of size 100.
- 3. The original raw sequence data is transformed into numerical data for all subtypes using ProtVec.
- 4. K-means is applied to the sequences from each year after embeddings and we can obtain the clusters of the sequences of each year.
- 5. We determine the choice of k in k-means with Elbow method by calculating the Within-Cluster-Sum of Squared Errors (WSS) for different values of k, and choose the best k (1,2,3,4,5) for which WSS becomes first starts to diminish.
- 6. PCA is applied to the transformed numerical data that represents the sequences from different years and the visualization of clustering is presented for each year.

### S2. The epitope sites for influenza subtypes H1N1, H3N2 and H5N1.

#### a) H1N1

| Epitope | Sites                                                        |
|---------|--------------------------------------------------------------|
| Α       | 118, 120, 121, 122, 126, 127, 128, 129, 132, 133, 134, 135,  |
|         | 137, 139, 140, 141, 142, 143, 146, 147, 149, 165, 252, 253   |
| В       | 124, 125, 152, 153, 154, 155, 156, 157, 160, 162, 163, 183,  |
|         | 184, 185, 186, 187, 189, 190, 191, 193, 194, 196             |
| С       | 34, 35, 36, 37, 38, 40, 41, 43, 44, 45, 269, 270, 271, 272,  |
|         | 273, 274, 276, 277, 278, 283, 288, 292, 295, 297, 298,       |
|         | 302, 303, 305, 306, 307, 308, 309, 310                       |
| D       | 89, 94, 95, 96, 113, 117, 163, 164, 166, 167, 168, 169, 170, |
|         | 171, 172, 173, 174, 176, 179, 198, 200, 202, 204, 205, 206,  |
|         | 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 222, 223,  |
|         | 224, 225, 226, 227, 235, 237, 239, 241, 243, 244, 245        |
| E       | 47, 48, 50, 51, 53, 54, 56, 57, 58, 66, 68, 69, 70,          |
|         | 71, 72, 73, 74, 75, 78, 79, 80, 82, 83, 84, 85,              |
| -       | 86, 102, 257, 258, 259, 260, 261, 263, 267                   |

[1] Deem M W, Pan K. The epitope regions of H1-subtype influenza A, with application to vaccine efficacy[J]. Protein Engineering Design and Selection, 2009, 22(9): 543-546.

#### b) H3N2

| Epitope     | Sites                                                           |
|-------------|-----------------------------------------------------------------|
| <del></del> |                                                                 |
| Α           | 122, 124, 126, 130, 131, 132, 133, 135, 136, 137, 138, 140,     |
|             | 142, 143, 144, 145, 146, 150, 152, 168                          |
| В           | 128, 129, 155, 156, 157, 158, 159, 160, 163, 165, 186, 187,     |
|             | 188, 189, 190, 192, 193, 194, 196, 197, 198                     |
| С           | 44, 45, 46, 47, 48, 49, 50, 51, 53, 54, 273, 275, 276, 278,     |
|             | 279, 280, 294, 297, 299, 300, 304, 305, 307, 308, 309, 310,     |
|             | 311, 312                                                        |
| D           | 96, 102, 103, 117, 121, 167, 170, 171, 172, 173, 174, 175,      |
|             | 176, 177, 179, 182, 201, 203, 207, 208, 209, 212, 213, 214,     |
|             | 215, 216, 217, 218, 219, 226, 227, 228, 229, 230, 235, 238,     |
|             | 240, 242, 244, 246, 247, 248                                    |
| E           | 57, 59, 62, 63, 67, 75, 78, 80, 81, 82, 83, 86, 87, 88, 91, 92, |
|             | 94, 109, 260, 261, 262, 265                                     |
|             |                                                                 |

[2] Munoz E T, Deem M W. Epitope analysis for influenza vaccine design[J]. Vaccine, 2005, 23(9): 1144-1148.

#### c) H5N1

| Sites on | 36, 48, 53, 55, 56, 57, 62, 65, 71, 77, 78, 80, 81, 82, 83, 84, |
|----------|-----------------------------------------------------------------|
| epitope  | 86, 87, 91, 94, 115, 116, 117, 118, 119, 120, 121, 122, 123,    |
|          | 124, 125, 126, 127, 128, 129, 130, 131, 133, 136, 138, 140,     |
|          | 141, 142, 143, 144, 145, 149, 150, 151, 152, 153, 154, 155,     |
|          | 156, 157, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168,     |
|          | 169, 171, 172, 173, 174, 179, 182, 185, 186, 187, 189, 190,     |
|          | 191, 193, 200, 205, 206, 207, 212, 222, 226, 230, 242, 244,     |
|          | 245, 246, 252, 256, 259, 261, 262, 263, 273, 274, 276, 278,     |
|          | 282                                                             |
|          |                                                                 |

- [3] Li J, Wang Y, Liang Y, et al. Fine antigenic variation within H5N1 influenza virus hemagglutinin's antigenic sites defined by yeast cell surface display[J]. European journal of immunology, 2009, 39(12): 3498-3510.
- [4] Kaverin N V, Rudneva I A, Govorkova E A, et al. Epitope mapping of the hemagglutinin molecule of a highly pathogenic H5N1 influenza virus by using monoclonal antibodies[J]. Journal of virology, 2007, 81(23): 12911-12917.

## S3. The standard deviation of predictive results on test data of three influenza datasets at epitope sites.

| Dataset | Model    | Model Accuracy |       |       | Precision |       |       | Sensitivity |       | MCC   |       |       |      |
|---------|----------|----------------|-------|-------|-----------|-------|-------|-------------|-------|-------|-------|-------|------|
|         | Wodel    | 5              | 10    | 15    | 5         | 10    | 15    | 5           | 10    | 15    | 5     | 10    | 15   |
|         | Baseline | 0.004          | 0.003 | 0.001 | 0.019     | 0.012 | 0.015 | 0.015       | 0.013 | 0.007 | 0.009 | 0.012 | 0.01 |
|         | LR       | 0.002          | 0.004 | 0.001 | 0.004     | 0.005 | 0.06  | 0.005       | 0.005 | 0.004 | 0.002 | 0.005 | 0.00 |
|         | SVM      | 0.001          | 0.002 | 0.001 | 0.005     | 0.001 | 0.002 | 0.006       | 0.006 | 0.006 | 0.001 | 0.002 | 0.00 |
| H1N1    | RNN      | 0.002          | 0.002 | 0.001 | 0.006     | 0.008 | 0.005 | 0.007       | 0.005 | 0.005 | 0.002 | 0.002 | 0.00 |
|         | GRU      | 0.002          | 0.002 | 0.001 | 0.010     | 0.006 | 0.008 | 0.009       | 0.006 | 0.008 | 0.002 | 0.001 | 0.00 |
|         | LSTM     | 0.002          | 0.002 | 0.001 | 0.008     | 0.006 | 0.007 | 0.009       | 0.006 | 0.008 | 0.002 | 0.002 | 0.0  |
|         | Tempel   | 0.003          | 0.001 | 0.001 | 0.007     | 0.005 | 0.006 | 0.008       | 0.007 | 0.008 | 0.002 | 0.001 | 0.0  |
|         | Baseline | 0.002          | 0.005 | 0.003 | 0.005     | 0.011 | 0.007 | 0.003       | 0.002 | 0.005 | 0.010 | 0.012 | 0.0  |
|         | LR       | 0.002          | 0.003 | 0.002 | 0.008     | 0.009 | 0.008 | 0.005       | 0.008 | 0.006 | 0.002 | 0.003 | 0.0  |
|         | SVM      | 0.003          | 0.001 | 0.002 | 0.009     | 0.007 | 0.008 | 0.005       | 0.010 | 0.007 | 0.005 | 0.004 | 0.0  |
| H3N2    | RNN      | 0.003          | 0.002 | 0.002 | 0.011     | 0.008 | 0.009 | 0.005       | 0.006 | 0.006 | 0.007 | 0.010 | 0.0  |
|         | GRU      | 0.002          | 0.003 | 0.002 | 0.005     | 0.005 | 0.004 | 0.003       | 0.007 | 0.006 | 0.006 | 0.009 | 0.0  |
|         | LSTM     | 0.002          | 0.003 | 0.002 | 0.005     | 0.004 | 0.004 | 0.004       | 0.005 | 0.004 | 0.005 | 0.008 | 0.0  |
|         | Tempel   | 0.002          | 0.002 | 0.002 | 0.004     | 0.003 | 0.003 | 0.004       | 0.005 | 0.003 | 0.005 | 0.008 | 0.0  |
|         | Baseline | 0.010          | 0.001 | 0.002 | 0.011     | 0.003 | 0.010 | 0.005       | 0.004 | 0.005 | 0.002 | 0.005 | 0.0  |
|         | LR       | 0.002          | 0.001 | 0.001 | 0.002     | 0.002 | 0.001 | 0.001       | 0.001 | 0.001 | 0.002 | 0.002 | 0.0  |
|         | SVM      | 0.001          | 0.002 | 0.002 | 0.002     | 0.001 | 0.003 | 0.000       | 0.000 | 0.000 | 0.001 | 0.001 | 0.0  |
| H5N1    | RNN      | 0.001          | 0.001 | 0.003 | 0.003     | 0.002 | 0.004 | 0.002       | 0.003 | 0.003 | 0.003 | 0.004 | 0.0  |
|         | GRU      | 0.001          | 0.002 | 0.001 | 0.002     | 0.003 | 0.002 | 0.003       | 0.003 | 0.002 | 0.002 | 0.003 | 0.0  |
|         | LSTM     | 0.001          | 0.001 | 0.001 | 0.002     | 0.002 | 0.002 | 0.003       | 0.001 | 0.003 | 0.002 | 0.001 | 0.0  |
|         | Tempel   | 0.001          | 0.001 | 0.002 | 0.002     | 0.003 | 0.002 | 0.002       | 0.001 | 0.001 | 0.003 | 0.003 | 0.0  |

S4. The prediction results on three influenza datasets at epitope sites using the training set.

| Dataset    | Model Accuracy |       |       | Precision |       | Sensitivity |       | MCC   |       |       |       |       |       |
|------------|----------------|-------|-------|-----------|-------|-------------|-------|-------|-------|-------|-------|-------|-------|
| 2-41411/01 | Model          | 5     | 10    | 15        | 5     | 10          | 15    | 5     | 10    | 15    | 5     | 10    | 15    |
|            | Baseline       | 0.850 | 0.859 | 0.876     | 0.495 | 0.538       | 0.617 | 0.360 | 0.352 | 0.412 | 0.343 | 0.364 | 0.449 |
|            | LR             | 0.884 | 0.884 | 0.885     | 0.687 | 0.687       | 0.688 | 0.377 | 0.383 | 0.393 | 0.466 | 0.467 | 0.467 |
|            | SVM            | 0.881 | 0.878 | 0.879     | 0.570 | 0.562       | 0.575 | 0.814 | 0.811 | 0.820 | 0.615 | 0.610 | 0.612 |
| H1N1       | RNN            | 0.946 | 0.947 | 0.946     | 0.846 | 0.848       | 0.847 | 0.778 | 0.805 | 0.806 | 0.779 | 0.784 | 0.782 |
|            | GRU            | 0.950 | 0.950 | 0.951     | 0.856 | 0.858       | 0.859 | 0.783 | 0.814 | 0.814 | 0.799 | 0.801 | 0.802 |
|            | LSTM           | 0.952 | 0.952 | 0.951     | 0.856 | 0.850       | 0.855 | 0.789 | 0.820 | 0.823 | 0.800 | 0.801 | 0.805 |
|            | Tempel         | 0.952 | 0.954 | 0.953     | 0.857 | 0.860       | 0.860 | 0.791 | 0.821 | 0.825 | 0.802 | 0.805 | 0.806 |
|            | Baseline       | 0.936 | 0.913 | 0.897     | 0.464 | 0.333       | 0.285 | 0.430 | 0.452 | 0.457 | 0.405 | 0.344 | 0.316 |
|            | LR             | 0.940 | 0.940 | 0.941     | 0.466 | 0.462       | 0.464 | 0.045 | 0.043 | 0.044 | 0.129 | 0.130 | 0.128 |
|            | SVM            | 0.778 | 0.781 | 0.783     | 0.187 | 0.189       | 0.191 | 0.814 | 0.814 | 0.815 | 0.318 | 0.321 | 0.322 |
| H3N2       | RNN            | 0.959 | 0.956 | 0.953     | 0.762 | 0.730       | 0.791 | 0.440 | 0.457 | 0.455 | 0.610 | 0.565 | 0.555 |
|            | GRU            | 0.960 | 0.961 | 0.960     | 0.764 | 0.779       | 0.768 | 0.540 | 0.567 | 0.539 | 0.610 | 0.629 | 0.624 |
|            | LSTM           | 0.961 | 0.961 | 0.962     | 0.777 | 0.774       | 0.777 | 0.550 | 0.573 | 0.634 | 0.617 | 0.627 | 0.629 |
|            | Tempel         | 0.961 | 0.964 | 0.963     | 0.776 | 0.784       | 0.782 | 0.551 | 0.578 | 0.644 | 0.625 | 0.635 | 0.633 |
|            | Baseline       | 0.960 | 0.973 | 0.959     | 0.163 | 0.233       | 0.161 | 0.332 | 0.356 | 0.383 | 0.240 | 0.284 | 0.238 |
|            | LR             | 0.987 | 0.987 | 0.987     | 0.840 | 0.847       | 0.862 | 0.157 | 0.145 | 0.145 | 0.380 | 0.382 | 0.408 |
|            | SVM            | 0.927 | 0.924 | 0.930     | 0.166 | 0.161       | 0.166 | 0.949 | 0.949 | 0.949 | 0.382 | 0.374 | 0.385 |
| H5N1       | RNN            | 0.987 | 0.987 | 0.983     | 0.847 | 0.817       | 0.810 | 0.442 | 0.439 | 0.425 | 0.628 | 0.630 | 0.621 |
|            | GRU            | 0.988 | 0.988 | 0.989     | 0.876 | 0.849       | 0.844 | 0.486 | 0.487 | 0.497 | 0.663 | 0.659 | 0.661 |
|            | LSTM           | 0.988 | 0.988 | 0.988     | 0.859 | 0.844       | 0.854 | 0.489 | 0.493 | 0.484 | 0.649 | 0.651 | 0.646 |
|            | Tempel         | 0.991 | 0.992 | 0.991     | 0.885 | 0.890       | 0.886 | 0.475 | 0.485 | 0.489 | 0.669 | 0.678 | 0.670 |

# S5. The results of mutation prediction at the single epitope site on three influenza datasets using our proposed framework.

| Dataset* | Sites** | Accuracy | Precision | F-measure | MCC   |
|----------|---------|----------|-----------|-----------|-------|
|          | 35      | 0.951    | 0.913     | 0.655     | 0.662 |
|          | 51      | 0.883    | 0.885     | 0.890     | 0.766 |
|          | 70      | 0.922    | 0.951     | 0.713     | 0.701 |
|          | 72      | 0.970    | 0.981     | 0.873     | 0.863 |
|          | 73      | 0.904    | 0.860     | 0.917     | 0.814 |
|          | 82      | 1.000    | 1.000     | 1.000     | 1.000 |
|          | 84      | 0.734    | 0.627     | 0.733     | 0.511 |
|          | 85      | 0.974    | 0.978     | 0.979     | 0.943 |
|          | 89      | 0.926    | 0.973     | 0.593     | 0.617 |
|          | 96      | 0.949    | 0.923     | 0.949     | 0.899 |
|          | 102     | 0.810    | 0.790     | 0.857     | 0.601 |
|          | 113     | 0.916    | 0.888     | 0.930     | 0.831 |
|          | 118     | 1.000    | 1.000     | 1.000     | 1.000 |
|          | 128     | 1.000    | 1.000     | 0.995     | 0.995 |
|          | 129     | 0.809    | 0.732     | 0.802     | 0.631 |
|          | 137     | 0.913    | 0.909     | 0.889     | 0.823 |

|        | 1.40 | 0.004 | 1 000 | 0.764 | 0.702 |
|--------|------|-------|-------|-------|-------|
|        | 140  | 0.994 | 1.000 | 0.764 | 0.783 |
|        | 141  | 0.986 | 1.000 | 0.567 | 0.625 |
| 111311 | 143  | 0.789 | 0.718 | 0.801 | 0.601 |
| H1N1   | 146  | 0.719 | 0.643 | 0.739 | 0.471 |
|        | 149  | 0.974 | 0.980 | 0.789 | 0.793 |
|        | 153  | 0.848 | 0.787 | 0.845 | 0.704 |
|        | 154  | 0.916 | 0.883 | 0.918 | 0.836 |
|        | 155  | 0.943 | 0.932 | 0.953 | 0.882 |
|        | 157  | 0.884 | 0.850 | 0.901 | 0.770 |
|        | 165  | 0.895 | 0.869 | 0.913 | 0.789 |
|        | 167  | 0.948 | 0.924 | 0.953 | 0.896 |
|        | 168  | 0.885 | 0.866 | 0.899 | 0.769 |
|        | 169  | 0.887 | 0.689 | 0.564 | 0.512 |
|        | 171  | 0.811 | 0.917 | 0.567 | 0.566 |
|        | 172  | 0.956 | 0.971 | 0.958 | 0.911 |
|        | 176  | 0.974 | 0.980 | 0.789 | 0.793 |
|        | 184  | 0.948 | 0.960 | 0.649 | 0.665 |
|        | 186  | 0.712 | 0.610 | 0.711 | 0.564 |
|        | 187  | 0.980 | 0.923 | 0.469 | 0.456 |
|        | 194  | 0.828 | 0.749 | 0.843 | 0.684 |
|        | 200  | 0.942 | 0.950 | 0.619 | 0.638 |
|        | 202  | 0.932 | 0.924 | 0.948 | 0.853 |
|        | 206  | 0.827 | 0.866 | 0.717 | 0.616 |
|        | 207  | 0.999 | 1.000 | 0.933 | 0.935 |
|        | 209  | 0.910 | 0.676 | 0.577 | 0.535 |
|        | 210  | 0.975 | 0.990 | 0.797 | 0.801 |
|        | 211  | 0.954 | 0.969 | 0.961 | 0.906 |
|        | 212  | 0.716 | 0.791 | 0.494 | 0.433 |
|        | 213  | 0.815 | 0.949 | 0.514 | 0.543 |
|        | 215  | 0.984 | 1.000 | 0.441 | 0.527 |
|        | 216  | 0.890 | 0.839 | 0.904 | 0.790 |
|        | 223  | 0.941 | 0.920 | 0.947 | 0.883 |
|        | 224  | 0.825 | 0.815 | 0.435 | 0.456 |
|        | 225  | 0.828 | 0.749 | 0.832 | 0.677 |
|        | 227  | 0.896 | 0.867 | 0.912 | 0.792 |
|        | 235  | 1.000 | 1.000 | 1.000 | 1.000 |
|        | 243  | 0.973 | 0.970 | 0.876 | 0.866 |
|        | 252  | 0.948 | 0.924 | 0.952 | 0.896 |
|        | 257  | 0.923 | 0.921 | 0.547 | 0.570 |
|        | 261  | 0.942 | 0.940 | 0.616 | 0.633 |
|        | 269  | 0.969 | 0.969 | 0.750 | 0.756 |
|        | 272  | 0.983 | 0.994 | 0.901 | 0.896 |

| 274 | 0.960 | 0.969 | 0.965 | 0.917 |
|-----|-------|-------|-------|-------|
| 276 | 0.828 | 0.751 | 0.845 | 0.685 |
| 277 | 0.936 | 0.966 | 0.644 | 0.858 |
| 278 | 0.969 | 0.968 | 0.973 | 0.937 |
| 283 | 0.917 | 0.893 | 0.930 | 0.833 |
| 288 | 0.934 | 0.936 | 0.609 | 0.624 |
| 292 | 0.884 | 0.875 | 0.698 | 0.651 |
| 302 | 0.968 | 0.955 | 0.966 | 0.935 |
| 303 | 0.967 | 0.941 | 0.739 | 0.742 |
| 305 | 0.969 | 0.949 | 0.855 | 0.842 |
| 46  | 0.940 | 0.932 | 0.506 | 0.574 |
| 47  | 0.990 | 1.000 | 0.583 | 0.683 |
| 48  | 0.936 | 0.807 | 0.592 | 0.585 |
| 49  | 0.972 | 0.875 | 0.300 | 0.409 |
| 63  | 0.911 | 0.891 | 0.647 | 0.631 |
| 78  | 0.980 | 0.935 | 0.683 | 0.701 |
| 82  | 0.991 | 1.000 | 0.642 | 0.684 |
| 94  | 0.984 | 1.000 | 0.576 | 0.654 |
| 96  | 0.996 | 0.943 | 0.589 | 0.647 |
| 102 | 0.990 | 1.000 | 0.512 | 0.507 |
| 103 | 0.978 | 1.000 | 0.526 | 0.591 |
| 109 | 0.951 | 0.875 | 0.718 | 0.705 |
| 121 | 0.971 | 1.000 | 0.554 | 0.610 |
| 126 | 0.981 | 0.921 | 0.648 | 0.671 |
| 129 | 0.996 | 0.994 | 0.972 | 0.970 |
| 132 | 0.871 | 0.506 | 0.410 | 0.448 |
| 136 | 0.673 | 0.753 | 0.367 | 0.335 |
| 137 | 0.955 | 0.977 | 0.790 | 0.784 |
| 146 | 0.876 | 0.847 | 0.430 | 0.479 |
| 150 | 0.912 | 0.907 | 0.627 | 0.621 |
| 152 | 0.908 | 0.891 | 0.651 | 0.633 |
| 155 | 0.814 | 0.749 | 0.445 | 0.402 |
| 157 | 0.663 | 0.737 | 0.532 | 0.430 |
| 158 | 0.973 | 0.830 | 0.615 | 0.625 |
| 159 | 0.809 | 0.812 | 0.638 | 0.538 |
| 160 | 0.813 | 0.586 | 0.624 | 0.502 |
| 165 | 0.985 | 0.983 | 0.786 | 0.796 |
| 170 | 0.946 | 0.798 | 0.647 | 0.632 |
| 171 | 0.899 | 0.686 | 0.789 | 0.739 |
| 172 | 0.975 | 0.952 | 0.860 | 0.851 |
| 173 | 0.920 | 0.930 | 0.684 | 0.673 |
| 174 | 0.879 | 0.815 | 0.754 | 0.678 |

|      | 175 | 0.002 | 0.010 | 0.716 | 0.692 |
|------|-----|-------|-------|-------|-------|
|      | 175 | 0.903 | 0.910 |       | 0.683 |
| H3N2 | 179 | 0.874 | 0.506 | 0.496 | 0.440 |
| H3N2 | 182 | 0.989 | 1.000 | 0.531 | 0.597 |
|      | 186 | 0.645 | 0.510 | 0.641 | 0.480 |
|      | 187 | 0.987 | 0.942 | 0.784 | 0.789 |
|      | 188 | 0.947 | 0.981 | 0.747 | 0.746 |
|      | 190 | 0.994 | 1.000 | 0.629 | 0.675 |
|      | 197 | 0.986 | 1.000 | 0.540 | 0.603 |
|      | 201 | 0.944 | 0.864 | 0.659 | 0.652 |
|      | 203 | 0.942 | 0.898 | 0.475 | 0.519 |
|      | 207 | 0.980 | 0.945 | 0.857 | 0.851 |
|      | 208 | 0.824 | 0.664 | 0.693 | 0.570 |
|      | 212 | 0.876 | 0.944 | 0.686 | 0.654 |
|      | 213 | 0.856 | 0.862 | 0.475 | 0.475 |
|      | 214 | 0.905 | 0.787 | 0.555 | 0.537 |
|      | 216 | 0.973 | 0.938 | 0.738 | 0.743 |
|      | 217 | 0.973 | 0.917 | 0.549 | 0.514 |
|      | 218 | 0.844 | 0.569 | 0.547 | 0.453 |
|      | 219 | 0.946 | 0.864 | 0.511 | 0.565 |
|      | 227 | 0.958 | 0.769 | 0.541 | 0.547 |
|      | 228 | 0.976 | 0.945 | 0.684 | 0.702 |
|      | 229 | 0.970 | 1.000 | 0.719 | 0.737 |
|      | 230 | 0.987 | 0.933 | 0.509 | 0.567 |
|      | 235 | 1.000 | 1.000 | 1.000 | 1.000 |
|      | 238 | 0.941 | 0.813 | 0.694 | 0.671 |
|      | 240 | 0.982 | 0.945 | 0.852 | 0.897 |
|      | 242 | 0.990 | 0.814 | 0.778 | 0.773 |
|      | 244 | 0.985 | 1.000 | 0.544 | 0.530 |
|      | 247 | 0.993 | 0.923 | 0.828 | 0.828 |
|      | 248 | 0.976 | 0.941 | 0.662 | 0.683 |
|      | 261 | 0.984 | 1.000 | 0.667 | 0.701 |
|      | 275 | 0.956 | 0.954 | 0.582 | 0.616 |
|      | 276 | 0.795 | 0.903 | 0.561 | 0.512 |
|      | 278 | 0.989 | 1.000 | 0.703 | 0.732 |
|      | 279 | 0.994 | 1.000 | 0.875 | 0.879 |
|      | 294 | 0.994 | 1.000 | 0.698 | 0.730 |
|      | 297 | 0.988 | 1.000 | 0.556 | 0.616 |
|      | 304 | 0.902 | 0.667 | 0.457 | 0.435 |
|      | 305 | 0.995 | 1.000 | 0.783 | 0.800 |
|      | 307 | 0.980 | 0.857 | 0.574 | 0.523 |
|      | 36  | 1.000 | 1.000 | 1.000 | 1.000 |
|      | 62  | 1.000 | 1.000 | 1.000 | 1.000 |
|      | 02  | 1.000 | 1.000 | 1.000 | 1.000 |

|      | 81  | 0.959 | 0.676 | 0.539 | 0.531 |
|------|-----|-------|-------|-------|-------|
|      | 83  | 0.965 | 0.684 | 0.594 | 0.582 |
|      | 86  | 0.959 | 0.573 | 0.534 | 0.514 |
|      | 122 | 1.000 | 1.000 | 1.000 | 1.000 |
|      | 130 | 0.963 | 0.765 | 0.711 | 0.693 |
| H5N1 | 138 | 0.920 | 1.000 | 0.024 | 0.107 |
|      | 142 | 0.926 | 0.928 | 0.747 | 0.725 |
|      | 144 | 1.000 | 1.000 | 1.000 | 1.000 |
|      | 149 | 1.000 | 1.000 | 1.000 | 1.000 |
|      | 151 | 0.889 | 0.850 | 0.594 | 0.600 |
|      | 156 | 1.000 | 1.000 | 1.000 | 1.000 |
|      | 168 | 1.000 | 1.000 | 1.000 | 1.000 |
|      | 169 | 0.962 | 0.669 | 0.724 | 0.706 |
|      | 171 | 0.959 | 0.730 | 0.689 | 0.668 |

<sup>\*</sup>For every selected single site, we generate 10000 samples of 3-3-grams to predict mutations in the year 2016 with Tempel. The model is trained using sequential data from 2006-2015. The constructed samples are divided into training and testing set in a ratio of 0.8:0.2.

<sup>\*\*</sup> This table shows the predictive performance on the testing set. Only the sites that the mutated samples exceed 1% of the testing set are presented.