Traditional research designs versus intensive longitudinal designs

Modeling Intensive Longitudinal Data

Ellen Hamaker

Utrecht Sharing science, shaping tomorrow

1. Cross-sectional design

Cross-sectional research consists of a **single snapshot** of a sample of individuals.

Schmitz and Skinner (1993, JPSP) studied academic performance in 9- to 12-year-olds.

Cross-sectionally (i.e., nomothetic):

- children who experience more control, put in more effort
- ► children who put in more effort, perform better
- children who perform better, evaluate their performance more positively
- children who evaluate their performance more positively, experience more control

Nomothetic versus idiographic

Does this **reflect** the process at the within-person level?

Process:

- ▶ Does experiencing more control **lead to** putting in more effort?
- Does putting in more effort lead to better performance?
- Does performing better lead to a more positive self-evaluation?
- ► Does a positive self-evaluation **lead to** the experience of more control?

Using TSA on N=1 data Schmitz and Skinner concluded that:

- some children have a pattern similar to the cross-sectional results
- some children have very different patterns

Limitations of cross-sectional research

Cross-sectional research is

- ► concerned with characteristics of the population
- ► useful for **selecting** individuals

Cross-sectional research is not suitable for studying

- processes and (causal) mechanisms
- ▶ individual differences in processes and (causal) mechanisms

Note: If we cannot generalize from the individual to the population, then we cannot generalize from the population to the individual.

2. Experiment al design (aka randomized controlled trial)

Premise: Random assignment ensures the groups **are the same** prior to the intervention; hence, mean differences between the groups after intervention **must** stem from the intervention.

Difference in group means is the average causal effect.

Typing example

Number of words per minute

Limitations of RCTs

Random assignment is not always possible or ethical:

- ▶ what is the effect of postnatal depression on children's development?
- ▶ how do everyday stressors affect physiological processes?
- ▶ how does workload spill over into family life?

Also, experiments often focus on

- ► a static outcome of process
- ► a process that is completed at a **short timescale** (minutes, hours)
- ▶ the average causal effect (or: average treatment effect)

3. Panel design

Panel data consist of a few snapshots of the same people.

Panel research is often used to

- ► investigate (developmental) trends (e.g., growth curve modeling)
- ► investigate dynamics (e.g., cross-lagged panel model)

Figure 2 from Usami et al. (doi: 10.1037/met0000210)

Limitations of panel research

Panel research is often characterized by

- large time intervals between measurements; this makes it hard to see the actual dynamics of the process
- only a few measurements per person; this makes it hard to study individual differences in the dynamics

Summary

Strengths of traditional research methods:

- ► Cross-sectional research is appropriate for description and selection
- ► Experimental research is appropriate to study the average causal effect
- ► Panel research is appropriate for describing global trends

These techniques are **not appropriate** for:

- ▶ gaining insight in the momentary dynamics of everyday processes
- ► investigating the idiographics of such processes
- ► forecasting at the individual level

Intensive longitudinal design (ILD)

Diverse forms:

- ► daily diary (DD)
- experience sampling method (ESM)
- ecological momentary assessment (EMA)
- ► ambulatory assessment (AA)
- ► real-time data capture (RTDC)
- ► event-based measurements
- observational measurements

Advantages

Strengths of ILD:

- compared to retrospective questionnaires: little/no recall bias
- ► compared to lab experiments: much longer time spans possible
- ecological validity is high
- ► monitoring/feedback as part of eHealth

And it forms a window into underlying dynamics, and how these may differ across individuals.

