Programming for Professional Research Using R

Session 1

March 30, 2023

Introduction

Purpose

Learning R

Purpose of this course: Put you on the right track to use R for professional research.

- The vast majority of research assistant/analyst (RA) work consists of cleaning and constructing datasets for analysis
- Entry-level RA positions rarely require complex econometric/regression skills

Introduction

Purpose

Learning R

You should think of learning R like learning a language.

- Taking a six-hour course won't make you proficient in it
- If you don't practice it, you'll forget it
- Solution -- Find ways to use R in your life, either personally or professionally

Jobs

Beautiful Tables

Beautiful Graphs

Beautiful Maps

- Many entry-level research jobs in policy, economic, development, or political science institutions now expect quantitative work using Stata, R, or Python
- Coding skills make you more valuable in any position -- data adds value to nearly every kind of research!

Jobs B	Seautiful Tables	Beautiful Graphs Beautifu		Maps	
2021 Expected vs. Actual Fantasy Points Top 40 Running Backs					
Player	Team	Expected FP	Expected FP Rank	Actual FP	Actual FP Rank
Jonathan Tay	ylor U IND	301.20	RB 1	324.20	RB 1
Najee Harris	→ PIT	292.67	RB 2	228.10	RB 4
Joe Mixon	IB CIN	251.89	RB 3	254.80	RB 3
Leonard Fou	rnette 🌂 TB	232.12	RB 4	221.10	RB 5
Ezekiel Elliott	t ★ DAL	225.03	RB 5	214.76	RB 6
Austin Ekeler	LAC	217.88	RB 6	263.90	RB 2
Antonio Gibs	on W WAS	216.49	RB 7	186.70	RB 11

Jobs

Beautiful Tables

Beautiful Graphs

Beautiful Maps

Jobs

Beautiful Tables

Beautiful Graphs

Beautiful Maps

Today

- Learn how to:
 - Import data in an efficient and reproducible manner
 - o Filter, mutate, group, and summarize data using Tidyverse functions
 - Reshape data using Tidyverse functions
- Be introduced to:
 - Code and data collaboration -- GitHub and data project reproducibility
- Practice the above!

R Basics

RStudio Layout

Creating Vectors Selecting Vector Elements

- You write your code in a script
- When you run the code, it runs in the console
- The objects that you use/create (datasets, vectors, values) appear in your environment

R Basics

```
RStudio Layout Creating Vectors
                                    Selecting Vector Elements
vector <- c(1, 2, 5)
vector
## [1] 1 2 5
vector <- 2:6
vector
## [1] 2 3 4 5 6
vector <- seq(2, 3, by = 0.5)
vector
## [1] 2.0 2.5 3.0
```

R Basics

RStudio Layout Creating Vectors Selecting Vector Elements

```
## By Position
x[4] # Fourth element
x[-4] # Everything but the fourth element
x[2:4] # Elements two to four
x[-(2:4)] # Everything but elements two to four
x[c(1, 5)] # Elements one and five
```

```
# By Value
x[x == 10]
         # Elements which are equal to 10
x[x < 0]
       # Elements that are less than zero
x[x \%in\% c(1, 2, 5)] # Elements in the set 1, 2, 5
```

Coding Set Up

Installing Packages

Setting up File Paths

Easy

```
install.packages("tidyverse")
library(tidyverse)
```

Better

The pacman package installs packages if they aren't installed yet, loads them otherwise

```
if(!require(pacman)) install.packages("pacman")
pacman::p_load(tidyverse)
```

You want your code to be reproducible and easy to use by other people

Solution:

```
# Set User (this allows us to use fixed file paths but to adapt them
# for multiple possible users)
      # 1 -- Marc-Andrea Fiorina
      # 2 -- Enter here if needed
user <- 1
if(user == 1) {
    # Absolute file path
    main_filepath <- "/Users/marc-andreafiorina/Dropbox/SAIS R Course/"</pre>
# Notice the relative file paths
data filepath <- paste0(main filepath, "data/")</pre>
```

Importing Data

Easiest file type to import into R is a .csv file. But you can also import .xlsx, .dta (Stata), etc.

```
Easy -> read.csv()
```

• Harder (faster) -> data.table::fread()

```
norms_values_data <- data.table::fread(
   paste0(data_filepath, "session_1/wvs_values_norms_data.csv"),
   na.strings = ""
)</pre>
```

Data 'Wrangling'

Tidyverse Introduction

Base R Layout Tidyverse Layout

names(mtcars)

[1] "mpg" "cyl" "disp" "hp" "drat" "wt" "qsec" "vs" "am" "gear"

[11] "carb"

str_replace(str_to_upper(names(mtcars)), "MPG", "HELLO")

[1] "HELLO" "CYL" "DISP" "HP" "DRAT" "WT" "QSEC" "VS" "AM"

[10] "GEAR" "CARB"

Tidyverse Introduction

```
Base R Layout Tidyverse Layout
```

Tidyverse functions introduce a 'cleaner' method to write code out, using what is called the 'pipe operator': %>%. It's almost like writing a recipe, step by step.

```
names(mtcars)
  [1] "mpg" "cyl" "disp" "hp" "drat" "wt" "qsec" "vs" "am"
                                                                     "gear"
## [11] "carb"
mtcars %>%
    names() %>%
    str to upper() %>%
    str_replace("MPG", "HELLO")
                               "HP"
                                                       "OSEC"
   [1] "HELLO" "CYL" "DISP"
                                       "DRAT"
                                               "WT"
                                                               "VS"
                                                                       "AM"
##
##
  [10] "GEAR" "CARB"
```

mutate() filter() select()

```
##
                     wt heavy
## Mazda RX4
                  2.620
                           No
## Mazda RX4 Wag 2.875
                          No
## Datsun 710 2.320
                        No
## Hornet 4 Drive 3.215
                        Yes
## Hornet Sportabout 3.440
                        Yes
## Valiant
                  3.460
                        Yes
```

```
mutate() filter() select()
```

```
filter_example <- mtcars %>%
    filter(wt > 3)

filter_example %>% head()
```

```
##
                    mpg cyl disp hp drat wt qsec vs am gear carb
## Hornet 4 Drive
                   21.4
                          6 258.0 110 3.08 3.215 19.44 1
                                                         0
                                                              3
                                                                   1
                                                                   2
## Hornet Sportabout 18.7 8 360.0 175 3.15 3.440 17.02 0
## Valiant
                   18.1 6 225.0 105 2.76 3.460 20.22 1
## Duster 360
                   14.3 8 360.0 245 3.21 3.570 15.84 0
                                                                   4
                                                                   2
                          4 146.7 62 3.69 3.190 20.00 1
## Merc 240D
                   24.4
                                                         0
                                                                   2
## Merc 230
                   22.8
                          4 140.8 95 3.92 3.150 22.90 1
                                                         0
```

```
mutate() filter() select()
```

```
select_example <- mtcars %>%
    select(
        matches("mpg|carb")
    )
select_example %>% head()
```

```
## Mazda RX4 21.0 4
## Mazda RX4 Wag 21.0 4
## Datsun 710 22.8 1
## Hornet 4 Drive 21.4 1
## Hornet Sportabout 18.7 2
## Valiant 18.1 1
```

```
group_by_summarize_example <- mtcars %>%
   group_by(cyl) %>%
   summarize(
        mpg = mean(mpg, na.rm = TRUE)
group_by_summarize_example
```

```
## # A tibble: 3 × 2
##
     cyl mpg
## <dbl> <dbl>
    4 26.7
## 1
## 2 6 19.7
## 3 8 15.1
```

4 Agnostic \$30-40k

81

Code and Data Collaboration

Important Points

Professional settings are collaborative settings

Most R courses teach you to code in isolation. But **professional use of R often happens** within teams of researchers.

Reproducibility and shareability of your code are key to ensure:

- Others can use and understand your work
- Accountability

The ultimate collaborative tool: GitHub

GitHub is the preferred code storing platform for data teams because of the following attributes:

- Easy sharing of scripts between team members
- Tracked changes -- every changed line of code is attributed to a specific person
- 'Commit' structure -- allows you to see how your changes affect other people's work on the same scripts

Practical Exercise -- Using the World Values Survey Dataset

World Values Survey

Background

"The survey, which started in 1981, seeks to use the most rigorous, high-quality research designs in each country. The WVS consists of nationally representative surveys conducted in almost 100 countries which contain almost 90 percent of the world's population, using a common questionnaire. [...] WVS seeks to help scientists and policy makers understand changes in the beliefs, values and motivations of people throughout the world."

Survey Contents

- Social values, attitudes & stereotypes
- Societal well-being
- Social capital, trust and organizational membership
- Economic values
- Corruption
- Migration
- Post-materialist index

- Science & technology
- Religious values
- Security
- Ethical values & norms
- Political interest and political participation
- Political culture and political regimes
- Demography

Today's practical component

- 1. Successfully run the code in the session_1_template.R script
- 2. Create your own script and do one or more of the following:
 - Find mean values for 'importance in life' variables (Q1-6) for countries in another region than Europe
 - Calculate average 'enthusiasm' for these life subjects in countries in another region than Europe
 - Perform the same analysis, either on European countries or other countries, for another group of indicators in the dataset:
 - Important child qualities: Q7-18
 - Neighbors: Q19-26
 - Statements to agree with: Q27-41

NOTE You should refer to documentation for the dataset, which can be found in Dropbox/SAIS R Course/documentation/, for details on the variables and their given values.

Links

Syllabus:

https://mfiorina.github.io/sais_r_course/spring_2023/syllabus/r_course_syllabus.html

Thomas Mock, "A Gentle Introduction to Tidy Statistics in R" (blog post and video)

Dominic Royé, "A very short introduction to Tidyverse"

tidyr, "Pivoting"

Hadley Wickham, "dplyr 1.0.0: working across columns"

Hadley Wickham & Garrett Grolemund, R for Data Science

RStudio, RStudio Cheatsheets