

Instagram User Analysis

07.02.2024

Prateek Singh NIT Surat (2025) Surat, Gujrat

Overview

I covered SQL queries for analyzing user interactions, identifying top-performing posts, and calculating engagement metrics. These discussions aimed to provide insights into user behavior, content performance, and overall engagement on Instagram.

Goals

- 1. Marketing Analysis
- 2. Engagement Analysis

Approaches

After setting up my PostgreSQL IDE(pgAdmin4), I created a database for Instagram data. Within this database, I created seven tables: COMMENTS, FOLLOWS, LIKES, PHOTO_TAG, PHOTOS, TAGS, and USERS. Next, I imported data into these tables using the Instagram dataset obtained from Kaggle. This dataset will serve as the foundation for conducting analyses on user interactions, content performance, and overall engagement on the Instagram platform.

Here are the schemas (tables) I created in the Instagram database:

- 1. COMMENTS
- 2. FOLLOWS
- 3. LIKES
- 4. PHOTO_TAG
- 5. PHOTOS
- 6. TAGS
- 7. USERS

1. Marketing Analysis

1. <u>SEARCHING FOR MOST LOYAL USERS</u>

Logic: Loyal users are those who have been using the service for an extended period.

SQL Query

SELECT ID, USERNAME AS OLDEST_USER FROM USERS
ORDER BY CREATED_AT DESC
LIMIT 10;

2. SEARCHING FOR INACTIVE USERS

Logic :Inactive users are individuals who have not posted any photos.

SQL Query

SELECT U.ID, U.USERNAME FROM USERS AS U LEFT JOIN PHOTOS P ON U.ID= P.user_id

3. MOST USED HASHTAG

Hashtags are essential in marketing for several reasons:

- 1. Visibility: They make content discoverable to a wider audience.
- 2. Brand Awareness: Unique hashtags establish brand identity and recognition.
- 3. Engagement: Encourage interaction and participation from users.
- 4. Campaign Tracking: Measure campaign performance and effectiveness.
- 5. Content Curation: Organize and showcase relevant user-generated content.
- 6. Cross-Platform Promotion: Utilize hashtags across different social media platforms for consistent messaging and broader reach.

SQL Query

```
SELECT tag_name
FROM tags
WHERE id IN (
SELECT tag_id
FROM (
SELECT tag_id, COUNT(photo_id)
FROM photo_tags
GROUP BY tag_id
ORDER BY COUNT(photo_id) DESC
LIMIT 5
) AS h
);
```


4. Maximum likes on photo

SQL Query

```
p.id,
COUNT(distinct l.user_id) AS total_likes

FROM
photos p

LEFT JOIN
likes I ON p.id = l.photo_id

GROUP BY
p.id

ORDER BY
total_likes DESC

LIMIT 1;
```


photo_id=100 means user_id =33

SELECT username as winner from users where id = 33;

SQL Query

SQL Query

2. Engagement Analysis

Logic: We will select the user_id from the likes table where the number of likes is maximum, and select the user_id from the comments table where the user has made the maximum number of comments. Then, calculate the sum of these two values. The user_id with the maximum sum of likes and comments represents the customer with the highest engagement.

1. Like analysis

SQL Query

SELECT user_id, COUNT(*) AS total_likes_given

FROM likes

GROUP BY user id

ORDER BY total_likes_given DESC;

	user_id integer	total_likes_given bigint
1	5	257
2	2	94
3	4	93
4	11	89
5	10	87
6	9	85
7	6	82
8	8	79
9	3	79
10	12	55

2. Comment analysis

SQL Query

SELECT user_id, COUNT(*) AS total_comments_made

FROM <u>comments</u>

GROUP BY user_id

ORDER BY total_comments_made DESC limit 10;

	user_id integer	total_comments_made bigint
1	36	35
2	24	35
3	21	35
4	5	35
5	14	35
6	75	34
7	71	34
8	41	34
9	66	34
10	54	34

3. Following analysis

SQL Query

SELECT follower_id AS user_id, COUNT(*) AS total_followers

FROM follows

GROUP BY follower_id

ORDER BY total_followers DESC;

	user_id integer	total_followers bigint
1	6	99
2	3	99
3	11	99
4	8	99
5	12	99
6	10	99
7	9	99
8	5	99
9	4	99
10	2	99
11	13	10

4. Follower analysis

SQL Query

SELECT followee_id AS user_id, COUNT(*) AS total_followers

FROM follows

GROUP BY followee_id

ORDER BY total_followers DESC;

	user_id integer	total_followers bigint
1	1	11
2	7	11
3	23	10
4	56	10
5	91	10
6	58	10
7	8	10
8	87	10
9	74	10
10	54	10
11	29	10
12	71	10
13	68	10
14	4	10
15	34	10
16	51	10
17	96	10

Overall engagement score

SQL Query

```
SELECT

likes_data.user_id,

(total_likes_given + total_comments_made) AS engagement_score

FROM (

SELECT user_id, COUNT(*) AS total_likes_given

FROM likes

GROUP BY user_id
) AS likes_data

JOIN (
```

SELECT user_id, COUNT(*) AS total_comments_made

FROM comments

GROUP BY user_id

) AS comments_data ON likes_data.user_id = comments_data.user_id

WHERE likes_data.user_id != 5 -- Exclude user_id = 5

ORDER BY engagement_score DESC;

<u>Important to note</u>: I excluded user_id=5 since it's associated with an inactive user, possibly indicating it as a bot.

SQL Query

SELECT * FROM users WHERE id = 2;

"Thus, user_id= 2 ie **Andre_Purdy85** exhibits the highest level of engagement."

Result

This project make me delve to learned

- 1. Data Modeling Proficiency: Recognizing the interrelationships among data schemas facilitates insightful analysis and informed conclusions. This foundational step lays the groundwork for navigating complex datasets effectively.
- 2. Alias Utilization: Employing meaningful aliases enhances code clarity and aids in understanding query structures. Strategic aliasing serves as a mnemonic device, aiding in recall and improving overall code readability.
- 3. Command Proficiency: Hands-on experience with various SQL commands enhances problem-solving capabilities and boosts confidence in tackling diverse data challenges. Practical application fosters a deeper understanding of command functionalities and their practical implications.
- 4. Real-World Project Engagement: Participation in sample projects mirrors authentic data scenarios, providing invaluable experience in addressing real-world issues. This exposure fosters the development of practical problem-solving skills and the ability to identify meaningful patterns within datasets.
- 5. Insightful Analysis: By leveraging data modeling skills, alias usage, command proficiency, and real-world project experience, individuals gain the capability to extract meaningful insights. This holistic skill set empowers effective data analysis and informed decision-making processes.