Panduan Instalasi Debian GNU/Linux

17 Agustus 2025

Panduan Instalasi Debian GNU/Linux

Hak Cipta © 2004 – 2025 tim Debian Installer

Manual ini adalah perangkat lunak bebas; Anda dapat mendistribusikannya kembali dan/atau memodifikasinya berdasarkan ketentuan Lisensi Publik Umum GNU. Silakan merujuk ke lisensi di Lampiran \mathbf{F} .

Versi build manual ini: 20250803+deb13u1.

Daftar Isi

1	Sela	mat datang di Debian	1
	1.1	Apa itu Debian?	1
	1.2	Apa itu GNU/Linux?	1
	1.3	Apa itu Debian GNU/Linux?	2
	1.4	Apa itu Debian Installer?	3
	1.5	Mendapatkan Debian	3
	1.6	Mendapatkan Versi Terbaru dari Dokumen Ini	3
	1.7	Organisasi Dokumen Ini	3
	1.7	Tentang Hak Cipta dan Lisensi Perangkat Lunak	
	1.0	Tentang flak Cipia dan Lisensi Ferangkat Lunak	4
2	Pers	yaratan Sistem	6
_	2.1	Perangkat Keras yang Didukung	6
		2.1.1 Arsitektur yang Didukung	6
		2.1.2 Dukungan CPU	6
		2.1.3 Laptop	6
		2.1.4 Beberapa Prosesor	7
		1	7
		\mathcal{E}	
		2.1.6 Perangkat Keras Konektivitas Jaringan	7
		2.1.6.1 Kartu Jaringan Nirkabel	7
		2.1.7 Layar Braille	7
		2.1.8 Sintesis Ucapan Perangkat Keras	8
		2.1.9 Periferal dan Perangkat Keras Lainnya	8
	2.2	Perangkat yang Membutuhkan Firmware	8
	2.3	Membeli Perangkat Keras Khusus untuk GNU/Linux	8
		2.3.1 Hindari Perangkat Keras Proprietari atau Tertutup	9
	2.4	Media Instalasi	9
		2.4.1 CD-ROM/DVD-ROM/BD-ROM	9
		2.4.2 Flash Disk USB	9
		2.4.3 Jaringan	10
		e	10
			10
			10
	2.5		10
		2.00.00.00.00.00.00.00.00.00.00.00.00.00	
3	Sebe	elum Memasang Debian GNU/Linux	11
	3.1	Ikhtisar Proses Pemasangan	11
	3.2	Cadangkan Data Anda yang Ada!	12
	3.3	· ·	12
			12
			12
			12
			13
		· · · · · · · · · · · · · · · · · · ·	13
		8-1 F - 1 8 - 1 - 2 - 1 - 2 - 1 - 1 - 2 - 1 - 1 - 1	14
	2.4		14
	3.4	, .	15
	3.5		15
	3.6		16
			16
		· ·	16
		C	17
			17
		3.6.5 Menonaktifkan fitur "boot cepat"/"startup cepat" Windows	17
			18

4	Men	ıdanatkaı	n Media Instalasi Sistem	19
•	4.1	_		19
	4.2			19
	4.2			19
	4.2			19
	4.3		1	
				20
	4.4		1	20
			1 6	20
	4.5			21
		4.5.1	Menyiapkan server DHCP	21
				22
		4.5.2	Menyiapkan server BOOTP	22
				23
			e	23
	4.6			23
		4.6.1		24
	4.7			24
	т./	IVICIIIVCI	mkasi mtegritas berkas mstatasi	27
5	Men	n-boot Si	stem Instalasi	25
_	5.1			25
				25
				25
			1 '	26
				26
				26
			, ,	26
			e	
				26
			•	26
			C	28
	5.2			28
			1 6	29
				29
				29
				29
			1 6	29
		5.2.6	Perangkat Papan	30
		5.2.7	Tema Kontras Tinggi	30
		5.2.8	Zum	30
		5.2.9	Instalasi pakar, mode penyelamatan, instalasi terotomasi	30
		5.2.10	Aksesibilitas sistem yang dipasang	30
	5.3			30
		5.3.1	Boot konsol serial	31
				31
			e	33
				33
			1	34
	5.4			34
	5.1			34
			•	34
				34
				35
			e	36
				36
			· · · · · · · · · · · · · · · · · · ·	36
				36
			1	36
		5.4.7	Mengirimkan Laporan Instalasi	37

6	Men	ggunak	an Pemas	ang Debia	an	38
	6.1				······································	
		6.1.1			asang grafis	
	6.2					
	6.3				ndividual	
	0.5	6.3.1			n Penginstal dan Konfigurasi Perangkat Keras	
		0.5.1	6.3.1.1		memori yang tersedia / mode memori rendah	
			6.3.1.2		Opsi Pelokalan	
			6.3.1.3		Papan Ketik	
			6.3.1.4		Image ISO Pemasang Debian	
			6.3.1.5		figurasi Jaringan	
				.3.1.5.1	Konfigurasi jaringan otomatis	
				.3.1.5.1		
				.3.1.5.2	Konfigurasi jaringan manual	
		622				
		6.3.2			una dan Kata Sandi	
			6.3.2.1		rr Kata Sandi Root	
		(22	6.3.2.2	Membua	at Pengguna Biasa	43
		6.3.3			n dan Zona Waktu	
		6.3.4			an Titik Kait	
			6.3.4.1		tisi yang didukung	
			6.3.4.2		ian Terpandu	
			6.3.4.3		ian Manual	
			6.3.4.4		figurasi Perangkat Multidisk (RAID Perangkat Lunak)	
			6.3.4.5		figurasi Logical Volume Manager (LVM)	
			6.3.4.6		figurasi Volume Terenkripsi	
		6.3.5			Dasar	
		6.3.6			kat Lunak Tambahan	
			6.3.6.1	_	figurasi apt	
				.3.6.1.1	Memasang dari beberapa image DVD	
				.3.6.1.2	Menggunakan cermin jaringan	
			6.	.3.6.1.3	Memilih cermin jaringan	
			6.3.6.2		dan Memasang Perangkat Lunak	
		6.3.7			anda Dapat Di-Boot	
			6.3.7.1		ksi sistem operasi lain	
			6.3.7.2		Boot Loader Grub pada drive	
			6.3.7.3		tkan Tanpa Boot Loader	
		6.3.8			alasi	
			6.3.8.1	Mengatu	r Jam Sistem	57
			6.3.8.2	Boot Ula	ang Sistem	57
		6.3.9	Penelusur	ran masala	ıh	57
			6.3.9.1	Menyimp	pan log instalasi	57
			6.3.9.2	Menggur	nakan Shell dan Melihat Log	57
		6.3.10	Instalasi 1	melalui ko	onsol jaringan	58
	6.4				ırang	
		6.4.1			m	
		6.4.2			em yang Dipasang	
		6.4.3			em yang Dipasang	
	6.5	Penyes	•			
		6.5.1			nit alternatif	
7	Boot	t Ke Sis	tem Debia			61
	7.1		n Kebenara			
	7.2	Menga	it volume t	terenkripsi	i	61
		7.2.1			ah	
	7.3	Log M				62

8	Lang	6	63
	8.1	Mematikan sistem	63
	8.2		63
		8.2.1 Sistem Pemaketan Debian	63
			64
		· ·	64
		J	64
	8.3	, , , , , , , , , , , , , , , , , , ,	64
	8.4		64
	0.7		65
			65
		e	65
	0.5		
	8.5		66
	8.6	Memulihkan Sistem yang Rusak	66
	•		~ 0
A			68
			68
	A.2	1 6	68
		1	68
			68
		$J = \mathcal{E}$	69
		A.2.4 Boot dari hard disk	69
	A.3	Instalasi	69
	A.4	Kirimi kami laporan instalasi	70
	A.5		70
		•	
В	Men	igotomatiskan instalasi menggunakan preseed	71
	B.1	Pengantar	71
		B.1.1 Metode preseed	71
		B.1.2 Limitasi	72
	B.2	Menggunakan preseed	72
			72
			73
			74
			75
			75
			76
	B.3	1 6	76
			70 77
	D. 4		77
			78
		e j e	78
		<i>y E</i>	80
		e	80
		7 1	80
			81
			81
		B.4.8.1 Contoh pemartisian	82
		B.4.8.2 Pemartisian menggunakan RAID	83
		B.4.8.3 Mengontrol bagaimana partisi dikait	85
			85
			85
		7 1 1	86
		1	87
			88
		·	88
	B.5	1 ,	88
	ر.ں		88
		J 1	89
		B.5.2 Menggunakan preseed untuk mengubah nilai baku	09

		B.5.3	Memuat berkas prakonfigurasi berrantai	39
C	Pem	artisian	untuk Debian 9	0
	C.1	Memu	tuskan Partisi dan Ukuran pada Debian	0
	C.2	Pohon	Direktori	0
	C.3	Skema	Pemartisian Yang Direkomendasikan	1
	C.4	Nama	Perangkat di Linux	92
	C.5	Progra	m Pemartisian Debian	92
		C.5.1	Pemartisian untuk 64-bit PC	2
D	Bit A	Acak	9)4
	D.1	Perang	kat Linux)4
		D.1.1)4
	D.2	Ruang		95
	D.3			95
		D.3.1		96
		D.3.2		96
		D.3.3		7
		D.3.4		7
				7
				8
				8
				9
			D.3.4.5 Mengonfigurasi Apt	0
			D.3.4.6 Mengonfigurasi Lokal dan Papan Ketik	0
		D.3.5	Pasang Kernel	0
		D.3.6	Siapkan Boot Loader	0
		D.3.7	Akses jarak jauh: Memasang SSH dan menyiapkan akses	
		D.3.8	Sentuhan akhir)1
	D.4	Memas	sang Debian GNU/Linux melalui Parallel Line IP (PLIP))1
		D.4.1	Kebutuhan)1
		D.4.2	Menyiapkan sumber)2
		D.4.3	Memasang target	
	D.5		sang Debian GNU/Linux menggunakan PPP over Ethernet (PPPoE)	
F	Adm	ninistriv	ria 10	и
12	E.1		g Dokumen Ini	
	E.2		ntribusi pada Dokumen Ini	
	E.3		busi Utama	
	E.4		Kuan Merek Dagang	
	止.→	i ciigar	Addit Morek Dagang	, ,
F			ral Public License 10	
	F.1	Pream	***	
	F.2		GENERAL PUBLIC LICENSE	
	F.3	Cara N	Menerapkan Persyaratan Ini ke Program Baru Anda	19

Daftar Tabel

3	Sebe	Sebelum Memasang Debian GNU/Linux				
	3.1	Informasi Perangkat Keras yang Berguna untuk Instalasi	13			
	3.2	Persyaratan Sistem Minimum yang Direkomendasikan	15			

Ringkasan Dokumen ini berisi instruksi instalasi bagi sistem Debian GNU/Linux 13 (nama kode "trixie"), untuk arsitektur 64-bit PC ("amd64"). Ini juga berisi petunjuk ke informasi lebih lanjut dan informasi tentang cara memanfaatkan sistem Debian.

Memasang Debian GNU/Linux 13 untuk amd64

Kami senang Anda telah memutuskan untuk mencoba Debian, dan yakin Anda akan menjumpai bahwa distribusi GNU/Linux Debian itu unik. Debian GNU/Linux menyatukan perangkat lunak bebas berkualitas tinggi dari seluruh dunia, mengintegrasikannya ke dalam satu kesatuan yang koheren. Kami percaya bahwa Anda akan menemukan bahwa hasilnya benar-benar lebih dari jumlah bagian-bagiannya.

Kami memahami bahwa banyak dari Anda ingin menginstal Debian tanpa membaca manual ini, dan installer Debian dirancang untuk memungkinkan hal ini. Jika Anda tidak punya waktu untuk membaca seluruh Panduan Instalasi sekarang, kami sarankan Anda membaca Cara Instalasi, yang akan memandu Anda melalui proses instalasi dasar, dan tautan ke manual untuk topik lebih lanjut atau ketika ada masalah . Cara Instalasi dapat ditemukan di Lampiran A.

Dengan demikian, kami berharap Anda memiliki waktu untuk membaca sebagian besar manual ini, dan hal itu akan menghasilkan pengalaman instalasi yang lebih terinformasi dan kemungkinan lebih berhasil.

Bab 1

Selamat datang di Debian

Bab ini memberikan gambaran umum tentang Proyek Debian dan Debian GNU/Linux. Jika Anda sudah tahu tentang sejarah Proyek Debian dan distribusi Debian GNU/Linux, silakan melompat ke bab berikutnya.

1.1 Apa itu Debian?

Debian adalah sebuah organisasi sukarelawan yang didedikasikan untuk mengembangkan perangkat lunak bebas dan mempromosikan cita-cita komunitas perangkat lunak bebas. Proyek Debian dimulai pada tahun 1993, ketika Ian Murdock mengeluarkan undangan terbuka untuk pengembang perangkat lunak untuk berkontribusi pada distribusi perangkat lunak yang lengkap dan koheren berdasarkan kernel Linux yang relatif baru. Grup yang relatif kecil dari para penggemar berdedikasi, awalnya didanai oleh Free Software Foundation dan dipengaruhi oleh filosofi GNU, telah berkembang selama bertahun-tahun menjadi sebuah organisasi di sekitar 1000 *Pengembang Debian*.

Pengembang Debian terlibat dalam berbagai kegiatan, termasuk administrasi situs web dan FTP, desain grafis, analisis hukum lisensi perangkat lunak, menulis dokumentasi, dan, tentu saja, memelihara paket-paket perangkat lunak.

Demi mengkomunikasikan filosofi kami dan menarik pengembang yang percaya pada prinsip-prinsip yang dianut Debian, Proyek Debian telah menerbitkan sejumlah dokumen yang menguraikan nilai-nilai kami dan berfungsi sebagai panduan tentang apa artinya menjadi Pengembang Debian:

- Kontrak Sosial Debian adalah pernyataan komitmen Debian terhadap Komunitas Perangkat Lunak Bebas.
 Siapa pun yang setuju untuk mematuhi Kontrak Sosial dapat menjadi pemelihara. Setiap pemelihara dapat memperkenalkan perangkat lunak baru ke Debian asalkan perangkat lunak tersebut memenuhi kriteria kami untuk bebas, dan paket mengikuti standar kualitas kami.
- Panduan Perangkat Lunak Bebas Debian adalah pernyataan yang jelas dan ringkas tentang kriteria perangkat lunak bebas Debian. DFSG adalah dokumen yang sangat berpengaruh dalam Gerakan Perangkat Lunak Bebas, dan merupakan landasan dari Definisi Sumber Terbuka.
- Manual Kebijakan Debian adalah spesifikasi ekstensif dari standar kualitas Proyek Debian.

Pengembang Debian juga terlibat dalam sejumlah proyek lain; beberapa khusus untuk Debian, yang lain melibatkan beberapa atau semua komunitas Linux. Beberapa contoh termasuk:

- Filesystem Hierarchy Standard (FHS) adalah upaya untuk menstandardisasi tata letak sistem berkas Linux.
 FHS akan memungkinkan pengembang perangkat lunak untuk memusatkan upaya mereka dalam merancang program, tanpa harus khawatir tentang bagaimana paket tersebut akan dipasang pada distribusi GNU/Linux yang berbeda.
- Debian Jr. adalah proyek internal, yang bertujuan untuk memastikan Debian memiliki sesuatu untuk ditawarkan kepada pengguna termuda kami.

Untuk lebih banyak informasi umum tentang Debian, lihat FAQ Debian.

1.2 Apa itu GNU/Linux?

GNU/Linux adalah sistem operasi: serangkaian program yang memungkinkan Anda berinteraksi dengan komputer dan menjalankan program lain.

Sistem operasi terdiri dari berbagai program dasar yang dibutuhkan oleh komputer Anda agar dapat berkomunikasi dan menerima instruksi dari pengguna; membaca dan menulis data ke hard disk, tape, dan printer; mengontrol penggunaan memori; dan menjalankan perangkat lunak lain. Bagian terpenting dari sistem operasi adalah kernel. Dalam sistem GNU/Linux, Linux adalah komponen kernel. Sisa sistem terdiri dari program lain, banyak di antaranya ditulis oleh atau untuk Proyek GNU. Karena kernel Linux saja tidak membentuk sistem operasi yang berfungsi, kami lebih suka menggunakan istilah "GNU/Linux" untuk merujuk ke sistem yang sering disebut sebagai "Linux".

GNU/Linux dimodelkan pada sistem operasi Unix. Sejak awal, GNU/Linux dirancang untuk menjadi sistem multi-tugas dan multi-pengguna. Fakta-fakta ini cukup untuk membuat GNU/Linux berbeda dari sistem operasi terkenal lainnya. Namun, GNU/Linux bahkan lebih berbeda dari yang Anda bayangkan. Berbeda dengan sistem operasi lain, tidak ada yang memiliki GNU/Linux. Sebagian besar pengembangannya dilakukan oleh sukarelawan yang tidak dibayar.

Pengembangan yang kemudian menjadi GNU/Linux dimulai pada tahun 1984, ketika Free Software Foundation memulai pengembangan sistem operasi mirip Unix yang disebut GNU.

Proyek GNU telah mengembangkan satu set komprehensif alat perangkat lunak bebas untuk digunakan dengan sistem operasi UnixTM dan mirip Unix seperti GNU/Linux. Alat-alat ini memungkinkan pengguna untuk melakukan tugas mulai dari yang sederhana (seperti menyalin atau menghapus berkas dari sistem) ke yang rumit (seperti menulis dan menyusun program atau melakukan penyuntingan canggih dalam berbagai format dokumen).

Sementara banyak kelompok dan individu telah berkontribusi pada GNU/Linux, kontributor tunggal terbesar masih Free Software Foundation, yang menciptakan tidak hanya sebagian besar alat yang digunakan dalam GNU/Linux, tetapi juga filosofi dan komunitas yang membuat GNU/Linux mungkin.

Kernel Linux pertama kali muncul pada tahun 1991, ketika seorang mahasiswa ilmu komputasi Finlandia bernama Linus Torvalds mengumumkan versi awal dari kernel pengganti untuk Minix ke newsgroup Usenet comp.os.minix. Lihat Halaman Riwayat Linux Linux International.

Linus Torvalds terus mengkoordinasikan pekerjaan beberapa ratus pengembang dengan bantuan sejumlah pengelola subsistem. Ada situs web resmi untuk kernel Linux. Informasi tentang milis linux-kernel dapat ditemukan di FAQ milis kernel linux.

Pengguna GNU/Linux memiliki kebebasan pilihan yang sangat besar dalam perangkat lunak mereka. Misalnya, mereka dapat memilih dari selusin shell baris perintah yang berbeda dan beberapa desktop grafis. Pilihan ini sering membingungkan bagi pengguna sistem operasi lain, yang tidak terbiasa memikirkan baris perintah atau desktop sebagai sesuatu yang dapat mereka ubah.

GNU/Linux juga kurang rentan crash, lebih mampu menjalankan lebih dari satu program pada saat yang sama, dan lebih aman daripada banyak sistem operasi. Dengan keunggulan ini, Linux adalah sistem operasi yang paling cepat berkembang di pasar server. Baru-baru ini, Linux telah mulai populer di kalangan pengguna rumah dan bisnis juga.

1.3 Apa itu Debian GNU/Linux?

Kombinasi filosofi dan metodologi Debian dan alat GNU, kernel Linux, dan perangkat lunak bebas penting lainnya, membentuk distribusi perangkat lunak unik yang disebut Debian GNU/Linux. Distribusi ini terdiri dari sejumlah besar *paket* perangkat lunak. Setiap paket dalam distribusi berisi executable, skrip, dokumentasi, dan informasi konfigurasi, dan memiliki *pengelola* yang terutama bertanggung jawab untuk menjaga paket mutakhir, melacak laporan bug, dan berkomunikasi dengan penulis hulu dari perangkat lunak yang dikemas. Basis pengguna kami yang sangat besar, dikombinasikan dengan sistem pelacakan bug kami memastikan bahwa masalah ditemukan dan diperbaiki dengan cepat.

Perhatian Debian terhadap detail memungkinkan kami untuk menghasilkan distribusi berkualitas tinggi, stabil, dan terukur. Instalasi dapat dengan mudah dikonfigurasi untuk melayani banyak peran, dari firewall yang dilucuti hingga workstation ilmiah desktop hingga server jaringan kelas atas.

Debian sangat populer di kalangan pengguna tingkat lanjut karena keunggulan teknisnya dan komitmennya yang mendalam terhadap kebutuhan dan harapan komunitas Linux. Debian juga memperkenalkan banyak fitur ke Linux yang sekarang sudah biasa.

Misalnya, Debian adalah distribusi Linux pertama yang menyertakan sistem manajemen paket untuk memudahkan instalasi dan penghapusan perangkat lunak. Itu juga merupakan distribusi Linux pertama yang dapat ditingkatkan tanpa memerlukan instalasi ulang.

Debian terus menjadi pemimpin dalam pengembangan Linux. Proses pengembangannya adalah contoh seberapa baik model pengembangan Open Source dapat bekerja — bahkan untuk tugas-tugas yang sangat kompleks seperti membangun dan memelihara sistem operasi yang lengkap.

Fitur yang paling membedakan Debian dari distribusi Linux lainnya adalah sistem manajemen paketnya. Alatalat ini memberi administrator sistem Debian kontrol penuh atas paket yang dipasang pada sistem itu, termasuk

kemampuan untuk memasang satu paket atau secara otomatis memperbarui seluruh sistem operasi. Paket individual juga dapat dilindungi agar tidak diperbarui. Anda bahkan dapat memberi tahu sistem manajemen paket tentang perangkat lunak yang telah Anda susun sendiri dan dependensi apa yang dipenuhinya.

Untuk melindungi sistem Anda dari "kuda Troya" dan perangkat lunak jahat lainnya, server Debian memverifikasi bahwa paket yang diunggah berasal dari pengelola terdaftar Debian mereka. Para pemaket Debian juga sangat berhati-hati untuk mengkonfigurasi paket mereka dengan cara yang aman. Ketika masalah keamanan dalam paket yang dikirim muncul, perbaikan biasanya tersedia dengan sangat cepat. Dengan opsi pembaruan sederhana Debian, perbaikan keamanan dapat diunduh dan dipasang secara otomatis melintas Internet.

Metode utama, dan terbaik, untuk mendapatkan dukungan bagi sistem GNU/Linux Anda dan berkomunikasi dengan Pengembang Debian adalah melalui banyak milis yang dikelola oleh Proyek Debian (ada lebih dari 334 saat tulisan ini dibuat). Cara termudah untuk berlangganan satu atau lebih dari milis ini adalah mengunjungi halaman berlangganan milis Debian dan mengisi formulir yang akan Anda temukan di sana.

1.4 Apa itu Debian Installer?

Debian Installer, juga dikenal sebagai "d-i", adalah sistem perangkat lunak untuk memasang sistem Debian dasar yang berfungsi. Berbagai perangkat keras seperti perangkat tertanam, laptop, desktop, dan mesin server didukung dan satu set besar perangkat lunak bebas untuk berbagai tujuan ditawarkan.

Instalasi dilakukan dengan menjawab serangkaian pertanyaan dasar. Juga tersedia mode pakar yang memungkinkan untuk mengontrol setiap aspek instalasi dan fitur tingkat lanjut untuk melakukan instalasi otomatis. Sistem yang dipasang dapat digunakan apa adanya atau disesuaikan lebih lanjut. Instalasi dapat dilakukan dari banyak sumber: USB, CD/DVD/Blu-Ray, atau jaringan. Pemasang mendukung instalasi lokal dalam lebih dari 80 bahasa.

Installer ini berasal dari proyek boot-floppies, dan pertama kali disebutkan oleh Joey Hess pada tahun 2000. Sejak itu sistem instalasi terus dikembangkan oleh sukarelawan yang meningkatkan dan menambahkan lebih banyak fitur. Informasi lebih lanjut dapat ditemukan di halaman Debian Installer, di Wiki, dan di milis debian-boot.

1.5 Mendapatkan Debian

Untuk informasi tentang cara mengunduh Debian GNU/Linux dari Internet atau dari siapa media instalasi resmi Debian dapat dibeli, lihat halaman web distribusi. Daftar cermin Debian berisi satu set lengkap cermin resmi Debian, sehingga Anda dapat dengan mudah menemukan yang terdekat.

Debian dapat ditingkatkan setelah instalasi dengan sangat mudah. Prosedur instalasi akan membantu mengatur sistem sehingga Anda dapat melakukan peningkatan tersebut setelah instalasi selesai, jika perlu.

1.6 Mendapatkan Versi Terbaru dari Dokumen Ini

Dokumen ini terus direvisi. Pastikan untuk memeriksa halaman Debian 13 untuk setiap informasi menit terakhir tentang rilis 13 dari sistem Debian GNU/Linux. Versi terbaru dari manual instalasi ini juga tersedia dari halaman Manual Instalasi resmi.

1.7 Organisasi Dokumen Ini

Dokumen ini dimaksudkan untuk berfungsi sebagai manual untuk pengguna pertama kali Debian. Ini mencoba untuk membuat asumsi sesedikit mungkin tentang tingkat keahlian Anda. Namun, kami berasumsi bahwa Anda memiliki pemahaman umum tentang cara kerja perangkat keras di komputer Anda.

Pengguna ahli juga dapat menemukan informasi referensi yang menarik dalam dokumen ini, termasuk ukuran instalasi minimum, detail tentang perangkat keras yang didukung oleh sistem instalasi Debian, dan sebagainya. Kami mendorong pengguna ahli untuk melompat-lompat dalam dokumen.

Secara umum, manual ini disusun secara linier, memandu Anda melalui proses instalasi dari awal hingga akhir. Berikut adalah langkah-langkah dalam memasang Debian GNU/Linux, dan bagian dari dokumen ini yang berkorelasi dengan setiap langkah:

- 1. Tentukan apakah perangkat keras Anda memenuhi persyaratan untuk menggunakan sistem instalasi, di Bab 2.
- 2. Cadangkan sistem Anda, lakukan perencanaan dan konfigurasi perangkat keras yang diperlukan sebelum memasang Debian, di Bab 3. Jika Anda sedang mempersiapkan sistem multi-boot, Anda mungkin perlu membuat ruang yang dapat dipartisi pada hard disk Anda untuk digunakan oleh Debian.

- 3. Dalam Bab 4, Anda akan mendapatkan berkas instalasi yang diperlukan untuk metode instalasi Anda.
- 4. Selanjutnya Bab 5 menjelaskan mem-boot ke dalam sistem instalasi. Bab ini juga membahas prosedur pemecahan masalah jika Anda memiliki masalah dengan langkah ini.
- 5. Lakukan instalasi yang sebenarnya sesuai dengan Bab 6. Ini melibatkan memilih bahasa Anda, mengkonfigurasi modul driver periferal, mengonfigurasi koneksi jaringan Anda, sehingga berkas instalasi yang tersisa dapat diperoleh langsung dari server Debian (jika Anda tidak memasang dari satu set image instalasi DVD), mempartisi hard drive Anda dan instalasi sistem dasar, kemudian pemilihan dan pemasangan tugas. (Beberapa latar belakang tentang menyiapkan partisi untuk sistem Debian Anda dijelaskan dalam Lampiran C.)
- 6. Boot ke sistem dasar Anda yang baru diinstal, dari Bab 7.

Setelah sistem Anda terpasang, Anda dapat membaca Bab 8. Bab itu menjelaskan ke mana mencari untuk menemukan informasi lebih lanjut tentang Unix dan Debian, dan cara mengganti kernel Anda.

Akhirnya, informasi tentang dokumen ini dan bagaimana berkontribusi untuk itu dapat ditemukan di Lampiran E.

1.8 Tentang Hak Cipta dan Lisensi Perangkat Lunak

Kami yakin Anda telah membaca beberapa lisensi yang datang dengan sebagian besar perangkat lunak komersial — mereka biasanya mengatakan bahwa Anda hanya dapat menggunakan satu salinan perangkat lunak pada satu komputer. Lisensi sistem ini sama sekali tidak seperti itu. Kami mendorong Anda untuk menempatkan salinan Debian GNU/Linux di setiap komputer di sekolah atau tempat bisnis Anda. Pinjamkan media instalasi Anda ke teman-teman Anda dan bantu mereka memasangnya di komputer mereka! Anda bahkan dapat membuat ribuan salinan dan menjualnya — meskipun dengan beberapa batasan. Kebebasan Anda untuk memasang dan menggunakan sistem berasal langsung dari Debian didasarkan pada perangkat lunak bebas.

Menyebut perangkat lunak *bebas* tidak berarti bahwa perangkat lunak tidak memiliki hak cipta, dan itu tidak berarti bahwa media instalasi yang berisi perangkat lunak itu harus didistribusikan tanpa biaya. Perangkat lunak bebas, sebagian, berarti bahwa lisensi masing-masing program tidak mengharuskan Anda membayar hak istimewa untuk mendistribusikan atau menggunakan program tersebut. Perangkat lunak bebas juga berarti bahwa tidak hanya siapa pun dapat memperluas, mengadaptasi, dan memodifikasi perangkat lunak, tetapi bahwa mereka dapat mendistribusikan hasil pekerjaan mereka juga.

CATATAN

Proyek Debian, sebagai konsesi pragmatis kepada penggunanya, memang membuat beberapa paket tersedia yang tidak memenuhi kriteria kami untuk bebas. Namun paket-paket ini bukan bagian dari distribusi resmi, dan hanya tersedia dari area contrib atau non-free cermin Debian atau pada CD/DVD-ROM pihak ketiga; lihat FAQ Debian, di bawah "arsip FTP Debian", untuk informasi lebih lanjut tentang tata letak dan isi arsip.

Banyak program dalam sistem dilisensikan di bawah *GNU General Public License*, sering hanya disebut sebagai "GPL". GPL mengharuskan Anda untuk membuat *kode sumber* program tersedia setiap kali Anda mendistribusikan salinan biner dari program; ketentuan lisensi tersebut memastikan bahwa setiap pengguna akan dapat memodifikasi perangkat lunak. Karena ketentuan ini, kode sumber¹ untuk semua program ini tersedia dalam sistem Debian.

Ada beberapa bentuk lain dari pernyataan hak cipta dan lisensi perangkat lunak yang digunakan pada program di Debian. Anda dapat menemukan hak cipta dan lisensi untuk setiap paket yang dipasang pada sistem Anda dengan melihat di berkas /usr/share/doc/nama-paket/copyright setelah Anda memasang paket di sistem Anda.

Untuk informasi lebih lanjut tentang lisensi dan bagaimana Debian menentukan apakah perangkat lunak cukup bebas untuk dimasukkan dalam distribusi utama, lihat Pedoman Perangkat Lunak Bebas Debian.

Pemberitahuan hukum yang paling penting adalah bahwa perangkat lunak ini *tidak memiliki jaminan*. Para pemrogram yang telah membuat perangkat lunak ini telah melakukannya untuk kepentingan masyarakat. Tidak ada jaminan yang dibuat untuk kesesuaian perangkat lunak untuk tujuan tertentu. Namun, karena perangkat lunak ini bebas, Anda diberdayakan untuk memodifikasi perangkat lunak itu sesuai dengan kebutuhan Anda — dan untuk

¹Untuk informasi tentang cara menemukan, membongkar, dan membangun biner dari paket sumber Debian, lihat FAQ Debian, di bawah "Dasar-dasar Sistem Manajemen Paket Debian".

menikmati manfaat dari perubahan yang dibuat oleh orang lain yang telah memperluas perangkat lunak dengan cara ini.

Bab 2

Persyaratan Sistem

Bagian ini berisi informasi tentang perangkat keras apa yang Anda perlukan untuk memulai Debian. Anda juga akan menemukan tautan ke informasi lebih lanjut tentang perangkat keras yang didukung oleh GNU dan Linux.

2.1 Perangkat Keras yang Didukung

Debian tidak memaksakan persyaratan perangkat keras di luar persyaratan kernel Linux dan set alat GNU. Oleh karena itu, arsitektur atau platform apa pun yang kernel Linux, libc, gcc, dll., telah di-port dan yang Debian port ada, dapat menjalankan Debian. Silakan merujuk ke halaman Port di https://www.debian.org/ports/amd64/untuk detail lebih lanjut tentang sistem arsitektur 64-bit PC yang telah diuji dengan Debian GNU/Linux.

Daripada mencoba menjelaskan semua konfigurasi perangkat keras berbeda yang didukung untuk 64-bit PC, bagian ini berisi informasi umum dan petunjuk ke tempat informasi tambahan dapat ditemukan.

2.1.1 Arsitektur yang Didukung

Debian GNU/Linux 13 mendukung 6 arsitektur utama dan beberapa variasi dari setiap arsitektur yang dikenal sebagai "flavor".

Arsitektur	Penamaan Debian	Subarsitektur	Rasa
AMD64 & Intel 64	amd64		
ARM dengan FPU	armhf	multiplatform	armmn
perangkat keras		Inditiplation	armmp
ARM 64bit	arm64		
Power Systems	ppc64el	IBM POWER8 atau	
1 ower Systems		mesin yang lebih baru	
RISC-V 64bit	riscv64		
(little-endian)	1136404		
IBM S/390 64bit	s390x	IPL dari VM-reader dan	generic
1511 5/370 040It	8390X	DASD	generic

Dokumen ini mencakup instalasi untuk arsitektur 64-bit PC menggunakan kernel Linux. Jika Anda mencari informasi tentang arsitektur lain yang didukung Debian lihat halaman Port Debian.

2.1.2 Dukungan CPU

Prosesor AMD64 dan Intel 64 didukung.

2.1.3 Laptop

Dari sudut pandang teknis, laptop adalah PC biasa, jadi semua informasi mengenai sistem PC juga berlaku untuk laptop. Instalasi pada laptop saat ini biasanya bekerja seperti biasa, termasuk hal-hal seperti secara otomatis mensuspensi sistem saat menutup lid dan tombol-tombol perangkat keras khusus laptop seperti untuk menonaktifkan antarmuka wifi ("modus pesawat terbang"). Meskipun demikian, terkadang vendor perangkat keras menggunakan perangkat keras khusus atau eksklusif untuk beberapa fungsi khusus laptop yang mungkin tidak didukung. Untuk

melihat apakah laptop Anda khususnya bekerja dengan baik dengan GNU/Linux, lihat misalnya Halaman Laptop Linux.

2.1.4 Beberapa Prosesor

Dukungan multiprosesor — juga disebut "multiprosesor simetris" atau SMP — tersedia untuk arsitektur ini. Image kernel standar Debian 13 telah dikompilasi dengan dukungan *alternatif SMP*. Ini berarti bahwa kernel akan mendeteksi jumlah prosesor (atau core prosesor) dan secara otomatis akan menonaktifkan SMP pada sistem uniprosesor.

Memiliki banyak prosesor di komputer pada awalnya hanya bermasalah bagi sistem server kelas atas tetapi telah menjadi umum dalam beberapa tahun terakhir hampir di mana-mana dengan diperkenalkannya apa yang disebut prosesor "multi-core". Ini berisi dua atau lebih unit prosesor, yang disebut "core", dalam satu chip fisik.

2.1.5 Dukungan Perangkat Keras Grafis

Dukungan Debian untuk antarmuka grafis ditentukan oleh dukungan mendasar yang ditemukan di sistem X11 X.Org, dan kernel. Grafik framebuffer dasar disediakan oleh kernel, sementara lingkungan desktop menggunakan X11. Apakah fitur kartu grafis tingkat lanjut seperti akselerasi perangkat keras 3D atau video yang dipercepat perangkat keras tersedia, tergantung pada perangkat keras grafis aktual yang digunakan dalam sistem dan dalam beberapa kasus pada pemasangan blob "firmware" tambahan (lihat Bagian 2.2).

Pada PC modern, memiliki tampilan grafis biasanya bekerja seperti biasa. Untuk cukup banyak perangkat keras, akselerasi 3D juga bekerja dengan baik seperti biasa, tetapi masih ada beberapa perangkat keras yang membutuhkan blob firmware biner untuk bekerja dengan baik. Dalam beberapa kasus ada laporan tentang perangkat keras di mana instalasi firmware kartu grafis tambahan diperlukan bahkan untuk dukungan grafis dasar.

Detail tentang perangkat keras grafis yang didukung dan perangkat penunjuk dapat ditemukan di https://wiki.freedesktop.org/xorg/. Debian 13 dikirimkan dengan versi X.Org 7.7.

2.1.6 Perangkat Keras Konektivitas Jaringan

Hampir semua kartu antarmuka jaringan (NIC) yang didukung oleh Linux kernel juga harus didukung oleh sistem instalasi; driver biasanya harus dimuat secara otomatis. Ini termasuk sebagian besar kartu PCI/PCI-Express serta Kartu PCMCIA/Express di laptop.

ISDN didukung, tetapi tidak selama instalasi.

2.1.6.1 Kartu Jaringan Nirkabel

Jaringan nirkabel secara umum juga didukung dan semakin banyak adaptor nirkabel yang didukung oleh kernel resmi Linux, meskipun banyak dari mereka memang memerlukan firmware untuk dimuat.

Jika firmware diperlukan, pemasang akan meminta Anda untuk memuat firmware. Lihat Bagian 6.4 untuk informasi terperinci tentang cara memuat firmware selama instalasi.

NIC nirkabel yang tidak didukung oleh kernel Linux resmi umumnya dapat dibuat untuk bekerja di bawah Debian GNU/Linux, tetapi tidak didukung selama instalasi.

Jika ada masalah dengan nirkabel dan tidak ada NIC lain yang dapat Anda gunakan selama instalasi, masih mungkin untuk memasang Debian GNU/Linux menggunakan image DVD. Pilih opsi untuk tidak mengonfigurasi jaringan dan memasang hanya menggunakan paket yang tersedia dari DVD. Anda kemudian dapat memasang driver dan firmware yang Anda butuhkan setelah instalasi selesai (setelah reboot) dan mengonfigurasi jaringan Anda secara manual.

Dalam beberapa kasus, driver yang Anda butuhkan mungkin tidak tersedia sebagai paket Debian. Anda kemudian harus melihat apakah ada kode sumber yang tersedia di internet dan mengkompilasi driver sendiri. Cara melakukan ini berada di luar cakupan manual ini. Jika tidak ada driver Linux yang tersedia, pilihan terakhir Anda adalah menggunakan paket ndiswrapper, yang memungkinkan Anda menggunakan driver Windows.

2.1.7 Layar Braille

Dukungan untuk tampilan braille ditentukan oleh dukungan dasar yang ditemukan di brltty. Sebagian besar layar berfungsi di bawah brltty, terhubung melalui port serial, USB, atau bluetooth. Detail tentang perangkat braille yang didukung dapat ditemukan di situs web brltty. Debian GNU/Linux 13 datang dengan versi brltty 6.7.

2.1.8 Sintesis Ucapan Perangkat Keras

Dukungan untuk perangkat sintesis ucapan perangkat keras ditentukan oleh dukungan yang mendasarinya yang ditemukan di speakup. speakup hanya mendukung papan terintegrasi dan perangkat eksternal yang terhubung ke port serial (tidak ada adaptor USB, serial-ke-USB, atau PCI yang didukung). Detail tentang perangkat sintesis ucapan perangkat keras yang didukung dapat ditemukan di situs web speakup. Debian GNU/Linux 13 dikirimkan dengan speakup versi 3.1.6.

2.1.9 Periferal dan Perangkat Keras Lainnya

Linux mendukung berbagai macam perangkat keras seperti tetikus, pencetak, pemindai, PCMCIA/CardBus/ExpressCard, dan perangkat USB. Namun, sebagian besar perangkat ini tidak diperlukan saat memasang sistem.

Perangkat keras USB umumnya berfungsi dengan baik. Pada beberapa sistem PC yang sangat lama, beberapa papan tik USB mungkin memerlukan konfigurasi tambahan (lihat Bagian 3.6.6). Pada PC modern, papan tik dan tetikus USB berfungsi tanpa memerlukan konfigurasi khusus.

2.2 Perangkat yang Membutuhkan Firmware

Selain ketersediaan driver perangkat, beberapa perangkat keras juga memerlukan apa yang disebut *firmware* atau *microcode* untuk dimuat ke dalam perangkat sebelum dapat beroperasi. Ini paling umum untuk kartu antarmuka jaringan (terutama NIC nirkabel), tetapi misalnya beberapa perangkat USB dan bahkan beberapa pengontrol hard disk juga memerlukan firmware.

Pada banyak kartu grafis, fungsionalitas dasar tersedia tanpa firmware tambahan, tetapi penggunaan fitur-fitur canggih memerlukan berkas firmware yang sesuai untuk dipasang dalam sistem.

Pada banyak perangkat lama yang memerlukan firmware untuk bekerja, berkas firmware ditempatkan secara permanen dalam chip EEPROM/Flash pada perangkat itu sendiri oleh pabrikan. Saat ini sebagian besar perangkat baru tidak memiliki firmware yang disematkan dengan cara ini lagi, sehingga berkas firmware harus diunggah ke perangkat oleh sistem operasi host setiap kali sistem melakukan boot.

Dalam kebanyakan kasus, firmware tidak bebas sesuai dengan kriteria yang digunakan oleh proyek Debian GNU/Linux dan dengan demikian tidak dapat dimasukkan dalam distribusi utama. Jika driver perangkat itu sendiri termasuk dalam distribusi dan jika Debian GNU/Linux secara hukum dapat mendistribusikan firmware, itu akan sering tersedia sebagai paket terpisah dari bagian arsip non-free-firmware (sebelum Debian GNU/Linux 12.0: dari bagian non-free).

Namun, ini tidak berarti bahwa perangkat keras tersebut tidak dapat digunakan selama instalasi. Dimulai dengan Debian GNU/Linux 12.0, mengikuti Resolusi Umum tahun 2022 tentang firmware yang tidak bebas, image instalasi resmi dapat menyertakan paket firmware yang tidak bebas. Secara default, debian-installer akan mendeteksi firmware yang dibutuhkan (berdasarkan log kernel dan informasi modalias), dan memasang paket yang relevan jika ditemukan di media instalasi (misalnya di netinst). Manajer paket secara otomatis dikonfigurasi dengan komponen yang sesuai sehingga paket-paket tersebut mendapatkan pembaruan keamanan. Hal ini biasanya berarti bahwa komponen non-free-firmware akan diaktifkan, selain komponen main.

Pengguna yang ingin menonaktifkan pencarian firmware sepenuhnya dapat melakukannya dengan mengatur parameter boot firmware=never. Ini adalah alias untuk bentuk hw-detect/firmware-lookup=never yang lebih panjang.

Kecuali jika pencarian firmware dinonaktifkan sepenuhnya, debian-installer masih mendukung pemuatan file firmware atau paket yang berisi firmware dari media lepasan, seperti flash disk USB. Lihat Bagian 6.4 untuk informasi rinci tentang cara memuat file atau paket firmware selama instalasi. Perhatikan bahwa debian-installer cenderung tidak akan meminta berkas firmware sekarang karena paket firmware yang tidak bebas dapat disertakan pada image instalasi.

Jika debian-installer meminta berkas firmware dan Anda tidak memiliki berkas firmware ini atau tidak ingin memasang berkas firmware non-free pada sistem Anda, Anda dapat mencoba melanjutkan tanpa memuat firmware. Ada beberapa kasus di mana driver meminta firmware tambahan karena mungkin diperlukan dalam keadaan tertentu, tetapi perangkat berfungsi tanpanya pada sebagian besar sistem (ini misalnya terjadi dengan kartu jaringan tertentu menggunakan driver tg3).

2.3 Membeli Perangkat Keras Khusus untuk GNU/Linux

Ada beberapa vendor, yang mengirimkan sistem dengan Debian atau distribusi lain dari GNU/Linux yang sudah dipasang sebelumnya. Anda mungkin membayar lebih untuk hak istimewa, tetapi itu membeli ketenangan hati, karena

Anda bisa yakin bahwa perangkat kerasnya didukung dengan baik oleh GNU/Linux.

Jika Anda harus membeli mesin dengan Windows yang dibundel, baca dengan cermat lisensi perangkat lunak yang disertakan dengan Windows; Anda mungkin dapat menolak lisensi dan mendapatkan potongan harga dari vendor Anda. Mencari di Internet untuk "pengembalian dana windows" mungkin memberi Anda beberapa informasi berguna untuk membantu dengan itu.

Apakah Anda membeli sistem dengan Linux dibundel, atau bahkan sistem bekas pakai, masih penting untuk memeriksa apakah perangkat keras Anda didukung oleh kernel Linux. Periksa apakah perangkat keras Anda tercantum dalam referensi yang ditemukan di atas. Beri tahu penjual Anda (jika ada) bahwa Anda sedang berbelanja untuk sistem Linux. Dukunglah vendor perangkat keras yang ramah Linux.

2.3.1 Hindari Perangkat Keras Proprietari atau Tertutup

Beberapa produsen perangkat keras tidak akan memberi tahu kami cara menulis driver untuk perangkat keras mereka. Orang lain tidak akan mengizinkan kami mengakses dokumentasi tanpa perjanjian kerahasiaan yang akan mencegah kami merilis kode sumber driver, yang merupakan salah satu elemen sentral dari perangkat lunak bebas. Karena kami belum diberikan akses ke dokumentasi yang dapat digunakan pada perangkat ini, mereka tidak akan berfungsi di bawah Linux.

Dalam banyak kasus ada standar (atau setidaknya beberapa standar de-facto) yang menggambarkan bagaimana sistem operasi dan driver perangkatnya berkomunikasi dengan kelas perangkat tertentu. Semua perangkat yang mematuhi standar (de-facto-) tersebut dapat digunakan dengan satu driver perangkat generik dan tidak diperlukan driver khusus perangkat. Dengan beberapa jenis perangkat keras (misalnya "Human Interface Devices" USB, yaitu papan tik, tetikus, dll., dan perangkat penyimpanan massal USB seperti flash disk USB dan pembaca kartu memori) ini bekerja dengan sangat baik dan praktis setiap perangkat yang dijual di pasar sesuai standar.

Di bidang lain, diantaranya misalnya pencetak, sayangnya tidak demikian. Meskipun ada banyak pencetak yang dapat diatasi melalui satu set kecil bahasa kontrol standar (de-facto) dan oleh karena itu dapat dibuat untuk bekerja tanpa masalah dalam sistem operasi apa pun, ada beberapa model yang hanya memahami perintah kontrol kepemilikan yang tidak tersedia dokumentasi yang dapat digunakan dan oleh karena itu tidak dapat digunakan sama sekali pada sistem operasi bebas atau hanya dapat digunakan dengan driver sumber tertutup yang disediakan vendor.

Bahkan jika ada driver sumber tertutup yang disediakan vendor untuk perangkat keras tersebut saat membeli perangkat, masa pakai praktis perangkat dibatasi oleh ketersediaan driver. Saat ini siklus produk telah menjadi pendek dan tidak jarang bahwa waktu yang singkat setelah perangkat konsumen berhenti produksi, tidak ada pembaruan driver yang tersedia lagi oleh pabrikan. Jika driver sumber tertutup lama tidak berfungsi lagi setelah pembaruan sistem, perangkat yang berfungsi sempurna menjadi tidak dapat digunakan karena kurangnya dukungan driver dan tidak ada yang dapat dilakukan dalam kasus ini. Oleh karena itu, Anda harus menghindari membeli perangkat keras tertutup sejak awal, terlepas dari sistem operasi yang ingin Anda gunakan.

Anda dapat membantu memperbaiki situasi ini dengan mendorong produsen perangkat keras tertutup untuk merilis dokumentasi dan sumber daya lain yang diperlukan bagi kami untuk menyediakan driver bebas untuk perangkat keras mereka.

2.4 Media Instalasi

Bagian ini akan membantu Anda menentukan jenis media berbeda yang dapat Anda gunakan untuk memasang Debian. Ada seluruh bab yang dikhususkan untuk media, Bab 4, yang mencantumkan kelebihan dan kekurangan masingmasing jenis media. Anda mungkin ingin merujuk kembali ke halaman ini setelah Anda mencapai bagian itu.

2.4.1 CD-ROM/DVD-ROM/BD-ROM

Instalasi dari cakram optik didukung untuk sebagian besar arsitektur.

Pada PC SATA, IDE/ATAPI, USB, dan SCSI drive optik didukung, seperti halnya perangkat FireWire yang didukung oleh driver ohci1394 dan sbp2.

2.4.2 Flash Disk USB

Flash disk USB alias stik memori USB telah menjadi perangkat penyimpanan yang umum digunakan dan murah. Sebagian besar sistem komputer modern juga memungkinkan boot debian-installer dari flash disk seperti itu. Banyak sistem komputer modern, khususnya netbook dan laptop tipis, tidak memiliki drive optik sama sekali dan boot dari media USB adalah cara standar untuk memasang sistem operasi baru pada mereka.

2.4.3 Jaringan

Jaringan dapat digunakan selama instalasi untuk mengambil berkas yang diperlukan untuk instalasi. Apakah jaringan digunakan atau tidak tergantung pada metode instalasi yang Anda pilih dan jawaban Anda atas pertanyaan tertentu yang akan diajukan selama instalasi. Sistem instalasi mendukung sebagian besar jenis koneksi jaringan (termasuk PPPoE, tetapi bukan ISDN atau PPP), melalui HTTP atau FTP. Setelah instalasi selesai, Anda juga dapat mengonfigurasi sistem Anda untuk menggunakan ISDN dan PPP.

Anda juga dapat *mem-boot* sistem instalasi melalui jaringan tanpa memerlukan media lokal seperti CD/DVD atau flash disk USB. Jika Anda sudah memiliki infrastruktur netboot yang tersedia (yaitu Anda sudah menjalankan layanan DHCP dan TFTP di jaringan Anda), ini memungkinkan penyebaran sejumlah besar mesin yang mudah dan cepat. Menyiapkan infrastruktur yang diperlukan memerlukan tingkat pengalaman teknis tertentu, jadi ini tidak disarankan untuk pengguna pemula.

Instalasi tanpa disk, menggunakan boot jaringan dari jaringan area lokal dan pemasangan NFS dari semua sistem berkas lokal, adalah pilihan lain.

2.4.4 Hard Disk

Mem-boot sistem instalasi langsung dari hard disk adalah pilihan lain bagi banyak arsitektur. Ini akan memerlukan beberapa sistem operasi lain untuk memuat pemasang ke hard disk. Metode ini hanya direkomendasikan untuk kasus-kasus khusus ketika tidak ada metode instalasi lain yang tersedia.

2.4.5 Sistem Un*x atau GNU

Jika Anda menjalankan sistem mirip Unix lain, Anda dapat menggunakannya untuk memasang Debian GNU/Linux tanpa menggunakan debian-installer dijelaskan dalam sisa manual ini. Instalasi semacam ini mungkin berguna bagi pengguna dengan perangkat keras yang tidak didukung atau pada host yang tidak boleh mati. Jika Anda tertarik dengan teknik ini, lewati ke Bagian D.3. Metode instalasi ini hanya disarankan untuk pengguna tingkat lanjut ketika tidak ada metode instalasi lain yang tersedia.

2.4.6 Sistem Penyimpanan yang Didukung

Pemasang Debian berisi kernel yang dibangun untuk memaksimalkan jumlah sistem yang dijalankannya.

Umumnya, sistem instalasi Debian mencakup dukungan untuk drive IDE (juga dikenal sebagai PATA), pengontrol dan drive SATA dan SCSI, USB, dan FireWire. Sistem berkas yang didukung termasuk FAT, ekstensi Win-32 FAT (VFAT), dan NTFS.

Sistem IDE juga didukung.

2.5 Kebutuhan Memori dan Ruang Disk

Kami menyarankan memori setidaknya 512MB dan ruang hard disk 4GB untuk melakukan instalasi. Untuk nilai-nilai yang lebih rinci, lihat Bagian 3.4.

Bab 3

Sebelum Memasang Debian GNU/Linux

Bab ini membahas persiapan untuk menginstal Debian bahkan sebelum Anda mem-boot installer. Hal ini termasuk mencadangkan data Anda, mengumpulkan informasi tentang perangkat keras Anda, dan mencari informasi yang diperlukan.

3.1 Ikhtisar Proses Pemasangan

Pertama, hanya sebuah catatan tentang instalasi ulang. Dengan Debian, keadaan yang akan memerlukan instalasi ulang lengkap sistem Anda sangat jarang terjadi; mungkin kegagalan mekanis hard disk akan menjadi kasus yang paling umum.

Banyak sistem operasi umum yang mungkin memerlukan instalasi lengkap untuk dilakukan ketika terjadi kegagalan kritis atau untuk peningkatan ke versi OS baru. Bahkan jika instalasi yang benar-benar baru tidak diperlukan, seringkali program yang Anda gunakan harus diinstal ulang untuk beroperasi dengan benar di OS baru.

Di bawah Debian GNU/Linux, lebih besar kemungkinannya OS Anda dapat diperbaiki daripada diganti jika ada yang salah. Peningkatan tidak pernah memerlukan instalasi besar-besaran; Anda selalu dapat meningkatkan di tempat. Dan program-program hampir selalu kompatibel dengan rilis OS yang berurutan. Jika versi program baru memerlukan perangkat lunak pendukung yang lebih baru, sistem pengemasan Debian memastikan bahwa semua perangkat lunak yang diperlukan secara otomatis diidentifikasi dan dipasang. Intinya adalah, banyak usaha yang telah dilakukan untuk menghindari perlunya instalasi ulang, jadi anggaplah ini sebagai pilihan terakhir Anda. Pemasang ini *tidak* dirancang untuk memasang ulang di atas sistem yang sudah ada.

Berikut adalah peta jalan untuk langkah-langkah yang akan Anda ambil selama proses instalasi.

- 1. Cadangkan semua data atau dokumen yang ada di hard disk tempat Anda berencana untuk menginstal.
- 2. Kumpulkan informasi tentang komputer Anda dan dokumentasi yang diperlukan, sebelum memulai instalasi.
- Cari dan/atau unduh perangkat lunak penginstal dan berkas driver atau firmware khusus apa pun yang diperlukan mesin Anda.
- Siapkan media boot seperti CD/DVD/stik USB atau sediakan infrastruktur boot jaringan dari mana installer bisa di-boot.
- Boot sistem instalasi.
- 6. Pilih bahasa instalasi.
- 7. Aktifkan koneksi jaringan ethernet, jika tersedia.
- 8. Jika perlu, ubah ukuran partisi yang sudah ada pada harddisk target Anda untuk menyediakan ruang bagi instalasi.
- 9. Buat dan kait partisi tempat Debian akan dipasang.
- 10. Saksikan pengunduhan/instalasi/penyiapan otomatis sistem dasar .
- 11. Pilih dan pasang *perangkat lunak tambahan*.
- 12. Instal boot loader yang dapat memulai Debian GNU/Linux dan/atau sistem Anda yang ada.

13. Muat sistem yang baru diinstal untuk pertama kalinya.

Untuk 64-bit PC Anda memiliki pilihan untuk menggunakan sebuah versi grafis dari sistem instalasi. Untuk informasi lebih lanjut tentang pemasang grafis ini, lihat Bagian 5.1.6.

Jika Anda memiliki masalah selama instalasi, ada baiknya untuk mengetahui paket mana yang terlibat dalam langkah mana. Memperkenalkan aktor perangkat lunak terkemuka dalam drama instalasi ini:

Perangkat lunak pemasang, debian-installer, adalah perhatian utama dari manual ini. Perangkat lunak ini mendeteksi perangkat keras dan memuat driver yang sesuai, menggunakan dhcp-client untuk mengatur koneksi jaringan, menjalankan debootstrap untuk memasang paket sistem dasar, dan menjalankan tasksel untuk mengizinkan Anda memasang perangkat lunak tambahan tertentu. Banyak lagi aktor yang memainkan peran yang lebih kecil dalam proses ini, tetapi debian-installer telah menyelesaikan tugasnya ketika Anda memuat sistem baru untuk pertama kalinya.

Untuk menyesuaikan sistem dengan kebutuhan Anda, tasksel memungkinkan Anda memilih untuk menginstal berbagai paket perangkat lunak yang telah ditentukan sebelumnya seperti server Web atau lingkungan Desktop.

Salah satu opsi penting selama instalasi adalah apakah akan menginstal lingkungan desktop grafis atau tidak, yang terdiri dari Sistem X Window dan salah satu lingkungan desktop grafis yang tersedia. Jika Anda memutuskan untuk tidak memilih tugas "Lingkungan desktop", Anda hanya akan memiliki sistem yang relatif mendasar dan digerakkan oleh baris perintah. Memasang tugas Lingkungan desktop adalah opsional karena dalam kaitannya dengan sistem hanya mode teks itu membutuhkan sejumlah ruang disk yang relatif besar dan karena banyak sistem Debian GNU-/Linux adalah server yang tidak benar-benar membutuhkan antarmuka pengguna grafis untuk melakukan pekerjaan mereka.

Perlu disadari bahwa X Window System benar-benar terpisah dari debian-installer, dan sebenarnya jauh lebih rumit. Melacak masalah X Window System tidak termasuk dalam cakupan manual ini.

3.2 Cadangkan Data Anda yang Ada!

Sebelum Anda mulai, pastikan untuk mencadangkan setiap berkas yang sekarang ada di sistem Anda. Jika ini adalah pertama kalinya sistem operasi bukan native akan dipasang pada komputer Anda, kemungkinan besar Anda perlu mempartisi ulang disk Anda untuk memberikan ruang bagi Debian GNU/Linux. Setiap kali Anda mempartisi disk, Anda berrisiko kehilangan semua yang ada di disk, tidak peduli program apa yang Anda gunakan untuk melakukannya. Program-program yang digunakan dalam instalasi Debian GNU/Linux cukup handal dan sebagian besar telah digunakan selama bertahun-tahun; tetapi program-program tersebut juga cukup kuat dan langkah yang salah dapat merugikan Anda. Bahkan setelah melakukan pencadangan, berhati-hatilah dan pikirkan jawaban dan tindakan Anda. Dua menit berpikir dapat menghemat berjam-jam pekerjaan yang tidak perlu.

Jika Anda membuat sistem multi-boot, pastikan Anda memiliki media distribusi dari sistem operasi lain yang ada. Walaupun hal ini biasanya tidak diperlukan, mungkin ada situasi di mana Anda mungkin diharuskan memasang ulang boot loader sistem operasi Anda untuk membuat sistem boot atau dalam kasus terburuk, bahkan harus memasang ulang sistem operasi lengkap dan mengembalikan cadangan yang telah Anda buat sebelumnya.

3.3 Informasi yang Anda Perlukan

3.3.1 Dokumentasi

3.3.1.1 Manual Instalasi

Dokumen yang sedang Anda baca ini, dalam format ASCII polos, HTML, atau PDF.

- install.id.txt
- install.id.html
- install.id.pdf

3.3.1.2 Dokumentasi perangkat keras

Sering kali berisi informasi yang berguna mengenai mengonfigurasi atau menggunakan perangkat keras Anda.

Halaman perangkat keras Wiki Debian

3.3.2 Menemukan Sumber Informasi Perangkat Keras

Dalam banyak kasus, pemasang akan dapat secara otomatis mendeteksi perangkat keras Anda. Tetapi untuk bersiapsiap, kami sarankan untuk membiasakan diri dengan perangkat keras Anda sebelum memasang.

Informasi perangkat keras dapat dikumpulkan dari:

- Manual yang disertakan dengan setiap perangkat keras.
- Layar pengaturan BIOS/UEFI komputer Anda. Anda dapat melihat layar ini saat memulai komputer dengan menekan kombinasi tombol. Periksa manual Anda untuk kombinasi. Sering kali, itu adalah tombol **Delete** atau **F2**, tetapi beberapa produsen menggunakan tombol atau kombinasi tombol lain. Biasanya saat memulai komputer akan ada pesan yang menyatakan tombol mana yang harus ditekan untuk masuk ke layar pengaturan.
- Kemasan dan kotak untuk setiap perangkat keras.
- Jendela Sistem di Panel Kontrol Windows.
- Perintah atau alat sistem di sistem operasi lain, termasuk tampilan manajer berkas. Sumber ini sangat berguna untuk informasi tentang RAM dan memori hard disk.
- Administrator sistem atau Penyedia Layanan Internet Anda. Sumber-sumber ini dapat memberi tahu Anda pengaturan yang Anda butuhkan untuk mengatur jaringan dan surel Anda.

Tabel 3.1 Informasi F	Perangkat Keras	yang Berguna	untuk Instalasi

Perangkat Keras	Informasi yang Mungkin Anda Butuhkan
	Berapa banyak yang Anda miliki.
	Urutan mereka pada sistem.
Hard Disk	Apakah IDE (juga dikenal sebagai PATA), SATA,
Hald Disk	atau SCSI.
	Ruang kosong yang tersedia.
	Partisi.
	Partisi tempat sistem operasi lain dipasang.
Antarmuka jaringan	Jenis/model antarmuka jaringan yang tersedia.
Pencetak	Model dan pabrikan.
Kartu Video	Jenis/model dan pabrikan.

3.3.3 Kompatibilitas Perangkat Keras

Banyak produk bekerja tanpa masalah pada Linux. Selain itu, dukungan perangkat keras di Linux membaik setiap hari. Namun, Linux masih tidak menjalankan berbagai jenis perangkat keras sebanyak beberapa sistem operasi.

Driver di Linux dalam kebanyakan kasus tidak ditulis untuk "produk" atau "merek" tertentu dari produsen tertentu, tetapi untuk perangkat keras/chipset tertentu. Banyak produk/merek yang tampaknya berbeda didasarkan pada desain perangkat keras yang sama; tidak jarang produsen chip menyediakan apa yang disebut "desain referensi" untuk produk berdasarkan chip mereka yang kemudian digunakan oleh beberapa produsen perangkat yang berbeda dan dijual dengan banyak nama produk atau merek yang berbeda.

Ini memiliki kelebihan dan kekurangan. Keuntungannya adalah driver untuk satu chipset bekerja dengan banyak produk berbeda dari produsen yang berbeda, selama produk mereka didasarkan pada chipset yang sama. Kerugiannya adalah tidak selalu mudah untuk melihat chipset mana yang sebenarnya digunakan dalam produk/merek tertentu. Sayangnya terkadang produsen perangkat mengubah basis perangkat keras produk mereka tanpa mengubah nama produk atau setidaknya nomor versi produk, sehingga ketika memiliki dua item dengan merek/nama produk yang sama yang dibeli pada waktu yang berbeda, mereka terkadang dapat didasarkan pada dua chipset yang berbeda dan oleh karena itu menggunakan dua driver yang berbeda atau mungkin tidak ada driver sama sekali untuk salah satunya.

Untuk perangkat USB dan PCI/PCI-Express/ExpressCard, cara yang baik untuk mengetahui chipset mana yang menjadi dasarnya adalah dengan melihat ID perangkat mereka. Semua perangkat USB/PCI/PCI-Express/ExpressCard memiliki apa yang disebut ID "vendor" dan "produk", dan kombinasi keduanya biasanya sama untuk produk apa pun berdasarkan chipset yang sama.

Pada sistem Linux, ID ini dapat dibaca dengan perintah **Isusb** untuk perangkat USB dan dengan perintah **Ispci** -nn untuk perangkat PCI/PCI-Express/ExpressCard. ID vendor dan produk biasanya diberikan dalam bentuk dua angka heksadesimal, dipisahkan oleh titik dua, seperti "1d6b:0001".

Contoh untuk keluaran dari **Isusb**: "Bus 001 Device 001: ID 1d6b:0002 Linux Foundation 2.0 root hub", dimana 1d6b adalah ID vendor dan 0002 adalah ID produk.

Contoh untuk keluaran dari **lspci -nn** untuk sebuah kartu Ethernet: "03:00.0 Ethernet controller [0200]: Realtek Semiconductor Co., Ltd. RTL8111/8168B PCI Express Gigabit Ethernet controller [10ec:8168] (rev 06)". ID diberikan di dalam tanda kurung siku paling kanan, yaitu di sini 10ec adalah ID vendor dan 8168 adalah ID produk.

Sebagai contoh lain, kartu grafis dapat memberikan keluaran berikut: "04:00.0 VGA compatible controller [0300]: Advanced Micro Devices [AMD] nee ATI RV710 [Radeon HD 4350] [1002:954f]".

Pada sistem Windows, ID untuk perangkat dapat ditemukan di manajer perangkat Windows pada tab "detail", dimana ID vendor diawali dengan VEN_ dan ID produk diawali dengan DEV_. Pada sistem Windows yang lebih baru, Anda harus memilih properti "ID Perangkat Keras" di tab detail manajer perangkat untuk benar-benar melihat ID, karena tidak ditampilkan secara baku.

Mencari di internet dengan ID vendor/produk, "Linux", dan driver sebagai istilah pencarian sering menghasilkan informasi mengenai status dukungan "driver" untuk chipset tertentu. Jika pencarian untuk ID vendor/produk tidak menemukan hasil yang dapat digunakan, pencarian untuk nama kode chip, yang juga sering disediakan oleh lsusb dan lspci ("RTL8111"/"RTL8168B" dalam contoh kartu jaringan dan "RV710" dalam contoh kartu grafis), dapat membantu.

3.3.3.1 Menguji kompatibilitas perangkat keras dengan Live-System

Debian GNU/Linux juga tersedia sebagai apa yang disebut "sistem live" untuk arsitektur tertentu. Sistem live adalah sistem siap pakai yang telah dikonfigurasi sebelumnya dalam format terkompresi yang dapat di-boot dan digunakan dari media hanya-baca seperti CD atau DVD. Menggunakannya secara baku tidak membuat perubahan permanen pada komputer Anda. Anda dapat mengubah pengaturan pengguna dan memasang program tambahan dari dalam sistem live, tetapi semua ini hanya terjadi di RAM komputer, yaitu jika Anda mematikan komputer dan mem-boot sistem live lagi, semuanya diatur ulang ke bakunya. Jika Anda ingin melihat apakah perangkat keras Anda didukung oleh Debian GNU/Linux, cara termudah adalah dengan menjalankan sistem live Debian padanya dan mencobanya.

Ada beberapa batasan dalam menggunakan sistem live. Yang pertama adalah bahwa karena semua perubahan yang Anda lakukan dalam sistem live harus disimpan di RAM komputer Anda, ini hanya berfungsi pada sistem dengan RAM yang cukup untuk melakukan itu, jadi memasang paket perangkat lunak tambahan yang besar mungkin gagal karena kendala memori. Batasan lain sehubungan dengan pengujian kompatibilitas perangkat keras adalah bahwa sistem live Debian GNU/Linux resmi hanya berisi komponen bebas, yaitu tidak ada berkas firmware non-free yang termasuk di dalamnya. Paket non-free seperti itu tentu saja dapat dipasang secara manual di dalam sistem, tetapi tidak ada deteksi otomatis berkas firmware yang diperlukan seperti di debian-installer, jadi pemasangan komponen non-free harus dilakukan secara manual jika diperlukan.

Informasi tentang varian yang tersedia dari image live Debian dapat ditemukan di situs web Image Live Debian.

3.3.4 Pengaturan Jaringan

Jika komputer Anda terhubung ke jaringan tetap (yaitu Ethernet atau koneksi yang setara — bukan koneksi dialup/PPP) yang dikelola oleh orang lain, Anda harus meminta informasi ini kepada administrator sistem jaringan Anda:

- Nama host Anda (Anda mungkin dapat memutuskan ini sendiri).
- Nama domain Anda.
- Alamat IP komputer Anda.
- Netmask untuk digunakan dengan jaringan Anda.
- Alamat IP sistem gateway baku tempat Anda mengarahkan rute, jika jaringan Anda memiliki gateway.
- Sistem di jaringan Anda yang harus Anda gunakan sebagai server DNS (Domain Name Service).

Jika jaringan yang terhubung dengan Anda menggunakan DHCP (Dynamic Host Configuration Protocol) untuk mengonfigurasi pengaturan jaringan, Anda tidak memerlukan informasi ini karena server DHCP akan memberikannya langsung ke komputer Anda selama proses instalasi.

Jika Anda memiliki akses internet melalui DSL atau modem kabel (yaitu melalui jaringan tv kabel) dan memiliki router (sering disediakan terprakonfigurasi oleh penyedia telepon atau catv Anda) yang menangani konektivitas jaringan Anda, DHCP biasanya tersedia secara baku.

Sebagai aturan praktis: jika Anda menjalankan sistem Windows di jaringan rumah Anda dan tidak perlu melakukan pengaturan jaringan secara manual di sana untuk mencapai akses Internet, konektivitas jaringan di Debian GNU/Linux juga akan dikonfigurasi secara otomatis.

Jika Anda menggunakan jaringan WLAN/WiFi, Anda harus mencari tahu:

- ESSID ("nama jaringan") jaringan nirkabel Anda.
- Kunci keamanan WEP atau WPA/WPA2 untuk mengakses jaringan (jika ada).

3.4 Memenuhi Persyaratan Perangkat Keras Minimum

Setelah Anda mengumpulkan informasi tentang perangkat keras komputer Anda, periksa apakah perangkat keras Anda akan membiarkan Anda melakukan jenis instalasi yang ingin Anda lakukan.

Bergantung pada kebutuhan Anda, Anda mungkin bisa melanjutkan dengan beberapa perangkat keras kurang dari yang direkomendasikan yang tercantum dalam tabel di bawah ini. Namun, sebagian besar pengguna berisiko frustrasi jika mereka mengabaikan saran ini.

Sistem Pentium 4, 1GHz adalah minimum yang direkomendasikan untuk sistem desktop.

Tabel 3.2 Persyaratan Sistem Minimum yang Direkomendasikan

Jenis Instalasi	RAM (minimum)	RAM (disarankan)	Hard Disk
Tanpa desktop	512MB	1GB	4GB
Dengan Desktop	1GB	2GB	10GB

Nilai minimum mengasumsikan bahwa swap akan diaktifkan dan image bukan live digunakan. Nilai "Tidak ada desktop" mengasumsikan bahwa pemasang berbasis teks (bukan yang grafis) digunakan.

Persyaratan memori minimum aktual jauh lebih sedikit daripada angka yang tercantum dalam tabel ini. Dengan swap diaktifkan, dimungkinkan untuk memasang Debian dengan sesedikit 350MB. Hal yang sama berlaku untuk persyaratan ruang disk, terutama jika Anda memilih aplikasi mana yang akan dipasang; Lihat Bagian D.2 untuk informasi tambahan tentang persyaratan ruang disk.

Installer biasanya secara otomatis memungkinkan trik menghemat memori untuk dapat berjalan pada sistem memori rendah seperti itu, tetapi pada arsitektur yang kurang diuji mungkin melewatkannya. Namun dapat diaktifkan secara manual dengan menambahkan parameter boot **lowmem=1** atau bahkan **lowmem=2** (lihat juga Bagian 6.3.1.1 dan Bagian 5.3.2).

Instalasi pada sistem dengan memori yang lebih sedikit¹ atau ruang disk yang tersedia mungkin tetapi hanya disarankan untuk pengguna berpengalaman.

Dimungkinkan untuk menjalankan lingkungan desktop grafis pada sistem yang lebih lama atau kelas bawah, tetapi dalam hal ini disarankan untuk memasang manajer jendela yang kurang haus sumber daya daripada lingkungan desktop GNOME atau KDE Plasma; alternatif termasuk xfce4, icewm, dan wmaker, tetapi ada yang lain untuk dipilih.

Praktis tidak mungkin untuk memberikan persyaratan ruang disk atau memori umum untuk instalasi server karena sangat tergantung pada untuk apa server akan digunakan.

Ingatlah bahwa ukuran ini tidak mencakup semua materi lain yang biasanya ditemukan, seperti berkas pengguna, surel, dan data. Selalu yang terbaik untuk bermurah hati ketika mempertimbangkan ruang untuk berkas dan data Anda sendiri.

Ruang disk diperlukan untuk kelancaran operasi sistem Debian GNU/Linux itu sendiri diperhitungkan dalam persyaratan sistem yang direkomendasikan ini. Khususnya, partisi /var berisi banyak informasi keadaan yang spesifik bagi Debian selain konten regulernya, seperti berkas log. Berkas-berkas **dpkg** (dengan informasi tentang semua paket yang dipasang) dapat dengan mudah mengkonsumsi 40MB. Juga **apt** menempatkan paket yang diunduh di sini sebelum dipasang. Anda biasanya harus mengalokasikan setidaknya 200MB untuk /var, dan lebih banyak lagi jika Anda memasang lingkungan desktop grafis.

3.5 Pra-Pemartisian untuk Sistem Multi-Boot

Mempartisi disk Anda hanya mengacu pada tindakan memecah disk Anda menjadi beberapa bagian. Setiap bagian kemudian independen dari yang lain. Ini kira-kira setara dengan memasang dinding di dalam rumah; jika Anda menambahkan furnitur ke satu ruangan itu tidak mempengaruhi ruangan lain.

Jika Anda sudah memiliki sistem operasi pada sistem Anda (Windows, OS/2, MacOS, Solaris, FreeBSD, ...) yang menggunakan seluruh disk dan Anda ingin menempatkan Debian pada disk yang sama, Anda harus mempartisi ulang. Debian membutuhkan partisi hard disk sendiri. Itu tidak dapat dipasang pada partisi Windows atau Mac OS

¹Image instalasi yang mendukung pemasang grafis memerlukan lebih banyak memori daripada image yang hanya mendukung pemasang berbasis teks dan tidak boleh digunakan pada sistem dengan memori kurang dari 780MB. Jika ada pilihan antara mem-boot berbasis teks dan pemasang grafis, yang pertama harus dipilih pada sistem tersebut.

X. Ini mungkin dapat berbagi beberapa partisi dengan sistem Unix lain, tetapi itu tidak tercakup di sini. Setidaknya Anda akan memerlukan partisi khusus untuk sistem berkas root Debian.

Anda dapat menemukan informasi tentang pengaturan partisi Anda saat ini dengan menggunakan alat partisi untuk sistem operasi Anda saat ini, seperti Manajer Disk terintegrasi di Windows. Alat partisi selalu menyediakan cara untuk menampilkan partisi yang ada tanpa membuat perubahan.

Secara umum, mengubah partisi dengan sistem berkas yang sudah ada di dalamnya akan menghancurkan informasi apa pun di sana. Dengan demikian Anda harus selalu membuat cadangan sebelum melakukan partisi ulang. Dengan menggunakan analogi rumah, Anda mungkin ingin memindahkan semua furnitur sebelum memindahkan dinding atau Anda berrisiko menghancurkannya.

Beberapa sistem operasi modern menawarkan kemampuan untuk memindah dan mengubah ukuran partisi tertentu yang ada tanpa merusak isinya. Ini memungkinkan membuat ruang untuk partisi tambahan tanpa kehilangan data yang ada. Meskipun ini bekerja cukup baik dalam banyak kasus, membuat perubahan pada partisi disk adalah tindakan yang secara inheren berbahaya dan hanya boleh dilakukan setelah membuat cadangan penuh dari semua data. Untuk partisi FAT/FAT32 dan NTFS seperti yang digunakan oleh sistem Windows, kemampuan untuk memindahkan dan mengubah ukurannya tanpa kehilangan disediakan baik oleh debian-installer serta oleh Manajer Disk terintegrasi Windows.

Untuk mengubah ukuran partisi FAT atau NTFS yang ada, tanpa kehilangan data, dari dalam debian-installer, lanjutkan ke langkah pemartisian, pilih opsi untuk pemartisian manual, pilih partisi yang akan diubah ukuran, dan cukup tentukan ukuran barunya.

3.6 Penyiapan Perangkat Keras dan Sistem Operasi Pra Instalasi

Bagian ini akan memandu Anda melalui penyiapan perangkat keras pra-instalasi, jika ada, yang perlu Anda lakukan sebelum memasang Debian. Umumnya, ini melibatkan pemeriksaan dan mungkin mengubah pengaturan firmware BIOS/UEFI/sistem untuk sistem Anda. "BIOS/UEFI" atau "firmware sistem" adalah perangkat lunak inti yang digunakan oleh perangkat keras; ini paling kritis dipanggil selama proses bootstrap (setelah daya dihidupkan).

3.6.1 Memanggil Menu Penyiapan BIOS/UEFI

BIOS/UEFI menyediakan fungsi dasar yang diperlukan untuk mem-boot mesin Anda dan untuk memungkinkan sistem operasi Anda mengakses perangkat keras Anda. Sistem Anda menyediakan menu penyiapan BIOS/UEFI, yang digunakan untuk mengonfigurasi BIOS/UEFI. Untuk masuk ke menu penyiapan BIOS/UEFI, Anda harus menekan sebuah tombol atau kombinasi tombol setelah menyalakan komputer. Sering kali itu adalah tombol **Delete** atau **F2**, tetapi beberapa produsen menggunakan tombol lain. Biasanya saat memulai komputer akan ada pesan yang menyatakan tombol mana yang harus ditekan untuk masuk ke layar penyiapan.

3.6.2 Pemilihan Perangkat Boot

Dalam menu penyiapan BIOS/UEFI, Anda dapat memilih perangkat mana yang akan diperiksa dalam urutan apa untuk sistem operasi yang dapat di-boot. Pilihan yang mungkin biasanya termasuk hard disk internal, drive CD/DVD-ROM, dan perangkat penyimpanan massal USB seperti flash disk USB atau hard disk USB eksternal. Pada sistem modern juga sering ada kemungkinan untuk mengaktifkan boot jaringan melalui PXE.

Tergantung pada media instalasi (CD/DVD ROM, flash disk USB, boot jaringan) yang telah Anda pilih, Anda harus mengaktifkan perangkat boot yang sesuai jika belum diaktifkan.

Sebagian besar versi BIOS/UEFI memungkinkan Anda untuk memanggil menu boot pada awal mula sistem di mana Anda memilih dari perangkat mana komputer harus memulai untuk sesi saat ini. Jika opsi ini tersedia, BIO-S/UEFI biasanya menampilkan pesan singkat seperti "tekan **F12** untuk menu boot" pada awal mula sistem. Kunci sebenarnya yang digunakan untuk memilih menu ini bervariasi dari satu sistem ke sistem lainnya; kunci yang umum digunakan adalah **F12**, **F11**, dan **F8**. Memilih perangkat dari menu ini tidak mengubah urutan boot baku BIOS/UE-FI, yaitu Anda dapat memulai sekali dari flash disk USB sambil mengonfigurasi hard disk internal sebagai perangkat boot utama normal.

Jika BIOS/UEFI Anda tidak memberi Anda menu boot untuk melakukan pilihan ad-hoc dari perangkat boot saat ini, Anda harus mengubah pengaturan BIOS/UEFI Anda agar membuat perangkat dari mana debian-installer mesti di-boot sebagai perangkat boot utama.

Sayangnya beberapa komputer mungkin berisi versi BIOS/UEFI yang bermasalah. Boot debian-installer dari flash disk USB mungkin tidak berfungsi meskipun ada opsi yang sesuai di menu penyiapan BIOS/UEFI dan flash disk dipilih sebagai perangkat boot utama. Pada beberapa sistem ini menggunakan flash disk USB sebagai media boot tidak mungkin; yang lain dapat ditipu untuk boot dari flash disk dengan mengubah jenis perangkat di pengaturan

BIOS/UEFI dari baku "hard disk USB" atau "flash disk USB" ke "USB ZIP" atau "USB CDROM". Khususnya jika Anda menggunakan image instalasi isohybrid pada flash disk USB (lihat Bagian 4.3.1), mengubah jenis perangkat ke "USB CDROM" membantu pada beberapa BIOS yang tidak akan boot dari flash disk USB dalam mode hard disk USB. Anda mungkin perlu mengonfigurasi BIOS/UEFI Anda untuk mengaktifkan "dukungan legacy USB".

Jika Anda tidak dapat memanipulasi BIOS/UEFI untuk boot langsung dari flash disk USB, Anda masih memiliki opsi untuk menggunakan ISO yang disalin ke flash disk. Boot debian-installer menggunakan Bagian 4.4 dan, setelah memindai hard drive untuk image ISO pemasang, pilih perangkat USB dan pilih image instalasi.

3.6.3 Sistem dengan firmware UEFI

UEFI ("Unified Extensible Firmware Interface") adalah jenis firmware sistem baru yang digunakan pada banyak sistem modern dan - di antara kegunaan lain - dimaksudkan untuk menggantikan BIOS PC klasik.

Saat ini sebagian besar sistem PC yang menggunakan UEFI juga memiliki apa yang disebut "Compatibility Support Module" (CSM) di firmware, yang menyediakan antarmuka yang persis sama dengan sistem operasi sebagai BIOS PC klasik, sehingga perangkat lunak yang ditulis untuk BIOS PC klasik dapat digunakan tanpa diubah. Meskipun demikian UEFI dimaksudkan untuk suatu hari nanti sepenuhnya menggantikan BIOS PC lama tanpa sepenuhnya kompatibel ke belakang dan sudah ada banyak sistem dengan UEFI tetapi tanpa CSM.

Pada sistem dengan UEFI ada beberapa hal yang perlu dipertimbangkan saat memasang sistem operasi. Cara firmware memuat sistem operasi pada dasarnya berbeda antara BIOS klasik (atau UEFI dalam mode CSM) dan UEFI native. Satu perbedaan utama adalah cara partisi hard disk direkam pada hard disk. Sementara BIOS klasik dan UEFI dalam mode CSM menggunakan tabel partisi DOS, UEFI native menggunakan skema partisi yang berbeda yang disebut "GUID Partition Table" (GPT). Pada satu disk, untuk semua tujuan praktis hanya satu dari keduanya yang dapat digunakan dan dalam kasus pengaturan multi-boot dengan sistem operasi yang berbeda pada satu disk, semuanya harus menggunakan jenis tabel partisi yang sama. Boot dari disk dengan GPT hanya dimungkinkan dalam mode UEFI native, tetapi menggunakan GPT menjadi semakin umum seiring bertambahnya ukuran hard disk, karena tabel partisi DOS klasik tidak dapat mengatasi disk yang lebih besar dari sekitar 2 Terabyte sementara GPT memungkinkan disk yang jauh lebih besar. Perbedaan utama lainnya antara BIOS (atau UEFI dalam mode CSM) dan UEFI native adalah lokasi di mana kode boot disimpan dan mesti dalam format apa. Ini berarti bahwa boot loader yang berbeda diperlukan untuk setiap sistem.

Yang terakhir menjadi penting saat boot debian-installer pada sistem UEFI dengan CSM karena debian-installer memeriksa apakah itu dimulai pada BIOS atau pada sistem UEFI native dan memasang boot loader yang sesuai. Biasanya ini berfungsi begitu saja tetapi mungkin ada masalah di lingkungan multi-boot. Pada beberapa sistem UEFI dengan CSM, mode boot baku untuk perangkat lepasan bisa berbeda dari apa yang sebenarnya digunakan saat boot dari hard disk, jadi ketika mem-boot pemasang dari flash disk USB dalam mode yang berbeda dari apa yang digunakan saat mem-boot sistem operasi lain yang sudah terpasang dari hard disk, mungkin dipasang boot loader yang salah dan sistem mungkin tidak dapat di-boot setelah menyelesaikan instalasi. Saat memilih perangkat boot dari menu boot firmware, beberapa sistem menawarkan dua pilihan terpisah untuk setiap perangkat, sehingga pengguna dapat memilih apakah boot akan terjadi dalam CSM atau dalam mode UEFI native.

3.6.4 Boot aman

Topik terkait UEFI lainnya adalah apa yang disebut mekanisme "boot aman" (secure boot). Boot aman berarti fungsi implementasi UEFI yang memungkinkan firmware hanya memuat dan mengeksekusi kode yang ditandatangani secara kriptografis dengan kunci tertentu dan dengan demikian memblokir kode boot (berpotensi berbahaya) yang tidak ditandatangani atau ditandatangani dengan kunci yang tidak diketahui. Dalam praktiknya satu-satunya kunci yang diterima secara baku pada sebagian besar sistem UEFI dengan boot aman adalah kunci dari Microsoft yang digunakan untuk menandatangani boot loader Windows. Debian menyertakan boot loader "shim" yang ditandatangani oleh Microsoft, jadi harus bekerja dengan benar pada sistem dengan boot aman diaktifkan.

3.6.5 Menonaktifkan fitur "boot cepat"/"startup cepat" Windows

Windows menawarkan fitur (disebut "boot cepat" di Windows 8, "startup cepat" di Windows 10) untuk mengurangi waktu memulai sistem. Secara teknis, ketika fitur ini diaktifkan, Windows tidak melakukan shutdown nyata dan cold boot nyata setelahnya ketika diperintahkan untuk mematikan, tetapi sebaliknya melakukan sesuatu yang menyerupai suspensi sebagian ke disk untuk mengurangi waktu "boot". Selama Windows adalah satu-satunya sistem operasi pada mesin, ini tidak bermasalah, tetapi dapat mengakibatkan masalah dan kehilangan data, ketika Anda memiliki pengaturan dual boot, di mana sistem operasi lain mengakses sistem berkas yang sama seperti Windows. Dalam hal ini keadaan sebenarnya dari sistem berkas dapat berbeda dari apa yang Windows yakini setelah "boot" dan ini dapat menyebabkan kerusakan sistem berkas setelah akses tulis lebih lanjut ke sistem berkas. Oleh karena itu dalam

pengaturan dual boot, untuk menghindari kerusakan sistem berkas, fitur "fast boot"/"fast startup" harus dinonaktifkan di dalam Windows.

Selain itu, mekanisme Pembaruan Windows (kadang-kadang) diketahui secara otomatis mengaktifkan kembali fitur ini, setelah sebelumnya dinonaktifkan oleh pengguna. Disarankan untuk memeriksa kembali pengaturan ini secara berkala.

Mungkin juga perlu untuk menonaktifkan "boot cepat" bahkan agar memungkinkan akses ke pengaturan UEFI untuk memilih mem-boot sistem operasi lain atau debian-installer. Pada beberapa sistem UEFI, firmware akan mengurangi waktu "boot" dengan tidak menginisialisasi pengontrol papan ketik atau perangkat keras USB; dalam kasus ini, perlu untuk boot ke Windows dan menonaktifkan fitur ini untuk memungkinkan perubahan urutan boot.

3.6.6 Masalah Perangkat Keras yang Harus Diwaspadai

Dukungan BIOS USB dan papan ketik Jika Anda tidak memiliki papan ketik gaya PS/2, tetapi hanya model USB, pada beberapa PC yang sangat lama Anda mungkin perlu mengaktifkan emulasi papan ketik lama di pengaturan BIOS Anda untuk dapat menggunakan papan ketik Anda di menu boot loader, tetapi ini bukan masalah untuk sistem modern. Jika papan ketik Anda tidak berfungsi di menu boot loader, lihat manual mainboard Anda dan lihat di BIOS untuk "Emulasi papan ketik lama" (Legacy keyboard emulation) atau opsi "Dukungan papan ketik USB" (USB keyboard support).

Bab 4

Mendapatkan Media Instalasi Sistem

4.1 Image instalasi Debian GNU/Linux resmi

Sejauh ini cara termudah untuk memasang Debian GNU/Linux adalah dari satu set image instalasi Debian resmi. Anda dapat membeli satu set CD/DVD atau flash disk USB dari vendor (lihat halaman vendor CD). Anda juga dapat mengunduh image instalasi dari cermin Debian dan membuat set Anda sendiri, jika Anda memiliki koneksi jaringan yang cepat dan pembakar CD/DVD. Atau cara modern: tulis image itu ke flash disk USB (lihat halaman CD/DVD Debian dan FAQ CD Debian untuk instruksi terperinci). Jika Anda memiliki media instalasi seperti itu, dan mereka dapat di-boot pada mesin Anda , yang terjadi pada semua PC modern, Anda dapat melompat langsung ke Bab 5. Banyak upaya telah dikeluarkan untuk memastikan berkas yang paling sering digunakan ada pada image DVD pertama, sehingga instalasi desktop dasar dapat dilakukan hanya dengan DVD pertama.

Juga, perlu diingat: jika media instalasi yang Anda gunakan tidak berisi beberapa paket yang Anda butuhkan, Anda selalu dapat memasang paket-paket itu setelahnya dari sistem Debian baru Anda yang sedang berjalan (setelah instalasi selesai). Jika Anda perlu tahu image instalasi mana untuk menemukan paket tertentu, kunjungi https://cdimage-search.debian.org/.

Jika mesin Anda tidak mendukung boot dari media optik (hanya relevan pada sistem PC yang sangat lama), tetapi Anda memiliki satu set DVD, Anda dapat menggunakan strategi alternatif seperti hard disk, flash disk usb, net boot, atau memuat kernel secara manual dari cakram untuk pada awalnya mem-boot pemasang sistem. Berkas yang Anda butuhkan untuk boot dengan cara lain juga ada di cakram; arsip jaringan Debian dan organisasi folder pada cakram itu identik. Jadi ketika path berkas arsip yang diberikan di bawah ini untuk berkas tertentu yang Anda butuhkan untuk boot, cari berkas-berkas itu di direktori dan sub direktori yang sama di media instalasi Anda.

Setelah pemasang di-boot, ia akan dapat memperoleh semua berkas lain yang dibutuhkan dari cakram.

Jika Anda tidak memiliki set media instalasi, maka Anda harus mengunduh berkas sistem pemasang dan menempatkannya di hard disk atau flash disk usb atau komputer yang terhubung sehingga dapat digunakan untuk mem-boot pemasang.

4.2 Mengunduh Berkas dari Cermin Debian

Untuk menemukan cermin terdekat (dan dengan demikian mungkin yang tercepat), lihat daftar cermin Debian.

4.2.1 Di Mana Menemukan Berkas Instalasi

Berbagai berkas instalasi dapat ditemukan pada setiap cermin Debian di direktori debian/dists/trixie/main/installer-amd64/current/images/ — MANIFEST mencantumkan setiap image dan tujuannya.

4.3 Mempersiapkan Berkas untuk Boot Flash Disk USB

Untuk menyiapkan flash disk USB, kami sarankan untuk menggunakan sistem di mana GNU/Linux sudah berjalan dan di mana USB didukung. Dengan sistem GNU/Linux saat ini, flash disk USB harus dikenali secara otomatis saat Anda memasukkannya. Jika tidak, Anda harus memeriksa apakah modul kernel usb-storage dimuat. Ketika flash disk USB dimasukkan, itu akan dipetakan ke perangkat bernama /dev/sdx, dimana "X" adalah huruf dalam rentang a-z. Anda seharusnya dapat melihat ke perangkat mana flash disk USB dipetakan dengan menjalankan perintah **Isblk** sebelum dan sesudah memasukkannya. (Keluaran dari **dmesg** (sebagai root) adalah metode lain yang mungkin untuk

itu.) Untuk menulis ke flash disk, Anda mungkin harus mematikan sakelar perlindungan tulisnya.

Awas

Prosedur yang dijelaskan di bagian ini akan menghancurkan apa pun yang sudah ada di perangkat! Pastikan Anda menggunakan nama perangkat yang benar untuk flash disk USB Anda. Jika Anda menggunakan perangkat yang salah, hasilnya bisa jadi semua informasi tentang, misalnya, hard disk hilang.

4.3.1 Mempersiapkan flash disk USB menggunakan image CD/DVD hibrida

Image instalasi Debian untuk arsitektur ini dibuat menggunakan teknologi **isohybrid**; itu berarti mereka dapat ditulis langsung ke flash disk USB, yang merupakan cara yang sangat mudah untuk membuat media instalasi. Cukup pilih image (seperti netinst atau DVD-1) yang akan pas dengan flash disk USB Anda. Lihat Bagian 4.1 untuk mendapatkan image instalasi.

Image instalasi yang Anda pilih harus ditulis langsung ke flash disk USB, menimpa isi saat ini. Misalnya, ketika menggunakan sistem GNU/Linux yang ada, berkas image dapat ditulis ke flash disk USB sebagai berikut, setelah memastikan bahwa flash disk tersebut dilepas kait: #

- # cp debian.iso /dev/sdX
- # sync

Sekadar menulis image instalasi ke USB seperti ini akan berfungsi dengan baik untuk sebagian besar pengguna. Untuk kebutuhan khusus ada laman wiki ini.

Informasi tentang cara melakukan ini pada sistem operasi lain dapat ditemukan di FAQ Debian CD.

PENTING

Image harus ditulis ke seluruh disk perangkat dan bukan partisi, misalnya /dev/sdb dan bukan /dev/sdb1. Jangan gunakan alat seperti **unetbootin** yang mengubah image.

4.4 Mempersiapkan Berkas untuk Boot Hard Disk

Pemasang dapat di-boot menggunakan berkas boot yang ditempatkan pada partisi hard drive yang ada, baik diluncurkan dari sistem operasi lain atau dengan memanggil boot loader langsung dari BIOS. Pada sistem UEFI modern, kernel dapat di-boot langsung dari partisi UEFI tanpa memerlukan boot loader.

Instalasi "murni jaringan" yang lengkap dapat dicapai dengan menggunakan teknik ini. Ini menghindari semua kerepotan media lepasan, seperti menemukan dan membakar image CD/DVD.

4.4.1 Boot pemasang hard disk dari Linux menggunakan GRUB

Bagian ini menjelaskan cara menambah atau bahkan mengganti instalasi linux yang ada menggunakan GRUB.

Saat boot, **GRUB** mendukung pemuatan dalam memori tidak hanya kernel, tetapi juga image disk. Disk RAM ini dapat digunakan sebagai sistem berkas root oleh kernel.

Salin berkas-berkas berikut dari arsip Debian ke lokasi yang nyaman di hard drive Anda, misalnya ke /boot/newinstall/.

- vmlinuz (biner kernel)
- initrd.gz (image ramdisk)

Jika Anda bermaksud menggunakan hard drive hanya untuk boot dan kemudian mengunduh semuanya melalui jaringan, Anda harus mengunduh berkas netboot/debian-installer/amd64/initrd.gz dan kernel yang sesuai netboot/debian-installer/amd64/linux. Ini akan memungkinkan Anda untuk mempartisi ulang hard disk tempat Anda memboot pemasang, meskipun Anda harus melakukannya dengan hati-hati.

Atau, jika Anda bermaksud untuk menjaga partisi yang ada pada hard drive tidak berubah selama instalasi, Anda dapat mengunduh berkas hd-media/initrd.gz dan kernelnya hd-media/vmlinuz, serta menyalin image instalasi ke hard drive (pastikan berkas tersebut diberi nama berakhiran .iso). Pemasang kemudian dapat boot dari hard drive dan memasang dari image instalasi, tanpa memerlukan jaringan.

Akhirnya, untuk mengonfigurasi bootloader lanjutkan ke Bagian 5.1.3.

4.5 Mempersiapkan Berkas untuk Boot Jaringan TFTP

Jika komputer Anda terhubung ke jaringan area lokal, Anda mungkin dapat mem-boot-nya melalui jaringan dari mesin lain, menggunakan TFTP. Jika Anda bermaksud untuk mem-boot sistem instalasi dari mesin lain, berkas boot harus ditempatkan di lokasi tertentu pada mesin itu, dan mesin dikonfigurasi untuk mendukung boot mesin spesifik Anda.

Anda perlu menyiapkan sebuah server TFTP, dan untuk banyak mesin, sebuah server DHCP, atau server BOOTP. BOOTP adalah protokol IP yang menginformasikan komputer tentang alamat IP-nya dan di mana di jaringan untuk mendapatkan image boot. DHCP (Dynamic Host Configuration Protocol) adalah ekstensi BOOTP yang lebih fleksibel dan kompatibel ke belakang. Beberapa sistem hanya dapat dikonfigurasi melalui DHCP.

Trivial Berkas Transfer Protocol (TFTP) digunakan untuk melayani image boot ke klien. Secara teoretis, server apa pun, pada platform apa pun, yang mengimplementasikan protokol ini, dapat digunakan. Dalam contoh di bagian ini, kami akan memberikan perintah untuk SunOS 4.x, SunOS 5.x (alias Solaris), dan GNU/Linux.

CATATAN

Untuk server Debian GNU/Linux kami merekomendasikan tftpd-hpa. Ini ditulis oleh penulis yang sama dengan bootloader syslinux dan oleh karena itu paling kecil kemungkinannya untuk menyebabkan masalah. Alternatif yang baik adalah atftpd.

4.5.1 Menyiapkan server DHCP

Salah satu perangkat lunak DHCP server bebas adalah ISC dhcpd. Untuk Debian GNU/Linux, paket isc-dhcp-server direkomendasikan. Berikut adalah contoh berkas konfigurasi untuk itu (lihat /etc/dhcp/dhcpd.conf):

```
option domain-name "example.com";
option domain-name-servers ns1.example.com;
option subnet-mask 255.255.255.0;
default-lease-time 600;
max-lease-time 7200;
server-name "servername";

subnet 192.168.1.0 netmask 255.255.255.0 {
   range 192.168.1.200 192.168.1.253;
   option routers 192.168.1.1;
}

host clientname {
   filename "/tftpboot.img";
   server-name "servername";
   next-server servername;
   hardware ethernet 01:23:45:67:89:AB;
   fixed-address 192.168.1.90;
}
```

Dalam contoh ini, ada satu server servername yang melakukan semua pekerjaan server DHCP, server TFTP, dan gateway jaringan. Anda hampir pasti perlu mengubah opsi nama domain, serta nama server dan alamat perangkat keras klien. Opsi nama berkas harus berupa filename yang akan diambil melalui TFTP.

Setelah Anda mengedit berkas konfigurasi **dhcpd**, jalankan ulang dengan /etc/init.d/isc-dhcp-server restart.

4.5.1.1 Mengaktifkan Boot PXE dalam konfigurasi DHCP

Berikut adalah contoh lain untuk dhop.conf menggunakan metode Pre-boot Execution Environment (PXE) TFTP.

```
option domain-name "example.com";
default-lease-time 600;
max-lease-time 7200;
allow booting;
allow bootp;
# The next paragraph needs to be modified to fit your case
subnet 192.168.1.0 netmask 255.255.255.0 {
  range 192.168.1.200 192.168.1.253;
  option broadcast-address 192.168.1.255;
# the gateway address which can be different
# (access to the internet for instance)
  option routers 192.168.1.1;
# indicate the dns you want to use
  option domain-name-servers 192.168.1.3;
group {
  next-server 192.168.1.3;
 host tftpclient {
# tftp client hardware address
 hardware ethernet 00:10:DC:27:6C:15;
  filename "pxelinux.0";
 }
```

Perhatikan bahwa untuk boot PXE, nama berkas klien pxelinux. 0 adalah boot loader, bukan image kernel (lihat Bagian 4.5.4 di bawah). Jika mesin Anda menggunakan UEFI untuk boot, Anda harus menentukan boot loader yang sesuai untuk mesin UEFI, misalnya

```
group {
  next-server 192.168.1.3;
  host tftpclient {
# tftp client hardware address
  hardware ethernet  00:10:DC:27:6C:15;
  filename "debian-installer/amd64/bootnetx64.efi";
  }
}
```

4.5.2 Menyiapkan server BOOTP

Ada dua server BOOTP yang tersedia untuk GNU/Linux. Yang pertama adalah CMU **bootpd**. Yang lainnya sebenarnya adalah server DHCP: ISC **dhcpd**. Dalam Debian GNU/Linux ini masing-masing ada dalam paket bootp dan isc-dhcp-server.

Untuk menggunakan CMU **bootpd**, Anda harus terlebih dahulu menghapus komentar (atau menambahkan) baris yang relevan di /etc/inetd.conf. Pada Debian GNU/Linux, Anda dapat menjalankan **update-inetd**--enable bootps, lalu /etc/init.d/inetd reload untuk melakukannya. Untuk berjaga-jaga jika server BOOTP Anda tidak berjalan pada Debian, baris yang dimaksud akan terlihat seperti:

```
bootps dgram udp wait root /usr/sbin/bootpd bootpd -i -t 120
```

Sekarang, Anda harus membuat berkas /etc/bootptab. Ini memiliki jenis format yang akrab dan cryptic yang sama dengan berkas printcap, termcap, dan disktab BSD lama yang bagus. Lihat halaman manual bootptab untuk informasi lebih lanjut. Untuk CMU bootpd, Anda perlu mengetahui alamat perangkat keras (MAC) klien. Berikut adalah contoh /etc/bootptab:

```
client:\
hd=/tftpboot:\
```

```
bf=tftpboot.img:\
ip=192.168.1.90:\
sm=255.255.255.0:\
sa=192.168.1.1:\
ha=0123456789AB:
```

Anda perlu mengubah setidaknya opsi "ha", yang menentukan alamat perangkat keras klien. Opsi "bf" menentukan berkas yang harus diambil klien melalui TFTP; lihat Bagian 4.5.4 untuk lebih jelasnya.

Sebaliknya, menyiapkan BOOTP dengan ISC **dhcpd** sangat mudah, karena memperlakukan klien BOOTP sebagai kasus yang cukup khusus dari klien DHCP. Beberapa arsitektur memerlukan konfigurasi kompleks untuk mem-boot klien melalui BOOTP. Jika milik Anda adalah salah satunya, baca bagian ini Bagian 4.5.1. Jika tidak, Anda mungkin akan bisa lolos hanya dengan menambahkan direktif **allow bootp** ke blok konfigurasi untuk subnet yang berisi klien di /etc/dhcp/dhcpd.conf, dan jalankan ulang **dhcpd** dengan /etc/init.d/isc-dhcp-server restart.

4.5.3 Mengaktifkan Server TFTP

Untuk menyiapkan server TFTP, Anda harus terlebih dahulu memastikan bahwa tftpd diaktifkan.

Dalam kasus tftpd-hpa ada dua cara layanan dapat dijalankan. Ini dapat dimulai sesuai permintaan oleh daemon inetd sistem, atau dapat diatur untuk dijalankan sebagai daemon independen. Yang mana dari metode ini yang digunakan dipilih ketika paket dipasang dan dapat diubah dengan mengonfigurasi ulang paket.

CATATAN

Secara historis, server TFTP menggunakan /tftpboot sebagai direktori tempat menyajikan image. Namun, paket Debian GNU/Linux dapat menggunakan direktori lain untuk mematuhi Filesystem Hierarchy Standard. Misalnya, tftpd-hpa secara baku menggunakan /srv/tftp. Anda mungkin harus menyesuaikan contoh konfigurasi di bagian ini.

Semua alternatif **in.tftpd** yang tersedia di Debian harus mencatat permintaan TFTP ke log sistem secara baku. Sebagian dari mereka mendukung argumen –**v** untuk meningkatkan verbositas. Disarankan untuk memeriksa pesan log ini jika terjadi masalah boot karena merupakan titik awal yang baik untuk mendiagnosis penyebab kesalahan.

4.5.4 Pindahkan Image TFTP Ke Tempatnya

Selanjutnya, tempatkan image boot TFTP yang Anda butuhkan, seperti yang ditemukan di Bagian 4.2.1, dalam direktori image boot **tftpd**. Anda mungkin harus membuat tautan dari berkas itu ke berkas yang **tftpd** akan gunakan untuk mem-boot klien tertentu. Sayangnya, nama berkas ditentukan oleh klien TFTP, dan tidak ada standar yang kuat

Untuk boot PXE, semua yang Anda butuhkan diatur di tarball netboot/netboot.tar.gz. Cukup ekstrak tarball ini ke dalam direktori image boot **tftpd**. Pastikan server dhcp Anda dikonfigurasi untuk meneruskan pxelinux.0 ke **tftpd** sebagai nama berkas untuk boot. Untuk mesin UEFI, Anda harus meneruskan nama image boot EFI yang sesuai (seperti /debian-installer/amd64/bootnetx64.efi).

4.6 Instalasi Otomatis

Untuk memasang di banyak komputer, Anda dapat melakukan instalasi yang sepenuhnya otomatis. Paket Debian yang ditujukan untuk ini termasuk fai-quickstart, yang dapat menggunakan server instalasi (lihat Beranda FAI untuk informasi terperinci) dan Pemasang Debian itu sendiri.

The FAI project also provides a web service for creating customized unattended installation ISO images with only a few clicks. You can choose the desktop environment, the language, the release, set the password and add your own list of additional packages. After a few minutes your can download and boot the image, that will do the fully automatic installation without any interaction needed. Some more advanced settings are available for Linux experts.

4.6.1 Instalasi Otomatis Menggunakan Pemasang Debian

Pemasang Debian mendukung otomatisasi instalasi melalui berkas prakonfigurasi. Berkas prakonfigurasi dapat dimuat dari jaringan atau dari media lepasan, dan digunakan untuk mengisi jawaban atas pertanyaan yang diajukan selama proses instalasi.

Dokumentasi lengkap tentang preseed termasuk contoh kerja yang dapat Anda sunting ada di Lampiran B.

4.7 Memverifikasi integritas berkas instalasi

Anda dapat memverifikasi integritas berkas yang diunduh terhadap checksum yang disediakan dalam berkas SHA256SUMS atau SHA512SUMS di cermin Debian. Anda dapat menemukannya di tempat yang sama dengan image instalasi itu sendiri. Kunjungi lokasi berikut:

- berkas checksum untuk image CD,
- berkas checksum untuk image DVD,
- berkas checksum untuk image BD,
- berkas checksum untuk berkas instalasi lainnya.

Untuk menghitung checksum berkas instalasi yang diunduh, gunakan

sha256sum nama_berkas.iso

masing-masing

sha512sum nama_berkas.iso

dan kemudian bandingkan checksum yang ditampilkan dengan yang sesuai di masing-masing berkas SHA256SUMS SHA512SUMS.

CD FAQ Debian memiliki informasi yang lebih berguna tentang topik ini (seperti skrip check_debian_iso, untuk membuat semi-otomatis prosedur di atas), serta instruksi, cara memverifikasi integritas berkas checksum di atas sendiri.

Bab 5

Mem-boot Sistem Instalasi

5.1 Mem-boot Installer pada 64-bit PC

Awas

Jika Anda memiliki sistem operasi lain pada sistem Anda yang ingin Anda pertahankan (penyiapan boot ganda), Anda harus memastikan bahwa mereka telah dimatikan dengan benar *sebelum* Anda mem-boot penginstal. Menginstal sistem operasi sementara sistem operasi lain dalam hibernasi (telah disuspensi ke disk) dapat mengakibatkan hilangnya, atau kerusakan pada keadaan sistem operasi yang disuspensi yang dapat menyebabkan masalah ketika reboot.

CATATAN

Untuk informasi tentang cara mem-boot penginstal grafis, lihat Bagian 5.1.6.

5.1.1 Mem-booting dari Flash Disk USB

Jika komputer Anda akan boot dari USB, ini mungkin akan menjadi rute termudah untuk instalasi. Dengan asumsi Anda telah menyiapkan semuanya dari Bagian 3.6.2, dan Bagian 4.3, cukup colokkan stik USB Anda ke konektor USB yang bebas dan reboot komputer. Sistem harus boot, dan kecuali Anda telah menggunakan cara yang fleksibel untuk membangun flash disk dan tidak mengaktifkannya, Anda harus disajikan dengan menu boot grafis (pada perangkat keras yang mendukungnya). Di sini Anda dapat memilih berbagai opsi penginstal, atau cukup tekan **Enter**.

5.1.2 Mem-boot dari cakram optik (CD/DVD)

Jika Anda memiliki satu set cakram optik, dan mesin Anda mendukung boot langsung dari itu, bagus! Cukup konfigurasikan sistem Anda untuk mem-boot cakram optik seperti yang dijelaskan dalam Bagian 3.6.2, masukkan cakram, reboot, dan lanjutkan ke bab berikutnya.

Perhatikan bahwa drive optik tertentu mungkin memerlukan driver khusus, dan dengan demikian tidak dapat diakses pada tahap instalasi awal. Jika ternyata cara standar boot dari cakram optik tidak bekerja untuk perangkat keras Anda, kunjungi kembali bab ini dan baca tentang kernel alternatif dan metode instalasi yang mungkin bekerja untuk Anda.

Bahkan jika Anda tidak dapat boot dari cakram optik, Anda mungkin dapat menginstal komponen sistem Debian dan paket apa pun yang Anda inginkan dari cakram tersebut. Cukup boot menggunakan media yang berbeda dan ketika saatnya untuk memasang sistem operasi, sistem dasar, dan paket tambahan, arahkan sistem instalasi ke drive optik.

Jika Anda mengalami masalah boot, lihat Bagian 5.4.

5.1.3 Boot dari Linux menggunakan GRUB

Untuk mem-boot penginstal dari hard disk, Anda harus terlebih dahulu mengunduh dan menempatkan berkas yang diperlukan seperti yang dijelaskan dalam Bagian 4.4.

Bagi GRUB2, Anda perlu mengonfigurasi dua hal penting di /boot/grub/grub.cfg:

- untuk memuat penginstal initrd.gz pada saat boot;
- atyr agar kernel vmlinuz menggunakan disk RAM sebagai partisi root-nya.

Entri untuk penginstal adalah misalnya:

```
menuentry 'New Install' {
insmod part_msdos
insmod ext2
set root='(hd0,msdos1)'
linux /boot/newinstall/vmlinuz
initrd /boot/newinstall/initrd.gz
}
```

5.1.4 Mem-boot dengan TFTP

Boot dari jaringan mengharuskan Anda memiliki koneksi jaringan dan server boot jaringan TFTP (dan mungkin juga server DHCP, RARP, atau BOOTP untuk konfigurasi jaringan otomatis).

Pengaturan sisi server untuk mendukung boot jaringan dijelaskan dalam Bagian 4.5.

Ada berbagai cara untuk melakukan boot TFTP di i386.

5.1.4.1 NIC atau Motherboard yang mendukung PXE

Bisa jadi Kartu Antarmuka Jaringan atau Motherboard Anda menyediakan fungsionalitas boot PXE. Ini adalah implementasi ulang IntelTM dari boot TFTP. Jika demikian, Anda mungkin dapat mengonfigurasi BIOS/UEFI Anda untuk boot dari jaringan.

5.1.4.2 NIC dengan Network BootROM

Bisa jadi Kartu Antarmuka Jaringan Anda menyediakan fungsionalitas boot TFTP.

5.1.4.3 Etherboot

Proyek etherboot menyediakan disket boot dan bahkan ROM boot yang melakukan TFTPboot.

5.1.5 Layar Boot

Saat penginstal di-boot, Anda harus disajikan dengan layar grafis yang ramah yang menunjukkan logo Debian dan menu:

```
Debian GNU/Linux installer boot menu

Graphical install

Install

Advanced options >

Accessible dark contrast installer menu >

Help

Install with speech synthesis
```


Layar grafis ini akan terlihat sedikit berbeda tergantung pada bagaimana komputer Anda telah boot (BIOS atau UEFI), tetapi opsi yang sama akan ditampilkan.

Bergantung pada metode instalasi yang Anda gunakan, opsi "Instalasi grafis" mungkin tidak tersedia. Image bi-arch juga memiliki varian 64 bit untuk setiap opsi instalasi, tepat di bawahnya, sehingga hampir menggandakan jumlah opsi.

Untuk instalasi normal, pilih entri "Instalasi grafis" atau "Pasang" — menggunakan tombol panah pada papan ketik Anda atau dengan mengetikkan huruf pertama (yang disorot) entri dan tekan **Enter** untuk mem-boot penginstal. Entri "Instalasi grafis" sudah dipilih secara baku.

Entri "Opsi tingkat lanjut" memberikan akses ke menu kedua yang memungkinkan untuk mem-boot penginstal dalam mode ahli, dalam mode penyelamatan, dan untuk pemasangan otomatis.

Jika Anda ingin atau perlu menambahkan parameter boot apa pun untuk pemasang atau kernel, tekan **Tab** (boot BIOS), atau **e** lalu **down arrow** tiga kali lalu **end**, untuk menyunting baris entri boot "linux" (boot UEFI). Ini akan membawa perintah boot untuk entri menu yang dipilih dan memungkinkan Anda menyuntingnya sesuai dengan kebutuhan Anda. Perhatikan bahwa tata letak papan ketik pada saat ini masih QWERTY. Layar bantuan (lihat di bawah) mencantumkan beberapa opsi umum yang mungkin. Tekan **Enter** (boot BIOS) atau **F10** (boot UEFI) untuk mem-boot pemasang memakai opsi Anda; menekan **Esc** akan mengembalikan Anda ke menu boot dan membatalkan perubahan apa pun yang Anda buat.

Memilih entri "Bantuan" akan menampilkan layar bantuan pertama yang memberi gambaran umum tentang semua layar bantuan yang tersedia. Untuk kembali ke menu boot setelah layar bantuan ditampilkan, ketik "menu" di prompt boot dan tekan **Enter**. Semua layar bantuan memiliki prompt boot di mana perintah boot dapat diketik:

Press F1 for the help index, or ENTER to boot:

At this boot prompt you can either just press **Enter** to boot the installer with default options or enter a specific boot command and, optionally, boot parameters. A number of boot parameters which might be useful can be found on the various help screens. If you do add any parameters to the boot command line, be sure to first type the boot method (the default is **install**) and a space before the first parameter (e.g., **install nomodeset**).

CATATAN

Papan ketik diasumsikan memiliki tata letak bahasa Inggris Amerika baku pada saat ini. Ini berarti bahwa jika papan ketik Anda memiliki tata letak (khusus bahasa) yang berbeda, karakter yang muncul di layar mungkin berbeda dari apa yang Anda harapkan saat mengetik parameter. Wikipedia memiliki skema tata letak papan ketik AS yang dapat digunakan sebagai referensi untuk menemukan tombol yang benar untuk dipakai.

Jika Anda menggunakan sistem yang memiliki BIOS yang dikonfigurasi untuk menggunakan konsol serial, Anda mungkin tidak dapat melihat layar splash grafis awal saat mem-boot pemasang; Anda bahkan mungkin tidak melihat menu boot. Hal yang sama dapat terjadi jika Anda memasang sistem melalui perangkat manajemen jarak jauh yang menyediakan antarmuka teks ke konsol VGA. Contoh perangkat ini termasuk konsol teks "integrated Lights Out" Compaq (iLO) dan "Integrated Remote Assistant" (IRA) HP.

Untuk melewati layar boot grafis Anda dapat menekan **Esc** secara membabi buta untuk mendapatkan prompt boot teks, atau (sama-sama membabi buta) tekan "H" diikuti oleh **Enter** untuk memilih opsi "Bantuan" yang dijelaskan di atas. Setelah itu penekanan tombol Anda harus digaungkan pada prompt. Untuk mencegah pemasang menggunakan framebuffer untuk sisa instalasi, Anda juga ingin menambahkan **vga=normal nomodeset** ke prompt boot, seperti yang dijelaskan dalam teks bantuan.

5.1.6 Pemasang Grafis

Versi grafis dari pemasang hanya tersedia untuk sejumlah arsitektur, termasuk 64-bit PC. Fungsionalitas pemasang grafis pada dasarnya sama dengan pemasang berbasis teks karena pada dasarnya menggunakan program yang sama, tetapi dengan front end yang berbeda.

Meskipun fungsinya identik, penginstal grafis masih memiliki beberapa keunggulan yang signifikan. Keuntungan utama adalah mendukung lebih banyak bahasa, yaitu yang menggunakan set karakter yang tidak dapat ditampilkan dengan frontend "newt" berbasis teks. Ini juga memiliki beberapa keuntungan kegunaan seperti opsi untuk memakai tetikus, dan dalam beberapa kasus beberapa pertanyaan dapat ditampilkan pada satu layar.

Pemasang grafis tersedia dengan semua image CD/DVD dan dengan metode instalasi hd-media. Untuk mem-boot pemasang grafis cukup pilih opsi yang relevan dari menu boot. Mode ahli dan penyelamatan untuk pemasang grafis dapat dipilih dari menu "Opsi tingkat lanjut". Metode boot installgui, expertgui, dan rescuegui yang digunakan sebelumnya masih dapat digunakan dari prompt boot yang ditampilkan setelah memilih opsi "Bantuan" di menu boot.

Sama seperti pemasang berbasis teks, dimungkinkan untuk menambahkan parameter boot saat memulai pemasang grafis.

CATATAN

Penginstal grafis membutuhkan lebih banyak memori untuk dijalankan secara signifikan daripada pemasang berbasis teks: 810MB. Jika memori yang tersedia tidak mencukupi, secara otomatis akan jatuh kembali ke frontend "newt" berbasis teks.

Jika jumlah memori dalam sistem Anda di bawah 780MB, pemasang grafis mungkin gagal untuk boot sama sekali sementara mem-boot pemasang berbasis teks masih akan bekerja. Menggunakan pemasang berbasis teks direkomendasikan untuk sistem yang memiliki sedikit memori tersedia.

5.2 Aksesibilitas

Beberapa pengguna mungkin memerlukan dukungan khusus karena misalnya beberapa gangguan penglihatan. Layar braille USB terdeteksi secara otomatis (bukan tampilan serial yang terhubung melalui konverter serial-ke-USB), tetapi sebagian besar fitur aksesibilitas harus diaktifkan secara manual. Pada mesin yang mendukungnya, menu boot memancarkan bunyi bip ketika siap menerima penekanan tombol. Ini berbunyi bip sekali pada sistem BIOS, dan berbunyi bip dua kali pada sistem UEFI. Beberapa parameter boot kemudian dapat ditambahkan untuk mengaktifkan fitur aksesibilitas (lihat juga Bagian 5.1.5). Perhatikan bahwa pada sebagian besar arsitektur boot loader menafsirkan papan tik Anda sebagai papan tik QWERTY.

5.2.1 Front-end penginstal

Pemasang Debian mendukung beberapa front-end untuk mengajukan pertanyaan, dengan berbagai kenyamanan untuk aksesibilitas: terutama, text menggunakan teks polos sementara newt menggunakan kotak dialog berbasis teks. Pilihan dapat dibuat di prompt boot, lihat dokumentasi untuk DEBIAN_FRONTEND di Bagian 5.3.2.

Dengan front-end **newt** (sebagian besar digunakan dengan braille), seseorang kebanyakan hanya memilih jawaban dengan tombol panah dan menekan **Enter** untuk memvalidasi pilihan. Menekan **Tab** atau **Shift** - **Tab** memungkinkan untuk beralih di antara elemen dialog, dan terutama untuk mengakses tombol **Kembali**, yang membawa kembali ke pertanyaan sebelumnya. Beberapa dialog berisi kotak centang, yang dapat dicentang dan dimatikan dengan menekan **Space**.

Dengan front-end **teks** (sebagian besar digunakan dengan ucapan), seseorang sebagian besar memilih jawaban baik dengan mengetikkan nomor mereka diikuti dengan menekan **Enter**, atau dengan memilih jawaban dengan tombol panah, dan menekan **Enter** untuk memvalidasi pilihan. Seseorang juga tidak dapat mengetik apa pun dan cukup menekan **Enter** untuk hanya menerima nilai baku. Mengetik < dan menekan **Enter** membawa kembali ke pertanyaan sebelumnya. Ketika penentuan atas pilihan harus dibuat (misalnya selama pemilihan tugas), seseorang dapat mengetik ! untuk mengekspresikan pilihan kosong.

5.2.2 Layar Braille USB

Layar braille USB mestinya dideteksi secara otomatis. Versi tekstual pemasang kemudian akan dipilih secara otomatis, dan dukungan untuk tampilan braille akan dipasang secara otomatis pada sistem target. Dengan demikian Anda dapat menekan **Enter** di menu boot. Setelah brltty dimulai, Anda dapat memilih tabel braille dengan memasukkan menu preferensi. Dokumentasi tentang pengikatan kunci untuk perangkat braille tersedia di situs web brltty.

5.2.3 Layar Braille Serial

Layar braille serial tidak dapat dideteksi secara otomatis (karena itu dapat merusak beberapa di antaranya). Dengan demikian Anda perlu menambahkan parameter boot **brltty=driver**, **port** untuk memberi tahu brltty driver dan port mana yang harus digunakan. driver harus diganti dengan kode driver dua huruf untuk terminal Anda (lihat manual BRLTTY). port harus diganti dengan nama port serial yang terhubung ke layar, **ttySO** adalah baku, **ttyUSBO** biasanya dapat digunakan saat menggunakan konverter serial-ke-USB. Parameter ketiga dapat disediakan, untuk memilih nama tabel braille yang akan digunakan (lihat manual BRLTTY); tabel bahasa Inggris adalah baku. Perhatikan bahwa tabel dapat diubah nanti dengan memasukkan menu preferensi. Parameter keempat dapat disediakan untuk meneruskan parameter ke driver braille, seperti **protocol=foo** yang diperlukan untuk beberapa model langka. Dokumentasi tentang pengikatan kunci untuk perangkat braille tersedia di situs web brltty.

5.2.4 Sintesis Ucapan Perangkat Lunak

Dukungan untuk sintesis ucapan perangkat lunak tersedia pada semua image pemasang yang memiliki pemasang grafis, yaitu semua image netinst dan DVD, dan varian netboot gtk. Ini dapat diaktifkan dengan memilihnya di menu boot dengan mengetik **s Enter**. Versi tekstual pemasang kemudian akan dipilih secara otomatis, dan dukungan untuk sintesis ucapan perangkat lunak akan dipasang secara otomatis pada sistem target.

Jika beberapa kartu suara terdeteksi, Anda akan diminta untuk menekan **Enter** ketika Anda mendengar ucapan dari kartu suara yang diinginkan.

Pertanyaan pertama (bahasa) diucapkan dalam bahasa Inggris, dan sisa instalasi diucapkan dalam bahasa yang dipilih (jika tersedia dalam espeak).

Kecepatan bicara baku cukup lambat. Untuk membuatnya lebih cepat, tekan CapsLock-6. Untuk membuatnya lebih lambat, tekan CapsLock-5. Volume baku mestinya sedang. Untuk membuatnya lebih keras, tekan CapsLock-2. Untuk membuatnya lebih pelan, tekan CapsLock-1. Untuk mendapatkan detail selengkapnya tentang pintasan penjelajahan, lihat Panduan Speakup. Untuk hanya menerima jawaban baku untuk pertanyaan, cukup tekan Enter di prompt. Untuk memberikan jawaban kosong untuk pertanyaan, ketik ! di prompt. Untuk kembali ke pertanyaan sebelumnya, ketik < pada prompt.

5.2.5 Sintesis Ucapan Perangkat Keras

Dukungan untuk perangkat sintesis ucapan perangkat keras tersedia pada semua image pemasang yang memiliki pemasang grafis, yaitu semua image netinst dan DVD, dan varian netboot gtk. Dengan demikian Anda perlu memilih entri "Instalasi grafis" di menu boot.

Perangkat sintesis ucapan perangkat keras tidak dapat dideteksi secara otomatis. Dengan demikian Anda perlu menambahkan parameter boot **speakup.synth**=**driver** untuk memberi tahu speakup driver mana yang harus digunakan. **driver** harus diganti dengan kode driver untuk perangkat Anda (lihat daftar kode driver). Versi tekstual pemasang kemudian akan dipilih secara otomatis, dan dukungan untuk perangkat sintesis ucapan akan dipasang secara otomatis pada sistem target.

5.2.6 Perangkat Papan

Beberapa perangkat aksesibilitas adalah papan aktual yang dicolokkan ke dalam mesin dan yang membaca teks langsung dari memori video. Untuk membuat mereka bekerja, dukungan framebuffer harus dinonaktifkan dengan menggunakan parameter boot **vga=normal nomodeset**. Namun ini akan mengurangi jumlah bahasa yang tersedia.

Jika diinginkan versi tekstual dari bootloader dapat diaktifkan sebelum menambahkan parameter boot dengan mengetik **h Enter**.

5.2.7 Tema Kontras Tinggi

Untuk pengguna dengan penglihatan lemah, pemasang dapat menggunakan tema warna kontras tinggi yang membuatnya lebih mudah dibaca. Untuk mengaktifkannya, Anda dapat menggunakan entri "Kontras tinggi yang dapat diakses" dari layar boot dengan pintasan d, atau menambahkan parameter boot theme=dark.

5.2.8 Zum

Untuk pengguna dengan penglihatan lemah, pemasang grafis memiliki dukungan zoom yang sangat mendasar: pintasan Control-+ dan Control-- menaikkan dan menurunkan ukuran fonta.

5.2.9 Instalasi pakar, mode penyelamatan, instalasi terotomasi

Pilihan instalasi Pakar, Penyelamatan, dan Terotomasi juga tersedia dengan dukungan aksesibilitas. Untuk mengaksesnya, seseorang harus terlebih dahulu memasukkan sub menu "Opsi tingkat lanjut" dari menu boot dengan mengetik a. Saat menggunakan sistem BIOS (menu boot hanya akan berbunyi bip sekali), ini harus diikuti oleh Enter; untuk sistem UEFI (menu boot akan berbunyi bip dua kali) ini tidak boleh dilakukan. Kemudian, untuk mengaktifkan sintesis ucapan, s secara opsional dapat ditekan (diikuti lagi oleh Enter pada sistem BIOS tetapi tidak pada sistem UEFI). Dari sana, berbagai pintasan dapat digunakan: x untuk instalasi pakar, r untuk mode penyelamatan, atau a untuk instalasi terotomasi. Sekali lagi ini perlu diikuti oleh Enter saat menggunakan sistem BIOS.

Pilihan instalasi otomatis memungkinkan untuk memasang Debian sepenuhnya secara otomatis dengan menggunakan preseed, yang sumbernya dapat dimasukkan setelah fitur aksesibilitas dimulai. Preseed itu sendiri didokumentasikan dalam Lampiran B.

5.2.10 Aksesibilitas sistem yang dipasang

Dokumentasi tentang aksesibilitas sistem yang diinstal tersedia di Halaman wiki Aksesibilitas Debian.

5.3 Parameter Boot

Parameter boot adalah parameter kernel Linux yang umumnya digunakan untuk memastikan bahwa periferal ditangani dengan benar. Untuk sebagian besar, kernel dapat mendeteksi informasi secara otomatis tentang periferal Anda. Namun, dalam beberapa kasus Anda harus sedikit membantu kernel.

Jika ini adalah pertama kalinya Anda mem-boot sistem, coba parameter boot baku (yaitu, jangan coba mengatur parameter) dan lihat apakah itu berfungsi dengan benar. Mungkin akan begitu. Jika tidak, Anda dapat reboot nanti dan mencari parameter khusus yang menginformasikan sistem tentang perangkat keras Anda.

Informasi tentang banyak parameter boot dapat ditemukan di Linux BootPrompt HOWTO, termasuk tips untuk perangkat keras yang tidak jelas. Bagian ini hanya berisi sketsa parameter yang paling menonjol. Beberapa poin umum disertakan di bawah dalam Bagian 5.4.

5.3.1 Boot konsol serial

Jika Anda boot dengan konsol serial, umumnya kernel akan otomatis mendeteksi ini. Jika Anda memiliki kartu video (framebuffer) dan papan tik juga terpasang ke komputer yang ingin Anda boot melalui konsol serial, Anda mungkin harus meneruskan argumen **console=peranti** ke kernel, di mana peranti adalah perangkat serial dari target, yang biasanya sesuatu seperti ttyso.

Anda mungkin perlu menentukan parameter untuk port serial, seperti kecepatan dan parity, misalnya console=ttyS0, 9600 kecepatan umum lainnya mungkin 57600 atau 115200. Pastikan untuk menentukan opsi ini setelah "---", sehingga disalin ke dalam konfigurasi bootloader untuk sistem yang dipasang (jika didukung oleh pemasang untuk bootloader).

Untuk memastikan tipe terminal yang digunakan oleh pemasang cocok dengan emulator terminal Anda, parameter **TERM=**tipe dapat ditambahkan. Perhatikan bahwa pemasang hanya mendukung tipe terminal berikut: linux, bterm, ansi, vt102, dan dumb. Baku untuk konsol serial di debian-installer adalah vt102. Jika Anda menggunakan konsol IPMI, atau alat virtualisasi yang tidak memberikan konversi ke tipe terminal itu sendiri, misalnya QEMU/KVM, Anda dapat memulainya di dalam sesi screen. Itu memang akan melakukan terjemahan ke dalam tipe terminal screen, yang sangat dekat dengan vt102.

5.3.2 Parameter Pemasang Debian

Sistem instalasi mengenali beberapa parameter boot tambahan¹ yang mungkin berguna.

Sejumlah parameter memiliki "bentuk pendek" yang membantu menghindari keterbatasan opsi baris perintah kernel dan membuat memasukkan parameter lebih mudah. Jika parameter memiliki bentuk pendek, itu akan tercantum dalam tanda kurung di belakang bentuk panjang (normal). Contoh dalam manual ini biasanya akan menggunakan bentuk pendek juga.

debconf/priority (priority) Parameter ini menetapkan prioritas pesan terendah yang akan ditampilkan.

Instalasi baku menggunakan **priority=high**. Ini berarti bahwa pesan prioritas tinggi dan kritis ditampilkan, tetapi pesan prioritas sedang dan rendah dilewati. Jika masalah dihadapi, pemasang menyesuaikan prioritas sesuai kebutuhan.

Jika Anda menambahkan **priority=medium** sebagai parameter boot, Anda akan ditunjukkan menu instalasi dan mendapatkan lebih banyak kontrol atas instalasi. Ketika **priority=low** digunakan, semua pesan ditampilkan (ini setara dengan metode boot *ahli*). Dengan **priority=critical**, sistem instalasi hanya akan menampilkan pesan penting dan mencoba melakukan hal yang benar tanpa repot.

DEBIAN_FRONTEND Parameter boot ini mengontrol jenis antarmuka pengguna yang digunakan untuk pemasang. Pengaturan parameter yang mungkin saat ini adalah:

- DEBIAN_FRONTEND=noninteractive
- DEBIAN_FRONTEND=text
- DEBIAN FRONTEND=newt
- DEBIAN_FRONTEND=gtk

Front end baku adalah **DEBIAN_FRONTEND=newt**. **DEBIAN_FRONTEND=text** mungkin lebih disukai untuk instalasi konsol serial. Beberapa jenis media instalasi khusus mungkin hanya menawarkan pilihan front end terbatas, tetapi front end **newt** dan **text** tersedia di sebagian besar media instalasi baku. Pada arsitektur yang mendukungnya, pemasang grafis menggunakan front end **gtk**.

BOOT_DEBUG Mengatur parameter boot ini ke 2 akan menyebabkan proses boot pemasang di-log secara rinci. Mengaturnya ke 3 membuat shell debug tersedia di titik-titik strategis dalam proses boot. (Keluar dari shell untuk melanjutkan proses boot.)

BOOT_DEBUG=0 Ini adalah baku.

BOOT_DEBUG=1 Lebih bertele-tele dari biasanya.

BOOT_DEBUG=2 Banyak informasi debug.

BOOT_DEBUG=3 Shell dijalankan di berbagai titik dalam proses boot untuk memungkinkan debug terperinci. Keluar dari shell untuk melanjutkan boot.

¹Dengan kernel saat ini (2.6.9 atau yang lebih baru) Anda dapat menggunakan 32 opsi baris perintah dan 32 opsi lingkungan. Jika angka-angka ini terlampaui, kernel akan panik. Juga ada batas 255 karakter untuk seluruh baris perintah kernel, segala sesuatu di atas batas ini dapat dipotong secara diam-diam.

- **log_host**, **log_port** Menyebabkan penginstal mengirim pesan log ke syslog jarak jauh pada host dan port yang ditentukan serta ke berkas lokal. Jika tidak ditentukan, port dibakukan ke port syslog standar 514.
- **lowmem** Dapat digunakan untuk memaksa penginstal ke tingkat lowmem yang lebih tinggi dari yang ditetapkan penginstal secara default berdasarkan memori yang tersedia. Nilai yang mungkin adalah 1 dan 2. Lihat juga Bagian 6.3.1.1.
- **noshell** Mencegah pemasang menawarkan shell interaktif pada tty2 dan tty3. Berguna untuk instalasi tanpa pengawasan di mana keamanan fisik terbatas.
- debian-installer/framebuffer (fb) Beberapa arsitektur menggunakan kernel framebuffer untuk menawarkan instalasi dalam sejumlah bahasa. Jika framebuffer menyebabkan masalah pada sistem, Anda dapat menonaktifkan fitur menggunakan parameter **vga=normal nomodeset**. Gejala masalah adalah pesan kesalahan tentang bterm atau bogl, layar kosong, atau membeku dalam beberapa menit setelah memulai instalasi.
- debian-installer/theme (theme) Tema menentukan bagaimana antarmuka pengguna penginstal terlihat (warna, ikon, dll.). Tema mana yang tersedia mungkin berbeda per frontend. Saat ini frontend newt dan gtk memiliki (terlepas dari tampilan default) hanya satu tema tambahan bernama tema "gelap", yang dirancang untuk pengguna yang mengalami masalah visual. Atur tema ini dengan mem-boot dengan theme=dark (ada juga pintasan papan ketik d untuk ini di menu boot).
- netcfg/disable_autoconfig Secara default, debian-installer secara otomatis menyelidiki konfigurasi jaringan melalui konfigurasi otomatis IPv6 dan DHCP. Jika probe berhasil, Anda tidak akan memiliki kesempatan untuk meninjau dan mengubah pengaturan yang diperoleh. Anda bisa masuk ke pengaturan jaringan manual hanya jika konfigurasi otomatis gagal.
 - Jika Anda memiliki router IPv6 atau server DHCP di jaringan lokal Anda, tetapi ingin menghindarinya karena misalnya mereka memberikan jawaban yang salah, Anda dapat menggunakan parameter netcfg/disable_autoconfiguntuk mencegah konfigurasi otomatis jaringan (baik v4 maupun v6) dan untuk memasukkan informasi secara manual
- **hw-detect/start_pcmcia** Atur ke **false** untuk mencegah memulai layanan PCMCIA, jika itu menyebabkan masalah. Beberapa laptop dikenal baik untuk perilaku buruk ini.
- **preseed/url (url)** Menyatakan url ke berkas prakonfigurasi untuk diunduh dan digunakan untuk mengotomatisasi instalasi. Lihat Bagian 4.6.
- **preseed/file** (file) Menyatakan path ke berkas prakonfigurasi yang akan dimuat untuk mengotomatisasi instalasi. Lihat Bagian 4.6.
- preseed/interactive Atur ke true untuk menampilkan pertanyaan bahkan jika mereka telah di-preseed. Dapat berguna untuk menguji atau men-debug berkas prakonfigurasi. Perhatikan bahwa ini tidak akan berpengaruh pada parameter yang dilewatkan sebagai parameter boot, tetapi bagi mereka sintaks khusus dapat digunakan. Lihat Bagian B.5.2 untuk rinciannya.
- **auto-install/enable** (auto) Tunda pertanyaan yang biasanya diajukan sebelum preseed dimungkinkan sampai setelah jaringan dikonfigurasi. Lihat Bagian B.2.3 untuk detail tentang menggunakan ini bagi instalasi terotomatisasi.
- finish-install/keep-consoles Selama instalasi dari serial atau konsol manajemen, konsol virtual reguler (VT1 ke VT6) biasanya dinonaktifkan di /etc/inittab. Atur ke true untuk mencegah hal ini.
- cdrom-detect/eject Secara default, sebelum reboot, debian-installer secara otomatis mengeluarkan media optik yang digunakan selama instalasi. Ini bisa tidak perlu jika sistem tidak secara otomatis mem-boot media tersebut. Dalam beberapa kasus bahkan mungkin tidak diinginkan, misalnya jika drive optik tidak dapat memasukkan kembali media itu sendiri dan pengguna tidak ada di sana untuk melakukannya secara manual. Banyak slot loading, slim-line, dan caddy style drive tidak dapat memuat ulang media secara otomatis.
 - Atur ke false untuk menonaktifkan ejeksi otomatis, dan ketahuilah bahwa Anda mungkin perlu memastikan bahwa sistem tidak secara otomatis boot dari drive optik setelah instalasi awal.
- base-installer/install-recommends (recommends) Dengan mengatur opsi ini menjadi false, sistem manajemen paket akan dikonfigurasi untuk tidak menginstal "Recommends" secara otomatis, baik selama instalasi maupun untuk sistem yang diinstal. Lihat juga Bagian 6.3.5.
 - -Perhatikan bahwa opsi ini memungkinkan untuk memiliki sistem yang lebih ramping, tetapi juga dapat mengakibatkan fitur hilang yang biasanya Anda harapkan tersedia. Anda mungkin harus menginstal beberapa paket

yang direkomendasikan secara manual untuk mendapatkan fungsionalitas penuh yang Anda inginkan. Oleh karena itu, opsi ini hanya boleh digunakan oleh pengguna yang sangat berpengalaman.

debian-installer/allow_unauthenticated Secara default penginstal mengharuskan repositori diautentikasi menggunakan kunci gpg yang dikenal. Atur ke true untuk menonaktifkan autentikasi tersebut. Peringatan: tidak aman, tidak disarankan.

rescue/enable Atur ke **true** untuk memasuki mode penyelamatan daripada melakukan instalasi normal. Lihat Bagian 8.6.

5.3.3 Menggunakan parameter boot untuk menjawab pertanyaan

Dengan beberapa pengecualian, nilai dapat diatur pada prompt boot untuk setiap pertanyaan yang diajukan selama instalasi, meskipun ini hanya benar-benar berguna dalam kasus-kasus tertentu. Petunjuk umum bagaimana melakukan ini dapat ditemukan di Bagian B.2.2. Beberapa contoh spesifik tercantum di bawah ini.

debian-installer/language (language), debian-installer/country (country), debian-installer/locale (locale) Ada dua cara untuk menentukan bahasa, negara, dan lokal yang akan digunakan untuk instalasi dan sistem yang dipasang.

Yang pertama dan termudah adalah hanya meneruskan parameter locale. Bahasa dan negara kemudian akan berasal dari nilainya. Anda misalnya dapat menggunakan locale=de_CH.UTF-8 untuk memilih bahasa Jerman sebagai bahasa dan Swiss sebagai negara (de_CH.UTF-8 akan ditetapkan sebagai lokal baku untuk sistem yang dipasang). Keterbatasannya adalah bahwa tidak semua kombinasi bahasa, negara, dan lokal yang mungkin dapat dicapai dengan cara ini.

Opsi kedua yang lebih fleksibel adalah menentukan language dan country secara terpisah. Dalam hal ini locale secara opsional dapat ditambahkan untuk menentukan lokal baku tertentu untuk sistem yang dipasang. Contoh: language=en country=DE locale=en_GB.UTF-8.

anna/choose_modules (modules) Dapat digunakan untuk memuat komponen penginstal secara otomatis yang tidak dimuat secara default. Contoh komponen opsional yang mungkin berguna adalah openssh-client-udeb (sehingga Anda dapat menggunakan scp selama instalasi) dan ppp-udeb (lihat Bagian D.5).

netcfg/disable_autoconfig Atur ke **true** jika Anda ingin menonaktifkan konfigurasi otomatis IPv6 dan DHCP dan sebagai gantinya memaksa konfigurasi jaringan statis.

mirror/protocol (protocol) Secara default installer akan menggunakan protokol http untuk mengunduh berkas dari mirror Debian dan mengubahnya menjadi ftp tidak dimungkinkan selama instalasi pada prioritas normal. Dengan mengatur parameter ini ke ftp, Anda dapat memaksa penginstal untuk menggunakan protokol itu sebagai gantinya. Perhatikan bahwa Anda tidak dapat memilih cermin ftp dari daftar, Anda harus memasukkan nama host secara manual.

tasksel:tasksel/first (tasks) Dapat digunakan untuk memilih tugas yang tidak tersedia dari daftar tugas interaktif, seperti tugas kde-desktop. Lihat Bagian 6.3.6.2 untuk informasi tambahan.

5.3.4 Meneruskan parameter ke modul kernel

Jika driver dikompilasi ke dalam kernel, Anda dapat meneruskan parameter kepada mereka seperti yang dijelaskan dalam dokumentasi kernel. Namun, jika driver dikompilasi sebagai modul dan karena modul kernel dimuat sedikit berbeda selama instalasi daripada saat mem-boot sistem yang dipasang, tidak mungkin untuk meneruskan parameter ke modul seperti biasanya. Sebagai gantinya, Anda perlu menggunakan sintaks khusus yang dikenali oleh pemasang yang kemudian akan memastikan bahwa parameter disimpan dalam berkas konfigurasi yang tepat dan dengan demikian akan digunakan ketika modul benar-benar dimuat. Parameter juga akan dipropagasi secara otomatis ke konfigurasi untuk sistem yang dipasang.

Perhatikan bahwa sekarang cukup jarang parameter perlu diteruskan ke modul. Dalam kebanyakan kasus kernel akan dapat menyelidiki perangkat keras yang ada dalam sistem dan mengatur baku yang baik dengan cara itu. Namun, dalam beberapa situasi mungkin masih diperlukan untuk mengatur parameter secara manual.

Sintaks yang digunakan untuk mengatur parameter untuk modul adalah:

module_name.nama_parameter=nilai

Jika Anda perlu meneruskan beberapa parameter ke modul yang sama atau berbeda, ulangi saja ini. Misalnya, untuk mengatur kartu antarmuka jaringan 3Com lama untuk menggunakan konektor BNC (coax) dan IRQ 10, Anda akan meneruskan:

3c509.xcvr=3 3c509.irq=10

5.3.5 Mencekal modul kernel

Terkadang mungkin perlu memasukkan modul ke daftar hitam untuk mencegahnya dimuat secara otomatis oleh kernel dan udev. Salah satu alasannya adalah modul tertentu menyebabkan masalah dengan perangkat keras Anda. Kernel juga terkadang mencantumkan dua driver berbeda untuk perangkat yang sama. Hal ini dapat menyebabkan perangkat tidak berfungsi dengan benar jika driver atau jika driver yang salah dimuat terlebih dahulu.

Anda dapat memasukkan modul ke daftar hitam menggunakan sintaks berikut: nama_modul.blacklist=yes. Ini akan menyebabkan modul masuk daftar hitam di /etc/modprobe.d/blacklist.local baik selama instalasi maupun untuk sistem yang dipasang.

Perhatikan bahwa modul mungkin masih dimuat oleh sistem instalasi itu sendiri. Anda dapat mencegah hal itu terjadi dengan menjalankan instalasi dalam mode pakar dan membatalkan pilihan modul dari daftar modul yang ditampilkan selama fase deteksi perangkat keras.

5.4 Penelusuran Masalah Proses Instalasi

5.4.1 Keandalan media optik

Terkadang, terutama dengan drive yang lebih lama, pemasang mungkin gagal mem-boot dari cakram optik. Pemasang juga bisa — bahkan setelah boot berhasil dari cakram tersebut — gagal untuk mengenali cakram atau mengembalikan kesalahan saat membaca dari itu selama instalasi.

Ada banyak kemungkinan penyebab yang berbeda untuk masalah ini. Kami hanya dapat mencantumkan beberapa masalah umum dan memberikan saran umum tentang cara menanganinya. Sisanya terserah Anda.

Ada dua hal yang sangat sederhana yang harus Anda coba terlebih dahulu.

- Jika cakram tidak bisa boot, periksa apakah itu dimasukkan dengan benar dan tidak kotor.
- Jika pemasang gagal mengenali cakram, coba jalankan opsi Deteksi dan kait media instalasi untuk kedua kalinya. Beberapa masalah terkait DMA dengan drive CD-ROM yang sangat tua diketahui diselesaikan dengan cara ini.

Jika ini tidak berhasil, maka coba saran di sub bagian di bawah ini. Sebagian besar, tetapi tidak semua, saran yang dibahas di sana berlaku untuk CD-ROM dan DVD.

Jika Anda tidak bisa membuat instalasi bekerja dari cakram optik, cobalah salah satu metode instalasi lain yang tersedia.

5.4.1.1 Masalah umum

- Beberapa drive CD-ROM yang lebih tua tidak mendukung pembacaan dari cakram yang dibakar dengan kecepatan tinggi menggunakan penulis CD modern.
- Beberapa drive CD-ROM yang sangat tua tidak berfungsi dengan benar jika "direct memory access" (DMA) diaktifkan untuk mereka.

5.4.1.2 Cara menyelidiki dan mungkin memecahkan masalah

Jika cakram optik gagal di-boot, coba saran yang tercantum di bawah ini.

- Periksa apakah BIOS/UEFI Anda benar-benar mendukung boot dari cakram optik (hanya menjadi masalah untuk sistem yang sangat lama) dan bahwa boot dari media tersebut diaktifkan di BIOS/UEFI.
- Jika Anda mengunduh image iso, periksalah apakah md5sum image itu cocok dengan yang tercantum untuk image dalam berkas MD5SUMS yang harus ada di lokasi yang sama dengan tempat Anda mengunduh image.

```
$ md5sum debian-testing-i386-netinst.iso
a20391b12f7ff22ef705cee4059c6b92 debian-testing-i386-netinst.iso
```

Selanjutnya, periksa apakah md5sum dari cakram yang dibakar juga cocok. Perintah berikut harus berfungsi. Ini menggunakan ukuran image untuk membaca jumlah byte yang benar dari cakram.

```
$ dd if=/dev/cdrom | \
> head -c 'stat --format=%s debian-testing-i386-netinst.iso' | \
> md5sum
a20391b12f7ff22ef705cee4059c6b92 -
262668+0 records in
262668+0 records out
134486016 bytes (134 MB) copied, 97.474 seconds, 1.4 MB/s
```

Jika, setelah pemasang berhasil di-boot, cakram tidak terdeteksi, kadang-kadang hanya mencoba lagi dapat memecahkan masalah. Jika Anda memiliki lebih dari satu drive optik, coba ubah cakram ke drive lainnya. Jika itu tidak berfungsi atau jika cakram dikenali tetapi ada kesalahan saat membacanya, coba saran yang tercantum di bawah ini. Beberapa pengetahuan dasar tentang Linux diperlukan untuk ini. Untuk menjalankan salah satu perintah, Anda harus terlebih dahulu beralih ke konsol virtual kedua (VT2) dan mengaktifkan shell di sana.

- Beralih ke VT4 atau melihat konten /var/log/syslog (gunakan **nano** sebagai editor) untuk memeriksa pesan kesalahan tertentu. Setelah itu, periksa juga keluaran dari **dmesg**.
- Periksa keluaran dari dmesg jika drive optik Anda dikenali. Anda akan melihat sesuatu seperti (baris tidak harus berturutan):

```
ata1.00: ATAPI: MATSHITADVD-RAM UJ-822S, 1.61, max UDMA/33 ata1.00: configured for UDMA/33 scsi 0:0:0:0:0: CD-ROM MATSHITA DVD-RAM UJ-822S 1.61 PQ: 0 ANSI: 5 sr0: scsi3-mmc drive: 24x/24x writer dvd-ram cd/rw xa/form2 cdda tray cdrom: Uniform CD-ROM driver Revision: 3.20
```

Jika Anda tidak melihat sesuatu seperti itu, kemungkinan pengontrol yang terhubung dengan drive Anda tidak dikenali atau mungkin tidak didukung sama sekali. Jika Anda tahu driver apa yang diperlukan untuk pengontrol, Anda dapat mencoba memuatnya secara manual menggunakan **modprobe**.

- Periksa apakah ada simpul perangkat untuk drive optik Anda di bawah /dev/. Pada contoh di atas, ini akan menjadi /dev/sr0. Juga harus ada /dev/cdrom.
- Gunakan perintah **mount** untuk memeriksa apakah cakram optik sudah dikait; jika tidak, coba pasang secara manual:

```
$ mount /dev/hdc /cdrom
```

Periksa apakah ada pesan kesalahan setelah perintah itu.

• Periksa apakah DMA saat ini diaktifkan:

```
$ cd /proc/ide/hdc
$ grep using_dma settings
using_dma 1 0 1 rw
```

Suatu "1" di kolom pertama setelah using_dma berarti diaktifkan. Jika benar, coba nonaktifkan:

```
$ echo -n "using_dma:0" >settings
```

Pastikan Anda berada di direktori untuk perangkat yang sesuai dengan drive optik Anda.

 Jika ada masalah selama instalasi, coba periksa integritas media instalasi menggunakan opsi di dekat bagian bawah menu utama pemasang. Opsi ini juga dapat digunakan sebagai tes umum jika cakram dapat dibaca dengan andal.

5.4.2 Konfigurasi Boot

Jika Anda memiliki masalah dan kernel hang selama proses boot, tidak mengenali periferal yang sebenarnya Anda miliki, atau drive tidak dikenali dengan benar, hal pertama yang harus diperiksa adalah parameter boot, seperti yang dibahas dalam Bagian 5.3.

Dalam beberapa kasus, malfungsi dapat disebabkan oleh firmware perangkat yang kurang (lihat Bagian 2.2 dan Bagian 6.4).

5.4.3 Sintesis Ucapan Perangkat Lunak

Jika sintesis ucapan perangkat lunak tidak berfungsi, kemungkinan besar ada masalah dengan papan suara Anda, biasanya karena driver untuk itu tidak termasuk dalam pemasang, atau karena memiliki nama tingkat mixer yang tidak biasa yang diatur untuk dibisukan secara baku. Dengan demikian Anda harus mengirimkan laporan bug yang mencakup keluaran dari perintah berikut, dijalankan pada mesin yang sama dari sistem Linux yang diketahui memiliki suara bekerja (misalnya, live CD).

- dmesq
- lspci
- 1smod
- amixer

5.4.4 Masalah Instalasi 64-bit PC Umum

Ada beberapa masalah instalasi umum yang dapat diselesaikan atau dihindari dengan meneruskan parameter boot tertentu ke pemasang.

Jika layar Anda mulai menampilkan gambar aneh saat kernel boot, misalnya. putih bersih, hitam murni, atau sampah piksel berwarna, sistem Anda mungkin berisi kartu video bermasalah yang tidak beralih ke mode framebuffer dengan benar. Kemudian Anda dapat menggunakan parameter boot **vga=normal nomodeset** untuk menonaktifkan konsol framebuffer. Hanya set bahasa yang dikurangi yang akan tersedia selama instalasi karena fitur konsol yang terbatas. Lihat Bagian 5.3 untuk detailnya.

5.4.4.1 Sistem Membeku Selama Fase Konfigurasi PCMCIA

Beberapa model laptop yang sangat tua yang diproduksi oleh Dell diketahui crash ketika deteksi perangkat PCMCIA mencoba mengakses beberapa alamat perangkat keras. Laptop lain mungkin menampilkan masalah serupa. Jika Anda mengalami masalah seperti itu dan Anda tidak memerlukan dukungan PCMCIA selama instalasi, Anda dapat menonaktifkan PCMCIA menggunakan parameter boot hw-detect/start_pcmcia=false. Anda kemudian dapat mengonfigurasi PCMCIA setelah instalasi selesai dan mengecualikan rentang sumber daya yang menyebabkan masalah.

Atau, Anda dapat mem-boot penginstal dalam mode ahli. Anda kemudian akan diminta untuk memasukkan opsi rentang sumber daya yang dibutuhkan perangkat keras Anda. Misalnya, jika Anda memiliki salah satu laptop Dell yang disebutkan di atas, Anda harus memasukkan port 0x800-0x8ff di sini. Ada juga daftar beberapa opsi rentang sumber daya umum di Bagian pengaturan sumber daya sistem dari PCMCIA HOWTO. Perhatikan bahwa Anda harus menghilangkan koma, jika ada, ketika Anda memasukkan nilai ini di penginstal.

5.4.5 Menginterpretasikan Pesan Awal Mula Kernel

Selama urutan boot, Anda mungkin melihat banyak pesan dalam bentuk can't find sesuatu, atau sesuatu yang not present, can't initialize sesuatu, atau bahkan this driver release depends on sesuatu. Sebagian besar pesan ini tidak berbahaya. Anda melihatnya karena kernel untuk sistem instalasi dibangun untuk berjalan pada komputer dengan banyak perangkat periferal yang berbeda. Jelas, tidak ada satu komputer pun yang akan memiliki setiap perangkat periferal yang mungkin, sehingga sistem operasi dapat mengeluarkan beberapa keluhan saat mencari periferal yang tidak Anda miliki. Anda mungkin juga melihat sistem berhenti sejenak. Ini terjadi ketika sedang menunggu perangkat merespons, dan perangkat itu tidak ada di sistem Anda. Jika Anda menemukan waktu yang diperlukan untuk mem-boot sistem terlalu lama dan tidak dapat diterima, Anda dapat membuat kernel ubahan nanti (lihat Bagian 8.5).

5.4.6 Melaporkan Masalah Instalasi

Jika Anda melewati fase boot awal tetapi tidak dapat menyelesaikan instalasi, opsi menu Simpan log debug mungkin akan membantu. Ini memungkinkan Anda menyimpan log kesalahan sistem dan informasi konfigurasi dari pemasang pada media penyimpanan, atau mengunduhnya menggunakan peramban web. Informasi ini dapat memberikan petunjuk tentang apa yang salah dan bagaimana memperbaikinya. Jika Anda mengirimkan laporan kutu, Anda mungkin ingin melampirkan informasi ini ke laporan kutu.

Pesan instalasi terkait lainnya dapat ditemukan di /var/log/ selama instalasi, dan /var/log/installer/ setelah komputer di-boot ke dalam sistem yang dipasang.

5.4.7 Mengirimkan Laporan Instalasi

Jika Anda masih memiliki masalah, silakan kirimkan laporan instalasi (harap dalam bahasa Inggris, bila mungkin). Kami juga mendorong laporan instalasi untuk dikirim bahkan jika instalasi berhasil, sehingga kami bisa mendapatkan informasi sebanyak mungkin tentang jumlah konfigurasi perangkat keras terbesar.

Perhatikan bahwa laporan instalasi Anda akan dipublikasikan di Debian Bug Tracking System (BTS) dan diteruskan ke milis publik. Pastikan Anda menggunakan alamat surel yang Anda tidak keberatan untuk dipublikasikan.

Jika Anda memiliki sistem Debian yang berjalan, cara termudah untuk mengirim laporan instalasi adalah dengan memasang paket installation-report dan reportbug (apt installation-report reportbug), mengonfigurasi reportbug seperti yang dijelaskan dalam Bagian 8.4.2, dan menjalankan perintah reportbug installation-reports.

Atau Anda dapat menggunakan templat ini saat mengisi laporan instalasi, dan mengajukan laporan sebagai laporan bug terhadap paket pseudo installation-reports, dengan mengirimkannya ke submit@bugs.debian.org.

```
Package: installation-reports
Boot method: <How did you boot the installer? CD/DVD? USB stick? Network?>
Image version: <Full URL to image you downloaded is best>
Date: <Date and time of the install>
Machine: <Description of machine (eg, IBM Thinkpad R32)>
Processor:
Memory:
Partitions: <df -Tl will do; the raw partition table is preferred>
Output of lspci -knn (or lspci -nn):
Base System Installation Checklist:
[O] = OK, [E] = Error (please elaborate below), [] = didn't try it
Initial boot:
                       [ ]
Detect network card: [ ]
Configure network:
Detect media:
Load installer modules: [ ]
Detect hard drives:
Partition hard drives:
Install base system:
Clock/timezone setup:
User/password setup:
Install tasks:
                        Γ 1
Install boot loader:
                      [ ]
Overall install:
                      [ ]
Comments/Problems:
<Deskripsi dari instalasi, dalam uraian, dan sebarang pemikiran,</pre>
komentar, dan ide yang ada punya dalam instalasi awal.>
Harap pastikan bahwa sebarang log instalasi yang Anda pikir akan
berguna dilampirkan ke laporan ini. (Anda dapat temukan mereka
dalam sistem pemasang di /var/log dan nanti pada sistem yang
dipasang di bawah /var/log/installer. Harap kompresi berkas besar
memakai gzip.
```

Dalam laporan kutu, uraikan apa masalahnya, termasuk pesan kernel terakhir yang nampak dalam kasus kernel hang. Uraikan langkah-langkah yang Anda lakukan yang menyebabkan sistem berada dalam keadaan bermasalah tersebut.

Bab 6

Menggunakan Pemasang Debian

6.1 Cara Kerja Pemasang

Untuk arsitektur ini debian-installer mendukung dua antarmuka pengguna yang berbeda: yang grafis dan yang berbasis teks. Antarmuka grafis digunakan secara baku kecuali Anda memilih opsi "Pasang" di menu boot. Untuk informasi lebih lanjut tentang mem-boot pemasang grafis, silakan merujuk ke Bagian 5.1.6.

Pemasang Debian terdiri dari sejumlah komponen tujuan khusus untuk melakukan setiap tugas instalasi. Setiap komponen melakukan tugasnya, mengajukan pertanyaan kepada pengguna seperlunya untuk melakukan tugasnya. Pertanyaan itu sendiri diberikan prioritas, dan prioritas pertanyaan yang akan diajukan ditetapkan ketika pemasang dimulai.

Ketika instalasi baku dilakukan, hanya pertanyaan penting (prioritas tinggi) yang akan diajukan. Ini menghasilkan proses instalasi yang sangat otomatis dengan sedikit interaksi pengguna. Komponen dijalankan secara otomatis secara berurutan; komponen mana yang dijalankan terutama tergantung pada metode instalasi yang Anda gunakan dan pada perangkat keras Anda. Pemasang akan menggunakan nilai baku untuk pertanyaan yang tidak diajukan.

Jika ada masalah, pengguna akan melihat layar kesalahan, dan menu pemasang dapat ditampilkan untuk memilih beberapa tindakan alternatif. Jika tidak ada masalah, pengguna tidak akan pernah melihat menu pemasang, tetapi hanya akan menjawab pertanyaan untuk setiap komponen secara bergantian. Pemberitahuan kesalahan serius diatur ke prioritas "critical" sehingga pengguna akan selalu diberitahu.

Beberapa baku yang digunakan pemasang dapat dipengaruhi dengan meneruskan argumen boot saat debian-installer dimulai. Jika misalnya, Anda ingin memaksa konfigurasi jaringan statis (konfigurasi otomatis IPv6 dan DHCP digunakan secara baku jika tersedia), Anda dapat menambahkan parameter boot netcfg/disable_autoconfig=true. Lihat Bagian 5.3.2 opsi yang tersedia.

Pengguna mahir mungkin lebih nyaman dengan antarmuka berbasis menu, di mana setiap langkah dikendalikan oleh pengguna daripada pemasang yang melakukan setiap langkah secara otomatis secara berurutan. Untuk menggunakan pemasang dengan cara manual yang digerakkan oleh menu, tambahkan argumen boot priority=medium.

Jika perangkat keras Anda mengharuskan Anda untuk meneruskan opsi ke modul kernel saat dipasang, Anda harus memulai pemasang dalam mode "pakar". Hal ini dapat dilakukan dengan menggunakan perintah **expert** untuk memulai pemasang atau dengan menambahkan argumen boot **priority=low**. Mode pakar memberi Anda kontrol penuh atas debian-installer.

Dalam lingkungan berbasis teks, penggunaan tetikus tidak didukung. Berikut adalah kunci yang dapat Anda gunakan untuk menavigasi dalam berbagai dialog. **Tab** atau tombol panah **kanan** bergerak "maju", dan Shift-Tab atau tombol panah **kiri** bergerak "mundur" di antara tombol dan pilihan yang ditampilkan. Panah **atas** dan **bawah** memilih item yang berbeda dalam daftar yang dapat digulir, dan juga menggulir daftar itu sendiri. Selain itu, dalam daftar panjang, Anda dapat mengetik huruf untuk menyebabkan daftar bergulir langsung ke bagian dengan item dimulai dengan huruf yang Anda ketik dan menggunakan **Pg-Up** dan **Pg-Down** untuk menggulir daftar di beberapa bagian. **Bilah spasi** memilih item seperti kotak centang. Gunakan **Enter** untuk mengaktifkan pilihan.

Beberapa dialog mungkin menawarkan informasi bantuan tambahan. Jika bantuan tersedia, ini akan ditunjukkan pada baris bawah layar dengan menampilkan bahwa informasi bantuan dapat diakses dengan menekan tombol **F1**.

Pesan dan log kesalahan dialihkan ke konsol keempat. Anda dapat mengakses konsol ini dengan menekan Alt Kiri-F4 (tahan tombol **Alt** kiri sambil menekan tombol fungsi **F4**); kembali ke proses pemasang utama dengan Alt Kiri-F1.

Pesan-pesan ini juga dapat ditemukan di /var/log/syslog. Setelah instalasi, log ini disalin ke /var/log/installer/syslog pada sistem baru Anda. Pesan instalasi lainnya dapat ditemukan di /var/log/ selama instalasi, dan /var/log/installer/ setelah komputer di-boot ke dalam sistem yang dipasang.

6.1.1 Menggunakan pemasang grafis

Pemasang grafis pada dasarnya bekerja sama dengan pemasang berbasis teks dan dengan demikian sisa manual ini dapat digunakan untuk memandu Anda melalui proses instalasi.

Jika Anda lebih suka menggunakan papan tik daripada tetikus, ada dua hal yang perlu Anda ketahui. Untuk mengembangkan daftar yang diciutkan (digunakan misalnya untuk pemilihan negara di dalam benua), Anda dapat menggunakan tombol + dan -. Untuk pertanyaan di mana lebih dari satu butir dapat dipilih (misalnya pemilihan tugas), Anda harus terlebih dahulu tab ke tombol Continue setelah membuat pilihan Anda; mengetuk enter akan mengalihkan seleksi, bukan mengaktifkan Continue.

Jika dialog menawarkan informasi bantuan tambahan, tombol Bantuan akan ditampilkan. Informasi bantuan dapat diakses baik dengan mengaktifkan tombol atau dengan menekan tombol **F1**.

Untuk beralih ke konsol lain, Anda juga perlu menggunakan tombol **Ctrl**, sama seperti dengan Sistem X Window. Misalnya, untuk beralih ke VT2 (shell debug pertama) akan Anda gunakan: Ctrl-Alt Kiri-F2. Pemasang grafis itu sendiri berjalan pada VT5, sehingga Anda dapat menggunakan Alt Kiri-F5 untuk beralih kembali.

6.2 Pengenalan Komponen

Berikut adalah daftar komponen pemasang dengan deskripsi singkat tentang tujuan masing-masing komponen. Detail yang mungkin perlu Anda ketahui tentang menggunakan komponen tertentu ada di Bagian 6.3.

main-menu Memperlihatkan daftar komponen kepada pengguna selama operasi pemasang, dan memulai komponen saat dipilih. Pertanyaan menu utama diatur ke media prioritas, jadi jika prioritas Anda diatur ke tinggi atau kritis (tinggi adalah baku), Anda tidak akan melihat menu. Di sisi lain, jika ada kesalahan yang memerlukan intervensi Anda, prioritas pertanyaan dapat diturunkan sementara untuk memungkinkan Anda menyelesaikan masalah, dan dalam hal ini menu mungkin muncul.

Anda bisa masuk ke menu utama dengan memilih tombol Go Back berulang kali untuk mundur sama sekali dari komponen yang sedang berjalan.

localechooser Memungkinkan pengguna untuk memilih opsi pelokalan bagi instalasi dan sistem yang dipaasng: bahasa, negara, dan lokal. Pemasang akan menampilkan pesan dalam bahasa yang dipilih, kecuali terjemahan untuk bahasa tersebut tidak lengkap dalam hal ini beberapa pesan dapat ditampilkan dalam bahasa Inggris.

console-setup Menampilkan daftar (tata letak) papan tik, dari mana pengguna memilih salah satu yang cocok dengan modelnya sendiri.

hw-detect Secara otomatis mendeteksi sebagian besar perangkat keras sistem, termasuk kartu jaringan, disk drive, dan PCMCIA.

cdrom-detect Mencari dan memasang media instalasi Debian.

netcfg Mengonfigurasi koneksi jaringan komputer sehingga dapat berkomunikasi melalui internet.

iso-scan Mencari image ISO (berkas .iso) pada hard drive.

choose-mirror Menyajikan daftar cermin arsip Debian. Pengguna dapat memilih sumber paket instalasinya.

cdrom-checker Memeriksa integritas media instalasi. Dengan cara ini, pengguna dapat meyakinkan dirinya sendiri bahwa image instalasi tidak rusak.

lowmem Lowmem mencoba mendeteksi sistem dengan memori rendah dan kemudian melakukan berbagai trik untuk menghapus bagian yang tidak perlu dari debian-installer dari memori (dengan biaya beberapa fitur).

anna Anna's Not Nearly APT. Memasang paket yang telah diambil dari cermin atau media instalasi yang dipilih.

user-setup Menyiapkan kata sandi root, dan menambahkan pengguna non-root.

clock-setup Memperbarui jam sistem dan menentukan apakah jam diatur ke UTC atau tidak.

tzsetup Memilih zona waktu, berdasarkan lokasi yang dipilih sebelumnya.

partman Memungkinkan pengguna untuk mempartisi disk yang tercantol pada sistem, membuat sistem berkas pada partisi yang dipilih, dan melampirkannya ke titik kait. Termasuk juga fitur menarik seperti mode otomatis sepenuhnya atau dukungan LVM. Ini adalah alat partisi yang disukai di Debian.

partman-lvm Membantu pengguna dengan konfigurasi LVM (Logical Volume Manager).

partman-md Memungkinkan pengguna untuk mengatur *RAID* (Redundant Array of Inexpensive Disks) Perangkat Lunak. RAID Perangkat Lunak ini biasanya lebih unggul daripada pengontrol RAID IDE (pseudo hardware) murah yang ditemukan pada motherboard yang lebih baru.

base-installer Memasang set paket paling dasar yang akan memungkinkan komputer untuk beroperasi di bawah Debian GNU/Linux ketika di-reboot.

apt-setup Mengonfigurasi apt, sebagian besar secara otomatis, berdasarkan media apa yang dijalankan pemasang.

pkgsel Menggunakan tasksel untuk memilih dan memasang perangkat lunak tambahan.

os-prober Mendeteksi sistem operasi yang saat ini dipasang di komputer dan meneruskan informasi ini ke bootloader-installer, yang mungkin menawarkan Anda kemampuan untuk menambahkan sistem operasi yang ditemukan ke menu mulai bootloader. Dengan cara ini pengguna dapat dengan mudah memilih pada waktu boot sistem operasi mana yang akan dimulai.

bootloader-installer Berbagai pemasang bootloader masing-masing memasang program boot loader pada hard disk, yang diperlukan bagi komputer untuk memulai menggunakan Linux tanpa menggunakan flash disk USB atau CD-ROM. Banyak boot loader memungkinkan pengguna untuk memilih sistem operasi alternatif setiap kali komputer boot.

shell Memungkinkan pengguna untuk mengeksekusi shell dari menu, atau di konsol kedua.

save-logs Menyediakan cara bagi pengguna untuk merekam informasi pada flash disk USB, jaringan, hard disk, atau media lain ketika masalah ditemui, untuk secara akurat melaporkan masalah perangkat lunak pemasang kepada pengembang Debian nanti.

6.3 Menggunakan Komponen Individual

Pada bagian ini kita akan menjelaskan setiap komponen pemasang secara rinci. Komponen telah dikelompokkan ke dalam tahapan yang harus dikenali oleh pengguna. Mereka disajikan dalam urutan kemunculan selama instalasi. Perhatikan bahwa tidak semua modul akan digunakan untuk setiap instalasi; modul mana yang sebenarnya digunakan tergantung pada metode instalasi yang Anda gunakan dan pada perangkat keras Anda.

6.3.1 Menyiapkan Debian Penginstal dan Konfigurasi Perangkat Keras

Mari kita asumsikan Pemasang Debian telah di-boot dan Anda menghadapi layar pertamanya. Pada saat ini, kemampuan debian-installer masih sangat terbatas. Itu tidak tahu banyak tentang perangkat keras Anda, bahasa pilihan, atau bahkan tugas yang harus dilakukan. Jangan khawatir. Karena debian-installer cukup pintar, secara otomatis dapat menyelidiki perangkat keras Anda, menemukan sisa komponennya dan meningkatkan dirinya ke sistem instalasi yang mumpuni. Namun, Anda masih perlu membantu debian-installer dengan beberapa informasi, itu tidak dapat menentukan secara otomatis (seperti memilih bahasa pilihan Anda, tata letak papan tik, atau cermin jaringan yang diinginkan).

Anda akan melihat bahwa debian-installer melakukan *deteksi perangkat keras* beberapa kali selama tahap ini. Pertama kali ditargetkan secara khusus pada perangkat keras yang diperlukan untuk memuat komponen pemasang (misalnya CD-ROM atau kartu jaringan Anda). Karena tidak semua driver mungkin tersedia selama menjalankan pertama ini, deteksi perangkat keras perlu diulang nanti dalam proses.

Selama deteksi perangkat keras debian-installer memeriksa apakah salah satu driver untuk perangkat keras di sistem Anda memerlukan firmware untuk dimuat. Jika ada firmware yang diminta tetapi tidak tersedia, dialog akan ditampilkan yang memungkinkan firmware yang kurang dimuat dari media lepasan. Lihat Bagian 6.4 untuk rincian lebih lanjut.

6.3.1.1 Periksa memori yang tersedia / mode memori rendah

Satu hal yang pertama dilakukan oleh debian-installer adalah memeriksa memori yang tersedia. Jika memori yang tersedia terbatas, komponen ini akan membuat beberapa perubahan dalam proses instalasi yang diharapkan akan memungkinkan Anda untuk memasang Debian GNU/Linux pada sistem Anda.

Langkah pertama yang diambil untuk mengurangi konsumsi memori oleh pemasang adalah menonaktifkan terjemahan, yang berarti bahwa instalasi hanya dapat dilakukan dalam bahasa Inggris. Tentu saja, Anda masih dapat melokalkan sistem yang dipasang setelah instalasi selesai.

Jika itu tidak cukup, pemasang akan lebih mengurangi konsumsi memori dengan memuat hanya komponen-komponen yang penting untuk menyelesaikan instalasi dasar. Ini mengurangi fungsionalitas sistem instalasi. Anda akan diberi kesempatan untuk memuat komponen tambahan secara manual, tetapi Anda harus menyadari bahwa setiap komponen yang Anda pilih akan menggunakan memori tambahan dan dengan demikian dapat menyebabkan instalasi gagal.

Jika pemasang berjalan dalam mode memori rendah, disarankan untuk membuat partisi swap yang relatif besar (1–2GB). Partisi swap akan digunakan sebagai memori virtual dan dengan demikian meningkatkan banyaknya memori yang tersedia untuk sistem. Pemasang akan mengaktifkan partisi swap sedini mungkin dalam proses instalasi. Perhatikan bahwa penggunaan swap yang berat akan mengurangi kinerja sistem Anda dan dapat menyebabkan aktivitas disk yang tinggi.

Terlepas dari langkah-langkah ini, masih mungkin bahwa sistem Anda membeku, bahwa kesalahan tak terduga terjadi atau bahwa proses dibunuh oleh kernel karena sistem kehabisan memori (yang akan menghasilkan pesan "Out of memory" pada VT4 dan di syslog).

Misalnya, telah dilaporkan bahwa membuat sistem berkas ext3 besar gagal dalam mode memori rendah ketika ruang swap tidak mencukupi. Jika swap yang lebih besar tidak membantu, cobalah membuat sistem berkas sebagai ext2 (yang merupakan komponen esensial dari pemasang) sebagai gantinya. Dimungkinkan untuk mengubah partisi ext2 ke ext3 setelah instalasi.

Dimungkinkan untuk memaksa pemasang untuk menggunakan tingkat lowmem yang lebih tinggi daripada yang didasarkan pada memori yang tersedia dengan menggunakan parameter boot "lowmem" seperti yang dijelaskan dalam Bagian 5.3.2.

6.3.1.2 Memilih Opsi Pelokalan

Dalam kebanyakan kasus pertanyaan pertama Anda akan ditanyai menyangkut pemilihan opsi pelokalan yang akan digunakan baik untuk instalasi maupun untuk sistem yang dipasang. Opsi pelokalan terdiri dari bahasa, lokasi, dan lokal (locale).

Bahasa yang Anda pilih akan digunakan selama sisa proses instalasi, asalkan terjemahan dari dialog yang berbeda tersedia. Jika tidak ada terjemahan yang valid yang tersedia untuk bahasa yang dipilih, pemasang akan beralih ke baku bahasa Inggris.

Lokasi geografis yang dipilih (dalam banyak kasus suatu negara) akan digunakan nanti dalam proses instalasi untuk memilih zona waktu yang benar dan cermin Debian yang sesuai untuk negara tersebut. Bahasa dan negara bersama-sama akan membantu menentukan lokal baku untuk sistem Anda dan memilih tata letak papan ketik yang benar.

Anda pertama kali akan diminta untuk memilih bahasa. Nama bahasa tercantum dalam daftar baik dalam bahasa Inggris (sisi kiri) dan dalam bahasa itu sendiri (sisi kanan); nama-nama di sisi kanan juga ditampilkan dalam skrip yang tepat untuk bahasa tersebut. Daftar ini diurut berdasarkan nama bahasa Inggris. Di bagian atas daftar adalah opsi tambahan yang memungkinkan Anda memilih lokal "C", bukan suatu bahasa. Memilih lokal "C" akan menyebabkan instalasi dilanjutkan dalam bahasa Inggris; sistem yang dipasang tidak akan memiliki dukungan pelokalan karena paket locales tidak akan dipasang.

Selanjutnya Anda akan diminta untuk memilih lokasi geografis Anda. Jika Anda memilih bahasa yang diakui sebagai bahasa resmi untuk lebih dari satu negara¹, Anda akan ditampilkan daftar hanya negara-negara tersebut. Untuk memilih negara yang tidak ada dalam daftar itu, pilih yang lain (opsi terakhir). Anda kemudian akan disajikan dengan daftar benua; memilih benua akan mengarah ke daftar negara yang relevan di benua itu.

Jika bahasa hanya memiliki satu negara yang terkait dengannya, daftar negara akan ditampilkan untuk benua atau wilayah milik negara tersebut, dengan negara tersebut dipilih sebagai baku. Gunakan opsi Go Back untuk memilih negara di benua yang berbeda.

CATATAN

Penting untuk memilih negara tempat Anda tinggal atau di mana Anda berada karena menentukan zona waktu yang akan dikonfigurasi untuk sistem yang dipasang.

Jika Anda memilih kombinasi bahasa dan negara yang tidak ada lokal yang didefinisikan dan ada beberapa lokal untuk bahasa tersebut, maka pemasang akan memungkinkan Anda untuk memilih mana dari situs yang Anda sukai

¹Dalam istilah teknis: di mana beberapa lokal ada untuk bahasa tersebut dengan kode negara yang berbeda.

sebagai lokal baku untuk sistem yang dipasang². Dalam semua kasus lain, lokal baku akan dipilih berdasarkan bahasa dan negara yang dipilih.

Setiap lokal baku yang dipilih seperti yang dijelaskan dalam paragraf sebelumnya akan menggunakan *UTF-8* sebagai pengodean karakter.

Jika Anda memasang pada prioritas rendah, Anda akan memiliki pilihan untuk memilih lokal tambahan, termasuk yang disebut lokal "warisan"³, yang akan dihasilkan untuk sistem yang dipasang; jika Anda melakukannya, Anda akan ditanya mana dari lokal yang dipilih harus menjadi baku untuk sistem yang dipasang.

6.3.1.3 Memilih Papan Ketik

Papan tik sering disesuaikan dengan karakter yang digunakan dalam suatu bahasa. Pilih tata letak yang sesuai dengan papan tik yang Anda gunakan, atau pilih sesuatu yang dekat jika tata letak papan tik yang Anda inginkan tidak terwakili. Setelah instalasi sistem selesai, Anda akan dapat memilih tata letak papan tik dari berbagai pilihan yang lebih luas (jalankan **dpkg-reconfigure keyboard-configuration** sebagai root setelah Anda menyelesaikan instalasi).

Pindahkan sorotan ke pilihan papan tik yang Anda inginkan dan tekan **Enter**. Gunakan tombol panah untuk memindahkan sorotan — mereka berada di tempat yang sama di semua tata letak papan tik bahasa nasional, sehingga tidak tergantung pada konfigurasi papan tik.

6.3.1.4 Mencari Image ISO Pemasang Debian

Saat memasang melalui metode *hd-media*, akan ada saat di mana Anda perlu menemukan dan memasang image iso Pemasang Debian untuk mendapatkan sisa berkas instalasi. Komponen **iso-scan** melakukan hal ini.

Pada awalnya, **iso-scan** secara otomatis mengait semua perangkat blok (misalnya partisi dan volume logis) yang memiliki beberapa sistem berkas yang dikenal pada mereka dan secara berurutan mencari nama berkas yang diakhiri dengan .iso (atau dalam hal ini .ISO). Berhati-hatilah bahwa upaya pertama hanya memindai berkas di direktori root dan di sub direktori tingkat pertama (yaitu menemukan /apa pun.iso, /data/whatever.iso, tetapi tidak /data/tmp/apa pun.iso). Setelah image iso ditemukan, **iso-scan** memeriksa kontennya untuk menentukan apakah image tersebut image iso Debian yang valid atau tidak. Dalam kasus sebelumnya kita sudah selesai, dalam yang terakhir **iso-scan** mencari image lain.

Jika upaya sebelumnya untuk menemukan image iso pemasang gagal, **iso-scan** akan bertanya apakah Anda ingin melakukan pencarian yang lebih menyeluruh. Tahap ini tidak hanya melihat ke direktori paling atas, tetapi benarbenar melintasi seluruh sistem berkas.

Kalau **iso-scan** tidak menemukan image iso pemasang Anda, reboot kembali ke sistem operasi asli Anda dan periksa apakah image diberi nama dengan benar (diakhiri dengan .iso), jika ditempatkan pada sistem berkas yang dapat dikenali oleh debian-installer, dan jika tidak rusak (verifikasi checksum). Pengguna Unix yang berpengalaman dapat melakukan ini tanpa reboot di konsol kedua.

Perhatikan bahwa partisi (atau disk) yang mewadahi image ISO tidak dapat digunakan kembali selama proses instalasi karena akan digunakan oleh pemasang. Untuk mengatasi hal ini, dan asalkan Anda memiliki memori sistem yang cukup, pemasang dapat menyalin image ISO ke dalam RAM sebelum memasangnya. Ini dikendalikan oleh pertanyaan debconf iso-scan/copy_iso_to_ram prioritas rendah (hanya ditanyakan apakah persyaratan memori terpenuhi).

6.3.1.5 Mengonfigurasi Jaringan

Saat Anda memasuki langkah ini, jika sistem mendeteksi bahwa Anda memiliki lebih dari satu perangkat jaringan, Anda akan diminta untuk memilih perangkat mana yang akan menjadi antarmuka jaringan *primer* Anda, yaitu yang ingin Anda gunakan untuk instalasi. Antarmuka lain tidak akan dikonfigurasi saat ini. Anda dapat mengonfigurasi antarmuka tambahan setelah instalasi selesai; lihat halaman man interfaces(5).

6.3.1.5.1 Konfigurasi jaringan otomatis

Secara baku, debian-installer mencoba mengonfigurasi jaringan komputer Anda secara otomatis sejauh mungkin. Jika konfigurasi otomatis gagal, itu mungkin disebabkan oleh banyak faktor mulai dari kabel jaringan yang dicabut hingga infrastruktur yang kurang untuk konfigurasi otomatis. Untuk penjelasan lebih lanjut jika terjadi kesalahan, periksa pesan kesalahan pada konsol keempat. Bagaimanapun, Anda akan ditanya apakah Anda ingin mencoba lagi, atau apakah Anda ingin melakukan pengaturan manual. Terkadang layanan jaringan yang digunakan

²Pada prioritas sedang dan rendah Anda selalu dapat memilih lokal yang Anda sukai dari yang tersedia untuk bahasa yang dipilih (jika ada lebih dari satu).

³Lokal warisan adalah lokal yang tidak menggunakan UTF-8, tetapi salah satu standar yang lebih tua untuk pengodean karakter seperti ISO 8859-1 (digunakan oleh bahasa Eropa Barat) atau EUC-JP (digunakan oleh bahasa Jepang).

untuk konfigurasi otomatis bisa lambat dalam responsnya, jadi jika Anda yakin semuanya sudah ada, cukup mulai upaya konfigurasi otomatis lagi. Jika konfigurasi otomatis gagal berulang kali, Anda dapat memilih pengaturan jaringan manual.

6.3.1.5.2 Konfigurasi jaringan manual

Pengaturan jaringan manual pada gilirannya menanyakan sejumlah pertanyaan tentang jaringan Anda, terutama Alamat IP, Netmask, Gateway, Alamat server nama, dan Nama host. Selain itu, jika Anda memiliki antarmuka jaringan nirkabel, Anda akan diminta untuk menyediakan ESSID Nirkabel ("nama jaringan nirkabel") dan kunci WEP atau frasa sandi WPA/WPA2. Isi jawaban dari Bagian 3.3.

CATATAN

Beberapa detail teknis mungkin, atau tidak, mudah ditemukan: program mengasumsikan alamat IP jaringan adalah bitwise-AND dari alamat IP sistem Anda dan netmask Anda. Alamat broadcast baku dihitung sebagai bitwise OR dari alamat IP sistem Anda dengan negasi bitwise dari netmask. Ini juga akan menebak gateway Anda. Jika Anda tidak dapat menemukan salah satu dari jawaban ini, gunakan baku yang ditawarkan — jika perlu, Anda dapat mengubahnya dengan mengedit /etc/network/interfaces setelah sistem dipasang.

6.3.1.5.3 IPv4 dan IPv6

Dari Debian GNU/Linux 7.0 ("Wheezy") dan seterusnya, debian-installer mendukung IPv6 serta IPv4 "klasik". Semua kombinasi IPv4 dan IPv6 (konfigurasi hanya IPv4, hanya IPv6, dan dual-stack) didukung.

Konfigurasi otomatis untuk IPv4 dilakukan melalui DHCP (Dynamic Host Configuration Protocol). Konfigurasi otomatis untuk IPv6 mendukung konfigurasi otomatis stateless menggunakan NDP (Neighbor Discovery Protocol, termasuk penugasan server DNS rekursif (RDNSS), konfigurasi otomatis stateful melalui DHCPv6 dan konfigurasi otomatis stateless/stateful campuran (konfigurasi alamat melalui NDP, parameter tambahan melalui DHCPv6).

6.3.2 Menyiapkan Pengguna dan Kata Sandi

Tepat sebelum mengonfigurasi jam, pemasang akan memungkinkan Anda untuk mengatur akun "root" dan/atau akun untuk pengguna pertama. Akun pengguna lain dapat dibuat setelah instalasi selesai.

6.3.2.1 Mengatur Kata Sandi Root

Akun *root* juga disebut *pengguna super*; ini adalah login yang melewati semua perlindungan keamanan pada sistem Anda. Akun root hanya boleh digunakan untuk melakukan administrasi sistem, dan hanya digunakan untuk waktu sesingkat mungkin.

Kata sandi apa pun yang Anda buat harus berisi setidaknya 6 karakter, dan harus berisi karakter huruf besar dan kecil, serta karakter tanda baca. Berhati-hatilah saat mengatur kata sandi root Anda, karena ini adalah akun yang sangat kuat. Hindari kata-kata kamus atau penggunaan informasi pribadi apa pun yang dapat ditebak.

Jika ada yang pernah memberi tahu Anda bahwa mereka membutuhkan kata sandi root Anda, berhati-hatilah. Anda biasanya tidak boleh memberikan kata sandi root Anda, kecuali Anda mengelola mesin dengan lebih dari satu administrator sistem.

Jika Anda tidak menentukan kata sandi untuk pengguna "root" di sini, akun ini akan dinonaktifkan tetapi paket **sudo** akan dipasang nanti untuk memungkinkan tugas administratif dilakukan pada sistem baru. Secara baku, pengguna pertama yang dibuat pada sistem akan diizinkan untuk menggunakan perintah **sudo** untuk menjadi root.

6.3.2.2 Membuat Pengguna Biasa

Sistem akan menanyakan apakah Anda ingin membuat akun pengguna biasa pada saat ini. Akun ini harus menjadi login pribadi utama Anda. Anda *tidak* boleh menggunakan akun root untuk penggunaan sehari-hari atau sebagai login pribadi Anda.

Mengapa tidak? Nah, salah satu alasan untuk menghindari menggunakan hak istimewa root adalah, sangat mudah untuk melakukan kerusakan yang tidak dapat diperbaiki sebagai root. Alasan lain adalah bahwa Anda mungkin ditipu untuk menjalankan program *Trojan-horse* — itu adalah program yang memanfaatkan kekuatan pengguna super Anda

untuk membahayakan keamanan sistem Anda di belakang Anda. Setiap buku bagus tentang administrasi sistem Unix akan membahas topik ini secara lebih rinci — pertimbangkan untuk membacanya jika baru bagi Anda.

Anda pertama-tama akan diminta untuk nama lengkap pengguna. Kemudian Anda akan dimintai nama untuk akun pengguna; umumnya nama depan Anda atau sesuatu yang serupa akan cukup dan memang akan menjadi baku. Akhirnya, Anda akan diminta untuk kata sandi untuk akun ini.

Jika suatu saat setelah instalasi Anda ingin membuat akun lain, gunakan perintah adduser.

6.3.3 Mengonfigurasi Jam dan Zona Waktu

Pemasang pertama kali akan mencoba untuk terhubung ke server waktu di Internet (menggunakan protokol *NTP*) untuk mengatur waktu sistem dengan benar. Jika ini tidak berhasil, pemasang akan mengasumsikan waktu dan tanggal yang diperoleh dari jam sistem ketika sistem instalasi di-boot benar. Tidak mungkin mengatur waktu sistem secara manual selama proses instalasi.

Bergantung pada lokasi yang dipilih sebelumnya dalam proses instalasi, Anda mungkin akan ditampilkan daftar zona waktu yang relevan untuk lokasi tersebut. Jika lokasi Anda hanya memiliki satu zona waktu dan Anda melakukan instalasi baku, Anda tidak akan ditanya apa pun dan sistem akan mengasumsikan zona waktu itu.

Dalam mode pakar atau saat memasang pada prioritas menengah, Anda akan memiliki opsi tambahan untuk memilih "Coordinated Universal Time" (UTC) sebagai zona waktu.

Jika karena alasan tertentu Anda ingin menetapkan zona waktu untuk sistem yang dipasang yang *tidak* sesuai dengan lokasi yang dipilih, ada dua opsi.

- 1. Pilihan paling sederhana adalah memilih zona waktu yang berbeda setelah instalasi selesai dan Anda telah boot ke sistem baru. Perintah untuk melakukan ini adalah:
 - # dpkg-reconfigure tzdata
- 2. Atau, zona waktu dapat diatur pada awal instalasi dengan memberikan parameter time/zone=nilai saat Anda mem-boot sistem instalasi. Nilainya tentu saja harus menjadi zona waktu yang valid, misalnya Europe/London atau UTC.

Untuk instalasi otomatis, zona waktu dapat diatur ke nilai yang diinginkan menggunakan preseed.

6.3.4 Partisi dan Pemilihan Titik Kait

Pada saat ini, setelah deteksi perangkat keras telah dilakukan untuk terakhir kalinya, debian-installer mesti ada pada kekuatan penuh, disesuaikan untuk kebutuhan pengguna dan siap untuk melakukan beberapa pekerjaan nyata. Seperti yang ditunjukkan oleh judul bagian ini, tugas utama dari beberapa komponen berikutnya terletak pada pemartisian disk Anda, membuat sistem berkas, menetapkan titik kait, dan secara opsional mengonfigurasi opsi terkait erat seperti RAID, LVM, atau perangkat terenkripsi.

Jika Anda merasa tidak nyaman dengan pemartisian, atau hanya ingin tahu lebih detail, lihat Lampiran C.

Pertama, Anda akan diberi kesempatan untuk secara otomatis mempartisi seluruh drive, atau ruang kosong yang tersedia pada drive. Ini juga disebut pemartisian "terpandu". Jika Anda tidak ingin partisi otomatis, pilih Manual dari menu.

6.3.4.1 Opsi partisi yang didukung

Partisi yang digunakan dalam debian-installer cukup serbaguna. Hal ini memungkinkan untuk membuat banyak skema partisi yang berbeda, menggunakan berbagai tabel partisi, sistem berkas, dan perangkat blok canggih.

Pilihan tepat mana yang tersedia terutama tergantung pada arsitektur, tetapi juga pada faktor-faktor lain. Misalnya, pada sistem dengan memori internal terbatas beberapa opsi mungkin tidak tersedia. Baku juga dapat bervariasi. Jenis tabel partisi yang digunakan secara baku misalnya dapat berbeda untuk hard disk berkapasitas besar daripada hard disk yang lebih kecil. Beberapa opsi hanya dapat diubah saat memasang pada prioritas debconf sedang atau rendah; pada prioritas yang lebih tinggi baku yang masuk akal akan digunakan.

Pemasang mendukung berbagai bentuk partisi canggih dan penggunaan perangkat penyimpanan, yang dalam banyak kasus dapat digunakan dalam kombinasi.

- Logical Volume Management (LVM)
- RAID Perangkat Lunak

Yang didukung adalah RAID level 0, 1, 4, 5, 6, dan 10.

- Enkripsi
- Multipath (eksperimental)

Lihat Wiki kami untuk informasi. Dukungan untuk multipath saat ini hanya tersedia jika diaktifkan saat pemasang di-boot.

Sistem berkas berikut didukung.

• ext2, ext3, ext4

Sistem berkas baku yang dipilih dalam banyak kasus adalah ext4.

- *jfs* (tidak tersedia di semua arsitektur)
- xfs (tidak tersedia di semua arsitektur)
- reiserfs (opsional; tidak tersedia di semua arsitektur)

Dukungan untuk sistem baerkas Reiser tidak lagi tersedia secara baku. Ketika pemasang berjalan pada prioritas debconf sedang atau rendah, itu dapat diaktifkan dengan memilih komponen partman-reiserfs. Hanya versi 3 dari sistem berkas tersebut yang didukung.

qnx4

Partisi yang ada akan dikenali dan mungkin untuk menetapkan titik kait untuk mereka. Tidak mungkin membuat partisi qnx4 baru.

- FAT16, FAT32
- NTFS (hanya baca)

Partisi NTFS yang ada dapat diubah ukurannya dan dimungkinkan untuk menetapkan titik kait untuk mereka. Tidak mungkin membuat partisi NTFS baru.

Pemartisi menerima unit sebagai pangkat dari sepuluh (1 MB = 1000 kB = 1000000 B), maupun pangkat dari dua (1 MiB = 1024 kiB = 1048576 B). Awalan unit didukung hingga EB/EiB (exabyte/exbibyte).

6.3.4.2 Pemartisian Terpandu

Jika Anda memilih pemartisian terpandu, Anda mungkin memiliki tiga opsi: untuk membuat partisi langsung pada hard disk (metode klasik), atau untuk membuatnya menggunakan Logical Volume Management (LVM), atau untuk membuatnya menggunakan LVM terenkripsi⁴.

CATATAN

Opsi untuk menggunakan LVM (yang terenkripsi) mungkin tidak tersedia di semua arsitektur.

Saat menggunakan LVM atau LVM terenkripsi, pemasang akan membuat sebagian besar partisi di dalam satu partisi besar; keuntungan dari metode ini adalah bahwa partisi di dalam partisi besar ini dapat diubah ukurannya dengan relatif mudah nanti. Dalam kasus LVM terenkripsi, partisi besar tidak akan dapat dibaca tanpa mengetahui frasa kunci khusus, sehingga memberikan keamanan ekstra atas data (pribadi) Anda.

Saat menggunakan LVM terenkripsi, pemasang juga akan secara otomatis menghapus disk dengan menulis data acak ke sana. Ini semakin meningkatkan keamanan (karena membuatnya tidak mungkin untuk mengetahui bagian mana dari disk yang digunakan dan juga memastikan bahwa jejak instalasi sebelumnya dihapus), tetapi mungkin memerlukan waktu tergantung pada ukuran disk Anda.

⁴Pemasang akan mengenkripsi grup volume LVM menggunakan kunci AES 256 bit dan memanfaatkan dukungan "dm-crypt" kernel.

Jika Anda memilih partisi terpandu menggunakan LVM atau LVM terenkripsi, beberapa perubahan dalam tabel partisi perlu ditulis ke disk yang dipilih saat LVM sedang disiapkan. Perubahan ini secara efektif menghapus semua data yang saat ini ada di hard disk yang dipilih dan Anda tidak akan dapat membatalkannya nanti. Namun, pemasang akan meminta Anda untuk mengonfirmasi perubahan ini sebelum ditulis ke disk.

Jika Anda memilih pemartisian terpandu (baik klasik atau menggunakan LVM (terenkripsi) untuk seluruh disk, Anda akan terlebih dahulu diminta untuk memilih disk yang ingin Anda gunakan. Periksa apakah semua disk Anda terdaftar dan, jika Anda memiliki beberapa disk, pastikan Anda memilih yang benar. Urutan mereka dalam daftar mungkin berbeda dari apa yang Anda terbiasa. Ukuran disk dapat membantu mengidentifikasi mereka.

Setiap data pada disk yang Anda pilih pada akhirnya akan hilang, tetapi Anda akan selalu diminta untuk mengonfirmasi setiap perubahan sebelum ditulis ke disk. Jika Anda telah memilih metode partisi klasik, Anda akan dapat membatalkan perubahan apa pun sampai akhir; saat menggunakan LVM (terenkripsi) ini tidak mungkin.

Selanjutnya, Anda akan dapat memilih dari skema yang tercantum dalam tabel di bawah ini. Semua skema memiliki pro dan kontra, beberapa di antaranya dibahas dalam Lampiran C. Jika Anda tidak yakin, pilih yang pertama. Ingatlah bahwa pemartisian terpandu membutuhkan ruang kosong minimal untuk dioperasikan. Jika Anda tidak memberikannya setidaknya sekitar 3GB ruang (tergantung pada skema yang dipilih), pemartisian terpandu akan gagal. Juga, pada disk kecil Anda mungkin tidak melihat semua skema yang disebutkan di bawah ini.

Skema partisi	Ruang minimum	Partisi yang dibuat
Semua berkas dalam satu partisi	8GB	/, swap
Partisi /home terpisah	9GB	/,/home,swap
Partisi /home, /var, dan /tmp	12GB	/,/home,/var,/tmp,swap
terpisah	1200	/, / Home, / var, / emp, swap
Memisahkan partisi /srv dan /var;		
swap dibatasi ke 1GB (untuk	8GB	/,/srv,/var,swap
server)		
Skema terutama untuk disk kecil	3GB	/, swap

Jika Anda memilih pemartisian terpandu menggunakan LVM (terenkripsi), pemasang juga akan membuat partisi /boot terpisah. Partisi lainnya, termasuk partisi swap, akan dibuat di dalam partisi LVM.

Jika Anda telah boot dalam mode EFI maka dalam penyiapan pemartisian terpandu akan ada partisi tambahan, diformat sebagai sistem berkas FAT32 yang dapat di-boot, untuk boot loader EFI. Partisi ini dikenal sebagai EFI System Partition (ESP). Ada juga item menu tambahan di menu pemformatan untuk mengatur partisi secara manual sebagai ESP.

Setelah memilih skema, layar berikutnya akan menampilkan tabel partisi baru Anda, termasuk informasi tentang apakah dan bagaimana partisi akan diformat dan di mana mereka akan dikait.

Daftar partisi mungkin terlihat seperti ini:

```
SCSI1 (0,0,0) (sda) - 6.4 GB WDC AC36400L
      #1 primary 16.4 MB B f ext2
#2 primary 551.0 MB swap
                                           /boot
                                           swap
      #3 primary 5.8 GB pri/log 8.2 MB
                                ntfs
                               FREE SPACE
SCSI2 (1,0,0) (sdb) - 80.0 GB ST380021A
      #1 primary 15.9 MB ext3
      #2 primary 996.0 MB
                               fat.16
      #3 primary 3.9 GB
                              xfs
                                           /home
      #5 logical 6.0 GB
                           f ext4
      #6 logical 1.0 GB
                             f ext3
                                           /var
      #7 logical 498.8 MB
```

Contoh ini menunjukkan dua hard drive dibagi menjadi beberapa partisi; disk pertama memiliki beberapa ruang kosong. Setiap baris partisi terdiri dari nomor partisi, jenis, ukuran, bendera opsional, sistem berkas, dan titik kait

(jika ada). Catatan: penyiapan khusus ini tidak dapat dibuat menggunakan pemartisian terpandu tetapi menunjukkan kemungkinan variasi yang dapat dicapai menggunakan pemartisian manual.

Ini mengakhiri bahasan pemartisian terpandu. Jika Anda puas dengan tabel partisi yang dihasilkan, Anda dapat memilih Selesaikan partisi dan tulis perubahan ke disk dari menu untuk menerapkan tabel partisi baru (seperti yang dijelaskan di akhir bagian ini). Jika Anda tidak senang, Anda dapat memilih untuk Membatalkan perubahan pada partisi dan menjalankan pemartisian terpandu lagi, atau memodifikasi perubahan yang diusulkan seperti yang dijelaskan di bawah ini untuk pemartisian manual.

6.3.4.3 Pemartisian Manual

Layar yang mirip dengan yang ditunjukkan tepat di atas akan ditampilkan jika Anda memilih pemartisian manual kecuali bahwa tabel partisi Anda yang ada akan ditampilkan dan tanpa titik kait. Cara menyiapkan tabel partisi Anda secara manual dan penggunaan partisi oleh sistem Debian baru Anda akan dibahas di sisa bagian ini.

Jika Anda memilih disk bersih yang tidak memiliki partisi atau ruang kosong di atasnya, Anda akan ditanya apakah tabel partisi baru harus dibuat (ini diperlukan sehingga Anda dapat membuat partisi baru). Setelah ini, baris baru berjudul "RUANG BEBAS" akan muncul dalam tabel di bawah disk yang dipilih.

Jika Anda memilih beberapa ruang kosong, Anda akan memiliki kesempatan untuk membuat partisi baru. Anda harus menjawab serangkaian pertanyaan singkat tentang ukuran, jenis (primer atau logis), dan lokasi (awal atau akhir ruang kosong). Setelah ini, Anda akan disajikan dengan gambaran rinci tentang partisi baru Anda. Pengaturan utamanya adalah Gunakan sebagai: Pengaturan lain termasuk titik kait, opsi kait, dan bendera dapat di-boot; pengaturan mana yang ditampilkan tergantung pada bagaimana partisi akan digunakan. Jika Anda tidak menyukai baku yang telah dipilih sebelumnya, jangan ragu untuk mengubahnya sesuai keinginan Anda. Misalnya dengan memilih opsi Gunakan sebagai:, Anda dapat memilih sistem berkas yang berbeda untuk partisi ini, termasuk opsi untuk menggunakan partisi untuk swap, RAID perangkat lunak, LVM, atau tidak menggunakannya sama sekali. Ketika Anda puas dengan partisi baru Anda, pilih Selesai mengatur partisi dan Anda akan kembali ke layar utama **partman**.

Jika Anda memutuskan ingin mengubah sesuatu tentang partisi Anda, cukup pilih partisi, yang akan membawa Anda ke menu konfigurasi partisi. Ini adalah layar yang sama seperti yang digunakan saat membuat partisi baru, sehingga Anda dapat mengubah pengaturan yang sama. Satu hal yang mungkin tidak terlalu jelas pada pandangan pertama adalah Anda dapat mengubah ukuran partisi dengan memilih item yang menampilkan ukuran partisi. Sistem berkas yang diketahui bekerja setidaknya fat16, fat32, ext2, ext3, dan swap. Menu ini juga memungkinkan Anda untuk menghapus partisi.

Pastikan untuk membuat setidaknya dua partisi: satu untuk sistem berkas *root* (yang harus dikait sebagai /) dan satu untuk *swap*. Jika Anda lupa mengait sistem berkas root, **partman** tidak akan membiarkan Anda melanjutkan sampai Anda memperbaiki masalah ini.

Jika Anda boot dalam mode EFI tetapi lupa untuk memilih dan memformat Partisi Sistem EFI, **partman** akan mendeteksi ini dan tidak akan membiarkan Anda melanjutkan sampai Anda mengalokasikannya.

Kemampuan dari **partman** dapat diperluas dengan modul pemasang, tetapi tergantung pada arsitektur sistem Anda. Jadi jika Anda tidak dapat melihat semua barang yang dijanjikan, periksa apakah Anda telah memuat semua modul yang diperlukan (misalnya partman-ext3, partman-xfs, atau partman-lvm).

Setelah Anda puas dengan partisi, pilih Selesaikan partisi dan tulis perubahan ke disk dari menu partisi. Anda akan disajikan dengan ringkasan perubahan yang dibuat pada disk dan diminta untuk mengonfirmasi bahwa sistem berkas harus dibuat seperti yang diminta.

6.3.4.4 Mengonfigurasi Perangkat Multidisk (RAID Perangkat Lunak)

Jika Anda memiliki lebih dari satu hard disk⁵ dalam komputer Anda, Anda dapat menggunakan **partman-md** untuk menyiapkan drive Anda untuk meningkatkan kinerja dan/atau keandalan data Anda yang lebih baik. Hasilnya disebut *Multidisk Device* (atau setelah variannya yang paling terkenal *RAID perangkat lunak*).

MD pada dasarnya adalah sekelompok partisi yang terletak pada disk yang berbeda dan digabungkan bersama untuk membentuk perangkat *logis*. Perangkat ini kemudian dapat digunakan seperti partisi biasa (yaitu di **partman** Anda dapat memformatnya, menetapkan titik kait, dll.).

Manfaat apa yang dibawanya tergantung pada jenis perangkat MD yang Anda buat. Saat ini yang didukung adalah:

RAID0 Terutama ditujukan untuk kinerja. RAID0 membagi semua data yang masuk menjadi *stripe* dan mendistribusikannya secara merata di setiap disk dalam array. Ini dapat meningkatkan kecepatan operasi baca/tulis, tetapi ketika salah satu disk gagal, Anda akan kehilangan *segalanya* (bagian dari informasi masih ada di disk yang sehat, bagian lainnya *ada* di disk yang gagal).

⁵Sejujurnya, Anda dapat membangun perangkat MD bahkan dari partisi yang berada di drive fisik tunggal, tetapi itu tidak akan memberikan manfaat apa pun.

Penggunaan khas untuk RAID0 adalah partisi untuk pengeditan video.

RAID1 Cocok untuk pengaturan di mana keandalan adalah perhatian pertama. Ini terdiri dari beberapa (biasanya dua) partisi berukuran sama di mana setiap partisi berisi data yang sama persis. Ini pada dasarnya berarti tiga hal. Pertama, jika salah satu disk Anda gagal, Anda masih memiliki data yang dicerminkan pada disk yang tersisa. Kedua, Anda hanya dapat menggunakan sebagian kecil dari kapasitas yang tersedia (lebih tepatnya, itu adalah ukuran partisi terkecil di RAID). Ketiga, pembacaan berkas diseimbangkan di antara disk, yang dapat meningkatkan kinerja pada server, seperti server berkas, yang cenderung dibebani dengan lebih banyak pembacaan disk daripada penulisan.

Secara opsional Anda dapat memiliki disk cadangan dalam array yang akan menggantikan disk yang gagal jika terjadi kegagalan.

RAID5 adalah kompromi yang baik antara kecepatan, keandalan, dan redundansi data. RAID5 membagi semua data yang masuk menjadi stripe dan mendistribusikannya secara merata pada semua kecuali satu disk (mirip dengan RAID0). Tidak seperti RAID0, RAID5 juga menghitung informasi *paritas*, yang ditulis pada disk yang tersisa. Disk paritas tidak statis (kalau yang itu disebut RAID4), tetapi berubah secara berkala, sehingga informasi paritas didistribusikan secara merata pada semua disk. Ketika salah satu disk gagal, bagian informasi yang hilang dapat dihitung dari data yang tersisa dan paritasnya. RAID5 harus terdiri dari setidaknya tiga partisi aktif. Secara opsional Anda dapat memiliki disk serep dalam array yang akan menggantikan disk yang gagal jika terjadi kegagalan.

Seperti yang Anda lihat, RAID5 memiliki tingkat keandalan yang serupa dengan RAID1 sambil mencapai redundansi yang lebih sedikit. Di sisi lain, mungkin sedikit lebih lambat pada operasi tulis daripada RAID0 karena perhitungan informasi paritas.

RAID6 Mirip dengan RAID5 kecuali menggunakan dua perangkat paritas, bukan satu.

Array RAID6 dapat bertahan hingga kegagalan dua disk.

RAID10 RAID10 menggabungkan striping (seperti dalam RAID0) dan mirroring (seperti dalam RAID1). Ini membuat *n* salinan data yang masuk dan mendistribusikannya di seluruh partisi sehingga tidak ada salinan data yang sama di perangkat yang sama. Nilai baku *n* adalah 2, tetapi dapat diatur ke sesuatu yang lain dalam mode pakar. Jumlah partisi yang digunakan harus setidaknya *n*. RAID10 memiliki tata letak yang berbeda untuk mendistribusikan salinan. Bakunya adalah dekat salinan. Salinan dekat memiliki semua salinan di sekitar ofset yang sama pada semua disk. Salinan jauh memiliki salinan pada ofset yang berbeda pada disk. Salinan ofset menyalin stripe, bukan salinan individual.

RAID10 dapat digunakan untuk mencapai keandalan dan redundansi tanpa kekurangan harus menghitung paritas.

Untuk meringkasnya:

Tipe	Perangkat	Perangkat	Selamat dari	Ruang yang
	Minimum	Cadangan	kegagalan disk?	Tersedia
RAID0	2	tidak	tidak	Ukuran partisi
				terkecil dikalikan
				dengan banyaknya
				perangkat di RAID
RAID1	2	opsional	ya	Ukuran partisi
				terkecil di RAID
RAID5	3	opsional	ya	Ukuran partisi
				terkecil dikalikan
				dengan (banyaknya
				perangkat di RAID
				dikurangi satu)
RAID6	4	opsional	ya	Ukuran partisi
				terkecil dikalikan
				dengan (banyaknya
				perangkat di RAID
				dikurangi dua)

Tipe	Perangkat	Perangkat	Selamat dari	Ruang yang
	Minimum	Cadangan	kegagalan disk?	Tersedia
RAID10	2	opsional	ya	Total semua partisi
				dibagi dengan
				banyaknya salinan
				potongan (baku
				adalah dua)

Jika Anda ingin tahu lebih banyak tentang Software RAID, lihat Software RAID HOWTO.

Untuk membuat perangkat MD, Anda harus memiliki partisi yang diinginkan yang harus terdiri dari ditandai untuk digunakan dalam RAID. (Hal ini dilakukan di **partman** di menu Pengaturan partisi tempat Anda harus memilih Gunakan sebagai: → volume fisik untuk RAID.)

CATATAN

Pastikan bahwa sistem dapat di-boot dengan skema partisi yang Anda rencanakan. Secara umum perlu membuat sistem berkas terpisah bagi /boot saat menggunakan RAID dari sistem berkas root (/). Sebagian besar boot loader (termasuk grub) mendukung RAID1 cermin (bukan striped!), jadi menggunakan misalnya RAID5 untuk / dan RAID1 untuk /boot bisa menjadi pilihan.

Selanjutnya, Anda harus memilih Konfigurasikan RAID perangkat lunak dari menu utama **partman**. (Menu hanya akan muncul setelah Anda menandai setidaknya satu partisi untuk digunakan sebagai volume fisik untuk RAID.) Pada layar pertama dari **partman-md** cukup pilih Buat perangkat MD. Anda akan disajikan dengan daftar jenis perangkat MD yang didukung, dari mana Anda harus memilih satu (misalnya RAID1). Berikut ini tergantung pada jenis MD yang Anda pilih.

- RAID0 itu sederhana Anda akan diberi daftar partisi RAID yang tersedia dan satu-satunya tugas Anda adalah memilih partisi yang akan membentuk MD.
- RAID1 sedikit lebih rumit. Pertama, Anda akan diminta untuk memasukkan banyaknya perangkat aktif dan banyaknya perangkat cadangan yang akan membentuk MD. Selanjutnya, Anda perlu memilih dari daftar partisi RAID yang tersedia, mana yang akan aktif, lalu mana yang akan menjadi serep. Cacah partisi yang dipilih harus sama dengan angka yang diberikan sebelumnya. Jangan khawatir. Jika Anda membuat kesalahan dan memilih banyaknya partisi yang berbeda, debian-installer tidak akan membiarkan Anda melanjutkan sampai Anda memperbaiki masalah.
- RAID5 memiliki prosedur penyiapan yang mirip dengan RAID1 dengan pengecualian bahwa Anda perlu menggunakan setidaknya *tiga* partisi aktif.
- RAID6 juga memiliki prosedur penyiapan yang mirip dengan RAID1 kecuali bahwa setidaknya *empat* partisi aktif diperlukan.
- RAID10 lagi memiliki prosedur pengaturan yang mirip dengan RAID1 kecuali dalam mode pakar. Dalam mode pakar, debian-installer akan menanyakan tata letak. Tata letak memiliki dua bagian. Bagian pertama adalah jenis tata letak. Ini adalah n (untuk salinan dekat), f (untuk salinan jauh), atau o (untuk salinan ofset). Bagian kedua adalah banyaknya salinan yang harus dibuat dari data. Setidaknya harus ada sebanyak itu perangkat aktif sehingga semua salinan dapat didistribusikan ke disk yang berbeda.

Sangat mungkin untuk memiliki beberapa jenis MD sekaligus. Misalnya, jika Anda memiliki tiga hard drive 200 GB yang didedikasikan untuk MD, masing-masing berisi dua partisi 100 GB, Anda dapat menggabungkan partisi pertama pada ketiga disk ke dalam RAID0 (partisi pengeditan video cepat 300 GB) dan menggunakan tiga partisi lainnya (2 aktif dan 1 cadangan) untuk RAID1 (partisi 100 GB yang cukup andal untuk /home).

Setelah menyiapkan perangkat MD sesuai keinginan, Anda dapat Menyelesaikan **partman-md** Untuk kembali ke **partman** untuk membuat sistem berkas pada perangkat MD baru Anda dan menetapkannya atribut biasa seperti titik kait.

6.3.4.5 Mengonfigurasi Logical Volume Manager (LVM)

Jika Anda bekerja dengan komputer pada tingkat administrator sistem atau pengguna "tingkat lanjut", Anda pasti telah melihat situasi di mana beberapa partisi disk (biasanya yang paling penting) kekurangan ruang, sementara beberapa

partisi lain terlalu kurang dimanfaatkan dan Anda harus mengelola situasi ini dengan memindahkan barang-barang, symlink, dll.

Untuk menghindari situasi yang dijelaskan, Anda dapat menggunakan Logical Volume Manager (LVM). Sederhananya, dengan LVM Anda dapat menggabungkan partisi Anda (*volume fisik* dalam istilah LVM) untuk membentuk disk virtual (disebut *grup volume*), yang kemudian dapat dibagi menjadi partisi virtual (*volume logis*). Intinya adalah bahwa volume logis (dan tentu saja kelompok volume yang mendasari) dapat merentang beberapa disk fisik.

Sekarang ketika Anda menyadari bahwa Anda membutuhkan lebih banyak ruang untuk partisi 160GB /home lama Anda, Anda cukup menambahkan disk 300GB baru ke komputer, bergabung dengan grup volume yang ada dan kemudian mengubah ukuran volume logis yang menahan sistem berkas /home Anda dan voila - pengguna Anda memiliki beberapa ruang lagi pada partisi 460GB yang diperbarui. Contoh ini tentu saja sedikit terlalu disederhanakan. Jika Anda belum membacanya, Anda harus berkonsultasi dengan LVM HOWTO.

Pengaturan LVM di debian-installer cukup sederhana dan sepenuhnya didukung di dalam **partman**. Pertama, Anda harus menandai partisi untuk digunakan sebagai volume fisik bagi LVM. Ini dilakukan di menu Pengaturan partisi di mana Anda harus memilih Gunakan sebagai:

volume fisik untuk LVM.

Awas

Ketahuilah: pengaturan LVM baru akan menghancurkan semua data pada semua partisi yang ditandai dengan kode tipe LVM. Jadi, jika Anda sudah memiliki LVM di beberapa disk Anda, dan ingin memasang Debian tambahan ke mesin itu, LVM lama (yang sudah ada) akan dihapus! Hal yang sama berlaku untuk partisi, yang (untuk alasan apa pun) secara menyesatkan ditandai dengan kode tipe LVM, tetapi berisi sesuatu yang berbeda (seperti volume terenkripsi). Anda perlu menghapus disk seperti itu dari sistem, sebelum melakukan pengaturan LVM baru!

Ketika Anda kembali ke layar utama **partman**, Anda akan melihat opsi baru Konfigurasikan Logical Volume Manager. Ketika Anda memilih itu, Anda pertama kali akan diminta untuk mengonfirmasi perubahan yang tertunda ke tabel partisi (jika ada) dan setelah itu menu konfigurasi LVM akan ditampilkan. Di atas menu, ringkasan konfigurasi LVM ditampilkan. Menu itu sendiri peka konteks dan hanya menampilkan tindakan yang valid. Tindakan yang mungkin adalah:

- Tampilkan rincian konfigurasi: menampilkan struktur perangkat LVM, nama dan ukuran volume logis, dan banyak lagi
- Membuat grup volume
- Membuat volume logis
- · Menghapus grup volume
- · Menghapus volume logis
- · Memperluas grup volume
- Mengurangi grup volume
- Selesai: kembali ke layar utama partman

Gunakan opsi di menu itu untuk terlebih dahulu membuat grup volume dan kemudian buat volume logis Anda di dalamnya.

Setelah Anda kembali ke layar utama **partman**, setiap volume logis yang dibuat akan ditampilkan dengan cara yang sama seperti partisi biasa (dan Anda harus memperlakukannya seperti itu).

6.3.4.6 Mengonfigurasi Volume Terenkripsi

debian-installer memungkinkan Anda untuk mengatur partisi terenkripsi. Setiap berkas yang Anda tulis ke partisi seperti itu segera disimpan ke perangkat dalam bentuk terenkripsi. Akses ke data terenkripsi diberikan hanya setelah memasukkan *frasa sandi* yang digunakan ketika partisi terenkripsi awalnya dibuat. Fitur ini berguna untuk melindungi data sensitif jika laptop atau hard drive Anda dicuri. Pencuri mungkin mendapatkan akses fisik ke hard drive, tetapi tanpa mengetahui frasa sandi yang tepat, data pada hard drive akan terlihat seperti karakter acak.

Dua partisi yang paling penting untuk dienkripsi adalah: partisi home, tempat data pribadi Anda berada, dan partisi swap, di mana data sensitif dapat disimpan untuk sementara selama operasi. Tentu saja, tidak ada yang mencegah Anda mengenkripsi partisi lain yang mungkin menarik. Misalnya /var di mana server basis data, server surel, atau server cetak menyimpan data mereka, atau /tmp yang digunakan oleh berbagai program untuk menyimpan berkas sementara yang berpotensi menarik. Beberapa orang bahkan mungkin ingin mengenkripsi seluruh sistem mereka. Umumnya satu-satunya pengecualian di sini adalah partisi /boot yang harus tetap tidak terenkripsi, karena secara historis tidak ada cara untuk memuat kernel dari partisi terenkripsi. (GRUB sekarang dapat melakukan itu, tetapi debian-installer saat ini tidak memiliki dukungan native untuk /boot terenkripsi. Maka penyiapan dibahas dalam dokumen terpisah.)

CATATAN

Harap dicatat bahwa kinerja partisi terenkripsi akan kurang dari yang tidak terenkripsi karena data perlu didekripsi atau dienkripsi untuk setiap pembacaan atau penulisan. Dampak kinerja tergantung pada kecepatan CPU Anda, cipher yang dipilih, dan panjang kunci.

Untuk menggunakan enkripsi, Anda harus membuat partisi baru dengan memilih sebagian ruang kosong di menu partisi utama. Pilihan lain adalah mengambil partisi yang ada (misalnya partisi biasa, volume logis LVM, atau volume RAID). Di menu Pengaturan partisi, Anda perlu memilih volume fisik untuk enkripsi pada opsi Gunakan sebagai: Menu kemudian akan berubah untuk menyertakan beberapa opsi kriptografi untuk partisi.

Metode enkripsi yang didukung oleh debian-installer adalah *dm-crypt* (disertakan dalam kernel Linux yang lebih baru, mampu mewadahi volume fisik LVM).

Mari kita lihat opsi yang tersedia saat Anda memilih enkripsi melalui **Device-mapper** (dm-crypt). Seperti biasa: ketika ragu, gunakan baku, karena mereka telah dipilih dengan cermat dengan mempertimbangkan keamanan.

Enkripsi: aes Opsi ini memungkinkan Anda memilih algoritma (cipher) enkripsi yang akan digunakan untuk mengenkripsi data pada partisi. debian-installer saat ini mendukung cipher blok berikut: aes, blowfish, serpent, dan twofish. Di luar lingkup dokumen ini untuk membahas kualitas algoritma yang berbeda, namun, mungkin membantu keputusan Anda untuk mengetahui bahwa pada tahun 2000, AES dipilih oleh American National Institute of Standards and Technology sebagai algoritma enkripsi standar untuk melindungi informasi sensitif di abad ke-21.

Ukuran kunci: 256 Di sini Anda dapat menentukan panjang kunci enkripsi. Dengan ukuran kunci yang lebih besar, kekuatan enkripsi umumnya ditingkatkan. Di sisi lain, meningkatkan panjang kunci biasanya memiliki dampak negatif pada kinerja. Ukuran kunci yang tersedia bervariasi tergantung pada cipher.

Algoritma IV: xts-plain64 Algoritma Initialization Vector atau IV digunakan dalam kriptografi untuk memastikan bahwa menerapkan cipher pada data teks polos yang sama dengan kunci yang sama selalu menghasilkan teks cipher yang unik. Idenya adalah untuk mencegah penyerang dari menyimpulkan informasi dari pola berulang dalam data terenkripsi.

Dari alternatif yang disediakan, **xts-plain64** baku saat ini paling tidak rentan terhadap serangan yang diketahui. Gunakan alternatif lain hanya ketika Anda perlu memastikan kompatibilitas dengan beberapa sistem yang dipasang sebelumnya yang tidak bisa menggunakan algoritma lebih baru.

Kunci enkripsi: Frasa Sandi Di sini Anda dapat memilih jenis kunci enkripsi untuk partisi ini.

Frasa sandi Kunci enkripsi akan dihitung⁶ berdasarkan frasa sandi yang dapat Anda masukkan nanti dalam proses.

Kunci acak Kunci enkripsi baru akan dihasilkan dari data acak setiap kali Anda mencoba memunculkan partisi terenkripsi. Dengan kata lain: pada setiap shutdown konten partisi akan hilang karena kunci dihapus dari memori. (Tentu saja, Anda bisa mencoba menebak kunci dengan serangan brute force, tetapi kecuali ada kelemahan yang tidak diketahui dalam algoritma cipher, itu tidak dapat dicapai dalam hidup kita.) Kunci acak berguna untuk partisi swap karena Anda tidak perlu repot-repot mengingat frasa sandi atau menghapus informasi sensitif dari partisi swap sebelum mematikan komputer Anda. Namun, itu juga berarti bahwa Anda *tidak* akan dapat menggunakan fungsi "suspend-to-disk" yang ditawarkan oleh kernel

⁶Menggunakan frasa sandi sebagai kunci saat ini berarti bahwa partisi akan diatur menggunakan LUKS.

Linux yang lebih baru karena tidak mungkin (selama boot berikutnya) untuk memulihkan data yang ditangguhkan yang ditulis ke partisi swap.

Hapus data: ya Menentukan apakah konten partisi ini harus ditimpa dengan data acak sebelum menyiapkan enkripsi. Ini direkomendasikan karena mungkin bagi penyerang untuk membedakan bagian partisi mana yang digunakan dan mana yang tidak. Selain itu, ini akan membuat lebih sulit untuk memulihkan data sisa dari instalasi sebelumnya⁷.

Setelah Anda memilih parameter yang diinginkan untuk partisi terenkripsi Anda, kembali ke menu partisi utama. Sekarang harus ada item menu baru yang disebut Konfigurasikan volume terenkripsi. Setelah Anda memilihnya, Anda akan diminta untuk mengonfirmasi penghapusan data pada partisi yang ditandai akan dihapus dan mungkin tindakan lain seperti menulis tabel partisi baru. Untuk partisi besar ini mungkin memakan waktu.

Selanjutnya Anda akan diminta untuk memasukkan frasa sandi bagi partisi yang dikonfigurasi untuk menggunakannya. Frasa sandi yang baik harus lebih panjang dari 8 karakter, harus berupa campuran huruf, angka, dan karakter lainnya dan tidak boleh berisi kata atau informasi kamus umum yang mudah bergaul dengan Anda (seperti tanggal lahir, hobi, nama hewan peliharaan, nama anggota keluarga atau kerabat, dll.).

Awas

Sebelum Anda memasukkan frasa sandi apa pun, Anda harus memastikan bahwa papan ketik Anda dikonfigurasi dengan benar dan menghasilkan karakter yang diharapkan. Jika Anda tidak yakin, Anda dapat beralih ke konsol virtual kedua dan mengetik beberapa teks di prompt. Ini memastikan bahwa Anda tidak akan terkejut nanti, misalnya dengan mencoba memasukkan frasa sandi menggunakan tata letak papan ketik qwerty saat Anda menggunakan tata letak azerty selama instalasi. Situasi ini dapat memiliki beberapa penyebab. Mungkin Anda beralih ke tata letak papan ketik lain selama instalasi, atau tata letak papan ketik yang dipilih mungkin belum diatur saat memasukkan frasa sandi bagi sistem berkas root.

Jika Anda memilih untuk menggunakan metode selain frasa sandi untuk membuat kunci enkripsi, mereka akan dihasilkan sekarang. Karena kernel mungkin tidak mengumpulkan sejumlah entropi yang cukup pada tahap awal instalasi ini, prosesnya mungkin memakan waktu lama. Anda dapat membantu mempercepat proses dengan menghasilkan entropi: misalnya dengan menekan tombol-tombol acak, atau dengan beralih ke shell pada konsol virtual kedua dan menghasilkan beberapa lalu lintas jaringan dan disk (mengunduh beberapa berkas, mengumpankan berkas besar ke /dev/null, dll.). Ini akan diulang untuk setiap partisi yang akan dienkripsi.

Setelah kembali ke menu pemartisian utama, Anda akan melihat semua volume terenkripsi sebagai partisi tambahan yang dapat dikonfigurasi dengan cara yang sama seperti partisi biasa. Contoh berikut menunjukkan volume yang dienkripsi melalui dm-crypt.

```
Encrypted volume (sda2_crypt) - 115.1 GB Linux device-mapper #1 115.1 GB F ext3
```

Sekarang adalah waktu untuk menetapkan titik kait ke volume dan secara opsional mengubah jenis sistem berkas jika baku tidak sesuai dengan Anda.

Perhatikan pengidentifikasi dalam tanda kurung (dalam hal ini sda2_crypt) dan titik kait yang Anda tetapkan untuk setiap volume terenkripsi. Anda akan membutuhkan informasi ini nanti saat mem-boot sistem baru. Perbedaan antara proses boot biasa dan proses boot dengan enkripsi yang terlibat akan dibahas nanti dalam Bagian 7.2.

Setelah Anda puas dengan skema pemartisian, lanjutkan dengan instalasi.

6.3.5 Memasang Sistem Dasar

Meskipun tahap ini adalah yang paling tidak bermasalah, ia mengkonsumsi sebagian besar instalasi karena mengunduh, memverifikasi, dan membongkar seluruh sistem dasar. Jika Anda memiliki komputer atau koneksi jaringan yang lambat, ini bisa memakan waktu.

Selama instalasi sistem dasar, pesan pembongkaran dan penyiapan paket diarahkan ke tty4. Anda dapat mengakses terminal ini dengan menekan Alt Kiri-F4; kembali ke proses pemasang utama dengan Alt Kiri-F1.

Pesan pembongkaran/penyiapan yang dihasilkan selama fase ini juga disimpan di /var/log/syslog. Anda dapat memeriksanya di sana jika instalasi dilakukan melalui konsol serial.

⁷Diyakini bahwa orang-orang dari agen tiga huruf dapat memulihkan data bahkan setelah beberapa penulisan ulang media magneto optik.

Sebagai bagian dari instalasi, sebuah kernel Linux akan dipasang. Pada prioritas baku, pemasang akan memilih satu untuk Anda yang paling cocok dengan perangkat keras Anda. Dalam mode prioritas yang lebih rendah, Anda akan dapat memilih dari daftar kernel yang tersedia.

Ketika paket dipasang menggunakan sistem manajemen paket, secara baku juga akan memasang paket yang direkomendasikan oleh paket-paket tersebut. Paket yang direkomendasikan tidak sepenuhnya diperlukan untuk fungsionalitas inti dari perangkat lunak yang dipilih, tetapi mereka meningkatkan perangkat lunak itu dan mestinya, dalam pandangan pengelola paket, biasanya dipasang bersama dengan perangkat lunak itu.

CATATAN

Untuk alasan teknis paket yang dipasang selama pemasangan sistem dasar dipasang tanpa "Rekomendasi" mereka. Aturan yang dijelaskan di atas hanya berlaku setelah titik ini dalam proses instalasi.

6.3.6 Memasang Perangkat Lunak Tambahan

Pada titik ini Anda memiliki sistem yang dapat digunakan tetapi terbatas. Sebagian besar pengguna akan ingin memasang perangkat lunak tambahan pada sistem untuk menyesuaikannya dengan kebutuhan mereka, dan pemasang memungkinkan Anda melakukannya. Langkah ini bisa memakan waktu lebih lama daripada memasang sistem dasar jika Anda memiliki komputer atau koneksi jaringan yang lambat.

6.3.6.1 Mengonfigurasi apt

Salah satu alat yang digunakan untuk memasang paket pada sistem Debian GNU/Linux adalah program **apt**, dari paket apt⁸. Front-end lain untuk manajemen paket, seperti **aptitude** dan **synaptic**, juga sedang digunakan. Front-end ini direkomendasikan untuk pengguna baru, karena mereka mengintegrasikan beberapa fitur tambahan (pencarian paket dan pemeriksaan status) dalam antarmuka pengguna yang bagus.

apt harus dikonfigurasi sehingga tahu dari mana mengambil paket. Hasil konfigurasi ini ditulis ke berkas /etc/apt/sources.list. Anda dapat memeriksa dan mengedit berkas ini sesuai keinginan Anda setelah instalasi selesai.

Jika Anda memasang pada prioritas baku, pemasang sebagian besar akan mengurus konfigurasi secara otomatis, berdasarkan metode instalasi yang Anda gunakan dan mungkin menggunakan pilihan yang dibuat sebelumnya dalam instalasi. Dalam kebanyakan kasus pemasang akan secara otomatis menambahkan cermin keamanan dan, jika Anda memasang distribusi stabil, cermin untuk layanan "stable-updates".

Jika Anda memasang pada prioritas yang lebih rendah (misalnya dalam mode pakar), Anda akan dapat membuat lebih banyak keputusan sendiri. Anda dapat memilih apakah akan menggunakan layanan keamanan dan/atau stable-updates atau tidak, dan Anda dapat memilih untuk menambahkan paket dari bagian arsip "contrib", "non-free", dan "non-free-firmware".

6.3.6.1.1 Memasang dari beberapa image DVD

Jika Anda memasang dari image DVD yang merupakan bagian dari set yang lebih besar, pemasang akan bertanya apakah Anda ingin memindai media instalasi tambahan. Jika Anda memiliki media tambahan yang tersedia, Anda mungkin ingin melakukan ini sehingga pemasang dapat menggunakan paket yang disertakan pada mereka.

Jika Anda tidak memiliki media tambahan, itu tidak masalah: menggunakannya tidak diperlukan. Jika Anda juga tidak menggunakan cermin jaringan (seperti yang dijelaskan di bagian berikutnya), itu dapat berarti bahwa tidak semua paket milik tugas yang Anda pilih pada langkah instalasi berikutnya dapat dipasang.

⁸Perhatikan bahwa program yang benar-benar memasang paket disebut **dpkg**. Namun, program ini lebih merupakan alat tingkat rendah. **apt** adalah alat tingkat yang lebih tinggi, yang akan memanggil **dpkg** sebagaimana mestinya. Ia tahu cara mengambil paket dari media instalasi Anda, jaringan, atau di mana pun. Hal ini juga dapat secara otomatis memasang paket lain yang diperlukan untuk membuat paket yang Anda coba pasang berfungsi dengan benar.

Paket disertakan pada image DVD dalam urutan popularitas mereka. Ini berarti bahwa untuk sebagian besar penggunaan hanya image pertama dari satu set yang diperlukan dan bahwa hanya sangat sedikit orang yang benar-benar menggunakan salah satu paket yang disertakan pada image terakhir dari satu set.

Ini juga berarti bahwa membeli atau mengunduh dan membakar satu set DVD lengkap hanyalah buang-buang uang karena Anda tidak akan pernah menggunakan sebagian besar dari mereka. Dalam kebanyakan kasus Anda lebih baik mendapatkan hanya 1 hingga 2 DVD pertama dan memasang paket tambahan yang mungkin Anda butuhkan dari Internet dengan menggunakan cermin.

Jika Anda memindai beberapa media instalasi, pemasang akan meminta Anda untuk menukarnya saat membutuhkan paket dari yang saat ini tidak ada di drive. Perhatikan bahwa hanya disk yang termasuk dalam set yang sama yang harus dipindai. Urutan di mana mereka dipindai tidak terlalu penting, tetapi memindai mereka dalam urutan naik akan mengurangi kemungkinan kesalahan.

6.3.6.1.2 Menggunakan cermin jaringan

Satu pertanyaan yang akan ditanyakan selama sebagian besar instalasi adalah apakah akan menggunakan cermin jaringan sebagai sumber paket atau tidak. Dalam kebanyakan kasus jawaban baku mestinya baik-baik saja, tetapi ada beberapa pengecualian.

Jika Anda *tidak* memasang dari image DVD, Anda benar-benar harus menggunakan cermin jaringan karena jika tidak, Anda akan berakhir dengan hanya sistem yang sangat minimal. Namun, jika Anda memiliki koneksi Internet terbatas, yang terbaik adalah *tidak* memilih tugas desktop di langkah instalasi berikutnya.

Jika Anda memasang dari DVD, paket apa pun yang diperlukan selama instalasi harus ada pada image DVD pertama. Penggunaan cermin jaringan adalah opsional.

Salah satu keuntungan dari menambahkan cermin jaringan adalah bahwa pembarua, yang telah terjadi sejak image DVD dibuat dan telah dimasukkan dalam rilis titik, akan menjadi tersedia untuk instalasi, sehingga memperpanjang umur set DVD Anda tanpa mengorbankan keamanan atau stabilitas sistem yang dipasang.

Singkatnya: memilih cermin jaringan umumnya merupakan ide yang bagus, kecuali jika Anda tidak memiliki koneksi internet yang baik. Jika versi paket saat ini tersedia dari media instalasi, pemasang akan selalu menggunakannya. Maka banyaknya data yang akan diunduh jika Anda memilih cermin tergantung pada

- 1. tugas yang Anda pilih di langkah instalasi berikutnya,
- paket mana yang diperlukan untuk tugas-tugas itu,
- 3. mana dari paket-paket tersebut yang ada di media instalasi yang telah Anda pindai, dan
- 4. apakah versi paket terbaru yang disertakan pada media instalasi tersedia dari cermin (baik cermin paket biasa, atau cermin untuk keamanan atau pembaruan stabil).

Perhatikan bahwa poin terakhir berarti bahwa, bahkan jika Anda memilih untuk tidak menggunakan cermin jaringan, beberapa paket mungkin masih diunduh dari Internet jika ada pembaruan keamanan atau pembaruan stabil yang tersedia untuk mereka dan layanan tersebut telah dikonfigurasi.

6.3.6.1.3 Memilih cermin jaringan

Kecuali Anda memilih untuk tidak menggunakan cermin jaringan, Anda akan disajikan dengan daftar cermin jaringan berdasarkan pemilihan negara Anda sebelumnya dalam proses instalasi. Memilih baku yang ditawarkan biasanya baik-baik saja.

Baku yang ditawarkan adalah deb.debian.org, yang bukan cermin itu sendiri tetapi akan mengarahkan ke cermin yang mestinya mutakhir dan cepat. Cermin ini mendukung TLS (protokol https) dan IPv6. Layanan ini dikelola oleh tim Debian System Administration (DSA).

Cermin juga dapat ditentukan dengan tangan dengan memilih "masukkan informasi secara manual". Anda kemudian dapat menentukan nama host cermin dan nomor port opsional. Ini sebenarnya harus menjadi basis URL, yaitu ketika menentukan alamat IPv6, seseorang harus menambahkan tanda kurung siku di sekitarnya, misalnya "[2001:db8::1]".

Jika komputer Anda berada di jaringan khusus IPv6 (yang mungkin tidak berlaku untuk sebagian besar pengguna), menggunakan cermin baku untuk negara Anda mungkin tidak berfungsi. Semua cermin dalam daftar dapat dijangkau melalui IPv4, tetapi hanya beberapa di antaranya yang dapat digunakan melalui IPv6. Karena konektivitas cermin individu dapat berubah dari waktu ke waktu, informasi ini tidak tersedia di pemasang. Jika tidak ada konektivitas IPv6 untuk cermin baku bagi negara Anda, Anda dapat mencoba beberapa cermin lain yang ditawarkan kepada Anda atau memilih opsi "masukkan informasi secara manual". Anda kemudian dapat menentukan "ftp.ipv6.debian.org" sebagai nama cermin, yang merupakan alias untuk cermin yang tersedia melalui IPv6, meskipun mungkin tidak akan menjadi yang tercepat.

6.3.6.2 Memilih dan Memasang Perangkat Lunak

Selama proses instalasi, Anda diberi kesempatan untuk memilih perangkat lunak tambahan untuk dipasang. Daripada memilih paket perangkat lunak individu dari 102687 paket yang tersedia, tahap proses instalasi ini berfokus pada memilih dan memasang koleksi perangkat lunak yang telah ditentukan agar dengan cepat mengatur komputer Anda untuk melakukan berbagai tugas.

Tugas-tugas ini secara longgar mewakili sejumlah pekerjaan atau hal yang berbeda yang ingin Anda lakukan dengan komputer Anda, seperti "Lingkungan desktop", "Server web", atau "Server SSH". Bagian D.2 mencantumkan persyaratan ruang untuk tugas yang tersedia.

Beberapa tugas mungkin dipilih sebelumnya berdasarkan karakteristik komputer yang Anda pasang. Jika Anda tidak setuju dengan pilihan ini, Anda dapat membatalkan pilihannya. Anda bahkan dapat memilih untuk tidak memasang tugas sama sekali pada saat ini.

TIP

Di antarmuka pengguna standar pemasang, Anda dapat menggunakan bilah spasi untuk menjungkitkan pilihan tugas.

CATATAN

Tugas "Lingkungan desktop" akan memasang lingkungan desktop grafis.

Perhatikan bahwa ini hanya akan berfungsi jika paket yang diperlukan untuk lingkungan desktop yang diinginkan benar-benar tersedia. Memasang salah satu lingkungan desktop yang tersedia dengan cara ini akan berfungsi dengan baik jika Anda menggunakan image DVD atau metode instalasi lainnya dengan suatu cermin jaringan.

Berbagai tugas server akan memasang perangkat lunak kira-kira sebagai berikut. Server web: apache2; Server SSH: openssh.

Tugas "Utilitas sistem standar" akan memasang paket apa pun yang memiliki prioritas "standard". Ini termasuk banyak utilitas umum yang biasanya tersedia di sistem Linux atau Unix apa pun. Anda harus membiarkan tugas ini dipilih kecuali Anda tahu apa yang Anda lakukan dan menginginkan sistem yang sangat minimal.

Jika selama pemilihan bahasa, lokal baku selain lokal "C" dipilih, **tasksel** akan memeriksa apakah ada tugas pelokalan yang ditentukan untuk lokal tersebut dan secara otomatis akan mencoba memasang paket pelokalan yang relevan. Ini termasuk misalnya paket yang berisi daftar kata atau fonta khusus untuk bahasa Anda. Jika lingkungan desktop dipilih, itu juga akan memasang paket pelokalan yang sesuai untuk itu (jika tersedia).

⁹Anda harus tahu bahwa untuk menyajikan daftar ini, pemasang hanya memanggil program **tasksel**. Ini dapat dijalankan kapan saja setelah instalasi untuk memasang lebih banyak paket (atau menghapusnya), atau Anda dapat menggunakan alat yang lebih halus seperti **aptitude**. Jika Anda mencari paket tunggal tertentu, setelah instalasi selesai, cukup jalankan **aptitude instal1 paket**, dimana paket adalah nama paket yang Anda cari.

Mulai dengan Debian Trixie, debian-installer memungkinkan untuk memasang Debian Pure Blends secara langsung. Ada entri "Pilih sebuah Debian Blend untuk instalasi" di bagian bawah daftar tugas, yang memungkinkan dialog pilihan tambahan muncul, setelah **tasksel** selesai.

Dalam dialog (**blendsel**) itu, Anda dapat memilih blend mana yang akan dipasang, mirip dengan pemilihan tugas ini.

Lihat situs web Debian untuk informasi lebih lanjut tentang Debian Pure Blends.

Setelah Anda memilih tugas, pilih Continue. Pada titik ini, **apt** akan memasang paket yang merupakan bagian dari tugas yang dipilih. Jika program tertentu membutuhkan lebih banyak informasi dari pengguna, itu akan meminta Anda selama proses ini.

Anda harus menyadari bahwa terutama tugas Desktop sangat besar. Terutama ketika memasang dari image CD netinst dalam kombinasi dengan cermin untuk paket yang tidak ada di netinst, pemasang mungkin ingin mengambil banyak paket melalui jaringan. Jika Anda memiliki koneksi internet yang relatif lambat, ini bisa memakan waktu lama. Tidak ada opsi untuk membatalkan instalasi paket setelah dimulai.

Bahkan ketika paket disertakan pada image instalasi, pemasang masih dapat mengambilnya dari cermin jika versi yang tersedia di cermin lebih baru daripada yang disertakan pada image. Jika Anda memasang distribusi stabil, ini dapat terjadi setelah rilis titik (pembaruan dari rilis stabil asli); jika Anda memasang distribusi pengujian, ini akan terjadi jika Anda menggunakan image yang lebih lama.

6.3.7 Membuat Sistem Anda Dapat Di-Boot

Jika Anda memasang workstation tanpa disk, jelas, mem-boot disk lokal bukanlah pilihan yang berarti, dan langkah ini akan dilewati.

6.3.7.1 Mendeteksi sistem operasi lain

Sebelum boot loader dipasang, pemasang akan mencoba untuk menyelidiki sistem operasi lain yang terpasang pada mesin. Jika menemukan sistem operasi yang didukung, Anda akan diberitahu tentang hal ini selama langkah instalasi boot loader, dan komputer akan dikonfigurasi untuk mem-boot sistem operasi lain ini selain Debian.

Perhatikan bahwa boot beberapa sistem operasi pada satu mesin masih sesuatu yang berupa seni hitam. Dukungan otomatis untuk mendeteksi dan menyiapkan boot loader untuk mem-boot sistem operasi lain bervariasi menurut arsitektur dan bahkan dengan sub arsitektur. Jika tidak berhasil, Anda harus berkonsultasi dengan dokumentasi manajer boot Anda untuk informasi lebih lanjut.

6.3.7.2 Pasang Boot Loader Grub pada drive

Boot loader amd64 disebut "grub". Grub adalah boot loader yang fleksibel dan handal dan pilihan baku yang baik untuk pengguna baru dan pemain lama.

Secara baku, grub akan dipasang pada partisi UEFI/Boot Record dari drive utama, di mana ia akan mengambil alih kendali penuh dari proses boot. Jika Mau, Anda bisa memasangnya di tempat lain. Lihat manual grub untuk informasi lengkap.

Jika Anda tidak ingin memasang grub, gunakan tombol Go Back untuk sampai ke menu utama, dan dari sana pilih bootloader apa pun yang ingin Anda gunakan.

6.3.7.3 Melanjutkan Tanpa Boot Loader

Opsi ini dapat digunakan untuk menyelesaikan instalasi bahkan ketika tidak ada boot loader yang akan dipasang, baik karena arch/sub arch tidak menyediakannya, atau karena tidak ada yang diinginkan (misalnya Anda akan menggunakan boot loader yang ada).

Jika Anda berencana untuk mengonfigurasi bootloader Anda secara manual, Anda harus memeriksa nama kernel yang dipasang di /target/boot. Anda juga harus memeriksa direktori itu untuk keberadaan *initrd*; jika ada, Anda mungkin harus menginstruksikan bootloader Anda untuk menggunakannya. Informasi lain yang Anda perlukan adalah disk dan partisi yang Anda pilih untuk sistem berkas / Anda dan, jika Anda memilih untuk memasang /boot pada partisi terpisah, juga sistem berkas /boot Anda.

6.3.8 Menyelesaikan Instalasi

Ini adalah langkah terakhir dalam proses instalasi Debian dimana pemasang akan melakukan tugas menit terakhir. Ini sebagian besar terdiri dari merapikan setelah debian-installer.

6.3.8.1 Mengatur Jam Sistem

Pemasang mungkin menanyakan apakah jam komputer diatur ke UTC. Biasanya pertanyaan ini dihindari jika memungkinkan dan pemasang mencoba untuk mencari tahu apakah jam diatur ke UTC berdasarkan hal-hal seperti apa sistem operasi lain yang dipasang.

Dalam mode pakar Anda akan selalu dapat memilih apakah jam diatur ke UTC atau tidak. Sistem yang (juga) menjalankan Windows biasanya diatur ke waktu setempat. Jika Anda ingin dual-boot, pilih waktu lokal, bukan UTC.

Pada titik ini debian-installer juga akan mencoba menyimpan waktu saat ini ke jam perangkat keras sistem. Ini akan dilakukan baik dalam UTC atau waktu setempat, tergantung pada pilihan yang baru saja dibuat.

6.3.8.2 Boot Ulang Sistem

Anda akan diminta untuk menghapus media boot (CD, flash disk USB, dll) yang Anda gunakan untuk mem-boot pemasang. Setelah itu sistem akan di-reboot ke sistem Debian baru Anda.

6.3.9 Penelusuran masalah

Komponen yang tercantum di bagian ini biasanya tidak terlibat dalam proses instalasi, tetapi menunggu di latar belakang untuk membantu pengguna jika terjadi kesalahan.

6.3.9.1 Menyimpan log instalasi

Jika instalasi berhasil, berkas log yang dibuat selama proses instalasi akan secara otomatis disimpan ke /var/log/installer/ pada sistem Debian baru Anda.

Memilih Simpan log debug dari menu utama memungkinkan Anda menyimpan berkas log ke flash disk USB, jaringan, hard disk, atau media lainnya. Ini dapat berguna jika Anda mengalami masalah fatal selama instalasi dan ingin mempelajari log pada sistem lain atau melampirkannya ke laporan instalasi.

6.3.9.2 Menggunakan Shell dan Melihat Log

Ada beberapa metode yang dapat Anda gunakan untuk mendapatkan shell saat menjalankan instalasi. Pada sebagian besar sistem, dan jika Anda tidak memasang melalui konsol serial, metode termudah adalah beralih ke *konsol virtual* kedua dengan menekan Alt Kiri-F2¹⁰ (pada papan ketik Mac, Option-F2). Gunakan Alt Kiri-F1 untuk beralih kembali ke pemasang itu sendiri.

Untuk pemasang grafis lihat juga Bagian 6.1.1.

Jika Anda tidak dapat beralih konsol, ada juga butir Jalankan Shell pada menu utama yang dapat digunakan untuk memulai shell. Anda bisa masuk ke menu utama dari sebagian besar dialog dengan menggunakan tombol Go Back satu kali atau lebih. Ketik exit untuk menutup shell dan kembali ke pemasang.

Pada titik ini Anda di-boot dari disk RAM, dan ada satu set utilitas Unix terbatas yang tersedia untuk Anda gunakan. Anda dapat melihat program apa yang tersedia dengan perintah **ls /bin /sbin /usr/bin /usr/sbin** dan dengan mengetik **help**. Shell adalah klon bourne shell yang disebut **ash** dan memiliki beberapa fitur bagus seperti pelengkapan otomatis dan sejarah.

Untuk mengedit dan melihat berkas, gunakan editor teks **nano**. Berkas log untuk sistem instalasi dapat ditemukan di direktori /var/log.

¹⁰Yaitu: tekan tombol Alt di sisi kiri bilah spasi dan tombol fungsi F2 pada saat yang sama.

Meskipun pada dasarnya Anda dapat melakukan apa pun dalam shell yang memungkinkan perintah yang tersedia untuk Anda lakukan, opsi untuk menggunakan shell benar-benar hanya ada jika terjadi kesalahan dan untuk debugging.

Melakukan hal-hal secara manual dari shell dapat mengganggu proses instalasi dan mengakibatkan kesalahan atau instalasi yang tidak lengkap. Secara khusus, Anda harus selalu membiarkan pemasang mengaktifkan partisi swap Anda dan tidak melakukan ini sendiri dari shell.

6.3.10 Instalasi melalui konsol jaringan

Salah satu komponen yang lebih menarik adalah *konsol jaringan*. Ini memungkinkan Anda untuk melakukan sebagian besar instalasi melalui jaringan melalui SSH. Penggunaan jaringan menyiratkan Anda harus melakukan langkah pertama instalasi dari konsol, setidaknya sampai pada titik pengaturan jaringan. (Meskipun Anda dapat mengotomatiskan bagian itu dengan Bagian 4.6.)

Komponen ini tidak dimuat ke menu instalasi utama secara baku, jadi Anda harus secara eksplisit memintanya. Jika Anda memasang dari media optik, Anda perlu boot dengan prioritas sedang atau memanggil menu instalasi utama dan memilih Muat komponen pemasang dari media instalasi dan dari daftar komponen tambahan pilih konsol jaringan: Lanjutkan instalasi dari jarak jauh menggunakan SSH. Pemuatan yang berhasil ditunjukkan oleh entri menu baru yang disebut Lanjutkan instalasi dari jarak jauh menggunakan SSH.

Setelah memilih entri baru ini, Anda akan diminta untuk kata sandi baru yang akan digunakan untuk menghubungkan ke sistem instalasi dan untuk konfirmasinya. Itu saja. Sekarang Anda akan melihat layar yang menginstruksikan Anda untuk masuk dari jarak jauh sebagai *pemasang* pengguna dengan kata sandi yang baru saja Anda berikan. Detail penting lainnya yang perlu diperhatikan di layar ini adalah sidik jari sistem ini. Anda perlu mentransfer sidik jari dengan aman ke orang yang akan melanjutkan instalasi dari jarak jauh.

Jika Anda memutuskan untuk melanjutkan instalasi secara lokal, Anda selalu dapat menekan **Enter**, yang akan membawa Anda kembali ke menu utama, di mana Anda dapat memilih komponen lain.

Sekarang mari kita beralih ke sisi lain dari kabel. Sebagai prasyarat, Anda perlu mengonfigurasi terminal Anda untuk pengodean UTF-8, karena itulah yang digunakan sistem instalasi. Jika tidak, instalasi jarak jauh masih mungkin, tetapi Anda mungkin menemukan artefak tampilan aneh seperti batas dialog yang hancur atau karakter non-ascii yang tidak dapat dibaca. Menjalin koneksi dengan sistem instalasi cukup sekadar mengetik:

\$ ssh -l installer host_tujuan

Dimana host_tujuan adalah nama atau alamat IP komputer yang dipasang. Sebelum login yang sebenarnya sidik jari dari sistem jarak jauh akan ditampilkan dan Anda harus mengonfirmasi bahwa itu benar.

CATATAN

Server **ssh** di pemasang menggunakan konfigurasi baku yang tidak mengirim paket keep-alive. Pada prinsipnya, koneksi ke sistem yang dipasang harus tetap terbuka tanpa batas waktu. Namun, dalam beberapa situasi — tergantung pada pengaturan jaringan lokal Anda — koneksi mungkin hilang setelah beberapa periode tidak aktif. Salah satu kasus umum di mana ini dapat terjadi adalah ketika ada beberapa bentuk Network Address Translation (NAT) di suatu tempat antara klien dan sistem yang dipasang. Bergantung pada titik pemasangan mana koneksi hilang, Anda mungkin bisa atau tidak dapat melanjutkan instalasi setelah koneksi ulang.

Anda mungkin dapat menghindari koneksi yang dijatuhkan dengan menambahkan opsi -o ServerAliveInterval=nilai saat memulai ssh koneksi, atau dengan menambahkan opsi itu di berkas konfigurasi ssh. Namun perlu dicatat bahwa dalam beberapa kasus menambahkan opsi ini juga dapat menyebabkan koneksi terputus (misalnya jika paket keep-alive dikirim selama putus jaringan singkat, dari mana ssh tanpa itu akan pulih), jadi itu mesti hanya digunakan bila diperlukan.

Jika Anda memasang beberapa komputer secara bergiliran dan mereka kebetulan memiliki alamat IP atau nama host yang sama, **ssh** akan menolak untuk terhubung ke host tersebut. Alasannya adalah bahwa ia akan memiliki sidik jari yang berbeda, yang biasanya merupakan tanda serangan spoofing. Jika Anda yakin ini tidak terjadi, Anda harus menghapus baris yang relevan dari ~/.ssh/known_hosts^a dan coba lagi.

Perintah berikut akan menghapus entri yang ada untuk host: ssh-keygen -R <hostname| Alamat IP>.

Setelah login Anda akan disajikan dengan layar awal di mana Anda memiliki dua kemungkinan yang disebut Mulai menu dan Mulai shell. Yang pertama membawa Anda ke menu pemasang utama, di mana Anda dapat melanjutkan instalasi seperti biasa. Yang terakhir memulai shell dari mana Anda dapat memeriksa dan mungkin memperbaiki sistem jarak jauh. Anda hanya harus memulai satu sesi SSH untuk menu instalasi, tetapi dapat memulai beberapa sesi untuk shell.

Awas

Setelah Anda memulai instalasi dari jarak jauh melalui SSH, Anda tidak boleh kembali ke sesi instalasi yang berjalan di konsol lokal. Melakukan hal itu dapat merusak basis data yang menyimpan konfigurasi sistem baru. Hal ini pada gilirannya dapat mengakibatkan instalasi gagal atau masalah dengan sistem yang dipasang.

6.4 Memuat Firmware yang Kurang

Seperti yang dijelaskan dalam Bagian 2.2, beberapa perangkat memerlukan firmware untuk dimuat. Dalam kebanyakan kasus, perangkat tidak akan berfungsi sama sekali jika firmware tidak tersedia; terkadang fungsionalitas dasar tidak terganggu jika itu kurang dan firmware hanya diperlukan untuk mengaktifkan fitur tambahan.

Dimulai dengan Debian GNU/Linux 12.0, mengikuti Resolusi Umum tahun 2022 tentang firmware tidak bebas, image instalasi resmi (seperti netinst) dapat menyertakan paket-paket firmware tidak bebas. Bahkan dengan adanya paket-paket firmware tersebut, beberapa berkas firmware mungkin masih belum tersedia. Atau seseorang mungkin menggunakan berkas netboot, yang tidak menyertakan paket firmware.

Jika driver perangkat meminta firmware yang tidak tersedia, debian-installer akan menampilkan penawaran dialog untuk memuat firmware yang kurang. Jika opsi ini dipilih, debian-installer akan memindai perangkat yang tersedia untuk berkas firmware bukan paket atau paket yang berisi firmware. Jika ditemukan, firmware akan disalin ke lokasi yang benar (/lib/firmware) dan modul driver akan dimuat ulang.

CATATAN

Perangkat mana yang dipindai dan sistem berkas mana yang didukung tergantung pada arsitektur, metode instalasi, dan tahap instalasi. Terutama selama tahap awal instalasi, memuat firmware kemungkinan besar akan berhasil dari flash disk USB berformat FAT. Pada i386 dan amd64, firmware juga dapat dimuat dari kartu MMC atau SD.

Perhatikan bahwa dimungkinkan untuk melewatkan pemuatan firmware jika Anda tahu perangkat juga akan berfungsi tanpanya, atau jika perangkat tidak diperlukan selama instalasi.

6.4.1 Menyiapkan medium

Metode yang paling umum untuk memuat firmware tersebut adalah dari beberapa media lepasan seperti flash disk USB. Untuk menyiapkan flash disk USB (atau media lain seperti partisi hard drive), berkas firmware atau paket harus ditempatkan di direktori root atau direktori bernama /firmware dari sistem berkas pada media. Sistem berkas yang direkomendasikan untuk digunakan adalah FAT karena itu pasti akan didukung selama tahap awal instalasi.

Berkas tarball dan zip yang berisi paket saat ini untuk firmware yang paling umum, dan metadata terkait untuk memastikan deteksi yang tepat oleh pemasang (direktori dep11), tersedia dari:

• https://cdimage.debian.org/cdimage/firmware/trixie/

Cukup unduh berkas tarball atau zip untuk rilis yang benar dan bongkar ke sistem berkas di media.

Dimungkinkan juga untuk menyalin berkas firmware individual ke media. Firmware bukan paket dapat diperoleh misalnya dari sistem yang sudah dipasang atau dari vendor perangkat keras.

6.4.2 Firmware dan Sistem yang Dipasang

Setiap firmware yang dimuat selama instalasi akan disalin secara otomatis ke sistem yang dipasang. Dalam kebanyakan kasus ini akan memastikan bahwa perangkat yang membutuhkan firmware juga akan bekerja dengan benar setelah sistem reboot ke dalam sistem yang dipasang. Namun, jika sistem yang dipasang menjalankan versi kernel yang berbeda dengan pemasang, ada sedikit kemungkinan bahwa firmware tidak dapat dimuat karena perbedaan versi.

Jika firmware dimuat dari paket firmware, debian-installer juga akan memasang paket ini untuk sistem yang dipasang dan secara otomatis akan menambahkan bagian non-free-firmware dari arsip paket di sources. list APT. Ini memiliki keuntungan bahwa firmware harus diperbarui secara otomatis jika versi baru tersedia.

Jika memuat firmware dilewati selama instalasi, perangkat yang relevan mungkin tidak akan berfungsi dengan sistem yang dipasang sampai (paket) firmware dipasang secara manual.

CATATAN

Jika firmware dimuat dari berkas firmware yang bukan paket, firmware yang disalin ke sistem yang dipasang *tidak* akan diperbarui secara otomatis kecuali paket firmware yang sesuai (jika tersedia) dipasang setelah instalasi selesai.

6.4.3 Menyelesaikan Sistem yang Dipasang

Tergantung pada bagaimana instalasi dilakukan, mungkin kebutuhan untuk beberapa firmware tidak terdeteksi selama instalasi, bahwa firmware yang relevan tidak tersedia, atau bahwa seseorang memilih untuk tidak memasang beberapa firmware pada waktu itu. Dalam beberapa kasus, instalasi yang sukses masih dapat berakhir di layar hitam atau layar kacau ketika reboot ke dalam sistem yang dipasang. Ketika itu terjadi, solusi berikut dapat dicoba:

- Berikan opsi nomodeset pada baris perintah kernel. Ini dapat membantu boot ke mode "grafis fallback".
- Gunakan kombinasi tombol Ctrl-Alt-F2 untuk beralih ke VT2, yang mungkin menawarkan prompt login fungsional.

6.5 Penyesuaian

Menggunakan shell (lihat Bagian 6.3.9.2), proses instalasi dapat disesuaikan dengan hati-hati, agar pas dengan kasus penggunaan yang luar biasa:

6.5.1 Memasang sistem init alternatif

Debian menggunakan systemd sebagai sistem init bakunya. Namun, sistem init lainnya (seperti sysvinit dan OpenRC) didukung, dan waktu termudah untuk memilih sistem init alternatif adalah selama proses instalasi. Untuk petunjuk terperinci tentang cara melakukannya, silakan lihat Halaman init di wiki Debian.

Bab 7

Boot Ke Sistem Debian Baru Anda

7.1 Momen Kebenaran

Boot pertama sistem Anda dengan kekuatannya sendiri adalah apa yang oleh insinyur kelistrikan disebut "uji asap".

Jika Anda melakukan instalasi baku, hal pertama yang akan Anda lihat ketika Anda melakukan boot sistem adalah menu bootloader grub. Pilihan pertama dalam menu tersebut adalah untuk sistem Debian baru Anda. Jika Anda memiliki sistem operasi lain di komputer Anda (seperti Windows) yang terdeteksi oleh sistem instalasi, maka sistem operasi tersebut akan terdaftar di bagian bawah menu.

Jika sistem gagal memulai dengan benar, jangan panik. Jika instalasi berhasil, kemungkinan besar hanya ada masalah yang relatif kecil yang mencegah sistem melakukan boot Debian. Dalam kebanyakan kasus, masalah tersebut dapat diperbaiki tanpa harus mengulangi instalasi. Salah satu pilihan yang tersedia untuk memperbaiki masalah boot adalah dengan menggunakan mode penyelamatan bawaan installer (lihat Bagian 8.6).

Jika Anda baru mengenal Debian dan Linux, Anda mungkin memerlukan bantuan dari pengguna yang lebih berpengalaman. Untuk bantuan langsung secara daring, Anda dapat mencoba kanal IRC #debian atau #debian-boot pada jaringan OFTC. Atau Anda dapat menghubungi milis debian-user. Anda juga dapat mengajukan laporan instalasi seperti yang dijelaskan di Bagian 5.4.7. Pastikan bahwa Anda mendeskripsikan masalah Anda dengan jelas dan menyertakan pesan-pesan yang ditampilkan dan dapat membantu orang lain untuk mendiagnosa masalah tersebut.

Jika Anda memiliki sistem operasi lain pada komputer Anda yang tidak terdeteksi atau tidak terdeteksi dengan benar, harap ajukan laporan instalasi.

7.2 Mengait volume terenkripsi

Jika Anda membuat volume terenkripsi selama instalasi dan menetapkan titik kait, Anda akan diminta untuk memasukkan frasa sandi bagi masing-masing volume ini selama boot.

Untuk partisi yang dienkripsi menggunakan dm-crypt Anda akan diperlihatkan prompt berikut selama boot:

```
Starting early crypto disks... part_crypt(starting)
Enter LUKS passphrase:
```

Di baris pertama prompt, part adalah nama partisi yang mendasarinya, misalnya sda2 atau md0. Anda sekarang mungkin bertanya-tanya untuk volume mana Anda benar-benar memasukkan frasa sandi. Apakah itu berhubungan dengan /home Anda? Atau ke /var? Tentu saja, jika Anda hanya memiliki satu volume terenkripsi, ini mudah dan Anda cukup memasukkan frasa sandi yang Anda gunakan saat mengatur volume ini. Jika Anda mengatur lebih dari satu volume terenkripsi selama instalasi, catatan yang Anda tulis sebagai langkah terakhir dalam Bagian 6.3.4.6 berguna. Jika Anda tidak mencatat pemetaan antara part_crypt dan titik kait sebelumnya, Anda masih dapat menemukannya di /etc/crypttab dan /etc/fstab dari sistem baru Anda.

Prompt mungkin terlihat agak berbeda ketika sistem berkas root terenkripsi dipasang. Ini tergantung pada generator initramfs mana yang digunakan untuk menghasilkan initrd yang digunakan untuk mem-boot sistem. Contoh di bawah ini adalah untuk initrd yang dihasilkan menggunakan initramfs-tools:

```
Begin: Mounting root file system...

Begin: Running /scripts/local-top ...

Enter LUKS passphrase:
```

Tidak ada karakter (bahkan tanda bintang) yang akan ditampilkan saat memasukkan frasa sandi. Jika Anda memasukkan kata sandi yang salah, Anda memiliki dua percobaan lagi untuk memperbaikinya. Setelah percobaan

ketiga, proses boot akan melewati volume ini dan terus memasang sistem berkas berikutnya. Silakan lihat Bagian 7.2.1 untuk informasi lebih lanjut.

Setelah memasukkan semua frasa sandi, boot mesti berlanjut seperti biasa.

7.2.1 Penelusuran masalah

Jika beberapa volume terenkripsi tidak dapat dikait karena frasa sandi yang salah dimasukkan, Anda harus mengaitnya secara manual setelah boot. Ada beberapa kasus.

- Kasus pertama menyangkut partisi root. Ketika tidak dipasang dengan benar, proses boot akan berhenti dan Anda harus me-reboot komputer untuk mencoba lagi.
- Kasus termudah adalah untuk volume terenkripsi yang menyimpan data seperti /home atau /srv. Anda cukup memasangnya secara manual setelah boot.

Namun untuk dm-crypt ini agak rumit. Pertama, Anda perlu mendaftarkan volume dengan device mapper dengan menjalankan:

```
# /etc/init.d/cryptdisks start
```

Ini akan memindai semua volume yang disebutkan dalam /etc/crypttab dan akan membuat perangkat yang sesuai di bawah direktori /dev setelah memasukkan frasa sandi yang benar. (Volume yang sudah terdaftar akan dilewati, sehingga Anda dapat mengulangi perintah ini beberapa kali tanpa khawatir.) Setelah pendaftaran berhasil, Anda cukup memasang volume dengan cara biasa:

```
# mount /titik_kait
```

• Jika ada volume yang menyimpan berkas sistem non kritis tidak dapat dipasang (/usr atau /var), sistem harus tetap boot dan Anda harus dapat memasang volume secara manual seperti pada kasus sebelumnya. Namun, Anda juga perlu (memulai kembali) layanan apa pun yang biasanya berjalan di runlevel default Anda karena kemungkinan besar layanan tersebut tidak dimulai. Cara termudah adalah dengan me-reboot komputer.

7.3 Log Masuk

Setelah sistem Anda boot, Anda akan disajikan dengan prompt login. Masuk menggunakan login pribadi dan kata sandi yang Anda pilih selama proses instalasi. Sistem Anda sekarang siap digunakan.

Jika Anda adalah pengguna baru, Anda mungkin ingin menjelajahi dokumentasi yang sudah dipasang pada sistem Anda saat Anda mulai menggunakannya. Saat ini ada beberapa sistem dokumentasi, pekerjaan sedang berlangsung untuk mengintegrasikan berbagai jenis dokumentasi. Berikut adalah beberapa titik awal.

Dokumentasi yang menyertai program yang telah Anda pasang dapat ditemukan di /usr/share/doc/, di bawah sub direktori yang dinamai menurut program (atau, lebih tepatnya, paket Debian yang berisi program). Namun, dokumentasi yang lebih luas sering dikemas secara terpisah dalam paket dokumentasi khusus yang sebagian besar tidak dipasang secara baku. Misalnya, dokumentasi tentang alat manajemen paket **apt**dapat ditemukan di paket apt-doc atau apt-howto.

Selain itu, ada beberapa folder khusus dalam hierarki /usr/share/doc/. Linux HOWTOs dipasang dalam format .gz (terkompresi), dalam /usr/share/doc/HOWTO/en-txt/. Setelah memasang dhelp, Anda akan menemukan indeks dokumentasi yang dapat dijelajahi di /usr/share/doc/HTML/index.html.

Salah satu cara mudah untuk melihat dokumen-dokumen ini menggunakan peramban berbasis teks adalah dengan memasukkan perintah berikut:

```
$ cd /usr/share/doc/
$ w3m .
```

Titik setelah perintah w3m memberitahunya untuk menampilkan konten direktori saat ini.

Jika Anda lingkungan desktop grafis terpasng, Anda juga dapat menggunakan peramban webnya. Mulai peramban web dari menu aplikasi dan masukkan /usr/share/doc/ di bilah alamat.

Anda juga dapat mengetik **info perintah** atau **man command** untuk melihat dokumentasi tentang sebagian besar perintah yang tersedia di prompt. Mengetik **help** akan menampilkan bantuan pada perintah shell. Dan mengetik perintah diikuti dengan **--help** biasanya akan menampilkan ringkasan singkat dari penggunaan perintah. Jika hasil perintah menggulir melewati bagian atas layar, ketik | **more** setelah perintah untuk menyebabkan hasil dijeda sebelum menggulir melewati bagian atas layar. Untuk melihat daftar semua perintah yang tersedia yang dimulai dengan huruf tertentu, ketik huruf dan kemudian dua tab.

Bab 8

Langkah Berikutnya dan Ke Mana Harus Pergi Dari Sini

8.1 Mematikan sistem

Untuk mematikan sistem Debian GNU/Linux yang sedang berjalan, Anda tidak boleh reboot dengan sakelar reset di bagian depan atau belakang komputer Anda, atau mematikan saja komputer. Debian GNU/Linux harus dimatikan dengan cara yang terkontrol, jika tidak, berkas mungkin hilang dan/atau kerusakan disk mungkin terjadi. Jika Anda menjalankan lingkungan desktop, biasanya ada opsi untuk "keluar" yang tersedia dari menu aplikasi yang memungkinkan Anda untuk mematikan (atau me-reboot) sistem.

Atau Anda dapat menekan kombinasi tombol Ctrl-Alt-Del . Jika kombinasi tombol tidak berfungsi, opsi terakhir adalah masuk sebagai root dan ketik perintah yang diperlukan. Pakai **reboot** untuk me-reboot sistem. Pakai **halt** untuk menghentikan sistem tanpa mematikannya ¹. Untuk mematikan mesin, gunakan **poweroff** atau **shutdown -h now**. Sistem init systemd menyediakan perintah tambahan yang melakukan fungsi yang sama; misalnya **systemctl reboot** atau **systemctl poweroff**.

8.2 Mengorientasikan Diri Anda ke Debian

Debian sedikit berbeda dari distribusi lainnya. Bahkan jika Anda terbiasa dengan Linux di distribusi lain, ada halhal yang harus Anda ketahui tentang Debian untuk membantu Anda menjaga sistem Anda dalam keadaan baik dan bersih. Bab ini berisi materi untuk membantu Anda mendapatkan orientasi; ini tidak dimaksudkan untuk menjadi tutorial tentang cara menggunakan Debian, tetapi hanya sekilas tentang sistem untuk yang sangat terburu-buru.

8.2.1 Sistem Pemaketan Debian

Konsep yang paling penting untuk dipahami adalah sistem pengemasan Debian intinya, sebagian besar sistem Anda harus dipertimbangkan di bawah kendali sistem pengemasan. Ini termasuk:

- /usr (tidak termasuk /usr/local)
- /var (Anda dapat membuat /var/local dan aman di sana)
- /bin
- /sbin
- /lib

Misalnya, jika Anda mengganti /usr/bin/perl, itu akan berfungsi, tetapi kemudian jika Anda memutakhirkan paket perl Anda, berkas yang Anda letakkan di sana akan diganti. Para ahli dapat menyiasatinya dengan meng-"hold" paket dalam **aptitude**.

Salah satu metode instalasi terbaik adalah apt. Anda dapat menggunakan versi baris perintah dari **apt** serta alat seperti aptitude atau synaptic (yang hanya frontend grafis untuk **apt**). Perhatikan bahwa apt juga akan memungkinkan Anda menggabungkan main, contrib, non-free, dan non-free-firmware sehingga Anda dapat memiliki paket terbatas (sebenarnya bukan milik Debian) serta paket dari Debian GNU/Linux pada waktu bersamaan.

¹Di bawah sistem init SysV **halt** memiliki efek yang sama seperti **poweroff**, tetapi dengan systemd sebagai sistem init (default sejak Jessie) efeknya berbeda.

8.2.2 Perangkat Lunak Tambahan yang Tersedia untuk Debian

Ada repositori perangkat lunak resmi dan tidak resmi yang tidak diaktifkan di instalasi baku Debian. Ini berisi perangkat lunak yang menurut banyak orang penting dan diharapkan untuk dimiliki. Informasi tentang repositori tambahan ini dapat ditemukan di halaman Wiki Debian berjudul The Software Available for Debian's Stable Release.

8.2.3 Manajemen Versi Aplikasi

Versi alternatif aplikasi dikelola oleh update-alternatives. Jika Anda mempertahankan beberapa versi aplikasi Anda, baca halaman manual update-alternatives.

8.2.4 Manajemen Pekerjaan Cron

Pekerjaan apa pun di bawah lingkup administrator sistem harus ada di /etc, karena mereka adalah berkas konfigurasi. Jika Anda memiliki pekerjaan cron root untuk eksekusi harian, mingguan, atau bulanan, masukkan ke dalam /etc/cron.{daily, weekly, monthly}. Ini dipanggil dari /etc/crontab, dan akan berjalan dalam urutan abjad, yang menserialkan mereka.

Di sisi lain, jika Anda memiliki pekerjaan cron yang (a) perlu dijalankan sebagai pengguna khusus, atau (b) perlu berjalan pada waktu atau frekuensi khusus, Anda dapat menggunakan /etc/crontab, atau, lebih baik lagi, /etc/cron.d/apapun. Berkas-berkas khusus ini juga memiliki bidang tambahan yang memungkinkan Anda untuk menetapkan akun pengguna tempat pekerjaan cron berjalan.

Dalam kedua kasus, Anda cukup mengedit berkas dan cron akan melihatnya secara otomatis. Tidak perlu menjalankan perintah khusus. Untuk informasi lebih lanjut lihat cron(8), crontab(5), dan /usr/share/doc/cron/README.Debian.

8.3 Bacaan dan Informasi Lebih Lanjut

Situs web Debian berisi sejumlah besar dokumentasi tentang Debian. Secara khusus, lihat FAQ Debian GNU/Linux dan Referensi Debian. Indeks dokumentasi Debian lainnya tersedia dari Proyek Dokumentasi Debian. Komunitas Debian mandiri; untuk berlangganan satu atau lebih milis Debian, lihat halaman Berlangganan Milis. Terakhir, namun tidak kalah pentingnya, Arsip Milis Debian berisi banyak informasi tentang Debian.

Jika Anda memerlukan informasi tentang program tertentu, Anda harus terlebih dahulu mencoba man program, atau info program.

Ada banyak dokumentasi berguna di /usr/share/doc juga. Secara khusus, /usr/share/doc/HOWTO dan /usr/share/doc/FAQ berisi banyak informasi menarik. Untuk mengirimkan bug, lihat /usr/share/doc/debian/bug*. Untuk membaca tentang masalah spesifik Debian untuk program tertentu, lihat /usr/share/doc/(nama paket)/README.Debian.

Sumber informasi umum tentang GNU/Linux adalah Proyek Dokumentasi Linux. Di sana Anda akan menemukan HOWTO dan petunjuk ke informasi lain yang sangat berharga di bagian-bagian sistem GNU/Linux.

Linux adalah implementasi dari Unix. Proyek Dokumentasi Linux (LDP) mengumpulkan sejumlah HOWTO dan buku daring yang berkaitan dengan Linux.

Jika Anda baru mengenal Unix, Anda mungkin harus keluar dan membeli beberapa buku dan membaca. Daftar FAQ Unix ini berisi sejumlah dokumen UseNet yang memberikan referensi sejarah yang bagus.

8.4 Menyiapkan Sistem Anda Untuk Menggunakan Surel

Saat ini, surel adalah bagian penting dari kehidupan banyak orang. Karena ada banyak opsi tentang cara mengaturnya, dan karena mengaturnya dengan benar adalah penting untuk beberapa utilitas Debian, kami akan mencoba membahas dasar-dasar di bagian ini.

Ada tiga fungsi utama yang membentuk sistem surel. Pertama ada *Mail User Agent* (MUA) yang merupakan program yang benar-benar digunakan pengguna untuk menulis dan membaca surel. Lalu ada *Mail Transfer Agent* (MTA) yang mengurus transfer pesan dari satu komputer ke komputer lain. Dan terakhir ada *Mail Delivery Agent* (MDA) yang mengurus pengiriman surat masuk ke kotak masuk pengguna.

Ketiga fungsi ini dapat dilakukan oleh program yang terpisah, tetapi mereka juga dapat digabungkan dalam satu atau dua program. Dimungkinkan juga untuk memiliki program yang berbeda menangani fungsi-fungsi ini untuk berbagai jenis surat.

Pada sistem Linux dan Unix **mutt** secara historis adalah MUA yang sangat populer. Seperti kebanyakan program Linux tradisional, ini berbasis teks. Ini sering digunakan dalam kombinasi dengan **exim** atau **sendmail** sebagai MTA dan **procmail** sebagai MDA.

Dengan meningkatnya popularitas sistem desktop grafis, penggunaan program surel grafis seperti GNOME **evolution**, KDE **kmail**, atau Mozilla **Thunderbird** telah menjadi lebih populer. Program-program ini menggabungkan fungsi MUA, MTA, dan MDA, tetapi dapat — dan seringkali — juga digunakan dalam kombinasi dengan alat Linux tradisional.

8.4.1 Konfigurasi Surel Baku

Bahkan jika Anda berencana untuk menggunakan program surat grafis, akan berguna, untuk memasang MTA/MDA tradisional dan mengatur dengan benar pada sistem Debian GNU/Linux Anda. Alasannya adalah bahwa berbagai utilitas berjalan pada sistem² dapat mengirim pemberitahuan penting melalui surel untuk memberi tahu administrator sistem tentang (potensi) masalah atau perubahan.

Untuk ini, Anda dapat memasang exim4 dan mutt dengan **apt install exim4 mutt**. exim4 adalah kombinasi MTA/MDA yang relatif kecil tetapi sangat fleksibel. Secara baku akan dikonfigurasi untuk hanya menangani surel lokal ke sistem itu sendiri dan surel yang ditujukan kepada administrator sistem (akun root) akan dikirim ke akun pengguna biasa yang dibuat selama instalasi³.

Ketika surel sistem dikirim, mereka ditambahkan ke berkas di /var/mail/nama_akun. Surel dapat dibaca menggunakan **mutt**.

8.4.2 Mengirim Surel ke Luar Sistem

Seperti disebutkan sebelumnya, sistem Debian yang dipasang hanya diatur untuk menangani surel lokal ke sistem, bukan untuk mengirim surel ke orang lain atau untuk menerima surel dari orang lain.

Jika Anda ingin exim4 menangani surel eksternal, silakan merujuk ke sub bagian berikutnya untuk opsi konfigurasi dasar yang tersedia. Pastikan untuk menguji bahwa surat dapat dikirim dan diterima dengan benar.

Jika Anda berniat untuk menggunakan program surat grafis dan menggunakan server surel dari Penyedia Layanan Internet (ISP) atau perusahaan Anda, sebenarnya tidak perlu mengonfigurasi exim4 untuk menangani surel eksternal. Cukup konfigurasikan program surat grafis favorit Anda untuk menggunakan server yang benar untuk mengirim dan menerima surel (bagaimana melakukannya, di luar cakupan manual ini).

Namun, dalam hal ini Anda mungkin perlu mengonfigurasi utilitas individu untuk mengirim surel dengan benar. Salah satu utilitas tersebut adalah **reportbug**, sebuah program yang memfasilitasi pengiriman laporan bug terhadap paket Debian. Secara baku, ia berharap dapat menggunakan exim4 untuk mengirimkan laporan bug.

Untuk mengatur dengan benar **reportbug** agar menggunakan server surel eksternal, silakan jalankan perintah **reportbug --configure** dan jawab "tidak" untuk pertanyaan apakah MTA tersedia. Anda kemudian akan diminta untuk server SMTP yang akan digunakan untuk mengirimkan laporan bug.

8.4.3 Mengonfigurasi Mail Transport Agent Exim4

Jika Anda ingin sistem Anda juga menangani surel eksternal, Anda perlu mengonfigurasi ulang paket exim44:

dpkg-reconfigure exim4-config

Setelah memasukkan perintah itu (sebagai root), Anda akan ditanya apakah Anda ingin membagi konfigurasi menjadi berkas-berkas kecil. Jika Anda tidak yakin, pilih opsi baku.

Selanjutnya Anda akan disajikan dengan beberapa skenario surat umum. Pilih salah satu yang paling mirip dengan kebutuhan Anda.

internet site Sistem Anda terhubung ke jaringan dan surel Anda dikirim dan diterima langsung menggunakan SMTP.
Pada layar berikut, Anda akan ditanyai beberapa pertanyaan dasar, seperti nama surel mesin Anda, atau daftar domain yang Anda terima atau sampaikan surelnya.

mail sent by smarthost Dalam skenario ini surel keluar Anda diteruskan ke mesin lain, yang disebut "smarthost", yang menangani pengiriman pesan ke tujuannya. Smarthost juga biasanya menyimpan surat masuk yang ditujukan ke komputer Anda, jadi Anda tidak perlu daring secara permanen. Itu juga berarti Anda harus mengunduh surel Anda dari smarthost melalui program seperti fetchmail.

 $^{^2}$ Contohnya adalah: cron, quota, logcheck, aide, \dots

³Penerusan surel untuk root ke akun pengguna biasa dikonfigurasi di /etc/aliases. Jika tidak ada akun pengguna biasa yang dibuat, surat tentu saja akan dikirim ke akun root itu sendiri.

⁴Anda tentu saja juga dapat menghapus exim4 dan menggantinya dengan MTA/MDA alternatif.

Dalam banyak kasus, smarthost akan menjadi server surel ISP Anda, yang membuat opsi ini sangat cocok untuk pengguna dial-up. Ini juga bisa menjadi server surat perusahaan, atau bahkan sistem lain di jaringan Anda sendiri.

mail sent by smarthost; no local mail Opsi ini pada dasarnya sama dengan yang sebelumnya kecuali bahwa sistem tidak akan diatur untuk menangani surel untuk domain surel lokal. Surel pada sistem itu sendiri (misalnya untuk administrator sistem) masih akan ditangani.

local delivery only Ini adalah opsi baku konfigurasi sistem Anda.

no configuration at this time Pilih ini jika Anda benar-benar yakin bahwa Anda tahu apa yang Anda lakukan. Ini akan meninggalkan Anda dengan sistem surel yang tidak dikonfigurasi — sampai Anda mengonfigurasinya, Anda tidak akan dapat mengirim atau menerima surel apa pun dan Anda mungkin melewatkan beberapa pesan penting dari utilitas sistem Anda.

Jika tidak satu pun dari skenario ini sesuai dengan kebutuhan Anda, atau jika Anda memerlukan pengaturan yang lebih halus, Anda perlu mengedit berkas konfigurasi di bawah direktori /etc/exim4 setelah instalasi selesai. Informasi lebih lanjut tentang exim4 dapat ditemukan di bawah /usr/share/doc/exim4; berkas README. Debian.gz memiliki rincian lebih lanjut tentang konfigurasi exim4 dan menjelaskan di mana menemukan dokumentasi tambahan.

Perhatikan bahwa mengirim surel langsung ke Internet saat Anda tidak memiliki nama domain resmi, dapat mengakibatkan surel Anda ditolak karena tindakan anti-spam pada server penerima. Menggunakan server surel ISP Anda lebih disukai. Jika Anda masih ingin mengirim surel secara langsung, Anda mungkin ingin menggunakan alamat surel yang berbeda dari yang dihasilkan secara baku. Jika Anda menggunakan exim4 sebagai MTA Anda, ini dimungkinkan dengan menambahkan entri di /etc/email-addresses.

8.5 Mengkompilasi Kernel Baru

Mengapa seseorang ingin mengkompilasi kernel baru? Ini kemungkinan besar tidak perlu karena kernel baku yang dikirimkan dengan Debian menangani hampir semua konfigurasi.

Namun, jika Anda ingin mengkompilasi kernel Anda sendiri, ini tentu saja mungkin dan kami merekomendasikan penggunaan target "make deb-pkg". Untuk informasi lebih lanjut, baca Debian Linux Kernel Handbook.

8.6 Memulihkan Sistem yang Rusak

Terkadang, ada yang salah, dan sistem yang Anda pasang dengan hati-hati tidak lagi dapat di-boot. Mungkin konfigurasi boot loader rusak saat mencoba perubahan, atau mungkin kernel baru yang Anda pasang tidak akan boot, atau mungkin sinar kosmik mengenai disk Anda dan membalik bit di /sbin/init. Terlepas dari penyebabnya, Anda harus memiliki sistem untuk bekerja saat Anda memperbaikinya, dan mode penyelamatan dapat berguna untuk ini.

Untuk mengakses mode penyelamatan, pilih rescue dari menu boot, ketik rescue pada prompt boot:, atau boot dengan parameter boot rescue/enable=true. Anda akan diperlihatkan beberapa layar pertama pemasang, dengan catatan di sudut layar untuk menunjukkan bahwa ini adalah mode penyelamatan, bukan instalasi penuh. Jangan khawatir, sistem Anda tidak akan ditimpa! Mode penyelamatan hanya memanfaatkan fasilitas deteksi perangkat keras yang tersedia di pemasang untuk memastikan bahwa disk, perangkat jaringan, dan sebagainya tersedia untuk Anda saat memperbaiki sistem Anda.

Alih-alih alat partisi, Anda sekarang harus disajikan dengan daftar partisi pada sistem Anda, dan diminta untuk memilih salah satunya. Biasanya, Anda harus memilih partisi yang berisi sistem berkas root yang perlu Anda perbaiki. Anda dapat memilih partisi pada perangkat RAID dan LVM serta yang dibuat langsung pada disk.

Jika memungkinkan, pemasang sekarang akan memberi Anda prompt shell di sistem berkas yang Anda pilih, yang dapat Anda gunakan untuk melakukan perbaikan yang diperlukan. Misalnya, jika Anda perlu memasang ulang boot loader GRUB ke dalam master boot record dari hard disk pertama, Anda dapat memasukkan perintah grub-install '(hd0)' untuk melakukannya.

Jika pemasang tidak dapat menjalankan shell yang dapat digunakan di sistem berkas root yang Anda pilih, mungkin karena sistem berkas rusak, maka ia akan mengeluarkan peringatan dan menawarkan untuk memberi Anda shell di lingkungan pemasang sebagai gantinya. Anda mungkin tidak memiliki banyak alat yang tersedia di lingkungan ini, tetapi mereka sering kali cukup untuk memperbaiki sistem Anda. Sistem berkas root yang Anda pilih akan dipasang pada direktori /target.

Dalam kedua kasus, setelah Anda keluar dari shell, sistem akan reboot.

Akhirnya, perhatikan bahwa memperbaiki sistem yang rusak bisa jadi sulit, dan manual ini tidak mencoba untuk masuk ke semua hal yang mungkin salah atau bagaimana cara memperbaikinya. Jika Anda memiliki masalah, konsultasikan dengan ahlinya.

Lampiran A

Cara Instalasi

Dokumen ini menjelaskan cara memasang Debian GNU/Linux trixie untuk 64-bit PC ("amd64") dengan debian-installer baru. Ini adalah panduan cepat dari proses instalasi yang mestinya berisi semua informasi yang Anda perlukan untuk sebagian besar instalasi. Ketika informasi lebih lanjut dapat berguna, kami akan menautkan ke penjelasan yang lebih rinci di bagian lain dari dokumen ini.

A.1 Pendahuluan

Jika Anda menemukan bug selama instalasi Anda, silakan merujuk ke Bagian 5.4.7 untuk instruksi tentang cara melaporkannya. Jika Anda memiliki pertanyaan yang tidak dapat dijawab oleh dokumen ini, silakan arahkan mereka ke milis debian-boot (debian-boot@lists.debian.org) atau tanyakan pada IRC (#debian-boot di jaringan OFTC).

A.2 Mem-boot pemasang

Tim debian-cd menyediakan build image instalasi menggunakan debian-installer di halaman CD/DVD Debian. Untuk informasi selengkapnya tentang tempat mendapatkan image instalasi, lihat Bagian 4.1.

Beberapa metode instalasi memerlukan image lain selain untuk media optik. Bagian 4.2.1 menjelaskan cara menemukan image pada cermin Debian.

Sub bagian di bawah ini akan memberikan detail tentang image mana yang harus Anda dapatkan untuk setiap kemungkinan cara instalasi.

A.2.1 Cakram optik

Image CD netinst adalah image populer yang dapat digunakan untuk memasang trixie dengan debian-installer. Metode instalasi ini dimaksudkan untuk boot dari image dan memasang paket tambahan melalui jaringan; itulah asal nama "netinst". Image memiliki komponen perangkat lunak yang diperlukan untuk menjalankan pemasang dan paket dasar untuk menyediakan sistem minimal trixie. Jika Anda lebih suka, Anda bisa mendapatkan image DVD yang tidak memerlukan jaringan untuk memasang. Anda hanya perlu image pertama dari set tersebut.

Unduh jenis apa pun yang Anda inginkan dan bakar ke cakram optik. Untuk mem-boot disk, Anda mungkin perlu mengubah konfigurasi BIOS/UEFI Anda, seperti yang dijelaskan dalam Bagian 3.6.1.

A.2.2 Flash disk USB

Anda juga dapat memasang dari perangkat penyimpanan USB lepasan. Misalnya gantungan kunci USB dapat membuat media instalasi Debian praktis yang dapat Anda bawa ke mana saja.

Cara termudah untuk menyiapkan flash disk USB Anda adalah dengan mengunduh image CD atau DVD Debian apa pun yang pas padanya, dan menulis image langsung ke flash disk. Tentu saja ini akan menghancurkan apa pun yang sudah ada di flash disk. Ini bisa bekerja karena image CD/DVD Debian adalah image "isohybrid" yang dapat di-boot baik dari drive optik maupun USB.

Ada cara lain yang lebih fleksibel untuk mengatur flash disk untuk menggunakan debian-installer, dan dimung-kinkan untuk membuatnya bekerja dengan flash disk yang lebih kecil. Untuk detailnya, lihat wiki kami.

Meskipun boot dari penyimpanan USB cukup umum pada sistem UEFI, ini agak berbeda di dunia BIOS yang lebih lama. Beberapa BIOS dapat mem-boot penyimpanan USB secara langsung, dan beberapa tidak bisa. Anda mungkin perlu mengonfigurasi BIOS/UEFI Anda untuk mengaktifkan "Dukungan legacy USB" atau "Dukungan legacy". Menu

pemilihan perangkat boot harus menampilkan "drive lepasan" atau "USB-HDD" agar dapat di-boot dari perangkat USB. Untuk petunjuk dan detail yang bermanfaat, lihat Bagian 5.1.1.

A.2.3 Boot dari jaringan

Dimungkinkan juga untuk boot debian-installer sepenuhnya dari jaringan. Berbagai metode untuk netboot tergantung pada arsitektur dan penyiapan netboot Anda. Berkas-berkas di netboot/dapat digunakan untuk netboot debian-installer.

Hal termudah untuk disiapkan mungkin adalah netboot PXE. Untar berkas netboot/pxeboot.tar.gz ke /srv/tftp atau di mana pun yang sesuai untuk server tftp Anda. Siapkan server DHCP Anda untuk meneruskan nama berkas pxelinux.0 ke klien, dan dengan keberuntungan semuanya akan bekerja apa adanya. Untuk petunjuk terperinci, lihat Bagian 4.5.

A.2.4 Boot dari hard disk

Dimungkinkan untuk mem-boot pemasang tanpa menggunakan media lepasan, tetapi hanya hard disk yang ada, yang dapat memiliki OS yang berbeda di dalamnya. Unduh image hd-media/initrd.gz, hd-media/vmlinuz, dan image DVD Debian ke direktori tingkat puncak hard disk. Pastikan image memiliki nama berkas yang diakhiri dengan .iso. Sekarang tinggal boot linux dengan initrd. Bagian 5.1.3 menjelaskan salah satu cara untuk melakukannya.

A.3 Instalasi

Setelah pemasang dimulai, Anda akan disambut dengan layar awal. Tekan **Enter** untuk boot, atau baca instruksi untuk metode dan parameter boot lainnya (lihat Bagian 5.3).

Setelah beberapa saat Anda akan diminta untuk memilih bahasa Anda. Gunakan tombol panah untuk memilih bahasa dan tekan **Enter** untuk melanjutkan. Selanjutnya Anda akan diminta untuk memilih negara Anda, dengan pilihan termasuk negara tempat bahasa Anda digunakan. Jika tidak ada dalam daftar pendek, daftar semua negara di dunia tersedia.

Anda mungkin diminta untuk mengonfirmasi tata letak papan ketik Anda. Pilih baku kecuali Anda tahu lebih baik.

Sekarang duduk santai sementara debian-installer mendeteksi beberapa perangkat keras Anda, dan memuat sisa image instalasi.

Selanjutnya pemasang akan mencoba mendeteksi perangkat keras jaringan Anda dan mengatur jaringan dengan DHCP. Jika Anda tidak berada di jaringan atau tidak memiliki DHCP, Anda akan diberi kesempatan untuk mengonfigurasi jaringan secara manual.

Menyiapkan jaringan diikuti dengan pembuatan akun pengguna. Secara baku Anda diminta untuk memberikan kata sandi bagi akun "root" (administrator) dan informasi yang diperlukan untuk membuat satu akun pengguna biasa. Jika Anda tidak menentukan kata sandi untuk pengguna "root", akun ini akan dinonaktifkan tetapi paket **sudo** akan dipasang nanti agar memungkinkan tugas administratif dilakukan pada sistem baru. Secara baku, pengguna pertama yang dibuat pada sistem akan diizinkan untuk menggunakan perintah **sudo** untuk menjadi root.

Langkah selanjutnya adalah mengatur jam dan zona waktu Anda. Pemasang akan mencoba menghubungi server waktu di Internet untuk memastikan jam diatur dengan benar. Zona waktu didasarkan pada negara yang dipilih sebelumnya dan pemasang hanya akan meminta untuk memilih salah satu jika suatu negara memiliki beberapa zona.

Sekarang saatnya untuk mempartisi disk Anda. Pertama, Anda akan diberi kesempatan untuk secara otomatis mempartisi seluruh drive, atau ruang kosong yang tersedia di drive (lihat Bagian 6.3.4.2). Ini direkomendasikan untuk pengguna baru atau siapa pun yang terburu-buru. Jika Anda tidak ingin partisi otomatis, pilih Manual dari menu.

Jika Anda memiliki partisi Windows yang ingin Anda pertahankan, berhati-hatilah dengan partisi otomatis. Jika Anda memilih partisi manual, Anda dapat menggunakan pemasang untuk mengubah ukuran partisi FAT atau NTFS yang ada untuk menciptakan ruang bagi instalasi Debian: cukup pilih partisi dan tentukan ukuran barunya.

Pada layar berikutnya Anda akan melihat tabel partisi Anda, bagaimana partisi akan diformat, dan di mana mereka akan dikait. Pilih partisi untuk mengubah atau menghapusnya. Jika Anda melakukan partisi otomatis, Anda seharusnya hanya dapat memilih Selesaikan partisi dan tulis perubahan pada disk dari menu untuk menggunakan apa yang diaturnya. Ingatlah untuk menetapkan setidaknya satu partisi untuk ruang swap dan untuk memasang partisi pada /. Untuk informasi lebih rinci tentang cara menggunakan partisi, silakan merujuk ke Bagian 6.3.4; lampiran Lampiran C memiliki informasi yang lebih umum tentang partisi.

Sekarang debian-installer memformat partisi Anda dan mulai memasang sistem dasar, yang dapat memakan waktu cukup lama. Itu diikuti dengan memasang kernel.

Sistem dasar yang dipasang sebelumnya adalah instalasi yang berfungsi, tetapi sangat minimal. Untuk membuat sistem lebih fungsional, langkah selanjutnya memungkinkan Anda memasang paket tambahan dengan memilih tugas. Sebelum paket dapat dipasang, apt perlu dikonfigurasi karena itu menentukan dari mana paket akan diambil. Tugas "Utilitas sistem standar" akan dipilih secara baku dan biasanya harus dipasang. Pilih tugas "Lingkungan desktop" jika Anda ingin memiliki desktop grafis setelah instalasi. Lihat Bagian 6.3.6.2 untuk informasi tambahan tentang langkah ini.

Langkah terakhir adalah memasang boot loader. Jika pemasang mendeteksi sistem operasi lain di komputer Anda, itu akan menambahkannya ke menu boot dan memberi tahu Anda. Secara baku GRUB akan dipasang ke partisi UEFI/boot record dari drive utama, yang umumnya merupakan pilihan yang baik. Anda akan diberi kesempatan untuk mengganti pilihan itu dan memasangnya di tempat lain.

debian-installer sekarang akan memberi tahu Anda bahwa instalasi telah selesai. Cabut cdrom atau media boot lainnya dan tekan **Enter** untuk me-reboot mesin Anda. Ini seharusnya boot ke sistem yang baru dipasang dan memungkinkan Anda untuk masuk. Ini dijelaskan dalam Bab 7.

Jika Anda memerlukan informasi lebih lanjut tentang proses instalasi, lihat Bab 6.

A.4 Kirimi kami laporan instalasi

Jika Anda berhasil mengelola instalasi dengan debian-installer, harap luangkan waktu untuk memberikan laporan kepada kami. Cara paling sederhana untuk melakukannya adalah dengan memasang paket reportbug (apt install reportbug), mengonfigurasi reportbug seperti yang dijelaskan dalam Bagian 8.4.2, dan jalankan reportbug installation-reports.

Jika Anda tidak menyelesaikan instalasi, Anda mungkin menemukan bug di debian-installer. Untuk meningkatkan pemasang, kami perlu mengetahuinya, jadi harap luangkan waktu untuk melaporkannya. Anda dapat menggunakan laporan instalasi untuk melaporkan masalah; jika instalasi gagal total, lihat Bagian 5.4.6.

A.5 Dan akhirnya...

Kami berharap instalasi Debian Anda menyenangkan dan Anda rasakan Debian berguna. Anda mungkin ingin membaca Bab 8.

Lampiran B

Mengotomatiskan instalasi menggunakan preseed

Lampiran ini menjelaskan cara mem-preseed jawaban atas pertanyaan di debian-installer untuk mengoto-matisasi instalasi Anda.

Fragmen konfigurasi yang digunakan dalam lampiran ini juga tersedia sebagai contoh berkas prakonfigurasi dari ../example-preseed.txt.

B.1 Pengantar

Preseed menyediakan cara untuk mengatur jawaban atas pertanyaan yang diajukan selama proses instalasi, tanpa harus memasukkan jawaban secara manual saat instalasi sedang berjalan. Hal ini memungkinkan untuk sepenuhnya mengotomatisasi sebagian besar jenis instalasi dan bahkan menawarkan beberapa fitur yang tidak tersedia selama instalasi normal.

Preseed tidak harus ada. Jika Anda menggunakan berkas preseed kosong, pemasang akan berperilaku dengan cara yang sama seperti dalam instalasi manual normal. Setiap pertanyaan yang Anda preseed akan (jika Anda melakukannya dengan benar!) memodifikasi instalasi dalam beberapa cara dari baseline itu.

B.1.1 Metode preseed

Ada tiga metode yang dapat digunakan untuk preseed: *initrd*, *file*, dan *network*. Preseed initrd akan bekerja dengan metode instalasi apa pun dan mendukung preseed lebih banyak hal, tetapi membutuhkan persiapan paling banyak. Preseed file dan network masing-masing dapat digunakan dengan metode instalasi yang berbeda.

Tabel berikut menunjukkan metode preseed mana yang dapat digunakan dengan metode instalasi mana.

Metode instalasi	initrd	file	network
CD/DVD/USB	ya	ya	ya ¹
netboot	ya	tidak	ya
hd-media (termasuk	V9	V9	vo1
flash disk usb)	ya	ya	ya¹

Perbedaan penting antara metode preseed adalah titik di mana berkas prakonfigurasi dimuat dan diproses. Untuk preseed initrd ini tepat di awal instalasi, bahkan sebelum pertanyaan pertama diajukan. Preseed dari baris perintah kernel terjadi tepat setelahnya. Dengan demikian dimungkinkan untuk mengganti konfigurasi yang diatur dalam initrd dengan mengedit baris perintah kernel (baik dalam konfigurasi bootloader atau secara manual pada waktu boot untuk bootloader yang mengizinkannya). Untuk preseed file ini setelah image instalasi telah dimuat. Untuk preseed network hanya setelah jaringan dikonfigurasi.

¹tetapi hanya jika Anda memiliki akses jaringan, dan mengatur preseed/url yang sesuai

PENTING

Jelas, setiap pertanyaan yang telah diproses sebelum berkas prakonfigurasi dimuat tidak dapat dipra-seed (ini akan mencakup pertanyaan yang hanya ditampilkan pada prioritas sedang atau rendah, seperti deteksi perangkat keras pertama yang dijalankan). Cara yang tidak begitu nyaman untuk menghindari pertanyaan-pertanyaan ini ditanyakan adalah dengan melakukan preseed melalui parameter boot, seperti yang dijelaskan dalam Bagian B.2.2.

Untuk menghindari pertanyaan yang biasanya muncul sebelum preseed terjadi dengan mudah, Anda dapat memulai pemasang dalam mode "otomatis". Ini menunda pertanyaan yang biasanya akan diajukan terlalu dini untuk preseed (yaitu pemilihan bahasa, negara, dan papan tik) sampai setelah jaringan muncul, sehingga memungkinkan mereka untuk di-preseed. Ini juga menjalankan instalasi pada prioritas kritis, yang menghindari banyak pertanyaan yang tidak penting. Lihat Bagian B.2.3 untuk detailnya.

B.1.2 Limitasi

Meskipun sebagian besar pertanyaan digunakan oleh debian-installer dapat di-preseed menggunakan metode ini, ada beberapa pengecualian penting. Anda harus (kembali) mempartisi seluruh disk atau menggunakan ruang kosong yang tersedia pada disk; tidak mungkin menggunakan partisi yang ada.

B.2 Menggunakan preseed

Pertama Anda harus membuat berkas prakonfigurasi dan menempatkannya di lokasi dari mana Anda ingin menggunakannya. Membuat berkas prakonfigurasi dibahas nanti dalam lampiran ini. Menempatkannya di lokasi yang benar cukup mudah untuk preseed jaringan atau jika Anda ingin membaca berkas dari flash disk USB. Jika Anda ingin memasukkan berkas dalam image ISO instalasi, Anda harus me-remaster image. Cara mendapatkan berkas prakonfigurasi yang termasuk dalam initrd berada di luar cakupan dokumen ini; silakan baca dokumentasi pengembang untuk debian-installer.

Contoh berkas prakonfigurasi yang dapat Anda gunakan sebagai dasar untuk berkas prakonfigurasi Anda sendiri tersedia dari ../example-preseed.txt. Berkas ini didasarkan pada fragmen konfigurasi yang disertakan dalam lampiran ini.

B.2.1 Memuat berkas prakonfigurasi

Jika Anda menggunakan preseed initrd, Anda hanya perlu memastikan berkas bernama preseed.cfg disertakan dalam direktori root initrd. Pemasang akan secara otomatis memeriksa apakah berkas ini ada dan memuatnya.

Untuk metode preseed lainnya, Anda perlu memberi tahu pemasang berkas apa yang akan digunakan saat Anda mem-boot-nya. Ini biasanya dilakukan dengan meneruskan kernel parameter boot, baik secara manual pada saat boot atau dengan mengedit berkas konfigurasi bootloader (misalnya syslinux.cfg) dan menambahkan parameter ke akhir baris append untuk kernel.

Jika Anda menentukan berkas prakonfigurasi dalam konfigurasi bootloader, Anda dapat mengubah konfigurasi sehingga Anda tidak perlu menekan enter untuk mem-boot pemasang. Untuk syslinux ini berarti mengatur batas waktu ke 1 di syslinux.cfg.

Untuk memastikan pemasang mendapatkan berkas prakonfigurasi yang tepat, Anda dapat secara opsional menentukan checksum bagi berkas tersebut. Saat ini harus berupa md5sum, dan jika ditentukan harus cocok dengan berkas prakonfigurasi atau pemasang akan menolak untuk menggunakannya.

```
Parameter boot yang ditentukan:
- jika Anda netboot:
    preseed/url=http://host/path/to/preseed.cfg
    preseed/url/checksum=5da499872becccfeda2c4872f9171c3d
- atau
    preseed/url=tftp://host/path/to/preseed.cfg
    preseed/url/checksum=5da499872becccfeda2c4872f9171c3d
```

```
    jika Anda mem-boot image instalasi remaster:
    preseed/file=/cdrom/preseed.cfg
    preseed/file/checksum=5da499872becccfeda2c4872f9171c3d
    jika Anda memasang dari media USB (masukkan berkas prakonfigurasi di direktori tingkat puncak flash disk USB):
    preseed/file=/hd-media/preseed.cfg
    preseed/file/checksum=5da499872becccfeda2c4872f9171c3d
```

Perhatikan bahwa preseed/url dapat disingkat menjadi hanya url, preseed/file menjadi hanya file dan preseed/file/checksum menjadi hanya preseed-md5 ketika mereka dilewatkan sebagai parameter boot.

B.2.2 Menggunakan parameter boot untuk pertanyaan preseed

Jika berkas prakonfigurasi tidak dapat digunakan untuk melakukan preseed beberapa langkah, instalasi masih dapat sepenuhnya otomatis, karena Anda dapat meneruskan nilai preseed pada baris perintah saat mem-boot pemasang.

Parameter boot juga dapat digunakan jika Anda tidak benar-benar ingin menggunakan preseed, tetapi hanya ingin memberikan jawaban untuk pertanyaan tertentu. Beberapa contoh di mana ini dapat berguna didokumentasikan di tempat lain dalam manual ini.

Untuk menetapkan nilai yang akan digunakan di dalam debian-installer, cukup berikan path/ke/variabel=nilai bagi salah satu variabel preseed yang tercantum dalam contoh di lampiran ini. Jika nilai akan digunakan untuk mengonfigurasi paket bagi sistem target, Anda harus menambahkan pemilik² dari variabel seperti pada pemilik: path/ke/variabel=nilai Jika Anda tidak menentukan pemilik, nilai untuk variabel tidak akan disalin ke basis data debconf dalam sistem target dan dengan demikian tetap tidak digunakan selama konfigurasi paket yang relevan.

Biasanya, mem-preseed pertanyaan dengan cara ini akan berarti bahwa pertanyaan tersebut tidak akan ditanyakan. Untuk menetapkan nilai baku tertentu bagi pertanyaan, tetapi pertanyaan masih diajukan, gunakan "?=", bukan "=" sebagai operator. Lihat juga Bagian B.5.2.

Perhatikan bahwa beberapa variabel yang sering diatur pada prompt boot memiliki alias yang lebih pendek. Jika alias tersedia, itu digunakan dalam contoh dalam lampiran ini, bukan variabel lengkap. Variabel preseed/url misalnya telah diberi alias sebagai url. Contoh lain adalah alias tasks, yang diterjemahkan menjadi tasksel:tasksel/first.

Sebuah "---" dalam opsi boot memiliki arti khusus. Parameter kernel yang muncul setelah "---" terakhir dapat disalin ke dalam konfigurasi bootloader untuk sistem yang dipasang (jika didukung oleh pemasang untuk bootloader). Pemasang akan secara otomatis memfilter opsi apa pun (seperti opsi prakonfigurasi) yang dikenalinya.

CATATAN

Kernel linux saat ini (2.6.9 dan yang lebih baru) menerima maksimum 32 opsi baris perintah dan 32 opsi lingkungan, termasuk opsi apa pun yang ditambahkan secara baku untuk pemasang. Jika angka-angka ini terlampaui, kernel akan panik (crash). (Untuk kernel sebelumnya, angka-angka ini lebih rendah.)

Untuk sebagian besar instalasi, beberapa opsi baku dalam berkas konfigurasi bootloader Anda, seperti vga=normal, dapat dihapus dengan aman yang memungkinkan Anda menambahkan lebih banyak opsi untuk preseed.

CATATAN

Tidak selalu mungkin untuk menentukan nilai dengan spasi untuk parameter boot, bahkan jika Anda membatasinya dengan tanda kutip.

²Pemilik variabel debconf (atau templat) biasanya adalah nama paket yang berisi templat debconf yang sesuai. Untuk variabel yang digunakan dalam pemasang itu sendiri pemiliknya adalah "d-i". Templat dan variabel dapat memiliki lebih dari satu pemilik yang membantu menentukan apakah mereka dapat dihapus dari basis data debconf jika paket dibersihkan.

B.2.3 Modus otomatis

Ada beberapa fitur Pemasang Debian yang menggabungkan agar memungkinkan baris perintah yang cukup sederhana pada prompt boot untuk menghasilkan sebarang instalasi otomatis khusus yang kompleks.

Ini diaktifkan dengan menggunakan pilihan boot Instalasi otomatis, juga disebut auto untuk beberapa arsitektur atau metode boot. Di bagian ini, auto dengan demikian bukan parameter, itu berarti memilih pilihan boot itu, dan menambahkan parameter boot berikut pada prompt boot. Lihat Bagian 5.1.5 untuk informasi tentang cara menambahkan parameter boot.

Untuk mengilustrasikan ini, berikut adalah beberapa contoh yang dapat digunakan pada prompt boot:

auto url=autoserver

Ini bergantung pada adanya server DHCP yang akan membawa mesin ke titik dimana autoserver dapat diuraikan dengan DNS, mungkin setelah menambahkan domain lokal jika itu disediakan oleh DHCP. Jika ini dilakukan di situs dimana domain adalah example.com, dan mereka memiliki pengaturan DHCP yang cukup waras, itu akan mengakibatkan berkas preseed diambil dari http://autoserver.example.com/d-i/trixie/./preseed.cfg.

Bagian terakhir dari urlitu (d-i/trixie/./preseed.cfg) diambil dari auto-install/defaultroot. Secara baku ini termasuk direktori trixie untuk memungkinkan versi mendatang menentukan nama kode mereka sendiri dan membiarkan orang bermigrasi ke depan dengan cara yang terkontrol. Bagian /./ digunakan untuk menunjukkan root, relatif terhadap path selanjutnya yang dapat ditambatkan (untuk digunakan dalam preseed/include dan preseed/run). Hal ini memungkinkan berkas untuk ditentukan baik sebagai URL lengkap, path yang dimulai dengan / yang dengan demikian berlabuh, atau bahkan path relatif terhadap lokasi di mana berkas preseed terakhir ditemukan. Ini dapat digunakan untuk membangun skrip yang lebih portabel dimana seluruh hierarki skrip dapat dipindahkan ke lokasi baru tanpa merusaknya, misalnya menyalin berkas ke flash disk USB ketika mereka mulai di server web. Dalam contoh ini, jika berkas preseed mengatur preseed/run ke /scripts/late_command.sh maka berkas akan diambil dari http://autoserver.example.com/d-i/trixie/./scripts/late_command.sh.

Jika tidak ada infrastruktur DHCP atau DNS lokal, atau jika Anda tidak ingin menggunakan path baku untuk preseed.cfg, Anda masih dapat menggunakan url eksplisit, dan jika Anda tidak menggunakan elemen / . / itu akan ditambatkan ke awal path (yaitu / ketiga di URL). Berikut adalah contoh yang membutuhkan dukungan minimal dari infrastruktur jaringan lokal:

auto url=http://192.168.1.2/path/to/mypreseed.file

Cara kerjanya adalah:

- jika URL tidak memiliki protokol, http diasumsikan,
- jika bagian nama host tidak berisi titik, ia memiliki domain yang berasal dari DHCP yang ditambahkan kepadanya, dan
- jika tidak ada / setelah nama host, maka path baku ditambahkan.

Selain menentukan url, Anda juga dapat menentukan pengaturan yang tidak secara langsung mempengaruhi perilaku debian-installer itu sendiri, tetapi dapat diteruskan ke skrip yang ditentukan menggunakan preseed/run dalam berkas preseed yang dimuat. Saat ini, satu-satunya contoh dari ini adalah auto-install/classes, yang memiliki alias classes. Maka ini dapat digunakan:

auto url=example.com classes=class_A; class_B

Kelas misalnya dapat menunjukkan jenis sistem yang akan dipasang, atau pelokalan yang akan digunakan.

Tentu saja dimungkinkan untuk memperluas konsep ini, dan jika Anda melakukannya, masuk akal untuk menggunakan namespace instalasi otomatis untuk ini. Jadi seseorang mungkin memiliki sesuatu seperti auto-install/style yang kemudian digunakan dalam skrip Anda. Jika Anda merasa perlu melakukan ini, sebutkan di milis debianboot@lists.debian.org sehingga kami dapat menghindari konflik namespace, dan mungkin menambahkan alias untuk parameter bagi Anda.

Pilihan boot auto belum didefinisikan pada semua arsitektur. Efek yang sama dapat dicapai hanya dengan sekadar menambahkan dua parameter auto=true priority=critical ke baris perintah kernel. Parameter kernel auto adalah alias untuk auto-install/enable dan mengaturnya ke true menunda pertanyaan lokal dan papan ketik sampai setelah ada kesempatan untuk mem-preseed mereka, sedangkan priority adalah alias untuk debconf/priority dan mengaturnya ke critical menghentikan pertanyaan apa pun dengan prioritas yang lebih rendah untuk ditanyakan.

Ketika instalasi otomatis dipilih tanpa juga menentukan konfigurasi preseed, pengguna akan diminta untuk memberikan lokasi preseed. Atau, jika konfigurasi preseed telah ditentukan, maka prompt biasanya ditekan untuk mengaktifkan instalasi non-interaktif sepenuhnya. Namun, jika maksudnya adalah untuk memodifikasi default dengan meng-

gunakan preseed.cfg dalam initrd, maka hasilnya harus benar-benar berperilaku seolah-olah tidak ada preseeding belum ditentukan, meskipun memiliki. Dalam halitu, variabel debconf auto-install/cloak_initrd_preseed dapat diatur ke true (misalnya dalam initrd preseed.cfg) untuk mendapatkan perilaku yang diperlukan.

Opsi tambahan yang mungkin menarik saat mencoba mengotomatiskan instalasi saat menggunakan DHCP adalah: interface=auto netcfg/dhcp_timeout=60 yang membuat mesin memilih NIC pertama yang layak dan lebih sabar untuk mendapatkan balasan atas kueri DHCP-nya.

Tip

Contoh ekstensif tentang cara menggunakan kerangka kerja ini, termasuk contoh skrip dan kelas, dapat ditemukan di situs web pengembangnya. Contoh yang tersedia di sana juga menunjukkan banyak efek bagus lainnya yang dapat dicapai dengan penggunaan prakonfigurasi secara kreatif.

B.2.4 Alias-alias yang berguna dengan preseed

Alias berikut dapat berguna saat menggunakan preseed (mode auto). Perhatikan bahwa ini hanyalah alias pendek untuk nama pertanyaan, dan Anda selalu perlu menentukan nilai juga: misalnya, auto=true atau interface=eth0.

priority	debconf/priority
fb	debian-installer/framebuffer
auto	auto-install/enable
classes	auto-install/classes
file	preseed/file
url	preseed/url
theme	debian-installer/theme
language	debian-installer/language
country	debian-installer/country
locale	debian-installer/locale
keymap	keyboard-configuration/xkb-keymap
modules	anna/choose_modules
firmware	hw-detect/firmware-lookup
interface	netcfg/choose_interface
domain	netcfg/get_domain
hostname	netcfg/get_hostname
protocol	mirror/protocol
suite	mirror/suite
recommends	base-installer/install-recommends
tasks	tasksel:tasksel/first
desktop	tasksel:tasksel/desktop
preseed-md5	preseed/file/checksum

B.2.5 Contoh presed prompt boot

Berikut adalah beberapa contoh bagaimana prompt boot mungkin terlihat seperti (Anda perlu menyesuaikan ini dengan kebutuhan Anda; lihat juga Bagian 5.1.5).

```
/install.amd/vmlinuz initrd=/install.amd/initrd.gz tasksel:tasksel/first=web- \leftrightarrow server ---
```

B.2.6 Menggunakan server DHCP untuk menentukan berkas prakonfigurasi

Anda juga dapat menggunakan DHCP untuk menentukan berkas prakonfigurasi yang akan diunduh dari jaringan. DHCP memungkinkan menentukan nama berkas. Biasanya ini adalah berkas ke netboot, tetapi jika tampaknya menjadi URL maka media instalasi yang mendukung preseed jaringan akan mengunduh berkas dari URL dan menggunakannya sebagai berkas prakonfigurasi. Berikut adalah contoh cara mengaturnya di dhcpd.conf untuk versi 3 dari server DHCP ISC (paket Debian isc-dhcp-server).

```
if substring (option vendor-class-identifier, 0, 3) = "d-i" {
   filename "http://host/preseed.cfg";
}
```

Perhatikan bahwa contoh di atas membatasi nama berkas ini untuk klien DHCP yang mengidentifikasi diri mereka sebagai "d-i", sehingga tidak akan mempengaruhi klien DHCP biasa, tetapi hanya pemasang. Anda juga dapat menempatkan teks dalam bait hanya untuk satu host tertentu agar menghindari mem-preseed semua instalasi di jaringan Anda.

Cara yang baik untuk menggunakan preseed DHCP adalah dengan hanya preseed nilai khusus untuk jaringan Anda, seperti mirror Debian yang akan digunakan. Dengan cara ini instalasi di jaringan Anda akan secara otomatis memilih cermin yang baik, tetapi sisa instalasi dapat dilakukan secara interaktif. Menggunakan preseed DHCP untuk sepenuhnya mengotomatisasi instalasi Debian hanya boleh dilakukan dengan hati-hati.

B.3 Membuat berkas prakonfigurasi

Berkas prakonfigurasi dalam format yang digunakan oleh perintah **debconf-set-selections**. Format umum baris dalam berkas prakonfigurasi adalah:

```
<pemilik> <nama pertanyaan> <jenis pertanyaan> <nilai>
```

Berkas harus dimulai dengan #_preseed_V1

Ada beberapa aturan yang perlu diingat saat menulis berkas prakonfigurasi.

- Letakkan hanya satu spasi atau tab di antara jenis dan nilai: setiap ruang spasi tambahan akan ditafsirkan sebagai milik nilai.
- Suatu baris dapat dibagi menjadi beberapa baris dengan menambahkan garis miring terbalik ("\") sebagai karakter kelanjutan baris. Tempat yang baik untuk membagi baris adalah setelah nama pertanyaan; tempat yang buruk adalah antara tipe dan nilai. Baris terpisah akan digabungkan menjadi satu baris dengan semua ruang spasi awal/akhir diringkas menjadi satu spasi.
- Untuk variabel debconf (templat) yang hanya digunakan dalam pemasang itu sendiri, pemilik harus diatur ke "d-i"; untuk variabel preseed yang digunakan dalam sistem yang dipasang, nama paket yang berisi templat Debconf yang sesuai harus digunakan. Hanya variabel yang pemiliknya diatur ke sesuatu selain "d-i" yang akan disebarkan ke basis data debconf untuk sistem yang dipasang.
- Sebagian besar pertanyaan perlu di-preseed menggunakan nilai yang valid dalam bahasa Inggris dan bukan nilai yang diterjemahkan. Namun, ada beberapa pertanyaan (misalnya di partman) dimana nilai yang diterjemahkan perlu digunakan.
- Beberapa pertanyaan mengambil kode sebagai nilai alih-alih teks bahasa Inggris yang ditampilkan selama instalasi.
- Mulailah dengan #_preseed_V1
- Komentar terdiri dari baris yang dimulai dengan karakter hash ("#") dan meluas hingga sepanjang baris itu.

Cara termudah untuk membuat berkas prakonfigurasi adalah dengan menggunakan berkas contoh yang ditautkan Bagian B.4 sebagai dasar dan bekerja dari sana.

Metode alternatif adalah melakukan instalasi manual dan kemudian, setelah reboot, gunakan **debconf-get-selections** dari paket debconf-utils untuk mencurahkan basis data debconf dan basis data cdebconf pemasang ke satu berkas:

```
$ echo "#_preseed_V1" > file
$ debconf-get-selections --installer >> file
$ debconf-get-selections >> file
```

Namun, berkas yang dihasilkan dengan cara ini akan memiliki beberapa item yang tidak boleh di-preseed, dan berkas contoh adalah tempat awal yang lebih baik bagi sebagian besar pengguna.

CATATAN

Metode ini mengandalkan ke fakta bahwa, pada akhir instalasi, basis data cdebconf pemasang disimpan ke sistem yang dipasang di /var/log/installer/ cdebconf. Namun, karena basis data mungkin berisi informasi sensitif, secara baku berkas hanya dapat dibaca oleh root.

Direktori /var/log/installer dan semua berkas di dalamnya akan dihapus dari sistem Anda jika Anda menghapus tuntas paket installation-report.

Untuk memeriksa nilai yang mungkin bagi pertanyaan, Anda dapat menggunakan nano untuk memeriksa berkas di /var/lib/cdebconf saat instalasi sedang berlangsung. Lihat templates.dat untuk templat mentah dan questions.dat untuk nilai-nilai saat ini dan bagi nilai-nilai yang ditetapkan ke variabel.

Untuk memeriksa apakah format berkas prakonfigurasi Anda valid sebelum melakukan instalasi, Anda dapat menggunakan perintah debconf-set-selections -c preseed.cfg.

B.4 Isi berkas prakonfigurasi (untuk trixie)

Fragmen konfigurasi yang digunakan dalam lampiran ini juga tersedia sebagai contoh berkas prakonfigurasi dari ../example-preseed.txt.

Perhatikan bahwa contoh ini didasarkan pada instalasi bagi arsitektur Intel x86. Jika Anda memasang arsitektur yang berbeda, beberapa contoh (seperti pemilihan papan ketik dan instalasi bootloader) mungkin tidak relevan dan perlu diganti dengan pengaturan debconf yang sesuai bagi arsitektur Anda.

Detail tentang bagaimana berbagai komponen Pemasang Debian benar-benar bekerja dapat ditemukan di Bagian 6.3.

Pelokalan **B.4.1**

Selama instalasi normal, pertanyaan tentang pelokalan diajukan terlebih dahulu, sehingga nilai-nilai ini hanya dapat di-preseed melalui metode parameter boot initrd atau kernel. Mode otomatis (Bagian B.2.3) mencakup pengaturan auto-install/enable=true (biasanya melalui alias preseed auto). Ini menunda pengajuan pertanyaan pelokalan, sehingga mereka dapat di-preseed dengan metode apa pun.

Lokal dapat digunakan untuk menentukan bahasa dan negara dan dapat berupa kombinasi bahasa yang didukung oleh debian-installer dan negara yang dikenal. Jika kombinasi tidak membentuk lokal yang valid, pemasang akan secara otomatis memilih lokal yang valid untuk bahasa yang dipilih. Untuk menentukan lokal sebagai parameter boot, gunakan locale=en US.UTF-8.

Meskipun metode ini sangat mudah digunakan, metode ini tidak memungkinkan preseed dari semua kemungkinan kombinasi bahasa, negara, dan lokal³. Jadi sebagai alternatif nilai-nilai dapat di-preseed secara individual. Bahasa dan negara juga dapat ditentukan sebagai parameter boot.

```
# Preseed hanya lokal menetapkan bahasa, negara, dan lokal.
d-i debian-installer/locale string id_ID.UTF-8
# Nilai-nilai juga dapat di-preseed secara individual untuk fleksibilitas
# yang lebih besar.
#d-i debian-installer/language string en
#d-i debian-installer/country string ID
#d-i debian-installer/locale string en_GB.UTF-8
# Secara opsional tentukan lokal tambahan yang akan dihasilkan.
```

³Preseed locale untuk **en_NL** misalnya akan menghasilkan en_US.UTF-8 sebagai lokal baku bagi sistem yang dipasang. Jika misalnya en_GB.UTF-8 lebih disukai sebagai gantinya, nilai-nilainya perlu di-preseed secara individual.

```
#d-i localechooser/supported-locales multiselect en_US.UTF-8, id_ID.UTF-8
```

Konfigurasi papan ketik terdiri dari memilih peta tombol dan (untuk peta tombol non-latin) tombol sakelar untuk beralih antara peta tombol non-latin dan peta tombol AS. Hanya varian peta tombol dasar yang tersedia selama instalasi. Varian lanjutan hanya tersedia di sistem yang dipasang, melalui dpkg-reconfigure keyboard-configuration.

```
# Pemilihan papan ketik.
d-i keyboard-configuration/xkb-keymap select us
# d-i keyboard-configuration/toggle select No toggling
```

Untuk melewati konfigurasi papan ketik, preseed keymap dengan **skip-config**. Ini akan mengakibatkan peta tombol kernel tetap aktif.

B.4.2 Sintesis wicara

Ketika memasang dengan sintesis perangkat lunak berbicara (mis. speakup.synth=soft diberikan pada baris perintah kernel), papan suara dan suara yang akan digunakan dapat di-preseed.

Karena sintesis wicara dimulai sangat awal, ini hanya dapat di-preseed dari initrd atau baris perintah kernel.

Preseed espeakup/voice juga memungkinkan untuk mengonfigurasi sistem yang dipasang dengan fitur aksesibilitas bicara. Ini berdampak bahkan jika sintesis wicara perangkat lunak tidak benar-benar diaktifkan di dalam pemasang.

```
# Kartu ALSA mana yang akan dipakai untuk perangkat lunak berbicara.
# Bisa berupa suatu angka dari 0, atau suatu ID seperti terlihat di
# /sys/class/sound/card*/id
#d-i espeakup/card string 0
# Suara espeak-ng mana yang akan dipakai
#d-i espeakup/voice string en
```

Konfigurasi jaringan **B.4.3**

Tentu saja, preseed konfigurasi jaringan tidak akan berfungsi jika Anda memuat berkas prakonfigurasi dari jaringan. Tapi itu bagus ketika Anda mem-boot dari disk optik atau flash disk USB. Jika Anda memuat berkas prakonfigurasi dari jaringan, Anda dapat meneruskan parameter konfigurasi jaringan dengan menggunakan parameter boot kernel.

Jika Anda perlu memilih antarmuka tertentu saat netboot sebelum memuat berkas prakonfigurasi dari jaringan, gunakan parameter boot seperti interface=eth1.

Meskipun preseed konfigurasi jaringan biasanya tidak dimungkinkan saat menggunakan preseed jaringan (menggunakan "preseed/url"), Anda dapat menggunakan hack berikut untuk mengatasinya, misalnya jika Anda ingin mengatur alamat statis untuk antarmuka jaringan. Hack memaksa konfigurasi jaringan untuk berjalan lagi setelah berkas prakonfigurasi dimuat dengan membuat skrip "preseed/run" yang berisi perintah berikut:

```
kill-all-dhcp; netcfg
```

Variabel debconf berikut relevan untuk konfigurasi jaringan.

```
# Nonaktifkan konfigurasi jaringan sepenuhnya. Ini berguna untuk
# instalasi cdrom pada perangkat non-jaringan di mana pertanyaan jaringan,
# peringatan, dan batas waktu yang lama adalah gangguan.
#d-i netcfg/enable boolean false
# netcfg akan memilih antarmuka yang memiliki link jika memungkinkan. Ini
# membuatnya melewati menampilkan daftar jika ada lebih dari satu antarmuka.
d-i netcfg/choose_interface select auto
# Untuk memilih antarmuka tertentu sebagai gantinya:
#d-i netcfg/choose_interface select eth1
# Untuk mengatur batas waktu deteksi link lain (bakunya adalah 3 detik).
# Nilai ditafsirkan sebagai detik.
#d-i netcfg/link_wait_timeout string 10
# Jika Anda memiliki server dhcp yang lambat dan pemasang kehabisan waktu
```

```
# menunggu, ini mungkin berguna.
#d-i netcfg/dhcp_timeout string 60
#d-i netcfg/dhcpv6_timeout string 60
# Konfigurasi jaringan otomatis adalah baku.
# Jika Anda lebih suka mengonfigurasi jaringan secara manual, hapus komentar
# baris ini dan konfigurasi jaringan statis di bawah ini.
#d-i netcfg/disable_autoconfig boolean true
# Jika Anda ingin berkas prakonfigurasi bekerja pada sistem baik dengan dan
# tanpa server dhcp, hapus komentar pada baris-baris ini dan konfigurasi
# jaringan statis di bawah ini.
#d-i netcfg/dhcp_failed note
#d-i netcfg/dhcp_options select Configure network manually
# Konfigurasi jaringan statis.
# Contoh IPv4
#d-i netcfg/get_ipaddress string 192.168.1.42
#d-i netcfg/get_netmask string 255.255.255.0
#d-i netcfg/get_gateway string 192.168.1.1
#d-i netcfg/get_nameservers string 192.168.1.1
#d-i netcfg/confirm_static boolean true
# Contoh IPv6
#d-i netcfg/get_ipaddress string fc00::2
#d-i netcfg/get_netmask string ffff:ffff:ffff:ffff::
#d-i netcfg/get_gateway string fc00::1
#d-i netcfg/get_nameservers string fc00::1
#d-i netcfg/confirm_static boolean true
# Setiap nama host dan nama domain yang ditetapkan dari dhcp lebih diutamakan
# daripada nilai yang ditetapkan di sini. Namun, menetapkan nilai masih mencegah
# pertanyaan ditampilkan, bahkan jika nilai berasal dari dhcp.
d-i netcfg/get_hostname string unassigned-hostname
d-i netcfg/get_domain string unassigned-domain
# Jika Anda ingin memaksa nama host, terlepas dari apa yang server DHCP
# kembalikan atau apa entri DNS terbalik untuk IP, hapus komentar
# dan sesuaikan baris berikut.
#d-i netcfg/hostname string somehost
# Nonaktifkan dialog kunci WEP yang mengganggu itu.
d-i netcfg/wireless_wep string
# Nama host dhcp aneh yang digunakan beberapa ISP sebagai kata sandi.
#d-i netcfg/dhcp_hostname string radish
# Jika Anda ingin sepenuhnya menonaktifkan pencarian firmware (yaitu tidak
# menggunakan berks firmware atau paket yang mungkin tersedia pada image ←
   instalasi):
#d-i hw-detect/firmware-lookup string never
# Jika firmware tidak bebas diperlukan untuk jaringan atau perangkat keras
# lainnya, Anda dapat konfigurasikan pemasang untuk selalu mencoba memuatnya,
# tanpa diminta. Atau ubah ke false untuk menonaktifkan bertanya.
#d-i hw-detect/load_firmware boolean true
```

Harap dicatat bahwa netcfg akan secara otomatis menentukan netmask jika netcfg/get_netmask tidak di-preseed. Dalam hal ini, variabel harus ditandai sebagai seen untuk instalasi otomatis. Demikian pula netcfg akan memilih alamat yang sesuai jika netcfg/get_gateway tidak disetel. Sebagai kasus khusus, Anda dapat mengatur netcfg/get_gateway ke "none" untuk menentukan bahwa tidak ada gateway yang harus digunakan.

B.4.4 Konsol jaringan

```
# Gunakan pengaturan berikut jika Anda ingin menggunakan komponen
# network-console untuk instalasi jarak jauh melalui SSH. Ini hanya masuk akal
# jika Anda bermaksud untuk melakukan sisa instalasi secara manual.
#d-i anna/choose_modules string network-console
#d-i network-console/authorized_keys_url string http://10.0.0.1/openssh-key
#d-i network-console/password password iniG3mb0k
#d-i network-console/password-again password iniG3mb0k
```

Informasi lebih lanjut terkait konsol jaringan dapat ditemukan di Bagian 6.3.10.

Pengaturan cermin

Tergantung pada metode instalasi yang Anda gunakan, cermin dapat digunakan untuk mengunduh komponen tambahan dari pemasang, untuk memasang sistem dasar, dan untuk mengatur /etc/apt/sources.list bagi sistem yang dipasang.

Parameter mirror/suite menentukan keluarga bagi sistem yang dipasang.

Parameter mirror/udeb/suite menentukan keluarga untuk komponen tambahan bagi pemasang. Hanya berguna untuk mengatur ini jika komponen benar-benar diunduh melalui jaringan dan harus cocok dengan keluarga yang digunakan untuk membangun initrd bagi metode instalasi yang digunakan untuk instalasi. Biasanya pemasang akan secara otomatis menggunakan nilai yang benar dan seharusnya tidak perlu mengatur ini.

```
# Protokol cermin:
# Jika Anda memilih ftp, string mirror/country tidak perlu diatur.
# Nilai baku untuk protokol cermin: http.
#d-i mirror/protocol string ftp
d-i mirror/country string manual
d-i mirror/http/hostname string http.us.debian.org
d-i mirror/http/directory string /debian
d-i mirror/http/proxy string
# Keluarga yang akan dipasang.
#d-i mirror/suite string testing
# Keluarga yang akan digunakan untuk memuat komponen pemasang (opsional).
#d-i mirror/udeb/suite string testing
```

B.4.6 Penyiapan akun

Kata sandi untuk akun root dan nama serta kata sandi untuk akun pengguna reguler pertama dapat di-preseed. Untuk kata sandi, Anda dapat menggunakan teks polos atau *hash* crypt(3).

Awas

Ketahuilah bahwa kata sandi preseed tidak sepenuhnya aman karena semua orang yang memiliki akses ke berkas prakonfigurasi akan memiliki pengetahuan tentang kata sandi ini. Menyimpan kata sandi yang di-hash dianggap aman kecuali algoritma hash yang lemah seperti DES atau MD5 digunakan yang memungkinkan serangan brute force. Algoritma hash kata sandi yang disarankan adalah SHA-256 dan SHA512.

```
# Lewati pembuatan akun root (akun pengguna normal akan dapat
# menggunakan sudo).
#d-i passwd/root-login boolean false
# Atau, untuk melewati pembuatan akun pengguna normal.
#d-i passwd/make-user boolean false
# Kata sandi root, baik dalam teks polos
#d-i passwd/root-password password r00tme
#d-i passwd/root-password-again password r00tme
```

```
# atau dienkripsi menggunakan hash crypt(3).
#d-i passwd/root-password-crypted password [crypt(3) hash]
# Untuk membuat akun pengguna normal.
#d-i passwd/user-fullname string Debian User
#d-i passwd/username string debian
# Kata sandi pengguna normal, baik dalam teks polos
#d-i passwd/user-password password insecure
#d-i passwd/user-password-again password insecure
# atau dienkripsi menggunakan hash crypt(3).
#d-i passwd/user-password-crypted password [crypt(3) hash]
# Buat pengguna pertama dengan UID yang ditentukan, bukan baku.
#d-i passwd/user-uid string 1010
# Akun pengguna akan ditambahkan ke beberapa grup awal standar.
# Untuk menimpa itu, gunakan ini.
#d-i passwd/user-default-groups string audio cdrom video
```

Variabel passwd/root-password-crypted dan passwd/user-password-crypted juga dapat di-preseed dengan "!" sebagai nilainya. Dalam hal ini, akun yang sesuai dinonaktifkan. Ini mungkin nyaman untuk akun root, asalkan tentu saja metode alternatif diatur agar memungkinkan aktivitas administratif atau login root (misalnya dengan menggunakan otentikasi kunci SSH atau **sudo**).

Perintah berikut (tersedia dari paket whois) dapat digunakan untuk menghasilkan hash crypt(3) berbasis SHA-512 untuk kata sandi:

```
mkpasswd -m sha-512
```

Penyiapan jam dan zona waktu

```
# Mengontrol apakah jam perangkat keras diatur ke UTC atau tidak.
d-i clock-setup/utc boolean true
# Anda dapat mengatur ini ke pengaturan yang valid untuk $TZ; lihat
# isi dari /usr/share/zoneinfo/ untuk nilai yang valid.
d-i time/zone string Asia/Jakarta
# Mengontrol apakah akan menggunakan NTP untuk mengatur jam selama
# instalasi
d-i clock-setup/ntp boolean true
# NTP server yang akan digunakan. Bakunya hampir selalu baik-baik
# saja di sini.
#d-i clock-setup/ntp-server string pool.ntp.com
```

B.4.8 Pemartisian

Menggunakan preseed untuk mempartisi hard disk terbatas pada apa yang didukung oleh partman-auto. Anda dapat memilih untuk mempartisi ruang kosong yang ada pada disk atau seluruh disk. Tata letak disk dapat ditentukan dengan menggunakan resep yang telah ditentukan, resep khusus dari berkas resep, atau resep yang termasuk dalam berkas prakonfigurasi.

Preseed pengaturan partisi lanjutan menggunakan RAID, LVM, dan enkripsi didukung, tetapi tidak dengan fleksibilitas penuh yang mungkin saat mempartisi selama instalasi non-preseed.

Contoh di bawah ini hanya memberikan informasi dasar tentang penggunaan resep. Untuk informasi terperinci, lihat berkas partman-auto-recipe.txt dan partman-auto-raid-recipe.txt yang disertakan dalam paket debian-installer. Kedua berkas juga tersedia dari repositori sumber debian-installer. Perhatikan bahwa fungsionalitas yang didukung dapat berubah di antara rilis.

Awas

Identifikasi disk tergantung pada urutan pemuatan driver mereka. Jika ada beberapa disk dalam sistem, pastikan disk yang benar akan dipilih sebelum menggunakan preseed.

B.4.8.1 Contoh pemartisian

```
# Jika sistem memiliki ruang kosong, Anda dapat memilih untuk hanya mempartisi
# ruang tersebut. Ini hanya dihormati jika partman-auto/method (di bawah) tidak
# disetel.
#d-i partman-auto/init_automatically_partition select biggest_free
# Sebagai alternatif, Anda dapat menentukan disk untuk dipartisi. Jika sistem
# hanya memiliki satu disk, pemasang akan menggunakan itu secara baku, tetapi
# sebaliknya nama perangkat harus diberikan dalam format tradisional non-devfs
# (mis. /dev/sda dan bukan mis. /dev/discs/disc0/disc).
# Misalnya, untuk menggunakan hard disk SCSI/SATA pertama:
#d-i partman-auto/disk string /dev/sda
# Selain itu, Anda harus menentukan metode yang akan digunakan.
# Metode yang tersedia saat ini adalah:
# - regular: gunakan tipe partisi biasa untuk arsitektur Anda
            gunakan LVM untuk mempartisi disk
# - crypto: gunakan LVM di dalam partisi terenkripsi
d-i partman-auto/method string lvm
# Anda dapat menentukan jumlah ruang yang akan digunakan untuk grup volume
# LVM. Itu bisa berupa ukuran dengan unitnya (mis. 20 GB), persentase dari
# ruang kosong atau kata kunci 'max'.
d-i partman-auto-lvm/guided_size string max
# Jika salah satu disk yang akan dipartisi secara otomatis
# berisi konfigurasi LVM lama, pengguna biasanya akan menerima a
# peringatan. Ini dapat di-preseed ...
d-i partman-lvm/device_remove_lvm boolean true
# Hal yang sama berlaku untuk larik RAID perangkat lunak yang sudah ada
# sebelumnya:
d-i partman-md/device_remove_md boolean true
# Dan hal yang sama berlaku untuk konfirmasi untuk menulis partisi lvm.
d-i partman-lvm/confirm boolean true
d-i partman-lvm/confirm_nooverwrite boolean true
# Anda dapat memilih salah satu dari resep partisi yang telah ditentukan
# sebelumnya:
# - atomic: semua berkas dalam satu partisi
# - home: partisi /home terpisah
# - multi: partisi /home, /var, dan /tmp terpisah
# - server: partisi /var dan /srv terpisah; swap dibatasi ke 1G
# - small_disk: skema yang didedikasikan ke hard disk kecil (di bawah 10GB)
d-i partman-auto/choose_recipe select atomic
# Atau berikan resep Anda sendiri ...
# Jika Anda memiliki cara untuk memasukkan berkas resep ke dalam lingkungan
# d-i, Anda bisa menunjuk itu saja.
#d-i partman-auto/expert_recipe_file string /hd-media/recipe
# Jika tidak, Anda dapat memasukkan seluruh resep ke dalam berkas
# prakonfigurasi menjadi satu baris (logis). Contoh ini membuat partisi
# /boot kecil, swap yang cocok, dan menggunakan sisa ruang untuk partisi
# root:
#d-i partman-auto/expert_recipe string
```

```
boot-root ::
#
#
              40 50 100 ext3
#
                      $primary{ } $bootable{ }
#
                       method{ format } format{ }
                       use_filesystem{ } filesystem{ ext3 }
                       mountpoint{ /boot }
               500 10000 1000000000 ext3
                       method{ format } format{ }
                       use_filesystem{ } filesystem{ ext3 }
                       mountpoint{ / }
               64 512 300% linux-swap
                      method{ swap } format{ }
# Format resep lengkap didokumentasikan di berkas partman-auto-recipe.txt
# yang disertakan dalam paket 'debian-installer' atau tersedia dari
# repositori sumber D-I. Ini juga mendokumentasikan cara menentukan pengaturan
# seperti label sistem berkas, nama grup volume, dan perangkat fisik mana
# yang akan disertakan dalam grup volume.
## Pemartisian untuk EFI
# Jika sistem Anda membutuhkan partisi EFI, Anda dapat menambahkan sesuatu
# seperti ini untuk resep di atas, sebagai elemen pertama dalam resep:
                538 538 1075 free
                       $iflabel{ gpt }
                       $reusemethod{ }
                       method{ efi }
                       format{ }
# Fragmen di atas adalah untuk arsitektur amd64; detailnya mungkin
# berbeda pada arsitektur lain. Paket 'partman-auto' di repositori
# sumber D-I mungkin memiliki contoh yang dapat Anda ikuti.
# Ini membuat partman otomatis mempartisi tanpa konfirmasi, asalkan
# Anda memberi tahu apa yang harus dilakukan dengan menggunakan salah satu
# metode di atas.
d-i partman-partitioning/confirm_write_new_label boolean true
d-i partman/choose_partition select finish
d-i partman/confirm boolean true
d-i partman/confirm_nooverwrite boolean true
# Paksa booting UEFI ('kompatibilitas BIOS' akan hilang). Baku: false.
#d-i partman-efi/non_efi_system boolean true
# Pastikan tabel partisi adalah GPT - ini diperlukan untuk EFI
#d-i partman-partitioning/choose_label select gpt
#d-i partman-partitioning/default_label string gpt
# Saat enkripsi disk diaktifkan, lewati penghapusan partisi sebelumnya.
#d-i partman-auto-crypto/erase_disks boolean false
```

B.4.8.2 Pemartisian menggunakan RAID

Anda juga dapat menggunakan preseed untuk mengatur partisi pada array RAID perangkat lunak. Yang didukung adalah tingkat RAID 0, 1, 5, 6, dan 10, membuat array yang terdegradasi, dan menentukan perangkat serep.

Jika Anda menggunakan RAID 1, Anda dapat melakukan preseed grub untuk memasang ke semua perangkat yang digunakan dalam array; lihat Bagian B.4.12.

Awas

Jenis partisi otomatis ini mudah salah. Ini juga merupakan fungsionalitas yang menerima pengujian yang relatif sedikit dari pengembang debian-installer. Tanggung jawab untuk mendapatkan berbagai resep dengan benar (sehingga masuk akal dan tidak bertentangan) terletak pada pengguna. Periksa /var/log/ syslog jika Anda mengalami masalah.

```
# Metode harus diatur ke "raid".
#d-i partman-auto/method string raid
# Tentukan disk yang akan dipartisi. Mereka semua akan mendapatkan tata letak
# yang sama, jadi ini hanya akan berfungsi jika disk berukuran sama.
#d-i partman-auto/disk string /dev/sda /dev/sdb
# Selanjutnya Anda perlu menentukan partisi fisik yang akan digunakan.
#d-i partman-auto/expert_recipe string \
      multiraid ::
              1000 5000 4000 raid
                      $primary{ } method{ raid }
               64 512 300% raid
                      method{ raid }
               500 10000 1000000000 raid
                      method{ raid }
# Terakhir Anda perlu menentukan bagaimana partisi yang sebelumnya
# telah didefinisikan akan digunakan dalam pengaturan RAID. Ingatlah untuk
# menggunakan nomor partisi yang benar bagi partisi logis. Tingkat RAID 0,
# 1, 5, 6 dan 10 didukung;
# perangkat dipisahkan menggunakan "#".
# Parameternya adalah:
# <raidtype> <devcount> <sparecount> <fstype> <mountpoint> \
# <perangkat> <sparedevices>
#d-i partman-auto-raid/recipe string \
    1 2 0 ext3 /
          /dev/sda1#/dev/sdb1
    1 2 0 swap -
          /dev/sda5#/dev/sdb5
    0 2 0 ext3 /home
         /dev/sda6#/dev/sdb6
# Untuk informasi tambahan lihat berkas partman-auto-raid-recipe.txt
# yang disertakan dalam paket 'debian-installer' atau tersedia dari
# repositori sumber D-I
# Ini membuat partman secara otomatis mempartisi tanpa konfirmasi.
d-i partman-md/confirm boolean true
d-i partman-partitioning/confirm_write_new_label boolean true
d-i partman/choose_partition select finish
d-i partman/confirm boolean true
d-i partman/confirm_nooverwrite boolean true
```

B.4.8.3 Mengontrol bagaimana partisi dikait

Biasanya, sistem berkas dipasang menggunakan universally unique identifier (UUID) sebagai kunci; ini memungkinkan mereka untuk dipasang dengan benar bahkan jika nama perangkat mereka berubah. UUID itu panjang dan sulit dibaca, jadi, jika Anda mau, pemasang dapat memasang sistem berkas berdasarkan nama perangkat tradisional, atau berdasarkan label yang Anda tetapkan. Jika Anda meminta pemasang untuk memasang dengan label, sistem berkas apa pun tanpa label akan dipasang menggunakan UUID sebagai gantinya.

Perangkat dengan nama stabil, seperti volume logis LVM, akan terus menggunakan nama tradisionalnya daripada UUID.

Awas

Nama perangkat tradisional dapat berubah berdasarkan urutan kernel menemukan perangkat saat boot, yang dapat menyebabkan sistem berkas yang salah dipasang. Demikian pula, label cenderung berbenturan jika Anda menancapkan disk baru atau flash disk USB, dan jika itu terjadi, perilaku sistem Anda saat dimulai akan acak.

```
# Defaultnya adalah memasang oleh UUID, tetapi Anda juga dapat memilih
"tradisional" untuk menggunakan nama perangkat tradisional, atau "label"
# untuk mencoba label sistem berkas sebelum fallback ke UUID.
#d-i partman/mount_style select uuid
```

B.4.9 Instalasi sistem dasar

Sebenarnya tidak banyak yang bisa di-preseed untuk tahap instalasi ini. Satu-satunya pertanyaan yang diajukan menyangkut pemasangan kernel.

```
# Konfigurasikan APT untuk tidak memasang paket yang direkomendasikan secara
# baku. Penggunaan ini opsi dapat mengakibatkan sistem yang tidak lengkap dan
# hanya boleh digunakan oleh very pengguna berpengalaman.
#d-i base-installer/install-recommends boolean false
# Paket gambar kernel (meta) yang akan diinstal; "tidak ada" dapat digunakan
# jika tidak kernel harus diinstal.
#d-i base-installer/kernel/image string linux-image-686
```

B.4.10 Penyiapan apt

Penyiapan /etc/apt/sources.list dan opsi konfigurasi dasar sepenuhnya otomatis berdasarkan metode instalasi Anda dan jawaban atas pertanyaan sebelumnya. Anda dapat secara opsional menambahkan repositori (lokal) lainnya.

```
# Pilih, jika Anda ingin memindai media instalasi tambahan
# (baku: false).
d-i apt-setup/cdrom/set-first boolean false
# Anda dapat memilih untuk memasang firmware non-free.
#d-i apt-setup/non-free-firmware boolean true
# Anda dapat memilih untuk memasang perangkat lunak non-free dan contrib.
#d-i apt-setup/non-free boolean true
#d-i apt-setup/contrib boolean true
# Hapus komentar pada baris berikut, jika Anda tidak ingin entri sources.list
# untuk image instalasi DVD/BD aktif dalam sistem yang dipasang
# (entri untuk image netinst atau CD akan tetap dinonaktifkan, terlepas dari
# pengaturan ini).
#d-i apt-setup/disable-cdrom-entries boolean true
# Hapus komentar ini jika Anda tidak ingin menggunakan cermin jaringan.
#d-i apt-setup/use_mirror boolean false
# Pilih layanan pembaruan mana yang akan digunakan; tentukan cermin yang
# akan digunakan. Nilai yang ditunjukkan di bawah ini adalah baku normal.
#d-i apt-setup/services-select multiselect security, updates
```

```
#d-i apt-setup/security_host string security.debian.org
# Repositori tambahan, local[0-9] tersedia
#d-i apt-setup/local0/repository string \
       http://local.server/debian stable main
#d-i apt-setup/local0/comment string local server
# Aktifkan baris deb-src
#d-i apt-setup/local0/source boolean true
# URL ke kunci publik repositori lokal; Anda harus memberikan kunci atau
# apt akan mengeluh tentang repositori yang tidak diotentikasi dan sebagainya
# sources.list baris akan dibiarkan dikomentari.
#d-i apt-setup/local0/key string http://local.server/key
# atau kita bisa menyediakannya in-line dengan enkoding base64
# konten dari berkas kunci (dengan 'base64 -w0') menyatakannya
#d-i apt-setup/local0/key string base64:// ←
   LS0tLS1CRUdJTiBQR1AgUFVCTElDIEtFWSBCTE9DSy0tLS0tCi4uLgo=
# Jika berkas kunci yang disediakan berakhiran ".asc" file kunci harus
# berupa Kunci PGP ASCII-armoured, jika berakhiran ".gpg" perlu
# menggunakan format "GPG key public keyring", format "basis data keybox"
# saat ini tidak didukung.
# Secara baku pemasang mengharuskan repositori diotentikasi
# menggunakan kunci GPG yang dikenal. Pengaturan ini dapat digunakan untuk
# menonaktifkan otentikasi. Peringatan: Tidak aman, tidak disarankan.
#d-i debian-installer/allow_unauthenticated boolean true
# Hapus komentar ini untuk menambahkan konfigurasi multiarch bagi i386
#d-i apt-setup/multiarch string i386
```

B.4.11 Pemilihan paket

Anda dapat memilih untuk memasang kombinasi tugas apa pun yang tersedia. Tugas yang tersedia saat tulisan ini dibuat termasuk:

- standard (alat standar)
- **desktop** (desktop grafis)
- gnome-desktop (desktop Gnome)
- xfce-desktop (desktop XFCE)
- kde-desktop (desktop KDE Plasma)
- cinnamon-desktop (desktop Cinnamon)
- mate-desktop (desktop MATE)
- lxde-desktop (desktop LXDE)
- web-server (server web)
- ssh-server (server SSH)

Anda juga dapat memilih untuk tidak memasang tugas apa pun, dan memaksa instalasi satu set paket dengan cara lain. Kami sarankan untuk selalu menyertakan tugas standard.

Atau jika Anda tidak ingin dialog tasksel ditampilkan sama sekali, preseed pkqsel/run_tasksel (tidak ada paket yang dipasang melalui tasksel dalam kasus itu).

Jika Anda ingin memasang beberapa paket individual selain paket yang dipasang oleh tugas, Anda dapat menggunakan parameter pkqsel/include. Nilai parameter ini dapat berupa daftar paket yang dipisahkan oleh koma atau spasi, yang memungkinkannya digunakan dengan mudah pada baris perintah kernel juga.

```
#tasksel tasksel/first multiselect standard, web-server, kde-desktop
# Atau pilih untuk tidak menampilkan dialog tasksel sama sekali (dan jangan
# memasang paket apa pun):
#d-i pkgsel/run_tasksel boolean false
# Paket tambahan individual untuk dipasang
#d-i pkgsel/include string openssh-server build-essential
# Apakah akan meningkatkan paket setelah debootstrap.
# Nilai yang diizinkan: none (tidak satu pun), safe-upgrade
# (tingkatkan dengan aman), full-upgrade (tingkatkan penuh)
#d-i pkgsel/upgrade select none
# Anda dapat memilih, jika sistem Anda akan melaporkan kembali perangkat
# lunak apa yang Anda pasang, dan perangkat lunak apa yang Anda gunakan.
# Bakunya adalah tidak melaporkan kembali, tetapi mengirim laporan
# membantu proyek menentukan perangkat lunak apa yang paling
# populer dan mesti disertakan pada DVD pertama.
#popularity-contest popularity-contest/participate boolean false
```

B.4.12 Instalasi boot loader

```
# Grub adalah boot loader (untuk x86).
# Ini cukup aman untuk diatur, itu membuat grub memasang secara otomatis ke
# partisi UEFI/boot record jika tidak ada sistem operasi lain yang terdeteksi
# pada mesin.
d-i grub-installer/only_debian boolean true
# Yang ini membuat grub-installer memasang ke partisi UEFI/boot record, jika
# itu juga menemukan beberapa OS lain, yang kurang aman karena mungkin tidak
# bisa mem-boot OS lain itu.
d-i grub-installer/with_other_os boolean true
# Terutama karena flash disk USB potensial, lokasi drive utama tidak
# dapat ditentukan dengan aman secara umum, jadi ini perlu ditentukan:
#d-i grub-installer/bootdev string /dev/sda
# Untuk memasang ke perangkat utama (dengan asumsi itu bukan flash disk USB):
#d-i grub-installer/bootdev string default
# Atau, jika Anda ingin memasang ke lokasi selain partisi UEFI/
# boot record, hapus komentar dan edit baris-baris ini:
#d-i grub-installer/only_debian boolean false
#d-i grub-installer/with_other_os boolean false
#d-i grub-installer/bootdev string (hd0,1)
# Untuk memasang grub ke beberapa disk:
#d-i grub-installer/bootdev string (hd0,1) (hd1,1) (hd2,1)
# Kata sandi opsional untuk grub, baik dalam teks polos
#d-i grub-installer/password password r00tme
#d-i grub-installer/password-again password r00tme
# atau dienkripsi menggunakan hash MD5, lihat grub-md5-crypt(8).
#d-i grub-installer/password-crypted password [MD5 hash]
# Gunakan opsi berikut untuk menambahkan parameter boot tambahan untuk
# sistem yang dipasang (jika didukung oleh pemasang bootloader).
# Catatan: opsi yang diteruskan ke pemasang akan ditambahkan secara otomatis.
#d-i debian-installer/add-kernel-opts string nousb
```

Hash MD5 untuk kata sandi bagi grub dapat dihasilkan menggunakan grub-md5-crypt, atau menggunakan perintah dari contoh di Bagian B.4.6.

B.4.13 Menyelesaikan instalasi

```
# Selama instalasi dari konsol serial, konsol virtual biasa (VT1-VT6)
# biasanya dinonaktifkan di /etc/inittab. Hapus komentar baris berikut
# untuk mencegah hal ini.
#d-i finish-install/keep-consoles boolean true

# Hindari pesan terakhir tentang instalasi yang selesai.
d-i finish-install/reboot_in_progress note

# Ini akan mencegah pemasang mengeluarkan cakram selama reboot,
# yang berguna dalam beberapa situasi.
#d-i cdrom-detect/eject boolean false

# Ini adalah cara membuat pemasang shutdown ketika selesai, tetapi tidak
# reboot ke sistem yang dipasang.
#d-i debian-installer/exit/halt boolean true
# Ini akan mematikan mesin alih-alih hanya menghentikannya.
#d-i debian-installer/exit/poweroff boolean true
```

B.4.14 Preseed paket lainnya

```
# Tergantung pada perangkat lunak apa yang Anda pilih untuk dipasang, atau
# jika ada yang salah selama proses instalasi, ada kemungkinan bahwa
# pertanyaan lain mungkin ditanyakan. Anda juga dapat mem-preseed-nya,
# tentu saja. Untuk mendapatkan daftar setiap kemungkinan pertanyaan yang
# dapat ditanyakan selama instalasi, lakukan instalasi, dan kemudian
# jalankan perintah ini:
# debconf-get-selections --installer > file
# debconf-get-selections >> file
```

B.5 Opsi tingkat lanjut

B.5.1 Menjalankan perintah ubahan selama instalasi

Opsi yang sangat kuat dan fleksibel yang ditawarkan oleh alat prakonfigurasi adalah kemampuan untuk menjalankan perintah atau skrip pada titik-titik tertentu dalam instalasi.

Ketika sistem berkas dari sistem target dipasang, itu tersedia di /target. Jika CD/DVD instalasi digunakan, ketika dikait itu tersedia di /cdrom.

```
# d-i preseed secara inheren tidak aman. Tidak ada dalam pemasang yang
# memeriksa upaya buffer overflow atau eksploitasi lain dari nilai-nilai
# berkas prakonfigurasi seperti ini. Hanya gunakan berkas prakonfigurasi dari
# lokasi tepercaya! Untuk mengantarnya pulang, dan karena umumnya berguna,
# inilah cara untuk menjalankan perintah shell apa pun yang Anda inginkan
# di dalam pemasang, secara otomatis.
# Perintah pertama ini dijalankan sedini mungkin, tepat setelah
# preseed dibaca.
#d-i preseed/early_command string anna-install some-udeb
# Perintah ini dijalankan segera sebelum pemartisi dimulai. Mungkin saja
# berguna untuk menerapkan preseed partisi dinamis yang tergantung pada keadaan
# disk (yang mungkin tidak terlihat saat preseed/early_command berjalan).
#d-i partman/early_command \
       string debconf-set partman-auto/disk "$(list-devices disk | head -n1)"
# Perintah ini dijalankan tepat sebelum instalasi selesai, tetapi ketika masih
# ada direktori /target yang dapat digunakan. Anda dapat chroot ke /target dan
# menggunakannya langsung, atau gunakan perintah apt-install dan in-target untuk
# memasang paket dengan mudah dan menjalankan perintah dalam sistem target.
#d-i preseed/late_command string apt-install zsh; in-target chsh -s /bin/zsh
```

B.5.2 Menggunakan preseed untuk mengubah nilai baku

Dimungkinkan untuk menggunakan preseed agar mengubah jawaban baku untuk sebuah pertanyaan, tetapi masih memiliki pertanyaan yang diajukan. Untuk melakukan ini, bendera *seen* harus disetel ulang ke "false" setelah mengatur nilai untuk pertanyaan.

```
d-i foo/bar string value
d-i foo/bar seen false
```

Efek yang sama dapat dicapai untuk *semua* pertanyaan dengan mengatur parameter preseed/interactive=true pada prompt boot. Ini juga dapat berguna untuk menguji atau men-debug berkas prakonfigurasi Anda.

Perhatikan bahwa pemilik "d-i" hanya boleh digunakan untuk variabel yang digunakan dalam pemasang itu sendiri. Untuk variabel milik paket yang dipasang pada sistem target, Anda harus menggunakan nama paket itu sebagai gantinya. Lihat catatan kaki untuk Bagian B.2.2.

Jika Anda melakukan preseed menggunakan parameter boot, Anda dapat membuat pemasang mengajukan pertanyaan yang sesuai dengan menggunakan operator "?=", yaitu foo/bar?=nilai(atau pemilik: foo/bar?=nilai). Hal ini tentu saja hanya akan berpengaruh pada parameter yang sesuai dengan pertanyaan yang sebenarnya ditampilkan selama instalasi dan bukan untuk parameter "internal".

Untuk informasi debug lebih lanjut, gunakan parameter boot DEBCONF_DEBUG=5. Ini akan menyebabkan debconf mencetak lebih banyak detail tentang pengaturan saat ini dari setiap variabel dan tentang kemajuannya melalui skrip instalasi masing-masing paket.

B.5.3 Memuat berkas prakonfigurasi berrantai

Dimungkinkan untuk menyertakan berkas prakonfigurasi lain dari suatu berkas prakonfigurasi. Pengaturan apa pun dalam berkas tersebut akan menggantikan pengaturan yang sudah ada sebelumnya dari berkas yang dimuat sebelumnya. Ini memungkinkan untuk meletakkan, misalnya, pengaturan jaringan umum untuk lokasi Anda dalam satu berkas dan pengaturan yang lebih spesifik untuk konfigurasi tertentu dalam berkas lain.

```
# Lebih dari satu berkas dapat dicantumkan, dipisahkan oleh spasi; semua
# akan dimuat. Berkas yang disertakan dapat memiliki direktif preseed/include
# mereka sendiri juga. Perhatikan bahwa jika nama berkas itu relatif, mereka
# diambil dari direktori yang sama dengan berkas prakonfigurasi yang
# menyertakannya.
#d-i preseed/include string x.cfg
# Pemasang dapat secara opsional memverifikasi checksum berkas prakonfigurasi
# sebelum menggunakannya. Saat ini hanya md5sum yang didukung, buat daftar
# md5sums dalam urutan yang sama dengan daftar berkas yang akan disertakan.
#d-i preseed/include/checksum string 5da499872becccfeda2c4872f9171c3d
# Lebih fleksibel, ini menjalankan perintah shell dan jika mengeluarkan
# nama-nama berkas prakonfigurasi, sertakan berkas-berkas itu.
#d-i preseed/include_command \
      string if [ "'hostname'" = bob ]; then echo bob.cfg; fi
# Yang paling fleksibel dari semuanya, ini mengunduh program dan
# menjalankannya. Program dapat menggunakan perintah seperti debconf-set
# untuk memanipulasi basis data debconf. Lebih dari satu skrip dapat
# dicantumkan, dipisahkan oleh spasi. Perhatikan bahwa jika nama berkas
# itu relatif, mereka diambil dari direktori yang sama dengan berkas
# prakonfigurasi yang menjalankannya.
#d-i preseed/run string foo.sh
```

Dimungkinkan juga untuk chainload dari fase initrd atau berkas preseed, ke dalam preseed jaringan dengan mengatur preseed/url di berkas sebelumnya. Ini akan menyebabkan preseed jaringan dilakukan ketika jaringan muncul. Anda harus berhati-hati saat melakukan ini, karena akan ada dua eksekusi berbeda pada preseed, artinya misalnya Anda mendapatkan kesempatan lain untuk menjalankan perintah preseed/early, yang kedua terjadi setelah jaringan muncul.

Lampiran C

Pemartisian untuk Debian

C.1 Memutuskan Partisi dan Ukuran pada Debian

Minimal, GNU/Linux membutuhkan satu partisi untuk dirinya sendiri. Anda dapat memiliki satu partisi yang berisi seluruh sistem operasi, aplikasi, dan berkas pribadi Anda. Kebanyakan orang merasa bahwa partisi swap terpisah juga merupakan suatu keharusan, meskipun itu tidak sepenuhnya benar. "Swap" adalah ruang kotretan untuk sistem operasi, yang memungkinkan sistem untuk menggunakan penyimpanan disk sebagai "memori virtual". Dengan menempatkan swap pada partisi terpisah, Linux dapat membuat penggunaan yang jauh lebih efisien. Dimungkinkan untuk memaksa Linux untuk menggunakan berkas biasa sebagai swap, tetapi tidak disarankan.

Namun kebanyakan orang memilih untuk memberikan GNU/Linux lebih dari jumlah minimum partisi. Ada dua alasan Anda mungkin ingin memecah sistem berkas menjadi sejumlah partisi yang lebih kecil. Yang pertama adalah untuk keamanan. Jika sesuatu terjadi pada sistem berkas yang rusak, umumnya hanya satu partisi yang terpengaruh. Dengan demikian, Anda hanya perlu mengganti (dari cadangan yang telah Anda simpan dengan hati-hati) sebagian dari sistem Anda. Minimal, Anda harus mempertimbangkan untuk membuat apa yang biasa disebut "partisi root". Ini berisi komponen paling penting dari sistem. Jika ada partisi lain yang rusak, Anda masih dapat boot ke GNU/Linux untuk memperbaiki sistem. Ini dapat menyelamatkan Anda dari kesulitan karena harus memasang ulang sistem dari awal.

Alasan kedua umumnya lebih penting dalam pengaturan bisnis, tetapi itu sangat tergantung pada penggunaan mesin Anda. Misalnya, server surat yang di-spam dengan surel dapat dengan mudah memenuhi partisi. Jika Anda membuat /var/mail partisi terpisah di server surel, sebagian besar sistem akan tetap berfungsi bahkan jika Anda di-spam.

Satu-satunya kelemahan nyata untuk menggunakan lebih banyak partisi adalah sering kali sulit untuk mengetahui terlebih dahulu apa kebutuhan Anda nantinya. Jika Anda membuat partisi terlalu kecil maka Anda harus memasang ulang sistem atau Anda akan terus memindahkan barang-barang untuk memberi ruang di partisi berukuran kecil. Di sisi lain, jika Anda membuat partisi terlalu besar, Anda akan membuang-buang ruang yang bisa digunakan di tempat lain. Ruang disk murah saat ini, tetapi mengapa membuang uang Anda?

C.2 Pohon Direktori

Debian GNU/Linux mematuhi Filesystem Hierarchy Standard untuk direktori dan penamaan berkas. Standar ini memungkinkan pengguna dan program perangkat lunak untuk memprediksi lokasi berkas dan direktori. Direktori level root hanya diwakili oleh garis miring /. Pada tingkat root, semua Debian sistem termasuk direktori ini:

Direktori	Isi	
bin	Biner perintah penting	
boot	Berkas statis dari boot loader	
dev	Berkas perangkat	
etc	Konfigurasi sistem spesifik host	
home	Direktori home pengguna	
lib	Pustaka bersama dan modul kernel yang esensial	
media	Berisi titik kait untuk media lepasan	
mnt	Titik kait untuk memasang sistem berkas sementara	
proc	Direktori virtual untuk informasi sistem	
root	Direktori home untuk pengguna root	

Direktori	Isi
run	Data variabel run-time
sbin	Biner sistem esensial
sys	Direktori virtual untuk informasi sistem
tmp	Berkas sementara
usr	Hierarki sekunder
var	Data variabel
srv	Data untuk layanan yang disediakan oleh sistem
opt	Paket perangkat lunak aplikasi add-on

Berikut ini adalah daftar pertimbangan penting mengenai direktori dan partisi. Perhatikan bahwa penggunaan disk sangat bervariasi mengingat konfigurasi sistem dan pola penggunaan tertentu. Rekomendasi di sini adalah pedoman umum dan memberikan titik awal untuk partisi.

- Partisi root / harus selalu secara fisik berisi /etc, /bin, /sbin, /lib, /dev, dan /usr, jika tidak, Anda tidak akan dapat boot. Ini berarti bahwa Anda harus menyediakan ruang disk setidaknya 700-850 MB untuk partisi root, termasuk /usr, atau 5-6GB untuk suatu instalasi workstation atau server.
- /var: data variabel seperti artikel berita, surel, situs web, basis data, singgahan sistem pemaketan, dll. akan ditempatkan di bawah direktori ini. Ukuran direktori ini sangat tergantung pada penggunaan sistem Anda, tetapi bagi kebanyakan orang akan ditentukan oleh overhead alat manajemen paket. Jika Anda akan melakukan instalasi penuh dari hampir semua yang ditawarkan Debian, semua dalam satu sesi, menyisihkan 2 atau 3 GB ruang untuk /var sudah cukup. Jika Anda akan memasang per potong (artinya, memasang layanan dan utilitas, diikuti oleh alat teks, lalu X, ...), Anda bisa lolos dengan 300-500 MB. Jika ruang hard drive tipis dan Anda tidak berrencana melakukan pembaruan sistem besar, Anda dapat bertahan hanya dengan 30 atau 40 MB.
- /tmp: data sementara yang dibuat oleh program kemungkinan besar akan masuk ke direktori ini. 40-100MB biasanya sudah cukup. Beberapa aplikasi termasuk manipulator arsip, alat pembuat CD/DVD, dan perangkat lunak multimedia dapat menggunakan /tmp untuk menyimpan berkas image sementara. Jika Anda berencana untuk menggunakan aplikasi tersebut, Anda harus menyetel ruang yang tersedia di /tmp yang sesuai.
- /home: setiap pengguna akan memasukkan data pribadinya ke dalam sub direktori dari direktori ini. Ukurannya tergantung pada berapa banyak pengguna yang akan menggunakan sistem dan berkas apa yang akan disimpan di direktori mereka. Tergantung pada rencana penggunaan, Anda harus memesan sekitar 100MB untuk setiap pengguna, tetapi sesuaikan nilai ini dengan kebutuhan Anda. Cadangan lebih banyak ruang jika Anda berencana untuk menyimpan banyak berkas multimedia (gambar, MP3, film) di direktori home Anda.

C.3 Skema Pemartisian Yang Direkomendasikan

Untuk pengguna baru, kotak pribadi Debian, sistem rumah, dan pengaturan pengguna tunggal lainnya, satu partisi / (plus swap) mungkin adalah cara termudah dan paling sederhana. Jenis partisi yang disarankan adalah ext4.

Untuk sistem multi-pengguna atau sistem dengan banyak ruang disk, yang terbaik adalah menempatkan /var, /tmp, dan /home masing-masing pada partisi mereka sendiri yang terpisah dari partisi /.

Anda mungkin memerlukan partisi /usr/local terpisah jika Anda berencana untuk memasang banyak program yang bukan bagian dari distribusi Debian. Jika mesin Anda akan menjadi server surel, Anda mungkin perlu menjadikan /var/mail sebagai partisi terpisah. Jika Anda menyiapkan server dengan banyak akun pengguna, umumnya baik untuk memiliki partisi /home yang terpisah dan besar. Secara umum, situasi partisi bervariasi dari komputer ke komputer tergantung pada penggunaannya.

Untuk sistem yang sangat kompleks, Anda akan melihat Multi Disk HOWTO. Ini berisi informasi mendalam, sebagian besar menarik bagi ISP dan orang-orang yang menyiapkan server.

Sehubungan dengan masalah ukuran partisi swap, ada banyak pandangan. Salah satu aturan praktis yang bekerja dengan baik adalah menggunakan swap sebanyak memori sistem yang Anda miliki. Ini juga tidak boleh lebih kecil dari 512MB, dalam banyak kasus. Tentu saja, ada pengecualian untuk aturan ini.

Sebagai contoh, mesin rumah yang lebih tua mungkin memiliki RAM 512MB dan drive SATA 20GB pada /dev/sda. Mungkin ada partisi 8GB untuk sistem operasi lain di /dev/sda1, partisi swap 512MB di /dev/sda3, dan sekitar 11.4GB di /dev/sda2 sebagai partisi Linux.

Untuk gagasan tentang ruang yang diambil oleh tugas-tugas yang mungkin ingin Anda tambahkan setelah instalasi sistem Anda selesai, periksa Bagian D.2.

C.4 Nama Perangkat di Linux

Nama-nama partisi dan disk Linux dan mungkin berbeda dari sistem operasi lain. Anda perlu mengetahui nama-nama yang digunakan Linux saat Anda membuat dan memasang partisi. Berikut skema penamaan dasarnya:

- Hard disk pertama yang terdeteksi bernama /dev/sda.
- Hard disk kedua yang terdeteksi dinamai /dev/sdb, dan seterusnya.
- CD-ROM SCSI pertama bernama /dev/scd0, juga dikenal sebagai /dev/sr0.

Partisi pada setiap disk diwakili dengan menambahkan angka desimal ke nama disk: sda1 dan sda2 mewakili partisi pertama dan kedua dari drive disk SCSI pertama di sistem Anda.

Berikut adalah contoh kehidupan nyata. Mari kita asumsikan Anda memiliki sistem dengan 2 disk SCSI, satu di alamat SCSI 2 dan yang lainnya di alamat SCSI 4. Disk pertama (di alamat 2) kemudian diberi nama sda, dan yang kedua sdb. Jika drive sda memiliki 3 partisi di dalamnya, ini akan diberi nama sda1, sda2, dan sda3. Hal yang sama berlaku untuk disk sdb dan partisinya.

Perhatikan bahwa jika Anda memiliki dua adaptor bus host SCSI (yaitu, pengontrol), urutan drive bisa membingungkan. Solusi terbaik dalam hal ini adalah menonton pesan boot, dengan asumsi Anda mengetahui model dan/atau kapasitas drive.

Linux mewakili partisi utama sebagai nama drive, ditambah angka 1 hingga 4. Misalnya, partisi primer pertama pada drive pertama adalah /dev/sda1. Partisi logis diberi nomor mulai dari 5, jadi partisi logis pertama pada drive yang sama adalah /dev/sda5. Ingatlah bahwa partisi extended, yaitu partisi utama yang memegang partisi logis, tidak dapat digunakan dengan sendirinya.

C.5 Program Pemartisian Debian

Beberapa jenis program partisi telah diadaptasi oleh pengembang Debian untuk bekerja pada berbagai jenis hard disk dan arsitektur komputer. Berikut ini adalah daftar program yang berlaku untuk arsitektur Anda.

partman Alat partisi yang direkomendasikan di Debian. Pisau tentara Swiss ini juga dapat mengubah ukuran partisi, membuat sistem berkas ("format" dalam bahasa Windows) dan menetapkannya ke titik kait.

fdisk Pemartisi disk Linux asli, bagus untuk guru.

Hati-hati jika Anda memiliki partisi FreeBSD yang ada di mesin Anda. Kernel instalasi termasuk dukungan untuk partisi ini, tetapi cara **fdisk** merepresentasikan mereka (atau tidak) dapat membuat nama perangkat berbeda. Lihat HOWTO Linux+FreeBSD.

cfdisk Pemartisi disk layar penuh yang mudah digunakan untuk kita semua.

Perhatikan bahwa **cfdisk** tidak memahami partisi FreeBSD sama sekali, dan, sekali lagi, nama perangkat mungkin berbeda sebagai hasilnya.

Salah satu program ini akan dijalankan secara baku ketika Anda memilih Partisi disk (atau yang serupa). Dimungkinkan untuk menggunakan alat partisi yang berbeda dari baris perintah pada VT2, tetapi ini tidak disarankan. Ingatlah untuk menandai partisi boot Anda sebagai "Bootable".

C.5.1 Pemartisian untuk 64-bit PC

Jika Anda menggunakan hard disk baru (atau ingin menghapus seluruh tabel partisi disk Anda), tabel partisi baru perlu dibuat. "Pemartisian terpandu" melakukan ini secara otomatis, tetapi ketika mempartisi secara manual, pindahkan pilihan pada entri tingkat atas disk dan tekan **Enter**. Itu akan membuat tabel partisi baru pada disk itu. Dalam mode pakar, Anda kemudian akan diminta untuk jenis tabel partisi. Baku untuk sistem berbasis UEFI adalah "gpt", sedangkan untuk dunia BIOS yang lebih lama nilai bakunya adalah "msdos". Dalam instalasi prioritas standar, baku tersebut akan digunakan secara otomatis.

CATATAN

Ketika tabel partisi dengan tipe "gpt" dipilih (baku untuk sistem UEFI), ruang kosong 1 MB akan secara otomatis dibuat di awal disk. Ini dimaksudkan dan diperlukan untuk menyematkan bootloader GRUB2.

Jika Anda memiliki sistem operasi lain seperti Windows dan Anda ingin mempertahankan sistem operasi itu saat memasang Debian, Anda mungkin perlu mengubah ukuran partisinya untuk mengosongkan ruang bagi instalasi Debian. Pemasang mendukung pengubahan ukuran sistem berkas FAT dan NTFS; ketika Anda sampai pada langkah pemartisian pemasang, pilih opsi Manual dan kemudian cukup pilih partisi yang ada dan ubah ukurannya.

Sementara sistem UEFI modern tidak memiliki batasan seperti yang tercantum di bawah ini, BIOS PC lama umumnya menambahkan batasan tambahan untuk partisi disk. Ada batasan berapa banyak partisi "primer" dan "logis" yang dapat dikandung drive.

Pada PC lama dengan sistem BIOS, partisi "primer" adalah skema partisi asli untuk disk PC. Namun, hanya boleh ada empat dari mereka. Untuk melewati batasan ini, partisi "extended" dan "logical" diciptakan. Dengan mengatur salah satu partisi utama Anda sebagai partisi extended, Anda dapat membagi semua ruang yang dialokasikan ke partisi itu menjadi partisi logis. Anda dapat membuat hingga 60 partisi logis per partisi extended; namun, Anda hanya dapat memiliki satu partisi extended per drive.

Lampiran D

Bit Acak

D.1 Perangkat Linux

Di Linux berbagai berkas khusus dapat ditemukan di bawah direktori /dev. Berkas-berkas ini disebut berkas perangkat dan berperilaku tidak seperti berkas biasa. Jenis berkas perangkat yang paling umum adalah untuk perangkat blok dan perangkat karakter. Berkas-berkas ini adalah antarmuka ke driver yang sebenarnya (bagian dari kernel Linux) yang pada gilirannya mengakses perangkat keras. Jenis berkas perangkat lain yang kurang umum adalah *pipa* bernama. Berkas perangkat yang paling penting tercantum dalam tabel di bawah ini.

sda	Hard disk pertama	
sdb	Hard disk kedua	
sda1	Partisi pertama dari hard disk pertama	
sdb7	Partisi ketujuh dari hard disk kedua	

sr0	CD-ROM pertama
sr1	CD-ROM kedua

ttyS0	Port serial 0, juga dikenal sebagai COM1	
ttyS1	Port serial 1, juga dikenal sebagai COM2	
psaux	Perangkat tetikus PS/2	
gpmdata	Perangkat semu, data repeater dari daemon (tetikus)	
gpiiluata	GPM	

cdrom	Tautan simbolis ke drive CD-ROM
mouse	Tautan simbolis ke berkas perangkat tetikus

null	Apa pun yang ditulis ke perangkat ini akan hilang	
zero	Seseorang dapat tanpa henti membaca nol dari	
2610	perangkat ini	

D.1.1 Menyiapkan Tetikus Anda

Tetikus dapat digunakan di konsol Linux (dengan gpm) dan lingkungan jendela X. Biasanya, ini cukup dengan sekadar memasang gpm dan server X itu sendiri. Keduanya harus dikonfigurasi untuk menggunakan /dev/input/mice sebagai perangkat tetikus. Protokol tetikus yang benar bernama exps2 di gpm, dan ExplorerPS/2 di X. Berkas konfigurasi masing-masing adalah /etc/gpm.conf dan /etc/X11/xorg.conf.

D.2 Ruang Disk yang Dibutuhkan untuk Tugas

Instalasi standar untuk arsitektur amd64, termasuk semua paket standar dan menggunakan kernel baku, mengambil ruang disk 843 MB. Instalasi dasar minimal, tanpa tugas "Utilitas sistem standar" dipilih, akan mengambil 647MB.

PENTING

Dalam kedua kasus ini adalah ruang disk aktual yang digunakan *setelah* instalasi selesai dan berkas sementara dihapus. Ini juga tidak memperhitungkan overhead yang digunakan oleh sistem berkas, misalnya untuk berkas jurnal. Ini berarti bahwa secara signifikan lebih banyak ruang disk diperlukan baik *selama* instalasi maupun untuk penggunaan sistem normal.

Tabel berikut mencantumkan ukuran yang dilaporkan oleh aptitude untuk tugas yang tercantum dalam tasksel. Perhatikan bahwa beberapa tugas memiliki konstituen yang tumpang tindih, sehingga ukuran total yang dipasang untuk dua tugas bersama-sama mungkin kurang dari total yang diperoleh dengan menjumlahkan angka.

Secara baku pemasang akan memasang lingkungan desktop GNOME, tetapi lingkungan desktop alternatif dapat dipilih baik dengan menggunakan salah satu image instalasi khusus, atau dengan menentukan lingkungan desktop yang diinginkan selama instalasi (lihat Bagian 6.3.6.2).

Perhatikan bahwa Anda perlu menambahkan ukuran yang tercantum dalam tabel ke ukuran instalasi standar saat menentukan ukuran partisi. Sebagian besar ukuran yang terdaftar sebagai "Ukuran terpasang" akan berakhir di /usr dan di /lib; ukuran yang tercantum sebagai "Ukuran unduhan" (sementara) diperlukan di /var.

Tugas	Ukuran terpasang (MB)	Ukuran unduh (MB)	Kebutuhan ruang untuk memasang (MB)
Lingkungan desktop			
• GNOME (baku)	3323	861	4184
KDE Plasma	5429	1499	6928
• Xfce	2771	734	3505
• LXDE	2635	708	3343
• MATE	3197	832	4029
Cinnamon	3852	1027	4879
Server web	116	26	142
Server SSH	2	1	3

Jika Anda memasang dalam bahasa selain bahasa Inggris, **tasksel** dapat secara otomatis memasang *tugas pelokal-an*, jika tersedia untuk bahasa Anda. Persyaratan ruang berbeda per bahasa; Anda harus mengizinkan hingga 350MB total untuk diunduh dan dipasang.

D.3 Memasang Debian GNU/Linux dari suatu Sistem Unix/Linux

Bagian ini menjelaskan cara memasang Debian GNU/Linux dari sistem Unix atau Linux yang ada, tanpa menggunakan pemasang berbasis menu seperti yang dijelaskan di sisa manual. HOWTO "cross-install" ini telah diminta oleh pengguna yang beralih ke Debian GNU/Linux dari Red Hat, Mandriva, dan SUSE. Di bagian ini keakraban dengan memasukkan perintah *nix dan menavigasi sistem berkas diasumsikan. Di bagian ini, \$ melambangkan perintah untuk dimasukkan dalam sistem pengguna saat ini, sementara # mengacu pada perintah yang dimasukkan dalam chroot Debian.

Setelah sistem Debian baru dikonfigurasi sesuai preferensi, Anda dapat memigrasikan data pengguna yang ada (jika ada) ke sana, dan terus bergulir. Oleh karena itu, ini adalah instalasi "tanpa down time" Debian GNU/Linux. Ini juga merupakan cara cerdas untuk menangani perangkat keras yang jika tidak ramah dengan berbagai media boot atau instalasi.

CATATAN

Karena ini adalah prosedur yang sebagian besar manual, Anda harus ingat bahwa Anda perlu melakukan banyak konfigurasi dasar sistem sendiri, yang juga akan membutuhkan lebih banyak pengetahuan tentang Debian dan Linux secara umum daripada melakukan instalasi biasa. Anda tidak dapat mengharapkan prosedur ini untuk menghasilkan sistem yang identik dengan sistem dari instalasi biasa. Anda juga harus ingat bahwa prosedur ini hanya memberikan langkah-langkah dasar untuk mengatur sistem. Langkah-langkah instalasi dan/atau konfigurasi tambahan mungkin diperlukan.

D.3.1 Memulai

Dengan alat partisi *nix Anda saat ini, partisi ulang hard drive sesuai kebutuhan, buat setidaknya satu sistem berkas plus swap. Anda membutuhkan sekitar 647 MB ruang yang tersedia untuk instalasi hanya konsol, atau sekitar 2635 MB jika Anda berencana untuk memasang X (lebih banyak lagi jika Anda bermaksud untuk memasang lingkungan desktop seperti GNOME atau KDE Plasma).

Selanjutnya, buat sistem berkas pada partisi. Misalnya, untuk membuat sistem berkas ext3 pada partisi /dev/sda6 (itu contoh partisi root kami):

```
# mke2fs -j /dev/sda6
```

Untuk membuat sistem berkas ext2 sebagai gantinya, hilangkan -j.

Inisialisasi dan aktifkan swap (ganti nomor partisi untuk partisi swap Debian yang Anda inginkan):

- # mkswap /dev/sda5
- # sync
- # swapon /dev/sda5

Kait satu partisi sebagai/mnt/debinst (titik instalasi, akan menjadi sistem berkas root (/) pada sistem baru Anda). Nama titik kait benar-benar sebarang, dirujuk kemudian di bawah ini.

- # mkdir /mnt/debinst
- # mount /dev/sda6 /mnt/debinst

CATATAN

Jika Anda ingin memiliki bagian dari sistem berkas (misalnya /usr) yang dipasang pada partisi terpisah, Anda harus membuat dan mengait direktori ini secara manual sebelum melanjutkan dengan tahap berikutnya.

D.3.2 Pasang debootstrap

Utilitas yang digunakan oleh pemasang Debian, dan diakui sebagai cara resmi untuk memasang sistem dasar Debian, adalah **debootstrap**. Ini menggunakan **wget** dan **ar**, tetapi sebaliknya hanya bergantung pada /bin/sh dan alat Unix/Linux dasar¹. Pasang **wget** dan **ar** jika belum ada di sistem Anda saat ini, lalu unduh dan pasang **debootstrap**.

Atau, Anda dapat menggunakan prosedur berikut untuk memasangnya secara manual. Buat folder kerja untuk tempat mengekstrak .deb:

- # mkdir work
- # cd work

Biner **debootstrap** terletak di arsip Debian (pastikan untuk memilih berkas yang tepat untuk arsitektur Anda). Unduh .deb **debootstrap** dari pool, salin paket ke folder kerja, dan ekstrak berkas darinya. Anda harus memiliki hak akses root untuk memasang berkas.

¹Ini termasuk utilitas inti GNU dan perintah seperti **sed**, **grep**, **tar**, dan **gzip**.

```
# ar -x debootstrap_0.X.X_all.deb
# cd /
# zcat /full-path-to-work/work/data.tar.gz | tar xv
```

D.3.3 Jalankan debootstrap

debootstrap dapat mengunduh berkas yang diperlukan langsung dari arsip saat Anda menjalankannya. Anda dapat menggantikan cermin arsip Debian untuk http.us.debian.org/debian dalam contoh perintah di bawah ini, lebih disukai cermin yang dekat dengan Anda dari segi jaringan. Cermin terdaftar di http://www.debian.org/mirror/list.

Jika Anda memiliki image instalasi trixie Debian GNU/Linux dikait di /cdrom, Anda dapat mengganti URL berkas alih-alih URL http: file:/cdrom/debian/

Ganti salah satu dari berikut ini untuk ARCH di perintah debootstrap: amd64, arm64, armhf, ppc64el, riscv64, s390x.

```
# /usr/sbin/debootstrap --arch ARCH trixie \
   /mnt/debinst http://ftp.us.debian.org/debian
```

Jika arsitektur target berbeda dari host, Anda harus menambahkan opsi --foreign.

D.3.4 Konfigurasikan Sistem Dasar

Sekarang Anda memiliki sistem Debian yang nyata, meskipun agak ramping, pada disk. chroot ke dalamnya:

```
# LANG=C.UTF-8 chroot /mnt/debinst /bin/bash
```

Jika arsitektur target berbeda dari host, Anda harus terlebih dahulu menyalin qemu-user-static ke host baru:

```
# cp /usr/bin/qemu-ARCH-static /mnt/debinst/usr/bin
# LANG=C.UTF-8 chroot /mnt/debinst qemu-ARCH-static /bin/bash
```

Setelah chroot, Anda mungkin perlu mengatur definisi terminal agar kompatibel dengan sistem dasar Debian, misalnya:

```
# export TERM=xterm-color
```

Tergantung pada nilai TERM, Anda mungkin harus memasang paket ncurses-term untuk mendapatkan dukungan untuk itu.

Jika arsitektur target berbeda dari host, Anda harus menyelesaikan boot strap multi-tahap:

```
/debootstrap/debootstrap --second-stage
```

D.3.4.1 Buat berkas perangkat

Pada titik ini /dev/ hanya berisi berkas perangkat yang sangat dasar. Untuk langkah selanjutnya dari instalasi, berkas perangkat tambahan mungkin diperlukan. Ada berbagai cara untuk melakukan ini dan metode mana yang harus Anda gunakan tergantung pada sistem host yang Anda gunakan untuk instalasi, pada apakah Anda bermaksud menggunakan kernel modular atau tidak, dan apakah Anda berniat menggunakan berkas perangkat dinamis (misalnya menggunakan udev) atau statis untuk sistem baru.

Beberapa opsi yang tersedia adalah:

• pasang paket makedev, dan buat satu set baku berkas perangkat statis menggunakan (setelah chroot)

```
# apt install makedev
# mount none /proc -t proc
# cd /dev
# MAKEDEV generic
```

- membuat hanya berkas perangkat tertentu secara manual menggunakan MAKEDEV
- bind mount /dev dari sistem host Anda di atas /dev di sistem target; perhatikan bahwa skrip postinst dari beberapa paket dapat mencoba membuat berkas perangkat, jadi opsi ini hanya boleh digunakan dengan hatihati

D.3.4.2 Kait Partisi

Anda perlu membuat /etc/fstab.

```
# editor /etc/fstab
```

Berikut adalah contoh yang dapat Anda modifikasi agar sesuai:

```
# /etc/fstab: informasi sistem berkas statis.
# file system
                mount point type options
                                                              dump pass
                       ext3 defaults
/dev/XXX
                                                              0
                                                                   1
                            ext3 ro, nosuid, nodev
/dev/XXX
                /boot
                                                              0
                                                                   2
/dev/XXX
                                                              Ω
                                                                   \cap
                none
                             swap sw
                                                              Ω
                                                                   Ω
proc
                /proc
                            proc defaults
                /media/cdrom iso9660 noauto, ro, user, exec
/dev/cdrom
                                                              0
                                                                   0
                                    rw, nosuid, nodev
/dev/XXX
                             ext3
                                                              0
                                                                   2
                /tmp
                                   rw, nosuid, nodev
/dev/XXX
                /var
                             ext3
                                                              0
                                                                   2
/dev/XXX
                                                              0
                                                                   2
                /usr
                             ext3
                                     rw, nodev
                                   rw, nosuid, nodev
/dev/XXX
                             ext3
                                                              0
                                                                   2
                /home
```

Gunakan mount –a untuk mengait semua sistem berkas yang telah Anda tentukan di /etc/fstab Anda, atau, untuk mengait sistem berkas satu per satu, gunakan:

```
# mount /path # misalnya: mount /usr
```

Sistem Debian saat ini memiliki titik kait untuk media lepasan di bawah /media, tetapi mempertahankan symlink kompatibilitas di /. Buat ini sesuai kebutuhan, misalnya:

```
# cd /media
# mkdir cdrom0
# ln -s cdrom0 cdrom
# cd /
# ln -s media/cdrom
```

Anda dapat mengait sistem berkas proc beberapa kali dan ke lokasi sebarang, meskipun kebiasaan adalah /proc. Jika Anda tidak menggunakan mount -a, pastikan untuk memasang proc sebelum melanjutkan:

```
# mount -t proc proc /proc
```

Perintah ls /proc sekarang harus menampilkan direktori yang tidak kosong. Jika ini gagal, Anda mungkin dapat memasang proc dari luar chroot:

```
# mount -t proc proc /mnt/debinst/proc
```

D.3.4.3 Mengatur Zona Waktu

Mengatur baris ketiga berkas /etc/adjtime ke "UTC" atau "LOCAL" menentukan apakah sistem akan menafsirkan jam perangkat keras sebagai diatur ke UTC atau masing-masing waktu lokal. Perintah berikut memungkinkan Anda untuk mengaturnya.

```
# editor /etc/adjtime
```

Berikut adalah contoh:

```
0.0 0.0
0
UTC
```

Perintah berikut memungkinkan Anda untuk memilih zona waktu Anda.

```
# dpkg-reconfigure tzdata
```

D.3.4.4 Mengonfigurasi Jaringan

Untuk mengonfigurasi jaringan, edit /etc/network/interfaces, /etc/resolv.conf, /etc/hostname, dan /etc/hosts.

editor /etc/network/interfaces

Berikut adalah beberapa contoh sederhana dari /usr/share/doc/ifupdown/examples:

```
# /etc/network/interfaces -- berkas konfigurasi untuk ifup(8), ifdown(8)
# Lihat halaman man interfaces(5) untuk informasi tentang opsi apa yang
# tersedia.
# Antarmuka loopback tidak benar-benar diperlukan lagi, tetapi dapat digunakan
# jika diperlukan.
# auto lo
# iface lo inet loopback
# Untuk menggunakan dhcp:
# auto eth0
# iface eth0 inet dhcp
# Contoh pengaturan IP statis: (jaringan, broadcast, dan gateway bersifat
# opsional)
# auto eth0
# iface eth0 inet static
   address 192.168.0.42
   network 192.168.0.0
   netmask 255.255.255.0
   broadcast 192.168.0.255
    gateway 192.168.0.1
```

Masukkan direktif nameserver dan search Anda di /etc/resolv.conf:

```
# editor /etc/resolv.conf
```

Contoh sederhana /etc/resolv.conf:

```
search example.com
nameserver 10.1.1.36
nameserver 192.168.9.100
```

Masukkan nama host sistem Anda (2 hingga 63 karakter):

```
# echo NamaHostDebian > /etc/hostname
```

Dan /etc/hosts dasar dengan dukungan IPv6:

```
127.0.0.1 localhost
127.0.1.1 NamaHostDebian

# Baris berikut diinginkan untuk host berkemampuan IPv6
::1 ip6-localhost ip6-loopback
fe00::0 ip6-localnet
ff00::0 ip6-mcastprefix
ff02::1 ip6-allnodes
ff02::2 ip6-allrouters
ff02::3 ip6-allhosts
```

Jika Anda memiliki beberapa kartu jaringan, Anda harus mengatur nama modul driver dalam berkas /etc/modules ke dalam urutan yang diinginkan. Kemudian selama boot, setiap kartu akan dikaitkan dengan nama antarmuka (eth0, eth1, dll.) yang Anda harapkan.

D.3.4.5 Mengonfigurasi Apt

Debootstrap akan membuat /etc/apt/sources.list yang sangat mendasar yang akan memungkinkan memasang paket tambahan. Namun, Anda mungkin ingin menambahkan beberapa sumber, misalnya untuk paket sumber dan pembaruan keamanan:

```
deb-src http://ftp.us.debian.org/debian trixie main

deb http://security.debian.org/ trixie-security main
deb-src http://security.debian.org/ trixie-security main
```

Pastikan untuk menjalankan apt update setelah Anda membuat perubahan pada daftar sumber.

D.3.4.6 Mengonfigurasi Lokal dan Papan Ketik

Untuk mengonfigurasi pengaturan lokal Anda agar menggunakan bahasa selain bahasa Inggris, pasang paket dukungan locales dan konfigurasikan itu. Saat ini penggunaan lokal UTF-8 direkomendasikan.

```
# apt install locales
# dpkg-reconfigure locales
```

Untuk mengonfigurasi papan ketik Anda (jika diperlukan):

```
# apt install console-setup
# dpkg-reconfigure keyboard-configuration
```

Perhatikan bahwa papan ketik tidak dapat diatur saat berada di chroot, tetapi akan dikonfigurasi untuk reboot berikutnya.

D.3.5 Pasang Kernel

Jika Anda berniat untuk mem-boot sistem ini, Anda mungkin menginginkan kernel dan boot loader Linux. Identifikasi paket kernel yang tersedia dengan:

```
# apt search linux-image
```

Kemudian pasang paket kernel pilihan Anda menggunakan nama paketnya.

```
# apt install linux-image-arch-etc
```

D.3.6 Siapkan Boot Loader

Untuk membuat sistem Debian GNU/Linux Anda dapat di-boot, atur boot loader Anda untuk memuat kernel yang dipasang dengan partisi root baru Anda. Perhatikan bahwa **debootstrap** tidak memasang boot loader, tetapi Anda dapat menggunakan **apt** di dalam chroot Debian Anda untuk melakukannya.

Periksa info grub untuk instruksi tentang pengaturan bootloader. Jika Anda menyimpan sistem yang Anda gunakan untuk memasang Debian, cukup tambahkan entri untuk instalasi Debian ke grub.cfg grub2 yang ada.

Memasang dan menyiapkan grub2 semudah:

```
# apt install grub-pc
# grub-install /dev/sda
# update-grub
```

Perintah kedua akan memasang **grub2** (dalam hal ini dalam MBR sda). Perintah terakhir akan membuat /boot/grub/grub.cfg yang waras dan berfungsi.

Perhatikan bahwa ini mengasumsikan bahwa berkas perangkat /dev/sda telah dibuat. Ada metode alternatif untuk memasang **grub2**, tapi itu di luar cakupan lampiran ini.

D.3.7 Akses jarak jauh: Memasang SSH dan menyiapkan akses

Jika Anda dapat masuk ke sistem melalui konsol, Anda dapat melewati bagian ini. Jika sistem harus dapat diakses melalui jaringan nanti, Anda perlu memasang SSH dan mengatur akses.

```
# apt install ssh
```

Login root dengan kata sandi dinonaktifkan secara baku, sehingga pengaturan akses dapat dilakukan dengan mengatur kata sandi dan mengaktifkan kembali login root dengan kata sandi:

```
# passwd
# editor /etc/ssh/sshd_config
```

Ini adalah opsi yang akan diaktifkan:

```
PermitRootLogin yes
```

Akses juga dapat diatur dengan menambahkan kunci ssh ke akun root:

```
# mkdir /root/.ssh
# cat << EOF > /root/.ssh/authorized_keys
ssh-rsa ....
EOF
```

Terakhir, akses dapat diatur dengan menambahkan pengguna non-root dan mengatur kata sandi:

```
# adduser joe
# passwd joe
```

D.3.8 Sentuhan akhir

Seperti disebutkan sebelumnya, sistem yang dipasang akan sangat mendasar. Jika Anda ingin membuat sistem sedikit lebih matang, ada metode mudah untuk memasang semua paket dengan prioritas "standar":

```
# tasksel install standard
```

Tentu saja, Anda juga bisa menggunakan apt untuk memasang paket satu per satu.

Setelah instalasi akan ada banyak paket yang diunduh di /var/cache/apt/archives/. Anda dapat mengosongkan sebagian ruang disk dengan menjalankan:

```
# apt clean
```

D.4 Memasang Debian GNU/Linux melalui Parallel Line IP (PLIP)

Bagian ini menjelaskan cara memasang Debian GNU/Linux pada komputer tanpa kartu Ethernet, tetapi hanya dengan komputer gateway jarak jauh yang terpasang melalui kabel Null-Modem (juga disebut kabel Null-Printer). Komputer gateway harus terhubung ke jaringan yang memiliki cermin Debian di atasnya (misalnya ke Internet).

Dalam contoh dalam lampiran ini kita akan mengatur koneksi PLIP menggunakan gateway yang terhubung ke Internet melalui koneksi dial-up (ppp0). Kami akan menggunakan alamat IP masing-masing 192.168.0.1 dan 192.168.0.2 untuk antarmuka PLIP pada sistem target dan sistem sumber (alamat ini harus tidak digunakan dalam ruang alamat jaringan Anda).

Koneksi PLIP yang diatur selama instalasi juga akan tersedia setelah reboot ke sistem yang dipasang (lihat Bab 7). Sebelum memulai, Anda perlu memeriksa konfigurasi BIOS (alamat dasar IO dan IRQ) untuk port paralel dari sistem sumber dan target. Nilai yang paling umum adalah io=0x378, irq=7.

D.4.1 Kebutuhan

- Komputer target, yang disebut *target*, di mana Debian akan dipasang.
- Media instalasi sistem; lihat Bagian 2.4.
- Komputer lain yang terhubung ke Internet, yang disebut *sumber*, yang akan berfungsi sebagai gateway.
- Kabel DB-25 Null-Modem. Lihat PLIP-Install-HOWTO untuk informasi lebih lanjut tentang kabel ini dan petunjuk cara membuatnya sendiri.

D.4.2 Menyiapkan sumber

Skrip shell berikut adalah contoh sederhana tentang cara mengonfigurasi komputer sumber sebagai gateway ke Internet menggunakan ppp0.

```
#!/bin/sh

# Kami menghapus modul yang berjalan dari kernel untuk menghindari konflik
# dan untuk konfigurasi ulang secara manual.
modprobe -r lp parport_pc
modprobe parport_pc io=0x378 irq=7
modprobe plip

# Konfigurasikan antarmuka plip (plip0 untuk saya, lihat dmesg | grep plip)
ifconfig plip0 192.168.0.2 pointopoint 192.168.0.1 netmask 255.255.255.255 up

# Konfigurasi gateway
modprobe iptable_nat
iptables -t nat -A POSTROUTING -o ppp0 -j MASQUERADE
echo 1 > /proc/sys/net/ipv4/ip_forward
```

D.4.3 Memasang target

Boot media instalasi. Instalasi perlu dijalankan dalam mode pakar; masukkan **expert** pada prompt boot. Jika Anda perlu mengatur parameter untuk modul kernel, Anda juga perlu melakukan ini pada prompt boot. Misalnya, untuk mem-boot pemasang dan menetapkan nilai untuk opsi "io" dan "irq" bagi modul parport_pc, masukkan yang berikut ini pada prompt boot:

```
expert parport_pc.io=0x378 parport_pc.irq=7
```

Di bawah ini adalah jawaban yang harus diberikan selama berbagai tahap instalasi.

- Memuat komponen pemasang dari media instalasi
 Pilih opsi plip-modules dari daftar; ini akan membuat driver PLIP tersedia bagi sistem instalasi.
- 2. Mendeteksi perangkat keras jaringan
 - Jika target *memang* memiliki kartu jaringan, daftar modul driver untuk kartu yang terdeteksi akan ditampilkan. Jika Anda ingin memaksa debian-installer untuk menggunakan PLIP sebagai gantinya, Anda harus membatalkan pilihan semua modul driver yang terdaftar. Jelas, jika target tidak memiliki kartu jaringan, pemasang tidak akan menampilkan daftar ini.
 - Karena tidak ada kartu jaringan yang terdeteksi/dipilih sebelumnya, pemasang akan meminta Anda untuk memilih modul driver jaringan dari daftar. Pilih modul plip.
- 3. Mengonfigurasi jaringan
 - Konfigurasi otomatis jaringan dengan DHCP: Tidak
 - Alamat IP: 192.168.0.1
 - Alamat point-to-point: 192.168.0.2
 - Alamat server nama: Anda dapat memasukkan alamat yang sama dengan yang digunakan pada sumber (lihat /etc/resolv.conf)

D.5 Memasang Debian GNU/Linux menggunakan PPP over Ethernet (PP-PoE)

Di beberapa negara PPP over Ethernet (PPPoE) adalah protokol umum untuk koneksi broadband (ADSL atau kabel) ke Penyedia Layanan Internet. Menyiapkan koneksi jaringan menggunakan PPPoE tidak didukung secara baku di pemasang, tetapi dapat dibuat untuk bekerja dengan sangat sederhana. Bagian ini menjelaskan caranya.

Pengaturan koneksi PPPoE selama instalasi juga akan tersedia setelah reboot ke sistem yang dipasang (lihat Bab 7).

Untuk memiliki opsi pengaturan dan penggunaan PPPoE selama instalasi, Anda harus memasang menggunakan salah satu image CD-ROM/DVD yang tersedia. Ini tidak didukung untuk metode instalasi lain (misalnya netboot).

Memasang melalui PPPoE sebagian besar sama dengan instalasi lainnya. Langkah-langkah berikut menjelaskan perbedaannya.

- Boot pemasang dengan parameter boot **modules=ppp-udeb**² Ini akan memastikan komponen yang bertanggung jawab untuk pengaturan PPPoE (ppp-udeb) akan dimuat dan dijalankan secara otomatis.
- Ikuti langkah-langkah awal instalasi yang biasa (pemilihan bahasa, negara, dan papan ketik; pemuatan komponen pemasang tambahan³).
- Langkah selanjutnya adalah deteksi perangkat keras jaringan, untuk mengidentifikasi kartu Ethernet yang ada dalam sistem.
- Setelah ini, pengaturan PPPoE yang sebenarnya dimulai. Pemasang akan menyelidiki semua antarmuka Ethernet yang terdeteksi dalam upaya untuk menemukan konsentrator PPPoE (sejenis server yang menangani koneksi PPPoE).
 - Ada kemungkinan bahwa konsentrator tidak akan ditemukan pada upaya pertama. Ini dapat terjadi kadang-kadang pada jaringan yang lambat atau dimuat atau dengan server yang salah. Dalam kebanyakan kasus, upaya kedua untuk mendeteksi konsentrator akan berhasil; untuk mencoba lagi, pilih Konfigurasikan dan mulai koneksi PPPoE dari menu utama pemasang.
- Setelah konsentrator ditemukan, pengguna akan diminta untuk mengetikkan informasi login (nama pengguna dan kata sandi PPPoE).
- Pada titik ini pemasang akan menggunakan informasi yang disediakan untuk membuat koneksi PPPoE. Jika
 informasi yang benar diberikan, koneksi PPPoE harus dikonfigurasi dan pemasang harus dapat menggunakannya untuk terhubung ke Internet dan mengambil paket di atasnya (jika diperlukan). Jika informasi login tidak
 benar atau beberapa kesalahan muncul, pemasang akan berhenti, tetapi konfigurasi dapat dicoba lagi dengan
 memilih entri menu Konfigurasikan dan mulai koneksi PPPoE.

 $^{^2}$ Lihat Bagian 5.1.5 untuk informasi tentang cara menambahkan parameter boot.

³Komponen ppp-udeb dimuat sebagai salah satu komponen tambahan dalam langkah ini. Jika Anda ingin memasang pada prioritas sedang atau rendah (mode pakar), Anda juga dapat memilih ppp-udeb secara manual alih-alih memasukkan parameter "modules" pada prompt boot.

Lampiran E

Administrivia

E.1 Tentang Dokumen Ini

Manual ini dibuat untuk debian-installer Sarge, berdasarkan manual instalasi Woody untuk boot-floppy, yang didasarkan pada manual instalasi Debian sebelumnya, dan pada manual distribusi Progeny yang dirilis di bawah GPL pada tahun 2003.

Dokumen ini ditulis dalam DocBook XML. Format keluaran dihasilkan oleh berbagai program dengan menggunakan informasi dari paket docbook-xml dan docbook-xsl.

Untuk meningkatkan kemampuan pemeliharaan dokumen ini, kami menggunakan sejumlah fitur XML, seperti entitas dan atribut profil. Ini memainkan peran yang mirip dengan variabel dan kondisional dalam bahasa pemrograman. Sumber XML untuk dokumen ini berisi informasi untuk setiap arsitektur yang berbeda — atribut profiling digunakan untuk mengisolasi bit teks tertentu sebagai arsitektur-spesifik.

E.2 Berkontribusi pada Dokumen Ini

Jika Anda memiliki masalah atau saran mengenai dokumen ini, Anda mungkin harus mengirimkannya sebagai laporan bug terhadap paket installation-guide. Lihat paket reportbug atau baca dokumentasi daring dari Sistem Pelacakan Bug Debian. Akan lebih baik jika Anda dapat memeriksa bug yang masih terbuka atas installation-guide untuk melihat apakah masalah Anda telah dilaporkan. Jika demikian, Anda dapat memberikan tambahan informasi yang menguatkan atau membantu ke XXXX@bugs.debian.org, di mana XXXX adalah nomor untuk bug yang sudah dilaporkan.

Lebih baik lagi, dapatkan salinan sumber DocBook untuk dokumen ini, dan buatlah patch terhadapnya. Sumber DocBook dapat ditemukan di proyek installation-guide pada salsa. Jika Anda tidak terbiasa dengan DocBook, jangan khawatir: ada cheatsheet sederhana di direktori manual yang akan membantu Anda memulai. Ini seperti html, tetapi berorientasi pada makna teks daripada presentasi. Patch-patch yang dikirimkan ke milis debian-boot (lihat di bawah) disambut dengan baik. Untuk instruksi tentang bagaimana memeriksa sumber melalui git, lihat README dari direktori root sumber.

Harap *tidak* menghubungi penulis dokumen ini secara langsung. Ada juga daftar diskusi untuk debian-installer, yang mencakup diskusi tentang manual ini. Milis tersebut adalah debian-boot@lists.debian.org. Petunjuk untuk berlangganan milis ini dapat ditemukan di halaman Berlangganan Milis Debian; atau Anda dapat meramban Arsip Milis Debian secara daring.

E.3 Kontribusi Utama

Dokumen ini awalnya ditulis oleh Bruce Perens, Sven Rudolph, Igor Grobman, James Treacy, dan Adam Di Carlo. Sebastian Ley menulis Installation Howto.

Miroslav Kuře telah mendokumentasikan banyak fungsionalitas baru dalam debian-installer Sarge. Frans Pop adalah editor utama dan manajer rilis selama rilis Etch, Lenny, dan Squeeze.

Banyak pengguna dan pengembang Debian yang berkontribusi pada dokumen ini. Catatan khusus harus dibuat untuk Michael Schmitz (dukungan m68k), Frank Neumann (penulis asli Amiga install manual), Arto Astala, Eric Delaunay/Ben Collins (informasi SPARC), Tapio Lehtonen, dan Stéphane Bortzmeyer untuk berbagai penyuntingan dan teks. Kami harus berterima kasih kepada Pascal Le Bail untuk informasi yang berguna tentang boot dari flash disk USB.

Teks dan informasi yang sangat membantu ditemukan dalam HOWTO Jim Mintha untuk boot jaringan (tidak ada URL yang tersedia), FAQ Debian, Linux/m68k FAQ, Linux for SPARC Processors FAQ, Linux/Alpha FAQ, dan lain-lain. Pengelola sumber-sumber informasi yang tersedia secara bebas dan kaya ini harus diakui.

Bagian tentang instalasi chrooted dalam manual ini (Bagian D.3) sebagian berasal dari dokumen hak cipta Karsten M. Self.

Bagian mengenai instalasi melalui plip dalam manual ini (Bagian D.4) didasarkan pada PLIP-Install-HOWTO oleh Gilles Lamiral.

E.4 Pengakuan Merek Dagang

Semua merek dagang adalah milik dari pemilik merek dagang masing-masing.

Lampiran F

GNU General Public License

Versi 2, Juni 1991

Hak Cipta(C) 1989, 1991 Free Software Foundation, Inc. 51 Fifth Floor, Boston, MA 02110-1301, Amerika Serikat.

Semua orang diizinkan untuk menyalin dan mendistribusikan salinan verbatim dokumen lisensi ini, tetapi mengubahnya tidak diperbolehkan.

F.1 Preambul

The licenses for most software are designed to take away your freedom to share and change it. By contrast, the gnu General Public License is intended to guarantee your freedom to share and change free software — to make sure the software is free for all its users. This General Public License applies to most of the Free Software Foundation's software and to any other program whose authors commit to using it. (Some other Free Software Foundation software is covered by the gnu Library General Public License instead.) You can apply it to your programs, too.

When we speak of free software, we are referring to freedom, not price. Our General Public Licenses are designed to make sure that you have the freedom to distribute copies of free software (and charge for this service if you wish), that you receive source code or can get it if you want it, that you can change the software or use pieces of it in new free programs; and that you know you can do these things.

To protect your rights, we need to make restrictions that forbid anyone to deny you these rights or to ask you to surrender the rights. These restrictions translate to certain responsibilities for you if you distribute copies of the software, or if you modify it.

For example, if you distribute copies of such a program, whether gratis or for a fee, you must give the recipients all the rights that you have. You must make sure that they, too, receive or can get the source code. And you must show them these terms so they know their rights.

We protect your rights with two steps: (1) copyright the software, and (2) offer you this license which gives you legal permission to copy, distribute and/or modify the software.

Also, for each author's protection and ours, we want to make certain that everyone understands that there is no warranty for this free software. If the software is modified by someone else and passed on, we want its recipients to know that what they have is not the original, so that any problems introduced by others will not reflect on the original authors' reputations.

Finally, any free program is threatened constantly by software patents. We wish to avoid the danger that redistributors of a free program will individually obtain patent licenses, in effect making the program proprietary. To prevent this, we have made it clear that any patent must be licensed for everyone's free use or not licensed at all.

The precise terms and conditions for copying, distribution and modification follow.

F.2 GNU GENERAL PUBLIC LICENSE

SYARAT DAN KETENTUAN UNTUK MENYALIN, DISTRIBUSI, DAN MODIFIKASI

0. This License applies to any program or other work which contains a notice placed by the copyright holder saying it may be distributed under the terms of this General Public License. The "Program", below, refers to any such program or work, and a "work based on the Program" means either the Program or any derivative work under copyright law: that is to say, a work containing the Program or a portion of it, either verbatim or with modifications and/or

translated into another language. (Hereinafter, translation is included without limitation in the term "modification".) Each licensee is addressed as "you".

Activities other than copying, distribution and modification are not covered by this License; they are outside its scope. The act of running the Program is not restricted, and the output from the Program is covered only if its contents constitute a work based on the Program (independent of having been made by running the Program). Whether that is true depends on what the Program does.

1. You may copy and distribute verbatim copies of the Program's source code as you receive it, in any medium, provided that you conspicuously and appropriately publish on each copy an appropriate copyright notice and disclaimer of warranty; keep intact all the notices that refer to this License and to the absence of any warranty; and give any other recipients of the Program a copy of this License along with the Program.

Anda dapat menagih biaya bagi tindakan fisik mentransfer salinan, dan Anda mungkin pada pilihan Anda menawarkan perlindungan garansi dengan biaya.

- **2.** You may modify your copy or copies of the Program or any portion of it, thus forming a work based on the Program, and copy and distribute such modifications or work under the terms of Section 1 above, provided that you also meet all of these conditions:
 - a. You must cause the modified files to carry prominent notices stating that you changed the files and the date of any change.
 - b. You must cause any work that you distribute or publish, that in whole or in part contains or is derived from the Program or any part thereof, to be licensed as a whole at no charge to all third parties under the terms of this License.
 - c. If the modified program normally reads commands interactively when run, you must cause it, when started running for such interactive use in the most ordinary way, to print or display an announcement including an appropriate copyright notice and a notice that there is no warranty (or else, saying that you provide a warranty) and that users may redistribute the program under these conditions, and telling the user how to view a copy of this License. (Exception: if the Program itself is interactive but does not normally print such an announcement, your work based on the Program is not required to print an announcement.)

These requirements apply to the modified work as a whole. If identifiable sections of that work are not derived from the Program, and can be reasonably considered independent and separate works in themselves, then this License, and its terms, do not apply to those sections when you distribute them as separate works. But when you distribute the same sections as part of a whole which is a work based on the Program, the distribution of the whole must be on the terms of this License, whose permissions for other licensees extend to the entire whole, and thus to each and every part regardless of who wrote it.

Thus, it is not the intent of this section to claim rights or contest your rights to work written entirely by you; rather, the intent is to exercise the right to control the distribution of derivative or collective works based on the Program.

In addition, mere aggregation of another work not based on the Program with the Program (or with a work based on the Program) on a volume of a storage or distribution medium does not bring the other work under the scope of this License.

- **3.** You may copy and distribute the Program (or a work based on it, under Section 2) in object code or executable form under the terms of Sections 1 and 2 above provided that you also do one of the following:
 - a. Accompany it with the complete corresponding machine-readable source code, which must be distributed under the terms of Sections 1 and 2 above on a medium customarily used for software interchange; or,
 - b. Accompany it with a written offer, valid for at least three years, to give any third party, for a charge no more than your cost of physically performing source distribution, a complete machine-readable copy of the corresponding source code, to be distributed under the terms of Sections 1 and 2 above on a medium customarily used for software interchange; or,
 - c. Accompany it with the information you received as to the offer to distribute corresponding source code. (This alternative is allowed only for noncommercial distribution and only if you received the program in object code or executable form with such an offer, in accord with Subsection b above.)

The source code for a work means the preferred form of the work for making modifications to it. For an executable work, complete source code means all the source code for all modules it contains, plus any associated interface definition files, plus the scripts used to control compilation and installation of the executable. However, as a special exception, the source code distributed need not include anything that is normally distributed (in either source or binary form) with the major components (compiler, kernel, and so on) of the operating system on which the executable runs, unless that component itself accompanies the executable.

If distribution of executable or object code is made by offering access to copy from a designated place, then offering equivalent access to copy the source code from the same place counts as distribution of the source code, even though third parties are not compelled to copy the source along with the object code.

- **4.** You may not copy, modify, sublicense, or distribute the Program except as expressly provided under this License. Any attempt otherwise to copy, modify, sublicense or distribute the Program is void, and will automatically terminate your rights under this License. However, parties who have received copies, or rights, from you under this License will not have their licenses terminated so long as such parties remain in full compliance.
- 5. You are not required to accept this License, since you have not signed it. However, nothing else grants you permission to modify or distribute the Program or its derivative works. These actions are prohibited by law if you do not accept this License. Therefore, by modifying or distributing the Program (or any work based on the Program), you indicate your acceptance of this License to do so, and all its terms and conditions for copying, distributing or modifying the Program or works based on it.
- **6.** Each time you redistribute the Program (or any work based on the Program), the recipient automatically receives a license from the original licensor to copy, distribute or modify the Program subject to these terms and conditions. You may not impose any further restrictions on the recipients' exercise of the rights granted herein. You are not responsible for enforcing compliance by third parties to this License.
- 7. If, as a consequence of a court judgment or allegation of patent infringement or for any other reason (not limited to patent issues), conditions are imposed on you (whether by court order, agreement or otherwise) that contradict the conditions of this License, they do not excuse you from the conditions of this License. If you cannot distribute so as to satisfy simultaneously your obligations under this License and any other pertinent obligations, then as a consequence you may not distribute the Program at all. For example, if a patent license would not permit royalty-free redistribution of the Program by all those who receive copies directly or indirectly through you, then the only way you could satisfy both it and this License would be to refrain entirely from distribution of the Program.

If any portion of this section is held invalid or unenforceable under any particular circumstance, the balance of the section is intended to apply and the section as a whole is intended to apply in other circumstances.

It is not the purpose of this section to induce you to infringe any patents or other property right claims or to contest validity of any such claims; this section has the sole purpose of protecting the integrity of the free software distribution system, which is implemented by public license practices. Many people have made generous contributions to the wide range of software distributed through that system in reliance on consistent application of that system; it is up to the author/donor to decide if he or she is willing to distribute software through any other system and a licensee cannot impose that choice.

This section is intended to make thoroughly clear what is believed to be a consequence of the rest of this License.

- **8.** If the distribution and/or use of the Program is restricted in certain countries either by patents or by copyrighted interfaces, the original copyright holder who places the Program under this License may add an explicit geographical distribution limitation excluding those countries, so that distribution is permitted only in or among countries not thus excluded. In such case, this License incorporates the limitation as if written in the body of this License.
- **9.** The Free Software Foundation may publish revised and/or new versions of the General Public License from time to time. Such new versions will be similar in spirit to the present version, but may differ in detail to address new problems or concerns. Each version is given a distinguishing version number. If the Program specifies a version number of this License which applies to it and "any later version", you have the option of following the terms and conditions either of that version or of any later version published by the Free Software Foundation. If the Program does not specify a version number of this License, you may choose any version ever published by the Free Software Foundation.
- 10. If you wish to incorporate parts of the Program into other free programs whose distribution conditions are different, write to the author to ask for permission. For software which is copyrighted by the Free Software Foundation, write to the Free Software Foundation; we sometimes make exceptions for this. Our decision will be guided by the two goals of preserving the free status of all derivatives of our free software and of promoting the sharing and reuse of software generally.

TANPA GARANSI

- 11. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION.
- 12. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY AND/OR REDISTRIBUTE

THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

AKHIR SYARAT DAN KETENTUAN

F.3 Cara Menerapkan Persyaratan Ini ke Program Baru Anda

Jika Anda mengembangkan program baru, dan Anda ingin itu menjadi yang paling mungkin digunakan untuk publik, cara terbaik untuk mencapai ini adalah untuk membuat perangkat lunak bebas yang setiap orang dapat mendistribusikan ulang dan mengubah di bawah persyaratan ini.

Untuk melakukannya, lampirkan pemberitahuan berikut ke program. Lebih aman untuk melampirkan mereka ke awal setiap berkas sumber agar secara paling efektif menyampaikan pengecualian garansi; dan setiap berkas harus memiliki setidaknya baris "hak cipta" dan penunjuk ke tempat pemberitahuan penuh dapat ditemukan.

```
satu baris untuk memberikan nama program dan ide singkat tentang apa yang ↔ dilakukannya.

Hak Cipta (C) tahun nama penulis

This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
```

Juga tambahkan informasi tentang cara menghubungi Anda melalui surat elektronik dan kertas.

Jika program interaktif, buatlah itu mengeluarkan pemberitahuan singkat seperti ini ketika memulai dalam mode interaktif:

```
Gnomovision versi 69, Hak Cipta (C) tahun nama enulis
Gnomovision hadir sepenuhnya tanpa garansi; untuk rincian
ketik show w . Ini adalah perangkat lunak bebas, dan Anda dipersilahkan
untuk mendistribusikannya di bawah kondisi tertentu; ketik show c
untuk rincian.
```

Perintah hipotesis "show w" dan "show c" harus menunjukkan bagian yang tepat dari General Public Lincese. Tentu saja, perintah yang Anda gunakan mungkin disebut sesuatu selain "show w" dan "show c"; mereka bahkan bisa menjadi klik tetikus atau butir menu — apa pun yang cocok dengan program Anda.

Anda juga harus membuat perusahaan Anda (jika Anda bekerja sebagai programmer) atau sekolah Anda, jika ada, untuk menandatangani "disklaimer hak cipta" untuk program, jika perlu. Berikut adalah contoh; ubah saja namanya:

```
Yoyodyne, Inc., dengan ini melepas semua kepentingan hak cipta di program Gnomovision (yang membuat melewati kompiler) ditulis oleh James Hacker.

tanda tangan dari Ty Coon, 1 April 1989
Ty Coon, Presiden Wakil
```

General Public License ini tidak mengizinkan penggabungan program Anda ke dalam program proprietari. Jika program Anda adalah pustaka sub rutin, Anda dapat mempertimbangkan lebih berguna untuk mengizinkan me-link aplikasi proprietari dengan pustaka. Jika ini adalah apa yang ingin Anda lakukan, gunakan GNU Lesser General Public License bukan Lisensi ini.