TUGAS BESAR DATA MINING

Exploring Mental Health Data

12S22010	Reinaldy Hutapea
12S22014	Kezia Hutagaol
12S22028	Tennov Pakpahan
12S22044	Jufourlisa Sirait

PROGRAM STUDI SARJANA SISTEM INFORMASI FAKULTAS INFORMATIKA DAN TEKNIK ELEKTRO INSTITUT TEKNOLOGI DEL TAHUN 2025

DAFTAR ISI

BAB. I PENDAHULUAN	7
1.1 Latar Belakang	7
1.2 Rumusan Masalah	7
1.3 Tujuan Masalah	7
1.4 Rencana Proyek	8
BAB. II DATA UNDERSTANDING	9
2.1 Collecting Data	9
2.2 Describe Data	9
2.2.1 Train Dataset	10
2.2.2 Test Dataset	10
2.2.3 Data Structure	10
2.2.4 Check Data Type	11
2.2.5 Korelasi Antar Fitur Numerik	13
2.3 Validation Data	13
2.3.1 Check Missing Values	13
2.3.2 Check Duplikasi	14
2.3.3 Check Outlier	14
BAB. III DATA PREPARATION	23
3.1 Data Selection	23
3.1.1 Korelasi Numerical pada Subject Students	23
3.1.2 Korelasi Kategorial terhadap Subject Students	24
3.1.3 Korelasi Numerical pada Subject Working Professionals	26
3.1.4 Korelasi Kategorial terhadap Subject Working Professionals	27
3.2 Data Cleaning	30
3.2.1 Data Cleaning pada Train Dataset	30
3.2.2 Data Cleaning pada Test Dataset	31
3.3 Data Construction	31
3.3.1 Normalisasi	32
3.3.2 Feature Engineering	32
3.3.3 Labeling	33
3.4 Data Integration	34
BAB. IV MODELING DATASET	36

4.1 Bulding Testing Scenario	36
4.2 Bulding Model	38
4.2.1 Train Dataset with Decision Tree C4.5-style Model	38
4.2.2 Train Dataset with XGBoost (Extreme Gradient Boosting)	39
4.2.3 Train Dataset with XGBoost (Extreme Gradient Boosting) with Tunin	_
BAB. V MODEL EVALUATION	41
5.1 Evaluation	41
5.1.1 Evaluation of Model C4.5	41
5.1.2 Evaluation of Model XGBoost (Extreme Gradient Boosting)	41
5.1.3 Evaluation of Model XGBoost (Extreme Gradient Boosting) with Tun Search	C
5.1.4 Analisis Perbandingan antara Model C4.5 vs XGBoost vs XGBoost w (GridSearch)	_
5.2 Review Model	44
5.2.1 Review Model Processing C4.5	44
5.2.2 Review Model Processing XGBoost	45
5.2.3 Review for Most Importance Feature in XGBoost Model	46
5.2.4 Review for ROC Curve – XGBoost	47
BAB. VI DEPLOY MODEL	49
6.1 Planning Deployment Model	49
6.2 Deployment Model	50
6.2.1 Save Model	50
6.2.2 App.py	50
6.2.3 Index.html dan CSS Style	51
6.3 Pengujian Model	53
6.3.1 Deployment Local	53
6.3.2 Deployment Online (Streamlit)	54

DAFTAR TABEL

Table 1 Deskripsi Atribut	10
Table 2 Matrix Confussion	45
Table 3 AUC Score	48

DAFTAR GAMBAR

Gambar 1 Tabel Rencana Proyek	8
Gambar 1 1 Load Dataset	9
Gambar 1 2 Train Dataset	10
Gambar 1 3 Test Dataset	10
Gambar 1 4 Describe Train Dataset	11
Gambar 1 5 Describe Test Dataset	11
Gambar 1 6 Cek Data Type Fitur	
Gambar 1 7 Distribusi Working or Student and Depression	
Gambar 1 8 Korelasi Fitur Numerik	
Gambar 1 9 Cek Missing Value Train Dataset	14
Gambar 1 10 Cek Missing Value Test Dataset	
Gambar 1 11 Cek Duplikasi	
Gambar 1 12 Cek Outlier Fitur Numerik	15
Gambar 1 13 Cek Distiribusi Fitur Kategorikal	
Gambar 2. 1 Korelasi Numerik pada Subjek Student	23
Gambar 2. 2 Korelasi Kategorikal pada Subjek Student	
Gambar 2. 3 Korelasi Numerik pada Subjek Working Professional	
Gambar 2. 4 Korelasi Kategorikal pada Subjek Working Progessional	
Gambar 2. 5 Data Cleaning pada Train Dataset	
Gambar 2. 6 Hasil setelah Data Cleaning	
Gambar 2. 7 Data Cleaning pada Test Dataset	
Gambar 2. 8 Hasil setelah Data Cleaning	
Gambar 2. 9 Normalisasi Fitur	
Gambar 2. 10 Feature Engineering	
Gambar 2. 11 Labeling	
Gambar 2. 12 Labeling Working or Student	
Gambar 2. 13 Hasil Setelah Data Construction	
Gambar 3. 1 Train with Model C4.5	20
Gambar 3. 2 Train with Model XGBoost	
Gambar 3. 2 Train with Model XGBoost with Tuning GridSearch	
Gambar 5. 5 Train with Model AGBoost with Tuning Gridsearch	40
Gambar 4 1 Hasil Evaluasi Model C4.5	
Gambar 4 2 Hasil Evaluasi Model XGBoost	
Gambar 4 3 Hasil Evaluasi Model XGBoost with Tuning GridSearch	42
Gambar 5. 1 Review Model C4.5	44
Gambar 5. 2 Review Model XGBoost	45
Gambar 5. 3 Review Most Importance Feature in XGBoost Model	
Gambar 5. 4 Review for ROC Curve - XGBoost	
Gambar 5. 5 Save Model Scaler	
Gambar 5. 6 Save Model XGBoost with Tuning GridSearch	
-	
Gambar 5. 7 App.py	51

Gambar 5.	8 Index.html	. 52
Gambar 5.	9 CSS Style	. 52
	10 Pengujian Model	
	11 Hasil Pengujian Model	
	12 Struktur Deployment	
	13 File Requirements	
	14 Code Streamlit Deploy Online	
	15 Review Deploy Model Online	
	16 Hasil Prediksi Model Online	

BAB. I PENDAHULUAN

1.1 Latar Belakang

Saat ini, kesehatan mental adalah bagian yang sangat penting dalam kehidupan manusia karena berpengaruh pada kualitas hidup, produktivitas, dan kesejahteraan sosial. Depresi adalah salah satu gangguan mental yang sering terjadi di berbagai kelompok masyarakat. Dengan berkembangnya teknologi, bidang data science dan kecerdasan buatan (AI) pun semakin banyak digunakan dan dapat memberikan banyak manfaat. Salah satunya adalah membantu memahami serta mendeteksi masalah kesehatan mental, termasuk depresi. Dengan menganalisis data dari survei kesehatan mental, kita bisa melihat pola yang menunjukkan siapa saja yang berisiko mengalami depresi serta mengetahui faktor-faktor yang memengaruhinya.

Dataset yang digunakan dalam proyek ini merupakan dataset yang didapat dari kompetisi Kaggle - Exploring Mental Health Data. Dataset ini menyediakan informasi yang dapat digunakan untuk mengeksplorasi hubungan antara faktor sosial, ekonomi, dan psikologis dengan kondisi mental individu, serta membangun model klasifikasi yang dapat memprediksi apakah seseorang mengalami depresi atau tidak. Proyek ini akan melakukan eksplorasi data, pengembangan model prediksi, serta evaluasi model guna memahami karakteristik dataset dan meningkatkan akurasi deteksi depresi.

1.2 Rumusan Masalah

Terdapat beberapa permasalahan utama yang akan dianalisis dalam proyek ini, yakni:

- 1. Bagaimana membangun model yang dapat memprediksi risiko depresi berdasarkan dataset mental health?
- 2. Bagaimana pola hubungan antara variabel dalam dataset dengan kondisi mental individu?

1.3 Tujuan Masalah

Adapun tujuan pengerjaan proyek ini adalah sebagai berikut:

- 1. Membangun model klasifikasi yang dapat memprediksi apakah seseorang mengalami depresi atau tidak.
- 2. Menganalisis faktor yang berkontribusi terhadap depresi berdasarkan dataset mental health.

1.4 Rencana Proyek

	1														_					VCCR		-			_		_								
							11					12					13						14					15					16		
Aktivitas	Sub-Aktivitas	Detail	Tanggal Mulai	Tanggal Selesai	Senine	elasiRi	abuKar	nisum	a Sabtu										maßab	tuSer	ninela	saRab	uKami	lumat	abtu	enin	elasaR	RabuKa	mişun	atSabt	Seni	elasa	RabuKa	midu	natSabtu
					7	8	9 1	0 11	12	14	15	16 1	7 18	19	21	22	23	24 2	25 26	5 2	8 29	30	1	2	3	5	6	7	8 9	10	12	13	14 1	15 1	6 17
Persiapan		Pemilihan Kasus	07/04/2025	12/04/2025															\perp		\perp		\perp											_	
_		Penentuan Algoritma	07/04/2025	12/04/2025																									\perp					\perp	
	Business Understanding	Menentukan Objektif Bisnis	07/04/2025	12/04/2025																															
		Menentukan Tujuan Bisnis	07/04/2025	12/04/2025															\perp		\perp		\perp											_	
		Membuat Rencana Proyek	07/04/2025	12/04/2025																									\perp					\perp	
	Data Understanding	Mengumpulkan Data	10/04/2025	15/04/2025																															
		Menelaah Data	10/04/2025	15/04/2025															\perp		\perp		\perp											_	
		Memvalidasi Data	10/04/2025	15/04/2025																															
	Data Preparation	Memilah Data	12/04/2025	19/04/2025																															
		Membersihkan Data	12/04/2025	19/04/2025															\perp		\perp		\perp											_	
elaksanaan		Mengkonstruksi Data	12/04/2025	19/04/2025																															
		Menentukan Label Data	12/04/2025	24/04/2025																															
		Mengintegrasikan Data	12/04/2025	24/04/2025																														_	
	Modeling	Membangun Skenario Pengujian	19/04/2025	03/05/2025																															
		Membangun Model	19/04/2025	03/05/2025																															
	Model Evaluation	Mengevaluasi Hasil Permodelan	26/04/2025	08/05/2025													_																	_	
		Melakukan Review Proses Permodel	26/04/2025	08/05/2025																															
	Deployment	Melakukan Deployment Model	03/05/2025	10/05/2025																															
		Membuat Laporan Akhir Proyek	03/05/2025	10/05/2025															\perp		\perp		\perp								_			_	

Gambar 1 Tabel Rencana Proyek

http://bit.ly/4joEn99

BAB. II DATA UNDERSTANDING

2.1 Collecting Data

Data yang digunakan dalam proyek ini adalah dataset yang berasal dari Kaggle Competition yakni Explorimg Mental Health Data. Dataset ini terdiri dari dua bagian utama, yakni: *train.csv* yang digunakan untuk pelatihan model dan *test.csv* yang digunakan untuk pengujian model.

```
testdata = pd.read_csv('test.csv')
traindata = pd.read_csv[]'train.csv'[]
traindata.head(10)

Pythor
```

Gambar 1 1 Load Dataset

2.2 Describe Data

Dalam tahap menelaah data, dilakukan identifikasi dan pemahaman terhadap atribut-atribut yang tersedia dalam dataset ini. Setiap fitur atau atribut dalam dataset dianalisis perannya terhadap kondisi mental individu. Tabel berikut menjelaskan peran masing-masing fitur yang ada dalam dataset untuk membantu dalam proses data understanding:

No.	Atribut	Deskripsi
1	id, Name	Ini adalah pengenal unik tiap peserta. Tidak digunakan untuk analisis, tapi dicek apakah ada data ganda atau tidak.
2	Gender, City, Degree, Profession	Ini adalah data kategori (pilihan). Bisa berpengaruh pada kondisi mental seseorang, jadi penting untuk dilihat sebarannya.
3	Age, CGPA, Sleep Duration, Work/Study Hours	Data angka yang menggambarkan umur, nilai IPK, lama tidur, dan waktu belajar/kerja. Semua ini bisa berkaitan dengan stres atau kesehatan mental.
4	Academic Pressure, Work Pressure, Financial Stress	Ini adalah sumber tekanan utama yang bisa memicu depresi. Penting untuk dianalisis hubungan dan sebarannya.
5	Study Satisfaction, Job Satisfaction	Tingkat kepuasan belajar dan kerja. Bisa jadi pelindung dari stres dan depresi.
6	Dietary Habits, Family History of Mental Illness	Kebiasaan makan dan riwayat keluarga soal gangguan mental. Faktor tambahan yang tetap bisa memengaruhi kondisi psikologis.
7	Have you ever had suicidal thoughts?	Ini indikator yang sangat serius dan penting. Harus diperhatikan dengan cermat karena sangat berkaitan dengan depresi.
8	Depression	Ini adalah target utama yang ingin diprediksi: apakah seseorang mengalami depresi atau tidak.

Penting untuk melihat apakah datanya seimba antara dua kategori.
--

Table 1 Deskripsi Atribut

Berikut ini adalah potongan kode untuk melakukan *load data*, memeriksa tipe data dan deskripsi data dari dataset.

2.2.1 Train Dataset

Gambar 1 2 Train Dataset

2.2.2 Test Dataset

Gambar 1 3 Test Dataset

Potongan kode diatas digunakan untuk membaca dua dataset yaitu test.csv dan train.csv, lalu menampilkan 10 baris pertama dari train.csv untuk eksplorasi awal data terkait faktor-faktor yang memengaruhi kesehatan mental.

2.2.3 Data Structure

Kemudian potongan kode dibawah ini digunakan untuk melihat isi dan struktur data dari file train.csv yang sebelumnya dibuat menjadi variabel traindata. Disini seperti melihat gambaran

umum data dari nama kolom, tipe data, dan apakah ada data yang hilang. Kode diatas menggunakan eksekusi **print(traindata.describe(include='all'))** & **print(testdata.describe(include='all'))**

Gambar 1 4 Describe Train Dataset

Gambar 1 5 Describe Test Dataset

2.2.4 Check Data Type

Potongan kode dibawah ini digunakan untuk menampilkan tipe data dari semua fitur dataset

```
Check Data Type
    # Cek data type untuk atribut yang dipilih

traindata[[]'Gender', 'Profession', 'Sleep Duration', 'Work Pressure', 'Financial Stress', 'Age',

'Academic Pressure', 'Degree', 'Work/Study Hours', 'CGPA', 'Study Satisfaction', 'City',

'Job Satisfaction', 'Dietary Habits', 'Family History of Mental Illness', 'Have you ever had suicidal thoughts ?'
                 , 'Depression']].info()
 <class 'pandas.core.frame.DataFrame'>
 RangeIndex: 140700 entries, 0 to 140699
 Data columns (total 17 columns):
 # Column
                                                     Non-Null Count
                                                                         Dtype
     Gender
                                                     140700 non-null object
       Profession
                                                     104070 non-null object
      Sleep Duration
                                                     140700 non-null object
      Work Pressure
                                                     112782 non-null float64
      Financial Stress
                                                     140696 non-null float64
                                                     140700 non-null float64
       Academic Pressure
                                                     27897 non-null float64
                                                     140698 non-null object
      Work/Study Hours
                                                    140700 non-null float64
                                                    27898 non-null float64
      CGPA
  10 Study Satisfaction
                                                     27897 non-null
                                                                        float64
  11 City
12 Job Satisfaction
                                                     140700 non-null object
                                                     112790 non-null float64
 13 Dietary Habits
14 Family History of Mental Illness
                                                     140696 non-null object
                                                     140700 non-null object
  15 Have you ever had suicidal thoughts ?
                                                     140700 non-null
  16 Depression
                                                     140700 non-null int64
 dtypes: float64(8), int64(1), object(8)
```

Gambar 1 6 Cek Data Type Fitur

Berikut dibawah ini penggalan kode yang menampilkan distribusi dari Working Professionals dan Student dan fitur Depression

Gambar 1 7 Distribusi Working or Student and Depression

2.2.5 Korelasi Antar Fitur Numerik

Gambar 1 8 Korelasi Fitur Numerik

2.3 Validation Data

Validasi data dilakukan untuk memastikan bahwa data yang akan digunakan dalam proses pelatihan model bebas dari masalah yang dapat memengaruhi hasil analisis dan akurasi model. Data akan dipastikan sudah bersih, konsisten, dan siap digunakan. Validasi dilakukan terhadap beberapa aspek berikut:

2.3.1 Check Missing Values

Dilihat apakah ada kolom atau baris dengan nilai kosong yang perlu ditangani (misalnya diisi, dihapus, atau diproses khusus). Berikut ini adalah potongan kode untuk memeriksa missing values:

```
print(traindata.isnull().sum())

id 0
Name 0
Gender 0
Age 0
City 0
Working Professional or Student 0
Profession 36630
Academic Pressure 112803
Work Pressure 27918
CGPA 112802
Study Satisfaction 112803
Job Satisfaction 27910
Sleep Duration 0
Dietary Habits 4
Degree 2
Have you ever had suicidal thoughts ? 0
Work/Study Hours 0
Financial Stress 4
Family History of Mental Illness 0
Depression 0
De
```

Gambar 1 9 Cek Missing Value Train Dataset

Gambar 1 10 Cek Missing Value Test Dataset

2.3.2 Check Duplikasi

Mengecek apakah ada data yang terduplikasi berdasarkan kolom id atau Name.

Gambar 1 11 Cek Duplikasi

Dilakukan pemeriksaan terhadap data duplikat dalam traindata. Dan dari output yang ditampilkan (0), yang menunjukkan tidak ada baris yang duplikat secara keseluruhan dalam dataset.

2.3.3 Check Outlier

Mencari nilai ekstrim pada fitur numerik seperti Age, CGPA, atau Sleep Duration yang bisa memengaruhi hasil pelatihan model. Berikut ini adalah potongan kode untuk distribusi target dan pemeriksaan outlier pada numerical kolom:

Gambar 1 12 Cek Outlier Fitur Numerik

Berdasarkan gambar-gambar histogram di atas, dapat dilihat bahwa distribusi usia (Age) cukup merata dengan sedikit puncak pada usia 50-an, menunjukkan keragaman usia responden. Tekanan akademik dan tekanan kerja (Academic Pressure dan Work Pressure) menunjukkan pola distribusi tersegmentasi dengan frekuensi tinggi pada nilai 3 dan 4, mengindikasikan tekanan yang dirasakan sebagian besar responden berada pada tingkat sedang. Distribusi nilai

CGPA tersebar merata namun cenderung memuncak di nilai tinggi, menandakan banyak individu dengan prestasi akademik baik. Kepuasan studi dan kepuasan kerja (Study Satisfaction dan Job Satisfaction) juga menunjukkan distribusi terfokus pada nilai 3 dan 4, mencerminkan tingkat kepuasan yang cukup baik secara umum. Sementara itu, jam kerja atau studi (Work/Study Hours) tersebar luas dengan kecenderungan pada rentang 8 hingga 12 jam per hari. Secara keseluruhan, tidak ditemukan adanya outlier pada semua kolom numerik, yang menunjukkan bahwa data cukup bersih dan tidak terdapat nilai ekstrem yang dapat mengganggu analisis.

Gambar 1 13 Cek Distiribusi Fitur Kategorikal

Kode yang dihasilkan menghasilkan visualisasi distribusi dari berbagai kolom kategorikal dalam dataset menggunakan countplot dari Seaborn, yang berguna untuk melihat frekuensi kemunculan masing-masing kategori. Dari visualisasi tersebut, terlihat bahwa jumlah responden pria lebih banyak dibandingkan wanita, dan kota tempat tinggal responden bervariasi dengan dominasi dari kota seperti Ludhiana dan Varanasi. Mayoritas responden merupakan profesional yang bekerja, sedangkan jumlah mahasiswa lebih sedikit. Dalam hal profesi, Teacher dan Chef muncul paling sering dibandingkan profesi lainnya. Sebagian besar responden tidur lebih dari 7 jam, meskipun ada yang melaporkan tidur kurang dari 6 jam. Dari sisi kebiasaan diet, mayoritas memiliki pola makan sehat. Gelar pendidikan yang paling umum adalah B.Sc dan BBA, sementara gelar lain lebih jarang muncul. Sebagian besar responden tidak pernah memiliki pemikiran untuk bunuh diri, dan tidak memiliki riwayat keluarga dengan penyakit mental, meskipun tetap ada sebagian kecil yang menjawab sebaliknya. Visualisasi ini sangat membantu untuk memahami pola distribusi dan potensi ketidakseimbangan data pada masing-masing kategori, yang penting untuk dipertimbangkan dalam analisis lanjutan.

BAB. III DATA PREPARATION

3.1 Data Selection

Tahap Data Selection merupakan langkah awal dalam proses data preparation yang bertujuan untuk memilih data yang relevan dari dataset mentah berdasarkan kebutuhan analisis dan tujuan pemodelan. Dalam penelitian ini, seleksi dilakukan dengan mempertimbangkan hubungan antara fitur-fitur numerik maupun kategorikal terhadap Student atau Working Professional. Untuk itu, dilakukan analisis korelasi sebagai dasar dalam menentukan fitur yang signifikan yaitu:

3.1.1 Korelasi Numerical pada Subject Students

Berikut potongan kode yang menghasilkan heatmap korelasi antara beberapa atribut numerik dengan status mahasiswa (isStudents).

Gambar 2. 1 Korelasi Numerik pada Subjek Student

Hasil analisis menunjukkan bahwa usia memiliki korelasi negatif yang cukup kuat dengan status mahasiswa sebesar -0.58, yang berarti semakin muda seseorang, semakin besar kemungkinan mereka adalah mahasiswa. Di sisi lain, nilai IPK (CGPA) hampir tidak berhubungan dengan status mahasiswa, dengan korelasi yang sangat kecil (-0.0029). Jam

kerja/belajar (Work/Study Hours) menunjukkan korelasi positif ringan (0.12) dengan status mahasiswa, artinya mahasiswa cenderung menghabiskan sedikit lebih banyak waktu untuk belajar atau bekerja, meskipun hubungan ini tidak terlalu kuat.

3.1.2 Korelasi Kategorial terhadap Subject Students

Berikut adalah potongan kode yang menggunakan uji Chi-Square untuk melihat hubungan antara atribut kategorikal dan Student.

Gambar 2. 2 Korelasi Kategorikal pada Subjek Student

Atribut yang diuji meliputi Gender, Academic Pressure, Degree, dan Study Satisfaction. Hasil pengujian menunjukkan bahwa Gender memiliki p-value sebesar 0.0127, menandakan hubungan yang signifikan secara statistik terhadap status mahasiswa. Degree memiliki p-value 0.0000, menunjukkan pengaruh yang sangat kuat terhadap status tersebut. Sebaliknya, Academic Pressure dan Study Satisfaction memiliki p-value masing-masing 0.1458 dan 0.7061, yang berarti tidak terdapat hubungan signifikan secara statistik antara kedua atribut tersebut dengan status mahasiswa. Oleh karena itu, hanya atribut dengan p-value < 0.05, seperti Gender dan Degree, yang disarankan untuk dipertahankan dalam proses modeling karena memiliki kontribusi potensial terhadap prediksi status mahasiswa.

Berikut adalah potongan kode yang menghasilkan visualisasi distribusi atribut:

Dari hasil grafik, terlihat bahwa pada atribut Gender, jumlah pria dan wanita hampir seimbang di kategori profesional, namun pria sedikit lebih dominan di kelompok pelajar. Untuk Academic Pressure, mayoritas responden berasal dari kategori *Student*, terutama pada tingkat tekanan 3

dan 5, yang mencerminkan tekanan akademik sedang hingga tinggi. Pada atribut Degree, pelajar tersebar di berbagai jenis gelar seperti B.Tech dan B.Com, sedangkan profesional lebih terbatas pada beberapa jenis gelar saja. Terakhir, grafik Study Satisfaction menunjukkan bahwa pelajar memiliki tingkat kepuasan belajar yang cukup bervariasi, meskipun skor tertinggi (sangat puas) justru memiliki jumlah paling sedikit. Secara umum, visualisasi ini memperkuat temuan bahwa mayoritas data berasal dari pelajar yang mengalami tekanan akademik dan memiliki latar belakang pendidikan yang beragam.

3.1.3 Korelasi Numerical pada Subject Working Professionals

Berikut potongan kode yang menghasilkan heatmap korelasi antara beberapa atribut numerik dengan status sebagai pekerja profesional (isWorkingProfessional).

Gambar 2. 3 Korelasi Numerik pada Subjek Working Professional

Heatmap tersebut menunjukkan korelasi antara atribut numerik dengan status sebagai pekerja profesional (isWorkingProfessional). Usia memiliki korelasi positif cukup kuat (0.58), menandakan bahwa semakin tua, seseorang cenderung bekerja. Sebaliknya, depresi menunjukkan korelasi negatif cukup kuat (-0.52), mengindikasikan bahwa mahasiswa lebih rentan mengalami depresi. Atribut lain seperti jam kerja/belajar (-0.12), tekanan kerja (-0.0037), stres finansial (-0.053), dan kepuasan kerja (0.0036) memiliki korelasi sangat lemah, sehingga kurang signifikan untuk membedakan status profesional. Dengan demikian, usia dan tingkat

depresi menjadi indikator paling relevan dalam membedakan mahasiswa dan pekerja profesional.

3.1.4 Korelasi Kategorial terhadap Subject Working Professionals

Berikut adalah potongan kode yang melakukan uji Chi-Square untuk mengevaluasi hubungan antara atribut kategorikal dan Working Professional.

Gambar 2. 4 Korelasi Kategorikal pada Subjek Working Progessional

Hasil menunjukkan bahwa semua atribut yang diuji seperti Gender, City, Degree, Profession, Sleep Duration, dan Have you ever had suicidal thoughts? memiliki p-value < 0.05, yang berarti secara statistik signifikan berhubungan dengan status tersebut. Ini mengindikasikan bahwa seluruh atribut tersebut dapat dipertahankan dalam proses modeling karena memiliki kontribusi yang relevan dalam membedakan antara Working Professional dan Student.

Berikut adalah potongan kode yang digunakan untuk memvisualisasikan distribusi atribut:

Dari grafik-grafik tersebut, terlihat bahwa *Working Professional* cenderung mendominasi pada sebagian besar atribut seperti kota tempat tinggal, gelar pendidikan lanjutan, jenis profesi, durasi tidur, hingga pengalaman pikiran bunuh diri. Sementara itu, mahasiswa (*Student*) lebih mendominasi pada gelar sarjana seperti B.Tech dan B.Sc, serta menunjukkan proporsi signifikan dalam jawaban "Yes" pada pertanyaan terkait kesehatan mental. Hal ini menunjukkan bahwa aspek-aspek seperti pendidikan, lokasi, dan kesejahteraan mental memiliki peran penting dalam membedakan kedua kelompok ini.

3.2 Data Cleaning

3.2.1 Data Cleaning pada Train Dataset

Gambar 2. 5 Data Cleaning pada Train Dataset

Gambar 2. 6 Hasil setelah Data Cleaning

3.2.2 Data Cleaning pada Test Dataset

Gambar 2. 7 Data Cleaning pada Test Dataset

Gambar 2. 8 Hasil setelah Data Cleaning

Kode ini berfungsi untuk menangani missing values dalam dataset dengan pendekatan yang disesuaikan berdasarkan tipe data. Untuk kolom numerik, nilai yang hilang diisi menggunakan median melalui SimpleImputer, karena median lebih tahan terhadap pengaruh outlier dibandingkan mean. Hal ini penting agar data yang diisi tetap mencerminkan pusat distribusi tanpa terdistorsi oleh nilai ekstrem. Sementara itu, untuk kolom kategorikal, nilai hilang diisi menggunakan modus, yaitu nilai yang paling sering muncul, sehingga hasil imputasi tetap representatif terhadap distribusi kategori yang ada.

Setelah proses imputasi dilakukan, penggunaan fungsi isnull().sum() menunjukkan bahwa semua nilai hilang telah berhasil diatasi—setiap kolom dalam dataset memiliki 0 missing values. Ini berarti dataset sudah bersih dan siap digunakan untuk analisis atau pemodelan lebih lanjut. Strategi imputasi yang tepat ini tidak hanya membersihkan data, tetapi juga meminimalkan potensi bias yang mungkin muncul akibat penanganan nilai hilang yang tidak sesuai.

3.3 Data Construction

Tahap Data Construct merupakan bagian dari data preparation yang berfokus pada pembentukan fitur baru dan transformasi data untuk meningkatkan kualitas dan keterkaitan fitur dalam dataset. Tujuan utama dari Data Construct adalah untuk mempersiapkan data agar lebih

siap digunakan dalam analisis lebih lanjut atau model machine learning, dengan mengubah dan menambah kolom atau atribut yang lebih relevan dan memberikan informasi yang lebih mendalam.

Dalam penelitian ini, Data Construct dilakukan dengan tujuan untuk mengubah data mentah menjadi lebih terstruktur dan lebih bermanfaat untuk analisis. Berikut adalah beberapa langkah yang dilakukan dalam Data Construct ini:

3.3.1 Normalisasi

```
# Fit hanya di train
scaler = MinMaxScaler()
scaler.fit(traidata[['Age', 'Work/Study Hours', 'Financial Stress', 'Work Pressure']])

# Simpan scaler
with open('scaler.pickle', 'wb') as scaler_file:
    pickle.dump(scaler, scaler_file)

Python
```

Gambar 2. 9 Normalisasi Fitur

Normalisasi pada fitur numerik menggunakan MinMaxScaler dari pustaka sklearn.preprocessing. Pertama, objek MinMaxScaler dibuat dan di-*fit* menggunakan data pelatihan (traindata) hanya pada empat kolom, yaitu 'Age', 'Work/Study Hours', 'Financial Stress', dan 'Work Pressure', untuk menghitung nilai minimum dan maksimum dari masingmasing fitur. Proses ini bertujuan agar setiap nilai dalam kolom-kolom tersebut dapat diskalakan ke dalam rentang [0, 1]. Setelah itu, scaler yang telah di-*fit* disimpan ke dalam file bernama scaler.pickle menggunakan modul pickle, sehingga dapat digunakan kembali saat proses prediksi di backend Flask dengan skala yang konsisten seperti saat model dilatih.

3.3.2 Feature Engineering

```
# Encode Sleep Duration ordinal
sleep_map = {
    'less than 5 hours': 0,
    '5-6 hours': 1,
    '7-8 hours': 2,
    'Whore than 8 hours': 3
}
traindata['Sleep Duration'] = traindata['Sleep Duration'].map(sleep_map)

dietary_map = {
    'Unhealthy': 0,
    'Moderate': 1,
    'Healthy': 2
}
traindata['Dietary Habits'] = traindata['Dietary Habits'].map(dietary_map)

# Imputasi NaN setelah mapping
traindata['Sleep Duration'].fillna(traindata['Sleep Duration'].median(), inplace=True)

traindata['Dietary Habits'].fillna(traindata['Dietary Habits'].median(), inplace=True)

# Tekanan kerja total
traindata['Stress_Score'] = traindata['Work Pressure'] + traindata['Financial Stress']
```

Gambar 2. 10 Feature Engineering

Fitur ordinal seperti Sleep Duration dan Dietary Habits dikonversi ke format numerik menggunakan mapping logis berdasarkan urutan tingkatannya. Sleep Duration diberi kode dari 0 hingga 3, di mana 0 mewakili durasi tidur <5 jam dan 3 untuk >8 jam. Demikian pula, Dietary Habits dikodekan dari 0 (tidak sehat) hingga 2 (sehat). Konversi ini penting agar model machine learning dapat memproses nilai ordinal dengan mempertimbangkan urutan yang bermakna. Setelah encoding, nilai NaN dalam kedua fitur ini diimputasi menggunakan median, karena median lebih stabil terhadap outlier dan sesuai untuk data dengan skala ordinal.

Selain itu, dibuat fitur baru bernama Stress_Score, yang merupakan penjumlahan dari Work Pressure dan Financial Stress. Fitur ini berfungsi sebagai indikator komposit untuk menggambarkan tingkat stres keseluruhan yang dialami individu. Dengan menggabungkan dua dimensi stres utama dalam satu variabel, proses analisis menjadi lebih sederhana dan hasil model prediksi terhadap kondisi mental, seperti depresi, menjadi lebih informatif. Strategi ini membantu menangkap pengaruh kumulatif stres secara lebih efisien dan mendukung interpretasi psikologis dalam konteks analisis data.

3.3.3 Labeling

```
traindata['Have you ever had suicidal thoughts ?'] = traindata['Have you ever had suicidal thoughts ?'].map({'No': 0, 'Yes': 1})
traindata['Family History of Mental Illness'] = traindata['Family History of Mental Illness'].map({'No': 0, 'Yes': 1})
traindata['Gender'] = traindata['Gender'].map({'Male': 0, 'Female': 1})

degree_cat = traindata['Degree'].astype('category')
traindata['Degree'] = degree_cat.cat.codes

profession_cat = traindata['Profession'].astype('category')
traindata['Profession'] = profession_cat.cat.codes

city_cat = traindata['City'] = city_cat.cat.codes

profession_cat = traindata['Profession'].astype('category')
traindata['Profession'] = profession_cat.cat.codes
```

Gambar 2. 11 Labeling

Fitur kategorikal dalam dataset dikodekan ke format numerik agar bisa digunakan dalam model machine learning. Untuk fitur dengan dua kategori seperti Have you ever had suicidal thoughts?, Family History of Mental Illness, dan Gender, digunakan binary encoding, yaitu mengubah 'No' atau 'Male' menjadi 0 dan 'Yes' atau 'Female' menjadi 1. Pendekatan ini sederhana dan efektif karena mempertahankan makna logis dari data biner tanpa menambah dimensi baru, serta memudahkan pemrosesan oleh model yang hanya menerima input numerik.

Sementara itu, untuk fitur nominal seperti Degree, Profession, dan City, digunakan category encoding dengan .cat.codes, yang secara otomatis mengonversi setiap kategori unik menjadi angka integer. Meskipun urutan angka ini tidak memiliki makna hierarkis, metode ini cocok untuk model yang tidak sensitif terhadap urutan, seperti tree-based models. Namun, penting untuk memastikan bahwa mapping kategori ke angka dilakukan secara konsisten antara data latih dan data uji, agar tidak terjadi kesalahan prediksi akibat ketidaksesuaian label numerik.

```
from sklearn.preprocessing import LabelEncoder

# Inisialisasi encoder
le = LabelEncoder()

# Fit dan transform di data train
traindata["Working Professional or Student"] = le.fit_transform(traindata["Working Professional or Student"])

Python
```

Gambar 2. 12 Labeling Working or Student

Proses Label Encoding diterapkan pada fitur kategorikal Working Professional or Student menggunakan LabelEncoder dari sklearn.preprocessing. Teknik ini mengubah setiap nilai unik dalam fitur tersebut menjadi representasi numerik, misalnya 'Student' menjadi 0 dan 'Working Professional' menjadi 1, tergantung pada urutan alfabetis internal encoder. Encoding ini penting karena sebagian besar algoritma machine learning tidak dapat memproses data dalam bentuk string.

Label encoding cocok digunakan untuk fitur kategorikal dengan dua kategori atau lebih jika fitur tersebut tidak memiliki makna ordinal, dan model yang digunakan tidak sensitif terhadap urutan numerik (seperti tree-based models). Namun, pada model yang sensitif terhadap skala atau urutan angka (misalnya, regresi linier), label encoding pada fitur nominal dapat menyebabkan bias, sehingga metode ini perlu dipertimbangkan dengan cermat sesuai konteks dan jenis model yang digunakan.

| Part |

Hasil setelah dilakukan Data Construction pada dataset :

Gambar 2. 13 Hasil Setelah Data Construction

3.4 Data Integration

Pada penelitian ini, proses data integration (integrasi data) tidak dilakukan karena data yang digunakan hanya berasal dari satu dataset utama, yaitu "Exploring Mental Health", yang sudah cukup lengkap untuk analisis. Dataset ini mencakup seluruh informasi penting, seperti informasi demografi (usia, jenis kelamin, kota), latar belakang pendidikan dan pekerjaan, tekanan akademik/pekerjaan, kepuasan studi dan kerja, kebiasaan tidur dan pola makan, serta riwayat keluarga dan faktor kesehatan mental lainnya. Oleh karena itu, tidak ada kebutuhan untuk menggabungkan data dari sumber eksternal.

Fokus utama dalam tahapan data preparation adalah pada data cleaning untuk menangani missing values, outlier, dan duplikasi, serta pada data construction untuk melakukan feature engineering, seperti encoding variabel dan pembuatan fitur baru. Selain itu, proses data labeling dilakukan untuk membuat label target yang diperlukan untuk analisis klasifikasi. Dengan demikian, proses data integration tidak diperlukan karena dataset utama sudah cukup representatif untuk tujuan penelitian ini.

BAB. IV MODELING DATASET

4.1 Bulding Testing Scenario

Eksperimen Klasifikasi Kesehatan Mental: Perbandingan C4.5 vs XGBoost

Pada proyek ini, dua model klasifikasi—C4.5 (Decision Tree) dan XGBoost (Extreme Gradient Boosting)—akan digunakan untuk memprediksi apakah seseorang mengalami depresi berdasarkan dataset yang ada. Tujuannya adalah untuk mengevaluasi kinerja kedua model dalam konteks data kesehatan mental dan mengetahui model mana yang lebih efektif dalam prediksi depresi.

Langkah 1: Persiapan Data

1.1 Pemrosesan Data

Menangani Data yang Hilang

Data hilang akan ditangani secara berbeda untuk kolom numerik dan kategorikal. Kolom numerik akan diisi dengan rata-rata atau median berdasarkan distribusinya, sedangkan kolom kategorikal akan diisi dengan modus (nilai yang paling sering muncul).

• Pengkodean Kategorikal

Data kategorikal seperti Gender, City, dan Profession akan diubah menjadi nilai numerik agar bisa diproses oleh model:

- o Gunakan LabelEncoder untuk fitur dengan dua kategori.
- o Gunakan OneHotEncoder untuk fitur kategorikal dengan banyak kategori.

• Normalisasi / Standarisasi

XGBoost tidak terlalu sensitif terhadap skala data, namun normalisasi tetap dapat meningkatkan performa dan konvergensi model. Sedangkan untuk C4.5, normalisasi tidak wajib, namun disarankan bila ada fitur dengan skala yang sangat berbeda.

1.2 Pembagian Data

Dataset akan dibagi menjadi **80% untuk training** dan **20% untuk testing**, dengan **X** yang mencakup semua fitur (kecuali kolom Depression yang menjadi target y), serta kolom Name yang tidak relevan untuk prediksi.

Langkah 2: Pemilihan Model

2.1 Model C4.5 (Decision Tree)

C4.5 adalah algoritma pohon keputusan yang menggunakan Gain Ratio untuk memilih pembagian terbaik. Model ini mudah dipahami, diinterpretasi, dan divisualisasikan. Namun, jika tidak dipangkas dengan baik, C4.5 bisa mengalami overfitting.

2.2 Model XGBoost (Extreme Gradient Boosting)

XGBoost adalah algoritma ensemble learning yang menggabungkan banyak pohon keputusan lemah (weak learners) untuk menghasilkan model yang kuat. Dikenal karena kemampuannya menangani data yang kompleks dan memiliki regulasi yang baik untuk mencegah overfitting. Beberapa hyperparameter utama yang akan dituning antara lain: n_estimators, learning_rate, max_depth, serta subsample dan colsample_bytree untuk mencegah overfitting.

Langkah 3: Evaluasi Model

3.1 Evaluasi Model C4.5

Kinerja model akan dievaluasi menggunakan metrik berikut:

- Akurasi
- Precision
- Recall
- F1-Score
- Confusion Matrix

3.2 Evaluasi Model XGBoost

Evaluasi XGBoost akan dilakukan dengan menggunakan metrik yang sama:

- Akurasi
- Precision & Recall
- F1-Score
- Confusion Matrix

Langkah 4: Perbandingan Model

Setelah evaluasi, kedua model akan dibandingkan berdasarkan metrik evaluasi berikut:

- **Akurasi**: Mengukur seberapa sering prediksi benar.
- Precision dan Recall: Menilai seberapa baik model dalam mendeteksi kasus depresi.
- **F1-Score**: Menggabungkan precision dan recall untuk menilai keseimbangan keduanya.

• Confusion Matrix: Menunjukkan distribusi prediksi yang benar dan salah.

Catatan Perbandingan:

- C4.5
- Mudah dipahami dan cocok untuk dataset sederhana.
- Rentan terhadap overfitting jika tidak dipangkas dengan benar.

XGBoost

- Memiliki akurasi yang tinggi, terutama pada data kompleks.
- Memiliki mekanisme regularisasi untuk mencegah overfitting, meski lebih kompleks dan membutuhkan tuning hyperparameter.

Langkah 5: Penyempurnaan Model (Opsional)

Untuk meningkatkan performa model, beberapa teknik penyempurnaan bisa digunakan:

• C4.5

Penyempurnaan bisa dilakukan pada hyperparameter seperti max_depth, min_samples_split, dan min_samples_leaf untuk menghindari overfitting.

XGBoost

Penyempurnaan dilakukan pada hyperparameter seperti n_estimators, learning_rate, max_depth, subsample, dan colsample_bytree menggunakan GridSearchCV atau RandomizedSearchCV.

4.2 Bulding Model

4.2.1 Train Dataset with Decision Tree C4.5-style Model

```
Train Dataset with Decision Tree C4.5-style Model

from sklearn.model_selection import train_test_split
    from sklearn.tree import DecisionTreeClassifier
    from sklearn.metrics import classification_report, accuracy_score, precision_score, recall_score, f1_score

# Asumsikan traindata dan testdata telah disiapkan sebelumnya
    # Plsahkan fitur dan target
    X = traindata_drop(columns=['Depression', 'Name'])
    y = traindata_(rop(columns=['Depression', 'Name'])
    y = traindata_(rop(columns=['Depression', 'Name'])

# Pisahkan data training dan testing
    X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

# Decision Tree
    dt = DecisionTreeClassifier(criterion='entropy', random_state=42, max_depth=8)
    dt.fit(X_train, y_train)
    y_pred_dt = dt.predict(X_test)
```

Gambar 3. 1 Train with Model C4.5

Pada pemodelan ini digunakan DecisionTreeClassifier dengan parameter criterion='entropy', random_state=42, dan max_depth=8. Pemilihan entropy sebagai kriteria pemisahan bertujuan untuk menggunakan information gain dalam membagi data, yang cenderung lebih informatif dibanding gini, terutama jika distribusi kelas tidak seimbang. Nilai random_state=42 digunakan

untuk memastikan hasil model konsisten dan dapat direproduksi pada setiap eksekusi. Sementara itu, max_depth=8 ditetapkan untuk membatasi kedalaman pohon agar model tidak terlalu kompleks dan terhindar dari overfitting, namun tetap cukup dalam untuk menangkap pola penting dalam data.

4.2.2 Train Dataset with XGBoost (Extreme Gradient Boosting)

Gambar 3. 2 Train with Model XGBoost

Penggunaan n estimators=1000 menunjukkan jumlah pohon yang banyak untuk meningkatkan performa, namun dikompensasi dengan max depth=4 dan min child weight=5 guna membatasi kompleksitas pohon agar tidak overfitting. Parameter subsample=0.5 dan colsample_bytree=0.8 digunakan untuk mengontrol jumlah data dan fitur yang digunakan setiap pohon, sehingga meningkatkan keragaman model dan mencegah overfitting. reg alpha=0.005 memberikan regularisasi L1 ringan untuk mendorong kesederhanaan model. Nilai gamma=0 membiarkan pemisahan dilakukan tanpa penalti tambahan, sementara objective='binary:logistic' digunakan karena tugas klasifikasi bersifat biner. scale pos weight=1 menandakan bahwa kelas target seimbang, dan nthread=4 mengatur penggunaan 4 thread untuk pelatihan paralel, dengan seed=0 untuk memastikan hasil yang konsisten.

4.2.3 Train Dataset with XGBoost (Extreme Gradient Boosting) with Tuning GridSearch

```
Train Dataset with XGBoost (Extreme Gradient Boosting) with Tuning GridSearch
                                                                                                                        喧 D₁ D₂ 日 ··· 會
    xgb_model_grid = XGBClassifier(objective='binary:logistic', nthread=4, scale_pos_weight=1, seed=0, random_state=42)
    param grid = {
        'n_estimators': [100, 200],
        'max_depth': [3, 4],
'min_child_weight': [1, 5],
        'subsample': [0.7, 1.0],
'colsample_bytree': [0.7, 1.0],
'learning_rate': [0.1, 0.2]
    grid_search = GridSearchCV(estimator=xgb_model, param_grid=param_grid,
                                scoring='accuracy', n_jobs=-1, cv=3, verbose=1)
    # Fit model dengan GridSearchCV
    grid_search.fit(X_train, y_train)
    print("Best parameters found: ", grid_search.best_params_)
    print("Best cross-validation accuracy: {:.2f}".format(grid_search.best_score_))
    # Menggunakan model terbaik untuk prediksi
    best_xgb_model = grid_search.best_estimator_
   y_pred_xgb_gd = best_xgb_model.predict(X_test)
Fitting 3 folds for each of 64 candidates, totalling 192 fits
Best parameters found: {'colsample_bytree': 0.7, 'learning_rate': 0.1, 'max_depth': 4, 'min_child_weight': 1, 'n_estimators': 200, 'sul
Best cross-validation accuracy: 0.94
```

Gambar 3. 3 Train with Model XGBoost with Tuning GridSearch

Pemodelan dengan GridSearchCV pada algoritma XGBClassifier dilakukan untuk menemukan kombinasi parameter terbaik yang menghasilkan akurasi prediksi tertinggi. Dalam pencarian dari 64 kombinasi parameter, hasil terbaik diperoleh dengan n_estimators=200, max_depth=3, min_child_weight=1, subsample=0.7, colsample_bytree=1.0, dan learning_rate=0.2. Konfigurasi ini menunjukkan bahwa model dengan kedalaman pohon yang relatif dangkal namun cukup banyak pohon (estimators) dan bobot minimum anak kecil mampu memberikan performa yang sangat baik. Kombinasi subsample=0.7 dan colsample_bytree=1.0 memperkenankan variasi antar pohon dengan tetap menggunakan seluruh fitur, sementara learning_rate=0.2 memungkinkan pembelajaran lebih cepat. Dengan strategi ini, model mencapai akurasi validasi silang (cross-validation) sebesar 94%, yang menunjukkan bahwa model cukup optimal dalam mempelajari pola data tanpa overfitting

BAB. V MODEL EVALUATION

5.1 Evaluation

5.1.1 Evaluation of Model C4.5

```
Evaluation of Model C4.5
     print("=== Decision Tree ===")
    print("Accuracy:", accuracy_score(y_test, y_pred_dt))
print("Precision:", precision_score(y_test, y_pred_dt))
print("Recall:", recall_score(y_test, y_pred_dt))
print("Fl_Score:", fl_score(y_test, y_pred_dt))
print("Classification Report:\n", classification_report(y_test, y_pred_dt))
=== Decision Tree ===
Accuracy: 0.9271144278606965
 Precision: 0.7926806262969252
Recall: 0.8152890958478851
F1_Score: 0.8038259206121473
Classification Report:
                   precision recall f1-score support
                       0.96 0.95
0.79 0.82
                                                     0.96
                                                                 22986
                                                   0.80
                                                                  5154
                                                                 28140
     accuracy
                      0.88 0.88
0.93 0.93
     macro avg
                                                     0.88
                                                                  28140
weighted avg
                                                     0.93
                                                                  28140
```

Gambar 4 1 Hasil Evaluasi Model C4.5

5.1.2 Evaluation of Model XGBoost (Extreme Gradient Boosting)

```
Evaluation of Model XGBoost (Extreme Gradient Boosting)
     print("=== XGBoost ===")
    print("Accuracy:", accuracy_score(y_test, y_pred_xgb))
print("Precision:", precision_score(y_test, y_pred_xgb))
print("Recall:", recall_score(y_test, y_pred_xgb))
print("F1_Score:", f1_score(y_test, y_pred_xgb))
print("Classification Report:\n", classification_report(y_test, y_pred_xgb))
=== XGBoost ===
Accuracy: 0.9323383084577115
Precision: 0.8246104674390731
Recall: 0.8009313154831199
F1_Score: 0.8125984251968504
Classification Report:
                   precision recall f1-score support
                       0.96 0.96 0.96
0.82 0.80 0.81
                                                               22986
                                                                5154
                                                                28140
    macro avg
                         0.89
                                     0.88
                                                   0.89
                                                                28140
                      0.93
                                                                28140
                                                   0.93
weighted avg
```

Gambar 4 2 Hasil Evaluasi Model XGBoost

5.1.3 Evaluation of Model XGBoost (Extreme Gradient Boosting) with Tuning Grid Search

```
Evaluation of Model XGBoost (Extreme Gradient Boosting) with Tuning Grid Search
    print("Accuracy:", accuracy_score(y_test, y_pred_xgb_gd))
print("Precision:", precision_score(y_test, y_pred_xgb_gd))
    print("Recall:", recall_score(y_test, y_pred_xgb_gd))
    print("F1_Score:", f1_score(y_test, y_pred_xgb_gd))
print("Classification Report:\n", classification_report(y_test, y_pred_xgb_gd))
Accuracy: 0.9391968727789624
Precision: 0.8463085898209616
Recall: 0.8162592161428017
F1 Score: 0.8310123456790124
Classification Report:
                precision
                              recall f1-score
                                                   support
                     0.96
                                                     22986
                     0.85
                               0.82
                                          0.83
                                                     5154
                                           0.94
                                                     28140
    accuracy
                     0.90
                                0.89
    macro avg
                                           0.90
                                                     28140
                                0.94
 weighted avg
                     0.94
```

Gambar 4 3 Hasil Evaluasi Model XGBoost with Tuning GridSearch

5.1.4 Analisis Perbandingan antara Model C4.5 vs XGBoost vs XGBoost with Tuning (GridSearch)

1. XGBoost with GridSearch Tuning

• **Accuracy:** 93.90%

• **Precision:** 84.50%

Recall: 81.66%

• **F1-Score:** 83.06%

XGBoost dengan GridSearch Tuning menunjukkan performa terbaik secara keseluruhan. Melalui tuning hyperparameter seperti max_depth, learning_rate, dan n_estimators, model ini berhasil meningkatkan keseimbangan antara precision dan recall. F1-score tertinggi di antara ketiga model menunjukkan kemampuan model ini untuk mendeteksi kasus depresi secara lebih akurat dan stabil. Tuning membantu mengoptimalkan model agar lebih efektif, terutama dalam menangani kelas minoritas (depresi), yang sering menjadi tantangan dalam klasifikasi semacam ini

2. XGBoost (Tanpa Tuning)

• Accuracy: 93.24%

• **Precision:** 82.21%

• **Recall:** 80.50%

• **F1-Score:** 81.34%

Meskipun sedikit lebih rendah dibandingkan dengan model XGBoost yang telah dituning, XGBoost tanpa tuning masih menunjukkan performa yang sangat baik. Precision dan recall yang sedikit lebih rendah berakibat pada penurunan F1-score, tetapi model ini masih dapat diandalkan dalam mendeteksi depresi. Default hyperparameters sudah cukup kuat untuk

menangani tugas ini, meskipun tuning tetap memberikan kontribusi positif terhadap peningkatan keseimbangan dan akurasi.

3. Decision Tree C4.5

• **Accuracy:** 92.71%

• **Precision:** 79.27%

• **Recall:** 81.53%

• **F1-Score:** 80.38%

Model C4.5 Decision Tree memiliki performa yang lebih rendah dibandingkan dengan XGBoost, baik dengan atau tanpa tuning. Precision yang lebih rendah menunjukkan bahwa model ini lebih sering salah memprediksi kasus depresi, menyebabkan lebih banyak false positives. Meskipun recall-nya cukup kompetitif (81.5%), model ini kurang efektif dalam menyeimbangkan precision dan recall. Selain itu, C4.5 juga cenderung rentan terhadap overfitting, terutama ketika struktur pohon keputusan menjadi lebih kompleks.

Kesimpulan Umum

- XGBoost with GridSearch Tuning adalah model yang paling unggul dalam hal akurasi dan keseimbangan antara precision dan recall, memberikan F1-score tertinggi yang menunjukkan kemampuan deteksi yang lebih baik.
- XGBoost tanpa tuning tetap memberikan performa yang sangat baik, tetapi tuning memberikan peningkatan yang signifikan, terutama dalam meningkatkan precision dan recall untuk deteksi depresi.
- C4.5 Decision Tree cocok untuk analisis cepat dan mudah dipahami, tetapi kinerjanya lebih rendah dibandingkan XGBoost, terutama dalam hal precision. Model ini mungkin lebih cocok untuk aplikasi yang tidak terlalu sensitif terhadap false positives dan false negatives.

5.2 Review Model

5.2.1 Review Model Processing C4.5

Gambar 5. 1 Review Model C4.5

5.2.2 Review Model Processing XGBoost

Gambar 5. 2 Review Model XGBoost

Penjelasan Confussion Matrix:

Matriks konfusi berikut ini menunjukkan performa model dalam memprediksi status **suicidal** berdasarkan data yang ada:

	Predicted: Not Suicidal	Predicted: Suicidal
Actual: Not Suicidal	22,088 (TN)	898 (FP)
Actual: Suicidal	1,005 (FN)	4,149 (TP)

Table 2 Matrix Confussion

Interpretasi Komponen Matriks Konfusi

• True Negative (TN) = 22,088

Model berhasil dengan benar memprediksi bahwa 22,088 individu *tidak suicidal*. Ini berarti model sangat baik dalam mengenali orang-orang yang tidak berada dalam risiko, menghindari kesalahan dalam menilai orang yang tidak memerlukan perhatian khusus.

• **False Positive (FP) = 898**

Model **salah memprediksi** 898 orang yang sebenarnya *tidak suicidal* sebagai *suicidal*. False positives ini bisa menyebabkan sumber daya terbuang atau perhatian yang berlebihan pada individu yang tidak membutuhkan intervensi, tetapi dalam konteks kesehatan mental, hal ini mungkin lebih bisa diterima karena memberikan perhatian lebih kepada mereka yang mungkin membutuhkan bantuan yang belum diidentifikasi.

• False Negative (FN) = 1,005

Model **salah memprediksi** 1,005 orang yang sebenarnya *suicidal* sebagai *tidak suicidal*. Ini adalah **kesalahan yang berisiko tinggi** karena orang-orang ini mungkin tidak mendapatkan perhatian yang mereka butuhkan. False negatives dalam kasus ini sangat berbahaya karena dapat mengakibatkan terlambatnya penanganan terhadap individu yang sebenarnya berisiko.

• True Positive (TP) = **4.149**

Model berhasil dengan benar memprediksi bahwa 4,149 orang *suicidal*. Ini adalah prediksi yang sangat penting karena model mampu mengidentifikasi orang-orang yang membutuhkan perhatian mendalam dan segera.

5.2.3 Review for Most Importance Feature in XGBoost Model

Gambar 5. 3 Review Most Importance Feature in XGBoost Model

1. Berdasarkan analisis terhadap berbagai jenis importance_type pada model XGBoost, fitur Age, Stress_Score, dan "Have you ever had suicidal thoughts?" muncul sebagai fitur paling berpengaruh dalam memprediksi target. Fitur Age mendominasi seluruh metrik—baik dari segi frekuensi digunakan (weight), kontribusi terhadap peningkatan akurasi (gain), cakupan jumlah data yang dipisahkan (cover), maupun total dampak (total_gain, total_cover). Ini menunjukkan bahwa usia menjadi indikator yang sangat kuat dalam menentukan risiko atau status psikologis individu dalam dataset yang digunakan.

- 2. Selain usia, tingkat stres dan riwayat pikiran bunuh diri juga menunjukkan peran penting, terutama pada metrik gain dan cover, yang menandakan bahwa kedua fitur ini memberikan kontribusi signifikan terhadap peningkatan performa model dan juga memengaruhi pemisahan data secara luas. Fitur-fitur seperti Work/Study Hours, Academic Pressure, dan Job Satisfaction menunjukkan kontribusi menengah, lebih sering muncul dalam metrik weight dan cover, yang artinya mereka banyak digunakan dalam pohon, meskipun kontribusinya per split tidak sebesar tiga fitur utama.
- 3. Secara keseluruhan, model sangat bergantung pada fitur-fitur yang mencerminkan kondisi psikologis langsung dan demografis individu. Untuk keperluan interpretasi dan pembuatan rekomendasi, jenis importance_type='gain' atau total_gain adalah yang paling tepat digunakan karena menunjukkan seberapa besar suatu fitur benar-benar meningkatkan kualitas prediksi model. Analisis ini dapat menjadi dasar kuat untuk menentukan fokus intervensi atau strategi pencegahan dalam konteks mental health, terutama yang melibatkan kelompok usia tertentu dengan tingkat stres tinggi atau riwayat pikiran bunuh diri.

5.2.4 Review for ROC Curve – XGBoost

Gambar 5. 4 Review for ROC Curve - XGBoost

ROC Curve dan AUC

Sumbu pada Grafik:

• Sumbu X (False Positive Rate / FPR):

Menunjukkan proporsi individu yang *tidak suicidal* namun **salah diklasifikasikan** sebagai *suicidal* oleh model. Ini memberikan gambaran tentang seberapa banyak model melakukan kesalahan dalam mengidentifikasi kasus yang bukan suicidal.

• Sumbu Y (True Positive Rate / TPR atau Recall):

Menunjukkan proporsi individu yang *suicidal* dan **benar terdeteksi** oleh model. Ini mengukur kemampuan model dalam mendeteksi dengan benar orang-orang yang benarbenar berisiko.

Analisis Hasil:

• Garis Oranye:

ROC Curve dari model Anda, yang menunjukkan bagaimana performa model dalam berbagai ambang batas (thresholds) klasifikasi.

• Garis Biru Putus-Putus (Diagonal):

Ini adalah baseline dari model acak (random classifier) yang memiliki AUC = 0.5, menandakan bahwa model acak tidak lebih baik dari tebakan acak.

Interpretasi Kinerja Model

AUC = 0.97

Nilai AUC yang sangat tinggi ini menunjukkan bahwa model **XGBoost** memiliki kemampuan luar biasa dalam membedakan antara kelas *suicidal* dan *non-suicidal*. Model ini sangat efektif dalam mengidentifikasi individu yang berisiko (suicidal) sambil meminimalkan kesalahan dalam mengklasifikasikan individu yang tidak berisiko sebagai suicidal.

Skala Penilaian Umum AUC:

AUC Score	Interpretasi
> 0.9	Excellent
0.8 - 0.9	Good
0.7 - 0.8	Fair
< 0.7	Perlu perbaikan

Table 3 AUC Score

BAB. VI DEPLOY MODEL

6.1 Planning Deployment Model

1. Persiapan Model dan Scaler

- **Pelatihan model** dilakukan sebelumnya menggunakan dataset yang sesuai, dan model disimpan dalam file mdl.pickle.
- Scaler (seperti StandardScaler atau MinMaxScaler) digunakan untuk normalisasi data input dan disimpan dalam file scaler.pickle.
- Pastikan kedua file ini berada di direktori project yang sama dengan file backend Flask.

2. Pembuatan File app.py (Backend Flask)

- Buat file bernama app.py yang akan menjadi server aplikasi.
- Isi file app.py mencakup:
 - o Inisialisasi aplikasi Flask.
 - o Pemanggilan model dan scaler menggunakan pickle.
 - o Routing untuk halaman utama ('/') yang menampilkan form input (index.html).
 - o Routing untuk /predict yang menangani input form, melakukan normalisasi data numerik, memanggil model prediksi, dan mengembalikan hasil ke index.html.
- Jalankan server lokal menggunakan perintah python app.py.

3. Pembuatan File index.html (Antarmuka Web)

- Letakkan index.html di dalam folder templates/.
- Buat form HTML dengan field input seperti: Nama, Usia, Gender, Jam Kerja/Belajar, Tekanan Finansial, Tekanan Kerja, dan atribut pendukung lainnya.
- Form akan mengirim data menggunakan metode POST ke endpoint /predict.
- Tambahkan bagian untuk menampilkan hasil prediksi yang dikembalikan dari Flask.

4. Pembuatan CSS untuk Tampilan Web

- Buat folder static/css/ dan tambahkan file style.css.
- Desain CSS agar tampilan web lebih responsif dan nyaman digunakan, dengan memperhatikan:
 - o Penempatan form secara terstruktur.
 - o Warna latar yang ramah pengguna.
 - o Tipografi yang jelas dan form input yang mudah digunakan.
- Link-kan style.css ke dalam file index.html menggunakan tag link rel="stylesheet" href="\{\{\text{url_for}(\'static', filename='\css/\style.css')\}\}\'\>.

5. Pengujian dan Validasi

- Jalankan aplikasi di browser melalui http://localhost:5000.
- Uji semua input dan pastikan prediksi muncul sesuai input yang diberikan.
- Tangani berbagai skenario error (misalnya input kosong atau tidak valid) untuk memastikan stabilitas aplikasi.

6. Dokumentasi dan Perluasan

- Dokumentasikan alur penggunaan, dependensi (misalnya Flask, numpy, pickle), dan cara menjalankan aplikasi.
- Setelah berhasil di-deploy secara lokal, aplikasi bisa dikembangkan lebih lanjut untuk deployment ke cloud seperti Heroku, PythonAnywhere, atau layanan cloud lainnya.

6.2 Deployment Model

6.2.1 Save Model

Model yang akan dipakai untuk deploy yaitu model terbaik dari training model yang dilakukan sebelumnya yaitu XGBoost with Tuning Hyperparameter (GridSearch). Kemudian save model juga dilakukan untuk Normalisasi pada fitur Age, Work/Study Hours, Financial Stress, dan Work Pressure. Berikut penggalan kode penyimpanan model

```
# Fit hanya di train
scaler = MinMaxScaler()
scaler.fit(traindata[['Age', 'Work/Study Hours', 'Financial Stress', 'Work Pressure']])

# Simpan scaler
with open('scaler.pickle', 'wb') as scaler_file:
    pickle.dump(scaler, scaler_file)

# 9thon
```

Gambar 5. 5 Save Model Scaler

```
# Simpan model ke file
with open('mdl.pickle', 'wb') as model_file:
pickle.dump(best_xgb_model, model_file)

v 0.0s

Python
```

Gambar 5. 6 Save Model XGBoost with Tuning GridSearch

6.2.2 App.py

Untuk melakukan deploy model pada localhost pertama kita akan buat file "app.py" sebagai backend dari web server untuk menjalankan model training kita.Model-model yang sudah kita simpan sebelumnya kemudian akan kita pakai pada deployment. Berikut isi dari file app.py

```
nt〉<mark>;</mark> app.py〉⊕ predict
from flask import Flask, request, render_template
import numpy as np
app = Flask(__name__)
# Load model dan scaler
with open('mdl.pickle', 'rb') as model_file:
     model = pickle.load(model_file)
with open('scaler.pickle', 'rb') as scaler_file:
    scaler = pickle.load(scaler_file)
@app.route('/')
     return render_template('index.html')
@app.route('/predict', methods=['POST'])
def predict():
         # Ambil input dari form
raw_age = float(request.form['Age'])
         raw_mork_study_hours = float(request.form['Work/Study Hours'])
raw_financial_stress = float(request.form['Financial Stress'])
         raw_work_pressure = float(request.form['Work Pressure'])
         # Bentuk array untuk transform
scaled_features = scaler.transform([[raw_age, raw_work_study_hours, raw_financial_stress, raw_work_pressure
         normalized_age = scaled_features[0][0]
          normalized_work_study_hours = scaled_features[0][1]
          normalized_financial_stress = scaled_features[0][2]
         normalized_work_pressure = scaled_features[0][3]
```

```
name = request.form['Name']
     input values = [
          float(request.form['Gender']).
         normalized_age,
float(request.form['City']),
          float(request.form['Working Professional or Student']),
          float(request.form['Profession']),
          float(request.form['Academic Pressure']),
          normalized_work_pressure,
         float(request.form['Job Satisfaction']),
float(request.form['Job Satisfaction']),
float(request.form['Sleep Duration']),
          float(request.form['Dietary Habits']),
          float(request.form['Degree']),
          float(request.form['Have you ever had suicidal thoughts ?']),
         normalized_work_study_hours,
         normalized_note_study_notes,
normalized_financial_stress,
float(request.form['Family History of Mental Illness']),
float(request.form['isStudents']),
float(request.form['isWorkingProfessional']),
float(request.form['Stress_Score']),
    features = np.array([input_values])
    prediction = model.predict(features)[0]
    result = "Depresi" if prediction == 1 else "Tidak Depresi"
    return render_template('index.html', prediction_text=f"Hasil Prediksi dari {name}: {result}")
    return render_template('index.html', prediction_text=f"Terjadi kesalahan: {str(e)}")
_name__ == '__main__':
app.run(debug=True)
```

Gambar 5. 7 App.py

6.2.3 Index.html dan CSS Style

Demikian juga untuk menampilkan web server pada localhost, kita perlu rangkaian web development untuk menjalankan machine learning kita. Maka kita bangun dalam file index.html, dan juga dibantu untuk memperindah tampilan dengan CSS file. Berikut rangkaian kode untuk index.html dan css stylenya

Gambar 5. 8 Index.html

```
| Description | Section |
```

Gambar 5. 9 CSS Style

Proses pembacaan data dimulai dengan memuat model prediksi dan objek normalisasi (scaler) dari dua file terpisah menggunakan modul pickle. Model tersebut digunakan untuk melakukan klasifikasi, sedangkan scaler digunakan untuk menyesuaikan skala input numerik agar sesuai dengan data yang digunakan saat pelatihan model. Ketika pengguna mengakses halaman utama, aplikasi merender file index.html, yang berisi form untuk pengisian data. Setelah form dikirim melalui metode POST ke endpoint /predict, sistem akan mengambil data numerik dari form seperti usia, tekanan finansial, tekanan kerja, dan jam kerja/belajar.

Nilai-nilai numerik tersebut kemudian dinormalisasi menggunakan objek scaler agar memiliki distribusi yang konsisten dengan data pelatihan model. Setelah itu, semua input, baik yang telah dinormalisasi maupun yang tidak, dikompilasi ke dalam array dan diproses oleh model untuk menghasilkan prediksi. Hasil prediksi berupa nilai 0 atau 1, yang diterjemahkan menjadi label "Tidak Depresi" atau "Depresi". Hasil akhir tersebut dikembalikan (return) dengan cara merender kembali halaman index.html sambil menampilkan teks prediksi beserta nama pengguna. Jika terjadi kesalahan, seperti input tidak valid, sistem akan menampilkan pesan kesalahan di halaman yang sama.

6.3 Pengujian Model

6.3.1 Deployment Local

Setelah memberikan input terhadap 20 fitur, maka model akan memprediksi apakah output dari inputan adalah Depresi atau Tidak Depresi

Gambar 5. 10 Pengujian Model

Berikut hasil output:

Gambar 5. 11 Hasil Pengujian Model

Model memprediksi berdasarkan inputan setiap fitur dengan hasil akhir Depresi

6.3.2 Deployment Online (Streamlit)

Untuk deploy model di cloud kita menggunakan service dari Streamlit. Berikut langkah – langkah pengerjaannya

Saya pisahkan untuk deploy lokal dan deploy online

Gambar 5. 12 Struktur Deployment

Kemudian pada folder deployment online kita isikan file save mdl dan scaler yang sama pada deployment lokal. Kemudian kita isikan file streamlit_app.py untuk deploy model kita didalam service Streamlit. Setelah itu kita buat file requirements.txt yang berisikan

Gambar 5. 13 File Requirements

Library pada requirements.txt ini akan diinstal pada service Streamlit sebelum menjalankan model. Kemudian file streamlit_app.py kita modifikasi agar berjalan di service Streamlit

Gambar 5. 14 Code Streamlit Deploy Online

Kita coba lihat hasil deploy online dengan url:

https://project-data-mining-5kg7oy5w2dkrtdsxagkfv6.streamlit.app/

Gambar 5. 15 Review Deploy Model Online

Saya sudah coba dan memberikan hasil prediksi seperti dibawah :

Gambar 5. 16 Hasil Prediksi Model Online

Proses deploy model berhasil dilakukan secara online dengan memanfaatkan Streamlit