

AVALIAÇÃO NUTRICIONAL DO FENO E DA SILAGEM DE JUCÁ, PRODUZIDOS EM DUAS ÉPOCAS DO ANO.

Maria Eliene da Silva Campelo¹, Silas Primola Gomes², José Wilson Nascimento de Souza³, António Fernando de Barros Pereira Pinto⁴, Elzânia Sales Pereira⁵

Resumo: Objetivou-se com o presente estudo, avaliar a composição bromatológica do feno e da silagem, nas estações seca e chuvosa, da planta jucá (Caesalpinia férrea MART.). Os materiais foram coletados das mesmas plantas, de mesmo porte e idade, no período seco (julho a dezembro de 2015) e no período chuvoso (janeiro a maio de 2016). O experimento foi montado em delineamento inteiramente casualizado, com quatro tratamentos e quatro repetições, em esquema fatorial 2 x 2: T1) Feno produzido no período seco; T2) Silagem produzida no período seco; T3) Feno produzido no período chuvoso; T4) Silagem produzida no período chuvoso. Verificaram-se para o feno e a silagem altos teores de matéria seca (MS) tanto no período seco quanto no chuvoso, sendo que o feno apresentaram os maiores valores. Com relação ao teor de material mineral (MM, % MS), do feno e da silagem respectivamente, os valores encontrados foram de 4,78 e 5,27 para período seco e de 4,62 e 4,51 para período chuvoso. Os teores de proteína bruta (PB, %MS) do feno e da silagem foram respectivamente, de 10,27 e 11,59 no período seco, já no período chuvoso verificou-se 14,52 e 13,17. Foram observados valores de 56,0 e 58,40 (% da MS) para a fibra em detergente neutro (FDN) no período seco e de 55,30 e 54,30 (% da MS) no período chuvoso, para o feno e a silagem, respectivamente. No feno e na silagem de jucá, obtidos de material colhido no período da seca, verificaram-se menores teores de PB, sugerindo a necessidade de suplementação com concentrados protéicos nessa estação do ano. No período chuvoso o material coletado apresentou melhor qualidade nutricional. Portanto, no intuito de minimizar os custos com a suplementação no período da seca, recomenda-se armazenar a forragem na época chuvosa, para posterior fornecimento na estação de maior escassez.

Palavras-chave: caatinga, composição química, forrageiras, nutrição animal, semiárido.

⁵ Universidade Federal do Ceará, Departamento de Zootecnia, E-mail: elzania@hotmail.com

¹ Universidade da Integração Internacional da Lusofonia Afro-Brasileira, Instituto de Desenvolvimento Rural, e-mail: lncamplo7@gmail.com

² Universidade da Integração Internacional da Lusofonia Afro-Brasileira, Instituto de Desenvolvimento Rural, e-mail: silas.primola@unilab.edu.br

³ Universidade da Integração Internacional da Lusofonia Afro-Brasileira, Instituto de Desenvolvimento Rural, e-mail: wilson.jwns@hotmail.com

⁴ Universidade da Integração Internacional da Lusofonia Afro-Brasileira, Instituto de Desenvolvimento Rural, e-mail, nandobp92@hotmail.com

INTRODUÇÃO

A Caatinga representa o bioma predominante no semiárido brasileiro, onde está inserida grande variedade de espécies nativas, em sua maioria caducifólia de uso forrageiro, porém, essa utilização vem sendo exercida sem o devido conhecimento do potencial produtivo e quase nenhuma técnica de controle ambiental (DAMASCENO 2007).

Este bioma é caracterizado por receber índices pluviométricos irregulares, com períodos de estiagem prolongados e má distribuição de chuvas. Como consequência, a produtividade dos rebanhos manejados em regime de pastejo é comprometida principalmente pela limitação das fontes proteicas e energéticas disponíveis, o que exige suplementação alimentar, elevando consideravelmente os custos de produção (VIEIRA *et al.* 2005).

O pau-ferro ou jucá (*Caesalpinia férrea* MART.) pertence à família *Leguminosae-Caesalpinoidae* e são de fácil reconhecimento devido à presença de manchas claras no tronco, folíolos pequenos, flores amarelas e legumes duros (RIZZINI, 1995).

Apresenta alto valor forrageiro das folhas verdes ou fenadas, e das vagens, para todos os rebanhos. A importância forrageira aumenta pelo fato de o jucá ser uma das poucas plantas da Caatinga que mantém a folhagem verde durante a estação seca (MAIA, 2012).

Apesar de a Caatinga apresentar boa disponibilidade de fitomassa no período chuvoso, parte significativa desse material não é utilizada na alimentação dos animais. Assim, o objetivo desse trabalho foi determinar a composição bromatológica, através dos teores de matéria seca (MS), matéria mineral (MM), proteína bruta (PB) e fibra em detergente neutro (FDN) no feno e na silagem de jucá, produzido nas duas estações distintas do ano – seca e chuvosa. Portanto a geração de conhecimento científico a cerca do melhor período para sua produção e formas de utilização, e, simultaneamente a potencialização do uso deste recurso, tem como vantagem promover a preservação do recurso genético e da biodiversidade local.

METODOLOGIA

O experimento foi conduzido na fazenda experimental da UNILAB, localizada na comunidade de Piroás, município de Redenção-CE. As coletas das plantas ocorreram em outubro de 2015 e maio de 2016, períodos das estações seca e chuvosa na região do Maciço de Baturité, respectivamente. Os materiais para a produção das repetições de feno e silagem foram coletados de árvores de mesmo porte e idade da planta jucá (*Caesalpinia férrea* MART.).

O experimento foi montado com os tratamentos: T1) feno produzido no período seco; T2) silagem produzida no período seco, T3) feno produzido no período chuvoso; T4) silagem produzida no período chuvoso, tendo quatro repetições cada tratamento. O material coletado foi triturado em máquina forrageira, usando peneira de porosidade intermediária, sendo o material destinado à ensilagem imediatamente armazenada em silos experimentais confeccionados de cano de PVC hermeticamente fechados. Para a produção de feno, o jucá foi cortado na mesma peneira e seco à sombra em galpão e, após a secagem, armazenado em sacos plásticos.

Aproximadamente 60 dias após a montagem do experimento as amostras de feno foram retiradas diretamente do material armazenado e submetidas ao processamento para análise. As amostras de silagem foram coletadas e acondicionadas em sacos plásticos, identificadas e congeladas no intuito de preservar a qualidade do material. Em seguida as amostras foram submetidas às análises no Laboratório de Nutrição Animal do Departamento de Zootecnia da Universidade Federal do Ceará (UFC). As amostras de feno e silagem foram

submetidas à pré-secagem a 65 °C por 72 horas e moagem em moinho de faca tipo Willey em peneira de 1 mm para posterior realização das análises laboratoriais. Nas amostras preparadas foram determinados os teores de matéria seca (MS), matéria mineral (MM), proteína bruta (PB) e fibra em detergente neutro (FDN) de acordo com metodologias descritas por Silva e Queiroz (2002).

Os materiais utilizados foram: bandejas metálicas; estufa para secagem de ventilação forçada (Temperatura = 65 °C); estufa para secagem definitiva (Temperatura = 105 °C); estufa de esterilização (Temperatura = 105 °C); balança analítica com precisão mais ou menos 0,1 MG; moinho tipo Willey (peneira de um mm); mufla (Temperatura = 500 °C); placa digestora; determinador de nitrogênio do tipo Kjeldahl; saquinhos tipo Ankom; analisador de fibras tipo Ankom.

Para determinação dos teores de MS 1 g de amostra foi submetido à secagem definitiva em estufa de 105°C. Para determinação da MM cerca de 2 g de amostra foram incineradas em mufla a 500 °C e o teor determinado pela seguinte fórmula: % Cinza= (Peso cadinho + cinza) - (peso cadinho) / (peso cadinho +amostra úmida)- (peso cadinho) * 100.

O teor de nitrogênio total das amostras foi determinado pelo método de Kjeldahl, sendo para tal pesado 300 mg de amostra que foi submetida à digestão com ácido sulfúrico concentrado e posteriormente realizada a destilação no aparelho de Kjeldahl. Então os teores de nitrogênio total e de PB foram calculados da seguinte maneira: % de nitrogênio = volume de H₂SO₄ * fator do ácido * 0,01N *14* 100/ Peso da amostra(g) * 100. E % de proteína = % de nitrogênio * 6.25.

Em seguida foram determinados os teores de FDN pelo método de Ankom, em que 1 g de amostra foi acondicionada em saquinhos tipo Ankom e posteriormente submetida à digestão em solução de detergente neutro. Os teores de FDN foram calculados conforme abaixo: % FDN = [(peso do resíduo+ saquinho) - peso do saquinho] / [(peso da amostra in natura + saquinho) – peso do saquinho] *100.

RESULTADOS E DISCUSSÃO

Os valores da composição bromatológica do feno e da silagem de jucá, obtidos nos períodos seco e chuvoso podem ser visualizados nas tabelas 1 e 2, respectivamente

Tabela 1: Teores de Matéria Seca (MS), matéria mineral (MM), proteína bruta (PB) e fibra em detergente neutro (FDN) (% da MS), para o feno nas estações seca e chuvosa.

FENO						
Período	MS	MM	PB	FDN		
Seco	90,47	4,78	10,27b	58,56		
Chuvoso	82,90	4,62	14,52a	55,30		

Medias seguida de letras distintas, minúscula na coluna representam diferença pelo teste de Fisher (p<0,05).

Tabela 2: Teores de Matéria Seca (MS), matéria mineral (MM), proteína bruta (PB) e fibra em detergente neutro (FDN) (% da MS), para a silagem nas estações seca e chuvosa.

SILAGEM						
Período	MS	MM	PB	FDN		
Seco	59,05	5,27	11,59b	58,40		
Chuvoso	53,84	4,51	13,17a	54,30		

Medias seguida de letras distintas, minúscula na coluna representam diferença pelo teste de Fisher (p<0,05).

Verificou-se altos teores de matéria seca (MS) no feno e silagem de jucá, para os período seco e chuvoso, bem acima dos 46 % de MS preconizados por Silva et al (2015).

Com relação ao teor de MM do feno e da silagem, verificaram-se os valores de 4,78 e 5,27 (% da MS), para período seco e de 4,62 e 4,51 (MS%) para o chuvoso, respectivamente.

Os teores de PB verificados foram de 10,27 e 11,59 (% da MS), para período seco, já no período chuvoso verificou-se 14,52 e 13,17 para o feno e a silagem, respectivamente, indicando uma redução deste nutriente no período da seca, independente da forma de armazenagem. De acordo com Van Soest (1994), o baixo teor de PB das forragens é um dos principais fatores limitantes para uma adequada fermentação no rumem dos alimentos, sendo que os ruminantes necessitam de um teor mínimo de 7% de PB na dieta.

Foram verificados os valores de 58,56 e 58,40 para FDN (% da MS) no período seco e de 55,30 e 54,30 no período chuvoso, para o feno e silagem, respectivamente. Normalmente, com o avançar do ciclo vegetativo, as plantas tendem a aumentar o teor de FDN (Van Soest, 1994), fato este não verificado no presente estudo.

CONCLUSÕES

O feno e a silagem de jucá produzido no período chuvoso apresentaram melhor qualidade nutricional em relação aos produzidos no período seco, levando-se em consideração o teor de PB. Assim, recomenda-se ao produtor a realização da armazenagem do jucá, seja na forma de feno ou de silagem, para um melhor aproveitamento do potencial forrageiro desta planta.

AGRADECIMENTOS

À Universidade da Integração Internacional da Lusofonia Afro-Brasileira (UNILAB), pelo uso das instalações da Fazenda Piroás. À Universidade Federal do Ceará (UFC), por permitir o uso do Laboratório de Nutrição Animal do Departamento de Zootecnia, em especial à Profa. Elzânia Sales Pereira. À Pró-reitora de Pesquisa e Pós-Graduação da UNILAB e ao orientador prof. Silas Primola Gomes.

REFERÊNCIAS

DAMASCENO, Mário Medeiros. Composição bromatológica de forragem de espécies arbóreas da Caatinga paraibana em diferentes altitudes. Patos, PB: UFCG, 2007. 60 p. (Dissertação – Mestrado em Zootecnia – Sistemas Agrosilvipastoris no Semi-Árido).

MAIA, G. N. Caatinga: árvores e arbustos e suas utilidades. 2. ed. Fortaleza: Printcolor Gráfica e Editora, 2012. 413p.

MOREIRA, José Nilton *et al.* Caracterização da vegetação de Caatinga e da dieta de novilhos no Sertão de Pernambuco. **Pesquisa Agropecuária Brasileira**, v. 41, n. 11, p. 1643-1651, 2006.

RIZZINI, C. T. **Botânica econômica brasileira**. 2.ed. Rio de Janeiro: Âmbito Cultural, 1995. 248p.

SILVA, D. J.; QUEIROZ, A. C. Análise de Alimentos (métodos químicos e biológicos). 3.ed., Viçosa: Imprensa Universitária da UFV, 235 p. 2002

VAN SOEST, P.J. **Nutritional ecology of the ruminant**. 2.ed. Ithaca: Cornell University Press, 1994, 476p.

VIEIRA, Ednéia de Lucena et al. Composição química de forrageiras e seletividade de bovinos em bosque-de-sabiá (*Mimosa caesalpiniifolia* Benth.) nos períodos chuvoso e seco. **Revista Brasileira de Zootecnia**, v. 34, n. 5, p. 1505-1511, 2005.

