

1

Equação de Onda de Schrodinger

Em 1926, Schrodinger escreveu uma equação que descrevia simultaneamente a natureza ondulatória e corpuscular do eletrão.

 Ψ = fn(n, I, m_l , m_s)

A função de onda Ψ (psi) é denominada orbital ou orbital atómica

A função de onda Ψ (psi) é caracterizada por três números quânticos (são a solução matemática da equação de Schrodinger para o átomo de hidrogénio)

Ψ ² define a distribuição da densidade eletrónica

(dá a probabilidade de localizar o eletrão no espaço)

7.5

2

Equação de Onda de Schrodinger

 $\Psi = \text{fn}(\mathbf{n}, I, m_l, m_s)$

n = número quântico principal

n = 1, 2, 3, 4,

distância de e⁻ a partir do núcleo

Define o nível de energia

7.6

Equação de Onda de Schrodinger

 Ψ = fn(n, I, m_l , m_s)

/ número quântico de momento angular ou azimutal

Relacionado com a forma da orbital

para um dado valor de $n \implies l = 0, 1, 2, 3, ..., n - 1$

n=1

Relação entre / e a orbital

 $a = 2 \implies I = 0, 1$

I = 0 orbital s I = 1 orbital p

 $n = 3 \implies l = 0, 1, 2$

l = 2 orbital dl = 3 orbital f

7.6

5

Equação de Onda de Schrodinger

 $\Psi = fn(n, l, m_l, m_s)$

*m*_s número quântico de spin

Spins de um e⁻ a rodar no sentido dos ponteiros do relógio e c/ sentido contrário. As setas para cima e para baixo são usadas para representar os dois sentidos do spin

Equação de Onda de Schrodinger

 $\Psi = fn(n, l, m_l, m_s)$

m_I número quântico magnético

orientação da orbital no espaço

para um dado valor de $l \longrightarrow m_l = -l, ..., 0, ... + l$

Se l = 0 (orbital s), $m_l = 0$

se l = 1 (orbital p), $m_l = -1, 0, 1$

se l = 2 (orbital d), $m_l = -2, -1, 0, 1, 2$

7.6

6

Números quânticos e orbitais atómicas

Relação entre nºs quânticos e orbitais atómicas

n	I	mI	Nº orbita	is Nome da orbital
1	0	0	1	1s
2	0	0	1	2s
	1	-1, 0, 1	3	$2p_x,2p_y,2p_z$
3	0	0	1	3s
	1	-1, 0, 1	3	$3p_x$, $3p_y$, $3p_z$
	2	-2, -1, 0, 1, 2	5 3	$3d_{xy}, 3d_{yz}, 3d_{xy}, 3d_{x^2-y^2}, 3d_{xy}$

7

Camada — eletrões com o mesmo valor de n

Subcamada — eletrões com os mesmos valores de n e l

Orbital — eletrões com os mesmos valores de n, l e m_l

9

11

Qual é a forma das orbitais? Orbitais s I = 0 - As orbitais s tem todas a forma esférica - O tamanho da orbital aumenta com o nº quântico principal Diagramas de superfície de fronteira de orbitais s 1s 2s Superfície nodal

Qual é a forma das orbitais?

Orbitais s

- A função de onda estende-se do núcleo até ao infinito.
- O e- pode encontrar-se em qualquer lugar do espaço

Densidade eletrónica de 1s

- A probabilidade de encontrar o e- perto do núcleo é maior.
- Há cerca de 90% de probabilidade de se encontrar o e- numa esfera de raio 100pm

Diagrama de superfície de fronteira de 1s

10

Diagramas de superfície de fronteira de orbitais 2p

12

 $m_l = -1$

 $m_l = 1$

13

Caracterização de um eletrão num átomo

- Um eletrão é caracterizado por uma única função de onda Ψ
- Cada função de onda tem uma solução única (um conjunto único de números quânticos)

Princípio de exclusão de Pauli — nenhum par de electrões num átomo pode ter os quatro números quânticos iguais.

Quantos electrões se podem alojar numa orbital?

Se *n*, *l* e m_l são fixos, então $m_s = \frac{1}{2}$ ou $-\frac{1}{2}$

 $(n, I, m_I, -\frac{1}{2})$ $(n, I, m_1, \frac{1}{2})$

Uma orbital pode alojar 2 eletrões

7.6

Ex.: Escrever os valores de n, l e m_l para as orbitais 4d?

Ex: Qual o nº total de orbitais associadas ao nº quântico principal n=3?

14

7.7

Energia das orbitais num átomo com um único electrão

- A energia apenas depende do número quântico principal n
- Quanto maior n maior a energia
- Orbitais no mesmo nível possuem a mesma energia
- orbitais degeneradas possuem igual energia

 Níveis energéticos das orbitais num átomo de hidrogénio.
 Cada linha horizontal representa

7.7

17

18

Regras para preenchimento de orbitais

- 1 Os eletrões começam a distribuir-se pelas orbitais de menor energia
- 2 Cada orbital comporta apenas 2 eletrões
- 3 Quando as orbitais de menor energia estiverem completas passa-se para a orbital de energia imediatamente seguinte
- 4 Em orbitais de igual energia começa-se por distribuir um eletrão em cada orbital com spins paralelos. Em seguida começa-se a emparelhar os e-.

21

Exercicio 2

₁₁ Na

12Mg

13 AI

14 Si

15 P

16^S

17 CI

18 Ar

25

3- Considere a configuração eletrónica de um átomo:

.....4
$$s^2$$
 3 d^{10} 4 p_x^1 4 p_y^1

O conjunto de números quânticos que representa os dois eletrões de maior energia é:

- a) (4, 1, 1, +1/2) e (4, 1, 0, +1/2)
- b) (4, 1, 1, -1/2) e (4, 1, 1, -1/2)
- c) (4, 1, 1, +1/2) e (4, 1, -1, -1/2)
- d) (3, 1, 1, +1/2) e (3, 1, 1, +1/2)

Exercícios extra

- 1- Que orbital, em cada um dos seguintes pares, tem menor energia num átomo polieletrónico?
- a) 2s, 2p
- b) 3p, 3d
- c) 3d, 4s
- d) 4d, 5s
- 2- Que orbital, em cada um dos seguintes pares, tem menor energia num átomo monoeletrónico?
- a) 2s, 2p
- b) 3p, 3d
- c) 3d, 4s
- d) 4d, 5s