MD Simulations

Toni Giorgino

National Research Council of Italy

toni.giorgino@cnr.it

www.giorginolab.it

Thesis projects available

University of Padova for Prof. Fuxreiter May 2024

This class

- Molecular dynamics is a powerful tool for studying molecular systems
- OpenMM is a software library that allows for efficient and customizable MD simulations
- It's exemplary of a modern well-maintained opensource library:
 - Cl infrastructure, developed on GitHub
 - C++ w/ Python bindings
- We'll use the latter, testing live on Google Colab.

Molecular Dynamics

What is MD?

- Attempt the most detailed description of a system which is
 - I. atomistic
 - 2. classical
- Model the internal forces...
- ...in order to integrate the motion
- Hope in convergent sampling

$$\vec{F}_i(\mathbf{x}) = m_i \ddot{\mathbf{x}}_i$$

Assumptions

- In this tutorial we shall deal with **unbiased** sampling approaches with **explicit** solvent, i.e.
 - no added forces except the "physical" ones in your system;
 - all of the system (including water molecules) have atomic resolution.
- Also, current classical MD does not address, by design, the following:
 - Chemical reactions, e.g. catalysis, phosphorylation, ubiquitination etc.
 - Protonation changes
- Finally, small molecules pose distinct challenges and need a separate, expensive parameterization step.

Alanine "dipeptide"

The forcefield is a database of interatomic parameters

7 nm

- \rightarrow O(10⁵) atoms
- Unbiased dynamics
- Update every 10⁻¹⁵ s (1 fs)

Event ≡ Binding / Unbinding / Folding / Unfolding / ...

* I/t_{on} = association rate of SH2-pYEEI × [pYEEI]

Large gain

Ability to "play" biomolecular processes at all-atom resolution in silico

Molecular bases of folding, binding, selectivity, gating...

Large cost

E.g.*:
$$t_{\rm on} \sim 30 \ \mu s \rightarrow$$

- \rightarrow **10**¹⁰ integration timesteps \rightarrow
- → 15 years single-CPU compute time

MD is entirely about timescales

- Your ability to obtain quantitative results is severely limited by the sampling ability you have. You will only be able to reach phenomena occurring on the sampled timescales, or shorter.
 - Sidechain rearrangements, diffusion-limited processes: usually possible *
 - Local flexibility: usually possible *
 - Membrane environments: ok-ish
 - Binding: hard but not impossible
 - Folding: very hard but not impossible
 - [*] Unless there are significant barriers.

Patience and limits

- The following factors affect the running speed (usually expressed in ns per simulation day, ns/day)
 - System size. Reasonable is 100 AA ~ 30,000 atoms.
 - Computer speed. Forget laptops.
 - Definitely use GPUs.
 - Software.

General workflow

- Know your system
- Build
 - Cleanup
 - Assign forcefield
 - Solvate
 - lonize
- Minimize
- Equilibrate
- Run

Forcefields

They run in "families"

- They are "databases" of atomic parameters
- We deal with non-polarizable all-atom ones:
 AMBER and CHARMM
 - There are many others, these are s.o. art
- Most notable difference:
 molecular types supported (lipids, drugs, ...)
- They differ in (software) build procedures
- However OpenMM unifies them

The CHARMM family

- Originally coupled with the CHARMM software (MacKerell, Karplus), but independent
- Variants of note: C36M
 - toppar_c36_jul22.tgz
- Based on RTF (templates) and PRM (parameters) files
- Build: psfgen -> xxx.psf
 - https://www.academiccharmm.org/
 - https://mackerell.umaryland.edu/charmm ff.shtml

The AMBER family

- Originally coupled with the Amber software (Case, Merz, Kollmann, ...), but independent
- Variants of note: ff19SB
 - https://ambermd.org/AmberTools.php
- Based on tleap + its database
- Build: tleap --> xxx.prmtop

FF choice

Largely equivalent, i.e. subtle differences only appear at late stages. FF choice is mostly due to the species in the system that one intends to model.

	CHARMM	AMBER
Proteins, peptides	++	++
Water, ions	++	++
Lipids (membranes)	++	+
Small molecules	+ (CGenFF)	++ (GAFF2)
Post-translational modif. *	+/-	+/-
Non-standard charge states	+/-	+/-
DNA	-	-
RNA		
Non-standard AAs *		

An example for Amber

Molecule/Ion Type

protein ff19SB

DNA OL21

RNA OL3

carbohydrates GLYCAM_06j

lipids lipids21

organic molecules (usually ligands) gaff2

ions •should be matched to water model; see

force fields for ions for further

discussion

Force Field

water model •should be matched to atomic ions;

common water models include tip3p,

spc/e, tip4pew, and OPC

System building

The build procedure

- It used to be somewhat convolved
- Generally
 - take PDB coordinates
 - filter out unwanted species
 - solvate
 - ionize
- Automation was (it still is) challenging
- OpenMM unified the build process (but it is still possible to use the old tools)

OpenMM

.org

- OpenMM is a molecular dynamics simulation toolkit that allows for high-performance simulations of biomolecules.
- Allows for simulation of a variety of molecular systems, including proteins, nucleic acids, and small molecules
- OpenMM supports a wide range of force fields and integrators and can run on CPUs and GPUs.
- Open source, written in C++ with Python and other language bindings available

Basic Workflow (object-oriented)

- I. Download, complete and edit the structure:
 - Topology (i.e. the identity of atoms, bonds, etc)
 - Positions (i.e. the starting coordinates)
- 2. Create the **system** object.
- 3. Create the **integrator** object.

- 4. Create and add custom **forces** to system if needed.
- 5. Define the **simulation** object.
- 6. Set the initial positions and velocities.
- 7. Minimize.
- 8. Run the simulation.
- 9. (Analyze the results.)

Integrators

- ...are algorithms that solve the equations of motion for a system
- OpenMM includes several integrators, e.g. Langevin dynamics, Verlet integrator, and Monte Carlo barostat
- Different integrators are appropriate for different types of simulations and conditions (e.g.: NPT vs NVT)

Simulating a system

- Once a system has been defined and the force field and integrator selected, it can be simulated
- The simulation (run) involves running a series of steps, where each step involves calculating the forces on each atom, integrating the equations of motion, and updating the system's coordinates
- After the simulation, data analysis can be performed to obtain information about the system's behavior and properties

Let's pick a test system

6HIF: Gelsolin G2+nanobody

Giorgino T, Mattioni D, Hassan A, Milani M, Mastrangelo E, Barbiroli A, et al. Nanobody interaction unveils structure, dynamics and proteotoxicity of the Finnish-type amyloidogenic gelsolin variant. Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease. 2019 Mar 1;1865(3):648–60.

Journal link. Preprint.

BBA - Molecular Basis of Disease 1865 (2019) 648-660

Contents lists available at ScienceDirect

BBA - Molecular Basis of Disease

Nanobody interaction unveils structure, dynamics and proteotoxicity of the Finnish-type amyloidogenic gelsolin variant

Toni Giorgino^{a,b}, Davide Mattioni^{a,c,1}, Amal Hassan^{b,1}, Mario Milani^{a,b}, Eloise Mastrangelo^{a,b}, Alberto Barbiroli^d, Adriaan Verhelle^e, Jan Gettemans^f, Maria Monica Barzago^c, Luisa Diomede^c, Matteo de Rosa^{a,b,*}

^a Istituto di Biofisica, Consiglio Nazionale delle Ricerche, Milano, Italy

^b Dipartimento di Bioscienze, Università degli Studi di Milano, Milano, Italy

^c Department of Molecular Biochemistry and Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milan, Italy

^d Dipartimento di Scienze per gli Alimenti, la Nutrizione e l'Ambiente, Università degli Studi di Milano, Milano, Italy

e Department of Molecular Medicine, Department of Molecular and Cellular Neuroscience, Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA 92037, USA

^f Nanobody Lab, Department of Biochemistry, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium

Three puzzles!

WT:Nb11 complex compared to D187N:Nb11.

- I. WT and D187N
 are virtually
 identical*: same
 structure,
 different function
- 2. Nb11 binds far from the furin cleavage site...
- 3. ...and far from the Ca²⁺ ion

* Except Ca²⁺ binding

GSN ± NbII MD simulations

- Unbiased sampling @300 °K
- 100 mM NaCl
- Harmonic restraints:
 SS Nb1 @ 0.03 kcal/mol/Ų

CHARMM36

 \sim 3 µs tot. \sim 25k/43k atoms

MD results

Sample	Nb11	Ca ²⁺	Simulated time (ns)	C-terminal disorder onset
WT_{G2}	_	+	800	Not observed
WT_{G2}	+	+	750	Not observed
$\mathrm{D}187\mathrm{N}_{\mathrm{G}2}$	_	_	748	After 83 ns
$\mathrm{D}187\mathrm{N}_{\mathrm{G}2}$	+	_	512	After 40 ns

A matter of dynamics?

Residue

$$B = (8\pi^2/3) \,\mathrm{RMSF}^2$$

— –Nanobody

+Nanobody

MD vs exp. B-factors \rightarrow

In practice

Using OpenMM on Google Colab

- We'll test OpenMM on Google Colab to run molecular dynamics simulations without the need for installing any software on your local machine.
- Google Colab is a free Jupyter environment that allows you to run Python code in the cloud. GPUs runtimes are available.
- To use OpenMM on Google Colab or locally, open the provided notebook (read the comments)

https://github.com/giorginolab/MD-Tutorial-Data

...when done...

Visualize

- After you have done the simulation, load the minimized PDB and output.dcd in PyMOL
- What about PBCs? Fix with: pbc_unwrap ...

Questions

- How many atoms?
- How many residues?
- Disulfide bridges?
- How many trajectory frames?
- Simulation length in actual time?

More questions

- Does density change? Should it?
- What is the box size? Is it appropriate?
- Relaxation time?
- Plot the log file

Conclusion

Conclusion

- OpenMM is a powerful tool for molecular dynamics simulations
- Good, if fragmented, documentation
- With its customizable force fields and integrators, it can be used to study a wide range of atomistic systems, e.g.
 - "toy" polymers
 - all-atom MD with major FFs
 - ANN potentials

Resources for learning OpenMM

- OpenMM.org website and documentation
- GitHub repository with examples and tutorials
- Community forums and mailing lists for support and discussion

- See also
 - OpenMMtools
 - https://openforcefield.org/
 - HTMD, ACEMD
 - https://github.com/openmm/pdbfixer
 - Charmm-GUI

RESEARCH ARTICLE

OpenMM 7: Rapid development of high performance algorithms for molecular dynamics

Peter Eastman¹*, Jason Swails², John D. Chodera³, Robert T. McGibbon¹, Yutong Zhao¹, Kyle A. Beauchamp³, Lee-Ping Wang⁴, Andrew C. Simmonett⁵, Matthew P. Harrigan¹, Chaya D. Stern^{3,6}, Rafal P. Wiewiora^{3,6}, Bernard R. Brooks⁵, Vijay S. Pande^{1,7}

- 1 Department of Chemistry, Stanford University, Stanford, California, United States of America,
- 2 Department of Chemistry and Chemical Biology and BioMaPS Institute, Rutgers University, Piscataway,

End