Objective

The aim of this assignment is to develop advanced skills in critically assessing, improving, and applying explainable AI methods. Students may choose **one of two tasks**, reflecting different research-oriented approaches:

- 1. Identifying and addressing limitations of an XAI method
- 2. Replicating and critically analysing an XAI research paper

Task 1: Fix a Limitation of an XAI Method

You will identify, demonstrate, and propose improvements for a limitation of a chosen XAI method.

Steps:

- 1. Choose a specific XAI method (e.g., LIME, SHAP, Integrated Gradients, Anchors, Counterfactual Explanations, etc.).
- 2. Identify a limitation of the chosen method (e.g., instability, lack of faithfulness, computational cost, lack of causality, poor handling of time series/structured data).
- 3. Select a dataset of your choice and demonstrate the limitation through experiments (this can be both qualitative or quantitative depending on the limitation you identify).
- 4. Propose a solution:
 - If feasible, implement and evaluate your proposed fix.
 - If implementation is too complex, provide a conceptual solution supported by convincing arguments and references, showing feasibility.
- 5. Critically assess whether your solution improves the utility of the XAI method identified and outline open challenges.

Deliverables:

- Report (max. 10 pages, excluding references and appendix) containing:
 - o Introduction of the method and limitation
 - Experimental demonstration
 - Proposed solution (conceptual/implemented)
 - Evaluation and critical reflection
- Implementation package, including:
 - Source code (well-documented, reproducible)
 - Dataset(s) used (or clear instructions to access them if restricted)
 - Scripts/notebooks for running experiments

Task 2: Replication of an XAI Paper

You will replicate and critically analyze a research paper in XAI.

Steps:

- Identify a paper in the XAI field that you would like to replicate. The paper must be approved by the lecturers (Branka Hadji Mishvea, Lucia Gomez and Faizan Ahmed) before proceeding.
- 2. Implement the methods and reproduce results (figures, tables, metrics). Partial replication is acceptable if constraints exist (e.g., dataset access, computation).
- 3. Compare your findings to the original results. Discuss reproducibility challenges, limitations of the approach, and robustness of the method.
- 4. Extend the paper's either by:
 - Conceptual extension: Provide a well-argued discussion of how the methodology could be extended or improved (e.g., addressing a limitation, adapting to a new type of data, or incorporating additional techniques).
 - Practical extension (if feasible): Implement and test the approach on a new dataset, in a different domain, or with a variant of the original algorithm.
 Provide results and compare them to the original findings.

Deliverables:

- Report (max. 10 pages, excluding references and appendix) containing:
 - Summary of the original paper (problem, method, contributions)
 - o Replication methodology and results
 - o Comparative analysis (original vs. replication)
 - o Critical reflection on reproducibility and robustness
- Implementation package, including:
 - Source code (well-documented, reproducible)
 - Dataset(s) used (or instructions to access them if not openly available)
 - o Scripts/notebooks to reproduce results and extensions

General Requirements

- **Programming & Tools**: Use Python (preferred). Other languages allowed.
- Reproducibility: Submit code and documentation (using our Git & Quantlet).
- **Academic Integrity**: Proper referencing, originality, and adherence to scientific standards are mandatory.

Qualitative Performance Descriptors

Pass / Fail Decision

Fail: The submission does not meet the minimum standards in one or more of the core criteria (relevance, technical work, critical thinking, or presentation). Typical fail reasons: lack of reproducibility, missing deliverables, plagiarism, superficial treatment of the task, or failure to demonstrate understanding of XAI.

Pass: The submission meets the minimum requirements across all criteria and demonstrates an acceptable level of relevance, technical correctness, reflection, and presentation.

1. Relevance & Rigor (formerly 30%)

Fail: Inappropriate or unclear choice of method/paper; research question not meaningful or aligned with XAI.

Pass – Poor: Method/paper is acceptable but only superficially justified; limited understanding of its scope.

Pass – Good: Clear and appropriate choice; demonstrates sound understanding of context and relevance; research question well framed.

Pass – Excellent: Choice is highly relevant, original, and insightful; clear articulation of research gap; shows comprehensive knowledge of XAI landscape.

2. Technical Work (formerly 30%)

Fail: Experiments, code, or replication attempt missing, non-functional, or plagiarized; results cannot be reproduced.

Pass – Poor: Code is minimally functional but incomplete; experiments shallow or error-prone; partial reproducibility.

Pass – Good: Solid implementation with working experiments; results largely reproducible; technical competence clearly demonstrated.

Pass – Excellent: High-quality, well-documented, reproducible implementation; creative or challenging extensions; demonstrates mastery of tools and methods.

3. Critical Thinking (formerly 25%)

Fail: No meaningful reflection; limitations ignored; purely descriptive without analysis.

Pass – Poor: Some reflection present but shallow; limitations mentioned but not explored; limited originality.

Pass – Good: Clear identification of limitations; balanced and well-argued critical reflection; shows understanding of trade-offs and challenges.

Pass – Excellent: Insightful and original critique; strong connection between evidence and argument; proposes thoughtful and feasible improvements/extensions.

4. Presentation & Reproducibility (formerly 15%)

Fail: Report is missing, incoherent, plagiarized, or lacks required deliverables (code, data, documentation).

Pass – Poor: Report delivered but poorly structured; language and formatting hinder clarity; limited reproducibility.

Pass – Good: Report is clear, well-structured, and academically sound; reproducibility ensured with code and data; presentation coherent.

Pass – Excellent: Report is professional, concise, and engaging; excellent writing style; reproducibility fully ensured; presentation highly effective.

Deadlines

Due dates	Assignment	Content
09-10-2025	Project topic hand-out	Choose a project and inform
		lecturers
02-02-2026	Hand-in of report & supporting materials	
12-02-2026	Presentation of work	20-minute presentation +10 minutes Q&A

The lecturer team is available for intermediate coaching or alignment sessions. These can be scheduled individually directly via email.