RandLib documentation

Aleksandr Samarin

November 7, 2020

Contents

Ι	General information	4
1	Calculation of sample moments	4
II	Continuous univariate distributions	5
2	Beta distribution2.1 Arcsine distribution2.2 Balding-Nichols distribution2.3 Uniform distribution	5 8 8
3	Beta-prime distribution	11
4	Exponentially-modified Gaussian distribution	13
5	F-distribution	14
6	Gamma distribution 6.1 Chi-squared distribution	15 17 17 18
7	Geometric Stable distribution 7.1 Asymmetric Laplace distribution	19 19 19
8	Kolmogorov-Smirnov distribution	20
9	Logistic distribution	21

10	Log-normal distribution	22
11	Marchenko-Pastur distribution	2 3
12	Nakagami distribution12.1 Chi distribution12.2 Maxwell-Bolzmann distribution12.3 Rayleigh distribution	24 25 26 26
13	Noncentral Chi-Squared distribution	27
14	Pareto distribution	28
15	Planck distribution	31
16	Stable distribution16.1 Cauchy distribution	32 32 32 33 34 34
17	Student's t-distribution	35
18	Weibull distribution	36
II	I Discrete univariate distributions	38
19	Beta-binomial distribution	38
20	Binomial distribution 20.1 Bernoulli	39
2 1	Hypergeometric distribution	41
22	Logarithmic distribution	42
23	Negative-Binomial (Polya) distribution 23.1 Geometric distribution	43 43
24	Poisson distribution	44
25	Skellam distribution	46
26	Uniform discrete distribution	47

27 Yule distribution	48
28 Zeta distribution	49
29 Zipf distribution	50
IV Bivariate distributions	51
30 Bivariate Normal distribution	51
31 Normal-Inverse-Gamma distribution	51
32 Trinomial distribution	51
V Circular distributions	52
33 von Mises distribution	52
34 Wrapped Exponential distribution	52
VI Singular distributions	53
35 Cantor distribution	53

Part I

General information

1 Calculation of sample moments

We use extension of Welford's method from Knuth. For every n-th element x we have

$$\delta = x - m_1,$$

$$m'_1 = m_1 + \frac{\delta}{n},$$

$$m'_2 = m_2 + \delta^2 \frac{n-1}{n},$$

$$m'_3 = m_3 + \delta^3 \frac{(n-1)(n-2)}{n^2} - 3\delta \frac{m_2}{n},$$

$$m'_4 = m_4 + \delta^4 \frac{(n-1)(n^2 - 3n + 3)}{n^3} + 6\delta^2 \frac{m_2}{n^2} - 4\delta \frac{m_3}{n}.$$

Then m_1' , $\frac{m_2}{n}$, Skew $(X) = \frac{\sqrt{n}m_3'}{m_2'^{3/2}}$ and $\operatorname{Kurt}(X) = \frac{nm_4'}{m_2'^2}$ (we return excess kurtosis).

Part II

Continuous univariate distributions

2 Beta distribution

Search of the median. In general, the value of median is unkwnown and searched numerically with initial value:

$$m \approx a + (b - a) \frac{\alpha - \frac{1}{3}}{\alpha + \beta - \frac{2}{3}}$$

for $\alpha, \beta \geq 1$. However, there are analytical solutions for some particular values:

- $m = \frac{a+b}{2}$, for $\alpha = \beta$,
- $m = a + (b a)(1 2^{-\frac{1}{\beta}})$, for $\alpha = 1$,
- $m = a + (b a)2^{-\frac{1}{\alpha}}$, for $\beta = 1$.

Calculation of characteristic function. For $\alpha, \beta \geq 1$ we use numerical integration by definition

$$\phi(t) = \int_{a}^{b} \cos(tx) f(x) dx + i \int_{a}^{b} \sin(tx) f(x) dx.$$

For shape parameters < 1, f(x) has singularity points at 0 or 1 or both of them, and numerical integration is impossible. Then we use the following technique: firstly, we can show that

$$\phi(t|a,b) = \mathbb{E}[e^{it(a+(b-a)X)}] = e^{ita}\phi(z|0,1)$$

with z = (b - a)t. Hence, w.l.o.g. we can consider standard case a = 0, b = 1. Then

$$\begin{split} \Re(\phi(z)) &= \frac{1}{B(\alpha,\beta)} \int_0^1 \cos(zx) x^{\alpha-1} (1-x)^{\beta-1} dx \\ &= \frac{1}{B(\alpha,\beta)} \int_0^1 (\cos(zx)-1) x^{\alpha-1} (1-x)^{\beta-1} dx + 1 \\ &= \frac{1}{B(\alpha,\beta)} \int_0^1 \frac{(\cos(zx)-1) x^{\alpha-1} - (\cos(z)-1)}{(1-x)^{1-\beta}} dx + 1 + \frac{\cos(z)-1}{bB(\alpha,\beta)}. \end{split}$$

The integrand now doesn't have any singularities, neither for $\alpha < 1$, nor for $\beta < 1$. Analogously we transform the imaginary part:

$$\Im(\phi(z)) = \frac{1}{B(\alpha, \beta)} \int_0^1 \sin(zx) x^{\alpha - 1} (1 - x)^{\beta - 1} dx$$
$$= \frac{1}{B(\alpha, \beta)} \int_0^1 \frac{\sin(zx) x^{\alpha - 1} - \sin(z)}{(1 - x)^{1 - \beta}} dx + \frac{\sin(z)}{bB(\alpha, \beta)}.$$

Estimation of shapes with known support. Assume that a = 0, b = 1 and we have a sample $X = (X_1, \ldots, X_n)$. Then a log-likelihood function is

$$\ln \mathcal{L}(\alpha, \beta | X) = \sum_{i=1}^{n} \ln f(X_i; \alpha, \beta)$$

$$= (\alpha - 1) \sum_{i=1}^{n} \ln X_i + (\beta - 1) \sum_{i=1}^{n} \ln(1 - X_i) - n \ln B(\alpha, \beta).$$
(1)

Differentiating with respect to the shapes, we obtain

$$\frac{\partial \ln \mathcal{L}(\alpha, \beta | X)}{\partial \alpha} = \sum_{i=1}^{n} \ln X_i + n(\psi(\alpha + \beta) - \psi(\alpha)),$$

$$\frac{\partial \ln \mathcal{L}(\alpha, \beta | X)}{\partial \beta} = \sum_{i=1}^{n} \ln(1 - X_i) + n(\psi(\alpha + \beta) - \psi(\beta)).$$

Differentiating again we get the Hessian matrix:

$$H(\ln \mathcal{L}(\alpha, \beta | X)) = n \cdot \begin{pmatrix} \psi_1(\alpha + \beta) - \psi_1(\alpha) & \psi_1(\alpha + \beta) \\ \psi_1(\alpha + \beta) & \psi_1(\alpha + \beta) - \psi_1(\beta) \end{pmatrix}.$$

Then we can find the estimators numerically, using Newton's procedure. The initial values of estimators are found via method of moments:

$$\hat{\alpha}_0 = \overline{X}_n \left(\frac{\overline{X}_n (1 - \overline{X}_n)}{\hat{s}_n^2} - 1 \right),$$

$$\hat{\beta}_0 = (1 - \overline{X}_n) \left(\frac{\overline{X}_n (1 - \overline{X}_n)}{\hat{s}_n^2} - 1 \right).$$

These values are applicable only if $\hat{s}_n^2 < \overline{X}_n(1 - \overline{X}_n)$. If this condition is not satisfied, we set $\hat{\alpha}_0 = \hat{\beta}_0 = 0.001$.

In the general case, when $a \neq 0$ or $b \neq 1$, we use the following transformation:

$$Y_i = \frac{X_i - a}{b - a}$$

and estimate parameters, using sample Y.

Exponential family parameterization. Logarithm of probabilty density function:

$$\log f(x) = (\alpha - 1)\log y + (\beta - 1)\log(1 - y) - \log(b - a) - \log B(\alpha, \beta)$$

with $y = \frac{x-a}{b-a}$. Therefore beta distribution with fixed a and b belongs to two-parameterized exponential family with sufficient statistics $T(x) = (\log y, \log(1-y))^T$, natural parameters $\theta = (\alpha - 1, \beta - 1)$, log-normalizer $F(\theta) = \log(b-a) + \log B(\theta_1 + 1, \theta_2 + 1)$ and carrier measure k(x) = 0. Gradient of log-normalizer: $\nabla F(\theta) = (\psi(\theta_1 + 1) - \psi(\theta_1 + \theta_2 + 2), \psi(\theta_2 + 1) - \psi(\theta_1 + \theta_2 + 2))^T$. Adjusted cross-entropy is

$$\begin{split} H_F(\theta_p \| \theta_q) &= F(\theta_q) - \langle \theta_q, \nabla F(\theta_p) \rangle \\ &= \log(b-a) + \log B(\theta_{q_1} + 1, \theta_{p_2} + 1) \\ &- \theta_{q_1}(\psi(\theta_{p_1} + 1) - \psi(\theta_{p_1} + \theta_{p_2} + 2)) - \theta_{q_2}(\psi(\theta_{p_2} + 1) - \psi(\theta_{p_1} + \theta_{p_2} + 2)) \end{split}$$

Adjusted entropy is

$$H_F(\theta) = \log(b-a) + \log B(\alpha, \beta) - (\alpha - 1)\psi(\alpha) - (\beta - 1)\psi(\beta) + (\alpha + \beta - 2)\psi(\alpha + \beta).$$

And Kullback-Leibler divergence:

$$KL(p||q) = H_F(\theta_p||\theta_q) - H_F(\theta_p)$$

$$= \log \frac{B(\alpha_q, \beta_q)}{B(\alpha_p, \beta_p)} - (\alpha_q - \alpha_p)\psi(\alpha_p) - (\beta_q - \beta_p)\psi(\beta_p) + (\alpha_q - \alpha_p + \beta_q - \beta_p)\psi(\alpha_p + \beta_p).$$

2.1 Arcsine distribution

Notation:

$$X \sim \operatorname{Arcsine}(\alpha)$$
.

Relation to Beta distribution:

$$X \sim \mathcal{B}(1-\alpha, \alpha, a, b).$$

Estimation of shape. For Arcsine distribution log-likelihood function (1) turns into

$$\ln \mathcal{L}(\alpha|X) = -\alpha \sum_{i=1}^{n} \ln X_i + (\alpha - 1) \sum_{i=1}^{n} \ln(1 - X_i) - n \ln B(1 - \alpha, \alpha).$$

Taking the derivative with respect to α we get

$$\frac{\partial \ln \mathcal{L}(\alpha|X)}{\partial \alpha} = \sum_{i=1}^{n} \ln \frac{1 - X_i}{X_i} + n\pi \cot(\pi \alpha).$$

Therefore, maximum-likelihood estimation is $\hat{\alpha} = \hat{\alpha}_0 + H(-\hat{\alpha}_0)$, where $\hat{\alpha}_0 = -\frac{1}{\pi} \operatorname{atan} \left(\frac{n\pi}{\sum_{i=1}^n \ln \frac{1-X_i}{X_i}} \right)$ and $H(\cdot)$ is a Heaviside step function.

2.2 Balding-Nichols distribution

Notation:

$$X \sim \text{Balding-Nichols}(p, F)$$

with $p, F \in (0, 1)$. Relation to Beta distribution:

$$X \sim \mathcal{B}(pF', (1-p)F')$$

with
$$F' = (1 - F)/F$$
.

2.3 Uniform distribution

Relation to Beta distribution:

$$X \sim \mathcal{B}(1, 1, a, b).$$

Estimation of support.

Frequentist inference. Likelihood function is

$$\mathcal{L}(a, b|X) = \frac{1}{(b-a)^n} \mathbf{1}_{\{X_i \in [a, b] \ \forall i=1, \dots, n\}}.$$

Therefore, $\mathcal{L}(a,b|X)$ is the largest for $\hat{b}=X_{(n)}$ and $\hat{a}=X_{(1)}$. However, using the fact that $X_{(k)}\sim B(k,n+1-k,a,b)$, these are biased estimators:

$$\mathbb{E}[X_{(1)}] = \frac{an+b}{n+1} \quad \text{and} \quad \mathbb{E}[X_{(n)}] = \frac{a+bn}{n+1}.$$

To get unbiased estimators we make the transformations:

$$\tilde{a} = \frac{nX_{(1)} - X_{(n)}}{n-1}$$
 and $\tilde{b} = \frac{nX_{(n)} - X_{(1)}}{n-1}$.

Then we get

$$\mathbb{E}[\tilde{a}] = \frac{n\mathbb{E}[X_{(1)}] - \mathbb{E}[X_{(n)}]}{n-1} = \frac{n(an+b) - (a+bn)}{n^2 - 1} = a.$$

Analogously, $\mathbb{E}[\tilde{b}] = b$.

Bayesian inference. Let us say, we try to estimate $\theta = b - a$ with known a. We set the prior distribution $\theta \sim \operatorname{Pareto}(\alpha, \sigma)$:

$$h(\theta|\alpha,\sigma) = \frac{\alpha\sigma^{\alpha}}{\theta^{\alpha+1}} \mathbf{1}_{\{\theta \ge \sigma\}}.$$

The density of posterior distribution is

$$f(\theta|X) \propto \frac{\alpha \sigma^{\alpha}}{\theta^{\alpha+n+1}} \mathbf{1}_{\{\theta \geq \max(\sigma, X_{(n)} - a)\}} \sim \operatorname{Pareto}(\alpha + n, \max(\sigma, X_{(n)} - a)).$$

Hence, Bayesian estimator is

$$\mathbb{E}[\theta|X] = \frac{\alpha + n}{\alpha + n - 1} \max(\sigma, X_{(n)} - a)$$

and MAP estimator is

$$\theta_{MAP} = \max(\sigma, X_{(n)} - a).$$

3 Beta-prime distribution

Relation to other distributions:

$$\frac{X}{1+X} \sim \mathcal{B}(\alpha, \beta),$$

$$\frac{\beta}{\alpha}X \sim F(2\alpha, 2\beta).$$

Search of the median. For $\alpha = \beta$ we have m = 1. Otherwise, we use the relation $m = \frac{m'}{1-m'}$, where m' is the median of beta-distribution $\mathcal{B}(\alpha, \beta)$.

Calculation of characteristic function. For $\alpha \geq 1$ one can use numerical integration from section For $\alpha < 1$ we have $\lim_{x\to 0} f(x) \to \infty$ and $\int_0^\infty \cos(tx) f(x) dx$ is impossible to compute directly. Then we split the integral:

$$\int_0^\infty \cos(tx)f(x)dx = \int_0^\infty (\cos(tx) - 1)f(x)dx + 1.$$

The limit of the integrand for $x \to 0$ is 0 now, regardless of the value of the shape α .

Estimation of shapes. Using relationship with Beta distribution we transform the sample:

$$Y_i = \frac{X_i}{1 + X_i}, \quad 1 \le i \le N,$$

and run estimation for beta-distributed Y.

4 Exponentially-modified Gaussian distribution

Relation to other distribution: if $X \sim \mathcal{N}(\mu, \sigma^2)$ and $Y \sim \text{Exp}(\lambda)$, then $X + Y \sim \text{EMG}(\mu, \sigma, \lambda)$.

5 F-distribution

Notation	$X \sim \mathrm{F}(d_1, d_2)$
Parameters	$d_1, d_2 > 0$
Domain	$x \in \mathbb{R}^+$
f(x)	$\frac{\sqrt{\frac{(d_1x)^{d_1}d_2^{d_2}}{(d_1x+d_2)^{d_1+d_2}}}}{xB\left(\frac{d_1}{2},\frac{d_2}{2}\right)}$
F(x)	$I_{\frac{d_1x}{d_1x+d_2}}\left(\frac{d_1}{2},\frac{d_2}{2}\right)$
$\mathbb{E}[X]$	$\frac{d_2}{d_2 - 2} \text{ for } d_2 > 2$
Var(X)	$\frac{2d_2^2(d_1+d_2-2)}{d_1(d_2-2)^2(d_2-4)} \text{ for } d_2 > 4$
Median	Searched numerically
Mode	$\max\left(\frac{d_2(d_1-2)}{d_1(d_1+2)}, 0\right)$
$\phi(t)$	Calculated numerically

Relation to other distributions:

$$\frac{d_1 X}{d_2 + d_1 X} \sim \mathcal{B}\left(\frac{d_1}{2}, \frac{d_2}{2}\right),$$
$$\frac{d_1}{d_2} X \sim \mathcal{B}'\left(\frac{d_1}{2}, \frac{d_2}{2}\right).$$

6 Gamma distribution

More properties.

- $\mathbb{E}[\ln X] = \psi(\alpha) \ln(\beta)$, $\operatorname{Var}(\ln X) = \psi^{(1)}(\alpha)$.
- $\mathbb{E}\left[\frac{1}{X}\right] = \frac{\beta}{\alpha 1}$.
- Let $X_i \sim \Gamma(\alpha_i, \beta)$ for i = 1, ..., n. Then

$$\sum_{i=1}^{n} X_i \sim \Gamma\left(\sum_{i=1}^{n} \alpha_i, \beta\right).$$

Estimation of parameters.

Frequentist inference. Log-likelihood function:

$$\ln \mathcal{L}(\alpha, \beta | X) = n\alpha \ln \beta - n \ln \Gamma(\alpha) + (\alpha - 1) \sum_{i=1}^{n} \ln X_i - \beta \sum_{i=1}^{n} X_i.$$

Derivatives:

$$\frac{\partial \ln \mathcal{L}(\alpha, \beta | X)}{\partial \alpha} = n \ln \beta - n \psi(\alpha) + \sum_{i=1}^{n} \ln X_i,$$

$$\frac{\partial \ln \mathcal{L}(\alpha, \beta | X)}{\partial \beta} = \frac{n\alpha}{\beta} - \sum_{i=1}^{n} X_{i}.$$

While the solution for the second equation is analytic:

$$\hat{\beta} = \frac{\alpha}{\overline{X}_n},$$

the first equation is solved numerically, using second derivative:

$$\frac{\partial^2 \ln \mathcal{L}(\alpha, \beta | X)}{\partial \alpha^2} = -n\psi_1(\alpha),$$

or if β is unknown:

$$\frac{\partial^2 \ln \mathcal{L}(\alpha, \beta | X)}{\partial \alpha^2} = -n\psi_1(\alpha) + \frac{n}{\alpha},$$

Moreover, the maximum-likelihood estimation of rate β is biased:

$$\mathbb{E}[\hat{\beta}] = \mathbb{E}\left[\frac{\alpha n}{\sum_{i=1}^{n} X_i}\right]$$
$$= \frac{\alpha n \beta}{\alpha n - 1}.$$

Unbiased estimator will be

$$\tilde{\beta} = \frac{\alpha}{\overline{X}_n} \left(1 - \frac{1}{n} \right).$$

Bayesian inference. We suppose that prior distribution of rate β is $\Gamma(\kappa, \gamma)$:

$$h(\beta) = \frac{\gamma^{\kappa}}{\Gamma(\kappa)} \beta^{\kappa - 1} e^{-\gamma \beta}.$$

Then

$$f(\beta|X) \propto \beta^{\alpha n} e^{-\beta \sum_{i=1}^{n} X_i} \cdot \beta^{\kappa-1} e^{-\gamma \beta} \sim \Gamma\left(\alpha n + \kappa, \gamma + \sum_{i=1}^{n} X_i\right).$$

Therefore, Bayesian estimator is

$$\mathbb{E}[\beta|X] = \frac{\alpha n + \kappa}{\gamma + \sum_{i=1}^{n} X_i},$$

and MAP estimator is

$$\beta_{MAP} = \frac{\alpha n + \kappa - 1}{\gamma + \sum_{i=1}^{n} X_i}.$$

Exponential family parameterization Logarithm of probability mass function:

$$\log \mathbb{P}(X = x) = \alpha \log \beta - \log \Gamma(\alpha) + (\alpha - 1) \log x - \beta x.$$

Therefore, sufficient statistics $T(x) = (\log x, x)^T$, natural parameters $\theta = (\alpha - 1, -\beta)$, lognormalizer $F(\theta) = \log \Gamma(\theta_1 + 1) - (\theta_1 + 1) \log(-\theta_2)$, carrier measure k(x) = 0. Gradient of log-normalizer is $\nabla F(\theta) = \left(\psi(\theta_1 + 1) - \log(-\theta_2), -\frac{\theta_1 + 1}{\theta_2}\right)^T$ We conclude that adjusted cross-entropy is

$$\begin{split} H_F(\theta_p \| \theta_q) &= F(\theta_q) - \langle \theta_q, \nabla F(\theta_p) \rangle \\ &= \log \Gamma(\theta_{q_1} + 1) - (\theta_{q_1} + 1) \log(-\theta_{q_2}) - \theta_{q_1}(\psi(\theta_{p_1} + 1) - \log(-\theta_{p_2})) + \frac{\theta_{q_2}(\theta_{p_1} + 1)}{\theta_{p_2}}. \end{split}$$

Adjusted entropy is

$$H_F(\theta) = \log \Gamma(\theta_1 + 1) - \log(-\theta_2) - \theta_1 \psi(\theta_1 + 1) + \theta_1 + 1$$

= \log \Gamma(\alpha) - \log \beta - (\alpha - 1) \cdot \psi(\alpha) + \alpha.

And Kullback-Leibler divergence:

$$KL(p||q) = H_F(\theta_p||\theta_q) - H_F(\theta_p)$$

$$= \log \frac{\Gamma(\alpha_q)}{\Gamma(\alpha_p)} + \alpha_q \log \frac{\beta_p}{\beta_q} + (\alpha_p - \alpha_q)\psi(\alpha_p) + \alpha_p \left(\frac{\beta_q}{\beta_p} - 1\right)$$

6.1 Chi-squared distribution

Notation:

$$X \sim \chi_k^2$$
.

Relation to Gamma distribution:

$$X \sim \Gamma\left(\frac{k}{2}, \frac{1}{2}\right).$$

Kullback-Leibler divergence:

$$KL(p||q) = \log \frac{\Gamma(k_q/2)}{\Gamma(k_p/2)} + \frac{1}{2}(k_p - k_q)\psi(k_p/2).$$

Relation to other distributions: if $X_1, \ldots, X_k \sim \mathcal{N}(0,1)$, then $\sum_{i=1}^k X_i^2 \sim \chi_k^2$

6.2 Erlang distribution

Notation:

$$X \sim \text{Erlang}(k, \beta)$$
.

The only difference between Gamma and Erlang distributions is that latter takes an integer number k as a shape parameter. Relation to other distributions: if $X \sim \text{Erlang}(k, \beta)$ and $Y \sim \text{Po}(\beta x)$, then

$$\mathbb{P}(X < x) = P(k, \beta x) = \mathbb{P}(Y > k).$$

6.3 Exponential distribution

Relation to Gamma distribution:

$$X \sim \Gamma(1, \lambda)$$
.

Hence, estimation of parameter λ is the particular case of estimation of rate β for Gamma distribution.

Adjusted cross-entropy:

$$H_F(\lambda_p || \lambda_q) = \frac{\lambda_q}{\lambda_p} - \log \lambda_q.$$

Thus adjusted entropy is

$$H_F(\lambda) = 1 - \log \lambda$$

and Kullback-Leibler divergence:

$$\mathrm{KL}(p||q) = \log \frac{\lambda_p}{\lambda_q} + \frac{\lambda_q}{\lambda_p} - 1.$$

7 Geometric Stable distribution

7.1 Asymmetric Laplace distribution

7.2 Laplace distribution

8 Kolmogorov-Smirnov distribution

9 Logistic distribution

10 Log-normal distribution

11 Marchenko-Pastur distribution

Calculation of cumulative distribution function.

Calculation of characteristic function. For $\lambda > 1$ we use numerical integration by definition

$$\phi(t) = \int_{\sigma^2 a}^{\sigma^2 b} \cos(tx) f(x) dx + i \int_{\sigma^2 a}^{\sigma^2 b} \sin(tx) f(x) dx.$$

For $\lambda = 1$ we split the integrand for real part by $(\cos(tx) - 1)f(x)$ and f(x):

$$\Re(\phi(t)) = \int_{\sigma^2 a}^{\sigma^2 b} (\cos(tx) - 1) f(x) dx + 1.$$

And for $\lambda < 1$ we calculate integral at point 0 separately:

$$\phi(t) = \int_{\{0\} \cup [\sigma^2 a, \sigma^2 b]} \cos(tx) f(x) dx + i \int_{\{0\} \cup [\sigma^2 a, \sigma^2 b]} \sin(tx) f(x) dx$$
$$= 1 - \frac{1}{\lambda} + \int_{\sigma^2 a}^{\sigma^2 b} \cos(tx) f(x) dx + i \int_{\sigma^2 a}^{\sigma^2 b} \sin(tx) f(x) dx.$$

12 Nakagami distribution

Relation to other distributions: if $Y \sim \Gamma(\mu, \mu/\omega)$, then

$$X \sim \text{Nakagami}(\mu, \omega)$$
.

Calculation of characteristic function. For $\mu < 1 \lim_{x\to 0} f(x) \to \infty$. Then we use the following transformation for real part of characteristic function:

$$\Re(\phi(t)) = \int_0^\infty \cos(tx) f(x) dx$$
$$= \int_0^\infty (\cos(tx) - 1) f(x) + 1$$

Exponential family parameterization Logarithm of probability mass function:

$$\log \mathbb{P}(X = x) = \mu \log(\mu/\omega) - \log(\Gamma(\mu)/2) + (2\mu - 1) \log x - \mu x^2/\omega.$$

Therefore, sufficient statistics $T(x) = (\log x, x^2)^T$, natural parameters

$$\theta = (2\mu - 1, -\mu/\omega),$$

log-normalizer

$$F(\theta) = \log \frac{\Gamma((\theta_1 + 1)/2)}{2} - \frac{\theta_1 + 1}{2} \log(-\theta_2),$$

carrier measure k(x) = 0. Gradient of log-normalizer is

$$\nabla F(\theta) = \left(\frac{1}{2}\psi\left(\frac{\theta_1+1}{2}\right), \frac{\theta_1+1}{2\theta_2}\right)^T$$

We conclude that adjusted cross-entropy is

$$\begin{split} H_F(\theta_p \| \theta_q) &= F(\theta_q) - \langle \theta_q, \nabla F(\theta_p) \rangle \\ &= \frac{1}{2} \bigg(\log \Gamma \bigg(\frac{\theta_{q_1} + 1}{2} \bigg) - (\theta_{q_1} + 1) \log(-\theta_{q_2}) - \theta_{q_1} \psi \bigg(\frac{\theta_{p_1} + 1}{2} \bigg) - \frac{\theta_{q_2}(\theta_{p_1} + 1)}{\theta_{p_2}} \bigg). \end{split}$$

Adjusted entropy is

$$H_F(\theta) = \frac{1}{2} \left(\log \Gamma \left(\frac{\theta_1 + 1}{2} \right) - (\theta_1 + 1) \log(-\theta_2) - \theta_1 \psi \left(\frac{\theta_1 + 1}{2} \right) - (\theta_1 + 1) \right)$$
$$= \frac{\log \Gamma(\mu)}{2} - \mu \log(\mu/\omega) - \frac{2\mu - 1}{2} \psi(\mu) - \mu.$$

And Kullback-Leibler divergence:

$$KL(p||q) = H_F(\theta_p||\theta_q) - H_F(\theta_p)$$

$$= \frac{1}{2} \log \frac{\Gamma(\mu_q)}{\Gamma(\mu_p)} + \mu_p \log \frac{\mu_p}{\omega_p} - \mu_q \log \frac{\mu_q}{\omega_q} + (\mu_p - \mu_q)\psi(\mu_p) - \left(\frac{\mu_q/\omega_q}{\mu_p/\omega_p} - 1\right)\mu_p$$

12.1 Chi distribution

Notation:

$$X \sim \chi_k$$

Relation to Nakagami distribution:

$$X \sim \text{Nakagami}(k/2, k)$$

Adjusted cross-entropy:

$$H_F(k_p||k_q) = \frac{1}{2} \left(\log \Gamma(k_q/2) + k_q \log 2 - (2k_q - 1)\psi(k_p/2) - k_p \right).$$

Thus adjusted entropy is

$$H_F(k) = \frac{1}{2} \left(\log \Gamma(k/2) + k \log 2 - (2k-1)\psi(k/2) - k \right)$$

and Kullback-Leibler divergence:

$$\mathrm{KL}(p||q) = \frac{1}{2} \left(\log \frac{\Gamma(k_q/2)}{\Gamma(k_p/2)} + (\log 2 - 2\psi(k_p/2))(k_q - k_p) \right).$$

12.2 Maxwell-Bolzmann distribution

Notation:

$$X \sim \mathrm{MB}(\sigma)$$

Relation to Nakagami distribution:

$$X \sim \text{Nakagami} (3/2, \sigma^2).$$

Adjusted cross-entropy:

$$H_F(\sigma_p || \sigma_q) = \dots$$

Thus adjusted entropy is

$$H_F(\sigma) = \dots$$

and Kullback-Leibler divergence:

$$KL(p||q) = \dots$$

12.3 Rayleigh distribution

Notation:

$$X \sim \text{Rayleigh}(\sigma)$$

Relation to Nakagami distribution:

$$X \sim \text{Nakagami}(1, 2\sigma^2).$$

Estimation of scale. ...

Adjusted cross-entropy:

$$H_F(\sigma_p || \sigma_q) = \dots$$

Thus adjusted entropy is

$$H_F(\sigma) = \log(2\sigma^2) + \gamma/2 - 1$$

and Kullback-Leibler divergence:

$$KL(p||q) = \dots$$

13 Noncentral Chi-Squared distribution

Relation to other distributions:

• Let X_1, \ldots, X_k be independent with $X_i \sim \mathcal{N}(\mu_i, 1), i = 1, \ldots, k$. Then

$$\sum_{i=1}^{k} X_i^2 \sim \chi_k'^2 \Big(\sum_{i=1}^{k} \mu_i^2 \Big).$$

- If $\lambda = 0$, then $X \sim \chi_k^2$.
- If $J \sim \text{Po}(\lambda)$, then $\chi^2_{k+2J} \sim \chi'^2_k(\lambda)$.

14 Pareto distribution

Estimation of parameters.

Frequentist inference. Log-likelihood function is

$$\ln \mathcal{L}(\alpha, \sigma | X) = n \ln \alpha + n\alpha \ln \sigma - (\alpha + 1) \sum_{i=1}^{n} \ln X_i.$$

We assume that $\sigma \leq X_{(1)}$, otherwise sample X couldn't have been generated from such distribution. It is obvious, that $\ln \mathcal{L}(\alpha, \sigma | X)$ is an increasing function in terms of σ , therefore $\hat{\sigma} = X_{(1)}$ is an optimal estimator. Let's take derivative with respect to α :

$$\frac{\partial \ln \mathcal{L}(\alpha, \sigma | X)}{\partial \alpha} = \frac{n}{\alpha} + n \ln \sigma - \sum_{i=1}^{n} \ln X_i.$$

From this we conclude that the maximum-likelihood estimator of shape is

$$\hat{\alpha} = \frac{1}{\frac{1}{n} \left(\sum_{i=1}^{n} \ln X_i \right) - \ln \hat{\sigma}}.$$

It is known that $\hat{\sigma} \sim \operatorname{Pareto}(n\alpha, \sigma)$ and $\hat{\alpha} \sim \operatorname{Inv-}\Gamma(n-1, n\alpha)$ and they are independent. Then

$$\mathbb{E}[\hat{\sigma}] = \frac{\sigma}{1 - \frac{1}{n\alpha}}$$

and

$$\mathbb{E}[\hat{\alpha}] = \frac{n\alpha}{n-2}.$$

Therefore, in order to get unbiased estimators we need to make the following transformations:

$$\tilde{\alpha} = \frac{n-2}{n}\hat{\alpha}$$
 and $\tilde{\sigma} = \hat{\sigma} \left(1 - \frac{1}{(n-1)\hat{\alpha}}\right)$.

Note that if we estimate parameters separately, then $\hat{\alpha} \sim \text{Inv-}\Gamma(n, n\alpha)$ and transformations are different.

Bayesian inference. We now assume that σ is known and prior distribution of α is $\Gamma(\kappa, \beta)$:

$$h(\alpha) = \frac{\beta^{\kappa}}{\Gamma(\kappa)} \alpha^{\kappa - 1} e^{-\beta \alpha}.$$

The density of posterior distribution is

$$f(\alpha|X) \propto \prod_{i=1}^{n} \frac{\sigma^{\alpha}}{X_{i}^{\alpha-1}} \cdot \alpha^{\kappa+n-1} e^{-\beta\alpha} \propto \alpha^{\kappa+n-1} e^{-(\beta+\sum_{i=1}^{n} \ln(X_{i}/\sigma))\alpha}.$$

Therefore, $\alpha | X \sim \Gamma(\kappa + n, \beta + \sum_{i=1}^{n} \ln(X_i/\sigma))$ and Bayesian estimator is

$$\mathbb{E}[\alpha|X] = \frac{\kappa + n}{\beta + \sum_{i=1}^{n} \ln(X_i/\sigma)}.$$

MAP estimator is

$$\alpha_{MAP} = \frac{\kappa + n - 1}{\beta + \sum_{i=1}^{n} \ln(X_i/\sigma)}.$$

Note on fitting scale with Bayes: let it be vice versa, α is known while σ is not. Then we say that a priori $\sigma \sim \operatorname{Pareto}(\kappa, \theta)$:

$$h(\sigma) = \frac{\kappa \theta^{\kappa}}{\sigma^{\kappa+1}}.$$

Then posterior distribution is:

$$f(\sigma|X) \propto \prod_{i=1}^{n} \frac{1}{X_i^{\alpha-1}} \cdot \sigma^{\alpha n - \kappa - 1} \mathbf{1}_{\{\theta < \sigma < X_{(1)}\}} \sim \text{Bounded-Pareto}(\kappa - \alpha n, \theta, X_{(1)}).$$

This imposes the following additional constraints on the prior hyperparameters: $\kappa > \alpha n$ and $\theta < X_{(1)}$. Bayesian estimator:

$$\mathbb{E}[\sigma|X] = \frac{\theta^{\alpha'}}{1 - \left(\frac{\theta}{X_{(1)}}\right)^{\alpha'}} \cdot \left(\frac{\alpha'}{\alpha' - 1}\right) \cdot \left(\frac{1}{\theta^{\alpha'}} - \frac{1}{X_{(1)}^{\alpha'}}\right)$$

with $\alpha' = \kappa - \alpha n$. MAP estimator is just

$$\sigma_{MAP} = \theta.$$

However, Bounded-Pareto distribution is not yet supported in RandLib.

15 Planck distribution

Calculation of cumulative distribution function. For $a \ge 1$ F(x) can be calculated by straightforward numerical integration:

$$F(x) = \frac{b^{a+1}}{\Gamma(a+1)\zeta(a+1)} \int_0^x \frac{t^a}{e^{bt} - 1} dt.$$

Note that for $\alpha < 1$ integrand has a singularity point at t = 0. In such case we define

$$h(t) = \frac{b^{a+2}t^{a+1}}{\Gamma(a+1)\zeta(a+1)} \cdot \left(\frac{1}{e^{bt} - 1} - \frac{1}{bt}\right)$$

and then

$$F(x) = \int_0^x h(t)dt + \frac{(bx)^a}{a\Gamma(a+1)\zeta(a+1)}.$$

Calculation of characteristic function. The idea of calculations for a < 1 is near the same. We split the real part of $\phi(t)$ into 3 different integrals:

$$\Re(\phi(t)) = \int_0^1 \cos(tx)h(x)dx + \int_1^\infty \cos(tx)f(x)dx + \frac{b^a}{a\Gamma(a+1)\zeta(a+1)} \bigg(\cos(t) + t\int_0^1 \sin(tx)x^a dx\bigg).$$

All the indegrands now have no singularity points.

16 Stable distribution

Calculation of p.d.f.

Calculation of c.d.f.

16.1 Cauchy distribution

Relation to Stable distribution:

$$X \sim S_1(0, \gamma, \mu)$$

16.2 Levy distribution

Relation to Stable distribution:

$$X \sim S_{\frac{1}{2}}(1,\gamma,\mu)$$

16.3 Normal distribution

Relation to Stable distribution:

$$X \sim S_2(\cdot, \sigma^2/2, \mu)$$

Estimation of parameters

Frequentist inference. Maximum-likelihood estimators for Normal distribution are very well-known:

$$\hat{\mu} = \overline{X}_n$$
 and $\hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^n (X_i - \mu)^2$.

However, for unknown μ the value of $\hat{\sigma^2} \sim \frac{\sigma^2}{n} \chi_{n-1}^2$. Therefore, unbiased estimator in this case would be

$$\widetilde{\sigma^2} = \frac{1}{n-1} \sum_{i=1}^n (X_i - \overline{X}_n)^2.$$

Moreover, if one is interested in estimating scale σ with known μ , then maximum likelihood estimator is

$$\hat{\sigma} = \sqrt{\hat{\sigma^2}} \sim \frac{\sigma}{\sqrt{n}} \chi_n$$

and

$$\mathbb{E}[\hat{\sigma}] = \frac{\sigma}{\sqrt{n}} \sqrt{2} \frac{\Gamma((n+1)/2)}{\Gamma(n/2)}.$$

Then unbiased estimator is

$$\widetilde{\sigma} = \hat{\sigma} \sqrt{\frac{n}{2}} \frac{\Gamma(n/2)}{\Gamma((n+1)/2)}$$

Bayesian inference. ...

16.4 Holtsmark distribution

Relation to Stable distribution:

$$X \sim S_{\frac{3}{2}}(0,\gamma,\mu)$$

16.5 Landau distribution

Relation to Stable distribution:

$$X \sim S_1(1, \gamma, \mu)$$

17 Student's t-distribution

Relation to other distributions:

- If $X \sim t(\nu)$, then $\mu + \sigma X \sim t(\nu, \mu, \sigma)$.
- If $X \sim t(1, \mu, \sigma)$, then $X \sim \text{Cauchy}(\mu, \sigma)$.
- If $X \sim \mathcal{N}(0,1)$ and $Y \sim \text{Nakagami}\left(\frac{\nu}{2},1\right)$, then $\frac{X}{Y} \sim t(\nu)$.
- If $X \sim t(\nu)$, then $X^2 \sim F(1, \nu)$.

18 Weibull distribution

Estimation of scale

Frequentist inference. Log-likelihood function:

$$\ln \mathcal{L}(\lambda, k|X) = n(\ln k - \ln \lambda) + (k-1)\sum_{i=1}^{n} (\ln X_i - \ln \lambda) - \frac{1}{\lambda^k}\sum_{i=1}^{n} X_i^k.$$

The derivative with respect to scale:

$$\frac{\partial \ln \mathcal{L}(\lambda, k|X)}{\partial \lambda} = -\frac{nk}{\lambda} + \frac{k}{\lambda^{k+1}} \sum_{i=1}^{n} X_i^k = 0.$$

Therefore, maximum-likelihood estimation for λ is

$$\hat{\lambda} = \left(\frac{1}{n} \sum_{i=1}^{n} X_i^k\right)^{\frac{1}{k}}.$$

Bayesian inference. Assume k is known. Instead of estimating λ we give an estimation for λ^k . Let's say that prior distribution of λ^k is Inv- $\Gamma(\alpha, \beta)$:

$$h(\lambda^k) = \frac{\beta^\alpha}{\Gamma(\alpha)} \lambda^{-k(\alpha+1)} e^{-\beta/\lambda^k}.$$

Posterior distribution then:

$$f(\lambda^k|X) \propto \lambda^{-k(\alpha+1+n)} e^{-\frac{1}{\lambda^k}(\beta + \sum_{i=1}^n X_i^k)} \sim \text{Inv-}\Gamma\left(\alpha + n, \beta + \sum_{i=1}^n X_i^k\right).$$

Bayesian estimator:

$$\mathbb{E}[\lambda^k|X] = \frac{\beta + \sum_{i=1}^n X_i^k}{\alpha + n - 1},$$

MAP estimator:

$$\lambda_{MAP}^k = \frac{\beta + \sum_{i=1}^n X_i^k}{\alpha + n + 1}.$$

Part III Discrete univariate distributions

19 Beta-binomial distribution

Relation to other distributions: if $p \sim \mathcal{B}(\alpha, \beta)$, then $Bin(n, p) \sim BB(n, \alpha, \beta)$.

20 Binomial distribution

Estimation of probability p with known number n.

Frequentist inference. Log-likelihood function:

$$\ln \mathcal{L}(p|X) \propto \sum_{i=1}^{k} \left(X_i \log p + (n - X_i) \log(1 - p) \right)$$

The derivative with respect to p is:

$$\frac{\partial \ln \mathcal{L}(p|X)}{\partial p} = \frac{\sum_{i=1}^{k} X_i}{p} - \frac{nk - \sum_{i=1}^{k} X_i}{1 - p}.$$

Therefore we reach the maximum value of log-likelihood if

$$p = \frac{\overline{X}_k}{n}.$$

Bayesian inference. We set prior Beta distribution $\mathcal{B}(\alpha, \beta)$:

$$h(p) = \frac{p^{\alpha - 1}(1 - p)^{\beta - 1}}{B(\alpha, \beta)}.$$

Then posterior is

$$f(p|X) \propto p^{\alpha - 1 + \sum_{i=1}^{k} X_i} (1-p)^{\beta - 1 + \sum_{i=1}^{k} (n - X_i)} \sim \mathcal{B}\left(\alpha + \sum_{i=1}^{k} X_i, \beta + nk - \sum_{i=1}^{k} X_i\right).$$

Thus Bayesian estimator is

$$\mathbb{E}[p|X] = \frac{\alpha + \sum_{i=1}^{k} X_i}{\alpha + \beta + nk}$$

and MAP estimator is

$$p_{MAP} = \frac{\alpha + \sum_{i=1}^{k} X_i - 1}{\alpha + \beta + nk - 2}.$$

Also, Minimax estimator is equal to Bayes estimator if $\alpha = \beta = \frac{1}{2}\sqrt{n}$.

Exponential family parameterization. Logarithm of probabilty mass function:

$$\log \mathbb{P}(X = x) = \log(n!) - \log(x!(n-x)!) + x \log \frac{p}{1-p} + n \log(1-p).$$

Therefore binomial distribution with fixed n belongs to one-parameterized exponential family with sufficient statistics T(x) = x, natural parameter $\theta = \log \frac{p}{1-p}$, log-normalizer $F(\theta) = n \log(1 + \exp \theta) - \log(n!)$ and carrier measure $k(x) = -\log(x!(n-x)!)$. Gradient of log-normalizer: $\nabla F(\theta) = n \frac{\exp(\theta)}{1 + \exp(\theta)}$. Adjusted cross-entropy is

$$H_F(\theta_1 || \theta_2) = F(\theta_2) - \langle \theta_2, \nabla F(\theta_1) \rangle$$

= $n \log(1 + \exp \theta_2) - \log(n!) - \theta_2 n \frac{\exp(\theta_1)}{1 + \exp(\theta_1)}$.

Adjusted entropy is

$$H_F(\theta) = n \log(1 + \exp \theta) - \log(n!) - \theta n \frac{\exp(\theta)}{1 + \exp(\theta)}$$

= $-n[(1 - p) \log(1 - p) + p \log p] - \log(n!).$

And Kullback-Leibler divergence:

$$KL(p_1||p_2) = H_F(\theta_1||\theta_2) - H_F(\theta_1)$$

$$= n \log \frac{1 + \exp \theta_2}{1 + \exp \theta_1} - n(\theta_2 - \theta_1) \frac{\exp(\theta_1)}{1 + \exp(\theta_1)}$$

$$= n(1 - p_1) \log \frac{1 - p_1}{1 - p_2} + np_1 \log \frac{p_1}{p_2}.$$

20.1 Bernoulli

Notation:

$$X \sim \text{Bernoulli}(p)$$
.

Relation to Binomial distribution:

$$X \sim \text{Bin}(1, p)$$
.

21 Hypergeometric distribution

Estimation of number of target members of population K.

Bayesian inference. Let prior distribution of K be Beta-Binomial distribution $BB(N, \alpha, \beta)$:

$$h(K) = \binom{N}{K} \frac{B(K + \alpha, N - K + \beta)}{B(\alpha, \beta)}.$$

Then for one sample X:

$$K - X \sim BB(N - n, \alpha + X, \beta + nk - X)$$

and therefore

$$\mathbb{E}[K|X] = X + (N - n)\frac{\alpha}{\alpha + \beta}.$$

However, RandLib doesn't support Bayesian fitting for Hypergeometric distribution yet.

22 Logarithmic distribution

23 Negative-Binomial (Polya) distribution

Relation to other distributions: if $\lambda \sim \text{Gamma}\left(r, \frac{p}{1-p}\right)$, then $\text{Po}(\lambda) \sim \text{NB}(r, p)$.

23.1 Geometric distribution

Notation:

$$X \sim \text{Geometric}(p)$$
.

Relation to Negative-Binomial distribution:

$$X \sim NB(1, p)$$
.

23.2 Pascal distribution

Notation:

$$X \sim \operatorname{Pascal}(r, p)$$
.

The only difference with Negative-Binomial distribution is that for Pascal distribution shape r is an integer.

24 Poisson distribution

Estimation of rate.

Frequentist inference. Log-likelihood function:

$$\ln \mathcal{L}(\lambda|X) \propto -\lambda n + \sum_{i=1}^{n} X_i \log \lambda.$$

Setting the derivative w.r.t. rate to 0 we get the optimal value:

$$\lambda = \overline{X}_n$$
.

Bayesian inference. Let set prior distribution of $\lambda \sim \Gamma(\alpha, \beta)$:

$$h(\lambda) = \frac{\beta^{\alpha}}{\Gamma(\alpha)} \lambda^{\alpha - 1} e^{-\beta \lambda}.$$

Posterior distribution:

$$f(\lambda|X) \propto e^{-\lambda(\beta+n)} \lambda^{\alpha-1+\sum_{i=1}^{n} X_i} \sim \Gamma(\alpha + \sum_{i=1}^{n} X_i, \beta + n).$$

Therefore, Bayesian estimator:

$$\mathbb{E}[\lambda|X] = \frac{\alpha + \sum_{i=1}^{n} X_i}{\beta + n}.$$

And MAP estimator:

$$\lambda_{MAP} = \max\left(\frac{\alpha + \sum_{i=1}^{n} X_i - 1}{\beta + n}, 0\right).$$

Exponential family parameterization Logarithm of probability mass function:

$$\log \mathbb{P}(X = x) = x \log \lambda - \lambda - \log(x!).$$

Therefore, sufficient statistics T(x) = x, natural parameter $\theta = \log \lambda$, log-normalizer $F(\theta) = \exp(\theta)$, carrier measure $k(x) = \log(x!)$. We conclude that adjusted cross-entropy is

$$H_F(\theta_p || \theta_q) = F(\theta_q) - \langle \theta_q, \nabla F(\theta_p) \rangle$$

= $\exp(\theta_q) - \theta_q \exp(\theta_p)$.

Adjusted entropy is

$$H_F(\theta) = \exp(\theta)(1 - \theta) = \lambda(1 - \log \lambda).$$

And Kullback-Leibler divergence:

$$\begin{aligned} \mathrm{KL}(p\|q) &= H_F(\theta_p\|\theta_q) - H_F(\theta_p) \\ &= \lambda_q - \lambda_p \bigg(1 + \log \bigg(\frac{\lambda_p}{\lambda_q} \bigg) \bigg). \end{aligned}$$

25 Skellam distribution

Relation to other distributions: if $Y \sim \text{Po}(\mu_1)$ and $Z \sim \text{Po}(\mu_2)$, then $Y - Z \sim \text{Skellam}(\mu_1, \mu_2)$.

26 Uniform discrete distribution

Relation to other distributions: if $X \sim BB(n, 1, 1)$, then $X \sim \mathcal{U}\{0, \dots, n\}$.

27 Yule distribution

Relation to other distributions: if $X \sim \operatorname{Pareto}(\alpha, 1)$, then $\operatorname{Geometric}(1/X) \sim \operatorname{Yule}(\alpha)$.

28 Zeta distribution

29 Zipf distribution

Part IV Bivariate distributions

- 30 Bivariate Normal distribution
- 31 Normal-Inverse-Gamma distribution
- 32 Trinomial distribution

Part V Circular distributions

- 33 von Mises distribution
- 34 Wrapped Exponential distribution

Part VI Singular distributions

35 Cantor distribution