This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representation of The original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

09/701437 PCT/AU99/00420

REC'D 3 0 JUN 1999

WIPO PCT

AU99/420

Patent Office Canberra

5

I, KIM MARSHALL, MANAGER EXAMINATION SUPPORT AND SALES, hereby certify that the annexed is a true copy of the Provisional specification in connection with Application No. PP 3804 for a patent by BIOMOLECULAR RESEARCH INSTITUTE LIMITED filed on 29 May 1998.

PRIORITY DOCUMENT

SUBMITTED OR TRANSMITTED IN COMPLIANCE WITH RULE 17.1(a) OR (b)

WITNESS my hand this Twenty-second day of June 1999

KIM MARSHALL

MANAGER EXAMINATION SUPPORT AND

SALES

AUSTRALIA

Patents Act 1990

BIOMOLECULAR RESEARCH INSTITUTE LTD

PROVISIONAL SPECIFICATION

Invention Title:

EGF RECEPTOR AGONISTS AND ANTAGONISTS

The invention is described in the following statement:

EGF RECEPTOR AGONISTS AND ANTAGONISTS

Field of the Invention

5

10

15

20

25

30

35

This invention relates to the field of epidermal growth factor (EGF) receptor structure and EGF receptor/ligand interactions. In particular, it relates to the field of using the EGF receptor structure to select and screen for agonists and antagonists of the polypeptide ligands.

Background of the Invention

Epidermal growth factor is a small polypeptide cytokine that stimulates marked proliferation of epithelial tissues and is a member of a larger family of structurally related cytokines such as transforming growth factor α (TGFα), amphiregulin, betacellulin, heparin-binding EGF and some viral gene products. Abnormal EGF family signalling is a characteristic of certain cancers (Soler, C. & Carpenter, G., 1994 In Nicola, N. (ed) Guidebook to Cytokines and Their receptors", Oxford Univ. Press, Oxford, pp194-197; Walker, F. & Burgess, A. W., 1994, In Nicola, N. (ed) Guidebook to Cytokines and Their receptors", Oxford Univ. Press, Oxford, pp198-201).

The epidermal growth factor receptor (EGFR) is the cell membrane receptor for EGF (Ullrich, A., and Schlessinger, J. (1990) Cell 61, 203-212). The EGFR also binds other ligands that contain amino acid sequences classified as the EGF-like motif. Among these ligands, the three-dimensional structures of EGF and TGF α have been determined by NMR (Montelione, G.T.; Wuthrich, K.; Nice, E.C., Burgess, A.W. and Scheraga, H.A. (1986) PNAS 83(22): 8594-8; Campbell, I.D., Cooke, R.M., Baron, M., Harvey, T.S., and Tappin, M.J. (1989) Prog. Growth Factor Res. 1, 13-22). Upon binding of the ligand to the extracellular domain, the EGFR undergoes dimerization, which eventually leads to the activation of its cytoplasmic protein tyrosine kinase (Ullrich, A., and Schlessinger, J. (1990) Cell 61, 203-212). The EGFR is also known as the ErbB-1 receptor and belongs to the type I family of receptor tyrosine kinases (Ullrich, A., and Schlessinger, J. (1990) Cell 61, 203-212). This group also includes the ErbB-2, ErbB-3 and ErbB-4 receptors. The ligand of ErbB-2 is still unknown but it is clear that heregulin is binding to ErbB-3 and ErbB-4 (Plowman, G.D., Green, J.M., Calouscou, J.M., Carlton, G.W., Rothwell, V.M., and Buckley, S. (1993) Nature 366, 473-475). One of the heregulins is known as neuregulin or NDF and contains an EGF-like sequence that was found to fold into an EGF-like fold by NMR (Nagata, K., Kohda, D., Hatanska, H., Ichikawa, S., Matsuda, S., Yamamoto, T., Suzuki,

A., and Inagaki, F. (1994) *EMBO J.* 13, 3517-3523 and Jacobson, N.E., Abadl, N., Sliwkowski, M.X., Reilly, D., Skelton, N.J., and Fairbrother, W.J. (1996) *Biochemistry* 36, 3402-3417).

5

10

15

20

25

30

35

The type II family of receptor tyrosine kinases consists of the insulin receptor (INSR), the insulin-like growth factor I receptor, and the insulin receptor-related receptor (Ullrich, A., and Schlessinger, J. (1990) Cell 61, 203-212). Although the type II receptors consist of four chains $(\alpha_2\beta_2)$, both the extracellular portions of the receptors from the two families, as well as the tyrosine kinase portions, share significant sequence homology, suggesting a common evolutionary origin (Ullrich, A., and Schlessinger, J. (1990) Cell 61, 203-212, and Bajaj, M., Waterfield, M.D., Schlessinger, J., Taylor, W.R., and Blundell, T. (1987) Biochim. Biophys. Acta 916, 220-226).

The 621 amino acid residues of the extracellular domain of the human EGFR (sEGFR) can be subdivided into four domains as follows: L1, S1, L2 and S2, where L and S stand for "large" and "small" domains, respectively (Bajaj, M., Waterfield, M.D., Schlessinger, J., Taylor, W.R., and Blundell, T. (1987) *Biochim. Biophys. Acta* 916, 220-226, see Fig. 2). The L1 and L2 domains are homologous, as are the S1 and S2 domains.

Ligand-induced dimerization was first reported for the EGF receptor (Schlessinger, J. (1980) Trends Biochem Sci 13, 443-447) and now is widely accepted as a general mechanism for the transmission of growth stimulatory signals across the cell membrane. Although many biochemical experiments have been performed to reveal the molecular mechanism of receptor dimerization (Lemmon, M.A., Bu, Z., Ladbury, J.E., Zhou, M., Pinchasi, D., Lax, L., Engelman, D.M., and Schlessinger, J. (1997) EMBO J. 16, 281-294 and Tzabar, E., Pinkas-Kramarski, R., Moyer, J.D., Klapper, D.N., Alroy, L., Levkowitz, G., Shelly, M., Henis, S., Eisenstein, M., Ratzkin, B.J., Sela, M., Andrews, G.C., and Yarden, Y. (1997) EMBO J. 16, 4938-4950 and Lax, L., Mitra, A.K., Ravern, C., Hurwitz, D.R., Rubinstein, M., Ullrich, A., Stroud, R.M., and Schlessinger, J. (1991), J. Biol. Chem. 266, 13828-13833), the molecular mechanism by which monomeric ligands induce dimerization is still unknown for members of the EGFR family. Single particle averaging of electron microscopic images suggests that the overall shape of the sEGFR is four-lobed and doughnut-like (Lax, L., Mitra, A.K., Ravern, C., Hurwitz, D.R., Rubinstein, M., Ullrich, A., Stroud, R.M., and Schlessinger, J. (1991), J. Biol. Chem. 266, 13828-13833). Small angle x-ray scattering also indicate that the

sEGFR is a flattened sphere with long diameters of 110 Å and a short diameter of 20 Å (Lemmon, M.A., Bu, Z., Ladbury, J.E., Zhou, M., Pinchasi, D., Lax, L., Engelman, D.M., and Schlessinger, J. (1997) *EMBO J.* 16, 281-294). The crystallization of sEGFR in complex with EGF has been published (Günther, N., Betzel, C., and Weber, W. (1990) *J. Biol. Chem.* 265, 22082-22085), but the structure has not yet been reported, despite a decade of effort by many groups.

The EGF receptor ligand, TGF-α has been observed to be overproduced in keratinocyte cells which are subject to psoriasis (Turbitt, M.L. et al., 1990, J. Invest. Dermatol. 95(2), 229-232; Higashimyama, M. et al., 1991, J. Dermatol., 18(2), 117-119; Elder, J.T. et al, 1990, 94(1), 19-25). The overproduction of at least one other EGF receptor ligand, amphiregulin, has also been implicated in psoriasis. (Piepkorn, M. 1996, Am. J. Dermatopath., 18(2), 165-171). Molecules that inhibit the EGF receptor have been shown to inhibit the proliferation of both normal keratinocytes (Dvir, A. et al, 1991, J. Cell Biol., 113(4), 857-865) and psoriatic keratinocytes. (Ben-Bassat, H. et al., 1995, Exp. Dermatol., 4(2), 82-88). These findings indicate that EGF receptor antagonists may be useful in the treatment of psoriasis.

Many cancer cells express constitutively active EGFR (Sandgreen, E. P., et al., 1990, Cell, 61:1121-135; Karnes, W. E. J., et al., 1992, Gastroenterology, 102:474-485) or other EGFR family members (Hynes, N. E.,1993, Semin. Cancer Biol. 4:19-26). Elevated levels of activated EGFR occur in bladder, breast, lung and brain tumours (Harris, A. L., et al., 1989, In Furth & Greaves (eds) The Molecular Diagnostics of human cancer. Cold Spring Harbor Lab. Press, CSH, NY, pp353-357). Antibodies to EGFR can inhibit ligand activation of EGFR (Sato, J. D., et al., 1983 Mol. Biol. Med. 1:511-529) and the growth of many epithelial cell lines (Aboud-Pirak E., et al., 1988, J. Natl Cancer Inst. 85:1327-1331). Patients receiving repeated doses of a humanised chimeric anti-EGFR monoclonal antibody (Mab) showed signs of disease stabilization. The large doses required and the cost of production of humanised Mab is likely to limit the application of this type of therapy. These findings indicate that the development of EGF receptor antagonists will be attractive anticancer agents.

Summary of the Invention

5

10

15

20

25

30

35

The present inventors have now obtained 3-dimensional structural information concerning the epidermal growth factor receptor (EGFR). This structural information was obtained by comparative modelling based on the 3D structure of the IGF-1 receptor as described in PP0585 and PP2598 (a copy of which is annexed hereto as Annexure A). The information presented in the present application provides the opportunity for the development of specific antagonists and agonists of EGFR for therapeutic applications.

Accordingly, in a first aspect the present invention provides a method of screening for, or designing, an agonist of the EGF receptor which method includes

- (i) selecting or designing a substance which possesses stereochemical complementarity to the EGF receptor site, wherein the receptor site is characterised by
- (a) amino acids 1-474 of the EGF receptor positioned at atomic coordinates substantially as shown in Figure 6 and 7 or a subset thereof; and
- (ii) testing the substance for the ability to act as an agonist of the EGF receptor.

In a second aspect the present invention provides a method of screening for, or designing, an antagonist of the EGF receptor which method includes

- (i) selecting or designing a substance which possesses stereochemical complementarity to the EGF receptor site, wherein the receptor site is characterised by
- (a) amino acids 1-474 of the EGF receptor positioned at atomic coordinates substantially as shown in Figures 6 and 7 or a subset thereof; and
- (ii) testing the substance for the ability to act as an antagonist of the EGF receptor.

The EGF receptor site defined in the first and second aspects of the present invention comprises the L1, S1 and L2 domains (residues 1-474) of the ectodomain of EGFR. At the centre of this structure is a cavity, bounded by all three domains, of sufficient size to accommodate a ligand molecule. By "stereochemical complementarity" we mean that the substance or a portion thereof correlates, in the manner of the classic "lock-and-key" visualisation of ligand-receptor interaction, with the cavity in the receptor site. Preferably, the stereochemical complementarity is such that the

substance has a K_I for the receptor site of less than $10^{-6}M$. More preferably, the K_I value is less than $10^{-8}M$ and more preferably less than $10^{-9}M$.

In preferred embodiments of the first and second aspects of the present invention, the method further involves selecting or designing a substance which has portions that match residues positioned on the surface of the receptor site which faces the cavity. By "match" we mean that the identified portions interact with the surface residues, for example, via hydrogen bonding or by enthalpy-reducing Van der Waals interactions which promote desolvation of the biologically active substance within the site, in such a way that retention of the substance within the cavity is favoured energetically.

5

10

15

20

25

30

35

In a preferred embodiment of the first aspect of the present invention, the method includes screening for, or designing, a substance which possesses a stereochemistry and/or geometry which allows it to interact with both the L1 and L2 domains of the EGF receptor site. It is believed that EGFR monomers dimerise in nature in such a manner that the cavities of each monomer may face each other. Accordingly, the method of the first aspect of the present invention may involve screening for, or designing, a biologically active substance which interacts with the L1 domain of one monomer and the L2 domain of the other monomer.

In a third aspect the present invention provides a method of selecting or designing an agonist of the EGF receptor which method includes

- (i) selecting or designing a substance which interacts with
- (a) a fragment of the EGF receptor characterised by amino acids 1-474 positioned at atomic coordinates substantially as shown in Figures 6 and 7 or a subset thereof;

wherein the interaction of the substance with the fragment alters the position of at least one of the L1, L2 or S1 domains of the fragment relative to the position of at least one of the other domains; and

(ii) testing the substance for the ability to act as an agonist of the EGF receptor.

In a preferred embodiment of the third aspect of the present invention the substance interacts with the fragment in the region of the L1 domain-S1 domain interface, causing the L1 and S1 domains to move away from each other. In a further preferred embodiment the substance interacts with the hinge region between the L2 domain and the S1 domain causing an alteration in the positions of the domains relative to each other. In a further preferred

embodiment the substance interacts with the β sheet of the L1 domain causing an alteration in the position of the L1 domain relative to the position of the S1 domain or L2 domain.

In a fourth aspect the present invention provides an agonist of the EGF receptor obtained by a method according to the first or third aspects of the present invention.

In a fifth aspect the present invention provides an antagonist of the EGF receptor obtained by a method according to the second aspect of the present invention.

The agonists or antagonists of the fourth and fifth aspects of the present invention may be mutant EGFR ligands where at least one mutation occurs in the region of the ligand which interacts with residues on the surface of the receptor site facing toward the cavity. For example, the residues Arg 41 and Tyr 13 in EGF are conserved in other members of the EGF receptor family of ligands (a Phe residue may be substituted for Tyr 13). Structures of several EGF family members show the two residues to be in close proximity. This portion of EGF may interact with a hydrophobic portion of the EGF receptor which contains one or more negatively charged residues such as the lower β sheet of the L1 domain. Mutants of EGF which show altered activity may be generated by introducing modifications to Arg 41 or Tyr 13 or other nearby residues. Alternatively, mutants of EGF may be generated by introducing modifications to residues on the opposite side of the ligand which may interact with a second receptor molecule in the unmodified ligand.

In a sixth aspect the present invention provides a substance which possesses stereochemical complementarity to the EGF receptor site, wherein the receptor site is characterised by

(a) amino acids 1-474 of the EGF receptor positioned at atomic coordinates substantially as shown in Figures 6 and 7 or a subset thereof;

with the proviso that the substance is not a naturally occurring ligand of the EGF receptor or a mutant thereof.

By "mutant" we mean a ligand which has been modified by one or more point mutations, insertions of amino acids or deletions of amino acids.

In a preferred embodiment of the sixth aspect of the present invention, the stereochemical complementarity is such that the compound has a $K_{\rm I}$ for

10

15

5

25

20

30

35

the receptor site of less than 10^{-6} M. More preferably, the K_I value is less than 10^{-8} M and more preferably less than 10^{-9} M.

The 3 dimensional structure of the EGF receptor elucidated by the present inventors also shows that the L2 and S2 domains are positioned such that they form a "corner" structure. It is envisaged that this corner structure provides a further binding site for ligands of the EGF receptor.

Accordingly, in a seventh aspect the present invention provides a method of screening for, or designing, an agonist of the EGF receptor which method includes

(i) selecting or designing a substance which binds simultaneously to the L2 and S2 domains of the EGF receptor, wherein the L2 and S2 domains are positioned substantially according to the atomic coordinates of amino acids 313-621 as shown in Figure 7, and

10

15

20

25

30

35

(ii) testing the substance for the ability to act as an agonist of the EGF receptor.

In an eighth aspect the present invention provides a method of screening for, or designing, an antagonist of the EGF receptor which method includes

- (i) selecting or designing a substance which binds simultaneously to the L2 and S2 domains of the EGF receptor, wherein the L2 and S2 domains are positioned substantially according to the atomic coordinates of amino acids 313-621 as shown in Figure 7, and
- (ii) testing the substance for the ability to act as an antagonist of the EGF receptor.

In preferred embodiments of the seventh and eighth aspects of the present invention, the method involves selecting or designing a substance which has portions that match residues positioned on the inner surface of the corner structure. By "match" we mean that the identified portions interact with the surface residues, for example, via hydrogen bonding or by enthalpy-reducing Van der Waals interactions in such a way that retention of the substance within the corner structure is favoured energetically.

Preferably, the substance matches the residues positioned on the inner surface such that the substance has a K_I for the corner structure of less than $10^{-6}M$. More preferably, the K_I value is less than $10^{-8}M$ and more preferably less than $10^{-9}M$.

In a ninth aspect the present invention provides a method of selecting or designing an agonist of the EGF receptor which method includes

- (i) selecting or designing a substance which interacts with
- (a) a fragment of the EGF receptor characterised by amino acids 313-621 positioned at atomic coordinates substantially as shown in Figure 7 or a subset thereof:

wherein the interaction of the substance with the fragment alters the relative positions of the L2 and S2 domains of the fragment with respect to each other; and

10

15

20

25

30

35

(ii) testing the substance for the ability to act as an agonist of the EGF receptor.

In a tenth aspect the present invention provides an agonist of the EGF receptor obtained by a method according to the seventh or ninth aspects of the present invention.

In an eleventh aspect the present invention provides an antagonist of the EGF receptor obtained by a method according to the eighth aspect of the present invention.

In a twelfth aspect the present invention provides a pharmaceutical composition for preventing or treating a disease which would benefit from increased signalling by the EGF receptor, which includes an agonist obtained by a method according to the first, third, seventh or ninth aspects of the present invention and a pharmaceutically acceptable carrier or diluent.

In an thirteenth aspect the present invention provides a pharmaceutical composition for preventing or treating a disease associated with signalling by the EGF receptor which includes an antagonist obtained by a method according to the second or eighth aspects of the present invention and a pharmaceutically acceptable carrier or diluent.

In a fourteenth aspect the present invention provides a method of preventing or treating a disease which would benefit from increased signalling by the EGF receptor which method includes administering to a subject in need thereof an agonist obtained by a method according to the first, third, seventh or ninth aspects of the present invention.

Diseases which may be treated by administration of EGFR agonists include wound healing and gastric ulcers.

In a fifteenth aspect the present invention provides a method of preventing or treating a disease associated with signalling by the EGF

receptor which method includes administering to a subject in need thereof an antagonist obtained by a method according to the second or eighth aspects of the present invention.

Diseases associated with signalling by the EGF receptor include psoriasis and many types of tumour states including but not restricted to cancer of the breast, brain, ovary, cervix, pancreas, lung, head and neck, and melanoma, rhabdomyosarcoma, mesothelioma and glioblastoma.

Brief Description of the Drawings

10

15

20

5

Figure 1: Sequence alignment of human EGF receptor family proteins with IGF-1 receptor sequences and insulin receptor sequence for the first two domains of the EGF receptor. The alignment of EGF receptor and the various IGF-1 receptor sequences were used by the MODELLER program to create a model of the EGF receptor domains L1 and S1. Residues which are underlined were used to create additional C α -C α restraints for the construction of the EGF receptor model. IGF-1 receptor residues colored in magenta form part of helical secondary structures. Residues colored in light blue, light green and dark yellow reside in one of the three β -sheets (colored light blue, light green and dark yellow respectively) which make up part of the L1 β -helix. Residues colored in dark blue and dark green form part of a β -strand in the β -fingers. The residues in red are also in β -strands. Each cysteine residue in the S1 domain are numbered according to the module that it is a part of.

25

Figure 2: Sequence alignment of human EGF receptor family proteins with IGF-1 receptor sequences and insulin receptor sequence for the third and fourth domains of the EGF receptor. The labelling scheme of the residues is the same as for Figure 1.

30

Figure 3: Model polypeptide fold of the L1 and S1 domains of the EGF receptor. The L1 domain is at the left hand side of the structure with the N-terminus facing the front. The secondary structure elements are coloured in the same manner as in Figure 1.

Figure 4: Model polypeptide fold of the L2 and S2 domains of the EGF receptor. The L2 domain is at the bottom with its N-terminus facing the front. The secondary structure elements are coloured in the same manner as in Figure 1.

5

10

Figure 5: Superpostion of the two models (of L1 and S1 domains and of L2 and S2 domains) onto structure of first three domains of IGF-1 receptor. The residues have been colored according to an estimate of the accuracy of the model cooridinates. Residues colored in yellow are judged to be well-modelled. Residues colored in orange are judged to have a moderate possibility of error. The coordinates or residues colored in red are believed to be inaccurate.

Figure 6: Coordinates of the model of the EGF receptor domains L1 and S1.

The coordinates are in relation to a Cartesian set of orthogonal axes. The final column contains the number 20, 40 or 60 depending on whether the residue containing the atom is judged to be well modelled, have a moderate possibility of error or is believed to be inaccurate respectively.

Figure 7: Coordinates of the model of the EGF receptor domains L2 and S2. The coordinates are in relation to a Cartesian set of orthogonal axes which are independent of the coordinate frame used for the EGF receptor model for L1 and S1 domains. The number in the final column is assigned in the same manner as for Figure 6.

25

30

35

Detailed description of the Invention

Comparative modelling

The comparative modelling method exploits the observation that proteins with more than 25% amino acid identity will almost always have a similar protein backbone (Sander, C. And Schneider, R., 1991, Proteins: Structure Function and Genetics, 9, 56-68). In some cases, proteins will have similar backbone structures with a lower proportion of identical amino acids. By aligning the sequence of a (target) protein which is to be modelled with the sequences with known structures (the templates), a model of the protein can be obtained. Where a region of the target sequence follows the sequences

of a template, the backbone of the target is built to follow that of the template. Where the target sequence can not be aligned to a target sequence, the so-called insertion must be constructed by other means (Greer, J., 1991, Meth. Enzym. pp 239-252).

The MODELLER program (Šali, A and Blundell, T.L., 1993, J. Mol. Biol. 234, 779-815) is a semi-automated approach to building models of proteins given the structures of one or more template structures and an alignment between the sequences of the target protein and the templates. Based on the sequence alignment and a set of rules derived from the analysis of sets of aligned structure, the program generates a series of restraints for variables such as $C\alpha$ - $C\alpha$ distances, main chain and side chain dihedral angles for the target structure. The restraints are expressed in terms of probability density functions (PDFs). The PDFs are combined to yield an expression for the most probable structure as a function of the variables ($C\alpha$ - $C\alpha$ distances etc). The program then attempts to find structures to maximise the value of this function. In effect, the program attempts to minimise a transformed version of this function.

While some comparative modelling approaches involve the explicit building of regions of the model for which there is no sequence alignment with a template, the MODELLER program constructs PDFs for these regions, thus including them in the consideration of constructing a comparative model. It is conceivable that once a comparative model has been constructed using MODELLER that an algorithm to build the structures of these regions is applied.

The MODELLER program was used to build the structures of the extracellular portion of the EGF receptor using the 3D structure of the IGF-1 receptor (as described in PP0585 and PP2598) as a template. The description of the generation of these models is outlined below.

Construction of the alignment

The sequence of the EGF receptor extracellular domain can be divided into four domains, L1, S1, L2 and S2 on the basis of internal homology and homology with the insulin receptor family (Ward, C.W. et al., 1995, Proteins: Structure Function and Genetics 22: 141-153; Bajaj, M. et al., 1987, Biochim. Biophys. Acta 916: 220-226). At least two important sequence motifs are found in the EGF receptor sequence which are conserved in other EGF receptor homologues. The first motif is the sequence CXXXXXXW which is

found towards the end of both L1 and L2 of EGFR (C is cysteine, W is tryptophan and X is any residue). The second motif is the sequence CW where C is the third cysteine of both S1 and S2 (using the assignment of domain boundaries from Ward, C.W. et al., 1995, Proteins: Structure Function and Genetics 22: 141-153). The first motif is found in L1 but not L2 of the insulin receptor family. The second motif is found in the cysteine-rich domain of the insulin receptor family. These motifs are found in L1 and the cysteine-rich domain of the insulin receptor family. Structurally, the first motif corresponds to part of the L1 domain which allows penetration of the tryptophan residue of the second motif into the β -helix. As the first sequence motif is absent from L2 of the IGF-1 receptor, only the L1 and cysteine rich domains of the IGF-1 receptor were used as templates for the building of the EGF receptor extracellular domain models.

Construction of the alignment of L1 and S1

10

15

20

25

30

35

There are two loops in the structure of the L1 domain which emerge from the breadloaf structure. The second loop (residues 86-93 in EGFR L1, 79-85 in IGF-1R L1) is structurally conserved in the L2 domain and differs by one amino acid residue in length. A region of the L2 domain corresponding to the loop was used as an additional template for this region. The sequence of the EGF receptor which corresponds to the first loop is of a different length and does not seem to be consistent with the loop of the IGF-1 receptor. The latter half of the region of EGF receptor sequence can be aligned to a region of sequence in the IGF-1 receptor's L2 domain. A portion of the IGF-1 receptor structure corresponding to this region of sequence plus the structure of flanking sequences was used as an additional template.

The alignment of the S1 domain of the EGF receptor to the IGF-1 receptor used the same combination of modules but involved the use of other modules from the cysteine-rich domain as additional templates. The first and second modules of the EGF module used the third module of the IGF-1 receptor cysteine-rich domain as additional templates. (This module contains two cysteines in disulfide bonds in a 1-3, 2-4 arrangement.) The sixth module of the EGF receptor can be modelled by the fifth module of the IGF-1 receptor, a β -finger.

Construction of the alignment of L2 and S2

The alignment of the EGF receptor sequence for the L2 domain to the L1 domain of the IGF-1 receptor sequence was similar to that of the L1

alignment. There is a 16 amino acid region which occurs roughly in the same region as the first loop in the IGF-1 receptor L1 domain. This region of sequence, which exhibits sequence homology amongst the EGF receptor family of proteins, can not be aligned with any region of the IGF-1 receptor sequence.

The sequence of the S2 domain was found to differ significantly from the S1 domain and suggested that the pattern of disulfide bonds may be different.

5

10

15

20

25

30

35

An analysis of the β -finger structures in the IGF-1 receptor, TNF receptor and laminin- γ structures revealed that the β -fingers could be classed into three types exhibiting some structural and sequence conservation. Two of the structural types are relevent to the IGF-1 and EGF receptors. The first type of β -finger is characterised by structural conservation of the C-terminal portion of the module and also of the linker region after the module. The sequence signature is C...CXXC where the third cysteine residue is the start of another β -finger module. The second type of β -finger is characterised by structural conservation of the N-terminal portion of the module and also of the linker region after the module. The sequence signature is C...CXXXC where the third cysteine is the start of a module whose disufide bonding pattern is 1-3,2-4. The fifth module of the IGF-1 receptor cysteine-rich domain has some structural conservation with both types of β -finger.

The regions of the IGF receptor structure which were used as templates were identified as follows. The structure of IGF-1 receptor from the start of the L1 domain to the end of the first module of the cysteine-rich domain (which contains the conserved tryptophan residue which intercalates into the L1 β -helix) was used to model the corresponding regions of L2 and the start of S2 of the EGF receptor. Additional templates were used and "joined" to other templates by virtue of overlap in the sequence alignment.

The fourth and fifth modules of the IGF-1 receptor cysteine-rich domain were found to align with the sequences of the first and second and also the fourth and fifth putative modules of the S2 domain. The seventh module is the second last module of the S2 domain. The eighth module is neither a β -finger nor a module with the 1-3, 2-4 pattern of disulfide bonds. By elimination and use of the information described in the preceding paragraph, the third and sixth modules were assigned to be β -fingers of the second type. Two parts of the IGF-1 receptor structure were used to model

these two β -fingers. The fifth and seventh modules were used to model the β -finger modules. The linker region after the seventh module was also used. Additional residues after the linker were included to guide the placement of the next module. The positioning of the next module (modules 4 and 7 in S2) is essentially arbitrary and the use the extra residues offers a way of obtaining a plausible placement of the module.

Construction of the model

5

10

15

20

25

30

35

Version 3 of the MODELLER program (Modeler User Guide, October 1996, San Diego Molecular Simulations Inc) was used to build models of the EGF receptor. Models of the L1 and S1 domains were constructed from the alignment shown in Figure 1 using the IGF-1 receptor templates shown and the EGF receptor sequence. Additional distance restraints were generated between $C\alpha$ atoms of selected residues. The restraints were generated as follows. The small IGF-1 receptor templates were superimposed into the structure of the first two domains of the IGF-1 receptor using the $C\alpha$ atoms of the residues which are aligned in Figure 1. Using the Homology module of the Insight II program (Homology User Guide, October 1995, San Diego BIOSYM/MSI) coordinates were built for the EGF receptor residues which are aligned to the IGF-1 receptor coordinates which are in bold typeface. From these coordinates, distance restraints in the form of Gaussian curves were constructed for pairs of $C\alpha$ atoms with a distance less than 50Å. The sigma value of the Gaussian curves was set to be 2Å. A MODELLER run was submitted using the alignment in Figure 1. The built models of proteins attempt to satisfy these restraints in addition to the restraints the program derives from the alignment.

To build models of the L2 and S2 domains, a similar process to that described in the preceding paragraph was used. The alignment used to build the models is shown in Figure 2. Two separate sets of additional restraints were used. The first set of restraints were derived from the IGF-1 receptor templates which are aligned with the first, second and third modules of the EGF receptor S2 domain. The second set of restraints were derived from the IGF-1 receptor templates which were aligned with the fourth, fifith and sixth modules of the EGF receptor S2 domain. Only those residues which are underlined in Figure 2 were used to generate the restraints. The sigma value of the Gaussian curves used to construct the additional restraints was 1Å.

For both sets of models, the MODELLER program constructed 20 models whose coordinates were perturbed from an initial structure by a random value of maximum distance 4Å. The refinement level used was the 'refine1' option in the MODELLER program.

Structure of the EGF receptor model

5

10

15

20

25

30

35

The structure of the L1 and S1 domains of the EGF receptor as determined by the modelling described above is shown in Figure 3, while the structure of the L2 and S2 domains is shown in Figure 4. The superposition of these two models onto the structure of the extracellular domains of the IGF-1 receptor is shown in Figure 5.

The coordinates of the EGF receptor domains L1 and S1 are shown in Figure 6. The coordinates of the EGF receptor domains L2 and S2 are shown in Figure 7.

The structures of the L1 and S1 domains are similar to those of the IGF-1 receptor structure, as expected. There are two major differences in the S1 domain from the structure of the cysteine-rich region of the IGF-1 receptor structure. The sixth module of S2 is smaller that of the IGF-1 receptor and occupies less of the region between the two L domains. The fifth module, another β -finger, contains a large insertion which points away from the L1 domain. The structure of the end of the EGF receptor S1 domain is similar to that of the IGF-1 receptor cysteine-rich domain and is postulated to contain a hinge region between the last module of the S1 domain and the L2 domain.

A region of EGF receptor in L2 which could not be aligned with the IGF-1 receptor sequence includes the amino acids Trp-Pro which are conserved in the EGF receptor family of structure. This sequence motif is not found in the insulin receptor family and may represent a region of novel structure. This region of sequence could not be modelled on the corresponding region of the IGF-1 structure since none of the amino acids of the sequence Glu-Asn-Arg could be placed such that their side chains are in the interior of the β -helix. The asparagine has been observed to be glycosylated (Smith, K.D. et al, 1996, Growth-Factors, 13(1-2), 121-132) and therefore must point out of the structure. The charged residues glutamate and arginine are also expected to point out from the β -helix.

The amino acids 352-367 correspond to a large insertion in the third domain of the EGF receptor. The amino acids 351-364 have been identified as the epitope for several antibodies against the EGF receptor (Wu, D.G et al,

J. Biol. Chem. 1989 264(29):17469-17475). That this region forms a loop which sticks out of the structure is consistent with this region being accessible to the antibodies. The structure itself is difficult to model accurately since its sequence does not correspond to any part of the IGF-1 receptor sequence. The position of this insertion is in approximately the same region where the structures of IGF-1 receptor L1 and L2 domain differ.

The S2 domain adopts a different shape to the S1 domain. The S2 domain adopts a rod-like shape similar to that of the laminin γ-chain (Stetefeld, J. et al., 1996, J. Mol. Biol., 257(3): 644-657). Like the first half of the receptor model, the S2 domain contacts the L2 domain with the first module (this module contains the conserved tryptophan which intercalates into the breadloaf). Unlike S1, the rest of the S2 domain does not make any more contact with the L2 domain. The S2 domain points out from the L2 domain with a different geometry to the manner in which the S1 domain points out from L1.

Putative binding sites of the EGF receptor

From the IGF-1 receptor structure and a number of insulin receptor mutants, one of the regions of insulin binding was proposed to be the lower β sheet of the L1 domain. This surface is characterised by a number of hydrophobic residues which point out of the structure and also the presence of a structurally conserved loop. By analogy, we propose that the analogous β sheets of the L1 and L2 are potential binding sites. These sheets contain a number of hydrophobic residues, conserved amongst EGF receptor family members, which point away from the core of the β -helix structure. Residue 45 of a mutant EGF has been cross-linked to the residue Lysine 465 which is in the last strand of the lower β sheet of the L2 domain. (Summerfield, AE et al, J Biol Chem, 1996, 271(33), 19656-19659). Tyrosine 101 has been cross-linked to the N-terminus of EGF (Woltjer, RL et al, PNAS, 1992, 89(16), 7801-7805). This residue is in the portion of sequence which immediately follows a strand in the lower β sheet of L1.

The side chain of asparagine 1 of EGF has been cross-linked to lysine 336 of the EGF receptor (Wu, DG et al, PNAS, 1990, 87(8), 3151-3155). The latter residue is in the N-terminal helix of the L2 domain and points towards the cavity which is formed when the two halves of the EGF receptor are postioned in a similar arrangement to the first three domains of the IGF-1 receptor. Two nearby residues, Asn 328 and Asn 337 are glycosylated. This

mutation is in a similar position to the insulin receptor mutant S323L which has aberrent insulin binding.

Several insertional mutants of the EGF receptor extracellular domain have been constructed to probe the role of several regions of the receptor (Harte, M.T. and Gentry, L.E., 1995, Arch. Biochem. Biophys. 322(2), 387-389). EGF receptor mutants with insertions at residues 162, 169, 174 and 220 bound EGF with a similar affinity to wild-type EGF receptor but bound TGF- α with a lower affinity than wild-type receptor. The first insertion was located in the region near the end of the L1 domain and the first cysteine of the first module in S1. The second and third insertions were present in the first module of S1 and the fourth insertion was present in the third module of S1. EGF receptor mutants with insertions at postions at 251 and 574 (both in large β -finger modules, the first in S1 and the second in S2) bound twice as much EGF as the wild type receptor. Two insertional mutants which showed reduced EGF receptor binding contained insertions at postions 291 and 474. The former insertion is contained in the seventh module of S1 which is a β -finger. The latter insertion is near the end of the L2 domain.

Another EGF receptor mutant which shows altered ligand binding behaviour is the R497K mutant. The site of this mutation in the first module of the S2 domain and faces the side of the L2 domain opposite to that containing residue 465. This mutant binds EGF in a similar fashion as wild-type receptor but abolishes the high affinity binding site for TGF-α (Moriai, T. et al, 1994, PNAS 91(21), 10217-10221).

It will be appreciated by persons skilled in the art that numerous variations and/or modifications may be made to the invention as shown in the specific embodiments without departing from the spirit or scope of the invention as broadly described. The present embodiments are, therefore, to be considered in all respects as illustrative and not restrictive.

Dated this twenty ninth day of May 1998

5

10

15

20

25

BIOMOLECULAR RESEARCH
INSTITUTE LTD
Patent Attorneys for the Applicant:

F B RICE & CO

Figure 1

IGF1R	YVKIR
IGF1R	EICGPGIDIRNDYQQLKRLEN-CTVIEGYLHILLISKAEDYRSY
	lypgevc-pgmdirnnltrlhelen-csvieghlqillmfktrpedfrdl
InsR	TypgevC-pg-matrix
EGFR	leekkvc-qgtsnkltqlgtfedhflslqrmfnncevvlgnleityvqrny
ErbB2	c-tgtdmklrlpaspethldmlrhlyqgcqvvqgnleltylptna
ErbB3	c-pgtlnglsvtgdaenqyqtlyklyercevvmgnleivltghna
	c-agtenklsslsdleggyral kyyencevvmgnleitsiehnr
ErbB4	C-agcentissisateddalar waanne was a comment
IGF1R	HSHALVSLSFLKNLRLIL ILGEEQLEGNYSF
	RFPKLTVITEYLLLFRVAGLESLGDLFPNLTVIRGWKLFY-NYALVIF
IGF1R	REPUBLISHED AVAILABLE TO THE PROPERTY OF THE P
InsR	sfpklimitdylllfrvygleslkdlfpnltvirgsrlff-nyalvif
EGFR	dlsflktiqevagyvlia-Intveriplenlqiirgnmyyensyalavl
ErbB2	slsflqdiqevqgyvlia-hnqvrqvplqrlrivrgtqlfednyalavl
ErbB3	dlsflqwirevtgyvlva-mnefstlplpnlrvvrgtqvydgkfaifvm
	dlsflrsvrevtgyvlva-lnqfrylplenlriirgtklyedryalaif
ErbB4	
IGF1R	
IGF1R	EMTNLKDIGLYNLRNITRGAIRIEKNADLCYLSTVDWSLILDA
	emv·····hlkelglynlmnitrgsvrieknnelcylatidwsrild··s
InsR	emv
EGR_19	snydanktglkelpmrnlqeilhgavrfsnnpalcnvesiqwrdivssdf
ErbB2	dngdplnnttpvtgaspgglrelqlrslteilkggvliqrnpqlcyqdtilwkdifhknn
ErbB3	lnyntnsshalrqlrltqlteilsggvyiekndklchmdtidwrdivrdrd
ErbB4	lnyrkdgnfglqelglknlteilnggvyvdqnkflcyadtihwqdivrnpw
EIDB4	Invikagii giqoigimicoiingg.j.vaq
IGF1R	<u>CHPE</u> <u>C</u> L-GS <u>C</u> SAPDNDTA
IGF1R	VSNNYIV-GNK-PPKECGDLCPGTMEEKPMCEKTTINNEYNYRCWTTNR
	vednhiv-lnkddneecgdicpgtakgktncpatvingqfvercwthsh
InsR	veuliniv inkulineegate patungkenep avanga angena
EGFR	lsnmsmdfqnh-lg-scq-kcdpscpngscwga-geen
ErbB2	qlaltlidtnr-sr-ach-pcspmckgsrcwge-ssed
ErbB3	aeivvkdngr-scp-pchevck-grcwgp-gsed
ErbB4	psnltlvstng-ss-gcg-rchksct-grcwgp-tenh
	1 1 1
IGF1R	C <u>CHPECLGS</u> <u>C</u> SAPDNDTA <u>C</u>
IGF1R	CQGKRACTENNECCHPECLGSCSAPDNDTACVACRHYY
	cqkvcptickshgctaeglcchseclgncsqpddptkcvacrnfy
InsR	cqkltkiicaqqcsgrcrgk-spsdcchnqcaagctgp-resdclvcrkfr
EGFR	cqxItxiicaqqcsgicigx-spsdccimqcaqqctgy icadalaalafa
ErbB2	cqsltrtvcaggca-rckgp-lptdccheqcaagctgp-khsdclaclhfn
ErbB3	cqtltkticapqcnghcfgp-npnqcchdecaggcsgp-qdtdcfacrhfn
ErbB4	cqtltrtvcaeqcdgrcygp-yvsdcchrecaggcsgp-kdtdcfacmnfn
	1 2 2 2 2 23 3 3 3 4
IGF1R	CVPA CPPN
IGF1R	YAGVCVPACPANILSAES
InsR	ldgrcvetcpqdlhhkcknsr
	deatckdtcpplmlynpttyqmdvnpegkysfg-atcvkkcprn
EGFR	dealerateppinitynpteyquavnpega yatg deavan opin
ErbB2	hsgicelhcpalvtyntdtfesmpnpegrytfg-ascvtacpyn
ErbB3	dsgacvprcpqplvynkltfqlepnphtkyqyg-gvcvascphn
ErbB4	dsgacvtqcpqtfvynpttfqlehnfnakytyg-afcvkkcphn
	4 5 5 6
IGF1R	<u>TYRFEGWRC</u>
IGF1R	SDSEGFVIHD-GECMQECPSGFIRNG-SQ-SMYCIPCEGPCPKV
InsR	rqqchqyvihnnkcipecpsqytmns-snllctpclqpcpkv
EGFR	yvvtdhgscvracgadsyeme-edgvrkckkcegpcrkv
	ylstdvgsctlvcplhnqevtaedgtqrcekcskpcarv
ErbB2	yistavgsciivcpiimqevtaeugtqiteacaapearv
ErbB3	fvvdq-tscvracppdkmevd-knglkmcepcgglcpka
ErbB4	fvvds-sscvracpsskmeve-engikmckpctdicpka
	6 7 7 8 8

Figure 2

IGF1R IGF1R InsR EGFR ErbB2 ErbB3 ErbB4	EICGPGIDIRN······DYQQLKRLENCTVIEGYLHILLIS············· lypgevc·pgmdirnn·······ltrlhelencsvieghlqillmf········· c·ngigigefkdslsinatnikhfknctsisgdlhilpvafrgdsfthtppldp c·yglgmehlrevravtsaniqefagckkifgslaflpesfdgdpasntaplqp c·egtgsgsrfqt··vdssnidgfvnctkilgnldflitglngdpwhkipaldp c·dgigtgslmsaqtvdssnidkfinctkingnliflvtgihgdpynaieaidp
IGF1R IGF1R InsR EGFR ErbB2 ErbB3 ErbB4	ILGEEQLEGNKAEDYRSYR-FPKLTVITEYLLLFRVAGLESLGDLFPNLTVIRGWKLFY-Nktrpedfrdls-fpklimitdylllfrvygleslkdlfpnltvirgsrlff-n qeldilktvkeitgflliqawpenrtdl-hafenleiirgrtkqhgq eqlqvfetleeitgylyisawpdslpdl-svfqnlqvirgrilhnga eklnvfrtvreitgylniqswpphmhnf-svfsnlttiggrslynrg eklnvfrtvreitgflniqswppnmtdf-svfsnlvtiggrvlys-g
IGF1R IGF1R InsR EGFR ErbB2 ErbB3 ErbB4	YSF YALVIFEMTNLKDIGLYNLRNITRGAIRIEKNADLCYLSTVDWSLILDAVSNNYIVGN yalvifemvhlkelglynlmnitrgsvrieknnelcylatidwsrildsvednhivln fslavvsl-nitslglrslkeisdgdviisgnknlcyantinwkklfgt-sqqktkiisn ysltlqgl-giswlglrslrelgsglalihhnthlcfvhtvpwdqlfrn-phqallhtan fsllimknlnvtslgfrslkeisagriyisanrqlcyhhslnwtkvlrgpteerldikhn lslilkqq-gitslqfqslkeisagniyitdnsnlcyyhtinwttlfst-inqrivirdn
IGF1R IGF1R InsR EGFR ErbB2 ErbB3 ErbB4	CHPE
IGF1R IGF1R EGFR ErbB2 ErbB3 ErbB4	YYAGVCVPACPPNTYRFEGWRC CHPECLGSCSAPDNDTAC CPSGFIRNGSQSMYCIPCEG srgrecvdkckllegeprefvenseciqchpeclpqa-mnitctgr-gpdnc lrgqecveecrvlqglpreyvnarhclpchpecqpqn-gsvtcfgp-eadqc srggvcvthcnflngeprefaheaecfschpecqpme-gtatcngs-gsdtc srgriciescnlydgefrefengsicvecdpqcekmedglltchgp-gpdnc 2 3 3 4 4 4 4
IGF1R IGF1R EGFR ErbB2 ErbB3 ErbB4	VACRHYYYAGVCVPACPPNTYRF······EGW····RC CHPECLGSCSA CPSGFIRN········GSQSMYCIPCEG iqcahyidgphcvktcpagvmgenntl·vwkyadagh······vchlchpnctygctg vacahykdppfcvarcpsgvkpdlsympiwkfpdeeg·····acqpcpincthscvd aqcahfrdgphcvsscphgvlgak··gpiykypdvqn·····ecrpchenctqgckg tkcshfkdgpncvekcpdglqgan··sfifkyadpdr·····echpchpnctqgcng 5 5 6 6 7 7 7
IGF1R IGF1R EGFR ErbB2 ErbB3 ErbB4	PDNDTAC p-glegcptngpkips 1-ddkgc p-elqdc p-tshdc 7

MOTA	3	N	LEU	1	60.296	19.487	71.703	1.00 60.00
MOTA	5	CA	LEU	1	59.489	18.323	71.270	1.00 60.00
MOTA	6	CB	LEU	1	59.216	18.373	69.755	1.00 60.00
MC	7	CG	LEU	1	58.289	19.520	69.302	1.00 60.00
WO T	8		LEU	1	56.879	19.357	69.888	1.00 60.00
MOTA	9	CD2	LEU	1	58.903	20.902	69.580	1.00 60.00
MOTA	10	С	LEU	1	60.208	17.051	71.563	1.00 60.00
MOTA	11	0	LEU	1	61.087	16.999	72.421	1.00 60.00
MOTA	12	N	GLU	2	59.824	15.976	70.853	1.00 60.00
MOTA	14	CA	GLU	2	60.463	14.712	71.045	1.00 60.00
ATOM	15	CB	GLU	2	59.551	13.646	71.675	1.00 60.00
MOTA	16	CG	GLU	2	59.244	13.895	73.153	1.00 60.00
ATOM	17	CD	GLU	2	60.480	13.515	73.955	1.00 60.00
ATOM	18	OE1		2	60.436	13.645	75.208	1.00 60.00
MOTA	19	OE2	GLU	2	61.485	13.084	73.327	1.00 60.00
ATOM	20	С	GLU	2	60.842	14.217	69.692 68.714	1.00 60.00 1.00 60.00
ATOM	21	0	GLU	2	60.830	14.962		
ATOM	22	N	GLU	3	61.212	12.928	69.615	1.00.60.00
MOTA	24	CA	GLU	3	61.583	12.345	68.364	1.00 60.00 1.00 60.00
MOTA	25	CB	GLU	3	62.012	10.876	68.513 69.116	1.00 60.00
ATOM	26	CG	GLU	3	60.926	9.981 8.616	69.395	1.00 60.00
ATOM	27	CD OF1	GLU	3 3	61.538	8.481	69.232	1.00 60.00
ATOM	28	OE1	GLU	3	62.780 60.774	7.691	69.781	1.00 60.00
ATOM	29	OE2 C	GLU	3	60.774	12.401	67.479	1.00 60.00
ATOM	30 31	0	GLU GLU	3	60.473	12.789	66.316	1.00 60.00
MOTA	32	N	LYS	4	59.209	12.029	68.025	1.00 60.00
ATOM ATOM	34	CA	LYS	4	58.014	12.055	67.238	1.00 60.00
ATOM	35	CB	LYS	4	56.883	11.191	67.818	1.00 60.00
ATOM	36	CG	LYS	4	55.752	10.920	66.828	1.00 60.00
ATOM	37	CD	LYS	4	56.125	9.887	65.766	1.00 60.00
ATOM	38	CE	LYS	4	56.026	8.449	66.279	1.00 60.00
ATOM	39	NZ	LYS	4	56.881	8.282	67.477	1.00 60.00
ATOM	43	С	LYS	4	57.530	13.466	67.246	1.00 60.00
ATOM	44	0	LYS	4	57.866	14.236	68.144	1.00 60.00
ATOM	45	N	LYS	5	56.738	13.855	66.229	1.00 40.00
ATOM	47	CA	LYS	5	56.253	15.201	66.238	1.00 40.00
ATOM	48	CB	LYS	5	57.260	16.226	65.673	1.00 40.00
MOTA	49	CG	LYS	5	56.923	17.682	66.018	1.00 40.00
ATOM	50	CD	LYS	5	58.055	18.677	65.752	1.00 40.00
ATOM	51	CE	LYS	5	57.687	20.121	66.109	1.00 40.00
MOTA	52	NZ	LYS	5	58.848	21.016	65.897	1.00 40.00
ATOM	56	С	LYS	5	55.006	15.267	65.418	1.00 40.00
ATOM	57	0	LYS	5	54.478	14.249	64.973	1.00 40.00
MOTA	58	N	VAL	6	54.492	16.496	65.229	1.00 40.00
ATOM	60	CA	VAL	6	53.310	16.742	64.461	1.00 40.00
ATOM	61	CB	VAL	6	52.718	18.092	64.761	1.00 40.00
MOTA	62	CG1	VAL	6	51.500	18.346	63.858	1.00 40.00
MOTA	63	CG2		6	52.397	18.149	66.263	1.00 40.00
ATOM	64	C	VAL	6	53.718	16.713	63.024	1.00 40.00
ATOM	65	0	VAL	6	54.901	16.835	62.709	1.00 40.00 1.00 40.00
ATOM	66	N	CYS	7	52.749	16.513	62.107 60.711	1.00 40.00
ATOM	68	CA	CYS	7	53.077	16.507	60.050	1.00 40.00
ATOM	69	CB	CYS	7	53.033	15.116	60.030	1.00 40.00
ATOM	70	SG	CYS	7	51.430	14.278	59.995	1.00 40.00
ATOM	71	C	CYS	7 7	52.115 51.133	17.399 17.864	60.567	1.00 40.00
ATOM	72 73	O N	CYS	8	52.398	17.681	58.711	1.00 40.00
MOTA	73 75	N CA	GLN GLN	8	51.565	18.559	57.947	1.00 40.00
MOTA ATOM	75 76	CB	GLN	8	52.249	19.057	56.664	1.00 40.00
ATOM ATOM	76 77	CG	GLN	8	52.592	17.934	55.683	1.00 40.00
ATOM ATOM	7 / 78	CD	GLN	8	53.346	18.542	54.510	1.00 40.00
ATOM	78 79	OE1	GLN	8	54.534	18.846	54.609	1.00 40.00
ATOM	80		GLN	8	52.638	18.727	53.364	1.00 40.00
NI ON	30	.,		•				

Figure 6

•	·								
l A	83	С	GLN	8	50.310	17.853	57.564		40.00
ATOM	84	0	GLN	8	50.163	16.646	57.754		40.00
ATOM	85	N	GLY	9	49.354	18.626	57.021		40.00
OM	87	CA	GLY	9 9	48.094 47.630	18.108 19.103	56.597 55.597		40.00
MOM	88 89	С 0	GLY GLY	9	46.441	19.207	55.311		40.00
ATOM ATOM	90	N	THR	10	48.583	19.883	55.052		40.00
MOTA	92	CA	THR	10	48.228	20.808	54.023		40.00
ATOM	93	СВ	THR	10	49.373	21.659	53.561	1.00	40.00
АТОМ	94	OG1		10	49.884	22.424	54.644	1.00	40.00
ATOM	96	CG2		10	48.875	22.586	52.440		40.00
MOTA	97	С	THR	10	47.861	19.897	52.908	1.00	
ATOM	98	0	THR	10	48.727	19.416	52.179		40.00
ATOM	99	N	SER	11	46.547	19.653	52.754		40.00
ATOM	101	CA	SER	11	46.075	18.684 19.088	51.822 50.356		40.00
ATOM	102	CB	SER SER	11 11	46.297 45.542	20.251	50.051		40.00
ATOM ATOM	103 105	OG C	SER	11	46.842	17.433	52.099		40.00
ATOM	106	0	SER	11	47.460	16.877	51.193		40.00
ATOM	107	N	ASN	12	46.840	16.960	53.368	1.00	40.00
ATOM	109	CA	ASN	12	47.566	15.750	53.624	1.00	40.00
MOTA	110	CB	ASN	12	47.743	15.405	55.113		40.00
MOTA	111	CG	ASN	12	48.722	14.241	55.199		40.00
ATOM	112		ASN	12	49.066	13.628	54.189		40.00
MOTA	113		ASN	12	49.182	13.922	56.438		40.00
ATOM	116	C	ASN	12 12	46.715 45.802	14.696 14.172	53.020 53.657		40.00
MOTA	117 118	O N	ASN LYS	13	46.993	14.364	51.749		40.00
MOTA MOTA	120	CA	LYS	13	46.144	13.421	51.104		40.00
ATOM	121	СВ	LYS	13	45.416	14.008	49.884	1.00	40.00
ATOM	122	CG	LYS	13	46.363	14.573	48.825		40.00
MOTA	123	CD	LYS	13	45.675	14.921	47.505		40.00
MOTA	124	CE	LYS	13	46.617	15.551	46.477		40.00
MOTA	125	NZ	LYS	13	45.877	15.863	45.233		40.00
MOTA	129	С	LYS	13	46.913	12.234 12.310	50.648 49.737		40.00
MOTA	130 131	N O	LYS LEU	13 14	47.735 46.652	12.310	51.310	1.00	
ATOM ATOM	131	CA	LEU	14	47.211	9.852	50.895		40.00
ATOM	134	CB	LEU	14	46.976	8.748	51.947		40.00
ATOM	135	CG	LEU	14	47.540	7.360	51.598	1.00	40.00
MOTA	136	CD1	LEU	14	46.871	6.739	50.371		40.00
MOTA	137	CD2	LEU	14	49.076	7.413	51.504		40.00
MOTA	138	С	LEU	14	46.341	9.560	49.715		40.00
MOTA	139	0	LEU	14	45.124	9.706	49.797 48.565		40.00
MOTA	140 142	N	THR THR	15 15	46.926 46.046	9.175 8.932	47.460		20.00
MOTA MOTA	142	CA CB	THR	15	45.720	10.173	46.680		20.00
ATOM	144	OG1		15	44.734	9.894	45.699		20.00
ATOM	146	CG2	THR	15	47.008	10.693	46.016	1.00	20.00
ATOM	147	С	THR	15	46.662	7.957	46.516		20.00
MOTA	148	0	THR	15	47.882	7.845	46.427		20.00
MOTA	149	N	GLN	16	45.812	7.213	45.784		20.00
MOTA	151	CA	GLN	16	46.308	6.267	44.830		20.00
MOTA	152	CB	GLN	16	45.194	5.417	44.193 43.166		20.00
MOTA	153	CG	GLN GLN	16 16	45.677 45.903	4.384 5.076	41.826		20.00
ATOM ATOM	154 155	CD OE 1	GLN	16	46.999	5.031	41.269		20.00
ATOM	156		GLN	16	44.838	5.737	41.296		20.00
ATOM	159	C	GLN	16	46.943	7.055	43.737		20.00
ATOM	160	0	GLN	16	48.054	6.749	43.312		20.00
ATOM	161	N	LEU	17	46.237	8.105	43.275		20.00
MOTA	163	CA	LEU	17	46.700	8.915	42.189		20.00
ATOM	164	CB	LEU	17	45.794	10.142	41.941		20.00
MOTA	165	CG	LEU	17	46.211	11.086	40.792	1.00	20.00

6 6

MOTA	166		LEU	17	47.470	11.904	41.126	1.00 20.00
ATOM	167	CD2		17	46.324	10.326	39.462	1.00 20.00
MOTA	168	С	LEU	17	48.081	9.372	42.501	1.00 20.00
MC	169	0	LEU	17	48.436	9.591	43.657	1.00 20.00
₽±OW	170	N	GLY	18	48.912	9.499	41.455	1.00 20.00
MOTA	172	CA	GLY	18	50.262	9.939	41.643	1.00 20.00
MOTA	173	C	GLY	18	51.057	9.374	40.516	1.00 20.00
MOTA	174	0	GLY	18	50.876	8.222	40.127	1.00 20.00
MOTA	175	N	THR	19	51.972	10.189	39.961	1.00 20.00
MOTA	177	CA	THR	19	52.782	9.709 10.769	38.886	1.00 20.00 1.00 20.00
ATOM	178	CB	THR	19	53.666 54.347	10.769	38.292 37.158	1.00 20.00
ATOM	179	OG1		19 19	54.670	11.258	39.347	1.00 20.00
ATOM	181	CG2	THR THR	19	53.635	8.619	39.436	1.00 20.00
MOTA MOTA	182 183	С 0	THR	19	53.833	7.588	38.796	1.00 20.00
	184	N	PHE	20	54.148	8.817	40.664	1.00 20.00
ATOM ATOM	186	CA	PHE	20	54.987	7.834	41.278	1.00 20.00
ATOM	187	CB	PHE	20	55.635	8.347	42.579	1.00 20.00
ATOM	188	CG	PHE	20	56.659	7.367	43.040	1.00 20.00
ATOM	189	CD1		20	57.923	7.381	42.496	1.00 20.00
MOTA	190	CD2		20	56.398	6.515	44.089	1.00 20.00
MOTA	191	CE1	PHE	20	58.900	6.537	42.967	1.00 20.00
MOTA	192	CE2	PHE	20	57.373	5.673	44.569	1.00 20.00
ATOM	193	cz	PHE	20	58.627	5.682	44.007	1.00 20.00
ATOM	194	C	PHE	20	54.090	6.693	41.619	1.00 20.00
MOTA	195	O	PHE	20	52.871	6.793	41.490	1.00 20.00
ATOM	196	N	GLU	21	54.671	5.558	42.047	1.00 20.00
ATOM	198	CA	GLU	21	53.833	4.450	42.396	1.00 20.00
ATOM	199	СВ	GLU	21	54.593	3.121	42.541	1.00 20.00
ATOM	200	CG	GLU	21	55.122	2.564	41.219	1.00 20.00
ATOM	201	CĐ	GLU	21	55.844	1.259	41.522	1.00 20:00
MOTA	202	OE1	GLU	21	56.277	0.584	40.550	1.00 20.00
MOTA	203	OE2	GLU	21	55.970	0.918	42.729	1.00 20.00
ATOM	204	С	GLU	21	53.254	4.782	43.725	1.00 20.00
MOTA	205	0	GLU	21	53.828	4.458	44.764	1.00 20.00
MOTA	206	N	ASP	22	52.087	5.454	43.721	1.00 20.00
ATOM	208	CA	ASP	22	51.483	5.831	44.961	1.00 20.00
MOTA	209	СВ	ASP	22	50.885	7.248	44.940	1.00 20.00
MOTA	210	CG	ASP	22	50.624	7.676	46.376	1.00 20.00
MOTA	211		ASP	22	50.950	8.847	46.707	1.00 20.00 1.00 20.00
MOTA	212		ASP	22	50.091	6.845	47.159	1.00 20.00
ATOM	213	C	ASP	22	50.379	4.864	45.231	1.00 20.00
ATOM	214	0	ASP	22	49.567	4.565 4.335	44.357 46.467	1.00 20.00
ATOM	215	N	HIS	23	50.341 49.347	3.384	46.853	1.00 40.00
ATOM	217	CA CB	HIS	23 23	49.761	1.915	46.649	1.00 40.00
ATOM	218 219		HIS HIS	23	49.838	1.473	45.220	1.00 40.00
АТОМ АТОМ	220		HIS	23	50.917	1.323	44.403	1.00 40.00
ATOM	221	ND1		23	48.750	1.052	44.486	1.00 40.00
ATOM	223	CE1		23	49.222	0.673	43.271	1.00 40.00
ATOM	224	NE2		23	50.530	0.820	43.174	1.00 40.00
ATOM	226	C	HIS	23	49.165	3.538	48.323	1.00 40.00
ATOM	227	o	HIS	23	49.412	4.596	48.899	1.00 40.00
ATOM	228	N	PHE	24	48.700	2.447	48.952	1.00 40.00
ATOM	230	CA	PHE	24	48.497	2.366	50.365	1.00 40.00
ATOM	231	CB	PHE	24	47.878	1.032	50.798	1.00 40.00
ATOM	232	CG	PHE	24	47.619	1.074	52.265	1.00 40.00
ATOM	233	CD1	PHE	24	46.418	1.545	52.742	1.00 40.00
ATOM	234	CD2		24	48.565	0.632	53.162	1.00 40.00
ATOM	235		PHE	24	46.157	1.564	54.092	1.00 40.00
ATOM	236	CE2	PHE	24	48.312	0.655	54.513	1.00 40.00
ATOM	237	CZ	PHE	24	47.105	1.118	54.981	1.00 40.00
ATOM	238	C	PHE	24	49.858	2.476	50.972	1.00 40.00
ATOM	239	0	PHE	24	50.016	2.876	52.124	1.00 40.00

.

A .	554	С	LEU	55	48.807	3.909	63.695		40.00	
ATOM	555	0	LEU	55	47.740	4.362	64.108		40.00	
MOTA	556	N	LYS	56	49.696	3.297	64.498		40.00	
MC	558	CA	LYS	56	49.497	3.101	65.901		40.00	
A 1.OM	559	CB	LYS	56	50.576	2.185 1.939	66.506 68.008		40.00	
MOTA	560	CG	LYS	56 56	50.417 51.365	0.867	68.554		40.00	
ATOM	561 562	CD CE	LYS LYS	56	52.806	1.355	68.725		40.00	
ATOM	563	NZ	LYS	56	53.656	0.266	69.255		40.00	
ATOM ATOM	567	C	LYS	56	49.574	4.403	66.636	1.00	40.00	
ATOM	568	0	LYS	56	48.753	4.684	67.506		40.00	
ATOM	569	N	THR	57	50.566	5.235	66.273	1.00	20.00	
ATOM	571	CA	THR	57	50.892	6.456	66.958		20.00	
MOTA	572	CB	THR	5 7	52.151	7.079	66.433		20.00	
MOTA	573	OG1	THR	57	52.558	8.147	67.275		20.00	
MOTA	575	CG2	THR	57	51.890	7.590	65.006		20.00	
ATOM	576	С	THR	57	49.837	7.520	66.919		20.00	
MOTA	577	0	THR	57	49.634 49.134	8.217 7.669	67.911 65.781		20.00	
MOTA	578	N	ILE	58 58	49.134	8.749	65.585		20.00	
ATOM	580 501	CA CB	ILE ILE	58	47.381	8.578	64.339		20.00	
ATOM ATOM	581 582	CG2		58	46.356	9.724	64.289		20.00	
ATOM	583	CG1		58	48.286	8.508	63.097	1.00	20.00	
ATOM	584	CD1	ILE	58	49.117	9.770	62.877		20.00	
ATOM	585	С	ILE	58	47.233	8.931	66.716		20.00	
ATOM	586	0	ILE	58	46.204	8.260	66.774		20.00	
MOTA	587	N	GLN	59	47.579	9.822	67.672		20.00	
ATOM	589	CA	GLN	59	46.734	10.199	68.773		20.00	
MOTA	590	CB	GLN	59	47.517	10.863	69.915		20.00	
MOTA	591	CG	GLN	59	48.143	12.195	69.501 70.736		20.00	
ATOM	592	CD	GLN	59 59	48.757 49.685	12.832 12.297	71.340		20.00	
ATOM	593	NE2	GLN GLN	59	48.215	14.014	71.129		20.00	•
ATOM ATOM	594 597	C	GLN	59	45.679	11.189	68.377		20.00	
ATOM	598	0	GLN	59	44.530	11.095	68.808		20.00	
ATOM	599	N	GLU	60	46.048	12.190	67.550		20.00	
ATOM	601	CA	GLU	60	45.095	13.224	67.262		20.00	
ATOM	602	CB	GLU	60	45.290	14.461	68.155		20.00	
ATOM	603	CG	GLU	60	44.250				20.00	
ATOM	604	CD	GLU	60	44.647	16.742	68.822 69.530		20.00	
ATOM	605		GLU	60	43.756 45.848	17.283 17.123	68.787		20.00	
ATOM	606		GLU	60 60	45.206	13.695	65.848		20.00	
MOTA	607 608	C O	GLU GLU	60	46.181	13.420	65.153		20.00	
ATOM ATOM	609	N	VAL	61	44.145	14.383	65.381		20.00	
MOTA	611	CA	VAL	61	44.109	15.031	64.104		20.00	
ATOM	612	СВ	VAL	61	43.283	14.315	63.069		20.00	
ATOM	613	CG1	VAL	61	41.843	14.146	63.582		20.00	
ATOM	614	CG2	VAL	61	43.376	15.105	61.752		20.00	
ATOM	615	С	VAL	61	43.469	16.347	64.419		20.00	
ATOM	616	0	VAL	61	42.399	16.407	65.018		20.00	
ATOM	617	N	ALA	62	44.133	17.447	64.037 64.335		20.00	
MOTA	619	CA	ALA	62 62	43.683 44.789	18.774 19.827	64.147		20.00	
MOTA	620	CB C	ALA ALA	62	42.528	19.201	63.488		20.00	
ATOM ATOM	621 622	0	ALA	62	42.002	20.294	63.685		20.00	
ATOM	623	N	GLY	63	42.161	18.409	62.461		20.00	
ATOM	625	CA	GLY	63	41.087	18.809	61.595		20.00	
ATOM	626	C	GLY	63	40.025	17.758	61.501		20.00	
ATOM	627	0	GLY	63	39.332	17.458	62.470		20.00	
MOTA	628	N	TYR	64	39.856	17.187	60.289		20.00	
ATOM	630	CA	TYR	64	38.849	16.189	60.073		20.00	
MOTA	631	CB	TYR	64	37.728	16.639	59.114		20.00	
ATOM	632	CG	TYR	64	38.295	16.800	57.741	1.00	20.00	

•

(i)

ATOM	633	CD1	TYR	64	38.320	15.737	56.867	1.00 20.00
MOTA	634	CE1	TYR	64	38.835	15.874	55.599	1.00 20.00
ATOM	635	CD2	TYR	64	38.791	18.013	57.320	1.00 20.00
ЭM	636	CE2	TYR	64	39.310	18.157	56.054	1.00 20.00
OM	637	CZ	TYR	64	39.335	17.086	55.193	1.00 20.00
ATOM	638	ОН	TYR	64	39.880	17.228	53.899	1.00 20.00
ATOM	640	C	TYR	64	39.501	14.990	59.462	1.00 20.00
ATOM	641	ō	TYR	64	40.654	15.050	59.040	1.00 20.00
ATOM	642	N	VAL	65	38.779	13.849	59.438	1.00 20.00
ATOM	644	CA	VAL	65	39.311	12.653	58.845	1.00 20.00
	645	CB	VAL	65	39.362	11.494	59.793	1.00 20.00
ATOM	646		VAL	65	39.871	10.259	59.032	1.00 20.00
ATOM	647	CG2		65	40.235	11.888	60.997	1.00 20.00
ATOM	648	CG2	VAL	65	38.415	12.249	57.708	1.00 20.00
ATOM		0	VAL	65	37.194	12.259	57.835	1.00 20.00
ATOM	649			66	39.004	11.884	56.549	1.00 20.00
ATOM	650	N	LEU	66	38.207	11.501	55.412	1.00 20.00
ATOM	652	CA	LEU				54.268	1.00 20.00
АТОМ	653	CB	LEU	66	38.272	12.530		1.00 20.00
ATOM	654	CG	LEU	66	37.431	12.161	53.034	
MOTA	655		LEU	66	35.934	12.089	53.374	1.00 20.00
MOTA	656		LEU	66	37.726	13.110	51.858	1.00 20.00
MOTA	657	С	LEU	66	38.691	10.186	54.867	1.00 20.00
MOTA	658	0	LEU	66	39.892	9.925	54.848	1.00 20.00
ATOM	659	N	ILE	67	37.758	9.312	54.410	1.00 20.00
ATOM	661	CA	ILE	67	38.160	8.028	53.887	1.00 20.00
MOTA	662	СВ	ILE	67	38.248	6.965	54.942	1.00 20.00
ATOM	663	CG2	ILE	67	39.328	7.382	55.955	1.00 20.00
MOTA	664	CG1	ILE	67	36.866	6.722	55.570	1.00 20.00
MOTA	665	CD1	ILE	67	36.803	5.463	56.434	1.00 20.00
MOTA	666	С	ILE	67	37.214	7.495	52.835	1.00 20.00
ATOM	667	0	ILE	67	36.047	7.879	52.768	1.00 20.00
ATOM	668	N	ALA	68	37.738	6.584	51.975	1.00 40.00
ATOM	670	CA	ALA	68	37.034	5.902	50.920	1.00 40.00
ATOM	671	CB	ALA	68	36.603	6.825	49.767	1.00 40.00
ATOM	672	С	ALA	68	38.026	4.927	50.364	1.00 40.00
ATOM	673	0	ALA	68	38.926	5.308	49.616	1.00 40.00
ATOM	674	N	LEU	69	37.895	3.634	50.721	1.00 40.00
ATOM	676	CA	LEU	69	38.868	2.675	50.282	1.00 40.00
ATOM	677	CB	LEU	69	39.908	2.322	51.360	1.00 40.00
ATOM	678	CG	LEU	69	40.796	3.485	51.840	1.00 40.00
MOTA	679	CD1	LEU	69	39.979	4.582	52.541	1.00 40.00
ATOM	680	CD2	LEU	69	41.929	2.963	52.738	1.00 40.00
MOTA	681	С	LEU	69	38.173	1.386	49.995	1.00 40.00
MOTA	682	0	LEU	69	36.949	1.285	50.065	1.00 40.00
ATOM	683	N	ASN	70	38.970	0.364	49.626	1.00 20.00
ATOM	685	CA	ASN	70	38.448	-0.949	49.395	1.00 20.00
ATOM	686	СВ	ASN	70	38.493	-1.389	47.922	1.00 20.00
ATOM	687	CG	ASN	70	37.404	-0.633	47.175	1.00 20.00
ATOM	688		ASN	70	36.218	-0.806	47.450	1.00 20.00
ATOM	689	ND2		70	37.813	0.230	46.207	1.00 20.00
ATOM	692	C	ASN	70	39.314	-1.885	50.172	1.00 20.00
	693	0	ASN	70	40.387	-1.505	50.640	1.00 20.00
MOTA	694	N	THR	71	38.830	-3.132	50.348	1.00 20.00
ATOM	696	CA	THR	71	39.493	-4.195	51.056	1.00 20.00
ATOM						-4.813	50.298	1.00 20.00
ATOM	697	CB	THR	71 71	40.639	-4.813	50.238	1.00 20.00
ATOM	698	OG1	THR	71 71	41.089			1.00 20.00
ATOM	700	CG2	THR	71 71	41.786	-3.803	50.147	
ATOM	701	С	THR	71	39.925	-3.813	52.440	1.00 20.00
ATOM	702	0	THR	71	40.538	-4.614	53.145	1.00 20.00
ATOM	703	N	VAL	72	39.580	-2.590	52.888	1.00 20.00
ATOM	705	CA	VAL	72	39.932	-2.171	54.215	1.00 20.00
АТОМ	706	CB	VAL	72	40.149	-0.691	54.328	1.00 20.00
MOTA	707	CG1		72	40.470	-0.349	55.792	1.00 20.00
ATOM	708	CG2	VAL	72	41.247	-0.280	53.333	1.00 20.00

F	709	С	VAL	72	38.758	-2.514	55.074	1.00 20.00
ATOM	710	0	VAL	72	37.671	-1.965	54.911	1.00 20.00
ATOM	711	N	GLU	73	38.955	-3.480	55.988	1.00 20.00
MC	713	CA	GLU	73	37.923	-3.967	56.856	1.00 20.00
MOLA	714	CB	GLU	73	38.349	-5.279	57.534	1.00 20.00
ATOM	715	CG	GLU	73	38.561	-6.403	56.516	1.00 20.00 1.00 20.00
ATOM	716	CD	GLU	73	39.076	-7.630 -7.542	57.251 58.493	1.00 20.00
MOTA	717			73	39.263 39.289	-8.674	56.578	1.00 20.00
ATOM	718	OE2	GLU	73 73	37.499	-3.001	57.921	1.00 20.00
MOTA	719 720	C O	GLU GLU	73	36.306	-2.829	58.162	1.00 20.00
ATOM	721	N	ARG	74	38.454	-2.328	58.590	1.00 20.00
ATOM ATOM	723	CA	ARG	74	38.077	-1.471	59.680	1.00 20.00
ATOM	724	СВ	ARG	74	38.258	-2.160	61.043	1.00 20.00
ATOM	725	CG	ARG	74	37.398	-3.418	61.198	1.00 20.00
ATOM	726	CD	ARG	74	37.779	-4.286	62.399	1.00 20.00
MOTA	727	NE	ARG	74	39.121	-4.874	62.119	1.00 20.00
ATOM	729	CZ	ARG	74	40.196	-4.529	62.887	1.00 20.00
ATOM	730	NH1	ARG	74	40.047	-3.644	63.915	1.00 20.00
ATOM	733	NH2	ARG	74	41.422	-5.075	62.631	1.00 20.00
ATOM	736	С	ARG	74	38.988	-0.290	59.663	1.00 20.00
MOTA	737	0	ARG	74	39.927	-0.235	58.875	1.00 20.00
MOTA	738	N	ILE	75	38.743	0.708	60.536	1.00 20.00 1.00 20.00
ATOM	740	CA	ILE	75	39.646	1.827	60.611 60.486	1.00 20.00
ATOM	741	CB	ILE	75 75	38.942 39.993	3.150 4.273	60.555	1.00 20.00
ATOM	742	CG2	ILE	75 75	38.138	3.193	59.175	1.00 20.00
ATOM	743 744	CG1 CD1	ILE ILE	75 75	39.003	3.053	57.923	1.00 20.00
ATOM ATOM	745	CDI	ILE	75	40.260	1.740	61.980	1.00 20.00
ATOM	746	0	ILE	75	40.265	2.684	62.765	1.00 20.00
ATOM	747	N	PRO	76	40.856	0.609	62.211	1.00 20.00
ATOM	748	CD	PRO	76	41.577	-0.084	61.161	1.00 20.00
ATOM	749	CA	PRO	76	41.328	0.159	63.486	1.00 20.00
ATOM	750	CB	PRO	76	41.810	-1.276	63.244	1.00 20.00
ATOM	751	CG	PRO	76	41.661	-1.506	61.724	1.00 20.00
ATOM	752	С	PRO	76	42.464	0.947	64.063	1.00 20.00 1.00 20.00
ATOM	753	0	PRO	76	43.009	0.430	65.036 63.463	1.00 20.00
ATOM	754	N	LEU	77	42.891 43.941	2.094 2.919	64.023	1.00 20.00
ATOM	756	CA	LEU LEU	77 7 7	43.971	4.354	63.475	1.00 20.00
MOTA	757 758	CB CG	LEU	77 .	44.267	4.436	61.970	1.00 20.00
ATOM ATOM	759		LEU	77	43.148	3.768	61.153	1.00 20.00
ATOM	760		LEU	77	44.552	5.887	61.547	1.00 20.00
ATOM	761	С	LEU	77	43.653	3.019	65.485	1.00 20.00
АТОМ	762	0	LEU	77	42.773	3.760	65.919	1.00 20.00
MOTA	763	N	GLU	78	44.422	2.245	66.273	1.00 20.00
MOTA	765	CA	GLU	78	44.154	2.030	67.661	1.00 20.00
MOTA	766	CB	GLU	78	45.215	1.126	68.313	1.00 20.00 1.00 20.00
ATOM	767	CG	GLU	78	45.162		.67.872 68.810	1.00 20.00
MOTA	768	CD	GLU	78	44.210	-1.063 -0.569	68.991	1.00 20.00
ATOM	769	OE1		78 78	43.065 44.620	-0.369	69.367	1.00 20.00
ATOM	770	C C	GLU GLU	78	44.131	3.271	68.485	1.00 20.00
MOTA	771 772	0	GLU	78	43.173	3.510	69.214	1.00 20.00
MOTA MOTA	773	N	ASN	79	45.182	4.097	68.380	1.00 20.00
ATOM	775	CA	ASN	79	45.370	5.233	69.236	1.00 20.00
ATOM	776	CB	ASN	79	46.830	5.720	69.251	1.00 20.00
ATOM	777	CG	ASN	79	47.647	4.686	70.016	1.00 20.00
ATOM	778	OD1		79	48.858	4.827	70.181	1.00 20.00
ATOM	779		ASN	79	46.968	3.609	70.494	1.00 20.00
ATOM	782	С	ASN	79	44.505	6.442	69.057	1.00 20.00
ATOM	783	0	ASN	79	44.285	7.157	70.033	1.00 20.00
ATOM	784	N	LEU	80	44.011	6.718	67.831	1.00 20.00 1.00 20.00
ATOM	786	CA	LEU	80	43.334	7.957	67.532	1.00 20.00

6 1

ATOM	787	CB	LEU	80	42.657	7.950	66.151	1.00 20.00
ATOM	788	CG	LEU	80	42.050	9.307	65.757	1.00 20.00
MOTA	789	CD1	LEU	80	43.147	10.376	65.62 7	1.00 20.00
١M	790	CD2	LEU	80	41.188	9.195	64.492	1.00 20.00
A'1'OM	791	С	LEU	80	42.315	8.342	68.565	1.00 20.00
MOTA	792	0	LEU	80	41.225	7.776	68.629	1.00 20.00
ATOM	793	N	GLN	81	42.728	9.271	69.461	1.00 20.00
MOTA	795	CA	GLN	81	41.964	9.831	70.544	1.00 20.00
ATOM	796	CB	GLN	81	42.877	10.381	71.654	1.00 20.00
ATOM	797	CG	GLN	81	43.812	9.339	72.267	1.00 20.00
MOTA	798	CD	GLN	81	42.971	8.360	73.071	1.00 20.00
MOTA	799	OE1		81	41.955	8.730	73.659	1.00 20.00
ATOM	800	NE2		81	43.406	7.072	73.096	1.00 20.00
ATOM	803	С	GLN	81	40.993	10.945	70.241	1.00 20.00
MOTA	804	0	GLN	81	39.869	10.940	70.741	1.00 20.00
MOTA	805	N	ILE	82	41.401	11.959	69.443	1.00 20.00
ATOM	807	CA	ILE	82	40.535	13.097	69.267	1.00 20.00
ATOM	808	CB	ILE	82	40.842	14.181	70.259	1.00 20.00
MOTA	809	CG2		82	39.994	15.403	69.898	1.00 20.00
MOTA	810	CG1		82	40.626	13.682	71.699	1.00 20.00
MOTA	811	CD1	ILE	82	39.183	13.280	72.002	1.00 20.00
ATOM	812	С	ILE	82	40.686	13.698	67.897	1.00 20.00
ATOM	813	0	ILE	82	41.764	13.658	67.307 67.352	1.00 20.00 1.00 20.00
ATOM	814	N	ILE	83	39.580	14.259	66.082	1.00 20.00
MOTA	816	CA	ILE	83 83	39.588 38.670	14.935 14.293	65.081	1.00 20.00
MOTA	817 818	CB CG2	ILE ILE	83	38.638	15.171	63.821	1.00 20.00
ATOM ATOM	819	CG1	ILE	83	39.099	12.841	64.812	1.00 20.00
ATOM	820	CD1	ILE	83	38.048	12.026	64.060	1.00 20.00
ATOM	821	C	ILE	83	39.032	16.298	66.376	1.00 20.00
MOTA	822	o	ILE	83	37.822	16.488	66.434	1.00 20.00
MOTA	823	N	ARG	84	39.907	17.309	66.484	1.00 20.00
MOTA	825	CA	ARG	84	39.536	18.627	66.922	1.00 20.00
ATOM	826	СВ	ARG	84	40.749	19.570	66.962	1.00 20.00
ATOM	827	CG	ARG	84	41.796	19.151	67.993	1.00 20.00
ATOM	828	CD	ARG	84	43.065	20.005	67.955	1.00 20.00
ATOM	829	NE	ARG	84	42.674	21.408	68.266	1.00 20.00
ATOM	831	CZ	ARG	84	42.606	21.830	69.563	1.00 20.00
ATOM	832	NH1	ARG	84	42.894	20.965	70.579	1.00 20.00
ATOM	835	NH2	ARG	84	42.252	23.118	69.842	1.00 20.00
ATOM	838	С	ARG	84	38.485	19.300	66.091	1.00 20.00
ATOM	839	0	ARG	84	37.694	20.079	66.618	1.00 20.00
ATOM	840	N	GLY	85	38.462	19.077	64.768	1.00 20.00
MOTA	842	CA	GLY	85	37.451	19.713	63.971	1.00 20.00
ATOM	843	С	GLY	85	37.729	21.178	63.827	1.00 20.00
ATOM	844	0	GLY	85	36.814	21.971	63.607	1.00 20.00
ATOM	845	N	ASN	86	39.009	21.579	63.922	1.00 20.00
MOTA	847	CA	ASN	86	39.344	22.971	63.806	1.00 20.00
ATOM	848	CB	ASN	86	40.860	23.225	63.837	1.00 20.00
MOTA	849	CG	ASN	86	41.372	22.841	65.216	1.00 20.00
MOTA	850		ASN	86	40.593	22.557	66.124	1.00 20.00
MOTA	851		ASN	86	42.722	22.838	65.381	1.00 20.00
ATOM	854	С	ASN	86	38.845	23.418	62.473	1.00 20.00
MOTA	855	0	ASN	86	38.279	24.503	62.339	1.00 20.00
MOTA	856 959	N C2	MET	87 87	39.054	22.584	61.441	1.00 20.00
ATOM	858	CA	MET	87 87	38.530	22.905	60.148	1.00 20.00
MOTA	859 860	CB	MET	87 87	39.596	23.081	59.054 58.857	1.00 20.00 1.00 20.00
ATOM	860 861	CG	MET	87 87	40.482 41.713	21.853 21.605	58.857 60.170	1.00 20.00
ATOM	861 862	SD CE	MET	8 <i>7</i> 87	41.713	22.960	59.615	1.00 20.00
ATOM	862 863	CE	MET MET	87	37.681	21.741	59.775	1.00 20.00
ATOM ATOM	864	0	MET	87	38.064	20.591	59.980	1.00 20.00
ATOM ATOM	865	N	TYR	88	36.497	22.022	59.204	1.00 20.00
ATOM	867	CA	TYR	88	35.560	20.985	58.901	1.00 20.00
A I OF	307	CA	TIN	50	55.500	20.505	55.501	2.00 20.00

A C	868	СВ	TYR	88	34.142	21.317	59.393		20.00
ATOM	869	CG	TYR	88	33.731	22.569	58.691		20.00
MOTA	870	CD1		88	34.124	23.798	59.169		20.00
MC	871	CE1		88	33.792	24.953	58.499		20.00
MO.T.W	872	CD2		88	32.989	22.515 23.666	57.532 56.858		20.00
ATOM	873	CE2 CZ	TYR TYR	88 88	32.653 33.059	24.887	57.339		20.00
ATOM	874 875	OH	TYR	88	32.726	26.069	56.643		20.00
ATOM ATOM	877	C	TYR	88	35.452	20.773	57.431		20.00
ATOM	878	0	TYR	88	35.783	21.643	56.625	1.00	20.00
MOTA	879	N	TYR	89	34.990	19.565	57.059		20.00
ATOM	881	CA	TYR	89	34.771	19.226	55.689		20.00
MOTA	882	СВ	TYR	89	34.865	17.713	55.436		20.00
MOTA	883	CG	TYR	89	34.869	17.477 17.628	53.966 53.253		20.00
ATOM	884	CD1		89 89	36.035 36.078	17.349	51.908		20.00
ATOM	885 886	CE1	TYR TYR	89	33.745	17.019	53.320		20.00
ATOM ATOM	887	CE2	TYR	89	33.781	16.737	51.975		20.00
ATOM	888	cz	TYR	89	34.949	16.901	51.269		20.00
ATOM	889	ОН	TYR	89	34.989	16.606	49.890		20.00
MOTA	891	С	TYR	89	33.357	19.658	55.493		20.00
MOTA	892	0	TYR	89	32.594	19.687	56.458		20.00
ATOM	893	N	GLU	90	32.995	20.007	54.240 53.872		20.00
ATOM	895	CA	GLU GLU	90 90	31.712 31.383	20.544 20.403	52.373		20.00
ATOM	896 897	CB CG	GLU	90	32.243	21.273	51.449		20.00
ATOM ATOM	898	CD	GLU	90	33.488	20.498	51.031		20.00
ATOM	899	OE1		90	33.999	19.684	51.845	1.00	20.00
ATOM	900	OE2		90	33.942	20.710	49.875		20.00
ATOM	901	С	GLU	90	30.596	19.920	54.637		20.00
MOTA	902	0	GLU	90	30.669	18.760	55.034		20.00
MOTA	903	N	ASN	91	29.540 28.425	20.711 20.266	54.890 55.671		20.00
ATOM	905 906	CA CB	ASN ASN	91 91	27.743	19.004	55.118		20.00
ATOM ATOM	907	CG	ASN	91	26.376	18.884	55.782		20.00
ATOM	908	OD1		91	26.067	19.584	56.745	1.00	20.00
ATOM	909	ND2	ASN	91	25.526	17.968	55.247		20.00
ATOM	912	С	ASN	91	28.955	19.976	57.037		20.00
MOTA	913	0	ASN	91	28.340	19.265	57.830		20.00
ATOM	914	N	SER	92	30.120 30.775	20.575 20.462	57.343 58.611		20.00
ATOM	916	CA CB	SER SER	92 92	30.775	21.328	59.705		20.00
MOTA MOTA	917 918	OG	SER	92	28.804	20.867	59.972		20.00
ATOM	920	C	SER	92	30.861	19.058	59.117	1.00	20.00
ATOM	921	0	SER	92	30.223	18.715	60.111		20.00
ATOM	922	N	TYR	93	31.668	18.203	58.453		20.00
ATOM	924	CA	TYR	93	31.828	16.876	58.966		20.00
ATOM	925	CB	TYR	93	31.560	15.753 15.728	57.946 57.618		20.00
ATOM	926	CG	TYR TYR	93 93	30.103 29.612	16.358	56.497		20.00
ATOM ATOM	927 928		TYR	93	28.270	16.311	56.196		20.00
ATOM	929		TYR	93	29.220	15.080	58.452		20.00
ATOM	930		TYR	93	27.876	15.039	58.163		20.00
ATOM	931	CZ	TYR	93	27.400	15.650	57.028		20.00
MOTA	932	OH	TYR	93	26.023	15.603	56.722		20.00
ATOM	934	C	TYR	93	33.237	16.716	59.448 58.744		20.00
ATOM	935	0	TYR	93 94	34.195 33.384	17.026 16.307	60.722		20.00
ATOM	936 938	N CA	ALA ALA	94	34.651	16.026	61.332		20.00
ATOM ATOM	939	CB	ALA	94	34.568	15.964	62.866		20.00
ATOM	940	C	ALA	94	35.172	14.706	60.866	1.00	20.00
ATOM	941	0	ALA	94	36.378	14.536	60.696		20.00
MOTA	942	N	LEU	95	34.266	13.724	60.696		20.00
MOTA	944	CA	LEU	95	34.661	12.411	60.279	1.00	20.00

p p

MOTA	945	CB	LEU	95	34.488	11.374	61.403	1.00 20.00
MOTA	946	CG	LEU	95	34.889	9.936	61.030	1.00 20.00
MOTA	947	CD1	LEU	95	36.389	9.831	60.704	1.00 20.00
MC	948	CD2	LEU	95	34.445	8.947	62.122	1.00 20.00
OM	949	С	LEU	95	33.775	12.005	59.148	1.00 20.00
ATOM	950	0	LEU	95	32.580	11.774	59.326	1.00 20.00
ATOM	951	N	ALA	96	34.344	11.901	57.934	1.00 20.00
ATOM	953	CA	ALA	96	33.529	11.501	56.828	1.00 20.00
MOTA	954	СВ	ALA	96	33.592	12.471	55.636	1.00 20.00
ATOM	955	С	ALA	96	34.041	10.183	56.352	1.00 20.00
MOTA	956	0	ALA	96	35.222	10.053	56.040	1.00 20.00
MOTA	957	N	VAL	97	33.165	9.160	56.327	1.00 20.00
ATOM	959	CA	VAL	97	33.548	7.887	55.793	1.00 20.00
ATOM	960	CB	VAL	97	33.554	6.778	56.812	1.00 20.00
MOTA	961		VAL	97	34.698	7.057	57.803	1.00 20.00
MOTA	962		VAL	97	32.183	6.709	57.507	1.00 20.00
MOTA	963	С	VAL	97	32.560	7.591	54.706	1.00 20.00
MOTA	964	0	VAL	97	31.395	7.287	54.955	1.00 20.00
ATOM	965	N	LEU	98	33.010	7.671	53.443	1.00 20.00
MOTA	967	CA	LEU	98	32.089	7.495	52.359	1.00 20.00
MOTA	968	CB	LEU	98	32.012	8.718	51.428	1.00 20.00
MOTA	969	CG	LEU	98	31.150	8.489	50.171	1.00 20.00
MOTA	970		LEU	98	29.683	8.208	50.525	1.00 20.00
MOTA	971	CD2		98	31.312	9.645	49.170 51.501	1.00 20.00 1.00 20.00
MOTA	972	C	LEU	98	32.469	6.338	51.273	1.00 20.00 1.00 20.00
MOTA	973	0	LEU	98	33.649	6.086 5.622	51.273	1.00 20.00
ATOM	974	N	SER	99 00	31.427		50.113	1.00 20.00
ATOM	976	CA	SER	99	31.533 31.565	4.513 4.948	48.637	1.00 20.00
ATOM	977	CB	SER	9 9 99	31.664	3.812	47.792	1.00 20.00
ATOM	978	og C	SER SER	99	32.738	3.676	50.385	1.00 20.00
MOTA	980 981	C	SER	99	33.741	3.777	49.679	1.00 20.00
ATOM	982	N O	ASN	100	32.683	2.847	51.441	1.00 40.00
ATOM ATOM	984	CA	ASN	100	33.796	1.990	51.716	1.00 40.00
ATOM	985	CB	ASN	100	34.171	1.941	53.206	1.00 40.00
ATOM	986	CG	ASN	100	34.709	3.304	53.612	1.00 40.00
ATOM	987		ASN	100	34.075	4.033	54.371	1.00 40.00
ATOM	988		ASN	100	35.912	3.661	53.088	1.00 40.00
ATOM	991	C	ASN	100	33.361	0.605	51.348	1.00 40.00
MOTA	992	0	ASN	100	32.801	-0.113	52.172	1.00 40.00
ATOM	993	N	TYR	101	33.630	0.186	50.097	1.00 40.00
MOTA	995	CA	TYR	101	33.219	-1.112	49.639	1.00 40.00
ATOM	996	СВ	TYR	101	32.957	-1.200	48.122	1.00 40.00
ATOM	997	CG	TYR	101	31.781	-0.366	47.741	1.00 40.00
MOTA	998	CD1	TYR	101	30.502	-0.820	47.972	1.00 40.00
ATOM	999	CE1	TYR	101	29.415	-0.125	47.495	1.00 40.00
ATOM	1000		TYR	101	31.958	0.775	46.992	1.00 40.00
ATOM	1001	CE2	TYR	101	30.875	1.470	46.507	1.00 40.00
MOTA	1002	CZ	TYR	101	29.601	1.021	46.761	1.00 40.00
MOTA	1003	OH	TYR	101	28.489	1.723	46.251	1.00 40.00
ATOM	1005	С	TYR	101	34.312	-2.096	49.893	1.00 40.00
MOTA	1006	0	TYR	101	35.170	-1.894	50.752	1.00 40.00
MOTA	1007	N	ASP	102	34.256	-3.225	49.153	1.00 60.00
ATOM	1009	CA	ASP	102	35.256	-4.250	49.221	1.00 60.00
ATOM	1010	CB	ASP	102	34.979	-5.334	50.276	1.00 60.00
ATOM	1011	CG	ASP	102	36.283	-6.075	50.550	1.00 60.00
MOTA	1012		ASP	102	37.327	-5.662	49.979	1.00 60.00
MOTA	1013		ASP	102	36.252	-7.065	51.329	1.00 60.00
MOTA	1014	C	ASP	102	35.215	-4.938	47.893	1.00 60.00
MOTA	1015	0	ASP	102	34.499	-4.515 -6.017	46.986	1.00 60.00
MOTA	1016	N	ALA	103	36.007	-6.017	47.742	1.00 60.00 1.00 60.00
ATOM	1018	CA	ALA	103	36.008	-6.756	46.516 46.523	1.00 60.00
MOTA	1019	CB	ALA	103	37.015 34.647	-7.919 -7.347	46.359	1.00 60.00
MOTA	1020	С	ALA	103	J4.04/	-/.54/	40.703	1.00 00.00

•

# I	1021	0	ALA	103	34.025	-7.233	45.304	1.00	60.00
ATOM	1022	N	ASN	104	34.138	-7.984	47.430		60.00
ATOM	1024	CA	ASN	104	32.835	-8.569	47.350		60.00
M	1025	CB	ASN	104	32.720	-9.946	48.030		60.00
MOLA	1026	CG	ASN	104	32.998	-9.784	49.516		60.00
MOTA	1027	OD1	ASN	104	32.112	-9.433	50.294		60.00
ATOM	1028	ND2	ASN	104	34.266		49.926		60.00
ATOM	1031	С	ASN	104	31.884	-7.637	48.020		60.00
MOTA	1032	0	ASN	104	32.185	-6.462 -8.148	48.219 48.379		60.00 60.00
ATOM	1033	N	LYS	105	30.692 29.702	-7.312	48.989		60.00
ATOM	1035	CA	LYS LYS	105 105	28.296	-7.937	48.947		60.00
MOTA	1036 1037	CB CG	LYS	105	27.168	-6.984	49.345		60.00
ATOM ATOM	1037	CD	LYS	105	25.778	-7.506	48.968		60.00
ATOM	1039	CE	LYS	105	25.542	-7.581	47.458	1.00	60.00
ATOM	1040	NZ	LYS	105	24.184	-8.102	47.179		60.00
ATOM	1044	С	LYS	105	30.074	-7.109	50.420		60.00
ATOM	1045	0	LYS	105	29.596	-7.823	51.301		60.00
MOTA	1046	N	THR	106	30.953	-6.121	50.683		60.00
MOTA	1048	CA	THR	106	31.369	-5.845	52.027		60.00
MOTA	1049	CB	THR	106	31.793	-7.084	52.771		60.00
MOTA	1050	OG1		106	31.980	-6.802	54.151		60.00 60.00
ATOM	1052	CG2	THR	106	33.086	-7.635 -4.897	52.145 51.936		60.00
ATOM	1053	C	THR	106	32.528 32.620	-4.105	51.000		60.00
ATOM	1054	0	THR GLY	106 107	33.435	-4.946	52.930		40.00
ATOM ATOM	1055 1057	N CA	GLY	107	34.619	-4.142	52.938		40.00
ATOM	1058	C	GLY	107	34.820	-3.603	54.311	1.00	40.00
ATOM	1059	ō	GLY	107	35.592	-4.153	55.094	1.00	40.00
ATOM	1060	N	LEU	108	34.103	-2.527	54.668		20.00
MOTA	1062	CA	LEU	108	34.303	-1.977	55.974		20.00
MOTA	1063	CB	LEU	108	34.097	-0.453	56.025		20.00
MOTA	1064	CG	LEU	108	34.309	0.161 -0.006	57.420 57.885		20.00
ATOM	1065	CD1 CD2		108 108	35.765 33.842	1.625	57.463		20.00
MOTA	1066 1067	CDZ	LEU	108	33.283	-2.598	56.868		20.00
ATOM ATOM	1068	0	LEU	108	32.105	-2.259	56.795		20.00
ATOM	1069	N	LYS	109	33.711	-3.570	57.691	1.00	20.00
ATOM	1071	CA	LYS	109	32.849	-4.236	58.625		20.00
ATOM	1072	СВ	LYS	109	33.493	-5.499	59.220		20.00
MOTA	1073	CG	LYS	109	33.728	-6.599	58.181		20.00
MOTA	1074	CD	LYS	109	34.771	-6.233	57.124		20.00
MOTA	1075	CE	LYS	109	35.007	-7.330 -8.503	56.084 56.719		20.00
MOTA	1076	NZ	LYS	109 109	35.648 32.486	-3.335	59.761		20.00
MOTA	1080 1081	С 0	LYS LYS	109	31.356	-3.352	60.243		20.00
MOTA MOTA	1082	N	GLU	110	33.452	-2.532	60.241	1.00	20.00
ATOM	1084	CA	GLU	110	33.191	-1.699	61.375		20.00
ATOM	1085	СB	GLU	110	33.243	-2.506	62.686		20.00
ATOM	1086	CG	GLU	110	34.443	-3.458	62.753		20.00
MOTA	1087	CD	GLU	110	34.394	-4.215	64.072		20.00
MOTA	1088		GLU	110	33.311	-4.770	64.393		20.00
MOTA	1089	OE2		110	35.438	-4.249 -0.592	64.776 61.413		20.00
MOTA	1090	C	GLU	110	34.192 35.084	-0.592	60.570		20.00
ATOM	1091 1092	O N	GLU LEU	110 111	33.987	0.344	62.363		20.00
ATOM ATOM	1092	CA	LEU	111	34.824	1.475	62.663	1.00	20.00
ATOM	1095	CB	LEU	111	34.012	2.581	63.358	1.00	20.00
ATOM	1096	CG	LEU	111	34.824	3.839	63.700		20.00
ATOM	1097	CD1		111	35.301	4.544	62.419		20.00
ATOM	1098	CD2		111	34.041	4.771	64.638		20.00
ATOM	1099	C	LEU	111	36.051	1.204	63.522		20.00
ATOM	1100	0	LEU	111	37.050	1.894	63.330 64.355		20.00
ATOM	1101	N	PRO	112	36.057	0.168	04.333	1.00	23.00

MOTA	1102	CD	PRO	112	36.108	-1.117	63.673	1.00 20.00
MOTA	1103	CA	PRO	112	36.946	0.092	65.507	1.00 20.00
MOTA	1104	CB	PRO	112	37.607	-1.286	65.523	1.00 20.00
M	1105	CG	PRO	112	37.399	-1.812	64.107	1.00 20.00
MOLA	1106	С	PRO	112	37.924	1.181	65.815	1.00 20.00
MOTA	1107	0	PRO	112	39.116	0.935	65.971	1.00 20.00
MOTA	1108	N	MET	113	37.371	2.381	66.007	1.00 20.00
MOTA	1110	CA	MET	113	37.969	3.619	66.401	1.00 20.00
ATOM	1111	CB	MET	113	37.208	4.872	65.938	1.00 20.00
ATOM	1112	CG	MET	113	37.357	5.147	64.443	1.00 20.00
MOTA	1113	SD	MET	113	39.035	5.590	63.905	1.00 20.00 1.00 20.00
MOTA	1114	CE	MET	113	38.968	7.272	64.579	1.00 20.00 1.00 20.00
MOTA	1115	C	MET	113	38.023	3.646 4.725	67.891 68.468	1.00 20.00
ATOM	1116	0	MET	113	38.035 37.983	2.481	68.565	1.00 20.00
MOTA	1117	N	ARG	114	37.744	2.375	69.983	1.00 20.00
MOTA	1119	CA	ARG	114 114	38.199	1.019	70.550	1.00 20.00
ATOM	1120	CB CG	ARG ARG	114	39.689	0.735	70.352	1.00 20.00
MOTA	1121 1122	CD	ARG	114	39.990	-0.125	69.122	1.00 20.00
ATOM ATOM	1122	NE	ARG	114	39.362	-1.457	69.345	1.00 20.00
ATOM	1125	CZ	ARG	114	39.850	-2.557	68.703	1.00 20.00
ATOM	1126		ARG	114	39.275	-3.778	68.906	1.00 20.00
ATOM	1129	NH2	ARG	114	40.917	-2.437	67.859	1.00 20.00
MOTA	1132	C	ARG	114	38.335	3.440	70.870	1.00 20.00
ATOM	1133	o	ARG	114	37.721	3.778	71.879	1.00 20.00
MOTA	1134	N	ASN	115	39.533	3.969	70.584	1.00 20.00
ATOM	1136	CA	ASN	115	40.116	5.009	71.396	1.00 20.00
ATOM	1137	СВ	ASN	115	41.633	5.149	71.193	1.00 20.00
ATOM	1138	CG	ASN	115	42.267	3.951	71.883	1.00 20.00
ATOM	1139	OD1	ASN	115	41.577	3.133	72.489	1.00 20.00
ATOM	1140	ND2	ASN	115	43.619	3.851	71.812	1.00 20.00
ATOM	1143	С	ASN	115	39.483	6.371	71.233	1.00 20.00
MOTA	1144	0	ASN	115	39.737	7.272	72.029	1.00 20.00
MOTA	1145	N	LEU	116	38.690	6.577	70.164	1.00 20.00
ATOM	1147	CA	LEU	116	38.092	7.838	69.813	1.00 20.00
ATOM	1148	CB	LEU	116	37.302	7.771	68.493	1.00 20.00
MOTA	1149	CG	LEU	116	36.636	9.094	68.073	1.00 20.00
MOTA	1150		LEU	116	37.689	10.176	67.784 66.901	1.00 20.00 1.00 20.00
MOTA	1151		LEU	116	35.666	8.886 8.329	70.876	1.00 20.00
MOTA	1152	C	LEU	116 116	37.155 36.014	7.880	70.878	1.00 20.00
ATOM	1153	0	LEU	117	37.673	9.215	71.750	1.00 20.00
ATOM	1154	N	GLN GLN	117	36.955	9.843	72.820	1.00 20.00
MOTA	1156 1157	CA CB	GLN	117	37.897	10.308	73.944	1.00 20.00
ATOM ATOM	1157	CG	GLN	117	38.698	9.182	74.599	1.00 20.00
ATOM	1159	CD	GLN	117	37.734	8.298	75.375	1.00 20.00
ATOM	1160		GLN	117	36.848	7.672	74.795	1.00 20.00
ATOM	1161		GLN	117	37.907	8.244	76.724	1.00 20.00
ATOM	1164	C	GLN	117	36.146	11.051	72.455	1.00 20.00
ATOM	1165	Ō	GLN	117	35.059	11.239	72.993	1.00 20.00
MOTA	1166	N	GLU	118	36.662	11.951	71.587	1.00 20.00
ATOM	1168	CA	GLU	118	35.860	13.113	71.321	1.00 20.00
ATOM	1169	CB	GLU	118	35.913	14.183	72.424	1.00 20.00
ATOM	1170	CG	GLU	118	34.858	15.275	72.226	1.00 20.00
ATOM	1171	CD	GLU	118	34.975	16.291	73.350	1.00 20.00
MOTA	1172	OE1	GLU	118	33.956	16.974	73.630	1.00 20.00
MOTA	1173	OE2	GLU	118	36.084	16.402	73.940	1.00 20.00
MOTA	1174	С	GLU	118	36.217	13.797	70.043	1.00 20.00
MOTA	1175	0	GLU	118	37.375	13.829	69.629	1.00 20.00
MOTA	1176	N	ILE	119	35.185	14.358	69.380	1.00 20.00
MOTA	1178	CA	ILE	119	35.360	15.138	68.194	1.00 20.00
MOTA	1179	CB	ILE	119	34.474	14.698	67.059	1.00 20.00
ATOM	1180	CG2		119	34.603	15.722	65.922	1.00 20.00
MOTA	1181	CG1	ILE	119	34.829	13.264	66.628	1.00 20.00

	P 1	1182	CD1	ILE	119	33.826	12.644	65.654	1.00	20.00
	MOTA	1183	С	ILE	119	34.944	16.515	68.607	1.00	20.00
	ATOM	1184	0	ILE	119	33.767	16.862	68.525	1.00	20.00
	MC	1185	N	LEU	120	35.925	17.373	68.955		20.00
	OM	1187	CA	LEU	120	35.647	18.662	69.531		20.00
	ATOM	1188	CB	LEU	120	36.861	19.604	69.661		20.00
	ATOM	1189	CG	LEU	120	37.871	19.235	70.761		20.00
	ATOM	1190	CD1	LEU	120	38.609	17.938	70.424		20.00
	ATOM	1191	CD2	LEU	120	38.825	20.404	71.057		20.00
	ATOM	1192	С	LEU	120	34.660	19.438	68.726		20.00
	ATOM	1193	0	LEU	120	33.852	20.172	69.292		20.00
	ATOM	1194	N	HIS	121	34.699	19.344	67.387		20.00
	ATOM	1196	CA	HIS	121	33.731	20.124	66.677		20.00
	MOTA	1197	CB	HIS	121	34.231	21.527	66.296		20.00
	ATOM	1198	CG	HIS	121	33.162	22.376	65.673		20.00
	ATOM	1199	CD2	HIS	121	32.867	22.598	64.363		20.00
	MOTA	1200	ND1	HIS	121	32.234	23.095	66.393		20.00
	MOTA	1202	CE1	HIS	121	31.430	23.713	65.490		20.00
	ATOM	1203	NE2	HIS	121	31.776	23.441	64.245		20.00
	ATOM	1205	C	HIS	121	33.334	19.442	65.411		20.00
	MOTA	1206	0	HIS	121	34.098	18.668	64.840		20.00
_	ATOM	1207	N	GLY	122	32.099	19.720	64.947		20.00
	ATOM	1209	CA	GLY	122	31.633	19.168	63.714		20.00
	MOTA	1210	С	GLY	122	30.940	17.873	63.991		20.00
	ATOM	1211	0	GLY	122	31.039	17.322	65.086		20.00
	ATOM	1212	N	ALA	123	30.204	17.370	62.978		20.00
	MOTA	1214	CA	ALA	123	29.471	16.140	63.080		20.00
	ATOM	1215	CB	ALA	123	28.040	16.233	62.527		20.00
	MOTA	1216	С	ALA	123	30.174	15.063	62.315		20.00
	MOTA	1217	0	ALA	123	31.321	15.229	61.909		20.00
	MOTA	1218	N	VAL	124	29.500	13.906	62.126		20.00
	MOTA	1220	CA	VAL	124	30.075	12.810	61.392		20.00
	ATOM	1221	CB	VAL	124	30.249	11.569	62.219		20.00
	ATOM	1222		VAL	124	28.855	11.048	62.614		20.00
	MOTA	1223	CG2		124	31.094	10.562	61.420 60.246		20.00
	MOTA	1224	C	VAL	124	29.175	12.455 12.822	60.226		20.00
	MOTA	1225	0	VAL	124	28.001 29.718	11.762	59.223		20.00
	ATOM	1226	N	ARG	125 125	28.902	11.702	58.101	1.00	
	ATOM	1228	CA	ARG	125	29.175	12.269	56.870		20.00
	ATOM	1229	CB CG	ARG ARG	125	28.335	11.918	55.646		20.00
	MOTA	1230	CD	ARG	125	28.619	12.837	54.459		20.00
	ATOM	1231 1232	NE	ARG	125	27.732	12.408	53.345		20.00
	ATOM	1234	CZ	ARG	125	26.442	12.852	53.316		20.00
	ATOM ATOM	1235	NH1		125	25.626	12.509	52.278		20.00
	ATOM	1238	NH2		125	25.966	13.637	54.325		20.00
	ATOM	1241	C	ARG	125	29.243	9.985	57.723	1.00	20.00
	ATOM	1242	0	ARG	125	30.297	9.728	57.145	1.00	20.00
	ATOM	1243	N	PHE	126	28.354	9.023	58.025	1.00	20.00
	ATOM	1245	CA	PHE	126	28.636	7.664	57.661	1.00	20.00
	MOTA	1246	CB	PHE	126	28.341	6.650	58.781	1.00	20.00
	MOTA	1247	CG	PHE	126	29.317	6.817	59.893	1.00	20.00
	MOTA	1248	CD1		126	30.518	6.145	59.875	1.00	20.00
	ATOM	1249	CD2		126	28.994	7.566	61.000	1.00	20.00
	MOTA	1250	CE1		126	31.389	6.236	60.934		20.00
	ATOM	1251	CE2		126	29.861	7.662	62.062		20.00
	ATOM	1252	CZ	PHE	126	31.060	6.993	62.033		20.00
	ATOM	1253	C	PHE	126	27.707	7.295	56.548		20.00
	ATOM	1254	Ō	PHE	126	26.558	6.923	56.781	1.00	20.00
	MOTA	1255	N	SER	127	28.193	7.340	55.295		20.00
	MOTA	1257	CA	SER	127	27.298	7.056	54.219		20.00
	MOTA	1258	СВ	SER	127	26.962	8.291	53.365		20.00
	ATOM	1259	OG	SER	127	28.137	8.806	52.760		20.00
	MOTA	1261	С	SER	127	27.798	5.986	53.302	1.00	20.00
	-									

MOTA	1262	0	SER	127	28.995	5.712	53.212	1.00 20.00
MOTA	1263	N	ASN	128	26.840	5.341	52.604	1.00 20.00
MOTA	1265	CA	ASN	128	27.126	4.347	51.610	1.00 20.00
MC	1266	CB	ASN	128	27.619	4.946	50.280	1.00 20.00
MO'	1267	CG	ASN	128	26.461	5.697	49.637	1.00 20.00
MOTA	1268	OD1	ASN	128	25.444	5.108	49.275	1.00 20.00
ATOM	1269	ND2	ASN	128	26.617	7.041	49.494	1.00 20.00
MOTA	1272	С	ASN	128	28.134	3.339	52.055	1.00 20.00
ATOM	1273	0	ASN	128	29.252	3.306	51.542	1.00 20.00
MOTA	1274	N	ASN	129	27.778	2.502	53.050	1.00 20.00
MOTA	1276	CA	ASN	129	28.702	1.470	53.428	1.00 20.00
ATOM	1277	СВ	ASN	129	29.436	1.800	54.735	1.00 20.00
ATOM	1278	CG	ASN	129	30.295	3.030	54.482	1.00 20.00
MOTA	1279		ASN	129	31.229	2.993	53.682	1.00 20.00
MOTA	1280	ND2		129	29.965	4.156	55.170	1.00 20.00
MOTA	1283	С	ASN	129	27.923	0.211	53.673	1.00 20.00
MOTA	1284	0	ASN	129	27.696	-0.162	54.821	1.00 20.00 1.00 20.00
MOTA	1285	N	PRO	130	27.598	-0.495	52.620	
ATOM	1286	CD	PRO	130	28.347	-0.415	51.380	1.00 20.00 1.00 20.00
ATOM	1287	CA	PRO	130	26.725	-1.646	52.666 51.311	1.00 20.00
ATOM	1288	CB	PRO	130	26.874 27.546	-2.340 -1.292	50.404	1.00 20.00
ATOM	1289	CG	PRO	130	27.007	-2.592	53.801	1.00 20.00
ATOM	1290	С	PRO	130 130	26.073	-2.392	54.510	1.00 20.00
ATOM	1291 1292	O N	PRO ALA	131	28.280	-2.993	53.967	1.00 20.00
ATOM	1292	CA	ALA	131	28.763	-3.910	54.962	1.00 20.00
ATOM ATOM	1295	CB	ALA	131	30.131	-4.505	54.587	1.00 20.00
ATOM	1296	С	ALA	131	28.907	-3.352	56.350	1.00 20.00
ATOM	1297	0	ALA	131	28.971	-4.114	57.312	1.00 20.00
ATOM	1298	N	LEU	132	29.031	-2.020	56.492	1.00 20.00
ATOM	1300	CA	LEU	132	29.337	-1.428	57.767	1.00 20.00
ATOM	1301	СВ	LEU	132	29.400	0.108	57.704	1.00 20.00
ATOM	1302	CG	LEU	132	29.742	0.793	59.038	1.00 20.00
ATOM	1303	CD1		132	31.129	0.382	59.549	1.00 20.00
ATOM	1304	CD2		132	29.586	2.318	58.928	1.00 20.00
ATOM	1305	С	LEU	132	28.388	-1.818	58.852	1.00 20.00
ATOM	1306	0	LEU	132	27.174	-1.653	58.743	1.00 20.00
ATOM	1307	N	CYS	133	28.965	-2.335	59.955	1.00 20.00
ATOM	1309	CA	CYS	133	28.236	-2.785	61.096	1.00 20.00
ATOM	1310	CB	CYS	133	28.392	-4.290	61.352	1.00 20.00
ATOM	1311	SG	CYS	133	27.437	-5.281	60.176	1.00 20.00
ATOM	1312	С	CYS	133	28.804	-2.090	62.292	1.00 20.00
MOTA	1313	0	CYS	133	29.656	-1.214	62.167	1.00 20.00
MOTA	1314	N	ASN	134	28.310	-2.460	63.488	1.00 20.00
ATOM	1316	CA	ASN	134	28.773	-1.887	64.715	1.00 20.00
MOTA	1317	CB ,	ASN	134	30.193	-2.332	65.107	1.00 20.00
ATOM	1318	CG	ASN	134	30.101	-3.784	65.561	1.00 20.00
ATOM	1319	OD1		134	30.893	-4.632	65.156	1.00 20.00
MOTA	1320	ND2		134	29.102	-4.078	66.436	1.00 20.00
ATOM	1323	С	ASN	134	28.729	-0.397	64.609	1.00 20.00
ATOM	1324	0	ASN	134	29.653	0.292	65.040	1.00 20.00
ATOM	1325	N	VAL	135	27.731	0.107	63.854	1.00 20.00
ATOM	1327	CA	VAL	135	27.391	1.500	63.755	1.00 20.00
ATOM	1328	CB	VAL	135	26.828	1.846	62.408	1.00 20.00
ATOM	1329	CG1		135	27.912	1.585	61.349	1.00 20.00
ATOM	1330	CG2		135	25.538	1.036	62.190	1.00 20.00
ATOM	1331	С	VAL	135	26.393	1.959	64.782	1.00 20.00
ATOM	1332	0	VAL	135	26.512	3.040	65.353	1.00 20.00
АТОМ	1333	N	GLU	136	25.349	1.136	65.009	1.00 20.00
MOTA	1335	CA	GLU	136	24.252	1.436	65.892	1.00 20.00
ATOM	1336	CB	GLU	136	23.078	0.452	65.745	1.00 20.00
ATOM	1337	CG	GLU	136	21.911	0.768	66.680	1.00 20.00
MOTA	1338	CD OF1	GLU	136	21.210	2.009	66.147	1.00 20.00
MOTA	1339	OE1	GDO	136	20.551	1.899	65.079	1.00 20.00

A C	1340	OE2	GLU	136	21.327	3.082	66.798	1.00 20.00	
ATOM	1341	С	GLU	136	24.708	1.359	67.305	1.00 20.00	
ATOM	1342	0	GLU	136	24.139	1.986	68.196	1.00 20.00	
M	1343	N	SER	137	25.749	0.542	67.513	1.00 20.00	
A 1 OM	1345	CA	SER	137	26.349	0.181	68.762	1.00 20.00	
ATOM	1346	CB	SER	137	27.419	-0.903	68.574	1.00 20.00	
ATOM	1347	OG	SER	137	26.854	-2.020	67.907	1.00 20.00	
MOTA	1349	С	SER	137	27.023	1.314	69.462	1.00 20.00	
MOTA	1350	0	SER	137	27.244	1.223	70.667	1.00 20.00	
MOTA	1351	N	ILE	138	27.452	2.377	68.753	1.00 20.00	
ATOM	1353	CA	ILE	138	28.131	3.385	69.515	1.00 20.00 1.00 20.00	
MOTA	1354	CB	ILE	138	29.429	3.894	68.940	1.00 20.00	
MOTA	1355	CG2		138	30.414	2.715 4.560	68.934 67.568	1.00 20.00	
MOTA	1356	CG1		138	29.257	3.567	66.454	1.00 20.00	
MOTA	1357	CD1		138	28.957 27.294	4.575	69.845	1.00 20.00	
ATOM	1358	C	ILE	138 138	26.422	4.989	69.082	1.00 20.00	
ATOM	1359	O N	ILE GLN	139	27.544	5.144	71.044	1.00 20.00	
ATOM	1360 1362	N CA	GLN	139	26.824	6.306	71.473	1.00 20.00	
MOTA MOTA	1362	CB	GLN	139	26.612	6.369	72.996	1.00 20.00	
ATOM	1364	CG	GLN	139	25.723	5.254	73.550	1.00 20.00	
ATOM	1365	CD	GLN	139	25.608	5.455	75.055	1.00 20.00	
ATOM	1366		GLN	139	26.228	6.352	75.625	1.00 20.00	
ATOM	1367	NE2		139	24.789	4.599	75.721	1.00 20.00	
ATOM	1370	С	GLN	139	27.653	7.494	71.108	1.00 20.00	
ATOM	1371	0	GLN	139	28.533	7.915	71.854	1.00 20.00	
MOTA	1372	N	TRP	140	27.351	8.092	69.948	1.00 20.00	
ATOM	1374	CA	TRP	140	28.071	9.224	69.450	1.00 20.00	
MOTA	1375	CB	TRP	140	27.692	9.605	68.010	1.00 20.00	
MOTA	1376	CG	TRP	140	28.076	8.535	67.013	1.00 20.00	
MOTA	1377	CD2		140	29.428	8.220	66.635	1.00 20.00 1.00 20.00	
MOTA	1378	CE2		140	29.372	7.119	65.780 66.980	1.00 20.00	
MOTA	1379	CE3		140	30.620	8.790 7.613	66.398	1.00 20.00	
MOTA	1380	CD1		140 140	27.281 28.048	6.762	65.638	1.00 20.00	
ATOM	1381	NE1 CZ2		140	30.508	6.574	65.251	1.00 20.00	
MOTA	1383 1384	CZ3		140	31.763	8.237	66.445	1.00 20.00	
ATOM ATOM	1385	CH2		140	31.709	7.152	65.595	1.00 20.00	
ATOM	1386	C	TRP	140	27.801	10.373	70.359	1.00 20.00	
ATOM	1387	Ō	TRP	140	28.476	11.394	70.301	1.00 20.00	
ATOM	1388	N	ARG	141	26.754	10.253	71.190	1.00 20.00	
ATOM	1390	CA	ARG	141	26.397	11.300	72.099	1.00 20.00	
ATOM	1391	СВ	ARG	141	25.226	10.879	73.005	1.00 20.00	
MOTA	1392	CG	ARG	141	24.596	12.002	73.831	1.00 20.00	
MOTA	1393	CD	ARG	141	23.535	11.481	74.804	1.00 20.00	
ATOM	1394	NE	ARG	141	22.804	12.651	75.364	1.00 20.00	
MOTA	1396	CZ	ARG	141	21.689	13.118	74.730 75.237	1.00 20.00 1.00 20.00	
ATOM	1397		ARG	141	21.013	14.190 12.509	73.591	1.00 20.00	
MOTA	1400		ARG	141	21.246 27.568	12.509	72.983	1.00 20.00	
ATOM	1403	C	ARG ARG	`141 141	27.850	12.769	73.253	1.00 20.00	
MOTA	1404 1405	O N	ASP	141	28.270	10.571	73.493	1.00 20.00	
ATOM ATOM	1405	CA	ASP	142	29.398	10.884	74.323	1.00 20.00	
ATOM	1407	CB	ASP	142	29.869	9.726	75.243	1.00 20.00	
ATOM	1409	CG	ASP	142	30.337	8.470	74.513	1.00 20.00	
MOTA	1410		ASP	142	30.547	8.500	73.274	1.00 20.00	
ATOM	1411		ASP	142	30.493	7.437	75.218	1.00 20.00	
ATOM	1412	c	ASP	142	30.543	11.452	73.533	1.00 20.00	
ATOM	1413	0	ASP	142	31.222	12.373	73.987	1.00 20.00	
ATOM	1414	N	ILE	143	30.787	10.913	72.324	1.00 20.00	
ATOM	1416	CA	ILE	143	31.880	11.333	71.493	1.00 20.00	
ATOM	1417	CB	ILE	143	32.102	10.348	70.369	1.00 20.00	
MOTA	1418		ILE	143	30.926	10.462	69.391	1.00 20.00 1.00 20.00	
MOTA	1419	CG1	ILE	143	33.460	10.541	69.684	1.00 20.00	

fr P

MOTA	1420	CD1	ILE	143	33.543	11.814	68.850	1.00 20.00
ATOM	1421	С	ILE	143	31.688	12.725	70.950	1.00 20.00
ATOM	1422	0	ILE	143	32.602	13.546	70.998	1.00 20.00
MC	1423	N	VAL	144	30.480	13.041	70.442	1.00 20.00
MO.T	1425	CA	VAL	144	30.207	14.324	69.854	1.00 20.00
ATOM	1426	CB	VAL	144	29.753	14.239	68.426	1.00 20.00
ATOM	1427		VAL	144	30.892 28.449	13.642 13.425	67.582 68.377	1.00 20.00 1.00 20.00
ATOM	1428	CG2 C	VAL VAL	144 144	29.090	14.942	70.630	1.00 20.00
ATOM ATOM	1429 1430	0	VAL	144	28.288	14.241	71.240	1.00 20.00
ATOM	1431	N	SER	145	29.004	16.285	70.626	1.00 20.00
ATOM	1433	CA	SER	145	27.993	16.945	71.401	1.00 20.00
АТОМ	1434	СВ	SER	145	27.967	18.470	71.217	1.00 20.00
ATOM	1435	OG	SER	145	29.188	19.039	71.669	1.00 20.00
ATOM	1437	С	SER	145	26.640	16.424	71.040	1.00 20.00
MOTA	1438	0	SER	145	26.434	15.869	69.963	1.00 20.00
MOTA	1439	N	SER	146	25.678	16.577	71.968	1.00 40.00
ATOM	1441	CA	SER	146	24.344	16.120	71.722	1.00 40.00
MOTA	1442	CB	SER	146	23.417	16.297	72.935	1.00 40.00
MOTA	1443	OG	SER	146	23.868	15.487	74.011	1.00 40.00
MOTA	1445	C	SER	146	23.801 23.167	16.949	70.609	1.00 40.00 1.00 40.00
ATOM ATOM	1446 1447	N O	SER ASP	146 147	24.059	16.436 18.268	69.688 70.664	1.00 40.00
ATOM	1449	CA	ASP	147	23.578	19.139	69.638	1.00 40.00
ATOM	1450	CB	ASP	147	24.004	20.603	69.840	1.00 40.00
ATOM	1451	CG	ASP	147	23.299	21.444	68.785	1.00 40.00
MOTA	1452		ASP	147	22.361	20.911	68.135	1.00 40.00
ATOM	1453	OD2	ASP	147	23.693	22.629	68.613	1.00 40.00
ATOM	1454	С	ASP	147	24.208	18.667	68.373	1.00 40.00
ATOM	1455	0	ASP	147	23.561	18.599	67.329	1.00 40.00
ATOM	1456	N	PHE	148	25.502	18.307	68.448	1.00 40.00
MOTA	1458	CA	PHE	148	26.182	17.857	67.280	1.00 40.00
ATOM	1459	CB	PHE	148	27.692	17.655	67.485	1.00 40.00 1.00 40.00
ATOM ATOM	1460 1461	CG CD1	PHE PHE	148 148	28.305 28.659	19.013 19.580	67.455 66.253	1.00 40.00
MOTA	1462	CD2	PHE	148	28.480	19.742	68.608	1.00 40.00
ATOM	1463	CE1	PHE	148	29.191	20.846	66.203	1.00 40.00
ATOM	1464	CE2	PHE	148	29.014	21.009	68.565	1.00 40.00
ATOM	1465	CZ	PHE	148	29.373	21.564	67.361	1.00 40.00
MOTA	1466	C	PHE	148	25.596	16.582	66.770	1.00 40.00
ATOM	1467	0	PHE	148	25.551	16.361	65.562	1.00 40.00
ATOM	1468	N	LEU	149	25.100	15.717	67.672	1.00 40.00
ATOM	1470	CA	LEU	149	24.608	14.440	67.240	1.00 40.00
ATOM ATOM	1471 1472	CB CG	LEU LEU	149 149	24.069 23.546	13.569 12.205	68.387 67.900	1.00 40.00
ATOM	1473		LEU	149	24.670	11.377	67.254	1.00 40.00
ATOM	1474		LEU	149	22.825	11.446	69.023	1.00 40.00
ATOM	1475	С	LEU	149	23.505	14.619	66.249	1.00 40.00
ATOM	1476	0	LEU	149	23.379	13.843	65.303	1.00 40.00
ATOM	1477	N	SER	150	22.675	15.664	66.425	1.00 40.00
MOTA	1479	CA	SER	150	21.578	15.868	65.523	1.00 40.00
MOTA	1480	CB	SER	150	20.763	17.128	65.857	1.00 40.00
MOTA	1481	OG	SER	150	21.564	18.288	65.698	1.00 40.00
ATOM	1483	С	SER	150	22.114	16.030	64.135 63.167	1.00 40.00 1.00 40.00
ATOM ATOM	1484 1485	O N	SER ASN	150 151	21.501 23.286	15.583 16.678	64.015	1.00 40.00
ATOM	1487	CA	ASN	151	23.286	16.977	62.762	1.00 40.00
ATOM	1488	СВ	ASN	151	25.177	17.844	62.937	1.00 40.00
ATOM	1489	CG	ASN	151	24.741	19.195	63.487	1.00 40.00
ATOM	1490		ASN	151	23.656	19.688	63.180	1.00 40.00
ATOM	1491		ASN	151	25.612	19.813	64.329	1.00 40.00
ATOM	1494	С	ASN	151	24.341	15.743	62.019	1.00 40.00
ATOM	1495	0	ASN	151	24.380	15.740	60.790	1.00 40.00
MOTA	1496	N	MET	152	24.686	14.664	62.747	1.00 40.00

..

Z 1	1498	CA	MET	152	25.193	13.461	62.147		40.00
ATOM	1499	CB	MET	152	25.308	12.309	63.162		40.00
MOTA	1500	CG	MET	152	25.897	11.013	62.602		40.00
MC	1501	SD	MET	152	26.051	9.686	63.835		40.00
P.OW	1502	CE	MET	152	26.754	8.460	62.697		40.00
MOTA	1503	С	MET	152	24.326	13.011	61.016		40.00
ATOM	1504	0	MET	152	23.101	13.009 12.636	61.115 59.887		40.00
MOTA	1505	N	SER	153 153	24.967 24.220	12.200	58.745		40.00
MOTA	1507	CA	SER	153	24.502	13.023	57.473		40.00
ATOM	1508 1509	CB OG	SER	153	23.728	12.530	56.390		40.00
ATOM ATOM	1511	C	SER	153	24.586	10.788	58.441		40.00
MOTA	1512	0	SER	153	25.725	10.484	58.086	1.00	40.00
ATOM	1513	N	MET	154	23.612	9.872	58.577	1.00	40.00
ATOM	1515	CA	MET	154	23.874	8.509	58.242	1.00	40.00
ATOM	1516	СВ	MET	154	23.599	7.514	59.384	1.00	40.00
ATOM	1517	CG	MET	154	23.890	6.064	58.993		40.00
ATOM	1518	SD	MET	154	23.588	4.841	60.306		40.00
MOTA	1519	CE	MET	154	25.146	5.148	61.184		40.00
MOTA	1520	С	MET	154	22.942	8.173	57.137		40.00
MOTA	1521	0	MET	154	21.741	8.426	57.230		40.00
MOTA	1522	N	ASP	155	23.463	7.600	56.040		40.00
MOTA	1524	CA	ASP	155	22.536	7.273	55.010		40.00
MOTA	1525	СВ	ASP	155	22.995	7.565	53.563 53.156		40.00
MOTA	1526	CG	ASP	155	24.145 24.405	6.657 6.563	51.927		40.00
MOTA	1527	OD1 OD2	ASP	155 155	24.403	6.038	54.051		40.00
ATOM	1528 1529	C	ASP ASP	155	22.264	5.822	55.133		40.00
ATOM ATOM	1530	0	ASP	155	23.085	5.059	55.646		40.00
ATOM	1531	N	PHE	156	21.080	5.440	54.628	1.00	40.00
ATOM	1533	CA	PHE	156	20.544	4.117	54.646	1.00	40.00
ATOM	1534	СВ	PHE	156	19.243	4.042	53.826	1.00	40.00
ATOM	1535	CG	PHE	156	18.768	2.632	53.757		40.00
MOTA	1536	CD1	PHE	156	18.067	2.069	54.797		40.00
MOTA	1537	CD2	PHE	156	18.934	1.913	52.596		40.00
MOTA	1538	CE1	PHE	156	17.563	0.794	54.688		40.00
MOTA	1539	CE2	PHE	156	18.435	0.637	52.482		40.00
MOTA	1540	CZ	PHE	156	17.747	0.076	53.531		40.00
ATOM	1541	C	PHE	156 15 6	21.540 21.535	3.207 2.002	54.022 54.267		40.00
MOTA	1542	N O	PHE GLN	157	22.447	3.768	53.207		40.00
MOTA	1543 1545	CA	GLN	157	23.349	2.907	52.518		40.00
MOTA (1546	CB	GLN	157	24.276	3.608	51.518		40.00
ATOM	1547	CG	GLN	157	24.984	2.599	50.609	1.00	40.00
ATOM	1548	CD	GLN	157	23.914	1.839	49.835	1.00	40.00
MOTA	1549	OE1	GLN	157	22.728	2.158	49.910		40.00
ATOM	1550	NE2	GLN	157	24.342	0.797	49.072		40.00
MOTA	1553	С	GLN	157	24.172	2.079	53.456		40.00
ATOM	1554	0	GLN	157	24.886	1.187	53.008		40.00
ATOM	1555	N	ASN	158	24.126	2.350	54.776		40.00
ATOM	1557	CA	ASN	158	24.867	1.507	55.675		40.00
MOTA	1558	CB	ASN	158	25.044	2.095 3.251	57.084 56.984		40.00
ATOM	1559	CG	ASN	158 158	26.028 26.920	3.251	56.136		40.00
MOTA	1560		ASN ASN	158	25.869	4.264	57.877		40.00
ATOM ATOM	1561 1564	C	ASN	158	24.131	0.208	55.803		40.00
ATOM	1565	0	ASN	158	23.093	0.012	55.175		40.00
ATOM	1566	N	HIS	159	24.671	-0.732	56.607		40.00
MOTA	1568	CA	HIS	159	24.049	-2.020	56.748	1.00	40.00
ATOM	1569	CB	HIS	159	25.033	-3.127	57.165		40.00
ATOM	1570	CG	HIS	159	24.457	-4.507	57.054		40.00
ATOM	1571	CD2	HIS	159	24.069	-5.379	58.023		40.00
MOTA	1572		HIS	159	24.246	-5.157	55.858		40.00
MOTA	1574	CE1	HIS	159	23.740	-6.379	56.160	1.00	40.00

ı.

										_
MOTA	1575	NE2	HIS	159	23.614	-6.560	57.463	1.00 40.00		
ATOM	157 7	С	HIS		22.963		57 .7 79	1.00 40.00		•
MOTA	1578	0	HIS		22.940		58.614	1.00 40.00		
MC	1579	N	LEU		22.020		57.735	1.00 40.00		
OM	1581	CA	LEU		20.933		58.671	1.00 40.00		
ATOM	1582	CB	LEU		19.700 19.036		58.183 56.933	1.00 40.00 1.00 40.00		
ATOM ATOM	1583 1584	CG CD1	LEU LEU		19.969		55.714	1.00 40.00		
ATOM	1585		LEU		17.660		56.672	1.00 40.00		
ATOM	1586	C	LEU		21.396		59.941	1.00 40.00		
АТОМ	1587	o	LEU		22.356		59.956	1.00 40.00		
MOTA	1588	N	GLY	161	20.671	-3.307	61.042	1.00 40.00		
MOTA	1590	CA	GLY	161	20.984		62.372	1.00 40.00		
MOTA	1591	С	GLY		21.076		62.474	1.00 40.00		
MOTA	1592	0	GLY		21.366		63.542	1.00 40.00		
MOTA	1593	N	SER		20.837		61.359	1.00 40.00		
ATOM	1595	CA	SER		20.887		61.308	1.00 40.00		
ATOM	1596 1597	CB OG	SER SER		20.644 20.708		59.896 59.915	1.00 40.00		
ATOM ATOM	1599	C	SER		22.260		61.734	1.00 40.00		
MOTA	1600	0	SER		22.481		62.127	1.00 40.00		
ATOM	1601	N	CYS	163	23.229		61.661	1.00 40.00		
MOTA	1603	CA	CYS	163	24.610		61.943	1.00 40.00		
ATOM	1604	СВ	CYS	163	25.371	-5.859	62.222	1.00 40.00		•
ATOM	1605	SG	CYS	163	25.554		60.750	1.00 40.00		
ATOM	1606	С	CYS	163	24.886		63.119	1.00 40.00		
MOTA	1607	0	CYS	163	25.394		62.913	1.00 40.00		
ATOM	1608	N	GLN	164	24.587		64.380	1.00 40.00		
ATOM	1610	CA	GLN	164	24.973		65.450	1.00 40.00		
MOTA	1611	CB	GLN GLN	164 164	26.484 27.309		65.471 65.753	1.00 40.00		
ATOM ATOM	1612 1613	CD CD	GLN	164	28.783		65.755	1.00 40.00		
ATOM	1614		GLN	164	29.153		65.434	1.00 40.00		
ATOM	1615		GLN	164	29.654	-6.968	66.131	1.00 40.00	•	
ATOM	1618	С	GLN	164	24.637	-8.001	66.809	1.00 40.00		
ATOM	1619	0	GLN	164	23.602	-7.363	66.996	1.00 40.00		
ATOM	1620	N	LYS	165	25.511		67.811	1.00 40.00		
MOTA	1622	CA	LYS	165	25.328	-7.828	69.167	1.00 40.00		
MOTA	1623	CB	LYS	165	24.424	-8.751	70.000	1.00 40.00		
ATOM	1624	CG	LYS	165	22.993	-8.779 -0.801	69.455 70.021	1.00 40.00 1.00 40.00		
MOTA	1625 1626	CD CE	LYS LYS	165 165	22.111 20.752	-9.891 -9.994	69.322	1.00 40.00		
ATOM ATOM	1627	NZ	LYS	165	20.732	-8.724	69.468	1.00 40.00		
MOTA	1631	C	LYS	165	26.668	-7.709	69.849	1.00 40.00		
ATOM	1632	Ō	LYS	165	27.674	-8.220	69.358	1.00 40.00		
МОТА	1633	N	CYS	166	26.712	-7.013	71.011	1.00 20.00		
ATOM	1635	CA	CYS	166	27.947	-6.772	71.718	1.00 20.00		
MOTA	1636	CB	CYS	166	28.006	-5.409	72.445	1.00 20.00		
MOTA	1637	SG	CYS	166	27.870	-3.949	71.364	1.00 20.00		
ATOM	1638	С	CYS	166	28.175	-7.810	72.772	1.00 20.00		
MOTA	1639	0	CYS	166	27.458	-8.806	72.858	1.00 20.00		
ATOM	1640	N	ASP	167 167	29.221	-7.588 -8.493	73.598 74.655	1.00 20.00 1.00 20.00		
MOTA	1642 1643	CA CB	ASP ASP	167 167	29.568 31.034	-8.493 -8.383	75.105	1.00 20.00		
ATOM ATOM	1644	CG	ASP	167	31.911	-8.872	73.103	1.00 20.00		
ATOM	1645	OD1		167	31.345	-9.325	72.932	1.00 20.00		
ATOM	1646	OD2		167	33.160	-8.804	74.107	1.00 20.00		
ATOM	1647	С	ASP	167	28.717	-8.188	75.845	1.00 20.00		
ATOM	1648	0	ASP	167	28.188	-7.087	75.98 7	1.00 20.00		
ATOM	1649	N	PRO	168	28.553	-9.167	76.691	1.00 20.00		
ATOM	1650	CD	PRO	168		-10.545	76.233	1.00 20.00		
ATOM	1651	CA	PRO	168	27.792		77.891	1.00 20.00		
ATOM	1652	CB	PRO	168		-10.352	78.468	1.00 20.00		
ATOM	1653	CG	PRO	168	21.548	-11.259	77.224	1.00 20.00		_

A C	1654	С	PRO	168	28.529	-8.037	78.800		20.00
MOTA	1655	0	PRO	168	27.901	-7.408	79.651		20.00
MOTA	1656	N	SER	169	29.863	-7.961	78.653		20.00
MC	1658	CA	SER	169	30.671	-7.115 -7.337	79.481 79.251		20.00
MO	1659	CB	SER	169 169	32.175 32.929	-6.474	80.089		20.00
MOTA	1660 1662	OG C	SER SER	169	30.385	-5.681	79.188		20.00
ATOM ATOM	1663	0	SER	169	30.266	-4.860	80.096		20.00
ATOM	1664	N	CYS	170	30.245	-5.338	77.893		20.00
ATOM	1666	CA	CYS	170	30.047	-3.970	77.527	1.00	20.00
ATOM	1667	СВ	CYS	170	29.930	-3.734	76.011		20.00
ATOM	1668	SG	CYS	170	31.315	-4.412	75.053		20.00
MOTA	1669	С	CYS	170	28.745	-3.530	78.102		20.00
ATOM	1670	0	CYS	170	27.974	-4.316	78.647		20.00
MOTA	1671	N	PRO	171	28.514	-2.253 -1.292	78.002 78.150		20.00
ATOM	1672	CD	PRO	171 171	29.596 27.261	-1.292	78.446		20.00
MOTA	1673 1674	CA CB	PRO PRO	171	27.450	-0.210	78.515		20.00
ATOM ATOM	1675	CG	PRO	171	28.955	-0.053	78.798		20.00
ATOM	1676	C	PRO	171	26.247	-2.180	77.457	1.00	20.00
ATOM	1677	0	PRO	171	26.624	-2.504	76.332		20.00
ATOM	1678	N	ASN	172	24.962	-2.223	77.846		20.00
ATOM	1680	CA	ASN	172	23.973	-2.748	76.955		20.00
ATOM	1681	CB	ASN	172	22.540	-2.700	77.517		20.00
ATOM	1682	CG	ASN	172	22.449	-3.681 -4.092	78.675 79.240		20.00
ATOM	1683		ASN	172 172	23.461 21.198	-4.092	79.240		20.00
ATOM	1684	ND2 C	ASN ASN	172	23.961	-2.023	75.651		20.00
ATOM ATOM	1687 1688	0	ASN	172	23.484	-0.894	75.552	1.00	
ATOM	1689	N	GLY	173	24.513	-2.674	74.609	1.00	20.00
ATOM	1691	CA	GLY	173	24.434	-2.157	73.276	1.00	
ATOM	1692	С	GLY	173	25.496	-1.168	72.921	1.00	
MOTA	1693	0	GLY	173	25.466	-0.616	71.822	1.00	
ATOM	1694	N	SER	174	26.471	-0.895	73.807	1.00	
MOTA	1696	CA	SER	174	27.427	0.082 1.251	73.367 74.348	1.00	
MOTA	1697	CB	SER SER	174 174	27.613 26.414	2.007	74.427	1.00	
ATOM ATOM	1698 1700	OG C	SER	174	28.770	-0.540	73.156	1.00	
ATOM	1701	0	SER	174	29.426	-0.961	74.108	1.00	20.00
ATOM	1702	N	CYS	175	29.213	-0.629	71.883		20.00
ATOM	1704	CA	CYS	175	30.524	-1.156	71.631		20.00
MOTA	1705	CB	CYS	175	30.629	-2.687	71.827		20.00
MOTA	1706	SG	CYS	175	29.735	-3.685	70.593		20.00
ATOM	1707	C	CYS	175	30.933 30.096	-0.843 -0.687	70.226 69.339		20.00
MOTA	1708	N O	CYS TRP	175 176	32.254	-0.693	70.011		20.00
MOTA MOTA	1709 1711	CA	TRP	176	32.809	-0.427	68.715		20.00
ATOM	1712	CB	TRP	176	34.264	0.062	68.806		20.00
ATOM	1713	CG	TRP	176	34.394	1.381	69.536		20.00
ATOM	1714	CD2	TRP	176	34.070	2.660	68.967		20.00
MOTA	1715		TRP	176	34.267	3.619	69.961		20.00
MOTA	1716		TRP	176	33.638	3.006	67.718		20.00
ATOM	1717	CD1	TRP	176	34.748	1.618	70.833 71.100		20.00
ATOM	1718		TRP	176 176	34.689 34.039	2.966 4.945	69.718		20.00
ATOM	1720 1721		TRP TRP	176	33.404	4.341	67.480		20.00
ATOM ATOM	1721	CH2	TRP	176	33.601	5.292	68.458		20.00
ATOM	1723	C	TRP	176	32.767	-1.662	67.868		20.00
ATOM	1724	ō	TRP	176	32.515	-1.602	66.665		20.00
MOTA	1725	N	GLY	177	33.028	-2.826	68.493		20.00
MOTA	1727	CA	GLY	177	33.027	-4.074	67.786		20.00
MOTA	1728	C	GLY	177	32.794	-5.125	68.820		20.00
MOTA	1729	0	GLY	177	32.595	-4.818	69.994		20.00
MOTA	1730	N	ALA	178	32.791	-6.406	68.410	1.00	20.00

MOTA	1732	CA	ALA	178	32.582	-7.432	69.385	1.00 20.00
MOTA	1733	CB	ALA	178	32.153	-8.780	68.782	1.00 20.00
ATOM	1734	С	ALA	178	33.875	-7.645	70.100	1.00 20.00
MC	1735	0	ALA	178	34.887	-7.982	69.487	1.00 20.00
MO.T.	1736	N	GLY	179	33.868	-7.445	71.431	1.00 20.00
MOTA	1738	CA	GLY	179	35.059	-7.639	72.203	1.00 20.00
MOTA	1739	С	GLY	179	34.927	-6.812	73.439	1.00 20.00
MOTA	1740	0	GLY	179	34.295	-5.757	73.429	1.00 20.00
MOTA	1741	N	GLU	180	35.529	-7.282	74.546	1.00 20.00
MOTA	1743	CA	GLU	180	35.459	-6.562	75.782	1.00 20.00
MOTA	1744	СВ	GLU	180	36.109	-7.332	76.946	1.00 20.00 1.00 20.00
MOTA	1745	CG	GLU	180	35.881	-6.693	78.317	1.00 20.00
MOTA	1746	CD CD1	GLU	180	36.375	-7.672 -8.780	79.373 78.984	1.00 20.00
MOTA	1747		GLU	180 180	36.831 36.297	-7.327	80.582	1.00 20.00
ATOM	1748	C C	GLU	180	36.192	-5.273	75.597	1.00 20.00
ATOM	1749 1750	0	GLU GLU	180	35.742	-4.217	76.036	1.00 20.00
ATOM	1751	N	GLU	181	37.353	-5.343	74.924	1.00 20.00
ATOM ATOM	1753	CA	GLU	181	38.158	-4.188	74.662	1.00 20.00
ATOM	1754	CB	GLU	181	39.505	-4.543	74.007	1.00 20.00
ATOM	1755	CG	GLU	181	40.467	-3.359	73.892	1.00 20.00
ATOM	1756	CD	GLU	181	41.744	-3.859	73.231	1.00 20.00
ATOM	1757		GLU	181	42.734	-3.080	73.194	1.00 20.00
ATOM	1758		GLU	181	41.750	-5.028	72.761	1.00 20.00
АТОМ	1759	C	GLU	181	37.399	-3.309	73.724	1.00 20.00
АТОМ	1760	0	GLU	181	37.473	-2.083	73.798	1.00 20.00
ATOM	1761	N	ASN	182	36.632	-3.946	72.821	1.00 20.00
MOTA	1763	CA	ASN	182	35.877	-3.278	71.806	1.00 20.00
MOTA	1764	CB	ASN	182	35.133	-4.250	70.876	1.00 20.00
MOTA	1765	CG	ASN	182	36.159	-4.895	69.958	1.00 20.00
MOTA	1766	OD1	ASN	182	36.626	-6.006	70.202	1.00.20.00
MOTA	1767	ND2		182	36.519	-4.174	68.863	1.00 20.00
MOTA	1770	С	ASN	182	34.862	-2.373	72.420	1.00 20.00
MOTA	1771	0	ASN	182	34.486	-1.378	71.802	1.00 20.00
MOTA	1772	N	CYS	183	34.385	-2.721	73.636	1.00 20.00 1.00 20.00
ATOM	1774	CA	CYS	183	33.391	-1.959	74.344 75.846	1.00 20.00
ATOM	1775	CB	CYS	183 183	33.302 32.927	-2.281 -4.017	76.211	1.00 20.00
ATOM	1776	SG C	CYS CYS	183	33.734	-0.519	74.270	1.00 20.00
MOTA	. 1777 1778	0	CYS	183	34.905	-0.150	74.228	1.00 20.00
MOTA MOTA	1779	N	GLN	184	32.705	0.341	74.212	1.00 60.00
ATOM	1781	CA	GLN	184	33.052	1.720	74.177	1.00 60.00
ATOM	1782	CB	GLN	184	31.868	2.667	73.922	1.00 60.00
ATOM	1783	CG	GLN	184	32.280	4.138	73.840	1.00 60.00
ATOM	1784	CD	GLN	184	31.040	4.956	73.509	1.00 60.00
ATOM	1785	OE1	GLN	184	30.966	5.609	72.468	1.00 60.00
MOTA	1786	NE2	GLN	184	30.032	4.919	74.420	1.00 60.00
ATOM	1789	С	GLN	184	33.564	1.942	75.554	1.00 60.00
MOTA	1790	0	GLN	184	32.819	1.836	76.528	1.00 60.00
ATOM	1791	N	LYS	185	34.872	2.229	75.669	1.00 60.00
MOTA	1793	CA	LYS	185	35.432	2.376	76.975	1.00 60.00
MOTA	1794	CB	LYS	185	36.970	2.443	77.002	1.00 60.00
MOTA	1795	CG	LYS	185	37.567	3.707	76.384	1.00 60.00
ATOM	1796	CD	LYS	185	39.064	3.845	76.667	1.00 60.00
ATOM	1797	CE	LYS	185	39.403	3.882	78.159	1.00 60.00
ATOM	1798	NZ	LYS	185	40.861	3.722	78.351	1.00 60.00 1.00 60.00
ATOM	1802	C	LYS	185	34.883	3.614	77.587	1.00 60.00
ATOM	1803	0	LYS	185	33.880	4.162	77.131 78.659	1.00 60.00
ATOM	1804	N	LEU	186 186	35.533	4.091 5.238	78.639	1.00 60.00
MOTA	1806	CA CB	LEU LEU	186 186	34.995 35.506	5.439	80.750	1.00 60.00
ATOM	1807 1808	CB	LEU	186	35.069	4.350	81.745	1.00 60.00
MOTA	1808		LEU	186	35.653	2.978	81.374	1.00 60.00
MOTA MOTA	1810		LEU	186	35.392	4.768	83.189	1.00 60.00
A I OM	1010	CDZ	250		22.332			

A		1811	С	LEU	186	35.332	6.483	78.571		60.00
A	TOM	1812	0	LEU	186	36.484	6.913	78.546		60.00
A	TOM	1813	N	THR	187	34.321	7.095	77.925		60.00
	MC	1815	CA	THR	187	34.573 33.595	8.363 8.756	77.316 76.246		60.00
	T-OW	1816	CB OG1	THR THR	187 187	34.062	9.910	75.563		60.00
	TOM	1817 1819	CG2	THR	187	32.231	9.048	76.894		60.00
	TOM TOM	1820	C	THR	187	34.396	9.281	78.474		60.00
	TOM	1821	0	THR	187	33.991	8.833	79.544	1.00	60.00
	TOM	1822	N	LYS	188	34.687	10.584	78.305		60.00
Α	том	1824	CA	LYS	188	34.575	11.445	79.444		60.00
Α	TOM	1825	CB	LYS	188	34.925	12.915	79.163		60.00
Α	TOM	1826	CG	LYS	188	33.900	13.660	78.310		60.00
	TOM	1827	CD	LYS	188	34.040	15.179 15.726	78.415 79.789		60.00
	TOM	1828	CE	LYS LYS	188 188	33.643 33.913	17.179	79.862		60.00
	TOM	1829 1833	NZ C	LYS	188	33.160	11.416	79.909		60.00
	TOM TOM	1834	0	LYS	188	32.887	11.311	81.104		60.00
	TOM	1835	N	ILE	189	32.213	11.488	78.959		60.00
	TOM	1837	CA	ILE	189	30.839	11.477	79.346		60.00
A	том	1838	CB	ILE	189	29.899	11.547	78.180		60.00
A	TOM	1839	CG2	ILE	189	28.472	11.349	78.715		60.00
	TOM	1840	CG1	ILE	189	30.091	12.869	77.420 78.279		60.00
	TOM	1841	CD1	ILE	189 189	29.811 30.579	14.102 10.189	80.048		60.00
	TOM	1842 1843	С О	ILE ILE	189	30.049	10.105	81.158		60.00
	TOM TOM	1844	N	ILE	190	30.968	9.063	79.422		60.00
	TOM	1846	CA	ILE	190	30.707	7.7809	80.057	1.00	60.00
	TOM	1847	СВ	ILE	190	30.069	6.798	79.136		60.00
	TOM	1848	CG2	ILE	190	30.963	6.582	77.901		60.00
A	TOM	1849	CG1	ILE	190	29.724	5.515	79.908		60.00
	TOM	1850	CD1	ILE	190	28.793	4.578	79.140		60.00
	TOM	1851	C	ILE	190 190	31.955 32.644	7.237 6.419	80.652 80.050		60.00
	TOM TOM	1852 1853	O N	ILE CYS	191	32.266	7.679	81.882	1.00	
	TOM	1855	CA	CYS	191	33.355	7.192	82.682		20.00
-	TOM	1856	CB	CYS	191	34.411	8.248	83.072		20.00
	том	1857	SG	CYS	191	35.657	8.621	81.806		20.00
Α	TOM	1858	С	CYS	191	32.642	6.902	83.953		20.00
	TOM	1859	0	CYS	191	31.452	6.592	83.949		20.00
	TOM	1860	N	ALA	192	33.354	6.979 6.815	85.089 86.308		20.00
-	TOM	1862	CA CB	ALA ALA	192 192	32.632 33.504	6.907	87.572		20.00
	TOM TOM	1863 1864	СВ	ALA	192	31.709	7.988	86.298		20.00
	том	1865	0	ALA	192	31.983	8.996	85.650	1.00	20.00
	том	1866	N	GLN	193	30.575	7.883	87.007		20.00
Α	TOM	1868	CA	GLN	193	29.623	8.951	86.991		20.00
Α	TOM	1869	СВ	GLN	193	28.408	8.660	87.885		20.00
	TOM	1870	CG	GLN	193	27.614	7.421 7.264	87.466 88.448		20.00
	TOM	1871	CD	GLN	193 193	26.463 26.124	8.194	89.178		20.00
	TOM	1872 1873	NE2	GLN GLN	193	25.124	6.051	88.477		20.00
	TOM TOM	1876	C	GLN	193	30.284	10.164	87.555		20.00
	TOM	1877	0	GLN	193	30.100	11.276	87.061	1.00	20.00
	TOM	1878	N	GLN	194	31.080	9.962	88.619		20.00
	том	1880	CA	GLN	194	31.727	11.025	89.328		20.00
Α	TOM	1881	CB	GLN	194	32.421	10.520	90.602		20.00
	TOM	1882	CG	GLN	194	31.452	9.916	91.618		20.00
	TOM	1883	CD	GLN	194	32.266 31.735	9.456 8.876	92.816 93.761		20.00
	TOM	1884	NE2	GLN GLN	194 194	31.735 33.600	9.717	93.761		20.00
	TOM TOM	1885 1888	C	GLN	194	32.762	11.748	88.527		20.00
	TOM	1889	0	GLN	194	32.822	12.976	88.557		20.00
	TOM	1890	N	CYS	195	33.601	11.012	87.775	1.00	20.00

e-

MOTA	1892	CA	CYS	195	34.677	11.669	87.090	1.00 20.00
MOTA	1893	CB.	CYS	195	35.560	10.744	86.234	1.00 20.00
MOTA	1894	SG	CYS	195	36.498	9.530	87.203	1.00 20.00
MC	1895	C	CYS	195	34.166	12.729	86.178	1.00 20.00
WO.	1896	0	CYS	195	33.102	12.601	85.575	1.00 20.00
MOTA	1897	N	SER	196	34.923	13.837	86.088	1.00 20.00
MOTA	1899	CA	SER	196	34.550	14.887	85.197	1.00 20.00
MOTA	1900	CB	SER	196	34.101	16.172	85.910	1.00 20.00
MOTA	1901	OG	SER	196	32.911	15.924	86.644	1.00 20.00
MOTA	1903	C	SER	196	35.763	15.221	84.395	1.00 20.00
MOTA	1904	0	SER	196	36.859	15.369	84.932	1.00 20.00
MOTA	1905	N	GLY	197	35.597	15.299	83.064	1.00 20.00
MOTA	1907	ÇA	GLY	197	36.671	15.699	82.207	1.00 20.00
MOTA	1908	С	GLY	197	37.113	14.530	81.389	1.00 20.00
MOTA	1909	0	GLY	197	36.915	14.511	80.176	1.00 20.00
MOTA	1910	N	ARG	198	37.712	13.515	82.048	1.00 20.00
MOTA	1912	CA	ARG	198	38.178	12.340	81.363	1.00 20.00
MOTA	1913	CB	ARG	198	39.450	12.556	80.522	1.00 20.00
MOTA	1914	CG	ARG	198	39.207	13.349	79.238	1.00 20.00
MOTA	1915	ÇD	ARG	198	38.159	12.693	78.335	1.00 20.00
MOTA	1916	NE	ARG	198	37.917	13.606	77.184	1.00 20.00
MOTA	1918	CZ	ARG	198	36.929	13.329	76.284	1.00 20.00
MOTA	1919	NH1		198	36.724	14.156	75.219	1.00 20.00
MOTA	1922	NH2	ARG	198	36.145	12.222	76.452	1.00 20.00
MOTA	1925	С	ARG	198	38.529	11.321	82.396	1.00 20.00
ATOM	1926	0	ARG	198	38.423	11.580	83.594	1.00 20.00
ATOM	1927	N	CYS ·	199	38.930	10.109	81.955	1.00 20.00
MOTA	1929	CA	CYS	199	39.312	9.139	82.937	1.00 20.00
ATOM	1930	CB	CYS	199	38.123	8.371	83.541	1.00 20.00 1.00 20.00
MOTA	1931	SG	CYS	199	37.204	7.408	82.306 82.374	1.00 20.00
MOTA	1932	C	CYS	199	40.245	8.116 7.815	81.181	1.00 20.00
MOTA	1933	0	CYS	199 20 0	40.231 41.117	7.581	83.252	1.00 20.00
MOTA	1934	N	ARG	200	42.032	6.538	82.900	1.00 20.00
MOTA	1936	CA	ARG	200	43.077	6.284	84.002	1.00 20.00
ATOM	1937	CB CG	ARG ARG	200	44.151	5.262	83.625	1.00 20.00
ATOM	1938 1939	CD	ARG	200	43.815	3.826	84.030	1.00 20.00
ATOM ATOM	1940	NE	ARG	200	44.952	2.965	83.598	1.00 20.00
ATOM	1942	CZ	ARG	200	44.960	2.419	82.346	1.00 20.00
ATOM	1943		ARG	200	43.921	2.651	81.491	1.00 20.00
ATOM	1946		ARG	200	46.010	1.641	81.951	1.00 20.00
АТОМ	1949	С	ARG	200	41.239	5.282	82.719	1.00 20.00
ATOM	1950	ō	ARG	200	41.464	4.523	81.778	1.00 20.00
ATOM	1951	N	GLY	201	40.266	5.045	83.622	1.00 20.00
MOTA	1953	CA	GLY	201	39.478	3.849	83.551	1.00 20.00
MOTA	1954	С	GLY	201	38.275	4.028	84.422	1.00 20.00
MOTA	1955	0	GLY	201	37.966	5.138	84.852	1.00 20.00
MOTA	1956	N	LYS	202	37.561	2.918	84.701	1.00 20.00
MOTA	1958	CA	LYS	202	36.372	2.971	85.502	1.00 20.00
MOTA	1959	CB	LYS	202	35.473	1.729	85.344	1.00 20.00
MOTA	1960	CG	LYS	202	34.536	1.759	84.136	1.00 20.00
MOTA	1961	CD	LYS	202	33.447	2.827	84.254	1.00 20.00
ATOM	1962	CE	LYS	202	32.464	2.569	85.398	1.00 20.00
ATOM	1963	NZ	LYS	202	31.492	3.680	85.500	1.00 20.00
MOTA	1967	С	LYS	202	36.702	3.052	86.956	1.00 20.00
MOTA	1968	0	LYS	202	36.693	2.042	87.657	1.00 20.00
MOTA	1969	N	SER	203	37.015	4.264	87.450	1.00 20.00
ATOM	1971	CA	SER	203	37.229	4.428	88.857	1.00 20.00
MOTA	1972	CB	SER	203	38.515	3.773	89.388	1.00 20.00
ATOM	1973·	OG	SER	203	39.656	4.451	88.885	1.00 20.00
MOTA	1975	С	SER	203	37.339	5.895	89.101	1.00 20.00
MOTA	1976	0	SER	203	37.694	6:662	88.207	1.00 20.00
MOTA	1977	N	PRO	204	37.009	6.306	90.290	1.00 20.00
MOTA	1978	CD	PRO	204	35.914	5.677	91.012	1.00 20.00

ž M	1979	CA	PRO	204	37.136	7.697	90.613	1.00 20.00		
MOTA	1980	СВ	PRO	204	36.361	7.894	91.912	1.00 20.00		
MOTA	1981	CG	PRO	204	35.277	6.800	91.847	1.00 20.00		
MC	1982	C	PRO	204	38.584	8.051	90.685	1.00 20.00		
WI.OW	1983	0	PRO	204	38.925	9.227	90.563 90.920	1.00 20.00 1.00 20.00		
MOTA	1984	N	SER	205 205	39.445 40.861	7.045 7.250	90.920	1.00 20.00		
ATOM	1986 1987	CA CB	SER SER	205	41.623	5.985	91.400	1.00 20.00		
ATOM ATOM	1988	OG	SER	205	41.259	5.621	92.723	1.00 20.00		
ATOM	1990	C	SER	205	41.298	7.589	89.587	1.00 20.00		
ATOM	1991	ō	SER	205	42.189	8.412	89.379	1.00 20.00		
ATOM	1992	N	ASP	206	40.643	6.948	88.604	1.00 20.00		
ATOM	1994	CA	ASP	206	40.948	7.079	87.212	1.00 20.00		
ATOM	1995	CB	ASP	206	40.180	6.094	86.316	1.00 20.00		
MOTA	1996	CG	ASP	206	40.887	4.749	86.409	1.00 20.00		
ATOM	1997		ASP	206	40.184	3.704	86.368	1.00 20.00		
MOTA	1998		ASP	206	42.142	4.751	86.518	1.00 20.00 1.00 20.00		
ATOM	1999	C	ASP	206	40.703 41.286	8.452 8.800	86.687 85.661	1.00 20.00		
ATOM	2000	O N	ASP CYS	206 207	39.811	9.229	87.348	1.00 20.00		
ATOM ATOM	2001 2003	N CA	CYS	207	39.456	10.559	86.921	1.00 20.00		
MOTA	2003	CB	CYS	207	38.758	11.404	88.000	1.00 20.00		
MOTA	2005	SG	CYS	207	37.287	10.620	88.721	1.00 20.00		
ATOM	2006	C	CYS	207	40.702	11.297	86.535	1.00 20.00		
ATOM	2007	0	CYS	207	41.765	11.068	87.110	1.00 20.00		
ATOM	2008	N	CYS	208	40.612	12.192	85.530	1.00 20.00		
MOTA	2010	CA	CYS	208	41.814	12.830	85.073	1.00 20.00		
MOTA	2011	CB	CYS	208	42.132	12.584	83.584	1.00 20.00		
ATOM	2012	SG	CYS	208	43.890	12.887	83.236	1.00 20.00 1.00 20.00		
MOTA	2013	С	CYS	208	41.703 40.680	14.311 14.824	85.255 85.707	1.00 20.00		
ATOM	2014	O N	CYS HIS	208 209	40.880	15.037	84.915	1.00 20.00		
MOTA MOTA	2015 2017	N CA	HIS	209	42.827	16.460	85.083	1.00 20.00		
ATOM	2017	CB	HIS	209	44.187	17.074	84.698	1.00 20.00		
ATOM	2019	CG	HIS	209	44.306	18.531	85.033	1.00 20.00		
ATOM	2020		HIS	209	44.765	19.137	86.163	1.00 20.00		
MOTA	2021	ND1	HIS	209	43.946	19.550	84.181	1.00 20.00		
ATOM	2023		HIS	209	44.203	20.713	84.830	1.00 20.00		
ATOM	2024		HIS	209	44.701	20.513		1.00 20.00		
MOTA	2026	С	HIS	209	41.760	17.080	84.239	1.00 20.00 1.00 20.00	•	
MOTA	2027	0	HIS	209	41.311 41.317	16.503 18.289	83.251 84.632	1.00 20.00		
ATOM	2028 2030	N CA	ASN ASN	210 210	40.255	18.971	83.952	1.00 20.00	•	
MOTA MOTA	2030	CB	ASN	210	39.810	20.259	84.670	1.00 20.00		
ATOM	2032	CG	ASN	210	40.987	21.221	84.745	1.00 20.00		
ATOM	2033		ASN	210	41.375	21.838	83.754	1.00 20.00		
ATOM	2034		ASN	210	41.562	21.368	85.969	1.00 20.00		
MOTA	2037	С	ASN	210	40.644	19.322	82.547	1.00 20.00		
MOTA	2038	0	ASN	210	39.809	19.293	81.644	1.00 20.00		
MOTA	2039	N	GLN	211	41.920	19.698	82.340	1.00 20.00		
ATOM	2041	CA	GLN	211	42.433	20.094	81.056	1.00 20.00 1.00 20.00		
ATOM	2042	CB	GLN	211	43.817	20.754	81.156 81.966	1.00 20.00		
ATOM	2043	CG CD	GLN GLN	211 211	43.804 42.967	22.051 23.077	81.212	1.00 20.00		
MOTA	2044 2045		GLN	211	42.714	22.936	80.016	1.00 20.00	·	
ATOM ATOM	2045		GLN	211	42.528	24.144	81.931	1.00 20.00		
ATOM	2049	C	GLN	211	42.545	18.956	80.093	1.00 20.00		
ATOM	2050	o	GLN	211	42.326	19.106	78.892	1.00 20.00		
ATOM	2051	N	CYS	212	42.911	17.779	80.608	1.00 20.00		
ATOM	2053	CA	CYS	212	43.108	16.604	79.822	1.00 20.00		
ATOM	2054	CB	CYS	212	43.214	15.421	80.762	1.00 20.00		
ATOM	2055	SG	CYS	212	44.657	15.757	81.777	1.00 20.00		
ATOM	2056	C	CYS	212	41.941	16.393	78.929	1.00 20.00 1.00 20.00		
MOTA	2057	0	CYS	212	40.802	16.652	79.309	1.00 20.00		

MOTA	2058	N	ALA	213	42.212	15.952	77.688	1.00 20.00
ATOM	2060	CA	ALA	213	41.143	15.660	76.792	1.00 20.00
ATOM	2061	СВ	ALA	213	41.084	16.582	75.562	1.00 20.00
MC	2062	С	ALA	213	41.425	14.273	76.320	1.00 20.00
A r OM	2063	0	ALA	213	42.577	13.844	76.300	1.00 20.00
MOTA	2064	N	ALA	214	40.368	13.525	75.957	1.00 20.00
MOTA	2066	CA	ALA	214	40.528	12.175	75.504	1.00 20.00
ATOM	2067	СВ	ALA	214	41.699	11.962	74.525	1.00 20.00
ATOM	2068	С	ALA	214	40.711	11.263	76.677	1.00 20.00
MOTA	2069	0	ALA	214	39.751	10.646	77.138	1.00 20.00
ATOM	2070	N	GLY	215	41.955	11.149	77.192	1.00 20.00
MOTA	2072	CA	GLY	215	42.196	10.264	78.303	1.00 20.00
ATOM	2073	C	GLY	215	43.502	10.625	78.944	1.00 20.00 1.00 20.00
MOTA	2074	0	GLY	215	43.975	11.754	78.818	1.00 20.00
MOTA	2075	N	CYS	216	44.101	9.684	79.707	1.00 20.00
ATOM	2077	CA	CYS	216	45.376	9.987	80.283 81.161	1.00 20.00
ATOM	2078	CB	CYS	216	45.343	11.252 11.038	82.816	1.00 20.00
MOTA	2079	SG	CYS	216	44.623 45.875	8.808	81.064	1.00 20.00
ATOM	2080	C	CYS	216 216	45.119	7.884	81.362	1.00 20.00
MOTA	2081	O N	CYS	217	47.189	8.779	81.372	1.00 20.00
ATOM	2082 2084	N CA	THR THR	217	47.714	7.670	82.119	1.00 20.00
ATOM	2084	CB	THR	217	49.218	7.605	82.163	1.00 20.00
ATOM	2085	OG1	THR	217	49.627	6.333	82.641	1.00 20.00
ATOM	2088	CG2	THR	217	49.764	8.698	83.093	1.00 20.00
ATOM ATOM	2089	C	THR	217	47.201	7.681	83.529	1.00 20.00
ATOM	2090	o	THR	217	46.827	6.639	84.065	1.00 20.00
ATOM	2091	N	GLY	218	47.162	8.869	84.167	1.00 20.00
ATOM	2093	CA	GLY	218	46.700	8.971	85.525	1.00 20.00
MOTA	2094	C	GLY	218	46.499	10.427	85.785	1.00 20.00
ATOM	2095	0	GLY	218	47.164	11.256	85.168	1.00 20.00
MOTA	2096	N	PRO	219	45.620	10.765	86.692	1.00 40.00
ATOM	2097	CD	PRO	219	45.358	9.917	87.844	1.00 40.00
ATOM	2098	CA	PRO	219	45.286	12.142	86.948	1.00 40.00
ATOM	2099	СВ	PRO	219	44.421	12.125	88.206	1.00 40.00
ATOM	2100	CG	PRO	219	44.931	10.884	88.961	1.00 40.00
ATOM	2101	С	PRO	219	46.484	13.028	87.106	1.00 40.00
ATOM	2102	0	PRO	219	47.146	12.971	88.140	1.00 40.00
ATOM	2103	N	ARG	220	46.763	13.856	86.079	1.00 40.00
ATOM	2105	CA	ARG	220	47.847	14.791	86.092	1.00 40.00
MOTA	2106	СВ	ARG	220	49.241	14.143	86.156	1.00 40.00
ATOM	2107	CG	ARG	220	50.377	15.168	86.169	1.00 40.00
ATOM	2108	CD	ARG	220	51.759	14.562	86.416	1.00 40.00
ATOM	2109	NE	ARG	220	51.806	14.132	87.842	1.00 40.00
MOTA	2111	CZ	ARG	220	51.345	12.899	88.204	1.00 40.00
MOTA	2112		ARG	220	51.379	12.520	89.515	1.00 40.00
MOTA	2115		ARG	220	50.852	12.044	87.262	1.00 40.00
ATOM	2118	С	ARG	220	47.752	15.546	84.804	1.00 40.00
MOTA	2119	0	ARG	220	47.161	15.067	83.839	1.00 40.00
MOTA	2120	N	GLU	221	48.316	16.765	84.767	1.00 20.00
MOTA	2122	CA	GLU	221	48.290	17.606	83.602	1.00 20.00
MOTA	2123	CB	GLU	221	48.797	19.024	83.910	1.00 20.00
MOTA	2124	CG	GLU	221	47.920	19.795	84.898	1.00 20.00
MOTA	2125	CD	GLU ·	221	48.628	21.101	85.230	1.00 20.00 1.00 20.00
MOTA	2126		GLU	221	48.993	21.839	84.276	1.00 20.00
ATOM	2127	OE2	GLU	221	48.817	21.375	86.446	1.00 20.00
MOTA	2128	С	GLU	221	49.156	17.082	82.491	1.00 20.00
ATOM	2129	0	GLU	221	48.814	17.193 16.539	81.316 82.848	1.00 20.00
ATOM	2130	N	SER	222	50.334 51.324	16.539	81.902	1.00 20.00
ATOM	2132	CA	SER	222		15.855	82.565	1.00 20.00
MOTA	2133	CB OG	SER	222 222	52.691 52.603	14.778	83.487	1.00 20.00
ATOM	2134	C	SER '	222	50.999	14.778	81.120	1.00 20.00
MOTA	2136	0	SER	222	51.361	14.741	79.952	1.00 20.00
MOTA	2137	J	SEK	444	71.301	T3 . / 4T	,,,,,,,	1.00 20.00

M	2138	N	ASP	223	50.342	13.881	81.759	1.00 20.00		
AroM	2140	CA	ASP	223	50.110	12.593	81.165	1.00 20.00		
ATOM	2141	CB	ASP	223	49.830	11.500	82.195	1.00 20.00		
١M	2142	CG	ASP	223	48.518	11.829	82.857	1.00 20.00		
MO.A	2143		ASP	223	47.585	11.000	82.697	1.00 20.00		
ATOM	2144		ASP	223	48.422	12.888	83.529	1.00 20.00		
MOTA	2145	С	ASP	223	49.059	12.514	80.099 79.377	1.00 20.00 1.00 20.00		
MOTA	2146	0	ASP	223	48.972	11.524 13.518	80.001	1.00 20.00		
ATOM	2147	N	CYS	224 224	48.181 47.069	13.416	79.106	1.00 20.00		
MOTA	2149 2150	CA CB	CYS CYS	224	46.143	14.588	79.372	1.00 20.00		
ATOM ATOM	2150	SG	CYS	224	45.836	14.280	81.137	1.00 20.00		
ATOM	2151	C	CYS	224	47.403	13.115	77.677	1.00 20.00		
ATOM	2153	0	CYS	224	48.507	13.379	77.209	1.00 20.00		
ATOM	2154	N	LEU	225	46.474	12.399	77.001	1.00 20.00		
ATOM	2156	CA	LEU	225	46.601	12.001	75.627	1.00 20.00		
ATOM	2157	СВ	LEU	225	45.630	10.880	75.219	1.00 20.00		
ATOM	2158	ÇG	LEU	225	45.984	9.523	75.857	1.00 20.00		
ATOM	2159	CD1	LEU	225	45.831	9.559	77.387	1.00 20.00		
MOTA	2160	CD2	LEU	225	45.207	8.373	75.198	1.00 20.00		
MOTA	2161	C	LEU	225	46.402	13.160	74.708	1.00 20.00		
ATOM	2162	0	LEU	225	46.995	13.214	73.631	1.00 20.00		
MOTA	2163	N	VAL	226	45.504	14.090	75.082	1.00 20.00		
MOTA	2165	CA	VAL	226	45.314	15.266	74.290	1.00 20.00 1.00 20.00		
ATOM	2166	CB	VAL	226	44.276	15.130	73.206 73.839	1.00 20.00		
ATOM	2167		VAL	226 226	42.883 44.408	14.999 16.330	72.253	1.00 20.00		
ATOM	2168 2169	CGZ	VAL VAL	226	44.898	16.356	75.224	1.00 20.00		÷
ATOM ATOM	2170	0	VAL	226	44.618	16.100	76.395	1.00 20.00	•	
ATOM	2171	И	CYS	227	44.864	17.613	74.730	1.00 20.00		
ATOM	2173	CA	CYS	227	44.543	18.697	75.608	1.00 20.00		
ATOM	2174	CB	CYS	227	45.567	19.841	75.570	1.00 20.00		
ATOM	2175	SG	CYS	227	47.232	19.319	76.080	1.00 20.00		
ATOM	2176	С	CYS	227	43.223	19.274	75.223	1.00 20.00		
MOTA	2177	0	CYS	227	42.833	19.255	74.056	1.00 20.00		
MOTA	2178	N	ARG	228	42.474	19.758	76.233	1.00 20.00		
MOTA	2180	CA	ARG	228	41.201	20.357	75.988	1.00 20.00		
MOTA	2181	CB	ARG	228	40.368	20.572	77.259	1.00 20.00 1.00 20.00		'
ATOM	2182	CG	ARG	228	38.907 37.939	20.875 20.635	76.928 78.084	1.00 20.00		
ATOM	2183	CD	ARG ARG	228 228	36.571	20.659	77.498	1.00 20.00		
ATOM ATOM	2184 2186	NE CZ	ARG	228	36.083	19.543	76.880	1.00 20.00		
MOTA	2187		ARG	228	36.848	18.415	76.804	1.00 20.00		
MOTA	2190		ARG	228	34.836	19.558	76.326	1.00 20.00		
ATOM	2193	C	ARG	228	41.409	21.673	75.318	1.00 20.00		
ATOM	2194	0	ARG	228	40.688	22.039	74.391	1.00 20.00		
ATOM	2195	N	LYS	229	42.443	22.406	75.766	1.00 20.00		
ATOM	2197	CA	LYS	229	42.692	23.714	75.244	1.00 20.00		
ATOM	2198	CB	LYS	229	42.841	24.767	76.353	1.00 20.00		
MOTA	2199	CG	LYS	229	41.624	24.772	77.280	1.00 20.00		
MOTA	2200	CD	LYS	229	40.295	24.908	76.533	1.00 20.00 1.00 20.00		
MOTA	2201	CE	LYS	229	39.074	24.570	77.392 76.554	1.00 20.00		
MOTA	2202	NZ	LYS	229 229	37.854 43.956	24.553 23.664	74.448	1.00 20.00		
ATOM	2206 2207	С 0	LYS LYS	229	44.019	23.004	73.403	1.00 20.00		
ATOM ATOM	2207	N	PHE	230	45.000	24.379	74.908	1.00 20.00		
ATOM	2210	CA	PHE	230	46.218	24.397	74.149	1.00 20.00		
ATOM	2211	CB	PHE	230	46.761	25.815	73.900	1.00 20.00		
MOTA	2212	CG	PHE	230	45.779	26.531	73.039	1.00 20.00		
ATOM	2213	CD1		230	44.688	27.156	73.599	1.00 20.00		
ATOM	2214		PHE	230	45.955	26.592	71.677	1.00 20.00		
MOTA	2215	CE1		230	43.786	27.829	72.809	1.00 20.00		
MOTA	2216	CE2		230	45.058	27.265	70.882	1.00 20.00		
MOTA	2217	CZ	PHE	230	43.970	27.884	71.448	1.00 20.00		

r r

MOTA	2218	C	PHE	230	47.283	23.651	74.882	1.00 20.00
ATOM	2219	0	PHE	230	47.373	23.717	76.105	1.00 20.00
MOTA	2220	N	ARG	231	48.130	22.916	74.135	1.00 20.00
MOT C	2222	CA	ARG	231	49.172	22.161	74.761	1.00 20.00
MO.	2223	СB	ARG	231	49.466	20.819	74.071	1.00 20.00
ATOM	2224	CG	ARG	231	50.426	19.926	74.861	1.00 20.00
MOTA	2225	CD	ARG	231	51.000	18.772	74.036	1.00 20.00
MOTA	2226	NE	ARG	231	49.855	18.058	73.407	1.00 20.00
ATOM	2228	CZ	ARG	231	50.080	17.186	72.382	1.00 20.00
ATOM	2229		ARG	231	51.359	16.908	71.991	1.00 20.00 1.00 20.00
ATOM	2232		ARG	231	49.025	16.602	71.746	1.00 20.00 1.00 20.00
ATOM	2235	C	ARG	231	50.423 50.752	22.969 23.510	74.676 73.621	1.00 20.00
MOTA	2236	O N	ARG ASP	231 232	51.144	23.103	75.804	1.00 20.00
ATOM ATOM	2237 2239	CA	ASP	232	52.359	23.853	75.739	1.00 20.00
ATOM	2240	CB	ASP	232	52.188	25.331	76.136	1.00 20.00
ATOM	2241	CG	ASP	232	53.432	26.092	75.694	1.00 20.00
ATOM	2242		ASP	232	53.480	27.330	75.921	1.00 20.00
ATOM	2243		ASP	232	54.346	25.446	75.114	1.00 20.00
ATOM	2244	С	ASP	232	53.358	23.243	76.667	1.00 20.00
ATOM	2245	0	ASP	232	53.050	22.936	77.816	1.00 20.00
ATOM	2246	N	GLU	233	54.597	23.062	76.174	1.00 20.00
ATOM	2248	CA	GLU	233	55.662	22.517	76.963	1.00 20.00
ATOM	2249	CB	GLU	233	56.221	23.517	77.989	1.00 20.00
ATOM	2250	CG	GLU	233	56.969	24.685	77.346	1.00 20.00
MOTA	2251	CD	GLU	233	58.294	24.153	76.822	1.00 20.00
MOTA	2252	OE1		233	59.095	23.647	77.652	1.00 20.00
MOTA	2253		GLU	233	58.524	24.243	75.586	1.00 20.00
MOTA	2254	С	GLU	233	55.237	21.291	77.701	1.00 20.00
ATOM	2255	0	GLU	233	55.325	21.232	78.926	1.00 20.00
MOTA	2256	N	ALA	234	54.756	20.278	76.961	1.00 20.00 1.00 20.00
ATOM	2258	CA	ALA	234 234	54.388 55.569	19.025 18.320	77.554 78.244	1.00 20.00
ATOM	2259 2260	CB C	ALA ALA	234	53.298	19.181	78.564	1.00 20.00
ATOM ATOM	2261	0	ALA	234	52.972	18.229	79.270	1.00 20.00
ATOM	2262	N	THR	235	52.681	20.374	78.663	1.00 20.00
ATOM	2264	CA	THR	235	51.626	20.486	79.626	1.00 20.00
ATOM	2265	СВ	THR	235	51.897	21.482	80.717	1.00 20.00
ATOM	2266	OG1	THR	235	52.016	22.789	80.175	1.00 20.00
ATOM	2268	CG2	THR	235	53.198	21.086	81.434	1.00 20.00
ATOM	2269	С	THR	235	50.387	20.928	78.924	1.00 20.00
ATOM	2270	0	THR	235	50.447	21.651	77.930	1.00 20.00
ATOM	2271	N	CYS	236	49.216	20.483	79.421	1.00 20.00
ATOM	2273	CA	CYS	236	47.989	20.894	78.810	1.00 20.00
ATOM	2274	CB	CYS	236	46.819	19.910	78.989	1.00 20.00
MOTA	2275	SG	CYS	236	46.939	18.467	77.899	1.00 20.00
MOTA	2276	C	CYS	236	47.599	22.168	79.473	1.00 20.00 1.00 20.00
ATOM	2277	0	CYS	236	47.313 47.579	22.189 23.269	80.669 78.694	1.00 20.00
ATOM	2278	N	LYS	237 237	47.273	24.556	79.241	1.00 20.00
ATOM	2280 2281	CA CB	LYS LYS	237	48.296	25.640	78.862	1.00 20.00
ATOM ATOM	2281	CG	LYS	237	49.668	25.442	79.509	1.00 20.00
ATOM	2283	CD	LYS	237	50.763	26.323	78.905	1.00 20.00
ATOM	2284	CE	LYS	237	52.133	26.124	79.556	1.00 20.00
ATOM	2285	NZ	LYS	237	53.141	26.973	78.882	1.00 20.00
ATOM	2289	C	LYS	237	45.937	25.018	78.754	1.00 20.00
ATOM	2290	0	LYS	237	45.538	24.748	77.623	1.00 20.00
ATOM	2291	N	ASP	238	45.193	25.697	79.650	1.00 20.00
ATOM	2293	CA	ASP	238	43.904	26.249	79.350	1.00 20.00
ATOM	2294	CB	ASP	238	43.207	26.805	80.606	1.00 20.00
ATOM	2295	CG	ASP	238	41.761	27.127	80.258	1.00 20.00
MOTA	2296		ASP	238	41.399	27.014	79.057	1.00 20.00
ATOM	2297		ASP	238	40.999	27.492	81.194	1.00 20.00
ATOM	2298	С	ASP	238	44.080	27.378	78.383	1.00 20.00

٠

.

A .	2299	0	ASP	238	43.294	27.553	77.452		20.00		
ATOM	2300	N	THR	239	45.124	28.195	78.604		20.00		
ATOM	2302	CA	THR	239	45.395	29.288	77.721		20.00		
MC.	2303	CB	THR	239	44.901	30.613	78.222		20.00		
OM	2304		THR	239	45.004	31.594	77.201		20.00		
ATOM	2306		THR	239	45.744	31.022 29.365	79.442 77.641		20.00		
ATOM	2307	С 0	THR THR	239 239	46.879 47.581	29.303	78.459		20.00		
ATOM ATOM	2308 2309	N	CYS	240	47.410	30.087	76.640		20.00		
ATOM	2311	CA	CYS	240	48.835	30.120	76.543		20.00		
MOTA	2312	CB	CYS	240	49.340	30.107	75.100	1.00	20.00		
ATOM	2313	SG	CYS	240	49.026	28.455	74.421	1.00	20.00		
ATOM	2314	С	CYS	240	49.397	31.268	77.303		20.00		
MOTA	2315	0	CYS	240	48.974	32.417	77.198		20.00		
ATOM	2316	N	PRO	241	50.343	30.894	78.119		40.00		
MOTA	2317	CD	PRO	241	50.319	29.560	78.691		40.00		
MOTA	2318	CA CB	PRO PRO	241 241	51.014 51.531	31.831 31.028	78.973 80.169		40.00		
ATOM ATOM	2319 2320	CG	PRO	241	51.463	29.562	79.714		40.00		
ATOM	2321	C	PRO	241	52.097	32.561	78.253		40.00		
ATOM	2322	0	PRO	241	52.520	32.130	77.181		40.00		
MOTA	2323	N	PRO	242	52.520	33.654	78.820	1.00	60.00		
MOTA	2324	CD	PRO	242	51.564	34.527	79.485		60.00		
MOTA	2325	CA	PRO	242	53.598	34.393	78.227		60.00	•	
MOTA	2326	CB	PRO	242	53.501	35.808	78.793		60.00		
MOTA	2327	CG	PRO	242	52.014		79.154		60.00 60.00		
MOTA	2328	C	PRO	242 242	54.875 54.870	33.709 32.896	78.587 79.510		60.00		
ATOM ATOM	2329 2330	O N	PRO LEU	242	55.978	34.015	77.877		60.00		
ATOM	2332	CA	LEU	243	57.227	33.396	78.202		60.00		
ATOM	2333	CB	LEU	243	58.383	33.812	77.277	1.00	60.00		
MOTA	2334	CG	LEU	243	59.726	33.148	77.636	1.00	60.00		
MOTA	2335	CD1	LEU	243	59.643	31.616	77.513		60.00		
MOTA	2336	CD2	LEU	243	60.879	33.743	76.813		60.00		
MOTA	2337	С	LEU		57.575	33.816	79.591		60.00		
ATOM	2338	0	LEU	243	57.890	34.978 32.862	79.848 80.533		60.00 60.00		
ATOM	2339 2341	N CA	MET MET	244 244	57.507 57.791	33.161	81.903		60.00		
ATOM ATOM		CB		244	57.482						
ATOM	2343	CG	MET	244	55.997	31.625	82.878		60.00		
ATOM	2344	SD	MET	244	54.903	32.969	83.429	1.00	60.00		
MOTA	2345	CE	MET	244	55.431	32.907	85.165		60.00		
ATOM	2346	С	MET	244	59.235	33.503	82.057		60.00		
ATOM	2347	0	MET	244	59.576	34.511	82.673		60.00		
MOTA	2348	N	LEU	245	60.134	32.684 32.981	81.481 81.643		60.00		
MOTA	2350 2351	CA CB	LEU LEU	245 245	61.525 62.469	31.955	80.994		60.00		
MOTA MOTA	2352		LEU	245	62.377	30.548	81.616		60.00		
ATOM	2352	CD1		245	63.367	29.579	80.947		60.00		
ATOM	2354	CD2		245	62.526	30.598	83.146		60.00		
ATOM	2355	C	LEU	245	61.771	34.296	80.992		60.00		
ATOM	2356	0	LEU	245	61.191	34.605	79.952		60.00		
MOTA	2357	N	TYR	246	62.630	35.127	81.612		60.00		
MOTA	2359	CA	TYR	246	62.896	36.400	81.021		60.00		
ATOM	2360	CB CG	TYR TYR	246 246	62.429 60.948	37.596 37.506	81.868 81.992		60.00		
ATOM ATOM	2361 2362	CD1		246	60.132	37.819	80.930		60.00		
ATOM ATOM	2362	CE1		246	58.765	37.758	81.055		60.00		
MOTA	2364	CD2		246	60.374	37.171	83.196		60.00		
ATOM	2365	CE2		246	59.008	37.115	83.331		60.00		
ATOM	2366	CZ	TYR	246	58.200	37.401	82.257		60.00		
MOTA	2367	OH	TYR	246	56.798	37.332	82.389		60.00		
MOTA	2369	C	TYR	246	64.369	36.547	80.860		60.00		
MOTA	2370	0	TYR	246	65.152	36.112	81.704	1.00	60.00		

f (1)

MOTA	2371	N	ASN	247	64.781	37.156	79.735	1.00 60.00
MOTA	2373	CA	ASN	247	66.166	37.413	79.494	1.00 60.00
MOTA	2374	CB	ASN	247	66.751	36.629	78.307	1.00 60.00
MC	2375	CG	ASN	247	66.747	35.150	78.654	1.00 60.00
MOTA	2376		ASN	247	66.946	34.764	79.804	1.00 60.00
MOTA	2377		ASN	247	66.512	34.291	77.626	1.00 60.00 1.00 60.00
MOTA	2380	С	ASN	247	66.194 65.156	38.845	79.091 78.784	1.00 60.00
MOTA	2381	0	ASN	247 248	67.343	39.427 39.452	79.108	1.00 60.00
MOTA	2382	N CD	PRO PRO	248	68.307	39.227	80.172	1.00 60.00
MOTA	2383 2384	CA	PRO	248	67.376	40.798	78.633	1.00 60.00
MOTA MOTA	2385	CB	PRO	248	68.694	41.391	79.120	1.00 60.00
ATOM	2386	CG	PRO	248	68.980	40.592	80.407	1.00 60.00
ATOM	2387	c	PRO	248	67.231	40.707	77.156	1.00 60.00
ATOM	2388	0	PRO	248	67.940	39.912	76.542	1.00 60.00
ATOM	2389	N	THR	249	66.324	41.498	76.561	1.00 60.00
ATOM	2391	CA	THR	249	66.157	41.376	75.148	1.00 60.00
ATOM	2392	CB	THR	249	64.766	40.988	74.743	1.00 60.00
MOTA	2393	OG1	THR	249	63.842	41.988	75.145	1.00 60.00
MOTA	2395	CG2	THR	249	64.419	39.645	75.406	1.00 60.00
MOTA	2396	С	THR	249	66.445	42.695	74.528	1.00 60.00
MOTA	2397	0	THR	249	65.998	43.736	75.007	1.00 60.00
MOTA	2398	N	THR	250	67.235	42.676	73.442	1.00 60.00
MOTA	2400	CA	THR	250	67.522	43.894	72.758	1.00 60.00
MOTA	2401	CB	THR	250	68.975	44.063	72.421	1.00 60.00 1.00 60.00
MOTA	2402	OG1		250	69.407	43.023	71.556 73.728	1.00 60.00
ATOM	2404	CG2		250	69.784 66.755	44.032 43.825	71.483	1.00 60.00
MOTA	2405 2406	С 0	THR THR	250 250	66.991	42.953	70.648	1.00 60.00
MOTA MOTA	2400	N	TYR	251	65.783	44.738	71.313	1.00 60.00
ATOM	2407	CA	TYR	251	65.019	44.726	70.106	1.00 60.00
ATOM	2410	СB	TYR	251	63.510	44.525	70.343	1.00 60.00
ATOM	2411	CG	TYR	251	62.876	44.130	69.052	1.00 60.00
ATOM	2412	CD1	TYR	251	62.473	45.067	68.128	1.00 60.00
MOTA	2413	CE1	TYR	251	61.893	44.675	66.943	1.00 60.00
ATOM	2414	CD2	TYR	251	62.678	42.796	68.774	1.00 60.00
MOTA	2415	CE2	TYR	251	62.096	42.398	67.594	1.00 60.00
MOTA	2416	CZ	TYR	251	61.705	43.340	66.674	1.00 60.00
MOTA	2417	OH	TYR	251	61.127	42.937	65.452	1.00 60.00 1.00 60.00
MOTA	2419	C	TYR	251	65.225 65.588	46.096 47.013	69.557 70.292	1.00 60.00
ATOM	2420 2421	O N	TYR GLN	251 252	65.022	46.278	68.241	1.00 60.00
MOTA MOTA	2421	CA	GLN	252	65.242	47.587	67.707	1.00 60.00
MOTA	2424	CB	GLN	252	65.041	47.680	66.183	1.00 60.00
MOTA	2425	CG	GLN	252	63.628	47.363	65.693	1.00 60.00
MOTA	2426	CD	GLN	252	63.638	47.511	64.177	1.00 60.00
MOTA	2427	OE1	GLN	252	62.715	47.085	63.482	1.00 60.00
ATOM	2428	NE2	GLN	252	64.724	48.132	63.642	1.00 60.00
MOTA	2431	С	GLN	252	64.296	48.522	68.381	1.00 60.00
ATOM	2432	0	GLN	252	64.693	49.599	68.823	1.00 60.00
MOTA	2433	N	MET	253	63.015	48.127	68.504	1.00 60.00
MOTA	2435	CA	MET	253	62.094	49.001	69.160	1.00 60.00
MOTA	2436	CB	MET	253	60.612	48.669	68.906	1.00 60.00
MOTA	2437	CG	MET	253	60.179	48.955	67.466 67.098	1.00 60.00
ATOM	2438 2439	SD CE	MET MET	253 253	58.436 58.658	48.593 46.796	66.971	1.00 60.00
ATOM	2439	CE	MET	253	62.362	48.933	70.627	1.00 60.00
MOTA MOTA	2440	0	MET	253	63.037	48.023	71.106	1.00 60.00
ATOM	2441	N	ASP	254	61.848	49.926	71.374	1.00 60.00
ATOM	2444	CA	ASP	254	62.085	50.003	72.785	1.00 60.00
ATOM	2445	СВ	ASP	254	61.483	51.270	73.416	1.00 60.00
ATOM	2446	CG	ASP	254	62.283	52.468	72.924	1.00 60.00
ATOM	2447	OD1	ASP	254	61.662	53.540	72.691	1.00 60.00
ATOM	2448	OD2	ASP	254	63.526	52.327	72.780	1.00 60.00

A	2449	С	ASP	254	61.474	48.832	73.480		60.00
MOTA	2450	0	ASP	254	62.122	48.178	74.295		60.00
ATOM	2451	N	VAL	255	60.204	48.520	73.162		60.00
٦M	2453	CA	VAL	255	59.561	47.442	73.852		60.00
ALOM	2454	СВ	VAL	255	58.158	47.754	74.280		60.00
MOTA	2455	CG1	VAL,	255	57.299	47.953	73.020		60.00
MOTA	2456	CG2	VAL	255	57.663	46.622	75.196		60.00
ATOM	2457	С	VAL	255	59.483	46.261	72.950		60.00
MOTA	2458	0	VAL	255	59.474	46.394	71.727		60.00
ATOM	2459	N	ASN	256	59.448	45.058	73.554		60.00
MOTA	2461	CA	ASN	256	59.348	43.852	72.791		60.00
MOTA	2462	СВ	ASN	256	60.299	42.740	73.269 72.379		60.00
MOTA	2463	CG	ASN	256	60.098	41.520 40.451	72.854		60.00
ATOM	2464		ASN	256 256	59.716 60.362	41.679	71.055		60.00
ATOM	2465		ASN	256	57.957	43.344	72.963		60.00
ATOM	2468	С О	ASN ASN	256	57.392	43.371	74.055		60.00
ATOM	2469 2470	N	PRO	257	57.384	42.907	71.879		60.00
ATOM ATOM	2471	CD	PRO	257	57.656	43.530	70.595		60.00
ATOM	2472	CA	PRO	257	56.058	42.359	71.940		60.00
ATOM	2473	CB	PRO	257	55.447	42.551	70.550	1.00	60.00
ATOM	2474	CG	PRO	257	56.643	42.882	69.640	1.00	60.00
ATOM	2475	С	PRO	257	56.163	40.932	72.357	1.00	60.00
MOTA	2476	0	PRO	257	57.229	40.343	72.188	1.00	60.00
ATOM	2477	N	GLU	258	55.084	40.355	72.921		60.00
ATOM	2479	CA	GLU	258	55.158	38.980	73.312		60.00
ATOM	2480	СВ	GLU	258	56.103	38.741	74.504		60.00
ATOM	2481	CG	GLU	258	56.443	37.267	74.738		60.00
ATOM	2482	CD	GLU	258	57.436	36.838	73.666		60.00
ATOM	2483		GLU	258	57.797	35.632	73.640		60.00
MOTA	2484	OE2		258	57.850	37.712	72.857		60.00
ATOM	2485	С	GLU	258	53.785	38.555	73.725		60.00
MOTA	2486	0	GLU	258	52.822	39.305	73.579		60.00
MOTA	2487	N	GLY	259	53.662	37.318 36.839	74.242 74.696		60.00
ATOM	2489	CA	GLY	259 259	52.390 51.626	36.312	73.529		60.00
MOTA	2490	C 0	GLY GLY	259	50.441	36.003	73.639		60.00
ATOM	2491 2492	N	LYS	260	52.295	36.197	72.369		60.00
MOTA MOTA	2492	CA	LYS	260	51.630	35.712	71.199		60.00
ATOM	2495	CB	LYS	260	52.164	36.371	69.917	1.00	60.00
ATOM	2496	CG	LYS	260	53.689	36.306	69.792	1.00	60.00
АТОМ	2497	CD	LYS	260	54.221	36.659	68.401	1.00	60.00
ATOM	2498	CE	LYS	260	54.298	35.459	67.454		60.00
ATOM	2499	NZ	LYS	260	52.941	35.089	66.995		60.00
MOTA	2503	С	LYS	260	51.855	34.239	71.090		60.00
ATOM	2504	0	LYS	260	52.807	33.792	70.452		60.00
ATOM	2505	N	TYR	261	50.981	33.433	71.727		40.00
ATOM	2507	CA	TYR	261	51.160	32.018	71.623		40.00
ATOM	2508	СВ	TYR	261	51.545	31.368	72.964		40.00
ATOM	2509	CG	TYR	261	52.847	31.929	73.425		40.00
MOTA	2510		TYR	261	54.032	31.338 31.845	73.054 73.479		40.00
ATOM	2511		TYR	261	55.236	33.038	74.239		40.00
ATOM	2512		TYR TYR	261 261	52.884 54.086	33.545	74.233		40.00
MOTA	2513	CE2	TYR	261	55.263	32.950	74.294		40.00
ATOM	2514 2515	OH	TYR	261	56.497	33.472	74.737		40.00
MOTA MOTA	2513 2517	C	TYR	261	49.844	31.408	71.265		40.00
MOTA	2517	0	TYR	261	48.937	31.398	72.092		40.00
ATOM	2519	N	SER	262	49.703	30.888	70.027		20.00
ATOM	2521	CA	SER	262	48.521	30.173	69.622	1.00	20.00
ATOM	2522	СВ	SER	262	47.244	31.027	69.481		20.00
MOTA	2523	OG	SER	262	46.751	31.449	70.744		20.00
MOTA	2525	С	SER	262	48.809	29.661	68.248		20.00
ATOM	2526	0	SER	262	48.879	30.438	67.297	1.00	20.00

`

. .

ATOM	2527	N	PHE	263	49.007	28.337	68.103	1.00 20.00
MOTA	2529	CA	PHE	263	49.269	27.813	66.796	1.00 20.00
MOTA	2530	CB	PHE	263	50.756	27.487	66.589	1.00 20.00
MC	2531	CG	PHE	263	51.541	28.737	66.794	1.00 20.00
WO TH	2532	CD1	PHE	263	51.722	29.238	68.063	1.00 20.00
MOTA	2533	CD2	PHE	263	52.221	29.322	65.751	1.00 20.00
MOTA	2534	CE1	PHE	263	52.514	30.340	68.283	1.00 20.00
ATOM	2535	CE2	PHE	263	53.032	30.412	65.967	1.00 20.00 1.00 20.00
ATOM	2536	cz	PHE PHE	263 263	53.171 48.550	30.932 26.503	67.232 66.726	1.00 20.00
MOTA MOTA	2537 2538	C O	PHE	263	48.960	25.536	67.364	1.00 20.00
ATOM	2539	N	GLY	264	47.473	26.411	65.928	1.00 20.00
ATOM	2541	CA	GLY	264	46.785	25.154	65.871	1.00 20.00
ATOM	2542	C	GLY	264	46.317	24.803	67.261	1.00 20.00
ATOM	2543	ō	GLY	264	45.573	25.563	67.871	1.00 20.00
ATOM	2544	N	ALA	265	46.670	23.590	67.748	1.00 40.00
ATOM	2546	CA	ALA	265	46.384	23.068	69.064	1.00 40.00
MOTA	2547	CB	ALA	265	46.496	21.535	69.117	1.00 40.00
MOTA	2548	С	ALA	265	47.277	23.601	70.145	1.00 40.00
ATOM	2549	0	ALA	265	46.844	23.768	71.284	1.00 40.00
MOTA	2550	N	THR	266	48.561	23.860	69.823	1.00 20.00
ATOM	2552	CA	THR	266	49.516	24.233	70.830	1.00 20.00
MOTA	2553	СВ	THR	266	50.712	23.327	70.865	1.00 20.00
MOTA	2554	OG1	THR	266	51.422	23.408	69.638	1.00 20.00
ATOM	2556	CG2		266	50.227	21.887	71.101 70.581	1.00 20.00 1.00 20.00
ATOM	2557	C	THR	266 266	50.034 49.552	25.609 26.321	69.703	1.00 20.00
ATOM	2558 2559	O N	THR	267	51.024	26.035	71.393	1.00 20.00
ATOM ATOM	2561	CA	CYS	267	51.536	27.360	71.222	1.00 20.00
ATOM	2562	СВ	CYS	267	51.243	28.267	72.417	1.00 20.00
ATOM	2563	SG	CYS	267	49.476	28.652	72.467	1.00 20.00
ATOM	2564	C	CYS	267	53.003	27.395	70.932	1.00 20.00
ATOM	2565	0	CYS	267	53.762	26.529	71.362	1.00 20.00
ATOM	2566	N	VAL	268	53.425	28.426	70.165	1.00 20.00
MOTA	2568	CA	VAL	268	54.797	28.586	69.772	1.00 20.00
MOTA	2569	CB	VAL	268	54.998	28.615	68.284	1.00 20.00
MOTA	2570	CG1		268	56.489	28.857	67.997	1.00 20.00
MOTA	2571	CG2	VAL	268	54.457	27.305	67.684	1.00 20.00
MOTA	2572	С	VAL	268	55.307	29.884	70.309	1.00 20.00 1.00 20.00
ATOM	2573	0	VAL	268	54.571 56.608	30.863 29.908	70.413 70.657	1.00 20.00
ATOM	2574	N	LYS LYS	269 269	57.239	31.058	70.037	1.00 20.00
ATOM ATOM	2576 2577	CA CB	LYS	269	58.729	30.813	71.532	1.00 20.00
ATOM	2578	CG	LYS	269	59.426	31.973	72.242	1.00 20.00
ATOM	2579	CD	LYS	269	60.879	31.668	72.615	1.00 20.00
ATOM	2580	CE	LYS	269	61.061	30.346	73.364	1.00 20.00
ATOM	2581	NZ	LYS	269	62.503	30.064	73.551	1.00 20.00
ATOM	2585	С	LYS	269	57.176	32.209	70.297	1.00 20.00
MOTA	2586	0	LYS	269	56.810	33.318	70.685	1.00 20.00
MOTA	2587	N	LYS	270	57.522	31.969	69.019	1.00 20.00
MOTA	2589	CA	LYS	270	57.534	33.036	68.064	1.00 20.00
MOTA	2590	CB	LYS	270	58.948	33.382	67.571	1.00 20.00
MOTA	2591	CG	LYS	270	59.831	34.001	68.657	1.00 20.00
MOTA	2592	CD	LYS	270	61.323	33.973	68.323	1.00 20.00
MOTA	2593	CE	LYS	270	61.984	32.627	68.625	1.00 20.00 1.00 20.00
MOTA	2594	NZ	LYS	270 270	63.403	32.653	68.209 66.885	1.00 20.00
ATOM	2598	С О	LYS LYS	270 270	56.741 56.481	32.590 31.401	66.702	1.00 20.00
ATOM ATOM	2599 2600	N	CYS	270 271	56.320	33.559	66.057	1.00 20.00
ATOM ATOM	2602	CA	CYS	271	55.524	33.261	64.908	1.00 20.00
ATOM	2603	CB	CYS	271	54.812	34.532	64.403	1.00 20.00
ATOM	2604	SG	CYS	271	53.495	34.290	63.178	1.00 20.00
ATOM	2605	c	CYS	271	56.458	32.726	63.869	1.00 20.00
ATOM	2606	0	CYS	271	57.559	33.242	63.686	1.00 20.00

P 1	2607	N	PRO	272	56.054	31.683	63.193		20.00
A'I OM	2608	CD	PRO	272	55.163	30.698	63.778		20.00
MOTA	2609	CA	PRO	272	56.883	31.103	62.177		20.00
M	2610	CB	PRO	272	56.289	29.725	61.870		20.00
A.OM	2611	CG	PRO	272	54.955 56.936	29.688 32.042	62.639 61.023		20.00
MOTA	2612	С 0	PRO PRO	272 272	56.040	32.873	60.891		20.00
ATOM ATOM	2613 2614	N	ARG	273	57.979	31.943	60.181	1.00	
ATOM	2614	CA	ARG	273	58.097	32.887	59.115	1.00	
ATOM	2617	CB	ARG	273	59.407	32.762	58.313	1.00	20.00
MOTA	2618	CG	ARG	273	60.640	33.020	59.185	1.00	20.00
ATOM	2619	CD	ARG	273	61.938	33.257	58.409		20.00
MOTA	2620	NE	ARG	273	62.116	34.733	58.287		20.00
ATOM	2622	CZ	ARG	273	63.314	35.307	58.603		20.00
MOTA	2623	NH1		273	64.351	34.532	59.035		20.00
ATOM	2626	NH2		273	63.471	36.660	58.499 58.192		20.00
MOTA	2629	С	ARG	273 273	56.932 56.339	32.755 31.685	58.064		20.00
ATOM	2630	0	ARG ASN	273 274	56.580	33.873	57.527	1.00	
ATOM	2631 2633	N CA	ASN	274	55.465	33.937	56.628	1.00	
ATOM ATOM	2634	СВ	ASN	274	55.474	32.817	55.574	1.00	
ATOM	2635	CG	ASN	274	56.592	33.129	54.587	1.00	20.00
ATOM	2636	OD1		274	56.601	34.187	53.960	1.00	20.00
ATOM	2637	ND2	ASN	274	57.566	32.189	54.450		20.00
ATOM	2640	С	ASN	274	54.178	33.873	57.388		20.00
MOTA	2641	0	ASN	274	53.123	33.612	56.812		20.00
ATOM	2642	N	TYR	275	54.234	34.130	58.709	1.00	
MOTA	2644	CA	TYR	275	53.047	34.163	59.516	1.00	
MOTA	2645	CB	TYR	275	52.918 52.806	32.988 31.721	60.503 59.728	1.00	
ATOM	2646	CG	TYR TYR	275 275	53.939	31.721	59.253		20.00
ATOM	2647 2648	CD1 CE1	TYR	275	53.860	29.914	58.570		20.00
ATOM ATOM	2649	CD2	TYR	275	51.588	31.112	59.535	1.00	
ATOM	2650	CE2	TYR	275	51.502	29.919	58.855	1.00	20.00
ATOM	2651	CZ	TYR	275	52.639	2 9 .321	58.367	1.00	
ATOM	2652	OH	TYR	275	52.555	28.099	57.668	1.00	
ATOM	2654	C	TYR	275	53.176	35.407	60.339	1.00	
MOTA	2655	0	TYR	275	54.285	35.859	60.621	1.00	20.00
MOTA	2656	N	VAL	276 276	52.038	36.005 37.215	60.741 61.510		20.00
MOTA	2658	CA	VAL	276 276	52.083 51.371	38.363	60.858		20.00
ATOM	2659 2660	CB CG1	VAL VAL	276	52.076	38.692	59.532		20.00
MOTA (2661		VAL	276	49.884	37.996	60.703		20.00
ATOM	2662	C	VAL	276	51.393	36.980	62.815		20.00
MOTA	2663	o	VAL	276	50.633	36.025	62.967	1.00	20.00
MOTA	2664	N	VAL	277	51.665	37.850	63.808		20.00
ATOM	2666	CA	VAL	277	51.031	37.704	65.084		20.00
MOTA	2667	СВ	VAL	277	51.935	38.005	66.244		20.00
MOTA	2668		VAL	277	52.485	39.435	66.102		20.00
MOTA	2669	CG2		277	51.138	37.780	67.538		20.00
ATOM	2670	С	VAL	277	49.878	38.649 39.853	65.131 64.942		20.00
ATOM	2671	0	VAL	277 278	50.037 48.669	38.111	65.380		20.00
ATOM	2672 2674	N CA	THR THR	278	47.500	38.934	65.383		20.00
ATOM ATOM	2675	CB	THR	278	46.485	38.508	64.363		20.00
ATOM	2676	OG1		278	45.427	39.452	64.293		20.00
ATOM	2678	CG2		278	45.941	37.126	64.761		20.00
ATOM	2679	С	THR	278	46.832	38.866	66.713		20.00
ATOM	2680	0	THR	278	46.770	37.811	67.342		20.00
ATOM	2681	N	ASP	279	46.315	40.023	67.166		20.00
MOTA	2683	CA	ASP	279	45.606	40.114	68.405		20.00
MOTA	2684	CB	ASP	279	44.241	39.407	68.379	1.00	
ATOM	2685	CG	ASP	279 279	43.322	40.199	67.462		20.00
ATOM	2686	נעט	ASP	279	42.154	39.763	67.277	1.00	20.00

1 19

ATOM	2687	OD2	ASP	279	43.775	41.249	66.933	1.00 20.00
ATOM	2688	С	ASP	279	46.411	39.511	69.499	1.00 20.00
ATOM	2689	0	ASP	279	45.855	38.829	70.358	1.00 20.00
MO	2690	N	HIS	280	47.734	39.785	69.489	1.00 20.00
_OM	2692	CA	HIS	280	48.681	39.334	70.470	1.00 20.00
MOTA	2693	CB	HIS	280	48.754	40.258	71.699	1.00 20.00
ATOM	2694	CG	HIS	280	49.135	41.666	71.348	1.00 20.00
MOTA	2695		HIS	280	48.349	42.719	70.991	1.00 20.00
MOTA	2696		HIS	280	50.429	42.135	71.310	1.00 20.00
MOTA	2698		HIS	280	50.362	43.439	70.939	1.00 20.00
ATOM	2699		HIS	280	49.120	43.838	70.734	1.00 20.00
ATOM	2701	С	HIS	280	48.366	37.953	70.952	1.00 20.00
MOTA	2702	0	HIS	280	47.580	37.776	71.881	1.00 20.00
MOTA	2703	N	GLY	281	48.995	36.923	70.355	1.00 20.00
MOTA	2705	CA	GLY	281	48.682	35.604	70.816	1.00 20.00
ATOM	2706	C	GLY	281	48.423	34.647	69.699	1.00 20.00
MOTA	2707	0	GLY	281	48.690	33.456	69.844	1.00 20.00
ATOM	2708	N	SER	282	47.885 47.678	35.107	68.558 67.527	1.00 20.00
ATOM	2710	CA	SER	282		34.134	66.986	1.00 20.00
ATOM	2711	CB	SER	282	46.238	34.105 33.698	68.009	1.00 20.00
ATOM	2712	OG C	SER	282 282	45.340 48.580	34.438	66.380	1.00 20.00
ATOM	2714	С	SER	282	48.556	35.531	65.817	1.00 20.00
MOTA	2715	N O	SER CYS	283	49.418	33.454	66.015	1.00 20.00
MOTA	2716 2718	CA	CYS	283	50.301	33.582	64.897	1.00 20.00
ATOM ATOM	2719	CB	CYS	283	51.643	32.884	65.166	1.00 20.00
ATOM	2719	SG	CYS	283	52.649	32.524	63.700	1.00 20.00
ATOM	2721	C	CYS	283	49.600	32.877	63.794	1.00 20.00
ATOM	2722	0	CYS	283	49.413	31.660	63.829	1.00 20.00
ATOM	2723	N	VAL	284	49.168	33.651	62.786	1.00 20.00
ATOM	2725	CA	VAL	284	48.455	33.081	61.690	1.00 20.00
ATOM	2726	CB	VAL	284	47.049	33.602	61.572	1.00 20.00
ATOM	2727	CG1		284	46.360	32.936	60.368	1.00 20.00
ATOM	2728	CG2		284	46.329	33.358	62.910	1.00 20.00
ATOM	2729	С	VAL	284	49.198	33.470	60.457	1.00 20.00
ATOM	2730	0	VAL	284	49.960	34.435	60.453	1.00 20.00
ATOM	2731	N	ARG	285	48.992	32.705	59.373	1.00 20.00
ATOM	2733	CA	ARG	285	49.660	32.950	58.131	1.00 20.00
ATOM	2734	СВ	ARG	285	49.252	31.937	57.047	1.00 20.00
ATOM	2735	CG	ARG	285	49.876	32.202	55.676	1.00 20.00
ATOM	2736	CD	ARG	285	49.454	31.184	54.614	1.00 20.00
ATOM	2737	NE	ARG	285	49.985	31.653	53.304	1.00 20.00
MOTA	2739	CZ	ARG	285	50.013	30.806	52.234	1.00 20.00
ATOM	2740	NH1		285	49.586	29.517	52.373	1.00 20.00
ATOM	2743	NH2	ARG	285	50.465	31.249	51.025	1.00 20.00
ATOM	2746	С	ARG	285	49.296	34.308	57.634	1.00 20.00
ATOM	2747	0	ARG	285	50.145	35.029	57.112	1.00 20.00
ATOM	2748	N	ALA	286	48.017	34.702	57.781	1.00 20.00
ATOM	2750	CA	ALA	286	47.642	35.980	57.256	1.00 20.00
ATOM	2751	СВ	ALA	286	46.727	35.885	56.023	1.00 20.00
ATOM	2752	C	ALA	286	46.913	36.796	58.272	1.00 20.00
ATOM	2753	0	ALA	286	46.410	36.290	59.274	1.00 20.00
ATOM	2754	N	CYS	287	46.855	38.113	58.006	1.00 20.00
ATOM	2756	CA	CYS	287	46.200	39.081	58.834	1.00 20.00
ATOM	2757	CB	CYS	287	46.299	40.502	58.269	1.00 20.00
ATOM	2758	SG	CYS	287	47.899	41.323	58.457	1.00 20.00
ATOM	2759	С	CYS	287	44.735	38.810 38.046	58.806 57.978	1.00 20.00 1.00 20.00
ATOM	2760	O N	CYS	287	44.243	39.446	59.736	1.00 20.00
ATOM	2761 2763	N CA	GLY GLY	288 288	43.999	39.446	59.736	1.00 20.00
ATOM	2763		GLY	288	42.575	40.174	58.549	1.00 20.00
ATOM ATOM	2764 2765	C 0	GLY	288	42.177	40.174	58.028	1.00 20.00
ATOM ATOM	2765 2766	N	ALA	289	40.906	40.946	58.126	1.00 20.00
ATOM	2768	CA	ALA	289	40.434	40.735	56.947	1.00 20.00
ATOM	2/00	CM	VTV	209	40.474	-0.123	20.247	1.00 20.00

P I	2769	СВ	ALA	289	38.904	40.669	56.805	1.00 20.00	
ATOM	2770	C	ALA	289	40.821	42.180	56.864	1.00 20.00	
ATOM	2771	0	ALA	289	41.713	42.542	56.102	1.00 20.00	
· M·	2772	N	ASP	290	40.173	43.038	57.672	1.00 20.00	
A TOM	2774	CA	ASP	290	40.355	44.462	57.620	1.00 20.00	
ATOM	2775	CB	ASP	290	39.461	45.210	58.627	1.00 20.00	
ATOM	2776	CG	ASP	290	38.016	45.075	58.168	1.00 20.00	
ATOM	2777	OD1	ASP	290	37.104	45.361	58.989	1.00 20.00	
ATOM	2778	OD2	ASP	290	37.805	44.683	56.989	1.00 20.00	
ATOM	2779	С	ASP	290	41.768	44.843	57.925	1.00 20.00	
ATOM	2780	0	ASP	290	42.165	45.983	57.690	1.00 20.00	
MOTA	2781	N	SER	291	42.566	43.912	58.480	1.00 20.00	
ATOM	2783	CA	SER	291	43.899	44.283	58.856	1.00 20.00 1.00 20.00	
MOTA	2784	СВ	SER	291	44.405	43.492	60.073	1.00 20.00	
MOTA	2785	OG	SER	291	43.597	43.771	61.208 57.740	1.00 20.00	
ATOM	2787	C	SER	291	44.881 44.771	44.081 43.144	56.950	1.00 20.00	
MOTA	2788	0	SER	291 292	45.879	44.989	57.659	1.00 20.00	
MOTA	2789	N	TYR TYR	292	46.897	44.937	56.647	1.00 20.00	
ATOM	2791	CA CB	TYR	292	46.871	46.172	55.725	1.00 20.00	
MOTA	2792 2793	CG	TYR	29.2	47.867	45.995	54.629	1.00 20.00	
ATOM ATOM	2794	CD1		292	47.565	45.202	53.546	1.00 20.00	
ATOM	2795	CE1		292	48.422	45.115	52.473	1.00 20.00	
ATOM	2796	CD2		292	49.031	46.728	54.606	1.00 20.00	
ATOM	2797	CE2	TYR	292	49.894	46.647	53.537	1.00 20.00	
ATOM	2798	CZ	TYR	292	49.588	45.840	52.468	1.00 20.00	
MOTA	2799	ОН	TYR	292	50.460	45.771	51.361	1.00 20.00	
ATOM	2801	С	TYR	292	48.208	44.923	57.372	1.00 20.00	
ATOM	2802	0	TYR	292	48.360	45.564	58.410	1.00,20.00	
ATOM	2803	N	GLU	293	49.196	44.173	56.847	1.00 20.00	
ATOM	2805	CA	GLU	293	50.458	44.087	57.520	1.00 20.00	
MOTA	2806	CB	GLU	293	51.435	43.108	56.848	1.00 20.00	
ATOM	2807	CG	GLU	293	50.980	41.649	56.936	1.00 20.00	
MOTA	2808	CD	GLU	293	51.942	40.809	56.112 55.261	1.00 20.00	
MOTA	2809		GLU	293	52.657 51.973	41.402 39.565	56.314	1.00 20.00	•
MOTA	2810	OE2	GLU	293 293	51.973	45.450	57.503	1.00 20.00	
MOTA	2811 2812	С 0	GLU	293	50.902	46.201	56.544	1.00 20.00	
MOTA	2812		MET	294	51.769	45.811		1.00 20.00	
ATOM ATOM	2815	CA	MET	294	52.333	47.123	58.656	1.00 20.00	
ATOM	2816	СВ	MET	294	53.112	47.352	59.960	1.00 20.00	
ATOM	2817	CG	MET	294	53.536	48.804	60.183	1.00 20.00	
ATOM	2818	SD	MET	294	54.296	49.118	61.805	1.00 20.00	
MOTA	2819	CE	MET	294	52.763	48.901	62.755	1.00 20.00	
MOTA	2820	С	MET	294	53.277	47.263	57.509	1.00 20.00	
MOTA	2821	0	MET	294	53.288	48.282	56.821	1.00 20.00	
MOTA	2822	N	GLU	295	54.092	46.223	57.261	1.00 20.00	
MOTA	2824	CA	GLU	295	55.006	46.271	56.159	1.00 20.00	
ATOM	2825	CB	GLU	295	56.483	46.382	56.567	1.00 20.00 1.00 20.00	
ATOM	2826	CG	GLU	295	57.405	46.649	55.377	1.00 20.00	
MOTA	2827	CD	GLU	295	57.090	48.047	54.861 53.821	1.00 20.00	
ATOM	2828		GLU	295	56.385	48.150 49.030	55.507	1.00 20.00	
MOTA	2829	OE2	GLU GLU	295 295	57.540 54.838	44.988	55.415	1.00 20.00	
ATOM	2830		GLU	295	54.121	44.094	55.859	1.00 20.00	
ATOM	2831 2832	O N	GLU	296	55.490	44.866	54.244	1.00 20.00	
ATOM ATOM	2834	CA	GLU	296	55.329	43.665	53.482	1.00 20.00	
ATOM ATOM	2835	CB	GLU	296	56.167	43.632	52.194	1.00 20.00	
ATOM	2836	CG	GLU	296	55.849	42.419	51.316	1.00 20.00	
ATOM	2837	CD	GLU	296	56.724	42.489	50.075	1.00 20.00	
ATOM	2838		GLU	296	57.977	42.466	50.233	1.00 20.00	
ATOM	2839		GLU	296	56.157	42.569	48.956	1.00 20.00	
MOTA	2840	С	GLU	296	55.774	42.521	54.331	1.00 20.00	
ATOM	2841	0	GLU	296	55.066	41.525	54.468	1.00 20.00	

t ii

MOTA	2842	N	ASP	297	56.970	42.635	54.934	1.00 40.00
MOTA	2844	CA	ASP	297	57.418	41.570	55.776	1.00 40.00
MOTA	2845	CB	ASP	297	58.374	40.583	55.082	1.00 40.00
MC	2846	CG	ASP	297	59.628	41.336	54.661	1.00 40.00
wi.OW	2847		ASP	297	59.573	42.593	54.589	1.00 40.00
ATOM	2848		ASP	297	60.659	40.661	54.401	1.00 40.00
MOTA	2849	С	ASP	297 297	58.159 58.306	42.195 43.413	56.906 56.973	1.00 40.00 1.00 40.00
MOTA	2850	O N	ASP GLY	298	58.621	41.360	57.852	1.00 40.00
ATOM ATOM	2851 2853	CA	GLY	298	59.365	41.874	58.959	1.00 40.00
ATOM	2854	C	GLY	298	58.382	42.422	59.933	1.00 40.00
MOTA	2855	ō	GLY	298	58.728	42.737	61.071	1.00 40.00
ATOM	2856	N	VAL	299	57.114	42.556	59.503	1.00 40.00
MOTA	2858	CA	VAL	299	56.137	43.068	60.407	1.00 40.00
MOTA	2859	СВ	VAL	299	55.345	44.214	59.844	1.00 40.00
ATOM	2860	CG1	VAL	299	56.292	45.415	59.674	1.00 40.00
ATOM	2861	CG2	VAL	299	54.702	43.772	58.520	1.00 40.00
ATOM	2862	С	VAL	299	55.203	41.967	60.792	1.00 40.00
ATOM	2863	0	VAL	299	54.374	41.506	60.010	1.00 40.00
ATOM	2864	N	ARG	300	55.364	41.477	62.030	1.00 20.00
ATOM	2866	CA	ARG	300	54.469	40.486	62.537	1.00 20.00
MOTA	2867	СВ	ARG	300	54.946	39.864	63.859	1.00 20.00
ATOM	2868	CG	ARG	300	56.093	38.870	63.662	1.00 20.00
ATOM	2869	CD	ARG	300	57.381	39.499	63.127	1.00 20.00 1.00 20.00
ATOM	2870	NE CZ	ARG	300 300	58.323 59.632	38.383 38.640	62.831 62.541	1.00 20.00
MOTA	2872 2873		ARG ARG	300	60.101	39.922	62.564	1.00 20.00
MOTA MOTA	2876	NH2		300	60.473	37.612	62.228	1.00 20.00
ATOM	2879	C	ARG	300	53.169	41.175	62.776	1.00 20.00
ATOM	2880	o	ARG	300	52.100	40.597	62.589	1.00 20.00
ATOM	2881	N	LYS	301	53.247	42.451	63.196	1.00 20.00
АТОМ	2883	CA	LYS	301	52.083	43.220	63.518	1.00 20.00
АТОМ	2884	СВ	LYS	301	52.403	44.615	64.088	1.00 20.00
MOTA	2885	CG	LYS	301	52.891	44.624	65.538	1.00 20.00
MOTA	2886	CD	LYS	301	51.836	44.146	66.537	1.00 20.00
MOTA	2887	CE	LYS	301	52.219	44.386	68.000	1.00 20.00
MOTA	2888	NZ	LYS	301	51.988	45.804	68.357	1.00 20.00
MOTA	2892	С	LYS	301	51.244	43.447	62.312	1.00 20.00
ATOM	2893	0	LYS	301	51.740 49.917	43.586	61.194 62.525	1.00 20.00 1.00 20.00
MOTA	2894	N	CYS CYS	302 302	49.917	43.473 43.769	61.443	1.00 20.00
MOTA MOTA	2896 2897	CA CB	CYS	302	48.002	42.684	61.152	1.00 20.00
ATOM	2898	SG	CYS	302	47.330	42.959	59.499	1.00 20.00
ATOM	2899	c	CYS	302	48.314	44.990	61.905	1.00 20.00
ATOM	2900	Ō	CYS	302	48.036	45.132	63.095	1.00 20.00
MOTA	2901	N	LYS	303	48.003	45.922	60.983	1.00 20.00
ATOM	2903	CA	LYS	303	47.356	47.128	61.407	1.00 20.00
MOTA	2904	СВ	LYS	303	48.242	48.374	61.231	1.00 20.00
ATOM	2905	CG	LYS	303	48.792	48.550	59.816	1.00 20.00
ATOM	2906	CD	LYS	303	49.481	49.898	59.594	1.00 20.00
MOTA	2907	CE	LYS	303	50.235	49.985	58.265	1.00 20.00
ATOM	2908		LYS	303	50.850	51.323	58.116	1.00 20.00
ATOM	2912	C	LYS	303	46.078	47.329	60.654	1.00 20.00
MOTA	2913	O NT	LYS	303	45.879	46.778	59.574	1.00 20.00 1.00 20.00
ATOM	2914	N	LYS	304 304	45.169 43.869	48.129 48.421	61.247 60.711	1.00 20.00
MOTA ATOM	2916 2917	CA CB	LYS LYS	304	43.869	49.283	61.672	1.00 20.00
ATOM ATOM	2917 2918	CG	LYS	304	41.630	49.631	61.174	1.00 20.00
ATOM	2919	CD	LYS	304	40.782	50.330	62.240	1.00 20.00
ATOM	2920	CE	LYS	304	39.436	50.849	61.726	1.00 20.00
ATOM	2921	NZ	LYS	304	38.423	49.771	61.774	1.00 20.00
MOTA	2925	C	LYS	304	43.997	49.190	59.438	1.00 20.00
ATOM	2926	0	LYS	304	44.899	50.012	59.285	1.00 20.00
MOTA	2927	N	CYS	305	43.095	48.927	58.472	1.00 20.00

A I	2929	CA	CYS	305	43.164	49.684	57.260		20.00
ATOM	2930	СВ	CYS	305	43.302	48.823	55.985	1.00	20.00
MOTA	2931	SG	CYS	305	41.828	47.850	55.573		20.00
7 ')M	2932	С	CYS	305	41.923	50.512	57.184	1.00	20.00
. JM	2933	0	CYS	305	40.806	49.999 51.844	57.237 57.077	1.00	20.00
ATOM	2934	N	GLU	306 306	42.086 40.918	52.669	57.024	1.00	20.00
MOTA	2936	CA	GLU GLU	306	41.217	54.178	57.005	1.00	20.00
ATOM	2937	CB CG	GLU	306	41.776	54.707	58.328		20.00
ATOM ATOM	2938 2939	CD	GLU	306	40.654	54.677	59.357	1.00	
ATOM	2940	OE1	GLU	306	39.574	54.114	59.035	1.00	20.00
ATOM	2941	OE2	GLU	306	40.861	55.214	60.478	1.00	20.00
ATOM	2942	С	GLU	306	40.199	52.336	55.763	1.00	20.00
MOTA	2943	0	GLU	306	40.732	52.501	54.667	1.00	20.00
MOTA	2944	N	GLY	307	38.949	51.857	55.896	1.00	
MOTA	2946	CA	GLY	307	38.172	51.522	54.741		20.00
MOTA	2947	C	GLY	307	38.614	50.195	54.230		20.00
MOTA	2948	0	GLY	307	39.196	49.387	54.951		20.00
MOTA	2949	N	PRO	308	38.336	49.955	52.980 52.364	1.00	
MOTA	2950	CD	PRO	308	37.118	50.454 48.713	52.304	1.00	
MOTA	2951	CA	PRO	308 308	38.754 38.045	48.614	51.062	1.00	
MOTA	2952	CB	PRO PRO	308	36.747	49.414	51.290	1.00	
ATOM ATOM	2953 2954	C	PRO	308	40.240	48.737	52.352	1.00	
ATOM	2955	ō	PRO	308	40.805	49.802	52.108	1.00	20.00
ATOM	2956	N	CYS	309	40.901	47.588	52.578	1.00	20.00
MOTA	2958	CA	CYS	309	42.329	47.631	52.587	1.00	20.00
ATOM	2959	СВ	CYS	309	43.015	46.386	53.168	1.00	20.00
MOTA	2960	SG	CYS	309	42.556	46.072	54.897	1.00	20.00
MOTA	2961	С	CYS	309	42.789	47.801	51.182	1.00	20.00
MOTA	2962	0	CYS	309	42.104	47.406	50.240	1.00	20.00
MOTA	2963	N	ARG	310	43.972	48.421	51.015	1.00	20.00
MOTA	2965	CA	ARG	310	44.498	48.664 49.594	49.709 49.699	1.00	20.00
MOTA	2966	CB	ARG	310 310	45.726 45.450	51.064	50.032	1.00	20.00
ATOM	2967 2968	CG CD	ARG ARG	310	44.884	51.307	51.433	1.00	20.00
ATOM ATOM	2969	NE	ARG	310	43.403	51.169	51.346	1.00	20.00
ATOM	2971	CZ	ARG	310	42.641	52.281	51.125	1.00	20.00
MOTA	2972		ARG	310	43.236	53.506	51.036	1.00	20.00
MOTA	2975	NH2	ARG	310	41.286	52.172	50.995		20.00
MOTA	2978	С	ARG	310	44.942	47.373	49.114		20.00
MOTA	2979	0	ARG	310	45.419	46.479	49.811		20.00
ATOM	2980	N	LYS	311	44.756	47.247	47.787		20.00
MOTA	2982	CA	LYS	311	45.195	46.091	47.069		20.00
MOTA	2983	CB	LYS	311 311	44.107 44.629	45.021 43.707	46.887 46.300		20.00
MOTA	2984	CG	LYS LYS	311	45.570	42.946	47.238		20.00
MOTA MOTA	2985 2986	CD CE	LYS	311	45.948	41.554	46.727		20.00
ATOM	2987	NZ	LYS	311	46.769	41.667	45.501		20.00
ATOM	2991	С	LYS	311	45.555	46.607	45.717	1.00	20.00
ATOM	2992	0	LYS	311	45.116	47.685	45.323	1.00	20.00
АТОМ	2993	N	VAL	312	46.387	45.862	44.968		20.00
ATOM	2995	CA	VAL	312	46.732	46.345	43.667		20.00
MOTA	2996	СВ	VAL	312	47.842	45.578	43.012		20.00
MOTA	2997		VAL	312	48.059	46.152	41.602		20.00
MOTA	2998		VAL	312	49.087	45.658	43.911		20.00
ATOM	2999	C	VAL	312	45.491	46.195	42.799		20.00
ATOM	3000	0	VAL	312	44.922	47.244	42.394 42.529		20.00
ATOM	3001	OXT'	VAL	312	45.095	45.029	44.343	1.00	20.00
TER									

					0.50	0 046	61 000	1 00 40	00
MOTA	3	N	CYS	313	54.063	9.046	61.837	1.00 40.	
ATOM	5	CA	CYS	313	54.050	8.871	60.363	1.00 40.	
MOTA	6	CB	CYS	313	53.300	7.570	60.029	1.00 40.	.00
; v I	7	SG	CYS	313	54.210	6.124	60.659	1.00 40.	.00
			CYS	313	53.390	10.060	59.715	1.00 40	
ATOM	8	С				10.713	60.344	1.00 40	
MOTA	9	0	CYS	313	52.565				
MOTA	10	N	ASN	314	53.749	10.398	58.452	1.00 40	
ATOM	12	CA	ASN	314	53.183	11.550	57.785	1.00 40.	.00
АТОМ	13	СВ	ASN	314	54.130	12.176	56.746	1.00 40.	.00
	14	CG	ASN	314	54.433	11.136	55.678	1.00 40.	.00
MOTA				314	54.238	9.938	55.880	1.00 40.	
ATOM	15	OD1	ASN						
MOTA	16	ND2	ASN	314	54.937	11.606	54.505	1.00 40.	
ATOM	19	С	ASN	314	51.911	11.161	57.091	1.00 40	
ATOM	20	0	ASN	314	51.514	9.999	57.138	1.00 40.	
ATOM	21	N	GLY	315	51.235	12.143	56.442	1.00 20.	.00
ATOM	23	CA	GLY	315	49.998	11.903	55.745	1.00 20.	.00
			GLY	315	50.241	10.746	54.839	1.00 20	
MOTA	24	С					54.010	1.00 20	
ATOM	25	0	GLY	315	51.148	10.775		•	
MOTA	26	N	ILE	316	49.421	9.689	54.982	1.00 20.	
MOTA	28	CA	ILE	316	49.654	8.506	54.212	1.00 20.	
MOTA	29	CB	ILE	316	49.701	7.266	55.060	1.00 20.	.00
ATOM	30	CG2	ILE	316	49.810	6.043	54.134	1.00 20.	.00
				316	50.840	7.372	56.089	1.00 20	
ATOM	31	CG1	ILE				57.189	1.00 20	
ATOM	32	CD1	ILE	316	50.774	6.314			
MOTA	33	С	ILE	316	48.554	8.324	53.222	1.00 20	
ATOM	34	0	ILE	316	47.383	8.559	53.518	1.00 20	. 00
MOTA	35	N	GLY	317	48.916	7.913	51.992	1.00 20	.00
ATOM	37	CA	GLY	317	47.898	7.677	51.018	1.00 20	.00
		C	GLY	317	48.178	6.350	50.401	1.00 20	
MOTA	38					6.247	49.443	1.00 20	
MOTA	39	0	GLY	317	48.942				
ATOM	40	N	ILE	318	47.543	5.290	50.933	1.00 20	
ATOM	42	CA	ILE	318	47.728	3.986	50.371	1.00 20	
ATOM	43	CB	ILE	318	47.758	2.881	51.385	1.00 20	.00
ATOM	44	CG2	ILE	318	49.016	3.053	52.249	1.00 20	.00
ATOM	45	CG1	ILE	318	46.447	2.831	52.178	1.00 20	.00
		CD1	ILE	318	46.354	1.602	53.078	1.00 20	
MOTA	46						49.429	1.00 20	
MOTA	47	С	ILE	318	46.595	3.745			
MOTA	48	0	ILE	318	45.691	4.571	49.319	1.00 20	
MOTA	49	N	GLY	319	46.626	2.611	48.699	1.00 40	
ATOM	51	CA	GLY	319	45.557	2.342	47.782	1.00 40	
MOTA	52	С	GLY	319	46.137	2.189	46.416	1.00 40	.00
ATOM	53	o	GLY	319	46.896	1.261	46.142	1.00 40	.00
	54	N	GLU	320	45.781	3.123	45.516	1.00 40	
ATOM							44.178	1.00 40	
MOTA	56	CA	GLU	320	46.284	3.084			
MOTA	57	CB	GLU	320	47.797	3.351	44.098	1.00 40	
MOTA	58	CG	GLU	320	48.335	3.435	42.670	1.00 40	
ATOM	59	CD	GLU	320	49.826	3.732	42.752	1.00 40	
ATOM	60	OE1	GLU	320	50.461	3.873	41.673	1.00 40	.00
ATOM	61	OE2	GLU	320	50.350	3.829	43.894	1.00 40	.00
	62	C	GLU	320	46.002	1.771	43.534	1.00 40	
ATOM								1.00 40	
ATOM	63	О	GLU	320	46.780	0.825	43.637		
ATOM	64	N	PHE	321	44.840	1.688	42.861	1.00 60	
ATOM	66	CA	PHE	321	44.481	0.492	42.166	1.00 60	. 00
ATOM	67	CB	PHE	321	43.051	0.531	41.598	1.00 60	.00
MOTA	68	CG	PHE	321	42.809	-0.724	40.830	1.00 60	
						-0.813	39.504	1.00 60	
MOTA	69			321	43.173				
MOTA	70		PHE	321	42.188	-1.800	41.418	1.00 60	
ATOM	71	CE1	PHE	321	42.944	-1.958	38.780	1.00 60	
MOTA	72	CE2	PHE	321	41.947	-2.947	40.697	1.00 60	.00
ATOM	73	CZ	PHE	321	42.326	-3.028	39.379	1.00 60	.00
ATOM	74	c	PHE	321	45.414	0.351	41.014	1.00 60	
				321	45.223	0.969	39.967	1.00 60	
MOTA	75	0	PHE						
ATOM	76	N	LYS	322	46.461	-0.474	41.190	1.00 60	
MOTA	78	CA	LYS	322	47.379	-0.713	40.121	1.00 60	. ս Ս
						•			

APM									
ATOM 80 CG LYS 322 49.503 -0.503 39.286 1.00 60.00 ATOM 81 CD LYS 322 48.513 -0.125 37.093 1.00 60.00 A.N. 82 CE LYS 322 48.513 -0.125 37.093 1.00 60.00 A.N. 83 NZ LYS 322 47.746 -2.916 39.950 1.00 60.00 ATOM 87 C LYS 322 47.746 -2.916 40.855 1.00 60.00 ATOM 88 O LYS 322 47.746 -2.916 40.855 1.00 60.00 ATOM 90 N ASP 323 47.051 -2.688 38.726 1.00 60.00 ATOM 91 CA ASP 323 47.051 -2.688 38.726 1.00 60.00 ATOM 92 CB ASP 323 47.099 -4.682 38.456 1.00 60.00 ATOM 93 CG ASP 323 47.108 -3.784 35.978 1.00 60.00 ATOM 94 ODI ASP 323 47.108 -3.784 35.978 1.00 60.00 ATOM 95 OD2 ASP 323 47.327 -4.469 31.942 1.00 60.00 ATOM 96 C ASP 323 47.327 -4.469 31.942 1.00 60.00 ATOM 97 O ASP 323 47.327 -4.469 31.942 1.00 60.00 ATOM 97 O ASP 323 47.327 -4.469 31.942 1.00 60.00 ATOM 97 O ASP 323 48.538 -4.441 38.350 1.00 60.00 ATOM 97 O ASP 323 48.538 -4.441 38.350 1.00 60.00 ATOM 97 O ASP 323 48.538 -4.441 38.350 1.00 60.00 ATOM 100 CA SER 324 49.371 -3.492 37.882 1.00 60.00 ATOM 101 CB SER 324 49.371 -3.492 37.882 1.00 60.00 ATOM 102 CG SER 324 51.058 -1.985 36.026 1.00 60.00 ATOM 104 C SER 324 51.058 -1.985 36.026 1.00 60.00 ATOM 105 O SER 324 51.058 -1.985 36.026 1.00 60.00 ATOM 106 N LEU 325 51.896 -3.375 84.032 1.00 60.00 ATOM 107 CB LEU 325 51.896 -4.406 1.229 1.00 60.00 ATOM 108 CA LEU 325 51.896 -4.406 1.229 1.00 60.00 ATOM 109 CB LEU 325 51.896 -4.406 1.229 1.00 60.00 ATOM 110 CC LEU 325 52.625 -1.823 41.60 1.00 60.00 ATOM 111 C CLEU 325 52.625 -1.823 41.00 60.00 ATOM 112 CD LEU 325 52.625 -1.823 41.00 60.00 ATOM 113 C LEU 325 52.665 -1.823 41.00 60.00 ATOM 114 C SER 326 51.986 -4.406 41.229 1.00 60.00 ATOM 115 C SER 326 51.986 -4.406 41.229 1.00 60.00 ATOM 116 C A SER 326 51.986 -4.406 41.229 1.00 60.00 ATOM 117 C SER 326 51.986 -4.406 41.229 1.00 60.00 ATOM 118 C SER 326 51.986 -4.406 41.229 1.00 60.00 ATOM 119 C C SER 326 51.986 -4.607 41.229 1.00 60.00 ATOM 110 C C SER 326 51.986 -4.606 41.229 1.00 60.00 ATOM 110 C C SER 326 51.986 -4.606 41.229 1.00	A	79	CB	LYS	322			40.428	1.00 60.00
ATOM 91 C LIS 322 48.513 -0.125 37.093 1.00 60.00		80	CG	LYS					
## 82 CE LVS 322 48.513 -0.125 37.093 1.00 60.00 ## ATOM 87 C LVS 322 47.740 -2.191 39.932 1.00 60.00 ## ATOM 88 C LVS 322 47.740 -2.191 39.932 1.00 60.00 ## ATOM 89 N ASP 323 47.051 -2.658 38.726 1.00 60.00 ## ATOM 91 CA ASP 323 47.051 -2.658 38.726 1.00 60.00 ## ATOM 92 CB ASP 323 47.051 -2.658 38.726 1.00 60.00 ## ATOM 93 CG ASP 323 47.051 -2.658 38.726 1.00 60.00 ## ATOM 93 CG ASP 323 47.051 -2.658 38.726 1.00 60.00 ## ATOM 95 CD ASP 323 47.108 -3.784 35.978 1.00 60.00 ## ATOM 95 CD ASP 323 47.108 -3.784 35.978 1.00 60.00 ## ATOM 95 CD ASP 323 47.322 -4.469 34.942 1.00 60.00 ## ATOM 96 C ASP 323 47.332 -2.574 36.104 1.00 60.00 ## ATOM 97 C ASP 323 48.538 -4.441 38.550 1.00 60.00 ## ATOM 97 C ASP 323 48.538 -4.441 38.550 1.00 60.00 ## ATOM 97 C ASP 323 48.930 -5.553 38.698 1.00 60.00 ## ATOM 100 CA SER 324 49.371 -3.492 37.882 1.00 60.00 ## ATOM 101 CA SER 324 50.760 -3.756 37.658 1.00 60.00 ## ATOM 102 CG SER 324 51.544 -2.494 37.259 1.00 60.00 ## ATOM 104 C SER 324 51.544 -2.494 37.259 1.00 60.00 ## ATOM 105 C SER 324 51.088 -1.985 36.026 1.00 60.00 ## ATOM 106 N LEU 325 51.088 -1.985 36.026 1.00 60.00 ## ATOM 107 CG SER 324 51.088 -1.985 36.026 1.00 60.00 ## ATOM 108 CA LEU 325 51.895 -3.578 40.032 1.00 60.00 ## ATOM 108 CA LEU 325 51.896 -3.357 38.894 1.00 60.00 ## ATOM 109 CB LEU 325 51.896 -3.357 38.894 1.00 60.00 ## ATOM 109 CB LEU 325 52.655 -3.832 38.894 1.00 60.00 ## ATOM 110 CG LEU 325 52.655 -3.832 38.894 1.00 60.00 ## ATOM 111 CG LEU 325 52.655 -3.832 38.894 1.00 60.00 ## ATOM 112 CG SER 324 52.008 -5.357 38.874 1.00 60.00 ## ATOM 113 C LEU 325 51.896 -3.357 38.894 1.00 60.00 ## ATOM 116 N LEU 325 52.655 -3.832 38.894 1.00 60.00 ## ATOM 117 CA SER 326 51.895 -3.578 40.032 1.00 60.00 ## ATOM 118 CG LEU 325 52.655 -3.832 41.633 1.00 60.00 ## ATOM 119 CG LEU 325 52.655 -3.832 41.633 1.00 60.00 ## ATOM 116 N LEU 325 52.655 -3.832 41.633 1.00 60.00 ## ATOM 117 CA SER 326 51.986 -4.060 41.219 1.00 60.00 ## ATOM 118 CG LEU 325 52.6	ATOM	81	CD	LYS					
ATOM 85 NC LYS 322 47.420 -2.191 39.932 1.00 60.00 ATOM 88 0 LYS 322 47.450 -2.936 40.855 1.00 60.00 ATOM 88 0 N ASP 323 47.051 -2.658 38.726 1.00 60.00 ATOM 99 N ASP 323 47.051 -2.658 38.726 1.00 60.00 ATOM 91 CA ASP 323 47.059 -4.458 37.443 1.00 60.00 ATOM 92 CB ASP 323 47.099 -4.458 37.443 1.00 60.00 ATOM 93 CG ASP 323 47.108 -3.784 35.978 1.00 60.00 ATOM 95 OD2 ASP 323 47.322 -4.469 34.942 1.00 60.00 ATOM 95 OD2 ASP 323 47.322 -4.469 34.942 1.00 60.00 ATOM 96 C ASP 323 48.538 -4.441 38.550 1.00 60.00 ATOM 97 O ASP 323 48.930 -5.553 38.698 1.00 60.00 ATOM 97 O ASP 323 48.930 -5.553 38.698 1.00 60.00 ATOM 98 N SER 324 49.371 -3.492 37.682 1.00 60.00 ATOM 98 N SER 324 49.371 -3.492 37.682 1.00 60.00 ATOM 101 CB SER 324 50.760 -3.756 37.658 1.00 60.00 ATOM 102 CG SER 324 51.058 -1.985 36.026 1.00 60.00 ATOM 103 CG SER 324 51.058 -1.985 36.026 1.00 60.00 ATOM 104 C SER 324 51.058 -1.985 36.026 1.00 60.00 ATOM 105 O SER 324 51.058 -1.985 36.026 1.00 60.00 ATOM 106 N LEU 325 51.255 -3.578 40.032 1.00 60.00 ATOM 106 N LEU 325 51.896 -4.606 41.219 1.00 60.00 ATOM 106 CA LEU 325 51.896 -4.060 41.219 1.00 60.00 ATOM 107 CB LEU 325 51.896 -4.060 41.221 1.00 60.00 ATOM 108 CA LEU 325 51.896 -4.060 41.221 1.00 60.00 ATOM 107 CB LEU 325 51.896 -4.060 41.221 1.00 60.00 ATOM 107 CB LEU 325 51.896 -4.060 41.221 1.00 60.00 ATOM 107 CB LEU 325 50.202 -5.755 41.107 43.601 1.00 60.00 ATOM 107 CB LEU 325 50.202 -7.714 43.659 1.00 60.00 ATOM 107 CB LEU 325 50.202 -5.755 41.107 43.601 1.00 60.00 ATOM 107 CB LEU 325 50.202 -7.714 43.599 1.00 60.00 ATOM 107 CB LEU 325 50.202 -7.714 43.599 1.00 60.00 ATOM 107 CB LEU 325 50.202 -7.714 43.599 1.00 60.00 ATOM 107 CB LEU 325 50.202 -7.714 43.599 1.00 60.00 ATOM 107 CB LEU 325 50.202 -7.714 43.599 1.00 60.00 ATOM 107 CB LEU 325 50.202 -7.714 43.599 1.00 60.00 ATOM 107 CB LEU 327 40.916 40.90 44.201 44.201 1.00 60.00 ATOM 107 CB LEU 327 40.916 40.90 44.201 44.201 1.00 60.00 ATOM 107 CB LEU 327 40.916 40.90 44.201 44.201 1.00 60.00 ATOM 107 CB LEU 327 40.916 40.90 44.201 44.201 1.00 60.00 AT	\mathbf{M}'	82	CE	LYS					
ATOM 88 0 LYS 322 47.746 -2.936 40.855 1.00 60.00 ATOM 89 N ASP 323 47.099 -4.062 38.456 1.00 60.00 ATOM 91 CA ASP 323 47.099 -4.062 38.456 1.00 60.00 ATOM 92 CE ASP 323 47.099 -4.062 38.456 1.00 60.00 ATOM 94 OD1 ASP 323 47.099 -4.062 38.456 1.00 60.00 ATOM 95 OD2 ASP 323 47.108 -3.784 35.978 1.00 60.00 ATOM 96 C ASP 323 47.108 -3.784 36.104 1.00 60.00 ATOM 97 O ASP 323 48.538 -4.441 38.350 1.00 60.00 ATOM 97 O ASP 323 48.538 -4.441 38.350 1.00 60.00 ATOM 97 O ASP 323 48.930 -5.553 38.698 1.00 60.00 ATOM 97 O ASP 323 48.930 -5.553 38.698 1.00 60.00 ATOM 100 CA SER 324 50.760 -3.756 37.658 1.00 60.00 ATOM 101 CB SER 324 50.760 -3.756 37.658 1.00 60.00 ATOM 102 OG SER 324 50.760 -3.756 37.658 1.00 60.00 ATOM 104 C SER 324 51.058 -4.299 38.899 1.00 60.00 ATOM 105 O SER 324 51.058 -4.290 38.899 1.00 60.00 ATOM 106 N LEU 325 51.058 -4.290 38.899 1.00 60.00 ATOM 107 CB LEU 325 51.896 -4.060 41.219 1.00 60.00 ATOM 108 CA LEU 325 51.896 -4.060 41.219 1.00 60.00 ATOM 109 CB LEU 325 51.896 -4.060 41.219 1.00 60.00 ATOM 110 CG LEU 325 52.625 -1.823 42.267 1.00 60.00 ATOM 111 CD1 LEU 325 52.625 -1.823 42.267 1.00 60.00 ATOM 112 CD2 LEU 325 52.625 -1.823 42.267 1.00 60.00 ATOM 113 C LEU 325 52.077 -0.948 41.128 1.00 60.00 ATOM 114 O LEU 325 52.077 -0.948 41.128 1.00 60.00 ATOM 115 N SER 326 51.986 -6.105 42.482 1.00 60.00 ATOM 116 CR SER 326 51.986 -4.960 41.219 1.00 60.00 ATOM 117 CA SER 326 51.986 -6.105 44.691 1.00 60.00 ATOM 118 CB SER 326 51.986 -6.105 44.821 1.00 60.00 ATOM 119 OS SER 326 51.986 -6.105 44.2430 1.00 60.00 ATOM 117 CA SER 326 51.986 -6.105 44.2430 1.00 60.00 ATOM 120 CD LEU 325 50.200 -7.738 41.119 1.00 60.00 ATOM 121 C SER 326 51.986 -6.105 44.2482 1.00 60.00 ATOM 121 C SER 326 64.980 -7.743 43.219 1.00 60.00 ATOM 121 C SER 326 65.1915 -9.354 44.250 1.00 60.00 ATOM 123 N ILE 327 48.989 -7.884 44.644 1.00 60.00 ATOM 126 CB ILE 327 48.989 -7.884 44.644 1.00 60.00 ATOM 127 CG2 LEU 327 48.989 -7.488 44.644 1.00 60.00 ATOM 128 CG2 ILE 327 48.989 -4.668 45.802 1.00 60.00 ATOM 130 N ILE 327 50.01 48.99 -7.74	MO ₁ A	83	NZ	LYS					
ATOM 98 N ASP 323 47.051 -2_658 38.726 1.00 60.00 ATOM 91 CA ASP 323 47.099 -4.062 38.456 1.00 60.00 ATOM 92 CB ASP 323 47.099 -4.062 38.456 1.00 60.00 ATOM 93 CG ASP 323 47.108 -3.784 35.978 1.00 60.00 ATOM 94 OD1 ASP 323 47.322 -4.469 37.440 1.00 60.00 ATOM 95 OD2 ASP 323 47.322 -4.469 34.942 1.00 60.00 ATOM 95 OD2 ASP 323 47.322 -4.469 34.942 1.00 60.00 ATOM 96 N SBR 323 48.538 -4.441 38.350 1.00 60.00 ATOM 97 O ASP 323 48.538 -4.441 38.350 1.00 60.00 ATOM 98 N SBR 324 49.371 -3.492 37.882 1.00 60.00 ATOM 100 CA SBR 324 50.760 -3.756 37.658 1.00 60.00 ATOM 101 CB SBR 324 50.760 -3.756 37.658 1.00 60.00 ATOM 102 CG SBR 324 51.544 -2.494 37.259 1.00 60.00 ATOM 104 C SBR 324 51.058 -1.985 36.026 1.00 60.00 ATOM 105 O SBR 324 51.058 -1.985 36.026 1.00 60.00 ATOM 106 N LEU 325 51.255 -3.578 40.032 1.00 60.00 ATOM 106 CA LEU 325 51.255 -3.578 40.032 1.00 60.00 ATOM 107 CB SBR 324 51.058 -4.404 1.219 1.00 60.00 ATOM 108 CA LEU 325 51.804 -3.116 42.430 1.00 60.00 ATOM 109 CB LEU 325 51.804 -3.116 42.430 1.00 60.00 ATOM 110 CG LEU 325 55.625 -1.823 42.267 1.00 60.00 ATOM 111 CDL LEU 325 55.625 -1.823 42.267 1.00 60.00 ATOM 111 CDL LEU 325 55.020 -5.735 41.119 1.00 60.00 ATOM 112 CD2 LEU 325 50.202 -5.735 41.119 1.00 60.00 ATOM 113 C LEU 325 50.202 -5.735 41.119 1.00 60.00 ATOM 114 O LEU 325 50.202 -5.735 41.119 1.00 60.00 ATOM 115 C SBR 326 50.202 -7.714 43.599 1.00 60.00 ATOM 116 C SBR 326 50.202 -7.714 43.599 1.00 60.00 ATOM 117 CA SBR 326 50.202 -7.714 43.599 1.00 60.00 ATOM 118 CB SBR 326 50.202 -7.744 43.599 1.00 60.00 ATOM 119 CG SBR 326 50.202 -7.744 43.599 1.00 60.00 ATOM 120 CG SBR 326 50.202 -7.744 43.599 1.00 60.00 ATOM 121 C SBR 326 50.202 -7.744 43.599 1.00 60.00 ATOM 122 C SBR 326 50.202 -7.744 43.599 1.00 60.00 ATOM 123 N LEE 327 48.969 -4.668 45.4021 1.00 60.00 ATOM 124 C SBR 326 50.202 -7.744 43.599 1.00 60.00 ATOM 125 CA LEU 327 48.969 -4.668 45.802 1.00 60.00 ATOM 126 CB ILE 327 47.402 -6.864 47.126 1.00 60.00 ATOM 127 CG2 ILE 327 48.969 -4.668 45.802 1.00 60.00 ATOM 127 CG2 ILE 327 47.402 -6.864 4	MOTA	87	С						
ATOM 99 1 CA ASP 323 47.099 -4.062 38.456 1.00 60.00 ATOM 92 CB ASP 323 47.108 -3.784 35.978 1.00 60.00 ATOM 93 CG ASP 323 47.322 -4.469 37.143 1.00 60.00 ATOM 95 OD2 ASP 323 47.322 -4.469 34.942 1.00 60.00 ATOM 96 C ASP 323 47.332 -2.774 36.104 1.00 60.00 ATOM 96 C ASP 323 48.538 -4.441 38.350 1.00 60.00 ATOM 97 O ASP 323 48.538 -4.441 38.350 1.00 60.00 ATOM 97 O ASP 323 48.930 -5.553 38.698 1.00 60.00 ATOM 97 O ASP 323 48.930 -5.553 38.698 1.00 60.00 ATOM 97 O ASP 323 48.930 -5.553 38.698 1.00 60.00 ATOM 97 O ASP 323 48.933 -5.553 38.698 1.00 60.00 ATOM 97 O ASP 323 48.933 -5.553 38.698 1.00 60.00 ATOM 100 CA SER 324 50.760 -3.756 37.658 1.00 60.00 ATOM 101 CB SER 324 51.5544 -2.494 37.259 1.00 60.00 ATOM 102 OG SER 324 51.058 -1.985 36.026 1.00 60.00 ATOM 105 O SER 324 51.058 -1.985 36.026 1.00 60.00 ATOM 106 N LEU 325 51.255 -3.578 40.032 1.00 60.00 ATOM 106 N LEU 325 51.255 -3.578 40.032 1.00 60.00 ATOM 106 CA LEU 325 51.255 -3.578 40.032 1.00 60.00 ATOM 107 CB LEU 325 51.896 -4.060 41.219 1.00 60.00 ATOM 110 CG LEU 325 52.077 -0.948 41.128 1.00 60.00 ATOM 111 CDL LEU 325 52.077 -0.948 41.128 1.00 60.00 ATOM 112 CDL LEU 325 52.077 -0.948 41.128 1.00 60.00 ATOM 113 C LEU 325 50.220 -57.735 41.119 1.00 60.00 ATOM 113 C LEU 325 50.220 -57.735 41.119 1.00 60.00 ATOM 113 C LEU 325 50.220 -57.735 41.119 1.00 60.00 ATOM 113 C LEU 325 50.220 -57.735 41.119 1.00 60.00 ATOM 113 C SER 326 51.986 -6.105 42.482 1.00 60.00 ATOM 113 C SER 326 51.986 -6.105 42.482 1.00 60.00 ATOM 113 C SER 326 51.986 -6.105 42.482 1.00 60.00 ATOM 113 C SER 326 51.998 -6.600 43.299 1.00 60.00 ATOM 113 C SER 326 51.998 -6.600 43.299 1.00 60.00 ATOM 113 C SER 326 50.200 -5.735 41.119 1.00 60.00 ATOM 113 C SER 326 50.200 -5.735 41.119 1.00 60.00 ATOM 113 C SER 326 50.200 -5.735 41.119 1.00 60.00 ATOM 113 C SER 326 50.200 -5.735 41.119 1.00 60.00 ATOM 113 C SER 326 50.200 -5.735 41.119 1.00 60.00 ATOM 113 C SER 326 50.200 -5.735 41.119 1.00 60.00 ATOM 113 C SER 326 50.200 -5.735 44.2482 1.00 60.00 ATOM 113 C SER 326 50.200 -5.735 41.119 1.00 6	MOTA								
ATOM 91 CA ASP 323	MOTA								
ATOM 92 CG ASP 323 47.108 -3.784 35.978 1.00 60.00 ATOM 94 0D1 ASP 323 47.322 -4.469 34.942 1.00 60.00 ATOM 95 0D2 ASP 323 47.323 -2.574 36.104 1.00 60.00 ATOM 96 C ASP 323 48.538 -4.441 38.350 1.00 60.00 ATOM 97 0 ASP 323 48.538 -4.441 38.350 1.00 60.00 ATOM 98 N SER 324 49.371 -3.492 37.882 1.00 60.00 ATOM 100 CA SER 324 50.760 -3.756 37.658 1.00 60.00 ATOM 101 CB SER 324 51.544 -2.494 37.259 1.00 60.00 ATOM 102 OG SER 324 51.554 -2.494 37.259 1.00 60.00 ATOM 102 OG SER 324 51.058 -1.985 36.026 1.00 60.00 ATOM 105 O SER 324 51.395 -4.290 38.899 1.00 60.00 ATOM 105 O SER 324 55.008 -5.357 38.678 1.00 60.00 ATOM 106 N LEU 325 51.255 -3.578 40.032 1.00 60.00 ATOM 108 CA LEU 325 51.896 -4.060 41.219 1.00 60.00 ATOM 109 CB LEU 325 51.896 -4.060 41.219 1.00 60.00 ATOM 110 CG LEU 325 52.625 -1.823 42.267 1.00 60.00 ATOM 111 CD1 LEU 325 52.077 -0.948 41.28 1.00 60.00 ATOM 112 CD2 LEU 325 52.077 -0.948 41.28 1.00 60.00 ATOM 113 C LEU 325 55.2077 -0.948 41.128 1.00 60.00 ATOM 113 C LEU 325 55.2077 -0.948 41.28 1.00 60.00 ATOM 113 C LEU 325 55.2077 -0.948 41.28 1.00 60.00 ATOM 113 C LEU 325 55.2075 -1.070 43.601 1.00 60.00 ATOM 115 N SER 326 51.986 -6.105 42.482 1.00 60.00 ATOM 116 CB SER 326 51.986 -6.105 42.482 1.00 60.00 ATOM 117 CA SER 326 51.986 -6.105 42.482 1.00 60.00 ATOM 117 CA SER 326 51.986 -6.105 42.482 1.00 60.00 ATOM 117 CA SER 326 51.986 -6.105 42.482 1.00 60.00 ATOM 117 CA SER 326 51.986 -6.105 42.482 1.00 60.00 ATOM 117 CA SER 326 51.986 -6.105 42.482 1.00 60.00 ATOM 117 CA SER 326 51.986 -6.105 42.482 1.00 60.00 ATOM 117 CA SER 326 51.995 -9.354 44.250 1.00 60.00 ATOM 127 CG SER 326 50.020 57.735 41.119 1.00 60.00 ATOM 127 CG SER 326 50.020 57.735 41.119 1.00 60.00 ATOM 127 CG SER 326 50.020 57.735 41.119 1.00 60.00 ATOM 127 CG SER 326 50.020 57.735 41.119 1.00 60.00 ATOM 127 CG SER 326 50.020 57.735 41.119 1.00 60.00 GO.00 ATOM 127 CG SER 326 50.020 57.735 41.119 1.00 60.00 GO.00 ATOM 127 CG SER 326 50.020 57.735 41.119 1.00 60.00 GO.00 ATOM 127 CG SER 326 50.020 57.735 41.119 1.00 60.00 GO.00 ATOM 12	ATOM								
ATOM 94 ODI ASP 323 47.322 -4.469 34,942 1.00 60.00 ATOM 95 OD2 ASP 323 47.433 -2.574 36.104 1.00 60.00 ATOM 96 C ASP 323 48.538 -4.441 38.350 1.00 60.00 ATOM 97 O ASP 323 48.538 -4.441 38.350 1.00 60.00 ATOM 97 O ASP 323 48.930 -5.553 38.698 1.00 60.00 ATOM 98 N SER 324 49.371 -3.492 37.882 1.00 60.00 ATOM 100 CA SER 324 50.760 -3.756 37.658 1.00 60.00 ATOM 101 CB SER 324 51.544 -2.494 37.259 1.00 60.00 ATOM 101 CB SER 324 51.058 -1.985 36.026 1.00 60.00 ATOM 102 OG SER 324 51.058 -1.985 36.026 1.00 60.00 ATOM 104 C SER 324 51.395 -4.290 38.899 1.00 60.00 ATOM 106 N LEU 325 51.255 -3.578 40.032 1.00 60.00 ATOM 106 N LEU 325 51.896 -4.060 41.219 1.00 60.00 ATOM 106 C LEU 325 51.896 -4.060 41.219 1.00 60.00 ATOM 106 CG LEU 325 51.896 -4.060 41.219 1.00 60.00 ATOM 110 CG LEU 325 52.625 -1.823 42.267 1.00 60.00 ATOM 111 CDI LEU 325 52.625 -1.823 42.267 1.00 60.00 ATOM 111 CDI LEU 325 52.625 -1.823 42.267 1.00 60.00 ATOM 112 CD2 LEU 325 52.625 -1.804 -3.116 42.430 1.00 60.00 ATOM 112 CD2 LEU 325 52.625 -1.823 42.267 1.00 60.00 ATOM 113 C LEU 325 52.625 -1.823 42.267 1.00 60.00 ATOM 114 O LEU 325 52.755 -1.070 43.601 1.00 60.00 ATOM 117 CA SER 326 51.986 -4.060 41.219 1.00 60.00 ATOM 117 CA SER 326 51.986 -6.105 42.482 1.00 60.00 ATOM 117 CA SER 326 51.986 -6.105 42.482 1.00 60.00 ATOM 118 CB SER 326 51.986 -6.105 42.482 1.00 60.00 ATOM 117 CA SER 326 51.986 -6.105 42.482 1.00 60.00 ATOM 118 CB SER 326 51.986 -6.105 42.482 1.00 60.00 ATOM 118 CB SER 326 51.986 -6.105 42.482 1.00 60.00 ATOM 118 CB SER 326 51.986 -6.105 42.482 1.00 60.00 ATOM 118 CB SER 326 51.986 -6.105 42.482 1.00 60.00 ATOM 122 C SER 326 51.987 -7.384 42.897 1.00 60.00 ATOM 122 C SER 326 51.987 -7.384 42.897 1.00 60.00 ATOM 122 C SER 326 51.986 -6.105 42.482 1.00 60.00 ATOM 122 C SER 326 51.986 -6.105 42.482 1.00 60.00 ATOM 122 C SER 326 51.987 -7.480 46.601 1.00 60.00 ATOM 122 C SER 326 51.986 -7.490 43.891 1.00 60.00 G.00 G.00 G.00 G.00 G.00 G.00									
ATOM 94 001 ASP 323 47.433 -2.574 36.104 1.00 60.00 ATOM 95 02 ASP 323 48.536 -4.441 38.350 1.00 60.00 ATOM 96 C ASP 323 48.536 -4.441 38.350 1.00 60.00 ATOM 98 N SER 324 48.930 -5.553 38.698 1.00 60.00 ATOM 98 N SER 324 49.371 -3.492 37.882 1.00 60.00 ATOM 100 CA SER 324 50.760 -3.756 37.658 1.00 60.00 ATOM 101 CB SER 324 51.058 -1.985 36.026 1.00 60.00 ATOM 102 OG SER 324 51.058 -1.985 36.026 1.00 60.00 ATOM 104 C SER 324 51.395 -4.290 38.899 1.00 60.00 ATOM 105 O SER 324 51.395 -4.290 38.899 1.00 60.00 ATOM 106 N LEU 325 51.255 -3.578 40.032 1.00 60.00 ATOM 106 C LEU 325 51.896 -4.060 41.219 1.00 60.00 ATOM 109 CB LEU 325 51.896 -4.060 41.219 1.00 60.00 ATOM 109 CB LEU 325 52.075 -0.948 41.128 1.00 60.00 ATOM 111 CD1 LEU 325 52.077 -0.948 41.128 1.00 60.00 ATOM 112 CD2 LEU 325 52.075 -0.948 41.128 1.00 60.00 ATOM 113 CD LEU 325 55.255 -1.755 41.119 1.00 60.00 ATOM 114 O LEU 325 55.2255 -1.755 41.119 1.00 60.00 ATOM 115 N SER 326 51.986 -6.105 42.482 1.00 60.00 ATOM 117 CA SER 326 51.986 -6.105 42.482 1.00 60.00 ATOM 117 CA SER 326 51.986 -6.105 42.482 1.00 60.00 ATOM 118 CB SER 326 51.989 -7.384 42.297 1.00 60.00 ATOM 119 OG SER 326 51.985 6.6105 42.482 1.00 60.00 ATOM 119 OG SER 326 51.995 -9.354 44.250 1.00 60.00 ATOM 119 OG SER 326 51.995 -9.354 44.250 1.00 60.00 ATOM 119 OG SER 326 51.995 -9.354 44.250 1.00 60.00 ATOM 120 CD SER 326 51.995 -9.354 44.250 1.00 60.00 ATOM 120 CD SER 326 51.995 -9.354 44.250 1.00 60.00 ATOM 120 CD SER 326 51.995 -9.354 44.250 1.00 60.00 ATOM 120 CD SER 326 51.995 -9.354 44.250 1.00 60.00 ATOM 120 CD SER 326 51.995 -9.354 44.250 1.00 60.00 ATOM 120 CD SER 326 51.995 -9.354 44.250 1.00 60.00 ATOM 120 CD SER 326 51.995 -9.354 44.250 1.00 60.00 ATOM 120 CD SER 326 49.180 -7.743 43.219 1.00 60.00 ATOM 120 CD SER 326 49.180 -7.743 43.219 1.00 60.00 ATOM 120 CD SER 326 49.180 -7.743 43.219 1.00 60.00 ATOM 120 CD SER 326 49.180 -7.743 43.219 1.00 60.00 ATOM 120 CD SER 326 49.180 -7.743 43.219 1.00 60.00 ATOM 120 CD SER 326 49.180 -7.743 43.219 1.00 60.00 ATOM 120 CD SER 326 49.180 -									
ATOM 96 C ASF 323 48.538 -4.441 38.350 1.00 60.00 ATOM 97 O ASF 323 48.930 -5.553 38.698 1.00 60.00 ATOM 98 N SER 324 49.371 -3.492 37.882 1.00 60.00 ATOM 101 CB SER 324 50.760 -3.756 37.658 1.00 60.00 ATOM 101 CB SER 324 51.058 -1.985 36.026 1.00 60.00 ATOM 102 OG SER 324 51.058 -1.985 36.026 1.00 60.00 ATOM 103 C SER 324 51.058 -1.985 36.026 1.00 60.00 ATOM 104 C SER 324 51.395 -4.290 38.899 1.00 60.00 ATOM 106 N LEU 325 51.255 -3.578 40.032 1.00 60.00 ATOM 106 N LEU 325 51.255 -3.578 40.032 1.00 60.00 ATOM 108 CA LEU 325 51.896 -4.060 41.219 1.00 60.00 ATOM 109 CB LEU 325 51.804 -3.116 42.430 1.00 60.00 ATOM 110 CG LEU 325 52.625 -1.823 42.267 1.00 60.00 ATOM 111 CD1 LEU 325 52.625 -1.823 42.267 1.00 60.00 ATOM 112 CD2 LEU 325 52.755 -1.070 43.601 1.00 60.00 ATOM 113 C LEU 325 52.755 -1.070 43.601 1.00 60.00 ATOM 113 C LEU 325 52.755 -1.070 43.601 1.00 60.00 ATOM 114 C LEU 325 52.755 -1.778 41.603 1.00 60.00 ATOM 115 N SER 326 51.986 -6.105 42.482 1.00 60.00 ATOM 116 CA SER 326 51.986 -6.105 42.482 1.00 60.00 ATOM 117 CA SER 326 51.986 -6.105 42.482 1.00 60.00 ATOM 118 CB SER 326 51.986 -6.105 42.482 1.00 60.00 ATOM 118 CB SER 326 52.451 -8.095 43.874 1.00 60.00 ATOM 119 OG SER 326 51.915 -9.354 44.250 1.00 60.00 ATOM 119 OG SER 326 51.915 -9.354 44.250 1.00 60.00 ATOM 120 CS SER 326 51.915 -9.354 44.250 1.00 60.00 ATOM 121 C SER 326 50.022 -7.174 43.599 1.00 60.00 ATOM 122 C SER 326 50.022 -7.174 43.599 1.00 60.00 ATOM 122 C SER 326 50.022 -7.174 43.599 1.00 60.00 ATOM 123 N ILE 327 50.204 -6.324 44.644 1.00 60.00 ATOM 125 CA ILE 327 48.983 -6.090 45.352 1.00 60.00 ATOM 126 CB ILE 327 48.983 -6.090 45.352 1.00 60.00 ATOM 127 CG2 ILE 327 48.983 -6.090 45.352 1.00 60.00 ATOM 128 CG ILE 327 49.917 -6.537 47.583 1.00 60.00 ATOM 130 C ILE 327 48.983 -6.090 45.352 1.00 60.00 ATOM 131 O ILE 327 50.204 -6.324 44.644 1.00 60.00 ATOM 130 C ILE 327 48.983 -6.090 45.352 1.00 60.00 ATOM 130 C ANOM 328 47.601 -9.354 44.654 1.00 60.00 ATOM 131 O ILE 327 48.989 -4.668 45.802 1.00 60.00 ATOM 131 O ILE 327 50.015 -4.078 46.0									
ATOM 96 C ASP 323 48.930 -5.553 38.698 1.00 60.00 ATOM 98 N SER 324 49.371 -3.492 37.882 1.00 60.00 ATOM 100 CA SER 324 50.760 -3.756 37.658 1.00 60.00 ATOM 101 CB SER 324 51.544 -2.494 37.259 1.00 60.00 ATOM 102 OG SER 324 51.058 -1.985 36.026 1.00 60.00 ATOM 104 C SER 324 51.395 -4.290 38.899 1.00 60.00 ATOM 105 O SER 324 51.395 -4.290 38.899 1.00 60.00 ATOM 106 N LEU 325 51.255 -3.578 40.032 1.00 60.00 ATOM 108 CA LEU 325 51.896 -4.060 41.219 1.00 60.00 ATOM 108 CA LEU 325 51.896 -4.060 41.219 1.00 60.00 ATOM 109 CB LEU 325 51.896 -4.060 41.219 1.00 60.00 ATOM 101 CG LEU 325 52.077 -0.948 41.128 1.00 60.00 ATOM 111 CD1 LEU 325 52.077 -0.948 41.128 1.00 60.00 ATOM 111 CD1 LEU 325 52.077 -0.948 41.128 1.00 60.00 ATOM 113 C LEU 325 51.288 -5.362 41.603 1.00 60.00 ATOM 114 O LEU 325 50.220 -5.755 1.070 43.601 1.00 60.00 ATOM 115 N SER 326 51.986 -6.105 42.482 1.00 60.00 ATOM 116 CB SER 326 51.986 -6.105 42.482 1.00 60.00 ATOM 117 CA SER 326 51.986 -6.105 42.482 1.00 60.00 ATOM 118 CB SER 326 51.986 -6.105 42.482 1.00 60.00 ATOM 119 OG SER 326 51.986 -6.105 42.482 1.00 60.00 ATOM 119 OG SER 326 51.986 -6.105 42.482 1.00 60.00 ATOM 120 CS SER 326 51.985 -6.105 42.482 1.00 60.00 ATOM 121 C SER 326 50.202 -5.735 41.119 1.00 60.00 ATOM 121 C SER 326 51.986 -6.105 42.482 1.00 60.00 ATOM 122 C SER 326 51.985 -6.105 42.482 1.00 60.00 ATOM 122 C SER 326 51.985 -6.105 42.482 1.00 60.00 ATOM 123 N ILE 327 48.983 -6.900 45.352 1.00 60.00 ATOM 122 C SER 326 49.180 -7.743 43.219 1.00 60.00 ATOM 123 N ILE 327 48.983 -6.900 45.352 1.00 60.00 ATOM 125 CA ILE 327 48.983 -6.900 45.352 1.00 60.00 ATOM 126 CB ILE 327 48.983 -6.900 45.352 1.00 60.00 ATOM 127 CG2 ILE 327 48.983 -6.900 45.352 1.00 60.00 ATOM 128 CG1 ILE 327 48.983 -6.900 45.352 1.00 60.00 ATOM 129 CD1 ILE 327 48.983 -6.900 45.352 1.00 60.00 ATOM 129 CD1 ILE 327 48.983 -6.900 45.352 1.00 60.00 ATOM 130 C ILE 327 48.983 -6.900 45.352 1.00 60.00 ATOM 131 N ANN 328 47.661 1.2.726 46.352 1.00 40.00 60.00 ATOM 134 CA ANN 328 47.661 1.2.2726 46.332 1.00 40.00 60.00 ATOM 137 N									
ATOM 98 N SER 324 49.371 -3.492 37.882 1.00 60.00 ATOM 100 CA SER 324 50.760 -3.756 37.658 1.00 60.00 ATOM 101 CB SER 324 51.544 -2.494 37.259 1.00 60.00 ATOM 101 CB SER 324 51.544 -2.494 37.259 1.00 60.00 ATOM 102 CB SER 324 51.058 -1.985 36.026 1.00 60.00 ATOM 105 O SER 324 51.058 -1.985 36.026 1.00 60.00 ATOM 105 O SER 324 51.058 -1.985 36.026 1.00 60.00 ATOM 106 N LEU 325 51.255 -3.578 40.032 1.00 60.00 ATOM 106 N LEU 325 51.255 -3.578 40.032 1.00 60.00 ATOM 109 CB LEU 325 51.896 -4.060 41.219 1.00 60.00 ATOM 110 CG LEU 325 52.625 -1.823 42.267 1.00 60.00 ATOM 111 CDI LEU 325 52.077 -0.948 41.128 1.00 60.00 ATOM 111 CDI LEU 325 52.077 -0.948 41.128 1.00 60.00 ATOM 111 CDI LEU 325 52.755 -1.070 43.601 1.00 60.00 ATOM 112 CD2 LEU 325 52.755 -1.070 43.601 1.00 60.00 ATOM 114 O LEU 325 50.200 -5.735 41.119 1.00 60.00 ATOM 115 N SER 326 51.986 -6.105 42.482 1.00 60.00 ATOM 117 CA SER 326 51.986 -6.105 42.482 1.00 60.00 ATOM 117 CA SER 326 51.986 -6.105 42.482 1.00 60.00 ATOM 118 CB SER 326 51.986 -6.105 42.482 1.00 60.00 ATOM 119 OG SER 326 51.915 -9.384 42.897 1.00 60.00 ATOM 120 C SER 326 50.202 -7.174 43.599 1.00 60.00 ATOM 121 C SER 326 50.202 -7.174 43.599 1.00 60.00 ATOM 121 C SER 326 50.202 -7.174 43.599 1.00 60.00 ATOM 121 C SER 326 50.202 -7.174 43.599 1.00 60.00 ATOM 122 O SER 326 50.202 -7.174 43.599 1.00 60.00 ATOM 122 N ILE 327 48.983 -6.990 45.352 1.00 60.00 ATOM 123 N ILE 327 48.983 -6.990 45.352 1.00 60.00 ATOM 126 CB ILE 327 48.983 -6.990 45.352 1.00 60.00 ATOM 127 CG2 ILE 327 49.917 -6.537 47.583 1.00 60.00 ATOM 130 C ILE 327 48.983 -6.990 45.352 1.00 60.00 ATOM 131 C ILE 327 47.402 -6.864 45.802 1.00 60.00 ATOM 131 C ILE 327 48.983 -6.990 45.352 1.00 60.00 ATOM 130 C ILE 327 47.402 -6.864 45.802 1.00 60.00 ATOM 131 C ILE 327 48.983 -6.990 45.352 1.00 60.00 ATOM 130 C ILE 327 49.917 -6.537 47.583 1.00 60.00 ATOM 131 C ILE 327 48.983 -6.990 45.352 1.00 60.00 ATOM 130 C ILE 327 49.917 -6.537 47.583 1.00 60.00 ATOM 131 C ILE 327 48.983 -6.990 45.352 1.00 60.00 ATOM 130 C ILE 327 48.983 -6.990 45.3									1.00 60.00
ATOM 100 CA SER 324 50.760 -3.756 37.658 1.00 60.00 ATOM 101 CB SER 324 51.058 -1.985 36.026 1.00 60.00 ATOM 102 OG SER 324 51.058 -1.985 36.026 1.00 60.00 ATOM 105 O SER 324 51.058 -1.985 36.026 1.00 60.00 ATOM 105 O SER 324 52.008 -5.357 38.894 1.00 60.00 ATOM 106 N LEU 325 51.255 -3.578 40.032 1.00 60.00 ATOM 108 CA LEU 325 51.255 -3.578 40.032 1.00 60.00 ATOM 108 CA LEU 325 51.896 -4.060 41.219 1.00 60.00 ATOM 100 CG LEU 325 52.007 -0.948 41.228 1.00 60.00 ATOM 111 CD1 LEU 325 52.077 -0.948 41.128 1.00 60.00 ATOM 111 CD1 LEU 325 52.077 -0.948 41.128 1.00 60.00 ATOM 113 C LEU 325 52.077 -0.948 41.128 1.00 60.00 ATOM 113 C LEU 325 51.886 -5.352 41.603 1.00 60.00 ATOM 114 O LEU 325 50.202 -5.735 41.119 1.00 60.00 ATOM 115 N SER 326 51.986 -6.105 42.482 1.00 60.00 ATOM 117 CA SER 326 51.986 -6.105 42.482 1.00 60.00 ATOM 118 CB SER 326 51.499 -7.384 42.897 1.00 60.00 ATOM 119 OG SER 326 51.499 -7.384 42.897 1.00 60.00 ATOM 120 C SER 326 50.202 -7.174 43.599 1.00 60.00 ATOM 121 C SER 326 50.202 -7.174 43.599 1.00 60.00 ATOM 121 C SER 326 50.202 -7.174 43.599 1.00 60.00 ATOM 122 C SER 326 50.202 -7.174 43.599 1.00 60.00 ATOM 122 C SER 326 50.202 -7.174 43.599 1.00 60.00 ATOM 123 N ILE 327 50.204 -6.324 44.644 1.00 60.00 ATOM 126 CB ILE 327 48.893 -6.090 45.352 1.00 60.00 ATOM 127 CG2 ILE 327 48.894 -6.950 46.573 1.00 60.00 ATOM 128 CG1 ILE 327 48.894 -6.950 46.573 1.00 60.00 ATOM 129 CD1 ILE 327 48.896 -4.668 45.802 1.00 60.00 ATOM 130 C ILE 327 48.894 -6.950 46.573 1.00 60.00 ATOM 131 C ILE 327 48.969 -4.668 45.802 1.00 60.00 ATOM 132 N ASN 328 47.612 -2.93 44.644 1.00 60.00 ATOM 132 N ASN 328 47.661 -1.91 43.71 1.00 60.00 ATOM 134 C A SNN 328 47.661 -1.91 43.71 1.00 60.00 ATOM 135 CB ASN 328 47.612 -2.93 44.832 1.00 40.00 ATOM 136 C A SNN 328 47.625 -2.93 44.831 1.00 40.00 ATOM 137 OD1 ASN 328 47.663 -1.91 44.42 1.00 60.00 ATOM 136 C A SNN 328 47.661 -2.748 46.951 44.951 1.00 40.00 ATOM 136 C A SNN 328 47.663 -3.841 1.00 40.00 ATOM 143 N ALA 329 47.117 -4.326 49.698 1.00 40.00 ATOM 145 C A ALA 329 46.633 -5.761									1.00 60.00
ATOM 101 CB SER 324 51.544 -2.494 37.259 1.00 60.00 ATOM 102 OG SER 324 51.058 -1.985 36.026 1.00 60.00 ATOM 104 C SER 324 51.058 -1.985 36.026 1.00 60.00 ATOM 105 O SER 324 52.008 -5.357 38.899 1.00 60.00 ATOM 106 N LEU 325 51.255 -3.578 40.032 1.00 60.00 ATOM 108 CA LEU 325 51.896 -4.060 41.219 1.00 60.00 ATOM 109 CB LEU 325 51.804 -3.116 42.430 1.00 60.00 ATOM 110 CG LEU 325 52.625 -1.823 42.267 1.00 60.00 ATOM 111 CD1 LEU 325 52.625 -1.823 42.267 1.00 60.00 ATOM 112 CD2 LEU 325 52.675 -1.070 43.601 1.00 60.00 ATOM 112 CD2 LEU 325 52.675 -1.070 43.601 1.00 60.00 ATOM 113 C LEU 325 50.220 -5.735 41.109 1.00 60.00 ATOM 114 O LEU 325 50.220 -5.735 41.109 1.00 60.00 ATOM 115 N SER 326 51.898 -5.362 41.603 1.00 60.00 ATOM 117 CA SER 326 51.499 -7.384 42.897 1.00 60.00 ATOM 118 CB SER 326 51.499 -7.384 42.897 1.00 60.00 ATOM 118 CB SER 326 52.451 -8.095 43.874 1.00 60.00 ATOM 119 OG SER 326 50.202 -7.174 43.599 1.00 60.00 ATOM 122 O SER 326 50.202 -7.174 43.599 1.00 60.00 ATOM 121 C SER 326 50.202 -7.174 43.599 1.00 60.00 ATOM 121 C SER 326 50.202 -7.174 43.599 1.00 60.00 ATOM 122 O SER 326 50.202 -7.174 43.599 1.00 60.00 ATOM 123 N LLE 327 50.204 -6.332 44.644 1.00 60.00 ATOM 125 CA LLE 327 48.983 -6.090 45.352 1.00 60.00 ATOM 126 CB LLE 327 48.983 -6.090 45.352 1.00 60.00 ATOM 127 CG2 LLE 327 48.983 -6.090 45.352 1.00 60.00 ATOM 127 CG2 LLE 327 48.983 -6.090 45.352 1.00 60.00 ATOM 128 CG1 LLE 327 48.989 -6.633 47.652 1.00 60.00 ATOM 130 C LLE 327 48.989 -6.090 45.352 1.00 60.00 ATOM 131 O LLE 327 50.204 -6.324 44.644 1.00 60.00 ATOM 130 C LLE 327 48.989 -6.090 45.352 1.00 60.00 ATOM 131 C LLE 327 48.989 -6.090 45.352 1.00 60.00 ATOM 130 C LLE 327 48.989 -6.090 45.352 1.00 60.00 ATOM 130 C LLE 327 48.989 -6.090 45.352 1.00 60.00 ATOM 130 C LLE 327 48.989 -6.090 45.352 1.00 60.00 ATOM 130 C LLE 327 48.989 -6.090 45.885 1.00 40.00 60.00 ATOM 130 C LLE 327 48.989 -6.090 45.885 1.00 40.00 60.00 ATOM 130 C LLE 327 48.989 -6.090 45.885 1.00 40.00 60.00 ATOM 130 C ASN 328 47.611 -2.726 46.922 1.00 40.00 60.00 ATOM 130 C								37.658	1.00 60.00
ATOM 102 OG SER 324 51.058 -1.985 36.026 1.00 60.00 ATOM 104 C SER 324 51.395 -4.290 38.899 1.00 60.00 ATOM 105 O SER 324 52.008 -5.357 38.874 1.00 60.00 ATOM 106 N LEU 325 51.255 -3.578 40.032 1.00 60.00 ATOM 108 CA LEU 325 51.896 -4.060 41.219 1.00 60.00 ATOM 109 CB LEU 325 51.896 -4.060 41.219 1.00 60.00 ATOM 110 CG LEU 325 52.625 -1.823 42.267 1.00 60.00 ATOM 110 CD LEU 325 52.625 -1.823 42.267 1.00 60.00 ATOM 111 CD1 LEU 325 52.625 -1.823 42.267 1.00 60.00 ATOM 112 CD2 LEU 325 52.775 -1.070 43.601 1.00 60.00 ATOM 113 C LEU 325 52.755 -1.070 43.601 1.00 60.00 ATOM 113 C LEU 325 52.755 -1.070 43.601 1.00 60.00 ATOM 113 C LEU 325 52.755 -1.070 43.601 1.00 60.00 ATOM 115 N SER 326 51.986 -6.105 42.482 1.00 60.00 ATOM 117 CA SER 326 51.986 -6.105 42.482 1.00 60.00 ATOM 118 CB SER 326 51.986 -6.105 42.482 1.00 60.00 ATOM 119 OG SER 326 51.986 -6.105 42.482 1.00 60.00 ATOM 119 OG SER 326 51.916 -8.095 43.874 1.00 60.00 ATOM 120 C SER 326 50.202 -7.174 43.599 1.00 60.00 ATOM 121 C SER 326 50.202 -7.174 43.599 1.00 60.00 ATOM 121 C SER 326 50.202 -7.174 43.599 1.00 60.00 ATOM 123 N ILE 327 48.983 -6.950 46.573 1.00 60.00 ATOM 125 CA ILE 327 48.983 -6.950 46.573 1.00 60.00 ATOM 126 CB ILE 327 48.983 -6.950 46.573 1.00 60.00 ATOM 127 CG2 ILE 327 48.983 -6.950 46.573 1.00 60.00 ATOM 128 CGI ILE 327 48.983 -6.950 46.573 1.00 60.00 ATOM 128 CGI ILE 327 48.983 -6.950 46.573 1.00 60.00 ATOM 128 CGI ILE 327 48.983 -6.950 46.573 1.00 60.00 ATOM 130 C ILE 327 48.989 -4.668 45.802 1.00 60.00 ATOM 130 C ILE 327 48.969 -4.668 45.802 1.00 60.00 ATOM 131 O ILE 327 50.015 -4.078 46.071 1.00 60.00 ATOM 130 C ILE 327 48.969 -4.668 45.802 1.00 60.00 ATOM 130 C ILE 327 48.969 -4.668 45.802 1.00 60.00 ATOM 130 C ILE 327 48.969 -4.668 45.802 1.00 60.00 ATOM 130 C ILE 327 47.402 -6.864 47.126 1.00 60.00 ATOM 130 C ILE 327 48.969 -4.668 45.802 1.00 60.00 ATOM 130 C ILE 327 48.969 -4.668 45.802 1.00 60.00 ATOM 130 C ILE 327 48.969 -4.668 45.802 1.00 60.00 ATOM 130 C ILE 327 48.969 -4.668 45.802 1.00 60.00 ATOM 130 C ILE 327 48.969 -4.668 4							-2.494	37.259	
ATOM 104 C SER 324 51,395 -4.290 38.899 1.00 60.00 ATOM 105 O SER 324 52.008 -5.357 38.874 1.00 60.00 ATOM 106 N LEU 325 51.255 -3.578 40.032 1.00 60.00 ATOM 109 CB LEU 325 51.896 -4.060 41.219 1.00 60.00 ATOM 109 CB LEU 325 51.896 -4.060 41.219 1.00 60.00 ATOM 110 CG LEU 325 52.625 -1.823 42.267 1.00 60.00 ATOM 111 CD1 LEU 325 52.625 -1.823 42.267 1.00 60.00 ATOM 111 CD1 LEU 325 52.625 -1.823 42.267 1.00 60.00 ATOM 112 CD2 LEU 325 52.077 -0.948 41.128 1.00 60.00 ATOM 113 C LEU 325 52.755 -11.070 43.601 1.00 60.00 ATOM 114 O LEU 325 51.288 -5.362 41.603 1.00 60.00 ATOM 115 N SER 326 51.288 -5.362 41.603 1.00 60.00 ATOM 117 CA SER 326 51.986 -6.105 42.482 1.00 60.00 ATOM 117 CA SER 326 51.499 -7.384 42.897 1.00 60.00 ATOM 118 CB SER 326 51.499 -7.384 42.897 1.00 60.00 ATOM 119 OG SER 326 51.499 -7.384 42.897 1.00 60.00 ATOM 120 C SER 326 50.202 -7.174 43.599 1.00 60.00 ATOM 121 C SER 326 50.202 -7.174 43.599 1.00 60.00 ATOM 121 C SER 326 50.202 -7.174 43.599 1.00 60.00 ATOM 121 C SER 326 50.202 -7.174 43.599 1.00 60.00 ATOM 122 O SER 326 49.180 -7.743 43.219 1.00 60.00 ATOM 123 N ILE 327 48.983 -6.090 45.352 1.00 60.00 ATOM 126 CB ILE 327 48.894 -6.550 46.573 1.00 60.00 ATOM 127 CG2 ILE 327 48.894 -6.550 46.573 1.00 60.00 ATOM 127 CG2 ILE 327 48.894 -6.550 46.573 1.00 60.00 ATOM 129 CD1 ILE 327 46.352 -7.480 46.202 1.00 60.00 ATOM 130 C ILE 327 48.969 -4.668 45.802 1.00 60.00 ATOM 131 O ILE 327 46.352 -7.480 46.202 1.00 60.00 ATOM 131 O ILE 327 46.352 -7.480 46.202 1.00 60.00 ATOM 131 O ILE 327 50.015 -4.078 46.352 -7.480 46.071 1.00 60.00 ATOM 131 O ILE 327 46.352 -7.480 46.202 1.00 60.00 ATOM 131 O ILE 327 46.352 -7.480 46.202 1.00 60.00 ATOM 131 O ILE 327 46.352 -7.480 46.202 1.00 60.00 ATOM 131 O ILE 327 46.352 -7.480 46.202 1.00 60.00 ATOM 131 O ILE 327 46.352 -7.480 46.202 1.00 60.00 ATOM 131 O ILE 327 46.352 -7.480 46.970 46.352 1.00 60.00 ATOM 134 CA ASN 328 47.661 -1.791 43.771 1.00 40.00 ATOM 134 CA ASN 328 47.661 -1.791 43.771 1.00 40.00 ATOM 134 CA ASN 328 47.661 -1.791 43.771 1.00 40.00 ATOM 134 CA							-1.985	36.026	1.00 60.00
ATOM 105 O SER 324 52.008 -5.357 38.874 1.00 60.00 ATOM 106 N LEU 325 51.255 -3.578 40.032 1.00 60.00 ATOM 108 CA LEU 325 51.896 -4.060 41.219 1.00 60.00 ATOM 109 CB LEU 325 51.896 -4.060 41.219 1.00 60.00 ATOM 110 CG LEU 325 52.077 -0.948 41.128 1.00 60.00 ATOM 111 CD1 LEU 325 52.077 -0.948 41.128 1.00 60.00 ATOM 112 CD2 LEU 325 52.077 -0.948 41.128 1.00 60.00 ATOM 112 CD2 LEU 325 52.077 -0.948 41.128 1.00 60.00 ATOM 113 C LEU 325 52.075 -1.070 43.601 1.00 60.00 ATOM 114 O LEU 325 51.288 -5.362 41.603 1.00 60.00 ATOM 115 N SER 326 51.288 -5.362 41.603 1.00 60.00 ATOM 115 N SER 326 51.986 -6.105 42.482 1.00 60.00 ATOM 117 CA SER 326 51.499 -7.384 42.897 1.00 60.00 ATOM 118 CB SER 326 51.499 -7.384 42.897 1.00 60.00 ATOM 119 OG SER 326 51.499 -7.384 42.897 1.00 60.00 ATOM 121 C SER 326 50.202 -7.174 43.599 1.00 60.00 ATOM 121 C SER 326 50.202 -7.174 43.599 1.00 60.00 ATOM 122 C SER 326 50.202 -7.174 43.599 1.00 60.00 ATOM 122 C SER 326 50.202 -7.174 43.599 1.00 60.00 ATOM 123 N ILE 327 48.983 -6.990 45.352 1.00 60.00 ATOM 125 CA ILE 327 48.983 -6.990 45.352 1.00 60.00 ATOM 126 CB ILE 327 48.983 -6.990 45.352 1.00 60.00 ATOM 128 CG1 ILE 327 47.402 -6.864 47.126 1.00 60.00 ATOM 128 CG1 ILE 327 47.402 -6.864 47.126 1.00 60.00 ATOM 128 CG1 ILE 327 47.402 -6.864 47.126 1.00 60.00 ATOM 129 CD1 ILE 327 46.352 -7.480 46.202 1.00 60.00 ATOM 130 C ILE 327 48.969 -4.668 45.802 1.00 60.00 ATOM 131 O ILE 327 46.352 -7.480 46.202 1.00 60.00 ATOM 131 O ILE 327 47.402 -6.864 47.126 1.00 60.00 ATOM 131 O ILE 327 47.402 -6.864 47.126 1.00 60.00 ATOM 131 O ILE 327 47.402 -6.864 47.126 1.00 60.00 ATOM 131 O ILE 327 46.352 -7.480 46.202 1.00 60.00 ATOM 131 O ILE 327 47.402 -6.864 47.126 1.00 40.00 ATOM 131 O ILE 327 47.402 -6.864 47.126 1.00 40.00 ATOM 131 O ILE 327 47.402 -6.864 47.126 1.00 40.00 ATOM 131 O ILE 327 46.352 -7.480 46.202 1.00 60.00 ATOM 131 O ILE 327 46.352 -7.480 46.909 1.00 40.00 ATOM 131 O ILE 327 47.402 -6.864 47.126 1.00 40.00 ATOM 131 O ILE 327 47.402 -6.864 47.126 1.00 40.00 ATOM 131 O ILE 327 47.402 -6.864 47						51.395	-4.290	38.899	
ATOM 108 CA LEU 325 51.255 -3.578 40.032 1.00 60.00 ATOM 108 CA LEU 325 51.896 -4.060 41.219 1.00 60.00 ATOM 109 CB LEU 325 51.804 -3.116 42.430 1.00 60.00 ATOM 110 CG LEU 325 52.625 -1.823 42.267 1.00 60.00 ATOM 111 CD1 LEU 325 52.077 -0.948 41.128 1.00 60.00 ATOM 112 CD2 LEU 325 52.755 -1.070 43.601 1.00 60.00 ATOM 113 C LEU 325 52.755 -1.070 43.601 1.00 60.00 ATOM 114 O LEU 325 50.220 -5.735 41.119 1.00 60.00 ATOM 115 N SER 326 51.986 -6.105 42.482 1.00 60.00 ATOM 117 CA SER 326 51.986 -6.105 42.482 1.00 60.00 ATOM 118 CB SER 326 51.999 -7.384 42.897 1.00 60.00 ATOM 119 OG SER 326 51.915 -9.354 44.250 1.00 60.00 ATOM 121 C SER 326 50.202 -7.174 43.599 1.00 60.00 ATOM 121 C SER 326 50.202 -7.174 43.599 1.00 60.00 ATOM 121 C SER 326 50.202 -7.174 43.599 1.00 60.00 ATOM 122 O SER 326 50.202 -7.174 43.599 1.00 60.00 ATOM 123 N ILE 327 50.204 -6.324 44.644 1.00 60.00 ATOM 125 CA ILE 327 48.983 -6.090 45.352 1.00 60.00 ATOM 127 CG2 ILE 327 49.917 -6.537 47.583 1.00 60.00 ATOM 128 CG1 ILE 327 49.917 -6.537 47.583 1.00 60.00 ATOM 129 CD1 ILE 327 47.402 -6.864 47.126 1.00 60.00 ATOM 129 CD1 ILE 327 47.402 -6.864 47.126 1.00 60.00 ATOM 130 C ILE 327 48.969 -4.668 45.802 1.00 60.00 ATOM 131 O ILE 327 50.015 -4.078 46.071 1.00 60.00 ATOM 132 N ASN 328 47.611 -2.726 46.322 1.00 60.00 ATOM 132 N ASN 328 47.661 -2.726 46.322 1.00 40.00 ATOM 134 CA ASN 328 47.661 -2.726 46.322 1.00 40.00 ATOM 135 CB ASN 328 47.661 -2.726 46.322 1.00 40.00 ATOM 136 CG ASN 328 47.661 -2.726 46.322 1.00 40.00 ATOM 137 OD1 ASN 328 47.661 -2.726 46.322 1.00 40.00 ATOM 137 OD1 ASN 328 47.663 -2.093 45.452 1.00 40.00 ATOM 140 C ASN 328 47.661 -2.726 46.322 1.00 40.00 ATOM 140 C ASN 328 47.661 -2.726 46.322 1.00 40.00 ATOM 140 C ASN 328 47.661 -2.726 46.322 1.00 40.00 ATOM 140 C ASN 328 47.661 -2.726 46.322 1.00 40.00 ATOM 140 C ASN 328 47.661 -2.726 46.928 1.00 40.00 ATOM 140 C ASN 328 47.663 3-5.761 49.967 1.00 40.00 ATOM 140 C ASN 328 47.575 -2.827 47.812 1.00 40.00 ATOM 140 C ASN 328 47.585 3.841 51.456 1.00 40.00 ATOM 140 C ASN 328 47.585 3.84						52.008	-5.357		
ATOM 108 CA LEU 325 51.896 -4.060 41.219 1.00 60.00 ATOM 109 CB LEU 325 51.804 -3.116 42.430 1.00 60.00 ATOM 110 CG LEU 325 52.625 -1.823 42.267 1.00 60.00 ATOM 111 CD1 LEU 325 52.625 -1.823 42.267 1.00 60.00 ATOM 112 CD2 LEU 325 52.077 -0.948 41.128 1.00 60.00 ATOM 112 CD2 LEU 325 52.075 -1.070 43.601 1.00 60.00 ATOM 113 C LEU 325 51.288 -5.362 41.603 1.00 60.00 ATOM 114 O LEU 325 51.288 -5.362 41.603 1.00 60.00 ATOM 115 N SER 326 51.288 -5.362 41.603 1.00 60.00 ATOM 117 CA SER 326 51.499 -7.384 42.897 1.00 60.00 ATOM 118 CB SER 326 51.499 -7.384 42.897 1.00 60.00 ATOM 119 OG SER 326 51.499 -7.384 42.897 1.00 60.00 ATOM 121 C SER 326 50.202 -7.174 43.599 1.00 60.00 ATOM 121 C SER 326 50.202 -7.174 43.599 1.00 60.00 ATOM 122 O SER 326 50.202 -7.174 43.599 1.00 60.00 ATOM 123 N ILE 327 50.204 -6.324 44.644 1.00 60.00 ATOM 125 CA ILE 327 48.983 -6.990 45.352 1.00 60.00 ATOM 126 CB ILE 327 48.983 -6.990 45.352 1.00 60.00 ATOM 127 CG2 ILE 327 49.917 -6.537 47.802 1.00 60.00 ATOM 128 CG1 ILE 327 48.983 -6.950 46.573 1.00 60.00 ATOM 128 CG1 ILE 327 48.983 -6.950 46.573 1.00 60.00 ATOM 129 CD1 ILE 327 46.352 -7.480 46.202 1.00 60.00 ATOM 130 C ILE 327 48.969 -4.668 45.802 1.00 60.00 ATOM 131 O ILE 327 46.352 -7.480 46.202 1.00 60.00 ATOM 131 O ILE 327 46.352 -7.480 46.202 1.00 60.00 ATOM 131 O ILE 327 46.352 -7.480 46.202 1.00 60.00 ATOM 131 O ILE 327 50.015 -4.078 46.071 1.00 60.00 ATOM 131 O ILE 327 50.015 -4.078 46.071 1.00 60.00 ATOM 131 O ILE 327 50.015 -4.078 46.071 1.00 60.00 ATOM 132 N ASN 328 47.661 -2.726 46.322 1.00 40.00 ATOM 133 N ALA 329 47.466 -1.791 43.771 1.00 40.00 ATOM 134 CA ASN 328 47.661 -2.726 46.322 1.00 40.00 ATOM 135 CB ASN 328 47.661 -2.726 46.322 1.00 40.00 ATOM 136 CG ASN 328 47.866 -1.791 43.771 1.00 40.00 ATOM 141 C ASN 328 47.578 -2.827 47.812 1.00 40.00 ATOM 141 C ASN 328 47.578 -2.827 47.812 1.00 40.00 ATOM 142 CA ASN 328 47.578 -2.827 47.812 1.00 40.00 ATOM 143 N ALA 329 47.117 -4.326 49.698 1.00 40.00 ATOM 145 CA ALA 329 48.636 -3.841 51.456 1.00 40.00 ATOM 145 CA ALA 329 48.636 -3.				LEU	325	51.255			
ATOM 109 CB LEU 325 51.804 -3.116 42.430 1.00 60.00 ATOM 110 CG LEU 325 52.625 -1.823 42.267 1.00 60.00 ATOM 111 CD1 LEU 325 52.077 -0.948 41.128 1.00 60.00 ATOM 112 CD2 LEU 325 52.077 -0.948 41.128 1.00 60.00 ATOM 113 C LEU 325 52.755 -1.070 43.601 1.00 60.00 ATOM 113 C LEU 325 51.288 -5.362 41.603 1.00 60.00 ATOM 115 N SER 326 51.986 -6.105 42.482 1.00 60.00 ATOM 115 N SER 326 51.986 -6.105 42.482 1.00 60.00 ATOM 116 CB SER 326 51.996 -6.105 42.482 1.00 60.00 ATOM 117 CA SER 326 51.996 -6.105 42.482 1.00 60.00 ATOM 119 OG SER 326 51.915 -9.354 44.250 1.00 60.00 ATOM 119 CB SER 326 52.451 -8.095 43.874 1.00 60.00 ATOM 121 C SER 326 50.202 -7.174 43.599 1.00 60.00 ATOM 122 C SER 326 50.202 -7.174 43.599 1.00 60.00 ATOM 123 N ILE 327 50.204 -6.324 44.644 1.00 60.00 ATOM 123 N ILE 327 48.983 -6.090 45.352 1.00 60.00 ATOM 125 CA ILE 327 48.884 -6.950 46.573 1.00 60.00 ATOM 127 CG2 ILE 327 48.983 -6.090 46.573 1.00 60.00 ATOM 127 CG2 ILE 327 49.917 -6.537 47.583 1.00 60.00 ATOM 129 CD1 ILE 327 46.352 -7.480 46.202 1.00 60.00 ATOM 130 C ILE 327 46.352 -7.480 46.202 1.00 60.00 ATOM 131 O ILE 327 46.352 -7.480 46.202 1.00 60.00 ATOM 131 O ILE 327 46.352 -7.480 46.202 1.00 60.00 ATOM 131 O ILE 327 46.352 -7.480 46.202 1.00 60.00 ATOM 132 N ASN 328 47.661 -2.726 46.322 1.00 40.00 ATOM 133 N ASN 328 47.661 -2.726 46.321 1.00 40.00 ATOM 134 CA ASN 328 47.661 -2.726 46.321 1.00 40.00 ATOM 135 CB ASN 328 46.295 -2.093 45.841 1.00 40.00 ATOM 136 CG ASN 328 46.384 -1.981 44.323 1.00 40.00 ATOM 137 OD1 ASN 328 47.562 -2.093 45.841 1.00 40.00 ATOM 140 CA ASN 328 47.561 -2.726 46.332 1.00 40.00 ATOM 141 C ASN 328 47.562 -2.093 45.841 1.00 40.00 ATOM 147 C ALA 329 47.117 -4.326 49.698 1.00 40.00 ATOM 140 CA ASN 328 47.578 -2.827 47.812 1.00 40.00 ATOM 140 CA ASN 328 47.578 -2.827 47.812 1.00 40.00 ATOM 140 CA ASN 328 47.578 -2.827 47.812 1.00 40.00 ATOM 140 CA ASN 328 47.578 -2.827 47.812 1.00 40.00 ATOM 140 CA ASN 328 47.578 -2.827 47.812 1.00 40.00 ATOM 140 CA ASN 328 47.578 -2.827 47.812 1.00 40.00 ATOM 140 CA ASN 328 47.578 -			CA	LEU	325				
ATOM 111 CD1 LEU 325 52.077 -0.948 41.128 1.00 60.00 ATOM 112 CD2 LEU 325 52.755 -1.070 43.601 1.00 60.00 ATOM 113 C LEU 325 51.288 -5.362 41.603 1.00 60.00 ATOM 115 N SER 326 51.288 -5.362 41.603 1.00 60.00 ATOM 115 N SER 326 51.986 -6.105 42.482 1.00 60.00 ATOM 117 CA SER 326 51.499 -7.384 42.897 1.00 60.00 ATOM 118 CB SER 326 51.499 -7.384 42.897 1.00 60.00 ATOM 119 OG SER 326 51.499 -7.384 42.897 1.00 60.00 ATOM 119 OG SER 326 51.915 -9.354 44.250 1.00 60.00 ATOM 121 C SER 326 50.202 -7.174 43.599 1.00 60.00 ATOM 121 C SER 326 50.202 -7.174 43.599 1.00 60.00 ATOM 121 C SER 326 50.202 -7.174 43.599 1.00 60.00 ATOM 123 N ILE 327 50.204 -6.324 44.644 1.00 60.00 ATOM 125 CA ILE 327 48.983 -6.090 45.352 1.00 60.00 ATOM 126 CB ILE 327 48.983 -6.990 45.352 1.00 60.00 ATOM 127 CG2 ILE 327 49.917 -6.537 47.583 1.00 60.00 ATOM 128 CG1 ILE 327 47.402 -6.864 47.126 1.00 60.00 ATOM 129 CD1 ILE 327 46.352 -7.480 46.202 1.00 60.00 ATOM 130 C ILE 327 48.996 -4.668 45.802 1.00 60.00 ATOM 131 O ILE 327 46.352 -7.480 46.071 1.00 60.00 ATOM 131 O ILE 327 46.352 -7.480 46.071 1.00 60.00 ATOM 131 O ILE 327 48.996 -4.668 45.802 1.00 60.00 ATOM 132 N ASN 328 47.611 -2.726 46.322 1.00 40.00 ATOM 133 CB ASN 328 47.615 -4.078 46.071 1.00 60.00 ATOM 134 CA ASN 328 47.611 -2.726 46.322 1.00 40.00 ATOM 135 CB ASN 328 46.384 -1.981 43.221 1.00 40.00 ATOM 136 CG ASN 328 47.666 -1.791 43.771 1.00 40.00 ATOM 137 OD1 ASN 328 47.566 -1.791 43.771 1.00 40.00 ATOM 138 ND2 ASN 328 47.866 -1.791 43.771 1.00 40.00 ATOM 141 C ASN 328 47.866 -1.791 43.771 1.00 40.00 ATOM 145 CA ALA 329 47.117 -4.326 49.698 1.00 40.00 ATOM 145 CA ALA 329 47.214 -4.025 48.301 1.00 40.00 ATOM 145 CA ALA 329 47.214 -4.025 48.301 1.00 40.00 ATOM 145 CA ALA 329 46.633 -7.814 49.946 1.00 40.00 ATOM 145 CA ALA 329 46.636 -3.841 51.456 1.00 40.00 ATOM 148 O ALA 329 46.636 -3.841 51.456 1.00 40.00 ATOM 149 N THR 330 51.875 -4.612 48.845 1.00 40.00 ATOM 149 N THR 330 51.875 -4.612 48.845 1.00 40.00 ATOM 149 N THR 330 51.875 -4.612 48.845 1.00 40.00 ATOM 149 N THR 330 51.875 -4	•	109	CB	LEU					
ATOM 112 CD2 LEU 325 52.755 -1.070 43.601 1.00 60.00 ATOM 113 C LEU 325 51.288 -5.362 41.603 1.00 60.00 ATOM 114 O LEU 325 50.220 -5.735 41.119 1.00 60.00 ATOM 115 N SER 326 51.986 -6.105 42.482 1.00 60.00 ATOM 117 CA SER 326 51.986 -6.105 42.482 1.00 60.00 ATOM 118 CB SER 326 51.986 -6.105 42.482 1.00 60.00 ATOM 118 CB SER 326 51.986 -6.105 42.482 1.00 60.00 ATOM 119 OG SER 326 51.915 -9.354 44.250 1.00 60.00 ATOM 120 OSER 326 51.915 -9.354 44.250 1.00 60.00 ATOM 121 C SER 326 50.202 -7.174 43.599 1.00 60.00 ATOM 122 O SER 326 49.180 -7.743 43.219 1.00 60.00 ATOM 125 CA ILE 327 48.983 -6.090 45.352 1.00 60.00 ATOM 125 CA ILE 327 48.983 -6.090 45.352 1.00 60.00 ATOM 126 CB ILE 327 48.983 -6.090 45.352 1.00 60.00 ATOM 127 CG2 ILE 327 47.402 -6.864 47.126 1.00 60.00 ATOM 128 CGI ILE 327 47.402 -6.864 47.126 1.00 60.00 ATOM 129 CDI ILE 327 46.352 -7.480 46.202 1.00 60.00 ATOM 130 C ILE 327 46.352 -7.480 46.202 1.00 60.00 ATOM 131 O ILE 327 50.015 -4.078 46.071 1.00 60.00 ATOM 131 O ILE 327 50.015 -4.078 46.071 1.00 60.00 ATOM 132 N ASN 328 47.611 -2.726 46.322 1.00 40.00 ATOM 134 CA ASN 328 47.611 -2.726 46.322 1.00 40.00 ATOM 135 CB ASN 328 47.611 -2.726 46.322 1.00 40.00 ATOM 136 CG ASN 328 46.384 -1.981 43.223 1.00 40.00 ATOM 137 ODI ASN 328 47.661 -1.791 43.771 1.00 40.00 ATOM 138 ND2 ASN 328 47.578 -2.827 47.812 1.00 40.00 ATOM 134 N ALA 329 47.117 -4.326 49.998 1.00 40.00 ATOM 145 CA ALA 329 47.578 -2.827 47.812 1.00 40.00 ATOM 145 CA ALA 329 47.117 -4.326 49.998 1.00 40.00 ATOM 145 CA ALA 329 47.117 -4.326 49.998 1.00 40.00 ATOM 145 CA ALA 329 46.633 -5.761 49.9967 1.00 40.00 ATOM 145 CA ALA 329 46.633 -5.761 49.9967 1.00 40.00 ATOM 145 CA ALA 329 46.633 -5.761 49.9967 1.00 40.00 ATOM 145 CA ALA 329 46.633 -5.761 49.9967 1.00 40.00 ATOM 145 CA ALA 329 46.633 -5.761 49.9967 1.00 40.00 ATOM 145 CA ALA 329 46.633 -5.761 49.9967 1.00 40.00 ATOM 145 CA ALA 329 46.633 -5.761 49.9967 1.00 40.00 ATOM 145 CA ALA 329 46.633 -5.761 49.9967 1.00 40.00 ATOM 146 CB ALA 329 46.633 -5.761 49.9967 1.00 40.00 ATOM 147 C ALA		110	CG						
ATOM 113 C LEU 325 51.288 -5.362 41.603 1.00 60.00 ATOM 114 O LEU 325 50.220 -5.735 41.119 1.00 60.00 ATOM 115 N SER 326 51.986 -6.105 42.482 1.00 60.00 ATOM 117 CA SER 326 51.986 -6.105 42.4897 1.00 60.00 ATOM 118 CB SER 326 51.499 -7.384 42.897 1.00 60.00 ATOM 119 OG SER 326 51.499 -7.384 42.897 1.00 60.00 ATOM 119 OG SER 326 51.915 -9.354 44.250 1.00 60.00 ATOM 121 C SER 326 50.220 -7.174 43.599 1.00 60.00 ATOM 122 O SER 326 49.180 -7.743 43.219 1.00 60.00 ATOM 123 N ILE 327 50.204 -6.324 44.644 1.00 60.00 ATOM 125 CA ILE 327 48.983 -6.090 45.352 1.00 60.00 ATOM 126 CB ILE 327 48.983 -6.090 45.352 1.00 60.00 ATOM 127 CG2 ILE 327 48.8834 -6.950 46.573 1.00 60.00 ATOM 128 CG1 ILE 327 47.402 -6.864 47.126 1.00 60.00 ATOM 129 CD1 ILE 327 46.352 -7.480 46.202 1.00 60.00 ATOM 130 C ILE 327 46.352 -7.480 46.202 1.00 60.00 ATOM 131 O ILE 327 50.015 -4.078 46.071 1.00 60.00 ATOM 132 N ASN 328 47.611 -2.726 46.322 1.00 40.00 ATOM 134 CA ASN 328 47.611 -2.726 46.322 1.00 40.00 ATOM 135 CB ASN 328 47.611 -2.726 46.322 1.00 40.00 ATOM 136 CG ASN 328 46.295 -2.093 45.841 1.00 40.00 ATOM 137 OD1 ASN 328 47.666 -1.791 43.771 1.00 40.00 ATOM 138 ND2 ASN 328 47.666 -1.791 43.771 1.00 40.00 ATOM 138 ND2 ASN 328 47.666 -1.791 43.771 1.00 40.00 ATOM 141 C ASN 328 47.466 -1.791 43.771 1.00 40.00 ATOM 141 C ASN 328 47.578 -2.827 47.812 1.00 40.00 ATOM 141 C ASN 328 47.578 -2.827 47.812 1.00 40.00 ATOM 143 N ALA 329 47.117 -4.326 49.698 1.00 40.00 ATOM 145 CA ALA 329 47.117 -4.326 49.698 1.00 40.00 ATOM 145 CA ALA 329 47.117 -4.326 49.698 1.00 40.00 ATOM 147 C ALA 329 48.636 -3.841 51.456 1.00 40.00 ATOM 148 O ALA 329 47.617 -4.807 49.946 1.00 40.00 ATOM 148 O ALA 329 47.617 -4.807 49.946 1.00 40.00 ATOM 148 O ALA 329 47.617 -4.807 49.698 1.00 40.00 ATOM 149 N THR 330 51.875 -4.612 48.845 1.00 40.00 ATOM 148 O ALA 329 47.617 -4.807 49.946 1.00 40.00 ATOM 149 N THR 330 51.875 -4.612 48.845 1.00 40.00 ATOM 155 CG2 THR 330 51.875 -4.612 48.845 1.00 40.00 ATOM 155 CG2 THR 330 51.875 -4.612 48.845 1.00 40.00 ATOM 155 CG2 THR 330 51.863	ATOM								
ATOM 114 O LEU 325 50.220 -5.735 41.119 1.00 60.00 ATOM 115 N SER 326 51.986 -6.105 42.482 1.00 60.00 ATOM 117 CA SER 326 51.499 -7.384 42.897 1.00 60.00 ATOM 118 CB SER 326 51.499 -7.384 42.897 1.00 60.00 ATOM 119 OG SER 326 51.491 -9.354 44.250 1.00 60.00 ATOM 121 C SER 326 50.202 -7.174 43.599 1.00 60.00 ATOM 122 O SER 326 50.202 -7.174 43.599 1.00 60.00 ATOM 123 N ILE 327 50.204 -6.324 44.644 1.00 60.00 ATOM 125 CA ILE 327 48.983 -6.090 45.352 1.00 60.00 ATOM 126 CB ILE 327 48.834 -6.950 46.573 1.00 60.00 ATOM 127 CG2 ILE 327 49.917 -6.537 47.583 1.00 60.00 ATOM 128 CG1 ILE 327 47.402 -6.864 47.126 1.00 60.00 ATOM 130 C ILE 327 48.969 -4.668 45.802 1.00 60.00 ATOM 131 O ILE 327 48.969 -4.668 45.802 1.00 60.00 ATOM 131 O ILE 327 48.969 -4.668 45.802 1.00 60.00 ATOM 131 O ILE 327 50.015 -4.078 46.071 1.00 60.00 ATOM 133 C ILE 327 48.969 -4.668 45.802 1.00 60.00 ATOM 134 CA ASN 328 47.762 -4.072 45.865 1.00 40.00 ATOM 135 CB ASN 328 47.611 -2.726 46.322 1.00 40.00 ATOM 136 CG ASN 328 46.295 -2.093 45.841 1.00 40.00 ATOM 137 OD1 ASN 328 47.666 -1.791 43.771 1.00 40.00 ATOM 137 OD1 ASN 328 47.666 -1.791 43.771 1.00 40.00 ATOM 137 OD1 ASN 328 47.666 -1.791 43.771 1.00 40.00 ATOM 145 CA ASN 328 47.893 -1.878 48.529 1.00 40.00 ATOM 143 N ALA 329 47.214 -4.025 48.301 1.00 40.00 ATOM 143 N ALA 329 47.214 -4.025 48.301 1.00 40.00 ATOM 143 N ALA 329 47.214 -4.025 48.301 1.00 40.00 ATOM 145 CA ALA 329 47.214 -4.025 48.301 1.00 40.00 ATOM 145 CA ALA 329 47.214 -4.025 48.301 1.00 40.00 ATOM 146 CB ALA 329 47.214 -4.025 48.301 1.00 40.00 ATOM 147 C ALA 329 48.482 -4.197 50.290 1.00 40.00 ATOM 148 O ALA 329 47.214 -4.025 48.301 1.00 40.00 ATOM 145 CA ALA 329 48.482 -4.197 50.290 1.00 40.00 ATOM 148 O ALA 329 47.214 -4.025 48.301 1.00 40.00 ATOM 147 C ALA 329 48.482 -4.197 50.290 1.00 40.00 ATOM 148 O ALA 329 47.214 -4.025 48.301 1.00 40.00 ATOM 149 N THR 330 50.871 -4.441 49.946 1.00 40.00 ATOM 149 N THR 330 50.871 -4.441 49.946 1.00 40.00 ATOM 155 CG THR 330 51.875 -4.612 48.845 1.00 40.00 ATOM 155 CG THR 330 51.875 -4.612	ATOM	112							
ATOM 115 N SER 326 51.986 -6.105 42.482 1.00 60.00 ATOM 115 N SER 326 51.499 -7.384 42.897 1.00 60.00 ATOM 118 CB SER 326 52.451 -8.095 43.874 1.00 60.00 ATOM 119 OG SER 326 50.202 -7.174 43.599 1.00 60.00 ATOM 122 C SER 326 50.202 -7.174 43.599 1.00 60.00 ATOM 122 O SER 326 49.180 -7.743 43.219 1.00 60.00 ATOM 123 N ILE 327 50.204 -6.324 44.644 1.00 60.00 ATOM 125 CA ILE 327 48.983 -6.090 45.352 1.00 60.00 ATOM 126 CB ILE 327 48.834 -6.950 46.573 1.00 60.00 ATOM 127 CG2 ILE 327 49.917 -6.537 47.583 1.00 60.00 ATOM 128 CG1 ILE 327 47.402 -6.864 47.126 1.00 60.00 ATOM 130 C ILE 327 48.969 -4.668 47.126 1.00 60.00 ATOM 131 O ILE 327 48.969 -4.668 45.802 1.00 60.00 ATOM 131 O ILE 327 50.015 -4.078 46.071 1.00 60.00 ATOM 131 O ILE 327 50.015 -4.078 46.071 1.00 60.00 ATOM 132 N ASN 328 47.762 -4.072 45.865 1.00 40.00 ATOM 135 CB ASN 328 47.661 -2.726 46.322 1.00 40.00 ATOM 136 CG ASN 328 46.295 -2.093 45.841 1.00 40.00 ATOM 137 OD1 ASN 328 47.466 -1.791 43.771 1.00 40.00 ATOM 138 ND2 ASN 328 47.562 -2.093 45.841 1.00 40.00 ATOM 137 OD1 ASN 328 47.466 -1.791 43.771 1.00 40.00 ATOM 141 C ASN 328 47.578 -2.827 47.12 1.00 40.00 ATOM 143 N ALA 329 47.578 -2.827 47.12 1.00 40.00 ATOM 143 N ALA 329 47.214 -4.025 48.301 1.00 40.00 ATOM 143 N ALA 329 47.214 -4.025 48.301 1.00 40.00 ATOM 145 CA ALA 329 47.214 -4.025 48.301 1.00 40.00 ATOM 145 CA ALA 329 47.214 -4.025 48.301 1.00 40.00 ATOM 145 CA ALA 329 47.214 -4.025 48.301 1.00 40.00 ATOM 145 CA ALA 329 47.214 -4.025 48.301 1.00 40.00 ATOM 145 CA ALA 329 47.214 -4.025 48.301 1.00 40.00 ATOM 145 CA ALA 329 47.214 -4.025 48.301 1.00 40.00 ATOM 145 CA ALA 329 47.214 -4.025 48.301 1.00 40.00 ATOM 145 CA ALA 329 47.817 -4.326 49.698 1.00 40.00 ATOM 145 CA ALA 329 47.214 -4.025 48.301 1.00 40.00 ATOM 145 CA ALA 329 47.214 -4.025 48.301 1.00 40.00 ATOM 145 CA ALA 329 47.214 -4.025 48.301 1.00 40.00 ATOM 146 CB ALA 329 48.636 -3.841 51.456 1.00 40.00 ATOM 149 N THR 330 51.875 -4.6612 48.845 1.00 40.00 ATOM 149 N THR 330 51.875 -4.6612 48.845 1.00 40.00 ATOM 155 CG2 THR 330 51.875 -	MOTA								
ATOM 115 N SER 326 51.499 -7.384 42.897 1.00 60.00 ATOM 118 CB SER 326 52.451 -8.095 43.874 1.00 60.00 ATOM 119 OG SER 326 50.2451 -8.095 43.874 1.00 60.00 ATOM 121 C SER 326 50.202 -7.174 43.599 1.00 60.00 ATOM 122 O SER 326 49.180 -7.743 43.219 1.00 60.00 ATOM 123 N ILE 327 48.983 -6.090 45.352 1.00 60.00 ATOM 125 CA ILE 327 48.983 -6.090 45.352 1.00 60.00 ATOM 126 CB ILE 327 48.834 -6.950 46.573 1.00 60.00 ATOM 127 CG2 ILE 327 49.917 -6.537 47.583 1.00 60.00 ATOM 128 CG1 ILE 327 47.402 -6.864 47.126 1.00 60.00 ATOM 129 CD1 ILE 327 46.352 -7.480 46.202 1.00 60.00 ATOM 130 C ILE 327 48.969 -4.668 45.802 1.00 60.00 ATOM 131 O ILE 327 48.969 -4.668 45.802 1.00 60.00 ATOM 131 O ILE 327 50.015 -4.078 46.071 1.00 60.00 ATOM 131 O ILE 327 50.015 -4.078 46.071 1.00 60.00 ATOM 132 N ASN 328 47.762 -4.072 45.865 1.00 40.00 ATOM 135 CB ASN 328 47.762 -2.093 45.841 1.00 40.00 ATOM 136 CG ASN 328 46.384 -1.981 44.323 1.00 40.00 ATOM 137 OD1 ASN 328 47.661 -2.726 46.322 1.00 40.00 ATOM 138 ND2 ASN 328 46.384 -1.981 44.323 1.00 40.00 ATOM 136 CG ASN 328 46.384 -1.981 44.323 1.00 40.00 ATOM 137 OD1 ASN 328 47.576 -2.093 45.841 1.00 40.00 ATOM 137 OD1 ASN 328 47.578 -2.827 47.812 1.00 40.00 ATOM 141 C ASN 328 47.578 -2.827 47.812 1.00 40.00 ATOM 142 O ASN 328 47.578 -2.827 47.812 1.00 40.00 ATOM 145 CA ALA 329 47.517 -4.326 49.698 1.00 40.00 ATOM 145 CA ALA 329 47.517 -4.326 49.698 1.00 40.00 ATOM 145 CA ALA 329 47.517 -4.326 49.698 1.00 40.00 ATOM 145 CA ALA 329 46.633 -5.761 49.967 1.00 40.00 ATOM 148 O ALA 329 46.633 -5.761 49.967 1.00 40.00 ATOM 149 N THR 330 50.871 -4.441 49.946 1.00 40.00 ATOM 149 N THR 330 50.871 -4.441 49.946 1.00 40.00 ATOM 149 N THR 330 50.871 -4.441 49.946 1.00 40.00 ATOM 149 N THR 330 50.871 -4.441 49.946 1.00 40.00 ATOM 155 CG2 THR 330 51.875 -4.612 48.845 1.00 40.00 ATOM 155 CG2 THR 330 51.875 -4.612 48.845 1.00 40.00 ATOM 155 CG2 THR 330 51.875 -4.612 48.845 1.00 40.00 ATOM 155 CG2 THR 330 51.875 -4.612 48.845 1.00 40.00 ATOM 155 CG2 THR 330 51.865 -3.341 51.456 1.00 40.00 ATOM 155 CG2 THR 330									
ATOM 118 CB SER 326 52.451 -8.095 43.874 1.00 60.00 ATOM 119 OG SER 326 51.915 -9.354 44.250 1.00 60.00 ATOM 121 C SER 326 50.202 -7.174 43.599 1.00 60.00 ATOM 122 O SER 326 49.180 -7.743 43.219 1.00 60.00 ATOM 123 N ILE 327 50.204 -6.324 44.644 1.00 60.00 ATOM 125 CA ILE 327 48.983 -6.090 45.352 1.00 60.00 ATOM 126 CB ILE 327 48.884 -6.950 46.573 1.00 60.00 ATOM 127 CG2 ILE 327 49.917 -6.537 47.583 1.00 60.00 ATOM 128 CG1 ILE 327 49.917 -6.537 47.583 1.00 60.00 ATOM 129 CD1 ILE 327 46.352 -7.480 46.202 1.00 60.00 ATOM 130 C ILE 327 48.969 -4.668 45.802 1.00 60.00 ATOM 131 O ILE 327 50.015 -4.078 46.071 1.00 60.00 ATOM 132 N ASN 328 47.762 -4.072 45.865 1.00 40.00 ATOM 134 CA ASN 328 47.762 -4.072 45.865 1.00 40.00 ATOM 135 CB ASN 328 47.611 -2.726 46.322 1.00 40.00 ATOM 137 OD1 ASN 328 47.466 -1.791 43.771 1.00 40.00 ATOM 138 ND2 ASN 328 47.466 -1.791 43.771 1.00 40.00 ATOM 138 ND2 ASN 328 47.578 -2.827 47.812 1.00 40.00 ATOM 140 C ASN 328 47.578 -2.827 47.812 1.00 40.00 ATOM 140 C ASN 328 47.893 -1.878 48.529 1.00 40.00 ATOM 141 C ASN 328 47.893 -1.878 48.529 1.00 40.00 ATOM 143 N ALA 329 47.214 -4.025 48.301 1.00 40.00 ATOM 143 N ALA 329 47.893 -1.878 48.529 1.00 40.00 ATOM 145 CA ALA 329 47.117 -4.326 49.698 1.00 40.00 ATOM 146 CB ALA 329 47.117 -4.326 49.698 1.00 40.00 ATOM 147 C ALA 329 47.117 -4.326 49.698 1.00 40.00 ATOM 148 O ALA 329 47.214 -4.025 48.301 1.00 40.00 ATOM 149 N THR 330 50.871 -4.441 49.946 1.00 40.00 ATOM 149 N THR 330 50.871 -4.441 49.946 1.00 40.00 ATOM 149 N THR 330 50.871 -4.441 49.946 1.00 40.00 ATOM 149 N THR 330 50.871 -4.441 49.946 1.00 40.00 ATOM 151 CA THR 330 51.875 -4.612 48.845 1.00 40.00 ATOM 155 CG2 THR 330 51.875 -4.612 48.845 1.00 40.00 ATOM 155 CG2 THR 330 51.875 -4.612 48.845 1.00 40.00 ATOM 155 CG2 THR 330 51.875 -4.612 48.845 1.00 40.00 ATOM 155 CG2 THR 330 51.875 -4.612 48.845 1.00 40.00 ATOM 155 CG2 THR 330 51.875 -4.612 48.845 1.00 40.00 ATOM 155 CG2 THR 330 51.875 -4.612 48.845 1.00 40.00 ATOM 155 CG2 THR 330 51.863 -3.021 51.493 1.00 40.00 ATOM 155 CG2 THR 330 5									
ATOM 119 OG SER 326 51.915 -9.354 44.250 1.00 60.00 ATOM 121 C SER 326 50.202 -7.174 43.599 1.00 60.00 ATOM 122 O SER 326 49.180 -7.743 43.219 1.00 60.00 ATOM 123 N ILE 327 50.204 -6.324 44.644 1.00 60.00 ATOM 125 CA ILE 327 48.983 -6.090 45.352 1.00 60.00 ATOM 126 CB ILE 327 48.834 -6.950 46.573 1.00 60.00 ATOM 127 CG2 ILE 327 49.917 -6.537 47.583 1.00 60.00 ATOM 128 CG1 ILE 327 47.402 -6.864 47.126 1.00 60.00 ATOM 129 CD1 ILE 327 46.352 -7.480 46.202 1.00 60.00 ATOM 130 C ILE 327 48.969 -4.668 45.802 1.00 60.00 ATOM 131 O ILE 327 50.015 -4.078 46.071 1.00 60.00 ATOM 131 O ILE 327 50.015 -4.078 46.071 1.00 60.00 ATOM 132 N ASN 328 47.661 -2.726 46.322 1.00 40.00 ATOM 135 CB ASN 328 47.661 -2.726 46.322 1.00 40.00 ATOM 136 CG ASN 328 46.384 -1.981 44.323 1.00 40.00 ATOM 137 OD1 ASN 328 47.466 -1.791 43.771 1.00 40.00 ATOM 138 ND2 ASN 328 47.578 -2.827 47.812 1.00 40.00 ATOM 141 C ASN 328 47.578 -2.827 47.812 1.00 40.00 ATOM 141 C ASN 328 47.578 -2.827 47.812 1.00 40.00 ATOM 141 C ASN 328 47.578 -2.827 47.812 1.00 40.00 ATOM 141 C ASN 328 47.578 -2.827 47.812 1.00 40.00 ATOM 141 C ASN 328 47.578 -2.827 47.812 1.00 40.00 ATOM 141 C ASN 328 47.578 -2.827 47.812 1.00 40.00 ATOM 145 CA ALA 329 47.117 -4.326 49.698 1.00 40.00 ATOM 145 CA ALA 329 47.117 -4.326 49.698 1.00 40.00 ATOM 145 CA ALA 329 47.117 -4.326 49.698 1.00 40.00 ATOM 146 CB ALA 329 47.117 -4.326 49.698 1.00 40.00 ATOM 147 C ALA 329 47.117 -4.326 49.698 1.00 40.00 ATOM 148 O ALA 329 47.117 -4.326 49.698 1.00 40.00 ATOM 149 N THR 330 49.518 -4.458 49.476 1.00 40.00 ATOM 149 N THR 330 49.518 -4.458 49.476 1.00 40.00 ATOM 149 N THR 330 49.518 -4.458 49.476 1.00 40.00 ATOM 150 C THR 330 51.875 -4.612 48.845 1.00 40.00 ATOM 150 C THR 330 51.875 -4.612 48.845 1.00 40.00 ATOM 150 C THR 330 51.875 -4.612 48.845 1.00 40.00 ATOM 150 C THR 330 51.863 -3.347 47.972 1.00 40.00 ATOM 155 CG THR 330 51.863 -3.321 51.493 1.00 40.00 ATOM 155 CG THR 330 51.865 -3.321 51.493 1.00 40.00 ATOM 155 CG THR 330 51.865 -3.321 51.493 1.00 40.00 ATOM 155 CG THR 330 51.865 -3.321 5									
ATOM 121 C SER 326 50.202 -7.174 43.599 1.00 60.00 ATOM 122 O SER 326 49.180 -7.743 43.219 1.00 60.00 ATOM 123 N ILE 327 50.204 -6.324 44.644 1.00 60.00 ATOM 125 CA ILE 327 48.983 -6.090 45.352 1.00 60.00 ATOM 126 CB ILE 327 48.834 -6.950 46.573 1.00 60.00 ATOM 127 CG2 ILE 327 49.917 -6.537 47.583 1.00 60.00 ATOM 128 CG1 ILE 327 47.402 -6.864 47.126 1.00 60.00 ATOM 129 CD1 ILE 327 46.352 -7.480 46.202 1.00 60.00 ATOM 130 C ILE 327 48.969 -4.668 45.802 1.00 60.00 ATOM 131 O ILE 327 48.969 -4.668 45.802 1.00 60.00 ATOM 131 O ILE 327 50.015 -4.078 46.071 1.00 60.00 ATOM 132 N ASN 328 47.762 -4.072 45.865 1.00 40.00 ATOM 134 CA ASN 328 47.762 -4.072 45.865 1.00 40.00 ATOM 135 CB ASN 328 46.295 -2.093 45.841 1.00 40.00 ATOM 137 OD1 ASN 328 47.466 -1.791 43.771 1.00 40.00 ATOM 137 OD1 ASN 328 47.466 -1.791 43.771 1.00 40.00 ATOM 138 ND2 ASN 328 47.466 -1.791 43.771 1.00 40.00 ATOM 134 C ASN 328 47.466 -1.791 43.771 1.00 40.00 ATOM 137 OD1 ASN 328 47.466 -1.791 43.771 1.00 40.00 ATOM 134 C ASN 328 47.466 -1.791 43.771 1.00 40.00 ATOM 134 C ASN 328 47.466 -1.791 43.771 1.00 40.00 ATOM 134 N ALA 329 47.466 -1.791 43.771 1.00 40.00 ATOM 141 C ASN 328 47.893 -1.878 48.529 1.00 40.00 ATOM 142 O ASN 328 47.893 -1.878 48.529 1.00 40.00 ATOM 143 N ALA 329 47.214 -4.025 48.301 1.00 40.00 ATOM 145 CA ALA 329 47.117 -4.326 49.698 1.00 40.00 ATOM 146 CB ALA 329 47.214 -4.025 48.301 1.00 40.00 ATOM 147 C ALA 329 48.482 -4.197 50.290 1.00 40.00 ATOM 149 N THR 330 49.518 -4.458 49.476 1.00 40.00 ATOM 149 N THR 330 49.518 -4.458 49.476 1.00 40.00 ATOM 149 N THR 330 50.871 -4.441 49.946 1.00 40.00 ATOM 155 CG2 THR 330 51.875 -4.612 48.845 1.00 40.00 ATOM 155 CG2 THR 330 51.875 -4.612 48.845 1.00 40.00 ATOM 156 C THR 330 51.853 -3.347 47.972 1.00 40.00 ATOM 156 C THR 330 51.853 -3.347 47.972 1.00 40.00 ATOM 156 C THR 330 51.863 -3.361 51.493 1.00 40.00 ATOM 157 O THR 330 51.863 -3.361 51.493 1.00 40.00 ATOM 156 C THR 330 51.863 -3.361 51.493 1.00 40.00 ATOM 157 O THR 330 51.863 -3.361 51.493 1.00 40.00 ATOM 157 O THR 330 51.865 -3.361									
ATOM 122 O SER 326									1.00 60.00
ATOM 123 N ILE 327								43.219	1.00 60.00
ATOM 125 CA ILE 327							-6.324	44.644	
ATOM 126 CB ILE 327						48.983	6.090		
ATOM 128 CG1 ILE 327					327	48.834			
ATOM 128 CG1 ILE 327		127	CG2	ILE	327	49.917			
ATOM 130 C ILE 327			CG1	ILE	327				
ATOM 131 O ILE 327 50.015 -4.078 46.071 1.00 60.00 ATOM 132 N ASN 328 47.762 -4.072 45.865 1.00 40.00 ATOM 135 CB ASN 328 46.295 -2.093 45.841 1.00 40.00 ATOM 136 CG ASN 328 46.384 -1.981 44.323 1.00 40.00 ATOM 137 OD1 ASN 328 47.466 -1.791 43.771 1.00 40.00 ATOM 138 ND2 ASN 328 45.223 -2.111 43.626 1.00 40.00 ATOM 141 C ASN 328 47.578 -2.827 47.812 1.00 40.00 ATOM 142 O ASN 328 47.893 -1.878 48.529 1.00 40.00 ATOM 143 N ALA 329 47.214 -4.025 48.301 1.00 40.00 ATOM 146 CB ALA 329 47.117 -4.326 49.698 1.00 40.00 ATOM 146 CB ALA 329 46.633 -5.761 49.967 1.00 40.00 ATOM 148 O ALA 329 48.482 -4.197 50.290 1.00 40.00 ATOM 148 O ALA 329 48.482 -4.197 50.290 1.00 40.00 ATOM 149 N THR 330 49.518 -4.458 49.476 1.00 40.00 ATOM 151 CA THR 330 50.871 -4.441 49.946 1.00 40.00 ATOM 152 CB THR 330 51.875 -4.612 48.845 1.00 40.00 ATOM 153 OG1 THR 330 51.875 -4.612 48.845 1.00 40.00 ATOM 155 CG2 THR 330 51.853 -3.347 47.972 1.00 40.00 ATOM 155 CG2 THR 330 51.853 -3.347 47.972 1.00 40.00 ATOM 155 CG2 THR 330 51.853 -3.347 47.972 1.00 40.00 ATOM 155 CG2 THR 330 51.853 -3.347 47.972 1.00 40.00 ATOM 155 CG2 THR 330 51.853 -3.347 47.972 1.00 40.00 ATOM 155 CG2 THR 330 51.853 -3.347 47.972 1.00 40.00 ATOM 156 C THR 330 51.853 -3.347 47.972 1.00 40.00 ATOM 157 O THR 330 51.963 -3.021 51.493 1.00 40.00 ATOM 157 O THR 330 51.963 -3.021 51.493 1.00 40.00 ATOM 157 O THR 330 51.963 -3.021 51.493 1.00 40.00 ATOM 157 O THR 330 51.963 -3.021 51.493 1.00 40.00 ATOM 157 O THR 330 51.963 -3.021 51.493 1.00 40.00 ATOM 157 O THR 330 51.963 -3.021 51.493 1.00 40.00 ATOM 157 O THR 330 51.963 -3.021 51.493 1.00 40.00 ATOM 156 C THR 330 51.963 -3.021 51.493 1.00 40.00 ATOM 157 O THR 330 51.963 -3.021 51.493 1.00 40.00 ATOM 157 O THR 330 51.963 -3.021 51.493 1.00 40.00 ATOM 157 O THR 330 51.963 -3.021 51.493 1.00 40.00 ATOM 157 O THR 330 51.963 -3.021 51.493 1.00 40.00 ATOM 157 O THR 330 51.963 -3.021 51.493 1.00 40.00 ATOM 157 O THR 330 51.963 -3.021 51.493 1.00 40.00 ATOM 157 O THR 330 51.963 -3.021 51.493 1.00 40.00 ATOM 157 O THR 330 51.963 -3.021	ATOM	129	CD1	ILE					
ATOM 131 N ASN 328 47.762 -4.072 45.865 1.00 40.00 ATOM 134 CA ASN 328 47.611 -2.726 46.322 1.00 40.00 ATOM 135 CB ASN 328 46.295 -2.093 45.841 1.00 40.00 ATOM 137 OD1 ASN 328 46.384 -1.981 44.323 1.00 40.00 ATOM 138 ND2 ASN 328 46.384 -1.981 44.323 1.00 40.00 ATOM 138 ND2 ASN 328 45.223 -2.111 43.626 1.00 40.00 ATOM 141 C ASN 328 47.578 -2.827 47.812 1.00 40.00 ATOM 142 O ASN 328 47.893 -1.878 48.529 1.00 40.00 ATOM 143 N ALA 329 47.214 -4.025 48.301 1.00 40.00 ATOM 145 CA ALA 329 47.117 -4.326 49.698 1.00 40.00 ATOM 146 CB ALA 329 47.117 -4.326 49.698 1.00 40.00 ATOM 147 C ALA 329 46.633 -5.761 49.967 1.00 40.00 ATOM 148 O ALA 329 48.482 -4.197 50.290 1.00 40.00 ATOM 149 N THR 330 49.518 -4.458 49.476 1.00 40.00 ATOM 149 N THR 330 49.518 -4.458 49.476 1.00 40.00 ATOM 151 CA THR 330 50.871 -4.441 49.946 1.00 40.00 ATOM 153 OG1 THR 330 51.875 -4.612 48.845 1.00 40.00 ATOM 153 OG1 THR 330 51.875 -4.612 48.845 1.00 40.00 ATOM 155 CG2 THR 330 51.875 -4.612 48.845 1.00 40.00 ATOM 155 CG2 THR 330 51.853 -3.347 47.972 1.00 40.00 ATOM 155 CG2 THR 330 51.853 -3.347 47.972 1.00 40.00 ATOM 155 CG2 THR 330 51.853 -3.347 47.972 1.00 40.00 ATOM 156 C THR 330 51.963 -3.021 51.493 1.00 40.00 ATOM 157 O THR 330 51.963 -3.021 51.493 1.00 40.00 ATOM 157 O THR 330 51.963 -3.021 51.493 1.00 40.00 ATOM 157 O THR 330 51.963 -3.021 51.493 1.00 40.00 ATOM 157 O THR 330 51.963 -3.021 51.493 1.00 40.00 ATOM 157 O THR 330 51.963 -3.021 51.493 1.00 40.00 ATOM 157 O THR 330 51.963 -3.021 51.493 1.00 40.00 ATOM 157 O THR 330 51.963 -3.021 51.493 1.00 40.00 ATOM 157 O THR 330 51.963 -3.021 51.493 1.00 40.00 ATOM 157 O THR 330 51.965 -3.665 -3.665 -5.	MOTA	130	С						
ATOM 134 CA ASN 328 47.611 -2.726 46.322 1.00 40.00 ATOM 135 CB ASN 328 46.295 -2.093 45.841 1.00 40.00 ATOM 137 OD1 ASN 328 46.384 -1.981 44.323 1.00 40.00 ATOM 145 CA ALA 329 47.578 -2.827 47.812 1.00 40.00 ATOM 146 CB ALA 329 47.117 -4.326 49.698 1.00 40.00 ATOM 147 C ALA 329 47.117 -4.326 49.698 1.00 40.00 ATOM 148 O ALA 329 48.482 -4.197 50.290 1.00 40.00 ATOM 149 N THR 330 49.518 -4.458 49.476 1.00 40.00 ATOM 151 CA THR 330 50.871 -4.441 49.946 1.00 40.00 ATOM 153 OG1 THR 330 51.875 -4.612 48.845 1.00 40.00 ATOM 155 CG2 THR 330 51.853 -3.347 47.972 1.00 40.00 ATOM 156 C THR 330 51.963 -3.021 51.493 1.00 40.00 ATOM 157 O THR 330 51.963 -3.021 51.493 1.00 40.00 ATOM 157 O THR 330 51.963 -3.021 51.493 1.00 40.00 ATOM 155 CG2 THR 330 51.963 -3.347 47.972 1.00 40.00 ATOM 157 O THR 330 51.963 -3.021 51.493 1.00	MOTA								
ATOM 135 CB ASN 328 46.295 -2.093 45.841 1.00 40.00 ATOM 136 CG ASN 328 46.384 -1.981 44.323 1.00 40.00 ATOM 137 OD1 ASN 328 47.466 -1.791 43.771 1.00 40.00 ATOM 138 ND2 ASN 328 45.223 -2.111 43.626 1.00 40.00 ATOM 141 C ASN 328 47.578 -2.827 47.812 1.00 40.00 ATOM 142 O ASN 328 47.893 -1.878 48.529 1.00 40.00 ATOM 143 N ALA 329 47.214 -4.025 48.301 1.00 40.00 ATOM 145 CA ALA 329 47.117 -4.326 49.698 1.00 40.00 ATOM 146 CB ALA 329 46.633 -5.761 49.967 1.00 40.00 ATOM 147 C ALA 329 48.482 -4.197 50.290 1.00 40.00 ATOM 148 O ALA 329 48.482 -4.197 50.290 1.00 40.00 ATOM 149 N THR 330 49.518 -4.458 49.476 1.00 40.00 ATOM 151 CA THR 330 50.871 -4.441 49.946 1.00 40.00 ATOM 152 CB THR 330 50.871 -4.441 49.946 1.00 40.00 ATOM 153 OG1 THR 330 51.875 -4.612 48.845 1.00 40.00 ATOM 155 CG2 THR 330 51.875 -4.612 48.845 1.00 40.00 ATOM 155 CG2 THR 330 51.853 -3.347 47.972 1.00 40.00 ATOM 155 CG2 THR 330 51.853 -3.347 47.972 1.00 40.00 ATOM 156 C THR 330 51.853 -3.347 47.972 1.00 40.00 ATOM 157 O THR 330 51.963 -3.021 51.493	ATOM								
ATOM 136 CG ASN 328 46.384 -1.981 44.323 1.00 40.00 ATOM 137 OD1 ASN 328 47.466 -1.791 43.771 1.00 40.00 ATOM 138 ND2 ASN 328 45.223 -2.111 43.626 1.00 40.00 ATOM 141 C ASN 328 47.578 -2.827 47.812 1.00 40.00 ATOM 142 O ASN 328 47.893 -1.878 48.529 1.00 40.00 ATOM 143 N ALA 329 47.214 -4.025 48.301 1.00 40.00 ATOM 145 CA ALA 329 47.117 -4.326 49.698 1.00 40.00 ATOM 146 CB ALA 329 46.633 -5.761 49.967 1.00 40.00 ATOM 147 C ALA 329 46.633 -5.761 49.967 1.00 40.00 ATOM 148 O ALA 329 48.482 -4.197 50.290 1.00 40.00 ATOM 149 N THR 330 49.518 -4.458 49.476 1.00 40.00 ATOM 151 CA THR 330 50.871 -4.441 49.946 1.00 40.00 ATOM 152 CB THR 330 50.871 -4.441 49.946 1.00 40.00 ATOM 153 OG1 THR 330 51.875 -4.612 48.845 1.00 40.00 ATOM 155 CG2 THR 330 51.875 -4.612 48.845 1.00 40.00 ATOM 155 CG2 THR 330 51.853 -3.347 47.972 1.00 40.00 ATOM 156 C THR 330 51.853 -3.347 47.972 1.00 40.00 ATOM 157 O THR 330 51.853 -3.321 51.493 1.00 40.00 ATOM 157 O THR 330 51.963 -3.021 51.493 1.									
ATOM 137 OD1 ASN 328 47.466 -1.791 43.771 1.00 40.00 ATOM 141 C ASN 328 47.578 -2.827 47.812 1.00 40.00 ATOM 142 O ASN 328 47.893 -1.878 48.529 1.00 40.00 ATOM 145 CA ALA 329 47.117 -4.326 49.698 1.00 40.00 ATOM 146 CB ALA 329 46.633 -5.761 49.967 1.00 40.00 ATOM 148 O ALA 329 48.482 -4.197 50.290 1.00 40.00 ATOM 148 O ALA 329 48.636 -3.841 51.456 1.00 40.00 ATOM 149 N THR 330 49.518 -4.458 49.476 1.00 40.00 ATOM 151 CA THR 330 50.871 -4.441 49.946 1.00 40.00 ATOM 152 CB THR 330 51.875 -4.612 48.845 1.00 40.00 ATOM 153 OG1 THR 330 51.875 -4.612 48.845 1.00 40.00 ATOM 155 CG2 THR 330 51.875 -4.612 48.845 1.00 40.00 ATOM 155 CG2 THR 330 51.853 -3.347 47.972 1.00 40.00 ATOM 156 C THR 330 51.853 -3.347 47.972 1.00 40.00 ATOM 157 O THR 330 51.963 -3.021 51.493 1.00 40.00 ATOM 157 O THR 330 51.963 -3.021 51.493 1.00 40.00	-								
ATOM 138 ND2 ASN 328 45.223 -2.111 43.626 1.00 40.00 ATOM 141 C ASN 328 47.578 -2.827 47.812 1.00 40.00 ATOM 142 O ASN 328 47.893 -1.878 48.529 1.00 40.00 ATOM 143 N ALA 329 47.214 -4.025 48.301 1.00 40.00 ATOM 145 CA ALA 329 47.117 -4.326 49.698 1.00 40.00 ATOM 146 CB ALA 329 46.633 -5.761 49.967 1.00 40.00 ATOM 147 C ALA 329 48.482 -4.197 50.290 1.00 40.00 ATOM 148 O ALA 329 48.636 -3.841 51.456 1.00 40.00 ATOM 149 N THR 330 49.518 -4.458 49.476 1.00 40.00 ATOM 151 CA THR 330 50.871 -4.441 49.946 1.00 40.00 ATOM 152 CB THR 330 50.871 -4.441 49.946 1.00 40.00 ATOM 153 OG1 THR 330 51.875 -4.612 48.845 1.00 40.00 ATOM 155 CG2 THR 330 51.875 -4.612 48.845 1.00 40.00 ATOM 155 CG2 THR 330 51.853 -3.347 47.972 1.00 40.00 ATOM 155 CG2 THR 330 51.853 -3.347 47.972 1.00 40.00 ATOM 156 C THR 330 51.853 -3.347 47.972 1.00 40.00 ATOM 157 O THR 330 51.963 -3.021 51.493 1.00 40.00 ATOM 157 O THR 330 51.963 -3.021 51.493 1.00 40.00									
ATOM 141 C ASN 328 47.578 -2.827 47.812 1.00 40.00 ATOM 142 O ASN 328 47.893 -1.878 48.529 1.00 40.00 ATOM 143 N ALA 329 47.214 -4.025 48.301 1.00 40.00 ATOM 145 CA ALA 329 47.117 -4.326 49.698 1.00 40.00 ATOM 146 CB ALA 329 46.633 -5.761 49.967 1.00 40.00 ATOM 147 C ALA 329 48.482 -4.197 50.290 1.00 40.00 ATOM 148 O ALA 329 48.636 -3.841 51.456 1.00 40.00 ATOM 149 N THR 330 49.518 -4.458 49.476 1.00 40.00 ATOM 151 CA THR 330 50.871 -4.441 49.946 1.00 40.00 ATOM 152 CB THR 330 51.875 -4.612 48.845 1.00 40.00 ATOM 153 OG1 THR 330 51.875 -4.612 48.845 1.00 40.00 ATOM 155 CG2 THR 330 51.875 -4.612 48.845 1.00 40.00 ATOM 157 O THR 330 51.853 -3.347 47.972 1.00 40.00 ATOM 156 C THR 330 51.853 -3.347 47.972 1.00 40.00 ATOM 157 O THR 330 51.963 -3.021 51.493 1.00 40.00 ATOM 157 O THR 330 51.963 -3.021 51.493 1.00 40.00									
ATOM 142 O ASN 328 47.893 -1.878 48.529 1.00 40.00 ATOM 143 N ALA 329 47.214 -4.025 48.301 1.00 40.00 ATOM 145 CA ALA 329 47.117 -4.326 49.698 1.00 40.00 ATOM 146 CB ALA 329 46.633 -5.761 49.967 1.00 40.00 ATOM 147 C ALA 329 48.482 -4.197 50.290 1.00 40.00 ATOM 148 O ALA 329 48.636 -3.841 51.456 1.00 40.00 ATOM 149 N THR 330 49.518 -4.458 49.476 1.00 40.00 ATOM 151 CA THR 330 50.871 -4.441 49.946 1.00 40.00 ATOM 152 CB THR 330 51.875 -4.612 48.845 1.00 40.00 ATOM 153 OG1 THR 330 51.875 -4.612 48.845 1.00 40.00 ATOM 155 CG2 THR 330 51.875 -3.347 47.972 1.00 40.00 ATOM 155 CG2 THR 330 51.853 -3.347 47.972 1.00 40.00 ATOM 156 C THR 330 51.853 -3.347 47.972 1.00 40.00 ATOM 157 O THR 330 51.963 -3.021 51.493 1.00 40.00 ATOM 157 O THR 330 51.963 -3.021 51.493 1.00 40.00									
ATOM 143 N ALA 329 47.214 -4.025 48.301 1.00 40.00 ATOM 145 CA ALA 329 47.117 -4.326 49.698 1.00 40.00 ATOM 146 CB ALA 329 46.633 -5.761 49.967 1.00 40.00 ATOM 147 C ALA 329 48.482 -4.197 50.290 1.00 40.00 ATOM 148 O ALA 329 48.636 -3.841 51.456 1.00 40.00 ATOM 149 N THR 330 49.518 -4.458 49.476 1.00 40.00 ATOM 151 CA THR 330 50.871 -4.441 49.946 1.00 40.00 ATOM 152 CB THR 330 51.875 -4.612 48.845 1.00 40.00 ATOM 153 OG1 THR 330 53.174 -4.807 49.385 1.00 40.00 ATOM 155 CG2 THR 330 51.853 -3.347 47.972 1.00 40.00 ATOM 156 C THR 330 51.853 -3.347 47.972 1.00 40.00 ATOM 157 O THR 330 51.963 -3.021 51.493 1.00 40.00 ATOM 157 O THR 330 51.963 -3.021 51.493 1.00 40.00		_							
ATOM 145 CA ALA 329 47.117 -4.326 49.698 1.00 40.00 ATOM 146 CB ALA 329 46.633 -5.761 49.967 1.00 40.00 ATOM 147 C ALA 329 48.482 -4.197 50.290 1.00 40.00 ATOM 148 O ALA 329 48.636 -3.841 51.456 1.00 40.00 ATOM 149 N THR 330 49.518 -4.458 49.476 1.00 40.00 ATOM 151 CA THR 330 50.871 -4.441 49.946 1.00 40.00 ATOM 152 CB THR 330 51.875 -4.612 48.845 1.00 40.00 ATOM 153 OG1 THR 330 53.174 -4.807 49.385 1.00 40.00 ATOM 155 CG2 THR 330 51.853 -3.347 47.972 1.00 40.00 ATOM 156 C THR 330 51.853 -3.347 47.972 1.00 40.00 ATOM 157 O THR 330 51.963 -3.021 51.493 1.00 40.00 ATOM 157 O THR 330 51.963 -3.021 51.493 1.00 40.00									
ATOM 146 CB ALA 329 46.633 -5.761 49.967 1.00 40.00 ATOM 147 C ALA 329 48.482 -4.197 50.290 1.00 40.00 ATOM 148 O ALA 329 48.636 -3.841 51.456 1.00 40.00 ATOM 149 N THR 330 49.518 -4.458 49.476 1.00 40.00 ATOM 151 CA THR 330 50.871 -4.441 49.946 1.00 40.00 ATOM 152 CB THR 330 51.875 -4.612 48.845 1.00 40.00 ATOM 153 OG1 THR 330 53.174 -4.807 49.385 1.00 40.00 ATOM 155 CG2 THR 330 51.853 -3.347 47.972 1.00 40.00 ATOM 156 C THR 330 51.143 -3.117 50.583 1.00 40.00 ATOM 157 O THR 330 51.963 -3.021 51.493 1.00 40.00							-4.326	49.698	
ATOM 147 C ALA 329 48.482 -4.197 50.290 1.00 40.00 ATOM 148 O ALA 329 48.636 -3.841 51.456 1.00 40.00 ATOM 149 N THR 330 49.518 -4.458 49.476 1.00 40.00 ATOM 151 CA THR 330 50.871 -4.441 49.946 1.00 40.00 ATOM 152 CB THR 330 51.875 -4.612 48.845 1.00 40.00 ATOM 153 OG1 THR 330 53.174 -4.807 49.385 1.00 40.00 ATOM 155 CG2 THR 330 51.853 -3.347 47.972 1.00 40.00 ATOM 156 C THR 330 51.143 -3.117 50.583 1.00 40.00 ATOM 157 O THR 330 51.963 -3.021 51.493 1.00 40.00						46.633	-5.761		
ATOM 148 O ALA 329 48.636 -3.841 51.456 1.00 40.00 ATOM 149 N THR 330 49.518 -4.458 49.476 1.00 40.00 ATOM 151 CA THR 330 50.871 -4.441 49.946 1.00 40.00 ATOM 152 CB THR 330 51.875 -4.612 48.845 1.00 40.00 ATOM 153 OG1 THR 330 53.174 -4.807 49.385 1.00 40.00 ATOM 155 CG2 THR 330 51.853 -3.347 47.972 1.00 40.00 ATOM 156 C THR 330 51.853 -3.347 47.972 1.00 40.00 ATOM 157 O THR 330 51.963 -3.021 51.493 1.00 40.00 ATOM 157 O THR 330 51.963 -3.021 51.493 1.00 40.00						48.482	-4.197		
ATOM 149 N THR 330 49.518 -4.458 49.476 1.00 40.00 ATOM 151 CA THR 330 50.871 -4.441 49.946 1.00 40.00 ATOM 152 CB THR 330 51.875 -4.612 48.845 1.00 40.00 ATOM 153 OG1 THR 330 53.174 -4.807 49.385 1.00 40.00 ATOM 155 CG2 THR 330 51.853 -3.347 47.972 1.00 40.00 ATOM 156 C THR 330 51.143 -3.117 50.583 1.00 40.00 ATOM 157 O THR 330 51.963 -3.021 51.493 1.00 40.00						48.636			
ATOM 151 CA THR 330 50.871 -4.441 49.946 1.00 40.00 ATOM 152 CB THR 330 51.875 -4.612 48.845 1.00 40.00 ATOM 153 OG1 THR 330 53.174 -4.807 49.385 1.00 40.00 ATOM 155 CG2 THR 330 51.853 -3.347 47.972 1.00 40.00 ATOM 156 C THR 330 51.143 -3.117 50.583 1.00 40.00 ATOM 157 O THR 330 51.963 -3.021 51.493 1.00 40.00 ATOM 157 O THR 330 51.963 -3.021 51.493 1.00 40.00			N	THR					
ATOM 152 CB THR 330 51.875 -4.612 48.845 1.00 40.00 ATOM 153 OG1 THR 330 53.174 -4.807 49.385 1.00 40.00 ATOM 155 CG2 THR 330 51.853 -3.347 47.972 1.00 40.00 ATOM 156 C THR 330 51.143 -3.117 50.583 1.00 40.00 ATOM 157 O THR 330 51.963 -3.021 51.493 1.00 40.00			CA	THR					
ATOM 155 CG2 THR 330 51.853 -3.347 47.972 1.00 40.00 ATOM 156 C THR 330 51.143 -3.117 50.583 1.00 40.00 ATOM 157 O THR 330 51.963 -3.021 51.493 1.00 40.00									
ATOM 156 C THR 330 51.143 -3.117 50.583 1.00 40.00 ATOM 157 O THR 330 51.963 -3.021 51.493 1.00 40.00	ATOM								
ATOM 157 O THR 330 51.963 -3.021 51.493 1.00 40.00	MOTA								
ATOM 137 0 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2									
ATOM 158 N ASN 551 50.459 -2.059 50.112 1.00 40.00									
	MOTA	158	N	ASN	331	50.453	-2.059	50.112	1.00 40.00

ATOM	160	CA	ASN	331	50.645	-0.728	50.616	1.00 40.00
MOTA	161	CB	ASN	331	49.784	0.317	49.883	1.00 40.00
ATOM	162	CG	ASN	331	50.411	0.592	48.522	1.00 40.00
M	163		ASN	331	50.424	-0.259	47.634	1.00 40.00
MO'LA	164	ND2	ASN	331	50.947	1.831	48.353	1.00 40.00
MOTA	167	С	ASN	331	50.311	-0.634	52.079	1.00 40.00
ATOM	168	0	ASN	331	50.896	0.175	52.796	1.00 40.00
MOTA	169	N	ILE	332	49.370	-1.468	52.558	1.00 40.00
ATOM	171	CA	ILE	332	48.883	-1.467	53.915	1.00 40.00
MOTA	172	CB	ILE	332	47.753	-2.450 -2.606	54.108 55.611	1.00 40.00
ATOM	173	CG2	ILE	332	47.465 46.510	-2.606 -1.984	53.324	1.00 40.00
MOTA	174	CG1	ILE	332 332	46.510	-1.984	51.808	1.00 40.00
ATOM	175	CD1 C	ILE ILE	332	49.982	-1.751	54.903	1.00 40.00
MOTA	176 177	0	ILE	332	49.872	-1.399	56.076	1.00 40.00
ATOM ATOM	178	И	LYS	333	51.066	-2.412	54.462	1.00 40.00
ATOM	180	CA	LYS	333	52.173	-2.772	55.309	1.00 40.00
ATOM	181	CB	LYS	333	53.279	-3.515	54.544	1.00 40.00
ATOM	182	CG	LYS	333	52.838	-4.845	53.933	1.00 40.00
ATOM	183	CD	LYS	333	53.866	-5.413	52.953	1.00 40.00
ATOM	184	CE	LYS	333	53.457	-6.746	52.323	1.00 40.00
ATOM	185	NZ	LYS	333	54.529	-7.228	51.422	1.00 40.00
ATOM	189	С	LYS	333	52.828	-1.565	55.913	1.00 40.00
ATOM	190	0	LYS	333	53.348	-1.628	57.025	1.00 40.00
ATOM	191	N	HIS	334	52.803	-0.423	55.204	1.00 40.00
ATOM	193	CA	HIS	334	53.459	0.777	55.644	1.00 40.00
MOTA	194	СВ	HIS	334	53.101	1.980	54.753	1.00 40.00
ATOM	195	CG	HIS	334	53.623	3.291	55.265	1.00 40.00
MOTA	196		HIS	334	52.952	4.317	55.858	1.00 40.00
ATOM	197		HIS	334	54.937	3.695	55.190	1.00 40.00
MOTA	199		HIS	334	54.996	4.935	55.738	1.00 40.00
ATOM	200		HIS	334	53.816	5.355	56.157	1.00 40.00
MOTA	202	C	HIS	334	53.016	1.117	57.030 57.818	1.00 40.00
ATOM	203	0	HIS	334 335	53.778 51.753	1.672 0.791	57.336	1.00 40.00
ATOM	204 206	N CA	PHE PHE	335	51.755	1.055	58.562	1.00 40.00
ATOM ATOM	207	CB	PHE	335	49.554	0.799	58.431	1.00 40.00
MOTA	208	CG	PHE	335	49.102	1.681	57.320	1.00 40.00
ATOM	209	CD1	PHE	335	48.896	1.164	56.062	1.00 40.00
ATOM	210		PHE	335	49.140	3.047	57.469	1.00 40.00
АТОМ	211	CE1		335	48.627	1.983	54.990	1.00 40.00
АТОМ	212		PHE	335	48.902	3.873	56.397	1.00 40.00
ATOM	213	CZ	PHE	335	48.625	3.345	55.159	1.00 40.00
ATOM	214	С	PHE	335	51.559	0.283	59.744	1.00 40.00
ATOM	215	0	PHE	335	51.268	0.647	60.879	1.00 40.00
МОТА	216	N	LYS	336	52.301	-0.815	59.536	1.00 40.00
MOTA	218	CA	LYS	336	52.650	-1.655	60.647	1.00 40.00
MOTA	219	CB	LYS	336	53.554	-2.830	60.237	1.00 40.00
MOTA	220	CG	LYS	336	52.800	-3.964	59.540	1.00 40.00
MOTA	221	CD	LYS	336	51.765	-4.630	60.450	1.00 40.00
MOTA	222	CE	LYS	336	50.988	-5.769	59.788	1.00 40.00
MOTA	223	NZ	LYS	336	50.020	-6.339	60.752	1.00 40.00 1.00 40.00
MOTA	227	C	LYS	336	53.325 53.026	-0.951 -1.250	61.793 62.946	1.00 40.00
MOTA	228	O N	LYS ASN	336 337	54.284	-0.045	61.530	1.00 40.00
ATOM	229	N CA	ASN	337	54.204	0.629	62.589	1.00 40.00
ATOM ATOM	231 232	CB	ASN	337	56.335	1.211	62.109	1.00 40.00
ATOM ATOM	232	CG	ASN	337	57.267	0.038	61.842	1.00 40.00
ATOM	234		ASN	337	57.310	-0.920	62.613	1.00 40.00
ATOM	235		ASN	337	58.031	0.106	60.719	1.00 40.00
ATOM	238	C	ASN	337	54.274	1.726	63.336	1.00 40.00
ATOM	239	ō	ASN	337	54.441	1.867	64.546	1.00 40.00
ATOM	240	N	CYS	338	53.450	2.529	62.634	1.00 20.00
MOTA	242	CA	CYS	338	52.859	3.733	63.159	1.00 20.00

								•	
2	243	СВ	CYS	338	52.042	4.491	62.087	1.00 20.00	
ATOM	244	SG	CYS	338	52.908	4.575	60.487	1.00 20.00	
ATOM	245	С	CYS	338	51.966	3.576	64.354	1.00 20.00	
M	246	0	CYS	338	50.994	2.823	64.335	1.00 20.00	
A·T·OM	247	N	THR	339	52.356	4.224	65.473	1.00 20.00	
ATOM	249	CA	THR	339	51.526	4.354	66.634	1.00 20.00 1.00 20.00	
MOTA	250	CB	THR	339	52.332	4.553 4.672	67.880 69.000	1.00 20.00	
MOTA	251	OG1	THR	339	51.470 53.197	5.812	67.719	1.00 20.00	
ATOM	253	CG2	THR	339 339	50.613	5.531	66.451	1.00 20.00	
ATOM	254	C	THR THR	339	49.437	5.490	66.809	1.00 20.00	
ATOM	255 256	O N	SER	340	51.146	6.642	65.898	1.00 20.00	
ATOM ATOM	258	CA	SER	340	50.317	7.795	65.714	1.00 20.00	
ATOM	259	CB	SER	340	50.454	8.820	66.856	1.00 20.00	
ATOM	260	OG	SER	340	51.788	9.301	66.938	1.00 20.00	
ATOM	262	С	SER	340	50.677	8.482	64.438	1.00 20.00	
ATOM	263	0	SER	340	51.676	9.194	64.362	1.00 20.00	
ATOM	264	N	ILE	341	49.850	8.318	63.390	1.00 20.00	
MOTA	266	CA	ILE	341	50.200	8.984	62.177	1.00 20.00 1.00 20.00	
ATOM	267	СВ	ILE	341	49.518	8.470	60.942	1.00 20.00	
ATOM	268		ILE	341	50.047	7.067	60.638 61.072	1.00 20.00	
MOTA	269		ILE	341	47.995	8.562 8.284	59.755	1.00 20.00	
ATOM	270	CD1		341	47.273 49.868	10.426	62.330	1.00 20.00	
ATOM	271	C	ILE ILE	341 341	48.711	10.792	62.521	1.00 20.00	
MOTA	272 273	N O	SER	342	50.901	11.287	62.273	1.00 20.00	
MOTA	275	CA	SER	342	50.671	12.692	62.381	1.00 20.00	
ATOM ATOM	276	CB	SER	342	51.889	13.483	62.888	1.00 20.00	
ATOM	277	OG	SER	342	52.193	13.107	64.223	1.00 20.00	
ATOM	279	С	SER	342	50.364	13.165	61.002	1.00 20.00	
ATOM	280	0	SER	342	51.259	13.536	60.243	1.00 20.00	
ATOM	281	N	GLY	343	49.065	13.173	60.654	1.00 20.00	
MOTA	283	CA	GLY	343	48.661	13.571	59.341	1.00 20.00	
MOTA	284	С	GLY	343	47.366	12.873	59.096	1.00 20.00 1.00 20.00	
MOTA	285	0	GLY	343	46.609	12.606	60.026 57.824	1.00 20.00	
MOTA	286	N	ASP	344	47.073 45.833	12.555 11.906	57.524	1.00 20.00	
MOTA	288	CA	ASP ASP	344 344	44.961	12.709	56.536	1.00 20.00	
ATOM	289 290	CB CG	ASP	344	45.728	12.897	55.232	1.00 20.00	
ATOM ATOM	291		ASP	344	46.922	12.501	55.179	1.00 20.00	
ATOM	292		ASP	344	45.130	13.455	54.272	1.00 20.00	
ATOM	293	C	ASP	344	46.100	10.563	56.933	1.00 20.00	
ATOM	294	0	ASP	344	47.197	10.290	56.452	1.00 20.00	
ATOM	295	N	LEU	345	45.098	9.664	56.999	1.00 20.00	
ATOM	297	CA	LEU	345	45.262	8.362	56.427	1.00 20.00 1.00 20.00	
ATOM	298	CB	LEU	345	45.064	7.222 5.831	57.438 56.810	1.00 20.00	
ATOM	299	CG	LEU	345	45.234 46.611	5.704	56.157	1.00 20.00	
ATOM	300		LEU LEU	345 345	44.967	4.716	57.834	1.00 20.00	
ATOM	301 302	CDZ	LEU	345	44.237	8.203	55.351	1.00 20.00	
ATOM ATOM	303	0	LEU	345	43.061	8.494	55.558	1.00 20.00	
ATOM	304	N	HIS	346	44.671	7.763	54.152	1.00 20.00	
ATOM	306	CA	HIS	346	43.738	7.541	53.085	1.00 20.00	
ATOM	307	CB	HIS	346	43.989	8.395	51.827	1.00 20.00	
ATOM	308	CG	HIS	346	43.667	9.851	51.988	1.00 20.00	
MOTA	309		HIS	346	42.906	10.487	52.921	1.00 20.00	
MOTA	310		HIS	346	44.071	10.828	51.105	1.00 20.00	
ATOM	312		HIS	346	43.545	11.998	51.546	1.00 20.00 1.00 20.00	
MOTA	313		HIS	346	42.830	11.841	52.645	1.00 20.00	
MOTA	315	C	HIS	346	43.890	6.122 5.670	52.650 52.356	1.00 20.00	
ATOM	316	O N	HIS	346 347	44.995 42.778	5.366	52.619	1.00 20.00	
MOTA	317	N CA	ILE ILE	347 347	42.778	4.018	52.151	1.00 20.00	
MOTA	319 320	CB	ILE	347	42.422	3.010	53.159	1.00 20.00	
MOTA	J & U	CD		→ * 1	20.700	2.010		-	

ATOM	321	CG2	ILE	347	42.527	1.621	52.511	1.00	20.00	
MOTA	322	CG1	ILE	347	43.253	3.143	54.449		20.00	
MOTA	323	CD1	ILE	347	42.665	2.393	55.644		20.00	
. M	324	С	ILE	347	42.000	3.938	50.952		20.00	
MOIA	325	0	ILE	347	40.795	3.715	51.052		20.00	
ATOM	326	N	LEU	348 348	42.607 41.882	4.094 4.138	49.766 48.533		20.00	
MOTA	328 329	CA CB	LEU LEU	348	42.700	4.845	47.444		20.00	
ATOM ATOM	330	CG	LEU	348	43.043	6.285	47.877		20.00	
ATOM	331	CD1		348	43.859	7.034	46.817		20.00	
MOTA	332	CD2		348	41.778	7.053	48.295	1.00	20.00	
ATOM	333	С	LEU	348	41.557	2.743	48.110	1.00	20.00	
MOTA	334	0	LEU	348	41.948	1.769	48.753		20.00	
MOTA	335	N	PRO	349	40.852	2.625	47.019		60.00	
MOTA	336	CD	PRO	349	40.061	3.714	46.470		60.00	
MOTA	337	CA	PRO	349	40.393	1.344	46.575		60.00 60.00	
ATOM	338	CB	PRO	349	39.558	1.614 3.034	45.327 45.575		60.00	
MOTA	339	· CG C	PRO PRO	349 349	39.008 41.486	0.350	46.425		60.00	
ATOM ATOM	340 341	0	PRO	349	42.349	0.514	45.563		60.00	
ATOM	342	N	VAL	350	41.442	-0.704	47.259		60.00	
ATOM	344	CA	VAL	350	42.426	-1.737	47.213	1.00	60.00	
ATOM	345	СВ	VAL	350	43.285	-1.798	48.441	1.00	60.00	
ATOM	346	CG1	VAL	350	42.379	-2.090	49.649		60.00	
ATOM	347	CG2		350	44.379	-2.856	48.224		60.00	
MOTA	348	С	VAL	350	41.677	-3.023	47.137		60.00	
MOTA	349	0	VAL	350	40.582	-3.149	47.684		60.00 60.00	
MOTA	350	N	ALA	351	42.250	-4.012 -5.287	46.429 46.311		60.00	
ATOM	352 353	CA CB	ALA ALA	351 351	41.609	-5.785	44.861		60.00	
ATOM ATOM	354	СВ	ALA	351	42.473	-6.255	47.046		60.00	
ATOM	355	0	ALA	351	43.584	-5.918	47.450		60.00	
ATOM	356	N	PHE	352	41.974	-7.487	47.264	1.00	60.00	
ATOM	358	CA	PHE	352	42.778	-8.437	47.974		60.00	
MOTA	359	CB	PHE	352	42.087	-9.007	49.226		60.00	
MOTA	360	CG	PHE	352	43.030	-9.963	49.871		60.00	
MOTA	361	CD1		352	44.096	-9.492	50.603 49.813		60.00 60.00	
ATOM	362	CD2 CE1		352 352		-11.320 -10.359	51.235		60.00	
ATOM ATOM	363 364	CE2		352		-12.192	50.452		60.00	
ATOM	365	CZ	PHE	352		-11.712	51.161		60.00	
ATOM	366	С	PHE	352	43.092	-9.582	47.065	1.00	60.00	
ATOM	367	0	PHE	352	42.202	-10.173	46.456		60.00	
ATOM	368	N	ARG	353	44.394	-9.908	46.946		60.00	
MOTA	370	CA	ARG	353		-10.999	46.123		60.00	
MOTA	371	CB	ARG	353		-10.663 -10.313	44.623 43.988		60.00 60.00	
MOTA	372	CG	ARG	353 353		-10.313	42.462		60.00	
ATOM	373 374	CD NE	ARG ARG	353	44.677	-9.228	42.122		60.00	
ATOM ATOM	376	CZ ·		353	44.731	-8.690	40.869		60.00	
ATOM	377	NH1		353	43.783	-9.023	39.946		60.00	
ATOM	380	NH2		353	45.731	-7.821	40.540		60.00	•
MOTA	383	С	ARG	353		-11.284	46.553		60.00	
MOTA	384	0	ARG	353		-11.176	47.730		60.00	
MOTA	385	N	GLY	354		-11.675	45.590		60.00	
MOTA	387	CA	GLY	354		-11.908	45.900		60.00	
MOTA	388	С	GLY	354		-13.246	46.535 47.417		60.00 60.00	
MOTA	389	O N	GLY ASP	354 355		-13.421 -14.237	46.108		60.00	
ATOM ATOM	390 392	N CA	ASP	355 355		-14.237	46.687		60.00	
ATOM	393	CB	ASP	355		-16.153	47.215		60.00	
ATOM	394	CG	ASP	355		-16.365	46.024		60.00	
ATOM	395	OD1		355		-17.551	45.679		60.00	
ATOM	396	OD2		355	45.289	-15.348	45.446	1.00	60.00	

A	397	С	ASP	355		-16.459	45.620	1.00 60.00
ATOM	398	0	ASP	355		-16.249	44.435	1.00 60.00
ATOM	399	N	SER	356		-17.508 -18.494	46.031 45.102	1.00 60.00
M	401	CA	SER	356		-18.494 -18.759	45.102	1.00 60.00
AIUM	402	CB	SER	356 356		-19.312	46.414	1.00 60.00
ATOM	403	OG C	SER SER	356		-19.745	45.511	1.00 60.00
ATOM	405 406	0	SER	356		-19.844	46.630	1.00 60.00
ATOM ATOM	407	N	PHE	357		-20.736	44.605	1.00 60.00
ATOM	409	CA	PHE	357		-21.935	44.948	1.00 60.00
ATOM	410	CB	PHE	357	47.958	-22.864	43.742	1.00 60.00
ATOM	411	CG	PHE	357		-24.055	44.203	1.00 60.00
ATOM	412	CD1		357		-25.123	44.790	1.00 60.00
ATOM	413	CD2		357		-24.125	43.999	1.00 60.00
ATOM	414	CE1		357		-26.237 -25.238	45.175 44.379	1.00 60.00
ATOM	415	CE2	PHE	357		-25.238 -26.298	44.967	1.00 60.00
ATOM	416	CZ C	PHE PHE	357 357		-20.236	45.942	1.00 60.00
ATOM	417 418	0	PHE	357		-23.320	45.583	1.00 60.00
ATOM ATOM	419	N	THR	358		-22.547	47.236	1.00 60.00
MOTA	421	CA	THR	358		-23.220	48.238	1.00 60.00
ATOM	422	СВ	THR	358	50.377	-22.305	48.975	1.00 60.00
ATOM	423	OG1	THR	358		-23.055	49.814	1.00 60.00
ATOM	425	CG2	THR	358		-21.314	49.809	1.00 60.00
ATOM	426	С	THR	358		-23.828	49.240	1.00 60.00
ATOM	427	0	THR	358		-23.229	49.627	1.00 60.00 1.00 60.00
MOTA	428	N	HIS	359		-25.068	49.661	1.00 60.00
ATOM	430	CA	HIS	359		-25.756 -27.241	50.636 50.750	1.00 60.00
MOTA	431	CB	HIS	359 359		-27.241 -27.982	49.456	1.00 60.00
ATOM	432	CG CD2	HIS	359		-28.810	49.019	1.00 60.00
ATOM	433 434	ND1		359		-27.927	48.435	1.00 60.00
ATOM ATOM	436	CE1		359		-28.717	47.439	1.00 60.00
ATOM	437	NE2		359		-29.275	47.747	1.00 60.00
ATOM	439	С	HIS	359	48.286	-25.152	51.980	1.00 60.00
ATOM	440	0	HIS	359		-24.901	52.753	1.00 60.00
MOTA	441	N	THR	360		-24.886	52.275	1.00 60.00
MOTA	443	CA	THR	360		-24.398	53.563	1.00 60.00 1.00 60.00
ATOM	444	СВ	THR	360		-24.013 -23.813	53.638 54.990	1.00 60.00
MOTA	445		THR	360		-23.813 -22.718	52.833	1.00 60.00
ATOM	447	CG2	THR THR	360 360		-23.203	53.939	1.00 60.00
MOTA MOTA	448 449	0	THR	360		-22.445	53.098	1.00 60.00
ATOM	450	N	PRO	361		-23.059	55.221	1.00 60.00
ATOM	451	ÇD	PRO	361	48.870	-24.216	56.090	1.00 60.00
ATOM	452	CA	PRO	361		-21.932	55.724	1.00 60.00
ATOM	453	CB	PRO	361		-22.343	57.095	1.00 60.00
ATOM	454	CG	PRO	361		-23.620	57.456	1.00 60.00
MOTA	455	С	PRO	361		-20.745	55.759 56.035	1.00 60.00 1.00 60.00
ATOM	456	0	PRO	361		-20.899 -19.595	55.497	1.00 60.00
MOTA	457	N	PRO	362		-19.348	55.739	1.00 60.00
MOTA	458	CD	PRO PRO	362 362		-18.382	55.475	1.00 60.00
MOTA	459 460	CA CB	PRO	362		-17.271	55.254	1.00 60.00
MOTA MOTA	461	ÇG	PRO	362		-17.827	55.939	1.00 60.00
ATOM	462	C	PRO	362		-18.232	56.803	1.00 60.00
ATOM	463	0	PRO	362	49.509	-18.719	57.795	1.00 60.00
ATOM	464	N	LEU	363		-17.585	56.840	1.00 60.00
MOTA	466	CA	LEU	363		-17.368	58.091	1.00 60.00
ATOM	467	CB	LEU	363		-16.627	57.946	1.00 60.00
ATOM	468	CG	LEU	363		-16.380	59.289	1.00 60.00
MOTA	469		LEU	363		-17.700	59.983	1.00 60.00
MOTA	470		LEU	363		-15.448	59.115	1.00 60.00 1.00 60.00
MOTA	471	С	LEU	363	50.973	-16.498	58.880	1.00 00.00

MOTA	472	0	LEU	363	50.651	-16.791	60.030	1.00 60.00
MOTA	473	N	ASP	364	50.514	-15.401	58.255	1.00 60.00
ATOM	475	CA	ASP	364		-14.521	58.928	1.00 60.00
. <u>M</u>	476	CB	ASP	364		-13.063	58.441	1.00 60.00
$A \cup M$	477	CG	ASP	364		-12.490	58.861	1.00 60.00
MOTA	478		ASP	364		-11.302	58.532	1.00 60.00
ATOM	479		ASP	364		-13.232	59.511	1.00 60.00
ATOM	480	С	ASP	364		-15.013	58.601	1.00 60.00
MOTA	481	0	ASP	364		-16.007	57.898	1.00 60.00
MOTA	482	N	PRO	365		-14.343	59.135	1.00 60.00
MOTA	483	CD	PRO	365		-13.790	60.473	1.00 60.00
ATOM	484	CA	PRO	365		-14.690	58.816	1.00 60.00
ATOM	485	CB	PRO	365		-14.202	59.985 60.784	1.00 60.00 1.00 60.00
MOTA	486	CG	PRO	365 365		-13.264 -14.043	57.512	1.00 60.00
MOTA	487	C	PRO PRO	365		-13.094	57.136	1.00 60.00
MOTA	488 489	O N	GLN	366		-14.538	56.796	1.00 60.00
MOTA	491	CA	GLN	366		-13.941	55.537	1.00 60.00
ATOM ATOM	492	CB	GLN	366		-14.680	54.789	1.00 60.00
ATOM	493	CG	GLN	366		-16.094	54.371	1.00 60.00
ATOM	494	CD	GLN	366		-16.769	53.636	1.00 60.00
ATOM	495	QE1		366		-17.940	53.271	1.00 60.00
ATOM	496	NE2	GLN	366		-16.021	53.404	1.00 60.00
ATOM	499	С	GLN	366		-12.534	55.822	1.00 60.00
АТОМ	500	0	GLN	366	44.212	-11.612	55.090	1.00 60.00
ATOM	501	N	GLU	367	43.102	-12.332	56.920	1.00 60.00
ATOM	503	CA	GLU	367	42.701	-11.010	57.300	1.00 60.00
MOTA	504	CB	GLU	367	41.684	-11.013	58.454	1.00 60.00
ATOM	505	CG	GLU	367		-11.759	59.692	1.00 60.00
MOTA	506	CD	GLU	367	41.045	-11.857	60.693	1.00 60.00
MOTA	507		GLU	367		-10.795	61.212	1.00 60.00
MOTA	508	OE2	GLU	367		-13.004	60.951	1.00 60.00
MOTA	509	С	GLU	367		-10.300	57.747	1.00 60.00
ATOM	510	0	GLU	367		-10.933	58.198	1.00 60.00
MOTA	511	N	LEU	368	43.971	-8.958	57.610	1.00 40.00
MOTA	513	CA	LEU	368	45.148	-8.233	57.992	1.00 40.00
MOTA	514	CB	LEU	368	45.817 47.098	-7.526 -6.716	56.792 57.097	1.00 40.00 1.00 40.00
MOTA	515	CG CD1	LEU LEU	368 368	46.823	-5.435	57.902	1.00 40.00
MOTA	516 517		LEU	368	48.171	-7.612	57.734	1.00 40.00
ATOM ATOM	518	CDZ	LEU	368	44.735	-7.199	58.981	1.00 40.00
ATOM	519	o	LEU	368	43.798	-6.437	58.752	1.00 40.00
ATOM	520	N	ASP	369	45.427	-7.161	60.132	1.00 40.00
ATOM	522	CA	ASP	369	45.144	-6.135	61.082	1.00 40.00
MOTA	523	СВ	ASP	369	45.333	-6.552	62.551	1.00 40.00
ATOM	524	CG	ASP	369	44.269	-7.568	62.932	1.00 40.00
ATOM	525	OD1	ASP	369	44.164	-7.875	64.150	1.00 40.00
ATOM	526	OD2	ASP	369	43.553	-8.056	62.018	1.00 40.00
MOTA	527	С	ASP	369	46.245	-5.196	60.786	1.00 40.00
ATOM	528	0	ASP	369	47.393	-5.629	60.696	1.00 40.00
MOTA	529	N	ILE	370	45.918	-3.906	60.581	1.00 40.00
MOTA	531	CA	ILE	370	46.965	-2.968	60.332	1.00 40.00
ATOM	532	СВ	ILE	370	46.459	-1.569	60.186	1.00 40.00
ATOM	533	CG2	ILE	370	47.655	-0.605	60.196	1.00 40.00
MOTA	534	CG1		370	45.594	-1.485	58.919	1.00 40.00
ATOM	535	CD1		370	44.814	-0.183	58.792	1.00 40.00
MOTA	536	С	ILE	370	47.813	-3.082	61.542	1.00 40.00
MOTA	537	0	ILE	370	48.973	-3.478	61.441	1.00 40.00
ATOM	538	N	LEU	371	47.230	-2.776	62.718	1.00 40.00
ATOM	540	CA	LEU	371	47.927	-3.049 -3.609	63.936	1.00 40.00
MOTA	541	CB	LEU	371 371	49.402	-2.609 -3.093	63.988 65.267	1.00 40.00 1.00 40.00
ATOM	542	CG	LEU	371 371	50.110	-3.093 -4.621	65.407	1.00 40.00
ATOM ATOM	543 544	CD1 CD2		371 371	50.003 51.575	-4.621 -2.632	65.301	1.00 40.00
ATOM	544	CDZ	טבּט	3/1	51.575	2.032	VJ.JU1	1.00 40.00

A	545	С	LEU	371	47.234	-2.413	65.087	1.00 40.00
ATOM	546	0	LEU	371	46.575	-1.382	64.958	1.00 40.00
MOTA	547	N	LYS	372	47.392	-3.051	66.257	1.00 20.00
. м	549	CA	LYS	372	46.865	-2.593	67.503	1.00 20.00 1.00 20.00
A.1 OW	550	CB	LYS	372	47.005	-3.637	68.625	1.00 20.00
ATOM	551	CG	LYS	372	46.173	-4.896	68.358	
MOTA	552	CD	LYS	372	46.478	-6.068	69.293	1.00 20.00 1.00 20.00
MOTA	553	CE	LYS	372	45.536	-6.144 -7.358	70.496 71.292	1.00 20.00
MOTA	554	NZ	LYS	372 372	45.826 47.650	-1.374	67.857	1.00 20.00
ATOM	558	C	LYS	372	47.030	-0.550	68.665	1.00 20.00
MOTA	559	O N	LYS THR	373	48.841	-1.234	67.255	1.00 20.00
ATOM	560 562	CA	THR	373	49.713	-0.143	67.570	1.00 20.00
ATOM ATOM	563	CB	THR	373	50.993	-0.161	66.790	1.00 20.00
ATOM	564	OG1		373	51.913	0.773	67.334	1.00 20.00
ATOM	566	CG2	THR	373	50.677	0.195	65.327	1.00 20.00
ATOM	567	c	THR	373	49.078	1.188	67.308	1.00 20.00
ATOM	568	ō	THR	373	49.377	2.153	68.009	1.00 20.00
АТОМ	569	N	VAL	374	48.194	1.295	66.295	1.00 20.00
ATOM	571	CA	VAL	374	47.677	2.593	65.946	1.00 20.00
ATOM	572	CB	VAL	374	47.137	2.637	64.544	1.00 20.00
MOTA	573	CG1	VAL	374	46.601	4.051	64.263	1.00 20.00
MOTA	574	CG2	VAL	374	48.245	2.177	63.578	1.00 20.00
MOTA	575	С	VAL	374	46.591	3.087	66.859	1.00 20.00
MOTA	576	0	VAL	374	45.431	2.689	66.736	1.00 20.00
ATOM	577	N	LYS	375	46.980	3.924	67.848	1.00 20.00 1.00 20.00
MOTA	579	CA	LYS	375	46.084	4.602	68.746 70.049	1.00 20.00
MOTA	580	CB	LYS	375	46.752	5.075 3.970	71.050	1.00 20.00
ATOM	581	CG	LYS	375 375	47.091 47.814	4.503	72.289	1.00 20.00
ATOM	582	CD	LYS LYS	375	47.964	3.476	73.413	1.00 20.00
MOTA	583 504	CE NZ	LYS	375	48.533	4.126	74.615	1.00 20.00
ATOM	584 588	C	LYS	375	45.439	5.830	68.169	1.00 20.00
ATOM ATOM	589	0	LYS	375	44.256	6.079	68.386	1.00 20.00
ATOM	590	N	GLU	376	46.193	6.658	67.419	1.00 20.00
ATOM	592	CA	GLÜ	376	45.613	7.918	67.049	1.00 20.00
ATOM	593	СВ	GLU	376	46.103	9.051	67.971	1.00 20.00
ATOM	594	CG	GLU	376	45.540	10.438	67.665	1.00 20.00
ATOM	595	CD	GLU	376	46.126	11.397	68.691	1.00 20.00
MOTA	596		GLU	376	45.997	11.108	69.911	1.00 20.00
ATOM	597		GLU	376	46.716	12.426	68.269	1.00 20.00 1.00 20.00
ATOM	598	С	GLU	376	45.926	8.309 7.732	65.641 64.994	1.00 20.00
ATOM	599	0	GLU	376	46.796 45.148	9.283	65.121	1.00 20.00
ATOM	600	N	ILE	377 377	45.362	9.865	63.833	1.00 20.00
MOTA	602	CA CB	ILE ILE	377	44.403	9.370	62.791	1.00 20.00
MOTA MOTA	603 604	CG2		377	44.680	10.133	61.485	1.00 20.00
ATOM	605		ILE	377	44.526	7.844	62.642	1.00 20.00
ATOM	606		ILE	377	43.402	7.214	61.820	1.00 20.00
MOTA	607	C	ILE	377	45.075	11.311	64.089	1.00 20.00
ATOM	608	0	ILE	377	44.015	11.662	64.599	1.00 20.00
ATOM	609	N	THR	378	46.029	12.183	63.740	1.00 20.00
ATOM	611	CA	THR	378	45.985	13.594	63.994	1.00 20.00
ATOM	612	CB	THR	378	47.317	14.235	63.734	1.00 20.00
MOTA	613	OG1		378	48.316	13.599	64.516	1.00 20.00
MOTA	615	CG2		378	47.249	15.718	64.124	1.00 20.00
MOTA	616	С	THR	378	44.965	14.303	63.159	1.00 20.00
MOTA	617	0	THR	378	44.612	15.442	63.452	1.00 20.00
MOTA	618	N	GLY	379	44.522	13.695	62.044	1.00 20.00 1.00 20.00
MOTA	620	CA	GLY	379	43.608	14.380	61.171 61.001	1.00 20.00
MOTA	621	C	GLY	379 379	42.325	13.631	61.923	1.00 20.00
ATOM	622	0	GLY	379 380	41.520 42.082	13.523 13.126	59.775	1.00 20.00
ATOM	623	N	PHE PHE	380	42.082	12.405	59.515	1.00 20.00
MOTA	625	CA	FITE	500	±0.005	20.400		

fi 11

ATOM	626	CB	PHE	380	39.920	13.116	58.530	1.00 20.00
ATOM	627	CG	PHE	380	40.598	13.264	57.212	1.00 20.00
ATOM	628	CD1	PHE	380	40.528	12.265	56.268	1.00 20.00
MC	629	CD2	PHE	380	41.265	14.427	56.902	1.00 20.00
A 1 OM	630	CE1	PHE	380	41.112	12.426	55.034	1.00 20.00
ATOM	631	CE2	PHE	380	41.860	14.590	55.674	1.00 20.00
MOTA	632	CZ	PHE	380	41.780	13.589	54.736	1.00 20.00
MOTA	633	С	PHE	380	41.216	11.066	58.955	1.00 20.00
MOTA	634	0	PHE	380	42.359	10.824	58.573	1.00 20.00
ATOM	635	N	LEU	381	40.231	10.141	58.942	1.00 20.00
MOTA	637	CA	LEU	381	40.454	8.822	58.422	1.00 20.00
ATOM	638	CB	LEU	381	40.156	7.725	59.462	1.00 20.00
ATOM	639	CG	LEU	381	40.369	6.281	58.972	1.00 20.00
MOTA	640		LEU	381	41.834	6.032	58.580	1.00 20.00
ATOM	641	CD2	LEU	381	39.866	5.268	60.015	1.00 20.00
ATOM	642	С	LEU	381	39.534	8.629	57.251	1.00 20.00
MOTA	643	0	LEU	381	38.318	8.782	57.368	1.00 20.00
MOTA	644	N	LEU	382	40.096	8.290	56.073	1.00 20.00
MOTA	646	CA	LEU	382	39.283	8.132	54.899	1.00 20.00
MOTA	647	CB	LEU	382	39.642	9.158	53.808	1.00 20.00
MOTA	648	CG	LEU	382	38.818	9.062	52.511	1.00 20.00
MOTA	649		LEU	382	37.330	9.337	52.761	1.00 20.00 1.00 20.00
ATOM	650		LEU	382	39.405	9.975	51.424 54.312	1.00 20.00
ATOM	651	C	LEU	382	39.459	6.767 6.399	53.873	1.00 20.00
ATOM	652	0	LEU	382 383	40.548 38.375	5.968	54.295	1.00 20.00
ATOM	653 655	N CA	ILE ILE	383	38.451	4.677	53.681	1.00 20.00
ATOM	655 656	CB	ILE	383	38.143	3.540	54.623	1.00 20.00
ATOM ATOM	657	CG2	ILE	383	36.747	3.739	55.239	1.00 20.00
ATOM	658	CG1	ILE	383	38.351	2.191	53.916	1.00 20.00
ATOM	659	CD1	ILE	383	38.352	1.000	54.872	1.00 20.00
MOTA	660	C	ILE	383	37.471	4.676	52.553	1.00 20.00
ATOM	661	0	ILE	383	36.259	4.747	52.745	1.00 20.00
ATOM	662	N	GLN	384	37.975	4.608	51.314	1.00 20.00
ATOM	664	CA	GLN	384	37.065	4.622	50.213	1.00 20.00
ATOM	665	СВ	GLN	384	37.334	5.758	49.212	1.00 20.00
ATOM	666	CG	GLN	384	36.365	5.786	48.026	1.00 20.00
ATOM	667	CD	GLN	384	36.804	6.908	47.092	1.00 20.00
ATOM	668		GLN	384	37.864	7.503	47.279	1.00 20.00
ATOM	669	NE2	GLN	384	35.972	7.208	46.058	1.00 20.00
ATOM	672	С	GLN	384	37.241	3.340	49.472	1.00 20.00
MOTA	673	0	GLN	384	38.359	2.852	49.313	1.00 20.00
ATOM	674	N	ALA	385	36.108	2.768	49.020	1.00 20.00
MOTA	676	CA	ALA	385	36.047	1.565	48.240	1.00 20.00
ATOM	677	СВ	ALA	385	36.094	1.823	46.723	1.00 20.00
MOTA	678	С	ALA	385	37.093	0.547	48.564	1.00 20.00
ATOM	679	0	ALA	385	38.095	0.433	47.860	1.00 20.00
MOTA	680	N	TRP	386	36.905	-0.206	49.665	1.00 40.00
ATOM	682	CA	TRP	386	37.807	-1.282	49.951	1.00 40.00
ATOM	683	СВ	TRP	386	38.698	-1.047	51.187	1.00 40.00
ATOM	684	CG	TRP	386	39.643	-2.188	51.498	1.00 40.00
ATOM	685		TRP	386	40.808	-2.083	52.333	1.00 40.00
ATOM	686		TRP	386	41.411	-3.341	52.364	1.00 40.00
ATOM	687		TRP	386	41.335	-1.026	53.017	1.00 40.00
ATOM	688		TRP	386	39.602	-3.478	51.060	1.00 40.00
ATOM	689		TRP	386 386	40.658	-4.188	51.581	1.00 40.00 1.00 40.00
ATOM	691		TRP	386 386	42.553	-3.560 -1.251	53.080 53.740	1.00 40.00
ATOM	692		TRP	386 386	42.485	-1.251 -2.492	53.740	1.00 40.00
ATOM	693	CH2 C	TRP	386 386	43.085 36.955	-2.492 -2.481	50.219	1.00 40.00
ATOM	694 695	0	TRP TRP	386	36.205	-2.461	51.194	1.00 40.00
ATOM	695 696	Ŋ	PRO	387	37.010	-2.513	49.359	1.00 40.00
ATOM ATOM	697	CD	PRO	387	37.010	-3.456	47.936	1.00 40.00
ATOM	69 <i>1</i> 698	CA	PRO	387	36.218	-4.629	49.623	1.00 40.00
ATOM	070	CA	FAU	507	30.210	3.027	- 2.043	1.00 40.00

	A	699	CB	PRO	387	35.733	-5.146	48.267		40.00
	MOTA	700	CG	PRO	387	36.669	-4.479	47.248		40.00
	MOTA	701	С	PRO	387	36.983	-5.651	50.398		40.00
	. М	702	0	PRO	387	38.205	-5.705	50.273		40.00
	A'T'OM	703	N	GLU	388	36.281	-6.468	51.211		60.00
	MOTA	705	CA	GLU	388	36.926	-7.544	51.902		60.00
	MOTA	706	CB	GLU	388	38.009	-7.126	52.913		60.00 60.00
	MOTA	707	CG	GLU	388	37.503	-6.355	54.129		60.00
	ATOM	708	CD	GLU	388	38.681	-6.251	55.088 56.323		60.00
	MOTA	709	OE1	GLU	388	38.438	-6.226 -6.199	54.597		60.00
	ATOM	710	OE2	GLU	388 388	39.841 35.886	-8.334	52.631		60.00
	ATOM	711	C	GLU GLU	388	34.735	-7.917	52.752		60.00
	ATOM	712	O N	ASN	389	36.284	-9.524	53.118		60.00
	ATOM	713 715	CA	ASN	389		-10.427	53.793		60.00
	ATOM	716	CB	ASN	389		-11.789	54.065		60.00
	ATOM ATOM	717	CG	ASN	389		-12.711	54.733		60.00
	ATOM	718	OD1		389		-12.668	54.438	1.00	60.00
	ATOM	719	ND2	ASN	389		-13.572	55.664	1.00	60.00
	ATOM	722	C	ASN	389	34.935	-9.900	55.114	1.00	60.00
	ATOM	723	0	ASN	389	33.736	-9.844	55.382		60.00
	ATOM	724	N	ARG	390	35.880	-9.474	55.972	1.00	60.00
)	ATOM	726	CA	ARG	390	35.501	-9.094	57.300	1.00	60.00
	ATOM	727	СВ	ARG	390	36.509	-9.551	58.362		60.00
	ATOM	728	CG	ARG	390	_	-11.045	58.294		60.00
	ATOM	729	CD	ARG	390		-11.498	59.364		60.00
	ATOM	730	NE	ARG	390		-12.814	58.936		60.00
	ATOM	732	CZ	ARG	390		-13.969	59.241		60.00
	MOTA	733	NH1	ARG	390		-15.169	58.863		60.00
	MOTA	736	NH2	ARG	390		-13.923	59.925		60.00
	ATOM	739	С	ARG	390	35.418	-7.612	57.417 56.423		60.00
	MOTA	740	0	ARG	390	35.440	-6.887 -7.131	58.670		60.00
	MOTA	741	N	THR	391 391	35.301 35.236	-7.131 -5.722	58.895		60.00
	ATOM	743	CA CB	THR THR	391	34.997	-5.337	60.326		60.00
	ATOM	744	OG1	THR	391	36.067	-5.792	61.141		60.00
	ATOM	745 747	CG2	THR	391	33.669	-5.954	60.793		60.00
	MOTA MOTA	748	C	THR	391	36.572	-5.192	58.519		60.00
	ATOM	749	Ö	THR	391	37.595	-5.622	59.045	1.00	60.00
	ATOM	750	N	ASP	392	36.586	-4.236	57.579		60.00
	ATOM	752	CA	ASP	392	37.814	-3.675	57.114		60.00
)	ATOM	753	СВ	ASP	392	37.609	-2.694	55.949		60.00
	ATOM	754	CG	ASP	392	38.951	-2.481	55.266		60.00
	ATOM	755	OD1	ASP	392	39.929	-3.181	55.641		60.00
	ATOM	756	OD2	ASP	392	39.012	-1.613	54.355		60.00
	MOTA	757	С	ASP	392	38.410	-2.927	58.259		60.00
	MOTA	758	0	ASP	392	39.629	-2.870	58.415		60.00 40.00
	MOTA	759	N	LEU	393	37.542	-2.351	59.111 60.212		40.00
	MOTA	761	CA	LEU	393	37.993	-1.561 -0.757	60.882		40.00
	MOTA	762	CB	LEU	393	36.881 36.203	0.250	59.929		40.00
	MOTA	763	CG	LEU	393 393	37.198	1.308	59.425		40.00
	ATOM	764 765		LEU LEU	393	35.465	-0.465	58.787		40.00
	ATOM	766	CDZ	LEU	393	38.699	-2.424	61.212		40.00
	ATOM ATOM	767	0	LEU	393	39.431	-1.924	62.064		40.00
	ATOM	768	И	HIS	394	38.494	-3.755	61.128		40.00
	ATOM	770	CA	HIS	394	39.064	-4.696	62.056	1.00	40.00
	ATOM	771	СВ	HIS	394	38.835	-6.171	61.670	1.00	40.00
	ATOM	772	CG	HIS	394	39.918	-6.759	60.813		40.00
	ATOM	773		HIS	394	40.944	-7.577	61.173		40.00
	ATOM	774		HIS	394	40.040	-6.583	59.452		40.00
	ATOM	776		HIS	394	41.125	-7.298	59.061		40.00
	ATOM	777	NE2	HIS	394	41.708	-7.918	60.071		40.00
	ATOM	779	C	HIS	394	40.542	-4.479	62.140	1.00	40.00

MOTA	780	0	HIS	394	41.183	-4.881	63.110	1.00 40.00
ATOM	781	N	ALA	395	41.128	-3.850	61.108	1.00 20.00
MOTA	783	CA	ALA	395	42.534	-3.591	61.111	1.00 20.00
MC	784	CB	ALA	395	43.013	-2.876	59.836	1.00 20.00
MO'r.A	785	С	ALA	395	42.905	-2.722	62.278	1.00 20.00
MOTA	786	0	ALA	395	43.955	-2.932	62.885	1.00 20.00
ATOM	787	N	PHE	396	42.069	-1.717	62.626	1.00 20.00
ATOM	789	CA	PHE	396	42.434	-0.830	63.705	1.00 20.00
ATOM	790	CB	PHE	396	41.987	0.623	63.471	1.00 20.00
ATOM	791	CG	PHE	396	42.601	1.137	62.215	1.00 20.00
ATOM	792	CD1	PHE	396	41.970	0.936	61.010	1.00 20.00
ATOM	793	CD2	PHE	396	43.750	1.892	62.249	1.00 20.00
ATOM	794	CE1	PHE	396	42.471	1.484	59.854	1.00 20.00
ATOM	795	CE2	PHE	396	44.253	2.448	61.097	1.00 20.00
ATOM	796	CZ	PHE	396	43.604	2.261	59.900	1.00 20.00
ATOM	797	С	PHE	396	41.763	-1.229	64.987	1.00 20.00
ATOM	798	0	PHE	396	40.773	-0.623	65.396	1.00 20.00
ATOM	799	N	GLU	397	42.341	-2.208	65.703	1.00 20.00
ATOM	801	CA	GLU	397	41.757	-2.723	66.905	1.00 20.00
ATOM	802	CB	GLU	397	42.569	-3.905	67.471	1.00 20.00
ATOM	803	CG	GLU	397	41.904	-4.650	68.632	1.00 20.00
ATOM	804	CD	GLU	397	42.496	-4.154	69.944	1.00 20.00
MOTA	805	OE1	GLU	397	42.958	-2.984	69.989	1.00 20.00
ATOM	806	OE2	GLU	397	42.499	-4.948	70.923	1.00 20.00
ATOM	807	С	GLU	397	41.655	-1.675	67.964	1.00 20.00
ATOM	808	0	GLU	397	40.644	-1.605	68.659	1.00 20.00
ATOM	809	N	ASN	398	42.685	-0.827	68.149	1.00 20.00
ATOM	811	CA	ASN	398	42.500	0.116	69.212	1.00 20.00
ATOM	812	CB	ASN	398	43.278	-0.228	70.496	1.00 20.00
ATOM	813	CG	ASN	398	44.748	-0.336	70.160	1.00 20.00
ATOM	814	OD1	ASN	398	45.445	0.664	70.001	1.00 20.00
MOTA	815	ND2	ASN	398	45.231	-1.602	70.058	1.00 20.00
ATOM	818	С	ASN	398	42.762	1.538	68.839	1.00 20.00
ATOM	819	0	ASN	398	43.417	2.273	69.576	1.00 20.00
ATOM	820	N	LEU	399	42.217	1.979	67.692	1.00 20.00
ATOM	822	CA	LEU	399	42.347	3.356	67.321	1.00 20.00
ATOM	823	СВ	LEU	399	41.827	3.606	65.897	1.00 20.00
ATOM	824	CG	LEU	399	41.928	5.058	65.406	1.00 20.00
ATOM	825	CD1	LEU	399	43.391	5.505	65.279	1.00 20.00
ATOM	826		LEU	399	41.127	5.245	64.106	1.00 20.00
MOTA	827	С	LEU	399	41.471	4.100	68.289	1.00 20.00
MOTA	828	0	LEU	399	40.256	3.918	68.277	1.00 20.00
ATOM	829	N	GLU	400	42.091	4.869	69.215	1.00 20.00
MOTA	831	CA	GLU	400	41.431	5.661	70.222	1.00 20.00 1.00 20.00
ATOM	832	CB	GLU	400	42.356	6.005	71.405	
ATOM	833	CG	GLU	400	42.782	4.812	72.263	1.00 20.00 1.00 20.00
ATOM	834	CD	GLU	400	43.606	5.354 6.236	73.425 73.178	1.00 20.00
ATOM	835		GLU	400	44.471	4.898	74.578	1.00 20.00
ATOM	836		GLU	400	43.375		69.817	1.00 20.00
ATOM	837	C	GLU	400	40.825	6.981	70.160	1.00 20.00
ATOM	838	0	GLU	400	39.679	7.269 7.832	69.077	1.00 20.00
ATOM	839	N	ILE	401	41.572	9.168	68.850	1.00 20.00
ATOM	841	CA	ILE	401	41.078 41.695	10.146	69.819	1.00 20.00
ATOM	842	CB	ILE	401			69.395	1.00 20.00
ATOM	843		ILE	401	43.157	10.343	69.932	1.00 20.00
MOTA	844		ILE	401	40.914 39.739	11.465 11.393	70.906	1.00 20.00
ATOM	845	CD1		401	41.463	9.647	67.479	1.00 20.00
ATOM	846	С	ILE	401 401	41.463	9.847	66.952	1.00 20.00
ATOM	847	O N	ILE	401	42.510	10.483	66.858	1.00 20.00
ATOM	848	N Ca	ILE	402	40.800	11.079	65.584	1.00 20.00
ATOM	850 951	CA	ILE ILE	402	39.949	10.655	64.500	1.00 20.00
ATOM	851 852	CB CG2		402	40.278	11.455	63.230	1.00 20.00
ATOM	852 853		ILE	402	40.278	9.132	64.295	1.00 20.00
ATOM	023	CGI		202	10.012			

P	854	CD1	ILE	402	38.867	8.585	63.442		20.00
ATOM	855	С	ILE	402	40.704	12.546	65.815		20.00
ATOM	856	0	ILE	402	39.584	13.045	65.775		20.00
. М	857	N	ARG	403	41.806	13.295	65.984		20.00
A'T'OM	859	CA	ARG	403	41.738	14.672	66.393		20.00
ATOM	860	СВ	ARG	403	43.121	15.317	66.557		20.00
ATOM	861	CG	ARG	403	43.868	14.804	67.785		20.00
ATOM	862	CD	ARG	403	45.126	15.607	68.111		20.00
ATOM	863	NE	ARG	403	45.666	15.072	69.390		20.00
MOTA	865	CZ	ARG	403	45.210	15.567	70.578		20.00
MOTA	866	NH1	ARG	403	45.704	15.080	71.753		20.00
ATOM	869	NH2	ARG	403	44.258	16.545	70.591		20.00
MOTA	872	С	ARG	403	40.944	15.560 16.485	65.491 65.964		20.00
ATOM	873	0	ARG	403	40.289 40.997	15.347	64.168		20.00
MOTA	874	N	GLY	404	40.235	16.191	63.295		20.00
ATOM	876	CA	GLY	404 404	40.255	17.541	63.176		20.00
MOTA	877	С	GLY	404	40.188	18.528	62.898		20.00
ATOM	878	0	GLY ARG	405	42.199	17.625	63.364		20.00
ATOM	879 881	N CA	ARG	405	42.834	18.908	63.279		20.00
ATOM	882	CB	ARG	405	44.355	18.861	63.503	1.00	20.00
ATOM ATOM	883	CG	ARG	405	44.950	20.250	63.742	1.00	20.00
ATOM	884	CD	ARG	405	46.470	20.259	63.903	1.00	20.00
ATOM	885	NE	ARG	405	47.048	20.241	62.532	1.00	20.00
ATOM	887	CZ	ARG	405	47.194	21.412	61.846	1.00	20.00
MOTA	888	NH1	ARG	405	46.838	22.594	62.429	1.00	20.00
ATOM	891	NH2	ARG	405	47.689	21.400	60.574		20.00
ATOM	894	С	ARG	405	42.576	19.416	61.898		20.00
ATOM	895	0	ARG	405	42.315	20.602	61.697		20.00
ATOM	896	N	THR	406	42.645	18.516	60.902		20.00
MOTA	898	CA	THR	406	42.323	18.902	59.561		20.00
ATOM	899	CB	THR	406	43.479	18.799	58.610		20.00
MOTA	900	OG1	THR	406	43.939	17.459	58.535		20.00
MOTA	902	CG2	THR	406	44.604	19.723	59.109		20.00
ATOM	903	С	THR	406	41.261	17.949	59.121 59.368		20.00
ATOM	904	0	THR	406	41.354	16.748 18.467	58.449		20.00
ATOM	905	N	LYS	407	40.218 39.097	17.653	58.078		20.00
ATOM	907	CA	LYS	407 407	37.788	18.227	58.638		20.00
MOTA	908	CB	LYS LYS	407	37.700	19.672	58.180	1.00	20.00
MOTA MOTA	909 910	CG CD	LYS	407	36.235	20.287	58.571		20.00
ATOM	911	CE	LYS	407	36.072	21.725	58.076		20.00
ATOM	912	NZ	LYS	407	37.081	22.597	58.716	1.00	20.00
ATOM	916	C	LYS	407	38.962	17.595	56.591		20.00
ATOM	917	0	LYS	407	39.427	18.483	55.878		20.00
ATOM	918	N	GLN	408	38.330	16.518	56.080		20.00
ATOM	920	CA	GLN	408	38.139	16.441	54.663		20.00
ATOM	921	СВ	GLN	408	38.080	15.016	54.076		20.00
MOTA	922	CG	GLN	408	36.898	14.167	54.539		20.00
ATOM	923	CD	GLN	408	36.969	12.853	53.772		20.00
MOTA	924		GLN	408	36.014	12.455	53.107		20.00
MOTA	925			408	38.139	12.164	53.857 54.381		20.00
MOTA	928	С	GLN	408	36.847	17.130	55.301		20.00
MOTA	929	0	GLN	408	36.081	17.408 17.409	53.086		20.00
MOTA	930	N	HIS	409	36.585 35.431	18.151	52.662		20.00
ATOM	932	CA	HIS	409 409	35.431	18.082	51.145		20.00
MOTA	933	CB	HIS HIS	409	36.230	18.712	50.294		20.00
ATOM	934	CG CD2	HIS	409	37.316	18.149	49.695		20.00
ATOM	935 936		HIS	409	36.251	20.042	49.936		20.00
ATOM ATOM	938		HIS	409	37.341	20.217	49.146		20.00
	939		HIS	409	38.018	19.097	48.972		20.00
MOTA MOTA	941	C	HIS	409	34.216	17.607	53.323		20.00
MOTA	942	0	HIS	409	34.102	16.405	53.551	1.00	20.00
MIOM	772	~							

MOTA	943	N	GLY	410	33.280	18.503	53.673	1.00 20.00
MOTA	945	CA	GLY	410	32.100	18.067	54.349	1.00 20.00
MOTA	946	С	GLY	410	32.429	18.116	55.801	1.00 20.00
M	947	0	GLY	410	31.585	17.843	56.654	1.00 20.00
A'1'OM	948	N	GLN	411	33.681	18.501	56.113	1.00 20.00
ATOM	950	CA	GLN	411	34.103	18.580	57.477	1.00 20.00
ATOM	951	СВ	GLN	411	33.207	19.505	58.319	1.00 20.00
ATOM	952	CG	GLN	411	33.226	20.973	57.890	1.00 20.00
ATOM	953	CD	GLN	411	32.231	21.722	58.767	1.00 20.00
MOTA	954	OE1		411	31.032	21.444	58.750	1.00 20.00
ATOM	955	NE2	GLN	411	32.742	22.699	59.562	1.00 20.00
MOTA	958	C	GLN	411	34.038	17.226	58.105	1.00 20.00
ATOM	959	Ö	GLN	411	33.609	17.101	59.250	1.00 20.00
MOTA	960	N	PHE	412	34.488	16.174	57.393	1.00 20.00
ATOM	962	CA	PHE	412	34.372	14.865	57.966	1.00 20.00
ATOM	963	СВ	PHE	412	33.979	13.774	56.952	1.00 20.00
MOTA	964	CG	PHE	412	32.657	14.127	56.359	1.00 20.00
ATOM	965	CD1		412	32.590	14.732	55.125	1.00 20.00
	966	CD2	PHE	412	31.494	13.933	57.068	1.00 20.00
ATOM	967	CE1	PHE	412	31.377	15.086	54.582	1.00 20.00
MOTA	968	CE2	PHE	412	30.279	14.300	56.538	1.00 20.00
MOTA	969	CZ	PHE	412	30.217	14.866	55.287	1.00 20.00
MOTA	970	C	PHE	412	35.665	14.421	58.576	1.00 20.00
ATOM			PHE	412	36.735	14.549	57.986	1.00 20.00
ATOM	971	O N	SER	413	35.579	13.964	59.837	1.00 20.00
ATOM	972		SER	413	36.652	13.395	60.599	1.00 20.00
MOTA	974	CA		413	36.267	13.239	62.073	1.00 20.00
ATOM	975	CB	SER	413	35.611	14.412	62.523	1.00 20.00
ATOM	976	OG	SER	413	36.871	12.000	60.127	1.00 20.00
ATOM	978	С	SER	413	38.002	11.534	60.023	1.00 20.00
ATOM	979	0	SER	414	35.754	11.288	59.881	1.00 20.00
ATOM	980	N	LEU	414	35.805	9.915	59.483	1.00 20.00
ATOM	982	CA	LEU	414	35.290	8.979	60.592	1.00 20.00
ATOM	983	CB	LEU	414	35.304	7.480	60.252	1.00 20.00
ATOM	984	CG	LEU LEU	414	36.732	6.966	60.018	1.00 20.00
ATOM	985			414	34.543	6.670	61.315	1.00 20.00
MOTA	986	CD2	LEU		34.909	9.756	58.304	1.00 20.00
MOTA	987	C	LEU	414 414	33.688	9.855	58.414	1.00 20.00
MOTA	988	0	LEU	415	35.501	9.503	57.126	1.00 20.00
ATOM	989	N	ALA		34.678	9.310	55.973	1.00 20.00
ATOM	991	CA	ALA	415 415	35.070	10.198	54.779	1.00 20.00
ATOM	992	СВ	ALA		34.858	7.893	55.551	1.00 20.00
MOTA	993	C	ALA	415 415	35.981	7.453	55.314	1.00 20.00
MOTA	994	0	ALA		33.750	7.129	55.490	1.00 20.00
MOTA	995	N	VAL	416	33.730	5.776	55.025	1.00 20.00
MOTA	997	CA	VAL	416 416	33.376	4.767	56.042	1.00 20.00
MOTA	998	CB	VAL		33.451	3.368	55.405	1.00 20.00
MOTA	999		VAL	416 416	34.245	4.921	57.301	1.00 20.00
MOTA	1000		VAL		32.869	5.702	53.878	1.00 20.00
MOTA	1001	C	VAL	416		5.739	54.068	1.00 20.00
ATOM	1002	0	VAL	416	31.655		52.645	1.00 20.00
ATOM	1003	N	VAL	417	33.392	5.581 5.564	51.522	1.00 20.00
MOTA	1005	CA	VAL	417	32.503		50.541	1.00 20.00
MOTA	1006	СВ	VAL	417	32.770	6.667		1.00 20.00
MOTA	1007		VAL	417	31.784	6.531	49.369	1.00 20.00
MOTA	1008		VAL	417	32.682	8.013	51.277	1.00 20.00
MOTA	1009	С	VAL	417	32.669	4.279	50.779	
MOTA	1010	0	VAL	417	33.789	3.805	50.597	1.00 20.00
MOTA	1011	N	SER	418	31.533	3.706	50.321	1.00 40.00
MOTA	1013	CA	SER	418	31.494	2.482	49.564	1.00 40.00
MOTA	1014	CB	SER	418	31.778	2.690	48.065	1.00 40.00
MOTA	1015	OG	SER	418	33.087	3.207	47.882	1.00 40.00
MOTA	1017	С	SER	418	32.463	1.474	50.101	1.00 40.00
ATOM	1018	0	SER	418	33.596	1.381	49.632	1.00 40.00
ATOM	1019	N	LEU	419	32.040	0.703	51.124	1.00 40.00

A	1021	CA	LEU	419	32.930	-0.252	51.727		40.00
ATOM	1022	СВ	LEU	419	33.355	0.212	53.133		40.00
MOTA	1023	CG	LEU	419	34.471	-0.608	53.800		40.00
1 1	1024	CD1	LEU	419	35.781	-0.502	53.005		40.00
ATOM	1025		LEU	419	34.654	-0.187	55.267		40.00
MOTA	1026	С	LEU	419	32.191	-1.562	51.860		40.00
MOTA	1027	0	LEU	419	30.971	-1.567	51.980		40.00
ATOM	1028	N	ASN	420	32.888	-2.724	51.824		40.00
MOTA	1030	CA	ASN	420	32.176	-3.970	51.957 51.022		40.00
ATOM	1031	CB	ASN	420	32.676	-5.083 -4.765	49.636		40.00
MOTA	1032	CG	ASN	420 420	32.133 32.655	- 5.22 5	48.622		40.00
ATOM	1033	OD1	ASN ASN	420	31.047	-3.946	49.591		40.00
MOTA	1034	C ND2	ASN	420	32.296	-4.436	53.366		40.00
ATOM	1037 1038	0	ASN	420	32.839	-5.503	53.642		40.00
ATOM ATOM	1030	N	ILE	421	31.756	-3.654	54.316		40.00
ATOM	1041	CA	ILE	421	31.927	-4.069	55.669	1.00	40.00
ATOM	1042	СВ	ILE	421	32.813	-3.154	56.450	1.00	40.00
ATOM	1043	CG2	ILE	421	32.914	-3.688	57.888	1.00	40.00
ATOM	1044	CG1	ILE	421	34.165	-3.055	55.728		40.00
MOTA	1045	CD1	ILE	421	34.783	-4.417	55.417		40.00
MOTA	1046	С	ILE	421	30.629	-4.187	56.387		40.00
ATOM	1047	0	ILE	421	29.675	-3.461	56.115		40.00
MOTA	1048	N	THR	422	30.572	-5.185	57.289	1.00	
MOTA	1050	CA	THR	422	29.453	-5.479	58.131		40.00
ATOM	1051	СВ	THR	422	29.559	-6.840	58.751		40.00
MOTA	1052	OG1	THR	422	30.720	-6.920 -7.994	59.564 57.622		40.00
ATOM	1054	CG2	THR	422 422	29.628 29.301	-7.884 -4.487	59.241		40.00
ATOM	1055	C	THR THR	422	28.183	-4.130	59.601		40.00
ATOM	1056 1057	O N	SER	423	30.416	-4.022	59.842	1.00	
ATOM ATOM	1057	CA	SER	423	30.266	-3.123	60.951	1.00	
MOTA	1060	CB	SER	423	30.124	-3.861	62.296	1.00	
MOTA	1061	OG	SER	423	29.972	-2.937	63.364	1.00	20.00
MOTA	1063	C	SER	423	31.482	-2.254	61.046		20.00
ATOM	1064	0	SER	423	32.423	-2.422	60.273		20.00
ATOM	1065	N	LEU	424	31.436	-1.238	61.938		20.00
MOTA	1067	CA	LEU	424	32.556	-0.374	62.194		20.00
ATOM	1068	СВ	LEU	424	32.159	0.841	63.054		20.00
MOTA	1069	CG	LEU	424	31.078	1.743	62.419		20.00
MOTA	1070		LEU	424	31.575 29.741	2.391 1.001	61.116 62.254		20.00
MOTA	1071		LEU LEU	424 424	33.616	-1.131	62.947		20.00
MOTA	1072 1073	С 0	LEU	424	34.764	-1.191	62.523		20.00
ATOM ATOM	1073	N	GLY	425	33.269	-1.752	64.093		20.00
ATOM	1074	CA	GLY	425	34.242	-2.537	64.818	1.00	20.00
ATOM	1077	C	GLY	425	35.328	-1.708	65.458	1.00	20.00
ATOM	1078	0	GLY	425	36.307	-2.237	65.980		20.00
АТОМ	1079	N	LEU	426	35.143	-0.381	65.462		20.00
ATOM	1081	CA	LEU	426	36.012	0.656	65.963		20.00
MOTA	1082	CB	LEU	426	35.706	2.062	65.412		20.00
ATOM	1083	CG	LEU	426	36.084	2.249	63.931		20.00
MOTA	1084		LEU	426	35.790	3.681	63.458		20.00
MOTA	1085		LEU	426	37.542	1.836	63.676		20.00
ATOM	1086	C	LEU	426	35.965	0.746	67.452		20.00
MOTA	1087	0	LEU	426	36.277	1.801	67.987		20.00
MOTA	1088	N	ARG	427	35.524	-0.305 -0.216	68.168 69.568		20.00
ATOM	1090	CA	ARG	427	35.179 35.061	-0.216 -1.583	70.265		20.00
ATOM	1091	CB	ARG ARG	427 427	36.373	-2.362	70.203		20.00
MOTA	1092 1093	CG CD	ARG	427	36.329	-2.502	71.307		20.00
ATOM ATOM	1093	NE	ARG	427	37.689	-4.143	71.322		20.00
ATOM	1094	CZ	ARG	427	38.665	-3.598	72.105		20.00
ATOM	1097		ARG	427	38.390	-2.515	72.890		20.00
0			-						

. .

ATOM	1100	NH2	ARG	427	39.924	-4.125	72.091	1.00 20.00
ATOM	1103	С	ARG	427	36.081	0.609	70.444	1.00 20.00
ATOM	1104	0	ARG	427	35.606	1.179	71.423	1.00 20.00
M ^c	1105	N	SER	428	37.393	0.670	70.174	1.00 20.00
A'T'OM	1107	CA	SER	428	38.285	1.469	70.974	1.00 20.00
MOTA	1108	СВ	SER	428	39.760	1.196	70.643	1.00 20.00
MOTA	1109	OG	SER	428	40.020	1.553	69.294	1.00 20.00
MOTA	1111	С	SER	428	38.056	2.952	70.818	1.00 20.00
ATOM	1112	0	SER	428	38.444	3.741	71.677	1.00 20.00
MOTA	1113	N	LEU	429	37.456	3.375	69.690	1.00 20.00
MOTA	1115	CA	LEU	429	37.291	4.759	69.331	1.00 20.00
MOTA	1116	CB	LEU	429	36.679	4.907	67.924	1.00 20.00
MOTA	1117	CG	LEU	429	36.534	6.355	67.423	1.00 20.00 1.00 20.00
MOTA	1118		LEU	429	37.911	7.015	67.237	1.00 20.00
MOTA	1119		LEU	429	35.668	6.419 5.523	66.152 70.302	1.00 20.00
MOTA	1120	С	LEU	429 429	36.441 35.213	5.440	70.302	1.00 20.00
MOTA	1121	0	LEU	429	37.105	6.242	71.230	1.00 20.00
ATOM	1122	N	LYS	430	36.429	7.073	72.178	1.00 20.00
ATOM	1124	CA CB	LYS LYS	430	37.263	7.316	73.436	1.00 20.00
ATOM	1125 1126	CG	LYS	430	37.388	6.040	74.265	1.00 20.00
ATOM ATOM	1127	CD	LYS	430	38.410	6.146	75.388	1.00 20.00
MOTA	1128	CE	LYS	430	38.325	4.996	76.391	1.00 20.00
ATOM	1129	NZ	LYS	430	39.167	5.291	77.572	1.00 20.00
ATOM	1133	C	LYS	430	35.960	8.392	71.653	1.00 20.00
ATOM	1134	Ō	LYS	430	34.829	8.788	71.920	1.00 20.00
ATOM	1135	N	GLU	431	36.797	9.134	70.896	1.00 20.00
ATOM	1137	CA	GLU	431	36.277	10.402	70.477	1.00 20.00
ATOM	1138	СВ	GLU	431	36.374	11.497	71.552	1.00 20.00
ATOM	1139	CG	GLU	431	35.636	12.776	71.151	1.00 20.00
ATOM	1140	CD	GLU	431	35.614	13.725	72.339	1.00 20.00
MOTA	1141	OE1	GLU	431	36.713	14.064	72.853	1.00 20.00
ATOM	1142	OE2	GLU	431	34.491	14.125	72.749	1.00 20.00
ATOM	1143	С	GLU	431	36.920	10.936	69.242	1.00 20.00
MOTA	1144	0	GLU	431	38.056	10.606	68.902	1.00 20.00
ATOM	1145	N	ILE	432	36.155	11.771	68.512	1.00 20.00
ATOM	1147	CA	ILE	432	36.674	12.438	67.363	1.00 20.00 1.00 20.00
MOTA	1148	CB	ILE	432	35.882	12.180 13.160	66.111 65.021	1.00 20.00
ATOM	1149		ILE	432 432	36.343 36.042	10.697	65.719	1.00 20.00
ATOM	1150		ILE ILE	432	35.157	10.240	64.561	1.00 20.00
ATOM	1151 1152	CDI	ILE	432	36.637	13.880	67.732	1.00 20.00
ATOM ATOM	1152	0	ILE	432	35.638	14.574	67.562	1.00 20.00
ATOM	1154	N	SER	433	37.801	14.387	68.155	1.00 20.00
ATOM	1156	CA	SER	433	37.934	15.679	68.751	1.00 20.00
ATOM	1157	СВ	SER	433	39.413	16.039	68.966	1.00 20.00
АТОМ	1158	OG	SER	433	39.525	17.269	69.660	1.00 20.00
ATOM	1160	С	SER	433	37.297	16.746	67.915	1.00 20.00
MOTA	1161	0	SER	433	36.732	17.688	68.465	1.00 20.00
MOTA	1162	N	ASP	434	37.373	16.661	66.574	1.00 20.00
MOTA	1164	CA	ASP	434	36.769	17.708	65.793	1.00 20.00
MOTA	1165	CB	ASP	434	37.778	18.757	65.285	1.00 20.00
MOTA	1166	CG	ASP	434	38.367	19.559	66.437	1.00 20.00
ATOM	1167		ASP	434	39.564	19.935	66.325	1.00 20.00
ATOM	1168		ASP	434	37.636	19.820	67.428	1.00 20.00
ATOM	1169	C	ASP	434	36.205	17.125	64.536	1.00 20.00
MOTA	1170	0	ASP	434	36.755	16.164	64.006	1.00 20.00 1.00 20.00
ATOM	1171	N	GLY	435	35.099	17.712	64.023	1.00 20.00
MOTA	1173	CA	GLY	435	34.518	17.298 16.239	62.776 63.009	1.00 20.00
ATOM	1174	C	GLY	435 435	33.489	15.670	64.096	1.00 20.00
ATOM	1175	0	GLY	435 436	33.406 32.666	15.670	61.972	1.00 20.00
ATOM	1176	N CA	ASP ASP	436	31.658	14.941	62.091	1.00 20.00
ATOM	1178	CB	ASP	436	30.248	15.361	61.626	1.00 20.00
ATOM	1179	CD	V?E	130	50.240	10.001	52.020	

•	•									
A 1	1180	CG	ASP	436	30.254	15.669	60.138	1.00 20.00		
ATOM	1181	OD1	ASP	436	31.256	16.260	59.658	1.00 20.00		
ATOM	1182	OD2	ASP	436	29.252	15.318	59.459	1.00 20.00		
. I 1	1183	С	ASP	436	32.073	13.745	61.293	1.00 20.00		
ATOM	1184	0	ASP	436	33.236	13.617	60.924	1.00 20.00		
MOTA	1185	N	VAL	437	31.138	12.805	61.036	1.00 20.00		
ATOM	1187	CA	VAL	437	31.480	11.636	60.270	1.00 20.00		
ATOM	1188	СВ	VAL	437	31.538	10.383	61.101	1.00 20.00		
ATOM	1189	CG1	VAL	437	31.609	9.134	60.207	1.00 20.00		
ATOM	1190	CG2	VAL	437	32.787	10.510	61.984	1.00 20.00		
ATOM	1191	С	VAL	437	30.518	11.447	59.139	1.00 20.00		
ATOM	1192	0	VAL	437	29.386	11.919	59.199	1.00 20.00		
MOTA	1193	N	ILE	438	30.965	10.802	58.037	1.00 20.00		
ATOM	1195	CA	ILE	438	30.073	10.553	56.944	1.00 20.00		
ATOM	1196	CB	ILE	438	30.382	11.398	55.726	1.00 20.00		
MOTA	1197		ILE	438	31.787	11.046	55.207	1.00 20.00		
MOTA	1198		ILE	438	29.259	11.328	54.670	1.00 20.00		
ATOM	1199		ILE	438	29.073	9.964	54.005	1.00 20.00		
MOTA	1200	С	ILE	438	30.118	9.092	56.609	1.00 20.00		
MOTA	1201	0	ILE	438	31.115	8.561	56.122	1.00 20.00		
MOTA	1202	N	ILE	439	29.012	8.381	56.877	1.00 20.00		
MOTA	1204	CA	ILE	439	29.001	6.988	56.549	1.00 20.00		
ATOM	1205	CB	ILE	439	28.507	6.134	57.681	1.00 20.00		
ATOM	1206		ILE	439	28.420	4.677	57.195	1.00 20.00		
ATOM	1207		ILE	439	29.412	6.316	58.910	1.00 20.00 1.00 20.00		
MOTA	1208		ILE	439	28.821	5.723	60.188	1.00 20.00		
MOTA	1209	С	ILE	439	28.042	6.847 6.784	55.410 55.614	1.00 20.00	•	
ATOM	1210	0	ILE	439	26.831	6.770	54.167	1.00 20.00		
ATOM	1211	N	SER	440	28.563 27.669	6.726	53.047	1.00 20.00		
ATOM	1213	CA	SER	440	27.725	8.001	52.186	1.00 20.00		
ATOM	1214	CB	SER SER	440 440	26.819	7.899	51.097	1.00 20.00		
MOTA	1215	OG	SER	440	27.936	5.571	52.133	1.00 20.00		
MOTA	1217 1218	c o	SER	440	29.056	5.070	52.032	1.00 20.00		
ATOM ATOM	1218	N	GLY	441	26.867	5.109	51.455	1.00 20.00		
ATOM	1221	CA	GLY	441	26.962	4.082	50.458	1.00 20.00		
ATOM	1222		GLY	441	27.610	2.838	50.970	1.00 20.00		
ATOM	1223	ō	GLY	441	28.639	2.420	50.440	1.00 20.00		
ATOM	1224	N	ASN	442	27.056	2.230	52.037	1.00 20.00		
ATOM	1226	CA	ASN	442	27.610	0.991	52.508	1.00 20.00		
ATOM	1227	CB	ASN	442	28.298	1.143	53.873	1.00 20.00		
ATOM	1228	CG	ASN	442	29.495	2.061	53.665	1.00 20.00		
ATOM	1229		ASN	442	30.454	1.711	52.979	1.00 20.00		
ATOM	1230	ND2	ASN	442	29.430	3.282	54.259	1.00 20.00		
MOTA	1233	С	ASN	442	26.463	0.049	52.672	1.00 20.00		
ATOM	1234	0	ASN	442	25.955	-0.145	53.775	1.00 20.00		
ATOM	1235	N	LYS	443	26.091	-0.654	51.589	1.00 20.00		
MOTA	1237	CA	LYS	443	24.876	-1.410	51.620	1.00 20.00		
ATOM	1238	CB	LYS	443	24.582	-2.098	50.279	1.00 20.00		
MOTA	1239	CG	LYS	443	24.381	-1.055	49.178	1.00 20.00		
ATOM	1240	CD	LYS	443	23.303	-0.027	49.532	1.00 20.00		
MOTA	1241	CE	LYS	443	23.348	1.248	48.686	1.00 20.00		
MOTA	1242	NZ	LYS	443	22.704	1.018	47.374	1.00 20.00		
MOTA	1246	C	LYS	443	24.824	-2.413	52.734	1.00 20.00		
MOTA	1247	0	LYS	443	23.798	-2.535	53.398	1.00 20.00		
MOTA	1248	N	ASN	444	25.920	-3.155	52.963	1.00 20.00 1.00 20.00		
MOTA	1250	CA	ASN	444	26.027	-4.165	53.984	1.00 20.00		
MOTA	1251	CB	ASN	444	27.114	-5.208	53.675	1.00 20.00		
ATOM	1252	CG	ASN	444	26.577	-6.095	52.559	1.00 20.00		
MOTA	1253		ASN	444	25.369	-6.297 -6.649	52.447	1.00 20.00		
ATOM	1254		ASN	444	27.490	-6.648	51.717 55.387	1.00 20.00		
MOTA	1257	C	ASN	444	26.247	-3.673	56.333	1.00 20.00		
ATOM	1258	0	ASN	444	26.107 26.670	-4.446	55.575	1.00 20.00		
MOTA	1259	N	LEU	445	∠0.0/∪	-Z.4UY	33.3/3	1.00 20.00		

ATOM	1261	CA	LEU	445	27.029	-1.962	56.894	1.00 20.00	
ATOM	1262	CB	LEU	445	27.608	-0.533	56.890	1.00 20.00	
ATOM	1263	CG	LEU	445	28.021	-0.002	58.276	1.00 20.00	
MC	1264	CD1	LEU	445	29.207	-0.798	58.846	1.00 20.00	
MO'LA	1265	CD2	LEU	445	28.286	1.512	58.239	1.00 20.00	
MOTA	1266	С	LEU	445	25.880	-2.002	57.855	1.00 20.00	
MOTA	1267	0	LEU	445	24.803	-1.466	57.601	1.00 20.00	
ATOM	1268	N	CYS	446	26.109	-2.656	59.011	1.00 20.00	
MOTA	1270	CA	CYS	446	25.129	-2.767	60.051	1.00 20.00	
MOTA	1271	CB	CYS	446	24.604	-4.196	60.270	1.00 20.00	
ATOM	1272	SG	CYS	446	23.521	-4.750	58.922	1.00 20.00	
ATOM	1273	С	CYS	446	25.815	-2.339	61.305	1.00 20.00	
MOTA	1274	0	CYS	446	26.913	-1.790	61.261	1.00 20.00	
ATOM	1275	N	TYR	447	25.170	-2.551 -2.176	62.467 63.704	1.00 20.00 1.00 20.00	
ATOM	1277	CA	TYR	447 447	25.788 27.139	-2.170	63.933	1.00 20.00	
ATOM	1278	CB	TYR TYR	447	26.901	-4.315	64.050	1.00 20.00	
MOTA	1279	CG CD1		447	26.684	-5.079	62.926	1.00 20.00	
MOTA	1280 1281	CD1 CE1		447	26.536	-6.440	63.018	1.00 20.00	
MOTA	1281		TYR	447	27.005	-4.920	65.274	1.00 20.00	
ATOM	1282	CE2	TYR	447	26.887	-6.280	65.362	1.00 20.00	
ATOM ATOM	1283	CZ	TYR	447	26.639	-7.040	64.246	1.00 20.00	
ATOM	1285	OH	TYR	447	26.509	-8.439	64.357	1.00 20.00	
ATOM	1287	C	TYR	447	26.099	-0.718	63.647	1.00 20.00	
ATOM	1288	o	TYR	447	27.098	-0.285	64.220	1.00 20.00	
MOTA	1289	N	ALA	448	25.354	0.035	62.816	1.00 20.00	
ATOM	1291	CA	ALA	448	25.444	1.468	62.731	1.00 20.00	
ATOM	1292	СВ	ALA	448	25.053	1.995	61.341	1.00 20.00	
ATOM	1293	С	ALA	448	24.577	2.186	63.723	1.00 20.00	
ATOM	1294	0	ALA	448	24.983	3.172	64.335	1.00 20.00	
ATOM	1295	N	ASN	449	23.326	1.702	63.860	1.00 20.00	
ATOM	1297	CA	ASN	449	22.283	2.266	64.675	1.00 20.00	
ATOM	1298	CB	ASN	449	20.909	1.646	64.371	1.00 20.00	
ATOM	1299	CG	ASN	449	20.560	1.977	62.927	1.00 20.00	
MOTA	1300		ASN	449	20.287	1.088	62.122	1.00 20.00	
ATOM	1301		ASN	449	20.574	3.293	62.586	1.00 20.00	
ATOM	1304	C	ASN	449	22.569	2.021	66.116	1.00 20.00	
ATOM	1305	0	ASN	449	22.047	2.695	67.001	1.00 20.00	
MOTA	1306		THR	450	23.375	0.983	66.361 67.644	1.00 20.00 1.00 20.00	
MOTA	1308	CA	THR	450 450	23.740 24.470	0.473 -0.828	67.513	1.00 20.00	
ATOM	1309	CB	THR THR	450 450	23.769	-1.689	66.632	1.00 20.00	
ATOM	1310 1312		THR	450	24.492	-1.486	68.896	1.00 20.00	
MOTA MOTA	1312	C	THR	450	24.647	1.405	68.395	1.00 20.00	
ATOM	1314	0	THR	450	24.795	1.253	69.605	1.00 20.00	
ATOM	1315	N	ILE	451	25.329	2.350	67.707	1.00 20.00	
ATOM	1317	CA	ILE	451	26.316	3.163	68.373	1.00 20.00	
ATOM	1318	СВ	ILE	451	27.580	3.277	67.555	1.00 20.00	
ATOM	1319		ILE	451	27.299	4.270	66.414	1.00 20.00	
ATOM	1320		ILE	451	28.815	3.653	68.399	1.00 20.00	
ATOM	1321		ILE	451	28.834	5.086	68.923	1.00 20.00	
MOTA	1322	С	ILE	451	25.818	4.546	68.693	1.00 20.00	
MOTA	1323	0	ILE	451	25.096	5.166	67.913	1.00 20.00	
MOTA	1324	N	ASN	452	26.191	5.056	69.889	1.00 20.00	
ATOM	1326	CA	ASN	452	25.793	6.369	70.309	1.00 20.00	
MOTA	1327	CB	ASN	452	25.558	6.442	71.830	1.00 20.00	
MOTA	1328	CG	ASN	452	24.657	7.627	72.151	1.00 20.00	
ATOM	1329		ASN	452	24.663	8.643	71.460	1.00 20.00	
ATOM	1330		ASN	452	23.848	7.489	73.236	1.00 20.00	
ATOM	1333	С	ASN	452	26.916	7.303	69.951	1.00 20.00	
ATOM	1334	0	ASN	452	27.858	7.507	70.716	1.00 20.00	
ATOM	1335	N	TRP	453	26.809	7.922	68.762	1.00 20.00	
ATOM	1337	CA	TRP	453	27.799	8.801	68.207	1.00 20.00	
MOTA	1338	CB	TRP	453	27.480	9.218	66.759	1.00 20.00	

A	1339	CG	TRP	453	27.480	8.071	65.773	1.00 20.00
ATOM	1340	CD2	TRP	453	28.653	7.348	65.358	1.00 20.00
MOTA	1341	CE2	TRP	453	28.237	6.354	64.473	1.00 20.00
i 1	1342	CE3	TRP	453	29.967	7.498	65.690	1.00 20.00
AUCH	1343	CD1	TRP	453	26.422	7.468	65.152	1.00 20.00
ATOM	1344	NE1	TRP	453	26.867	6.442	64.354	1.00 20.00
MOTA	1346	CZ2	TRP	453	29.138	5.503	63.898	1.00 20.00
ATOM	1347	CZ3	TRP	453	30.876	6.651	65.095	1.00 20.00 1.00 20.00
ATOM	1348	CH2	TRP	453	30.468	5.670	64.215 69.043	1.00 20.00
ATOM	1349	C	TRP	453	27.873 28.849	10.031 10.771	68.982	1.00 20.00
MOTA	1350	0	TRP	453	26.849	10.771	69.823	1.00 20.00
MOTA	1351	N	LYS LYS	454 454	26.774	11.481	70.637	1.00 20.00
ATOM	1353	CA CB	LYS	454	25.501	11.532	71.502	1.00 20.00
MOTA	1354 1355	CG	LYS	454	25.282	12.849	72.250	1.00 20.00
ATOM ATOM	1356	CD	LYS	454	23.876	12.981	72.840	1.00 20.00
ATOM	1357	CE	LYS	454	23.801	12.650	74.332	1.00 20.00
MOTA	1358	NZ	LYS	454	24.177	11.237	74.560	1.00 20.00
ATOM	1362	С	LYS	454	27.947	11.473	71.563	1.00 20.00
ATOM	1363	0	LYS	454	28.592	12.501	71.763	1.00 20.00
ATOM	1364	N	LYS	455	28.249	10.309	72.167	1.00 20.00
ATOM	1366	CA	LYS	455	29.358	10.234	73.073	1.00 20.00
ATOM	1367	CB	LYS	455	29.457	8.875	73.785	1.00 20.00
MOTA	1368	CG	LYS	455	30.614	8.799	74.783	1.00 20.00
MOTA	1369	CD	LYS	455	30.517	7.613	75.745	1.00 20.00 1.00 20.00
MOTA	1370	CE	LYS	455	31.670	7.543	76.748 77.669	1.00 20.00
MOTA	1371	NZ	LYS	455	31.474	6.401 10.448	72.341	1.00 20.00
MOTA	1375	С	LYS	455 455	30.646 31.520	11.181	72.801	1.00 20.00
ATOM	1376	O	LYS LEU	455 456	30.793	9.802	71.171	1.00 20.00
ATOM	1377 1379	N CA	LEU	456	32.005	9.890	70.405	1.00 20.00
ATOM ATOM	1379	CB	LEU	456	31.950	8.928	69.195	1.00 20.00
ATOM	1381	CG	LEU	456	33.236	8.741	68.352	1.00 20.00
ATOM	1382		LEU	456	32.974	7.740	67.215	1.00 20.00
ATOM	1383		LEU	456	33.819	10.056	67.809	1.00 20.00
ATOM	1384	С	LEU	456	32.207	11.296	69.921	1.00 20.00
ATOM	1385	0	LEU	456	33.299	11.850	70.051	1.00 20.00
ATOM	1386	N	PHE	457	31.152	11.919	69.356	1.00 20.00
ATOM	1388	CA	PHE	457	31.275	13.239	68.804	1.00 20.00 1.00 20.00
MOTA	1389	CB	PHE	457	30.520	13.432	67.483 66.521	1.00 20.00
MOTA	1390	CG	PHE	457	31.040 32.171	12.438 12.700	65.787	1.00 20.00
MOTA	1391		PHE	457 457	30.393	11.236	66.379	1.00 20.00
ATOM	1392 1393		PHE PHE	457	32.660	11.752	64.926	1.00 20.00
ATOM ATOM	1393		PHE	457	30.882	10.287	65.522	1.00 20.00
ATOM	1395	CZ	PHE	457	32.031	10.535	64.819	1.00 20.00
MOTA	1396	c	PHE	457	30.582	14.189	69.714	1.00 20.00
ATOM	1397	0	PHE	457	29.355	14.198	69.791	1.00 20.00
MOTA	1398	N	GLY	458	31.351	14.991	70.462	1.00 40.00
ATOM	1400	CA	GLY	458	30.716	15.995	71.255	1.00 40.00
MOTA	1401	С	GLY	458	30.329	17.121	70.356	1.00 40.00
MOTA	1402	0	GLY	458	29.233	17.673	70.446	1.00 40.00 1.00 40.00
MOTA	1403	N	THR	459	31.242	17.448	69.423	1.00 40.00
MOTA	1405	CA	THR	459	31.117	18.607	68.594 67.530	1.00 40.00
MOTA	1406	CB	THR	459	32.178	18.671 17.559	66.653	1.00 40.00
ATOM	1407		THR	459 459	32.074 33.557	18.683	68.213	1.00 40.00
ATOM	1409	CG2 C	THR THR	459	29.793	18.691	67.916	1.00 40.00
ATOM	1410 1411	0	THR	459	29.038	19.634	68.147	1.00 40.00
MOTA MOTA	1411	N	SER	460	29.448	17.707	67.070	1.00 40.00
ATOM	1412	CA	SER	460	28.205	17.880	66.388	1.00 40.00
ATOM	1415	СВ	SER	460	28.307	18.854	65.203	1.00 40.00
ATOM	1416	OG	SER	460	27.047	18.984	64.566	1.00 40.00
ATOM	1418	С	SER	460	27.707	16.589	65.838	1.00 40.00

ATOM	1419	0	SER	460	28.122	16.158	64.765	1.00 40.00
MOTA	1420	N	GLY	461	26.798	15.935	66.578	1.00 40.00
MOTA	1422	CA	GLY	461	26.202	14.721	66.113	1.00 40.00
: 1	1423	С	GLY	461	25.299	15.063	64.973	1.00 40.00
MOTA	1424	0	GLY	461	25.091	14.265	64.062	1.00 40.00
MOTA	1425	N	GLN	462	24.725	16.279	65.013	1.00 40.00
MOTA	1427	CA	GLN	462	23.786	16.715	64.020	1.00 40.00 1.00 40.00
ATOM	1428	CB	GLN	462 462	23.223 24.287	18.115 19.212	64.315 64.282	1.00 40.00
MOTA	1429 1430	CG CD	GLN GLN	462	23.621	20.547	64.584	1.00 40.00
MOTA ATOM	1431	OE1		462	22.443	20.753	64.300	1.00 40.00
MOTA	1432	NE2	GLN	462	24.401	21.484	65.187	1.00 40.00
ATOM	1435	C	GLN	462	24.444	16.755	62.677	1.00 40.00
ATOM	1436	Ō	GLN	462	23.805	16.489	61.660	1.00 40.00
MOTA	1437	N	LYS	463	25.746	17.092	62.649	1.00 40.00
MOTA	1439	CA	LYS	463	26.507	17.247	61.440	1.00 40.00
MOTA	1440	СВ	LYS	463	27.923	17.786	61.702	1.00 40.00
MOTA	1441	CG	LYS	463	28.590	18.361	60.452	1.00 40.00
MOTA	1442	CD	LYS	463	27.908	19.641	59.963	1.00 40.00
ATOM	1443	CE	LYS	463	28.550	20.258	58.720	1.00 40.00
ATOM	1444	NZ	LYS	463	27.801	21.469	58.318	1.00 40.00
MOTA	1448	С	LYS	463	26.660	15.969	60.669	1.00 40.00
MOTA	1449	0	LYS	463	26.753	15.991	59.443 61.359	1.00 40.00 1.00 40.00
ATOM	1450	N	THR THR	464 464	26.712 26.955	14.816 13.574	60.676	1.00 40.00
ATOM ATOM	1452 1453	CA CB	THR	464	26.867	12.373	61.572	1.00 40.00
ATOM	1454	OG1	THR	464	27.293	11.210	60.877	1.00 40.00
ATOM	1456	CG2	THR	464	25.409	12.209	62.037	1.00 40.00
ATOM	1457	C	THR	464	26.008	13.353	59.545	1.00 40.00
ATOM	1458	0	THR	464	24.823	13.670	59.636	1.00 40.00
ATOM	1459	N	LYS	465	26.533	12.820	58.419	1.00 40.00
ATOM	1461	CA	LYS	465	25.666	12.528	57.319	1.00 40.00
MOTA	1462	CB	LYS	465	26.015	13.230	55.998	1.00 40.00
MOTA	1463	CG	LYS	465	24.994	12.891	54.910	1.00 40.00
ATOM	1464	CD	LYS	465	25.020	13.816	53.693	1.00 40.00 1.00 40.00
ATOM	1465	CE	LYS LYS	465 465 ·	23.979 23.968	13.435 14.436	52.638 51.549	1.00 40.00
ATOM ATOM	1466 1470	NZ C	LYS	465	25.706	11.064	57.057	1.00 40.00
ATOM	1471	0	LYS	465	26.759	10.491	56.776	1.00 40.00
ATOM	1472	N	ILE	466	24.532	10.415	57.150	1.00 40.00
ATOM	1474	CA	ILE	466	24.500	9.007	56.923	1.00 40.00
ATOM	1475	СВ	ILE	466	24.176	8.233	58.167	1.00 40.00
ATOM	1476	CG2	ILE	466	24.064	6.747	57.789	1.00 40.00
ATOM	1477		ILE	466	25.226	8.516	59.256	1.00 40.00
ATOM	1478	CD1	ILE	466	24.825	8.003	60.639	1.00 40.00
ATOM	1479	С	ILE	466	23.436	8.713	55.920	1.00 40.00
ATOM	1480	0	ILE	466	22.278	9.088 8.046	56.102 54.814	1.00 40.00 1.00 40.00
ATOM	1481	N CA	ILE	467 467	23.821 22.874	7.661	53.810	1.00 40.00
ATOM ATOM	1483 1484	CB	ILE	467	22.588	8.736	52.798	1.00 40.00
ATOM	1485	CG2	ILE	467	21.923	9.922	53.515	1.00 40.00
ATOM	1486		ILE	467	23.865	9.111	52.030	1.00 40.00
АТОМ	1487	CD1		467	23.596	9.992	50.811	1.00 40.00
ATOM	1488	С	ILE	467	23.454	6.505	53.058	1.00 40.00
ATOM	1489	0	ILE	467	24.671	6.345	52.991	1.00 40.00
ATOM	1490	N	SER	468	22.575	5.682	52.452	1.00 40.00
MOTA	1492	CA	SER	468	22.961	4.556	51.646	1.00 40.00
ATOM	1493	СВ	SER	468	24.002	4.934	50.577	1.00 40.00
ATOM	1494	OG	SER	468	23.458	5.896	49.686	1.00 40.00
ATOM	1496	С	SER	468	23.509	3.382	52.407	1.00 40.00 1.00 40.00
ATOM	1497	O	SER	468 469	24.142 23.263	2.512 3.292	51.810 53.729	1.00 40.00
ATOM ATOM	1498 1500	N CA	ASN ASN	469	23.263	2.155	54.472	1.00 20.00
ATOM .	1501	CB	ASN	469	24.112	2.474	55.930	1.00 20.00
111 011	1301	22						

	·										
M	1502	CG	ASN	469	25.381	3.315	55.913	1.00	20.00		
Атом	1503	OD1	ASN	469	26.339	3.005	55.205		20.00		
MOTA	1504	ND2	ASN	469	25.388	4.414	56.712		20.00		
M	1507	С	ASN	469	22.672	1.112	54.485		20.00		
MOLA	1508	0	ASN	469	21.660	1.240	53.800		20.00	•	
MOTA	1509	N	ARG	470	22.877	0.022	55.254		20.00		
MOTA	1511	CA	ARG	470	21.898	-1.026 -2.371	55.268 55.776		20.00		
MOTA	1512	CB	ARG	470	22.443	-2.371 -3.550	55.415		20.00		
MOTA	1513	CG	ARG	470 470	21.540 22.221	-4.913	55.539		20.00		
ATOM	1514	CD	ARG ARG	470	21.220	-5.939	55.132		20.00		
MOTA	1515 1517	NE CZ	ARG	470	21.018	-6.201	53.807		20.00		
MOTA MOTA	1517		ARG	470	20.128	-7.165	53.429		20.00		
ATOM	1521		ARG	470	21.699	-5.492	52.859	1.00	20.00		
ATOM	1524	С	ARG	470	20.742	-0.619	56.128	1.00	20.00		
ATOM	1525	0	ARG	470	20.889	0.183	57.048		20.00		
ATOM	1526	N	GLY	471	19.546	-1.171	55.835		20.00		
ATOM	1528	CA	GLY	471	18.369	-0.820	56.575		20.00		
ATOM	1529	С	GLY	471	18.410	-1.520	57.892		20.00		
ATOM	1530	0	GLY	471	18.635	-2.726	57.968		20.00		
MOTA	1531	N	GLU	472	18.110	-0.768	58.964		20.00		
MOTA	1533	CA	GLU	472	18.175	-1.258	60.308		20.00		
MOTA	1534	CB	GLU	472	17.700	-0.191	61.312		20.00		
MOTA	1535	CG	GLU	472	17.766 17.265	-0.618 0.550	62.778 63.621		20.00		
ATOM	1536	CD OF1	GLU	472 472	17.263	1.662	63.488		20.00		
ATOM	1537		GLU GLU	472	16.297	0.348	64.401		20.00		
ATOM	1538 1539	C	GLU	472	17.281	-2.449	60.428		20.00		
ATOM ATOM	1540	0	GLU	472	17.601	-3.408	61.131		20.00		
ATOM	1541	N	ASN	473	16.126	-2.412	59.741	1.00	20.00		
ATOM	1543	CA	ASN	473	15.193	-3.499	59.794	1.00	20.00		
ATOM	1544	СВ	ASN	473	13.928	-3.214	58.965		20.00		
ATOM	1545	CG	ASN	473	13.138	-2.118	59.669		20.00		
ATOM	1546	OD1	ASN	473	12.431	-2.374	60.643		20.00		
MOTA	1547	ND2	ASN	473	13.264	-0.859	59.169		20.00		
MOTA	1550	С	ASN	473	15.837	-4.727	59.232		20.00		
MOTA	1551	0	ASN	473	15.707	-5.817 -4.573	59.788 58.103		20.00		
MOTA	1552	N	SER	474 474	16.555	-4.573 -5.681	57.451				
ATOM	1554	CA CB	SER SER	474	17.134	-5.283	56.113		20.00		
ATOM	1555 1556	OG	SER	474	18.457	-6.413	55.510		20.00		
MOTA MOTA	1558	C	SER	474	18.276	-6.232	58.324		20.00		
ATOM	1559	o	SER	474	18.449	-7.445	58.429		20.00		
ATOM	1560	N	CYS	475	19.036	-5.344	58.987		20.00		
ATOM	1562	CA	CYS	475	20.125	-5.779	59.808		20.00		
MOTA	1563	CB	CYS	475	20.906	-4.613	60.438		20.00		
MOTA	1564	SG	CYS	475	21.836	-3.652	59.208		20.00		
MOTA	1565	С	CYS	475	19.582	-6.621	60.912		20.00		
MOTA	1566	0	CYS	475	20.186	-7.628 -6.242	61.278 61.459		20.00 60.00		
MOTA	1567	N	LYS	476	18.409 17.874	-6.242 -6.990	62.558		60.00		
ATOM	1569	CA	LYS LYS	476 476	17.613	-8.468	62.216		60.00		
ATOM	1570 1571	CB CG	LYS	476	16.317	-8.703	61.436		60.00		
ATOM ATOM	1572	CD	LYS	476	15.048	-8.476	62.266		60.00		
ATOM	1573	CE	LYS	476	14.947	-7.089	62.904		60.00		
ATOM	1574	NZ	LYS	476	13.748	-7.017	63.770		60.00		
ATOM	1578	С	LYS	476	18.921	-6.920	63.604		60.00		
ATOM	1579	0	LYS	476	19.139	-7.855	64.372		60.00		
ATOM	1580	N	ALA	477	19.596	-5.764	63.640		60.00		
MOTA	1582	CA	ALA	477	20.675	-5.551	64.538		60.00		
ATOM	1583	CB	ALA	477	21.779	-4.658	63.931		60.00		
ATOM	1584	С	ALA	477	20.208	-4.882	65.785		60.00		
ATOM	1585	0	ALA	477	19.038	-4.543	65.960		60.00		
ATOM	1586	N	THR	478	21.182	-4.797	66.700	1.00	60.00		

MOTA	1588	CA	THR	478	21.298	-4.164	67.976		60.00
ATOM	1589	CB	THR	478	20.348	-4.676	69.025		60.00
MOTA	1590	OG1		478	20.460	-6.086	69.145		60.00
. M	1592	CG2		478	18.907	-4.266	68.681		60.00
MOTA	1593	С	THR	478	22.621	-4.786	68.220		60.00
ATOM	1594	0	THR	478	22.914	-5.304	69.294		60.00
ATOM	1595	N	GLY	479	23.468	-4.695	67.178		60.00
ATOM	1597	CA	GLY	479	24.658	-5.480	67.102		60.00
ATOM	1598	С	GLY	479	24.076	-6.585	66.277		60.00
ATOM	1599	0	GLY	479	23.056	-6.365	65.632		60.00
ATOM	1600	N	GLN	480	24.678	-7.792	66.239		60.00
ATOM	1602	CA	GLN	480	23.982	-8.847	65.552		60.00
ATOM	1603	CB	GLN	480		-10.188	65.586		60.00
ATOM	1604	CG	GLN	480		-11.318	64.839		60.00
ATOM	1605	CD	GLN	480		-12.541	64.896		60.00 60.00
ATOM	1606		GLN	480		-13.330	63.955		
MOTA	1607		GLN	480		-12.704	66.032 66.475		60.00 60.00
MOTA	1610	C	GLN	480	22.824	-8.945 -9.007	66.095		60.00
MOTA	1611	0	GLN	480	21.664 23.201	-9.097 -8.820	67.750		60.00
ATOM	1612	N	VAL	481		-8.620	68.923		60.00
ATOM	1614	CA	VAL	481	22.411	-10.002	69.518		60.00
ATOM	1615	CB CC1	VAL VAL	481 481	23.239		69.947		60.00
ATOM	1616		VAL	481	21.013	-9.716	70.677		60.00
ATOM	1617 1618	C	VAL	481	23.529	-8.182	69.755		60.00
ATOM	1619	0	VAL	481	24.685	-8.456	69.436		60.00
ATOM ATOM	1620	Ŋ	CYS	482	23.285	-7.401	70.814		20.00
ATOM	1622	CA	CYS	482	24.503	-7.039	71.462		20.00
ATOM	1623	СВ	CYS	482	24.576	-5.617	72.037		20.00
ATOM	1624	SG	CYS	482	26.326	-5.221	72.294		20.00
ATOM	1625	C	CYS	482	24.696	-8.015	72.582		20.00
ATOM	1626	0	CYS	482	23.907	-8.945	72.738	1.00	20.00
ATOM	1627	N	HIS	483	25.765	-7.848	73.388	1.00	20.00
ATOM	1629	CA	HIS	483	25.982	-8.790	74.444	1.00	20.00
ATOM	1630	СВ	HIS	483	27.387	-8.739	75.065		20.00
ATOM	1631	CG	HIS	483	27.708	-10.003	75.804		20.00
ATOM	1632	CD2	HIS	483	28.282	-11.158	75.361		20.00
ATOM	1633	ND1	HIS	483		-10.228	77.118		20.00
ATOM	1635	CE1	HIS	483		-11.494	77.410		20.00
ATOM	1636	NE2		483		-12.098	76.375		20.00
ATOM	1638	С	HIS	483	24.956	-8.511	75.490		20.00
MOTA	1639	0	HIS	483	24.359	-7.436	75.521		20.00
MOTA	1640	N	ALA	484	24.706	-9.497	76.368		20.00
MOTA	1642	CA	ALA	484	23.706	-9.332	77.379		20.00
MOTA	1643	CB	ALA	484	23.553	-10.571	78.276		20.00
ATOM	1644	C	ALA	484	24.123	-8.198 -7.383	78.258 78.673		20.00
ATOM	1645	0	ALA	484 485	23.301 25.432	-7.383 -8.123	78.554		20.00
MOTA	1646	N	LEU	485	25.971	-7.130	79.435		20.00
MOTA	1648	CA CB	LEU	485	27.458	-7.130 -7.364	79.760		20.00
ATOM	1649 1650	CG	LEU	485	27.723	-8.604	80.636		20.00
ATOM	1651		LEU	485	27.123	-8.438	82.033		20.00
ATOM	1652		LEU	485	27.254	-9.899	79.959		20.00
ATOM	1653	C	LEU	485	25.859	-5.731	78.922		20.00
ATOM	1654	0	LEU	485	25.609	-4.816	79.705		20.00
ATOM ATOM	1655	N	CYS	486	26.059	-5.521	77.605		20.00
ATOM	1657	CA	CYS	486	26.024	-4.183	77.088		20.00
MOTA	1658	CB	CYS	486	26.159	-4.089	75.561		20.00
ATOM	1659	SG	CYS	486	27.793	-4.607	74.972		20.00
ATOM	1660	C	CYS	486	24.710	-3.584	77.445		20.00
ATOM	1661	ō	CYS	486	23.680	-4.253	77.418		20.00
ATOM	1662	N	SER	487	24.725	-2.298	77.834		40.00
ATOM	1664	CA	SER	487	23.489	-1.683	78.191		40.00
ATOM	1665	СВ	SER	487	23.641	-0.401	79.021		40.00

• •

A A	1666	OG	SER	487	24.221	0.618	78.222	1.00 40.00	
ATOM	1668	С	SER	487	22.857	-1.321	76.902	1.00 40.00	
MOTA	1669	0	SER	487	23.476	-1.424	75.845	1.00 40.00	
i M	1670	N	PRO	488	21.639	-0.873	76.994	1.00 40.00	
ATOM	1671	CD	PRO	488	20.819	-1.107	78.169	1.00 40.00	
ATOM	1672	CA	PRO	488	20.856	-0.523	75.848	1.00 40.00	
ATOM	1673	CB	PRO	488	19.425	-0.323	76.356	1.00 40.00	
MOTA	1674	CG	PRO	488	19.548	-0.293	77.891	1.00 40.00	
MOTA	1675	С	PRO	488	21.442	0.669	75.183	1.00 40.00	
MOTA	1676	0	PRO	488	20.909	1.090	74.158	1.00 40.00	
ATOM	1677	N	GLU	489	22.526	1.231	75.750	1.00 40.00	
ATOM	1679	CA	GLU	489	23.141	2.350	75.112	1.00 40.00	
ATOM	1680	СВ	GLU	489	24.424	2.824	75.815	1.00 40.00	
ATOM	1681	CG	GLU	489	24.146	3.512	77.152	1.00 40.00	
MOTA	1682	CD	GLU	489	23.356	4.780	76.856	1.00 40.00 1.00 40.00	
MOTA	1683		GLU	489	22.242	4.929 5.615	77.426 76.055	1.00 40.00	
ATOM	1684		GLU	489	23.854 23.486	1.912	73.726	1.00 40.00	
MOTA	1685	C	GLU	489 489	23.486	2.591	72.758	1.00 40.00	
ATOM	1686	O N	GLU GLY	489 490	24.148	0.746	73.581	1.00 40.00	
ATOM	1687 1689	N CA	GLY	490	24.148	0.300	72.246	1.00 40.00	
ATOM	1699	CA	GLY	490	25.782	-0.344	72.202	1.00 40.00	
ATOM ATOM	1691	0	GLY	490	26.427	-0.520	73.233	1.00 40.00	
ATOM	1691	N	CYS	491	26.229	-0.748	70.993	1.00 20.00	
ATOM	1694	CA	CYS	491	27.534	-1.322	70.876	1.00 20.00	
ATOM	1695	CB	CYS	491	27.666	-2.693	71.547	1.00 20.00	
ATOM	1696	SG	CYS	491	26.822	-4.060	70.710	1.00 20.00	
ATOM	1697	C	CYS	491	27.974	-1.427	69.448	1.00 20.00	
ATOM	1698	ō	CYS	491	27.191	-1.256	68.516	1.00 20.00	
ATOM	1699	N	TRP	492	29.286	-1.658	69.249	1.00 20.00	
ATOM	1701	CA	TRP	492	29.852	-1.751	67.932	1.00 20.00	
ATOM	1702	СВ	TRP	492	31.383	-1.624	67.949	1.00 20.00	
ATOM	1703	CG	TRP	492	31.841	-0.264	68.422	1.00 20.00	
ATOM	1704	CD2	TRP	492	31.829	0.923	67.613	1.00 20.00	
MOTA	1705	CE2	TRP	492	32.262	1.975	68.421	1.00 20.00	
MOTA	1706	CE3	TRP	492	31.478	1.122	66.309	1.00 20.00	
ATOM	1707	CD1	TRP	492	32.250	0.120	69.665	1.00 20.00	
MOTA	1708		TRP	492	32.522	1.466	69.675	1.00 20.00	
MOTA	1710		TRP	492	32.349	3.248		1.00 20.00	
MOTA	1711		TRP	492	31.572	2.407	65.820	1.00 20.00	
ATOM	1712		TRP	492	31.998	3.449	66.617	1.00 20.00	
MOTA	1713	C	TRP	492	29.484	-3.013	67.207	1.00 20.00	
MOTA	1714	0	TRP	492	29.238	-2.994	66.001	1.00 20.00 1.00 20.00	
ATOM	1715	N	GLY	493	29.448	-4.151 -5.416	67.926 67.316	1.00 20.00	
ATOM	1717	CA	GLY	493	29.135 28.919	-5.416 -6.347	68.463	1.00 20.00	
ATOM	1718	C	GLY	493		-6.347 -5.883	69.565	1.00 20.00	
ATOM	1719	O N	GLY	493	28.646 28.961	-5.883 -7.638	68.284	1.00 20.00	
MOTA	1720	N CD	PRO PRO	494 494	28.323	-7.638 -8.259	67.136	1.00 40.00	
MOTA	1721			494	28.822	-8.239	69.463	1.00 40.00	
MOTA	1722 1723	CA CB	PRO PRO	494	28.300	-9.802	69.006	1.00 40.00	
ATOM ATOM	1723	CG	PRO	494	27.573	-9.482	67.689	1.00 40.00	
	1724	C	PRO	494	30.128	-8.514	70.185	1.00 40.00	
ATOM ATOM	1725	0	PRO	494	31.072	-9.053	69.613	1.00 40.00	
ATOM	1727	N	GLU	495	30.195	-8.014	71.436	1.00 40.00	
MOTA	1729	CA	GLU	495	31.375	-8.089	72.256	1.00 40.00	
ATOM	1730	CB	GLU	495	32.593	-7.287	71.749	1.00 40.00	
ATOM	1731	CG	GLU	495	33.353	-7.900	70.573	1.00 40.00	
ATOM	1732	CD	GLU	495	34.454	-6.930	70.171	1.00 40.00	
ATOM	1733		GLU	495	35.343	-7.337	69.376	1.00 40.00	
ATOM	1734		GLU	495	34.417	-5.764	70.646	1.00 40.00	
MOTA	1735	C	GLU	495	31.004	-7.432	73.546	1.00 40.00	
ATOM	1736	0	GLU	495	30.221	-6.486	73.553	1.00 40.00	
ATOM	1737	N	PRO	496	31.509	-7.915	74.645	1.00 20.00	

• •

ATOM	1738	CD	PRO	496	31.711	-9.341	74.819	1.00 20.00
ATOM	1739	CA	PRO	496	31.264	-7.251	75.897	1.00 20.00
ATOM	1740	CB	PRO	496	31.515	-8.293	76.991	1.00 20.00
i 4	1741	CG	PRO	496	32.200	-9.467	76.268	1.00 20.00
MOTA	1742	С	PRO	496	32.127	-6.031	76.014	1.00 20.00
ATOM	1743	0	PRO	496	31.852	-5.174	76.853	1.00 20.00
ATOM	1744	N	ARG	497	33.221	-5.983	75.231	1.00 20.00
ATOM	1746	CA	ARG	497	34.147	-4.887	75.215	1.00 20.00
ATOM	1747	CB	ARG	497	35.506	-5.301	74.623	1.00 20.00
ATOM	1748	CG	ARG	497	35.420	-5.828	73.193	1.00 20.00
ATOM	1749	CD	ARG	497	36.661	-6.603	72.744	1.00 20.00
ATOM	1750	NE	ARG	497	36.424	-8.046	73.041	1.00 20.00
ATOM	1752	CZ	ARG	497	36.759	-8.573	74.256	1.00 20.00
ATOM	1753	NH1		497	37.298	-7.778	75.225	1.00 20.00
	1756	NH2	ARG	497	36.552	-9.900	74.501	1.00 20.00
ATOM	1759	C	ARG	497	33.629	-3.696	74.461	1.00 20.00
ATOM	1760	0	ARG	497	33.927	-2.551	74.796	1.00 20.00
ATOM	1761	N	ASP	498	32.856	-3.946	73.391	1.00 20.00
ATOM			ASP	498	32.360	-2.918	72.516	1.00 20.00
ATOM	1763	CA	ASP	498	31.966	-3.444	71.128	1.00 20.00
ATOM	1764	CB	ASP	498	30.893	-4.496	71.291	1.00 20.00
ATOM	1765	CG		498	30.029	-4.348	72.195	1.00 20.00
MOTA	1766	OD1		498	30.029	-5.482	70.511	1.00 20.00
ATOM	1767	OD2	ASP		31.265	-2.044	73.055	1.00 20.00
ATOM	1768	C	ASP	498	31.265	-2.044	72.509	1.00 20.00
ATOM	1769	0	ASP	498			74.102	1.00 20.00
ATOM	1770	N	CYS	499	30.544	-2.499	74.102	1.00 20.00
MOTA	1772	CA	CYS	499	29.422	-1.807	76.162	1.00 20.00
MOTA	1773	CB	CYS	499	29.165	-2.202	76.162	1.00 20.00
MOTA	1774	SG	CYS	499	29.015	-3.986		1.00 20.00
MOTA	1775	C	CYS	499	29.589	-0.312	74.732	1.00 20.00
MOTA	1776	0	CYS	499	30.701	0.208	74.795 74.575	1.00 20.00
MOTA	1777	N	VAL	500	28.468	0.426		1.00 20.00
ATOM	1779	CA	VAL	500	28.473	1.851	74.753	
MOTA	1780	СВ	VAL	500	27.278	2.529	74.157	
ATOM	1781	CG1		500	27.349	4.028	74.498	
MOTA	1782		VAL	500	27.267	2.235	72.648	1.00 20.00
MOTA	1783	С	VAL	500	28.452	2.106	76.226	1.00 20.00 1.00 20.00
MOTA	1784	0	VAL	500	29.131	3.004	76.723	
MOTA	1785	N	SER	501	27.643	1.306	76.956	1.00 20.00 1.00 20.00
MOTA	1787	CA	SER	501	27.519	1.440	78.381	
MOTA	1788	CB	SER	501	26.337	2.321	78.819	1.00 20.00
MOTA	1789	OG	SER	501	26.279	2.402	80.235	1.00 20.00
MOTA	1791	С	SER	501	27.309	0.062	78.932	1.00 20.00
MOTA	1792	0	SER	501	27.178	-0.900	78.175	1.00 20.00
MOTA	1793	N	CYS	502	27.269	-0.068	80.277	1.00 20.00
MOTA	1795	CA	CYS	502	27.190	-1.365	80.887	1.00 20.00
ATOM	1796	CB	CYS	502	28.384	-1.609	81.830	1.00 20.00
ATOM	1797	SG	CYS	502	28.554	-3.311	82.433	1.00 20.00
MOTA	1798	С	CYS	502	25.908	-1.495	81.653	1.00 20.00
MOTA	1799	0	CYS	502	25.412	-0.529	82.231	1.00 20.00
ATOM	1800	N	ARG	503	25.307	-2.704	81.621	1.00 20.00
MOTA	1802	CA	ARG	503	24.084	-2.958	82.327	1.00 20.00
ATOM	1803	CB	ARG	503	23.441	-4.308	81.965	1.00 20.00
MOTA	1804	CG	ARG	503	22.036	-4.476	82.549	1.00 20.00
MOTA	1805	CD	ARG	503	21.326	-5.747	82.079	1.00 20.00
ATOM	1806	NE	ARG	503	21.250	-5.684	80.591	1.00 20.00
MOTA	1808	CZ	ARG	503	20.221	-5.027	79.980	1.00 20.00
ATOM	1809	NH1	ARG	503	19.253	-4.425	80.731	1.00 20.00
ATOM	1812		ARG	503	20.160	-4.971	78.618	1.00 20.00
ATOM	1815	С	ARG	503	24.343	-2.949	83.798	1.00 20.00
ATOM	1816	0	ARG	503	23.570	-2.388	84.573	1.00 20.00
MOTA	1817	N	ASN	504	25.466	-3.564	84.211	1.00 20.00
ATOM	1819	CA	ASN	504	25.811	-3.647	85.600	1.00 20.00
MOTA	1820	CB	ASN	504	26.210	-5.061	86.059	1.00 20.00

r

F 1	1821	CG	ASN	504	24.945	-5.909	86.120		20.00
ATOM	1822	OD1	ASN	504	24.548	-6.522	85.131		20.00
MOTA	1823		ASN	504	24.293	-5.950	87.313		20.00
. М	1826	C	ASN	504	26.980 26.865	-2.740 -1.522	85.824 85.689	1.00	20.00
MOTA	1827	0	ASN VAL	504 505	28.139	-3.314	86.200		20.00
ATOM ATOM	1828 1830	N CA	VAL	505	29.288	-2.505	86.489		20.00
ATOM	1831	СВ	VAL	505	29.963	-2.869	87.780		20.00
ATOM	1832	CG1	VAL	505	28.979	-2.620	88.935	1.00	20.00
ATOM	1833	CG2	VAL	505	30.445	-4.325	87.684		20.00
MOTA	1834	С	VAL	505	30.314	-2.635	85.410		20.00
MOTA	1835	0	VAL	505	30.472	-3.695	84.808		20.00
ATOM	1836	N	SER	506	31.038	-1.534	85.132		20.00
ATOM	1838	CA	SER	506 506	32.047 32.071	-1.574 -0.323	84.117 83.220		20.00
ATOM	1839	CB OG	SER SER	506	33.101	-0.437	82.250		20.00
ATOM ATOM	1840 1842	C	SER	506	33.370	-1.667	84.795		20.00
ATOM	1843	0	SER	506	33.630	-0.956	85.765		20.00
ATOM	1844	N	ARG	507	34.236	-2.583	84.319	1.00	20.00
ATOM	1846	CA	ARG	507	35.518	-2.700	84.940		20.00
ATOM	1847	CB	ARG	507	35.551	-3.770	86.044		20.00
MOTA	1848	CG	ARG	507	36.846	-3.786	86.857		20.00
MOTA	1849	CD	ARG	507	38.033	-4.429	86.137		20.00
ATOM	1850	NÉ	ARG ARG	507 507	39.153 40.019	-4.497 -3.451	87.119 87.258		20.00
ATOM	1852 1853	CZ NH1	ARG	507	41.011	-3.511	88.194		20.00
ATOM ATOM	1856	NH2	ARG	507	39.896	-2.347	86.465		20.00
ATOM	1859	С	ARG	507	36.547	-3.076	83.922	1.00	20.00
АТОМ	1860	0	ARG	507	36.361	-4.008	83.140		20.00
MOTA	1861	N	GLY	508	37.671	-2.337	83.903		20.00
MOTA	1863	CA	GLY	508	38.761	-2.667	83.032	1.00	
ATOM	1864	С	GLY	508	38.308	-2.741	81.610		20.00
MOTA	1865	0	GLY	508 509	38.630 37.533	-3.693 -1.743	80.902 81.151		20.00
ATOM ATOM	1866 1868	N CA	ARG ARG	509	37.133	-1.717	79.773		20.00
ATOM	1869	СВ	ARG	509	38.342	-1.804	78.826		20.00
ATOM	1870	ÇG	ARG	509	39.300	-0.620	78.975	1.00	20.00
ATOM	1871	CD	ARG	509	40.611	-0.784	78.205	1.00	
ATOM	1872	NE	ARG	509	40.319	-0.592	76.758		20.00
MOTA	1874	CZ	ARG	509	41.257	-0.011	75.954		20.00
ATOM	1875	NH1		509	41.009 42.441	0.154 0.412	74.622 76.486		20.00
MOTA	1878 1881	NH2 C	ARG	509 509	36.214	-2.859	79.461		20.00
ATOM ATOM	1882	0	ARG	509	35.901	-3.104	78.297		20.00
ATOM	1883	N	GLU	510	35.726	-3.579	80.491		20.00
ATOM	1885	CA	GLU	510	34.853	-4.686	80.217		20.00
ATOM	1886	СВ	GLU	510	35.456	-6.027	80.669		20.00
MOTA	1887	CG	GLU	510	36.723	-6.393	79.890		20.00
ATOM	1888	CD	GLU	510	37.447	-7.508	80.630		20.00
MOTA	1889	OE1		510 510	37.664 37.801	-8.583 -7.298	80.009 81.821		20.00
MOTA	1890 1891	OE2 C	GLU	510	33.589	-4.481	80.984		20.00
ATOM ATOM	1892	0	GLU	510	33.600	-3.976	82.105		20.00
ATOM	1893	N	CYS	511	32.451	-4.875	80.385	1.00	20.00
ATOM	1895	CA	CYS	511	31.191	-4.703	81.042		20.00
MOTA	1896	СВ	CYS	511	30.037	-4.512	80.039		20.00
MOTA	1897	SG	CYS	511	28.372	-4.452	80.762		20.00
MOTA	1898	С	CYS	511	30.961	-5.930	81.858		20.00
MOTA	1899	0	CYS	511 512	30.691	-7.003 -5.786	81.320 83.195		20.00
ATOM ATOM	1900 1902	N CA	VAL VAL	512	31.079 30.909	-6.884	84.104		20.00
ATOM ATOM	1902	CB	VAL	512	31.969	-6.991	85.164		20.00
ATOM ATOM	1904	CG1		512	33.231	-7.611	84.562		20.00
ATOM	1905	CG2		512	32.239	-5.583	85.710	1.00	20.00

. .

MOTA	1906	С	VAL	512	29.591	-6.838	84.803	1.00 20.00
MOTA	1907	0	VAL	512	29.045	-5.775	85.096	1.00 20.00
MOTA	1908	N	ASP	513	29.025	-8.039	85.028	1.00 20.00
i 4	1910	CA	ASP	513	27.799	-8.215	85.747	1.00 20.00
MOTA	1911	CB	ASP	513	27.233	-9.641	85.627	1.00 20.00
MOTA	1912	CG	ASP	513		-10.614	86.169	1.00 20.00
MOTA	1913		ASP	513		-11.193	87.262	1.00 20.00
MOTA	1914		ASP	513		-10.800	85.487	1.00 20.00
MOTA	1915	C	ASP	513	28.029	-7.927 -7.439	87.193 87.887	1.00 20.00 1.00 20.00
MOTA	1916	0	ASP	513	27.143 29.224	-7.429 -8.282	87.700	1.00 20.00
MOTA	1917	N	LYS	514 514	29.519	-8.023	89.077	1.00 20.00
ATOM	1919	CA	LYS LYS	514	29.130	-9.178	90.019	1.00 20.00
ATOM	1920 1921	CB CG	LYS	514		-10.535	89.641	1.00 20.00
ATOM ATOM	1921	CD	LYS	514		-10.640	89.842	1.00 20.00
ATOM	1923	CE	LYS	514		-12.028	89.510	1.00 20.00
ATOM	1924	NZ	LYS	514		-13.034	90.424	1.00 20.00
ATOM	1928	C	LYS	514	30.987	-7.772	89.197	1.00 20.00
ATOM	1929	0	LYS	514	31.771	-8.128	88.318	1.00 20.00
MOTA	1930	N	CYS	515	31.388	-7.130	90.309	1.00 20.00
ATOM	1932	CA	CYS	515	32.760	-6.793	90.544	1.00 20.00
ATOM	1933	СВ	CYS	515	32.987	-6.056	91.874	1.00 20.00
ATOM	1934	SG	CYS	515	32.657	-4.275	91.855	1.00 20.00
MOTA	1935	С	CYS	515	33.608	-8.019	90.651	1.00 20.00
MOTA	1936	0	CYS	515	33.193	-9.045	91.187	1.00 20.00
MOTA	1937	N	LYS	516	34.854	-7.916	90.148	1.00 20.00
ATOM	1939	CA	LYS	516	35.779	-9.006	90.231	1.00 20.00
MOTA	1940	СВ	LYS	516	36.980	-8.859	89.281	1.00 20.00
MOTA	1941	CG	LYS	516	36.574	-8.714	87.813	1.00 20.00 1.00 20.00
MOTA	1942	CD	LYS	516	35.721	-9.868 -11.130	87.279 86.944	1.00 20.00
ATOM	1943	CE	LYS	516 516		-12.169	86.398	1.00 20.00
ATOM	1944 1948	NZ C	LYS LYS	516	36.308	-8.986	91.632	1.00 20.00
ATOM ATOM	1949	0	LYS	516	36.045	-8.054	92.389	1.00 20.00
ATOM	1950	N	LEU	517		-10.024	92.024	1.00 20.00
ATOM	1952	CA	LEU	517		-10.086	93.364	1.00 20.00
ATOM	1953	CB	LEU	517		-11.391	93.662	1.00 20.00
ATOM	1954	ÇG	LEU	517		-12.646	93.499	1.00 20.00
ATOM	1955	CD1	LEU	517		-13.929	93.807	1.00 20.00
MOTA	1956	CD2	LEU	517	36.158	-12.536	94.320	1.00 20.00
MOTA	1957	С	LEU	517	38.532	-8.949	93.545	1.00 20.00
MOTA	1958	0	LEU	517	39.091	-8.440	92.575	1.00 20.00
MOTA	1959	N	LEU	518	38.719	-8.513	94.809	1.00 20.00
MOTA	1961	CA	LEU	518	39.625	-7.448	95.142	1.00 20.00
ATOM	1962	CB	LEU	518	40.947	-7.494	94.355	1.00 20.00 1.00 20.00
MOTA	1963	CG	LEU	518	41.918	-6.351 -6.480	94.714 96.156	1.00 20.00
ATOM	1964		LEU	518	42.433	-6.480 -6.226	93.676	1.00 20.00
ATOM	1965	CD2	LEU LEU	518 518	38.997	-6.114	94.879	1.00 20.00
MOTA	1966 1967	0	LEU	518	39.208	-5.171	95.640	1.00 20.00
ATOM ATOM	1968	N	GLU	519	38.191	-5.992	93.804	1.00 20.00
ATOM	1970	CA	GLU	519	37.604	-4.713	93.517	1.00 20.00
ATOM	1971	СВ	GLU	519	37.515	-4.360	92.020	1.00 20.00
ATOM	1972	CG	GLU	519	38.842	-3.943	91.381	1.00 20.00
ATOM	1973	CD	GLU	519	39.585	-5.191	90.933	1.00 20.00
ATOM	1974		GLU	519	38.935	-6.078	90.320	1.00 20.00
ATOM	1975		GLU	519	40.814	-5.272	91.196	1.00 20.00
ATOM	1976	С	GLU	519	36.208	-4.674	94.044	1.00 20.00
ATOM	1977	0	GLU	519	35.528	-5.696	94.136	1.00 20.00
ATOM	1978	N	GLY	520	35.758	-3.463	94.422	1.00 20.00
ATOM	1980	CA	GLY	520	34.439	-3.272	94.938	1.00 20.00
ATOM	1981	C	GLY	520	33.813	-2.189	94.136	1.00 20.00
ATOM	1982	0	GLY	520	34.491	-1.278	93.667	1.00 20.00
ATOM	1983	N	GLU	521	32.483	-2.262	93.968	1.00 40.00

•

M	1985	CA	GLU	521	31.802	-1.288	93.176		40.00
ALOM	1986	CB	GLU	521	30.416	-1.771	92.716		40.00
ATOM	1987	CG	GLU	521	29.514	-2.180	93.882		40.00
. M	1988	CD	GLU	521	28.220	-2.746	93.314		40.00
A. OM	1989	OE1	GLU	521	27.535	-3.502	94.053		40.00
ATOM	1990	OE2	GLU	521	27.901	-2.435	92.135		40.00
MOTA	1991	С	GLU	521	31.612	-0.046	93.973		40.00
MOTA	1992	0	GLU	521	31.258	-0.082	95.150		40.00
ATOM	1993	N	PRO	522	31.876	1.066	93.349 92.484		40.00
ATOM	1994	CD	PRO	522	33.036 31.617	1.177 2.298	94.026		40.00
ATOM	1995	CA	PRO	522 522	32.447	3.373	93.318		40.00
ATOM	1996	CB	PRO PRO	522	33.044	2.661	92.089		40.00
ATOM	1997	CG C	PRO	522	30.143	2.511	94.004		40.00
ATOM	1998 1999	0	PRO	522	29.528	2.289	92.962		40.00
MOTA MOTA	2000	N	ARG	523	29.558	2.927	95.142		60.00
ATOM	2002	CA	ARG	523	28.138	3.104	95.212		60.00
ATOM	2003	СВ	ARG	523	27.632	3.334	96.647		60.00
ATOM	2004	CG	ARG	523	27.668	2.065	97.500	1.00	60.00
ATOM	2005	CD	ARG	523	26.622	1.037	97.064	1.00	60.00
ATOM	2006	NE	ARG	523	26.744	-0.152	97.951	1.00	60.00
ATOM	2008	CZ	ARG	523	25.823	-1.155	97.856	1.00	60.00
ATOM	2009	NH1	ARG	523	24.792	-1.047	96.968		60.00
MOTA	2012	NH2	ARG	523	25.934	-2.264	98.645		60.00
ATOM	2015	С	ARG	523	27.691	4.256	94.375		60.00
ATOM	2016	0	ARG	523	26.770	4.121	93.570		60.00
MOTA	2017	N	GLU	524	28.341	5.425	94.525		60.00
ATOM	2019	CA	GLU	524	27.889	6.552	93.767		60.00
MOTA	2020	CB	GLU	524	28.307	7.917	94.338		60.00
MOTA	2021	CG	GLU	524	29.821	8.130	94.358		60.00
MOTA	2022	CD	GLU	524	30.077	9.592	94.694		60.00
ATOM	2023	OE1	GLU	524	29.169	10.425	94.430		60.00
ATOM	2024	OE2	GLU	524	31.183	9.896 6.463	95.214 92.398		60.00
ATOM	2025	C	GLU	524 524	28.463 29.462	5.782	92.170		60.00
ATOM	2026	O N	GLU PHE	525	27.807	7.140	91.438		60.00
MOTA	2027 2029	CA	PHE	525	28.296	7.136	90.096		60.00
ATOM ATOM	2030	CB	PHE	525	27.511	6.173	89.180		60.00
ATOM	2031	CG	PHE	525	26.062	6.520	89.262	1.00	60.00
ATOM	2032		PHE	525	25.327	6.139	90.361	1.00	60.00
ATOM	2033	CD2	PHE	525	25.421	7.158	88.224	1.00	60.00
ATOM	2034	CE1	PHE	525	23.986	6.428	90.447		60.00
ATOM	2035	CE2	PHE	525	24.079	7.449	88.302		60.00
ATOM	2036	cz	PHE	525	23.361	7.094	89.419		60.00
MOTA	2037	С	PHE	525	28.221	8.522	89.541		60.00
MOTA	2038	0	PHE	525	27.144	9.036	89.244		60.00
ATOM	2039	N	VAL	526	29.385	9.185	89.416		60.00
MOTA	2041	CA	VAL	526	29.371	10.481	88.812		60.00
MOTA	2042	CB	VAL	526	30.667	11.230	88.964		60.00
MOTA	2043		VAL	526	31.810	10.425	88.324 88.360		60.00
ATOM	2044	CG2		526 526	30.481 29.111	12.633 10.214	87.369		60.00
ATOM	2045	C	VAL	526 526	28.324	10.214	86.722		60.00
ATOM	2046	0	VAL GLU	527	29.766	9.165	86.840		60.00
ATOM	2047 2049	N CA	GLU	527	29.567	8.755	85.486		60.00
ATOM	2049	CB	GLU	527	30.877	8.509	84.718		60.00
ATOM ATOM	2050	CG	GLU	527	31.745	7.401	85.318		60.00
ATOM	2051	CD	GLU	527	32.996	7.277	84.460		60.00
ATOM	2052	OE1		527	33.118	8.051	83.473		60.00
ATOM	2054	OE2		527	33.850	6.407	84.782		60.00
ATOM	2055	C	GLU	527	28.852	7.454	85.613		60.00
ATOM	2056	0	GLU	527	28.059	7.264	86.534		60.00
MOTA	2057	N	ASN	528	29.098	6.517	84.682		60.00
MOTA	2059	CA	ASN	528	28.438	5.254	84.795	1.00	60.00

şi

ATOM	2060	CB	ASN	528	28.583	4.372	83.545	1.00 60.00
ATOM	2061	CG	ASN	528	27.745	5.007	82.446	1.00 60.00
MOTA	2062	OD1	ASN	528	28.080	6.064	81.915	1.00 60.00
; A	2063	ND2	ASN	528	26.613	4.339	82.093	1.00 60.00
ATOM	2066	С	ASN	528	29.058	4.542	85.951	1.00 60.00
ATOM	2067	O	ASN	528	30.106	4.946	86.451	1.00 60.00
ATOM	2068	N	SER	529	28.404	3.462	86.420	1.00 60.00
ATOM	2070	CA	SER	529	28.932	2.745	87.541	1.00 60.00
ATOM	2071	СВ	SER	529	27.912	1.823	88.230	1.00 60.00
ATOM	2072	OG	SER	529	26.889	2.597	88.837	1.00 60.00
АТОМ	2074	С	SER	529	30.065	1.899	87.074	1.00 60.00
ATOM	2075	0	SER	529	30.100	1.453	85.928	1.00 60.00
АТОМ	2076	N	GLU	530	31.040	1.679	87.972	1.00 40.00
ATOM	2078	CA	GLU	530	32.187	0.891	87.648	1.00 40.00
ATOM	2079	СВ	GLU	530	33.402	1.722	87.198	1.00 40.00
ATOM	2080	CG	GLU	530	33.230	2.428	85.852	1.00 40.00
ATOM	2081	CD	GLU	530	34.477	3.269	85.618	1.00 40.00
ATOM	2082	OE1		530	34.663	3.755	84.470	1.00 40.00
ATOM	2083	OE2	GLU	530	35.262	3.437	86.590	1.00 40.00
ATOM	2084	C	GLU	530	32.595	0.225	88.914	1.00 40.00
ATOM	2085	ō	GLU	530	31.996	0.441	89.966	1.00 40.00
ATOM	2086	N	CYS	531	33.630	-0.629	88.833	1.00 20.00
ATOM	2088	CA	CYS	531	34.103	-1.267	90.016	1.00 20.00
ATOM	2089	СВ	CYS	531	34.350	-2.774	89.869	1.00 20.00
ATOM	2090	SG	CYS	531	34.511	-3.530	91.504	1.00 20.00
ATOM	2091	C	CYS	531	35.424	-0.624	90.264	1.00 20.00
ATOM	2092	0	CYS	531	36.142	-0.277	89.328	1.00 20.00
ATOM	2093	N	ILE	532	35.769	-0.436	91.548	1.00 20.00
ATOM	2095	CA	ILE	532	36.989	0.225	91.890	1.00 20.00
ATOM	2096	CB	ILE	532	36.762	1.494	92.659	1.00 20.00
ATOM	2097	CG2	ILE	532	36.068	1.136	93.983	1.00 20.00
ATOM	2098	CG1	ILE	532	38.073	2.277	92.821	1.00 20.00
ATOM	2099	CD1	ILE	532	37.862	3.702	93.330	1.00 20.00
ATOM	2100	C	ILE	532	37.797	-0.698	92.746	1.00 20.00
ATOM	2101	o	ILE	532	37.286	-1.694	93.251	1.00 20.00
ATOM	2102	N	GLN	533	39.099	-0.398	92.911	1.00 20.00
ATOM	2104	CA	GLN	533	39.970	-1.243	93.677	1.00 20.00
ATOM	2105	СВ	GLN	533	41.456	-1.010	93.368	1.00 20.00
ATOM	2106	CG	GLN	533	41.913	0.404	93.730	1.00 20.00
ATOM	2107	CD	GLN	533	43.389	0.531	93.386	1.00 20.00
ATOM	2108	OE1		533	44.031	-0.438	92.983	1.00 20.00
ATOM	2109		GLN	533	43.948	1.759	93.553	1.00 20.00
ATOM	2112	C	GLN	533	39.798	-0.994	95.138	1.00 20.00
ATOM	2113	0	GLN	533	39.414	0.096	95.558	1.00 20.00
ATOM	2114	N	CYS	534	40.071	-2.031	95.955	1.00 20.00
ATOM	2116	CA	CYS	534	40.010	-1.852	97.371	1.00 20.00
ATOM	2117	СВ	CYS	534	39.102	-2.844	98.131	1.00 20.00
ATOM	2118	SG	CYS	534	37.326	-2.688	97.744	1.00 20.00
ATOM	2119	С	CYS	534	41.410	-2.018	97.894	1.00 20.00
ATOM	2120	Ō	CYS	534	42.283	-2.538	97.200	1.00 20.00
ATOM	2121	N	HIS	535	41.663	-1.554	99.138	1.00 20.00
ATOM	2123	CA	HIS	535	42.975	-1.624	99.726	1.00 20.00
ATOM	2124	СВ	HIS	535	43.142		100.943	1.00 20.00
ATOM	2125	ÇG	HIS	535	44.548		101.466	1.00 20.00
ATOM	2126		HIS	535	45.604		101.031	1.00 20.00
ATOM	2127		HIS	535	45.030		102.507	1.00 20.00
ATOM	2129		HIS	535	46.342		102.649	1.00 20.00
ATOM	2130		HIS	535	46.737		101.775	1.00 20.00
ATOM	2132	C	HIS	535	43.233		100.155	1.00 20.00
ATOM	2132	0	HIS	535	42.305		100.356	1.00 20.00
ATOM	2134	N	PRO	536	44.486		100.264	1.00 20.00
ATOM	2134	CD	PRO	536	45.537	-2.747	99.494	1.00 20.00
ATOM	2136	CA	PRO	536	44.852		100.662	1.00 20.00
ATOM	2137	CB	PRO	536	46.357	-4.843	100.391	1.00 20.00
111 011	223,	-2		- - -	 -			

M	2138	CG	PRO	536	46.816		100.015	1.00 20.00	
ATOM	2139	С	PRO	536	44.427		102.064	1.00 20.00	
МОТА	2140	0	PRO	536	44.167		102.364	1.00 20.00	
: 1	2141	N	GLU	537	44.390		102.944 104.307	1.00 20.00 1.00 20.00	
MOTA	2143	CA	GLU	537	43.977 44.378		104.307	1.00 20.00	
ATOM	2144	CB	GLU GLU	537 537	45.885		105.478	1.00 20.00	
ATOM	2145 2146	CG CD	GLU	537	46.253		106.397	1.00 20.00	
ATOM ATOM	2147		GLU	537	45.370		107.186	1.00 20.00	
ATOM	2148		GLU	537	47.420		106.324	1.00 20.00	
ATOM	2149	С	GLU	537	42.503	-4.368	104.422	1.00 20.00	
ATOM	2150	0	GLU	537	42.021	-5.109	105.278	1.00 20.00	
MOTA	2151	N	CYS	538	41.750		103.557	1.00 20.00	
MOTA	2153	CA	CYS	538	40.321		103.554	1.00 20.00	
MOTA	2154	CB	CYS	538	39.797		102.292	1.00 20.00	
MOTA	2155	SG	CYS	538	37.999		102.127	1.00 20.00 1.00 20.00	
MOTA	2156	C	CYS	538	39.911 40.518		103.539 102.854	1.00 20.00	
MOTA	2157	0	CYS	538 539	38.889		102.834	1.00 20.00	
ATOM	2158	N Ca	LEU LEU	539	38.409		104.428	1.00 60.00	
ATOM ATOM	2160 2161	CA CB	LEU	539	38.406		105.860	1.00 60.00	
ATOM	2162	CG	LEU	539	37.889		105.959	1.00 60.00	
MOTA	2163		LEU	539	38.825	-9.831	105.231	1.00 60.00	
MOTA	2164		LEU	539	37.635	-9.253	107.421	1.00 60.00	
MOTA	2165	С	LEU	539	36.994		103.954	1.00 60.00	
MOTA	2166	0	LEU	539	36.240		104.147	1.00 60.00	
MOTA	2167	N	PRO	540	36.662		103.289	1.00 60.00	
MOTA	2168	CD	PRO	540	37.663		102.484	1.00 60.00	
MOTA	2169	CA	PRO	540	35.343		102.736	1.00 60.00 1.00 60.00	
MOTA	2170	СВ	PRO	540	35.489		101.512 101.667	1.00 60.00	
MOTA	2171	CG	PRO	540 540	36.865		101.607	1.00 60.00	
ATOM	2172	C	PRO PRO	540	34.718		104.661	1.00 60.00	
MOTA	2173 2174	O N	GLN	541	33.050		103.404	1.00 60.00	
ATOM ATOM	2174	CA	GLN	541	31.990		104.186	1.00 60.00	
ATOM	2177	СВ	GLN	541	30.807	-7.956	104.410	1.00 60.00	
АТОМ	2178	CG	GLN	541	31.077	-6.867	105.446	1.00 60.00	
MOTA	2179	CD	GLN	541	31.039		106.816	1.00 60.00	
MOTA	2180		GLN	541	31.871		107.132	1.00 60.00	
MOTA	2181		GLN	541		-7.140		1.00 60.00	
MOTA	2184	С	GLN	541		-10.050		1.00 60.00 1.00 60.00	
MOTA	2185	0	GLN	541		-10.843 -10.148		1.00 60.00	
MOTA	2186	N	ALA ALA	542 542		-10.146		1.00 60.00	
ATOM	2188 2189	CA CB	ALA	542		-11.108		1.00 60.00	
ATOM ATOM	2190	C	ALA	542		-11.120		1.00 60.00	
ATOM	2191	0	ALA	542		-12.127		1.00 60.00	
ATOM	2192	N	MET	543	30.177		100.617	1.00 60.00	
MOTA	2194	CA	MET	543	30.686		99.290	1.00 60.00	
MOTA	2195	CB	MET	543	30.785		98.861	1.00 60.00	
MOTA	2196	CG	MET	543	31.247			1.00 60.00	
MOTA	2197	SD	MET	543	30.011			1.00 60.00 1.00 60.00	
MOTA	2198	CE	MET	543	28.880	-7.154 -10.297		1.00 60.00	-
ATOM	2199	C	MET MET	543 543		-10.237		1.00 60.00	
MOTA	2200 2201	O N	ASN	544		-10.480	98.026	1.00 60.00	
ATOM ATOM	2201	CA	ASN	544		-11.044	97.865	1.00 60.00	
ATOM	2204	СВ	ASN	544		-11.292	96.389	1.00 60.00	
ATOM	2205	CG	ASN	544	34.181		95.639	1.00 60.00	
MOTA	2206		ASN	544	35.191	-9.411	95.218	1.00 60.00	
MOTA	2207	ND2	ASN	544		-9.453		1.00 60.00	
MOTA	2210	C.	ASN	544		-10.129		1.00 60.00	
ATOM	2211	0	ASN	544		-10.570		1.00 60.00 1.00 60.00	
ATOM	2212	N	ILE	545	34.851	-8.826	98.131	1.00 00.00	

ATOM	2214	CA	ILE	545	35.738	-7.858	98.706	1.00	60.00
MOTA	2215	СВ	ILE	545	36.858	-7.450	97.791	1.00	60.00
АТОМ	2216	CG2	ILE	545	36.259	-6.690	96.596		60.00
<i>i</i> 4	2217	CG1	ILE	545	37.926	-6.670	98.574		60.00
MOTA	2218	CD1	ILE	545	38.669	-7.527	99.599		60.00
MOTA	2219	С	ILE	545	34.872	-6.670	98.974		60.00
MOTA	2220	0	ILE	545	34.027	-6.327	98.149		60.00
MOTA	2221	N	THR	546	35.013		100.138		60.00
MOTA	2223	CA	THR	546	34.063		100.276		60.00
MOTA	2224	CB	THR	546	32.913		101.162		60.00
MOTA	2225	OG1		546	32.278		100.657		60.00
MOTA	2227	CG2	THR	546	31.908		101.168		60.00
MOTA	2228	С	THR	546	34.655		100.798		60.00
MOTA	2229	0	THR	546	35.273		101.862		60.00
MOTA	2230	N	CYS	547	34.478		100.028		20.00
MOTA	2232	CA	CYS	547	34.910		100.451		20.00
MOTA	2233	СВ	CYS	547	36.397		100.138		20.00
ATOM	2234	SG	CYS	547	36.804	-0.821	98.370		20.00
ATOM	2235	С	CYS	547	34.054	-0.301	99.741		20.00
MOTA	2236	0	CYS	547	33.714	-0.488	98.574		20.00
MOTA	2237	N	THR	548	33.658		100.443		20.00
MOTA	2239	CA	THR	548	32.823	1.753	99.812		20.00
MOTA	2240	СВ	THR	548	32.286		100.761		20.00
MOTA	2241	OG1	THR	548	31.326	3.597	100.100		20.00
MOTA	2243	CG2	THR	548	33.444	3.643	101.295		20.00
ATOM	2244	C	THR	548	33.588	2.446	98.731 97.635		20.00
ATOM	2245	0	THR	548 549	33.071 34.860	2.659 2.795	99.006		20.00
MOTA	2246	N	GLY	549	35.646	3.490	98.029		20.00
MOTA	2248	CA	GLY	549	37.075	3.158	98.301		20.00
MOTA	2249	C O	GLY GLY	549	37.389	2.474	99.273		20.00
ATOM ATOM	2250 2251	N	ARG	550	37.987	3.642	97.439		40.00
ATOM	2253	CA	ARG	550	39.369	3.329	97.635		40.00
ATOM	2254	CB	ARG	550	40.252	3.660	96.418		40.00
АТОМ	2255	CG	ARG	550	40.302	5.146	96.055	1.00	40.00
ATOM	2256	CD	ARG	550	40.796	5.399	94.628	1.00	40.00
ATOM	2257	NE	ARG	550	41.174	6.836	94.522	1.00	40.00
ATOM	2259	CZ	ARG	550	42.474	7.204	94.715	1.00	40.00
ATOM	2260	NH1	ARG	550	43.427	6.249	94.930		40.00
MOTA	2263	NH2	ARG	550	42.824	8.522	94.685		40.00
ATOM	2266	С	ARG	550	39.863	4.106	98.812		40.00
ATOM	2267	0	ARG	550	39.578	5.294	98.953		40.00
ATOM	2268	N	GLY	551	40.613	3.430	99.704		40.00
ATOM	2270	CA	GLY	551	41.142		100.872		40.00
MOTA	2271	С	GLY	551	40.981		101.997		40.00
ATOM	2272	0	GLY	551	40.006		102.054		40.00
MOTA	2273	N	PRO	552	41.932		102.888		20.00
MOTA	2274	CD	PRO	552	43.306		102.469		20.00
MOTA	2275	CA	PRO	552	41.863		104.002		20.00
MOTA	2276	CB	PRO	552	43.276		104.570		20.00
MOTA	2277	CG	PRO	552	44.168		103.355		20.00
MOTA	2278	С	PRO	552	40.827		105.015 105.877		20.00
ATOM	2279	0	PRO	552	40.513		103.877		20.00
ATOM	2280	N	ASP	553	40.354		104.387		20.00
MOTA	2282	CA	ASP	553 553	39.319 39.206		105.875		20.00
ATOM	2283	CB CG	ASP ASP	553 553	38.294		103.347		20.00
ATOM	2284	OD1		553	37.963		107.117		20.00
ATOM	2285 2286	OD1		553	37.920		107.284		20.00
ATOM ATOM	2287	C C	ASP	553	37.996		105.403		20.00
ATOM	2288	0	ASP	553	37.059		106.176		20.00
ATOM	2289	N	ASN	554	37.896		104.081		20.00
ATOM	2291	CA	ASN	554	36.688		103.405		20.00
ATOM	2292	CB	ASŃ	554	36.819		101.872		20.00

H A	2293	CG	ASN	554	36.906		101.440	1.00	20.00
ATOM	2294		ASN	554	36.433	5.049	100.361		20.00
AͲOM	2295	ND2	ASN	554	37.526		102.283	,	20.00
i 4	2298	С	ASN	554	36.198		103.736		20.00
ATOM	2299	0	ASN	554	35.006		103.612		20.00
ATOM	2300	N	CYS	555	37.096		104.155		20.00
MOTA	2302	CA	CYS	555	36.709		104.278		20.00
MOTA	2303	CB	CYS	555	37.838		104.693		20.00
ATOM	2304	sg	CYS	555	37.418		104.055		20.00
MOTA	2305	С	CYS	555	35.503		105.127		20.00
MOTA	2306	0	CYS	555	35.108		105.987		20.00
MOTA	2307	N	ILE	556	34.806		104.783 105.529		20.00
MOTA	2309	CA	ILE	556	33.694		103.323		20.00
ATOM	2310	CB	ILE	556	32.844 31.910		105.694		20.00
ATOM	2311	CG2		556 556	32.088		103.635		20.00
ATOM	2312		ILE	556	32.991		102.621		20.00
ATOM	2313 2314	CDI	ILE	556	34.192		106.749		20.00
ATOM ATOM	2314	0	ILE	556	33.569		107.807	1.00	20.00
ATOM	2316	N	GLN	557	35.331		106.620	1.00	20.00
ATOM	2318	CA	GLN	557	35.888	-4.574	107.717	1.00	20.00
ATOM	2319	СВ	GLN	557	35.398	-6.031	107.749		20.00
ATOM	2320	CG	GLN	557	35.950	-6.848	108.917		20.00
ATOM	2321	CD	GLN	557	35.315		110.194		20.00
ATOM	2322	OE1	GLN	557	35.729		110.735		20.00
ATOM	2323	NE2	GLN	557	34.271		110.688		20.00
MOTA	2326	С	GLN	557	37.382		107.564		20.00
ATOM	2327	0	GLN	557	37.912		106.540		20.00
MOTA	2328	N	CYS	558	38.134		108.568		20.00
ATOM	2330	CA	CYS	558	39.559		108.413 109.577		20.00
MOTA	2331	CB	CYS	558	40.210		109.377		20.00
MOTA	2332	SG	CYS	558 558	41.972 40.134		108.333		20.00
ATOM	2333	C	CYS CYS	558	39.608		108.930		20.00
ATOM	2334 2335	O N	ALA	559	41.202		107.523		20.00
ATOM ATOM	2337	CA	ALA	559	41.859		107.368		20.00
MOTA	2338	CB	ALA	559	42.906		106.242		20.00
ATOM	2339	Ç	ALA	559	42.574	-8.172	108.632	1.00	20.00
ATOM	2340	0	ALA	559	42.555		109.090		20.00
ATOM	2341	N	HIS	560	43.214		109.234		20.00
ATOM	2343	CA	HIS	560	44.004		110.413		20.00
MOTA	2344	CB	HIS	560	45.392		110.300		20.00
ATOM	2345	CG	HIS	560	46.258		109.265		20.00
MOTA	2346		HIS	560	47.279		109.413 107.907		20.00
MOTA	2347		HIS	560	46.127 47.068		107.307		20.00
MOTA	2349		HIS HIS	560 560	47.792		108.180		20.00
ATOM	2350 2352	NE2	HIS	560	43.278		111.530		20.00
ATOM	2353	0	HIS	560	42.187		111.915		20.00
ATOM ATOM	2354	N	TYR	561	43.886		112.101	1.00	20.00
MOTA	2356	CA	TYR	561	43.280	-4.944	113.218		20.00
ATOM	2357	CB	TYR	561	44.253		114.387	1.00	20.00
ATOM	2358	CG	TYR	561	44.768	-6.077	114.759		20.00
ATOM	2359	CD1	TYR	561	45.838	-6.609	114.078		20.00
ATOM	2360	CE1	TYR	561	46.328		114.398		20.00
MOTA	2361	CD2	TYR	561	44.182		115.764		20.00
ATOM	2362	CE2	TYR	561	44.670		116.091		20.00
MOTA	2363	CZ	TYR	561	45.744		115.408		20.00
ATOM	2364	OH	TYR	561	46.253		115.746		20.00
ATOM	2366	C	TYR	561	42.788		112.823 112.019		20.00
ATOM	2367	0	TYR	561	43.405 41.644		112.019		20.00
ATOM	2368	N	ILE	562 562	41.644		113.406		20.00
MOTA	2370	CA CB	ILE ILE	562	39.577		113.003		20.00
ATOM	2371	CB	1116	302	37.311	1.710	113,043		

ATOM	2372	CG2	ILE	562	39.101		112.787	1.00 20.00
ATOM	2373	CG1	ILE	562	39.067	-2.929	112.004	1.00 20.00
ATOM	2374	CD1		562	37.575	-3.238	112.135	1.00 20.00
1	2375	С	ILE	562	41.455	-0.963	114.180	1.00 20.00
MOTA	2376	0	ILE	562	41.281		115.360	1.00 20.00
MOTA	2377	N	ASP	563	42.010	0.207	113.817	1.00 20.00
MOTA	2379	CA	ASP	563	42.386	1.150	114.825	1.00 20.00 1.00 20.00
ATOM	2380	CB	ASP	563	43.880 44.724	1.403	115.205 113.981	1.00 20.00
ATOM	2381	CG	ASP	563	44.724	1.239		1.00 20.00
MOTA	2382		ASP ASP	563 563	45.905		114.161	1.00 20.00
MOTA	2383 2384	C	ASP	563	42.058	2.534	114.384	1.00 20.00
ATOM ATOM	2385	0	ASP	563	42.380		113.269	1.00 20.00
ATOM	2386	N	GLY	564	41.419	3.312	115.279	1.00 20.00
ATOM	2388	CA	GLY	564	40.994		114.891	1.00 20.00
ATOM	2389	C	GLY	564	40.076		113.755	1.00 20.00
ATOM	2390	o	GLY	564	39.370	3.320	113.749	1.00 20.00
ATOM	2391	N	PRO	565	40.053	5.164	112.786	1.00 20.00
ATOM	2392	CD	PRO	565	39.999	6.582	113.110	1.00 20.00
ATOM	2393	CA	PRO	565	39.193	4.835	111.684	1.00 20.00
ATOM	2394	CB	PRO	565	38.720	6.167	111.103	1.00 20.00
ATOM	2395	CG	PRO	565	38.849	7.155	112.272	1.00 20.00
ATOM	2396	С	PRO	565	39.914		110.669	1.00 20.00
MOTA	2397	0	PRO	565	39.330	-	109.616	1.00 20.00
MOTA	2398	N	HIS	566	41.161		110.938	1.00 20.00
MOTA	2400	CA	HIS	566	41.857	2.923	109.880	1.00 20.00
MOTA	2401	CB	HIS	566	43.245	3.513	109.586	1.00 20.00 1.00 20.00
ATOM	2402	CG	HIS	566	43.183	4.857 5.175	108.927 107.625	1.00 20.00
ATOM	2403		HIS	566 566	42.946 43.342	6.056	107.523	1.00 20.00
ATOM	2404		HIS	566 566	43.342	7.033	109.554	1.00 20.00
ATOM	2406 2407		HIS HIS	566	42.955	6.547	107.449	1.00 20.00
ATOM ATOM	2407	C	HIS	566	42.052	1.463	110.093	1.00 20.00
ATOM	2410	0	HIS	566	42.131	0.968	111.216	1.00 20.00
ATOM	2411	N	CYS	567	42.132		108.961	1.00 20.00
ATOM	2413	CA	CYS	567	42.335	-0.671	108.965	1.00 20.00
ATOM	2414	СВ	CYS	567	41.714	-1.325	107.712	1.00 20.00
MOTA	2415	SG	CYS	567	42.066	-3.090	107.483	1.00 20.00
MOTA	2416	С	CYS	567	43.819		108.966	1.00 20.00
ATOM	2417	0	CYS	567	44.481		107.963	1.00 20.00
MOTA	2418	N	VAL	568	44.384		110.117	1.00 20.00
MOTA	2420	CA	VAL	568	45.807		110.192	1.00 20.00
MOTA	2421	CB	VAL	568	46.459		111.294	1.00 20.00
ATOM	2422		VAL	568	47.967		111.276	1.00 20.00 1.00 20.00
MOTA	2423		VAL	568	46.188		111.019 110.262	1.00 20.00
ATOM	2424	С О	VAL VAL	568 568	46.191 45.432		110.728	1.00 20.00
MOTA	2425 2426	N	LYS	569	47.374		109.694	1.00 20.00
ATOM ATOM	2428	CA	LYS	569	47.951		109.640	1.00 20.00
MOTA	2429	CB	LYS	569	49.216		108.767	1.00 20.00
MOTA	2430	CG	LYS	569	50.380		109.372	1.00 20.00
MOTA	2431	CD	LYS	569	51.739		108.741	1.00 20.00
ATOM	2432	CE	LYS	569	51.942		107.375	1.00 20.00
ATOM	2433	NZ	LYS	569	53.302	-3.698	106.869	1.00 20.00
ATOM	2437	С	LYS	569	48.373	-4.943	111.002	1.00 20.00
ATOM	2438	0	LYS	569	48.320		111.312	1.00 20.00
MOTA	2439	N	THR	570	48.869		111.834	1.00 20.00
MOTA	2441	CA	THR	570	49.301		113.153	1.00 20.00
MOTA	2442	CB	THR	570	50.768		113.237	1.00 20.00
MOTA	2443	OG1	THR	570	51.085		114.500	1.00 20.00
ATOM	2445	CG2	THR	570	51.560		113.022	1.00 20.00
ATOM	2446	С	THR	570	49.043		114.041	1.00 20.00
ATOM	2447	0	THR	570	48.887		113.571	1.00 20.00
MOTA	2448	N	CYS	571	49.001	-3.415	115.365	1.00 20.00

•

M	2450	CA	CYS	571	48.677		116.236		20.00	
ALOM	2451	CB	CYS	571	48.297		117.655		20.00	
MOTA	2452	SG	CYS	571	46.798		117.635		20.00	
i 1	2453	С	CYS	571	49.804		116.339		20.00	
A1'OM	2454	0	CYS	571	50.985		116.291		20.00	
MOTA	2455	N	PRO	572	49.410 48.187		116.467 115.816		20.00	
MOTA	2456	CD	PRO	572 572	50.361		116.601		20.00	•
ATOM	2457	CA	PRO PRO	572 572	49.585		116.339		20.00	
MOTA	2458 2459	CB CG	PRO	572	48.435		115.422		20.00	
ATOM ATOM	2459	C	PRO	572	50.958		117.971		20.00	
ATOM	2461	0	PRO	572	50.380		118.840		20.00	
MOTA	2462	N	ALA	573	52.112		118.188	1.00	20.00	
ATOM	2464	CA	ALA	573	52.753	1.489	119.469	1.00	20.00	
ATOM	2465	CB	ALA	573	54.133	2.167	119.501		20.00	
ATOM	2466	С	ALA	573	51.895	2.147	120.503	1.00	20.00	
ATOM	2467	0	ALA	573	51.194		120.229		20.00	
MOTA	2468	N	GLY	574	51.916		121.729		20.00	
MOTA	2470	CA	GLY	574	51.186		122.834		20.00	
MOTA	2471	С	GLY	574	49.808		122.845		20.00	
ATOM	2472	0	GLY	574	49.070		123.817		20.00	
MOTA	2473	N	VAL	575	49.425		121.753		20.00	
MOTA	2475	CA	VAL	575	48.121		121.693 120.509		20.00	
MOTA	2476	CB	VAL	575 575	47.314 46.002		120.303		20.00	
MOTA	2477		VAL VAL	575 575	47.105		120.612		20.00	
ATOM ATOM	2478 2479	CGZ	VAL	575	48.343		121.542		20.00	
ATOM	2480	0	VAL	575	49.335		120.954		20.00	
ATOM	2481	N	MET	576	47.427		122.094		20.00	
ATOM	2483	CA	MET	576	47.607	-3.428	121.978	1.00	20.00	
ATOM	2484	СВ	MET	576	47.818	-4.162	123.311		20.00	
MOTA	2485	CG	MET	576	48.045		123.110		20.00	
MOTA	2486	SD	MET	576	49.614		122.282		20.00	
ATOM	2487	CE	MET	576	49.204		121.961		20.00	
ATOM	2488	С	MET	576	46.416		121.335		20.00	
MOTA	2489	0	MET	576	45.309		121.390 120.684		20.00	
ATOM	2490	N	GLY	577 577	46.635 45.556		120.037		20.00	
ATOM	2492	CA C	GLY GLY	577	44.786		121.098		20.00	
ATOM ATOM	2493 2494	0	GLY	577	45.342		121.898		20.00	
ATOM	2495	N	GLU	578	43.466		121.130		40.00	
ATOM	2497	CA	GLU	578	42.669		122.105	1.00	40.00	
ATOM	2498	CB	GLU	578	41.196	-6.551	122.069	1.00	40.00	
ATOM	2499	CG	GLU	578	40.554		120.691		40.00	
MOTA	2500	CD	GLU	578	39.200		120.734		40.00	
MOTA	2501	OE1		578	38.692		121.862		40.00	
MOTA	2502	OE2		578	38.658		119.638		40.00	
ATOM	2503	С	GLU	578	42.767		121.768 120.643		40.00	
ATOM	2504	0	GLU	578 579	42.470 43.221		120.043		40.00	
ATOM	2505	N	ASN ASN	579 579		-10.652			40.00	
MOTA MOTA	2507 2508	CA CB	ASN	579		-11.428			40.00	
ATOM	2509	CG	ASN	579		-11.027			40.00	
ATOM	2510	OD1		579		-11.102			40.00	
ATOM	2511	ND2		579		-10.587			40.00	
ATOM	2514	С	ASN	579	42.032	-11.186	122.157		40.00	
MOTA	2515	0	ASN	579		-11.805			40.00	
ATOM	2516	N	ASN	580		-10.939			60.00	
ATOM	2518	CA	ASN	580		-11.401			60.00	
MOTA	2519	СВ	ASN	580		-12.684			60.00	
MOTA	2520	CG	ASN	580		-13.837			60.00	
MOTA	2521	OD1		580		-14.129			60.00	
ATOM	2522	ND2		580 580		-14.516			60.00 60.00	
MOTA	2525	С	ASN	580	30.01Z	-10.328	143.403	1.00	50.00	

ATOM	2526	0	ASN	580	39.232		123.968	1.00 60.00
ATOM	2527	N	THR	581	37.530		122.869	1.00 60.00
MOTA	2529	CA	THR	581	36.598		123.333	1.00 60.00
i 4	2530	CB	THR	581	35.565		122.316	1.00 60.00
MOTA	2531	OG1	THR	581	36.188	-8.483	121.168	1.00 60.00
MOTA	2533	CG2	THR	581	34.606		122.953	1.00 60.00
MOTA	2534	С	THR	581		-10.061		1.00 60.00
ATOM	2535	0	THR	581		-11.113		1.00 60.00
MOTA	2536	N	LEU	582	35.949		125.656	1.00 60.00
MOTA	2538	CA	LEU	582	35.234		126.768	1.00 60.00
MOTA	2539	CB	LEU	582	35.778		128.134	1.00 60.00
MOTA	2540	CG	LEU	582	35.012			1.00 60.00
MOTA	2541		LEU	582	35.132		129.400	1.00 60.00
MOTA	2542		LEU	582	35.449		130.643	1.00 60.00
ATOM	2543	С	LEU	582	33.850		126.615	1.00 60.00 1.00 60.00
ATOM	2544	0	LEU	582	33.652		126.247	1.00 60.00
ATOM	2545	N	VAL	583		-10.305		1.00 60.00
MOTA	2547	CA	VAL	583	31.499		126.695	1.00 60.00
MOTA	2548 ⁻	CB	VAL	583	30.462	-10.907 -10.265		1.00 60.00
ATOM	2549	CG1	VAL	583	29.073		125.789	1.00 60.00
MOTA	2550	CG2	VAL	583	30.715 31.241		127.629	1.00 60.00
MOTA	2551	C	VAL	583	31.685		128.776	1.00 60.00
ATOM	2552	0	VAL	583 584	30.519		127.128	1.00 60.00
MOTA	2553	N	TRP TRP	584	30.185		127.120	1.00 60.00
ATOM	2555	CA	TRP	584	31.011	-5.309		1.00 60.00
MOTA	2556	CB CG	TRP	584	30.852		128.493	1.00 60.00
MOTA	2557 2558	CD2	TRP	584	31.646		128.430	1.00 60.00
ATOM ATOM	2559	CE2	TRP	584	31.259	-2.139		1.00 60.00
ATOM	2560	CE3	TRP	584	32.627		127.561	1.00 60.00
ATOM	2561	CD1		584	30.038		129.578	1.00 60.00
ATOM	2562	NE1	TRP	584	30.266		130.191	1.00 60.00
ATOM	2564	CZ2	TRP	584	31.844		129.710	1.00 60.00
ATOM	2565	CZ3	TRP	584	33.218		127.780	1.00 60.00
ATOM	2566	CH2	TRP	584	32.833	-0.533	128.833	1.00 60.00
ATOM	2567	С	TRP	584	28.765	-6.301	127.534	1.00 60.00
ATOM	2568	0	TRP	584	28.044	-7.238	127.193	1.00 60.00
MOTA	2569	N	LYS	585	28.305		127.602	1.00 60.00
ATOM	2571	CA	LYS	585	26.959	-4.800	127.178	1.00 60.00
ATOM	2572	CB	LYS	585	26.533		127.263	1.00 60.00
ATOM	2573	CG	LYS	585	26.441		128.696	1.00 60.00
MOTA	2574	CD	LYS	585	26.260		128.778	1.00 60.00
MOTA	2575	CE	LYS	585	27.256		127.914	1.00 60.00
MOTA	2576	NZ	LYS	585	28.639		128.280	1.00 60.00
ATOM	2580	С	LYS	585	26.950		125.739	1.00 60.00
MOTA	2581	0	LYS	585	26.086		125.287	1.00 60.00
ATOM	2582	N	TYR	586	27.950		124.988	1.00 60.00 1.00 60.00
ATOM	2584	CA	TYR	586	28.085		123.609	1.00 60.00
MOTA	2585	CB	TYR	586	27.690		122.638 122.991	1.00 60.00
ATOM	2586	CG	TYR	586 586	28.454		122.545	1.00 60.00
ATOM	2587		TYR	586 586	29.742 30.421		122.848	1.00 60.00
ATOM	2588	CE1		586 586	27.853		123.734	1.00 60.00
MOTA	2589	CD2			28.527		124.039	1.00 60.00
MOTA	2590	CE2		586 586	29.814		123.594	1.00 60.00
ATOM	2591	CZ	TYR	586 586	30.511		123.910	1.00 60.00
ATOM	2592	OH	TYR TYR	586	29.514		123.310	1.00 60.00
ATOM	2594	С О	TYR	586	30.384		124.192	1.00 60.00
ATOM ATOM	2595 2596	N	ALA	587	29.789		122.299	1.00 60.00
ATOM ATOM	2598 2598	CA	ALA	587	31.126		122.057	1.00 60.00
ATOM	2599	CB	ALA	587	31.120		121.539	1.00 60.00
ATOM	2600	C	ALA	587	31.792		121.035	1.00 60.00
ATOM	2601	o	ALA	587	31.219		120.541	1.00 60.00
ATOM	2602	N	ASP	588	33.053		120.713	1.00 60.00
111 011	2002							

M	2604	CA	ASP	588	33.809 -5.378 119.742 1.00 60.00
A.JM	2605	СВ	ASP	588	35.298 -5.256 120.109 1.00 60.00
MOTA	2606	CG	ASP	588	35.393 -4.378 121.349 1.00 60.00
1 1	2607	OD1	ASP	588	34.698 -3.327 121.383 1.00 60.00
MOTA	2608	OD2	ASP	588	36.148 -4.754 122.286 1.00 60.00
MOTA	2609	С	ASP	588	33.720 -6.146 118.465 1.00 60.00
MOTA	2610	0	ASP	588	33.563 -7.366 118.473 1.00 60.00
ATOM	2611	N	ALA	589	33.802 -5.442 117.320 1.00 60.00
MOTA	2613	CA	ALA	589	33.704 -6.126 116.067 1.00 60.00
ATOM	2614	CB	ALA	589	32.786 -5.424 115.050 1.00 60.00
ATOM	2615	С	ALA	589	35.061 -6.195 115.453
ATOM	2616	0	ALA	589	
ATOM	2617	N	GLY	590	
ATOM	2619	CA	GLY	590 500	36.583 -7.458 114.058 1.00 60.00 37.680 -7.372 115.064 1.00 60.00
ATOM	2620	C	GLY	590 590	37.439 -7.336 116.269 1.00 60.00
ATOM	2621	0	GLY HIS	591	38.932 -7.335 114.574 1.00 60.00
ATOM	2622	N	HIS	591	40.055 -7.246 115.456 1.00 60.00
ATOM	2624 2625	CA CB	HIS	591	41.328 -7.879 114.871 1.00 60.00
ATOM	2625	CG	HIS	591	41.115 -9.292 114.411 1.00 60.00
ATOM ATOM	2627		HIS	591	40.894 -9.768 113.156 1.00 60.00
ATOM	2628		HIS	591	41.088 -10.392 115.240 1.00 60.00
MOTA	2630		HIS	591	40.855 -11.471 114.449 1.00 60.00
ATOM	2631		HIS	591	40.731 -11.142 113.176 1.00 60.00
ATOM	2633	C	HIS	591	40.311 -5.785 115.616 1.00 60.00
ATOM	2634	0	HIS	591	40.255 -5.028 114.649 1.00 60.00
ATOM	2635	N	VAL	592	40.576 -5.339 116.859 1.00 40.00
ATOM	2637	CA	VAL	592	40.795 -3.939 117.059 1.00 40.00
ATOM	2638	CB	VAL	592	39.588 -3.239 117.628 1.00 40.00
ATOM	2639	CG1	VAL	592	39.887 -1.741 117.821 1.00 40.00
ATOM	2640	CG2	VAL	592	38.401 -3.505 116.688 1.00 40.00
MOTA	2641	С	VAL	592	41.929 -3.781 118.019 1.00 40.00
MOTA	2642	0	VAL	592	42.264 -4.696 118.769 1.00 40.00
ATOM	2643	N	CYS	593	42.565 -2.597 117.989 1.00 20.00 43.667 -2.310 118.848 1.00 20.00
MOTA	2645	CA	CYS	593	
ATOM	2646	CB	CYS	593 503	44.810 -1.588 118.120 1.00 20.00 45.453 -2.575 116.742 1.00 20.00
ATOM	2647	SG	CYS	593 593	43.150 -1.376 119.893 1.00 20.00
ATOM	2648 2649	c o	CYS	593	42.462 -0.405 119.583 1.00 20.00
ATOM ATOM	2650	N	HIS	594	43.460 -1.661 121.173 1.00 20.00
ATOM	2652	CA	HIS	594	42.998 -0.809 122.227 1.00 20.00
ATOM	2653	CB	HIS	594	42.101 -1.511 123.263 1.00 20.00
ATOM	2654	CG	HIS	594	40.743 -1.878 122.739 1.00 20.00
ATOM	2655		HIS	594	40.271 -3.063 122.262 1.00 20.00
ATOM	2656	ND1	HIS	594	39.677 -1.007 122.698 1.00 20.00
ATOM	2658	CE1	HIS'	594	38.622 -1.700 122.200 1.00 20.00
ATOM	2659	NE2	HIS	594	38.935 -2.953 121.920 1.00 20.00
MOTA	2661	С	HIS	594	44.178 -0.267 122.972 1.00 20.00
MOTA	2662	0	HIS	594	45.251 -0.867 122.987 1.00 20.00
MOTA	2663	N	LEU	595	43.994 0.898 123.625 1.00 20.00
MOTA	2665	CA	LEU	595	45.068 1.563 124.306 1.00 20.00
MOTA	2666	CB	LEU	595	44.724 3.014 124.684 1.00 20.00
MOTA	2667	CG	LEU	595	45.878 3.792 125.340 1.00 20.00
ATOM	2668		LEU	595	47.067 3.945 124.376 1.00 20.00 45.390 5.145 125.882 1.00 20.00
ATOM	2669		LEU	595 505	
ATOM	2670	C	LEU	595 505	
MOTA	2671	0	LEU	595	
ATOM	2672	N	CYS	596 596	
MOTA	2674	CA	CYS CYS	596 596	47.264 0.207 127.023 1.00 20.00 48.515 -0.637 126.706 1.00 20.00
ATOM	2675 2676	CB SG	CYS	596 596	49.102 -1.717 128.046 1.00 20.00
MOTA	2676 2677	C	CYS	596	47.623 1.323 127.945 1.00 20.00
ATOM	2677 2678	0	CYS	596	48.193 2.327 127.521 1.00 20.00
ATOM ATOM	2678	N	HIS	597	47.271 1.201 129.238 1.00 20.00
ATOM	2013				

ATOM	2681	CA	HIS	597	47.588	2.296	130.103	1.00 20.00
MOTA	2682	CB	HIS	597	47.048	2.169	131.538	1.00 20.00
MOTA	2683	CG	HIS	597	47.173	3.456	132.300	1.00 20.00
1 4	2684	CD2	HIS	597	46.290	4.484	132.432	1.00 20.00
ATOM	2685	ND1	HIS	597	48.302	3.843	132.988	1.00 20.00
ATOM	2687	CE1	HIS	5 97	48.046	5.072	133.502	1.00 20.00
ATOM	2688	NE2	HIS	597	46.837	5.503	133.190	1.00 20.00
ATOM	2690	С	HIS	597	49.072	2.360	130.162	1.00 20.00
ATOM	2691	0	HIS	597	49.764	1.360	129.977	1.00 20.00
ATOM	2692	N	PRO	598	49.579	3.531	130.393	1.00 20.00
ATOM	2693	CD	PRO	598	48.912	4.745	129.963	1.00 20.00
ATOM	2694	CA	PRO	598	51.001	3.693	130.432	1.00 20.00
ATOM	2695	СВ	PRO	598	51.263		130.329	1.00 20.00
ATOM	2696	CG	PRO	598	49.870	5.853	130.423	1.00 20.00
ATOM	2697	С	PRO	598	51.602	3.024	131.623	1.00 20.00
ATOM	2698	o	PRO	598	52.811	2.794	131.617	1.00 20.00
ATOM	2699	N	ASN	599	50.801		132.668	1.00 20.00
ATOM	2701	CA	ASN	599	51.344	2.085	133.822	1.00 20.00
ATOM	2702	CB	ASN	599	50.402		135.045	1.00 20.00
ATOM	2703	CG	ASN	599	49.235			1.00 20.00
ATOM	2704		ASN	599	48.184		134.280	1.00 20.00
ATOM	2705			599	49.442		135.149	1.00 20.00
ATOM	2708	C	ASN	599	51.666		133.500	1.00 20.00
ATOM	2709	o	ASN	599	52.704		133.906	1.00 20.00
ATOM	2710	N	CYS	600	50.788		132.731	1.00 20.00
ATOM	2712	CA	CYS	600	50.992		132.501	1.00 20.00
ATOM	2713	CB	CYS	600	49.842		131.762	1.00 20.00
ATOM	2714	SG	CYS	600	50.052		131.760	1.00 20.00
ATOM	2715	C	CYS	600	52.221		131.694	1.00 20.00
ATOM	2716	o	CYS	600	52.686		130.998	1.00 20.00
ATOM	2717	N	THR	601	52.793		131.802	1.00 20.00
ATOM	2719	CA	THR	601	53.970		131.063	1.00 20.00
ATOM	2720	CB	THR	601	55.171		131.927	1.00 20.00
MOTA	2721	OG1	THR	601	56.342		131.129	1.00 20.00
ATOM	2723	CG2	THR	601	54.952		132.700	1.00 20.00
ATOM	2724	C	THR	601	53.703		130.327	1.00 20.00
ATOM	2725	0	THR	601	52.841		130.709	1.00 20.00
ATOM	2726	N	TYR	602	54.441		129.223	1.00 20.00
ATOM	2728	CA	TYR	602	54.362	-5.817		1.00 20.00
ATOM	2729	CB	TYR	602	54.867		129.202	1.00 20.00
ATOM	2730	CG	TYR	602	56.329		129.410	1.00 20.00
ATOM	2731	CD1		602	56.796		130.515	1.00 20.00
ATOM	2732	CE1	TYR	602	58.142	-5.949		1.00 20.00
MOTA	2733	CD2		602	57.227	-7.268		1.00 20.00
ATOM	2734	CE2	TYR	602	58.573		128.605	1.00 20.00
ATOM	2735	CZ	TYR	602	59.034	-6.373		1.00 20.00
ATOM	2736	OH	TYR	602	60.414	-6.121		1.00 20.00
ATOM	2738	С	TYR	602	53.006	-6.118		1.00 20.00
ATOM	2739	Ō	TYR	602	52.663		127.710	1.00 20.00
ATOM	2740	N	GLY	603	52.193	-5.088		1.00 20.00
ATOM	2742	CA	GLY	603	50.950	-5.364		1.00 20.00
ATOM	2743	C	GLY	603	49.741	-5.200		1.00 20.00
ATOM	2744	0	GLY	603	49.831	-5.132		1.00 20.00
ATOM	2745	N	CYS	604	48.564	-5.116		1.00 20.00
ATOM	2747	CA	CYS	604	47.299	-5.006		1.00 20.00
ATOM	2748	СВ	CYS	604	46.694	-3.589		1.00 20.00
ATOM	2749	SG	CYS	604	47.402	-2.388		1.00 20.00
ATOM	2749	C	CYS	604	46.311	-5.849		1.00 20.00
ATOM	2750	0	CYS	604	46.297	-5.866		1.00 20.00
ATOM	2751	N	THR	605	45.467	-6.601		1.00 20.00
ATOM	2754	CA	THR	605	44.432	-7.348		1.00 20.00
	2755	CB	THR	605	43.712	-8.300		1.00 20.00
ATOM ATOM	2756	OG1	THR	605	42.795	-9.093		1.00 20.00
ATOM ATOM			THR	605	42.979	-7.508		1.00 20.00
ATOM	2758	CG2	TUL	005	44.717			1.00 20.00

M	2759	С	THR	605	43.453 -6.350 126.590 1.00 20.00
ALOM	2760	0	THR	605	42.937 -6.487 125.482 1.00 20.00
$M \cap M$	2761	N	GLY	606	43.191 -5.295 127.388 1.00 20.00
1 1	2763	CA	GLY	606	42.260 -4.280 126.998 1.00 20.00
MOTA	2764	С	GLY	606	42.606 -3.041 127.757 1.00 20.00
MOTA	2765	0	GLY	606	43.364 -3.061 128.725 1.00 20.00 42.027 -1.958 127.325 1.00 40.00
MOTA	2766	N	PRO	607	42.027 -1.958 127.325 1.00 40.00 40.706 -2.007 126.719 1.00 40.00
ATOM	2767	CD	PRO	607 607	42.301 -0.674 127.908 1.00 40.00
MOTA	2768	CA	PRO PRO	607	41.315 0.279 127.244 1.00 40.00
ATOM	2769 2770	CB CG	PRO	607	40.092 -0.622 126.987 1.00 40.00
ATOM ATOM	2771	C	PRO	607	42.024 -0.743 129.374 1.00 40.00
MOTA	2772	0	PRO	607	41.162 -1.522 129.776 1.00 40.00
ATOM	2773	N	GLY	608	42.749 0.046 130.191 1.00 40.00
ATOM	2775	CA	GLY	608	42.462 0.063 131.595 1.00 40.00
ATOM	2776	С	GLY	608	43.620 -0.455 132.383 1.00 40.00
ATOM	2777	0	GLY	608	44.459 -1.200 131.881 1.00 40.00
MOTA	2778	N	LEU	609	43.675 -0.047 133.666 1.00 20.00
ATOM	2780	CA	LEU	609	44.685 -0.468 134.593 1.00 20.00
ATOM	2781	CB	LEU	609	44.536 0.218 135.962 1.00 20.00
ATOM	2782	CG	LEU	609	45.581 -0.222 137.005 1.00 20.00 47.002 0.209 136.609 1.00 20.00
ATOM	2783		LEU	609	47.002 0.209 136.609 1.00 20.00 45.180 0.238 138.415 1.00 20.00
MOTA	2784		LEU LEU	609 609	44.529 -1.936 134.820 1.00 20.00
ATOM	2785 2786	С О	LEU	609	45.510 -2.671 134.926 1.00 20.00
ATOM ATOM	2787	N	GLU	610	43.268 -2.394 134.896 1.00 20.00
ATOM	2789	CA	GLU	610	42.951 -3.768 135.153 1.00 20.00
ATOM	2790	CB	GLU	610	41.439 -4.034 135.267 1.00 20.00
АТОМ	2791	CG	GLU	610	40.784 -3.454 136.522 1.00 20.00
ATOM	2792	CD	GLU	610	40.474 -1.986 136.274 1.00 20.00
ATOM	2793		GLU	610	40.013 -1.657 135.149 1.00 20.00
MOTA	2794		GLU	610	40.693 -1.174 137.212 1.00 20.00 43.449 -4.617 134.033 1.00 20.00
MOTA	2795	C	GLU	610 610	43.449 -4.617 134.033 1.00 20.00 43.861 -5.757 134.241 1.00 20.00
ATOM	2796 2797	O N	GLU GLY	611	43.438 -4.066 132.809 1.00 20.00
MOTA MOTA	2799	CA	GLY	611	43.816 -4.811 131.648 1.00 20.00
MOTA	2800	C	GLY	611	45.192 -5.340 131.856 1.00 20.00
ATOM	2801	0	GLY	611	45.560 -6.368 131.291 1.00 20.00
ATOM	2802	N	CYS	612	46.004 -4.617 132.648 1.00 20.00
ATOM	2804	CA	CYS	612	47.344 -5.054 132.897 1.00 20.00
ATOM	2805	CB	CYS	612	48.076 -4.190 133.927 1.00 20.00
MOTA	2806	SG	CYS	612	49.864 -4.351 133.729 1.00 20.00 47.272 -6.451 133.421 1.00 20.00
MOTA	2807		CYS	612	• 1 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -
ATOM	2808	O	CYS	612 613	46.224 -6.915 133.873 1.00 20.00 48.373 -7.149 133.341 1.00 60.00
ATOM	2809 2810	N CD	PRO PRO	613	49.228 -6.991 132.183 1.00 60.00
MOTA MOTA	2811	CA	PRO	613	48.378 -8.500 133.834 1.00 60.00
ATOM	2812	CB	PRO	613	49.563 -9.188 133.157 1.00 60.00
ATOM	2813	CG	PRO	613	49.734 -8.405 131.846 1.00 60.00
ATOM	2814	С	PRO	613	48.448 -8.547 135.319 1.00 60.00
MOTA	2815	0	PRO	613	48.851 -7.567 135.934 1.00 60.00
ATOM	2816	N	THR	614	48.042 -9.690 135.912 1.00 60.00
ATOM	2818	CA	THR	614	48.080 -9.856 137.334 1.00 60.00 46.716 -9.892 137.960 1.00 60.00
ATOM	2819	CB	THR	614	46.716 -9.892 137.960 1.00 60.00 46.814 -9.809 139.377 1.00 60.00
ATOM	2820 2822		THR THR	614 614	46.814 -9.809 139.377 1.00 00.00
MOTA MOTA	2822	CGZ	THR	614	48.711 -11.188 137.572 1.00 60.00
ATOM	2824	0	THR	614	49.329 -11.761 136.676 1.00 60.00
MOTA	2825	N	ASN	615	48.591 -11.704 138.810 1.00 60.00
ATOM	2827	CA	ASN	615	49.141 -12.989 139.110 1.00 60.00
ATOM	2828	CB	ASN	615	48.878 -13.439 140.557 1.00 60.00
MOTA	2829	CG	ASN	615	49.650 -12.521 141.491 1.00 60.00
MOTA	2830		ASN	615	49.126 -12.068 142.508
MOTA	2831	ND2	ASN	615	50.933 -12.237 141.141 1.00 60.00

3.0007	2024	_	2 (2)	615	48.428 -13.952 138.225 1.00 60.00
ATOM	2834 2835	c o	ASN ASN	615	49.035 -14.838 137.625 1.00 60.00
MOTA			GLY	616	47.099 -13.780 138.110 1.00 60.00
ΜÇΨΑ	2836 2838	N CA	GLY	616	46.324 -14.672 137.308 1.00 60.00
MO TA		C	GLY	616	45.593 -15.544 138.269 1.00 60.00
	2839	0	GLY	616	45.794 -15.467 139.480 1.00 60.00
ATOM	2840			617	44.734 -16.368 137.747 1.00 60.00
ATOM	2841	N	PRO PRO	617	43.932 -15.954 136.607 1.00 60.00
ATOM	2842	CD		617	44.008 -17.246 138.618 1.00 60.00
ATOM	2843	CA	PRO	617	42.801 -17.730 137.819 1.00 60.00
ATOM	2844	CB	PRO		42.545 -16.582 136.827 1.00 60.00
ATOM	2845	CG	PRO	617	44.910 -18.336 139.081 1.00 60.00
MOTA	2846	C	PRO	617	45.878 -18.646 138.387 1.00 60.00
MOTA	2847	0	PRO	617	
MOTA	2848	N	LYS	618	
MOTA	2850	CA	LYS	618	
MOTA	2851	СВ	LYS	618	
ATOM	2852	CG	LYS	618	44.979 -19.536 143.255 1.00 60.00 44.189 -20.044 144.463 1.00 60.00
MOTA	2853	CD	LYS	618	
MOTA	2854	CE	LYS	618	42.726 -20.355 144.136 1.00 60.00
MOTA	2855	NZ	LYS	618	42.066 -20.995 145.296 1.00 60.00 45.382 -21.073 139.764 1.00 60.00
MOTA	2859	C	LYS	618	
ATOM	2860	0	LYS	618	46.397 -21.621 139.338 1.00 60.00
MOTA	2861	N	ILE	619	44.147 -21.416 139.355 1.00 60.00
MOTA	2863	CA	ILE	619	43.985 -22.494 138.432 1.00 60.00
ATOM	2864	CB	ILE	619	42.708 -23.256 138.630 1.00 60.00 42.592 -24.284 137.493 1.00 60.00
MOTA	2865	CG2	ILE	619	
ATOM	2866	CG1	ILE	619	42.667 -23.878 140.036 1.00 60.00
MOTA	2867	CD1	ILE	619	43.798 -24.870 140.301 1.00 60.00 43.939 -21.931 137.055 1.00 60.00
MOTA	2868	С	ILE	619	
MOTA	2869	0	ILE	619	
MOTA	2870	N	PRO	620	45.064 -21.962 136.408 1.00 60.00
MOTA	2871	CD	PRO	620	46.133 -22.886 136.747 1.00 60.00
MOTA	2872	CA	PRO	620	45.150 -21.499 135.056 1.00 60.00
ATOM	2873	СВ	PRO	620	46.580 -21.807 134.621 1.00 60.00 46.929 -23.064 135.443 1.00 60.00
MOTA	2874	CG	PRO	620	
ATOM	2875	С	PRO	620	44.167 -22.326 134.296 1.00 60.00 43.890 -23.448 134.719 1.00 60.00
MOTA	2876	0	PRO	620	
ATOM	2877	N	SER	621	
MOTA	2879	CA	SER	621	42.673 -22.575 132.437 1.00 60.00
MOTA	2880	CB	SER	621	41.697 -21.723 131.609 1.00 60.00
MOTA	2881	OG	SER	621	40.848 -20.982 132.473 1.00 60.00 43.486 -23.423 131.466 1.00 60.00
MOTA	2883	C	SER	621	
ATOM	2884	0	SER	621	
ATOM	2885	OXT	SER	621	43.293 -24.669 131.461 1.00 60.00
TER					

F	240	N	LEU	25	50.889	2.127	50.184	1.00 40.00	
A'TOM	242	CA	LEU	25	52.244	2.155	50.646	1.00 40.00	
ATOM	243	CB	LEU	25	53.260	1.846	49.534	1.00 40.00	
λW	244	CG	LEU	25	53.122	0.432	48.944	1.00 40.00	
ALOM	245		LEU	25	51.761	0.244	48.255	1.00 40.00	
MOTA	246	CD2		25 25	54.305 52.535	0.103 3.540	48.021 51.127	1.00 40.00 1.00 40.00	
ATOM	247	C	LEU LEU	25 25	53.309	3.726	52.063	1.00 40.00	
ATOM ATOM	248 249	O N	SER	26	51.919	4.552	50.489	1.00 40.00	
ATOM	251	CA	SER	26	52.128	5.925	50.853	1.00 40.00	
ATOM	252	СВ	SER	26	51.479	6.924	49.885	1.00 40.00	
ATOM	253	OG	SER	26	52.186	6.916	48.654	1.00 40.00	
ATOM	255	С	SER	26	51.646	6.179	52.249	1.00 40.00	
ATOM	256	0	SER	26	52.061	7.144	52.888	1.00 40.00	
ATOM	257	N	LEU	27	50.743	5.316	52.751	1.00 40.00	
ATOM	259	CA	LEU	27	50.199	5.423	54.077	1.00 40.00	
ATOM	260	СВ	LEU	27	49.203	4.300	54.426	1.00 40.00	
ATOM	261	CG	LEU	27	47.799	4.468	53.815	1.00 40.00 1.00 40.00	
ATOM	262		LEU	27 27	47.097 47.820	5.687 4.503	54.425 52.280	1.00 40.00	•
ATOM	263 264	C C	LEU LEU	27	51.282	5.372	55.114	1.00 40.00	
ATOM ATOM	265	0	LEU	27	51.125	5.920	56.202	1.00 40.00	
ATOM	266	N	GLN	28	52.404	4.695	54.814	1.00 40.00	
ATOM	268	CA	GLN	28	53.475	4.531	55.757	1.00 40.00	
ATOM	269	СВ	GLN	28	54.656	3.726	55.191	1.00 40.00	
ATOM	270	CG	GLN	28	55.794	3.551	56.199	1.00 40.00	
ATOM	271	CD	GLN	28	56.903	2.750	55.531	1.00 40.00	
MOTA	272	OE1		28	57.466	3.169	54.524	1.00 40.00	
ATOM	273		GLN	28	57.222	1.561	56.110	1.00 40.00	
ATOM	276	C	GLN	28	54.028 54.444	5.843 5.978	56.214 57.363	1.00 40.00 1.00 40.00	
ATOM	277	O	GLN ARG	28 29	54.025	6.858	55.334	1.00 40.00	
ATOM ATOM	278 280	N CA	ARG	29	54.608	8.130	55.649	1.00 40.00	
ATOM	281	CB	ARG	29	54.373	9.157	54.531	1.00 40.00	
ATOM	282	CG	ARG	29	54.975	10.528	54.816	1.00 40.00	
ATOM	283	CD	ARG	29	54.807	11.506	53.653	1.00 40.00	
MOTA	284	NE	ARG	29	55.608	10.980	52.511	1.00 40.00	
ATOM	286	CZ	ARG	29	55.054	10.093	51.634	1.00 40.00	
MOTA		NH1		29	53.754		51.785	1.00 40.00	
ATOM	290		ARG	29	55.800	9.597	50.603 56.906	1.00 40.00 1.00 40.00	
ATOM	293	C	ARG	29 29	53.987 54.629	8.647 9.325	57.707	1.00 40.00	
ATOM	294 295	O N	ARG MET	30	52.697	8.347	57.100	1.00 40.00	
ATOM ATOM	297	CA	MET	30	51.985	8.770	58.264	1.00 40.00	
ATOM	298	CB	MET	30	50.510	8.341	58.207	1.00 40.00	
ATOM	299	CG	MET	30	49.715	8.969	57.061	1.00 40.00	
ATOM	300	SD	MET	30	49.219	10.693	57.345	1.00 40.00	
ATOM	301	CE	MET	30	47.920	10.259	58.538	1.00 40.00	
ATOM	302	С	MET	30	52.545	8.139	59.503	1.00 40.00	
MOTA	303	0	MET	30	52.717	8.798	60.525	1.00 40.00	
MOTA	304	N	PHE	31	52.864	6.835	59.432 60.610	1.00 40.00 1.00 40.00	
ATOM	306	CA	PHE	31 31	53.208 53.368	6.092 4.587	60.332	1.00 40.00	
MOTA	307 308	CB CG	PHE PHE	31	53.702	3.932	61.628	1.00 40.00	
ATOM ATOM	308		PHE	31	52.704	3.584	62.509	1.00 40.00	
MOTA	310		PHE	31	55.009	3.671	61.966	1.00 40.00	
ATOM	311		PHE	31	53.005	2.991	63.712	1.00 40.00	
ATOM	312		PHE	31	55.316	3.078	63.169	1.00 40.00	
ATOM	313	CZ	PHE	31	54.313	2.738	64.045	1.00 40.00	
ATOM	314	С	PHE	31	54.443	6.531	61.331	1.00 40.00	
ATOM	315	0	PHE	31	54.430	6.668	62.553	1.00 40.00	
ATOM	316	N	ASN	32	55.545	6.784	60.607	1.00 40.00	
MOTA	318	CA	ASN	32	56.765	7.029	61.316	1.00 40.00	
MOTA	319	CB	ASN	32	57.986	7.127	60.383	1.00 40.00	

MOTA	320	CG	ASN	32	57.792	8.311	59.452	1.00		
MOTA	321		ASN	32	56.702	8.526	58.926	1.00		
MOTA	322		ASN	32	58.877	9.105	59.244	1.00		
Mı	325	С	ASN	32	56.761	8.237	62.192	1.00 4		
A.OM	326	0	ASN	32	57.023 56.425	8.132 9.425	63.389 61.661	1.00 4		
ATOM	327	N CA	ASN ASN	33 33	56.577	10.527	62.559	1.00		
ATOM	329 330	CB	ASN	33	57.776	11.425	62.207	1.00		
MOTA MOTA	331	CG	ASN	33	59.052	10.651	62.509	1.00		
ATOM	332		ASN	33	59.275	10.223	63.640	1.00		
ATOM	333		ASN	33	59.912	10.462	61.473	1.00	10.00	
ATOM	336	С	ASN	33	55.379	11.408	62.585	1.00	10.00	
ATOM	337	0	ASN	33	55.411	12.515	62.049	1.00		
ATOM	338	N	CYS	34	54.275	10.950	63.200	1.00 2		
MOTA	340	CA	CYS	34	53.212	11.894	63.322	1.00 2		
ATOM	341	CB	CYS	. 34	52.404	12.098	62.032	1.00		
ATOM	342	SG	CYS	34	51.433	13.629	62.113	1.00		
MOTA	343	С	CYS	34	52.283	11.462 10.688	64.407 64.175	1.00 2		
ATOM	344	0	CYS	34 35	51.356 52.542	11.933	65.642	1.00 2		
ATOM ATOM	345 347	N CA	GLU GLU	35 35	51.663	11.649	66.735	1.00		
ATOM ATOM	348	CB	GLU	35	52.196	12.161	68.084	1.00		
ATOM	349	CG	GLU	35	53.439	11.425	68.585	1.00		
ATOM	350	CD	GLU	35	53.851	12.052	69.908	1.00	20.00	
ATOM	351	OE1	GLU	35	54.873	11.593	70.485	1.00		
ATOM	352	OE2	GLU	35	53.151	12.998	70.357	1.00		
ATOM	353	С	GLU	35	50.420	12.415	66.450	1.00		
MOTA	354	0	GLU	35	49.309	11.913	66.609	1.00		
MOTA	355	N	VAL	36	50.591	13.679	66.015	1.00		
ATOM	357	CA	VAL	36	49.445	14.482	65.726 66.686	1.00		
ATOM	358	CB CC1	VAL VAL	36 36	49.255 48.015	15.619 16.421	66.256	1.00		
ATOM ATOM	359 360		VAL	36	49.162	15.045	68.110	1.00		
ATOM	361	C	VAL	36	49.603	15.077	64.369	1.00		
ATOM	362	o	VAL	36	50.572	15.778	64.091	1.00 2	20.00	
ATOM	363	N	VAL	37	48.640	14.818	63.471	1.00	20.00	
ATOM	365	CA	VAL	37	48.745	15.411	62.175	1.00		
ATOM	366	CB	VAL	37	47.997	14.656	61.101	1.00		
MOTA	367		VAL	37		13.282	60.929	1.00		
ATOM	368		VAL	37	46.508	14.540	61.476	1.00 3		
MOTA	369	C	VAL	37	48.173 47.002	16.787 16.964	62.307 62.634	1.00		
MOTA	370 371	о И	VAL LEU	37 38	49.011	17.816	62.095	1.00		
ATOM ATOM	373	CA	LEU	38	48.538	19.164	62.179	1.00		
ATOM	374	CB	LEU	38	49.664	20.181	62.438	1.00		
ATOM	375	ÇG	LEU	38	49.181	21.640	62.533	1.00		
MOTA	376		LEU	38	48.220	21.843	63.715	1.00		
ATOM	377	CD2	LEU	38	50.372	22.614	62.561	1.00		
MOTA	378	С	LEU	38	47.938	19.486	60.856	1.00		
MOTA	379	0	LEU	38	48.632	19.915	59.936	1.00		
ATOM	380	N	GLY	39	46.610	19.300	60.738	1.00		
ATOM	382	CA	GLY	39 30	45.961 44.916	19.543 18.486	59.485 59.339	1.00		
ATOM	383 384	С 0	GLY GLY	39 39	44.916	18.486	60.319	1.00		
MOTA MOTA	384 385	N	ASN	40	44.528	18.054	58.094	1.00		
ATOM	387	CA	ASN	40	43.645	17.052	57.888	1.00		
ATOM	388	CB	ASN	40	42.481	17.526	57.002	1.00		
ATOM	389	CG	ASN	40	43.047	17.898	55.638	1.00		
ATOM	390		ASN	40	43.930	18.747	55.527	1.00		
ATOM	391	ND2	ASN	40	42.529	17.239	54.568	1.00		
MOTA	394	C	ASN	40	44.258	15.858	57.225	1.00		
ATOM	395	0	ASN	40	45.323	15.950	56.618	1.00		
ATOM	396	N	LEU	41	43.591	14.697	57.360 56.750	1.00		
ATOM	398	CA	LEU	41	44.106	13.504	56.750	1.00	20.00	

- 2	A	399	СВ	LEU	41	44.427	12.413	57.790	1.00	20.00
7	MOTA	400	CG	LEU	41	44.993	11.095	57.223		20.00
1	MOTA	401	CD1	LEU	41	43.917	10.281	56.495		20.00
	MC	402	CD2		41	46.240	11.344	56.360		20.00
4	MO'1 A	403	С	LEU	41	43.081	13.013	55.786		20.00
	MOTA	404	0	LEU	41	41.903	12.890	56.121		20.00
		405	N	GLU	42 42	43.503 42.576	12.746 12.236	54.530 53.573		20.00
	ATOM	407	CA CB	GLU GLU	42	42.343	13.151	52.357		20.00
	ATOM ATOM	408 409	CG	GLU	42	41.341	12.557	51.362		20.00
		410	CD	GLU	42	41.171	13.525	50.199	1.00	20.00
	ATOM ATOM	411		GLU	42	41.827	14.601	50.222		20.00
	ATOM	412		GLU	42	40.384	13.201	49.271		20.00
		413	С	GLU	42	43.131	10.961	53.033		20.00
1	MOTA	414	0	GLU	42	44.302	10.892	52.659		20.00
i	MOTA	415	N	ILE	43	42.304	9.899	53.011		20.00
	MOTA	417	CA	ILE	43	42.752	8.662 7.524	52.445 53.424		20.00
	MOTA	418	CB	ILE	43	42.741 43.059	6.230	52.657		20.00
	MOTA	419		ILE ILE	43 43	43.718	7.804	54.578		20.00
	MOTA ATIOM	420 421	CD1		43	45.176	7.902	54.129		20.00
	MOTA MOTA	422	C	ILE	43	41.784	8.327	51.358	1.00	20.00
	ATOM	423	o	ILE	43	40.727	7.756	51.616		20.00
-	MOTA	424	N	THR	44	42.126	8.643	50.096		20.00
	MOTA	426	CA	THR	44	41.172	8.389	49.058		20.00
	ATOM	427	СВ	THR	44	40.818	9.607	48.256		20.00
	ATOM	428	OG1	THR	44	39.737	9.316	47.382		20.00
	ATOM	430	CG2	THR	44	42.053	10.050 7.354	47.453 48.098		20.00
	ATOM	431	C	THR	44 44	41.667 42.868	7.121	47.968		20.00
	MOTA	432 433	N O	THR TYR	45	40.704	6.690	47.429		20.00
	ATOM ATOM	435	CA	TYR	45	40.919	5.707	46.405		20.00
	ATOM	436	СВ	TYR	45	41.028	6.314	44.994		20.00
	ATOM	437	CG	TYR	45	39.706	6.904	44.639		20.00
	MOTA	438	CD1	TYR	45	38.687	6.101	44.182		20.00
	ATOM	439	CE1		45	37.480	6.645	43.808		20.00
	ATOM	440	CD2	TYR	45	39.503	8.263	44.708 44.337		20.00
	ATOM	441	CE2		45	38.298 37.284	8.812 8.002	43.884		20.00
	ATOM	442 443	CZ OH	TYR TYR	45 45	36.051	8.560	43.489		20.00
	ATOM ATOM	445	C C	TYR	45	42.127	4.854	46.623		20.00
_	ATOM	446	0	TYR	45	43.049	4.867	45.811	1.00	20.00
	ATOM	447	N	VAL	46	42.169	4.080	47.723		20.00
	ATOM	449	CA	VAL	46	43.301	3.215	47.895		20.00
	ATOM	450	СВ	VAL	46	44.235	3.641	48.988		20.00
	ATOM	451	CG1		46	43.474	3.627	50.320 48.965		20.00
	ATOM	452	CG2		46	45.461 42.811	2.713 1.841	48.220		20.00
	MOTA	453	С 0	VAL VAL	46 46	41.745	1.678	48.813		20.00
	ATOM ATOM	454 455	N	GLN	47	43.573	0.802	47.815		20.00
	ATOM	457	CA	GLN	47	43.130	-0.533	48.099	1.00	20.00
	ATOM	458	СВ	GLN	47	42.333	-1.150	46.940		20.00
	ATOM	459	CG	GLN	47	41.063	-0.367	46.607		20.00
	ATOM	460	CD	GLN	47	40.429	-1.005	45.381		20.00
	ATOM	461		GLN	47	39.658	-1.958	45.483		20.00
	MOTA	462		GLN	47	40.771	-0.468	44.180		20.00
	ATOM	465	С	GLN	47	44.309 45.210	-1.426 -1.490	48.332 47.501		20.00
	ATOM	466	O N	GLN ARG	47 48	44.353	-2.119	49.490		20.00
	ATOM ATOM	467 469	CA	ARG	48	45.386	-3.099	49.670		20.00
	ATOM	470	СВ	ARG	48	46.828	-2.580	49.817	1.00	20.00
	ATOM	471	CG	ARG	48	47.112	-1.831	51.115		20.00
	ATOM	472	CD	ARG	48	48.611	-1.746	51.417		20.00
	ATOM	473	NE	ARG	48	49.145	-3.137	51.474	1.00	20.00

MOTA	475	CZ	ARG	48	50.483	-3.358	51.318	1.00 20.00
ATOM	476	NH1	ARG	48	50.973	-4.631	51.348	1.00 20.00
ATOM	479	NH2	ARG	48	51.331	-2.307	51.125	1.00 20.00
MC	482	С	ARG	48	45.108	-3.855	50.928	1.00 20.00
MO'IN	483	0	ARG	48	44.103	-3.633	51.600	1.00 20.00
ATOM	484	N	ASN	49	46.020	-4.783	51.272	1.00 20.00
ATOM	486	CA	ASN	49	45.864	-5.613	52.430	1.00 20.00
MOTA	487	CB	ASN	49	46.987	-6.657	52.557	1.00 20.00
MOTA	488	CG	ASN	49	46.858	-7.627	51.393	1.00 20.00
ATOM	489		ASN	49	45.806	-8.228	51.183	1.00 20.00
ATOM	490	ND2		49	47.957	-7.781	50.607	1.00 20.00
ATOM	493	C	ASN	49	45.891	-4.796	53.682	1.00 20.00
MOTA	494	0	ASN	49	44.996	-4.901	54.518	1.00 20.00
ATOM	495	N	TYR	50 50	46.917	-3.937	53.835 55.049	1.00 20.00 1.00 20.00
ATOM	497	CA	TYR	50 50	47.034 48.313	-3.184 -2.332	55.148	1.00 20.00
ATOM	498	CB CG	TYR TYR	50	49.476	-2.332	55.318	1.00 20.00
ATOM ATOM	499 500	CD1		50	49.774	-3.761	56.559	1.00 20.00
ATOM	501	CE1	TYR	50	50.869	-4.574	56.740	1.00 20.00
ATOM	502	CD2	TYR	50	50.301	-3.547	54.258	1.00 20.00
ATOM	503	CE2	TYR	50	51.398	-4.359	54.433	1.00 20.00
ATOM	504	CZ	TYR	50	51.683	-4.873	55.675	1.00 20.00
ATOM	505	ОН	TYR	50	52.810	-5.702	55.857	1.00 20.00
ATOM	507	C.	TYR	50	45.871	-2.269	55.220	1.00 20.00
ATOM	508	o	TYR	50	45.151	-1.960	54.272	1.00 20.00
ATOM	509	N	ASP	51	45.658	-1.829	56.476	1.00 40.00
ATOM	511	CA	ASP	51	44.594	-0.929	56.799	1.00 40.00
ATOM	512	СВ	ASP	51	43.591	-1.486	57.825	1.00 40.00
АТОМ	513	CG	ASP	51	42.761	-2.572	57.151	1.00 40.00
ATOM	514	OD1	ASP	51	42.891	-2.734	55.908	1.00 40.00
ATOM	515	OD2	ASP	51	41.978	-3.250	57.869	1.00 40.00
ATOM	516	С	ASP	51	45.238	0.271	57.414	1.00 40.00
ATOM	517	0	ASP	51	46.447	0.299	57.629	1.00 40.00
ATOM	518	N	LEU	52	44.426	1.306	57.692	1.00 40.00
MOTA	520	CA	LEU	52	44.875	2.544	58.259	1.00 40.00
ATOM	521	CB	LEU	52	43.795	3.638	58.253	1.00 40.00
ATOM	522	CG	LEU	52	44.316	5.001	58.745	1.00 40.00
ATOM	523		LEU	52	45.417	5.540	57.819	1.00 40.00
ATOM	524		LEU	52	43.167	6.001	58.947	1.00 40.00
MOTA	525	C	LEU	52	45.316	2.310	59.672	1.00 40.00
АТОМ	526	0	LEU	52	46.083	3.086	60.238	1.00 40.00
ATOM	527	N	SER	53	44.838	1.207	60.272	1.00 40.00
ATOM	529	CA	SER	53	45.077 44.492	0.879 -0.484	61.649 62.049	1.00 40.00 1.00 40.00
ATOM ATOM	530 531	CB OG	SER SER	53 53	45.162	-0.484	61.355	1.00 40.00
	533	C	SER	53	46.536	0.824	61.965	1.00 40.00
ATOM ATOM	534	0	SER	53	46.923	1.047	63.111	1.00 40.00
ATOM	535	N	PHE	54	47.391	0.535	60.967	1.00 40.00
ATOM	537	CA	PHE	54	48.788	0.373	61.250	1.00 40.00
АТОМ	538	СВ	PHE	54	49.665	0.050	60.021	1.00 40.00
АТОМ	539	CG	PHE	54	49.742	1.221	59.103	1.00 40.00
АТОМ	540	CD1		54	50.664	2.219	59.322	1.00 40.00
ATOM	541	CD2		54	48.995	1.254	57.950	1.00 40.00
АТОМ	542	CE1		54	50.813	3.247	58.419	1.00 40.00
ATOM	543	CE2		54	49.127	2.284	57.049	1.00 40.00
ATOM	544	CZ	PHE	54	50.040	3.284	57.283	1.00 40.00
MOTA	545	С	PHE	54	49.319	1.607	61.908	1.00 40.00
ATOM	546	0	PHE	54	50.271	1.519	62.680	1.00 40.00
ATOM	547	N	LEU	55	48.738	2.790	61.609	1.00 40.00
ATOM	549	CA	LEU	55	49.180	4.002	62.248	1.00 40.00
MOTA	550	СВ	LEU	55	48.495	5.271	61.707	1.00 40.00
ATOM	551	CG	LEU	55	48.790	5.573	60.228	1.00 40.00
MOTA	552	CD1		55	50.281	5.855	60.008	1.00 40.00
ATOM	553	CD2	LEU	55	48.248	4.478	59.299	1.00 40.00

AUSTRALIA

Patents Act 1990

COMMONWEALTH SCIENTIFIC AND INDUSTRIAL RESEARCH ORGANISATION

PROVISIONAL SPECIFICATION

Invention Title:

EGF family receptor agonists and antagonists

The invention is described in the following statement:

EGF FAMILY RECEPTOR AGONISTS AND ANTAGONISTS

Field of the Invention

5

10

15

20

25

30

35

This invention relates to the field of receptor structure and receptor/ligand interactions. In particular it relates to the field of using receptor structure to predict the structure of related receptors and to use the determined structures and predicted structures to select and screen for agonists and antagonists of the polypeptide ligands.

Background of the Invention

Insulin is the peptide hormone that regulates glucose uptake and metabolism. The two types of diabetes are associated with either an inability to produce insulin because of destruction of the pancreatic islet cells (Homo-Delarche, F. & Boitard, C.,1996, Immunol. Today 10: 456-460) or poor glucose metabolism resulting from either insulin resistance at the target tissues, inadequate insulin secretion by the islets or faulty liver function (Taylor, S. I., et al., 1994, Diabetes, 43: 735-740).

Insulin-like growth factors-1 and 2 (IGF-1 and 2) are structurally related to insulin but are more important in tissue growth and development than in metabolism. They are primarily produced in the liver in response to growth hormone but are also produced in most other tissues where they function as paracrine/autocrine regulators. The IGFs are strong mitogens and are involved in numerous physiological states and certain cancers (Baserga, R., 1996, TibTech 14: 150-152).

Epidermal growth factor (EGF) is a small polypeptide cytokine that is unrelated to the insulin/IGF family. It stimulates marked proliferation of epithelial tissues and is a member of a larger family of structurally related cytokines such as transforming growth factor α, amphiregulin, betacellulin, heparin-binding EGF and some viral gene products. Abnormal EGF family signalling is a characteristic of certain cancers (Soler, C. & Carpenter, G., 1994 In Nicola, N. (ed) Guidebook to Cytokines and Their receptors", Oxford Univ. Press, Oxford, pp194-197; Walker, F. & Burgess, A. W., 1994, In Nicola, N. (ed) Guidebook to Cytokines and Their receptors", Oxford Univ. Press, Oxford, pp198-201).

Each of these growth factors mediate their biological actions through binding to the corresponding receptor. The IR, IGF-1R and insulin receptorrelated receptor (IRR), for which the ligand is not known, are closely related to each other and are referred to as the insulin receptor subfamily. There is a

10

15

20

25

30

35

large body of information now available concerning the primary structure of these insulin receptor subfamily members (Ebina, Y., et al., 1985 Cell 40: 747-758; Ullrich, A., et al., 1985, Nature 313: 756-761; Ullrich, A. et al., 1986, EMBO J 5: 2503-2512; Shier, P. & Watt, V. M., 1989, J. Biol. Chem. 264: 14605-14608) and the identification of some of their functional domains (for reviews see De Meyts, P. 1994, Diabetologia 37: 135-148; Lee, J. & Pilch, P. F. 1994 Amer. J. Physiol. 266: C319-C334.; Schaffer, L. 1994, Eur. J. Biochem. 221: 1127-1132). IGF-1R, IR and IRR are members of the tyrosine kinase receptor superfamily and are closely related to the epidermal growth factor receptor (EGFR) subfamily, with which they share significant sequence identity in the extracellular region as well as in the cytoplasmic kinase domains (Ullrich, A. et al., 1984 Nature 309: 418-425; Ward, C. W. et al., 1995 Proteins: Structure Function & Genetics 22: 141-153). Both the insulin and EGF receptor subfamilies have a similar arrangement of two homologous domains (L1 and L2) separated by a cys-rich region of approximately 160 amino acids containing 22-24 cys residues (Bajaj, M., et al., 1987 Biochim. Biophys. Acta 916: 220-226; Ward, C. W. et al., 1995 Proteins: Structure Function & Genetics 22: 141-153). The C-terminal portion of the IGF-1R ectodomain (residues 463 to 906) is comprised of four domains: a connecting domain, two fibronectin type 3 (Fn3) repeats, and an insert domain (O'Bryan, J. P., et al., 1991 Mol Cell Biol 11: 5016-5031); the C-terminal portion of the EGFR ectodomain (residues 477-621) consists solely of a second cys-rich region containing 20 cys residues (Ullrich, A. et al., 1984, Nature 309: 418-425).

Little is known about the secondary, tertiary and quaternary structure of the ectodomains of these receptor subfamilies. Unlike the members of the EGFR subfamily which are transmembrane monomers which dimerise on binding ligand, the IR subfamily members are homodimers, held together by disulphide bonds. The extracellular region of the IR/IGF-1R/IRR monomers contains an α-chain (~ 703 to 735 amino acid residues) and 192-196 residues of the β-chain. There is a ~23 residue transmembrane segment, followed by the cytoplasmic portion (354 to 408 amino acids) which contains the catalytic tyrosine kinase domain flanked by juxtamembrane and C-tail regulatory regions and is responsible for mediating all receptor-specific functions (White, M. F. & Kahn, C. R. 1994 J. Biol. Chem. 269: 1-4). Chemical analyses of the receptor suggest that the α-chains are linked to the β-chains

via a single disulphide bond with the IR dimer being formed by at least two α-α disulphide linkages (Finn, F. M., et al., 1990, Proc. Natl. Acad. Sci. 87: 419-423; Chiacchia, K. B., 1991, Biochem. Biophys. Res. Commun. 176, 1178-1182; Schaffer, L. & Ljungqvist, L., 1992, Biochem. Biophys. Res. Comm. 189: 650-653; Sparrow, L. G., et al., 1997, J. Biol. Chem. 47: 29460-29467).

Although the 3D structures of the ligands EGF, TGF-alpha (Hommel, U., et al., 1992, J. Mol. Biol. 227:271-282), insulin (Dodson, E. J., et al., 1983, Biopolymers 22:281-291), IGF-1 (Sato, A., et al., 1993, Int J Peptide Protein Res 41:433-440) and IGF-2 (Torres, A. M., et al., 1995, J. Mol. Biol. 248:385-401) are known and numerous analytical and functional studies of ligand binding to EGFR (Soler, C. & Carpenter, G., 1994 In Nicola (ed) Guidebook to Cytokines and Their receptors", Oxford Univ. Press, Oxford, pp194-197), IGF-1R and IR (see De Meyts, P., 1994 Diabetologia, 37:135-148) have been carried out, the mechanisms of ligand binding and subsequent transmembrane signalling have not been resolved.

Ligand-induced, receptor-mediated phosphorylation is the signalling mechanism by which most cytokines, polypeptide hormones and membrane-anchored ligands exert their biological effects. The primary kinase may be part of the intracellular portion of the transmembrane receptor protein as in the tyrosine kinase receptors (for review see Yarden, Y., et al., 1988, Ann. Rev. Biochem. 57:443-478) or the Ser/Thr kinase receptors (Alevizopoulos, A. & Mermod, N., 1997, BioEssays, 19:581-591) or be non-covalently associated with the cytoplasmic tail of the transmembrane protein(s) making up the receptor complex as in the case of the haemopoietic growth factor receptors (Stahl, N., et al., 1995, Science 267:1349-1353). The end result is the same, ligand binding leads to receptor dimerization or oligomerization or a conformational change in pre-existing receptor dimers or oligomers resulting in activation by transphosphorylation, of the covalently attached or non-covalently associated protein kinase domains (Hunter, T., 1995, Cell, 80:225-236).

Many oncogenes have been shown to be homologous to growth factors, growth factor receptors or molecules in the signal transduction pathways (Baserga, R., 1994 Cell, 79:927-930; Hunter, T., 1997 Cell, 88:333-346). One of the best examples is v-Erb (related to the EGFR). Since overexpression of a number of growth factor receptors results in ligand-dependent transformation an alternate strategy for oncogenes is to regulate

the expression of growth factor receptors or their ligands or to directly bind to the receptors to stimulate the same effect (Baserga, R., 1994 Cell, 79:927-930). Examples are v-Src, which activates IGF-1 R intracellularly; c-Myb, which transforms cells by enhancing the expression of IGF1R and SV40 T antigen which interacts with the IGF-1R and enhances the secretion of IGF-1 (see Baserga, R.,1994 Cell, 79:927-930 for review). Cells in which the IGF-1 receptor has been knocked out cannot be transformed by SV40 T antigen. If oncogenes activate growth factors and their receptors then tumour suppressor genes should have the opposite effect. One good example of this is WT1, the Wilm's tumour suppressor gene which suppresses the expression of IGF-1R (Drummond, J. A., et al., 1992, Science, 257:275-277). Cells that are driven to proliferate by oncogenes undergo massive apotosis when growth factor receptors are ablated since unlike normal cells, they appear unable to withdraw from the cell-cycle and enter into the G0 phase (Baserga, R.,1994 Cell, 79:927-930).

5

10

15

20

25

30

35

The insulin-like growth factor-1 receptor (IGF-1R) is one of several growth-factor receptors that regulate the proliferation of mammalian cells. However, its ubiquitousness and certain unique aspects of its function make IGF-1R an ideal target for therapeutic interventions against abnormal growth, with very little effect on normal cells (see Baserga, R., 1996 TIBTECH, 14:150-152). The receptor is activated by IGF1, IGF2 and insulin and plays a major role in cellular proliferation in at least three ways: it is essential for optimal growth of cells in vitro and in vivo; several cell types require IGF-1R to maintain the transformed state and activated IGF-1R has a protective effect against apoptotic cell death (Baserga, R., 1996 TIBTECH, 14:150-152). These properties alone make it an ideal target for therapeutic interventions. Transgenic experiments have shown that IGF-1R is not an absolute requirement for cell growth but is essential for the establishment of the transformed state (Baserga, R., 1994 Cell, 79: 927-930). In several cases (human glioblastoma, human melanoma; human breast carcinoma; human lung carcinoma; human ovaraian carcinoma; human rhabdomyosarcoma; mouse melanoma, mouse leukaemia; rat glioblastoma; rat rhabdomyosarcoma; hamster mesothelioma) the transformed phenotype can be reversed by decreasing the expression of IGF-1R using antisense to IGF-1R (Baserga. R., 1996 TIBTECH 14:150-152); or interfering with its function by antibodies to IGF-1R (human breast carcinoma; human rhabdomyosarcoma)

or by dominant negatives of IGF-1R (rat glioblastoma; Baserga, R.,1996 TIBTECH 14:150-152).

Three effects are observed when the function of IGF-1R is impaired: tumour cells undergo massive apoptosis which results in inhibition of tumourogenesis; surviving tumour cells are eliminated by a specific immune response; and such a host response can cause a regression of an established wild-type tumour (Resnicoff, M., et al., 1995, Cancer Res. 54:2218-2222). These effects, plus the fact that interference of IGF-1R function has a limited effect on normal cells (partial inhibition of growth without apoptosis) makes IGF-1R a unique target for therapeutic interventions (Baserga, R., 1996 TIBTECH 14:150-152). In addition IGF-1R is downstream of many other growth factor receptors, which makes it an even more generalised target. The implication of these findings is that if you can decrease the number of IGF-1 receptors on cells or antagonise their function then tumours cease to grow and can be removed immunologically. These studies establish that IGF-1R antagonists will be extremely important therapeutically.

Many cancer cells have constitutively active EGFR (Sandgreen, E. P., et al., 1990, Cell, 61:1121-135; Karnes, W. E. J., et al., 1992, Gastroenterology, 102:474-485) or other EGFR family members (Hines, N. E.,1993, Semin. Cancer Biol. 4:19-26). Elevated levels of activated EGFR occur in bladder, breast, lung and brain tumours (Harris, A. L., et al., 1989, In Furth & Greaves (eds) The Molecular Diagnostics of human cancer. Cold Spring Harbor Lab. Press, CSH, NY, pp353-357). Antibodies to EGFR can inhibit ligand activation of EGFR (Sato, J. D., et al., 1983 Mol. Biol. Med. 1:511-529) and the growth of many epithelial cell lines (Aboud-Pirak E., et al., 1988, J. Natl Cancer Inst. 85:1327-1331). Patients receiving repeated doses of a humanised chimeric anti-EGFR antibody showed signs of disease stabilization. The large doses required and the cost of production of humanised Mab is likely to limit the application of this type of therapy. These findings indicate that the development of EGF antagonists will be attractive anticancer agents.

Summary of the Invention

The present inventors have now obtained 3D structural information concerning the insulin-like growth factor receptor (IGF-1R) and the insulin receptor (IR) which provides a rational basis for the development of antagonists and agonists of the polypeptide ligands for specific therapeutic applications. This information can be used to predict the structure of related

members of the insulin receptor family and epidermal growth factor family and to develop agonists and antagonists of their respective polypeptide ligands.

Accordingly, in a first apsect the present invention provides a method of screening for, or designing, an agonist of a ligand of an insulin receptor family member or EGF receptor family member which method includes

- (i) selecting or designing a substance which possesses stereochemical complementarity to a receptor site, wherein the receptor site is characterised by
- (a) amino acids 1-462 of IGF-1R positioned at atomic coordinates substantially as shown in Figure 1 or a subset thereof; or
- (b) amino acids derived from an insulin receptor family member or EGF receptor family member which form an equivalent structure to the amino acids defined in paragraph (a); and
- (ii) testing the substance for the ability to act as an agonist of the ligand of an insulin receptor family member or EGF receptor family member.

In a second apsect the present invention provides a method of screening for, or designing, an antagonist of a ligand of an insulin receptor family member or EGF receptor family member which method includes

- (i) selecting or designing a substance which possesses stereochemical complementarity to a receptor site, wherein the receptor site is characterised by
- (a) amino acids 1-462 of IGF-1R positioned at atomic coordinates substantially as shown in Figure 1 or a subset thereof; or
- (b) amino acids derived from an insulin receptor family member or an EGF receptor family member which form an equivalent structure to the amino acids defined in paragraph (a); and
- (ii) testing the substance for the ability to act as an antagonist of the ligand of an insulin receptor family member or EGF receptor family member.

The phrase "insulin receptor family" encompasses, for example, IGF-1R. IR and IRR. The phrase "EGF receptor family" encompasses for example, EGFR, ErbB2, ErbB3 and ErbB4. In general, insulin receptor family members and EGF receptor family members show similar domain arrangements and share significant sequence identity (preferably at least 20% identity between the families and at least 40% identity within each family).

10

5

15

20

25

30

The receptor site defined in the first and second aspects of the present invention comprises the L1-cysteine rich-L2 region (residues 1-462) of the ectodomain of IGF-1R. At the centre of this structure is a groove, bounded by all three domains, of sufficient size to accommodate a ligand molecule. By "stereochemical complementarity" we mean that the biologically active substance or a portion thereof correlates, in the manner of the classic "lock-and-key" visualisation of ligand-receptor interaction, with the groove in the receptor site. Preferably, the stereochemical complementarity is such that the compound has a K_I for the receptor site of less than 10⁻⁶M. More preferably, the K_I value is less than 10⁻⁸M and more preferably less than 10⁻⁹M.

In preferred embodiments of the first and second aspects of the present invention, the method further involves selecting or designing a substance which has portions that match residues positioned on the surface of the receptor site which faces the groove. By "match" we mean that the identified portions interact with the surface residues, for example, via hydrogen bonding or by enthalpy-reducing Van der Waals interactions which promote desolvation of the biologically active substance within the site, in such a way that retention of the biologically active substance within the groove is favoured energetically.

In a preferred embodiment of the first aspect of the present invention, the method includes screening for, or designing, a substance which possesses a stereochemistry and/or geometry which allows it to interact with both the L1 and L2 domains of the receptor site. As described above, the insulin receptor exists as homodimers held together by disulphide bonds. Electron miscroscopy studies described herein indicate that the insulin receptor monomers dimerise in nature in such a manner that the grooves of each monomer may face each other. Accordingly, the method of the first aspect of the present invention may involve screening for, or designing, a biologically active substance which interacts with the L1 domain of one monomer and the L2 domain of the other monomer.

In a third aspect the present invention provides a method of selecting or designing an agonist of a ligand of an insulin receptor family member or EGF receptor family member which method includes

(i) selecting or designing a substance which interacts with

35

10

15

20

25

(a) a fragment of IGF-1R characterised by amino acids 1-462 positioned at atomic coordinates substantially as shown in Figure 1 or a subset thereof; or

(b) a fragment derived from an insulin family receptor member or EGF receptor family member which is equivalent to the fragment defined in paragraph (a);

5

10

15

20

25

30

35

wherein the interaction of the substance with the fragment alters the position of at least one of the L1, L2 or cys-rich domains of the fragment relative to the position of at least one of the other domains; and

(ii) testing the substance for the ability to act as an agonist of the ligand of an insulin receptor family member or EGF receptor family member.

In a preferred embodiment of the third aspect of the present invention the substance interacts with the fragment in the region of the L1 domain-cys rich domain interface, causing the L1 and cys-rich domains to move away from each other. In a further preferred embodiment the substance interacts with the hinge region between the L2 domain and the cys-rich domain causing an alteration in the positions of the domains relative to each other. In a further preferred embodiment the substance interacts with the beta sheet of the L1 domain causing an alteration in the position of the L1 domain relative to the position of the cys-rich domain or L2 domain.

In a fourth aspect the present invention provides an agonist of a ligand of an insulin receptor family member or EGF receptor family member obtained by a method according to the first or third aspects of the present invention.

In a fifth aspect the present invention provides an antagonist of ligand of an insulin receptor family member or EGF receptor family member obtained by a method according to the second aspect of the present invention.

The agonists or antagonists of the fourth and fifth aspects of the present invention may be mutant insulin family member or EGF family member ligands where at least one mutation occurs in the region of the ligand which interacts with residues on the surface of the receptor site facing toward the groove. For example, the IGF-1 ligand has a predominance of basic residues in the C region which may interact with the acidic patch of the cys-rich region near L1. An acidic patch on the other side of the ligand may interact with the patch of basic residues (residues 307-310) on the N-terminal

10

end of L2. Accordingly, mutants of IGF-1 which exhibit altered activity may be generated by introducing modifications in the C region of IGF-1 or residues in the acidic patch on the other side of the hormone.

In a sixth aspect the present invention provides a substance which possesses stereochemical complementarity to a receptor site, wherein the receptor site is characterised by

- (a) amino acids 1-462 of IGF-1R positioned at atomic coordinates substantially as shown in Figure 1 or a subset thereof; or
- (b) amino acids derived from an insulin receptor family member or an EGF receptor family member which form an equivalent structure to the amino acids defined in paragraph (a);

with the proviso that the substance is not a naturally occurring ligand of an insulin receptor family member or EGF receptor family member or a mutant thereof.

By "mutant" we mean a ligand which has been modified by one or more point mutations, insertions of amino acids or deletions of amino acids.

In a preferred embodiment of the sixth aspect of the present invention, the stereochemical complementarity is such that the compound has a K_I for the receptor site of less than $10^{-6} M$. More preferably, the K_I value is less than $10^{-8} M$ and more preferably less than $10^{-9} M$.

In a seventh aspect the present invention provides a pharmaceutical composition for treatment of a disease associated with reduced activity of a ligand of an insulin receptor family member or EGF receptor family member which includes an agonist obtained by a method according to the first or third aspects of the present invention and a pharmaceutically acceptable carrier or diluent.

In an eighth aspect the present invention provides a pharmaceutical composition for treatment of a disease associated with activity of a ligand of an insulin receptor family member or EGF receptor family member which includes an antagonist obtained by a method according to the second aspect of the present invention and a pharmaceutically acceptable carrier or diluent.

In a ninth aspect the present invention provides a method of preventing or treating a disease associated with reduced activity of a ligand of an insulin receptor family member or EGF receptor family member which method includes administering to a subject in need thereof an agonist

15

10

5

20

30

25

obtained by a method according to the first or third aspects of the present invention.

Diseases associated with reduced activity of a ligand of an insulin receptor family member or EGF receptor family member include diabetes, osteoporosis, nerve degeneration and a range of catabolic states.

In a tenth aspect the present invention provides a method of preventing or treating a disease associated with activity of a ligand of an insulin receptor family member or EGF receptor family member which method includes administering to a subject in need thereof an antagonist obtained by a method according to the second aspect of the present invention.

Diseases associated with activity of a ligand of an insulin receptor family member or EGF receptor family member include cancer, leukaemia and many types of tumour states including but not restricted to breast cancer, brain tumours, ovarian cancer, pancreatic tumours, lung cancer, melanoma, rhabdomyosarcoma, mesothelioma and glioblastoma.

Brief Description of the Drawings

5

10

15

30

- Figure 1. IGF-1R residues 1-462, in terms of atomic coordinates refined to a resolution of 2.6 Å (average accuracy ≈ 0.3Å). The coordinates are in relation to a Cartesian system of orthogonal axes.
- Figure 2. Depiction of the residues lining the groove of the IGF-1R receptor fragment 1-462.
 - Figure 3. Gel filtration chromatography of affinity-purified IGF-1R/462 protein. The protein was purified on a Superdex S200 column (Pharmacia) fitted to a BioLogic L.C. system (Biorad), equilibrated and eluted at 0.8 ml/min with 40 mM Tris/150 mM NaCl/0.02% NaN3 adjusted to pH 8.0. (a) Protein eluting in peak 1 contained aggregated IGF-1R/462 protein, peak 2 contained monomeric protein and peak 3 contained the c-myc undecapeptide used for elution from the Mab 9E10 immunoaffinity column. (b) Non-reduced SDS-PAGE of fraction 2 from IGF-1R/462 obtained following Superdex S200 (Fig.1a). Standard proteins are indicated.

Figure 4. Ion exchange chromatography of affinity-purified, truncated IGF-1R ectodomain. A mixture of gradient and isocratic elution chromatography was performed on a Resource Q column (Pharmacia) fitted to a BioLogic System (Biorad), using 20 mM Tris/pH 8.0 as buffer A and the same buffer containing 1M NaCl as buffer B. Protein solution in TBSA was diluted at least 1:2 with water and loaded onto the column at 2 ml/min. Elution was monitored by absorbance (280 nm) and conductivity (mS/cm). Target protein (peak 2) eluted isocratically with 20 mM Tris/0.14 M NaCl pH 8.0. Inset: Isoelectric focusing gel (pH 3 - 7; Novex Australia Pty Ltd)of fraction 2. The pI was estimated at 5.1 from standard proteins (not shown).

Figure 5. Gel filtration chromatography of affinity purified IR/485 protein. Affinity-purified material at 1 mg/ml produced a dominant peak at apparent mass ~ 140 kDa (interpreted as a dimer) (a); whereas affinity-purified material at 0.02 mg/ml produced a dominant peak at apparent mass ~ 85kDa (interpreted as a monomer) (b).

Figure 6. (a) SDS-PAGE of IR/485 following gel filtration chromatography. The protein migrated as a single broad band of apparent molecular mass ~ 78 kDa (reduced - lane A) or ~ 68kDa (non-reduced - lane B). (b) Isoelectric focussing of the IR/485 protein. The IR/485 fragment reacted positively in an ELISA with Mab 83-7, gave a single sequence corresponding to the N-terminal 10 residues of IR, showing several isoforms on isoelectric focussing from pI6.0-6.8. The fragment was further purified by ion-exchange chromatography on Uno Q (BioRad, USA), using stepwise isocratic elution with incremental changes in salt concentrations (see Figure 7). Fractions A and D were each enriched in a component isoform from the ladder of isoforms present in the unfractionated mixture. Both these fractions produced crystals, whereas no crystals were obtained from fractions B and C.

Figure 7. Purification of the IR/485 protein by ion-exchange chromatography on Uno Q (BioRad, USA), using stepwise isocratic elution with incremental changes in salt concentrations.

Figure 8. Polypeptide fold for residues 1-462 of IGF-1R. The L1 domain is at the top, viewed from the N-terminal end and L2 is at the bottom. The space

at the centre is of sufficient size to accommodate IGF-1. Helices are indicated by curled ribbon and b-strands by arrows. Cysteine side chains are drawn as ball-and-stick with lines showing disulfide bonds. The arrow points in the direction of view for Figure 9.

5

10

15

20

30

Figure 9. Amino acid sequences of IGF-1R and related proteins. a, L1 and L2 domains of human IGF-1R and IR are shown based on a sequence alignment for the two proteins and a structural alignment for the L1 and L2domains. Positions showing conservation physico-chemical properties of amino acids are boxed, residues used in the structural alignment are shaded yellow and residues which form the Trp 176 pocket are in red. Secondary structure elements for L1 (above the sequences) and L2 (below) are indicated as cylinders for helices and arrows for b-strands. Strands are colour coded according to the b-sheet to which they belong. Disulfide bonds are also indicated. b, Cys-rich domains of human IGF-1R, IR and EGFR (domains 2 and 4) are aligned based on sequence and structural considerations. Secondary structural elements and disulfide bonds are indicated above the sequences. The dashed bond is only present in IR. Different types of disulfide bonded modules are labelled below the sequences as open, filled or broken lines. Boxed residues show conservation of physico-chemical properties and structurally conserved residues for modules 4-7 are shaded yellow. Residues from EGFR which do not conform to the pattern are shaded grey and the conserved Trp 176 and the semi-conserved Gln 182 are shaded red. This figure was prepared using ALSCRIPT (Barton, G. J., 1993, Prot. Engineering, 6:37-40).

25 Engineering, 6:37-40)

Figure 10. Stereo view of a superposition of the L1 (white) and L2 (black) domains. Residues numbers above are for L1 and below for L2. The side chain of Trp 176 which protrudes into the core of L1 is drawn as ball-and-stick.

Figure 11. Schematic diagram showing the association of three β -finger motifs. β -strands are drawn as arrows and disulfide bonds as zigzags.

Figure 12. GRASP [Nicolls, A. et al., 1993, Biophys. J. 64, 166-170] surface diagram of the L1 domain of IGF-1R shown in a similar view to Figure 8. The

N-terminal β -strand is at the top. The mutation L87A [Nakae, J. et al., 1995, J. Biol. Chem. 270, 22017-22022] and four regions (residues 12-15, 34-44, 64-67 and 89-91 of IR) shown to be important in insulin binding to IR [Williams, P. F. et al., 1995, J. Biol. Chem. 270, 3012-3016] correspond to a patch of residues on the large β -sheet. Residues numbers for IR/IGF-1R are given and residues are coloured according to the magnitude of Kd(mutant)/Kd(wild type), red, > 40; orange, 10-40; yellow, 2.5-10; green, < 2.5; non-secreting, white; untested, blue. All mutants on the opposite face of the domain do not affect insulin affinity.

10

5

Figure 13: Sequence Alignment of hIGF-1R, hIR and hIRR Ectodomains.

Derived by use of the PileUp program in the software package of the Genetics Computer Group, 575 Science Drive, Madison, Wisconsin, USA.

For assignment of homologous 3D structures see Figure 9.

15

Figure 14: Sequence Alignment of EGFR, ErbB2, ErbB3 and ErbB4 Ectodomains. Derived by use of the PileUp program in the software package of the Genetics Computer Group, 575 Science Drive, Madison, Wisconsin, USA. For alignment on the IGF-1R fragment and assignment of homologous 3D structures, see Figure 9.

Figure 15 Sequence Alignment and Classification of the Disulphide-bonded Modules in the Cys-rich domains of IGF-1R, IR, IRR, EGFR, ErbB2, ErbB3

25

30

35

and ErbB4.

20

Figure 16. Gel filtration chromatography of insulin receptor ectodomain and MFab complexes. hIR -11 ectodomain dimer (5 - 20 mg) was complexed with MFab derivatives (15-25 mg each) of the anti-hIR antibodies 18-44, 83-7 and 83-14 (Soos et al., 1986). Elution profiles were generated from samples loaded onto a Superdex S200 column (Pharmacia), connected to a BioLogic chromatography system (Biorad) and monitored at 280 nm. The column was eluted at 0.8 ml/min with 40 mM Tris/150 mM sodium chloride/0.02% sodium azide buffer adjusted to pH 8.0: Profile 0, hIR -11ectodomain, Profile 1, ectodomain mixed with MFab 18-44; Profile 2, ectodomain mixed with MFab 18-44 and MFab 83-14; Profile 3, ectodomain mixed with MFab 18-44, MFab 83-14 and MFab 83-7. The apparent mass of each complex was

determined from a plot of the following standard proteins: thyroglobulin (660 kDa), ferritin (440 kDa), bovine gammaglobulin (158 kDa), bovine serum albumin (67 kDa), chicken ovalbumin (44 kDa) and equine myoglobin (17 kDa).

5

10

15

20

Figure 17. Micrographs of hIR and hIGF-1R ectodomains.(a) Undecorated hIR ectodomain dimer stained with methylamine tungstate showing parallel bars. (b) Undecorated hIR ectodomain dimer stained with uranyl formate, showing well-spaced parallel bars corresponding to the cartoon below.

(c) Undecorated hIGF-1R ectodomain dimer stained with uranyl formate. Magnification bars for (a), (b) and (c) 50nm.

Figure 18. Micrographs of hIR and hIGF-1R ectodomains. (a) Thinly stained region of undecorated hIR ectodomain dimers in uranyl formate, showing U-shaped particles (circled) as well as parallel bars as in the cartoon below. (b) Undecorated hIGF-1R ectodomain dimer under similar staining conditions. Magnification bars 50 nm.

Figure 19. hIR ectodomain dimer complexed with MFab 83-7 and stained with KPT. Three projections can be recognised: circled particles have the Fab arms displaced either clockwise as in the cartoon below left, or anticlockwise as in the cartoon below middle; arrowed particles have the Fab arms in a central position, cartoon below right. Magnification bar 50 nm.

Figure 20. hIR ectodomain dimer complexed with MFab 83-7 and stained with uranyl formate showing the parallel bar structure in particles having the Fab arms displaced (circled). Magnification bar 50 nm.

Figure 21. (a) hIR ectodomain dimer complexed with MFab 83-14 stained with potassium phosphotungstate, showing Fab arms attached near the bottom of U-shaped particles (circled). The corresponding cartoon is shown below left. (b) hIR ectodomain dimer complexed with MFab 83-14 stained with uranyl acetate, showing both the view described above (circled) and the parallel-bar view with diagonally projecting Fab arms (arrowed), as in the cartoon below right. Magnification bars 50 nm.

Figure 22. Double complex of hIR ectodomain dimer with MFabs 83-7 and 18-44 showing particles of complex shape (circled) with four Fab arms attached, consistent with the cartoon below. Magnification bar 50 nm.

- Figure 23. Images of hIR ectodomain dimer co-complexed with MFabs 83-7, 83-14 and 18-44 showing examples of complex particles (circled) where it is possible to identify that there are more than four MFabs bound to the dimeric central region. Magnification bar 50 nm.
- Figure 24. Schematic illustrating the proposed model of the hIR ectodomain dimer. The dimensions of the molecular envelope are as shown in the diagram, as is the position of the two-fold axis.

Detailed Description of the Invention

15

20

25

30

35

We describe herein the expression, purification, and crystallization of a recombinant IGF-1R fragment (residues 1-462) containing the L1-cysteinerich-L2 region of the ectodomain. The selected truncation position is just downstream of the exon 6/exon 7 junction (Abbott, A. M., et al., 1992. J Biol Chem., 267:10759-10763) and occurs at a position where the sequences of the IR and EGFR families diverge markedly (Ward, C. W., et al., 1995, Proteins: Struct., Funct., Genet. 22:141-153; Lax, I., et al., 1988, Molec. Cellul. Biol. 8:1970-1978) suggesting it represents a domain boundary. To limit the effects of glycosylation, the IGF-1R fragment was expressed in Lec8 cells, a glycosylation mutant of Chinese hamster ovary (CHO) cells, whose defined glycosylation defect produces N-linked oligosaccharides truncated at N-acetyl glucosamine residues distal to mannose residues (Stanley, P. 1989, Molec. Cellul. Biol. 9:377-383). Such an approach has facilitated glycoprotein crystallization (Davis, S. J., et al., 1993, Protein Eng. 6:229-232; Liu, J., et al., 1996, J. Biol. Chem. 271:33639-33646).

The IGF-1R construct described herein included a c-myc peptide tag (Hoogenboom, H. R., et al.,1991, Nucleic Acids Res. 19:4133-4137) that is recognised by the Mab 9E10 (Evan, G. I., et al., 1985, Mol. Cell. Biol. 5:3610-3616) enabling the expressed product to be purified by peptide elution from an antibody affinity column followed by gel filtration over Superdex S200. The purified proteins crystallized under a sparse matrix screen (Jancarik, J. & Kim. S.-H., 1991, J. Appl. Cryst. 24:409-411) but the crystals were of variable

quality, with the best diffracting to 3.0-3.5Å. Isocratic gradient elution by anion-exchange chromatography yielded protein that was less heterogenous and gave crystals of sufficient quality to determine the structure of the first three domains of the human IGF-1R.

The IGF-1R fragment consisted of residues 1-462 of IGF-1R linked via an enterokinase-cleavable pentapeptide sequence to an eleven residue c-myc peptide tag at the C-terminal end. The fragment was expressed in Lec8 cells by continuous media perfusion in a bioreactor using porous carrier disks. It was secreted into the culture medium and purified by peptide elution from an anti-c-myc antibody column followed by Superdex S200 gel filtration. The receptor fragment bound two anti-IGF-1R monoclonal antibodies, 24-31 and 24-60, which recognize conformational epitopes, but could not be shown to bind IGF-1 or IGF-2. Crystals of variable quality were grown as rhombic prisms in 1.7 M ammonium sulfate at pH 7.5 with the best diffracting to 3.0-3.5 Å. Further purification by isocratic elution on an anion-exchange column gave protein which produced better quality crystals, diffracting to 2.6 Å, that were suitable for X-ray structure determination.

The structure of this fragment (IGF-1R residues 1-462; L1-cys rich-L2domains) has been determined to 2.6 Å resolution by X-ray diffraction. The L domains each adopt a compact shape consisting of a single stranded right-handed β-helix. The cys-rich region is composed of eight disulphide-bonded modules, seven of which form a rod-shaped domain with modules associated in a novel manner. At the centre of this reasonably extended structure is a space, bounded by all three domains, and of sufficient size to accommodate a ligand molecule. Functional studies on IGF-1R and other members of the insulin receptor family show that the regions primarily responsible for hormone-binding map to this central site. Thus this structure gives a first view of how members of the insulin receptor family might interact with their ligands.

Another group has reported the crystallization of a related receptor, the EGFR in a complex with its ligand EGF (Weber, W., et al., 1994, J Chromat. 679:181-189). However difficulties were encountered with these crystals which diffracted to only 6 Å, insufficient for the determination of an atomic resolution structure of this complex (Weber, W., et al., 1994, J Chromat 679:181-189) or the generation of accurate models of structurally related receptor domains such as IGF-1R and IR by homology modelling.

The present inventors have applied the same process to the IR and generated a fragment (residues 1-485) that covers the first three domains of the IR. This fragment has been expressed in transformed Lec8 cells, purified, and crystallized by similar methodologies to yield crystals suitable for X-ray diffraction.

5

10

15

20

25

30

35

The present inventors have therefore developed 3D structural information about cytokine receptors to enable a more accurate understanding of how the binding of ligand leads to signal transduction. Such information provides a rational basis for the development of antagonists or agonists for specific therapeutic applications, something that heretofore could not have been predicted de novo from available sequence data.

The precise mechanisms underlying the binding of agonists and antagonists to the IGF-1 receptor site are not fully clarified. However, the binding of the agonists or antagonists to the receptor site, preferably with an affinity in the order of 10⁻⁸M or higher, is understood to arise from enhanced stereochemical complementarity, relative to naturally occurring IGF-1 ligands.

Such stereochemical complementarity, pursuant to the present invention, is characteristic of a molecule that matches intra-site surface residues lining the groove of the receptor site as eneumerated by the coordinates set out in Figure 1. The residues lining the groove are depicted in Figure 2. Substances which are complementary to the shape of the receptor site characterised by amino acids positioned at atomic coordinates set out in Figure 1 may be able to bind to the receptor site and, when the binding is sufficiently strong, substantially prohibit binding of the naturally occurring ligands to the site.

It will be appreciated that it is not necessary that the complementarity between agonists or antagonists and the receptor site extend over all residues lining the groove in order to inhibit binding of the natural ligand. Accordingly, agonists or antagonists which bind to a portion of the residues lining the groove are encompassed by the present invention.

In general, the design of a molecule possessing stereochemical complementarity can be accomplished by means of techniques that optimize, either chemically or geometrically, the "fit" between a molecule and a target receptor. Known techniques of this sort are reviewed by Sheridan and Venkataraghavan, Acc. Chem Res. 1987 20 322; Goodford, J. Med. Chem.

1984 <u>27</u> 557; Beddell, Chem. Soc. Reviews 1985, 279; Hol, Angew. Chem. 1986 <u>25</u> 767 and Verlinde C.L.M.J & Hol, W.G.J. Structure 1994, <u>2</u>, 577, the respective contents of which are hereby incorporated by reference. See also Blundell et al., Nature 1987 <u>326</u> 347 (drug development based on information regarding receptor structure).

Thus, there are two preferred approaches to designing a molecule, according to the present invention, that complements the shape of IGF-1R or a related receptor molecule. By the geometric approach, the number of internal degrees of freedom (and the corresponding local minima in the molecular conformation space) is reduced by considering only the geometric (hard-sphere) interactions of two rigid bodies, where one body (the active site) contains "pockets" or "grooves" that form binding sites for the second body (the complementing molecule, as ligand). The second preferred approach entails an assessment of the interaction of respective chemical groups ("probes") with the active site at sample positions within and around the site, resulting in an array of energy values from which three-dimensional contour surfaces at selected energy levels can be generated.

The geometric approach is illustrated by Kuntz et al., J. Mol. Biol. 1982 161 269, the contents of which are hereby incorporated by reference, whose algorithm for ligand design is implemented in a commercial software package distributed by the Regents of the University of California and further described in a document, provided by the distributor, which is entitled "Overview of the DOCK Package, Version 1.0,", the contents of which are hereby incorporated by reference. Pursuant to the Kuntz algorithm, the shape of the cavity represented by the IGF-R1 site is defined as a series of overlapping spheres of different radii. One or more extant data bases of crystallographic data, such as the Cambridge Structural Database System maintained by Cambridge University (University Chemical Laboratory, Lensfield Road, Cambridge CB2 1EW, U.K.) and the Protein Data Bank maintained by Brookhaven National Laboratory (Chemistry Dept. Upton, NY 11973, U.S.A.), is then searched for molecules which approximate the shape thus defined.

Molecules identified in this way, on the basis of geometric parameters, can then be modified to satisfy criteria associated with chemical complementarity, such as hydrogen bonding, ionic interactions and Van der Waals interactions.

The chemical-probe approach to ligand design is described, for example, by Goodford, J. Med. Chem. 1985 28 849, the contents of which are hereby incorporated by reference, and is implemented in several commercial software packages, such as GRID (product of Molecular Discovery Ltd., West Way House, Elms Parade, Oxford OX2 9LL, U.K.). pursuant to this approach, the chemical prerequisites for a site-complementing molecule are identified at the outset, by probing the active site (as represented via the atomic coordinates shown in Fig. 1) with different chemical probes, e.g., water, a methyl group, an amine nitrogen, a carboxyl oxygen, and a hydroxyl. Favored sites for interaction between the active site and each probe are thus determined, and from the resulting three-dimensional pattern of such sites a putative complementary molecule can be generated.

5

10

15

20

25

30

35

The chemical-probe approach is especially useful in defining variants of a molecule known to bind the target receptor. Accordingly, crystallographic analysis of IGF-1 bound to the receptor site may provide useful information regarding the interaction between the archetype ligand and the active site of interest.

A further use of the structure of IGF-1R fragment described here is in facilitating structure determination of a related protein such as a larger fragment of this receptor, another member of the insulin receptor family or a member of the EGF receptor family. This new structure could be either alone or in complex with its ligand. For crystallographic analysis this is achieved using the method of molecular replacement (Brunger, Meth. Enzym. 1997 276 558-580, Navaza and Saludjian, ibid. 581-594, Tong and Rossmann, ibid. 594-611, Bentley, ibid. 611-619) in a program such as XPLOR. In this procedure diffraction data is collected from a crystalline protein of unknown structure. A transform of these data (Patterson function) is compared with a Patterson function calculated from a known structure. Firstly, the one Patterson function is rotated on the other to determine the correct orientation of the unknown molecule in the crystal. The translation function is then calculated to determine the location of the molecule with respect to the crystal axes. Once the molecule has been correctly positioned in the unit cell initial phases for the experimental data may be calculated. These phases are necessary for calculation of an electron density map from which structural differences may be observed and for refinement of the structure. Due to limitations in the method the search molecule must be structurally related to

that which is to be determined. However it is sufficient for only part of the unknown structure (e.g. < 50%) to be similar to the search molecule. Thus the three dimensional structure of IGF-1R residues 1-462 may be used to solve structures consisting of related receptors, enabling a program of drug design as outlined above.

In summary, the general principles of receptor-based drug design can be applied by persons skilled in the art, using the crystallographic results presented above, to produce agonists or antagonists of IGF-1R or other related receptors, having sufficient stereochemical complementarity to exhibit high affinity binding to the receptor site.

The present invention is further described below with reference to the following, non-limiting examples.

EXAMPLE 1

5

10

15

20

25

30

35

Expression, Purification and Crystalization of the IGF-1R Fragment.

Several factors hamper macromolecular crystallization including sample selection, purity, stability, solubility (McPherson, A., et al., 1995, Structure 3:759-768); Gilliland, G. L., & Ladner, J. E., 1996, Curr. Opin. Struct. Biol. 6:595-603), and the nature and extent of glycosylation (Davis, S. J., et al., 1993, Protein Eng. 6:229-232). Initial attempts to obtain structural data from soluble IGF-1R ectodomain (residues 1-906) protein, expressed in Lec8 cells (Stanley, P. 1989, Molec. Cellul. Biol. 9:377-383) and purified by affinity chromatography, produced large, well-formed crystals (1.0 mm x 0.2 mm x 0.2 mm) which gave no discernable X-ray diffraction pattern (unpublished data). Similar difficulties have been encountered with crystals of the structurally related epidermal growth factor receptor (EGFR) ectodomain which diffracted to only 6 Å, insufficient for the determination of an atomic resolution structure (Weber, W. et al., 1994, J Chromat 679:181-189). This prompted us to search for a fragment of IGF-1R that was more amenable to X-ray crystallographic studies.

The fragment expressed (residues 1-462) comprises the L1-cysteinerich-L2 region of the ectodomain. The selected truncation position at Val462 is four residues downstream of the exon 6/exon 7 junction (Abbott, A. M., et al., 1992, J Biol Chem. 267:10759-10763) and occurs at a position where the sequences of the IR and the structurally related EGFR families diverge markedly (Lax, I., et al., 1988, Molec Cell Biol. 8:1970-1978; Ward, C. W., et

al., 1995, Proteins: Struct., Funct., Genet. 22:141-153), suggesting it represents a domain boundary. The expression strategy included use of the pEE14 vector (Bebbington, C. R. & Hentschel, C. C. G., 1987, In: Glover, D. M., ed. DNA Cloning. Academic Press, San Diego. Vol 3, p163) in glycosidase-defective Lec8 cells (Stanley, P., 1989, Molec. Cellul. Biol. 9:377-5 383), which produce N-linked oligosaccharides lacking the terminal galactose and N-acetylneuraminic acid residues (Davis, S. J., et al., 1993, Protein Eng. 6:229-232; Liu, T., et al., 1996, J Biol Chem 271:33639-33646.). The construct contained a C-terminal c-myc affinity tag (Hoogenboom, H. R., et al., 1991, Nucl Acids Res. 19:4133-4137), which facilitated immunoaffinity purification 10 by specific peptide elution and avoided aggressive purification conditions. These procedures yielded protein which readily crystallized after a gel filtration polish. This provided a general protocol to enhance crystallisation prospects for labile, multidomain glycoproteins.

The structure of this fragment is of considerable interest since it contains the major determinants governing insulin and IGF-1 binding specificity (Gustafson, T. A. & Rutter, W. J., 1990, J. Biol. Chem. 265:18663-18667; Andersen, A. S., et al., 1990, Biochemistry, 29:7363-7366; Schumacher, R., et al., 1991, J. Biol. Chem. 266:19288-19295; Schumacher, R., et al., 1993, J. Biol. Chem. 268:1087-1094; Schäffer, L., et al., 1993, J. Biol. Chem. 268:3044-3047; Williams, P. F., et al., 1995, , J. Biol. Chem. 270:3012-3016) and is very similar to an IGF-1R fragment (residues 1-486) reported to act as a strong dominant negative for several growth functions and which induces apoptosis of tumour cells in vivo (D'Ambrosio, C., et al., 1996, Cancer Res. 56:4013-4020).

The expression plasmid pEE14/IGF-1R/462 was constructed by inserting the oligonucleotide cassette:

AatII 5' GACGTC GACGATGACGATAAG GAACAAAAACTCATC 30 D V D D D K Ε Q K L I (EK cleavage) (c-myc tail) Ε E L Ν (Stop) TCAGAAGAGGATCTGAAT TAGAATTC GACGTC 3' 35 **EcoRI AatII**

encoding an enterokinase cleavage site, c-myc epitope tag (Hoogenboom, H. R., et al., 1991, Nucleic acids Res. 19:4133-4137) and stop codon into the AatII site (within codon 462) of IGF-1 receptor cDNA in the mammalian expression vector pECE (Ebina, Y., et al., 1985, Cell, 40:747-758; kindly supplied by W. J. Rutter, UCSF, USA), and introducing the DNA comprising 5 the 5' 1521 bp of the cDNA (Ullrich, A., et al., 1986, EMBO J. 5:2503-2512) ligated to the oligonucleotide cassette into the EcoRI site of the mammalian plasmid expression vector pEE14 (Bebbington, C. R. & Hentschel, C. C. G., 1987, In: Glover, D. M., ed. DNA Cloning. Academic Press, San Diego. Vol 3, 10 p163; Celltech Ltd., UK). Plasmid pEE14/IGF-1R/462 was transfected into Lec8 mutant CHO cells (Stanley, P. 1989, Molec. Cellul. Biol. 9:377-383) obtained from the American Tissue Culture Collection (CRL:1737) using Lipofectin (Gibco-BRL). Cell lines were maintained after transfection in glutamine-free medium (Glascow modification of Eagle's medium (GMEM; ICN Biomedicals, Australia) and 10% dialysed FCS (Sigma, Australia) 15 containing 25 µM methionine sulphoximine (MSX; Sigma, Australia) as described (Bebbington, C. R. & Hentschel, C. C. G., 1987, In: Glover, D. M., ed. DNA Cloning. Academic Press, San Diego. Vol 3, p163). Transfectants were screened for protein expression by Western blotting and sandwich enzyme-linked immunosorbant assay (ELISA) (Cosgrove, L., et al., 1995,) 20 using monoclonal antibody (Mab) 9E10 (Evan et al., 1985) as the capture antibody and either biotinylated anti-IGF-1R Mab 24-60 or 24-31 for detection(Soos et al., 1992; gifts from Ken Siddle, University of Cambridge, UK). Large-scale cultivation of selected clones expressing IGF-1R/462 was carried out in a Celligen Plus bioreactor (New Brunswick Scientific, USA) 25 containing 70 g Fibra-Cel Disks (Sterilin, UK) as carriers in a 1.25 L working volume. Continuous perfusion culture using GMEM medium supplemented with non-essential amino acids, nucleosides, 25 μM MSX and 10% FCS was maintained for 1 to 2 weeks followed by the more enriched DMEM/F12 30 without glutamine, with the same supplemention for the next 4-5 weeks. The fermentation production run was carried out three times under similar conditions and resulted in an estimated overall yield of 50 mg of receptor protein from 430 L of harvested medium. Cell growth was poor during the initial stages of the fermentation when GMEM medium was employed, but improved dramatically following the switch to the more enriched medium. 35 Target protein productivity was essentially constant during the period from

~100 to 700 h of the 760 h fermentation, as measured by ELISA using Mab 9E10 as the capture antibody and biotinylated Mab 24-31 as the developing antibody.

5

10

15

20

25

30

35

Soluble IGF-1R/462 protein was recovered from harvested fermentation medium by affinity chromatography on columns prepared by coupling Mab 9E10 to divinyl sulphone-activated agarose beads (Mini Leak; Kem En Tec, Denmark) as recommended by the manufacturer. Mini-Leak Low and Medium affinity columns with antibody loadings of 1.5-4.5 mg/ml of hydrated matrix were obtained, with the loading range of 2.5-3 mg/ml giving optimal performance (data not shown). Mab 9E10 was produced by growing hybridoma cells (American Tissue Culture Collection) in serum-free medium in the Celligen Plus bioreactor and recovering the secreted antibody (4 g) using protein A glass beads (Prosep-A, Bioprocessing Limited, USA). Harvested culture medium containing IGF-1R/462 protein was adjusted to pH 8.0 with Tris-HCl (Sigma), made 0.02% (w/v) in sodium azide and passed at 3-5 ml/min over 50 ml Mab 9E10 antibody columns at 4° C. Bound protein was recovered by recycling a solution of 2-10 mg of the undecamer c-myc peptide EQKLISEEDLN (Hoogenboom et al., 1991) in 20 ml of Tris-buffered saline containing 0.02% sodium azide (TBSA). Between 65% and 75% of the product was recovered from the medium as estimated by ELISA, with a further 15-25% being recovered by a second pass over the columns. Peptide recirculation (~10 times) through the column eluted bound protein more efficiently than a single, slower elution. Residual bound protein was eluted with sodium citrate buffer at pH 3.0 into 1 M Tris HCl pH 8.0 to neutralize the eluant, and columns were re-equilibrated with TBSA.

Gel filtration over Superdex S200 (Pharmacia, Sweden), of affinity-purified material showed a dominant protein peak at ~63 kDa, together with a smaller quantity of aggregated protein (Figure 3a). The peak protein migrated primarily as two closely spaced bands on reduced, sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE; Figure 3b), reacted positively in the ELISA with both Mab 24-60 and Mab 24-31, and gave a single sequence corresponding to the N-terminal 14 residues of IGF-1R. No binding of IGF-1 or IGF-2 could be detected in the solid plate binding assay (Cosgrove et al., 1995, Protein Express Purif. 6:789-798). The IGF-1R/462 fragment was further purified by ion-exchange chromatography on Resource Q (Pharmacia, Sweden). Using shallow salt gradients, protein enriched in the

slowest migrating SDS-PAGE band was obtained (data not shown), which formed relatively large, well-formed crystals (see below). Isoelectric focusing showed the presence of one major and two minor isoforms. Protein purified on Resource Q with an isocratic elution step of 0.14 M NaCl in 20 mM TrisCl at pH 8.0 (fraction 2, Figure 4) showed less heterogeneity on isoelectric focusing (Figure 4 inset) and SDS-PAGE (data not shown) and produced crystals of sufficient quality for structure determination (see below).

5

10

15

20

25

30

35

Crystals were grown by the hanging drop vapour diffusion method using purified protein concentrated in Centricon 10 concentrators (Amicon Inc, USA) to 5-10 mg/ml in 10-20 mM Tris-HCl pH 8.0 and 0.02% (w/v) azide, or 100 mM ammonium sulfate and 0.02% (w/v) azide. A search for crystallization conditions was performed initially using the factorial screen (Jancarik, J. & Kim, S.-H.,1991, J Appl Cryst 24:409-411) and subsequently optimised. Crystals were examined on an M18XHF rotating anode generator (Siemens, Germany) equipped with Franks mirrors (MSC, USA) and RAXIS IIC and IV image plate detectors (Rigaku, Japan).

From the initial crystallization screen of this protein, crystals of about 0.1 mm in size grew in one week. Upon refining conditions, crystals of up to $0.6 \times 0.4 \times 0.4$ mm could be grown from a solution of 1.7-2.0 M ammonium sulfate, 0.1 M HEPES pH 7.5. The crystals varied considerably in shape and diffraction quality, growing predominantly as rhombic prisms with a length to width ratio of up to 5:1, but sometimes as rhombic bipyramids, the latter form being favoured when using material which had been eluted from the Mab 9E10 column at pH 3.0. Each crystal showed a minor imperfection in the form of very faint lines from the centre to the vertices. Protein from dissolved crystals did not appear to be different from the protein stock solution when run on an isoelectric focusing gel. Upon X-ray examination, the crystals diffracted to 3.0-4.0 Å and were found to belong to the space group $P2_12_12_1$ with a = 76.8 Å, b = 99.0 Å, c = 119.6 Å. In the diffraction pattern, the crystal variability noted above was manifest as a large (1-2°) and anisotropic mosaic spread, with concomitant variation in resolution. To improve the quality of the crystals, they were grown in the presence of various additives or were recrystallized. These methods failed to substantially improve the crystal quality although bigger crystals were obtained by recrystallization. The variability in crystal quality appeared to be due to protein heterogeneity, as demonstrated by the observation that more

highly purified protein, eluted isocratically from the Resource Q column and showing one major band on isoelectric focusing (Figure 4 inset), produced crystals of sufficient quality for structure determination. These crystals diffracted to 2.6 Å resolution with cell dimensions, a = 77.0 Å, b = 99.5 Å, c = 120.1 Å and mosaic spread of 0.5°. Heavy metal derivatives of the IGF-1R/462 crystals have been obtained and are leading to the determination of an atomic resolution structure of this fragment, which contains the L1, cysteine-rich and L2 domains of human IGF-1R.

EXAMPLE 2

5

15

20

30

35

10 Expression, Purification and Crystalization of the IR Fragment

A similar strategy was adopted for the human insulin receptor. The fragment expressed (residues 1-485) comprises the L1-cysteine-rich-L2 region of the IR ectodomain but extends 13 residues further before the attachment of the 17 residue EK cleavage site linker and c-myc tail. The selected truncation position corresponds to a unique and convenient Bgl II restriction site. The expression strategy was also based on the pEE14 expression vector in glycosidase-defective Lec8 cells and use of a C-terminal c-myc affinity tag for immunoaffinity purification by specific peptide elution. These procedures yielded IR protein which readily crystallized after a gel filtration polish.

The expression plasmid pHIR485 was constructed by ligating the double-stranded oligonucleotide cassette:

Bgl II

25 5' AGATC TCCGACGATGACGATAAG GAACAAAAACTCATCTCAGAAGAGGATCTGAAT TAG TCTAGA 3'
K I S D D D K E Q K L I S E E D L N

EK cleavage c-myc tail Stop

encoding an enterokinase cleavage site, c-myc epitope tag (Hoogenboom, H. R., et al., 1991, Nucleic acids Res. 19:4133-4137) and stop codon, to the larger 11.1 kilobasepair Bgl II / Xba I fragment isolated from digestion of the mammalian expression plasmid pEH3 (a derivative of the mammalian plasmid expression vector pEE14 [Bebbington, C. R. & Hentschel, C. C. G., 1987. In: Glover, D. M., ed. DNA Cloning. Academic Press. San Diego. Vol 3, p163: Celltech Ltd., UK] which holds the entire coding sequence of human insulin receptor within a Hind III /Xba I fragment). Lec8 mutant CHO cells

(Stanley, P. 1989, Molec. Cellul. Biol. 9:377-383) obtained from the American Tissue Culture Collection (CRL:1737) were transfected with pHIR485 using Lipofectamine (Gibco-BRL). Cell lines were maintained after transfection in glutamine-free medium (Glascow modification of Eagle's medium - GMEM; ICN Biomedicals, Australia) and 10% dialysed FCS (Sigma, Australia) containing 25 µM methionine sulphoximine (MSX; Sigma, Australia) as described (Bebbington, C. R. & Hentschel, C. C. G., 1987, In: Glover, D. M., ed. DNA Cloning. Academic Press, San Diego. Vol 3, p163). Transfectants were screened for protein expression by Western blotting and sandwich enzyme-linked immunosorbant assay (ELISA) (Cosgrove, L., et al., 1995,) using anti-hIR (Mab) 83.7 as the primary antibody and biotinylated monoclonal antibody (Mab) 9E10 (Evan et al., 1985) for detection (Soos et al., 1986; gifts from Ken Siddle, University of Cambridge, UK). Large-scale cultivation of selected clones expressing IR/485 was carried out in a Celligen Plus bioreactor (New Brunswick Scientific, USA) containing 70 g Fibra-Cel Disks (Sterilin, UK) as carriers in a 1.25 L working volume. Continuous perfusion culturé was carried out using DMEM/F12 without glutamine medium (ICN), supplemented with non-essential amino acids, nucleosides, 25 μM MSX and 5 - 10% FCS and resulted in an estimated overall yield of 115 mg of receptor protein from 165 L of harvested medium. Target protein productivity was essentially constant during the fermentation, as measured by ELISA.

5

10

15

20

25

30

35

Soluble IR/485 protein was recovered from harvested fermentation medium by affinity chromatography on columns of Mab 9E10 essentially as described in Example 1. Between 92 -98% of the product was recovered from the medium by this affinity-chromatography step, as estimated by ELISA.

Gel filtration over Superdex 200 (Pharmacia, Sweden), of the affinity-purified material at 1mg/ml produced a dominant protein peak at apparent mass ~140 kDa (Figure 5a - interpreted as dimer), whereas a peak at apparent mass ~85 kDa was obtained (Figure 5b - interpreted as monomer) at 0.02 mg/ml. The protein migrated as a single broad band of apparent molecular mass ~78 kDa (reduced- lane A) or ~68 kDa (non-reduced - lane B) on sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE; Figure 6a) The IR/485 fragment reacted positively in the ELISA with Mab 83-7, gave a single sequence corresponding to the N-terminal 10 residues of IR, showing several isoforms on isoelectric focussing from pI 6.0 - 6.8 (Figure

6b). Crystallisation screening trials of the fragment produced crystals too small for X-ray diffraction studies. The fragment was further purified by ion-exchange chromatography on Uno Q (BioRad, USA), using stepwise isocratic elution with incremental changes in salt concentrations (Figure 7). Fractions A and D were each enriched in a component isoform from the ladder of isoforms present in the unfractionated mixture (Figure 6b). Both these fractions produced crystals, whereas no crystals were obtained from fractions B and C.

Crystals were grown by the hanging drop vapour diffusion method using purified protein concentrated in Centricon 10 concentrators (Amicon Inc, USA) to 5-10 mg/ml in 10mM Tris-HCl pH 8.0 and 0.02% (w/v) azide. A search for crystallization conditions was performed initially using the factorial screen (Jancarik, J. & Kim, S.-H.,1991, J Appl Cryst 24:409-411) and subsequently optimised. Crystals were examined on an M18XHF rotating anode generator (Siemens, Germany) equipped with Franks mirrors (MSC, USA) and an RAXIS IIC image plate detector (Rigaku, Japan).

From the initial crystallization screen of this protein fraction D fine needles grew in about one week. In further experiments, crystals of up to $0.04 \times 0.04 \times 0.2$ mm could be grown from a solution of 1.9-2.0 M ammonium sulfate, 2% PEG 400, 0.1 M HEPES pH 7.5. Upon X-ray examination, the crystals diffracted to 4 Å and were found to belong to the space group $P2_12_12_1$ with a = 103.2 Å, b = 130.0 Å, c = 161.6 Å. Despite their small size these crystals diffracted sufficiently well to allow collection of a low resolution data set. Further purification of the protein and refinement of crystallisation conditions should yield larger crystals, providing data to determine the structure of this fragment at medium resolution or better.

EXAMPLE 3

10

15

20

25

30

35

Structure of the IGF-1R/1-462

Crystals were cryo-cooled to-170°C in a mother liquor containing 20% glycerol, 2.2 M ammonium sulfate and 100 mM Tris at pH 8.0. Native and derivative diffraction data were recorded on Rigaku RAXIS IIc or IV area detectors using copper $K\alpha$ radiation from a Siemens rotating anode generator with Yale/MSC mirroroptics. The space group was $P2_12_12_1$ with a=77.39 Å, b=99.72 Å. and c=120.29 Å. Data were reduced using DENZO and SCALEPACK (Otwinowski, Z. & Minor, W., 1996, Mode.Meth. Enzym. 276:307-326). Diffraction was notably anisotropic for all crystals examined.

Phasing by multiple isomorphous replacement(MIR) was performed with PROTEIN (Steigeman, W. Dissertation (Technical Univ. Munich, 1974) using anomalous scattering for both UO2 and PIP derivatives. Statistics for data collection and phasing are given in Table 1. In the initial MIR map regions of protein and solvent could clearly be seen but the path of the polypeptide was by no means obvious. That map was subject to solvent flattening and histogram matching in DM (Cowtan, K., 1994, Joint CCP4 and ESF-EACBM newslett. Protein Crystallogr. 31:34-38). The structure was traced and rebuilt using O (Jones, T. A., et al., 1991, Acta Crystallogr. A47:110-119) and refined with X-PLOR 3.851 (Brunger, A. T., 1996, X-PLOR ReferenceManual 3.851, Yale Univ., New Haven, CT). After 5 rounds of rebuilding and energy minimisation the R-factor dropped to 0.279 and Rfree = 0.359 for data 7-2.6 Å resolution. The current model contains 458 amino acids and 3 N-linked carbohydrates but no solvent molecules. For residues with B(Ca) > 70 Å2atomic positions are less reliable (37-42, 155-159, 305, 336-341, 404-406,453-458). There is weak electron density for residues 459-461 but the c-myc tail appears completely disordered.

The 1-462 fragment consists of the N-terminal three domains of IGF-1R (L1, cys-rich, L2) and contains regions of the molecule which dictate ligand specificity (17-23). The molecule adopts a reasonably extended structure (approximately $40 \times 48 \times 105 \text{ Å}$) with domain 2 (cys-rich region) making contact along the length of domain 1 (L1) but very little contact with the third domain (L2) (see Figure 8). This leaves a space at the centre of the molecule of approximately $24 \text{ Å} \times 24 \text{ Å} \times 24 \text{ Å}$ which is bounded on three sides by the three domains of the molecule. The space is of sufficient size to accommodate the ligand, IGF-1.

The L domains

5

10

15

20

25

30

35

Each of the L domains (residues 1-150 and 300-460) adopt a compact shape (24 x 32 x 37 Å) consisting of a single-stranded right handed β -helix and capped on the ends by short a-helices and disulfide bonds. The body of the domain looks like a loaf of bread with the base formed from a flat six-stranded β -sheet, 5 residues long and the sides being β -sheets three residues long (Figures 8 & 9). The top is irregular but in places is similar for the two domains. The two domains are superposable with an rms deviation in Ca positions of 1.6 Å for 109 atoms (Figure 10). Although this fold is reminiscent of other β -helix proteins it is much simpler and smaller with very few

elaborations and thus it represents a new superfamily of domains. One notable difference between the two domains is that the indole ring of Trp 176 from the cys-rich region (Figure 9b) is inserted into the hydrophobic core of L1 and the C-terminal helix is only vestigial (Figure 8). For the insulin receptor family the sequence motif of residues which form the Trp pocket in L1 does not occur in L2 (Figure 9a). However in the EGF receptor, which has an additional cys-rich region after the L2 domain (14, 15), the pocket motif can be found in both L domains and the Trp is conserved in both cys-rich regions (Figure 9b).

The repetitive nature of the β-helix is reflected in the sequence and the first five turns were correctly identified by Bajaj, M., et al. (1987, Biochim.Biophys. Acta 916:220-226), the conserved Gly residues being found in turns making one bottom edge of the domain. However, their conclusions about the fold were incorrect. The "helix-like" repeat is actually a pair of bends at the top edge of the domain. In their Motif V, the Gly is not in a bend but is followed by the insertion of a conserved loop of 7-8 residues (see Figure 9a). Glycine is structurally important in the Gly bends as mutation of these residues compromises folding of the receptor [van der Vorm, E.R., et al., 1992, J. Biol. Chem. 267, 66-71; Wertheimer, E. et al., 1994, J. Biol. Chem. 269, 7587-7592].

10

15

20

25

30

35

Upon comparing the L domains with other right-handed β-helix structures such as pectate lyase (Yoder, M. D., et al., 1993,.Structure, 1:241-251-1507) and the p22 tailspike protein (Steinbacher, S., et al., 1997, J.Mol. Biol. 267:865-880) there are some striking similarities as well as differences. In all cases the ends of the domain are capped by α -helices but the L domains also have a disulphide bond at each end to hold the termini. The other βhelix domains are considerably longer and have significant twist to their sheets while the L domains have flat sheets. Although the sizes of the helix repeats are similar (here 24-25 residues vs 22-23 for pectate lyase) the crosssections are quite different. The L domains have a rectangular cross-section while pectate lyase and p22 tailspike protein are V-shaped and have many, and sometimes quite large, insertions (Yoder, M. D., et al., 1993,.Structure, 1:241-251-1507; Steinbacher, S., et al., 1997, J.Mol. Biol. 267:865-880). In the hydrophobic core a common feature is the stacking of aliphatic residues from successive turns of the β-helix and near the C-terminus of each L domain there is also a short Asn ladder, reminiscent of the long Asn ladder

observed in pectate lyase (Yoder, M. D., et al., 1993,.Structure 1:241-251-1507). On the opposite side of the L domains the Gly bend as well as the two bends and sheet preceding it have no counterpart in the other β -helix domains. Thus although the L domains are built on similar principles to the other β -helix domains they constitute a separate superfamily.

The cys-rich domain

5

10

15

20

25

30

The cys-rich domain is composed of eight disulfide-bonded modules (Figure 9b), the first of which sits at the end of L1 while the remainder make a curved rod running diagonally across L1 and reaching to L2 (Figure 8). The strands in modules 2-7 run roughly perpendicular to the axis of the rod in a manner more akin to laminin (Stetefeld, J., et al., 1996, J.Mol. Biol. 257:644-657) than to TNF receptor (Banner, D. W., et al., 1993, Cell, 73:431-445) but the modular arrangement of the cys-rich domain is different to other cys-rich proteins for which structures are known. The first 3 modules of IGF-1R have a common core, containing a pair of disulfide bonds, but show considerable variation in the loops (Figure 9b). The connectivity of these modules is the same as the first half of EGF (Cys 1-3and 2-4) but their structures do not appear to be closely related to any member of the EGF family. Modules 4 to 7 have a different motif, β-finger, and best match residues 2152-2168 of fibrillin (Dowling, A. K., et al., 1996, Cell, 85:597-605). Each is composed of three polypeptide strands, the first and third being disulfide bonded and the latter two forming a β-ribbon. The β-ribbon of each β- finger module lines up antiparallel to form a tightly twisted 8-stranded β-sheet (Figures 8 and 11). Module 6 deviates from the common pattern with the first segment being replaced by an α -helix followed by a large loop that is likely to have a role in ligand binding (see below). As module 5 is most similar to module 7 it is possible that the four modules arose from serial gene duplications. The final module is a disulfide linked bend of five residues.

The fact that the two major types of cys-rich modules occur separately implies that these are the minimal building blocks of cys-rich domains found in many proteins. Although it can be as short as 16 residues, the motif of modules 4-7 is clearly distinct and capable of forming a regular extended structure. Thus cys-rich domains such as these can be considered as made of repeat units each composed of a small number of modules.

Hormone binding

5

10

15

20

25

30

35

Attempts have been made to locate the IGF-1 (and insulin) binding site by examining natural (Taylor, S. I., 1992, Diabetes, 41:1473-1490) and site-directed mutants (Williams, P. F., et al., 1995, J. Biol. Chem. 270:3012-3016; Mynarcik, D. C et al., 1996, J. Biol. Chem. 271:2439-2442; Mynarcik, D. C., et al., 1997, J. Biol. Chem. 272:2077-2081), chimeric receptors (Andersen, A. S., et al., 1990, Biochemistry 29:7363-7366; Gustafson, T. A., & Rutter, W. J., 1990, J. Biol. Chem. 265:18663-18667; Schäffer, L., et al., 1993, J. Biol. Chem. 268:3044-3047; Schumacher, R., 1993, J. Biol. Chem. 268:1087-1094; Kjeldsen, T., et al., 1991, Proc. Natl Acad. Sci. USA, 88:4404-4408) and by crosslinking studies (Wedekind, F., et al., 1989, Biol. Chem Hoppe-Seyler, 370:251-258; Fabry, M., 1992, J. Biol. Chem. 267:8950-8956; Waugh, S. M., et al., 1989, Biochemistry, 28:3448-3458; Kurose, T., et al., 1994), J. Biol. Chem.269:29190-29197-34). IGF-1R/IR chimeras not only show which regions of the receptors account for ligand specificity but also provide an efficient means of identifying some parts of the hormone binding site. Paradoxically regions controlling specificity are not the same for insulin and IGF-1. Replacing the first 68 residues of IGF-1R with those of IR confers insulin binding ability on the chimeric IGF-1R (Kjeldsen, T., et al., 1991, Proc. Natl Acad. Sci. USA, 88:4404-4408) and replacing residues 198-300 in the cys-rich region of IR with the corresponding residues 191-290 of IGF-1R allows the chimeric receptor to bind IGF-1 (Schäffer, L., et al.,1993, J. Biol. Chem. 268:3044-3047). Thus a receptor can be constructed which binds both IGF-1 and insulin with near native affinity. From the structure it is clear that if the hormone bound in the central space it could contact both these regions.

From analysis a series of chimeras examined by Gustafson, T. A., & Rutter, W. J. (J. Biol. Chem. 265:18663-18667, 1990) the specificity determinant in the cys-rich region can be limited further to residues 223-274. This region corresponds to modules 4-6 and includes a large and somewhat mobile loop (residues 255-263, mean B[Ca atoms] = 57 Å2) which extends into the central space (see Figure 8). In IR this loop is four residues bigger and is stabilised by an additional disulfide bond (Schäffer, L. & Hansen, P.H..1996, Exp. Clin. Endocrinol. Diabetes, 104: Suppl. 2, 89). The larger loop of IR may serve to exclude IGF-1 from the hormone binding site but allow the smaller insulin molecule to bind. It is interesting to note that mosquito IR homologue, which has a loop two residues larger than the

mammalian IRs, also appears to bind insulin but not IGF-1 (Graf, R., et al., 1997, Insect Molec.Biol. 6:151-163). Analysis of the structure indicates that the insulin/IGF-1 specificity is controlled by residues in this loop (amino acids 253-272 in IGF-1R; amino acids 260-283 in IR)

As chimeras only address residues which differ between the two receptors a more precise analysis of the site can be obtained from single site mutants. In particular, from an alanine-replacement study, four regions of L1 important for insulin binding were identified (Williams, P. F., et al., 1995, J. Biol. Chem. 270:3012-3016). The first three are at similar positions on successive turns of the b-helix and the fourth lies on the conserved bulge on the large b-sheet (Figure 12). Thus there is a footprint for insulin binding to the L1 domain which lies on the first half of large b-sheet facing into the central space. Residues further along the sheet which are conserved in IGF-1R and could also be important. The conservative substitution of leucine for methionine at residue 119 of IR (113 of IGF-1R) causes a mild form of leprechaunism [Hone, J. et al., 1994, J. Med. Genet. 31, 715-716]. This residue is buried and the mutation could perturb neighbouring residues to affect insulin binding.

The axis of the L2 domain is perpendicular to that of the L1 domain and N-terminal end of its β-helix is presented to the hormone-binding site. On this face of the L2 domain the only mutation studied so far is the naturally occurring IR mutant, S323L, which gives rise to Rabson-Mendehall syndrome and severe insulin resistance (Roach, P.,1994, Diabetes 43:1096-1102). As this mutant only affects insulin binding and not cell-surface expression, residue 323 of IR (residue 313 of IGF-1R) is probably at or near the binding site. Structurally this residue lies in the middle of a region (residues 309-318 of IGF-1R) which is conserved in both IR and IGF-1R and the surrounding region, 332-345 (of IGF-1R), is also quite well conserved in the these receptors (Figure 9a). Therefore this region is quite likely to form part of the hormone-binding site but would not have been detected by chimeras. It is interesting to note that in this region IRR is not as well conserved as the other two receptors (Shier, P. & Watt, V.M., 1989, I.Biol.Chem. 264:4605-14608).

The distance from this putative hormone-binding region on L2 to that found on L1 is about 30 Å (Figure 8). Thus L1 and L2 appear too far apart to bind IGF-1 or insulin. However, in the crystal structure there is a deep cleft

between part of the cys-rich domain (residue 262) and L2 (residue 305) and this cleft is occupied by a loop from a neighbouring molecule. Thus it seems probable that the position of the L2 domain in the receptor structure or the hormone-receptor complex adopts a different position with respect to the cys-rich domain than that found in the crystal. The movement required to bring L2 sufficiently close to L1 is small, namely a rotation of approximately 25° about residue 298.

10

15

20

25

30

35

A number of IR mutants have been identified which constitutively activate the receptor and the majority of these are found in the a chain. Curiously all α chain mutants involve changes to or from proline or the deletion of an amino acid, implying that they cause local structural rearrangements. The mutation R86N is similar to wild type but R86P reduces cell-surface expression and insulin binding while constitutively activating autophosphorylation [Grønskov, K. et al., 1993, Biochem. Biophys. Res. Commun. 192, 905-911]. The proline mutation probably disturbs residues preceding 87 which lie in the interface between the L1 and cys-rich domains but it could also affect insulin binding. In the cys-rich domain residues 233, 281, 244 and 247 of IR are not conserved in IGF-1R (Figure 9b) yet L233P [Klinkhamer, M.P. et al., 1989, EMBO J. 8, 2503-2507], deletion of N281 [Debois-Mouthon, C. et al., 1996, J. Clin. Endochronol. Metab. 81, 719-727] or the triple mutant P243R, P244R and H247D [Rafaeloff, R. et al., 1989, J. Biol. Chem. 264, 15900-15904] cause constitutive kinase activation. Due to their locations each of these three mutants appears likely to compromise the folding of a β -finger domain and, in turn, the structural integrity of the rodlike cys-rich domain. The structural ramifications of these mutations could be significant for the whole receptor ectodomain as disturbing the L1/cys-rich interface or distorting the rod-like domain could affect the relative position of L1 and the cys-rich domain in this context.

L1 has been further implicated as deletion of K121 on the opposite side of L1 from the cys-rich domain was also found to cause autophosphorylation [Jospe, N. et al., 1994, J. Clin. Endochronol. Metab. 79, 1294-1302]. By contrast this mutation does not affect insulin binding. Thus a possible mechanism emerges for insulin binding and signal transduction. When insulin binds between L1 and L2 it modifies the relative position of L1 and the cys-rich domain in the receptor, perhaps by hinge motion between L2 and the cys-rich domain like that suggested above, and the structural

rearrangement is transmitted across the plasma membrane. In the absence of insulin the same signal can be initiated by mutations in the cys-rich region or at the L1/cys-rich interface but at the expense on insulin binding. The signal can also be initiated more directly by mutations on the opposite side of L1 which affect the interaction of L1 with other parts of the ectodomain, possibly the other half of the receptor dimer.

Ligand Studies

5

10

15

20

25

30

35

Although there is no structural information about an IGF-1/IGF-1R complex a number of studies have probed the nature of this interaction. Results from cross-linking experiments with IGF-1 and insulin and their cognate receptors are consistent with the hormone binding site proposed above. For example B29 of insulin can be cross-linked to the cys-rich region (residues 205-316((Yip, C. C., et al., 1988, Biochim. Biophys. Res. Commun. 157:321-329) or the L1 domain (Wedekind, F., et al., 1989, Biol. Chem Hoppe-Seyler, 370:251-258). However these two regions are reasonably well separated and those studies may indicate that B29 is mobile. Other studies unfortunately do not map the site any more precisely.

Analogues and site-directed mutants of IGF-1 and -2 have been more fruitful. Relative to insulin IGF-1 and -2 contain two extra regions, the C region between B and A and a D peptide at the C-terminus. For IGF-1 replacement of the C region by a four Gly linker reduced affinity for IGF-1R by a factor of 40 but increased affinity for IR 5-fold (Bayne, M.L., et al., 1988, J. Biol.Chem. 264:11004-11008). Changes in affinity are consistent with the deletion in IGF-1 complementing differences in the cys-rich regions of IGF-1R and IR noted above. Mutation of residues either side of the C region (residue 24 for IGF-1 [Cascieri, M.A., et al., 1988, Biochemistry 27:3229-3233], residues 27,43 for IGF-2, [Sakano, K., et al., 1991, J. Biol. Chem. 266:20626-20635]) also have deleterious effects on the affinity of the hormone for IGF-1R as has truncation of the nearby D peptide in IGF-2 (Roth, B.V., et al., 1991, Biochem. Biophys. Res. Commun. 181:907-914). Insulin has been extensively mutated. Binding studies [summarised in Kristensen, C. et al., 1997, J. Biol. Chem. 272, 12978-12983] indicate that insulin may bind its receptor via a hydrophobic patch (residues A2, A3, A19, B8, B11. B12. B15 and possibly B23 & B24). However this patch is normally buried and requires the removal of the B chain's C-terminus from the observed position. Assuming IGF-1, -2 and insulin bind their receptors in the same

orientation, these data suggest an approximate orientation for the hormone when bound to the receptor.

One notable feature of IGF-1 and -2 is the large number of charged residues and their uneven distribution over the surface. Basic residues are predominantly found in the C region and, in solution, this region is not well ordered in either IGF-1 or -2 (Sato, A., et al., 1993, Int J Peptide Protein Res. 41:433-440; Torres, A. M., et al., 1995, J. Mol. Biol. 248:385-401). In contrast the binding site of the receptor has a sizable patch of acidic residues in the corner where the cys-rich domain departs from L1. Other acidic residues which are specific to this receptor are found along the inside face of the cys-rich domain and the loop (residues 255-263) extending from module 6. Thus it is possible that electrostatics play an important part in IGF-1 binding with the C region binding to the acidic patch of the cys-rich region near L1 and the acidic patch on the other side of the hormone directed towards a small patch of basic residues (residues 307-310) on the N-terminal end of L2.

Although the structure of this fragment gives significant information about the nature of the hormone binding site, residues outside this region have also been shown to affect binding of ligand. A number of studies have implicated residues 704-715 of IR (Mynarcik, D. C et al., 1996, J. Biol. Chem. 271, 2439-2442; Kurose, T., et al., 1994, J. Biol. Chem.269:29190-29197). These residues could contact insulin on one of the sides left open in the current structure. Using insulin labelled at the B1 residue, Fabry, M., et al., (1992, J. Biol. Chem. 267:8950-8956) cross linked insulin to the fragment 390-488, part of which is not near the site as described. The explanation for this could be either 488 reaches back to the hormone binding site, or this region could contact another hormone bound to the other half of the receptor. Further structural information is needed to establish how these other regions contact the hormone and to elucidate how binding of the hormone is communicated to the kinase inside the cell.

The structure of the L1-cys-rich-L2 domains of IGF-1R presented here represents the first structural information for the extracellular portion of a member of the insulin receptor family. The L domains display a novel fold which is common to the EGF receptor family and the modular architecture of the cys-rich domain implies that smaller building blocks should be used to describe the composition of cysteine-rich domains. This fragment contains the major specificity determinants of receptors of this class for their ligands.

It has an elongated structure with a space in the middle which could accommodate the ligand. The three sides of this site correspond to regions which have been implicated in hormone binding. Although other sites are present in the receptor ectodomain which interact with the ligand this structure gives us an initial view of how the insulin, IGF-1 and -2 might interact with their cell surface receptors to control their metabolic and mitogenic effects

Such information will provide valuable insight into the structure of the corresponding domains of the IR and insulin receptor-related receptor as well as members of the related EGFR family (Bajaj, M., et al., 1987, Biochim Biophys Acta 916:220-226; Ward, C. W. et al., 1995, Proteins: Struct Funct Genet 22:141-153).

EXAMPLE 4

Prediction of 3D Structure of the Corresponding Domains of IRR and IR 15 Based on Structure of IGF-1R Frgament.

The sequence identities between the different members of the insulin receptor family are sufficient to allow accurate sequence alignments to facilitate 3D structure predictions by homology modelling. The alignments of the ectodomains of human IGF-1R, IR, and IRR are shown in Figure 13.

20

30

35

5

10

EXAMPLE 5

25 <u>Prediction of 3D Structure of EGFR and its Family Members ERB2, ERB3</u> and ERB4.

The sequence identities between the different members of the EGFR receptor family and the insulin receptor family are sufficient to allow accurate sequence alignments to facilitate 3D structure predictions by homology modelling. The alignments of the ectodomains of human EGFR, ERB2, ERB3 and ERB4 are shown in Figure 14. The ectodomains of the EGFR family members are composed of four domains: L1 domain. cys-rich domain, L2 domain and a second cys-rich domain all of which can be modelled from the structure of the IGF-1R fragment residues 1-462.

The sequence alignment analysis and characterization of the repeat modules in the cys-rich region of IGF-1R and the homologous regions of the

IR, IRR and the first and second cys-rich regions of EGFR, ErbB2, ErbB3 and ErbB4 are shown in Figure 15. A representative of each subtype of cys repeat is found in the IGF-1R fragment 1-462 and is used to model each of these modules in the other receptors. Note the nature and order of modules in the second cys-rich repeat of the EGFR family is different to that seen in the first cys-rich region.

EXAMPLE 6

15

20

25

30

35

<u>Single-Molecule Imaging of Human Insulin Receptor Ectodomain and its</u> Fab Complexes

10 Cloning and expression of hIR -11 ectodomain protein

A full length clone of the human IR exon -11 form (hIR -11) was prepared by exchanging an Aat II fragment, nucleotides 1195 to 2987, of the exon +11 clone (plasmid pET; Ellis et al., 1986; gift from Dr W. J. Rutter, UCSF) of hIR (Ebina et al., 1985, Cell 40, 747-758) with the equivalent Aat II fragment from a plasmid (pHIR/P12-1, ATCC 57493) encoding part of the extracellular domain and the entire cytoplasmic domain of hIR -11 (Ullrich et al., 1985, Nature 313, 756-761). The ectodomain fragment of hIR -11 (2901 bp, coding for the 27 residue signal sequence and residues His1-Asn914) was produced by SalI and SspI digestion and inserted into the mammalian expression vector pEE6.HCMV-GS (Celltech Limited, Slough, Berkshire, UK) into which a stop codon linker had been inserted, as described previously (Cosgrove et al., 1995, Protein Expression and Purification 6, 789-798) for the hIR exon +11 ectodomain.

The resulting recombinant plasmid pHIR II (2 μg) was transfected into glycosylation deficient Chinese hamster ovary (Lec 8) cells (Stanley, 1989, Molec. Cellul. Biol. 9, 377-383) with Lipofectin (Gibco-BRL). After transfection, the cells were maintained in glutamine-free medium GMEM (ICN Biomedicals, Australia) as described previously (Bebbington & Hentschel, 1987, In DNA Cloning (Glover, D., ectodomain.), Vol III, Academic Press, san Diego; Cosgrove et al., 1995, Protein Expression and Purification 6, 789-798). Expressing cell lines were selected for growth in GMEM with 25 μM methionine sulphoximine (MSX, Sigma). Transfectants were screened for protein expression using sandwich ELISA with anti-IR monoclonal antibodies 83-7 and 83-14. Metabolic labelling of cells, immunoprecipitations, insulin binding assays and Scatchard analyses were performed as described

previously for the exon +11 form of hIR ectodomain (Cosgrove et al., 1995,, Protein Expression and Purification 6, 789-798).

hIR -11 ectodomain production and purification

5

10

15

20

25

30

35

The selected clone (inoculum of 1.28 x 108 cells) was grown in a spinner flask packed with 10 g of Fibra-cel disc carriers (Sterilin, U.K.) in 500 ml of GMEM medium containing 10% fetal calf serum (FCS) and 25 μ M MSX. Selection pressure was maintained for the duration of the culture:

Ectodomain was recovered from harvested media by affinity chromatography on immobilized insulin and further purified by gel filtration chromatography on Superdex S200 (Pharmacia; 1 x 40 cm) in Tris-buffered saline containing 0.02% sodium azide (TBSA) as described previously (Cosgrove et al., 1995, Protein Expression and Purification 6, 789-798). Solutions of purified hIR -11 ectodomain were stored at 4° C prior to use. Production of Fab fragments and their complexes with ectodomain

Purification of Mabs 83-7, 83-14 and 18-44 from ascites fluid by affinity chromatography using Protein A-Sepharose, and the production of Fabs, were based on the methodologies described in Coligan et al.,1993, Current Protocols in Immunology, Vol 1, pp 2.7.1-2.8.9, Greene Publishing Associates & Wiley - Interscience, John Wiley and Sons. Fab was produced from monoclonal antibody by mercuripapain digestion for 1-4 h, followed by gel filtration on Superdex S200. Products were monitored by reducing and non-reducing SDS-PAGE. For 83-7 Mab, an IgG Type 1 monoclonal antibody, the bivalent (Fab)2' isolated by this method was reduced to monovalent Fab 83-7 by mild reduction with mM L-cysteine.HCl in 100 mM Tris pH 8.0 (Coligan et al., 1993, Current Protocols in Immunology, Vol 1, pp 2.7.1-2.8.9, Greene Publishing Associates & Wiley - Interscience, John Wiley and Sons).

Complexes of Fab with hIR -11 ectodomain were produced by mixing ~ 2.5 to 3.5 molar excess of Fab with hIR -11 ectodomain at ambient temperature in TBSA at pH 8.0. After 1-3 h, the complex was separated from unbound Fab by gel filtration over a Superdex S200 column in the same buffer.

Electron microscopy

Uncomplexed hIR -11 ectodomain and the Fab complexes described above were diluted in phosphate-buffered saline (PBS) to concentrations of the order of 0.01-0.03 mg/ml. Prior to dilution, 10% glutaraldehyde (Fluka) was added to the PBS to achieve a final concentration of 1% glutaraldehyde.

Droplets of ~ 3ml of this solution were applied to thin carbon film on 700mesh gold grids after glow-discharging in nitrogen for 30 s. After 1 min. the excess protein solution was drawn off and followed by application and withdrawal of 4-5 droplets of negative stain [2% uranyl acetate (Agar), 2% uranyl formate (K and K), 2% potassium phosphotungstate (Probing and Structure) adjusted to pH 6.0 with KOH, or 2% methylamine tungstate (Agar) adjusted to pH 6.8 with NH4OH]. In the case of both uranyl acetate and uranyl formate staining, an intermediate wash with 2 or 3 droplets of PBS was included prior to application of the stain. The grids were air-dried and then examined at 60kV accelerating voltage in a JEOL 100B transmission electron microscope at a magnification of 100,000x. It was found that there was a typical thickness of negative stain in which Fabs were most easily seen, hence areas for photography had to be chosen from particular zones of the grid. Electron micrographs were recorded on Kodak SO-163 film and developed in undiluted Kodak D19 developer. The electron-optical magnification was calibrated under identical imaging conditions by recording single-molecule images of the antigen-antibody complex of influenza virus neuraminidase heads and NC10 MFab (Tulloch et al., 1986, J.Mol. Biol. 190, 215-225; Malby et al., 1994, Structure, 2, 733-746).

Image processing

Electron micrographs showing particles in a limited number of identifiable projections were chosen for digitisation. Micrographs were digitised on a Perkin-Elmer model 1010 GMS PDS flatbed scanning microdensitometer with a scanning aperture (square) size of 20 mm and stepping increment of 20 mm corresponding to a distance of 0.2 nm on the specimen. Particles were selected from the digitised micrograph using the interactive windowing facility of the SPIDER image processing system (Frank et al., 1996, *J. Struct. Biol.* 116, 190-199). Particles were scaled to an optical density range of 0.0 - 2.0 and aligned by the PSPC reference-free alignment algorithm (Marco et al., 1996, *Ultramicroscopy*, 66, 5-10). Averages were then calculated over a subset of correctly aligned particles chosen interactively as being representative of a single view of the particle. The final average image presented here is derived from a library of 94 images.

Biochemical characterization of expressed hIR -11 ectodomain

The recombinant protein examined corresponded to the the first 914 residues of the 917 residue ectodomain of the exon -11 form of the human

35

5

10

15

20

25

insulin receptor (Ullrich et al., 1986, Nature 313, 756-761). Expressed protein was shown, by SDS-PAGE and autoradiography of immunoprecipitated product from metabolically labelled cells, to exist as a homodimeric complex of -270 - 320 kDa apparent mass, which dissociated under reducing conditions into monomeric α and β ' subunits of respective apparent mass -120 kDa and -35 kDa (data not shown).

Purified hIR -11 ectodomain, expressed in Lec8 cells and purified by affinity chromatography on an insulin affinity column, ran as a symmetrical peak on a Superdex S200 gel filtration column (Figure 16). The protein eluted with an apparent mass of ~400 kDa, calculated from a standard curve generated by the elution positions of standard proteins (not shown). As expected for protein expressed in Lec 8 cells, whose glycosylation defect produces truncated oligosaccharides (Stanley, 1989, . Molec. Cellul. Biol. 9, 377-383), this value is less than the apparent mass (450 - 500 kDa) reported for hIR +11 ectodomain expressed in wild-type CHO-K1 cells (Johnson et al., 1988, Proc. Natl Acad. Sci USA 85, 7516-7520; Cosgrove et al., 1995, Protein Expression and Purification 6, 789-798).

Radioassay of insulin binding to purified ectodomain gave linear Scatchard plots and Kd values of 1.5 - 1.8 x 10-9 M, similar to the values of 2.4 - 5.0 x 10-9 M reported for the hIR -11 ectodomain (Andersen et al., 1990, Biochemistry 29, 7363-7366; Markussen et al., 1991, J. Biol. Chem. 266, 18814-18818; Schaffer, 1994, Eur. J. Biochem. 221, 1127-1132) and the values of ~1.0 - 5.0 x 10-9 M reported for the hIR +11 ectodomain (Schaefer et al., 1992, J. Biol. Chem. 267, 23393-23402; Whittaker et al., 1994, Molec.

Endocrinol. 8, 1521-1527; Cosgrove et al., 1995, Protein Expression and Purification 6, 789-798).

Expression of hIGF-1R ectodomain

5

10

15

20

25

30

35

Cloning, expression and purification of this protein used elements common to those described for hIR -11 ectodomain (Cosgrove et al., 1995, Protein Expression and Purification 6, 789-798) and resulted in purified product that was recognised by receptor-specific Mabs 17-69, 24-31 and 24-60 (Soos et al., 1992. J. Biol. Chem. 267, 12955-63) and was composed of α and β ' subunits of mass similar to those of hIR ectodomain (unpublished data). Preparation of hIR -11 ectodomain/MFab complexes

A complex of hIR -11 ectodomain and Fab from antibody 83-14 eluted as a symmetrical peak of 460 -500 kDa (Figure 16), as did complexes

generated from a mixture of hIR -11 ectodomain with Fab from antibody 18-44 and a mixture of hIR -11 ectodomain with Fab 83-7 (not shown). A cocomplex of ectodomain with Fabs from antibodies 18-44 and 83-14 eluted at ~620 kDa (Figure 12), as did a co-complex with MFabs 83-14/83-7 and another with MFabs 83-7/18-44 (not shown). A complex of hIR -11 ectodomain with all three MFab derivatives, 18-44, 83-7 and 83-14, eluted at an apparent mass of ~710 kDa (Figure 16).

Electron microscopy

5

10

15

20

25

30

35

Imaging of hIR -11 and hIGF-1R ectodomains

Single-molecule imaging of undecorated dimeric hIR -11 ectodomain was carried out under a variety of negative staining conditions, which emphasised different aspects of the structure of the molecular envelope. The least aggressive or penetrative stain was potassium phosphotungstate (KPT), which revealed consistent globular particles with very little internal structure other than a suggestion of a division into two parallel bars. Staining with methylamine tungstate also revealed the parallel bar images, as shown in Figure 17a.

Further investigation using progressively more penetrative, but also potentially more disruptive, stains confirmed the observations above. Staining with uranyl acetate and uranyl formate showed the separation of the parallel bars most clearly (Figure 17b), but uranyl acetate showed evidence of disrupting the structure of the particles, i.e. a decrease in the consistency of the particle shape and a tendency for particles to look unravelled or denatured despite having been subjected to chemical cross-linking prior to staining. In areas of thicker stain, parallel bars predominated (Figure 17b), whereas in more thinly stained regions, U-shaped particles could be identified, sometimes outnumbering the parallel-bar structures (Figure 18a). An averaged image of the parallel bars seen by staining hIR -11 ectodomain with uranyl formate is shown as an insert in Figure 17b.

In Figures 17c and 18b, images of hIGF-1R ectodomain are shown for comparison with Figure 17b and 18a, respectively, under similar staining conditions.

Imaging of hIR -11 ectodomain complexed with 83-7 MFab

This complex was particularly noteworthy for the consistency of the form of the particles, especially under the gentler staining conditions afforded by stains such as KPT and methylamine tungstate. The particles

were interpreted as having been restricted in the views they presented, after air-drying on the carbon support film, by the almost diametrically opposite binding of the two Fab arms to the antigen to form a highly elongated complex structure. Under these conditions three distinct views could be recognised as shown in Figure 19. Two views (interpreted as top-down/bottom-up) show the Fab arms displaced clockwise or anti-clockwise as extensions of the parallel plates with two-fold symmetry. The third view shows an image with the two Fab arms in line roughly through the centre of the receptor on its opposite sides, interpreted as a side projection of binding half-way up the plates (Figure 19).

Figure 20 shows a field of particles of hIR -11 ectodomain complexed with 83-7 MFab, stained with uranyl formate. The use of the more aggressive uranyl stains operating at lower pHs revealed internal structure of the molecular envelope at the expense of consistency of the particle morphology. For example, staining with uranyl acetate or uranyl formate showed that parallel bars can be seen in particles in which the Fab arms are displaced either clockwise or anticlockwise but not where the intermediate central or axial position of the two Fab arms is presented in projection. These observations show 83-7 MFab binding roughly half-way up the side-edge of each hIR -11 ectodomain plate. The epitope recognised by Mab 83-7 has been mapped to the cys-rich region, residues 191-297, by analysis of chimeric receptors (Zhang and Roth, 1991, *Proc. Natl. Acad. Sci. USA* 88, 9858-9862).

25 Imaging of hIR -11 ectodomain complexed with either 83-14 MFab or 18-44 MFab

Figure 21a shows the complexes formed with Fabs from the most insulin-mimetic antibody Mab 83-14. Projections showing the Fab arms bound to and extending out from near the base of the U-shaped particles can be identified. A second field of particles (Figure 21b) shows objects composed of two parallel bars as observed for the undecorated ectodomain, with Fab arms projecting obliquely from diametrically opposite extremities. Similar but less definitive images were also seen when MFab 18-44 was bound to hIR -11 ectodomain (not shown). The epitope for Mab 83-14 is between residues 469-592 (Prigent et al., 1990) in the connecting domain. This domain contains one of the disulphide bonds (Cys524-Cys524) between

the two monomers in the IR dimer (Schaffer and Ljungqvist, 1992, Biochem. Biophys. Res. Commun. 189, 650-653). The epitope for Mab 18-44 is a linear epitope, residues 765-770 (Prigent et al., 1990, . J. Biol. Chem. 265, 9970-9977) in the β-chain, near the end of the insert domain (O'Bryan et al., 1991, Mol. Cell. Biol. 11, 5016-5031). The insert domain contains the second disulphide bond connecting the two monomers in the IR dimer (Sparrow et al., 1997, J. Biol. Chem., 272, 29460-29467).

5

10

15

20

25

30

35

Imaging of hIR -11 ectodomain co-complexed with two different MFabs per monomer

The double complex of hIR -11 ectodomain with MFabs 83-7 and 18-44 was stained with 2% KPT at pH 6.0, and revealed the molecular envelopes shown in Figure 22. The particle appears complex in shape and can assume a number of different orientations on the carbon support film, giving rise to a number of different projections in the micrograph. The predominant view is of an asymmetric X-shape (some examples circled). It shows the 83-7 MFab arms bound at opposite ends of the parallel bars with the two 18-44 MFabs appearing as shorter projections extending out from either side of each ectodomain.

Images of the double complex of hIR -11 ectodomain with 83-7 and 83-14 MFabs gave X-shaped images similar to those seen with the 83-7/18-44 double complex (not shown). In contrast the double complex of hIR -11 ectodomain with 18-44 and 83-14 MFabs did not present the characteristic asymmetric X-shapes described above (images not shown). Instead, the molecular envelope appeared to be elongated in many views, with only an occasional X-shaped projection. While a detailed interpretation of these images would be premature, it is clear that MFabs 18-44 and 83-14, two of the more potent insulin mimetic antibodies (Prigent et al., 1990, J. Biol. Chem. 265, 9970-9977), can bind simultaneously to the receptor.

Imaging of hIR -11 ectodomain co-complexed with three different MFabs per monomer

Figure 23 shows a field of particles from a micrograph of hIR -11 ectodomain complexed simultaneously with MFabs 83-7, 83-14 and 18-44. In the thicker stain regions the molecular envelope is X-shaped, and looks very similar to that of the double complexes of hIR -11 ectodomain with either 83-7 and 18-44 or 83-7 and 83-14. However, in the more thinly stained regions, particles of greater complexity are visible and it is possible occasionally to

identify that there are in fact more than four MFabs bound to the ectodomain dimer.

The single-molecule imaging of hIR -11 ectodomain presented here suggests a molecular envelope for this dimeric species significantly different from that of any previously published study. However, an unequivocal determination of the molecular envelope even from the present study is not entirely straightforward. A major complicating factor here has been the relative fragility of the expressed ectodomain when exposed to the rigors of electron microscope preparation by negative staining. For example, staining with potassium phosphotungstate (KPT, pH 6.0-7.0) frequently suggested a denaturation of the dimeric molecules, but when appropriate conditions were satisfied, good seemingly interpretable molecular envelope images were achieved; staining with methylamine tungstate (pH ~7.0) supported the best KPT molecular envelope images, but had the suggestion of a swelling of the molecular structure at neutral pH; and the acid-pH stains of uranyl acetate (pH \sim 4.2) and uranyl formate (pH \sim 3.0), with their ability to penetrate the ectodomain structure, appeared to illuminate not so much the molecular envelope as the zones of high projected protein density within the dimer.

10

15

20

25

30

35

An amalgam of impressions from these various staining regimens has led to the following interpretation of single-molecule images of these undecorated, or naked, dimers: the predominant dimeric molecular image encountered here has been that of 'parallel bars'of projected protein density. This view is so predominant, indeed, that it suggests there is either a single preferred orientation of the molecules on the glow-discharged carbon support film, or that this impression of parallel bars of density may represent a mixture of superficially similar structure projections, with the subtleties of these different projections being masked by the relatively coarse resolution of this single-molecule direct imaging. The impression of parallel bars of projected protein density is particularly predominant in regions of thicker negative stain. A second view of the molecular envelope, appreciably less well represented in regions of thicker stain but predominant in regions of thin staining, is that of 'open' U's, or V's. These two views of hIR -11 ectodomain were supported by the single-molecule imaging of hIGF-1R ectodomain under comparable conditions of negative staining.

If the assumption is made that these two recognisable projected views, that of parallel bars and of open U's/V's, are different views of the

same dimeric molecule, an assumption strongly supported by the MFab complex imaging, a coarse model of the molecular envelope can be rationalized as in the schematic Figure 24. The model structure is roughly that of a cube, composed of two almost-parallel plates of high protein density, separated by a deep cleft of low protein main-chain and side-chain density able to be penetrated by stain, and connected by intermediate stain-excluding density near what is assumed here to be their base (that is, nearest the membrane-anchoring region). The width of the low-density cleft appears to be of the order of 30-35Å, sufficient to accommodate the binding of the insulin molecule of diameter ca. 30Å, although we have no electron microscopical evidence to support insulin-binding in this cleft at this stage.

It has been established through imaging of bound 83-7 MFab that there is a dimeric two-fold axis normal to the membrane surface between these plates of density. Occasionally, dimer images display a relative displacement of the bars of density, interpreted here as a limited capacity for a shearing of the interconnecting zone between the two plates along their horizontal axis parallel to the membrane; other images show bars skewed from parallel, implying a limited capacity for the plates to rotate independently around the two-fold axis, again via this interconnecting zone. These two observations each suggest a relatively flexible connectivity between the dimer plates in the membrane-proximal region of intermediate protein density, which could possibly contribute to the transmembrane signalling process.

The approximate overall measured dimensions of the ectodomain dimer depicted in Figure 24 are 110 x 90 x 120Å, calibrated against the dimensions of imaged influenza neuraminidase heads, known from the solved X-ray structure (Varghese et al., 1983, Nature 303, 35-40). It can be noted that there is a compatibility here between the molecular weights and molecular dimensions of these two molecular species: the compact tetrameric influenza neuraminidase heads of Mr $\sim\!200$ kDa occupy a volume almost 100 x 100 x 60 Å; the more open dimeric insulin receptor ectodomains of similar Mr $\sim\!240$ kDa imaged here occupy a volume approximately 110 x 90 x 120 Å . roughly twice that of the neuraminidase heads, accommodating the slightly higher molecular weight and substantial central low-density cleft.

The low-resolution roughly cubic compact structure proposed here differs substantially from the T-shaped model proposed by Christiansen et al.

(1991, Proc. Natl. Acad. Sci. U. S. A. 88, 249-252) and Tranum-Jensen et al., (1994, J. Membrane Biol. 140, 215-223) for the whole receptor and the elongated model proposed by Schaefer et al. (1992, J. Biol. Chem. 267, 23393-23402) for soluble ectodomain. Significantly, those previous studies did not provide any convincing independent electron microscopical evidence that their imaged objects were in fact insulin receptor.

In the present study, the identity of the imaged molecules as hIR -11 ectodomain has been confirmed by imaging complexes of the dimer with Fabs of the three well-established conformational Mabs against native hIR, 83-7, 83-14 and 18-44 (Soos et al.,1986, Biochem. J. 235, 199-208; 1989, Proc. Natl Acad. Sci. USA 86, 5217-5221), bound singly and in combination. In all these instances, virtually every particle in the field of view exhibited MFab decoration through binding to conformational epitopes, establishing not only the identity of the imaged particles but also the conformational integrity of the expressed ectodomains. Furthermore, the cleanliness and uniformity of these hIR -11 ectodomain preparations, both naked and decorated, visualised here by electron microscopy demonstrate their high suitability for X-ray crystallization trials.

The known flexibility of the Fab arms exacerbates image-to-image variability beyond the limited extent already described for the undecorated dimeric ectodomains, complicating any precise interpretation of these antigen-antibody complexes. Such molecular flexibility also renders largely impractical any single-molecule computer image averaging to facilitate image interpretation, progressively more so with the higher order antigen-antibody complexes studied here.

The most readily interpretable of these images, showing least image-to-image variability, are those of 83-7 MFab bound to dimers where, fortuitously, the antigen-antibody complex is constrained in its degrees of rotational freedom on the carbon support film. Many projected images show the two Fab arms in line roughly through the centre of the antigen on its opposite sides (Figure 19, arrowed examples), interpreted as a side projection of binding half-way up the plates from their membrane-proximal base. Other sub-sets of images (Figure 19, circled examples) show the two Fab arms still parallel but displaced clockwise or anticlockwise with 2-fold symmetry, each Fab approximating an extension of one of the parallel bars of antigen density, interpreted here as representing top or bottom projections

along the 2-fold axis. The third projection, along the axis of the Fab arms, could not be sampled here because of the constraining geometry of this molecular complex. These observations suggest binding of 83-7 MFab roughly half-way up the side-edge of the hIR -11 ectodomain plate. This then allows an initial attempt at spatially mapping the 83-7 MFab epitope, which has been sequence-mapped to residues 191-297 in the cys-rich region of the insulin receptor (Zhang and Roth, 1991, *Proc. Natl. Acad. Sci. USA* 88, 9858-9862). The spatial separation and relative orientations of the two binding epitopes of Mab 83-7 on the hIR -11 ectodomain dimer as indicated here appear inconsistent with the proposal that Mab 83-7 could bind intramolecularly to hIR (O'Brien et al., 1987, *Biochem J.* 6, 4003-4010).

Decoration of the ectodomain dimer with 83-7 MFab established that the two plates of high protein-density are arranged with 2-fold symmetry. Decoration with either 83-14 or 18-44 MFab, on the other hand, allowed sampling of the third projection of the ectodomain dimer precluded by 83-7 MFab binding. Significantly, this third view established unequivocally the U-shaped projection of the hIR -11 ectodomain dimer, something which was only able to be assumed with the undecorated ectodomain images. Further, this projection has allowed a rough spatial mapping close to the base of the U-shaped dimer for the epitopes recognised by 83-14 MFab (residues 469-592, connecting domain) and 18-44 MFab (residues 765-770, b-chain insert domain; exon 11 plus numbering, Prigent et al., 1990, J. Biol. Chem. 265, 9970-9977).

Inherent in the model structure presented in Figure 20 is the implication that, with the two-fold axis aligned normal to the membrane surface, the mouth of the low-density cleft where insulin binding may occur would lie most distant from the transmembrane anchor, whilst the zone of intermediate density connecting the two high-density plates would be in close proximity to the membrane. It follows, in this model, that the L1/cysrich/L2 domains(Bajaj et al., 1997, Biochim. Biophys. Acta 916, 220-226; Ward et al., 1995, Proteins: Struct., Funct., Genet. 22, 141-153), which comprise much of the insulin-binding region (see Mynarcik et al., 1997, . J. Biol. Chem. 272, 2077-2081). most probably lie in the membrane-distal upper halves of the two plates, whilst the membrane-proximal lower halves contain the connecting domains, the fibronectin-type domains, the insert domains and the interchain disulphide bonds (Schaffer and Ljungqvist, 1992, Biochem.

Biophys. Res. Commun. 189, 650-653; Sparrow et al., 1997, J. Biol. Chem., 272, 29460-29467). Such a disposition of domains is supported by the images seen with the single MFab decoration, the 83-7 MFab epitope in the cys-rich region being spatially mapped roughly half-way up the side-edge of the ectodomain plates, and the 83-14 and 18-44 MFab epitopes (connecting domain and β -chain insert domain, respectively) being mapped near the base of the plates. Our preference is for a single a-b¢ monomer to occupy a single plate, although the possibility of a single monomer straddling the two plates of protein density cannot be discounted.

The more complex images involving co-binding of two, and even more so of all three, MFabs to each monomer of the ectodomain dimer (Figures 22 and 23) are not easily interpretable with respect to relative domain arrangements within the monomer at present, not least of all because of the difficulty of finding conditions of negative staining that will simultaneously maintain the integrity of the Fab binding while highlighting recognisable and reproducible details of the internal structure of the dimeric IR ectodomain.

10

15

20

25

30

The data presented here demonstrate the ability of single-molecule imaging to give an initial insight into the topology of multidomain structures such as the ectodomain of hIR, and the value of combining this technique with that of either single or multiple monoclonal Fab attachment per monomer as a potential means of epitope (and domain) mapping of the structure. By imaging Fab complexes of other members of the family (such as hIGF-1R ectodomain) and combining available sequence-mapped epitope information with that presented here, a more comprehensive understanding of domain arrangements within the IR family ectodomains should be forthcoming.

It will be appreciated by persons skilled in the art that numerous variations and/or modifications may be made to the invention as shown in the specific embodiments without departing from the spirit or scope of the invention as broadly described. The present embodiments are, therefore, to be considered in all respects as illustrative and not restrictive

Dated this twenty-fourth day of March 1998

COMMONWEALTH SCIENTIFIC AND INDUSTRIAL RESEARCH ORGANISATION Patent Attorneys for the Applicant:

F.B. RICE & CO.

Figure 1

ATOH	1 0	e stu	1	55.907	11.986	66.300	1.00 59.11	AAAA C
ATON		G GLU	1	56.138	11.019	65.162	1.00 78.17	AAAA C
ATOH		D GLU	ī	57.382	11.319	64.321	1.00 85.10	AAAA C
		_				64.796		
ATOH		E1 GLU	1	58.404	10.754		1.00 86.18	AAAA O
ATOH:		DE2 GLU	1	57.424	12.013	63.270		AAAA O
ATOH	6 7	: GLU	1	53.508	12.557	66.350	1.00 48.46	AAAA C
HOTA	7 (GLU	1	52.685	11.863	65.784	1.00 51.27	AAAA O
ATOH	10 1	I GLU	1	54.256	10.339	67.159	1.00 61.64	AAAA II
ATOH		A GLU	ī	54.602	11.778	67.081	1.00 54.77	AAAA C
ATOH	13 1		2	53.608	13.860	66.375	1.00 37.66	II AAAA II
ATOH	15 C	A ILE	2	52.768	14.699	65.604	1.00 40.87	AAAA C
ATOH	16 0	B ILE	2	52.925	16.122	66.160	1.00 41.97	AAAA C
ATOH	17 0	G2 ILE	2	52.036	17.122	65.484	1.00 38.50	AAAA C
ATOH	18 0	G1 ILE	2	52.560	16.006	67.663	1.00 46.58	AAAA C
ATOH		D1 ILE	2	53.150	17.176	68.498	1.00 32.29	AAAA C
			2	53.122	14.711	64.139		AAAA C
ATOH							1.00 46.47	
ATOH	21 C		2	54.258	15.029	63.852	1.00 51.66	AAAA O
ATOH	22 1	Cis	3	52.235	14.409	63.196	1.00 49.61	N AAAA
ATOH	24 C	A CYS	3	52.435	14.677	61.773	1.00 38.93	AAAA C
ATOH	25 C	CYS	3	51.429	15.708	61.302	1.00 42.06	AAAA C
ATOH	26 C		3	50.290	15.521	61.690	1.00 42.37	AAAA O
ATOH		B CYS	3	52.159	13.415	60.999	1.00 35.66	AAAA C
			3					
ATOH		G CYS		53.019	12.004	61.674	1.00 36.98	AAAA S
ATOH	29 11		4	51.851	16.709	60.580	1.00 42.39	II AAAA
ATOH	31 C	A GLY	4	50.973	17.718	60.003	1.00 47.71	AAAA C
ATON	32 C	GLY	4	51.703	18.407	58.869	1.00 48.23	AAAA C
ATOH	33 0	GLY	4	52.916	18.345	58.884	1.00 55.36	AAAA O
ATOH	34 11		5	51.056	19.212	58.048	1.00 49.63	AAAA II
ATOH		D PRO	5	51.637	19.947	56.860	1.00 45.28	AAAA C
			_				1.00 41.57	
ATOH		A PRO		49.605	19.341	58.083		AAAA C
ATOH	37 C		5	49.397	20.703	57.474	1.00 44.30	AAAA C
ATOH	38 C	G PRO	5	50.630	21.036	56.683	1.00 46.43	аааа с
ATO:	39 C	PRO	5	48.932	19.217	57.354	1.00 36.40	AAAA C
ATOH	40.0	PRO	5	49.403	17.094	57.396	1.00 43.35	O AAAA
ATOM:	41 1	3LY	5	47.787	18.438	56.795	1.00 39.15	AAAA H
ATOH!	43 C		6	46.896	17.336	\$6.350	1.00 39.24	AAAA C
			ě	47.710	16.365	55.529	1.00 33.68	AAAA C
AIGH								
ATON	45 0		6	48.510	16.863	54.753	1.00 36.00	AAAA O
ATCH!	45 11		7	47.596	15.111	55.788	1.00 35.70	AAAA N
ATOH:	48 0.	A ILE	7	48.307	14.053	55.141	1.00 37.65	AAAA C
ATON:	49 C	3 ILE	7	48.556	12.797	55.933	1.00 36.31	AAAA C
ATOH	89 0	GC ILE	7	49.043	11.700	54.988	1.00 34.67	AAAA C
HOTA		G1 ILE	7	49.561	12.857	57.067	1.00 39.34	AAAA C
			7					AAAA C
ATOH				49.678	14.249	57.669	1.00 40.22	
ATOH	53 C	ILE	7	47.338	13.762	53.977	1.00 45.00	AAAA C
ATOH:	54 O		7	46.150	13.643	54.195	1.00 51.52	O AAAA
ATOH	55 ;;	ASP	8	47.767	13.631	52.751	1.00 45.60	N AAAA
ATON	57 C.	A ASP	8	46.938	13.293	51.631	1.00 44.05	AAAA C
ATCH	59 C	B ASP	8	47.903	14.469	50.651	1.00 44.21	AAAA C
ATOH	59 C		8	45.909	14.379	49.600	1.00 43.49	AAAA C
HOTA		D1 ASP	8	45.660	13.262	49.096	1.00 51.77	AAAA O
ATOH		D2 ASP	8		15.374	49.251	1.00 46.84	AAAA O
				45.253			1.00 42.16	AAAA C
ATOM	62 C	ASP	8	47.428	12.000	50.992		
ATOH	63 0		8		12.143	50.330	1.00 48.50	AAAA O
ATOH	61 11		9	47.096	10.817	51.321	1.00 42.76	N AAAA
ATOH	66 C	A ILE	9	47.441	9.505	50.939	1.00 44.05	AAAA C
HOTA	67 CI	9 ILE	9	47.212	8.483	52.077	1.00 40.82	AAAA C
HOTA	69 C	32 ILE	9	47.669	7.085	51.653	1.00 36.35	AAAA C
HOTA	69 C	31 ILE	9	47.888	9.917	53.364	1.00 41.17	AAAA C
ATOH		D1 ILE	9	49.376	9.947	53.286	1.00 43.78	AAAA C
ATOH	71 C	ILE	9	46.530	9.137	49.794	1.00 51.49	AAAA C
ATOM	72 0	ILE	9	45.338	9.420	49.832	1.00 63.05	AAAA O
ATOH	73 [1	ARG	10	47.004	8.417	48.812	1.00 54.87	II AAAA
ATON	75 C	A ARG	10	46.283	8.089	47.600	1.00 54.17	AAAA C
HOTA	76 CE	3 ARG	10	45.703	9.358	47.023	1.00 48.54	AAAA C
ATOH:	77 C	3 ARG	10	46.361	10.169	45.952	1.00 46.55	AAAA C
HOTA	78 CI		10	46.002	11.635	46.264	1.00 52.63	AAAA C
HOTA	79 118		10	45.082	12.226	45.284	1.00 59.27	AAAA H
ATOH	81 C		10	44.269	13.262	45.498	1.00 56.22	AAAA C
ATOH		II ARG	10	44.153	13.891	46.666	1.00 55.14	II AAAA II
ATOH		12 ARG	10	43.455	13.903	44.602	1.00 52.29	AAAA H
ATOH	98 €	ARG	10	47.019	7.373	46.492	1.00 57.23	AAAA C
ATOH	89 0	ARG	10	48.240	7.288	46.281	1.00 56.32	AAAA O
ATCH	11 09	ASH	11	46.248	6.654	45.629	1.00 57.23	AAAA N
ATOH	92 CA		11	46.800	5.917	44.494	1.00 50.73	AAAA C
	93 CE		11	47.704	6.798	43.671	1.00 44.65	AAAA C
ATON								
ATOH	64 CG		11	46.878	7.732	42.829	1.00 50.72	AAAA C
ATOH		1 ASN	11	45.749	7.451	42.403	1.00 72.59	AAAA O
ATOH		2 ASH	11	47.499	8.869	42.587	1.00 54.38	H AAAA
ATOH	99 C	ASII	11	47.635	4.736	44.915	1.00 53.07	AAAA C
ATOH	100 0	ASN	11	47.303	3.701	44.347	1.00 51.95	. AAAA O
ATOH	101 N	ASF	12	48.566	4.822	45.878	1.00 50.96	AAAA II
ATOH	103 CA		12	49.204	3.570	46.263	1.00 55.44	AAAA C
	3.	-			_			· · ·

-									
					50 550	3.568	45.758	1.00 66.47	AAAA C
_ ^	ATC#1	194 TB	ASP	12	50.568				
	ATOH	105 00	ASP	12	50.879	4.026	44.314	1.00 68.25	AAAA C
				12	50.441	3.185	43.457	1.00 58.31	AAAA O
F	ATPOP I		ASP						
Д	ATOH .	197 903	ASP	12	51.391	5.120	43.989	1.00 70.56	AAAA O
		108 C	ASP	12	49.061	3.322	47.758	1.00 59.23	AAAA C
		_						1.00 59.65	AAAA O
Α	ATOH .	109 O	ASP	12	49.687	3.849	48.711		
		110 B	TYR	13	48.411	2.187	48.036	1.00 59.64	N AAAA N
							49.397	1.00 64.06	AAAA C
P	ATCHI .	112 CA	TYR	13	48.328	1.672			
		113 CB	TYR	13	47.968	0.196	49.409	1.00 64.56	AAAA C
				13	47.467	-0.357	50.721	1.00 69.18	AAAA C
F	ATOH .	114 CG	TYR						
r.	ATOH:	115 CD1	TïR	13	46.216	-0.024	51.248	1.00 72.71	аааа с
			TYR	13	45.746	-0.541	52.450	1.00 71.51	AAAA C
F	ATOH .								
p.	ATOH .	117 CD2	TYR	13	48.233	-1.247	51.457	1.00 70.36	аааа с
		118 CE2	TTR	13	47.788	-1.778	52.661	1.00 71.64	AAAA C
								1.00 71.31	AAAA C
Į.	ATOH	119 CS	TYR	13	46.542	-1.420	53.160		
		120 OH	TYR	13	46.144	-1.977	54.358	1.00 63.25	AAAA O
						1.839	50.198	1.00 65.99	AAAA C
,	ATOII	122 C	TYR	13	49.622				
7	ATOH	123 0	TIR	13	49.621	2.321	51.354	1.00 65.01	AAAA O
				14	50.786	1.541	49.594	1.00 63.51	AAAA N
F	ATOH	124 11	GLII						
P	ATCHI .	126 CA	GLN	14	52.078	1.681	50.218	1.00 63.51	AAAA C
		127 CB	GLN	14	53.174	1.318	49.219	1.00 68.37	AAAA C
								1.00 84.62	AAAA C
P	HOTA	128 CG	GLN	14	52.863	-0.078	48.686		
		129 CD	GLN	14	53.990	-0.515	47.754	1.00 92.28	AAAA C
							46.573	1.00 94.82	AAAA O
F	ATOH .	130 OEL	GLN	14	53.945	-0.161			
ż	ATOH .	131 NE2	GLN	14	54.920	-1.254	48.361	1.00 98.03	N AAAA
					52.434	3.058	50.753	1.00 61.62	AAAA C
,	ATCH!	134 C	GLN	14					
Z.	IOTA	135 0	GLN	14	53.266	3.292	51.644	1.00 62.09	aaaa o
		_	GLII	15	51.628	4.038	50.349	1.00 57.02	II AAAA II
,	HOTA	136 11							
	ATON	138 CA	GLH	15	51.724	5.399	50.834	1.00 51.71	AAAA C
			GLII	15	50.861	6.220	49.911	1.00 43.75	AAAA C
•									
	ATOH	140 CG	GLII	15	51.566	6.605	48.648	1.00 59.65	AAAA C
		_	GLN	15	51.554	8.105	48.428	1.00 72.96	AAAA C
F	ATQ! I	142 OE1	GLH	15	51.168	9.005	49.184	1.00 80.58	AAAA O
		143 HE2	GLH	15	52.016	8.378	47.211	1.00 74.17	AAAA II
								1.00 50.15	AAAA C
F	HOTA	146 0	GLN	15	51.219	5.530	52.258		
		147 0	GLN	15	51.576	ē.500	52.940	1.00 49.04	aaaa o
								1.00 46.22	AAAA H
ž.	ATCH .	142 !!	LEU	16	50.440	↓.535	52.688		
2	ATOH:	150 TA	LEU	16	49.913	4.445	54.019	1.00 45.52	AAAA C
<u> </u>						3.295	54.159	1.00 37.73	AAAA C
Į.	ATO!!	151 79	150	15	48.950				
	ATCH:	150 09	LEU	15	47.502	3.425	53.707	1.05 41.40	AAAA C
				16	16.837	2.063	53.790	1.00 42.43	AAAA C
-			LEV						
2	ATOH:	154 CDZ	LEU	16	45.587	4.424	54.545	1.00 35.93	AAAA C
			LEU	16	51.042	4.280	55.039	1.00 51.52	AAAA C
F	ATOH .	155 C							
2	ATOH	155 C	LEU	15	50.913	- 601	56.235	1.00 52.53	AAAA O
			LYS	17	52.252	3.936	54.560	1.00 51.01	222
,		157 H							AAAA T
Ā	ATON:	159 CA	LYS	17	53.422	3.914	55.404	1.00 50.73	
			LYS	17	54.609	3.252	54.737	1.00 56.10	AAAA T
								1.00 62.40	AAAA C
Z	ATO!!	161 03	LYS	17	54.539	1.733	54.831		
2	AT DH	160 00	LYS	17	54.769	1.278	53.387	1.00 63.95	AAAA C
							53.426	1.00 68.40	AAAA C
	ATOH .	163 CE	173	17	55.316	-1.141			
2	ATO!!	164 35	LYS	17	56.537	-0.225	52.554	1.00 73.83	AAAA ::
					53.944	5.270	55.852	1.00 44.78	AAAA C
F	ATCH .	168 0	LYS	17					
Ž.	ATOH .	169 C	LYS	17	54.492	5.262	56.933	1.00 39.39	AAAA O
			ARG	18	53.524	5.344	55.201	1.00 41.15	AAAA !!
		170 H							AAAA C
_ F	1 IOTA	172 CA	ARG	18	53.827	7.673	55.676	1.00 43.01	
		173 CB	ARG	18	53.250	8.702	54.704	1.00 43.97	AAAA C
						8.764	53.333	1.00 53.60	AAAA C
- ,	ATOH.	174 CG	ARG	18	53.888				
I	HOTA	175 CD	ARG	18	52.964	9.362	52.269	1.00 60.34	AAAA C
			ARG	18	52.528	10.703	52.650	1.00 50.00	AAAA II
,									AAAA C
,	PIOTA	178 CS	ARG	18	51.628	11.444	52.021	1.00 48.86	
		179 HH1		18	51.068	10.941	50.943	1.00 47.96	H AAAA H
						12.656	52.555	1.00 43.72	AAAA !!
F	ATOH .	182 NH2	ARG	18	51.377				
		185 C	ARG	18	53.268	7.924	57.077	1.00 44.03	AAAA C
					53.402	9.010	57.644	1.00 45.53	AAAA O
, and a		186 0	ARG	18					
	ATOH	187 11	LEU	19	52.445	7.069	57.632	1.90 45.35	II AAAA II
					51.653	7.282	58.794	1.00 50.25	AAAA C
		189 CA	LEU	19				_	
E	ATOH :	190 CB	LEU	19	50.186	6.924	58.674	1.00 50.83	AAAA 🤉
				19	49.202	7.371	57.608	1.00 46.43	AAAA C
		191 CG	LEU						
ž.	HOTA	192 CD1	LEU	19	47.846	6.743	57.852	1.00 22.57	AAAA C
	-		LEU	19	49.018	8.966	57.495	1.00 45.88	AAAA C
р	ATOH :	194 C	LEU	19	52.210	6.428	59.912	1.00 49.87	AAAA C
			LEU	19	51.870	6.810	61.030	1.00 51.54	C AAAA
P	HOTA	196 H	GLU	20	53.270	5.708	59.652	1.00 49.35	AAAA !!
			GLU	20	53.819	4.933	60.679	1.00 49.60	AAAA C
		-							AAAA C
۾	ATCHI :	199 CB	GLU	29	54.87á	3.960	59.982	1.00 57.91	
		200 03	GLU	20	55.893	1.910	59.272	1.00 70.16	AAAA C
								1.00 69.35	AAAA T
P	ATOH :	201 CD	GLU	20	57.095	4.077	58.757		
			GLU	20	58.123	4.795	58.722	1.00 71.39	AAAA O
								1.00 72.84	AAAA O
P	ATCH :	203 OE2	GLU	20	56.993	2.885	58.420		
		204 C	GLU	20	54.310	5.417	61.989	1.00 43.55	AAAA C
								1.00 40.01	AAAA O
Д	ATOH :	205 0	GLU	20	54.301	1.652	62.937		
		206 H	ASH	21	54.633	6.659	62.207	1.00 41.06	AAAA II
							63.454	1.00 47.17	AAAA C
A	ATOH 3	208 CA	ASII	21	55.054	7.204			
		209 C	ASN	21	54.066	8.141	64.108	1.00 49.76	AAAA I
					54.228	9.456	65.303	1.00 48.10	AAAA ©
Ą	ATOH :	210 0	ASII	21	34.228	5.450	J. J. J. J	40.10	

. . . .

.

ATCH	211 OR AGU	21	56.379			1.00 59.11	AAAA C
TOTAL	212 OG ASU	21	57.413			1.00 60.38	AAAA C
ATOIL	213 OD1 ASH	21	57.499	5.855	63.122	1.00 58.51	AAAA O
ATOH	214 HD2 ASH	21	58.348	7.469	61.890	1.00 77.90	N AAAA N
ATOI1	216 II T/S	22	53.129	8.711	63.351	1.00 47.44	H AAAA H
ATOH	218 CA CYS	22	52.107	9.614	63.879	1.00 42.99	AAAA C
A'TOH	219 C CYS	22	51.215	9.089	65.021	1.00 40.43	AAAA C
ATOH	220 O CYS	22	50.750	7.923	65.069	1.00 36.07	AAAA O
ATO! 1	221 CB CYS	22	51.182	9.921	62.690		AAAA C
ATOH	222 SG CYS	22	52.076	19.328	61.148		AAAA S
ATOH	223 II THR	23	51.287	9.801	66.137		II AAAA
ATOH	225 CA THR	23	50.339	9.482	67.204	1.00 43.51	AAAA C
ATOH	226 CB THR	23	50.944	9.481	68.593		AAAA C
ATOH	227 OG1 THR	23	51.410	10.843	68.822	1.00 51.21	AAAA O
ATOH	229 CGC THR	23	52.110	8.571	68.838	1.00 33.83	AAAA C
ATOI	230 C THR	23	49.250	10.599		1.00 44.55	AAAA C
ATOH	231 O THR	23	48.085	10.414	67.481	1.00 45.95	AAAA O
ATON	232 II VAL	24	49.646	11.797	66.689		II AAAA
HOTA	234 CA VAL	24	48.732	12.855	66.442	1.00 35.29	AAAA C
HOTA	235 CB VAL	24	48.925	13.979	67.456	1.00 30.60	AAAA C
ATOH	236 CG1 VAL	24	48.056	15.157	67.082	1.00 30.00	AAAA C
	236 CG1 VAL 237 CG2 VAL	24	48.656	13.157	68.886	1.00 27.21	AAAA C
HOTA		24					AAAA C
INTA		24	48.895	13.447	65.043	1.00 41.52	
HOTA			49.987	13.963	64.791	1.00 44.40	AAAA O
ATOH		25	47.855	13.450	64.203	1.00 40.13	AAAA N
ATON	242 CA ILE 243 CB ILE	25	47.908	14.094	62.882	1.00 32.05	AAAA C
ATON		25	47.113	13.299	61.853		AAAA C
HOTA	244 CG2 ILE	25	47.027	14.039	60.542	1.00 18.73	AAAA C
ATOH	245 CG1 ILE	25	47.677	11.896	61.705	1.00 29.80	AAAA C
IOTA	246 CD1 ILE	25	47.169	11.155	60.471	1.00 27.41	AAAA C
ATOH	247 C ILE	25	47.397	15.490	62.941	1.00 32.92	AAAA C
ATOH	248 O ILE	. 25	46.223	15.776	63.213	1.00 40.91	O AAAA
ATO!	249 !! GLU	26	48.264	16.472	63.042	1.00 36.60	AAAA II
ATOH	251 CA GLU	26	47.832	17.847	63.226	1.00 29.24	AAAA C
ATOH	252 TB GLU	26	48.875	18.703	53.856	1.00 29.92	AAAA C
ATO!1	253 OG GLU	25	49.490	20.144	54.116	1.00 38.06	AAAA C
ATOH	254 CD GLU	26	49.561	20.762	65.013	1.00 37.39	AAAA C
ATOH	255 OE1 GLU	26	50.654	25.937	54.489	1.00 41.55	AAAA O
ATOH	256 380 314	2.5	49.571	31.175	66.182	1.00 49.16	AAAA O
ATOH	257 C GLW	26	47.413	15.376	61.869	1.00 37.79	AAAA C
ATOH	259 O GLW	25	48.151	19.069	51.181	1.00 39.59	AAAA O
ATON	059 H GLY	27	46.117	19.104	61.582	1.00 37.29	AAAA H
ATOM	261 CA GLY	27	45.498	18.503	60.320	1.00 31.17	AAAA C
ATOH	Ses c GIA	27	44.531	17.400	59.893	1.00 33.72	AAAA C
ATOH	263 O 3LY	27	43.988	15.715	60.775	1.00 33.29	AAAA O
ATOH	264 H TYR	28	44.304	17,209	53.604	1.00 29.24	AAAA II
ATOLI	266 CA TYR	29	43.319	16.189	59.253	1.00 28.93	AAAA C
ATO!!	267 CB TYR	29	42.403	16.794	57.217	1.00 31.53	AAAA C
AIG:	269 C3 TYR	28	43.958	17.256	55.962	1.00 31.78	AAAA C
ATO!!	269 CD1 TYR	28	43.704	16.355	55.116	1.00 36.07	AAAA C
ATOH	275 CEL TYR	29	44.361	16.706	53.967	1.00 29.91	AAAA C
ATOU:	271 CD2 TYR	28	43.130	19.572	55.606	1.00 30.99	AAAA C
ATOH	272 CE2 TYR 273 CE TYR	28	43.769	18.972 18.021	54.428	1.00 28.77	AAAA C
ATOH		28	44.971		53.652 52.464	1.00 31.53	AAAA C
ATOH	274 OH TYR 276 C TYR	28 28	43.953	18.425 14.946		1.00 44.74 1.00 29.23	AAAA C AAAA C
ATOH ATOH	276 C TYR 277 O TYR	28		15.147	57.697	1.00 25.23	AAAA O
ATON	278 H LEU	29	45.119 43.250		57.383 57.445	1.00 26.63	in Aaaa
HOTA	280 CA LEU	29	43.764	13.900 12.730	56.803	1.00 29.83	AAAA C
ATOH	281 CB LEU	29	43.830	11.611	57.856	1.00 27.09	AAAA C
ATOH	282 CG LEU	29	44.212	10.258	57.242	1.00 31.90	AAAA C
ATOH	283 CD1 LEU	29	45.538	10.396	56.469	1.00 35.03	AAAA C
ATOM	284 CD2 LEU	29	44.551	9.203	58.290	1.00 25.05	AAAA C
ATOH	285 C LEU	29	42.897	12.342	55.616	1.00 33.84	AAAA. C
ATOH	296 O LEU	29	41.689	12.165	55.806	1.00 43.29	AAAA O
ATOH	287 N HIS	30	43.389	12.285	54.395	1.00 35.95	AAAA II
ATOM	289 CA HIS	30	42.681	11.891	53.197	1.00 34.92	AAAA C
ATOH	290 CB HIS	30	42.893	12.801	52.027	1.00 32.85	AAAA C
ATOH	291 CG HIS	30	42.372	14.155	52.046	1.00 25.09	AAAA C
ATOH	292 CD2 HIS	30	41.519	14.753	52.907	1.00 .40.88	AAAA C
ATOH	293 HD1 HIS	30	42.717	15.120	51.128	1.00 33.66	AAAA II
HOTA	295 CE1 HIS	30	42.080	16.281	51.444	1.00 31.33	AAAA C
ATOH	296 NE2 HIS	30	41.329	16.201	52.539	1.00 37.27	AAAA II
ATOH	298 C HIS	30	43.173	10.538	52.714	1.00 37.63	AAAA C
ATOH	299 O HIS	30	44.357	10.388	52.541	1.00 38.70	AAAA O
ATOH	300 H ILE	31	42.308	9.542	52.584	1.00 40.02	AAAA II
ATOH	302 CA ILE	31	42.750	8.271	51.992	1.00 39.47	AAAA C
ATOH	303 CB ILE	31	42.668	7.204	53.063	1.00 37.95	AAAA C
ATOH	304 CG2 ILE	31	43.161	5.830	52.651	1.00 23.86	AAAA C
ATOM	305 CG1 ILE	31	43.481	7.555	54.335	1.00 41.66	AAAA C
ATOH	306 CD1 ILE	31	43.170	6.575	55.473	1.00 28.22	AAAA C
ATOH	307 C ILE	31	41.884	8.044	50.755	1.00 46.52	AAAA C
ATOI1	308 O ILE	31	40.753	7.589	50.827	1.00 43.56	AAAA O
ATOH	309 II LEU	32	42.314	9.489	49.556	1.00 49.89	AAAA II
ATON	311 CA LEU	32	41.484	8.235	48.380	1.00 49.77	AAAA C

•

:

							•
ATOH	310 OB LEU	32	41.127	9.515	£ 47.60.	3 1.00 47.48	AAAA C
ATOR	313 OG LEU	32	42.091	10.688	47.56	1.90 45.33	AAAA C
ATOH	314 CD1 LEU	32	41.517	11.813	46.67	3 1.00 35.77	AAAA C
ATOH	315 CDC LEU	32	42.371	11.229	9 48.960	1.00 49.18	AAAA C
HOTA	316 C LEU	32	42.136	7.296	47.35	3 1.00 51.00	AAAA C
ATOH	317 O LEU	32	43.338	7.370			AAAA O
ATOH	318 # LEU	33	41.270	6.722	46.497		AAAA 11
ATOH	320 CA LEU	33	41.602	6.175			AAAA C
ATOH	321 CB LEU	33	42.091	7.262		·	AAAA C
ATON	322 CG LEU	33	41.233	8.537			AAAA C
IOTA	323 CD1 LEU	33	41.892	9.587			AAAA C
ATOH	324 CDC LEU	33	39.823	8.313			AAAA C
ATON	325 C LEU	33	42.618	5.073			AAAA C
ATOH	326 O LEU	33	43.580	5.077			AAAA O
ATOH	327 II ILE	34	42.543	4.213			AAAA N
ATOH	329 CA ILE	34	43.523	3.184			AAAA C
ATOH	330 CB ILE	34	44.101	3.346			AAAA C
ATOH	331 CG2 ILE	34	44.538	2.043			AAAA C
ATOH	332 CG1 ILE	34	45.267	4.371			AAAA C
ATOH	333 CD1 ILE	34	45.561	4.701			AAAA C
ATOH	334 C ILE	34	42.829	1.844			AAAA C
ATOH	335 O ILE	34	41.726	1.531			AAAA O
ATO!!	336 II SER	35	43.622	0.833			AAAA N
ATOH	338 CA SER	35	43.048	-0.511	45.922		AAAA C
ATOH	339 CB SER	35	42.767	-0.882	44.469		AAAA C
ATO11	340 OG SER	35	41.731	-1.846	44.498		AAAA O
ATOH	342 C SER	35	43.928	-1.564	46.537		AAAA C
ATOM	343 O SER	35	44.885	-1.954	45.909		AAAA O
ATOH	344 N LYS	36	43.687	-2.017	47.740		AAAA N
ATOM	346 CA LYS	36	44.465	-3.014	48.421	1.00 76.09	AAAA C
HOTA	347 CB LYS	36	44.046	-3.131	49.885	1.00 81.22	AAAA C
ATOH	348 CG LYS	36	45.147	-3.654	50.775	1.00 78.87	AAAA C
ATOH!	349 CD LYS	36	44.693	-4.575	51.887	1.00 81.39	AAAA C
HOTA	350 CE LYS	36	44.890	+6.025	51.492	1.00 89.38	AAAA C
ATON	351 NO LYS	35	44.371	-6.989	52.506	1.00 91.63	AAAA N
ATOH	355 C 1YS	36	44.252	-4.362	47.753	1.00 91.63	AAAA N
ATOH:	356 O 1YS	36	43.145	-4.772	47.451	1.00 78.20	AAAA C
ATOLL	357 N ALA	37	45.371	-5.080	47.615	1.00 88.27	AAAA U
ATON	359 CA ALA	37	45.361	-6.396	46.986	1.00 90.10	, AAAA C
ATON:	360 CB ALA	37	46.700	-6.655	46.327	1.00 95.49	AAAA C
ATO!	361 C ALA	37	45.011	-7.473	47.995	1.00 92.36	AAAA C
ATO!!	362 0 ALA	37	45.668	-7.627	49.012	1.00 92.35	AAAA O
STOH	363 % SER	38	44.031	-9.301	47.622	1.00 94.31	AAAA II
ATOLL	365 CA SER	38	43.528	-9.352	19.484	1.00 95.70	AAAA C
ATOH	366 CB SER	38	42.405 -		17.858	1.00 97.44	AAAA C
ATON	367 03 SER	38	42.061 -		49.814	1.00103.48	AAAA O
ATOM	369 C SER	39	44.702 -		48.821	1.00 96.87	AAAA C
ATOM	370 O SER	38	44.761 -		19.924	1.00 98.06	AAAA O
ATOH	371 N ASP	3 9	45.584 -		47.852	1.00 97.99	AAAA II
ATO!!	373 CA A <i>se</i>	39	46.921 -		47.990	1.00 99.19	, AAAA C
ATOM	374 CB ASP	39	47.579 -		46.652	1.00102.13	AAAA C
ATOR	378 CG ASP	39	47.696 -		45.948	0.01101.22	AAAA C
ATOH	376 OD1 ASP	39	46.544 -		45.623	0.01101.42	AAAA O
ATOH	377 OD2 ASP	39	49.933 -			0.01101.41	AAAA O
HOTA	378 C ASP	39	47.560 -	10.564	49.105	1.00 99.40	AAAA C
ATOH	379 O ASP	39	47.592 -		50.224	1.00 99.15	AAAA O
HOTA	380 N TYR	40	48.354	-9.479	49.818	1.00100.96	AAAA N
HCTA	382 CA TYR	40	49.120	-9.706	49.802	1.00101.16	AAAA C
ATOH1	383 CB TYR	40	49.511	-7.393	49.130	1.00103.67	AAAA C
ATOII	384 CG TYR	40	50.159	-6.281	49.887	1.00107.81	AAAA C
ATOH	385 CD1 TYR	40	50.931	-5.325	49.228	1.00109.56	AAAA C
HOTA	386 CE1 TYR	40	51.540	-4.280	49.910	1.00109.67	AAAA C
ATOH	387 CD2 TYR	40	50.044	-6.115	51.254	1.00109.28	AAAA C
HOTA	388 CE2 TYR	10	50. 6 18	-5.102	51.976	1.00109.83	AAAA C
HOTA	389 CC TYR	40		-4.191	51.276	1.00110.16	AAAA C
ATOH	390 OH TYR	40		-3.127	51.893	1.00109.84	AAAA O
ATO11	392 C TYR	40		-8.529	51.100	1.00 99.10	AAAA C
ATOH	393 O TTR	40	47.168	-8.182	51.183	1.00 99.05	AAAA O
ATOH	394 II LYS	41		-8.653	52.218	1.00 98.62	II AAAA II
ATOH	396 CA LYS	41		-8.549	53.546	1.00100.30	AAAA C
HOTA	397 CB LYS	41		-9.160	54.599	1.00104.42	AAAA C
ATOH	398 CG LYS	41	19.218 -		54.814	0.01101.06	AAAA C
ATOH	399 CD LYS	41	47.776 -		54.919	0.01100.66	AAAA C
ATOH	400 CE LYS	41	47.205 -		56.308	0.01 99.86	AAAA C
ATOH	401 HZ LYS	41	47.982 -		57.328	0.01 99.62	AAAA II
ATOI1	405 C LYS	41		-7.136	53.947	1.00 98.99	AAAA C
HOTA	406 O LYS	41		-6.371	53.057	1.00103.33	AAAA O
ATOH	407 II SER	42		-6.751	55.221	1.00 91.75	II AAAA
ATOH	409 CA SER	42			55.604	1.00 85.06	AAAA C
ATOH	410 CB SER	42			56.147	1.00 95.33	AAAA C
ATOH	411 OG SER	42			57.426	1.00104.63	AAAA O
ATOH	413 C SER	42			56.687	1.00 80.78	AAAA C
ATOH	414 O SER	42			57.538	1.00 91.03	AAAA O
ATOH	415 H TYR 417 CA TYR	43			56.676	1.00 73.03	AAAA II
HOTA	417 CA TYR	13	49.069 -	2.498	57.635	1.00 67.25	AAAA C

							1
ATME	419 CB TYR	43	49,086	-1.119	56.965	1.00 65.37	AAAA O
AT JUL	419 CG TYR	43	49.953		55.727	1.00 63.92	AAAA C
TECTA	420 CD1 TYR	43	50.931	-1.935	55.406	1.00 63.87	AAAA C
ATON	401 CEL TYR	43	51.698	-1.781	54.274	1.00 66.09	AAAA C
ATOH	422 CD2 TYR	43	49.770	0.050	54.870	1.00 63.30	AAAA C
ATOH	423 CE2 TYR	43	50.536	0.214	53.728	1.00 67.62	AAAA C
ATOH	424 CS TYR	43	51.508	-0.712	53.432	1.00 66.94	AAAA C
ATOH	425 OH TYR	43	52.262	-0.563	52.305	1.00 65.23	AAAA O
ATOH	427 C TYR	43	48.248				AAAA C
ATOH	428 O TYR	43	47.088				AAAA O
ATOH1	429 II ARG	44	48.782				aaaa n
ATOH	431 CA ARG	44	48.019				AAAA C
ATOH	430 CB ARG	44	47.842	-2.611			AAAA C
ATOU	433 CG ARG	44	47.815			1.00 54.66	AAAA C
ATOH	434 CD ARG	44	46.985			1.00 58.54	AAAA C
ATOH	435 HE ARG	44	47.090			1.00 69.56	M AAAA
HOTA	437 CE ARG	44	46.461			1.00 64.82	AAAA C
ATOH	438 NH1 ARG 441 NH2 ARG	44	45.644	-4.529		1.00 61.63	AAAA N
ATOH ATOH	441 NH2 ARG 444 C ARG	41	46.674 48.811	-3.139 -0.285		1.00 66.03 1.00 55.59	AAAA N AAAA C
ATON	445 O ARG	44	49.916			1.00 58.43	AAAA C
ATOH	446 II PHE	45	48.276	0.866		1.00 51.13	AAAA N
ATOH	449 CA FHE	45	48.865	1.944		1.00 45.94	AAAA C
ATOH	449 CB FHE	45	48.774	3.249		1.00 35.89	AAAA C
ATOH	450 CG FHE	45	49.106	2.937		1.00 30.29	AAAA C
IPTA	451 CD1 PHE	45	50.373	3.051	59.998	1.00 45.72	AAAA C
ATO!!	452 CD2 PHE	45	48.127	2.428	59.728	1.00 35.95	AAAA C
ATOH	453 CE1 PHE	45	50.653	2.715		1.00 47.76	AAAA C
ATON	454 CE2 FHE	45	48.358	2.096	58.406	1.00 39.92	AAAA C
ATC!	455 CS PHE	45	49.612	2.244		1.00 46.44	AAAA C
ATON	456 C PHE	45	48.181	2.123	64.203	1.00 41.65	AAAA C
ATOH	457 O FHE	45	47.708	3.223	64.475	1.00 40.99	AAAA O
ATOH	459 N PRO	4.6	48.494	1.338	65.212	1.00 43.20	II AAAA
ATO:	459 CD FRO	45	49.300	0.097		1.00 47.74	AAAA C
ATO:	450 CA PRO	4.6	48.032	1.530	66.560	1.00 43.34	AAAA C
ATC	461 CB FRO	46	48.514	0.319		1.00 44.92	AAAA C
ATC::	463 03 280	4.5	49.404	-0.464		1.00 45.48	AAAA C
ATO::	463 C FRO	4.5	49.558	2.768	67.233	1.00 41.30	AAAA C
ATO::	464 0 FRO	45	49.329	2.830	68.443	1.00 44.57	AAAA O
ATON	465 N LYS 467 TA LYS	47	49.450		66.676	1.00 39.33	II AAAA II
ATRI ATRI		47 47	49.991 51.379	4.679 4.981	67.362 66.852	1.00 38.10 1.00 49.07	AAAA C AAAA C
ATC:	188 CB TAR	17	52.032	3.995		1.00 43.97	AAAA C
ATC::	469 C3 LYS 470 CD LYS	17	53.563	3.976		1.00 61.33	AAAA C
ATCH	471 CE LYS	47	54.115	4.649	67.147	1.00 72.19	AAAA C
ATON	472 NO 1YS	4.7	54.024	6.132	66.874	1.00 79.29	II AAAA
ATO::	476 C LYS	4.7	49.014	5.849	67.195	1.00 39.76	AAAA C
ATO:	477 0 IYS	4.7	49.189	6.827	67.952	1.00 35.45	AAAA O
ATO:	478 N LEV	49	48.300	5.986		1.00 36.45	AAAA H
ATON	480 CA LEV	19	47.370	7.004	65.800	1.00 40.40	AAAA C
ATO::	481 GB LEV	49	46.923	6.919	64.389	1.00 28.59	AAAA C
ATOH	490 GG LEU	+9	45.947	7.967	63.787	1.00 31.04	AAAA C
ATO: (493 CD1 LEU	4.6	46.637	9.310	63.878	1.00 36.96	AAAA C
ATC!!	484 CDS FEA	4.6	45.591			1.00 34.49	AAAA C
COTA	485 C LEU	48	46.186	7.022	66.807	1.00 42.21	AAAA C
ATOH	196 O FER	48	45.271	6.187	66.863	1.00 36.48	AAAA O
ATO!!	487 N THR	49	46.138	8.041	67.673	1.00 38.95	N AAAA
ATOH ATOH	499 CA THR 490 CB THR	49 49	45.045	8.151	68.574	1.00 37.96 1.00 48.69	AAAA C AAAA C
ATCH	491 OG1 THR	49	45.548 46.396	8.207 9.340	70.034 70.225	1.00 48.69	AAAA O
ATOH	493 CG2 THR	49	46.230	6.957	70.529	1.00 31.99	AAAA C
ATCI:	494 C THR	49	44.230	9.425	68.321	1.00 39.48	AAAA C
HOTA	495 O THR	49	43.111	9.451	68.837	1.00 34.49	AAAA O
ATCH	496 H VAL	50	44.735	10.415	67.605	1.00 37.32	AAAA N
ATOLI	498 CA VAL	50	43.995	11.664	67.418	1.00 38.72	AAAA C
ATOH	499 CB VAL	50	44.293	12.708	68.503	1.00 37.24	AAAA C
ATO:	500 CG1 VAL	50	43.630	14.066	68.208	1.00 29.96	AAAA C
ATOH	501 CG2 VAL	50	43.884	12.311	69.913	1.00 32.52	AAAA C
ATOH	502 C VAL	50	44.271	12.305	66.048	1.00 37.03	AAAA C
ATO:	503 O VAL	50	45.195	11.963	65.431	1.00 37.96	AAAA O
ATOH	504 N ILE	51		12.939	65.415	1.00 37.49	и аааа
ATOH	506 CA ILE	51	43.301	13.575	64.133	1.00 32.48	AAAA C
ATO!!	507 CB ILE	51		12.864	63.152	1.00 34.51	AAAA C
HCTA	508 CG2 ILE	51 51	41.995	13.802	61.978		AAAA C
ATCH	509 CG1 ILE	51	43.026	11.611	62.671	1.00 30.78	AAAA C
ATOH	510 CD1 ILE	51 51	42.358	10.559		1.00 19.69	AAAA C
HOTA HOTA	511 C ILE 512 O ILE	51 51	42.659 41.546	14.939 14.830	64.431 64.923	1.00 34.14 1.00 29.08	AAAA C AAAA O
ATOH	513 N THR	52	43.342	16.058	64.238	1.00 29.08	N AAAA
ATOH	515 CA THR	52	42.806	17.305	64.719		AAAA C
ATOH	516 CB THR	52	43.961	18.338		1.00 35.39	AAAA C
ATOH	517 OGI THR	52	44.726	18.567	63.781	1.00 41.28	AAAA C
ATOH	519 CG2 THR	52	44.775	17.926	66.134	1.00 22.01	AAAA C
ATOH:	520 C THR	52	41.741	17.961		1.00 39.02	AAAA C
ATOI:	S21 O THR	52	41.202	19.030	64.243	1.00 38.88	AAAA O
•						-	

ATMI	900 H GNU	53	41.504	17.477	62.639	1.00 36.93	AAAA N		
ATON	524 CA GLU	53	40.434			1.00 38.38	AAAA C		
ATUH	505 CB GLU	53	41.064		60.483	1.00 29.76	AAAA C		
ATOH	526 CG GLU	53	42.061		60.834	1.00 30.48	AAAA C	• • •	
ATOH	527 CD GLU	53	42.517		59.697	1.00 40.82	AAAA C		
ATOH	528 OE1 GLU	53	42.638		58.556	1.00 57.56	AAAA O		
ATCII	529 OE2 GLU	53	42.799			1.00 35.74	AAAA O		
ATOH	530 C GLU	53	39.506		61.388	1.00 39.19	AAAA C		
ATOH	531 O GLU	53	38.922		62.386	1.00 38.95	AAAA O		
ATOH	532 H TYR	54	39.639		60.102	1.00 30.60	AAAA N		
ATOH	534 CA TYR	54	38.666		59.713	1.00 35.96	AAAA C		
ATOH	535 CB TYR	54	37.654		58.636	1.00 30.71	AAAA C		
ATOH	536 CG TYR	54	38.247		57.388	1.00 21.18	AAAA C	•	
ATOH	537 CD1 TYR	54	38.487	15.733	56.305	1.00 20.22	AAAA C		
ATOH	538 CEL TYR	54	38.980		55.086	1.00 21.04	AAAA C		
ATOH	539 CD2 TYR	54	38.577		57.307	1.00 23.97	AAAA C		
ATOH	540 CE2 TYR	54	39.049		56.124	1.00 24.69	AAAA C		
HOTA	541 CZ TYR	54	39.263		55.032	1.00 26.72	AAAA C		
HOTA	542 OH TYR	54	39.763		53.847	1.00 37.55	AAAA O		
ATOH	544 C TYR	54	39.405		59.142	1.00 33.87	AAAA C		
INTA	545 O TYR	54	40.513		58.678	1.00 30.40	AAAA O		
HOTA	546 II LEU	55	38.683	13.001	59.004	1.00 23.24	AAAA II		
ATOIT	548 CA LEU	55	39.111	11.612	58.454	1.00 30.08	AAAA C		
ATOH	549 CB LEU	55	39.011	10.663	59.510	1.00 14.78	AAAA C		
ATOH	550 CG LEU	55	39.349	9.314	58.818	1.00 26.98	AAAA C		
	551 CD1 LEU	55	40.668	9.477	58.040	1.00 26.66	AAAA C		
ATOH HOTA	552 CD2 LEU	55	39.496	£.093	59.705	1.00 14.45	AAAA C		
	553 C LEU	55	38.201	11.548	57.238	1.00 37.43	AAAA C		
HOTA	554 O LEU	55	36.995	11.632	57.427	1.00 39.55	AAAA O		
INTA		56	38.700	11.348	56.035	1.00 41.83	AAAA N		
ATOH		56	37.955	11.201	54.799	1.00 36.98	AAAA C		
ATOH		5 6	37.998	12.446	53.949	1.00 33.29	AAAA C		
ATOH						1.00 30.35	AAAA C		
ATO!!	559 CG LEU	56	37.984	12.514	52.416 51.821	1.00 30.33			
ATO!!	S60 CD1 LEU	56	37.076	11.460		1.00 47.95	AAAA C		
HOTA	561 CD2 LEU	56	37.286	13.857	51.985		AAAA C .		
ATOH	860 C LEU	55	38.595	19.047	54.008	1.00 39.75	AAAA C		
ATON	563 O LEU	56 57	39.714	10.205	53.547	1.00 44.38	AAAA O		
ATCH	564 H LEU	57 57	37.846	9.008	53.800	1.00 36.68	AAAA N		
ATOH	566 CA LEU	57 57	38.133	7.932	53.034	1.00 41.53	AAAA C		
ATOLL	567 CP LEV	57	37.944	6.559	53.916	1.00 37.00	AAAA C		
ATO::	EAR OG LEU	57	39.064	6.534	55.025	1.00 36.13 1.00 33.26	AAAA C		
ATOH	569 CD1 LEV	57 57	38.513	6.930	56.417		AAAA C		
ATCH	570 CD2 LEU	57 57	39.630	5.160	55.039	1.00 24.11	AAAA C		
ATOH:	571 C LEU	57 57	37.203	7.915	51.838	1.00 46.03	AAAA C		
ATOH!	573 O LEU	57 50	35.985	7.993 Tu.998	51.969	1.00 44.78	O AAAA		
ATOH	573 N PHE	59	37.792		50.642	1.00 47.07	AAAA N		
ATO!!	575 CA PHE	58	36.995	8.002	49.467	1.00 49.75	AAAA C		
ATO!!	576 CB PHE 577 CG PHE	58	36.70:	9.448	49.102	1.00 46.67	AAAA C		
ATON		59	36.447	9.815	47.692	1.00 54.66 1.00 55.19	AAAA C AAAA C		
ATCH:	578 CC1 FHE	59	37.413	9.706	16.697				
ATON	579 COO PHE	59	35.200	10.331	47.326	1.00 53.96 1.00 50.36	AAAA C		
ATOH	590 CE1 PHE	58	37.124	10.063	45.396	1.00 30.36	AAAA C AAAA C		
ATO::	S81 CE2 PHE	58	34.885	10.655	46.011	1.00 46.50			
ATOH	582 CO PHE	58 58		7 050	40.007	1.00 49.71	AAAA C AAAA C		
ATOI1	593 C PHE	58	37.351 38.487	7.052	10.3/5	1.00 52.16	AAAA O		
ATOH	584 O PHE	59	36.471	6.118		1.00 44.26	AAAA N		
ATOH ATOH	585 N ARG 587 CA ARG	59	36.753	5.291		1.00 40.80	AAAA C		
ATOH	588 CB ARG	59	36.911	5.993		1.00 23.79	AAAA C		
ATOH	589 CG ARG	59	35.869	7.020		1.00 46.53	AAAA C		
ATOH	590 CD ARG	59	35.921	7.562		1.00 37.64	AAAA C		
ATOH	591 NE ARG	59	35.822	6.422		1.00 49.23	AAAA N		
ATOH	593 CE ARG	59	34.950	5.932		1.00 41.36	AAAA C		
ATOH	594 HH1 ARG	59	33.702	6.277	41.931	1.00 47.00	AAAA N		
ATOH	597 HH2 ARG	59	35.237	4.729		1.00 42.58	AAAA II		
ATOH	600 C ARG	59	38.037	4.494		1.00 42.25	AAAA C		
ATOH	601 O ARG	59	38.981	4.513	46.232	1.00 44.11	AAAA O		
ATOH	602 N VAL	60	38.001	3.625		1.00 40.94	AAAA II		
HOTA	604 CA VAL	60	39.101	2.743		1.00 39.14	AAAA C		
ATOH	605 CB VAL	60	39.624	3.066		1.00 40.12	AAAA C		
ATOH	606 CG1 VAL	60	40.407	1.872		1.00 35.05	AAAA C		
ATOH	607 CG2 VAL	60	40.425	4.352		1.00 28.86	AAAA C		
ATOH	608 C VAL	50	38.539	1.337		1.00 43.56	AAAA C		
ATCI1	609 O VAL	60	37.535	1.224		1.00 47.66	AAAA O		
HOTA	610 II ALA	61	39.094	0.371		1.00 41.92	II AAAA		
ATOH	612 CA ALA	61	38.617	-0.992		1.00 42.05	AAAA C		
ATOH	613 CB ALA	61	38.302	-1.483		1.00 52.40	AAAA C		
ATOH:	614 C ALA	61	39.613	-1.934		1.00 43.08	AAAA C		
ATOI1	615 O ALA	61	40.757	-1.602	48.670	1.00 50.59	AAAA O		
ATOI1	616 N GLY	62	39.200	-3.105		1.00 45.71	AAAA II		
ATOH	618 CA GLY	62	40.136	-4.079	49.385	1.00 45.39	AAAA C		
ATOH	619 C GLY	62	40.262	-3.902		1.00 48.04	AAAA C		
ATOH:	620 O GLY	62	40.587	-4.835		1.00 52.34	AAAA O		
ATOH	631 N LEU	63	39.985		-	1.00 46.90	AAAA II		
ATOH	623 CA LEU	63	40.003	-2.443	52.805	1.00 49.11	AAAA C		

ATHE	604 CB LEV	63	40.274	-0.953	3 53.027	1.00 41.41	AAAA C
ATSE	605 OG LEU	63	40.265	-0.423	3 54.443	3 1.00 53.41	AAAA C
ATOH	636 COL LEU	63	41.172	-1.164			AAAA C
ATOH	607 ODD LEV	63					
			40.637	1.047			AAAA C
ATOH	628 C LEU	63	38.643	-2.881	53.323	1.00 54.20	AAAA C
ATOH	629 O LEU	63	37.587	-2.430	52.837	7 1.00 57.73	AAAA O
ATO(1	630 II GLU	64	38.658	-3.862			AAAA II
ATOH							
		64	37.462	-4.418			AAAA C
ATOH	633 CB GLU	64	37.689	-5.956	5 54.734	1.00 65.33	AAAA C
ATOI1	634 CG GLU	64	37.832	-6.484	53.293	1.00 75.14	AAAA C
ATOH	635 CD GLU	64					
			37.404	-7.940			AAAA C
ATOH	636 OE1 GLU	64	37.424	-8.698	54.132	1.00 63.93	AAAA O
ATOH	637 OEC GLU	64	37.036	-0.320	51.978	1.00 88.77	AAAA O
ATO!1	638 C GLU	64	37.096	-4.007			AAAA C
ATOH	639 O GLU	64	35.986	-4.332			AAAA O
ATOII	640 II SER	65	37.766	-3.042	56.761	1.00 50.64	AAAA II
ATOH	642 CA SER	65	37.539	-2.523			AAAA C
ATOH	643 CB SER	65	37.743	-3.596			AAAA C
ATOH	614 OG SER	65	37.501	-2.971	60.429	1.00 50.90	AAAA O
ATOH	646 C SER	65	38.516	-1.405	58.432	1.00 48.35	AAAA C
ATOH	647 O SER	65	39.716	-1.692			
							AAAA O
ATOH	649 II LEU	66	38.054	-0.289	58.984	1.00 41.03	II AAAA II
ATOH	650 CA LEU	66	38.956	0.758	59.405	1.00 41.94	AAAA C
ATOH:	651 CB LEU	66	38.247	2.093			AAAA C
ATOH		66	37.283	2.476			AAAA C
ATOH	653 CD1 LEU	66	36.974	3.951	58.512	1.00 30.81	AAAA C
ATO!!	654 CD2 LEU	66	37.767	2.200	56.994	1.00 34.34	AAAA C
ATOH		66					
			39.646	0.462			AAAA C
ATOI1	656 O LEU	66	40.762	0.947	60.927	1.00 41.05	AAAA O
ATOH1	657 N GLY	67	39.000	-0.346	61.583	1.00 45.21	AAAA N
HOTA	659 CA GLY	67					
			39.773	-0.672	62.799		AAAA C
ATOH	660 C GLY	67	40.998	-1.508	62.445	1.00 44.51	AAAA C
HOTA	661 O GLY	· 67	41.855	-1.724	63.287	1.00 45.42	AAAA O
ATOH	662 N ASP	68	41.013	-2.189	61.309		AAAA II
ATO!:	664 CA ASE	68	42.194	-2.834	60.738		AAAA C
ATOU	665 CB ASP	68	42.012	-3.417	59.361	1.00 39.43	AAAA C
ATOL	666 CG ASP	-68	41.205	-4.679	59.311	1.00 45.82	AAAA C
ATOLI	667 OD1 ASP	58	40.912	-5.341	60.320		
						2.00 44.69	AAAA O
ATOH:	669 DD2 A8P	69	40.819	-5.065	58.187	1.00 47.23	AAAA C
ATOLL	669 C ASP	69	43.363	-1.837	60.596	1.00 45.89	AAAA C
ATOH	670 C ASP	68	44.436	-2.269	60.903	1.00 44.84	AAAA O
ATC!:	571 H LEU	69	43.145	-0.609			
					60.247	1.00 42.49	AAAA N
ATOH	673 CA LEU	69	44.175	0.352	60.048	1.00 45.90	AAAA C
HOTA	674 CB LEU	69	43.920	1.393	58.945	1.00 45.25	AAAA C
ATOH	675 OG LEU	59	43.902	0.882	57.494	1.00 54.25	AAAA C
ATOH	676 CE1 LEU	69					
			43.541	2.037	56.565	1.00 47.26	AAAA C
ATOH	677 CD2 LEU	ĕ٥	45.211	0.200	57.113	1.00 50.76	AAAA C
ATOH:	678 C LEU	69	44.347	1.107	61.350	1.00 49.50	AAAA C
ATOH	679 O LEU	59	45.470	1.210	61.851	1.00 54.51	AAAA O
ATOH	680 N SHE	70	43.296	1.737	61.869	1.00 44.60	AAAA II
ATCH	692 CA PHE	70	43.423	2.564	63.046	1.00 39.57	AAAA C
ATOH	683 CB PHE	70	42.997	3.973	62.700	1.00 26.08	AAAA C
HOTA	694 I3 PHE	70	43.465	4.501	61.390	1.00 45.32	
							AAAA C
ATOH	685 CD1 PHE	7.0	42.532	4.749	60.384	1.00 47.41	AAAA C
ATOH	696 CD2 PHE	70	44.815	4.767	61.130	1.00 48.77	AAAA C
ATOI1	687 CE1 PHE	70	42.945	5.263	59.159	1.00 56.16	AAAA C
ATOH	698 CEZ PHE	70					
			45.229	5.256	59.895	1.00 47.24	AAAA C
HOTA	689 CZ PHE	70	44.293	5.506	58.896	1.00 49.54	AAAA C
HOTA	690 C PHE	70	42.655	1.999	64.219	1.00 40.09	AAAA C
HOTA	691 O PHE	70	41.874	2.734	64.838	1.00 35.74	AAAA O
ATOH	692 II PRO	71					
ATOH	693 CD PRO		43.053	0.852	64.768	1.00 39.19	N KAKA
		71	44.269	0.058	64.411	1.00 39.94	AAAA C
ATOH	694 CA PRO	71	42.444	0.237	65.899	1.00 35.30	AAAA C
HOTA	695 CB PRO	71	43.308	-0.983	66.246	1.00 38.03	AAAA C
ATOH	696 CG PRO	71	44.669	-0.564			
					65.717	1.00 38.36	AAAA C
ATOH	697 C PRO	71	42.453	1.089	67.126	1.00 33.72	AAAA C
ATOH	698 O PRO	71	42.005	0.630	68.159	1.00 39.32	AAAA O
ATO: 1	699 N ASN	72	43.058	2.220	67.231	1.00 36.55	II AAAA II
ATOIT							
	701 CA ASN	72	43.204	3.032	68.401	1.00 32.60	AAAA C
ATOH1	702 CB ASN	72	44.637	2.916	68.962	1.00 36.89	AAAA C
ATOH	703 CG ASN	72	44.735	1.638	69.761	1.00 47.03	AAAA C
ATOH	704 OD1 ASN	72	44.644	1.619			
					70.979	1.00 64.42	AAAA O
ATOH	705 ND2 ASN	7.2	44.880	0.475	69.169	1.00 63.17	AAAA II
ATOH:	708 C ASN	72	42.875	4.477	68.135	1.00 30.11	AAAA C
ATOH	709 O ASH	?2	43.099	5.201	69.104	1.00 36.53	AAAA O
ATOH	710 H LEU	73					
			42.309	4.809	66.978	1.00 27.62	II AAAA II
ATOH	712 CA LEU	73	41.940	6.207	66.730	1.00 34.07	AAAA C
ATOH	713 CB LEU	73	41.476	6.373	65.292	1.00 28.37	AAAA C
ATOH	714 CG LEU	73	40.819	7.713	64.882	1.00 29.33	AAAA C
ATOH	715 CD1 LEU	73	41.918	8.721	64.963	1.00 31.86	AAAA C
ATOH	716 CD2 LEU	73	40.202	7.518	63.478	1.00 32.07	AAAA C
ATOH	717 C LEU	73	40.929	6.569	67.817	1.00 32.14	AAAA C
ATOH	718 O LEU	73	40.073	5.737	68.081	1.00 35.02	AAAA O
ATOH	719 II THR	74	41.081	7.585	68.582	1.00 29.47	AAAA II
HOTA	721 CA THR	7.4	40.150	7.826	69.683	1.00 34.80	AAAA C

ľ

AT 31	700 CB THE	74	41.008	7.744	70.953	1.00 46.09	AAAA C
ATM	723 (V31 THR	74	41.729				
							AAAA O
ATON		74	40.262				AAAA C
ATOH	726 C THR	74	39.424	9.155	69.60	1.00 35.48	AAAA C
ATOH	727 O THR	74	38.270	9.323	2 70.077	1.00 35.32	AAAA O
ATOH	728 II VAL	75	40.047	10.198	69.073	1.00 29.80	AAAA 11
	730 CA VAL	75					
ATOH			39.351				AAAA C
ATOH	731 CB VAL	75	39.856				AAAA C
ATOH	732 CGI VAL	75	39.173	13.801	. 69.934	1.00 24.51	AAAA C
ATOH	733 CG2 VAL	75	39.675	11.910	71.366	1.00 19.87	AAAA C
		75					
ATOH			39.613				AAAA C
ATOH	735 O VAL	75	40.724	11.808	67.022	1.00 35.99	AAAA O
INTA	736 II ILE	76	38.600	12.555	66.796	1.00 35.91	II AAAA II
ATOH:	738 CA ILE	76	38.696				AAAA C
	739 CB ILE	76	37.831				
ATON							AAAA C
HOTA	740 CG2 ILE	76	37.856				AAAA C
ATOH	741 CG1 ILE	76	38.223	11.314	64.277	1.00 28.52	AAAA C
ATOH:	742 CD1 ILE	7€	37.149	10.556	63.478	1.00 28.85	AAAA C
HOTA	743 C ILE	76	38.157				AAAA C
ATO(1	744 O ILE	76	36.987				AAAA O
ATOL	745 II ARG	77	38.906	15.733	66.230	1.00 30.32	II AAAA 11
ATOH	747 CA ARG	77	38.605	16.901	67.021	1.00 30.82	AAAA C
HOTA	748 CB ARG	77	39.961				AAAA C
	749 CG ARG	77					
ATON			39.993				AAAA C
HOTA	750 CD ARG	77	41.290	18.957	68.908	1.00 49.10	AAAA C
ATOH	751 HE ARG	77	41.411	17.817	69.773	1.00 39.23	AAAA II
ATOH	753 CE ARG	77	40.977	18.016	71.064	1.00 48.79	AAAA C
ATON	754 HHI ARG	77	40.440				
							II AAAA II
ATOH	757 HH2 ARG	77	41.061	17.012		1.00 40.38	AAAA N
HOTA	760 C ARG	77	37.643	17.733	66.225	1.00 31.75	AAAA C
ATOH	761 O ARG	77	36.944	18.637			AAAA O
ATOH	762 H GLY	78	37.688	17.661	64.884		
							AAAA N
ATOH	764 CA GLY	78	36.982	18.409			аааа с
ATON	765 C GLY	78	37.199	19.880	64.063	1.00 31.58	AAAA C
ATOH:	756 O GLY	78	36.363	20.775	63.674	1.00 34.03	AAAA O
ATOR	767 N TRP	79	38.439	20.321	64.304	1.00 31.21	AAAA N
	769 CA TRP	79					
ATCH			38.757	21.740	64.337		AAAA C
ATG!:	770 CB TRP	79	40.177	21.943	64.845	1.00 39.07	AAAA C
ATON	TTL CG TRP	79	40.626	23.343	65.164	1.00 36.64	AAAA C
ATCH	772 GDC TRP	79	41.691	24.001	64.433	1.00 28.52	AAAA C
ATOH:	773 CEC TRP	79	41.926	25.288	65.002	1.00 36.49	AAAA C
ATOL	774 CE3 TRP	79					
			42.473	23.625	63.370		AAAA C
ATOH:	775 CD1 TRP	79	40.199	24.235	66.113	1.00 29.59	AAAA C
ATOH	776 HEL TRP	7 9	40.917	25.413	66.054	1.00 27.67	AAAA !!
ATOH:	778 CE2 TRP	79	42.770	26.213	64.543	1.00 31.83	D AAAA
ATOH	779 CD3 TRP	7.9	43.389	24.548	62.876	1.00 46.14	AAAA C
	T90 CH2 TRP	79					
ATCH			43.525	25.794	63.470	1.00 35.31	AAAA C
ATOH	791 C TRP	79	39.606	22.418	62.986	1.00 28.75	AAAA C
ATOH	792 O TRE	7.9	30.595	23.624	62.961	1.00 23.61	AAAA O
ADDI:	783 H LYS	90	38.659	21.694	61.895	1.00 31.84	- AAAA N
ATON	788 CA LYS	80	38.305	22.153	60.573	1.00 32.78	AAAA C
ATOH	T96 CB LYS	80	39.453	22.498			
					59.689	1.00 41.17	AAAA C
ATG!	797 OG LYS	80	39.938	23.911	59.470	1.00 34.68	AAAA C
ATOH	798 CD LYS	80	41.025	24.350	60.306	1.00 44.77	AAAA C
ATOH	789 CE LYS	80	41.276	25.811	59.898	1.00 50.41	AAAA C
HOTA	790 NZ LYS	80	42.530	25.752	59.092	1.00 67.26	H AAAA H
ATOI1	791 C LYS	80	37.585	20.960	59.917	1.00 34.52	AAAA C
		80					
HOTA			37.950	19.843	60.237	1.00 37.62	aaaa o
ATOH	793 II LEU	81	36.477	21.267	59.207	1.00 31.77	AAAA N
ATOH	795 CA LEU	81	35.742	20.157	58.600	1.00 31.02	AAAA C
HOTA	796 CB LEU	81	34.290	20.315	59.092	1.00 31.20	AAAA C
HOTA	797 CG LEU	81	34.115	20.319	60.632	1.00 36.97	AAAA C
ATOH	798 CD1 LEU	81	32.832	21.080	60.954	1.00 27.98	AAAA C
ATOH		81	34.089	18.955	61.297	1.00 28.77	AAAA C
ATOH	800 C LEU	81	35.733	20.023	57.104	1.00 29.86	AAAA C
ATOH	901 O LEU	81	36.082	20.947	56.368	1.00 29.34	AAAA O
HOTA	802 II PHE	82	35.430	18.813	56.594	1.00 27.78	AAAA N
HOTA	804 CA PHE	82	35.176	19.653	55.182	1.00 28.68	AAAA C
ATO!!	805 CB PHE	82	35.513	17.226	54.795	1.00 32.78	
							AAAA C
HOTA		82	35.348	16.901	53.357	1.00 30.48	AAAA C
ATOH	807 CD1 PHE	82	36.378	17.130	52.447	1.00 32.86	AAAA C
ATOM	909 CD2 PHE	82	34.142	16.361	52.914	1.00 30.93	AAAA C
ATOH	809 CE1 PHE	82	36.217	16.769	51.104	1.00 43.27	AAAA C
ATOH	810 CE2 PHE	9.2	33.963	16.061	51.538	1.00 26.30	AAAA C
ATOH	811 CS PHE	82	35.005	16.238	50.672		
						1.00 37.73	AAAA C
ATOH!	812 C FHE	82	33.670	18.911	54.993	1.00 30.06	AAAA C
HOTA	813 O PHE	82	32.830	18.045	55.278	1.00 27.36	AAAA O
ATOH	814 N TYR	83	33.301	20.148	54.770	1.00 31.68	AAAA II
ATOH	815 CA TYR	83	31.911	20.605	54.633	1.00 40.76	AAAA C
ATOH	816 C TYR	83					
			31.043	19.977	55.726	1.00 44.00	AAAA C
ATOH	817 O TYR	83	30.075	19.210	55.487	1.00 50.47	AAAA O
ATOH	818 CB TYR	83	31.359	20.199	53.269	1.00 31.55	AAAA C
ATOH	819 CG TYR	83	32.196	20.742	52.117	0.01 20.00	AAAA C
ATOH	820 CD1 TYR	83	33.254	19.982	51.609	0.01 20.00	AAAA C
ATOH	821 CD2 TYR	83	31.906	21.998			
CT.N.	CLI GOL IIR	د ن	21.300	-1.230	51.575	0.01 20.00	AAAA C

		•					1
AUGU	900 TER TYR	و ڊ	34.927	7 20.484	9 50.55	6 0.01 20.00	AAAA C
ATGG	903 CEC TYR	83	32.679	22.496	6 50.52	1 0.91 20.00	AAAA C
ATOU	824 CD TYR	8.3	33.740			2 0.91 20.00	AAAA C
ATOR	925 OH TYR	83	34.493	22.22	2 48.98	9 0.01 20.00	AAAA O
ATCH	826 II ASII	84	31.043		1 56.92	4 1.00 40.91	AAAA N
ATOL	827 CA ASN	84	30.250			6 1.00 36.54	AAAA C
ATOH	928 CB ASN	84	28.763				AAAA C
ATOH	929 CG ASN	84	28.274				AAAA C
ATGI	830 OD1 ASN	84	28.319				AAAA O
ATCH	831 IID2 ASII	84	27.839				AAAA N
ATOH	832 C ASII	84	30.686				AAAA C
ATOH	833 O ASH	84	30.137				AAAA O
ATON	934 II TYR 936 CA TYR	85	31.455				AAAA N
ATOU		85	31.617				AAAA C
ATO!!	837 CB TYR 838 CG TYR	85	31.473				AAAA C
HOTA HOTA	839 CD1 TYR	85 85	30.078		-		AAAA C
ATOH	840 CEL TYR	85	29.868 28.611				AAAA C
ATON	841 CD2 TYR	85	28.954				AAAA C
ATOH	842 CE2 TYR	85	27.661			_	AAAA C
ATON	843 CS TYR	85	27.497				AAAA C
ATOH	844 OH TYR	85	26.258				AAAA C
ATOH	846 C TYR	85	32.977				AAAA O
ATOH	847 O TYR	85	33.943				AAAA C
ATOH	848 H ALA	86	33.027				AAAA O
ATOH	850 CA ALA	86	34.257	15.325			AAAA C
ATOH	951 CB ALA	86	33.999				AAAA C
ATOH	852 C ALA	86	34.729				AAAA C
HOTA	853 O ALA	86	35.795	13.481			AAAA O
ATOH	854 II LEU	87	33.832	13.173			AAAA N
ATOH	856 CA LEU	87	34.188	11.805			AAAA C
ATOH	857 CB LEU	87	33.798	10.860			AAAA C
ATOH	858 CG LEU	. 82	33.801	9.363			AAAA C
ATOH	859 CD1 LEU	87	35.140	8.915	59.571		AAAA C
ATCI:	860 CDC LEU	87	33.637	8.432	61.393		AAAA C
HOTA	961 C LEU	87	33.530	11.429	58.021	1.00 35.60	AAAA C
ATOH	962 G LEU	87	32.320	11.421	58.001	1.00 38.97	AAAA O
ATOH	963 H VAL	88	34.174	11.300	56.975	1.00 37.86	AAAA 11
ATON	965 CA VAL	58	33.438	11.032	85.629	1.00 33.32	AAAA C
ATOH	966 TB VAL	39	33.666	12.095	54.553	1.00 22.39	AAAA C
ATOH	867 OGI VAL	88	32.974	11.675	53.261	1.00 19.24	AAAA C
ATOH	968 OG2 VAL	88	33.165	13.402	55.042	1.00 13.27	AAAA C
ATO!!	869 C VAL	89	33.898	9.684	55.114	1.00 31.79	AAAA C
ATOL	870 O VAL	88	35.069	9.407	55.117	1.00 33.57	O AAAA
ATOH	971 N ILE	8 9	33.078	9.728	54.823	1.00 31.08	H AAAA H
ATOH	era da ile	99	33.361	7.433	54.280	1.00 30.45	ARAA C
ATOH	874 DB ILE	6 6	32.941	5.384	55.296	1.00 30.17	AAAA C
ATON	875 CGC ILE	89	32.898	4.954	54.901	1.00 37.24	AAAA C
ATCH: ATCH	878 CG1 ILE 877 CD1 ILE	39	33.893	5.420	56.500	1.00 24.92	aaaa c
ATOM	878 COLULE	99 99	33.424	5.613	57.675	1.00 23.96	AAAA C
ATOM	879 O ILE	99	32.509	7.206	53.027	1.00 40.64	AAAA C
ATOH	380 N SHE	9.0 2.1	31.330 33.082	6.991	53.205	1.00 38.69	AAAA O
ATO:	882 CA PHE	90	32.346	7.464 7. 3 71	51.845 50.591	1.00 41.45	ال هممم
ATOH	893 CB PHE	90	32.347	8.776	50.110	1.00 37.67 1.00 32.17	AAAA C
HOTA	884 CG PHE	90	31.581	9.081	48.865		AAAA C AAAA C
ATOH	895 CD1 PHE	90	30.387	9.772	49.025	1.00 32.02	AAAA C
LICTA	886 CD2 PHE	90	32.052	9.721	47.620		AAAA C
HOTA	887 CE1 PHE	90	29.611	10.111	47.939	1.00 33.30	AAAA C
HOTA	888 CE2 PHE	90	31.290	9.086	46.534	1.00 43.09	AAAA C
HCTA	886 CC SHE	90	30.083	9.764	46.687	1.00 50.24	AAAA C
ATOI1	880 C BHE	90	32.856	6.384	19.557	1.00 40.72	AAAA C
ATOH	891 O PHE	90	34.027	6.296	49.203	1.00 46.15	AAAA O
ATOH	892 !! GLU	91	32.024	5.519	49.001	1.00 39.16	AAAA II
ATOH	894 CA GLU	91	32.248	4.601	47.954	1.00 42.45	AAAA C
HOTA	895 CB GLU	91	32.479	5.231	46.583	1.00 38.08	AAAA C
ATOH	896 CG GLU	91	31.136	5.865	46.250	1.00 58.86	AAAA C
HOTA	897 CD GLU	91	30.855	5.776	44.757	1.00 63.55	AAAA C
ATON	898 OE1 GLU	91	31.473	6.651	44.082	1.00 64.10	AAAA O
ATOH	899 OE2 GLU	91	30.058	4.813	14.573	1.00 63.64	AAAA O
ATOH ATOH	900 C GLU	91	33.422	3.734	48.313	1.00 42.06	AAAA C
HOTA	901 O GLU 902 U HET	91 92	34.298	3.411	47.587	1.00 44.71	O KAAA
ATOH	902 N MET 904 CA MET	92	33.352	3.209	49.482	1.00 46.52	AAAA N
ATOH	905 CB MET	92	34.409	2.401	50.088	1.00 42.26	AAAA C
ATOH	905 CG HET	92	34.299 35.412	2.659 2.156	51.584	1.00 38.37	AAAA C
ATOH	907 SD MET	92	36.802	3.306	52.420 52.401	1.00 59.29	AAAA C
ATOH	908 CE HET	92	36.340	4.405		1.00 57.67	AAAA S
HOTA	909 C MET	92	34.012	1.005	51.108 49.745	1.00 38.36	AAAA C
ATOH	910 O HET	92	33.335	0.298		1.00 43.37	AAAA C
ATON	911 N THR	93	34.449	0.298	50.523	1.00 45.58 1.00 47.09	AAAA O
ATOH	913 CA THR	93		-0.900	48.602 48.273	1.00 47.09	AAAA II
ATOH	914 CB THR	93			46.868	1.00 47.32	AAAA C
HOTA	915 OG1 THR	93			45.892	1.00 55.28	AAAA C AAAA Q
ATOH	917 CGC THR	93			46.516	1.00 37.81	AAAA C
•							~~~

ATCAL 919 0 THR 93 ATCAL 919 0 THR 93 ATCAL 919 0 THR 93 ATCAL 920 H ASH 94 ATCAL 922 CA ASH 94 ATCAL 925 ODL ASH 94 ATCAL 925 ODL ASH 94 ATCAL 925 ODL ASH 94 ATCAL 926 HD2 AGH 94 ATCAL 926 CASH 94 ATCAL 926 CASH 94 ATCAL 930 CASH 94 ATCAL 930 CASH 94 ATCAL 930 CASH 94 ATCAL 931 H LEU 95 ATCAL 935 CG LEU 95 ATCAL 935 CG LEU 95 ATCAL 936 CDL LEU 95 ATCAL 936 CDL LEU 95 ATCAL 937 CD2 LEU 95 ATCAL 938 CAL LEU 95 ATCAL 948 CAL LYS 96 ATCAL 953 H ASP 97 ATCAL 953 H ASP 97 ATCAL 955 CA ASP 97 ATCAL 956 CB ASP 97 ATCAL 956 CB ASP 97 ATCAL 956 CB ASP 97 ATCAL 957 CG ASP 97 ATCAL 958 CD1 ASP 97 ATCAL 958 CD2 ASP 97 ATCAL 958 CD2 ASP 97 ATCAL 956 CB ASP 97 ATCAL 9	34.885	AAAAA C C C C C C C C C C C C C C C C C
ATOM	39.927 -2.505 67.479 1.00 47.08 40.548 -2.321 68.688 1.00 49.43 41.834 -2.662 68.997 1.00 55.82 36.989 1.059 69.214 1.00 33.46 36.630 0.813 70.375 1.00 43.00 37.752 2.091 69.068 1.00 38.12 38.093 2.979 70.223 1.00 30.78 39.603 2.911 70.363 1.00 48.63 40.112 1.904 71.268 1.00 54.01	AAAA C AAAA O AAAA O AAAA O AAAA N AAAA C AAAA C AAAA C

ATM1 1022 CB ARG 104	35.509 7.657 73.018 1.00 38.17	AAAA C
ATM: 1023 05 ARG 104 ATM: 1024 0D ARG 104	36.356 6.375 73.165 1.00 48.37	AAAA C
ATON: 1025 HE ARG 104	35.425 5.183 73.248 1.00 50.71 34.582 5.320 74.413 1.00 52.38	AAAA C
ATOH 1027 CE ARG 104	34.900 4.847 75.621 1.00 72.73	AAAA N AAAA C
ATON 1028 HH1 ARG 104 ATON 1031 HH2 ARG 104	36.047 4.214 75.800 1.00 81.87 33.990 5.070 76.577 1.00 78.07	AAAA N
ATOH 1034 C ARG 104	33.990 5.070 76.577 1.00 78.27 34.466 9.273 71.540 1.00 32.58	AAAA N AAAA C
ATON 1035 0 ARG 104 ATON 1036 N ASN 105	33.553 9.743 72.223 1.00 39.89	AAAA
ATON 1036 N ASN 105 ATON 1038 CA ASN 105	34.992 10.065 70.637 1.00 33.47 34.549 11.450 70.590 1.00 30.97	AAAA N
ATOH 1044 C ASH 105	34.907 12.149 69.310 1.00 31.00	AAAA C AAAA C
ATO! 1045 O ASH 105 ATO! 1039 CB ASH 105	36.086 12.067 69.050 1.00 37.79 35.203 12.199 71.721 1.00 12.28	AAAA O
ATOH 1949 CG ASH 105	35.203 12.199 71.721 1.00 12.28 34.786 13.568 71.756 1.00 24.93	AAAA C AAAA C
ATOM 1641 OD1 ASM 105 ATOM 1042 MB2 ASM 105	35.125 14.549 71.127 1.00 38.14	AAAA O
ATOH 1046 N ILE 106	33.828 13.985 72.649 1.00 35.96 33.969 12.669 68.576 1.00 31.90	N AAAA N AAAA
ATOM 1048 CA ILE 106 ATOM 1049 CB ILE 106	34.129 13.551 67.469 1.00 23.39	AAAA C
ATON 1049 CB ILE 106 ATON 1050 CG2 ILE 106	33.239 13.185 66.307 1.00 16.54 33.132 14.408 65.374 1.00 20.38	AAAA C
ATON 1051 CG1 ILE 106	33.928 12.034 65.558 1.00 18.30	AAAA C AAAA C
ATON 1052 CDN ILE 106 ATON 1053 C ILE 106	33.955 11.293 64.643 1.00 25.48 33.803 14.909 68.009 1.00 27.40	AAAA C
ATON 1054 O ILE 106	33.803 14.909 68.009 1.00 27.40 32.628 15.106 68.243 1.00 32.86	AAAA C AAAA O
ATON 1955 N THR 107 ATON 1957 CA THR 107	34.719 15.789 68.350 1.00 30.43	II AAAA
ATOH 1058 CB THR 107	34.532 16.983 69.145 1.00 28.27 35.902 17.607 69.579 1.00 35.78	AAAA C
ATOH 1059 OG1 THR 107 ATOH 1061 CG2 THR 107	36.819 16.503 69.738 1.00 40.26	AAAA C AAAA O
ATOM 1051 CG2 THR 107 ATOM 1062 C THR 107	35.954 18.411 70.855 1.00 28.13 33.728 17.950 68.332 1.00 27.95	AAAA C
ATON: 1063 O THR 107	33.392 19.060 68.831 1.00 32.99	AAAA C AAAA O
ATON: 1064 N ARG -108 ATON: 1066 CA ARG 108	33.669 17.777 67.019 1.00 30.28 33.046 18.809 66.180 1.00 31.25	N AAAA
ATOM: 1967 CB ARG 108	33.046 18.809 66.180 1.00 31.25 33.965 20.011 65.951 1.00 25.13	AAAA C AAAA C
ATOM: 1068 OG ARG 108 ATOM: 1069 OD ARG 108	33.105 21.174 65.543 1.00 30.68	AAAA C
ATCH: 1070 ME ARG 108	33.917 22.444 65.529 1.00 17.12 33.511 23.376 64.451 1.00 33.40	AAAA C AAAA N
ATCH: 1071 CI ARG 109 ATCH: 1073 NH1 ARG 108	34.045 23.608 63.266 1.00 46.41	AAAA C
ATOM: 1076 NH2 ARG 108	35.162 22.929 62.868 1.00 40.30 33.454 24.543 62.494 1.00 39.82	AAAA H AAAA H
ATOM: 1079 0 ARG 108 ATOM 1080 0 ARG 108	32.701 19.328 64.784 1.00 31.50	AAAA C
ATCH 1001 H GLY 100	33.379 17.391 64.430 1.00 32.67 31.567 18.809 64.284 1.00 32.60	AAAA O AAAA N
ATCH 1093 TA GLY 109 ATCH 1094 T GLY 109	31.082 18.395 62.983 1.00 28.87	AAAA C
ATON 1095 O GLY 109	30.470 17.008 63.001 1.00 32.32 30.471 16.306 64.006 1.00 38.03	aaaa c aaaa o
ATCH 1696 H ALA 110 ATCH 1098 CA ALA 110	29.929 18.560 61.894 1.00 34.11	AAAA N
ATON: 1089 CB ALA 110	29.086 15.371 61.833 1.00 36.77 27.708 15.721 61.223 1.00 15.32	AAAA C AAAA C
ATON 1090 D ALA 110 ATON 1091 D ALA 110	29.745 14.335 60.957 1.00 32.12	AAAA C
ATON 1091 O ALA 110 ATON 1092 N IDE 111	39.921 14.332 60.687 1.00 34.11 29.030 13.337 60.557 1.00 26.55	AAAA O AAAA N
ATON 1094 CA ILE 111 ATON 1095 CB ILE 111	29.569 12.273 59.771 1.00 32.90	AAAA C
ATON 1095 CB ILE 111 ATON 1096 CG2 ILE 111	29.669 10.967 60.591 1.00 38.07 30.091 11.140 62.036 1.00 34.05	AAAA C
ATOM 1097 CG1 ILE 111	28.345 10.237 60.684 1.00 26.54	AAAA C AAAA C
ATON 1098 CD1 ILE 111 ATON 1099 C ILE 111	28.437 8.872 61.407 1.00 27.11 28.738 11.928 58.521 1.00 33.98	AAAA C
ATOM 1100 O ILE 111	27.533 12.179 58.532 1.00 32.15	AAAA C AAAA O
ATON 1101 N ARG 112 ATON 1103 CA ARG 112	29.432 11.423 57.501 1.00 30.54 28.773 11.107 56.247 1.00 27.48	AAAA N
ATON 1104 CB ARG 112	29.186 12.085 55.169 1.00 26.35	AAAA C AAAA C
ATOH 1105 CG ARG 112 ATOH 1106 CD ARG 112	28.548 11.653 53.816 1.00 25.83 28.659 12.912 52.992 1.00 32.92	AAAA C
ATOM 1107 HE ARG 112	27.950 12.726 51.770 1.00 50.34	AAAA C AAAA N
ATON 1109 CS ARG 112 ATON 1110 NH1 ARG 112	27.778 13.503 50.720 1.00 47.61 28.334 14.695 50.696 1.00 44.93	AAAA C
ATOH 1113 HH2 ARG 112	28.334 14.695 50.696 1.00 44.92 27.012 12.925 49.789 1.00 46.00	II AAAA II AAAA
ATOH 1116 C ARG 112 ATOH 1117 O ARG 112	29.200 9.738 55.791 1.00 29.74 30.343 9.611 55.406 1.00 36.52	AAAA C
ATOM 1118 N ILE 113	30.343	aaaa o aaaa n
ATOM 1120 CA ILE 113 ATOM 1121 CB ILE 113	28.612 7.376 55.555 1.00 36.26	AAAA C
ATOM 1122 0G2 ILE 113	28.457	AAAA C AAAA C
ATOM 1123 CS1 ILE 113 ATOM 1124 CD1 ILE 113	29.374 7.012 57.874 1.00 31.92	AAAA C
ATOM 1125 C ILE 113	29.324 6.250 59.176 1.00 42.34 27.729 6.959 54.398 1.00 39.26	AAAA C AAAA C
ATOM 1126 0 ILE 113 ATOM 1127 N GLU 114	26.637 6.482 54.664 1.00 50.72	AAAA O
ATOH 1129 CA GLU 114	28.175 7.199 53.190 1.00 35.86 27.491 7.103 51.935 1.00 38.76	AAAA II
ATON 1130 CB GLU 114	27.471 8.443 51.216 1.00 25.58	AAAA C
ATOH 1132 CD GLU 114	26.567 8.402 49.969 1.00 27.97 26.349 9.840 49.578 1.00 36.85	AAAA c
ATOH 1133 OEL GLU 114	26.763 10.662 50.414 1.00 45.57	АААА С ААЛА С
		-

÷

ATO: 1134 081 GLU :114	22 2	10.10			r
ATM: 1135 C GEW 114	25.787 29.039				AAAA O
AT 31 1136 O GLU 114	29.120				AAAA C AAAA O
ATON 1137 N LYS 115	27.191	5.556	50.096		AAAA N
ATOH 1139 CA LYS 115	27.219			1.00 41.16	AAAA C
ATOM 1140 CB LYS 115 ATOM 1141 CG LYS 115	27.275 27.019	4.764 6.194			AAAA C
ATOM 1142 CD LYS 115	26.537	6.355			AAAA C AAAA C
ATON 1143 CE LYS 115	26.751	7.804			AAAA C
ATON 1144 NC LYS 115	27.165	8.045		_	AAAA N
ATON 1148 C LYS 115 ATON 1149 O LYS 115	28.287	3.421			AAAA C
ATOM 1150 W ASW 116	29.102 28.137	3.103 2.677			AAAA O H AAAA
ATON 1152 CA ASN 116	29.022	1.570			AAAA C
ATON 1153 CB ASN 116	29.534	1.868			AAAA C
ATOM 1154 CG ASM 116 ATOM 1155 ODM ASM 116	30.372 31.337	3.153 3.016			AAAA C
ATCH 1156 ND2 ASN 116	29.927	4.174	53.056		O AAAA 11 AAAA
ATON 1159 C ASN 116	28.275	0.277			AAAA C
ATON 1160 O ASN 116 ATON 1161 H ALA 117	28.067	-0.361	52.033	1.00 48.24	AAAA O
ATCH 1161 H ALA 117 ATCH 1163 CA ALA 117	27.989 27.195	-0.188 -1.376	49.772	1.00 40.94 1.00 43.35	N AAAA
ATON 1164 CB ALA 117	27.494	-1.884	48.156	1.00 47.63	AAAA C AAAA C
ATCH 1165 C ALA 117	27.294	-2.504	50.529	1.00 46.55	AAAA C
ATON 1166 O ALA 117 ATON 1167 N ASP 118	26.211	-2.998	50.890	1.00 51.24	AAAA O
ATCH 1167 H ASP 118 ATCH 1169 CA ASP 118	28.484 28.559	-2.823 -3.980	51.005 51.920	1.00 47.43 1.00 45.74	AAAA N AAAA C
ATON 1170 CB ASP 118	29.659	-4.945	51.477	1.00 55.39	AAAA C
ATOM 1171 CG ASP 118	29.684	-5.119	49.958	1.00 59.40	AAAA C
ATON 1172 OD1 ASP 118 ATON 1173 OD2 ASP 118	28.870 30.448	-5.976 -4.447	49.608	1.00 64.40	AAAA O
ATOH 1174 C ASP 118	28.818	-3.586	49.207 53.353	1.00 66.73 1.00 37.29	AAAA O AAAA C
ATOM 1175 O ASP 118	29.127	-4.536	54.026	1.00 42.89	AAAA O
ATCH 1176 N LEU 119 ATCM: 1179 CA LEU 119	28.670 28.986	-2.327 -1.895	53.685	1.00 36.46	II AAAA
ATO: 1179 CB LZU 119	29.159	-0.389	55.047 55.145	1.00 40.58 1.00 34.31	AAAA C AAAA C
ATON 1180 CG LEU 119	29.640	0.331	56.378	1.00 36.58	AAAA C
ATO: 1181 CD1 LEV 119 ATO: 1182 CD2 LEV 119	30.950 29.791	-0.101 1.830	56.948 56.104	1.00 35.77	AAAA C
ATO: 1193 T 1EU 119	27.937	-2.376	56.007	1.00 29.68 1.00 43.67	AAAA C AAAA C
ATO: 1184 O LEU 119	26.748	-2.248	55.743	1.00 45.32	AAAA O
ATG: 1195 N CYS 120 ATG: 1197 CA CYS 120	28.361 27.378	-2.967 -3.407	57.110 59.089	1.00 43.53 1.00 38.93	II FARA
ATOM: 1198 C CYS 120	27.981	-3.931	59.425	1.00 41.91	AAAA C AAAA C
ATOM: 1189 O CYS 120	28.660	-1.960	59.446	1.00 43.66	AAAA O
ATOM 1190 DB DYS 120 ATOM 1191 SG DYS 120	27.285 26.568	-4.907 -5.603	59.100 56.639	1.00 37.59 1.00 58.32	AAAA C
ATOM: 1190 N TYR 121	27.328	-3.456	60.509	1.00 38.05	AAAA S AAAA N
ATO: 1194 CA TYR 121 ATO: 1195 CB TYR 121	27.795	-3.010	61.927	1.00 38.68	AAAA C
ATOM: 1195 CB TYR 121 ATOM: 1196 CG TYR 121	29.189 28.950	-3.572 -5.032	62.130 62.519	1.00 34.61 1.00 36.52	AAAA C
ATON: 1197 CD1 TYR 121	29.087	-6.045	€1.582	1.00 33.58	AAAA C AAAA C
ATON 1198 CEL TYR 121		-7.350	61.980	1.00 41.21	AAAA C
ATON 1199 CD2 TYR 121 ATON 1200 CB2 TYR 121	28.560 28.287	-5.337 -6.630	53.817 54.201	1.00 36.31 1.00 39.48	AAAA C AAAA C
ATON 1201 CD TYR 121		-7.641		1.00 46.07	AAAA C
ATOM 1202 OH TYR 121 ATOM 1204 C TYR 121		-8.924	63.730	1.00 49.20	AAAA O
ATON 1204 C TYR 121 ATON 1205 O TYR 121		-1.523 -0.778	61.789 62.369	1.00 38.83 1.00 43.22	AAAA C AAAA O
ATOH 1206 N LEU 122	26.587	-1.045	61.180	1.00 39.58	AAAA II
ATON 1208 CA LEU 122 ATON 1209 CB LEU 122	26.361	0.405	61.090	1.00 44.82	AAAA C
ATOH 1210 CG LEU 122	25.990 26.497	0.715 2.014	59.634 59.108	1.00 46.48	AAAA C AAAA C
ATOM 1211 CD1 LEU 122	25.778	2.448	57.859	1.00 32.19	AAAA C
ATON 1212 CD2 LEU 122 ATON 1213 C LEU 122	26.136 25.212	3.057 0.910		1.00 47.76	AAAA C
ATON 1214 O LEU 122	25.269			1.00 44.85 1.00 47.66	AAAA C AAAA O
ATOH 1215 H SER 123	24.104	0.137	61.843	1.00 40.12	aaaa n
ATOM 1217 CA SER 123 ATOM 1218 CB SER 123	22.949 21.754			1.00 33.98	AAAA C
ATOM 1219 OG SER 123				1.00 19.26 1.00 34.35	AAAA C AAAA O
ATOM 1221 C SER 123	23.165	0.060	64.159	1.00 37.43	AAAA C
ATOH 1222 O SER 123 ATOH 1223 N THR 124	22.326			1.00 35.33	AAAA O
ATOH 1225 CA THR 124				1.00 39.03 1.00 37.78	AAAA 11
ATOM 1226 CB THR 124	25.368 -	-2.461	65.719	1.00 42.39	AAAA C
ATOM 1227 OG1 THR 124 ATOM 1229 CG2 THR 124				1.00 47.70	AAAA O
ATOM 1230 C THR 124				1.00 40.93 1.00 39.29	AAAA C AAAA C
ATOM 1231 O THR 124	25.948 -	0.642	67.499	1.00 41.41	AAAA O
ATOH 1232 H VAL 125 ATOH 1234 CA VAL 125	25.737			1.00 37.80	II AAAA
ATOH 1235 CB VAL 125				1.00 41.06 1.00 39.50	AAAA C AAAA C
ATON 1236 001 VAL 125	28.570	3.599 6	56.352 1	1.00 28.36	AAAA C
ATOH 1237 GG2 VAL 125	28.693	1.565	55.110 1	1.90 33.07	AAAA 🗈

ATH.		125	25.759	3.12	7 67,179	9 1.09 41.17	AAAA C
ATM		125	24.941	3.75	0 66.531	1.00 41.22	AAAA O
ATO	1140 H ASP	126	26.972	3.63	68.367	1.00 44.54	AAAA H
ATOL		126	25.310	4.73	4 68.967		AAAA C
ATOD		126	24.862	4.33	5 70.342	1.00 34.73	AAAA C
ATOR		126	23.879	5.303	3 70.983	1.00 45.53	AAAA C
ATON	1245 OD1 ASP	126	23.699	6.520	70.685	1.00 27.71	AAAA O
ATOU	1246 ODC ASP	126	23.220	4.865	71.964		AAAA O
ATOH	1247 C ASP	126	26.146	5.985	5. 68.872	1.00 40.83	AAAA C
ATOR		126	26.740	6.400	69.888		AAAA O
ATOH	1249 II TRP	127	26.029	6.649			AAAA II
ATOU		127	26.777				AAAA C
ATOU	1252 CB TRP	127	26.568				AAAA C
ATOU		127	27.195				AAAA C
ATON		127	28.587	7.208			AAAA C
ATOR		127	28.631	6.186			
ATOH		127	29.778	7.845			AAAA C
ATOH		127	26.465	6.450			AAAA C
ATOL		127	27.311	5.712			AAAA C
ATOLI		127	29.792	5.783		1.00 32.53	II KAAA
ATOH		127	30.972	7.445			AAAA C
ATOH		127	30.937	6.405			AAAA C
ATOH		127	26.558	9.010			AAAA C
ATOH		127	27.382	9.977			AAAA C
ATOH	1265 II SER	128	25.493	B. 931			AAAA O
ATOH	1267 CA SER	128	25.201	10.041		1.00 31.24	M AAAA
ATOH	1268 CB SER	128	23.757	10.042		1.00 34.04	AAAA C
ATOH	1269 OG SER	128	23.433	8.917		1.00 36.87	AAAA C
ATOH	1271 C SER	128	26.133	9.975		1.00 28.96	O AAAA
ATOH	1272 O SER	128	26.212	19.857		1.00 32.39	AAAA C
HOTA	1273 II LEU	129	26.662			1.00 30.91	AAAA O
ATOH	1275 CA LEU	129	27.701	8.792	71.549	1.00 27.18	AAAA N
HOTA	1276 CB LEU	129	27.701	8.607	72.526	1.00 36.73	AAAA C
ATOH	1277 OG LEU	129	26.795	7.132	72.741	1.00 32.53	AAAA C
ATOH	1279 CD1 LEU	129		6.324	73.371	1.00 39.28	AAAA C
ATON	1279 CD2 LEU	129	27.292	5.024	73.975	1.00 32.54	AAAA C
ATON	1280 C LEU	129	26.237	7.117	74.560	1.00 32.12	AAAA C
ATOR	1291 O LEU	129	29.054	9.226	72.113	1.00 38.04	AAAA C
ATO:	1282 H ILE	130	29.645	10.001	72.874	1.00 34.50	AAAA O
ATO:	1294 CA ILE	130	29.316	9.217	70.907	1.00 42.09	AAAA II
ATOH	1295 CP ILE	130	30.490	9.743	70.144	1.00 41.35	
ATON	1296 OG2 ILE		30.793	2.896	68.901	1.00 41.73	AAAA C
ATOL	1297 CG1 ILB	130 130	31.992	9.434	68.176	1.00 31.95	AAAA C
ATGH	1099 CD1 ILE	130	30.969	7.413	69.347	1.00 26.54	AAAA C
ATON	1289 C ILE	130	31.053	6.457	69.165	1.00 42.65	AAAR C
ATOH			30.305	11.178	69.679	1.00 46.43	AAAA C
ATOH		130	31.224	11.995	69.966	1.00 38.45	AAAA O
ATOR		131	29.089	11.495	59.193	1.00 45.14	AAAA D
ATG:	1093 CA LEU 1294 CB LEU	131	29.895	12.965	68.651	1.00 41.45	AAAA C
ATCH	1295 OF LEW	131 131	28.499	12.616	67.259	1.00 46.51	AAAA C
ATON	1296 CD1 LEU	131	29.823	12.905	65.878	1.00 36.79	AAAA I
ATON	1297 CD2 LEU	131	29.128	11.405	5 5.32;	1.00 30.15	AAAA C
ATOH	1099 C LEU	131	27.625	13.581	65.334	1.00 19.92	AAAA C
		131	27.661 26.599	13.525	69.295	1.00 39.19	AAAA C
ATOH	1300 N ASP	132	27.742	12.967		1.00 37.75	AAAA O
ATOH	1302 CA ASP	132	26.610	14.511 15.542	69.518	1.00 33.73	AAAA II
ATOH	1303 CB ASP	132	27.017	15.944	70.003 70.381	1.00 38.20	AAAA C
ATOH	1304 CG ASP	132	27.349	17.137	71.834	1.00 43.17	AAAA C
IICTA	1305 OD1 ASP	132	27.536	16.122	72.521	1.00 43.29 1.00 47.12	AAAA C
ATO()	1306 OD2 ASP	132	27.413	18.331	72.208	1.00 47.12	AAAA C
HOTA	1307 C ASP	132	25.520	15.659	68.946	1.00 43.46	AAAA O
HOTA	1308 O ASP	132	24.481	15.032	68.939	1.00 49.32	AAAA C AAAA O
ATOH	1309 II ALA	133	25.754	16.398	67.900	1.00 45.03	AAAA U
ATOH		133	24.947	16.776	66.773	1.00 38.62	AAAA C
ATOH		133	25.628	17.987	66.092	1.00 33.92	AAAA C
ATOH:		133		15.669	65.775	1.00 33.33	AAAA C
ATOH		133		15.791	64.517	1.00 33.71	AAAA O
HOTA	1315 # VAL	134		14.565	66.219	1.00 27.89	AAAA N
ATOH	1317 CA VAL	134		13.440	65.377	1.00 29.90	AAAA C
ATCH:	1318 CB VAL	134		12.241		1.00 40.63	AAAA C
ATOH:	1319 CG1 VAL	134		11.441		1.00 35.20	AAAA C
ATON		134		12.701	67.068	1.00 30.94	AAAA C
NOTA		134		13.732		1.00 36.98	AAAA C
ATOH		134	22.616	13.106		1.00 32.95	AAAA O
HOTA		135		14.777		1.00 39.65	AAAA 11
ATOH		135		15.139		1.00 43.12	AAAA C
ATON		135		16.277		1.00 45.19	AAAA C
ATOH		135	20.882			1.00 39.25	AAAA O
ATOM		135				1.00 41.15	AAAA C
ATOM		135	20.615			1.00 43.81	AAAA o
ATOH		136				1.00 41.11	AAAA H
ATOH		136	23.298			1.00 37.21	AAAA 🚓
ATOH		136				1.00 39.66	AAAA C
ATOH		136				1.00 36.59	AAAA 2
ATOH	1336 OD1 ASH 1	136	22.695	19.079	61.149	1.00 50.81	AAAA O

ATCH: 1337 NDC ASN 136 ATCH: 1340 C ASN 136 ATCH: 1341 O ASN 136 ATCH: 1341 O ASN 136	24.379 19.4 24.931 15.2 24.535 15.4	230 60.259 1.00 35.31 884 59.194 1.00 38.70	AAAA C AAAA O
ATON 1342 N ASN 137 ATON 1344 CA ASN 137 ATON 1345 CB ASN 137	24.057 14.0 24.721 12.9 24.737 11.7	59 60.126 1.00 32.98	AAAA C
ATOH 1346 CG ASH 137	25.631 11.9	965 62.217 1.00 26.63	AAAA C
ATOH 1347 ODI ASH 137	26.070 13.1	21 62.369 1.00 30.22	AAAA O
ATOH 1348 HD2 ASH 137 ATOH 1351 C ASH 137 ATOH 1352 O ASH 137	25.830 10.9 23.950 12.7 22.716 12.7	49 58.817 1.00 35.89	
ATON 1353 N TYR 138	24.592 12.2	51 57.785 1.00 32.86	AAAA N
ATON 1355 CA TYR 138	24.093 11.9		AAAA C
ATOH 1356 CB TYR 138	24.682 12.8	41 54.078 1.00 37.89	AAAA C
ATOH 1357 CG TYR 138	24.018 12.7		AAAA C
ATON 1358 CD1 TYR 138 ATON 1359 CE1 TYR 138 ATON 1360 CD2 TYR 138	23.083 13.6 22.510 13.5 24.357 11.7	79 52.392 1.00 37.65	AAAA C AAAA C
ATON 1361 CE2 TYR 138 ATON 1362 CE TYR 138	23.801 11.6 22.868 12.5	15 51.951 1.00 41.97	AAAA C AAAA C AAAA C
ATOI 1363 OH TYR 138	22.296 12.50	78 56.051 1.00 31.33	AAAA O
ATOI 1365 C TYR 138	24.373 10.5		AAAA C
ATON 1366 O TYR 138	25.505 10.33	60 56.116 1.00 35.40	AAAA 0
ATON 1367 N ILE 139	23.461 9.60		AAAA 11
ATON 1369 CA ILE 139	23.637 8.20		AAAA C
ATON 1370 CB ILE 139	23.234 7.45	50 57.171 1.00 28.65	AAAA C
ATON 1371 CG2 ILE 139	23.640 5.98		AAAA C
ATOM 1372 CGN ILE 139 ATOM 1373 CDN ILE 139 ATOM 1374 C ILE 139	23.711 8.05 24.455 7.10	00 59.389 1.00 52.23	AAAA C AAAA C
ATON 1375 O ILE 139 ATON 1376 N VAL 140	22.729 7.70 21.538 7.89 23.286 6.99	90 54.757 1.00 42.61	AAAA C AAAA O AAAA II
ATON 1378 CA VAL 140	22.533 6.48	01 52.755 1.00 32.39	AAAA C
ATON 1379 CB VAL 140	21.967 7.62	07 51.981 1.00 36.05	AAAA C
ATON 1380 C31 VAL 140 ATON 1381 C32 VAL 140 ATON 1382 C VAL 140	22.800 8.37 20.807 7.03 23.422 5.67	14 51.047 1.00 34.96	AAAA C AAAA C
ATCH 1383 0 VAL 140 ATCH 1384 H GLY 141	24.537 6.17 22.899 4.56	2 51.637 1.00 44.03	AAAA C AAAA O AAAA H
ATOX: 1396 CA GLY 141	23.391 3.80	5 50.278 1.00 30.94	AAAA C
ATOX: 1387 C GLY 141	24.265 2.69	6 50.935 1.00 38.98	AAAA C
ATON 1388 0 GLY 141	25.132 2.00	8 52.116 1.00 38.92	AAAA O
ATON 1389 N ASN 142	23.995 2.41		AAAA II
ATON 1391 CA ASN 142	24.958 1.39		AAAA C
ATON: 1390 08 ASN 142	25.257 1.77	4 54.187 1.00 43.12	AAAA C
ATON: 1393 03 ASN 142	26.131 3.02	2 54.152 1.00 42.00	AAAA C
ATON: 1394 CD1 ASN 142	26.984 3.07	2 55.019 1.00 41.99	AAAA 0
ATON: 1395 NCC ASN 140	25.945 4.02		AAAA H
ATON: 1398 C ASN 142	24.153 0.06		AAAA C
ATON 1399 0 ASN 142	23.113 -0.019	5 52.055 1.00 49.65	AAAA O
ATON 1400 N LYS 143	24.674 -0.99		AAAA II
ATON: 1400 CA 178 143 ATON: 1403 CB 178 143 ATON: 1404 CB 178 143	24.073 -2.299 25.166 -3.329	8 53.433 1.00 41.49	AAAA C AAAA C
ATOH 1404 C3 LYS 143	24.750 -4.686	3 53.100 1.00 48.66	AAAA C
ATOH 1405 CD LYS 143	25.512 -5.743		AAAA C
ATOH 1406 CE LYS 143	25.043 -7.133		AAAA C
ATOM 1407 NZ LYS 143	26.080 -8.093	3 53.040 1.00 53.83	AAAA II
ATOM 1411 C LYS 143	22.902 -2.431	54.169 1.00 52.85	AAAA C
ATON 1412 O LYS 143	22.960 -2.099	53.731 1.00 52.39	AAAA 0
ATON 1413 N FRO 144	21.806 -3.047		AAAA 11
ATON 1414 CD PRO 144	21.617 -3.469		AAAA C
ATOM 1415 CA PRO 144	20.559 -3.118	54.489 1.00 48.30	AAAA C
ATOM 1416 CB PRO 144	19.549 -3.602		AAAA C
ATON 1417 CG PRO 144 ATON 1418 C PRO 144 ATON 1419 O PRO 144	20.134 -3.299 20.521 -4.050 20.904 -5.236	55.659 1.00 44.65	AAAA C. AAAA C
ATOM 1420 N PRO 145 ATOM 1421 CD PRO 145	20.318 -3.533 20.123 -2.054	56.859 1.00 45.12	AAAA O AAAA N AAAA C
ATOM 1422 CA PRO 145 ATOM 1423 CB PRO 145 ATOM 1424 CG PRO 145	20.448 -4.233 19.704 -3.288	59.099 1.00 37.08	AAAA C AAAA C
ATOH 1425 C PRO 145 ATOH 1426 O FRO 145	20.040 -1.910 19.993 -5.655 20.556 -6.592	58.155 1.00 47.17	AAAA C AAAA C AAAA O
ATOM 1427 M LYS 146 ATOM 1429 CA LYS 146 ATOM 1430 CB LYS 146	18.879 -5.924 18.268 -7.229	57.499 1.00 53.72 57.295 1.00 56.94	AAAA II AAAA C
ATOM 1430 CB LYS 146	16.894 -7.050	56.647 1.00 65.44	AAAA C
ATOM 1431 CG LYS 146	16.220 -8.232	55.982 1.00 64.32	AAAA C
ATOM 1432 CD LYS 146	14.797 -8.422	56.451 0.01 62.75	AAAA C
ATON 1433 CE LYS 146	14.194 -9.717	55.934	AAAA C
ATON 1434 NO LYS 146	12.720 -9.610		AAAA II
ATOH 1438 C LYS 146	19.138 -8.138	56.446 1.00 61.40	AAAA C
ATOH 1439 O LYS 146	19.237 -9.346	56.732 1.00 66.22	AAAA O
ATOH 1440 H GLU 147	19.779 -7.649	55.389 1.00 62.92	AAAA II
ATOH 1442 CA GLU 147 ATOH 1443 CB GLU 147	20.827 -8.446 21.101 -8.070	54.742 1.00 67.00 53.294 1.00 62.32	AAAA D AAAA C AAAA C

APTG 1447 CD GLU 147	April	1441 UI SEM					
ATCHI 1144 061 GLU 147							AAAA C
ATM: 1447 CE GLU 147 19.201 -7.053 50.376 1.00 87.47 ATM: 1448 C 5 LU 147 21.386 -9.470 55.541 1.00 69.40 AAA ATM: 1449 C 5 LU 147 22.883 -9.437 55.361 1.00 72.86 AAA ATM: 1449 C 5 LU 147 22.883 -9.437 55.361 1.00 69.40 AAA ATM: 1450 C 5 LU 147 22.883 -9.437 55.361 1.00 69.80 AAA ATM: 1450 C 5 LU 147 22.883 -9.437 55.361 1.00 64.65 AAA ATM: 1450 C 5 LU 148 22.506 -7.184 56.55 1.00 66.65 AAA ATM: 1450 C 5 LU 148 22.506 -7.184 56.55 1.00 66.65 AAA ATM: 1450 C 5 LU 148 22.506 -7.184 56.50 1.00 69.90 AAA ATM: 1450 C 5 LU 149 22.514 -9.743 58.971 10.00 57.29 AAA ATM: 1450 C 5 LU 149 22.514 -9.743 58.971 10.00 57.29 AAA ATM: 1450 C 5 LU 149 22.387 -9.744 60.079 1.00 67.88 AAA ATM: 1450 C 5 LU 149 22.387 -9.744 60.079 1.00 67.88 AAA ATM: 1450 C 5 LU 149 22.387 -9.744 60.079 1.00 59.18 AAA ATM: 1450 C 5 LU 149 22.387 -9.744 60.079 1.00 59.18 AAA ATM: 1450 C 5 LU 149 22.387 -9.744 60.079 1.00 59.18 AAA ATM: 1450 C 5 LU 149 22.387 -9.607 61.100 10.0 59.18 AAA ATM: 1450 C 5 LU 149 22.387 -9.607 61.000 10.0 57.72 ATM: 1450 C 5 LU 149 22.387 -9.607 61.000 10.0 57.72 ATM: 1450 C 5 LU 149 22.387 -9.607 61.000 10.0 57.72 ATM: 1450 C 5 LU 149 22.387 -9.607 61.000 10.0 57.72 ATM: 1450 C 5 LU 149 22.387 -9.607 61.000 10.0 57.72 ATM: 1450 C 5 LU 149 22.387 -9.607 61.000 10.0 57.72 ATM: 1450 C 5 LU 149 22.387 -9.744 60.000 10.0 57.72 ATM: 1450 C 5 LU 149 22.387 -9.607 61.000 10.0 57.72 ATM: 1450 C 5 LU 149 22.387 -9.607 61.000 10.0 57.72 ATM: 1450 C 5 LU 149 22.387 -9.607 61.000 10.0 57.72 ATM: 1450 C 5 LU 149 22.387 -9.607 61.000 10.0 57.73 AAA ATM: 1450 C 5 LU 149 22.387 -9.607 61.000 10.0 57.73 AAA ATM: 1450 C 5 LU 149 22.387 -9.000 61.000 57.73 AAA ATM: 1450 C 5 LU 149 22.387 -9.000 61.000 57.73 AAA ATM: 1450 C 5 LU 149 22.387 -9.000 61.000 57.73 AAA ATM: 1450 C 5 LU 149 22.387 -9.000 61.000 57.73 AAA ATM: 1450 C 5 LU 149 22.387 -9.000 61.000 61.000 57.73 AAA ATM: 1450 C 5 LU 149 22.387 -9.000 61.							AAAA C AAAA O
ATMIN 1449 0 GLU 147 22.86 -9.470 55.541 1.00 69.40 ATMIN 1449 0 GLU 147 22.863 -9.437 55.361 1.00 72.86 AAA ATMIN 1450 0 CVS 148 22.506 -7.484 56.355 1.00 66.76 AAA ATMIN 1450 0 CVS 148 22.506 -7.484 56.355 1.00 66.76 AAA ATMIN 1451 0 CVS 148 22.506 -7.484 56.355 1.00 66.76 AAA ATMIN 1452 0 CVS 148 22.593 -7.588 57.188 1.00 64.55 AAA ATMIN 1455 0 CVS 148 22.593 -7.588 57.188 10.00 65.56 AAA ATMIN 1455 0 CVS 148 22.593 -7.588 57.180 1.00 65.56 AAA ATMIN 1455 0 CVS 148 22.592 -7.100 1.00 59.22 AAA ATMIN 1455 0 CVS 148 22.552 -8.091 56.808 1.00 59.22 AAA ATMIN 1457 0 CVS 148 22.552 -9.744 60.029 1.00 62.15 AAA ATMIN 1450 0 GUN 149 22.387 -9.744 60.029 1.00 62.15 AAA ATMIN 1450 0 GUN 149 22.387 -9.744 60.029 1.00 62.15 AAA ATMIN 1460 0 GUN 149 22.387 -9.744 60.029 1.00 62.15 AAA ATMIN 1460 0 GUN 149 22.387 -9.744 60.029 1.00 62.15 AAA ATMIN 1460 0 GUN 149 22.387 -9.744 60.029 1.00 62.15 AAA ATMIN 1460 0 GUN 149 22.387 -9.744 60.029 1.00 62.15 AAA ATMIN 1460 0 GUN 149 22.387 -9.744 60.029 1.00 62.15 AAA ATMIN 1460 0 GUN 149 22.387 -9.744 60.029 1.00 62.15 AAA ATMIN 1460 0 GUN 149 22.387 -9.744 60.029 1.00 62.15 AAA ATMIN 1460 0 GUN 149 22.387 -9.744 60.029 1.00 62.15 AAA ATMIN 1460 0 GUN 149 22.387 -9.744 60.029 1.00 69.18 AAA ATMIN 1460 0 GUN 149 22.387 -9.744 60.029 1.00 69.18 AAA ATMIN 1460 0 GUN 149 22.387 -9.744 60.029 1.00 69.18 AAA ATMIN 1460 0 GUN 149 22.387 -9.854 63.855 1.00 59.36 AATMIN 1460 0 GUN 149 22.387 -9.854 63.855 1.00 69.19 1.00 49.10 AAA ATMIN 1460 0 GUN 149 22.387 -9.854 63.855 1.00 59.36 AAA ATMIN 1460 0 GUN 149 22.387 -9.854 63.855 1.00 59.36 AAA ATMIN 1460 0 GUN 149 22.387 -9.854 63.855 1.00 59.36 AAA ATMIN 1460 0 GUN 149 22.387 -9.854 63.855 1.00 59.36 AAA ATMIN 1470 0 ASP 150 25.102 -1.199 61.055 1.00 59.36 AAA ATMIN 1470 0 ASP 150 25.020 1.00 69.45 AAA ATMIN 1470 0 ASP 150 25.020 1.00 69.45 AAA ATMIN 1470 0 ASP 150 2.33 322 -9.852 64.521 1.00 69.45 AAA ATMIN 1470 0 ASP 150 2.33 322 -9.852 64.521 1.00 69.45 AAA ATMIN 1470 0 ASP 150 1.00 69.09 1.00 69.45 AAA ATMIN 1470 0 ASP 150 1.00 69.09	ATON	1447 OEC GLU					AAAA O
ATCHI 1449 0 GLU 147 22.883 -9.437 55.361 1.00 72.86 AAP ATCHI 1450 H CYR 148 22.506 -7.484 56.355 1.00 66.676 AAP ATCHI 1450 CG CTS 148 22.506 -7.884 56.355 1.00 66.676 AAP ATCHI 1450 CG CTS 148 22.506 -7.884 56.105 1.00 66.65 AAP ATCHI 1450 CG CTS 148 22.506 -7.884 56.105 1.00 66.65 AAP ATCHI 1450 CG CTS 148 22.506 -7.885 57.183 1.00 64.65 AAP ATCHI 1455 CG CTS 148 22.506 -7.885 67.183 1.00 64.65 AAP ATCHI 1455 CG CTS 148 22.506 -7.895 6.201 58.441 1.00 65.89 AAP ATCHI 1455 CG CTS 148 22.506 -7.901 58.400 1.00 67.80 AAP ATCHI 1457 CG CTS 148 22.506 -7.901 58.600 1.00 97.12 AAP ATCHI 1457 CG CTS 148 22.506 -7.901 58.600 1.00 97.12 AAP ATCHI 1457 CG CTS 148 22.506 -7.904 60.079 1.00 67.80 AAP ATCHI 1450 CG CTS 148 22.506 -7.904 60.079 1.00 67.80 AAP ATCHI 1450 CG CTS 148 22.507 1.00 67.80 AAP ATCHI 1450 CG CTS 149 22.514 -8.133 58.977 1.00 67.80 AAP ATCHI 1450 CG CTS 149 22.514 -8.139 62.573 1.00 55.70 AAP ATCHI 1450 CG CTS 149 22.514 -8.139 62.573 1.00 55.70 AAP ATCHI 1450 CG CTS 149 22.514 -8.139 62.573 1.00 55.70 AAP ATCHI 1450 CG CTS 150 CG CTS 15	ATOH	1448 C GLU	147				AAAA C
ATOIL 1450 C CAS 148 23.589 -7.588 57.183 1.00 64.65 AAA ATOIL 1450 C CYS 148 23.598 -8.702 58.414 1.00 65.89 AAA ATOIL 1451 O CYS 148 21.973 -9.524 58.414 1.00 65.89 AAA ATOIL 1455 C C CYS 148 21.952 -6.301 58.001 1.00 57.29 AAA ATOIL 1456 D C CYS 148 21.952 -6.301 58.001 1.00 57.29 AAA ATOIL 1457 D C CYS 148 21.552 -6.021 56.800 1.00 59.22 AAA ATOIL 1458 D C CYS 148 21.552 -6.021 56.800 1.00 59.22 AAA ATOIL 1458 D C CYS 148 21.552 -6.021 56.800 1.00 62.15 AAA ATOIL 1450 D C C CYS 148 21.552 -6.021 56.800 1.00 62.15 AAA ATOIL 1450 D C C CYS 148 21.552 -6.276 1.00 1.00 59.18 AAA ATOIL 1450 D C C CYS 148 21.40 -6.276 1.10 1.00 59.18 AAA ATOIL 1450 D C C ASP 150 22.717 -6.406 61.695 1.00 49.10 AAA ATOIL 1450 D C ASP 150 22.717 -6.406 61.695 1.00 49.10 AAA ATOIL 1450 D C ASP 150 25.320 -6.034 61.40 1.00 55.78 AAA ATOIL 1450 D C ASP 150 25.320 -6.034 61.40 1.00 57.73 AAA ATOIL 1450 D C ASP 150 25.320 -6.034 61.40 1.00 57.73 AAA ATOIL 1450 D C ASP 150 25.102 -1.819 61.33 1.00 57.73 AAA ATOIL 1457 D C ASP 150 24.519 -9.854 63.855 1.00 59.36 AAA ATOIL 1457 D C ASP 150 23.332 -9.820 64.524 1.00 57.73 AAA ATOIL 1457 D C ASP 150 23.332 -9.820 64.574 1.00 67.48 AAA ATOIL 1457 D C ASP 150 23.332 -9.820 64.574 1.00 54.39 AAA ATOIL 1457 D C ASP 150 23.332 -9.820 64.574 1.00 54.39 AAA ATOIL 1459 D C C C C C C C C C C C C C C C C C C							AAAA O
ATGIL 1451 C CTS 148 21.473 -9.524 58.196 1.00 65.56 AAA ATGIL 1455 C CTS 148 21.473 -9.524 58.141 1.00 65.56 BAA ATGIL 1455 C CTS 148 21.473 -9.524 58.141 1.00 65.56 BAA ATGIL 1455 S CTS 148 21.555 -5.61 56.80 1.00 57.29 AAA ATGIL 1456 S CTS 148 21.555 -5.61 56.80 1.00 57.29 AAA ATGIL 1457 C S 148 21.555 -5.61 56.80 1.00 59.22 AAA ATGIL 1457 C S 148 21.555 -7.444 60.029 1.00 62.15 AAA ATGIL 1459 C AUT 149 22.514 -9.143 58.977 1.00 67.88 AAA ATGIL 1468 C G S S 148 21.555 -7.444 60.029 1.00 65.15 AAA ATGIL 1468 C AUT 149 23.443 -9.627 61.120 1.00 59.18 AAA ATGIL 1468 C AUT 149 23.443 -9.627 61.120 1.00 59.18 AAA ATGIL 1468 C AUT 149 23.443 -9.627 61.120 1.00 59.18 AAA ATGIL 1468 C AUT 149 23.443 -9.627 61.120 1.00 59.18 AAA ATGIL 1468 C AUT 149 23.443 -9.627 61.120 1.00 55.78 AAA ATGIL 1468 C AUT 149 23.443 -9.129 62.533 1.00 55.78 AAA ATGIL 1468 C AUT 149 23.443 -9.129 62.533 1.00 55.78 AAA ATGIL 1468 C AUT 149 150 25.726 -6.736 61.736 1.00 55.78 AAA ATGIL 1468 C AUT 149 150 25.726 -6.736 61.736 1.00 59.73 AAA ATGIL 1468 C AUT 149 150 25.726 -6.796 60.480 1.00 57.73 AAA ATGIL 1469 C AUT 149 150 23.392 -9.820 64.377 1.00 67.48 AAA ATGIL 1474 C LEU 151 23.532 -9.826 64.377 1.00 67.48 AAA ATGIL 1474 C LEU 151 25.532 -9.826 64.377 1.00 67.48 AAA ATGIL 1474 C LEU 151 25.532 -9.826 64.377 1.00 67.48 AAA ATGIL 1474 C LEU 151 25.532 -9.826 64.377 1.00 67.48 AAA ATGIL 1476 C LEU 151 22.532 -9.826 64.377 1.00 67.48 AAA ATGIL 1476 C LEU 151 22.532 -9.826 64.377 1.00 67.48 AAA ATGIL 1476 C LEU 151 22.532 -9.826 64.377 1.00 67.48 AAA ATGIL 1476 C LEU 151 22.532 -9.826 64.377 1.00 67.89 AAA ATGIL 1476 C LEU 151 22.532 -9.826 64.377 1.00 67.89 AAA ATGIL 1476 C LEU 151 22.532 -9.826 64.377 1.00 67.89 AAA ATGIL 1476 C LEU 151 22.837 1.21.01 65.09 1.00 68.65 AAA ATGIL 1476 C LEU 151 22.837 1.21.01 65.09 1.00 68.65 AAA ATGIL 1476 C LEU 151 22.837 1.21.01 65.09 1.00 68.65 AAA ATGIL 1476 C LEU 151 22.837 1.21.01 65.09 1.00 68.65 AAA ATGIL 1476 C LEU 151 22.837 1.21.00 67.89 1.00 68.65 AAA ATGIL 1476 C LEU 151 22.837 1.21.00 67.89 1						5 1.00 66.76	H AAAA H
ATOII 1455 0 CYS 148 21.473 -9.524 58.414 1.00 65.89 AAA ATOII 1455 0 CYS 148 21.473 -9.524 58.001 1.00 59.22 AAA ATOII 1457 0 CYS 148 21.565 -5.091 56.808 1.00 59.22 AAA ATOII 1457 0 CA GLY 149 22.514 -8.743 58.897 1.00 67.88 ATOII 1459 0 CA GLY 149 22.514 -8.743 58.897 1.00 67.88 ATOII 1460 0 GLY 149 22.387 -9.744 60.029 1.00 62.15 AAA ATOII 1460 0 GLY 149 23.493 -9.627 61.120 1.00 59.18 ATOII 1460 0 GLY 149 23.493 -9.627 61.120 1.00 59.18 ATOII 1461 0 GLY 149 23.925 -10.603 61.699 1.00 61.11 AAA ATOII 1464 0 ASP 150 23.794 -8.426 61.595 1.00 59.18 ATOII 1465 0 CA SSF 150 23.794 -6.034 61.400 1.00 55.88 ATOII 1466 0 CA SSF 150 25.041 -6.703 61.699 1.00 61.11 AAA ATOII 1467 0 CA SSF 150 25.726 -6.936 60.480 1.00 57.73 AAA ATOII 1468 002 ASP 150 25.726 -6.936 60.480 1.00 57.73 AAA ATOII 1469 0 CA SSF 150 23.392 -9.820 64.377 1.00 67.48 ATOII 1470 0 ASP 150 23.392 -9.820 64.324 1.00 55.39 AAA ATOII 1471 0 ASP 150 23.392 -9.820 64.324 1.00 55.39 AAA ATOII 1473 0 ALEU 151 25.5314 -9.908 65.865 1.00 58.55 AAA ATOII 1473 0 ALEU 151 25.3314 -9.908 65.865 1.00 58.55 AAA ATOII 1473 0 ALEU 151 25.3314 -9.908 65.805 1.00 58.55 AAA ATOII 1479 0 ALEU 151 25.5314 -9.908 65.805 1.00 58.55 AAA ATOII 1479 0 ALEU 151 25.5314 -9.908 65.805 1.00 58.55 AAA ATOII 1479 0 ALEU 151 25.599 -9.734 66.634 1.00 55.93 AAA ATOII 1479 0 ALEU 151 25.938 -9.734 66.634 1.00 55.93 AAA ATOII 1479 0 ALEU 151 22.099 -9.744 66.035 1.00 58.55 AAA ATOII 1479 0 ALEU 151 22.099 -9.744 66.035 1.00 58.55 AAA ATOII 1479 0 ALEU 151 22.099 -9.745 66.634 1.00 55.93 AAA ATOII 1479 0 ALEU 151 22.099 -9.745 66.634 1.00 55.93 AAA ATOII 1479 0 ALEU 151 22.099 -9.745 66.634 1.00 55.93 AAA ATOII 1479 0 ALEU 151 22.099 -9.745 66.634 1.00 55.93 AAA ATOII 1479 0 ALEU 151 22.099 -9.734 66.634 1.00 55.93 AAA ATOII 1479 0 ALEU 151 22.099 -9.734 66.634 1.00 55.93 AAA ATOII 1479 0 ALEU 151 22.099 -9.734 66.634 1.00 55.93 AAA ATOII 1479 0 ALEU 151 22.099 -9.734 66.634 1.00 55.93 AAA ATOII 1479 0 ALEU 151 22.099 -9.734 66.634 1.00 55.93 AAA ATOII 1479 0 ALEU 151 22.099 -9.734							AAAA C
ATOII 1455 08 CVS 148 21.552 -6.301 58.001 1.00 57.29 AAA ATOII 1457 08 CVS 148 21.552 -5.091 58.008 1.00 59.22 ATOII 1459 06 GUT 149 22.514 -9.744 60.029 1.00 62.15 ATOII 1459 06 GUT 149 22.387 -9.744 60.029 1.00 62.15 ATOII 1459 06 GUT 149 23.443 -9.627 61.120 1.00 59.18 AAA ATOII 1461 0 GUT 149 23.443 -9.627 61.120 1.00 59.18 AAA ATOII 1461 0 GUT 149 23.443 -9.627 61.120 1.00 59.18 AAA ATOII 1461 0 GUT 149 23.443 -9.627 61.120 1.00 59.18 AAA ATOII 1461 0 GUT 149 23.453 -10.603 61.699 1.00 59.88 AAA ATOII 1462 0 ASP 150 23.717 -8.426 61.596 1.00 59.88 AAA ATOII 1464 0 CO ASP 150 25.010 -6.103 62.750 1.00 49.10 AAA ATOII 1465 0 ASP 150 25.010 -6.103 62.750 1.00 49.10 AAA ATOII 1467 0 CO ASP 150 25.102 -4.819 61.363 1.00 59.50 AAA ATOII 1467 0 CO ASP 150 25.102 -4.819 61.363 1.00 59.50 AAA ATOII 1470 0 ASP 150 23.392 -9.854 63.855 1.00 59.36 AAA ATOII 1471 1 EUU 151 25.532 -9.369 64.524 1.00 59.36 AAA ATOII 1472 1 EUU 151 25.532 -9.369 64.524 1.00 55.19 AAA ATOII 1473 0 EUU 151 25.303 -9.369 65.853 1.00 52.79 AAA ATOII 1474 0 EUU 151 25.203 -11.00 65.002 1.00 69.45 AAA ATOII 1476 0 IUU 151 22.303 -12.312 65.951 1.00 69.45 AAA ATOII 1476 0 IUU 151 22.303 -12.312 65.951 1.00 69.45 AAA ATOII 1476 0 IUU 151 22.303 -12.312 65.951 1.00 69.45 AAA ATOII 1476 0 IUU 151 22.303 -12.312 65.951 1.00 69.45 AAA ATOII 1476 0 IUU 151 22.303 -12.312 65.951 1.00 69.45 AAA ATOII 1476 0 IUU 151 22.303 -9.304 66.634 1.00 55.59 AAA ATOII 1477 0 IUU 151 12.403 -9.304 66.634 1.00 55.59 AAA ATOII 1478 0 IUU 151 22.303 -9.304 66.634 1.00 55.59 AAA ATOII 1478 0 IUU 151 22.303 -9.304 66.634 1.00 69.45 AAA ATOII 1478 0 IUU 151 22.303 -9.304 66.634 1.00 69.45 AAA ATOII 1478 0 IUU 151 22.303 -9.304 66.634 1.00 69.45 AAA ATOII 1478 0 IUU 151 22.303 -9.304 66.634 1.00 69.45 AAA ATOII 1478 0 IUU 151 22.303 -9.304 66.634 1.00 69.45 AAA ATOII 1478 0 IUU 151 22.303 -9.304 66.634 1.00 69.45 AAA ATOII 1478 0 IUU 151 22.303 -9.304 66.634 1.00 69.45 AAA ATOII 1478 0 IUU 151 22.304 69.404 69.404 69.505 AAA ATOII 1478 0 IUU 151 22.304 69.404 69.505 AAA A							AAAA C
ATOII 1457 II GULY 149 ATOII 1459 CA GUY 149 ATOII 1459 CA GUY 149 ATOII 1460 C GUY 149 ATOII 1460 C GUY 149 CA. 387 -9.744 60.029 1.00 62.15 AAA ATOII 1461 O GUY 149 CA. 387 -9.744 60.029 1.00 62.15 AAA ATOII 1461 O GUY 149 CA. 387 150 CA. 377 -8.426 61.596 1.00 59.18 AAA ATOII 1462 CI ASF 150 CA. 379 -8.426 61.596 1.00 59.18 AAA ATOII 1462 CI ASF 150 CA. 379 -8.426 61.596 1.00 59.18 AAA ATOII 1464 CA ASF 150 CA. 387 150 CA. 387 150 CA. 387 150 CA. 387 150 CA. 388 150					-		AAAA O
ATOIL 1459 CA GLIV 149 ATOIL 1459 CA GLIV 149 ATOIL 1459 CA GLIV 149 ATOIL 1460 C GLIV 149 ATOIL 1460 C GLIV 149 ATOIL 1461 O GLIV 149 ATOIL 1462 CA GLIV 149 ATOIL 1462 CA GLIV 149 ATOIL 1464 CA ASPE 150 23.912 - 10.603 61.616.99 1.00 54.88 AAA ATOIL 1464 CA ASPE 150 24.794 - 49.199 62.533 1.00 55.78 ATOIL 1465 CB ASPE 150 CZ5.041 -6.703 62.750 1.00 49.10 AAA ATOIL 1465 CB ASPE 150 CZ5.041 -6.703 62.750 1.00 49.10 AAA ATOIL 1465 CB ASPE 150 CZ5.041 -6.703 62.750 1.00 49.10 AAA ATOIL 1465 CB ASPE 150 CZ5.041 -6.703 62.750 1.00 49.10 AAA ATOIL 1465 CB ASPE 150 CZ5.041 -6.703 62.750 1.00 49.10 AAA ATOIL 1465 CB ASPE 150 CZ5.041 -6.703 62.750 1.00 49.10 AAA ATOIL 1465 CB ASPE 150 CZ5.041 -6.703 62.750 1.00 49.10 AAA ATOIL 1465 CB ASPE 150 CZ5.041 -6.703 62.750 1.00 49.69 AAA ATOIL 1476 CD ASPE 150 CZ5.041 -6.703 62.750 1.00 49.69 AAA ATOIL 1476 CD ASPE 150 CZ5.041 -8.84 64.877 1.00 54.89 AAA ATOIL 1473 CA LEU 151 CZ5.020 -8.85 64.877 1.00 54.89 AAA ATOIL 1474 CD LEU 151 CZ5.020 -11.00 65.022 1.00 69.45 AAA ATOIL 1475 CD LEU 151 CZ5.030 -11.00 65.022 1.00 69.45 AAA ATOIL 1476 CD LEU 151 CZ5.030 -11.00 65.022 1.00 69.45 AAA ATOIL 1477 CD LEU 151 CZ5.031 -12.01 65.022 1.00 69.45 AAA ATOIL 1478 CD LEU 151 CZ5.030 -12.01 65.022 1.00 69.45 AAA ATOIL 1478 CD LEU 151 CZ5.030 -12.01 65.022 1.00 69.45 AAA ATOIL 1478 CD LEU 151 CZ5.030 -12.01 65.021 1.00 65.26 AAA ATOIL 1478 CD LEU 151 CZ5.030 -12.01 65.021 1.00 65.26 AAA ATOIL 1478 CD LEU 151 CZ5.030 -12.01 65.021 1.00 65.26 AAA ATOIL 1478 CD LEU 151 CZ5.030 -12.01 65.021 1.00 65.26 AAA ATOIL 1479 CD LEU 151 CZ5.030 -12.01 65.021 1.00 65.26 AAA ATOIL 1479 CD LEU 151 CZ5.030 -12.01 65.021 1.00 65.26 AAA ATOIL 1479 CD LEU 151 CZ5.030 -12.01 65.021 1.00 65.26 AAA ATOIL 1479 CD LEU 151 CZ5.030 -12.01 65.021 1.00 65.26 AAA ATOIL 1479 CD LEU 151 CZ5.030 -12.01 65.02 1.00 65.26 AAA ATOIL 1479 CD LEU 151 CZ5.030 -12.01 65.02 1.00 65.26 AAA ATOIL 1479 CD							AAAA C
ATCHI 1450 C GLIV 149 ATCHI 1460 C GLIV 149 ATCHI 1461 D GLIV 149 ATCHI 1461 D GLIV 149 ATCHI 1462 D GLIV 149 ATCHI 1464 D GLIV 149 ATCHI 1465 D GLIV 149 ATCHI 1475 D GLIV 151 ATCHI 1476 D LEU 151 ATCHI 1476 D LEU 151 ATCHI 1476 D LEU 151 ATCHI 1477 D GLIV 151 ATCHI 1477 D GLIV 151 ATCHI 1477 D GLIV 151 ATCHI 1478 D GLIV 151 ATCHI 1479 D LEU 151							AAAA S
ATOR: 1460 C GLV 149 23.493 -9.627 61.120 1.00 59.18 AAA ATOR: 1461 0 GLV 149 23.925 -10.603 61.699 1.00 61.11 ATOR: 1461 1 ASF 150 23.717 -8.46 61.599 1.00 54.88 AAA ATOR: 1464 CA ASF 150 24.794 -81.99 62.533 1.00 55.78 ATOR: 1466 CG ASF 150 25.941 -6.703 62.750 1.00 49.10 AAA ATOR: 1466 CG ASF 150 25.941 -6.703 62.750 1.00 49.10 AAA ATOR: 1466 CG ASF 150 25.941 -6.703 62.750 1.00 49.10 AAA ATOR: 1467 0 CL ASF 150 25.726 -6.996 60.480 1.00 57.73 AAA ATOR: 1467 0 ASF 150 25.726 -6.996 60.480 1.00 57.73 AAA ATOR: 1467 0 ASF 150 23.522 -9.829 64.321 1.00 59.36 AAA ATOR: 1467 0 ASF 150 23.522 -9.829 64.321 1.00 59.39 AAA ATOR: 1470 0 ASF 150 23.532 -9.829 64.524 1.00 54.39 AAA ATOR: 1471 CLU 151 25.532 -9.829 64.524 1.00 54.39 AAA ATOR: 1472 CA LEU 151 25.314 -9.908 65.895 1.00 59.35 AAA ATOR: 1473 CA LEU 151 25.314 -9.908 65.895 1.00 58.55 AAA ATOR: 1473 CA LEU 151 22.528 -11.409 65.896 1.00 88.55 AAA ATOR: 1473 CA LEU 151 24.083 -11.201 65.092 1.00 65.26 AAA ATOR: 1474 CA LEU 151 24.083 -12.101 65.092 1.00 65.43 AAA ATOR: 1479 CA LEU 151 24.083 -12.101 65.092 1.00 65.43 AAA ATOR: 1479 CA LEU 151 26.897 -13.494 66.891 1.00 65.26 AAA ATOR: 1479 CA LEU 151 26.897 -8.734 66.891 1.00 65.43 AAA ATOR: 1479 CA LEU 151 26.897 -8.734 66.891 1.00 65.43 AAA ATOR: 1479 CA LEU 151 26.897 -8.734 66.891 1.00 65.43 AAA ATOR: 1479 CA LEU 151 26.897 -8.734 66.891 1.00 65.43 AAA ATOR: 1479 CA LEU 151 26.897 -8.734 66.891 1.00 65.43 AAA ATOR: 1479 CA LEU 151 26.897 -8.734 66.891 1.00 65.43 AAA ATOR: 1479 CA LEU 151 26.897 -8.734 66.891 1.00 65.43 AAA ATOR: 1479 CA LEU 151 26.897 -8.734 66.891 1.00 65.43 AAA ATOR: 1479 CA LEU 151 27.599 -8.734 66.891 1.00 65.43 AAA ATOR: 1479 CA LEU 151 27.599 -8.734 66.891 1.00 65.43 AAA ATOR: 1479 CA LEU 151 27.599 -8.734 66.891 1.00 65.43 AAA ATOR: 1479 CA LEU 151 27.599 -8.734 66.891 1.00 65.43 AAA ATOR: 1479 CA LEU 151 27.599 1.00 67.89 69.70 1.00 65.70 AAA ATOR: 1479 CA LEU 151 27.599 1.00 67.89 69.70 1.00 65.73 AAA ATOR: 1479 CA LEU 151 26.80 AAA ATOR: 1479 CA LEU 151 26.80 AAA ATOR: 1479 CA L							AAAA 11 AAAA C
ATON: 1461 0 5 5LV 149 23.925 -10.603 61.699 1.00 61.11 AAA ATON: 1462 0 ASP 150 23.717 -8.426 61.596 1.00 54.88 AAA ATON: 1465 0 ASP 150 25.941 -6.703 61.595 1.00 49.10 AAA ATON: 1465 0 ASP 150 25.941 -6.703 62.750 1.00 49.10 AAA ATON: 1466 0 ASP 150 25.941 -6.703 61.461 1.00 58.50 AAA ATON: 1467 001 ASP 150 25.726 -6.796 60.800 1.00 57.73 AAA ATON: 1469 0 ASP 150 25.726 -6.796 60.800 1.00 57.73 AAA ATON: 1469 0 ASP 150 25.102 -1.819 61.363 1.00 49.69 AAA ATON: 1470 0 ASP 150 24.519 -9.854 63.855 1.00 59.36 AAA ATON: 1471 N LEU 151 25.5314 -9.908 65.853 1.00 52.79 AAA ATON: 1473 CA LEU 151 25.314 -9.908 65.863 1.00 52.79 AAA ATON: 1474 CP LEU 151 25.314 -9.908 65.863 1.00 58.55 AAA ATON: 1475 CP LEU 151 24.063 -11.109 65.092 1.00 69.45 AAA ATON: 1476 CP LEU 151 24.063 -11.109 65.092 1.00 65.26 AAA ATON: 1478 CP LEU 151 24.063 -12.101 65.092 1.00 65.26 AAA ATON: 1478 CP LEU 151 22.537 -9.438 66.634 1.00 55.93 AAA ATON: 1478 CP LEU 151 22.837 -12.372 65.951 1.00 65.26 AAA ATON: 1478 CP LEU 151 22.6379 -9.454 66.805 1.00 51.93 AAA ATON: 1478 CP LEU 151 22.6379 -9.454 66.805 1.00 65.26 AAA ATON: 1478 CP LEU 151 22.6379 -9.454 66.805 1.00 65.26 AAA ATON: 1478 CP LEU 151 22.6379 -9.454 66.805 1.00 65.26 AAA ATON: 1478 CP LEU 151 22.6379 -9.454 66.805 1.00 65.26 AAA ATON: 1478 CP LEU 151 22.6379 -9.454 66.805 1.00 65.26 AAA ATON: 1478 CP LEU 151 22.6379 -9.454 66.805 1.00 65.26 AAA ATON: 1478 CP LEU 151 22.6379 -9.454 66.805 1.00 65.26 AAA ATON: 1478 CP LEU 151 22.6379 -9.454 66.805 1.00 65.26 AAA ATON: 1478 CP LEU 151 22.6379 -9.454 66.805 1.00 65.26 AAA ATON: 1478 CP LEU 151 22.6379 -9.454 66.805 1.00 65.26 AAA ATON: 1478 CP LEU 151 22.6379 -9.454 66.805 1.00 65.26 AAA ATON: 1478 CP LEU 151 22.6379 -9.454 66.805 1.00 65.26 AAA ATON: 1478 CP LEU 151 22.6379 -9.454 66.805 1.00 65.26 AAA ATON: 1478 CP LEU 151 22.60 PL LEU 151 26.000 -9.454 AAA ATON: 1478 CP LEU 151 22.60 PL LEU 151 26.000 -9.454 AAA ATON: 1478 CP LEU 151 26.000 -9.454 AAA ATON: 1478 CP LEU 151 26.000 -9.454 AAA ATON: 1478 CP LEU 151 26.000 -9.454 AAA							AAAA C
ATON 1461 M ASP 150 23.717 -8.256 61.595 1.00 55.78 AAA ATON 1465 CB ASP 150 22.794 -8.198 62.533 1.00 55.78 AAA ATON 1466 CB ASP 150 25.041 -6.703 62.750 1.00 49.10 AAA ATON 1466 CB ASP 150 25.320 -6.034 61.410 1.00 58.50 AAA ATON 1467 CB ASP 150 25.725 -6.795 60.480 1.00 57.73 AAA ATON 1468 CB ASP 150 25.725 -6.795 60.480 1.00 57.73 AAA ATON 1468 CB ASP 150 25.725 -6.985 60.480 1.00 57.73 AAA ATON 1468 CB ASP 150 25.725 -6.985 60.480 1.00 57.73 AAA ATON 1468 CB ASP 150 25.725 -6.854 63.855 1.00 59.36 AAA ATON 1468 CB ASP 150 25.532 -9.820 64.377 1.00 67.48 AAA ATON 1471 M LEW 151 25.532 -9.820 64.377 1.00 57.39 AAA ATON 1471 M LEW 151 25.532 -9.820 64.524 1.00 54.39 AAA ATON 1471 M LEW 151 25.312 -9.869 64.524 1.00 55.53 AAA ATON 1474 CB LEW 151 25.312 -9.869 64.524 1.00 55.55 AAA ATON 1475 CB LEW 151 24.915 -13.421 CB 65.805 1.00 52.79 AAA ATON 1475 CB LEW 151 24.915 -13.421 CB 65.805 1.00 52.79 AAA ATON 1475 CB LEW 151 24.93 -13.421 CB 65.805 1.00 55.53 AAA ATON 1476 CB LEW 151 24.93 -13.421 CB 65.805 1.00 55.53 AAA ATON 1476 CB LEW 151 24.93 -13.421 CB 65.805 1.00 55.53 AAA ATON 1476 CB LEW 151 24.93 -9.454 CB 65.805 1.00 55.53 AAA ATON 1476 CB LEW 151 26.409 -9.454 CB 65.805 1.00 55.53 AAA ATON 1476 CB	ATON	1461 O GLY	149				AAAA O
ATON 1465 CB ASP 150					61.596	1.00 54.88	AAAA II
ATONI 1466 CG ASP 150 25.320 -6.034 61.410 1.00 58.50 AAA ATONI 1467 CD1 ASP 150 25.102 -4.819 61.363 1.00 49.69 AAA ATONI 1468 CD ASP 150 25.102 -4.819 61.363 1.00 49.69 AAA ATONI 1470 CD ASP 150 24.519 -8.854 63.855 1.00 59.36 AAA ATONI 1471 N LEU 151 25.322 -9.369 46.527 1.00 54.39 AAA ATONI 1471 N LEU 151 25.314 -9.908 65.853 1.00 52.79 AAA ATONI 1473 CA LEU 151 25.314 -9.908 65.863 1.00 58.55 AAA ATONI 1474 CD LEU 151 25.314 -9.908 65.863 1.00 58.55 AAA ATONI 1476 CD1 LEU 151 24.063 -11.409 65.806 1.00 58.55 AAA ATONI 1476 CD1 LEU 151 24.515 -13.421 64.899 1.00 65.26 AAA ATONI 1476 CD1 LEU 151 24.515 -13.421 65.902 1.00 69.45 AAA ATONI 1477 COZ LEU 151 24.515 -13.421 65.902 1.00 65.26 AAA ATONI 1478 CD LEU 151 24.515 -13.421 65.903 1.00 65.26 AAA ATONI 1478 CD LEU 151 24.515 -13.421 65.903 1.00 65.26 AAA ATONI 1478 CD LEU 151 24.515 -13.421 65.903 1.00 65.26 AAA ATONI 1478 CD LEU 151 26.009 -9.454 66.805 1.00 65.26 AAA ATONI 1478 CD LEU 151 27.599 -9.434 66.805 1.00 65.26 AAA ATONI 1478 CD LEU 151 27.599 -9.454 66.805 1.00 65.26 AAA ATONI 1478 CD LEU 151 27.599 -9.454 66.805 1.00 65.26 AAA ATONI 1479 N LEU 151 27.599 -9.454 66.805 1.00 65.26 AAA ATONI 1479 N LEU 151 27.599 -9.454 66.805 1.00 65.26 AAA ATONI 1479 N LEU 151 27.599 -9.454 66.805 1.00 65.26 AAA ATONI 1479 N LEU 151 27.599 -9.454 66.805 1.00 65.26 AAA ATONI 1479 N LEU 151 27.599 -9.454 66.805 1.00 65.26 AAA ATONI 1479 N LEU 151 27.599 -9.454 66.805 1.00 65.26 AAA ATONI 1479 N LEU 151 27.599 -9.454 66.805 1.00 65.26 AAA ATONI 1479 N LEU 151 27.599 -9.454 66.805 1.00 66.73 AAA ATONI 1479 N LEU 151 27.599 N LEU 15							AAAA C
ATONI 1468 002 ASP 150							AAAA C
ATONI 1469 C ASP 150 25.102 -4.819 61.363 1.00 69.69 AAA ATONI 1470 C ASP 150 24.519 -9.854 63.855 1.00 59.36 AAA ATONI 1470 C ASP 150 24.519 -9.820 64.377 1.00 67.48 AAA ATONI 1471 N LEU 151 25.322 -9.369 64.524 1.00 54.39 AAA ATONI 1473 CA LEU 151 25.334 -9.908 65.853 1.00 52.79 AAA ATONI 1473 CA LEU 151 25.334 -9.908 65.853 1.00 52.79 AAA ATONI 1475 CG LEU 151 25.038 -11.409 65.806 1.00 58.55 AAA ATONI 1475 CG LEU 151 25.038 -11.409 65.806 1.00 58.55 AAA ATONI 1476 CD LEU 151 24.063 -12.101 65.062 1.00 69.45 AAA ATONI 1476 CD LEU 151 24.063 -12.101 65.062 1.00 69.45 AAA ATONI 1476 CD LEU 151 24.063 -12.101 65.062 1.00 65.43 AAA ATONI 1476 CD LEU 151 26.099 -9.454 66.805 1.00 51.00 55.59 AAA ATONI 1476 CD LEU 151 27.598 -9.734 66.634 1.00 55.59 AAA ATONI 1478 C LEU 151 26.099 -9.454 66.805 1.00 51.09 51.93 AAA ATONI 1478 C LEU 151 27.598 -9.734 66.634 1.00 55.59 AAA ATONI 1478 C TA TYS 152 26.992 -8.199 68.700 1.00 66.74 AAA ATONI 1478 C TO TYS 152 27.695 -9.225 69.493 1.00 66.58 AAA ATONI 1478 C TYS 152 27.695 -9.225 69.493 1.00 66.58 AAA ATONI 1478 C TYS 152 27.695 -9.215 69.493 1.00 65.73 AAA ATONI 1478 C TYS 152 27.695 -9.216 69.755 1.00 41.99 AAA ATONI 1478 C TYS 152 27.695 -9.1217 69.695 1.00 60.65 AAA ATONI 1478 C TYS 152 27.695 -9.1218 69.870 1.00 66.65 AAA ATONI 1478 C TYS 152 27.695 -9.1218 69.870 1.00 66.65 AAA ATONI 1478 C TYS 152 26.992 -7.10 4.90 1.00 66.65 AAA ATONI 1478 C TYS 152 26.992 -7.10 4.90 1.00 66.65 AAA ATONI 1478 C TYS 152 26.995 -7.114 69.657 1.00 61.95 AAA ATONI 1478 C TYS 152 26.595 -7.114 69.657 1.00 61.95 AAA ATONI 1478 C TYS 152 26.995 -7.127 71.09 69.99 AAA ATONI 1479 C TYS 152 26.995 -7.127 71.09 69.99 AAA ATONI 1479 C TYS 152 26.995 -7.127 71.09 69.99 AAA ATONI 1479 C TYS 152 26.995 -7.127 71.09 69.99 AAA ATONI 1479 C TYS 152 26.995 -7.127 71.09 69.99 AAA ATONI 1479 C TYS 152 26.995 -7.127 71.09 69.99 AAA ATONI 1479 C TYS 152 27.695 71.09							аааа с
ATONI 1479 0 ASP 150 23.392 -9.820 64.377 1.00 67.48 AAA ATONI 1471 11 LEU 151 25.532 -9.369 64.524 1.00 54.39 AAA ATONI 1473 12 LEU 151 25.532 -9.369 65.853 1.00 52.79 AAA ATONI 1473 12 LEU 151 25.532 -9.369 65.853 1.00 52.79 AAA ATONI 1474 02 LEU 151 25.532 -9.369 65.853 1.00 52.79 AAA ATONI 1475 02 LEU 151 25.208 11.409 65.806 1.00 58.55 AAA ATONI 1476 07 LEU 151 24.063 12.101 65.002 1.00 69.43 ATONI 1476 07 LEU 151 24.063 12.101 65.002 1.00 69.43 ATONI 1476 07 LEU 151 22.837 12.327 65.951 1.00 65.26 AAA ATONI 1476 07 LEU 151 22.837 12.327 65.951 1.00 65.26 AAA ATONI 1476 07 LEU 151 22.837 12.327 65.951 1.00 65.43 AAA ATONI 1476 07 LEU 151 27.899 9.7454 66.805 1.00 55.43 AAA ATONI 1478 0 LEU 151 27.899 9.7454 66.805 1.00 55.43 AAA ATONI 1479 0 LEU 151 27.599 9.7454 66.805 1.00 56.43 AAA ATONI 1479 0 LEU 151 27.599 9.7454 66.805 1.00 56.43 AAA ATONI 1479 0 LEU 151 27.599 9.7454 66.805 1.00 56.43 AAA ATONI 1479 0 LEU 151 27.599 9.7454 66.805 1.00 56.38 AAA ATONI 1479 0 LEU 151 27.599 9.7454 66.805 1.00 56.83 AAA ATONI 1479 0 LEU 151 27.599 9.7454 66.805 1.00 56.83 AAA ATONI 1479 0 LEU 151 27.599 9.7454 66.805 1.00 56.83 AAA ATONI 1479 0 LEU 151 27.599 9.7454 66.805 1.00 56.83 AAA ATONI 1479 0 LEU 151 27.599 9.7454 66.805 1.00 56.83 AAA ATONI 1479 0 LEU 151 27.599 9.7454 66.805 1.00 56.83 AAA ATONI 1479 0 LEU 151 27.599 9.7454 66.805 1.00 56.83 AAA ATONI 1479 0 LEU 151 152 27.074 1.10 68.89 AAA ATONI 1479 0 LEU 151 152 27.074 1.10 68.89 AAA ATONI 1479 0 LEU 151 152 27.074 1.10 68.89 AAA ATONI 1479 0 LEU 151 152 27.074 1.10 68.89 AAA ATONI 1479 0 LEU 151 152 27.074 1.10 68.89 AAA ATONI 1479 0 LEU 151 152 27.074 1.10 68.89 AAA ATONI 1479 0 LEU 151 152 27.074 1.10 68.89 AAA ATONI 1479 0 LEU 151 152 27.074 1.10 68.89 AAA ATONI 1479 0 LEU 151 152 27.074 1.10 68.89 AAA ATONI 1479 0 LEU 151 152 28.89 1.10 153 27.759 1.00 68.85 AAA ATONI 1479 0 LEU 151 152 28.89 1.10 153 27.759 1.00 68.85 AAA ATONI 1510 0 LEU 151 152 28.89 1.10 153 27.759 1.10 18.89 1.10 17.03 AAA ATONI 1510 0 LEU 151 152 28.89 1.10 152 1.00 18.99 1.00						_	AAAA O
ATONI 1470 0 ASP 150 23.392 -9.820 64.524 1.00 54.39 AAA ATONI 1473 CA LEU 151 25.314 -9.908 65.853 1.00 52.79 AAA ATONI 1473 CA LEU 151 25.314 -9.908 65.853 1.00 52.79 AAA ATONI 1475 C3 LEU 151 25.208 -11.409 65.806 1.00 52.79 AAA ATONI 1475 C3 LEU 151 25.208 -11.409 65.806 1.00 52.79 AAA ATONI 1476 CD LEU 151 24.063 -12.101 65.002 1.00 66.25 AAA ATONI 1476 CD LEU 151 24.063 -12.101 65.002 1.00 66.26 AAA ATONI 1476 CD LEU 151 22.837 -12.372 65.951 1.00 65.43 AAA ATONI 1476 CD LEU 151 22.837 -12.372 66.951 1.00 65.43 AAA ATONI 1476 CD LEU 151 27.599 -9.734 66.630 1.00 51.93 AAA ATONI 1476 CD LEU 151 27.599 -9.734 66.630 1.00 51.93 AAA ATONI 1476 CD LEU 151 27.599 -9.734 66.630 1.00 51.93 AAA ATONI 1476 CD LEU 151 27.599 -9.734 66.630 1.00 51.93 AAA ATONI 1476 CD LEU 151 27.599 -9.734 66.630 1.00 51.93 AAA ATONI 1476 CD LEU 151 27.599 -9.734 66.630 1.00 51.93 AAA ATONI 1476 CD LEU 151 27.599 -9.734 66.630 1.00 51.93 AAA ATONI 1476 CD LEU 151 27.599 -9.734 66.630 1.00 51.93 AAA ATONI 1476 CD LEU 151 27.599 -9.735 69.493 1.00 66.58 AAA ATONI 1476 CD LEU 151 27.591 -1.00 69.35 AAA ATONI 1476 CD LEU 152 26.359 -1.144 69.657 1.00 41.99 AAA ATONI 1476 CD LEU 152 27.591 -1.00 69.57 1.00 61.58 AAA ATONI 1476 CD LEU 153 29.695 -1.144 69.657 1.00 41.99 AAA ATONI 1476 CD LEU 153 29.695 -1.144 69.657 1.00 41.99 AAA ATONI 1476 CD LEU 153 29.695 -1.00 69.58 AAA ATONI 1476 CD LEU 153 29.695 -1.00 69.00 1.00 70.69 AAA ATONI 1476 CD LEU 153 29.695 -1.00 69.00 1.00 70.69 AAA ATONI 1476 CD LEU 153 29.695 -1.00 69.00 1.00 70.69 AAA ATONI 1476 CD LEU 153 29.695 -1.00 69.00 1.00 70.69 AAA ATONI 1476 CD LEU 153 29.695 -1.00 69.00 1.00 70.69 AAA ATONI 1476 CD LEU 153 29.695 -1.00 75 72.615 1.00 69.00 AAA ATONI 1476 CD LEU 153 29.695 -1.00 75 72.615 1.00 69.00 AAA ATONI 1476 CD LEU 153 29.00 153 30.651 -2.333 11.557 1.00 69.00 AAA ATONI 1570 CD LEU 158 21.00 AAA ATONI 1570 CD LEU				·	_		AAAA O
ATONI 1471 N. LEU 151 25.532 -9.369 64.524 1.00 54.39 AAA ATONI 1473 CA LEU 151 25.314 -9.908 65.853 1.00 52.79 AAA ATONI 1474 CB LEU 151 25.208 -11.409 65.806 1.00 58.55 AAA ATONI 1475 CD LEU 151 24.063 -12.101 65.062 1.00 69.45 AAA ATONI 1476 CD LEU 151 24.063 -12.372 65.951 1.00 65.43 AAA ATONI 1477 CD2 LEU 151 22.837 -12.372 65.951 1.00 65.43 AAA ATONI 1478 C LEU 151 26.009 -9.454 66.805 1.00 51.93 AAA ATONI 1479 C LEU 151 26.009 -9.454 66.805 1.00 55.59 AAA ATONI 1479 C LEU 151 26.009 -9.454 66.805 1.00 55.59 AAA ATONI 1478 C LEU 151 26.009 -9.454 66.805 1.00 55.59 AAA ATONI 1478 C TA CVS 152 26.024 -8.773 67.849 1.00 65.43 AAA ATONI 1478 C TA CVS 152 26.024 -8.773 67.849 1.00 65.673 AAA ATONI 1478 C TO TVS 152 26.024 -8.773 67.849 1.00 65.673 AAA ATONI 1478 C TO TVS 152 27.650 -9.225 69.193 1.00 60.56.73 AAA ATONI 1478 C TVS 152 26.959 -1.149 69.575 1.00 41.99 AAA ATONI 1478 C TVS 152 27.074 -12.405 69.575 1.00 41.99 AAA ATONI 1478 C TVS 152 26.959 -1.149 69.657 1.00 41.99 AAA ATONI 1478 T TVS 152 26.039 -7.123 68.903 1.00 65.83 AAA ATONI 1478 T TVS 152 26.959 -1.414 69.657 1.00 41.99 AAA ATONI 1478 T TVS 152 26.959 -1.425 68.903 1.00 66.66 AAA ATONI 1478 T TVS 152 26.959 -1.425 68.903 1.00 66.66 AAA ATONI 1478 T TVS 150 153 29.639 -7.039 69.903 1.00 66.66 AAA ATONI 1478 T TVS 150 153 29.639 -7.039 69.903 1.00 66.66 AAA ATONI 1478 T TVS 150 153 29.497 -10.094 TO 8.811 1.00 70.69.98 AAA ATONI 1478 T TVS 150 153 29.497 -10.094 TO 8.811 1.00 70.69.98 AAA ATONI 1478 T TVS 150 153 29.497 -10.094 TO 8.811 1.00 70.69.98 AAA ATONI 1478 T TVS 150 153 29.497 -10.094 TO 8.811 1.00 70.69.98 AAA ATONI 1478 T TVS 150 153 29.497 -10.094 TO 8.811 1.00 70.09 AAA ATONI 1478 T TVS 150 153 29.497 -10.094 TO 8.811 1.00 70.09 AAA ATONI 1478 T TVS 150 153 29.497 -10.094 TO 8.811 1.00 70.09 AAA ATONI 1478 T TVS 150 153 29.497 -10.094 TO 8.811 1.00 70.09 AAA ATONI 1478 T TVS 150 153 29.798 P -10.075 T TVS 150 100 70.09 AAA ATONI 150 T TVS 150 153 29.798 P -10.075 T TVS 150 100 70.09 AAA ATONI 150 T TVS 150 153 29.798 P -10.075 T							AAAA C
ATOM 1473 CA LEU 151							U AAAA
ATCHI 1475 CG LEU 151 25.208 -11.409 65.806 1.00 58.55 ADAM ATCHI 1475 CG LEU 151 24.053 -12.101 65.092 1.00 69.45 ADAM ATCHI 1476 CD LEU 151 24.515 -13.421 64.489 1.00 65.26 ADAM ATCHI 1477 CG LEU 151 24.515 -13.421 64.489 1.00 65.26 ADAM ATCHI 1477 CG LEU 151 26.409 -9.454 66.805 1.00 51.93 ADAM ATCHI 1479 CG LEU 151 26.409 -9.454 66.805 1.00 51.93 ADAM ATCHI 1479 CG LEU 151 26.409 -9.454 66.805 1.00 51.93 ADAM ATCHI 1479 CG LEU 151 27.598 -9.734 66.805 1.00 55.59 ADAM ATCHI 1480 U CGS 152 26.024 -9.773 67.849 1.00 48.62 ADAM ATCHI 1480 U CGS 152 26.024 -9.773 67.849 1.00 65.73 ADAM ATCHI 1481 CG CGS 152 27.074 -12.405 69.575 1.00 55.59 ADAM ATCHI 1483 C CGS 152 27.074 -12.405 69.575 1.00 62.40 ADAM ATCHI 1485 C CGS 152 27.074 -12.405 69.575 1.00 62.40 ADAM ATCHI 1486 TG CGS 152 26.393 -1.144 69.657 1.00 41.99 ADAM ATCHI 1486 TG CGS 153 29.613 -7.833 69.903 1.00 66.66 ADAM ATCHI 1486 TG FRO 153 29.625 -2.072 70.059 1.00 68.05 ADAM ATCHI 1486 TG FRO 153 29.625 -2.072 70.059 1.00 68.05 ADAM ATCHI 1481 TG FRO 153 29.613 -7.833 69.903 1.00 66.66 ADAM ATCHI 1481 TG FRO 153 29.613 -7.833 69.903 1.00 66.66 ADAM ATCHI 1481 TG FRO 153 29.613 -7.833 69.903 1.00 66.66 ADAM ATCHI 1481 TG FRO 153 29.444 -12.049 70.851 1.00 69.88 ADCHI 1481 TG FRO 153 29.549 -10.755 72.6615 1.00 69.88 ADCHI 1481 TG FRO 153 29.549 -10.755 72.6615 1.00 69.88 ADCHI 1481 TG FRO 153 29.549 -10.755 72.6615 1.00 69.88 ADCHI 1481 TG FRO 153 29.549 -10.755 72.6615 1.00 69.88 ADCHI 1481 TG FRO 153 29.549 -10.755 72.6615 1.00 69.88 ADCHI 1481 TG FRO 153 29.549 -10.755 72.6615 1.00 69.88 ADCHI 1481 TG FRO 153 29.549 -10.755 72.6615 1.00 69.98 ADCHI 1481 TG FRO 153 29.549 -10.755 72.6615 1.00 69.98 ADCHI 1481 TG FRO 153 29.549 -10.755 72.6615 1.00 69.98 ADCHI 1481 TG FRO 153 29.549 -10.755 72.6615 1.00 69.98 ADCHI 1481 TG FRO 153 29.549 -10.755 72.6615 1.00 69.98 ADCHI 1481 TG FRO 153 29.549 -10.755 72.6615 1.00 69.98 ADCHI 1481 TG FRO 153 29.549 -10.755 72.6615 1.00 69.98 ADCHI 1481 TG FRO 153 29.549 -10.755 72.6615 1.00 69.98 ADCHI 1481 TG FRO 153 29							AAAA C
ATCH: 1476 03 LEU 151 24.063 -12.101 65.092 1.00 69.45 AAAA ATCH: 1476 00 LEU 151 24.063 -12.101 65.092 1.00 69.45 AAAA ATCH: 1477 022 LEU 151 22.837 -12.372 65.951 1.00 65.26 AAAA ATCH: 1478 0 LEU 151 26.409 -9.454 66.634 1.00 55.59 AAAA ATCH: 1479 0 LEU 151 27.598 -9.734 66.634 1.00 55.59 AAAA ATCH: 1479 0 LEU 151 27.598 -9.734 66.634 1.00 55.59 AAAA ATCH: 1470 0 LEU 151 27.598 -9.734 66.634 1.00 55.59 AAAA ATCH: 1470 1 LEU 151 27.598 -9.734 66.634 1.00 55.59 AAAA ATCH: 1470 0 LEU 151 27.598 -9.734 66.634 1.00 55.59 AAAA ATCH: 1470 0 LEU 151 27.598 -9.734 66.634 1.00 55.59 AAAA ATCH: 1470 0 LEU 151 27.598 -9.189 68.740 1.00 56.73 AAAA ATCH: 1470 0 LEU 151 27.598 -9.189 68.740 1.00 56.73 AAAA ATCH: 1470 1 LEU 15 152 27.650 -9.325 69.493 1.00 63.58 AAAA ATCH: 1470 T2 CYS 152 27.650 -9.325 69.493 1.00 63.58 AAAA ATCH: 1470 T2 CYS 152 27.595 -1.635 68.703 1.00 55.83 AAAA ATCH: 1470 T2 CYS 152 25.359 -1.615 68.703 1.00 55.83 AAAA ATCH: 1470 T2 RAO 153 29.497 -10.094 70.891 1.00 68.05 AAAA ATCH: 1470 T2 RAO 153 29.497 -10.094 70.891 1.00 68.05 AAAA ATCH: 1471 T2 RAO 153 29.497 -10.094 70.891 1.00 70.60 AAAA ATCH: 1471 T2 RAO 153 29.497 -10.094 70.891 1.00 70.60 AAAA ATCH: 1471 T2 RAO 153 29.497 -10.094 70.891 1.00 70.69 RAAAA ATCH: 1471 T2 RAO 153 29.497 -10.094 70.891 1.00 70.69 RAAAA ATCH: 1471 T2 RAO 153 29.497 -10.094 70.891 1.00 70.69 RAAAA ATCH: 1472 T2 RAO 153 29.497 -10.094 71.993 1.00 70.59 AAAA ATCH: 1472 T2 RAO 153 29.497 -10.094 71.993 1.00 70.89 AAAA ATCH: 1472 T2 RAO 153 27.959 -10.075 72.615 1.00 69.58 AAAAA ATCH: 1472 T2 RAO 153 27.959 -10.075 72.615 1.00 69.58 AAAAA ATCH: 1472 T2 RAO 153 27.959 -10.075 72.615 1.00 69.58 AAAAA ATCH: 1472 T2 RAO 153 27.959 -10.075 72.615 1.00 69.58 AAAAA ATCH: 1475 T2 RAO 154 27.745 1.00 70.70 71.723 AAAAA ATCH: 1570 T3	ATORE	1474 CB LEU					AAAA C
ATON 1476 CDL LEU 151 24.515 - 13.421 64.489 1.00 65.26 AAAA ATON 1477 CDZ LEU 151 22.837 - 12.372 65.951 1.00 65.26 AAAA ATON 1478 C LEU 151 26.409 -9.454 66.805 1.00 51.93 AAAA ATON 1478 C LEU 151 26.409 -9.454 66.805 1.00 51.93 AAAA ATON 1478 C LEU 151 27.598 -9.734 66.634 1.00 55.59 AAAA ATON 1489 U CTS 152 26.024 -8.773 67.849 1.00 48.62 AAAA ATON 1489 U CTS 152 26.024 -8.773 67.849 1.00 48.62 AAAA ATON 1489 C CTS 152 27.650 -9.325 69.493 1.00 63.58 AAAA ATON 1480 C CTS 152 27.650 -9.325 69.493 1.00 63.58 AAAA ATON 1480 C CTS 152 27.650 -9.325 69.493 1.00 63.58 AAAA ATON 1480 C CTS 152 27.650 -9.325 69.493 1.00 63.58 AAAA ATON 1480 C CTS 152 27.650 -9.325 69.493 1.00 63.58 AAAA ATON 1480 C CTS 152 27.650 -9.325 69.493 1.00 63.58 AAAA ATON 1480 C CTS 152 27.650 -9.325 69.493 1.00 63.58 AAAA ATON 1480 C CTS 152 27.650 -9.325 69.493 1.00 63.58 AAAA ATON 1480 C CTS 152 27.650 -9.325 69.493 1.00 63.58 AAAA ATON 1480 C CTS 152 27.650 -9.325 69.493 1.00 63.58 AAAA ATON 1480 C CTS 152 27.650 -9.325 69.493 1.00 65.65 AAAA ATON 1480 C CTS 153 29.633 -7.833 69.903 1.00 66.65 AAAA ATON 1480 C CTS 153 29.633 -7.833 69.903 1.00 66.65 AAAA ATON 1480 C CTS 153 29.447 -10.094 70.851 1.00 70.50 AAAA ATON 1480 C CTS 153 29.543 -10.734 71.850 1.00 69.58 AAAA ATON 1480 C CTS 153 29.543 -10.734 71.850 1.00 69.58 AAAA ATON 1480 C CTS 153 29.543 -10.734 71.850 1.00 69.58 AAAA ATON 1480 C CTS 154 C CTS		1475 CG LEU	151				AAAA C
ATOMI 1478 C LEW 151 26.409 -9.454 66.805 1.00 51.93 AAAA ATOMI 1479 O LEW 151 27.598 -9.734 66.805 1.00 55.93 AAAA ATOMI 1490 H TYS 152 26.024 -2.773 67.849 1.00 48.62 AAAA ATOMI 1490 H TYS 152 26.024 -2.773 67.849 1.00 55.59 AAAA ATOMI 1490 H TYS 152 27.074 -12.405 69.575 1.00 62.40 AAAA ATOMI 1491 C TYS 152 27.074 -12.405 69.575 1.00 62.40 AAAA ATOMI 1491 T TYS 152 27.074 -12.405 69.575 1.00 62.40 AAAA ATOMI 1491 T TYS 152 27.074 -12.405 69.575 1.00 62.40 AAAA ATOMI 1491 T TYS 152 27.074 -12.405 69.575 1.00 62.40 AAAA ATOMI 1491 T TYS 152 25.935 -3.635 88.703 1.00 55.83 AAAA ATOMI 1491 T TYS 152 25.935 -3.635 88.703 1.00 65.56 AAAA ATOMI 1497 H TYS 153 29.638 -7.032 69.903 1.00 66.05 AAAA ATOMI 1497 H TYS 153 29.638 -7.032 69.903 1.00 66.05 AAAA ATOMI 1497 T TYS 153 29.638 -7.032 69.903 1.00 66.05 AAAA ATOMI 1497 T TYS 153 29.638 -7.032 69.903 1.00 66.05 AAAA ATOMI 1497 T TYS 153 30.601 -2.323 71.557 1.00 69.98 AAAA ATOMI 1492 T TYS 153 30.601 -2.323 71.557 1.00 69.98 AAAA ATOMI 1492 T TYS 153 30.601 -2.323 71.557 1.00 69.98 AAAA ATOMI 1492 T TYS 153 30.601 -2.323 71.557 1.00 69.98 AAAA ATOMI 1492 T TYS 154 26.444 -12.049 71.943 1.00 70.56 AAAA ATOMI 1492 T TYS 154 26.444 -12.049 71.943 1.00 71.23 AAAA ATOMI 1493 T TYS 154 26.435 -13.230 72.223 1.00 88.75 AAAA ATOMI 1493 T TYS 154 26.435 -13.230 72.223 1.00 88.75 AAAA ATOMI 1493 T TYS 154 26.435 -13.230 72.223 1.00 88.75 AAAA ATOMI 1500 T TYS 154 26.435 -13.230 72.223 1.00 88.75 AAAA ATOMI 1500 T TYS 155 24.066 -12.094 70.353 1.00 99.59 AAAAA ATOMI 1500 T TYS 155 24.066 -12.094 70.055 70.400 18.75 AAAA ATOMI 1500 T TYS 155 24.066 -12.094 70.055 70.400 18.75 AAAA ATOMI 1500 T TYS 155 24.066 -12.094 70.055 70.400 18.75 AAAA ATOMI 1500 T TYS 155 24.066 -12.094 70.055 70.400 18.75 AAAA ATOMI 1500 T TYS 155 24.066 -12.094 70.055 70.400 18.51 AAAA ATOMI 1500 T TYS 155 24.066 -12.094 70.055 70.400 18.51 AAAA ATOMI 1500 T TYS 155 24.066 -12.094 70.055 70.000 18.51 AAAA ATOMI 1500 T TYS 156 25.456 -15.675 66.542 0.01 99.79 AAAA ATOMI 1510 C AAAA ATOMI 1510 C AAAA ATO				24.515 -13.421	64.489	1.00 65.26	AAAA C
ATOM: 1479 0 LSU 151 27.598 -9.734 66.63 1.00 55.59 AAA ATOM: 1490 M TWS 152 26.992 -9.189 68.740 1.00 48.62 AAA ATOM: 1492 TA TWS 152 26.992 -9.189 68.740 1.00 62.673 AAA ATOM: 1493 C TWS 152 27.550 -9.325 69.493 1.00 62.40 AAA ATOM: 1494 C TWS 152 27.650 -9.325 69.493 1.00 62.40 AAA ATOM: 1495 TB CWS 152 27.650 -9.325 69.493 1.00 62.40 AAA ATOM: 1495 TB CWS 152 26.393 -7.144 69.657 1.00 41.99 AAA ATOM: 1496 TB							AAAA C
ACON 1480 N							AAAA C
ACCHI 1483 C CVS 152 26.992 -91.89 88.740 1.00 56.73 AAAA ACCHI 1484 O CVS 152 27.650 -9.325 89.493 1.00 68.58 AAAA ACCHI 1484 O CVS 152 27.074 -12.405 89.575 1.00 62.40 ACCHI 1486 C CVS 152 26.358 -7.144 69.657 1.00 41.99 AAAA ACCHI 1486 C CVS 152 26.358 -7.144 69.657 1.00 41.99 AAAA ACCHI 1487 C CVS 152 26.358 -7.144 69.657 1.00 41.99 AAAA ACCHI 1487 C CVS 153 29.618 -7.832 69.903 1.00 68.65 ACCHI 1487 C CVS 153 29.618 -7.832 69.903 1.00 68.65 ACCHI 1487 C CVS 153 29.618 -7.832 69.903 1.00 68.65 ACCHI 1488 C CVS 153 29.618 -7.832 69.903 1.00 68.65 ACCHI 1488 C CVS 153 29.618 -7.832 69.903 1.00 68.65 ACCHI 1488 C CVS 153 29.618 -7.832 69.903 1.00 68.65 ACCHI 1488 C CVS 153 29.618 -7.832 69.903 1.00 69.98 ACCHI 1481 C CVS 153 29.618 -7.832 69.903 1.00 69.98 ACCHI 1481 C CVS 153 30.601 -9.323 71.557 1.00 69.98 ACCHI 1481 C CVS 153 30.601 -9.323 71.557 1.00 69.98 ACCHI 1481 C CVS 153 30.601 -9.323 71.650 1.00 69.98 ACCHI 1481 C CVS 153 29.513 -10.734 71.850 1.00 69.98 ACCHI 1481 C CVS 153 29.513 -10.734 71.850 1.00 69.98 ACCHI 1482 C CVS 153 29.513 -10.734 71.850 1.00 69.58 ACCHI 1483 C CVS 153 29.513 -10.734 71.850 1.00 69.58 ACCHI 1484 C CVS 154 28.444 -12.049 71.913 1.00 71.23 ACCHI 1484 C CVS 154 28.444 -12.049 71.913 1.00 71.23 ACCHI 1485 C CVS 154 28.444 -12.049 71.913 1.00 71.73 AAAA ACCHI 1485 C CVS 154 26.245 -13.230 72.223 1.00 81.75 ACCHI 1485 C CVS 154 26.245 -13.230 72.223 1.00 81.75 ACCHI 1485 C CVS 154 26.245 -13.230 72.223 1.00 81.75 ACCHI 1485 C CVS 154 26.245 -13.230 72.223 1.00 81.75 ACCHI 1485 C CVS 154 26.245 -13.230 72.223 1.00 81.75 ACCHI 1485 C CVS 154 26.245 -13.230 72.223 1.00 81.75 ACCHI 1485 C CVS 154 26.245 -13.230 72.223 1.00 81.55 ACCHI 1485 C CVS 154 26.245 -13.230 72.223 1.00 81.55 ACCHI 1485 C CVS 154 26.245 -13.230 72.223 1.00 81.55 ACCHI 1485 C CVS 154 26.245 -13.230 72.223 1.00 81.55 ACCHI 1485 C CVS 154 26.245 -13.250 72.245 1.00 89.38 ACCHI 1485 C CVS 154 26.255 27.00 89.05 ACCHI 1485 C CVS 154 26.255 27.00 89.05 ACCHI 1485 C CVS 154 26.255 27.00 89.05 ACCHI 1500 C CVS 154 2							AAAA O
ATCH: 1483 C CTS 152 27.650 -9.325 69.493 1.00 69.56 AAAA ATCH: 1486 T2 CTS 152 27.074 -10.405 69.575 1.00 62.86 AAAA ATCH: 1486 F3 CTS 152 26.359 -7.144 69.657 1.00 61.99 AAAA ATCH: 1486 F3 CTS 152 26.359 -7.144 69.657 1.00 61.99 AAAA ATCH: 1486 F3 CTS 152 26.359 -7.144 69.657 1.00 68.05 ACCH: 1487 TD FRO 153 29.625 -9.072 70.059 1.00 66.65 AAAA ATCH: 1487 TD FRO 153 29.625 -7.039 69.903 1.00 66.65 AAAA ATCH: 1487 TD FRO 153 29.497 -10.094 70.685 1.00 69.98 AAAA ATCH: 1487 CTS FRO 153 30.661 -9.323 71.557 1.00 69.98 AAAA ATCH: 1481 CTS FRO 153 30.861 -9.159 70.690 1.00 70.60 69.84 ATCH: 1482 CTS FRO 153 30.861 -9.159 70.690 1.00 70.60 69.84 ATCH: 1482 CTS FRO 153 29.533 -10.734 71.880 1.00 69.54 AAAAA ATCH: 1482 CTS FRO 153 27.559 -10.075 72.615 1.00 69.54 AAAAA ATCH: 1482 CTS FRO 153 27.559 -10.075 72.615 1.00 69.54 AAAAA ATCH: 1484 CTS FRO 153 27.559 -10.075 72.615 1.00 69.54 AAAA ATCH: 1484 CTS FRO 153 27.559 -10.075 72.615 1.00 69.54 AAAAA ATCH: 1484 CTS FRO 153 27.559 -10.075 72.615 1.00 69.55 AAAAA ATCH: 1484 CTS FRO 154 25.786 -14.318 72.547 1.00 80.26 AAAA ATCH: 1484 CTS FRO 154 25.786 -14.318 72.547 1.00 80.26 AAAA ATCH: 1484 CTS FRO 155 25.494 -10.486 71.314 1.00 89.38 AAAA ATCH: 1484 CTS FRO 155 25.494 -10.486 71.314 1.00 89.38 AAAA ATCH: 1501 CTS FRA 155 24.016 -11.663 70.628 1.00 89.78 AAAA ATCH: 1502 CTS FRA 155 24.016 -11.664 69.705 1.00 85.07 AAAA ATCH: 1503 CTS FRA 155 24.016 -11.664 70.617 1.00 99.95 AAAA ATCH: 1504 CTS FRO 155 23.005 -14.664 70.617 1.00 99.95 AAAA ATCH: 1504 CTS FRO 155 23.005 -14.664 70.617 1.00 99.05 AAAA ATCH: 1504 CTS FRO 155 23.005 -14.664 70.617 1.00 99.05 AAAA ATCH: 1504 CTS FRO 156 23.684 -17.214 65.007 0.01 99.75 AAAA ATCH: 1504 CTS FRO 156 23.684 -17.214 65.007 0.01 99.75 AAAA ATCH: 1504 CTS FRO 156 23.684 -17.214 65.007 0.01 99.75 AAAA ATCH: 1504 CTS FRO 158 24.353 -18.102 69.835 1.00101.00 AAAA ATCH: 1504 CTS FRO 158 24.353 -18.102 71.986 1.00100.57 AAAA ATCH: 1504 CTS FRO 158 24.353 -18.102 71.986 1.00100.59 AAAA ATCH: 1504 CTS FRO 158 24.353 -18.102 71.986 1.00							II AAAA
ATCH: 1485 0 TWS 152 27.071 -10.405 88.575 1.00 62.40 AAAC ATCH: 1485 73 CWS 152 26.358 -7.144 89.657 1.00 41.99 AAAC ATCH: 1486 73 CWS 152 25.935 -5.435 88.703 1.00 55.93 AAAC ATCH: 1487 W 58.0 153 28.625 -9.072 70.059 1.00 68.05 AAAC ATCH: 1487 W 58.0 153 28.626 -9.072 70.059 1.00 68.05 AAAC ATCH: 1487 W 58.0 153 29.497 -10.094 70.851 1.00 70.60 AAAC ATCH: 1487 W 58.0 153 30.601 -9.323 71.557 1.00 69.98 AAAC ATCH: 1481 W 78.0 153 30.601 -9.323 71.557 1.00 69.98 AAAC ATCH: 1481 W 78.0 153 28.543 -10.734 71.850 1.00 70.52 AAAC ATCH: 1482 W 58.0 153 30.601 -9.323 71.557 1.00 69.98 AAAC ATCH: 1482 W 58.0 153 28.543 -10.734 71.850 1.00 69.64 AAAC ATCH: 1482 W 58.0 153 28.543 -10.734 71.850 1.00 70.52 AAAC ATCH: 1482 W 58.0 153 28.543 -10.734 71.850 1.00 69.58 AAAC ATCH: 1484 W 58.0 153 27.859 -10.075 72.615 1.00 69.58 AAAC ATCH: 1484 W 58.0 1.00 18.0 18.0 18.0 18.0 18.0 18.0 1							AAAA C
ATCH: 1495 TB CVS 152 26.358 -T.114; 69.657 1.00 41.99 AAAB ATCH: 1476 TB		1484 O TYS					AAAA O
ATCH: 1497 57 570 778 152 25.935 -5.835 88.703 1.00 65.83 AAAA ATCH: 1497 TA FRO 153 28.825 -9.072 70.059 1.00 66.66 AAAAA ATCH: 1497 TA FRO 153 29.613 -7.938 69.903 1.00 66.66 AAAAA ATCH: 1491 TA FRO 153 29.613 -7.938 69.903 1.00 66.66 AAAAA ATCH: 1491 TA FRO 153 30.601 -9.323 71.557 1.00 69.98 AAAA ATCH: 1491 TA FRO 153 30.601 -9.325 71.557 1.00 69.98 AAAA ATCH: 1491 TA FRO 153 29.503 -10.734 71.850 1.00 69.58 AAAA ATCH: 1492 TA FRO 153 29.503 -10.734 71.850 1.00 69.58 AAAAA ATCH: 1493 TA FRO 153 27.959 -10.075 72.615 1.00 69.58 AAAAA ATCH: 1493 TA FRO 153 27.959 -10.075 72.615 1.00 69.58 AAAAA ATCH: 1493 TA FRO 153 27.959 -10.075 72.615 1.00 69.58 AAAAA ATCH: 1493 TA FRO 154 28.444 -12.049 71.943 1.00 71.23 AAAA ATCH: 1493 TA FRO 154 28.444 -12.049 71.943 1.00 71.03 AAAA ATCH: 1493 TA FRO 154 26.243 -13.230 72.223 1.00 81.75 AAAAA ATCH: 1493 TA FRO 155 25.649 -12.468 71.314 1.00 94.54 AAAAA ATCH: 1493 TA FRO 155 24.914 -12.683 70.8629 1.00 89.38 AAAAA ATCH: 1493 TA FRO 155 24.914 -12.683 70.8629 1.00 89.38 AAAAA ATCH: 1502 TA FRA 155 24.016 -11.661 69.705 1.00 85.07 AAAAA ATCH: 1503 DEE THR 155 24.016 -11.661 69.705 1.00 85.07 AAAAA ATCH: 1504 TOE THR 155 24.063 -11.467 70.420 1.00 84.51 AAAAA ATCH: 1505 TOE THR 155 24.060 -14.094 70.353 1.00 93.69 AAAAA ATCH: 1506 TOE THR 155 24.960 -14.094 70.353 1.00 93.69 AAAAA ATCH: 1506 TOE THR 155 25.003 -14.664 70.617 1.00 97.23 AAAAA ATCH: 1508 HI HET 156 25.003 -14.664 70.617 1.00 97.23 AAAAA ATCH: 1514 CE HET 156 25.003 -14.664 70.617 1.00 97.23 AAAAA ATCH: 1514 CE HET 156 25.007 -14.664 70.617 1.00 97.23 AAAAA ATCH: 1515 CA ALA 157 26.000 -14.094 70.355 1.00 10.00 40 AAAA ATCH: 1514 CE HET 156 27.005 -14.694 70.907 1.00100.57 AAAAA ATCH: 1515 CA ALA 157 26.000 -14.094 70.907 1.00100.59 AAAAA ATCH: 1516 CA ALA 157 26.000 -14.094 70.907 1.00100.59 AAAAA ATCH: 1516 CA ALA 157 26.000 -14.094 70.907 1.00100.59 AAAAA ATCH: 1516 CA ALA 157 26.000 -14.094 70.907 1.00100.59 AAAAA ATCH: 1516 CA ALA 157 26.000 -14.094 70.907 1.00100.59 AAAAA ATCH: 1516 CA ALA 157 26.000 -14			152	26.358 -7.144	69.657		AAAA C
ATCH: 1488 TO FRO 153				25.935 -5.635	68.703		AAAA S
ATCH: 1492 CR PRO 153 29.497 -10.094 TO.851 1.00 70.50 AAAA ATCH: 1491 CR PRO 153 30.601 -9.323 71.557 1.00 69.98 AAAA ATCH: 1491 CR PRO 153 30.961 -8.159 70.690 1.00 70.50 AAAA ATCH: 1492 CR PRO 153 28.543 -10.734 71.850 1.00 69.58 AAAA ATCH: 1493 CR PRO 153 28.543 -10.734 71.850 1.00 69.58 AAAA ATCH: 1493 CR PRO 153 28.543 -10.735 72.615 1.00 69.58 AAAA ATCH: 1493 CR PRO 153 27.859 -10.075 72.615 1.00 69.58 AAAA ATCH: 1493 CR PRO 153 28.444 -12.049 71.843 1.00 71.23 AAAA ATCH: 1493 CR PRO 154 28.444 -12.049 71.843 1.00 71.23 AAAA ATCH: 1493 CR PRO 154 26.245 -13.230 72.223 1.00 81.75 AAAA ATCH: 1493 CR PRO 154 25.786 -14.318 72.547 1.00 80.26 AAAA ATCH: 1493 CR PRO 155 25.649 -12.486 71.314 1.00 84.54 AAAA ATCH: 1501 CR PRO 155 24.014 -12.683 70.826 1.00 89.39 AAAA ATCH: 1502 CR PRO 155 24.064 -12.486 71.314 1.00 84.51 AAAA ATCH: 1502 CR PRO 155 24.066 -12.486 71.314 1.00 84.51 AAAA ATCH: 1503 CR PRO 155 24.066 -12.486 71.314 1.00 89.27 AAAA ATCH: 1503 CR PRO 155 24.066 -12.409 70.353 1.00 81.51 AAAA ATCH: 1503 CR PRO 155 24.066 -14.094 70.353 1.00 89.27 AAAA ATCH: 1507 CR PRO 155 24.060 -14.094 70.353 1.00 93.69 AAAA ATCH: 1507 CR PRO 156 25.003 -14.664 70.617 1.00 97.23 AAAA ATCH: 1507 CR PRO 156 25.003 -14.655 69.617 1.00 97.23 AAAA ATCH: 1510 CR PRO 156 25.003 -14.656 70.003 1.00 89.05 AAAA ATCH: 1510 CR PRO 156 25.456 -15.675 66.542 0.01 99.75 AAAA ATCH: 1511 CR PRO 156 25.466 -15.675 66.542 0.01 99.75 AAAA ATCH: 1513 CR PRO 156 23.664 -17.214 65.087 0.01 99.75 AAAA ATCH: 1513 CR PRO 156 23.664 -17.214 65.087 0.01 99.75 AAAA ATCH: 1517 CR PRO 156 24.383 -18.122 69.835 1.0010.64 AAAA ATCH: 1517 CR PRO 156 24.383 -18.122 69.835 1.0010.64 AAAA ATCH: 1519 CR PRO 156 25.027 -17.106 70.032 1.00100.57 AAAA ATCH: 1519 CR PRO 156 25.027 -17.106 70.032 1.00100.57 AAAA ATCH: 1519 CR PRO 158 24.984 -16.906 73.841 1.00 98.39 AAAA ATCH: 1520 CR PRO 158 24.984 -16.906 73.841 1.00 98.39 AAAA ATCH: 1520 CR PRO 158 24.984 -16.906 73.841 1.00 98.39 AAAA ATCH: 1520 CR PRO 158 25.276 1.00100.777 AAAA ATCH: 1520 CR PRO 158 24				29.825 -9.072		1.00 68.05	AAAA II
ATCH: 1491 TB PRO 153							AAAA C
ATCH: 1491 03 PRO 153 30.861 -e.159 70.690 1.00 70.88 AAAB ATCH: 1492 0 FRO 153 27.859 -10.734 71.850 1.00 69.58 AAAB ATCH: 1493 0 FRO 153 27.859 -10.705 72.615 1.00 69.58 AAAB ATCH: 1494 11 311 154 28.444 -12.049 71.943 1.00 71.23 AAAB ATCH: 1495 0 SIV 154 28.444 -12.049 71.943 1.00 71.23 AAAB ATCH: 1496 0 SIV 154 26.245 -13.230 72.243 1.00 81.75 AAAB ATCH: 1497 0 SIV 154 26.245 -13.230 72.243 1.00 81.75 AAAB ATCH: 1497 1 TWR 155 25.736 -14.318 72.547 1.00 80.26 AAAB ATCH: 1501 TA THR 155 24.314 -12.883 70.828 1.00 89.38 AAAB ATCH: 1502 0 THR 155 24.063 -10.417 70.420 1.00 89.38 AAAB ATCH: 1502 0 THR 155 24.063 -10.417 70.420 1.00 84.51 AAAB ATCH: 1503 0 THR 155 22.6866 -11.995 69.092 1.00 82.27 AAAB ATCH: 1506 0 THR 155 24.063 -10.417 70.420 1.00 84.51 AAAB ATCH: 1508 0 THR 155 24.0663 -10.417 70.420 1.00 84.51 AAAB ATCH: 1508 0 THR 155 24.060 -14.094 70.333 1.00 93.69 AAAB ATCH: 1508 0 THR 155 23.005 -14.664 70.617 1.00 95.92 AAAB ATCH: 1508 0 THR 155 23.005 -14.664 70.617 1.00 95.92 AAAB ATCH: 1508 0 THR 155 23.005 -14.664 70.617 1.00 97.23 AAAB ATCH: 1508 0 THR 155 23.005 -14.664 70.617 1.00 97.23 AAAB ATCH: 1508 0 THR 155 23.005 -14.664 70.617 1.00 97.23 AAAB ATCH: 1508 0 THR 155 23.005 -14.664 70.617 1.00 97.23 AAAB ATCH: 1510 0 THR 155 23.005 -14.664 70.617 1.00 97.23 AAAB ATCH: 1510 0 THR 155 23.005 -14.664 70.617 1.00 97.23 AAAB ATCH: 1510 0 THR 155 23.005 -14.664 70.617 1.00 97.23 AAAB ATCH: 1510 0 THR 155 23.664 -17.214 65.087 0.01 99.75 AAAB ATCH: 1511 0 THR 155 23.664 -17.214 65.087 0.01 99.75 AAAB ATCH: 1512 0 THR 156 25.907 -16.190 67.896 1.00100.40 AAAB ATCH: 1512 0 THR 156 25.087 -15.857 66.255 0.01 99.72 AAAB ATCH: 1513 0 THR 156 25.087 -15.857 66.255 0.01 99.73 AAAB ATCH: 1512 0 THR 156 25.087 -15.857 66.255 0.01 99.73 AAAB ATCH: 1512 0 THR 157 27.317 -18.158 72.766 1.0010.53 AAAB ATCH: 1512 0 THR 157 27.317 -18.158 72.766 1.0010.53 AAAB ATCH: 1512 0 THR 158 24.884 -15.915 76.025 1.00101.53 AAAB ATCH: 1520 0 AAA 157 23.893 -18.654 72.951 1.00104.59 AAAB ATCH: 1520 0 GLU 158 23.935 -16.6297 7		1489 TA FRO					AAAA C
ATCH: 1492 C FRO 153 28.543 -10.734 71.850 1.00 69.54 AAAA ATCH: 1493 O FRO 153 27.859 -10.075 72.615 1.00 69.58 AAAA ATCH: 1493 C FRO 153 28.444 -12.049 71.943 1.00 71.23 AAAA ATCH: 1495 C SLY 154 28.444 -12.049 71.943 1.00 71.23 AAAA ATCH: 1495 C SLY 154 26.245 -13.230 72.223 1.00 81.75 AAAA ATCH: 1497 C SLY 154 25.736 -14.318 72.547 1.00 80.26 AAAA ATCH: 1497 C SLY 154 25.736 -14.318 72.547 1.00 80.26 AAAA ATCH: 1500 C TH THR 155 25.649 -12.1488 71.314 1.00 84.54 AAAA ATCH: 1500 C TH THR 155 24.314 -12.683 70.689 1.00 89.38 AAAA ATCH: 1500 C TH THR 155 24.063 -10.417 70.420 1.00 84.51 AAAA ATCH: 1500 C TH THR 155 24.063 -10.417 70.420 1.00 84.51 AAAA ATCH: 1500 C TH THR 155 24.063 -10.417 70.420 1.00 84.51 AAAA ATCH: 1500 C THR 155 24.060 -14.094 70.353 1.00 93.69 AAAA ATCH: 1500 C THR 155 24.060 -14.094 70.353 1.00 93.69 AAAA ATCH: 1500 C THR 155 23.005 -14.664 70.617 1.00 97.23 AAAA ATCH: 1510 CA HET 156 25.003 -14.655 69.617 1.00 97.23 AAAA ATCH: 1510 CA HET 156 25.907 -15.190 67.896 1.00100.40 AAAA ATCH: 1511 C HET 156 25.907 -15.190 67.896 1.00100.40 AAAA ATCH: 1512 C HET 156 25.907 -15.190 67.896 1.00100.40 AAAA ATCH: 1512 C HET 156 23.687 -15.857 66.555 0.01 99.75 AAAA ATCH: 1515 C HET 156 23.687 -15.857 66.555 0.01 99.75 AAAA ATCH: 1515 C HET 156 23.687 -15.857 66.555 0.01 99.75 AAAA ATCH: 1516 C HET 156 23.687 -15.857 66.555 0.01 99.75 AAAA ATCH: 1517 M ALA 157 25.977 -17.106 70.032 1.00100.57 AAAA ATCH: 1517 M ALA 157 25.977 -17.106 70.032 1.00100.57 AAAA ATCH: 1517 M ALA 157 26.022 -18.102 71.986 1.00101.00 AAAA ATCH: 1520 CB ALA 157 27.317 -19.158 72.766 1.00101.10 AAAA ATCH: 1520 CB ALA 157 27.317 -19.158 72.766 1.00101.10 AAAA ATCH: 1520 CB ALA 157 27.317 -19.158 72.766 1.00101.342 AAAA ATCH: 1520 CB ALA 157 27.317 -19.158 72.921 1.00101.10 AAAA ATCH: 1520 CB ALA 157 23.893 -18.654 72.921 1.00101.10 AAAA ATCH: 1520 CB ALA 157 23.893 -18.654 72.921 1.00101.10 AAAA ATCH: 1520 CB ALA 157 23.893 -18.659 74.781 1.00 97.43 AAAA ATCH: 1520 CB ALA 157 23.893 -18.659 74.781 1.00 98.39 AAAA ATCH: 1520 CB							AAAA C
ATCH: 1493 0 580 153 27.959 -10.075 72.615 1.00 69.58 AAAA ATCH: 1494 H: 3DY 154 28.444 -12.049 71.943 1.00 71.23 AAAA ATCH: 1495 TA SUY 154 28.444 -12.049 71.943 1.00 71.23 AAAA ATCH: 1497 TO SUY 154 26.245 -13.230 72.223 1.00 81.75 AAAA ATCH: 1497 TO SUY 154 26.245 -13.230 72.223 1.00 81.75 AAAA ATCH: 1497 H THR 155 25.649 -12.1487 71.314 1.00 80.26 AAAA ATCH: 1501 TA THR 155 24.314 -12.683 70.829 1.00 89.38 AAAA ATCH: 1502 TR THR 155 24.314 -12.683 70.829 1.00 89.38 AAAA ATCH: 1502 TR THR 155 24.063 -13.417 70.420 1.00 84.51 AAAA ATCH: 1502 TR THR 155 24.063 -13.417 70.420 1.00 84.51 AAAA ATCH: 1505 TW THR 155 22.686 -11.895 69.092 1.00 82.27 AAAA ATCH: 1507 TO THR 155 23.005 -14.664 70.617 1.00 95.92 AAAA ATCH: 1507 TO THR 155 23.005 -14.664 70.617 1.00 95.92 AAAA ATCH: 1508 H HET 156 25.903 -14.655 69.617 1.00 97.23 AAAA ATCH: 1510 TO HET 156 25.903 -14.655 69.617 1.00 99.05 AAAA ATCH: 1511 TO HET 156 25.903 -14.655 69.617 1.00 99.05 AAAA ATCH: 1511 TO HET 156 25.486 -17.919 67.896 1.00100.40 AAAA ATCH: 1511 TO HET 156 25.486 -17.214 65.087 0.01 99.75 AAAA ATCH: 1513 SO HET 156 23.687 -15.675 66.542 0.01 99.75 AAAA ATCH: 1513 THR 155 23.005 -14.654 70.617 1.00 99.59 AAAA ATCH: 1514 TW HET 156 25.486 -17.214 65.087 0.01 99.75 AAAA ATCH: 1513 THR 155 23.005 -14.650 F 6.542 0.01 99.75 AAAA ATCH: 1514 THR 155 23.687 -15.675 66.542 0.01 99.75 AAAA ATCH: 1515 THR 156 25.486 -17.890 70.032 1.00100.40 AAAA ATCH: 1514 THR 156 25.907 -16.190 67.895 1.00100.40 AAAA ATCH: 1514 THR 156 25.907 -16.190 67.895 1.00100.40 AAAA ATCH: 1515 THR 156 25.486 -17.890 70.997 1.00100.57 AAAA ATCH: 1514 THR 156 25.027 -17.106 70.032 1.00100.57 AAAA ATCH: 1515 THR 156 25.027 -17.106 70.032 1.00100.57 AAAA ATCH: 1517 H ALA 157 26.022 -18.102 71.986 1.00101.00 AAAA ATCH: 1520 THR 156 24.385 -18.500 70.967 1.00100.53 AAAA ATCH: 1520 THR 156 25.027 -17.106 70.032 1.00101.00 AAAA ATCH: 1520 THR 156 25.027 -17.106 70.032 1.00101.10 AAAA ATCH: 1520 THR 156 25.027 -17.106 70.032 1.00101.10 AAAA ATCH: 1520 THR 158 24.884 -15.915 70.000 71.995							AAAA C
ATCH: 1496 CA SLY 154							
ATCH 1495 TA 3LV 154		1494 11 311					AAAA N
ATCH: 1497 C SLY 154 25.736 -13.230 72.223 1.00 81.75 AAAA ATCH: 1499 C THR 155 25.649 -11.468 71.314 1.00 84.54 AAAA ATCH: 1501 TA THR 155 24.314 -12.683 70.828 1.00 89.38 AAAA ATCH: 1502 CP THR 155 24.066 -11.995 69.092 1.00 89.38 AAAA ATCH: 1502 CP THR 155 24.066 -11.995 69.092 1.00 82.27 AAAA ATCH: 1506 C THR 155 22.686 -11.995 69.092 1.00 82.27 AAAA ATCH: 1506 C THR 155 24.060 -14.094 70.353 1.00 93.69 AAAA ATCH: 1507 O THR 155 24.060 -14.094 70.353 1.00 93.69 AAAA ATCH: 1508 H HET 156 25.003 -14.655 69.617 1.00 97.23 AAAA ATCH: 1508 H HET 156 25.003 -14.655 69.617 1.00 97.23 AAAA ATCH: 1510 CA HET 156 25.907 -16.190 67.896 1.00100.40 AAAA ATCH: 1513 SD HET 156 25.456 -15.675 66.542 0.01 99.75 AAAA ATCH: 1513 SD HET 156 23.687 -15.857 66.542 0.01 99.75 AAAA ATCH: 1514 CE HET 156 23.687 -15.857 66.255 0.01 99.72 AAAA ATCH: 1515 C HET 156 23.684 -17.214 65.087 0.01 99.59 AAAA ATCH: 1516 O HET 156 23.684 -17.214 65.087 0.01 99.59 AAAA ATCH: 1517 CA ALA 157 25.974 -17.057 70.967 1.00100.57 AAAA ATCH: 1518 C HET 156 24.353 -19.122 69.835 1.00101.64 AAAA ATCH: 1519 CA ALA 157 26.022 -18.102 71.986 1.00100.53 AAAA ATCH: 1519 CA ALA 157 26.022 -18.102 71.986 1.00100.53 AAAA ATCH: 1520 CB ALA 157 27.317 -19.158 72.766 1.00100.53 AAAA ATCH: 1520 CB ALA 157 27.317 -19.158 72.766 1.00103.42 AAAA ATCH: 1520 CB ALA 157 27.317 -19.158 72.766 1.00103.42 AAAA ATCH: 1520 CB ALA 157 27.317 -19.158 72.766 1.00103.42 AAAA ATCH: 1520 CB ALA 157 27.317 -19.158 72.766 1.00103.42 AAAA ATCH: 1520 CB ALA 157 23.893 -18.654 72.921 1.00104.59 AAAA ATCH: 1520 CB ALA 157 23.893 -18.654 75.500 1.00113.87 AAAA ATCH: 1520 CB ALA 157 24.856 -17.890 72.959 1.00101.10 AAAAA ATCH: 1520 CB ALA 157 24.856 -17.890 72.950 1.00113.87 AAAA ATCH: 1520 CB ALA 157 24.856 -17.890 72.950 1.00119.10 AAAA ATCH: 1520 CB ALA 157 23.893 -18.654 72.921 1.00104.59 AAAA ATCH: 1520 CB GLU 158 23.128 -17.556 75.500 1.00113.87 AAAA ATCH: 1520 CB GLU 158 23.128 -17.556 75.500 1.00113.87 AAAA ATCH: 1520 CB GLU 158 23.128 -17.556 75.002 1.00119.34 AAAA ATCH: 1520 CB G		1496 CA 3LY	154				AAAA C
ATCH: 1501 TA THR 155		1482 C 3TA			72.223	1.00 81.75	AAAA C
ATCH: 1501 TA THR 155		1498 3 319	154				AAAA O
ATON 1502 TB THR 155		1492 1 188					eaaa ::
ATCHI 1503 OSI THR 155 24.063 -10.417 T0.420 1.00 84.51 AAAA ATCHI 1505 OSI THR 155 22.686 -11.995 69.092 1.00 82.27 AAAA ATCHI 1506 C THR 155 24.060 -14.094 70.353 1.00 93.69 AAAA ATCHI 1507 O THR 155 23.005 -14.664 70.617 1.00 95.92 AAAA ATCHI 1508 H HET 156 25.003 -14.655 69.617 1.00 97.23 AAAA ATCHI 1510 CA HET 156 25.003 -14.655 69.617 1.00 99.05 AAAA ATCHI 1510 CA HET 156 25.907 -16.190 67.896 1.00100.40 AAAA ATCHI 1511 CS HET 156 25.466 -15.675 66.542 0.01 99.75 AAAA ATCHI 1513 SD HET 156 23.687 -15.857 66.542 0.01 99.72 AAAA ATCHI 1514 CE HET 156 23.687 -15.857 66.255 0.01 99.72 AAAA ATCHI 1514 CE HET 156 23.687 -15.857 66.255 0.01 99.72 AAAA ATCHI 1515 C HET 156 23.687 -17.106 70.032 1.00100.57 AAAA ATCHI 1515 C HET 156 24.353 -18.102 69.835 1.00101.64 AAAA ATCHI 1515 C HET 156 24.353 -18.102 69.835 1.00101.64 AAAA ATCHI 1519 CA ALA 157 25.974 -17.057 70.967 1.00100.53 AAAA ATCHI 1519 CA ALA 157 25.974 -17.057 70.967 1.00100.53 AAAA ATCHI 1519 CA ALA 157 25.974 -17.057 70.967 1.00100.53 AAAA ATCHI 1520 CS ALA 157 27.317 -18.158 72.766 1.00101.00 AAAA ATCHI 1520 CS ALA 157 27.317 -18.158 72.766 1.00101.00 AAAA ATCHI 1520 CS ALA 157 24.856 -17.890 72.959 1.00101.10 AAAA ATCHI 1520 CS ALA 157 24.856 -17.890 72.959 1.00101.10 AAAA ATCHI 1520 CS ALA 157 24.856 -17.890 72.959 1.00101.10 AAAA ATCHI 1520 CS ALA 157 24.856 -17.890 72.959 1.00101.10 AAAA ATCHI 1520 CS GLU 158 23.985 -16.629 74.781 1.00 98.39 AAAA ATCHI 1520 CS GLU 158 23.985 -16.629 74.781 1.00 99.39 AAAA ATCHI 1520 CS GLU 158 23.985 -16.629 74.781 1.00 99.39 AAAA ATCHI 1520 CS GLU 158 21.347 -16.081 75.560 1.00113.87 AAAA ATCHI 1520 CS GLU 158 21.347 -16.081 75.302 1.00119.34 AAAA ATCHI 1520 CS GLU 158 21.347 -16.081 75.302 1.00119.34 AAAA ATCHI 1520 CS GLU 158 21.347 -16.081 75.302 1.00119.34 AAAA ATCHI 1520 CS GLU 158 21.347 -16.081 75.302 1.00119.34 AAAA ATCHI 1520 CS GLU 158 21.347 -16.081 75.302 1.00119.34 AAAA ATCHI 1520 CS GLU 158 21.347 -16.081 75.302 1.00119.34 AAAA ATCHI 1520 CS GLU 158 21.347 -16.081 75.302 1.00117.79 AAAA ATCHI 1530							AAAA C
ATOM: 1505 032 THR 155 22.686 -11.995 69.092 1.00 82.27 AAAA ATOM: 1506 0 THR 155 24.060 -14.094 70.353 1.00 93.69. AAAA ATOM: 1507 0 THR 155 23.005 -14.664 70.617 1.00 95.92 AAAA ATOM: 1508 WHET 156 25.003 -14.655 69.617 1.00 99.05 AAAA ATOM: 1510 0A MET 156 25.907 -15.190 67.896 1.00100.40 AAAA ATOM: 1511 03 MET 156 25.907 -15.190 67.896 1.00100.40 AAAA ATOM: 1512 0G MET 156 25.907 -15.190 67.896 1.00100.40 AAAA ATOM: 1513 SD WET 156 23.664 -17.214 65.087 0.01 99.75 AAAA ATOM: 1514 0E MET 156 23.664 -17.214 65.087 0.01 99.75 AAAA ATOM: 1515 0 WET 156 23.664 -17.214 65.087 0.01 99.59 AAAA ATOM: 1516 0 WET 156 25.927 -17.106 70.032 1.00100.57 AAAA ATOM: 1517 N ALA 157 25.974 -17.057 70.967 1.00100.53 AAAA ATOM: 1519 0A ALA 157 26.022 -18.102 71.986 1.00101.00 AAAA ATOM: 1520 0B ALA 157 27.317 -19.158 72.766 1.00103.42 AAAA ATOM: 1520 0 ALA 157 27.317 -19.158 72.766 1.00103.42 AAAA ATOM: 1520 0 ALA 157 23.893 -18.654 72.959 1.00101.10 AAAA ATOM: 1520 0 ALA 157 24.984 -16.906 73.841 1.00 98.39 AAAA ATOM: 1520 0 ALA 157 23.893 -18.654 72.921 1.00104.59 AAAA ATOM: 1520 0 ALA 157 23.893 -18.654 72.921 1.00104.59 AAAA ATOM: 1520 0 ALA 157 23.893 -18.654 72.921 1.00104.59 AAAA ATOM: 1520 0 ALA 157 23.893 -18.654 75.208 1.00105.93 AAAA ATOM: 1520 0 ALA 157 23.893 -18.654 75.901 1.00104.59 AAAA ATOM: 1520 0 ALA 157 23.893 -18.654 75.901 1.00104.59 AAAA ATOM: 1520 0 ALA 157 23.893 -18.654 75.500 1.00103.87 AAAA ATOM: 1520 0 GLU 158 23.935 -16.629 74.781 1.00 97.43 AAAA ATOM: 1520 0 GLU 158 23.935 -16.629 74.781 1.00 98.39 AAAA ATOM: 1520 0 GLU 158 23.938 -16.629 74.781 1.00 98.39 AAAA ATOM: 1520 0 GLU 158 23.938 -16.629 74.781 1.00 97.43 AAAA ATOM: 1520 0 GLU 158 23.938 -16.629 74.781 1.00 97.43 AAAA ATOM: 1520 0 GLU 158 23.938 -16.629 74.781 1.00 97.43 AAAA ATOM: 1520 0 GLU 158 23.938 -16.629 74.781 1.00 97.43 AAAA ATOM: 1520 0 GLU 158 23.938 -16.629 74.781 1.00 97.43 AAAA ATOM: 1520 0 GLU 158 23.938 -16.629 74.781 1.00 97.43 AAAA ATOM: 1520 0 GLU 158 23.938 -16.629 74.781 1.00 97.43 AAAA ATOM: 1530 0 GLU 158 23.938 -16							
ATON 1506 C THR 155 24.060 -14.094 70.353 1.00 93.69. AAAA ATON 1507 O THR 155 23.005 -14.664 70.617 1.00 95.92 AAAA ATON 1508 W MET 156 25.003 -14.655 69.617 1.00 97.23 AAAA ATON 1510 CA MET 156 24.884 -15.973 69.024 1.00 99.05 AAAA ATON 1511 CB MET 156 25.907 -16.190 67.896 1.00100.40 AAAA ATON 1512 CG MET 156 25.456 -15.675 66.542 0.01 99.75 AAAA ATON 1513 SD MET 156 23.687 -15.857 66.255 0.01 99.72 AAAA ATON 1514 CE MET 156 23.687 -15.857 66.255 0.01 99.72 AAAA ATON 1515 C MET 156 23.664 -17.214 65.087 0.01 99.59 AAAA ATON 1515 C MET 156 25.027 -17.106 70.032 1.00100.57 AAAA ATON 1517 N ALA 157 25.974 -17.057 70.967 1.00100.53 AAAA ATON 1519 CA ALA 157 25.974 -17.057 70.967 1.00100.53 AAAA ATON 1520 CB ALA 157 26.022 -18.102 71.986 1.00101.00 AAAA ATON 1520 CB ALA 157 27.317 -18.158 72.766 1.00103.42 AAAA ATON 1521 C ALA 157 27.317 -18.158 72.766 1.00103.42 AAAA ATON 1522 O ALA 157 23.893 -18.654 72.921 1.00104.59 AAAA ATON 1523 N GLU 158 24.984 -16.906 73.881 1.00 98.39 AAAA ATON 1523 N GLU 158 23.935 -16.629 74.781 1.00 98.39 AAAA ATON 1525 CA GLU 158 23.935 -16.629 74.781 1.00 97.43 AAAA ATON 1520 CB GLU 158 23.935 -16.629 74.781 1.00 97.43 AAAA ATON 1520 CB GLU 158 23.935 -16.629 74.781 1.00 97.43 AAAA ATON 1520 CB GLU 158 23.935 -16.629 74.781 1.00 97.43 AAAA ATON 1520 CB GLU 158 23.935 -16.629 74.781 1.00 97.43 AAAA ATON 1520 CB GLU 158 23.935 -16.629 74.781 1.00 97.43 AAAA ATON 1520 CB GLU 158 23.935 -16.629 74.781 1.00 97.43 AAAA ATON 1520 CB GLU 158 23.935 -16.629 74.781 1.00 97.43 AAAA ATON 1520 CB GLU 158 23.935 -16.629 74.781 1.00 97.43 AAAA ATON 1520 CB GLU 158 23.935 -16.629 74.781 1.00 97.43 AAAA ATON 1520 CB GLU 158 23.935 -16.629 74.781 1.00 97.43 AAAA ATON 1520 CB GLU 158 23.936 -16.629 74.781 1.00 97.43 AAAA ATON 1520 CB GLU 158 23.938 -16.629 74.781 1.00 97.43 AAAA ATON 1520 CB GLU 158 23.938 -16.629 74.781 1.00 97.43 AAAA ATON 1520 CB GLU 158 23.938 -16.629 74.781 1.00 97.43 AAAA ATON 1520 CB GLU 158 23.938 -16.629 74.781 1.00 97.43 AAAA ATON 1520 CB GLU 158 23.938 -16.629 74.781 1.00 9							AAAA C
ATON 1507 O THR 155 23.005 -14.664 70.617 1.00 95.92 AAAA ATON 1508 N HET 156 25.003 -14.655 69.617 1.00 97.23 AAAA ATON 1510 CA HET 156 24.884 -15.973 69.024 1.00 99.05 AAAA ATON 1511 CB HET 156 25.907 -16.190 67.896 1.00100.40 AAAA ATON 1512 CG HET 156 25.456 -15.675 66.542 0.01 99.75 AAAA ATON 1513 SD HET 156 23.687 -15.857 66.255 0.01 99.72 AAAA ATON 1514 CE HET 156 23.664 -17.214 65.087 0.01 99.59 AAAA ATON 1514 CE HET 156 25.027 -17.106 70.032 1.00100.57 AAAA ATON 1516 O HET 156 24.353 -18.122 69.835 1.00101.64 AAAA ATON 1517 N ALA 157 25.974 -17.057 70.967 1.00100.53 AAAA ATON 1519 CA ALA 157 26.022 -18.102 71.986 1.00101.00 AAAA ATON 1520 CB ALA 157 27.317 -19.158 72.766 1.00103.42 AAAA ATON 1520 CB ALA 157 24.856 -17.890 72.959 1.00101.10 AAAA ATON 1520 CB ALA 157 23.893 -18.654 72.921 1.00104.59 AAAA ATON 1520 CB ALA 157 23.893 -18.654 72.921 1.00104.59 AAAA ATON 1520 CB GLU 158 23.935 -16.629 74.761 1.00 97.43 AAAA ATON 1520 CB GLU 158 23.935 -16.629 74.761 1.00 97.43 AAAA ATON 1520 CB GLU 158 23.935 -16.629 74.761 1.00 97.43 AAAA ATON 1520 CB GLU 158 23.935 -16.629 74.761 1.00 97.43 AAAA ATON 1520 CB GLU 158 23.935 -16.629 74.761 1.00 97.43 AAAA ATON 1520 CB GLU 158 23.935 -16.629 74.761 1.00 97.43 AAAA ATON 1520 CB GLU 158 23.935 -16.629 74.761 1.00 97.43 AAAA ATON 1520 CB GLU 158 23.935 -16.629 74.761 1.00 97.43 AAAA ATON 1520 CB GLU 158 21.687 -17.546 75.560 1.00113.87 AAAAA ATON 1520 CB GLU 158 21.687 -17.546 75.560 1.00113.87 AAAAA ATON 1520 CB GLU 158 21.687 -17.546 75.560 1.00113.87 AAAAA ATON 1520 CB GLU 158 21.284 -15.733 74.096 1.00126.27 AAAA ATON 1530 CB GLU 158 21.494 -15.915 76.025 1.00117.79 AAAAA ATON 1530 CB GLU 158 21.494 -15.915 76.025 1.00117.79 AAAAA ATON 1530 CB GLU 158 24.434 -15.915 76.025 1.00195.93 AAAA ATON 1530 CB GLU 158 24.434 -15.915 76.025 1.00195.93 AAAA ATON 1530 CB GLU 158 23.988 -16.117 77.145 1.00 95.89 AAAA ATON 1533 N SER 159 25.276 -14.494 75.769 1.00 93.30	ATON		155	24.960 -14.094			AAAA C
ATOM 1510 CA MET 156 24.884 -15.973 69.024 1.00 99.05 AAAA ATOM 1511 CB MET 156 25.907 -16.190 67.896 1.00100.40 AAAA ATOM 1511 CB MET 156 25.456 -15.675 66.542 0.01 99.75 AAAA ATOM 1511 CB MET 156 23.664 -17.214 65.087 0.01 99.72 AAAA ATOM 1511 CB MET 156 23.664 -17.214 65.087 0.01 99.59 AAAA ATOM 1515 C MET 156 25.027 -17.106 70.032 1.00100.57 AAAA ATOM 1516 O MET 156 24.353 -18.102 69.835 1.00101.64 AAAA ATOM 1517 M ALA 157 25.974 -17.057 70.967 1.00100.53 AAAA ATOM 1519 CA ALA 157 26.022 -18.102 71.986 1.00101.00 AAAA ATOM 1520 CB ALA 157 27.317 -18.158 72.766 1.00103.42 AAAA ATOM 1520 C ALA 157 24.856 -17.890 72.959 1.00101.10 AAAA ATOM 1523 M GLU 158 24.984 -16.906 73.841 1.00 98.39 AAAA ATOM 1525 CA GLU 158 23.935 -16.629 74.781 1.00 97.43 AAAA ATOM 1526 CB GLU 158 23.935 -16.629 74.781 1.00 97.43 AAAA ATOM 1520 CB GLU 158 23.128 -17.965 75.208 1.00105.93 AAAA ATOM 1520 CB GLU 158 23.128 -17.965 75.208 1.00105.93 AAAA ATOM 1520 CB GLU 158 23.128 -17.965 75.208 1.00105.93 AAAA ATOM 1520 CB GLU 158 23.128 -17.965 75.208 1.00105.93 AAAA ATOM 1520 CB GLU 158 23.128 -17.965 75.208 1.00105.93 AAAA ATOM 1520 CB GLU 158 21.347 -16.081 75.302 1.00119.34 AAAA ATOM 1520 CB GLU 158 21.347 -16.081 75.302 1.00119.34 AAAA ATOM 1520 CB GLU 158 21.347 -16.081 75.302 1.00119.34 AAAA ATOM 1530 CEZ GLU 158 21.284 -15.733 74.096 1.00126.27 AAAA ATOM 1530 CEZ GLU 158 21.284 -15.733 74.096 1.00126.27 AAAA ATOM 1530 CEZ GLU 158 21.494 -15.915 76.025 1.00117.79 AAAA ATOM 1530 CEZ GLU 158 21.494 -15.915 76.025 1.0017.79 AAAAA ATOM 1530 CEZ GLU 158 24.434 -15.915 76.025 1.0017.79 AAAAA ATOM 1530 CEZ GLU 158 23.988 -16.117 77.145 1.00 95.89 AAAA ATOM 1533 M SER 159 25.276 -14.942 75.769 1.00 93.30 AAAA					70.617	1.00 95.92	AAAA O
ATON 1511 CB MET 156 25.907 -16.190 67.896 1.00100.40 AAAA ATON 1512 CG MET 156 23.687 -15.857 66.542 0.01 99.75 AAAA ATON 1513 SD NET 156 23.687 -15.857 66.255 0.01 99.72 AAAA ATON 1514 CE MET 156 23.664 -17.214 65.087 0.01 99.59 AAAA ATON 1516 O MET 156 25.027 -17.106 70.032 1.00100.57 AAAA ATON 1517 N ALA 157 25.974 -17.057 70.967 1.00100.53 AAAA ATON 1519 CA ALA 157 26.022 -18.102 71.986 1.00101.00 AAAA ATON 1520 CB ALA 157 27.317 -18.158 72.766 1.00103.42 AAAA ATON 1520 CB ALA 157 24.856 -17.890 72.959 1.00101.10 AAAA ATON 1520 C ALA 157 23.893 -18.654 72.921 1.00104.59 AAAA ATON 1520 C BLU 158 24.984 -16.906 73.841 1.00 98.39 AAAA ATON 1520 C G GLU 158 23.935 -16.629 74.761 1.00 97.43 AAAA ATON 1520 C G GLU 158 23.935 -15.629 74.761 1.00 97.43 AAAA ATON 1520 C G GLU 158 23.128 -17.865 75.208 1.00105.93 AAAA ATON 1520 C G GLU 158 23.128 -17.865 75.208 1.00105.93 AAAA ATON 1520 C G GLU 158 23.128 -17.865 75.208 1.00105.93 AAAA ATON 1520 C G GLU 158 23.128 -17.865 75.208 1.00105.93 AAAA ATON 1520 C G GLU 158 21.687 -17.546 75.560 1.00113.87 AAAA ATON 1520 C G GLU 158 21.687 -17.546 75.560 1.00113.87 AAAA ATON 1520 C G GLU 158 21.284 -15.733 74.096 1.00126.27 AAAA ATON 1530 C G GLU 158 21.284 -15.733 74.096 1.00126.27 AAAA ATON 1530 C G GLU 158 21.199 -15.317 76.282 1.00117.79 AAAA ATON 1530 C G GLU 158 21.199 -15.317 76.282 1.00117.79 AAAA ATON 1531 C GLU 158 24.434 -15.915 76.025 1.00 95.00 AAAA ATON 1532 O GLU 158 23.988 -16.117 77.145 1.00 95.89 AAAA ATON 1533 N SER 159 25.276 -14.942 75.769 1.00 93.30 AAAA							AAAA N
ATON 1512 OF HET 156 25.456 -15.675 66.542 0.01 99.75 AAAA ATON 1520 O ALA 157 23.893 -18.654 72.921 1.00104.59 AAAA ATON 1525 GA GLU 158 23.988 -15.629 74.781 1.00 97.43 AAAA ATON 1527 GF GLU 158 21.687 -17.546 75.560 1.00119.34 AAAA ATON 1529 CE GLU 158 21.284 -15.33 74.096 1.00105.93 AAAA ATON 1529 CE GLU 158 21.347 -16.081 75.302 1.00105.93 AAAA ATON 1529 CE GLU 158 21.347 -16.081 75.302 1.00105.93 AAAA ATON 1529 CE GLU 158 21.347 -16.081 75.302 1.00105.93 AAAA ATON 1529 CG GLU 158 21.687 -17.556 75.208 1.00105.93 AAAA ATON 1529 CG GLU 158 21.687 -17.566 75.500 1.00105.93 AAAA ATON 1529 CG GLU 158 21.687 -17.566 75.500 1.00105.93 AAAA ATON 1529 CG GLU 158 21.687 -17.566 75.500 1.00105.93 AAAA ATON 1529 CG GLU 158 21.687 -17.566 75.500 1.00105.93 AAAA ATON 1529 CG GLU 158 21.687 -17.566 75.500 1.00105.93 AAAA ATON 1529 CG GLU 158 21.687 -17.566 75.500 1.00113.87 AAAA ATON 1529 CG GLU 158 21.687 -17.546 75.560 1.00113.87 AAAA ATON 1529 CG GLU 158 21.687 -17.546 75.500 1.00119.34 AAAA ATON 1529 CG GLU 158 21.687 -17.546 75.500 1.00119.34 AAAA ATON 1529 CG GLU 158 21.687 -17.546 75.500 1.00119.34 AAAA ATON 1529 CG GLU 158 21.687 -17.546 75.500 1.00119.34 AAAA ATON 1529 CG GLU 158 21.347 -16.081 75.302 1.00105.93 AAAA ATON 1529 CG GLU 158 21.347 -16.081 75.302 1.00119.34 AAAA ATON 1529 CG GLU 158 21.347 -16.081 75.302 1.00119.34 AAAA ATON 1529 CG GLU 158 21.347 -16.081 75.302 1.00119.34 AAAA ATON 1529 CG GLU 158 21.347 -16.081 75.302 1.00119.34 AAAA ATON 1529 CG GLU 158 21.447 -16.081 75.302 1.00117.79 AAAAA ATON 1532 CG GLU 158 21.494 -15.915 76.025 1.00195.89 AAAA ATON 1533 U SER 159 25.276 -14.494 75.769 1.00 95.89 AAAA ATON 1533 U SER 159 25.276 -14.942 75.769 1.00 95.30							AAAA C
ATCH 1513 SD HET 156 23.687 -15.857 66.255 0.01 99.72 AAAA ATCH 1516 C HET 156 25.027 -17.106 70.032 1.00100.57 AAAA ATCH 1516 O HET 156 24.353 -18.122 69.835 1.00101.64 AAAA ATCH 1517 N ALA 157 25.974 -17.057 70.967 1.00100.53 AAAA ATCH 1520 CB ALA 157 27.317 -19.158 72.766 1.00101.00 AAAA ATCH 1520 C ALA 157 27.317 -19.158 72.766 1.00103.42 AAAA ATCH 1520 C ALA 157 24.856 -17.890 72.959 1.00101.10 AAAA ATCH 1523 N GLU 158 24.984 -16.906 73.841 1.00 98.39 AAAA ATCH 1523 C GLU 158 23.935 -16.629 74.781 1.00 97.43 AAAA ATCH 1525 C GLU 158 23.935 -16.629 74.781 1.00 97.43 AAAA ATCH 1525 C G GLU 158 23.935 -16.629 74.781 1.00 97.43 AAAA ATCH 1526 C G GLU 158 23.935 -16.629 74.781 1.00 97.43 AAAA ATCH 1525 C G GLU 158 23.935 -16.629 74.781 1.00 97.43 AAAA ATCH 1525 C G GLU 158 23.935 -16.629 74.781 1.00 97.43 AAAA ATCH 1526 C G GLU 158 23.935 -16.629 74.781 1.00 97.43 AAAA ATCH 1526 C G GLU 158 23.935 -16.629 74.781 1.00 97.43 AAAA ATCH 1526 C G GLU 158 23.935 -16.629 74.781 1.00 97.43 AAAA ATCH 1529 C G GLU 158 21.687 -17.546 75.560 1.00113.87 AAAA ATCH 1529 C G GLU 158 21.687 -17.546 75.560 1.00119.34 AAAA ATCH 1529 C G GLU 158 21.687 -17.546 75.560 1.00119.34 AAAA ATCH 1529 C G GLU 158 21.284 -15.733 74.096 1.00126.27 AAAA ATCH 1530 C G GLU 158 21.284 -15.733 74.096 1.00126.27 AAAA ATCH 1530 C G GLU 158 21.199 -15.317 76.282 1.00117.79 AAAA ATCH 1530 C G GLU 158 21.199 -15.317 76.282 1.00117.79 AAAA ATCH 1531 C GLU 158 24.434 -15.915 76.025 1.00 95.00 AAAA ATCH 1532 O GLU 158 23.988 -16.117 77.145 1.00 95.89 AAAA ATCH 1533 N SER 159 25.276 -14.942 75.769 1.00 93.30 AAAA							AAAA C
ATCH 1514 CE MET 156 23.664 -17.214 65.087 0.01 99.59 AAAA ATCH 1516 0 MET 156 25.027 -17.106 70.032 1.00100.57 AAAA ATCH 1516 0 MET 156 24.353 -18.102 69.835 1.00101.64 AAAA ATCH 1517 M ALA 157 25.974 -17.057 70.967 1.00100.53 AAAA ATCH 1519 CA ALA 157 26.022 -18.102 71.986 1.00101.00 AAAA ATCH 1520 CB ALA 157 27.317 -19.158 72.766 1.00103.42 AAAA ATCH 1521 C ALA 157 24.856 -17.890 72.959 1.00101.10 AAAA ATCH 1523 M GLU 158 24.984 -16.906 73.841 1.00 98.39 AAAA ATCH 1523 CB GLU 158 23.935 -16.629 74.781 1.00 98.39 AAAA ATCH 1525 CA GLU 158 23.935 -16.629 74.781 1.00 97.43 AAAA ATCH 1526 CB GLU 158 23.128 -17.965 75.208 1.00105.93 AAAA ATCH 1527 CG GLU 158 23.128 -17.965 75.208 1.00105.93 AAAA ATCH 1529 CD GLU 158 21.687 -17.546 75.560 1.00113.87 AAAA ATCH 1529 CD GLU 158 21.347 -16.081 75.302 1.00119.34 AAAA ATCH 1529 CD GLU 158 21.347 -16.081 75.302 1.00119.34 AAAA ATCH 1529 CD GLU 158 21.347 -16.081 75.302 1.00119.34 AAAA ATCH 1530 CEZ GLU 158 21.284 -15.733 74.096 1.00126.27 AAAA ATCH 1530 CEZ GLU 158 21.284 -15.733 74.096 1.00126.27 AAAA ATCH 1530 CEZ GLU 158 21.199 -15.317 76.282 1.00117.79 AAAAA ATCH 1530 CGZ GLU 158 21.199 -15.317 76.282 1.00117.79 AAAAA ATCH 1531 C GLU 158 23.988 -16.117 77.145 1.00 95.89 AAAA ATCH 1533 N SER 159 25.276 -14.942 75.769 1.00 93.30 AAAA							AAAA C
ATOH 1515 C MET 156 25.027 -17.106 70.032 1.00100.57 AAAA ATOH 1516 O MET 156 24.353 -18.122 69.835 1.00101.64 AAAA ATOH 1517 M ALA 157 25.974 -17.057 70.967 1.00100.53 AAAA ATOH 1519 CA ALA 157 26.022 -18.102 71.986 1.00101.00 AAAA ATOH 1520 CB ALA 157 27.317 -18.158 72.766 1.00103.42 AAAA ATOH 1521 T ALA 157 24.856 -17.890 72.959 1.00101.10 AAAA ATOH 1523 M GLU 158 24.984 -16.906 73.841 1.00 98.39 AAAA ATOH 1525 CA GLU 158 23.935 -16.629 74.761 1.00 97.43 AAAA ATOH 1526 CB GLU 158 23.128 -17.955 75.208 1.00105.93 AAAA ATOH 1527 CG GLU 158 23.128 -17.955 75.208 1.00105.93 AAAA ATOH 1529 CD GLU 158 21.687 -17.546 75.560 1.00113.87 AAAA ATOH 1529 CD GLU 158 21.687 -17.546 75.560 1.00113.87 AAAA ATOH 1529 CD GLU 158 21.347 -16.081 75.302 1.00119.34 AAAA ATOH 1529 CD GLU 158 21.347 -16.081 75.302 1.00119.34 AAAA ATOH 1529 CD GLU 158 21.347 -16.081 75.302 1.00119.34 AAAA ATOH 1530 CD GLU 158 21.284 -15.733 74.096 1.00126.27 AAAA ATOH 1530 CD GLU 158 21.284 -15.733 74.096 1.00126.27 AAAA ATOH 1530 CD GLU 158 21.199 -15.317 76.282 1.00117.79 AAAAA ATOH 1531 C GLU 158 24.434 -15.915 76.025 1.00 95.00 AAAA ATOH 1532 O GLU 158 23.988 -16.117 77.145 1.00 95.89 AAAA ATOH 1533 N SER 159 25.276 -14.942 75.769 1.00 93.30 AAAA							
ATCH 1516 O HET 156 24.353 -18.102 69.835 1.00101.64 AAAA ATCH 1517 H ALA 157 25.974 -17.057 70.967 1.00100.53 AAAA ATCH 1519 CA ALA 157 26.022 -18.102 71.986 1.00101.00 AAAA ATCH 1520 CB ALA 157 27.317 -18.158 72.766 1.00103.42 AAAA ATCH 1520 O ALA 157 24.856 -17.890 72.959 1.00101.10 AAAA ATCH 1523 H GLU 158 24.984 -16.906 73.841 1.00 98.39 AAAA ATCH 1525 CA GLU 158 23.935 -16.629 74.781 1.00 97.43 AAAA ATCH 1526 CB GLU 158 23.128 -17.965 75.208 1.00105.93 AAAA ATCH 1527 CG GLU 158 23.128 -17.965 75.208 1.00105.93 AAAA ATCH 1529 CD GLU 158 21.687 -17.546 75.560 1.00113.87 AAAA ATCH 1529 CD GLU 158 21.347 -16.081 75.302 1.00119.34 AAAA ATCH 1529 CD GLU 158 21.347 -16.081 75.302 1.00119.34 AAAA ATCH 1529 CD GLU 158 21.347 -16.081 75.302 1.00119.34 AAAA ATCH 1529 CD GLU 158 21.347 -16.081 75.302 1.00119.34 AAAA ATCH 1529 CD GLU 158 21.347 -16.081 75.302 1.00119.34 AAAA ATCH 1530 CD GLU 158 21.284 -15.733 74.096 1.00126.27 AAAA ATCH 1530 CD GLU 158 21.199 -15.317 76.282 1.00117.79 AAAAA ATCH 1531 C GLU 158 24.434 -15.915 76.025 1.00 95.00 AAAA ATCH 1532 O GLU 158 23.988 -16.117 77.145 1.00 95.89 AAAA ATCH 1533 II SER 159 25.276 -14.942 75.769 1.00 93.30 AAAA	ATOH						AAAA C
ATON 1517 N ALA 157 25.974 -17.057 70.967 1.00100.53 AAAA ATON 1519 CA ALA 157 26.022 -18.102 71.986 1.00101.00 AAAA ATON 1520 CB ALA 157 27.317 -18.158 72.766 1.00103.42 AAAA ATON 1521 C ALA 157 24.856 -17.890 72.959 1.00101.10 AAAA ATON 1522 O ALA 157 23.893 -18.654 72.921 1.00104.59 AAAA ATON 1523 N GLU 158 24.984 -16.906 73.841 1.00 98.39 AAAA ATON 1525 CA GLU 158 23.935 -16.629 74.761 1.00 97.43 AAAA ATON 1526 CB GLU 158 23.128 -17.865 75.208 1.00105.93 AAAA ATON 1527 CB GLU 158 23.128 -17.865 75.208 1.00105.93 AAAA ATON 1529 CD GLU 158 21.687 -17.546 75.560 1.00113.87 AAAA ATON 1529 CD GLU 158 21.347 -16.081 75.302 1.00105.93 AAAA ATON 1529 CD GLU 158 21.347 -16.081 75.302 1.00119.34 AAAA ATON 1529 CD GLU 158 21.347 -16.081 75.302 1.00119.34 AAAA ATON 1529 CD GLU 158 21.284 -15.733 74.096 1.00126.27 AAAA ATON 1530 CE2 GLU 158 21.199 -15.317 76.282 1.00117.79 AAAA ATON 1531 C GLU 158 24.434 -15.915 76.025 1.00 95.00 AAAA ATON 1532 O GLU 158 23.988 -16.117 77.145 1.00 95.89 AAAA ATON 1533 N SER 159 25.276 -14.942 75.769 1.00 93.30 AAAA		1516 O MET	156				AAAA O
ATOM 1520 CB ALA 157 27.317 -19.158 72.766 1.00103.42 AAAA ATOM 1521 C ALA 157 24.856 -17.890 72.959 1.00101.10 AAAA ATOM 1522 O ALA 157 23.893 -18.654 72.921 1.00104.59 AAAA ATOM 1523 M GLU 158 24.984 -16.906 73.841 1.00 98.39 AAAA ATOM 1525 CA GLU 158 23.935 -16.629 74.781 1.00 97.43 AAAA ATOM 1526 CB GLU 158 23.935 -16.629 74.781 1.00 97.43 AAAA ATOM 1527 CB GLU 158 23.935 -16.629 74.781 1.00 97.43 AAAA ATOM 1527 CB GLU 158 23.935 -16.629 74.781 1.00 97.43 AAAA ATOM 1529 CB GLU 158 21.687 -17.546 75.560 1.00113.87 AAAA ATOM 1529 CB GLU 158 21.347 -16.081 75.302 1.00119.34 AAAA ATOM 1529 CB GLU 158 21.347 -16.081 75.302 1.00119.34 AAAA ATOM 1530 CE2 GLU 158 21.284 -15.733 74.096 1.00126.27 AAAA ATOM 1530 CB GLU 158 21.199 -15.317 76.282 1.00117.79 AAAAA ATOM 1531 C GLU 158 24.434 -15.915 76.025 1.00 95.00 AAAA ATOM 1532 O GLU 158 23.988 -16.117 77.145 1.00 95.89 AAAA ATOM 1533 M SER 159 25.276 -14.942 75.769 1.00 93.30 AAAA				25.974 -17.057	70.967	1.00100.53	II AAAA
ATOH 1521 C ALA 157 24.856 -17.890 72.959 1.00101.10 AAAA ATOH 1523 H GLU 158 24.984 -16.906 73.841 1.00 98.39 AAAA ATOH 1525 CA GLU 158 23.935 -16.629 74.781 1.00 97.43 AAAA ATOH 1526 CB GLU 158 23.128 -17.865 75.208 1.00105.93 AAAA ATOH 1527 CG GLU 158 21.687 -17.546 75.560 1.00113.87 AAAA ATOH 1529 CD GLU 158 21.687 -17.546 75.560 1.00113.87 AAAA ATOH 1529 CD GLU 158 21.347 -16.081 75.302 1.00119.34 AAAA ATOH 1529 CEI GLU 159 21.284 -15.733 74.096 1.00126.27 AAAA ATOH 1530 CEZ GLU 158 21.199 -15.317 76.282 1.00117.79 AAAA ATOH 1531 C GLU 158 24.434 -15.915 76.025 1.00 95.00 AAAA ATOH 1532 O GLU 158 23.988 -16.117 77.145 1.00 95.89 AAAA ATOH 1533 H SER 159 25.276 -14.942 75.769 1.00 93.30 AAAA						1.00101.00	AAAA C
ATOM 1522 O ALA 157 23.893 -18.654 72.921 1.00104.59 AAAA ATOM 1523 M GLU 158 24.984 -16.906 73.841 1.00 98.39 AAAA ATOM 1525 CA GLU 158 23.935 -16.629 74.781 1.00 97.43 AAAA ATOM 1526 CB GLU 158 23.128 -17.865 75.208 1.00105.93 AAAA ATOM 1527 CB GLU 158 21.687 -17.546 75.560 1.00113.87 AAAA ATOM 1529 CD GLU 158 21.347 -16.081 75.302 1.00119.34 AAAA ATOM 1529 CEI GLU 158 21.347 -16.081 75.302 1.00119.34 AAAA ATOM 1529 CEI GLU 158 21.284 -15.733 74.096 1.00126.27 AAAA ATOM 1530 CEZ GLU 158 21.199 -15.317 76.282 1.00117.79 AAAA ATOM 1531 C GLU 158 24.434 -15.915 76.025 1.00 95.00 AAAA ATOM 1532 O GLU 158 23.988 -16.117 77.145 1.00 95.89 AAAA ATOM 1533 M SER 159 25.276 -14.942 75.769 1.00 93.30 AAAA		_					AAAA C
ATOM 1523 N GLU 158 24.984 -16.906 73.841 1.00 98.39 AAAA ATOM 1525 CA GLU 158 23.935 -16.629 74.781 1.00 97.43 AAAA ATOM 1526 CB GLU 158 23.128 -17.865 75.208 1.00105.93 AAAA ATOM 1527 CG GLU 158 21.687 -17.546 75.560 1.00113.87 AAAA ATOM 1529 CD GLU 158 21.347 -16.081 75.302 1.00119.34 AAAA ATOM 1529 CEI GLU 158 21.347 -16.081 75.302 1.00119.34 AAAA ATOM 1529 CEI GLU 158 21.284 -15.733 74.096 1.00126.27 AAAA ATOM 1530 CE2 GLU 158 21.199 -15.317 76.282 1.00117.79 AAAA ATOM 1531 C GLU 158 24.434 -15.915 76.025 1.00 95.00 AAAA ATOM 1532 O GLU 158 23.988 -16.117 77.145 1.00 95.89 AAAA ATOM 1533 N SER 159 25.276 -14.942 75.769 1.00 93.30 AAAA							AAAA C
ATOH 1525 CA GLU 158 23.935 -16.629 74.781 1.00 97.43 AAAA ATOH 1526 CB GLU 158 23.128 -17.865 75.208 1.00105.93 AAAA ATOH 1527 CB GLU 158 21.687 -17.546 75.560 1.00113.87 AAAA ATOH 1528 CD GLU 158 21.347 -16.081 75.302 1.00119.34 AAAA ATOH 1529 CEI GLU 158 21.347 -16.081 75.302 1.00119.34 AAAA ATOH 1529 CEI GLU 159 21.284 -15.733 74.096 1.00126.27 AAAA ATOH 1530 CE2 GLU 158 21.199 -15.317 76.282 1.00117.79 AAAA ATOH 1531 C GLU 158 24.434 -15.915 76.025 1.00 95.00 AAAA ATOH 1532 O GLU 158 23.988 -16.117 77.145 1.00 95.89 AAAA ATOH 1533 N SER 159 25.276 -14.942 75.769 1.00 93.30 AAAA							AAAA O
ATCH 1526 CB GLU 158 23.128 -17.865 75.208 1.00105.93 AAAA ATCH 1527 CB GLU 158 21.687 -17.546 75.560 1.00113.87 AAAA ATCH 1528 CD GLU 158 21.347 -16.081 75.302 1.00119.34 AAAA ATCH 1529 CEI GLU 159 21.284 -15.733 74.096 1.00126.27 AAAA ATCH 1530 CEZ GLU 158 21.199 -15.317 76.282 1.00117.79 AAAA ATCH 1531 C GLU 158 24.434 -15.915 76.025 1.00 95.00 AAAA ATCH 1532 O GLU 158 23.988 -16.117 77.145 1.00 95.89 AAAA ATCH 1533 N SER 159 25.276 -14.942 75.769 1.00 93.30 AAAA							
ATCH 1527 CG GLU 158 21.687 -17.546 75.560 1.00113.87 AAAA ATCH 1528 CD GLU 158 21.347 -16.081 75.302 1.00119.34 AAAA ATCH 1529 CEI GLU 158 21.284 -15.733 74.096 1.00126.27 AAAA ATCH 1530 CE2 GLU 158 21.199 -15.317 76.282 1.00117.79 AAAA ATCH 1531 C GLU 158 24.434 -15.915 76.025 1.00 95.00 AAAA ATCH 1532 O GLU 158 23.988 -16.117 77.145 1.00 95.89 AAAA ATCH 1533 II SER 159 25.276 -14.942 75.769 1.00 93.30 AAAA	IKOTA	1526 CB GLU					AAAA C
ATCH 1528 CP GLU 158 21.347 -16.081 75.302 1.00119.34 AAAA ATCH 1529 CEI GLU 158 21.284 -15.733 74.096 1.00126.27 AAAA ATCH 1530 CE2 GLU 158 21.199 -15.317 76.282 1.00117.79 AAAA ATCH 1531 C GLU 158 24.434 -15.915 76.025 1.00 95.00 AAAA ATCH 1532 O GLU 158 23.988 -16.117 77.145 1.00 95.89 AAAA ATCH 1533 II SER 159 25.276 -14.942 75.769 1.00 93.30 AAAA		1527 OG GLU	158				AAAA C
ATOM 1530 CE2 GLU 158 21.199 -15.317 76.282 1.00117.79 AAAA ATOM 1531 C GLU 158 24.434 -15.915 76.025 1.00 95.00 AAAA ATOM 1532 O GLU 158 23.988 -16.117 77.145 1.00 95.89 AAAA ATOM 1533 N SER 159 25.276 -14.942 75.769 1.00 93.30 AAAA					75.302	1.00119.34	AAAA C
ATOM 1531 C GLU 158 24.434 -15.915 76.025 1.00 95.00 AAAA ATOM 1532 O GLU 158 23.988 -16.117 77.145 1.00 95.89 AAAA ATOM 1533 N SER 159 25.276 -14.942 75.769 1.00 93.30 AAAA							AAAA O
ATOM 1532 O GLU 158 23.988 -16.117 77.145 1.00 95.89 AAAA ATOM 1533 N SER 159 25.276 -14.942 75.769 1.00 93.30 AAAA							AAAA O
ATOH 1533 II SER 159 25.276 -14.942 75.769 1.00 93.30 AAAA							AAAA C
							AAAA O
ATON 1535 CA SER 159 25.810 -14.119 76.848 1.00 92.28 AAAA		1535 CA SER	159	25.810 -14.119			AAAA C
777							AAAA C
ATOM 1537 OF SER 159 26.972 -14.427 78.886 1.00 98.08 AAAA			159	26.972 -14.427			AAAA C
ATOM 1539 C SER 159 26.228 -12.793 76.226 1.00 91.47 AAAA					76.226	1.00 91.47	AAAA C
ATCH 1540 O SER 159 27.368 -12.592 75.810 1.00 92.75 AAAA							AAAA C
ATOM 1541 II FRO 150 25.196 -12.007 75.932 1.00 88.65 AAAA	ACMI	7947 II EKO	150	-3.19 6 -12.007	75.932	1.00 88.65	AAAA II

437.1	E 1542 YO PHA	60	22.766	-10.10	2 76.39	5 1.00 86.67	
AT:/				3 -10.70			AAAA C AAAA C
ATOL			24.125				AAAA C
ATGI ATGI				-10.67			AAAA C
ATOL			26.319	3 -10.029 -9.93			AAAA C AAAA O
ATO			27.563			-	AAAA N
ATON		_	28.530				AAAA C
ATOI:			29.924	-9.176 -10.630			AAAA C
ATOI				-11.621			AAAA C AAAA S
ATON	1 1554 CE HET	161	29.841	-10.905	78.471		AAAA C
ATOL			28.358 28.788		_		AAAA C
ATOU ATOU			27.681				O AAAA II AAAA
ATON			27.493				AAAA C
ATOH			26.306				AAAA C
HOTA HOTA		162 162	25.224 27.422				AAAA O
ATOI1		162	28.533				AAAA C AAAA S
ATOH		163	26.409		76.031	1.00 46.31	N AAAA
HOTA HOTA		163 163	25.355 26.051				AAAA C
ATOH		163	26.476				AAAA C AAAA C
ATOH	1569 CD GLU	163	25.817	-0.135			AAAA C
ATOI!		163	26.470				AAAA O
ATOH ATOH		163 163	24.646 24.299	0.208 -2.340			AAAA C
HOTA		163	24.488	-2.423			AAAA O
ATOH		164	23.142	-1.815	75.880		AAAA N
HOTA HOTA		154 164	22.011	-1.499		1.00 43.92	AAAA C
ATON		164	20.714 20.560	-2.244 -3.639	75.450 74.870		AAAA C AAAA C
ATON:	1579 CD LYS	154	19.480	-1.432	75.622	1.00 49.04	AAAA C
ATON	1580 CE LYS	164	18.409	-5.012	74.720	1.00 49.21	AAAA C
ATOH ATOH	1591 NO LYS 1595 O LYS	164 164	17.951 21.615	-6.372 -0.040	75.134 75.204	1.00 37.67 1.00 45.01	AAAA C
ATO:	1596 C LYS	164	21.466	0.484	76.282	1.00 45.69	O AAAA
ATCH	1597 :: THR	165	21.333	0.570	74.034	1.00 44.94	N AAAA
ATON ATON	1599 CA THR 1599 CB THR	165 165	20.775	1.943	74.077 73.553	1.00 43.13 1.00 47.81	AAAA C
ATOM	1591 091 THR	165	22.053	2.689	72.127	1.00 39.13	AAAA C AAAA O
ATC!!	1593 C32 THR	165	23.119	2.842	74.362	1.00 40.40	AAAA C
ATOH ATOH	1594 C THR 1595 G THR	165 165	19.532 19.346	1.881	73.189	1.00 40.92	AAAA C
ATOL:	1596 N THR	166	18.781	0.897 2.985	72.414 73.173	1.00 35.91 1.00 39.18	O AAAA N AAAA
ATON	1899 CA THR	166	17.689	2.991	72.182	1.00 42.97	AAAA C
ATOH ATOH	1599 TS THR 1600 DG1 THR	166 166	16.297	3.096	72.833	1.00 55.99	AAAA C
ATOH	1800 030 THR	166	15.562 16.157	4.385 2.740	72.819 74.313	1.00 41.42	AAAA C AAAA C
ATO!!	1603 C THR	165	17.983	4.051	71.137	1.00 40.17	AAAA C
ATOH ATOH	1604 0 THR 1605 N ILE	166 167	18.219	5.206	71.509	1.00 35.72	AAAA O
ATOH!	1607 CA ILE	167	17.912 18.182	3.725 4.672	69.866 68.777	1.00 42.21 1.00 41.05	AAAA C AAAA C
ATOH	1609 CB ILE	157	19.437	4.335	67.904	1.00 39.50	AAAA C
ATOH ATOH	1609 CG2 ILE	167	19.589	5.346	66.716	1.00 15.26	AAAA C
ATOH	1610 CG1 ILE 1611 CD1 ILE	167 167	20.722 21.899	4.305 3.665	68.724 67.966	1.00 36.20 1.00 35.70	AAAA C AAAA C
ATOH	1612 C ILE	167	16.937	4.524	67.882	1.00 40.94	AAAA C
ATOH ATOH	1613 O ILE	167	16.655	3.435	67.394	1.00 35.51	. АААА О
ATON	1614 N ASN 1616 CA ASN	168 168	16.318 15.112	5.635 5.633	67.537 66.713	1.00 42.29 1.00 45.22	aaaa n aaaa c
ATOH	1617 CB ASN	168	15.526	5.253	65.292	1.00 45.69	AAAA C
ATOH	1618 CG ASN	158	14.497	5.696	64.244	1.00 51.19	AAAA C
ATOM ATOM	1619 OD1 ASN 1620 ND2 ASN	168 168	14.344 13.749	5.112 6.763	63.150	1.00 41.75	AAAA O
ATOH	1623 C ASN	168	13.954	4.739	64.522 67.141	1.00 48.89 1.00 46.55	aaaa ii aaaa c
ATOH	1624 O ASN	168	13.544	3.879	66.326	1.00 45.95	AAAA O
ATOH ATOH	1625 N ASN 1627 CA ASN	169	13.644	4.728	68.433	1.00 45.12	AAAA II
ATOH	1629 CB ASN	169 169	12.717 11.315	3.759 4.106	69.007 68.540	1.00 43.67 1.00 36.84	AAAA C AAAA C
ATOH	1609 OG ASH	159	10.943	5.487	69.093	1.00 42.75	AAAA C
ATOM	1630 OD1 ASH	169	10.917	5.779	70.280	1.00 36.67	AAAA O
HOTA	1631 ND2 ASN 1634 C ASN	159 169	10.659 13.003	6.449 2.306	68.213	1.00 40.74	AAAA II
ATOH	1635 O ASH	169	12.100	1.544	68.719 68.383	1.00 44.69 1.00 45.72	AAAA C AAAA O
HCTA	1636 N GLU	170	14.226	1.907	68.862	1.00 41.64	AAAA II
ATOH	1638 CA GLU	170	14.655	0.513	68.850	1.00 45.88	AAAA C
HOTA HOTA	1639 CB GLU 1640 CG GLU	170 170	15.283 15.028	0.278 -0.953	67.524 66.702	1.00 55.92 1.00 67.08	AAAA C AAAA C
ATOH1	1641 CD GLU	170		-0.605	65.294	1.00 74.56	AAAA C
ATOH	1642 OE1 GLU	170	13.869	0.466	65.049	1.00 77.75	AAAA O
ATOH ATOH	1643 OE2 GLU 1644 C GLU	170 170	14.763 15.647	-1.437 0.379	64.389 70.010	1.00 70.71	AAAA O AAAA C
ATOH	1645 O GLU	170	16.582	1.172	70.213	1.00 47.10	AAAA O

* .**	1 1646 U TYR						•
ATM		. /1	15.344		_		AAAA II
AT' 1		171	16.231		8 72.09	7 1.00 51.81	AAAA C
ATO		171	15.434	-0.86	1 73.35	1.00 49.94	AAAA C
ATO	1 1650 CG TYR	171	16.175	-1.168	8 74.620	1.00 48.90	AAAA C
ATO	1 1651 CD1 TYR	171	16.980				AAAA C
ATO	1 1652 CE1 TYR	171	17.634				
ATO		171	16.065				AAAA C
ATO		171				_	AAAA C
			16.734				AAAA C
ATO!		171	17.516		3, 76.973	1.00 43.58	AAAA C
ATO		171	18.174	-2.017	78.146	1.00 40.16	AAAA O
ATO!	1 1658 C TYR	171	17.058	-1.938	71.832	1.00 51.41	AAAA C
ATO	1659 O TYR	171	16.519				AAAA O
ATON	1660 II ASII	172	18.331	-1.752			AAAA H
ATO-		172	19.203				
ATOI		172	19.085				AAAA C
ATON		172		-3.278			AAAA C
			10.939	-4.766			AAAA C
ATOH		172	19.233	-5.646			AAAA O
ATOH		172	18.449	~5.048		1.00 57.97	II AAAA II
ATOL		172	20.665	-2.712	71.560	1.00 43.81	AAAA C
I IOTA		172	21.163	-1.760	72.213	1.00 39.38	AAAA O
ATOH	1671 # TYR	173	21.373	-3.796	71.393		AAAA N
ATO:1	1573 CA TYR	173	22.794	-3.929			AAAA C
ATOH	1674 CB TYR	173	23.223	-5.374			
ATOH		173	22.759	-5.274			AAAA C
ATOH		173					AAAA C
ATOH			21.931	-7.316			AAAA C
		173	21.438	-8.191			AAAA C
ATOH		173	23.081	-6.132		1.00 44.86	AAAA C
ATO(1		173	22.583	-7.016	74.916	1.00 46.92	AAAA C
HOTA	1680 CS TYR	173	21.757	-8.038	74.535	1.00 50.33	AAAA C
NOTA	1681 OH TYR	173	21.171	-9.006	75.328	1.00 50.64	AAAA O
ATOL	1683 C TYR	173	23.673	-3.099	70.762	1.00 46.94	
HOTA	1684 O TYR	173	23.389				AAAA C
HOTA	1685 N ARG	174		-2.983	69.567	1.00 49.76	AAAA O
ATOH			24.579	-2.318	71.366	1.00 47.79	II AAAA II
	1687 CA ARG	174	25.517	-1.496	70.577	1.00 49.13	AAAA C
: KCTA	1689 CP ARG	174	25.537	-0.132	71.233	1.00 44.32	AAAA C
ATOH	1689 CG ARG	174	24.210	0.623	71.234	1.00 48.14	AAAA C
ATON	1690 CD ARG	174	23.372	0.344	70.003	1.00 51.47	AAAA C
ATO::	1691 NE ARG	174	21.974	0.760	70.039	1.00 48.35	AAAA N
ATOH	1693 CC ARG	174	21.144	6.870	69.017	1.00 48.23	AAAA C
ATO:	1694 UH1 ARG	174	21.477	0.022	67.864	1.00 38.96	AAAA II
ATOH	1697 NH2 ARG	174	19.909	1.922	69.197	1.00 54.65	
ATOL	1700 C ARG	174	25.921				AAAA II
ATO:	1701 O ARG	174		-2.094	70.461	1.00 45.98	AAAA C
			27.548	-2.557	71.406	1.00 44.97	AAAA O
HOTA	1702 H CYS	175	27.493	-2.183	69.294	1.00 46.21	AAAA II
ATO!!	1704 CA CYS	175	28.787	-2.758	68.997	1.00 45.60	AAAA C
ATOH	1705 C CYS	175	29.407	-2.395	67.665	1.00 46.23	AAAA C
ATOH	1706 O CYS	175	20.755	-2.018	66.665	1.00 44.79	AAAA O
ATOH	1707 CB CYS	175	28.576	-4.253	69.167	1.00 35.62	AAAA C
ATOH	1708 S3 CYS	175	27.812	-5.191	67.827	1.00 51.92	AAAA S
ATOL	1709 H TRP	176	30.764	-2.517	67.583	1.00 48.16	AAAA !!
ATOH	1711 CA TRP	176	31.430	-2.091	65.325	1.00 42.49	AAAA C
ATOH	1712 CB TRP	176	32.769	-1.409	66.554	1.00 36.38	AAAA C
HOTA	1713 CG TRP	176	32.689	-0.069	67.203	1.00 25.56	
ATOH	1714 CD2 TRP	176	32.588				AAAA C
ATOR	1715 CE2 TRP	176	32.558	1.186	66.480	1.00 23.71	AAAA C
ATOH				2.217	67.422	1.00 32.40	AAAA C
		176	32.535	1.520	65.141	1.00 24.31	AAAA C
ATOH	1717 CD1 TRP	176	32.730	0.257	68.525	1.00 28.37	AAAA C
ATOH:	1718 HE1 TRP	176	32.636	1.636	68.678	1.00 37.21	H AAAA H
ATOH	1720 CS2 TRP	176	32.441	3.565	67.088	1.00 28.51	AAAA C
1 IOTA	1721 CD3 TRP	176	32.447	2.822	64.789	1.00 22.23	AAAA C
ATOH	1722 CH2 TRP	176	32.406	3.817	65.745	1.00 29.51	AAAA C
ATOH	1723 C TRP	176	31.631	-3.268	65.408	1.00 39.30	AAAA C
ATOH	1724 O TRP	176	31.703	-3.121	64.199	1.00 39.15	AAAA O
NOTA	1725 N THR	177	31.682	-4.460	66.005	1.00 41.33	AAAA II
ATOH	1727 CA THR	177	31.964	-5.644	65.161	1.00 49.28	AAAA C
HOTA	1728 CB THR	177		-6.062			
ATOH	1729 OG1 THR	177			65.162	1.00 43.66	AAAA C
ATOH	1731 CG2 THR	177		-5.025	64.613	1.00 47.85	AAAA O
ATOH				-7.271	64.283	1.00 58.51	AAAA C
ATOH		177		-6.814	65.858	1.00 49.76	AAAA C
	1733 O THR	177		-6.539	67.001	1.00 51.53	AAAA O
ATOH	1734 H THR	178		-8.000	65.331	1.00 51.96	II AAAA
ATOM	1736 CA THR	178		-9.236	65.946	1.00 58.95	AAAA C
ATOH		178	31.253 -		65.082	1.00 66.55	AAAA C
ATOH		178	31.505 -		63.734	1.00 75.70	AAAA O
ATOH	1740 CG2 THR	178	30.104 -		65.148	1.00 74.23	AAAA C
HOTA	1741 C THR	178		-9.539	67.213	1.00 60.25	AAAA C
ATOH		178	31.204 -		68.135	1.00 66.05	AAAA O
ATOM		179		-9.130	67.253	1.00 57.56	
ATOH		179					II AAAA
ATOM		179		-9.392	68.443	1.00 53.39	AAAA C
			35.130 -		68.068	1.00 48.46	AAAA C
ATON		179	34.897 -		67.126	1.00 56.25	AAAA C
ATOH		179	34.412 -1		67.553	1.00 51.38	AAAA O
ATOH		179	35.229 ~		65.863	1.00 48.10	II AAAA
ATOH		179			69.285	1.00 50.78	AAAA C
ATOH	1753 O ASII	179	34.556 -	-8.377	70.426	1.00 57.97	AAAA O

	•						i ·	
							i	
ATMI ATMI	1754 H ARC 1756 TA ARC		33.626				II AAAA	
ATOL	1757 CB ARG		33.808 34.925				AAAA C AAAA C	
ATOH	1758 CG ARG		36.324				AAAA C	
ATOH	1759 CD ARG		37.288			1.00 70.83	AAAA C	
HOTA	1760 HE ARG		38.569				AAAA N	
HOTA	1762 CE ARG 1763 UH1 ARG		39.296 38.877				AAAA C AAAA N	
ATOI	1766 IIH2 ARG		40.474				AAAA N	
ATOH	1769 C ARG		32.530				AAAA C	
ATOH	1770 O ARG		31.862				AAAA O	•
HOTA	1771 U CYS		32.230 31.199				AAAA H AAAA C	
ATOH	1774 C CYS		31.646				AAAA C	
ATOH	1775 O CYS		32.835	-2.227		1.00 47.09	AAAA O	
ATOH	1776 CB CYS		30.940				AAAA C	
HOTA	1777 SG CYS		30.363 30.659				AAAA S 11 AAAA	
ATOI	1780 CA GLI		30.948				AAAA C	
ATO!	1781 CB GLI		29.749				AAAA C	
HOTA	1782 CG GLU		29.809				AAAA C	
ATOH	1783 CD GLN 1784 OE1 GLN		28.757				AAAA C	
HOTA	1784 OE1 GLN 1785 NE2 GLN		27.898 28.857				O AAAA II AAAA	
ATOH	1788 C GLII		31.218				AAAA C	
ATO!!	1789 O GLN		30.458				AAAA O	
ATCH	1790 N LYS		32.213				II AAAA	
ATOI1	1792 CA LYS 1793 CB LYS		32.479 33.966			1.00 45.26 1.00 48.68	AAAA C AAAA C	
ATON	1794 CG LYS		34.865	0.267		1.00 47.95	AAAA C	
ATOH	1795 CD LYS	183	36.337	0.734	74.523		AAAA C	
HOTA	1796 CE LYS		37.178	-0.208	73.684	1.00 46.78	AAAA C	
ATOH HOTA	1797 HD LYS 1801 C LYS	183 193	38.499 31.659	-0.654 2.205	74.158 75.477	1.00 44.00 1.00 48.13	AAAA II	
ATON	1802 C LYS	183	31.679	3.305	74.946	1.00 48.13	AAAA C AAAA O	
ATOH	1863 H HET	184	31.165	2.014	76.699	1.00 52.59	AAAA II	
ATCH	1805 CA HET	194	30.388	3.041	77.413	1.00 53.22	AAAA C	
ATOH HOTA	1906 CB NET	194 184	29.927 27.855	2.613 2.955	77.537 76.536	1.00 54.27 1.00 56.16	AAAA C	•
ATO!!	1919 SD MET	184	26.911	1.601	75.912	1.00 57.56	AAAA C AAAA S	
ATOH	1909 CE MET	184	26.738	1.855	74.171	1.00 46.57	AAAA C	
ATOH	1910 C MET	184	31.051	3.200	78.770	1.00 50.55	AAAA C	
ATOH ATOH	1911 C HET 1812 H CYS	194 185	31.770 30. 7 96	2.292 4.195	79.116 79.565	1.00 48.82 1.00 53.97	AAAA O BAAA ::	
ATON	1914 TA CYS	185	31.342	1.365	80.892	1.00 58.63	AAAA C	
ATCH	1815 C CYS	185	30.297	4.320	91.989	1.00 65.16	AAAA C	
ATCH	1916 C CYS	185	29.133	4.649	81.761	1.00 65.87	AAAA O	
ATON ATON	1817 OB CYS	195 185	31.965 33.623	5.772 5.771	81.000 80.312	1.00 60.37 1.00 60.09	aaaa c aaaa s	
ATOH	1919 :: FRO	186	30.688	3.979	83.206	1.00 69.41	AAAA H	
ATOH	1829 TD PRO	196	32.066	3.777	83.702	1.00 71.11	AAAA C	
HOTA HOTA	1821 CA PRO 1822 CB PRO	186 186	29.717 30.523	3.933	84.304	1.00 69.11	AAAA C AAAA C	
ATOH	1822 CB PRO 1823 CG PRO	186	31.910	3.497 3.920	85.503 85.198	1.00 68.03 1.00 71.02	AAAA C	
HOTA	1824 C PRO	196	29.120	5.320	84.431	1.00 69.47	AAAA C	
ATOH	1825 O PRO	185	29.820	6.345	84.507	1.00 65.93	AAAA O	
ATOH ATOH	1826 N SER 1828 CA SER	187 187	27.801 27.050	5.367 6. 5 92	84.546 84.750	1.00 68.78 1.00 69.29	аааа и аааа с	
ATOH	1829 CB SER	187	25.594	6.287	85.129	1.00 78.29	AAAA C	
HOTA	1830 OG SER	187	25.474	4.935	85.566	1.00 91.78	AAAA O	
ATOH	1932 C SER	187	27.630	7.476	85.836	1.00 67.19	AAAA C	
HOTA HOTA	1833 O SER 1834 N THR	187 188	27.606 28.108	8.708 6.853	85.803 86.908	1.00 63.98 1.00 68.20	aaaa o aaaa n	
ATOM	1836 CA THR	188	28.870	7.507	87.963	1.00 68.39	AAAA C	
ATO! I	1937 CB THR	188	29.805	6.459	88.618	1.00 73.84	AAAA C	
ATOH	1838 OG1 THR	198	28.943	5.365	89.016	1.00 89.33	aaaa o	
ATOH ATOH	1840 CG2 THR 1841 C THR	188 198	30.605 29.802	7.048 8.583	89.759 87.429	1.00 73.71 1.00 67.52	AAAA C AAAA C	
ATOH	1842 0 THR	188	29.843	9.739	87.834	1.00 68.30	AAAA O	
ATOI1	1843 N CYS	189	30.643	8.247	86.446	1.00 63.89	AAAA N	
ATOH	1845 CA CYS	199	31.583	9.116	85.817	1.00 57.29	AAAA C	
ATOH ATOH	1846 C CYS	189 189	30.951 31.648	10.331 11.327	85.195 85.017	1.00 57.70 1.00 57.56	AAAA C AAAA O	
ATOH	1848 CB CYS	189	32.416	9.372	84.769	1.00 58.67	AAAA C	
ATOH	1849 SG CYS	189	33.347	7.001	85.535	1.00 53.46	AAAA S	
ATOH	1850 N GLY	190	29.689	10.322	84.806	1.00 56.91	AAAA N	
ATOH ATOH	1852 CA GLY 1853 C GLY	190 190	29.038 29.444	11.521 11.834	84.323 82.886	1.00 57.28 1.00 59.62	AAAA C AAAA C	
ATOH:	1854 O GLY	190	29.609	10.932	82.082	1.00 57.91	AAAA O	
ATOH	1855 N LYS	191	29.842	13.052	82.624	1.00 62.78	II AAAA II	
ATOH	1857 CA LYS 1858 CB LYS	191	30.359	13.520	81.364	1.00 67.72	AAAA C	
ATOH	1858 CB LYS 1859 CG LYS	191 191	30.058 28.568	15.035 15.288	81.214 81.002	1.00 72.76 1.00 84.69	AAAA C	
ATOH	1860 CD LYS	191	28.207	16.733	80.723	1.00 90.15	AAAA C	
HOTA	1861 CE LYS	191	26.713	16.806	80.471	1.00 91.83	AAAA C	

•

							,
ATCH	1860 HG LYG	1.21	26.368	16.183	79.152	1.00 97.62	11 AAAA 11
ATOR				and the second second			
		191	31.868				AAAA C
ATOH	1967 O LYS	191	32.486	13.935	80.415	1.00 71.76	O AAAA O
ATOH	1968 H ARG	192	32.488		82.079	1.00 66.29	II AAAA II
ATOH	1870 CA ARG	192	-				AAAA C
			33.885				
ATOH	1871 CB ARG	192	34.505	12.070	83.432	1.00 66.58	AAAA C
ATOH	1870 CG ARG	192	34.670	13.400	84.131	1.00 71.59	AAAA C
ATOH	1973 CD ARG	192	34.386				AAAA C
ATOH	1874 HE ARG	192	35.622	13.280	. 86.377	1.00 85.74	H AAAA H
ATOH	1876 CZ ARG	192	35.968	12.407	87.330	1.00 90.67	AAAA C
	1877 HH1 ARG	192					
ATOH			35.026				II AAAA II
HOTA	1880 NH2 ARG	192	37.162	12.463	87.950	1.00 72.95	II AAAA II
ATOH	1983 C ARG	192	34.021	10.851	81.337	1.00 58.83	AAAA C
ATOH	1884 O ARG	192	33.336	_		1.00 55.13	AAAA O
ATO(1	1895 II ALA	193	35.521	10.795	80.968	1.00 50.19	AAAA II
ATOH	1887 CA ALA	193	35.962			1.00 46.24	AAAA C
ATOH	1889 CB ALA	193	37.167	9.921	79.541	1.00 45.15	AAAA C
ATOH	1989 C ALA	193	36.221	8.525	81.451	1.00 48.97	AAAA C
	_	193					
INTA			36.220			1.00 44.80	AAAA O
ATOH	1891 # CYS	194	36.544	7.304	81.065	1.00 50.30	II AAAA II
ATOH	1893 CA CYS	194	36.836	6.302	82.043	1.00 57.50	AAAA C
ATOH	1894 C C(S	194	37.834	5.304	81.448	1.00 61.25	AAAA C
ATOH	1895 O CYS	194	37.952	5.291	80.216	1.00 61.52	AAAA O
HOTA	1896 CB CYS	194	35.510	5.741	82.504	1.00 57.96	AAAA C
ATOH	1897 SG CYS	194	34.785	4.524	81.402	1.00 54.49	AAAA S
ATOH	1899 II THR	195	38.422	4.499	82.311	1.00 58.51	AAAA N
ATOH	1900 CA THR	195	39.462				
				3.584	81.913	1.00 57.42	аааа с
ATOH	1901 CB THR	195	40.237	3.142	83.188	1.00 65.73	AAAA C
ATOH	1902 OG1 THR	195	40.288	4.248	84.091	1.00 70.15	AAAA O
ATOII	1904 CG2 THR	195	41.684	2.864	82.745	1.00 77.91	AAAA C
NOTA	1905 C THR	195	38.857	2.404	81.226	1.00 54.59	AAAA C
ATOH:	1906 O THR	195	37.633	2.315	81.318	1.00 58.75	AAAA O
ATOH	1907 H GLU	196	39.610	1.408	80.882	1.00 55.95	II AAAA
ATOH:	1909 CA GLU	196	39.139	0.145	80.364	1.00 60.07	AAAA C
ATOH	1910 TB GLU	196	40.395		79.914		
				-0.612		1.00 68.06	AAAA C
ATOH	1911 CG GLU	196	40.479	-1.146	79.526	1.00 73.96	AAAA C
HOTA	1911 TO GLU	196	39.235	-0.983	77.670	1.00 83.08	AAAA C
	1913 1E1 GLU	196					
ATOH			38.356	-1.884	77.697	1.00 81.19	C AAAA
ATOM	1914 CEC GLU	196	39.060	0.041	76.939	1.00 82.13	AAAA O
ATOH	1915 C GLU	196	38.382	-0.579	81.467	1.00 63.91	AAAA C
ATO! i	1916 0 618	196	37.690	-1.537	91.159	1.00 63.51	AAAA O
ATC!!	1917 H ASH	197	39.566	-0.312	82.739	1.00 67.40	II AAAA
ATOH	1919 CA ASH	197	38.025	-0.947	83.88 6	1.00 69.21	AAAA C
ATOH	1920 CB ASN	197	39.021	-1.394	84.966	1.00 68.49	AAAA C
ATCH	1921 CG ASN	197	39.722	-2.692	84.672	0.01 69.09	AAAA C
ATCH.	1922 OC1 ASH	197	40.364	-3.273	85.551	0.01 69.04	AAAA C
ATOH:	1923 ND2 ASN	197	39.522	-3.193	93.443	0.01 68.97	aaaa ::
ATOH	1926 T ASN	197	37.033	0.043	84.495	1.00 69.01	AAAA C
	1927 O ASH	197					
ATCH			36.945	0.281	85.664	1.00 68.24	AARA O
ATOH	1909 H ASH	198	36.384	0.795	83.607	1.00 69.91	AAAA H
ATOH!	1930 CA ASH	198	35.356	1.734	94.049	1.00 68.49	AAAA C
ATOLI	1931 TB ASN	198					
			34.120	0.830	94.373	1.00 60.12	AAAA C
ATOH	1932 CG ASH	198	33.806	0.095	83.102	1.00 69.29	AAAA C
HOTA	1933 OD1 ASN	198	33.475	0.654	82.054	1.00 73.20	AAAA C
INTA	1934 HD2 ASN	198	33.980	-1.206	83.268	1.00 65.34	AAAA H
HOTA	1937 C ASN	198	35.784	2.563	85.228	1.00 64.01	AAAA C
HOTA	1938 O ASN	198	34.992	2.827	86.117	1.00 64.20	AAAA O
ATOH	1939 N GLU	199	36.955	3.164	85.157	1.00 64.75	AAAA N
HOTA							
	1941 CA GLU	199	37.342	4.054	86.255	1.00 64.64	AAAA C
ATOM:	1942 CB GLU	199	38.702	3.624	86.744	1.00 66.11	AAAA C
ATOH	1943 CG GLU	199	38.846	3.717	88.233	1.00 77.15	AAAA C
ATOH	1944 CD GLU	199	39.579	2.532	88.832	1.00 89.24	AAAA C
TOTA	1945 OE1 GLU	199	39.385	2.406	90.066	1.00 81.65	AAAA O
ATOH!	1946 CE2 GLU	199	40.282	1.821	88.079	1.00 77.94	AAAA O
IOTA	1947 C GLU	199	37.314	5.463	85.690	1.00 62.92	AAAA C
ATOH	1948 O GLU	199	37.922	5.676	84.632	1.00 63.62	AAAA O
ATOH	1949 N CYS	200	36.505	6.393	86.313	1.00 56.16	AAAA H
HOTA	1951 CA CYS	200	36.600	7.721	85.740	1.00 55.11	AAAA C
ATOH	1952 C CYS	200	37.978	8.315	85.521	1.00 57.77	AAAA C
ATOH	1953 O CYS	200	38.884	8.058	86.300	1.00 63.79	AAAA O
ATOH	1954 TB CYS	200	35.824	8.664	86.548	1.00 62.70	AAAA C
11OTA	1955 SG CYS	200	34.196	9.100	87.098	1.00 55.85	AAAA S
ATON	1956 II CYS	201	38.124	9.192	84.540	1.00 54.50	II AAAA
ATOH	1958 CA CYS	201	39.338	9.389	84.202	1.00 48.19	AAAA C
ATOH	1959 C CYS	201	39.236	11.287	84.786	1.00 42.34	AAAA C
ATOH	1960 O CYS	201	38.165	11.704	85.166	1.00 54.32	AAAA O
ATOH	1961 CB CYS	201	39.590	10.070	82.695	1.00 40.90	AAAA C
ATOH	1962 SG CYS	201	39.644	8.597	81.747	1.00 51.42	AAAA S
ATOH	1963 N HIS	202	40.254	12.075	81.675	1.00 39.12	AAAA 11
ATOH	1965 CA HIS	202	40.290	13.461	85.128	1.00 41.55	AAAA C
ATOH:	1966 C HIS	202	39.284	14.184	84.289	1.00 46.59	AAAA C
ATOH!	1967 O HIS	202	39.176	13.851	83.103	1.00 51.64	AAAA C
ATOH	1968 CB HIS	202	41.712	13.952	84.810	1.00 45.20	AAAA C
ATOH	1969 CG HIS	202 -	41.996	15.330	85.267	1.00 38.71	AAAA C
ATOH	1970 HD1 HIS	202	41.501	16.404	84.550	1.00 51.32	AAAA II
🕶 1	TOTAL HELL HES		41.501	10.404	04.559	1.00 31.3.	WWW 11

.

ATCH: 0017 03 SER 2038 40.600 5.597 77.461 1.00 35.77 AAAA C ATCH: 2019 0 SER 208 41.141 8.068 78.377 1.00 49.17 AAAA C ATCH: 2019 0 SER 208 41.141 8.068 78.377 1.00 49.17 AAAA C ATCH: 2010 0 SER 208 41.761 9.094 78.163 1.00 48.24 AAAA C ATCH: 2013 TA CUS 209 41.599 7.1023 79.199 1.00 55.98 AAAA C ATCH: 2013 TA CUS 209 41.599 7.1023 79.199 1.00 55.98 AAAA C ATCH: 2013 TA CUS 209 41.892 4.0635 90.403 1.00 58.33 AAAA C ATCH: 2016 TO CUS 209 42.924 77.307 79.964 1.00 55.98 AAAA C ATCH: 2016 TO CUS 209 42.924 77.307 79.964 1.00 55.98 AAAA C ATCH: 2016 TO CUS 209 42.924 77.307 79.964 1.00 58.33 AAAA C ATCH: 2016 TO CUS 209 42.922 4.963 90.403 1.00 58.33 AAAA C ATCH: 2016 TO CUS 209 42.922 4.963 90.403 1.00 58.33 AAAA C ATCH: 2016 TO CUS 209 41.380 7.680 80.403 1.00 58.33 AAAA C ATCH: 2016 TO CUS 209 41.380 7.680 80.403 1.00 58.30 AAAA C ATCH: 2016 TO CUS 209 41.380 7.680 80.403 1.00 58.37 AAAA C ATCH: 2018 TO SER 210 41.380 7.680 80.403 1.00 58.10 AAAA C ATCH: 2018 TO SER 210 41.380 7.680 80.403 1.00 58.10 AAAA C ATCH: 2018 TO SER 210 41.380 7.680 80.403 1.00 58.10 AAAA C ATCH: 2018 TO SER 210 47.022 5.093 91.108 1.00 58.10 AAAA C ATCH: 2013 CO SER 210 47.022 5.093 91.108 1.00 58.10 AAAA C ATCH: 2018 TO SER 210 45.331 4.713 82.826 1.00 56.44 AAAA C ATCH: 2018 TO SER 210 45.331 4.713 82.826 1.00 56.44 AAAA C ATCH: 2018 TO SER 210 45.331 4.713 82.826 1.00 56.44 AAAA C ATCH: 2018 TO SER 210 45.331 4.713 82.806 1.00 56.44 AAAA C ATCH: 2019 TO SER 210 45.331 4.713 82.806 1.00 56.44 AAAA C ATCH: 2019 TO SER 210 45.301 4.980 5.808 83.548 1.00 52.79 AAAA C ATCH: 2019 TO SER 210 45.301 4.713 80.926 80.41 1.00 56.40 AAAA C ATCH: 2019 TO SER 210 43.802 80.803 5.926 85.649 1.00 63.41 AAAA C ATCH: 2019 TO SER 210 43.802 80.803 5.926 85.649 1.00 63.41 AAAA C ATCH: 2019 TO SER 210 43.802 80.803 5.926 85.649 1.00 63.41 AAAA C ATCH: 2019 TO SER 210 43.802 80.803 5.926 85.649 1.00 63.41 AAAA C ATCH: 2019 TO SER 210 43.802 80.803 5.926 85.649 1.00 63.41 AAAA C ATCH: 2019 TO SER 210 500 500 500 500 500 500 500 500 500 5	ATORE	1971 CEL HIST 1972 TUD HIST 1973 BEC HIST 1973 BEC HIST 1975 H FRO 1976 CD FRO 1977 CA FRO 1978 CB FRO 1978 CB FRO 1980 C PRO 1981 O FRO 1982 H GLU 1985 CB GLU 1985 CB GLU 1986 CS GLU 1987 CC GLU 1987 C GLU 1988 OE1 GLU 1989 OE2 GLU 1990 C GLU 1991 O GUS 1991 O GUS 1992 H CA CYS 1995 C CYS 1995 C CYS 1996 O CYS 1997 CB LEU 2001 CA LEU 2002 CB LEU 2003 CB LEU 2004 CD1 LEU 2005 CD2 LEU 2006 C LEU 2006 C LEU 2006 C LEU 2007 O LSU 2010 TA GLY 2011 T GLY	202 202 203 203 203 203 203 203 203 204 204 204 204 204 204 204 204 205 205 205 205 206 206 206 206 206 206 206 206 206 206	41.983 42.563 38.736 37.248 38.141 37.698 39.799 41.727 41.378 40.766 40.718 40.718 40.718 41.238 40.718 41.238 40.612 40.812 40.923 39.892 39.169 39.266 38.310 40.400 38.310 40.400 38.368 39.688	15.813 17.207 15.840 15.840 15.840 17.107 17.210 16.519 17.045 17	86.34; 86.25; 86.08; 84.74; 86.08; 84.74; 85.90; 81.73; 81.30; 81.30; 81.30; 81.30; 81.50;	1.00 39.59 1.00 43.48 1.00 47.74 1.00 46.97 9 1.00 43.37 1.00 53.27 1.00 53.27 1.00 53.16 1.00 50.34 1.00 50.34 1.00 50.34 1.00 55.26 1.00 44.04 1.00 57.66 1.00 45.71 1.00 46.56 1.00 45.71 1.00 50.34 1.00 57.66 1.00 45.71 1.00 46.56 1.00 45.71 1.00 46.56 1.00 45.71 1.00 46.56 1.00 45.71 1.00 50.34 1.00 50.34 1.00 50.34 1.00 50.34 1.00 50.34 1.00 50.34 1.00 50.34	AAAA C
ATCHI 2019 CR SUY 207 38.264 11.359 75.681 1.00 42.41 AAAA C ATCHI 2010 CR SUY 207 38.463 10.099 74.975 1.00 46.57 AAAA C ATCHI 2011 CR SUY 207 38.468 9.061 76.059 1.00 47.15 AAAA C ATCHI 2011 CR SUY 207 37.668 9.061 76.059 1.00 47.15 AAAA C ATCHI 2012 CR SUY 207 37.668 9.061 76.059 1.00 45.04 AAAA C ATCHI 2016 CR SUR 209 39.622 9.079 76.766 1.00 58.36 AAAA C ATCHI 2016 CR SUR 209 39.622 9.079 76.766 1.00 48.27 AAAA C ATCHI 2016 CR SUR 209 39.622 9.079 76.766 1.00 48.27 AAAA C ATCHI 2019 CR SUR 209 41.599 77.163 76.667 1.00 48.27 AAAA C ATCHI 2019 CR SUR 209 41.599 77.163 77.461 1.00 61.34 AAAA C ATCHI 2019 CR SUR 209 41.599 77.123 79.964 1.00 55.99 AAAA C ATCHI 2010 CR SUR 209 41.599 77.123 79.964 1.00 55.99 AAAA C ATCHI 2016 CR SUR 209 41.599 77.123 79.964 1.00 55.99 AAAA C ATCHI 2016 CR SUR 209 41.369 CR SUR 209 42.952 4.953 90.423 1.00 58.93 AAAA C ATCHI 2016 CR SUR 209 41.369 CR SUR 209 42.952 4.953 90.423 1.00 58.93 AAAA C ATCHI 2016 CR SUR 209 41.369 CR SUR 209 41.390 CR SUR 209 4	ATOH ATOH HOTA	2004 CD1 LEU 2005 CD2 LEU 2006 C LEU	206 206	36.879 38.331	14.243 15.599	74.895 73.420	1.00 45.79 1.00 50.71	AAAA C AAAA C
ATCH: 0215 GA SEP. 029 ATCH: 0216 GB SEP. 029 ATCH: 0216 GB SEP. 029 ATCH: 0217 GB SEP. 029 ATCH: 0210 C SEP. 029 ATCH	ATOH ATOH HOTA	2008 N GLY 2010 CA GLY 2011 T GLY	207 207 207	38.264 38.403 38.466	11.359 10.099 9.061	75.681 74.979 76.058	1.00 42.41 1.00 40.57 1.00 47.15	AAAA O H AAAA C AAAA C
ATCH: 2020 0 553 209 41.781 9.084 78.163 1.00 48.24 AAAA O ATCH: 2021 TA CVS 209 42.824 7.307 79.964 1.00 55.98 AAAA C ATCH: 2021 TA CVS 209 43.653 6.035 90.484 1.00 55.98 AAAA C ATCH: 2026 TB CVS 209 43.653 6.035 90.484 1.00 55.98 AAAA C ATCH: 2026 TB CVS 209 42.824 7.307 79.964 1.00 58.33 AAAA C ATCH: 2026 TB CVS 209 42.829 81.238 91.146 1.00 58.33 AAAA C ATCH: 2026 TB CVS 209 42.829 81.238 91.146 1.00 58.33 AAAA C ATCH: 2027 FB CVS 209 42.829 81.238 91.146 1.00 58.33 AAAA C ATCH: 2027 FB CVS 209 42.829 81.238 91.146 1.00 58.51 AAAA C ATCH: 2027 FB CVS 209 41.390 7.802 82.251 1.00 58.22 AAAA S ATCH: 2027 FB CVS 209 41.390 7.802 82.251 1.00 58.22 AAAA S ATCH: 2027 FB CVS 209 41.390 7.802 82.251 1.00 58.27 AAAA C ATCH: 2031 CB SER 210 45.506 4.950 81.313 1.00 59.37 AAAA C ATCH: 2031 CB SER 210 47.546 6.204 81.813 1.00 58.07 AAAA C ATCH: 2032 CG SER 210 47.546 6.204 81.813 1.00 56.34 AAAA C ATCH: 2035 C SER 210 47.546 6.204 81.813 1.00 56.34 AAAA C ATCH: 2035 C SER 210 45.505 8.806 83.848 1.00 52.79 AAAA N ATCH: 2038 CA ALA 211 44.980 5.684 85.004 1.00 56.60 AAAA C ATCH: 2039 CA ALA 211 44.980 5.684 85.004 1.00 56.60 AAAA C ATCH: 2039 CA ALA 211 44.980 5.684 85.004 1.00 56.60 AAAA C ATCH: 2049 C ALA 211 44.980 5.684 85.004 1.00 56.58 AAAA C ATCH: 2040 C ALA 211 44.980 5.684 85.004 1.00 56.59 AAAA C ATCH: 2041 CA ALA 211 43.952 7.7792 84.711 1.00 50.78 AAAA C ATCH: 2041 CA ALA 211 43.952 6.747 85.995 1.00 65.84 AAAA C ATCH: 2042 II SRO 212 43.617 86.575 1.00 55.93 AAAA C ATCH: 2041 CA PRO 212 43.617 6.416 86.359 1.00 55.93 AAAA C ATCH: 2041 CA PRO 212 41.951 7.257 86.575 1.00 55.93 AAAA C ATCH: 2045 CB PRO 212 41.951 7.257 86.575 1.00 55.59 AAAA C ATCH: 2045 CB PRO 212 41.951 7.257 86.575 1.00 55.86 AAAA C ATCH: 2045 CB PRO 212 41.951 7.257 86.575 1.00 55.86 AAAA C ATCH: 2045 CB PRO 212 42.409 8.535 87.177 1.00 53.64 AAAA C ATCH: 2045 CB PRO 212 42.409 8.535 87.177 1.00 53.64 AAAA C ATCH: 2045 CB PRO 212 42.409 8.535 87.177 1.00 53.64 AAAA C ATCH: 2045 CB ALA 213 41.951 7.257 86.575 1.00 60.03 AAAA C ATCH: 2055 C	ATGII ATGII ATGII	2013 H SER 2015 CA SER 2016 CB SER 2017 CG SER	208 208 208	39.622 39.832 39.909	9.079 7.898 6.631	76.760 77.660 76. 7 87	1.00 50.36 1.00 48.27 1.00 35.77	H AAAA D AAAA C AAAA
ATCHI 2015 0 TVS 209 42.852 4.863 90.423 1.00 58.33 AAAA O ATCHI 2027 53 TVS 209 41.380 7.602 82.281 1.00 52.51 AAAA C ATCHI 2027 53 TVS 209 41.380 7.602 82.281 1.00 59.37 AAAA N ATCHI 2031 CA SER 210 41.380 7.602 82.281 1.00 59.37 AAAA N ATCHI 2031 CA SER 210 45.506 4.950 81.319 1.00 59.37 AAAA N ATCHI 2031 CB SER 210 47.546 6.204 81.00 51.00 55.07 AAAA C ATCHI 2031 CB SER 210 47.546 6.204 81.819 1.00 56.44 AAAA C ATCHI 2032 CG SER 210 47.546 6.204 81.809 1.00 55.07 AAAA C ATCHI 2035 C SER 210 47.546 8.204 81.809 1.00 56.34 AAAA C ATCHI 2035 C SER 210 45.529 3.614 83.326 1.00 56.42 AAAA C ATCHI 2035 C SER 210 45.529 3.614 83.326 1.00 56.42 AAAA C ATCHI 2039 CA ALA 211 45.105 5.806 83.548 1.00 52.79 AAAA N ATCHI 2039 CB ALA 211 46.333 5.926 85.649 1.00 56.60 AAAA C ATCHI 2039 CB ALA 211 46.333 5.926 85.649 1.00 56.60 AAAA C ATCHI 2034 C ALA 211 43.962 6.747 85.395 1.00 56.58 AAAA C ATCHI 2041 C ALA 211 43.962 6.747 85.395 1.00 50.78 AAAA C ATCHI 2041 C ALA 211 43.962 6.747 85.395 1.00 55.59 AAAA C ATCHI 2043 CD PRO 212 43.017 6.416 86.359 1.00 55.93 AAAA C ATCHI 2044 CA PRO 212 43.017 6.416 86.359 1.00 55.50 AAAA C ATCHI 2043 CD PRO 212 43.042 5.166 87.155 1.00 55.50 AAAA C ATCHI 2044 CA PRO 212 41.951 7.257 86.575 1.00 55.50 AAAA C ATCHI 2048 C PRO 212 41.951 7.257 86.575 1.00 55.50 AAAA C ATCHI 2048 C PRO 212 41.514 8.725 87.393 1.00 57.48 AAAA C ATCHI 2049 C ALA 213 41.537 9.492 87.393 1.00 57.48 AAAA C ATCHI 2049 C ALA 213 41.537 9.492 87.393 1.00 57.48 AAAA C ATCHI 2049 C ALA 213 41.537 9.492 87.397 1.00 53.87 AAAA C ATCHI 2049 C ALA 213 41.537 9.492 87.393 1.00 57.48 AAAA C ATCHI 2049 C ALA 213 41.537 9.492 87.393 1.00 57.48 AAAA C ATCHI 2049 C ALA 213 41.537 9.492 87.393 1.00 57.48 AAAA C ATCHI 2049 C ALA 213 41.537 9.492 87.393 1.00 57.48 AAAA C ATCHI 2049 C ALA 213 41.537 9.492 87.393 1.00 57.48 AAAA C ATCHI 2050 C ALA 213 41.516 81.527 89.541 1.00 66.40 AAAA C ATCHI 2050 C ALA 213 41.912 10.710 88.057 1.00 53.87 AAAA C ATCHI 2050 C ALA 213 41.912 10.710 88.057 1.00 59.41 AAAA C ATCHI 2050 C ALA 213 41	ATOM ATOM ATOM	2020 0 SER 2021 N DYS 2023 DA DYS	208 209 209	41.781 41.599 42.924	9.084 7.123 7.307	78.163 79.199 79.964	1.00 48.24 1.00 52.04 1.00 55.98	AAAA O AAAA N AAAA C
ATCH: 2031 CB SER 210	ATOM ATOM ATOM ATOM	0005 0 078 2026 08 078 2027 83 078 2028 :: SER	209 209 209 210	42.862 42.629 41.380 44.734	4.963 9.258 7.602 6.145	90.423 91.146 82.261 96.883	1.00 58.33 1.00 52.51 1.00 58.22 1.00 59.37	AAAA O AAAA C AAAA S AAAA N
ATCH 2038 CA ALA 211 44.980 5.684 85.004 1.00 56.60 AAAA C ATCH 2040 C ALA 211 43.962 6.747 85.395 1.00 56.58 AAAA C ATCH 2040 C ALA 211 43.957 7.792 84.711 1.00 50.78 AAAA C ATCH 2041 O ALA 211 43.957 7.792 84.711 1.00 50.78 AAAA C ATCH 2041 C ALA 211 43.957 7.792 84.711 1.00 50.78 AAAA C ATCH 2043 CD PRO 212 43.117 6.416 86.359 1.00 55.93 AAAA N ATCH 2043 CD PRO 212 41.951 7.257 86.575 1.00 55.86 AAAA C ATCH 2045 CB PRO 212 41.951 7.257 86.575 1.00 55.50 AAAA C ATCH 2046 CG PRO 212 41.104 6.470 87.556 1.00 59.65 AAAA C ATCH 2046 CG PRO 212 42.021 5.493 88.175 1.00 55.50 AAAA C ATCH 2046 CG PRO 212 42.021 5.493 88.175 1.00 54.56 AAAA C ATCH 2048 O PRO 212 42.021 5.493 88.175 1.00 54.56 AAAA C ATCH 2048 O PRO 212 42.021 5.493 88.175 1.00 53.64 AAAA C ATCH 2048 O PRO 212 42.021 8.725 87.393 1.00 57.48 AAAA C ATCH 2050 CA ALA 213 41.537 9.492 87.347 1.00 53.87 AAAA N ATCH 2051 CA ALA 213 41.537 9.492 87.347 1.00 53.87 AAAA N ATCH 2053 C ALA 213 41.783 10.255 89.541 1.00 66.40 AAAA C ATCH 2054 C ALA 213 41.783 10.255 89.541 1.00 66.40 AAAA C ATCH 2054 C ALA 213 43.728 12.202 88.652 1.00 60.03 AAAA C ATCH 2054 C ALA 213 43.728 12.202 88.652 1.00 60.03 AAAA C ATCH 2054 C ALA 213 43.728 12.202 88.652 1.00 60.03 AAAA C ATCH 2054 C ALA 213 43.728 12.202 88.652 1.00 60.03 AAAA C ATCH 2054 C ALA 213 43.728 12.202 88.652 1.00 60.03 AAAA C ATCH 2055 C ALA 213 43.728 12.202 88.652 1.00 60.03 AAAA C ATCH 2054 C ALA 213 43.728 12.202 88.652 1.00 60.03 AAAA C ATCH 2055 C ALA 213 43.728 12.202 88.652 1.00 60.03 AAAA C ATCH 2054 C ALA 213 43.728 12.202 88.652 1.00 60.03 AAAA C ATCH 2055 C ALA 213 43.728 12.202 88.652 1.00 60.03 AAAA C ATCH 2055 C ALA 213 43.728 12.202 88.652 1.00 60.03 AAAA C ATCH 2055 C ALA 213 43.728 12.202 88.652 1.00 60.03 AAAA C ATCH 2055 C ALA 213 43.728 12.202 88.652 1.00 60.03 AAAA C ATCH 2056 C ALA 213 AAAA C ATCH 2056 C ALA 213 AAAA C ATCH 2056 C ALA 213 AAAA C ATCH 2066 C ALA 213 AAAA C ATCH 206	ATON ATON ATON ATON	2031 CB SER 2032 CG SER 2034 C SER 2035 C SER	210 210 210 210	47.022 47.546 45.331 45.529	5.093 6.204 4.713 3.614	91.195 81.819 82.826 83.326	1.00 55.07 1.00 64.49 1.00 56.34 1.00 54.42	AAAA C AAAA C AAAA C AAAA O
ATOM 2043 CD PRO 212 43.042 5.166 87.115 1.00 55.86 AAAA C ATOM 2044 CA PRO 212 41.951 7.257 86.575 1.00 55.50 AAAA C ATOM 2045 CB PRO 212 41.951 7.257 86.575 1.00 59.65 AAAA C ATOM 2045 CB PRO 212 42.021 5.493 88.175 1.00 59.65 AAAA C ATOM 2050 CB ACA 213 42.021 5.493 88.175 1.00 54.56 AAAA C ATOM 2051 CA ALA 213 41.537 9.492 87.347 1.00 53.87 AAAA N ATOM 2051 CB ALA 213 41.912 10.710 88.057 1.00 59.41 AAAA C ATOM 2051 CB ALA 213 41.912 10.710 88.057 1.00 59.41 AAAA C ATOM 2052 CB ALA 213 41.912 10.710 88.057 1.00 59.41 AAAA C ATOM 2053 C ALA 213 43.289 11.300 87.907 1.00 61.40 AAAA C ATOM 2053 C ALA 213 43.289 11.300 87.907 1.00 60.03 AAAA C ATOM 2055 N ASM 214 44.068 10.999 86.899 1.00 64.80 AAAA C ATOM 2055 CB ASM 214 45.366 11.551 86.596 1.00 53.36 AAAA C ATOM 2057 CA ASM 214 45.366 11.551 86.596 1.00 63.36 AAAA C ATOM 2064 C ASM 214 45.360 12.294 85.251 1.00 61.56 AAAA C ATOM 2064 C ASM 214 45.360 12.294 85.251 1.00 61.56 AAAA C ATOM 2064 C ASM 214 45.366 11.551 86.596 1.00 67.32 AAAA C ATOM 2064 C ASM 214 45.366 11.551 86.596 1.00 67.32 AAAA C ATOM 2064 C ASM 214 45.366 11.379 86.608 1.00 67.32 AAAA C ATOM 2065 CB ASM 214 45.366 10.379 86.608 1.00 67.32 AAAA C ATOM 2066 CB ASM 214 47.697 10.896 86.362 1.00 75.48 AAAA C ATOM 2060 CDI ASM 214 47.697 10.896 86.362 1.00 75.48 AAAA C ATOM 2060 CDI ASM 214 48.513 11.170 87.427 1.00 90.05 AAAA N ATOM 2060 CDI ASM 214 48.513 11.170 87.427 1.00 90.05 AAAA N ATOM 2060 CDI ASM 214 48.513 11.170 87.427 1.00 90.05 AAAA N ATOM 2060 CDI ASM 214 48.513 11.170 87.427 1.00 90.05 AAAA N ATOM 2060 CDI ASM 214 48.513 11.170 87.427 1.00 90.05 AAAA N ATOM 2060 CDI ASM 214 48.513 11.170 87.427 1.00 90.05 AAAA N ATOM 2060 CDI ASM 214 48.513 11.170 87.427 1.00 90.05 AAAA N ATOM 2060 CDI ASM 214 48.513 11.170 87.427 1.00 90.05 AAAA N ATOM 2060 CDI ASM 214 48.513 11.170 87.427 1.00 90.05 AAAA N ATOM 2060 CDI ASM 214 48.513 11.170 87.427 1.00 90.05 AAAA N ATOM 2060 CDI ASM 214 48.513 11.170 87.427 1.00 90.05 AAAA C ATOM 2060 CDI ASM 214 48.513 11.170 87.427 1.00 90.05 AAAA C ATOM 20	ATOH ATOH ATOH	2038 CA ALA 2039 CB ALA 2040 C ALA 2041 O ALA	211 211 211 211	44.980 46.333 43.962	5.684 5.926 6.747	85.004 85.649 85.395	1.00 56.60 1.00 63.41 1.00 56.58	АААА С АААА С АААА С
ATOII 2047 C PRO 212 42.409 8.535 87.177 1.00 53.64 AAAA C ATOII 2048 0 PRO 212 43.611 8.725 87.393 1.00 57.48 AAAA O ATOII 2051 CA ALA 213 41.537 9.492 87.347 1.00 53.87 AAAA C ATOII 2052 CB ALA 213 41.783 10.255 89.541 1.00 66.40 AAAA C ATOII 2053 C ALA 213 43.289 11.300 87.907 1.00 61.40 AAAA C ATOII 2055 II ASII 214 44.068 10.999 86.899 1.00 60.03 AAAA O ATOII 2055 II ASII 214 45.366 11.551 86.596 1.00 63.36 AAAA C ATOII 2063 C ASII 214 45.366 11.551 86.596 1.00 63.36 AAAA C ATOII 2064 O ASII 214 45.366 11.551 86.596 1.00 63.36 AAAA C ATOII 2055 CB ASII 214 45.300 12.294 85.251 1.00 61.56 AAAA C ATOII 2064 O ASII 214 45.366 11.794 84.117 1.00 58.38 AAAA O ATOII 2059 CG ASII 214 46.336 10.379 86.608 1.00 67.32 AAAA C ATOII 2064 O ASII 214 46.336 10.379 86.608 1.00 67.32 AAAA C ATOII 2064 O ASII 214 46.336 10.379 86.608 1.00 67.32 AAAA C ATOII 2060 OD1 ASII 214 47.697 10.896 86.362 1.00 75.48 AAAA C ATOII 2060 OD1 ASII 214 48.254 11.105 85.302 1.00 83.64 AAAA C ATOII 2060 OD1 ASII 214 48.254 11.105 85.302 1.00 83.64 AAAA O ATOII 2061 IID2 ASII 214 48.513 11.170 87.427 1.00 90.05 AAAA N ATOII 2067 CA ASP 215 45.666 13.565 85.305 1.00 59.78 AAAA C ATOII 2068 CB ASP 215 45.618 14.432 84.144 1.00 40.19 AAAA C ATOII 2068 CB ASP 215 45.618 14.432 84.446 1.00 40.19 AAAA C ATOII 2068 CB ASP 215 45.430 15.926 84.446 1.00 40.19 AAAA C ATOII 2068 CB ASP 215 45.430 15.926 84.446 1.00 40.19 AAAA C ATOII 2069 CG ASP 215 45.430 15.926 84.446 1.00 40.19 AAAA C	HOTA HOTA HOTA	2043 CD PRO 2044 CA PRO 2045 CB PRO	212 212 212	43.042 41.951 41.104	5.166 7.257 6.470	87.115 86.575 87.556	1.00 55.86 1.00 55.50 1.00 59.65	AAAA C AAAA C AAAA C
ATOH 2053 C ALA 213 43.289 11.300 87.907 1.00 61.40 AAAA C ATOH 2054 O ALA 213 43.728 12.202 88.652 1.00 60.03 AAAA O ATOH 2055 H ASH 214 44.068 10.999 86.899 1.00 64.80 AAAA H ATOH 2057 CA ASH 214 45.366 11.551 86.596 1.00 63.36 AAAA C ATOH 2063 C ASH 214 45.300 12.294 85.251 1.00 61.56 AAAA C ATOH 2058 CB ASH 214 45.300 12.294 85.251 1.00 61.56 AAAA C ATOH 2058 CB ASH 214 46.336 10.379 86.608 1.00 67.32 AAAA C ATOH 2059 CG ASH 214 47.697 10.896 86.362 1.00 75.48 AAAA C ATOH 2050 CD ASH 214 48.254 11.105 85.302 1.00 83.64 AAAA C ATOH 2060 CD ASH 214 48.254 11.105 85.302 1.00 83.64 AAAA C ATOH 2060 CD ASH 214 48.513 11.170 87.427 1.00 90.05 AAAA N ATOH 2065 H ASP 215 45.666 13.565 85.305 1.00 59.78 AAAA H ATOH 2067 CA ASP 215 45.618 14.432 84.446 1.00 40.19 AAAA C ATOH 2068 CB ASP 215 45.618 14.432 84.446 1.00 40.19 AAAA C ATOH 2068 CB ASP 215 45.430 15.926 84.446 1.00 40.19 AAAA C ATOH 2069 CG ASP 215 45.430 15.926 84.446 1.00 56.36 AAAA C	ATOH ATOH HOTA	2048 O PRO 2049 II ALA 2051 CA ALA	212 213 213	43.611 41.537 41.912	8.725 9.492 10.710	87.393 87.347 88.057	1.00 57.48 1.00 53.87 1.00 59.41	AAAA O AAAA N AAAA C
ATON 2064 O ASN 214 45.198 11.794 84.117 1.00 58.38 AAAA O ATOM 2058 CB ASN 214 46.336 10.379 86.608 1.00 67.32 AAAA C ATOM 2059 CG ASN 214 47.697 10.896 86.362 1.00 75.48 AAAA C ATOM 2060 ODI ASN 214 48.254 11.105 85.302 1.00 83.64 AAAA O ATOM 2061 HP2 ASN 214 48.513 11.170 87.427 1.00 90.05 AAAA N ATOM 2065 N ASP 215 45.666 13.565 85.305 1.00 59.78 AAAA N ATOM 2067 CA ASP 215 45.618 14.432 84.143 1.00 56.47 AAAA C ATOM 2068 CB ASP 215 45.430 15.926 84.446 1.00 40.19 AAAA C ATOM 2069 CG ASP 215 46.671 16.543 84.986 1.00 56.36 AAAA C	HOTA HOTA HOTA	2053 C ALA 2054 O ALA 2055 II ASII 2057 CA ASII	213 213 214 214	43.289 43.728 44.068 45.366	11.300 12.202 10.999 11.551	87.907 88.652 86.899 86.596	1.00 61.40 1.00 60.03 1.00 64.80 1.00 53.36	AAAA C AAAA O AAAA N AAAA C
ATOH 2065 N ASP 215 45.666 13.565 85.305 1.00 59.78 AAAA N ATOH 2067 CA ASP 215 45.618 14.432 84.143 1.00 56.47 AAAA C ATOH 2068 CB ASP 215 45.430 15.926 84.446 1.00 40.19 AAAA C ATOH 2069 CG ASP 215 46.671 16.543 84.986 1.00 56.36 AAAA C	ATOH ATOH ATOH ATOH	2064 O ASII 2058 CB ASII 2059 CG ASII 2060 ODI ASII	214 214 214 214	45.198 46.336 47.697 48.254	11.794 10.379 10.896 11.105	84.117 86.608 86.362 85.302	1.00 58.38 1.00 67.32 1.00 75.48 1.00 83.64	AAAA C AAAA C AAAA C AAAA O
	HOTA HOTA HOTA HOTA	2065 II ASP 2067 CA ASP 2068 CB ASP 2069 CG ASP	215 215 215 215	45.666 45.618 45.430 46.671	13.565 14.432 15.926 16.543	85.305 84.143 84.446 84.986	1.00 59.78 1.00 56.47 1.00 40.19 1.00 56.36	AAAA C AAAA C AAAA C

Atri	: 2671 902 Agi						
ATOL			47.76				O AAAA
ATO			46.81				AAAA C
ATG			46.99				AAAA O
ATO			47.71				II AAAA
ATO			48.88				AAAA C
ICTA			50.201				AAAA C
ATO			50.403 50.436				AAAA O
ATO							AAAA C
ATOL			48.683 49.590				AAAA C
ATO			47.559				AAAA O
ATO			47.259				AAAA N
ATO	_		46.908				AAAA C
ATO			46.207				AAAA C
ATOL			45.775		-		AAAA C
ATON			45.744				AAAA O
ATOR			44.802				AAAA N
ATOH			45.166				AAAA C
ATOH			46.300				AAAA O
ATOR			44.536				AAAA C
ATOH			44.256				AAAA S
ATO!!			44.226				AAAA II
ATOH			44.575				AAAA C
ATON	2099 CB VAL	219	43.693				AAAA C
ATOH	2100 CG1 VAL	219	43.952				AAAA C
ATO:	2101 CG2 VAL	219	43.811				AAAA C
ATOH	0100 C VAL	219	44.453				AAAA C
ATON	2103 O VAL	219	45.303				AAAA O
ATOH	2104 H ALA	220	43.728				II AAAA
ATO:	2106 CA ALA	220	43.630				AAAA C
HOTA	2107 CB ALA	220	42.536	12.919			AAAA C
ATOL	2109 T ALA	220	43.292	14.071	75.390		AAAA C
ATOM:	0109 0 ALA	220	42.846	13.604	76.455	1.00 37.88	AAAA O
ATO:	IIII :: CYS	221	43.285	15.334	75.058	1.00 30.27	AAAA II
ATON	2112 TA CYS	221	42.753	16.392	75.875	1.00 35.55	AAAA C
ATON	2113 C CYS	221	41.460	17.055	75.452	1.00 47.06	AAAA C
ATOM:	Cled D CYS	221	41.265	17.598	74.369	1.00 49.57	AAAA O
A7011	1118 TB CYG 2116 SB CYG 2117 T ARG 2117 TA ARG 21109 TB ARG	221	43.904	17.479	76.063	1.00 47.45	AAAA C
ATO:	2116 SF CYS	221	45.494	16.935	76.538	1.00 47.08	AAAR S
ATG:	2117 % ARG	322	40.503	17.133	76.396	1.00 51.47	AAAA N
ATM:	1117 CA ARG	222	39.281	17.906	76.338	1.00 51.86	AAAA C
AT 31	0100 08 ARG 0101 03 ARG	222	38.647	19.074	77.712	1.00 54.53	AAAA C
ATO:: ATO::		222 222	37.314	19.697	77.854	1.00 45.56	AAAA C
ATON:	0103 DD ARG 0103 DE ARG	222	36.538	19.338	79.087	1.00 54.45	AAAA C
ATO:	0125 CI ARG	222	36.272	16.947	79.269	1.00 65.53	AAAA II
AT OF:	2126 UHI ARG	222	35.534	15.080	78.617	1.00 67.50	AAAA C
ATON	2129 ::H2 ARG	222	34.925 35.342	16.599 14.730	77.533	1.00 70.26	AAAA ::
ATO:	0130 T ARG	222	39.562	19.296	79.901 75.740	1.00 54.11	AAAA !!
AT:01:	0180 T ARG 0183 D ARG	222	38.737	19.845	75.009	1.00 50.66 1.00 58.34	AAAA C
ATO:	2134 H HIS	223	40.556	19.981	76.190	1.00 45.65	AAAA O
A.PON	2136 TA HIS	223	40.988	21.291	75.821	1.00 46.93	AAAA H
ATOH	3137 TB HIS	223	11.057	22.251	77.011	1.00 49.51	AAAA C AAAA C
ATO!!	2139 I3 HIS	223	39.710	22.344	77.647	1.00 58.93	AAAA C
ATOH	2139 CD2 HIS	223	38.820	23.360	77.556	1.00 61.08	AAAA C
HCTA	2140 HD1 HIS	223	39.082	21.388	78.425	1.00 63.28	AAAA II
ATOM	2142 CE1 HIS	223	37.881	21.915	78.759	1.00 58.01	AAAA C
HOTA	2143 HE2 HIS	223	37.681	23.010	78.232	1.00 48.56	AAAA N
ATCH	2145 C HIS	223	42.363	21.260	75.122	1.00 50.79	AAAA C
ATO!!	2146 O HIS	223	42.506	20.753	74.003	1.00 47.43	AAAA O
ATOH	2147 H TYR	224	43.359	21.847	75.769	1.00 49.20	II AAAA 11
ATOH	2149 CA TYR	224	44.712	21.992	75.259	1.00 48.17	AAAA C
HOTA	2150 CB TYR	224	45.144	23.430	75.426	1.00 44.07	AAAA C
ATOH	2151 TG TYR	224	44.318	24.234	74.417	1.00 51.77	AAAA C
HOTA	2152 COL TYR	224	43.193	24.869	74.904	1.00 48.94	AAAA C
ATOH HOTA	2183 CE1 TYR 2184 CD2 TYR	224	42.401	25.633	74.089	1.00 48.41	AAAA C
ATOH		224	44.623	24.358	73.065	1.00 54.82	AAAA C
ATOH	2155 CS2 TYR 2156 CC TYR	224	43.847	25.131	72.233	1.00 56.09	AAAA C
ATOH		224	42.739	25.745	72.766	1.00 54.23	AAAA C
ATOH		224	41.915	26.522	72.017	1.00 61.70	AAAA O
HOTA	2159 C TYR 2160 O TYR	224 224	45.725 45.776	21.095	75.892	1.00 48.19	AAAA C
ATOH	2161 !: TYR	225	46.584	20.913 20.514	77.111	1.00 55.75	AAAA O
ATOH	2163 TA TYR	225	40.384	19.653	75.077	1.00 48.79	AAAA N
ATOH	2164 CB TYR	225	48.020	18.639	75.555 74 548	1.00 43.02	AAAA C
ATOH	2165 CG TYR	225	49.286	17.926	74.548 74.954	1.00 42.32 1.00 46.95	AAAA C
ATOH	2166 TOL TYR	225	49.299	16.858	75.817		AAAA C
ATOI4	2167 CEL TYR	225	50.450	16.221	76.173	1.00 43.57 1.00 47.26	AAAA C AAAA C
ATCH1	2168 CD2 TYR	225	50.487	18.407	74.421	1.00 47.26	AAAA C
ATOH	2169 CE2 TYR	225	51.656	17.791	74.781	1.00 52.82	AAAA C
ATOH	2170 GE TYR	225	51.639	16.707	75.644	1.00 52.31	AAAA C
ATOH	2171 OH TYR	225	52.886	16.186	75.905	1.00 50.71	AAAA O
ATOH	2173 C TYR	225	48.872	20.507	75.793	1.00 30.71	AAAA C
ATOH	2174 © TYR	225	49.080	21.514	75.150	1.00 47.13	AAAA C
ATOR	2175 H TYR	226	49.634	20.253	76.821	1.00 56.84	AAAA II
							- AAAA II

_												
	ATHE	2177	77A	TT: R	226	56.914	21.061	77.172	1.00 56.8	AAAA E!	C	
					226				1.90 59.5			
_	ATC1:	2179	TB	TYR		50.455						
	AT:OL	2179	00	TYR	226	51.741			1.00 65.4			
	ATOL	2180	CD1	TIR	226	52.121	23.557	79.197	1.00 69.1	AAAA I	C · ·	
	ATOL	2191		TYR	226	53.289	24.275		1.00 70.7	7 AAAA	C	
						52.580			1.00 69.3			
	ATOL	2192		TYR	226							
	ATOU	2183	CES	TYR	226	53.758			1.00 70.9			
	ATOH	2194	CD	TTR	226	54.099	24.549	78.301	1.00 72.9	6 AAAA	C	
	ATOH	2185	OH	TYR	226	55.267			1.00 70.8	4 AAAA	0	
									1.00 57.5			
	ATO:	2187	Ç	TTR	226	51.784						
	ATCH	2198	0	TYR	226	51.492	20.133	79.350	1.00 56.9	AAAA 0	0	
	ATOH	2189	H	ALA	227	52.978	20.080	77.642	1.00 53.8	2 AAAA	14	
			CA		227				1.00 51.8			
	ATOH	2191		ALA		54.061						
	HOTA	2192	CB	ALA	227	54.528	20.620		1.00 55.8			
	ATOH	2193	Ç	ALA	227	53.600	18.309	79.170	1.00 53.5	6 AAAA	C	
	ATOH	2194	ò	ALA	227	53.663			1.00 49.6			
	ATOH	2195	11	GLY	228	53.076			1.00 50.6			
	ATOH	2197	CA	GLY	228	52.585	16.135	79.028	1.00 49.0	2 AAAA	C	
	ATOH	2198	С	GLY	228	51.312	16.330	79.861	1.00 51.6	1 AAAA	C	
									1.00 51.1			
	HOTA	2199	O	GLY	228	51.028						
	ATOH1	2200	11	VAL	229	50.643	17.495	79.791	1.00 47.0	9 AAAA	ħ	
	ATC!1	2202	CA	VAL	229	49.489	17.671	80.635	1.00 51.1	1 AAAA	C	
	HOTA	2203	CB	VAL	229	49.908			1.00 56.5			
	IOTA	2204		VAL	229	48.627			1.00 38.3			
	ATOH	2205	CG2	VAL	229	51.002	18.035	82.682	1.00 50.1	6 AAAA	C	
	ATC11	2206	C	VAL	229	48.255	18.173	79.873	1.00 51.3	7 AAAA	C	
	HOTA	2207	Ç	VAL	229	48.344	19.279		1.00 53.7			
	HOTA	2208	11	CIS	230	47.100	17.518	80.036	1.00 42.2	1 AAAA	11	
	HOTA	2210	CA	CIS	230	45.881	18.117	79.471	1.00 40.3	2 AAAA	С	
	ATOH		c	CYS	230	45.456			1.00 38.4			
		2211										
	ATO! 1	2212	0	CYS	230	44.964	19.248	81.321	1.00 41.6			
	HOTA	2213	CB	CYS	230	44.746	17.132	79.370	1.00 31.5	4 AAAA	<u>د</u>	
	ATOH	2214	<i>3</i> ·3	C: S	230	45.149		78.266	1.00 43.6	1 AAAA	<	
	ATOH	2215	11	WAL	231	45.537	20.534	79.731	1.00 39.8			
	ATO!!	2217	CA	VAL	231	45.445	21.769	80.462	1.00 46.5	7 AAAA	C	
	ATON	2219	23	VAL	231	46.619	22.736	80.089	1.00 50.9	9 AAAA	c	
		2212	221					61.053	1.00 50.4			
	ATOU	19		7.5.0	231	46.798	23.678					
	ATO:	2219	030		231	47.838	21.913	80.506	1.00 44.9			
	ATO:	2221	=	VAL	231	44.111	22.321	80.057	1.00 52.5	AAAA e	C	
	ATC!:		5	TAL	231	43.599	22.193	78.936	1.00 55.3			
	ATO!!	2223	::	PRO	232	43.482	23.105	80.913	1.00 54.2			
	ATO!:	2224	22	FRO	232	43.830	23.385	82.320	1.00 54.2	5 AAAA	5	
	ATOLL	2225	CA	FRO	232	42.153	23.625	80.575	1.00 54.3	9 'AAAA	c	
									1.00 53.7			
	HOTA	2226	C3	FRO	232	41.537	23.977	91.928				
	ATOL	3327	ÇG.	FRO	232	42.683	24.287	82.765	1.00 55.0	AAAA O	Ç	
	ATOLE	2229	€.	PRO	232	42.361	24.913	79.795	1.00 56.3	7 AAAA	C	
	ATO!!	2229	•	FRO	232	41.498	25.492	79.137	1.00 55.7	9 AAAA	n	
	ATOH	2230	::	ALA	233	43.615	25.400	79.901	1.00 54.7			
	ATCH	2232	CA	A.L.A.	233	43.998	26.569	79.124	1.00 49.9	3 AAAA	-	
	ATON:	2233	CE	A.L.A.	233	43.440	27.907	79.746	1.00 35.43	3 AAAA	C	
					233		26.662	79.974	1.00 49.7			
	ATOH	1234	2	ALA		45.502						
	ATOH	2235	Ç	ALA	233	46.195	25.879	79.616	1.00 51.4		O	
	ATOH	2236	::	C:S	234	45.984	27.508	78.072	1.00 45.0	7 AAAA	:1	
	ATOH	2238	ΞA	CIS	234	47.430	27.518	77.907	1.00 48.63			
							28.340		1.00 50.9	3 AAAA		
	ATOH	2239	2	CYS	234	48.001		79.076				
_	HOTA	2249	0	CYS	234	47.650	29.513	79.250	1.00 47.5			
	HOTA	2241	ÇВ	CYS	234	47.816	28.034	76.511	1.00 43.10	AAAA 0	C	
	ATOH	2242	<i>5</i> /5	CYS	234.	47.608	26.789	75.226	1.00 43.0			
	IKOTA	2243	ţi.	PRO	235	49.127	27.853	79.599	1.00 49.5			
	HOTA	2244	CD	PRO	235	49.692	26.557	79.207	1.00 48.75			
	ATOH:	2245	CA	PRO	235	49.911	28.569	80.599	1.00 51.69	AAAA e	C	
	ATOH	2246	СВ	FRO	235	50.984	27.581	80.975	1.00 50.80	AAAA C	<u>c</u>	
								80.077	1.00 50.00			
	ATOH	2247	CG	PRO	235	50.912	26.417					
	ATOH	2249	C	PRO	235	50.487	29.852	89.959	1.00 57.11			
	ATOIL	2249	0	PRO	235	50.848	29.957	78.870	1.00 59.50	AAAA C	0	
	ATCH	2250	11	FRO	236	50.676	30.875	89.887	1.00 59.99	5 AAAA	81	
									1.00 55.85			
	ATOH	2251	CD	PRO	236	50.405	30.822	82.363				
	ATOH:	2252	CA	PRO	236	51.323	32.143	80.493	1.00 52.27			
	ATCH:	2253	CB	FRO	236	51.695	32.814	81.826	1.00 53.63	AAAA :	9	
		2254	CG	FRO	236	50.652	32,277	82.754	1.00 56.73			
	HOTA											
	ATOH	2255	C	280	236	52.545	31.886	79.671	1.00 44.21			
	HOTA	2256	0	PRO	236	53.218	30.892	79.928	1.00 43.40			
	ATOH	2257	H	ASN	237	52.837	32.757	78.716	1.00 46.5		, 11	
		2259		IISA	237	53.895	32.623	77.716	1.00 45.94			
	ATCH											
	ATOH	2260	CB	ASH	237	55.258	32.653	78.456	1.00 58.65			
	HOTA	2261	CG	ASN	237	55.357	33.855	79.371	1.00 58.51	. AAAA	C	
	ATOH	2262	001		237	56.044	33.783	80.379	1.00 72.25			
	ATOH	2263	HD2		237	54.631	34.910	79.051	1.00 62.99			
	HOTA	2266	С	ASN	237	53.897	31.425	76.788	1.00 46.87			
	ATOH	2267		ASH	237	54.962	30.935	76.326	1.00 54.50	AAAA (0	
					238			76.692	1.00 42.91			
	HOTA	2268		THR		52.817	30.657					
	ATOH	2270		THR	238	52.617	29.567	75. 7 80	1.90 40.20			
	HCTA	2271	СВ	THR	238	52.461	28.248	76.466	1.00 42.63			
	ATOH	2272	OG1		238	51.227	28.343	77.237	1.00 50.89			
4	ATCHI	2274	CG2	THR	238	53.552	27.886	77.424	1.00 34.84	AAAA (-	

								-
AT 31	2275	C THE	238	51.279		75 070	1.00 42.59	
								AAAA C
ATM	2276	O THE		50.669				AAAA O
ATOU	2277	H TYR	239	51.051	29.488	73.832	1.00 42.62	II AAAA II
DOTA	2279	CA TYR	239	49.949			1.00 41.87	AAAA C
ATON	2260		239	50.457			1.00 44.86	AAAA C
ATOH	2261	CG TYR	239	51.099	32.125	72.564	1.00 42.05	AAAA C
ATCH	2292	CD1 TYR	239	52.467	32.086	72.815	1.00 39.41	AAAA C
ATOH	2293		239	53.092			1.00 43.27	AAAA C
ATOH	2284	CD2 TYR	239	50.376	33.230	72.923	1.00 44.15	AAAA C
ATOH	2285	CEC TYR	239	50.972	34.310	73.536	1.00 46.22	AAAA C
IOTA	2286		239	52.339			1.00 50.49	AAAA C
INTA	2287	OH TYR	239	53.013		74.387	1.00 55.47	aaaa o
ATOH	2289	C TYR	239	49.232	20.013	72.315	1.00 45.54	AAAA C
ATOH	2290		239	49.922			1.00 46.66	AAAA O
ATOH	2291	II ARG	240	47.895			1.00 40.62	aaaa n
IOTA	2293	CA ARG	240	47.177	27.892	71.426	1.00 38.78	AAAA C
ATOH	2294	CB ARG	240	45.675			1.00 39.77	AAAA C
ATOH	2295		240	45.116			1.00 43.37	AAAA C
ATOH	2296	CD ARG	240	43.573	28. 9 57	72.683	1.00 38.60	AAAA C
HOTA	2297	HE ARG	240	43.114			1.00 53.98	II AAAA
ATOH	2299		240	43.123			1.00 48.07	AAAA C
ATO!	2300	HH1 ARG	240	43.513	31.562	72.668	1.00 47.65	II AAAA II
ATOH	2303	HH2 ARG	240	42.788	31.778	70.533	1.00 51.03	II AAAA II
ATOH	2306	C ARG	240	47.627	27.737			
							1.00 31.72	AAAA C
ATOH	2307	O ARG	240	47.937	28.730	69.302	1.00 32.37	AAAA O
ATO!!	2308	II PHE	241	47.779	26.542	69.549	1.00 27.95	AAAA N
HOTA	2310	CA PHE	241	48.182	26.269		1.00 30.41	AAAA C
ATOH	2311	CB PHE	241	49.678	25.940	68.151	1.00 34.83	AAAA C
ATOH	2313	CG PHE	241	50.235	25.653	66.773	1.00 26.84	AAAA C
ATOH	2313	CD1 PHE	241	50.165	26.567	65.753	1.00 25.31	AAAA C
HOTA	2314	CD2 PHE	241	50.785	24.417	66.573	1.00 27.38	AAAA C
ATO!!	2315	CE1 PHE	241	50.676	26.232	64.509	1.00 37.24	AAAA C
ATOH	2316	CE2 PHE	241	51.294	24.101	65.320	1.00 38.45	AAAA C
ATOH	2317	CS PHE	241	51.281				
					25.010	64.281	1.00 21.17	AAAA C
ATGH	2312	C PHE	241	47.382	25.089	67.621	1.00 35.77	AAAA C
ATC!!	2319	O PHE	241	47.543	24.013	68.186	1.00 36.77	AAAA O
ATON	2320	# GL9	242	46.739	25.301	66.468	1.00 32.30	AAAA N
		CA GLU						
ATO:	5355		242	45.964	24.269	65.805	1.00 35.43	AAAA C
ATCH	2323	CB GEU	242	46.953	23.144	65.472	1.00 37.98	AAAA C
ATOH	2324	C3 1910	242	47.867	23.415	64.314	1.00 39.63	AAAA C
	2325							
ATOH			242	47.207	23.965	63.075	1.00 39.27	дада с
ATCH	2326	CEL GLU	242	46.380	23.205	52.517	1.00 42.79	O AAAA O
ATOH	2327	OEC GLU	242	47.354	25.109	62.626	1.00 36.36	AAAA O
ATC!!	2329	o glu	242					
				44.752	23.771	66.600	1.00 34.36	AAAA C
ATOH	2329	೦ ಆಚಿತ	242	44.390	22.611	66.511	1.00 28.53	AAAA O
ATO!!	2330	H SLY	243	44.135	24.589	67.449	1.00 36.94	AAAA H
ATOH	2332	CA GUY	243	43.043	24.154	68.303	1.00 34.57	AAAA C
HOTA	2333	C GLY	243	43.429	23.107	69.319	1.00 37.76	AAAA C
ATCH	2334	o ser	243	42.47;	22.473	69.745	1.00 43.00	AAAA C
ATON	2335	H TRP	244	44.637	22.636	69.611	1.00 39.53	AAAA II
	2337	CA TRP	244	44.797		70.566		
ATOH					21.536		1.00 40.85	AAAA C
ATOH	2339	CB TRP	214	44.774	20.271	69.764	1.00 26.76	AAAA C
ATOH	2339	CG TRP	244	46.012	19.885	69.028	1.00 43.19	AAAA C
ATOH	2340	CD2 TRP	244	47.019	18.983	69.498	1.00 39.55	AAAA C
ATOH	2341	CS2 TRP	211	47.998	18.906	68.489	1.00 36.50	AAAA C
ATOH	2342	CE3 TRP	244	47.186	18.254	70.692	1.00 32.19	AAAA C
ATOIT	2343	CD1 TRP	244	46.424	20.308	67.779	1.00 43.37	AAAA C
ATOH	2344	HE1 TRP	244	47.595	19.727	67.469	1.00 38.89	AAAA II
ATOI1	2346	C32 TRP	244	49.150	18.128	68.620	1.00 39.01	AAAA C
HOTA	2347	CE3 TRP	244	48.336	17.478	70.815	1.00 43.98	AAAA C
HOTA	2348	CH2 TRP	244	49.322	17.425	69.784	1.00 42.50	AAAA C
ATOH	2349	C TRP	244	45.998	21.517	71.509	1.00 42.98	AAAA C
· ATOM	2350	O TRP	244	46.253	20.501	72.146	1.00 42.70	AAAA O
HOTA	2351	N ARG	245	46.888	22.485	71.435	1.00 44.16	II AAAA II
ATOH!	2353	CA ARG	245	48.168	22.472	72.095	1.00 46.47	AAAA C
ATOH	2354	CB ARG	245	49.203	21.502		1.00 47.30	AAAA C
						71.367		
ATOH	2355	CG ARG	245	49.885	22.309	70.203	1.00 48.97	аааа с
HOTA	2356	CD ARG	245	51.129	21.552	69.819	1.00 39.28	AAAA C
HOTA	2357	HE ARG	245	51.586	21.665	68.444	1.00 50.96	AAAA II
ATOH	2359	CZ ARG	245	52.629	21.044	67.895	1.00 46.73	AAAA C
ATOH	2360	NH1 ARG	245	53.344	20.236	68.653	1.00 50.15	AAAA N
ATOH	2363	HH2 ARG	245	53.072	21.126	66.638	1.00 41.69	AAAA II
HOTA			245					
	2366	C ARG		48.771	23.963	72.271	1.00 46.01	AAAA C
HOTA	2367	O ARG	245	48.394	24.793	71.541	1.00 47.44	aaaa o
ATOH	2368	H CYS	246	49.625	23.881	73.317	1.00 42.08	AAAA II
ATOH	2370	CA CYS	246	50.246	25.199	73.628	1.00 43.48	
								AAAA C
NOTA	2371	C CYS	246	51.695	25.217	73.183	1.00 43.38	AAAA C
ATOM	2372	O CYS	246	52.476	24.239	73.320	1.00 42.51	AAAA O
ATOH	2373	CB CYS	246	50.102	25.392	75.138	1.00 48.91	
								AAAA C
ATO!!	2374	SG CYS	246	48.386	25.049	75.797	1.00 43.68	AAAA S
ATOH	2375	II VAL	247	52.121	26.288	72.564	1.00 41.21 .	AAAA II
HOTA	2377	CA VAL	247	53.417	26.468	71.982		
							1.00 36.51	AAAA C
ATO!1	2378	CB VAL	247	53.568	26.357	70.444	1.00 36.87	AAAA C
TOTA	2379	CG1 VAL	247	53.089	24.988	70.024	1.00 32.71	AAAA C
ATOH	2380	CG2 VAL	247	53.129	27.602	69.729	1.00 28.20	AAAA C
O Cali	£.30 V	COL VAL	47'	22.1.7	24.602	03.127	1.00 20.20	ANNA C

									1	
ATOM	2391		VAL	247	53,969	27.812	72.373	1.00 39.37	AAAA C	
	2382	r)	VAL	247		29.770	72.540		AAAA O	
ATOH ATOH			ASF	248	53.230		72.711	1.00 45.21	AAAA N	
	2383	11	ASE		55.291	27.820	73.098		AAAA C	-
ATOU	2385	CA		248	55.895	29.115			AAAA C	
HOTA	2386	CB	ASP	246	57.091	28.946	73.953			
ATOU	2387	CG	ASP	248	58.126	27.997	73.394	1.00 58.81	AAAA C	
ATOH!	2388		ASE	248	59.067	27.795	74.187		AAAA O	
HOTA	2389		ASE	248	58.167	27.395	72.313		AAAA O	
ATOH	2390	c	ASP	248	56.315	29.883	71.839		AAAA C	
ATON	2391	0	ASF	248	56.292	29.288	70.772	1.00 39.70	AAAA O	
ATOH:	2392	11	ARG	249	56.545	31.163	71.918	1.00 30.72	AAAA N	
HOTA	2394	CA	ARG	249	56.950	32.057	70.906		AAAA C	
ATOU	2395	CB	ARG	249	57.223	33.485	71.491	1.00 21.29	AAAA C	
HOTA	2396	CG	ARG	249	57.594	34.424	70.326		AAAA C	
ATOH	2397	CD	ARG	249	57.814	35.811	70.843	1.00 21.23	AAAA C	
ATOI1	2398	NE	ARG	249	56.658	36.150	71.689	1.00 39.75	AAAA N	
ATOH	2400	CC	ARG	249	55.632	36.823	71.101	1.00 39.35	AAAA C	
HOTA	2401	HHI	ARG	249	55.642	37.118	69.801	1.00 25.41	AAAA II	
ATOH	2404	HH2	ARG	249	54.641	37.118	71.946	1.00 44.04	II AAAA	
HOTA	2407	C	ARG	249	58.134	31.685	70.010	1.00 40.63	AAAA C	
ATOH	2408	0	ARG	249	58.086	31.923	68.797	1.00 44.79	AAAA O	
ATOI1	2409	11	ASP	250	59.149	30.974	70.468	1.00 41.87	II AAAA	
ATO(1	2411	CA	ASP	250	60.287	30.739	69.606	1.00 46.90	AAAA C	
ATON	2412	CB	ASP	250	61.740	30.726	70.154	1.00 53.11	AAAA C	
ATOH	2413	C/G	ASP	250	62.421	32.122	70.081	1.00 71.49	AAAA C	
ATOH	2414		ASP	250	63.124	32.682	69.176	1.00 58.53	AAAA O	
ATOH	2415		ASP	250	62.272	32.928	71.071	1.00 70.30	AAAA O	
HOTA	2416	C	ASP	250	59.881	29.536	68.771	1.00 41.22	AAAA C	
ATO:I	2417	ò	ASP	250	60.291	29.443	67.616	1.00 39.06	AAAA O	
ATOI1	2418	11	PHE	251	59.116	28.609	69.299	1.00 36.13	AAAA N	
HOTA	2420	CA	PHE	251	58.457	27.601	68.489	1.00 34.88	AAAA C	
HOTA	2421	СB	PHE	251	57.468	26.746	69.256	1.00 29.82	AAAA C	
ATO!!	2422	ĊĠ	PHE	251	56.701	25.801	68.385	1.00 41.50	AAAA C	
ATOH	2423		PHE	251	57.101	24.479	68.263	1.00 30.66	AAAA C	
ATOH	2424	722		251	55.559	26.213	67.686	1.00 37.78	AAAA C	
ATON	2425		FHE	251	56.414	23.597	67.424	1.00 29.30	AAAA C	•
ATOH	3426	CES	FHE	251	54.847	25.372	66.856	1.00 36.09	AAAA C	
ATOU	2,27	55	FHE	251	55.294	24.070	66.715	1.00 36.21	AAAA C	
ATC!!	2429	=	PHE	251	57.624	28.290	67.338	1.00 39.28	AAAA C	
			PHE		57.911	28.010	55.144	1.00 30.27	AAAA O	
ATON	2429) }	CYS	351 252	56.734	29.225	67.713	1.00 35.13	AAAA N	
HOTA	2430		CYS		55.895	29.870	66.728		AAAA C	
HOTA	2432	CA		252				1.00 38.90	AAAA C	
ATOH	2433	<u> </u>	CYS	252	56.827	30.599	65.747	1.00 44.73 1.00 43.20		
ATOH	2434	C	CYS	252	56.552	30.534	64.536		AAAA O	
ATCH	3435	73	CYS	252	54.903	30.778	67.379	1.00 35.65	AAAA C	
ATOH	2436	SG	0:5	252	53.562	31.544	66.459	1.00 39.03	AAAA S	
INTA	2437	::	ALA.	253	57.872	31.256	66.285	1.00 41.53	AAAA II	
	2439		ALA	253	58.667	32.071	65.415	1.00 40.39	AAAA C	
ATOH		ÇΑ						4 00 00 07		
ATOH	2440	.C∃	ALA	253	59.529	33.098	55.172	1.00 36.07	AAAA C	
ATC!! ATC!!	2440 2441	⊕ €	ALA ALA	253 253	59.529 59.551	33.098 31.167	64.539	1.00 42.89	AAAA C	
ATCH ATOH ATCH	2440 2441 2442	⊕ € 0	ALA ALA ALA	253 253 253	59.529 59.551 60.147	33.098 31.167 31.735	64.539 63.640	1.00 42.89 1.00 47.42	AAAA C AAAA O	
ATCH ATCH ATCH ATCH	2440 2441 2442 2443	©8 € 0 0 H	ALA ALA ALA ASN	253 253 253 254	59.529 59.551 60.147 59.657	33.088 31.167 31.735 29.859	64.539 63.640 64.700	1.00 42.89 1.00 47.42 1.00 38.75	AAAA C AAAA O AAAA II	
ATCH ATCH ATCH ATCH ATCH	2440 2441 2442 2443 2445	08 0 0 11 0A	ALA ALA ALA ASH ASH	253 253 253 254 254	59.529 59.551 60.147 59.657 60.546	33.088 31.167 31.735 29.859 29.073	64.539 63.640 64.700 63.928	1.00 42.89 1.00 47.42 1.00 38.75 1.00 42.94	0 AAAA 0 AAAA 11 AAAA 0 AAAA	
ATOH ATOH ATOH ATOH ATOH ATOH	2440 2441 2442 2443 2445 2446	08 0 0 11 0A 0B	ALA ALA ALA ASH ASH ASH	253 253 253 254 254 254	59.529 59.551 60.147 59.657 60.546 61.667	33.098 31.167 31.735 29.859 29.073 29.497	64.539 63.640 64.700 63.928 64.847	1.00 42.89 1.00 47.42 1.00 38.75 1.00 42.94 1.00 48.09	0 AAAA 0 AAAA 11 AAAA 0 AAAA 0 AAAA	
ATCH ATCH ATCH ATCH ATCH ATCH ATCH	2441 2441 2442 2443 2445 2446 2447	08 0 0 11 0A 08 08	ALA ALA ASII ASII ASII ASII	253 253 253 254 254 254 254	59.529 59.551 60.147 59.657 60.546 61.667 62.696	33.098 31.167 31.735 29.859 29.073 29.497 29.635	64.539 63.640 64.700 63.928 64.847 65.031	1.00 42.89 1.00 47.42 1.00 38.75 1.00 42.94 1.00 48.09 1.00 49.54	AAAA C AAAA II AAAA C AAAA C AAAA C	
HOTA HOTA HOTA HOTA HOTA HOTA HOTA	2441 2441 2441 2443 2445 2446 2447 2448	08 0 0 0 0A 0B 0G 0D1	ALA ALA ASH ASH ASH ASH ASH ASH	253 253 253 254 254 254 254 254	59.529 59.551 60.147 59.657 60.567 61.667 62.696 63.468	33.098 31.167 31.735 29.859 29.073 29.497 29.635 29.940	64.539 63.640 64.700 63.928 64.847 65.031 64.081	1.00 42.89 1.00 47.42 1.00 38.75 1.00 42.94 1.00 48.09 1.00 49.54 1.00 61.38	AAAA C AAAA II AAAA C AAAA C AAAA C AAAA C	
ATCH ATCH ATCH ATCH ATCH ATCH ATCH ATCH	2442 2442 2443 2443 2445 2446 2447 2449	08 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 2	ALA ALA ASII ASII ASII ASII ASII	253 253 253 254 254 254 254 254 254	59.529 59.551 60.147 59.657 60.546 61.667 62.696 63.468 62.607	33.098 31.167 31.735 29.859 29.073 29.497 29.635 29.940 30.321	64.539 63.640 64.700 63.928 64.847 65.031 64.081 66.144	1.00 42.89 1.00 47.42 1.00 38.75 1.00 42.94 1.00 48.09 1.00 49.54 1.00 61.38 1.00 48.38	AAAA C AAAA O AAAA C AAAA C AAAA C AAAA C AAAA O AAAA N	
HOTA HOTA HOTA HOTA HOTA HOTA HOTA HOTA	2441 2441 2442 2443 2445 2446 2447 2449 2449	08 0 0 0 0 0A 0B 0G 0D1 HD2 0	ALA ALA ASH ASH ASH ASH ASH ASH ASH	253 253 253 254 254 254 254 254 254 254	59.529 59.551 60.147 59.657 60.546 61.667 62.696 63.468 62.607 59.907	33.098 31.167 31.735 29.859 29.073 29.497 29.635 29.840 30.321 27.959	64.539 63.640 64.700 63.928 64.847 65.031 64.081 66.144 63.135	1.00 42.89 1.00 47.42 1.00 38.75 1.00 42.94 1.00 48.09 1.00 49.54 1.00 61.38 1.00 48.38 1.00 53.72	AAAA C AAAA O AAAA II AAAA C AAAA C AAAA C AAAA O AAAA N AAAA C	
ATOH ATOH ATOH ATOH ATOH ATOH ATOH ATOH	2441 2441 2443 2445 2446 2447 2449 2449 2453	08 00 00 00 00 00 00 00 00 00 00 00 00 0	ALA ALA ASII ASII ASII ASII ASII ASII AS	253 253 253 254 254 254 254 254 254 254 254	59.529 59.551 60.147 59.657 60.546 61.667 62.696 63.468 62.607 59.907 60.552	33.098 31.167 31.735 29.859 29.073 29.497 29.635 29.940 30.321 27.959 26.965	64.539 63.640 64.700 63.928 64.847 65.031 64.081 66.144 63.135 62.804	1.00 42.89 1.00 47.42 1.00 38.75 1.00 42.94 1.00 48.09 1.00 49.54 1.00 61.38 1.00 48.38 1.00 53.72 1.00 51.19	AAAA C AAAA II AAAA C AAAA C AAAA C AAAA O AAAA N AAAA C AAAA O	
ATOH ATOH ATOH ATOH ATOH ATOH ATOH ATOH	2442 2442 24443 24446 24449 24449 24453 2453 2454	CB C CB	ALA ALA ALA ASII ASII ASII ASII ASII ASI	253 253 253 254 254 254 254 254 254 254 255	59.529 59.551 60.147 59.657 60.546 61.667 62.696 63.468 62.607 59.07 59.07	33.098 31.167 31.735 29.859 29.073 29.497 29.635 29.840 30.321 27.955 28.136	64.539 63.640 64.700 63.928 64.847 65.031 64.081 66.144 63.135 62.804 62.766	1.00 42.89 1.00 47.42 1.00 38.75 1.00 42.94 1.00 48.09 1.00 49.54 1.00 61.38 1.00 48.38 1.00 53.72 1.00 51.19 1.00 57.77	AAAA C AAAA C AAAA C AAAA C AAAA C AAAA O AAAA N AAAA N AAAA O AAAA N	
ATOH ATOH ATOH ATOH ATOH ATOH ATOH ATOH	2442 2442 2443 24445 24446 24449 24453 2455 2456	CB CO CA CB CG OD1 HD2 C O H CA	ALA ALA ASII ASII ASII ASII ASII ASII AS	253 253 254 254 254 254 254 254 254 255 255	59.529 59.551 60.147 59.6546 61.667 62.696 63.468 62.607 59.907 60.552 58.612 57.828	33.098 31.167 31.735 29.859 29.073 29.497 29.635 29.840 30.321 27.959 26.965 28.136 27.107	64.539 63.640 64.700 63.928 64.847 65.031 64.081 66.144 63.135 62.804 62.766 62.134	1.00 42.89 1.00 47.42 1.00 38.75 1.00 42.94 1.00 48.09 1.00 61.38 1.00 53.72 1.00 53.72 1.00 57.77 1.00 53.29	AAAA C	
ATOH ATOH ATOH ATOH ATOH ATOH ATOH ATOH	2444356 244435624447 244447 24449 24449 244534 24454 24554 24557	CB CO CA CB CG OD1 HD2 CO HCA CB	ALA ALA ASII ASII ASII ASII ASII ASII AS	253 253 2553 2554 2554 2554 2554 2554 25	59.529 59.551 60.147 59.657 60.567 61.667 62.696 63.468 62.607 59.907 60.552 58.612 57.828 56.329	33.098 31.167 31.735 29.859 29.073 29.635 29.635 29.635 29.635 29.959 26.965 28.136 27.322	64.539 63.640 64.700 63.928 64.847 65.031 64.081 66.144 63.135 62.804 62.766 62.134 62.304	1.00 42.89 1.00 47.42 1.00 38.75 1.00 42.94 1.00 48.09 1.00 61.38 1.00 53.72 1.00 51.19 1.00 57.77 1.00 53.29 1.00 50.41	AAAA C AAAA C AAAA C AAAA C AAAA C AAAA O AAAA N AAAA C AAAA O AAAA N AAAA C AAAA C	
ATOH ATOH ATOH ATOH ATOH ATOH ATOH ATOH	2440 2441 2442 2443 2445 2447 2448 2449 2452 2453 2454 2456 2457 2458	CB CC CB CB CB CB CB CB CB CB CB CB CB C	ALA ALA ASII ASII ASII ASII ASII ASII AS	253 253 2554 2554 2554 2554 2554 2555 2555	59.529 59.551 60.147 59.657 60.546 61.667 62.696 63.468 62.697 59.907 60.552 58.612 57.829 56.329	33.098 31.167 31.735 29.635 29.635 29.635 29.635 29.940 30.321 26.965 28.136 27.107 26.595	64.539 63.640 64.700 63.928 64.847 65.031 64.081 66.144 63.135 62.804 62.766 62.134 62.304 61.246	1.00 42.89 1.00 47.42 1.00 38.75 1.00 42.94 1.00 48.09 1.00 61.38 1.00 48.38 1.00 53.72 1.00 51.19 1.00 57.77 1.00 53.28 1.00 50.41 1.00 51.95	AAAA C	
ATOH ATOH ATOH ATOH ATOH ATOH ATOH ATOH	2441 2441 2442 2443 2446 2447 2448 2449 2452 2453 2456 2456 2458 2459	08 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	ALA ALA ALA ASII ASII ASII ASII ASII ASI	253 355 555 555 554 444 255 255 255 255 255 2	59.529 59.551 60.147 59.657 60.546 61.667 62.696 63.468 62.607 59.907 60.552 58.612 57.828 55.477 55.778	33.098 31.167 31.735 29.673 29.697 29.635 29.840 30.321 26.965 28.136 27.322 26.595 26.675	64.539 63.640 64.700 63.928 64.847 65.031 64.081 66.144 63.135 62.804 62.766 62.134 62.304 61.246 63.553	1.00 42.89 1.00 47.42 1.00 38.75 1.00 48.09 1.00 49.54 1.00 61.38 1.00 53.72 1.00 51.19 1.00 57.77 1.00 53.29 1.00 50.41 1.00 51.95 1.00 51.99	AAAA C	
ATOH ATOH ATOH ATOH ATOH ATOH ATOH ATOH	2441 2441 2442 2443 2446 2447 2448 2449 2453 2454 2453 2456 2457 2458 2459 2460	CB CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC	ALA ALA ALA ASII ASII ASII ASII ASII ASI	253 2553 2554 2554 2554 2554 2555 2555 2	59.529 59.551 60.147 59.657 60.546 61.667 62.696 63.468 62.607 59.907 60.552 58.612 57.828 56.329 55.778 54.479	33.098 31.167 31.735 29.835 29.635 29.635 29.635 29.840 30.321 26.965 28.136 27.107 27.322 26.595 27.317	64.539 63.640 64.700 63.928 64.847 65.031 64.081 66.144 63.135 62.804 62.766 62.134 62.304 61.246 63.553 64.006	1.00 42.89 1.00 47.42 1.00 38.75 1.00 42.94 1.00 48.09 1.00 49.54 1.00 61.38 1.00 53.72 1.00 51.19 1.00 57.77 1.00 53.28 1.00 50.41 1.00 51.95 1.00 40.59 1.00 38.97	AAAA C	
ATOH ATOH ATOH ATOH ATOH ATOH ATOH ATOH	2441 2441 2442 2443 2446 2447 2448 2453 2456 2456 2457 2458 2459 2460 2461	CB C CB	ALA ALA ASII ASII ASII ASII ASII ASII AS	253 2553 2554 2554 2554 2554 2555 2555 2	59.529 59.551 60.147 59.657 60.546 61.667 62.696 63.468 62.607 59.07 59.552 58.612 57.828 56.329 55.778 54.479 58.127	33.098 31.167 31.735 29.635 29.635 29.635 29.635 29.635 29.635 26.965 27.107 27.329 26.595 26.595 26.595 26.6317 26.886	64.539 63.640 64.700 63.928 64.847 65.031 66.144 63.135 62.804 62.766 62.134 62.304 61.246 63.553 64.006 60.651	1.00 42.89 1.00 47.42 1.00 38.75 1.00 42.94 1.00 48.09 1.00 61.38 1.00 51.38 1.00 57.77 1.00 53.28 1.00 50.41 1.00 51.95 1.00 40.59 1.00 52.62	AAAA C	
ATOH ATOH ATOH ATOH ATOH ATOH ATOH ATOH	2441 2441 2443 2443 2443 2444 2452 2453 2453 2454 2457 2458 2459 2461 2461 2462	CB CB CG OII CA CB CGI CGI CC	ALA ALA ASII ASII ASII ASII ASII ASII AS	233334444444555555555555555555555555555	59.529 59.551 60.147 59.657 60.546 61.667 62.696 63.468 62.607 59.907 60.552 58.612 57.829 55.477 55.778 54.477 58.196	33.098 31.167 31.735 29.073 29.635 29.635 29.635 29.635 29.635 27.959 26.965 28.136 27.322 26.595 27.322 26.575 27.317 27.322 26.675 27.317	64.539 63.640 64.700 64.928 64.847 65.031 66.144 63.135 62.804 62.766 62.134 62.766 63.553 64.006 60.651 60.252	1.00 42.89 1.00 47.42 1.00 38.75 1.00 42.94 1.00 48.09 1.00 61.38 1.00 53.72 1.00 51.19 1.00 57.77 1.00 53.29 1.00 50.41 1.00 51.95 1.00 40.59 1.00 52.62 1.00 53.96	AAAA C	
ATOH ATOH ATOH ATOH ATOH ATOH ATOH ATOH	2441 2441 2443 2443 2444 2444 2444 2452 2453 2453	CB CD CB	ALA ALA ASH ASH ASH ASH ASH ASH ILE ILE ILE ILE ILE ILE ILE ILE	233334444444555555555556	59.529 59.551 60.147 59.657 61.667 62.696 63.468 62.697 59.907 60.552 57.829 55.477 55.478 54.479 58.196 58.196	33.098 31.167 31.735 29.635 29.635 29.635 29.635 29.635 29.635 29.635 26.965 27.35 26.595 26.595 26.595 27.317 26.595 27.317 26.595 27.317 26.75 27.317 26.75 27.317 26.75 27.317	64.539 63.640 64.702 63.928 64.847 65.031 66.144 63.135 62.804 62.766 62.766 62.304 61.246 63.553 64.006 60.651 60.252 59.918	1.00 42.89 1.00 47.42 1.00 48.75 1.00 48.09 1.00 49.54 1.00 61.38 1.00 53.72 1.00 51.19 1.00 57.77 1.00 53.29 1.00 51.95 1.00 40.59 1.00 40.59 1.00 52.62 1.00 53.96 1.00 49.96	AAAA C	
ATOH ATOH ATOH ATOH ATOH ATOH ATOH ATOH	2441 2441 2444 2444 2444 2444 2445 2445	CB C	ALA ALA ASH ASH ASH ASH ASH ASH ILE ILE ILE ILE ILE ILE LEU LEU	2211122122222255555555566	59.529 59.551 60.147 59.657 60.546 61.667 62.696 63.468 62.607 60.552 58.612 57.829 55.477 55.478 54.479 58.127 58.129	33.098 31.167 31.7359 29.637 29.635 29.635 29.635 29.635 20.325 26.965 28.136 27.322 26.595 26.675 27.317 26.886 27.960 27.960 27.764	64.539 63.640 64.702 63.928 64.847 65.031 66.144 63.135 62.766 62.766 62.766 62.766 63.553 64.006 60.651 60.252 59.918 58.516	1.00 42.89 1.00 47.42 1.00 82.75 1.00 48.09 1.00 49.54 1.00 61.38 1.00 53.72 1.00 51.19 1.00 57.77 1.00 53.28 1.00 50.41 1.00 51.95 1.00 50.95 1.00 52.62 1.00 53.96 1.00 49.96 1.00 63.68	AAAA C	
ATOH ATOH ATOH ATOH ATOH ATOH ATOH ATOH	2441 2441 2444 2444 2444 2444 2444 2445 2445	CB C	ALA ALA ASH ASH ASH ASH ASH ASH ASH ASH ILE ILE ILE ILE ILE LEU LEU LEU LEU	233344444444 2555555555555555666666666666666	59.529 59.551 60.147 59.647 60.546 61.667 62.696 63.468 62.697 59.907 60.552 57.828 56.477 58.127 58.127 58.127 58.127 58.129 58.129 58.127 58.127 58.127 58.127 58.127 58.127	33.098 31.167 31.735 29.673 29.637 29.635 29.635 29.635 29.635 26.965 28.136 27.107 27.325 26.675 27.317 26.886 27.764 29.012	64.539 63.640 64.700 63.928 64.847 65.031 64.081 66.144 62.766 62.766 62.766 63.553 64.006 60.651 60.651 60.252 59.918 57.799	1.00 42.99 1.00 47.42 1.00 38.75 1.00 48.09 1.00 49.54 1.00 61.38 1.00 53.72 1.00 51.19 1.00 57.77 1.00 53.29 1.00 50.41 1.00 51.95 1.00 40.59 1.00 52.62 1.00 53.96 1.00 63.68 1.00 63.68	AAAA C	
ATOH ATOH ATOH ATOH ATOH ATOH ATOH ATOH	2441 2441 2444 2444 2444 2444 2445 2445	08 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	ALA ALA ASH ASH ASH ASH ASH ASH ASH ILE ILE ILE ILE ILE ILE LEU LEU LEU LEU	533344444445555555666666666666666666666	59.529 59.551 60.147 59.657 60.667 62.696 63.468 62.607 59.552 57.828 56.327 54.479 58.127	33.098 31.167 31.735 29.637 29.635 29.635 29.635 29.635 29.635 20.965 28.136 27.107 27.325 26.595 27.317 26.886 27.317 26.886 27.964 29.012 29.012	64.539 63.640 64.700 63.928 64.847 65.031 66.144 63.135 62.766 62.134 62.766 63.553 64.006 60.651 60.651 60.651 60.651 60.7799 57.864	1.00 42.89 1.00 47.42 1.00 38.75 1.00 42.94 1.00 48.09 1.00 49.54 1.00 61.38 1.00 53.72 1.00 51.19 1.00 57.77 1.00 53.28 1.00 50.41 1.00 50.41 1.00 59.11 1.00 52.62 1.00 53.96 1.00 49.96 1.00 56.80 1.00 59.11	AAAA C	
ATOH ATOH ATOH ATOH ATOH ATOH ATOH ATOH	24412 24413 24413 24413 24413 24413 24415 24415 24415 24415 24415 24415 24415 24416	COMPANDE COMPAND COMPANDE COMPAND COMPANDE COMPANDE COMPAND COMPAND COMPAND COMPAND COMPAND C	ALA ALA ASIII AILE ILLE ILLE ILLE ILLE ILLE ILLE I	22112212222222222222222222222222222222	59.529 59.551 60.147 59.657 61.667 62.696 63.468 62.607 59.907 60.552 57.829 55.477 55.477 55.477 58.196 58.196 58.196 58.196 58.196 58.196 58.196 58.196	33.098 31.167 31.7359 29.673 29.635 29.635 29.635 29.955 28.136 27.959 26.595 27.322 26.595 27.322 26.575 27.360 27.764 29.012 29.012 29.0154	64.539 63.640 64.700 63.928 65.031 66.144 63.135 62.804 62.766 62.134 62.304 63.505 60.651 60.651 60.652 59.918 58.519 57.864 57.645	1.00 42.89 1.00 47.42 1.00 38.75 1.00 42.94 1.00 48.09 1.00 49.54 1.00 61.38 1.00 53.72 1.00 57.77 1.00 53.29 1.00 50.41 1.00 51.95 1.00 40.59 1.00 52.62 1.00 53.96 1.00 63.68 1.00 56.80 1.00 59.11 1.00 43.31	AAAA C	
ATOH ATOH ATOH ATOH ATOH ATOH ATOH ATOH	24412 24413 24443 24443 24443 24443 24453 24455 24456 24466 24466 24466 24466 24466 24466 24466 24466 24466	CB CD :: CA CB CD ::	ALA ALA ASHI ASHI ASHI ASHI ASHI ASHI LE LE LEU LEU LEU LEU LEU LEU LEU LEU L	22112212222222222222222222222222222222	59.529 59.551 60.147 59.657 61.667 62.696 63.468 62.697 59.907 60.552 57.829 56.327 58.177 58.196 58.177 58.196 58.175 56.310 55.365	33.098 31.167 31.7359 29.6359 29.635 29.635 29.635 29.635 26.965 27.322 26.595 26.675 27.317 26.595 27.317 26.764 29.196 27.764 29.196 29.196 29.196 20.196 20.29	64.539 63.640 64.702 64.847 65.031 66.144 63.135 62.804 62.766 62.304 63.553 64.006 60.651 59.918 58.516 57.799 57.8645 56.928	1.00 42.85 1.00 47.42 1.00 38.75 1.00 48.09 1.00 49.54 1.00 61.38 1.00 53.72 1.00 51.19 1.00 57.77 1.00 53.29 1.00 51.95 1.00 50.41 1.00 51.95 1.00 52.62 1.00 53.96 1.00 63.68 1.00 63.68 1.00 59.11 1.00 55.88	AAAA C	
ATOH ATOH ATOH ATOH ATOH ATOH ATOH ATOH	2441435 2444435 244447 244447 24445 24455 24455 24456 24466 244666 244666 244666 244666 244666 244666 244666 244666	COMMON ON ABOUTO	ALA ALA ASHI ASHI ASHI ASHI ASHI ASHI LEU	22111221222222222222222222222222222222	59.529 59.551 60.147 59.657 61.667 62.696 63.468 62.607 60.552 58.612 57.829 55.477 58.129 58.129	33.098 31.167 31.7359 29.677 29.635 29.635 29.635 29.635 20.325 26.965 27.325 26.675 27.317 26.886 27.325 27.964 29.0196 27.764 29.0196 29.019	64.539 63.640 64.700 63.847 65.081 66.144 62.765 62.764 62.764 62.764 62.764 62.764 63.556 64.006 60.651 60.651 60.651 60.651 67.799 67.645 67	1.00 42.95 1.00 47.42 1.00 38.75 1.00 48.09 1.00 49.54 1.00 61.38 1.00 53.72 1.00 51.19 1.00 57.77 1.00 53.29 1.00 51.95 1.00 50.41 1.00 51.95 1.00 52.62 1.00 53.96 1.00 63.69 1.00 63.69 1.00 56.80 1.00 55.88 1.00 55.88 1.00 55.88 1.00 55.88 1.00 55.88 1.00 55.88	AAAA C AAAAA C C C AAAAA C C C AAAAA C	
ATOH ATOH ATOH ATOH ATOH ATOH ATOH ATOH	2441435 244447 244447 244447 244447 244447 24445 24455 24455 24456 24466 24466 24466 24466 24466 24467 24466 24467 2447 244	08 00 11 A B 0 00 11 C B 0 0 0 11 C B 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	ALA ALA ASIII ALE ILE ILE ILE ILE ILE ILE ILE ILE ILE I	22111221222222222222222222222222222222	59.529 59.551 60.147 59.647 60.546 61.667 62.696 63.468 62.697 60.552 57.828 56.477 58.127	33.098 31.167 31.7359 29.637 29.637 29.635 29.840 30.3259 26.965 28.136 27.107 27.317 26.886 27.764 29.012 29.0196 30.654 29.0196 30.652 27.511	64.539 63.640 64.792 63.847 65.081 66.144 62.765 62.764 62.764 62.764 62.764 63.555 64.006 63.555 64.006 63.555 64.006 63.555 64.0651 63.555 64.0651 65.7799 67.645	1.00 42.95 1.00 47.42 1.00 38.75 1.00 48.09 1.00 49.54 1.00 61.38 1.00 53.72 1.00 51.19 1.00 57.77 1.00 53.29 1.00 51.95 1.00 50.41 1.00 51.95 1.00 52.62 1.00 53.96 1.00 63.68 1.00 63.68 1.00 56.80 1.00 55.88 1.00 55.88 1.00 66.23 1.00 70.29	AAAA C	
ATOH ATOH ATOH ATOH ATOH ATOH ATOH ATOH	24412 24413 24413 24414 24414 24414 24415 24415 24416 24616 24616	COMPANDED ON CABOLICO ON CABOL	ALA ASHI ASHI ASHI ASHI ASHI ASHI ASHI ASH	22112212222222222222222222222222222222	59.529 59.551 60.147 59.657 60.667 62.696 63.468 62.697 59.552 57.828 56.327 58.129 55.778 54.479 58.129 58.127 58.129	33.098 31.7359 29.073 29.6330 29.6330 29.6330 27.959 26.595 27.322 26.575 27.322 26.677 27.760 27.760 27.761 29.196 29.196 29.196 29.196 29.196 29.196 29.196 29.196 29.196 29.196 29.196 29.195 29.196 29.19	64.539 63.640 64.7928 63.847 65.081 66.144 63.1304 62.764 62.764 62.304 63.556 63.556 64.0051 60.651	1.00 42.99 1.00 47.42 1.00 38.75 1.00 42.94 1.00 48.09 1.00 49.54 1.00 61.38 1.00 53.72 1.00 53.72 1.00 53.29 1.00 50.41 1.00 57.77 1.00 53.29 1.00 50.41 1.00 52.62 1.00 53.96 1.00 52.62 1.00 53.96 1.00 56.80 1.00 56.80 1.00 59.11 1.00 43.31 1.00 55.81 1.00 43.31 1.00 55.83 1.00 70.29 1.00 64.61	AAAA C AAAAA C AAAAA C AAAAA C AAAAA C AAAAA C C C C AAAAA C C AAAAA C C AAAAA C C AAAAA C C AAAAA C C C AAAAA C C AAAAA C C AAAAA C C AAAAA C C AAAAA C C AAAAA C C C AAAAA C C C AAAAA C C C AAAAA C	
ATOH ATOH ATOH ATOH ATOH ATOH ATOH ATOH	24411 24413	COMPAND ON CONTRACTOR OF CONTR	ALA ASHI ASHI ASHI ASHI ASHI ASHI ASHI ASH	22112212222222222222222222222222222222	59.529 59.551 60.147 59.657 61.667 62.696 63.4607 59.907 60.552 57.829 55.477 55.478 54.479 58.190 58.6129 58.6129 55.477 55.477 56.317 58.190 58.6171 56.310 56.310 56.310 56.6171 56.310 56.	33.098 31.7359 29.637 29.635 29.635 29.635 29.635 27.955 28.136 27.955 26.575 27.322 26.575 27.326 27.764 29.012 20.012 20.012 20.012 20.012 2	64.539 63.640 64.700 63.9247 65.031 66.144 63.135 62.766 62.764 62.764 63.506 60.651 60.651 60.651 60.651 60.651 60.651 60.355 60.355 57.645 57.764 57.645 57.7430 59.534	1.00 42.89 1.00 47.42 1.00 48.75 1.00 48.09 1.00 49.54 1.00 61.38 1.00 53.72 1.00 51.19 1.00 57.77 1.00 53.29 1.00 51.95 1.00 50.41 1.00 51.95 1.00 50.41 1.00 52.62 1.00 53.96 1.00 63.68 1.00 63.68 1.00 56.80 1.00 59.11 1.00 59.11 1.00 59.11 1.00 59.11 1.00 59.11 1.00 63.68 1.00 63.68 1.00 63.68 1.00 63.68 1.00 63.68 1.00 63.68	AAAA C AAAAA C	
ATOH ATOH ATOH ATOH ATOH ATOH ATOH ATOH	24412 24413 24443 24443 24443 24444 24453 24455 24456 24466 24666 26666 26666 26666 26666 26666 26666 26666 26666 26666 26666 26666	08 00 00 00 00 00 00 00 00 00 00 00 00 0	ALA ASHI ASHI ASHI ASHI ASHI ASHI ASHI ASH	22112212222222222222222222222222222222	59.529 59.551 60.147 59.657 61.667 62.696 63.468 62.907 60.552 57.829 56.327 55.478 54.479 58.196 58.175 58.196 58.175 56.316 56.316 60.942 60.924	33.098 31.167 31.7359 29.6359 29.635 29.635 29.635 29.635 20.965 27.319 26.595 26.675 27.317 26.595 27.764 29.1964 29.1964 29.1964 29.1964 29.1964 29.1954 28.222 27.5519 27.5529 27.318	64.539 63.640 64.702 64.0847 65.031 66.144 62.764 62.764 62.764 62.764 63.556 64.006 63.551 64.006 60.651 63.551 64.006 65.9116 65.9218 57.799 57.864 58.355 57.855	1.00 42.85 1.00 47.42 1.00 47.42 1.00 42.94 1.00 48.09 1.00 49.54 1.00 51.38 1.00 53.72 1.00 51.19 1.00 57.77 1.00 53.29 1.00 51.95 1.00 50.41 1.00 51.95 1.00 50.41 1.00 53.95 1.00 50.41 1.00 53.95 1.00 53.96 1.00 63.68 1.00 63.68 1.00 55.88 1.00 55.88 1.00 55.88 1.00 66.23 1.00 69.23 1.00 69.23 1.00 69.23 1.00 69.23	AAAA C AAAAA C AAAAA C AAAAA C AAAAA C AAAAA C C C AAAAA C C C AAAAA C AAAAA C AAAAA AAAAA C C	
ATOH ATOH ATOH ATOH ATOH ATOH ATOH ATOH	244123 244443 244443 244447 244447 24445 2445 2445 2445 24466 24466 24466 2447 2447 2447 2447 2	COMPONIA BRANCO CON CONTRA BRANCO CON CONTRA BRANCO CON CONTRA BRANCO CO	ALA ASSINIA AS	22112212222222222222222222222222222222	59.529 59.551 60.147 59.657 61.667 62.696 63.468 62.607 60.552 57.828 55.478 54.479 58.127	33.098 31.167 31.7359 29.6359 29.6350 30.3259 26.965 28.136 27.325 26.675 27.317 26.809 27.764 29.196 27.764 29.196 27.7551 27.5529 27.5519 27.5599 27.318 25.980	64.539 63.640 64.7928 63.841 65.081 66.144 62.763 62.763 62.763 62.763 62.763 62.763 62.763 62.763 63.550 64.0651 63.550 64.0651 65.251 65.355 64.065 65.355 64.065 65.355 64.065 65.355 64.065 65.355 64.065 65.355 64.065 65.355 64.065 65.355 64.065 65.355 64.065 65.355 64.065 65.355 64.065 65.355 64.065 65.355 66.355	1.00 42.85 1.00 47.42 1.00 38.75 1.00 48.09 1.00 49.54 1.00 61.38 1.00 53.72 1.00 51.19 1.00 57.77 1.00 53.28 1.00 50.41 1.00 51.95 1.00 59.11 1.00 63.68 1.00 59.11 1.00 55.88 1.00 55.88 1.00 66.23 1.00 64.61 1.00 69.23 1.00 69.23 1.00 69.23 1.00 62.45 1.00 56.18	AAAA C AAAAA C C C C C AAAAA AAAAA AAAAA C C AAAAA C	
ATOH ATOH ATOH ATOH ATOH ATOH ATOH ATOH	2444435 2444435 2444447 244447 244444 24444 2445 2445	08 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	ALIA ASSININA ASSININ	22112212222222222222222222222222222222	59.529 59.5517 59.5517 59.6547 60.667 62.696 63.468 62.697 60.552 57.829 55.4778 54.479 58.129 55.4778 58.129 58.607 58.612 57.829 55.4778 54.479 58.196 58.675 58.675 58.675 58.675 58.675 58.196 58.675 58.675 58.675 58.675 58.196 58.675 58.775	33.098 31.7359 329.097 29.6359 29.6359 29.6359 20.3259 26.965 27.325 26.675 27.317 26.6575 27.364 29.0196 27.764 29.0196 27.764 29.0196 27.7559 27.559 27.559 27.3180 27.3180 27.3180 26.497	64.539 63.640 64.792 63.8431 66.144 66.144 62.764 62.764 62.764 62.764 62.764 62.764 63.556 64.0051 63.556 64.0051 63.556 64.0051 65.252 58.519 57.645 56.246 56.24	1.00 42.95 1.00 47.42 1.00 38.75 1.00 48.09 1.00 49.54 1.00 61.38 1.00 53.72 1.00 51.19 1.00 57.77 1.00 53.29 1.00 51.95 1.00 50.41 1.00 51.95 1.00 52.62 1.00 53.96 1.00 53.96 1.00 63.69 1.00 56.80 1.00 55.80 1.00 55.80 1.00 63.69 1.00 63.69 1.00 63.69 1.00 63.69 1.00 63.69 1.00 63.69 1.00 63.69 1.00 63.69 1.00 64.61 1.00 66.23 1.00 66.23 1.00 66.23 1.00 66.23 1.00 66.23 1.00 66.23 1.00 56.18 1.00 56.18	AAAA C AAAAA C C C AAAAA C C C AAAAA C C C AAAAA C	
ATOH ATOH ATOH ATOH ATOH ATOH ATOH ATOH	24412 24413 24413 24414 24414 24415 24415 24415 24415 24416 24416 24416 24417	08 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	ALA ASHI AAS	22112212222222222222222222222222222222	59.529 59.551 60.147 59.657 61.667 62.696 63.4687 59.907 60.552 57.828 55.477 55.477 55.477 58.1290 58.1890 58.190 58.680 58.	33.098 31.7359 29.07359 29.6350 29.6350 27.959 26.6350 27.329 26.5955 27.3186 29.1960 27.764 29.1960 27.761 29.1960 27.761 29.1960 27.751 27.5519 27.5519 27.5519 27.5519 27.5519	64.539 63.640 64.7928 63.847 65.081 66.144 63.135 62.764 62.764 62.764 63.556 63.556 64.005 63.651 63.558 64.005 63.558 64.005 63.558 64.005 63.558 64.005 63.558 64.005 63.558 64.005 63.558 64.005 63.558 64.005 63.558 64.005 63.558 64.005 63.558 64.005 63.558 64.005 63.558 64.005 63.558 64.005 63.558 64.005 63.558 64.005 63.558 64.005 65.005 6	1.00 42.99 1.00 47.42 1.00 38.75 1.00 42.94 1.00 48.09 1.00 49.54 1.00 53.72 1.00 53.72 1.00 53.28 1.00 50.41 1.00 51.95 1.00 51.95 1.00 52.62 1.00 53.96 1.00 53.96 1.00 53.96 1.00 53.96 1.00 53.96 1.00 53.96 1.00 53.96 1.00 53.96 1.00 53.96 1.00 53.96 1.00 53.96 1.00 53.96 1.00 53.96 1.00 63.68 1.00 56.80 1.00 56.80 1.00 56.80 1.00 56.81 1.00 56.83 1.00 66.23 1.00 64.61 1.00 69.23 1.00 64.61 1.00 69.23	AAAA C AAAAA C C C C C C C C C C C C C	
ATOH ATOH ATOH ATOH ATOH ATOH ATOH ATOH	24412 24413 244143 244144 24414 24414 24414 24414 24414 24414 24414 24414 24417 2441	COMABGIO COMO ON CESTION ABSIDE CON COMO ON CESTION ABSIDE	ALA ASSISSIONNE E E E E E E E E E E E E E E E E E E	22112212222222222222222222222222222222	59.529 59.5517 59.6576 60.6676 61.6676 62.6966 63.6976 63.6976 59.9076 58.6128 57.8229 55.4778 54.4797 58.1296 58.680 5	33.098 31.167 32.07359 29.6350 29.6350 27.955 28.136 27.955 26.595 26.595 27.302 26.595 27.317 25.760 27.764 29.1960 27.764 29.1964 28.222 27.5519 27.5519 27.5529 27.5519 27.5529 27.5539	64.539 63.6408 64.7028 64.8431 65.0381 66.1445 62.764 62.764 62.764 62.764 62.764 62.764 62.764 62.764 63.556 64.065 62.346 60.2518 58.516 57.799 57.645 58.355 57.344 60.955 57.344 60.955 57.344 60.955 57.344 60.955 57.344 60.955 57.344 60.955 57.344 60.955 57.344 60.955 57.344 60.955 57.344 60.955 57.344 60.955 57.345 60.955 57.344 60.955 57.344 60.955 57.344 60.955 57.344 60.955 57.344 60.955 57.344 60.955 57.344 60.955 57.344 60.955 61.945 61.	1.00 42.89 1.00 47.42 1.00 48.75 1.00 48.09 1.00 49.54 1.00 61.38 1.00 53.72 1.00 51.19 1.00 57.77 1.00 53.29 1.00 50.41 1.00 50.41 1.00 50.41 1.00 50.41 1.00 52.62 1.00 53.96 1.00 63.68 1.00 63.68 1.00 63.68 1.00 55.88 1.00 66.23 1.00 55.88 1.00 66.23 1.00 69.23 1.00 69.23 1.00 62.45 1.00 70.77 1.00 72.50 1.00 74.61	AAAA C AAAAA C AAAAA AAAAA AAAAA N AAAAA N AAAAA N AAAAA AAAAA AAAAA AAAAA AAAAA AAAAA AAAA	
ATOH ATOH ATOH ATOH ATOH ATOH ATOH ATOH	2441435 2444435 2444435 244445 244445 2445 2	TO THE COURT OF A BOARD A A BOAR	ALA ASSIII ASSIII AASSIII LEE EE EE EE LEEU UU LEEU UU RRRRRRRRRAA AALA AALA AAAAAAAAAAAAA	2233444444445555555566666667777788	59.529 59.551 60.147 59.657 61.667 62.696 63.468 59.907 60.552 57.829 56.327 58.178 54.179 58.190 58.680 58.175 58.175 56.316 60.942 62.924 63.381 62.923 64.122 62.933	33.098 31.737 31.7359 32.401 22.6035 23.491 22.50401 27.325 26.575 27.317 26.575 27.317 25.760 27.764 29.1654 29.1654 27.5519 27.5519 27.5519 27.5519 27.5519 27.5519 27.5519 27.5519 27.5519 27.5519	64.539 63.640 64.702 64.084 65.031 66.144 62.765 62.7134 62.763 64.006 62.763 64.006 62.763 64.006 65.251 64.006 65.251 65.951 6	1.00 42.89 1.00 47.42 1.00 347.42 1.00 48.09 1.00 49.54 1.00 61.38 1.00 53.72 1.00 51.19 1.00 57.77 1.00 53.29 1.00 50.41 1.00 51.95 1.00 40.59 1.00 53.96 1.00 53.96 1.00 63.68 1.00 63.68 1.00 63.68 1.00 55.88 1.00 66.23 1.00 67.29 1.00 64.61 1.00 69.23 1.00 69.23 1.00 62.45 1.00 74.61 1.00 76.34	AAAA C	
ATOH ATOH ATOH ATOH ATOH ATOH ATOH ATOH	241447 244447 244447 244447 244447 244445 244445 244445 24447 24477 2	TO COMPOSITE CONTRACTOR CONTRACTO	ALIA AASIIIII AAAAAAAAAAAAAAAAAAAAAAAAAA	22112212222222222222222222222222222222	59.529 59.5517 59.5517 59.657 60.667 62.696 63.4687 59.952 58.612 57.829 55.478 58.127 58.127 58.127 58.127 58.127 58.126 60.552 55.478 54.126 60.942 62.352 63.381 62.973 64.127 62.393 64.127 62.393 62.570	33.098 31.737 31.7359 32.9.037 29.4350 30.3259 26.965 28.136 27.325 26.677 226.677 226.677 226.677 227.764 229.1964 227.764 229.1964 227.751 27.5559 27.318 26.731 27.5559 27.318 26.731 27.5599 27.31898 23.399	64.53.9 63.64.7 63.64.9 63.806 64.144 65.008 65.038 64.1304 65.7 65.7 65.7 66.2 65.7 66.3 66.3 66.3 66.3 66.3 66.3 66.3 66	1.00 42.95 1.00 47.42 1.00 38.75 1.00 48.09 1.00 49.54 1.00 61.38 1.00 53.72 1.00 51.19 1.00 57.77 1.00 53.29 1.00 50.41 1.00 51.95 1.00 59.11 1.00 63.69 1.00 6	AAAA C	
ATOH ATOH ATOH ATOH ATOH ATOH ATOH ATOH	2441435 2444435 2444435 244445 244445 2445 2	TO COMPOSITE CONTRACTOR CONTRACTO	ALA ASSIII ASSIII AASSIII LEE EE EE EE LEEU UU LEEU UU RRRRRRRRRAA AALA AALA AAAAAAAAAAAAA	2233444444445555555566666667777788	59.529 59.551 60.147 59.657 61.667 62.696 63.468 59.907 60.552 57.829 56.327 58.178 54.179 58.190 58.680 58.175 58.175 56.316 60.942 62.924 63.381 62.923 64.122 62.933	33.098 31.737 31.7359 32.401 22.6035 23.491 22.50401 27.325 26.575 27.317 26.575 27.317 25.760 27.764 29.1654 29.1654 27.5519 27.5519 27.5519 27.5519 27.5519 27.5519 27.5519 27.5519 27.5519 27.5519	64.539 63.640 64.702 64.084 65.031 66.144 62.765 62.7134 62.763 64.006 62.763 64.006 62.763 64.006 65.251 64.006 65.251 65.951 6	1.00 42.89 1.00 47.42 1.00 347.42 1.00 48.09 1.00 49.54 1.00 61.38 1.00 53.72 1.00 51.19 1.00 57.77 1.00 53.29 1.00 50.41 1.00 51.95 1.00 40.59 1.00 53.96 1.00 53.96 1.00 63.68 1.00 63.68 1.00 63.68 1.00 55.88 1.00 66.23 1.00 67.29 1.00 64.61 1.00 69.23 1.00 69.23 1.00 62.45 1.00 74.61 1.00 76.34	AAAA C	

			ĺ	
	258 67 896 01 131			
ATMI 2495 0 ALA		55.029 1.00 79.60	AAAA O	
ATOH 2486 H GLU	259 62.069 26.109		AAAA II	
ATON 2488 CA GLU	259 61.742 26.623		AAAA C	
ATOH 2489 CB GLU	259 60.226 26.457	54.135 1.00 86.99	AAAA C	
ATOH 2490 OF GLU	259 59.687 25.049	54.314 1.00 89.38	AAAA C	
ATON 2491 CD GLU	259 58.364 25.033	55.057 1.00 97.77	AAAA C	
ATON 2492 OEL GLU	259 58,000 24,086	55.838 1.00101.45	AAAA O	
ATOH 2493 OEC GLU	259 57.598 26.003	54.837 1.00 94.58	AAAA O	
ATOH 2494 C GLU	259 62.117 28.078		AAAA C	
ATOH 2495 O GLU	259 62.059 29.009		AAAA O	
ATOH 2496 H SER	260 62.298 28.338		AAAA H	
ATOH 2499 CA SER	260 62.725 29.625			
ATON 2499 CB SER	260 63.753 29.269		AAAA C	
ATON 2500 OF SER			AAAA C	
			AAAA O	
			AAAA C	
	260 61.496 30.889		AAAA O	
ATOH 2504 H SER	261 60.617 30.785		AAAA N	
ATOH 2506 CA SER	261 59.423 31.540		AAAA C	
ATOH 2507 CB SER	261 58.179 31.297		AAAA C	
ATOM 2508 OG SER	261 57.436 30.334		AAAA O	
ATON 2510 C SER	261 59.683 33.032	52.318 1.00 66.90	AAAA C	
ATOH 2511 O SER	261 60.049 33.588	53.334 1.00 63.24	AAAA O	
ATOH 2512 H ASP	262 59.364 33.659	51.204 1.00 65.30	II AAAA	
ATG1 2514 CA ASP	262 59.358 35.071	50.915 1.00 58.55	AAAA C	
ATON 2515 CB ASP	262 59.268 35.285	49.400 1.00 64.85	AAAA C	
ATON 2516 CG ASP	262 59.389 36.713		AAAA C	
ATOH 2517 ODI ASP	252 59.473 37.708		AAAA O	
ATOM 2518 OD2 ASP	262 59.404 36.873		AAAA O	
ATON 2519 C ASP	262 58.121 35.706		AAAA C	
ATON 2520 O ASP	262 57.851 36.918	51.510 1.00 52.48		
ATCH 2521 H SER			AAAA O	
			AAAA N	
			AAAA C	
	263 55.020 34.245		AAAA C	
	263 55.149 33.348	51.791 1.00 66.80	AAAA O	
	263 56.310 38.965	54.117 1.00 49.52	AAAA C	
	263 57.396 35.737	54.709 1.00 42.33	AAAA O	
	264 55.320 36.783	54.549 1.00 38.93	AAAA ::	
	264 55.362 37.022	55.921 1.00 36.70	AAAA C	
ATCH: 0833 CB GLU	264 54.359 39.337	56.200 1.00 43.71	AAAA C	
ATON 3533 C3 GLU	264 54.575 39.492	58.218 1.90 37.74	AAAA C	
ATCN: 2534 CD GLU	264 55.374 40.632	55.793 1.00 34.36	AAAA C	
ATGN: 2535 CE1 GLU	264 55.493 41.600	57.034 1.00 41.55	AAAA O	
	264 55.832 41.576	55.146 1.00 39.60	O AAAA	
	264 55.099 36.056	56.827 1.00 35.84	AAAA C	
	264 54.369 38.151	56.355 1.00 39.60	AAAA O	
	265 55.801 35.938	57.962 1.00 35.64		
			AAAA H	
		59.727 1.00 40.30	AAAA C	
		59.829 1.00 39.51	AAAA C	
	265 53.981 38.699	60.135 1.00 37.20	AAAA O	
	266 54.537 33.569	60.516 1.00 35.75	AAAA ::	
	266 53.637 33.434	61.625 1.00 33.70	AAAA C	
	266 53.924 32.155	62.386 1.00 28.20	AAAA C	
	266 53.356 30.958	61.671 1.00 37.07	AAAA C	
	266 53.760 30.618	60.377 1.00 34.72	AAAA C	
	266 52.383 30.185	62.313 1.00 25.65	AAAA C	
	266 53.225 29.506	59.760 1.00 37.72	AAAA C	
	266 51.879 29.094	61.672 1.00 24.63	AAAA C	
	266 52.260 28.708	60.402 1.00 23.58	AAAA C	
	266 53.571 34.570	62.608 1.00 35.82	AAAA C	
ATON 2555 O PHE 2	266 54.446 35.372	62.879 1.00 39.23	AAAA O	
ATCH 2556 H VAL :	267 52.360 34.763	63.161 1.00 37.10	AAAA 11	
ATOH 2558 CA VAL 2	267 52.118 35.812	64.113 1.00 36.09	AAAA C	
ATOH 2559 CB VAL 2	267 51.315 36.974	63.567 1.00 39.01	AAAA C	
ATCH 2560 CGL VAL 2	267 51.626 37.601	62.230 1.00 31.10	AAAA C	
	267 49.890 36.400	63.570 1.00 36.88	AAAA C	
	267 51.506 35.260	65.400 1.00 33.55	AAAA C	
	267 51.202 34.098	65.515 1.00 32.41	AAAA O	
	268 51.539 36.988	66.477 1.00 35.88	AAAA N	
		67.691 1.00 39.79	AAAA C	
	268 51.791 35.232	68.849 1.00 31.17	AAAA C	
	50.922 35.253	70.150 1.00 32.66	AAAA C	
	52.403 33.956	68.724 1.00 23.56	AAAA C	
	68 53.421 33.546	69.806 1.00 25.93	AAAA C	
	68 49.806 36.608	68.050 1.00 42.44	AAAA C	
	50.116 37.767	68.327 1.00 39.99	AAAA O	
	169 48.528 36.292	67.864 1.00 44.26	AAAA N	
ATOM 2575 CA HIS 2	69 47.491 37.320	68.173 1.00 44.29	AAAA C	
		CC 301 1 00 15 10		
	46.885 37.876	66.901 1.00 45.48	AAAA C	
ATOH 2577 CG HIS 2	46.885 37.876 45.915 38.986	67.079 1.00 45.48	AAAA C	
ATOH 2577 CG HIS 2			AAAA C	
ATOH 2577 CG HIS 2 ATOH 2578 CD2 HIS 2	69 45.915 39.986	67.079 1.00 54.33	AAAA C AAAA C	
ATOM 2577 CG HIS 2 ATOM 2578 CD2 HIS 2 ATOM 2579 ND1 HIS 2	69 45.915 39.986 69 44.551 39.014	67.079 1.00 54.33 67.096 1.00 46.61 67.307 1.00 51.86	АААА С АААА С АААА Н	
ATOH 2577 CG HIS 2 ATOH 2578 CD2 HIS 2 ATOH 2579 ND1 HIS 2 ATOH 2581 CE1 HIS 2	45.915 38.986 69 44.551 39.014 69 46.356 40.280 69 45.282 41.057	67.079 1.00 54.33 67.096 1.00 46.61 67.307 1.00 51.86 67.437 1.00 55.17	AAAA C AAAA C AAAA H AAAA C	
ATOH 2577 CG HIS 2 ATOH 2578 CD2 HIS 2 ATOH 2579 ND1 HIS 2 ATOH 2581 CE1 HIS 2 ATOH 2582 NE2 HIS 2	45.915 38.986 44.551 39.014 69 46.356 40.280 69 45.282 41.057 69 44.175 40.324	67.079 1.00 54.33 67.096 1.00 46.61 67.307 1.00 51.86 67.437 1.00 55.17 67.309 1.00 46.97	AAAA C AAAA C AAAA H AAAA C AAAA N	
ATOH 2577 CG HIS 2 ATOH 2578 CD2 HIS 2 ATOH 2579 ND1 HIS 2 ATOH 2581 CE1 HIS 2 ATOH 2582 HE2 HIS 2 ATOH 2584 C HIS 2	45.915 38.986 69 44.551 39.014 69 46.356 40.280 69 45.282 41.057	67.079 1.00 54.33 67.096 1.00 46.61 67.307 1.00 51.86 67.437 1.00 55.17	AAAA C AAAA C AAAA H AAAA C	

í

Wallet I	2586		ASE	279	45.950	37.506			AAAA H
ATOU	2589 2589			270 270	44.948 43.573				AAAA C AAAA C
ATOH	2590	03	ASF	270	42.919	38.393	70.29	1.00 80.82	AAAA C
HOTA HOTA	2591 2592		1 ASF 2 ASP	270 270	41.737 43.407				AAAA O AAAA O
ATOH	2593		ASF	270	45.226				AAAA C
HOTA HOTA	2594 2595	11	ASF GLY	270 271	44.357 46.477				AAAA O
IOTA	2597	ÇA	GLY	271	46.839				AAAA N AAAA C
ATOH	2598 2599	0	GLY GLY	271 271	46.818				AAAA C
IOTA IOTA	2600		GLU	272	46.775 47.015				AAAA O AAAA II
ATOH	2602	CA	GLU	272	47.108	32.092	69.371	1.00 43.56	AAAA C
ATOH ATOH	2603 2604	CB CB	GLU	272 272	45.752 45.778	31.737 30.600			AAAA C AAAA C
ATOH	2605	CD.	GLU	272	44.413	30.528	67.149	1.00 36.92	AAAA C
HOTA HOTA	2606 2607		L GLU 2 GLU	272 272	43.545 44.223				AAAA O AAAA O
HOTA	2608	C	GLU	272	48.211	32.324	68.335	1.00 40.32	AAAA C
HOTA	2609 2610	0	GLU CYS	272 273	48.445 48.942	33.447 31.237	67.896 68.138		O AAAA 11 AAAA
1 IOTA	2612	CA	CYS	273	50.046	31.187	67.188	1.00 40.27	AAAA C
ATOH ATOH	2613 2514	0	CYS	273 273	49.321 48.713	30.810 29.712	65.883 65.831		AAAA C AAAA O
HOTA	2615	CB	CYS	273	51.098	30.148	67.529		AAAA C
ATOH ATOH	2616 2617	\$G 	CYS	273 274	52.337 49.373	29.825 31.749	66.260 64.933		AAAA S
ATOH	2619	CA	HET	274	48.586	31.351	63.720		AAAA N AAAA C
ATOH ATOH	2620 2621	CB CG	HET	274 274	47.136	31.861	63.847		AAAA C
ATOH	2632	SD	HET	274	45.923 45.477	33.379 33.921	63.691 64. 6 77	1.00 36.51	AAAA C AAAA S
ATOH ATOH	2623	Œ	HET	274	45.659	35.658	64.754	1.00 22.47	AAAA C
ATON	2624 2628	С Э	!:ET !:ET	274 274	49.426 50.167	31.900 32.880	62.608 62.673	1.00 39.35	AAAA C AAAA O
ATO!!	2626	::	GLH	275 275	49.378	31.353	61.428	1.00 42.55	H KAAA H
ATCH ATCH	2628 2628	2A 2B	31:1 31:1	275	50.041 49.519	31.834 30.765	60.232 59.242	1.00 37.69 1.00 34.01	AAAA C AAAA C
ATC::	2637	23	3 <u>1</u> ::	275	49.329	31.274	57.864	1.00 56.40	AAAA C
ATON ATON	1631 1631	25 251	31:1 31:1	275 275	49.275 49.941	30.190 29.151	56.812 56.910	1.00 65.46 1.00 67.24	AAAA C AAAA O
ATCH:	2433	::52	31.:	275	48.451	30.436	55.799	1.00 78.29	AAAA H
ATON ATON	1636 2637		31.1 31.1	275 275	49.721 50.526	33.195 33.831	59.720 59.064	1.00 35.41 1.00 35.95	AAAA C AAAA O
ATO::	2638	::	GLU	276	49.566	33.754	60.056	1.00 41.70	II AAAA
ATOI: ATOII	2640 2641	0A 08	31V 31V	276 276	48.222 47.387	35.080 34.884	59.571 58.245	1.00 43.96 1.00 42.40	AAAA C AAAA C
ATON	2642	73	3LU	276	47.154	36.269	57.650	1.00 53.84	C AAAA
ATOL: ATOL:	2643 2644	72 721	310 310	276 276	48.359 49.356	37.198 36.595	57.460 56.943	1.00 61.37 1.00 67.32	AAAA C AAAA O
ATOH	2648	CEC	310	276	43.242	39.411	57.811	1.00 45.10	AAAA
ATOH ATOH	2646 2647	Ç	300 300	276 276	47.444 45.750	35.935 35.449	60.540 61.444	1.00 39.74 1.00 45.06	AAAA C AAAA O
ATON	2649	::	TYS	277	47.495	37.235	60.500	1.00 38.69	II AAAA
ATOH ATOH	2650 2651	CA C	CYS	277 277	46.718 4 5 .205	39.089 37.938	61.332 60.994	1.00 46.11 1.00 52.70	AAAA C AAAA C
HOTA	2652	C	CYS	277	44.760	37.511	59.936	1.00 49.43	O AAAA
ATOH ATOH	2653 2654	CB SG	CYS	277 277	47.039 48.629	39.537 40.083	61.111 61.645	1.00 45.56 1.00 52.86	aaaa s
HOTA	2655	\mathbf{H}	PRO	278	44.380	38.261	61.993	1.00 54.63	II AAAA
ATON ATON	2656 2657	CD CA	PRO	278 278	44.824 42.946	38.778 38.185	63.311 61.899	1.00 57.20 1.00 55.82	AAAA C AAAA C
HOTA	2658	CB	PRO	278	42.445	38.635	63.267	1.00 55.61	AAAA C
ATOH ATOH	2659 2660	og O	PRO FRO	278 278	43.605 42.487	38.670 39.116	64.153 60.781	1.00 55.58 1.00 52.55	AAAA C AAAA C
HOTA	2661	C	FRO	278	43.083	40.195	60.631	1.00 48.76	AAAA O
HOTA	2661 2662	II CA	SER SER	279 279	41.370 40.815	38.845 39.720	60.143 59.140	1.00 49.35 1.00 52.03	aaaa n aaaa c
ATC 1	2665	CB	SER	279	39.280	39.572	58.975	1.00 47.62	AAAA C
ATOH ATOH	2666 2669	C3	SER SER	279 279	39.320 41.003	39.778 41.209	57.785 59.173	1.00 68.16 1.00 55.40	AAAA O AAAA C
ATOH	2669	0	SER	279	41.225	41.740	58.059	1.00 55.40	AAAA O
ATOH ATOH	2670 2672		GLY GLY	290 290	40.775 40.968	41.962	50.247	1.00 55.32	AAAA N
ATOH.	2673	τ	SLY	290	42.248	43.406 43.990	59.868 60.479	1.00 48.58 1.00 55.98	AAAA C AAAA C
ATOH ATOH	2674 2675		GLY PHE	280 281	42.249	45.097	60.772	1.00 56.00	AAAA O
ATOH1	2677	CA	3H9	291	43.213 44.506	42.983 43.411	60.742 61.262	1.00 55.42 1.00 52.94	AAAA N AAAA C
POTA FIOTA	2678 2679		PHE PHE	201 281	44.938	42.644	62.523	1.00 61.20	AAAA C
ATOH			PHE	281	43.958 44.142	42.792 43.702	63.637 64.630	1.00 53.66 1.00 60.47	аааа с аааа с
ATOH		CDC		281	42.839	41.992	63.712	1.00 60.98	AAAA C
HOTA		CEL	PHE PHE	291 281	43.272 41.931	43.901 42.162	65.678 64.756	1.00 64.71 1.00 63.18	AAAA C AAAA C
ATOH			FHE	281	42.141	43.115	65.744	1.00 58.88	AAAA C

f

.

ATM	2695 /	BHS 7	291	45.530	43.217	60.240	1.00 48.00	AAAA C
ATOH		388	281	45.738	42.395			AAAA O
ATCH		1 ILE	282	46.570				II AAAA II
ATOH	2689 (TA ILE	282	47.907	43.984	59.748	1.00 45.00	AAAA C
ATOH	_	B ILE	282	47.945	45.198	58.799	•	AAAA C
ATOH		GG2 ILE	282	48.041	46.494	59.507	1.00 24.60	AAAA C
ATOH	2690 0	GI ILE	282	49.092	45.022	57.795	1.00 38.71	AAAA C
ATOH	2693	DI ILE	282	49.194	46.043	56.669	1.00 33.38	AAAA C
ATOH		: ILE	282	49.081		- 60.673	1.00 44.30	AAAA C
ATOH	2695 (ILE	282	49.078	44.447	61.759	1.00 48.49	AAAA O
ATO!!	2696 1	I ARG	283	50.126	43.153	60.298	1.00 48.68	H AAAA H
			283					
ATOH				51.396	43.094	61.048	1.00 39.30	AAAA C
ATOH	2699 0	CP ARG	283	52.300		60.286	1.00 41.10	AAAA C
ATOH	2700 0	G ARG	283	52.295	40.696	60.515	1.00 29.19	AAAA C
	_	D ARG	283	53.078	39.996	59.451	1.00 29.85	AAAA C
ATOH								
ATOH	2702 1	IE ARG	283	52.823	38.545	59.404	1.00 29.39	aaaa n
HOTA	2704 0	E ARG	283	51.862	38.024	58.646	1.00 37.61	AAAA C
HOTA		H1 ARG	283	51.065	38.046	57.944	1.00 31.41	AAAA N
ATOH	-	IH2 ARG	283	51.651	36.722	58.596	1.00 31.97	n aaaa
ATOH	2711 (: ARG	283	51.945	44.498	61.190	1.00 42.27	AAAA C
HOTA	2712	ARG	283	51.931	45.228	60.173	1.00 43.42	AAAA O
ATOH	2713		284	52.362	44.006	62.422	1.00 39.49	AAAA 11
ATOH	2715 0	iea asii	284	52.733	46.311	62.574	1.00 42.07	AAAA C
ATOH	2721 0	: ASII	284	54.078	46.656	61.929	1.00 41.64	AAAA C
ATCH		ASII	284	54.431	47.798	61.742	1.00 39.01	AAAA O
ATOH	2716 0	112A 6:	284	52.734	46.760	64.032	1.00 37.33	AAAA C
ATOH	2717 0	'5 ASH	284	53.917	46.028	64.611	1.00 50.21	AAAA C
ATCH		DI ASH	284	54.609	45.104	64.192	1.00 44.30	AAAA O
ATOH		ID2 ASII	284	54.323	46.432	65.842	1.00 42.46	AAAA N
ATOH	2723 1	GLY	285	54.931	45.699	61.562	1.00 40.10	и аааа
HOTA	2725 0	A GLY	285	55.971	45.815	60.593	1.00 26.91	AAAA C
ATOH	2726 C		285	56.091	44.468	59.848	1.00 33.12	AAAA C
HOTA	2727 C	GLY	295	55.584	43.331	60.187	1.00 29.51	AAAA O
ATON	2729 11	SER	286	56.915	44.619	59.766	1.00 26.53	H AAAA H
		A SER	286	57.109	43.395		1.00 32.67	
ATON						57.975		AAAA C
ATOH:		e ser	296	57.944	43.691	56.757	1.00 33.19	AAAA C
ATCH	2732 0	G SER	296	58.283	42.490	5€.014	1.00 31.95	O AAAA O
ATON	2734 0		286	\$7.750	42.310	58.836.		AAAA C
ATO::	2735 0		286	58.700	42.495	59.607	1.00 44.29	O AAAA
ATO:	2736 1	31:	297	57.227	41.149	58.940	1.00 34.45	aaaa n
ATO!!	2739 0	A GLN	297	57.738	40.005	59.634	1.00 35.25	AAAA C
ATO:	2739 0		297	59.139	39.510	59.083	1.00 27.97	AAAA C
ATOH	2740 0	3 GLN	287	59.037	39.034	57.664	1.00 26.61	AAAA C
ATOH	2749 G 2741 G	D GLH	287	58.53⊊	37.963	57.130	1.00 21.25	AAAA C
ATO:		El GLU	297	58.192	37.023	E7.845	1.60 28.18	AAAA O
ATO:		EC GLH	287	58.492	37.832	55.782	1.00 27.55	AAAA !!
ATO!!	2746 0	G1:1	297	57.773	40.298	51.111	1.00 30.25	AAAA C
ATON	2747 0		397	58.163	39.415	61.908	1.00 32.78	AAAA O
1 KOTA	2749 ()		298	57.021	41.217	61.624	1.00 32.49	AAAA D
ATO::	2750 0	A JER	088	56.696	41.322	63.043	1.00 28.98	AAAA C
ATOH	2751 C	S SER	288	56.924	42.675	63.313	1.00 35.79	AAAA C
ATOH:	2782 C		288	55.639	42.612	64.701	1.00 36.61	AAAA O
ATO:	2754 C		298	55.565	40.285	63.442	1.00 29.96	AAAA C
ATOH	2755 0	SER	288	54.993	39.776	62.553	1.00 31.16	AAAA O
HOTA	2756 11	HET	289	55.774	39.720	64.621	1.00 32.51	II AAAA II
HOTA	2758 C.		289	54.875	38.697	65.105	1.00 34.53	AAAA C
				54.073				
HOTA	2759 C	B MET	289	55.507	37.023	66.153	1.00 30.31	AAAA C
ATOH	2760 C	g het	289	56.571	36.872	65.680	1.00 40.50	AAAA C
ATOH	2761 S	D MET	289	56.977	35.623	66.881	1.00 31.65	AAAA S
HOTA	2762 C		289	55.745	34.315	66.508	1.00 30.47	AAAA C
HOTA	2763 C	HET	289	53.557	39.286	65.703	1.00 35.55	AAAA C
ATOH	27 5 4 O	MET	289	52.630	38.512	66.014	1.00 38.37	AAAA O
HCTA	2765 N	TYR	290	53.380	40.565	65.742	1.00 29.54	II AAAA II
HOTA	2767 C		290	52.363	41.358	66.297	1.00 38.81	AAAA C
ATOH	2768 CI	B TYR	290	52.947	42.589	67.042	1.00 36.72	AAAA C
ATOH	2769 C.	G TYR	290	53.570	42.184	68.351	1.00 41.94	AAAA C
ATOH		D1 TYR	290	54.932		68.350	1.00 37.79	AAAA C
					41.780			
HCTA	2771 C	E1 TYR	290	55.548	41.369	69.503	1.00 32.60	AAAA C
ATOH	2772 CI	DO TYR	290	52.887	42.157	69.570	1.00 39.93	AAAA C
ATOH		E2 TYR	290	53.501	41.750	70.748	1.00 36.16	AAAA C
ATOH	2774 C		290	54.822	41.355	70.693	1.00 38.85	AAAA C
ATOH	2775 OI	TYR	290	55.581	40.923	71.751	1.00 43.41	AAAA O
ATOH	2777 @	TYR	290	51.361	41.955	65.270	1.00 45.54	AAAA C
			290					AAAA O
HOTA.	2778 0	TYR		51.733	42.520	64.227	1.00 47.10	
ATOH.	2779 !!	CYS	291	50.971	41.699	65.537	1.00 44.68	II AAAA II
ATOH	2781 02	A CYS	291	49.017	42.205	64.695	1.00 47.20	AAAA C
ATOH	2782 C	CYS	291	48.295	43.434	65.194	1.00 16.06	AAAA C
ATOH	2783 0		291	47.892	43.550	66.343	1.00 49.45	AAAA O
ATOH	2784 CS	CYS	291	47.973	41.103	64.483	1.00 43.44	AAAA C
ATOH	2785 SC		291	48.766	39.715	63.683	1.00 45.49	AAAA S
ATOH	2786 11	ILE	292	48.136	44.453	64.365	1.00 46.82	AAAA N
ATOH	2788 CA	ILE	292	47.399	45.651	64.755	1.00 50.64	AAAA C
ATOH	2789 CE	ILE	292	48.267	46.932	64.779	1.00 39.19	AAAA C
ATOH		2 ILE	292	49.291	46.885	65.861	1.00 44.39	AAAA C
ATOH	2791 GC	1 ILE	292	48.920	47.095	63.402	1.00 44.25	AAAA C

ATHM	2792 70	1 11.E	3.92	49.234	49.568	63.108	1.00 32.80	AAAA C
ATOL	2793 C	ILE	292	46.240				
								AAAA C
ATOH	2794 O	ILE	292	46.165	45.526	62.670		AAAA O
HOTA	2795 11	PRO	293	45.150	45.507	64.385	1.00 51.86	H AAAA H
ATOH	2796 CD		293	45.009				
								AAAA C
ATOH	2797 CA	PRO	293	43.958	46.930	63.675	1.00 51.40	AAAA C
ATOH	2798 CB	PRO	293	43.170	47.784	64.681	1.00 49.00	AAAA C
	2799 CG		293	43.533				
HOTA								AAAA C
ATCII	2800 C	PRO	293	44.253	47.870	. 62.525	1.00 51.68	AAAA C
ATOH	2801 0	PRO	293	45.053	48.788	62.737	1.00 51.92	AAAA O
INTA	2802 11	CYS	294	43.607	47.621	61.408	1.00 50.66	H AAAA H
INTA	2804 CA	CYS	294	43.811	48.464	60.254	1.00 57.90	AAAA C
	2805 C	CYS	294	43.219	49.848	60.345		AAAA C
IOTA								
HOTA	2806 O	CTS	294	43.744	50.814	59.785	1.00 60.87	AAAA O
ATOH	2807 CB	CYS	294	43.229	47.686	59.046	1.00 57.59	AAAA C
HOTA	2808 SG		294	44.408	46.460			aaaa s
ATOH	2809 II	ALA	295	42.009	50.031	60.854	1.00 65.87	H AAAA
ATOH	2811 CA	ALA	295	41.391	51.386	60.804	1.00 71.19	AAAA C
ATOH	2812 CB	ALA	295	42.311	52.459			AAAA C
HOTA	2813 C	ALA	295	40.971	51.770	59.370	1.00 69.17	AAAA C
ATOH	2814 0	ALA	295	41.421	52.717	58.762	1.00 64.70	AAAA O
ATOH	2815 N	GLY	296	40.153	50.920	58.775	1.00 71.30	AAAA N
HOTA	2817 CA	GLY	296	39.640	51.049	57.416	1.00 72.66	AAAA C
HOTA	2818 C	GLY	296	39.895	49.686	56.769	1.00 74.20	AAAA C
ATO!!	2819 O	GLY	296	40.408	48.819	57.490	1.00 75.04	AAAA O
ATOH	2820 11	FRO	297	39.561	49.540	55.497	1.00 71.88	AAAA N
	2821 CD	PRO	297				1.00 72.15	
ATOH				38.928	50.561	54.637		AAAA C
IOTA	2822 CA	PRO	297	39.958	48.344	54.777	1.00 68.23	AAAA C
ATOH	2823 CB	PRO	297	39.488	48.603	53.369	1.00 72.57	AAAA C
ATOH	2824 CG	PRO	297			53.490	1.00 74.04	
				38.470	49.687			AAAA C
MOTA!	2825 C	PRO	297	41.480	48.306	54.860	1.00 65.78	аааа с
HOTA	2826 0	PRO	297	42.147	49.323	54.997	1.00 62.72	AAAA O
HOTA	2827 H	CYS	298	42.039	47.135	55.073	1.00 63.85	II AAAA II
ATOH	2829 CA	CYS	298	43.464	46.953	55.248	1.00 54.47	aaaa c
ATOI!	2830 C	CYS	298	44.109	47.303	53.908	1.90 54.56	AAAA C
ATCH	2931 0	TYS	3 9 8	43.621	47.030	52.820	1.00 54.83	AAAA O
ATOU	2832 CB	CYS	298	43.665	45.544	55.669	1.00 47.65	aaaa c
ATCH	1933 SG	778	299	43.501	45.115	57.371	1.00 46.12	aaaa s
ATON	2934 11	FRO	299	45.310	47.876	53.967	1.00 49.83	aaaa n
ATCH	2638 25	FRO	299	46.087	48.168	55.194	1.00 48.14	AAAA C
ATOH	2836 CA	FRO	299	46.055	48.212	52.797	1.00 43.57	AAAA C
ATCH	2837 CB	FRO	299	47.267	48.965	53.281	1.00 44.08	AAAA C
ATOLL	2939 79	FRO	299	47.454	49.351	54.628	1.00 51.38	AAAA C
ATOH	2939 C	PRO	299	46.341	46.969	52.010	1.00 38.96	AAAA C
ATON	1640 O	PRO	366	46.372	48.674	52.546	1.00 42.25	O AAAA
ATOH	2841 17	LIS	300	46.310	47.073	50.712	1.00 38.30	AAAA N
ATOH	2843 TA	LYS	300	45.484	45.959	49.812	1.00 42.62	AAAA T
ATOH	0944 CB	LYS	300	45.176	45.226	49.595	1.00 34.28	AAAA C
ATOH	2845 OG	LYS	300	45.346	43.901	48.920	1.00 41.45	AAAA C
ATOH:	2846 00	LYS	300	44.013	43.413	48.378	1.00 49.31	AAAA C
ATO! I	2847 CE	LYS	300	44.388	42.027	47.787	1.00 48.57	AAAA C
ATCH	2848 115	LYS	300	43.662	42.031	46.478	1.00 63.70	AAAA II
ATOH	2852 0	LYS	300	46.964	46.479	49.432	1.00 48.72	AAAA C
ATOH	2853 O	LYS	300	46.413	47.383	47.776	1.00 46.09	AAAA O
ATOII	2854 11	VAL	301	48.150	45.984	48.054	1.00 48.15	AAAA II
HOTA	2856 CA	VAL	301	48.802	46.462	46.871	1.00 44.52	AAAA C
I-fota	2857 CB	VAL	301	50.292	46.729	47.074	1.00 51.52	AAAA C
ATOH	2858 CG1	VAL	301	51.008	47.200	45.796	1.00 43.07	AAAA C
HOTA	2859 CG2	VAL	301	50.495	47.794	48.141	1.00 49.50	AAAA C
HOTA	2860 C	VAL	301	48.526			1.00 44.59	AAAA C
					45.410	45.837		
ATO! I	2861 0	VAL	301	48.913	44.291	46.060	1.00 43.70	C FAAA
ATOH!	2862 11	CYS	302	47.910	45.816	44.718	1.00 47.98	AAAA II
		CYS	302					AAAA C
ATOH				47.645	44.735	43.739	1.00 55.19	
ATOH	2865 C	CYS	302	48.594	44.968	42.583	1.00 57.64	AAAA C
ATOLL	2866 O	CYS	302	48.852	46.152	42.343	1.00 60.23	O AAAA
	2867 CB	CYS	302	46.186			1.00 68.30	
HOTA					44.630	43.330		AAAA C
ATOI-I	2868 SG	CYS	302	45.070	41.360	44.751	1.00 70.31	AAAA S
HOTA	2859 11	GLU	303	49.183	43.921	-42.075	1.00 58.15	AAAA II
	2871 CA	GLU	303	50.174				AAAA C
ATOH					43.932	41.034	1.00 62.85	
ATOH:	2872 CB	GLU	303	51.603	44.006	41.595	1.00 67.85	AAAA C
ATOH	2873 CG	GLU	303	51.760	43.487	43.014	0.01 67.46	AAAA C
ATOH	2874 CD	GLU	303	51.989	41.992	43.097	0.01 67.94	AAAA C
ATOH		GLU	303	53.011	41.514	42.561	0.01 67.67	AAAA O
ATOH	2876 OE2	SLU	303	51.147	41.290	43.697	0.01 67.65	AAAA O
ATOH	2877 C	GLU	303	50.096	42.662	40.194	1.00 64.12	AAAA C
I IOTA	2878 O	GLU	303	50.162	41.562	40.708	1.00 65.08	AAAA O
HOTA	2879 N	GLU	304	49.867	42.794	38.904	1.00 67.37	AAAA II
ATOH	2881 CA	GLU	304	49.672	41.583	38.094	1.00 74.63	AAAA C
ATON	2882 CB	GLU	304	48.285	41.596	37.458	1.00 71.71	AAAA C
HOTA	2883 CG	GLU	304	47.339	42.663	38.031	1.00 84.54	AAAA C
ATOH	2884 CD	GLU	304	45.930	42.152	39.185	1.00 87.56	AAAA C
HOTA		GLU	304	45.438	41.571	37.179	1.00 89.13	AAAA O
HOTA	2886 OE2	GLU	304	45.249	42.269	39.233	1.00 93.19	C KAAA
ATOH	2887 C	GLU -	304	50.866	41.307	37.190	1.00 76.10	AAAA C
		GLU	304					
ATOH	1988 O	250	304	51.911	41.962	37.217	1.00 74.78	AAAA O

, ·

ATHE	2889 11 5	LU 305	50.899	9 40.106	36.560	9 1.00 77.31	AAAA II
ATM	2891 CA GI	LU 305	51.930	39.656	35.67	1 1.00 75.90	
ATOH							
		LU 305	51.467			1.00 79.95	AAAA C
ATOU	2893 09 68	LU 305	52.307	37.937	33.807	1.00 87.28	AAAA C
ATOH							
			51.758			6 0.01 83.39	AAAA C
ATOL	2895 OE1 GI	JU 305	50.763	36.234	33.25	0.01 83.66	AAAA O
ATOH							
			52.310		31.780	0.01 83.73	AAAA O
HOTA	2897 C GI	JU 305	52.276	40.737	34.666	1.00 75.97	AAAA C
ATOH			53.381				AAAA O
ATCH	2899 H L	:S 306	51.291	41.181	33.888	3 1.00 78.22	II AAAA II
ATOH		S 306	51.479				
						1.00 75.99	AAAA C
ATOH	2900 CB LY	'S 306	50.467	42.253	31.855	1.00 79.78	AAAA C
ATOH	2903 CS U	S 306	51.208				
	_						AAAA C
ATOU	2904 CD L1	'S 306	50.313	42.191	29.314	1.00 92.78	AAAA C
ATCI	2905 CE LY	S 306	50.740	43.227			AAAA C
HOTA	2906 HS Li	'S 306	50.938	44.554	28.929	1.00 84.87	н аааа
HOTA	2910 C Li	S 306	51.381	43.669	33.703	1.00 73.85	AAAA C
I IOTA	2911 O LY	'S 306	50.703	43.862	34.718	1.00 76.08	AAAA O
ATOH	2912 H LY	S 307	52.000	44.700	33.180	1.00 71.15	H AAAA N
ATOH	2914 CA LY		51.934	46.053	33.692	1.00 69.45	AAAA C
ATOH	2915 CB LY	5 307	53.022	46.903	33.008	1.00 79.64	AAAA C
ATOLL			54.419	46.837	33.564	1.00 78.88	AAAA C
ATOH	2917 CD LY	S 307	55.257	48.084	33.374	1.00 85.84	AAAA C
ATOH	2918 CE LY		55.708				
							AAAA C
I IOTA	2919 NZ LY	S 307	54.649	48.840	31.067	1.00 97.80	AAAA N
ATCI	2923 C LY	S 307					
			50.562				AAAA C
HOTA	2924 O LY	S 307	50.010	47.369	34.431	1.00 64.46	AAAA O
1 IOTA	2925 II TH	R 308	49.979				
					32.323		II AAAA II
ATOU	2927 CA TH	R 308	48.709	47.319	32.091	1.00 64.56	AAAA C
HOTA	2928 CB TH	R 308	48.714	47.977			
					30.711		AAAA C
ATOH	2929 OG1 TH	R 308	49.834	48.843	30.577	1.00 61.97	AAAA O
ATOH	2931 CG2 TH	R 308	47.392	49.742	30.561		AAAA C
ATON	2932 C TH	R 308	47.514	46.379	32.234	1.00 61.82	AAAA C
ATOLI	2933 0 78	R 308	47.412	45.415	31.477		AAAA O
ATOH	2934 H LY		46.675	46.719	33.211	1.00 55.66	H FAAA
ATO!!	2936 CA LY	s 309	45.456	45.926	33.445	1.00 54.67	AAAA C
ATOI:	2937 TB LY						
		3 309	45.043	45.880	34.904	1.00 56.82	AAAA C
ATO:	2939 D3 LY:	s 30º	43.601	45.541	35.223	1.00 57.50	AAAA C
ATO::	1939 DD 1Y	309	43.390				
		3 305		44.039	35.086		AAAA C
AT DI:	2940 DE LY:	309	42.703	43.449	36.324	1.00 57.31	AAAA C
ATON	2941 NJ LY.	309	42.758	41.954	36.236	1.00 57.22	
							aaaa n
ATON	2945 T LY:	309	44.391	46.570	32.549	1.00 51.21	aaaa c
ATOH	1946 D 1Y:	309	44.074	47.763	32.680		
	7172 5 500					1.00 47.23	AAAA O
ATO:	2947 H TH	R 310	43.895	48.772	31.610	1.00 47.67	H AAAA II
ATOH	2949 CA TH	310	42.862	46.329	30.733	1.00 51.89	
							AAAA C
ATO::	2950 TB THE	310	43.161	46.015	29.266	1.00 54.81	AAAA C
ATO:	2951 0G1 TH	310	41.909	45.710	28.635	1.00 66.29	AARA C
ATO:	0983 TGC TH		44.032	44.791	29.139	1.00 55.19	AAAA C
ATO:	1954 C TH	310	41.468	45.941	31.117	1.00 51.15	AAAA C
ATOH:	2955 0 TH						
			41.162	44.580	30.991	1.00 49.27	AAAA O
: ICTA	2956 :: ILE	311	40.684	46.706	31.732	1.00 50.18	AAAA X
ATO:	1988 TA ILE	311	39.363	45.453		1.00 48.67	
					32.276		AAAA C
ATOH	2959 CB ILE		39.120	47.396	33.462	1.00 49.27	AAAA C
HOTA	2960 TG2 ILE	311	37 655			1.00 50.72	AAAA C
HOTA	2961 CG1 ILE		39.896	45.930	34.599	1.00 41.34	AAAA C
1 IOTA	2962 CD1 ILE	311	39.847	49.073	35.739	1.00 52.22	AAAA C
ATOH	2963 C ILE		38.334	46.729	31.186	1.00 45.37	AAAA C
ATOH	2964 O ILE	311	38.132	47.875	30.758	1.00 37.14	AAAA O
ATCH	2965 H ASE	312	37.871				
				45.678	30.524	1.00 50.10	H AAAA H
ATOH	2967 CA ASE	312	36.991	45.842	29.377	1.00 56.35	AAAA C
ATOH	2968 CB ASE	312	37.546	45.152	28.128	1.00 59.45	AAAA C
ATOH	2969 CG ASE	312	37.761	43.671	28.382	1.00 65.64	AAAA C
HOTA	2970 OD1 ASE	312	38.525	43.034	27.636	1.00 72.60	AAAA O
ATOH	2971 OD2 ASE		37.154	43.176	29.349	1.00 66.86	C AAAA
ATOR	2972 C ASP	312	35.589	45.337	29.693	1.00 59.39	AAAA C
ATOH							
			34.729	45.007	28.867	1.00 61.00	C AAAA
ATOH	2974 H SER	313	35.278	45.290	30.976	1.00 61.17	AAAA ::
ATOH	2976 CA SER						
			34.053	44.683	31.459	1.90 55.73	AAAA C
HOTA	2977 CB SER	313	34.121	43.201	31.083	1.00 48.22	AAAA C
ATOH	2978 OG SER		34.373	42.514			
					32.282	1.00 57.89	AAAA O
ATOH	2980 C SER	313	33.998	44.918	32.941	1.00 57.87	AAAA C
ATOH	2981 O SER		34.802	45.506	33.537	1.00 66.47	AAAA C
ATOH	2982 N VAL		33.001	44.205	33.545	1.00 64.35	H AAAA II
ATOH	2984 CA VAL	314	32.849	44.305	35.016	1.00 64.39	AAAA C
HOTA	2985 CB VAL	314	31.360	44.340	35.343	1.00 69.57	AAAA C
ATOH	2986 CG1 VAL	314	31.024	43.693	36.681	1.00 65.60	AAAA C
ATOH	2987 CG2 VAL	314	30.927	45.823	35.319	1.00 65.27	AAAA C
ATOH	2988 C VAL	314	33.492	43.088	35.638	1.00 62.65	AAAA C
ATOH							
	2989 O VAL	314	34.029	43.141	36.704	1.00 63.92	AAAA O
ATOH	2990 N THR	315	33.468	42.011	34.878	1.90 61.82	AAAA 11
ATOH							
		315	34.029	49.752		1.00 63.44	AAAA C
ATOH	2993 CB THR	315	33.618	39.628	34.314	1.00 65.54	AAAA C
ATOH	_	315					
			32.403	40.004	33.634	1.00 74.05	AAAA c
ATOH	2996 CG2 THR	315	33.339	39.366	35.104	1.00 64.86	AAAA C
ATOH		315					
VI ALI	2997 C THR	312	35.541	40.971	35.323	1.90 65.62	AAAA C

ATOU	2999 O THE	315	36.217	40.339	36,200	1.00 66.41	AAAA O
HOTA	2999 II SER	316	36.071				AAAA N
ATOH	3001 CA SER	316	37.500				AAAA C
ATOH	3000 CB SER	316	37.785				AAAA C
ATO!!	3003 OG SER	316	37.298				AAAA O
ATOH	3005 C SER	316	38.977				AAAA C
ATOH		316	39.293				AAAA O
ATOH		317	37.310				AAAA N
ATOH		317	37.750				AAAA C
ATOH		317	36.833				AAAA C
ATOH	3011 C ALA	317	37.689				
							AAAA C
ATOH	3012 O ALA	317	37.702	44.128			AAAA O
HOTA	3013 N GLN	318	37.361	42.205			II AAAA
HOTA	3015 CA GLU	318	37.185				AAAA C
ATO!	3016 CB GLU	318	36.857	39.956	39.293		AAAA C
ATOH	3017 OG GLU	318	36.624	38.947	10.383		AAAA C
ATOH	3018 CD GLU	318	35.265	39.080	41.048	1.00 92.69	AAAA C
ATO:1	3019 OE1 GLU	318	34.256	39.907	40.391	1.00 98.57	AAAA O
ATOH	3020 11E2 GL11	318	35.356	39.509	42.308	1.00 92.51	n aaaa
IOTA	3023 C GLH	318	38.380	41.413	40.653		AAAA C
ATOH	3024 O GLH	318	38.294	41.855	41.804	1.00 68.92	AAAA O
ATOI1	3025 II HET	319	39.562	41.052	40.153	1.00 75.18	AAAA H
HOTA	3027 CA : HET	319	40.846	41.175	40.826	1.00 71.85	AAAA C
I IOTA	3028 CB MET	319	41.950	40.960	39.772	1.00 82.00	AAAA C
ATO!	3029 CG HET	319	41.740	39.644	39.050		AAAA C
ATOLL	3030 SD HET	319	43.123	38.482	39.185	1.00106.72	AAAA S
ATOH	3031 CE HET	319	42.486	37.105	38.231	1.00 97.56	AAAA C
ATOH	3032 C HET	319	41.118	42.509	41.471	1.00 67.68	AAAA C
ATOH	3033 O HET	319	41.597	42.541		1.00 69.73	
HOTA	3034 II LEU	320			42.612		AAAA O
			40.740	43.639	40.887	1.00 62.95	AAAA II
INTA	3036 CA LEU	320	40.907	44.938	41.531	1.00 62.31	AAAA C
HOTA	3037 CB LEU	320	40.440	46.085	40.623	1.00 54.93	AAAA C
ATOH	3038 CG LEU	320	41.091	46.163	39.238	1.00 53.49	AAAA C
ATOL	3039 CD1 LEU	320	41.005	47.552	38.692	1.00 51.31	AAAA C
ATON	3040 CD2 LEU	320	42.557	45.709	39.403	1.00 58.43	AAAA C
ATOH	3041 O LEV	320	40.209	45.008	42.881	1.00 60.30	AAAA C
ATOH	3040 C FEA	320	40.344	48.959	43.561	1.00 58.72	AAAA O
ATOL	3043 H 32H	321	39.267	44.106	43.112	1.00 59.62	AAAA U
ATO!!	3048 CA 300	321	38.482	44.128	44.343	1.00 63.50	AAAA C
ATON	3046 TB GLH	321	37.373	43.089	44.250	1.00 62.52	AAAA C
ATO!!	3047 CG GEN	321	35.511	42.884	45.522	1.90 56.83	AAAA C
ATOH	3049 CD GLN	321	35.337	42.064	45.291	1.00 68.77	AAAA C
ATON	3049 OE1 GLN	321	35.362	40.989	44.718	1.00 70.37	C AAAA
ATOH	3050 NEC GEN	321	34.218	43.632	45.764	1.00 63.77	AAAA N
ATOH:	3053 C GLN	321	39.367	44.030	45.594	1.00 60.97	AAAA C
ATO!!	3054 0 GLH	321	40.262	43.196	45.782	1.00 57.29	AAAA O
ATOH	3188 H GLY	302	39.092	44.929	46.546	1.00 57.62	AAAA 3
ATOI:	3057 TA GLY	322	39.855	44.929	47.790	1.00 60.63	AAAA C
ATO:	3058 0 319	322	41.126	45.773	47.812	1.00 61.79	AAAA D
ATOI:	3059 O GLY	322	41.594	46.195	13.999	1.00 60.16	AAAA O
ATO!!	3060 H CYS	323	41.719	46.134	46.676	1.00 60.03	AAAA ::
ATOH	3062 CA CYS	323	42.938	46.845	46.528	1.00 54.20	AAAA C
ATOH	3063 C CYS	323	42.924	48.307	46.910	1.00 53.43	AAAA C
	3064 O CYS			49.148		1.00 56.43	AAAA O
ATOH	3065 CB CYS	323	43.458	46.822	45.086	1.00 53.33	AAAA C
ATOH	3066 SG CYS	323	43.325	45.222	44.248	1.00 66.22	AAAA S
ATOH	3067 N THR	324	43.994	48.718	47.580	1.00 49.83	AAAA H
ATCH	3069 CA THR	324	44.164		47.811		
ATOH	3070 CB THR	324	44.623	50.161 50.324		1.00 52.29	AAAA C
ATOH	3071 OG1 THR	324	45.245		49.264	1.00 52.84	AAAA C
ATOLI	3073 CG2 THR	324	43.432	49.087	49.634	1.00 59.92	AAAA O
ATOH	3074 C THR	324		50.517	50.193	1.00 60.00	AAAA C
ATOH		324	45.154	50.802	46.844	1.00 48.91	AAAA C
HOTA			45.277	52.016	46.710	1.00 46.90	AAAA O
		325 325	46.021	49.963	46.254	1.00 46.87	AAAA N
ATOH			47.114	50.511	45.445	1.00 45.10	AAAA C
HOTA	3079 CB ILE	325	48.473	50.577	46.183	1.00 43.60	AAAA C
HOTA	3090 CG2 ILE	325	49.586	50.905	45.163	1.00 47.47	AAAA C
HOTA	3081 CG1 ILE	325	48.394	51.623	47.294	1.00 34.03	AAAA C
ATOH	3082 CD1 ILE	325	49.595	52.010	48.028	1.00 41.94	AAAA C
ATOH	3083 C ILE	325	47.265	49.642	44.229	1.00 42.89	AAAA C
ATOM	3084 O ILE	325	47.406	48.429	44.469	1.00 42.99	AAAA O
ATOH	3085 II PHE	326	47.170	50.238	43.042	1.00 41.19	II AAAA II
ATOH	3087 CA FHE	326	47.312	49.334	41.880	1.00 42.89	AAAA C
ATOH	3098 CB PHE	326	46.166	49.437	49.877	1.00 39.15	AAAA C
HOTA	3089 CG PHE	326	46.403	49.474	39.738	1.00 38.03	AAAA C
ATOH!	3090 CD1 PHE	326	46.186	47.125	39.951	1.00 39.68	AAAA C
HOTA	3091 CD2 PHE	326	46.917	48.892	38.525	1.00 37.31	AAAA C
ATOH	3092 CE1 PHE	326	46.447	46.139	39.023	1.00 36.52	AAAA C
ATO[1	3093 CE2 PHE	326			37.551	1.00 45.74	AAAA C
ATOH	3094 CC PHE	326		46.570	37.787	1.00 39.92	AAAA C
ATOH.	3095 C PHE	326			41.280	1.00 48.78	AAAA C
ATOH	3096 O PHE	326			40.966	1.00 51.39	AAAA O
ATOH	3097 H LYS	327			41.379	1.00 50.22	AAAA N
ATOH	3099 CA LYS	327			40.831	1.00 51.49	AAAA C
ATOH	3100 CB LTS	327			41.519	1.00 58.64	AAAA C
				-			-

ATG	: Blot of Lys	327	53.25	4 48,99	7 41.98	1 1.00 59.15	
ATM			54.52				AAAA C
ATO	1 3103 CE LYS	327	55.40				AAAA C
ATG			56.26			8 1.00 71.97	AAAA 11
ATCI			50.89				AAAA c
ATO ATO		327 328	50.90) 50.760	_			AAAA o
ATO		328	50.64				AAAA H
ATC		328	49.849				AAAA C
ATO		328	49.858				AAAA O
ATO!	1 3115 II ASII	329	49.286				H AAAA
ATO		329	49.467	50.750			AAAA C
ATOI		329	49.185				AAAA C
ATON		329	50.624				AAAA C
NOTA NOTA		329 329	50.954				AAAA O
ATOH		329	51.425 47.038				II AAAA
ATOH		329	46.736				AAAA C AAAA O
ATOH		330	46.090				AAAA N
ATON		330	44.691	59.860			AAAA C
ATOH		330	43.751				AAAA C
ATOH		330	43.768				AAAA C
ATOH		330 330	42.864				AAAA C
ATOH		330	43.283 44.352				AAAA C
ATCH		330	44.509				AAAA C AAAA O
ATOH		331	43.933				AAAA N
ATOH		331	43.367				AAAA C
ATOH		331	43.958	49.894			AAAA C
ATOH		331	43.301				AAAA C
ATOH ATOH		331	43.501				AAAA C
ATOH		331 331	43.844 41.872	49.834		-	AAAA C
ATOH		331	41.562	50.568 49.365	30.705 30.779		AAAA C AAAA O
ATO!		332	41.029	51.566			AAAA II
ATOR	3146 TA ILE	332	39.606	51.241	31.044		AAAA C
ATO!!	3147 TE ILE	332	38.885	50.095	32.076		AAAA C
ATC1:	3149 DGC ILE	332	37.413	51.613	32.195		AAAA C
ATOU ATOU	3149 731 1UE 3180 701 1UE	332	39.550	51.895	33.452		AAAA C
ATON	3151 C ILE	332 332	39.479 38.959	53.152 51.367	34.337 29.688		AAAA C
ATOI:	3151 6 112	332	39.967	52.499	29.200		AAAA C AAAA O
ATCH:	3183 # ASH	333	38.569	50.273	29.094	1.00 35.25	AAAA II
ATOH	BIBB CA ASH	333	38.014	50.093	27.737	1.00 40.34	AAAA C
ATOH	3186 CB ASH	333	38.960	49.499	26.797	1.00 50.50	AAAA C
ATON	3157 03 ASN	333	38.669	49.493	25.310	1.00 59.29	AAAA C
ATOH ATOH	3158 OD1 ASN 3159 NO2 ASN	333 333	37.845	48.711	24.794	1.00 64.54	AAAA O
ATON	3161 T ASH	333	39.290 36.666	50.350 49.591	24.467 27.755	1.00 45.83 1.00 47.63	AAAA ::
ATCI!	3163 C ASH	333	36.462	48.409	27.398	1.00 44.40	AAAA O AAAA O
RIOH	3164 H ELE	334	35.544	50.213	28.315	1.00 54.13	AAAA N
ATO!!	3148 CA ILE	334	34.332	49.537	28.460	1.00 59.07	AAAA C
ATOH	3167 CB ILE	334	33.798	49.926	29.876	1.00 61.98	AAAA C
HOTA	3168 CG2 ILE	334	32.362	49.355	30.047	1.00 54.04	AAAA C
ATOH ATOH	3169 TG1 ILE 3170 CD1 ILE	334 334	34.737 34.346	49.224 49.687	30.915 32.317	1.00 60.43	AAAA C
ATOH	3171 C ILE	334	33.271	50.032	27.476	1.00 68.57 1.00 59.45	AAAA C AAAA C
A.TOH	3172 O ILE	334	32.726	51.136	27.635	1.00 56.22	AAAA O
ATOH	3173 N ARG	335	32.919	49.181	26.550	1.00 59.69	AAAA N
ATOH	3175 CA ARG	335	31.910	49.567	25.573	1.00 73.93	AAAA C
ATOH ATOH	3176 CB ARG 3177 CG ARG	335	32.262	49.903	24.240	1.00 74.44	AAAA C
ATOH	3179 CD ARG	335 335	33.729 34.102	49.932 49.289	23.918 22.500	1.00 82.97	AAAA C
ATOH	3179 HE ARG	335	34.361	49.040	21.777	1.00 86.49 1.00 89.83	aaaa c aaaa n
ATOH	3181 CD ARG	335	34.011	47.838	20.496	1.00 93.67	AAAA C
ATO!!	3192 UH1 ARG	335	33.409	48.852	19.843	1.00 87.24	AAAA II
HOTA	3185 HH2 ARG	335	34.256	46.674	19.877	1.00 75.31	N AAAA
ATOH ATOH	3189 C ARG 3189 O ARG	335	30.492	49.233	26.021	1.00 81.52	алал с
ATOH	3189 O ARG 3190 N ALA	335 336	29.664 30.208	50.115	26.239	1.00 84.11	AAAA O
ATOH	3192 CA ALA	336	28.878	47.953 47.484	26.234 26.601	1.00 87.51 1.00 82.40	AAAA N
ATOH	3193 CB ALA	336	28.835	45.980	26.633	1.00 94.03	АААА С ААА А С
MOTA	3194 C ALA	336	28.479	49.058	27.953	1.00 96.61	AAAA C
ATO!!	3195 C ALA	336	29.316	49.019	28.855	1.00 96.96	AAAA C
ATOH	3196 H GLY	337	27.298	48.685	28.039	1.00 99.74	AAAA N
LICTA ATOH	3199 CA GLY 3199 T GLY	337 337	26.986	49.385	29.272	1.00103.11	AAAA C
ATOH	3200 O GLY	337 337	25.568 24.801	49.303	29.763	1.00105.51	AAAA C
ATOH	3201 H ASN	338	25.243	50.267 48.146	29.596 30.346	1.00106.64 1.00105.41	O AAAA N AAAA
ATOH	3203 CA ASN	338	23.886	49.017	30.908	1.00105.41	AAAA C
ATOH	3004 CB ASH	338	23.714	46.689	31.624	1.00109.14	AAAA C
HOTA	3205 CG ASH	338	24.403	45.544	30.928	1.00112.30	AAAA C
ATOH	3206 OD1 ASN	338	25.598	45.595	30.625	1.00117.94	AAAA O
ATOH ATOH	3207 HD2 ASH 3210 C ASH	338 338	23.604 23.790	44.508	30.683	1.00113.72	AAAA N
*******	SELV C MON	J J G	23.790	49.160	31.931	1.00105.84	AAAA C

							•
20001	3211 O ASH	338	~2 511		31.739	1.00103.97	
ATOL		339	23.544	50.345			AAAA O
ATOU		339	24.290 24.529				AAAA H
ATCU				49.740			AAAA C
ATO!!		339	23.252	49.915			AAAA C
ATOU	3216 OG ASN	339	22.777	51.351	35.003		AAAA C
INTA	3217 OD1 ASH	339	22.715	51.931	36.088		AAAA O
ATOU	3218 HDC ASH	339	22.441	51.932	33.859		II AAAA II
ATOH	3221 C ASH	339	25.697	49.237	35.007		AAAA C
HOTA	3222 O ASII	339	25.520	48.390			AAAA O
HOTA	3223 N ILE	340	26.897	49.527	34.510	1.00101.36	AAAA II
ATOH	3225 CA ILE	340	28.136	49.101	35.138	1.00 97.43	AAAA C
ATOI:	3206 CB ILE	340	29.040	48.354	34.151	1.00 93.63	AAAA C
ATO!!	3227 092 ILE	310	28.194	47.252	33.489	1.00 99.38	AAAA C
ATO!!	3229 OG1 ILE	340	29.726	49.158	33.070	1.00 85.50	AAAA C
I POTA	3229 OD1 ILE	340	28.897	49.634	31.915	1.00 92.53	AAAA C
ATOH	3230 C ILE	340	28.783	50.357	35.706	1.00 95.32	AAAA C
HOTA	3231 O ILE	340	29.472	51.099	34.997	1.00 97.86	AAAA O
ATOH	3232 II ALA	341	28.409	50.739	36.915		II AAAA II
ATON	3234 CA ALA	341	28.892	52.008	37.450		AAAA C
ATOH	3235 CB ALA	341	28.068	53.201	37.006		AAAA C
PLOTE	3236 C ALA	341	28.786	51.968	38.970		AAAA C
ATOH	3237 O ALA	341	28.910	52.935	39.690		AAAA O
HOTA	3238 II SER	342	28.204	50.877	39.386	1.00 84.24	
		342					N AAAA
ATOH			27.910	50.601	40.780	1.00 82.05	AAAA C
ATO!!	3241 CB SER	342	26.426	50.667	41.112	1.00 85.51	AAAA C
ATOI	3240 OG SER	342	26.145	51.271	42.361	1.00 86.02	AAAA O
HOTA	3244 C SER	342	28.487	49.196	40.965	1.00 76.62	AAAA C
HOTA	3245 O SER	342	29.119	48.966	41.964	1.00 71.76	AAAA O
HOTA	3246 H GLU	343	28.373	48.409	39.905	1.00 76.23	II AAAA
ATOH	3248 CA GLU	343	29.001	47.109	39.820	1.00 74.59	AAAA C
ATOH!	3249 CB GLU	343	28.595	46.300	38.616	1.00 78.62	аааа с
ATOH	3250 CG GLU	343	27.118	46.105	38.316	1.00 85.33	AAAA C
ATO:	3251 OD GDW	343	26.898	45.121	37.169	1.00 92.76	AAAA C
ATOI:	3282 OEL GLV	343	27.209	43.911	37.310	1.00 96.41	O AAAA
ATO::	3253 DEC GLU	343	26.423	45.517	36.082	1.00 98.55	O AAAA
ATC:	3214 T 31V	313	30.528	47.319	39.804	1.00 77.75	AAAA C
ATO!:	3155 0 910	343	31.273	46.797	40.637	1.00 75.73	AAAA O
ATOH	3256 H LEV	344	31.022	49.237	39.966	1.00 75.65	AAAA N
ATO:	BOSE DA LEV	344	32.415	48.596	38.833	1.00 72.36	AAAA C
ATO!:	3059 CA 150 3059 CB 150	344	32.760	49.697	37.809	1.00 64.33	AAAA C
ATO!!	3261 DG LEV	344	32.687	49.397	36.311	1.00 50.12	AAAA C
ATCH:	32fi CD1 LEV	344	33.224	50.577	35.519	1.00 57.00	AAAA C
ATO::	3282 CCC LEV	344	33.401	48.127	35.905	1.00 51.62	AAAA C
ATOI:	3263 T LEV	344	32.963	49.130	40.174	1.00 69.74	AAAA C
ATON	3264 C LEU	344	34.079	49.739	40.551	1.00 69.12	AAAA O
ATOH:	3268 N 31U	345	32.166	19.959	40.822	1.00 63.10	AAAA II
ATO::	308° CA 317	345	32.555	50.591	42.061	1.00 55.42	AAAA C
ATCI:	3269 78 320	345	31.592	51.714	42.478	1.00 55.59	AAAA C
ATC::	3269 09 300	345	32,267	52.607	13.486	1.00 68.78	AAAA C
ATO!:	327: 70 310	345	31.324	53.374	44.376	1.00 81.31	AAAA C
ATOM:	3271 081 920	345	30.614	54.320	43.976	1.00 85.60	AAAA O
ATO::	3272 GE2 GLV	345	31.237	53.078	45.595	1.00 88.79	AAAA O
ATOI:	3273 C GLU	345	32.706	49.652	43.255	1.00 63.31	AAAA C
ATOI:	3274 O GLU	345	33.501	49.913		1.00 60.06	AAAA O
ATOM	3275 II ASII	346	32.151	48.462	43.202	1.00 62.25	AAAA N
ATOH	3277 CA ASH	346	32.285	47.403	44.173	1.00 63.82	AAAA C
ATO!!	3279 CB ASH	346	31.024	46.498	44.095	1.00 61.66	AAAA C
ATOH	3279 CG ASH	346	31.110	45.292	45.006	1.00 58.73	AAAA C
ATOH	3290 OD1 ASH	346	31.188	45.352	46.224	1.00 69.11	AAAA O
ATOH	3281 ND2 ASN	346	31.155	44.092	44.444	1.00 51.10	AAAA II
ATOL	3294 C ASH	346	33.532	46.580	43.870	1.00 63.71	AAAA C
ATOH	3295 O ASII	316	33.636	45.336	43.905	1.00 65.65	AAAA O
ATOH	3296 II PHE	347	34.419	47.173	43.066	1.00 63.23	AAAA N
HOTA	3298 CA PHE	347	35.540	46.411	42.506	1.00 61.39	AAAA C
ATOH	3089 CB PHE	347	35.123			1.00 61.38	AAAA C
ATOH	3090 OG PHE	347	34.457	45.854	41.170	1.00 61.38	
ATO!!	3291 CD1 FHE	347	33.090	44.534	41.142	1.00 35.37	AAAA C AAAA C
ATOI	3292 CD2 PHE	347		44.438	40.982		
		347	35.148	43.351	41.267	1.00 77.15	AAAA C
ATOH		347	32.425	43.224	10.951	1.00 75.55	AAAA C
HOTA	3294 CE2 PHE		34.512	42.130	41.249	1.00 72.86	AAAA C
HOTA	3295 CC PHE	347	33.152	42.051	41.095	1.00 72.74	AAAA C
ATOH	3296 C PHE	347	36.712	47.375	42.440	1.00 57.70	AAAA C
HOTA	3297 O FHE	347	37.770	46.920	42.354	1.00 59.92	AAAA C
INTA	3299 H HET	348	36.492	18.676	42.319	1.00 50.56	AAAA H
ATOH	3300 CA HET	318	37.500	49.630	41.964	1.00 42.86	AAAA C
ATOH	3301 CB HET	348	37.402	50.096		1.00 31.72	AAAA C
HOTA	3302 CG HET	348	37.426	18.933	39.471	1.00 33.42	AAAA C
ATOH	3303 SD MET	348	37.566	49.448	37.732	1.00 44.79	AAAA S
ATOH	3304 CE HET	348	38.408	50.999	37.791	1.00 59.57	AAAA C
ATOH	3305 C HET	348	37.368	50.831	42.867	1.00 45.88	AAAA C
ATOH	3306 O HET	348	38.210	51.772	42.901	1.00 43.33	AAAA O
HOTA	3307 H GUY	349	36.296	50.783	43.683	1.00 45.30	AAAA II
HOTA	3309 CA GLY	349	35.998	51.965	44.504	1.00 49.19	AAAA C
ATOH	3310 C GLY	315	36.980	52.189	45.620	1.00 52.77	AAAA C
ATOH	3311 O GLY	315	37.033	53.299	46.156	1.00 53.43	AAAA O

(

							•
ATO			37.79		9 45.92		II AAAA II
ATO			38.73				AAAA C
ATO			38.87				AAAA C
ATO			37.87				AAAA C
ATO			37.70				AAAA C
ATO		350	38.24				AAAA C
ATOR		350	40.14				AAAA C
ATOL		350	40.93				AAAA O
ATOU		351	40.44		7 45.372		II AAAA II
ATON		351 351	41.72				AAAA C
ATOH ATOH		351 351	41.81				AAAA C
ATON		351	43.121				AAAA C
ATON		351	41.53				AAAA C
ATOL		351	41.17; 42.03;				AAAA C
HOTA		351	41.367				AAAA C
ATOH		352	43.002				AAAA O
ATOH		352	43.381				AAAA N
ATOI		352	43.907				AAAA C
ATOH		352	42.912				AAAA C
ATOH		352	43.034				AAAA C
ATOH		352	43.881				AAAA C
ATOH		352	42.330				AAAA O
ATOH		352	44.502				AAAA O
ATOI1		352	44.798				AAAA C AAAA O
ATOH		353	45.342				N AAAA
ATOH		353	46.512				AAAA C
HOTA		353	47.759				AAAA C
ATO!!		353	47.766				AAAA C
HOTA	3345 CG2 VAL	353	48.988				AAAA C
ATOH	3346 C VAL	353	46.828				AAAA C
HOTA	3347 O VAL	353	46.843				AAAA O
ATOH	3348 H VAL	354	47.974				N AAAA
ATOH	3350 CA VAL	354	47.586		40.651		AAAA C
HOTA	3351 CB VAL	354	46.725				AAAA C
ATOH	3352 C31 VAL	354	47.347		39.123		AAAA C
ATOH.	3353 CG2 VAL	354	45.293				AAAA C
ATOU	3354 C VAL	354	49.043	54.510	40.388	1.00 44.56	AAAA C
ATOH	3355 O VAL	354	49.366	55.718	40.289	1.00 43.32	AAAA O
ATON	3356 H THR	355	49.972	53.561	40.431	1.00 43.83	AAAA N
ATOH	3358 TA THR	355	51.392	53.914	40.284	1.00 44.85	AAAA C
ATON	3359 CP THR	355	52.374	52.799	49.653	1.09 42.40	AAAA C
HOTA	3360 OG1 THR	355	52.273	51.744	39.695	1.00 45.30	AAAA O
ATON	3360 CGC THR	355	52.210	52.194	42.039	1.00 38.13	AAAA C
ATON	3363 C THR	355	51.746	54.339	38.851	1.00 43.84	AARA C
ATOH	3364 O THR	355	52.463	55.334	38.697	1.00 44.26	AAAA O
ATON	3365 H GLY	356	51.127	53.704	37.870	1.00 41.16	AAAA II
ATOH ATOH	3367 CA GLY	356	51.358	54.073	36.470	1.00 37.81	AAAA C
ATON	3369 C GLY	356	50.505	55.204	35.955	1.00 38.07	AAAA C
ATOH	3370 N TYR	356 357	50.364	56.261	36.615	1.00 34.65	AAAA O
ATOH	3372 CA TYR	357	49.910	55.004	34.800	1.00 38.47	AAAA H
ATOH	3373 OB TYR	357	48.982 49.557	55.973	34.205	1.00 38.03	AAAA C
ATOH	3374 CG TYR	357	49.473	56.343	32.905	1.00 31.44	AAAA C
ATOH	3375 CD1 TYR	357	48.333	55.219 54.842	31.812 31.077		AAAA C
ATOM:	3376 CE1 TYR	357	48.352	53.779	30.175	1.00 32.86 1.00 32.83	AAAA C
HOTA	3377 CD2 TYR	357	50.639	54.465	31.606	1.00 34.28	AAAA C AAAA C
ATOH	3378 CE2 TYR	357	50.706	53.402	30.720	1.00 34.28	AAAA C
ATOH:	3379 CZ TYR	357	49.552	53.068	30.007	1.00 37.26	AAAA C
ATON	3380 OH TYR	357	49.726	51.997	29.166	1.00 35.85	AAAA O
ATOH	3382 C TYR	357	47.582	55.368	34.150	1.00 38.55	AAAA C
HOTA	3383 O TYR	357	47.458	54.127	34.088	1.00 36.11	AAAA O
HOTA	3394 N VAL	358	46.593	56.216	33.814	1.00 40.98	II AAAA
ATOH	3386 CA VAL	358	45.197	55.798	33.639	1.00 38.90	AAAA C
HOTA	3387 CB VAL	358	44.211	56.502	34.610	1.00 49.15	AAAA C
ATOH	3398 CG1 VAL	358	42.815	55.883	34.484	1.00 33.12	AAAA C
HOTA	3389 CG2 VAL	358	44.748	56.437	36.043	1.00 29.20	AAAA C
ATOH	3390 C VAL	358	44.760	56.194	32.234	1.00 35.64	AAAA C
ATOH	3391 O VAL	358	44.792	57.358	31.888	1.00 34.58	AAAA O
ATOH	3392 N LYS	359	44.387	55.188	31.461	1.00 36.00	II AAAA
HOTA	3394 CA LYS	359	43.898	55.419	30.117	1.00 41.27	AAAA C
ATOH	3395 CB LYS	359	14.845	54.707	29.174	1.00 37.40	AAAA C
HOTA	3396 CG LYS	359	44.340	54.473	27.770	1.00 45.19	AAAA C
ATOH	3397 CD LYS	359	45.040	55.317	26.750	1.00 43.40	AAAA C
ATOH	3398 CE LYS	359	15.958	54.402	25.986	1.00 43.56	AAAA C
ATOH	3399 HZ LYS	359	45.416	53.937	24.680	1.00 47.98	II AAAA II
ATOH	3403 C LYS	359	42.423	54.979	29.939	1.00 42.14	AAAA C
ATOH	3404 O LYS	359	12.056	53.791	30.006	1.00 40.40	AAAA O
ATOH	3405 N ILE	360	41.602	55.974	29.572	1.00 37.16	AAAA II
ATOH	3407 CA ILE	360	40.164	55.742	29.334	1.00 40.02	AAAA C
ATOH	3408 CB ILE	360	39.297	56.804	30.048	1.00 38.10	AAAA C
ATOH ATOH	3409 CG2 ILE	360	37.887	56.277	29.932	1.00 39.42	AAAA C
ATOH	3410 CG1 ILE	360	39.769	57.111	31.481	1.00 28.54	AAAA C
HOTA	3411 CP1 ILE 3412 C ILE	360	39.423	56.037	32.491	1.00 33.16	AAAA C
4 - 4 1-7 (3412 C ILE	360	39.888	55.837	27.834	1.00 39.49	AAAA C

3413 ATO: ILE 360 40.014 1.00 37.32 27.235 56,942 AAAA O 54.721 ATOR 3414 11 ARG 361 39.567 27.221 1.00 34.34 AAAA II 39.472 3416 CA ARG 54.782 1.00 41.24 ATOH 361 25.744 AAAA C 40.783 LICTA 3417 CB ARG 361 54.213 25.148 1.00 47.93 AAAA ATC!! 3418 CG ARG 361 40.805 54.203 23.646 1.00 50.39 AAAA C ATOH 3419 CD ARG 361 41.943 53.357 23.116 1.00 51.36 AAAA C ATOH 3420 HE ARG 361 41.473 51.974 23.263 1.00 50.97 II AAAA 3422 42.297 ATOH CI ARG 361 50.962 23,490 1.00 55.78 AAAA C 3423 11111 ARG 361 43.612 HOTA 51.074 23.616 1.00 51.62 II AAAA ATOH 3426 11H2 ARG 361 41.834 49.719 23.631 1.00 54.52 LI SASS 3429 ARG 361 38.382 53.866 AAAA C 25.246 1.00 42.06 HOTA ARG 361 3430 38.336 52.661 25.499 1.00 38.93 **PLOU** AAAA O 37.514 HIS 362 1.00 46.19 3431 11 54.342 ATOH 24.373 II AAAA ATOU 3433 CA HIS 362 36,372 53,555 23.885 1.00 49.34 AAAA C ATOH 3434 CB HIS 362 37.000 52.300 23.266 1.00 40.94 AAAA C ATOH 3435 CG HIS 362 37.849 52.610 22.084 1.00 42.78 AAAA C 3436 CD2 HIS 362 38.049 53.765 ATOH 21.411 1.00 48.32 AAAA C 3437 HD1 HIS 362 21.469 1.00 43.59 HOTA 38.628 51.676 H AAAA H ATOH 3439 CEL HIS 362 39.256 52.247 20.465 1.00 46.01 AAAA C ATOH 3440 HE2 HIS 362 38.923 53,515 20.408 1.00 49.22 AAAA II HIS 362 3442 C 35.295 ATOH 53.113 24.913 1.00 50.32 AAAA C LICTA 3443 0 HIS 362 34.686 52.030 24.795 1.00 41.31 AAAA O A.TOH 3444 11 SER 363 35.222 53.875 26.013 1.00 46.96 II AAAA II 53.456 ATOH 3446 CA SER 363 34.402 27.139 1.00 52.19 AAAA C HOTA 3447 CB SER 363 35.231 53.837 28.400 1.00 53.73 AAAA C 35.713 ATOI1 3448 03 SER 363 52.558 28.816 1.00 41.72 AAAA O ATOM 3450 SER 363 33.005 54.072 27.046 1.00 49.08 AAAA C 1.00 37.49 MODI 3451 SER 363 32.653 55,040 27.694 AAAA O 11 364 **ATOH** 3452 HIS 32,243 26.058 1.00 52.25 53.577 AAAA N ATO!! 3454 CA HIS 364 30.954 54,173 25.717 1.00 53.66 AAAA C 3455 C HIS 364 29.879 ATOM 53.937 26.760 1.00 48.77 AAAA. 3456 364 ATOH 0 HIS 29.297 54.899 27.280 1.00 51.44 AAAA 3457 363 ATOU ÇB HIS 30.485 53.699 24.349 1.00 49.83 AAAA ATON 3458 CG HIS 364 31.493 54.182 23.338 1.00 51.51 AAAA ATOH 3459 SD1 HIS 364 31,970 55.502 23.156 1.00 44.83 AAAA H ATOH 3460 CEL HIS 364 32.798 55.533 22.214 1.00 28.57 AAAA C ATOH 3461 CD2 HIS 354 32.194 53.393 22.472 1.00 38.63 AAAA C 3462 MES HIS 364 1.00 41.44 AAAA ATCH: 32.992 54.274 21.810 ATOH 3464 ALA 365 29.949 27.427 1.00 47.53 52.819 AAAA H ATOH 3455 C.A. ALA 365 29.211 52.488 28.621 AAAA O 1.00 44.41 AFOH 3467 ÇÐ. ALA 365 29.578 51.133 29.150 1.00 40.28 AAAA 214 ATON 3469 365 1.00 44.70 29.318 53.473 29.768 AAAA 3459 3470 ALA 365 ATOH 28.576 53.206 30.726 1.00 45.23 AAAA ATOH 11 LEU 365 30.158 54.517 29.762 1.00 40.90 AAAA 3470 ATOH CA LEU 366 30.415 55.243 30.969 1.00 42.21 בבכב 3473 ATOH CB 366 LEU 31.985 55.241 31.350 1.00 43.78 AAAA 3474 356 1.00 51.52 ATOM ÇĞ LEU 32.740 54.037 31.667 AAAA LEU 3475 ATON 366 34.192 54.373 1.00 51.77 32.043 AAAA 772 0 ATOH 3476 3477 LEU 355 53.305 AAAA 32.119 1.00 51.17 32.834 LEU ATOM 366 29.974 56.687 30.896 1.00 46.36 <u>aaae</u> 3479 O. LEU 366 ATOL: 30.305 57.248 29.849 1.00 48.40 جججم 3479 VAL ::ATOH 357 29.521 57.275 32.015 1.00 43.63 AAAA ATOH: 3491 CA var. 367 29.072 58.575 1.00 44.19 31.940 بتمجم ATOH 3492 25 VAL 367 27.557 58.727 32.376 1.00 48.80 AAAA HOTA 3483 CG1 VAL 367 26.923 60.073 32.571 1.00 41.69 AAAA. 3484 ATOH CG2 VAL 367 26.697 57.949 31.365 1.00 34.00 AAAA C HOTA 3485 VAL 367 29.923 59.518 32.845 1.00 44.90 AAAA C ATOH 3485 0 VAL 367 29.965 60.751 1.00 44.75 AAAA O 32.720 ATOH 3497 11 SER 368 30.591 59.818 33.757 1.00 48.72 AAAA N 3499 SER 368 ATOH CA 34.742 1.00 52.70 AAAA C 31.487 59.465 HOTA 3490 **CB** SER 368 30.658 59.706 36.000 1.00 55.32 AAAA C ATOH: 3491 CG SER 368 31.300 60.298 37.091 1.00 64.86 AAAA O ATO! 1 3493 \subset SER 368 32,590 58.497 35.179 1.00 52.76 AAAA C ATOH 3494 0 SER 368 32.352 57.299 34.976 1.00 48.99 AAAA O ATOH: 3495 11 LEU 369 33.631 59.012 35.831 1.00 53.86 AAAA D ATOH 3497 CA LEU 369 34.716 58.129 36.274 1.00 60.15 AAAA C 3499 369 ATOLL CB LEU 36.073 58.630 35.784 1.00 55.91 AAAA C ATOH 3499 CG LEU 369 36.325 58.736 34.271 1.00 45.96 AAAA C **ATOH** 3500 CDI LEU 369 37.669 59.428 34.154 1.00 53.97 AAAA C ATOH 3501 CD2 LEU 369 36.207 57.384 1.00 38.77 33.619 AAAA C 3502 369 ATOH LEU C 34.645 58.036 57.700 37.811 1.00 62.52 AAAA C 3503 LEU 369 ATOH 0 35.569 38.595 1.00 59.33 AAAA O 370 ATOH 3504 П SER 33.437 58,401 38.285 1.00 56.26 AAAA II 370 **ATOM** 3506 CA SER 33.089 58.431 39.690 1.00 53.89 AAAA C HOTA 3507 C3 SER 370 31.673 59.052 39.816 1.00 57.50 AAAA C ATON 3508 SER 370 CG 30.771 58.061 39.261 1.00 69.12 AAAA O 370 ATOIL 3510 SER 33.060 57.085 40.412 1.00 47.97 AAAA C 370 ATO: 3511 SER 33.228 56.943 AAAA C 41.596 1.00 41.93 371 32.967 ATOH 3512 ы FHE 55.936 39.792 1.00 45.49 AAAA II ATOH PHE 371 1.00 46.29 3514 CA 33.223 54.643 40.356 AAAA C ATOH 3515 CB PHE 371 32.952 53.596 39.287 1.00 43.53 AAAA **ATOH** 3516 CG PHE 371 33.724 38.012 AAAA C 53.629 1.00 56.45 **ATOH** PHE 371 34.805 3517 CDI 52.807 37.764 1.00 58.95 AAAA C 371 11CTA 3518 CD2 PHE 33.371 54.515 37.004 1.00 53.92 AAAA C HOTA CE1 PHE 371 35.498 AAAA C 3519 50,840 36.570 1.00 59.50

APT-III 3520	34.048	AAAAA AAAAA AAAAA AAAAA AAAAA AAAAA AAAA
ATOH 3606 CD1 LEU 379 ATOH 3607 CD2 LEU 379 ATOH 3608 C LEU 379 ATOH 3609 O LEU 379 ATOH 3610 H GLY 380 ATOH 3612 CA GLY 380 ATOH 3613 C GLY 380	52.234 57.363 42.554 1.00 50.29 52.926 56.187 43.217 1.00 39.59 52.616 58.625 43.300 1.00 42.89 52.609 59.019 39.080 1.00 50.94 53.576 59.788 39.139 1.00 54.23 52.175 58.423 37.972 1.00 49.67 52.831 58.715 36.702 1.00 49.94	AAAA C AAAA C AAAA C AAAA O AAAA II AAAA C

ATUG 3925 GLU 380 54.980 55.449 35.157 1.00 53.56 AAAA N 3607 CA GLU 382 1.00 48.15 ATOLI 55.091 33.766 55.018 AAAA C 3628 CB GLU 33.532 1.00 35.27 ATOLI 382 55.051 53.550 AAAA C 3629 CG GLU 1.00 49.69 ATOH 382 54.739 53.225 32.051 3630 ATOH CD GLU 382 54.676 51.719 31.807 1.00 56.45 3631 OE1 GLU 382 32.705 1.00 61.66 ATOH 55.062 50.924 3632 OE2 GLU 382 30.745 1.00 57.69 54.264 51.201 3633 GLU 382 ATOH C 54.006 55.732 32.973 1.00 50.84 3634 GLU 382 53.097 56.282 33.598 1.00 49.44 ATOL 3635 11 GLII 383 54.347 31.780 1.00 52.25 ATOH \$6.256 GLN 3637 CA 383 53.498 57.153 31,016 1.00 40.15 AAAA C ATO!! 58.609 1.00 28.50 CB GLII 383 53.914 HOTA 3538 31.155 HOTA 3639 CG GLN 383 54.489 58.909 32.542 1.00 31.10 AAAA C 3640 CD GLII 383 54.950 60.301 32.752 1.00 33.19 AAAA C 3641 OE 1 GLII 383 55.186 60.840 1.00 40.34 ATC! 31.683 AAAA O 3642 IIE2 GLII 383 55.043 60.943 33.934 1.00 36.30 AAAA II ATO! 3645 C GLII 383 53.426 1.00 40.45 56.744 29.563 AAAA C ATOH 383 GLII 54.131 3646 0 55.858 INTA 29.139 1.00 43.45 AAAA O 384 1.00 42.54 3647 ы LEU ATOH 52.375 57.195 28.860 AAAA N ATOH 3649 CA LEU 384 52.257 56.889 27.443 1.00 43.24 AAAA C ATOH 3650 CB LEU 384 50.814 57.011 26.949 1.00 43.79 AAAA C ATOH 3651 CG LEU 381 49.818 56.235 27.861 1.00 41.21 AAAA C 3652 CDI LEU 384 ATOH: 48.611 57.095 28.221 1.00 33.99 AAAA C CD2 LEU 384 ATOR 3653 49.405 54.968 27.149 1.00 33.20 AAAA C ATOR 3654 LEU 384 53.204 26.672 1.09 40.51 57.809 AAAA C ATOH 3655 LEU 384 53.582 27.177 1.00 29.66 AAAA O 58.872 ATOH 3656 14 GLU 385 53.659 25.531 57.319 1.00 45.22 AAAA N GLU 3658 CA 385 **ATOH** 1.00 49.98 54.410 58.116 24.570 AAAA C 3659 CB GLU 385 54.424 HOTA 57.475 23.174 1.00 60.50 AAAA 3660 GLU 385 HOTA CG 55.045 56.095 23.106 1.00 68.76 AAAA HOTA 3661 CD GLU 385 54.195 54.951 23.592 1.00 72.07 AAAA MOTA 3662 OE1 GLU 385 53.150 1.00 81.88 AAAA O 55.213 24.244 ATOU 3663 OE2 GLU 385 54.565 53.786 23.301 1.00 73.13 AAAA O 3654 ATOH GLU 385 53.828 59.515 24.450 1.00 47.41 AAAA C ATOU 3665 GLU 395 52.635 59,706 24.184 1.00 54.43 AAAA O ATO!! 3666 :: GLY 386 60.470 54.614 24,902 1.00 43.69 II KAAA II 61.970 62.449 ETOIL 3659 CA GLY 336 24.897 1.00 40.34 AAAA 54.191 ATOM: 396 3559 317 54.286 26.309 1.00 40.65 AAAA+ C ATOH 3670 2 GLY 396 53.930 63.615 26.491 1.00 39.75 AAAA O 3671 ATC:: A.3!! 337 54.441 61.537 27.272 1.00 40.75 **FAAA** 3673 54.479 61.912 ATO: CA ASH 397 28.675 1.00 49.18 عممم 3674 3675 ATON 75 ASH 397 55.500 63.094 28.874 1.00 44.41 AAAA. ATOH 73 ASH 397 56.925 62.541 28.722 1.00 61.51 AAAA. 3676 001 387 ATOR ASH 57.199 61.313 28.677 1.90 57.85 AAAA O 3677 397 58.063 ATOH 1102 ASH 63.251 28.592 1.00 61.96 AAAA N 327 ATO!! 3520 ASI! 53.095 62,100 1.00 48.46 29.299 AAAA C HOTA: 397 3681 A3:1 52.535 62.891 30.218 1.00 48.99 O AAAA ATON TYR 398 3680 :: 52.214 61.116 29.058 1.00 46.29 AAAA M TIR 389 ATO:: 3694 50.846 61.199 29.540 1.00 45.09 AAAA 3500 333 ATO!! æ TYR 49.823 60.957 28.399 1.00 40.70 AAAA ATOLI 3596 23 TYR 339 49.925 62.056 1.00 42.24 27.373 AAAA C ATOH 3687 CD1 TYR 388 50.343 61.854 26.064 1.00 44.38 AAAA ATON 3689 CEL TYR 388 50.401 62.895 25.157 1.00 35.51 AAAA C ATOU 3689 CD2 TYR 398 49.625 63.356 27.709 1.00 44.67 AAAA ATOH 3690 CE2 TYR 388 49.699 26.830 1.00 38.14 AAAA C 64.428 3501 cs. 388 ATOL 50.087 TYR 25.555 1.00 41.27 AAAA C 64.148 ОН ATOH 3692 388 1.00 50.18 TYR 50.151 65.181 24.604 AAAA O ATOLI 3694 \sim TYR 388 50.563 60.288 30.714 1.00 41.88 AAAA C LIOTA 3595 0 TYR 388 50.727 59.092 30.511 1.00 32.99 AAAA O ATOH1 3696 :1 SER 389 50.020 60.917 31.763 1.00 45.42 AAAA 11 32.931 ATOH 3698 ÇA SER 389 49.591 60.131 1.00 50.13 AAAA ATOH 3699 CB SER 389 49.798 1.00 45.57 60.894 34.261 AAAA C 1.00 51.11 HOTA 3700 CG SER 389 51.185 60.899 34.504 AAAA O ATOH: 3702 c SER 389 48.097 59.813 32.804 1.00 48.11 AAAA C HOTA 3703 SER 389 47.686 58.792 1.00 49.25 AAAA O 33.336 1.00 42.56 ATCH 3704 11 PHE 390 47.321 AAAA N 60.685 32, 196 3706 CA PHE 390 1.00 40.76 ATOH 45.867 AAAA C 60.595 32.146 3707 ATOM CB PHE 390 AAAA C 45.241 61.581 33.139 1.00 44.80 3708 ATOH CG PHE 390 43.764 61.358 33.328 1.00 40.53 AAAA C ATOH 3709 CD1 PHE 390 43.406 60.273 34.089 1.00 40.80 AAAA C ATOH 3710 CD2 PHE 390 42.768 62.157 32.748 1.00 35.59 AAAA C ATOH: 3711 CEL PHE 390 42.050 59.985 34.312 1.00 47.09 AAAA C 3712 PHE 390 ATOH CEC 41.454 61.824 32.965 1.00 44.50 AAAA C ATOH 3713 PHE 390 41.063 60.745 33.739 1.00 34.54 AAAA C HOTA 3714 PHE 390 45.372 60.829 1.00 38.54 AAAA C 30.720 3715 390 ATOH 0 PHE 45.542 AAAA O 61.918 30.126 1.00 40.29 391 ATOH 3716 11 TYR 44.819 59.818 30.096 1.00 33.48 AAAA N HOTA 3719 CA TYR 391 44.596 59.782 28.663 1.00 38.58 AAAA C ATOH 3719 CB TYR 391 45.579 58.871 27.972 1.00 38.95 AAAA C 391 ATOL 3720 C/3 TYR 45.760 59.006 26.503 1.00 44.54 AAAA C ATOH 3721 CD1 TYR 391 46.822 59.815 AAAA C 26.052 1.00 47.14 HOTA 3722 CEL TYR 391 47.057 59.993 1.00 46.03 AAAA C 24.722 3723 CD2 TYR 391 ATOH 44.927 58.390 25.584 1.00 46.94 AAAA C 1.00 47.45 ATON 3724 CEC TYR 391 45.157 58.560 24.242 AAAA C CO TYR ATOM 3725 391 46.207 59.350 23.830 1.00 45.84 AAAA C

AAAA C AAAA C AAAA O AAAA O AAAA C

AAAA O AAAA II AAAA C

						•
ATO	1 3726 OH TYR	191 46.374	59.493	22.491	1.00 44.70	AAAA O
ATO	1 3708 C TYR	391 43.194			-	AAAA C
ATO	1 3729 Ø TYR	391 42.841				AAAA O
ATO	I 3730 H VAL	392 42.417				AAAA N
ATO	1 3732 CA VAL	392 40.958				
ATO		392 40.075				AAAA C
ATC		392 38.612			1.00 37.96	AAAA C
ATO		392 40.666				AAAA C
ATO		392 40.531			1.00 33.19	AAAA C
ATO		392 40.508			1.00 31.08	AAAA C
ATO		393 40.299			1.00 34.71	AAAA O
ATO		393 39.948			1.00 34.62	AAAA 11
ATO					1.00 38.12	AAAA C
ATO					1.00 42.49	AAAA C
ATON					1.00 26.48	AAAA C
					1.00 26.57	AAAA C
ATOH		393 42.078			1.00 29.98	AAAA C
ATON		393 38.821		_	1.00 39.15	AAAA C
ATOI		393 38.760			1.00 37.90	AAAA O
ATOH		38.015		22.565	1.00 43.38	AAAA N
ATOLI		36.888	50.215	21.975	1.00 44.77	AAAA C
ATOL		194 37.445	57.073	21.120	1.00 44.80	AAAA C
ATOH		194 36.466	56.477	20.156	1.00 47.14	AAAA C
ATOL		94 36.750	55.577	19.333	1.00 52.81	AAAA O
HOTA		94 35.311	56.948	20.180	1.00 49.27	AAAA O
ATOH		94 35.936	57.619	23.021	1.00 43.17	AAAA C
IOTA	-	94 35.831	56.385	23.212	1.00 43.51	AAAA O
ATOH		95 35.299	58.495	23.746	1.00 39.90	AAAA N
ATOH	3758 CA ASN 3	95 34.305	58.158	24.776	1.00 46.32	AAAA C
HOTA	3759 CB ASH 3	95 34.804	58.512	26.212	1.00 42.96	AAAA C
ATOH	3760 CG ASH 3	95 35.992	57.619	26.579	1.00 36.92	AAAA C
ATOH	3761 ODI ASH 3	95 36.013	56.394	26.796	1.00 21.65	AAAA O
ATOH	3762 ND2 ASN 3	95 37.075	58.409	26.558	1.00 27.87	AAAA II
ATOH	3765 C ASN 3	95 32.932	58.816	24.541	1.00 40.44	AAAA C
ATOU	3766 O ASN 3	95 32.749	59.982	24.882	1.00 37.06	AAAA O
ATOH	3767 N GLN 3	96 32.073	58.055	23.877	1.00 46.74	AAAA N
ATOH	3769 CA 31N 3	96 30.771	58.582	23.421	1.00 52.93	AAAA C
ATOL	3770 GB GLN 3	96 29.848	57.567	22.744	1.00 52.29	AAAA C
ATO:	3771 DG GLN 3	96 30.173	57.405	21.257	1.00 46.42	AAAA C
ATOH:	3770 CD GLH 3	29.817	55.991	20.840	1.00 55.21	AAAA C
ATOR		96 28.835	55.421	21.312	1.00 61.17	
ATOH!		96 30.528	55.411	19.971	1.00 55.79	AAAA O
ATOL		29.974	59.224	24.458	1.00 48.64	aaaa n aaaa c
ATO:		29.407	60.287	24.113	1.00 51.63	
ATOH	3779 II ASII 3		58.681	25.633	1.00 48.95	AAAA O
ATOH	3791 CA ASH 39	_	59.196	26.632	1.00 43.93	AAAA II
ATOH	3792 TB ASH 39		57.959	27.093		AAAA C
ATON	3783 DG ASH 39		57.439		1.00 35.94	AAAA C
ATON	3794 CD1 A5H 39		58.304	25.860		AAAA C
ATOH:	3788 1102 A311 39		56.175	25.229	1.00 49.32	AAAA O
ATG:	3799 C ASH 39		59.945	25.431 27.800	1.00 43.31	AAAA 1:
ATOH:	3789 O ASH 39		60.344		1.00 52.98	AAAA C
ATOU	3790 H LEU 39		59.990	28.627	1.00 53.33	AAAA O
ATOH	3790 CA LEU 39		60.550		1.00 55.73	AAAA II
ATOH	3793 CB LEU 39		60.300		1.00 52.12	AAAA C
INTA	3794 CG LEU 39	8 33.606	60.283		1.00 48.47	AAAA C
ATOH	3795 CD1 LEU 39		58.939		1.00 41.81	AAAA C
ATOH	3796 CD2 LEU 39		60.608		1.00 40.35	AAAA C
ATOH	3797 C LEU 39		61.995		1.00 39.03	AAAA C
ATOH.	3798 O LEU 39		62.909		1.00 52.35	AAAA C
ATOH	3799 N GLN 39		62.225		1.00 49.91 1.00 58.76	AAAA O
HOTA	3801 CA GLN 39		63.558		1.00 60.03	AAAA N
ATOH	3802 CB GLN 39	_	63.331			AAAA C
TOTA	3803 CG GLH 39	_			1.00 59.55 1.00 73.07	AAAA C
ATCH	3804 CD GLil 39	_			1.00 78.39	AAAA C
HOTA	3805 OE1 GLH 39	_			1.00 78.39	AAAA C
ATOH	3806 NE2 GLH 39	_				AAAA O
HOTA	3809 C GLN 39				1.00 69.88 1.00 54.49	AAAA II
ATOH	3910 O GLN 39				1.00 54.49	AAAA C
HOTA	3811 N GLN 400				1.00 50.44	AAAA O
ATOH	3813 CA GLII 400					N AAAA
ATOH	3814 CB GLN 400		_		1.00 53.83 1.00 54.97	AAAA C
ATOH:	3815 CG GLN 400				1.00 54.97	AAAA C
ATOH	3816 CD GLH 400				1.00 58.99	AAAA C
ATOH	3817 OE1 GLN 400				1.00 68.10	AAAA C
ATOH	3819 HEZ GLH 400				1.00 55.35	AAAA O AAAA II
ATOH	3821 C GLN 400				00 52.08	
ATOH	3822 0 GLN 400		_		.00 51.90	AAAA C
HOTA	3823 II LEU 401				.00 49.58	AAAA O AAAA N
ATOH	3825 CA LEU 401				.00 49.57	AAAA C
ATOH	3826 CB LEU 401				.00 47.94	AAAA C
HOTA	3827 CG LEU 401				.00 46.61	AAAA C
ATOH	3828 CD1 LEU 401	:: : : : : :			.00 39.09	AAAA C
ATOH	3829 CD2 LEU 401				.00 40.72	AAAA C
ATOH:	3830 C LEU 401				.00 51.23	AAAA C
HOTA	3831 O LEU 401				.00 49.06	AAAA O
					,	3. 0

ATCH! 3832 11 TRE 107 35.297 63.140 37.699 1.00 54.58 3634 ATOH CETRP 402 34.975 63.090 39.097 1.00 59.76 AAAA C ATOU 3835 CB TRP 402 39.933 36.279 62.953 1.00 59.56 AAAA C ATOH 3836 C/3 TRP 402 36.971 39.737 1.00 58.17 61.624 ATOH! 3837 CD2 TRP 402 37.981 38.784 1.00 53.18 61.243 **ATOH** 3838 CE2 TRP 402 38.286 39.002 59.897 1.00 56.61 AAAA ATOH 3839 CE3 TRP 402 37.764 38.643 61.917 1.00 43.25 AAAA 3840 CD1 TRP **ATOH** 402 36.719 60.517 40.459 1.00 53.50 AAAA 3841 ATOH: HEL TRP 402 37.488 59.467 40.032 1.00 57.66 3843 ATOH: CZ2 TRP 402 39.212 59.160 38.249 1.00 51.44 ATOH 3844 CZ3 TRF 402 39.546 61.199 37.026 1.00 53.69 3845 CH2 TRP 402 **ATOH** 39.820 59.857 37.263 1,00 50.75 3846 TRP 402 ATO!1 34.223 64.389 39.429 1.00 64.09 3847 HOTA TRP 402 34.408 65.449 38.808 1.00 61.98 HOTA 3848 11 ASP 403 33.503 64.418 40.551 1.00 68.85 3850 CA ASP 403 32.947 **ATOH** 65.668 41.068 1.00 67.83 AAAA 3851 CB ASP 403 ATO! 31.918 65.343 42.151 1.00 72.19 AAAA ASP 403 3852 CG ATOR 30.853 66.417 42.306 1.00 73.08 OD1 ASP 403 ATOM: 3853 31.177 67.625 42.297 1.00 71.67 OD2 ASP **ATOH** 3854 403 29.693 65.979 42.454 1.00 75.08 ATOU 3855 C ASP 403 34.005 66.607 41.607 1.00 66.63 ATOH1 3856 О AS P 403 34.245 66.672 42.811 1.00 67.18 HOTA 3857 11 TRP 404 34.449 67.588 40.846 1.00 69.29 **ATOH** 3859 CA TP.P 404 35.412 68.588 41,291 1.00 77.11 AAAA 3860 ATOH CB TRP 404 35.859 69.409 40.063 1.00 79.10 AAAA 3861 HOTA C/G TRE 494 36.504 68.509 39.047 1.00 82.59 AAAA ATOH: 3862 CD2 TRP 404 37.294 67.346 39.322 1.00 84.82 11OTA 3863 CE2 TRP 404 37.686 66.813 38.081 1.00 84.56 AAAA ATOU 3864 CE3 TRP 404 37.703 65.710 40.506 1.00 80.95 AAAA HOTA 3865 CD1 TRP 404 36.460 68.622 37.694 1.00 83.37 AAAA ATOI 3866 NE1 TRP 404 37.165 67.617 37.111 1.00 80.33 NOTA 3868 CE2 TRP 404 38.477 37.982 65.562 1.00 85.91 AAAA ATO!! 3869 023 TRP 404 38.471 65.573 40.392 1.00 86.36 AAAA ATON 3870 CH2 TRP 404 38.860 65.051 39.133 1.00 85.05 AAAA ATO: 3671 TRP 404 35.034 69.517 42.420 1.00 81.60 AAAA HOTA 3872 TRP 70.709 404 35.397 42.504 1.00 84.57 3873 ATOH 11 23P 105 34.281 69.063 43.393 1.00 84.45 ATOM 3875 CA A.\$? 405 33.771 69.861 44.495 1.00 87.48 ATOI: 3875 CB. ASP 105 32.352 70.365 44.262 1.00 88.04 3877 Afford ŢĠ 405 ASP 32.274 1.00 92.54 71.612 43.409 72.285 ATOH 3878 405 33.306 43.207 1.00 94.82 3979 ATOH! ASP 405 31.130 71.954 42.955 1.00 95.26 ATO!! 3980 ASP 405 33.730 68.906 45.693 1.00 87.90 AAAA ETOH: 3881 ASP 405 69.224 34.245 46.743 1.00 92.19 AAAA C :: ATOH: 3882 ALA 106 33.239 45.460 1.00 84.45 CA CB ATOH 3884 ALA 406 33.176 66.671 46.451 1.00 82.57 ALA ALA ATOH 3895 106 31.943 68.905 AAAA C 46.133 1.00 76.32 ATOH 3886 406 34.445 65.940 46.459 1.00 85.77 AAAA 1.00 89.39 1.00 83.74 ATOH 3997 0 ALA 406 34.470 64.923 66.073 47.185 45.577 ATOH 3929 :: ARG 407 35.433 AAAA :: ATOU 3890 ARG 407 65.151 1.00 79.65 CA. 36.541 45.400 AAAA C 407 ATOH 3891 C3 AR/3 36.165 64.140 44.297 1.00 77.94 AAAA C HOTA 3892 ARG 407 23 35.457 62.950 44.921 1.00 81.91 AAAA C HOTA 3893 CD ARG 407 35.362 61.588 44.113 1.00 86.97 AAAA C ATOH 3894 ARG 407 HE 36.281 60.650 44.607 1.00 86.94 AAAA N 1 KOTA 3896 407 CD ARG 37.564 60.583 44.279 1.00 92.14 AAAA C NHI ARG 3897 ATOM: 407 38.169 61.441 43.469 1.00 97.06 AAAA N 11OTA 3900 NH2 ARG 407 38.309 59.616 44.770 1.00 96.33 AAAA H HOTA 3903 C ARG 407 37.880 65.749 45.048 1.00 76.72 AAAA C ATOM 3904 0 ARG 407 37.989 66.774 44.410 1.00 77.47 AAAA O ATOL 3905 ASN 408 38.958 65.081 45.453 1.00 75.75 AAAA N 3907 ATOR CA ASN 408 40.311 65.556 45.173 1..00 73.79 AAAA C HOTA 3908 ASN CB 498 40.938 66.240 46.388 1.00 74.45 AAAA C HOTA 3909 CG ASH 408 41.986 67.242 45.947 1.00 82.51 AAAA C 3910 HOTA OD1 ASN 408 41.813 68.429 46.240 1.00 90.33 AAAA O ATOI1 3911 ND2 ASM 108 43.028 66.821 45.253 1.00 84.46 II AAAA N ATOM 3914 \mathbf{c} ASH 408 41.257 64.468 44.654 1.00 65.97 AAAA C ATOI1 3915 0 ASN 408 41.251 63.374 45.151 1.00 63.82 AAAA O ATOH 3916 М LEU 409 42.041 64.793 43.650 1.00 61.41 II AAAA 3918 ATOH CA LEU 409 42.896 63.872 42.947 1.00 60.90 AAAA C ATOR 3919 CB 409 LEU 42.153 63.250 41.768 1.00 62.98 AAAA C HOTA 3920 CG LEU 409 42.992 62.553 40.704 1.00 59.77 AAAA C ATO: 3921 CDI LEU 409 43.488 61.205 41.197 1.00 54.06 AAAA C 3922 ATOH CD2 LEU 409 42.094 62.445 39.486 1,00 55.74 AAAA C ATON 3923 С LEU 109 44.151 64.599 42.485 1.00 61.19 AAAA 🖸 ATOM 3924 O LEU 109 44.141 42.370 65.809 1.00 60.64 AAAA O **ATOM** 3925 11 THR 410 45.281 63.903 42.424 1.00 63.74 AAAA N ATO! 3927 CA THR 410 46.588 64.462 42.131 AAAA C 1.00 60.44 ATOH 3928 CB THR 410 47.454 64.676 43.385 1.00 67.08 AAAA C ATOH 3929 OG1 THR 410 46.870 65.746 44.157 1.00 74.29 AAAA O HOTA 3931 CG2 THR 410 48.909 65,103 43.162 1.00 48.56 AAAA ATOH 3932 THR 410 C 47.426 63.565 41.218 1.00 56.62 AAAA 47.382 410 ATOH 3933 0 THR 41.317 62.354 1.00 54.99 AAAA O ATO: 3934 и ILE 411 48.977 64.245 40.288 1.00 53.97 II AAAA 3936 ATOH CA ILE 411 48.897 63.562 39.291 1.00 53.29 AAAA C

AAAA II

AAAA C AAAA C

II AAAA

AAAA C AAAA C AAAA C AAAA C

AAAA O AAAA N C

AAAA C AAAA O

AAAA O AAAA C AAAA O

AAAA H ¢ C

c AAAA C C

С C AAAA N

AAAA O AAAA II

AAAA C AAAA C AAAA C

AAAA O AAAA C

AAAA II AAAA C

AAAA O

ATCH 3937 CB ILE 411 49.216 93.854 37.864 1.00 49.81 AAAA C ATCH 3758 CB ILE 411 49.216 93.129 36.868 1.00 40.851 AAAA C ACCH 3757 CB ILE 411 49.216 93.129 36.868 1.00 40.851 AAAA C ACCH 3757 CB ILE 411 49.216 93.129 36.868 1.00 40.851 AAAA C ACCH 3757 CB ILE 411 49.216 93.129 36.868 1.00 40.851 AAAA C ACCH 3757 CB ILE 411 49.216 93.129 36.700 10.00 51.52 AAAA C ACCH 3757 CB ILE 411 49.216 93.129 36.700 10.00 51.52 AAAA C ACCH 3757 CB ILE 411 50.319 64.018 39.221 10.00 51.52 AAAA C ACCH 3757 CB ILE 411 50.319 64.018 39.221 10.00 51.52 AAAA C ACCH 3757 CB ILE 411 10.00 56 CB. 170 39.21 10.00 51.26 AAAA C ACCH 3757 CB ILE 411 10.00 56 CB. 170 39.21 10.00 51.26 AAAA C ACCH 3757 CB ILE 411 10.00 56 CB. 170 39.21 10.00 51.46 AAAA C ACCH 3757 CB ILE 411 10.00 56 CB. 170 39.221 10.00 51.46 AAAA C ACCH 3757 CB ILE 412 53.756 CB. 170 39.521 10.00 51.46 AAAA C ACCH 3757 CB ILE 412 53.756 CB								ĺ
ATOI 3945 CA SER 412 53.071 62.02 41.0689 1.00 54.46 AAAA C ATOI 3947 CG SER 412 53.756 62.536 42.434 1.00 67.12 AAAA C ATOI 3947 CG SER 412 53.756 62.536 62.536 1.00 55.04 AAAA C ATOI 3949 C SER 412 53.756 62.536 62.536 1.00 55.04 AAAA C ATOI 3949 C SER 412 53.756 62.536 62.536 1.00 55.04 AAAA C ATOI 3951 CG SER 412 53.266 63.813 39.523 1.00 55.04 AAAA C ATOI 3952 CG ALA 413 54.064 63.423 39.523 1.00 55.04 AAAA C ATOI 3953 CG ALA 413 54.064 63.423 39.523 1.00 55.04 AAAA C ATOI 3951 CG ALA 413 54.064 63.423 39.523 1.00 55.04 AAAA C ATOI 3952 CG ALA 413 55.336 62.500 34.956 1.00 34.96 AAAA C ATOI 3955 CG ALA 413 55.336 62.500 34.956 1.00 34.96 AAAA C ATOI 3956 CG ALA 413 55.336 62.500 34.956 1.00 34.96 AAAA C ATOI 3956 CG ALA 413 55.336 CG ALA 413 55.075 CG AAAA C C ATOI 3956 CG ALA 413 55.075 CG AAAA C C ATOI 3956 CG ALA 413 55.075 CG AAAA C C ATOI 3956 CG ALA 413 55.075 CG AAAA C C ATOI 3956 CG ALA 413 55.075 CG AAAA C C ATOI 3956 CG ALA 414 55.017 CG AAAA C C ATOI 3956 CG ALA 414 55.017 CG AAAA C C ATOI 3956 CG ALA 414 55.017 CG AAAA C C ATOI 3956 CG ALA 414 55.017 CG AAAA C C ATOI 3956 CG ALA 414 55.017 CG AAAA C C ATOI 3956 CG ALA 414 55.017 CG AAAA C C ATOI 3956 CG ALA 414 55.017 CG AAAA C C ATOI 3956 CG ALA 413 55.018 CG AAAA C C ATOI 3956 CG ALA 414 55.017 CG AAAA C C ATOI 3956 CG AAAA C C ATOI 3957 CG ATOI 414 AAAA C ATOI 3957 CG AAAA C C ATOI 3957 CG ATOI 414 AAAA C ATOI 3957 CG AAAA C C ATOI 3957 CG ATOI 414 AAAA C ATOI	POTA POTA POTA POTA POTA	3959 052 1 3939 051 1 3940 001 1 3941 0 1 3942 0 1	ILE 411 ILE 411 ILE 411 ILE 411 ILE 411	49.216 46.911 46.322 50.319 50.656	63.128 63.489 63.547 64.018 65.179	36.806 37.729 36.338 39.568 39.291	1.00 30.86 1.00 40.83 1.00 38.51 1.00 55.38 1.00 57.59	AAAA C AAAA C AAAA C AAAA C AAAA C AAAA C
ATORI 3955 C ALA 413 55.331 62.520 37.365 1.00 34.96 AAAA C ATORI 3956 C ALA 413 55.301 63.078 35.998 1.00 48.91 AAAA C ATORI 3958 C ALA 413 52.495 62.168 35.998 1.00 47.92 AAAA C ATORI 3958 C C ALC 414 53.675 63.699 34.095 1.00 47.92 AAAA C ATORI 3958 C C GUY 414 53.675 63.699 34.095 1.00 47.92 AAAA C ATORI 3958 C C GUY 414 53.675 63.699 34.095 1.00 47.92 AAAA C ATORI 3958 C C GUY 414 53.675 63.454 33.607 1.00 51.75 AAAA C ATORI 3958 C C GUY 414 53.675 63.454 33.607 1.00 51.75 AAAA C ATORI 3958 C C GUY 414 53.696 65.370 34.111 1.00 53.23 AAAA C ATORI 3958 C C GUY 415 51.696 65.370 34.111 1.00 53.23 AAAA C ATORI 3958 C C UX 415 51.696 65.370 34.111 1.00 53.23 AAAA C ATORI 3958 C C UX 415 50.289 63.083 30.833 1.00 50.94 AAAA C ATORI 3958 C C UX 415 52.288 66.691 22.765 1.00 53.95 AAAA C ATORI 3958 C C UX 415 52.288 66.691 22.765 1.00 53.95 AAAA C ATORI 3958 C C UX 415 52.286 66.691 22.765 1.00 53.95 AAAA C ATORI 3958 C C UX 415 52.286 66.691 22.765 1.00 53.95 AAAA C ATORI 3958 C C UX 415 52.286 66.691 22.765 1.00 53.95 AAAA C ATORI 3958 C C UX 415 52.286 66.691 22.765 1.00 53.95 AAAA C ATORI 3957 C UX 415 52.286 66.691 22.765 1.00 53.95 AAAA C ATORI 3957 C UX 415 52.286 67.032 26.284 1.00 66.36 AAAA R ATORI 3957 C UX 415 415 49.077 63.337 31.036 1.00 49.77 AAAA C ATORI 3957 C UX 415 44.511 64.693 65.151 27.411 1.00 56.04 AAAA C ATORI 3957 C UX 415 44.511 64.693 65.151 27.411 1.00 56.04 AAAA C ATORI 3957 C UX 415 44.511 65.635 33.517 1.00 68.34 AAAA R ATORI 3957 C UX 415 44.511 65.635 33.517 1.00 68.34 AAAA R ATORI 3957 C UX 415 44.611 65.635 33.517 1.00 68.34 AAAA R ATORI 3957 C UX 415 44.611 65.635 33.517 1.00 68.34 AAAA R ATORI 3957 C UX 415 44.611 65.635 63.31 51.00 50.04 AAAA C ATORI 3957 C UX 415 44.611 65.635 63.31 51.00 50.04 AAAA C ATORI 3957 C UX 415 44.611 65.635 63.31 51.00 50.04 AAAA C ATORI 3957 C UX 415 44.611 65.635 63.31 51.00 50.04 AAAA C ATORI 3957 C UX 415 44.611 65.635 63.31 51.00 50.04 AAAA C ATORI 3957 C UX 415 44.611 65.635 63.31 51.00 50.04 AAAA C ATORI 3957 C UX 415 44.611 65.635 63.31 5	HOTA HOTA HOTA HOTA	3945 CA 3 3946 CB 3 3947 OG 3 3949 C 3 3950 O 3	SER 412 SER 412 SER 412 SER 412 SER 412	52.434 53.071 53.756 53.326 54.081	63.502 62.210 62.536 63.910 64.876	40.689 41.248 42.434 39.523 39.527	1.00 54.46 1.00 55.78 1.00 67.12 1.00 55.52 1.00 55.04	AAAA C AAAA C AAAA O AAAA C AAAA O
ATORI 3950 IV LTS 415 50.289 65.317 31.759 1.00 52.49 AAAA C ATORI 3950 IV LTS 415 50.289 65.317 31.759 1.00 52.49 AAAA C ATORI 3950 CB LTS 415 50.289 65.317 31.759 1.00 52.49 AAAA C ATORI 3950 CB LTS 415 50.289 65.317 31.759 1.00 52.49 AAAA C ATORI 3956 CB LTS 415 50.289 66.358 30.33 1.00 50.94 AAAA C ATORI 3956 CB LTS 415 52.286 66.515 27.421 1.00 54.39 AAAA C ATORI 3957 CB LTS 415 52.286 66.691 22.7411 1.00 56.01 AAAA C ATORI 3958 CB LTS 415 52.286 66.691 27.441 1.00 56.01 AAAA C ATORI 3958 IV LTS 415 52.286 66.691 27.441 1.00 56.01 AAAA C ATORI 3957 IV LTS 415 52.286 66.191 27.441 1.00 56.01 AAAA C ATORI 3957 IV LTS 415 52.286 66.191 27.441 1.00 56.01 AAAA C ATORI 3957 IV LTS 415 45.110 64.576 31.155 1.00 50.04 AAAA C ATORI 3957 IV LTS 415 45.110 64.576 31.155 1.00 50.04 AAAA C ATORI 3957 IV LTS 416 46.00 64.576 31.155 1.00 50.04 AAAA C ATORI 3957 IV LTS 416 46.00 64.576 31.35 10.00 66.77 AAAA C ATORI 3957 IV LTS 416 46.00 64.734 AAAA C ATORI 3957 IV LTS 416 45.629 65.186 30.186 1.00 46.77 AAAA C ATORI 3957 IV LTS 416 45.629 65.186 30.186 1.00 40.91 AAAA C ATORI 3957 IV LTS 416 45.629 65.049 22.79 AAAA C ATORI 3957 IV LTS 416 45.629 65.049 22.79 AAAA C ATORI 3957 IV LTS 416 45.629 65.049 22.79 AAAA C ATORI 3957 IV LTS 416 44.511 65.639 33.517 1.00 66.27 AAAA C ATORI 3957 IV LTS 416 44.511 65.639 33.517 1.00 30.94 91 AAAA C ATORI 3957 IV LTS 416 44.511 65.639 33.517 1.00 30.94 91 AAAA C ATORI 3957 IV LTS 416 44.511 65.639 33.517 1.00 30.94 91 AAAA C ATORI 3957 IV LTS 417 45.993 64.159 22.10 41.00 38.49 AAAA C ATORI 3957 IV LTS 417 45.993 64.159 22.10 41.00 38.49 AAAA C ATORI 3958 IV LTS 417 45.993 64.159 22.10 41.00 38.49 AAAA C ATORI 3958 IV LTS 417 45.993 64.159 22.10 41.00 38.49 AAAA C ATORI 3958 IV LTS 417 45.595 64.357 12.504 1.00 38.49 AAAA C ATORI 3958 IV LTS 417 44.535 63.400 1.00 44.19 AAAA C ATORI 3958 IV LTS 417 44.535 63.400 1.00 44.19 AAAA C ATORI 3958 IV LTS 417 44.535 63.291 1.00 38.49 AAAA C ATORI 4005 CB PIE 418 41.600 AAAA C ATORI 4005 CB PIE 418 40.075 65.291 27.135 1.00 44.19 AAAA C ATORI	ATOH ATOH ATOH ATOH ATOH	3954 CB A 3955 C A 3956 O A 3957 H G 3959 CA G	ALA 413 ALA 413 ALA 413 SLY 414 SLY 414	55.334 53.301 52.495 53.675 53.057	62.520 63.078 62.168 63.690 63.454	37.365 35.994 35.998 34.895 33.607	1.00 34.96 1.00 48.71 1.00 48.81 1.00 47.92 1.00 51.75	AAAA C AAAA O AAAA II AAAA C
ATONI 3966 CE LIS 415 52.785 66.151 27.441 1.00 56.01 AAAA C ATONI 3973 C LIS 415 52.426 67.032 26.289 1.00 56.36 AAAA N	HOTA HOTA HOTA HOTA HOTA	3961 O G 3962 H L 3964 CA L 3965 CB L 3966 CG L	TLY 414 XYS 415 XYS 415 XYS 415 XYS 415	51.684 51.385 50.289 50.884 51.198	65.370 64.406 65.317 66.358 65.855	34.114 32.138 31.759 30.833 29.429	1.00 53.23 1.00 56.31 1.00 52.49 1.00 50.94 1.00 54.39	AAAA O AAAA C AAAA C AAAA C
ATCH 3875 CG HET 416	HOTA HOTA HOTA HOTA HOTA HOTA	3968 CE L 3969 NG L 3973 C L 3974 O L 3975 N N 3977 CA N	YS 415 YS 415 YS 415 YS 415 ET 416 ET 416	52.785 52.426 49.110 49.077 48.091 46.890	66.151 67.032 64.576 63.337 65.353 64.734	27.441 26.284 31.155 31.036 30.771 30.186	1.00 56.01 1.00 66.36 1.00 50.04 1.00 49.77 1.00 48.34 1.00 46.77	AAAA C AAAA II AAAA C AAAA O AAAA II
ATCH 3987 CA TUR 417 45.355 64.387 26.785 1.00 39.50 AAAA C ATCH 3987 CB TUR 417 46.156 63.471 25.831 1.00 39.48 AAAA C ATCH 3989 CD TUR 417 45.583 63.430 24.428 1.00 39.48 AAAA C ATCH 3989 CD TUR 417 45.730 64.501 23.511 1.00 39.48 AAAA C ATCH 3981 CD TUR 417 45.730 64.501 23.511 1.00 39.49 AAAA C ATCH 3981 CD TUR 417 44.894 62.321 24.005 1.00 36.91 AAAA C ATCH 3982 CD TUR 417 44.894 62.321 24.005 1.00 36.91 AAAA C ATCH 3982 CD TUR 417 44.894 62.321 24.005 1.00 34.56 AAAA C ATCH 3983 CD TUR 417 44.535 63.292 21.872 1.00 39.90 AAAA C ATCH 3983 CD TUR 417 44.535 63.292 21.872 1.00 39.90 AAAA C ATCH 3984 CH TUR 417 44.535 63.292 21.872 1.00 58.10 AAAA C ATCH 3987 C TUR 417 44.535 63.292 21.872 1.00 58.10 AAAA C ATCH 3987 C TUR 417 43.853 64.065 25.699 1.00 44.19 AAAA C ATCH 3987 C TUR 417 43.853 64.065 25.699 1.00 44.19 AAAA C ATCH 4001 CD PHE 418 41.644 64.701 25.910 1.00 45.84 AAAA C ATCH 4002 CD PHE 418 41.644 64.701 25.910 1.00 45.87 AAAA C ATCH 4002 CD PHE 418 40.675 65.264 28.177 1.00 43.44 AAAA C ATCH 4002 CD PHE 418 41.644 64.701 25.910 1.00 45.84 AAAA C ATCH 4004 CD PHE 418 39.638 64.451 30.801 1.00 44.68 AAAA C ATCH 4009 CD PHE 418 39.638 64.451 30.801 1.00 44.68 AAAA C ATCH 4009 CD PHE 418 39.638 64.451 30.801 1.00 44.68 AAAA C ATCH 4009 CD PHE 418 41.521 64.730 24.404 1.00 44.68 AAAA C ATCH 4009 CD PHE 418 41.375 65.762 23.812 1.00 30.88 AAAA C ATCH 4009 CD PHE 418 41.375 65.762 23.812 1.00 41.68 AAAA C ATCH 4002 CD PHE 420	HOTA HOTA HOTA HOTA	3979 CG H 3980 SD H 3980 CE H 3980 C H	ET 416 ET 416 ET 416 ET 416 ET 416	45.836 44.511 44.002 46.623 46.963	65.880 65.636 67.366 65.064 66.137	32.273 33.517 33.690 28.723 28.247	1.00 40.91 1.00 56.20 1.00 35.94 1.00 40.40 1.00 34.94	AAAA C AAAA S AAAA C AAAA C AAAA O
ATOH 3994 CH TUR 417 44.053 63.292 21.872 1.00 44.20 AAAA C ATOH 3996 T TUR 417 44.053 63.391 20.882 1.00 54.10 AAAA C ATOH 3996 T TUR 417 43.833 64.065 26.699 1.00 44.18 AAAA C ATOH 4001 CA PHE 418 41.064 64.701 25.910 1.00 45.94 AAAA H AAAA C ATOH 4002 CG PHE 418 41.654 64.701 25.910 1.00 45.97 AAAA C ATOH 4002 CG PHE 418 41.655 65.264 28.177 1.00 43.44 AAAA C ATOH 4002 CG PHE 418 41.652 65.685 29.132 1.00 38.43 AAAA C ATOH 4005 CE PHE 418 41.652 65.685 29.132 1.00 38.43 AAAA C ATOH 4006 CG PHE 418 41.652 65.685 29.132 1.00 38.43 AAAA C ATOH 4006 CG PHE 418 41.605 65.291 30.440 1.00 46.44 AAAA C ATOH 4005 CE PHE 418 41.605 65.291 30.440 1.00 46.63 AAAA C ATOH 4006 CG PHE 418 41.602 65.291 30.440 1.00 46.63 AAAA C ATOH 4006 CG PHE 418 41.602 65.291 30.440 1.00 46.64 AAAA C ATOH 4006 CE PHE 418 41.602 65.291 30.440 1.00 44.68 AAAA C ATOH 4006 CE PHE 418 41.602 65.291 30.440 1.00 46.63 AAAA C ATOH 4006 CE PHE 418 41.355 64.750 24.440 1.00 44.64 AAAA C ATOH 4007 CC PHE 418 41.355 64.750 24.440 1.00 44.64 AAAA C ATOH 4009 C PHE 418 41.375 65.762 23.812 1.00 47.60 AAAA C ATOH 4010 N ALA 419 40.554 63.713 23.936 1.00 41.60 AAAA C ATOH 4010 N ALA 419 40.554 63.713 23.936 1.00 41.77 AAAA C ATOH 4012 CA ALA 419 40.0554 63.713 23.936 1.00 41.77 AAAA C ATOH 4014 C ALA 419 38.837 62.846 22.366 1.00 41.77 AAAA C ATOH 4016 N PHE 420 37.829 63.398 21.618 1.00 40.03 AAAA C ATOH 4016 N PHE 420 37.829 63.398 21.618 1.00 40.03 AAAA C ATOH 4016 N PHE 420 37.829 63.398 21.618 1.00 40.03 AAAA C ATOH 4016 N PHE 420 37.829 63.398 21.618 1.00 40.93 AAAA C ATOH 4020 CG PHE 420 37.829 63.398 21.618 1.00 40.03 AAAA C ATOH 4021 CD PHE 420 37.829 63.398 21.618 1.00 40.41 AAAA C ATOH 4022 CD PHE 420 37.829 63.398 21.618 1.00 40.41 AAAA C ATOH 4020 CG PHE 420 37.829 63.398 21.618 1.00 40.93 AAAA C ATOH 4021 CD PHE 420 37.829 63.398 21.618 1.00 40.93 AAAA C ATOH 4022 CD PHE 420 37.826 60.991 22.255 1.00 36.40 AAAA C ATOH 4022 CD PHE 420 37.836 64.60 AAAA C ATOH 4022 CD PHE 420 37.836 64.60 AAAA C ATOH 4022 CD PHE 420 37.836 64.60 AAAA C ATOH	ATOH ATOH ATOH ATOH ATOH	3991 CD2 T	YR 417 YR 417 YR 417 YR 417 YR 417	45.355 46.156 45.583 45.730 45.196 44.894	64.387 63.471 63.430 64.501 64.429 62.321	26.765 25.831 24.428 23.511 22.253 24.005	1.00 39.50 1.00 32.02 1.00 39.48 1.00 39.29 1.00 34.56 1.00 36.91	AAAA C AAAA C AAAA C AAAA C AAAA C AAAA C
ATOII 4002 C5 PHE 418 40.675 65.264 28.177 1.00 43.44 AAAA C ATOII 4004 CD2 PHE 418 41.552 65.685 29.132 1.00 38.43 AAAA C ATOII 4004 CD2 PHE 418 39.638 64.417 28.544 1.00 51.21 AAAA C ATOII 4005 CE1 PHE 418 39.638 64.417 28.544 1.00 51.21 AAAA C ATOII 4005 CE1 PHE 418 39.486 64.023 29.845 1.00 46.63 AAAA C ATOII 4006 CE2 PHE 418 39.486 64.023 29.845 1.00 44.68 AAAA C ATOII 4007 CZ PHE 418 40.358 64.454 30.801 1.00 44.68 AAAA C ATOII 4009 C PHE 418 41.251 64.730 24.440 1.00 44.64 AAAA C ATOII 4009 C PHE 418 41.375 65.762 23.812 1.00 47.60 AAAA O ATOII 4009 O PHE 418 41.375 65.762 23.812 1.00 47.60 AAAA C ATOII 4010 N ALA 419 40.554 63.713 23.836 1.00 43.06 AAAA N ATOII 4013 CB ALA 419 40.015 63.793 22.607 1.00 39.21 AAAA C ATOII 4013 CB ALA 419 40.015 63.793 22.607 1.00 39.21 AAAA C ATOII 4014 C ALA 419 38.837 62.846 22.555 1.00 30.88 AAAA C ATOII 4014 C ALA 419 38.837 62.846 22.555 1.00 30.88 AAAA C ATOII 4016 N PHE 420 37.829 63.398 21.618 1.00 41.77 AAAA C ATOII 4016 N PHE 420 37.829 63.398 21.618 1.00 40.41 AAAA N ATOII 4019 CB PHE 420 37.829 63.398 21.618 1.00 40.41 AAAA C ATOII 4019 CB PHE 420 37.829 63.988 21.618 1.00 40.41 AAAA C ATOII 4019 CB PHE 420 37.829 63.988 21.618 1.00 40.41 AAAA C ATOII 4019 CB PHE 420 37.832 61.999 18.912 1.00 54.18 AAAA C ATOII 4021 CDI PHE 420 37.832 61.999 18.912 1.00 54.18 AAAA C ATOII 4021 CDI PHE 420 37.832 61.999 18.912 1.00 44.61 AAAA C ATOII 4021 CDI PHE 420 37.575 62.833 16.725 1.00 49.23 AAAA C ATOII 4022 CD2 PHE 420 37.575 62.833 16.725 1.00 44.01 AAAA C ATOII 4024 CE2 PHE 420 37.575 62.833 16.554 1.00 44.01 AAAA C ATOII 4024 CD PHE 420 35.576 62.146 22.126 1.00 45.55 AAAA C ATOII 4024 CC2 PHE 420 35.576 62.146 22.126 1.00 45.55 AAAA C ATOII 4024 CC2 PHE 420 35.576 62.416 22.126 1.00 45.55 AAAA C ATOII 4024 CC2 PHE 420 35.576 62.416 22.126 1.00 45.55 AAAA C ATOII 4026 C PHE 420 35.576 62.416 22.126 1.00 45.55 AAAA C ATOII 4026 C PHE 420 35.552 60.91 22.126 1.00 45.03 AAAA C ATOII 4027 O PHE 420 35.552 60.91 22.126 1.00 46.06 AAAA C ATOII 4026 C PHE 420 35.552 60.91	ATON ATON ATON ATON ATON	3993 CC T 3994 CH T 3998 C T 3997 C T 3999 H PS 4000 CA PS	YR 417 YR 417 YR 417 YR 417 HE 419 HE 418	44.535 44.053 43.853 43.376 43.068 41.644	63.292 63.361 64.065 62.974 64.971 64.701	21.872 20.852 26.699 27.135 26.100 25.910	1.00 44.20 1.00 58.10 1.00 44.18 1.00 42.19 1.00 45.94 1.00 45.87	AAAA C AAAA O AAAA C AAAA O AAAA N AAAA C
ATON 4008 C PHE 418 41.251 64.730 24.440 1.00 44.64 AAAA C ATON 4009 O PHE 418 41.375 65.762 23.812 1.00 47.60 AAAA O ATON 4010 N ALA 419 40.554 63.713 23.936 1.00 43.06 AAAA N ATON 4012 CA ALA 419 40.015 63.793 22.607 1.00 39.21 AAAA C ATON 4013 CB ALA 419 41.090 63.562 21.555 1.00 30.88 AAAA C ATON 4014 C ALA 419 38.837 62.846 22.366 1.00 41.77 AAAA C ATON 4015 O ALA 419 38.837 62.846 22.366 1.00 41.77 AAAA C ATON 4016 N PHE 420 37.829 63.398 21.618 1.00 40.41 AAAA N ATON 4019 CB PHE 420 37.829 63.398 21.618 1.00 40.41 AAAA N ATON 4019 CB PHE 420 37.832 61.909 18.912 1.00 54.18 AAAA C ATON 4020 CG PHE 420 37.832 61.909 18.912 1.00 54.18 AAAA C ATON 4021 CDI PHE 420 39.221 61.987 18.751 1.00 49.23 AAAA C ATON 4022 CD2 PHE 420 37.006 62.345 17.871 1.00 47.65 AAAA C ATON 4023 CE1 PHE 420 39.783 62.496 17.567 1.00 46.00 AAAA C ATON 4024 CE2 PHE 420 37.572 62.833 16.725 1.00 51.10 AAAA C ATON 4025 CZ PHE 420 37.572 62.833 16.725 1.00 51.10 AAAA C ATON 4025 CZ PHE 420 37.572 62.833 16.725 1.00 51.10 AAAA C ATON 4025 CZ PHE 420 37.572 62.833 16.725 1.00 51.10 AAAA C ATON 4025 CZ PHE 420 37.572 62.833 16.725 1.00 51.10 AAAA C ATON 4025 CZ PHE 420 35.352 60.991 22.215 1.00 38.35 AAAA C ATON 4026 N ASN 421 35.459 63.024 23.049 1.00 44.01 AAAA C ATON 4028 N ASN 421 35.459 63.024 23.049 1.00 45.35 AAAA C ATON 4032 CG ASN 421 35.459 63.024 23.049 1.00 45.35 AAAA N ATON 4032 CG ASN 421 35.459 63.024 23.049 1.00 45.35 AAAA C ATON 4032 CG ASN 421 35.459 63.024 23.049 1.00 45.35 AAAA N ATON 4032 CG ASN 421 36.407 62.960 24.112 1.00 46.86 AAAA C ATON 4032 CG ASN 421 36.407 62.960 24.112 1.00 46.86 AAAA C ATON 4032 CG ASN 421 36.407 62.960 24.112 1.00 44.83 AAAA C ATON 4033 ND2 ASN 421 36.407 62.401 25.654 1.00 47.90 AAAA C ATON 4033 ND2 ASN 421 36.407 62.401 25.654 1.00 47.90 AAAA C ATON 4033 ND2 ASN 421 36.407 62.401 25.654 1.00 47.90 AAAA C ATON 4033 ND2 ASN 421 36.407 62.401 25.654 1.00 47.90 AAAA C ATON 4033 ND2 ASN 421 36.406 61.407 25.774 1.00 44.83 AAAA C ATON 4033 ND2 ASN 421 36.426 61.407 25.774 1.00 44.83 AAAA C	ATOH ATOH ATOH ATOH	4002 CG PI 4003 CD1 PI 4004 CD2 PI 4005 CE1 PI 4006 CE2 PI	HE 418 HE 418 HE 418 HE 418	40.675 41.552 39.638 41.402 39.486	65.264 65.685 64.417 65.291 64.023	28.177 29.132 28.544 30.449 29.845	1.00 43.44 1.00 38.43 1.00 51.21 1.00 46.44 1.00 46.63	2 AAAA 2 AAAA 2 AAAA 2 AAAA 2 AAAA
ATOH 4016 N PHE 420 37.829 63.398 21.618 1.00 40.41 AAAA N ATOH 4019 CA PHE 420 36.742 62.621 21.070 1.00 40.03 AAAA C ATOH 4019 CB PHE 420 37.157 61.430 20.180 1.00 45.54 AAAA C ATOH 4020 CG PHE 420 37.832 61.909 18.912 1.00 54.18 AAAA C ATOH 4021 CD1 PHE 420 39.221 61.987 18.751 1.00 49.23 AAAA C ATOH 4022 CD2 PHE 420 37.006 62.345 17.871 1.00 47.65 AAAA C ATOH 4023 CE1 PHE 420 39.783 62.496 17.567 1.00 46.00 AAAA C ATOH 4024 CE2 PHE 420 37.572 62.833 16.725 1.00 51.10 AAAA C ATOH 4025 CD PHE 420 38.964 62.928 16.549 1.00 44.01 AAAA C ATOH 4025 CD PHE 420 38.964 62.928 16.549 1.00 44.01 AAAA C ATOH 4025 C PHE 420 35.762 62.146 22.126 1.00 41.65 AAAA C ATOH 4025 C PHE 420 35.762 62.146 22.126 1.00 41.65 AAAA C ATOH 4027 O PHE 420 35.352 60.991 22.215 1.00 38.35 AAAA O ATOH 4028 N ASN 421 35.459 63.024 23.049 1.00 45.35 AAAA O ATOH 4030 CA ASN 421 35.459 63.024 23.049 1.00 45.35 AAAA C ATOH 4030 CA ASN 421 35.459 63.024 23.049 1.00 43.60 AAAA C ATOH 4031 CB ASN 421 35.183 63.276 25.449 1.00 43.60 AAAA C ATOH 4031 CB ASN 421 35.183 63.276 25.449 1.00 43.60 AAAA C ATOH 4032 CG ASN 421 36.407 62.960 24.112 1.00 46.86 AAAA C ATOH 4033 ODI ASN 421 36.407 62.401 25.654 1.00 47.90 AAAA C ATOH 4034 ND2 ASH 421 36.426 61.147 25.714 1.00 44.83 AAAA O ATOH 4034 ND2 ASH 421 36.426 61.147 25.714 1.00 44.83 AAAA O ATOH 4034 ND2 ASH 421 37.541 63.101 25.732 1.00 37.46 AAAA H AAAA C ATOH 4034 ND2 ASH 421 37.541 63.101 25.732 1.00 37.46 AAAA H AAAA C ATOH 4037 C ASH 421 37.541 63.101 25.732 1.00 37.46 AAAA H AAAA C	HOTA HOTA HOTA HOTA HOTA	4009 O PH 4010 N AI 4012 CA AI 4013 CB AI 4014 C AI	HE 418 HE 419 LA 419 LA 419 LA 419 LA 419	41.251 41.375 40.554 40.015 41.090 38.837	64.730 65.762 63.713 63.793 63.562 62.846	24.440 23.812 23.936 22.607 21.555 22.366	1.00 44.64 1.00 47.60 1.00 43.06 1.00 39.21 1.00 30.88 1.00 41.77	AAAA C AAAA H AAAA C AAAA C AAAA C
ATCH 4024 CE2 PHE 420 37.572 62.833 16.725 1.00 51.10 AAAA C ATCH 4025 CZ PHE 420 38.964 62.928 16.549 1.00 44.01 AAAA C ATCH 4026 C PHE 420 35.762 62.146 22.126 1.00 41.65 AAAA C ATCH 4027 O PHE 420 35.352 60.991 22.215 1.00 38.35 AAAA O ATCH 4028 N ASN 421 35.459 63.024 23.049 1.00 45.35 AAAA N ATCH 4030 CA ASN 421 35.459 63.024 23.049 1.00 45.35 AAAA N ATCH 4031 CB ASN 421 34.477 62.960 24.112 1.00 46.86 AAAA C ATCH 4031 CB ASN 421 35.183 63.276 25.449 1.00 43.60 AAAA C ATCH 4032 CG ASN 421 36.407 62.401 25.654 1.00 47.90 AAAA C ATCH 4033 ODI ASN 421 36.426 61.147 25.714 1.00 44.83 AAAA O ATCH 4033 NDI ASN 421 37.541 63.101 25.732 1.00 37.46 AAAA N ATCH 4034 ND2 ASH 421 37.541 63.101 25.732 1.00 37.46 AAAA N ATCH 4037 C ASH 421 33.432 64.069 23.835 1.00 47.83 AAAA C	HOTA HOTA HOTA HOTA	4016 N PH 4019 CA PH 4019 CB PH 4020 CG PH 4021 CD1 PH	4E 420 4E 420 4E 420 4E 420 4E 420	37.829 36.742 37.157 37.832 39.221	63.398 62.621 61.430 61.909 61.987	21.618 21.070 20.180 18.912 18.751	1.00 40.41 1.00 40.03 1.00 45.54 1.00 54.18 1.00 49.23	AAAA C AAAA C AAAA C AAAA C AAAA C
ATON 4031 CB ASN 421 35.183 63.276 25.449 1.00 43.60 AAAA C ATON 4032 CG ASN 421 36.407 62.401 25.654 1.00 47.90 AAAA C ATON 4033 ODI ASN 421 36.426 61.147 25.714 1.00 44.83 AAAA O ATON 4034 ND2 ASN 421 37.541 63.101 25.732 1.00 37.46 AAAA N ATON 4037 C ASN 421 33.432 64.069 23.835 1.00 47.83 AAAA C	ATOH ATOH ATOH ATOH ATOH ATOH	4023 CE1 PH 4024 CE2 PH 4025 CE PH 4026 C PH 4027 O PH 4028 N AS	E 420 E 420 E 420 E 420 N 421	39.783 37.572 38.964 35.762 35.352 35.459	62.496 62.833 62.928 62.146 60.991 63.024	17.567 16.725 16.549 22.126 22.215 23.049	1.00 46.00 1.00 51.10 1.00 44.01 1.00 41.65 1.00 38.35 1.00 45.35	AAAA C AAAA C AAAA C AAAA C AAAA O AAAA H
	ATOH ATOH ATOH ATOH ATOH	4031 CB AS 4032 CG AS 4033 OD1 AS 4034 ND2 AS 4037 C AS	N 421 N 421 N 421 H 421 H 421	35.183 36.407 36.426 37.541 33.432	63.276 62.401 61.147 63.101 64.069	25.449 25.654 25.714 25.732 23.835	1.00 43.60 1.00 47.90 1.00 44.83 1.00 37.46 1.00 47.83	AAAA C AAAA O AAAA 11 AAAA C

							·
AT141	4939 II PRO	422	32.453			1.00 47.86	AAAA II
ATTU	4040 CD FRO	400	32.213			1.00 44.11	AAAA C
ATM	4041 CA FRO	422	31.463		22.605	1.00 47.85	AAAA C
HOTA	4942 CB PRO	422	30.731	64.084	21.446	1.00 44.86	AAAA C
ATOH	4043 CG PRO	422	30.947	62.623	21.606	1.00 43.01	AAAA C
ATCH	4044 C PRO	422	30.577	65.284	23.735	1.00 51.16	AAAA C
ATOH	4045 O PRO	422	30.223			1.00 48.54	AAAA O
ATOH	4046 II LYS	423	30.320			1.00 52.90	AAAA N
ATOH	4048 CA LYS	423	29.431			1.00 58.82	
							AAAA C
ATOI	4049 CB LYS	423	28.556			1.00 52.93	AAAA C
ATCII	4050 CG LYS	423	28.209			1.00 70.55	AAAA C
NOTA	4051 CD LYS	423	26.743	62.448	24.996	1.00 73.79	AAAA C
ATC!!	4052 CE LYS	423	26.030	63.374	24.021	1.00 77.06	AAAA C
ATCH	4053 NO LYS	423	25.949	64.748	24.614	1.00 64.99	AAAA N
ATOH	4057 C LYS	423	30.158	65.482		1.00 57.43	AAAA C
ATOH	4058 O LYS	423	29.582			1.00 55.22	AAAA O
ATOIL	4059 N LEU	424	31.425			1.00 55.95	II AAAA
ATOH	4061 CA LEU	424	32.261			1.00 57.07	
	4061 SA BBU	424					AAAA C
ATOH			33.463			1.00 49.16	AAAA C
HOTA		424	34.390			1.00 68.27	AAAA C
HOTA	4064 CD1 LEU	424	33.821	65.362		1.00 60.66	AAAA C
HOTA	4065 CD2 LEU	424	35.825	65.276		1.00 60.35	АААА С
1 ICTA	4066 C LEU	424	32.709	67.585	27.878	1.00 56.29	AAAA C
ATOH	4067 O LEU	424	33.696	67.861	27.201	1.00 59.98	AAAA O
ATOH	4068 H CYS	425	31.995	68.488	28.492	1.00 58.76	II AAAA II
ATOU	4070 CA CYS	425	32.342	69.916	28.406	1.00 60.39	AAAA C
ATOH	4071 C CYS	425	33.771	70.119	28.810	1.00 62.59	AAAA C
ATOH	4072 O CYS	425	34.288	69.665	29.831	1.00 64.45	AAAA O
ATOH	4073 CB CYS	425	31.249	70.644	29.214	1.00 64.43	AAAA C
ATOH	4074 SG CYS	425				1.00 88.23	
			29.916	71.303	28.086		AAAA S
HOTA	4075 II VAL	426	34.529	70.953	28.102	1.00 65.31	AAAA N
ATOH	4077 CA VAL	426	35.943	71.149	28.358	1.00 65.49	AAAA C
ATOH!	4078 CB VAL	426	36.644	72.022	27.310	1.00 66.66	AAAA C
IKTA	4079 CG1 VAL	426	36.715	71.413	25.925	1.00 62.49	AAAA C
ATOH	4080 CG2 VAL	426	35.962	73.365	27.239	1.00 60.92	AAAA C
ATCH	4091 C VAL	126	36.105	71.711	29.757	1.00 65.99	AAAA C
ATOH	4082 O VAL	426	37.180	71.724	30.388	1.00 64.51	AAAA O
ATGH	4093 N SER	427	35.090	72.361	30.267	1.00 67.67	AAAA H
ATO:	4095 CA SER	427	35.091	72.927	31.599	1.00 66.85	AAAA C
HCTA	4096 CB SER	427	33.685	73.499	31.864	1.00 61.16	AAAA C
ATON	4097 OG SER	127	34.088	74.560	32.098	1.00 67.05	AAAA O
ATOH	1089 C SER	127	35.515	71.972	32.701	1.00 64.24	AAAA C
ATO:	4090 O SER	427	36.332	72.328	33.573	1.00 63.56	AAAA O
ATOH	4091 N GLU	128	34.965	70.771	32.618	1.00 58.75	
ATOL	4093 CA GLU	428		69.753			n AAAA
ATGE	4094 CB GLU	428	35.384 34.594		33.585	1.00 63.39	AAAA C
ATOH	4095 C3 GLU	428	33.115	69.495 68.560	33.240 33.537	1.00 68.57	AAAA C
ATO:	4096 CD GLU	429	32.785			1.00 66.59	AAAA C
ATO:	4097 OE1 GLU	428	32.729	68.560 67.522	35.023	1.00 72.33	AAAA C
ATOH!	4099 OE2 GLU	428	32.581		35.722	1.00 81.62	AAAA C
ATOI!	4099 C GLU	428	36.970	69.638	35.517	1.00 70.97 1.00 61.63	AAAA O
ATON		428		69.485	33.429		AAAA C
			37.671	69.696	34.307	1.00 62.03	AAAA O
ATOM:	4101 N ILE	129	37.265	69.262	32.165	1.00 61.26	AAAA II
ATOM	4103 CA ILE	429	38.631	69.038	31.789	1.00 61.09	AAAA C
ATOH	4104 CB ILE	429	38.759	68.933	30.263	1.00 59.32	AAAA C
INTA	4105 CG2 ILE	429	40.257	68.915	29.895	1.00 45.93	AAAA C
HOTA	4106 CG1 ILE	429	37.968	67.719	29.794	1.00 57.66	AAAA C
ATOH	4107 CD1 ILE	429	38.038	67.555	28.285	1.00 53.49	AAAA C
HOTA	4108 C ILE	429	39.498	70.166	32.323	1.00 61.90	AAAA C
ATOH	4109 O ILE	429	40.592	70.017	32.867	1.00 61.28	AAAA O
INTA	4110 U TYR	430	38.987	71.384	32.200	1.00 65.34	AAAA H
HOTA	4112 CA TYR	430	39.729	72.543	32.719	1.00 68.10	AAAA C
ATO(1	4113 CB TYR	430	39.180	73.822	32.099	1.00 71.02	AAAA C
ATO!!	4114 CG TYR	430	39.538	74.006	30.639	1.00 75.98	AAAA C
ATCH	4115 CD1 TYR	430	38.653	73.821	29.599	1.00 77.60	AAAA C
HOTA	4116 CEL TYR	430	38.953	73.977	28.270	1.00 75.72	AAAA C
ATOM	4117 CD2 TYR	430	40.810	74.401	30.260	1.00 75.95	AAAA C
ATOH	4118 CE2 TYR	430	41.155	74.575	28.937	1.00 74.81	
ATOH							AAAA C
		430	40.221	74.359	27.952	1.00 78.51	AAAA C
ATON!	4120 OH TYR	430	40.564	74.542	26.616	1.00 85.40	AAAA O
ATOH ATOH	4122 C TYR 4123 O TYR	430 430	39.779	72.634	34.241	1.00 63.72	AAAA C
			40.654	73.321	34.758	1.00 59.26	AAAA O
ATOH	4124 II ARG	431	38.819	72.017	34.907	1.00 65.53	AAAA II
ATOH ATOH	4126 CA ARG	431	38.747	72.043	36.356	1.00 68.15	AAAA C
ATOH	4127 CB ARG	431	37.348	71.749	36.898	1.00 73.32	AAAA C
ATOH	4129 CG ARG	431	37.345	71.815	38.430	1.00 82.99	AAAA C
ATOH	4129 CD ARG	431	37.270	73.279	38.860	1.00 88.39	AAAA C
ATOH	4130 NE ARG	431	37.698	73.472	40.258	1.00 92.48	M AAAA
ATOH	4132 CZ ARG	431	36.835	73.258	41.259	1.00 94.93	AAAA C
ATOH	4133 NH1 ARG	431	35.610	72.872	40.872	1.00 87.40	AAAA N
ATOI1	4136 IIH2 ARG	431	37.021	73.371	42.567	1.00 95.17	AAAA N
ATOH	4139 C ARG	431	39.718	70.986	36.877	1.00 67.75	AAAA C
ATOH	4140 O ARG	431	40.637	71.292		1.00 66.74	AAAA O
ITOTA	4141 U MET	132	39.541	69.791		1.00 63.87	AAAA II
ATOH	4143 CA HET	432	40.437	68.703	36.652	1.00 64.40	AAAA C

: `

							f
ATMI	4144 UB HET	432	40.231	7 67.523	35.71	8 1.90 54.25	AAAA C
ATGG	4145 CG HET	432	41.25	66.426	5 35.97	1 1.00 40.18	AAAA C
ATOH ATOH			40.829 41.583				AAAA S AAAA C
ATON	4148 C HET	432	41.891	69.170	36.620	5 1.00 64.65	AAAA C
ATOH ATOH			42.530 42.331				AAAA O
ATOH			43.622			-	AAAA N AAAA C
ATOH			43.704	71.506	34.40	1.00 69.58	AAAA C
ATOH ATOH			44.121 44.623		33.048 32.243		AAAA C AAAA C
ATOH	4156 OE1 GLU	433	44.718	73.224	32.87	1.00 86.82	AAAA O
ATON ATON			44.905 44.016				AAAA C
ATON	4159 O GLU	433	45.133				AAAA O
ATON ATON	4160 II GLU 4162 CA GLU		43.178 43.505				II AAAA
ATOH	4163 CB GLU	434	42.458	73.916			AAAA C AAAA C
ATOM	4164 CG GLU	434	41.191				AAAA C
ATOH ATOH	4165 CD GLU 4166 OE1 GLU	434 434	40.181 39.521				AAAA C AAAA O
ATOH	4167 OE2 GLU	434	40.080	75.941	37.583	1.00 99.95	AAAA O
ATOH ATOH	4168 C GLU 4169 O GLU	434 434	43.675 44.728				AAAA C AAAA O
ATOM	4170 H VAL	435	42.670	71.095			II AAAA
ATOM ATOM	4172 CA VAL 4173 CB VAL	435 435	42.711				AAAA C
ATON	4174 CG1 VAL	435	41.451 41.547				AAAA C AAAA C
ATG!	4175 CG2 VAL	435	40.203				AAAA C
HOTA HOTA	4176 C VAL 4177 O VAL	435 435	43.939 44.607				AAAA C AAAA O
HOTA	4178 H THR	436	44.282	68.506	39.988	1.00 60.67	AAAA N
ATOH ATOH	4180 CA THR 4181 CB THR	436 436	45.335 45.199	67.516 66.565			AAAA C AAAA C
ATOM:	4192 OG1 THR	436	44.913				AAAA O
ATOM ATOM	4184 CG2 THR 4185 C THR	436 436	44.108 46.701	65.526 69.184	38.901 39.930		AAAA C
ATR:	4186 O THR	÷36	47.714	67.490	40.024		AAAA C AAAA O
AT SH AT SH	4187 N 3LY	437 437	46.836	69.496	39.835		AAAA H
ATOX	4183 G 3FA	437	48.100 48.800	70.164 69.964	39.749 38.424	1.00 59.47 1.00 64.78	AAAA C AAAA C
ATON:	4191 O SLY	437	49.983	70.254	38.245	1.00 62.70	O AAAA
ATGE: ATGE:	4192 U THR 4194 CA THR	438 438	48.112 48.731	69.387 69.169	37.390 36.076		AAAA N AAAA C
ATOH	4195 CE THR	438	47.967	68.027	35.411	1.00 66.87	AAAA C
ATONI ATONI	4196 OG1 THR 4199 DG2 THR	438 438	46.600 48.209	69.385 66.659	35.731 36.019	1.00 62.22 1.00 68.74	AAAA O AAAA C
AT CHI	4199 C THR	438	48.590	70.415	35.220	1.00 66.14	AAAA C
AT DH AT OH	4200 O THR 4201 H LYS	439 439	49.003 48.089	70.543 71.491	34.070 35.822	1.00 69.05 1.00 67.37	o aaaa n aaaa
ATOH	4203 CA LYS	139	47.927	72.757	35.154	1.00 71.08	AAAA C
ATCH ATCH	4204 CB LYS 4205 CG LYS	439 439	47.114 46.677	73.708 74.938	36.034 35.265	1.00 69.23 1.00 77.26	AAAA C
ATOH	4206 CD LYS	439	45.832	75.942	36.014		AAAA C AAAA C
HOTA HOTA	4207 CE LYS 4208 NZ LYS	43 <u>9</u>	44.385	75.475	36.192	1.00 87.39	AAAA C
ATOM	4212 C LYS	439	43.667 49.249	76.431 73.396	37.100 34.752	1.00 93.85 1.00 73.01	aaaa n aaaa c
HOTA HOTA	4213 O LYS	439	49.996	73.986	35.541	1.00 74.60	AAAA O
ATOH	4214 M GLY 4216 CA GLY	440 440	49.517 50.733	73.453 74.167	33.441 33.014	1.00 73.33 1.00 71.39	AAAA N AAAA C
ATOH	4217 C GLY	440	51.716	73.204	32.389	1.00 71.20	AAAA C
ATOH - ATOH	4218 O GLY 4219 N ARG	440 441	52.684 51.445	73.650 71.908	31.822 32.436	1.00 72.70 1.00 72.99	AAAA O AAAA N
ATOH	4221 CA ARG	441	52.343	70.945	31.831	1.00 74.12	AAAA C
HOTA	4222 CB ARG 4223 CG ARG	441	52.617 51.847	69.740 69.695	32.716 34.003		AAAA C AAAA C
HOTA	4224 CD ARG	441	52.060	68.314	34.595	1.00 67.64	AAAA C
HOTA HOTA	4225 HE ARG 4227 CL ARG	441 441	52.244 52.326	68.395 67.357	36.030 36.831	1.00 61.00 1.00 59.21	AAAA N AAAA C
IIOTA	4228 NH1 ARG	441	52.258	66.117	36.395	1.00 60.57	AAAA C
ATOH ATOH	4231 NH2 ARG 4234 C ARG	441 441	52.468 51.760	67.596	38.128	1.00 72.94	AAAA N
ATOH	4235 O ARG	441	52.195	70.446 69.424	30.511 30.012	1.00 73.50 1.00 74.73	AAAA C AAAA O
HOTA	4236 II GEII	442	50.732	71.114	30.043	1.00 74.69	II AAAA
ATOH ATOH	4239 CA GLII 4239 CB GLII	442 442	49.959 48.457	70.646 70.875		1.00 75.13 1.00 68.73	AAAA C AAAA C
ATOH	4240 CG GUN	442	47.669	69.576	29.195	1.00 71.20	AAAA C
ATOH ATOH	4241 CD GLN 4242 OE1 GLN	442	47.623 47.714	69.028 67.822	30.607 30.868	1.00 70.98 1.00 78.66	AAAA C AAAA O
ATOH	4243 NE2 GLN	442	47.477	69.907	31.584	1.00 66.86	M AAAA
ATOH ATOH	4246 C GLII 4247 O GLN	442 442	50.326 50.227	71.359	27.627	1.00 77.69	AAAA C
HOTA	4248 II ALA	113	50.474	72.569 70.554	27.530 26.575	1.00 75.57 1.00 81.54	AAAA O AAAA N
HOTA	4250 CA ALA	443	50.643	71.148	25.236	1.00 82.95	AAAA C
UTAN	4251 CB ALA	113	51.104	70.118	24.220	1.00 81.69	AAAA C

							;
ATOM	4052 C ALA	443	49.259	71.706	24.950	1.00 83.73	AAAA C
HOTA	4053 O ALA	443	48.398				AAAA O
ATOH	4254 H LYS	444	48.914				II AAAA
ATO! I	4256 CA LYS	444	47.559				AAAA C
ATOH	4257 CB LYS	444	47.426				AAAA C
ATOH	4258 OG LYS	444	46.673				AAAA C
	4259 CD LYS	444	45.883				AAAA C
ATOU		444	46.390			-	AAAA C
ATOH							
ATOU	4261 HZ LYS	444	45.368				H AAAA
ATOH	4265 C LYS	444	46.659				AAAA C
ATO!	1266 O LYS	444	45.428				AAAA O
ATOH	4267 H GLY	445	47.214				H AAAA
ATOH	4269 CA GLY	445	46.368				AAAA C
ATOH1	4270 C GLY	445	45.903	68.814	22.260		AAAA C
ATOH	4271 O GLY	445	44.963	67.993	21.940	1.00 74.90	AAAA O
ATO! I	4272 II ASP	446	46.300	68.981	23.492	1.00 67.97	AAAA N
HOTA	4274 CA ASP	446	45.914	68.174	24.642	1.00 62.81	AAAA C
ATO! 1	4275 CB ASP	446	46.754	68.552	25.873	1.00 55.24	AAAA C
ATOH	4276 CG ASP	446	48.213			1.00 54.07	AAAA C
ATOH	4277 OD1 ASP	446	48.693				AAAA O
HOTA	4278 OD2 ASP	446	49.091	68.595			AAAA O
ATOH	4279 C ASP	446	44.438	68.274			AAAA C
ATOH	4280 O ASP	446	43.610				AAAA O
		447		69.527			AAAA N
ATOI I			44.043				
ATOI1	4283 CA ILE	447	42.652	69.822	25.510		AAAA C
HOTA	4284 CB ILE	447	42.505	70.502	26.877	1.00 48.92	AAAA C
ATOH	4285 CG2 ILE	447	41.030			1.00 41.02	AAAA C
ATOH	4286 CG1 ILE	447	43.211	69.621	27.932	1.00 52.36	AAAA C
HOTA	4287 CD1 ILE	447	43.468	70.329	29.237	1.00 48.47	AAAA C
HOTA	4288 C ILE	447	42.927	70.591	24.364	1.00 53.06	AAAA C
HOTA	4289 O ILE	447	41.718	71.772	24.423	1.00 56.08	AAAA O
ATOH	4290 H ASN	448	41.625	69.915	23.307	1.00 53.17	N AAAA N
ATOH	4292 CA ASH	448	41.013	70.642	22.202	1.00 54.61	AAAA C
HCTA	4293 CB ASH	118	41.283	69.982	20.863	1.00 49.17	AAAA C
ATOH	4294 CG ASH	448	40.415	68.786	20.577	1.00 49.40	AAAA C
ATO!!	4295 OD1 ASN	448	39.287	68.977	20.113	1.00 52.34	AAAA O
ATOI:	4296 HD2 ASH	449	40.990	67.622	20.871	1.00 52.49	AAAA II
ATOH	4299 C ASN	116	39.514	70.824	32.402	1.00 56.44	AAAA C
ATOL	4300 0 ASN	118	38.916	59.974	22.939	1.00 55.83	AAAA O
ATOI:	4301 H THR	149	39.071	71.917	21.764	1.00 58.52	AAAA II
ATON	4303 CA THR	449	37.692	72.351	21.901	1.00 58.62	AAAA C
ATON	4304 TB THR	449	37.497	73.945	22.169	1.00 55.90	AAAA C
ATON	4305 031 THR	449	37.913	74.485	20.943	1.00 68.89	AAAA O
ATOLL	4307 093 THR	449	38.354	74.352	23.310	1.00 59.06	AAAA C
ATO!!	4309 Q: THR	110	36.920	72.053	20.628	1.00 56.82	AAAA C
ATOH	4309 O THR	119	35.750	72.381	20.473	1.00 60.87	AAAA O
ATOH	4310 H ARG	450	37.539	71.304	19.757	1.00 55.76	AAAA !!
ATOH	4312 CA ARG	450	36.827	70.935	18.507	1.00 54.56	AAAA C
ATOH:	4313 CB ARG	450	37.945	71.179	17.377	1.00 48.33	AAAA C
ATOH:	4314 CG ARG	450	38.395	69.975	16.645	1.00 54.81	AAAA C
ATOLL	4315 CD ARG	450	39.497	70.561	15.696	1.00 44.92	AAAA C
ATOH	4316 NE ARG	450	40.706	70.719	16.489	1.00 52.49	AAAA N
ATOH	4318 CD ARG	450	41.54;	69.757	16.882	1.00 39.09	AAAA C
HOTA	4319 NH1 ARG	450	41.176	68.572	16.466	1.00 41.07	AAAA H
HOTA	4322 HH2 ARG	450	42.601	70.001	17.610	1.00 45.18	AAAA N
HOTA	4325 C ARG	450	36.267	69.553	18.557	1.00 56.82	AAAA C
ATOH	4326 O ARG	450	35.186	69.303	17.992	1.00 58.15	AAAA O
ATOI1	4327 II ASH	451	36.800	68.583	19.324	1.00 56.66	H AAAA
ATOH	4329 CA ASH	451	36.107	67.311	19.434	1.00 50.27	AAAA C
ATOH	4330 CB ASH	451	36.725	66.127	18.760	1.00 48.54	AAAA C
ATOH	4331 CG ASH	151	38.243	66.143	18.764	1.00 60.51	AAAA C
ATOIL	4332 OD1 ASH	451	38.779	66.279		1.00 53.45	AAAA O
	4333 ND2 ASN	451	38.707		19.855		
ATOH				65.976	17.506	1.00 54.88	II AAAA
ATOH	1336 C ASII	451	35.849	66.854	20.869	1.00 52.97	AAAA C
ATOH	4337 O ASN	451	35.330	65.750	21.096	1.00 49.71	AAAA O
ATOH	4338 II ASII	452	36.126	67.668	21.851	1.00 51.98	II AAAA II
ATOM	4340 CA ASN	452	35.769	67.485	23.229	1.00 55.88	AAAA C
ATOH	4341 CB ASN	152	36.947	67.873	24.136	1.00 54.62	AAAA C
ATO:1	4342 CG ASH	152	37.936	66.736	24.285	1.00 60.96	AAAA C
ATO!1	4343 OD1 ASH	452	37.646	65.633	24.735	1.00 51.30	aaaa o
ATO14	4344 HD2 ASH	452	39.153	67.098	23.855	1.00 56.75	aaaa n
ATO:1	4347 C ASN	45 <i>2</i>	34.603	68.385	23.688	1.00 58.11	AAAA C
ATOM	4349 O ASN	452	34.785	69.629	23.657	1.00 55.07	AAAA O
ATOH	4349 H GLY	153	33.444	67.813	23.985	1.00 55.08	AAAA N
ATOM	4351 CA GLY	453	32.313	68.658	24.296	1.00 59.47	AAAA C
ATOH	4352 C GLY	453	31.500	69.269	23.174	1.00 64.95	AAAA C
ATON1	4353 O GLY	453	30.302	69.603	23.276	1.00 65.71	AAAA O
ATOH	4354 N GLU	454	31.910	69.109	21.910	1.00 67.44	AAAA N
ATOH	4356 CA GLU	154	31.266	69.543	20.690	1.00 63.63	AAAA C
ATOH	4357 CB GLU	154	31.739	68.818	19.401	1.00 53.71	AAAA C
ATOH	4358 CG GLU	454	32.348	67.430	19.738	1.00 49.50	AAAA C
HOTA	4359 CD GLU	454	32.348			1.00 49.50	AAAA C
ATOH	4360 OE1 GLU	454 454	32.368	66.620	18.454	0.01 54.10	AAAA O
				66.637	17.702		AAAA O
ATOH	4361 OE2 GLU	454	33.417	66.003	18.160	0.01 54.17	
ATOH	4362 C GLU	151	29.762	69.301	20.767	1.00 65.41	AAAA C

		C
ATM: 4363 0 GEC 454 ATM: 4364 0 ARG 455	29.022 70.089 20.169 1.00 67.86	AAAA O
ATC11 4366 CA ARG 455	29.298 68.187 21.333 1.00 66.45 27.943 67.997 21.371 1.00 69.33	AAAA C
ATOH 4368 CG ARG 455	27.448 66.733 20.652 1.00 73.38 28.467 65.912 19.924 1.00 74.27	AAAA C AAAA C
ATOH 4370 HE ARG 455	27.775 64.740 19.240 1.00 79.54 27.301 63.638 20.052 1.00 86.31	AAAA C AAAA N
ATOH 4372 CE ARG 455 ATOH 4373 HH1 ARG 455	27.802 62.412 20.189 1.00 88.60 28.890 61.997 19.538 1.00 84.51	AAAA C AAAA N
ATOH 4376 HH2 ARG 455 ATOH 4379 C ARG 455	27.225 61.523 21.003 1.00 87.36 27.213 67.934 22.756 1.00 67.35	AAAA N AAAA C
ATOH 4380 O ARG 455 ATOH 4381 H ALA 456	26.423 67.025 22.961 1.00 66.26 27.499 68.879 23.623 1.00 66.52	AAAA O
ATON 4383 CA ALA 456 ATON 4384 CB ALA 456	26.947 68.906 24.964 1.00 72.01 27.832 68.147 25.939 1.00 61.84	AAAA C
ATON 4385 C ALA 456 ATON 4386 O ALA 456	26.802 70.379 25.371 1.00 75.25 27.706 71.219 25.202 1.00 81.30	AAAA C
ATOH 4387 H SER 457 ATOH 4389 CA SER 457	25.653 70.720 25.939 0.50 71.91 25.431 72.095 26.358 0.50 69.64	AAAA O
ATOH 4390 CB SER 457 ATOH 4391 OG SER 457	23.991 72.247 26.836 0.50 73.30	AAAA C AAAA C
ATOH 4393 C SER 457 ATOH 4394 O SER 457	26.418 72.510 27.437 0.50 69.27	AAAA C
ATOH 4395 H CTS 458	27.197 73.531 27.117 0.50 70.44	AAAA O AAAA N
ATOH 4398 C CYS 458	28.287 73.960 27.972 0.50 72.57 27.949 75.205 28.757 0.50 72.54	AAAA C AAAA C
ATOH 4400 CB CYS 458	27.965 75.128 29.606 0.50 76.63 29.527 74.171 27.089 0.50 75.38	AAAA O AAAA C
ATOH 4401 SG CYS 458 ATOH 4402 H ALA 459	30.844 73.032 27.490 0.50 72.18 28.607 76.306 28.441 0.50 70.13	AAAA S AAAA N
ATOH 4404 CA ALA 459 ATOH 4405 CB ALA 459	28.445 77.572 29.116 0.50 70.05 27.046 78.149 28.996 0.50 70.57	AAAA C AAAA C
ATOH 4406 C ALA 459 ATOH 4407 O ALA 459	28.826 77.461 30.601 0.50 70.13 29.080 78.556 31.154 0.50 69.96	AAAA C AAAA O
ATCH 4407 OT ALA 459 ATCH 4522 C1 HAG 461	28.855 76.301 31.054 0.50 68.22 59.581 7.102 61.119 1.00 88.13	AAAA C
ATON 4824 C2 NAG 461 ATON 4826 N2 NAG 461	59.964 7.338 59.697 1.00 91.94 59.738 7.699 58.920 1.00 92.72	AAAA C II AAAA
ATOH 4829 07 HAG 461 ATOH 4829 07 HAG 461	58.400 9.020 58.999 1.00 96.97 58.879 9.774 59.726 1.00 98.62	AAAA C AAAA C
ATOH 4539 CS HAG 461 ATOH 4534 CS HAG 461	57.303 9.390 58.043 1.00100.60 60.725 6.225 59.085 1.00 94.77	AAAA C AAAA C
ATCH 4536 03 HAG 461 ATCH 4539 C4 HAG 461	61.417 6.725 57.930 1.00 98.51 61.873 5.869 60.064 1.00 96.01	AAAA O AAAA C
ATON 4540 04 MAG 461 ATON 4542 05 MAG 461	62.661 4.821 59.484 1.00 99.20 61.359 5.529 61.474 1.00 95.13	AAAA O AAAA C
ATOM 4545 OS MAG 461 ATOM 4548 OS MAG 461	62.465	AAAA C
ATON 4844 05 NAG 461 ATON 4850 TI NAG 463	60.625 6.648 61.949 1.00 91.92 33.954 15.249 72.938 1.00 43.58	AAAA 0 AAAA 0
ATON 4552 CC NAG 463 ATON 4554 NC NAG 463	31.644 15.292 73.412 1.00 43.62	AAAA C AAAA C
ATOH 4556 07 HAG 463 ATOH 4557 07 HAG 463	29.912 13.584 73.099 1.00 40.84	AAAA N
ATOH 4558 CB HAG 463 ATOH 4562 C3 HAG 463	28.975 12.694 72.394 1.00 35.47	AAAA O AAAA C
ATOM 4564 03 MAG 463 ATOM 4566 C4 MAG 463	29.979 16.555 74.196 1.00 45.99	AAAA C AAAA O
ATON 4568 O4 HAG 463 ATON 4569 C5 NAG 463	31.596 18.919 73.891 1.00 53.97	АААА С АААА О
ATOH 4572 05 HAG 463	33.589 17.477 73.725 1.00 48.50 34.490 17.996 74.742 1.00 49.34	AAAA C AAAA C
ATOH 4571 05 NAG 463	34.906 18.739 75.671 1.00 57.11 33.942 16.120 73.583 1.00 48.58	AAAA O AAAA O
ATOH 4578 C2 FUC 464	34.544 19.954 76.083 1.00 81.45 35.179 21.173 75.463 1.00 86.35	AAAA C AAAA C
ATOH 4582 C3 FUC 464	35.153 21.169 74.021 1.00 92.94 34.252 22.284 75.945 1.00 86.79	AAAA O AAAA C
ATOH 4584 03 FUC 464 ATOH 4586 C4 FUC 464	34.691 23.613 75.596 1.00 87.83 33.871 22.274 77.412 1.00 86.67	AAAA C
ATOH 4588 OF FUC 464 ATOH 4590 C5 FUC 464	34.598 23.297 78.115 1.00 87.06 33.921 20.894 78.040 1.00 85.85	AAAA O AAAA C
ATOH 4593 C6 FUC 464 ATOH 4592 C5 FUC 464	34.279 20.768 79.512 1.00 83.37 35.042 20.150 77.425 1.00 82.43	AAAA C AAAA O
ATOH 4597 C1 HAG 465 ATOH 4599 C2 HAG 465	31.575 19.813 74.949 1.00 64.68 31.267 21.207 74.437 1.00 69.57	AAAA C
ATOH 4601 H2 NAG 465 ATOH 4603 C7 NAG 465	32.480 21.642 73.690 1.00 71.25 32.401 21.953 72.381 1.00 73.86	AAAA H AAAA C
ATOM 4604 O7 NAG 465 ATOM 4605 C9 NAG 465	31.373 21.835 71.881 1.00 74.80 33.679 22.401 71.787 1.00 76.00	AAAA O AAAA C
ATON 4609 C3 NAG 465 ATON 4611 O3 NAG 465	31.050 22.214 75.546 1.00 72.71 30.713 23.517 75.108 1.00 71.03	AAAA C AAAA O
ATON 4613 C4 NAG 465 ATON 4615 O4 NAG 465	30.035 21.654 76.560 1.00 75.71 29.993 22.409 77.793 1.00 76.79	AAAA C AAAA O
ATON 4617 C5 HAG 465 ATON 4620 C6 HAG 465	30.498 20.238 76.977 1.00 75.45 29.461 19.647 77.930 1.00 75.64	AAAA C

4533 AT 41 16 11763 1.00 76.25 465 28.385 19.238 77.142 AAAA O 4619 30.514 ATTE 05 UAG 465 1.00 71.43 19.425 75.807 AAAA o ATON 4625 49.927 C1HAG 467 11.058 87.926 1.00 96.51 AAAA C 462 ATOR HAG 167 50.538 89.100 1.00 99.92 11.751 AAAA c 4609 112 ATOH HAG 467 49.662 1.00101.79 12.898 89.458 AAAA N HOTA 4631 C7 HAG 467 49.299 1.00103.63 13.021 90.759 AAAA C HOTA 4632 07 HAG 467 49.541 12.267 91.586 1.00105.48 AAAA O ATOH 4633 C8 HAG 467 48.526 14.239 91.102 1.00105.02 AAAA C 4637 **ATOL** HAG 467 51.967 12.134. 88.802 1.00101.03 AAAA C 4639 03 HAG 467 52.535 12.761 **ATOH** 89.949 1,00100.89 AAAA 0 4541 HAG 467 10.771 C4 52,643 ATOL 88.506 1.00101.15 AAAA 4543 HAG 04 467 ATO: 54.967 10.834 88.441 1.00101.35 AAAA O 4545 UAG **C5** 467 ATO!! 52.039 10.160 87.218 1.00100.16 AAAA Ç 4618 HOTA 26 HAG 467 52.746 8.852 86.934 1.00 99.75 AAAA C 4651 06 MAG 467 52.088 7.704 87.302 1.00101.54 ATOH AAAA O 50.671 ATO: 4647 05 HAG 467 9.918 87.503 1.00 98.59 AAAA O 4653 IIAG 469 ATO!! Cl 55.375 46.143 1.00 48.45 66.863 AAAA C 4655 469 46.993 ATOIL HAG 56.601 66.861 1.00 50.42 аааа с 57.106 4657 HAG 469 47.015 ATO!! 65.451 1.00 51.50 II AAAA 11 HOTA 4659 C7 HAG 469 57.235 48.143 64.746 1.00 48.88 AAAA C 4660 07 HAG 469 ATOH: 56.849 49.101 65.234 1.00 55.62 AAAA O 4661 C8 HOTA HAG 469 57.838 48.134 63.394 1.00 43.70 AAAA C ATO!! 4665 C3MAG 469 57.608 46.491 67.844 1.00 49.62 AAAA C ATOH 4667 03 HAG 469 58.640 47.461 68.031 1.00 47.76 AAAA O HOTA 4669 C4 HAG 469 56.843 46.263 69.172 AAAA C 1.00 48.47 ATCH 4571 04 NAG 469 57.826 45,800 70.134 1.00 50.06 AAAA O NOTA 4672 **C5** HAG 469 55.847 68.959 AAAA C 45.130 1.00 50.81 4675 55.190 ATOH **C6** NAG 469 44.720 70.239 1.00 53.92 AAAA C 4678 06 HAG **ATOH** 469 54.829 45.551 71.193 1.00 56.25 AAAA O ATO!! 4674 05 HAG 469 54.914 45.599 68.043 1.00 55.45 AAAA O 4579 11OTA Cl FUC 470 53.830 46.395 71.203 1.00 61.17 AAAA C ATOH 4581 C2 EUC 470 53.642 47.121 72.534 1.00 59.23 AAAA C 4692 02 FUC 470 ATOH 54.861 46.876 73.241 1.00 55.14 AAAA O FUC 470 ATO:: 4685 C3 53.421 49.429 71.757 1.00 58.39 AAAA 4587 ATOH C3 FUC 470 53.381 49.515 72.637 1.00 56.30 AAAA O ATOI: 4589 04 FUC 470 52.245 48.255 70.809 1.00 61.24 AAAA ATOH 4691 FUT 470 C: 1.00 63.74 51.061 47.904 71.544 AAAA 0 ATOH 4633 75 FUC 470 52,455 47.086 69.828 1.00 62.20 AAAA 4535 25 FUC ATC! 470 51.462 46.723 68.784 1.00 59.15 AAAA 4695 4700 4700 470 ATCL: 05 FUC 52.567 45.889 70.781 1.00 64.68 AAAA 471 ATOM C1DAG 58.034 46.760 71.149 1.00 37.00 AAAA ATOM HAG 471 58.977 72.186 45.225 1.00 40.30 AAAA 4704 ATOH HAG 471 58.958 44.787 72.509 1.00 36.82 ججهم 4706 4707 ATOU HAG 471 57.956 44.183 72.903 1.00 44.21 AAAA HAG 471 ATO: 56.892 44.744 72.885 1.00 51.50 AAAA O 4−6e C9 471 ATO!! HAG 58.202 42.814 73.323 1.00 46.02 AAAA C 4714 4716 4718 :71 ATOH €3 HAG 58,901 47.250 73.291 1.00 34.50 aaaa 03 HAG 471 ATO!: 59.598 45.917 74.385 1.00 35.84 يمممم 0 C4 471 ATOI: HAG 59.645 43.488 72.694 1.00 38.52 AAAA 04 471 ATOH: HAG 59.754 49.464 73.694 1.00 37.44 AAAA O 4719 4722 171 1:2.3 ATOH! 59.056 48.958 71.332 1.00 36.94 AAAA NOTA ಂತ HAG 471 60.116 49.692 70.525 1.00 36.14 AAAA ATOH 4725 05 HAG 471 61.106 50.390 71.080 1.00 43.49 AAAA O HOTA 4721 05 NAG 471 58.953 47.785 70.530 1.00 34.98 AAAA O 4727 HOTA Cl HAH 472 61.035 49.984 73.959 1.00 53.37 AAAA C 4729 HOTA C2 HAII 472 60.920 51.497 74,260 AAAA C 1.00 56.72 4730 02 HAH **HOTA** 472 59.924 51.584 75.272 1.00 62.11 AAAA O ATOH! 4733 C3 HAH 472 62.216 52.031 74.840 1.00 60.70 AAAA C MAN **ATOH** 4735 03 172 62.028 53.337 75.383 1.00 60.70 AAAA O HAH HOTA 4736 C4472 62.787 51.161 75.932 1.00 55.46 AAAA ATOH 4739 04 MAH 472 64.085 51.595 76.171 1.00 57.16 AAAA O HOTA 1740 C5 HAH 472 62.797 49.685 75.511 1.00 52.10 AAAA C ATO!! 4743 C5 MAN 472 63.458 48.905 76.595 1,00 50.32 BAAA C 4746 ATOL HAN 472 62.990 48.969 77.885 1.00 51.02 AAAA O HOTA 4742 05 HAH 472 61.443 49.407 1.00 53.33 75,200 AAAA C HOTA 4748 Cl MAN 473 62.594 54.401 74.672 1.00 72.61 AAAA C ATOH 4750 C2 HAH 473 62.417 55.679 75.569 1.00 75.28 AAAA C 4751 HOTA 02 MAN 473 63.378 56.709 75.348 1.00 74.98 AAAA C HOTA 1751 C3MAIL 473 60.977 56.163 75.493 1.00 78.65 AAAA C HOTA 4756 03 MAN 473 60.841 57.447 76.148 1.00 79.16 AAAA O ATOM 4758 C4MAN 473 60.344 56.204 74.114 1.00 78.70 AAAA C HOTA 4750 04 MAII 473 58.983 56.571 74.178 1.00 78.93 AAAA O HOTA 4762 C5 HAH 473 60.499 54.902 73.474 1.00 76.89 AAAA **HOTA** 4765 **C6** HAN 473 59.968 72.091 1.00 74.73 AAAA C 54.490 473 ATO! 4768 HAN 60.239 55.469 71.138 1.00 71.39 AAAA O HOTA 1761 05 HAN 473 61.916 54.562 73.463 1.00 74.97 AAAA O **ATOM** 4408 CB ALA 479 42.462 74.494 16.374 1.00 82.09 8888 4409 ALA 479 ATOH: C 40.017 74.702 17.001 1.00 91.42 BBBB C ATOM 4410 O ALA 179 40.393 75.108 18.103 1.00 96.11 BBBB O HOTA 4413 11 ALA 479 40.696 74.461 14.624 1.00 88.43 BBBB N ATOH 4415 CA ALA 479 41.033 74.108 16.033 1.00 88.85 8888 C **ATON** 4416 11 ALA 480 38.749 74.752 16.610 1.00 92.12 BBBB N **HOTA** 4418 CA ALA 480 37.684 75.264 17.467 1.00 91.28 **BBBB** € CB ALA 37.925 ATOH 180 4419 76.731 17.769 1.00 86.84 **BBBB** C ALA 180 ATOU 4420 36.306 75.030 15.849 1.00 91.39 ввве €

							1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -
AT: 41			35.413				2288 O
ATON ATON	L 4424 (A 350	481	36.135 34.832	75.304 75.164			8868 C 9668 II
ATOR ATOR			34.471 34.277	76.492 77.627	14.224	0.01 92.74	BBBB C
ATOH	4407 CD GLH	481	34.067	79.003	14.626	1.00103.59	8888 C 8888 C
ATOH ATOH	4429 NE2 GLN	481	35.011 32.792	79.777 79.328			8888 O 8888 H
ATOH ATOH			34.755 33.736	73.947 73.508			BBBB C BBBB O
ATOR: ATORI			35.849 35.982	73.188 71.990	13.908	1.00 82.85	BBBB II
ATOH	4437 CB LYS	482	37.377	71.930	12.480	1.00 73.13	8888 C 8888 C
ATOH ATOH		482 402	38.287 39.413	73.128 72.968			8888 C
ATOH ATOH		482 482	39.985 41.252	74.310 74.136	11.027 10.262	0.01 76.66	BBBB C
ATOH	4445 C LYS	482	35.779	70.701	13.872	1.00 67.70	8888 C
ATOH ATOH	4446 O LYS 4447 II LEU	482 483	35.879 35.530	70.744 69.585	15.092 13.199		BBBB O BBBB N
HOTA	4449 CA LEU 4450 CB LEU	483 483	35.193 34.256	68.356 67.529	13.896 13.039		BBBB C BBBB C
ATOH	4451 CG LEU	483	32.779	67.860	12.875	1.00 61.94	BBBB C
ATOH ATOH	4453 CD2 LEU 4453 CD2 LEU	483 483	32.405 32.433	69.154 67.707	13.595 11.385	1.00 44.78 1.00 44.63	8888 C
ATOH ATOH	4454 C LEU 4455 O LEU	483 483	36.421 36.465	67.509 66.709	14.229 15.165	1.00 59.73 1.00 57.22	BBBB C BBBB O
ATOH ATOH	4456 H ILE 4459 CA ILE	484	37.345	67.543	13.262	1.00 56.21	BBBB N
ATOH	4459 CB ILE	484 494	38.597 38.480	66.822 65.390	13.367 12.870	1.00 52.58 1.00 50.27	BBBB C BBBB C
ATOH ATOH	4460 CG2 ILE 4461 CG1 ILE	484 484	37.769 39.870	65.319 64.766	11.524 12.756	1.00 44.85 1.00 39.78	8888 C 8888 C
ATOH ATOH	4462 CD1 ILE 4463 Q ILE	184 494	39.888 39.623	63.291	12.404	1.00 30.43	BB89 C
ATOR:	4464 O ILE	484	39.158	67.645 68.568	12.608 11.942	1.00 53.49 1.00 48.33	2883 C 2823 O
ATON ATON	4465 N SER 4467 CA SER	195 185	40.911 41.898	67.499 69.335	12.887 12.209	1.00 50.85 1.00 49.78	2883 N 2883 C
ATON ATON	4469 CB SER 4469 OG SER	495 485	41.969 43.190	69.753 70.035	12.747 13.376	1.00 46.06 1.00 63.03	3892 C
ATOM	4471 T SER	495	43.294	67.711	12.240	1.00 50.57	2882 C 9882 C
ATOH ATOH	4472 O SER 4473 H SLU	485 486	43.510 44.246	66.601 68.389	12.740 11.604	1.00 46.55 1.00 52.16	2883 O 2283 ::
ATOH ATOH	4475 CA GLU 4476 CB GLU	139 189	45.624 46.547	67.974 69.683	11.509 10.598	1.00 59.12 1.00 59.71	8888 C 8888 C
HOTA HOTA	4477 OG GLU 4479 CD 310	:36 :36	46.221	70.162	10.568	1.00 76.75	3352 C
ATON	4479 OE1 GLU	166	47.370 48.315	71.045 70.404	10.983	1.00 80.53 1.00 91.67	3328 C
ATOH ATOH	4480 OE2 GLU 4481 C GLU	189 189	47.480 46.272	72.289 67.773	10.997 12.895	1.00 86.00 1.00 56.50	3888 0 2232 C
ATOH HOTA	4492 0 GLU 4493 N GLU	486 497	46.768 45.955	66.747 68.738	13.326	1.00 49.83	2323 O
ATOH MOTA	4495 CA GLU	497	46.129	68.736	15.169	1.00 59.36	3382 N 3882 C
ATOH	4496 CB GLU 4497 CG GLU	497 487	45.303 45.645	69.887 70.232	15.729 17.159	1.00 61.32 1.00 79.21	8382 C 8888 C
ATOH ATOH	4488 CD GLU 4489 OE1 GLU	487 497	46.397 45.768	71.545 72.610	17.177 17.320	1.00 86.09 1.00 92.00	3883 C 8888 O
HOTA	4490 OE2 GLU 4491 C GLU	4 8 7 4 8 7	47.637	71.452	17.026	1.00 96.51	3883 O
ATOH:	4492 O GLU	487	45.735 46.421	67.436 67.018	15.841 16.761	1.00 58.84 1.00 61.93	8888 C 8888 O
ATOH ATOH	4493 II ASP 4495 CA ASP	498 498	44.748 44.446	66.661 65.347	15.474 15.932	1.00 56.50 1.00 55.61	9888 C
ATOH	4496 CB ASP 4497 CG ASP	498 488	42.947 42.047	64.977 66.008	15.699 16.267	1.00 51.22 1.00 45.27	8888 C 6888 C
HOTA	4498 OD1 ASP - 4499 OD2 ASP		42.114	66.563	17.387	1.00 56.45	8888 C
ATOH	4500 C ASP	488	41.154 45.206	66.399 64.211	15.492 15.238	1.00 55.11 1.00 58.91	8888 C
ATOH ATOH	4501 O ASP 4502 II LEU	488 489		63.042 64.513	15.634 14.163	1.00 57.00 1.00 57.39	9888 O 9888 N
ATOM ATOM	4504 CA LEU 4505 CB LEU	489 489	46.659	63.426 63.677	13.528	1.00 64.93	BBBB C
ATOH	4506 CG LEU	489	45.746	62.788	12.024	1.00 62.69	8888 C 9888 C
ATOH	4508 CD2 LEU	489 489	46.072	63.243 62.967	11.514 9.766	1.00 51.88 1.00 55.20	8888 C
ATOH ATOH	4509 C LEU 4510 O LEU	189 139		63.355 62.560	14.219 13.838	1.00 68.12	3888 C 8888 O
ATOH ATOH	4511 II ASH 4513 CA ASN	490 490	48.306	64.318	15.063	1.00 68.24	9888 N
ATOH	4514 CB ASN	490	49.734	65.910	15.855 16.187	1.00 75.04 1.00 84.46	8888 C
ATOM ATOM	4515 CG ASN 4516 OD1 ASN	490 490			16.589 16.178	1.00 98.83 1.00 97.25	8888 C 8888 O
ATOM ATOM	4517 HD2 ASN 4520 C ASN	490 490	51.459	57.128	17.407	1.00100.47	9B88 11
ATOH	4521 O ASN	490	49.891	52.484	17.264	1.00 80.30 1.00 80.97	8888 C
HOTA HOTA	4521 OT ASH 4770 S SUL	490 493				1.00 89.51 1.00108.87	BBBB C DDDD S

--

Africa 4 111		493 38.45	2 -7.921	56.345	1.00112.65	0 0000
ATOR 4072 ATOR 4073		493 37.61 493 36.53	-7.873		1.00110.21	0 0000
ATOR: 4774	04 301	493 36.33	3 -9.978	65.639	1.00109.93	DDDD O
ATOH 4775 ATOH 4776		494 56.56 ¹ 494 56.59 ¹		66.302 67.659	1.00109.81	DDDD S
ATOH 4777	O2 SUL	494 57.96	20.027		1.00107.98	DDDD O
ATOH 4778 4779 ATOH		494 55.749 494 55.886		66.267 65.379	1.00111.35	DDDD O
ATOH 4780	S SUL	495 34.53	11.240		1.00109.88	DDDD O DDDD S
ATOH 4781 4781 4782	O1 SUL O2 SUL	495 35.274 495 35.476			1.00111.38	DDDD O
ATOH 4793	03 SUL	495 33.55	11.860		1.00113.60 1.00112.77	DDDD O
ATOH 4784 ATOH 4788	2 SAT 01 SAT	495 33.773 496 35.466			1.00113.18	DDDD O
ATOH 4786	Ol SUL	496 35.613	24.843		1.00 50.73 1.00 62.59	DDDD S DDDD O
ATOH 4787 ATOH 4788	O2 SUL O3 SUL	496 36.002 496 35.880			1.00 48.59	DDDD O
ATOH 4799	O4 SUL	496 33.958	24.953		1.00 56.74 1.00 59.34	DDDD O
ATOH 4790 ATOH 4791	S SUL Ol SUL	497 47.653 497 47.849			1.00 68.98	DDDD S
ATON: 4792	O2 SUL	497 48.594	-2.509		1.00 68.5 <i>2</i> 1.00 70.94	DDDD O
ATOH 4793 ATOH 4791	O3 SUL O4 SUL	497 46.187 497 47.799	-2.393 -3.446		1.00 73.47	DDDD O
ATOH: 4795	S SUL	498 56.527	35.758	75.513 1	l.00 71.33 l.00 71.48	DDDD O DDDD S
ATOH 4796 ATOH 4797	Ol SUL O2 SUL	498 55.870 498 57.759	35.013 34.996		1.00 72.97	DDDD O
ATOH 4799	C3 SUL	498 56.619	37.237	_	1.00 69.11 00 72.45	O CODO
ATOH 4799 ATOH 4800	O4 SUL S SUL	498 55.623 499 40.639	35.809 27.365	74.330 1	00 72.74	DDDD O
ATOH 4801	Ol SUL	499 40.218	26.039		.00 76.00	DDDD S DDDD O
ATOH 4802 ATOH 4803	O2 SUL O3 SUL	499 42.089 499 39.823	27.608 28.467		.00 75.15 .00 77.27	DDDD O
ATOH 4804 ATOH 4805	O4 SUL	499 40.424	27.245	68.018 1	.00 75.70	DDDD O
ATOH 4905 ATOH 4906	S SUL C1 SUL	500 44.996 500 45.080	53.229 54.400		.00 83.89 .00 84.79	DDDD S DDDD O
ATON 4867 ATON 4818	02 SUL 03 SUL	500 46.109	52.266	20.827 1	.00 90.38	O QCQQ
ATON 4803		500 45.032 500 43.762	53.674 52.396		.00 92.23 .00 91.61	0 0000 0 0000
ATOM 4910 ATOM 4913		501 29.970 502 42.522		77.713 1	.00 34.34	DDDD O
ATON 4818	OW WAT	503 37.561			.00 55.27 .00 41.63	DDDD O
ATOH 4919 ATOH 4922		504 50.446 505 56.668		63.485 1	.00 57.37	DDDD O
ATOM 4825	OW NAT	506 50.605			.00 57.34 .00 54.26	O DDDD O DGDQ
ATOH 4828 ATOH 4831		507 55.123 508 17.414			.00 43.71 .00 48.79	DDDD O
ATON 4934 ATON 4837		509 44.263	20.995	63.811 1.	.00 29.64	0 2200
ATON 4841		510 45.085 511 33.537			.00 49.09 .00 60.39	0 0000 0 0000
ATOH 4943 ATOH 4946		19.279	4.803	75.254 1.	.00 55.23	C DCGG
ATON 4849	OW WAT 5	514 24.591			.00 57.51 .00 56.36	0 0000
and the second s		515 56.947 516 58.092		62.552 1.	00 36.47	DDDD O
ATOI1 4858	OW WAT 5	48.308			00 30.34 00 81.69	DDDD O
		518 25.776 519 30.644			00 66.34 00 82.28	DDDD O
ATOH 4867	OW WAT 5	38.739	54.257		00 43.41	DDDD O
		22.886 22 30.938			00 48.71 00 54.00	DDDD O
	OW WAT 5	23 32.413	9.061 4	2.441 1.	00 44.45.	DDDD O
ATOH 4882 (OW WAT 5	24 41.019 25 54.268			00 43.40 00 55.10	O GGGG
		26 37.130 27 42.585	13.599 8	31.397 1.	00 46.49	DDDD O
ATOH 4891 (OW WAT 5	28 43.661			00 35.95 00 41.05	DDDD O
					00 54.59 00 37.96	DDDD O
ATOH 4900 C	OW WAT 5	31 22.451	1.046 5	7.437 1.6	00 59.31	DDDD O
ATOM 4906 C					00 40.39 00 52.34	DDDD O
	OW WAT 5:	34 39.446	49.001 4	5.379 1.0	00 46.05	DDDD O
ATOM 4915 C	OW WAT 5	36 44.263			00 52.62 00 40.61	DDDD O DDDD O
		37 33.670	59.861 2	0.848 1.0	00 51.56	DDDD O
ATOM 4924 O	W WAT 5	39 49.985			00 61.98 00 45.45	DDDD O
	DW WAT 54	10 24.074	-1.791 60	0.077 1.0	0 40.40	DDDD O
ATOH 4933 O	W WAT 54	12 31.231			00 51.34 00 48.33	DDDD O
	W WAT 54	13 41.726 -	-5.156 55	5.290 1.0	0 60.67	DDDD O
ATOM 4942 O	W WAT 54	5 49.501	10.030 67	7.582 1.0	00 71.69 00 44.88	DDDD O
ATON 4945 O	M MAT 21	6 54.851	7.987 60	0.018 1.0	0 49.91	DDDD O

ATCH 4948 OW WAT 547 39.459 -14.058 70.554 1.00 84.42 DDDD O ATCH 4951 OW WAT 548 57.310 32.779 60.848 1.00 50.77 DDDD O END

Figure 2

Figure 3

Figure 4

Figure 6

(a) SDS PAGE

(b) IEF pH3-7

T" 13

Figure 10

Elgure 12

Figure 13: Sequence Alignment of hIGF-1R, hIR and hIRR ectodomains.

Derived by use of the PileUp program in the software package of the Genetics Computer Group, 575 Science Drive, Madison, Wisconsin, USA.

Symbol Comparison table: GenRunData:PileUpPep.Cmp CompCheCk: 1254

GapWeight: 3.0 GapLengthWeight: 0.1

Name: Name: Name:		Len: Len: Len:	972 Che	Ck: 1781 Ck: 2986 Ck: 9819	Weight: Weight: Weight:	1.00 1.00 1.00	
	ı.						
Higflr Hir Hirr	HLYPGEVC. P	GIDIRNDYQQ GMDIRN <u>NLT</u> R SLDIRSEVAE	LHELENCSV:	I EGHLQIL	LMF KTRPE	DFRDL 4	9
Higflr Hir Hirr	RFPKLTVITE SFPKLIMITD SFPRLTQVTD	YLLLFRVAGL YLLLFRVYGL YLLLFRVYGL	ESLKDLFPNI	<u>T</u> VIRGSRI	LFF NYALV	IFEMV 99	9
Hir	NLKDIGLYNL HLKELGLYNL HLRDVALPAL	M <u>NIT</u> RGSVRI	EKNNEL CYLA	A TIDWSRII	LDS VEDNY	IVLNK 14	19
	* *		*	*	* *	*	
Higflr Hir Hirr		PGTMEEKPM. PGTAKGKTN. PGVLGAAGEP	CPATVINGQE	VERCWTHS	SHC OKVCP	ri <i>c</i> ks 19	8 8
	* **	* *	* *	•	* *		
Higflr Hir Hirr	ra <i>c</i> tenne <i>cc</i> hg <i>c</i> taegl <i>cc</i> ma <i>c</i> targe <i>cc</i>	HPECLGSCSA HSECLG <u>NCSQ</u> HTECLGGCSQ	PDDPTKCVAC	RNFYLDGE	CV ETCPP	PYYHF 24	18
	*	* *	*	*	*		
Higflr Hir Hirr	QDWRCV <u>NFS</u> F	CANILSAES. CQDLHHKCKN CASLHSVPG.	SRRQGCHQYV	IHNNK CI F	PEC PSGYTI	<u>INSS</u> N 29	8
	* *	* *		*			
Higflr Hir Hirr	.LLCTPCLGP	CPKVCEEEKK CPKVCHLLEG CPKECKVG	EKTIDSVTSA	QELRGCTV	'I <u>N GS</u> LIIN	NIRGG 34	.7
Higflr Hir Hirr		LGLIEEISGY	LKIRRSYALV	SLSFFRKL	RL IRGETI	EIGN 3	87 97 85
Hir	YSFYVLDNON YSFYALDNON YTLYVLDNON	LRQLWDWSKH	NLTITQGKLF	FHYNPKLC	LS EIHKME	EEVSG 4	37 47 35
Higflr Hir Hirr	TKGRQSKGDI TKGRQERNDI TRGRQNKAEI	ALKTNGDQAS	CESDV LHF	SY IRTSFD	RIII TWHE	YWPPDF	487 497 485

			*			•	=
Hiaflr	RDLISFTVYY	KEAPEKNUTE	VDCODA CESN	CWMMWDI.D	DNKDU	532	
	RDLLGFMLFY						
Uirr	RDLLSFIVYY	KECDEOMATE	TOO DO COON	CMMILL DATE D	יולפעז ברעפלוו	530	
HIII	KULLSFIVII	RESPRONALE	HVGPDACGTQ	2MMPTDA EPIA	LSKIQ	230	
			•				
Higflr	EPGILLHGLK	PWTQYAVYVK	AVTLTMVEND	HIRGAKSEIL	YIRT <u>NAS</u> VPS	582	
Hir	HPGWLMRGLK	PWTQYAIFVK	TL.VTFSDER	RTYGAKSDII	YVQTDATNPS	596	
Hirr	EPGVTLASLK	PWTQYAVFVR	AITLTTEEDS	PHQGAQSPIV	YLRTLPAAPT	580	
Higf1r	IPLDVLSAS <u>N</u>	SSSOLIVKWN	PPSLPNGNLS	YYIVRWOROP	ODGYLYRHNY	632	
Hir	VPLDPISVSN	SSSOIILKWK	PPSDPNGNIT	HYLVEWEROA	EDSELFELDY	646	
	VPQDVISTSN						
	•				_		
*** €1	*	WWA DOMEDED		~~~~~~	* DVMD. 0	630	
Higiir	CSKD.KIPIR	KYADGTIDLE	EVTENPETEV	CGGERGPCCA	CPKTEAE	6/8	
	<i>C</i> LKGLKLPSR						
Hirr	CHRGLRLPTS	N.NDPRFDGE	DGDPEAEME.	SDCCP	COHPPPGQVL	673	
				><β		500	
HIGITL	KQAEKEEAEY	KKVFENFLHN	SIFVPRPERK	KKDVMQVANT	TMSSKSKNTT	728	
	ILKELEESSF						
Hirr	PPLEAQEASF	QKKFENFLHN	AITIPISPWK	VTSI <u>NKS</u> PQR	D.SGRHRRAA	722	
	•				*		
Higf1r	AADTYNIT	DPEELETEYP	FFESRVDNKE	RTVISNLRPF	TLYRIDIHSC	776	
Hir	AAFP <u>NTS</u> STS	VPTSPEEHRP	F EKVVNKE	SLVISGLRHF	TGYRIELOAC	786	
	GPLRLGGNSS						
		- -					
	*					006	
	NHEAEKLGCS						
	NODTPEERCS						
Hirr	NHAAHTVG C S	AATFVFARTM	PHREADGIPG	KVAWEASSKN	SVLLRWLEPP	814	
			*	*			
Higf1r	NPNGLILMYE	IKYGS.QVED	QRECVSRQEY	RKYGGAKLNR	LNPG <u>NYT</u> ARI	875	
	EPNGLIVLYE						
	DPNGLILKYE						
***E* -	OTHER CONCE	WIEDDURES OF	\$ 1/m/c3/=>1===	T		906	
	QATSLSG <u>NGS</u>					917	
	RATSLAGNGS					91 <i>7</i> 895	
Hirr	RATSLAG <u>NGS</u>	WIDSVAFYIL	GPEEEDAGGE	n		כעס	

;

.

Figure 14: Sequence Alignment of EGFR, ErbB2, ErbB3 and ErbB4 Ectodomains.

[For alignment on the IGF-1R fragment see Fig. 9]

Derived by use of the PileUp program in the software package of the Genetics Computer Group, 575 Science Drive, Madison, Wisconsin, USA.

Symbol comparison table: GenRunData:Pileuppep.Cmp CompCheck: 1254

GapWeight: 3.000 GapLengthWeight: 0.100

	Oup.		c. 0.100		
Name Name	: Erb3 : Erb4	Len Len		eck: 4625 eck: 790	Weight: 1.00 Weight: 1.00
Name	_	Len		eck: 2381	Weight: 1.00
Name	: Erb2	Len	: 649 Ch	eck: 8174	Weight: 1.00
	1				50
Erb3	SEVGNSQAVC	PGTLNGLSVT	GDAENQYQTL	YKLYERCEVV	MGNLEIVLTG
Erb4 Egfr	SDSQSVC	AGTENKLSSL	SDLEQQYRAL GTFFDHFLSI	RKYYENCEVV	MGNLEITSIE LGNLEITYVQ
Erb2	STQVC		ASPETHLDML	RHLYQGCQVV	QGNLELTYLP
	51				100
Erb3	HNADLSFLQW	IREVTGYVLV	AMNEFSTLPL	PNLRVVRGTC	VYDGKFAIFV
Erb4	HNRDLSFLRS		ALNQFRYLPL	ENLRIIRGTK	LYEDRYALAI
Egfr Erb2	RNYDLSFLKT	IQEVAGYVLI			YYENSYALAV LFEDNYALAV
ELDZ		1024501491	1111110 4110 411	2000000	
F	101 MI 2701	mniccua	T DOT DI WOLT	PILECCIVIE	150 KNDKLCHMDT
Erb3 Erb4	MLNYN FLNYR	KDGNFG	LOELGLKNLT	EILNGGVYVD	QNKFLCYADT
Egfr	LSNYD	ANKT.G	LKELPMRNLQ	EILHGAVRFS	NNPALCNVES
Erb2	LDNGDPLNNT	TPVTGASPGG	LRELQLRSLT	EILKGGVLIQ	RNPQLCYQDT
	151				200
Erb3	IDWRDIVRDR	DAEIVVK	DNGRSCPPCH	EVC.KGRCWG	PGSEDCQTLT PTENHCQTLT
Erb4 Egfr	INWQDIVRNP	FLSNMSMDFO	NGSSGCGRCH	PSCPNGSCWG	AGEENCOKLT
Erb2		NQLALTLIDT	NRSRACHPCS	PMCKGSRCWG	ESSEDCOSLT
	201				250
Erb3	KTICAPQCNG	HCFGPNPNQC		GPQDTDCFAC	
Erb4		RCYGPYVSDC		GPKDTDCFAC	
Egfr Erb2	RTVCAGGC A	RCRGKSPSDC RCKGPI.PTDC	CHECCAAGCT	GPRESDCLVC GPKHSDCLAC	RKFRDEATCK LHFNHSGICE
ELDZ	KI VCAGGE	Memor Br 150	0	01.0.0	
Enh 3	251	KLTFQLEPNP	ひかとくくく	VASCPHNFVV	300 DOTSCVRAC
Erb3 Erb4		PTTFQLEHNF	NAKYTYGAFO		T
Egfr	DTCPPLMLYN	PTTYQMDVNP	EGKYSFGATC		
Erb2	LHCPALVTYN	TOTFESMPNP	EGRYTFGASC	VTACPYNYLS	TDVGSCTLVC
	301				350
Erb3	PPDKMEV.DK	NGLKMCEPCG NGIKMCKPCT	GLCPKACEGT		VDSSNIDGFV VDSSNIDKFI
Erb4 Egfr	PSSKMEV.EE GADSYEM.EE	DGVRKCKKCE	GPCRKVCNGI	GIGEFKDSLS	INATNIKHFK
Erb2	PLHNQEVTAE	DGTQRCEKCS	KPCARVCYGL	GMEHLREVRA	. VTSANIQEFA
	351				400
Erb3	NCTKILGNLD	FLITGLNGDP	WHKIPALDPE	KLNVFRTVRE	ITGYLNIQSW
Erb4	NCTKINGNLI	FLVTGIHGDP	YNAIEAIDPE	KLNVFRTVRE	ITGFLNIQSW
Egfr Erb2	NCTSISGDLH GCKKIFGSLA	FLPESFDGDP	ASNTAPLOPE	OLOVFETLEE	ITGFLLIQAW ITGYLYISAW
2222				 -	
Erb3	401	SMILTTIGGES	LVNRGESLLT	MKNLNVTSLG	450 FRSLKEISAG
Erb3	PPNMTDFSVF	SNLVTIGGRV	LYS.GLSLLI	LKQQGITSLQ	FQSLKEISAG

					:
Eg: Erl	fr PENRTDLHAF b2 PDSLPDLSVF	ENLEIIRGRT QNLQVIRGRI	KQHGQFSLAV LHNGAYSL.T	VS.LNITSLG LOGLGISWLG	LRSLKEISDG LRSLRELGSG
Erl Erl Egi Erl	451 53 RIYISANRQL 54 NIYITDNSNL Er DVIISGNKNL	CYHHSLNWTK CYYHTINWTT CYANTINWKK	VLRGPTEERL LF.STINQRI LF.GTSGQKT LFRNP.HQAL	End L2 dome DIKHNRPRRD VIRDNRKAEN KIISNRGENS	ain> 500 CVA EGKVCDP CTA EGMVCNH
Erk Erk Egf Erk	64 LCSSDGCWGP Fr LCSPEGCWGP	GPDQCLSCRR EPRDCVSCRN	YSRGGVCVTH FSRGRICIES VSRGRECVDK FLRGQECVEE	CNLYDGEFRE CKLLEGEPRE	FENGSICVEC FVENSECIOC
Erb Erb Egf Erb	4 DPQCEKMEDG T HPECLPQAMN	LLTCHGPGPD I.TCTGRGPD	TCAQCAHFRD NCTKCSHFKD NCIQCAHYID QCVACAHYKD	GPNCVEKCPD GPHCVKTCPA	GLQGA.NSF. GVMGENNTL.
Erb Erb Egf	14 IFKYADPDRE r VWKYADAGHV	CHPCHPNCTQ CHLCHPNCTY	GCKGPELQDC GCNGPTSHDC GCTGPGLEGC SCVDLDDKGC	IYYPWTGHST PTNGPKIPS.	LPQHARTPL

į

÷ ...

:

Figure 15. Classification of Cys-rich modules
C2-4 denote modules with the 1-3/2-4 double disulphide bond connections.
C1-2 for the single disulphide bonded modules and
C1-2t for stabilised beta turn.

First Cys-rich region C2-4 modules

C2-4 modules				
		1 2 3 4		ž-
Higflr	152	CPGTHEEK9H-CEKTTINHEYNYRCWTTHRC QH	24 184	(1st)
Hir	159	CPGTAKGKTH-CPATVINGQEVERCWTHSHC Q	CV 191	(1st)
Hicr	154	CPGVLGAAGEPCAKTTFSGHTDYRCWTSSHC QF	RV 187	(lst)
Eafr	156	CDPSCPNG-SCWGAG-EENC QKLTKII	190	(1st)
hErb2		CSPHCKGS-RCWGES-SEDC QSLTRTV	199	(1st)
hErb3	157	CHE'CKGRCWGPG-SEDC QTLTKTI	190	(1st)
hErb4	157	CHKSCTGROWGPT-ENHC QTLTRTV	190	(lst)
Higfir	195	CPSTCGK-RACTENNEC	200	(2nd)
Hir	192	CPTICKS-HGCTAEGLC	207	(2nd)
Hicc	198	CPCPHGMACTARGEC	292	(2nd)
Eqfc	191	CAQQCSGRCRGKS-PSDC	207	(2nd)
hErb2		CAGGCARCKGPL-PTDC	214	(2nd)
hErb3		CAPQCNGHCFGPN-PNQC	207	(2nd)
hErb4		CAEQCDGRCYGPY-VSDC	207	(2nd)
			220	/3
		CHPECLGSCSAPDNDTAC VA	220	(3rd)
Hir		CHSECLGNCSQPDDPTKC VA	227	(3rd)
Hitt		CHTECLGGCSQPEDPRAC VA	222	(3:4)
Egfs		CHNQCAAGCTGPR-ESDC LV	226	(3rd)
Erb2	215	CHEQCAAGCTGPK-HSDC LA	233	(3:i)
hE st 3	208	CHOECAGGCSGFQ-DTDC FA	226	(3:1)
hBsb i	203	CHRECAGGCSGPK-CTCC FA	225	(3:2
C1-2 modules			-	
Histis	221	CRHYYYAGYC VEA	233	
815		GRUTYLOGRO VET	340	(4=5.)
Hier		CRHIVFQGAC LWA	235	410
Esfs-I		CRMERDEATC MOT	233	(4:5
.Ercl		CLHEWHEGIC ELH	244	4=2
nEssi		CFHENDBBAC VFR	239	415
 		CINELDS SAC VTQ	233	:41h
Higila		CRENTYREEGWRC VEREF	251	: 5 th:
His		CEFFYYHEREWRO THESE	253	1510"
Hirr		OFFSTYQYESWRO VTAER	253	(5th)
Egis		CFFLMLYHFTTYQHEWHFEGKYSFGATC VXX	270	:5th:
nĒrbi		CPALVTVITOTEESHENEEGRYTEGASC VTA	277 270	(5th) (5th)
hErbj		CEQELVYHELTEQUEENEHTKYQYGGYC VAS		
h2sb4	240	CEQTEVYNETTEQUEHNENAKYTYGAEC VMK	270	(5th)
Higfle		CAMBLEARSSDEEGFVIHD.GEC MQE	276	(6th)
His	259	CQI.LHHKCKNERRQGCHQYVIHN.NNC IPE	297	3.7
2122		CRE. LHEVPGRASTFGIHQ.GSC LAQ	27-5	iệth;
Eşf:	1 · ·	CPRIVYVVTDHGSC VRA	295	(5th)
nEcol		Cammuatovasc tuv	293	iáta.
hErb3	171	CFHUFWY, DQTSC VRA	195	: 5th
SERE!	_ · ·	CEHNEVY, OSSSC VRA	195	(#th)
Higfle		CFFS. FIRMGSQ-SHYC IF	293	- Ten -
Hir		Casa. YttmssnLLC Ta	303	(7:5)
Hitt		CREER FTRIES-+SIFC HK	293	:[th]
E:it		C SAISYEME-EDGWRKC KK	304	755
"Erri		CRIMINESTARESTING EN	312 313	Tith: Tim
		CARCHOTEVENTH-JUNC'C ER	3.3	***
។ ភិព្យុធ	•	CRESTINES:HEDITO HE	3.2	•

C1-2t module			
Higf1r	294 CEGPC	298	(8th)
Hir	304 CLGPC	308	(8th)
Hirr	294 CEGLC	298	(8th)
hEgfr	305 CEGPC	309	(8th)
hErb2	313 CSKPC	317	(8th)
hErb3	304 CGGLC	308	(8th)
hErb4	304 CTDIC	308	(8th)
Second Cys-rich	region		
C2-4 modules	region.		
	482 CHALCSPEGCWGPEPRDCVS	501	(1st)
hErb2	490 CHQLCARGHCWGPGPTQCVN	509	(1st)
hErb3	481 CDPLCSSGGCWGPGPGQCLS	500	(lst)
hErb4	481 CNHLCSSDGCWGPGPDQCLS	500	(1st)
Egfr	534 CHPECLPQAM-NITCTGRGPDNC IQ	557	(4th)
hErb2	542 CHPECQPQNG-SVTCFGPEADQC VA	565	(4th)
hErb3	533 CHPECQPMEG-TATCNGSGSDTC AQ	556	(4th)
hErb4	533 CDPQCEKMEDGLLTCHGPGPDNC TK	557	(4th)
	596 CHPNCTYGCTGPGLEGC PTNGPKIPS/		(7th)
	605 CPINCTHSCVDLDDKGC PAEQRAQRAS		(7th)
hErb3 hErb4	594 CHENCTQGCKGPELQDC LGQT/	614	(7th)
IIEI 54	595 CHPNCTQGCNGPTSHDC IYYPWTGHST	PEGENETER 930	(7th)
C1-2 modules			
hEgfr	502 CRNVSRGREC VDK	514	(2nd)
hErb2 hErbl	510 CSQFLRGQEC VEE 501 CRNYSRGGVC VTH	522 513	(2nd) (2nd)
hErb4	501 CRRFSRGRIC IES	513	(2nd)
hEgfr	515 CKLLEGEPREFVENSEC IQ	533	(3rd)
hErb2	523 CRVLQGLPREYVNARHC LP	541	(3rd)
	514 CNFLNGEPREFAHEAEC FS	532	(3rd)
hErb4	514 CNLYDGEFREFENGSIC VE	532	(3rd)
hEgfr	553 CAHYIDGPHC VKT	570	(5th)
hErb2	566 CAHYKDPPFC V-A	578	(5th)
hErb3	557 CAHFRDGPHC V-S	569	(5th)
hErb4	553 CSHFKDGPNC VEK	570	(5th)
hBgfr	571 CPAGVMGENNTL-VWKYADAGHVC HL	595	(6th)
hErb1	5T3 CPSGVKPDLSYMPIWKFPDEEGAC QP	604	(5th)
hErbl	570 CPHGVLGAKGPIYKYPDVQNEC RP	593	(6th)
hErb4	571 CPDGLQGANSFIFKYADPDREC HP	594	(6th)
See Pattern is:	·		
IR family:	C2-4, C2-4, C2-4, C1-2, C1-2, C1-2,		
	c C2-4, C2-4, C2-4, C1-2, C1-2, C1-2,	C1-2, C1-2t	
2:	C2-4, C1-2, C1-2, C2-4, C1-2, C1-2,		
	C2-4, C1-2, C1-2,		

Figure 16

Figure 18

Figure 19

Figure 20

Figure 21

Figure 22

Figure 23