Lead Scoring

Ashish Sunil Ashish Srivastava Arun Anil Kumar

Problem Statement

- An education company named X Education sells online courses to industry professionals.
- On any given day, many professionals who are interested in the courses land on their website and browse for courses.
- The company markets its courses on several websites and search engines like Google.
- After survey, X Education company's typical lead (people fill up a form providing their email address or phone number) conversion rate is around 30% and this rate is very poor. Hence the CEO has given a ballpark of the target lead conversion rate to be around 80%.

Basic Information on Data

- There are 9240 records with 37 columns in given dataset.
- There are few columns present in the dataset which has null values.
- Some columns have default value as 'Select' which is not adding any information in dataset.

Data Cleaning

- Checked null % of each column and then decided that to drop such columns which has more than 25 % of null values. Dropped 8 columns in the above process.
- Dropped all rows having null values, having highly imbalanced dataset and which do not add any values to the dataset. Along with that, considered that the variable city, the country & lead number which do not give any useful information so that they were dropped

Correlation Matrix

 The darker shades in the correlation matrix shows higher relationship between the variables

Finalized Model

- For modeling purpose, we split the data in 70% for train & 30% for test data.
- We have scaled the numeric variables by StandardScaler.
- By using RFE method, we try the find the 25 most significant variables then 20 and after that 15 variables.
- After building the first model we have dropped the columns which have high pvalues and VIF values.
- For dropping them we consider following conditions as per the standards:
 - p-value should be less than 0.05.
 - VIF also should be less than 0.05.

Generalized Linear Model Regression Results

Dep. Variable:	Converted	No. Observations:	3447
Model:	GLM	Df Residuals:	3429
Model Family:	Gaussian	Df Model:	17
Link Function:	Identity	Scale:	0.16644
Method:	IRLS	Log-Likelihood:	-1791.6
Date:	Sun, 16 Feb 2025	Deviance:	570.73
Time:	09:38:32	Pearson chi2:	571.
No. Iterations:	3	Pseudo R-squ. (CS):	0.3819

Covariance Type: nonrobust

	coef	std err	Z	P> z	[0.025	0.975]
const	0.6582	0.022	30.108	0.000	0.615	0.701
TotalVisits	0.0330	0.008	3.900	0.000	0.016	0.050
Total Time Spent on Website	0.2244	0.007	31.578	0.000	0.210	0.238
Page Views Per Visit	-0.0225	0.008	-2.651	0.008	-0.039	-0.006
Lead Origin_Landing Page Submission	-0.1314	0.024	-5.489	0.000	-0.178	-0.085
Lead Source_Direct Traffic	-0.0841	0.016	-5.200	0.000	-0.116	-0.052
Last Activity_Converted to Lead	-0.2561	0.031	-8.385	0.000	-0.316	-0.196
Last Activity_Email Bounced	-0.2872	0.039	-7.323	0.000	-0.364	-0.210
Last Activity_Email Link Clicked	-0.1618	0.045	-3.630	0.000	-0.249	-0.074
Last Activity_Form Submitted on Website	-0.1698	0.056	-3.056	0.002	-0.279	-0.061
Last Activity_Olark Chat Conversation	-0.1891	0.036	-5.209	0.000	-0.260	-0.118
Last Activity_Page Visited on Website	-0.1978	0.026	-7.553	0.000	-0.249	-0.146
Last Activity_Unreachable	-0.2440	0.069	-3.550	0.000	-0.379	-0.109
Last Activity_Unsubscribed	-0.1652	0.082	-2.013	0.044	-0.326	-0.004
Specialization_Other	-0.2155	0.026	-8.337	0.000	-0.266	-0.165
What is your current occupation_Housewife	0.4908	0.236	2.075	0.038	0.027	0.954
Last Notable Activity Had a Phone Conversation	0.3321	0.136	2.433	0.015	0.065	0.600
Last Notable Activity_Unreachable	0.5510	0.136	4.045	0.000	0.284	0.818

ROC Curve

- As per the observation area under ROC curve is 0.83 which is good.
- But if we have look on specificity & sensitivity of model at threshold value of 0.5, there is significant difference between them. Hence 0.5 is not the proper threshold value for the model.

Sensitivity and Specificity Curve

- As per the sensi-speci curve, optimal threshold value is nearly 0.4
- Using this value, the model is giving 77.72% accuracy. Also, sensitivity and specificity at that point is 77.74% & 77.7% respectively

Final Accuracy Metrics

```
Train Data Accuracy :77.72 %
Train Data Recall :77.74 %
Train Data Specificity :77.7 %
Test Data Accuracy :75.85 %
Test Data Recall :78.15 %
Test Data Specificity :73.87 %
```

- The final prediction on the test data set to bring the accuracy of that indicates that the model predicts 75.85% right conversion.
- The sensitivity is and specificity is very near to each other.

We have developed logistic regression model which has accuracy 75.85%.

THANKYOU!