

Assessment of Commuter Train Timetables Including Transfers

Jennifer Warg, Abderrahman Ait Ali & Jonas Eliasson (*) Royal Institute of Technology – KTH, Sweden. (*) Stockholm City Transport Administration, Sweden.

21st EURO Working Group on Transportation Meeting, EWGT 2018
Braunschweig, Germany

Outline

- Introduction
- Literature Review
- Methodology
- Case Study
- Results
- Conclusions
- Future Work

Introduction – The Problem?

- Inefficient use of railway capacity for commuter services
 - → Long travel, waiting and transfer times.
 - → Crowded trains
 - → High operation costs.

Introduction – A Solution!

- Need for models to evaluate this "efficiency"
 - Socio-economic impact
 - Travel time (including crowding).
 - Waiting and transfer times.
 - Operation costs

Literature Review - Methods

- Kunimatsu et al. (2012)
 - Microsimulation of passenger flow
 - Passenger specific costs (i.e. disutility)
- Finger et al. (2014)
 - Integrated regular interval timetables (IRIT).
 - Reduce transfer costs.

Literature Review - Tools

- Wardman et al. (2004).
 - Use of stated preference (SP) data
 - Estimation of timetable effects (e.g. value of time).
- Radtke and Bendfeldt (2001)
 - Railsys software
 - Train timetable management and simulation
- Bangman (2016) and SLL (2017)
 - Swedish guidelines for cost-benefit analysis
 - Recommendations for local commuter services

Methodology – Reference

- Background model, see. Ait Ali et al. (2017)
 - Concept-model description
 - Evaluation of socio-economic benefits
 - Example on commuter line (without transfer).

Methodology – Direct trips

Passenger flow in link segments

$$f^k(i) = f^k(i-1) + \sum_{st \in S\ V(i,k)} n^k(i,st) - \sum_{st \in S\ D(i,k)} n^k(st,i),$$
 will be served by train k after station i served stations before reaching station i .

Fig. 1. Illustration of passenger flow per link segment between stations

Methodology – Transfer trips

- Assumptions
 - Transfer ASAP (i.e. exit at first transfer station)
 - Max 1 transfer (e.g. X-form networks)
- Implementation
 - Transfer = 1st leg (direct) + 2nd leg (direct)
 - Passenger flow iterations
 - Iteration 1 -> direct trips + 1st leg transfer trips
 - Iteration 2 -> (+) 2nd leg transfer trips

Methodology – Timetable assessment

- Valuations recommendation
 - Bangman (2016) and SLL (2017).
- Total socio-economic cost $C^{tot} = C^{con} + C^{pro}$
 - Consumer costs (i.e. passengers)
 - Travel time (include crowding)
 - Waiting time (i.e. initial station)
 - Transfer time
 - Producer costs (i.e. operator(s))
 - Distance, time-dep costs
 - Rolling-stock, overhead costs.

Case Study – OD and network

- Dynamic OD
 - Week day in 2016
 - Counts every 15min time interval
- Commuter network in The Greater Stockholm area

Fig. 2. Schematic sketch of the network in the case study

Case Study – Timetable

- Commuter train timetable of a weekday in 2016
- Line 35 and 36.

Results A0 – Passengers on-board

Fig. 4. Number of passengers on-board some of the trains on running in line 35 with train seat capacity

Results A1 – Departure times

Fig. 5. Socio-economic assessment of changing departure times for all trains from Märsta to Södertälje on line 36

Results A2 – Departure cancellation (conflicts)

Table 1. Comparison between socio-economic costs for cancelling round trips under different periods of the day

	Total	Producer	Consumer	Waiting	Travel	Transfer
Original (absolute costs in MSEK)	8,70	4,55	4,15	2,28	1,96	0,012
Morning - absolute costs in MSEK	8,69	4,54	4,15	2,18	1,96	0,011
(relative costs in %)	(-0,1)	(-0,3)	(+0,1)			
Lunch - absolute costs in MSEK	8,74	4,54	4,20	2,23	1,96	0,011
(relative costs in %)	(+0,4)	(-0,3)	(+1,2)			
Afternoon - absolute costs in MSEK	8,82	4,54	4,28	2,30	1,96	0,011
(relative costs in %)	(+1,3)	(-0,3)	(+3,1)			

Conclusions

- Passenger flow (Results A0)
 - Explain and predict the crowding in the trains
 - Visualization of train slots (with passenger in focus)
- Departure times (Results A1)
 - Timetable planning (with transfer in focus)
 - Control transfer costs
- Departure cancellation (Results A2)
 - Higher/lower frequency.
 - Price train slots.

Future Work

- Applications
 - Price railway capacity slots (for commercial sales).
 - Skip-stop timetable planning.
- Extensions
 - Include data on socio-economic groups
 - Determine winning/losing groups (who? How much?)
- Studies
 - Railway capacity analysis and simulation.
 - Include in a timetable optimisation model.

Thank you for your attention!

Questions?

