N-Gram-Based Author Profiles for Authroship Attribution

Florian Friedrich

Motivation

How to identify the author of an anonymous text?

Solution

Measurement of dissimilarity using character-level *n*-gram author profiles.

N-Gram

Definition n-gram: contiguous sequence of n items from a given sequence of text

Example: 2-Gram (Bigram)

- Text = {,,Welcome to come"}
- n = 2

// length of n-gram

Bigram:	We	el	lc	со	om	me	_t	to	0_	_c
Amount:	1	1	1	2	2	2	1	1	1	1

Character N-Gram Statistics

- authorship attribution
- plagiarism detection
- speech recognition

German text data of 8 million characters:

Trigram	Frequency
ICH	1,15 %
EIN	1,08 %
UND	1,05 %
DER	0,97 %
NDE	0,83 %
SCH	0,65 %
DIE	0,64 %
DEN	0,62 %
END	0,60 %
CHT	0,60 %

Advantages of n-grams

- Language independant
- No word segmentation required (Asian languages)
- No text preprocessing (e.g. no style markers)

Profile Dissimilarity Algorithm

Profile: sequence of L most common n-grams of a given length n

Profile Dissimilarity Algorithm

Profile: sequence of L most common n-grams of a given length n

Example for n = 4, L = 6

document 1:

Alice's Adventures in the Wonderland

by Lewis Carroll

profile P ₁						
n-gram	normalized frequency f_1					
_the	0.0127					
t h e _	0.0098					
a n d _	0.0052					
_ a n d	0.0049					
ing_	0.0047					
to	0.0044					

document 2:

Tarzan of the Apes

by Edgar Rice Burroughs

profile P 2							
n-gram	normalized frequency f_2						
_ t h e	0.0148						
t h e _	0.0115						
a n d _	0.0053						
of	0.0052						
_ a n d	0.0052						
ing_	0.0040						

Profile Dissimilarity Algorithm

Profile: sequence of L most common n-grams of a given length n

Example for n = 4, L = 6

document 1:

Alice's Adventures in the Wonderland

by Lewis Carroll

profile P ₁							
n-gram	normalized frequency f_1						
_the	0.0127						
t h e _	0.0098						
a n d _	0.0052						
_ a n d	0.0049						
ing_	0.0047						
to	0.0044						

dissimilarity between these documents

$$D = \sum_{x \in P_1 \cup P_2} \left(\frac{f_1(x) - f_2(x)}{\left(\frac{f_1(x) + f_2(x)}{2}\right)} \right)^2$$

where

$$f_i(x) = 0$$

if x does not appear in P_i

document 2:

Tarzan of the Apes

by Edgar Rice Burroughs

10 / 10.801	11100 0 0111 0 018					
profile P ₂						
n-gram	normalized frequency f_2					
_the	0.0148					
t h e _	0.0115					
a n d _	0.0053					
of	0.0052					
_ a n d	0.0052					
ing_	0.0040					

Experiment (Phyton)

used dataset: PAN 12

3 authors with 2 texts each (ca 5.000 words, 25.000 characters)

• Profile: L = 100

N-Gram	2	3	4	5	6	7	8	9	10
Correct attribution	2/3	2/3	2/3	2/3	1/3	1/3	1/3	1/3	2/3

• Profile: L = 10

N-Gram	2	3	4	5	6	7	8	9	10
Correct attribution	1/3	1/3	2/3	2/3	1/3	0/3	0/3	0/3	0/3

Results (Kešelj, et al., 2003)

Accuracy in English:

Profile	N-gram size									
size	1	2	3	4	5	6	7	8	9	10
20	1	0.67	0.67	0.67	0.5	0.83	0.67	0.67	0.67	0.67
50	0.67	0.67	0.83	0.67	0.83	0.83	0.83	0.67	0.67	0.67
100	0.5	0.67	1	1	0.83	0.83	0.83	0.83	0.67	0.83
200	0.5	0.83	0.83	0.83	1	0.83	0.83	1	0.83	0.83
500	0.5	0.83	0.83	1	0.83	1	1	0.83	0.83	0.83
1000	0.5	0.67	0.83	0.83	0.83	1	1	0.83	0.83	0.83
1500	0.5	0.33	0.83	1	1	1	1	1	0.83	0.83
2000	0.5	0.33	0.83	1	1	1	1	1	0.83	0.83
3000	0.5	0.33	0.83	0.83	1	1	1	1	0.83	0.83
4000	0.5	0.33	0.83	0.83	0.83	0.83	0.83	0.83	0.83	0.83
5000	0.5	0.33	0.83	0.83	0.83	0.83	0.83	0.83	0.83	0.83

Reproducibility

- difficult to get data
- large size of dissimilarity

References

- Vlado Kešelj, Fuchun Peng, Nick Cercone, and Calvin Thomas.
 N-gram-based author profiles for authorship attribution.
 Pacific Association for Computational Linguistics, 2003.
- https://de.wikipedia.org/wiki/N-Gramm
- https://www.uni-weimar.de/medien/webis/events/pan-13/pan13talks/pan13-authorship-verification/jankowska13-slides.pdf