Graph Theory 1-HW2

B10902029 黄芊禕

Teammate: B10902085 許博翔

2023年10月11日

Exercise. (1)

In a tree T, there must exist a vertex v whose degree is $\Delta(T)$. If we remove v, we would get $\Delta(T)$ separate subtrees. Since every tree has at least two leaves, even if one leaf in each subtree is connected to v and thus is not a leaf in the original tree, the other leaf would still contribute to the total number of leaves in T, therefore every tree T has at least $\Delta(T)$ leaves. It is not possible to guarantee $\Delta(T) + 1$ leaves: Consider the case where there is one vertex v with degree $\Delta(T)$ and $\Delta(T)$ other vertices all connected to v. In this case, there are only $\Delta(T)$ leaves.

Exercise. (4)

Exercise. (4)
$$\begin{cases} 7 & \text{, if } i = 1 \\ 7 & \text{, if } i = 2 \\ 7 & \text{, if } i = 3 \\ 7 & \text{, if } i = 4 \end{cases} \begin{cases} 7 & \text{, if } i = 1 \\ 6 & \text{, if } i = 4 \\ 4 & \text{, if } i = 6 \\ 1 & \text{, if } i = 6 \\ 4 & \text{, if } i = 7 \\ 4 & \text{, if } i = 8 \\ 9 & \text{, if } i = 9 \end{cases}$$

Then using Joyal's bijection, we get T_f and $T_{f_{\pi}}$,

 T_f :

 $T_{f_{\pi}}$

In T_f , there is a degree 5 vertex that shares an edge with a degree 3 vertex, however in $T_{f_{\pi}}$, no such relation can be found (the degree 5 vertex in $T_{f_{\pi}}$ is only connected to 4 degree 1 vertices and 1 degree 2 vertex.). Therefore, T_f and $T_{f_{\pi}}$ are not isomorphic.

Now we showed the case for n = 9, for cases n > 9, we can simply let f(i) = i, $\pi(i) = i$, $\forall i > 9$, and the 2 graphs are not isomorphic due to the same reasons.

 T_f :

Exercise. (5)

(a)

For every $d \geq 2$, consider $G_d = K_{d+1}$.

(b)

For every $d \geq 2$, choose any $n \gg d$, then we can construct such a graph H_d : 2 independent K_n subgraphs, which we name M_1 and M_2 , with 1 additional degree 2d point v which has d edges connected to d points in M_1 and d edges connected to d points in M_2 .

In this case, removing v will disconnect the graph $\Rightarrow \kappa(H_d) = 1$; removing d edges that connects v with the same complete subgraphs will disconnect the graph, while removing at most d-1 edges in K_n won't disconnect the graph, removing at most d-1 edges connecting vertex v and M_1 will leave at least 1 edges still connecting v and M_1 , and that $V(M_1)$ will still form a connected subgraph (same for M_2 as well), therefore won't disconnect v and either M_1 or M_2 .

 $\Rightarrow \kappa'(H_d) = d; \ \delta(H_d) = \min(2d, n-1) > d;$, therefore meeting the requirement.