Wizja Maszynowa Architektury splotowych sieci neuronowych - wykład 9

Adam Szmigielski aszmigie@pjwstk.edu.pl materiały: ftp(public): //aszmigie/WM

Popularne architektury sieci splotowych

- Sieci RNN fast RNN, faster RNN
- SSD
- YOLO

LeNet-5 1998

Warstwa	Тур	Mapy	Rozmiar	Rozmiar jądra	Krok	F. aktywacji
Out	W pełni połączona		10			RBF
F6	W pełni połączona		84			anh
C5	Splotowa	120	1×1	5×5	1	anh
S4	Uśr. łącząca	16	5×5	$2\! imes\!2$	2	anh
C3	$\operatorname{Splotowa}$	16	10×10	5×5	1	tanh
S2	Uśr. łącząca	6	$14 \! imes \! 14$	$2\! imes\!2$	2	anh
C1	Splotowa	6	28×28	5×5	1	anh
In	Wejściowa	1	32×32			—

- Została stworzona przez Yanna LeCuna w 1998 roku do rozpoznawania odręcznie pisanych cyfr (MNIST)
- Architektura LeNet-5 stanowi prawdopodobnie najbardziej znany przykład sieci CNN.

AlexNet 2012

Warstwa	Тур	Mapy	Rozmiar	Rozmiar jądra	Krok	Uzup. zerami	F. aktywacji
Out	W pełni połączona	_	1000	_			Softmax
F9	W pełni połączona		4096				ReLU
F8	W pełni połączona		4096				ReLU
C7	Splotowa	256	13×13	3×3	1	SAME	ReLU
C6	Splotowa	384	13×13	3×3	1	SAME	ReLU
C5	$\operatorname{Splotowa}$	384	13×13	3×3	1	SAME	ReLU
S4	Maks. łącząca	256	13×13	3×3	2	VALID	
С3	Splotowa	256	$27{ imes}27$	5×5	1	SAME	ReLU
S2	Maks. łącząca	96	$27{ imes}27$	3×3	2	VALID	_
C1	Splotowa	96	55×55	11×11	4	SAME	ReLU
In	Wejściowa	3(RGB)	$224\!\times\!224$				—

- W celu zmniejszenia przetrenowania użyto metody porzucania wobec wyjść warstw F8 i F9 oraz dogenerowali dane,
- W warstwach C1 i C3 użyto normalizacji odpowiedzi lokalnej (ang. local response normalization LRN) neurony o największych wagach (najsilniej aktywujące) hamują neurony znajdujące się w tym samym położeniu,

GoogLeNet 2014

- Stworzenie takiej architektury stało się możliwe dzięki wprowadzeniu podsieci zwanych **modułami incepcyjnymi** (ang. inception modules)
- Drugi zestaw warstw splotowych zawiera jądra o odmiennych rozmiarach $(1\times1, 3\times3 \text{ i } 5\times5)$, co pozwala im wyłapywać wzorce w różnych skalach.

- Pierwsze dwie warstwy redukują wysokość i długość obrazu czterokrotnie,
- Warstwa normalizacji odpowiedzi lokalnej sprawia, że wcześniejsze warstwy uczy się rozpoznawać bardzo zróżnicowane cechy

- Dwie warstwy splotowe, z której pierwsza pełni funkcję warstwy ograniczającej.
- Warstwa normalizacji odpowiedzi lokalnej,
- Maksymalizująca warstwa łącząca zmniejsza dwukrotnie wymiary obrazu,
- Wysoki stos ułożony z dziewięciu modułów incepcyjnych,
- Porzucanie służy do regularyzacji, a następnie w pełni połączona warstwa wykorzystująca funkcję aktywacji softmax do wyświetlania oszacowanych prawdopodobieństw przynależności przykładów do danej klasy.

ResNet 2015 - sieci rezydualne (ang. Residual Network)

- Użyto głębokiej architektury składającej się ze 152 warstw.
- Wykorzystano **połączenia pomijające** (zwanych również połączeniami skrótowymi ang. shortcut connections)
- Jeżeli dodamy wejście x do wyjścia sieci (połączenia pomijającego), to sieć odwzoruje funkcję f(x) = h(x) x uczenie rezydualne (resztowe; ang. residual learning).

Głęboka sieć resztowa

• Głęboka sieć resztowa może być postrzegana jako stos jednostek rezydualnych (ang. residual units), czyli niewielkich sieci neuronowych zawierających połączenie pomijające.

Detekcja obiektów w wykorzystaniem sieci splotowych

- R-CNN (Regions with CNN features) fast RNN, faster RNN
- SSD (Single Shot Multibox Detector)
- YOLO (You Only Look Once)

Obszarowa konwolucyjna sieć neuronowa - R-CNN

- **Propozycja regionów** generowanie regionów, na których może być obiekt,
- Moduł wyboru cech ekstrakcja cech z każdego regionu,
- **Klasyfikator** klasyfikuje cechy do jednej ze znanych klas z wykorzystaniem klasyfikatora.

Długie szkolenie (ok. 2000 propozycji regionów dla każdego obrazu). Wyszukiwanie regionów nie jest algorytmem uczącym się - może prowadzić do błędnych propozycji i błąd ten nie zostanie skorygowany.

Architektura modelu Fast R-CNN

- Pojedynczy model do nauki propozycji regionów i klasyfikacji za jednym razem,
- Wykorzystuje pre-trenowaną sieć do wyboru cech.
- Na końcu sieci jest warstwa zbierająca (Region of Interest Pooling Layer - RoI Pooling), która ekstrahuje cechy dla każdego proponowanego regionu.
- Następnie dane te interpretowane są w warstwie w pełni połączonej z dwoma wyjściami - klasyfikator i **bounding box**

Architektura modelu Faster R-CNN

- Główną innowacją Faster R-CNN jest zastosowanie konwolucyjnej sieci do propozycyji regionów (ang. Region Proposal Network RPN),
- Proces RPN rozpoczyna się od przepuszczenia całego obrazu przez

warstwy konwolucyjne.

- Dzięki zastosowaniu RPN zamiast selektywnego szukania, tworzymy w pełni uczącą się sieć, która ponadto może dzielić parametry pomiędzy warstwami konwolucyjnymi w RPN oraz detektorze Fast R-CNN.
- W Faster R-CNN, warstwa ROI Pooling bierze propozycje regionów nie z wyników szukania selektywnego, a procesu RPN.

Single Shot Multibox Detector SSD 2016

- SSD jest metodą wykrywania obiektów opartą na wykorzystaniu pojedynczej głębokiej sieci,
- W momencie predykcji sieć generuje wyniki dla obecności każdej kategorii w domyślnych obszarach
- Sieć łączy predykcje z wielu map cech z różnymi rozdzielczościami, SSD ma dwa komponenty szkielet modelu (ang. backbone) i warstwy SSD dodatkowe warstwy cech (ang. Extra Feature Layers).

- Model bazowy zwykle jest pre-trenowaną siecią klasyfikującą obrazu,
- SSD nie wykorzystuje okienka przesuwającego się po obrazie, dzieli obraz na siatkę i każda komórka w tej siatce jest odpowiedzialna za wykrycie obiektów
- Jeśli nie wykryto żadnego obiektu, taka komórka staje się komórką z klasą tła.
- Narzędzia takie jak kotwica (ang. anchor box) i pole recepcyjne (ang. receptive field) zostają wykorzystane, by łatwiej wykryć wiele obiektów w obrębie jednej komórki.

YOLO - Patrzysz tylko raz (You Only Look Once) 2016

- https://storage.googleapis.com/openimages/web/index.html
- Wykorzystuje on cechy wytrenowane przez głębokie sieci neuronowe we frameworku Darknet.
- Jest siecią w pełni konwolucyjną (FCN fully convolutional network)jest obojętna na rozmiar obrazu wejściowego.

Działanie sieci YOLO

- Obraz zostaje podzielony na komórki, które tworzą siatkę $S \times S$.
- Wejściem do sieci YOLO jest obraz, a wyjściem współrzędne x, y środka obszaru zawierającego obiekt obwiedni (ang. bounding box) na tym obrazie, jego szerokość, wysokość prawdopodobieństwo dla wykrytej klasy,
- Jeśli środek obiektu wypada w komórce siatki, komórka ta staje się odpowiedzialna za wykrycie tego obiektu.
- Każda komórka wykrywa B obwiedni i ich przedziały zaufania (ang. confidence scores).
- Przedziały zaufania określają niepewność detekcji obiektu i obwiedni,
- Po uzyskaniu wszystkich możliwych obwiedni, należy pozbyć się

tych, które mają niskie prawdopodobieństwo posiadania obiektu.

• Do tego stosuje się algorytm usuwania nie maksymalnych pikseli (non-maximum suppression) wyliczając indeks Jaccarda:

$$J(A,B) = \frac{|A \cap B|}{|A \cup B|} = \frac{|A \cap B|}{|A| + |B| - |A \cap B|}$$

- Sieć ma 24 warstwy konwolucyjne i 2 w pełni połączone warstwy, 2 warstwy redukujące (max-pooling).
- Jest to sieć konwolucyjna, która jednocześnie tworzy predykcję wielu obszarów i prawdopodobieństwa klas dla tych obszarów.
- YOLOv1 daje słabsze wyniki, gdy na obrazie jest wiele małych obiektów np. stado ptaków

YOLOv2 - YOLO9000 2016

- W drugiej wersji algorytmu detekcja YOLO oparta jest o również ulepszony, nowy model *Darknet19*,
- Ma mniej warstw konwolucyjnych i 5 warstw redukujących oraz warstwę softmax,
- Wprowadzono kotwice bazowe obwiedni: w YOLOv2 wprowadzono obwiednie tak, jak np. w Faster R-CNN większyło ilość obwiedni na obraz z 98, do ponad tysiąca,
- Poprawiła się detekcja małych obiektów tworzy detekcje na mapie cech o wymiarach 13×13 ,
- Trenowanie na obrazach w różnych skalach.

- YOLOv3 opiera się na ulepszonej architekturze *Darknet53* ma 53 warstwy konwolucyjne,
- Predykcje w różnych skalach sieć w trzeciej wersji przewiduje obwiednie w trzech różnych skalach obrazu,

Keras, TensorFlow, PyTorch

- **Keras** to wydajny interfejs programowania aplikacji sieci neuronowej wysokiego poziomu, który umożliwia szybkie eksperymentowanie z głębokimi sieciami neuronowymi. Keras został zintegrowany z TensorFlow.
- **TensorFlow** to biblioteka matematyczna, która najlepiej nadaje się do programowania przepływu danych w szeregu zadań. Oferuje wiele poziomów abstrakcji do budowania i trenowania modeli.
- **PyTorch** to stosunkowo nowy framework do głębokiego uczenia oparty na Torch prosty, łatwy w użyciu, elastyczny, wydajny w wykorzystaniu pamięci i dynamicznych wykresach obliczeniowych.

PyTorch vs TensorFlow

- PyTorch jest obecnie używany w wielu projektach głębokiego uczenia jego popularność rośnie,
- Gdy potrzebna jest elastyczności, możliwości debugowania i krótkiego czasu szkolenia lepszy jest PyTorch. Działa na systemach Linux, macOS i Windows.
- Dzięki dobrze udokumentowanej strukturze i dużej liczbie przeszkolonych modeli TensorFlow jest bardzo popularnym narzędziem,
- TensorFlow oferuje lepszą wizualizację, która pozwala programistom na lepsze debugowanie i śledzenie procesu uczenia.

PyTorch vs TensorFlow

- Keras jest bardziej odpowiedni dla programistów, którzy potrzebują platformy plug-and-play, która pozwoli im szybko budować, trenować i oceniać swoje modele.
- PyTorch jest szybszy niż Keras i ma lepsze możliwości debugowania.
- Keras jest najlepszy do pracy z małymi zbiorami danych, szybkiego prototypowania.

YOLOv5

- YOLOv5 to model z rodziny modeli widzenia komputerowego You Only Look Once (YOLO). YOLOv5 jest powszechnie używany do wykrywania obiektów,
- YOLOv5 rozszerzenie YOLOv3 PyTorch

Architektura YOLOv5

• Model YOLO był pierwszym detektorem obiektów, który połączył procedurę przewidywania ramek ograniczających z etykietami klas w sieci CNN.

Architektura YOLOv5

Sieć YOLO składa się z trzech głównych części.

- Backbone: Konwolucyjna sieć neuronowa, która agreguje i tworzy cechy obrazu o różnych stopniach ziarnistości.
- Neck: Seria warstw do mieszania i łączenia cech obrazu w celu przekazania ich do predykcji.
- **Head**: Wykorzystuje cechy z bloku neck i dokonuje predykcji cech oraz ramek.

Architektura YOLOv5

• Dane są najpierw wprowadzane do CSPDarknet w celu wyodrębnienia cech, a następnie przekazywane do PANet w celu fuzji cech. Na koniec Yolo Layer wyświetla wyniki wykrywania (klasa, wynik, lokalizacja, rozmiar).

Format obwiedni YOLO

• Dane ramek ograniczających w YOLO są sformatowane jako [class, xcenter , ycenter , width, height].

Zadania na laboratoria

- Zapoznaj się z **PyTorch**. Zainstaluj siec **YOLOv5** lub nowszą,
- Wytrenuj sieć w oparciu o dostępną bazę danych,
- Uruchom sieć do śledzenia i wykrywania wyuczonych obiektów,
- Dodaj kolejną klasę "piła łańcuchowa". Powiększ odpowiednio dane oraz ponownie wytrenuj sieć. Można skorzystać z dodatkowych z **narzędzi do etykietowania**,
- Sprawdź działanie sieci śledząc piłę łańcuchową na przykładzie filmu deskryptorami.