I.

- **1.** Egy háromszög két csúcsa A(8; 2), B(-1; 5), a C csúcs pedig illeszkedik az y tengelyre. A háromszög köré írt kör egyenlete: $x^2 + y^2 6x 4y 12 = 0$.
 - a) Adja meg a háromszög oldalfelező merőlegesei metszéspontjának koordinátáit!
 - b) Adja meg a háromszög súlypontjának koordinátáit!
- **2.** Aladár, Béla, Csaba, Dani és Ernő szombat délutánonként együtt teniszeznek. Mikor megérkeznek a teniszpályára, mindegyik fiú kezet fog a többiekkel.
 - a) Hány kézfogás történik egy-egy ilyen közös teniszezés előtt?

Legutóbb Dani és Ernő együtt érkezett a pályára, a többiek különböző időpontokban érkeztek.

- b) Hány különböző sorrendben érkezhettek ezen alkalommal?
- c) A fiúk mindig páros mérkőzéseket játszanak, ketten kettő ellen. (Egy páron belül a játékosok sorrendjét nem vesszük figyelembe, és a pálya két térfelét nem különböztetjük meg.) Hány különböző mérkőzés lehetséges?
- **3.** Péter nagypapája minden évben félretett némi pénzösszeget egy perselybe unokája számára. 5000 Ft-tal kezdte a takarékoskodást 1996. január 1-én. Ezután minden év első napján hozzátett az addig összegyűlt összeghez, mégpedig az előző évben félretettnél 1000 Ft-tal többet. 2004. január 1-jén a nagypapa bele tette a perselybe a megfelelő összeget, majd úgy döntött, hogy a perselyt unokájának most adja át.
 - a) Mekkora összeget kapott Péter?
 - **b)** Péter nagypapája ajándékából vett néhány apróságot, de elhatározta, hogy a kapott összeg nagyobb részét 2005. január 1-jén bankszámlára teszi. Be is tett 60000 Ft-ot évi 4%-os kamatos kamatra (a kamatok minden évben, év végén hozzáadódnak a tőkéhez). Legalább hány évig kell Péternek várnia, hogy a számláján legalább 100000 Ft legyen úgy, hogy közben nem fizet be erre a számlára?
- **4. a**) Ábrázolja derékszögű koordinátarendszerben az $f: [0; 7] \rightarrow \mathbf{R}$ $f(x) = |x^2 6x + 5|$ függvényt!
 - **b**) Adja meg az f függvény értékkészletét!
 - c) A p valós paraméter értékétől függően hány megoldása van az $|x^2 6x + 5| = p$ egyenletnek a [0; 7] intervallumon?

II.

Az 5 – 9. feladatok közül tetszés szerint választott négyet kell megoldania, a kihagyott feladat sorszámát egyértelműen jelölje meg!

5. Oldja meg az alábbi egyenletrendszert a valós számpárok halmazán!

$$\log_x(x^2y^3) + \log_y(x^3y) = 9$$
$$\cos(x+y) + \cos(x-y) = 0$$

6. A következő táblázat egy 30 fős kilencedik osztály első félév végi matematika osztályzatainak megoszlását mutatja.

Érdemjegy	5	4	3	2	1	
Tanulók száma	4	7	9	8	2	

- a) Ábrázolja az érdemjegyek eloszlását oszlopdiagramon!
- **b)** Mennyi a jegyek átlaga?
- c) Véletlenszerűen kiválasztjuk az osztály egy tanulóját. Mi a valószínűsége annak, hogy ez a tanuló legalább 3-ast kapott félév végén matematikából?

- **d)** Két tanulót véletlenszerűen kiválasztva mennyi a valószínűsége annak, hogy érdemjegyeik összege osztható 3-mal?
- 7. a) A *KLMN* derékszögű trapéz alapjai $KL = 2\sqrt{12}$ és $MN = 3\sqrt{75}$ egység hosszúak, a derékszögű szár hossza $10\sqrt{2}$ egység. A trapézt megforgatjuk az alapokra merőleges LM szár egyenese körül. Számítsa ki a keletkezett forgástest térfogatát! (π két tizedesjegyre kerekített értékével számoljon, és az eredményt is így adja meg!)
 - **b)** Az *ABCD* derékszögű érintőtrapéz *AB* és *CD* alapjai (*AB* > *CD*) hosszának összege 20. A beírt körnek az alapokra nem merőleges *AD* szárral vett érintési pontja negyedeli az *AD* szárat. Számítsa ki a trapéz oldalainak hosszát!
- **8. a)** Egy osztály tanulói a tanév során három kiránduláson vehettek részt. Az elsőn az osztály tanulóinak 60 százaléka vett részt, a másodikon 70 százalék, a harmadikon 80 százalék. Így három tanuló háromszor, a többi kétszer kirándult. Hány tanulója van az osztálynak?
 - **b**) A három közül az első kiránduláson tíz tanuló körmérkőzéses asztalitenisz-bajnokságot játszott. (Ez azt jelenti, hogy a tíz tanuló közül mindenki mindenkivel pontosan egy mérkőzést vívott.) Mutassa meg, hogy 11 mérkőzés után volt olyan tanuló, aki legalább háromszor játszott!
 - c) A második kirándulásra csak az osztály kosárlabdázó tanulói nem tudtak elmenni, mivel éppen mérkőzésük volt. A kosarasok átlagmagassága 182 cm, az osztály átlagmagassága 174,3 cm. Számítsa ki a kiránduláson részt vevő tanulók átlagmagasságát!
- **9.** Egy centiméterben mérve egész szám élhosszúságú kockát feldaraboltunk 99 kisebb kockára úgy, hogy közülük 98 darab egybevágó, 1 cm élű kocka. Számítsa ki az eredeti kocka térfogatát!

Pontszámok:

1a	1b	2a	2b	2c	3a	3b	4a	4b	4c	5	6a	6b	6c	6d	7a	7b	8a	8b	8c	9
3	8	3	3	6	5	9	4	2	8	16	3	2	3	8	4	12	6	4	6	16