Columbia University

Math Methods for Political Science Fall 2017

Exercise Set 1

Due: September 27, 2017

1. Determinants

Exercise 1. Compute the determinant of the following matrices.

a)

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 0 & 1 & 2 \\ 0 & 0 & 4 \end{bmatrix}, \qquad B = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix},$$

$$C = \begin{bmatrix} 1 & 1 & 0 \\ 2 & 2 & 0 \\ 0 & 0 & 3 \end{bmatrix}, \qquad D = \begin{bmatrix} 9 & 8 & 7 \\ 6 & 5 & 4 \\ 3 & 2 & 1 \end{bmatrix}.$$

b) Same question for A^T, B^T, C^T, D^T .

Exercise 2. For which values c_1, c_2, c_3 is the following matrix invertible?

$$A = \left[\begin{array}{ccc} 1 & 1 & 1 \\ c_1 & c_2 & c_3 \\ c_1^2 & c_2^2 & c_3^2 \end{array} \right]$$

Hint: show det $A = (c_2 - c_1)(c_3 - c_1)(c_3 - c_2)$.

Exercise 3. Let A be an $n \times n$ matrix. We say that A is triangular if either $A_{i,j} = 0$ for j > i or $A_{i,j} = 0$ for i > j. If $A_{i,j} = 0$ for j > i, then the matrix is called lower triangular. If $A_{i,j} = 0$ for i > j, then the matrix is called upper triangular. If $A_{i,j} = 0$ for i > j and i < j (i.e., $A_{i,j} = 0$ for $i \neq j$), then the matrix is called diagonal.

$$\begin{bmatrix} A_{1,1} & 0 & 0 & 0 & \cdots & 0 & 0 \\ A_{2,1} & A_{2,2} & 0 & 0 & \cdots & 0 & 0 \\ A_{3,1} & A_{3,2} & A_{3,3} & 0 & \cdots & 0 & 0 \\ \vdots & \ddots & \ddots & \ddots & \ddots & \vdots & \vdots \\ \vdots & \vdots & \ddots & \ddots & A_{n-2,n-2} & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & A_{n-1,n-2} & A_{n-1,n-1} & 0 \\ A_{n,1} & A_{n,2} & \cdots & \cdots & A_{n,n-3} & A_{n,n-1} & A_{n,n} \end{bmatrix}$$

lower triangular

$$\begin{bmatrix} A_{1,1} & A_{1,2} & A_{1,3} & \vdots & \vdots & \vdots & \vdots & A_{1,n} \\ 0 & A_{2,2} & A_{2,3} & \ddots & \vdots & \vdots & A_{2,n} \\ 0 & 0 & A_{3,3} & \ddots & \ddots & \vdots & \ddots \\ 0 & 0 & 0 & \ddots & \ddots & \ddots & \ddots \\ \vdots & \cdots & \cdots & \ddots & A_{n-2,n-2} & A_{n-2,n-1} & A_{n-2,n} \\ 0 & 0 & 0 & \vdots & 0 & A_{n-1,n-1} & A_{n-1,n} \\ 0 & 0 & 0 & \vdots & 0 & 0 & A_{n,n} \end{bmatrix}$$

upper triangular

$\lceil A_{1,1}$	0	0	0	• • •	0	0]
0	$A_{2,2}$	0	0		0	0
0	0	$A_{3,3}$	0	• • •	0	0
:	٠	٠	٠٠.	٠	:	:
0	:	٠	٠.	$A_{n-2,n-2}$	0	0
0	0	:	٠	0	$A_{n-1,n-1}$	0
	0	0	• • •	0	0	$A_{n,n}$

diagonal

Show that if A is triangular or diagonal, then its determinant is equal to the product of the diagonal elements, namely det $A = \prod_{i=1}^{n} A_{i,i}$.

Exercise 4. Let A and B be $n \times n$ matrices. Show:

- a) If A is invertible, then det [A⁻¹] = 1/det A.
 b) If A and B are invertible, then det [BAB⁻¹] = det A.
- c) If B is such that $B^TB = I_n$, then det $B = \pm 1$.
- d) If A is such that $\det [A^3] = 0$, then A is not invertible.
- e) If either A or B is not invertible, then AB is not invertible.

Exercise 5. Solve the following linear systems using Cramer's rule:

b)

$$x_1 + 4x_2 + x_3 = 1$$

 $2x_1 + 3x_2 + x_3 = 2$
 $3x_1 + 7x_2 + 2x_3 = 1$

2. Vector spaces

Exercise 6. Show:

a) If V is a vector space, then $\mathbf{0} \in V$ (i.e., the zero vector) is unique.

- b) If V be a vector space and $\mathbf{u} \in V$ a vector, then $-\mathbf{u} \in V$ (i.e., the inverse of \mathbf{u}) is unique.
- c) The set of polynomials of degree at most n, namely

$$\{a_0 + a_1t + \dots + a_nt^n \mid a_0, \dots, a_n \in \mathbb{R}\},\$$

is a vector space.

d) The set of polynomials of degree exactly 2, namely

$$\{a_0 + a_1t + a_2t^2 \mid a_0, a_1, a_2 \in \mathbb{R}, \ a_2 \neq 0\},\$$

is not a vector space.

- e) The set of $m \times n$ matrices is a vector space.
- f) If A is an $n \times n$ invertible matrix, then its columns are linearly independent.

Exercise 7. Let
$$A = \begin{bmatrix} 1 & 2 & 3 & 1 \\ 1 & 2 & 3 & 0 \\ 1 & 2 & 3 & 1 \end{bmatrix}$$
. Find a basis for Nul A and Col A .

Exercise 8. (a) What is the dimension of the subspace W of \mathbb{R}^2 defined as $W = \text{span}\{v_1, v_2, v_3\}$, where $v_1 = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$, $v_2 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$, $v_3 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$.

- (b) Find a subset B of $\{v_1, v_2, v_3\}$ such that B is a basis of W.
- (c) Grow the subset $\{v_1 + v_2\} \subset W$ to obtain a basis of W.

Exercise 9. (a) Consider the vector $v = \begin{bmatrix} 2 \\ 3 \end{bmatrix}$ expressed in the standard basis for \mathbb{R}^2 .

Find the coordinates of v in the basis $\{b_1, b_2\}$ of \mathbb{R}^2 , where $b_1 = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$ and $b_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$.

(b) Same question for $v = \begin{bmatrix} 2 \\ 3 \\ 1 \end{bmatrix}$ given in the standard basis for \mathbb{R}^3 to express in the basis $\{b_1, b_2, b_3\}$ where $b_1 = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$, $b_2 = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}$, $b_3 = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$.

Exercise 10. Let
$$A = \begin{bmatrix} 1 & 0 & 2 & 3 \\ 1 & 1 & 1 & 0 \\ 0 & 0 & 0 & 3 \end{bmatrix}$$
.

- (a) Compute the rank of A and the dimension of its null space.
- (b) Same question for A^T .
- (c) Same question for A, a 7×7 matrix with a pivot in every row.
- (d) Consider A, an $n \times m$ matrix, and a vector $b \in \mathbb{R}^n$. What relationship between the rank of $[A \ b]$ and the rank of A would guarantee the equation Ax = b to be consistent?

Exercise 11. Let

$$w = \begin{bmatrix} 2 \\ 1 \\ 2 \end{bmatrix}, \quad A = \begin{bmatrix} 1 & 3 & -\frac{5}{2} \\ -3 & -2 & 4 \\ 2 & 4 & -4 \end{bmatrix}.$$

Which of the following proposals is correct? Justify briefly

(a) w belongs to Col A, but not to Nul A.

- (b) w belongs to Nul A, but not to Col A.
- (c) w belongs to Nul A and to Col A.
- (d) w belongs neither to Nul A nor to Col A.

Exercise 12. Determine whether each proposal is true or false and justify briefly your answer.

- (a) Let V be a vector space and H a subspace of V. Then V is a subspace of itself and H is a vector space.
- (b) If H is a subset of V, then $0 \in H$ implies that H is a subspace of V.
- (c) A square matrix A is invertible if and only if $\text{Nul } A = \{0\}$.
- (d) The null space of a matrix A is not always a vector space.

Exercise 13. (a) Let A be an 5×6 matrix. If dim Nul A = 3, what is Rank A?

- (b) Let A be an 7×3 matrix. What is the maximal rank for A? What is the minimal dimension of its null space? Same question if A is a 3×7 matrix.
- (c) Let A be an $n \times n$ matrix. Give a condition on Rank A for A^T to be invertible?

Exercise 14. (a) Show that the matrices
$$A = \begin{bmatrix} 1 & 3 & 4 & 0 \\ 0 & 1 & 2 & 4 \\ 1 & 2 & 0 & 3 \end{bmatrix}$$
 et $B = \begin{bmatrix} 1 & 0 & 0 & -19 \\ 0 & 1 & 0 & 11 \\ 0 & 0 & 1 & -\frac{7}{2} \end{bmatrix}$

are row equivalent.

- (b) Compute Rank A, dim Nul A, Rank (B), dim Nul (B).
- (c) Find a basis of Nul A and Nul (B).