Logica Propozițională. Seminar 4 - Fișă de exerciții

- 1. Să se reprezinte ca mulțime de clauze următoarele formule și să se studieze satisfiabilitatea lor folosind metoda rezoluției:
 - (a) $(p_1 \lor p_2) \land (\neg p_1 \lor p_2) \land (\neg p_2 \lor \neg p_3) \land p_3$;
 - (b) $(\neg p_4 \lor \neg p_1) \land (\neg p_1 \lor p_2) \land p_1 \land (\neg p_2 \lor p_3) \land (\neg p_3 \lor p_4)$.
- 2. Găsiți o respingere pentru formulele:
 - (a) $\{\{p_1, p_2, \neg p_3\}, \{\neg p_1\}, \{p_1, p_2, p_3\}, \{p_1, \neg p_2\}\};$
 - $\mathrm{(b)}\ \{\{p_1,\neg p_2,p_3\},\{p_2,p_3\},\{\neg p_1,p_3\},\{p_2,\neg p_3\},\{\neg p_3\}\}.$
- 3. Arătați că formula $(\neg p_2 \wedge \neg p_3 \wedge p_4) \vee (\neg p_2 \wedge \neg p_4) \vee (p_3 \wedge p_4) \vee p_2$ este tautologie, folosind metoda rezoluției.
- 4. Arătați că formula $G = (p_1 \wedge p_2 \wedge p_3)$ este consecință semantică din mulțimea de formule

$$\mathcal{G} = \{ \neg p_1 \lor p_2, \neg p_2 \lor p_3, p_1 \lor \neg p_3, p_1 \lor p_2 \lor p_3 \}$$

folosind metoda rezoluției.

- 5. Fie formula $F \in LP$ și mulțimea de clauze $C \subseteq LP$. Să se arate că $C \models F$ folosind rezoluția, pentru următoarele mulțimi C de clauze și pentru următoarele formule F:
 - (a) $C = \{p \lor \neg q \lor r, \neg p \lor r, p \lor q \lor p', \neg r \lor p'\}, F = p';$
 - (b) $C = \{ \neg p \lor \neg q \lor r, p, q \}, F = r;$
 - (c) $C = \{ \neg q \lor p, \neg p \lor r \lor q, \neg p \lor \neg q, p \lor \neg p', \neg p \lor \neg r, p \lor q \lor p'' \lor p', p \lor \neg p'' \lor p' \}, F = p'.$
- 6. Fie formulele $G, H \in LP$, unde $G = (p \leftrightarrow r) \land q, H = (q \leftrightarrow r) \rightarrow p$. Aduceți formulele G și $\neg H$ în formă clauzală, apoi arătați că H este consecință semantică din G. Ce rezultate teoretice ați folosit?
- 7. Calculați $Res^n(F)$ pentru formula F de mai jos:

$$F = p \wedge q \wedge r \wedge (\neg p \vee p') \wedge (\neg q \vee \neg p' \vee q') \wedge (\neg r \vee \neg q').$$

Este F nesatisfiabilă?