Tensor Network Hackathon

Team 9: Optimizing Camera Placement for Emergency Prevention and Response

Introduction

Camera Placement problem in Ising formulation

$$H(z) = \sum_{i < j}^{N} W_{ij} z_i z_j - \xi \sum_{i=1}^{N} A_i z_i + P \left(\sum_{i=1}^{N} z_i - N + 2C \right)^2 \xrightarrow{\text{TN ansatz}} \begin{array}{c} \text{TN ansatz} \\ \sum_{i < j} Z_i - \sum_{i < j < j} Z_i -$$

with penalty term P, available antennas C, relative multiplier $\xi = 0.25$

Ground state search with DMRG and imag. time evolution (ITE)

Introduction

Camera Placement problem: Constrained case

$$H(z) = \sum_{i < j}^{N} W_{ij} z_i z_j - \xi \sum_{i=1}^{N} A_i z_i + P \left(\sum_{i=1}^{N} z_i - N + 2C \right)^2 \xrightarrow{\text{TN ansatz}} \begin{array}{c} \text{TN ansatz} \\ \sum_{i < j} z_i - \sum_{i < j < j} z_i -$$

with penalty term P, available antennas C, relative multiplier $\xi = 0.25$

Ground state search with DMRG and imag. time evolution (ITE)

Introduction

Implementation

- Tensor network ansatz with MPS, TTN
- Ground state search with DMRG, ITE

• Brute force:

generate
$$(-1,+1,-1,+1,+1)$$
 $(+1,-1,+1,+1)$ $\xrightarrow{\text{evaluate}}$ $(+1,-1,+1,+1)$ $\xrightarrow{\text{evaluate}}$ $(+1,-1,+1,+1)$

Commercial Solver: GUROBI

ITE: $t \to -i\tau$, $|\psi(t)\rangle = e^{-\tau \hat{H}} |\psi(t=0)\rangle$

Ground state search via DMRG & ITE

Hyperparameter optimization

- To optimize:
 - Number of steps/sweeps
 - Bond dimension
 - Sweep order
 - Time-step ("temperature")

Performance comparison

Time to solution

Performance comparison

Energy of the optimal solution