

Objetivo

Combinar los conceptos de "Máquina abstracta" y "Autómata celular" para definir un nuevo autómata inspirado en el juego popular de "Piedra, papel o tijeras".

Conceptos Previos

Autómata Celular

"... Es un modelo matemático para un sistema dinámico, compuesto por un conjunto de celdas o células que adquieren distintos estados o valores. Estos estados son alterados de un instante a otro en unidades de tiempo discreto, es decir, que se puede cuantificar con valores enteros a intervalos regulares..."

David Alejandro Reyes Gómez.

Autómata Celular

- Cinta. Similar a la de la máquina de turing que funciona como memoria. También es infinita.
- Estados de la celda. Son los valores que se pueden escribir en una celda de la cinta.
- Configuración Inicial. Son un conjunto de cierta cantidad de estados de las celdas, colocados en la cinta.
- Función de Transformación. Es la regla de evolución del sistema, determina como la cinta del autómata se desarrollará a partir de la configuración inicial.

Máquina Abstracta

Es la definición de un sistema que contempla hardware y software. De cierto modo es definir una computadora, pero no está limitada a ella. De hecho, una máquina de turing es una máquina abstracta; pero también, un agente inteligente e, incluso, una máquina virtual de un lenguaje de programación.

Máquina Abstracta

- Hardware. Por extraño que parezca, es una descripción de elementos físicos que no existen pero que son necesarios para correr el Software. Cuando hablamos de una máquina de turing, el cabezal y la cinta son ejemplos de hardware abstracto.
- Instrucciones. Son las operaciones que pueden ejecutarse dentro del hardware. Por ejemplo, en un agente inteligente leer de un sensor o activar un actuador son instrucciones del mismo.
- Software. Es el programa que ejecuta las instrucciones en el hardware.

Formalización del juego de Piedra, Papel o Tijeras.

Formalizando Piedra, Papel o Tijeras.

```
Piedra + Papel = Papel
Piedra + Tijeras = Piedra
Piedra + Piedra = Empate
Tijeras + Papel = Tijeras
Tijeras + Tijeras = Empate
Tijeras + Piedra = Piedra
...
```

Gramática Piedra, Papel o Tijeras.

```
<RocaPapelTijera> ::= <RR>|<RP>|<RT>
<RR> ::= <R1>|<R2>|<R3>
<RP> ::= <P1>|<P2>|<P3>
<RT> ::= <T1>|<T2>|<T3>
<R1> ::= RPP
<R2> ::= RTR
<R3> ::= RRE
<P1> ::= PPE
<P2> ::= PTR
<P3> ::= PRP
<T1> ::= TPT
<T2> ::= TTE
<T3> ::= TRR
```

Descripción de los componentes del autómata

Cinta. Elemento de hardware similar a la de la máquina de turing, pero con las siguientes características:

- No es reversible. Es decir, no se puede rebobinar.
- No hay celdas vacías
- Crece en únicamente de forma vertical, agregando filas y solo cuando requiere almacenar un nuevo valor.

Estados de la celda. Son todos los símbolos terminales de la gramática Piedra, papel o Tijeras:

- R ==> Piedra
- P ==> Papel
- T ==> Tijeras
- E ==> Empate

P T E

Configuración Inicial de la cinta. Son símbolos escritos a priori en la cinta. Cualquier conjunto de terminales de la gramática es posible, tiene la restricción de que no puede haber celdas en blanco.

R

Cabezal Lectura. Elemento de hardware que tiene grabado los símbolos terminales piedra, papel y tijeras. Sirve para leer la celda a evaluar de la cinta, el cual será comparado con los símbolos grabados por la función de Transformación.

Cabezal Escritura. Elemento de hardware que sirve para para escribir el resultado de la función de transformación en la cinta o buffer. Puede moverse libremente en el buffer.

 Buffer. Elemento de hardware, muy parecida a la cinta, su finalidad es de memoria intermedia, donde el cabezal de escritura almacena resultados de la función de transformación. Tiene la restricción que cada nueva fila agrega con un desplazamiento horizontal.

Función de Transformación. Esta función tomará como referencia la gramática para generar símbolos de resultados. Siempre se aplica a dos símbolos, ya se por evaluar el cabezal contra la cinta o por acumulación en el buffer, para su reducirlo a una fila.

FT(S1,S2)

$$RPT = \{C, T, S0, CL, CE, BF, FT\}$$

$$G \in FT$$

- \cdot C = Cinta
- NT = Terminales de la gramática
- S0 = Valores iniciales de la Cinta
- CL = Cabezal de Lectura
- CE = Cabezal de Escritura
- BF = Buffer
- FT = Función de Transformación
- G = Gramática de la Función de Transformación

Funcionamiento Paso 1

Buffer

Buffer

Funcionamiento Paso 2

Buffer

Se aumenta el buffer y regresa el cabezal para marcar a la segunda celda de la cinta

Se coloca un desplazamiento de columna en el buffer

Cabezal Lectura

Cinta

Buffer

Cabezal Lectura

Cinta

Buffer

Reducción del buffer

¡Error!

Corrección a la gramatica

Gramática Piedra, Papel o Tijeras.

```
<RocaPapelTijera> ::= <RR>|<RP>|<RT>
<RR> ::= <R1>|<R2>|<R3>
<RP> ::= <P1>|<P2>|<P3>
<RT> ::= <T1>|<T2>|<T3>
<R1> ::= RPP
<R2> ::= RTR
<R3> ::= RRE
<P1> ::= PPE
<P2> ::= PTR
<P3> ::= PRP
<T1> ::= TPT
<T2> ::= TTE
<T3> ::= TRR
```

Gramática Piedra, Papel o Tijeras.

```
<RocaPapelTijera> ::= <RR>|<RP>|<RT>|<RE>
<RR> ::= <R1>|<R2>|<R3>|<R4>
<RP> ::= <P1>|<P2>|<P3>|<P4>
<RT> ::= <T1>|<T2>|<T3>|<T4>
<RE> ::= <E1>|<E2>|<E3>|<E4>
<R1> ::= RPP <R2> ::= RTR
<R3> ::= RRE <R4> ::= RER
<P1> ::= PPE <P2> ::= PTR
<P3> ::= PRP <P4> ::= PEP
<T1> ::= TPT <T2> ::= TTE
<T3> ::= TRR <T4> ::= TET
<E1> ::= EPP <E2> ::= ETT
<E3> ::= ERR <E4> ::= EEE
```


Movemos el cabezal de lectura y avanzamos en la cinta marcando la siguiente celda

Se colocan dos desplazamientos de columna en el buffer

Cabezal Lectura

Cinta

Buffer

Cinta

Buffer

Buffer

E P

R

Cabezal

Escritura

Se repite el proceso tanto como se desee

Implementación Python Puro

Terminales

Elemento	Valor
Piedra	1
Papel	2
Tijeras	3
Empate	0

Cabezal

Cabezal de lectura tiene los símbolos grabados en el siguiente orden:

Tijera Papel Roca

Т	Р	R
3	2	1

Aplicación

8 Repeticiones, Valor inicial de la Cinta Roca.

```
1
021
10331
0221321
103312031
02213001021
1033102310331
022132010221321
```

Representación gráfica de los resultados

Terminales a color

Elemento	Valor
Piedra	#ffaa00
Papel	#aaccff
Tijeras	#d40055
Empate	#2b2b2b

Resultado

Referencias.

- Stephan Diehl, Pieter Hartel and Peter Sestoft, Abstract Machines for Programming Language Implementation, Future Generation Computer Systems, Vol. 16(7), Elsevier, 2000.
- Russell, Stuart J.; Norvig, Peter (2003), Artificial Intelligence: A Modern Approach (2nd ed.), Upper Saddle River, New Jersey: Prentice Hall, ISBN 0-13-790395-2, chpt. 2

Referencias.

Weisstein, Eric W. "Rule 30." From MathWorld--A Wolfram Web Resource. http://mathworld.wolfram.com/Rule30.html

David Alejandro Reyes Gómez, Descripción y Aplicaciones de los Autómatas Celulares Agosto del 2011, p4.

http://delta.cs.cinvestav.mx/~mcintosh/cellularautoma ta/Summer_Research_files/ Arti Ver Inv 2011 DARG.pdf

El Audio del final es una representación del autómata