Université Abdelmalek Essaadi ENSAH Al Hociema

TD 3 : Séries de fonctions

Exercice 1:

On pose $u_n(x) = e^{-nx} \sin(nx)$) avec $x \in \mathbb{R}^+$.

- 1) Étudier la convergence simple de la suite de fonctions (un) sur $[0, +\infty[$
- 2) Étudier la convergence uniforme sur $[a, +\infty]$ avec a > 0.
- 3) Étudier la convergence uniforme sur $\left[0,+\infty\right[$.

Exercice 2:

On pose
$$f_n(x) = \frac{1}{(1+x^2)^n}$$
 avec $x \in \mathbb{R}$.

Étudier la convergence uniforme de (f_n) sur $\mathbb R$.

Exercice 3 : On considère la série de fonctions

$$\sum_{n=1}^{+\infty} \frac{e^{-nx} \sin(nx)}{\ln(n+1)}$$

- 1. Etudier la convergence simple de cette série sur $]0,+\infty[$
- 2. Etudier la convergence uniforme de cette série sur $a,+\infty$ ou a>0.

Exercice 4 : Montrer que la série de fonctions de terme général

$$u_n(x) = (-1)^n \frac{e^{-nx^2}}{(n+1)^3}$$

est continue $\sup \mathbb{R}$.

Exercice 5:

- 1- Montrer que la série de fonctions $\sum_{n=1}^{+\infty} \frac{x}{(x^2+n^2)^2}$ converge uniformément sur [-a, a] où a>0
- 2- Montrer que cette série est continue sur $\mathbb R$.
- 3- Montrer que la série de fonctions $\sum_{n=1}^{+\infty} \frac{1}{x^2+n^2}$ est dérivable sur $\mathbb R$.

Exercice 6 : On considère la série de fonctions $\sum_{n\geq 1} f_n$ avec

- 1- Montrer que cette série converge pour tout $x \in \mathbb{R}$.
- 2- Montrer que $f(x) = \sum_{n \ge 1} f_n(x)$ est une fonction continue.
- 3- Montrer que

$$\int_{0}^{\pi} f(x)dx = 2\sum_{n \ge 1} \frac{1}{(2n-1)^4}$$