AMCS 202 - APPLIED MATHEMATICS II

Maria Alexandra Aguiar Gomes

Applied Mathematics and Computer Science (AMCS)/Statistics (STAT) Program Computer, Electrical and Mathematical Sciences & Engineering (CEMSE) Division King Abdullah University of Science and Technology (KAUST)

HOMEWORK II

Henrique Aparecido Laureano

Spring Semester 2018

Contents

\mathbf{Prob}	lem 1																																													
1																																														
2																																														
3																																														
	a) .																																													
	b)																																													
Prob	lem 2																																													
	a) .																																													
	b)																																													
	c) .																																													
2																																														
	a) .																																													
	b)																																													
	c) .																																													
\mathbf{Prob}	$ oldsymbol{lem 3} $																																													
Prob	$ oldsymbol{lem 4} $																																													
_	a) .																																													
	b)																																													
	c) .																																													
3																																														
Prob																																														
4		•	•	٠	٠	•	•	٠	•	•	•	•	•	•	•	•	•	٠	•	٠	٠	٠	٠	•	٠	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•

Problem 1

1.	
Describe the range of $f(z)=x^2+2i$ defined on $ z \leq 1$.	
Solution:	
2.	
Describe the range of $f(z)=z^3$ in the semidisk given by $ z \leq 2,\ {\rm Im}(z)\geq 0.$	
Solution:	
3.	
Show that the inversion mapping $w=f(z)=1/z$ maps a)	
The circle $z = r$ onto the circle $ w = 1/r$. Solution:	П
b)	Ш
The ray $\operatorname{Arg}z= heta_0,-\pi< heta_0<\pi$ onto the ray $\operatorname{Arg}w=- heta_0.$	
Solution:	

Problem 2

1.

Using methods familiar from elementary calculus, find the limit (it it exists) of the following sequences of complex numbers:

a)

 $z_n = (i/3)^n$, start looking at $|z_n|$.

Solution:

b)

 $z_n = (2+in)/(1+3n).$

Solution:

c)

 $z_n = i^n$.

Solution:

2.

Consider the following complex functions:

$$f_1(z) = z^2 - 2z + 1,$$
 $f_2(z) = \frac{z + 2i}{z},$ $f_3(z) = \frac{z^2 + 4}{z(z - 2i)}.$

a)
Find the domain of these functions and justify their continuity in the domain.
Solution:
b)
Calculate the limits of these functions as $z \to 2i$.
Solution:
\mathbf{c})
Redefine f_3 so that it becomes a continuous function at $z = 2i$.
Solution:
Problem 3
1.
Show that $\text{Re}(z)$ and $\text{Im}(z)$ are nowhere differentiable. Hint: try the approach use class to get the Cauchy-Riemann equations.
Solution:
2.

Find the derivatives of

$$f(z) = \left(\frac{z^2 - 1}{z^2 + 1}\right)^{100}, \qquad g(z) = \frac{(z+2)^3}{(z^2 + iz + 1)^4}.$$

Solution:

3.

Let $f(z) = z^3 + 1$ and let

$$z_1 = \frac{-1 + \sqrt{3}i}{2}, \qquad z_1 = \frac{-1 - \sqrt{3}i}{2}.$$

Show that there is no point w on the line segment between z_1 and z_2 such that

$$f(z_2) - f(z_1) = f'(w)(z_2 - z_1),$$

meaning that the mean-value theorem of calculus does not extend to complex functions.

Solution:

Problem 4

1.

Show that

$$f(z) = (x^2 + y) + i(y^2 - x)$$

is not analytic at any point of the complex plane.

Solution:

2.

Use the Cauchy-Riemann equations to show that the following functions are not differentiable:

a)	
$f(z) = \bar{z}$.	
Solution:	
b)	
$f(z) = \operatorname{Re}(z).$	
Solution:	
c)	
f(z) = 2y - ix.	
Solution:	
3.	
Construct an analytic function whose real part is $u(x,y) = x^3 - 3xy^2 + y$.	
Solution:	
4.	
Show that if $\phi(x,y)$ is harmonic, then $\phi_x - i\phi_y$ is analytic. You may assume continuous partial derivatives of all orders.	e that ϕ has
Solution:	

Problem 5

1.	
Show that	
$\cos(x+iy) = \cos x \cosh y - i \sin x \sinh y.$	
Solution:	
2.	
Prove that $\cos z = 0$ if and only if $z = \pi/2 + k\pi$, where k is an integer.	
Solution:	
3.	
	_
Using the fact that $f'(0) = \lim_{z\to 0} [f(z) - f(0)]/z$, calculate	
$\lim_{z \to 0} \frac{\sin z}{z}.$	
Solution:	
4.	
Using the chain rule, determine the domain of analyticity for $f(z)=\mathrm{Ln}(3z)$ compute $f'(z)$.	(z-1) and
Solution:	