NOTE:

We implement ETDSDC, IMEXSDC, and ETDRK4 schemes differently for diagonal and non diagonal linear operator Λ . Our MATLAB and Fortran codebase is thus divided into a diagonal and nondiagonal directories. We describe the difference between our two implementations for the ETDSDC scheme, though the same two methodologies can also be applied to IMEXSDC and ETDRK4 schemes.

Two ETDSDC $_N^M$ Implementations 1

We describe two different implementations for an ETDSDC_N^M correction sweep: one for when Λ is a scalar or diagonal matrix and the other when Λ is a general matrix. Throughout our discussion, we let P denote the total number of spatial grid points, $\phi^k(x,t)$ denote the approximate solution, and $h\tau_i$ denote the quadrature nodes.

1.1 Λ Scalar or Diagonal Matrix

Let $\lambda_1, \lambda_2, ..., \lambda_P$ be the diagonal entries of Λ and let ϕ^k be the $N \times P$ matrix

$$\boldsymbol{\phi}^k = \begin{bmatrix} \phi_1^k & \phi_2^k & \dots & \phi_P^k \end{bmatrix},$$

where $\phi_i^k = \left[\phi^k(x_i, h\tau_1), \dots, \phi^k(x_i, h\tau_N)\right]^T$ is an $N \times 1$ vector which contains the solution at the *i*th grid point and each of the quadrature nodes. Similarly, we define the $N \times P$ matrix

$$\mathbf{N}(\boldsymbol{\phi}^k) = \begin{bmatrix} N(\mathbf{t}, \phi_1^k) & N(\mathbf{t}, \phi_2^k) & \dots & N(\mathbf{t}, \phi_P^k) \end{bmatrix}$$

where $\mathbf{t} = [h\tau_1, h\tau_2, \dots, h\tau_N]^T$. Next, we define the $N-1 \times N$ integration matrix $\mathbf{W}^{(k)}$ which acts on the kth spatial gridpoint such that

$$\mathbf{W}_{ij}^{(k)} = \int_{h\tau_i}^{h\tau_{i+1}} e^{\lambda_k (h\tau_{i+1} - s)} L_j(s) ds, \qquad L_j(s) = \prod_{\substack{l=1\\l \neq j}}^{N} \frac{(s - h\tau_l)}{(h\tau_j - h\tau_l)}.$$

The matrices $\mathbf{W}_{ij}^{(k)}$ can be formed by first computing the scalars $w_{ij}(h_i\Lambda)$ as described in Section ??, then noting that $\mathbf{W}_{i,j}^{(k)} = w_{j,i}(h_i\lambda_k)$. Next, we define the $N-1\times P$ arrays

$$\mathbf{P0}_{ij} = \varphi_0(h_i \lambda_i) \qquad \mathbf{P1}_{ij} = \varphi_1(h_i \lambda_i).$$

We can now write an ETDSDC $_N^M$ correction sweep using MATLAB array notation:

- 1. $\mathbf{N} = \mathcal{N}(\boldsymbol{t}, \boldsymbol{\phi}^k)$;
- 2. I = zeros(N-1,N);
- 3. **for** i=1:P
- I(:,i) = W(:,:,i) * N(:,i)

5. for i=1:P-1
6.
$$\phi^{k}(i+1,:) = \mathbf{P0}(i,:) .* \phi(i,:) + \mathbf{P1}(i,:) .* (\mathcal{N}(h\tau_{i},\phi^{k}(i,:)) - \mathbf{N}(i,:)) + \mathbf{I}(i,:)$$

The array ϕ^k now contains the corrected solution. We note that lines 3-4 of runs slowly if implemented in MATLAB. It is possible to obtain a speed improvement if ϕ is represented as a $N \times 1 \times P$ array and the MATLAB function bsxfun is used to perform the matrix multiplications.

1.2 Non-Diagonal Matrix Λ

We define the solution matrix ϕ^k to be the $P \times N$ matrix

$$\boldsymbol{\phi}^k = \begin{bmatrix} \phi_1^k & \phi_2^k & \dots & \phi_N^k \end{bmatrix}$$

where ϕ_i^k is an $P \times 1$ vector containing the entire solution at the time-step $h\tau_i$. Similarly, we define the $P \times N$ matrix

$$\mathbf{N}(\boldsymbol{\phi}^k) = \begin{bmatrix} N(h\tau_1, \phi_1^k) & N(h\tau_2, \phi_2^k) & \dots & N(h\tau_N, \phi_N^k). \end{bmatrix}$$

The matrix coefficients $w_{ij}(h_i\Lambda)$, $\varphi_0(h_i\Lambda)$, and $\varphi_1(h_i\Lambda)$ from Sections ?? and ?? can be stored in a 4-dimensional and 3 dimensional arrays

$$\mathbf{W}(:,:,j,i) = w_{ij}(h_i\Lambda) \quad \mathbf{P0}(:,:,i) = \varphi_0(h_i\Lambda) \quad \mathbf{P1}(:,:,i) = \varphi_1(h_i\Lambda).$$

We can now write an ETDSDC^M_N correction sweep using MATLAB array notation:

1. $\mathbf{N} = \mathcal{N}(\mathbf{t}, \boldsymbol{\phi}^{k});$ 2. $\mathbf{I} = \operatorname{zeros}(P, N-1);$ 3. $\mathbf{for} \ i=1:N-1$ 4. $\mathbf{for} \ j=1:N$ 5. $\mathbf{I}(:,i) = \mathbf{I}(:,i) + \mathbf{W}(:,:,j,i) * \mathbf{N}(:,j)$ 6. $\mathbf{for} \ i=1:N-1$ 7. $\boldsymbol{\phi}^{k}(:,i+1) = \mathbf{P0}(:,:,i) * \boldsymbol{\phi}^{k}(:,i) + \mathbf{P1}(:,:,i) * (\mathcal{N}(h\tau_{i}, \boldsymbol{\phi}^{k}(:,i)) - \mathbf{N}(:,i)) + \mathbf{I}(:,i)$

The array ϕ^k will contain the corrected solution.