機械学習特論

レポート課題 1

2019年11月7日

創成科学研究科 基盤科学系 情報科学コース学籍番号 19-8801-009-1

北田 和

1

1.1 目的

最小二乗法の精度がどの程度のものか検討する.

1.2 手法

M 個のデータをランダムに生成し、特徴量 $x_i(0,1,\ldots,M)$ のデータとした (ランダムさは、正規分布に従い、これ以降使用するランダムな数字も正規分布に従う). これに対し、観測データ $y_i(0,1,\ldots,M)$ を式 (1) によって作成する.

$$y_i = \beta \times x_i + \beta_i \times 0.5 \tag{1}$$

ここで, β はランダムな定数であり, i に関係なく一つに決める. 一方, $\beta_i(0,1,\ldots,M)$ は, i によって異なるランダムな数である. また, x_i に関係ないこの項はノイズに該当する. なお, ランダムな数は, 正規分布に従うため, 平均は 0 となる. よって, 真の関数は, 式 (2) で表すことができる.

$$y = \beta \times x \tag{2}$$

作成した特徴量 x_i と観測データ y_i から、最小二乗法によって式 (2) の β を、予測する. ここで、予測した傾きを β^* とすると、最小二乗法によって求めた、式 (2) は式 (3) のように表せる.

$$y = \beta^* \times x \tag{3}$$

以上を計算するプログラムを以下に示す. なお, jupyter notebook を用いて解析を行った.

1.3 結果

生成した β は , 最小二乗法によって求めた β * は , であった.

ここで、観測データと式 (2)、式 (3) を図??にまとめた. 横軸は特徴量x、縦軸は観測データyである.

1.4 考察

2

2.1 目的

リッジ回帰における正則化パラメータ α と予測誤差の関係を調べ、最適な α について検討する.

2.2 手法

python のライブラリである scikit-learn 内に存在する boston housing データ使用した. boston housing データには, 13 種類の特徴量が存在する. それぞれの特徴の構成を表??に示す. これらの特徴量を用いて, 住宅価格を予測する.

CRIM	人口 1 人当たりの犯罪発生数
ZN	25,000 平方フィート以上の住居区画の占める割合
INDUS	小売業以外の商業が占める面積の割合
CHAS	チャールズ川によるダミー変数 (1: 川の周辺, 0: それ以外)
NOX	NOx の濃度
RM	住居の平均部屋数
AGE	1940 年より前に建てられた物件の割合
DIS	5 つのボストン市の雇用施設からの距離 (重み付け済)
RAD	環状高速道路へのアクセスしやすさ
TAX	\$10,000 ドルあたりの不動産税率の総計
PTRATIO	町毎の児童と教師の比率
В	町毎の黒人 (Bk) の比率を次の式で表したもの。 $1000(Bk-0.63)^2$
LSTAT	給与の低い職業に従事する人口の割合 (%)

全体データのうち、ランダムな 8 割のデータを学習データに、残りの 2 割のデータをテストデータとした. 予測誤差は、予測の平均絶対誤差 (MAE) と、平方根平均二乗誤差 (RMSE) によって導出することにした.ここで、予測誤差が小さくなる. つまり、MAE と RMSE が最小をとるときの、正則化パラメータ α を調べることにした. 具体的には、 α を 0 から 4.99 まで、0.01 刻みで大きくした時の、MAE と RMSE を計算し、それぞれが、最小をとるときの α がどのくらいであったか調べる.また、以上の手順をホールドアウト法によって、学習データとテストデータを 100 回変更した.これにより、導出された 100 個の α に対し、平均と標準偏差を計算することで、どのようなデータでも、予測誤差が小さくなるような α を検討する.

上記のプログラムを以下に示す.

2.3 結果

ホールドアウト法を用いた時の、ある学習データ、テストデータに対して、MAE と RMSE は、 α の変化によって、どう変化したかを、それぞれ、図??、?? に示す。どちらの図をみてもわかるように、 α が大きすぎても、小さすぎても MAE と RMSE は最小にはならない。

ホールドアウト法によって, 導出された MSE が最小となる α の平均は 1.18 , 標準偏差は 1.67 となった. 一方, RMSE が最小となる α の平均は 0.57 , 標準偏差は 1.29 となった.

2.4 考察