Redes Neurais Artificiais

Sistemas Inteligentes – Prof. Flávio Varejão Programa de Pós-Graduação em Informática Universidade Federal do Espírito Santo

Modelo Biológico - Neurônio

Modelo Biológico - Rede Neural

Entradas

- Recebidas pelos dendritos
- Sinapses vindas de outros neurônios

Processamento

Núcleo celular

Saídas

- Propagadas pelo axônio
- Sinapses para outros neurônios

Cérebro humano 10¹¹ Neurônios 10¹⁴ Sinapses

Neurônio MCP

 W_1

W,

u

f(u)

- Pesos: $W = [W_1, W_2, ..., W_n]^T$
- □ Saída linear (net): $u = W^T$. X $u = \sum_i W_i X_i$

$$\rightarrow$$
 y = f(u)

- Saída de ativação: y = f(u)
- Função de ativação: f(•)

Funções de Ativação

Função de limiar (threshold)

$$f(u) = \begin{cases} 0 & \text{se } u < \theta \\ 1 & \text{se } u \ge \theta \end{cases}$$

Função identidade

$$f(u) = u$$

- Função sigmóide
 - Logística $f(u) = (1 + e^{-u})^{-1}$
 - Tangente hiperbólica f(u) = tanh(u)

Parâmetros Livres

- Um neurônio artificial pode mapear funções diferentes, dependendo de seus parâmetros livres: pesos e limiar (bias)
- Consideremos, por exemplo, um neurônio MCP com duas entradas X₁ e X₂ e função de limiar:

Parâmetros Livres - Exemplos

Exemplo 1

•
$$W_1 = 1,0$$

•
$$W_2 = 1.0$$

$$\theta = 0.5$$

X_1	\mathbf{X}_2	u	f(u)	
0	0	0	0	
0	1	1	1	
1	0	1	1	
1	1	2	1	

Exemplo 2

•
$$W_1 = 1,0$$

•
$$W_2 = 1.0$$

$$\theta = 1.5$$

X_1	X_2	u	f(u)
0	0	0	0
0	1	1	0
1	0	1	0
1	1	2	1

Visualização Geométrica

Nos exemplos, a equação de decisão por meio da qual o neurônio ativa ou não a sua saída é:

$$W_1 X_1 + W_2 X_2 = \theta$$
 ou $W_0 + W_1 X_1 + W_2 X_2 = 0$

Visualização Geométrica

- Num espaço de duas variáveis, X₁ e X₂, o neurônio MCP estabelece uma reta que divide esse espaço em duas regiões
- Alterando-se os parâmetros W₀, W₁ e W₂, teremos retas com diferentes ângulos e posições
- Num espaço de três dimensões, os parâmetros W₀, W₁, W₂ e W₃ definem um plano
- Num espaço de n dimensões, W₀, W₁, W₂ ... W_n definem um hiperplano de dimensão (n-1), que divide o hiperespaço em duas regiões

Adaptação dos Parâmetros Livres

- A representação do conhecimento em uma RNA está na topologia da rede e no valor dos parâmetros livres
- O aprendizado de uma RNA consiste em encontrar o conjunto de pesos W (incluindo o bias W₀) que melhor se adapta ao problema (solução ótima)
- Para o problema da função "OU" lógico, existem infinitas soluções para W₀, W₁ e W₂

Arquiteturas de Redes Neurais

- Redes feed-forward com uma camada
 - Ex: Perceptron Simples, Máquina Linear

- Resolvem problemas linearmente separáveis
- Não resolvem o problema da função "XOR"

Arquiteturas de Redes Neurais

- Redes feed-forward com múltiplas camadas
 - Ex: Perceptron de Múltiplas Camadas

Arquiteturas de Redes Neurais

- Redes recorrentes (feed-back)
 - Ex: Rede de Hopfield

- Há laços de realimentação
- Comportamento dinâmico
- X(t+1) = f(X(t))

Perceptron de Múltiplas Camadas

- Aproximações universais de funções multivariáveis contínuas
- O número de entradas e saídas depende da dimensionalidade dos dados
- O número de neurônios nas camadas intermediárias depende da complexidade do problema
- Quanto maior o número de neurônios, mais complexas são as funções mapeadas com a RNA, porém maior é o tempo de treinamento

Perceptron de Múltiplas Camadas

Exemplo: Problema XOR

X_1	X_2	\mathbf{u}_1	u ₂	f_1	\mathbf{f}_2	u	f(u)
0	0	-3	-1	0	0	-1	0
0	1	-1	1	0	1	1	1
1	0	-1	1	0	1	1	1
1	1	1	3	1	1	-1	0

Aplicações

- Aproximação de Funções (Regressão)
 - Problema de interpolação

- Camada escondida
 - \Box f(u) = tanh(u)
 - Camada de saída
 - \Box f(u) = u

Aprendizado

- RNAs caracterizam-se pelo aprendizado por meio de exemplos
- Para um determinado conjunto de dados, o algoritmo de aprendizado deve adaptar os parâmetros livres da rede
- Em um número finito de iterações do algoritmo deve haver convergência para uma solução
- Critério de convergência
 - Minimização de uma função-objetivo, como por exemplo o erro de saída da rede

Paradigmas de Aprendizado

- Aprendizado Supervisionado
 - Caracteriza-se pela existência de um "professor" que tem a função de monitorar as respostas
 - O conjunto de treinamento é formado por pares de entrada e saída (x,yd)
 - O ajuste de pesos é feito de maneira que a resposta y da rede se aproxime da desejada y
 dentro de limites de tolerância estabelecidos
 - Utilizado em problemas de aproximação de funções, classificação de dados e modelagem de sistemas

Paradigmas de Aprendizado

- Aprendizado Não Supervisionado
 - Não há um "professor" externo
 - A única informação disponível é o conjunto de entradas x
 - O objetivo é a descoberta de estruturas entre os dados (clusters)
 - Utilizado em problemas de categorização
 - Exemplo: Mapa Auto-organizável de Kohonen

Paradigmas de Aprendizado

- Aprendizado por Reforço
 - Pode ser considerado um paradigma intermediário entre o supervisionado e o não supervisionado
 - O conjunto de treinamento é formado apenas pelas entradas, mas há um "crítico" externo que retorna um sinal de reforço ou penalidade associado à última ação da rede
 - O algoritmo visa a maximização do reforço e consequente melhora do desempenho da rede
 - Exemplo: controle do pêndulo invertido

Algoritmo Backpropagation

- Rumelhart et al, 1986
- Baseia-se na retropropagação dos erros para realizar ajustes nos pesos das camadas intermediárias
- Ajuste do vetor de pesos na n-ésima iteração:

$$w(n+1) = w(n) + \Delta w(n)$$

Método da descida de gradiente

$$\Delta w(n) = -\eta \nabla E(w(n))$$

Regra de Delta Generalizada

$$\Delta w_{ii}(n) = -\eta \partial E/\partial w_{ii}(n)$$

Algoritmo Backpropagation

- E: Erro quadrático médio das respostas da RNA $E(w(n)) = \frac{1}{2} \sum_{j} e_{j}(w(n))^{2} = \frac{1}{2} \sum_{j} (y_{j}^{d} f_{j}(u_{j}(n)))^{2}$
- \square η : Taxa de aprendizado
 - Parâmetro do algoritmo de treinamento
 - Quanto maior a taxa, maior o valor de Δw
 - Pode caminhar para um mínimo local, em vez do global

Algoritmo Backpropagation

Fase Feed-Forward:

- 1. Na primeira fase do treinamento, as entradas X_i são propagadas para frente, calculando $u_h = \sum_i w_{hi} x_i$ e $f_h(u_h)$ para cada neurônio h nas camadas escondidas
- 2. As saídas das camadas escondidas $f_h(u_h)$ são propagadas para frente, até chegar ao cálculo de $u_j = \sum_h w_{jh} f_h(u_h)$ e $f_j(u_j)$, para cada neurônio j na camada de saída
- 3. Como os valores de saída desejados são conhecidos, calculam-se os erros: e_i(w)=y_id - f_i(u_i)

Métodos Conexionistas - Resumo

Vantagens

- Aquisição automática de conhecimento
- Manipulação de dados quantitativos, mesmo aproximados ou com ruídos
- Grande poder de representação de conhecimento

Desvantagens

- Dificuldade para se definir a topologia e os parâmetros ideais para cada problema
- O conhecimento adquirido não fica explicitado numa linguagem compreensível ao ser humano
- Lentidão do processo de aprendizado