Zadanie 1. W kolejnych okresach czasu j=1,2,3 ubezpieczony, charakteryzujący się parametrem ryzyka Θ , generuje N_j szkód. Dla danego $\Theta=\theta$ zmienne N_1,N_2,N_3 są warunkowo niezależne i:

$$\Pr(N_j = n | \Theta = \theta) = e^{-\theta} \cdot \frac{\theta^n}{n!} \qquad n = 0, 1, 2, \dots$$

Parametr ryzyka w populacji ubezpieczonych przyjmuje wartości: 1 lub 2. Mamy do czynienia z dwuetapowym doświadczeniem losowym:

- najpierw losujemy ubezpieczonego zgodnie z rozkładem prawdopodobieństwa $Pr(\Theta=1)=0.5=Pr(\Theta=2)$
- następnie obserwujemy liczby generowanych przez niego szkód N_1 i N_2 . Staramy się przewidzieć liczbę szkód w następnym okresie, czyli N_3 . Jeśli wiadomo, że: $N_1+N_2=2$, to (warunkowe) prawdopodobieństwo tego, że $N_3=0$ jest równe:
- (A) 0.50
- (B) 0.37
- (C) 0.29
- (D) 0.25
- (E) 0.23

Zadanie 2. W pewnym ubezpieczeniu jedynie pewna część szkód jest zgłaszana. Niech K oznacza liczbę szkód zaszłych, zaś N- liczbę szkód zgłoszonych. Niech i numeruje szkody zaszłe. Niech teraz M_i oznacza zmienną przyjmującą wartość 1 gdy i-tą szkodę zgłoszono, - a wartość 0- gdy jej nie zgłoszono. Wtedy: $N=M_1+M_2+\cdots+M_K$

Załóżmy, że M_i są zmiennymi losowymi niezależnymi nawzajem i od zmiennej K, oraz iż zmienna K ma rozkład ujemny dwumianowy z parametrami (r, q), tzn.:

$$\Pr(K = k) = {r + k - 1 \choose k} \cdot (1 - q)^r \cdot q^k, \qquad k = 0, 1, ...$$

Załóżmy także, iż dla wszystkich M_i mamy:

$$Pr(M_i = 1) = 1 - Pr(M_i = 0) = q_1$$
.

Przyjmijmy ponadto oznaczenie: p = 1 - q oraz $p_1 = 1 - q_1$. Zmienna losowa N ma rozkład prawdopodobieństwa:

- (A) ujemny dwumianowy z parametrami $(r, q \cdot q_1)$
- (B) ujemny dwumianowy z parametrami $\left(r, \frac{q \cdot q_1}{1 q \cdot p_1}\right)$
- (C) ujemny dwumianowy z parametrami $\left(r \cdot \frac{1 q \cdot q_1}{p}, q \cdot q_1\right)$
- (D) ujemny dwumianowy z parametrami $\left(r \cdot \frac{1 q \cdot q_1}{p}, \quad q \cdot q_1 + p \cdot p_1\right)$
- (E) inny niż ujemny dwumianowy

Zadanie 3. Liczba szkód generowanych przez pewną grupę ryzyk w ciągu miesiąca ma rozkład Poissona z wartością oczekiwaną 33.33. Wysokość pojedynczej szkody ma rozkład prawdopodobieństwa o wartości oczekiwanej 8 i odchyleniu standardowym 6. Wysokości szkód i liczby szkód w kolejnych miesiącach są niezależne. Niech S_{12} oznacza łączną wartość szkód w ciągu roku.

Niech q będzie liczbą taką, że $Pr(S_{12} > q) = 0.95$.

Jeśli zastosujemy aproksymację normalną, to otrzymamy q równe:

- (A) 4000
- (B) 4465
- (C) 4329
- (D) 3529
- (E) 3715

Zadanie 4. Proces nadwyżki ubezpieczyciela opisany jest przez klasyczny model:

$$U(t) = u + ct - S_{N(t)},$$

gdzie u jest nadwyżką początkową,

ct jest suma składek zgromadzonych do momentu t,

N(t) jest procesem Poissona z parametrem intensywności λ ,

$$S_n = \sum_{i=1}^n X_i$$
 jest sumą wypłat, gdzie pojedyncze wypłaty:

 X_i są zmiennymi losowymi niezależnymi nawzajem i od procesu N(t), o identycznym rozkładzie wykładniczym z wartością oczekiwaną μ .

Parametry procesu sa następujące:

$$u=0$$
, $\mu=1$, $\lambda=5$.

Niech:

$$T = \begin{cases} \inf\{t > 0 : U(t) < 0\} & o \text{ ile } U(t) < 0 \text{ dla pewnego } t > 0 \\ \infty & w \text{ przeciwnym przypadku} \end{cases}$$

Przypuśćmy, że decydent posługuje się funkcją użyteczności:

$$w(y) = \begin{cases} 1 - \exp(-0.5 \cdot y) & dla \quad y \in R \\ 1 & dla \quad y = \infty \end{cases}$$

i zdecyduje się na podjęcie działalności ubezpieczeniowej, jeśli stwierdzi iż: E(w(U(T))) > w(0).

Warunek ten jest spełniony wtedy i tylko wtedy, gdy:

- (A) c > 7.5
- (B) c > 2.5
- (C) c > 10
- (D) c > 5
- (E) dla żadnych c nie jest spełniony

Zadanie 5. Łączna wartość szkód S wyraża się wzorem:

$$S = X_1 + \dots + X_N$$

gdzie wartości poszczególnych szkód (X_i to wartość i-tej szkody) są zmiennymi losowymi niezależnymi nawzajem oraz od zmiennej N (liczby szkód). Każda ze zmiennych X_i ma rozkład wykładniczy o wartości oczekiwanej 2, zaś N ma rozkład geometryczny z ilorazem postępu 0.5. $\Pr(S \le 4 \ln 5)$ wynosi:

- (A) 0.9
- (B) 0.8
- (C) 0.6
- (D) 0.5
- (E) 0.3

Wskazówka: Zauważ, że funkcja tworząca momenty zmiennej losowej S jest postaci:

$$p + (1-p) \cdot \frac{a}{a-t}$$

Zadanie 6. Łączna wartość roszczeń S wyraża się wzorem:

$$S = X_1 + \dots + X_N$$

gdzie wartości poszczególnych roszczeń (X_i to wartość i-tego roszczenia) są zmiennymi losowymi niezależnymi nawzajem oraz od zmiennej N (liczby szkód). Wiemy, że N ma rozkład Poissona z parametrem intensywności 5. Wartości pojedynczych roszczeń mają rozkład:

$$Pr(X_i = 1) = 0.6$$

$$Pr(X_i = 2) = 0.4$$
.

Przypuśćmy, że:

- roszczenia opiewające na kwotę 1 oddalane są z prawdopodobieństwem 1/3, zaś uznawane (i pokrywane) w pełni z prawdopodobieństwem 2/3;
- roszczenia opiewające na kwotę 2 oddalane są z prawdopodobieństwem 1/2, zaś uznawane (i pokrywane) w pełni z prawdopodobieństwem 1/2.

Dzieje się tak dla każdej szkody niezależnie od innych szkód. Niech \widetilde{S} oznacza łączną wartość roszczeń uznanych.

 $\Pr(\widetilde{S} \ge 3)$ wynosi:

(A)
$$1 - \left(1 + \frac{5}{1!} + \frac{5^2}{2!}\right) \cdot e^{-5}$$

(B)
$$1 - 6 \cdot e^{-3}$$

(C)
$$1 - 6 \cdot e^{-5}$$

(D)
$$1 - 5 \cdot e^{-3}$$

(E)
$$1 - \left(1 + \frac{3}{1!} + \frac{3^2}{2!}\right) \cdot e^{-3}$$

Zadanie 7. Rozważmy klasyczny model Buhlmanna teorii wiarogodności (*credibility*).

Zmienne:
$$X_{i,i}$$
 $(j = 1, ..., p),$ $(i = 1, ..., n)$

oznaczają wartość szkód z j-tego kontraktu w i-tym roku, zaś Θ_j oznacza parametr strukturalny dla j-tego kontraktu. Niech $\hat{\mu}_j$ będzie taką liniową funkcją zmiennych $X_{j,i}$ (zawierającą stałą), która jest najlepszym nieobciążonym predyktorem zmiennej losowej $\mu(\Theta_i)$. To znaczy, że:

(*)
$$E(\hat{\mu}_i - \mu(\Theta_i)) = 0$$

oraz że $\hat{\mu}_i$ minimalizuje błąd średniokwadaratowy predykcji:

$$(**)$$
 $E[(\hat{\mu}_j - \mu(\Theta_j))^2] = \min$

wśród funkcji liniowych spełniających warunek (*).

Kowariancja predyktorów dla kontraktu nr 1 i kontraktu nr 2: $COV(\hat{\mu}_1, \hat{\mu}_2)$, wyraża się wzorem:

(A)
$$\frac{s^2}{n} + \frac{s^2 \cdot a^2}{n \cdot a^2 + s^2}$$

(B)
$$\frac{s^2}{n \cdot p} + \frac{n}{p} \cdot \frac{s^2 \cdot a^2}{n \cdot a^2 + s^2}$$

$$(C)$$
 0

(D)
$$\frac{s^2}{n \cdot p} + \frac{1}{p} \cdot \frac{s^2 \cdot a^2}{n \cdot a^2 + s^2}$$

(E)
$$\frac{s^2}{n \cdot p}$$

Model Buhlmanna. Założenia i oznaczenia.

$$\Theta = (\Theta_{1}, \dots, \Theta_{p}),
\mu(\Theta_{j}) = E(X_{j,i}/\Theta), \qquad \sigma^{2}(\Theta_{j}) = VAR(X_{j,i}/\Theta),
COV(X_{j,i}, X_{j,k}/\Theta) = 0 \text{ dla } (i \neq k)
m = E(\mu(\Theta_{j})), \qquad s^{2} = E(\sigma^{2}(\Theta_{j})), \qquad a^{2} = VAR(\mu(\Theta_{j})),
COV(\mu(\Theta_{j}), \mu(\Theta_{k})) = 0 \text{ dla } (j \neq k),$$

Zadanie 8. Wartość szkody jest zmienną losową X o rozkładzie jednostajnym na przedziale [0,12]. Kontrakt ubezpieczeniowy jest opisany funkcją I(x): jest to wysokość odszkodowania wypłacanego w przypadku wystąpienia szkody x. Rozpatrujemy wszystkie kontrakty spełniające dwa warunki:

- $\bullet \quad 0 \le I(x) \le x$
- E[I(X)] = 1.5

Najmniejsza możliwa wartość VAR[X - I(X)] wynosi:

- (A) 1
- (B) 3
- (C) 3.75
- (D) 4
- (E) 12

Zadanie 9. Dla pięciu kontraktów ubezpieczeniowych, liczba szkód zaistniałych w ciągu trzech lat wyniosła:

Numer kontraktu j	1	2	3	4	5
Zaobs. liczba szkód N_j	1	2	0	2	0

Zakładamy, że liczba szkód N_j dla j-tego kontraktu jest zmienną losową o rozkładzie dwumianowym o parametrach $\left(3,\theta_j\right)$ - szkoda może wystąpić tylko raz w ciągu każdego z lat, z prawdopodobieństwem θ_j . A priori zakładamy, że θ_1,\ldots,θ_5 są realizacjami niezależnych zmiennych losowych Θ_1,\ldots,Θ_5 o jednakowym rozkładzie danym gęstością:

$$\pi(\theta) = \begin{cases} (a+1) \cdot (1-\theta)^a & dla \quad \theta \in (0,1) \\ 0 & w \text{ przeciwnym przypadku} \end{cases}$$

Dobrano parametr *a* tak, że $E(\Theta_j) = \frac{5}{15}$.

Wartości $(\hat{\theta}_1, \hat{\theta}_2, \hat{\theta}_3, \hat{\theta}_4, \hat{\theta}_5)$ estymatorów bayesowskich parametrów Θ_j postaci: $\hat{\Theta}_j = E(\Theta_j \big| N_j)$ wynoszą:

(A)
$$\left(\frac{1}{3}, \frac{2}{3}, 0, \frac{2}{3}, 0\right)$$

(B)
$$\left(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}, \frac{1}{3}, \frac{1}{3}\right)$$

(C)
$$\left(\frac{2}{6}, \frac{3}{6}, \frac{1}{6}, \frac{3}{6}, \frac{1}{6}\right)$$

(D)
$$\left(\frac{1}{5}, \frac{2}{5}, 0, \frac{2}{5}, 0\right)$$

(E)
$$\left(\frac{1}{3}, \frac{1}{2}, \frac{1}{4}, \frac{1}{2}, \frac{1}{4}\right)$$

Zadanie 10. Portfel ryzyk składa się z dwóch niezależnych podportfeli. Liczba szkód w podportfelu i (i = 1, 2) jest zmienną losową N_i o rozkładzie Poissona (λ_i), zaś wysokość pojedynczej szkody wynosi b_i (w ramach danego podportfela jest to wartość nielosowa). Niech:

$$\lambda_1 = 120$$
, $b_1 = 1$;
 $\lambda_2 = 30$, $b_2 = 3$.

Wartość oczekiwana i wariancja z rozkładu warunkowego łącznej wartości szkód z całego portfela

- jeśli wiadomo, że $N_1 + N_2 = 200$ wynosi:
- (A) wartość oczekiwana = 280; wariancja = 128
- (B) wartość oczekiwana = 210; wariancja = 390
- (C) wartość oczekiwana = 280; wariancja = 280
- (D) wartość oczekiwana = 200; wariancja = 200
- (E) wartość oczekiwana = 280; wariancja = 520

Egzamin dla Aktuariuszy z 24 listopada 1997 r.

Matematyka ubezpieczeń majątkowych

Arkusz odpowiedzi*

Imię i nazwisko :	KLUCZ ODPOWIEDZI	
Pesel	_	

Zadanie nr	Odpowiedź	Punktacja⁴
1	С	
2	В	
3	D	
4	С	
5	A	
6	В	
7	D	
8	С	
9	С	
10	A	

^{*} Oceniane są wyłącznie odpowiedzi umieszczone w Arkuszu odpowiedzi.

^{*} Wypełnia Komisja Egzaminacyjna.