

Ingeniería Informática, 10-2-2004 Cálculo para la Computación

(Primer parcial)

DNI:	Grupo:
Apellidos y Nombre:	

1. Sea
$$f(x,y) = \begin{cases} y \arctan \frac{x}{y^2} & \text{si } y \neq 0 \\ 0 & \text{si } y = 0 \end{cases}$$

(a) (0,5 puntos) Estudie la continuidad de f en TODO su dominio.

(b) (1 punto) Estudie la continuidad de $\frac{\partial f}{\partial x}$ y $\frac{\partial f}{\partial y}$ en (1,0). ¿Es diferenciable el campo en (1,0)?

(c) (1 punto) Estudie la diferenciabilidad de f en el (0,0).

2. a)(1,75 puntos) Calcule la serie de Fourier de la función de periodo 2π definida por $f(x)=\cos\frac{x}{2}$, $x\in[-\pi,\pi]$.

b)(0,5 puntos) Utilice la serie anterior para sumar la serie $\sum_{n=1}^{\infty} (-1)^n \frac{1}{4n^2-1}$.

3. (1,25 puntos) Determine el campo de convergencia de la serie $\sum_{n=1}^{\infty} \frac{1+n+e^{nx}}{n!}$ y calcule su suma.

4. (1,5 puntos) Dé una serie cuya suma sea $\log 8$ y determine el número de sumandos necesarios para obtener su valor con un error menor que 10^{-3} .

5. (1,25 punto) Calcule la suma de la serie $\sum_{n=1}^{\infty} \frac{1}{(2n+1)(2n-1)}$.

6. (1,25 puntos) Resuelva en $\mathbb C$ la ecuación $\sin z=\frac{1}{2}e^{iz}$ y exprese las soluciones en forma binómica.

NO SE PUEDE UTILIZAR CALCULADORA

ES OBLIGATORIO ENTREGAR ESTA HOJA DEBIDAMENTE CUMPLIMENTADA