Ma/CS 6a

Class 25: Partitions

Explain the significance of the following sequence: un, dos, tres, quatre, cinc, sis, set, vuit, nou, deu...

By Adam Sheffer

Answer

These are the Catalan numbers!

(The numbers one to ten in Catalan.)

Partitions of a Positive Integer

- For a positive integer n, we denote by p(n) the number of ways to write n as a sum of (unordered) positive integers.
- Example. We can write n=5 as

5,
$$4+1$$
, $3+2$, $3+1+1$, $2+2+1$, $1+1+1+1$.

so
$$p(5) = 7$$
.

- p(20) = 627.
- p(100) = 190569292.

Ferrers Diagrams

 Ferrers diagrams are a graphic way of representing partitions.

$$14 = 6 + 4 + 3 + 1$$

$$000000$$

$$000$$

Ferrers Diagrams of 1 to 8

A Simple Observation

Claim. Let n and r be positive integers.
 Then

```
p(n \mid \text{number of parts} \le r)
= p(n + r \mid \text{number of parts} = r).
```

 Proof. We find a bijection between the two sets of partitions:

Detailed Proof

- We describe a bijection between the sets:
 - $\circ P_n$ Partitions of n with at most r parts.
 - P_{n+r} Partitions of n+r with exactly r parts.
- Given a partition of P_n , we add a new first column with r elements, obtaining a partition of P_{n+r} .
- Given a partition of P_{n+r} , we remove the first column to obtain a partition of P_n

Conjugate Partitions

 Two partitions of a number n are said to be conjugate if one is obtained from the other by switching the rows and columns in the Ferrers Diagrams.

Using Conjugate Partitions

- Consider a pair of conjugate partitions α , β . The size of the largest part of α is the number of elements of β .
- Using a bijection argument as before, we have

```
p(n|\text{ largest part} = m)
= p(n|\text{ number of parts} = m).
```

Self-Conjugation

- A partition is self-conjugate if it is its own conjugate.
- Claim.

```
p(n \mid \text{self-conjugate})
= p(n \mid \text{the parts are distinct and odd}).
```


Self Conjugation Proof

 $p(n \mid self-conjugate)$ = $p(n \mid the parts are distinct and odd).$

- Proof. As before, we find a bijection between the two sets of partitions.
- $^{\circ}$ Given a self conjugate partition, let k_i be the number of elements in the 1st row and column after removing the first i-1 rows and columns. For i < j, we have $k_i > k_j$.
- We use the $2k_i-1$ elements in the i'th "row and column" to create the i'th row.

Partitions and Generating Functions

• To calculate p(i), we define a **generating** function for the number of partitions:

$$P(x) = p(0) + p(1)x + p(2)x^2 + \cdots$$

- By convention, we write p(0) = 1.
- We have as many initial values as we like:

$$p(1) = 1$$
, $p(2) = 2$, $p(3) = 3$, $p(4) = 5$, $p(5) = 7$, ...

Not clear how to find a recursion relation.

Warm-Up Question

- For any positive integer n, we have $(1-x^n)^{-1} = 1 + x^n + x^{2n} + x^{3n} + \cdots$
- Let $p_n(i)$ denote the number of partitions of i where each part is of size n.

$$p_n(i) = \begin{cases} 1, & \text{if } n|i, \\ 0, & \text{otherwise.} \end{cases}$$

The corresponding generating function:

$$P_n(x) = p_n(0) + p_n(1)x + p_n(2)x^2 + \cdots$$

= $(1 - x^n)^{-1}$.

A Bit of Progress

- Let $p_{n,m}(i)$ denote the number of partitions of i where each part is equal to either i or j.
- Let

$$P_{n,m}(x) = p_{n,m}(0) + p_{n,m}(1)x + p_{n,m}(2)x^{2} + \cdots$$

$$= (1 + x^{n} + x^{2n} + \cdots)(1 + x^{m} + x^{2m} + \cdots)$$

$$= (1 - x^{n})^{-1}(1 - x^{m})^{-1}.$$

Changing a Dollar

- Problem. In how many ways can a dollar be exchanged for quarters (25c), dimes (10c), and nickels (5c)?
- To make the numbers simpler, we can divide everything by 5:
 - In how many ways can we write 20 as a sum of 1's, 2's, and 5's.
 - The coefficient of y^{20} in $(1-y)^{-1}(1-y^2)^{-1}(1-y^5)^{-1}$.

Number Crunching

• First, let us calculate

$$(1-y^2)^{-1}(1-y^5)^{-1}$$
= $(1+y^2+y^4+\cdots+y^{20})(1+y^5+y^{10}+y^{15}+y^{20}).$

$$1 + y^{2} + y^{4} + y^{5} + y^{6} + y^{7} + y^{8} + y^{9} + 2y^{10} + y^{11} + 2y^{12} + y^{13} + 2y^{14} + 2y^{15} + 2y^{16} + 2y^{17} + 2y^{18} + 2y^{19} + 3y^{20}.$$

Number Crunching (cont.)

We have

$$(1-x^{2})^{-1}(1-x^{5})^{-1}$$

$$= 1 + y^{2} + y^{4} + y^{5} + y^{6} + y^{7} + y^{8} + y^{9}$$

$$+ 2y^{10} + y^{11} + 2y^{12} + y^{13} + 2y^{14} + 2y^{15}$$

$$+ 2y^{16} + 2y^{17} + 2y^{18} + 2y^{19} + 3y^{20}.$$

• What is the coefficient of y^{20} in

$$(1-y)^{-1}(1-y^2)^{-1}(1-y^5)^{-1}$$
?

• Every element of $(1 - y^2)^{-1}(1 - y^5)^{-1}$ corresponds to one way of writing 20:

$$1+1+1+1+1+1+1+1+1+2+1+2$$

 $+1+2+2+2+2+2+2+3=29$

Back to General Partitions

• **Theorem.** The generating function of the number p(n) of partitions can be written as

$$P(x) = p(0) + p(1)x + p(2)x^{2} + \cdots$$

$$= \prod_{i=1}^{\infty} (1 - x^{i})^{-1}$$

$$= (1 + x + x^{2} + \cdots)(1 + x^{2} + x^{4} + \cdots)(1 + x^{3} + x^{6} + \cdots)(1 + x^{4} + x^{8} + \cdots)\cdots$$

Proof Sketch

- We need to verify that the coefficient of x^n in P(x) is p(n).
 - Consider a partition $n=m_1s_1+m_2s_2+\cdots+m_ks_k$, where s_1,\ldots,s_k are distinct numbers and m_i is the number of parts of size s_i in the partition.
 - In $\prod_{i=1}^{\infty} (1-x^i)^{-1}$, this partition corresponds to taking $x^{m_i s_i}$ from $(1+x^{s_i}+x^{2s_i}+\cdots)$.
 - Similarly, any choice of elements from the parentheses in $\prod_{i=1}^{\infty} (1-x^i)^{-1}$ that yields x^n corresponds to a partition of n.

A Small Issue

 Our proof is fine if we have a product of finitely many terms, but in

 $\prod_{i=1}^{\infty} (1-x^i)^{-1}$ we have products of infinitely many terms!

• When proving that the coefficient of x^n is p(n), it suffices to consider $\prod_{i=1}^n (1-x^i)^{-1}$.

Restricted Partitions #1

- Consider partitions of n with no more than k identical parts.
- For example, when n = 12 and k = 2:
 - \circ 3 + 3 + 3 + 3 and 4 + 4 + 4 are not valid.
 - \circ 5 + 5 + 2 and 2 + 2 + 4 + 4 are valid.
- Problem. What is the generating function of partitions that have no more than k identical parts?

$$\prod_{n=1}^{\infty} (1 + x^n + x^{2n} + x^{3n} + \cdots).$$

Restricted Partitions #1 (cont.)

• Special case. Taking k=1, we get the generating function for $p(n \mid \text{each part is distinct})$: $(1+x)(1+x^2)(1+x^3)\cdots$

What about the case of a general k?

$$\prod_{n=1}^{\infty} (1 + x^n + x^{2n} + \dots + x^{kn}).$$

Restricted Partitions #2

- Consider partitions of n with only odd parts.
- For example, when n = 12:
 - \circ 1 + 1 + 1 + \cdots + 1, 3 + 3 + 3 + 3, 11 + 1, etc...
- Problem. What is the generating function of partitions with only odd parts?

$$(1-x)^{-1}(1-x^3)^{-1}(1-x^5)^{-1}\cdots$$

$$= \prod_{n=1}^{\infty} (1-x^{2n-1})^{-1}.$$

Restricted Partitions #3

- Consider partitions of n with only even parts.
- For example, when n=12: • 10+2, $2+2+\cdots+2$, 4+4+4, etc...
- Problem. What is the generating function of partitions with only even parts?

$$(1-x^2)^{-1}(1-x^4)^{-1}(1-x^6)^{-1}\cdots$$

$$= \prod_{n=1}^{\infty} (1-x^{2n})^{-1}.$$

Restricted Partitions #4

- Consider partitions of n with each part equals to at most k.
- For example, when n=12 and k=4: • 5+5+2 and 10+1+1 are not valid.
- Problem. What is the generating function of partitions whose parts equal to at most k?

$$(1-x)^{-1}(1-x^2)^{-1}(1-x^3)^{-1}\cdots (1-x^k)^{-1}$$
$$= \prod_{n=1}^k (1-x^n)^{-1}.$$

Happy Thanksgiving!

