Analogy for puns Punalogy

A punalogy generator: ideas, goals

by Camille Saran Louis Berrane Abir Lettifi Maeva Sillaire

Team organisation

Maeva

Background & interest:

Main tasks:

Louis

Background & interest:

Main tasks:

Abir

Background & interest:

Main tasks:

Introduction

Pun

Figure of speech that exploits a word's meaning/form to create humor

Our project will generate analogical puns (punalogies) based on:

- Word semantic similarity;
- Word morphological similarity.

woman wheat is to womango wheatdog as man corn is to mango corndog

Analogy - "a is to b as c is to d"

Type of logical proportion

4 objects A, B, C, D are in analogical proportion (i.e. A:B::C:D) iff 3 postulates hold true:

- A : B :: A : B (reflexivity);
- A:B::C:D \rightarrow C:D::A:B (symmetry);
- $A : B :: C : D \rightarrow A : C :: B : D$ (central permutation).

Imply other properties:

- A : A :: B : B (identity);
- A : B :: C : D \rightarrow B : A :: D : C (inside pair reversing);
- $A : B :: C : D \rightarrow D : B :: C : A$ (extreme permutation)

Tasks: Analogy detection, analogy solving

Punalogy- Unidirectional Approach

woman is to womango as man is to mango

Punalogy- Bidirectional Approach

woman is to womango as man is to mango

go is to mango as stay is to manstay

Punalogy- Bidirectional Approach

Combining analogies:

MANGO -> MAN -> WOMAN -> WOMANGO

MANGO -> GO -> STAY -> MANSTAY

To have (augmentation):

MANGO->MANSTAY->WOMANGO->WOMANSTAY

Method

Analogy solving Unidirectional (given A, C and D, generate B)

- Generation of A("woman") and C("man") Semantic Level (relation of similarity
 between A and C)
- Generation of D("mango") from C("man") -Morphological Level
- Generation of an anology B("womango") Morphological Level (Function D)

Analogy solving Bidirectional (given A, C and D, generate B)

- Generation of C("man") from D("mango") -Morphological Level (Function C)
- 2. Generation of A("woman") Semantic Level relation
- Generation of an analogy B("womango") -Morphological(Reverse Function C)

Or /And

- Generation of C("go") from A("mango") -Morphological Level (Function C)
- 2. Generation of A("stay") Semantic Level relation
- Generation of an analogy B("manstay") -Morphological(Reverse Function C)

Punalogies-Unidirectional

<u>Task</u>: Analogy solving (given A, C and D, generate B)

Punalogies-Bidirectional

<u>Task</u>: Analogy solving (given A, C and D, generate B)

woman is to womango as man is to mango

go is to mango as stay is to manstay

Semantic Level Conception Idea

Playing with Similarity Semantic:

- a. antonym
- b. synonym
- c. (Paronym)
- d. (Homonym)

Morphological Level Conception Idea

Selection by Affix

- prefix
- suffix

B generation:

- Function B = fD(A)
- Reverse Function B = rfD(A)

Datasets

- Focus on English analogy
- Selection of special type of words
- Based on semantic similarity pairs (man-woman)
 - -> Creation of a common dataset

semantic related words dataset

Based on morphologic of decomposition of "compound" words (mango-man-go)

Possible Models Networks:

• Convolutional Neural Network (CNN): Using Morphology analogies approach model from Safa Alsaidi et al. (2021)[1] and Semantic analogies approach model from Lim et al. (2019)[2]

• **Similarity Network Fusion** (SNF): Inspiration of aggregating data types from Bo Wang, A. Mezlin(2014)[3]

Further ideas

Possible addition of images

Futur Ideas (sentence level/ word level)

Organisation

Future work

Tasks:

Research/Literature survey

Development implementation

Train and test the model

Evaluate the model/results

- Model settings (different approaches)
- Datasets
- Analogy Function
- Embeddings
- Semantic/Morphology similarities

Work in progress

Organisation

Organisation:

- Research
- Development implementation
- Training/Testing
- Final evaluation

Important dates:

- 24/10 : Project Presentation
- 31/10: Supervised Meeting (
- 07/11: Supervised Meeting
- 14/11: Supervised Meeting
- 27/01: Report deadline
- 07/02: Final Project Presentation

Goal:

Literature survey

Implementation

References

- [1] Safa Alsaidi andt al. "A Neural Approach for Detecting Morphological Analogies". In: The 8th IEEE International Conference on Data Science and Advanced Analytics (DSAA). 2021. url: https://hal.inria.fr/hal-03313556
- [2]S. Lim, H. Prade, and G. Richard, "Solving wordanalogies: A machine learning perspective," in 15th EC-SQARU, G. Kern-Isberner and Z. Ognjanovic, Eds., vol.11726. Belgrade, Serbia: Springer, 2019, pp. 238–250.
- [3] Bo Wang and al. Similarity network fusion for aggregating data types on a genomic scale ".In: Nature methods.2014.url: http://mghassem.mit.edu/wp-content/uploads/2015/06/nmeth.2810.pdf

Images

- Alamy Stock Photo
- Getty Images
- https://starecat.com/woman-stand-woman-go-man-stand-mango-literally-fruit/