Coursework 1

Department of Informatics Semester 2 King's College London

1 Classification

D' = from the original data set D, containing (i) all instances with at least one missing value and (ii) an equal number of randomly selected instances without missing values. That is, if the number of instances with missing values is v in D, then D' should contain these v instances and additional v instances without any missing values, which are randomly selected from D.

D' 1 and D' 2 = using D', constructed two modified data sets D' 1 and D' 2 to handle missing values.

Q1:

- (i) Number of instances = 48842
- (ii) number of missing values =6465
- (iii) fraction of missing values over all attribute values =(6465/683788)*100 = .95
- (iv) number of instances with missing values = 3620
- (v) fraction of instances with missing values over all instances.

Q2:

Convert all 13 attributes into nominal using a Scikit-learn LabelEncode

Age ['2', '3', '1', '0', '4']

Workclass ['State-gov', 'Self-emp-not-inc', 'Private', 'Federal-gov', 'Local-gov', 'nan', 'Self-emp-inc', 'Without-pay', 'Never-worked']

Education ['Bachelors', 'HS-grad', '11th', 'Masters', '9th', 'Some-college', 'Assoc-acdm', 'Assoc-voc', '7th-8th', 'Doctorate', 'Prof-school', '5th-6th', '10th', '1st-4th', 'Preschool', '12th']

Education-num ['13', '9', '7', '14', '5', '10', '12', '11', '4', '16', '15', '3', '6', '2', '1', '8']

Marital-status ['Never-married', 'Married-civ-spouse', 'Divorced', 'Married-spouse-absent', 'Separated', 'Married-AF-spouse', 'Widowed']

Occupation ['Adm-clerical', 'Exec-managerial', 'Handlers-cleaners', 'Prof-specialty', 'Other-service', 'Sales', 'Craft-repair', 'Transport-moving', 'Farming-fishing', 'Machine-op-inspct', 'Tech-support', 'nan', 'Protective-serv', 'Armed-Forces', 'Priv-house-serv']

Relationship ['Not-in-family', 'Husband', 'Wife', 'Own-child', 'Unmarried', 'Other-relative']

Race ['White', 'Black', 'Asian-Pac-Islander', 'Amer-Indian-Eskimo', 'Other']

Sex ['Male', 'Female']

Capitalgain ['1', '0', '4', '2', '3']

Capitalloss ['0', '3', '1', '2', '4']

Hoursperweek ['2', '0', '3', '4', '1']

Q3

From D testing

	precision recall		f1-score	support
0 1	0.87 0.66	0.90 0.59	0.89 0.62	11100 3553
accuracy macro avg	0.76	0.74	0.83 0.75	14653 14653
weighted avg	0.82	0.83	0.82	14653

```
1 print(confusion_matrix(y_test,predictions))
[[10018     1082]
[ 1474     2079]]
```

Question 4

From D1 testing

```
1 predictions = dtree.predict(X_test)
   2 from sklearn.metrics import classification_report,confusion_matrix
   3 print(classification_report(y_test,predictions))
                                               support
               precision
                            recall f1-score
                    0.89
                              0.88
                                         0.89
                                                   1766
                                                    406
                    0.51
                              0.54
                                         0.53
                                         0.82
                                                   2172
     accuracy
                    0.70
                              0.71
                                         0.71
                                                   2172
    macro avg
                    0.82
                              0.82
                                                   2172
 weighted avg
                                         0.82
   1 print(confusion_matrix(y_test,predictions))
 [[1554 212]
```

Question 4

From D2 testing

[185 221]]

```
predictions = dtree.predict(X_test)
 2 from sklearn.metrics import classification report, confusion matrix
 3 print(classification report(y test, predictions))
                           recall f1-score
              precision
                                               support
           0
                   0.90
                                        0.89
                              0.89
                                                  1766
           1
                   0.53
                              0.56
                                        0.55
                                                   406
                                        0.83
                                                  2172
    accuracy
                                        0.72
                   0.72
                              0.72
                                                  2172
   macro avg
                              0.83
                                        0.83
weighted avg
                   0.83
                                                  2172
    print(confusion_matrix(y_test,predictions))
```

Best model: Based on the performances above, I will choose d2 as a better model. Since the accuracy in d2 is 0.82 and d1 the accuracy is 0.83. In-addition, in d2 there is an improvement in the precision, recall and F1-score compared to d1.

Clustering 2

Question 1

[[1569

[180

197]

226]]

```
ad_data.describe().loc[['mean','min','max'],:]
```

	Fresh	Milk	Grocery	Frozen	Detergents_Paper	Delicassen
mean	12000.297727	5796.265909	7951.277273	3071.931818	2881.493182	1524.870455
min	3.000000	55.000000	3.000000	25.000000	3.000000	3.000000
max	112151.000000	73498.000000	92780.000000	60869.000000	40827.000000	47943.000000

Scatter plot

Question 2:

Looking at the scatter plot below the scatter plot between fresh vs milk is a better fit compared to other scatters plots below.

