Oficina d'Accés a la Universitat

Proves d'accés a la universitat

Convocatòria 2014

Electrotècnia

Sèrie 3

La prova consta de dues parts de dos exercicis cadascuna. La primera part és comuna i la segona té dues opcions (A i B). Resoleu els exercicis de la primera part i, per a la segona part, escolliu UNA de les dues opcions (A o B) i feu els exercicis de l'opció triada.

PRIMERA PART

Exercici 1

[2,5 punts]

[En cada qüestió només es pot triar UNA resposta. Qüestió ben contestada: 0,5 punts; qüestió mal contestada: -0,16 punts; qüestió no contestada: 0 punts.]

Qüestió 1

Un díode ideal és un dispositiu semiconductor que es caracteritza pel fet de

- a) deixar circular corrent en un únic sentit.
- b) deixar circular corrent en tots dos sentits.
- c) no deixar circular corrent en cap sentit.
- *d*) presentar una caiguda de tensió en sentit directe de 10 V.

Qüestió 2

Un consum trifàsic està format per tres impedàncies iguals connectades en triangle. Cada impedància està formada per una resistència de $9\,\Omega$ i una inductància de $12\,\Omega$ connectades en paral·lel. Si connectem el consum a una xarxa de $400\,\mathrm{V}$ (de tensió composta), quina potència reactiva es consumeix?

- *a*) 13,3 kvar
- **b**) 23,1 kvar
- *c*) 40,0 kvar
- d) 69,3 kvar

Qüestió 3

Una inductància està formada per material ferromagnètic, un petit entreferro (aire) i un enrotllament amb el conductor d'alumini. Pel conductor d'alumini circula un corrent continu constant *I*. Volem augmentar el valor eficaç del flux magnètic que s'estableix en el material ferromagnètic de la inductància. Això es pot aconseguir

- a) augmentant la secció del material ferromagnètic.
- b) disminuint la secció del material ferromagnètic.
- c) disminuint l'entreferro, és a dir, disminuint la reluctància del circuit magnètic.
- d) canviant l'enrotllament de material (per exemple, posant-lo de coure), però sense variar el corrent que hi circula.

Qüestió 4

Volem engegar un motor d'inducció trifàsic de tensions nominals 400/690 V mitjançant un arrencador estrella-triangle. Quina ha de ser la tensió nominal de la xarxa d'alimentació per tal que el motor pugui treballar en condicions nominals de manera permanent?

- a) $400/\sqrt{3} \text{ V}$
- **b**) 400 V
- *c*) 690 V
- d) $690 \cdot \sqrt{3} \text{ V}$

Qüestió 5

Un consum monofàsic té una impedància de valor $\underline{Z} = 3 + j4 \Omega$. Connectem el consum entre dues fases d'un sistema trifàsic de tensió simple (fase-neutre) de 231 V. Quin corrent circularà pel consum?

- *a*) 46,2 A
- **b**) 80 A
- c) 100 A
- d) 133,3 A

Exercici 2

[2,5 punts en total]

 $U_1 = 100 \text{ V}$ $R_1 = 100 \Omega$ $R_2 = 200 \Omega$ $R_3 = 300 \Omega$

En el circuit de la figura, determineu:

- *a*) La mesura de l'amperímetre *A*₁.
- **b**) La mesura de l'amperímetre A_2 .
- c) La mesura de l'amperímetre A_3 .
- d) La mesura del wattimetre W_1 .

[0,5 punts]

[0,5 punts]

[0,5 punts]

[1 punt]

SEGONA PART

OPCIÓ A

Exercici 3

[2,5 punts en total]

El transformador del circuit de la figura és ideal i la placa de característiques indica que la potència nominal és de 5 kVA; la tensió nominal del primari (a l'esquerra en el dibuix), de 400 V; i la tensió nominal del secundari (a la dreta en el dibuix), de 230 V.

La tensió real mesurada en R_2 és V_2 . Per a aquest cas, determineu:

a) La mesura de l'amperímetre A_2 .

[0,5 punts]

b) La mesura de l'amperímetre A_1 .

[0,5 punts]

c) El valor de la resistència R_1 .

[1 punt]

d) La tensió de la font d'alimentació U_1 .

[0,5 punts]

Exercici 4

[2,5 punts en total]

Un motor de corrent continu d'imants permanents té les dades següents en la placa de característiques:

$$P = 250 \text{ W}$$
 $U = 36 \text{ V}$ $I = 7,62 \text{ A}$ $n = 3850 \text{ min}^{-1}$

Les pèrdues mecàniques i en les escombretes es consideren negligibles.

Si el motor treballa en condicions nominals, determineu:

a) El rendiment η .

[0,5 punts]

b) El valor R_i de la resistència de l'induït.

[1 punt]

Si el motor desenvolupa el 60 % del parell nominal i s'alimenta amb tensió nominal, determineu:

c) La nova velocitat de gir del motor.

[1 punt]

OPCIÓ B

Exercici 3

[2,5 punts en total]

En el circuit de la figura, alimentat per un sistema trifàsic simètric i equilibrat de tensió U i freqüència f, determineu:

a) La mesura de l'amperímetre A_1 . [0,5 punts]

b) La mesura de l'amperímetre A_2 . [0,5 punts]

c) La mesura de l'amperímetre A_3 . [0,5 punts]

d) La mesura de l'amperímetre A_4 . [0,5 punts]

e) La potència activa dissipada per tot el sistema. [0,5 punts]

Exercici 4

[2,5 punts en total]

La figura mostra una font de tensió sinusoïdal, un rectificador d'ona completa (pont de Graetz) i una càrrega formada per dues resistències en sèrie. En els borns de la resistència R_2 hi ha connectat un oscil·loscopi la pantalla del qual també es mostra en la figura. Els díodes de la figura es poden considerar ideals. L'escala de temps de l'oscil·loscopi és d'1 ms/div. i l'escala de tensió és de $20\,\mathrm{V/div}$. Determineu:

a) La freqüència de la tensió d'alimentació *U*.

[1 punt]

b) El valor màxim de la tensió d'alimentació *U*.

[1 punt]

c) El valor eficaç de la tensió d'alimentació U.

[0,5 punts]

Proves d'accés a la universitat

Convocatòria 2014

Electrotècnia

Sèrie 4

La prova consta de dues parts de dos exercicis cadascuna. La primera part és comuna i la segona té dues opcions (A i B). Resoleu els exercicis de la primera part i, per a la segona part, escolliu UNA de les dues opcions (A o B) i feu els exercicis de l'opció triada.

PRIMERA PART

Exercici 1

[2,5 punts]

[En cada qüestió només es pot triar UNA resposta. Qüestió ben contestada: 0,5 punts; qüestió mal contestada: -0,16 punts; qüestió no contestada: 0 punts.]

Qüestió 1

Connectem en paral·lel una resistència de $100\,\Omega$, una resistència de $300\,\Omega$ i una capacitat de $25\,\mu\text{F}$. El conjunt s'alimenta d'una xarxa de $75\,\text{V}$ de tensió. Quina és la potència activa consumida pel conjunt?

- a) 75 W
- **b**) 56,25 W
- c) 44,18 W
- **d**) 18,75 W

Qüestió 2

Una càrrega trifàsica està formada per tres impedàncies iguals connectades en estrella. Cada impedància està formada per una resistència de $15\,\Omega$ i una inductància de $6\,\Omega$ connectades en paral·lel. Si connectem la càrrega a una xarxa de $400\,V$ (de tensió composta), quina és la potència aparent consumida per la càrrega?

- *a*) 28,72 kVA
- **b**) 49,75 kVA
- c) 86,16 kVA
- d) 149,24 kVA

Qüestió 3

A quina velocitat gira un alternador de quatre parells de pols connectat a una xarxa de 400 Hz?

- a) $6000 \, \text{min}^{-1}$
- **b**) 8 000 min⁻¹
- c) 12 000 min⁻¹
- d) 24 000 min⁻¹

Qüestió 4

La caiguda de tensió que es produeix en un conductor que alimenta una càrrega

- *a*) disminueix en augmentar el corrent consumit.
- b) augmenta en augmentar la secció del conductor.
- c) disminueix en augmentar la longitud del conductor.
- d) augmenta en disminuir la impedància de la càrrega.

Qüestió 5

Quina és la funció lògica de la figura següent?

- $a) \bar{a}$
- b) \bar{b}
- c) \bar{c}
- **d**) 1

Exercici 2

[2,5 punts en total]

 $U_1 = 5 \text{ V}$ $U_2 = 7 \text{ V}$ $U_3 = 10 \text{ V}$ $U_4 = 10 \text{ V}$ $R_1 = 3 \Omega$ $R_2 = 10 \Omega$ $R_3 = 5 \Omega$

En el circuit de la figura, determineu:

a) Els corrents I_1 i I_2 .

[1 punt]

b) La potència dissipada en R_2 .

[0,5 punts]

c) La potència subministrada per les fonts U_1 , U_2 , U_3 i U_4 .

[1 punt]

SEGONA PART

OPCIÓ A

Exercici 3

[2,5 punts en total]

Un motor d'inducció trifàsic té les dades següents en la placa de característiques:

P = 4 kW	U = 400/230 V	<i>I</i> = 10,2/17,67 A
$\cos \varphi = 0.67$	$f = 50 \mathrm{Hz}$	$n = 728 \text{min}^{-1}$

Si el motor treballa en condicions nominals, determineu:

a) El nombre de parells de pols.

[0,5 punts]

b) El parell Γ desenvolupat.

[0,5 punts]

c) El rendiment η .

[1 punt]

d) La potència mecànica útil a l'eix del motor.

[0,5 punts]

Exercici 4

[2,5 punts en total]

Decidim il·luminar un aparador posant dotze làmpades incandescents en sèrie de 15 V i 12 W cadascuna. Per tal de poder connectar el circuit a la font de tensió de 230 V decidim posar, també en sèrie amb les làmpades, una resistència *R*. Si les làmpades han de treballar en condicions nominals, determineu:

a) El valor de la resistència R.

[1 punt]

b) La potència que es dissipa en la resistència R.

[0,5 punts]

c) La potència activa P total consumida per la instal·lació.

[0,5 punts]

d) La potència activa P total consumida per la instal·lació si es fon una de les làmpades.

[0,5 punts]

OPCIÓ B

Exercici 3

[2,5 punts en total]

En el circuit de la figura, determineu:

a)	La mesura del voltimetre	V ₂ .	[0,5 punts]
----	--------------------------	------------------	-------------

 $A_2 = 1,437 \text{ A}$ $R_1 = 50 \Omega$

 $R_2 = 50 \Omega$ $X_L = 50 \Omega$ $X_C = 30 \Omega$

b) La mesura de l'amperímetre A_3 . [0,5 punts]

c) La mesura de l'amperímetre A₁. [0,5 punts]

d) La mesura del wattímetre W_2 .[0,5 punts]e) La mesura del wattímetre W_1 .[0,5 punts]

Exercici 4

[2,5 punts en total]

Un motor de corrent continu d'imants permanents té les dades següents en la placa de característiques:

$$P = 60 \text{ W}$$
 $U = 36 \text{ V}$ $I = 2 \text{ A}$ $n = 7 840 \text{ min}^{-1}$

Les pèrdues mecàniques es consideren negligibles. Les dues escombretes, conjuntament, provoquen una caiguda de tensió constant i de valor 1,2 V.

Si el motor treballa en condicions nominals, determineu:

a) El rendiment
$$\eta$$
. [0,5 punts]

Si el motor desenvolupa el 70 % del parell nominal i s'alimenta amb una tensió de 30 V, determineu:

d) La nova velocitat de gir del motor. [0,5 punts]

