

Mock Paper Mark Scheme

Advanced Subsidiary/Advanced GCE General Certificate of Education

Subject STATISTICS

Paper No. Mock S2

Question number	Scheme	Marks
1. (a) (b)	f(x) $\frac{x}{42}$ $\frac{1}{7}$ Labelled axes and $<0, > 10$ $\frac{1}{7}, 6, 10$	B1 B1 B1 B1 (4)
	$P(X \ge 5) = 1 - P(X < 5)$ 5 and \int or area Δ	M1
	$=1-\frac{5}{42}\times\frac{1}{2}\times5$ (area of Δ) full method	M1
	$=1-\frac{25}{84}$ $=\frac{59}{84}$	A1 (3)
(c)	Probability it does <i>not</i> break down is $\left(\frac{59}{84}\right)^2$	M1
	\therefore probability it does break down is $1 - \left(\frac{59}{84}\right)^2 = (awrt) 0.507$	A1 (2) (9)
2.	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
(a)	$P(X < -4.2) = \frac{0.8}{10} = 0.08$	B1 (1)
(b)	$P(X < 1.5) = \frac{3}{10} = 0.3$	M1 A1 (2)
Question number	Scheme	Marks

(c)	$Y = \text{no. of lengths with } X < 1.5$ $\therefore Y \sim B(10, 0.3)$	M1
	$P(Y > 5) = 1 - P(Y \le 5)$	M1
	= 1 - 0.9527 = 0.0473	A1 (3)
	= 1 0.5527 = 0.6175	, ,
(<i>d</i>)	R = no. of lengths of piping rejected	
	$R \sim B(60, 0.08) \implies R \approx \sim Po(4.8)$ 4.8 or $60 \times (a)$	B1√
	$P(R \le 2) = e^{-4.8} \left[1 + 4.8 + \frac{(4.8)^2}{2!} \right]$ Po and ≤ 2 , formula	M1, M1 A1 $$ (ft for their λ if full
	$= 17.32 \times e^{-4.8} = 0.1425$ (accept awrt 0.143)	A1 cao (5) (11)
3. (a)	D is continuous	B1 (1)
		, ,
(b)	Sampling Frame is the list of competitors or their results, e.g. label the results 1—200 and randomly select 36 of them	B1 B1 (2)
(c)	$X = \text{no. of competitors with } A = 2$ $X \sim B(36, \frac{1}{3})$	
	$X \approx \sim N(12, 8)$	M1 A1
	$P(X \ge 20) \approx P\left(Z \ge \frac{19.5 - 12}{\sqrt{8}}\right)$ $\pm \frac{1}{2}, 'z'$	M1, M1
	$= P(Z \ge 2.65)$	A1
		A1 (6)
	= 1 - 0.9960 = 0.004	, ,
(<i>d</i>)	Probability is very low, so assumption of $P(A = 2) = \frac{1}{3}$ is unlikely.	B1, B1 (2)
	(Suggests $P(A = 2)$ might be higher.)	,,
		(11)

Question number	Scheme	Marks
4. (a)	$X = \text{no. of vases with defects}$ $X \sim B(20, 0.15)$	B1
	$P(X \le 0) = 0.0388$ Use of tables to	M1
	$P(X \le 6) = 0.9781$: $P(X \ge 7) = 0.0219$ find each tail	M1
	\therefore critical region is $X \le 0$, or $X \ge 7$	A1, A1 (5)
(b)	Significance level = $P(X \le 0) + P(X \ge 7) = 0.0388 + 0.0219 = 0.0607$	B1 (1)
(c)	H_0 : $\lambda = 2.5$, H_1 : $\lambda > 2.5$ [or H_0 : $\lambda = 10$, H_1 : $\lambda > 10$]	B1, B1
	$Y = \text{no. sold in 4 weeks.}$ Under H_0 $Y \sim Po(10)$	M1
	$P(Y \ge 15) = 1 - P(Y \le 14) = 10.9165 = 0.0835$	M1, A1
	More than 5% so not significant. Insufficient evidence of an increase in the rate of sales.	A1 (6) (12)

Question number	Scheme	Marks
5. (a)	F(1.5) = 1 $\Rightarrow k(2 \times (1.5)^3 - (1.5)^4) = 1$ i.e. $k\left[2 \times \frac{27}{8} - \frac{81}{16}\right] = 1$	M1
	i.e. $k\left(\frac{108-81}{16}\right) = 1$	A1 cso (2)
(b)	$P(T > 1) = 1 - F(1)$, $= 1 - \frac{16}{27}(2 - 1) = \frac{11}{27}$	M1, A1 (2)
(c)	$f(t) = F'(t) = \frac{16}{27}(6t^2 - 4t^3)$	M1, A1
	i.e. $f(t) = \begin{cases} \frac{32}{27} (3t^2 - 2t^3) & 0 \le t \le 1.5\\ 0 & \text{otherwise} \end{cases}$ Full definition	B1 (3)
(d)	$E(T) = \int_0^{1.5} t f(t) dt = \frac{32}{27} \int_0^{1.5} (3t^3 - 2t^4) dt$ $\int t f(t)$	M1
	$= \frac{32}{27} \left[\frac{3t^4}{4} - \frac{2t^5}{5} \right]_0^{\frac{3}{2}}$	A1
	$= \frac{32}{27} \left[\left(\frac{243}{64} - \frac{2}{5} \times \frac{243}{32} \right) - (0) \right]$	
(e) (f)	$= \frac{9}{2} - \frac{18}{5} = 0.9 (*)$	A1 cso (3)
	$F(E(T)) = \frac{16}{27}(2 \times 0.9^3 - 0.9^4) = 0.4752$ evidence seen	B1
	$P(T > 1 \mid T > 0.9) = \frac{P(T > 1)}{P(T > 0.9)}, = \frac{\text{part}(b)}{1 - \text{part}(e)}, = 0.7763$	M1, M1,
	accept awrt 0.776	A1 (3)
		(14)

Question number	Scheme	Marks	
6. (a)	X = no. of customers arriving in 10 minute period		
	$X \sim \text{Po}(3)$ $P(X \ge 4) = 1 - P(X \le 3) = , 1$	M1 A1 (2)	
(b)	$Y = \text{no. of customers in 30 minute period}$ $Y \sim$	B1	
	$P(Y \le 7) = 0.3239$	M1 A1 (3)	
(c)	p = probability of no customers in 5 minute per	B1	
	C = number of 5 minute periods with no custor	mers	
	$C \sim B(6, p)$		M1
	$P(C \le 1), = (1-p)^6 + 6(1-p)^5 p$		M1, M1 A1
	= 0.59866	(accept awrt 0.599)	A1 (6)
(<i>d</i>)	W = no. of customers on Wednesday morning		
	$3\frac{1}{2}$ hours = 210 minutes $\therefore W \sim Po(63)$	·63'	B1
	Normal approximation $W \approx \sim N(63, (\sqrt{63})^2)$		M1 A1
	$P(W > 49) \approx P(W \ge 49.5)$	$\pm \frac{1}{2}$	M1
	$= P\left(Z \ge \frac{49.5 - 63}{\sqrt{63}}\right)$	standardising	M1
	$= P(Z \ge -1.7008)$		A1
	= 0.9554 (tables)	(accept awrt 0.955 or 0.956)	A1 (7)

PMT

6 Turn Over