PROBLEM STATEMENT:

A real state agents wants help to predict the house price for region in the USA, He gave you the dataset to work on and you decided to use the LinearRegression Model.Create a model that will help him to Estimate of what the house Would Sell for.....

DATA COLLECTION:-

The data set contains 7 columns and 5000 rows with .CSV Extension.

The data contains the following columns: 'Avg.AreaIncome'-Avg.The Income of the house holder of the city house is located,'Avg.Area House Age'-Avg.Age of Houses in the same city.'Avg-Area Number of Rooms'-Avg.Number of Rooms for Houses in the same city:'Avg.Area Number of Bedrooms'-Avg Number of Bedrooms for Houses in the Same city:'Area population'-population of the city:'price'-price that the house sold at;'Address'-Address of the houses;

In [3]:

```
#Importing libraries
import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
```

In [4]:

df=pd.read_csv(r"C:\Users\monim\Downloads\USA_Housing.csv")
df

Out[4]:

	Price	Area Population	Avg. Area Number of Bedrooms	Avg. Area Number of Rooms	Avg. Area House Age	Avg. Area Income	
208 Michae 674\nLau	1.059034e+06	23086.800503	4.09	7.009188	5.682861	79545.458574	0
188 Johr Suite Kath	1.505891e+06	40173.072174	3.09	6.730821	6.002900	79248.642455	1
912 Stravenue\nE \	1.058988e+06	36882.159400	5.13	8.512727	5.865890	61287.067179	2
USS Barnet	1.260617e+06	34310.242831	3.26	5.586729	7.188236	63345.240046	3
USNS Raym	6.309435e+05	26354.109472	4.23	7.839388	5.040555	59982.197226	4
		•••					
USNS Willi AP 3	1.060194e+06	22837.361035	3.46	6.137356	7.830362	60567.944140	4995
PSC 8489\nAPO	1.482618e+06	25616.115489	4.02	6.576763	6.999135	78491.275435	4996
4215 Tra Suite 076\nJ	1.030730e+06	33266.145490	2.13	4.805081	7.250591	63390.686886	4997
USS Wallace	1.198657e+06	42625.620156	5.44	7.130144	5.534388	68001.331235	4998
37778 Geo Apt. 509\n	1.298950e+06	46501.283803	4.07	6.792336	5.992305	65510.581804	4999

5000 rows × 7 columns

In [5]:

df.head()

Out[5]:

Aı	Price	Area Population	Avg. Area Number of Bedrooms	Avg. Area Number of Rooms	Avg. Area House Age	Avg. Area Income	
208 Michael Fe 674\nLaurabı	1.059034e+06	23086.800503	4.09	7.009188	5.682861	79545.458574	0
188 Johnsor Suite 079 Kathleer	1.505891e+06	40173.072174	3.09	6.730821	6.002900	79248.642455	1
9127 Eli Stravenue∖nDani WI 0	1.058988e+06	36882.159400	5.13	8.512727	5.865890	61287.067179	2
USS Barnett\nF	1.260617e+06	34310.242831	3.26	5.586729	7.188236	63345.240046	3
USNS Raymonc AE	6.309435e+05	26354.109472	4.23	7.839388	5.040555	59982.197226	4

In [6]:

df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 5000 entries, 0 to 4999
Data columns (total 7 columns):

#	Column	Non-Null Count	Dtype
0	Avg. Area Income	5000 non-null	float64
1	Avg. Area House Age	5000 non-null	float64
2	Avg. Area Number of Rooms	5000 non-null	float64
3	Avg. Area Number of Bedrooms	5000 non-null	float64
4	Area Population	5000 non-null	float64
5	Price	5000 non-null	float64
6	Address	5000 non-null	object

dtypes: float64(6), object(1)
memory usage: 273.6+ KB

In [7]:

df.describe()

Out[7]:

	Avg. Area Income	Avg. Area House Age	Avg. Area Number of Rooms	Avg. Area Number of Bedrooms	Area Population	Price
count	5000.000000	5000.000000	5000.000000	5000.000000	5000.000000	5.000000e+03
mean	68583.108984	5.977222	6.987792	3.981330	36163.516039	1.232073e+06
std	10657.991214	0.991456	1.005833	1.234137	9925.650114	3.531176e+05
min	17796.631190	2.644304	3.236194	2.000000	172.610686	1.593866e+04
25%	61480.562388	5.322283	6.299250	3.140000	29403.928702	9.975771e+05
50%	68804.286404	5.970429	7.002902	4.050000	36199.406689	1.232669e+06
75%	75783.338666	6.650808	7.665871	4.490000	42861.290769	1.471210e+06
max	107701.748378	9.519088	10.759588	6.500000	69621.713378	2.469066e+06

In [9]:

df.columns

Out[9]:

EXPLORATORY DATA ANALYSIS

In [10]:

sns.pairplot(df)

Out[10]:

<seaborn.axisgrid.PairGrid at 0x2264e6d1e10>

In [12]:

sns.displot(df['Price'])

Out[12]:

<seaborn.axisgrid.FacetGrid at 0x22655c95ab0>

In [13]:

```
sns.displot(df['Area Population'])
```

Out[13]:

<seaborn.axisgrid.FacetGrid at 0x22655c76f50>

In [16]:

Housedf=df[['Avg. Area Income', 'Avg. Area House Age', 'Avg. Area Number of Rooms', 'Area Population', 'Price']]

In [17]:

```
sns.heatmap(Housedf.corr())
```

Out[17]:

<Axes: >

TO TRAIN THE MODEL

we are going to train Linear Regression Model.we need to first split up our data into a x list that contains the features to train on, and a y list with the target variables, in this case, the price column we will ignore the address column because it only has text which is not useful for linear regression modelling

In [26]:

In [27]:

```
from sklearn.model_selection import train_test_split
x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3,random_state=101)
```

In [28]:

```
from sklearn.linear_model import LinearRegression
lm=LinearRegression()
lm.fit(x_train,y_train)
```

Out[28]:

```
LinearRegression
LinearRegression()
```

In [30]:

```
print(lm.intercept_)
```

-9.313225746154785e-10

In [34]:

coeff_df=pd.DataFrame(lm.coef_,x.columns,columns=['coefficient'])

In [35]:

```
predictions=lm.predict(x_test)
plt.scatter(y_test,predictions)
```

Out[35]:

<matplotlib.collections.PathCollection at 0x226586b3100>

In [36]:

```
sns.displot((y_test-predictions),bins=50);
```


In [37]:

```
from sklearn import metrics
print('MAE:',metrics.mean_absolute_error(y_test,predictions))
print('MSE:',metrics.mean_squared_error(y_test,predictions))
print('RMSE:',np.sqrt(metrics.mean_squared_error(y_test,predictions)))
```

MAE: 1.1111842468380928e-10 MSE: 2.7542970345868087e-20 RMSE: 1.6596074941343234e-10

In []: