#### DATA LAKEHOUSE – THE BASIC ELEMENTS

A presentation by W H Inmon



#### All data in the corporation













Each of the different types of data have their own unique characteristics



# Structured data Usually transaction based Bank transactions Point of sale Telephone call Payments made Payments received







The same record type is repeated Each record has different contents



#### Textual data





Medical records
Contracts
Internet
Call centers
Warranty claims
Insurance claims
Email

.....

English
Spanish
Portuguese
French
Mandarin
Korean
German

Formal language Slang Acronyms Voice Written Internet Video



#### **Textual** data

Text is transformed Into a structured format













#### Machine generated









#### telemetry

Telemetry data is generated as the rocket is launched and is measured throughout the flight



| Elevation | Speed |
|-----------|-------|
| 786       | 0     |
| 792       | 35    |
| 812       | 79    |
| 854       | 124   |
| 901       | 197   |
| 978       | 276   |
| 1012      | 367   |
| 1256      | 416   |
| 1469      | 521   |
| 1672      | 702   |
| 2018      | 835   |
| 2259      | 915   |
| 2871      |       |
|           |       |





The data lake is created by throwing data all the data into the lake







Soon the data lake turned into a swamp





## Analog/loT

The data swamp was not good for anyone....









The data lake needs to be turned into a lakehouse











All this education and 95% of my job is being a data garbageman

Data scientist





Data scientist



Ah, that's more like it







#### Machine generated



Basic, raw measurements

Time - 0912

Time - 0916

Time - 1002

Time - 1008

Time - 1017





segmented



Date of launch
Ultimate speed
Ultimate height
Final landing point

Second by second measurements







Relative volumes of data in each sector





Business value and the volumes of data



#### Format compatibility



From a format standpoint, the structured and the textual environments are very different from the analog/IoT environment



#### Content compatibility





Key compatibility – very unintegrated



| Structured data | Textual<br>data | Analog/IoT<br>data |
|-----------------|-----------------|--------------------|
|                 |                 |                    |



In order to do analytics, there must be some common data on which to do a comparison

Without common data it is very difficult to do a meaningful comparison







The problem is that there may be no obvious, easy way to isolate common identifiers





Fortunately there are such things as universal common connectors





Universal common connectors exist regardless of the way that data has been collected



#### General common connectors

Textual data

Structured data





Analog/IoT data

Universal common connector for anything

geography time dollar amount



#### Common connectors for humans

Textual data

Structured data





Analog/IoT data

Universal common connector for humans

gender

age

race



#### Common connectors for objects

Textual data

Structured data



Analog/IoT data

Universal common connector for physical objects

weight

color

cost

size

shape



#### SOME EXAMPLES

Universal common connector



#### Healthcare – outcomes analysis





#### Outcome analysis

Did the medicine work?
Did the vaccination work?
Did the operation have the right effect?





Textual data

Structured data



Sales of Prolia
Estrogen
Vitamin D
Algaecal
Calcitonin

Doctor's notes
tests
diagnosis
procedure
medication

history

Analog/IoT data

X rays
date
location
patient age
examination results



#### Textual data

Structured data



What medicines have been purchased

By state
By age
By gender

What medicines have been prescribed and/or discussed with doctors

By state
By age
By gender

Analog/IoT data

What outcomes have been achieved

By state

By age

By gender



What medicines have been purchased

By state
By age
By gender



What medicines have been prescribed and/or discussed with doctors

By state By age By gender



What outcomes have been achieved

By state By age

By gender



#### Analyses -

how does treatment in Utah vary from treatment in Oregon?

is Prolia more effective than estrogen?

when patients are treated with Algaecal, what other side effects are noticed?

do women have better results than men?

how much does age affect -

the types of treatment for osteoporosis

the effectiveness of treatment

whether men react differently than women



What medicines have been purchased

By state
By age
By gender



What medicines have been prescribed and/or discussed with doctors

By state By age By gender



What outcomes have been achieved

By state

By age

By gender



When you have both treatment and outcome data together, you can answer – for the first time – important questions about treatment, medication, dosage, side, effects, demographics of treatment

You can match outcome with treatment



What medicines have been purchased

By state By age By gender



What medicines have been prescribed and/or discussed with doctors

By state
By age
By gender



What outcomes have been achieved

By state

By age

By gender





The result is healthier people and longer life and better quality of life



#### Manufacturing





#### Textual data

Structured data



Sales data
unit sold
date of sale
location of sale
customer address

Warranty claims
unit
unit type
defect
severity
in use desc

Analog/IoT data

Manufacturing data
unit id
lot id
date of manufacture
machine used
operator



#### Textual data

Structured data



Units sold
Date of sale
Location of sale

Unit id

Unit id
Defect description
Date of warranty

Unit id

Analog/IoT data

Unit id

Machine used for manufacture

Date of manufacture

Operator

Lot id

Manufacture telemetry

Unit id



### Units sold Date of sale Location of sale



Unit id
Defect description
Date of warranty



Unit id
Machine used for manufacture
Date of manufacture
Operator
Lot id
Manufacture telemetry



#### Analyses -

what manufacturing machines are producing defects what manufacturing machines are not producing defects what operators are producing defects what operators are not producing defects what telemetry needs to be adjusted under what conditions are defects created



Units sold
Date of sale
Location of sale



Unit id
Defect description
Date of warranty



Unit id
Machine used for manufacture
Date of manufacture
Operator
Lot id
Manufacture telemetry



With all of this data together and able to be analyzed you can now tell what defects can be corrected and what conditions cause defects to occur. The manufacturing process can be materially improved



Units sold
Date of sale
Location of sale



Unit id
Defect description
Date of warranty



Unit id
Machine used for manufacture
Date of manufacture
Operator
Lot id
Manufacture telemetry





Now manufacturing can be done efficiently and in a cost effective manner









With analytics from the data lakehouse, you can improve the lives and livelihood of many people



