(Ordered) Partitions Canonical Labelings Searching the Search Tree The Algorithm

Graph Automorphism Computation

Robert L. Miller

March 29, 2007

Refining partitions

• An equitable partition of a labeled graph G is a partition $\pi = [V_0|V_1|...|V_k]$ of V(G) such that $d_G(v_1, V_2) = d_G(v_2, V_2)$ for all $v_1, v_2 \in V_1$ and all $V_1, V_2 \in \pi$.

Refining partitions

- An equitable partition of a labeled graph G is a partition $\pi = [V_0|V_1|...|V_k]$ of V(G) such that $d_G(v_1,V_2) = d_G(v_2,V_2)$ for all $v_1,v_2 \in V_1$ and all $V_1,V_2 \in \pi$.
- The refinement of a partition π of V(G) by a list of subsets α , denoted $R(G, \pi, \alpha)$, was described last time, and is loosely given by the algorithm:

$R(G, \pi, \alpha)$

For each set W in α :

- —For each set V in π :
- ——Split V up by its degree to W (in order), resulting in new cells $X_1, ..., X_s$,
- —Update α as follows: if the current cell of π is a set in α , then replace that cell set in α with X_i for $|X_i|$ maximal, and put the other X_i s at the end.

Partition Nests

- Given a labeled graph G, a partition π and a sequence of vertices $v_1, ..., v_{m-1}$, the partition nest determined by these is a sequence of partitions $(\pi_1, ..., \pi_m)$ defined by
- a) $\pi_1 = R(G, \pi, \pi)$, and
- b) $\pi_i = \pi_{i-1} \perp v_{i-1} := R(G, \pi_{i-1} \circ v_{i-1}, \{\{v_{i-1}\}\})$, where if $\pi_{i-1} = [V_1|...|V_k]$ and $v_{i-1} \in V_j$, then

$$\pi_{i-1} \circ v_{i-1} := [V_1|...|V_{j-1}|v_{i-1}|V_j \setminus \{v_{i-1}\}|V_{j+1}|...|V_k].$$

Partition Nests

- Given a labeled graph G, a partition π and a sequence of vertices $v_1, ..., v_{m-1}$, the partition nest determined by these is a sequence of partitions $(\pi_1, ..., \pi_m)$ defined by
- a) $\pi_1 = R(G, \pi, \pi)$, and
- b) $\pi_i = \pi_{i-1} \perp v_{i-1} := R(G, \pi_{i-1} \circ v_{i-1}, \{\{v_{i-1}\}\})$, where if $\pi_{i-1} = [V_1|...|V_k]$ and $v_{i-1} \in V_j$, then

$$\pi_{i-1} \circ v_{i-1} := [V_1|...|V_{j-1}|v_{i-1}|V_j \setminus \{v_{i-1}\}|V_{j+1}|...|V_k].$$

• BDM usually uses Greek letters to represent partition nests, i.e. nodes of the tree. We especially use ν , ρ , ζ and η .

• The search tree $T(G,\pi)$ is the set of all partition nests starting at π , where the tree structure is given by common partitions: $(\pi_1,...,\pi_k)$ is a descendant of $(\pi_1,...,\pi_{k-1})$, for example.

- The search tree $T(G,\pi)$ is the set of all partition nests starting at π , where the tree structure is given by common partitions: $(\pi_1,...,\pi_k)$ is a descendant of $(\pi_1,...,\pi_{k-1})$, for example.
- A node $\nu=(\pi_1,...,\pi_k)$ of the search tree is a *terminal node* iff π_k is the discrete partition. In this case, the ordering of the partition π_k defines an ordering of the vertices of G, i.e. a new labeled graph, where we take the ordering from π_k . Notation: $G(\nu)$.

- The search tree $T(G,\pi)$ is the set of all partition nests starting at π , where the tree structure is given by common partitions: $(\pi_1,...,\pi_k)$ is a descendant of $(\pi_1,...,\pi_{k-1})$, for example.
- A node $\nu = (\pi_1, ..., \pi_k)$ of the search tree is a *terminal node* iff π_k is the discrete partition. In this case, the ordering of the partition π_k defines an ordering of the vertices of G, i.e. a new labeled graph, where we take the ordering from π_k . Notation: $G(\nu)$.
- More notation: if $\nu=(\pi_1,...,\pi_k)$, then $\nu^{(i)}=(\pi_1,...,\pi_i)$ for $i\leq k$.

- The search tree $T(G,\pi)$ is the set of all partition nests starting at π , where the tree structure is given by common partitions: $(\pi_1,...,\pi_k)$ is a descendant of $(\pi_1,...,\pi_{k-1})$, for example.
- A node $\nu = (\pi_1, ..., \pi_k)$ of the search tree is a *terminal node* iff π_k is the discrete partition. In this case, the ordering of the partition π_k defines an ordering of the vertices of G, i.e. a new labeled graph, where we take the ordering from π_k . Notation: $G(\nu)$.
- More notation: if $\nu = (\pi_1, ..., \pi_k)$, then $\nu^{(i)} = (\pi_1, ..., \pi_i)$ for i < k.
- If two nodes ν_1, ν_2 are not descendants of each other, then for some i, we have $\nu_1^{(i)} = \nu_2^{(i)}$ but $\nu_1^{(i+1)} \neq \nu_2^{(i+1)}$. Define $\nu_1 \nu_2 = \nu_1^{(i+1)}$.

More on the Search Tree

• If ν_1 is an ancestor of ν_2 , then $\nu_1 < \nu_2$. Otherwise, there is a node $(\pi_1, ..., \pi_m)$ and vertices $\nu_1 \neq \nu_2$ such that

$$u_1 - \nu_2 = (\pi_1, ..., \pi_m, \pi_m \perp \nu_1) \text{ and}$$

$$\nu_2 - \nu_1 = (\pi_1, ..., \pi_m, \pi_m \perp \nu_2).$$

Then define $\nu_1 < \nu_2$ iff $v_1 < v_2$.

More on the Search Tree

• If ν_1 is an ancestor of ν_2 , then $\nu_1 < \nu_2$. Otherwise, there is a node $(\pi_1, ..., \pi_m)$ and vertices $\nu_1 \neq \nu_2$ such that

$$u_1 - \nu_2 = (\pi_1, ..., \pi_m, \pi_m \perp \nu_1) \text{ and}$$

$$\nu_2 - \nu_1 = (\pi_1, ..., \pi_m, \pi_m \perp \nu_2).$$

Then define $\nu_1 < \nu_2$ iff $v_1 < v_2$.

• Suppose $\gamma \in S_n$ such that $G^{\gamma} = G$ and $\pi^{\gamma} = \pi$. If $\nu_1, \nu_2 \in T(G, \pi)$ and $\nu_1^{\gamma} = \nu_2$ for some such γ , we say $\nu_1 \sim \nu_2$. This defines an equivalence, and we say a node ν is an *identity node* if it is the earliest node in its equivalence class. Fact: if $\nu_1 < \nu_2$ and $\nu_1 \sim \nu_2$, then $T(G, \pi, \nu_2 - \nu_1)$ contains no identity nodes.

Linear Ordering of the Set of Labeled Graphs

 This is done by enumerating the set of labeled graphs as follows:

Linear Ordering of the Set of Labeled Graphs

 This is done by enumerating the set of labeled graphs as follows:

```
from sage.graphs.graph "one can" import enum
from sage.rings.integer import Integer
M = graph.am()
string = ''
for r in M.rows():
    for c in r:
        string += str(c)
if string=='': string='0'
return Integer(string,2)
```

Linear Ordering of the Set of Labeled Graphs

 This is done by enumerating the set of labeled graphs as follows:

```
from sage.graphs.graph "one can" import enum
from sage.rings.integer import Integer
M = graph.am()
string = ''
for r in M.rows():
    for c in r:
        string += str(c)
if string=='': string='0'
return Integer(string,2)
```

Optimization!

The Indicator Function $\Lambda(G, \pi, \nu)$

- Given a labeled graph G, ordered partition of $V(G), \pi$ and partition nest $\nu \in T(G, \pi)$, we define an *indicator function* $\Lambda(G, \pi, \nu) \in \Delta$ which satisfies:
 - Δ has a linear ordering.
 - For any $\gamma \in S_n$, $\Lambda(G, \pi, \nu) = \Lambda(G^{\gamma}, \pi^{\gamma}, \nu^{\gamma})$,

from sage.graphs.graph_isom "one can" import indicator

```
from sage.misc.misc import prod
LL = [0]*G.order()
for partition in V:
    a = len(partition)
    for k in range(a):
        LL[k] += len(partition[k])*(1 + sum(\
[ degree(G, partition[k][0], partition[i])\
    for i in range(len(partition)) ] ))
return prod([l for l in LL if l!=0])
```

 \bullet Given $\Lambda,$ we can define another ordering $\tilde{\Lambda}$ by

$$\tilde{\Lambda}(G,\pi,\nu) := (\Lambda(G,\pi,\nu^{(1)}),...,\Lambda(G,\pi,\nu^{(k)}))$$

where $k = |\nu|$, and we use the lexicographic ordering induced by Δ .

 \bullet Given $\Lambda,$ we can define another ordering $\tilde{\Lambda}$ by

$$\tilde{\Lambda}(G,\pi,\nu) := (\Lambda(G,\pi,\nu^{(1)}),...,\Lambda(G,\pi,\nu^{(k)}))$$

where $k = |\nu|$, and we use the lexicographic ordering induced by Δ .

• If $X(G,\pi)$ is the set of terminal nodes of $T(G,\pi)$, then we define the canonical label

$$C(G,\pi) := \max\{G(\nu)|\nu \in X(G,\pi) \text{ and } \tilde{\Lambda}(G,\pi,\nu) = \Lambda^*\},$$

where $\Lambda^* = \max\{\tilde{\Lambda}(G,\pi,\nu)|\nu \in X(G,\pi)\}.$

 \bullet Given $\Lambda,$ we can define another ordering $\tilde{\Lambda}$ by

$$\tilde{\Lambda}(G,\pi,\nu) := (\Lambda(G,\pi,\nu^{(1)}),...,\Lambda(G,\pi,\nu^{(k)}))$$

where $k = |\nu|$, and we use the lexicographic ordering induced by Δ .

- If $X(G,\pi)$ is the set of terminal nodes of $T(G,\pi)$, then we define the canonical label $C(G,\pi) := \max\{G(\nu) | \nu \in X(G,\pi) \text{ and } \tilde{\Lambda}(G,\pi,\nu) = \Lambda^*\},$
 - $C(G,\pi) := \max\{G(\nu)|\nu \in X(G,\pi) \text{ and } \Lambda(G,\pi,\nu) = \Lambda^*\}$ where $\Lambda^* = \max\{\tilde{\Lambda}(G,\pi,\nu)|\nu \in X(G,\pi)\}.$
- As noted last time, two graphs are isomorphic iff they have the same canonical label.

 \bullet Given $\Lambda,$ we can define another ordering $\tilde{\Lambda}$ by

$$\tilde{\Lambda}(G,\pi,\nu) := (\Lambda(G,\pi,\nu^{(1)}),...,\Lambda(G,\pi,\nu^{(k)}))$$

where $k = |\nu|$, and we use the lexicographic ordering induced by Δ .

- If $X(G,\pi)$ is the set of terminal nodes of $T(G,\pi)$, then we define the canonical label
 - $C(G,\pi) := \max\{G(\nu)|\nu \in X(G,\pi) \text{ and } \tilde{\Lambda}(G,\pi,\nu) = \Lambda^*\},$ where $\Lambda^* = \max\{\tilde{\Lambda}(G,\pi,\nu)|\nu \in X(G,\pi)\}.$
- As noted last time, two graphs are isomorphic iff they have the same canonical label.
- Define a *canonical node* to be a node ν such that $G(\nu) = C(G, \pi)$.

Theorems

• Lemma 2.18 If $\gamma \in S_n$ and ν is a terminal node, then $G(\nu^{\gamma}) = G(\nu)$ iff $\gamma \in \operatorname{Aut}(G)_{\pi}$.

Theorems

- Lemma 2.18 If $\gamma \in S_n$ and ν is a terminal node, then $G(\nu^{\gamma}) = G(\nu)$ iff $\gamma \in \operatorname{Aut}(G)_{\pi}$.
- Theorem 2.20 Suppose $X^*(G,\pi)$ is any subset of $X(G,\pi)$ which contains those identity nodes ν for which $\tilde{\Lambda}(G,\pi,\nu)=\Lambda^*$. Then $X^*(G,\pi)$ contains a canonical node.

Pruning the Tree I

• What we want to do in terms of Lemma 2.18 is to reduce the size of $X^*(G,\pi)$ as much as possible. We do this using automorphisms. Suppose we discover a ν_2 such that $G(\nu_2)=G(\nu_1)$ for some earlier ν_1 , and both are terminal nodes (there is a $\gamma\in S_n$ such that $\nu_2=\nu_1^\gamma$). Then Lemma 2.18 implies $\gamma\in \operatorname{Aut}(G)_\pi$. Call this an *explicit automorphism*. As mentioned before, we can now ignore the subtree $T(G,\pi,\nu_2-\nu_1)$. However, if we have a bunch of these, we know that the subgroup they generate A is also in $\operatorname{Aut}(G)_\pi$. BDM takes advantage of this information as follows.

Pruning the Tree II

• Define ζ to be the earliest terminal node of $T(G, \pi)$. Then:

Pruning the Tree II

- Define ζ to be the earliest terminal node of $T(G, \pi)$. Then:
- Lemma If $\nu_1 < \nu_2$ and both are in $X(G, \pi)$, then $|\zeta \nu_2| \le |\nu_1 \nu_2|$. (pf- otherwise $\nu_2 \in T(G, \pi, \zeta \nu_1)$.)

Pruning the Tree II

- Define ζ to be the earliest terminal node of $T(G, \pi)$. Then:
- Lemma If $\nu_1 < \nu_2$ and both are in $X(G, \pi)$, then $|\zeta \nu_2| \le |\nu_1 \nu_2|$. (pf- otherwise $\nu_2 \in T(G, \pi, \zeta \nu_1)$.)
- Initialize θ as the discrete partition. Whenever we obtain an explicit automorphism γ , update θ by replacing it with the finest partition coarser than both θ and the orbit of γ . Thus θ is always the orbit partition of A, the subgroup of $\operatorname{Aut}(G)_{\pi}$ that we have so far. Also, θ is finer than the orbit partition of $\operatorname{Aut}(G)_{\pi_m}$ where $(\pi_1,...,\pi_m)$ is any common ancestor of all terminal nodes so far considered (a permutation taking one node to another fixes their common ancestors).

Pruning the Tree III

- If $\nu=(\pi_1,...,\pi_m)$ is an ancestor of ζ and of all the terminal nodes so far considered, then let $W=\{v_1,...,v_k\}$ be the first smallest nontrivial cell of π_m , where the v_i are in order. Since θ is finer than π_m , it induces a partition of W. The successors of ν , in order, are $\nu(v_1),...,\nu(v_k)$ where $\nu(v_i)=(\pi_1,...,\pi_m,\pi_m\perp v_i)$. If $v_i< v_j$ are in the same cell of θ , there is some automorphism $\gamma\in A$ such that $\nu(v_j)=\nu(v_i)^{\gamma}$. Thus we can eliminate $T(G,\pi,\nu(v_j))$ from searching, by:
 - Consider only $T(G, \pi, \nu(v_i))$ for which v_i is a minimal cell representative of θ , and
 - upon discovering an explicit automorphism γ in generating $T(G, \pi, \nu(v_i))$, see if v_i is still a minimal cell representative of the updated θ . If not, then γ is proof that $T(G, \pi, \nu(v_i))$ only contains terminal nodes equivalent to those we have already considered.

Implicit Automorphisms

• Lemma 2.25 Suppose G is a labeled graph and π an equitable partition. If π has m nontrivial cells and one of the following hold:

a)
$$n \le |\pi| + 4$$
,

b)
$$n = |\pi| + m$$
, or

c)
$$n = |\pi| + m + 1$$
,

then π_1 is the orbit partition of $\operatorname{Aut}(G)_{\pi_1}$ for any equitable π_1 finer than π .

Implicit Automorphisms

- **Lemma 2.25** Suppose G is a labeled graph and π an equitable partition. If π has m nontrivial cells and one of the following hold:
 - a) $n \le |\pi| + 4$,
 - b) $n = |\pi| + m$, or
 - c) $n = |\pi| + m + 1$,

then π_1 is the orbit partition of $\operatorname{Aut}(G)_{\pi_1}$ for any equitable π_1 finer than π .

• Whenever we encounter a node $\nu=(\pi_1,...,\pi_m)$ for which π_m satisfies the Lemma, all the terminal nodes descended from ν must be equivalent, so we need only check one.

Canonical Label Candidates

• We use the variable ρ to find the canonical label. It is initialized as $\rho:=\zeta,$ and every time we find a terminal node ν with either

a)
$$\tilde{\Lambda}(G, \pi, \nu) > \tilde{\Lambda}(G, \pi, \rho)$$
, or

b)
$$\tilde{\Lambda}(G, \pi, \nu) = \tilde{\Lambda}(G, \pi, \rho)$$
 and $G(\nu) > G(\rho)$,

we update $\rho := \nu$.

Canonical Label Candidates

- We use the variable ρ to find the canonical label. It is initialized as $\rho:=\zeta,$ and every time we find a terminal node ν with either
 - a) $\tilde{\Lambda}(G, \pi, \nu) > \tilde{\Lambda}(G, \pi, \rho)$, or
 - b) $\tilde{\Lambda}(G, \pi, \nu) = \tilde{\Lambda}(G, \pi, \rho)$ and $G(\nu) > G(\rho)$,

we update $\rho := \nu$.

• Suppose $\rho = (\pi_1, ..., \pi_m)$ and $\nu = (\pi'_1, ..., \pi'_k)$ is not necessarily terminal. Let $r := \min\{m, k\}$. Then if $\tilde{\Lambda}(G, \pi, \nu^{(r)}) < \tilde{\Lambda}(G, \pi, \rho^{(r)})$, we know that (by definition of indicator function) $\tilde{\Lambda}(G, \pi, \nu') < \tilde{\Lambda}(G, \pi, \rho)$ for every terminal node ν' of $T(G, \pi, \nu)$.

Sketch of the Algorithm I

• Start by creating $\nu = \rho = \zeta$. Define $m := |\zeta|$, and $r := |\rho|$.

Sketch of the Algorithm I

- Start by creating $\nu = \rho = \zeta$. Define $m := |\zeta|$, and $r := |\rho|$.
- Suppose we have just created $\nu = \nu^{(k)}$. Denote $\tilde{\Lambda} := \tilde{\Lambda}(G, \pi, \nu)$.

Sketch of the Algorithm I

- Start by creating $\nu = \rho = \zeta$. Define $m := |\zeta|$, and $r := |\rho|$.
- Suppose we have just created $\nu=\nu^{(k)}$. Denote $\tilde{\Lambda}:=\tilde{\Lambda}(G,\pi,\nu)$.
 - 1 If $(k > m \text{ or } \tilde{\Lambda} \neq \tilde{\Lambda}(G, \pi, \zeta^{(k)}))$ and $(k > r \text{ or } \tilde{\Lambda} < \tilde{\Lambda}(G, \pi, \rho^{(k)}))$, go to B.
 - 2 If ν is nonterminal, search $T(G, \pi, \nu)$.
 - 3 If k > m or $\tilde{\Lambda} \neq \tilde{\Lambda}(G, \pi, \zeta)$, go to 4. Else, if the permutation γ taking ζ to ν is an automorphism, go to A.
 - 4 If $(k > r \text{ or } \tilde{\Lambda} < \tilde{\Lambda}(G, \pi, \rho))$ or $(\tilde{\Lambda} = \tilde{\Lambda}(G, \pi, \rho))$ and $G(\nu) < G(\rho)$, go to B. If $(\tilde{\Lambda} > \tilde{\Lambda}(G, \pi, \rho))$ or $(\tilde{\Lambda} = \tilde{\Lambda}(G, \pi, \rho))$ and $G(\nu) > G(\rho)$, update $\rho := \nu$ and go to B. If $\tilde{\Lambda} = \tilde{\Lambda}(G, \pi, \rho)$ and $G(\nu) = G(\rho)$, define γ taking ρ to ν and go to A.

Sketch of the Algorithm II

A Here we have found an explicit automorphism.

- Update θ to be the finest partition coarser than θ and than the orbit partition of γ , and store information about γ .
- Let v be the vertex such that if the longest common ancestor of ζ and ν is $\nu^{(h)}, \, \pi_{h+1} = \pi_h \perp v$. If v is not a minimum cell representative of θ , then return to $\nu^{(h)}$. Otherwise, return to the longest common ancestor of ν and ρ .

Sketch of the Algorithm III

- B Here we are considering a terminal node not known to be equivalent to any earlier terminal node.
 - If π_k satisfies Lemma 2.25, define hh to be the smallest value of $i \le k$ such that π_i also satisfies 2.25. Otherwise, hh := k.
 - If hh < k, store information about π_{hh} .
 - Return to $\nu^{(i)}$, where $i = \min\{hh 1, \max\{ht 1, hzb\}\}$,
 - Define ht to be the smallest $i \leq m$ for which all the terminal nodes descended from or equal to $\zeta^{(i)}$ have been shown to be equivalent.
 - Define hzb to be the largest $i \leq \min\{k, r\}$, such that $\tilde{\Lambda}(G, \pi, \nu^{(i)}) = \tilde{\Lambda}(G, \pi, \rho^{(i)})$.

But don't just take my word for it...

TRY IT!!!

• http://cs.anu.edu.au/~bdm/papers/pgi.pdf