Automi e Linguaggi Formali – 28/4/2023 Prima prova intermedia – Soluzione

1. (12 punti) Dimostra che se $L \subseteq \Sigma^*$ è un linguaggio regolare allora anche il linguaggio

$$substring(L) = \{ y \in \Sigma^* \mid xyz \in L \text{ con } x, z \in \Sigma^* \}$$

è un linguaggio regolare.

Soluzione: Se L è un linguaggio regolare, allora sappiamo che esiste un DFA $A=(Q,\Sigma,\delta,q_0,F)$ che riconosce L. Costruiamo un ε -NFA A' che accetta il linguaggio substring(L). L'automa A' è costituto dagli stessi stati di A a cui viene aggiunto un nuovo stato iniziale q'_0 . La funzione di transizione contiene una ε -transizione dal nuovo stato iniziale q'_0 verso tutti gli stati di A che sono raggiungibili da q_0 , e si comporta come A per gli altri stati. Gli stati finali dell'automa sono tutti gli stati di A a partire dai quali esiste una computazione che raggiunge uno stato finale di A.

Formalmente, $A' = (Q', \Sigma, \delta', q'_0, F')$ è definito come segue.

- $Q' = Q \cup \{q'_0\}$, dove q'_0 è uno stato nuovo che non appartiene a Q.
- L'alfabeto Σ rimane lo stesso.
- $\delta'(q'_0, \varepsilon) = \{q \in Q \mid \text{ esiste una computatione da } q_0 \text{ a } q \text{ in } A\}.$
- $\delta'(q, a) = \{\delta(q, a)\}$ per ogni stato $q \neq q'_0$ e $a \in \Sigma$.
- $F' = \{q \in Q \mid \text{ esiste una computazione da } q \text{ ad uno stato di } F\}.$

Per dimostrare che A' riconosce il linguaggio substring(L), dobbiamo considerare due casi.

• Se $w \in L$, e data una qualsiasi suddivisione w = xyz, esiste una computazione di A che accetta la parola. Definiamo q_1 come lo stato raggiunto da A dopo aver consumato y, e q_2 come lo stato raggiunto da A dopo aver consumato xy. Allora possiamo costruire una computazione di A' che accetta y in questo modo:

$$q_0' \xrightarrow{\varepsilon} q_1 \xrightarrow{y_1} \dots \xrightarrow{y_n} y_2.$$

Siccome $y_2 \in F'$, la computazione è accettante per A'.

 \bullet Se y è accettata dal nuovo automa A', allora esiste una computazione accettante che ha la forma

$$q_0' \xrightarrow{\varepsilon} q_1 \xrightarrow{y_1} \dots \xrightarrow{y_n} y_{n+1},$$

con $y_{n+1} \in F'$. Per la definzione della funzione di transizione δ' , abbiamo che esiste una computazione da q_0 a q_1 di A, che consuma una certa parola x. Per la definizione dell'insieme di stati finali F', esiste una computazione di A che raggiunge uno stato finale di A a partire da y_{n+1} , che consuma una certa parola z. Di conseguenza, la parola xyz è accettata da A.

2. (12 punti) Considera il linguaggio

$$L_2 = \{wwu \mid u, w \text{ sono stringhe di } 0 \text{ e } 1 \text{ tali che } |u| = |w|\}.$$

Dimostra che L_2 non è regolare.

Soluzione: Usiamo il Pumping Lemma per dimostrare che il linguaggio non è regolare. Supponiamo per assurdo che L_2 sia regolare:

- \bullet sia k la lunghezza data dal Pumping Lemma;
- consideriamo la parola $w = 1^k 1^k 0^k$, che è di lunghezza maggiore di k ed appartiene ad L_2 perché il primo terzo della parola è uguale al secondo terzo;
- sia w = xyz una suddivisione di w tale che $y \neq \varepsilon$ e $|xy| \leq k$;

• poiché $|xy| \le k$, allora x e y sono entrambe contenute nella sequenza iniziale di 1. Inoltre, siccome $y \ne \varepsilon$, abbiamo che $x = 1^q$ e $y = 1^p$ per qualche $q \ge 0$ e p > 0. z contiene la parte rimanente della stringa: $z = 1^{k-q-p}1^k0^k$. Consideriamo l'esponente i = 0: la parola xy^0z ha la forma

$$xy^0z = xz = 1^q 1^{k-q-p} 1^k 0^k = 1^{k-p} 1^k 0^k$$

Poiché p > 0, la sequenza iniziale di 1 è più corta di 2k, e quindi la parola iterata xy^0z non appartiene ad L_2 perché il primo terzo della parola è fatta solamente da 1 mentre il secondo terzo include anche un certo numero di 0.

Abbiamo trovato un assurdo quindi L_2 non può essere regolare.

3. (12 punti) Dimostra che se $L\subseteq \Sigma^*$ è un linguaggio context-free allora anche il linguaggio

$$censor(L) = \{ \#^{|w|} \mid w \in L \}$$

è un linguaggio context-free.

Soluzione: Se L è un linguaggio context-free, allora esiste una grammatica $G = (V, \Sigma, R, S)$ che lo genera. Possiamo assumere che questa grammatica sia in forma normale di Chomsky. Per dimostrare che censor(L) è context-free, dobbiamo essere in grado di definire una grammatica che possa generarlo. Questa grammatica è una quadrupla $G' = (V', \Sigma', R', S')$ definita come segue.

- L'alfabeto contiene solo #: $\Sigma' = {\#}$.
- L'insieme di variabili è lo stesso della grammatica G: V' = V.
- Il nuovo insieme di regole R' è ottenuto rimpiazzando ogni regola nella forma $A \to b$, con b simbolo terminale, con la regola $A \to \#$, e lasciando invariate le regole nella forma $A \to BC$ e la regola $S \to \varepsilon$ (se presente).
- La variabile iniziale rimane la stessa: S' = S.

Data una derivazione $S \Rightarrow^* w$ della grammatica G possiamo costruire una derivazione nella nuova grammatica G' che applica le stesse regole nello stesso ordine, e che deriva una parola dove ogni simbolo terminale di w è rimpiazzato da #. Quindi, G' permette di derivare tutte le parole in censor(L). Viceversa, data una derivazione $S \Rightarrow^* \#^n$ della nuova grammatica G' possiamo costruire una derivazione nella grammatica G che applica le stesse regole nello stesso ordine, e che deriva una parola dove ogni # è rimpiazzato da qualche simbolo terminale in Σ . Quindi, G' permette di derivare solo parole che appartengono a censor(L).