

Data Management and Artificial Intelligence

Lecture 12

Sebastian Wandelt (小塞)

Beihang University

Outline for today

- Review
- Multi-Armed Bandit Problem
- Monte Carlo Methods
- Monte-Carlo Tree Search (MCTS)

Review

Challenge: GA for the following problem

• Find maximum value of a function $f(p)=31p-p^2$ with a single integer parameter p (0 < = p < = 31)

Chromosome: Two options

- 1. An individual chromosome is a 1-integer number
 - -22=22
- 2. An individual chromosome is a 5-bit number
 - **10110**=**1***2⁴+**0***2³+**1***2²+**1***2¹+**0***2⁰=22

Chromosome example

An individual chromosome is a 5-bit number

$$-$$
 10110=**1***2⁴+**0***2³+**1***2²+**1***2¹+**0***2⁰=22

Four randomly generated genomes

Genome	р	Fitness
10110	22	198
00011	3	84
00010	2	58
11001	25	150

Recombination

Genome	р	Fitness
10110	22	198
00011	3	84
00010	2	58
11001	25	150

- Recombination of 10110 and 11001 after bit 2:
 - Parent1: 10 110 (22)
 - Parent2: 11 001 (25)
- Offspring (before mutation):
 - Offspring1: **10001** (17) -> fitness=238
 - Offspring2: **11110** (30) -> fitness=30

Summary: Components of a GA

A problem definition as input, and:

- Encoding principles
- Initialization procedure
- Selection of parents
- Genetic operators
- Evaluation function
- Termination condition

```
(gene, chromosome)
```

(creation)

(reproduction)

(mutation, recombination)

(environment)

Review

 What does the typical search process of the methods learned so far look like?

Monte-Carlo Methods

The core of Monte-Carlo

- Monte-Carlo methods are about randomness (again ②)
- Before we get into Monte-Carlo, we have to discuss and understand randomness a bit more ...

The core of Monte-Carlo

- Randomness
- Definition of random from Merriam-Webster:
 - Main Entry: **random**Function: *adjective*

Date: 1565

1 a: lacking a definite plan, purpose, or pattern **b**: made, done, or chosen at random < read *random* passages from the book> **2 a**: relating to, having, or being elements or events with definite probability of occurrence < *random* processes> **b**: being or relating to a set or to an element of a set each of whose elements has equal probability of occurrence <a random sample>; *also*: characterized by procedures designed to obtain such sets or elements < *random* sampling> **Ready? Set? Go!**

What is the obvious problem?

Random Number

- What is random number?
- Is 3 a random number?
 - There is no such thing as single random number
- Random numbers
 - A sequence of numbers that have nothing to do with the other numbers in the sequence
 - 1,2,3,4,5,6,7,8,9,10,11,... ?
- In a uniform distribution of random numbers in the range [0,1], every number has the same chance of turning up.
 - 0.00001 is just as likely as 0.5000

Random v. Pseudo-random

- Random numbers have no defined sequence or formulation. Thus, for any n random numbers, each appears with equal probability.
- Computer algorithms are restricted to generating what we call pseudo-random numbers.
 - Generating a sequence of numbers whose properties approximate the properties of sequences of random numbers.
 - Based on one initial number only (the "seed")

Creating random numbers

- Any idea for how to create random numbers with a computer?
 - ("import random" is **not** the answer ©)

An early example (John von Neumann, 1946)

- To generate 10 digits of integer
 - Start with one of 10 digits integers
 - Square it and take middle 10 digits from answer
 - Example: $5772156649^2 = 33317792380594909291$
- The sequence appears to be random, but each number is determined from the previous → not random.
- Smaller example:
 - $6100^2 = 37210000$
 - $2100^2 = 04410000$
 - $4100^2 = 16810000$
 - ...

Any problem?

An early example (John Von Neumann, 1946)

- To generate 10 digits of integer
 - Start with one of 10 digits integers
 - Square it and take middle 10 digits from answer
 - Example: $5772156649^2 = 33317792380594909291$
- The sequence appears to be random, but each number is determined from the previous → not random.
- Serious problem: Small numbers (0 or 1) are lumped together, it can get itself to a short loop. For example:
 - $6100^2 = 37210000$
 - $2100^2 = 04410000$
 - $4100^2 = 16810000$
 - $8100^2 = 65610000$
 - 🙁

Initial number=**seed**

RANDU Generator

- 1960's IBM
- Algorithm:

$$I_{n+1} = (65539 \times I_n) \operatorname{mod}(2^{31})$$

Any problem?

1D and 2D Distribution of RANDU

3D Distribution of RANDU

There is a lot of research on that

- For now, just remember that pseudo-random numbers:
 - 1. Can be controlled by a seed
 - 2. Are in fact periodic sequences (e.g., when last number=seed)
 - 3. A finite set of quantized numbers -> problems in high-dimensions

Initializing with Seeds

Two major reasons to initialize the seed:

- The default state always generates the same sequence of random numbers. Not really random at all, particularly for a small set of calls. Solution: Call the seed method with the lower-order bits of the system clock.
- You need a deterministic process that is repeatable.

Clear so far?

A small intermediate challenge

 Problem: What is the probability that 10 dice throws add up exactly to 32?

A small intermediate challenge

- Problem: What is the probability that 10 dice throws add up exactly to 32?
- **1. Exact Way.** Calculate this exactly by counting all possible ways of making 32 from 10 dice.
- 2. Approximate (Lazy) Way. Simulate throwing the dice (say 500 times), count the number of times the results add up to 32, and divide this by 500.

Let us do this in Python

- Problem: What is the probability that 10 dice throws add up exactly to 32?
- **Solution**: Let's try the approximate way

Source code for approximate simulation

```
import random
import matplotlib.pyplot as plt
fig,ax=plt.subplots(1,1,figsize=(15,10),dpi=70)
for N in range(1000,150000,1000):
    print(N)
    sum32=0
    for run in range(N):
        if sum([random.randint(1,6) for i in range(10)])==32:
            sum32+=1
    p=sum32*100/N
    ax.plot(N,p,"kx")
ax.set xlabel("N")
ax.set ylabel("Probability")
```

Chart for approximate simulation

Simple Example:

- Method 1: Analytical Integration
- Method 2: Quadrature
- Method 3: MC -- random sampling the area enclosed by a<x<b and 0<y<max (p(x))

Challenge: Estimating π using Monte Carlo

• Can we estimate π using Monte-Carlo?

Estimating π using Monte Carlo

The probability of a random point lying inside the unit circle:

$$\mathbf{P}\left(x^2 + y^2 < 1\right) = \frac{A_{circle}}{A_{square}} = \frac{\pi}{4}$$

 If pick a random point N times and M of those times the point lies inside the unit circle:

$$\mathbf{P}^{\diamond}\left(x^{2}+y^{2}<1\right)=\frac{M}{N}$$

- If N becomes very large, PI=P0
- Let's try that in Python!

Estimating π using Monte Carlo

```
import random
import math
import matplotlib.pyplot as plt
inside,outside=[],[]
for i in range(10000000):
    x=random.uniform(-1,1)
    y=random.uniform(-1,1)
    if math.sqrt(x*x+y*y)<=1:</pre>
        inside.append((x,y))
    else:
        outside.append((x,y))
print(len(inside)*4/(len(outside)+len(inside)))
fig,ax=plt.subplots(1,1,figsize=(10,6),dpi=50)
xs,ys=list(zip(*inside))
ax.plot(xs,ys,"bo")
ax.plot([x for x,y in inside],[y for x,y in inside],"bo")
```

Estimating π using Monte Carlo

• Results:

```
    N = 10,000 Pi= 3.104385
    N = 100,000 Pi= 3.139545
    N = 1,000,000 Pi= 3.139668
    N = 10,000,000 Pi= 3.141774
```


Question:

Do we need randomness here?

Question:

- Do we need randomness here?
- In fact, this is really a sampling problem
 - We could also evenly distribute points along the plane and compute the ratio

Multi-Armed Bandit Problem

Single bandit

- Process:
- 1. Pull arm of bandit
- 2. Wait for three symbols to appear
 - If they are identical => win
 - If they are not identical => loose

Multi-Armed Bandit Problem

No two Slot Machines are the same!

So: How to pick between Slot Machines so that you walk out with most \$\$\$ from Las Vegas?

Problem

We are broke

Thousands of Slot Machines

We don't have enough budget to explore each Slot Machine even once!!

An analogy in the "real world"

Multi-Armed Bandit Problem

Exploitation: Earn

Exploration: Learn

As a game?

Money = Computational Budget

Slot Machine = Next Action to Choose

Number of Slot Machines = Branching Factor

UCB Algorithm for Minimizing Cumulative Regret

- n(a): number of pulls of arm a so far
- Q(a): average reward for trying action a so far
- Action choice by UCB after n pulls:

$$a_n = \arg\max_a Q(a) + \sqrt{\frac{2\ln n}{n(a)}}$$

 Assumes rewards in [0,1]. We can always normalize given a bounded reward assumption

UCB= Upper Confidence Bound

UCB: Bounded Sub-Optimality

$$a_n = \arg\max_{a} Q(a) + \sqrt{\frac{2\ln n}{n(a)}}$$

Value Term:

favors actions that looked good historically

Exploration Term:

actions get an exploration bonus that grows with ln(n)

Doesn't waste much time on sub-optimal arms, unlike uniform!

Exploitation: Earn

Exploration: Learn

UCB Performance Guarantee

- Theorem: The expected cumulative regret of UCB $E[Reg_n]$ after n arm pulls is bounded by O(log n)
- Is this good?
- Yes. The average per-step regret is $O(\frac{\log(n)}{n})$
- Theorem: No algorithm can achieve a better expected regret (up to constant factors)

Task

Let us implement the multi-armed bandit problem in Python!

Generalization:

Monte-Carlo Tree Search

Monte-Carlo Tree Search

 Builds a sparse look-ahead tree rooted at current state by repeated Monte-Carlo simulation of a "rollout policy"

Summary

- Monte-Carlo algorithms and MCTS have revolutionized the area of game playing by computers
 - Alpha GO uses MCTS at its core
 - But the success of MCTS goes back to the early 2000s
- These algorithms have very strong theoretical properties (assuming infinite amount of time)
 - The more time you have (=the more you sample), the better results you get
- Many variants exist
 - Tuned for specific problem types

Thank you very much!