Cryptography Lecture 19

Arkady Yerukhimovich

November 4, 2024

Outline

1 Lecture 18 Review

2 Crypto Hardness Assumptions (Chapters 8.2, 8.3)

3 Assumptions in Cyclic Groups (Chapters 8.2, 8.3)

Lecture 18 Review

- ullet The Group \mathbb{Z}_N^*
- Chinese Remainder Theorem
- Modular Arithmetic by Hand

Modular Arithmetic Without a Calculator

To evaluate exponentiation $\mod N$ use the following steps:

- If N is not prime, apply the Chinese Remainder Theorem
- Reduce mod $\phi(N)$ in the exponent
- Reduce mod N in the base

Useful Hints:

- Sometimes useful to use negative numbers
- \bullet look for things that are easy to compute (e.g., 1^{53})

Outline

Lecture 18 Review

2 Crypto Hardness Assumptions (Chapters 8.2, 8.3)

3 Assumptions in Cyclic Groups (Chapters 8.2, 8.3)

What Are Hardness Assumptions?

- As we've discussed before, all crypto primitives rely on computational hardness
- Thus, we need to assume that some problem is hard to compute
- We have seen such assumptions before: E.g., Existence of PRG, PRF, CRHF

What Are Hardness Assumptions?

- As we've discussed before, all crypto primitives rely on computational hardness
- Thus, we need to assume that some problem is hard to compute
- We have seen such assumptions before: E.g., Existence of PRG, PRF, CRHF
- Going forward, we will instead use hard problems from number theory and mathematics
 - Some of these problems have been studied for 1000s of years
 - Easy to state and widely understood
 - Still believed to be hard for all PPT machines

Factoring Problem

Given N = pq when p and q are n-bit primes, find p and q

Factoring Problem

Given N = pq when p and q are n-bit primes, find p and q

$GenMod(1^n)$:

- Find *n*-bit primes p, q, compute N = pq
- Output (*N*, *p*, *q*)

Factoring Problem

Given N = pq when p and q are n-bit primes, find p and q

 $GenMod(1^n)$:

- Find *n*-bit primes p, q, compute N = pq
- Output (N, p, q)

Consider the following game between an adversary ${\cal A}$ and a challenger:

 $\mathsf{Factor}_{\mathcal{A},\mathsf{GenMod}}(n)$

Factoring Problem

Given N = pq when p and q are n-bit primes, find p and q

$GenMod(1^n)$:

- Find *n*-bit primes p, q, compute N = pq
- Output (N, p, q)

Consider the following game between an adversary ${\cal A}$ and a challenger:

$\mathsf{Factor}_{\mathcal{A},\mathsf{GenMod}}(n)$

ullet The challenger runs $(N,p,q)\leftarrow \mathsf{GenMod}(1^n)$ and sends N to $\mathcal A$

Factoring Problem

Given N = pq when p and q are n-bit primes, find p and q

$GenMod(1^n)$:

- Find *n*-bit primes p, q, compute N = pq
- Output (N, p, q)

Consider the following game between an adversary ${\cal A}$ and a challenger:

$\mathsf{Factor}_{\mathcal{A},\mathsf{GenMod}}(n)$

- ullet The challenger runs $(N,p,q)\leftarrow \mathsf{GenMod}(1^n)$ and sends N to $\mathcal A$
- \mathcal{A} outputs two primes p', q'

Factoring Problem

Given N = pq when p and q are n-bit primes, find p and q

$GenMod(1^n)$:

- Find *n*-bit primes p, q, compute N = pq
- Output (*N*, *p*, *q*)

Consider the following game between an adversary ${\cal A}$ and a challenger:

$\mathsf{Factor}_{\mathcal{A},\mathsf{GenMod}}(n)$

- ullet The challenger runs $(N,p,q)\leftarrow \mathsf{GenMod}(1^n)$ and sends N to $\mathcal A$
- \mathcal{A} outputs two primes p', q'
- We say that $\mathsf{Factor}_{\mathcal{A},\mathsf{GenMod}}(n) = 1$ (i.e., \mathcal{A} wins) if $p' \cdot q' = N$.

Factoring Problem

Given N = pq when p and q are n-bit primes, find p and q

$GenMod(1^n)$:

- Find *n*-bit primes p, q, compute N = pq
- Output (*N*, *p*, *q*)

Consider the following game between an adversary ${\cal A}$ and a challenger:

$Factor_{A,GenMod}(n)$

- ullet The challenger runs $(N,p,q)\leftarrow \mathsf{GenMod}(1^n)$ and sends N to $\mathcal A$
- \mathcal{A} outputs two primes p', q'
- We say that $\mathsf{Factor}_{\mathcal{A},\mathsf{GenMod}}(n) = 1$ (i.e., \mathcal{A} wins) if $p' \cdot q' = N$.

Definition: Factoring is hard relative to GenMod if for all PPT ${\mathcal A}$ it holds that

$$\Pr[\mathsf{Factor}_{\mathcal{A},\mathsf{GenMod}}(n)=1] \leq \operatorname{negl}(n)$$

Arkady Yerukhimovich Cryptography November 4, 2024 7 / 16

Factoring Problem

Given N = pq when p and q are n-bit primes, find p and q

Factoring Problem

Given N = pq when p and q are n-bit primes, find p and q

Observations:

• Factoring can easily be done in $O(\sqrt{N})$ divisions – just try all numbers less than \sqrt{N}

Factoring Problem

Given N = pq when p and q are n-bit primes, find p and q

- Factoring can easily be done in $O(\sqrt{N})$ divisions just try all numbers less than \sqrt{N}
- No known way to factor in time polynomial in $||N|| = \log_2 N$

Factoring Problem

Given N = pq when p and q are n-bit primes, find p and q

- Factoring can easily be done in $O(\sqrt{N})$ divisions just try all numbers less than \sqrt{N}
- ullet No known way to factor in time polynomial in ||N||
- Requires ability to efficiently sample *n*-bit primes

Factoring Problem

Given N = pq when p and q are n-bit primes, find p and q

- Factoring can easily be done in $O(\sqrt{N})$ divisions just try all numbers less than \sqrt{N}
- ullet No known way to factor in time polynomial in ||N||
- Requires ability to efficiently sample *n*-bit primes
 - Prime number theorem: The fraction of n-bit integers that are prime is at least 1/3n

Factoring Problem

Given N = pq when p and q are n-bit primes, find p and q

- Factoring can easily be done in $O(\sqrt{N})$ divisions just try all numbers less than \sqrt{N}
- No known way to factor in time polynomial in ||N||
- Requires ability to efficiently sample *n*-bit primes
 - Prime number theorem: The fraction of n-bit integers that are prime is at least 1/3n
 - So, can sample integers at random, and test if they are prime

Factoring Problem

Given N = pq when p and q are n-bit primes, find p and q

- Factoring can easily be done in $O(\sqrt{N})$ divisions just try all numbers less than \sqrt{N}
- ullet No known way to factor in time polynomial in ||N||
- Requires ability to efficiently sample *n*-bit primes
 - Prime number theorem: The fraction of n-bit integers that are prime is at least 1/3n
 - So, can sample integers at random, and test if they are prime
 - Miller-Rabin primality test efficiently test if a number is prime

Given N=pq, Integer e>1 s.t. $gcd(e,\phi(N))=1$, we know that $f_e(x)=x^e$ is a permutation over \mathbb{Z}_N^*

RSA Problem

Given (N, e) and $y \in \mathbb{Z}_N^*$, compute $[y^{1/e} \mod N]$

Given N=pq, Integer e>1 s.t. $gcd(e,\phi(N))=1$, we know that $f_e(x)=x^e$ is a permutation over \mathbb{Z}_N^*

RSA Problem

Given (N, e) and $y \in \mathbb{Z}_N^*$, compute $[y^{1/e} \mod N]$

Given N = pq, Integer e > 1 s.t. $gcd(e, \phi(N)) = 1$, we know that $f_e(x) = x^e$ is a permutation over \mathbb{Z}_N^*

RSA Problem

Given (N, e) and $y \in \mathbb{Z}_N^*$, compute $[y^{1/e} \mod N]$

Observations:

• Since $gcd(e, \phi(N)) = 1$, there is an integer $d = e^{-1} \mod \phi(N)$

Given N = pq, Integer e > 1 s.t. $gcd(e, \phi(N)) = 1$, we know that $f_e(x) = x^e$ is a permutation over \mathbb{Z}_N^*

RSA Problem

Given (N, e) and $y \in \mathbb{Z}_N^*$, compute $[y^{1/e} \mod N]$

- Since $gcd(e, \phi(N)) = 1$, there is an integer $d = e^{-1} \mod \phi(N)$
- ullet The function $f_d(x)=x^d$ is also a permutation over \mathbb{Z}_N^*

Given N=pq, Integer e>1 s.t. $gcd(e,\phi(N))=1$, we know that $f_e(x)=x^e$ is a permutation over \mathbb{Z}_N^*

RSA Problem

Given (N, e) and $y \in \mathbb{Z}_N^*$, compute $[y^{1/e} \mod N]$

- Since $gcd(e, \phi(N)) = 1$, there is an integer $d = e^{-1} \mod \phi(N)$
- ullet The function $f_d(x)=x^d$ is also a permutation over \mathbb{Z}_N^*
- ullet Moreover, f_d is the inverse permutation of f_e

$$(x^e)^d = x^{[ed \mod \phi(N)]} = x \mod N$$

Given N=pq, Integer e>1 s.t. $gcd(e,\phi(N))=1$, we know that $f_e(x)=x^e$ is a permutation over \mathbb{Z}_N^*

RSA Problem

Given (N, e) and $y \in \mathbb{Z}_N^*$, compute $[y^{1/e} \mod N]$

Observations:

- Since $gcd(e, \phi(N)) = 1$, there is an integer $d = e^{-1} \mod \phi(N)$
- The function $f_d(x) = x^d$ is also a permutation over \mathbb{Z}_N^*
- Moreover, f_d is the inverse permutation of f_e

$$(x^e)^d = x^{[ed \mod \phi(N)]} = x \mod N$$

• RSA problem is easy if know any of $d, \phi(N), p, q$

◆ロト ◆個ト ◆差ト ◆差ト を めらぐ

Given N = pq, Integer e > 1 s.t. $gcd(e, \phi(N)) = 1$, we know that $f_e(x) = x^e$ is a permutation over \mathbb{Z}_N^*

RSA Problem

Given (N, e) and $y \in \mathbb{Z}_N^*$, compute $[y^{1/e} \mod N]$

Observations:

- Since $gcd(e, \phi(N)) = 1$, there is an integer $d = e^{-1} \mod \phi(N)$
- The function $f_d(x) = x^d$ is also a permutation over \mathbb{Z}_N^*
- Moreover, f_d is the inverse permutation of f_e

$$(x^e)^d = x^{[ed \mod \phi(N)]} = x \mod N$$

- RSA problem is easy if know any of $d, \phi(N), p, q$
- RSA is potentially easier than factoring

Arkady Yerukhimovich November 4, 2024 9/16

Cryptography

$GenRSA(1^n)$:

- $(N, p, q) \leftarrow \mathsf{GenMod}(1^n)$, let $\phi(N) = (p-1)(q-1)$
- Choose e > 1 s.t. $gcd(e, \phi(N)) = 1$
- Compute $d = [e^{-1} \mod \phi(N)]$
- Output (N, e, d)

GenRSA (1^n) :

- $(N, p, q) \leftarrow \mathsf{GenMod}(1^n)$, let $\phi(N) = (p-1)(q-1)$
- Choose e > 1 s.t. $gcd(e, \phi(N)) = 1$
- Compute $d = [e^{-1} \mod \phi(N)]$
- Output (*N*, *e*, *d*)

Consider the following game between an adversary ${\cal A}$ and a challenger:

$\mathsf{RSAInv}_{\mathcal{A},\mathsf{GenRSA}}(n)$

GenRSA (1^n) :

- $(N, p, q) \leftarrow \mathsf{GenMod}(1^n)$, let $\phi(N) = (p-1)(q-1)$
- Choose e > 1 s.t. $gcd(e, \phi(N)) = 1$
- Compute $d = [e^{-1} \mod \phi(N)]$
- Output (*N*, *e*, *d*)

Consider the following game between an adversary ${\cal A}$ and a challenger:

$\mathsf{RSAInv}_{\mathcal{A},\mathsf{GenRSA}}(n)$

• The challenger runs $(N,e,d) \leftarrow \mathsf{GenRSA}(1^n)$, chooses $y \leftarrow \mathbb{Z}_N^*$, and sends (N,e,y) to \mathcal{A}

GenRSA (1^n) :

- $(N, p, q) \leftarrow \mathsf{GenMod}(1^n)$, let $\phi(N) = (p-1)(q-1)$
- Choose e > 1 s.t. $gcd(e, \phi(N)) = 1$
- Compute $d = [e^{-1} \mod \phi(N)]$
- Output (*N*, *e*, *d*)

Consider the following game between an adversary ${\cal A}$ and a challenger:

$\mathsf{RSAInv}_{\mathcal{A},\mathsf{GenRSA}}(n)$

- The challenger runs $(N,e,d) \leftarrow \mathsf{GenRSA}(1^n)$, chooses $y \leftarrow \mathbb{Z}_N^*$, and sends (N,e,y) to \mathcal{A}
- \mathcal{A} outputs $x \in \mathbb{Z}_N^*$

GenRSA (1^n) :

- $(N, p, q) \leftarrow \mathsf{GenMod}(1^n)$, let $\phi(N) = (p-1)(q-1)$
- Choose e > 1 s.t. $gcd(e, \phi(N)) = 1$
- Compute $d = [e^{-1} \mod \phi(N)]$
- Output (*N*, *e*, *d*)

Consider the following game between an adversary ${\cal A}$ and a challenger:

$\mathsf{RSAInv}_{\mathcal{A},\mathsf{GenRSA}}(n)$

- The challenger runs $(N,e,d) \leftarrow \mathsf{GenRSA}(1^n)$, chooses $y \leftarrow \mathbb{Z}_N^*$, and sends (N,e,y) to \mathcal{A}
- \mathcal{A} outputs $x \in \mathbb{Z}_N^*$
- We say that $\mathsf{RSAInv}_{\mathcal{A},\mathsf{GenRSA}}(n) = 1$ (i.e., \mathcal{A} wins) if $x^e = y \mod N$.

GenRSA (1^n) :

- $(N, p, q) \leftarrow \mathsf{GenMod}(1^n)$, let $\phi(N) = (p-1)(q-1)$
- Choose e > 1 s.t. $gcd(e, \phi(N)) = 1$
- Compute $d = [e^{-1} \mod \phi(N)]$
- Output (*N*, *e*, *d*)

Consider the following game between an adversary ${\cal A}$ and a challenger:

$\mathsf{RSAInv}_{\mathcal{A},\mathsf{GenRSA}}(n)$

- The challenger runs $(N,e,d) \leftarrow \mathsf{GenRSA}(1^n)$, chooses $y \leftarrow \mathbb{Z}_N^*$, and sends (N,e,y) to \mathcal{A}
- \mathcal{A} outputs $x \in \mathbb{Z}_N^*$
- We say that $RSAInv_{A,GenRSA}(n) = 1$ (i.e., A wins) if $x^e = y \mod N$.

Definition: RSA is hard relative to GenRSA if for all PPT ${\cal A}$ it holds that

$$\mathsf{Pr}[\mathsf{RSAInv}_{\mathcal{A},\mathsf{GenRSA}}(n) = 1] \leq \mathsf{negl}(n)$$

Outline

Lecture 18 Review

2 Crypto Hardness Assumptions (Chapters 8.2, 8.3)

3 Assumptions in Cyclic Groups (Chapters 8.2, 8.3)

Discrete Log Assumption

Let G be a cyclic group of order q with generator g

Discrete Log Problem

Given $h \in G$, find $0 \le x \le q-1$ s.t. $g^x = h$. We say $x = \log_g h$

Let G be a cyclic group of order q with generator g

Discrete Log Problem

Given $h \in G$, find $0 \le x \le q - 1$ s.t. $g^x = h$. We say $x = \log_g h$

 $Gen(1^n)$:

• Pick *n*-bit prime q, group G of order q, generator g. Output (G, q, g)

Let G be a cyclic group of order q with generator g

Discrete Log Problem

Given $h \in G$, find $0 \le x \le q - 1$ s.t. $g^x = h$. We say $x = \log_g h$

 $Gen(1^n)$:

• Pick *n*-bit prime q, group G of order q, generator g. Output (G, q, g) Consider the following game between an adversary A and a challenger:

$\mathsf{DLog}_{\mathcal{A},\mathsf{Gen}}(n)$

Let G be a cyclic group of order q with generator g

Discrete Log Problem

Given $h \in G$, find $0 \le x \le q-1$ s.t. $g^x = h$. We say $x = \log_g h$

 $Gen(1^n)$:

• Pick *n*-bit prime q, group G of order q, generator g. Output (G, q, g) Consider the following game between an adversary A and a challenger:

$\mathsf{DLog}_{\mathcal{A},\mathsf{Gen}}(n)$

• Challenger runs $(G,q,g) \leftarrow \mathsf{Gen}(1^n)$, $h \leftarrow G$, sends (G,q,g,h) to $\mathcal A$

Let G be a cyclic group of order q with generator g

Discrete Log Problem

Given
$$h \in G$$
, find $0 \le x \le q-1$ s.t. $g^x = h$. We say $x = \log_g h$

 $Gen(1^n)$:

• Pick *n*-bit prime q, group G of order q, generator g. Output (G, q, g) Consider the following game between an adversary A and a challenger:

$\mathsf{DLog}_{\mathcal{A},\mathsf{Gen}}(n)$

- Challenger runs $(G,q,g) \leftarrow \mathsf{Gen}(1^n)$, $h \leftarrow G$, sends (G,q,g,h) to $\mathcal A$
- \mathcal{A} outputs $x \in \mathbb{Z}_q$

Let G be a cyclic group of order q with generator g

Discrete Log Problem

Given
$$h \in G$$
, find $0 \le x \le q - 1$ s.t. $g^x = h$. We say $x = \log_g h$

 $Gen(1^n)$:

• Pick *n*-bit prime q, group G of order q, generator g. Output (G, q, g) Consider the following game between an adversary A and a challenger:

$\mathsf{DLog}_{\mathcal{A},\mathsf{Gen}}(n)$

- Challenger runs $(G,q,g) \leftarrow \mathsf{Gen}(1^n)$, $h \leftarrow G$, sends (G,q,g,h) to $\mathcal A$
- \mathcal{A} outputs $x \in \mathbb{Z}_q$
- We say that $\mathsf{DLog}_{\mathcal{A},\mathsf{Gen}}(n) = 1$ (i.e., \mathcal{A} wins) if $g^{\mathsf{x}} = h$.

Let G be a cyclic group of order q with generator g

Discrete Log Problem

Given
$$h \in G$$
, find $0 \le x \le q - 1$ s.t. $g^x = h$. We say $x = \log_g h$

 $Gen(1^n)$:

• Pick *n*-bit prime q, group G of order q, generator g. Output (G, q, g) Consider the following game between an adversary A and a challenger:

$\mathsf{DLog}_{\mathcal{A},\mathsf{Gen}}(n)$

- ullet Challenger runs $(G,q,g)\leftarrow \mathsf{Gen}(1^n),\ h\leftarrow G,\ \mathsf{sends}\ (G,q,g,h)\ \mathsf{to}\ \mathcal{A}$
- \mathcal{A} outputs $x \in \mathbb{Z}_q$
- We say that $\mathsf{DLog}_{\mathcal{A},\mathsf{Gen}}(n) = 1$ (i.e., \mathcal{A} wins) if $g^{\mathsf{x}} = h$.

Definition: DLog is hard relative to Gen if for all PPT ${\cal A}$ it holds that

$$\Pr[\mathsf{DLog}_{\mathcal{A},\mathsf{Gen}}(n) = 1] \leq \mathsf{negl}(n)$$

Arkady Yerukhimovich Cryptography November 4, 2024 12 / 16

Let G be a cyclic group of order q with generator g

Diffie-Hellman Problem

Given $h_1 = g^x$, $h_2 = g^y$, find g^{xy}

Let G be a cyclic group of order q with generator g

Diffie-Hellman Problem

Given $h_1 = g^x$, $h_2 = g^y$, find g^{xy}

Variant 1: Computational Diffie-Hellman

Hard to find g^{xy}

Let G be a cyclic group of order q with generator g

Diffie-Hellman Problem

Given $h_1 = g^x$, $h_2 = g^y$, find g^{xy}

Variant 1: Computational Diffie-Hellman

Hard to find g^{xy}

Consider the following game between an adversary ${\cal A}$ and a challenger:

Computation Diffie-Hellman: $CDH_{A,Gen}(n)$

Let G be a cyclic group of order q with generator g

Diffie-Hellman Problem

Given $h_1 = g^x$, $h_2 = g^y$, find g^{xy}

Variant 1: Computational Diffie-Hellman

• Hard to find g^{xy}

Consider the following game between an adversary ${\cal A}$ and a challenger:

Computation Diffie-Hellman: $CDH_{A,Gen}(n)$

• Challenger runs $(G, q, g) \leftarrow \text{Gen}(1^n)$, $x, y \leftarrow \mathbb{Z}_q$, sends $(G, q, g, h_1 = g^x, h_2 = g^y)$ to A

Let G be a cyclic group of order q with generator g

Diffie-Hellman Problem

Given $h_1 = g^x$, $h_2 = g^y$, find g^{xy}

Variant 1: Computational Diffie-Hellman

• Hard to find g^{xy}

Consider the following game between an adversary ${\cal A}$ and a challenger:

Computation Diffie-Hellman: $CDH_{A,Gen}(n)$

- Challenger runs $(G, q, g) \leftarrow \text{Gen}(1^n)$, $x, y \leftarrow \mathbb{Z}_q$, sends $(G, q, g, h_1 = g^x, h_2 = g^y)$ to A
- \mathcal{A} outputs $h_3 \in G$

Let G be a cyclic group of order q with generator g

Diffie-Hellman Problem

Given $h_1 = g^x$, $h_2 = g^y$, find g^{xy}

Variant 1: Computational Diffie-Hellman

• Hard to find g^{xy}

Consider the following game between an adversary ${\cal A}$ and a challenger:

Computation Diffie-Hellman: $CDH_{A,Gen}(n)$

- Challenger runs $(G, q, g) \leftarrow \text{Gen}(1^n)$, $x, y \leftarrow \mathbb{Z}_q$, sends $(G, q, g, h_1 = g^x, h_2 = g^y)$ to A
- \mathcal{A} outputs $h_3 \in \mathcal{G}$
- We say that $CDH_{\mathcal{A},Gen}(n) = 1$ (i.e., \mathcal{A} wins) if $h_3 = g^{xy}$.

Let G be a cyclic group of order q with generator g

Diffie-Hellman Problem

Given $h_1 = g^x$, $h_2 = g^y$, find g^{xy}

Variant 1: Computational Diffie-Hellman

• Hard to find g^{xy}

Consider the following game between an adversary ${\cal A}$ and a challenger:

Computation Diffie-Hellman: $CDH_{A,Gen}(n)$

- Challenger runs $(G, q, g) \leftarrow \text{Gen}(1^n)$, $x, y \leftarrow \mathbb{Z}_q$, sends $(G, q, g, h_1 = g^x, h_2 = g^y)$ to A
- \mathcal{A} outputs $h_3 \in \mathcal{G}$
- We say that $CDH_{A,Gen}(n) = 1$ (i.e., A wins) if $h_3 = g^{xy}$.

Definition: CDH is hard if for all PPT A: $Pr[A \text{ wins}] \leq negl(n)$

Let G be a cyclic group of order q with generator g

Diffie-Hellman Problem

Given
$$h_1 = g^x$$
, $h_2 = g^y$, find g^{xy}

Variant 2: Decisional Diffie-Hellman

• Hard to distinguish g^{xy} from a random element in G

Let G be a cyclic group of order q with generator g

Diffie-Hellman Problem

Given
$$h_1 = g^x$$
, $h_2 = g^y$, find g^{xy}

Variant 2: Decisional Diffie-Hellman

• Hard to distinguish g^{xy} from a random element in G

Consider the following game between an adversary $\ensuremath{\mathcal{A}}$ and a challenger:

Let G be a cyclic group of order q with generator g

Diffie-Hellman Problem

Given
$$h_1 = g^x$$
, $h_2 = g^y$, find g^{xy}

Variant 2: Decisional Diffie-Hellman

• Hard to distinguish g^{xy} from a random element in G

Consider the following game between an adversary $\ensuremath{\mathcal{A}}$ and a challenger:

Decisional Diffie-Hellman: $DDH_{A,Gen}(n)$

• Challenger runs $(G, q, g) \leftarrow \text{Gen}(1^n)$, $x, y \leftarrow \mathbb{Z}_q$, $b \leftarrow \{0, 1\}$

Let G be a cyclic group of order q with generator g

Diffie-Hellman Problem

Given
$$h_1 = g^x$$
, $h_2 = g^y$, find g^{xy}

Variant 2: Decisional Diffie-Hellman

• Hard to distinguish g^{xy} from a random element in G

Consider the following game between an adversary ${\cal A}$ and a challenger:

- Challenger runs $(G,q,g) \leftarrow \mathsf{Gen}(1^n)$, $x,y \leftarrow \mathbb{Z}_q$, $b \leftarrow \{0,1\}$
- If b=0, send (G,q,g,g^x,g^y,g^{xy}) to \mathcal{A} . If b=1, choose $z\leftarrow\mathbb{Z}_q$, and send (G,q,g,g^x,g^y,g^z) to \mathcal{A}

Let G be a cyclic group of order q with generator g

Diffie-Hellman Problem

Given
$$h_1 = g^x$$
, $h_2 = g^y$, find g^{xy}

Variant 2: Decisional Diffie-Hellman

• Hard to distinguish g^{xy} from a random element in G

Consider the following game between an adversary $\ensuremath{\mathcal{A}}$ and a challenger:

- Challenger runs $(G,q,g) \leftarrow \mathsf{Gen}(1^n)$, $x,y \leftarrow \mathbb{Z}_q$, $b \leftarrow \{0,1\}$
- If b=0, send (G,q,g,g^x,g^y,g^{xy}) to \mathcal{A} . If b=1, choose $z\leftarrow\mathbb{Z}_q$, and send (G,q,g,g^x,g^y,g^z) to \mathcal{A}
- \mathcal{A} outputs bit b'

Let G be a cyclic group of order q with generator g

Diffie-Hellman Problem

Given
$$h_1 = g^x$$
, $h_2 = g^y$, find g^{xy}

Variant 2: Decisional Diffie-Hellman

• Hard to distinguish g^{xy} from a random element in G

Consider the following game between an adversary ${\cal A}$ and a challenger:

- Challenger runs $(G,q,g) \leftarrow \mathsf{Gen}(1^n)$, $x,y \leftarrow \mathbb{Z}_q$, $b \leftarrow \{0,1\}$
- If b=0, send (G,q,g,g^x,g^y,g^{xy}) to \mathcal{A} . If b=1, choose $z\leftarrow\mathbb{Z}_q$, and send (G,q,g,g^x,g^y,g^z) to \mathcal{A}
- \mathcal{A} outputs bit b'
- We say that $DDH_{\mathcal{A},Gen}(n)=1$ (i.e., \mathcal{A} wins) if b=b'.

Let G be a cyclic group of order q with generator g

Diffie-Hellman Problem

Given
$$h_1 = g^x$$
, $h_2 = g^y$, find g^{xy}

Variant 2: Decisional Diffie-Hellman

• Hard to distinguish g^{xy} from a random element in G

Consider the following game between an adversary ${\cal A}$ and a challenger:

Decisional Diffie-Hellman: $DDH_{A,Gen}(n)$

- Challenger runs $(G,q,g) \leftarrow \text{Gen}(1^n)$, $x,y \leftarrow \mathbb{Z}_q$, $b \leftarrow \{0,1\}$
- If b=0, send (G,q,g,g^x,g^y,g^{xy}) to \mathcal{A} . If b=1, choose $z\leftarrow\mathbb{Z}_q$, and send (G,q,g,g^x,g^y,g^z) to \mathcal{A}
- \mathcal{A} outputs bit b'
- We say that $DDH_{A,Gen}(n) = 1$ (i.e., A wins) if b = b'.

Definition: DDH is hard if for all PPT A: $Pr[A \text{ wins}] \leq 1/2 + negl(n)$

Arkady Yerukhimovich Cryptography November 4, 2024

14 / 16

Relative Hardness of The Problems

Relative Hardness of The Problems

DLog > CDH > DDH

DLog vs. CDH

DLog vs. CDH

DLog. Given
$$5^{\times}$$
 find \times

CDH. Given 5^{\times} , 3^{\times} find 3^{\times}
 \times
 $(3^{3})^{\times} = 5^{\times}$

Relative Hardness of The Problems

- DLog vs. CDH
 - If \mathcal{A} can solve DLog, then given g^x , g^y , he can find x, y and compute g^{xy} (solve CDH)
 - The reverse direction doesn't seem true

Relative Hardness of The Problems

- DLog vs. CDH
 - If A can solve DLog, then given g^x , g^y , he can find x, y and compute g^{xy} (solve CDH)
 - The reverse direction doesn't seem true
- 2 CDH vs. DDH

Relative Hardness of The Problems

- DLog vs. CDH
 - If A can solve DLog, then given g^x , g^y , he can find x, y and compute g^{xy} (solve CDH)
 - The reverse direction doesn't seem true
- CDH vs. DDH
 - If \mathcal{A} given g^x , g^y can find g^{xy} , then he can distinguish this from g^z for a random $z \leftarrow \mathbb{Z}_q$ (solve DDH)
 - The reverse direction doesn't seem true

Relative Hardness of The Problems

DLog > CDH > DDH

- DLog vs. CDH
 - If A can solve DLog, then given g^x , g^y , he can find x, y and compute g^{xy} (solve CDH)
 - The reverse direction doesn't seem true
- CDH vs. DDH
 - If \mathcal{A} given g^x , g^y can find g^{xy} , then he can distinguish this from g^z for a random $z \leftarrow \mathbb{Z}_q$ (solve DDH)
 - The reverse direction doesn't seem true

Strength of Assumption

Since DDH is the easiest problem, assuming it is secure is the strongest assumption

4 D > 4 D > 4 D > 4 D > 3 D 9 Q Q

15 / 16

Note that \mathbb{Z}_p^* for p prime, p > 2, has order p - 1

- p-1 is not prime
- ullet So $G=\mathbb{Z}_p^*$ is not a prime-order group

Note that \mathbb{Z}_p^* for p prime, p > 2, has order p - 1

- p-1 is not prime
- ullet So $G=\mathbb{Z}_p^*$ is not a prime-order group

Reasons to prefer prime-order groups:

• Easy to find a generator, all $g \in G$ are generators.

Note that \mathbb{Z}_p^* for p prime, p > 2, has order p - 1

- \bullet p-1 is not prime
- ullet So $G=\mathbb{Z}_p^*$ is not a prime-order group

Reasons to prefer prime-order groups:

- Easy to find a generator, all $g \in G$ are generators.
- DDH is easy in composite-order groups!!!

Note that \mathbb{Z}_p^* for p prime, p > 2, has order p - 1

- p-1 is not prime
- ullet So $G=\mathbb{Z}_p^*$ is not a prime-order group

Reasons to prefer prime-order groups:

- Easy to find a generator, all $g \in G$ are generators.
- DDH is easy in composite-order groups!!!

Group of Quadratic Residues mod p

Note that \mathbb{Z}_p^* for p prime, p > 2, has order p - 1

- p-1 is not prime
- ullet So $G=\mathbb{Z}_p^*$ is not a prime-order group

Reasons to prefer prime-order groups:

- Easy to find a generator, all $g \in G$ are generators.
- DDH is easy in composite-order groups!!!

Group of Quadratic Residues mod p

Let p = 2q + 1 with both p and q prime.

Note that \mathbb{Z}_p^* for p prime, p>2, has order p-1

x~ 13~

- p-1 is not prime
- ullet So $G=\mathbb{Z}_p^*$ is not a prime-order group

Reasons to prefer prime-order groups:

- Easy to find a generator, all $g \in G$ are generators.
- DDH is easy in composite-order groups!!!

Group of Quadratic Residues mod p

Let p = 2q + 1 with both p and q prime.

$$G = \{ [h^2 \bmod p] | h \in \mathbb{Z}_p^* \}$$

is a group of prime order q

Note that \mathbb{Z}_p^* for p prime, p>2, has order p-1

- p-1 is not prime
- ullet So $G=\mathbb{Z}_p^*$ is not a prime-order group

Reasons to prefer prime-order groups:

- Easy to find a generator, all $g \in G$ are generators.
- DDH is easy in composite-order groups!!!

gx

Group of Quadratic Residues mod p

Let p = 2q + 1 with both p and q prime.

$$G = \{ [h^2 \bmod p] | h \in \mathbb{Z}_p^* \}$$

is a group of prime order q