Ampliació de matemàtiques - EETAC

Examen MQ – 7 de novembre de 2.018

Duració: 2 hores

Entregueu els problemes en fulls separats Poseu el NOM en MAJÚSCULES en tots els fulls No es permet l'ús de calculadores ni apunts de cap tipus És necessari justificar totes les respostes.

<u>Problema 1 [3,5 punts]</u>: Sigui $F(x,y,z)=(y^2,-2z+x^3,x)$ un camp vectorial. Sigui S la superfície definida per

$$S = \{(x, y, z) \in \mathbb{R}^3 : 1 - z = x^2 + (y - 1)^2, z \ge 0\}.$$

Sigui C la corba vora de S.

Utilitzeu el teorema de Stokes per calcular la integral del camp F sobre la corba C orientada en sentit antihorari vista des de z > 0.

Problema 2 [2,5 punts]: Sigui $F(x,y,z)=(az^2+by,2x-czy^2,-y^3+2xz)$ un camp vectorial, amb $a,b,c\in\mathbb{R}$.

- a) (1 punt) Calculeu els valors de $a, b, c \in \mathbb{R}$ pels quals F és un camp conservatiu.
- b) (1 punt) Per a aquests valors a, b, c calculeu un potencial de F.
- c) (0,5 punts) Calculeu la integral de F al llarg d'una corba que té per origen el punt (1,1,1) i extrem (3,2,-1).

<u>Problema 3 [4 punts]</u>: Sigui F(x, y, z) = (xz, yx, zy) un camp vectorial. Sigui V el volum definit al tallar el cilindre $x^2 + y^2 = 4$ amb z = 0 i z + y = 2. Sigui S_1 la tapa lateral del volum, S_2 la tapa superior i S_3 la tapa inferior.

- a) (1,5 punt) Calculeu el flux de F a través de S_2 i S_3 , amb l'orientació cap enfora.
- b) (1,5 punts) Useu el teorema de la divergència per a calcular el flux total de F a través de la vora de V.
- c) (1 punt) Deduïu dels apartats anteriors el flux de F a través de S_1 amb l'orientació cap enfora.

PROBLEMA 1

- C vora de S JF ds? - orrentede en sent anthorari vista des de 270

1-2=x2+(y-1)2 parabolorde circular vertex (0,1,1) que té per vora la cremmterènie

x2+(y-1)2=1 > centre (0,1,0)

Calculem rot
$$\overrightarrow{F}$$
: $\begin{vmatrix} i & j & k \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \end{vmatrix} = (2, -1, 3x^2 - 2y)$

(onsiderem s' = disc de centre (0,1,0) i radi 1.

(també té vora la corba C), orientat amb el vector

ScFds = SS rotFds

Calmem els vectors tempents i el vector normal:

Alexhores:

$$\iint_{S'} rot \vec{F} d\vec{S} = \int_{0}^{1} \int_{0}^{2\pi} (2, -4, 3r^{2} \cos^{2}\theta - 2r \sin\theta - 2) \cdot (0, 0, r) d\theta$$

$$dr = \int_{0}^{1} \int_{0}^{2\pi} (3r^{3}\cos^{2}\theta - 2r^{2}\sin\theta - 2r) dr d\theta = \int_{0}^{1} \int_{0}^{2\pi} (3r^{3}\cos^{2}\theta - 2r^{2}\sin\theta - 2r) dr d\theta = \int_{0}^{1} \int_{0}^{2\pi} (3r^{3}\cos^{2}\theta - 2r^{2}\sin\theta - 2r) dr d\theta = \int_{0}^{1} \int_{0}^{2\pi} (3r^{3}\cos^{2}\theta - 2r^{2}\sin\theta - 2r) dr d\theta = \int_{0}^{1} \int_{0}^{2\pi} (3r^{3}\cos^{2}\theta - 2r^{2}\sin\theta - 2r) dr d\theta = \int_{0}^{1} \int_{0}^{2\pi} (3r^{3}\cos^{2}\theta - 2r^{2}\sin\theta - 2r) dr d\theta = \int_{0}^{1} \int_{0}^{2\pi} (3r^{3}\cos^{2}\theta - 2r^{2}\sin\theta - 2r) dr d\theta = \int_{0}^{1} \int_{0}^{2\pi} (3r^{3}\cos^{2}\theta - 2r^{2}\sin\theta - 2r) dr d\theta = \int_{0}^{1} \int_{0}^{2\pi} (3r^{3}\cos^{2}\theta - 2r^{2}\sin\theta - 2r) dr d\theta = \int_{0}^{1} \int_{0}^{2\pi} (3r^{3}\cos^{2}\theta - 2r^{2}\sin\theta - 2r) dr d\theta = \int_{0}^{1} \int_{0}^{2\pi} (3r^{3}\cos^{2}\theta - 2r^{2}\sin\theta - 2r) dr d\theta = \int_{0}^{1} \int_{0}^{2\pi} (3r^{3}\cos^{2}\theta - 2r^{2}\sin\theta - 2r) dr d\theta = \int_{0}^{1} \int_{0}^{2\pi} (3r^{3}\cos^{2}\theta - 2r^{2}\sin\theta - 2r) dr d\theta = \int_{0}^{1} \int_{0}^{2\pi} (3r^{3}\cos\theta - 2r^{2}\sin\theta - 2r) dr d\theta = \int_{0}^{1} \int_{0}^{2\pi} (3r^{3}\cos\theta - 2r^{2}\sin\theta - 2r) dr d\theta = \int_{0}^{1} \int_{0}^{2\pi} (3r^{3}\cos\theta - 2r^{2}\sin\theta - 2r) dr d\theta = \int_{0}^{1} \int_{0}^{2\pi} (3r^{3}\cos\theta - 2r^{2}\sin\theta - 2r) dr d\theta = \int_{0}^{1} \int_{0}^{2\pi} (3r^{3}\cos\theta - 2r^{2}\sin\theta - 2r) dr d\theta = \int_{0}^{1} \int_{0}^{2\pi} (3r^{3}\cos\theta - 2r^{2}\sin\theta - 2r) dr d\theta = \int_{0}^{1} \int_{0}^{2\pi} (3r^{3}\cos\theta - 2r^{2}\sin\theta - 2r) dr d\theta = \int_{0}^{1} \int_{0}^{2\pi} (3r^{3}\cos\theta - 2r^{2}\sin\theta - 2r) dr d\theta = \int_{0}^{1} \int_{0}^{2\pi} (3r^{3}\cos\theta - 2r^{2}\sin\theta - 2r) dr d\theta = \int_{0}^{1} \int_{0}^{2\pi} (3r^{3}\cos\theta - 2r^{2}\sin\theta - 2r) dr d\theta = \int_{0}^{1} \int_{0}^{2\pi} (3r^{3}\cos\theta - 2r^{2}\sin\theta - 2r) dr d\theta = \int_{0}^{1} \int_{0}^{2\pi} (3r^{3}\cos\theta - 2r^{2}\sin\theta - 2r) dr d\theta = \int_{0}^{1} \int_{0}^{2\pi} (3r^{3}\cos\theta - 2r^{2}\sin\theta - 2r) dr d\theta = \int_{0}^{1} \int_{0}^{2\pi} (3r^{3}\cos\theta - 2r^{2}\sin\theta - 2r) dr d\theta = \int_{0}^{1} \int_{0}^{2\pi} (3r^{3}\cos\theta - 2r^{2}\sin\theta - 2r) dr d\theta = \int_{0}^{1} \int_{0}^{2\pi} (3r^{3}\cos\theta - 2r^{2}\sin\theta - 2r) dr d\theta = \int_{0}^{1} \int_{0}^{2\pi} (3r^{3}\cos\theta - 2r^{2}\sin\theta - 2r) dr d\theta = \int_{0}^{1} \int_{0}^{2\pi} (3r^{3}\cos\theta - 2r^{2}\cos\theta -$$

$$= \int_{0}^{1} 3r^{3} dr \int_{0}^{2\pi} \frac{1 + \cos 2\theta}{2} d\theta - \int_{0}^{1} 2r \int_{0}^{2\pi} d\theta =$$

$$=3\frac{r^4}{4}\int_0^1 \left(\frac{1}{2}0 + \frac{\sin 20}{4}\right)_0^{2\pi} - r^2\int_0^1 - 2\pi =$$

$$=\frac{3\pi}{4}-2\pi=\boxed{-5\pi}{4}$$

Nota: També es pot ter prenent S el paraboloide amb

parametritarisó

y= resin 0+1

0 6 0 6 2#

PROBLEMAZ

a)
$$\vec{F}$$
 es C^{1} a IR^{3} , per tamt

 \vec{F} es ancervative $\vec{\Theta}$ rot $\vec{F} = 0$

rot $\vec{F} = \begin{vmatrix} i & j & k \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ az^{2} + by & 2x - czy^{2} & -y^{3} + 2xz \end{vmatrix} = (-3y^{2} + cy^{2})$
 $12az - 2z \cdot (2 - b)$

$$\begin{array}{c|c}
-3y^2 + cy^2 = 0 \\
2a - 2 - 2 = 0 \\
2 - b = 0
\end{array}$$

b)
$$\frac{\partial f}{\partial x} = 2^2 + 2y$$
 $\int_{x}^{x} f(x_1 y_1 z) = 2^2 x + 2xy + h_1(y_1 z)$
 $\frac{\partial f}{\partial y} = 2x - 3zy^2$ $\int_{z}^{y} f(x_1 y_1 z) = 2xy - zy^3 + h_2(x_1 z)$
 $\frac{\partial f}{\partial z} = -y^3 + 2xz$ $\int_{z}^{z} f(x_1 y_1 z) = -zy^3 + z^2 x + h_3(x_1 y_1 z)$

$$=) \left[f(x_1 y_1 z) = 2xy + z^2 x - z y^3 + C \right]$$

C)
$$\int_{(3,273)}^{(3,273)} \stackrel{\text{"}}{=} ds = f(3,273) - f(4,1,1) = 12 + 3 + 8 - 2 = 21$$

ītulació			E.T.S. d'Enginy i Ports de Barc	ers de Camins, Cana elona
Assignatura			Facultat d'Informàtica de Barcelona	
ognoms		Nom	Pàgina	_ de 🍃
DNI				Ç.
	0 (1+1			
C) Cale	uleu II Fds:			
	111			
lusar	nt el terrens de la divers	gencia laber que		
		4.		
	1 V. Fdv= / Fds+1	1 to de + 1/ F.	10	
	/, r as 7/	50 7 7 7	ds	
an	Ily Ilava & green gran	ent ly orientacions	cap infore.	Patost)
	// Fds=6n-0-1-1	1n) = 10p/		
	17 sa	1 7		
		4		