宇宙開発研究同好会活動記録

2020/4/1

実験責任者: 髙橋俊暉

本報告書では、10cm×10cmの基板上に作成したスクエアローアンテナの特性および、共振周波数を調査しました。また、各種スクエアローアンテナと標準ダイポールの利得測定を行い、作成したスクエアローアンテナの性能を考察しました。

実験で使用した道具は以下の通りです。

- nanoVNA
- スクエアローアンテナ①~④
- 同軸ケーブル
- 標準ダイポール①,②
- SSG
- SDR

実験は以下の手順で行いました。

- 1. nanoVNAでスクエアローアンテナ①~④の特性を計測し、共振周波数を調べました。
- 2. 標準ダイポール①、スクエアローアンテナ①~④の利得測定を行いました。

利得測定は以下の条件で行いました。

- アンテナの間隔を 1m、1.5m、2m の 3 パターンで記録した。
- SSG 側に標準ダイポール②、SDR 側に計測するアンテナを取り付けた。
- SSG の出力は-100dBm から 10dBm まで変化させた。
- SDR の TunerGain は 0 dBに設定した。

図1に本実験で作成したスクエアローアンテナの寸法を示します。

図 1 スクエアローアンテナ寸法

図2に実験環境の様子を示す。

図 2 実験環境

表1に各種スクエアローアンテナの特性および、共振周波数を示します。

表 1 各種スクエアローアンテナの特性および、共振周波数

アンテナ名	共振周波数[MHz]	共振周	司波数	437Mhz			
	六瓜月/XX[IVITIZ]	インピーダンス[Ω]	キャパシタンス[pF]	インピーダンス[Ω]	キャパシタンス[pF]		
スクエアローアンテナ①	412.5	1.41k	3.52	30	2.28		
スクエアローアンテナ②	411	1.57k	5.72	27.7	2.42		
スクエアローアンテナ③	417	1.57k	2.89	41.1	1.79		
スクエアローアンテナ④	421	1.57k	1.41	62.3	1.31		

表 2~表 4 にアンテナ間距離が 1m および、1.5m、2m の時の各種スクエアローアンテナの利得を示します。

表 2 アンテナ間 1m 時の利得

SSG出力[dBm]	-100	-90	-80	-70	-60	-50	-40	-30	-20	-10	0	10
標準ダイポール①	-117.7	-116.3	-116.2	-112.3	-106.2	-98.1	-89.7	-79.7	-70.2	-60.2	-50.2	-47.6
スクエアローアンテナ①	-117.4	-117.2	-116.9	-116.5	-116.4	-114.3	-109.7	-101.2	-94.2	-84.4	-74.4	-65.1
スクエアローアンテナ②	-117.2	-117.0	-116.5	-116.2	-115.7	-113.7	-108.1	-100.1	-92.3	-82.4	-72.1	-62.3
スクエアローアンテナ③	-117.1	-117.3	-117.2	-116.9	-116.3	-113.4	-107.7	-100.4	-92.8	-82.8	-72.7	-62.7
スクエアローアンテナ④	-117.0	-116.8	-116.5	-116.4	-116.4	-115.1	-111.2	-102.3	-92.5	-82.5	-72.5	-62.5

表 3 アンテナ間 1.5m 時の利得

SSG出力[dBm]	-100	-90	-80	-70	-60	-50	-40	-30	-20	-10	0	10
標準ダイポール①	-117.2	-117.0	-116.3	-114.2	-109.3	-101.5	-94.0	-84.2	-74.6	-64.6	-54.6	-47.8
スクエアローアンテナ①	-117.5	-117.2	-116.9	-116.5	-116.3	-114.8	-109.8	-101.1	-94.1	-84.8	-74.8	-65.5
スクエアローアンテナ②	-117.4	-117.2	-116.9	-116.5	-115.9	-112.7	-106.5	-98.2	-90.4	-80.4	-70.4	-60.4
スクエアローアンテナ③	-117.4	-117.1	-116.8	-116.8	-116.2	-115.2	-111.3	-104.2	-97.2	-87.2	-77.1	-67.1
スクエアローアンテナ④	-117.5	-117.2	-116.8	-116.5	-115.9	-112.5	-106.1	-97.3	-87.6	-77.4	-67.4	-57.5

表 4 アンテナ間 2m 時の利得

SSG出力[dBm]	-100	-90	-80	-70	-60	-50	-40	-30	-20	-10	0	10
標準ダイポール①	-117.5	-117.3	-116.6	-114.8	-109.9	-102.5	-94.7	-85.1	-75.5	-65.5	-55.5	-48
スクエアローアンテナ①	-117.8	-117.4	-117.2	-117.1	-116.5	-115.7	-112.4	-105.1	-98.3	-91.5	-81.2	-71.2
スクエアローアンテナ②	-117.5	-117.0	-116.8	-117.4	-116.5	-114.1	-109.5	-100.7	-93.4	-83.7	-73.9	-63.9
スクエアローアンテナ③	-117.6	-117.1	-116.9	-116.4	-116.8	-115.7	-111.7	-104.5	-97.5	-86.7	-76.6	-66.9
スクエアローアンテナ④	-117.7	-117.4	-116.8	-116.6	-116.1	-115.8	-113.2	-103.6	-95.7	-85.7	-75.6	-65.7

表 $2\sim4$ の色のついたセルは SSG の出力を変化させた時に、SDR の電波強度が 10dB(±1 dB)ずつ変化した値を示しています。これらの結果から SSG の出力が-20dBm ~0 dBm の値を計算に用いました。

表 5 にそれぞれのアンテナ間距離における標準ダイポールと各種スクエアローアンテナとの利得差を示します。

表 5 標準ダイポールと各種スクエアローの利得差

	標準ダイポールとの差[dB]					
	1m	2m				
スクエアローアンテナ①	-24.1	-20.0	-25.9			
スクエアローアンテナ②	-22.1	-15.8	-18.2			
スクエアローアンテナ③	-22.6	-22.6	-21.4			
スクエアローアンテナ④	-22.3	-12.9	-20.2			

表 5 より同じスクエアローアンテナでも、それぞれのアンテナ間距離で標準ダイポールとの利得差が 異なるように見受けられた。これらの差はマルチパスによる影響と考えられる。

また、本実験で最も利得の高いスクエアローアンテナ④は標準ダイポールと-12.9dB 以上利得差があることが分かりました。表 1 から各種スクエアローアンテナは共振周波数が 437Mhz から離れているのでスクエアローアンテナの再設計の必要性を感じました。