ESERCITAZIONE 4.5

Approfondimento Circuiti Logici e Sequenziali

Approfondimento: multiplexer

2

Multiplexer: composizione interna

Soluzione alternativa al problema già analizzato dell'uso dei multiplexer a 3 input di controllo per espressioni logiche a 4 variabili.

ESEMPIO: ABC+ $\bar{A}\bar{B}\bar{C}$ + E

CIRCUITO PER ABC+ $\bar{A}\bar{B}\bar{C}$

Idea: usare il bit di chip selection (che chiameremo \overline{CS}) che ci permette di selezionare il mux o meno.

Utilizzare più mux collegati alla variabile E (o, in alternativa, in forma negata) in modo tale che il risultato dipenda da esso.

Nel caso in analisi: il mux illustrato alla slide precedente dovrà attivarsi quando E è 0, mentre creeremo un secondo mux che restituirà 1 a vuoto che, invece, sarà selezionato nel caso in cui E sia 1.

27/11/2017

Immagine dei due mux e del loro collegamento a E.

Architettura dei Sistemi di Elaborazione – Tutorato

Il circuito mostrato in questa seconda figura implementa esattamente quanto detto finora:

- Se E ha valore 0, la porta CS del mux₁ riceve un segnale basso (0), attivando proprio il mux₁. Da esso viene calcolato il valore della funzione logica, escludendo la variabile E. Questo valore viene mandato in output. Allo stesso tempo, il mux₂ non viene selezionato, (la sua porta logica CS riceve un segnale alto) e quindi non fa nulla.
- Se E ha valore 1, la porta CS del mux₂ riceve un segnale basso (0), che dunque viene attivato. Visto che è un circuito che restituisce sempre 1, farà uscire dal proprio output il valore 1, a prescindere dai valori presenti sui bit di controllo. Contemporaneamente mux₁ non viene selezionato, e quindi non farà nulla.

Applichiamo ora quanto descritto a un esempio più complesso, come l'esercizio 4 dell'esercitazione 3 (disponibile sul sito del corso).

$$Y = \bar{C}D + AB$$

Il mux selezionato da D = 0 dovrà realizzare solo la funzione logica AB, mentre quello selezionato da D = 1 dovrà realizzare la funzione logica AB+C.

- Nel mux₁:
 - ▶ le porte D_6 e D_7 sono collegate alla massa (attivano gli AND del tipo 11x)
 - tutte le altre porte sono collegate a terra
- Nel mux₂:
 - le porte D₀, D₂, D₄, D₆ sono collegate alla massa (implementano C, attivando tutti gli AND del tipo xx0)
 - la porta D₇ è collegata alla massa, poiché implenta AB (attiva l'unico ingresso non ancora attivato del tipo 110, cioè 111)
 - le altre porte sono collegate a terra.

Immagine dei due mux e del loro collegamento a D.

Circuiti (1)

Decoder:

- Input: numero a n bit
- Output: impostare a 1 una sola delle 2ⁿ uscite
- Esempio uso: Indirizzare piccola memoria a 8 bit

Circuiti (2)

Comparator:

- Input: 2 numeri a n bit
- Output: 0 nel caso in cui gli input siano diversi, uno nel caso in cui siano uguali
- Esempio uso: calcolare somme di prodotti

Circuiti (3)

Adder (1bit):

- Input: 2 numeri a 1 bit
- Output: Somma dei due numeri all'uscita S, Riporto della somma all'uscita C
- Esempio uso: Sommare valori
- Può essere esteso a n bit ponendone n in cascata

Circuiti (4)

ALU (1bit):

- Unico circuito per effettuare:
 - Operazione Logica AND,
 - Operazione Logica OR,
 - Somma di due parole.
- Estendibile a n bit mettendone n in cascata

Circuiti (5)

Latch SR:

- Memoria a 1 bit
- Input:
 - S (Setting): imposta il valore in memoria,
 - R (Resetting): azzera il valore del latch.
- Output: Q e \bar{Q} , complementari
- Output non determinate unicamente da valori input corrente.

Circuiti (6)

Latch SR Temporizzato:

- Come latch SR, ma cambio stato solo in specifici momenti
- Cambio stato solo quando clock
 (E) vale 1

Circuiti (7)

Latch D Temporizzato:

- Come latch SR, ma con un unico input per evitare ambiguità (S=R=1)
- Valore D viene campionato quando clock vale 1

Circuiti (8)

Flip-flop:

- Campionamento valore linea e memorizzazione
- Campionamento durante transizione clock da 0 a1.

