Szkoła Główna Gospodarstwa Wiejskiego w Warszawie Wydział Zastosowań Informatyki i Matematyki

Mateusz Tracz 172391

Implementacja serwisu umożliwiającego dwuetapową weryfikację użytkownika

Implementation of two factor authentication service at the Warsaw University of Life Sciences – SGGW

Praca dyplomowa inżynierska na kierunku Informatyka

> Praca wykonana pod kierunkiem dr. hab. Alexandera Prokopenya, prof. SGGW Wydział Zastosowań Informatyki i Matematyki Katedra Zastosowań Informatyki Zakład Modelowania i Analizy Systemów

Warszawa 2017

Oświadczenie promotora pracy

Oświadczam, że niniejsza praca została przygotowana pod moim k że spełnia ona warunki do przedstawienia tej pracy w postępowaniu dowego.	
Data Podpis promotora pracy	
Oświadczenie autora pracy	
Świadom odpowiedzialności prawnej, w tym odpowiedzialności ka wego oświadczenia, oświadczam, że niniejsza praca dyplomowa mnie samodzielnie i nie zawiera treści uzyskanych w sposób niezg przepisami prawa, w szczególności z ustawą z dnia 4 lutego 1994 r. o wach pokrewnych (Dz. U. Nr 90 poz. 631 z późn. zm.)	została napisana przeze odny z obowiązującymi
Oświadczam, że przedstawiona praca nie była wcześniej podstawą zanej z nadaniem dyplomu lub uzyskaniem tytułu zawodowego.	żadnej procedury zwią-
Oświadczam, że niniejsza wersja pracy jest identyczna z załączor Przyjmuję do wiadomości, że praca dyplomowa poddana zostanie pwej.	•
Data Podpis autora pracy	

Spis treści

1	Wst	ęp	
	1.1	Cel pr	acy
	1.2	Pojęci	e uwierzytelnienia wielopoziomowego
	1.3	Korzy	ści płynące z używania uwierzytelnienia wielopoziomowego
2	Elen	nenty k	ryptografii
	2.1	Krypto	ografia symetryczna oraz asymetryczna
		2.1.1	Szyfrowanie symetryczne
		2.1.2	Szyfrowanie asymetryczne
	2.2	Szyfry	blokowe
		2.2.1	Tryby pracy szyfrów blokowych
		2.2.2	Data Encryption Standard
		2.2.3	Advanced Encryption Standard
	2.3	Szyfry	strumieniowe
		2.3.1	RC4
		2.3.2	Salsa20
	2.4	Krypto	ograficzna funkcja skrótu
		2.4.1	Message Digest 5
		2.4.2	Secure Hash Algorithm 1
		2.4.3	Secure Hash Algorithm 2
		2.4.4	Secure Hash Algorithm 3
	2.5	Uwier	zytelnienie i integralność
		2.5.1	Kod uwierzytelnienia wiadomości
		2.5.2	MAC bazujący na funkcji skrótu
	2.6	Genera	atory liczb losowych
		2.6.1	Pojęcie entropii
		2.6.2	Generatory prawdziwie losowych liczb
		2.6.3	Kryptograficzne generatory liczb pseudolosowych
3	Kry	ptograf	fia w praktyce
	3.1	Pojęci	a pomocnicze
		3.1.1	Kodowanie transportowe
		3.1.2	Czas uniksowy
		3.1.3	Ujednolicony identyfikator zasobów
	3.2	Hasło	jednorazowe
	3 3		ric Windows Data Protection

4	Atal	ki na mechanizm OTP	32
	4.1	Atak urodzinowy	32
	4.2	Side-channel attacks	32
	4.3	Atak przez powtórzenie	32
	4.4	Atak "Man in the middle"	32
	4.5	Phishing	32
5	Picn	nicAuth	33
	5.1	Architektura projektu	33
	5.2	Generowanie OTP po stronie użytkownika	33
	5.3	Przechowywanie sekretu użytkownika	33
	5.4	Przykład użycia projektu	33
	5.5	Planowane ulepszenia	33
6	Zak	ończenie	34
	6.1	Podsumowanie i wnioski	34
	6.2	Podziękowania	34
7	Spis	literatury	35

Streszczenie

TODO: POLSKI TYTUŁ

TODO: POLSKIE STRESZCZENIE

Słowa kluczowe – TODO: POLSKIE TAGI implementacja, SGGW, Szkoła Główna Gospodarstwa Wiejskiego

Summary

TODO: ANGIELSKIE TYTUŁ

TODO: ANGIELSKIE STRESZCZENIE

Keywords – TODO: ANGIELSKIE TAGI thesis, implementation, SGGW, Warsaw University of Life Sciences

- 1 Wstęp
- 1.1 Cel pracy
- 1.2 Pojęcie uwierzytelnienia wielopoziomowego
- 1.3 Korzyści płynące z używania uwierzytelnienia wielopoziomowego

2 Elementy kryptografii

2.1 Kryptografia symetryczna oraz asymetryczna

Współczesną kryptografię można podzielić na kryptografię symetryczną oraz kryptografię asymetryczną. W dużym uproszczeniu, w przypadku kryptografii symetrycznej używany jest jeden, wspólny klucz kryptograficzny a w kryptografii asymetrycznej obecna jest para kluczy - publiczny oraz prywatny. Kryptografia asymetryczna często nazywana jest kryptografią klucza publicznego.

2.1.1 Szyfrowanie symetryczne

Szyfrowanie symetryczne przy użyciu klucza kryptograficznego "miesza" dane w taki sposób, że jest możliwe odzyskanie danych wejściowych tylko za pomocą tego samego klucza. Algorytmy szyfrowania znacznie różnią się między sobą, jednak można pośród nich wyróżnić szyfry blokowe oraz szyfry strumieniowe.

Szyfry symetryczne idealnie nadają się do szyfrowania dużych ilości danych.

2.1.2 Szyfrowanie asymetryczne

Algorytmy używane w szyfrach asymetrycznych opierają się na rozwiązywaniu bardzo trudnych matematycznych problemów. Konstrukcja tych szyfrów pozwala niemal natychmiastowo rozwiązać zadany problem (i co za tym idzie odszyfrować dane) mając odpowiedni klucz, a w przypadku nieposiadania owego klucza, problem staje się niemożliwy do rozwiązania w rozsądnym czasie. Zwykle wykorzystywane jest tutaj zagadnienie faktoryzacji dużych liczb oraz znajdywania dyskretnych logarytmów.

Algorytmy asymetryczne działają na danych o ustalonej długości - zwykle od 1024 do 2048 bitów. Na ogół wykorzystywane są one tylko do bezpiecznego przesłania klucza symetrycznego, który jest używany do szyfrowania pozostałej komunikacji. Spowodowane jest to tym, że algorytmy symetryczne są dużo bardziej wydajne niż te asymetryczne.

Szyfrowanie asymetryczne poprawia nieco problem dystrybucji klucza. W odróżnieniu od szyfrowania symetrycznego, wymagane jest użycie O(N) kluczy zamiast $O(N^2)$ kluczy. Przykładami algorytmów asymetrycznych jest RSA lub ElGamal.

W praktyce rzadko kiedy korzysta się z wyłącznie kryptografii symetrycznej lub wyłącznie asymetrycznej. Zwykle w skład systemów kryptograficznych wchodzą elementy kryptografii symetrycznej jak również asymetrycznej.

2.2 Szyfry blokowe

Jednym z podstawowych elementów systemów kryptograficznych jest szyfr blokowy. Jest to algorytm operujący na bloku danych o ustalonej długości. Długość wynikowego bloku danych jest równa długości bloku podanego na wejściu.

Szyfry blokowe oparte są o tzw. "sieć substytucji-permutacji". Oznacza to, że dla każdego możliwego bloku jest ustalany dokładnie jeden blok mu odpowiadający. Za pomocą klucza kryptograficznego determinowane jest, który blok odpowiada któremu.

Dla zobrazowania tej definicji poniżej znajduje się szyfr o długości bloku równej 4 bity:

Tabela 2.1. Przykładowy szyfr blokowy o 4-bitowym bloku

1000: 1111
1001: 0011
1010: 1011
1011: 0001
1100: 1100
1101: 1001
1110: 0111
1111: 1010

Niezwykle ważną cechą jaka wynika z powyższej charakterystyki szyfru blokowego jest fakt, że znając pewną liczbę par (wiadomość, zaszyfrowana wiadomość), nie ujawnia to żadnych informacji o innych parach, szyfrowanych tym samym kluczem. Jedyną możliwą formą odszyfrowania wiadomości, nie posiadając klucza, jest wtedy metoda siłowa czyli wypróbowanie wszystkich możliwych kombinacji. Biorąc pod uwagę powyższy przykład czyli mając 16 różnych bloków, liczba ich permutacji wynosi 16! = 20922789888000. Prawdziwe szyfry posiadają znacznie większy rozmiar bloku, zwykle od 128 do 256 bitów. Przykładowo dla szyfru z rozmiarem bloku równym 128 bitów, należałoby sprawdzić aż (2¹²⁸)! możliwych kluczy.

2.2.1 Tryby pracy szyfrów blokowych

Nietrudno zauważyć jedną wadę szyfrów blokowych, która znacząco ogranicza proces szyfrowania. A mianowicie używając szyfrów blokowych, jesteśmy w stanie zaszyfrować dane o długości równej długości jednego bloku. Zwykle chcielibyśmy jednak szyfrować wiadomości dłuższe niż 16 czy 32 bajty. Z tego powodu zostały stworzone uniwersalne konstrukcje, możliwe do użycia z dowolnym szyfrem blokowym, pozwalające zaszyfrować dane o dowolnej długości.

ECB

Rozwiązaniem przychodzącym natychmiast na myśl jest podzielenie wiadomości na bloki i zaszyfrowanie każdego bloku oddzielnie.

Rysunek 2.1. Wizualizacja trybów szyfrowania.

Tryb ten nosi nazwę ECB (elektroniczna książka kodowa).

Posiada on niezwykle niebezpieczną wadę. Dany blok wiadomości zostanie zaszyfrowany do zawsze tego samego bloku szyfrogramu.

Przykładowo mając wiadomość:

|ABCD|EFGH|ABCD|IJKL|

oraz szyfr blokowy o długości bloku 4 bajty, zaszyfrowana wiadomość będzie wyglądać następująco:

|IEKG|BKLD|IEKG|FHDL|

Wadę tę można zobrazować szyfrując w trybie ECB dane dowolnej grafiki. Grafika po zaszyfrowaniu nie jest w pełni czytelna ale z pewnością można stwierdzić co na niej jest. Tryb ECB podatny jest również na atak typu *oracle*.

CBC

Najczęściej używanym trybem jest *CBC* - *Cipher Block Chaining (ang.)*. W tym trybie, blok wiadomości najpierw jest XORowany z poprzednim zaszyfrowanym blokiem a następnie on sam jest poddawany procesowi szyfrowania. W przypadku pierwszego bloku, dla którego nie ma bloku poprzedniego, wprowadzane jest pojęcie *wektora inicjalizującego*.

Wektor ten powinien być niemożliwy do zgadnięcia a w idealnej sytuacji powinien on być kryptograficznie losowy. Nie jest konieczne, aby wektor inicjalizujący był tajny, zwykle jest wysyłany razem z zaszyfrowaną wiadomością. Ważne jest jednak, aby atakujący nie był w stanie go przewidzieć przed samym procesem szyfrowania.

Proces deszyfrowania jest analogiczny. W pierwszej kolejności, zaszyfrowany blok poddawany jest działaniu szyfru blokowego, po czym jest on XORowany z poprzednim zaszyfrowanym blokiem. Na pierwszy blok musi zostać użyta funkcja XOR z takim samym wektorem inicjalizującym, jaki został użyty podczas szyfrowania.

Rysunek 2.2. Schemat szyfrowania w trybie CBC.

Rysunek 2.3. Schemat deszyfrowania w trybie CBC.

Tryb CBC sam w sobie można uznać za bezpieczny (w odróżnieniu od ECB), należy jednak pamiętać o paru najczęściej popełnianych błędach:

- 1. Używanie tego samego wektora inicjalizującego dla więcej niż jednej wiadomości.
- 2. Używanie przewidywalnych wektorów inicjalizujących, na przykład bazujących na liczniku.
- 3. Używanie klucza jako wektora inicjalizującego.

Jednym z najbardziej znanych ataków na system bazujący na trybie CBC był atak o nazwie *BEAST* [12]. Błędem, który został wykorzystany, było użycie zaszyfrowanego bloku poprzedniej wysłanej wiadomości jako wektora inicjalizującego.

CTR

Warto wspomnieć jeszcze o trybie *CTR* - *Counter* (*ang.*), gdyż sposób jego działania jest zbliżony do szyfrów strumieniowych. Wykorzystywany jest w nim *liczba używana jednorazowo* (*z angielskiego "nonce"*) oraz licznik. Licznik jest zwiększany dla każdego z bloków wiadomości. Na wejście szyfru blokowego podawana jest wyżej wspomniana liczba połączona z licznikiem. Następnie wynik działania szyfru jest XORowany z blokiem wiadomości. Krytyczne jest tutaj generowanie nowej liczby *nonce* dla każdej z wiadomości.

Rysunek 2.4. Schemat szyfrowania w trybie CTR.

Rysunek 2.5. Schemat deszyfrowania w trybie CTR.

2.2.2 Data Encryption Standard

Szyfr blokowy DES był pierwszym algorytmem, zatwierdzonym przez *Narodowe Biuro Standaryzacji* (obecnie *Narodowy Instytut Standaryzacji i Technologii*), jako bezpieczny standard szyfrowania symetrycznego. Przez ponad 20 lat stowarzyszenia naukowe poddawały go intensywnym analizom.

W tym czasie został wielokrotnie złamany, głównie z powodu długość klucza jaką posiada szyfr - zaledwie 56 bitów.

Jednym ze skutecznych ataków na DES było przedsięwzięcie, dokonane w styczniu 1999 roku, składające się z kooperacji platformy *distributed.net* oraz urządzenia stworzonego przez *Electronic Frontier Foundation* o nazwie *Deep Crack*. Atak bazował wyłącznie na metodzie

siłowej, należało więc sprawdzić $2^{56} = 72~057~594~037~927~936$ różnych kluczy. W mniej niż 24 godziny szyfr DES został sukcesywnie złamany.

Dla porównania przy dzisiejszej mocy obliczeniowej może on zostać złamany przez jedną maszynę w około jeden dzień [13].

Próbą uratowania szyfru była propozycja algorytmu 3DES. Polegał on na zaszyfrowaniu danych szyfrem DES, odszyfrowaniu ich, a następnie ponownym zaszyfrowaniu. Zamiast 3-krotnego szyfrowania, 3DES został wybrany schemat operacji umożliwiający zachowanie kompatybilności z systemami, w których możliwe było użycie jedynie wersji podstawowej algorytmu.

Pomimo zwiększonej długości klucza w przypadku 3DES, w porównaniu do AES jest mniej bezpieczny i nadzwyczajnie wolny (AES potrzebuje 12.6 cykli procesora do zaszyfrowania bajtu danych, 3DES aż 134.5 [7]).

2.2.3 Advanced Encryption Standard

Po problemach z DES agencja NIST ogłosiła konkurs na algorytm, który mógłby stać się nowym standardem. Do konkursu zgłoszone zostały między innymi: *Rijndael*, *Serpent*, *Two-fish*, *MARS* czy *RC6*. Zostały one poddane intensywnej kryptoanalizie. Ostatecznie wygrał algorytm stworzony przez Vincenta Rijmena oraz Joana Daemena - Rijndael.

Rijndael jest rodziną szyfrów, których rozmiar bloku oraz rozmiar klucza może wynosić: 128, 160, 192, 224 i 256 bitów. Za standard (AES) uznany został Rijndael z długością bloku równą 128 bitów oraz rozmiarze klucza równym 128, 192 lub 256 bitów.

Algorytm składa się z wielu przebiegów. Liczba przebiegów zależy od rozmiaru klucza. Pierwszym etapem algorytmu jest rozszerzenie klucza. Jako że, w każdym przebiegu potrzebny jest 128-bitowy klucz, zachodzi konieczność wygenerowania wielu kluczy, na podstawie głównego klucza.

W pierwszej kolejności główny klucz jest ładowany do macierzy 4 na 4 bajty. Ostatnia kolumna jest obracana (bajt z góry jest wstawiany na dół) a następnie wartość każdej komórki z obróconej kolumny podawana jest do nieliniowej funkcji zamiany, specyficznej dla algorytmu AES, zamieniającej podany bajt na inny. Następnie kolumna ta jest XORowana ze stałą przebiegu (inną dla każdego przebiegu). Na koniec XORowana jest ona z pierwszą kolumną klucza poprzedniego przebiegu.

Pozostałe kolumny liczone są XORując poprzednią kolumnę z kolumną na tym samym miejscu, ale z klucza poprzedniego przebiegu.

Po wygenerowaniu klucz, algorytm rozpoczyna przebiegi.

Każdy przebieg składa się z następujących kroków:

1. Zamiana bajtów.

Funkcja zamiany algorytmu AES jest złożeniem dwóch funkcji: $f(g(a_{xy}))$.

Wynikiem wewnętrznej funkcji *g* jest liczba odwrotna do zadanej nad ciałem skończonym. Jest to równoznaczne z zamianą zadanej liczby do postaci wielomianowej (wielomian o maksymalnym stopniu równym 7, w którym współczynnikami są bity liczby) a następnie znalezienie takiego wielomianu, który po przemnożeniu przez

wielomian liczby, modulo $x^8 + x^4 + x^3 + x + 1$, da w wyniku 1. Funkcja f jest przekształceniem wyrażanym następująco:

Rysunek 2.6. Przekształcenie f.

Możliwe jest też jednorazowe wygenerowania tablicy odwzorowania dla zadanych wielomianów, dzięki czemu zamiast za każdym razem obliczać wartość tej funkcji, wystarczy odczytać wartość tablicy pod odpowiednim indeksem.

	0x00	0x01	0x02	0x03	0x04	0x05	0x06	0x07	0x08	0x09	0x0a	0x0b	0x0c	0x0d	0x0e	0x0f
0x00	99	124	119	123	242	107	111	197	48	1	103	43	254	215	171	118
0x10	202	130	201	125	250	89	71	240	173	212	162	175	156	164	114	192
0x20	183	253	147	38	54	63	247	204	52	165	229	241	113	216	49	21
0x30	4	199	35	195	24	150	5	154	7	18	128	226	235	39	178	117
0x40	9	131	44	26	27	110	90	160	82	59	214	179	41	227	47	132
0x50	83	209	0	237	32	252	177	91	106	203	190	57	74	76	88	207
0x60	208	239	170	251	67	77	51	133	69	249	2	127	80	60	159	168
0x70	81	163	64	143	146	157	56	245	188	182	218	33	16	255	243	210
0x80	205	12	19	236	95	151	68	23	196	167	126	61	100	93	25	115
0x90	96	129	79	220	34	42	144	136	70	238	184	20	222	94	11	219
0xa0	224	50	58	10	73	6	36	92	194	211	172	98	145	149	228	121
0xb0	231	200	55	109	141	213	78	169	108	86	244	234	101	122	174	8
0xc0	186	120	37	46	28	166	180	198	232	221	116	31	75	189	139	138
0xd0	112	62	181	102	72	3	246	14	97	53	87	185	134	193	29	158
0xe0	225	248	152	17	105	217	142	148	155	30	135	233	206	85	40	223
0xf0	140	161	137	13	191	230	66	104	65	153	45	15	176	84	187	22

Rysunek 2.7. Macierz odwzorowania funkcji zamiany.

Przykładowo bajt 0xc4, za pomocą powyższej tablicy, konwertowany jest do wartości 28.

Rysunek 2.8. Wizualizacja zamiany bajtów.

2. Przesuwanie wierszy.

Każdy z wierszy jest przesuwany o odpowiednio 0, 1, 2, 3 komórki w lewo. Komórki macierzy, które wyszły poza macierz są dostawiane z prawej strony.

Rysunek 2.9. Wizualizacja przesunięcia wierszy.

3. Mieszanie kolumn.

Kolumna zapisywana jest w postaci wielomianu, następnie wielomian ten jest mnożony przez specjalny wielomian $03x^3 + 01x^2 + 01x + 02$. Na koniec brana jest reszta z dzielenia przez wielomian $x^4 + 1$.

Całość powyższych operacji można uprościć do mnożenia macierzowego:

$$\begin{bmatrix} 2113 \\ 3211 \\ 1321 \\ 1132 \end{bmatrix} \times \begin{bmatrix} b_{01} \\ b_{12} \\ b_{23} \\ b_{30} \end{bmatrix} = \begin{bmatrix} c_{01} \\ c_{11} \\ c_{21} \\ c_{31} \end{bmatrix}$$

W przypadku ostatniego przebiegu krok ten jest pomijany.

Rysunek 2.10. Wizualizacja mieszania kolumn.

4. Dodanie klucza przebiegu.

Ostatnim etapem przebiegu jest użycie funkcji XOR pomiędzy każdym elementem macierzy a każdym elementem klucza przebiegu.

Rysunek 2.11. Wizualizacja dodania klucza przebiegu.

W celu odszyfrowania danych cały proces jest powtarzany w odwrotnej kolejności.

Na chwile obecną nie są znane żadne praktyczne ataki na AES a co do szybkości działania na współczesnych komputerach, znacząco przyczynił się producent procesorów, implementując w nich natywne instrukcje procesora, których jedynym zadaniem jest realizacja algorytmu AES.

2.3 Szyfry strumieniowe

Pisząc o szyfrach strumieniowych mam tutaj na myśli natywne szyfry strumieniowe, które zostały stworzone z myślą o pracy w trybie strumieniowym. Pomimo istnienia dwóch typów szyfrów strumieniowych - synchroniczny oraz asynchronicznych, w praktyce używany jest prawie wyłącznie pierwszy typ.

W odróżnieniu od szyfrów blokowych, które szyfrowały cały blok danych, szyfry strumieniowe szyfrują każdy bit osobno. Przy użyciu klucza kryptograficznego generują one wystarczająco długi, pseudolosowy ciąg bitów. Następnie wykonywana jest operacja XOR pomiędzy wygenerowanym ciągiem a wiadomością jaką chcemy zaszyfrować. Deszyfrowanie polega na ponownym wygenerowaniu ciągu bitów na podstawie klucza a następnie wykonanie operacji XOR na bitach zaszyfrowanej wiadomości oraz tych wygenerowanych z klucza.

2.3.1 RC4

Obecnie najczęściej spotykanym szyfrem strumieniowym jest RC4. Mimo, że wielokrotnie wykazano wiele podatności w konstrukcji RC4, szyfr ten jest ciągle używany w protokołach takich jak TLS czy WEP.

Schemat działania algorytmu jest niezwykle prosty. Składa się z inicjalizacji klucza oraz generacji pseudolosowego ciągu.

W etapie inicjalizacji klucza tworzona jest tablica permutacji S, składają się z 256 bajtów. Początkowo znajdują się w niej kolejne liczby od 0 do 255. Następnie dokonywane jest przejście po elementach tablicy, korzystając z indeksu i. Na każdym kroku pętli obliczany jest indeks j, poprzez dodanie aktualnej wartości j (zaczynającej się od 0) do wartości klucza znajdującej się pod indeksem i oraz do wartości tablicy S znajdującej się pod indeksem i. W przypadku, gdyby któryś z indeksu wyszedł poza zakres rozpatrywanych tablic, używa się operacji modulo długość tablicy. Mając obliczony indeks j zamienia się element S[i] z elementem S[j].

Do wygenerowania pseudolosowego ciągu wykorzystywana jest wcześniej stworzona tablica permutacji S. W pierwszej kolejności dla każdego indeksu i, obliczany jest indeks j:=j+S[i]. Następnie zamienione są wartości S[i] oraz S[j]. W celu otrzymania bajtu, który zostanie wykorzystany do zaszyfrowania wiadomości, pobierana jest wartość S[S[i]+S[j]] z tablicy S.

2.3.2 Salsa20

W porównaniu do RC4, Salsa20 jest relatywnie nowym szyfrem strumieniowym, stworzonym przez Daniela J. Bernsteina. Bazuje on na operacjach *ARX* (*add–rotate–xor*), to jest

operacjach składających się z dodawania modulo, obrotów bitowych oraz funkcji *XOR*. Zaletą stosowania szyfrów *ARX* jest to, że odporne są one na ataki czasowe, polegające na mierzeniu czasu, jaki potrzebny jest do przeprowadzenia operacji kryptograficznych i uzyskiwanie informacji na podstawie wyników pomiarów.

Niezwykle interesującą cechą szyfru Salsa20 jest możliwość rozpoczęcia procesu odszyfrowywania od dowolnego miejsca w strumieniu danych. Mając więc duży plik, możliwe jest odszyfrowywanie tylko tej jego części, która nas interesuje.

Na chwilę obecną nie są znane żadne praktyczne ataki na szyfr Salsa20, może on zostać użyty jako alternatywa do szyfru blokowego AES.

2.4 Kryptograficzna funkcja skrótu

Funkcją skrótu nazywana jest funkcja, która dla danych wejściowych o dowolnym rozmiarze zwraca dane o z góry ustalonej długości. Funkcje skrótu znajdują zastosowanie w takich dziedzinach jak struktury danych (tablice mieszające, filtr Blooma), algorytmy dopasowania wzorca (algorytm Karpa-Rabina) czy też w kryptografii.

Aby funkcja skrótu mogła zostać użyta w systemach kryptograficznych musi posiadać szereg parametrów.

Jednym z nich jest odporność na kolizje. Kolizją nazywamy przypadek, gdy dla dwóch różnych argumentów funkcja skrótu zwraca ten sam wynik. Nie jest oczywiście możliwe, aby móc całkowicie uniknąć kolizji, gdyż zbiór danych o dowolnym rozmiarze jest mapowany na zbiór skończony, zależy nam jednak aby proces znajdywania kolizji dla określonych danych był uważany za "trudny". (Przez "trudny" należy tutaj rozumieć problem, który nie jest możliwy do rozwiązania w rozsądnej ilości czasu.)

Kolejny z parametrów jest częściowo związany z poprzednim. Zależy nam, aby rozpatrywana funkcja była funkcją jednokierunkową. Oznacza to, że dla danego wyniku funkcji skrótu, znalezienie argumentu jest również problemem "trudnym". (Sam fakt istnienia funkcji jednokierunkowych nie został formalnie udowodniony. [3])

Niezwykle ważne jest też, aby nawet niewielka zmiana danych wejściowych, spowodowała znaczną zmianę danych otrzymanych na wyjściu (wymagane jest aby przynajmniej połowa bitów uległa zmianie).

2.4.1 Message Digest 5

Funkcja MD5 jest wykorzystywana do generowania 128-bitowego skrótu. Została stworzona przez Rona Rivesta w 1991 roku.

W uproszczeniu, algorytm MD5 można przedstawić w następujących krokach [7]:

 Dodanie dopełnienia. W pierwszej kolejności dopisywany jest jeden bit o wartości 1, a następnie dopisywane są zera, aż do momentu, gdy długość danych wynosić będzie 448 bitów modulo 512. Dopełnienie dopisywane jest nawet w przypadku, gdy długość danych wynosi 448 bitów.

- 2. Pozostałe 64 bity wypełniane są liczbą reprezentującą długość wiadomości (sprzed dopełnienia) modulo 2⁶⁴.
- 3. Inicjalizacja stanu MD5 w postaci czterech 32-bitowych zmiennych A, B, C i D. Są one inicjalizowane stałymi zdefiniowanymi w specyfikacji algorytmu (przedstawione w systemie szesnastkowym):

A := 01234567

B := 89abcdef

C := fedcba98

D := 76543210

- 4. Dane wejściowe dzielone są na bloki po 512 bitów. Kolejno na każdym z bloków wykonywane są operacje bitowe zmieniające stan zmiennych.
- 5. Wynikiem działania algorytmu jest 128-bitowa wartość składająca się z czterech zmiennych w kolejności A, B, C, D.

Szczegółowa specyfikacja algorytmy znajduje się w dokumencie RFC 1321 [5].

Analiza kryptograficzna funkcji MD5 wykazała wiele podatności i błędów przez co obecnie nie jest wskazane używanie MD5 w zastosowaniach kryptograficznych. W roku 2004 została opublikowana praca wykazująca podatność funkcji MD5 na ataki kolizyjne (ang. collision attack) [4].

2.4.2 Secure Hash Algorithm 1

SHA-1 jest funkcją bazującą na MD4 (podobnie jak MD5), o długości skrótu wynoszącej 160 bitów [9].

Wewnętrzny stan funkcji składa się z pięciu zmiennych: A, B, C, D oraz E, każda o rozmiarze 32 bitów.

Pseudokod algorytmu można przedstawić w następujących krokach:

1. Inicjalizacja zmiennych następującymi stałymi:

A := 1732584193

B := 4023233417

C := 2562383102

D := 271733878

E := 3285377520

- 2. Zaaplikowanie dopełnienia:
 - (a) Dopisanie na koniec danych bitu o wartości 1. Przykładowo jeśli przetwarzane są dane 01011001, to są one dopełniane do 010110011.
 - (b) Następnie dopisywane są bity o wartości 0, aż do momentu, gdy długość danych wynosić będzie 448 bitów modulo 512.

 10001010 00101101 10011101 1. Jako że długość danych wynosi 49 bitów, wymagane jest dopisanie 399 zer. Po zastosowaniu dopełnienia otrzymujemy (reprezentacja heksadecymalna):

- 3. Podzielenie wiadomości na 512-bitowe bloki.
- 4. Dla każdego z bloków należy wykonać następujące operacje:
 - (a) Podzielenie bloku na szesnaście 32-bitowych części $w[i], 0 \le i \le 15$.
 - (b) Rozszerzenie 16 części do 80 korzystając ze wzoru: $w[i] := (w[i-3] \oplus w[i-8] \oplus w[i-14] \oplus w[i-16]) << 1$
 - (c) Inicjalizacja zmiennych pomocniczych dla danego bloku
 - a := A
 - b := B
 - c := C
 - d := D
 - e := E
 - (d) Dla każdej z 80 części w[i] należy wykonać:
 - i. jeżeli 0 < i < 19

$$f := (b \& c) \mid ((\sim b) \& d)$$

k := 0x5A827999

ii. jeżeli $20 \le i \le 39$

$$f := b \oplus c \oplus d$$

k := 0x6ED9EBA1

iii. jeżeli 40 < i < 59

$$f := (b \& c) | (b \& d) | (c \& d)$$

k := 0x8F1BBCDC

iv. jeżeli 60 < i < 79

$$f := b \oplus c \oplus d \ k := 0xCA62C1D6$$

v. następnie

$$t := (a <<< 5) + f + e + k + w[i]$$

$$e := d$$

$$d := c$$

$$c := b <<< 30$$

$$b := a$$

$$a := t$$

(e) Aktualizacja wewnętrznego stanu funkcji

$$A := A + a$$

$$B := B + b$$

$$C := C + c$$

$$D := D + d$$

$$E := E + e$$

5. Zwrócenie wyniku w postaci:

$$(A << 128) \mid (B << 96) \mid (C << 64) \mid (D << 32) \mid E$$

W dokumencie RFC 3174 zostały zawarte szczegóły dotyczące algorytmu, jak również przykładowa implementacja [6].

Podobnie jak MD5, funkcja SHA-1 również nie jest uważana za bezpieczną.

Do roku 2017 wszystkie przedstawione ataki uznawane były za niepraktyczne z uwagi na zbyt dużą moc obliczeniową, jaka byłaby potrzebna do ich wykonania. Przykładem może być tutaj atak opublikowany w październiku 2015 roku o nazwie *The SHAppening*. Koszt wynajęcia sprzętu potrzebnego do przeprowadzenia ataku (wygenerowania jednej kolizji) estymowany był na 75 000 - 120 000 dolarów amerykańskich [10].

Pierwszy praktyczny atak na SHA-1 został ogłoszony w lutym 2017 roku. Zostały wygenerowane dwa pliki w formacie PDF, dla których wynik funkcji skrótu SHA-1 jest taki sam. Wszystkie systemy, w których wykorzystywana jest funkcja SHA-1 są narażone na ten atak, przykładowo umożliwia on fałszowanie podpisów cyfrowych dokumentów, czy też certyfikatów HTTPS. [11]

2.4.3 Secure Hash Algorithm 2

SHA-2 jest rodziną funkcji składającą się z SHA-224, SHA-256, SHA-384, SHA-512, SHA-512/224, SHA-512/256. Funkcje te generują skróty o długościach odpowiednio: 224, 256, 384, 512, 224 oraz 256 bitów.

SHA-256

Jedną z najczęściej używanych funkcji z rodziny SHA-2 jest SHA-256. Proces pozyskiwania skrótu SHA-256 jest następujący:

1. Inicjalizacja stanu wewnętrznego funkcji:

A := 1779033703

B := 3144134277

C := 1013904242

D := 2773480762

E := 1359893119

F := 2600822924 G := 528734635H := 1541459225

2. Inicjalizacja pomocniczych stałych.

```
1116352408,
                      1899447441, 3049323471,
                                                3921009573,
          961987163,
                      1508970993, 2453635748,
                                                2870763221,
         3624381080,
                      310598401,
                                   607225278,
                                                1426881987,
         1925078388, 2162078206, 2614888103,
                                                3248222580,
         3835390401, 4022224774,
                                   264347078,
                                                604807628,
          770255983,
                      1249150122,
                                   1555081692,
                                                1996064986,
         2554220882,
                      2821834349,
                                   2952996808,
                                                3210313671,
         3336571891, 3584528711,
                                   113926993,
                                                338241895,
k[0..63] :=
          666307205,
                       773529912,
                                   1294757372,
                                                1396182291,
         1695183700, 1986661051, 2177026350,
                                                2456956037,
         2730485921,
                      2820302411,
                                   3259730800,
                                                3345764771,
         3516065817, 3600352804, 4094571909,
                                                275423344,
          430227734,
                       506948616,
                                   659060556,
                                                883997877,
          958139571,
                      1322822218,
                                  1537002063,
                                                1747873779,
                      2024104815,
                                   2227730452,
                                                2361852424,
         1955562222.
         2428436474, 2756734187, 3204031479,
                                                3329325298
```

- 3. Zaaplikowanie dopełnienia. Proces ten przebiega identycznie jak w przypadku SHA-1.
- 4. Podzielenie wiadomości na 512-bitowe bloki.
- 5. Dla każdego z bloków należy wykonać następujące operacje:
 - (a) Podzielenie bloku na szesnaście 32-bitowych części $w[i], 0 \le i \le 15$.
 - (b) Rozszerzenie 16 części do 64 korzystając ze wzoru:

$$s0 := (w[i-15] >>> 7) \oplus (w[i-15] >>> 18) \oplus (w[i-15] >>> 3)$$

$$s1 := (w[i-2] >>> 17) \oplus (w[i-2] >>> 19) \oplus (w[i-2] >>> 10)$$

$$w[i] := w[i-16] + s0 + w[i-7] + s1$$

(c) Inicjalizacja zmiennych pomocniczych dla danego bloku

$$a := A$$

$$b := B$$

$$c := C$$

$$d := D$$

$$e := E$$

$$f := F$$

$$g := G$$

$$h := H$$

(d) Dla każdej z 64 części w[i] należy wykonać:

$$S1 := (e >>> 6) \oplus (e >>> 11) \oplus (e >>> 25)$$

```
ch := (e \& f) \oplus ((\sim e) \& g)
t1 := h + S1 + ch + k[i] + w[i]
S0 := (a >>> 2) \oplus (a >>> 13) \oplus (a >>> 22)
m := (a \& b) \oplus (a \& c) \oplus (b \& c)
t2 := S0 + m
h := g
g := f
f := e
e := d + t1
d := c
c := b
b := a
a := t1 + t2
```

(e) Aktualizacja wewnętrznego stanu funkcji

$$A := A + a$$

 $B := B + b$
 $C := C + c$
 $D := D + d$
 $E := E + e$
 $F := F + f$
 $G := G + g$
 $H := H + h$

6. Zwrócenie wyniku w postaci:

$$(A << 224) \mid (B << 192) \mid (C << 160) \mid (D << 128) \mid (E << 96) \mid (F << 64) \mid (G << 32) \mid H$$

W porównaniu do SHA-1, funkcje SHA-2 są znacznie odporniejsze na kolizję, dzięki czemu zalecane jest ich używanie w zastosowaniach takich jak podpisy cyfrowe czy uwierzytelnianie wiadomości.

2.4.4 Secure Hash Algorithm 3

Wewnętrzna budowa funkcji z rodziny SHA-3 znacząco się różni w odniesieniu do omawianych wcześniej. Poprzednie funkcje oparte były o schemat Merkle–Damgård. Funkcje z rodziny SHA-3 oparte są o tak zwaną "architekturę gąbki". W obu przypadkach funkcja zawiera wewnętrzny stan. Różnica jest jednak w sposobie otrzymywania wyniku na podstawie tego stanu. Poprzednio zwrócenie przez funkcję wyniku było równoznaczne ze zwróceniem wewnętrznego stanu funkcji. W przypadku SHA-3 tak się nie dzieje. Wewnętrzny stan przepuszczany jest kolejne cykle algorytmu. Na wynik funkcji składają się części wewnętrznego stanu, pobierane w kolejnych cyklach. Skutkuje to tym, że nigdy nie jest ujawniany cały wewnętrzny stan funkcji.

Ulepszona wewnętrzna konstrukcja algorytmu zapobiega atakom typu "length extension", na który podatne są funkcje MD5, SHA-1 oraz SHA-2 [8].

2.5 Uwierzytelnienie i integralność

2.5.1 Kod uwierzytelnienia wiadomości

W celu zagwarantowania prywatności kanału komunikacji samo szyfrowanie nie jest wystarczające. Potwierdzeniem tej tezy są ataki typu "Man in the middle", w których atakujący podszywa się pod osobę, do której przesyłamy wiadomość. Wysyłając wiadomość jesteśmy przekonani, że wysyłamy ją do docelowej osoby, gdy tak naprawdę wysyłamy ją do atakującego. Odbiorca również sądzi, że otrzymana wiadomość jest wysłana przez spodziewanego nadawcę, mimo że wysłał ją atakujący. Pomimo tego, że atakujący nie jest w stanie przeczytać przechwyconej wiadomości, gdyż jest zaszyfrowana, to może próbować ją modyfikować. Kody uwierzytelnienia wiadomości (Message Authentication Code ang.) są jedną z metod na uwierzytelnienie i zapewnienie integralności danych. Przesyłane są razem z wiadomością w formie niewielkiej porcji danych. Algorytmy generujące MAC przyjmują klucz kryptograficzny o z góry określonej długości oraz dowolne dane o dowolnej długości (podobnie jak w przypadku funkcji skrótu) i w wyniku zwracają kod o ustalonej długości. Algorytmy te umożliwiają również weryfikację danego kodu na podstawie klucza oraz wiadomości.

Po wygenerowaniu kodu uwierzytelniającego pozostaje jeszcze kwestia sposobu dołączenia go do wiadomości. Sposobów tych je wiele.

Przykładowo możemy w pierwszej kolejności wygenerować MAC z danej wiadomości a następnie ją zaszyfrować. Wysyłana jest wtedy zaszyfrowana wiadomość oraz wygenerowany kod. Jednym z protokołów, w których MAC jest wykorzystywany w taki sposób jest protokół SSH.

Możliwe jest też wygenerowanie MAC, doklejenie go do wiadomości i zaszyfrowanie całości. Ten schemat wykorzystywany jest w protokole TLS.

Trzecim sposobem jest zaszyfrowanie wiadomości, po czym wygenerowanie MAC z zaszyfrowanej wiadomości. Tego sposobu używa na przykład protokół IPSec.

Okazuje się, że ostatni wspomniany sposób jest najbezpieczniejszy, należy sprawdzić kod uwierzytelnienia wiadomości przed próbą jej odszyfrowania. W przypadku protokołu SSH, który wykorzystuje pierwszy sposób, istnieje atak, który umożliwia atakującemu odszyfrowanie pierwszych czterech bajtów zaszyfrowanego bloku. Jest to spowodowane specyficzną konstrukcją pakietu SSH (pole reprezentujące długość pakietu jest również zaszyfrowane). Na drugi sposób również istnieje atak zaproponowany przez Serge'a Vaudenaya [16].

2.5.2 MAC bazujący na funkcji skrótu

Praktycznie jedynym poprawnie działającym mechanizmem generującym kody uwierzytelnienia wiadomości są algorytmy MAC bazujące na funkcji skrótu (Hash-based Message Authentication Code ang.). Oprócz klucza kryptograficznego oraz wiadomości algorytm HMAC pobiera dodatkowo funkcję skrótu. Jako argument może zostać użyta dowolna funkcja skrótu: SHA1, SHA-256, SHA-3 czy nawet MD5. Nie jest tutaj wymagane aby użyta funkcja skrótu była odporna na kolizję więc HMAC zbudowany na funkcji MD5 jest uważany za bezpieczny [17], chociaż nie jest to zalecane przy tworzeniu nowych systemów

kryptograficznych.

Schemat generacji HMAC można przedstawić następująco:

Rysunek 2.12. Schemat HMAC.

Wartości stałych nie mają tutaj większego znaczenia. Ważne jest jednak aby miały długość równą długości bloku użytej funkcji skrótu oraz aby były od siebie różne. Na etapie konkatenacji wynik działania funkcji XOR jest dostawiany z lewej strony.

2.6 Generatory liczb losowych

2.6.1 Pojęcie entropii

Entropia jest miarą średniej ilości informacji w danej wiadomości. Im więcej informacji jest zawartych w wiadomości, tym większa jest jej entropia.

Przykładowo dla wiadomości składającej się z samych bitów o wartości 1, entropia wynosi 0 bitów, gdyż wybierając losowo jeden z bitów, ze stuprocentowym prawdopodobieństwem otrzymamy bit o wartości 1. Mając wiadomość o długości 64 bity, w której każdy bit ma losową wartość, entropia wynosi 64 bity. W przypadku wiadomości o długości 32 znaki, w której mogą pojawić się litery: a, b, c i d, a prawdopodobieństwo wystąpienia każdej z liter

jest równe 25% entropia wynosi 2 bity.

Wartość entropii jest liczona za pomocą wzoru:

$$H(X) := -\sum_{x} P(X = x) \log_2 P(X = x)$$

P(X = x) jest prawdopodobieństwem, że zmienna X przybierze wartość x.

W zastosowaniach kryptograficznych konieczne jest aby entropia kluczy była wysoka. W przeciwnym razie pojawi się możliwość złamania kluczy metodą siłową.

2.6.2 Generatory prawdziwie losowych liczb

Oczywistym jest fakt, że przy użyciu wyłącznie deterministycznych metod nie jesteśmy w stanie stworzyć generatorów prawdziwie losowych liczb. Do stworzenia takich generatorów konieczne jest bazowanie na zjawiskach fizycznych takich jak procesy termiczne czy procesy kwantowe.

Jednym z takich generatorów dostępnych publicznie jest platforma *RANDOM.ORG*, wykorzystująca szumy atmosferyczne do generacji liczb prawdziwie losowych.

2.6.3 Kryptograficzne generatory liczb pseudolosowych

Idealnym byłoby używanie generatorów prawdziwie losowych liczb do zastosowań kryptograficznych, takich jak na przykład generacja klucza symetrycznego. Często jednak nie mamy dostępu do takich generatorów lub użycie ich byłoby zbyt kosztowne. Szczęśliwie okazuje się, że do codziennych zastosowań wystarczającym jest użycie kryptograficznie bezpiecznych generatorów liczb pseudolosowych.

Algorytmami używanymi w kryptografii do generacji liczb pseudolosowych są:

- Yarrow
- Blum Blum Shub
- Dual_EC_DRBG
- Mersenne Twister

Warto zaznaczyć, że samodzielna implementacja algorytmów jest wyjątkowo niewskazana. Jest to obszar kryptografii, w którym niezwykle łatwo jest popełnić błąd, który będzie powodował złamanie całego systemu kryptograficznego.

W razie potrzeby wygenerowania liczb pseudolosowych zalecane jest użycie interfejsu wystawionego przez używany system operacyjny. Na systemach z rodziny *Unix* interfejsem tym jest /dev/urandom, zaś na systemach *Windows* należy korzystać z CryptGenRandom.

3 Kryptografia w praktyce

3.1 Pojęcia pomocnicze

Przed przystąpieniem do opisu praktycznych aspektów kryptografii użytych w projekcie, wymagane jest wyjaśnienie pojęć wykorzystywanych w mechanizmie haseł jednorazowych, lecz które nie są bezpośrednio związane z kryptografią.

3.1.1 Kodowanie transportowe

Kodowanie transportowe wykorzystywane jest w przypadku, gdy zachodzi potrzeba transferu danych w środowiskach, które pozwalają na przesyłanie wyłącznie znaków ASCII.

Użycie kodowania transportowego jest konieczne w celu zachowania kompatybilności przy pracy z protokołami, które przystosowane są do pracy na danych 7-bitowych. W takim przypadku najstarszy bit jest zerowany, co mogłoby uszkodzić przesyłane dane. W przypadku przesyłania wyłącznie znaków ASCII zerowanie najstarszego bitu nie jest problemem, gdyż wszystkie znaki w podstawowej tablicy ASCII mają ten bit wyzerowany.

Bardziej współczesnym przykładem wykorzystania kodowania transportowego jest osadzanie danych graficznych bezpośrednio w kodzie HTML. Konieczne jest wówczas zakodowanie danych w celu wyeliminowania ryzyka pojawienia się znaków '<' oraz '>', które mogłyby być zinterpretowane jako tagi HTML.

Aby ujednolicić implementacje kodowania transportowego został stworzony dokument RFC 4648 [2], w którym opisany jest prawidłowy sposób implementacji oraz to jaki typ kodowania wybrać w zależności od nałożonych wymagań.

Kodowanie Base64

Najczęściej spotykanym typem kodowania transportowego jest kodowanie Base64. Kodowanie to konwertuje dowolny ciąg bajtów do postaci ciągu złożonego z małych i wielkich liter, cyfr oraz znaków '+' i '/'. Jeżeli po zakodowaniu końcowa część danych jest mniejsza niż 24 bity używany jest także znak '=' jako dopełnienie.

Sam proces kodowania polega na pobraniu 24 bitów danych a następnie podzieleniu ich na 4 grupy po 6 bitów. Każda z grup jest interpretowana jako indeks tablicy ustalonego alfabetu Base64. Dla każdej z grup za pomocą indeksu odczytywany jest znak a następnie dopisywany jest on do ciągu zakodowanego.

Istnieje również odmiana kodowania Base64 przystosowana do użycia w przypadku adresów URL czy nazw plików. W alternatywie tej zamiast znaków '+', '/', które mogłyby zostać błędnie zinterpretowane np w środowisku systemu plików, używane są znaki '-' oraz '_'.

Kodowanie Base32

W porównaniu do kodowania Base64, dane zakodowane w Base32 są dużo bardziej czytelne dla ludzi. Właściwość ta spowodowana jest faktem, że w kodowaniu Base32 nie ma znaczenia wielkość liter, dzięki czemu przykładowo nie ma problemu z rozróżnieniem małej litery 'L' z wielką literą 'I' ('l' oraz 'I').

Alfabet kodowania Base32 składa się z 32 znaków ASCII oraz znaku '=' pełniącego funkcje dopełnienia. Proces kodowania polega na pobraniu 40 bitów danych a następnie ustawienie ich w osiem 5-bitowych grup. Każda z 8 grup interpretowana jest jako jeden ze znaków alfabetu Base32.

Podobnie jak przy kodowaniu Base64, wymagane jest tutaj wstawienie dopełnienia w sytuacji, gdy długość ostatniej z grup jest mniejsza od 40 bitów.

Indeks	Znak	Indeks	Znak	Indeks	Znak	Indeks	Znak
0	A	9	J	18	S	27	3
1	В	10	K	19	T	28	4
2	C	11	L	20	U	29	5
3	D	12	M	21	V	30	6
4	E	13	N	22	\mathbf{W}	31	7
5	F	14	O	23	X		
6	G	15	P	24	Y		
7	Н	16	Q	25	Z		
8	I	17	R	26	2		

Tabela 3.1. Alfabet w kodowaniu Base32

3.1.2 Czas uniksowy

Czas uniksowy jest sposobem na reprezentację punktu w czasie, polegającym na mierzeniu sekund, które upłynęły od daty 1 stycznia 1970 (UTC). W systemach uniksowych zwykle reprezentowany jest w postaci 32-bitowej liczby całkowitej ze znakiem.

W przypadku architektur typu serwer-klient wskazane jest synchronizowanie czasu wykorzystując czas uniksowy, gdyż nie zależy on od lokalizacji w której jest mierzony. Właściwość ta eliminuje problem synchronizacji czasu pomiędzy strefami czasowymi.

3.1.3 Ujednolicony identyfikator zasobów

Ujednolicony identyfikator zasobów (ang. Uniform Resource Identifier, URI) jest ciągiem znaków jednoznacznie identyfikującym dany zasób.

Składnia identyfikatora jest wyrażana następująco:

schemat ":" ścieżka ["?" zapytanie] ["#" fragment]

Warto zauważyć, że składnia ta determinuje schemat (protokół), jaki wykorzystywany jest przy interakcji z identyfikowanym zasobem.

Przykłady identyfikatorów:

- ftp://randomftp.com/files/file.docx
- https://www.randomwebsite.pl/index.html
- mailto:jan.nowak@wp.pl
- tel:+48-25-123-88

Szczegóły dotyczące standardu URI są opisane w dokumencie RFC 3986 [1].

3.2 Hasło jednorazowe

3.3 Interfejs Windows Data Protection

- 4 Ataki na mechanizm OTP
- 4.1 Atak urodzinowy
- 4.2 Side-channel attacks
- 4.3 Atak przez powtórzenie
- 4.4 Atak "Man in the middle"
- 4.5 Phishing

5 PicnicAuth

- 5.1 Architektura projektu
- 5.2 Generowanie OTP po stronie użytkownika
- 5.3 Przechowywanie sekretu użytkownika
- 5.4 Przykład użycia projektu
- 5.5 Planowane ulepszenia

- 6 Zakończenie
- 6.1 Podsumowanie i wnioski
- 6.2 Podziękowania

7 Spis literatury

[1] T. Berners-Lee, R. Fielding, L. Masinter., *Uniform Resource Identifier (URI): Generic Syntax*.

```
https://tools.ietf.org/pdf/rfc3986.pdf, 2005
```

- [2] S. Josefsson, *The Base16, Base32, and Base64 Data Encodings* https://tools.ietf.org/pdf/rfc4648, SJD, 2006
- [3] Oded Goldreich, Foundations of Cryptography: Volume 1, Basic Tools Cambridge University Press. ISBN 0-521-79172-3., 2001
- [4] Arjen Lenstra, Xiaoyun Wang, and Benne de Weger. Colliding x.509 certificates. Cryptology ePrint Archive, Report 2005/067, 2005.
- [5] R. Rivest, *The MD5 Message-Digest Algorithm* https://tools.ietf.org/pdf/rfc1321.pdf, MIT, 1992
- [6] D. Eastlake, 3rd, P. Jones *US Secure Hash Algorithm 1 (SHA1)* https://tools.ietf.org/pdf/rfc3174, 2001
- [7] Laurens Van Houtven (lvh), Crypto 101 https://www.crypto101.io, 2017
- [8] Keccak Team, Strengths of Keccak Design and security https://keccak.team/keccak_strengths.html, 2017
- [9] Niels Ferguson, Bruce Schneier, Todayoshi Kohno *Cryptography Engineering: Design Principles and Practical Applications*. Wiley Publishing, Inc., 2010
- [10] Marc Stevens, Pierre Karpman, Thomas Peyrin, *The SHAppening: freestart collisions for SHA-1*.

```
https://sites.google.com/site/itstheshappening, 2015
```

- [11] Marc Stevens, Elie Bursztein, Pierre Karpman, Ange Albertini, Yarik Markov *The first collision for full SHA-1*.
 - https://shattered.io/static/shattered.pdf, CWI Amsterdam, Google Research, 2017
- [12] Thai Duong, Juliano Rizzo, *Here Come The* \oplus *Ninjas*. https://bug665814.bmoattachments.org/attachment.cgi?id=540839, 2011
- [13] SciEngines GmbH Break DES in less than a single day. https://www.voltage.com/technology/rivyera-from-sciengines/, 2008

[14] DES-III contest.

http://www.distributed.net/DES, 1999

[15] Thomas Ptacek, If You're Typing the Letters A-E-S Into Your Code You're Doing It Wrong.

 $\verb|https://people.eecs.berkeley.edu/daw/teaching/cs261-f12/misc/if.html|, 2009|$

[16] Serge Vaudenay, Security Flaws Induced by CBC Padding Applications to SSL, IPSEC, WTLS....

 $\verb|https://www.iacr.org/cryptodb/archive/2002/EUROCRYPT/2850/2850.pdf|, 2002|$

[17] Mihir Bellare, New proofs for NMAC and HMAC: Security without collision-resistance. http://cseweb.ucsd.edu/~mihir/papers/hmac-new.html, 2006

udostępnienie mojej pra Dyplomowych SGGW.	acy w czytelniach	Biblioteki SGGW w tym
		(czytelny podpis autora prac
		(czytelny podpis autora prac
		(czytelny podpis autora prac
		(czytelny podpis autora prad