- 15. Show that $\int_C 1 \ dz = z_2 z_1$, where C is the line segment from z_1 to z_2 , by parametrizing C.
- 16. Let z_1 and z_2 be points in the right half-plane and let C be the line segment joining them. Show that $\int_C \frac{1}{z^2} dz = \frac{1}{z_1} \frac{1}{z_2}$.
- 17. Let $z^{\frac{1}{2}}$ be the principal branch of the square root function.
 - (a) Evaluate $\int_C \frac{1}{2z^{\frac{1}{2}}} dz$, where C is the line segment joining 9 to 3+4i.
 - (b) Evaluate $\int_C z^{\frac{1}{2}} dz$, where C is the right half of the circle $C_2^+(0)$ joining -2i to 2i.
- 18. Using partial fraction decomposition, show that if z lies in the right half-plane and C is the line segment joining 0 to z, then

$$\int_C \frac{1}{\xi^2 + 1} d\xi = \operatorname{Arctan}(z) = \frac{i}{2} \operatorname{Log}(z + i) - \frac{i}{2} \operatorname{Log}(z - i) + \frac{\pi}{2}.$$

19. Let f' and g' be analytic for all z, and let C be any contour joining the points z_1 and z_2 . Show that

$$\int_C f(z)g'(z) dz = f(z_2)g(z_2) - f(z_1)g(z_1) - \int_C f'(z)g(z) dz.$$

- 20. Compare the various methods for evaluating contour integrals. What are the limitations of each method?
- 21. Explain how the fundamental theorem of calculus studied in complex analysis and the fundamental theorem of calculus studied in calculus are different. How are they similar?
- 22. Show that $\int_C z^i dz = (i-1)\frac{1+e^{-\pi}}{2}$, where C is the upper half of $C_1^+(0)$.

6.5 Integral Representations

We now present some major results in the theory of functions of a complex variable. The first one is known as Cauchy's integral formula. It shows that the value of an analytic function f can be represented by a certain contour integral. The n^{th} derivative, $f^{(n)}(z)$, has a similar representation. In Chapter 7, we use these results to prove Taylor's theorem and also establish the power series representation for analytic functions. The Cauchy integral formulas are a convenient tool for evaluating certain contour integrals.

Theorem 6.10 (Cauchy's integral formula). Let f be analytic in the simply connected domain D and let C be a simple closed positively oriented contour that lies in D. If z_0 is a point that lies interior to C, then

$$f(z_0) = \frac{1}{2\pi i} \int_C \frac{f(z)}{z - z_0} dz.$$
 (6.44)

Proof. Because f is continuous at z_0 , if $\varepsilon > 0$ is given there is a $\delta > 0$ such that the positively oriented circle $C_0 = \{z : |z - z_0| = \frac{1}{2}\delta\}$ lies interior to C (as Figure 6.33 shows) and such that

$$|f(z) - f(z_0)| < \varepsilon$$
 whenever $|z - z_0| < \delta$. (6.45)