Project 1 b)

We have a linear set of equations $\mathcal A = f$ The matrix A can be rewritten as

 $\label{lem:left_login_matrix} $$\mathbf{A}_{-}\left(\frac{1 \& 0 \& \cdot dots \& \cdot d$

where a_j , b_i , \textrm{and}, c are one-dimensional arrays with length 1:n, $a_i = c_i = -1/h^2 \times m$ {and}, $b_i = 2$

Then we can write the linear set of equations as

In the \$4 \times 4\$ case you will get

 $\t $$ \mathbf{A} = \left(b_1 \otimes b_2 \otimes b_2 \otimes b_2 \otimes b_2 \otimes b_2 \otimes b_2 \otimes b_3 \otimes b_3 \otimes b_3 \otimes b_3 \otimes b_3 \otimes b_4 \otimes b_4 \right) $$$

If you apply Gaussian elimination by $\text{II}-\frac{1}{\cot \left(\frac{1}{b_1}\right)}$ you will get

Then we put $\tilde{b_2} = b_2-\frac{a_2c_1}{b_1}$, wich gives

 $\mathbf{5}$ mathbf(A)=\left[\begin{matrix}b_1 & c_1 & 0 & 0 \ 0 & \tilde b_2 & c_2 & 0 & 0 \ 0 & a_3 & b_3 & c_3 & \ 0 & 0 & a_4 & b_4\end{matrix}\right]

If we do the same for row III and IV we will get

 $\boldsymbol{b}_1 = \boldsymbol{b}_1 + \boldsymbol{b}_2 = \boldsymbol$