2.1 Эквивалентность фундированности, отсутствия бесконечно убывающей последовательности элементов и принципа трансфинитной индукции.

Теорема об эквивалентных фундированности свойствах: Фундированность равносильно следующим двум свойствам:

- 1. Принцип невозможности бесконечного спуска: не существует строго убывающей последовательности $x_1>x_2>x_3>\dots$
- 2. Принцип трансфинитной индукции: $\forall x \ (\forall y < x \ \phi(y) \to \phi(x)) \Rightarrow \forall x \phi(x)$
- ▲ (БС ⇒ Ф) Пусть для некоторого частично упорядоченного множества (A, \leq) выполнено определение фундированности (def: в любом подмножестве есть минимальный элемент). Предположим, что свойство 1 для данного множества не выполнено, и в множестве есть бесконечная убывающая цепь $x_1 > x_2 > \dots$ Но тогда в множестве $B = \{x_1, x_2, \dots\}$ нет минимального элемента, что противоречит определению фундированности.
- (БС \Rightarrow Ф) Теперь предположим, что для частично упорядоченного множества (A, \leqslant) выполнено свойство 1, а определение фундированности не выполнено. Это значит, что в A есть непустое подмножество B, в котором нет минимального элемента. Поскольку $B \neq \emptyset$, то $\exists x_1 \in B$. Мы предположили, что в B нет минимальных элементов. В частности, $x_1 \neq min$, то $\exists x_2 < x_1$. Поскольку $x_2 \neq min$, то $\exists x_3 < x_2$ и так далее, получим бесконечно убывающую последовательность. Это противоречит свойству 1.
- $(\Phi \Rightarrow \text{ТИ})$ Снова предположим, что для некоторого (A, \leqslant) выполнено определение фундированности. Нам нужно доказать, что для данного множества выполнен также и принцип индукции. Пусть для какого-то свойства $\phi(x)$ верен "шаг индукции":

$$\forall x \ (\forall y < x \ \phi(y) \to \phi(x))$$

Мы хотим показать, что в таком случае свойство $\phi(x)$ верно для всех элементов $x \in A$. Предположим противное – пусть для некоторых x свойство $\phi(x)$ ложно. Выберем среди всех таких x минимальный (определение фундированности гарантирует, что среди всех элементов x для которого $\phi(x)$ ложно, есть хотя бы один минимальный). Тогда для данного x_{min} свойство $\phi(x_{min})$ ложно, а для всех элементов y меньших x_{min} свойство $\phi(y)$ истинно. Получаем противоречие с предположением индукции (т.е. $1 \to 0$).

 $(\text{TM}\Rightarrow\Phi)$ Теперь предполагаем, что для (A,\leqslant) выполнен принцип индукции. Нам нужно проверить, что $\forall B\subset A\mid B\neq\emptyset$ есть хотя бы один минимальный элемент. Пусть в некотором $B\subset A$ минимального элемента нет. Мы должны доказать, что данное B пусто. Для этого мы рассмотрим свойство $\phi(x):\phi(x)$ истинно $\Leftrightarrow x\notin B$. Для данного свойства верно:

$$\forall x \; (\forall y < x \; \; \phi(y) \to \phi(x))$$

(если все элементы y < x не лежат в B, то и x не лежит в B, иначе x был бы минимальным элементом B) По принципу индукции заключаем, что свойство $\phi(x)$ истинно для всех $x \in A$. Это значит, что в B нет ни одного элемента — это подмножество пусто.

2.2 Лемма о монотонной функции из вполне упорядоченного множества в себя.

Лемма: Пусть W – вполне упорядоченное множество (def: одновременно фундировано и линейно упорядочено), а $f:W\to W$ – строго монотонная функция $(x>y\Rightarrow f(x)>f(y))$. Тогда $\forall x\ f(x)\geqslant x$

 \blacktriangle Докажем через ринцип невозможности бесконечного спуска: Пусть для какого-то x верно f(x) < x. Тогда по строгой монотонности выполнено:

$$f(f(x)) < f(x), \ f(f(f(x))) < f(f(x)), \dots$$

Следовательно, образуется бесконечно убывающая последовательность

$$x > f(x) > f(f(x)) > f(f(f(x))) > \dots$$

Это противоречит фундированности W, значит, $\forall x \ f(x) \geqslant x$.