MATH 305:201, 2020W T2

Homework set 9 — due March 26

Problem 1. Compute the residues at the singularities of the following functions:

(i)
$$f_1(z) = z^2 e^{1/z}$$
, (ii) $f_2(z) = \frac{\cos(2z)}{z(z - \pi/2)^2}$.

(iii) Compute $\oint_{|z|=1} f_i(z) dz$, for both i = 1, 2.

Problem 2. (i) Compute

$$\oint_{|z|=2\pi} \tan(z) \mathrm{d}z$$

(ii) Compute

$$I = \int_{-\infty}^{+\infty} \frac{e^{2x}}{\cosh(\pi x)} dx$$

Hint: Use a rectangular closed curve with corners R, R + i, -R + i, -R

Problem 3. Let P be a polynomial of degree d, and let α be a closed, positively oriented simple curve such that no zero of P lies on α . Show that

$$\frac{1}{2\pi i} \oint_{\alpha} \frac{P'(z)}{P(z)} dz = N,$$

where $0 \le N \le d$ is an integer counting the number of zeroes of P inside α (with multiplicity: a zero of multiplicity m is counted m times)

Hint: One can write $P(z) = c(z - z_1) \cdots (z - z_d)$; why?

Problem 4. Show that $\sum_{j=1}^{\infty} \frac{1}{j^2} = \frac{\pi^2}{6}$ by following the strategy presented in class but using $f(z) = \frac{1}{z^2}$ directly (no limit to be taken at the end of the argument). Adapt the computation to account for the fact that the integrand now has a pole of order three at z=0.