KOLOKWIUM Z EKONOMETRII

STYCZEŃ 2023

Czas pracy wynosi 90 min. Podpisz kartę z zadaniami oraz kartki z odpowiedziami. W zadaniach przyjmij że $\alpha=0.05$ oraz $t^*=1.96$. Jeśli masz pytanie, podnieś rękę. Jeśli coś jest niejasne, pytaj. Maksymalna liczba punktów wynosi 40. Możesz używać kalkulatora. Gdy przeprowadzasz test statystyczny, zawsze podaj hipotezę zerową.

- 1. (18 p.) Poszczególne pytania w tym zadaniu odnoszą się do Tabeli 1 przedstawiającej oszacowania, obliczone na danych CPS (*Current Population Survey*). Dane opisują 7440 pracowników (pracują cały rok na pełen etat). Najwyższym osiągnięciem dla każdego z pracowników było albo ukończenie liceum lub dyplom licencjacki. Wiek pracowników zawiera się pomiędzy 25 a 34. Zbiór danych zawiera także informacje o regionie kraju w którym dana osoba żyje, statusie matrymonialnym oraz o liczbie dzieci:
 - AHE = średnia wynagrodzenie na godzinę (w dolarach z 2012 roku)
 - College = zm. binarna (1 jeśli dyplom lic., 0 jeśli liceum)
 - Female = zm. binarna (1 jeśli kobieta, 0 jeśli mężczyzna)
 - Age = wiek (w latach)
 - Ntheast = zm. binarna (1 jeśli region to Northeast, 0 w przeciwnym przypadku)
 - Midwest = zm. binarna (1 jeśli region to Midwest, 0 w przeciwnym przypadku)
 - South = zm. binarna (1 jeśli region to South, 0 w przeciwnym przypadku)
 - West = zm. binarna (1 jeśli region to West, 0 w przeciwnym przypadku)

Tabela 1: Zarobki w zależności od wykształcenia, płci i innych charakterystyk.

	:	zm. zależna: AHI	zm. zależna: log(AHE)		
	(1)	(2)	(3)	(4)	(5)
College (X1)	8.31	8.32	8.34	0.44	0.40
0 . ,	(0.23)	(0.22)	(0.22)	(0.01)	(0.01)
Female (X2)	-3.85	-3.81	-3.80	-0.19	-0.24
	(0.23)	(0.22)	(0.22)	(0.01)	(0.17)
Age (X3)	, ,	0.51	0.52	0.10	0.10
		(0.04)	(0.04)	(0.04)	(0.04)
Age2 (X4)		,	,	-0.001	-0.001
0 ()				(-0.0008)	(-0.0008
Female×College (X5)				()	0.09
8 \ /					(0.02)
Northeast (X6)			0.18		` ,
` ,			(0.36)		
Midwest (X7)			-1.23		
` '			(0.31)		
South (X8)			-0.43		
(1,			(0.30)		
stała	17.02	1.87	2.05	-0.79	0.80
	(0.17)	(1.18)	(1.18)	(0.67)	(0.67)
n2	. ,	. ,	. ,	. ,	. ,
R^2	0.162	0.180	0.182	0.197	0.198
n	7440	7440	7440	7440	7440

W nawiasach () podano odchylenia standardowe.

- (a) Policz skorygowany R^2 dla regresji (1). Wyjaśnij różnice między zwykłym i skorygowanym R^2 . *Odpowiedz, używając wyników z kolumny* (1):
- (b) Czy pracownicy z dyplomami licencjackimi zarabiają więcej niż pracownicy z ukończonym liceum? O ile więcej? Czy ta różnica jest statystycznie istotna?

- (c) Czy mężczyźni zarabiają więcej niż kobiety? O ile? Czy ta różnica jest istotna statystycznie? Odpowiedz, używając oszacowań z kolumny (2):
- (d) Czy wiek jest istotną determinantą zarobków? Zbuduj 95% przedział ufności i skomentuj. *Odpowiedz, używając oszacowań z kolumny* (3):
- (e) Czy różnice międzyregionalne są łącznie istotne? Przetestuj odpowiednią hipotezę i odpowiedz. Wartość krytyczna z odpowiedniego rozkładu dla $\alpha=0.05$ wynosi 0.485844.
- (f) Dlaczego zmienna *West* została pominięta w regresji? Co by się stało, gdyby została umieszczona w równaniu?
 - Odpowiedz, używając oszacowań z kolumny (4):
- (g) Jeśli wiek wzrasta z 25 do 26 przy innych czynnikach niezmienionych, jak zmienią się zarobki? A jak w przypadku gdy wiek wzrasta z 33 do 34? Użyj odpowiedniego przybliżenia.
- (h) Przyjmij, że wpływ wieku na zarobki może być różny dla absolwentów liceum i dla absolwentów uniwersytetu. Zmodyfikuj równanie regresji w taki sposób, aby uchwyciło te różnice.

 Odpowiedz, używając oszacowań z kolumny (5):
- (i) Co mierzy współczynnik przy interakcji? Zinterpretuj go.
- 2. (12 p.) W tym zadaniu, pytania odnoszą się do oszacowań luki płacowej wysoko wykwalifikowanych imigrantów, uzyskanych na danych z amerykańskiego badania *Survey of Income and Program Participation (SIPP)*, z lat 2008-2013:
 - ln_wage logarytm zarobków
 - immigr zm. binarna (1 jeśli imigrant, 0 jeśli nie)
 - age wiek (w latach)
 - age2 wiek do kwadratu
 - female zm. binarna (1 jeśli kobieta, 0 jeśli mężczyzna)
 - black zm. binarna (1 jeśli rasa czarna, 0 w przeciwnym przypadku)
 - asian zm. binarna (1 jeśli rasa żółta, 0 w przeciwnym przypadku)
 - cognitive zm. binarna (1 jeśli pracownik umysłowy, 0 jeśli pracownik fizyczny)

Wszystkie osoby w próbie są wysoko wykwalifikowane, tzn. mają co najmniej dyplom licencjacki lub wyższy.

Tabela 2: Zarobki w zależności od statusu imigracyjnego i innych charakterystyk

		(2) oszacowania na podpróbach					
_	oszacowania	bł. std.	stat. t	p-value	VIF	umysłowi	fizyczni
immigr	-0.09856	0.004359	-22.61	2×10^{-16}	1.406877	0.0262	-0.178
age	0.1112	0.001333	83.41	2×10^{-16}	89.434584	0.0944	0.09735
age2	-0.0001	0.000016	-77.12	2×10^{-16}	89.417841	-0.0009	-0.0011
female	-0.4289	0.002658	-161.39	2×10^{-16}	1.005427	-0.4077	-0.4157
black	-0.2053	0.005058	-40.59	2×10^{-16}	1.020609	-0.1456	-0.1319
asian	0.1664	0.005723	29.08	2×10^{-16}	1.415301	0.1076	0.0708
stała	6.151	0.02732	225.13	2×10^{-16}		6.645	6.166
SSR	224586					109858	84057
R^2	0.1019					0.1137	0.0882
n	358688					223083	135605
Statystyki:							
0 0	testu White'a:	81.89	p-value	2.2×10^{-16}			
Statystyka	testu RESET:	445.44	p-value	2.2×10^{-16}			
Statystyka	testu Jarque-Bery:	499017	p-value	2.2×10^{-16}			

Zmienną zależną w oszacowanych modelach jest oczywiście ln_wage.

- Odpowiedz na pytania korzystając z wyników z (1) części Tabeli 2
- (a) Zinterpretuj współczynnik przy zmiennej immigr. Wyjaśnij co to oznacza w kategoriach ekonomicznych.
- (b) Czy współliniowość jest problemem w analizowanym modelu? Uzasadnij, opisz jej konsekwencje oraz podaj ewentualne rozwiązanie tego problemu.
- (c) Czy w modelu występuje heteroskedastyczność? Uzasadnij. Jeśli tak, to co powinien zrobić ekonometryk? Jakie problemy powoduje heteroskedastyczność?
- (d) Czy zastosowana forma funkcyjna jest poprawna? Uzasadnij.
- (e) Czy składnik losowy ma rozkład normalny w rozważanym modelu? Uzasadnij. Co się dzieje gdy tak nie jest?
- (f) W zbiorze danych zawarta jest zmienna która odróżnia pracowników umysłowych i fizycznych (cognitive). W dwóch ostatnich kolumnach, zawarto oszacowania modelu, odpowiednio dla pracowników umysłowych i fizycznych. Czy istnieje strukturalna różnica między oszacowanymi parametrami w tych dwóch regresjach? Przeprowadź odpowiedni test i odpowiedz. (*Wykorzystaj również wyniki z (2) części Tabeli 2*) Wartość krytyczna z rozkładu F wynosi 0.7633769.
- 3. (3 p.) Ekonometryk w ramach swojego projektu chce zbadać jak na stopę zabójstw (per capita) wpływają zmiany w nakładach na policję (per capita) w powiatach w Polsce. Można się spodziewać, że przekazanie większych środków policji, powinno przyczynić się do spadku odsetka zabójstw w danym powiecie. Dodatkową zmienną którą warto uwzględnić w regresji to czy gangi są obecne w danym powiecie. Tak więc nasz Ekonometryk chciałby oszacować następujące równanie:

$$zabojstwa_per_capita = \beta_0 + \beta_1 fiansowanie_policji + \beta_2 gang + \varepsilon$$

Jednak nasz Ekonometryk zapomniał zebrać dane o obecności gangów w powiatach, więc w praktyce może jedynie oszacować następujące równanie:

$$zabjstwa_per_capita = \beta_0 + \beta_1 fiansowanie_policji + \varepsilon$$

- (a) Ekonometryk popełnił tutaj błąd zmiennej pominiętej. Wyjaśnij krótko jakie konsekwencje niesie on dla oszacowania parametru β_1 z równania (2)?
- (b) Jeśli Ekonometryk oszacuje równanie (2), to czy $\hat{\beta}_1$ będzie przeszacowywało czy niedoszacowywało prawdziwy parametr β_1 z równianina (1)? Uzasadnij swoją odpowiedź odpowiednim rozumowaniem.
- 4. (7 p.) Klasyczny model regresji liniowej podaj założenia. Opisz co mówi tw. Gaussa-Markova.