Лабораторная работа 4 по ТМО

Водка Игорь, ИУ5-61

Подготовка обучающей и тестовой выборки, кросс-валидация и подбор гиперпараметров на примере метода ближайших соседей.

Выберите набор данных (датасет) для решения задачи классификации или регресии.

Возьмём из прошлой лабы. ../lab3/winemag-data-130k-v2.csv

В случае необходимости проведите удаление или заполнение пропусков и кодирование категориальных признаков.

```
In [355]: # read the data
    import pandas as pd
    reviews = pd.read_csv("../lab3/winemag-data-130k-v2.csv", index_col=0)
    pd.set_option('max_rows', 5)

for column in ["country", "region_1", "region_2"]:
        reviews[column] = reviews[column].fillna("Unknown")

reviews['price'] = reviews.groupby('country').transform(lambda x: x.fillna(x.mean()))

In [356]: from sklearn.preprocessing import LabelEncoder, OneHotEncoder

# country ok, winery ok
for feature in ['country', 'province', 'region_1', 'region_2', 'variety', 'winery']:
    le = LabelEncoder()
    reviews[feature] = reviews[feature].dropna()
    processed = pd.DataFrame({'result': reviews[feature]})
    reviews[feature] = le.fit_transform(processed['result'].astype(str))
```

In [357]:	reviews	5									
Out[357]:		country	description	designation	points	price	province	region_1	region_2	taster_name	taster_twitter_handle
	0	22	Aromas include tropical fruit, broom, brimston	Vulkà Bianco	87	87.0	331	424	15	Kerin O'Keefe	@kerinokeefe
	1	31	This is ripe and fruity, a wine that is smooth	Avidagos	87	87.0	108	1094	15	Roger Voss	@vossroger
	129969	15	A dry style of Pinot Gris, this is crisp with	NaN	90	90.0	11	21	15	Roger Voss	@vossroger
	129970	15	Big, rich and off-dry, this is powered by inte	Lieu-dit Harth Cuvée Caroline	90	90.0	11	21	15	Roger Voss	@vossroger
	129971 r	ows × 13	3 columns								
	4										•

С использованием метода train_test_split разделите выборку на обучающую и тестовую.

```
In [358]: from sklearn.model_selection import train_test_split

X = reviews[['country', 'price', 'province', 'region_1', 'variety', 'winery']]
y = reviews['points']
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.1, random_state=42)
```

Обучите модель ближайших соседей для произвольно заданного гиперпараметра К. Оцените качество модели с помощью трех подходящих для задачи метрик.

```
In [363]: # пусть первая метрика - максимальный модуль разности
metric1 = max(abs(y_test.values[k] - v) for k, v in enumerate(y_pred))
print("Метрика №1:", metric1)

# пусть вторая метрика - самопальная mean_squared_error
metric2 = sum(pow(y_test.values[k] - v, 2) for k, v in enumerate(y_pred)) / len(y_pred)
print("Метрика №2:", metric2)

Метрика №1: 10.0
Метрика №2: 4.792521926450363
```

Постройте модель и оцените качество модели с использованием кроссвалидации. Проведите эксперименты с тремя различными стратегиями кроссвалидации.

```
In [ ]:
In [364]: from sklearn.model selection import cross val score
         estimator = neigh
         scores = cross val score(estimator, X train, y train, cv=10) # 10 folds by Stratified)KF
         old
         scores
Out[364]: array([0.46893334, 0.46132663, 0.4546627, 0.45731714, 0.45293478,
                0.47408317, 0.4616699, 0.43496419, 0.443433, 0.45459557])
In [365]: print("Точность в первом случае: %0.2f (+/- %0.2f)" % (scores.mean(), scores.std() * 2))
         Точность в первом случае: 0.46 (+/- 0.02)
In [366]: | from sklearn.model_selection import ShuffleSplit
         cv = ShuffleSplit(n_splits=10, test_size=0.15, random_state=3)
         scores2 = cross_val_score(estimator, X_train, y_train, cv=cv)
         scores2
In [367]:
         print("Точность во втором случае: %0.2f (+/- %0.2f)" % (scores2.mean(), scores2.std() *
         2))
         Точность во втором случае: 0.44 (+/- 0.02)
```

Произведите подбор гиперпараметра К с использованием GridSearchCV и кросс-валидации.

```
In [368]: from sklearn.model_selection import GridSearchCV

In [369]: grid_search = GridSearchCV(estimator, cv=5, param_grid={'n_neighbors': [1, 2, 3]})
grid_search.fit(X_train, y_train)
y_pred2 = grid_search.predict(X_test)

In [370]: # пусть первая метрика - максимальный модуль разности
metric1 = max(abs(y_test.values[k] - v) for k, v in enumerate(y_pred2))
print("Метрика №1 для найденного параметра:", metric1)

# пусть вторая метрика - самопальная mean_squared_error
metric2 = sum(pow(y_test.values[k] - v, 2) for k, v in enumerate(y_pred2)) / len(y_pred2))
print("Метрика №2 для найденного параметра:", metric2)

Метрика №1 для найденного параметра: 12.0
Метрика №2 для найденного параметра: 4.034966917987383
```