Streamline Curvature Wall Model for Pressure from PIV

Julián Powers¹, Adrián Lozano-Durán²

 $^{1} \ \mathsf{Masters} \ \mathsf{Student}$ $\mathsf{Massachusetts} \ \mathsf{Institute} \ \mathsf{of} \ \mathsf{Technology}$

² Faculty Massachusetts Institute of Technology California Institute of Technology

APS DFD, November 2024

Motivation: Why Pressure from PIV?

Pressure Taps (traditional method)

- Measurements dependent on leakage, hole diameter, flushness
- ► Difficult to install
- Length of tubing limits sampling rate!

Pressure from PIV

- Non-invasive (no installation on model)
- High time resolution possible
- High spatial resolution possible

References:

https://user.engineering.uiowa.edu/~fluids/posting/ home/efd/efd_lab3/lab3-exercise_note.pdf

Motivation: Literature Review

Case	Max Cp Error	Extrapolation Approach	Source
NACA 0012	0.5	parabola fit	Tagliabue et al., 2017
Sphere	0.15	nearest neighbor	Jux et al., 2020
Cyclist	0.2*	nearest neighbor	Jux et al., 2020
Bullet Step	0.02	nearest neighbot	Gent et al., 2018
NACA 0012	0.25	line fit	Ragni et al., 2009

^{*}based on uncertainty analysis (no pressure tap reference)

Motivation: Issues with Extracting Surface Pressure

- ► Reflections and low particle density
- Strong gradients due to curvature and boundary layer

Goals:

- Avoid extrapolation
- No numerical derivatives close to the wall

Method: Streamline Coordinates

[Insert Streamline Diagram]

Method: Summary

- 1. Compute Streamlines
- 2. Fit Circles
- 3. Integration
- 4. Differentiation

Results: LES Airfoil

- ▶ Data from Asada and Kawai, 2018
- Grid coarsened from LES
- ► Added 2% random velocity error

Results: Rough Cylinder

[Details and visualization]

Results: NACA 0018 (?)

[Details and visualization]

Conclusions and Next Steps

- Robust to noise
- Robust to distance from wall
- Similar or better results in regions with strong pressure gradient

Next Steps:

- ► Improve treatment of Reynolds stresses
- Improve treatment of critical points (separation, stagnation point)
- Generalization to 3D