Wiener Attack Handout

Matt Cheung

July 24, 2017

First step is to approximate $\frac{e}{pq}$ using continued fractions of the form

$$\frac{a_1}{q_1 + \frac{a_2}{q_2 + \frac{a_3}{q_{m-1} + \frac{a_m}{a_m}}}}$$

with all $a_i = 1$.

1 Continued Fraction Expansion

Continued fraction expansion of a fraction f.

$$q_0 = \lfloor f \rfloor$$
 $r_0 = f - q_0$
 $q_i = \lfloor \frac{1}{r_{i-1}} \rfloor$ $r_i = \frac{1}{r_i} - q_i$ for $i = 1, 2, \dots, m$

Return $\langle q_0, q_1, \dots, q_m \rangle$ Example: $\frac{1387}{2719} = \langle 0, 1, 1, 24, 4, 1, 1, 2, 2 \rangle$

$\mathbf{2}$ Reconstructing f From Expansion

$$n_0 = q_0 \qquad \qquad d_0 = 1$$

$$n_1 = q_0 q_1 + 1 d_1 = q_1,$$

$$n_0 = q_0$$
 $d_0 = 1,$
 $n_1 = q_0 q_1 + 1$ $d_1 = q_1,$
 $n_i = q_i n_{i-1} + n_{i-2}$ $d_i = q_i d_{i-1} + d_{i-2},$ for $i = 2, 3, \dots, m$

Useful Fact: $n_i d_{i-1} - n_{i-1} d_i = -(-1)^i$ for $i = 1, 2, \dots, m$.

Continued Fraction Algorithm 3

Let f' be an underestimate of f

$$f' = (1 - \delta)f$$
 for some $\delta > 0$

In this case $f' = \frac{e}{pq} = \frac{e}{n}$ and $f = \frac{k}{dg}$ Steps of the Algorithm:

- ullet Generate the next quotient (q_i') for the continued fraction expansion of f'
- Construct the following fraction:

$$\langle q'_0, q'_1, \cdots, q'_{i-1}, q'_i + 1 \rangle$$
 if i is even $\langle q'_0, q'_1, \cdots, q'_{i-1}, q'_i \rangle$ if i is odd

• Check if the fraction equals f

An important equation edg = k(p-1)(q-1) + g. This allows for guesses for (p-1)(q-1) and g.

Using this guess and $\frac{pq-(p-1)(q-1)+1}{2}=\frac{p+q}{2}$ Also $\left(\frac{p+q}{2}\right)^2-pq=\left(\frac{p-q}{2}\right)^2$ Through an example we will show how to check do the check

Also
$$\left(\frac{p+q}{2}\right)^2 - pq = \left(\frac{p-q}{2}\right)^2$$

step.

$$pq = 8927$$
 and $e = 2621$

so
$$\frac{e}{pq} = \frac{2621}{8927}$$

Calculated Quantity	How it is Derived	i = 0	i = 1	i=2
$\overline{q'_i}$	Continued Fraction Expansion	0	3	2
r_i'	Continued Fraction Expansion	$\frac{2621}{8927}$	$\frac{1064}{2621}$	$\frac{493}{1064}$
$rac{n_i'}{d_i'}$	Reconstruction Algorithm	$\frac{0}{1}$	$\frac{1}{3}$	$\frac{2}{7}$
guess of $\frac{k}{dq}$	$\langle q'_0, q'_1, \dots, q'_{i-1}, q'_i + 1 \rangle (i \text{ even})$	$\frac{1}{1}$	$\frac{1}{3}$	$\frac{3}{10}$
J	$\langle q'_0, q'_1, \cdots, q'_i \rangle (i \text{ odd})$			
guess of edg	$\mid e \cdot dg$	2621	7863	26210
guess of $(p-1)(q-1)$	$\lfloor edg/k \rfloor$	2621	7863	8736
guess of g	edg mod k	0	0	2
guess of $\frac{p+q}{2}$	see above	3153.5 (quit)	532.5 (quit)	96
guess of $\left(\frac{p-q}{2}\right)^2$	see above			$289 = 17^2$
guess of d	dg/g			5