

PONTIFICIA UNIVERSIDAD CATÓLICA DE CHILE Facultad de Matemáticas

EYP2114/2127 - Inferencia Estadística

Segundo Semestre 2023

Profesora: Ana María Araneda

Ayudante: Sebastián Guerra (sebastian.guerrap@uc.cl)

Ayudantía 5

Cota de Cramér-Rao e intervalos de confianza

Problema~1~(Casella~y~Berger,~2002)

Sean X_1, \ldots, X_n iid Bernoulli(p). Muestre que la varianza de \bar{X} alcanza la cota de Cramér-Rao, y por lo tanto \bar{X} es el mejor estimador insesgado de p.

Problema 2 (Casella y Berger, 2002)

Si X_1, \ldots, X_n son iid $f_{\theta}(x)$, con f que satisface las condiciones del teorema de Cramér-Rao. Si $W(\mathbf{X})$ es un estimador insesgado de $\tau(\theta)$, entonces $W(\mathbf{X})$ alcanza la cota de Cramér-Rao si y solo si

$$a(\theta)[W(\boldsymbol{X}) - \tau(\theta)] = \frac{\partial}{\partial \theta} \log L(\theta, \boldsymbol{X})$$

para alguna función $a(\theta)$.

Use este resultado para encontrar funciones de θ , digamos $g(\theta)$, para las cuales existe un estimador insesgado cuya varianza alcanza la cota de Cramér-Rao.

(a)
$$f_{\theta}(x) = \theta x^{\theta - 1}$$
, $0 < x < 1$, $\theta > 0$

(b)
$$f_{\theta}(x) = \frac{\log \theta}{\theta - 1} \theta^x$$
, $0 < x < 1$, $\theta > 1$

Problema 3 (Casella y Berger, 2002)

Sea X una observación de una distribución Beta $(\theta, 1)$.

- (a) Sea $Y = -\log(X)^{-1}$. Evalúe el coeficiente de confianza del conjunto [y/2,y]
- (b) Encuentre un pivote y uselo para encontrar un intervalo de confianza con el mismo coeficiente de confianza que el intervalo en la parte (a)

$$\frac{1}{9} + \frac{2 \ln(x_i)}{n}$$

$$= \frac{1}{2} \cdot \frac{$$

versimilitied

$$L = \frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} \right) - \frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} \right) - \frac{$$

=> x es el EIVUM de e_ - 1

P2
$$\beta(\alpha, \beta) = 1$$
 $\chi^{2} (1-\chi)^{\beta}$
 $\beta(\alpha, \beta) = \Gamma(\alpha)\Gamma(\beta)$
 $\Gamma(\alpha + \beta)$
 $\beta(\alpha, \beta) = \Gamma(\alpha)\Gamma(\beta)$
 $\Gamma(\alpha + \beta)$
 $\Gamma(\alpha + \beta)$

b)
$$S(x) = |dG| g(G(x, 0))$$
 $T = x^{0} \Rightarrow pivote$
 ${}^{0}\sqrt{T} = x = x^{-1}(t)$
 $S_{T}(t) = 0 (t^{1/0})^{0} \cdot 1 t^{1/0-1}$
 $= 0 \cdot 1 + 1 \cdot 0$
 $= t^{0} = 1 \quad 0 < t < 1$
 $0 < t < 1$
 0

Problema 4 (Casella y Berger, 2002)

Sean X_1, \ldots, X_n independientes provenientes de la distribución

$$f_{X_i}(x_i) = e^{i\theta - x_i} \mathbb{1}_{[i\theta,\infty)}(x_i)$$

Pruebe que $T = \min_i \{X_i/i\}$ es un estadístico suficiente para θ . En base a T, encuentre el intervalo de confianza $1 - \alpha$ para θ de la forma [T + a, T + b] de largo mínimo.

$(Propuesto) \ Problema \ 5 \ (Casella y Berger, 2002)$

Sean X_1, \ldots, X_n iid uniforme $(0, \theta)$. Sea $Y = \max_i \{X_i\}$. Muestre que Y/θ es un pivote y que el intervalo

$$\left\{\theta: y \le \theta \le \frac{y}{\alpha^{1/n}}\right\}$$

es el menor intervalo de confianza pivotal $1-\alpha$.

P4 1) L(0 x)= ex { 5 é a - 5 x à } To A [e, co) (li) $= \exp \left\{ \frac{n(n+1)\theta - 2 \times i}{2} \right\}.$ Megood (min (Xi)) Por tevena de factorización, min (Xè) es suficiente $P(T>T) = \bigcap_{i=1}^{\infty} P(X_i > it) = \bigcap_{i=1}^{\infty} \int_{it}^{\infty} e^{i\Theta^{-2}} dx$ = T e e e [-e-x] it $= \iint_{\mathbb{R}^2} e^{i\theta - it} = \sup_{x \to \infty} \int_{\mathbb{R}^2} \frac{1}{2} \int_{\mathbb{R}^2} (t - it) dt$ $\frac{1}{2} \frac{1}{2} \frac{1}$ >=T-0 es un pirote SO: THE GETTOR P(-b= =>= a)=1-9