Full Summary of Conversation: Transporter Carbon Emissions Project (Roshan Project)

Project Objective:

To calculate GHG emissions (CO₂, CH₄, N₂O) for each transportation trip based on data shared by a logistics company, and to design a tool/dashboard that calculates emissions automatically, provides KPIs, and supports decarbonization analysis.

Phase 1: Project Planning

User Objective: Automate carbon emissions calculations for each trip from an Excel sheet. Desired output is a dashboard (initially Excel, possibly upgraded to an online version).

Project Plan Outline:

- Input Sheet: Upload raw trip data
- Emission Factor Sheet: Lookup table for EF per km/liter for fuel & vehicle type

Emission Calculation Sheet:

Emissions (kg CO₂e) = Distance × Emission Factor per km OR Emissions (kg CO₂e) = Fuel Used × Emission Factor per liter

- Dashboard Output:
 - o Total emissions by vehicle, trip, and month
 - Emission intensity (gCO₂e/km and gCO₂e/ton-km)
 - Visuals: bar charts, trends, route heatmaps, pie charts

Online Options Suggested:

- Google Sheets + AppSheet/Data Studio
- Streamlit Dashboard
- Microsoft Power BI (free tier)

Phase 2: Timeline Estimation

Question: How long would it take to build a working tool?

Timeline (Solo Developer with Al Help)

• Planning: 0.5-1 day

• EF & logic setup: 1.5 days

• Excel parsing: 0.5 day

• Visuals: 1.5 days

• UI: 1 day

Testing: 1 day

Deployment: 0.5 day

• Total: ~6-7 working days

Phase 3: Dashboard Wireframe

Al provided a wireframe sketch showing:

- 1. Header: Company Name, Report Download, Date Selector
- 2. KPI Cards:
 - o Total CO₂e

- Emission Intensity
- Avg Distance
- o Top Fuel Type
- 3. Emissions Breakdown:
 - By Category (Fuel/Vehicle)
 - Trend Chart (Monthly)
 - o Top 5 Vehicles
- 4. Operational Insights:
 - Hotspot Map
 - Utilization vs Emissions
 - Recommendations Panel
- 5. Efficiency Table:
 - Vehicle ID, Trips, Load, Fuel, CO₂e, gCO₂e/ton-km

Phase 4: Example Calculation (Sample Trip)

Given Trip:

Vehicl Fuel Type Distanc
e e

LCV Diesel 250 km

Emission Factors Used (g/km):

- CO₂ = 1320
- CH₄ = 0.05

• $N_2O = 0.02$

GWP:

- CH₄ = 25
- $N_2O = 298$

Calculations:

 $CO_2 = 250 \times 1320 = 330,000 \text{ g} = 330 \text{ kg}$ $CH_4 = 250 \times 0.05 \times 25 = 312.5 \text{ g} = 0.3125 \text{ kg } CO_2e$ $N_2O = 250 \times 0.02 \times 298 = 1,490 \text{ g} = 1.49 \text{ kg } CO_2e$ Total $CO_2e = 330 + 0.3125 + 1.49 = **331.80 \text{ kg } CO_2e^**$

Phase 5: Sheet-Based Trip Example

Trip Example from Excel:

• Vehicle: AP39TE1926

• Fuel: Diesel

• Distance: 1242 km

Emission Factors Used:

- CO₂ = 1620 g/km
- $CH_4 = 0.05 \text{ g/km}$
- $N_2O = 0.03 \text{ g/km}$

Calculations:

 CO_2 = 1242 × 1620 = 2,012,040 g = 2,012.04 kg CH_4 = 1242 × 0.05 × 25 = 1.55 kg CO_2e N_2O = 1242 × 0.03 × 298 = 11.09 kg CO_2e Total CO_2e = 2012.04 + 1.55 + 11.09 = **2024.68 kg CO_2e^{**}

Phase 6: Efficiency KPIs (Based on Sheet Data)

Calculable Now:

- CO₂e/trip
- gCO₂e/km
- Trip Duration = End Start
- Delay = End Expected End
- Trips per Vehicle
- Emissions per Vehicle
- Route-based emissions

Missing or Assumed:

- Load per trip
- Fuel consumed
- Mileage (km/l)
- Vehicle Emission Standard (VES)
- Return Trip Load
- Idle Time

Phase 7: Data Availability Assessment

We Have (From File):

- Vehicle No, Fuel Type, Vehicle Type, Distance
- Start/End/Expected Time
- Trip Date, Route Info, Trip Status

We Can Calculate:

- Duration, Delay, CO₂, CH₄, N₂O, CO₂e
- gCO₂e/km, Monthly summaries

We Need to Ask:

- Load per trip
- Fuel used per trip
- Real mileage
- Return trip load
- Vehicle Emission Standard
- Idle time & Refrigeration use

Phase 8: Decarbonization Insights

Using Current Data:

- Top emitting vehicles/routes
- Emission trend over time
- Delay-emission correlation

With Added Data:

- gCO₂e/ton-km (load-based efficiency)
- Fuel-switch modeling (e.g. diesel to HVO)
- Cold chain impact (refrigerated fuel usage)

Phase 9: Final Consolidated Tables

Top 5 Missing But Crucial Fields

Metric Why It Matters

Fuel Consumed Accurate CO2 from EF/liter

Load (tons) Enables gCO₂e/ton-km

VES EF tuning for CH₄/N₂O accuracy

Real Mileage Predict fuel use, efficiency

Return Trip Load Determine true ton-km

Optional (Advanced) Data:

- Idle Time
- Refrigeration Use
- Cold Chain Hours

Final Notes

- With current data, ~70% accuracy is possible
- With the 5 missing fields: accuracy improves to 90-95%
- The project is scalable into a Streamlit, Power BI, or Google Sheets dashboard

•	Client-facing checklist or request form is recommended to fill data gaps t-ready data request templa