- 1. Fie $f: \mathbb{R}^+ \times \mathbb{R} \to \mathbb{R}$ cu $f(x) = max(1 \sqrt{x_1}, |x_2|)$
 - (a) Este f convexa?
 - (b) Determinati punctele de optim ale lui f si natura lor.
- 2. Fie $f: \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ cu $f(x) = x_1^3 + (1+x_2)^2$
 - (a) Aplicati metoda gradient cu pas ideal pentru punctul de inceput $z_0 = \begin{bmatrix} 1 & 1 \end{bmatrix}^{T-1}$.
 - (b) Aplicati Metoda Newton cu pasul $\alpha=1$, pornind de la acelasi z_0 ca la punctul (a).
- 3. Fie $exp^*: \mathbb{R} \to \mathbb{R}$ cu $exp^*(x) = \min_{z \in \mathbb{R}} \quad x*z e^z$ si problema de optimizare

$$(P) := \min_{x \in \mathbb{R} \times \mathbb{R}} \quad \{ exp^*(x_1) + exp^*(x_2) \mid x_1 + 2 \cdot x_2 \le 1 \}$$

- (a) Este P convexa? 2
- (b) Determinati punctele KKT si natura lor.

 $^{^1\}mathrm{Notita}$ lui Eric: pasul ideal nu poate fi gasit. La examen proful a spus sa rezolam pur simbolic

²Notita lui Eric: pentru a rezolva problema, este necesar ca $exp^*(x)$ sa fie determinat in mod explicit, iar domeniul de definitie al problemei sa fie modificat pentru valorile unde $exp^*(x)$ exista.