Symbols and notation

Notation	Meaning
\mathbb{N}	The natural numbers $\{1, 2, 3,\}$.
\mathbb{R}	The real numbers.
$\mathbb{R}_{>0}$	The positive real numbers.
$\mathbb{R}_{\geq x}$	The real numbers greater than or equal to $x \in \mathbb{R}$.
#S	The cardinality of a set S .
$\overset{\cdot \cdot \cdot}{A} \times B$	The Cartesian product of two sets A and B , i.e. the set
	$\{(a,b) \mid a \in A, \ b \in B\}.$
\mathbb{R}^d	d-dimensional real space.
$A \subseteq B$	A is an improper subset of B .
$A \subsetneq B$	A is a proper subset of B .
$A \subsetneq B$ $\boxed{\mathbb{I}\{\cdot \in S\}}$	The indicator function of a set S .
$\operatorname{int}\left\{ S\right\} ^{\prime}$	The interior of a subset S of the standard topological space
()	$\mathbb{R}.$
$\phi(A)$	The image of a real-valued function $\phi: X \to Y$ is $\phi(A) :=$
, ,	$\{\phi(a): a \in A \subseteq X\}.$
$\phi^{-1}(B)$	The pre-image of a real-valued function $\phi: X \to Y$ is $\phi(A) :=$
, ,	$\{x \in X : \phi(x) \in B \subseteq Y\}.$
$\log(\cdot)$	The natural logarithmic function: $\mathbb{R}_{>0} \to \mathbb{R}$.
$\phi(x) \propto \tilde{\phi}(x)$	A real-valued function $\phi: \mathbb{R} \to \mathbb{R}$ is proportional to $\tilde{\phi}(x)$, if
7 (**) ** 7 (**)	\exists a constant $c \in \mathbb{R}$ such that $\phi(x) = c \cdot \tilde{\phi}(x), \forall x \in \mathbb{R}$.
$\phi_2 \circ \phi_1(x)$	The composition of two real-valued function $\phi_1, \phi_2 : \mathbb{R} \to \mathbb{R}$
72 71(**)	is $\phi_2 \circ \phi_1(x) := \phi_2(\phi_1(x)), \forall x \in \mathbb{R}.$
x, X	Real-valued vectors in \mathbb{R}^n , where $n \in \mathbb{N}$.
\mathbf{A}	Real-valued matrix in $\mathbb{R}^{n \times m}$, where $m, n \in \mathbb{N}$.
A^T	The transpose of some real-valued matrix $A \in \mathbb{R}^{n \times m}$, where
	$m, n \in \mathbb{N}$.
X	Real-valued random variable $X: \Omega \subseteq \mathbb{R} \to \mathbb{R}$ defined on
	probability measure space $(\Omega, \mathcal{B}(\Omega), \mathbb{P})$, with realization x .
\boldsymbol{X}	Real-valued <i>n</i> -dimensional random vector $\boldsymbol{X}:\Omega\subseteq\mathbb{R}^n$
	\mathbb{R}^n defined on probability measure space $(\Omega, \mathcal{B}(\Omega), \mathbb{P})$, with
	realization \boldsymbol{x} .
f_X	The probability density function (PDF) of a random variable
•	X.
$f_{oldsymbol{X}}$	The joint PDF of a random vector \boldsymbol{X} .
F_X	The cumulative distribution function (CDF) of a random vari-
	able X .
$F_{\boldsymbol{X}}$	The joint CDF of a random vector \boldsymbol{X} .
$\mathbb{E}_{f_X}[g(X)]$	The expectation of the random variable $g(X)$ with PDF f_X ,
JA 10 (/1	where g is a real-valued function.
$\mathbb{E}_{f_{\boldsymbol{X}}}[g(\boldsymbol{X})]$	The expectation of the random vector $g(\mathbf{X})$ with PDF $f_{\mathbf{X}}$,
JA 10 (/)	where g is a real-valued function.

Var _{f_X} [g(X)] The variance of the random variable $g(X)$ with PDF f_X , where g is a real-valued function. Var _{f_X} [g(X)] The variance of the random vector $g(X)$ with PDF f_X , where g is a real-valued function. Supp(f) The support of a real-valued function $f: X \subseteq \mathbb{R}^n \to \mathbb{R}$ is $\{x \in X : f(x) \neq 0\}$. $X \sim f_X$ The random variable X is distributed according to PDF f_X . $f_X \stackrel{d}{=} g_X$ Two PDFs of a random variable X are equivalent. $X_n \stackrel{d}{\longrightarrow} X$ A sequence of real-valued random variables $X_1,, X_n$ converges almost surely if $\mathbb{P}(\{\omega \in \Omega : \lim_{n \to \infty} X_n(\omega) = X(\omega)\}) = 1$. This is convergence is denotes by $X_n \stackrel{d}{\longrightarrow} X$ $F_n(x) \stackrel{d}{\longrightarrow} A$ sequence of real-valued random variables $X_1,, X_n$ with CDFs
Var _{f_X} [g(X)] The variance of the random vector $g(X)$ with PDF f_X , where g is a real-valued function. Supp(f) The support of a real-valued function $f: X \subseteq \mathbb{R}^n \to \mathbb{R}$ is $\{x \in X: f(x) \neq 0\}$. $X \sim f_X$ The random variable X is distributed according to PDF f_X . $f_X \stackrel{d}{=} g_X$ Two PDFs of a random variable X are equivalent. $X_n \stackrel{d}{\longrightarrow} X$ A sequence of real-valued random variables $X_1,, X_n$ converges almost surely if $\mathbb{P}(\{\omega \in \Omega: \lim_{n \to \infty} X_n(\omega) = X(\omega)\}) = 1$. This is convergence is denotes by $X_n \stackrel{d}{\longrightarrow} X$
is a real-valued function. The support of a real-valued function $f: X \subseteq \mathbb{R}^n \to \mathbb{R}$ is $\{x \in X: f(x) \neq 0\}$. $X \sim f_X$ The random variable X is distributed according to PDF f_X . $f_X \stackrel{d}{=} g_X$ Two PDFs of a random variable X are equivalent. $X_n \stackrel{d}{\longrightarrow} X$ A sequence of real-valued random variables $X_1,, X_n$ converges almost surely if $\mathbb{P}(\{\omega \in \Omega: \lim_{n \to \infty} X_n(\omega) = X(\omega)\}) = 1$. This is convergence is denotes by $X_n \stackrel{d}{\longrightarrow} X$
$Supp(f) \qquad \text{The support of a real-valued function } f: X \subseteq \mathbb{R}^n \to \mathbb{R} \text{ is } \{x \in X: f(x) \neq 0\}.$ $X \sim f_X \qquad \text{The random variable } X \text{ is distributed according to PDF } f_X.$ $f_X \stackrel{d}{=} g_X \qquad \text{Two PDFs of a random variable } X \text{ are equivalent.}$ $X_n \stackrel{d}{\longrightarrow} X \qquad \text{A sequence of real-valued random variables } X_1,, X_n \text{ converges almost surely if } \mathbb{P}\left(\{\omega \in \Omega: \lim_{n \to \infty} X_n(\omega) = X(\omega)\}\right) = 1. \text{ This is convergence is denotes by } X_n \stackrel{d}{\longrightarrow} X$
$\{\boldsymbol{x} \in X : f(\boldsymbol{x}) \neq 0\}.$ $X \sim f_X \qquad \text{The random variable } X \text{ is distributed according to PDF } f_X.$ $f_X \stackrel{d}{=} g_X \qquad \text{Two PDFs of a random variable } X \text{ are equivalent.}$ $X_n \stackrel{d}{\longrightarrow} X \qquad \text{A sequence of real-valued random variables } X_1,, X_n \text{ converges almost surely if } \mathbb{P}\left(\{\omega \in \Omega : \lim_{n \to \infty} X_n(\omega) = X(\omega)\}\right) = 1. \text{ This is convergence is denotes by } X_n \stackrel{d}{\longrightarrow} X$
$X \sim f_X$ The random variable X is distributed according to PDF f_X . $f_X \stackrel{d}{=} g_X$ Two PDFs of a random variable X are equivalent. $X_n \stackrel{d}{\longrightarrow} X$ A sequence of real-valued random variables $X_1,, X_n$ converges almost surely if $\mathbb{P}(\{\omega \in \Omega : \lim_{n \to \infty} X_n(\omega) = X(\omega)\}) = 1$. This is convergence is denotes by $X_n \stackrel{d}{\longrightarrow} X$
$X_n \xrightarrow{d} X$ A sequence of real-valued random variables $X_1,, X_n$ converges almost surely if $\mathbb{P}\left(\{\omega \in \Omega : \lim_{n \to \infty} X_n(\omega) = X(\omega)\}\right) = 1$. This is convergence is denotes by $X_n \xrightarrow{d} X$
almost surely if $\mathbb{P}(\{\omega \in \Omega : \lim_{n \to \infty} X_n(\omega) = X(\omega)\}) = 1$. This is convergence is denotes by $X_n \stackrel{d}{\longrightarrow} X$
almost surely if $\mathbb{P}(\{\omega \in \Omega : \lim_{n \to \infty} X_n(\omega) = X(\omega)\}) = 1$. This is convergence is denotes by $X_n \stackrel{d}{\longrightarrow} X$
is convergence is denotes by $X_n \stackrel{d}{\longrightarrow} X$
$F(x)$ d \wedge A sequence of real valued random variables Y Y with CDEs
$T_n(x)$ — A sequence of real-valued random variables $A_1,, A_n$ with CDTs
$F(x)$ F_i , for $i \in \{1,, n\}$, converges in distribution if $\lim_{n \to \infty} F_n(x) = \sum_{i=1}^n F_i(x)$
$F(x)$. This is convergence is denotes by $F_n(x) \xrightarrow{d} F(x)$.
Bern (p) The Bernoulli distribution with success probability $p \in [0,1]$.
The corresponding PMF $f: \{0,1\} \rightarrow [0,1]$ is defined by $f(x) =$
$p \cdot \mathbb{I}\{x = 1\} + (1 - p) \cdot \mathbb{I}\{x = 0\}.$
Unif (a,b) The continuous uniform distribution over the interval $[a,b] \subseteq \mathbb{R}$,
$a < b$. The corresponding PDF $f: [a,b] \to \{0,\frac{1}{b-a}\}$ is defined
by $f(x) = \frac{1}{b-a} \mathbb{I}\{x \in [a, b]\}.$
$\mathcal{N}(\mu, \sigma^2)$ The normal/Gaussian distribution with mean $\mu \in \mathbb{R}$ and vari-
ance $\sigma^2 \in \mathbb{R}_{>0}$. The corresponding PDF $f: \mathbb{R} \to \mathbb{R}_{>0}$ is defined
by $f(x) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\{-\frac{(x-\mu)^2}{2\sigma^2}\}.$
$\mathcal{T}f_X(\boldsymbol{\theta}, a)$ The truncated distribution with parameters $\boldsymbol{\theta} \in \mathbb{R}^k$ by $a \in \mathbb{R}$.
The corresponding truncated PDF $\mathcal{T}f_X: \mathbb{R}_{\geq a} \to \mathbb{R}$ is $\mathcal{T}f_X(x) =$
$\left[\int_{a}^{\infty} f_X(x) dx\right]^{-1} \cdot \mathbb{I}\left\{x \ge a\right\} \cdot f_X(x).$
Cauchy (x_0, γ) The Cauchy distribution with location parameter $x_0 \in \mathbb{R}$ and
scale parameter $\gamma \in \mathbb{R}$.
Expo(λ) The exponential distribution with rate parameter $\lambda \in \mathbb{R}_{>0}$. The
corresponding PDF $f: \mathbb{R} \to \mathbb{R}_{>0}$ is defined by $f(x) = -\lambda e^{-\lambda x}$.
$\mathbb{I}\{x \geq 0\}.$ Beta (α, β) The beta distribution with shape parameters $\alpha, \beta \in \mathbb{R}_{>0}$.
Gamma (α, β) The gamma distribution with shape parameter $\alpha \in \mathbb{R}_{>0}$ and
rate/scale parameter $\beta \in \mathbb{R}_{>0}$. The corresponding PDF $f: \mathbb{R} \to \mathbb{R}$
$\mathbb{R}_{>0}$ is defined by $f(x) = \frac{\beta^{\alpha}}{\Gamma(\alpha)} x^{\alpha-1} e^{-\beta x} \cdot \mathbb{I}\{x>0\}.$
Weib (α, β) The Weibull distribution with shape parameter $\alpha \in \mathbb{R}_{>0}$ and
scale parameter $\beta \in \mathbb{R}_{>0}$. The corresponding PDF $f: \mathbb{R} \to \mathbb{R}_{>0}$
is defined by $f(x) = \frac{\alpha}{\beta^{\alpha}} x^{\alpha - 1} e^{-(x/\beta)^{\alpha}} \cdot \mathbb{I}\{x \ge 0\}.$