Bài thực hành số 2 Bộ nhớ Cache

Phần mềm SMPCache:

https://drive.google.com/file/d/1nGdKZzwNZzBMcd8FpU4R8FHftLVFenei/view?usp=sharing

Mục đích

- Hiểu nguyên lý bộ nhớ Cache
- Đánh giá sự ảnh hưởng của các yếu tố đến hiệu suất hệ thống
 - Kiểm tra tính cục bộ (lân cận) của các chương trình
 - Khảo sát ảnh hưởng của kích thước Cache đến hiệu suất hệ thống
 - Khảo sát ảnh hưởng của kích thước Block đến hiệu suất hệ thống

Nội dung

- 1. Kiến thức cơ bản về Cache
- 2. Làm quen với SMPCache
- 3. Qui trình mô phỏng trên SMPCache
- 4. Thực hành

(a) Single cache

(b) Three-level cache organization

- Phương pháp ánh xạ (mapping):
 - Trực tiếp (Direct)
 - Kết hợp hoàn toàn (Full-Associative)
 - Tập kết hợp (Set-Associative)

- Các chính sách thay thế (áp dụng cho phương pháp ánh xạ kết hợp hoàn toàn và tập kết hợp)
 - LRU (Least Recently Used)
 - Block nằm trong cache lâu nhất mà không có tham chiếu đến nó sẽ bị thay thế
 - LFU (Least Frequently Used)
 - Block trong cache ít được truy xuất nhất sẽ bị thay thế
 - FIFO (First-In, First-Out)
 - Block trong Cache được đưa vào lâu nhất sẽ bị thay thế
 - Random
 - Chọn ngẫu nhiên một block trong Cache để thay thế

- Chiến lược ghi (write policy): khi nội dung trong cache bị thay đổi (write-hit)
 - Write-through: Ngay sau khi block trong cache được cập nhật, thì cập nhật luôn block tương ứng trong main memory
 - Write-back: Chỉ cập nhật block trong cache. Block tương ứng trong main memory chỉ được cập nhật khi block đó trong cache bị thay thế

2. Làm quen với SMPCache Simulator

• SMPCache is a simulator for teaching and analysis of cache memory systems on scalable multiprocessors with distributed shared memory (DSM-Distributed Shared Memory) or symmetric multiprocessors (SMP-Symmetric MultiProcessors) using a bus based shared memory.

2. Làm quen với SMPCache Simulator

- 1. Main menu
- 2. Toolbar
- 3. Navigator Bar
- 4. Information Panel

3. Qui trình mô phỏng trên SMPCache

- Bước 1: Thiết lập cấu hình hệ thống
- Bước 2: Nạp file memory trace vào processors
- Bước 3: Lựa chọn chế độ hiển thị và bắt đầu mô phỏng
- Bước 4: Lựa chọn chế độ mô phỏng và thực hiện mô phỏng

Bước 1: Thiết lập cấu hình hệ thống

Click vào Multiprocessor

- Memory organization: SMP (Symmetric Multi-Processors) và DSM (Distributed Shared Memory) là hai kiểu tổ chức hệ thống nhớ chia sẻ trong các hệ thống đa vi xử lý (multi-processor system)
- Snoopy protocol (Giao thức liên kết cache): MSI, MESI, DRAGON
- Bus arbitration (Phân xử bus): LRU, LFU, Random

Bước 1: Thiết lập cấu hình hệ thống

Click vào Main memory

- Word wide (bits): Số bit của một word → Số bytes
- Words by block: Số word trong một block
- Blocks in main memory: Số block trong bộ nhớ chính
- Block size = Word wide (byte) x Words by block (Bytes)
- Main memory size = Blocks in main memory x Block size (Bytes)

Bước 1: Thiết lập cấu hình hệ thống

Click vào Cache

- Blocks in cache: Số blocks mà cache có thể chứa (Số lines trong cache)
- Cache size (kích thước cache) = Blocks in cache x Block size → Số Byte
- Mapping (Chế độ ánh xạ): Direct, Fully-Associative, Set-Associative
- Cache sets (Chỉ có thể chọn khi chọn Mapping là Set-Associative): Số line trong một set (k-way)
- Replacement policy (Không áp dụng với chế độ ánh xạ là Mapping): Chính sách thay thế
- Writing strategy: chính sách ghi

Bước 2: Nạp file memory traces vào processor

Click vào Open memory traces

Bước 3: Lựa chọn chế độ hiển thị và bắt đầu mô phỏng

- Click vào Cache → Chọn chế độ hiển thị Text hoặc Graphic
 - Text: hiển thị thông tin dạng bảng thống kê
 - Graphic: hiển thị thông tin dạng biểu đồ

Bước 4: Lựa chọn chế độ mô phỏng và thực hiện mô phỏng

Kết quả mô phỏng dạng Graphic

Kết quả mô phỏng dạng Text

4. Thực hành

- Lab 2.1: Kiểm tra tính cục bộ (lân cận) của các chương trình
- Lab 2.2: Khảo sát ảnh hưởng của kích thước Cache đến hiệu suất hệ thống
- Lab 2.3: Khảo sát ảnh hưởng của kích thước Block đến hiệu suất hệ thống

Lab 2.1: Kiểm tra tính cục bộ (lân cận) của các chương trình khác nhau

- 1. Cấu hình một hệ thống với các đặc tính kiến trúc như sau:
 - Số lượng bộ xử lý Processors in SMP = 1.
 - Giao thức liên kết cache Cache coherence protocol = MESI.
 - Phương pháp phân xử Bus Scheme for bus arbitration = Random.
 - Kích thước word Word wide (bits) = 16.
 - Số word trong một block Words by block = 16 (block size = 32 bytes).
 - Số block trong bộ nhớ chính Blocks in main memory = 8192. Kích thước bộ nhớ chính bằng bao nhiêu?
 - Số blocks trong cache Blocks in cache: 32
 - Ánh xạ Mapping = Fully-Associative.
 - Chính sách thay thế Replacement policy = LRU

Lab 2.1: Kiểm tra tính cục bộ (lân cận) của các chương trình khác nhau

- 2. Quan sát miss rate (tỷ lệ truy xuất cache không thành công) với các memory traces: Hydro, Nasa7, Cexp, Mdljd, Ear, Comp, Wave, Swm và Ucomp và ghi vào file MS Excel.
- 3. Theo số liệu quan sát được, trả lời các câu hỏi:
 - 1) Liệu các chương trình có cùng mức độ cục bộ? Chương trình nào có tính cục bộ tốt nhất? Chương trình nào có tính cục bộ kém nhất?
 - 2) Liệu cấu hình trên có khai thác được tính cục bộ của các chương trình này và tăng hiệu suất hệ thống không? Tại sao?
 - 3) Trong quá trình chương trình thực hiện, nếu quan sát dưới dạng đồ thị, tỷ lệ miss rate giảm dần, nguyên nhân tại sao?

Memory Traces	Miss Rate (%)
Hydro	18.195
Nasa7	
Сехр	
Ear	
Comp	
Sum	
Ucomp	

Lab 2.1: Kiểm tra tính cục bộ (lân cận) của các chương trình khác nhau

- 1) Các chương trình không có cùng mức cục bộ
 - a. Cexp có mức độ cục bộ tốt nhất
 - b. Swm có mức độ cục bộ kém nhất
- 2) Cấu hình trên đã khai thác được mức độ cục bộ của các chương trình, tuy nhiêu hiệu suất chưa cao (miss rate > 10% với hầu hết các chương trình)
- Trong quá trình một chương trình chạy, miss rate sẽ giảm dần vì:

Memory Traces	Miss Rate (%)
Hydro	18.195
Nasa7	17.035
Cexp	0.77
Ear	16.993
Comp	18.661
Swm	21.985
Ucomp	17.892

- a. Khi bắt đầu chạy chương trình, bộ nhớ cache chưa có dữ liệu. Các truy xuất bộ nhớ của CPU phải truy xuất đến RAM (cache miss) -> Miss rate lớn
- b. Sau khi các khối được ánh xạ nhiều trong bộ nhớ → Do tính cục bộ của chương trình, các câu lệnh và dữ liệu có thể được truy xuất trực tiếp từ Cache (cache hit) → Miss rate giảm dần.

Lab 2.2: Khảo sát ảnh hưởng của kích thước Cache đến hiệu suất hệ thống

- 1. Thiết lập cấu hình của hệ thống với các đặc tính kiến trúc sau:
 - Số lượng bộ xử lý Processors in SMP = 1.
 - Giao thức liên kết cache Cache coherence protocol = MESI.
 - Phương pháp phân xử Bus Scheme for bus arbitration = Random.
 - Kích thước word Word wide (bits) = 16.
 - Số word trong một block Words by block = 16 (block size = 32 bytes).
 - Số block trong bộ nhớ chính Blocks in main memory = 8192.
 - Ánh xạ Mapping = Fully-Associative.
 - Chính sách thay thể Replacement policy = LRU.
 - Thiết lập cache với kích thước như sau (số block trong cache): 1, 2, 4, 8, 16, 32, 64, 128, 256 và 512.

Lab 2.2: Khảo sát ảnh hưởng của kích thước Cache đến hiệu suất hệ thống

- 2. Với mỗi thông số trên, thiết lập các memory traces: Hydro, Nasa7, Cexp, Mdljd, Ear, Comp, Wave, Swm và Ucomp, chạy mô phỏng và ghi lại các miss rate vào file MS Excel.
- 3. Phân tích kết quả

Vẽ biểu đồ thể hiện mối quan hệ giữa miss rate và cache size cho các memory traces và trả lời câu hỏi sau:

- Miss rate như thế nào khi kích thước cache tăng?
- Liệu việc tăng kích thước cache có giúp cải thiện hiệu suất của hệ thống không?

		Cache size (số block trong cache)										
	1	2	4	8	16	32	64	128	256	512		
Hydro	66.197%	42.360%	32.111%									
Nasa7												
Сехр												
Mdljd												
Ear												
Comp												
Wave												
Swm												
Ucomp												

Lab 2.3: Khảo sát ảnh hưởng của kích thước Block đến hiệu suất hệ thống

- 1. Thiết lập cấu hình của hệ thống với các đặc tính kiến trúc sau:
 - Số lượng bộ xử lý Processors in SMP = 1.
 - Giao thức liên kết cache Cache coherence protocol = MESI.
 - Phương pháp phân xử Bus Scheme for bus arbitration = Random.
 - Kích thước word Word wide (bits) = 16.
 - Kích thước bộ nhớ RAM = 256 KB (số lượng block trong bộ nhớ sẽ thay đổi)
 - Kích thước cache = 4 KB (số line –block trong cace thay đổi)
 - Ánh xạ Mapping = Fully-Associative.
 - Chính sách thay thể Replacement policy = LRU.
 - Cấu hình kích thước Block (số word/1 block) như sau: 4, 8, 16, 32, 64, 128, 256, 512, 1024.

Lab 2.3: Khảo sát ảnh hưởng của kích thước Block đến hiệu suất hệ thống

- 2. Với mỗi cấu hình trên, gọi các memory traces: *Hydro, Nasa7, Cexp, Mdljd, Ear, Comp, Wave, Swm* và *Ucomp,* xác định miss rate của chúng và ghi kết quả vào file MS Excel.
- 3. Phân tích kết quả

Vẽ biểu đồ thể hiện mối quan hệ giữa miss rate và block size cho các memory traces và trả lời câu hỏi sau:

- Nếu kích thước block tăng thì miss rate tăng hay giảm? Tại sao?
- Kích thước Block nào cho hiệu suất hệ thống cao nhất đối với các chương trình trên.

	Block size (số word/1 block)										
	4	8	16	32	64	128	256	512	1024		
Hydro	43.112	24.307	14.81								
Nasa7											
Сехр											
Mdljd											
Ear											
Comp											
Wave											
Swm											
Ucomp											

Viết báo cáo

• Báo cáo các bài thực hành Lab 2.1, Lab 2.2 và Lab 2.3 theo mẫu file Thuchanh_Cache_Phieu ghi ket qua.docx