Announcements

- pset2 due today.
- pset 3 to release today, due in 3 weeks (3/27)
- No classes next week (Spring break)

Last time

- Markov Chain
- Hidden Markov Model
- Decoding HMMs

Recall: Markov vs Hidden

Markov

Hidden

Which of the following statements is true about speech recognition? Select all that apply.

Which of the following statements is true about speech recognition? Select all that apply.

Acoustic signals are observed variables and phonemes are the unobserved variables ⊙			
90%			
Phonemes are observed variables and acoustic signals are unobserved variables. 15%			
Transition probability corresponds to probability of going from one observed state to another			
62%			
Transition probability corresponds to probability of going from one unobserved state to another ⊙ 46%			

Popular use case: Speech to text

The Joint Distribution

- Transition model: $P(X_{u+1} = j | X_u = i)$
- Observation model: $P(Y_u|X_u=i)$
- How do we compute the full joint probability table

Bayes' Theorem

$$P(X_{0:u+1}|Y_{0:u+1})$$
?

$$P(A|B) = \frac{P(B|A) \cdot P(A)}{P(B)}$$

$$P(X_{0:u+1}|Y_{0:u+1}) = P(X_0) \prod_{i=1}^{u+1} P(X_i|X_{i-1}) P(Y_i|X_i)$$

• Filtering: what is the distribution over the current state X_t given all the evidence so far, $Y_{1:t}$? (example: is it currently raining?)

We use forward algorithm

- Filtering: what is the distribution over the current state X_t given all the evidence so far, $Y_{1:t}$?
- Smoothing: what is the distribution of some state X_k (k<t) given the entire observation sequence $Y_{1:t}$? (example: did it rain on Sunday?)

We use backward algorithm

Inference tasks

- Filtering: what is the distribution over the current state X_t given all the evidence so far, $Y_{1:t}$
- Smoothing: what is the distribution of some state X_k (k<t) given the entire observation sequence $Y_{1:t}$?
- Evaluation: compute the probability of a given observation sequence $\mathbf{Y}_{1:t}$
- **Decoding:** what is the most likely state sequence $\mathbf{X}_{0:t}$ given the observation sequence $\mathbf{Y}_{1:t}$?

- Filtering: what is the distribution over the current state X_t given all the evidence so far, $Y_{1:t}$
- Smoothing: what is the distribution of some state X_k (k<t) given the entire observation sequence $Y_{1:t}$?
- Evaluation: compute the probability of a given observation sequence Y_{1:t}
- **Decoding:** what is the most likely state sequence $X_{0:t}$ given the observation sequence $Y_{1:t}$? (example: what's the weather every day?)

Recall: Transitions

	Sunny	Rainy
Sunny	0.9	0.5
Rainy	0.1	0.5

• What is the most likely weather in 3 days?

Option#1: Brute force

	Sunny	Rainy
Sunny	0.9	0.5
Rainy	0.1	0.5

- Trellis graph: Unpack the markov chain.
 - Nodes are ordered into vertical slices.
 - A node from time t-1 connected to node from t.

- Trellis graph: Unpack the markov chain.
 - Node = a value of the hidden variable at a given time
 - Numerical value of
 the node = probability
 that the hidden
 variable takes that
 value

- Trellis graph: Unpack the markov chain.
 - Edge = a possible transition
 - Numerical value of the edge = transition probability.

Trellis Graph

- Node = a value of the hidden variable at a given time
- Numerical value of the node = probability that the hidden variable takes that value

- Edge = a possible transition
- Numerical value of the edge = transition probability.

- Trellis graph: Unpack the markov chain.
 - Node = a value of the hidden variable at a given time
 - Numerical value of the node = probability that the hidden

 Viterbi path: Path in the trellis graph which has the most maximum likelihood.

- v_{it} = value of ith node at time t
- e_{ijt} = edge connecting node $v_{i,t-1}$ to v_{jt}

- v_{it} = value of ith node at time t
- e_{ijt} = edge connecting node $v_{i,t-1}$ to v_{jt}

Viterbi algorithm is:

$$v_{jt} = \max_{i} v_{i,t-1} e_{ijt}$$

- v_{it} = value of ith node at time t
- e_{ijt} = edge connecting node $v_{i,t-1}$ to v_{jt}

Viterbi algorithm is:

$$v_{jt} = \max_{i} v_{i,t-1} e_{ijt}$$

- v_{it} = value of ith node at time t
- e_{ijt} = edge connecting node $v_{i,t-1}$ to v_{jt}

Viterbi algorithm is:

$$v_{jt} = \max_{i} v_{i,t-1} e_{ijt}$$

Backpointer is:

$$i^*(j,t) = \underset{i}{\operatorname{argmax}} v_{i,t-1} e_{ijt}$$

Viterbi Algorithm: Termination

Best path probability = 0.0756

What is the optimal optimization algorithm to use to predict Viterbi path?

What is the optimal optimization algorithm to use to predict Viterbi path? Greedy algorithm 24% Dynamic programming ⊘ 66% Recursion 10%

Viterbi algorithm

1. Initialization:

$$v_1(j) = a_{0j}b_j(o_1) \ 1 \le j \le N$$

 $bt_1(j) = 0$

2. **Recursion** (recall that states 0 and q_F are non-emitting):

$$v_t(j) = \max_{i=1}^{N} v_{t-1}(i) a_{ij} b_j(o_t); \quad 1 \le j \le N, 1 < t \le T$$

$$bt_t(j) = \underset{i=1}{\operatorname{argmax}} v_{t-1}(i) a_{ij} b_j(o_t); \quad 1 \le j \le N, 1 < t \le T$$

3. Termination:

The best score:
$$P*=v_T(q_F)=\max_{i=1}^N v_T(i)*a_{iF}$$

The start of backtrace: $q_T*=bt_T(q_F)=\argmax_{i=1}^N v_T(i)*a_{iF}$

_

What the local transition probabilities say:

State 1 almost always prefers to go to state 2

What the local transition probabilities say:

State 2 almost always prefers to stay in state 2

Calculate probabilities for the following paths:

- Probability of path 1-> 1-> 1:
- Probability of path 2->2->2:
- Probability of path 1->2->1->2:

(2 mins to compute)

Select all that apply

Select all that apply

path: $1 \rightarrow 1 \rightarrow 1 \rightarrow 1$: 0.09 and path $1 \rightarrow 2 \rightarrow 1 \rightarrow 2$: 0.06 \odot

51%

path: $1 \rightarrow 1 \rightarrow 1 \rightarrow 1$: 0.09 and path $2 \rightarrow 2 \rightarrow 2$: 0.06

29%

path: $1 \rightarrow 1 \rightarrow 1 \rightarrow 1 : 0.09$ // path $2 \rightarrow 2 \rightarrow 2 : 0.018$ \odot

67%

path: $1 \rightarrow 1 \rightarrow 1 \rightarrow 1$: 0.018 // path $2 \rightarrow 2 \rightarrow 2 \rightarrow 2$: 0.06

4%

Transition probabilities

Calculate probabilities for the following paths:

- Probability of path 1-> 1-> 1: 0.09
- Probability of path 2->2->2 : 0.018
- Probability of path 1->2->1->2: 0.06

Recall: Local bias

What the local transition probabilities say:

State 1 almost always prefers to go to state 2

Calculate probabilities for the following paths:

- Probability of path 1-> 1-> 1: 0.09
- Probability of path 2->2->2 : 0.018
- Probability of path 1->2->1->2: 0.06

- Probability of path 1-> 1-> 1: 0.09
- Probability of path 2->2->2 : 0.018
- Probability of path 1->2->1->2: 0.06

- Why? State 1 has only two transitions but state 2 has 5:
 - Average transition probability from state 2 is lower

The Label bias problem

Preference of states with lower number of transitions over others - why?

Idea: Do not normalize probabilities locally

Option-1: Leave them as is

From local probabilities to local potentials

Option-2: Use conditional random fields

Global optimization

Optimization packages have solvers, e.g., sequential QP

Generative models + Hidden Markov Models

Generative media scenarios

Generative models + Hidden Markov Models

Both (audio and text) are sequences

Recall: Speech Recognition

Representing observations: FFT of of the speech signal.

Fast Fourier Transform (FFT) of one frame (10ms) is the HMM observation, once per 10ms

Observation = compressed version of the log magnitude FFT, from one 10ms frame

Generative models + Hidden Markov Models

Both (audio and text) are sequences

- Tokenize (audio: discrete FFT, text: bag of words)
- Model using markov chain

Generative multimodal media scenarios

Generative media scenarios

Input

Text

Image

Video

Audio

An oil painting of two rabbits in the style of American Gothic, wearing the same clothes as in the original

Autoregressive modeling

- Predicting the next pixel based on the previous pixels.
- State 0: a blank canvas
- State 1: first pixel (0,0) painted.

•

- State MN: last pixel (M-1, N-1) painted.

What are some of the downsides of representing image states as the state of a painted canvas?

What are some of the downsides of representing image states as the state of a painted canvas?

The underlying model would be generalizable to different image resolutions 32%

The underlying model would not be generalizable to different image resolutions ⊙

The underlying model would be take into account all the previous states, making the image generation slower \odot

81%

59%

The underlying model would be take into account all the previous states. This is crucial for a smooth image generation

12%

Mitigation-1: receptive fields

Every pixel does not (and need not) contribute to every state.

Mitigation-2: Tokenize

 Operate at a token level - instead of pixel-canvas level

- Tokenize
- Model using a markov chain (auto-regressive)

Make-a-scene! (Meta)

Make-A-Scene: Scene-Based Text-to-Image Generation with Human Priors, , ECCV'22

- Tokenize
- Model using a markov chain (auto-regressive)

Make-A-Scene: Scene-Based Text-to-Image Generation with Human Priors, , ECCV'22

Landscape of generative models: Diffusion models

Generative media scenarios

Close up shot of a living flame wisp darting through a bustling market in the night.

What is the temporal sequence composed of in a video autoregressive model?

What is the temporal sequence composed of in a video autoregressive model?

Next Class

Neural Networks I: Artificial neuron, MLP, activation functions, learning with gradient descent

Reading: Forsyth Ch 16.1, 16.3-16.4