NTU Final Project 2019

HTC DeepQ

Outline

- Introduction
- Chest X-ray Pneumonia Detection
- Suggested Methods
- Rules of Competition
- Submission
- Evaluation Criteria
- Suggested Readings and Resources

Introduction

Prize

Original

First prize: 10,000

Second prize: 5,000

Third prize: 2,000

Current

- 獲得特優之隊伍頒予獎狀乙紙,及新台幣一萬五千元獎金。
- 獲得優等之隊伍頒予獎狀乙紙,及新台幣五千元獎金。
- 獲得佳作之隊伍頒予獎狀乙紙,及新台幣一千元獎金。
- 得獎作品隊伍之隊數及獎項由「宏達國際電子股份有限公司代表及授課老師」視各組隊數與作品優良情形議定,必要時可從缺、調整(並得將名額移至他題)或增加,但以不超過獎金總額為限,每題獎金總額為新台幣四萬元。
- $-15,000 \times n1 + 5,000 \times n2 + 1,000 \times n3 \le 40,000$

Contracts and non-disclosure agreement

- 立書人即_____(以下簡稱「乙方」)因利用<u>宏</u> 達國際電子股份有限公司(以下簡稱「甲方」) 提供之數據資料,參與甲方所舉辦之「胸腔X 光影像肺炎偵測」科技競賽專案(以下簡稱 「本競賽」)
- 乙方同意於其著作完成之同時無償讓與其 上之著作財產權予甲方。
- 乙方同意負有保密義務。

Schedule

Date	TODO	Note (for NTU ML COURSE)
5/2 12:00:00 Thr.	Final Project Rules Announcement	
5/2 23:59:59 Thr.	Team Up Deadline	
5/30 23:59:59 Thr.	Proposal Deadline	Proposal + 1%
	Early Simple Baseline	Early Simple + 1%
6/13 23:59:59 Thr.	Early Strong Baseline	Early Strong + 1%
6/27 23:59:59 Thr.	Final Presentation	Bonus + 3%
	Contracts and non-disclosure agreement	
6/30 23:59:59 Sun.	Final Project Ranking Final Project Github Deadline (Report & Github)	Ranking (2%) Pass Simple + 2% Pass Strong + 2%

Chest X-ray Pneumonia Detection

PONTANE

T

Total Images: 26,788

– train: 21765

– test: 5023

- These images are from
 - RSNA Pneumonia Challenge
 - https://www.kaggle.com/c/rsna-pneumonia-detection-challenge
 L
 - NIH Chest X-ray Dataset
 - https://www.kaggle.com/nih-chest-xrays/data

Examples

No Pneumonia

Pneumonia

Your Model

Suggested Methods

- Faster RCNN
- YOLO
- Transfer Learning
- Multitask Learning

Faster RCNN

https://arxiv.org/abs/1506.01497

Yolo

https://arxiv.org/abs/1612.0 8242

Transfer Learning

Multitask Learning

Other novel Ideas are also welcome

Rules of Competition

- Training Data
- Pre-trained Model
- Code of Your Implementation

Training Data

- You are only allowed to use the images and labels and other meta provided by our kaggle competition website, NIH-Chest X-ray dataset, and ImageNet dataset to train your model.
- Do not use RSNA Pneumonia Challenge Dataset to train your model.
- Do not use any other images, labels or datasets to train your model.
- Data Augmentation (such as rotation, crop, and GAN) and Data Cleaning are allowed, but they should be run by script.
- Manually create additional labels or manually adjust existing labels is allowed, but you should post your results on the discussion forum of our kaggle competition website.

Pre-trained Model

 You are allowed to download any available pre-trained model from the Internet, but this pre-trained model should only be trained on NIH-Chest X-ray dataset or ImageNet dataset or both.

Code of Your Implementation

- Your algorithm should be implemented in python programming language.
- You are allowed to reuse any code available from the Internet. However, you should be aware of its license.

Submission

- Submission to kaggle website
 - During this competition, you can submit your model to kaggle website and evaluating it on testing data.
- Final submission
 - After you complete your project, you should submit your whole project so that we can verify your result.

Submission to kaggle website

 You can upload your results to our NTU Final Project Kaggle webpage to see your score on Public LeaderBoard.

Submission to kaggle website

- 1. Train your model
- 2. Create prediction.csv: Inference your model
- **3. Create submission.csv**: Convert to file with RLE format.
- 4. Upload submission.csv

Download these files:

```
./train: all raw train images
./test: all raw test images
train_labels.csv: annotated ground truth (bounding
box format).
train_metadata.csv: list of patient's attributes (sex,
view, age) to help you develop your model.
test_metadata.csv: list of patient's attributes (sex,
view, age) to help you make inference of your model.
bbox_to_rle.py: script to convert b-box to RLE format
```

Your model should be implemented in Python.

train_labels.csv

478

./train/000db696-cf54-4385-b10b-6b16fbb3f985.png

Multiple bounding boxes

```
000db696-cf54-4385-b10b-6b16fbb3f985, 316, 318, 170, 478, 1 000db696-cf54-4385-b10b-6b16fbb3f985, 427, 428, 300, 100, 1
```


./train/000db696-cf54-4385-b10b-6b16fbb3f985.png

No bounding box

000db696-cf54-4385-b10b-6b16fbb3f985,,,,,0

./train/000db696-cf54-4385-b10b-6b16fbb3f985.png

Step 2 - Create prediction.csv

• prediction.csv: contains bounding box information.

Step 2 - Create prediction.csv

patient0000.png patient0001.png

. . .

patientId	X	У	width	height	Target
patient0000.png	0	0	0	0	0
patient0001.png	100	200	300	400	1

filename

bounding box information

Step 3 - Create submission.csv

- Kaggle InClass competition only supports submission file with run-length encoding (RLE) format.
- bbox_to_rle.py has already been implemented.

Step 3 - Create submission.csv

- bbox_to_rle.py
 - 1. Compute union of bounding boxes.
 - 2. Encode into **pixel-wise** RLE format.

000db696-cf54-4385-b10b-6b16fbb3f985, 316, 318, 170, 478, 1 000db696-cf54-4385-b10b-6b16fbb3f985, 427, 428, 300, 100, 1

Step 3 - Create submission.csv

patientId	X	у	width	height	Target
patient0000.png	0	0	0	0	0
patient0001.png	100	200	300	400	1

patientId	EncodedString
patient0000.png	11
patient0001.png	204900 300 205294 300

filename

RLE format

Step 4 - Upload submission.csv

 Simply submit your submission.csv to Kaggle website.

Final Submission

- You should submit your code to a github repository
- This repository should contain the following:
 - /src: Code that can reproduce your result from scratch
 - report.pdf
 - README.md
 - requirements.txt
- You should not submit the dataset or trained model to this github repository
- If you use any pre-trained model, you should provide a link in README file to download the pre-trained model.

Code to submit

- You should should submit all the code that can reproduce your final result from scratch.
- If we fail to reproduce your result, we may consider you cheating, and you may be disqualified in this competition.

Format of README file

- You should submit a README file of your implementation.
- The file is about how to run your code and reproduce your result. If we follow this file, your result should be able to reproduce.
- This file should contain the following:
 - Where to download your dataset or pre-trained model.
 - How to set up the environment to run your code.
 - What is your final result, and how to run your code to reproduce your result.

Format of Report

- Besides README file, you should submit a report (report.pdf) to introduce the theoretical and experimental parts of your project.
- Your report should contain at least (but not restricted to) the following sections:
 - Introduction & Motivation
 - Data Preprocessing/Feature Engineering
 - Methods (At least two different methods)
 - Experiment and Discussion
 - Conclusion
 - Reference
- Your report should be written in Chinese, and contains 6 to 12 pages.

Evaluation Criteria for DeepQ Competition

• Score:

- 80%: kaggle private leaderboard dataset.
- 20% : Report , README file

Prizes:

 The teams whose score are higher than public leaderboard strong baseline are eligible to win the prizes.

Suggested Readings

- Faster R-CNN
 - https://arxiv.org/abs/1506.01497
- YOLO2
 - https://arxiv.org/abs/1612.08242

Suggested Readings

- Transfer Learning
 - How transferable are features in deep neural networks?
 - https://arxiv.org/abs/1411.1792
 - Convolutional Neural Networks for Medical Image Analysis: Full Training or Fine Tuning?
 - https://arxiv.org/abs/1706.00712
 - What makes ImageNet good for transfer learning?
 - https://arxiv.org/abs/1608.08614

Suggested Source Code for Chest X-Ray Dataset

- CheXNet implementation in PyTorch
 - https://github.com/zoogzog/chexnet
- X-Net: Classifying Chest X-Rays Using Deep Learning
 - https://github.com/gregwchase/nih-chest-xray

Suggested method for Pneumonia Detection

YOLO

- https://medium.com/@jonathan_hui/real-time-object-detection-with-yolo-yolo v2-28b1b93e2088
- https://github.com/xiongzihua/pytorch-YOLO-v1
- https://github.com/vietnguyen91/Yolo-v2-pytorch
- https://github.com/ayooshkathuria/pytorch-yolo-v3

RCNN

- https://towardsdatascience.com/r-cnn-fast-r-cnn-faster-r-cnn-yolo-object-detection-algorithms-36d53571365e
- https://github.com/multimodallearning/pytorch-mask-rcnn
- https://github.com/jwyang/faster-rcnn.pytorch

RetinaNet

- https://towardsdatascience.com/review-retinanet-focal-loss-object-detection-3 8fba6afabe4
- https://github.com/yhenon/pytorch-retinanet
- https://github.com/kuangliu/pytorch-retinanet

Suggested method for Pneumonia Detection

- RSNA Pneumonia Challenge 1st place solution:
 - https://www.kaggle.com/c/rsna-pneumonia-detection
 -challenge/discussion/70421#latest-496413
- RSNA Pneumonia Challenge 2nd place solution:
 - https://www.kaggle.com/c/rsna-pneumonia-detection
 -challenge/discussion/70427#latest-497399
- RSNA Pneumonia Challenge 3rd place solution:
 - https://www.kaggle.com/c/rsna-pneumonia-detection
 -challenge/discussion/70632#latest-440310

If you have any question about the rules, the dataset, or any other question about this competition, please send an email to Mark Chang mark.fc chang@htc.com.

If you have any other question about this course, please send an email to NTU ML TA ntumlta2019@gmail.com, thanks.