Case Study 2

Production Ordering for Sport Obermeyer
By Group 4 - Joseph Paul, Tyler Reid, and Manfei Xie

THE UNIVERSITY OF ALABAMA®

Culverhouse
College of Business
Information Systems, Statistics and
Management Science

Content

• Production Ordering Policy

Hong Kong

Mainland China

- A Risk Measure for Ordering Policy
- Recommendations for Operational Changes
- Sourcing in Hong Kong vs Mainland China

Short-term

Long-term

1.1 Ordering Problem

- When November 1992
- Decision maker Wally Obermeyer (vice president)
- Where Sport Obermeyer (skiwear manufacturer), Colorado, U.S.
- What initial production ordering for 10 styles?

The Initial Production Order = $\frac{Overall\ Production\ Order}{2}$

1.2 Seller and Buyer

1.3 Production Ordering and Sale Timeline

Nov 92, place initial production order Mar 93, place second production order

Las Vegas Show, receive 80% of retailers' orders Apr 93 – May 93 Remaining nonreplenishment retailers' orders

Sep 93 Dec 93 – Jan 94 Replenishment retailers' orders

1.4 Overall Production Order for Each Style - Newsboy Model

- Short selling season
 - Mar 93 May 93 retailers' orders
- Commits to an order quantity prior to the selling season
- Random demand
- Given overall demand forecast not half demand forecast season
 - Table 2-20 overall demand forecast
 - Overall production order not initial production order as a newsboy model

The Initial Production Order =
$$\frac{Overall\ Production\ Order}{2}$$

- Minimum order quantity
 - A style: ≥ 600 (Hong Kong) ≥ 1,200 (mainland China)
 - 10 styles: \geq 10,000 for initial production order

1.4 Newsboy Model for Each Style

- Wholesale price: *p* (\$/unit)
- Unit production cost: *v* (\$/unit)
- Salvage value per unit: *g*
- Penalty for not satisfying demand: *B*
- Assumptions
 - Demand $\sim N(\mu, \sigma)$ $\mu = \text{average of buying committee members' forecasts}$ $\sigma = \text{twice of standard deviation of buying committee members' forecasts}$
- k: a value ~ N(0,1)
- Overall production order quantity: Q^*
- The initial production order quantity: Q_I^*

1. Production Ordering

1.4 Newsboy Model for Each Style

Wally: "Obermeyer eared 24% of wholesale price (pre-tax) on each parka it sold, and that units left unsold at the end of the season were sold at a loss that averaged 8% of wholesale price".

v = (1 - 0.24)p = 0.76p	
B = 0.08p	
g = v - 0.08p = 0.68p	
Critical Ratio = $\frac{p-v+B}{p-g+B} = 0.80$	
k = 0.84	
$Q^* = \mu + k * \sigma.$	

Hong Kong	Mainland China
$Q_I^* = \max\left(\frac{Q^*}{2}, 600\right)$	$Q_I^* = \max\left(\frac{Q^*}{2}, 1,200\right)$

1. Production Ordering

1.4 Newsboy Model for Each Style – based on data of Table 2-20

Style	Hong Kong Q_I^*	Mainland China Q_I^*	Mainland China Q_I^* -	
			Hong Kong Q_I^*	
Gail	672	1,200	528	
Isis	793	1,200	407	
Entice	888	1,200	312	
Assault	1,549	1,549	0	200 - 600
Teri	871	1,200	329	
Electra	1,415	1,415	0	
Stephanie	998	1,200	202	
Seduced	2,477	2,477	0	/Both > 10, 000
Anita	2,529	2,529	0	satisfy 10 style
Daphne	1,759	1,759	0	minimum orde
Sum	13,949	15,728	1,779	

1. Production Ordering

1.5 Limitations and Suggestions

Overall production capacity

3,000/month for 7-month

Initial phase of production capacity

$$10 \text{ styles} \le \frac{3,000*7}{2} = 10,500$$

	Included Constraints	Excluded Constraints			
Initial Production Order	 A Style Minimum Order ≥ 600 (Hong Kong), ≥ 1,200 (mainland China) 10 Styles Minimum Order ≥ 10,000 	 10 Styles Production Capacity ≤ 10,500 (initial production) 			
Conflicts between Constraints	Sourcing in mainland China: • Based on "A Style Minimum Order", 10 styles in total should ≥ 1,200 * 10 = 12,000 > 10,500, "10 Styles Production Capacity" (conflicts!)				
To Solve Conflicts	 Increase Production Capacity Mixed Sourcing or Sourcing Solely in Hong Kong 				

2.1 Two Definitions

- What is risk?
 - Risk of losing overall profits by sourcing in one place rather than the other one
- What is a measure of risk?
 - Should be quantifiable
 - Expected profit relies on 3 expected quantities

Expected inventory shortage

Expected sales

Expected **leftover** inventory

• Expected overall profit difference by sourcing in mainland China rather than Hong Kong

 $E[Profit\ difference] = E[Profit]\ (Hong\ Kong) - E[Profit]\ (China)$

2.2 Formulas

- 3 Expected quantities related with expected profit
 - Take $2 * Q_I^*$ (obtained from the newsboy model) as Q into formulas:

$$E[Short] = E[\max\{0, D-Q\}] = \int_{Q}^{\infty} (x-Q)f(x)dx$$
$$E[Sold] = \mu - E[Short]$$
$$E[Left] = Q - \mu + E[Short]$$

- Expected profit?
 - $E[Profit] = E[\Pi(Q, D)]$:

$$E[\Pi(Q,D)] = p*E[\min\{Q,D\}] + g*E[\max\{0,Q-D\}]$$

$$-vQ - B*E[\max\{0,D-Q\}]$$

2.3 Results

		- C										
	μ	σ	Hong Kong Overall Q	Mainland of China Overall Q	2 2		E[Left] (HK)=	EProfit] (HK) =	E[Short] (CH) =	E[Sold] (CH) =	E[Left] (CH) =	E[Profit] (CH) =
Gail	1,017	388	1,344	2,034	43	974	370	201	1	1,016	1,018	163
Isis	1,042	646	1,586	2,084	72	970	616	178	15	1,027	1,057	161
Entice	1,358	496	1,775	2,716	55	1,303	473	270	0	1,358	1,358	217
Assault	2,525	680	3,097	5,050	76	2,449	648	530	0	2,525	2,525	404
Teri	1,100	762	1,741	2,200	85	1,015	726	179	25	1,075	1,125	166
Electra	2,150	807	2,829	4,300	90	2,060	769	426	1	2,149	2,151	344
Stephanie	1,113	1,048	1,995	2,226	117	996	999	150	77	1,036	1,190	147
Seduced	4,017	1,113	4,954	8,034	124	3,893	1,061	839	0	4,017	4,017	643
Anita	3,296	2,094	5,058	6,592	234	3,062	1,996	557	52	3,244	3,348	507
Daphne	2,383	1,349	3,518	4,766	151	2,232	1,286	421	21	2,362	2,404	373
SUM			27,898	40,002				\$ 3,749				\$ 3,123

Risk (Losing profit by sourcing in China (CH) rather than Hong Kong (HK)) = \$3,749 - \$3,123 = \$626

2.4 Rationale Behind Our Definition of Risk

- Estimated profit difference between the two ordering policies a measure of ordering policy risk
 - Profit affected by production order (constrained by minimum order)
- China's larger minimum order quantity than Hong Kong
 - When sourcing in China, we may not able to commit to the optimal order quantity risk of losing profit

3. Operational Changes

3.1 Research and Forecasting

- Create a market research division
 - Perform market study and analysis to reduce speculation
 - Reach out to consumers directly to gather feedback early before Las Vegas Show
 - Make recommendations to the Buying Committee
- Providing earlier forecasts allow more time to translate orders into component requirements
- Utilize historical data in forecasting
- Eliminate unpopular styles to reduce complexity
- Use Las Vegas Show to confirm market analysis

3. Operational Changes

3.2 Production and Distribution

- Renegotiate lead times and analyze alternative suppliers
 - Identify high volume suppliers who can better meet demands
 - Use this leverage to reduce lead time requirements
- Establish a distribution center and warehouse in the Seattle area
 - Eliminate the 6-week transport time to Denver warehouse

Arrival of Garments

• Via ship to Seattle port

Transport to Warehouse

• 6-weeks from Seattle to Denver

Deliver to Retailers

• Various across country

4. Sourcing Policy

4.1 Comparison

Hong Kong	Mainland China
Positive: Higher skill workersGood quality controlBetter production efficiencyBetter flexibility	Positive: • Lower labor cost • Lower production cost
Negative:Higher labor costHigher production cost	Negative:Lack of training/experiencePoor quality controlQuota restrictions

4. Sourcing Policy

4.2 Short Term

- Prioritize quality over cost in the short term
- All of mainland China's positives relate to cost
- Overall, Hong Kong has more positives compared to mainland China
 - Better quality
 - Higher skilled workers
 - Higher efficiency
- Also, forecasting is currently unreliable, so it is best to focus sourcing from Hong Kong as they are more flexible.

4. Sourcing Policy

4.3 Long Term

- Mainland China has ability to improve in several areas over the long term
 - Heavily push training
 - Bring senior Hong Kong management to mainland China to train
 - Experience will come over time, thus improving quality
- Gradually shift sourcing to mainland China as these areas are improved.
- If training and quality can be improved to Hong Kong levels, then mainland China would be able to provide both good quality and low cost. That is long term goal.

Thank You!

Culverhouse
College of Business

Information Systems, Statistics and Management Science

Information Systems, Statistics, and Management Science

Culverhouse College of Business
The University of Alabama

Joseph Paul: jdpaul2@crimson.ua.edu

Tyler Reid: threid@crimson.ua.edu

Manfei Xie: mxie12@crimson.ua.edu