Working document Master 2 AMS

$\label{eq:working document on BEC:} Working document on BEC:$ internship at LJLL with I.Danaila and F.Hecht

from February 28th 2017 to July 28th 2017 École Normale Supérieure Paris-Saclay, Laboratoire Jacques-Louis Lions

Pierre-Emmanuel Emeriau

Contents

1	Post-processing of BEC simulations using FreeFem++	2
	1.1 How to retrieve the vortex from a simulation	2

Working document Master 2 AMS

1 Post-processing of BEC simulations using FreeFem++

This work was performed in 2D: thus we are looking at a 3D surface defined by ${}^{t}(x, y, \rho(x, y))$.

1.1 How to retrieve the vortex from a simulation

This analysis suggested here relies on a module available in *isoline.cpp* which is called *findalllocalmin*. It allows to find all basins of attraction for a certain surface: for each vortex, it gives the elements of the mesh that defines it.

An issue comes from the simulation in itself: as the algorithm extracts all local minima, some artefacts exist due some small disruptions of the surface. A way to get around the problem is to use the quantification of the vortices. Indeed solution to GPE contains vortices with a charge ± 1 (charge larger than or equal to 2 are thermodynamically unstable). Now the n-charge is defined as:

$$\Gamma = \oint \mathbf{v} dl = n \frac{h}{m}$$
$$\widetilde{\Gamma} = \oint \nabla S dl = 2\pi n$$

with and

$$\psi(t, \mathbf{r}) = \sqrt{\rho(t, \mathbf{r})} e^{iS(t, \mathbf{r})}$$
 the wave function,
$$\mathbf{v} = \frac{\hbar}{m} \nabla S$$
 where m is the mass of the particules.

A way to analyse if a basin of attraction contains a vortex is to compute this integral and to store only the basin the integral of which equals to $\pm 2\pi$. In Freefem++, this is how it is written:

1:
$$\int_{1D}$$