INTEGRATED CIRCUITS

DATA SHEET

For a complete data sheet, please also download:

- The IC06 74HC/HCT/HCU/HCMOS Logic Family Specifications
- The IC06 74HC/HCT/HCU/HCMOS Logic Package Information
- The IC06 74HC/HCT/HCU/HCMOS Logic Package Outlines

74HC/HCT21Dual 4-input AND gate

Product specification
File under Integrated Circuits, IC06

December 1990

Dual 4-input AND gate

74HC/HCT21

FEATURES

· Output capability: standard

I_{CC} category: SSI

GENERAL DESCRIPTION

The 74HC/HCT21 are high-speed Si-gate CMOS devices and are pin compatible with low power Schottky TTL (LSTTL). They are specified in compliance with JEDEC standard no. 7A.

The 74HC/HCT21 provide the 4-input AND function.

QUICK REFERENCE DATA

GND = 0 V; T_{amb} = 25 °C; t_r = t_f = 6 ns

SYMBOL	PARAMETER	CONDITIONS	TYP	UNIT		
STWIBUL	PARAMETER	CONDITIONS	НС	нст	UNII	
t _{PHL} / t _{PLH}	propagation delay nA, nB, nC, nD to nY	$C_L = 15 \text{ pF}; V_{CC} = 5 \text{ V}$	10	12	ns	
C _I	input capacitance		3.5	3.5	pF	
C _{PD}	power dissipation capacitance per package	notes 1 and 2	15	16	pF	

Notes

1. C_{PD} is used to determine the dynamic power dissipation (P_D in μW):

$$P_D = C_{PD} \times V_{CC}^2 \times f_i + \sum (C_L \times V_{CC}^2 \times f_O)$$
 where:

f_i = input frequency in MHz

fo = output frequency in MHz

C_L = output load capacitance in pF

V_{CC} = supply voltage in V

 $\sum (C_L \times V_{CC}^2 \times f_o) = \text{sum of outputs}$

2. For HC the condition is $V_I = GND$ to V_{CC}

For HCT the condition is $V_I = GND$ to $V_{CC} - 1.5 \text{ V}$

ORDERING INFORMATION

See "74HC/HCT/HCU/HCMOS Logic Package Information".

Dual 4-input AND gate

74HC/HCT21

PIN DESCRIPTION

PIN NO.	SYMBOL	NAME AND FUNCTION
1, 9	1A, 2A	data inputs
2, 10	1B, 2B	data inputs
3, 11	n.c.	not connected
4, 12	1C, 2C	data inputs
5, 13	1D, 2D	data inputs
6, 8	1Y, 2Y	data outputs
7	GND	ground (0 V)
14	V _{CC}	positive supply voltage

Philips Semiconductors Product specification

Dual 4-input AND gate

74HC/HCT21

FUNCTION TABLE

	INPU	OUTPUT		
nA	nB	nC	nY	
L	Х	Х	Х	L
X	L	Х	Х	L
X	X	L	Х	L
Х	X	Х	L	L
Н	Н	Н	Н	Н

Notes

1. H = HIGH voltage level

L = LOW voltage level

X = don't care

Philips Semiconductors Product specification

Dual 4-input AND gate

74HC/HCT21

DC CHARACTERISTICS FOR 74HC

For the DC characteristics see "74HC/HCT/HCU/HCMOS Logic Family Specifications".

Output capability: standard

I_{CC} category: SSI

AC CHARACTERISTICS FOR 74HC

 $GND = 0 V; t_r = t_f = 6 ns; C_L = 50 pF$

	PARAMETER	T _{amb} (°C)								TEST CONDITIONS	
SYMBOL		74HC							UNIT		WAVEFORMS
STMBOL		+25			-40 to+85		-40 to+125		UNII	(V)	WAVEFORIUS
		min.	typ.	max.	min.	max.	min.	max.		(3)	
t _{PHL} / t _{PLH}	propagation delay		33	110		140		165	ns	2.0	Fig.6
	nA, nB, nC, nD to nY		12	22		28		33		4.5	
			10	19		24		28		6.0	
t _{THL} / t _{TLH}	output transition time		19	75		95		110	ns	2.0	Fig.6
			7	15		19		22		4.5	
			6	13		16		19		6.0	

Dual 4-input AND gate

74HC/HCT21

DC CHARACTERISTICS FOR 74HCT

For the DC characteristics see "74HC/HCT/HCU/HCMOS Logic Family Specifications".

Output capability: standard

I_{CC} category: SSI

Note to HCT types

The value of additional quiescent supply current (ΔI_{CC}) for a unit load of 1 is given in the family specifications. To determine ΔI_{CC} per input, multiply this value by the unit load coefficient shown in the table below.

INPUT	UNIT LOAD COEFFICIENT					
nA, nB,	1.50					
nC, nD	1.50					

AC CHARACTERISTICS FOR 74HCT

 $GND = 0 V; t_r = t_f = 6 ns; C_L = 50 pF$

SYMBOL	PARAMETER	T _{amb} (°C)								TEST CONDITIONS		
		74HCT									WAVEFORMS	
		+25		-40 to+85		-40 to+125		UNIT	V _{CC} (V)	WAVEFORING		
		min.	typ.	max.	min.	max.	min.	max.		(,		
t _{PHL} / t _{PLH}	propagation delay nA, nB nC, nD to nY		15	27		34		41	ns	4.5	Fig.6	
t _{THL} / t _{TLH}	output transition time		7	15		19		22	ns	4.5	Fig.6	

AC WAVEFORMS

Fig.6 Waveforms showing the input (nA, nB, nC, nD) to output (nY) propagation delays and the output transition times.

PACKAGE OUTLINES

See "74HC/HCT/HCU/HCMOS Logic Package Outlines".