

Data Structure & Algorithms

Nilesh Ghule

- Associative data structure soil, Shudent
- Stores key-value so that for a given key, value can be searched in fastest possible time. Ideal time complexity is O(1).
- Example:

- Hash Function is math function of key, that yields slot in the table.
- If different keys resulting in same slot in the table, it is called as collision.

- Collision handling methods: Open addressing or Chaining
- · Open addressing can be used only if wed rector <=1.
 - Rehashing: Linear probing, Quadratic probing, ...

- Load factor = Number of entries / Number of slots
- Cases
 - Load factor < 1
 - Load factor = 1
 - Load factor > 1

Tree Definition

• **Tree** is a finite set of nodes with one specially designated node called the "**root**" and the remaining node are partitioned into disjoints sets T1 to Tn, where each of those sets is a TREE.

• T1 to Tn are called **sub-trees** of the root

Tree terminologies

- Node: A item storing information and branches to other nodes
- Null Tree: Tree with no node
- Leaf Node: Terminal node of a tree & does not have any node connected to it
- Degree of a Node: No of sub trees of a node
- Degree of a tree: Degree of a tree is maximum degree of a node in the tree

Tree terminologies

Non-Leaf

- Parent Node: node having other nodes connected to it
- Siblings: Children of the same parents
- Descendants: all those node which are reachable from that node
- Ancestor: all the node along the path from the root to that node

Tree terminologies

- Level of a Node:
 - Indicates the position of the node in the hierarchy
 - Level of any node is level of its parent +1
 - Level of root is 1
- Depth of a node:
 - Number of nodes from the root to the node.
 - Depth of root is 0
 - Level = Depth + 1
- Height of a node:
 - Number of nodes from the node to its deepest leaf.
 - Height of node = height of its child + 1 max & child height +1
 - Height of empty/null tree is -1
- Height of a tree: Height of root of the tree.
- Traversal: Visiting each node of tree exactly once

Types of trees

- · Binary Trees beach made has more 2 child.
 - It is a finite set of nodes partitioned into three sub sets: Root, Left sub tree, Right sub tree
- Binary Search tree
 - A binary search tree is a binary tree in which the nodes are arranged according to their values.

left child is smaller than its parent.

Binary Tree Traversal

• In-order: LPR

• Pre-Order: P L R

Post-Order: LRP

• The traversal algorithms can be implemented easily using recursion.

Non-recursive algorithms for implementing traversal needs stack to store node

pointers.

BST - PreOrder - Non-Recursive

Thank you!

Nilesh Ghule <nilesh@sunbeaminfo.com>

