Первообразная и неопределенный интеграл

Определение. Функция F(x) называется первообразной по отношению к функции f(x) на некотором промежутке, если на этом промежутке функция F(x) дифференцируема и удовлетворяет уравнению F'(x) = f(x) или, что то же самое, соотношению dF(x) = f(x)dx.

Определение. Множество всех первообразных функции f(x) называется неопределенным интегралом f(x) и обозначается $\int f(x)dx$. Произведение f(x)dx называется подынтегральным выражением, а функция f(x) - подинтегральной функцией. Из определения неопределенного интеграла вытекает

$$d\left(\int f(x)dx\right) = dF(x) = F'dx = f(x)dx.$$

Нам понадобится следующий, уже доказанный нами факт, характеризующий множество первообразных данной функции на данном промежутке.

Утверждение. Если $F_1(x)$ и $F_2(x)$ - две первообразные функции f(x) на одном и том же промежутке, то их разность $F_1(x) - F_2(x)$ постоянна на этом промежутке.

Таким образом, если F(x) какая-либо первообразная функции f(x), то $\int f(x) dx = F(x) + C.$

Таблица основных интегралов

$\int 0 \cdot dx = C$	$\int 1 \cdot dx = \int dx = x + C$	$\int x^{\alpha} dx = \frac{x^{\alpha+1}}{\alpha+1} + C$
$\int \frac{dx}{x-a} = \ln\left x-a\right + C$	$\int \frac{dx}{a^2 + x^2} = \frac{1}{a} \arctan \frac{x}{a} + C$	$\int \frac{dx}{x^2 - a^2} = \frac{1}{2a} \ln \left \frac{x - a}{x + a} \right + C (a \neq 0)$
$\int \frac{dx}{\sqrt{a^2 - x^2}} = \arcsin \frac{x}{a} + C$	$\int \frac{dx}{\sqrt{x^2 + a}} = \ln\left x + \sqrt{x^2 + a} \right + C (a \neq 0)$	$\int a^x dx = \frac{a^x}{\ln a} + C$
$\int e^x dx = e^x + C$	$\int \sin x dx = -\cos x + C$	$\int \cos x dx = \sin x + C$
$\int \frac{dx}{\cos^2 x} = tgx + C$	$\int \frac{dx}{\sin^2 x} = -ctgx + C$	$\int shxdx = chx + C$
$\int chxdx = shx + C$	$\int \frac{dx}{ch^2 x} = thx + C$	$\int \frac{dx}{sh^2x} = -cthx + C$

Докажем, например, формулу $\int \frac{dx}{\sqrt{x^2 + a}} = \ln \left| x + \sqrt{x^2 + a} \right| + C \ (a \neq 0)$, в самом деле,

$$\left(\ln\left|x+\sqrt{x^2+a}\right|\right)' = \frac{1+\frac{x}{\sqrt{x^2+a}}}{x+\sqrt{x^2+a}} = \frac{\sqrt{x^2+a}+x}{\sqrt{x^2+a}\left(\sqrt{x^2+a}+x\right)} = \frac{1}{\sqrt{x^2+a}}.$$

Задача. Доказать остальные формулы.

Простейшие правила интегрирования

Линейность неопределенного интеграла

$$\int (\alpha u(x) + \beta v(x)) dx = \alpha \int u(x) dx + \beta \int v(x) dx.$$

Равенство проверяется непосредственным дифференцированием.

Пример.
$$\int \sin^2 \frac{x}{2} dx = \int \frac{1}{2} (1 - \cos x) dx = \frac{1}{2} \int 1 dx - \frac{1}{2} \int \cos x dx = \frac{1}{2} x - \frac{1}{2} \sin x + C.$$

Интегрирование по частям

Утверждение. Пусть функции u(x) и v(x) непрерывно дифференцируемы на промежутке X, тогда справедлива формула

$$\int u(x)dv(x) = u(x)v(x) - \int v(x)du(x).$$

Доказательство. > Непосредственным дифференцированием проверяется формула $u(x)v(x) = \int u(x)dv(x) + \int v(x)du(x)$,

откуда получаем нужную. ⊲

Эта формула в краткой записи выглядит следующим образом: $\int u dv = uv - \int v du$.

Пример.

$$\int \sqrt{x} \ln x dx = \begin{cases} u = \ln x, \ du = \frac{dx}{x} \\ dv = \sqrt{x} dx, \ v = \frac{2}{3} x^{\frac{3}{2}} \end{cases} = \frac{2}{3} x^{\frac{3}{2}} \ln x - \frac{2}{3} \int x^{\frac{1}{2}} dx = \frac{2}{3} x^{\frac{3}{2}} \ln x - \frac{4}{9} x^{\frac{3}{2}} + C.$$

Замена переменной в неопределенном интеграле

Утверждение. Пусть функция F(t) является первообразной функции f(t) на промежутке T, а функция $\varphi(x)$ определена и дифференцируема на промежутке X, причем

$$\varphi: X \to T$$
.

Тогда справедлива формула

$$\int f(\varphi(x))\varphi'(x)dx = F(\varphi(x)) + C$$
$$\left(\int f(\varphi(x))d\varphi(x) = F(\varphi(x)) + C\right).$$

Доказательство. \triangleright Проверяем формулу, дифференцируя сложную функцию $F(\varphi(x))$:

$$(F(\varphi(x)))' = F'(\varphi(x))\varphi'(x) = f(\varphi(x))\varphi'(x). \triangleleft$$

Пример.

$$\int tgxdx = \int \frac{\sin x}{\cos x}dx = -\int \frac{d(\cos x)}{\cos x} = \left\{t = \cos x\right\} = -\int \frac{dt}{t} = \ln|t| + C = -\ln|\cos x| + C.$$

Приведем простой, но очень важный частный случай формулы замены переменной.

Линейная подстановка. Если функция F(t) является первообразной функции f(t) на промежутке T, а при отображении $\varphi(x) = ax + b$ промежуток X переходит в T, то на X справедлива формула

$$\int f(ax+b)dx = \frac{1}{a}F(ax+b)+C.$$

Проверяется эта формула, так же, как и основная, - непосредственным дифференцированием.

Пример.

$$\int \sqrt{1-x^2} \, dx = \begin{cases} x = \sin t \\ t = \arcsin x \end{cases} = \int \sqrt{1-\sin^2 t} \, d\left(\sin t\right) = \int \cos^2 t \, dt = \frac{1}{2} \int (1+\cos 2t) \, dt = \frac{t}{2} + \frac{\sin 2t}{4} + C = \frac{t}{2} + \frac{\sin t \cos t}{2} + C = \frac{\arcsin x}{2} + \frac{1}{2} x \sqrt{1-x^2} + C.$$

Первообразные рациональных функций

Определение. Рациональной функцией называется дробь вида $R(x) = \frac{P(x)}{Q(x)}$, где

P(x) и Q(x) - многочлены.

Дроби вида
$$\frac{1}{x-a}$$
, $\frac{1}{\left(x-a\right)^k}$ $(k>1)$, $\frac{bx+c}{x^2+px+q}$ и $\frac{bx+c}{\left(x^2+px+q\right)^l}$ $(l>1)$ называются

простейшими рациональными дробями соответственно I, II, III и IV рода.

Проинтегрируем простейшие рациональные дроби:

$$\int \frac{dx}{(x-a)^k} = \begin{cases} \frac{(x-a)^{1-k}}{1-k}, & k \neq 1, \\ \ln|x-a|, & k = 1. \end{cases}$$

$$\int \frac{bx+c}{\left(x^2+px+q\right)^k} dx = \int \frac{bx+c}{\left(\left(x+\frac{p}{2}\right)^2+q-\frac{p^2}{4}\right)^k} dx = \begin{cases} t=x+\frac{p}{2} \\ dx=dt \end{cases} = \int \frac{bt+\tilde{c}}{\left(t^2+a^2\right)^k} dt,$$

$$\int \frac{t}{\left(t^2+a^2\right)^k} dt = \frac{1}{2} \int \frac{d\left(t^2\right)}{\left(t^2+a^2\right)^k} = \begin{cases} \frac{1}{2} \ln\left(t^2+a^2\right), & k=1, \\ \frac{\left(t^2+a^2\right)^{1-k}}{2\left(1-k\right)}, & k \neq 1. \end{cases}$$

Рассмотрим интегралы $I_n = \int \frac{dt}{\left(t^2 + a^2\right)^n}$. Интегрируя по частям, имеем

$$I_{n} = \int \frac{dt}{\left(t^{2} + a^{2}\right)^{n}} = \begin{cases} u = \frac{1}{\left(t^{2} + a^{2}\right)^{n}}, & du = \frac{-2ntdt}{\left(t^{2} + a^{2}\right)^{n+1}} \end{cases} = \frac{t}{\left(t^{2} + a^{2}\right)^{n}} + \int \frac{2nt^{2}dt}{\left(t^{2} + a^{2}\right)^{n+1}} = \frac{t}{\left(t^{2} + a^{2}\right)^{n}} + \int \frac{2n\left(t^{2} \pm a^{2}\right)dt}{\left(t^{2} + a^{2}\right)^{n+1}} = \frac{t}{\left(t^{2} + a^{2}\right)^{n}} + 2nI_{n} - 2na^{2}I_{n+1},$$

то есть

$$I_{n+1}\left(t\right) = \frac{1}{2na^2} \left(\frac{t}{\left(t^2 + a^2\right)^n} + \left(2n - 1\right)I_n\left(t\right)\right).$$
 Пример.
$$I_2\left(x\right) = \int \frac{dx}{\left(x^2 + 1\right)^2} = \frac{1}{2} \left(\frac{x}{x^2 + 1} + \left(2 - 1\right)\int \frac{dx}{x^2 + 1}\right) = \frac{1}{2} \left(\frac{x}{x^2 + 1} + arctgx\right) + C.$$

Из алгебры известно, что любую рациональную дробь можно представить в виде линейной комбинации простейших. А именно, если $\deg P(x) = r$, $\deg Q(x) = s$, и

$$Q(x) = \prod_{i=1}^{n} (x - x_i)^{k_i} \prod_{j=1}^{m} (x^2 + p_j x + q_j)^{l_j}$$
 (дискриминанты квадратных трехчленов

отрицательны), то

$$\frac{P(x)}{Q(x)} = p(x) + \sum_{i=1}^{n} \left(\sum_{k=1}^{k_i} \frac{a_{ik}}{(x - x_i)^k} \right) + \sum_{j=1}^{m} \left(\sum_{l=1}^{l_j} \frac{b_{jl} + c_{jl}x}{(x^2 + p_j x + q_j)^l} \right),$$

где p(x) - многочлен степени $h = \max\{0; r - s\}$.

Пример.

$$\frac{x^7+1}{\left(x^2+2x+4\right)^2\left(x-2\right)^3} = p\left(x\right) + \frac{a_1}{x-2} + \frac{a_2}{\left(x-2\right)^2} + \frac{a_3}{\left(x-2\right)^3} + \frac{b_1x+c_1}{x^2+2x+4} + \frac{b_2x+c_2}{\left(x^2+2x+4\right)^2},$$

где p(x) - многочлен второй степени.

Пример. Вычислить интеграл
$$\int \frac{4x^2 + 4x}{(x-1)^2 (x^2 + 2x + 5)} dx$$
.

Представим подинтегральную функцию в виде суммы простейших дробей:

$$\frac{4x^2 + 4x}{\left(x-1\right)^2 \left(x^2 + 2x + 5\right)} = \frac{A}{x-1} + \frac{B}{\left(x-1\right)^2} + \frac{Cx + D}{x^2 + 2x + 5}.$$

Теперь найдем неопределенные коэффициенты A, B, C, D. Для этого мысленно сложим дроби в правой части, убедимся в равенстве знаменателей полученной дроби и исходной, а затем приравняем их числители:

$$4x^{2} + 4x = A(x-1)(x^{2} + 2x + 5) + B(x^{2} + 2x + 5) + (Cx + D)(x-1)^{2}.$$

Приравняем эти многочлены в точке x = 1 (нуле знаменателя)

$$x=1:8=8B \Rightarrow B=1$$
,

подставим полученное значение и преобразуем выражение:

$$3x^{2} + 2x - 5 = A(x-1)(x^{2} + 2x + 5) + (Cx + D)(x-1)^{2},$$

сократим на (x-1):

$$3x+5 = A(x^2+2x+5)+(Cx+D)(x-1),$$

опять приравняем левую и правую части в точке x = 1:

$$8 = 8A \Rightarrow A = 1$$
,

подставим полученное значение и преобразуем выражение:

$$-x^2 + x = (Cx + D)(x-1), -x^2 + x = Cx^2 + (D-C)x - D,$$

Приравняем коэффициенты при одинаковых степенях:

$$x^2:-1=C$$
, $x^0:0=-D$.

В результате получим:

$$\int \frac{4x^2 + 4x}{(x-1)^2 (x^2 + 2x + 5)} dx = \int \left(\frac{1}{x-1} + \frac{1}{(x-1)^2} - \frac{x}{x^2 + 2x + 5} \right) dx =$$

$$= \ln|x-1| - \frac{1}{x-1} - \int \frac{x dx}{(x+1)^2 + 4} = \begin{cases} t = x+1, \\ x = t-1, dx = dt \end{cases} = \ln|x-1| - \frac{1}{x-1} - \int \frac{(t-1) dt}{t^2 + 4} =$$

$$= \ln|x-1| - \frac{1}{x-1} - \frac{1}{2} \ln(t^2 + 4) + \frac{1}{2} \arctan \left(\frac{t}{2} + C \right) =$$

$$= \ln |x-1| - \frac{1}{x-1} - \frac{1}{2} \ln \left(x^2 + 2x + 5 \right) + \frac{1}{2} \operatorname{arctg} \frac{\left(x + 1 \right)}{2} + C.$$
Первообразные вида $\int R(\cos x, \sin x) dx$.

Замена переменной $t = tg \frac{x}{2}$ сводит этот интеграл к интегралу от рациональной функции. В самом деле, поскольку

$$\cos x = \frac{1-t^2}{1+t^2}$$
, $\sin x = \frac{2t}{1+t^2}$, $x = 2arctgt$, $dx = \frac{2dt}{1+t^2}$,

получаем

$$\int R(\cos x, \sin x) dx = \int R\left(\frac{1-t^2}{1+t^2}, \frac{2t}{1+t^2}\right) \frac{2dt}{1+t^2}.$$

Пример.

$$\int \frac{dx}{3\sin x + 6\cos x + 7} = \left\{ t = tg \frac{x}{2} \right\} = \int \frac{\frac{2dt}{1 + t^2}}{\frac{6t}{1 + t^2} + \frac{6(1 - t^2)}{1 + t^2} + 7} = \int \frac{2dt}{t^2 + 6t + 13} = \int \frac{2dt}{1 + t^2} dt$$

$$= \int \frac{2dt}{(t+3)^2 + 4} = 2 \arctan \frac{t+3}{2} + C = 2 \arctan \frac{tg \frac{x}{2} + 3}{2} + C.$$

Если $R(-\sin x, -\cos x) = R(\sin x, \cos x)$, то выкладки могут упроститься, если сделать замену переменной t = tgx (или t = ctgx).

Пример.
$$\int tg^3 x dx = \begin{cases} t = tgx \\ x = arctgt \\ dx = \frac{dt}{1+t^2} \end{cases} = \int t^3 \frac{dt}{1+t^2} =$$

$$= \int \left(t - \frac{t}{1+t^2}\right) dt = \frac{t^2}{2} - \frac{1}{2} \ln\left(1 + t^2\right) + C = \frac{1}{2} tg^2 x + \ln\left|\cos x\right| + C.$$

Если бы мы воспользовались бы заменой $t = tg \frac{x}{2}$, то получили бы

$$\int tg^{3}xdx = 16\int \frac{t^{4}dt}{(1+t^{2})(1-t^{2})^{3}}.$$

Этот интеграл, конечно, тоже вычисляется, но ... \odot .

Если $R(-\sin x, \cos x) = -R(\sin x, \cos x)$, то можно воспользоваться заменой $t = \cos x$, а если $R(\sin x, -\cos x) = -R(\sin x, \cos x)$, то заменой $t = \sin x$.

Пример.
$$\int \frac{\sin^2 x}{\cos x} dx = \begin{cases} t = \sin x, & x = \arcsin t \\ dx = \frac{dt}{\sqrt{1 - t^2}}, & \cos x = \sqrt{1 - t^2} \end{cases} = \int \frac{t^2}{\sqrt{1 - t^2}} \cdot \frac{dt}{\sqrt{1 - t^2}} = \int \frac{1}{1 - t^2} dt = \int \frac{1}{1 -$$

Основная тригонометрическая подстановка в этом случае бы дала:

$$\int \frac{\sin^2 x}{\cos x} dx = 8 \int \frac{t^2 dt}{\left(1 + t^2\right)^2 \left(1 - t^2\right)} \otimes .$$
Первообразные вида $\int R \left(x, \sqrt[n]{\frac{ax + b}{cx + d}}\right) dx$

В этом случае подынтегральное выражение рационализируется при помощи подстановки $t = \sqrt[n]{\frac{ax+b}{cx+d}}$.

$$\begin{split} &\int \sqrt{\frac{x+1}{x-1}} dx = \left\{t = \sqrt{\frac{x+1}{x-1}}, \ x = \frac{t^2+1}{t^2-1}\right\} = \int t d\left(\frac{t^2+1}{t^2-1}\right) = \\ &\frac{t\left(t^2+1\right)}{t^2-1} - \int \frac{t^2+1}{t^2-1} dt = \frac{t\left(t^2+1\right)}{t^2-1} - \int \left(1 + \frac{2}{t^2-1}\right) dt = \frac{t\left(t^2+1\right)}{t^2-1} - t - \ln\left|\frac{t-1}{t+1}\right| + C = \\ &= \frac{2t}{t^2-1} - \ln\left|\frac{t-1}{t+1}\right| + C \text{ , где } t = \sqrt{\frac{x+1}{x-1}} \text{ .} \\ &\mathbf{\Piример. } \int \frac{1}{1+\sqrt[3]{3x-1}} dx = \left\{t = \sqrt[3]{3x-1}, \ x = \frac{t^3+1}{3}, \ dx = t^2 dt\right\} = \int \frac{t^2}{1+t} dt = \\ &= \int \left(t-1 + \frac{1}{1+t}\right) dt = \frac{t^2}{2} - t + \ln\left|t+1\right| + C \text{, где } t = \sqrt[3]{3x-1} \text{ .} \end{split}$$

Первообразные вида $\int R(e^x)dx$

В этом случае подынтегральное выражение рационализируется при помощи подстановки $t=e^x$, $x=\ln t$, $dx=\frac{dt}{t}$.

Пример.
$$\int \frac{dx}{e^x + 1} = \begin{cases} t = e^x \\ dx = \frac{dt}{t} \end{cases} = \int \frac{dt}{t(t+1)} = \int \left(\frac{1}{t} - \frac{1}{t+1}\right) dt = \ln\left|\frac{t}{t+1}\right| + C = \ln\left|\frac{e^x}{e^x + 1}\right| + C.$$

Первообразные вида
$$\int R\left(x, \sqrt{ax^2 + bx + c}\right) dx$$
 . Подстановки Эйлера

Выделяя полный квадрат в трех члене $ax^2 + bx + c$ и делая соответствующую линейную замену переменной, интеграл можно привести к одному из следующих видов:

$$\int R(t,\sqrt{t^2+1})dt$$
, $\int R(t,\sqrt{t^2-1})dt$, $\int R(t,\sqrt{1-t^2})dt$.

Для рационализации этих интегралов достаточно положить, соответственно:

$$\sqrt{t^2 \pm 1} = t - u \text{ (тогда } t^2 \pm 1 = t^2 - 2tu + u^2 \text{ ; } t = \frac{u^2 \mp 1}{2u} \text{ ; } \sqrt{1 + t^2} = \frac{-\left(1 \pm u^2\right)}{2u} \text{ ; } dt = \frac{u^2 \pm 1}{2u^2} du \text{); }$$

$$\sqrt{1 - t^2} = \left(1 - t\right) \sqrt{\frac{1 + t}{1 - t}} \text{ ; } u = \sqrt{\frac{1 + t}{1 - t}} \text{ (тогда } t = \frac{u^2 - 1}{1 + u^2} \text{ ; } dt = \frac{4udu}{\left(u^2 + 1\right)^2} \text{).}$$

Эти подстановки были предложены еще Эйлером.

Пример.
$$\int \frac{dx}{x + \sqrt{x^2 + 2x + 2}} = \left\{ t = x + 1 \right\} = \int \frac{dt}{t - 1 + \sqrt{t^2 + 1}} = \begin{cases} \sqrt{t^2 + 1} = u - t \\ t = \frac{u^2 - 1}{2u} \\ dt = \frac{u^2 + 1}{2u^2} du \end{cases} =$$

$$= \int \frac{dt}{t - 1 + u - t} = \frac{1}{2} \int \frac{\left(u^2 + 1\right) du}{\left(u - 1\right) u^2} = \frac{1}{2} \int \left(\frac{2}{u - 1} - \frac{1}{u} - \frac{1}{u^2}\right) du =$$

$$= \ln\left|u - 1\right| - \frac{1}{2} \ln\left|u\right| + \frac{1}{2u} + C \text{ , где } u = t + \sqrt{t^2 + 1} \text{ и } t = x + 1.$$

Определенный интеграл

Определение. Разбиением T отрезка [a;b] называется набор точек $x_0,...,x_n$ этого отрезка такой, что $a=x_0 < x_1 < ... < x_n = b$.

Отрезки $\left[x_{i-1}, x_i\right]$ $\left(i=1,...,n\right)$ называются отрезками разбиения.

Максимум $\lambda(T)$ из длин отрезков разбиения называется параметром разбиения.

Определение. Разбиением с отмеченными точками (T, τ) называется разбиение T и набор точек $\tau_1, ..., \tau_n$ $(\tau_i \in [x_{i-1}, x_i])$.

Определение. Пусть функция f(x) определена на отрезке [a,b], $a(T,\tau)$ - разбиение с отмеченными точками этого отрезка. Сумма

$$\sigma(f,T,\tau) = \sum_{i=1}^{n} f(\tau_i) \Delta x_i,$$

где $\Delta x_i = x_i - x_{i-1}$, называется интегральной суммой функции f, соответствующей разбиению c отмеченными точками (T, τ) .

Определение. Говорят, что число I является интегралом Римана от функции f на отрезке [a,b], если для любого $\varepsilon > 0$ найдется такое $\delta(\varepsilon) > 0$, что для любого разбиения (T,τ) с отмеченными точками отрезка [a,b], параметр разбиения которого $\lambda(T) < \delta$, имеет место соотношение $\left| I - \sum_{i=1}^n f(\tau_i) \Delta x_i \right| < \varepsilon$.

Интеграл от функции f(x) по отрезку [a,b] обозначается символом $\int_a^b f(x)dx$, числа a и b называются верхним и нижним пределом интегрирования соответственно; f - подынтегральная функция, f(x)dx - подынтегральное выражение, x - переменная интегрирования.

Таким образом,

$$\int_{a}^{b} f(x) dx = \lim_{\lambda(T) \to 0} \sum_{i=1}^{n} f(\tau_{i}) \Delta x_{i}.$$

Определение. Функция f называется интегрируемой на отрезке [a,b], если для нее определен интеграл Римана.

Необходимое условие интегрируемости

Утверждение. Если функция f, определенная на отрезке [a,b], интегрируема на нем, то она ограничена на этом отрезке.

Доказательство. \triangleright Если f неограниченна на [a,b], то при любом разбиении T функция будет неограниченной по крайней мере на одном из отрезков $[x_{i-1},x_i]$. Это означает, что, выбирая соответствующим образом точку $\tau_i \in [x_{i-1},x_i]$, можно сделать величину $f(\tau_i)\Delta x_i$ сколь угодно большой, но тогда и интегральную сумму $\sigma(f;(T,\tau))$ можно сделать сколь угодно большой по модулю, что означает, что конечного предела у интегральных сумм нет. \triangleleft

Суммы Дарбу

Обозначим через m_i и M_i , соответственно, точные нижнюю и верхнюю грани ограниченной функции f(x) на $[x_{i-1}, x_i]$ и составим суммы

$$s = \sum_{i=1}^{n} m_i \Delta x_i, \quad S = \sum_{i=1}^{n} M_i \Delta x_i.$$

Эти суммы называются, соответственно, нижней и верхней интегральными суммами, или нижней и верхней суммами Дарбу. Для интегральной суммы σ , соответствующей произвольному набору отмеченных точек, очевидно, имеем $s \le \sigma \le S$.

Свойства сумм Дарбу

Утверждение. Если к имеющимся точкам деления добавить новые точки, то нижняя сумма Дарбу может только возрасти, а верхняя только уменьшиться.

Доказательство. \triangleright Для доказательства этого факта достаточно ограничиться присоединением одной точки x'. Пусть она попала на i – й промежуток:

$$x_{i-1} < x' < x_i.$$

Обозначим через S' новую верхнюю сумму Дарбу, от прежней она отличается только слагаемыми, соответствующими промежутку $[x_{i-1},x_i]$. Пусть M_i' и M_i'' обозначают точные верхние границы функции, соответственно, на промежутках $[x_{i-1},x']$ и $[x',x_i]$. Имеем

$$M'_{i}(x'-x_{i-1})+M''_{i}(x_{i}-x') \leq M_{i}(x'-x_{i-1}+x_{i}-x')=M_{i}(x_{i}-x_{i-1}),$$

откуда следует $S' \leq S$.

Аналогично доказывается соответствующее неравенство для нижних интегральных сумм. <

Утверждение. Каждая нижняя сумма Дарбу не превосходит каждой верхней.

Доказательство. \triangleright Пусть s_1 , S_1 - верхняя и нижняя суммы Дарбу, соответствующие разбиению T_1 , а s_2 , S_2 , соответствующие разбиению T_2 . Объединим точки деления этих двух разбиений в третье - T_3 , и пусть s_3 , S_3 - его суммы Дарбу. Имеем $s_1 \le s_3 \le S_3 \le S_2$. \triangleleft

Из доказанного утверждения следует, что множество всех нижних сумм ограничено сверху (любой верхней суммой), а множество верхних сумм ограничено снизу (любой нижней). В таком случае, существуют

$$I_* = \sup\{s\}, \quad I^* = \inf\{S\},$$

причем $I_* \leq I^*$. Эти числа называются, соответственно, нижним и верхним интегралами Дарбу.

Условие существования интеграла

Теорема. Для существования определенного интеграла необходимо и достаточно, чтобы $\lim_{\lambda(\Gamma)\to 0} (S-s)=0$.

Доказательство. ightharpoonup Heoбходимость. Предположим, что интеграл существует, тогда по любому $\varepsilon > 0$ найдется такое $\delta > 0$, что если $\lambda(\mathsf{T}) < \varepsilon$, то для любой интегральной суммы σ будет справедливо неравенство $I - \varepsilon < \sigma < I + \varepsilon$. Но тогда и для точной верхней и точной нижней граней интегральных сумм по всем выделенным точкам $\{\tau_k\}$ будет также верно $I - \varepsilon \le s \le \sigma \le S \le I + \varepsilon$. То есть $I = \lim_{\lambda \to 0} s = \lim_{\lambda \to 0} \sigma = \lim_{\lambda \to 0} S$.

Достаточность. Пусть теперь $\lim_{\lambda(\mathrm{T})\to 0} s = \lim_{\lambda(\mathrm{T})\to 0} S = I$. Тогда, перейдя в неравенствах $s \le \sigma \le S$ (s, σ и S здесь строятся по одному разбиению) к пределу, получим $\lim_{\lambda\to 0} \sigma = I$. \lhd

Обозначим колебание $M_i - m_i$ функции в i – ом частичном промежутке через ω_i ,

тогда $S-s=\sum_{i=1}^n \omega_i \Delta x_i$, и условие существования определенного интеграла принимает вид:

$$\lim_{\lambda(\mathrm{T})\to 0} \sum_{i=1}^n \omega_i \Delta x_i = 0.$$

Утверждение. Если функция интегрируема на отрезке [a,b], то она также интегрируема и на его части $[c,d] \subseteq [a,b]$.

Доказательство. Не нарушая общности, можно считать, что точки c и d являются точками разбиения. Тогда $0 \le \lim_{\lambda(\mathrm{T}) \to 0} \sum_{c}^{d} \omega_i \Delta x_i \le \lim_{\lambda(\mathrm{T}) \to 0} \sum_{a}^{b} \omega_i \Delta x_i = 0.$

Мы знаем, что необходимым условием интегрируемости функции является ее ограниченность. Покажем, что оно не является достаточным. Рассмотрим функцию Дирихле:

$$D(x) = \begin{cases} 0, \text{ если } x \text{ рационально,} \\ 1, \text{ если } x \text{ иррационально.} \end{cases}$$

Она ограничена $(0 \le D(x) \le 1)$, но на любом отрезке [a,b] для любого разбиения

$$\sum_{i=1}^{n} \omega_i \Delta x_i = \sum_{i=1}^{n} (1-0) \Delta x_i = \sum_{i=1}^{n} \Delta x_i = b-a \rightarrow 0.$$

Классы интегрируемых функций

Теорема. Если функция непрерывна на отрезке [a,b], то она интегрируема на нем.

Доказательство. \triangleright Непрерывная на отрезке функция равномерно непрерывна на нем (теорема Кантора). То есть по заданному $\varepsilon > 0$ найдется такое $\delta > 0$, что из $|x' - x''| < \delta \ (x', x'' \in [a, b])$ следует $|f(x') - f(x'')| < \varepsilon$. Но тогда, если $\lambda(T) < \delta$, то $\omega_i < \varepsilon$ и

$$\sum_{i=1}^{n} \omega_{i} \Delta x_{i} < \varepsilon \sum_{i=1}^{n} \Delta x_{i} = \varepsilon (b-a),$$

откуда следует существование интеграла. ⊲

Справедливо также следующее утверждение.

Теорема. Если ограниченная на отрезке функция имеет на нем лишь конечное число точек разрыва, то она интегрируема на этом отрезке. (без доказательства)

Пример. Функция y=x непрерывна на отрезке [0;1], а значит, интегрируема на нем. Интеграл $\int\limits_0^1 x dx$ будет пределом любой последовательности интегральных сумм с $\lambda(T) \to 0$. Рассмотрим последовательность разбиений [0;1] на равные отрезки:

$$T = \left\{0; \frac{1}{n}; \frac{2}{n}; \dots; \frac{n-1}{n}; 1\right\} \text{ и выделим точки } \tau_k = \frac{k}{n} \ \left(k = 1, \dots, n\right). \text{ Тогда}$$

$$\sigma(x, T_n, \tau) = \sum_{k=1}^n \frac{k}{n} \cdot \frac{1}{n} = \frac{1}{n^2} \sum_{k=1}^n k = \frac{1}{n^2} \cdot \frac{n(n+1)}{2} \to \frac{1}{2} \text{ при } n \to \infty. \text{ То есть } \int_0^1 x dx = \frac{1}{2}.$$

Свойства определенного интеграла

Пусть функция f(x) интегрируема на отрезке [a,b] (a < b). Положим по определению $\int_{a}^{a} f(x) dx = -\int_{a}^{b} f(x) dx$ и $\int_{a}^{a} f(x) dx = 0$.

 1° (Аддитивность). Пусть функция f(x) интегрируема в наибольшем из отрезков с концами в точках a,b и c. Тогда справедливо равенство

$$\int_{a}^{b} f(x) dx = \int_{a}^{c} f(x) dx + \int_{c}^{b} f(x) dx.$$

Доказательство. \triangleright Предположим сначала, что a < c < b. Рассмотрим разбиение отрезка [a,b] на части. Не нарушая общности, можно считать точку c одной из точек деления. Для соответствующей интегральной суммы будем иметь

$$\sum_{a}^{b} f(\xi) \Delta x = \sum_{a}^{c} f(\xi) \Delta x + \sum_{a}^{b} f(\xi) \Delta x.$$

Переходя к пределу при $\lambda \to 0$, получим требуемое равенство.

Другие случаи взаимного расположения точек a,b,c приводятся к разобранному. Пусть, например, a < b < c . Тогда, по доказанному,

$$\int_{a}^{c} f(x) dx = \int_{a}^{b} f(x) dx + \int_{b}^{c} f(x) dx,$$

$$\int_{a}^{b} f(x) dx = \int_{a}^{c} f(x) dx - \int_{b}^{c} f(x) dx.$$

После перестановки пределов интегрирования в последнем интеграле, получим нужное нам равенство.

Аналогично поступаем с другими расположениями. ⊲

 2° (**Линейность**). Пусть функции f(x) и g(x) интегрируемы на отрезке [a,b]. Тогда произвольная линейная комбинация $\alpha f(x) + \beta g(x)$ этих функций также будет интегрируемой на этом отрезке, причем

$$\int_{a}^{b} (\alpha f(x) + \beta g(x)) dx = \alpha \int_{a}^{b} f(x) dx + \beta \int_{a}^{b} g(x) dx.$$

Доказательство. \triangleright Возьмем произвольное разбиение T отрезка [a,b] на части и составим интегральные суммы для всех трех интегралов. При этом точки τ_i в каждом частичном промежутке выбираем для всех трех сумм одни и те же. Получим

$$\sum_{i} (\alpha f(\tau_{i}) + \beta g(\tau_{i})) \Delta x_{i} = \alpha \sum_{i} f(\tau_{i}) \Delta x_{i} + \beta \sum_{i} g(\tau_{i}) \Delta x_{i}.$$

Переходя в последнем равенстве к пределу при $\lambda(T) \to 0$, убеждаемся в интегрируемости линейной комбинации и справедливости требуемого равенства. \lhd

 3° **Теорема** (об оценке модуля интеграла). Пусть функция f(x) интегрируема на отрезке [a,b], тогда функция |f(x)| также интегрируема на этом отрезке, и имеет место неравенство

$$\left| \int_{a}^{b} f(x) dx \right| \leq \int_{a}^{b} \left| f(x) \right| dx.$$

Доказательство. Рассмотрим произвольное разбиение T отрезка [a,b]. Так как для любой пары точек $x', x'' \in [x_i, x_{i+1}]$ будет $||f(x')| - |f(x'')|| \le |f(x') - f(x'')|$, то и колебание ω_i^* функции |f(x)| в этом промежутке не превосходит ω_i (колебания функции f(x)). В таком случае имеем $\sum_i \omega_i^* \Delta x_i \le \sum_i \omega_i \Delta x_i$, а переходя к пределу в последнем неравенстве при $\lambda(T) \to 0$, убеждаемся в интегрируемости функции |f(x)|. Для доказательства нужного нам неравенства для интегралов перейдем к пределу в соответствующем неравенстве для интегральных сумм. ⊲

 4° **Теорема (об интегрировании неравенств).** Если функции f(x) и g(x) интегрируемы на отрезке [a,b] и $f(x) \le g(x)$ везде на [a,b], то

$$\int_{a}^{b} f(x) dx \le \int_{a}^{b} g(x) dx.$$

Доказательство. \triangleright Возьмем произвольное разбиение с выделенными точками (T,τ) отрезка [a,b] и составим интегральные суммы для двух интегралов. Получим

$$\sum_{i} f(\tau_{i}) \Delta x_{i} \leq \sum_{i} g(\tau_{i}) \Delta x_{i}.$$

Переходя в последним неравенстве к пределу при $\lambda(T) \to 0$, получаем нужное нам неравенство. \lhd

5° **Теорема** (об оценке интеграла). Если функция f(x) интегрируема на отрезке [a,b], и если на всем этом отрезке справедливо неравенство $m \le f(x) \le M$, то

$$m(b-a) \le \int_{a}^{b} f(x) dx \le M(b-a).$$

Доказательство. \triangleright Воспользуемся предыдущим свойством с учетом того, что $\int\limits_{a}^{b} C dx = C \big(b - a \big) . \triangleleft$

Теорема о среднем значении

Определение. Средним интегральным функции f(x) на отрезке [a,b] называется число

$$\mu = \frac{1}{b-a} \int_{a}^{b} f(x) dx.$$

Теорема (о среднем интегральном). Пусть функция f(x) интегрируема на отрезке [a,b], и пусть на всем этом отрезке $m \le f(x) \le M$. Тогда

$$\int_{a}^{b} f(x) dx = \mu(b-a),$$

где $m \le \mu \le M$.

Доказательство. ⊳ По теореме об оценке интеграла

$$m(b-a) \le \int_a^b f(x) dx \le M(b-a),$$

откуда получаем

$$m \le \frac{1}{b-a} \int_{a}^{b} f(x) dx \le M$$
.

Теперь полагаем $\mu = \frac{1}{b-a} \int_{a}^{b} f(x) dx$.

В случае непрерывной функции справедлива следующая теорема.

Теорема (о среднем интегральном значении непрерывной функции). Пусть функция f(x) непрерывна на отрезке [a,b]. Тогда найдется точка $c \in [a,b]$ такая, что

$$f(c) = \frac{1}{b-a} \int_{a}^{b} f(x) dx.$$

Доказательство. > В качестве m и M возьмем соответственно наименьшее и наибольшее значение функции f(x) на отрезке [a,b]. По второй теореме Вейерштрасса эти значения принимаются в некоторых точках $c_1, c_2 \in [a,b]$:

$$f(c_1) = m$$
, $f(c_2) = M$.

По теореме о среднем интегральном μ принадлежит отрезку с $[f(c_1), f(c_2)]$. По теореме же Коши о промежуточном значении непрерывной функции на отрезке с концами в точках c_1 и c_2 найдется точка c, в которой $f(c) = \mu$.

Требование непрерывности функции f(x) на [a,b] существенно. В самом деле, рассмотрим $f(x) = \begin{cases} 0, & 0 \le x \le 1, \\ 1, & 1 < x \le 2. \end{cases}$ Тогда $\mu = \frac{1}{2} \notin \{0;1\}$ (множеству значений функции f(x)).

Интеграл с переменным верхним пределом

Пусть функция f(x) интегрируема на отрезке [a,b]. Определим на этом же отрезке функцию

$$\Phi(x) = \int_{a}^{x} f(t) dt,$$

которую часто называют интегралом с переменным верхним пределом. Из свойства аддитивности определенного интеграла вытекает корректность определения функции $\Phi(x)$ для $x \in [a,b]$.

Теорема (о непрерывности интеграла с переменным верхним пределом). Если функция f(x) интегрируема на отрезке [a,b], то функция $\Phi(x) = \int_a^x f(t) dt$ будет непрерывной на этом отрезке.

Доказательство. > Интегрируемая на отрезке функция ограничена на нем, то есть существует такое число C, что $|f(x)| \le C$ на [a,b]. Пусть $x \in [a,b]$, и пусть h - приращение независимой переменной, при котором $x+h \in [a,b]$. Воспользовавшись свойством аддитивности, а также теоремами об оценках определенного интеграла, получим

$$\left|\Delta\Phi(x)\right| = \left|\Phi(x+h) - \Phi(x)\right| = \left|\int_{a}^{x+h} f(t)dt - \int_{a}^{x} f(t)dt\right| = \left|\int_{x}^{x+h} f(t)dt\right| \le \left|\int_{x}^{x+h} |f(t)|dt\right| \le C|h|.$$

To есть $\lim_{h\to 0} \Delta\Phi(x) = 0$, что означает непрерывность функции $\Phi(x)$ в точке $x \cdot \triangleleft$

Теорема (о дифференцируемости интеграла с переменным верхним пределом).

Пусть функция f(x) непрерывна на отрезке [a,b]. Тогда функция $\Phi(x) = \int_a^x f(t)dt$ будет дифференцируемой на этом отрезке.

Доказательство. ⊳

$$\Phi'(x) = \lim_{\Delta x \to 0} \frac{\Phi(x + \Delta x) - \Phi(x)}{\Delta x} = \lim_{\Delta x \to 0} \frac{1}{\Delta x} \int_{0}^{x + \Delta x} f(t) dt = \lim_{\Delta x \to 0} \frac{f(c) \Delta x}{\Delta x} = \lim_{\Delta x \to 0} f(c),$$

где c лежит между x и $x + \Delta x$. Из непрерывности f(x) следует, что при $\Delta x \to 0$ будет справедливо $f(c) \to f(x)$.

Основная формула интегрального исчисления

Доказанная выше теорема означает, что для непрерывной на [a,b] функции f(x) интеграл $\Phi(x) = \int_a^x f(t) dt$ будет первообразной функцией. Если F(x) какая-либо другая первообразная f(x), то $\Phi(x) = F(x) + C$. Имеем

$$0 = \Phi(a) = F(a) + C \implies c = -F(a),$$

поэтому $\Phi(x) = F(x) - F(a)$. При x = b получим

$$\Phi(b) = \int_{a}^{b} f(x) dx = F(b) - F(a).$$

Формула Ньютона-Лейбница, $\int_{a}^{b} f(x) dx = F(b) - F(a)$ - называется основной формулой интегрального исчисления.

Теперь мы можем вычислять определенный интеграл, не используя интегральные суммы.

Пример.
$$\int_{0}^{1} x dx = \frac{x^{2}}{2} \Big|_{0}^{1} = \frac{1}{2} - 0.$$

Пример. Найдем среднее интегральное значение функции $y = \sin x$ на отрезке $[0,\pi]$

$$\mu = \frac{1}{\pi} \int_{0}^{\pi} \sin x dx = -\frac{1}{\pi} \cos x \Big|_{0}^{\pi} = \frac{2}{\pi}.$$

Формула интегрирования по частям

Теорема. Если функции u(x) и v(x) непрерывно дифференцируемы на отрезке [a,b], то справедливо соотношение

$$\int_{a}^{b} u(x)v'(x)dx = u(x)v(x)\Big|_{a}^{b} - \int_{a}^{b} v(x)u'(x)dx.$$

$$(uv)'(x) = (u' \cdot v)(x) + (u \cdot v')(x).$$

По условию все функции в этом равенстве непрерывны, а, значит, и интегрируемы на отрезке [a,b]. Используя линейность интеграла и формулу Ньютона-Лейбница, получаем

$$(u \cdot v)(x)\Big|_a^b = \int_a^b (u' \cdot v)(x) dx + \int_a^b (u \cdot v')(x) dx. \triangleleft$$

$$\mathbf{\Pi} \mathbf{p} \mathbf{u} \mathbf{m} \mathbf{e} \mathbf{p}. \int_1^2 \ln x dx = \begin{cases} u = \ln x, & du = \frac{dx}{x} \\ dv = dx, & v = x \end{cases} = x \ln x\Big|_1^2 - \int_1^2 dx = 2 \ln 2 - x\Big|_1^2 = 2 \ln 2 - 1.$$

Замена переменной в определенном интеграле

Теорема. Если φ : $[\alpha, \beta] \to [a, b]$ - непрерывно дифференцируемое отображение отрезка $\alpha \le t \le \beta$ в отрезок $a \le x \le b$ такое, что $\varphi(\alpha) = a$, $\varphi(\beta) = b$, то при любой непрерывной на [a,b] функции f(x) справедливо равенство

$$\int_{a}^{b} f(x) dx = \int_{a}^{\beta} f(\varphi(t)) \varphi'(t) dt.$$

Доказательство. \triangleright Пусть F(x) - первообразная функции f(x), тогда по теореме о дифференцировании сложной функции, функция $F(\varphi(t))$ будет первообразной для функции $f(\varphi(t))\varphi'(t)$. По формуле Ньютона-Лейбница получаем

$$\int_{\alpha}^{\beta} f(\varphi(t))\varphi'(t)dt = F(\varphi(\beta)) - F(\varphi(\alpha)) = F(b) - F(a) = \int_{a}^{b} f(x)dx. \triangleleft$$

Пример.
$$\int_{0}^{1} \sqrt{1-x^{2}} dx = \begin{cases} x = \sin t, \ dx = \cos t dt \\ t = \arcsin x, \ x\Big|_{0}^{1} \Rightarrow t\Big|_{0}^{\frac{\pi}{2}} \end{cases} = \int_{0}^{\frac{\pi}{2}} \cos^{2} t dt =$$

$$= \frac{1}{2} \int_{0}^{\frac{\pi}{2}} (1 + \cos 2t) dt = \frac{1}{2} \left(t + \frac{1}{2} \sin 2t \right) \Big|_{0}^{\frac{\pi}{2}} = \frac{\pi}{4}.$$

Геометрические приложения определенного интеграла Длина плоской кривой

Определение. Длиной кривой AB называется точная верхняя граница S для множества периметров p вписанных в кривую ломаных: $S = \sup\{p\}$. Если это число конечно, то кривая называется спрямляемой.

Длина кривой, заданной параметрически

Рассмотрим параметрически заданную гладкую кривую

$$\begin{cases} x = x(t), \\ y = y(t), \end{cases} t \in [\alpha, \beta],$$

где x'(t) и y'(t) непрерывны на $[\alpha, \beta]$.

Утверждение. Параметрически заданная на конечном промежутке гладкая кривая спрямляема.

Доказательство. \triangleright Поскольку функции x'(t) и y'(t) непрерывны на отрезке, то их модули ограничены на нем, то есть существуют константы m, M, l, L такие, что

$$m \le |x'(t)| \le M, \ l \le |y'(t)| \le L \ (t \in [\alpha, \beta]).$$

Рассмотрим ломаную с вершинами в точках

$$(x_i, y_i) = (x(t_i), y(t_i)) (\alpha = t_0 < t_1 < ... < t_n = \beta).$$

Выделим одно звено ломаной и оценим его длину:

$$p_{i} = \sqrt{(x(t_{i}) - x(t_{i-1}))^{2} + (y(t_{i}) - y(t_{i-1}))^{2}}.$$

По формуле Лагранжа для конечных

По формуле Лагранжа для конечных приращений
$$x(t_i) - x(t_{i-1}) = x'(\tau_i)(t_i - t_{i-1}),$$

$$y(t_i) - y(t_{i-1}) = y'(\tilde{\tau}_i)(t_i - t_{i-1}),$$
 где точки τ_i и лежат на отрезке $[t_{i-1}, t_i].$

Периметр ломаной равен

$$p = \sum_{i=1}^{n} \sqrt{(x_{i} - x_{i-1})^{2} + (y_{i} - y_{i-1})^{2}} = \sum_{i=1}^{n} \sqrt{x'^{2} (\tau_{i}) (t_{i} - t_{i-1})^{2} + y'^{2} (\tilde{\tau}_{i}) (t_{i} - t_{i-1})^{2}} = \sum_{i=1}^{n} \sqrt{x'^{2} (\tau_{i}) + y'^{2} (\tilde{\tau}_{i})} (t_{i} - t_{i-1}) \le \sqrt{M^{2} + L^{2}} \sum_{i=1}^{n} (t_{i} - t_{i-1}) = \sqrt{M^{2} + L^{2}} (\beta - \alpha).$$

Мы воспользовались ограниченностью производных x'(t), y'(t) на отрезке $[\alpha, \beta]$.

Видим, что множество периметров вписанных ломаных ограничено, следовательно, кривая спрямляема. Аналогично оценке сверху, мы можем получить и оценку снизу для длины S нашей кривой. Поэтому можно записать:

$$\sqrt{m^2+l^2}(\beta-\alpha) \leq S \leq \sqrt{M^2+L^2}(\beta-\alpha). \triangleleft$$

Формула для вычисления длины дуги гладкой кривой, заданной параметрически.

Введем функцию S(t), равную длине переменной дуги от точки $(x(\alpha), y(\alpha))$ до (x(t), y(t)) $(S(\alpha) = 0, S(\beta) = S = |\widehat{AB}|).$

Рассмотрим промежуток $[t, t + \Delta t]$. Приращение $\Delta S = S(t + \Delta t) - S(t)$ равно длине дуги, заданной на отрезке $[t, t + \Delta t]$. Запишем оценку для приращения длины S(t) на этом промежутке:

$$\sqrt{m^2 + l^2} \Delta t \le \Delta S \le \sqrt{M^2 + L^2} \Delta t .$$

Здесь M, L, m, l, соответственно, наибольшие и наименьшие значения модулей производных x' и y' на отрезке $\left[t,t+\Delta t\right]$. Из непрерывности производных вытекает, что

$$\lim_{\Delta t \to 0} M^2 = \lim_{\Delta t \to 0} m^2 = x'^2(t), \quad \lim_{\Delta t \to 0} L^2 = \lim_{\Delta t \to 0} l^2 = y'^2(t).$$

То есть

$$S'(t) = \lim_{\Delta t \to 0} \frac{\Delta S}{\Delta t} = \sqrt{x'^2(t) + y'^2(t)}.$$

Таким образом, длина переменной дуги – дифференцируемая функция, и по формуле Ньютона-Лейбница ее приращение на отрезке $[\alpha, \beta]$ равно

$$S = S(\beta) - S(\alpha) = \int_{\alpha}^{\beta} \sqrt{x'^2(t) + y'^2(t)} dt.$$
 (1)

Пример 1. Найти длину одной арки циклоиды

$$\begin{cases} x = a(t - \sin t), \\ y = a(1 - \cos t). \end{cases} \quad t \in [0, 2\pi].$$

$$S = \int_{0}^{2\pi} \sqrt{a^2 (1 - \cos t)^2 + a^2 \sin^2 t} dt =$$

$$a\int_{0}^{2\pi} \sqrt{2-2\cos t} dt = 2a\int_{0}^{2\pi} \sin\frac{t}{2} dt = -4a\cos\frac{t}{2}\Big|_{0}^{2\pi} = 8a.$$

Длина кривой, заданной явно.

Пусть кривая задана явно в прямоугольных координатах:

$$y = f(x), \quad a \le x \le b$$
.

Принимая x за параметр, ее можно записать в параметрическом виде: $\begin{cases} x = x, \\ y = f(x). \end{cases}$

Применив (1), получим

$$S = \int_{a}^{b} \sqrt{1 + f'^{2}(x)} dx.$$

Пример 2. Найти длину дуги кривой $y = \frac{2}{3}x^{\frac{3}{2}}$ от x = 0 до x = 1.

Решение:
$$S = \int_{0}^{1} \sqrt{1 + \left(\sqrt{x}\right)^2} dx = \int_{0}^{1} \sqrt{1 + x} dx = \frac{2}{3} \left(1 + x\right)^{3/2} \Big|_{0}^{1} = \frac{2}{3} \left(\sqrt{8} - 1\right).$$

Длина кривой, заданной в полярных координатах

Если кривая задана в полярных координатах $r = r(\varphi) \ (\varphi \in [\alpha, \beta])$, то ее можно задать параметрически системой

$$\begin{cases} x = r(\varphi)\cos\varphi, \\ y = r(\varphi)\sin\varphi, \end{cases} \quad \alpha \le \varphi \le \beta.$$

В этом случае

$$S = \int_{\alpha}^{\beta} \sqrt{(r'\cos\varphi - r\sin\varphi)^2 + (r'\sin\varphi + r\cos\varphi)} d\varphi =$$

$$= \int_{\alpha}^{\beta} \sqrt{r'^2\cos^2\varphi - 2rr'\cos\varphi\sin\varphi + r^2\sin^2\varphi + r'^2\sin^2\varphi + 2rr'\cos\varphi\sin\varphi + r^2\cos^2\varphi\varphi} d\varphi =$$

$$= \int_{\alpha}^{\beta} \sqrt{r'^2\cos^2\varphi - 2rr'\cos\varphi\sin\varphi + r^2\sin^2\varphi + r'^2\sin^2\varphi + 2rr'\cos\varphi\sin\varphi + r^2\cos^2\varphi\varphi} d\varphi =$$

$$= \int_{\alpha}^{\beta} \sqrt{r'^2\cos^2\varphi - 2rr'\cos\varphi\sin\varphi + r^2\sin^2\varphi + r'^2\sin^2\varphi + r'^2\varphi\cos\varphi} d\varphi.$$

Пример 3. Найти длину дуги окружности радиуса R, с центром в точке (0;R), заключенную между прямыми 2y=x и y=x.

Решение. Запишем уравнение окружности в декартовых координатах:

$$x^{2} + (y - R)^{2} = R^{2} \iff x^{2} + y^{2} = 2yR.$$

С учетом

$$\begin{cases} x = r(\varphi)\cos\varphi, \\ y = r(\varphi)\sin\varphi, \end{cases}$$

в полярных координатах уравнение нашей дуги выглядит следующим образом:

$$r = a \sin \varphi, \ \left(\frac{\pi}{6} \le \varphi \le \frac{\pi}{2}\right).$$

Найдем ее длину:

$$S = \int_{\pi/6}^{\pi/2} \sqrt{a^2 \sin^2 \varphi + a^2 \cos^2 \varphi} d\varphi = \frac{a\pi}{3}.$$

Площадь плоской фигуры.

Пусть (P) - произвольная ограниченная фигура на плоскости (содержащаяся в некотором прямоугольнике). Обозначим через (A) Многоугольники, целиком содержащиеся в (P), а через (B) - многоугольники, содержащие (P). Через A и B обозначим множества их площадей.

Для любых $a \in A$ и $b \in B$ имеем $a \le b$. Ограниченное сверху множество чисел A имеет точную верхнюю грань P_* , а ограниченное снизу множество чисел B точную нижнюю грань P^* . Очевидно, что $P_* \le P^*$, если же эти числа совпадают, то общее их значение P называют площадью фигуры (P), а саму эту фигуру называют квадрируемой.

Площадь криволинейной трапеции.

Пусть f(x) - неотрицательная интегрируемая функция, заданная на отрезке [a,b]. Рассмотрим криволинейную трапецию (P), определенную неравенствами: $a \le x \le b, \ 0 \le y \le f(x)$. Верхние суммы Дарбу для f(x) являются площадями многоугольников, содержащих (P), а, соответственно, нижние — площадями многоугольников, целиком содержащихся в (P).

Таким образом, получаем $I_* \leq P_* \leq I^*$. Из интегрируемости $f\left(x\right)$ на отрезке $\left[a,b\right]$ следует, что $I_* = I^*$, а, значит, фигура $\left(P\right)$ квадрируема и

$$P = \int_{a}^{b} f(x) dx.$$

Если функция отрицательна, то интеграл равен площади, взятой со знаком минус, если же меняет знак, то равен алгебраической сумме площадей.

Если криволинейная трапеция снизу и сверху ограничена кривыми

$$y_1 = f_1(x)$$
 и $y_2 = f_2(x)$ $(a \le x \le b)$,

то площадь такой трапеции будет равна

$$P = \int_{a}^{b} \left(f_2(x) - f_1(x) \right) dx.$$

Пример 4. Найти площадь области, ограниченной кривыми $y = x^2$ и $y = \sqrt{x}$.

Решение:
$$P = \int_{0}^{1} \left(\sqrt{x} - x^2 \right) dx = \left(\frac{2}{3} x^{\frac{3}{2}} - \frac{x^3}{3} \right) \Big|_{0}^{1} = \frac{1}{3}$$
.

Площадь фигуры, заданной в полярных координатах

Найдем площадь сектора (P), ограниченного непрерывной кривой $r=r(\varphi)$ и двумя полупрямыми $\varphi=\alpha$ и $\varphi=\beta$ $(\alpha<\beta)$. Рассмотрим разбиение отрезка $[\alpha,\beta]$ - $\alpha=\varphi_0<\varphi_1<...<\varphi_n=\beta$ и проведем соответствующие этим углам радиус-векторы.

Пусть M_i и m_i соответственно наибольшее и наименьшее значение функции $r(\varphi)$ в промежутке $[\varphi_{i-1}, \varphi_i]$. Площадь множества круговых секторов, ограниченных радиус-векторами $\varphi = \varphi_i$ $(1 \le i \le n)$ и целиком содержащихся в(P), равна $\frac{1}{2} \sum_{i=1}^n m_i^2 \Delta \varphi_i$, площадь круговых

секторов с теми же самыми радиус-векторами, содержащих (P), равна $\frac{1}{2}\sum_{i=1}^n M_i^2 \Delta \varphi_i$. Эти числа являются соответственно нижней и верхней суммами Дарбу для интеграла $\frac{1}{2}\int_{-\pi}^{\beta} r^2 (\varphi) d\varphi$ и имеют пределом этот интеграл. Получаем

$$P = \frac{1}{2} \int_{\alpha}^{\beta} r^2 (\varphi) d\varphi.$$

Пример 5. Найти площадь сектора, ограниченного окружностью $r = a \sin \varphi$ и лучами $\varphi = \frac{\pi}{6}$ и $\varphi = \frac{\pi}{3}$.

Решение:
$$P = \frac{1}{2} \int_{\frac{\pi}{6}}^{\frac{\pi}{3}} a^2 \sin^2 \varphi d\varphi = \frac{a^2}{4} \int_{\frac{\pi}{6}}^{\frac{\pi}{3}} (1 - \cos 2\varphi) d\varphi = \frac{a^2}{4} \left(\varphi - \frac{\sin 2\varphi}{2} \right) \Big|_{\frac{\pi}{6}}^{\frac{\pi}{3}} = \frac{a^2\pi}{24}.$$

Объем тела вращения

Выведем формулу для вычисления объема тела (V), полученного при вращении кривой y=f(x) $(a \le x \le b)$ вокруг оси Ox. Для этого разобьем (V) на части (V_i) плоскостями, перпендикулярными оси Ox и проходящими через точки x_i $(a=x_0 < x_1 < ... < x_n = b)$. Часть (V_i) содержит в себе цилиндр (A_i) , в основании которого лежит круг радиуса $m_i = \inf_{[x_{i-1},x_i]} \left| f(x) \right|$, а высота равна Δx_i . Аналогично, (V_i) содержится в цилиндре (B_i) с круговым основанием радиуса $M_i = \sup_{[x_{i-1},x_i]} \left| f(x) \right|$ и той же высотой. Объемы «внутренних» и «внешних» цилиндров будут равны соответственно, $\sum_{i=1}^n \pi m_i^2 \Delta x_i$ и $\sum_{i=1}^n \pi M_i^2 \Delta x_i$, то есть совпадают с нижней и верхней суммами Дарбу для интеграла $\pi \int_a^b f^2(x) dx$. Окончательно получаем $V = \pi \int_a^b f^2(x) dx$.

Пример 6. Найти объем шара радиуса R.

Решение:
$$V = \pi \int_{-R}^{R} (R^2 - x^2) dx = \pi \left(R^2 x - \frac{x^3}{3} \right) \Big|_{-R}^{R} = \frac{4\pi R^3}{3}$$
.

Приближенное вычисление определенного интеграла

Формула центральных прямоугольников

Метод центральных прямоугольников заключается в том, что в качестве приближенного значения интеграла функции f(x) по отрезку [a;b] берется интегральная сумма, полученная при разбиении отрезка на равные промежутки с выделенными точками – серединами этих промежутков.

Рассмотрим случай разбиения отрезка на n частей. Тогда точки деления

$$x_i = a + \frac{b-a}{n}i$$
, а выделенные точки $\tau_i = a + \frac{b-a}{n}\left(i - \frac{1}{2}\right)$. Имеем

$$\int_{a}^{b} f(x)dx \approx \sigma_{n} = \sum_{i=1}^{n} f(\tau_{i})(x_{i} - x_{i-1}) = \frac{b-a}{n} \sum_{i=1}^{n} f(\tau_{i}).$$

То есть

$$\int_{a}^{b} f(x)dx = \frac{b-a}{n} \sum_{i=1}^{n} f(\tau_i) + R_n.$$

Оценим погрешность R_n .

Сначала решим следующую задачу.

Задача. Пусть функция f(x) дважды непрерывно дифференцируема на отрезке

$$\left[-\frac{h}{2},\frac{h}{2}\right]$$
. Оценить разность $\int_{-h/2}^{h/2} f\left(x\right)dx - f\left(0\right)h$.

Решение. Поскольку |f'(x)| непрерывна на отрезке $\left[-\frac{h}{2},\frac{h}{2}\right]$, то она ограничена на

нем, и
$$|f'(x)| \le M$$
, $x \in \left[-\frac{h}{2}, \frac{h}{2}\right]$.

Запишем для f(x) формулу Маклорена при n=1: $f(x)=f(0)+f'(0)x+r_1(x)$.

Очевидно, остаток $r_1(x)$ является интегрируемой функцией на $\left[-\frac{h}{2},\frac{h}{2}\right]$. Нам также

понадобится оценка
$$|r_1(x)| = \left| \frac{f''(c)x^2}{2!} \right| \le \frac{Mx^2}{2} \quad (|c| < |x|)$$
. Имеем

$$\begin{aligned} \left| R_n \right| &= \left| \int_{-h/2}^{h/2} f(x) dx - f(0) h \right| = \left| \int_{-h/2}^{h/2} (f(x) - f(0)) dx \right| = \left| \int_{-h/2}^{h/2} (f(0) + f'(0) x + r_1(x) - f(0)) dx \right| = \\ &= \left| \int_{-h/2}^{h/2} (f'(0) x + r_1(x)) dx \right| = \left| \int_{-h/2}^{h/2} r_1(x) dx \right| \le \int_{-h/2}^{h/2} |r_1(x)| dx \le \int_{-h/2}^{h/2} \frac{Mx^2}{2} dx = \frac{Mh^3}{24} \,. \end{aligned}$$

Оценка погрешности формулы центральных прямоугольников

$$\left| \int_{a}^{b} f(x) dx - \frac{b-a}{n} \sum_{i=1}^{n} f(\tau_{i}) \right| = \left| \sum_{i=1}^{n} \left(\int_{x_{i-1}}^{x_{i}} f(x) dx - \frac{b-a}{n} f(\tau_{i}) \right) \right| \leq \sum_{i=1}^{n} \frac{M \left(b-a \right)^{3}}{24n^{3}} = \frac{M \left(b-a \right)^{3}}{24n^{2}},$$
 или

$$\left|R^n\right| \leq \frac{M\left(b-a\right)^3}{24n^2}.$$

Пример. На сколько частей надо разбить отрезок [0;1], чтобы методом центральных прямоугольников вычислить интеграл $\int\limits_0^1 e^{-x^2} dx$ с точностью 0,01?

Решение. Вторая производная подынтегральной функции $\left(e^{-x^2}\right)'' = e^{-x^2}\left(4x^2-2\right)$ возрастает на [0;1], поэтому ее модуль достигает максимума на конце отрезка (в данном случае при x=0), то есть $\left|\left(e^{-x^2}\right)''\right| \leq 2$.

Получаем $\frac{2(1-0)^3}{24n^2} < \frac{1}{100}$, $n^2 > 8$, (3). То есть на 3 части.

Несобственные интегралы

Несобственные интегралы первого рода

Определение. Пусть функция f(x) определена в промежутке $[a, +\infty)$ и интегрируема на любом отрезке [a, A], содержащемся в этом промежутке. Величина

$$\int_{A}^{+\infty} f(x) dx = \lim_{A \to +\infty} \int_{A}^{A} f(x) dx,$$

если этот предел существует, называется несобственным интегралом от функции f по промежутку $[a, +\infty)$.

Говорят, что интеграл *сходится*, если конечный предел существует и *расходится* в противном случае.

Утверждение. Если функция f(x) определена в промежутке $[a,+\infty)$ и интегрируема на любом отрезке [a,A], содержащемся в этом промежутке, то интегралы $\int_{a}^{+\infty} f(x) dx$ и $\int_{b}^{+\infty} f(x) dx$ (b > a) сходятся или расходятся одновременно.

Задача. Докажите это утверждение.

Пример. Выясним, при каких значениях параметра α сходится интеграл $\int_{1}^{\infty} \frac{dx}{x^{\alpha}}$:

$$\int_{1}^{\infty} \frac{dx}{x^{\alpha}} = \left\{ \alpha \neq 1 \right\} = \lim_{A \to +\infty} \int_{1}^{A} \frac{dx}{x^{\alpha}} = \lim_{A \to +\infty} \frac{x^{1-\alpha}}{1-\alpha} \bigg|_{1}^{A} = \lim_{A \to +\infty} \frac{A^{1-\alpha} - 1}{1-\alpha} = \begin{cases} \frac{1}{\alpha - 1}, & \alpha > 1, \\ \infty, & \alpha < 1, \end{cases}$$

$$\int_{1}^{\infty} \frac{dx}{x} = \lim_{A \to \infty} \int_{1}^{A} \frac{dx}{x} = \lim_{A \to \infty} \ln A = \infty.$$

В дальнейшем, при вычислении несобственных интегралов мы будем применять следующую форму записи: $F\left(x\right)\Big|_a^{+\infty} = \lim_{x \to +\infty} F\left(x\right) - F\left(a\right)$. Например:

$$\int_{0}^{+\infty} e^{-x} dx = -e^{-x} \Big|_{0}^{+\infty} = -(0-1) = 1.$$

Из определения несобственного интеграла видно, что сходимость интеграла равносильна существованию предела функции $F(A) = \int_{a}^{A} f(x) dx$ npu $A \to +\infty$.

Признаки сходимости несобственных интегралов

Утверждение (критерий Коши сходимости несобственного интеграла). Если функция f(x) определена на промежутке $[a,+\infty)$ и интегрируема на любом отрезке $[a,A]\subset [a,+\infty)$, то интеграл $\int\limits_a^\infty f(x)dx$ сходится тогда и только тогда, когда для любого $\varepsilon>0$ можно указать такое A>a, что для любых A',A''>A имеет место соотношение

$$\left|\int_{A'}^{A'} f(x) dx\right| < \varepsilon.$$

(без доказательства)

Утверждение. Если функция f(x) неотрицательна, то интеграл $F(A) = \int_{a}^{A} f(x) dx$ представляет собой неубывающую функцию, и для сходимости

интеграла $\int_{a}^{+\infty} f(x)dx$ необходимо и достаточно ограниченности функции F(A) на $[a,+\infty)$.

Справедливость этого утверждения следует из определения несобственного интеграла и теоремы о пределе монотонной функции.

Признаки сравнения сходимости несобственных интегралов

Теорема (**признак сравнения**). Пусть функции f(x) и g(x) определены на промежутке $[a, +\infty)$, и пусть для некоторого b > a на промежутке $[b, +\infty)$ справедливо неравенство $f(x) \ge g(x) \ge 0$. Тогда из сходимости интеграла $\int\limits_a^{+\infty} f(x) dx$ вытекает сходимость интеграла $\int\limits_a^{+\infty} g(x) dx$, а из расходимости $\int\limits_a^{+\infty} g(x) dx$ вытекает расходимость $\int\limits_a^{+\infty} f(x) dx$.

Доказательство. \triangleright Из теоремы об интегрировании неравенств при любом A > b имеем

$$G(A) = \int_{b}^{A} g(x) dx \le \int_{b}^{A} f(x) dx = F(A).$$

Из ограниченности функции F(A) на $[b,+\infty)$ следует ограниченность G(A) а, значит, и сходимость $\int_{a}^{+\infty} g(x)dx$.

Пусть теперь интеграл $\int_{a}^{+\infty} g(x) dx$ расходится. Если бы интеграл $\int_{a}^{+\infty} f(x) dx$ сходился, то, как только что было доказано, сходился бы и интеграл $\int_{a}^{+\infty} g(x) dx$, что привело бы к противоречию. \triangleleft

Теорема (предельный признак сравнения). Пусть положительные функции f(x) и g(x) определены на промежутке $[a,+\infty)$, и пусть существует предел

$$\lim_{x \to \infty} \frac{f(x)}{g(x)} = K \quad (0 < K < +\infty).$$

Тогда интегралы $\int_{a}^{+\infty} f(x)dx$ и $\int_{a}^{+\infty} g(x)dx$ сходятся или расходятся одновременно.

Доказательство. \triangleright Из существования предела вытекает, что при некотором b > a будет выполнено неравенство $\left| \frac{f(x)}{g(x)} - K \right| < \frac{K}{2}$, то есть $\frac{K}{2} < \frac{f(x)}{g(x)} < \frac{3K}{2}$ или

 $\frac{K}{2}g(x) < f(x) < \frac{3K}{2}g(x)$. Далее применяем к функциям $\frac{K}{2}g(x)$, f(x), $\frac{3K}{2}g(x)$ предыдущую теорему. \triangleleft

Абсолютная сходимость несобственного интеграла первого рода

Определение. Говорят, что несобственный интеграл $\int\limits_a^\infty f\left(x\right)dx$ сходится абсолютно, если сходится интеграл $\int\limits_a^\infty \left|f\left(x\right)\right|dx$.

Утверждение. Если интеграл $\int\limits_{a}^{\infty} f(x) dx$ сходится абсолютно, то он сходится.

Доказательство. > Достаточно проверить признак Коши для сходимости интеграла $\int\limits_{-\infty}^{\infty} f\left(x\right) dx:$

$$\left| \int_{A'}^{A'} f(x) dx \right| \leq \int_{A'}^{A'} \left| f(x) \right| dx \underset{A', A' \to \infty}{\longrightarrow} 0. \triangleleft$$

Определение. Если несобственный интеграл сходится, но не абсолютно, то (иногда) говорят, что он сходится условно.

Задача. Доказать, что интегралы $\int_{\pi}^{\infty} \frac{\sin x dx}{x^{\alpha}}$, $\int_{\pi}^{\infty} \frac{\cos x dx}{x^{\alpha}}$ ($\alpha > 1$) сходятся абсолютно.

Утверждение. Интегралы $\int_{\pi}^{\infty} \frac{\sin x dx}{x^{\alpha}}$, $\int_{\pi}^{\infty} \frac{\cos x dx}{x^{\alpha}}$ при $0 < \alpha \le 1$ сходятся условно.

Доказательство. ⊳

$$\int_{\pi}^{\infty} \frac{\sin x dx}{x^{\alpha}} = \left\{ \begin{aligned} u &= \frac{1}{x^{\alpha}}, \ du &= \frac{-\alpha dx}{x^{\alpha+1}} \\ dv &= \sin x dx, \ v &= -\cos x \end{aligned} \right\} = -\frac{\cos x}{x^{\alpha}} \Big|_{\pi}^{\infty} - \alpha \int_{\pi}^{\infty} \frac{\cos x}{x^{\alpha+1}} dx = -\frac{1}{\pi^{\alpha}} - \alpha \int_{\pi}^{\infty} \frac{\cos x}{x^{\alpha+1}} dx,$$

а поскольку $\alpha+1>1$, то интеграл сходится.

Покажем, что сходимость не абсолютная. Учитывая, что $|\sin x| \ge \sin^2 x$, имеем

$$\int_{\pi}^{\infty} \left| \frac{\sin x}{x^{\alpha}} \right| dx \ge \int_{\pi}^{\infty} \frac{\sin^2 x}{x^{\alpha}} dx = \frac{1}{2} \int_{\pi}^{\infty} \frac{1 - \cos 2x}{x^{\alpha}} dx = \frac{1}{2} \int_{\pi}^{\infty} \frac{dx}{x^{\alpha}} - \frac{1}{2} \int_{\pi}^{\infty} \frac{\cos 2x}{x^{\alpha}} dx.$$

Поскольку первый интеграл при $0 < \alpha \le 1$ расходится, а второй сходится при всех $\alpha > 0$, исходный интеграл расходится. \lhd

Несобственные интегралы второго рода.

Определение. Пусть функция f(x) определена в промежутке [a,b), интегрируема на любом отрезке $[a,b-\varepsilon]$, содержащемся в этом промежутке и неограниченна в любой полуокрестности $O_{\varepsilon}^{-}(b)$. Величина

$$\int_{a}^{b} f(x) dx = \lim_{\varepsilon \to +0} \int_{a}^{b-\varepsilon} f(x) dx,$$

если этот предел существует, называется несобственным интегралом от функции f по промежутку [a,b).

Говорят, что интеграл *сходится*, если конечный предел существует и *расходится* в противном случае.

Аналогично определяется интеграл от функции с «особенностью» в левом конце промежутка.

Определение. Пусть функция f(x) определена в промежутке (a,b], интегрируема любом отрезке $[a+\varepsilon,b]$, содержащемся в этом промежутке и неограниченна в любой полуокрестности $O_{\varepsilon}^{+}(a)$. Величина

если этот предел существует, называется несобственным интегралом от функции f по промежутку (a,b].

Утверждение. Если функция f(x) определена в промежутке [a,b), интегрируема на любом отрезке $[a,b-\varepsilon]$, содержащемся в этом промежутке и неограниченна в любой полуокрестности $O_{\varepsilon}^{-}(b) \subset (a,b)$, то интегралы $\int_{a}^{b} f(x) dx$ и $\int_{c}^{b} f(x) dx$ (a < c < b) сходятся и расходятся одновременно.

Задача. Докажите это утверждение, а также сформулируйте и докажите соответствующее утверждение для (a,b].

Пример 2. Выясним, при каких значениях параметра α сходится интеграл $\int_{0}^{1} \frac{dx}{x^{\alpha}}$.

$$\int_{0}^{1} \frac{dx}{x^{\alpha}} = \left\{\alpha \neq 1\right\} = \lim_{\varepsilon \to +0} \int_{\varepsilon}^{1} \frac{dx}{x^{\alpha}} = \lim_{\varepsilon \to +0} \left(\frac{1}{1-\alpha} - \frac{\varepsilon^{1-\alpha}}{1-\alpha}\right) = \begin{cases} \frac{1}{1-\alpha}, & \alpha < 1, \\ -\infty, & \alpha > 1, \end{cases}$$

$$\int_{0}^{1} \frac{dx}{x} = \lim_{\varepsilon \to +0} \int_{\varepsilon}^{1} \frac{dx}{x} = \lim_{\varepsilon \to +0} \ln \frac{1}{\varepsilon} = \infty.$$

Признаки сравнения сходимости несобственных интегралов второго рода.

Теорема (теорема сравнения). Пусть функция f(x) определена в промежутке, интегрируема на любом отрезке $[a,b-\varepsilon]$, содержащемся в этом промежутке и неограниченна в любой полуокрестности $O_{\varepsilon}^{-}(b) \subset (a,b)$.

Пусть функции f(x) и g(x) определены на промежутке [a,b), и пусть для некоторого $c \in (a,b)$ на промежутке [c,b) справедливо неравенство $f(x) \ge g(x) \ge 0$.

Тогда из сходимости интеграла $\int_{a}^{b} f(x) dx$ вытекает сходимость интеграла $\int_{a}^{b} g(x) dx$, а из расходимости $\int_{a}^{b} g(x) dx$ вытекает расходимость $\int_{a}^{b} f(x) dx$.

Теорема (предельный признак сравнения). Пусть положительные функции f(x) и g(x) определены на промежутке [a,b), и пусть существует предел

$$\lim_{x \to b^{-0}} \frac{f(x)}{g(x)} = K \quad (0 < K < +\infty).$$

Тогда интегралы $\int_{a}^{b} f(x) dx$ и $\int_{a}^{b} g(x) dx$ сходятся или расходятся одновременно.

Доказательство этих утверждений аналогично доказательству соответствующих утверждений для несобственных интегралов 1-го рода. Соответствующие теоремы справедливы и для промежутка (a,b].

Абсолютная сходимость несобственного интеграла второго рода.

Определение. Говорят, что несобственный интеграл $\int\limits_a^b f(x)dx$ сходится

абсолютно, если сходится интеграл $\int\limits_{a}^{b} \left| f(x) \right| dx$.

Утверждение. Если интеграл $\int_{a}^{b} f(x) dx$ сходится абсолютно, то он сходится. (без доказательства)

Пример. Исследовать в зависимости от параметра α абсолютную и условную сходимость интеграла $\int\limits_0^1 \frac{\sin\frac{1}{x}}{x^\alpha} dx$.

Решение. Имеем

$$\int_{0}^{1} \frac{\sin \frac{1}{x}}{x^{\alpha}} dx = \begin{cases} t = \frac{1}{x} \Rightarrow t \Big|_{+\infty}^{1}, \\ x = \frac{1}{t} \Rightarrow dx = -\frac{dt}{t^{2}}, \end{cases} = -\int_{+\infty}^{1} \frac{t^{\alpha} \sin t}{t^{2}} dt = \int_{1}^{+\infty} \frac{\sin t}{t^{2-\alpha}} dt.$$

Последний же интеграл(как было доказано выше) сходится абсолютно при $2-\alpha>1$ ($\alpha<1$) и условно при $0<2-\alpha\le1$ ($1\le\alpha<2$).

Числовые ряды.

Определение. Числовым рядом называется бесконечная сумма

$$a_1 + a_2 + \dots + a_k + \dots = \sum_{k=1}^{\infty} a_k$$
.

Числа $a_1,a_2,...,a_k,...$ называются членами ряда, а слагаемое a_n - общим членом ряда.

Сумма первых n членов ряда $S_n = \sum_{k=1}^n a_k$ называется $n-\tilde{u}$ частичной суммой ряда.

Определение. Ряд называется сходящимся, если существует конечный предел S последовательности его частичных сумм:

$$S=\lim_{n\to\infty}S_n.$$

Число S называется суммой ряда.

Если конечного предела последовательности частичных сумм не существует, то ряд называется расходящимся.

Пример 1. Ряд
$$\frac{1}{1\cdot 2} + \frac{1}{2\cdot 3} + ... + \frac{1}{k(k+1)} + ... = \sum_{k=1}^{\infty} \frac{1}{k(k+1)}$$
 сходится.

Доказательство. \triangleright Так как $\frac{1}{k(k+1)} = \frac{1}{k} - \frac{1}{k+1}$, то

$$S_n = \frac{1}{1 \cdot 2} + \frac{1}{2 \cdot 3} + \dots + \frac{1}{n(n+1)} = 1 - \frac{1}{2} + \frac{1}{2} - \frac{1}{3} + \frac{1}{3} - \frac{1}{4} + \dots + \frac{1}{n} - \frac{1}{n+1} = 1 - \frac{1}{n+1},$$

поэтому

$$\sum_{k=1}^{\infty} \frac{1}{k(k+1)} = \lim_{n \to \infty} \left(1 - \frac{1}{n+1} \right) = 1. \triangleleft$$

Пример 2. Ряд $1 + \frac{1}{2} + ... + \frac{1}{k} + ... = \sum_{k=1}^{\infty} \frac{1}{k}$ расходится.

Доказательство. \triangleright Если ряд сходится, то существует $S = \lim_{n \to \infty} S_n$. В таком случае

$$S = \lim_{n \to \infty} S_{2n} \text{ M } \lim_{n \to \infty} \left(S_{2n} - S_n \right) = 0 \text{ , ho } S_{2n} - S_n = \frac{1}{n+1} + \frac{1}{n+2} + \ldots + \frac{1}{2n} > n \cdot \frac{1}{2n} = \frac{1}{2} \text{ .}$$

Полученное противоречие завершает доказательство. <

Ряд $\sum_{k=1}^{\infty} \frac{1}{k}$ называется *гармоническим*.

Пример 3. Ряд $\sum_{k=0}^{\infty} (-1)^k$ расходится.

Доказательство. \triangleright Имеем $S_n = \sum_{k=0}^n (-1)^k = \begin{cases} 1, \text{ если } n \text{ четное,} \\ 0, \text{ если } n \text{ нечетное.} \end{cases}$

Откуда мы видим, что предела у последовательности частичных сумм не существует. ⊲

Пример 4. Ряд $a + aq + aq^2 + ... + aq^k + ... = \sum_{k=0}^{\infty} aq^k$ сходится при |q| < 1 и расходится при $|q| \ge 1$.

Доказательство. \triangleright В самом деле, при $q \ne 1$ имеем $S_n = \frac{a\left(1 - q^{n+1}\right)}{1 - q}$.

Если
$$|q| < 1$$
, то $S = \sum_{k=0}^{\infty} aq^k = \lim_{n \to \infty} S_n = \lim_{n \to \infty} \frac{a\left(1 - q^{n+1}\right)}{1 - q} = \frac{a}{1 - q}$.

Если
$$|q| > 1$$
, то $\lim_{n \to \infty} S_n = \lim_{n \to \infty} \frac{a(1 - q^{n+1})}{1 - q} = \infty$.

Если q=-1, то ряд расходится (пример 3). Если же q=1, то $S_n=n\to\infty$. \lhd

Свойства сходящихся рядов.

Теорема. Сходимость ряда останется прежней, если изменить конечное число его членов.

Доказательство. \triangleright Пусть $\sum_{k=1}^{\infty} a_k$ - исходный ряд, и пусть $\sum_{k=1}^{\infty} b_k$ - ряд, отличающийся от исходного конечным числом элементов, то есть существует такой номер N, что при всех $k \ge N$ будет $a_k = b_k$. Обозначим через A_n и B_n соответственно последовательности частичных сумм первого и второго рядов. Тогда при $n \ge N$ имеем

$$A_n - B_n = \sum_{k=1}^n (a_k - b_k) = \sum_{k=1}^{N-1} (a_k - b_k) + \sum_{k=N}^n (a_k - b_k) = \sum_{k=1}^{N-1} (a_k - b_k) = C,$$

то есть частичные суммы отличаются лишь на константу. В таком случае обе последовательности (частичных сумм) сходятся или расходятся одновременно. ⊲

Теорема. Пусть $\sum_{k=1}^{\infty} a_k$ и $\sum_{k=1}^{\infty} b_k$ - два сходящихся ряда, и пусть A и B

соответственно суммы этих рядов. Тогда ряд $\sum_{k=1}^{\infty} (\lambda a_k + \mu b_k)$ также сходится, а его сумма равна $\lambda A + \mu B$.

Доказательство. \triangleright Обозначим через A_n и B_n частичные суммы наших рядов. Тогда

$$\lim_{n\to\infty}\sum_{k=1}^n (\lambda a_k + \mu b_k) = \lim_{n\to\infty} (\lambda A_n + \mu B_n) = \lambda A + \mu B. \triangleleft$$

Утверждение. Обратное неверно.

Пример 5. Ряды $\sum_{k=1}^{\infty} (-1)^{k-1}$ и $\sum_{k=1}^{\infty} (-1)^k$ расходятся, а их сумма сходится:

$$\sum_{k=1}^{\infty} \left(\left(-1 \right)^{k-1} + \left(-1 \right)^{k} \right) = \sum_{k=1}^{\infty} 0 = 0.$$

Определение. Ряд, полученный из исходного $\sum_{k=1}^{\infty} a_k$ отбрасыванием первых n элементов, называется n -м остатком ряда: $R_n = \sum_{k=n+1}^{\infty} a_k$.

Утверждение. Ряд $\sum_{k=1}^{\infty} a_k$ сходится тогда и только тогда, когда $\lim_{n\to\infty} R_n = 0$.

Доказательство. \triangleright Ряд, определяющий остаток, сходится или расходится вместе с исходным рядом. Поэтому, если $\sum_{k=1}^{\infty} a_k$ расходится, то конечной последовательности R_n просто не существует. Если же $\sum_{k=1}^{\infty} a_k$ сходится, то

$$S = \sum_{k=1}^{\infty} a_k = \sum_{k=1}^{n} a_k + \sum_{k=n+1}^{\infty} a_k = S_n + R_n.$$

А так как $S=\lim_{n\to\infty}S_n$, то R_n - бесконечно малая последовательность. \lhd

Признаки сходимости числовых рядов.

Теорема (**необходимый признак сходимости**). Если ряд $\sum_{k=1}^{\infty} a_k$ сходится, то $\lim_{n\to\infty} a_n = 0$.

Доказательство. \triangleright Поскольку ряд сходится, то существует $S = \lim_{n \to \infty} S_n = \lim_{n \to \infty} S_{n-1}$. Поэтому $\lim_{n \to \infty} a_n = \lim_{n \to \infty} \left(S_n - S_{n-1} \right) = 0$. \triangleleft

Этот признак не является необходимым, что показывает пример гармонического ряда.

Пример 6. Ряд $\sum_{k=1}^{\infty} \frac{k}{2k+1}$ расходится, поскольку $\lim_{k\to\infty} \frac{k}{2k+1} = \frac{1}{2} \neq 0$.

Теорема (Критерий Коши сходимости числового ряда). Числовой ряд $\sum_{n=1}^{\infty} a_{k}$

сходится тогда и только тогда, когда

$$\lim_{n,m\to\infty}\left|\sum_{k=n}^m a_k\right|=0.$$

Доказательство. \triangleright Воспользуемся критерием Коши сходимости последовательности частичных сумм $S_n = \sum_{k=1}^n a_k$. Последовательность S_n сходится тогда и только тогда, когда

$$\lim_{n,m\to\infty} \left| S_m - S_n \right| = 0 ,$$

но при m > n имеем

$$|S_m - S_n| = \left| \sum_{k=n+1}^m a_k \right| . \triangleleft$$

Признаки сходимости знакопостоянных рядов.

Теорема (необходимый и достаточный признак сходимости ряда с положительными членами). Ряд с положительными слагаемыми сходится тогда и только тогда, когда последовательность его частичных сумм ограничена.

Доказательство. > Последовательность частичных сумм ряда с неотрицательными слагаемыми не убывает. Поэтому (по теореме Вейерштрасса) ее сходимость эквивалентна ее ограниченности. <

Теорема (сравнения). Пусть для двух рядов $\sum_{k=1}^{\infty} a_k$ и $\sum_{k=1}^{\infty} b_k$, начиная с некоторого номера N, выполнено неравенство $0 \le a_k \le b_k$ $(k \ge N)$. Тогда:

- 1) из сходимости ряда $\sum_{k=1}^{\infty} b_k$ следует сходимость ряда $\sum_{k=1}^{\infty} a_k$;
- 2) из расходимости ряда $\sum\limits_{k=1}^{\infty}a_k$ следует расходимость ряда $\sum\limits_{k=1}^{\infty}b_k$.

Доказательство. \triangleright Заменим нулями первые N элементов каждого из исходных рядов и обозначим через A_n и B_n частичные суммы полученных рядов.

Если ряд $\sum_{k=1}^{\infty} b_k$ сходится, то неубывающая последовательность B_n ограничена $(0 \le B_n \le B)$. Тогда и для неубывающей последовательности A_n будет справедливо $0 \le A_n \le B_n \le B$, то есть она тоже ограничена, а, следовательно, сходится.

Пусть теперь ряд $\sum_{k=1}^{\infty} a_k$ расходится. Если бы ряд $\sum_{k=1}^{\infty} b_k$ сходился, то по предыдущей части теоремы сходился бы и ряд $\sum_{k=1}^{\infty} a_k$, что неверно. Следовательно, ряд $\sum_{k=1}^{\infty} b_k$ расходится. \lhd

Пример. Ряд $\sum_{k=1}^{\infty} \frac{2+\sin kx}{2^k}$ сходится, а ряд $\sum_{k=1}^{\infty} \frac{2+\sin kx}{k}$ расходится. В самом деле, $0 \le \frac{2+\sin kx}{2^k} \le \frac{3}{2^k}$, а $\frac{2+\sin kx}{k} \ge \frac{1}{k}$.

Теорема (предельная теорема сравнения). Пусть $\sum_{k=1}^{\infty} a_k$ и $\sum_{k=1}^{\infty} b_k$ - ряды с

положительными членами, и пусть существует конечный положительный предел

$$C = \lim_{k \to \infty} \frac{a_k}{b_k} \quad (0 < C < \infty).$$

Тогда ряды $\sum_{k=1}^{\infty} a_k$ и $\sum_{k=1}^{\infty} b_k$ сходятся или расходятся одновременно.

(Такие ряды называются равносходящимися).

Доказательство. \triangleright Начиная с некоторого номера N будет выполнено неравенство $\frac{C}{2} \le \frac{a_k}{b_k} \le \frac{3C}{2}$.

Тогда при $k \ge N$ имеем $\frac{C}{2}b_k \le a_k \le \frac{3C}{2}b_k$. Далее применяем предыдущую теорему. \lhd

Пример. Ряд $\sum_{k=1}^{\infty} \frac{1}{k^2}$ сходится, а ряд $\sum_{k=1}^{\infty} \frac{k}{k^2 + 1}$ расходится.

В самом деле, $\frac{1}{k^2} \sim \frac{1}{k(k+1)}$ при $k \to \infty$, а ряд $\sum_{k=1}^{\infty} \frac{1}{k(k+1)}$ сходится.

Ряд же $\sum_{k=1}^{\infty} \frac{k}{k^2 + 1}$ является равносходящимся с гармоническим рядом $\sum_{k=1}^{\infty} \frac{1}{k}$.

Теорема (признак Даламбера). Если $a_k > 0$ (k = 1, 2, ...) $u \lim_{k \to \infty} \frac{a_{k+1}}{a_k} = q$, то при q < 1

ряд $\sum_{k=1}^{\infty} a_k$ сходится, а при q>1 расходится, причем в последнем случае $a_k \not\to 0$ $(k \to \infty)$.

Доказательство. \triangleright Так как $q \ne 1$, то $q = 1 \pm \delta$, где $\delta > 0$. Тогда, начиная с некоторого номера N, будет выполнено неравенство

$$\left| \frac{a_{k+1}}{a_k} - q \right| < \frac{\delta}{2} \Leftrightarrow q - \frac{\delta}{2} < \frac{a_{k+1}}{a_k} < q + \frac{\delta}{2}.$$

Если $q=1-\delta$ ($\delta\in (0,1)$, поскольку q>0), то воспользовавшись правым неравенством, при $k\geq N$ получим:

$$0 < \frac{a_{k+1}}{a_k} < 1 - \delta + \frac{\delta}{2} \iff 0 < a_{k+1} < a_k \left(1 - \frac{\delta}{2}\right).$$

Положим $p = 1 - \frac{\delta}{2}$, тогда

$$a_{N+1} < a_N p$$
, $a_{N+2} < a_{N+1} p < a_N p^2$, ..., $a_{N+m} < a_N p^m \Leftrightarrow \{N + m = k\} \Leftrightarrow a_k < a_N p^{k-N}$.

Обозначив $\lambda = \frac{a_{\scriptscriptstyle N}}{p^{\scriptscriptstyle N}}$, видим, что начиная с номера N , общий член ряда $a_{\scriptscriptstyle k}$ не превосходит

 λp^k - общего члена сходящейся геометрической прогрессии, поэтому исходный ряд сходится.

Если $q=1+\delta$, то (из левого неравенства)

$$\frac{a_{k+1}}{a_k} > 1 + \delta - \frac{\delta}{2} \Rightarrow a_{k+1} > a_k \left(1 + \frac{\delta}{2} \right) \Rightarrow 0 < a_k < a_{k+1} \Rightarrow \lim_{k \to \infty} a_k \neq 0,$$

то есть ряд расходится. ⊲

Пример. Ряд $\sum_{k=1}^{\infty} \frac{k^{100}}{2^k}$ сходится, а ряд $\sum_{k=1}^{\infty} \frac{k!}{100^k}$ расходится.

Доказательство. ⊳ Воспользуемся признаком Даламбера:

$$\lim_{k \to \infty} \frac{a_{k+1}}{a_k} = \lim_{k \to \infty} \frac{\left(k+1\right)^{100} 2^k}{2^{k+1} k^{100}} = \lim_{k \to \infty} \frac{\left(1+\frac{1}{k}\right)^{100}}{2} = \frac{1}{2} < 1,$$

$$\lim_{k \to \infty} \frac{a_{k+1}}{a_k} = \lim_{k \to \infty} \frac{\left(k+1\right)! 100^k}{100^{k+1} k!} = \lim_{k \to \infty} \frac{k+1}{100} = \infty > 1. < 1$$

Замечание. Если $\lim_{k\to\infty} \frac{a_{k+1}}{a_k} = 1$, то ничего о сходимости этого ряда сказать нельзя.

Пример. Ряд $\sum_{k=1}^{\infty} \frac{1}{k(k+1)}$ сходится, а ряд $\sum_{k=1}^{\infty} \frac{1}{k}$ расходится, но

$$\lim_{k \to \infty} \frac{k(k+1)}{(k+1)(k+2)} = 1 \text{ u } \lim_{k \to \infty} \frac{k}{k+1} = 1.$$

Теорема (радикальный признак Коши). Если $a_k > 0$ (k = 1, 2, ...) $u \lim_{k \to \infty} \sqrt[k]{a_k} = q$, то при q < 1 ряд $\sum_{k=1}^{\infty} a_k$ сходится, а при q > 1 расходится, причем в последнем случае $a_k \to 0$ $(k \to \infty)$.

Доказательство. \triangleright Так как $q \ne 1$, то $q = 1 \pm \delta$, где $\delta > 0$. Тогда, начиная с некоторого номера N, будет выполнено

$$\left|\sqrt[k]{a_k} - q\right| < \frac{\delta}{2} \Leftrightarrow q - \frac{\delta}{2} < \sqrt[k]{a_k} < q + \frac{\delta}{2} \Leftrightarrow \left(q - \frac{\delta}{2}\right)^k < a_k < \left(q + \frac{\delta}{2}\right)^k.$$

Если $q = 1 - \delta$, то, учитывая, что $\delta \in (0,1)$, воспользуемся правым неравенством

$$a_k < \left(1 - \delta + \frac{\delta}{2}\right)^k = \left(1 - \frac{\delta}{2}\right)^k$$
.

Ряд $\sum_{k=1}^{\infty} \left(1 - \frac{\delta}{2}\right)^k$ сходится, следовательно, сходится и ряд $\sum_{k=1}^{\infty} a_k$.

Если $q = 1 + \delta$, то (левое неравенство)

$$a_k > \left(1 + \delta - \frac{\delta}{2}\right)^k = \left(1 + \frac{\delta}{2}\right)^k \to \infty \quad (k \to \infty).$$

То есть ряд $\sum_{k=1}^{\infty} a_k$ расходится по достаточному признаку расходимости. \triangleleft

Пример. Ряд $\sum_{k=1}^{\infty} \left(\frac{k-2}{k-1}\right)^{k(k-1)}$ сходится, а ряд $\sum_{k=1}^{\infty} \frac{2^{k^2}}{k^k}$ расходится.

Доказательство. ⊳ Применим радикальный признак Коши:

$$\lim_{k \to \infty} \sqrt[k]{\left(\frac{k-2}{k-1}\right)^{k(k-1)}} = \lim_{k \to \infty} \left(1 - \frac{1}{k-1}\right)^{(k-1)} = \frac{1}{e} < 1,$$

$$\lim_{k \to \infty} \sqrt[k]{\frac{2^{k^2}}{k^k}} = \lim_{k \to \infty} \frac{2^k}{k} = \infty > 1. < 1$$

Замечание. Если $\lim_{k\to\infty} \sqrt[k]{a^k} = 1$, то ничего о сходимости этого ряда сказать нельзя.

Пример. Ряд
$$\sum_{k=1}^{\infty} \frac{1}{k(k+1)}$$
 сходится, а ряд $\sum_{k=1}^{\infty} \frac{1}{k}$ расходится, но $\lim_{k \to \infty} \sqrt[k]{\frac{1}{k}} = \lim_{k \to \infty} e^{-\frac{1}{k} \ln k} = e^0 = 1$, аналогично, $\lim_{k \to \infty} \sqrt[k]{\frac{1}{k(k+1)}} = 1$.

Теорема (**интегральный признак Коши**). Если f(x) - неотрицательная

невозрастающая функция, определенная на полуоси $x \ge 1$, то ряд $\sum_{k=1}^{\infty} f(k)$ сходится или

расходится одновременно с интегралом $\int_{1}^{+\infty} f(x)dx$.

Доказательство. \triangleright Из монотонности функции f(x) $(f(k+1) \le f(x) \le f(k), x \in [k,k+1])$ и теоремы об оценке определенного интеграла вытекает, что

$$f(k+1) \le \int_{k}^{k+1} f(x) dx \le f(k),$$

это хорошо это заметно на картинке:

Воспользуемся свойством аддитивности определенного интеграла:

$$\sum_{k=1}^{n-1} f(k+1) \le \int_{1}^{n} f(x) dx \le \sum_{k=1}^{n-1} f(k).$$

То есть для частичных сумм ряда: $S_n = \sum_{k=1}^n f(k)$ получаем оценку (в обозначениях $a_k = f(k)$)

$$S_n - a_1 \le \int_1^n f(x) dx \le S_n - a_n$$

или

$$\int_{1}^{n} f(x) dx + a_{n} \le S_{n} \le \int_{1}^{n} f(x) dx + a_{1}.$$

Так как функция f(x) монотонна и ограничена, то существует конечный предел $\lim_{n\to\infty} a_n = \lim_{n\to\infty} f(n)$. Поэтому из последней оценки вытекает, что у неубывающей

последовательности S_n конечный предел существует тогда и только тогда, когда сходится интеграл $\int\limits_{-\infty}^{+\infty} f\left(x\right)dx$. \lhd

Применим этот признак к исследованию сходимости рядов вида $\sum_{k=1}^{\infty} \frac{1}{k^{\alpha}}$.

Сходимость такого ряда эквивалентна сходимости интеграла $\int\limits_{1}^{\infty} \frac{dx}{x^{\alpha}}$, а нам известно, что при $\alpha > 1$ такие интегралы сходятся, а при $\alpha \le 1$ расходятся.

Абсолютная сходимость ряда.

Определение. Ряд $\sum_{k=1}^{\infty} a_k$ называется абсолютно сходящимся, если сходится ряд из

модулей $\sum_{k=1}^{\infty} \left| a_k \right|$.

Теорема. Из абсолютной сходимости следует и сходимость исходного ряда. Доказательство. ⊳ В самом деле, в случае абсолютной сходимости выполнено условие Коши:

$$\lim_{n,m\to\infty}\sum_{k=n}^m |a_k| = 0.$$

Но тогда условие Коши будет выполнено и для исходного ряда, поскольку

$$\left| \sum_{k=n}^{m} a_k \right| \leq \sum_{k=n}^{m} \left| a_k \right| . \triangleleft$$

Определение. Если ряд сходится, но не абсолютно, то он называется условно сходящимся.

Пример. Ряд $\sum_{k=1}^{\infty} \frac{\sin k}{k^2}$ сходится абсолютно, а ряд $\sum_{k=1}^{\infty} \frac{\left(-1\right)^{k-1}}{k}$ условно.

Доказательство. Применим к первому ряду признак сравнения:

$$\left|\frac{\sin k}{k^2}\right| \le \frac{1}{k^2}$$
, а ряд $\sum_{k=1}^{\infty} \frac{1}{k^2}$ сходится.

Рассмотрим последовательность частичных сумм второго ряда:

$$S_{2n} = \left(1 - \frac{1}{2}\right) + \left(\frac{1}{3} - \frac{1}{4}\right) + \dots + \left(\frac{1}{2n - 1} - \frac{1}{2n}\right) = \frac{1}{2} + \frac{1}{3 \cdot 4} + \dots + \frac{1}{2n(2n - 1)}.$$

Сходимость ряда $\sum_{k=1}^{\infty} \frac{1}{2k(2k-1)}$ совпадает со сходимостью (предельный признак

сравнения) ряда $\sum_{k=1}^{\infty} \frac{1}{k^2}$, а этот ряд сходится. Поэтому существует предел $S = \lim_{n \to \infty} S_{2n}$.

Поскольку же $\lim_{n\to\infty} \left|S_{2n+1} - S_{2n}\right| = \lim_{n\to\infty} \frac{1}{2n+1} = 0$, то существует и общий предел $S = \lim_{n\to\infty} S_n$.

Ряд же из абсолютных величин - $\sum_{k=1}^{\infty} \frac{1}{k}$ (гармонический) расходится.

Теорема. Если ряд $\sum_{k=1}^{\infty} a_k$ абсолютно сходится, то ряд $\sum_{k=1}^{\infty} \tilde{a}_k$, полученный из

исходного перестановкой его слагаемых, также будет сходиться, причем $\sum_{k=1}^{\infty} \tilde{a}_k = \sum_{k=1}^{\infty} a_k$.

Для доказательства этого утверждения нам понадобится следующая лемма.

Лемма. Если $a_k \ge 0$ $\left(k=1,2,...\right)$ и $\sum_{k=1}^\infty a_k$ сходится, то ряд $\sum_{k=1}^\infty \tilde{a}_k$, полученный из

исходного перестановкой его слагаемых, также будет сходиться, причем $\sum_{k=1}^{\infty} \tilde{a}_k = \sum_{k=1}^{\infty} a_k$.

Доказательство. Пусть S - сумма исходного ряда, а n_k - номер элемента a_k в последовательности $\{\tilde{a}_k\}$. Так как исходный ряд сходится, то последовательность его частичных сумм $S_n = \sum_{k=1}^n a_k$ будет ограничена сверху S. Рассмотрим частичную сумму переставленного ряда $\tilde{S}_m = \sum_{k=1}^m \tilde{a}_k$. Положим $n = \max_{1 \le k \le m} n_k$, тогда

$$\tilde{S}_m \leq \sum_{k=1}^n a_k \leq S \Rightarrow \tilde{S}_m \leq S$$
.

То есть неубывающая последовательность \tilde{S}_m сходится, а ее предел (сумма переставленного ряда) $\tilde{S} \leq S$.

В свою очередь исходный ряд $\sum_{k=1}^\infty a_k$ мы можем рассматривать как перестановку ряда $\sum_{k=1}^\infty \tilde{a}_k$, но тогда $S \leq \tilde{S}$. Это означает, что $S = \tilde{S}$.

Перейдем к доказательству теоремы. Пусть $\sum_{k=1}^{\infty} \left| a_k \right| = S$. Рассмотрим две последовательности:

$${a_k^+} = \frac{1}{2}({|a_k|} + {a_k})$$
 и ${a_k^-} = \frac{1}{2}({|a_k|} - {a_k})$.

Так как $\left|\sum_{k=n}^m a_k^\pm\right| \le \sum_{k=n}^m \left|a_k\right| \underset{n,m\to\infty}{\longrightarrow} 0$, то ряды $\sum_{k=1}^\infty a_k^+$ и $\sum_{k=1}^\infty a_k^-$ - сходящиеся, пусть их суммы соответственно S^+ и S^- . Тогда $S=S^+-S^-$.

Возьмем перестановку $\sum_{k=1}^\infty \tilde{a}_k^-$ исходного ряда и построим по ней $\sum_{k=1}^\infty \tilde{a}_k^+$ и $\sum_{k=1}^\infty \tilde{a}_k^-$. Из леммы вытекает, что $\sum_{k=1}^\infty \tilde{a}_k^+ = S^+$ а $\sum_{k=1}^\infty \tilde{a}_k^- = S^-$. Поэтому переставленный ряд сходится, и $\sum_{k=1}^\infty \tilde{a}_k = S$.

Теорема (Римана). Если ряд $\sum_{k=1}^{\infty} a_k$ сходится условно, то для любого числа S найдется такая перестановка $\sum_{k=1}^{\infty} \tilde{a}_k$ исходного ряда, что $\sum_{k=1}^{\infty} \tilde{a}_k = S$. Слагаемые также можно переставить так, чтобы полученный ряд расходился.

Доказательство. Рассмотрим последовательности

$$\left\{a_{k}^{+}\right\} = \frac{1}{2}\left(\left\{\left|a_{k}\right|\right\} + \left\{a_{k}\right\}\right) \text{ и } \left\{a_{k}^{-}\right\} = \frac{1}{2}\left(\left\{\left|a_{k}\right|\right\} - \left\{a_{k}\right\}\right).$$

Так как ряд $\sum_{k=1}^{\infty} a_k$ сходится, то $\lim_{k\to\infty} a_k^{\pm} = 0$. Кроме того, имеем

$$\sum_{k=1}^{\infty} a_k^+ = \frac{1}{2} \left(\sum_{k=1}^{\infty} a_k + \sum_{k=1}^{\infty} a_k^- \right), \qquad \sum_{k=1}^{\infty} a_k^- = -\frac{1}{2} \left(\sum_{k=1}^{\infty} a_k - \sum_{k=1}^{\infty} a_k^+ \right), \quad \sum_{k=1}^{\infty} |a_k| = \sum_{k=1}^{\infty} a_k^+ - \sum_{k=1}^{\infty} a_k^-.$$

Видим, что если сходится один из рядов $\sum_{k=1}^{\infty} a_k^{\pm}$, то сходится и другой, а значит, и ряд из модулей, что неверно. Поэтому оба вспомогательных ряда расходятся, и их суммы неограниченно возрастают.

Рассмотрим случай S=0.

Положим $n_1=1, \qquad S_{n_1}=a_1^+\geq 0$. Будем последовательно вычитать элементы последовательности $\left\{a_k^-\right\}$, пока (в первый раз) не получим $S_{n_2}<0$, далее будем прибавлять неиспользованные элементы из $\left\{a_k^+\right\}$, пока (в первый раз) не получим $S_{n_3}\geq 0$, потом снова начнем вычитать и т.д.. Пусть $a_{m_i}^+$ - последний прибавленный элемент в сумме $S_{n_{2i+1}}$, а $a_{l_i}^-$ - последний, который мы вычли при построении $S_{n_{2i}}$. Очевидно, что $0\leq S_{n_{2i+1}}< a_{m_i}^+$, $\left|S_{n_{2i}}\right|\leq a_{l_i}^ \left(S_{n_{2i}}<0\right)$ и $S_{n_{2i}}< S_j< S_{n_{2i+1}}$ при $n_{2i}< j< n_{2i+1}$. Поскольку же $\lim_{k\to\infty}a_k^\pm=0$, то и $\lim_{j\to\infty}S_j=0$.

Проводя аналогичные рассуждения, можно получить любую сумму. Если же следить за тем, чтобы $\left|S_{n_i}\right| \ge 1$, то получим расходящийся ряд.

Признаки сходимости знакопеременных рядов.

Теорема (**признаки Коши и Даламбера**). Пусть дан ряд $\sum_{k=1}^{\infty} a_k$ и пусть существует

предел $\lim_{k\to\infty} \sqrt[n]{|a_k|}$ или $\lim_{k\to\infty} \left|\frac{a_{k+1}}{a_k}\right|$, равный q. Тогда если q<1, то ряд сходится абсолютно, а если q>1, то расходится.

Доказательство. \triangleright Если q < 1, то ряд из модулей сходится по признаку Коши или Даламбера для знакопостоянных рядов, следовательно, исходный ряд сходится абсолютно. Если же q > 1, то $\lim_{k \to \infty} \left| a_k \right| \neq 0$, и ряд $\sum_{i=1}^{\infty} a_i$ расходится \triangleleft

Теорема (признак Лейбница). Если последовательность a_k членов знакочередующегося ряда $\sum\limits_{k=1}^{\infty} \left(-1\right)^{k-1} a_k$ монотонно убывает к нулю ($a_k \geq a_{k+1} \quad (k \geq 1)$ и $\lim_{k \to \infty} a_k = 0$), то ряд сходится, а для его остатка $R_n = \sum_{k=n+1}^{\infty} \left(-1\right)^{k-1} a_k$ справедлива оценка $|R_n| \leq a_{n+1}$.

Доказательство. > Рассмотрим последовательность частичных сумм с четными номерами. Видим, что

$$S_{2(n+1)} - S_{2n} = \sum_{k=1}^{2n+2} (-1)^{k-1} a_k - \sum_{k=1}^{2n} (-1)^{k-1} a_k = (-1)^{2n} a_{2n+1} + (-1)^{2n+1} a_{2n+2} = a_{2n+1} - a_{2n+2} \ge 0,$$

то есть последовательность S_{2n} - неубывающая. В частности, имеем $S_{2n} \geq S_2$.

Для частичных сумм с нечетными номерами имеем

$$S_{2n+1} - S_{2n-1} = \sum_{k=1}^{2n+1} (-1)^{k-1} a_k - \sum_{k=1}^{2n-1} (-1)^{k-1} a_k = (-1)^{2n-1} a_{2n} + (-1)^{2n} a_{2n+1} = -a_{2n} + a_{2n+1} \le 0,$$

поэтому последовательность S_{2n+1} - невозрастающая, и $S_{2n+1} \leq S_1$.

Имеем далее

$$S_1 \ge S_{2n+1} = S_{2n} + (-1)^{2n} a_{2n+1} = S_{2n} + a_{2n+1} \ge S_{2n} \ge S_2$$

то есть

$$S_1 \ge S_{2n+1} \ge S_2$$
 и $S_1 \ge S_{2n} \ge S_2$.

По теореме Вейерштрасса о пределе монотонной последовательности существуют пределы

$$S^* = \lim_{n \to \infty} S_{2n} \quad (S_{2n} \le S^*) \text{ и } S_* = \lim_{n \to \infty} S_{2n+1} \quad (S_* \le S_{2n+1}).$$

Поскольку же

$$\lim_{n \to \infty} (S_{2n+1} - S_{2n}) = \lim_{n \to \infty} a_{2n+1} = 0,$$

то эти пределы равны: $S^* = S_* = S = \sum_{k=0}^{\infty} (-1)^k a_k$. Причем для любых натуральных n и m

будет справедливо $S_{2n} \le S \le S_{2m+1}$. Поэтому

$$\begin{aligned} \left| R_{2n} \right| &= \left| S - S_{2n} \right| = S - S_{2n} \le S_{2n+1} - S_{2n} = \left(-1 \right)^{2n} a_{2n+1} = a_{2n+1}, \\ \left| R_{2n-1} \right| &= \left| S_{2n-1} - S \right| = S_{2n-1} - S \le S_{2n-1} - S_{2n} = -\left(-1 \right)^{2n-1} a_{2n} = a_{2n}, \end{aligned}$$

то есть и для четных, и для нечетных номеров выполняется неравенство

$$|R_n| \le a_{n+1} . \lhd$$

Замечание. Поскольку сходимость ряда не измениться, если заменить или отбросить конечное число его элементов, то знакочередующийся ряд

 $\sum_{k=0}^{\infty} (-1)^k a_k \quad (a_k \ge 0) \ npu \lim_{k \to \infty} a_k = 0 \ будет \ сходиться, даже если последовательность <math>a_k$ будет монотонной лишь начиная с некоторого номера.

Пример. Ряд
$$\sum_{k=0}^{\infty} \frac{(-1)^k k}{k^2 + k + 9}$$
 сходится.

Доказательство. \triangleright Очевидно, что $\lim_{k\to\infty}\frac{k}{k^2+k+9}=0$. Рассмотрим функцию

$$\varphi(x) = \frac{x}{x^2 + x + 9}$$
. Ее производная $\varphi'(x) = \frac{x^2 + x + 9 - x(2x + 1)}{\left(x^2 + x + 9\right)^2} = \frac{-x^2 + 9}{\left(x^2 + x + 9\right)^2} < 0$ при $x > 3$,

поэтому последовательность $\frac{k}{k^2+k+9}$ монотонно убывает, начиная с третьего номера.

Ряд сходится по признаку Лейбница. ⊲

Преобразование Абеля.

Рассмотрим сумму $\sum_{k=m}^{n} a_k b_k$. Пусть $B_n = \sum_{k=1}^{n} b_k \quad (n \ge 1)$, при этом положим $B_0 = 0$.

Тогда

$$\sum_{k=m}^{n} a_k b_k = \sum_{k=m}^{n} (B_k - B_{k-1}) a_k = \sum_{k=m}^{n} B_k a_k - \sum_{k=m}^{n} B_{k-1} a_k = \sum_{k=m}^{n} B_k a_k - \sum_{k=m-1}^{n-1} B_k a_{k+1} = B_n a_n - B_{m-1} a_m + \sum_{k=m}^{n-1} B_k (a_k - a_{k+1}).$$

Преобразованием Абеля называется следующая формула:

$$\sum_{k=m}^{n} a_k b_k = B_n a_n - B_{m-1} a_m + \sum_{k=m}^{n-1} B_k (a_k - a_{k+1}).$$

Эта формула является дискретным аналогом формулы интегрирования по частям для определенных интегралов. Если m = 1, то

$$\sum_{k=1}^{n} a_k b_k = B_n a_n - \sum_{k=1}^{n-1} B_k (a_{k+1} - a_k).$$

Теорема (**признак Дирихле**). Если частичные суммы B_n ряда $\sum_{k=1}^{\infty} b_k$ ограничены в совокупности $(|B_n| \leq M)$, а числа a_k образуют монотонную последовательность, стремящуюся к нулю, то ряд $\sum_{k=1}^{\infty} a_k b_k$ сходится.

Доказательство. \triangleright Проверим для ряда $\sum_{k=1}^{\infty} a_k b_k$ справедливость критерия Коши:

$$\left| \sum_{k=m}^{n} a_{k} b_{k} \right| = \left| B_{n} a_{n} - B_{m-1} a_{m} + \sum_{k=m}^{n-1} B_{k} \left(a_{k} - a_{k+1} \right) \right| \le M \left(\left| a_{n} \right| + \left| a_{m} \right| + \sum_{k=m}^{n-1} \left| a_{k} - a_{k+1} \right| \right) = M \left(\left| a_{n} \right| + \left| a_{m} \right| + \left| a_{m} - a_{n} \right| \right) \le 2M \left(\left| a_{n} \right| + \left| a_{m} \right| \right) \xrightarrow{n \to \infty} 0,$$

и следовательно, ряд сходится.

Замечание. Часть теоремы о признаке Лейбница, касающаяся собственно сходимости ряда, является следствием признака Дирихле.

Действительно, в условиях теоремы Лейбница $b_k = (-1)^k \ (k \ge 0), \ B_{2n} = 1, \ B_{2n+1} = 0 \ (n \ge 0),$ то есть последовательность частичных сумм B_n ограничена, а a_k монотонно стремится к нулю.

Пример. Ряд
$$\sum_{t=1}^{\infty} \frac{\cos kt}{k}$$
 $(t \neq 2\pi n, n \in \mathbf{Z})$ сходится.

Доказательство. \triangleright Последовательность $a_k = \frac{1}{k}$ монотонно стремится к нулю.

Покажем, что последовательность частичных сумм $B_n = \sum_{k=1}^n \cos kt$ ограничена. Для этого помножим и разделим нашу сумму на $\sin \frac{t}{2}$:

3ada4a. Докажите, что ряд $\sum_{k=1}^{\infty} \frac{\sin kt}{k}$ сходится на всей числовой оси.

(Указание: $\sin 2\pi n = 0$, а при $t \neq 2\pi n$ примените метод из предыдущего доказательства.)