Министерство образования и науки РФ ФГБПОУ ВПО Тульский государственный университитет КАФЕДРА АВТОМАТИКИ И ТЕЛЕМЕХАНИКИ

РЕШЕНИЕ СИСТЕМ ЛИНЕЙНЫХ АЛГЕБРАИЧЕСКИХ УРАВНЕНИЙ

Лабораторная работа № 1 по курсу «Вычислительный практикум»

Вариант № 4

Выполнил:	студент группы 220601	Белым А.А.
		(подпись)
Проверил:	к. фм. н., доцент	Карцева А.С.
		(подпись)

Цель работы

Цель работы заключается в том, чтобы изучить методы решения систем линейных алгебраических уравнений (СЛАУ) и написать программу, реализующий один из таких методов.

Задание на работу

Решить систему линейных алгебраических уравнений методом Гаусса-Зайделя.

Обеспечить ввод с клавиатуры и из файла (по выбору пользователя), а также сохранение системы вместе с результатом в файл.

Обеспечить подсчет количества операций (сложения, вычитания, умножения и деления по отдельности и в сумме), для итерационных методов – дополнительно – количество потребовавшихся итераций и вывод на экран соответствующей статистики.

Осуществлять контроль сходимости и выполнять проверку на существование и единственность решения.

Теоретическая справка

Схема алгоритма

На рисунке 1 представлена схема обобщенного алогритма решения системы линейных алгебраических уравнений.

Рисунок 1 - Схема обобщенного алогритма решения СЛАУ

На рисунке 2 представлена схема алогритма расчета рангов основной и расширенной матрицы СЛАУ.

Рисунок 2 - Схема алогритма расчета рангов

На рисунке 3 представлена схема алогритма преобразования матрицы СЛАУ к верхнетрапециедальному виду с полным переупорядовачиванием.

Рисунок 3 - Схема алогритма преобразования матрицы СЛАУ

На рисунке 4 представлена схема алогритма нахождения индексов максимального элемента в подматрице (i,i,n,n) основной матрицы СЛАУ A_{NxN} .

Рисунок 4 - Схема алогритма нахождения индексов максимального элемента

На рисунке 5 представлена схема алогритма проверки матрицы на диагональное преобладание.

Рисунок 5 - Схема алогритма проверки матрицы на диагональное преобладание

На рисунке 6 представлена схема алогритма домножения расширенной матрицы СЛАУ на транспонированную основную.

Рисунок 6 - Схема алогритма домножения расширенной матрицы СЛАУ

На рисунке 7 представлена схема алогритма решения СЛАУ по методу Гаусса-Зейделя.

Рисунок 7 - Схема алогритма решения СЛАУ по методу Гаусса-Зейделя

На рисунке 8 представлена схема алогритма шага итерации по методу Гаусса-Зейделя.

Рисунок 8 - Схема алогритма шага итерации по методу Гаусса-Зейделя

Инструкция пользователя

Программа позволяет решить систему линейных алгебраических уравнений с вещественными коэффициентами.

Приступая к работе, передайте программе расширенную матрицу системы, элементы уоторой разделяются пробелами. Ввод новой строки начинается с нажатия кнопки <Enter>. Матрица может быть не квадратной, но все строки должны быть одинаковой длины. Вместо отсутствующих членов уравнения пишется 0. После ввода матрицы передайте программе необходимую точность вычислений. Далее программа спросит о необходимости контроля сходимости метода на каждом шаге вычислений. Проверка сходимости позволяет предотвратить зависание программы, но в некоторых случаях является слишком строгим. Рекомендуется в первый раз запускать программу с включенным контролем сходимости, в случае отказа попробовать его отключить.

После ввода данных программа приступит к вычислениям. Программа определяет, если система не имеет решений или имеет их бесконечное множество, и выводит соответствующее сообщение на экран. Если система имеет единственное решение, программа выведет его в виде столбца $x_1, x_2...x_n$. Также программа выведет информацию о количестве итераций и числе использованных арифметических операций. По желанию, всю вышеперечисленную информацию программа может записать в файл.

Инструкция программиста

При разработке программы вычисления значения функции были написаны следующие процедуры и функции:

1. Функция solvesys - функция решения СЛАУ. Возвращает - решение и статистику о решении. Если решение не найдено, возвращает None и поясняющее сообщение.

solvesys(a,e,iter_check=True)

Параметры функции представлены в таблице 1:

имя	ТИП	предназначение
a	список	расширенная матрица СЛАУ
e	веществ.	точность вычислений
iter_check	булев.	флаг необходимости проверки сходимости на
		каждом шаге итераций

Локальные переменные функции представлены в таблице 2:

Таблица 2 - Локальные переменные функции решения СЛАУ

имя	ТИП	предназначение
at	список	матрица системы, приведенная к трапец. виду
		(с полным переупорядовачением)
r,rext	целое	ранги основной и расширенной матриц СЛАУ

2. Функция gauss_transform - функция преобразования расширенной матрицы СЛАУ с полным переупорядовачиванием. Возвращает преобразованную матрицу.

gauss_transform(a)

Параметры функции представлены в таблице 3:

Таблица 3 - Параметры функции преобразования расширенной матрицы СЛАУ

имя	тип	предназначение	
a	список	расширенная матрица СЛАУ	

Локальные переменные функции представлены в таблице 4:

Таблица 4 - Локальные переменные функции преобразования расширенной матрицы СЛАУ

имя	тип	предназначение
at	список	копия матрицы а для преобразования.
i,j,k	целое	переменные-счетчики для перебора элементов матрицы а.
i2,j2	целое	координаты элемента для перестановки на диагональ
		матрицы
factor	веществ.	коэффициент домножения на слагаемую строку матрицы

3. index_of_max - функция нахождения индексов максимального по модулю элемента в подматрице (i,i,n,n) в основной матрице СЛАУ A(n x n).

Внутренняя функция функции gauss transform.

index_of_max()

Переменные объемлющей функции функции представлены в таблице 5 :

Таблица 5 - Переменные объемлющей функции функции нахождения индексов максимального по модулю элемента

имя	ТИП	предназначение
at	список	копия матрицы а для преобразования.
i	целое	переменная-счетчик; кордината левого верхнего угла подматрицы

Локальные переменные функции представлены в таблице 6 :

 Таблица 6 - Локальные переменные функции нахождения индексов максимального по

 модулю элемента

имя	тип	предназначение
m	веществ.	модуль максимального элемента
j,k	целое	переменные-счетчики для перебора элементов матрицы at.
i2,j2	целое	индексы максимального элемента

4. Функция is_positive - функции проверки матрицы на диагональное преобладание. Если матрица имееет диагональное преобладание, возвращает True, иначе возвращает False.

is positive(a)

Параметры функции представлены в таблице 7:

Таблица 7 - Параметры функции проверки матрицы на диагональное преобладание

имя	тип	предназначение	
a	список	расширенная матрица СЛАУ	

Локальные переменные функции представлены в таблице 8 :

 Таблица 8 - Локальные переменные функции проверки матрицы на диагональное

 преобладание

имя	ТИП	предназначение
k	целое	количество преобладающих диагональных элементов
S	веществ.	сумма модулей элементов строки без диагонального.
i,j	целое	переменные-счетчики для перебора элементов матрицы а.

5. rank - функция расчета рангов основной и расширенной матриц СЛАУ. rank(a)

Параметры функции представлены в таблице 9:

Таблица 9 - Параметры функции расчета рангов основной и расширенной матриц

имя	тип	предназначение
a	список	расширенная матрица СЛАУ

Локальные переменные функции представлены в таблице 10:

Таблица 10 - Локальные переменные функции расчета рангов основной и расширенной матриц

имя	тип	предназначение
at	список	преобразованная в трапециедальную матрица а
r,rext	целое	ранги основной и расширенной матриц СЛАУ
i	целое	переменная-счетчик для перебора элементов матрицы а.

6. at_matr - функция домножения расширенной матрицы СЛАУ на транспонированную основную.

at matr(a)

Параметры функции представлены в таблице 11:

Таблица 11 - Параметры функции домножения расширенной матрицы на транспонированную

имя	ТИП	предназначение
a	список	расширенная матрица СЛАУ

Локальные переменные функции представлены в таблице 12:

Таблица 12 - Локальные переменные функции домножения расширенной матрицы на транспонированную

имя	ТИП	предназначение
an	список	преобразованная матрица СЛАУ
i,j,k	целое	переменные-счетчики.

7. norm - функция расчета нормы матрицы α для методов простых итераций и Гаусса-Зейделя.

norm(a)

Параметры функции представлены в таблице 13:

Таблица 13 - Параметры функции расчета нормы матрицы

имя	ТИП	предназначение
a	список	расширенная матрица СЛАУ

Локальные переменные функции представлены в таблице 14:

Таблица 14 - Локальные переменные функции расчета нормы матрицы

имя	тип	предназначение
S	веществ.	сумма квадратов строки матрицы α
line	список	строка матрицы alpha
a_ij	веществ.	текущий элемент alpha
i,j	целое	переменные-счетчики.

8. zeidel - функция решения СЛАУ по методу Гаусса-Зейделя Возвращает - решение и статистику о решении. Если решение не найдено, возвращает None и поясняющее сообщение.

zeidel(a,e,iter check)

Параметры функции представлены в таблице 15:

Таблица 15 - Параметры функции решения СЛАУ по методу Гаусса-Зейделя

имя	тип	предназначение
a	список	расширенная матрица СЛАУ
e	веществ.	точность вычислений
iter_check	булев.	флаг необходимости проверки сходимости на
		каждом шаге итераций

Локальные переменные функции представлены в таблице 16:

Таблица 16 - Локальные переменные функции решения СЛАУ по методу Гаусса-Зейделя

имя	ТИП	предназначение
X	список	решение СЛАУ
stats	словарь	статистика решения
n	веществ.	коэффициент оценки погрешности
ek0,ek	веществ.	точность на предыдущем и текущем шаге

9. z_step - функция итерации метода Гаусса-Зейделя. Внутрення функция функции zeidel. Возвращает рассчитанное решение и точность этого решения.

Переменные объемлющей функции(zeidel) функции представлены в таблице 17 :

Таблица 17 - Переменные объемлющей функции функции итерации метода Гаусса-Зейделя

имя	ТИП	предназначение
a	список	расширенная матрица СЛАУ
X	список	решение СЛАУ
stats	словарь	статистика решения

Локальные переменные функции представлены в таблице 18:

Таблица 18 - Локальные переменные функции итерации метода Гаусса-Зейделя

имя	тип	предназначение
ek	веществ.	точность на текущем шаге
i,j	целое	переменные-счетчики для перебора элементов матрицы а.

Текст программы

Ниже представлен текст программы на языке Python 3.2, реализующей метод решения СЛАУ Гаусс-Зейделя.

Тестовый пример

Ниже на рисунке представлен пример работы программы для системы, имеющей бесконечно много решений.

```
[wolf2105@archlinux Mat1]$ ./mat.py
Заполните матрицу системы.
1 — ВВести из файла,
2 — ВВести с клавиатуры,
иначе — Выход.
ответ: 2
ВВедите расширенную матрицу системы:
(окончание ВВода — COTROL+D)
1 2 3 4
5 6 7 8
9 10 11 12
ВВедите точность Вычислений: 0.0001
Проверять сходимость на каждом шаге?([yes]/no): по
9 системы Бесконечно много решений!
```

Рисунок 9 - Пример работы программы для несовместной системы

На рисунке представлен пример работы программы для системы, имеющей единственное решение.

```
Заполните матрицу системы.

    Ввести из файла,

2 - ввести с клавиатуры,
иначе – Выход.
ответ: 1
Введите имя файла: matrix.txt
Введите точность вычислений: 0.0001
Проверять сходимость на каждом шаге?([yes]/no): no
Выведите результаты работы.

    ВыВести В файл.

2 – Вывести на экран,
иначе – Выход.
ответ: 2
Расширенная матрица системы:
1.0 -1.0 1.0 2.0
0.0 1.0 -1.0 -1.0
0.0 1.0 -3.0 -5.0
Точность решения: 0.0001
Решение:
x[1]=0.9999195966152277
x[2]=0.9998877232451354
x[3]=1.9999562745100408
Статистика:
Число умножений: 396
Число Вычитаний: 198
Число делений: 198
Число йтераций: 198
Число сложений: 396
```

Рисунок 10 - Пример работы программы для совместной системы

Вывод

В этой лабораторной работе я изучил различные методы решения СЛАУ. Такие системы часто встречаются в различных областях науки и хозяйства - математике, физике, химии, экономике, однако решение систем вручную достаточно сложная и утомительная операция. Поэтому необходимо знать численные методы решения СЛАУ, и уметь реадизовать их на практике.