1.Introduction

OSFormer: One-Stage Camouflaged Instance Segmentation with Transformers

Jialun Pei¹, Tianyang Cheng¹, Deng-Ping Fan², He Tang¹, Chuanbo Chen¹ and Luc Van Gool²

¹Huazhong University of Science and Technology ²ETH Zurich

Problems:

- COD only separates camouflages at region-level while ignoring instance-level identification.
- CIS needs to be performed in more complex scenarios with high feature similarity and results in class-agnostic masks.
- Camouflaged instances display different camouflage strategies in a scene, and they may combine to form mutual camouflage.
- The transformer-based model requires embracing large-scale training data and longer training epochs.

(b) One-stage: OSFormer (CNN+Transformer)

Contributions:

- Proposed OSFormer, the first one-stage transformer-based framework designed for the CIS task.
- Present a Location-Sensing Transformer (LST) to dynamically seize instance clues at different locations. LST contains an encoder with the BC-FFN and a decoder with the proposed location-guided queries.
- A novel Coarse-to-Fine Fusion (CFF) is proposed to get the high-resolution mask features. Reverse edge attention (REA) is embedded to highlight the edge information of instances
- OSFormer converges quickly with limited 3,000 training images, outperforming 11 popular instance segmentation approaches by a large margin, 8.5% AP improvement on the COD10K test set.

2.One-Stage Transformer for CIS (OSFormer)

The proposed OSFormer comprises four essential components:

- A CNN backbone to extract object feature representation.
- A location-sensing transformer (LST) to produce the instance-aware embeddings.
- A coarse-to-fine fusion (CFF) to yield a high-resolution mask feature.
- A dynamic camouflaged instance normalization (DCIN) to predict the final masks.

Structure of our location-sensing transformer

Structure of our coarse-to-fine fusion

Structure of our dynamic camouflaged instance normalization

3.Ablation Studies

Encoder	$_{ m LGQ}$	BC-FFN	CFF	REA	AP	AP_{50}	AP_{75}
	√	✓	√	√	33.7	63.4	32.0
\checkmark		✓	✓	√	34.7	64.1	33.1
\checkmark	✓		✓	✓	37.2	67.3	35.8
\checkmark	✓	✓			38.0	69.2	36.8
\checkmark	✓	✓	✓		39.3	69.7	38.5
✓	✓	✓	✓	✓	41.0	71.1	40.8

 $41.0_{+6.0}$

 $71.1_{+6.3}$

 $40.8_{\ +7.6}$

Location-Guided Queries (Ours)

4.Result

	Methods	Backbones	Params	FLOPs	COD10K-Test			NC4K-Test		
	Wethods				AP	AP_{50}	AP_{75}	AP	AP_{50}	AP_{75}
Two- S tage	Mask R-CNN [23]	ResNet-50	43.9M	186.3G	25.0	55.5	20.4	27.7	58.6	22.7
	Mask R-CNN [23]	ResNet-101	62.9M	254.5G	28.7	60.1	25.7	36.1	68.9	33.5
	MS R-CNN [26]	ResNet-50	60.0M	198.5G	30.1	57.2	28.7	31.0	58.7	29.4
	MS R-CNN [26]	ResNet-101	79.0M	251.1G	33.3	61.0	32.9	35.7	63.4	34.7
	Cascade R-CNN [4]	ResNet-50	71.7M	334.1G	25.3	56.1	21.3	29.5	60.8	24.8
	Cascade R-CNN [4]	ResNet-101	90.7M	386.7G	29.5	61.0	25.9	34.6	66.3	31.5
	HTC [7]	ResNet-50	76.9M	331.7G	28.1	56.3	25.1	29.8	59.0	26.6
	HTC [7]	ResNet-101	95.9M	384.3G	30.9	61.0	28.7	34.2	64.5	31.6
	BlendMask [6]	ResNet-50	35.8M	233.8G	28.2	56.4	25.2	27.7	56.7	24.2
	BlendMask [6]	ResNet-101	54.7M	302.8G	31.2	60.0	28.9	31.4	61.2	28.8
	Mask Transfiner [29]	ResNet-50	44.3M	185.1 G	28.7	56.3	26.4	29.4	56.7	27.2
	Mask Transfiner [29]	ResNet-101	63.3M	253.7G	31.2	60.7	29.8	34.0	63.1	32.6
	YOLACT [3]	ResNet-50	-	-	24.3	53.3	19.7	32.1	65.3	27.9
One-Stage	YOLACT [3]	ResNet-101	-	-	29.0	60.1	25.3	37.8	70.6	35.6
	CondInst [49]	ResNet-50	34.1 M	200.1G	30.6	63.6	26.1	33.4	67.4	29.4
	CondInst [49]	ResNet-101	53.1M	269.1G	34.3	67.9	31.6	38.0	71.1	35.6
	QueryInst [19]	ResNet-50	-	-	28.5	60.1	23.1	33.0	66.7	29.4
	QueryInst [19]	ResNet-101	-	-	32.5	65.1	28.6	38.7	72.1	37.6
	SOTR [22]	ResNet-50	63.1M	476.7G	27.9	58.7	24.1	29.3	61.0	25.6
	SOTR [22]	ResNet-101	82.1M	549.6G	32.0	63.6	29.2	34.3	65.7	32.4
	SOLOv2 [57]	ResNet-50	46.2M	318.7G	32.5	63.2	29.9	34.4	65.9	31.9
	SOLOv2 [57]	ResNet-101	65.1M	394.6G	35.2	65.7	33.4	37.8	69.2	36.1
	OSFormer (Ours)	ResNet-50	46.6M	324.7G	41.0	71.1	<u>40.8</u>	42.5	72.5	42.3
	OSFormer (Ours)	ResNet-101	65.5M	398.2G	42.0	71.3	42.8	44.4	73.7	45.1

5. Visualization

