Package 'BioDataome'

November 30, 2017

Version 0.0.0.9000

Description BioDataome package contains all the functions used to download, preprocess and annotate gene expression and methylation microarray data from Gene Expression Omnibus, as well as RNASeq data from recount.

Depends R (>= 3.4.2), foreach, SCAN.UPC

Imports GEOquery, Biobase, RCurl, Rfast, SCAN.UPC, XML, doParallel, parallel, rentrez

License What license is it under?

Encoding UTF-8

LazyData true

Index

RoxygenNote 6.0.1

VignetteBuilder knitr

Suggests BiocStyle, knitr, rmarkdown

R topics documented:

compareDsetList	2
compareDsets	2
controlSamples	3
curateGSE	4
curateRecountRNASeq	4
diseasetoChildrenNodes	5
diseasetoParentNodes	5
downloadPhenotype	6
downloadPhenotypePlatform	6
downloadRaw	7
downloadRecount	7
entrezIDtoGSE	8
GSEmetadata	8
GSEtoDisease	9
GSEtoDiseaseGEO	9
preprocessGEO	10
preprocessGEOMethylation	10
recountIDtoGSE	11
	1 1

2 compareDsets

compareDsetList

Column wise comparison of a dataset to a list of datasets.

Description

This function finds all datasets of the list y for which dataset x shares samples. The datasets are in the form variables (probes) x samples. The number of variables (probes) in both datasets should be the same.

Usage

```
compareDsetList(x, y)
```

Arguments

x the path to a normalized dataset x

y a character vector of all paths to datasets to compare

First example runs with datasets stored in .csv in BioDataome.

y<-paste0("http://dataome.mensxmachina.org/data/Homo%20sapiens/GPL570/",y)</pre>

Value

a character vector of all datasets for which dataset x shares at least one sample, separated by ;

Examples

Let us assume we want to compare normalized gene expression dataset GSE86013 with datasets: GSE86015, GSE9008, GSE9119. x and y can be either local paths where .Rda normalized data are stored or links to the csv files in BioDataome.

Since these datasets are large we propose to use fread from package data.table to read datasets faster install.packages("data.table") library("data.table") x<-"http://dataome.mensxmachina.org/data/Homo%20sapiens/GPL570/GSE86013.csv" y<-c("GSE86015.csv","GSE9008.csv","GSE9119.csv")

compareDsets

commonGSEs<-compareDsetList(x,y)</pre>

Column wise comparison of two datasets This function finds how many samples are shared between two datasets. The datasets are in the form variables (probes) x samples. The number of variables (probes) in both datasets should be the same

Description

Column wise comparison of two datasets This function finds how many samples are shared between two datasets. The datasets are in the form variables (probes) x samples. The number of variables (probes) in both datasets should be the same

controlSamples 3

Usage

```
compareDsets(d1, d2)
```

Arguments

d1 a numeric matrix of a datasetd2 a numeric matrix of a dataset

Value

the number of equal samples

Examples

Let us assume we want to compare two normalized gene expression datasets from the same platform d1<-get(load(url("http://dataome.mensxmachina.org/data/Homo%20sapiens/GPL570/GSE86013.Rda"))) d2<-get(load(url("http://dataome.mensxmachina.org/data/Homo%20sapiens/GPL570/GSE86015.Rda"))) commons<-compareDsets(d1,d2)

controlSamples

Discover control samples from phenotype data in GEO

Description

This function discovers control samples from the series matrix found in GEO. It searches for specific keywords that are often used to denote controls in specific columns of the series matrices.

Usage

```
controlSamples(d)
```

Arguments

d

a data frame with the contents of series matrix

Value

a data frame of GEO sample ids (i.e. GSM60555) and their class.

Examples

```
phenos<-downloadPhenotypePlatform("GSE11761", "GPL570")
controls<-controlSamples(phenos)</pre>
```

curateGSE

Run all steps to download, preprocess and annotate a GEO dataset

Description

Given a GSE id this function downloads, preprocesses, annotates a study and also creates the sample phenotype metadata.

Usage

```
curateGSE(x, y, z = getwd(), keepRaw = FALSE)
```

Arguments

- x a GSE series ID
- y a GEO technology id (GPL)
- z the path to save the downloaded files. By default this value is set to the working directory.

Value

a list with three components:

- "metadata" a data frame of the metadata with sample phenotype information
- "dataNorm"a numeric matrix of the preprocessed data with variables (probes) as rows and samples as columns

Examples

```
curateGSE("GSE11761","GPL570",getwd())
```

 ${\tt curateRecountRNASeq}$

Run all steps to download, preprocess and annotate an RNASeq dataset from Recount

Description

Run all steps to download, preprocess and annotate an RNASeq dataset from Recount

Usage

```
curateRecountRNASeq(x, y)
```

Arguments

- x a recount dataset ID
- y the path to write the output

diseasetoChildrenNodes 5

Value

writes in the given path two data frames, the preprocessed data and the metadata file with phenotype information

Examples

```
curatedRecount<-curateRecountRNASeq("SRP032775",getwd())</pre>
```

diseasetoChildrenNodes

Map a Disease Ontology (D-O) term to the first children nodes in D-O

Description

This function uses internal look up data to map a disease to its first children node.

Usage

```
diseasetoChildrenNodes(x)
```

Arguments

Х

a disease in D-O terms

Value

the first children node of x disease

Examples

```
DOChild<-diseasetoChildrenNodes("vesiculitis")
```

diseasetoParentNodes Map

Map a Disease Ontology (D-O) term to the parent nodes in D-O

Description

This function uses internal look up data to map a disease to its parent node.

Usage

```
diseasetoParentNodes(x)
```

Arguments

Χ

a disease in D-O terms

Value

the parent node of x disease

Examples

DOParent<-diseasetoParentNodes("vesiculitis")

downloadPhenotype

Download series matrices from GEO for a given study

Description

This function downlads all series matrices related to a given GEO Series (GSE) and saves them in a list. The same GSE study (i.e. GSE11761) may be related to more than one platforms (i.e GPL570 and GPL1261). The length of the output list is the number of the related platforms.

Usage

```
downloadPhenotype(x)
```

Arguments

Х

a GEO Series id (GSE)

Value

a list of series matrices related to the given study

Examples

```
downloadPhenotype("GSE11761")
```

 ${\tt downloadPhenotypePlatform}$

Download series matrix from GEO for a given study and platform

Description

This function downloads returns the series matrix related to a given GEO Series (GSE)

Usage

```
downloadPhenotypePlatform(x, y)
```

Arguments

```
x a GEO Series id (GSE)y a GEO platform id (GPL)
```

Value

a data frame with the contents of the series matrix found in GEO

Examples

```
{\tt downloadPhenotypePlatform("GSE11761","GPL570")}
```

downloadRaw 7

downloadRaw	Download raw files from GEO for a given study	
-------------	---	--

Description

Download raw files from GEO for a given study

Usage

```
downloadRaw(x, y = getwd())
```

Arguments

- x a GEO Series id (GSE)
- y the path to save the downloaded files. By default this value is set to the working directory

Value

downloadRaw creates a directory in the given path with the GSE name and saves there the compressed RAW files.

Examples

Download the raw files of GSE11761 study and save them in a directory named GSE11761 in the working directory downloadRaw("GSE11761",getwd())

downloadRecount	Download gene-level RangedSummarizedExperiment data from Re-
	count

Description

This function downloads the RangedSummarizedExperiment object with the data summarized at the gene level from Recount (https://jhubiostatistics.shinyapps.io/recount/)

Usage

```
downloadRecount(x)
```

Arguments

- a recount dataset ID
- y the destination path for the downloaded RangedSummarizedExperiment object

Value

RangedSummarizedExperiment object for the given study

8 GSEmetadata

Examples

```
downloadRecount("SRP032775",getwd())
```

entrezIDtoGSE

Find all GSE ids for a given Entrez query

Description

Find all GSE ids for a given Entrez query

Usage

```
entrezIDtoGSE(x)
```

Arguments

Χ

an esearch object as a result of an entrez_search query

Value

a matrix the first column of which is the GSE id and the second the entrezID

Examples

query GEO for all Homo sapiens studies with sample size between 200-300, measured with GPL570 and provide CEL $r_search \leftarrow entrez_search(db="gds", term="Homo sapiens[ORGN] AND CEL[SFIL] AND gpl570[ACCN] AND 200:300[Number entrezIDtoGSE(<math>r_search$)

GSEmetadata

Create sample phenotype metadata of a GEO dataset including control discovery

Description

Given a GSE id this function downloads phenotype data from GEO for a specific study, discovers control samples and returns all sample phenotype metadata

Usage

```
GSEmetadata(x, y)
```

Arguments

x a GSE series ID

y a GEO platform id (GPL)

Value

a data frame of metadata with columns: sample IDs, Class and all other GEO phenotype data found in series matrix

GSEtoDisease 9

Examples

metadata<-GSEmetadata("GSE11761", "GPL570")</pre>

GSEtoDisease

Annotate a study (GSE) with a disease term from the Disease Ontology by exploiting both PubTator and GEO

Description

Given a GSE id this function annotates the study with a disease term from the Disease Ontology (D-O): http://disease-ontology.org/ It provides the most specific disease term, meaning the term with the highest depth in the D-O.

Usage

```
GSEtoDisease(GSE)
```

Arguments

GSE

a GSE series ID

Value

a character vector of all related diseases, separated by;

Examples

diseases<-GSEtoDisease("GSE10245")</pre>

GSEtoDiseaseGE0

Annotate a study (GSE) with a disease term from the Disease Ontology by exploiting only GEO

Description

Given a GSE id this function annotates the study with a disease term from the Disease Ontology (D-O): http://disease-ontology.org/ It provides the most specific disease term, meaning the term with the highest depth in the D-O.

Usage

GSEtoDiseaseGEO(GSE)

Arguments

GSE

a GSE series ID

Value

a character vector of all related diseases, separated by;

Examples

diseases<-GSEtoDiseaseGEO("GSE10245")

preprocessGE0

Preprocess CEL files with SCAN

Description

This function calls the SCAN method as described in Piccolo SR, Sun Y, Campbell JD, Lenburg ME, Bild AH and Johnson WE (2012). A single-sample microarray normalization method to facilitate personalized-medicine workflows. Genomics, 100(6), pp. 337-344.

Usage

```
preprocessGEO(x, y)
```

Arguments

x the path where the CEL files are storedy the number of cores to run in parallel

Value

a matrix of dimensions: probes x samples with the normalized expression values

Examples

```
Assuming that CEL files are located in working directory preprocess GEO(getwd(),3) \\
```

 ${\tt preprocess} {\tt GEOMethylation}$

Preprocess IDAT files from Illumina HumanMethylation450 BeadChip

Description

This function utilizes minfi Package to convert data into methylation measurements.

Usage

```
preprocessGEOMethylation(x)
```

Arguments

x a character array with the paths to the idat files

Value

a matrix of dimensions: probes x samples with the normalized methylation values

recountIDtoGSE 11

Examples

Assuming there is a directory named GSE78279 in the working directory where idat files are stored and "GSM2071074_8655685078_R03C02" and "GSM2071074_8655685078_R03C02" are the file names for the idat files, then x should be:

 $x <-c("GSM2071074_8655685078_R03C02","GSM2071075_8655685078_R04C02") \\ x <-file.path(getwd(),"GSE78279",x) \\ dataNorm <-preprocessGEOMethylation(x)$

recountIDtoGSE

Map a recount dataset ID to GSE ID

Description

Map a recount dataset ID to GSE ID

Usage

recountIDtoGSE(x)

Arguments

Х

a recount dataset ID

Value

a GSE series ID

Examples

recountIDtoGSE("SRP032775")

Index

```
compareDsetList, 2
compareDsets, 2
controlSamples, 3
curateGSE, 4
curateRecountRNASeq, 4
{\tt diseasetoChildrenNodes}, {\tt 5}
diseasetoParentNodes, 5
{\tt downloadPhenotype}, {\color{red} 6}
{\tt downloadPhenotypePlatform,\,6}
downloadRaw, 7
downloadRecount, 7
entrezIDtoGSE, 8
GSEmetadata, 8
GSEtoDisease, 9
GSEtoDiseaseGEO, 9
preprocessGEO, 10
{\tt preprocessGEOMethylation}, 10
{\tt recountIDtoGSE}, \\ 11
```