

Linguagens Formais e Autómatos Resolução de Segunda Frequência

Realizada a 13 de dezembro de 2015

Exercício 1 As fórmulas (simplificadas) nas folhas de cálculo são representadas por palavras geradas pela gramática $G = (\{F,A\},\{\mathtt{f},(\ ,\,;,\)\,\},\ldots,F)$

$$F \to \mathbf{f}$$
 $A \to F$ $F \to \mathbf{f} (A)$ $A \to F ; A$

Por exemplo "f", "f (f;f)" e "f (f;f(f))" são fórmulas simplificadas. **n.b.** que; () fazem parte dos terminais desta gramática.

- 1. **[2,5 valores]** Obtenha uma gramática equivalente a *G* na *Forma Normal de Greibach*;
- 2. **[2,5 valores]** Como as duas produções de F começam pelo terminal f esta gramática **não é** $\mathcal{LL}(1)$. Obtenha uma gramática equivalente que seja $\mathcal{LL}(1)$, justificando Se não consegue obter a gramática equivalente, com um penalização de 50% na cotação desta alínea, justifique se a gramática seguinte é $\mathcal{LL}(1)$: $G = (\{E, F, T\}, \{x, y, z, \#\}, \ldots, E)$ com produções...

$$E o FT \#$$
 $F o xFy$ $T o xTz$ $F o \lambda$

Forma Normal de Greibach

Símbolo inicial recursivo? Não é.

Produções vazias? Não tem.

Produções unitárias? Tem uma: $A \rightarrow F$. Transformação da gramática:

$$F o f$$
 $A o f$ $F o f (A)$ $A o f (A)$ $A o F ; A$

Símbolos produtivos e acessíveis? **São todos.** Portanto esta gramática está **limpa.** Forma Normal de Chomsky

$$F o f$$
 $A o f$ $G o f$ $O o LA$ $F o GH$ $A o GH$ $H o OR$ $C o ;$ $A o FB$ $B o CA$ $L o ($

passo descendente

passo ascendente

•	•
$F o \mathtt{f}$	$F o \mathtt{f}$
$F \to GH$	$F\to \mathtt{f} H$
$A o \mathtt{f}$	$A\to \mathtt{f}$
$A \to GH$	$A\to \mathtt{f} H$
$(A \to FB)$	

substituir F	
$A \to \boxed{\mathtt{f}}B$	$A\to {\tt f} B$
$A \to \boxed{GH}B$	$A \to \mathtt{f} H B$
$H \to OR$	$H \to (AR)$
$O \to LA$	$O \to (A$
$B \to CA$	$B \to ; A$
$G o \mathtt{f}$	$G\to \mathtt{f}$
$L \to ($	$L \to ($
$C \to \; ;$	$C \to ;$
$R \rightarrow)$	$R \rightarrow)$

Gramática equivalente $\mathcal{LL}(1)$

$$F \to fG$$
 $G \to \lambda$ $H \to \lambda$ $A \to FH$ $G \to (A)$ $H \to ; A$

Verificação que esta gramática é $\mathcal{LL}(1)$

Geradores de λ :

$$\Lambda = \{G, H\}$$

Primeiros e seguintes:

NT	Primeiros	Seguintes
\overline{F}	f	;)
A	f)
G	(;)
H	;)

Diretores:

Produção	Diretores		
$F \to fG$	f		
$A \to FH$	f		
$G \to \lambda$;)		
$G \to (A)$	(
$H \to \lambda$)		
$H \to ; A$;		

Como, para cada não terminal, os diretores de produções distintas não se intersetam, a gramática é $\mathcal{LL}(1)$.

Gramática alternativa

$$E \to FT \#$$
 $F \to xFy$ $T \to xTz$ $F \to \lambda$ $T \to \lambda$

Os geradores de λ são $\Lambda = \{F, T\}$ e os primeiros e seguintes de cada não terminal são

NT	Primeiros	Seguintes
\overline{E}	<i>x</i> #	
F	x	x y #
T	x	z #

Os diretores de cada produção são

Produção	Diretores
$E \to FT \#$	x #
$F \to xFy$	x
$F \to \lambda$	xy#

Não é necessário completar a tabela porque, para o não terminal F, os diretores das suas duas produções intersetam-se, o que permite concluir que **a gramática não é** $\mathcal{LL}(1)$.

Exercício 2 Considere a gramática $G = (\{E, F\}, \{a, b, c, n\}, \dots, E)$ com as seguintes produções

$$E \to EcF$$
 $F \to n$ $E \to F$ $F \to aEb$

- 1. **[2,5 valores]** Confirme que esta gramática não é $\mathcal{LL}(1)$;
- 2. **[2,5 valores]** Verifique se esta gramática é $\mathcal{LR}(0)$. Se o for construa a tabela de análise sintática;

Verificação que a gramática não é $\mathcal{LL}(1)$: O símbolo inicial é recursivo à esquerda. Em alternativa, note que os primeiros de E são os primeiros de F e, como não há geradores de λ , os diretores das duas produções de E são os primeiros de E e de F, que coincidem.

Verificação que a gramática é $\mathcal{LR}(0)$:

O diagrama do autómato dos itens válidos é:

Como nos estados com itens completos só existe esse item não há nem conflitos redução/redução nem redução/transferência. Portanto a gramática é $\mathcal{LR}(0)$. A tabela de análise sintática é

q	a	b	c	n	E	F	Ação
0	4			2	3	1	transfere
1							aceita
2							$F \to n$
3			5				transfere
4	4			2	6	1	transfere
5	4			2		8	transfere
6		7	5				transfere
7							$F \rightarrow aEb$
8							aceita

Exercício 3 Considere a gramática $G = \left(\left\{S,A,B\right\},\left\{a,b\right\},\ldots,S\right)$ com produções

$$S \to AaB$$
 $A \to Ab \mid \lambda$ $B \to Bb \mid \lambda$

- 1. [2,5 valores] Mostre que esta gramática não é $\mathcal{LR}(0)$;
- 2. **[2,5 valores]** Determine o autómato dos itens $\mathcal{LR}(1)$ válidos e justifique que a gramática é $\mathcal{LR}(1)$;
- 3. **[2,5 valores]** Determine o autómato de pilha reconhecedor e use-o para verificar se babb é gerada pela gramática;
- 4. **[2,5 valores]** Verifique se esta gramática é $\mathcal{LALR}(1)$;

Para mostrar que esta gramática não é $\mathcal{LR}(0)$ basta mostrar que, no autómato $\mathcal{LR}(0)$ dos itens válidos, existe um estado com um conflito redução/redução ou redução/transferência. Considerando as produções desta gramática existe certamente um estado com o item $S \to Aa \bullet B$. Nesse estado também está o item $B \to \bullet Bb$. Desse estado, lendo B, obtém-se um estado com os itens $S \to AaB \bullet$ e $B \to B \bullet b$. Como o primeiro item é completo e no segundo o ponto está antes de um terminal da gramática, há um **conflito redução/transferência**. Portanto a gramática não é $\mathcal{LR}(0)$.

Autómato dos itens $\mathcal{LR}(1)$ **válidos**. Considerando a gramática aumentada com um novo não terminal inicial S' e produção $S' \to S$, obtemos o seguinte autómato

Os estados 1,3,6 têm itens completos mas esses itens são os únicos nesses estados. Portanto nestes casos não há nem conflitos redução/redução nem redução/transferência.

Os estados com potenciais conflitos são 0, 4, 5. Estes estados contêm apenas um único item completo portanto não podem haver conflitos redução/redução. Vejamos os conflitos redução/transferência:

- No estado 0 nenhum item tem o ponto antes de um terminal; nesse estado não há conflitos redução/transferência;
- No estado 4, pela mesma razão, não há conflitos redução/transferência;
- O estado 5 tem um item com núcleo $B \to B \bullet b$, com um ponto antes do terminal b. Mas esse terminal não está no conjunto de avanço, $\{\#\}$, do item completo. Portanto, também neste estado não há conflitos redução/transferência;

Como no autómato dos itens $\mathcal{LR}(1)$ válidos não há conflitos, a gramática é $\mathcal{LR}(1)$.

Autómato de pilha reconhecedor.

Usando este autómato para verificar se babb é gerada pela gramática obtemos a seguinte computação:

controlo	pilha	palavra	controlo	pilha	palavra
$\overline{p_I}$	λ	babb#	p_b	5B4a2A0	<i>b</i> #
p	0	babb#	p	6b5B4a2A0	b#
p_b	0	abb#	p_b	6b5B4a2A0	#
p_b	2A0	abb#	p_b	5B4a2A0	#
p	3b2A0	abb#	p	6b5B4a2A0	#
p_a	3b2A0	bb#	$p_{\#}$	6b5B4a2A0	λ
p_a	2A0	bb#	$p_{\#}$	5B4a2A0	λ
p	4a2A0	bb#	$p_{\#}$	1S0	λ
p_b	4a2A0	<i>b</i> #	$p_{\#}$	λ	λ

Esta computação termina num estado final, com a pilha vazia e a palavra completamente lida. Portanto **a palavra é aceite**.

Para **verificar se a gramática é** $\mathcal{LALR}(1)$ o seu autómato **amalgamado** dos itens $\mathcal{LR}(1)$ válidos tem de verificar as condições $\mathcal{LR}(1)$.

Como todos os estados do autómato dos itens $\mathcal{LR}(1)$ válidos têm núcleos diferentes, o autómato amalgamado coincide com este. E já foi confirmado que este autómato verifica as condições $\mathcal{LR}(1)$. Portanto **a gramática é** $\mathcal{LALR}(1)$.