Х

reviewer4@nptel.iitm.ac.in >

NPTEL (https://swayam.gov.in/explorer?ncCode=NPTEL) » Data Science for Engineers (course)

Announcements (announcements) About the Course (https://swayam.gov.in/nd1_noc20_cs28/preview)

Ask a Question (forum) Progress (student/home) Mentor (student/mentor)

Unit 4 - Week 2

Course outline

How does an **NPTEL** online course work?

Week 0

Week 1

Week 2

- Linear Algebra for Data science (unit? unit=14&lesson=15)
- Solving Linear Equations (unit? unit=14&lesson=16)
- Solving Linear Equations (Continued) (unit? unit=14&lesson=17)
- Linear Algebra -Distance, Hyperplanes and

Halfspaces, Eigenvalues, Eigenvectors

(unit? unit=14&lesson=18)

Linear Algebra -Distance, Hyperplanes

Assignment 2 - Part 1

The due date for submitting this assignment has passed. Due on 2020-02-12, 23:59 IST. As per our records you have not submitted this assignment.

1) The rank of the matrix $A = \begin{bmatrix} 4 & 3 & 10 & 7 \\ 2 & -3 & 2 & 3 \\ 3 & 4 & 5 & 6 \\ 4 & 7 & 8 & 9 \end{bmatrix}$

- **3**
- 2
- **4**
- \bigcirc 0

No, the answer is incorrect.

Score: 0

Accepted Answers:

Given the matrix $A = \begin{bmatrix} 1 & 0 & -1 & 2 \\ 0 & 3 & 1 & -1 \\ 2 & 4 & 0 & 3 \\ -3 & 1 & 2 & 4 \end{bmatrix}, B = \begin{bmatrix} 1 & 2 \\ 3 & -1 \\ 0 & -1 \\ 4 & 2 \end{bmatrix},$ $C = \begin{bmatrix} 3 & 8 & 0 & 5 \\ 1 & 0 & -4 & 8 \end{bmatrix}$

If D = CAB exists, then the value at D_{22} is

- -37
- 0 107

1 point

1 point

and Halfspaces,Eigenvalues	-25 Eigenvectors -33	
(Continued 1) (unit?	No, the answer is incorrect.	
unit=14&lesson=19) Linear Algebra -	Score: 0 Accepted Answers: -25	
Distance,Hyperplanes and		4
Halfspaces, Eigenvalues (Continued 2) (unit? unit=14&lesson=20)	3) S.Eigenvectors The determinant of the matrix $Z = \begin{bmatrix} -2 & 32 & 24 \\ 92 & 66 & 25 \\ -80 & 40 & 20 \end{bmatrix}$ is	1 point
Linear Algebra -	115506	
Distance, Hyperplanes	91520	
and Halfspaces,Eigenvalues	1155 Eigenvectors Does not exist	
(Continued 3) (unit? unit=14&lesson=21)	No, the answer is incorrect. Score: 0	
FAQ (unit? unit=14&lesson=22)	Accepted Answers: 91520	
O Quiz :	The inverse of the matrix $P = \begin{bmatrix} 2 & 1 & 2 \\ 1 & 0 & 1 \\ 3 & 1 & 3 \end{bmatrix}$ is	1 point
Assignment 2 - Part 1	The inverse of the matrix $P = \begin{bmatrix} 1 & 0 & 1 \end{bmatrix}$ is	
(assessment?		
name=106)	O 0	
Quiz : Linear algebra - Assignment 2 - Part 2 (assessment?	$\begin{bmatrix} -0.25 & -0.25 & 0.25 \\ 0 & -3 & 1 \\ 0.25 & 1.25 & -0.25 \end{bmatrix}$	
name=109)	[0.25	
Week 2 Feedback (unit? unit=14&lesson=110)	$\begin{bmatrix} 2 & 1 & 2 \\ 1 & 0 & 1 \\ 2 & 1 & 3 \end{bmatrix}$	
Solution -Assignment 2 -Part 1 (unit?	Inverse does not exist No, the answer is incorrect.	
unit=14&lesson=115)	Score: 0	
Solution - Linear algebra -	Accepted Answers: Inverse does not exist	
Assignment 2 - Part 2 (unit?	5) If <i>b</i> is a non-singular matrix of order <i>n</i> then the maximum possible rank of <i>b</i> is	1 point
unit=14&lesson=116)	0 n	
Week 3	0 n-1	
Week 4	O 1	
Week 5	No, the answer is incorrect. Score: 0	
Week 6	Accepted Answers: n	
Week 7	6) If the number of variables in a non-homogenous system $AX = B$ is n then the system possesses no solution if	1 point
Week 8	Rank(A) = Rank(A , B) = n	

02/07/2020	Data Science for Engineers Offic 4 - Week 2	
Text Transcripts	\bigcirc Rank(A) < Rank([A,B])	
	Rank(A) = Rank($[A,B]$) < n	
Download Videos	\bigcirc Rank(A) > Rank(A,B)	
	No, the answer is incorrect. Score: 0	
	Accepted Answers: Rank(A) < Rank([A,B])	
	7) State whether the following statements are True / False	1 poin
	In a matrix (A) of data (m*n) with rank r (i) m rows usually represent number of samples (ii) If m=n, A is not full rank, there exist a unique solution	
	(i) – True (ii) – False	
	(i)- False (ii) – True	
	(i) - True (ii) – True	
	(i) - False (ii) – False	
	No, the answer is incorrect. Score: 0	
	Accepted Answers: (i) – True (ii) – False	
	8) Given the matrix $A = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 5 \end{bmatrix}$	1 poin
	Given the matrix $A = \begin{bmatrix} 0 & 1 & 0 \end{bmatrix}$	
	$\begin{bmatrix} 0 & 0 & 5 \end{bmatrix}$	
	Sum of the eigen values of the matrix A is	
	O 2	
	○ 3+0i	
	O 1	
	O 8	
	No, the answer is incorrect. Score: 0	
	Accepted Answers: 8	
	9) [1 6 1]	1 poin

Given the matrix $Z = \begin{bmatrix} 1 & 6 & 1 \\ 1 & 2 & 3 \\ 0 & 0 & 3 \end{bmatrix}$

Smallest eigen values of the matrix Z is

- -1
 4
 3
 6
 No, the answer is incorrect.
 Score: 0
 Accepted Answers:
- 10)f Eigenvalue of a matrix A is λ , and A^{-1} exists, then Eigenvalue of A^{-1} is:

1 point

 $\bigcirc \ \lambda^2$

 1/λ 1 1/λ² No, the answer is incorrect. Score: 0 Accepted Answers: 1/λ 11)f A and B are square matrices of size n*n then which of the following statements is true? 	1 point
I. det(A B)= det(A) det (B) II. det(k A)=k ⁿ det(A), where k is constant III. det(A+B)= det(A) +det(B) IV. det(A ^T)=1/det(A ⁻¹)	
○ I,II ○ II, III,IV ○ I,II,IV	
No, the answer is incorrect. Score: 0 Accepted Answers: I,II,IV	
12Rank of null matrix is 0 1 Not defined ∞	1 point
No, the answer is incorrect. Score: 0 Accepted Answers: 0 13)Given a square matrix of order n and λ is a scalar , then the characteristic polynomial of A is	1 point
obtained by expanding determinant λ λA-In A-λ λΑ	
No, the answer is incorrect. Score: 0 Accepted Answers: A-λ/	
14) The system of equations 2x +3y -3z = 8, 4x -2y +6z = 9, 10x +3y - 3z = 5 has Unique solution No solution Two solutions Infinitely many solutions No, the answer is incorrect. Score: 0	1 point

Accepted Answers: Unique solution	
If $A = \begin{bmatrix} -3i & -6i \\ 3i & i \end{bmatrix}$ then $ A = ?$	1 point
○ -18 ○ 15	
○ -15	
© 21	
No, the answer is incorrect. Score: 0	
Accepted Answers: -15	
$ \begin{bmatrix} 6 \end{bmatrix} \begin{bmatrix} -4 \end{bmatrix} \begin{bmatrix} 0 \end{bmatrix} \begin{bmatrix} -14 \end{bmatrix} $	1 point
16) x ,y and z that satisfy the below equation are $x \begin{bmatrix} 6 \\ 3 \\ 12 \end{bmatrix} + y \begin{bmatrix} -4 \\ 8 \\ 1 \end{bmatrix} + z \begin{bmatrix} 0 \\ 3 \\ 1 \end{bmatrix} = \begin{bmatrix} -14 \\ 25 \\ -6 \end{bmatrix}$	·
x=-1, y=-4, z= -2	
x = 1, y = 2, z = 4	
x=-1, y=2, z = 11	
x=3, y=1, z =-5	
No, the answer is incorrect.	
Score: 0 Accepted Answers: $x=-1$, $y=2$, $z=4$	
17) The system of equations 6x+y-2z=-8, 5x+3y-3z=4 and 12x+2y-4z=-16 has	1 point
O No solution	
Unique solution	
Infinite solutions	
○ Two solutions	
No, the answer is incorrect. Score: 0	
Accepted Answers: Infinite solutions	
$18) \qquad \begin{bmatrix} 1 & 5 & -8 \end{bmatrix}$	1 point
The matrix 0 8 5 is	•
18)	
Upper triangular matrix	
Lower triangular matrix Skew symmetric matrix	
Null matrix	
No, the answer is incorrect.	
Score: 0	
Accepted Answers: Upper triangular matrix	
19For a matrix A if the rank is r and the nullity is given by a, the total number of attributes	1 point

is always equal to 0

- is equal to r a
- cannot be determined
- is equal to r + a

No, the answer is incorrect.

Score: 0

Accepted Answers:

is equal to r + a

20) For a matrix
$$A = \begin{bmatrix} t & 8 & 2 \\ 2 & 3 & t \\ 6 & t & 2 \end{bmatrix}$$
, the determinant of A is

- -t³+58t-68
- 0 t³+52t-62
- 0 t³+16t+16
- 0 t³-14t+38

No, the answer is incorrect. Score: 0

Accepted Answers:

-t³+58t-68

1 point