演算法作業說明

陳鉦鈞 (M113040018@student.nsysu.edu.tw) 林正昊 (M113040042@student.nsysu.edu.tw) 陳宥呈 (M113040112@student.nsysu.edu.tw)

演算法作業3 Dynamic Programming解 0/1 Knapsack problem

物品數量 (number of items)	4
背包最大容量 (capacity)	7
物品重量 (weight)	[1,4,5,7]
物品價值 (value)	[1,3,4,5]

				Capacity						
			0	0 1 2 3 4 5 6 7						
item	Value _i	Weighti	0	0	0	0	0	0	0	0
1	1	1	0							
2	4	3	0							
3	5	4	0							
4	7	5	0							

物品數量 (number of items)	4
背包最大容量 (capacity)	7
物品重量 (weight)	[1,4,5,7]
物品價值 (value)	[1,3,4,5]

				Capacity						
			0	1	2	3	4	5	6	7
item	Value _i	Weight _i	0	0	0	0	0	0	0	0
1	1	1	0	1	1	1	1	1	1	1
2	4	3	0							
3	5	4	0							
4	7	5	0							

物品數量 (number of items)	4
背包最大容量 (capacity)	7
物品重量 (weight)	[1,4,5,7]
物品價值 (value)	[1,3,4,5]

				Capacity						
			0	1	2	3	4	5	6	7
item	Value _i	Weight _i	0	0	0	0	0	0	0	0
1	1	1	0	1	1	1	1	1	1	1
2	4	3	0	1	1	4	5	5	5	5
3	5	4	0							
4	7	5	0							

物品數量 (number of items)	4
背包最大容量 (capacity)	7
物品重量 (weight)	[1,4,5,7]
物品價值 (value)	[1,3,4,5]

				Capacity						
			0	1	2	3	4	5	6	7
item	Value _i	Weight _i	0	0	0	0	0	0	0	0
1	1	1	0	1	1	1	1	1	1	1
2	4	3	0	1	1	4	5	5	5	5
3	5	4	0	1	1	4	5	6	6	9
4	7	5	0	1	1	4	5	7	8	9

物品數量 (number of items)	4
背包最大容量 (capacity)	7
物品重量 (weight)	[1,4,5,7]
物品價值 (value)	[1,3,4,5]

				Capacity						
			0	1	2	3	4	5	6	7
item	Value _i	$Weight_i$	0	0	0	0	0	0	0	0
1	1	1	0 👞	1	1	1 🎍	1	1	1	1
2	4	3	0	1	1	4	5	5	5	5
3	5	4	0	1	1	4	5	6	6	9
4	7	5	0	1	1	4	5	7	8	9

演算法作業4

Genetic Algorithm 解 0/1 Knapsack problem

Genetic Algorithm

● 根據物競天擇的概念,選出較好的個體進行資訊交換

```
Initial population s
evaluation()
While(not termination):
selection()
crossover()
mutation()
evaluation()
```


● Evaluation : 計算各解的 objective value

	item1	item2	item3	item4
profit	2	3	1	4
Weight	3	8	2	9

● Evaluation : 計算各解的 objective value

	item1	item2	item3	item4
profit	2	3	1	4
Weight	3	8	2	9

● Evaluation : 計算各解的 objective value

	item1	item2	item3	item4
profit	2	3	1	4
Weight	3	8	2	9

● Evaluation : 計算各解的 objective value

	item1	item2	item3	item4
profit	2	3	1	4
Weight	3	8	2	9

● Selection:選出能進行資訊交換(crossover)的解

● 方式: Tournament selection

- Selection --- Tournament:
 - 隨機挑選數個解互相比較objective value,選擇最好的留下

● 隨機挑選數個解互相比較objective value,選擇最好的留下

Initial population s
evaluation()
While(eva < eva_max):
 selection()
 crossover()
 mutation()
evaluation()

● Crossover:交換解之間的部分片段,影響彼此的搜尋資訊

- ●方式:
 - (One-point crossover)
 - (Two-point crossover)
 - (Uniform crossover)

● Crossover --- 交配率

假設交配率0.6,則每一對交配前都先隨機產生(0,1)區間的亂數,小於0.6才進行crossover

Initial population s
evaluation()
While(eva < eva_max):
 selection()
 crossover()
 mutation()
 evaluation()

※若群體大小為奇數,缺交配對象的那組解可選擇直接進入下一代,或是再跟已經交配過的的某一組解交配

● Crossover --- One-point : 隨機選一點作為交換的切分點

Initial population s
evaluation()
While(eva < eva_max):
 selection()
 crossover()
 mutation()
 evaluation()

● Crossover --- Two-point : 隨機選兩點作為交換的區間

子(2) 1011010010111110101

Initial population s
evaluation()
While(eva < eva_max):
 selection()
 crossover()
 mutation()
 evaluation()

Uniform crossover

```
親(優勢個體)(1) 101101
        Mask 0 <u>1</u> 0 <u>1</u> 1 0 <u>1</u>
親(優勢個體)(2) 0111110
       交換
              1111110
       子(1)

    子(2) 0011010
```

```
Initial population s
evaluation()
While(eva < eva_max):
    selection()
    crossover()
    mutation()
    evaluation()
```


● Mutation:存在一突變率,檢查每一組解是否需要突變。當 Random() < 突變率時,該組解會隨機做微小的變動

01111100000010110000

01111100010010110000

Initial population s
evaluation()
While(eva < eva_max):
 selection()
 crossover()
 mutation()
 evaluation()

● 到底用什麼方式比較好:視問題而定

各Operator都有自己的調整空間,掌握各Operator的設計概念為主

1. Selection:選出能改善搜尋能力的解,作為資訊交換對象

2. Crossover:解之間進行資訊交換,嘗試得到更好的解

3. Mutation:小幅度調整解,增加搜尋變化性

- 執行要求
 - 執行 30run, 每個 data_set 有相對應的 evaluation_max 次數
 - 執行完畢需輸出 30run 所得到的平均最佳解

	dt1	dt2	dt3
evaluation_max	1000	10000	1000000
best	309	1458	13549094
requested	290	1400	13545000

●加分規則

● 執行 30run, dt3 在 evaluation_max = 500000 每次都可以找到 best

	dt3
evaluation_max	500000
best	13549094
requested	13549094

● 參數參考

```
Population_size: 100Crossover_rate: 0.6mutation_rate: 0.01
```

```
Initial population s
evaluation()
While(eva < eva_max):
selection()
crossover()
mutation()
evaluation()
```

作業繳交規則

規則

- 繳交作業格式
 - 一律壓縮成:學號_hwx.zip (e.g. b103040000_hw1.zip)
 - 壓縮檔須包含 (請勿包含.exe)
 - 1. 程式碼 (C or C++)
 - 2. 輸出檔 (ans.txt)
- 繳交方式:上傳網路大學
- 繳交期限: 12/22 (五) 23:59
- 實體demo位址: EC5009-1 (請自行攜帶電腦)
- 實體測驗時間: 12/12,12/19,12/21,12/22,12/26
 - 下午1:30~5:00,依公告為主

評分標準

程式是否能正確執行?	30% (不能執行則全部拿0分)
答案是否正確?	20% (答案錯最多拿50分)
程式撰寫之結構與邏輯是否正確?	20%
輸出結果是否完整?	10%
清楚表達程式流程? (口頭 or 註解)	10%
繳交格式是否正確? (檔案名稱 and 檔案格式)	5%
是否能動態讀入readfile?	5%

※ 所有項目均為部分給分

讀檔

● 3筆測試資料 (每筆資料物品數量不同)

● item.txt:物品重量、價值

● ans.txt :最佳解 (僅前兩筆測試資料提供)

讀檔範例

10 165

23 92

31 57

29 49

44 68

53 60

38 43

63 67

85 84

89 87

82 72

物品價值 (value)	[92,57,49,68,60,43,67,84,87,72]
物品重量 (weight)	[23,31,29,44,53,38,63,85,89,82]
背包最大容量 (capacity)	165
物品數量 (number of items)	10

輸出

- 每筆測試資料皆獨立輸出
 - e.g. ans_dt01.txt, ans_dt02.txt, ans_dt03.txt
- 輸出規定
 - 1. 輸出背包所裝的所有物品總價值
 - 2. 以0和1表示物品是否被選擇

輸出範例

- max profit:309
- solution:1111010000

Thank You;-)