

CHƯƠNG 3 BIẾN ĐỔI Z VÀ ỨNG DỤNG

- The Z-transform
- Z-transform properties
- Inversion of Z-transform
- Analysis of LTI systems in the z-domain

Biến đổi Z

1. Định nghĩa

- 2. Miền hội tụ (Region of convergence)
- 3. Ví dụ

Z-Transform (ZT)

Biến đổi Laplace:

$$F(s) = \int_{-\infty}^{\infty} f(t)e^{-st}dt$$

Biến đổi Z có thể xem như là phiên bản rời rạc (thời gian rời rạc) của biến đổi Laplace :

$$F(z) = \sum_{n=-\infty}^{\infty} f[n]z^{-n}$$

s and z take values in the complex plane t and n are time variables Infinite integral replaced by infinite sum e^{-st} replaced by z⁻ⁿ

Cho tín hiệu rời rạc x[n] = ..., x[-2], x[-1], x[0], x[1], x[2], ...Biến đổi Z hai chiều của x[n] định nghĩa như sau:

$$X(z) = ZT\{x[n]\} = \sum_{n=-\infty}^{\infty} x[n] z^{-n}$$
n nhận
giá trị
nguyên

Giả sử tồn tại z để tổng trên hội tụ. z nhận giá trị phức

Cực (pole) và điểm không (zero)

$$X(z) = ZT\{x[n]\} = \sum_{n=-\infty}^{\infty} x[n] z^{-n}$$

Poles
$$p_k \leftrightarrow X(p_k) = \infty$$

Zeros $z_k \leftrightarrow X(z_k) = 0$

Zeros
$$z_k \leftrightarrow X(z_k) = 0$$

Cực là nghiệm của mẫu số

Điểm không là nghiệm của tử số

Chú ý: trước hết cần đơn giản hóa và xét các đa thức theo z

1. Definition of the Z-transform

2. Region of convergence

3. Examples of Z-transform

Miền hội tụ (ROC)

ROC: tập hợp giá trị z để X(z) hội tụ

Ta xét các trường hợp sau:

- Right-sided signal $(x[n] = 0, n < n_0)$ (tín hiệu bên phải)
- Left-sided signal $(x[n] = 0, n>n_0)$ (tín hiệu bên trái)
- Two-sided signal $(-\infty < n < +\infty)$ (tín hiệu "hai bên")
- 4. Finite-duration signal (tín hiệu thời gian hữu hạn)

Right-sided signal

for right-sided x[n]

$$X(z) = \sum_{n=n_0}^{\infty} x[n]z^{-n}$$

$$X(z) = \sum_{n=n_0}^{\infty} x[n] \left(\frac{1}{z}\right)^n$$
 Sum goes from n_0 to infinity

As $n \to \infty$, need $(1/z)^n \to 0$ for sum to converge.

Happens for z OUTSIDE the poles $|z| > r_{max}$.

$$|z| > r_{max}$$

Right-sided signal

Right-sided signal

Nếu x[n] không nhân quả thì X(z) không hội tụ tại $z = \infty$

→ ROC không chứa ∞

Ex: x[n] = u[n+1]

$$X(z) = \sum_{n=-1}^{\infty} z^{-n} = z + \sum_{n=0}^{\infty} z^{-n}$$

ROC: $r_{max} < |z| < \infty$

Left-sided signal

for left-sided
$$x[n]$$

$$X(z) = \sum_{n=-\infty}^{n_0} x[n]z^{-n}$$

Sum goes from minus infinity to n_o

As
$$n \to -\infty$$
, need $(1/z)^n \to 0$ or $z^m \to 0$

Happens for z INSIDE the poles (rather than outside)

Left-sided signal

Left-sided signal

Nếu x[n] có giá trị (khác không) tại thời điểm > 0, X(z) không hội tụ tại $z = 0 \rightarrow ROC$ không chứa 0

Ex: x[n] = u[-n+1]

$$X(z) \equiv \sum_{n=-\infty}^{1} z^{-n} = z^{-1} + \sum_{n=0}^{\infty} z^{n}$$

ROC: $0 < |z| < r_{min}$

Two-sided signal (tín hiệu "hai bên")

Two-sided signal = Left-sided signal + right-sided signal

Note: if $|a| \ge |b|$ then X(z) does not exist

Finite-duration signal (tín hiệu thời gian hữu hạn)

For
$$x(n) = \delta(n-m) \longrightarrow X(z) = \sum_{n=-\infty}^{\infty} \delta(n-m)z^{-n} = z^{-m}$$

$$x[n] = \sum_{k=n_1}^{n_2} x[k] \delta[n-k] \Rightarrow X(z) = \sum_{k=n_1}^{n_2} x[k] z^{-k}$$

ROC: mọi giá trị của z, trừ:

$$z = 0 \text{ if } k > 0$$

$$z = \infty$$
 if $k < 0$

- 1. Definition of the Z-transform
- 2. Region of convergence
- 3. Examples of Z-transform

Tìm biến đổi Z các tín hiệu sau:

$$x_{1}[n] = a^{n}u[n] \quad \text{and} \quad x_{2}[n] = -(a^{n})u[-n-1]$$

$$X_{1}(z) = \sum_{n=0}^{\infty} a^{n}z^{-n} = \sum_{n=0}^{\infty} (az^{-1})^{n} = \begin{cases} \frac{1}{1-az^{-1}} & |az^{-1}| < 1\\ \infty & |az^{-1}| > 1 \end{cases}$$

$$= \frac{z}{z-a}, \quad |z| > |a|$$

$$x_1[n] = a^n u[n]$$
 and $x_2[n] = -(a^n)u[-n-1]$

$$X_{2}(z) = -\sum_{n=-1}^{-\infty} a^{n} z^{-n} = -\sum_{n=1}^{\infty} (a^{-1} z)^{n} = \begin{cases} -\frac{a^{-1} z}{1 - a^{-1} z} & |a^{-1} z| < 1\\ -\infty & |a^{-1} z| > 1 \end{cases}$$

$$= \frac{z}{z-a}, |z|<|a|$$

ROC phải được xác định để biến đổi Z hai chiều là duy nhất

Tìm biến đổi Z của tín hiệu sau:

$$x[n] = 3^n u[-n-1] + 4^n u[-n-1].$$

Tìm biến đổi Z của tín hiệu (hai bên) sau:

$$x[n] = a^{|n|}$$

Tìm biến đổi Z của tín hiệu sau:

$$h[n] = (.5)^n u[n-1] + 3^n u[-n-1].$$

Examples of Z-transform

Tìm biến đổi Z của tín hiệu sau:

$$x[n] = \frac{1}{2}\delta[n-1] + 3\delta[n+1]$$

1. tuyến tính (linearity)

- 2. Dịch thời gian (time shifting)
- 3. Tỉ lệ tần số (Frequency scaling)
- 4. Nhân với n (Multiplication by n)
- 5. tích chập trong miền thời gian (Convolution in time)
- 6. Giá trị đầu (Initial value)
- 7. Giá trị cuối (Final value)

Tuyến tính (Linearity)

$$ax[n] + by[n] \stackrel{Z}{\longleftrightarrow} aX(z) + bY(z)$$

The new ROC is the intersection of ROC $\{X(z)\}$ and ROC $\{Y(z)\}$ If aX(z) + bY(z) cancels pole then the new ROC is bigger

Dịch thời gian (Time shifting)

The new ROC is the same as ROC{X(z)} except for z = 0 if $n_0 > 0$ and $z = \infty$ if $n_0 < 0$

Proof:

$$Z\{x[n-n_o]\} = \sum_{n=-\infty}^{\infty} x[n-n_o]z^{-n}$$
 let $l = n - n_o$
$$\sum_{l=-\infty}^{\infty} x[l]z^{-(l+n_o)} = z^{-n_o} \sum_{l=-\infty}^{\infty} x[l]z^{-l} = z^{-n_o} X(z)$$

Delay of k means that the Z-transform is multiplied by z-k

Ví dụ áp dụng dịch thời gian

Tìm biến đổi Z của tín hiệu sau:

$$w[n] = \frac{1}{4} \left\{ (-1)^n + (3)^{n-5} \right\} u[n-5]$$

Frequency scaling

$$a^n x[n] \stackrel{Z}{\longleftrightarrow} X\left(\frac{z}{a}\right)$$

The new ROC is the scaled ROC{X(z)} with factor /a/ (bigger or smaller)

Proof:

$$ZT\{a^n x[n]\} = \sum_{n=-\infty}^{\infty} a^n x[n] z^{-n}$$

$$=\sum_{n=-\infty}^{\infty}x[n]\left(\frac{z}{a}\right)^{-n}=X\left(\frac{z}{a}\right)$$

Ví dụ

Tìm biến đổi Z:

$$x[n] = a^n u[n]$$

Multiplication by n

The new ROC is the same $ROC\{X(z)\}$

Proof:

$$X(z) = \sum_{n = -\infty}^{\infty} x[n]z^{-n} \Rightarrow \frac{dX(z)}{dz} = -\sum_{n = -\infty}^{\infty} nx[n]z^{-n-1} = -\frac{1}{z}\sum_{n = -\infty}^{\infty} nx[n]z^{-n}$$
$$\Rightarrow ZT\{nx[n]\} = \sum_{n = -\infty}^{\infty} nx[n]z^{-n} = -z\frac{dX(z)}{dz}$$

Example of applying the multiplication-by-n property

Tìm biến đổi Z:

$$x[n] = na^n u[n]$$

Tích chập trong miền thời gian

The new ROC is the intersection of ROC{X(z)} and ROC{Y(z)}
If poles cancel zeros then the new ROC is bigger

Proof:

$$y[n] = x[n] * h[n] \longleftrightarrow \sum_{n = -\infty}^{\infty} \left[\sum_{k = -\infty}^{\infty} x[k]h[n - k] \right] z^{-n}$$

Switching the order of the summation:

$$Y(z) = \sum_{k=-\infty}^{\infty} x[k] \sum_{n=-\infty}^{\infty} h[n-k] z^{-n}$$

$$= \sum_{k=-\infty}^{\infty} x[k] z^{-k} \sum_{n-k=-\infty}^{\infty} h[n-k] z^{-(n-k)}$$

$$= X(z).H(z)$$

Áp dụng tính chất tích chập

Convolution in time domain

multiplication in Z domain

Ví dụ

Tính tích chập của hai tín hiệu sau:

$$x_1[n] = \delta[n] - 2\delta[n-1] + \delta[n-2]$$

$$x_2[n] = \delta[n] + \delta[n-1] + \delta[n-2] + \delta[n-3] + \delta[n-4] + \delta[n-5]$$

Định lý giá trị đầu (Initial value theorem)

$$x[0] = \lim_{z \to \infty} X(z)$$

Proof:

$$X(z) = \sum_{n=0}^{\infty} x[n]z^{-n} = x[0] + x[1]z^{-1} + x[2]z^{-2} + \dots$$

Obviously, as
$$z \to \infty$$
, $z^{-n} \to 0$

Initial value theorem

If x[n] = 0 with $n < n_0$ then $x[n_0]$ is the initial value, and

$$x[n_0] = \lim_{z \to \infty} [z^{n_0} X(z)]$$

Proof:

$$X(z) = \sum_{n=n_0}^{\infty} x[n]z^{-n} = x[n_0]z^{-n_0} + x[n_0+1]z^{-(n_0+1)} + x[n_0+2]z^{-(n_0+2)} + \dots$$

$$z^{n_0}X(z) = x[n_0] + x[n_0 + 1]z^{-1} + x[n_0 + 2]z^{-2} + \dots$$

As
$$z \to \infty$$
, $z^{n_0}X(z) = x[n_0]$

Định lý giá trị cuối (Final value theorem)

If this limit exists then x[n] has a final value (steady-state value)

$$\lim_{n\to\infty} x[n] = x[\infty] = \lim_{z\to 1} [(z-1)X(z)]$$

Proof: Exercise

Bảng biến đối Z

1
$$\delta(n) \leftrightarrow 1$$

1
$$\delta(n) \leftrightarrow 1$$

2 $\delta(n-m) \leftrightarrow z^{-m}$

3
$$a^n u[n] \leftrightarrow \frac{z}{z-a}$$

4
$$na^n u[n] \leftrightarrow \frac{az}{(z-a)^2}$$

5
$$n^2 a^n u[n] \leftrightarrow \frac{az(z+a)}{(z-a)^3}$$

6
$$a^n \cos(\Omega n)u[n] \leftrightarrow \frac{z(z-a\cos\Omega)}{z^2-2az\cos\Omega+a^2}$$

7
$$a^n \sin(\Omega n)u[n] \leftrightarrow \frac{az \sin \Omega}{z^2 - 2az \cos \Omega + a^2}$$

Phân tích thành phân số

$$-X(z) = \frac{2z^2 - 5z}{(z-2)(z-3)}, |z| > 3$$

Chia X(z) cho z, (giữ z lại)

$$\frac{X(z)}{z} = \frac{2z-5}{(z-2)(z-3)} = \frac{(z-2)+(z-3)}{(z-2)(z-3)}$$

$$=\frac{1}{z-3}+\frac{1}{z-2}, |z|>3$$

$$\Rightarrow$$
 x(n) = $(3^n + 2^n)u(n)$

Cực lặp lại (repeated poles)
$$-X(z) = \frac{2z}{(z-2)(z-1)^2}, \quad |z| > 2$$

$$\frac{X(z)}{2z} = \frac{1}{(z-2)(z-1)^2} = \frac{A}{z-2} + \frac{B}{z-1} + \frac{C}{(z-1)^2}, |z| > 2$$

$$A(z-1)^2 + B(z-1)(z-2) + C(z-2) = 1$$

$$A = 1; B = -1; C = -1;$$

$$X(z) = 2 \left[\frac{z}{z-2} - \frac{z}{z-1} - \frac{z}{(z-1)^2} \right], |z| > 2$$

$$x(n) = 2(2^{n} - 1 - n)u(n)$$

Dịch thời gian
$$W(z) = \frac{z^{-4}}{z^2 - 2z - 3}, |z| > 3$$

$$\frac{W(z)}{z} = \frac{z^{-5}}{z^2 - 2z - 3} = \frac{z^{-5}}{(z+1)(z-3)} = \left(\frac{-\frac{1}{4}}{z+1} + \frac{\frac{1}{4}}{z-3}\right)z^{-5}$$

$$w[n] = -\frac{1}{4}(-1)^{n-5}u[n-5] + \frac{1}{4}(3)^{n-5}u[n-5]$$

- Given $h(n) = a^n u(n) (|a| < 1)$ and x(n) = u(n). Find y(n) = x(n)*h(n)

$$y[n] = \frac{1-a^{n+1}}{1-a}u[n]$$

Find the output y(n) to an input x(n) = u(n) and an LTI system with impulse response $h(n) = -3^nu(-n-1)$

$$y[n] = -\frac{1}{2}u[n] - \frac{3}{2}(3)^n u[-n-1]$$

Phân tích hệ thống LTI trong miền Z

1. Hàm truyền (Transfer function)

2. Tính chất của hệ thống LTI (LTI system properties from transfer function)

Hàm truyền

Cho đáp ứng xung h(n), biến đối Z của nó gọi là hàm truyền (Transfer Function) H(z)

 $X\acute{e}t H(z) = N(z)/D(z)$

Nghiệm của N(z): điểm không của hệ thống

Nghiệm của D(z): cực của hệ thống

D(z) = 0: phương trình đặc tính (characteristic equation)

Xác định hàm truyền

1. Từ đáp ứng xung h(n): thực hiện biến đổi Z

2. Từ phương trình sai phân:

- Thực hiện biến đổi Z hai vế
- Tính Y(z)/ X(z)

3...

Hàm truyền từ phương trình sai phân

$$\leftarrow \rightarrow$$

-Time-shift

-Linear

$$Y(z) = X(z) \cdot H(z)$$

$$H(z) = \frac{Y(z)}{X(z)} = \frac{\sum_{r=0}^{\infty} b_r z^{-r}}{\sum_{k=0}^{N} a_k z^{-k}}$$

Gia sử M = N

Nhân tử và mẫu với **z**^N:

$$H(z) = \frac{Y(z)}{X(z)} = \frac{\sum_{r=0}^{M} b_r z^{-r}}{\sum_{k=0}^{N} a_k z^{-k}} = \frac{\sum_{r=0}^{N} b_r z^r}{\sum_{k=0}^{N} a_k z^k}$$

Ví dụ

For the a-filter:

$$y(n) - (1 - \alpha)y(n - 1) = \alpha x(n)$$

Its transfer function:

$$H(z) = \frac{\sum_{r=0}^{M} b_r z^{-r}}{\sum_{k=0}^{N} a_k z^{-k}} = \frac{\alpha}{1 - (1 - \alpha)z^{-1}}$$

For example: $y[n] - 0.9y[n-1] = 0.1x[n] \rightarrow \alpha = 0.1$

$$H(z) = \frac{0.1z}{z - 0.9}$$

Tính chất của hệ thống LTI

- 1. Transfer function
- 2. LTI system properties from transfer function

Nhân quá

Nhắc lại:

hệ thống nhân quả \leftarrow → h[n] = 0 $\forall n < 0$

$$h[n] = 0 \quad \forall n < 0$$

h(n) là tín hiệu "bên phải" ←→ ROC của hàm truyền là

$$|z| > r_{\text{max}}$$

Hệ thống LTI là nhân quả nếu và chỉ nếu ROC của hàm truyền nằm ngoài vòng tròn bán kính $r_{max} < \infty$ bao gồm cả điểm $z = \infty$

Nhân quả

Xét hệ thống:

$$H(z) = \frac{z^2 + 0.4z + 0.9}{z - 0.6} = z + \frac{z + 0.9}{z - 0.6}$$
Unit advance y[n]=x[n+1]
$$\to \text{ noncausal}$$

- Với hệ thống nhân quả, bậc của tử số của H(z) không thể
 lớn hơn bậc của mẫu số
- Nếu bậc của tử nhỏ hơn hoặc bằng mẫu thì hệ thống có nhân quả không ??? NOT SURE!!!

Example

Xét hệ thống sau:

$$h[n] = -u[-n-1]$$

$$H(z) = \frac{z}{z-1} \quad ROC : |z| < 1$$

■ Bậc mẫu = bậc tử = 1; but it is non- causal!!!

On đinh

Nhắc lại:

Hệ thống ổn định
$$\longleftrightarrow$$
 $\sum_{n=-\infty}^{+\infty} \left| h[n] \right| < \infty$

Its transfer function:

$$H(z) = \sum_{n=-\infty}^{\infty} h[n]z^{-n} \Longrightarrow |H(z)| \leq \sum_{n=-\infty}^{\infty} |h[n]z^{-n}| = \sum_{n=-\infty}^{\infty} |h[n]| |z^{-n}|$$

Unit circle
$$|z| = 1 \rightarrow |H(z)| \le \sum_{n = -\infty}^{\infty} |h[n]|$$
 The ROC includes $|z| = 1$

Hệ thống LTI là ổn định BIBO nếu và chỉ nếu ROC của hàm truyền chứa vòng tròn đơn vị.

Nhân quả và ổn định

 Điều kiện nhân quả và ốn định độc lập nhau, "cái này không suy ra cái kia"

4 trường hợp:

- Nhân quả và ổn định
- Không nhân quả và ổn định
- Nhân quả và không ốn định
- Không nhân quả và không ổn định
- Hệ nhân quả là ổn định nếu tất cả các cực của H(z) đều nằm trong vòng tròn đơn vị.

Examples

Ex1: Given an LTI system:

$$H(z) = \frac{2z^2 - 1.6z - 0.9}{z^3 - 2.5z^2 + 1.96z - 0.48}$$

The poles of H(z):

 \rightarrow p = 1.2 0.8 0.5

- p = roots(den)
- **1.** |z|>1.2: causal, unstable
- **2.** 0.8<|z|<1.2: non-causal, stable
- 3. $0.5 \neq |z| < 0.8$: non-causal, unstable

Examples

Ex2: A LTI system is characterized by:

$$H(z) = \frac{3 - 4z^{-1}}{1 - 3.5z^{-1} + 1.5z^{-2}} = \frac{z(3z - 4)}{z^2 - 3.5z + 1.5} = \frac{z}{z - 0.5} + \frac{2z}{z - 3}$$

Xác định ROC trong các trường hợp sau và xác định h(n) tương ứng:

- 1. Hệ thống ổn định
- 2. Hệ thống nhân quả
- 3. Hệ thống phản nhân quả (anti-causal)