TD 5 : Un problème de compacité

Exercice 1 : Compactification de Stone-Čech (extrait du partiel 2020)

On dit qu'un espace topologique X est un espace de Tychonoff si il est séparé et si pour tous $x \in X$ et $F \subset X$ fermé tels que $x \notin F$, il existe $f: X \to [0,1]$ continue telle que f(x) = 0 et $F \subset f^{-1}(\{1\})$. Dans tout l'exercice, on fixe un espace de Tychonoff X.

Une compactification de Stone-Čech de X est un espace topologique compact (en particulier séparé) \widehat{X} et une application continue $\iota_X:X\to \widehat{X}$ qui satisfont la propriété universelle suivante :

pour tout espace topologique compact K et pour toute application continue $f: X \to K$, il existe une unique application continue $\widehat{f}: \widehat{X} \to K$ telle que $f = \widehat{f} \circ \iota_X$.

- 1. Soit (\widehat{X}, ι_X) et (Y, j_X) deux compactifications de Stone-Čech de X. Montrer qu'il existe un homéomorphisme $f: \widehat{X} \to Y$ tel que $f \circ \iota_X = j_X$.
- 2. Soit (\widehat{X}, ι_X) une compactification de Stone-Čech de X. Montrer que ι_X est un homéomorphisme sur son image.

Construction. A partir de maintenant, on cherche à construire une compactification de Stone-Čech de X. Pour cela, on note C_X l'espace des fonctions continues de X dans [0,1] et $K_X = [0,1]^{C_X}$, muni de la topologie produit. On notera $(\Phi(g))_{g \in C_X}$ les éléments de K_X . On note également $I: X \to K_X, x \mapsto I(x)$ où I(x)(g) = g(x). Finalement, on définit \widehat{X} comme étant l'adhérence de I(X) dans K_X .

- 3. Justifier que K_X est un espace topologique compact.
- 4. a) Montrer que I est injective.
 - b) Montrer que I est continue.
 - c) Montrer que $I: X \to I(X)$ est ouverte et en déduire que I réalise un homéomorphisme sur son image. Indication: N'oubliez pas que X est de Tychonoff. Dans la suite, on note donc $\iota_X = I$.
- 5. Dans cette question, on souhaite démontrer que la propriété universelle est vérifiée. Soit donc K un espace topologique compact et $f: X \to K$ continue et on souhaite montrer l'existence d'une unique application $\widehat{f}: \widehat{X} \to K$ telle que $\widehat{f} \circ \iota_X = f$.
 - a) Montrer l'unicité d'une telle application.
 - b) On suppose que K est de la forme $[0,1]^A$, muni de la topologie produit, avec A quelconque. Prouver l'existence dans ce cas. Indication : l'étendre à tout K_X !
 - c) Montrer qu'il existe $\iota: K \to [0,1]^{C_K}$ un homéomorphisme sur son image (où C_K est l'ensemble des applications continues de K dans [0,1]). On pourra admettre qu'un compact est de Tychonoff.
 - d) Conclure.