CH4 Authentification et annuaires

Utilisations

- Login
- Carnet d'adresses distribué
- Flexible: liste de ressources, ...

PAM

- PAM = Pluggable Authentication Modules
- Librairies de fonctions que les applications peuvent utiliser pour demander l'authentification d'un utilisateur
- Permet de rentre les applications indépendantes du schéma d'authentification
 - /etc/passwd, shadow passwords, token, kerberos, LDAP...
- Présent dans toutes les distributions de Linux

LDAP

Annuaires vs bases de données

- Concept commun, le stockage de données mais...
 - Ratio read/write
 - Extensibilité
 - Niveau de distribution
 - Réplication
 - Performance
 - Standard

Modèle client/serveur (1/2)

- Modèle client/serveur
- TCP 389
- Protocole orienté messages
- Code de résultat

Modèle client/serveur (2/2)

→ requêtes multiples asynchrones (# HTTP)

réponses multiples

Opérations du protocole

- 9 opérations de base
 - Opérations d'interrogation
 - search, compare
 - Opérations de mise à jour
 - add, delete, modify, modify DN
 - Opérations d'authentification et de contrôle
 - bind, unbind, abandon

Le modèle d'information (1/5)

- Définit les données et les unités d'information de base stockables dans un annuaire LDAP
- DIT structure arborescente
- Entries = objets
- Objets : notion de classes
- Les objets possèdent des attributs
- Chaque attribut a un type (nom) et une valeur
- La syntaxe d'un attribut est définie
 (ex. caseIgnoreString) et utilisée dans
 comparaisons (search, compare → matching rules)

Le modèle d'information (2/5)

(c) Howes, Smith & Good, 1999

Le modèle d'information – schéma (3/5)

- Schéma = définition des classes, c.à.d. des attributs de chaque type d'objet
- Exemple : objectClass = person implique la présence des attributs cn (common name) et sn (surname)
- Certains attributs sont obligatoires, d'autres optionnels; certains sont mutivalués
- Forme d'héritage multiple
 - Une entrée peut posséder des attributs de plusieurs classes

Le modèle d'information – schéma (4/5)

```
dn: uid=rdevil, dc=ulb, dc=be
objectClass: top
objectClass: person
objectClass: organizationalPerson
objectClass: inetOrgPerson
cn: Raymond Devillers
cn: Ray Devillers
sn: Devillers
mail: rdevil@ulb.ac.be
telephoneNumber: +32 650 12 34
description: professeur ordinaire
```

Le modèle de nommage (1/5)

- Définit la manière dont les données sont organisées et référencées
- DIT structure arborescente semblable à un filesystem Unix mais...
 - root conceptuelle (ne contenient pas d'information)
 - containers : pas de différence, ce sont des nœuds/objets comme les autres (mais par exemple de classe organizationalUnit)

Le modèle de nommage (2/5)

- DIT structure arborescente semblable à un filesystem Unix mais...
 - nommage des nœuds « de bas en haut »,
 c.à.d. du nœud à la racine (cf. DNS)
- Distinguished Name (DN)
 - cn=Alain Delava, ou=Operational
 Services, o=Trasys, c=be
 - Chaque entrée doit avoir un DN unique
 - Utilisé e.a. pour les opérations de mises à jour

Le modèle de nommage (3/5)

cn=Alain Delava, ou=Operational Services,
 o=Trasys, c=be

Le modèle de nommage (4/5)

- Distinguished Name (DN)
 - cn=Alain Delava, ou=Operational Services, o=Trasys, c=be
- Relative Distinguished Name (RDN)
 - Partie la plus à gauche du DN : cn=Alain Delava
 - Unicité locale (i.e. parmi les nœuds de même parent)
 - Peut être mutivalué (permet d'avoir deux entrées avec, dans notre exemple, le même cn)
 - cn=John Smith + mail=jsmith@company.com

Le modèle fonctionnel

- Définit les opérations pouvant être effectuées sur les informations
- search, compare
- add, delete, modify, modify DN (rename / move)
- bind, unbind, abandon

Search - filtres

Equality filters (sn=Delava) Substring filters (sn=Van Den*) Approximate filters (sn=~Delawa) Comparison filters (<,>,<=,>=) nécessite un ordre (numérique, lexicographique...) Presence filters (telephoneNumber=*) Combinaisons: & (and) - | (or) Not:! (& (sn=Delava) (givenname=Alain)) (|(sn=Devillers)(sn=Roggeman))

(& (mail=*) (! (telephoneNumber=*)))

Le modèle de sécurité

- Protection des informations
 - Accès en lecture, en modification
 - Qui peut modifier quelles entrées, dans quelles branches… ?
 - Qui peut modifier quels attributs dans un objet...?
- LDAP v3 ne définit pas de processus standard de contrôle d'accès!
 - → ACL etc. dépendants de l'implémentation

LDIF

LDIF

LDAP Data Interchange Format

- Permet de représenter des objets dans un format texte
- Utile pour export/import entre serveurs LDAP
- Deux sortes de fichiers LDIF
 - Décrivant des objets
 - Contenant des opérations de mise à jour à appliquer sur des entrées d'un annuaire LDAP

LDIF update statements

- Fichier LDIF contenant une liste de modifications
- Généralement utilisé comme input de l'outil ldapmodify
- Update statement =
 - DN de l'entrée à modifier + change type
 - [+ modifytype dans le cas du modify]
 - [+ ensemble des modifications]

LDIF

Rajout d'une entrée

```
dn: <dn of entry to be added>
changetype: add
<attribute1 name>: value
<attribute2 name>: value
```

Outils

- Fournis avec OpenLDAP, avec Netscape Directory Server (entre autres)
 - ldapsearch
 - ldapadd
 - ldapdelete
 - ldapmodify
 - ldapcompare
 - ldappasswd
 - ldapmodrdn
 - et d'autres

NIS - Yellowpages

NIS - Yellowpages

- Partage de comptes/groupes entre ordinateurs, plus généralement partage de fichiers de configuration
 - Serveur
 - Clients
 - Ajoute virtuellement les entrées à /etc/ passwd
 - Intégration via PAM

/etc/nsswitch.conf

Demo

ypcat

 Simule la lecture d'un fichier local, combiné avec les instructions NIS

Problème

- Partager les comptes
 - N'implique pas le partage de données
 - NFS
 - Mais implique une structure similaire
 - inhérente au contenu de /etc/passwd

- NFS = Network File System
- Permet d'accéder aux fichiers d'un serveur distant
 - En montant un(e partie de) file system distant dans la structure du filesystem local
 - De manière transparente pour les applications
- Implémenté dans le noyau
 - Pour la transparence
 - Pour la performance (évite de passer fréquemment du mode user au mode kernel)

- Le serveur exporte /home
- Le client monte explicitement ce dossier
- Ensuite tout est transparent

Lorsqu'un processus client demande un accès à un fichier:

- 1. il sollicite le **kernel** (system call)
- 2. le kernel détermine si le fichier est local ou non
- si le fichier est distant, le kernel passe au client NFS les références du fichier distant
- le client NFS contacte le portmapper du serveur concerné
- le portmapper du serveur met le client en relation avec le serveur NFS
- le serveur NFS opère la requête via les routines d'accès aux fichiers locaux

- Daemons côté serveur
 - portmap
 - nfsd: traite les requêtes des clients d'accès aux fichiers
 - mountd (rpc.mountd sous Linux): traite les requêtes des clients pour les montages
- Client côté client
 - mount
- Daemons côté serveur et client
 - rpc.lockd
 - rpc.statd

NFS – configuration serveur

- /etc/exports
- FS host1(options) ... hostN(options)
 - FS = le filesystem / répertoire à exporter
 - hostX: hostname, IP, subnet, wildcards

Options

- ro, rw, rw=list
- root squash : uid=0,gid=0 → anonuid,anongid
- no_root_squash
- all squash
- noacess
- **–** ...

NFS – configuration serveur

```
# /etc/exports
...
/home 172.19.3.0/24(ro,root_squash) gollum(rw)
```

NFS – côté client

 Montage manuel mount -t nfs server:/dir /mountpoint

Options

- ro
- rw (doit être exporté en rw)
- bg
- hard / soft
- noexec
- intr / nointr
- retrans=n
- timeo=m
- **–** ...

NFS – côté client

Montage automatique

```
# /etc/fstab
...
remote_host:/rep_dist rep_local nfs 0 0
```

NFS - divers

- Statistiques
 - nfsstat -c
 - nfsstat -s
- Sécurisation
 - Protection du client (qui n'a pas confiance en le serveur): nosuid, noexec
 - Protection du serveur (qui n'a pas confiance en le client) : root_squash
 - Restrictions au niveau de portmap
 - /etc/hosts.deny et /etc/hosts.allow
- Montage automatique (automount, amd)