1 $\gamma p \to J/\psi + p$

1.1 Kinematics

Let x_{γ} be the proton 1 longitudinal momentum fraction carried by the photon, x be the proton 2 longitudinal momentum fraction carried by the hard gluon, $Q^2 = -q^2$ is the 4-momentum transfer through the photon. We have

$$W^{2} \equiv (q + p_{2})^{2} = x_{\gamma}s - Q^{2} , \qquad (1)$$

m_perp^2=m^2+pt^2
$$x_{\gamma} = \frac{M_{\psi_{\perp}}}{\sqrt{s}} e^{y_{\psi}} \; , \qquad (2)$$

$$x = \frac{M_{\psi_{\perp}}}{\sqrt{s}} e^{-y_{\psi}} , \qquad (3)$$

and the case where the photon couples to proton 2 is included by making the substitution $y_{\psi} \to -y_{\psi}$ (and $p_{1\perp} \to p_{2\perp}$). Neglecting the photon virtuality and J/ψ p_{\perp} , we also have the usual approximate relations

$$x_{\gamma} \approx \frac{W^2}{s} \qquad x \approx \frac{M_{\psi}^2}{W^2} \,.$$
 (4)

In general if we write

$$q = x_{\gamma}(p_{+})_{1} + \tilde{x}_{\gamma}(p_{-})_{1} + q_{\perp} , \qquad (5)$$

then imposing the mass shell limit on the outgoing proton gives \tilde{x}_{γ} , and we get

$$Q^{2} = \frac{(x_{\gamma}^{2} m_{p}^{2} + \mathbf{q}_{\perp}^{2})}{1 - x_{\gamma}} = \frac{(x_{\gamma}^{2} m_{p}^{2} + \mathbf{p}_{1\perp}^{2})}{1 - x_{\gamma}}.$$
 (6)

 Q^2 is therefore cut-off at the minimum value

$$Q_{\min}^2 = \frac{x_{\gamma}^2 m_p^2}{1 - x_{\gamma}} \ . \tag{7}$$

1.2 Elastic cross section

The cross section for the process $pp \rightarrow p + J/\psi + p$ is given by

$$\sigma = 2 \int d^2 \mathbf{p}_{1\perp} \int_0^\infty dk \frac{dn}{dk} \sigma(\gamma^* p \to J/\psi + p) , \qquad (8)$$

where the photon energy, k, spectrum is given by

$$\frac{\mathrm{d}n}{\mathrm{d}k} = \frac{\alpha}{\pi^2 k} \left(1 - x_\gamma + \frac{x_\gamma^2}{2} \right) \frac{F_N^2(Q^2)}{Q^2} \,, \tag{9}$$

with

$$F_N(Q^2) = \frac{1}{(1 + Q^2/0.71 \text{GeV}^2)^2}$$
 (10)

We can change variables from ${\bf p}_{1\perp}^2$ to Q^2 and perform the p_\perp integration, as well as changing variables from k to the J/ψ rapidity y_ψ to finally give

$$\frac{d\sigma}{dy_{\psi}} = 2\frac{\alpha}{\pi} \left(1 - x_{\gamma} + \frac{x_{\gamma}^{2}}{2} \right) \left[\ln A - \frac{11}{6} + \frac{3}{A} - \frac{3}{2A^{2}} + \frac{1}{3A^{3}} \right] \sigma(\gamma^{*}p \to J/\psi + p), (11)$$

where $A = 1 + 0.71 \text{GeV}^2/Q_{\text{min}}^2$. In fact, in the MC the $\mathbf{p}_{1\perp}$ integration (8) is instead done numerically, and we use the more precise form of the photon energy spectrum given by Eq. (4) of [1].

The $\gamma p \to J/\psi p$ cross section can be taken from a fit to HERA data [2]

$$\frac{\mathrm{d}\sigma(\gamma p \to J/\psi + p)}{\mathrm{d}\mathbf{p}_{2\perp}^2} = N \left(\frac{W}{1\,\mathrm{GeV}}\right)^{\delta} e^{-b\mathbf{p}_{2\perp}^2} \tag{12}$$

with $b=4.5~{\rm GeV}^{-2},~\delta=0.72$ and N=3 nb for J/ψ production [3]. The data exists (and is fitted well– see Fig. 2) for $W\lesssim 300~{\rm GeV},$ i.e. $|y_\psi|<2.7$ at the Tevatron and $|y_\psi|<1.4$ at the LHC ($\sqrt{s}=7~{\rm TeV}$). Using this fit we also find ${\rm d}\sigma^{p\bar{p}\to p\bar{p}J/\psi}/{\rm d}y_\psi|_{y_\psi=0}\approx 3.8$ nb at the Tevatron, in excellent agreement with the data value of 3.92 ± 0.62 nb, as expected.

Alternatively, we can use the simplest LO pQCD theory expression [4, 5]

$$\frac{\mathrm{d}\sigma(\gamma^* p \to J/\psi + p)}{\mathrm{d}\mathbf{p}_{2\perp}^2} = K \frac{\Gamma_{\mathrm{ee}} \pi^3 M_{\psi}^3}{48\alpha} \frac{\alpha_S^2(\overline{Q}^2)}{\overline{Q}^8} [xg(x, \overline{Q}^2)]^2 e^{-b\mathbf{p}_{2\perp}^2}$$
(13)

with b taken as before from data, the $J/\psi \to e^+e^-$ width $\Gamma_{\rm ee}=5.52$ keV, and $\overline{Q}^2=(M_\psi^2+Q^2)/4$. In this case the cross sections tend to be a little larger than the fit (i.e. need $K\sim 1/2$ to fit the data), which is consistent with [6] (see Fig. 3 in particular). From the literature (e.g. [7]), we would expect that extra corrections to this simple approach (allowing for a skewdness $x'\neq 0$, allowing for a real part of the amplitude, NLO corrections) will increase this LO result, although in [5] it is suggested the inclusion of a non-zero gluon k_\perp and $c\bar{c}$ rescattering may decrease the cross section.

In Figure 1, the results of using (12) and (13) for $\sigma(\gamma p \to J/\psi)$ as a function of the $p\gamma$ cms energy W are shown (for this data $\langle Q^2 \rangle = 0.05\,\mathrm{GeV}^2$, and so $\overline{Q}^2 \approx M_\psi^2/4$). The CTEQ6L and MSTW08NLO (with a suitable choice of scale and K-factor) pdfs describe the shape of the data well. In all cases the results are consistent with the previous analysis of [6]. Different choices of pdf will also have an effect on the rapidity y_ψ dependence, see Figure 1.2 for some examples of this.

References

[1] V. A. Khoze, A. D. Martin, M. G. Ryskin, Eur. Phys. J. C24 (2002) 459-468. [hep-ph/0201301].

Figure 1: Fit to HERA data, and LO pQCD theory predictions (using different PDFs) for $\sigma(\gamma p \to J/\psi)$ as a function of the $p\gamma$ cms energy W. Also shown is the comparison with the pQCD theory expressions normalised to the data at $W=80~{\rm GeV}$

Figure 2: Fit to HERA data, and LO pQCD theory predictions (using different PDFs) for $d\sigma/dy_{\psi}$ at $\sqrt{s}=14$ TeV. Similar results apply for $\sqrt{s}=7(8)$ TeV.

- [2] A. Aktas *et al.* [H1 Collaboration], Eur. Phys. J. **C46** (2006) 585-603. [hep-ex/0510016].
- [3] L. Motyka, G. Watt, Phys. Rev. ${\bf D78}$ (2008) 014023. [arXiv:0805.2113 [hep-ph]].
- [4] M. G. Ryskin, Z. Phys. C57 (1993) 89-92.
- [5] M. G. Ryskin, R. G. Roberts, A. D. Martin et al., Z. Phys. C76 (1997) 231-239. [hep-ph/9511228]
- [6] A. D. Martin, C. Nockles, M. G. Ryskin et al., Phys. Lett. B662 (2008) 252-258. [arXiv:0709.4406 [hep-ph]].
- [7] A. D. Martin, M. G. Ryskin, T. Teubner, Phys. Lett. ${\bf B454}$ (1999) 339-345. [hep-ph/9901420].