MATH-UA 329: Honors Analysis II

James Pagan

January 2024

Contents

1 Exposition		position	$\frac{2}{2}$
2	Metric Spaces		
	2.1	Metric Spaces	2
	2.2	The Metric Space $\mathcal{BC}(X)$	4
	2.3	Modulus of Continuity	6
	2.4	Separable Metric Spaces	8
	2.5	Polynomial Approximation	9
	2.6	Normed Vector Space	9
	2.7	Equivalent Metrics	10
	2.8	Linear Maps on Normed Vector Spaces	12
		2.8.1 Bounded Linear Operators	12
	2.9	Matrix Norm	13

1 Exposition

MATH-UA 329 expands upon Honors Analysis I and will discuss two topics:

- 1. The theory of differentiation and integration of multiavariable functions.
- 2. Measure Theory and Lebesgue integration

The instructor is Sinan Gunturk, available at gunturk@cims.nyu.edu. Professor Gunturk's office hours are at WWH 829 in Courant from 2:00-3:30 PM. The TA is Keefer Rowan. The grade distribution is as follows:

• 40%: the final exam.

• 20%: the midterm exam.

• 10-15%: quizzes.

• 15-20%: homework assignments.

The course will not follow one particular textbook; potential textbooks are enumerated on Brightspace, with particular emphasis on Rudin's *Principles of Mathematical Analysis*.

2 Metric Spaces

2.1 Metric Spaces

Definition

A **metric space** is a set X equipped with a binary mapping $d: X \times X \to \mathbb{R}$ called a **metric** such that the following properties are satisfied for all $x, y, z \in X$:

1. Positivity: $d(x,y) \ge 0$, with equality if and only if x = y.

2. Symmetry: d(x,y) = d(y,x).

3. Triangle Inequality: $d(x,y) \le d(x,z) + d(z,y)$.

Metric spaces generalize the notion of distance to arbitrary sets.

Examples

1. **Euclidean Distance**: In \mathbb{R} , the Euclidean distance d(x,y) = |x-y| is a metric. The complex absolute value is also a metric of \mathbb{C} .

In general, the Euclidean distance over \mathbb{R}^n is defined as follows:

$$d_2(\mathbf{x}, \mathbf{y}) = \|\mathbf{x} - \mathbf{y}\| = \sqrt{\sum_{i=1}^n |x_i - y_i|^2}$$

2. **Taxicab Metric**: in \mathbb{R}^n , the taxicab metric is defined as follows for $\mathbf{x} = (x_1, \dots, x_n)$ and $\mathbf{y} = (y_1, \dots, y_n)$:

$$d_1(x,y) = \sum_{i=1}^{n} |x_i - y_i|.$$

3. Supremum Distance: For \mathbb{R}^n , the d_{∞} metric is as follows:

$$d_{\infty}(\mathbf{x}, \mathbf{y}) = \max |x_i - y_i| \ i \in \{1, \dots, n\}|.$$

It is denoted by infinity since

$$\lim_{m \to \infty} d_n(x, y) = \lim_{m \to \infty} \sqrt[m]{\sum_{i=1}^n |x_i - y_i|^m} = d_{\infty}(x, y).$$

4. **Discrete Metric** The discrete metric over any set X is defined as follows:

$$d(x,y) = \begin{cases} 0 & \text{if } x = y, \\ 1 & \text{if } x \neq y \end{cases}.$$

It is easy to verify that the discrete metric is a metric; it is primarily used in examples.

Open Balls

For a metric space X, the **open ball** of radius r centered at $x \in X$ is the set

$$B_r(\mathbf{x}) = \{ y \in X \mid d(x, y) \le 1 \}.$$

Here are examples of the unit disc $B_1(0)$ in the above metrics in \mathbb{R}^2 .

• Under the Euclidean metric, the unit disc is the standard unit circle.

• Under d_{∞} , it is the unit square:

$$B_1(0) = \{ \mathbf{y} \in \mathbb{R}^2 \mid \max y_i < 1 \text{ for } i \in \{1, 2\} \}.$$

• Under d_1 , the unit disc is a diamond:

$$B_1(0) = \{ \mathbf{y} \in \mathbb{R}^2 \mid |y| \le 1 \}.$$

• Open balls under the discrete metric are defined as follows:

$$B_r(x) = \begin{cases} \{x\} & \text{if } r \le 1, \\ X & \text{if } r > 1. \end{cases}$$

We encourage the reader to graph these examples for further understanding.

*

Continuity

Let X and Y be metric spaces. A function $f: X \to Y$ is **continuous** at $x \in X$ if for all $\epsilon > 0$, there exists δ such that

$$0 < d(x, y) < \delta \implies d(f(x) - f(y)) < \epsilon.$$

f itself is continuous on X if it is continuous at every $x \in X$.

2.2 The Metric Space $\mathcal{BC}(X)$

On Metric Sets

The next section will utilize the following definition:

$$C(X) = \{ f : X \to \mathbb{R} \mid f \text{ is continuous on } X \}$$

 $\mathcal{C}(X)$ is a vector space over \mathbb{R} under addition of functions and scalar multiplication. The natural question is: is $\mathcal{C}(X)$ a metric space? Since a norm on a vector space V satisfies positivity, the symmetry Triangle Inequality, it induces a metric for $\mathbf{v}, \mathbf{w} \in V$:

$$d(\mathbf{v}, \mathbf{w}) = \|\mathbf{v} - \mathbf{w}\|.$$

 $\mathcal{C}(X)$ does not possess a clear norm. We must define a subspace B of $\mathcal{C}(X)$ as follows:

$$\mathcal{BC}(X) = \{f : X \to \mathbb{R} \mid f \text{ is continuous and bounded on } X\}.$$

The natural norm of this space is the **supremum norm**, defined as follows:

$$||f||_X = \sup_{x \in X} |f(x)|.$$

This norm fashions $\mathcal{BC}(X)$ into a metric space. The supremum norm encapsulates the concept of uniform convergence quite precisely.

For General Sets

For any set E, we may define a similar function space:

$$\mathcal{B}(E) = \{ f : E \to \mathbb{R} \mid f \text{ is bounded on } E \}.$$

This set $\mathcal{B}(E)$ is a normed vector space under the supremum norm:

$$||f||_E = \sup_{x \in E} |f(x)|.$$

Theorem 1. $\mathcal{B}(E)$ is a complete metric space — hence a Banach space.

Proof. Suppose (f_n) is a Cauchy sequence under the supremum norm: that for all $\epsilon > 0$, there exists N_{ϵ} such that

$$N_{\epsilon} \leq i, j \implies ||f_i - f_j||_E < \epsilon.$$

Then for all $x \in E$,

$$N_{\epsilon} \le i, j \implies ||f_i(x) - f_j(x)||_E < \epsilon.$$

Then the sequence $f_1(x), f_2(x), \ldots$ is a Cauchy sequence in \mathbb{R} under the supremum norm. Then let f be the function that maps x to the limit of $f_1(x), f_2(x), \ldots$ Clearly, $f \in \mathbb{R}^E$. We must demonstrate that this convergence is uniform.

Now, let $N_{\epsilon} \leq i, j$. Then

$$|f(x) - f_n(x)| \le |f(x) - f_m(x)| + |f_m(x) - f_n(x)|.$$

 $< |f(x) - f_m(x)| + \epsilon.$

Observe that $\inf_{N_{\epsilon} \leq m} |f(x) - f_m(x)| = 0$ by the convergence. Therefore, we may take the infimum of both sides of the above equation:

$$|f(x) - f_n(x)| = \inf_{N_{\epsilon} \le m} |f(x) - f_n(x)|$$

$$< \inf_{N_{\epsilon} \le m} |f(x) - f_m(x)| + \epsilon$$

$$= \epsilon.$$

Thus, $N_{\epsilon} < i$ implies $||f - f_n|| = \sup_{x \in E} |f(x) - f_n(x)|_E < \epsilon$. We conclude that (f_n) converges, so $\mathcal{B}(E)$ is complete.

If we would like to prove that $\mathcal{BC}(X)$ is continuous, we only need demonstrate that the limit of a Cauchy sequence (f_n) is continuous — which is true, since $\mathcal{BC}(X)$ is a closed subspace of the complete metric space $\mathcal{B}(X)$.

Uniform Continuity

Let $f:(X,d_x)\to (Y,d_y)$ map between metric spaces. Then f is **uniformly continuous** if for all $\epsilon>0$, there exists $\delta>0$ such that

$$d_X(x_1, x_2) < \delta \implies d_Y(f(x_1), f(x_2)) < \epsilon.$$

This now leads us to define the following two spaces:

$$\mathcal{UC}(X) = \{f : X \to R \mid f \text{ is uniformly continuous on } X\},\$$

 $\mathcal{BUC}(X) = \{f : X \to R \mid f \text{ is bounded and uniformly continuous on } X\}.$

Both are subspaces of C(X), but only $\mathcal{BUC}(X)$ is a normed vector space. The exact same proof as Theorem 1 demonstrates that $\mathcal{BUC}(X)$ is a Banach space.

Special case: When X = K is compact, all continuous $f : K \to \mathbb{R}$ are bounded and uniformly continuous. Hence,

$$C(K) = \mathcal{BC}(K) = \mathcal{BUC}(K)$$

For non-compact X, we can only write

$$C(X) \supset BC(X) \supset BUC(X)$$
.

2.3 Modulus of Continuity

Definition

Let $f:(X,d_X)\to (Y,d_Y)$ map between metric spaces. Then the **modulus of continuity** $\omega_f:[0,\infty)\to [0,\infty]$ is defined as

$$\omega_f(t) = \sup_{d_X(x_1, x_2) \le t} d_Y(f(x_1), f(x_2)).$$

The modulus of continuity "measures" the uniform continuity of a function, as observed by the following facts:

Theorem 2. f is uniformly continuous if and only if $\lim_{t\to 0^+} \omega_f(t) = 0$.

Proof. The line of reasoning is not particularly difficult; the two expressions communicate the same idea, buried under different notation. For all $\epsilon > 0$,

$$f \text{ is uniformly continuous} \iff \exists \delta \text{ such that } d_X(x_1,x_2) \leq \delta \text{ implies} \\ d_Y(f(x_1),f(x_2)) < \epsilon \text{ for all } x_1,x_2 \in X. \\ \iff \exists \delta \text{ such that } d_X(x_1,x_2) \leq \delta \text{ implies} \\ \sup \left(d_Y(f(x_1),f(x_2))\right) \leq \epsilon \\ \iff \exists \delta \text{ such that } \sup_{d_X(x_1,x_2) \leq \delta} d_Y(f(x_1),f(x_2)) \leq \epsilon. \\ \iff \exists \delta \text{ such that } \omega_f(\delta) \leq \epsilon \\ \iff \exists \delta \text{ such that } t < \delta \text{ implies } |\omega_f(t)| \leq \epsilon \\ \iff \lim_{t \to 0^+} \omega_f(t) = 0.$$

We replaced < by \le wherever necessary; their presence or absence yields an equivalent $\epsilon - \delta$ definition of the limit.

Theorem 3. $d_Y(f(x_1), f(x_2)) \le \omega_f(d_X(x_1, x_2))$ for all $x_1, x_2 \in X$.

Proof. Set $t = d_X(x_1, x_2)$ when computing the modulus of continuity: we find that

$$d_Y(f(x_1), f(x_2)) \le \sup_{d_X(y_1, y_2) < d_X(x_1, x_2)} d_Y(f(y_1), f(y_2)) = \omega_f(d_X(x_1, x_2)),$$

as required. \Box

To witness examples of the Modulus of Continuity, we encourage the reader to examine its implications for two types of continuity for a function f:

- 1. Hölder Continutiy: If there exists $\alpha \in (0,1]$ such that $\omega_f(t) \leq Ct^{\alpha}$. Setting $\alpha \geq 1$ actually implies f is constant, by Problem 2 in Homework 1.
- 2. Lipschitz Continuity: If $\omega_f(t) \leq Ct$ for all $t \geq 0$, or if $d_Y(f(x_1), f(x_2)) \leq Cd_X(x_1, x_2)$ for all $x \in X$.

It is clear that all Lipschitz continuous functions are Hölder continuous, by setting $\alpha = 1$.

Piecewise Linear Approximation

Let I = [a, b] and $f \in \mathcal{C}(I)$; clearly f is bounded on I. Let L be the affine function interpolating f at the endpoints: L(a) = f(a) and L(b) = f(b).

Theorem 4. If terms are defined like above, then

$$||f - L||_I \le \omega_f(b - a)$$

Proof. Recall the definition of the supremum norm:

$$||f - L||_I = \sup_{x \in [a,b]} |f(x) - L(x)|.$$

Let L(x) = y. Observe that since L is affine, y lies between L(a) and L(b); therefore, between f(a) and f(b). The Intermediate Value Theorem implies the existence of $c \in [a,b]$ such that f(c) = y. Then by properties discussed prior,

$$|f(x) - L(x)| = |f(x) - f(c)| \le \omega_f |c - x| \le \omega_f (b - a).$$

Corollary 1. Every $f \in C(I)$ can be approximated uniformly by piecewise linear continuous functions, with arbitrarily small modulus of continuity.

Proof. Relatively trivial: divide [b-a] into n segments of length $\frac{b-a}{n}$, and observe how $n \to \infty$ implies $\omega_f\left(\frac{b-a}{n}\right) \to 0$.

We eventually conclude that the set of piecewise linear continuous functions on I is dense in C(I). In fact, the set of such functions with rational values for break points is countable.

2.4 Separable Metric Spaces

Definition and Examples

Suppose (X, d) is a metric space and $Z \subseteq X$ is a subset. We say Z is **dense** in X if any of the equivalent definitions are defined:

- For all $x \in X$ and $\epsilon > 0$, there exists $z \in Z$ such that $|x z| < \epsilon$.
- For all $x \in X$ and $\epsilon > 0$, then $B_{\epsilon}(x) \cap Z \neq \emptyset$.
- $\bar{Z} = X$, the closure of Z.
- For all $x \in X$, there exists $(z_n) \in Z$ such that $\lim_{n \to \infty} z_n = x$.

Densitiy is transitive: suppose $S \subseteq Z \subseteq X$, where S is dense in Z and Z is dense in X; then S is dense in Z. The metric space (X, d) is **separable** if X has a countable dense subset.

Some examples of dense subsets include:

- 1. \mathbb{R} with the Euclidean metric, the countable dense subset being \mathbb{Q} . We could also conside rthe diatic rationals: $\{\frac{n}{2^m}\}$.
- 2. \mathbb{C}^n with the Euclidean metric, using the same methods as above.
- 3. \mathbb{R}^n with the Taxicab metric, using the product metric discussed below.
- 4. C(I), discussed prior. The set of all piecewise linear continuous functions with rational values at break points it is countable yet dense.

For two metric spaces (X, d_X) and (Y, d_Y) , the **product metric** is a metric over $X \times Y$ defined as follows:

$$(d_1 \times d_2)((x_1, y_1), (x_2, y_2)) = d(x_1, x_2) + d(y_1, y_2).$$

We could also consider \mathbb{R}^n to be dense under the product metric, considering \mathbb{R}^n as a direct product of \mathbb{R}^n . We would yield the taxicab metric, which is equivalent.

2.5 Polynomial Approximation

Theorem 5 (Weierstrauss Approximation Theorem). The set of all polynomial functions is dense on C(I): if $f \in C(I)$ and for all $\epsilon > 0$, there exists a polynomial P of finite degree such that $||f - P||_I < \epsilon$.

Proof. The proof was discovered by Bernstein in the 1910s, found in the file RealAnalysis/babyrudin7.tex. \Box

Thus, polynomials are a countable dense subset of I.

2.6 Normed Vector Space

A **normed vector space** is a complex vector space X equipped with a mapping $\|\cdot\|: X \to \mathbb{R}$ that satisfies the following properties:

- 1. **Positivity**: $\|\mathbf{x}\| \ge 0$, with equality if and only if $\mathbf{x} = \mathbf{0}$.
- 2. Homogenity: $\|\lambda \mathbf{x}\| = |\lambda| \|\mathbf{x}\|$ for all $\lambda \in \mathbb{C}$.
- 3. Triangle Inequality: $\|\mathbf{x} + \mathbf{y}\| \le \|\mathbf{x}\| + \|\mathbf{y}\|$

It is clear that such a norm induces a metric on X. This metric is **translation invariant** — namely, for all $z \in X$, we have d(x,y) = d(x+z,y+z). In fact, we have $B_r(x)+z = B_r(x+z)$.

An **inner product space** is a complex vector space X equipped with a mapping $\langle \cdot, \cdot \rangle$: $X \times X \to \mathbb{C}$ that satisfies the following properties for all $\mathbf{x}, \mathbf{y}, \mathbf{z} \in \mathbf{X}$ and $\lambda \in \mathbb{C}$:

- 1. Conjugate Symmetry: $\langle \mathbf{x}, \mathbf{y} \rangle = \overline{\langle \mathbf{y}, \mathbf{x} \rangle}$
- 2. **Positive-Definiteness**: $\langle \mathbf{x}, \mathbf{x} \rangle \geq 0$, with equality if and only if $\mathbf{x} = \mathbf{0}$.
- 3. Additivity in First Argument: $\langle \mathbf{x} + \mathbf{y}, \mathbf{z} \rangle = \langle \mathbf{x}, \mathbf{z} \rangle + \langle \mathbf{y}, \mathbf{z} \rangle$.
- 4. Homogenity in First Argument: $\langle \lambda \mathbf{x}, \mathbf{y} \rangle = \lambda \langle \mathbf{x}, \mathbf{y} \rangle$.

More theorems about these spaces may be found in axler6.tex. It is clear that by setting $\|\mathbf{x}\| = \langle \mathbf{x}, \mathbf{x} \rangle$, all inner product spaces are normed vector spaces. Hence,

inner product spaces \subseteq normed vector spaces \subseteq metric spaces \subseteq topological spaces.

A complete normed vector space is a **Banach space**< while a complete inner product space is a **Hilbert space**. These spaces need not be finite-dimensional.

2.7 Equivalent Metrics

Two metrics d and ρ on X are **equivalent** if there exists $0 < c \le C < \infty$ such that for all $x, y \in X$,

$$c\rho(x,y) \le d(x,y) \le C\rho(x,y).$$

Density is invariant of equivalent metrics; in fact their topologies are the same. A set $S \subseteq X$ is open under d if and only if S is open under ρ . In particular, metrics in Banach spaces are equivalent if

$$c\|\mathbf{x}\| < \|\mathbf{x}\|' < C\|\mathbf{x}\|$$

for all $\mathbf{x} \in X$. As an example, the Power Mean Inequality yields in \mathbb{C}^n that

$$\|\mathbf{x}\|_{\infty} \le \|\mathbf{x}\|_{2} \le \|\mathbf{x}\|_{1} \le \sqrt{d} \|\mathbf{x}\|_{2} \le d \|\mathbf{x}\|_{\infty}.$$

These relations do not extend to infinite dimensional vector spaces, like $\ell_p(\mathbb{N})$ for $1 \leq p \leq \infty$. A counterexample is given by $(1, \ldots, 1, 0, 0, \ldots)$. As a reminder, this norm is defined as

$$\|\mathbf{x}\|_{p} \stackrel{\text{def}}{=} \begin{cases} \left(\sum_{n=1}^{\infty} |x_{n}|^{p}\right)^{1/p} & \text{if } 1 \leq p < \infty \\ \sup_{n \in \mathbb{N}} |x_{n}| & \text{if } p = \infty. \end{cases}$$

Hence p-norms are not equivalent on spaces of infinite sequences.

Though worth noting, we do have the following:

$$c_{00} \subset \ell_1(\mathbb{N}) \subset \ell^2(\mathbb{N}) \subset c_0 \subset c \subset \ell^\infty(\mathbb{N})$$

All inclusions are clearly proper.

Theorem 6. Let X be a finite dimensional vector space over \mathbb{C} (or \mathbb{R}^n). Then any two norms on X are equivalent.

Proof. Let dim X = n. We first prove the theorem for \mathbb{C}^n ; let $\mathbf{e}_1, \dots, \mathbf{e}_n$ be the canonical basis of \mathbb{C}^n , and suppose $\|\cdot\|_1 : \mathbb{C}^n \to [0, \infty)$ is a norm. We prove that $\|\mathbf{z}\|_1$ is equivalent to the canonical norm $\|\mathbf{z}\|$.

Consider the boundary of the unit ball (in the canonica norm) in \mathbb{C}^n . Since $\|\cdot\|_1$ is continuous, the Extreme Value Theorem guarantees that there exists \mathbf{u}, \mathbf{s} with norms 1 such that

$$\|\mathbf{u}\|' = \inf_{\|\mathbf{z}\| = 1} \{\|\mathbf{z}\|'\} \qquad \text{and} \qquad \|\mathbf{s}\|' = \sup_{\|\mathbf{z}\| = 1} \{\|\mathbf{z}\|'\}$$

Then for all $\mathbf{z} \in \mathbb{C}^n$, the constants $\|\mathbf{u}\|'$ and $\|\mathbf{s}\|'$ allow for norm equivalence:

$$\|\mathbf{u}\|'\|\mathbf{z}\| \, \leq \, \left\|\frac{\mathbf{z}}{\|\mathbf{z}\|}\right\|'\|\mathbf{z}\| \, = \, \|\mathbf{z}\|' \, = \, \left\|\frac{\mathbf{z}}{\|\mathbf{z}\|}\right\|'\|\mathbf{z}\| \, \leq \, \|\mathbf{s}\|'\|\mathbf{z}\|.$$

We conclude that all norms on \mathbb{C}^n are equivalent to the canonical norm.

Since open sets are the same for equivalent metrics, we obtain that there is only one norm-based topology on \mathbb{R}^n — the Euclidean topology. This proof fails on $\ell^p(\mathbb{N})$, since the unit sphere is not compact. Realize that for all \mathbf{e}_i for $i \in \mathbb{Z}_{>0}$,

$$\|\mathbf{e}_i - \mathbf{e}_i\| \ge 1.$$

Thus the set of all e_1, \ldots contains no convergent subsequence, so it is not compact. Thus the Heine-Borel Theorem fails for $\ell^p(\mathbb{N})$.

2.8 Linear Maps on Normed Vector Spaces

Let (X, d_X) and (Y, d_Y) be normed vector spaces. The set $\mathcal{L}(X, Y)$ denotes the set of all linear maps between normed vector spaces X and Y. With the following operations, $\mathcal{L}(X, Y)$ is a vector space: for $\mathbf{T}_1, \mathbf{T}_2 \in \mathcal{L}(X, Y)$,

$$(\mathbf{T}_1 + \mathbf{T}_2)\mathbf{x} = \mathbf{T}_1\mathbf{x} + \mathbf{T}_2\mathbf{x}$$

 $(\lambda \mathbf{T})\mathbf{x} = \lambda(\mathbf{T}\mathbf{x}).$

Linear maps between normed vector spaces are not necessarily continuous!

Theorem 7. Let (X, d_X) and (Y, d_Y) be normed vector spaces. A linear map $\mathbf{T} \in \mathcal{L}(X, Y)$ is continuous if and only if it is continuous at $\mathbf{0}_X$.

Proof. Suppose that T is continuous at 0. Then

$$\lim_{\mathbf{x}\to\mathbf{y}}\mathbf{T}\mathbf{x}\,=\,\lim_{\mathbf{x}-\mathbf{y}\to\mathbf{0}}\mathbf{T}\mathbf{x}\,=\,\lim_{\mathbf{x}-\mathbf{y}\to\mathbf{0}}(\mathbf{T}(\mathbf{x}-\mathbf{y}))+\mathbf{T}\mathbf{y}\,=\,\mathbf{0}+\mathbf{T}\mathbf{y}\,=\,\mathbf{T}\mathbf{y}.$$

Therefore, **T** is continuous at all $\mathbf{x} \in X$.

Corollary 2. $L \in \mathcal{L}(X,Y)$ is continuous if and only if it is uniformly continuous.

2.8.1 Bounded Linear Operators

Nonzero linear maps are never "bounded"; if $\mathbf{T} \in \mathcal{L}(X,Y)$ is nonzero, let $\mathbf{T}\mathbf{x} \neq 0$; then nonzero $\lambda \in \mathbb{C}$ implies

$$\|\lambda \mathbf{T} \mathbf{x}\| = |\lambda| \|\mathbf{T} \mathbf{x}\| \ge 0$$

can attain any nonzero complex value. Thus we formulate an alternative, relaxed condition of boundedness: **T** is **bounded** if it maps bounded sets in X to bounded sets in Y. Equivalently, **T** is bounded if for a bounded set $\Omega \subseteq X$, there exists r > 0 such that

$$\mathbf{T}(\Omega) \subseteq B_R[0],$$

where $B_r[0]$ is the closed ball of radius r. It is clear that **T** is bounded if and only if **T** is bounded over the unit ball.

Theorem 8. All linear maps in $\mathcal{L}(\mathbb{C}^n, \mathbb{C}^m)$ are bounded.

Proof. It suffices to show that **T** is bounded on the closed unit ball. Suppose that $\mathbf{z} = (z_1, \dots, z_n)$ has norm 1 or smaller; then $|z_i| \leq 1$ for each i, so

$$\|\mathbf{Tz}\| \le |z_1| \|\mathbf{Te}_1\| + \dots + |z_n| \|\mathbf{Te}_n\|$$

$$\le \|\mathbf{Te}_1\| + \dots + \|\mathbf{Te}_n\|.$$

Letting this constant be r yields that **T** is bound on the closed unit ball.

2.9 Matrix Norm

If T is bounded, the **norm** of T is as follows:

$$\|\mathbf{T}\| = \sup\{\|\mathbf{T}\mathbf{z}\| \mid \mathbf{z} \in \mathbb{C}^n, \|\mathbf{z}\| \le 1\}.$$

Notice that the matrix norm is nonnegative. The **critical vector** of **T** is the vector $\mathbf{z} \in X$ such that $\|\mathbf{z}\| \le 1$ and $\|\mathbf{Tz}\| = \|\mathbf{T}\|$; the critical vector always has norm 1. Naturally, $\|\mathbf{Tz}\| \le \|\mathbf{T}\| \cdot \|\mathbf{z}\|$; since equality is attained, $\|\mathbf{Tz}\| \le \lambda \mathbf{z}$ implies $\|\mathbf{T}\| \le \lambda$.

Theorem 9. If $T, S \in \mathcal{L}(X, Y)$, then $||T + S|| \le ||T|| + ||S||$. If X = Y, then $||TS|| \le ||T|| ||S||$.

Proof. Let \mathbf{z} be the critical vector of $\mathbf{T} + \mathbf{S}$. Then

$$\|\mathbf{T} + \mathbf{S}\| = \|(\mathbf{T} + \mathbf{S})\mathbf{z}\| \le \|\mathbf{T}\mathbf{z}\| + \|\mathbf{S}\mathbf{z}\| \le \|\mathbf{T}\|\|\mathbf{z}\| + \|\mathbf{S}\|\|\mathbf{z}\| = \|\mathbf{T}\| + \|\mathbf{S}\|.$$

Now suppose X = Y and let **w** be the critical vector of **TS**. Then

$$\|TS\| = \|TSw\| \le \|T\|\|Sw\| \le \|T\|\|S\|\|w\| = \|T\|\|S\|.$$

This completes the proof.

Theorem 10. The matrix norm is a metric of all bounded linear maps in $\mathcal{B}(X,Y)$.

Proof. Suppose $\mathbf{T}, \mathbf{S} \in \mathcal{B}(X,Y)$ are bounded. We must perform four rather routine calculations:

1. **Positivity**: The matrix norm is nonnegative. If $\|\mathbf{T} - \mathbf{S}\| = 0$, then $\|\mathbf{x}\| = 1$ implies $(\mathbf{T} - \mathbf{S})\mathbf{x} = \mathbf{0}$; hence for all $\mathbf{x} \in X$,

$$(\mathbf{T} - \mathbf{S})\mathbf{x} = \|\mathbf{x}\| \left((\mathbf{T} - \mathbf{S}) \left(\frac{\mathbf{x}}{\|\mathbf{x}\|} \right) \right) = \|\mathbf{x}\|(0) = 0;$$

thus $\mathbf{T} - \mathbf{S} = \mathbf{0}$ and $\mathbf{T} = \mathbf{T}$.

2. **Symmetry**: Notice that $(\mathbf{T} - \mathbf{S})\mathbf{x} = -(\mathbf{S} - \mathbf{T})\mathbf{x}$ for all $\mathbf{x} \in X$. Naturally if \mathbf{w} is the critical vector of $\mathbf{T} - \mathbf{S}$, then $-\mathbf{w}$ is the critical vector of $\mathbf{S} - \mathbf{T}$; thus

$$\|T - S\| = \|w\| = \|-w\| = \|S - T\|.$$

3. Triangle Inequality: For all bounded $\mathbf{R} \in \mathcal{L}(X,Y)$,

$$\|T - S\| = \|(T - R) + (R - S)\| \le \|T - R\| + \|R - S\|.$$

We conclude that the matrix norm is a metric of the bounded matricies of $\mathcal{L}(X,Y)$. \square It is straightforward that $\|\lambda \mathbf{T}\| = |\lambda| \|\mathbf{T}\|$ for all $\lambda \in \mathbb{C}$ as well. **Theorem 11.** If $T \in \mathcal{L}(X,Y)$ is bounded, then T uniformly continuous.

Proof. Let **T** be bounded. If $\epsilon > 0$, then $0 \le ||\mathbf{z} - \mathbf{w}|| < \frac{\epsilon}{\|\mathbf{T}\|}$ implies

$$\|\mathbf{T}\mathbf{z} - \mathbf{T}\mathbf{w}\| \le \|\mathbf{T}\| \cdot \|\mathbf{z} - \mathbf{w}\| < \|\mathbf{T}\| \left(\frac{\epsilon}{\|\mathbf{T}\|}\right) = \epsilon.$$

Thus, ${f T}$ is uniformly continuous.