45TH AUSTRALASIAN COMBINATORICS CONFERENCE

The University of Western Australia, December 11–15, 2023

© 2023, the organisers: John Bamberg Alice Devillers Michael Giudici Luke Morgan Cheryl Praeger Gordon Royle

45acc.github.io

Welcome!

This is the fifth time the ACC (formerly, ACCMCC) has been hosted in Perth, having previously been at UWA and/or Curtin University in the years 1984, 1992, 2001 and 2013. There are more than 65 registrants for this year, making it the second largest ACC/ACCMCC to be hosted in Western Australia. We are very grateful for the support from the following institutions and organisations:

- The School of Physics, Mathematics, and Computing (UWA)
- Optiver
- The Institute of Combinatorics and its Applications

We wish you an interesting and exciting conference, and a pleasant stay in Perth.

The organisers:

John Bamberg
Alice Devillers
Michael Giudici
Luke Morgan
Cheryl Praeger
Gordon Royle

Contents

Welcome!		iii	
1	Invited talks	3	
2	Contributed talks	13	
3	List of participants	71	

Contents vi

Contents 1

Sunday

	EZone
17:00 – 19:00	Welcome reception and registration

Monday

	Weatherburn LT	Blakers LT	Praeger LR
8.00 - 8.45	Registration		
8.45 - 9.00	Opening address		
	(Prof Mark Reynolds)		
9.00 – 10:00	Gabriel Verret 12		
10.00 – 10.30		Morning tea	
10.30 - 11.00	Chen* 22	Bastida* 18	Satake 58
11.00 – 11.30	Ding* 26	Tangjai <mark>62</mark>	Wang* 64
11.30 – 12.00	Zhang* 70	Lehner 47	Yost 67
12.00 - 12.30	Dacaymat* 24	Semple 59	Umar 63
12.30 - 14.30		Lunch break	
14.30 – 15.30	CMSA Prize Winner		
15.30 - 16.00	Afternoon tea		
16.00 – 16.30	Basit 17	Bunjamin* 21	
16.30 - 17.00	Liebenau 50	Mitchell* 54	
17.00 – 17.30	Hasunuma 35	Lacaze-Masmonteil* 45	

Tuesday

	Weatherburn LT Blakers LT	
9.00 – 10:00	Krystal Guo 7	
10.00 - 10.30	Morning	tea
10.30 – 11.00	Hickingbotham* 37	Briones 20
11.00 – 11.30	Distel* 27	Mammoliti 51
11.30 – 12.00	Brettell 19	Ernst* 28
12:00 – 12:30	Wood 66	Klawuhn* 44
12.30 - 14.30	Lunch break	
14.30 - 15.30	Gary Greaves 6	
15.30 - 16.00	Afternoon tea	
16.00 – 16.30	Allsop* 15	Imamura 39
16.30 - 17.00	Ghafari* 31	Kawabuchi 43
17.00 – 17.30	CMSA AGM	

Contents 2

Wednesday

	Weatherburn LT Blakers LT	
9.00 – 10:00	André Kündgen 8	
10.00 - 10.30	Morning tea	
10.30 – 11.00	Arumugam* 16 Maruta 5	
11.00 – 11.30	Syrotiuk 61	Yasufuku 68
11.30 – 12.00	Hirao 38 Hafidh* 3	
12.00 – 12:30	Hawtin 36	Zhang* 69
12.30 – 13.30	Lunch break	
14.00 – 17.00	Excursion	

Thursday

	Weatherburn LT	Blakers LT
9.00 – 10:00	Tibor Szabó 10	
10.00 - 10.30	Morning te	ea
10.30 – 11.00	Gentle* 30	Gunasekara 33
11.00 – 11.30	Miura 56	Mitrović* 55
11.30 – 12.00	Lia 49	Smith* 60
12.00 – 12.30	De Beule 25	Li* 48
12.30 - 14.30	Lunch break	
14.30 – 15.30	Geertrui Van de Voorde 11	
15.30 - 16.00	Afternoon tea	
16.00 – 16.30	McKay 53	
16.30 – 17.00	Colbourn 23	
17.00 – 17.30	Wanless 65	

18.30: Conference dinner (UniClub)

Friday

	Weatherburn LT Blakers LT	
9.00 – 10:00	Sara Davies 5	
10.00 - 10.30	Morning tea	
10.30 – 11.00	Kaemawichanurat 41 Popiel 5	
11.00 – 11.30	Greenhill 32	Freedman 29
11.30 – 12.00	Isaev 40 Lansdown	
12.00 - 14.00	Lunch break	
14.30 – 15.30	Padraig Ó Catháin 9	
15.30 - 16.00	Afternoon tea	

1 Invited talks

Sara Davies – The Hamilton decomposition problem	5
Gary Greaves – How to design a graph with three eigenvalues	6
Krystal Guo – Algebraic graph theory and quantum walks	7
André Kündgen – The Saturation Spectrum of odd cycles	8
Padraig Ó Catháin – Quadratic forms in design theory	9
Tibor Szabó – New Ramsey multiplicity bounds and search heuristics	10
Geertrui Van de Voorde – 'Segre-type' theorems: combinatorial characterisations for algebraic objects	11
Gabriel Verret – Local actions and eigenspaces of vertex-transitive graphs	12

The Hamilton decomposition problem

Sara Davies

The University of Queensland

Determining whether an arbitrary graph has a Hamilton cycle is a classic probin graph theory. A <i>Hamilton decomposition</i> of a graph is a set of edge-disjoint Hamilton decomposition of a graph is a set of edge-disjoint Hamilton decomposition of a graph is a set of edge-disjoint Hamilton decomposition of a graph is a set of edge-disjoint Hamilton decomposition of a graph is a set of edge-disjoint Hamilton decomposition of a graph is a set of edge-disjoint Hamilton decomposition of a graph is a set of edge-disjoint Hamilton decomposition of a graph is a set of edge-disjoint Hamilton decomposition of a graph is a set of edge-disjoint Hamilton decomposition of a graph is a set of edge-disjoint Hamilton decomposition of a graph is a set of edge-disjoint Hamilton decomposition of a graph is a set of edge-disjoint Hamilton decomposition of a graph is a set of edge-disjoint Hamilton decomposition of a graph is a set of edge-disjoint Hamilton decomposition of a graph is a set of edge-disjoint Hamilton decomposition of a graph is a set of edge-disjoint Hamilton decomposition	lton
cycles that collectively contain all of the edges of the graph. The study of Hami	
decompositions dates back to the late 1800's and has received a lot of attention since	
1980's. In this talk, I will survey some of the progress made on this problem, especi	ally
on Hamilton decompositions of Cayley graphs, infinite graphs, line graphs and gr	aph
products.	1
L	

How to design a graph with three eigenvalues

Gary Greaves

Nanyang Technological University, Singapore (Joint work with Jose Yip)

Graphs with three distinct eigenvalues are fundamental objects of study in spectral graph theory. The most well-known examples are strongly regular graphs. In 1995, Willem Haemers posed a question at the 15th British Combinatorial Conference: "Do there exist any connected graphs having three distinct eigenvalues apart from strongly regular graphs and complete bipartite graphs?"

Muzychuk and Klin initiated the study of a graph with three distinct eigenvalues

via its Weisfeiler-Leman closure (also known as the coherent closure). They classified such graphs whose Weisfeiler-Leman closure has rank at most 7. In this talk, I will provide a brief overview of the history of non-regular graphs with three distinct eigenvalues, as well as present our recent results on such graphs whose Weisfeiler-Leman closure has a small rank. Our results include the discovery of a new non-regular graph with three distinct eigenvalues obtained from a quasi-symmetric design and a new conjecturally infinite family of non-regular graphs having three distinct eigenvalues obtained by switching Latin square graphs.			

Algebraic graph theory and quantum walks

Krystal Guo

Korteweg-De Vries Institute for Mathematics, University of Amsterdam and QuSoft

The interplay between the properties of graphs and the eigenvalues of their adjacency matrices is well-studied. Important graph invariants, such as diameter and chromatic number, can be understood using these eigenvalue techniques. In this talk, we bring these classical techniques in algebraic graph theory to the study of quantum walks.

A system of interacting quantum qubits can be modelled by a quantum process on an underlying graph and is, in some sense, a quantum analogue of random walk This gives rise to a rich connection between graph theory, linear algebra and quantum computing. In this talk, I will give an overview of applications of algebraic graph theory in quantum walks, as well as various recent results on discrete-time quantum walks and strong cospectrality of vertices.			

The Saturation Spectrum of odd cycles

André Kündgen

California State University San Marcos

(Joint work with Ronald J. Gould and Minjung Kang)

will discuss all pairs (n, m) for which there is a C_5 -saturated graph on n vertices and n edges. In addition, we determine all but $O(nk)$ possible sizes for n -vertex H -saturated graphs when H is an odd cycle C_{2k+1} for $k \geqslant 3$.						
graphs when <i>E</i>	<i>I</i> is an odd c	ycle C_{2k+1} f	or $k \geqslant 3$.			

Quadratic forms in design theory

Padraig Ó Catháin

Dublin City University

(Joint work with Guillermo Nuñez Ponasso, Oliver Gnilke and Oktay Olmez.)

The classification of quadratic forms over the rational numbers, due to Minkowski, Hilbert and Hasse among others, is a major achievement of mathematicians in the early twentieth century. In concrete terms, given square rational matrices A and B it yields necessary and sufficient conditions for the existence of an invertible matrix X such that $X^{\top}AX = B$. (In contrast, the Jordan Canonical Form gives necessary and sufficient conditions for solvability of $X^{-1}AX = B$ over an algebraically closed field, and the Frobenius Canonical Form solves the conjugacy problem over an arbitrary field.) The main tools in the classification of quadratic forms are Legendre and Hilbert symbols, which describe existence of solutions to certain quadratic equations.

Groundbreaking work of Bruck, Ryser and Chowla in the mid-twentieth century applied this theory to obtain non-existence of certain combinatorial designs. While in theory the application is straightforward, Marshall Hall described the computations as detailed and troublesome. This seems to have scared a substantial number of combinatorialists. In this talk, we aim to restore the reputation of the Bruck-Ryser-Chowla theorem by demonstrating that the algebraic manipulations are less familiar, but not more difficult, than Gaussian elimination.

I will motivate this talk by an application to a problem on symmetric designs which Darryn Bryant posed to me in 2013, while I was a postdoc at the University of Queen land.	

New Ramsey multiplicity bounds and search heuristics

Tibor Szabó

Freie Universität Berlin

(Joint work with Olaf Parczyk, Sebastian Pokutta, and Christoph Spiegel.)

We study two related problems concerning the number of monochromatic cliques
in two-colorings of the complete graph that go back to questions of Erdős. Most no-
tably, we "significantly" improve the best known upper bounds on the Ramsey multi-
plicity of K_4 and K_5 and settle the minimum number of independent sets of size four
in graphs with clique number at most four. Motivated by the elusiveness of the sym-
metric Ramsey multiplicity problem, we also introduce the off-diagonal variant and
obtain tight results when counting monochromatic K_4 or K_5 in only one of the colors and triangles in the other. The extremal constructions turn out to be blow-ups of
finite graphs and were found through search heuristics. They are complemented by
lower bounds and stability results established using flag algebras, resulting in a fully
computer-assisted approach. More broadly, these problems lead us to the study of the
region of possible pairs of clique and independent set densities that can be realized as
the limit of some sequence of graphs.

'Segre-type' theorems: combinatorial characterisations for algebraic objects

Geertrui Van de Voorde

The University of Canterbury

One of the most beautiful results within finite geometry is Segre's characterisation of conics in Desarguesian projective planes of odd order. In 1955, Segre showed that in those planes, the coordinates of a point set that has the same *combinatorial* properties as a conic, must have the same *algebraic* property of satisfying a quadratic equation. In even order planes, the situation is vastly different, and the classification of ovals remains is still an open problem.

Several 'Segre-type' questions have been studied for objects such as *quadrics*, *Hermitian varieties*, and more generally, for sets with *few intersection numbers*.

In this talk, I'll give an overview of some of the history of this subject and present new recent results.		
new recent results.		

Local actions and eigenspaces of vertex-transitive graphs

Gabriel Verret

The University of Auckland

When studying families of vertex-transitive graphs, it is often important to have control of the size of vertex-stabilisers of the automorphism groups. It turns out that the "local" action of the automorphism group plays a crucial role. I'll explain this connection, describe some known results and some more recent connection with the size of the eigenspaces of such graphs over some finite fields.

2 Contributed talks

Jack Allsop* – Latin squares without proper subsquares	15
Vishnuram Arumugam* – Groups of Lie Type Acting on Generalised Quadran-	
gles	16
Abdul Basit – Point-box incidences and logarithmic density of semilinear graphs	17
Sam Bastida* - List Colouring Graphs with bounded Maximal Local Edge	
Connectivity	18
Nick Brettell – A comparison of graph width parameters	19
Dom Vito A. Briones – Association schemes on triples from two-transitive groups	20
Yudhistira Andersen Bunjamin* – Group divisible designs with block size three	
\mathbf{O}	21
<i>Lei Chen*</i> – The distinguishing number of 2-arc-transitive bipartite graphs	22
	23
John Mel Dacaymat* - Diameter of some families of quotient-complete arc-	
$0 \cdot 1$	24
Jan De Beule - A strongly regular graph co-spectral and non-isomorphic to	
	25
	26
Marc Distel* – Proper Minor-Closed Classes of Graphs have Assouad-Nagata	
	27
	28
	29
\mathcal{I}	30
Afsane Ghafari Baghestani* – Existence of Latin Squares with Constrained Transver-	
	31
	32
Ajani De Vas Gunasekara – Transitive path decompositions of Cartesian prod-	
1 0 1	33
	34
<i>Toru Hasunuma</i> – Connectivity Preserving Hamiltonian Cycles in <i>k</i> -Connected	
1	35
	36
Robert Hickingbotham* – Powers of planar graphs, product structure, and block-	
$\mathbf{O}\mathbf{I}$	37
1 0	38
	39
	40
	41
1	42
Shinya Kawabuchi – Some Properties of q -Perfect Matroid Designs	43

<i>Lukas Klawuhn*</i> – Designs in the generalised symmetric group	44
Alice Lacaze-Masmonteil* – On the directed Oberwolfach problem with two	
tables	45
Jesse Lansdown – Constructing witnesses for nonspreading permutation groups	46
Florian Lehner – Self-avoiding walks on graphs with infinitely many ends	47
Yuxuan Li* – The second largest eigenvalue of non-normal Cayley graphs on	
symmetric groups generated by cycles	48
Stefano Lia – Tensor representation of semifields and commuting polarities	49
Anita Liebenau – Universality for graphs of bounded degeneracy	50
Adam Mammoliti – On generalisations of The Erdős-Ko-Rado Theorem for per-	
mutations	51
Tatsuya Maruta – On the non-existence of q-ary linear codes with minimum	
weight $d \equiv -1 \pmod{q} \dots \dots \dots \dots \dots \dots$	52
Brendan McKay – Some new results in combinatorial generation	53
<i>Jeremy Mitchell*</i> – Equally Distributed 1-Factorisations of Graphs	54
<i>Dorđe Mitrović*</i> – Automorphisms of direct products of circulant graphs	55
Yusuke Miura – On the minimal 2-blocking sets in $PG(5,2)$	56
Tomasz Popiel – Computing with the Monster group (a public service announce-	
ment)	57
Shohei Satake – Explicit $K_{3,3}$ -subdivisions of Markoff mod p graphs	58
Charles Semple – Optimising phylogenetic diversity on phylogenetic networks	59
Jacob Smith* – New 2-closed groups that are not automorphism groups of di-	
graphs	60
Violet Syrotiuk – The Screening Effectiveness of Locating Arrays	61
<i>Wipawee Tangjai</i> – On a coloring of a δ -complement graph	62
Abdullahi Umar – Combinatorial results for certain semigroups of contraction	
mappings of a finite chain	63
Jie Wang* – Some lower bounds on conditionally decomposable polytopes	64
Ian Wanless – Automorphisms of quadratic quasigroups	65
David Wood – Proof of the Clustered Hadwiger Conjecture	66
David Yost – Polytopes with minimal number of edges	67
Keita Yasufuku – On the non-existence of Griesmer linear codes	68
Chuanqi Zhang* – On linear-algebraic notions of expansion	69
Zhishuo Zhang* - Card Shuffle Group	70

Latin squares without proper subsquares

Jack Allsop*

Monash University

(Joint work with Ian Wanless)

A Latin square of order n is an $n \times n$ matrix of n symbols, such that each symbol occurs exactly once in each row and column. A subsquare of order k is a $k \times k$ submatrix of a Latin square that is itself a Latin square. Every Latin square of order n contains n^2 subsquares of order one, and one subsquare of order n . All other subsquares are called proper. If a Latin square contains no proper subsquares then it is called N_{∞} Around 50 years ago Hilton conjectured that an N_{∞} Latin square of order n exists for all sufficiently large n . Hilton's conjecture was previously known to hold for all integers n not of the form $2^a 3^b$ for integers $n \ge 1$ and $n \ge 1$. We resolve Hilton's conjecture by		
constructing N_{∞} Latin squares for all previously unresolved orders.		

Groups of Lie Type Acting on Generalised Quadrangles

Vishnuram Arumugam*

The University of Western Australia

Incidence geometry is the study of geometric structures involving a collection of points and lines along with a relation (called incidence) which tells us whether a point lies on a line. A generalised polygon is a type of point-line incidence structure that was introduced by Jacques Tits in 1959 to study the groups of Lie type as the symmetries of geometric objects. Since then, these objects have been studied extensively in the area of group theory and finite geometry. The classification of these objects started from Weiss and Tits and many results about the existence (and non-existence) of generalise	
polygons under various symmetry conditions (point-primitivity, flag-transitivity and so on) since then. I will provide a survey of the work that has been done and some recent progress in this classification.	

Point-box incidences and logarithmic density of semilinear graphs

Abdul Basit

Monash University

(Joint work with Artëm Chernikov, Sergei Starchenko, Terence Tao, and Chieu-Minh Tran)

Zarankiewicz's problem in extremal graph theory asks for the maximum number

of edges in a bipartite graph on n vertices which does not contain a copy of $K_{k,k}$, the complete bipartite graph with k vertices in both classes. We will consider this question for incidence graphs of geometric objects. Significantly better bounds are known in this setting, in particular when the geometric objects are defined by systems of algebraic inequalities. We show even stronger bounds under the additional constraint that the defining inequalities are linear. We will also discuss connections of these results to combinatorial geometry and model theory.		

List Colouring Graphs with bounded Maximal Local Edge Connectivity

Sam Bastida*

Victoria University Wellington (Joint work with Nick Brettell)

List colouring is a generalisation of the traditional notion of colouring where each
vertex of the graph can have a different palette. A proper colouring of a graph G maps
each vertex of G to a colour such that adjacent vertices have different colours. A k
list assignment L is an assignment of a list of k colours to each vertex of G . A graph
is L-colourable if it has a proper colouring where the colour for each vertex v is ir
the list $L(v)$. A graph G is k-choosable if for every k-list assignment L, the graph G
is L-colourable. This notion generalises k-colouring: a graph is k-colourable if it is ϕ -
colourable where ϕ maps each vertex to the same list of k colours. While some results
about k-colourability generalise to k-choosability, such as Brooks' Theorem, others
such as the Four Colour Theorem, do not. Brooks' Theorem states that a connected
graph G with maximum degree Δ is Δ -colourable, except when G is a complete graph
or odd cycle. Stiebitz and Toft (2018) generalised Brooks' Theorem, showing that a
graph G is k -colourable, where k is the maximum number of edge-disjoint paths be-
tween two vertices of G , except when each block of G can be obtained from complete
graphs or odd cycles using Hajós joins. We consider an extension of this result to k -
choosability, specifically in the case where $k = 3$.

A comparison of graph width parameters

Nick Brettell

Victoria University of Wellington

(Joint work with Andrea Munaro, Daniel Paulusma, and Shizhou Yang.)

The classic example of a width parameter is treewidth, which, loosely speaking,
gives a measure of how tree-like a graph is. Due to Courcelle's theorem, many prob-
lems are known to be polynomial-time solvable for a class of graphs with bounded
treewidth. Say that a parameter p is less restrictive than a parameter q if there exists a
function f such that $p(G)\leqslant f(q(G))$ for every graph G (it is "less restrictive" in the
sense that a class may have bounded p -width but unbounded q -width). These days,
there is a rich landscape of width parameters that are less restrictive than treewidth,
but, like treewidth, facilitate efficient algorithms. In this talk, we'll be interested in
clique-width, mim-width, sim-width, and tree-independence number. I'll give a brief
introduction to each of these parameters, and touch on why they are of interest. We'll
then compare them when restricted to a class of graphs with no $K_{t,t}$ subgraph, the
class of line graphs, and the common generalisation of the class of graphs with no in-
duced $K_{t,t}$ subgraph. In particular, Gurski and Wanke (2000) showed that although
clique-width is less restrictive than treewidth, these parameters are equivalent for
graphs with no $K_{t,t}$ subgraph. Gurski and Wanke (2007) also showed that a class of
graphs has bounded treewidth if and only if the corresponding class of line graphs
has bounded clique-width. We generalise these results to mim-width, sim-width, and
tree-independence number.

Association schemes on triples from two-transitive groups

Dom Vito A. Briones

University of the Philippines - Diliman

Association schemes on triples (ASTs) are higher-dimensional analogues of clas cal association schemes where the relations and adjacency algebras are ternary inste		
of binary. Analogous to Schurian association schemes, ASTs arise from the action	ns	
of two-transitive groups. In this presentation, we provide the sizes and third valer cies of the ASTs obtained from the two-transitive permutation groups. We also dete		
mine the intersection numbers of the ASTs obtained from the sporadic two-transitiv		
groups and some subgroups of the affine and projective semilinear groups $A\Gamma L(k, r)$	n	
and $P\Gamma L(k,n)$.	')	
	_	
	_	
	_	
	_	

Group divisible designs with block size three and two group sizes

Yudhistira Andersen Bunjamin*
UNSW Sydney
(Joint work with Oden Petersen)

A k-GDD, or group divisible design with block size k, is a triple (X, G, \mathcal{B}) where X is a set of points, G is a partition of X into subsets (called groups) and \mathcal{B} is a collection of k-element subsets of X (called blocks) such that any two points from distinct groups appear together in exactly one block and no two distinct points from any group appear together in any block. There are a number of known necessary conditions for the existence of a GDD. However, these conditions are not sufficient.

In this talk, we will present constructions for some 3-GDDs with two group sizes

where one group size is a multiple of the other group size. The talk will have ular focus on how some recent advancements regarding the existence of 4-GL two group sizes have enabled the construction of some infinite families of 3-GL two group sizes.	Ds with

The distinguishing number of 2-arc-transitive bipartite graphs

Lei Chen*

The University of Western Australia

(Joint work with Alice Devillers, Luke Morgan and Friedrich Rober)

We investigate the distinguishing number of 2-arc-transitive bipartite graphs. The distinguishing number of a graph is the minimal number of colours needed to colour the vertices in such a way that the only automorphism preserving the colouring is the identity automorphism.

This work is the continuation of the paper by Devillers, Morgan and Harper in 2018, which analysed the distinguishing number of the non-bipartite graphs. In 2018 paper, it turns out that, except for finitely many examples, all of the semi-primitive non-partite graphs have distinguishing number 2.

Our research shows that for 2-arc-transitive non-partite graphs, apart from complete bipartite graphs and crown graphs, the distinguishing numbers are small.

Covering Arrays via Finite Fields

Charles Colbourn

Arizona State University

In order to construct covering arrays of strength t and index λ on q symbols, one effective and well-studied method forms a base array with "few" rows whose entries are elements of \mathbb{F}_q^t . Each row of the base array underlies q^t rows of the covering array A t -tuple T of columns is covering in a row of the base array when the corresponding q^t rows of the covering array contain each of the q^t symbol tuples in T . When every t -tuple of columns is covering in at least λ rows, the base array is a covering perfect hash family (CPHF $_{\lambda}$). When λ is 'small' and q is 'large', CPHFs yield the best probabilistic upper bounds on sizes of covering arrays and the best current construction algorithms. In this talk we revise the conditions on CPHFs to account for the partial coverage arising from non-covering t -tuples of columns. This improves the quality of the bounds on covering array sizes, particularly when λ is 'large' or q is 'small'.

Diameter of some families of quotient-complete arc-transitive graphs

John Mel Dacaymat*

University of the Philippines Diliman

(Joint work with Carmen Amarra, Joseph Ray Clarence Damasco)

A graph is <i>quotient-complete</i> if it has at least one nontrivial normal quotient graph that is a complete graph, and if each of its nontrivial normal quotient graphs is either an empty graph or a complete graph. Quotient-complete graphs arise, via norma quotient reduction, as basic graphs in the family of vertex-transitive graphs. Quotient complete arc-transitive graphs with diameter two are of particular interest, as they contain some important subfamilies. Among these graphs, those with at least three complete normal quotients are completely known, except for those associated with the one-dimensional affine group $\Gamma L_1(q)$. We aim to address the gap in the classification of these graphs. Specifically, we provide bounds for the diameter of quotient-complete arc-transitive graphs with at least three complete normal quotients that are associated with $\Gamma L_1(q)$. In addition, we present an example of an infinite family of quotient complete arc-transitive graphs with exactly two complete normal quotients and find the part of a part of the diameter.
bounds on its diameter.

A strongly regular graph co-spectral and non-isomorphic to $NO^+(8,2)$

Jan De Beule

Vrije Universiteit Brussel

The graph $\mathrm{NO}^+(8,2)$ is strongly regular with parameters (120,63,30,36). It can be constructed using a quadratic form of Witt index 4 on $\mathrm{GF}(2)^8$. Then its vertices are the set of non-singular vectors. Two vertices are adjacent if and only if they are orthogonal with relation to the quadratic form. Its automorphism group is $\mathrm{PFO}^+(8,2)$.

In their recent book – Strongly Regular Graphs – Brouwer and Van Maldeghem

mention the existence of a non-isomorphic, strongly regular graph with the same parameters, admitting $\mathrm{Sym}(7)$ as automorphism group. In this talk we discuss how the adjacency relation of $\mathrm{NO}^+(8,2)$ can be modified to obtain this graph, it turns out that the unique ovoid (and spread) of the triality quadric $\mathrm{Q}^+(7,2)$ plays a central role. We also discuss further interesting properties such as that fact the cliques and co-cliques get switched by modifying the adjacency relation of $\mathrm{NO}^+(8,2)$.				

Compatible groups and inverse limits

Zhaochen Ding*

University of Auckland

Two finite groups L_1 and L_2 are called compatible if there is a group G with two isomorphic normal subgroups N_1 and N_2 such that $G/N_1 \cong L_1$ and $G/N_2 \cong L_2$. In this talk, we will discuss some recent work (joint with Gabriel Verret) on compatibility of groups, including a new construction based on inverse limits.				
	_			
	_			
	_			
	_			
	_			
	_			
	_			
	_			
	_			
	_			
	_			
	_			
	_			
	_			

Proper Minor-Closed Classes of Graphs have Assouad-Nagata Dimension 2

*Marc Distel**

Monash University

Asymptotic dimension and Assouad-Nagata dimension are measures of the large scale shape of a class of graphs. Bonamy et al. [J. Eur. Math. Society] showed that any proper minor-closed class has asymptotic dimension 2, dropping to 1 only if the treewidth is bounded. We improve this result by showing it also holds for the stricted Assouad-Nagata dimension. We also characterise when subdivision-closed classes of graphs have bounded Assouad-Nagata dimension.		

Erdős-Ko-Rado theorems for finite general linear groups

Alena Ernst*

Paderborn University

(Joint work with Kai-Uwe Schmidt)

We call a subset Y of the finite general linear group $GL(n,q)$ <i>t-intersecting</i> if $y \le n - t$ for all $x, y \in Y$. In this talk we give upper bounds on the size of t -intersection.	
sets and characterise the extremal cases that attain the bound. This is a q -and the corresponding result for the symmetric group, which was conjectured by	alog of
and Frankl in 1977 and proved by Ellis, Friedgut, and Pilpel in 2011. The resubstained by using eigenvalue techniques and the theory of association scheme	ılts are
a crucial role.	s piays

Spreading primitive groups of diagonal type do not exist

Saul Freedman

The University of Western Australia

(Joint work with John Bamberg and Michael Giudici)

The synchronisation hierarchy of finite permutation groups, introduced by Araújo, Cameron and Steinberg in 2017, consists of classes of groups lying between 2-transitive groups and primitive groups. This includes the classes of synchronishing and separating groups, defined in terms of combinatorial properties of related graphs, and the class of spreading groups, defined in terms of sets and multisets of permuted points. Araújo et al. proved that the members of these classes are primitive of almost simple, affine or diagonal type. In addition, Bray, Cai, Cameron, Spiga and Zhang showed in 2020 that any such diagonal type group must have socle $T \times T$ for some non-abelian finite simple group T . In this talk, we prove that no spreading group of diagonal type exists, by considering transitive actions (and several character tables) of the non-abelian finite simple groups.

Levenshtein's conjecture for sequence covering arrays

Dani Gentle*

Monash University

A sequence covering array is a set of permutations of the v -element alphabet $\{0,, v\}$ such that every sequence of t distinct symbols of the alphabet appears in the specified order in at least one permutation. A key conjecture in this area attributed to Levenshtein concerns when it is possible to build such an array in which each sequence appears in exactly one permutation. In this talk, I will discuss existing results on this				
conjecture, and present new results for the next open case of the conjecture.				
	_			
	_			
	_			
	_			
	_			
	_			
	_			
	_			
	_			
	_			

Existence of Latin Squares with Constrained Transversals

Afsane Ghafari Baghestani*
Monash University

A Latin Square is an $n \times n$ array where entries are chosen from the set $\{1, 2, \dots, n\}$ with the property that every symbol appears exactly once in every row and column. A transversal of such a square is defined to be a selection of n entries, one from each row and each column, where we choose every symbol exactly once. Let k be any positive integer. We construct infinitely many latin squares of even order that have at least one transversal, yet all transversals coincide on k entries		

Enumerating dihypergraphs

Catherine Greenhill

UNSW Sydney

(Joint work with This is joint work with Tamás Makai (Ludwig Maximilian University of Munich))

A dihypergraph is a directed hypergraph: that is, a set of vertices and a set of directed edges, where each edge is partitioned into a head and a tail. The head and tail of an edge must be disjoint. Directed hypergraphs arise in many applications, including modelling chemical reactions and in the study of relational databases.

hypergraphs w tail sizes for the and the entries	here the in-de edges are all are not too lar	egrees and o specified. If ge then the 1	out-degrees o at least one c esult follows	f the vertices, of these four second easily from as	nulae for directed and the head and quences is regular ymptotic enumer-
ation formulae for sparse bipartite graphs. Otherwise we need a stricter assumption on the maximum degrees and maximum head/tail sizes, and the proof involves a martingale argument.					

Contributed talks
Schedule

Transitive path decompositions of Cartesian products of complete graphs

Ajani De Vas Gunasekara

Monash University

(Joint work with Alice Devillers)

An H -decomposition of a graph Γ is a partition of its edge set into subgraphs morphic to H . A transitive decomposition is a special kind of H -decomposition			
is highly symmetrical in the sense that the subgraphs (copies of H) are preserved transitively permuted by a group of automorphisms of Γ . In this talk, I will disc	and		
transitive H -decompositions in general, and present our recent results on transitive path decompositions of $K_n \square K_n$ when n is an odd prime.			
pain decompositions of $K_n \square K_n$ when n is an odd prime.			

Perfect codes in Cayley graphs on $\mathbb{Z}_p \times \mathbb{Z}_p$ and \mathbb{Z}_{p^k}

Yusuf Hafidh*

University of Melbourne

(Joint work with Sanming Zhou and Binzhou Xia.)

A set of vert not in C is a ne	ices C on a cor	mected grap tly one vert	ph G is calletex in G . In	ed a <i>perfect co</i> n this talk w	ode if every vertex re will discuss the
characterization	of Cayley grap!	h Cay(G,S)	that has a p	erfect code fo	or two groups $G =$
$\mathbb{Z}_p \times \mathbb{Z}_p$ and $G =$	= \mathbb{Z}_{p^k} for prime p	p.	•		

Connectivity Preserving Hamiltonian Cycles in k-Connected Dirac Graphs

Toru Hasunuma

Tokushima University

We show that for $k \geqslant 2$, there exists a function $f(k) = O(k)$ such that every k -connected graph G of order $n \geqslant f(k)$ with minimum degree at least $\frac{n}{2}$ contains a Hamiltonian cycle H such that $G - E(H)$ is k -connected. Applying Nash-Williams' result on edge-disjoint Hamiltonian cycles, we also show that for $k \geqslant 2$ and $\ell \ge 2$, there exists a function $g(k,\ell) = O(k\ell)$ such that every k -connected graph G of order $n \geqslant g(k,\ell)$ with minimum degree at least $\frac{n}{2}$ contains ℓ edge-disjoint Hamiltonian cycles H_1, H_2, \ldots, H_ℓ such that $G - \bigcup_{1 \le i \le \ell} E(H_i)$ is k -connected. As a corollary, we have a statement that refines the result of Nash-Williams for k -connected graphs with $k \leqslant 8$. Moreover, when
the connectivity of G is exactly k , a similar result with an improved lower bound on n
can be shown, which does not depend on the result of Nash-Williams.

Large sets of infinite-dimensional q-Steiner systems

Dan Hawtin

University of Rijeka

Let V be a vector space over the finite field \mathbb{F}_q . An $S(t,k,V)_q$, is a col k -spaces of V such that every t -space of V is contained in a unique eleme $LS(t,k,V)_q$, is a partition of the k -dimensional subspaces of V into $S(t,k,V)_q$. In 1995, Cameron proved that if V has infinite dimension then an $LS(t,k,V)_q$.	ent of \mathcal{B} . An $(V)_q$ systems. $(k,V)_q$ exists			
for all positive integers t, k with $t < k$. We give an explicit construction of an $LS(t, t - 1, V)_q$ for all prime powers q , all positive integers t , and where V has countably infinit dimension.				

Powers of planar graphs, product structure, and blocking partitions

Robert Hickingbotham*

Monash University

(Joint work with Marc Distel, Michał T. Seweryn, and David R. Wood)

Graph product structure theory describes complex graphs in terms of products of simpler graphs. In this talk, I will introduce this subject and talk about a new tool called blocking partitions.' I'll show how this tool can be used to prove stronger product structure theorems for powers of planar graphs as well as k -planar graphs, resolving open problems of Dujmović, Morin and Wood, and Ossona de Mendez.		

Spherical designs and the D_4 lattice

Masatake Hirao

Aichi Prefectural University

We study shells of the D_4 lattice with the concept of spherical design of harm ndex T (spherical T -design for short). We show that the $2m$ -shell of D_4 is an antip pherical $\{10,4,2\}$ -design on the 3-sphere, that the 2-shell (i.e., the D_4 root system	oodal n) is a	
tight antipodal $\{10,4,2\}$ -design in the terms of LP bound, and that the uniqueness of the 2-shell as an tight antipodal spherical $\{10,4,2\}$ -design. Moreover, we report some applications of our results.		

Matroid representation over finite rings

Koji Imamura

Kumamoto University

Matroids were introduced by H. Whitney to axiomatize combinatorial properties of finite sets of vectors in a vector space. Nevertheless, it is well-known that almost all matroids are non-representable as a finite set of vectors over a finite field. It is one of the most significant problems to determine whether a given matroid is representable over some field.

In this talk, we propose some representations of non-representable matroids by us-

duced by Y.H. Park as one of the generalizations of linearly independence. It was originally defined over the ring \mathbb{Z}_{p^e} of integers modulo p^e , where p is a prime and $e \in \mathbb{Z}_{>0}$, and then generalized to the case of Frobenius rings by S.T. Dougherty and H. Liu. We restrict ourselves to local rings R with the unique maximal ideal m , where the vectors $\mathbf{v}_1, \ldots, \mathbf{v}_k \in R^n$ are said to be <i>modular independent</i> if $\sum a_i \mathbf{v}_i = 0$ implies $a_i \in m$ for all i . We will provide some conditions for a matrix over a finite ring to yield some matroid using modular independence. We also show that some well-known non-representable
matroids can be represented in this way.

Cumulant expansion for counting Eulerian orientations

Mikhail Isaev

Monash University

We consider the problem of enumerating Eulerian orientations of a given graphs			
that is, the orientations of its edges such that every vertex has the same in-degree and out-degree. This problem is #P-hard and corresponds to the crucial partition function			
in so-called "ice-type models" in statistical physics. In this work, we derive an asymptotic formula for approximating the number of Eulerian orientations of a graph with good expansion properties up to a multiplicative error $O(n^{-c})$, where c is an arbitrary fixed constant. The answer is in terms of cumulants of a multidimensional polynomial of Gaussian random variables. The proof relies on the new tail bound for the cumular			
			expansion series, which is of independent interest.

Safe Sets and Dominating Sets of Graphs

Pawaton Kaemawichanurat

King Mongkut's University of Technology Thonburi, Bangkok, Thailand (Joint work with Shinya Fujita and Furuya Michitaka (Yokohama City University))

A subset S of vertices of a graph G is a safe set if, for a component H of G-S and a component C of G[S], we have $|V(H)| \leq |V(C)|$ whenever there is an edge joining vertices between H and C. Moreover, if the subgraph of G induced by safe set S, G[S], is connected, then S is a connected safe set. The minimum cardinality of a safe set of G is called the safe number of G and is denoted by S(G). Similarly, the minimum cardinality of a connected safe set of G is called the connected safe number of G and is denoted by S(G). A subset G of vertices of a graph G is a dominating set of G if every vertex in G is adjacent to a vertex in G. Moreover, if G[G] is connected, then G is called a connected dominating set of G. The minimum cardinality of a dominating set of G is called the domination number of G and is denoted by G is called the connected domination number of G and is denoted by G is called the connected domination number of G is a graph with the maximum degree G, then

$$f(\Delta) \le s(G) \le \lceil \frac{\gamma(G)(\Delta+1)}{2} \rceil$$

where $f(\Delta)=\frac{\gamma+6}{3}$ when $\Delta=2$ and $f(\Delta)=\frac{\Delta^2-2\Delta-3+\sqrt{(2\Delta-\Delta^2+3)^2+4(3\Delta+\gamma(G))(\Delta-2)}}{2(\Delta-2)}$ when $\Delta\geq 3$. Moreover, for a connected graph G, we have

$$g(\Delta) \le s_c(G) \le \lceil \frac{\gamma_c(G)(\Delta - 1) + 2}{2} \rceil$$

where $g(\Delta) = \frac{\gamma_c(G)+2}{3}$ when $\Delta = 2$ and $g(\Delta) = \frac{\Delta - 5 + \sqrt{\Delta^2 - 2\Delta + 4(\Delta - 2)\gamma_c(G) + 9}}{2(\Delta - 2)}$ when $\Delta \geq 2$
3. The upper bounds are shown to be sharp for some $\gamma(G)$, $\gamma_c(G)$ and Δ . We also
characterize all graphs satisfying each lower bound.

Common and Sidorenko linear patterns

Nina Kamčev

University of Zagreb

(Joint work with Anita Liebenau and Natasha Morrison)

Several classical results in Ramsey theory (including famous theorems of Schur, van der Waerden, Rado) deal with finding monochromatic linear patterns in two-colourings of the integers. Our topic will be quantitative extensions of such results. A linear system L over \mathbb{F}_q is *common* if the number of monochromatic solutions to L=0 in any two-colouring of \mathbb{F}_q^n is asymptotically at least the expected number of monochromatic solutions in a random two-colouring of \mathbb{F}_q^n . Motivated by existing results for specific systems (such as Schur triples and arithmetic progressions), as well as extensive research on common and Sidorenko graphs, the systematic study of common systems of linear equations was recently initiated by Saad and Wolf. Fox, Pham and Zhao characterised common linear equations. A parallel concept of *Sidorenko* systems has also been investigated.

We will survey fundamental results on linear patterns and graphs, as well as receiprogress towards a classification of common systems of two or more linear equation
For instance, any system containing a four-term arithmetic progression is uncommon

Some Properties of *q*-Perfect Matroid Designs

Shinya Kawabuchi

Kumamoto University

(Joint work with Keisuke Shiromoto)

A perfect matroid design (PMD) was introduced in 1970 by U.S.R. Murty, P. Young and J. Edmonds. A PMD is a matroid whose flats of the same rank all have the same size. E. Byrne et al., introduced the q-analogue of PMDs (q-PMDs) and proposed a construction of a non trivial q-PMD from a q-Steiner system.

A q-matroid is a q-analogue of a matroid. We denote the collection of subspaces of a vectorspace X by $\mathcal{V}(X)$. A q-matroid M:=(E,r) consists of $E:=\mathbb{F}_q^n$ and the so-called rank function $r\colon \mathcal{V}(E)\to \mathbb{Z}_{\geq 0}$ with the rank function axioms. If r(F+x)=r(F)+1 for all 1-dimensional subspaces x of E not contained in F, F is called a flat of M. A q-PMD is a q-matroid whose flats of the same rank all have the same dimension.

A q-analogue of t-design with the parameter t- $(n, k, \lambda; q)$ is an ordered pair (E, \mathcal{B}) consisting of vector space $E = \mathbb{F}_q^n$ and a collection \mathcal{B} of k dimensional subspaces of E satisfying that for all t-dimensional subspace X, there are only precisely λ elements of \mathcal{B} include X. The element in \mathcal{B} is called a *block*. If the parameter λ is equal to 1, the design is called a q-Steiner system.

In this talk, we show that if flats of q-PMD $M = (E, r)$ include all of the subspaces
of E of dimension less than $m-1$, the flats of the same rank are blocks of a q-analogue
•
of a t -design. We also show how to calculate the parameter λ of the designs. Especially
in this situation, the flats of rank m is the blocks of a q -Steiner system.

Designs in the generalised symmetric group

Lukas Klawuhn*

Paderborn University

(Joint work with Kai-Uwe Schmidt)

It is known that the notion of a transitive subgroup of a permutation group G extends naturally to the subsets of G . We study transitive subsets of the wreath product		
$C_r \wr S_n$ of generalised permutations acting on subsets of $\{1, \ldots, n\}$ whose elements are		
coloured with one of r possible colours. This includes the symmetric group for $r=1$		
and the hyperoctahedral group for $r=2$. The group $C_r \wr S_n$ can also be interpreted		
as the symmetry group of a regular polytope for every r and this gives rise to an intu-		
itively accessible definition of transitivity. We consider different notions of transitivi		
in $C_r \wr S_n$ and interpret these algebraically as designs in the conjugacy class association		
scheme of $C_r \wr S_n$ using representation theory. We also give constructions showing that		
there exist transitive subsets of $C_r \wr S_n$ that are small compared to the size of the group.		
Many of these results extend results previously known for the symmetric group S_n .		

On the directed Oberwolfach problem with two tables

Alice Lacaze-Masmonteil*
University of Ottawa
(Joint work with Daniel Horsley)

A $(\vec{C}_{m_1}, \vec{C}_{m_2})$ -factor of a directed graph G is a spanning subdigraph of G comprise of two disjoint directed cycles of lengths m_1 and m_2 . In this talk, we will be constructing a decomposition of the complete symmetric digraph K_n^* into $(\vec{C}_{m_1}, \vec{C}_{m_2})$ -factors when $m_1 + m_2 = n$, $m_1 \in \{4, 6\}$, and $m_2 \geqslant 8$ is even. In conjunction with recent results of Kadri and Šajna (2023+), this gives rise to a complete solution to the two-table case of the directed Oberwolfach problem.	ng en of
•	
	_
	_
	_
	_
	_

Constructing witnesses for nonspreading permutation groups

Jesse Lansdown

University of Canterbury

(Joint work with John Bamberg, Michael Giudici, and Gordon Royle.)

The class of <i>spreading</i> permutation groups lies inbetween the 2-transitive and primitive groups. Similar to a primitive group being defined by the absence of any invariant	nt
partition, a spreading group is defined by the absence of any set-multiset pair satisfing certain properties. If however a suitable set-multiset pair exists then it is called	ĺа
"witness" and the group is nonspreading. In this talk I will consider how to constru	ıct
witnesses, in particular using techniques inspired by the "AB-Lemma" used to construct hemisystems in finite geometry.	n-

Self-avoiding walks on graphs with infinitely many ends

Florian Lehner

The University of Auckland

(Joint work with Lindorfer and Panagiotis)

The self-avoiding walk is a model from statistical physics which has been studied extensively on integer lattices. Over the last few decades, the study of self-avoiding walks on more general graphs, in particular graphs with a high degree of symmetry such as Cayley graphs of finitely generated groups, has received increasing attention.

In this talk, we focus on graphs with more than one end; intuitively these can be thought of as having some large-scale tree structure. This tree structure allows us to decompose self-avoiding walks into smaller, more manageable pieces, and answer questions for graphs with more than one end whose answers for lattices currently seem out of reach.

The talk will be aggressively walks will be assumed.	non-technical.	No prior know	ledge of self-av	oiding

The second largest eigenvalue of non-normal Cayley graphs on symmetric groups generated by cycles

Yuxuan Li*

The University of Melbourne

Aldous' Spectral Gap Conjecture states that the second largest eigenvalue of exconnected Cayley graph on the symmetric group S_n with respect to a set of transportions is attained by the standard representation of S_n . This celebrated conjecture, who was proposed in 1992 and completely proved in 2010, has inspired much interest in elementary the second largest eigenvalue of Cayley graphs on S_n . For $1 \le r < k < n$, $C(n,k;r)$ be the set of k -cycles of S_n which move every $i \in \{1,2,\ldots,r\}$. It is conjecture that the non-normal Cayley graph $Cay(S_n,C(n,k;r))$ has the Aldous property, that its strictly second largest eigenvalue is achieved by the standard representations of S_n in this talk, I will introduce the latest research developments about this conjecture which is based on collaborative work with Binzhou Xia and Sanming Zhou.	

Tensor representation of semifields and commuting polarities

Stefano Lia

University College Dublin

Finite semifields correspond to nonsingular threefold tensors and as such they are mit different representation in projective spaces. In this joint work with John Sheeke we exploit the cyclic model for threefold tensors to obtain results on a semifield invariant called BEL-rank. We show that the cyclic model allows to represent in the same space both tensors and their contraction spaces, providing a geometric interpretation of the contraction. This provides a purely geometrical proof of Dickson classification of semifields two dimensional over their center. The investigation of the nonsingularity of tensors in this model also leads to the construction of new quasi-hermitian surface	
arising from a pair of commuting polarities related to the semifields.	

Universality for graphs of bounded degeneracy

Anita Liebenau

UNSW Sydney

(Joint work with Joint with Peter Allen and Julia Böttcher.)

What is the smallest number of edges that a graph G can have if it contains all D degenerate graphs on n vertices as subgraphs? A counting argument shows that this number is at least of order $n^{2-1/D}$, assuming n is large enough. We show that this itight up to a polylogarithmic factor.	

On generalisations of The Erdős-Ko-Rado Theorem for permutations

Adam Mammoliti
UNSW Sydney

The celebrated Erdős-Ko-Rado Theorem states that if $n \geq 2k$ and \mathcal{F} is a family of k-subsets of [n] such that $A \cap B \neq \emptyset$ for all sets $A, B \in \mathcal{F}$, then $|\mathcal{F}| \leq {n-1 \choose k-1}$, with equality for n > 2k occurring precisely when \mathcal{F} is the family of all k-subsets containing a fixed element of [n]. Since its discovery, the Erdős-Ko-Rado Theorem has been generalised extensively and analogous results have been shown for structures other than sets. In particular, an analogue of the Erdős-Ko-Rado Theorem has been shown for families of permutations of [n].

In this talk, I will give an overview of existing and new analogues of the Erdős-Ko-

Rado Theorem for permutations and a variety of structures that generalise permutations. We will present a new and natural framework from which the Erdős-Ko-Rado Theorem analogues for each of these structures can be derived. We see from this framework that each of the existing analogues directly generalise the Erdős-Ko-Rado Theorem in a straightforward way. I will also present new results that show how to further generalise the Erdős-Ko-Rado Theorem analogues provided by the framework, using	
only relatively simple inductive arguments.	

On the non-existence of q-ary linear codes with minimum weight $d \equiv -1 \pmod{q}$

Tatsuya Maruta

Osaka Metropolitan University

(Joint work with Hitoshi Kanda and Atsuya Kato)

A q -ary linear code is an $[n,k,d]_q$ code, which is a linear code of length n , dimension k and minimum weight d over the field of order q . When an $[n,k,d]_q$ code with divisible by q does not exist, it is most likely that an $[n-1,k,d-1]_q$ code does not	d	
exist as well. We give a result on a new notion " e -locally 2-weight (mod q)" for q -ar linear codes which help us to prove the non-existence of such a code applying the well-known Extension Theorem by Hill and Lizak(1995).		
Well known Extension medicin by 11111 and Elzak(1773).	_	
	_	
	_	
	_	
	_	
	_	
	_	
	_	
	_	
	_	
	_	
	_	

Some new results in combinatorial generation

Brendan McKay

Australian National University

The exhaustive generation of classes of combinatorial objects has been a hobby of mine since my student days. After my arrival at ANU in 1983, among my first projects
were to generate cubic graphs and vertex transitive graphs with Gordon Royle. Like Gordon, I'm still addicted to the field and will discuss two recent projects. One is to
compile a list of graphs extremal under not containing cycles of specified lengths, to as
large an order as possible. The other is to compile a library of combinatorial 2-designs

Equally Distributed 1-Factorisations of Graphs

Jeremy Mitchell*

The University of Queensland

The union of a pair of edge-disjoint 1-factors of a graph forms a collection of ever
length cycles. If t cycles formed by the union of two edge-disjoint 1-factors hav
lengths a_1, a_2, \ldots, a_t we say the pair of 1-factors have type (a_1, a_2, \ldots, a_t) , if all th
pairs of 1-factors of some 1-factorisation have the same type then it is a uniform 1
factorisation. Consider a 1-factorisation \mathcal{F} of some graph and let t_1, t_2, \dots, t_m be a
types of the pairs of 1-factors of \mathcal{F} . Let a_{t_i} be the number of pairs that are type t
If $a_{t_1} = a_{t_2} = \cdots = a_{t_m} = b$ for some integer b , then we say that \mathcal{F} is an m -equall
distributed 1-factorisation (m-ED1F) with types (t_1, t_2, \ldots, t_m) . We present some result
on m -ED1Fs of 3- and 4-regular circulant graphs. Finally, we impose some additional
conditions on m -ED1Fs and investigate when such constrained m -ED1Fs exist for com-
plete and complete bipartite graphs.
Free arra combine a sharane Arabine.

Automorphisms of direct products of circulant graphs

Đorđe Mitrović*

The University of Auckland

an important role in ι bipartite. A graph X is	understanding the sunstable if $X \times X$	ϵ automorphism K_2 has automorp	hisms that do not c	where Y is ome from		
non-bipartite and twii	morphisms of its factors. It is non-trivially unstable if it is unstable, connected, pipartite and twin-free. We provide new sufficient conditions for the instability culant graphs, generalising previously known results. Furthermore, we classify					
non-trivially unstable				e classify		

On the minimal 2-blocking sets in PG(5, 2)

Yusuke Miura

Osaka Metropolitan University

(Joint work with Koji Imamura (Kumamoto Univ.) and Tatsuya Maruta)

neralizations.			

Computing with the Monster group (a public service announcement)

Tomasz Popiel

Monash University

(Joint work with Heiko Dietrich and Melissa Lee)

The Monster is the largest of the 26 sporadic finite simple groups, and is notoriously difficult to compute with, owing to a lack of sufficiently small permutation or matrix representations. As a result, various 'basic' facts about the Monster that are often needed for combinatorial applications of the Classification of the Finite Simple						
froups have yet to be determined. In particular, the classification of the maximal sub roups of the Monster has remained uncompleted for some four decades. I shall repor n recent joint work on this problem with Heiko Dietrich and Melissa Lee, involvin						

Explicit $K_{3,3}$ -subdivisions of Markoff mod p graphs

Shohei Satake

Kumamoto University

(Joint work with Yoshinori Yamasaki)

The Markoff mod p graph G_p , p a prime, is a graph on solutions of the Markoff equation mod p in which two solutions are adjacent if and only if one is mapped to another by a Vieta operation. This graph was introduced by Bourgain-Gamburd-Sarnak (2016), and they conjectured that G_p forms an expander family. Toward this conjecture, Courcy-Ireland (2021) proved that G_p is non-planar if $p \neq 7$, which supports the conjecture since any planar graphs cannot form an expander family. In particular he exhibited explicit $K_{3,3}$ -subdivisions for certain families of primes whereas there are infinitely many primes p (say, $p \equiv 3 \pmod{28}$), for example) that no explicit $K_{3,3}$ -subdivisions in G_p is known.

liscuss the genu		aist explicit	$K_{3,3}$ -subdivision	.ю ш <i>G</i> _p .	vve also
insection the gener					

Optimising phylogenetic diversity on phylogenetic networks

Charles Semple

University of Canterbury

(Joint work with Magnus Bordewich and Kristina Wicke)

Phylogenetic diversity (PD) is a popular measure for quantifying the biodiversity of a set of present-day taxa. This measure quantifies the extent to which the taxa span	
the 'Tree of Life'. In applications, the underlying optimisation problem is to find, for	o a
given set S of taxa and positive integer k , a subset of S of size k that maximises the phy	
logenetic diversity score. Historically, PD has been typically restricted to phylogenetic	
trees, but it extends naturally to phylogenetic networks. In this talk, we investigat	
such an extension.	E
such an extension.	
	_
	_
	_
	_
	_
	-
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_

New 2-closed groups that are not automorphism groups of digraphs

Jacob Smith*

The University of Western Australia

(Joint work with John Bamberg and Michael Giudici)

Giudici, Morgan and Zhou [1] recently published the first known examples of non-regular 2-closed groups that are not the automorphism group of any digraph. These groups all have rank 4, where the rank of a group is its number of orbital digraphs. Giudici, Bamberg and I have now generalised these groups to groups of higher rank, giving the first examples of nonregular 2-closed permutation groups of rank greater than 4 that are not the automorphism group of any digraph. We have found that certain affine groups have these properties if their field order is 3, 5, 7 or 13, but not any other prime. Proper powers of primes have yet to be investigated.

References

t most four. <i>Jour</i>	nal of Combinato	orial Theory. Sei	mitive 2-closed ries B, 158:176–	205, 2023.	

The Screening Effectiveness of Locating Arrays

Violet Syrotiuk

Arizona State University

A (d,t)-locating array is a covering array of strength t with an additional property Any set of d level-wise t-way interactions can be distinguished from any other such se	
by appearing in a distinct set of rows. Locating arrays have been proposed as experimental designs for screening experiments for complex systems due to their efficiency	-
In this talk, we describe how a (1,2)-locating array recovers main effects and two-wa	
interactions from the measurements of a screening experiment. Preliminary result	S
investigate the role of separation and d-efficiency in screening effectiveness.	
	_
	_
	_
	_
	_
	_
	_
	_

On a coloring of a δ -complement graph

Wipawee Tangjai

Mahasarakham University, Thailand

(Joint work with P. Vichitkunakorn and W. Pho-on)

A δ -complement graph was introduced in 2022. The graph is constructed in the same way as a complement graph with a restriction on taking a complement with the set of vertices with the same degree of the graph. In this work, we give several is sults related to a property and a chromatic number of a δ -complement graph including bounds of the chromatic number and an exact value of the chromatic number of some		
special classes of graphs.		

Combinatorial results for certain semigroups of contraction mappings of a finite chain

Abdullahi Umar

Khalifa University, Abu Dhabi, UAE

The study of various (sub)-semigroups of transformations/mappings has made	
significant contribution to semigroup theory. The most notable classes are the THRE	£
fundamental semigroups of transformations: the full symmetric semigroup, the pa	
tial symmetric semigroup and the symmetric inverse semigroup. In this talk, we a	
going to discuss some combinatorial results of some classes semigroups of (partia	
contraction transformations of a finite chain, which for some curious reason(s),un	til
very recently, little is known about.	
	_

Some lower bounds on conditionally decomposable polytopes

Jie Wang*

Federation University Australia

Suppose we have two polytopes that are combinatorially equivalent, but one decomposable, the other one indecomposable. Such polytopes are called conditionally decomposable polytope, we show that the minimum number of vertices is in the range $[3d-3,4d-4]$; and the minimum number of facets is obtained for $d \geqslant 4$. Joint work with David Yost.				

Automorphisms of quadratic quasigroups

Ian Wanless

Monash University

(Joint work with Aleš Drápal, Charles University, Prague.)

Let \mathbb{F}_q be a finite field of odd order q. Let \square denote the set of squares in \mathbb{F}_q . Suppose $a,b\in\mathbb{F}_q$ are such that $ab,(a-1)(b-1)\in\square\setminus\{0\}$. We define $Q_{a,b}$ to be the *quadratic* quasigroup $(\mathbb{F}_q,*)$ defined by

$$x * y = \begin{cases} x + a(y - x) \text{ if } y - x \in \square, \\ x + b(y - x) \text{ otherwise.} \end{cases}$$

We will briefly survey the combinatorial applications of quadratic quasigroups. We will then report on new work which answers the following questions.

- (1) What is the automorphism group of $Q_{a,b}$?
- (2) When is $Q_{a,b}$ isomorphic to $Q_{c,d}$?
- (3) What are the minimal subquasigroups of $Q_{a,b}$?
- (4) When is $Q_{a,b}$ isotopic to some finite group?

(5) When is	$Q_{a,b}$ a Steiner α	quasigroup?		

Proof of the Clustered Hadwiger Conjecture

David Wood

Monash University

(Joint work with Vida Dujmović, Louis Esperet and Pat Morin (arXiv:2306.06224).)

Hadwiger's Conjecture asserts that every K_h -minor-free graph is properly $(h-1)$							
colourable. We prove the following improper analogue of Hadwiger's Conjecture: for							
fixed h , every K_h -minor-free graph is $(h-1)$ -colourable with monochromatic compo-							
nents of bounded size. The number of colours is best possible regardless of the size of							
nonochromatic components. It solves an open problem of Edwards, Kang, Kim, Ou nd Seymour [<i>SIAM J. Disc. Math.</i> 2015], and concludes a line of research initiated							
colourable with monochromatic components of bounded size. The number of colou							
is best possible, solving an open problem of van den Heuvel and Wood [J. London Math							
Soc. 2018]. We actually prove a single theorem from which both of the above results							
are immediate corollaries. For an excluded apex minor, we strengthen the result as							
follows: for fixed $t \ge s \ge 3$, and for any fixed apex graph X , every $K_{s,t}$ -subgraph-free							
X-minor-free graph is $(s+1)$ -colourable with monochromatic components of bounded							
size. The number of colours is again best possible.							

Polytopes with minimal number of edges

David Yost

Federation University

(Joint work with Guillermo Pineda-Villavicencio and Jie Wang)

Given d, for which values of v, e does there exist a d-dimensional polytope with v vertices and e edges? This problem was solved for d=3 in 1906, d=4 in 1967 and d=5 in 2018. An interesting feature is the gaps in the possible values. It is now known that

$$2e \notin [dv + 1, d(v + 1) - 3] \cup [d(v + 1) + 3, d(v + 2) - 7].$$

If it is not possible to determine all pairs (v, e) , it is still of interest to determine the minimum value of e for fixed v , and to characterise the minimising polytopes.			

On the non-existence of Griesmer linear codes

Keita Yasufuku

Osaka Metropolitan University

(Joint work with Tatsuya Maruta)

ich an $[n, k, d]_q$ ler q exists. We i	nvestigate the	e validity o	f Kawabata'	s conjecture o	n the achievem
he Griesmer bo	ound for linea	r codes ove	er the field o	f order q , espe	ecially for $q=5$

On linear-algebraic notions of expansion

Chuanqi Zhang*

University of Technology Sydney

A fundamental fact about bounded-degree graph expanders is that three notions of expansion—vertex expansion, edge expansion, and spectral expansion—are all equivalent. This motivates us to study to what extent such a statement is true for linear-algebraic notions of expansion.

There are two well-studied notions of linear-algebraic expansion, namely dimension expansion [1] (defined in analogy to graph vertex expansion) and quantum expansion [2, 3] (defined in analogy to graph spectral expansion). Lubotzky and Zelmanov [4] proved that the latter implies the former. We proved that the converse is false: there are dimension expanders which are not quantum expanders.

Moreover, this asymmetry is explained by the fact that there are two distinct linear-algebraic analogues of graph edge expansion. The first of these is *quantum edge expansion*, which was introduced by Hastings [5], and which he proved to be equivalent to quantum expansion. We established a new notion, termed *dimension edge expansion*, which we proved is equivalent to dimension expansion and which is implied by quantum edge expansion. Thus, the separation above is implied by a finer one: dimension edge expansion is strictly weaker than quantum edge expansion. This new notion also led to a new and more modular proof of the Lubotzky-Zelmanov result [4] that quantum expanders are dimension expanders.

- [1] Boaz Barak, Russell Impagliazzo, Amir Shpilka, and Avi Wigderson. Definition and existence of dimension expanders. Discussion (no written record), 2004.
- [2] Avraham Ben-Aroya and Amnon Ta-Shma. Quantum expanders and the quantum entropy difference problem. ArXiv:quant-ph/0702129, 2007.
- [3] M. B. Hastings. Entropy and entanglement in quantum ground states. *Phys. Rev. B*, 76:035114, Jul 2007.
- [4] Alexander Lubotzky and Efim Zelmanov. Dimension expanders. *Journal of Algebra*, 319(2):730–738, 2008.

[5] M. B. Hasting 76:032315, Sep 2007.	gs. Random unitar	ies give quantum	expanders. <i>Physi</i>	cal Review A,

Contributed talks
Schedule

Card Shuffle Group

Zhishuo Zhang*

The University of Melbourne

For positive integers k and n , the shuffle group $G_{k,kn}$ is generated by the $k!$ permutations of a deck of kn cards performed by cutting the deck into k piles with n cards in each pile, and then perfectly interleaving these cards following certain order of the k piles. For $k=2$, the shuffle group $G_{2,2n}$ was determined by Diaconis, Graham and Kantor in 1983. The Shuffle Group Conjecture states that, for general k , the shuffle group $G_{k,kn}$ contains A_{kn} whenever $k \notin \{2,4\}$ and n is not a power of k . In particular, the conjecture in the case $k=3$ was posed by Medvedoff and Morrison in 1987. The only values of k for which the Shuffle Group Conjecture was confirmed up to 2022 are powers of 2, due to work of Amarra, Morgan and Praeger based on Classification of Finite Simple Groups. In this talk, I will introduce our approach to a complete solution of the Shuffle Group Conjecture, which involves applying results on 2-transitive groups and elements of large fixed point ratio in primitive groups. Joint work with Binzhou Xia, Junyang Zhang and Wenying Zhu.

3 List of participants

Name	Affiliation	email address
Jack Allsop	Monash University	jack.allsop@monash.edu
Vishnuram Arumugam	UWA	vishnuram.arumugam@research.uwa.edu.au
John Bamberg	UWA	john.bamberg@uwa.edu.au
Abdul Basit	Monash University	abdul.basit@monash.edu
Samuel Bastida	Victoria University of Wellington	bastidsamu@myvuw.ac.nz
Anton Baykalov	UWA	anton.baykalov@uwa.edu.au
Nick Brettell	Victoria University of Wellington	nick.brettell@vuw.ac.nz
Dom Vito Briones	University of the Philippines Diliman	dabriones@up.edu.ph
Thomas Britz	UNSW	britz@unsw.edu.au
Lei Chen	UWA	lei.chen@research.uwa.edu.au
Charles Colbourn	Arizona State University	colbourn@asu.edu
John Mel Dacaymat	University of the Philippines Diliman	jmdacaymat@math.upd.edu.ph
Sara Davies	The University of Queensland	sara.davies@uq.edu.au
Jan De Beule	Vrije Universiteit Brussel	Jan.De.Beule@vub.be
Ajani De Vas Gunasekara	Monash University	ajani.gunasekara@gmail.com
Alice Devillers	UWA	alice.devillers@uwa.edu.au
Zhaochen Ding	University of Auckland	dingren941@gmail.com
Marc Distel	Monash University	Marc.Distel@monash.edu
Alena Ernst	Paderborn University	alena.ernst@math.upb.de
Saul Freedman	UWA	saul.freedman@uwa.edu.au
Dani Gentle	Monash University	aidan.gentle@monash.edu
Afsane Ghafari Baghestani	Monash University	afsane.ghafaribaghestani@monash.edu
Michael Giudici	UWA	michael.giudici@uwa.edu.au
Gary Greaves	Nanyang Technological University	gary@ntu.edu.sg
Catherine Greenhill	UNSW Sydney	c.greenhill@unsw.edu.au
Krystal Guo	University of Amsterdam	k.guo@uva.nl
Yusuf Hafidh	University of Melbourne	yhafidh@student.unimelb.edu.au
Toru Hasunuma	Tokushima University	hasunuma@tokushima-u.ac.jp
Daniel Hawtin	University of Rijeka	dan.hawtin@gmail.com
Robert Hickingbotham		
. •	Monash University	robert.hickingbotham1@monash.edu
Masatake Hirao Koji Imamura	Aichi Prefectural University Kumamoto University	hirao@ist.aichi-pu.ac.jp 211d9321@st.kumamoto-u.ac.jp
Mikhail Isaev	Monash University	mikhail.isaev@monash.edu
Nina Kamčev	University of Zagreb	nina.kamcev@math.hr
Pawaton Kaemawichanurat	King Mongkut's University of Technology Thonburi	pawaton.kae@kmutt.ac.th
Shinya Kawabuchi	Kumamoto University	230d8554@st.kumamoto-u.ac.jp
Lukas Klawuhn	Paderborn University	klawuhn@math.upb.de
André Kündgen	California State University San Marcos	akundgen@csusm.edu
Alice Lacaze-Masmonteil	University of Ottawa	alaca054@uottawa.ca
Jesse Lansdown	University of Canterbury	jesse.lansdown@canterbury.ac.nz
Melissa Lee	Monash University	melissa.lee@monash.edu
Florian Lehner	University of Auckland	florian.lehner@auckland.ac.nz
Thomas Lesgourgues	University of Waterloo	tlesgourgues@gmail.com
Yuxuan Li	The University of Melbourne	yuxuan11@student.unimelb.edu.au
Stefano Lia	University College Dublin	stefano.lia@ucd.ie
	UNSW Sydney	a.liebenau@unsw.edu.au
Anita Liebenau Hongyi Lyu	Monash University	hongyi.lyu1@monash.edu
Adam Mammoliti		adam.mammoliti@outlook.com.au
Tatsuya Maruta	UNSW Sydney Osaka Metropolitan University	maruta@omu.ac.jp
Brendan McKay	Australian National University	71
Jeremy Mitchell	The University of Queensland	brendan.mckay@anu.edu.au
Dorđe Mitrović	University of Auckland	jeremy.mitchell@uq.net.au dmit755@aucklanduni.ac.nz
Yusuke Miura		
	Osaka Metropolitan University UWA	sd22525u@st.omu.ac.jp
Luke Morgan		luke.morgan@uwa.edu.au
Padraig Ó Catháin	Dublin City University	padraig.ocathain@dcu.ie
Tomasz Popiel	Monash University	tomasz.popiel@monash.edu

Cheryl Praeger Gordon Royle Joe Ryan Shohei Satake George Savvoudis Charles Semple Jacob Smith Keisuke Shiromoto

Violet Syrotiuk Tibor Szabó Wipawee Tangjai Abdullahi Umar

Geertrui Van de Voorde

Gabriel Verret
Jie Wang
Ian Wanless
David Wood
Binzhou Xia
Keita Yasufuku
David Yost

Bunjamin Yudhistira Andersen

Zhishuo Zhang Chuanqi Zhang UWA UWA

University of Newcastle Kumamoto University The University of Adelaide University of Canterbury

Kumamoto University Arizona State University Freie Universität Berlin Mahasarakham University

Khalifa University of Science and Technology

University of Canterbury
University of Auckland
Federation University
Monash University
Monash University
University of Melbourne
Osaka Metropolitan University

Federation University UNSW Sydney

The University of Melbourne University of Technology Sydney cheryl.praeger@uwa.edu.au gordon.royle@uwa.edu.au joe.ryan@newcastle.edu.au shohei-satake@kumamoto-u.ac.jp george.savvoudis@adelaide.edu.au charles.semple@canterbury.ac.nz jacob.smith@research.uwa.edu.au keisuke@kumamoto-u.ac.jp

syrotiuk@asu.edu szabo@zedat.fu-berlin.de wipawee.t@msu.ac.th abdullahi.umar@ku.ac.ae

geertrui.vandevoorde@canterbury.ac.nz

g.verret@auckland.ac.nz

jiewang@students.federation.edu.au

ian.wanless@monash.edu david.wood@monash.edu binzhoux@unimelb.edu.au sd23270s@st.omu.ac.jp d.yost@federation.edu.au yudhi@unsw.edu.au

zhishuoz@student.unimelb.edu.au chuanqi.zhang@student.uts.edu.au