Распределенные методы второго порядка с быстрой скоростью сходимости и компрессией

Московский физико-технический институт Кафедра Интеллектуальных систем

Научный руководитель: д.ф.-м.н. Стрижов В.В.

Апрель, 2021

Постановка задачи

Оптимизационная задача

Определить оптимальные параметры модели машинного обучения путем решения оптимизационной задачи:

$$\min_{x \in \mathbb{R}^d} \left\{ P(x) := f(x) + \frac{\lambda}{2} ||x||^2 \right\},\tag{1}$$

где x — параметры модели, а f — функция потерь.

Предполагается, что данные для обучения распределены между n клиентами, каждый клиент $i \in \{1, \dots, n\}$ имеет доступ к m векторам признаков объектов $a_{ij} \in \mathbb{R}^d, j \in \{1, \dots, m\}$. Функция f имеет вид

$$f(x) = \frac{1}{n} \sum_{i=1}^{n} f_i(x), \qquad f_i(x) = \frac{1}{m} \sum_{i=1}^{m} f_{ij}(x), \qquad f_{ij}(x) = \varphi_{ij}(a_{ij}^{\top} x). \tag{2}$$

Работы по теме

- Konstantin Mishchenko, Eduard Gorbunov, Martin Takac, and Peter Richtarik. Distributed learning with compressed gradient differences. arXiv:1901.09269, 2019.
- Zhize Li, Dmitry Kovalev, Xun Qian, and Peter Richtarik.

 Acceleration for compressed gradient descent in distributed and federated optimization.

 In International Conference on Machine Learning, 2020.
- Rixon Crane and Fred Roosta.

 DINGO: Distributed Newton-type method for gradient-norm optimization.

 Advances in Neural Information Processing Systems, volume 32, pages 9498.
- Rustem Islamov, Xun Qian, and Peter Richtarik.

 Distributed second order methods with fast rates and compressed communication.

 arXiv:2102.07158, 2021.

Модель распределенной оптимизации

Достоинства и недостатки модели

- + Возможно обучать модели на больших объемах данных, распределенных между устройствами;
- Возможно параллелизовать вычисления на устройствах;
- Скорость обмена данными между Клиентом и Сервером намного медленнее, чем скорость вычислений на самих устройствах и сервере.

Архитектура модели «Клиент-Сервер».

Мотивация

Существующие подходы и их недостатки

- Скорость сходимости методов первого порядка зависит от числа обусловленности поставленной оптимизационной задачи;
- Скорость сходимости методов второго порядка зависит от числа обусловленности поставленной оптимизационной задачи;
- Стоимость коммуникации между сервером и клиентом для методов второго порядка очень дорогая.

Цель

Предложить эффективный с точки зрения коммуникации метод второго порядка, чья скорость сходимости не зависит от числа обусловленности.

Предположения и структура Гессианов

Предположение

Поставленная оптимизационная задача имеет хотя бы одно решение x^* . Для всех i,j функция потерь $\varphi_{ij}:\mathbb{R}\to\mathbb{R}$ является дважды непрерывно дифференцируемой функцией с ν -липшецевой второй производной.

Гессианы функций

Гессианы функций f_{ij}, f_i, f соответственно имеют вид

$$\mathbf{H}_{ij}(x) = \varphi''(a_{ij}^{\top}x)a_{ij}a_{ij}^{\top}, \quad \mathbf{H}_{i}(x) = \frac{1}{m}\sum_{i=1}^{m}\mathbf{H}_{ij}(x), \quad \mathbf{H}(x) = \frac{1}{n}\sum_{i=1}^{n}\mathbf{H}_{i}(x).$$
(3)

Основная идея: NEWTON-STAR

NEWTON-STAR

Предположим, что Серверу известен Гессиан $\mathbf{H}(x^*)$ функции f в оптимуме. Шаг метода NEWTON-STAR имеет вид:

$$x^{k+1} = x^k - (\nabla^2 P(x^*))^{-1} \nabla P(x^k) = x^k - (\mathbf{H}(x^*) + \lambda \mathbf{I})^{-1} \left(\frac{1}{n} \sum_{i=1}^n \nabla f_i(x^k) + \lambda x^k \right).$$
(4)

Теорема о сходимости NEWTON-STAR

Предположим, что $\mathbf{H}(x^*) \succeq \mu^* \mathbf{I}, \mu^* \geq 0$, причем $\mu^* + \lambda > 0$. Тогда NEWTON-STAR сходится локально квадратично

$$\left\| x^{k+1} - x^* \right\| \le \frac{\nu}{2(\mu^* + \lambda)} \left(\frac{1}{nm} \sum_{i=1}^n \sum_{j=1}^m \|a_{ij}\|^3 \right) \left\| x^k - x^* \right\|^2. \tag{5}$$

Свойства NEWTON-STAR

Достоинства и недостатки NEWTON-STAR

- Локальная квадратичная сходимость, наследованная от стандартного метода Ньютона; Скорость сходимости не зависит от числа обусловленности;
- Стоимость коммуникаций между Сервером и Клиентом $\mathcal{O}(d)$ такая же, как и у градиентных методов. Каждый клиент пересылает серверу только градиент $\nabla f_i(x^k)$;
- Метод имеет только теоретическую значимость, Гессиан в оптимуме не известен.

NEWTON-LEARN

Дополнительные предположения

Каждая функция φ_{ij} является выпуклой, параметр регуляризации λ положительный.

Основная идея метода

Аппроксимируем матрицу $\mathbf{H}(x^*)$ на шаге k матрицей \mathbf{H}^k вида

$$\mathbf{H}^k = \left(\frac{1}{n}\sum_{i=1}^n \frac{1}{m}\sum_{j=1}^m h_{ij}^k a_{ij} a_{ij}^\top\right), \quad x^{k+1} = x^k - \left(\mathbf{H}^k + \lambda \mathbf{I}\right)^{-1} \left(\frac{1}{n}\sum_{i=1}^n \nabla f_i(x^k) + \lambda x^k\right).$$
(6)

Требования:

- $h_{ij}^k \to \varphi_{ij}''(a_{ij}^\top x^*)$ при $k \to \infty$;
- обнолвение элементов вектора $h_i^k := (h_{i1}^k, \dots, h_{im}^k)$ должно быть мало, т.е вектор $h_i^{k+1} h_i^k$ разрежен.

Механизм обновления коэффицентов

Определение

Pандомизированное отображение $\mathcal{C}: \mathbb{R}^m \to \mathbb{R}^m$, удовлетворяющее условиям

$$\mathbb{E}\left[\mathcal{C}(h)\right] = h, \qquad \mathbb{E}\left[\left\|\mathcal{C}(h)\right\|^{2}\right] \leq (\omega + 1)\left\|h\right\|^{2}, \qquad \forall \ h \in \mathbb{R}^{m}, \tag{7}$$

называется оператором несмещенной компрессии.

Пример: оператор Rand-r, выходом такого оператора являются случайно выбранные r элементов входа, домноженные на $\frac{m}{r}$. Для этого оператора параметр $\omega = \frac{m}{r} - 1$.

Введем $h_i(x) := (\varphi_{i1}''(a_{i1}^\top x), \dots, \varphi_{i1}''(a_{im}^\top x))^\top.$

Механизм обновления (DIANA-trick [1])

$$h_i^{k+1} = \left[h_i^k + \eta \mathcal{C}_i^k (h_i(x^k) - h_i^k) \right]_+.$$
 (8)

Алгоритм

Algorithm 1 NL: NEWTON-LEARN ($\lambda > 0$ case)

Parameters: learning rate
$$\eta > 0$$

Initialization: $x^0 \in \mathbb{R}^d$; $h_1^0, \dots, h_n^0 \in \mathbb{R}_+^m$; $\mathbf{H}^0 = \frac{1}{nm} \sum_{i=1}^n \sum_{j=1}^m h_{ij}^0 a_{ij} a_{ij}^\top \in \mathbb{R}^{d \times d}$

for $k = 0, 1, 2, \dots$ do

Broadcast x^k to all workers

for each node $i = 1, \dots, n$ do

Compute local gradient $\nabla f_i(x^k)$
 $h_i^{k+1} = [h_i^k + \eta \mathcal{C}_i^k (h_i(x^k) - h_i^k)]_+$

Send $\nabla f_i(x^k)$ and $\mathcal{C}_i^k (h_i(x^k) - h_i^k)$ to server

Option 1: Send $\{a_{ij} : h_{ij}^{k+1} - h_{ij}^k \neq 0\}$ to server

Option 2: Do nothing if server knows $\{a_{ij} : \forall j\}$

end for

 $x^{k+1} = x^k - (\mathbf{H}^k + \lambda \mathbf{I})^{-1} \left(\frac{1}{n} \sum_{i=1}^n \nabla f_i(x^k) + \lambda x^k\right)$
 $\mathbf{H}^{k+1} = \mathbf{H}^k + \frac{1}{nm} \sum_{i=1}^n \sum_{j=1}^m (h_{ij}^{k+1} - h_{ij}^k) a_{ij} a_{ij}^\top$

end for

Псевдокод для метода NEWTON-LEARN

Сходимость NEWTON-LEARN

Введем функцию Ляпунова
$$\Phi_1^k := \|x^k - x^*\|^2 + \frac{1}{3mn\eta\nu^2R^2} \sum_{i=1}^n \|h_i^k - h_i(x^*)\|^2$$
, где $R = \max_{i,j} \|a_{ij}\|$.

Теорема о сходимости NEWTON-LEARN

Пусть $\eta \leq \frac{1}{\omega + 1}$ и $\|x^k - x^*\|^2 \leq \frac{\lambda^2}{12\nu^2 R^6}$ для всех $k \geq 0$. Тогда выполнено

$$\mathbb{E}\left[\Phi_{1}^{k}\right] \leq \theta_{1}^{k}\Phi_{1}^{0}, \qquad \mathbb{E}\left[\frac{\left\|x^{k+1} - x^{*}\right\|^{2}}{\left\|x^{k} - x^{*}\right\|^{2}}\right] \leq \theta_{1}^{k}\left(6\eta + \frac{1}{2}\right)\frac{\nu^{2}R^{6}}{\lambda^{2}}\Phi_{1}^{0},$$

где $\theta_1 = 1 - \min\left\{\frac{\eta}{2}, \frac{5}{8}\right\}$.

Лемма: при использовании оператора разреживания достаточно предположить, что $\|x^0 - x^*\|^2 \le \frac{\lambda^2}{12\nu^2R^6}$.

Свойства NEWTON-LEARN

Достоинства и недостатки NEWTON-LEARN

- Локальная линейная и сверхлинейная сходимость, независимая от числа обусловленности;
- Стоимость коммуникаций между Сервером и Клиентом $\mathcal{O}(d)$ такая же, как и у градиентных методов;
- Из сходимости функции Ляпунова следует, что алгоритм итеративно приближает Гессиан в оптимуме.

Эксперименты

Эксперименты проведены для логистической регрессии на различных наборах данных библиотке LIBSVM.

$$P(x) = \frac{1}{nm} \sum_{i=1}^{n} \sum_{j=1}^{m} \log \left(1 + \exp(-b_{ij} a_{ij}^{\top} x) \right) + \frac{\lambda}{2} ||x||^{2}, \quad a_{ij} \in \mathbb{R}^{d}, b_{ij} \in \{-1, 1\}.$$
 (9)

w8a, $\lambda=10^{-3}$

a9a, $\lambda = 10^{-4}$

phishing, $\lambda=10^{-5}$

Результаты, выносимые на защиту

- Экспериментальное и теоретическое подтверждение сходимости предложенного метода;
- Экспериментальные данные показывают превосходство предложенного метода над существующими SOTA методами в терминах сложности коммуникаций;
- Придуман первый метод второго порядка в дистрибутивной оптимизации, скорость сходимости которого не зависит от числа обусловленности функции.