Bioinformatics for Top-Down Proteomics

DAVID L. TABB, PH.D.

Overview

- Motivation: the proteoform
- Separations and fragmentation
- Identification in ProSight PTM
- •Identification by spectral alignment
- Consortium and standardization

60 660

62,269

Humans have how many genes, transcripts, and proteins?

GENCODE 34, released April 2020:

■Total number of genes.

Total # of distinct translations:

Total Halliber of genes.	00,003
Protein-coding genes: (See also pseudogenes and IncRNAs)	19,959
Protein-coding transcripts:	84,068

■Genes with multiple distinct translations: 13,717 (69% of all protein-coding genes)

A gene yields mRNA isoforms that yield multiple proteoforms

Proteoforms differ through three primary factors:

- Genetic variation and RNA splicing give different mRNA sequences.
- Proteolysis and nonsense mutations truncate mature proteins.
- Post-translational modification may dramatically alter activity.

Phenotype may be specific to a particular proteoform.

DNA sequencing is blind to post-translational modifications.

Known blind spots for shotgun proteomics

WHICH VEGF ISOFORM RISES IN CANCER COHORT?

>sp|P15692-2|VEGFA_HUMAN Isoform VEGF189
MNFLLSWVHWSLALLLYLHHAKWSQAAPMAEGGGQNHHE
VVKFMDVYQRSYCHPIETLVDIFQEYPDEIEYIFKPSCVP
LMRCGGCCNDEGLECVPTEESNITMQIMRIKPHQGQHIGE
MSFLQHNKCECRPKKDRARQEKKSVRGKGKGQKRKRKKSR
YKSWSVPCGPCSERRKHLFVQDPQTCKCSCKNTDSRCKAR
OLELNERTCRCDKPRR

>sp|P15692|VEGFA_HUMAN Isoform VEGF206
AMNFLLSWVHWSLALLLYLHHAKWSQAAPMAEGGGQNHHE
VVKFMDVYQRSYCHPIETLVDIFQEYPDEIEYIFKPSCVP
LMRCGGCCNDEGLECVPTEESNITMQIMRIKPHQGQHIGE
MSFLQHNKCECRPKKDRARQEKKSVRGKGKGQKRKRKKSR
YKSWSVYVGARCCLMPWSLPGPHPCGPCSERRKHLFVQDP
QTCKCSCKNTDSRCKARQLELNERTCRCDKPRR

WHICH OF THESE PTMS CO-OCCUR ON HISTONE H3.3?

Analytical chemistry for intact proteins is more challenging.

"Numerically, the intact proteome appears to be a much simpler mixture than its corresponding peptide digests. In practice, however, protein-level fractionation and separation are daunting tasks due to the diverse physicochemical properties (e.g., size, charge, and hydrophobicity) and the wide dynamic range of the proteome."

>sp|P01308|INS_HUMAN Insulin (11,981 Da)
MALWMRLLPLLALLALWGPDPAAAFVNQHLCGSHLVEALYLVCGERGFFYTPKTRREAED
LQVGQVELGGGPGAGSLQPLALEGSLQKRGIVEQCCTSICSLYQLENYCN

>sp|P69905|HBA_HUMAN Hemoglobin subunit alpha (15,258 Da)
MVLSPADKTNVKAAWGKVGAHAGEYGAEALERMFLSFPTTKTYFPHFDLSHGSAQVKGHG
KKVADALTNAVAHVDDMPNALSALSDLHAHKLRVDPVNFKLLSHCLLVTLAAHLPAEFTP
AVHASLDKFLASVSTVLTSKYR

>sp|P07477|TRY1_HUMAN Trypsin-1 (26,558 Da)
MNPLLILTFVAAALAAPFDDDDKIVGGYNCEENSVPYQVSLNSGYHFCGGSLINEQWVVS
AGHCYKSRIQVRLGEHNIEVLEGNEQFINAAKIIRHPQYDRKTLNNDIMLIKLSSRAVIN
ARVSTISLPTAPPATGTKCLISGWGNTASSGADYPDELQCLDAPVLSQAKCEASYPGKIT
SNMFCVGFLEGGKDSCQGDSGGPVVCNGQLQGVVSWGDGCAQKNKPGVYTKVYNYVKWIK
NTIAANS

>sp|P60709|ACTB_HUMAN Actin, cytoplasmic 1 (41,737 Da)
MDDDIAALVVDNGSGMCKAGFAGDDAPRAVFPSIVGRPRHQGVMVGMGQKDSYVGDEAQS
KRGILTLKYPIEHGIVTNWDDMEKIWHHTFYNELRVAPEEHPVLLTEAPLNPKANREKMT
QIMFETFNTPAMYVAIQAVLSLYASGRTTGIVMDSGDGVTHTVPIYEGYALPHAILRLDL
AGRDLTDYLMKILTERGYSFTTTAEREIVRDIKEKLCYVALDFEQEMATAASSSSLEKSY
ELPDGQVITIGNERFRCPEALFQPSFLGMESCGIHETTFNSIMKCDVDIRKDLYANTVLS
GGTTMYPGIADRMQKEITALAPSTMKIKIIAPPERKYSVWIGGSILASLSTFQQMWISKQ
EYDESGPSIVHRKCF

>sp|Q14533|KRT81_HUMAN Keratin, type II cuticular Hb1 (54,928 Da)
MTCGSGFGGRAFSCISACGPRPGRCCITAAPYRGISCYRGLTGGFGSHSVCGGFRAGSCG
RSFGYRSGGVCGPSPPCITTVSVNESLLTPLNLEIDPNAQCVKQEEKEQIKSLNSRFAAF
IDKVRFLEQQNKLLETKLQFYQNRECCQSNLEPLFEGYIETLRREAECVEADSGRLASEL
NHVQEVLEGYKKKYEEEVSLRATAENEFVALKKDVDCAYLRKSDLEANVEALIQEIDFLR
RLYEEEILILQSHISDTSVVVKLDNSRDLNMDCIIAEIKAQYDDIVTRSRAEAESWYRSK
CEEMKATVIRHGETLRRTKEEINELNRMIQRLTAEVENAKCQNSKLEAAVAQSEQQGEAA
LSDARCKLAELEGALQKAKQDMACLIREYQEVMNSKLGLDIEIATYRRLLEGEEQRLCEG
IGAVNVCVSSSRGGVVCGDLCVSGSRPVTGSVCSAPCNGNVAVSTGLCAPCGQLNTTCGG
GSCGVGSCGISSLGVGSCGSSCRKC

UNIVERSITEIT STELLENBOSCH UNIVERSITY

>sp|P02768|ALBU_HUMAN Serum albumin (69,367)
MKWVTFISLLFLFSSAYSRGVFRRDAHKSEVAHRFKDLGEENFKALVLIAFAQYLQQCPF
EDHVKLVNEVTEFAKTCVADESAENCDKSLHTLFGDKLCTVATLRETYGEMADCCAKQEP
ERNECFLQHKDDNPNLPRLVRPEVDVMCTAFHDNEETFLKKYLYEIARRHPYFYAPELLF
FAKRYKAAFTECCQAADKAACLLPKLDELRDEGKASSAKQRLKCASLQKFGERAFKAWAV
ARLSQRFPKAEFAEVSKLVTDLTKVHTECCHGDLLECADDRADLAKYICENQDSISSKLK
ECCEKPLLEKSHCIAEVENDEMPADLPSLAADFVESKDVCKNYAEAKDVFLGMFLYEYAR
RHPDYSVVLLLRLAKTYETTLEKCCAAADPHECYAKVFDEFKPLVEEPQNLIKQNCELFE
QLGEYKFQNALLVRYTKKVPQVSTPTLVEVSRNLGKVGSKCCKHPEAKRMPCAEDYLSVV
LNQLCVLHEKTPVSDRVTKCCTESLVNRRPCFSALEVDETYVPKEFNAETFTFHADICTL
SEKERQIKKQTALVELVKHKPKATKEQLKAVMDDFAAFVEKCCKADDKETCFAEEGKKLV
AASQAALGL

>sp|P02452|C01A1_HUMAN Collagen alpha-1(I) chain (138,941 Da) MFSFVDLRLLLLAATALLTHGQEEGQVEGQDEDIPPITCVQNGLRYHDRDVWKPEPCRI CVCDNGKVLCDDVICDETKNCPGAEVPEGECCPVCPDGSESPTDQETTGVEGPKGDTGPR GPRGPAGPPGRDGIPGOPGLPGPPGPPGPPGPPGLGGNFAPOLSYGYDEKSTGGISVPGP MGPSGPRGLPGPPGAPGPQGFQGPPGEPGEPGASGPMGPRGPPGPPGKNGDDGEAGKPGR PGERGPPGPOGARGLPGTAGLPGMKGHRGFSGLDGAKGDAGPAGPKGEPGSPGENGAPGO MGPRGLPGERGRPGAPGPAGARGNDGATGAAGPPGPTGPAGPPGFPGAVGAKGEAGPQGP RGSEGPQGVRGEPGPPGPAGAAGPAGNPGADGQPGAKGANGAPGIAGAPGFPGARGPSGP OGPGGPPGPKGNSGEPGAPGSKGDTGAKGEPGPVGVOGPPGPAGEEGKRGARGEPGPTGL PGPPGERGGPGSRGFPGADGVAGPKGPAGERGSPGPAGPKGSPGEAGRPGEAGLPGAKGL TGSPGSPGPDGKTGPPGPAGQDGRPGPPGPPGARGQAGVMGFPGPKGAAGEPGKAGERGV PGPPGAVGPAGKDGEAGAOGPPGPAGPAGERGEOGPAGSPGFQGLPGPAGPPGEAGKPGE QGVPGDLGAPGPSGARGERGFPGERGVQGPPGPAGPRGANGAPGNDGAKGDAGAPGAPGS QGAPGLQGMPGERGAAGLPGPKGDRGDAGPKGADGSPGKDGVRGLTGPIGPPGPAGAPGD KGESGPSGPAGPTGARGAPGDRGEPGPPGPAGFAGPPGADGQPGAKGEPGDAGAKGDAGP PGPAGPAGPPGPIGNVGAPGAKGARGSAGPPGATGFPGAAGRVGPPGPSGNAGPPGPPGP AGKEGGKGPRGETGPAGRPGEVGPPGPPGPAGEKGSPGADGPAGAPGTPGPOGIAGORGV VGLPGORGERGFPGLPGPSGEPGKOGPSGASGERGPPGPMGPPGLAGPPGESGREGAPGA EGSPGRDGSPGAKGDRGETGPAGPPGAPGAPGPVGPAGKSGDRGETGPAGPTGPVGP VGARGPAGPOGPRGDKGETGEOGDRGIKGHRGFSGLOGPPGPPGSPGEOGPSGASGPAGP RGPPGSAGAPGKDGLNGLPGPIGPPGPRGRTGDAGPVGPPGPPGPPGPPSAGFDFSF LPQPPQEKAHDGGRYYRADDANVVRDRDLEVDTTLKSLSQQIENIRSPEGSRKNPARTCR DLKMCHSDWKSGEYWIDPNQGCNLDAIKVFCNMETGETCVYPTQPSVAQKNWYISKNPKD KRHVWFGESMTDGFQFEYGGQGSDPADVAIQLTFLRLMSTEASQNITYHCKNSVAYMDQQ TGNLKKALLLQGSNEIEIRAEGNSRFTYSVTVDGCTSHTGAWGKTVIEYKTTKTSRLPII DVAPLDVGAPDQEFGFDVGPVCFL

Protein recovery from LC columns requires shorter chains.

- Peptides / proteins are lured away from beads through increasing hydrophobicity.
- •Column length, pump pressure, and pore size are substantial factors for separation.

pressure
$$P = \frac{\eta v L}{d_p^2}$$
 viscosity, velocity, and length drop

Fragmenting peptides and proteins

- Collision-induced dissociation
 - Standard quadrupole technique
- Electron transfer dissociation
 - Ion-ion reaction for gentle bond cleavage

Collision-Induced Dissociation (CID)

- •When the quadrupole adds energy to ions, they collide more frequently with gas molecules, gaining energy.
- Protons become mobile, destabilizing peptide bonds (creating b-y fragments).

Electron Transfer Dissociation (ETD)

- •Charge draws positively-charged proteins to accept electrons from radical anions.
- An amino acid backbone cleaves between nitrogen and alpha carbon (*c-z* fragments).

Radical chemistry in peptides

Fig. 1. Fragmentation scheme for production of c- and z-type ions after reaction of a low-energy electron with a multiply protonated peptide.

Intermission

Deconvolution goals

•A molecule appears in many isotopes and at many charges to produce isotopic *envelopes* in both MS and MS/MS scans.

 Deconvolution attempts to combine these peaks to only one, appearing at +1 or neutral monoisotopic mass.

Limiting the sequence expansion for *PrSMs*

_Proteoform
Spectrum Matches

- In shotgun PTM ID, we decorate peptide sequences with allowable mass shifts. Top-down benefits from known PTM annotation.
- Partial inferred sequence tags can narrow protein candidate list considerably.
- Signal peptides and other backbone cleavages take on special importance.

ProSight PTM schematic

Poisson scoring model

Probability of Number of random match matched ions

Number of predicted ions

See also OMSSA:

Geer J. Proteome Res.

(2004) 3: 958-964.

Visualizing supporting fragment ions

Dynamic programming is for more than sequence alignment.

- In Smith-Waterman, we use gaps to represent INDEL differences between sequences.
- Approach can be adapted to many additive optimization problems in proteomics!

Dynamic programming in shotgun proteomics

- ■Infer sequences from MS/MS de novo
 - V Dancik et al. J. Computat. Bio. (1999) 6: 327.
- •Align LC retention times of features
 - M Ono et al. *Mol. Cell. Proteomics* (2006) 5: 1338.
- Localize phosphorylations within peptide
 - F Saeed et al. *IEEE* (2012) 10.1109/BIBMW.2012.6470210
- Compute exact p-values for XCorrs of PSMs
 - JJ Howbert et al. Mol. Cell. Proteomics (2014) 13: 2467.

Problems leveraging sequence and PTM composition

- "The candidate expansion method... leads to an exponential growth in the number of candidate protein forms that need to be considered."
- "top-down spectral alignment may deal with as many as 10-20 PTMs to a protein"
- "one often deals with multiple isobaric protein forms in the same spectrum"

MS-TopDown and histone H4

- Acetylation adds 42 Da to N-terminus and two other sites in first 15 amino acids.
- Lys5 and Lys8 ambiguity may result from co-fragmenting variants in one MS/MS.

Inheritors of MS-Align+

UNIVERSITEIT STELLENBOSCH UNIVERSITY

How do we communicate proteoforms?

ProForma Proteoform Notation Rules

The Basics

1. The amino acid sequence is written. Ambiguous amino acids can be specified.

```
SEQVENCE SEQXXNCE
```

2. Modifications and are written inside square brackets.

```
SEQVK[Unimod:Label:13C(3)][Acetyl]ENCE
```

3. Tags contain descriptors in key: value pairs.

```
SEQVEN[mass:+14.02]CE
```

4. Multiple descriptors are separated by pipes.

```
SEQVEN[mod:Methyl|mass:+14.02]CE
```

Advanced Usage

6. Prefix tags define the key for all subsequent tags.

```
[RESID]+S[AA0037]EQVE[AA0234]NCE
[mass]+S[80]EQVE[14]NCE
[formula]+S[HPO(3)]EQVE[CH(2)]NCE
```

7. Terminal modifications are separated from the sequence by a dash.

```
[mass:-17.027]-QVENCE-[Amidation]
```

The Specifics

5a. Modification Name

```
PRT[Phospho]EFRM

PRT[Phosphothreonine(UniProt)]EFRM

PRT[O-phospho-L-threonine(RESID)]EFRM

PRT[O-phospho-L-threonine(PSIMod)]EFRM
```

5b. Database Accession

```
PRT[Unimod:21]EFRM
PRT[UniProt:PTM-0254]EFRM
PRT[RESID:AA0038]EFRM
PRT[PSI-MOD:MOD:00047]EFRM
```

5c. Mass

```
SEQ[mass:+15.995]VENCE
SEQ[mass:+16]VENCE
SEQ[mass:16]VENCE
```

5d. Chemical Formula

```
SEQVEN[Methyl|formula:H(2)C]CE
```

5e. Additional Information

```
SEQ[info: unstructured text]VENCE
```


ProForma in practice

Examples of Best Practices

i. Histone H4 with several modifications. This example is human-readable and conforms to best practices.

```
[Acety1]-S[Phospho|mass:79.966331]GRGK[Acety1|Unimod:1|mass:42.010565]QGGKA RAKAKTRSSRAGLQFPVGRVHRLLRKGNYAERVGAGAPVYLAAVLEYLTAEILELAGNAARDNKKTRIIPRHLQL AIRNDEELNKLLGKVTIAQGGVLPNIQAVLLPKKT[Unimod:21]ESHHKAKGK
```

- ii. This is a valid and compact way of specifying Unimod accessions in multiple locations in the sequence.
 - [Unimod]+[1]-S[21]GRGK[1]QGGKARAKAKTRSSRAGKVTIAQGGVLPNIQAVLLPKKT[21]ESHHKAKGK
- iii. Extensive description of a modification using descriptors and IDs from different databases.

```
MTLFQLREHWFVYKDDEKLTAFRNK[p-adenosine| N6-(phospho-5'-adenosine)-L-lysine (RESID)| RESID:AA0227| PSI-MOD:00232|N6AMPLys(PSI-MOD)]SMLFQRELRPNEEVTWK
```

iv. Unknown modifications are best described by their mass shift and marked as unknown.

MTLFQLDEKLTA[mass:-37.995001|info:unknown modification]FRNKSMLFQRELRPNEEVTWK

People of interest

- Neil Kelleher
- Lloyd Smith
- Ying Ge
- Jeff Agar

- Pavel Pevzner
- Xiaowen Liu
- Rui-Xiang Sun

Takeaway messages

- If we digest proteins to measure them, we lose peptide relationships.
- ■Top-down proteomics relies upon high-resolution MS/MS and good separations.
- ■The dominant ProSight PTM framework has competition from alignment-based software.
- ■The CTDP seeks to broaden the use of topdown tech throughout biomedical research.