LAB1

Christian Rodrigues – Petrie CDA3203 – 10/21/2022

The purpose of this lab is to create a 2 to 1 multiplexer and utilize it as a component to create a 4 to 1, 8 to 1, and 16 to 1 multiplexer.


```
Mux8to1_ChristianRodrigues.vhd
                                                                                                                                                                                      - - ×
                   LIBRARY ieee;
----
                   use ieee.std_logic_l164.all;
44
                ENTITY Mux8tol_ChristianRodrigues IS
PORT (I0, I1, I2, I3, I4, I5, I6, I7, S0, S1, S2 : IN STD_LOGIC;
f : OUT STD_LOGIC);
٨/<sub>B</sub>
                 END Mux8tol_ChristianRodrigues;
ŧ
                ■ ARCHITECTURE LogicFunc OF Mux8tol_ChristianRodrigues IS
賃
          10 COMPONENT mux4tol_ChristianRodrigues IS
11 PORT (IO, I1, I2, I3, SO, S1 : IN STD_LOGIC;
12 f : OUT STD_LOGIC);
 1
          13
14
15
                  END COMPONENT;
%
×
                 ■ COMPONENT Mux2tol_ChristianRodrigues IS
                PORT (x1, x2, s: IN STD LOGIC; f: OUT STD LOGIC);
END COMPONENT;
          16
17
 0
\overline{Z}
          19
20
₽
                   SIGNAL fl, f2 : STD_LOGIC;
267
268
                   mux0: Mux4tol_ChristianRodrigues PORT MAP (I0, I1, I2, I3, S0, S1, f1);
mux1: Mux4tol_ChristianRodrigues PORT MAP (I4, I5, I6, I7, S0, S1, f2);
mux2: Mux2tol_ChristianRodrigues PORT MAP (f1, f2, S2, f);
          22
23
ab/
 END LogicFunc;
....
=
2
```



```
Mux16to1_ChristianRodrigues.vhd
              LIBRARY ieee;
use ieee.std logic 1164.all;
44 1,5 €
            賃賃
          7 END Mux16tol_ChristianRodrigues;
16 %
            ■ ARCHITECTURE LogicFunc OF Muxl6tol_ChristianRodrigues IS
% %
         0 💆
END COMPONENT;
         13
         14
267
268 ab/
              COMPONENT Mux2tol_ChristianRodrigues IS
              PORT (x1, x2, s : IN STD_LOGIC; f : OUT STD_LOGIC);
| ....
         16
         17
END COMPONENT;
         19
         20
               SIGNAL fl, f2 : STD_LOGIC;
         21
         22
               BEGIN
               mux0: Mux8tol_ChristianRodrigues PORT MAP (I0, I1, I2, I3, I4, I5, I6, I7, S0, S1, S2, f1);
mux1: Mux8tol_ChristianRodrigues PORT MAP (I8, I9, IA, IB, IC, ID, IE, INF, S0, S1, S2, f2);
mux2: Mux2tol_ChristianRodrigues PORT MAP (f1, f2, S2, f);
         23
         24
         25
```


CDA 3203 - Computer Logic Design Fall 2022 - Dr. Petrie

Name Christian Lab 1 /100 pts

Lab 1: The objectives of this lab are:

- 1) Design circuit equivalents for all the logic gates using NOT-AND-OR gates and design equivalent circuits using only one of the universal gates: NAND or NOR. We will design all-NAND equivalent circuits.
- 2) Design the circuit using Altera Quartus II 9.1 Web Edition, and verify the circuit is correct by comparing the Timing Diagram results to the Truth Table of the circuit.
- 3) Design and simulate an Active-Low Decoder, (DMux) circuit.
- 4) Design and simulate a Multiplexer (Mux) circuit.

Part 1.

HANDWORK:

- 1. [40 pts.] Design 9 circuits by completing below: Draw the symbol for the gate, its Truth Table, its Simplest Sum of Products Expression, draw its NOT-AND-OR Equivalent Circuit, its all-NAND Equivalent Circuit.
 - 1.1 Draw NOT gate:

Truth Table:			
	A	NOT(A)	
Ī	0		
	1	1	

NOT-AND-OR Equivalent Circuit all-NAND Equivalent Circuit:

1.2 Draw AND gate:

Truth Table:

	AB		AND(A,B)		
	0	0	0		
	0	1	0		
ij	1	0	0		
	1	1	1		

NOT-AND-OR Equivalent Circuit all-NAND Equivalent Circuit:

1.3 Draw OR gate:

rruth rapie:				
A	В	OR(A,B)		
0	0	0		
0	1			
1	0	1		
1	1	1		

NOT-AND-OR Equivalent Circuit all-NAND Equivalent Circuit:

1.4 Draw XOR gate:

den rable.			
A	В	XOR(A,B)	
0	0	0	
0	1		
1	0	1	
1	1		

Y4= A +B

NOT-AND-OR Equivalent Circuit: all-NAND Equivalent Circuit:

1.5 Draw NAND ga

NOT-AND-OR Equivalent Circuit: all-NAND Equivalent Circuit:

ate.		Truth Table:		
	A	В	NAND(A,B)	
	0	0		
	0	1		
	1	0	1	
	1	1	0	
Y5= A'B'				

1.6 Draw NOR gate:

Truth Table: B

NOT-AND-OR Equivalent Circuit: all-NAND Equivalent Circuit:

1.7 Draw XNOR gate: Truth Table:

A	В	XNOR(A,B)	
0	0	1	
0	1	D	
1	0	0	
1	1	1	
Y	7=	HOB'	

NOT-AND-OR Equivalent Circuit: all-NAND Equivalent Circuit:

1.8 2-to-1 Encoder or Multiplexer (Mux): Truth Table: NOT-AND-OR Equivalent Circuit:

all-NAND Equivalent

Y8= $5\chi_1 + 5\chi_6$ 1.9 Draw 2-to-4-Decoder Truth Table: NOT-AND-OR Equivalent Circuit: or Demultiplexer (DMux)

all-NAND Equivalent Circuit:

