190 VATSAL ISC HANDBOOK of CHEMISTRY Class 7. Alcohol (ROH) does not react with NaCl but forms RCl in presence OH ion from ROH. Hence the reaction between Ans. Cl ion being weaker base than OH is not able to displace OH forms protonated alcohol.

(From NaCl and Clarific Part in presence of H2SO4, ROH forms protonated alcohol. 6. Alcohol (ROH) does not react with NaCl but forms RCl in presence of H₂SO₄.

Ans Cl (from NaCl) and R—OH is not possible. But in presence of H_2SO_4 , ROH forms protonated alcohol.

 $R \stackrel{\bullet \bullet}{\longrightarrow} H + H^{+} \longrightarrow R \stackrel{+}{\longrightarrow} H$

Now, Cl⁻ ion being stronger base than H₂O, can displace H₂O from protonated alcohol to form RCl. $CI + R O H \longrightarrow H_2O + R - CI$

Alkyl halides though polar are immiscible with water.

Ans. Alkyl halides being polar molecules are held together by dipole-dipole attraction. The molecules of H_{20 aleg} Alkyl halides though polar are immiscible with water. Ans. Alkyl halides being polar molecules are held together by dipole-dipole activation between water and alkyl halide molecules are weaker that together by H—bonds. Since the new forces of attraction between water and water-water molecules are weaker that together by H—bonds. Since the new forces of attraction between water and water-water molecules are weaker that together by H—bonds. Since the new forces of attraction between water and water-water molecules are weaker that together by H—bonds. Since the new forces of attraction between water and alkyl halide molecules are weaker that together by H—bonds. Since the new forces of attraction between water and alkyl halide molecules are weaker that together by H—bonds. Since the new forces of attraction between water and alkyl halide molecules are weaker that together by H—bonds. Since the new forces of attraction between water and alkyl halide molecules are weaker that together by H—bonds. Since the new forces of attraction between water and alkyl halide molecules are together by H—bonds. together by H—bonds. Since the new forces of attraction between water and water-water molecules. There force of attraction already existing between alkyl halide-alkyl halide molecules and water-water molecules. alkyl halides are not soluble in water.

8. Sulphuric acid is not used during the reaction of alcohols with Kl.

Sulphuric acid is not used during the reaction of alcohols. H₂SO₄ is an oxidising agent which oxidises HI produced during the reaction to I_2 thus prevents the reaction below. an alcohol and HI to form an alkyl halide.

 $2KI + 2H_2SO_4 \longrightarrow 2KHSO_4 + 2HI$ $2HI + H_2SO_4 \longrightarrow 2H_2O + I_2 + SO_2$

To overcome this difficulty, a non-oxidising acid like H₃PO₄ is used instead of H₂SO₄.

Ity, a non-oxidising acid like
$$H_3PO_4$$
 is used instead of 2
 $CH_3CH_2OH + KI + H_3PO_4 \xrightarrow{\Delta} CH_3CH_2I + KH_2PO_4 + H_2O$

Wurtz reaction fails in case of tertiary alkyl halides.

Ans. Tertiary alkyl halides prefer to undergo dehydrohalogenation in presence of a strong base such as Na metal inst of undergoing Wurtz reaction.

$$(CH_3)_3C - Br + 2Na \longrightarrow (CH_3)_3C^-Na^+ + NaBr$$

$$(CH_3)_3C^-Na^+ + H - CH_2 - C - Br \longrightarrow (CH_3)_3CH + CH_2 - C - CH_3 + NaBr$$

$$(CH_3)_3C^-Na^+ + H - CH_2 - C - Br \longrightarrow (CH_3)_3CH + CH_2 - C - CH_3 + NaBr$$

$$(CH_3)_3C^-Na^+ + H - CH_2 - C - Br \longrightarrow (CH_3)_3CH + CH_2 - C - CH_3 + NaBr$$

$$(CH_3)_3C^-Na^+ + H - CH_2 - C - Br \longrightarrow (CH_3)_3CH + CH_2 - C - CH_3 + NaBr$$

$$(CH_3)_3C^-Na^+ + H - CH_2 - C - Br \longrightarrow (CH_3)_3CH + CH_2 - C - CH_3 + NaBr$$

$$(CH_3)_3C^-Na^+ + H - CH_2 - C - Br \longrightarrow (CH_3)_3CH + CH_2 - C - CH_3 + NaBr$$

$$(CH_3)_3C^-Na^+ + H - CH_2 - C - Br \longrightarrow (CH_3)_3CH + CH_2 - C - CH_3 + NaBr$$

$$(CH_3)_3C^-Na^+ + H - CH_2 - C - Br \longrightarrow (CH_3)_3CH + CH_2 - C - CH_3 + NaBr$$

$$(CH_3)_3C^-Na^+ + H - CH_2 - C - Br \longrightarrow (CH_3)_3CH + CH_2 - C - CH_3 + NaBr$$

$$(CH_3)_3C^-Na^+ + H - CH_2 - C - Br \longrightarrow (CH_3)_3CH + CH_2 - C - CH_3 + NaBr$$

$$(CH_3)_3C^-Na^+ + H - CH_2 - C - CH_3 + NaBr$$

$$(CH_3)_3C^-Na^+ + CH_2 - C - CH_3 + NaBr$$

$$(CH_3)_3C^-Na^+ + CH_2 - C - CH_3 + NaBr$$

$$(CH_3)_3C^-Na^+ + CH_2 - C - CH_3 + NaBr$$

$$(CH_3)_3C^-Na^+ + CH_2 - C - CH_3 + NaBr$$

$$(CH_3)_3C^-Na^+ + CH_2 - C - CH_3 + NaBr$$

$$(CH_3)_3C^-Na^+ + CH_2 - C - CH_3 + NaBr$$

$$(CH_3)_3C^-Na^+ + CH_2 - C - CH_3 + NaBr$$

$$(CH_3)_3C^-Na^+ + CH_2 - C - CH_3 + NaBr$$

$$(CH_3)_3C^-Na^+ + CH_2 - C - CH_3 + NaBr$$

$$(CH_3)_3C^-Na^+ + CH_2 - C - CH_3 + NaBr$$

$$(CH_3)_3C^-Na^+ + CH_2 - C - CH_3 + NaBr$$

$$(CH_3)_3C^-Na^+ + CH_2 - C - CH_3 + NaBr$$

$$(CH_3)_3C^-Na^+ + CH_2 - C - CH_3 + NaBr$$

$$(CH_3)_3C^-Na^+ + CH_2 - C - CH_3 + NaBr$$

$$(CH_3)_3C^-Na^+ + CH_2 - C - CH_3 + NaBr$$

$$(CH_3)_3C^-Na^+ + CH_3 - C - CH_3 + NaBr$$

$$(CH_3)_3C^-Na^+ + CH_3 - C - CH_3 + NaBr$$

$$(CH_3)_3C^-Na^+ + CH_3 - C - CH_3 + NaBr$$

$$(CH_3)_3C^-Na^+ + CH_3 - C - CH_3 + NaBr$$

$$(CH_3)_3C^-Na^+ + CH_3 - C - CH_3 + NaBr$$

$$(CH_3)_3C^-Na^+ + CH_3 - C - CH_3 + NaBr$$

$$(CH_3)_3C^-Na^+ + CH_3 - C - CH_3 + NaBr$$

Thus, only 1° and 2° alkyl halide undergo Wurtz reaction while 3° alkyl halides prefer to undergo dehydrohalogenz to form alkenes.

10. Displacement of cyanide and amide ion is never observed in nucleophilic substitution reactions.

Ans. Displacement of cyanide and amide ion is never observed in nucleophilic substitution reactions because both them are ambident nucleophiles. Again both are strong nucleophiles.

11. Aryl halides cannot be prepared by the reaction of phenol with HCl in presence of ZnCl₂.

Ans. The C—O bond in phenol acquires double bond character due to resonance effect and it is difficult to break bond. Hence aryl halides cannot be prepared by the reaction of phenol with HCl.

12. A small amount of ethanol is added to chloroform bottle.

Ans. Because alcohol converts phosgene to harmless ethyl carbonate.

13. Allyl chloride is hydrolysed more readily than n-propyl chloride.

reactive, therefore they readily react with OH ions to form allyl alcohol.

gut, n-propyl chloride does not undergo ionization to produce n-propyl carbocation.

Haloalkanes react with KCN to form alkyl cyanides as main product while AgCN forms isocyanides as the chief product.

Ans. KCN being an ionic compound gives CN ion which can act as an ambident nucleophile and can attack the carbon Ans. Not to halogen either through C or N. Thus, it can yield cyanides as well as isocyanides. However, C—C bond is attached to halogen either through C or N. Thus, it can yield cyanides as well as isocyanides. However, C—C bond is attached stronger than C—N bond. Therefore, the attack mainly takes place through the carbon end of the cyanide ion forming alkyl cyanide as the major product. On the other hand, AgCN being covalent, only N atom is free to act as the donor atom due to presence of a lone pair of electrons on nitrogen atom. Therefore, attack occurs through N-atom of gyanide group forming alkyl isocyanides.

15. Vinyl chloride is hydrolysed more slowly than ethyl chloride.

Ans. Vinyl chloride is represented as a resonance hybrid of the following two structures :

$$CH_2$$
 CH CI : CH_2 CH CI :

Due to which, carbon-chlorine bond acquires double bond character. This is not observed in ethyl chloride. Therefore, vinyl chloride undergoes hydrolysis more slowly than ethyl chloride.

- 16. Organic chlorides are used in industry as solvents rather than bromides and iodides.
 - Ans. Because organic chlorides are more volatile than bromides and iodides.
- 17. lodoform shows antiseptic property.
 - Ans. Due to liberation of free iodine by iodoform.
- 18. The C—CI bond length in chlorobenzene is shorter than that in CH3—CI.
 - Ans. Due to partial double bond character of C-Cl bond (due to resonance in C6H5-Cl), bond length of C-Cl in chlorobenzene is shorter than that in CH3—Cl.
- 19. Haloarenes are less reactive than haloalkanes towards nucleophilic substitution reactions.
 - Ans. In haloalkanes, carbon is bonded to more electronegative halogen atom so that the high polarity of this molecule makes it more reactive but carbon atom of haloarenes is sp^2 hybridised so that the electron pair of the C—X bond is more tightly held than sp3 hybridised carbon in haloalkane.
- 10. The dipole moment of chlorobenzene is lower than that of cyclohexyl chloride.
 - Ans. In chlorobenzene, the carbon atom of C—Cl bond is sp^2 hybridised and it has more s-character and more electronegative than sp3 hybridised carbon of cyclohexyl chloride. Again in chlorobenzene, due to resonance, C—Cl bond acquires some bond character and magnitude of negative charge is less on chlorine atom but in cyclohexyl chloride, there is pure single bond and higher magnitude of negative charge on chlorine atom. Since, dipole moment is a product of charge and distance, the dipole moment of cyclohexyl chloride is higher than chlorobenzene.
- 11. Ethyl iodide undergoes S_N2 reaction faster than ethyl bromide.
 - Ans. lodide is a better leaving group due to large size than bromide. Hence it undergoes S_N2 reaction faster than ethyl bromide.
- Pchlorobenzene has higher melting point than those of o- and m-isomers.
 - Ans. Because p-isomer has symmetrical structure due to which molecules can easily pack closely in crystal lattice increasing intermolecular forces of attraction.
- Although chlorine is an electron withdrawing group but it is ortho and para directing in electrophilic substitution in
- Ans. Chlorobenzene is the resonance hybrid of the following structures.

Since, electron density is maximum at o- and p-position due to +R effect, electrophilic substitution reactions take

24. Neopentyl chloride (CH₃)₃ C—CH₂Cl does not follow S_N2 mechanism.

Ans. There is steric hindrance in neo-pentyl chloride, it does not follow S_N2 mechanism.

25. (i) Chloroform is stored in closed dark brown bottles.

(i) Chloroform is stored in closed dark brown bottles.

Ans. In presence of sunlight and air, chloroform is oxidised to form poisonous phosgene (COCl₂) gas. In order to be in this, it is stored in dark brown bottles filled up to the brim.

his, it is stored in dark brown bottles filled up to the brun.

(ii) Out of but-1-ene and but-2-ene, which gives same product on reaction with HBr in presence and absence and peroxides?

peroxides?

Ans. But-2-ene gives the same product (2-bromobutane) in presence and absence of peroxides because of the symples. nature of but-2-ene.

(iii) Name the alkyl halide which can be used to prepare methane and ethane in single step.

Ans. Methyl iodide (CH3I).

(iv) Write the products in the following reactions:

$$\checkmark$$
1. CH_3 — CH = $C(CH_3)_2$ + HCI $\xrightarrow{Peroxide}$

5.
$$CH_3CH_2Br + KCN \xrightarrow{C_2H_5OH (aq.)} \Delta$$

7.
$$CHCl_3 \xrightarrow{Zn/H_2O} \Delta$$

9.
$$CH_3$$
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3

$$11.$$
 O + Na + CH₃Cl O Dry ether

13.
$$CH_3CH_2CH = CH_2 + HBr \xrightarrow{Peroxide}$$

2.
$$CH_3$$
 CH_3
 CH_2Br
 CH_3
 CH_3
 CH_3

4.
$$(CH_3)_3C$$
—Br + KOH Ethanol, Heat

6.
$$CH_3$$
— CH = $C(CH_3)_2$ + HBr — \to

8.
$$CH_3CH_2Br \xrightarrow{AgCN(alc.)} \Delta$$

14.
$$\bigcirc$$
 + KI \triangle

15.
$$CH_3$$
 + HI \rightarrow 17. CH_3 + Br₂ $\xrightarrow{\text{Light}}$ Reflux

16.
$$CH_3CH_2CH = CH_2 + HBr \longrightarrow$$

18.
$$CH_3CH = CH_2 + CI_2 \xrightarrow{775K}$$

2.

Ans. 1. The addition of HCl to unsymmetrical alkene takes place according to Markownikoff's rule although it takes place

CH₃
$$CH_3$$
 CH_3 C

1° carbocation rearranges by 1, 2-alkyl shift to give tertiary carbocation which is attacked by C₂H₅OH (nucleophile)

Br 2-Bromo-2-methylbutane

and by losing proton forms the product.

3.
$$CH_3CH_2CH_2Br + NaI \xrightarrow{Acetone} CH_3CH_2CH_2I + NaBr \xrightarrow{1-lodopropane} CH_3$$

4. $(CH_3)_3C - Br + KOH \xrightarrow{Ethanol} CH_3 - C = CH_2 + KBr + H_2O \xrightarrow{2-Methylpropane} CH_3CH_2Br + KCN \xrightarrow{C_2H_5OH/H_2O} CH_3CH_2CN + KBr \xrightarrow{Propane nitrile} CH_3$

6. $CH_3 - CH = C - CH_3 + HBr \longrightarrow CH_3 - CH_2 - C - CH_3 \xrightarrow{Br} CH_3$

7.
$$CHCl_3 + 4[H] \xrightarrow{Zn/H_2O} CH_4 + 3HCl$$
Methane

8.
$$CH_{3}CH_{2}Br + AgCN \xrightarrow{\Delta} CH_{3}CH_{2}N \xrightarrow{\cong} C + AgBr$$

$$CH_{3} \xrightarrow{CH_{3}} CH_{3}$$

$$CH_{3} \xrightarrow{C} CH_{3} \xrightarrow{C} CH_{3} \xrightarrow{C} CH_{2} + NaBr + H_{2}O$$

$$CH_{3} \xrightarrow{C} CH_{3} \xrightarrow{C} CH_{3} \xrightarrow{C} CH_{3} \xrightarrow{C} CH_{2} + NaBr + H_{2}O$$

10.
$$2CCl_3CHO + Ca(OH)_2 \longrightarrow 2CHCl_3 + (HCOO)_2Ca$$
Calcium formate

$$\begin{array}{c} CI \\ + 2Na + CH_3CI \end{array} \xrightarrow{Dry \text{ ether}} \begin{array}{c} CH_3 \\ + 2NaCI \end{array}$$

13.
$$CH_3CH_2CH = CH_2 + HBr \xrightarrow{Peroxide} CH_3CH_2CH_2CH_2Br$$

16.
$$CH_3CH_2CH = CH_2 + HBr \longrightarrow CH_3CH_2CH \longrightarrow CH_3$$

Br

2-Bromobutane

18.
$$CH_3$$
— $CH = CH_2 + Cl_2 \xrightarrow{775 \text{ K}} CH_2 = CH$ — $CH_2Cl + HCl$
Allyl chloride

19.
$$2(CH_3)_2CH - CI \xrightarrow{Na/Dry \text{ ether}} CH_3 - CH - CH - CH_3 + 2NaCl$$

$$CH_3 \quad CH_3$$

$$CH_3 \quad CH_3$$

$$2, 3-Dimethyl \text{ butane}$$

- V) Which would undergo S_N1 reaction faster in the following pair? CH₃CH₂CH₂Br and CH₃CH(Br)CH₃ AnsCH₃CH(Br)CH₃.
- i) Give one chemical test to distinguish between:
 - 1. n-propyl bromide and isopropyl bromide
 - 2. Ethyl bromide and bromobenzene
 - 3. Chlorobenzene and benzyl chloride
 - 4. Chloroform and iodoform
 - 5. Chlorobenzene and n-hexyl chloride
 - 6. Chloroform and carbontetrachloride
 - 7. Ethyl chloride and chlorobenzene

Ans		ALL STATES
1.	n-propyl Bromide	Isopropyl Bromide
	vellow ppt. of iodoform.	which on heating with I ₂ and NaOH solution of iodoform.
2.	Ethyl Bromide	Bromobenzene Lois Under
	Ethyl bromide on heating with aq KOH gives ethanol and KBr. The reaction mixture on acidification with dil. HNO ₃ followed by treatment with AgNO ₃ solution gives yellow ppt. of AgBr which is soluble in conc. ammonia solution.	Bromobenzene Bromobenzene does not undergo hydrolysis under conditions and no pale yellow ppt. of AgBr is formed.

1	Chlorobenzene (C ₆ H ₅ CI) HALOALKANES AND HALOARENES	
3	It does not undergo hydrolysis. Therefore, acidification of the reaction mixture with dil. HNO ₃ followed by addition of AgNO ₃ solution does not produce white ppt. of AgCl.	Benzyl Chloride (C ₆ H ₅ CH ₂ Cl)
		benzyl alcohol and KCI. The reaction mixture on acidification with dil. HNO ₃ followed by treatment with AgNO ₃ solution
4.	Chloroform	gives white ppt. of AgCl.
5.	When chloroform is heated with alcoholic AgNO ₃ , white ppt.	lodoform
		When iodoform is heated with alcoholic AgNO ₃ , a yellow
	Chlorobenzene (C ₆ H ₅ CI)	coloured ppt. of silver iodide is produced.
	Chlorobenzene does not undergo hydrolysis on heating with aq. KOH and does not produce phenol and KCl. Therefore, treatment of the reaction mixture with dil. HNO ₃ followed by addition of AgNO ₃ does not give a white ppt. of AgCl.	n-hexyl Chloride (C ₆ H ₁₃ Cl)
		dil. HNO ₃ followed by treatment with AgNO ₃ solution gives a
6.	Chloroform (CHCl ₃)	white ppt. of AgCl.
-	Chloroform on warming with an alcoholis and a	Carbontetrachloride (CCl ₄)
	and KOH gives carbylamine having offensive smell due to carbylamine test.	Carbontetrachloride does not give carbyl amine test.
7.	Ethyl chloride	CI L
	Ethyl chloride upon hydrolysis with aq. KOH followed by	Chlorobenzene
1	acidification with dil. HNO ₃ and addition of AgNO ₃ solution gives white ppt. of AgCl.	Chlorobenzene does not respond to this test.

A hydrocarbon C₅H₁₂ gives only one monochlorination product. Identify the hydrocarbon.

AnsNeopentane has all equivalent hydrogens. Therefore it gives only one monochlorination product.

Arrange the following in order of increasing ease towards nucleophilic substitution.

4-chloronitrobenzene; chlorobenzene; 2, 4, 6-trinitrochlorobenzene; 2, 4-dinitrochlorobenzene

AnsChlorobenzene < 4-chloronitrobenzene < 2, 4-dinitrochlorobenzene < 2, 4, 6-trinitrochlorobenzene

fm) Arrange the following in increasing order of their boiling points:

Ans(CH₃)₃ CBr < (CH₃)₂ CHCH₂ Br < CH₃CH₂CH₂CH₂Br

(x) What happens when bromine attacks on $CH_2 = CH - CH_2 - C = CH$?

Ans
$$Br$$
— CH_2 — CH — CH_2 — CH — CH_2 — CH

(a) Give one use of dichloromethane.

AnsAs propellant in aerosols.

Give one use of tetrachloromethane.

AnsAs a solvent for oils, fats and waxes.

Which compound in the following pair undergoes faster S_N1 reaction?

EShort Answer Questions (2 marks)

ort Answer Questions (2 marks)

When the alkyl bromides (listed here) were subjected to hydrolysis in a mixture of ethanol and water (80% 20% water) at 55°C, the rates of reaction showed the following order: $(CH_3)_3CBr > CH_3Br > CH_3CH_2Br > (CH_3)_2 CHBr$

ction showed the
$$CH_3Br > CH_3CH_2Br > (CH_3)/2$$

Give an explanation for this order of reactivity.

Ans. $(CH_3)_3$ CBr reacts by S_{N1} mechanism and this reaction takes place faster. The other three halides reaction rates are affective than the control of the Ans. $(CH_3)_3$ CBr reacts by S_N1 mechanism and this reaction takes place table. The reaction rates are affected mechanism and their reactions are slower because the nucleophile (H_2O) is weak. The reaction rates are affected mechanism and their reactions are slower because the nucleophile. In the following pairs of halogen compounds, which compound undergoes faster S_N1 reactions?

Ans. (i) First compound is 3° alkyl halide and second compound is 2° alkyl halide. S_N1 reaction proceeds through the formation of more stable carbocation formation of carbocation. 3° alkyl halide reacts faster due to formation of more stable carbocation. formation of carbocation. 3° alkyl halide reacts faster and 1° alkyl halide. First compound reacts faster (ii) First compound is 2° alkyl halide whereas second compound is 1° alkyl halide.

reaction due to formation of more stable 2° carbocation.

3. Which compound in each of the following pairs will react faster in S_N2 reactions with OH⁻?

(ii) (CH₃)₃CCl or CH₃Cl.

Ans. (i) Since, I ion is a better leaving group than Br ion, therefore, CH₃I reacts faster than CH₃Br in S_N2 reaction OH ion and C-I bond is weaker than C-Br.

(ii) Due to less sterichindrance 1° alkyl halides are more reactive than tert-alkyl halides in S_N2 reactions. Then CH₃Cl will react at a faster rate than (CH₃)₃CCl in a S_N2 reaction with OH ion.

Explain the following reaction:

$$n$$
—BuBr + KCN — EtOH-H₂O \rightarrow n —BuCN.

Ans. CN ion is an ambident nucleophile. Therefore, it can attack the carbon atom of C-Br bond in n-Bullet through C or N. Since, C—C bond is stronger than C—N bond, therefore, attack occurs through C to form n-butylog

$$\begin{array}{c} \text{K}^+\text{CN}^- + \text{CH}_3\text{CH}_2\text{CH}_2\text{CH}_2 & \text{Br}^{\delta-} \longrightarrow \text{CH}_3\text{CH}_2\text{CH}_2\text{CH}_2\text{CN} + \text{KBr} \\ \textit{n-Butyl bromide} & \textit{n-Butyl cyanide} \end{array}$$

5. Out of C₆H₅CH₂Cl and C₆H₅CHClC₆H₅ which is more easily hydrolysed by aqueous KOH? Ans. C₆H₅CH₂Cl is a 1° aralkyl halide while C₆H₅CH (Cl) C₆H₅ is a 2° aralkyl halide.

$$\begin{array}{c} C_6H_5-CH-C_6H_5 \\ Cl \\ 1\text{-Chloro-1, 1-diphenylmethane} \end{array} \xrightarrow{\begin{array}{c} \text{lonization} \\ \text{C}_6H_5-CH-C_6H_5 \\ \text{delocalization over two } C_6H_5 \\ \end{array} \xrightarrow{\begin{array}{c} \text{lonization} \\ \text{delocalization over two } C_6H_5 \\ \end{array}} + Cl$$

$$\begin{array}{c} C_6H_5CH_2-Cl \\ \text{Benzyl chloride} \end{array} \xrightarrow{\begin{array}{c} \text{lonization} \\ \text{delocalization over two } C_6H_5 \\ \end{array}} + Cl$$

(xiv) Give balanced chemical equation for the following name reaction.

E.Short Answer Questions (2 marks)

ort Answer Questions (2 marks)

When the alkyl bromides (listed here) were subjected to hydrolysis in a mixture of ethanol and water (80% ethanol to hydrolysis in a mixture of ethanol and water (80% ethanol to hydrolysis in a mixture of ethanol and water (80% ethanol to hydrolysis in a mixture of ethanol and water (80% ethanol to hydrolysis in a mixture of ethanol and water (80% ethanol to hydrolysis in a mixture of ethanol and water (80% ethanol to hydrolysis in a mixture of ethanol to hydrolysis in a mixture of ethanol and water (80% ethanol to hydrolysis in a mixture of ethanol to hydrolysis in a mixture of ethanol to hydrolysis in a mixture of ethanol and water (80% ethanol to hydrolysis in a mixture of 20% water) at 55°C, the rates of reaction showed the following order: $(CH_3)_3CBr > CH_3Br > CH_3CH_2Br > (CH_3)_2 CHBr$

Give an explanation for this order of reactivity.

Ans. $(CH_3)_3$ CBr reacts by S_N1 mechanism and this reaction takes place faster. The other three halides reaction rates are are the nucleophile (H_2O) is weak. The reaction rates are are Ans. (CH₃)₃ CBr reacts by S_N1 mechanism and this reaction takes produced the reaction rates are affected mechanism and their reactions are slower because the nucleophile (H₂O) is weak. The reaction rates are affected mechanism and their reactions are slower because the nucleophile (H₂O) is weak.

In the following pairs of halogen compounds, which compound undergoes faster S_N1 reactions?

Ans. (i) First compound is 3° alkyl halide and second compound is 2° alkyl halide. S_N1 reaction proceeds through formation of carbocation. 3° alkyl halide reacts faster due to formation of more stable carbocation. (ii) First compound is 2° alkyl halide whereas second compound is 1° alkyl halide. First compound reacts faster

reaction due to formation of more stable 2° carbocation.

3. Which compound in each of the following pairs will react faster in S_N2 reactions with OH-?

(i) CH₃Br or CH₃I

(ii) (CH₃)₃CCl or CH₃Cl.

Ans. (i) Since, I ion is a better leaving group than Br ion, therefore, CH₃I reacts faster than CH₃Br in S_N2 reaction OH ion and C — I bond is weaker than C — Br.

(ii) Due to less sterichindrance 1° alkyl halides are more reactive than tert-alkyl halides in S_N2 reactions. The CH₃Cl will react at a faster rate than (CH₃)₃CCl in a S_N2 reaction with OH ion.

4. Explain the following reaction :

$$n$$
—BuBr + KCN $\xrightarrow{\text{EtOH-H}_2O}$ n —BuCN.

Ans. CN ion is an ambident nucleophile. Therefore, it can attack the carbon atom of C—Br bond in n-Bull through C or N. Since, C—C bond is stronger than C—N bond, therefore, attack occurs through C to form n-butylo

$$K^+CN^- + CH_3CH_2CH_2CH_2$$
 $R^-Butyl bromide$
 $R^-Butyl bromide$
 $R^-Butyl cyanide$
 $R^-Butyl cyanide$
 $R^-Butyl cyanide$

5. Out of C₆H₅CH₂Cl and C₆H₅CHClC₆H₅ which is more easily hydrolysed by aqueous KOH? Ans. C₆H₅CH₂Cl is a 1° aralkyl halide while C₆H₅CH (Cl) C₆H₅ is a 2° aralkyl halide.

In SN1 reactivity depends upon the stability of carbocations. Since, the carbocation C₆H₅CHC₆H₅ (where the +ve charge is delocalised over two C₆H₅ rings) is more stable than the carbocation, C₆H₅CH₂ (where +ve charge is delocalized charge is conditions, the reactivity does not easily than C₆H₅CH₂(where +ve charge is deconder S_N2 conditions, the reactivity does not easily than C₆H₅CH₂Cl under S_N1 conditions. However, under S_N2 conditions, the reactivity depends on steric hindrance, therefore, under S_N2 conditions, C₆H₅CH₂Cl gets hydrolysed more easily than C₆H₅CHClC₆H₅.

6. Predict the order of reactivity of the following compounds in S_N1 reactions.

Ans
$$Cl$$
 CH_3 CH_3

Because first compound is 2° alkyl halide while all others are 3° alkyl halides. Since, 3° alkyl halides are more reactive than 2° in $S_N 1$ as well as reactivity increases in the order chloride < bromide < iodide.

- 7. Which one of the following pairs of reaction would you expect to proceed faster? Give reason.
 - (i) The S_N2 displacement of 2-bromopropane by C₂H₅O ion or CN ion.
 - Nucleophilic substitution reaction on bromobenzene or benzyl bromide.
 - Ans (i) Since, CN ion, is stronger nucleophile (-ve charge on less electronegative carbon atom) than C2H5O ion, the reaction proceeds faster with CN ion than C2H5O ion.
 - Due to resonance, C Br bond in bromobenzene has some double bond character while in benzyl bromide C Br bond has only single bond character. Therefore, bromobenzene is less reactive than benzyl bromide.
- & Which compound in each of the following pairs will react faster in S_N2 reaction with —OH? Why?
 - (i) CH3Br or CH3I
 - (ii) (CH3)3 CCI or CH3CI
 - Ans (i) CH₃I will react faster as compared to CH₃Br because CH₃I has lower bond dissociation energy and I⁻¹ ion is better leaving group. In presence of nucleophile, it will be released at a faster rate.
 - (ii) CH₃Cl will react faster as compared to (CH₃)₃ CCl because 1° halides undergo S_N2 mechanism faster than 3° halides.
- 9 , Which one in the following pairs of substances undergoes $S_{
 m N}2$ reaction faster and why?

CH₂CI, it is primary halide and undergoes S_N2 reaction faster.

I, as iodide ion is better leaving group because of larger size and undergoes S_N2 reaction faster.

10, ldentify A and B:

(i)
$$CH_3CH = CH_2 \xrightarrow{HBr} A \xrightarrow{KOH (aq.)} B$$

(ii) $OH_3CH = CH_2 \xrightarrow{HBr} A \xrightarrow{KOH (aq.)} B$

(iii) $OH_3CH = CH_2 \xrightarrow{HBr} A \xrightarrow{H_2O,H^+} B$

How are nitrochlorobenzene and chlorobenzene sulphonic acid prepared from chlorobenzene?

A hydrocarbon of molecular mass 7.2 g mol⁻¹ gives a single monochloroderivative and two dichloroderivative photochlorination. Give the structure of the hydrocarbon.

Ans. C₅H₁₂, pentane has molecular mass 72 g mol⁻¹ i.e., the isomer of pentane which yield single monochloroderia should have all the 12 hydrogen equivalent.

13- How will you bring about the following conversions?

(i) Ethane to bromoethane

(iii) Ethanol to ethyl fluoride (v) Benzene to diphenyl

(vii) Ethanol to propane nitrile

(ix) Ethyl bromide to propanoic acid

(xi) Chlorobenzene to p-nitrophenol

(xiii) Aniline to phenyl isocyanide

(xv) Prop-1-ene to propan-1-ol

Ans. (i) CH₃ - CH₃ + Br₂ -→ CH₃CH₂Br+HBr (ii) Propene to 1-nitropropane

(iv) Bromomethane to propan-2-one

(vi) 1-bromopropane to 2-bromopropane

(viii) Aniline to chlorobenzene

(x) Isopropyl alcohol to ethyne

(xii) Tertiary butyl bromide to isobutyl bromide

(xiv) But-1-ene to n-butyl iodide

(xvi) 2-chlorobutane to 3, 4-dimethylhexane

(ii)
$$CH_3$$
— $CH = CH_2 \xrightarrow{HBr, ROOR} CH_3CH_2CH_2Br \xrightarrow{AgNO_2, C_2H_5OH/H_2O} CH_3CH_2CH_2NO_2$
Nitropropane

$$\begin{array}{c} -\text{AgBr} \\ \hline \text{(iii)} \quad \text{CH}_3\text{CH}_2\text{OH} \xrightarrow{-\text{SO}_2, -\text{HCl}} \text{CH}_3\text{CH}_2\text{Cl} \xrightarrow{\text{Hg}_2\text{F}_2} \text{CH}_3\text{CH}_2\text{F} + \text{Hg}_2\text{Cl}_2 \\ \hline \text{Ethyl fluoride} \end{array}$$

$$(iv) \begin{array}{c} \text{KCN (alc.)} \\ \text{CH}_{3}\text{Br} \longrightarrow \text{CH}_{3}\text{CN} \xrightarrow{\text{CH}_{3}\text{MgBr}} \text{CH}_{3} \longrightarrow \text{C} \\ \text{Ether} \end{array} \xrightarrow{\text{CH}_{3}} \begin{array}{c} \text{C} \\ \text{CH}_{3} \end{array} \xrightarrow{\text{C}} \begin{array}{c} \text{C} \\ \text{CH}_{3} \end{array} \xrightarrow{\text{CH}_{3}\text{-Mg(OH)Br}} \begin{array}{c} \text{C} \\ \text{Propan-2-one} \end{array}$$

(vi)
$$CH_3CH_2CH_2Br \xrightarrow{KOH (alc.)} CH_3CH = CH_2 \xrightarrow{HBr} CH_3 CH - CH_3$$
 Br
2-Bromopropane

(vii)
$$CH_3CH_2OH \xrightarrow{P/I_2, \Delta} CH_3CH_2I \xrightarrow{KCN} CH_3CH_2CN$$
 $C_2H_5OH - H_2O$ Propane nitrile

$$\begin{array}{ccc} \text{(ix)} & \text{C}_2\text{H}_5\text{Br} \xrightarrow{\text{KCN (alc.)}} & \text{CH}_3\text{CH}_2\text{CN} & \xrightarrow{\text{H}_2\text{O}/\text{H}^+} & \text{CH}_3\text{CH}_2\text{COOH} \\ & & \text{Propane nitrile} & & \text{Propanoic acid} \end{array}$$

(x)
$$CH_3$$
— CH — CH_3 — Δ
 CHI_3 — Δ
 CHI_3
 $Ag powder$
 C_2H_2
Ethyne
OH

(xii)
$$CH_3$$
 CH_3 C

(xiii)
$$O$$
 + CHCl₃ + 3KOH A O + 3KCl + 3H₂O Phenyl isocyanide

(xv)
$$\text{CH}_3\text{CH} = \text{CH}_2 \xrightarrow{\text{HBr/peroxide}} \text{CH}_3\text{CH}_2\text{CH}_2\text{Br} \xrightarrow{\text{aq. KOH}} \text{CH}_3\text{CH}_2\text{CH}_2\text{OH}_2\text{OH}_2\text{CH}_2\text{OH}_2\text{OH}_2\text{CH}_2\text{CH}_2\text{O$$

(xvi)
$$2CH_3$$
— CH — CH_2CH_3 $\xrightarrow{2Na}$ CH_3 — CH_2 — CH — CH — CH — CH_2CH_3 + $2NaCl$
 CH_3 CH_3 CH_3
 CH_3 CH_3
 CH_3 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3

14. Identify the following compounds:

(i)
$$C_2H_5Br \xrightarrow{alc. KOH} A \xrightarrow{Br_2} B \xrightarrow{alc. KOH} C$$

(ii)
$$CH_3Br \xrightarrow{Mg/ether} A \xrightarrow{(i) CH_3COCH_3} B \xrightarrow{alc. KOH} C$$

(iii)
$$C_6H_6 \xrightarrow{\text{Fe/Cl}_2} A \xrightarrow{\text{NaOH, 623 K}} B \xrightarrow{\text{Dil. HCl}} C$$

Nitration D (Major)

(iv)
$$A \xrightarrow{\text{NaNO}_2/\text{HCl}} B \xrightarrow{\text{CuCl/HCl}} C \xrightarrow{\text{Na/CH}_3\text{Cl}} O^{\circ}\text{C-5°C} B \xrightarrow{\Delta} C \xrightarrow{\text{Na/Ether}} D$$

(v)
$$C_2H_5Br \xrightarrow{aq. KOH} \Delta A \xrightarrow{CaOCl_2(aq.)} B \xrightarrow{C_6H_5OH/KOH} C$$

Ag powder

 ΔD

Ag powder

 ΔD

(vi)
$$A \xrightarrow{\text{HBr}} B \xrightarrow{\text{AgNO}_2} \text{CH}_3\text{CH}_2\text{CH}_2\text{NO}_2$$

$$\downarrow A \xrightarrow{\text{Peroxide}} A \xrightarrow{\text{Nal/Acetone}} CH_3\text{CH}_2\text{CH}_2\text{NO}_2$$

(viii)
$$C_2H_4$$
 $A \xrightarrow{aq. \text{ KOH}} A \xrightarrow{\Delta} B \xrightarrow{l_2/\text{NaOH}} C$
 $A \xrightarrow{\Delta} A \xrightarrow{\Delta} B \xrightarrow{L_2/\text{NaOH}} C$
 $A \xrightarrow{Aq. \text{ Na/Ether}} C \xrightarrow{Aq. \text{ Na/Ether}} C \xrightarrow{Aq. \text{ NaOH}} C$
 $A \xrightarrow{\Delta} C_6H_5\text{NH}_2/\text{NaOH}} C$
 $A \xrightarrow{Aq. \text{ NaOH}} C$
 $A \xrightarrow$

Ans.(i) $A = C_2H_4$ (Ethene);

(ii) $A = CH_3MgBr$ (Methyl magnesium bromide);

$$B = CH_3$$

C—OH (tert-butyl alcohol)

CH₃

ii)
$$A = \bigcirc$$
 (Chlorobenzene);

$$C = \bigcirc$$
 (Phenol);

(iv)
$$A = \bigcirc$$
 (Aniline);

(v) $A = C_2H_5OH$ (Ethanol);

(vi) $A = CH_3CH = CH_2$ (Propene);

C = CH₃CH₂CH₂I (Iodopropane);

(vii) $A = C_2H_5Br$ (Ethyl bromide); $C = CHI_3$ (lodoform);

(viii) A = CHCl₃ (Chloroform); $D = CCl_3.NO_2$ (Chloropicrin); $B = C_2H_4Br_2$ (1, 2-Dibromoethane);

=
$$C_2H_4Br_2$$
 (1, 2-Dibromoethane); $C = C_2H_2$ (Ethyne)

$$C = CH_3$$
 $C = CH_3$
 $C = CH_2$ (2-Methyl propene)

$$B = \bigcirc \text{(Sodium phenoxide)}$$

$$D = \bigcirc$$
 (1-chloro-4-nitrobenzene)
$$NO_2$$

$$B = \bigcirc \qquad \text{(Benzenediazonium chloride)}$$

$$D = \langle O \rangle - \langle O \rangle$$
 (Diphenyl)

 $B = CHCl_3$ (Chloroform);

$$D = C_2H_2$$
 (Ethyne)

 $B = CH_3CH_2CH_2Br$ (Bromopropane)

 $D = CH_3CH_2CH_2ONO$ (Propyl nitrite)

 $B = C_2H_5OH$ (Ethanol)

D = HCOONa (Sodium formate);

 $E = C_4 H_{10}$ (Butane) $B = C_6H_5NC$ (Phenyl isocyanide); $C = CH_4$ (Methane);

 $E = COCl_2$ (Phosgene)

15. (i) How is iodoform prepared from ethanol? Give balanced equation.

(2015)

(ii) What will be the product formed when chlorobenzene is heated with sodium metal in the presence of dry ether? (2015)

VATSAL ISC HANDBOOK of CFILE.

Ans. (i)
$$CH_3CH_2OH + 4I_2 + 6NaOH \xrightarrow{60^{\circ}C} CHI_3 + HCOONa + 5NaI + 5H_2O$$

(ii) Ory ether

Diphenyl

- Write the balanced chemical equation for each of the following: (i) Chlorobenzene treated with ammonia in the presence of Cu₂O at 475 K and 60 atm.

(ii)
$$C_2H_5Cl + KOH(alc.) \xrightarrow{\Delta} CH_2 = CH_2 + KCl + H_2O$$

FShort Answer Questions (3 marks)

- ort Answer Questions (3 marks)

 Among the isomeric alkanes of molecular formula C_5H_{12} , identify the one that on photochemical chlorination y_{ield}
 - (i) a single monochloride.
 - (ii) three isomeric monochlorides.
 - (iii) four isomeric monochlorides.

All the H atoms are equivalent. Therefore, replacement of any one them will give the same product.

There are three sets of equivalent hydrogens designated as a, b and c. replacement of any one of the equivalent hydrogens of each set will the same product. Therefore, three isomeric monochlorides are possible

(iii)
$$\overset{a}{\text{CH}_3}$$
— $\overset{b}{\text{CH}_2}$ — $\overset{c}{\text{CH}_2}$ — $\overset{d}{\text{CH}_3}$

There are four types of equivalent hydrogens designed as a, b, c and Therefore, four isomeric monochlorides are possible.

- 2. (i) What is peroxide effect? Illustrate with an example.
 - (ii) Why is peroxide effect not observed during addition of HCl to alkenes?
 - (iii) Will but-2-ene show peroxide effect?

Ans. (i) In presence of peroxide, the negative end of HBr to unsymmetrical alkenes takes place at that carbon which greater number of hydrogen atoms. For example,

$$CH_3CH = CH_2 + HBr \xrightarrow{(C_6H_5COO)_2} CH_3CH_2CH_2Br$$

- (ii) Peroxide effect occurs through free radical mechanism i.e.,

 - (a) $CH_3CH = CH_2 + B^{\dagger}r \longrightarrow CH_3CHCH_2Br$ (b) $CH_3CHCH_2Br + HBr \longrightarrow CH_3CH_2CH_2Br + Br$

with HBr, both these steps are exothermic therefore it is observed with HBr but with HCl, step (a) is exothermic therefore perovide effect. step (b) is endothermic. Therefore, peroxide effect is not observed with HCl or HI.

- (iii) Since, But-2-ene is symmetrical and peroxide effect is observed with HCl or HI. is not observed with But-2-ene. is not observed with But-2-ene.
- Which reagent in each pair will react faster with hydroxide ion?
 - (i) CH₃Br or CH₃I
 - (ii) CH₃CH₂I in ethanol or (CH₃)₂S=O (DMSO)
 - (iii) H2C=CHBr or H2C=CHCH2Br.

HALOALKANES AND HALOARENES 203 Ethanol is a polar protic solvent (hydroxylic) while DMSO is a polar aprotic (i.e., non-hydroxylic) solvent, therefore in ethanol OH ion is solvated and less reactive. On the (i) CH₃I, since I is a better leaving group. in ethanol OH⁻ ion is solvated and less reactive. On the other hand, OH⁻ ion is a naked nucleophile in DMSO and hence is more reactive. Thus, CH₂CH₂I reacts factor is DMSO.

hence is the CH₂CH CH₂Br reacts faster with OH ion and undergoes substitution reaction because allyl carbocation is more resonance stabilised but in vinyl bromide, there is

resonance stabilised but in vinyl bromide, there is no resonance and is less reactive.

How would you differentiate between S_N1 and S_N2 mechanism of substitution reaction? Give one example of each. How would S_N and S_N mechanism of substitution reaction? Give one example of S_N mechanism, the rate of reaction depends upon the concentration of only one reactant i.e., tert-butyl bromide.

$$(CH_3)_3C$$
—Br + OH $^ \longrightarrow$ $(CH_3)_3C$ —OH + Br $^-$

It involves the formation of more stable carbocation intermediate inversion as well as retention of configuration. It involves $\ln S_N^2$ mechanism, the rate of reaction depends upon the concentration of both the reactants.

, the rate of reaction depends upon the concentration of the first hard
$$H$$
 and H and H are the rate of reaction depends upon the concentration of H and H are the rate of reaction depends upon the concentration of H and H are the rate of reaction depends upon the concentration of H and H are the rate of reaction depends upon the concentration of H and H are the rate of reaction depends upon the concentration of H and H are the rate of reaction depends upon the concentration of H and H are the rate of reaction depends upon the concentration of H and H are the rate of reaction depends upon the concentration of H and H are the rate of H are the rate of H and H are the rate of H are the rate of H and H are the rate of H and H are the rate of H are the rate of H and H are the rate of H are the rate of H are the rate of H and H are the rate of H are the rate of H are the rate of H and H are the rate of H a

It involves the formation of transition state and inversion of configuration.

- (i) State one use of DDT and iodoform.
- (ii) Which compound in the following couples will react faster in S_N2 displacement and why?
 - (a) 1-Bromopentane or 2-Bromopentane.
 - (b) 1-Bromo-2-methyl butane or 2-Bromo-2-methyl butane.
- Ans. (i) DDT is used as an insecticide and iodoform is used as a mild antiseptic.
 - (ii) (a) 1-Bromopentane will react faster because it is a primary alkyl halide.
 - (b) 1-Bromo-2-methyl butane will react faster because it is a primary alkyl halide.
- 6. (i) Write a chemical test to distinguish between:
 - (a) Chlorobenzene and iodoform.
 - (b) Chloroform and Carbon tetrachloride.
 - (ii) Why is methyl chloride hydrolysed more easily than chlorobenzene?
 - Ans. (i) (a) lodoform when heated with alcoholic AgNO₃ solution will give deep yellow ppt. but chlorobenzene will not
 - (b) Chloroform when heated with 1° amine and KOH gives offensive smelling isocyanide while CCl₄ does not
 - (ii) In chlorobenzene, due to +R effect, there is double bond character between C and Cl. Again carbon atom is sp^2 hybridised and more electronegative in chlorobenzene. Therefore, Cl ion is not easily replaced. But in methyl chloride there is no resonance and carbon atom is sp^3 hybridised and there is single bond between C and Cl atom. Therefore, it is easily hydrolysed.
- 7. Rearrange the compounds of each of the following sets in order of reactivity towards S_N2 displacement:
 - (i) 2-bromo-2-methylbutane, 1-bromopentane, 2-bromopentane.
 - (ii) 1-bromo-3-methylbutane, 2-bromo-2-methylbutane, 3-bromo-2-methylbutane.
 - (iii) 1-bromobutane, 1-bromo-2-methylpropane, 1-bromo-2-methylbutane, 1-bromo-3-methylbutane.
 - Ans. (i) S_N2 reactions depend upon steric hindrance. More is steric hindrance, slower the rate of reaction, so order of reactivity is $1^{\circ} > 2^{\circ} > 3^{\circ}$.
 - : 1-bromopentane > 2-bromopentane > 2-bromo-2-methyl butane.
 - (ii) 1-bromo-3-methylbutane > 3-bromo-2-methylbutane > 2-bromo-2-methylbutane.
 - (iii) 1-bromobutane > 1-bromo-3-methylbutane > 1-bromo-2-methylbutane > 1-bromo-2-methylpropane.

How can the following conversions be carried out:

- (i) Aniline to bromobenzene.
- (ii) Chlorobenzene to toluene
- (iii) Chloroethane to butane.

(iii)
$$C_2H_5CI + 2Na + CI - C_2H_5$$
 CH₃

$$CH_3CINa \rightarrow CH_3CINa \rightarrow CI \rightarrow C_2H_5$$

$$Ether \rightarrow C_2H_5$$

What happens when:

(i) chlorobenzene is treated with Alcoholic Cl₂/FeCl₃?

(ii) ethyl chloride is treated with AgNO2?

(iii) 2-bromopentane is heated with alcoholic KOH?

C₄H₁₀ + 2NaCl

(ii)
$$C_2H_5CI + AgNO_2 \longrightarrow C_2H_5NO_2 + AgC$$
(alc) Nitroethane

(iii)
$$CH_3$$
— CH — CH_2 — CH_2 C H_3 + alc. KOH $\stackrel{\Delta}{\longrightarrow}$ C H_3 — CH — CH — CH_2 C H_3 + H_2 O + KBr Pent-2-ene

10. How do you convert?

(i) Chlorobenzene to diphenyl

(ii) Propene to 1-iodopropane

(iii) 2-Bromobutane to But-2-ene

(ii)
$$CH_3CH = CH_2 + HBr \xrightarrow{Peroxide} CH_3CH_2CH_2Br \xrightarrow{Nal} CH_3CH_2CH_2I + NaBr \\ lodopropane$$

(iii)
$$CH_3$$
— CH — CH_2 — CH_3 $\xrightarrow{alc. KOH}$ CH_3CH = $CHCH_3$ + HBr + H_2O But-2-ene

11. Write the major product(s) in the following:

(i)
$$O_2N$$
 $\xrightarrow{Br_2, UV \text{ light}}$? (ii) $2CH_3$ \xrightarrow{CH} CH_3 \xrightarrow{Na} O_2N O_2N

(iii)
$$CH_3$$
— CH_2 — Br — $AgCN(alc)$
 Δ ?

(ii)
$$2CH_3$$
— CH — CH_3 Na
Dry ether CH_3 — CH — CH_3 + $2NaCl$
 CH_3 — CH — CH_3
 2.3 — CH — CH_3
 2.3 — CH — CH_3

(iii)
$$CH_2CH_2Br + AgCN \xrightarrow{\Delta} CH_3CH_2NC + AgBr \\ (alc) Ethyl isocyanide$$

- Which alkyl halides would you expect to react more rapidly by an S_N2 mechanism? Explain your answer.
 - (i) CH3CH2CH2CH2CI or CH3CH2CH2CH2I
 - (ii) (CH₃)₂CHCH₂CH₂Cl or CH₃CH₂CH(CH₃)CH₂Cl
 - (iii) C6H5Br or CH3CH2CH2CH2CH2CH2CH
 - Ans. (i) 1-lodobutane because iodide ion is a better leaving group than chloride ion.
 - (ii) 1-chloro-3-methyl butane because the carbon bearing the leaving group is less hindered than in 1-chloro-2-methyl butane.
 - (iii) 1-chlorohexane because it is a primary halide, phenyl halides are unreactive in S_N2 reactions.
- 13. How will you convert the following:
 - (i) Chlorobenzene to diphenyl
 - (ii) Propene to 1-bromopropane
 - (iii) Chlorobenzene to aniline.

(2020)

Ans. (i)
$$C_6H_5Cl + 2Na + ClC_6H_5 \xrightarrow{Dry \, ether} C_6H_5 - C_6H_5 + 2NaCl$$

(ii)
$$CH_3CH = CH_2 + HBr \xrightarrow{Peroxide} CH_3CH_2CH_2Br$$

(iii) 2
$$\longrightarrow$$
 + 2NH₃ + Cu₂O $\xrightarrow{475 \text{ K}}$ 2 \longrightarrow + Cu₂Cl₂ + H₂O