МИНОБРНАУКИ РОССИИ ФГБОУ ВО «СГУ ИМЕНИ Н. Г. ЧЕРНЫШЕВСКОГО»

ДОКАЗАТЕЛЬСТВО ЗАДАЧИ НА №-ПОЛНОТУ

ЛАБОРАТОРНАЯ РАБОТА

студента 3 курса 331 группы			
направления 10.05.01 — Компьютерная безопасность			
факультета КНиИТ			
Токарева Никиты Сергеевича			
Проверил			

доцент

А. Н. Гамова

СОДЕРЖАНИЕ

1	Доказательство NP полноты		3
	1.1	Постановка задачи	3
	1.2	Доказательство поставленной задачи	3
CI	ТИСС	Ж ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ	5

1 Доказательство NP полноты

NP-полная задача — в теории алгоритмов задача с ответом «да» или «нет» из класса NP, к которой можно свести любую другую задачу из этого класса за полиномиальное время (то есть при помощи операций, число которых не превышает некоторого полинома в зависимости от размера исходных данных). Таким образом, NP-полные задачи образуют в некотором смысле подмножество «типовых» задач в классе NP: если для какой-то из них найден «полиномиально быстрый» алгоритм решения, то и любая другая задача из класса NP может быть решена так же «быстро».

Чтобы показать NP полноту задачи необходимо доказать, что задача принадлежит классу NP, и она является NP-трудной.

1.1 Постановка задачи

Дано множество целых чисел S; Выяснить, можно ли разбить его на две части с равными суммами, то есть найти множество $A\subseteq S$, для которого $\sum_{x\in A}x=\sum_{x\in S\setminus A}x$. Покажите, что эта задача (SPP) является NP-полной.

1.2 Доказательство поставленной задачи

- 1. Докажем, что задача SPP принадлежит классу NP: Известно, что нам дано множество S. Пусть существует такое разбиение, что $S=A\cup\overline{A}$. Тогда алгоритм будет выглядеть следующим образом:
 - a) Необходимо проверить, чтобы каждый элемент $x \in A$ и $\overline{x} \in \overline{A}$ принадлежал множеству S.
 - б) Пусть $s_1 = 0$ и $s_2 = 0$.
 - g) $\forall x \in A$ выполнить $s_1 = s_1 + x$.
 - $m{z}$) $\forall \overline{x} \in \overline{A}$ выполнить $s_2 = s_2 + \overline{x}$.
 - ∂) Убедиться, что $s_1 = s_2$.

Алгоритм занимает линейное время в размере набора чисел множества S.

2. Докажем, что задача SPP является NP-трудной:

Известно что задача о сумме подмножеств (Subset sum problem) относится к классу $NP: SSP \in NP$.

Постановка задачи о сумме подмножеств: дано множесвто S, содержащее n целых чисел и целое число s. Требуется выяснить возможно ли выбрать подмножество $\overline{S} \subseteq S$ с суммой S: $\exists \overline{S} \subseteq S : \sum_{s_i \in \overline{S}} s_i = s$.

Тогда чтобы доказать NP-трудную задачу, необходимо произвести сведение SSP к SPP. Пусть в качестве входных данных дано множество S и искомая сумма t. Тогда необходимо найти подможество $A\subset S$, сумма чисел которого равна t. Пусть s будет суммой элементов множества S. Заметим, что $t=\frac{1}{2}\sum_{x\in A}x$. Тогда получим следующее разбиение $\overline{A}=A\cup\{s-2t\}$ в SPP.

Теперь покажем, что задача SPP сводится к вычислению суммы подмножества.

Рассмотрим подмножество A, сумма которых равна t, тогда остальные элементы множества S (обозначим $S \setminus A = \overline{A}$) будут иметь сумму s - t = d. Предположим, что исходное разбиение $A' = A \cup \{s - 2t\}$, сумма которого равна t'.

Справедливы следующие наблюдения:

$$d=s-t$$

$$d-t=s-t-t$$

$$t^{'}=t+(s-2t)$$
 $s-t=d$, т.е. суммы $A^{'}$ и \overline{A} равны.

Следовательно, исходный набор можно разбить на два подмножества суммы (s - t) каждое. Таким образом, поставленная задача SPP решается. Теперь предположим, что существует разбиение равной суммы (A, \overline{A}) множества $S' = S \cup s - 2t$. Сумма каждого подмножества определяется как:

$$l = \frac{s + (s - 2t)}{2} = s - t$$

Таким образом, A является подмножеством S с суммой, равной t. Сдедовательно, задача SPP является NP-полной.

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

- 1 Книга Томаса Кормена «Алгоритмы» / [Электронный ресурс] URL: https://e-maxx.ru/bookz/files/cormen.pdf (дата обращения 02.05.2022), Яз. рус.
- 2 Статья «NP-полнота задачи о сумме подмножества» / [Электронный ресурс] URL: https://inlnk.ru/Ken0wA (дата обращения 02.05.2022), Яз. рус.
- 3 Статья «NP-полная задача» / [Электронный ресурс] URL: https://clck.ru/gmbKK (дата обращения 05.05.2022), Яз. рус.