Mathematical Logic HW3

Abraham Murciano

November 19, 2019

1. (b)

$$(A \leftrightarrow (\neg A \land B)) \to (B \land \neg B)$$

A	B	$\neg A \wedge B$	$A \leftrightarrow (\neg A \land B)$	$(A \leftrightarrow (\neg A \land B)) \to (B \land \neg B)$
T	T	F	F	T
$\parallel T$	F	F	F	T
$\parallel F$	T	\parallel T	F	T
$\parallel F$	F	F	T	F

i. DNF:

$$(A \land B) \lor (A \land \neg B) \lor (\neg A \land B)$$

ii. CNF:

 $A \vee B$

(d)

$$(x \to y) \to (z \land (y \downarrow x))$$

x	y	z	$x \to y$	$y \downarrow x$	$z \wedge (y \downarrow x)$	$(x \to y) \to (z \land (y \downarrow x))$
T	T	T	T	T	T	T
$\parallel T$	$\mid T \mid$	F	T	T	F	F
$\parallel T$	F	T	F	T	T	T
$\parallel T$	F	F	F	T	F	T
$\parallel F$	T	T	T	T	T	T
F	T	F	T	T	F	F
$\parallel F$	F	T	T	F	F	F
F	F	F	T	F	F	F

i. DNF:

$$(x \wedge y \wedge z) \vee (x \wedge \neg y \wedge z) \vee (x \wedge \neg y \wedge \neg z) \vee (\neg x \wedge y \wedge z)$$

ii. CNF:

$$(\neg x \vee \neg y \vee z) \wedge (x \vee \neg y \vee z) \wedge (x \vee y \vee \neg z) \wedge (x \vee y \vee z)$$

2. (b)

$$((p\downarrow q)\to r)\uparrow p$$

p	q	r	$p \downarrow q$	$(p\downarrow q)\to r$	$((p\downarrow q)\to r)\uparrow p$
T	T	T	F	T	F
$\parallel T$	T	F	F	T	F
$\parallel T$	F	$\mid T \mid$	F	T	F
$\parallel T$	F	F	F	T	F
F	T	T	F	T	T
F	T	F	F	T	T
F	F	T	T	T	T
F	F	F	T	F	T

As shown in the truth table, $((p \downarrow q) \to r) \uparrow p$ is neither a tautology nor a contradiction.

3. (b)

$$p \oplus q = (p \land \neg q) \lor (\neg p \land q)$$

$$= (\neg \neg p \land \neg q) \lor (\neg p \land \neg \neg q)$$

$$= (\neg (p \downarrow p) \land \neg q) \lor (\neg p \land \neg (q \downarrow q))$$

$$= ((p \downarrow p) \downarrow q) \lor (p \downarrow (q \downarrow q))$$

$$= \neg (((p \downarrow p) \downarrow q) \downarrow (p \downarrow (q \downarrow q)))$$

$$= (((p \downarrow p) \downarrow q) \downarrow (p \downarrow (q \downarrow q))) \downarrow (((p \downarrow p) \downarrow q) \downarrow (p \downarrow (q \downarrow q)))$$

4. (b)

$$f(x, y, z) = \neg x \land (\neg y \rightarrow \neg z)$$
$$f(a, a, a) = \neg a \land (\neg a \rightarrow \neg a)$$
$$= \neg a \land T$$
$$= \neg a$$

$$f(a, a, f(a, a, a)) = f(a, a, \neg a)$$

$$= \neg a \land (\neg a \rightarrow a)$$

$$= \neg a \land \neg (\neg a \land \neg a)$$

$$= \neg a \land \neg \neg a$$

$$= \neg a \land a$$

$$= F$$

$$\begin{split} f(f(a,a,f(a,a,a)),b,b) &= f(F,b,b) \\ &= T \wedge (\neg b \to \neg b) \\ &= T \wedge T \\ &= T \end{split}$$

5. (b) We must show that $\{\oplus, \land, \leftrightarrow\}$ are complete. One way to do that, is to show that with these operators we are able to make a \downarrow . We are able to make a \downarrow as follows:

a	b	$a \oplus b$	$a \wedge b$	$a \leftrightarrow b$	$(a \oplus b) \leftrightarrow (a \land b)$
T	T	F	T	T	F
$\parallel T$	F	T	F	F	F
F	T	T	F	F	F
F	F	F	F	T	T

As the table shows, $(a \oplus b) \leftrightarrow (a \land b) = a \downarrow b$, and we know that \downarrow on its own is itself complete, thus the set of operators $\{\oplus, \land, \leftrightarrow\}$ is also complete.

(d) We must show that the functions f and g defined below are complete.

$$f(x,y,z) = y \to ((x \land \neg z) \lor (z \land \neg x))$$

$$g(x,y) = \neg x \lor y$$

x	y	z	f(x,y,z)	g(x,y)
T	T	T	F	T
T	T	F	T	T
T	F	T	T	F
T	F	F	T	F
F	T	T	T	T
F	T	F	F	T
F	F	T	T	T
F	F	F	T	T

$$g(a, a) = \neg a \lor a$$
$$= T$$

$$\begin{split} f(g(a,a),a,b) &= f(T,a,b) \\ &= a \to ((T \land \neg b) \lor (b \land F)) \\ &= a \to (\neg b \lor F) \\ &= a \to \neg b \\ &= \neg (a \land \neg \neg b) \\ &= \neg (a \land b) \\ &= a \uparrow b \end{split}$$

We already know that \uparrow is complete, and we can make a \uparrow using the functions f and g, so it follows that f and g are complete.