Министерство образования и науки Российской Федерации Федеральное государственное автономное образовательное учреждение высшего профессионального образования

«Уральский федеральный университет имени первого Президента России Б. Н. Ельпина»

> Физико-технологический институт Кафедра технической физики

ДОПУСТИТЬ К ЗАЩИТЕ
Зав. кафедрой, д. т. н., проф
В. И. Токманцев
« » июня 2017 г.

ПРОГРАММНЫЙ ИНТЕРФЕЙС ДЛЯ СИСТЕМЫ АНАЛИЗА ТЕПЛОВЫХ УТЕЧЕК

ВЫПУСКНАЯ КВАЛИФИКАЦИОННАЯ РАБОТА БАКАЛАВРА ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

 Руководитель проф., к. т. н.
 Рогович В. И.

 Нормоконтролёр доц., к. т. н.
 Ковалёв В. В.

 Студент гр. Фт-430206
 Молодых А. А.

Екатеринбург 2017

Реферат

Содержание

Вв	едени		4
1.	Проб	иематика	(
2.	Мод	пирование	7
	2.1	Концептуальная модель	7
	2.2	Системно-структурная модель	6
	2.3	Функционально-структурная модель	- 2
	2.4	Алгоритмическая модель	
		2.4.1 Алгоритмическая модель прототипа	
		2.4.2 Алгоритмическая модель предлагаемого решения 1	
Сп	исок	спользованных источников	2

Введение

Согласно аналитическим данным, в России расход тепловой энергии на отопление многоквартирных домов составляет примерно 45% от объёма всех энергетических ресурсов страны [1]. Такое повышенное по сравнению с мировым значение можно объяснить тем, что большая часть территории страны расположена в северных областях, характеризующихся холодным климатом. По оценкам, проводимым организацией IEA, в мировом масштабе процент потребления тепловой энергии для отопления зданий составляет 32-33% [2]. Прогноз этого показателя в долгосрочной перспективе показывает его рост в ближайшие несколько десятков лет при большинстве сценариев увеличения суммарной площади помещений [5].

В связи с этим актуальна задача повышения энергоэффективности зданий. Существует ряд причин возникновения тепловых потерь в помещениях, в частности имеют место тепловые утечки, происходящие в различных областях помещений (стены, крыши, окна, элементы вентиляции и пр.) [3, 4].

Для решения этой задачи применяют различные методы анализа теплопотерь. Наиболее распространенным на сегодняшний день считается использование тепловизионного сканирования зданий, которое позволяет не только дать
точную оценку уровня тепловых утечек, но и обнаружить источники самих теплопотерь. Существует большое число частных компаний, занимающихся тепловизионным анализом помещений и выполняющих эту работу вручную. В этой
связи возникла тенденция к созданию автоматизированных систем контроля
тепловых утечек в городских зданиях. Потенциал таких систем, несомненно,
высок, поскольку они способны накапливать в себе большые объёмы данных,
которые можно подвергнуть статистическому анализу и на этой основе получать полезную информацию для частных владельцев домов, коммунальных организаций и городских служб.

Целью данной работы является проведение анализа имеющихся в мире систем контроля тепловых утечек, выбор прототипного решения среди этих систем и разработка улучшенной системы на его основе путём исправления выявленных недостатков.

1 Проблематика

2 Моделирование

2.1 Концептуальная модель

Система анализа тепловых утечек — программный комплекс, выполняющий следующие основные функции:

- Оценка энергетической эффективности зданий городской застройки;
- Выдача результатов оценивания по запросу;
- Обработка ИК снимков;
- Упрощение процесса проведения ИК съёмки пользователями.

Пути реализации основных функций:

- Обнаружение критичных областей и вычисления средних значений показателей распределения тепла по ИК снимкам;
- Предоставление веб-доступа к результатам обследования;
- Геометрическая коррекция изображений и учета внешних условий съёмки;
- Программное обеспечение процесса проведения ИК съемки.

Структурная основа реализации:

- Методы статистического анализа;
- Способы визуализации данных;
- Алгоритмы нормализации ИК снимков по инвариантным признакам спутниковых снимков;
- Клиент-серверная архитектура.

Направленность функционирования системы: обеспечение информационной поддержки процесса обнаружения, обследования, контроля и устранения тепловых утечек.

Цель функционирования системы: повышение качества обследования жилых объектов на предмет тепловой энергоэффективности.

Программный интерфейс (API) для системы анализа тепловых утечек городской застройки.

1 Основные функции:

- 1.1 Сбор данных;
- 1.2 Унификация данных, поступающих в систему анализа;
- 1.3 Обеспечение их корректности;
- 1.4 Обеспечение доступности данных для системы анализа;
- 1.5 Предоставление результатов анализа клиентским приложениям.

2 Пути реализации основных функций:

- 2.1 Приём пакетов данных от различных источников;
- 2.2 Преобразование данных в одинаковый формат;
- 2.3 Проверка пакетов входных данных на соответствие требованиям;
- 2.4 Взаимодействие с БД системы анализа;
- 2.5 Обработка внешних запросов на результаты анализа утечек.

3 Структурная основа реализации:

- 3.1 Для функций 1.1, 1.5: сетевые протоколы обмена информацией;
- 3.2 Для функции 1.2: требования системы анализа тепловых утечек;
- 3.3 Для функции 1.3: методы фильтрации нежелательного контента;
- 3.4 Для функции 1.4: централизованный подход к управлению данными в СУБД.
- 4 **Направленность функционирования системы**: расширение географической области, охватываемой системой анализа и увеличение числа пользователей системы анализа.
- 5 **Цели функционирования системы**: предоставление набора функций, реализуемых системой анализа тепловых утечек, сторонним программам вне зависимости от их платформы и аппаратного обеспечения.

2.2 Системно-структурная модель

На рисунке 2.1 изображена системно-структурная модель системы анализа тепловых утечек. Внедрение в неё новых структурных элементов – программного интерфейса и мобильного приложения – приводит к изменению состава таких подсистем, как веб-приложение и модуля работы с ИК изображениями. Модели этих подсистем представлены на рисунках [2.2, 2.3] соответственно.

Рисунок 2.1 – Системно-структурная модель системы анализа тепловых утечек: 1 - веб-приложение, 2 - подсистема управления данными, 3 - модуль работы с ИК изображениями, 4 - мобильное приложение, 5 - программный интерфейс (API)

Рисунок 2.2 — Системно-структурная модель веб-приложения: 1.1 - блок отображения карты, 1.2 - блок отображения оценок энергоэффективности и энергозатрат, 1.3 - блок представления изображений, 1.4 - раздел «личного кабинета», 1.5 - раздел загрузки пользовательских данных

Структурные компоненты web-приложения представлены разделами, с которыми работают его пользователи (рисунок 2.2). Работа каждого раздела обеспечивается web-сервером и множеством программных сценариев, генерирующих динамические web-страницы, содержащие информацию, соответствующую названию раздела.

Компоненты модуля работы с ИК изображениями (рисунок 2.3) разделены по характеру выполняемых преобразований: подсистема 3.1 решает задачу распознавания зданий с ИК аэроснимков, описанную в [***МуНЕАТ***], процедуры обработки в подсистеме 3.2 устраняют отклонения, вызванные локальными изменениями климата, на снимках, подсистема 3.3 использует алгоритмы математической статистики для итоговых расчётов.

Рисунок 2.3 – Системно-структурная модель модуля работы с ИК изображениями: 3.1 - подсистема фотограмметрической обработки ИК снимков, 3.2 - подсистема коррекции по микроклиматическим условиям, 3.3 - подсистема расчёта оценки энергоэффективности

В связи с тем, что в систему анализа тепловых утечек внедряется новый вид съёмки, очевидно, что некоторые подсистемы претерпят изменения, которые отражены в алгоритмических моделях. Подсистемы 3.1 и 3.2 являются исключениями, поскольку для наземной съёмки отдельных зданий они не актуальны. Многие задачи обработки наземных снимков берут на себя программные клиенты - мобильные приложения.

В модели программного интерфейса (API) системы анализа тепловых утечек, представленной на рисунке 2.4, в качестве подсистем прототипа были взяты стандартные компоненты, участвующие в работе большинства API относительно крупных программных комплексов.

В рамках системы анализа тепловых утечек специфика API заключается в наличии подсистемы 5.5. Это связано с характерными особенностями данных, поступающих в систему. Например, в систему могут поступать данные с ИК камер различных производителей, и, кроме того, данные различных типов съёмки. Расширение спектра возможных источников данных - одна из причин внедрения API в основную систему.

Рисунок 2.4 — Системно-структурная модель программного интерфейса: 5.1 - подсистема приёма запросов и отправки данных, 5.2 - подсистема аутентификации пользователей, 5.3 - подсистема формирования запросов к БД, 5.4 - подсистема валидации данных, 5.5 - подсистема унификации и форматирования данных

2.3 Функционально-структурная модель

2.4 Алгоритмическая модель

2.4.1 Алгоритмическая модель прототипа

2.4.2 Алгоритмическая модель предлагаемого решения

Список использованных источников

- 1. Анализ потребления тепловой энергии на отопление многоквартирных домов как способ повышения энергоэффективности в сфере ЖКХ [Электронный ресурс] / Дирекция по проблемам ЖКХ // Аналитический центр при Правительстве Российской Федерации. 2013. Режим доступа: http://gkh-altay.ru/d/205499/d/06_24_kr_stol_analitika_dor_abotannaya_po_rezultata_m.pdf (дата обращения: 29.03.2017).
- 2. Heating and cooling energy trends and drivers in buildings [Tekct] / Ürge-Vorsatz D., Cabeza L. F., Serrano S., Barreneche C., Petrichenko K. // Renewable and Sustainable Energy Reviews Budapest, Hungary: Elsevier, 2015. № 41 C. 85-98.
- 3. What are the sources of home heat loss? [Электронный ресурс] / Wilson L. // Shrink That Footprint Режим доступа: http://shrinkthatfootprint. com/home-heat-loss (дата обращения: 29.03.2017).
- 4. Detecting sources of heat loss in residential buildings from infrared imaging [Электронный ресурс] / Chen S., Chen E. // Massachusetts Institute of Technology. Dept. of Mechanical Engineering 2011. Режим доступа: http://hdl.handle.net/1721.1/68921 (дата обращения: 20.02.2017).
- 5. Energy use in buildings in a long-term perspective [Tekct] / Ürge-Vorsatz D., Petrichenko K., Staniec M., Eom J. // Current Opinion in Environmental Sustainability — Budapest, Hungary: Elsevier, 2013. — № 5 — C. 141-151.