Functional Analysis

Adrian Perez Keilty

HTN7

Problem 1

a) Continuous linear functionals in the space $C_{[a,b]}$ equipped with the norm $||x||_{\infty} = \max_{t \in [a,b]} |x(t)|$.

 $\phi_1(x) = \int_a^b x(t) \, dt \tag{1}$

 ϕ_1 is linear and $|\phi_1(x)| \le (b-a) \cdot ||x||_{\infty}$ where equality holds when x is a constant. ϕ_1 is therefore bounded (and hence continuous) and $||\phi_1|| = b - a$.

• Let $y(t) \in \mathcal{C}_{[a,b]}$. Then we can produce the functional

$$\phi_2(x) = \int_a^b x(t)y(t) dt \tag{2}$$

where linearity is clear and $|\phi_2(x)| \leq ||x||_{\infty} \int_a^b |y(t)| dt$ where equality is reached again when x is constant. ϕ_2 is then bounded with norm $||\phi_2|| = \int_a^b |y(t)| dt$.

• Given $t_0 \in [a, b]$, let $\phi_3(x) = x(t_0) \tag{3}$

linear and $|\phi_3| \leq ||x||_{\infty}$ where equality holds if x(t) happens to reach its maximum at t_0 , thereby $||\phi_3|| = 1$.

b) Continuous linear functionals in the space $C_{[a,b]}$ equipped with the norm $||x|| = \int_a^b |x(t)| dt$.

 $\phi_1(x) = \int_a^b x(t) dt \tag{4}$

linear and $|\phi_1(x)| \le ||x||$ where equality holds when $x(t) = |x(t)| \implies ||\phi_1|| = 1$.

• Let $k \in \mathbb{R}$. Then $\phi_2(x) = \int^b k \cdot x(t) dt$

is linear and $|\phi_2(x)| \le k \cdot ||x||$ where equality is reached when $x = \frac{1}{b-a} \implies ||\phi_2|| = k$.

b-a , $\| au\|_{L^{2}}$

 $\phi_3(x) = \int_a^b x(t)y(t) dt \tag{6}$

(5)

is linear and $|\phi_3(x)| \leq ||x|| \cdot ||y||_{\infty}$, so

• More generally, let $y \in \mathcal{C}_{[a,b]}$. Then

$$\|\phi_3\| \begin{cases} = \|y\|_{\infty} & \text{if y is constant} \\ \le \|y\|_{\infty} & \text{otherwise} \end{cases}$$
 (7)

- c) Continuous linear functionals in the space of sequences l_2 where $||x|| = \sum_{j=1}^{\infty} x_j^2$.
 - Let $k \in \mathbb{N}$. Then

$$\phi_1(x) = x_k \tag{8}$$

is linear and

 $\|\phi_1\| = \sup_{\|x\|=1} |x_k| = 1$, where the supremum is reached when $x = e_k$

• Let $n \in \mathbb{N}$. Then

$$\phi_2(x) = \sum_{j=1}^n x_j \tag{9}$$

is linear and

$$\|\phi_2\| = \sup_{\|x\|=1} |\sum_{j=1}^n x_j| = \frac{n}{\sqrt{n}}, \text{ where the supremum is reached when } x = (\frac{1}{\sqrt{n}}, ..., \frac{1}{\sqrt{n}}, 0, 0, ...)$$

• Let $y \in l_1$. Then

$$\phi_3(x) = \sum_{j=1}^{\infty} x_j y_j \tag{10}$$

is linear and an estimate from above is given by

$$\|\phi_3(x)\| = \sup_{\|x\|=1} |\sum_{j=1}^{\infty} x_j y_j| \le \|x\|_{\infty} \cdot \|y\|_1$$

- d) Continuous linear functionals in the space of convergent sequences to zero, c_0 where $||x||_{\infty} = \sup_{j} |x_j|$.
 - ϕ_1 from (8) is also valid in this space and with the same reasoning its norm is again 1.
 - ϕ_2 shown in (9) where

$$\|\phi_2\| = \sup_{\|x\|=1} |\sum_{j=1}^n x_j| = n$$
, and supremum reached when $x = (1, 1, ..., 1^{(n)}, 0, 0, ...)$

• Let $y \in l_1$. Then

$$\phi_3(x) = \sum_{j=1}^{\infty} x_j y_j \tag{11}$$

is linear and

$$|\phi_3(x)| \le ||x||_{\infty} \cdot ||y||_1 \implies ||\phi_3|| \le ||y||_1$$

Now, by choosing $x^{(n)} \in c_0$ where

$$x_j^{(n)} = \begin{cases} \frac{y_j}{|y_j|} & \text{if } 1 \le j \le n \text{ and } y_j \ne 0\\ 0 & \text{otherwise} \end{cases}$$
 (12)

since $||x^{(n)}||_{\infty} \leq 1$, we obtain

$$\|\phi_3\| = \sup_{\|x\| \le 1} |\sum_{j=1}^{\infty} x_j y_j| \ge \sum_{j=1}^n x^{(n)} \cdot y_j = \sum_{j=1}^n \operatorname{sign}(y_j) \cdot y_j = \sum_{j=1}^n |y_j| \xrightarrow[n \to \infty]{} \sum_{j=1}^{\infty} |y_j| = \|y\|_1$$

thus,

$$\|\phi_3\| = \|y\|_1$$

Problem 2

Regardless of the completeness of a normed space E, its conjugate space $E^* = \mathcal{L}(E, \mathbb{R})$ is always complete, (Banach) since the codomain R is itself complete. This is based on the general result for linear bounded operators between normed spaces.

Problem 3

$$c_0^* \cong l_1$$

Proof To each $y \in l_1$ we associate the functional described in (11), i.e., we construct the correspondence

$$\Phi \colon l_1 \longrightarrow c_0^*$$
$$y \longmapsto f(x) = \sum_{j=1}^{\infty} x_j y_j$$

where $\{x_j\}_j \in c_0$. It preserves linear operations:

If

$$y \longleftrightarrow f, \quad \tilde{y} \longleftrightarrow \tilde{f}$$

then

$$\alpha y + \beta \tilde{y} \longleftrightarrow \sum_{j=1}^{\infty} x_j (\alpha y_j + \beta \tilde{y_j}) = \alpha \cdot \sum_{j=1}^{\infty} x_j y_j + \beta \cdot \sum_{j=1}^{\infty} x_j \tilde{y_j} = \alpha f + \beta \tilde{f}$$

and as shown before, in the third example of Problem 1.d) the correspondence is also norm-preserving,

$$||y|| = ||f||$$

It remains to show that Φ is bijective. Let $f \in c_0^*$, $x \in c_0$ and e_j denote the canonical vector of coordinate j. Then, x can be represented as the sum of its canonical coordinates $x_j e_j$ and applying the continuity of f we have

$$f(x) = f(\sum_{j=1}^{\infty} x_j e_j) = f(\lim_{n \to \infty} \sum_{j=1}^{n} x_j e_j) = \lim_{n \to \infty} f(\sum_{j=1}^{n} x_j e_j) = \lim_{n \to \infty} \sum_{j=1}^{n} x_j f(e_j) = \sum_{j=1}^{\infty} x_j f(e_j)$$

To see that $y = \{f(e_j)\}_j \in l_1 \text{ set } x^{(n)} \in c_0 \text{ where}$

$$x_j^{(n)} = \begin{cases} \frac{f(e_j)}{|f(e_j)|} & \text{if } 1 \le j \le n \text{ and } f(e_j) \ne 0\\ 0 & \text{otherwise} \end{cases}$$
 (13)

Then, $||x^{(n)}|| \leq 1$ and

$$\infty > ||f|| = \sup_{\|x\| \le 1} |f(x)| \ge f(x^{(n)}) = \sum_{j=1}^{n} \frac{f(e_j)}{|f(e_j)|} \cdot f(e_j) = \sum_{j=1}^{n} |f(e_j)| \xrightarrow[n \to \infty]{} ||y|| \implies y \in l_1$$

Therefore each $f \in c_0^*$ is uniquely determined by an element $y \in l_1$ and the spaces are then isomorphic.

Problem 4

$$l_1^* \cong l_\infty$$

Proof To each $y \in l_{\infty}$ we associate the same functional as before

$$\Phi \colon l_{\infty} \longrightarrow l_{1}^{*}$$
$$y \longmapsto f(x) = \sum_{j=1}^{\infty} x_{j} y_{j}$$

where $\{x_j\}_j \in l_1$. As shown before, it preserves linear operations. To see that it is also norm-preserving, set $x^{(n)} = e_k$ where k is determined such that $|y_k| = \sup_{1 \le j \le n} |y_j|$.

Then $||x^{(n)}|| = 1$, and we obtain the following estimates:

$$|f(x)| \le \sup_{1 \le j < \infty} |y_j| \cdot \sum_{j=1}^{\infty} |x_j| = ||y||_{\infty} \cdot ||x||_1 < \infty \implies ||f|| \le ||y||_{\infty}$$

$$||f|| = \sup_{\|x\|=1} |\sum_{j=1}^{\infty} x_j y_j| \ge |f(x^{(n)})| = \sup_{1 \le j \le n} |y_j| \xrightarrow[n \to \infty]{} ||y||_{\infty} \implies ||f|| \ge ||y||_{\infty}$$

Thus,

$$||f|| = ||y||_{\infty}$$

Finally, to show that Φ is bijective, we set $x^{(n)} = e_k$ where k is determined such that $|f(e_k)| = \sup_{1 \le j \le n} |f(e_j)|$ and take $f \in l_1^*$, $x \in l_1$. Then, using the same reasoning as before

$$f(x) = \sum_{j=1}^{\infty} x_j f(e_j)$$

and since $||x^{(n)}|| \le 1$ we have

$$\infty > ||f|| = \sup_{\|x\|=1} |\sum_{j=1}^{\infty} x_j f(e_j)| \ge |\sum_{j=1}^{\infty} x_j^{(n)} f(e_j)| = |f(x^{(n)})| = \sup_{1 \le j \le n} |f(e_k)| \xrightarrow[n \to \infty]{} ||f(e_j)||_{\infty}$$

hence, $y = \{f(e_j)\}_j \in l_\infty$ and is uniquely determined by f from which we obtain that $l_1^* \cong l_\infty$.