Improving your Neural Network

Solution 1: Early Stopping

Solution 2: Dropout Regularization

Analytics Vidhya
Learn everything about analytics

$$\frac{dE}{dW_{ib}} = \frac{dE}{dO} * \frac{dO}{dZ_2} * \frac{dZ_2}{dh_1} * \frac{dh_1}{dZ_1} * \frac{dZ_1}{dW_{ib}} = (O-Y) * O(1-O) * W_{ho} * h_1(1-h_1) * X$$

Problem: Vanishing Gradients

$$W_{ih} = W_{ih} - \alpha * \frac{dE}{dW_{ih}}$$
 Analytics Vidhya

Problem: Vanishing Gradients

Problem: Vanishing Gradients

Problem: Exploding Gradients

$$W_{ih} = W_{ih} - \alpha * \frac{dE}{dW_{ih}}$$
 Analytics Vidhya

Problem: Exploding Gradients

1

1 1.0002

1 1.0002 1.0003

1 1.0002 1.0003 1.0004 1.0005 1.0006 1.0007

1 1.0002 1.0003 1.0004 1.0005 1.0006 1.0007

Exploding Gradient

1 1.0002 1.0003 1.0004 1.0005 1.0006 1.0007

1

1 12

Exploding Gradient

$$\frac{dE}{dW_{ib}} = \frac{dE}{dO} * \frac{dO}{dZ_2} * \frac{dZ_2}{dh_1} * \frac{dh_1}{dZ_1} * \frac{dZ_1}{dW_{ib}} = (O-Y) * O(1-O) * W_{ho} * h_1(1-h_1) * X$$

Solution: Vanishing Gradients

Solution: Vanishing Gradients

Why does Vanishing Gradients happen?

$$\frac{dE}{dW_{ih}} = \frac{dE}{dO} * \frac{dO}{dZ_2} * \frac{dZ_2}{dh_1} * \frac{dh_1}{dZ_1} * \frac{dZ_1}{dW_{ih}} = (O-Y) * O(1-O) * W_{ho} * h_1(1-h_1) * X$$

$$\frac{dE}{dW_{ih}} = \frac{dE}{dO} * \frac{dO}{dZ_{2}} * \frac{dZ_{2}}{dh_{1}} * \frac{dh_{1}}{dZ_{1}} * \frac{dZ_{1}}{dW_{ih}} = (O-Y) * O(1-O) * W_{ho} * h_{1}(1-h_{1}) * X$$
High

• Clips the derivatives or gradients

• Clips the derivatives or gradients

Define a threshold, clipvalue

• Clips the derivatives or gradients

• Define a threshold: clipvalue

clipvalue = 1

- Clips the derivatives or gradients
- Define a threshold: clipvalue

- Clips the derivatives or gradients
- Define a threshold: clipvalue

Steps to solve emergency vs non-emergency vehicle classification problem by applying Gradient Clipping

- 1. Loading the dataset
- 2. Pre-processing the data
- 3. Creating training and validation set
- 4. Defining the model architecture
- 5. Compiling the model
 - Define clipvalue while defining the optimizer
- 6. Training the model
- 7. Evaluating model performance

Thank You

L = Number of layers

L = Number of layers

Bias = 0

L = Number of layers

Bias = 0

L = Number of layers

Bias = 0

$$h_1 = W_1 X$$

L = Number of layers

Bias = 0

 $h_1 = W_1 X$

 $h_2 = W_2 h_1$

L = Number of layers

Bias = 0

L = Number of layers

Bias = 0

L = Number of layers

Bias = 0

$$h_1 = W_1 X$$

 $h_2 = W_2 h_1 = W_1 W_2 X$
 $h_3 = W_3 h_2 = W_1 W_2 W_3 X$

L = Number of layers

Bias = 0

$$h_1 = W_1 X$$

 $h_2 = W_2 h_1 = W_1 W_2 X$
 $h_3 = W_3 h_2 = W_1 W_2 W_3 X$

$$O = W_L h_{L-1} = W_1 W_2 W_3 ... W_L X$$

$W_1 = W_1 = W_{l-1} = \frac{1}{2}$	1.5	0	0	0
	0	1.5	0	0
	0	0	1.5	0
	0	0	0	1.5

$$h_{1} = W_{1}X$$

$$h_{2} = W_{2}h_{1} = W_{1}W_{2}X$$

$$h_{3} = W_{3}h_{2} = W_{1}W_{2}W_{3}X$$

$$O = W_{L}h_{L-1} = W_{1}W_{2}W_{3}...W_{L}X$$

$W_1 = W_1 = W_{l-1} = -$	1.5	0	0	0
	0	1.5	0	0
	0	0	1.5	0
	0	0	0	1.5

$$O = W_1 W_2 ... W_{L-1} W_L X$$

$W_1 = W_1 = W_{l-1} = \frac{1}{2}$	1.5	0	0	0
	0	1.5	0	0
	0	0	1.5	0
	0	0	0	1.5

$$O = W_1 W_2 ... W_{L-1} W_L X =$$

L = 10

38	0	0	0
0	38	0	0
0	0	38	0
0	0	0	38

 $W_L X$

$W_1 = W_1 = W_{I-1} = \frac{1}{2}$	1.5	0	0	0
	0	1.5	0	0
	0	0	1.5	0
	0	0	0	1.5

38	0	0	0
0	38	0	0
0	0	38	0
0	0	0	38

 $W_L X$

$W_1 = W_1 = W_{I-1} = \frac{1}{2}$	0.5	0	0	0
	0	0.5	0	0
	0	0	0.5	0
	0	0	0	0.5

$$O = W_1 W_2 ... W_{L-1} W_L X =$$

L = 10

0.002	0	0	0
0	0.002	0	0
0	0	0.002	0
0	0	0	0.002

 $W_L X$

	0.5	0	0	0
\\\ - \\\ - \\\ -	0	0.5	0	0
$W_1 = W_1 = W_{I-1} =$	0	0	0.5	0
	0	0	0	0.5

0.001	0	0	0
0	0.001	0	0
0	0	0.001	0
0	0	0	0.001

 $W_L X$

Similarly: Gradients will also increase / decrease

- Similarly: Gradients will also increase / decrease
- Vanishing Gradients: Exponentially decreasing gradients

- Similarly: Gradients will also increase / decrease
- Vanishing Gradients: Exponentially decreasing gradients
- Exploding Gradients: Exponentially increasing gradients

- Similarly: Gradients will also increase / decrease
- Vanishing Gradients: Exponentially decreasing gradients
- **Exploding Gradients**: Exponentially increasing gradients
- Slows down the training process

