МИНОБРНАУКИ РОССИИ

Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Ижевский государственный технический университет имени М.Т.Калашникова" (ФГБОУ ВПО «ИжГТУ имени М.Т.Калашникова»)

Кучуганов В.Н., Касимов Д.Р.

МАТЕМАТИЧЕСКАЯ ЛИНГВИСТИКА МЕТОДИЧЕСКИЕ УКАЗАНИЯ К ЛАБОРАТОРНОЙ РАБОТЕ №2 «РАЗРАБОТКА СИНТАКСИЧЕСКОГО АНАЛИЗАТОРА»

Рекомендовано учебно-методическим советом ФГБОУ ВПО «ИжГТУ имени М.Т. Калашникова» для использования в учебном процессе в качестве

элемента ЭУМКД для студентов обучающихся по направлению 230100.62 «Информатика и вычислительная техника», профилям «Автоматизированные системы обработки информации и управления», «Системы автоматизированного проектирования» при изучении дисциплин «Математическая лингвистика», «Лингвистическое обеспечение САПР»

Составители: Кучуганов Валерий Никонорович, доктор технических наук, профессор Касимов Денис Рашидович, ассистент

УДК 681.3

Математическая лингвистика: методические указания к выполнению лабораторной работы №2 «Разработка синтаксического анализатора» по курсам «Математическая лингвистика», «Лингвистическое обеспечение САПР» профилей «Автоматизированные системы обработки информации и управления», «Системы автоматизированного проектирования» направления 230100.62 «Информатика и вычислительная техника».

Составители: Кучуганов В.Н., Касимов Д.Р., Ижевский государственный технический университет имени М.Т. Калашникова. Ижевск, 2013. – 12 с.

СОДЕРЖАНИЕ

ВВЕДЕНИЕ	. 4
1. ЗАДАНИЕ НА ЛАБОРАТОРНУЮ РАБОТУ №2	. 5
2. КОНТЕКСТНО-СВОБОДНЫЕ ГРАММАТИКИ	. 7
3. УСТРАНЕНИЕ ЛЕВОЙ РЕКУРСИИ ИЗ ГРАММАТИКИ	. 7
4. МЕТОД РЕКУРСИВНОГО СПУСКА	. 9
5. ПРИМЕР ВЫПОЛНЕНИЯ ЛАБОРАТОРНОЙ РАБОТЫ	10
ЛИТЕРАТУРА	12

ВВЕДЕНИЕ

Синтаксический анализ — это процесс, который определяет, принадлежит ли некоторая последовательность лексем языку, порождаемому грамматикой. В принципе, по любой грамматике можно построить синтаксический анализатор, но грамматики, используемые на практике, имеют специальную форму. Например, известно, что для любой контекстносвободной грамматики может быть построен анализатор, сложность которого не превышает O(n3) для входной строки длины n, но в большинстве случаев по заданному языку программирования мы можем построить такую грамматику, которая позволит сконструировать и более быстрый анализатор. Анализаторы реально используемых языков обычно имеют линейную сложность; это достигается, например, за счет просмотра исходной программы слева направо с заглядыванием вперед на один терминальный символ (лексический класс).

Вход синтаксического анализатора – последовательность лексических классов и таблицы, например, таблица внешних представлений, которые являются выходом лексического анализатора.

Выход синтаксического анализатора – дерево разбора и таблицы, например, таблица идентификаторов и таблица типов, которые являются входом для следующего просмотра лингвистического процессора (например, это может быть просмотр, осуществляющий контроль типов).

Совсем необязательно, чтобы фазы лексического и синтаксического анализа выделялись в отдельные просмотры. Обычно эти фазы взаимодействуют друг с другом на одном просмотре. Основной фазой такого просмотра считается фаза синтаксического анализа, при этом синтаксический анализатор обращается к лексическому анализатору каждый раз, когда у него появляется потребность в очередном терминальном символе.

Одним из наиболее простых и потому одним из наиболее популярных методов нисходящего синтаксического анализа является метод рекурсивного спуска.

Цель описанной ниже лабораторной работы — ознакомиться с теоретическими и практическими основами построения блока синтаксического анализа лингвистического процессора.

1. ЗАДАНИЕ НА ЛАБОРАТОРНУЮ РАБОТУ №2

Тема работы: «Разработка синтаксического анализатора»

Цель работы: ознакомиться с теоретическими и практическими основами построения блока синтаксического анализа лингвистического процессора.

Используемые программные средства: система программирования Delphi 7.0 или выше; графический редактор Microsoft Visio.

Задание по лабораторной работе заключается в разработке синтаксического анализатора для предложенного варианта контекстно-свободной грамматики (КС-грамматики) методом предсказывающего рекурсивного спуска.

Содержание отчета:

- 1) титульный лист;
- 2) текст задания, включающий вариант задания;
- 3) преобразование КС-грамматики по исключению левой рекурсии;
- 4) исходный текст синтаксического анализатора;
- 5) результаты тестирования.

Методические рекомендации к лабораторной работе

- 1. Лексический анализатор из лабораторной работы №1 должен быть расширен обработкой появившихся в КС-грамматике новых слов и включен в виде подпрограммы или поля класса или метода класса в синтаксический анализатор.
 - 2. Если грамматика леворекурсивная, то устранить левую рекурсию.
- 3. Оформить синтаксический анализатор в виде процедуры или функции или класса, которые при обращении обрабатывают весь исходный текст.

Варианты индивидуальных заданий

В таблице 1.1 представлены варианты заданий.

Таблица 1.1. Варианты заданий

№	Грамматика	№	Грамматика	№	Грамматика
1	$S \rightarrow S S +$	2	$S \rightarrow A \mid B$	3	$O \rightarrow A = A \mid (L)$
	$S \to A$		$A \rightarrow AB + B $		$A \rightarrow <1> <2>$

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		$ B \rightarrow B C * C $ $ L \rightarrow true fa$	lca I I I
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	·
Внимание! Не является грамматикой класса LL(1) 4 $\Pi \to \Pi$, O O O O $\to <2> = <1> <1>$ D $\to (BB) <2>$ 7 $\Pi \to \Pi$; K K K K $\to OR$, A O $\to <2>$ R $\to <1>$ A $\to <1>$ $<2>$ R $\to <1>$ C $\to (AB) O O O O O O O O O O O O O O O O O O $			O
ССЯ ГРАММАТИКОЙ КПАССА LL(1).			
Reflaced LL(1)			
$ \begin{array}{ c c c c c }\hline 4 & & & & 5 \\ & \Pi \to \Pi , O O \\ & O \to <2> = <1> <1> \\ & O \to <2> = (O) \\ \hline \end{array} $			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	5 6 M	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	П
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Π	$\Pi \to \Pi * A$	A
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	· · · · · · · · · · · · · · · · · · ·		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ B \rightarrow [PP] \langle 1 \rangle$	$ S B \to [PP] < S A \to [S] $	
$ \begin{array}{ c c c c c c }\hline 7 & \Pi \to \Pi \; ; \; K \mid K \\ & K \to O \; R \; , \; A \\ & O \to <2> \\ & R \to <1> \\ & A \to <1>\mid <2> \\ \hline \\ 10 & S \to <2> \; S \; A \\ & S \to A \mid B \\ & A \to <1>\mid (\; A\;) \; [\; B\;] \;) \\ & <2>=<1>\mid \\ & <2>=<2> \\ \hline \\ 11 & S \to S \; ; \; P \mid P \\ & S \to A \\ \hline \\ 12 & S \to (\; D\; ! \; S\; ! \; S\;) \\ & S \to <1> \\ \hline \\ 12 & S \to (\; D\; ! \; S\; ! \; S\;) \\ & S \to <1> \\ \hline \end{array} $	$ P \rightarrow (BB) < 2 >$ $ S -$	$\begin{vmatrix} P \rightarrow (BB) < 2 > \\ S \rightarrow < 1 >, S \end{vmatrix}$	<2>, S
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		<1> <	2> [A]
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$8 \mid D \to D \lor K \mid K \qquad \qquad 9 \mid$	$ 8 \mid D \to D \lor K \mid K $	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$K \to K \wedge A \mid A$	$ K \rightarrow K \land A A $ $ S \rightarrow A B$	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$A \rightarrow A \rightarrow A \cup $	$A \rightarrow A \rightarrow$	(A)[B])
$ A \rightarrow <1> <2>$ $ C = <1> C = <1< C = <1> C = <1< C = <1> C = <1< C = <1< C = <1> C = <1< C $	$ O \rightarrow <1> = <2>$	$ 0 \rightarrow \langle 1 \rangle = \langle 2 \rangle $	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	<2> = <1>	<2>=<1>	L — J (* * / J
$\begin{vmatrix} S \rightarrow A & & & & \\ P \rightarrow A = A & & & \\ S \rightarrow <1 > & & \\ \end{vmatrix}$			1.0.)
			! S)
$A \rightarrow (S)$ $A \rightarrow A + M + M$ $A \rightarrow A + M + M$			1.77
	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	'
	·	·	·
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			
$\begin{vmatrix} S & + A & A & B \\ S & + A & A & B \end{vmatrix}$ $\begin{vmatrix} A & + B & A & B \\ B & + A & A & A \end{vmatrix}$ $\begin{vmatrix} A & + B & A & B \\ A & + A & A & A \end{vmatrix}$	' I		
$\begin{vmatrix} B \rightarrow D C \\ A \rightarrow <1 > \end{vmatrix} \qquad \begin{vmatrix} B \rightarrow D C \\ C \Rightarrow C = D \end{vmatrix} \qquad \begin{vmatrix} A \rightarrow <2 > <2 > <1 > \end{vmatrix}$		· · · · · · · · · · · · · · · · · · ·	2><1>
$\begin{vmatrix} A \rightarrow \langle 1 \rangle \\ A \rightarrow \langle 2 \rangle S A \end{vmatrix} \begin{vmatrix} C \rightarrow *DC \mid D \\ B \rightarrow \langle 2 \rangle B \end{vmatrix}$	·	·	
$ \begin{array}{c ccccc} & D \rightarrow (S) & <1> <2> & B \rightarrow <2> \\ \hline & 16 & S \rightarrow A : B . & 17 & 18 \end{array} $			
$\begin{vmatrix} A \rightarrow <2 > \\ B \rightarrow B; C \end{vmatrix} \begin{vmatrix} S \rightarrow A; S \\ S \rightarrow A \end{vmatrix} \begin{vmatrix} S \rightarrow (A!: B!B) \\ S \rightarrow (A!: B!B) \end{vmatrix}$			(!B)
$ \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot$		$ \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot$	5)
		$ A \rightarrow \langle A \rangle$	
$ \begin{vmatrix} C \to C, D \\ C \to D \end{vmatrix} \begin{vmatrix} A \to B \\ B \to <1>\end{vmatrix} $ $ \begin{vmatrix} A \to B \\ B \to <1>\end{vmatrix} $			
$ \begin{vmatrix} C \to D \\ D \to <1> \end{vmatrix} \begin{vmatrix} B \to <1> \\ B \to <2> : <1> \end{vmatrix} \begin{vmatrix} B \to S \end{vmatrix} $			
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	D ¬ <2/. <1/		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$20 \mid S \rightarrow S + A$ $21 \mid S =$	$20 \mid S \rightarrow S + A$ $21 \mid S \rightarrow S \cdot A$	
$ \begin{vmatrix} 15 & 3 & 7 & 5 & 3 & 7 & 5 & 7 & 7 & 7 & 7 & 7 & 7 & 7 & 7$			
$\begin{vmatrix} A \rightarrow * S S \\ A \rightarrow A * B \end{vmatrix} \begin{vmatrix} A \rightarrow A * B \\ A \rightarrow <2> := [B]$			[B]
$\begin{vmatrix} A \rightarrow B & A \rightarrow B & B & B \rightarrow <1>, B \end{vmatrix}$			
$\begin{vmatrix} A & A & B \\ B \rightarrow <2> [<1>] & B \rightarrow <2> (<1>) & B \rightarrow <1> \end{vmatrix}$			
$22 \mid S \rightarrow (A)$ $23 \mid 24 \mid$	23 24	23 24	415 D
$\begin{vmatrix} A \rightarrow (\langle 2 \rangle B) & S \rightarrow A - B & S \rightarrow \langle 2 \rangle A \langle 1 \rangle B \end{vmatrix}$	$1S \rightarrow A = B$	$ S \rightarrow A - B $	(1>R
$\begin{vmatrix} A \rightarrow \langle 1 \rangle \\ A \rightarrow \langle 1 \rangle \\ A \rightarrow \langle 2 \rangle (\langle 1 \rangle) \end{vmatrix} \begin{vmatrix} A \rightarrow [A] \\ A \rightarrow \langle 1 \rangle \\ A \rightarrow \langle 1 \rangle \end{vmatrix}$	$ A \rightarrow \langle \rangle \rangle \langle \langle \rangle \rangle$	$A \rightarrow C > (C \rightarrow A)$	
$ \begin{vmatrix} B \to (C) \\ B \to B, A \end{vmatrix} $ $ \begin{vmatrix} A \to <1 > \\ B \to B < 2 > \end{vmatrix} $	$ R \rightarrow R \land A $	$ R \to R A \qquad \qquad $	
$ (\rightarrow (\land \land) \land) $	$\mid R \to A \qquad \qquad \mid \qquad \mid$		
$C \rightarrow <1>$ $B \rightarrow <2>$		B → <2>	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		· · · · · · · · · · · · · · · · · · ·	
	26 S \rightarrow <2> (A) :- B . 27 S -	$\begin{vmatrix} 26 \mid S \rightarrow \langle 2 \rangle (A) :- B . \qquad \begin{vmatrix} 27 \mid S \rightarrow [S] \mid A \end{vmatrix}$	

$A \rightarrow \langle 2 \rangle A A$	A → <1>	$B \rightarrow [C]$
$A \rightarrow \langle 1 \rangle$	$B \rightarrow B$, <2>	$C \rightarrow C$, $\langle 1 \rangle$ $\langle 1 \rangle$
$B \rightarrow \langle 2 \rangle$	$B \rightarrow \langle 2 \rangle$	

Примечание. Через <1> и <2> обозначены слова из лабораторной работы №1.

Внимание! Символы <, > частью слов не являются. Для лучшего рассмотрения содержащихся в грамматике символов рекомендуется изучить свой вариант задания в увеличенном масштабе.

Контрольные вопросы:

- 1. Классификация языков, грамматик, автоматов по Хомскому.
- 2. Контекстно-свободные грамматики.
- 3. Синтаксические деревья.
- 4. Нисходящие алгоритмы синтаксического анализа.
- 5. Восходящие алгоритмы синтаксического анализа.
- 6. Метод рекурсивного спуска.
- 7. Документирование КС синтаксиса. Форма Бэкуса-Наура.
- 8. Генераторы синтаксических анализаторов.

2. КОНТЕКСТНО-СВОБОДНЫЕ ГРАММАТИКИ

Контекстно-свободная грамматика (КС-грамматика, бесконтекстная грамматика) — частный случай формальной грамматики (тип 2 по иерархии Хомского), у которой левые части всех продукций являются одиночными нетерминалами. Смысл термина «контекстно-свободная» заключается в том, что возможность применить продукцию к нетерминалу, в отличие от общего случая неограниченной грамматики Хомского, не зависит от контекста этого нетерминала.

Язык, который может быть задан КС-грамматикой, называется контекстно-свободным языком или КС-языком.

КС-грамматики находят большое применение. Ими задаётся грамматическая структура большинства языков программирования, структурированных данных и т.д.

3. УСТРАНЕНИЕ ЛЕВОЙ РЕКУРСИИ ИЗ ГРАММАТИКИ

Грамматика является леворекурсивной, если в ней имеется нетерминал A, такой, что существует порождение $A \stackrel{+}{\Rightarrow} A \alpha$ для некоторой строки α . Методы нисходящего разбора, к

которым относится метод рекурсивного спуска, не в состоянии работать с леворекурсивными грамматиками, поэтому требуется преобразование грамматики, которое устранило бы из нее левую рекурсию.

Устранение непосредственной левой рекурсии (продукции вида $A \rightarrow A \alpha$) может быть осуществлено с помощью следующей технологии. Вначале группируются A-продукции:

$$A \rightarrow A \alpha_1 |A \alpha_2| \dots |A \alpha_m| \beta_1 |\beta_2| \dots |\beta_n|$$

где β_i не начинаются с A. Затем эти A-продукции заменяются на

$$A \rightarrow \beta_1 A' |\beta_2 A'| ... |\beta_n A'$$

$$A' \rightarrow \alpha_1 A' |\alpha_2 A'| \dots |\alpha_m A'| \varepsilon$$

где А' – новый нетерминальный символ.

Нетерминал A порождает те же строки, что и ранее, но без левой рекурсии. Эта процедура устраняет все непосредственные левые рекурсии из продукций для A и A' (при условии, что ни одна строка α_i не является ϵ), но не устраняет левую рекурсию, вызванную двумя или более шагами порождения.

Алгоритм, приведенный ниже, удаляет из грамматики левую рекурсию. Он гарантированно работает с грамматиками, не имеющими циклов (порождений типа $A \stackrel{+}{\Rightarrow} A$) и єпродукций (продукций типа $A \rightarrow \epsilon$). Из грамматики могут быть также удалены и циклы, и єпродукции.

Алгоритм. Устранение левой рекурсии

Bxod. Грамматика G без циклов и ϵ -продукций.

Выход. Эквивалентная грамматика без левой рекурсии.

Метод. Применить алгоритм, приведенный ниже. Обратите внимание, что результирующая грамматика без левых рекурсий может иметь є-продукции.

- 1. Расположить нетерминалы в некотором порядке $A_1, A_2, ..., A_n$.
- 2. for i := 1 to n do begin

for
$$j := 1$$
 to $i-1$ do begin

Заменить каждую продукцию вида $A_i o A_j \gamma$ продукциями $A_i o \delta_l \gamma |\delta_2 \gamma|$

$$\ldots \mid \delta_k \ \gamma$$
, где $A_j \to \delta_l \mid \delta_2 \mid \ldots \mid \delta_k$ – все текущие A_j -продукции

end

Устранить непосредственную левую рекурсию среди A_i -продукций end

4. МЕТОД РЕКУРСИВНОГО СПУСКА

Метод рекурсивного спуска — алгоритм синтаксического анализа, реализуемый путем взаимного вызова процедур разбора, соответствующих правилам контекстно-свободной грамматики. Применения правил последовательно, слева-направо поглощают токены, полученные от лексического анализатора. Это один из самых простых алгоритмов парсинга, подходящий для полностью ручной реализации.

Варианты реализации:

- 1. Предсказывающий парсер. Для парсеров этого типа нужна подходящая КС-грамматика, конкретно LL(k) грамматика, позволяющая по очередному токену или токенам однозначно выбрать (предсказать) один из альтернативных вариантов раскрытия каждого нетерминала. Такой парсер работает за линейное время. Вариантом является LL-парсер реализация предсказывающего парсера с автоматическим построением «таблицы предсказания», определяющей по заданному нетерминалу и очередному токену подходящее правило для раскрытия нетерминала.
- 2. Парсер с возвратом. Вместо предсказания парсер просто пытается применить все альтернативные варианты правил по порядку, пока одна из попыток не увенчается успехом. Такой парсер может потребовать экспоненциального времени работы, и не всегда гарантирует завершение, в зависимости от грамматики.

Пример анализатора по методу предсказывающего рекурсивного спуска

Рассмотрим грамматику:

```
S \rightarrow if E \text{ then } S \text{ else } S
S \rightarrow begin S L
S \rightarrow print E
L \rightarrow end
L \rightarrow ; S L
E \rightarrow num = num
```

Напишем анализатор языка, порождаемого этой грамматикой, методом рекурсивного спуска. Для этого нам придется описать по одной процедуре для каждого нетерминала грамматики:

```
class SimpleParser {
   /* Лексические классы, т.е. терминалы */
   const int IF = 1;
   const int THEN = 2;
   const int ELSE = 3;
   const int BEGIN = 4;
   const int END = 5;
   const int PRINT = 6;
   const int SEMICOLON = 7;
```

```
const int NUM = 8;
  const int EQ = 9;
  public static void nextStep(int lc)
     if (lexical class == lc)
        lexical_class = getLC();
     else
        error();
   }
  public static void S(void)
      switch(getLC())
        case IF:
           E(); nextStep(THEN); S(); nextStep(ELSE); S(); break;
         case BEGIN:
           S(); L(); break;
         case PRINT:
           E(); break;
        default:
            error(); break;
      }
   }
  public static void L(void)
     switch (lexical class)
        case END:
           getLC(); break;
        case SEMICOLON:
           getLC(); S(); L(); break;
        default:
            error(); break;
      }
   }
  public static void E(void)
     nextStep(NUM); nextStep(EQ); nextStep(NUM);
  public static void main(void)
     lexical class = getLC();
     S();
} // end of SimpleParser
```

5. ПРИМЕР ВЫПОЛНЕНИЯ ЛАБОРАТОРНОЙ РАБОТЫ

В данном разделе приводятся результаты выполнения лабораторной работы при следующей КС-грамматике:

$$S \to A := B$$
.
 $A \to <2> (<1>)$

 $B \rightarrow B$, A

 $B \rightarrow A$

После устранения левой рекурсии грамматика выглядит следующим образом:

 $S \rightarrow A := B$.

 $A \rightarrow \langle 2 \rangle (\langle 1 \rangle)$

 $B \rightarrow A B'$

 $B' \rightarrow A \mid \epsilon$

На рисунке 5.1 приведены примеры работы программы.

a)

б)

Рисунок 5.1. Примеры работы программы: а) при правильном тексте; б) при неправильном тексте

ЛИТЕРАТУРА

- 1. Дж. Хопкрофт, Р. Мотвани, Дж. Ульман. Введение в теорию автоматов, языков и вычислений. М.: «Вильямс», 2002. 528 с.
- 2. И.Г. Кревский, М.Н. Селиверстов, К.В. Григорьева. Формальные языки, грамматики и основы построения трансляторов. Учебное пособие (под ред. д.т.н., профессора А.М. Бершадского). Пенза, 2003.
- 3. Свердлов С. 3. Языки программирования и методы трансляции: Учебное пособие. СПб.: Питер, 2007. 638 с: ил.
- 4. Льюис Ф., Розенкранц Д., Стирнз Р. «Теоретические основы проектирования компиляторов». М.: Мир, 1979.
- 5. Компаниец Р. И., Маньяков Е. В., Филатов Н. Е., «Системное программирование. Основы построения трансляторов». СПб.: КОРОНА принт, 2000.
- 6. Мозговой М. В. «Классика программирования: алгоритмы, языки, автоматы, компиляторы. Практический подход». СПб.: Наука и Техника, 2006.