Xilinx Zynq FPGA, TI DSP, MCU 기반의 회로 설계 및 임베디드 전문가 과정

강사 – Innova Lee(이상훈) gcccompil3r@gmail.com

DC Motor Operation Principle

직류 전동기의 구성과 동작 원리를 살펴보자!

단일 루프 권선이 고정된 축 주위를 회전하고, 영구자석이 자계를 공급한다. 이때 도선이 받는 힘은 플레밍의 왼손 법칙으로 알 수 있다. 엄지는 힘, 검지는 자기장, 중지는 전류다.

이것을 아래와 같은 등가회로로 나타낼 수 있다. 모든 변수가 독립적인 듯이 보이지만 사실은 외부의 기계적 시스템과 연동되어 있다. 여기서 너무 깊게 이야기하면 힘들기 때문에 간략하게 이야기한다.

전류가 들어가서 모터가 구동하면서 토크가 발생한다. 이 토크의 발생은 전동기의 속도와 관련되므로 각속도 발생 이 각속도의 발생은 전기장 및 자기장의 변화를 야기함 고로 맥스웰 방정식중 패러데이의 법칙과 앙페르 법칙에 의거 유도 기전력이 걸리게됨 이것이 다시 전기자에 흐르는 전류에 영향을 미치게 되고 이것이 전동기 속도에 역시 영향을 주게 된다.

Modeling(Armature Circuit)

전체적인 DC Motor System은 전기자 회로, 유도 기전력, 회전력, 기계 시스템으로 구성됨

우선 전기자 회로부터 보도록 하자! 전기자 회로에 인가되는 전압 V_a 는 권선 저항과 인덕턴스 전압 강하 및 유도 전압의 합으로 아래와 같이 표현될 수 있다.

$$V_a = R_a i_a + L_a \frac{di_a}{dt} + \varepsilon_a$$

여기서 i_a 는 전기자 권선의 전류, R_a 는 전기자 권선의 저항, L_a 는 전기자 권선의 인덕턴스, e_a 는 유도기전력이다. 모델링을 위해 우변에 있는 유도 기전력은 자기장 내에 길이 l인 도선이 속도 v로 움직이는 상황이라고 볼 수 있다.

$$\varepsilon = (v \times B) \cdot l$$

이 식은 패러데이 법칙에서 유도되는 아래의 식과도 동일하다.

$$\varepsilon = -\frac{d\phi}{dt} = -\frac{BdA}{dt} = -\frac{Bldx}{dt} = Blv$$

이 식은 패러데이 법칙에서 유도되는 아래의 식과도 동일하다.

Fleming's Left / Right-hand Rules

모터라는 제어 시스템을 잘 다루기 위해 플레밍의 왼손, 오른손 법칙을 모두 잘 파악해야 한다.

우선 왼손 법칙은 전류와 자기장이 있을 때 힘의 방향을 구하는 법칙에 해당한다. 엄밀하게 자기장 내에 있는 도선에 전류가 흐를때 이 도선이 받는 힘을 구하는 법칙이라고 보면 되겠다.

왼손 법칙은 속도와 자기장이 있을때 이 녀석이 유도해내는 기전력을 구하는 법칙이다. 역시 엄밀하게 보자면 자기장 내에서 도선이 움직일 때 유도되는 기전력을 구하는 법칙이다.

Modeling(ElectroMotive Force – EMF)

앞서서 살펴봤던 DC Motor에서 발생하는 EMF를 구해보도록 하자!

앞서서 우리가 대충 살펴봤던 DC Motor의 그림을 다시 살펴보도록 하자! 여기서 돌아가는 2구간에서 기전력이 발생한다.

그러므로 기전력은 아래와 같이 쓸 수 있다.

$$\varepsilon_a = 2Blv$$

회전자인 권선 모서리의 접선 속도 v는 회전 반지름 r과 각속도 ω 를 사용하여 나타낼 수 있다.

$$v = r\omega$$

공극(자기저항이 가장 큰 구간)에서 자기장이 B이므로 모터의 원통형 권선 루프를 통과하는 자속은 아래와 같다.

S

$$\phi = \pi r l B \iff B = \frac{\phi}{\pi r l}$$

고로 최종적인 유도 기전력은 아래와 같이 쓸 수 있다.

$$\varepsilon_a = 2Blv = 2Blr\omega = 2lr\omega \frac{\phi}{\pi rl} = \frac{2\phi\omega}{\pi}$$

EMF 상수를 사용하여 아래와 같이 다시 표기하도록 하자!

$$\varepsilon_a = K_E \omega$$

즉, 모터의 rpm이 높을수록 EMF가 크다는 것을 알 수 있다.

Modeling(Torque)

앞서서 살펴봤던 DC Motor에서 발생하는 Torque(회전력)를 구해보도록 하자!

DC Motor에서 전압 V_a 을 인가하여 권선에 전류 i_a 가 흐를 경우 발생할 회전력을 아래 식을 사용하여 구해보도록 하자!

$$\tau = 2rF = 2ri_a lB$$

공극에서 자기장이 B 이고 $\pi r l B$ 를 총 자속 ϕ 라 할 수 있어 아래와 같이 정리할 수 있다.

$$\tau = \frac{2}{\pi} \phi i_a$$

Torque 상수를 사용하여 위의 식을 아래와 같이 정리한다.

$$\tau = K_T i_a$$

즉, 발생 Torque는 흐르는 전류에 비례한다. 바로 이 식이 전기적인 물리량이 기계적인 물리량으로 바뀌는 모습을 보여주고 있다. 그리고 앞에 붙은 Torque 상수가 EMF의 상수와 동일하다는 것을 유의하여야 할 것이다.

Modeling(Mechanical System)

이제 발생 Torque에 의해 DC Motor의 속도가 어떻게 결정되는지 알아보자!

축으로 연결된 기계적 부하 시스템을 구동하는 DC Motor의 속도 ω 는 아래와 같은 식을 따른다.

$$\tau = I\frac{d\omega}{dt} + B\omega + \tau_L = J\frac{d\omega}{dt} + C\omega + \tau_L$$

여기서 I인 관성 모멘트를 J로 바꾼 이유는 전류와 혼동할 수도 있기에 J로 바꿨다. ω 는 회전 각속도, τ_L 는 부하 토크, J 는 전체 시스템의 관성 모멘트이며, C는 마찰계수다. 여지껏 정리해온 모델들을 아래에 다시 한 번 정리해보도록 하자!

$$V_a = R_a i_a + L_a \frac{di_a}{dt} + \varepsilon_a$$

$$\varepsilon_a = K_E \omega$$

$$\tau = K_T i_a$$

$$\tau = I\frac{d\omega}{dt} + C\omega + \tau_L = J\frac{d\omega}{dt} + C\omega + \tau_L$$

이제 이를 가지고 Transfer Function과 Equation of State를 작성하여보자!

Transfer Function & Equation of State

앞서 정리한 모델식을 기반으로 전압을 입력으로 Motor의 속도를 출력으로 놓자!

회로의 전압 방정식과 기계 시스템의 방정식을 Laplace Transform하고 EMF와 Torque의 관계식을 대입한다.

$$V_{a} = R_{a}i_{a} + L_{a}\frac{di_{a}}{dt} + \varepsilon_{a} \Leftrightarrow V_{a}(s) = (R_{a} + sL_{a})I_{a}(s) + E_{a}(s) = (R_{a} + sL_{a})I_{a}(s) + K_{E}W(s)$$

$$\varepsilon_{a} = K_{E}\omega$$

$$\tau = K_{T}i_{a}$$

$$\tau = I\frac{d\omega}{dt} + C\omega + \tau_{L} = J\frac{d\omega}{dt} + C\omega + \tau_{L} \Leftrightarrow T(s) = (Js + C)W(s) = K_{T}I_{a}(s)$$

기계 시스템 모델에서 부하가 없다고 가정하고 위의 식을 정리해서 Transfer Function을 구하면 아래와 같다.

$$\frac{W(s)}{V_a(s)} = \frac{\frac{K_T}{JL_a}}{s^2 + \left(\frac{R_a}{L_a} + \frac{C}{J}\right)s + \left(\frac{R_aC}{L_aJ} + \frac{K_EK_T}{JL_a}\right)}$$

Transfer Function을 분석하면 DC Motor에 전압을 인가할 경우, 속도가 동역학적으로 어떻게 반응할 것인지 알 수 있다. 이제 Equation of State를 표현해보도록 하자!

Input:
$$V_a$$
, Output: $\omega = \dot{\theta}$, $x_1 = \theta$, $x_2 = \dot{\theta}$, $x_3 = i_a$

$$\begin{bmatrix} \dot{x_1} \\ \dot{x_2} \\ \dot{x_3} \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & -\frac{C}{J} & \frac{K_T}{J} \\ 0 & -\frac{K_E}{L_a} & -\frac{R_a}{L_a} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ \frac{1}{L_a} \end{bmatrix} V_a$$