Case 7932

What is claimed is:

I	1. A surveillance system, comprising:
2	a sensor subsystem for providing real time spherical image data and surveillance data
3	a network operatively coupled to the sensor system for delivering the spherical image
4	data and surveillance data to a management console; and
5	a management console operatively coupled to the network for receiving the spherical
6	image data and the surveillance data and generating a spherical view display
7	using the spherical image data and a situational awareness management
8	display using the surveillance data.
1	2. The system of claim 1, wherein the sensor subsystem provides non-image data to the
2	management console via the network and the management console displays the non-image data
3	on the situational awareness management display together with the surveillance data.
1	3. The system of claim 1, further comprising:
2	a data repository image database operatively coupled to the network for recording the
3	spherical image data.
1	4. The system of claim 3, wherein the data repository image database further comprises:
2	an image recorder for recording the spherical image data; and
3	an image player for playing back the spherical image data on the spherical view
4	display in response to a user request.
1	5. The system of claim 3, wherein the data repository supports multiple physical
2	repository types.
1	6. The system of claim 1, wherein the sensor subsystem further comprises:
2	an image broadcaster for broadcasting the spherical image data on the network to one
3	or more subscribers.

1	7. The system of claim 1, wherein the sensor subsystem further comprises:
2	an image compressor for compressing the spherical image data.
1	8. The system of claim 1, wherein the surveillance data is motion detection event data.
1	9. The system of claim 1, wherein the sensor subsystem further comprises:
2	a motion detection module coupled to the network for generating motion detection
3	event data in response to detecting motion in spherical image data received
4	from the network.
1	10. The system of claim 9, where the motion detection module detects motion in a
2	selected portion of the spherical image data received from the network.
1	11. The system of claim 1, wherein the situational awareness management display
2	further comprises:
3	a sensor system map for displaying the location of one or more sensors in the sensor
4	subsystem.
1	12. The system of claim 1, wherein the situational awareness display includes user
2	controls for setting a zone in the spherical imagery where the motion detection module will
3	perform motion detection.
1	13. The system of claim 1, wherein the spherical view display includes user controls for
2	providing a high-resolution image of a selected portion of the spherical view display.
1	14. The system of claim 2, wherein the non-image data is alarm data generated by an
2	alarm source.
1	15. The system of claim 7, wherein the management console includes an image
2	decompressor for decompressing the spherical image data compressed in the sensor subsystem
3	and displays the decompressed spherical imagery on the spherical view display.

1	16. The system of claim 9, wherein the motion detection module detects motion in the
2	spherical image data by comparing a current spherical video frame to a reference spherical video
3	frame and determining differences according to user defined settings.
1	17. The system of claim 1, wherein the surveillance data is used to track a moving object
1	
2	in the spherical image data.
1	18. The system of claim 1, wherein metadata is generated in the sensor subsystem and
2	transmitted over the network for use by the management console to build the situational
3	awareness display.
1	19. The system of claim 1, wherein at least one of the spherical image data and
2	surveillance data is time stamped.
1	20. The system of claim 9, further comprising:
2	a mirror control operatively coupled to the motion detection module for controlling a
3	pan/tilt/zoom device in response to motion detection event data generated by
4	the motion detection module.
1 .	21. A method of capturing, delivering and displaying spherical image data and motion
2	detection data to a management console, comprising:
- 3	capturing real time spherical image data at a sensor subsystem;
4	monitoring the spherical image data for motion;
5	responsive to detection of motion, generating motion detection event data;
6	delivering the spherical image data and motion detection event data to a management
7	console via a network; and
8	at the management console, generating a spherical view display using the spherical
9	image data.
,	image data.

1	22. The method of claim 21, further comprising:
2	generating a situational awareness management display using the motion detection
3	data.
1	23. The method of claim 21, wherein the spherical image data is broadcast to one or
2	more subscribers on the network.
1	24. The method of claim 21, further comprising the steps of:
2	compressing the spherical data at the sensor subsystem; and
3	decompressing the compressed spherical data at the management console prior to
4	display.
1	25. The method of claim 21, further comprising:
2	tracking a moving object in the spherical image data.
1	26. The method of claim 25, further comprising:
2	displaying the moving object on the situational awareness map.
1	27. A management console for a surveillance system, comprising:
2	a processor for receiving spherical image data and surveillance data from a sensor
3	subsystem via a network;
4	a spherical sensor display coupled to the processor for displaying spherical image
5	data; and
6	a situational awareness display coupled to the processor for displaying surveillance
7	data.
1	28. The management console of claim 27, further comprising:
2	a user interface for allowing a user to configure the sensor subsystem.
1	29. A user interface for a surveillance system, comprising:
2	an image receiver for receiving real time spherical image data and surveillance data

Case 7932

3	a display engine for integrating the spherical image data and surveillance data; and
4	a user interface coupled to the display image for displaying the integrated spherical
5	image data and surveillance data.
1	30. The user interface of claim 29, further comprising:
2	a display portion for displaying a sensor system map showing sensor coverage area.
1	31. The user interface of claim 29, further comprising:
2	a control portion for controlling the display portion of the user interface.
1	32. The user interface of claim 29, wherein the sensor system map is a three-dimensional
2	map showing location and orientation of sensors using location and attitude information
3	associated with the sensors.
1	33. A computer-readable medium having stored thereon instructions which, when
2	executed by a processor in a surveillance system, cause the processor to perform the operations
3	of:
4	receiving spherical image data and surveillance data from at least one sensor;
5	integrating the spherical image data and surveillance data; and
6	displaying the integrated spherical image data and surveillance data on a user
7	interface.
1	34. The computer-readable medium of claim 33, further comprising:
2	tracking a moving object in the spherical image data; and
3	displaying the moving object on the user interface.