

A2

5. (Amended) The liquid crystal display device of Claim 1, wherein heights of

projections are varied.

7. (Amended) The liquid crystal display device of Claim 5, wherein the heights are different by not less than 0.05 μm and not more than 0.2 μm .

A3

8. (Amended) A method for manufacturing liquid crystal display device comprising: forming projections by etching a film formed on a substrate; applying a sealing material on a periphery of the substrate in an annular form except for an injection inlet for liquid crystal; overlapping another substrate onto the substrate with the projections and the sealing material being interposed therebetween; injecting liquid crystal through the liquid crystal injection inlet into a region enclosed by the sealing material; and applying a pressure of not less than 20,000 Pa and not more than 40,000 Pa to surfaces of both substrates.

9. (Amended) The method of claim 8, wherein a sealing agent is applied to the liquid crystal injection inlet simultaneously with applying pressure to the surfaces of both substrates.

10. (Amended) A method for manufacturing a liquid crystal display device comprising: forming projections by etching a film formed on a substrate; applying a sealing material on a periphery of the substrate in an annular form except for an injection inlet for liquid crystal; overlapping another substrate onto the substrate with the projections and the sealing material being interposed therebetween; injecting liquid crystal through the liquid crystal injection inlet into a region enclosed by the sealing material; and applying a sealing agent to the injection inlet of the liquid crystal display device after elapse of a specified time

B canceled
from completion of injecting liquid crystal.--

A
Please add new Claims 11-24.

✓-11. (New) The method of Claim 10, wherein the specified time is not less than 30 minutes and not more than 60 minutes.

✓-12. (New) A method for manufacturing liquid crystal display device comprising: forming projections by etching a film formed on a substrate; applying a sealing material on a periphery of the substrate in an annular form except for an injection inlet for liquid crystal, an area occupying ratio of the projections with respect to a region enclosed by the sealing material being designed to be not less than 0.001 and not more than 0.003; overlapping another substrate onto the substrate with the projections and the sealing material being interposed therebetween; injecting liquid crystal through the liquid crystal injection inlet into a region enclosed by the sealing material; and applying a pressure of not less than 20,000 Pa and not more than 40,000 Pa to surfaces of both substrates.

✓-13. (New) A method for manufacturing a liquid crystal display device comprising: forming projections by etching a film formed on a substrate; applying a sealing material on a periphery of the substrate in an annular form except for an injection inlet for liquid crystal, an area occupying ratio of the projections with respect to a region enclosed by the sealing material being designed to be not less than 0.001 and not more than 0.003; overlapping another substrate onto the substrate with the projections and the sealing material being interposed therebetween; injecting liquid crystal through the liquid crystal injection inlet into

a region enclosed by the seal agent; and applying a sealing agent to the injection inlet of the liquid crystal display device after elapse of a specified time from completion of injecting liquid crystal.

✓ 14. (New) A liquid crystal display device of a transverse field method comprising: a sealing material provided on a periphery of a substrate for preventing leakage of liquid crystal, projections formed by etching a film formed on the substrate, and another substrate opposing the substrate being remote therefrom by a gap and being supported by the projections, wherein an area occupying ratio of the projections with respect to a region enclosed by the sealing material is not less than 0.001 and not more than 0.003, and heights of projections are varied.

✓ 15. (New) The liquid crystal display device of Claim 14, wherein the heights are different by not less than 0.05 μm .

✓ 16. (New) The liquid crystal display device of Claim 14, wherein the heights are different by not less than 0.05 μm and not more than 0.2 μm .

✓ 17. (New) A liquid crystal display device of a transverse field method comprising: a sealing material provided on a periphery of a substrate for preventing leakage of liquid crystal, projections formed by etching a film formed on the substrate, and another substrate opposing the substrate being remote therefrom by a gap and being supported by the projections, wherein an area occupying ratio of the projections with respect to a region enclosed by the sealing material is not less than 0.0014 and not more than 0.0029, and height

of projections are varied by not less than 0.05 μm and not more than 0.2 μm.

18. (New) A method for manufacturing liquid crystal display device of a transverse field method comprising: forming projections by etching a film formed on a substrate; applying a sealing material on a periphery of the substrate in an annular form except for an injection inlet for liquid crystal; overlapping another substrate onto the substrate with the projections and the sealing material being interposed therebetween; injecting liquid crystal through the liquid crystal injection inlet into a region enclosed by the sealing material; and applying a pressure of not less than 20,000 Pa and not more than 40,000 Pa to surfaces of both substrates, wherein a sealing agent is applied to the liquid crystal injection inlet simultaneously with applying pressure to surfaces of both substrates.

19. (New) A method for manufacturing a liquid crystal display device of a transverse field method comprising: forming projections by etching a film formed on a substrate; applying a sealing material on a periphery of the substrate in an annular form except for an injection inlet for liquid crystal; overlapping another substrate onto the substrate with the projections and the sealing material being interposed therebetween; injecting liquid crystal through the liquid crystal injection inlet into a region enclosed by the sealing material ; and applying a sealing agent to the injection inlet of the liquid crystal display device after elapse of a specified time from completion of injecting liquid crystal.

20. (New) The method of Claim 19, wherein the specified time is not less than 30 minutes and not more than 60 minutes.

✓ 21. (New) A method for manufacturing liquid crystal display device of a transverse field method comprising: forming projections by etching a film formed on a substrate; applying a sealing material on a periphery of the substrate in an annular form except for an injection inlet for liquid crystal, an area occupying ratio of the projections with respect to a region enclosed by the sealing material being designed to be not less than 0.001 and not more than 0.003; overlapping another substrate onto the substrate with the projections and the sealing material being interposed therebetween; injecting liquid crystal through the liquid crystal injection inlet into a region enclosed by the sealing material; and applying a pressure of not less than 20,000 Pa and not more than 40,000 Pa to surfaces of both substrates.

✓ 22. (New) A method for manufacturing a liquid crystal display device of a transverse field method comprising: forming projections by etching a film formed on a substrate; applying a sealing material on a periphery of the substrate in an annular form except for an injection inlet for liquid crystal, an area occupying ratio of the projections with respect to a region enclosed by the sealing material being designed to be not less than 0.001 and not more than 0.003; overlapping another substrate onto the substrate with the projections and the sealing material being interposed therebetween; injecting liquid crystal through the liquid crystal injection inlet into a region enclosed by the seal agent; and applying a sealing agent to the injection inlet of the liquid crystal display device after elapse of a specified time from completion of injecting liquid crystal, the specified time being not less than 30 minutes and not more than 60 minutes.

✓ 23. (New) A method for manufacturing a liquid crystal display of a transverse field method device comprising: forming projections by etching a film formed on a substrate,

Art. 24

heights of projections being varied by not less than 0.05 μm and not more than 0.2 μm ; applying a sealing material on a periphery of the substrate in an annular form except for an injection inlet for liquid crystal, an area occupying ratio of the projections with respect to a region enclosed by the sealing material being designed to be not less than 0.0014 and not more than 0.0029; overlapping another substrate onto the substrate with the projections and the sealing material being interposed therebetween; injecting liquid crystal through the liquid crystal injection inlet into a region enclosed by the sealing material; and applying a sealing agent to the injection inlet of the liquid crystal display device after elapse of a specified time from completion of injecting liquid crystal, the specified time being not less than 30 minutes and not more than 60 minutes.

✓ 24. (New) A method for manufacturing liquid crystal display device of a transverse field method comprising: forming projections by etching a film formed on a substrate, heights of projections being varied by not less than 0.05 μm and not more than 0.02 μm ; applying a sealing material on a periphery of the substrate in an annular form except for an injection inlet for liquid crystal, an area occupying ratio of the projections with respect to a region enclosed by the sealing material being designed to be not less than 0.0014 and not more than 0.0029; overlapping another substrate onto the substrate with the projections and the sealing material being interposed therebetween; injecting liquid crystal through the liquid crystal injection inlet into a region enclosed by the sealing material; and applying a pressure of not less than 20,000 Pa and not more than 40,000 Pa to surfaces of both substrates.--