

Mathieu Brédif Emmanuel Habets Bruno Vallet Jean-Pierre Papelard

(Large Input 3-D System)

Capter et stocker l'environnement 3D

Acquisition 3D: Plateformes

Aérien

Satellite

Véhicules légers

10cm

1*m*

Drones

1mm

Portatif, Sac à dos, smartphone...

Acquisition 3D: Capteurs

Acquisition 3D: Capteurs

Acquisition 3D Exemple du mobile mapping

Trajectoire

- centrale inertielle + GPS + odomètre → position et orientation à 200Hz

Images

- 9 images totalisant 28MPix tous les 2m

Laser

- 300 000 points/s
- 84 octets/point (non compressé)
- ~100Go/H d'acquisition
- 6H par jour ...

Entrepôt de données

Ll³DS vise à développer un entrepôt libre de

- Données d'acquisition 3D
 - images, nuages de point, trajectoires
- Métadonnées : calibrations images et laser, réglages des capteurs, poses relatives...

L'objectif est de cataloguer et intégrer des volumes très importants de données hétérogènes issues de plateformes multiples : aérien, drone, mobile mapping, portatif...

Entrepôt de données : Laser

Nuage de point 3D Laser acquis (brut)

Repère capteur Laser

Pose relative (calibration)

Translation/Rotation

Repère mobile du véhicule

Trajectoire du véhicule

Translation/Rotation(temps)

Repère fixe (Terrestre)

Nuage de point 3D Laser géoréférencé

Donnée

Repère

Transform

Entrepôt statique

Actuellement, les nuages de points laser sont publiés dans les entrepôts après application de la calibration et de la trajectoire

→ précalcul du géoréférencement

En pratique, il est fréquent de recalculer :

- une calibration
 - un capteur a bougé (maintenance, remontage…)
 - Amélioration de la calibration post-acquisition
- une trajectoire
 - Trajectographie GPS brute → Post traitée (différentiel)
 - Compensation avec données externes...

Entrepôt statique

Que faire si la calibration du capteur laser est recalculée et/ou que la trajectoire est réestimée ?

- Effacer le nuage géoréférencé (car obsolète)
- Réexporter un nouveau nuage (à partir du nuage brut archivé)
- Ou conserver les différents exports (redondance...)

Peut on faire mieux?

– → Entrepôt dynamique

Entrepôt dynamique

Stocker dans l'entrepôt

- Les données brutes (laser, image, trajectoires)
- Les métadonnées (calibrations / transformations)

Générer les données géoréférencées à la volée

- Pas de duplication (données brute + géoréférencée)
- Trajectoires et calibrations modifiables sans recalcul
- Caching/vue matérialisée si nécessaire (optimisation)
- Description fine des métadonnées
 - Historisation/versionnement des calibrations et des trajectoires (date de validité, sémantique...)

Modèle de données / métadonnées

Donnée

est exprimée dans un certain

Repère

(Système de coordonnées)

Transformation de coordonnées

Repère source Transform cible

→ Graphe : Noeud = repère , Arc = transform

Graphe de Transform : Caméra stéréo

Graphe: Mobile Mapping

IGN

Graphe: Mobile Mapping

Modèle de données / métadonnées

Modèle de données / métadonnées

Implémentation

Nuage de point laser en base ?

- Un point par ligne → trop de ligne!
- Extension pgPointCloud : PCPatch
 - points regroupés → passe à l'échelle !

[Cura16]

Publication dans l'entrepôt des fichiers laser et des trajectoires ?

- PDAL?
 - Laser supporté (LAS, RXP...) mais limitations sur les attributs supportés
 - Trajectoires SBET
 - · Mais : coût de mise en base.
- Foreign Data Wrapper (FDW) ?
 - Fichiers laser/trajectoire interprétés à la volée comme des tables de PCPATCH!

Implémentation

Le modèle de données est en cours de définition et d'implémentation PostgreSQL / PostGIS / pgPointCloud :

https://github.com/LI3DS

Métadonnées d'acquisition (transfo...)

https://github.com/LI3DS/pg_li3ds(Todo)

Manipulation des nuages de points laser et des trajectoires (fdw)

https://github.com/LI3DS/fdwlidar

Fork PgPointCloud

https://github.com/LI3DS/pointcloud

Contributions à pgPointCloud

Closed PR: 4

Contributions à pgPointCloud

Pending PR: 3

Contributions à pgPointCloud

Dans les cartons : PC_Interpolate

https://github.com/mbredif/pointcloud/tree/PC_interpolate

Difficulté : échantillonnages temporels différents !

API: Outils d'accès E/S

Todo: Développement des composants API serveur:

- API de publication de chantiers d'acquisition
- Streaming de nuage de point

. . .

Perspectives: Visualisation SIG

Perspectives: Visualisation 3D

Visualisation 3D depuis un client webGL

Perspectives : Analyse spatiale

Détection des passages multiples (trajectoire ou laser)

Quelles images « voient » un point laser à moins de 10m ?

Quelles couples d'images de passages différents sont susceptibles de voir un même point 3D à moins de 10m ?

Quels sont les patches laser susceptibles d'être vus dans une image ?

Couplage avec des données spatiales: récuperer le pointcloud et/ou les images correspondant à une façade, à une rue, pouvant voir un panneau de signalisation...

Approximation vectorielle de patches laser Gestion et propagation des incertitudes Passage à l'échelle / benchmarking Niveaux de détail

. . .

Questions?

