An Introduction of Support Vector Machine

Jinwei Gu 2008/10/16

Today: Support Vector Machine (SVM)

- A classifier derived from statistical learning theory by Vapnik, et al. in 1992
- SVM became famous when, using images as input, it gave accuracy comparable to neural-network with hand-designed features in a handwriting recognition task
- Currently, SVM is widely used in object detection & recognition, content-based image retrieval, text recognition, biometrics, speech recognition, etc.

V. Vapnik

- Also used for regression (will not cover today)
- Chapter 5.1, 5.2, 5.3, 5.11 (5.4*) in textbook

Outline

- Linear Discriminant Function
- Large Margin Linear Classifier
- Nonlinear SVM: The Kernel Trick
- Demo of SVM

Discriminant Function

• Chapter 2.4: the classifier is said to assign a feature vector x to class w_i if

$$g_i(\mathbf{x}) > g_j(\mathbf{x})$$
 for all $j \neq i$

For two-category case, $g(\mathbf{x}) \equiv g_1(\mathbf{x}) - g_2(\mathbf{x})$

Decide ω_1 if $g(\mathbf{x}) > 0$; otherwise decide ω_2

- An example we've learned before:
 - Minimum-Error-Rate Classifier

$$g(\mathbf{x}) \equiv p(\omega_1 \mid \mathbf{x}) - p(\omega_2 \mid \mathbf{x})$$

Discriminant Function

It can be arbitrary functions of x, such as:

Nearest Neighbor

Decision Tree

Linear Functions

$$g(\mathbf{x}) = \mathbf{w}^T \mathbf{x} + b$$

Nonlinear Functions

= g(x) is a linear function:

$$g(\mathbf{x}) = \mathbf{w}^T \mathbf{x} + b$$

A hyper-plane in the feature space

w為法向量

(Unit-length) normal vector of the hyper-plane:

$$\mathbf{n} = \frac{\mathbf{w}}{\|\mathbf{w}\|}$$

 X_2

- denotes +1
- denotes -1

How would you classify these points using a linear discriminant function in order to minimize the error rate?

Infinite number of answers!

denotes +1

○ denotes -1

How would you classify these points using a linear discriminant function in order to minimize the error rate?

Infinite number of answers!

 X_2

denotes +1

○ denotes -1

How would you classify these points using a linear discriminant function in order to minimize the error rate?

Infinite number of answers!

 X_2

- denotes +1
 - denotes -1

How would you classify these points using a linear discriminant function in order to minimize the error rate?

Infinite number of answers!

Which one is the best?

- The linear discriminant function (classifier) with the maximum margin is the best
- Margin is defined as the width that the boundary could be increased by before hitting a data point
- Why it is the best?
 - Robust to outliners and thus strong generalization ability

denotes +1

 X_2

- denotes +1
- denotes -1

Given a set of data points:

$$\{(\mathbf{x}_i, y_i)\}, i = 1, 2, L, n, \text{ where}$$

For
$$y_i = +1$$
, $\mathbf{w}^T \mathbf{x}_i + b > 0$

For
$$y_i = -1$$
, $\mathbf{w}^T \mathbf{x}_i + b < 0$

With a scale transformation on both w and b, the above is equivalent to

For
$$y_i = +1$$
, $\mathbf{w}^T \mathbf{x}_i + b \ge 1$

For
$$y_i = -1$$
, $\mathbf{w}^T \mathbf{x}_i + b \le -1$

^{1.} margin range = d

- denotes +1
- denotes -1

We know that

$$\mathbf{w}^T \mathbf{x}^+ + b = 1$$
$$\mathbf{w}^T \mathbf{x}^- + b = -1$$

The margin width is:

$$M = (\mathbf{x}^+ - \mathbf{x}^-) \cdot \mathbf{n}$$
$$= (\mathbf{x}^+ - \mathbf{x}^-) \cdot \frac{\mathbf{w}}{\|\mathbf{w}\|} = \frac{2}{\|\mathbf{w}\|}$$

- denotes +1
 - denotes -1

Formulation:

maximize
$$\frac{2}{\|\mathbf{w}\|}$$

For
$$y_i = +1$$
, $\mathbf{w}^T \mathbf{x}_i + b \ge 1$
For $y_i = -1$, $\mathbf{w}^T \mathbf{x}_i + b \le -1$

- denotes +1

Formulation:

minimize
$$\frac{1}{2} \|\mathbf{w}\|^2$$

For
$$y_i = +1$$
, $\mathbf{w}^T \mathbf{x}_i + b \ge 1$

For
$$y_i = -1$$
, $\mathbf{w}^T \mathbf{x}_i + b \le -1$

- denotes +1
- denotes -1

Formulation:

minimize
$$\frac{1}{2} \|\mathbf{w}\|^2$$

$$y_i(\mathbf{w}^T\mathbf{x}_i+b) \ge 1$$

Quadratic programming with linear constraints

minimize
$$\frac{1}{2} \|\mathbf{w}\|^2$$

s.t.
$$y_i(\mathbf{w}^T\mathbf{x}_i + b) \ge 1$$

Lagrangian Function

小於1下面的J就會變大

minimize
$$L_p(\mathbf{w}, b, \alpha_i) = \frac{1}{2} ||\mathbf{w}||^2 - \sum_{i=1}^n \alpha_i (y_i(\mathbf{w}^T \mathbf{x}_i + b) - 1)$$

s.t.
$$\alpha_i \geq 0$$

minimize
$$L_p(\mathbf{w}, b, \alpha_i) = \frac{1}{2} \|\mathbf{w}\|^2 - \sum_{i=1}^n \alpha_i \left(y_i(\mathbf{w}^T \mathbf{x}_i + b) - 1 \right)$$

s.t.
$$\alpha_i \geq 0$$

$$\frac{\partial L_p}{\partial \mathbf{w}} = 0 \qquad \mathbf{w} = \sum_{i=1}^n \alpha_i y_i \mathbf{x}_i$$

$$\frac{\partial L_p}{\partial b} = 0 \qquad \sum_{i=1}^n \alpha_i y_i = 0$$

minimize
$$L_p(\mathbf{w}, b, \alpha_i) = \frac{1}{2} \|\mathbf{w}\|^2 - \sum_{i=1}^n \alpha_i \left(y_i(\mathbf{w}^T \mathbf{x}_i + b) - 1 \right)$$

s.t.
$$\alpha_i \geq 0$$

Lagrangian Dual Problem

maximize
$$\sum_{i=1}^{n} \alpha_i - \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_i \alpha_j y_i y_j \mathbf{x}_i^T \mathbf{x}_j$$

s.t.
$$\alpha_i \ge 0$$
 , and $\sum_{i=1}^n \alpha_i y_i = 0$

From KKT condition, we know:

$$\alpha_i \left(y_i (\mathbf{w}^T \mathbf{x}_i + b) - 1 \right) = 0$$

alpha_i 只與support vector有關

- Thus, only support vectors have $\alpha_i \neq 0$
- The solution has the form:

$$\mathbf{w} = \sum_{i=1}^{n} \alpha_i y_i \mathbf{x}_i = \sum_{i \in SV} \alpha_i y_i \mathbf{x}_i$$

get b from $y_i(\mathbf{w}^T\mathbf{x}_i + b) - 1 = 0$, where \mathbf{x}_i is support vector

The linear discriminant function is:

$$g(\mathbf{x}) = \mathbf{w}^T \mathbf{x} + b = \sum_{i \in SV} \alpha_i \mathbf{x}_i^T \mathbf{x} + b$$

- Notice it relies on a dot product between the test point x and the support vectors x_i
- Also keep in mind that solving the optimization problem involved computing the dot products x_i^Tx_j between all pairs of training points

 What if data is not linear separable? (noisy data, outliers, etc.)

Slack variables ξ_i can be added to allow mis-classification of difficult or noisy data points

denotes +1

Formulation:

minimize
$$\frac{1}{2} \|\mathbf{w}\|^2 + C \sum_{i=1}^n \xi_i$$

such that

$$y_i(\mathbf{w}^T\mathbf{x}_i + b) \ge 1 - \xi_i$$
$$\xi_i \ge 0$$

C = 0 => don't care error

Parameter C can be viewed as a way to control over-fitting.

Formulation: (Lagrangian Dual Problem)

maximize
$$\sum_{i=1}^{n} \alpha_i - \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_i \alpha_j y_i y_j \mathbf{x}_i^T \mathbf{x}_j$$

$$0 \le \alpha_i \le C$$

$$\sum_{i=1}^{n} \alpha_i y_i = 0$$

Non-linear SVMs

Datasets that are linearly separable with noise work out great:

But what are we going to do if the dataset is just too hard?

How about... mapping data to a higher-dimensional space:

This slide is courtesy of www.iro.umontreal.ca/~pift6080/documents/papers/svm_tutorial.ppt

Non-linear SVMs: Feature Space

General idea: the original input space can be mapped to some higher-dimensional feature space where the training set is separable:

Nonlinear SVMs: The Kernel Trick

With this mapping, our discriminant function is now:

$$g(\mathbf{x}) = \mathbf{w}^T \phi(\mathbf{x}) + b = \sum_{i \in SV} \alpha_i \phi(\mathbf{x}_i)^T \phi(\mathbf{x}) + b$$

- No need to know this mapping explicitly, because we only use the dot product of feature vectors in both the training and test.
- A kernel function is defined as a function that corresponds to a dot product of two feature vectors in some expanded feature space:

$$K(\mathbf{x}_i, \mathbf{x}_j) \equiv \phi(\mathbf{x}_i)^T \phi(\mathbf{x}_j)$$

Nonlinear SVMs: The Kernel Trick

An example:

2-dimensional vectors $\mathbf{x} = [x_1 \ x_2]$;

let
$$K(x_i,x_j)=(1+x_i^Tx_j)^2$$
,

Need to show that $K(x_i,x_i) = \varphi(x_i)^T \varphi(x_i)$:

$$\begin{split} \textit{K}(\mathbf{x_i}, \mathbf{x_j}) &= (1 + \mathbf{x_i}^{\mathsf{T}} \mathbf{x_j})^2, \\ &= 1 + x_{il}^2 x_{jl}^2 + 2 \; x_{il} x_{jl} \; x_{i2} x_{j2} + x_{i2}^2 x_{j2}^2 + 2 x_{il} x_{jl} + 2 x_{i2} x_{j2} \\ &= [1 \; x_{il}^2 \; \sqrt{2} \; x_{il} x_{i2} \; \; x_{i2}^2 \; \sqrt{2} x_{il} \; \sqrt{2} x_{i2}]^{\mathsf{T}} \; [1 \; x_{jl}^2 \; \sqrt{2} \; x_{jl} x_{j2} \; \; x_{j2}^2 \; \sqrt{2} x_{jl} \; \sqrt{2} x_{j2}] \\ &= \varphi(\mathbf{x_i})^{\mathsf{T}} \varphi(\mathbf{x_i}), \quad \text{where } \varphi(\mathbf{x}) = [1 \; x_{l}^2 \; \sqrt{2} \; x_{l} x_{2} \; \; x_{2}^2 \; \sqrt{2} x_{l} \; \sqrt{2} x_{2}] \end{split}$$

Nonlinear SVMs: The Kernel Trick

- Examples of commonly-used kernel functions:
 - □ Linear kernel: $K(\mathbf{x}_i, \mathbf{x}_j) = \mathbf{x}_i^T \mathbf{x}_j$
 - □ Polynomial kernel: $K(\mathbf{x}_i, \mathbf{x}_j) = (1 + \mathbf{x}_i^T \mathbf{x}_j)^p$
 - □ Gaussian (Radial-Basis Function (RBF)) kernel:

$$K(\mathbf{x}_i, \mathbf{x}_j) = \exp(-\frac{\|\mathbf{x}_i - \mathbf{x}_j\|^2}{2\sigma^2})$$

Sigmoid:

$$K(\mathbf{x}_i, \mathbf{x}_j) = \tanh(\beta_0 \mathbf{x}_i^T \mathbf{x}_j + \beta_1)$$

In general, functions that satisfy Mercer's condition can be kernel functions.

Nonlinear SVM: Optimization

Formulation: (Lagrangian Dual Problem)

maximize
$$\sum_{i=1}^{n} \alpha_i - \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_i \alpha_j y_i y_j K(\mathbf{x}_i, \mathbf{x}_j)$$
 such that
$$0 \le \alpha_i \le C$$

$$\sum_{i=1}^{n} \alpha_i y_i = 0$$

The solution of the discriminant function is

$$g(\mathbf{x}) = \sum_{i \in SV} \alpha_i K(\mathbf{x}_i, \mathbf{x}) + b$$

The optimization technique is the same.

Support Vector Machine: Algorithm

- 1. Choose a kernel function
- 2. Choose a value for C
- 3. Solve the quadratic programming problem (many software packages available)
- 4. Construct the discriminant function from the support vectors

Some Issues

Choice of kernel

- Gaussian or polynomial kernel is default
- if ineffective, more elaborate kernels are needed
- domain experts can give assistance in formulating appropriate similarity measures

Choice of kernel parameters

- e.g. σ in Gaussian kernel
- σ is the distance between closest points with different classifications
- In the absence of reliable criteria, applications rely on the use of a validation set or cross-validation to set such parameters.
- Optimization criterion Hard margin v.s. Soft margin
 - a lengthy series of experiments in which various parameters are tested

Summary: Support Vector Machine

- 1. Large Margin Classifier
 - Better generalization ability & less over-fitting
- 2. The Kernel Trick
 - Map data points to higher dimensional space in order to make them linearly separable.
 - Since only dot product is used, we do not need to represent the mapping explicitly.

Additional Resource

http://www.kernel-machines.org/