Name: Sai Ram Gunturu ID: C00313478

Naive Bayes Classifier - SMS Spam Detection

Data Analytics & Algorithms Log

• Algorithm Used: Naive Bayes (MultinomialNB)

• Dataset Used: SMS Spam Collection

• Framework: CRISP-DM

1. Business Understanding

Objective

• To build a Naive Bayes Classifier to classify SMS messages as spam or ham.

- To improve efficiency, I implemented data balancing techniques (SMOTE & ADASYN) to handle class imbalance.
- Spam messages are underrepresented, so I had to find a way for the **model to learn spam patterns** better.

Challenges I Faced

- Class Imbalance:
 - The dataset I chose had **87% ham messages**, leading to **biased predictions**.
- Processing Text Data:
 - I used **TF-IDF & CountVectorizer**, to convert text into numbers, removed **stopwords**, applied **stemming**, and tested **n-grams**.
- Overfitting Risks due to Resampling:
 - Since SMOTE & ADASYN create synthetic data, I had to make sure the model generalizes well.

2. Data Understanding

Dataset Overview

- Total Messages: 5,572
- Class Distribution:
 - Ham (Authentic Messages): 4,825
 - o Spam (Unsolicited Messages): 747
- No missing values
- Converted categorical labels: (Spam \rightarrow 1, Ham \rightarrow 0) s

Initial Class Distribution

Class	Count	Percentage
Ham (0)	4,825	87%

Spam (1)	747	13%

Key Insight: I needed **oversampling techniques** to balance the dataset, because spam messages were much fewer

3. Data Preparation

- Text Preprocessing: Utilized CountVectorizer & TF-IDF to convert text into numerical format
- Removed stopwords, applied stemming and n-grams.
- Train-Test Split: 80% training, 20% testing.

4. Baseline Naive Bayes Model

Algorithm: Multinomial Naive Bayes

Since Naive Bayes performs well on text classification, I started with MultinomialNB.

Baseline Model Performance:

Metric	Value
Accuracy	96.68%
Precision (Spam)	100%
Recall (Spam)	75%
F1-score (Spam)	86%

Confusion Matrix:

True Label	Predicted Ham	Predicted Spam
Ham (0)	966	0
Spam (1)	37	112

What I Noticed:

- High accuracy (96.68%), but spam recall was low (75%).
- Spam messages were often misclassified as ham \rightarrow needed a better way to handle imbalance.

5. Using SMOTE for Class Balancing

To enable the model to learn spam patterns more effectively, I decided to **oversample the spam messages using SMOTE**

Performance After SMOTE:

True Label	Predicted Ham	Predicted Spam
Ham (0)	953	13
Spam (1)	6	143

Key Impact of SMOTE

- Spam recall went up from $75\% \rightarrow 96\%$.
- False negatives decreased from 37 → 6 (meaning less spam messages got incorrectly classified as ham).
- False positives increased a little bit $(0 \rightarrow 13)$, but this was fine since recall improved a lot.

6. Using ADASYN for Class Balancing

Another technique I tried was ADASYN, which generates synthetic spam samples only where needed.

Performance After ADASYN

True Label	Predicted Ham	Predicted Spam
Ham (0)	967	19
Spam (1)	242	687

What I Found:

- Spam recall fell to 74% (worse than SMOTE).
- False negatives increased highly $(6 \rightarrow 242)$, which means the model missed a lot of spam messages.

7. Final Model Comparison

Metric	Baseline Model	SMOTE Model	ADASYN Model
Accuracy	96.7%	95.8%	86.37%
Recall (Spam Detection)	75%	96%	74%
False Negatives (Missed Spam)	37	6	242
False Positives (Misclassified Ham)	0	13	19

Final Decision: SMOTE performed best.

• Dataset Change: Diabetes Classification

This time I switched to the **Diabetes Classification dataset** as I wanted to see how **Naive Bayes performs** on structured numerical data.

Dataset Overview:

Feature	Туре	Description
glucose	Integer	Glucose level
blood pressure	Integer	Blood pressure
diabetes	Integer	Target $(0 = No, 1 = Yes)$

- No missing values
- Well balanced dataset (50% diabetic, 50% non-diabetic)

4. Baseline Naive Bayes Model (Diabetes)

Algorithm: Gaussian Naive Bayes

Since my data was numerical, I opted Gaussian Naive Bayes, which presumes a normal distribution.

Performance Before Tuning:

Metric	Value
Accuracy	90.95%
Precision (Diabetes)	91%
Recall (Diabetes)	91%
F1-Score (Diabetes)	91%

5. Hyperparameter Tuning

I used GridSearchCV. for tuning var smoothing, to optimize performance,

Best Parameter: $var_smoothing = 0.0001$.

Performance After Tuning

Metric	Value
Accuracy	90.95% (Same)
Precision (Diabetes)	91%
Recall (Diabetes)	91%

Tuning had no impact → Default model was already efficient (optimal).

6. Conclusion

- SMS Spam Detection: SMOTE worked best, making spam recall rise from $75\% \rightarrow 96\%$.
- Diabetes Prediction: Naive Bayes worked exceptionally well (91% accuracy) with no tuning or resampling.
- What I Learned:
 - o **Text vs. Numerical Data:** The ML models behave differently based on data type.
 - Class Imbalance Matters: Resampling worked for spam detection but wasn't needed for diabetes classification.