

The Nonparametric Metadata Dependent Relational Model

Dae II Kim, Michael C. Hughes, Erik B. Sudderth Brown University, Providence, RI, USA

Our Contributions

- ◆ Nonparametric mixed membership
 - Unbounded number of communities
 - Retrospective MCMC: No Truncation
- ◆ Metadata informs latent structure
 - Upstream inclusion of metadata leads to recovery of *interpretable* communities

Stochastic Block Models

Unsupervised community discovery [Wang JASA 1987] from observed network edges

- Assign each node to one latent block/community
- Predict edge presence from block assignments of source and receiver nodes

Various Network Structures Possible

Infinite Relational (IRM)

- **Unbounded** number of blocks K, [Kemp AAAI 2006] via Chinese Restaurant Process
- Each node assigned to **one** block

Multipartite

Mixed Membership (MMSB)

• **Finite** number of blocks *K*, [Airoldi JMLR 2008] must be specified a priori

• Each node has **distribution** over blocks

 $s_{ij} \sim \operatorname{Cat}(\pi_i)$ Source Block Assignment Receiver Block Assignment $r_{ij} \sim \operatorname{Cat}(\pi_i)$ $y_{ij} \sim \text{Bern}(W_{s_{ij}r_{ij}})$ **Binary Edge Indicator**

Using Metadata

Downstream

[Miller NIPS 2009]

Metadata regression in edge likelihood $y_{ij} \sim \text{Bern}(W_{s_{ij},r_{ij}} + \eta^T \phi_i)$

Recovered communities less interpretable, just explain residual noise

Upstream

P - F - Boston P - F - Boston

P - M - Boston

Metadata informs node membership, creates meaningful communities

Logistic stick breaking allows ϕ_i to inform π_i

MMSB NMDR-NOF NMDR

NMDR Graphical Model

Link presence probability $\mu_f \sim N(0, \lambda_S^{-1})$

Mean metadata weight

 $\eta_{fk} \sim N(\mu_f, \lambda_F^{-1})$ Metadata regression weight

Precision parameters have Gamma priors $\;\lambda_S,\lambda_F,\lambda_V\;$

ohn Bosco

Boniface

NMDR Communities

Retrospective MCMC

- Dynamically add/delete blocks across iterations
- Only instantiate K blocks actively used
- Create parameters for new blocks as needed **EXAMPLE**: Sampling $s_{ij}|\pi_i, y_{ij}, r_{ij} = \ell$

Typical Gibbs update, with extra term for new block Counts of present/absent edges with communities k,l excluding edge i,j

$$\rho_k \propto \pi_{ki} \frac{(A_{k\ell}^{-ij} + \gamma_a)^{y_{ij}} (B_{k\ell}^{-ij} + \gamma_b)^{1-y_{ij}}}{A_{k\ell}^{-ij} + B_{k\ell}^{-ij} + \gamma_a + \gamma_b}$$

Lazega Lawyers Analysis

<u>Metadata</u>

Partner/Associate Male/Female Office Location -AN Bostovidence Boston

Sampson Monastery Analysis

