Esercizi su Combinazioni Lineari e sottospazi di \mathbb{R}^n

ESERCIZI

- (1) Scrivere il vettore $(2,1,0,0) \in \mathbb{R}^4$ come combinazione lineare dei vettori $e_1, e_1 + e_2$ di \mathbb{R}^4 .
- (2) Dati i vettori $v_1 = (1,1,1), v_2 = (0,0,1)$ e il sottospazio $W = \{(x,y,z) \in \mathbb{R}^3 : x+y+z=0\}$ trovare se possibile:
 - un vettore v che appartiene a $L(v_1, v_2)$ ma non a W;
 - un vettore w che appartiene a W ma non a $L(v_1, v_2)$;
 - un vettore u che appartiene sia a W che a $L(v_1, v_2)$.
- (3) Dati i vettori $v_1 = (1, 0, 1), v_2 = (0, 0, 1), v_3 = (1, 0, 2)$ in \mathbb{R}^3 dimostrare che $v_3 \in L(v_1, v_2)$.
- (4) Considerare i seguenti vettori di \mathbb{R}^4 :

$$v_1 = (1, 0, 3, 0), v_2 = (1/2, -1, 0, 1).$$

- (a) Utilizzando dei parametri, descrivere il sottospazio delle combinazioni lineari $L(v_1, v_2)$.
- (b) Determinare se possibile una combinazione lineare di v_1, v_2 con prima coordinata nulla e seconda e terza coordinata non nulla.
- (c) Determinare, se possibile, una combinazione lineare di v_1, v_2 con prima coordinata non nulla e seconda e terza coordinata nulla.
- (d) Determinare se i vettori w = (1, 2, 6, 0) e w' = (1/2, 1, 3, -1) appartengono o meno a $L(v_1, v_2)$; in caso affermativo trovare i coefficienti della combinazione lineare di v_1, v_2 che servono per scrivere il vettore dato.
- (5) Considerare i vettori $v_1 = (1, 0, 1), v_2 = (0, 0, 1), v_3 = (1, 0, 2)$ di \mathbb{R}^3 .
 - (a) Determinare se $v_3 \in L(v_1, v_2)$, se $v_2 \in L(v_1, v_3)$, se $v_3 \in L(v_1, v_2)$.
 - (b) Descrivere il sottospazio $L(v_1, v_2)$ ed il sottospazio $L(v_1, v_2, v_3)$.
 - (c) Dimostrare che il vettore $(\sqrt{2},0,1)$ appartiene a $L(v_1,v_2)$ e scriverlo come combinazione lineare di v_1,v_2 .
- (6) Sia $W=\{(x,y,z)\in\mathbb{R}^3: x+y+z=0\}$. Dimostrare che W è un sottospazio, trovando due vettori $w_1,w_2\in W$ tali che $W=L(v_1,v_2)$. Faro lo stesso per il sottospazio di equazione parametrica

$$\begin{cases} x = h - k + 2t \\ y = h \\ z = t \\ w = t \end{cases}$$

e per il sottospazio di equazione parametrica

$$\begin{cases} x = 2t \\ y = -t \\ z = t \\ w = 3t \end{cases}$$

- (7) Considerare i vettori $v_1 = (1, 1, 1), v_2 = (1, 0, 1), v_3 = (1, 2, 1)$ in \mathbb{R}^3 ;
 - (a) descrivere l'insieme delle loro combinazioni linerari $L(v_1, v_2, v_3)$;
 - (b) determinare se il vettore v_3 appartiene o meno allo spazio $L(v_1, v_2)$;
- (8) Sia W il seguente sottoinsieme di \mathbb{R}^4 :

$$W = \{(h + k, h - k, h, k) : h, k \in \mathbb{R}\}$$

- (a) Stabilire se i seguenti vettori di \mathbb{R}^4 appartengono o meno al sottospazio: e_1 , $e_1 + e_2$, (8,0,2,6), (8,0,4,4)(b) Trovare due vettori v_1, v_2 di W tali che $W = L(v_1, v_2)$.