# © Marco Dorigo

## **Swarm Robotics**

Prof. Marco Dorigo



Shaping Swarms of Intelligent Robots

#### WHAT IS SWARM ROBOTICS?

- ➤ Swarm robotics studies how a large number of embodied agents can be designed and controlled so that a desired collective behavior results from local interactions among the agents and between the agents and the environment in which they act
- ➤ The main goal pursued is the development of physical swarms exhibiting collective behaviors that are fault tolerant, scalable and flexible



#### WHAT IS SWARM ROBOTICS?

#### Swarm robotics is embodied swarm intelligence

- ➤ it studies how to design, build and control swarms of cooperating robots
- ➤ and how to use swarm intelligence principles decentralised control, local sensing and communication, self-organisation to control them



#### THE SWARM ROBOTICS PROBLEM

#### How to control a large number of robots (robot swarm) so that:

- the robots cooperate to perform given tasks
- ➤ the robot swarm is tolerant to Byzantine robots (i.e., malfunctioning or malicious robots)
- ➤ the robot swarm is scalable

  (i.e., amount of work produced can be adapted by increasing/decreasing the number of robots without need for reprogramming)

#### **HOW TO CONTROL A ROBOT SWARM?**

Centralised control: one central controller has full knowledge about all system components and is in charge of controlling them

- in favour: a lot of experience on how to program centralised systems
- ➤ against: single point of failure, difficult to scale

Self-organization: no centralised control (control is distributed over the system components), local interactions, local communication

- in favour: coherent with our goals (fault tolerance, scalability)
- ➤ against: micro-macro problem

#### THE MICRO-MACRO LINK PROBLEM

How to program the single robots so that the swarm behaves as you want

The goal is to program the swarm as a whole, but single robots are programmed

#### HOW DO WE PROGRAM A SELF-ORGANISED ROBOT SWARM?



#### **HOW DO WE PROGRAM A ROBOT SWARM?**





#### What is a swarm-bot?

- A "swarm-bot" is an artifact composed of a number of simpler robots, called "s-bots", capable of self-assembling and self-organizing to adapt to its environment
- S-bots can connect to and disconnect from each other to self-assemble and form structures when needed, and disband at will



# What should a swarm-bot be able to do?

 Move in formation to overcome obstacles that a single s-bot cannot overcome alone

 Retrieve an item that is too heavy for a single s-bot









# Technological motivations

#### Parallelism:

Different robots can perform different task at the same time

#### Fault tolerance:

Simple agents are less prone to failure. When a robot breaks down another one can take over. No single point-of-failure

#### Cost:

Simple robots are cheaper to build than complex robots

#### Scalability:

Add more robots, get more work done



# How to get there

- Redundant hardware: multi-agent system
- Decentralized control system: self-organized and distributed control
- Decentralized communication system: individuals use only local information

# Biological inspirations

#### Inspiration 1:

Social insects can perform coordinated, colony-level tasks despite the lack of a global communication system We exploit three mechanisms that lie behind this coordination: stigmergy, self-assembly, collective transport

- Inspiration 2: Robot controllers implemented as neural networks whose weights are learned by evolutionary computation techniques
- Inspiration 3:
  Type of considered tasks







# The scenario





Pull object and search for goal



Change shape and move in a coordinate way avoiding obstacles





# Our scenario





# Controllers development: methodology

- Develop a simulation model of the hardware
- Define the basic behaviors to be developed
- Use either

hand-coded behavior-based architectures or

artificial evolution of neural networks

to synthesize the basic behaviors in simulation that can be ported to the real s-bots

Download and test the obtained controllers on the real *s-bots* 

# Simulation model





## Different levels of detail



detailed medium simple

# Matching detailed simulation model with real s-bot













# Matching between simple and detailed models







# Definition of behaviors for the scenario

- Coordinated motion
- Self-assembly
- Cooperative transport
- Goal search and path formation





### Coordinated motion

- Four s-bots are connected in a swarm-bot formation
- Their chassis are randomly oriented
- The s-bots should be able to
  - collectively choose a direction of motion
  - move as far as possible
- Single-layer perceptrons are evolved as controllers





#### The traction sensor

- Connected s-bots apply pulling/pushing forces to each other when moving
- Each s-bot can measure a traction force acting on its turret/chassis connection
- The traction force indicates the mismatch between
  - the average direction of motion of the group
  - the desired direction of motion of the single s-bot



traction sensor



# The evolutionary algorithm

- Binary encoded genotype
  - -8 bits per real valued parameter of the neural controllers
- Generational evolutionary algorithm
  - 100 individuals evolved for 100 generations
  - 20 best individuals are allowed to reproduce in each generation
  - Mutation (3% per bit) is applied to the offspring
- The perceptron is cloned and downloaded on each *s-bot*
- Fitness is evaluated looking at the swarm-bots performance
  - -Each individual is evaluated with equal starting conditions



## Fitness evaluation

The fitness F of a genotype is given by the distance covered by the group:

$$F = \frac{\parallel X(t) - X(0) \parallel}{D}$$

where X(t) is the coordinate vector of the center of mass at time t, and D is the maximum distance that can be covered in 150 simulation cycles

- Fitness is evaluated 5 times, starting from different random initializations
- The resulting average is assigned to the genotype

#### Swarm-bots: Coordinated motion

## Results



#### **Post-evaluation**

| Replication | Performance |
|-------------|-------------|
| 1           | 0.87888     |
| 2           | 0.83959     |
| 3           | 0.88338     |
| 4           | 0.71567     |
| 5           | 0.79573     |
| 6           | 0.75209     |
| 7           | 0.83425     |
| 8           | 0.85848     |
| 9           | 0.87222     |
| 10          | 0.76111     |

Swarm-bots: Coordinated motion

# Porting to real s-bots



#### Swarm-bots: Coordinated motion

# Real s-bots





flexibility



# Scalability





scalability

flexibility and scalability



© Marco Dorigo



### Hole avoidance

- Coordinated motion of the swarm-bot
- Avoidance of holes (detection, communication, re-organization)



#### Swarm-bots: Hole avoidance

# The s-bot model





#### Sensors

- Ground sensors
  - Traction sensor
  - Microphones
- $\rightarrow$  perception of the hazard
- → perception of pulling/pushing forces
- $\rightarrow$  perception of sound signals

#### Actuators

- Motors, loudspeaker





Swarm-bots: Hole avoidance

### **Evolution of communication**

- We provide s-bots with the possibility to explicitly signal the presence of a hole
  - Activation of the speaker directly linked to the ground sensor activation (reflex)
  - The microphones are used to detect if any s-bot is signaling the presence of a hole (one additional input to the NN)
- Evolution is in charge of shaping the reaction to the sound signal
- Communication speeds up the collective avoidance after the detection of a hole



# The evolutionary algorithm

- Generational evolutionary algorithm
  - 100 individuals evolved for 200 generations
  - 20 best individuals are allowed to reproduce in each generation
  - -Mutation is applied to the offspring (5% mutation prob for each gene)
- Binary Encoded Genotype
  - 8 bits per connection weight of the neural network controller
- The neural network is cloned and downloaded on each s-bot
  - Each genotype is evaluated 12 times
  - Different environments and different swarm-bot configurations





# The fitness computation

- Fitness is computed using only local information directly accessible to the s-bots
- Individual fitness is a function of these components:
  - Coordinated motion and hole avoidance
    - Minimization of perceived traction
    - Minimization of time spent near a hole
  - Fast motion (wheels' speed sum)
  - Straight motion (wheels' speed difference)
- The fitness of the genotype corresponds to the worst individual fitness among the s-bots

#### Swarm-bots: Hole avoidance

# Porting to real s-bots

- No substantial difference between the simulated and the real-world controller: The neural controller evolved in simulation is directly used to control the real s-bots
- Test with real swarm-bots
  - Square arena with open borders (1.8 m side)
  - 3 s-bots in triangular formation
  - 20 replication
- Obtained results:
  - Avoidance successful (not a single fall)
  - Coordination always achieved
  - Coordinated motion works even if one s-bots is partially suspended





#### Swarm-bots

# Self-assembly

#### Algorithm I - The assembly module

```
1 activate colour ring in blue
 2 do
       (N_1, N_2) \leftarrow \text{featureExtraction(camera)}
       (N_3, N_4) \leftarrow \text{sensorReadings(proximity)}
       (N_5, N_6, N_7) \leftarrow \text{neuralNetwork}(N_1, N_2, N_3, N_4)
 6
       if (N_7 > 0.5) \land (grasping requirements fulfilled)
          then
                 grasp
                 if (successfully connected)
10
                    then
11
                          activate colour ring in red
12
                          activate transport module
13
                    else
14
                          open gripper
15
                 fi
16
17
       apply (N_5, N_6) to tracks
18
19 while (timeout not reached)
```











#### Swarm-bots: Self-assembly

# Six s-bots and a prey





flexibility



flexibility

scalability



Swarm-bots

# Cooperative transport

#### Goal:

 Let a swarm-bot transport an object to a goal location

#### Control

Designed phototaxis behavior

Swarm-bots: Cooperative transport

## Pre-assembled swarm-bots





Swarm-bots: Cooperative transport

# Self-assembly and transport





#### Swarm-bots

#### Path formation

- Our robots have limited sensing capabilities:
  - Can distinguish 3 colors (approx up to 30 cm away)
  - Can say which color is closer
- We want to mimic ants trail formation, but s-bots cannot lay pheromones
- We use s-bots instead of pheromones



























Goal search and path formation

Swarm-bots: Path formation

#### Path formation and retrieval





Swarm-bots

# Ongoing research

- Functional self-assembly
- Morphology formation
- Swarm level fault detection



Functional self-assembly



S-bots can pass a low hill



An s-bot cannot pass a high hill



A swarm-bot can pass a high hill



Swarm-bot toppling



Swarm-bot's adaptive rotation



Swarm-bot's morphogenesys



# Example of application of morphology control

A same robotic system has to solve different tasks

#### Our experiment:

- 3 different tasks to be solved one after the other
  - No a priori knowledge of task sequence
  - Each task only solvable by dedicated morphology





Functional self-assembly



Swarm-bot passing hole



# Swarm-bot passing bridge



Swarm-bot passing bridge

# Swarm level fault detection inspired by fireflies behavior

- Each robot is given a heartbeat (i.e., robots flash periodically)
- A robot can stop flashing
  - either because it is broken
  - or as a way to signal other robots that it is faulty (it can realize its faultiness using some endogenous fault detection mechanism)
- When a robot stops flashing, other robots consider it as faulty



# Firefly inspired fault detection in a swarm of robots

# Synchronization and Fault Detection in Autonomous Robots

Anders Lyhne Christensen Rehan O'Grady Marco Dorigo

# The Swarmanoid experiment

A swarmanoid is composed of:

- Hand-bots
- Foot-bots
- Eye-bots

A swarmanoid is a heterogeneous swarm acting in 3D space

#### Hand-bot





# Foot-bot





© Marco Dorigo



# Eye-bot



# Spatially targeted communication and self-assembly

#### **Spatially Targeted Communication and Self-Assembly**

Nithin Mathews Anders Lyhne Christensen

Rehan O'Grady

Marco Dorigo











www.swarm-bots.org www.swarmanoid.org

