In [83]:

```
import pandas as pd
import numpy as np
import seaborn as sns
from sklearn.preprocessing import LabelEncoder
import category_encoders as ce
from catboost import CatBoostRegressor
from sklearn.model_selection import train_test_split,KFold, StratifiedKFold, cross_val_score
from sklearn.metrics import mean_squared_error
from sklearn.ensemble import RandomForestRegressor
from xgboost import XGBRegressor
import matplotlib.pyplot as plt
from lightgbm import LGBMRegressor
#from sklearn.impute import KNNImputer
import warnings
warnings.filterwarnings('ignore')
```

In [4]:

```
df= pd.read_csv('Housing_dataset_train.csv')
test = pd.read_csv('Housing_dataset_test.csv')
df.head()
```

Out[4]:

	ID	loc	title	bedroom	bathroom	parking_space	price
0	3583	Katsina	Semi-detached duplex	2.0	2.0	1.0	1149999.565
1	2748	Ondo	Apartment	NaN	2.0	4.0	1672416.689
2	9261	Ekiti	NaN	7.0	5.0	NaN	3364799.814
3	2224	Anambra	Detached duplex	5.0	2.0	4.0	2410306.756
4	10300	Kogi	Terrace duplex	NaN	5.0	6.0	2600700.898

In [5]:

```
sub = pd.read_csv('Sample_submission.csv')
sub.head()
```

Out[5]:

	ID
0	845
1	1924
2	10718
3	12076
4	12254

In [6]:

```
#What is the distribution of house types in the dataset?
plt.figure(figsize=(12,6))
sns.countplot(x='title', data=df)
plt.xticks(rotation=90)
plt.show()
```


What is the distribution of house types in the dataset?

Cottage House types is low compared to others

In [7]:

```
#Which state has the highest number of houses in the dataset?
df['loc'].value_counts()
```

Out[7]:

Kaduna	370
Anambra	363
Benue	355
Yobe	353
Borno	351
Kano	351
Nasarawa	349
Cross River	349
Zamfara	348
Imo	348
Ebonyi	346
Kebbi	346
Katsina	345
0gun	345
Ondo	344
Gombe	343
Bauchi	342
0yo	341
Adamawa	341
Bayelsa	340
Plateau	338
0sun	338
Jigawa	337
Ekiti	336
Kwara	333
Niger	330
Akwa Ibom	329
Lagos	328
Sokoto	326
Delta	325
Enugu	324
Rivers	323
Kogi	321
Taraba	315
Abia	312
Edo	302
Name: loc,	dtype: int64

Which state has the highest number of houses in the dataset?

Kaduna has the highest number of houses in the dataset

In [8]:

```
#What is the average house price in each state?
df.groupby('loc').mean()[['price']]
```

Out[8]:

price
1.717083e+06
1.905287e+06
2.725454e+06
2.337230e+06
1.772961e+06
3.112322e+06
1.920461e+06
1.735704e+06
2.507765e+06
2.712493e+06
1.635850e+06
2.310452e+06
2.109220e+06
2.272887e+06
1.860851e+06
2.067489e+06
1.735867e+06
1.846993e+06
2.081931e+06
1.947589e+06
1.616372e+06
1.763416e+06
1.903424e+06
4.210546e+06
2.061764e+06
1.885325e+06
2.564020e+06
2.277494e+06
2.180570e+06
2.293159e+06
1.942316e+06
2.957098e+06
1.681016e+06
1.681016e+06

In [13]:

```
#Is there any relationship between the number of bedrooms and the house price?
plt.figure(figsize=(15,6),dpi=100)
sns.scatterplot(x='bedroom', y='price', data=df)
```

Out[13]:

<AxesSubplot:xlabel='bedroom', ylabel='price'>

Is there any relationship between the number of bedrooms and the house price?

From the above Plot I can see that houses that have 5 bedrooms have the highest price

In [20]:

```
#Is there any relationship between the number of bathrooms and the house price?
plt.figure(figsize=(15,6),dpi=100)
sns.scatterplot(x='bathroom', y='price', data=df)
```

Out[20]:

<AxesSubplot:xlabel='bathroom', ylabel='price'>

Is there any relationship between the number of bathrooms and the house price?

From the above Plot I can see that houses that have 1 bathroom have the highest price

In [19]:

```
#Which house type has the highest average number of bathrooms?

bat = df.groupby('title').mean()[['bathroom']].sort_values('bathroom').reset_index()
plt.figure(figsize=(15,8),dpi=150)
sns.barplot(x='title', y='bathroom', data=bat, palette='viridis')
```

Out[19]:

<AxesSubplot:xlabel='title', ylabel='bathroom'>

Insight

Bungalow house type has the highest number of bathroom at an average while cottage house type has the lowest

In [27]:

```
#Is there a significant difference in house prices between different states?
lag = df.groupby('loc').mean()[['price']].sort_values('price').reset_index()
plt.figure(figsize=(20,12),dpi=200)
sns.barplot(x='loc', y='price', data=lag)
plt.xticks(rotation=90);
```


Insight

Lagos State has the highest number of Price

In [37]:

```
#What are the top 5 most expensive house types in the dataset?
title = df.groupby('title').mean()[['price']].sort_values('price').tail().reset_index()
plt.figure(figsize=(12,6))
sns.barplot(x='title', y='price', data=title)
```

Out[37]:

<AxesSubplot:xlabel='title', ylabel='price'>

Insight

Mansion is the most expensive house type in the dataset

In [40]:

```
plt.figure(figsize=(12,6))
sns.heatmap(df.corr(), annot=True, cmap='viridis')
```

Out[40]:

<AxesSubplot:>

Insight

The number of bedrooms and bathrooms seem to be the most correlated of the numerical features

In [41]:

```
#How does the house price vary with different house types?
plt.figure(figsize=(15,8),dpi=150)
sns.boxplot(x='title', y='price' , data=df)
```

Out[41]:

<AxesSubplot:xlabel='title', ylabel='price'>

In [43]:

```
#What is the average number of bedrooms for each house type?
df.groupby('title').mean()[['bedroom']]
```

Out[43]:

	bedroom
title	
Apartment	4.344219
Bungalow	4.402852
Cottage	2.905512
Detached duplex	4.327840
Flat	4.378877
Mansion	4.333929
Penthouse	4.342982
Semi-detached duplex	4.414903
Terrace duplex	4.340639
Townhouse	4.298759

```
In [45]:
```

```
data = pd.concat([df,test],ignore_index=False)
```

In [48]:

```
data = data.drop('ID', axis=1)
```

In [49]:

```
data.head()
```

Out[49]:

	loc	title	bedroom	bathroom	parking_space	price
0	Katsina	Semi-detached duplex	2.0	2.0	1.0	1149999.565
1	Ondo	Apartment	NaN	2.0	4.0	1672416.689
2	Ekiti	NaN	7.0	5.0	NaN	3364799.814
3	Anambra	Detached duplex	5.0	2.0	4.0	2410306.756
4	Kogi	Terrace duplex	NaN	5.0	6.0	2600700.898

In [50]:

```
house_type_ranks = {
  "Apartment":1,
  "Flat":2,
  "Cottage":3,
  "Semi-detached duplex":4,
  "Terrace duplex":5,
  "Bungalow":6,
  "Townhouse":7,
  "Detached duplex":8,
  "Penthouse":9,
  "Mansion":10,
}

# Map the house types to numerical values based on size ranking
data['title'] = data['title'].map(house_type_ranks)
```

In [51]:

```
data.head()
```

Out[51]:

	loc	title	bedroom	bathroom	parking_space	price
0	Katsina	4.0	2.0	2.0	1.0	1149999.565
1	Ondo	1.0	NaN	2.0	4.0	1672416.689
2	Ekiti	NaN	7.0	5.0	NaN	3364799.814
3	Anambra	8.0	5.0	2.0	4.0	2410306.756
4	Kogi	5.0	NaN	5.0	6.0	2600700.898

In [52]:

```
# Create the 'Total Rooms' feature
data['Total_Rooms'] = data['bedroom'] + data['bathroom']

# Create the 'Bathroom-to-Bedroom Ratio' feature
data['Bathroom_to_Bedroom_Ratio'] = data['bathroom'] / data['bedroom']

data.head()
```

Out[52]:

	loc	title	bedroom	bathroom	parking_space	price	Total_Rooms	Bathroom_to_Bedroom_Ratio
0	Katsina	4.0	2.0	2.0	1.0	1149999.565	4.0	1.000000
1	Ondo	1.0	NaN	2.0	4.0	1672416.689	NaN	NaN
2	Ekiti	NaN	7.0	5.0	NaN	3364799.814	12.0	0.714286
3	Anambra	8.0	5.0	2.0	4.0	2410306.756	7.0	0.400000
4	Kogi	5.0	NaN	5.0	6.0	2600700.898	NaN	NaN

In [62]:

```
encoder = ce.TargetEncoder(return_df=True)
```

In [63]:

```
data = encoder.fit_transform(data, data['price'])
```

In [64]:

data

Out[64]:

	loc	title	bedroom	bathroom	parking_space	price	Total_Rooms	Bathroom_to_Bedroom_Ra	
0	1.947589e+06	4.0	2.0	2.0	1.0	1149999.565	4.0	1.000	
1	2.277494e+06	1.0	NaN	2.0	4.0	1672416.689	NaN	1	
2	2.109220e+06	NaN	7.0	5.0	NaN	3364799.814	12.0	0.714	
3	2.337230e+06	8.0	5.0	2.0	4.0	2410306.756	7.0	0.400	
4	1.763416e+06	5.0	NaN	5.0	6.0	2600700.898	NaN	1	
	•••					***			
5995	2.109220e+06	2.0	4.0	5.0	2.0	NaN	9.0	1.250	
5996	1.905287e+06	5.0	5.0	7.0	1.0	NaN	12.0	1.400	
5997	2.293159e+06	7.0	4.0	1.0	4.0	NaN	5.0	0.250	
5998	1.772961e+06	2.0	3.0	7.0	5.0	NaN	10.0	2.333	
5999	1.681016e+06	10.0	6.0	1.0	6.0	NaN	7.0	0.166	
20000	20000 rows × 8 columns								

localhost:8888/notebooks/Downloads/DSN.ipynb

In [65]:

```
import pandas as pd
from sklearn.impute import SimpleImputer
from sklearn.linear model import LinearRegression
# Assuming you have your dataframe 'data' and want to perform regression imputation on columns with missing
# Create a copy of the dataframe to avoid modifying the original data
impute data = data.copy()
# Get the columns with missing values
columns with missing = impute data.columns[impute data.isnull().any()]
# Perform regression imputation for each column with missing values
for target in columns with missing:
   # Select features for regression imputation (consider using other relevant features if available)
   features = impute_data.columns.difference([target])
    # Split the data into known (non-missing) and missing values for the target feature
    known_data = impute_data.loc[impute_data[target].notnull(), features.to_list() + [target]]
    missing data = impute data.loc[impute data[target].isnull(), features.to list()]
    # Separate the target and features for known and missing data
   X_known = known_data[features]
   y known = known data[target]
   X_missing = missing_data[features]
    # Create a regression model
   regression_model = LGBMRegressor()
   # Fit the regression model on the known data
   regression model.fit(X known, y known)
    # Predict the missing values using the regression model
    imputed values = regression model.predict(X missing)
    # Fill the missing values in the original dataframe
    impute_data.loc[impute_data[target].isnull(), target] = imputed_values
# Print the updated dataframe with filled missing values
impute data
```

[LightGBM] [Warning] Auto-choosing row-wise multi-threading, the overhead of testing was 0.0 01192 seconds.

You can set `force_row_wise=true` to remove the overhead.

And if memory is not enough, you can set `force_col_wise=true`.

[LightGBM] [Info] Total Bins 384

[LightGBM] [Info] Number of data points in the train set: 18278, number of used features: 7 [LightGBM] [Info] Start training from score 5.666594

[LightGBM] [Warning] Auto-choosing row-wise multi-threading, the overhead of testing was $0.0\,$ 00492 seconds.

You can set `force_row_wise=true` to remove the overhead.

And if memory is not enough, you can set `force_col_wise=true`.

[LightGBM] [Info] Total Bins 628

[LightGBM] [Info] Number of data points in the train set: 18201, number of used features: 7

[LightGBM] [Info] Start training from score 4.315312

[LightGBM] [Warning] Auto-choosing col-wise multi-threading, the overhead of testing was $0.0\,$ 01368 seconds.

You can set `force_col_wise=true` to remove the overhead.

[LightGBM] [Info] Total Bins 874

[LightGBM] [Info] Number of data points in the train set: 18195, number of used features: 7

[LightGBM] [Info] Start training from score 3.124815

[LightGBM] [Warning] Auto-choosing col-wise multi-threading, the overhead of testing was 0.0 01581 seconds.

You can set `force_col_wise=true` to remove the overhead.

[LightGBM] [Info] Total Bins 1121

[LightGBM] [Info] Number of data points in the train set: 18189, number of used features: 7

[LightGBM] [Info] Start training from score 3.157458

[LightGBM] [Warning] Auto-choosing col-wise multi-threading, the overhead of testing was 0.0 00646 seconds.

You can set `force_col_wise=true` to remove the overhead.

[LightGBM] [Info] Total Bins 1121

[LightGBM] [Info] Number of data points in the train set: 14000, number of used features: 7

[LightGBM] [Info] Start training from score 2138081.749330

[LightGBM] [Warning] Auto-choosing col-wise multi-threading, the overhead of testing was 0.0 01347 seconds.

You can set `force_col_wise=true` to remove the overhead.

[LightGBM] [Info] Total Bins 866

[LightGBM] [Info] Number of data points in the train set: 16469, number of used features: 7

[LightGBM] [Info] Start training from score 7.438278

[LightGBM] [Warning] Auto-choosing row-wise multi-threading, the overhead of testing was $0.0\,$ 00296 seconds.

You can set `force row wise=true` to remove the overhead.

And if memory is not enough, you can set `force_col_wise=true`.

[LightGBM] [Info] Total Bins 837

[LightGBM] [Info] Number of data points in the train set: 16469, number of used features: 7

[LightGBM] [Info] Start training from score 1.053402

Out[65]:

	loc	title	bedroom	bathroom	parking_space	price	Total_Rooms	Bathroom_to_Bedroo
0	1.947589e+06	4.0000	2.000000	2.0	1.000000	1.150000e+06	4.000000	1
1	2.277494e+06	1.0000	4.278082	2.0	4.000000	1.672417e+06	5.174911	C
2	2.109220e+06	8.2512	7.000000	5.0	4.005657	3.364800e+06	12.000000	C
3	2.337230e+06	8.0000	5.000000	2.0	4.000000	2.410307e+06	7.000000	C
4	1.763416e+06	5.0000	8.623348	5.0	6.000000	2.600701e+06	13.978423	C
5995	2.109220e+06	2.0000	4.000000	5.0	2.000000	1.656829e+06	9.000000	1
5996	1.905287e+06	5.0000	5.000000	7.0	1.000000	1.863149e+06	12.000000	1
5997	2.293159e+06	7.0000	4.000000	1.0	4.000000	2.044760e+06	5.000000	C
5998	1.772961e+06	2.0000	3.000000	7.0	5.000000	1.331210e+06	10.000000	2
5999	1.681016e+06	10.0000	6.000000	1.0	6.000000	3.233434e+06	7.000000	C

20000 rows × 8 columns

In [66]:

```
impute_data.isnull().sum()
```

Out[66]:

loc 0
title 0
bedroom 0
bathroom 0
parking_space 0
price 0
Total_Rooms 0
Bathroom_to_Bedroom_Ratio 0

dtype: int64

In [67]:

```
data = impute_data.copy()
```

In [70]:

```
data[df.shape[0]:]
```

Out[70]:

	loc	title	bedroom	bathroom	parking_space	price	Total_Rooms	Bathroom_to_Bedroom_F
0	2.081931e+06	9.0	4.0	1.0	2.0	2.357633e+06	5.0	0.25
1	1.905287e+06	1.0	2.0	2.0	4.0	1.024562e+06	4.0	1.00
2	1.905287e+06	6.0	2.0	7.0	2.0	1.253566e+06	9.0	3.50
3	4.210546e+06	10.0	9.0	5.0	2.0	8.494182e+06	14.0	0.55
4	1.860851e+06	4.0	5.0	6.0	1.0	1.828081e+06	11.0	1.20
5995	2.109220e+06	2.0	4.0	5.0	2.0	1.656829e+06	9.0	1.25
5996	1.905287e+06	5.0	5.0	7.0	1.0	1.863149e+06	12.0	1.40
5997	2.293159e+06	7.0	4.0	1.0	4.0	2.044760e+06	5.0	0.25
5998	1.772961e+06	2.0	3.0	7.0	5.0	1.331210e+06	10.0	2.33
5999	1.681016e+06	10.0	6.0	1.0	6.0	3.233434e+06	7.0	0.16

6000 rows × 8 columns

In [73]:

```
train = data[:df.shape[0]]
y = train.price
test = data[df.shape[0]:]
```

```
In [78]:
У
Out[78]:
0
         1149999.565
1
         1672416.689
         3364799.814
3
         2410306.756
         2600700.898
13995
         2367927.861
         2228516.471
13996
         2406812.693
13997
13998
         3348918.718
13999
         2858516.890
Name: price, Length: 14000, dtype: float64
In [77]:
test.drop('price', axis=1, inplace=True)
In [79]:
X = train.drop('price', axis=1)
In [80]:
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=0)
In [85]:
#cross val score
def score(model):
    cv = cross_val_score(model,X_train,y_train,scoring='neg_mean_squared_error',cv=5,n_jobs=-1)
    return np.sqrt(np.mean(-cv))
In [86]:
rf cv = RandomForestRegressor()
score(rf_cv)
Out[86]:
456142.1222426775
In [114]:
catboost =CatBoostRegressor(learning_rate=0.102,max_depth=5,min_child_samples=3,random_state=0,silent=True
                           n_estimators=312)
score(catboost)
Out[114]:
414591.2659374284
In [88]:
from sklearn.metrics import mean_squared_error
```

```
DSN - Jupyter Notebook
In [89]:
def report(model):
    model name = model.fit(X train,y train)
    pred_model = model.predict(X_test)
    rmse = np.sqrt(mean_squared_error(y_test,pred_model))
    return rmse
In [90]:
report(rf_cv)
Out[90]:
451122.8640492227
In [115]:
report(catboost)
Out[115]:
415472.4400116604
In [122]:
xgb = XGBRegressor(learning_rate= 0.102, max_depth=3)
In [123]:
report(xgb)
Out[123]:
417185.6669017697
In [111]:
```

```
lgbm = LGBMRegressor(learning_rate= 0.102, max_depth=3, n_estimators=312)
```

In [112]:

```
report(lgbm)
[Lightesm] [warning] No turther splits with positive gain, best gain: -int
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
```

```
In [98]:
```

```
def make_submission(model, filename):
    sub_copy = sub.copy()
    prediction = model.predict(test)
    sub_copy['price'] = prediction
    sub_copy.to_csv(filename, index=False)
```

In [104]:

```
make_submission(catboost,'A12.csv')
```

In [124]:

```
make_submission(xgb,'xgb2.csv')
```

In [113]:

```
make_submission(lgbm,'lgbm2.csv')
```

In [125]:

```
xgb.feature_importances_
```

Out[125]:

```
array([0.18148068, 0.2652532 , 0.38319945, 0.00842201, 0.01292426, 0.13518342, 0.01353693], dtype=float32)
```

In [147]:

```
feat = pd.DataFrame(xgb.feature_importances_, columns=['importance'])
```

In [148]:

```
feat['column'] = X.columns
```

In [149]:

feat

Out[149]:

column	importance	
loc	0.181481	0
title	0.265253	1
bedroom	0.383199	2
bathroom	0.008422	3
parking_space	0.012924	4
Total_Rooms	0.135183	5
Bathroom to Bedroom Ratio	0.013537	6

In [153]:

```
plt.figure(figsize=(20,10),dpi=200)
sns.barplot(y='column',x='importance', data=feat.sort_values('importance',ascending=False),palette='viriding'
```

Out[153]:

<AxesSubplot:xlabel='importance', ylabel='column'>

In []: