Chapter 1

The Reals

Definition 1.0.1: Fields

A field $(\mathbb{F}, +, \cdot)$ is a nonempty set \mathbb{F} , along with two binary operations, addition $+: \mathbb{F} \times \mathbb{F} \to \mathbb{F}$ and multiplication $\cdot: \mathbb{F} \times \mathbb{F} \to \mathbb{F}$, satisfying the following,

- 1. **Associativity:** For all $x, y, z \in \mathbb{F}$, (x + y) + z = x + (y + z) and $(x \cdot y) \cdot z = x \cdot (y \cdot z)$.
- 2. Commutativity: For all $x, y \in \mathbb{F}$, x + y = y + x and $x \cdot y = y \cdot x$.
- 3. **Identities:** There exists an elements $0, 1 \in \mathbb{F}$ such that for all $x \in \mathbb{F}$, x+0=x and $x \cdot 1=x$.
- 4. **Inverses:** For all $x \in \mathbb{F}$, there exists an elements $-x, x^{-1} \in \mathbb{F}$ such that x + (-x) = 0 and $x \cdot x^{-1} = 1$.
- 5. **Distributive Property:** For all $x, y, z \in \mathbb{F}$, $x \cdot (y + z) = (x \cdot y) + (x \cdot z)$.