NPN EPITAXIAL PLANAR TYPE

DESCRIPTION

2SC2053 is a silicon NPN epitaxial planar type transistor designed for RF amplifiers on VHF band mobile radio applications.

FEATURES

- High power gain: $G_{pe} \ge 15.7dB$ $@V_{CC} = 13.5V, P_0 = 0.15W, f = 175MHz$
- Emitter ballasted construction, gold metallization for high reliability and good performances.
- TO-92 similar package is combinient for mounting.

APPLICATION

Driver amplifiers in general in VHF band mobile radio applications.

ABSOLUTE MAXIMUM RATINGS (T_C=25°C unless otherwise specified)

Symbol	Parameter	Conditions	Ratings	Unit	
V _{CBO}	Collector to base voltage		40	V	
VEBO	Emitter to base voltage		4	V	
VCEO	Collector to emitter voltage	R _{BE} = ∞	17	V	
Ic	Collector current		0.3	А	
Pc	Collector dissipation	Ta = 25°C	0.6	w	
Тј	Junction temperature		135	.c	
Tstg	Storage temperature		-55 to 135	·c	
Rth-a	Thermal resistance	Junction to ambient	183	°C/W	

Note. Above parameters are guaranteed independently.

ELECTRICAL CHARACTERISTICS (T_C = 25°C unless otherwise specified)

Symbol	Parameter Test conditions	Limits				
		rest conditions	Min	Тур	Max	Unit
V _{(BR)EBO}	Emitter to base breakdown voltage	te=1mA, tc=0	4			V
V _(BR) CBO	Collector to base breakdown voltage	I _C =1mA, I _E =0	40			٧
V _(BR) CEO	Collector to emitter breakdown voltage	I _C =10mA, R _{BE} =∞	17			٧
1сво	Collector cutoff current	V _{CB} =15V, I _E =0	-		20	μА
I _{EBO}	Emitter cutoff current	V _{EB} =3V, 1 _C =0			20	μА
ηFΕ	DC forward current gain *	V _{CE} = 10 V, I _C = 10 mA	10	50	180	_
P ₀	Output power	V _{CC} =13.5V, P _{IN} =4mW, f=175MHz	1 50	200		mW
η_{C}	Collector efficiency		40	50		%

Note. *Pulse test, $P_W = 150 \mu s$, duty=5%.

Above parameters, ratings, limits and conditions are subject to change.

TEST CIRCUIT

Notes: All coil are made from 1.5mmφ silver plated copper wire

Coil dimensions in milli-meter

D: Inner diameter of coil

- T: Turn number of coil
- P: Pitch of coil

TYPICAL PERFORMANCE DATA

AMBIENT TEMPERATURE Ta (°C)

COLLECTOR CURRENT VS. COLLECTOR TO EMITTER VOLTAGE

COLLECTOR TO EMITTER VOLTAGE VCE (V)

COLLECTOR TO EMITTER BREAKDOWN VOLTAGE VS. BASE TO EMITTER RESISTANCE

DC CURRENT GAIN VS. COLLECTOR CURRENT

COLLECTOR CURRENT Ic (mA)

NPN EPITAXIAL PLANAR TYPE

COLLECTOR OUTPUT CAPACITANCE VS. COLLECTOR TO BASE VOLTAGE

COLLECTOR TO BASE VOLTAGE V_{CB} (V)

OUTPUT POWER, COLLECTOR EFFICIENCY VS. INPUT POWER

INPUT POWER Pin (mW)

OUTPUT POWER VS. COLLECTOR SUPPLY VOLTAGE

COLLECTOR SUPPLY VOLTAGE V_{CC} (V)