CALCULUS (JAN. 12, 2006)

1. (20) Evaluate the following integrals:

(a)
$$\int \frac{1}{1+e^x} dx$$
, (b) $\int \sec^5 x dx$, (c) $\int x^2 (\ln x)^2 dx$, (d) $\int_0^\infty \frac{1}{x^{1/2} + x^{3/2}} dx$.

2. (10) Find the following limits:

(a)
$$\lim_{x \to 0} \left(\frac{1}{x^2} - \frac{1}{1 - \cos x} \right) dx$$
, (b) $\lim_{x \to \infty} (e^x - 2x)^{\frac{1}{x}}$.

- 3. (10) Find the area of the surface of revolution the curve $y = \cosh x$ for $x \in [0, a]$ around the x-axis.
 - 4. (10) Find the centroid of the region bounded by $x = 2y^4$ and $x = y^2 + 1$.
- 5. (10) A spherical tank of radius R is initially full of oil of density ρ . Find the total work done in pumping all the oil from the sphere to a height of 2R above the top of the tank.
 - 6. (10) Find the area bounded by the curve $y = \frac{1}{(x+1)^2(x^2+1)}$ and the x-axis for $x \in [0,1]$.
 - 7. (10) Evaluate the integral $\int \frac{1}{2+\cos x + \sin x} dx$.
 - 8. (10) Solve the initial value problem $y' (\tan x)y = \cos x$, y(0) = 1.
 - 9. (10) Solve the initial value problem 4y'' + 4y' + 101y = 0, y(0) = 10, y'(0) = 20.