

Trung Hieu Tran, Thu Ba T. Nguyen, Hoa Sen T. Le, Duc Chinh Phung

DSSC master's student Pietro Morichetti

77

Chapters

01

Problem Intro

Agricultural waste mismanagement 02

Modelling

Location-Assignment-Routing-Problem

11/

03

Case studies & Scalability Analysis

LARP optimal solution

Water Flow Algorithm

A meta-heuristic improvement

01 Problem Introduction

Agricultural waste management

the street of th

- In developing countries, agricultural sectors have rapidly developed nto become major contributions in the economy.
- Agricultural waste management has posed a challange for rural planner due to lack of efficient planning tool.
- Burning the agricultural waste at fields after each harvesting season is the present solution, this caused air and water pollution in rural areas.

11/

Agricultural waste around the world for developing countries

source: International Journal of Environmental Research and Public Health

45,22 million tons

Rice straw

10 millions tons

Vegetable by-products

6,33 millions tons

Maize by-products

MA

source: Ministry of Agriculture and Rural Development of Vietnam

An efficient way to collect agricultural waste

Modelling

Location-Assignment-Routing-Problem

Logistic problem

Which and how many places should be chosen where storages should be built to ensure coverage over all cultivation fields?

Location Assignment Problem

Which roads should trucks take to visit all the storages and bring agricultural waste to the fertiliser factory?

Routing Problem

Model Formulation (1/3)

11/

Sets and indexes

- I Set of agricultural waste fields (indexed by) i
- J Set of storages (indexed by) j
- J_0 Set of storages and the facility, i.e., $J_0 = J \cup 0$ indexed by u, v

Paramenters

11/

n Number of agricultural waste fields

m Number of storages

 f_j Fixed cost to open a storage j

 $c_{i,j}c_{u,v}$ Distance between nodes i, j or u, v

- d_i Ammount of agricultural waste to be collected at field i
- q_j Capacity of storage j
- k Number of vehicles
- Q Capacity of vehicle

Decision variables

$$X_{j} = \begin{cases} 1 & \text{if storage is located at site j} \\ 0 & \text{otherwise} \end{cases}$$
 $Y_{ij} = \begin{cases} 1 & \text{if field i is served by storage j} \\ 0 & \text{otherwise} \end{cases}$
 $Z_{uv} = \begin{cases} 1 & \text{if a vehicle travels from node u to node v} \\ 0 & \text{otherwise} \end{cases}$
 T_{u}, T_{v} Auxiliary variables

117

Model Formulation (2/3)

storage cost shipping cost transportation cost

$$\min \sum_{j \in J} f_j \cdot X_j + \sum_{i \in I} \sum_{j \in J} c_{ij} \cdot d_i \cdot Y_{ij} + \sum_{u \in J_0} \sum_{v \in J_0: u! = v} c_{uv} \cdot Z_{uv}$$

$$(C1) \sum_{i \in I} Y_{ij} = 1 \quad \text{for each} \quad i \in I$$

117

111

$$(C1)\sum_{j\in J}Y_{ij}=1$$
 for each $i\in I$

M

$$(C2)\sum_{i\in I} d_i \cdot Y_{ij} \le q_j \cdot X_j$$
 for each $j\in J$

$$(C3)\sum_{u\in J} Z_{u0} = k$$

$$(C4)\sum_{v\in J}^{u\in J} Z_{0v} = k$$

Legenda

- Capacitated facility location
- TSP adjusted for CVRP
- Assignment

$$(C2)\sum_{i\in I} d_i \cdot Y_{ij} \le q_j \cdot X_j \quad \text{for each} \quad j \in J \quad (C5)\sum_{u\in J_0: u!=v} X_u \cdot Z_{uv} = X_v \quad \text{for each} \quad v \in J$$

$$(C6) \sum_{v \in J_0: v!=u} X_v \cdot Z_{uv} = X_u \text{ for each } u \in J$$

(C7)
$$T_u - T_v + Q \cdot Z_{uv} \le Q - \frac{1}{k} \cdot \sum_{i \in I} d_i \cdot Y_{iv}$$
 for each $u, v \in J : u! = v$

(C8)
$$\frac{1}{k} \cdot \sum_{i \in I} d_i \cdot Y_{iv} \le T_u \le Q$$
 for each $u \in J$

$$(C9) X_j \in \{0, 1\} \quad \text{for each } j \in J$$

(C10)
$$Y_{ij} \ge 0$$
 for each $i \in I$, for each $j \in J$

$$(C11) \ Z_{uv} \in \{0,1\} \quad \text{for each } u,v \text{ in } J_0: u \neq v$$

$$(C12)$$
 $T_u \ge 0$ for each $u \in J$

Model Formulation (3/3)

Product of decision vari

(C5)
$$\sum_{uv} X_u \cdot Z_{uv} = X_v \quad \text{for each} \quad v \in J$$

$$(C6) \sum_{v \in J_0: v! = u} X_v \cdot Z_{uv} = X_u \quad \text{for each} \quad u \in J$$

$$u \in J_0: u! = v$$
 Linearization of non-linear constraints $v \in J_0: v! = u$

 $W_{uv} = X_u \cdot Z_{uv}$ for each, $v \in J_0 : u \neq v$

$$v \in J_0 : u \neq v$$

$$(C13) \sum_{v \in J_0: u \neq v} W_{uv} \le X_u \quad \text{for each} \quad v \in J$$

(C14)
$$W_{uv} \leq X_u$$
 for each $u, v \in J_0 : u \neq v$

(C15)
$$W_{uv} \leq Z_{uv}$$
 for each $u, v \in J_0 : u \neq v$

(C16)
$$W_{uv} \ge X_u + Z_{uv} - 1$$
 for each $u, v \in J_0 : u \ne v$

(C17)
$$W_{uv} \in 0, 1$$
 for each $u, v \in J_0 : u \neq v$

$$(C5) \sum_{u \in J: u! = v} X_u \cdot Z_{uv} = X_v \quad \text{for each} \quad v \in J$$

$$(C6) \sum_{v \in J: u! = v}^{u \in J: u! = v} X_v \cdot Z_{uv} = X_u \quad \text{for each} \quad u \in J$$

$$D_0 = 1$$
 location of facility

$$D_0 \cdot Z_{0v} = 1$$
 for each $v \in J$

$$D_0 \cdot Z_{u0} = 1$$
 for each $u \in J$

$$W'_{uv} = X_v \cdot Z_{uv}$$
 for each $u, v \in J_0 : u \neq v$

$$(C18) \sum_{v \in J_0: u \neq v} W'_{uv} \le X_u \quad \text{for each} \quad u \in J$$

(C19)
$$W'_{uv} \leq X_v$$
 for each $u, v \in J_0 : u \neq v$

(C20)
$$W'_{uv} \leq Z_{uv}$$
 for each $u, v \in J_0 : u \neq v$

(C21)
$$W'_{uv} \ge X_v + Z_{uv} - 1$$
 for each $u, v \in J_0 : u \ne v$

(C22)
$$W'_{uv} \in 0, 1$$
 for each $u, v \in J_0 : u \neq v$

Three scenarios for a proof-of-concept

X3

111

Main facilities where bio-fertilizer is produced from the agricultural wastes (only one per scenario)

117

X6

Storages with a certain capacity and fix opening cost

X7

Cluster of agricultural fields with a certain amount of agricultural waste

X3

Truks with a certain capacity and capable to move agricultural wastes from storages to the main facility

Graphical representations (1/2)

di

Same result

as the paper!

 All the scenarios share the same assignments among storages and agricultural fields

11/

 Storages «S3» and «S6» are not considered in the result, it means that opening a storage to these locations is not suggested

Location cost = 400 Assignment cost = 80,2

Graphical representations (2/2)

Mi

scenario 2

scenario 3

Same results

as the paper!

<u>scenario 1</u>

Transportation cost = 57,0

Total cost = 537,2

111

Transportation cost = 119,2 Total cost = 599,4 Transportation cost = 55,0

Total cost = 535,2

R1 composed by: F1, S1, S4, F1 R2 composed by: F1, S2, F1

R3 composed by: F1, S5, F1

R1 composed by: F2, S1, S2, F2

R2 composed by: F2, S4, F2

R3 composed by: F2, S5, F2

R1 composed by: F3, S1, F3 R2 composed by: F3, S4, S2, F3 R3 composed by: F3, S5, F3

Scalability analysis

Parameters used for the experiment:

Facility = 'F'

Num iterations = 10

Num fields = 100

Num storages = [5, 10, 15, 20, 25, 30]

Num vehicles = [3, 6, 9, 12, 15, 18]

Vehicle capacity = 2000 (tons)

Proposed model formulation is clearly not able to provide an optimal solution for different sizes of the problem, in «acceptable» timeframe.

Scalability plot match the optimization model **complexity** of O(m2 + nm).

04 Water Flow

A meta-heuristic improvement

Algorithm

Water Flow Algorithm

A couple of disclaimers

Proposed description of the WFA is short, poor in detail and, at times, confusing

A «personal» interpretation is implemented for this project

Alt and the state of the state

Basic Components of the Hydrological Cycle

We focus just on the following stages:

- (2) Condensation
- (4) Precipitation
- (6) Groundwater

H.

A

From Water Cycle to Water Flow Formulation (1/3)

11/

Drop-of-Waters (DOWs) are generated from a cloud and they falls on the earth

A «DOW» identify a location (point) in the solution space for the LARP model, and a set of DOWs is randomly generated

From Water Cycle to Water Flow Formulation (2/3)

A «DOW» represents a solution for LARP model

An example of DOW/Solution formulation

ηĹ

From Water Cycle to Water Flow Formulation (3/3)

Groundwater

Local search

«DOWs» on the ground start to move down due to the Gravity force until they stop somewhere

Erosion process

«DOWs», gathered in puddle, begin to seepage the ground

Simplified flow-chart for the Water Flow Algorithm

During the **Exploration phase** a Cloud is generated, the cloud rains a fixed number of water drops randomly which fall on the earth at some position and start to move somewhere down

During the **Exploitation phase** those water drops which are gathered in a single point start to erode the ground and infiltrate through the ground until they stop somewhere in a groundwater


```
clouds = clouds generator(max cloud, larp, max pop)
for cloud in clouds:
    print('start to rain...')
    rainfall, discarded dows = cloud.make rain(E list, discarded list)
    print('stopped to rain.')
    discarded list.extend(discarded dows)
    print('gravity force push down dows...')
    for dow in rainfall:
        local_optimum, neighbours, excluded_dows, discarded_dows = local_search(larp, dow)
        excluded_list.extend(excluded_dows)
        discarded_list.extend(discarded_dows)
        UE_list.append(local_optimum) # for erosion process
        if local optimum not in optimal dows.keys():
            optimal_dows[local_optimum] = neighbours
    print('dows sink in some local positions.')
    for dow, neighbours in optimal_dows.items():
        print('dow:\n', dow)
        print('n. neighbours:', len(neighbours))
    dow occurances = Counter(UE list)
    dow_occurances = [dow for dow, occurs in dow_occurances.items() if occurs >= min_ero]
    print(f'{len(dow_occurances)} optimal(s) satisfy the erosion condition.')
    for dow in dow_occurances:
        neighbours = optimal_dows[dow]
        print('following dow can start the erosion process:\n', dow)
        print(f'dow has {len(neighbours)} neighbours that might be considered...')
        tmp = erosion(larp, dow, neighbours, max UIE,
            excluded_list, discarded_list, optimal_dows,
            P0_list, UE_list, E_list)
        dow_optimum, _, excluded_list, discarded_list, \
            optimal_dows, UE_list, E_list = tmp
        P0 list.append(dow_optimum)
        print('dow optimum:', dow_optimum)
```


Exploitation

11/

11/

References

- Formulation and solution technique for agricultural waste collection and transport network design, European Journal of Operational Research
- Waste Mismanagement in Developing Countries: A Review of Global Issues, International Journal of Environmental Research and Public Health
- Statistics Report (2019), Ministry of Agriculture and Rural Development of Vietnam
- A Waterflow Algorithm for Optimization Problems (2011), Tran Trung Hieu

