APPENDIX

1. MATLAB SCRIPT FOR CALCUATION OF RELATIVE ERROR AND PERCENTAGE ERROR OF EACH METHOD

We have stored the approximate solution vector of each method in the MATLAB workspace.

Workspace	
Name 📤	Value
u_collocation	<1x101 double>
u_exact	<1x101 double>
🚻 u_galerkin	<1x101 double>
u_least_sq	<1x101 double>

I have used following MATLAB script to display the errors.

```
%% Relative Errors
leastsq_relative_error=sum(u_exact-u_least_sq);
collocation relative error=sum(u exact-u collocation);
galerkin relative error=sum(u exact-u galerkin);
%% Percentage Errors
leastsq percentage error=leastsq relative error/sum(u exact)*100;
collocation percentage error=collocation relative error/sum(u exact)*100;
galerkin percentage error=galerkin relative error/sum(u exact)*100;
%% Display results
clc
disp(' Relative Error');
fprintf(' Least Square method: %f',leastsq relative error);
fprintf('\n Collocation Method: %f',collocation relative error);
fprintf('\n Galerkin Method: %f\n\n',galerkin relative error);
disp(' Percenatage Error');
fprintf(' Least Square method: %f percent', leastsq percentage error);
fprintf('\n Collocation Method: %f percent', collocation percentage error);
fprintf('\n Galerkin Method: %f percent\n\n',galerkin percentage error);
```

2. CONSTITUTIVE MATRIX

For two-dimensional problem, constitutive matrix depends on the material property. If μ is the Poisson's ratio, E is the modulus of elasticity and G is the shear modulus, then for isotropy and plane stress condition ($\sigma_z = \tau_{xz} = \tau_{yz}$) the constitutive matrix can be written as

$$[E] = \frac{E}{1 - \mu^2} \begin{bmatrix} 1 & \mu & 0 \\ \mu & 1 & 0 \\ 0 & 0 & \frac{(1 - \mu)}{2} \end{bmatrix}$$

3. STRAIN DISPLACEMENT RELATIONS

There are three normal stresses in the three coordinate directions $(\sigma_x, \sigma_y, \sigma_z)$, and three shear stresses $(\tau_{xy}, \tau_{zx}, \tau_{yz})$. Corresponding to these six stresses, there are six strains as well $(\epsilon_x, \epsilon_y, \epsilon_z, \gamma_{xy}, \gamma_{zx}, \gamma_{yz})$. Let u, v, w be the nodal displacement in x, y, z directions. Then the six strains can be written as

$$\epsilon_x = \frac{\partial u}{\partial x}, \qquad \epsilon_y = \frac{\partial v}{\partial y}, \qquad \epsilon_z = \frac{\partial w}{\partial z}$$

$$\gamma_{xy} = \frac{\partial u}{\partial x} + \frac{\partial v}{\partial y}, \qquad \gamma_{zx} = \frac{\partial w}{\partial z} + \frac{\partial u}{\partial x}, \qquad \gamma_{yz} = \frac{\partial v}{\partial y} + \frac{\partial w}{\partial z}$$

The three-dimensional strain-displacement relations can be written as

$$\begin{Bmatrix}
\epsilon_{x} \\
\epsilon_{y} \\
\epsilon_{z} \\
\gamma_{xy} \\
\gamma_{yz}
\end{Bmatrix} = \begin{bmatrix}
\frac{\partial u}{\partial x} & \frac{0}{\partial v} & 0 \\
\frac{\partial u}{\partial x} & \frac{\partial v}{\partial y} & \frac{\partial w}{\partial z} \\
\frac{\partial u}{\partial x} & \frac{\partial v}{\partial y} & \frac{\partial w}{\partial z} \\
\frac{\partial u}{\partial x} & \frac{\partial v}{\partial y} & \frac{\partial w}{\partial z}
\end{bmatrix} \begin{Bmatrix} u \\ v \\ w \end{Bmatrix}$$

4.MATLAB GUI WITH ENHANCED INPUT FEATURE

The input section can be interactively managed using some GUI program. I have made a GUI that can handle all input computation. Since, the purpose of the project is quite away from aesthetics hence, I have not provided the source code for the GUI. The source code is very large and hence I have given some snapshots of the GUI.

Fig 9.1 Data Input GUI