10

15

20

25

CLAIMS

1. A method for preparing a compound of formula (6),

and salts, stereoisomeric forms, and racemic mixtures thereof, characterized in that said method starts from a compound of formula (2),

wherein E is an electrophilic moiety;

transforming compound of formula (2) into a compound of formula (3),

wherein LG is a leaving group; and reacting compound of formula (3) with a compound of formula (5),

PG is a protecting group;

wherein

R₂ is hydrogen or C₁₋₆alkyl;

R₃ is C_{3.7}cycloalkyl, aryl, Het¹, Het², or C_{1.6}alkyl optionally substituted with C_{3.7}cycloalkyl, aryl, Het¹, or Het²; wherein each C_{3.7}cycloalkyl, aryl, Het¹, and Het² may be optionally substituted with one or more groups selected from oxo, C_{1.6}alkyloxy, C_{1.6}alkyl,

10

 C_{1-6} alkylsulfonyl, aminosulfonyl, amino, C_{1-6} alkylcarbonylamino, hydroxy C_{1-6} alkyl, cyano, C_{1-6} alkyloxycarbonyl, aminocarbonyl, halogen or trifluoromethyl, wherein each amino maybe mono- or disubstitued with C_{1-6} alkyl;

R4 is selected from the group comprising hydrogen, C₁₋₄alkyloxycarbonyl, carboxyl, aminocarbonyl, mono- or di(C₁₋₄alkyl)aminocarbonyl, C₃₋₇cycloalkyl, C₂₋₆alkenyl, C₂₋₆alkynyl, or C₁₋₆alkyl optionally substituted with one or more substituents each independently selected from aryl, Het¹, Het², C₃₋₇cycloalkyl, C₁₋₄alkyloxycarbonyl, carboxyl, aminocarbonyl, mono- or di(C₁₋₄alkyl)aminocarbonyl, aminosulfonyl, C₁₋₄alkyl-S(=O)_t, hydroxy, cyano, halogen and amino optionally mono- or disubstituted where the substituents are each independently selected from C₁₋₄alkyl, aryl, arylC₁₋₄alkyl, C₃₋₇cycloalkyl, C₃₋₇cycloalkylC₁₋₄alkyl, Het¹, Het², Het¹C₁₋₄alkyl and Het²C₁₋₄alkyl; and

t is zero, one or two.

2. A method according to claim 1 for preparing a compound of formula (6), characterized in that said method comprises the steps of: alkylating a compound of formula (1)

20

resulting into a compound of formula (2);

25

wherein E is a C₁₋₆alkyl;

reacting compound of formula (2) with a sulfonation agent, resulting in a compound of formula (3);

30

wherein LG is a leaving group; and

coupling compound of formula (3) with a compound of formula (5).

5

wherein PG is a protecting group; and wherein R₂, R₃, and R₄ are as claimed in claim 1.

3. A method according to any one of claims 1 to 2, characterized in that compound of formula (3) is a compound of formula (3").

4. A method according to any one of claims 1 to 3, characterized in that compound of formula (5) is obtained by amination of an epoxide-containing compound of formula (4), and the amination reagent is H₂N-R₄, wherein R₄ is as claimed in any one of claims 1 to 3.

20

5. A method according to any one of claims 1 to 4, wherein compound of formula (5) is compound of formula (5').

25

6. A compound having formula (6)

5

and salts, stereoisomeric forms, and racemic mixtures thereof, characterized in that PG, R_2 , R_3 , R_4 , and E are as defined in any one of claims 1 to 5.

7. A compound according to claim 6, characterized in that

10 R₂ is hydrogen;

R₃ is arylC₁₋₄alkyl, arylmethyl, or phenylmethyl;

 R_4 is unsubstituted C_{1-6} alkyl or C_{1-6} alkyl substituted with one or more substituents selected from aryl, Het^1 , Het^2 , C_{3-7} cycloalkyl and amino optionally monoor disubstituted where the substituents are selected from C_{1-4} alkyl, aryl, Het^1 and Het^2 .

15

8. A compound according to any one of claims 6 to 7, characterized in that

R₂ is hydrogen;

R₃ is phenylmethyl; and

R4 is isobutyl.

20

9. A compound according to any one of claims 6 to 8, characterized in that the compound has formula (6").

(611)

25

10. A compound according to any one of claims 6 to 9, characterized in that the compound has formula (6").

-57-

(6"

11. A compound according to any one of claims 6 to 10, characterized in that said
5 compound is in the form of a salt selected from trifluoroacetate, fumarate, chloroacetate and methanesulfonate.

12. A method for preparing a compound of formula (9), wherein said method comprises the methods according to any one of claims 1 to 5, characterised in that said method further comprises

aminating compound of formula (6) to obtain compound of formula (7), wherein

15

20

10

R₆ is hydrogen, hydroxy, C₁₋₆alkyl, Het¹C₁₋₆alkyl, Het²C₁₋₆alkyl, aminoC₁₋₆alkyl whereby the amino group may optionally be mono-or di-substituted with C₁₋₄alkyl;

R₈ is hydrogen, C₁₋₆alkyl, or -A-R₇;

A is C_{1-6} alkanediyl, -C(=0)-, -C(=S)-, $-S(=0)_2$ -, C_{1-6} alkanediyl--C(=0)-,

C₁₋₆alkanediyl-C(=S)- or C₁₋₆alkanediyl-S(=O)₂-; whereby the point of attachment to the nitrogen atom is the C₁₋₆alkanediyl group in those moieties containing said group;

R₇ is C₁₋₆alkyloxy, Het¹, Het¹oxy, Het², Het²oxy, aryl, aryloxy, C₃₋₇cycloalkyl, or optionally mono- or disubstituted amino; and

in case -A- is other than C₁₋₆alkanediyl then R₇ may also be C₁₋₆alkyl,

Het¹C₁₋₄alkyl, Het¹oxyC₁₋₄alkyl, Het²C₁₋₄alkyl, Het²oxyC₁₋₄alkyl, arylC₁₋₄alkyl,

aryloxyC₁₋₄alkyl or amino-C₁₋₆alkyl; whereby each of the amino groups in the

definition of R₇ may optionally be substituted with one or more substituents selected

from C₁₋₄alkyl, C₁₋₄alkylcarbonyl, C₁₋₄alkyloxycarbonyl, aryl, arylcarbonyl,

aryloxycarbonyl, Het¹, Het², arylC₁₋₄alkyl, Het¹-C₁₋₄alkyl or Het²C₁₋₄alkyl; and

30 -A-R₇ may also be hydroxyC₁₋₆alkyl; and

R₆ and -A-R₇ taken together with the nitrogen atom to which they are attached may also form Het¹ or Het²;

deprotecting compound of formula (7) to obtain compound of formula (8),

coupling a radical of formula R₁-L- to obtain compound of formula (9),

10

and N-oxides, salts, stereoisomeric forms, racemic mixtures, prodrugs, esters and metabolites thereof, wherein

15

 R_1 is selected from the group comprising hydrogen, $C_{1\text{-}6}$ alkyl, $C_{2\text{-}6}$ alkenyl, aryl $C_{1\text{-}6}$ alkyl, $C_{3\text{-}7}$ cycloalkyl, $C_{3\text{-}7}$ cycloalkyl $C_{1\text{-}6}$ alkyl, aryl, Het 1 , Het 1 C $_{1\text{-}6}$ alkyl, Het 2 , Het 2 C $_{1\text{-}6}$ alkyl; and R_1 may also be a radical of formula (10)

20

25

 R_9 , R_{10a} and R_{10b} are, each independently, hydrogen, $C_{1.4}$ alkyloxycarbonyl, carboxyl, aminocarbonyl, mono- or di($C_{1.4}$ alkyl)aminocarbonyl, $C_{3.7}$ cycloalkyl, $C_{2.6}$ alkenyl, $C_{2.6}$ alkynyl or $C_{1.4}$ alkyl optionally substituted with aryl, Het^1 , Het^2 , $C_{3.7}$ cycloalkyl, $C_{1.4}$ alkyloxycarbonyl, carboxyl, aminocarbonyl, mono- or di($C_{1.4}$ alkyl)aminocarbonyl, aminosulfonyl, $C_{1.4}$ alkylS(O), hydroxy, cyano, halogen or amino optionally mono- or disubstituted where the substituents are each independently selected from $C_{1.4}$ alkyl, aryl, aryl $C_{1.4}$ alkyl, $C_{3.7}$ cycloalkyl, $C_{3.7}$ cycloalkyl $C_{1.4}$ alkyl, $C_{4.7}$ cycloalkyl, $C_{4.7}$ cycloalkyl

35

Het²C₁₋₄alkyl; whereby R₉, R_{10a} and the carbon atoms to which they are attached may also form a C₃₋₇cycloalkyl radical;

when L is -O-C₁₋₆alkanediyl-C(=O)- or -NR₁₂-C₁₋₆alkanediyl-C(=O)-, then R₉ may also be oxo;

R_{11a} is selected from the group comprising hydrogen, C₂₋₆alkenyl, C₂₋₆alkynyl, C₃₋₇cycloalkyl, aryl, aminocarbonyl optionally mono- or disubstituted, aminoC₁₋₄alkylcarbonyloxy optionally mono- or disubstituted, C₁₋₄alkyloxycarbonyl, aryloxycarbonyl, Het²oxycarbonyl, aryloxycarbonylC₁₋₄alkyl, arylC₁₋₄alkyloxycarbonyl, C₁₋₄alkylcarbonyl, C₃₋₇cycloalkylcarbonyl, C₃₋₇cycloalkylcarbonyloxy, carboxylC₁₋₄alkylcarbonyloxy, C₁₋₄alkylcarbonyloxy, arylC₁₋₄alkylcarbonyloxy, arylcarbonyloxy, aryloxycarbonyloxy, Het¹carbonyl, Het¹carbonyloxy, Het¹C₁₋₄alkyloxycarbonyloxy or C₁₋₄alkyl optionally substituted with aryl, aryloxy, Het² or hydroxy; wherein the substituents on the amino groups are each independently selected from C₁₋₄alkyl, aryl, arylC₁₋₄alkyl, C₃₋₇cycloalkyl, C₃₋₇cycloalkyl

C₁-alkyl, Het¹, Het², Het¹C₁-alkyl and Het²C₁-alkyl;

 R_{11b} is selected from the group comprising hydrogen, C_{3-7} cycloalkyl, C_{2-6} alkenyl,

C₂₋₆alkynyl, aryl, Het¹, Het² or C₁₋₄alkyl optionally substituted with halogen, hydroxy, C₁₋₄alkylS(=O)_t, aryl, C₃₋₇cycloalkyl, Het¹, Het², amino optionally mono- or disubstituted where the substituents are each independently selected from C₁₋₄alkyl, aryl, arylC₁₋₄alkyl, C₃₋₇cycloalkyl, C₃₋₇cycloalkylC₁₋₄alkyl, Het¹, Het², Het¹C₁₋₄alkyl and Het²C₁₋₄alkyl;

25 whereby \mathbf{R}_{11b} may be linked to the remainder of the molecule via a sulfonyl group; and

L is selected from the group comprising -C(=O)-, -O-C(=O)-, $-NR_{12}-C(=O)$ -, $-O-C_{1-6}$ alkanediyl-C(=O)-, $-NR_{12}-C_{1-6}$ alkanediyl-C(=O)-, $-S(=O)_2$ -, $-O-S(=O)_2$ -, $-O-S(=O)_2$ -, $-O-S(=O)_2$ whereby either the C(=O) group or the $S(=O)_2$ group is attached to the NR_2 moiety; whereby the C_{1-6} alkanediyl moiety is optionally substituted with a substituent selected from hydroxy, aryl, Het^1 , and Het^2 ;

 R_{12} is hydrogen, C_{1-6} alkyl, C_{2-6} alkenyl, aryl C_{1-6} alkyl, C_{3-7} cycloalkyl, C_{3-7} cycloalkyl C_{1-6} alkyl, aryl, Het 1 , Het 1 C $_{1-6}$ alkyl, Het 2 C $_{1-6}$ alkyl;

R₂ is hydrogen or C₁₋₆alkyl;

R₃ is C₃₋₇cycloalkyl, aryl, Het¹, Het², or C₁₋₆alkyl optionally substituted with C₃₋₇cycloalkyl, aryl, Het¹, or Het²; wherein each C₃₋₇cycloalkyl, aryl, Het¹, and Het² may be optionally substituted with one or more groups selected from oxo, C₁₋₆alkyloxy, C₁₋₆alkyl,

10

 C_{1-6} alkylsulfonyl, aminosulfonyl, amino, C_{1-6} alkylcarbonylamino, hydroxy C_{1-6} alkyl, cyano, C_{1-6} alkyloxycarbonyl, aminocarbonyl, halogen or trifluoromethyl, wherein each amino maybe mono- or disubstitued with C_{1-6} alkyl;

R₄ is selected from the group comprising hydrogen, C₁₋₄alkyloxycarbonyl, carboxyl, aminocarbonyl, mono- or di(C₁₋₄alkyl)aminocarbonyl, C₃₋₇cycloalkyl, C₂₋₆alkenyl, C₂₋₆alkynyl, or C₁₋₆alkyl optionally substituted with one or more substituents each independently selected from aryl, Het¹, Het², C₃₋₇cycloalkyl, C₁₋₄alkyloxycarbonyl, carboxyl, aminocarbonyl, mono- or di(C₁₋₄alkyl)aminocarbonyl, aminosulfonyl, C₁₋₄alkyl-S(=O)_k hydroxy, cyano, halogen and amino optionally mono- or disubstituted where the substituents are each independently selected from C₁₋₄alkyl, aryl, arylC₁₋₄alkyl, C₃₋₇cycloalkyl, C₃₋₇cycloalkylC₁₋₄alkyl, Het¹, Het², Het¹C₁₋₄alkyl and Het²C₁₋₄alkyl; and

t is zero, one or two.

13. The method according to claim 12, whereinR₁ is a radical of formula (10)

20

25

30

 R_9 , R_{10a} and R_{10b} are, each independently, hydrogen, $C_{1.4}$ alkyloxycarbonyl, carboxyl, aminocarbonyl, mono- or di($C_{1.4}$ alkyl)aminocarbonyl, $C_{3.7}$ cycloalkyl, $C_{2.6}$ alkenyl, $C_{2.6}$ alkynyl or $C_{1.4}$ alkyl optionally substituted with aryl, Het^1 , Het^2 , $C_{3.7}$ cycloalkyl, $C_{1.4}$ alkyloxycarbonyl, carboxyl, aminocarbonyl, mono- or di($C_{1.4}$ alkyl)aminocarbonyl, aminosulfonyl, $C_{1.4}$ alkylS(O)t, hydroxy, cyano, halogen or amino optionally mono- or disubstituted where the substituents are each independently selected from $C_{1.4}$ alkyl, aryl, aryl $C_{1.4}$ alkyl, $C_{3.7}$ cycloalkyl, $C_{3.7}$ cycloalkyl- $C_{1.4}$ alkyl, $C_{1.4}$ alkyl, $C_{1.4}$ alkyl, $C_{1.4}$ alkyl, $C_{1.4}$ alkyl, aryl, aryl $C_{1.4}$ alkyl;

whereby R_9 , R_{10a} and the carbon atoms to which they are attached may also form a C_{3-7} cycloalkyl radical;

R_{11b} is hydrogen, C₃₋₇cycloalkyl, C₂₋₆alkenyl, C₂₋₆alkynyl, aryl, Het¹, Het² or C₁₋₄alkyl optionally substituted with halogen, hydroxy, C₁₋₄alkylS(=O)₁, aryl, C₃₋₇cycloalkyl, Het¹, Het², amino optionally mono- or disubstituted where the

10

15

20

25

30

35

substituents are each independently selected from C₁₋₄alkyl, aryl, arylC₁₋₄alkyl, C₃₋₇cycloalkyl, C₃₋₇cycloalkylC₁₋₄alkyl, Het¹, Het², Het¹C₁₋₄alkyl and Het²C₁₋₄alkyl; whereby R_{11b} may be linked to the remainder of the molecule via a sulfonyl group;

t is zero, one or two;

L is -C(=O)-, -O-C(=O)-, $-NR_{12}$ -C(=O)-, -O- C_{1-6} alkanediyl-C(=O)-, $-NR_{12}$ - C_{1-6} alkanediyl-C(=O)-, $-S(=O)_2$ -, -O- $S(=O)_2$ -, $-NR_{12}$ - $S(=O)_2$ whereby either the C(=O) group or the $S(=O)_2$ group is attached to the NR_2 moiety; whereby the C_{1-6} alkanediyl moiety is optionally substituted with a substituent selected from hydroxy, aryl, Het^1 , and Het^2 ;

R₁₂ is hydrogen, C₁₋₆alkyl, C₂₋₆alkenyl, arylC₁₋₆alkyl, C₃₋₇cycloalkyl, C₃₋₇cycloalkylC₁₋₆alkyl, aryl, Het¹, Het¹C₁₋₆alkyl, Het², Het²C₁₋₆alkyl; and R₄ is hydrogen, C₁₋₄alkyloxycarbonyl, carboxyl, aminocarbonyl, mono- or di(C₁₋₄alkyl)aminocarbonyl, C₃₋₇cycloalkyl, C₂₋₆alkenyl, C₂₋₆alkynyl, or C₁₋₆alkyl optionally substituted with one or more substituents selected from aryl, Het¹, Het², C₃₋₇cycloalkyl, C₁₋₄alkyloxycarbonyl, carboxyl, aminocarbonyl, mono- or di(C₁₋₄alkyl)-aminocarbonyl, aminosulfonyl, C₁₋₄alkylS(=O)₆, hydroxy, cyano, halogen and amino optionally mono- or disubstituted where the substituents are selected from C₁₋₄alkyl, aryl, arylC₁₋₄alkyl, C₃₋₇cycloalkyl, C₃₋₇cycloalkyl-C₁₋₄alkyl, Het¹, Het², Het¹C₁₋₄alkyl and Het²C₁₋₄alkyl.

14. The method according to any one of claims 12 to 13, wherein one or more of the following restrictions apply:

R₁ is hydrogen, Het¹, Het², aryl, Het¹C₁₋₆alkyl, Het²C₁₋₆alkyl, arylC₁₋₆alkyl, more in particular, R₁ is a saturated or partially unsaturated monocyclic or bicyclic heterocycle having 5 to 8 ring members, which contains one or more heteroatom ring members selected from nitrogen, oxygen or sulfur and which is optionally substituted, or phenyl optionally substituted with one or more substituents;

R₂ is hydrogen;

L is -C(=O)-, -O-C(=O)-, -O-C₁₋₆alkanediyl-C(=O)-, more in particular, L is -O-C(=O)- or -O-C₁₋₆alkanediyl-C(=O)-, whereby in each case the C(=O) group is attached to the NR₂ moiety;

R₃ is arylC₁₋₄alkyl, in particular, arylmethyl, more in particular phenylmethyl;
R₄ is optionally substituted C₁₋₆alkyl, in particular unsubstituted C₁₋₆alkyl or
C₁₋₆alkyl optionally substituted with one or more substituents selected from aryl, Het¹,
Het², C₃₋₇cycloalkyl and amino optionally mono- or disubstituted where the substituents are selected from C₁₋₄alkyl, aryl, Het¹ and Het²;

R₆ is hydrogen or methyl; and

-62-

R₈ is hydrogen or methyl.

15. The method according to any one of claims 12 to 14, wherein R₁-L is Het¹-O-C(=O), Het²-C₁₋₆alkanediyl-O-C(=O), aryl-O-C₁₋₆alkanediyl-C(=O) or aryl-C(=O).

5 C(=O) or aryl—C(=O).

16. The method according to any one of claims 12 to 15, wherein NR_6R_8 is amino, monomethylamino or dimethylamino.

10 17. The method according to to any one of claims 12 to 16, wherein

R₁ is a Het¹, or a Het¹C₁₋₆alkyl, and

L is -O-C(=O)-;

R₂ is hydrogen;

R₃ is phenylmethyl;

15 \mathbb{R}_4 is isobutyl;

R₆ is hydrogen; and

R₈ is hydrogen or methyl.

18. The method according to any one of claims 12 to 17, wherein compound (9) has formula (9"").

- 19. The method according to any one of claims 12 to 18, characterized in thatcompound of formula (9) is in the form of a salt selected from trifluoroacetate, fumarate, chloroacetate and methanesulfonate.
 - 20. Use of a compound as claimed in any of claims 7 to 11 as an intermediate for preparing a retrovirus protease inhibitor of formula (9).

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

BLACK BORDERS

IMAGE CUT OFF AT TOP, BOTTOM OR SIDES

FADED TEXT OR DRAWING

BLURRED OR ILLEGIBLE TEXT OR DRAWING

SKEWED/SLANTED IMAGES

COLOR OR BLACK AND WHITE PHOTOGRAPHS

GRAY SCALE DOCUMENTS

LINES OR MARKS ON ORIGINAL DOCUMENT

REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

OTHER:

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.