El Algoritmo SO-TDOA [1] se utiliza para estimar la ubicación de una persona dentro de una habitación utilizando las vibraciones en el piso.

Algoritmo:

1. Divide la habitación en Q número de regiones. Donde cada región (llamada R_k) está formada por bisectrices perpendiculares a la línea que une a cada par de sensores

2. Se obtiene el vector característico \mathbf{z}_k de cada región El vector característico \mathbf{z}_k para cada región R_k , considerando todos los pares de sensores (i,j) se define como

$$\mathbf{z}_k(l) = sign(d_{ki} - d_{kj}), \quad l = \frac{(j-2)(j-1)}{2} + i$$

Para todo (i, j) elemento de $\{(1, 2), (1, 3), (2, 3), (1, 4)..., (N-1, N)\}$ Donde N es el número de sensores, d_{ki} es la distancia entre la región R_k y el sensor i, d_{kj} es la distancia entre la región R_k y el sensor j

3. Se obtiene del centroide p_k^c de cada región R_k .

- 4. Medición del tiempo de llegada (\hat{t}_{si}) de la vibración desde la fuente a cada sensor i.
- 5. Se calcula el vector característico de la fuente. Está dado por los signos de las diferencias de tiempo de llegada (TDOA) de todos los pares de sensores (i, j).

$$\mathbf{z}_{s}(l) = sign(\hat{t}_{si} - \hat{t}_{sj}), \quad l = \frac{(j-2)(j-1)}{2} + i$$

6. Se calcula el conjunto de regiones (M_r) que minimizan la distancia de Hamming al vector característico de la fuente.

$$M_r = \arg\min_{k \in [1...Q]} \sum_{i=1}^{N(N-1)/2} \left(\mathbf{z}_s(i) \oplus \mathbf{z}_k(i) \right); \qquad M_r \subset [1 \dots Q]$$

donde \bigoplus es el operador OR exclusivo.

7. La posición de la fuente se estima promediando los centroides de todas las regiones que minimizan la distancia de Hamming al vector medido z_s .

$$\widehat{\boldsymbol{p}}_{s} = \frac{1}{|M_{r}|} \sum_{r \in M_{r}}^{s} \boldsymbol{p}_{r}^{c}$$

Figura 1. Resultado del programa del SOTDOA

Referencias

[1] R. Bahroun, O. Michel, F. Frassati, M. Carmona and J. L. Lacoume, "New algorithm for footstep localization using seismic sensors in anindoor environment," *Journal of Sound and Vibration*, vol. 333, no. 3, pp. 1046–1066, DOI: https://doi.org/10.1016/j.jsv.2013.10.004, 2014.