

Fourth Industrial Summer School

Module 4: ML

Supervised Learning: Classification

Outlines

- ✓ Classification Intro.
- ✓ Non-parametrized methods
- ✓ Evaluation
- ✓ Parameterized methods

Classification

- Classification refers to a predictive modeling where a machine can distinguish samples by categories.
- The learning is to find a suitable mapping from features space (independent variables, predictors, etc.) to the categorical space (dependent variable, response, or label space).
- That means, it is <u>supervised</u> learning!
- Usually, the setting has two or more categories (i.e., classes).

Classification

- Classification problems can be categorized into
 - Binomial problems (data are for two categories only)
 - Emails identification: Spam / Not Spam
 - Healthy / Illness
 - Etc.
 - Multinomial problems (data are for multiple categories >2)
 - Animal recognition: Cats, Dogs, Rabbets, etc.
 - Personal identification: Employees attendance
 - Etc.

General Structure for Modeling

From Objects to Modeling: Fruits dataset

ML Modeling

■ To prepare for modeling, **training**, or creating an ML model, we need to use the available data.

As in fruit dataset, the data matrix contains 4 feature and 1 label

Label

columns.

Annual control of
<pre>import pandas as pd</pre>
<pre>data = pd.read csv('fruit data with colors.csv')</pre>
data

	fruit_label	fruit_name	fruit_subtype	mass	width	height	color_score
0	1	apple	granny_smith	192	8.4	7.3	0.55
1	1	apple	granny_smith	180	8.0	6.8	0.59
2	1	apple	granny_smith	176	7.4	7.2	0.60
3	2	mandarin	mandarin	86	6.2	4.7	0.80
4	2	mandarin	mandarin	84	6.0	4.6	0.79
5	2	mandarin	mandarin	80	5.8	4.3	0.77
6	2	mandarin	mandarin	80	5.9	4.3	0.81
7	2	mandarin	mandarin	76	5.8	4.0	0.81
8	1	apple	braeburn	178	7.1	7.8	0.92
9	1	apple	braeburn	172	7.4	7.0	0.89
10	1	apple	braeburn	166	6.9	7.3	0.93
11	1	apple	braeburn	172	7.1	7.6	0.92
12	1	apple	braeburn	154	7.0	7.1	0.88
13	1	apple	golden_delicious	164	7.3	7.7	0.70
14	1	apple	golden_delicious	152	7.6	7.3	0.69
15	1	apple	golden_delicious	156	7.7	7.1	0.69

Features

59 Samples

ML modeling

- The two columns **fruit_name**, and **fruit_subtype** can be removed before modeling.
- It is expected to have a clean data for modeling.

<pre>data2 = data.drop(['fruit_name',</pre>	'fruit_subtype'], axis=1)
data2	

	fruit_label	mass	width	height	color_score
0	1	192	8.4	7.3	0.55
1	1	180	8.0	6.8	0.59
2	1	176	7.4	7.2	0.60
3	2	86	6.2	4.7	0.80
4	2	84	6.0	4.6	0.79
5	2	80	5.8	4.3	0.77
6	2	80	5.9	4.3	0.81
7	2	76	5.8	4.0	0.81
8	1	178	7.1	7.8	0.92
9	1	172	7.4	7.0	0.89
10	1	166	6.9	7.3	0.93
11	1	172	7.1	7.6	0.92
12	1	154	7.0	7.1	0.88
13	1	164	7.3	7.7	0.70
14	1	152	7.6	7.3	0.69
15	1	156	7.7	7.1	0.69

But when should we preprocess the data?

Data Splitting

X_train

	mass	width	height	color_score
9	172	7.4	7.0	0.89
10	166	6.9	7.3	0.93
13	164	7.3	7.7	0.70
27	204	7.5	9.2	0.77
55	116	6.3	7.7	0.72
36	160	7.1	7.6	0.76
49	132	5.8	8.7	0.73
17	168	7.5	7.6	0.73
57	152	6.5	8.5	0.72
32	164	7.2	7.0	0.80
52	118	5.9	8.0	0.72
12	154	7.0	7.1	0.88
44	200	7.3	10.5	0.72
42	154	7.2	7.2	0.82
16	156	7.6	7.5	0.67

y_train

F	
9	1
10	1
13 27	1
27	3
55	4
36	3
49	3 4 3 4
17	1
57	1 4 3
32	3
52	4
12	1
12 44	4
42	4 3
16	1

X_test

	mass	width	height	color_score
46	216	7.3	10.2	0.71
2 9	160	7.0	7.4	0.81
35	150	7.1	7.9	0.75
56	116	5.9	8.1	0.73
2 3	170	7.6	7.9	0.88
48	174	7.3	10.1	0.72
28	140	6.7	7.1	0.72
0	192	8.4	7.3	0.55
30	158	7.1	7.5	0.79
1	180	8.0	6.8	0.59
54	116	6.1	8.5	0.71
53	120	6.0	8.4	0.74

y_test

46		4
29		3
35		3
56		3 4 1 4 3
23		1
48		4
28		3
0		1
30		3
1		1
54		1 4 4
53		4
	35	46 29 35 56 23 48 28 0 30 1 54 53

Holdout data: Keep this portion for testing & reporting the model performance

Data Splitting

Scikit learn helps us splitting the data using the following function

- Parameter: test_size is responsible for making the division of the data, in the above example, test_size = 0.2
- with test_size = 0.2, the data will be divided into 80% training and 20% testing.

Remember:

- Your data may not be ready for **modeling**, **yet**. We just kept a portion of it for **testing stage**.
- Now it is time to perform some data *preprocessing* such as encoding, imputation, normalization, etc.
- The parameters or settings used in the previous step must be retained and repeated on testing data.
 - For example, if we perform normalization using **standard scaler**, then we should use the **mean** and **std** of the training dataset to normalize the testing data.
- The above is very important to avoid *data leakage* and building more robust model.

Possible tasks that lead to data leakage

- **During data preparation**, you need to pay attention to data leakage because it might happen! For example,
- **During the EDA**, you noticed that your data has different scales (i.e., range of values), or you're considering dataset with missing values, or having some outliers, etc. the question is

What are you going to do?

- Similarly, during cross validation!
- Rule of thumb: holdout some raw data (10 to 20%) for final model testing.

Data leakage issue

- **Robustness** is a cornerstone that we're trying to build ML models to achieve.
- A data leakage is happening when critical information are shared between the training and testing data, somehow!
- Data leakage leads to overly optimistic or even completely invalid ML model
- Data leakage may destroy model robustness/generalization, so that we cannot deploy it to avoid unexpected consequences
- The ML framework should only rely on training data to create the model, and the training parameters should be carried on to the testing stage.

ML workflow Demo

- 1. Get some images using google search (fruits)
- 2. Build an ML to recognize images
- Test the created model with new images and check results

® Creative Commons licenses

Teachable Machines

Nonparametric Methods

K-Nearest Neighbor

Nonparametric Methods

- A nonparametric model has no bounded set of parameters.
- Number of parameters are growing by increasing training samples
- Such family of methods is called instance-based learning, or memory-based learning methods
- The simplest instance-based learning method is a table lookup, where new instance can be classified using a simple search to similar template examples from the table

K-Nearest Neighbor (kNN) Classifier

- **kNN** is a popular and simple ML algorithm
- The knn algorithm assumes no structure about the data
- It can be used for *regression* or *classification* problems
- It is heavily depending on
 - The training dataset representation, and
 - The hyperparameters set for the model
- So, quality training data is major requirement for kNN to enable the machine to model and make predictions for the unseen data.

How it works?

- In particular, knn has three steps:
- Given a training set X_{train} with labels y_{train} and given a new instance x_{test} to be classified:
 - 1. Find the most similar k instances to x_{test} that are in X_{train}
 - 2. Get the labels y_{train} of those similar instances to x_{test}
 - 3. Predict the label for *x_test* by combining those identified labels

Combining labels is usually done using **majority vote**

kNN algorithm hyperparameters

- A distance metric
 - Typically, Euclidean (Makowski with p = 2)
- Number of 'nearest' neighbors to look at
 - e.g. k = 5 neighbors
- Optional weighting function on the neighbor points
 - Ignored (uniform), or distance

Illustration

- There are two classes in this example (circles and triangles)
- The testing samples are plotted as stars.
- In case of k = 1, for each **test** sample kNN finds the **nearest** training sample and assign its label to the **test** sample.

What if we increase K?

K Effect on kNN

- Parameter *K* could be neither too large nor too small!
- If K is too large, the test samples tend to be classified as the most popular class in the training set rather than the most similar one.
- If K is too small, outliers or noisy data may affect the classification heavily.

Scikit Learn (Model)

Ploting the kNN decision Space

- The code of the plotting function is ready for you in the notebook.
- You need to run the Jupyter cell that contains the code before using the function to plot decision spaces.

```
[99] 1 # check decision space (Training)
2 plot_decisison (Xtr,y_tr, knn )

1 # check decision space (Tesing)
2 plot_decisison (Xts,y_ts, knn )
```

kNN decision space

• k = 5,

k = 1

Even though it is a simple approach, **kNN** model can often produce surprisingly high performance.

Pros and Cons

- No assumptions about data useful, for example, for nonlinear data
- Simple algorithm to explain and understand/interpret
- High accuracy (relatively) but requires more memory

- High memory requirements
- kNN struggles in case of high number of variables (Curse of dimensionality)
- Sensitive to irrelevant features, imbalanced data, and outliers

Exercises (1 - 2)

- KNearest Neighbor Classifier (Binary Classification)
- KNearest Neighbor Classifier (Multi-Classification)

® Creative Commons licenses