```
In [1]: import seaborn as sns
   import pandas as pd
   import matplotlib.pyplot as plt
   import numpy as np
   %matplotlib inline
In [2]: df = pd.read_csv("myFile2.txt", header = None)
```

```
In [2]: | df = pd.read_csv("myFile2.txt", header = None)
```

```
In [3]: df.drop([0], axis=1,inplace = True)
```

Out[4]:

	1	2	3	4	5	6	7	8	9	10	 40	41	42	43	
0	0.61213	0.65561	0.65904	0.289470	0.11442	0.45309	0.27574	0.12128	0.12471	0.14989	 0.47025	0.50915	0.46796	0.48169	0.42
1	0.65446	0.63616	0.18993	0.610980	0.59954	0.11670	0.14416	0.30549	0.12471	0.14989	 0.51030	0.53089	0.47025	0.46796	0.580
2	0.67963	0.61327	0.27803	0.659040	0.11670	0.11670	0.12243	0.30549	0.14760	0.30435	 0.46568	0.47368	0.47140	0.46911	0.47
3	0.69222	0.63043	0.57437	0.567510	0.11670	0.22311	0.19565	0.17963	0.50229	0.39931	 0.53547	0.48284	0.60412	0.48513	0.480
4	0.64989	0.71625	0.66934	0.330660	0.19794	0.11670	0.13272	0.14302	0.14531	0.14645	 0.48856	0.48856	0.48970	0.41419	0.487
5	0.65217	0.64989	0.66934	0.075515	0.64645	0.11670	0.40847	0.12128	0.25744	0.30092	 0.48970	0.49771	0.49199	0.49542	0.490
6	0.60526	0.55492	0.58924	0.278030	0.19451	0.52517	0.23455	0.19222	0.26087	0.28261	 0.53661	0.50801	0.46568	0.41648	0.410
7	0.63272	0.67048	0.26087	0.426770	0.11556	0.47941	0.14073	0.19336	0.14416	0.28375	 0.55149	0.40503	0.57208	0.54119	0.456
8	0.68078	0.67391	0.64188	0.250570	0.21854	0.11556	0.14188	0.14188	0.30435	0.14645	 0.55721	0.52746	0.57094	0.45881	0.57
9	0.66705	0.61442	0.63616	0.075515	0.47712	0.11327	0.25400	0.14188	0.19680	0.24714	 0.41876	0.56064	0.51030	0.51030	0.460

10 rows × 49 columns

heatmap of missrate

In [5]: import seaborn as sns; sns.set()
ax = sns.heatmap(df)

In [6]: df.describe()

Out[6]:

	1	2	3	4	5	6	7	8	9	10	
count	100.000000	100.000000	100.000000	100.000000	100.000000	100.000000	100.000000	100.000000	100.000000	100.000000	 10
mean	0.661350	0.635755	0.553238	0.477483	0.359073	0.302688	0.286350	0.301476	0.325938	0.318307	 0.4
std	0.029618	0.052138	0.146204	0.204594	0.207821	0.191051	0.170224	0.177252	0.177412	0.153106	 0.1
min	0.569790	0.244850	0.133870	0.075515	0.099542	0.104120	0.106410	0.102970	0.121280	0.114420	 0.2
25%	0.642735	0.615560	0.519160	0.283465	0.164760	0.140730	0.138440	0.141880	0.189358	0.214532	 0.3
50%	0.661900	0.635010	0.601830	0.588675	0.348970	0.223110	0.233410	0.278605	0.281465	0.293480	 0.3
75%	0.679918	0.657040	0.657890	0.652743	0.583240	0.459670	0.359555	0.365275	0.467108	0.375573	 0.4
max	0.732270	0.736840	0.718540	0.718540	0.694510	0.696800	0.680780	0.685350	0.699080	0.701370	 0.6

8 rows × 49 columns

In [7]: $a4_{dims} = (7, 4)$

histogram of k that generate minimum missrate

In [8]: fig, ax = plt.subplots(figsize=a4_dims)
fig=sns.distplot(df.idxmin(axis = 1),bins=40)

histogram of gamma that generate minimum missrate

In [9]: fig, ax = plt.subplots(figsize=a4_dims)
fig=sns.distplot(df.idxmin(axis = 0),bins=10)

median of missrate w.r.t. gamma

```
In [10]: ax = plt.subplots(figsize=a4_dims)
sns.lineplot(data = df.median(axis = 1))
```

Out[10]: <matplotlib.axes._subplots.AxesSubplot at 0x110f9f7f0>

median of missrate w.r.t. k

```
In [11]: ax = plt.subplots(figsize=a4_dims)
sns.lineplot(data = df.median(axis = 0))
```

Out[11]: <matplotlib.axes._subplots.AxesSubplot at 0x1112f5f60>

