

# Data Preprocessing

Presentation: Second Task

Group: ML\_Group2

Submitted By: Dalia Nasser



## 1. Data Preprocessing Sequence

The dataset includes **36,285** complete records across **17** well-structured columns, with a mix of numerical and categorical types and no missing values, ensuring it is clean and ready for analysis.



### 2. Outlier Removal Process

Outliers were removed using the **IQR method** on selected numeric columns, **reducing** the dataset to **20,525 clean records** while maintaining realistic values for **lead time**, **average price**, and **booking nights**, ensuring higher data quality for modeling.



## IQR Method - Interquartile Range

- The IQR method identifies and removes outliers by keeping only values within 1.5 times the interquartile range, ensuring cleaner and more reliable data for analysis.
- The Calculation :

#### 1. Calculate Q1 and Q3:

Q1 = 25th percentile of the data

Q3 = 75th percentile of the data

#### 2. Compute the IQR:

IQR = Q3 - Q1

#### 3. Define bounds:

Lower bound =  $Q1 - 1.5 \times IQR$ 

Upper bound =  $Q3 + 1.5 \times IQR$ 

## 3. Feature Engineering

Feature engineering included dropping irrelevant columns like **Booking\_ID** and creating new features such as total\_guests by combining number of adults and children to enrich the dataset.



#### 4. Categorical Data Transformation Process

Four categorical columns (type of meal, room type, market segment type, and booking status) were transformed using one-hot encoding, converting them into multiple binary 0/1 columns to make the entire dataset fully numeric and suitable for machine learning models



## 5. Train-Test Split

The dataset was split into training and testing sets using an 80/20 ratio, resulting in 16,420 training samples and 4,105 testing samples, ensuring balanced class distribution for model evaluation



## 6. Modeling & Evaluating

Multiple classification models were evaluated, with Random Forest achieving the highest test set accuracy at 86.9%, closely followed by XGBoost at 86.6%, while Logistic Regression trailed at 80.2%, demonstrating the advantage of ensemble methods for this prediction task.





## Thank You