	Math 321
Ex	to Credit Proofs (http://chaos.math.wichita.edu/
	Block 3 (Due by Final Exam) 1) Find a recurrence relation for the number of ways to parenthesize the n products of $n+1$ numbers.
)u ^Q	2) Prove the Fundamental Theorem of Arithmetic.
) 	3) Prove there are infinitely many primes.
Jec.	4) Prove Pascal's Identity.
(L'm	5) How many possible values to m and n are there so that 18^{10} is the least common multiple of m , n , and 6^{10} where m and n are distinct.
3	SI OSTS METO SEC.
("	to= thefore + Signal
35	En = En-1 and 1 (got Si right before
7.	En = En-2 and Z (got Sz nght befor
	En = (tu-1)(1) + (tu-2)(1)
	tn=tn-1 +tn-2 n23) you could
F0 =	just 100K

£ =

Solve:
$$t_n = t_{n-1} + t_{n-2}$$

$$r_{-1} = 0$$

$$r_{-1} = 1 + \sqrt{1 - 401 - 1}$$

$$r_{-1} = 1 + \sqrt{1 - 401 - 1}$$

$$r_{-1} = 1 + \sqrt{1 - 401 - 1}$$

$$r_{-1} = 1 + \sqrt{1 - 401 - 1}$$

$$r_{-1} = 1 + \sqrt{1 - 401 - 1}$$

$$r_{-1} = 1 + \sqrt{1 - 401 - 1}$$

$$r_{-1} = 1 + \sqrt{1 - 401 - 1}$$

$$r_{-1} = 1 + \sqrt{1 - 401 - 1}$$

$$r_{-1} = 1 + \sqrt{1 - 401 - 1}$$

$$r_{-1} = 1 + \sqrt{1 - 401 - 1}$$

$$r_{-1} = 1 + \sqrt{1 - 401 - 1}$$

$$r_{-1} = 1 + \sqrt{1 - 401 - 1}$$

$$r_{-1} = 1 + \sqrt{1 - 401 - 1}$$

$$r_{-1} = 1 + \sqrt{1 - 401 - 1}$$

$$r_{-1} = 1 + \sqrt{1 - 401 - 1}$$

$$r_{-1} = 1 + \sqrt{1 - 401 - 1}$$

$$r_{-1} = 1 + \sqrt{1 - 401 - 1}$$

$$r_{-1} = 1 + \sqrt{1 - 401 - 1}$$

$$r_{-1} = 1 + \sqrt{1 - 401 - 1}$$

$$r_{-1} = 1 + \sqrt{1 - 401 - 1}$$

$$r_{-1} = 1 + \sqrt{1 - 401 - 1}$$

$$r_{-1} = 1 + \sqrt{1 - 401 - 1}$$

$$r_{-1} = 1 + \sqrt{1 - 401 - 1}$$

$$r_{-1} = 1 + \sqrt{1 - 401 - 1}$$

$$r_{-1} = 1 + \sqrt{1 - 401 - 1}$$

$$r_{-1} = 1 + \sqrt{1 - 401 - 1}$$

$$r_{-1} = 1 + \sqrt{1 - 401 - 1}$$

$$r_{-1} = 1 + \sqrt{1 - 401 - 1}$$

$$r_{-1} = 1 + \sqrt{1 - 401 - 1}$$

$$r_{-1} = 1 + \sqrt{1 - 401 - 1}$$

$$r_{-1} = 1 + \sqrt{1 - 401 - 1}$$

$$r_{-1} = 1 + \sqrt{1 - 401 - 1}$$

$$r_{-1} = 1 + \sqrt{1 - 401 - 1}$$

$$r_{-1} = 1 + \sqrt{1 - 401 - 1}$$

$$r_{-1} = 1 + \sqrt{1 - 401 - 1}$$

$$r_{-1} = 1 + \sqrt{1 - 401 - 1}$$

$$r_{-1} = 1 + \sqrt{1 - 401 - 1}$$

$$r_{-1} = 1 + \sqrt{1 - 401 - 1}$$

$$r_{-1} = 1 + \sqrt{1 - 401 - 1}$$

$$r_{-1} = 1 + \sqrt{1 - 401 - 1}$$

$$r_{-1} = 1 + \sqrt{1 - 401 - 1}$$

$$r_{-1} = 1 + \sqrt{1 - 401 - 1}$$

$$r_{-1} = 1 + \sqrt{1 - 401 - 1}$$

$$r_{-1} = 1 + \sqrt{1 - 401 - 1}$$

$$r_{-1} = 1 + \sqrt{1 - 401 - 1}$$

$$r_{-1} = 1 + \sqrt{1 - 401 - 1}$$

$$r_{-1} = 1 + \sqrt{1 - 401 - 1}$$

$$r_{-1} = 1 + \sqrt{1 - 401 - 1}$$

$$r_{-1} = 1 + \sqrt{1 - 401 - 1}$$

$$r_{-1} = 1 + \sqrt{1 - 401 - 1}$$

$$r_{-1} = 1 + \sqrt{1 - 401 - 1}$$

$$r_{-1} = 1 + \sqrt{1 - 401 - 1}$$

$$r_{-1} = 1 + \sqrt{1 - 401 - 1}$$

$$r_{-1} = 1 + \sqrt{1 - 401 - 1}$$

$$r_{-1} = 1 + \sqrt{1 - 401 - 1}$$

$$r_{-1} = 1 + \sqrt{1 - 401 - 1}$$

$$r_{-1} = 1 + \sqrt{1 - 401 - 1}$$

$$r_{-1} = 1 + \sqrt{1 - 401 - 1}$$

$$r_{-1} = 1 + \sqrt{1 - 401 - 1}$$

$$r_{-1} = 1 + \sqrt{1 - 401 - 1}$$

$$r_{-1} = 1 + \sqrt{1 - 401 - 1}$$

$$r_{-1} = 1 + \sqrt{1 - 401 - 1}$$

$$r_{-1} = 1 + \sqrt{1 - 401 - 1}$$

$$r_{-1} = 1 + \sqrt{1 - 401 - 1}$$

$$r_{-1} = 1 + \sqrt{1 - 401 - 1}$$

$$r_{-1} = 1 + \sqrt{1 - 401 - 1}$$

$$r_{-1} = 1 + \sqrt{1 -$$

$$b = \frac{1 - \sqrt{3}}{2\sqrt{5}}$$

$$C = \frac{1 + \sqrt{5}}{2\sqrt{5}}$$

$$C = \frac{1 + \sqrt{5}}{2\sqrt{5}} \left(\frac{1 + \sqrt{5}}{2} \right) - \frac{1 - \sqrt{5}}{2\sqrt{5}} \left(\frac{1 + \sqrt{5}}{2} \right)$$

$$C = \frac{1 + \sqrt{5}}{2\sqrt{5}} \left(\frac{1 + \sqrt{5}}{2} \right) - \frac{1 - \sqrt{5}}{2\sqrt{5}} \left(\frac{1 + \sqrt{5}}{2} \right)$$

$$C = \frac{1 + \sqrt{5}}{2\sqrt{5}} \left(\frac{1 + \sqrt{5}}{2} \right) - \frac{1 - \sqrt{5}}{2\sqrt{5}} \left(\frac{1 + \sqrt{5}}{2} \right)$$

$$C = \frac{1 + \sqrt{5}}{2\sqrt{5}} \left(\frac{1 + \sqrt{5}}{2} \right) - \frac{1 - \sqrt{5}}{2\sqrt{5}} \left(\frac{1 + \sqrt{5}}{2} \right)$$

$$C = \frac{1 + \sqrt{5}}{2\sqrt{5}} \left(\frac{1 + \sqrt{5}}{2} \right) - \frac{1 - \sqrt{5}}{2\sqrt{5}} \left(\frac{1 + \sqrt{5}}{2} \right)$$

$$C = \frac{1 + \sqrt{5}}{2\sqrt{5}} \left(\frac{1 + \sqrt{5}}{2} \right) - \frac{1 - \sqrt{5}}{2\sqrt{5}} \left(\frac{1 + \sqrt{5}}{2} \right)$$

$$C = \frac{1 + \sqrt{5}}{2\sqrt{5}} \left(\frac{1 + \sqrt{5}}{2} \right) - \frac{1 - \sqrt{5}}{2\sqrt{5}} \left(\frac{1 + \sqrt{5}}{2} \right)$$

$$C = \frac{1 + \sqrt{5}}{2\sqrt{5}} \left(\frac{1 + \sqrt{5}}{2} \right) - \frac{1 - \sqrt{5}}{2\sqrt{5}} \left(\frac{1 + \sqrt{5}}{2} \right)$$

$$C = \frac{1 + \sqrt{5}}{2\sqrt{5}} \left(\frac{1 + \sqrt{5}}{2} \right) - \frac{1 - \sqrt{5}}{2\sqrt{5}} \left(\frac{1 + \sqrt{5}}{2} \right)$$

$$C = \frac{1 + \sqrt{5}}{2\sqrt{5}} \left(\frac{1 + \sqrt{5}}{2} \right) - \frac{1 - \sqrt{5}}{2\sqrt{5}} \left(\frac{1 + \sqrt{5}}{2} \right)$$

$$C = \frac{1 + \sqrt{5}}{2\sqrt{5}} \left(\frac{1 + \sqrt{5}}{2} \right) - \frac{1 - \sqrt{5}}{2\sqrt{5}} \left(\frac{1 + \sqrt{5}}{2} \right)$$

$$C = \frac{1 + \sqrt{5}}{2\sqrt{5}} \left(\frac{1 + \sqrt{5}}{2} \right) - \frac{1 - \sqrt{5}}{2\sqrt{5}} \left(\frac{1 + \sqrt{5}}{2} \right)$$

$$C = \frac{1 + \sqrt{5}}{2\sqrt{5}} \left(\frac{1 + \sqrt{5}}{2} \right) - \frac{1 - \sqrt{5}}{2\sqrt{5}} \left(\frac{1 + \sqrt{5}}{2} \right)$$

$$C = \frac{1 + \sqrt{5}}{2\sqrt{5}} \left(\frac{1 + \sqrt{5}}{2} \right)$$

$$C = \frac{1 + \sqrt{5}}{2\sqrt{5}} \left(\frac{1 + \sqrt{5}}{2} \right)$$

$$C = \frac{1 + \sqrt{5}}{2\sqrt{5}} \left(\frac{1 + \sqrt{5}}{2} \right)$$

$$C = \frac{1 + \sqrt{5}}{2\sqrt{5}} \left(\frac{1 + \sqrt{5}}{2} \right)$$

$$C = \frac{1 + \sqrt{5}}{2\sqrt{5}} \left(\frac{1 + \sqrt{5}}{2} \right)$$

$$C = \frac{1 + \sqrt{5}}{2\sqrt{5}} \left(\frac{1 + \sqrt{5}}{2} \right)$$

$$C = \frac{1 + \sqrt{5}}{2\sqrt{5}} \left(\frac{1 + \sqrt{5}}{2} \right)$$

$$C = \frac{1 + \sqrt{5}}{2\sqrt{5}} \left(\frac{1 + \sqrt{5}}{2} \right)$$

$$C = \frac{1 + \sqrt{5}}{2\sqrt{5}} \left(\frac{1 + \sqrt{5}}{2} \right)$$

$$C = \frac{1 + \sqrt{5}}{2\sqrt{5}} \left(\frac{1 + \sqrt{5}}{2} \right)$$

$$C = \frac{1 + \sqrt{5}}{2\sqrt{5}} \left(\frac{1 + \sqrt{5}}{2} \right)$$

$$C = \frac{1 + \sqrt{5}}{2\sqrt{5}} \left(\frac{1 + \sqrt{5}}{2} \right)$$

$$C = \frac{1 + \sqrt{5}}{2\sqrt{5}} \left(\frac{1 + \sqrt{5}}{2} \right)$$

$$C = \frac{1 + \sqrt{5}}{2\sqrt{5}} \left(\frac{1 + \sqrt{5}}{2} \right)$$

$$C = \frac{1 + \sqrt{5}}{2\sqrt{5}} \left(\frac{1 + \sqrt{5}}{2} \right)$$

$$C = \frac{1 + \sqrt{5}}{2\sqrt{5}} \left(\frac{1 + \sqrt{5}}{2} \right)$$

$$C = \frac{1 + \sqrt{5}}{2\sqrt{5}} \left(\frac{1 + \sqrt{5}}{2} \right)$$

$$C = \frac{1 + \sqrt{5}}{2\sqrt{5}} \left(\frac{1 + \sqrt{5}}{2} \right)$$

$$C = \frac{1 + \sqrt{5}}{2\sqrt{5}}$$

Pn = 1.2 (Pn-1) + .45 (Pn-2) $P_1 = (00,000) = 19$ DF-127-,45=0 T = 1.2 ± 1.44 + 4(.45) ba= al'u + pla Q + D = 600,000150,000 = 1,01 + 12p yan () 10 polos + 1 ec. 3 applications of © sun rule © prod. Tule 3 over country (Sun-Role)-

(1) 12,13 R ml+ 3 an = ari + brz + (c+dn+en) rz Done Tel is mational.