Importing required libraries

import pandas as pd

 ${\tt import\ matplotlib.pyplot\ as\ plt}$

import seaborn as sns

from sklearn.model_selection import train_test_split

from sklearn.preprocessing import StandardScaler

from sklearn.linear_model import LogisticRegression

 $from \ sklearn.metrics \ import \ accuracy_score, \ classification_report, \ confusion_matrix$

Loading Dataset

data=pd.read_csv("/content/diabetes.csv") data

0	6	148	70						
1			72	35	0	33.6	0.627	50	1
	1	85	66	29	0	26.6	0.351	31	0
2	8	183	64	0	0	23.3	0.672	32	1
3	1	89	66	23	94	28.1	0.167	21	0
4	0	137	40	35	168	43.1	2.288	33	1
763	10	101	76	48	180	32.9	0.171	63	0
764	2	122	70	27	0	36.8	0.340	27	0
765	5	121	72	23	112	26.2	0.245	30	0
766	1	126	60	0	0	30.1	0.349	47	1
767	1	93	70	31	0	30.4	0.315	23	0

Next steps: (Generate code with data) (View recommended plots)

New interactive sheet

Checking for missing values

sns.heatmap(data.isnull())

Co-relation matrix

correlation=data.corr()
print(correlation)

\rightarrow		Pregnancies	Glucose	 Age	Outcome
	Pregnancies	1.000000	0.129459	 0.544341	0.221898
	Glucose	0.129459	1.000000	 0.263514	0.466581
	BloodPressure	0.141282	0.152590	 0.239528	0.065068
	SkinThickness	-0.081672	0.057328	 -0.113970	0.074752
	Insulin	-0.073535	0.331357	 -0.042163	0.130548
	BMI	0.017683	0.221071	 0.036242	0.292695
	DiabetesPedigreeFunction	-0.033523	0.137337	 0.033561	0.173844
	Age	0.544341	0.263514	 1.000000	0.238356
	Outcome	0.221898	0.466581	 0.238356	1.000000

[9 rows x 9 columns]

sns.heatmap(correlation)

Train test split

```
X=data.drop("Outcome", axis=1)
Y=data["Outcome"]
```

```
Pregnancies Glucose BloodPressure SkinThickness Insulin BMI DiabetesPedigreeFunction Age
      258
                                                                     375 25.9
New interactive sheet
                                                                                                      0.655

    View recommended plots

              Generate code with X train
 Next ...,
                                                                      165 30.3
                                                                                                             53
      516
                      9
                             145
                                              88
                                                              34
                                                                                                     0.771
Training the model
      224
                             100
                                             66
                                                             15
                                                                       56 23 6
                                                                                                     0.666
                                                                                                             26
model=LogisticRegression()
model.fit(X_train, Y_train)
     /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_logistic.py:465: ConvergenceWarning: lbfgs failed to converge (status=
     STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.
     Increase the number of iterations (max_iter) or scale the data as shown in:
        https://scikit-learn.org/stable/modules/preprocessing.html
     Please also refer to the documentation for alternative solver options:
         \underline{\texttt{https://scikit-learn.org/stable/modules/linear\_model.html} \\ \texttt{\#logistic-regression}}
       n_iter_i = _check_optimize_result(
      ▼ LogisticRegression (i) ?
     LogisticRegression()
```

Making predictions

```
\label{lem:predict} \begin{split} & predictions = model.predict(X\_test) \\ & predictions \end{split}
```

Evaluation

accuracy=accuracy_score(predictions, Y_test)
print(accuracy)

0.7792207792207793

Start coding or generate with AI.