DSP 应用技术作业

姓名:徐延宾

学号: 9171040G0633

作业三:

根据 "Example_ADC"中实验内容, 打开程序 LAB11_main.c, DSP2833x_PieCtrl.c 以及相关头文件, 阅读程序段落。

- 1.摘录与中断设置相关的程序语句。
- (1) LAB11 main.c 的 void main(void)内相关设置语句:

DINT; //禁止 CPU 中断,禁止全局中断

InitPieCtrl(); //初始化 PIE 控制寄存器

IER=0x0000; //禁用所有 CPU 中断并清除 CPU 中断标志位

IFR=0x0000;

InitPieVectTable(); //初始化 PIE 向量里面包含了 PieCtrlRegs.PIECTRL.bit.ENPIE=1

EALLOW;

PieVectTable.EPWM1 INT =&epwm1 timer adc isr; //第三组第一中断

EDIS;

InitAdcParameters();

InitEPwm1Parameters();

PieCtrlRegs.PIEIER3.bit.INTx1 = 1; //响应 EPWM1 INT 中断

PieCtrlRegs.PIECTRL.bit.ENPIE=1; //打开 PIE 中断,使能 PIE

IER |= M **INT3**; //打开 **CPU** 第 3 组中断

EINT; //使能全局中断, 允许中断响应

ERTM;

(2) LAB11 main.c 的 void InitAdcParameters(void) 函数内相关设置语句:

AdcRegs.ADCST.bit.INT SEQ1 CLR=1; //清除 SEQ1 中断标志位

AdcRegs.ADCTRL2.bit.INT ENA SEQ1=0; //INT-SEQ1 对 CPU 的中断请求被禁用

AdcRegs.ADCTRL2.bit.INT MOD SEQ1=0; //每个 SEQ1 序列结束时, INT-SEQ1 置位

(3) LAB11 main.c 的 void InitEPwm1Parameters(void) 函数内相关设置语句:

EPwm1Regs.ETSEL.bit.INTEN = 1;

//使能 ePWMx INT 产生

EPwm1Regs.ETPS.bit.INTPRD = ET 3RD;

//在第三个事件产生中断

(4) LAB11 main.c 的 interrupt void epwm1 timer adc isr(void) 函数内相关设置语句:

AdcRegs.ADCTRL2.bit.RST SEQ1 = 1;

//复位 SEQ1

EPwm1Regs.ETCLR.bit.INT = 1;

//清除中断标志位

PieCtrlRegs.PIEACK.all = PIEACK GROUP3; //中断应答

- (5) <u>DSP2833x_PieCtrl.c</u> 的 void <u>InitPieCtrl(void)</u> 函数内相关设置语句: DINT;
- (6) <u>DSP2833x PieCtrl.c</u> 的 void EnableInterrupts() 函数内相关设置语句: EINT;
- (7) DSP2833x Device.h 的相关中断定义:

extern cregister volatile unsigned int IFR;

extern cregister volatile unsigned int IER;

#define EINT asm(" clrc INTM")
#define DINT asm(" setc INTM")

2. **函数** InitPieCtrl()**实现的功能**。 初始化 PIE 控制寄存器。

3. **函数** InitPieVectTable()**实现的功能**。 初始化 PIE 向量表。

4. 语句 PieVectTable.EPWM1_INT=&epwm1_timer_adc_isr; 实现的功能。 将中断函数映射到中断向量表的第三组第一中断。

向量名称	PIE向量地址	功能	内容
INT1.1	0x0000 0D40	SEQ1INT	0xXXXXXX
INT3.1	0x0000 0D60	EPWM1_INT	&epwm1_timer_adc_isr
INT12.8	0x0000 0DFE	PIEINT12.8	0xXXXXXX

作业四: XINTF 模块设置

1.指出存储器地址范围;

地址范围: 0x00000-0x7FFFF

2.在程序 Example_2833xDMA_xintf_to_ram.c 指出相关的配置代码。指出 XTIMING6、XINTCNF2 寄存器各字段的数值及含义。

```
(1)程序 Example 2833xDMA xintf to ram.c 相关的配置代码:
  在函数 void init zone6(void)中配置:
void init zone6(void)
    EALLOW;
    // Make sure the XINTF clock is enabled
    SysCtrlRegs.PCLKCR3.bit.XINTFENCLK = 1;
    EDIS;
   // Configure the GPIO for XINTF with a 16-bit data bus
   // This function is in DSP2833x Xintf.c
    InitXintf16Gpio();
    // All Zones-----
    // Timing for all zones based on XTIMCLK = SYSCLKOUT
    EALLOW;
    XintfRegs.XINTCNF2.bit.XTIMCLK = 0;
    // Buffer up to 3 writes
    XintfRegs.XINTCNF2.bit.WRBUFF = 3;
    // XCLKOUT is enabled
    XintfRegs.XINTCNF2.bit.CLKOFF = 0;
    // XCLKOUT = XTIMCLK
    XintfRegs.XINTCNF2.bit.CLKMODE = 0;
    // Zone 6-----
    // When using ready, ACTIVE must be 1 or greater
    // Lead must always be 1 or greater
    // Zone write timing
    XintfRegs.XTIMING6.bit.XWRLEAD = 1;
    XintfRegs.XTIMING6.bit.XWRACTIVE = 2;
    XintfRegs.XTIMING6.bit.XWRTRAIL = 1;
    // Zone read timing
    XintfRegs.XTIMING6.bit.XRDLEAD = 1;
```

XintfRegs.XTIMING6.bit.XRDACTIVE = 3;

XintfRegs.XTIMING6.bit.XRDTRAIL = 0;

// don't double all Zone read/write lead/active/trail timing

XintfRegs.XTIMING6.bit.X2TIMING = 0;

// Zone will not sample XREADY signal

XintfRegs.XTIMING6.bit.USEREADY = 0;

XintfRegs.XTIMING6.bit.READYMODE = 0;

// 1,1 = x16 data bus

// 0.1 = x32 data bus

// other values are reserved

XintfRegs.XTIMING6.bit.XSIZE = 3;

EDIS;

//Force a pipeline flush to ensure that the write to

//the last register configured occurs before returning.

asm(" RPT #7 || NOP");

(2) 指出 XTIMING6、XINTCNF2 寄存器各字段的数值及含义:

表格 1 XTIMING6 Register

字段	数值	含义
XWRLEAD	1	Write Lead Period=1 XTIMCLK cycle
XWRACTIVE	2	Write Active Period Waitstates =2 XTIMCLK cycles
XWRTRAIL	1	Write Trail Period =1 XTIMCLK cycle
XRDLEAD	1	Read Lead Period =1 XTIMCLK cycle
XRDACTIVE	3	Read Active Period Waitstates =3 XTIMCLK cycles
XRDTRAIL	0	Read Trail Period =0
X2TIMING	0	The values are scaled 1:1
USEREADY	0	The XREADY signal is ignored when accesses are made to the
		zone.
READYMODE	0	XREADY input is synchronous for the zone.
XSIZE	3	In this mode the zone will only use 16 data lines. The XA0/WE1
		signal will behave as XA0.

表格 2 XINTCNF2 Register

字段	数值	含义
XTIMCLK	0	XTIMCLK = SYSCLKOUT
WRBUFF	3	Buffer up to 3 writes (此处不明白, 用户指南未找到说明)
CLKOFF	0	XCLKOUT is enabled
CLKMODE	0	XCLKOUT = XTIMCLK

3.根据存储器的读写时序,能否优化 DSP 的 XINTF 配置?给出具体配置方案。 IS61LV51216 存储器读时序图

IS61LV51216 存储器读访问参数表

Symbol	Parameter	-8 Min.	Max.	-10 Min.	0 Max.	-12 Min.		Unit
trc	Read Cycle Time	8	_	10	_	12	_	ns
taa	Address Access Time	_	8	_	10	_	12	ns
toha	Output Hold Time	3	_	3	_	3	_	ns
tace	CE Access Time	_	8	_	10	_	12	ns
tDOE	OE Access Time	_	3.5	_	4	_	5	ns
thzoe(2)	OE to High-Z Output	_	3	_	4	0	5	ns
tuzoe(2)	OE to Low-Z Output	0	_	0	_	0	_	ns
thzce(2	CE to High-Z Output	0	3	0	4	0	6	ns
tuzce(2)	CE to Low-Z Output	3	_	3	_	3	_	ns
tва	LB, UB Access Time	_	3.5	_	4	_	5	ns
thzb(2)	LB, UB to High-Z Output	0	3	0	3	0	4	ns
t _{LZB} (2)	LB, UB to Low-Z Output	0	_	0	_	0	_	ns
tpu	Power Up Time	0	_	0	_	0	_	ns
tpD	Power Down Time	_	8	_	10	_	12	ns

- Notes:
 1. Test conditions assume signal transition times of 3 ns or less, timing reference levels of 1.5V, input pulse levels of 0V to 3.0V and output loading specified in Figure 1.
 2. Tested with the load in Figure 2. Transition is measured ±500 mV from steady-state voltage.

IS61LV51216 存储器写时序图

IS61LV51216 存储器写访问参数表

		-8	3	-10)	-12	2	
Symbol	Parameter	Min.	Max.	Min.	Max.	Min.	Max.	Unit
twc	Write Cycle Time	8	_	10	_	12	_	ns
tsce	CE to Write End	6.5	_	8	_	8	_	ns
taw	Address Setup Time to Write End	6.5	_	8	_	8	_	ns
tha	Address Hold from Write End	0	_	0	_	0	_	ns
tsa	Address Setup Time	0	_	0	_	0	_	ns
tрwв	LB, UB Valid to End of Write	6.5	_	8	_	8	_	ns
tpwe1	WE Pulse Width	6.5	_	8	_	8	_	ns
tpwe2	WE Pulse Width (OE = LOW)	8.0	_	10	_	12	_	ns
tso	Data Setup to Write End	5	_	6	_	6	_	ns
tно	Data Hold from Write End	0	_	0	_	0	_	ns
thzwe ⁽²⁾	WE LOW to High-Z Output	_	3.5	_	5	_	6	ns
t.zwe ⁽²⁾	WE HIGH to Low-Z Output	2	_	2	_	2	_	ns

```
XINTF 的配置主要是读写时序:
读时序:
t_{XRDLEAD} = t_{ACE} - t_{DOE}
t_{XRDACTIVE} = t_{RC} + t_{OHA} - t_{HZOE} - (t_{AA} - t_{DOE})
t_{XRDTRAIL} = t_{HZCE} - t_{HZOE}
// Zone read timing (tc=6.67ns)
     XintfRegs.XTIMING6.bit.XRDLEAD = ;
    XintfRegs.XTIMING6.bit.XRDACTIVE = ;
    XintfRegs.XTIMING6.bit.XRDTRAIL = ;
写时序:
t_{XWRDLEAD}
t_{\text{XWRACTIVE}} = t_{\text{PBW1}}
t_{XWRTRAIL}
// Zone write timing (tc=6.67ns)
     XintfRegs.XTIMING6.bit.XWRLEAD =;
    XintfRegs.XTIMING6.bit.XWRACTIVE =;
```

XintfRegs.XTIMING6.bit.XWRTRAIL =;

但是具体的配置方案暂时没有更好地想法,这里的更加优化指的是读写时间更短吗?还是什么其他的指标呢?这里不甚清楚。

作业五:

根据 "Example_ADC"中实验内容, 打开程序 LAB11_main.c 及相关头文件, 阅读程序段落。

1. 摘录与 ePWM 模块设置相关的程序语句;

(1)程序 LAB11_main.c 的 void InitEPwm1Parameters(void)相关的配置代码: void InitEPwm1Parameters(void)

{

// InitEPwm1Gpio();

// Disable TBCLK within the ePWM

EALLOW;

SysCtrlRegs.PCLKCR0.bit.TBCLKSYNC = 0; //停止 epwm 模块内部的时间基准时钟 EDIS;

// TBCLK = SYSCLKOUT / (HSPCLKDIV*CLKDIV)=150/(6*1)=25

EPwm1Regs.TBCTL.bit.HSPCLKDIV =0x03; //高速时间基准时钟预分频为两倍

EPwm1Regs.TBCTL.bit.CLKDIV = 0x00; //时间基准时钟预分频位 等于 0 即 1 分频

// Set Period for EPWM1

EPwm1Regs.TBPRD = 208;

//设定时间基准器计数器的周期 208-fs 20kHz,139-fs 30kHz 149--27.9kHz

T(PWM1)=TBCLK/(TBPRD*2*3)=25/(208*3*2)=0.02MHz, 20KHz

EPwm1Regs.TBCTL.bit.CTRMODE = TB COUNT UPDOWN; //增减计数模式

// Setup Compare A = 2 TBCLK counts

EPwm1Regs.CMPA.half.CMPA = 2; //计数比较寄存器 A CMPA 当前工作的 CMPA 的值不断和时间基准计数器 TBCTR 比较

// Phase is 0 for Synchronization Event

EPwm1Regs.TBPHS.half.TBPHS = 0x0000; //TBCTR 不装载相位寄存器 TBPHS 的值 // Clear TB counter

EPwm1Regs.TBCTR = 0x0000;//事件基准计数寄存器 TBCTR 读取写到其中的 TBCTR 的 值清除

// Phase loading disabled

EPwm1Regs.TBCTL.bit.PHSEN = TB_DISABLE;//禁止 TBCTR 对 TBPHS 的装载 // Enable the TBCTL Shadow

EPwm1Regs.TBCTL.bit.PRDLD = TB_SHADOW;//TBCTR 装载其映射寄存器的值 // Disable EPWMxSYNCO signal

EPwm1Regs.TBCTL.bit.SYNCOSEL=TB_SYNC_DISABLE; // 禁用 EPWMxSYNCO signal // CMPA Register operating mode, 0 means operates as a double buffer, all writes via the CUP access the shadow register

EPwm1Regs.CMPCTL.bit.SHDWAMODE=CC_SHADOW;//映射模式,双缓冲模式,所有CPU 写操作将访问映射寄存器

// Active CMPA Load From Shadow Select Mode when CTR=0

EPwm1Regs.CMPCTL.bit.LOADAMODE = CC_CTR_ZERO; // load on CTR = Zero // Set actions

// Force EPWMA output high when the counter equals the active CMPA register and the counter is incrementing

EPwm1Regs.AQCTLA.bit.CAU = AQ SET;//计数递增 强制 ePWMxA 输出高

```
// Force EPWMA output low Action when the counter equals the active CMPA register and the
counter is decrementing
   EPwm1Regs.AQCTLA.bit.CAD = AQ CLEAR;//计数递减
                                                        强制 ePWMxA 输出低
// Dead-Band Generator Rising Edge Delay Count Register=0
    EPwm1Regs.DBRED=0;
// Dead-Band Generator Falling Edge Delay Count Register=0
    EPwm1Regs.DBFED=0;
// Enable ADC Start of SOCA Pulse
   EPwm1Regs.ETSEL.bit.SOCAEN = 1;
                                      //使能 ePWMxSOCA 脉冲
// Select SOC from CPMA on upcount
   EPwm1Regs.ETSEL.bit.SOCASEL = 2;
                                        //TBCTR=TBPRD 时产生 ePWMxSOCA
// Select how many selected ETSEL events need to occur before an EPWMxSOCA pulse is
generated;//在第三个事件产生 ePWMxSOCA 脉冲
   EPwm1Regs.ETPS.bit.SOCAPRD = 3;
// Enable event time-base counter equal to period (TBCTR = TBPRD)
   EPwm1Regs.ETSEL.bit.INTSEL=ET CTR PRD; // TBCTR=TBPRD 时产生 ePWMxSOCA
// Enable EPWMx INT generation
   EPwm1Regs.ETSEL.bit.INTEN = 1;
                                           //使能 ePWMx INT 产生
// These bits determine how many selected ETSEL[INTSEL] events need to occur before an
interrupt is generated.
                                             //在第三个事件产生中断
   EPwm1Regs.ETPS.bit.INTPRD = ET 3RD;
// Enable TBCLK within the ePWM
   EALLOW;
   SysCtrlRegs.PCLKCR0.bit.TBCLKSYNC = 1;
   EDIS;
 (2) 程序 LAB11 main.c 的 interrupt void epwm1 timer adc isr(void)函数相关的配置代码:
                                      //中断函数
interrupt void epwm1 timer adc isr(void)
  xn=AdcRegs.ADCRESULT1;
 *Da_out=xn;
// Reinitialize for the next ADC Sequence
// Reset SEQ1
 AdcRegs.ADCTRL2.bit.RST SEQ1 = 1;
                                     //复位 SEQ1
// Clear INT SEQ1 bit
 EPwm1Regs.ETCLR.bit.INT = 1;
                                      //清除中断标志位
// Acknowledge interrupt to PIE
 PieCtrlRegs.PIEACK.all = PIEACK_GROUP3; //PIEACK-PIE ackonwledge register //中断应答
 return;
 (3) 程序 DSP2833x ePwm defines.h 中对某些寄存器的位的定义:
// TBCTL (Time-Base Control)
// CTRMODE bits
```

```
#define TB COUNT UP
                           0x0
#define
      TB COUNT DOWN
                          0x1
       TB COUNT UPDOWN
                               0x2
#define
#define TB FREEZE
                       0x3
// PHSEN bit
#define TB DISABLE
                           0x0
#define TB ENABLE
                       0x1
// PRDLD bit
#define TB SHADOW
                           0x0
#define TB IMMEDIATE 0x1
// SYNCOSEL bits
#define TB_SYNC_IN
                           0x0
#define TB CTR ZERO
                           0x1
#define
      TB CTR CMPB
                           0x2
#define TB_SYNC_DISABLE 0x3
// HSPCLKDIV and CLKDIV bits
#define TB DIV1
                           0x0
#define TB DIV2
                           0x1
#define TB DIV4
                           0x2
// PHSDIR bit
#define TB DOWN
                       0x0
#define TB UP
                       0x1
// ETSEL (Event Trigger Select)
//=====
#define ET CTR ZERO
                           0x1
#define
      ET_CTR_PRD
                           0x2
#define
      ET CTRU CMPA 0x4
#define ET CTRD CMPA 0x5
#define ET_CTRU_CMPB 0x6
#define ET_CTRD_CMPB 0x7
// ETPS (Event Trigger Pre-scale)
// INTPRD, SOCAPRD, SOCBPRD bits
#define ET_DISABLE
                       0x0
#define ET_1ST
                       0x1
#define ET 2ND
                       0x2
#define ET 3RD
                       0x3
```

2.指出寄存器 TBCTL 与 TBPRD 各字段的数值及其含义;

表格 3 TBCTL Register

字段	数值	含义
HSPCLKDIV	3	二者共同决定 time-base clock 预分频
CLKDIV	0	TBCLK = SYSCLKOUT / (HSPCLKDIV × CLKDIV)
CTRMODE	2	time-base counter mode: Up-down-count mode.
PHSEN	0	Phase loading disabled.
PRDLD	0	TBPRD is loaded from its shadow register when the time-base counter,
		TBCTR, is equal to zero.
SYNCOSEL	3	Disable EPWMxSYNCO signal.

表格 4 TBPRD Register

字段	数值	含义			
TBPRD	208	TB counter 的计数最大值 208 (增减计数下:0-208, 208-0)			

3.指出时间基准模块 TB 产生事件的频率;

首先 CPU 复位默认频率为 150MHz, TBCTL Register 中 HSPCLKDIV=3, CLKDIV=0, 根据 TBCLK 频率的计算表达式计算可得:

$$TBCLK = \frac{SYSCLKOUT}{HSPCLKDIV \times CLKDIV} = \frac{150MHz}{6 \times 1} = 25MHz$$

又因为计数器采用增减计数模式且 TBPRD Register 中的计数值为 208, 故时间频率为:

$$f_1 = \frac{TBCLK}{208 \times 2} = \frac{25MHz}{416} = 60.096kHz$$

故:时间基准模块 TB 产生事件的频率为 60.096kHz

4.指出寄存器 ETSEL 和 ETPS 各字段的数值及其含义;

表格 5 ETSEL Register

字段	数值	含义
SOCAEN	1	Enable EPWMxSOCA pulse.
SOCASEL	2	Enable event time-base counter equal to period (TBCTR = TBPRD)
INTSEL	2	Enable event time-base counter equal to period (TBCTR = TBPRD)
INTEN	1	Enable EPWMx_INT generation

表格 6 ETPS Register

字段	数值	含义	
SOCAPRD	3	Generate the EPWMxSOCA pulse on the third event: ETPS[SOCACNT]	
		= 1,1	
INTPRD	3	Generate interrupt on ETPS[INTCNT] = 1,1 (third event)	

5.指出 ADCSOC 信号的产生频率:

根据 ETPS Register 中相关位的设置可知,事件触发子模块在第三个事件产生一个 EPWMxSOCA pulse 信号,因此 ADCSOC 信号的产生频率:

$$f = \frac{f_1}{3} = \frac{60.096kHz}{3} = 20.032kHz$$

[注], f₁ 为第3问中的时间基准模块TB产生事件的频率。

6.概括此程序运行后所产生的效果。

我认为此段程序可实现的功能是:产生一个频率约为 20kHz 的脉冲信号,并附有中断控制功能,因此可利用此程序进一步做 AD 采样的相关工作。