Dimensionnement du Rover et de la Tourelle

Projet Robot Mobile – Synthèse des calculs

August 8, 2025

Contents

1	Нур	Hypothèses et objectifs			
	1.1	Objectifs			
	1.2	Composants retenus			
2	Rover				
	2.1	Cinématique de la roue			
	2.2	Vitesse maximale avec moteurs 560 rpm			
	2.3	Force motrice et accélération			
	2.4	Charge totale admissible (rover compris)			
	2.5	Variante roues Ø16 cm (mémo)			
3	Tourelle (Pan)				
	3.1	Spécifications			
	3.2	Vitesse et accélération angulaires			
	3.3	Couple d'accélération requis			
	3.4	Capacité moteur (iSV57T-090) avec réduction 10:1			
	3.5	Remarques sur la courroie			
4	Svn	thèse			

1 Hypothèses et objectifs

1.1 Objectifs

- Rover: atteindre une vitesse maximale de $5\,\mathrm{m/s}$ avec des roues de $\varnothing 15\,\mathrm{cm}$ (rayon $R=0.075\,\mathrm{m}$).
- Tourelle (pan): effectuer 360° en $0.2 \,\mathrm{s}$ avec une charge de $10 \,\mathrm{kg}$ sur un plateau de $\varnothing 15 \,\mathrm{cm}$.

1.2 Composants retenus

- Rover: 4 moteurs brushless à réducteur M62B90-24P-30S/G62-5.36S1, 90 W, $\tau=1.38\,\mathrm{N}\,\mathrm{m}$ chacun, vitesse en sortie 560 rpm.
- Tourelle: moteur NEMA23 iSV57T-090, 90 W, $\tau_{nom}=0.3\,\mathrm{N\,m},\ \tau_{cr}=0.8\,\mathrm{N\,m},\ 3000\,\mathrm{rpm};$ réduction par courroie 10:1.
- Masse châssis nu: $\sim 14 \,\mathrm{kg}$ (moteurs, drivers, batterie 6S, châssis, Jetson, Arduino, câblage).

2 Rover

2.1 Cinématique de la roue

Périmètre roue $C=2\pi R$. Régime requis pour une vitesse v:

$$RPM = \frac{v \cdot 60}{2\pi R}.$$
 (1)

Avec $v = 5 \,\text{m/s}$ et $R = 0.075 \,\text{m}$:

$$RPM_5 = \frac{5 \cdot 60}{2\pi \cdot 0.075} \approx \boxed{637 \, \text{rpm}}. \tag{2}$$

2.2 Vitesse maximale avec moteurs 560 rpm

$$tr/s = \frac{560}{60} = 9.33,\tag{3}$$

$$v = \text{tr/s} \cdot C = 9.33 \cdot (2\pi \cdot 0.075) \approx \boxed{4.40 \,\text{m/s}}.$$
 (4)

2.3 Force motrice et accélération

Force par moteur (couple $\tau_m = 1.38 \,\mathrm{N\,m}$):

$$F_m = \frac{\tau_m}{R} = \frac{1.38}{0.075} \approx 18.4 \,\text{N}.$$
 (5)

Force totale (4 moteurs): $F_{tot} \approx 73.6 \,\mathrm{N}$. Accélération avec masse $m = 15 \,\mathrm{kg}$:

$$a = \frac{F_{tot}}{m} = \frac{73.6}{15} \approx 4.91 \,\text{m/s}^2.$$
 (6)

2.4 Charge totale admissible (rover compris)

Pour une accélération cible a, la masse totale admissible vaut:

$$m_{\text{max}} = \frac{F_{tot}}{a}. (7)$$

En retranchant la masse du rover $m_r \simeq 14 \,\mathrm{kg}$, on obtient la charge utile m_{payload} .

Cible	$m_{\rm max}$ (total)	$m_{\rm payload}$ (utile)
$a = 1 \mathrm{m/s^2}$	$73.6\mathrm{kg}$	$59.6\mathrm{kg}$
$a = 3 \mathrm{m/s^2}$	$24.5\mathrm{kg}$	$10.5\mathrm{kg}$

2.5 Variante roues Ø16 cm (mémo)

Avec $R = 0.08 \,\mathrm{m}$: $C = 2\pi R = 0.503 \,\mathrm{m}$.

$$RPM_5 = \frac{5 \cdot 60}{2\pi \cdot 0.08} \approx \boxed{597 \, \text{rpm}},\tag{8}$$

$$v_{560} = \frac{560}{60} \cdot 2\pi \cdot 0.08 \approx \boxed{4.69 \,\text{m/s}},$$
 (9)

$$F_m = \frac{1.38}{0.08} = 17.25 \,\text{N}, \quad F_{tot} \approx 69 \,\text{N}.$$
 (10)

Avec
$$m = 15 \,\text{kg}: \quad a \approx 4.6 \,\text{m/s}^2.$$
 (11)

Charges utiles:
$$\sim 55 \,\text{kg} \,(1 \,\text{m/s}^2), \, \sim 9 \,\text{kg} \,(3 \,\text{m/s}^2).$$
 (12)

3 Tourelle (Pan)

3.1 Spécifications

Objectif: 360° en 0.2 s avec un plateau (disque plein) m = 10 kg, r = 0.075 m.

3.2 Vitesse et accélération angulaires

Vitesse angulaire requise:

$$\omega = \frac{2\pi}{0.2} = 10\pi \approx \boxed{31.416 \,\text{rad/s}},\tag{13}$$

$$RPM_{plateau} = \omega \cdot \frac{60}{2\pi} \approx \boxed{300 \, rpm}.$$
 (14)

Accélération angulaire $(0\rightarrow\omega \text{ en }0.2\text{ s})$:

$$\alpha = \frac{\Delta\omega}{\Delta t} = \frac{31.416}{0.2} \approx \boxed{157 \,\text{rad/s}^2}.\tag{15}$$

3.3 Couple d'accélération requis

Moment d'inertie du plateau (disque plein):

$$I = \frac{1}{2}mr^2 = \frac{1}{2} \cdot 10 \cdot 0.075^2 = 0.028125 \,\mathrm{kg} \,\mathrm{m}^2.$$
 (16)

Couple requis:

$$\tau_{req} = I\alpha = 0.028125 \times 157 \approx \boxed{4.41 \,\mathrm{N}\,\mathrm{m}}.$$
 (17)

3.4 Capacité moteur (iSV57T-090) avec réduction 10:1

Moteur: $\tau_{nom}=0.3\,\mathrm{N}\,\mathrm{m},\,\tau_{cr}=0.8\,\mathrm{N}\,\mathrm{m},\,n_{m}=3000\,\mathrm{rpm}.$

Après réduction 10:1: $n_s = 300 \, \text{rpm}$, $\tau_{nom,s} = 3.0 \, \text{N m}$, $\tau_{cr,s} = 8.0 \, \text{N m}$.

Comparaison: $\tau_{req} = 4.41 \,\mathrm{N}\,\mathrm{m} < \tau_{cr,s} = 8.0 \,\mathrm{N}\,\mathrm{m} \Rightarrow \mathrm{conforme}$ pour des accélérations brèves; en régime établi, le couple nécessaire est dominé par les frottements (typiquement $\ll 3 \,\mathrm{N}\,\mathrm{m}$).

3.5 Remarques sur la courroie

Pignon GT2 10 dents (pas 2 mm): $D \approx \frac{Np}{\pi} \approx 6.37$ mm ($r \approx 3.18$ mm). Force tangente crête côté petit pignon:

$$F \approx \frac{\tau_{m,cr}}{r} = \frac{0.8}{0.00318} \approx 250 \,\text{N}.$$
 (18)

Recommandations: courroie GT2 PU renforcée (largeur $\geq 9\,\mathrm{mm}$), tension adéquate; pour plus de marge, profils HTD-3M/5M.

4 Synthèse

- Rover (Ø15 cm): $v \approx 4.40 \,\text{m/s}$ à 560 rpm; $F_{tot} \approx 73.6 \,\text{N}$; charges utiles: $\sim 59.6 \,\text{kg}$ à $1 \,\text{m/s}^2$, $\sim 10.5 \,\text{kg}$ à $3 \,\text{m/s}^2$.
- Variante Ø16 cm: $v \approx 4.69 \,\mathrm{m/s}$; $F_{tot} \approx 69 \,\mathrm{N}$.
- Tourelle: besoin $\tau \approx 4.41 \,\mathrm{N}\,\mathrm{m}$; solution 10:1 avec iSV57T-090: $\tau_{nom,s} = 3.0 \,\mathrm{N}\,\mathrm{m}$, $\tau_{cr,s} = 8.0 \,\mathrm{N}\,\mathrm{m} \Rightarrow \mathrm{marge}$ suffisante en crête.