CORPO

Definição: Corpo

Seja Ω um conjunto de elementos onde se tem definida uma condição de *igualdade* entre elementos de Ω e as duas operações:

- i) Adição entre elementos de Ω , representada por '+';
- ii) *Multiplicação* entre elementos de Ω , representada por '·'.

O conjunto Ω tem estrutura de *corpo* se verifica as seguintes condições, que são tomadas como *axiomas*:

Axioma 1) A adição é uma lei de composição interna

$$\forall x, y \in \Omega \ \exists^1 z \in \Omega : z = x + y$$

Axioma 2) A adição é associativa

$$\forall x, y, z \in \Omega \ (x + y) + z = x + (y + z)$$

Axioma 3) A adição é comutativa

$$\forall x,y \in \Omega \ \ x+y=y+x$$

Axioma 4) A adição possui elemento neutro

$$\exists 0 \in \Omega \ \forall x \in \Omega \ x + 0 = x$$

O elemento 0 chama-se *elemento zero* do corpo.

Axioma 5) A adição admite a existência de *elemento simétrico* (ou oposto)

$$\forall x \in \Omega \ \exists (-x) \in \Omega : x + (-x) = 0$$

O elemento -x chama-se elemento simétrico ou elemento oposto de x.

Axioma 6) A multiplicação é uma lei de composição interna

$$\forall x, y \in \Omega \ \exists^1 z \in \Omega : z = x \cdot y$$

J.A.T.B. NAL-AI.1

Axioma 7) A multiplicação é associativa

$$\forall x, y, z \in \Omega \ (x \cdot y) \cdot z = x \cdot (y \cdot z)$$

Axioma 8) A multiplicação é comutativa

$$\forall x, y \in \Omega \ x \cdot y = y \cdot x$$

Axioma 9) A multiplicação possui elemento neutro

$$\exists 1 \in \Omega \ \forall x \in \Omega \ 1 \cdot x = x$$

O elemento 1 chama-se *elemento unidade* do corpo.

Axioma 10) A multiplicação admite a existência de elemento inverso

$$\forall x \in \Omega \setminus \{0\} \ \exists x^{-1} \in \Omega : x^{-1} \cdot x = 1$$

O elemento x^{-1} chama-se *elemento inverso* de x.

Axioma 11) A multiplicação é distributiva em relação à adição

$$\forall x,y,z \in \Omega \ x \cdot (y+z) = x \cdot y + x \cdot z$$

• Os elementos da estrutura algébrica Ω chamam-se escalares.

Exemplo I.1: Possuem estrutura de *corpo*, o conjunto dos números reais, \mathbb{R} , o conjunto dos números complexos, \mathbb{C} , e o conjunto dos números racionais, \mathbb{Q} , com a condição de *igualdade* e as operações *adição* e *multiplicação* habituais para cada um destes conjuntos. Além disso, diz-se que o corpo \mathbb{Q} é um *subcorpo* do corpo \mathbb{R} , já que $\mathbb{Q} \subset \mathbb{R}$.

Exemplo I.2: O conjunto dos números naturais, \mathbb{N} , $n\tilde{a}o$ é um corpo, já que não satisfaz os axiomas 4, 5 e 10. Também $n\tilde{a}o$ tem estrutura de corpo o conjunto dos números inteiros relativos, \mathbb{Z} ; neste caso, é apenas violado o axioma 10.

J.A.T.B. NAL-Al.2