MATH255 - Algebra 2 A sample writing.

Based on lectures from Winter 2023 by Prof. Anush Tesrunyan. Notes by Louis Meunier

1 Inner Product Spaces	. 2
1.1 Projections and Cauchy-Schwartz	. 2

1 INNER PRODUCT SPACES

1.1 Projections and Cauchy-Schwartz.

 \hookrightarrow **Definition 1.1** (Orthogonal): Let V be an inner product space. We say $u, v \in V$ are *orthogonal* and write $u \perp v$ if $\langle u, v \rangle = 0$.

Example 1.1: In \mathbb{R}^3 equipped with the dot product, $(1,0,-1) \perp (1,0,1)$.

 \hookrightarrow **Theorem 1.1** (Pythagorean Theorem): For an inner product space V and $u, v \in V$, if $u \perp v$ then

$$||u||^2 + ||v||^2 = ||u + v||^2.$$

In particular, $\|u\|$, $\|v\| \le \|u+v\|$.

Proof.
$$\|u+v\|^2 = \langle u+v, u+v \rangle = \langle u, u \rangle + \langle u, v \rangle + \langle v, u \rangle + \langle v, v \rangle = \|u\|^2 + \|v\|^2$$

- \hookrightarrow **Definition 1.2** (Projection): For $v \in V$ and $u \in V$ a unit vector, put $\operatorname{proj}_{u(v)} := \langle v, u \rangle \cdot u$.
- \hookrightarrow **Proposition 1.1**: Let $u \in V$ a unit vector. For each $v \in V$, $v \operatorname{proj}_{u(v)} \perp u$.

Proof. Clear.

 \hookrightarrow Corollary 1.1: For each $v \in V$, $\|\operatorname{proj}_{u(v)}\| \leq \|v\|$.

- \hookrightarrow **Theorem 1.2**: Let V be an inner product space and $x, y \in V$.
- a) (Cauchy-Banyakovski-Schwartz Inequality) $|\langle x,y\rangle| \leq \|x\|\cdot \|y\|.$
- b) (Triangle Inequality) $||x + y|| \le ||x|| + ||y||$.

Proof.

a) If $\|y\|=0$, then $y=0_V$ and $0\leq 0$ and we are done. Hence, supposing $\|y\|\neq 0$, divide both sides by $\|y\|$:

$$\langle x, \|y\|^{-1} \cdot y \rangle \le \|x\|,$$

i.e., we need only to prove that $|\langle x,y\rangle| \leq ||x||$, where u a unit. But notice

$$|\langle x,u\rangle| = \|\langle x,u\rangle \cdot u\| = \left\|\operatorname{proj}_{u(x)}\right\| \leq \|x\|,$$

by \hookrightarrow Corollary 1.1.

a) Squaring the LHS, we have

$$\begin{split} \|x + y\|^2 &= \langle x + y, x + y \rangle = \langle x, x \rangle + \langle x, y \rangle + \langle y, x \rangle + \langle y, y \rangle \\ &\leq \|x\|^2 + \|y\|^2 + 2|\langle x, y \rangle| \\ &\leq \|x\|^2 + \|y\|^2 + 2\|x\| \|y\| = (\|x\| + \|y\|)^2. \end{split}$$

1.1 Projections and Cauchy-Schwartz