《概率论与数理统计》试卷A

(考试时间: 90分钟; 考试形式: 闭卷)

(注意:请将答案填写在答题专用纸上,并注明题号。答案填写在试卷和草稿纸上无效)

一、单项选择题(本大题共20小题,每小题2分,共40分)

1、A, B 为二事件, 则 $\overline{A \cup B} = ($)

A, AB B, $\overline{A}\overline{B}$ C, $A\overline{B}$ D, $\overline{A} \cup \overline{B}$

2、设 A, B, C 表示三个事件,则 \overline{ABC} 表示()

A、A, B, C中有一个发生

B、A,B,C中恰有两个发生

C、A, B, C中不多于一个发生 D、A, B, C都不发生

3、A、B 为两事件,若 $P(A \cup B) = 0.8$, P(A) = 0.2 , $P(\overline{B}) = 0.4$,

则()成立

A,
$$P(A\overline{B}) = 0.32$$
 B, $P(\overline{A}\overline{B}) = 0.2$

C,
$$P(B-A) = 0.4$$
 D, $P(\overline{B}A) = 0.48$

4、设 A, B 为任二事件,则()

A,
$$P(A-B) = P(A) - P(B)$$
 B, $P(A \cup B) = P(A) + P(B)$

C,
$$P(AB) = P(A)P(B)$$
 D, $P(A) = P(AB) + P(A\overline{B})$

5、设事件 A 与 B 相互独立,则下列说法错误的是()

A、
$$A 与 \overline{B}$$
 独立 B、 $\overline{A} 与 \overline{B}$ 独立

$$C$$
、 $P(\overline{A}B) = P(\overline{A})P(B)$ D、 $A 与 B$ 一定互斥

6、设离散型随机变量 X 的分布列为

X	0	1	2		
Р	0.3	0.5	0.2	其分布函数为 $F(x)$,则 $F(3) = ($)

A, 0 B, 0.3 C, 0.8 D, 1

7、设离散型随机变量
$$X$$
 的密度函数为 $f(x) = \begin{cases} cx^4, & x \in [0,1] \\ 0, & 其它 \end{cases}$,则常数 $c = ($)

A,
$$\frac{1}{5}$$
 B, $\frac{1}{4}$ C, 4 D, 5

8、设 $X \sim N(0,1)$, 密度函数 $\varphi(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}}$,则 $\varphi(x)$ 的最大值是()

A, 0 B, 1 C,
$$\frac{1}{\sqrt{2\pi}}$$
 D, $-\frac{1}{\sqrt{2\pi}}$

9、设随机变量 X 可取无穷多个值 0, 1, 2, …, 其概率分布为 $p(k;3) = \frac{3^k}{k!}e^{-3}, k = 0,1,2,\dots$, 则下式成立的是

()

A,
$$EX = DX = 3$$
 B, $EX = DX = \frac{1}{3}$

C,
$$EX = 3$$
, $DX = \frac{1}{3}$ D, $EX = \frac{1}{3}$, $DX = 9$

10、设X服从二项分布B(n,p),则有(

A,
$$E(2X-1) = 2np$$

A,
$$E(2X-1) = 2np$$
 B, $D(2X+1) = 4np(1-p)+1$

C,
$$E(2X+1) = 4np+1$$

C,
$$E(2X+1) = 4np+1$$
 D, $D(2X-1) = 4np(1-p)$

11、独立随机变量 X , Y ,若 $X \sim N(1,4)$, $Y \sim N(3,16)$,下式中不成立的是 (

$$E(X+Y)=4$$

B,
$$E(XY) = 3$$

A,
$$E(X+Y)=4$$
 B, $E(XY)=3$ C, $D(X-Y)=12$ D, $E(Y+2)=16$

12、设随机变量 X 的分布列为:

则常数 c=(

X	1	2	3		
р	1/2	С	1/4		

$$C, \frac{1}{4}$$

A, 0 B, 1 C,
$$\frac{1}{4}$$
 D, $-\frac{1}{4}$

13、设 $X \sim N(0,1)$, 又常数 c 满足 $P\{X \ge c\} = P\{X < c\}$, 则 c 等于(

A, 1 B, 0 C,
$$\frac{1}{2}$$
 D, -1

14、已知 EX = -1, DX = 3 ,则 $E [3(X^2 - 2)] = ($

A, 9

B, 6 C, 30 D, 36

15、当X服从()分布时, EX = DX。

A、指数

B、泊松 C、正态 D、均匀

16、下列结论中,() 不是随机变量 X 与 Y 不相关的充要条件。

$$A = E(XY) - E(X)E(Y)$$

A,
$$E(XY) = E(X)E(Y)$$
 B, $D(X+Y) = DX + DY$

$$C$$
, $Cov(X,Y) = 0$

D、
$$X$$
 与 Y 相互独立

17、设 $X \sim b(n, p)$ 且EX = 6,DX = 3.6,则有(

A, n = 10, p = 0.6 B, n = 20, p = 0.3

C, n = 15, p = 0.4 D, n = 12, p = 0.5

18、设p(x,y), $p_{\xi}(x)$, $p_{\eta}(y)$ 分别是二维随机变量 (ξ,η) 的联合密度函数及边缘密度函数,则(x,y)) 是 ξ 与 η 独立的充要条件。

A, $E(\xi + \eta) = E\xi + E\eta$ B, $D(\xi + \eta) = D\xi + D\eta$

- C、 ξ 与 η 不相关 D、对 $\forall x, y$, 有 $p(x,y) = p_{\varepsilon}(x)p_{\eta}(y)$
- 19、设是二维离散型随机变量,则 X 与 Y 独立的充要条件是 (

- A、E(XY) = EXEv B、D(X+Y) = DX + DY C、X与Y不相关

D、对(X,Y)的任何可能取值 (x_i,y_j) $P_{ij}=P_iP_j$

20、设(X,Y)的联合密度为 $p(x,y) = \begin{cases} 4xy, & 0 \le x, y \le 1 \\ 0, & 其它 \end{cases}$

若F(x,y)为分布函数,则F(0.5,2)=(

A, 0 B, $\frac{1}{4}$ C, $\frac{1}{2}$ D, 1

- 二、计算题(本大题共6小题,每小题7分,共42分)
- 1、 若事件 A 与 B 相互独立, P(A) = 0.8 P(B) = 0.6。求: P(A+B) 和 $P\{\overline{A} | (A+B)\}$

2、设随机变量 X N(2,4),且 $\Phi(1.65) = 0.95$ 。求 $P(X \ge 5.3)$

- 4、设连续型随机变量 X 的分布函数为 F(x) = A + Barctgx $-\infty < x < +\infty$
- 求: (1) 常数 A 和 B;
 - (2) *X* 落入(-1, 1) 的概率;
 - (3) X 的密度函数 f(x)

5、某射手有 3 发子弹,射一次命中的概率为 $\frac{2}{3}$,如果命中了就停止射击,

否则一直独立射到子弹用尽。

求: (1) 耗用子弹数 X 的分布列; (2) EX; (3) DX

6、设
$$(\xi, \eta)$$
的联合密度为 $p(x, y) = \begin{cases} 4xy, & 0 \le x, y \le 1 \\ 0, &$ 其它

求: (1) 边际密度函数 $p_{\xi}(x), p_{\eta}(y)$; (2) $E\xi, E\eta$; (3) $\xi 与 \eta$ 是否独立

三、解答题(本大题共2小题,每小题9分,共18分)

1、设 X_1 , X_2 是来自正态总体 $N(\mu,1)$ 的样本,下列三个估计量是不是参数 μ 的无偏估计量,若是无偏估计量,试判断哪一个较优?

$$\mu_1 = \frac{2}{3}X_1 + \frac{1}{3}X_2$$
, $\mu_1 = \frac{1}{4}X_1 + \frac{3}{4}X_2$, $\mu_1 = \frac{1}{2}X_1 + \frac{1}{2}X_2$

$$2、设 \xi \sim f(x,\theta) = \begin{cases} \frac{1}{\theta} e^{-\frac{x}{\theta}} & x > 0 \\ 0 & 其它 \end{cases} \qquad (\theta > 0) \quad x_1, x_2, ..., x_n \text{ 。 为 } \xi \text{ 的一组观察值,求θ 的极大似然估计。}$$

概率论与数理统计试卷答案及评分标准

一、单项选择题(本大题共20小题,每小题2分,共40分)

	题号	1	2	3	4	5	6	7	8	9	10
	答案	В	D	С	D	D	D	D	С	A	D
	题号	11	12	13	14	15	16	17	18	19	20
Ī	答案	С	С	В	В	В	D	С	D	D	В

二、计算题(本大题共6小题,每小题7分,共42分)

1、解: :A 与 B 相互独立

$$P(A+B) = P(A) + P(B) - P(AB) \cdots (1 \%)$$

$$= P(A) + P(B) - P(A)P(B) \cdots (1 \%)$$

$$= 0.8 + 0.6 - 0.8 \times 0.6$$

$$= 0.92 \cdots (1 \%)$$

$$P(\overline{A}|A+B) = \frac{P[\overline{A}(A+B)]}{P(A+B)} \cdots (1 \%)$$

$$= \frac{P(\overline{A}B)}{P(A+B)} = \frac{P(\overline{A})P(B)}{P(A+B)} \cdots (2 \%)$$

2.
$$P(X \ge 5.3) = 1 - \Phi\left(\frac{5.3 - 2}{2}\right)$$
 (5 $\%$)

=0.13 ······· (1分)

3、解:由已知有
$$\xi$$
 $U(0,4)$ (3分)

则:
$$E\xi = \frac{a+b}{2} = 2$$
 (2分)

$$D\xi = \frac{(b-a)^2}{12} = \frac{4}{3}$$
 (2 \(\frac{\phi}{2}\))

4、M: (1) d F($-\infty$) = 0 , F($+\infty$) = 1

有:
$$\begin{cases} A - \frac{\pi}{2}B = 0\\ A + \frac{\pi}{2}B = 1 \end{cases}$$

解之有:
$$A = \frac{1}{2}$$
, $B = \frac{1}{\pi}$ (3分)

(2)
$$P(-1 < X < 1) = F(1) - F(-1) = \frac{1}{2}$$
 (2 $\%$)

(3)
$$f(x) = F'(x) = \frac{1}{\pi(1+x^2)}$$
 (2 $\frac{1}{2\pi}$)

(2)
$$EX = \sum_{i=1}^{3} x_i p_i = 1 \times \frac{2}{3} + 2 \times \frac{2}{9} + 3 \times \frac{1}{9} = \frac{13}{9}$$
 (2 $\frac{1}{2}$)

(3)
$$: EX^2 = \sum_{i=1}^3 x_i^2 p_i = 1^2 \times \frac{2}{3} + 2^2 \times \frac{2}{9} + 3^2 \times \frac{1}{9} = \frac{23}{9}$$

∴
$$DX = EX^2 - (EX)^2 = \frac{23}{9} - (\frac{13}{9})^2 = \frac{38}{81} \dots (2 \%)$$

6.
$$\Re:$$
 (1) $: p_{\xi}(x) = \int_{-\infty}^{+\infty} p(x, y) dy = \int_{0}^{1} 4xy dy = 2x$

$$\therefore p_{\xi}(x) = \begin{cases} 2x, & 0 \le x \le 1 \\ 0, & 其它 \end{cases}$$

同理:
$$p_{\eta}(x) = \begin{cases} 2y, & 0 \le y \le 1 \\ 0, & 其它 \end{cases}$$
 (3分)

(2)
$$E\xi = \int_{-\infty}^{+\infty} x p_{\xi}(x) dx = \int_{0}^{1} 2x^{2} dx = \frac{2}{3}$$

同理:
$$E\eta = \frac{2}{3}$$
 ······· (2分)

$$(3) :: p(x,y) = p_{\xi}(x)p_{\eta}(y)$$

三、应用题(本大题共2小题,每小题9分,共18分)

1.
$$\mathbf{M}: \quad : \quad E \mu_1 = E(\frac{2}{3}X_1 + \frac{1}{3}X_2) = \mu$$

同理:
$$E\mu_2 = E\mu_3 = \mu$$

$$\therefore \mu_1, \mu_2, \mu_3$$
 为参数 μ 的无偏估计量······· (3 分)

$$\mathbb{X} : D\mu_1 = D(\frac{2}{3}X_1 + \frac{1}{3}X_2) = \frac{4}{9}DX_1 + \frac{1}{9}DX_2 = \frac{5}{9}\sigma^2$$

同理:
$$D\mu_2 = \frac{10}{16}\sigma^2$$
, $D\mu_3 = \frac{2}{4}\sigma^2$

$$\perp \!\!\! \perp D\mu_3 < D\mu_1 < D\mu_2$$

…… (6分)

2、解: $x_1, x_2, ..., x_n$ 的似然函数为:

$$L(x_1, x_2, ..., x_n, \theta) = \prod_{i=1}^n \frac{1}{\theta} e^{-\frac{x_i}{\theta}} = \frac{1}{\theta^n} e^{-\frac{1}{\theta} \sum_{i=1}^n x_i} \dots (3 \%)$$

$$Ln(L) = -n \ln \theta - \frac{1}{\theta} \sum_{i=1}^{n} x_i$$

$$\frac{dLn(L)}{d\theta} = -\frac{n}{\theta} + \frac{1}{\theta^2} \sum_{i=1}^{n} x_i = 0$$

解之有:
$$\hat{\theta} = \frac{1}{n} \sum_{i=1}^{n} x_i = \overline{X}$$
 (6分)