Ma/CS 6a

Class 12: More Matchings

By Adam Sheffer

Reminder: Perfect Matchings

• A *perfect matching* of a graph G = (V, E) is a matching of size |V|/2.

Reminder: Neighbor Sets

- Let $G = (V_1 \cup V_2, E)$ be a bipartite graph.
- For any subset $A \subset V_1$, we define

$$N(A) = \{ y \in Y \mid (x, y) \in E \text{ for some } x \in A \}.$$

$$N(\{b, c, d\}) = \{u, v, w\}$$

$$N(\{a, e\}) = \{u, w, x\}$$

$$v$$

$$d$$

$$v$$

$$x$$

Reminder: Variant of Hall's Theorem

- Theorem. Let $G = (V_1 \cup V_2, E)$ be a bipartite graph.
- There exists a matching of size $|V_1|$ in G if and only if for every $A \subset V_1$, we have $|A| \leq |N(A)|$.

Philip Hall

Deficiency

- Let $G = (V_1 \cup V_2, E)$ be a bipartite graph.
- The *deficiency* of G is $def(G) = \max_{A \subset V_1} \{|A| |N(A)|\}.$
- What is the deficiency of

Deficiency

- Let $G = (V_1 \cup V_2, E)$ be a bipartite graph.
- The *deficiency* of G is $def(G) = \max_{A \subset V_1} \{|A| |N(A)|\}.$
- The deficiency cannot be smaller than 0 since when $A = \emptyset$ we have |A| |N(A)| = 0.

Deficiency and Maximum Matchings

• Theorem. Let $G = (V_1 \cup V_2, E)$ be a bipartite graph. The size of the maximum matching in G is

$$|V_1| - \operatorname{def}(G)$$
.

- This implies Hall's theorem.
 - def(G) = 0 if and only if there exists a matching of size $|V_1|$.
 - When $|V_1| = |V_2|$, we have def(G) = 0 if and only if there exists a perfect matching.

Proof: One Direction

- Set d = def(G).
- There exists a subset $A \subset V_1$ such that |A| |N(A)| = d.
- In any matching of G, at least d vertices of A are unmatched.
- No matching can have size larger than $|V_1| d$.

Proof: One Direction

- Set d = def(G).
- There exists a subset $A \subset V_1$ such that |A| |N(A)| = d.
- In any matching of G, at least d vertices of A are unmatched.
- No matching can have size larger than $|V_1| d$.
- It remains to prove that a matching of this size does exist.

Proof: The Other Direction

- We add d new vertices to V_2 .
 - We connect every new vertex to each vertex of V_1 .
- Originally, every set $A \subset V_1$ satisfied $|A| \ge |N(A)| d$.
 - Now $|A| \geq |N(A)|$.

Proof: The Other Direction

- We add d new vertices to V_2 .
 - We connect every new vertex to each vertex of V_1 .
- Originally, every set $A \subset V_1$ satisfied $|A| \ge |N(A)| d$.
 - Now $|A| \geq |N(A)|$.
- By the variant of Hall's theorem, there exists a matching M of size $|V_1|$.
- Removing the new vertices, we obtain a matching of G of size $|V_1| d$.

The Size of a Maximum Matching

- Let $G = (V_1 \cup V_2, E)$ be a bipartite graph.
- Can we use the deficiency theorem to find the size of the maximum matching of M?
- We can check the deficiency of every subset $A \subset V_1$.
 - But there are $2^{|V_1|}$ such subsets!

Alternating Paths

- Let $G = (V_1 \cup V_2, E)$ be a bipartite graph, and let M be a matching of G.
- A path is *alternating* for M if every other edge of it is in M, and its two extreme vertices are not matched.

Alternating Paths

- A *maximal* path is *alternating* for *M* if every other edge of it is in *M*, and its two extreme vertices are not matched.
- By switching the edges that are in *M* with the edges that are not, we obtain a larger matching.

Existence of Alternating Paths

- **Theorem.** If a matching M in a bipartite graph $G = (V_1 \cup V_2, E)$ is **not a maximum matching**, then there exists an alternating path for M.
- Proof.
 - Let M^* be a maximum matching of G.
 - Let F be the set of edges that are either in M or in M*, but not in both.
 - In the graph G' = (V, F), every vertex is of degree at most two.

Example: The Graph G'

- The graph G' = (V, F).
 - Every vertex has a degree of at most two.
 - The graph is a union of paths and cycles.

Finding an Alternating Path

- By definition, M* has more edges than M.
- In at least one of the paths of G', M* has more edges than M.
- This must be an alternating path for M!

Find a Maximum Matching

- Let $G = (V_1 \cup V_2, E)$ be a bipartite graph.
- Start with any matching M. A single edge is fine.
- Repeatedly find an alternating path for M
 and use it to obtain a larger matching.
- The process terminates after at most |V₁| steps.

Finding an Alternating Path

- Let $G = (V_1 \cup V_2, E)$ be a bipartite graph, and let M be a non-maximum matching.
- We wish to find whether there is an alternating path for M starting at a specific unmatched vertex p₀ ∈ V₁.
 - \circ We run a variant of BFS from p_0 .

BFS Variant

- The root of the BFS tree is p_0 .
- At the first level we have vertices that are adjacent to p_0 in G.

BFS Variant (2)

• For each vertex of level 1, if it is matched in M, we connect it to its match.

BFS Variant (3)

 For each vertex of level 2, we connect it (by edges not in M) to any of its neighbors in G that are not in the tree yet.

BFS Variant (4)

- We repeat this process:
 - $^{\circ}$ Vertices of even levels (p_i 's) have as their children every new vertex adjacent to them.
 - \circ Vertices of odd levels (q_i 's) have only their matching vertex as a child.

BFS Variant (5)

- How can we tell whether an alternating path for M starts at p_0 ?
 - Every such path corresponds to an unmatched vertex at an odd level of the tree (i.e., a leaf at an odd level).

Concluding Remarks

- Given a matching M in a bipartite graph $G = (V_1 \cup V_2, E)$, for every vertex of V_1 that is unmatched in M:
 - Run the BFS variant to check whether there is an alternating path starting from it.
- If no alternating paths were found M is a maximum matching.
- Otherwise, we use the alternating path to obtain a larger matching.

A Committee of Committees

- The US senate has 20 committees and each senator may serve on several committees.
- The committee of committees should have a representative from each committee, and no senator is allowed to represent more than one committee.
- Is this always possible?
 - No! What if senator Bob is the only person on two committees?

A Committee of Committees?

- How can we find out whether a committee of committees is possible?
 - Build a graph!

A Committee of Committees?

 A committee of committees is possible if the graph has a matching of size 20.

Problem: Retreat Resort

- Problem. A retreat resort currently has n guests staying in it. On Saturdays, the resort offers hikes with travelling guides.
 - Every guest has a list of hikes that he is interested in.
 - Every guide is allowed to take up to 5 people with him.
 - Describe an efficient algorithm that finds whether every guest can go on a hike that he is interested in.

Building a Graph

- Create a bipartite graph with a vertex for every guest and for every hike.
 - An edge between every guest and every hike that he is interested in.

Fixing the Graph

- A matching in the graph does not take into account that up to 5 people can go on a hike.
- Split every hike vertex v into five vertices, and connect each of them to each of the vertices that v was connected to.
- There is a valid hiking assignment if and only if the graph has a matching of size n.

The End

