

LENR at GRC

Gustave C. Fralick

John D. Wrbanek, Susan Y. Wrbanek,
Janis Niedra (ASRC)

NASA Glenn Research Center
Cleveland, Ohio

BACKGROUND: “Cold Fusion”?

Headlines 1989

Two electrochemists...

Martin Fleischmann

Stanley Pons

claimed to have tapped nuclear power
in a simple electrochemical cell.

*"It could be the end of the fossil fuel
age: the end of oil and coal. And the
end, incidentally, of many of our
worries about global warming."*

-- Sir Arthur C. Clarke

BACKGROUND: The Advantage of Fusion

Burning Coal:

Fission Power Reaction:

Fusion Processes:

- $D + D \rightarrow T$ (1.01 MeV) + p (3.02 MeV)
- $D + D \rightarrow ^3He$ (0.82 MeV) + n (2.45 MeV)
- $D + D \rightarrow ^4He$ (73.7 keV) + γ (23.8 MeV)
- $D + T \rightarrow ^4He$ (3.5 MeV) + n (14.1 MeV)
- $D + ^3He \rightarrow ^4He$ (3.6 MeV) + p (14.7 MeV)
 - $D = ^2H$, $T = ^3H$
- Fusion is at least 13% more productive
per mass of fuel (without the nasty waste products)

BACKGROUND: Purifier Schematic

- Johnson Matthey HP Series palladium membrane hydrogen purifier
- Used in the semiconductor industry and applications where ultra-high purity hydrogen is required (to 99.999999%)
- An at-hand substitute for a palladium electrolytic cell

Flow Diagram HP Series

BACKGROUND: 1989 Cold Fusion Experiment

EQUIPMENT

Hydrogen purifiers are made using Palladium membranes

EXPERIMENT

After evacuating purifier, it was loaded with deuterium gas at pressures up to 250 psig.

Purifier temperature and neutron count monitored for several months—non electrochemical variant of Pons-Fleischmann experiment

BACKGROUND: 1989 Cold Fusion Experiment

Results:

- Temperature increase noted while gas was loaded into palladium cell, for both D & H
- Neutron detector counts did not differ significantly ($\leq 2\sigma$) from background in any run (Monitored with BF_3 w/ Polyethylene ["Snoopy"] detectors).
- Temperature increase noted when D unloaded at end of experiment
- Compared to hydrogen gas as the experimental control: 15°C increase in purifier temperature consistently seen with D_2 that was not seen with the H_2 control when gasses were unloaded from the purifier.

Published:

- *Fralick, Decker, & Blue (1989) NASA TM-102430*

BACKGROUND: $\text{H}_2\text{O}-\text{Ni}-\text{K}_2\text{CO}_3$

Electrolytic Cell

Experiment:

- Investigated reports of significant long-term excess heat in light water- $\text{Ni}-\text{K}_2\text{CO}_3$ electrolytic cells
- Two 28-liter electrolytic cells for tests, one active cell for electrolytic tests, second inactive cell for reference thermal measurements
- Tested at several dc currents and a pulse mode current

Results:

- Apparent current-dependent excess heat exhibited when tested in all modes
- Excess heat consistent as heat from hydrogen-oxygen recombination catalyzed by the Pt and Ni electrodes within the cell
- Did not reproduce the large excess heat reported in literature
 - Gain Factors of <1.7 @ GRC vs. >10 in literature
- NASA TM-107167 (J. Niedra, I. Myers, G. Fralick, R. Baldwin; 1996)

BACKGROUND: Sonoluminescence

Experiment

- Sonoluminescence with Palladium-Chromium (PdCr) Thin Films Over Platinum (Pt) RTD (Resistance Temperature Device) Traces on Alumina

Result

- No Crater seen in H_2O , Crater Formation seen in D_2O
- Large Grain Failures usually seen in thin films due to mismatches in coefficients of thermal expansion at high temperature ($\sim 1000^\circ C$)
- John Wrbane, Gustave Fralick, Susan Wrbane, & Nancy Hall "Investigating Sonoluminescence as a Means of Energy Harvesting," Chapter 19, *Frontiers of Propulsion Science*, Millis & Davis (eds), AIAA, pp. 605-637, 2009.

Light Water
(H_2O)

(e) From MBSL in H_2O , 5000x Magnification

Heavy Water
(D_2O)

(f) From MBSL in D_2O , 5000x Magnification

BACKGROUND: Changes from 1989 to 2009

- Previous NASA D-Pd experiment (Fralick, et al.; 1989) looked for neutrons (saw none) – but saw anomalous heating
- NASA H₂O-Ni-K₂CO₃ Electrolytic Cell experiment (Niedra et al, 1996)
Apparent current-dependent excess heat consistent as heat from hydrogen-oxygen recombination
- NASA Sonoluminescence Experiment (Wrbanek, et al) - Cratering seen with heavy water, not seen with light water
- After 1989, Cold Fusion research evolved into research in “Low Energy Nuclear Reactions” (LENR), primarily at U.S. Navy, DARPA & various Universities
- **2009: NASA IPP-sponsored effort to:**
 - Repeat the initial tests to investigate this anomalous heat
 - Apply GRC’s instrumentation expertise to improve the diagnostics for this experiment
 - Establish credible framework for future work in LENR

APPROACH: Flow System Schematic

APPROACH: 2009 Test Apparatus

- Johnson Matthey HP-25 hydrogen purifier
 - Purifier Filter contains a ~50g heated Pd-25%Ag membrane
- Load Filter by flowing hydrogen gas into the purifier
- Unload Filter by pumping the gas out of the purifier into a sample bottle
- Turn off filter heater for a time when Loading & Unloading
- Monitor changes in temperature, neutron/gamma background
- Repeat with deuterium gas; Compare results

RESULTS : Temperatures vs. Time

Loading

Observed Temperature for H₂ Load

Unloading

Observed Temperature for H₂ Unload

RESULTS (continued): Temperature vs. Time

Results of GRC IPP investigation: a) the temperature data is shown for H₂ and D₂ unloading (left); b) the calculated thermal power in/out is given with the net anomalous heating (right).

Hypotheses

“Pet Theories” (i.e., Hypotheses where proponents already convinced peer-reviewed journals):

- Electron Screening (Parmenter & Lamb)
- Band States (Chubb & Chubb)
- Shrunken Hydrogen (Maly, Vavra & Mills)
- Ultra Low Momentum Neutrons (Widom & Larsen)
- Dislocation Loops (Hora & Miley)
- Bose-Einstein Condensates (Kim)

Do any of these encompass all reported observations?

- *More than one effect may be occurring*

2011 Effort: Monitor temperature and pressure simultaneously for different rates of unloading

Future Tests?: Stirling Laboratory Research Engine (SLRE) at Cleveland State University

Stirling Laboratory Research Engine (SLRE)

Photo courtesy Professor Mounir Ibrahim. Used by permission

Parameters	SLRE
Design Power, hp (kw)	12 (9)
Design Pressure, psi (N/mm ²)	1000 (7)
Working Gas	H ₂ /He
Cylinder Bore, inch (mm)	2.87 (73)
Piston Stroke, inch (mm)	2.12 (54)
Hot Gas Temperature, F (°C)	1400 (760)
Cold Gas Temperature, F (°C)	150 (65)
Drive System	C' Shaft

PoC: Dr. Mounir Ibrahim
Department of Mechanical Engineering
Cleveland State University
2121 Euclid Avenue, SH 231
Cleveland, OH 44115-2214

Schematic of the Stirling Laboratory Research Engine at Cleveland State University

LENR Energy to Rotational Power Research Facility

Research: Theory, Computational Dynamics, Reactor diversity, matrix elements, size, scale, rates, materials , blends, catalysts operational limits, device interfacing, HX, shielding, controls, instrumentation, communications, safety and more

Device Diversity
Brayton Open/Closed
Rocket
Space / Terrestrial power
Thermoelectric
Stirling (illustrated)
and more

Theories
Widom-Larsen
Rossi
Piantelli
Bose-Einstein Condensate
And more

Drawing courtesy Professor Mounir Ibrahim. Used by permission

Future Power Source? Free-Piston Stirling Engine Schematic with D/Pd Energy Source

Benefits for NASA

- Replace ^{238}Pu as power source in deep space missions
 - Currently in short supply
 - Now depend upon foreign sources
 - Perhaps 5 years to supply our own
 - No money in new budget to restart domestic production
- Replace fission reactors as power source for human habitation missions
 - No radioactive waste
 - No radioactive material accident hazard on launch

References

- Fralick, G., Decker, A., Blue, J., "Results of an Attempt to Measure Increased Rates of the Reaction $^2\text{D} + ^2\text{D} \rightarrow ^3\text{He} + \text{n}$ in a Non-electrochemical Cold Fusion Experiment," NASA TM-102430 (1989).
- Niedra, J., Myers, I., Fralick, G., Baldwin, R. "Replication of the Apparent Excess Heat Effect in a Light Water-Potassium Carbonate-Nickel Electrolytic Cell", NASA TM-107167 (1996)
- Li, Xing Z.; Liu, Bin; Tian, Jian; Wei, Qing M.; Zhou, Rui and Yu, Zhi W.: "Correlation between abnormal deuterium flux and heat flow in a D/PD system," *J. Phys. D: Appl. Phys.* **36** 3095-3097 (2003).
- Miley, G.H., N. Luo, and A. Lipson, "Proton Transport Through Atomic Layer Coated Thin-films", March Meeting 2003 of the APS, vol. 2, pp.1124, March 3-7, (2003).
- Liu, Bin; Li, Xing Z.; Wei, Qing M.; Mueller, N.; Schoch, P. and Orhre, H. "Excess Heat' Induced by Deuterium Flux in Palladium Film." *The 12th International Conference on Condensed Matter Nuclear Science*, Yokohama, Japan, Nov. 27 – Dec. 2, 2005
- Widom, A., Larsen, L., "Ultra Low Momentum Neutron Catalyzed Nuclear Reactions on Metallic Hydride Surfaces," *Eur. Phys. J. C* (2006)

References (cont.)

- Wrbanek, J., Fralick, G., Wrbanek, S., “Development of Techniques to Investigate Sonoluminescence as a Source of Energy Harvesting”, NASA TM-2007-214982 (2007)
- Biberian, J.P. and Armanet, N.: “Excess Heat Production During Diffusion of Deuterium Through Palladium Tubes” *8th International Workshop on Anomalies in Hydrogen/Deuterium Loaded Metals*, Sicily, Italy, 2007.
- Kim, Y. E., “Theory of Bose-Einstein Condensation for Deuteron-Induced Nuclear reactions in Micro/Nano-Scale Metal Grains and Particles”, *Naturwissenschaften* 96, 803(2009).
- Wrbanek, J., Fralick, G., Wrbanek, S., Hall, N. “Investigating Sonoluminescence as a Means of Energy Harvesting,” Chapter 19, *Frontiers of Propulsion Science*, Millis & Davis (eds.), AIAA, pp. 605-637, 2009.
- Fralick, G., Wrbanek, J., Wrbanek, S., Niedra, J., Millis, M., “Investigation of Anomalous Heat Observed in Bulk Palladium”, IPP Final Report (2009)