PROBABILISTIC MACHINE LEARNING LECTURE 15 GAUSSIAN PROCESS CLASSIFICATION

Philipp Hennig 22 June 2023

UNIVERSITÄT TÜBINGEN

FACULTY OF SCIENCE
DEPARTMENT OF COMPUTER SCIENCE
CHAIR FOR THE METHODS OF MACHINE LEARNING

A Gaussian Process model for Classification

Logistic Regression

$$p(f) = \mathcal{GP}(f; m, k)$$

$$p(y \mid f_x) = \sigma(yf_x) = \begin{cases} \sigma(f) & \text{if } y = 1\\ 1 - \sigma(f) & \text{if } y = -1 \end{cases} \quad \text{using } \sigma(x) = 1 - \sigma(-x).$$

A Gaussian Process model for Classification

Logistic Regression

$$p(f) = \mathcal{GP}(f; m, k)$$

$$p(y \mid f_x) = \sigma(yf_x) = \begin{cases} \sigma(f) & \text{if } y = 1\\ 1 - \sigma(f) & \text{if } y = -1 \end{cases} \quad \text{using } \sigma(x) = 1 - \sigma(-x).$$

The problem: The posterior is not Gaussian!

$$p(f_X \mid Y) = \frac{p(Y \mid f_X)p(f_X)}{p(Y)} = \frac{\mathcal{N}(f_X; m, k) \prod_{i=1}^n \sigma(y_i f_{x_i})}{\int \mathcal{N}(f_X; m, k) \prod_{i=1}^n \sigma(y_i f_{x_i}) df_X}$$
$$\log p(f_X \mid Y) = -\frac{1}{2} f_X^\mathsf{T} k_{XX}^{-1} f_X + \sum_{i=1}^n \log \sigma(y_i f_{x_i}) + \text{const.}$$

Logistic Regression is not analytic

eberhard karls UNIVERSITAT TUBINGEN

We'll have to break out the toolbox

Logistic Regression is not analytic

We'll have to break out the toolbox

Logistic Regression is not analytic

We'll have to break out the toolbox

The Laplace Approximation

A local Gaussian approximation

erre Simon M. de Laplace, 1814

- Consider a probability distribution $p(\theta)$ (may be a posterior $p(\theta \mid D)$ or something else)
- ▶ find a (local) **maximum** of $p(\theta)$ or (equivalently) $\log p(\theta)$

$$\hat{\theta} = \arg\max\log p(\theta) \qquad \Rightarrow \qquad \nabla\log p(\hat{\theta}) = 0$$

lacktriangledown perform **second order Taylor expansion** around $heta=\hat{ heta}+\delta$ in log space

$$\log p(\delta) = \log p(\hat{\theta}) + \frac{1}{2} \delta^{\mathsf{T}} \left(\underbrace{\nabla \nabla^{\mathsf{T}} \log p(\hat{\theta})}_{=:\Psi} \right) \delta + \mathcal{O}(\delta^{3})$$

define the Laplace approximation q to p

$$q(\theta) = \mathcal{N}(\theta; \hat{\theta}, -\Psi^{-1})$$

Find maximum posterior probability for **latent** *f* at **training points**

$$\hat{\mathbf{f}} = \arg \max \log p(\mathbf{f}_X \mid y)$$

Assign approximate Gaussian posterior at training points

$$q(f_X) = \mathcal{N}(f_X; \hat{\mathbf{f}}, -(\nabla \nabla^{\mathsf{T}} \log p(f_X \mid y)|_{f_Y = \hat{\mathbf{f}}})^{-1}) =: \mathcal{N}(f_X; \hat{\mathbf{f}}, \hat{\Sigma})$$

approximate posterior **predictions** at f_x for **latent function**

$$q(f_X \mid y) = \int p(f_X \mid f_X)q(f_X) df_X = \int \mathcal{N}(f_X; m_X + k_{XX}K_{XX}^{-1}(f_X - m_X), k_{XX} - k_{XX}K_{XX}^{-1}k_{XX})q(f_X) df_X$$

= $\mathcal{N}(f_X; m_X + k_{XX}K_{XX}^{-1}(\hat{\mathbf{f}} - m_X), k_{XX} - k_{XX}K_{XX}^{-1}k_{XX} + k_{XX}K_{XX}^{-1}\hat{\Sigma}K_{XX}^{-1}k_{XX})$

Compare with exact predictions

$$\mathbb{E}_{p(f_{x},f_{X}|y)}(f_{x}) = \int (\mathbb{E}_{p(f_{x}|f_{X})}(f_{x}))p(f_{X}|y) df_{X} = m_{X} + k_{XX}K_{XX}^{-1}(\mathbb{E}_{p(f_{X}|y)}(f_{X}) - m_{X}) =: \bar{f}_{X}$$

Recall: $p(x) = \mathcal{N}(x; m, V), p(z \mid x) = \mathcal{N}(z; Ax, B) \Rightarrow p(z) = \int p(z \mid x)p(x) dx = \mathcal{N}(z; Am, AVA^{\mathsf{T}} + B).$

conceptual step (implementation details coming up

Find maximum posterior probability for **latent** *f* at **training points**

$$\hat{\mathbf{f}} = \arg\max\log p(\mathbf{f}_X \mid y)$$

Assign approximate Gaussian posterior at training points

$$q(f_X) = \mathcal{N}(f_X; \hat{\mathbf{f}}, -(\nabla \nabla^{\mathsf{T}} \log p(f_X \mid y)|_{\mathbf{f}_Y = \hat{\mathbf{f}}})^{-1}) =: \mathcal{N}(f_X; \hat{\mathbf{f}}, \hat{\Sigma})$$

ightharpoonup approximate posterior **predictions** at f_x for **latent function**

$$q(f_X \mid y) = \int p(f_X \mid f_X) q(f_X) df_X = \int \mathcal{N}(f_X; m_X + k_{XX} K_{XX}^{-1} (f_X - m_X), k_{XX} - k_{XX} K_{XX}^{-1} k_{XX}) q(f_X) df_X$$

$$= \mathcal{N}(f_X; m_X + k_{XX} K_{XX}^{-1} (\hat{f} - m_X), k_{XX} - k_{XX} K_{XX}^{-1} k_{XX} + k_{XX} K_{XX}^{-1} \hat{\Sigma} K_{XX}^{-1} k_{XX})$$

Compare with exact predictions

$$\operatorname{var}_{p(f_{x},f_{X}\mid y)}(f_{x}) = \int (f_{x} - \bar{f}_{x})^{2} dp(f_{x}\mid f_{x}) dp(f_{x}) = k_{xx} - k_{xx}K_{xx}^{-1}k_{xx} + k_{xx}K_{xx}^{-1}\operatorname{var}_{p(f_{x}\mid y)}(f_{x})K_{xx}^{-1}k_{xx}$$

Recall: $p(x) = \mathcal{N}(x; m, V), p(z \mid x) = \mathcal{N}(z; Ax, B) \Rightarrow p(z) = \int p(z \mid x)p(x) dx = \mathcal{N}(z; Am, AVA^{\mathsf{T}} + B).$

The Laplace Approximation for GP Classification

conceptual step (implementation details coming up

ased on Rasmussen & Williams, 2006, §3.4]

► Find maximum posterior probability for **latent** *f* at **training points**

$$\hat{\mathbf{f}} = \arg\max\log p(\mathbf{f}_X \mid y)$$

► Assign approximate Gaussian posterior at training points

$$q(f_X) = \mathcal{N}(f_X; \hat{\boldsymbol{f}}, -(\nabla \nabla^{\mathsf{T}} \log p(f_X \mid \boldsymbol{y})|_{f_X = \hat{\boldsymbol{f}}})^{-1}) =: \mathcal{N}(f_X; \hat{\boldsymbol{f}}, \hat{\boldsymbol{\Sigma}})$$

 \triangleright approximate posterior **predictions** at f_x for **latent function**

$$q(f_X \mid y) = \int p(f_X \mid f_X) q(f_X) df_X = \int \mathcal{N}(f_X; m_X + k_{XX} K_{XX}^{-1} (f_X - m_X), k_{XX} - k_{XX} K_{XX}^{-1} k_{XX}) q(f_X) df_X$$

$$= \mathcal{N}(f_X; m_X + k_{XX} K_{XX}^{-1} (\hat{f} - m_X), k_{XX} - k_{XX} K_{XX}^{-1} k_{XX} + k_{XX} K_{XX}^{-1} \hat{\Sigma} K_{XX}^{-1} k_{XX})$$

compute predictions for label probabilities:

$$\mathbb{E}_{p(f|y)}[\pi_X] \approx \mathbb{E}_q[\pi_X] = \int \sigma(f_X) q(f_X \mid y) \, df_X \quad \text{or (not the same!)} \quad \hat{\pi}_X = \sigma(\mathbb{E}_q(f_X))$$

- the Laplace approximation is only very roughly motivated (see above)
- it can be **arbitrarily wrong**, since it is a **local** approximation
- but it is still better than a point estimate!
- and it is typically the most computationally efficient thing to try, because it uses only auto-diff and linear algebra
- for logistic regression, it tends to work relatively well, because
 - ▶ the log posterior is concave (see below)
 - ▶ the algebraic structure of the link function yields "almost" a Gaussian posterior (cf. picture above),

Today, we will focus on the Hessian/uncertainty

ased on Rasmussen & Williams, 2006, §3.4]

$$p(f) = \mathcal{GP}(f, m, k) \qquad p(\mathbf{y} \mid f_{X}) = \prod_{i=1}^{n} \sigma(y_{i} f_{x_{i}}) \qquad \sigma(z) = \frac{1}{1 + e^{-x}}$$

$$\log p(f_{X} \mid \mathbf{y}) = \log p(\mathbf{y} \mid f_{X}) + \log p(f_{X}) - \log p(\mathbf{y}) \quad \text{with} \quad \log \sigma(y_{i} f_{x_{i}}) = -\log(1 + e^{-y_{i} f_{x_{i}}})$$

$$= \sum_{i=1}^{n} \log \sigma(y_{i} f_{x_{i}}) - \frac{1}{2} (f_{X} - m_{X})^{\mathsf{T}} K_{XX}^{-1} (f_{X} - m_{X}) + \text{const.}$$

$$\nabla \log p(f_{X} \mid \mathbf{y}) = \sum_{i=1}^{n} \nabla \log \sigma(y_{i} f_{x_{i}}) - K_{XX}^{-1} (f_{X} - m_{X}) \quad \text{with} \quad \frac{\partial \log \sigma(y_{i} f_{x_{i}})}{\partial f_{x_{i}}} = \delta_{ij} \left(\frac{y_{i} + 1}{2} - \sigma(f_{x_{i}}) \right)$$

$$\nabla \nabla^{\mathsf{T}} \log p(f_{X} \mid \mathbf{y}) = \sum_{i=1}^{n} \nabla \nabla^{\mathsf{T}} \log \sigma(y_{i} f_{x_{i}}) - K_{XX}^{-1} \quad \text{with} \quad \frac{\partial^{2} \log \sigma(y_{i} f_{x_{i}})}{\partial f_{x_{a}} \partial f_{x_{b}}} = -\delta_{ia} \delta_{ib} \underbrace{\sigma(f_{x_{i}}) (1 - \sigma(f_{x_{i}}))}_{=:w_{i} \text{ with } 0 < w_{i} < 1}$$

$$=: -\operatorname{diag} \mathbf{w} - K^{-1} = -(W + K^{-1}) \quad \leftarrow \text{convex minimization} / \text{concave maximization}.$$

since we're already computing the Hessian, we can use it to optimize the log posterior, with updates

$$f \leftarrow f - (\nabla \nabla^{\mathsf{T}} \log p(f_X \mid y))^{-1} \nabla \log p(f_X \mid y)$$

- ▶ Newton-Raphson optimization converges in *one step* on quadratic functions
- For non-quadratic, convex problems, it asymptotically converges with quadratic convergence rate:

$$||f_{t+1} - f^*|| \le C \cdot ||f_t - f^*||^2$$

- Newton's method has (at least on paper) no learning rate, and no other parameters to tune.
- ▶ It requires computing and decomposing the Hessian, though

Implementing Newton Optimization

$$\nabla \log p(f_X \mid \mathbf{y}) = \sum_{i=1}^n \nabla \log \sigma(y_i f_{x_i}) - K_{XX}^{-1}(f_X - \mathbf{m}_X) \quad \text{with} \quad \frac{\partial \log \sigma(y_i f_{x_i})}{\partial f_{x_j}} = \delta_{ij} \left(\frac{y_i + 1}{2} - \sigma(f_{x_i}) \right)$$

$$\nabla \nabla^\mathsf{T} \log p(f_X \mid \mathbf{y}) = \sum_{i=1}^n \nabla \nabla^\mathsf{T} \log \sigma(y_i f_{x_i}) - K_{XX}^{-1} \quad \text{with} \quad \frac{\partial^2 \log \sigma(y_i f_{x_i})}{\partial f_{x_0} \partial f_{x_0}} = -\delta_{ia} \delta_{ib} \underbrace{\sigma(f_{x_i})(1 - \sigma(f_{x_i}))}_{=:w_i \text{ with } 0 < w_i < 1}$$

$$=: - \operatorname{diag} \mathbf{w} - K^{-1} = -(W + K^{-1})$$

$$\stackrel{\mathsf{Procedure GP-CLASSIFY-TRAIN}(K_{XX}, m_X, \mathbf{y})}{=:w_i \text{ with } 0 < w_i < 1}$$

$$\stackrel{\mathsf{Procedure GP-CLASSIFY-TRAIN}(K_{XX}, m_X, \mathbf{y})}{=:w_i \text{ with } 0 < w_i < 1}$$

$$\stackrel{\mathsf{Procedure GP-CLASSIFY-TRAIN}(K_{XX}, m_X, \mathbf{y})}{=:w_i \text{ with } 0 < w_i < 1}$$

$$\stackrel{\mathsf{Procedure GP-CLASSIFY-TRAIN}(K_{XX}, m_X, \mathbf{y})}{=:w_i \text{ with } 0 < w_i < 1}$$

$$\stackrel{\mathsf{Procedure GP-CLASSIFY-TRAIN}(K_{XX}, m_X, \mathbf{y})}{=:w_i \text{ with } 0 < w_i < 1}$$

$$\stackrel{\mathsf{Procedure GP-CLASSIFY-TRAIN}(K_{XX}, m_X, \mathbf{y})}{=:w_i \text{ with } 0 < w_i < 1}$$

$$\stackrel{\mathsf{Procedure GP-CLASSIFY-TRAIN}(K_{XX}, m_X, \mathbf{y})}{=:w_i \text{ with } 0 < w_i < 1}$$

$$\stackrel{\mathsf{Procedure GP-CLASSIFY-TRAIN}(K_{XX}, m_X, \mathbf{y})}{=:w_i \text{ with } 0 < w_i < 1}$$

$$\stackrel{\mathsf{Procedure GP-CLASSIFY-TRAIN}(K_{XX}, m_X, \mathbf{y})}{=:w_i \text{ with } 0 < w_i < 1}$$

$$\stackrel{\mathsf{Procedure GP-CLASSIFY-TRAIN}(K_{XX}, m_X, \mathbf{y})}{=:w_i \text{ with } 0 < w_i < 1}$$

$$\stackrel{\mathsf{Procedure GP-CLASSIFY-TRAIN}(K_{XX}, m_X, \mathbf{y})}{=:w_i \text{ with } 0 < w_i < 1}$$

$$\stackrel{\mathsf{Procedure GP-CLASSIFY-TRAIN}(K_{XX}, m_X, \mathbf{y})}{=:w_i \text{ with } 0 < w_i < 1}$$

$$\stackrel{\mathsf{Procedure GP-CLASSIFY-TRAIN}(K_{XX}, m_X, \mathbf{y})}{=:w_i \text{ with } 0 < w_i <$$

return f 10 end procedure

► The Newton step can be numerically unstable when $(W + K^{-1})$ has very small eigenvalues. It is helpful to consider the matrix

$$B := I + W^{\frac{1}{2}}KW^{\frac{1}{2}}$$

which is symmetric positive definite, and has eigenvalues ≥ 1 .

► From the matrix inversion lemma, we get

$$(W + K^{-1})^{-1} = K - KW^{\frac{1}{2}}B^{-1}W^{\frac{1}{2}}K$$

and thus

$$f_{t+1} = f_t - (\nabla \nabla^{\mathsf{T}} \log p(f_t \mid y))^{-1} \nabla \log p(f_t \mid y)$$

$$= f_t + (W + K^{-1})^{-1} (\nabla \log p(y \mid f_t)) - K^{-1} f_t$$

$$= (W + K^{-1})^{-1} (\nabla \log p(y \mid f_t) + W f_t)$$

$$= (K - KW^{\frac{1}{2}}B^{-1}W^{\frac{1}{2}}K) (\nabla \log p(y \mid f_t) + W f_t)$$

From above:

$$q(f_{X} \mid y) = \int p(f_{X} \mid f_{X})q(f_{X}) df_{X} = \int \mathcal{N}(f_{X}; m_{X} + k_{XX}K_{XX}^{-1}(f_{X} - m_{X}), k_{XX} - k_{XX}K_{XX}^{-1}k_{XX})q(f_{X}) df_{X}$$

$$= \mathcal{N}(f_{X}; m_{X} + k_{XX}K_{XX}^{-1}(\hat{\mathbf{f}} - m_{X}), k_{XX} - k_{XX}K_{XX}^{-1}k_{XX} + k_{XX}K_{XX}^{-1}\hat{\Sigma}K_{XX}^{-1}k_{XX})$$

$$\log p(f_{X} \mid y)$$

with variance

$$= k_{xx} - k_{xX} K_{XX}^{-1} k_{Xx} + k_{xX} K_{XX}^{-1} \hat{\Sigma} K_{XX}^{-1} k_{Xx}$$

$$= k_{xx} - k_{xX} [K_{XX}^{-1} + K_{XX}^{-1} (K^{-1} + W)^{-1} K_{XX}^{-1}] k_{Xx}$$

$$= k_{xx} - k_{xX} (K + W^{-1})^{-1} k_{xx}$$

$$= k_{xx} - k_{xX} W^{\frac{1}{2}} W^{-\frac{1}{2}} (K + W^{-1})^{-1} W^{-\frac{1}{2}} W^{\frac{1}{2}} k_{xx}$$

$$= k_{xx} - k_{xX} W^{\frac{1}{2}} B^{-1} W^{\frac{1}{2}} k_{xx}$$

ightharpoonup We can compute the pdf of $\sigma(f)$ analytically as

$$p(\sigma(f(x))) = \mathcal{N}(\sigma^{-1}(f(x)); m_x, s_x^2) \left| \frac{\partial \sigma^{-1}(f(x))}{\partial f} \right| = \mathcal{N}(\sigma^{-1}(f); m_x, s_x^2) \frac{1}{(\sigma(1 - \sigma))}$$

- but this distribution has no analytic expected value.
- ▶ Various approximations have been proposed. A simple (but imperfect) one [MacKay, 1992] is

$$\mathbb{E}_{\mathcal{N}(f;m,s^2)}(\sigma(f)) = \sigma\left(\frac{m}{\sqrt{1 + \frac{\pi}{8}s^2}}\right)$$

▶ a more general, but also more expensive option is to build a regular "Gaussian grid" and compute an approximate integral

Code

Gaussian Process Classification:

- Supervised classification phrased in a discriminative model with probabilistic interpretation
- model binary outputs as a transformation of a latent function with a Gaussian process prior
- due to non-Gaussian likelihood, the posterior is non-Gaussian; exact inference intractable
- ► Laplace approximation: Find MAP estimator, second order expansion for Gaussian approximation
- tune code for numerical stability, efficient computations
- Laplace approximation provides Gaussian posterior on training points, hence evidence, predictions

Please cite this course, as

```
@techreport{Tuebingen_ProbML23,
    itile =
    {Probabilistic Machine Learning},
    author = {Hennig, Philipp},
    series = {Lecture Notes
        in Machine Learning},
    year = {2023},
    institution = {Tübingen Al Center}}
```