Chapter 2 Bayesian Inference

Xavi Puig Departament d'Estadística i I.O. [©]Universitat Politècnica de Catalunya 2024

Chapter 2. Bayesian Inference

After collecting the data and checking the model, Statistical Inference tries to guess the true parameter value, θ^* , that is, it tries to guess the model that generated the observed data,

$$p(\widetilde{y} \mid \theta^*) \in M$$

Statistical Inference mainly consists of:

- a) Point Estimation
- b) Interval Estimation
- c) Prediction
- d) Hypothesis Test

- 2.1 Posterior distribution as an estimator
- 2.2 Point Estimation
- 2.3 Interval Estimation
- 2.4 Prediction
- 2.5 Hypothesis Test

2.1 Posterior Distribution as an Estimator

The posterior distribution, $\pi(\theta|y)$, has all the information about the parameter after observing the data,

$$\pi(\theta \mid y) = \frac{p(y \mid \theta)\pi(\theta)}{p(y)} \propto L_{y}(\theta)\pi(\theta)$$

The posterior distribution is a compromise between the prior distribution (the information before observing the data) and the likelihood function (the data information).

Chapter 2. Bayesian Inference

- 2.1 Posterior distribution as an estimator
- 2.2 Point Estimation
- 2.3 Interval Estimation
- 2.4 Prediction
- 2.5 Hypothesis Test

2.2 Point Estimation

A Point estimator summarizes $\pi(\theta|y)$

It consists of choosing $\hat{\theta}$ in such a way that it is the good approximation to θ^*

2.2 Point Estimation

Any measure of the location of $\pi(\theta|y)$ will serve as a point estimate:

- $\hat{\theta}_{pe} = E(\theta \mid y) = \int \theta \pi(\theta \mid y) \partial \theta$
- $\widehat{\theta}_{pme}$ is such that $\int_{-\infty}^{\widehat{\theta}_{pme}} \pi(\theta \mid y) \partial \theta = 0.5$
- $\bullet \quad \widehat{\theta}_{\mathit{pmo}} \ \ \text{is such that it maximizes} \ \ \pi(\theta \,|\, y)$

2.2 Point Estimation

Observation

We can get the point estimates:

- a) analytically
- b) by simulation

2.2 Point Estimation

Example: The posterior expected value

a) Analytically

$$\hat{\theta}_{pe} = E(\theta \mid y) = \int \theta \pi(\theta \mid y) \partial \theta$$

b) By simulation

Be
$$\theta^{(1)},...,\theta^{(M)}$$
 simulations of $\pi(\theta \mid y)$ then

$$\widehat{\theta}_{pe} \approx \frac{\sum_{j=1}^{M} \theta^{(j)}}{M}$$
 The larger M (the number of simulations), the better the approximation

- 2.1 Posterior distribution as an estimator
- 2.2 Point Estimation
- 2.3 Interval Estimation
- 2.4 Prediction
- 2.5 Hypothesis Test

2.3 Interval Estimation

A posterior credibility (or probability) interval of p for θ , IC_p , is any region in Ω in such a way that

$$p(\theta \in IC_p \mid y) = \int_{IC_p} \pi(\theta \mid y) \partial \theta = p$$

The area is p

Observation: we can define in an similar way a prior ${\it IC}_p$ using the prior distribution instead of the posterior distribution.

2.3 Interval Estimation

The main types of credible intervals are the:

Intervals based on percentiles

2.3 Interval Estimation

Observation

The Credible Intervals based on percentiles can be calculated in two ways:

- a) Analytically
- b) By simulation

2.3 Interval Estimation

Example: A 95% Credible Interval for θ

a) Analytically

$$\int_{-\infty}^{q_{\pi(\theta|y)}^{0.025}} \pi(\theta \mid y) \partial \theta = 0.025$$

$$\int_{q_{\pi(\theta|y)}^{0.975}}^{\infty} \pi(\theta \mid y) \partial \theta = 0.025$$

The larger M (the number of simulations) the better the approximation

b) By simulation

Be $\theta^{(1)},...,\theta^{(M)}$ simulations of $\pi(\theta \,|\, y)$ then

$$\left(q_{{ heta^{(1)}},\dots,{ heta^{(M)}}}^{0.025},q_{{ heta^{(1)}},\dots{ heta^{(M)}}}^{0.975}
ight)$$

percentile 2.5% percentile 97.5%

2.3 Interval Estimation

Observation

We can do inference about $g(\theta)=\psi$ instead of θ :

- a) Getting $\pi(\psi|y)$ analytically, or
- b) Approximating $\pi(\psi|y)$ using simulations
- a) Getting $\pi(\psi|y)$ analytically:

$$\pi_{\psi}(\psi \mid y) = \pi_{\theta}(g^{-1}(\psi) \mid y) \left| \frac{\partial g^{-1}(\psi)}{\partial \psi} \right|$$

2.3 Interval Estimation

b) Approximating $\pi(\psi|y)$ by simulation

To approximate $\pi(\psi|y)$ by simulation, first of all, we must set the number of simulations, M, (the larger the better) then from j=1 to M:

- 1. Simulate $\theta^{(j)}$ from $\pi(\theta \mid v)$
- 2. calculate $\psi^{(j)} = g(\theta^{(j)})$

These $\psi^{(1)},\ldots,\psi^{(M)}$ simulated values are simulations from the $\pi(\psi|y)$. Hence, using these simulations we can calculate everything we want/need (moments, probabilities, etc.). And by graphing it we can reproduce the shape of its probability distribution.

2.3 Interval Estimation

Now, using these simulated values: $\psi^{(1)},...,\psi^{(M)}$

A point estimator for ψ could be:

$$\widehat{\psi} = E(\psi \mid y) \approx \frac{\sum_{j=1}^{M} \psi^{(j)}}{M}$$

And, a 95% credible interval for ψ could be:

$$\begin{pmatrix} q_{\psi^{(1)},...,\psi^{(M)}}^{0.025}, q_{\psi^{(1)},...,\psi^{(M)}}^{0.975} \end{pmatrix}$$
 percentile 2.5% percentile 97.5%

- 2.1 Posterior distribution as an estimator
- 2.2 Point Estimation
- 2.3 Interval Estimation
- 2.4 Prediction
- 2.5 Hypothesis Test

2.4 Prediction

In a similar way the posterior distribution,

 $\pi(\theta \,|\, y)$ represents all that we know about the parameter

The posterior predictive distribution,

 $p(\widetilde{y} \mid y)$ represents all that we know about future values for \widetilde{y}

2.4 Prediction

The posterior predictive distribution can be calculated in two ways:

- a) Analytically
- b) By simulation

a) Analytically:

$$p(\widetilde{y} \mid y) = \int p(\widetilde{y} \mid \theta) \pi(\theta \mid y) d\theta$$

2.4 Prediction

To approximate the posterior predictive distribution using simulations, first of all, you must set the number of simulations, M (the larger the better), then for j=1 to M:

1. Simulate

$$\theta^{(j)}$$
 de $\pi(\theta \mid v)$, and

2. Simulate

$$\widetilde{y}^{(j)}$$
 de $p(\widetilde{y} \,|\, heta^{(j)})$

These $\widetilde{\mathcal{Y}}^{(1)},\dots,\widetilde{\mathcal{Y}}^{(M)}$ simulated values are simulations from the posterior predictive distribution. Hence, using these simulations we can calculate everything we want/need (moments, probabilities, etc.). And, by graphing it we can reproduce the shape of its probability distribution.

2.4 Prediction

We can also calculate point estimates and credibility intervals for the predictions. We can calculate them analytically or by simulation.

Example:

- a) Analytically:
- $E(\widetilde{y} \mid y) = \int \widetilde{y} p(\widetilde{y} \mid y) \partial \widetilde{y} = \int \widetilde{y} \int p(\widetilde{y} \mid \theta) \pi(\theta \mid y) d\theta \partial \widetilde{y}$
- $CI_{95\%} = (q_{p(\widetilde{y}|y)}^{0.025}, q_{p(\widetilde{y}|y)}^{0.975})$

Where
$$q_{p(\widetilde{y}|y)}^{0.025}$$
 $q_{p(\widetilde{y}|y)}^{0.975}$ are such that,

$$\int_{-\infty}^{q_{p(\widetilde{y}|y)}^{0.025}} p(\widetilde{y} \mid y) \partial \theta = 0.025, \quad \int_{q_{0} \text{ of } \widetilde{y}|y}^{\infty} \pi(\theta \mid y) \partial \theta = 0.025$$

2.4 Prediction

Example: point estimate and credibility interval for a prediction

- b) By simulation
- Be $\widetilde{y}^{(1)}, \ldots, \widetilde{y}^{(M)}$ simulations from the posterior predictive distribution

•
$$E(\widetilde{y} \mid y) \approx \frac{\sum_{j=1}^{M} \widetilde{y}^{(j)}}{M}$$

$$\begin{split} \bullet \quad IC_{95\%} = & \left(q_{\,\widetilde{y}^{(1)},\ldots,\widetilde{y}^{(M)}}^{\,0.925},\,q_{\,\widetilde{y}^{(1)},\ldots,\widetilde{y}^{(M)}}^{\,0.975}\right) \\ & \qquad \qquad \qquad \\ & \qquad \qquad \qquad \\ & \qquad \qquad \\$$

- 2.1 Posterior distribution as an estimator
- 2.2 Point Estimation
- 2.3 Interval Estimation
- 2.4 Prediction
- 2.5 Hypothesis Test

2.5 Hypothesis Test

Example 1: the main idea

Given a Bayesian Model: $M = \{p(\widetilde{y} \mid \theta), \theta \in \Omega\}, \pi(\theta)$

We split the parameter space in two: $\Omega = \Omega_1 \cup \Omega_2$

We want to decide to which subspace the parameter belongs

 $H_1: \theta \in \Omega_1$ $H_2: \theta \in \Omega_2$

After observing the data, we update the Bayesian Model and compute the posterior distribution for each hypothesis as:

 $p(H_1 \mid y) = p(\theta \in \Omega_1 \mid y) = \int_{\Omega_1} \pi(\theta \mid y) d\theta$

 $p(H_2 | y) = p(\theta \in \Omega_2 | y) = \int_{\Omega_2} \pi(\theta | y) d\theta = 1 - p(H_1 | y)$

We choose the hypothesis with the highest probability

2.5 Hypothesis Test

Example 2: Two possible values

We have a manipulated coin, with a probability of 0.7 of getting head or tail (this is what we want to know). We will toss the coin 10 times and count the number of observed heads.

$$M = \{ p(\widetilde{y} \mid \theta) = Binomial(n = 10, \theta), \theta \in \{0.3, 0.7\} \}$$

$$M = \{Binomial(n = 10, \theta = 0.3), Binomial(n = 10, \theta = 0.7)\}\$$

$$H_1: \theta = 0.3$$

$$H_2: \theta = 0.7$$

$$\pi(\theta) = \begin{cases} 0.5 & \text{si} \quad \theta = 0.3 \\ 0.5 & \text{si} \quad \theta = 0.7 \end{cases}$$

We toss the coin n=10 times and observe y=7 heads.

Now we have to calculate the posterior probability of each hypothesis.

2.5 Hypothesis Test

Example 2 (continued): Two possible values

$$M = \{ p(\widetilde{y} \mid \theta) = Binomial(n = 10, \theta), \theta \in \{0.3, 0.7\} \} \quad \pi(\theta) = \begin{cases} 0.5 & si \quad \theta = 0.3 \\ 0.5 & si \quad \theta = 0.7 \end{cases}$$

$$H_1: \theta = 0.3$$

 $H_2: \theta = 0.7$

We toss the coin n=10 vtimes and observe y=7 heads.

$$p(H_1 \mid y) = \frac{p(H_1)p(y \mid H_1)}{p(y)} = \frac{p(H_1)p(y \mid H_1)}{p(H_1)p(y \mid H_1) + p(H_2)p(y \mid H_2)} = \frac{0.5 \times {10 \choose 7} 0.3^7 (1 - 0.3)^{10 - 7}}{0.5 \times {10 \choose 7} 0.3^7 (1 - 0.3)^{10 - 7}} = 0.033$$

$$p(H_2 | y) = 1 - p(H_1 | y) = 0.967$$

We choose H_2

2.5 Hypothesis Test

Example 3: Three hypotheses

The time needed for a specific radioactive particle to disintegrate follows an *Exponencial* Model. Physicists agree to use a Gamma(a=10, b=10) as a prior distribution.

The Bayesian model is:

$$\widetilde{y} \mid \lambda \sim \exp(\lambda)$$

 $\lambda \sim Gamma(10, 10)$

We want to chose among:

 $H_1: \lambda \in (0, 0.5)$

 $H_2: \lambda \in [0.5, 1.5)$

 $H_3: \lambda \in [1.5, \infty)$

To avoid errors related to the parametrizations, it is a good idea to show the expressions for the distributions.

2.5 Hypothesis Test

Example 3 (continued): Three hypotheses

The observed data is: 0.9, 1.1 and 1.

The posterior distribution is:

 $\lambda \mid y \sim Gamma(13, 13)$

We calculate the posterior distribution for each hypothesis as follows:

$$H_1: \lambda \in (0, 0.5)$$

$$H_2: \lambda \in [0.5, 1.5)$$

$$H_3: \lambda \in [1.5, \infty)$$

$$p(H_1 | y) = \int_0^{0.5} \pi(\lambda | y) d\lambda = 0.016$$

$$p(H_2 | y) = \int_{0.5}^{1.5} \pi(\lambda | y) d\lambda = 0.935$$

$$p(H_3 | y) = \int_{1.5}^{\infty} \pi(\lambda | y) d\lambda = 0.049$$

We choose H₂

- 2.1 Posterior distribution as an estimator
- 2.2 Point Estimation
- 2.3 Interval Estimation
- 2.4 Prediction
- 2.5 Hypothesis Test

Chapter 2 Bayesian Inference

Xavi Puig Oriol Departament d'Estadística i I.O. [®]Universitat Politècnica de Catalunya 2024