

Facultad de Ciencias Exactas, Ingeniería y Agrimensura UNIVERSIDAD NACIONAL DE ROSARIO

Av. Pellegrini 250. S2000BTP Rosario. Sta. Fe

Análisis Matemático I - PM - LM - LCC - PF - LF - 2022

Examen final - Primera etapa

Estudiantes en condición libre

➡ Hora de entrega: 11:25hs.

Apellido y nombre:

Legajo:

DNI:

Comisión:

Carrera:

- 1. Analizar la veracidad de los siguientes enunciados. Justificar adecuadamente las respuestas.
 - -a- Si $\lim_{x\to a} f(x) = 0$ y $\lim_{x\to a} g(x) = -\infty$, entonces $\lim_{x\to a} (f\cdot g)(x) = 0$.
 - -b- $f(x) = 2(\pi + \sin \sqrt{x})$ es una primitiva de $g(x) = \frac{\cos \sqrt{x}}{\sqrt{x}}$.
 - -c- Si f es una función continua e impar en $\mathbb R$. Entonces $\int\limits_{-1}^1 x^2 f(x) dx = 0$.
 - -d- La función $f(x) = \frac{2-x}{x-3}$ tiene máximo en [0,2).
 - -e- Sean f y g dos funciones continuas en un intervalo [a,b], tales que f(a)>g(a) y f(b)< g(b), entonces existe $c\in(a,b)$ tal que f(c)=g(c).
- 2. Al final de la calle hay un edificio de 160~m de alto. Un hombre maneja hacia dicho edificio a una velocidad de 15,24~m/s. ¿Cuán rápido aumenta el ángulo que se forma por el techo del edificio y el ojo del hombre cuando este se encuentra a 300~m del edificio?
- 3. Sea $f: \mathbb{R} \to \mathbb{R}$ definida por

$$f(x) = \arctan(5x - 4)$$
.

Determinar los puntos en los cuales la recta tangente a la gráfica de f es paralela a la recta gráfica de la función identidad.

4. Sea

$$f(x) = \begin{cases} \frac{x^2 + h}{mx + 1}, & x \le 1\\ \cos\left(\pi \frac{x^2}{2} + \frac{\pi}{2x}\right), & x > 1. \end{cases}$$

- -a- Decidir para cuáles $x \neq 1$ es f derivable. Determinar f' para dichos x.
- -b- Hallar todos los $h, m \in \mathbb{R}$ para los cuales f es derivable en x = 1. Explicar el procedimiento.

Para los valores m, h hallados:

- -c- Hallar la recta tangente en x = 1.
- -d- Determinar las asíntotas de f.
- 5. Hallar los posibles valores de la constante a para los cuales se verifica

$$\lim_{x \to 0} \frac{\sqrt{ax+4}-2}{\pi x} = \sqrt{2}.$$

Facultad de Ciencias Exactas, Ingeniería y Agrimensura UNIVERSIDAD NACIONAL DE ROSARIO

Av. Pellegrini 250. S2000BTP Rosario. Sta. Fe

Análisis Matemático I - PM - LM - LCC - PF - LF - 2022

Examen final - Primera etapa

Estudiantes en condición regular		⊜ Ho	⇔ Hora de entrega: 10:25hs	
Apellido y nombr	e:			
Legaio.	DNI	Comisión:	Carrera:	

1. Analizar la veracidad de los siguientes enunciados. Justificar adecuadamente las respuestas.

-a- Si
$$\lim_{x \to a} f(x) = 0$$
 y $\lim_{x \to a} g(x) = -\infty$, entonces $\lim_{x \to a} (f \cdot g)(x) = 0$.

-b-
$$f(x) = 2(\pi + \sin \sqrt{x})$$
 es una primitiva de $g(x) = \frac{\cos \sqrt{x}}{\sqrt{x}}$.

-c- Si
$$f$$
 es una función continua e impar en $\mathbb R$. Entonces $\int\limits_{-1}^1 x^2 f(x) dx = 0$.

-d- La función
$$f(x)=\dfrac{2-x}{x-3}$$
 tiene máximo en $[0,2).$

- -e- Sean f y g dos funciones continuas en un intervalo [a,b], tales que f(a)>g(a) y f(b)< g(b), entonces existe $c\in(a,b)$ tal que f(c)=g(c).
- 2. Al final de la calle hay un edificio de $160\ m$ de alto. Un hombre maneja hacia dicho edificio a una velocidad de $15{,}24\ m/s$. ¿Cuán rápido aumenta el ángulo que se forma por el techo del edificio y el ojo del hombre cuando este se encuentra a $300\ m$ del edificio?
- 3. Sea $f: \mathbb{R} \to \mathbb{R}$ definida por

$$f(x) = \arctan(5x - 4)$$
.

Determinar los puntos en los cuales la recta tangente a la gráfica de f es paralela a la recta gráfica de la función identidad.