Lecture Notes for **Machine Learning in Python**

Professor Eric Larson

History and Introduction to Recurrent Neural Networks

Lecture Agenda

- Logistics
 - RNNs due date Reminder
 - CNN Town Hall
- Recurrent Networks (~multi-lecture agenda)
 - Overview
 - Problem Types
 - Embeddings
 - Types of RNNs
 - Demo A
 - CNNs and RNNs
 - · Demo B
 - Ethical Concerns for RNNs
 - Course Retrospective

Class Overview, by topic

CNN Town Hall

Recurrent Networks: Main Idea

equations for recurrent networks

For example:

$$h_t = U \cdot X_t + W \cdot h_{t-1} + b \approx W_A \cdot (X_t \otimes h_{t-1}) + b$$

$$h_t = U \cdot X_t + W \cdot \left(U \cdot X_{t-1} + W \cdot h_{t-2} + b\right) + b$$
from previous

A group of young people playing a game of frisbee.

A herd of elephants walking across a dry grass field.

Two dogs play in the grass.

Two hockey players are fighting over the puck.

A close up of a cat laying on a couch.

A little girl in a pink hat is blowing bubbles.

A red motorcycle parked on the Projessor End U. Ezirson

one to one one to many many to one many to many many to many

The movie stars Mr. X

The movie is horrible.

Recurrent Networks: Ontology Classification

Eva Ingolf is a well known Icelandic violinist particularly recognized for her authoritative performances of solo works by J. S. Bach. She comes from a leading musical family and her father Ingólfur Guðbrandsson premiered many of the great choral works in Iceland and six of her sisters and brothers are professional musicians who have made an important contribution to the high quality of the musical life in the country. Eva Ingolf currently lives in New York City with her husband Kristinn Sv.

Artist

Shaun Norris (born 14 May 1982) is a South African professional golfer.Norris plays on the Sunshine Tour where he has won twice. He won the inaugural Africa Open in 2008 and the Nashua Masters in 2011. He also began playing on the European Tour in 2011 after graduating from qualifying school.

Athlete

Palace Software was a British video game publisher and developer during the 1980s based in London England. It was notable for the Barbarian and Cauldron series of games for 8-bit home computer platforms in particular the ZX Spectrum Amstrad CPC and Commodore 64.

Company

Recurrent Networks, the Age Old Problem

vanishing gradients: why are these a problem?

$$h_t = U \cdot X_t + W \cdot \left(U \cdot X_{t-1} + W \cdot \left(U \cdot X_{t-2} + W \cdot h_{t-3} \right) \right)$$

low influence on gradient

high influence on gradient

$$\frac{\partial E_t}{\partial S_{t-k}} = \frac{\partial E_t}{\partial S_t} \frac{\partial S_t}{\partial S_{t-k}} = \frac{\partial E_t}{\partial S_t} \left(\frac{\partial S_t}{\partial S_{t-1}} \frac{\partial S_{t-1}}{\partial S_{t-2}} \dots \frac{\partial S_{t-k+1}}{\partial S_{t-k}} \right) = \frac{\partial E_t}{\partial S_t} \prod_{i=1}^k \frac{\partial S_{t-i+1}}{\partial S_{t-i}}$$

Error

E

Calculation,

Hopfield Network, 1982

John Hopfield, Princeton

Neural Network Design, Hagan, Demuth, Beale, and De Jesus

Contribution:

Training with Feedback

Elman/Jordan Networks, ~1988

Contribution:

Time Steps for Unrolling Separated output / state

Jeffrey Elman, UCSD

Michael Jordan, Berkeley

Long Short Term Memory, ~1997 - 2010

Sepp Hochreiter, Many Universities

Jürgen Schmidhuber, Switzerland

More on these later

Contribution:

Long Duration Memory
State Vector Separate from Output

16

Gated Recurrent Units, ~2014

Yoshua Bengio

Kyunghyun Cho, Professor at NYU

More on these later

Contribution:

Forced Decision on State Vector

Other big advances

- Attention (early 2017)
- 1D Convolution to Replace RNN (late 2017)
- Marriage of CNN and RNN
 - The transformer architecture (early 2018)
 - Self-attention (late 2018)
- Multi-headed attention in transformers (2018)
- BERT, GPT-#, etc. (2019-present)

Basics of Recurrent Neural Networks

WHEN YOU TRAIN PREDICTIVE MODELS ON INPUT FROM YOUR USERS, IT CAN LEAK INFORMATION IN UNEXPECTED LIAYS.

For now, put those architectures in long term memory.

Recurrent Networks: Main Idea

compact unrolled

Starting Basic

Neural Network Layer

Pointwise Operation Vector Transfer

Concatenate

Copy

basic RNN

 $h_t = \tanh(W_A(X_t \oplus h_{t-1}) + b_A)$

 $P_t = softmax(W_P h_t + b_P)$

http://colah.github.io/posts/2015-08-Understanding-LSTMs/ 21

Recurrent Networks: Representation

python:

Word Embeddings (like Wide/Deep)

Word Embeddings: Training

- many training options exist
 - a popular option, next word prediction

Word Embeddings

Many are pre-trained for you!!

GloVe

Highlights

1. Nearest neighbors

Global Vectors for Word Representation

The Euclidean distance (or cosine similarity) between two word vectors provides an effective method for measuring the linguistic or semantic similarity of the corresponding words. Sometimes, the nearest neighbors according to this metric reveal rare but relevant words that lie outside an average human's vocabulary. For example, here are the closest words to the target word frog:

- frog
- 1. frogs
- 2. toad
- litoria
- 4. leptodactylidae
- 5. rana
- lizard
- eleutherodactylus

litoria

4. leptodactylidae

5. rana

7. eleutherodactylus

GloVe produces word vectors with a marked banded structure that is evident upon visualization:

Word Embeddings: proximity

GloVe

Global Vectors for Word Representation

head chief spokesman executive

t-SNE visualizations of word embeddings. Left: Number Region; Right: Jobs Region. From Turian et al. (2010), see complete image.

FRANCE	JESUS	XBOX	REDDISH	SCRATCHED	MEGABITS
AUSTRIA	COD	AMIGA	CREENISH	NAILED	CCTETS
BELGIUM	SATI	PLAYSTATION	BLUISH	SMASHED	MB/S
GREMANY	CHRIST	MSX	PINKISH	PUNCHED	игг/я
ITALY	SATAN	IPOD	PURPLISH	POPPED	BAUD
GREECE	KALI	SEGA	BROWNISH	CRIMPED	CARATS
SWEDEN	INDRA	PSNUMBER	GREYISH	SCRAPED	KBIT/S
NORWAY	VISHNU	HD	GRAVISH	SCREWED	MEGAHERTZ
EUROPE	ANANDA	DREAMCAST	WHITISH	SECTIONED	MEGAPIXELS
HUNGARY	PARVATI	GEFORCE	SILVERY	SLASHED	GBIT/S
SWITZERLAND	GRACE	CAPCOM	YELLOWISH	RIPPED	AMPERES

The **chairman** called the **meeting** to order.

The **director** called the **conference** to order.

The **chief** called the **council** to order.

What words have embeddings closest to a given word? From Collobert

et al. (2011)

http://colah.github.io/posts/2014-07-NLP-RNNs-Representations/

Word Embeddings: Analogy

GloVe

Global Vectors for Word Representation

each axis **might** encode a different type of relationship

Word Embeddings: Analogy

GloVe

Global Vectors for Word Representation

$$W(\text{``woman"}) - W(\text{``man"}) \simeq W(\text{``aunt"}) - W(\text{``uncle"})$$

$$W(\text{``woman"}) - W(\text{``man"}) \simeq W(\text{``queen"}) - W(\text{``king"})$$

	Relationship	Example 1	Example 2	Example 3		
France - Paris		Italy: Rome	Japan: Tokyo	Florida: Tallahassee		
	big - bigger	small: larger	cold: colder	quick: quicker		
	Miami - Florida	Baltimore: Maryland	Dallas: Texas	Kona: Hawaii		
	Einstein - scientist	Messi: midfielder	Mozart: violinist	Picasso: painter		
	Sarkozy - France	Berlusconi: Italy	Merkel: Germany	Koizumi: Japan		
	copper - Cu	zinc: Zn	gold: Au	uranium: plutonium		
	Berlusconi - Silvio	Sarkozy: Nicolas	Putin: Medvedev	Obama: Barack		
	Microsoft - Windows	Google: Android	IBM: Linux	Apple: iPhone		
	Microsoft - Ballmer	Google: Yahoo	IBM: McNealy	Apple: Jobs		
	Japan - sushi	Germany: bratwurst	France: tapas	USA: pizza		

Relationship pairs in a word embedding. From Mikolov et al. (2013b).