61A Lecture 1

Wednesday, August 26, 2015

Welcome to Berkeley Computer Science!

How to contact me:

denero@berkeley.edu

piazza.com/berkeley/fall2015/cs61a

Fall 2015 office hours:

781 Soda

Monday 3pm-4pm

Thursday 10am-11am -

Fridays by appointment denero.org/meet

The Course Staff

- 40+ Teaching Assistants (GSIs/UGSIs) run labs, discussions, and office hours
- 30+ **Tutors** are your personal programming mentors
- 150+ Lab Assistants ensure that you don't get stuck for too long

Parts of the Course

Lecture: Videos posted to cs61a.org before each live lecture

Lab: The most important events in this course

Discussion: Also the most important events in this course

Office Hours: Also the most important events in this course [11-5 M-Th & 11-1 Friday]

Online textbook: http://composingprograms.com

Weekly homework assignments, three exams, quizzes, & four programming projects

Lots of special events

4

An Introduction to Computer Science

What is Computer Science?

The study of

What problems can be solved using computation, How to solve those problems, and What techniques lead to effective solutions

Systems

Artificial Intelligence Decision Making

Graphics

Security

Networking

Programming Languages

Theory

Scientific Computing

Robotics

Natural Language Processing

Translation

Answering Questions

What is This Course About?

- A course about managing complexity
 - •Mastering abstraction
 - •Using programming paradigms
 - •Completing big projects
- •An introduction to Python
 - Full understanding of fundamentals
 - •Learning through implementation
 - How computers interpret programming languages
- •A challenging course that will demand a lot of you

CS 61AS: Self-Paced 61A

You choose the pace! The course can be completed over two semesters

Extra content for people without prior programming experience

A brilliant textbook, interesting projects, a great language, and a dedicated course staff

More info: cs61as.org

CS 10: The Beauty and Joy of Computing

Designed for students without prior experience

A programming environment created by Berkeley, now used in courses around the world and online

An introduction to fundamentals (& Python) that sets students up for success in CS 61A

More info: cs10.org

Data Science 8: Foundations of Data Science

Fundamentals of computing and inference applied to real-world data

Great programming practice for CS 61A

In Fall 2015, piloted as Stat 94 (CCN: 87470)

More info: data8.org & databears.berkeley.edu

Course Policies

Learning

Community

Course Staff

Details...

http://cs61a.org/about.html

Collaboration

Asking questions is highly encouraged

- •Discuss everything with each other; learn from your fellow students!
- Homework can be completed with a partner
- Projects should be completed with a partner
- Choose a partner from your discussion section

The limits of collaboration

- •One simple rule: Don't share your code, except with your partner
- Copying project solutions causes people to fail this course
- •We really do catch people who violate the rules, because...
 - •We also know how to search the web for solutions
 - •We use computers to check your work

Build good habits now

Types of expressions

An expression describes a computation and evaluates to a value

Call Expressions in Python

All expressions can use function call notation (Demo)

Anatomy of a Call Expression

Operators and operands are also expressions

So they evaluate to values

Evaluation procedure for call expressions:

- 1. Evaluate the operator and then the operand subexpressions
- 2. Apply the function that is the value of the operator subexpression to the arguments that are the values of the operand subexpression

Evaluating Nested Expressions

Evaluating Nested Expressions

Functions, Objects, and Interpreters

(Demo)