Curve sketching

Nguyen Thu Huong

School of Applied Mathematics and Informatics Hanoi University of Science and Technology

November 21, 2020

Content

- Graph of a function
- Parametric curves

3 Curves in polar coordinates

Content

Graph of a function

Parametric curves

Curves in polar coordinates

General scheme

- Omain.
- Monotonicity.
- Secondary Local extremum.
- Concavity, inflection point.
- Asymptotes.
- Table of variation.
- Sketch of the graph.

Monotonicity

Theorem (Increasing/Decreasing Test)

- If f'(x) > 0 on an interval then f(x) is increasing on that interval.
- If f'(x) < 0 on an interval then f(x) is decreasing on that interval.

Local extremum

Theorem (First Derivative Test)

Suppose that c is a critical number of a continuous function f.

- If f'(x) changes from positive to negative at c, then f has a local maximum at c.
- If f'(x) changes from negative to positive at c, then f has a local minimum at c.
- If f'(x) does not change sign at c, then f has no local extremum at c.

Concavity

Definition

A point I(c, f(c)) is called an inflection point of y = f(x) iff f''(x) changes its sign when crossing x = c.

Theorem (Second Derivative Test)

Suppose that f(x) is twice differentiable.

- If f''(x) > 0 on (a, b) then f is concave upward on that interval.
- If f''(x) < 0 on (a, b) then f is concave downward on that interval.

Asymptotes

- ① x = a is called a vertical asymptote of the curve y = f(x) iff $\lim_{x \to a} y = \infty$.
- ② y = b is called a horizontal asymptote of the curve y = f(x) iff $\lim_{x \to \pm \infty} y = b$.
- ① y = ax + b is called a slant asymptote of the curve y = f(x) iff $\lim_{x \to \pm \infty} [y ax b] = 0$. We have $a = \lim_{x \to \pm \infty} \frac{y}{x}, b = \lim_{x \to \pm \infty} [y ax].$

- Find the asymptotes of the curve $y = xe^{2/x} + 1$.
- Sketch the curve $y = \sqrt{\frac{x^3}{x-1}}$ Note: Oddness and evenness.

Content

1 Graph of a function

2 Parametric curves

Curves in polar coordinates

Parametric curves

Assume that f(t), g(t) are functions of the third variable, the parameter t. For each t, we determine a point M(f(t), g(t)). When t varies, M also varies and traces out a parametric curve C.

Sketching parametric curves

- Domain of defnition.
- 2 Monotonicity of x(t), y(t) w.r.t. t.
- Asymptotes.
- Table of variation of x(t), y(t) w.r.t. t.
- Sketch of the curve.

Asymptotes

Determine t_0 such that as $t \to t_0$ either x or y or both tend to ∞ . Set $\lim_{t \to t_0} x(t) = I_1$, $\lim_{t \to t_0} y(t) = I_2$.

- If $I_1 = a$, $I_2 = \infty$ then x = a is a vertical asymptote.
- If $I_1 = \infty$, $I_2 = b$ then y = b is a horizontal asymptote.
- If $I_1 = \infty$, $I_2 = \infty$, $\lim_{t \to t_0} \frac{y(t)}{x(t)} = 0$, $\lim_{t \to t_0} [y(t) ax(t)] = b$ then y = ax + b is a slant asymptote.

Determine the asymtotes of the following curves

a)
$$\begin{cases} x(t) = \frac{3t}{1+t^3} \\ y(t) = \frac{2t^2}{1+t^3} \end{cases}$$
 b)
$$\begin{cases} x(t) = \frac{3t^3}{1+t^2} \\ y(t) = \frac{t^2}{1-t^2} \end{cases}$$

Sketching the curve
$$\begin{cases} x = a \cos^3 t \\ y = a \sin^3 t. \end{cases}$$

Figure: Astroid, a = 8.

In Cartesian coordinates: $x^{\frac{2}{3}} + y^{\frac{2}{3}} = a^{\frac{2}{3}}$.

Sketching the curve
$$\begin{cases} x = \frac{at^2}{t^3 + 1} \\ y = \frac{at}{t^3 + 1}. \end{cases}$$

Figure: Folium of Descartes, a = 6

In Cartesian coordinates: $x^3 + y^3 = axy$.

Content

1 Graph of a function

2 Parametric curves

3 Curves in polar coordinates

Polar coordinate system

Choose in the plane a fixed point O called the pole.

Draw a ray starting at O called the polar axis. A point P has polar coordinates (r, θ) determined as follows:

- $r = |\overrightarrow{OP}|; 0 \le r \le \infty$ polar radius, $\theta = (\overrightarrow{Ox}, \overrightarrow{OP}); 0 \le \theta < 2\pi$ (rotating \overrightarrow{Ox} counterclockwise until reaching \overrightarrow{OP}) polar angle.

Converting to the Cartesian coordinates xOy:

$$(r,\theta) \mapsto (x,y), x = r\cos\theta, y = r\sin\theta.$$

 $(x,y) \mapsto (r,\theta), r = \sqrt{x^2 + y^2}, \tan\theta = \frac{y}{x},$

such that $\sin \theta$ and y are of the same sign.

Generalized polar coordinates

When mentioning a curve given in polar coordinates, one often means the generalized polar coordinates (r, θ) , where $r \in \mathbb{R}, \theta \in \mathbb{R}$, which corresponds to the following point in polar coordinates:

- If $r \ge 0$ then $(r, \theta) = (r, \theta_0)$ where $\theta_0 \in [0, 2\pi)$ and $\theta \theta_0 = 2k\pi, k \in \mathbb{Z}$.
- If r < 0 then $(r, \theta) = (-r, \theta + \pi)$.

Scheme $r = r(\theta)$

- Domain of definition $r(\theta)$.
- Table of variation of $r(\theta)$.
- Special points of the curve.
- Sketching the curve.

Note: We use the tangent line at a point P to sketch the curve more precisely locally.

V: the angle between the polar radius OP and the tangent line.

 α : the angle between the polar axis and the tangent line.

$$V = \alpha - \theta \Rightarrow \tan V = \frac{\tan \alpha - \tan \theta}{1 + \tan \alpha \tan \theta}$$

$$\tan \alpha = \frac{dy}{dx} = \frac{d(r \sin \theta)}{d(r \cos \theta)} = \frac{r'(\theta) \sin \theta + r(\theta) \cos \theta}{r'(\theta) \cos \theta - r(\theta) \sin \theta}$$

$$\Rightarrow \tan V = \frac{r}{r'}$$

Sketching the curve $r = 1 + 2\cos\theta$.

Figure: Four leaved rose $r = a\cos 2\theta$. Three leaved rose $r = a\cos 3\theta$, (a > 0).