Ficha 6: Integral de Riemann

6.1 Definição do integral

Definição 6.1 Seja f uma função não negativa no intervalo [a,b]. O integral de f no intervalo [a,b] é a área A compreendida entre os eixos verticais x=a pela esquerda, x=b pela direita, e a curva y=f(x) por cima, y=0 por baixo, e notamos

$$\int_{a}^{b} f(x)dx = A.$$

Do mesmo modo, seja f uma função não positiva no intervalo [a,b]. Definimos o integral de f no intervalo [a,b] como o valor algébrico da área A compreendida entre os eixos verticais x=a pela esquerda, x=b pela direita, e a curva y=f(x) por cima, y=0 por baixo, mas desta vez com o sinal negativo.

Notamos então

$$\int_{a}^{b} f(x)dx = -A$$

Afinal para qualquer função f definimos a parte positiva $f^+(x) = \max(f(x), 0)$ e a parte negativa $f^-(x) = \min(f(x), 0)$ e o integral vale

$$\int_{a}^{b} f(x)dx = \int_{a}^{b} f^{+}(x)dx + \int_{a}^{b} f^{-}(x)dx.$$

NOTA 6.1 Quando escrevemos o integral $\int_a^b f(x) dx$, a variável x chama-se variável muda. Em consequência, as expressões seguintes

$$\int_a^b f(x)dx = \int_a^b f(t)dt = \int_a^b f(z)dz = \int_a^b f(\theta)d\theta = \int_a^b f(u)du = \int_a^b f(r)dr$$

representam o mesmo integral.

Proposição 6.1

As funções contínuas em [a,b] admitem sempre um integral.

Exemplo 6.1 A função $f(x) = \sin(2\pi x)$ é contínua em [0,1], então ela admite um integral.

6.2 Propriedades do integral

Proposição 6.2

• $Se \ f = \alpha \ \'e \ uma \ função \ constante \ então$

$$\int_{a}^{b} f(x)dx = (b-a)\alpha.$$

• (Linearidade) Sejam $\lambda, \mu \in \mathbb{R}$, então

$$\int_{a}^{b} (\lambda f + \mu g)(x) dx = \lambda \int_{a}^{b} f(x) dx + \mu \int_{a}^{b} g(x) dx.$$

• $(Monotonia)Se \ f \leq g \ ent \ \tilde{a}o$

$$\int_{a}^{b} f(x)dx \le \int_{a}^{b} g(x)dx.$$

• para qualquer função f definida em [a, b]

$$\left| \int_{a}^{b} f(x) dx \right| \le \int_{a}^{b} |f(x)| dx.$$

• (aditividade) Seja $c \in [a, b]$, temos

$$\int_{a}^{b} f(x)dx = \int_{a}^{c} f(x)dx + \int_{c}^{b} f(x)dx.$$

• $Seja\ c \in [a,b],\ temos$

$$\int_{c}^{c} f(x)dx = 0.$$

Adoptamos também a convenção

Notação 6.1 Para qualquer $a, b \in \mathbb{R}$ tal que $a \leq b$ então

$$\int_{a}^{a} f(x)dx = -\int_{a}^{b} f(x)dx.$$

Esta convenção é compatível com a aditividade no sentido que

$$0 = \int_{a}^{a} f(x)dx = \int_{a}^{b} f(x)dx + \int_{b}^{a} f(x)dx = \int_{a}^{b} f(x)dx - \int_{a}^{b} f(x)dx.$$

NOTA 6.2 Cuidado! $\int_a^b (gf)(x)dx \neq \int_a^b f(x)dx \int_a^b g(x)dx$. Por exemplo, sejam f(x)=g(x)=x podemos verificar que

$$\int_{-1}^{1} f(x)dx = \int_{-1}^{1} g(x) = 0$$

visto que a área abaixo de y=0 compensa a área acima. Por conseguinte como a função $f(x)g(x)=x^2$ temos

$$\int_{-1}^{1} (fg)(x)dx > 0.$$

6.3 Integração e primitivação

Definição 6.2 Seja f uma função contínua em [a,b]. para qualquer $x \in [a,b]$ definimos a função integral por

$$F(x) = \int_{a}^{x} f(t)dt$$

Teorema 6.1

- para qualquer $x \in]a, b[, F(x) \text{ \'e deriv\'avel em } x \text{ com } F'(x) = f(x)$
- F é derivável pela direita em a e pela esquerda em b com F'(a) = f(a) e F'(b) = f(b).

Em particular, F(x) é a primitiva da função f que se anula em a.

Corolário 6.1 (Fórmula de Barrow)

Seja f uma função contínua em [a, b] e G uma primitiva de f então

$$\int_{a}^{b} f(x)dx = G(b) - G(a)$$

Exemplo 6.2 Calcular o integral seguinte $I = \int_{1}^{10} \frac{1}{1+x} dx$.

Seja $f(x) = \frac{1}{1+x}$, a função é contínua no intervalo [1, 10] com primitiva $G(x) = \ln(1+x)$. Obtemos assim

$$\int_{1}^{10} \frac{1}{1+x} dx = \left[\ln(1+x)\right]_{1}^{10} = \ln(11) - \ln(2) = \ln(11/2).$$

Como as primitivas dependem apenas de uma constante, qualquer primitiva pode escrever-se como $G(x) = \int_{c}^{x} f(t)dt$. Em consequência, o limite inferior do integral não tem importância quando queremos apenas determinar uma primitiva.

6.4 Técnica de cálculo de integral

6.4.1 Integrção com mudança de variável

Definição 6.3 (mudança de variável) Seja $y = \phi(x)$ uma função e I = [a, b], J = [c, d] dois intervalos. Dizemos que ϕ é uma mudança de variável de I sobre J se:

- φ é uma bijeção de I sobre J.
- ϕ é derivável em I tal que $\phi'(x) \neq 0$ para qualquer $x \in]a,b[$.

Proposição 6.3

Seja f uma função contínua em [c,d] e $y=\phi(x)$ uma mudança de variável de [a,b] sobre [c,d]. Então temos:

$$\int_{c}^{d} f(y)dy = \int_{a}^{b} f(\phi(x))\phi'(x)dx.$$

Para realizar uma mudança (ou substituição) de variável, procedemos em três etapas.

- 1. Mudar os limites: passar de c, d para a, b.
- 2. Mudar a função: passar de f(y) para $f(\phi(y))$.
- 3. Mudar o diferencial: passar de dy para $\phi'(x)dx$.

EXEMPLO 6.3 (MUDANÇA DE VARIÁVEL) Usando a mudança de variável $y = \sin(t)$ calcular o intergral $\int_{-1}^{1} \sqrt{1-y^2} dy$.

A função $\sin(t)$ é uma bijeção de $\left[-\frac{\pi}{2},\frac{\pi}{2}\right]$ sobre $\left[-1,1\right]$ e verificamos que $\phi'(t)=\cos(t)>0$ para qualquer $t\in\left[-\frac{\pi}{2},\frac{\pi}{2}\right]$. Além de mais temos $\phi(-\frac{\pi}{2})=-1,\,\phi(\frac{\pi}{2})=1$. Na segunda etapa determinamos a nova função

$$f(\phi(t)) = \sqrt{1 - \sin^2(t)} = \sqrt{\cos^2(t)} = \cos(t).$$

Finalmente, na útima etapa sabemos que $\phi'(t)=\frac{dy}{dt}$ então $dy=\phi'(t)dt=\cos(t)dt$. Deduzimos finalmente

$$I(f) = \int_{-1}^{1} \sqrt{1 - y^2} dy = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \cos^2(t) dt.$$

Usando a formula $\cos^2(t) = \frac{\cos(2t)+1}{2}$, obtemos

$$I(f) = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{\cos(2t) + 1}{2} dt = \left[\frac{\sin(2t)}{4} + \frac{t}{2} \right]_{-\frac{\pi}{2}}^{\frac{\pi}{2}} = \pi.$$

6.4.2 Integração e primitivação por partes

Proposição 6.4

Sejam f e q duas funções contínuas, diferenciáveis em [a, b] então

$$\int_a^b f(x)g'(x)dx = \left[fg\right]_a^b - \int_a^b f'(x)g(x)dx, \text{ onde } \left[fg\right]_a^b = (fg)(b) - (fg)(a).$$

 ${
m NOTA}~6.3~{
m Podemos}$ aplicar a mesma fórmula quando consideramos a primitivação, seja

$$\int_{-\infty}^{\infty} f(t)g'(t)dt = (fg)(x) - \int_{-\infty}^{\infty} f'(t)g(t)dx$$

ou escrito de um modo diferente P(fg') = fg - P(f'g).

Exemplo 6.4 (Integração por partes) Usando uma integração por partes, calcular o integral seguinte $\int_0^{10} t e^t dt$.

Consideramos f(t) = t e $g'(t) = e^t$, então, f'(t) = 1 e $g(t) = e^t$.

$$\int_0^{10} t e^t dt = \left[t e^t \right]_0^{10} - \int_0^{10} e^t dt$$
$$= 10e^{10} - (e^{10} - e^0)$$
$$= 9e^{10} + 1.$$

EXEMPLO 6.5 (PRIMITIVAÇÃO POR PARTES) Usando uma primitivação por partes, determinar uma primitiva de $\ln(x)$.

Seja $f(t) = \ln(t), g'(t) = 1$, então, $f'(t) = \frac{1}{t}, g(t) = t$.

$$\int_{-\infty}^{x} \ln(t)dt = x \ln(x) - \int_{-\infty}^{x} \frac{t}{t}dt$$
$$= x \ln(x) - x.$$

6.4.3 Integração de funções racionais

Graças à decomposição em elementos simples calculamos o integral de uma fração racional.

Exemplo 6.6 Calcular o integral seguinte

$$\int_{-1}^{0} \frac{x+4}{(x+2)(x-1)^2} dx.$$

Usando a decomposição em elementos simples, podemos escrever

$$I(F) = \int_{-1}^{0} \frac{x+4}{(x+2)(x-1)^2} dx$$

$$= \int_{-1}^{0} \left[-\frac{2/9}{x-1} + \frac{5/3}{(x-1)^2} + \frac{2/9}{x+2} \right] dx$$

$$= -2/9 \int_{-1}^{0} \frac{1}{x-1} dx + 5/3 \int_{-1}^{0} \frac{1}{(x-1)^2} dx + 2/9 \int_{-1}^{0} \frac{1}{x+2} dx$$

$$= -2/9 \left[\ln|x-1| \right]_{-1}^{0} + 5/3 \left[\frac{-1}{x-1} \right]_{-1}^{0} + 2/9 \left[\ln|x+2| \right]_{-1}^{0}$$

$$= 2/9 \ln(2) + 5/6 - 2/9 \ln(2) = \frac{5}{6}.$$

6.5 Aplicação

6.5.1 Comprimento de uma curva

Proposição 6.5

Seja f uma função diferenciável em [a,b] e G_f o seu gráfico ou curva. Então o comprimento $|G_f|$ da curva associado a f é dado por

$$|G_f| = \int_a^b \sqrt{1 + [f'(x)]^2} dx.$$

NOTA $6.4\,$ A razão desta definição vem da medida de uma curva parametrizada que nós estudamos na cadeira de Análise onde usamos uma parametrização particular x(t)=t e y(t)=f(t).

Exemplo 6.7 Calcular o comprimento da curva da função $\frac{1}{2}x^2$ no intervalo [0, 1].

$$|G_f| = \int_0^1 \sqrt{1 + [x]^2} dx.$$

Introduzimos a mudança de variável $\sinh(t) = x$. Temos $\sinh(0) = 0$ e $\sinh(t_1) = 1$ onde $t_1 = \arg\sinh(1) = \ln(1+\sqrt{1+1^2}) = \ln(1+\sqrt{2})$. Por outro lado, verificamos que

$$\sqrt{1+x^2} = \sqrt{1+\sinh^2(t)} = \sqrt{\cosh^2(t)} = \cosh(t)$$

 \mathbf{e}

$$\frac{dx}{dt} = \sinh'(t) = \cosh(t).$$

Usando a mudança de variável, temos

$$|G_f| = \int_0^{t_1} \cosh^2(t) dt = \frac{1 + \cosh(2t)}{2} dt = \left[\frac{t}{2} + \frac{\sinh(2t)}{4} \right]_0^{t_1} = \ln\left(\sqrt{1 + \sqrt{2}}\right) + \sinh\left(2\ln(1 + \sqrt{2})\right).$$

6.5.2 Cálculo da área de um domínio plano

Proposição 6.6

Sejam f e g duas funções contínuas em [a,b] e D o domínio compreendido entre os lados verticais $x=a,\ x=b$ das funções f e g. Então a área (não algébrica) de D (notação |D| ou área(D)) é dada por

$$|D| = \int_a^b |f(x) - g(x)| dx.$$

Nota 6.5 Cuidado para não confundir a área algébrica (que pode ser negativa) com a área geométrica (que é sempre não negativa).

Exemplo 6.8 Calcular a área situada entre x = -1 e x = 1 para as funções f(x) = x, f(x) = -x.

$$|S| = \int_{-1}^{1} |x - (-x)| = 2 \int_{0}^{1} 2x = 4 \left[\frac{x^{2}}{2} \right]_{0}^{1} = 2.$$

6.5.3 Cálculo do volume de um sólido de revolução

Proposição 6.7

Seja f uma função contínua em [a,b], não negativa e definimos o sólido gerado por revolução a partir de f como

$$V = \{(x, y, z) \in \mathbb{R}^3, \ x \in [a, b], \sqrt{y^2 + z^2} \le f(x)\}.$$

Então o volume do sólido |V| é dado por

$$|V| = \pi \int_a^b f^2(x) dx.$$

NOTA 6.6 Notar que $\pi f^2(x)$ corresponde a área de uma circunferência de raio f(x).

EXEMPLO 6.9 Calcular o volume gerado por revolução a partir de f = (1 - x) no intervalo [0, 1]. Verificamos bem que $f(x) \ge 0$ quando $x \in [0, 1]$.

$$|V| = \pi \int_0^1 (1-x)^2 dx = \pi \left[-\frac{(1-x)^3}{3} \right]_0^1 = \frac{\pi}{3}.$$

6.6 Exercícios

Exercício 1 Calcular os integrais imediatos seguintes.

1.
$$\int_0^3 (x^2 - x) dx$$
, $\int_0^1 \frac{1}{1 + 2x^2} dx$, $\int_{-1}^1 (e^{-x} + e^{2x}) dx$, $\int_0^1 (\cos(\pi t) + \sin(2\pi t)) dt$.

2.
$$\int_{-1}^{1} \frac{12}{2x - 5} dx, \quad \int_{0}^{1/4} (1 + \tan^{2}(\pi x)) dx, \quad \int_{-\pi}^{\pi} \cos^{2}(t) dt, \quad \int_{\sin(-1)}^{\sin(1/2)} \frac{1}{\sqrt{1 - x^{2}}} dx.$$

Exercício 2 Calcular os integrais imediatos seguintes com substituição de função.

1.
$$\int_{-1}^{1} 2x\sqrt{1+x^2}dx$$
, $\int_{0}^{\frac{\pi}{2}} x^3 \sin(x^4)dx$, $\int_{0}^{5} \frac{5x}{1+2x^2}dx$, $\int_{0}^{2} 12x^3 e^{x^4}dx$, $\int_{-1}^{1} \frac{9x^2}{e^{x^3}}dx$.

Exercício 3 Calcular os integrais seguintes usando a integração por partes

1.
$$\int_0^{\frac{\pi}{2}} x \sin(x) dx$$
, $\int_1^3 x \ln(x) dx$, $\int_1^3 x^2 \ln(x) dx$,

2.
$$\int_0^1 x \arctan(x) dx$$
, $\int_0^1 x \cos(2\pi x) dx$, $\int_1^3 t^2 \ln(t) dt$.

Exercício 4 Calcular os integrais usando a mundança de variável.

1.
$$\int_{-1}^{1} \sqrt{4 - (2x)^2} dx \text{ com } x = \sin(t).$$

$$2. \int_0^1 \frac{\sqrt{t}}{1 + t\sqrt{t}} dt \text{ com } s = \sqrt{t}.$$

3.
$$\int_0^1 \frac{1}{1+t^{\frac{2}{3}}} dt \text{ com } t = s^3.$$

Exercício 5 Sejam P=x+1, Q=(x-2)(x+3) dois polinómios e $f=\frac{P}{D}$ a fração racional associada.

- 1. Justificar que a fração racional é uma fração racional irredutível. Determinar a decomposição em elementos simples de $\frac{P}{Q}$.
- 2. Calcular o valor do integral $\int_0^1 f(x)dx$.
- 3. Mesmas questões com $\int_0^1 \frac{x^3 + 5x^2 4}{x + 2} dx.$

- 4. Mesmas questões com $\int_0^1 \frac{2x^3+x^2-3x-1}{2x-1} dx$.
- 5. Mesmas questões com $\int_0^1 \frac{2x+1}{(x-1)(x-2)} dx$.

Solução 1

1. i)
$$\int_0^3 (x^2 - x) dx = \frac{9}{2}, \quad ii) \int_0^1 \frac{1}{1 + 2x^2} dx = \frac{\arctan(\sqrt{2})}{\sqrt{2}},$$
$$iii) \int_{-1}^1 (e^{-x} + e^{2x}) dx = e - \frac{1}{e} + e^2/2 - \frac{1}{2e^2}, \quad iv) \int_0^1 (\cos(\pi t) + \sin(2\pi t)) dt = 0.$$

2.
$$\int_{-1}^{1} \frac{12}{2x - 5} dx = 6 \ln(3/7), \quad \int_{0}^{1/4} (1 + \tan^{2}(\pi x)) dx = \frac{1}{\pi},$$
$$\int_{-\pi}^{\pi} \cos^{2}(t) dt = \pi, \quad \int_{\sin(-1)}^{\sin(1/2)} \frac{1}{\sqrt{1 - x^{2}}} dx = \frac{3}{2}.$$