Seyt, 20th

Regular han grage

Definition 2.1 (Regular languages). Let us fix an alphabet Σ . Then, a language L is regular iff:

- 1. either $L = \emptyset$;
- 2. or $L = \{\varepsilon\}$;
- 3. or $L = \{a\}$ for some $a \in \Sigma$;
- 4. or $L = L_1 \cup L_2$;
- 5. or $L = L_1 \cdot L_2$;
- 6. or $L = L_1^*$

where L_1 and L_2 are regular languages on Σ .

Box cores.

Inductive com.

- 1. either $L = \emptyset$;
 - 2. or $L = \{\varepsilon\}$;
 - 3. or $L = \{a\}$ for some $a \in \Sigma$;
 - 4. or $L = L_1 \cup L_2$;
- 5. or $L = L_1 \cdot L_2$;
- 6. or $L = L_1^*$

Escongles

Uning the some idea, we can posse flat ell finete language on repular. If my longring in L= ? w, w, ..., uns For each was wi, I Suld a larguege Li= {wi} ruls 3 ons Tu L= U L= 0

All Sinony was hat represent æn odd

1. either
$$L = \emptyset$$
;

2. or
$$L = \{\varepsilon\}$$
;

3. or
$$L = \{a\}$$
 for some $a \in \Sigma$;

4. or
$$L = L_1 \cup L_2$$
;

5. or
$$L = L_1 \cdot L_2$$
;

6. or
$$L = L_1^*$$

a timory and Het starts will only o's and end with only 1's (30,15) ok 20 5 · 31 /

longuage of all well-parenterised LC)

1. either $L = \emptyset$;

2. or
$$L = \{\varepsilon\}$$
;

3. or
$$L = \{a\}$$
 for some $a \in \Sigma$;

4. or
$$L = L_1 \cup L_2$$
;

5. or
$$L = L_1 \cdot L_2$$
;

6. or
$$L = L_1^*$$

2 Binds of took for repulse longuage. - tool to deine a regula longues. - tools to monipulate ent recognise.

```
We need regular longuage for scenning
int i = 5 ;
int f ( int j ) {
  int i = j ;
  return i + 1 ;
}
int main ( ) {
  printf ( "Hello_World_!" ) ;
  printf ( "%d_%d" , i , f ( i + 1 ) ) ;
  return 0 ;
}
```

Definition 2.3 (Regular expressions). Given a finite alphabet Σ , the following are regular expressions on Σ :

- 1. The constant \emptyset . It denotes the language $L(\emptyset) = \emptyset$.
- 2. The constant ε . It denotes the language $L(\varepsilon) = \{\varepsilon\}$.
- 3. All constants $a \in \Sigma$. Each constant $a \in \Sigma$ denotes the language $L(a) = \{a\}$.
- 4. All expressions of the form $r_1 + r_2$, where r_1 and r_2 are regular expressions on Σ . Each expression $r_1 + r_2$ denotes the language $L(r_1 + r_2) = L(r_1) \cup L(r_2)$.
- 5. All expressions of the form $r_1 \cdot r_2$, where r_1 and r_2 are regular expressions on Σ . Each expression $r_1 \cdot r_2$ denotes the language $L(r_1 \cdot r_2) = L(r_1) \cdot L(r_2)$.
- 6. All expressions of the form r^* , where r is a regular expression on Σ . Each expression r^* denotes the language $L(r^*) = (L(r))^*$.

In addition, parenthesis are allowed in regular expressions to group subexpressions (with their usual semantics).

$$A = \langle Q, \Sigma, \delta, q_0, F \rangle$$

where:

- 1. *Q* is a finite set of states;
- 2. Σ is the (finite) input alphabet;
- 3. $\delta: Q \times (\Sigma \cup \{\varepsilon\}) \mapsto 2^Q$ is the transition function;
- 4. $q_0 \in Q$ is the initial state;
- 5. $F \subseteq Q$ is the set of accepting states.

Mon-deterministic outemation 90, 91, 93 occepts Convertion: a und et best one accepting

Why ??? I want on outsmoter Ket accepts all living was when the one two 1 reported by 2 Mynsols