Dimerization of atomic chains

Andriy Zhugayevych (zhugayevych@iop.kiev.ua) $November\ 20,\ 2011$

1	Introduction	
2	Electronic states of dimerized chain	3
	2.1 Solving the Schroedinger equation	
	2.2 Perfectly dimerized chain	3
	2.3 Band energy and density matrix	
3	Electronic properties of defects	6
	3.1 Calculating localized states	
	3.2 Calculating transmission amplitude	
	3.3 Analytic properties of the transmission amplitude	
	3.4 Topological defects in hopping rate dimerization	
	3.5 Topological defects in on-site energy dimerization	
	3.6 Pair of t-kinks	
	3.7 Pair of e- and t-kinks	
4		
4	Electron-electron interaction	
	4.1 Hartree-Fock method in ZDO approximation	
	4.2 Three-diagonal approximation	
	4.3 Coulomb potential in three-diagonal approximation	
	4.4 Spin contamination: SUHF	
	4.5 Perfectly dimerized chain: renormalization equations	
	4.6 RHF solutions in absence of "bare" dimerization	
	4.7 UHF solutions in absence of "bare" dimerization	
	4.8 "Bare" t-dimerization	
5	Electron-phonon interaction	
	5.1 Electron-phonon interaction in adiabatic approximation	
	5.2 Effects of dielectric environment	23
	5.3 Hartree–Fock description	25
	5.4 Extended SSH model: infinite chain	26
	5.5 Extended SSH model: infinite chain (old version)	
	5.6 Hubbard-Peierls model	
6	Phonons	
7	Continuous model of dimerized chain	
'	7.1 Basic equations	
	7.2 Topological defects	
	. 0	
	7.4 Kink-antikink pair	
	7.5 Continuous model	
	7.6 Nonlinear excitations	
	7.7 Nonlinear excitations: effects of electron-electron interaction	
	7.8 Jackiw–Rebbi model	
8	Conjugated polymers	
	8.1 Model parameters for polyacetylene	
	8.2 Can we think about single and double bonds in polyacetylene?	41
Αŗ	ppendix	41
A	Evaluation of transmission amplitude	41
В	RHF for perfectly dimerized chain in the most general setup	41
\mathbf{C}	Derivation of the electronic Hamiltonian	
D	Formulas for the gradient and Hessian	
\mathbf{E}	Participation ratio	
	eferences	