Satz von Bayes

Satz von Bayes

 A_1, \ldots, A_K sei eine disjunkte Zerlegung von Ω mit $P(A_i) > 0$ für alle $i = 1, \ldots, K$. Dann gilt für jedes Ereignis B mit P(B) > 0

$$P(A_i|B) = \frac{P(B|A_i)P(A_i)}{P(B)} = \frac{P(B|A_i)P(A_i)}{\sum_{k=1}^{K} P(B|A_k)P(A_k)}.$$

Diese Formel gilt sinngemäß auch für den Fall $K = \infty$.

Beispiel: Spam-Filter

Motivation

Ein Spam-Filter verschiebt E-Mails in den junk-Ordner, wenn gewisse Worte in der E-Mail vorhanden sind, z.B. win.

Durch Analysieren von alten E-Mails kann man die bedingten Wahrscheinlichkeiten der Form

$$P(,,E-Mail\ enthält\ Uni'|,,Email\ ist\ Spam'')$$

etc. gut schätzen.

Fragen:

- Wie wahrscheinlich ist es, dass eine E-Mail Spam ist?
- Wie groß ist die Wahrscheinlichkeit, dass eine E-Mail tatsächlich Spam ist, wenn das Wort win vorkommt?

Beispiel: Spam-Filter

Systematisch: Ereignisse definieren:

$$A =$$
 "E-Mail ist Spam", $B_1 =$ "E-Mail enthält das Wort Uni ", $B_2 =$ "E-Mail enthält das Wort win ".

Bekannt seien: P(A), $P(B_1|A)$, $P(B_1|\overline{A})$, $P(B_2|A)$ und $P(B_2|\overline{A})$.

Mann man hieraus

$$P(B_i), \qquad i=1,2$$

berechnen?

Kann man hieraus

$$P(A|B_i)$$

berechnen?

Beispiel: Spam-Filter

Mehrstufige Zufallsexperimente, insbesondere n-malige Wiederholung

$$\Omega = \Omega_1 \times \cdots \times \Omega_n$$

Festlegung der Wahrscheinlichkeiten

$$p(\omega) = P(\{\omega\}) = ?$$

Fallgestaltung: Produktion von Nadellagern bestehe aus zwei Stufen:

- Stufe 1: Vorbereitende Bearbeitung eines Rohling.
 Mit Wkeit 0.02 genügt ein Rohling nach Stufe 1 nicht den Qualitätsanforderungen.
- Stufe 2: Nachbearbeitung
 Entsprechend der Toleranzen Sortierung in drei Klassen (Normal/P5/P6).

Mit welcher Wkeit erhält man ein Nadellager der Klasse P5?

Oft: An verschiedenen Zeitpunkten bestimmen zufällige Ereignisse den Folgezustand.

Darstellung durch Wahrscheinlichkeitsbaum.

Modell:

$$\Omega = \Omega_1 \times \cdots \times \Omega_n$$

Startverteilung:

$$p(\omega_1), \qquad \omega_1 \in \Omega_1.$$

Bedingte Wahrscheinlichkeiten:

$$p(\omega_j|\omega_1,\ldots,\omega_{j-1})$$

Pfadregel für $\omega = (\omega_1, \dots, \omega_n)$:

$$P(\{\omega\}) = p(\omega_1)p(\omega_2|\omega_1)\cdots p(\omega_n|\omega_1,\ldots,\omega_{n-1})$$

Beispiel 2.3.3 Eine faire Münze mit Kopf (K) und Zahl (Z) wird zweimal geworfen. Wir können auch dieses Zufallsexperiment als Wahrscheinlichkeitsbaum repräsentieren:

Unabhängige Ereignisse

Heuristik: B nicht informativ für A, wenn P(A|B) = P(A).

Unabhängige Ereignisse

Zwei Ereignisse *A* und *B* heißen **stochastisch unabhängig** (kurz: unabhängig), wenn

$$P(A \cap B) = P(A)P(B)$$

gilt. Diese Identität wird als **Produktsatz** bezeichnet.

Produktsatz

Produktsatz

k Ereignisse $A_1, \ldots, A_k \subset \Omega$ erfüllen den **Produktsatz**, wenn gilt:

$$P(A_1 \cap A_2 \cap \cdots \cap A_k) = P(A_1) \cdot \cdots \cdot P(A_k).$$

Totale und paarweise Unabhängigkeit

 $A_1,\ldots,A_n\subset\Omega$ heißen **(total) stochastisch unabhängig**, wenn für jede Teilauswahl A_{i_1},\ldots,A_{i_k} von $k\in\mathbb{N}$ Ereignissen der Produktsatz gilt. A_1,\ldots,A_n heißen **paarweise stochastisch unabhängig**, wenn alle Paare A_i,A_j ($i\neq j$) stochastisch unabhängig sind.

Totale und paarweise Unabhängigkeit

Totale und paarweise Unabhängigkeit

- $A_1, \ldots, A_n \subset \Omega$ heißen (total) stochastisch unabhängig, wenn für jede Teilauswahl A_{i_1}, \ldots, A_{i_k} von $k \in \mathbb{N}$ Ereignissen der Produktsatz gilt.
- A_1, \ldots, A_n heißen **paarweise stochastisch unabhängig**, wenn alle Paare A_i, A_i ($i \neq j$) stochastisch unabhängig sind.

Ersetzungsregel

Ersetzungsregel

Sind

$$A_1,\ldots,A_n\subset\Omega$$

unabhängig, dann auch

$$B_1, \ldots, B_k, \qquad k \leq n,$$

wobei jedes B_i entweder A_i oder \overline{A}_i ist, für i = 1, ..., k.

Anwendung zur Unabhängigkeit

Beispiel: Parallelschaltung

- *n* Datenkabel sind parallel geschaltet. Sie können einzeln genutzt werden und fallen unabhängig voneinander aus.
- Die Übertragung fällt aus, wenn alle Kanäle versagen.
- Die Datenkabel sind durch Stecker verbunden, die unabhängig voneinander ausfallen.

Anwendung zur Unabhängigkeit

ullet Sei p die Wahrscheinlichkeit, dass ein Datenkabel ausfällt, und A_i das Ereignis, dass das i-te Kabel ausfällt.

Dann sind A_1, \ldots, A_n unabhängig mit $P(A_i) = p$, $i = 1, \ldots, n$.

ullet Sei B das Ereignis B= "Übertragung fällt aus". Dann ist

$$B=\bigcap_{i=1}^n A_i.$$

 \bullet Da A_1,\ldots,A_n unabhängig sind, ergibt sich die Ausfallwahrscheinlichkeit einer Übertragung zu

$$P(B) = P(A_1) \dots P(A_n) = p^n.$$

• Setzt man beispielsweise vier Datenkabel mit p=0.01 ein, dann erhält man $P(B)=0.01^4=10^{-8}$.

Anwendung zur Unabhängigkeit

Reihenschaltung: Das Datenkabel bestehe aus n Teilkabeln, die mit Steckern verbunden sind. Die Stecker versagen unabhängig voneinander mit Wahrscheinlichkeit q.

ullet Es bezeichne C_i das Ereignis, dass der i-te Stecker kaputt ist, und D das Ereignis D= "Übertragung fällt aus". Dann ist

$$D = \bigcup_{i=1}^{n} C_i, \quad \overline{D} = \bigcap_{i=1}^{n} \overline{C}_i.$$

• Wir erhalten:

$$P(D) = 1 - P(\overline{D}) = 1 - P(\overline{C}_1 \cap \cdots \cap \overline{C}_n).$$

• Da C_1, \ldots, C_n unabhängig sind, sind auch die komplementären Ereignisse $\overline{C}_1, \ldots, \overline{C}_n$ unabhängig. Somit ist:

$$P(\overline{C}_1 \cap \cdots \cap \overline{C}) = (1-q)^n$$
.

• Die Übertragung fällt daher mit einer Wkeit von $P(D) = 1 - (1 - q)^n$ aus. Für q = 0.01 und n = 10 ist: P(D) = 0.0956.