Advanced Statistical Inference Gaussian Processes

Maurizio Filippone Maurizio.Filippone@eurecom.fr

Department of Data Science FURECOM

Gaussian Processes

Gaussian Processes

- Linear models requires specifying a set of basis functions
 - ▶ Polynomials, Trigonometric, ...??
- ► Can we use Bayesian inference to let data tell us?
- ► Gaussian Processes work implicitly with an infinite set of basis functions and learn a probabilistic combination of these

Gaussian Processes

Suggested readings

Gaussian Processes for Machine Learning

Carl E. Rasmussen and Christopher K. I. Williams

Pattern Recognition and Machine Learning

C. Bishop

Gaussian Processes

Gaussian Processes

Gaussian Processes can be explained in two ways

- ▶ Weight Space View
 - ▶ Bayesian linear regression with infinite basis functions
- ► Function Space View
 - ► Defined as priors over functions

Gaussian Processes can be explained in two ways

- ▶ Weight Space View
 - ► Bayesian linear regression with infinite basis functions
- ► Function Space View
 - ► Defined as priors over functions

Gaussian Processes

Weight Space View

Bayesian Linear Regression - recap

Posterior must be Gaussian

$$p(\mathbf{w}|\mathbf{X}, \mathbf{y}, \sigma^2) = \mathcal{N}(\boldsymbol{\mu}, \mathbf{\Sigma})$$

► Covariance:

$$\mathbf{\Sigma} = \left(rac{1}{\sigma^2} \mathbf{X}^{ op} \mathbf{X} + \mathbf{S}^{-1}
ight)^{-1}$$

Mean:

$$oldsymbol{\mu} = rac{1}{\sigma^2} oldsymbol{\Sigma} \, oldsymbol{\mathsf{X}}^{ op} oldsymbol{\mathsf{y}}$$

Predictions

$$p(\mathbf{y}_*|\mathbf{X},\mathbf{y},\mathbf{x}_*,\sigma^2) = \mathcal{N}(\mathbf{x}_*^{\top}\boldsymbol{\mu},\sigma^2 + \mathbf{x}_*^{\top}\mathbf{\Sigma}\mathbf{x}_*)$$

Bayesian Linear Regression - recap

► Modeling observations as noisy realizations of a linear combination of the features:

$$p(\mathbf{y}|\mathbf{w}, \mathbf{X}, \sigma^2) = \mathcal{N}(\mathbf{X}\mathbf{w}, \sigma^2\mathbf{I})$$

► Gaussian prior over model parameters:

$$p(\mathbf{w}) = \mathcal{N}(\mathbf{0}, \mathbf{S})$$

Gaussian Processes

Weight Space View

Introducing basis functions

▶ Imagine transforming the inputs using a set of *D* functions

$$\mathbf{x} \to \phi(\mathbf{x}) = (\phi_1(\mathbf{x}), \dots, \phi_D(\mathbf{x}))^{\top}$$

- ▶ The functions $\phi_1(\mathbf{x})$ are also known as basis functions
- ► Define:

$$\mathbf{\Phi} = \left[\begin{array}{ccc} \phi_1(\mathbf{x}_1) & \dots & \phi_D(\mathbf{x}_1) \\ \vdots & \ddots & \vdots \\ \phi_1(\mathbf{x}_N) & \dots & \phi_D(\mathbf{x}_N) \end{array} \right]$$

Weight Space View

Introducing basis functions

 Applying Bayesian Linear Regression on the transformed features gives

$$p(\mathbf{w}|\mathbf{X}, \mathbf{y}, \sigma^2) = \mathcal{N}(\boldsymbol{\mu}, \mathbf{\Sigma})$$

Covariance:

$$oldsymbol{\Sigma} = \left(rac{1}{\sigma^2} oldsymbol{\Phi}^{ op} oldsymbol{\Phi} + oldsymbol{S}^{-1}
ight)^{-1}$$

Mean:

$$oldsymbol{\mu} = rac{1}{\sigma^2} oldsymbol{\Sigma} oldsymbol{\Phi}^{ op} oldsymbol{y}$$

Predictions:

$$p(\mathbf{y}_*|\mathbf{X},\mathbf{y},\mathbf{x}_*,\sigma^2) = \mathcal{N}(\boldsymbol{\phi}_*^{\top}\boldsymbol{\mu},\sigma^2 + \boldsymbol{\phi}_*^{\top}\mathbf{\Sigma}\boldsymbol{\phi}_*)$$

Gaussian Processes

Weight Space View

Bayesian Linear Regression as a Kernel Machine

- ▶ Working with $\psi(\cdot)$ costs $O(D^2)$ storage, $O(D^3)$ time
- ▶ Working with $k(\cdot, \cdot)$ costs $O(N^2)$ storage, $O(N^3)$ time
- ▶ Pick the one that makes computations faster . . . or
- ▶ What if we could pick $k(\cdot, \cdot)$ so that $\psi(\cdot)$ is infinite dimensional?

Gaussian Processes

└─Weight Space View

Bayesian Linear Regression as a Kernel Machine

We are going to show that predictions can be expressed exclusively in terms of scalar products as follows

$$k(\mathbf{x}, \mathbf{x}') = \psi(\mathbf{x})^{\top} \psi(\mathbf{x}')$$

- ▶ This allows us to work with either $k(\cdot, \cdot)$ or $\psi(\cdot)$
- ► Why is this useful??

Gaussian Processes

Weight Space View

Kernels

▶ It is possible to show that for

$$k(\mathbf{x}, \mathbf{x}') = \exp\left(-\frac{\|\mathbf{x} - \mathbf{x}'\|^2}{2}\right)$$

there exists a corresponding $\psi(\cdot)$ that is infinite dimensional!!!

▶ There are other kernels satisfying this property

Weight Space View

Kernels

Proof that the Gaussian kernel induces an infinite dimensional $\psi(\cdot)$

- For simplicity consider one dimensional inputs x, z
- \triangleright Expand the Gaussian kernel k(x, z) as

$$\exp\left(-\frac{(\mathbf{x}-\mathbf{z})^2}{2}\right) = \exp\left(-\frac{\mathbf{x}^2}{2}\right) \exp\left(-\frac{\mathbf{z}^2}{2}\right) \exp\left(\mathbf{x}\mathbf{z}\right)$$

► Focusing on the last term and applying the Taylor expansion of the $\exp(\cdot)$ function

$$\exp(xz) = 1 + (xz) + \frac{(xz)^2}{2!} + \frac{(xz)^3}{3!} + \frac{(xz)^4}{4!} + \dots$$

Gaussian Processes

Weight Space View

Bayesian Linear Regression as a Kernel Machine

► To show that Bayesian Linear Regression can be formulated through scalar products only, we need Woodbury identity:

$$(A + UCV)^{-1} = A^{-1} - A^{-1}U(C^{-1} + VA^{-1}U)^{-1}VA^{-1}$$

Do not memorize this!

Gaussian Processes

Weight Space View

Kernels

Proof that the Gaussian kernel induces an infinite dimensional $\psi(\cdot)$

▶ Define the infinite dimensional mapping

$$\psi(\mathbf{x}) = \exp\left(-\frac{\mathbf{x}^2}{2}\right) \left(1, \mathbf{x}, \frac{\mathbf{x}^2}{\sqrt{2!}}, \frac{\mathbf{x}^3}{\sqrt{3!}}, \frac{\mathbf{x}^4}{\sqrt{4!}}, \ldots\right)^{\top}$$

► It is easy to verify that

$$k(\mathbf{x}, \mathbf{z}) = \exp\left(-\frac{(\mathbf{x} - \mathbf{z})^2}{2}\right) = \psi(\mathbf{x})^{\top}\psi(\mathbf{z})$$

Gaussian Processes

Weight Space View

Bayesian Linear Regression as a Kernel Machine Proof

Woodbury identity:

$$(A + UCV)^{-1} = A^{-1} - A^{-1}U(C^{-1} + VA^{-1}U)^{-1}VA^{-1}$$

We can rewrite:

$$\Sigma = \left(\frac{1}{\sigma^2} \mathbf{\Phi}^\top \mathbf{\Phi} + \mathbf{S}^{-1}\right)^{-1}$$
$$= \mathbf{S} - \mathbf{S} \mathbf{\Phi}^\top \left(\sigma^2 \mathbf{I} + \mathbf{\Phi} \mathbf{S} \mathbf{\Phi}^\top\right)^{-1} \mathbf{\Phi} \mathbf{S}$$

ightharpoonup We set $A = \mathbf{S}$, $U = V^{\top} = \mathbf{\Phi}^{\top}$, and $C = \frac{1}{2}\mathbf{I}$

Weight Space View

Bayesian Linear Regression as a Kernel Machine Proof

► Mean and variance of the predictions:

$$p(\mathbf{y}_*|\mathbf{X},\mathbf{y},\mathbf{x}_*,\sigma^2) = \mathcal{N}(\boldsymbol{\phi}_*^{\top}\boldsymbol{\mu},\sigma^2 + \boldsymbol{\phi}_*^{\top}\mathbf{\Sigma}\boldsymbol{\phi}_*)$$

Rewrite the variance:

$$\begin{array}{lll} \boldsymbol{\sigma}^2 & + & \boldsymbol{\phi}_*^\top \boldsymbol{\Sigma} \boldsymbol{\phi}_* = \\ \boldsymbol{\sigma}^2 & + & \boldsymbol{\phi}_*^\top \boldsymbol{S} \boldsymbol{\phi}_* - \boldsymbol{\phi}_*^\top \boldsymbol{S} \boldsymbol{\Phi}^\top \left(\boldsymbol{\sigma}^2 \boldsymbol{I} + \boldsymbol{\Phi} \boldsymbol{S} \boldsymbol{\Phi}^\top \right)^{-1} \boldsymbol{\Phi} \boldsymbol{S} \boldsymbol{\phi}_* \end{array}$$

... continued

Gaussian Processes

Weight Space View

Bayesian Linear Regression as a Kernel Machine

Mean and variance of the predictions:

$$p(\mathbf{y}_*|\mathbf{X},\mathbf{y},\mathbf{x}_*,\sigma^2) = \mathcal{N}(\boldsymbol{\phi}_*^{\top}\boldsymbol{\mu},\sigma^2 + \boldsymbol{\phi}_*^{\top}\mathbf{\Sigma}\boldsymbol{\phi}_*)$$

► Rewrite the mean:

$$\begin{split} \boldsymbol{\phi}_*^\top \boldsymbol{\mu} &= \frac{1}{\sigma^2} \boldsymbol{\phi}_*^\top \boldsymbol{\Sigma} \boldsymbol{\Phi}^\top \mathbf{y} \\ &= \frac{1}{\sigma^2} \boldsymbol{\phi}_*^\top \left(\mathbf{S} - \mathbf{S} \boldsymbol{\Phi}^\top \left(\boldsymbol{\sigma}^2 \mathbf{I} + \boldsymbol{\Phi} \mathbf{S} \boldsymbol{\Phi}^\top \right)^{-1} \boldsymbol{\Phi} \mathbf{S} \right) \boldsymbol{\Phi}^\top \mathbf{y} \\ &= \frac{1}{\sigma^2} \boldsymbol{\phi}_*^\top \mathbf{S} \boldsymbol{\Phi}^\top \left(\mathbf{I} - \left(\boldsymbol{\sigma}^2 \mathbf{I} + \boldsymbol{\Phi} \mathbf{S} \boldsymbol{\Phi}^\top \right)^{-1} \boldsymbol{\Phi} \mathbf{S} \boldsymbol{\Phi}^\top \right) \mathbf{y} \\ &= \frac{1}{\sigma^2} \boldsymbol{\phi}_*^\top \mathbf{S} \boldsymbol{\Phi}^\top \left(\mathbf{I} - \left(\mathbf{I} + \frac{\boldsymbol{\Phi} \mathbf{S} \boldsymbol{\Phi}^\top}{\sigma^2} \right)^{-1} \frac{\boldsymbol{\Phi} \mathbf{S} \boldsymbol{\Phi}^\top}{\sigma^2} \right) \mathbf{y} \end{split}$$

... continued

Gaussian Processes

Weight Space View

Bayesian Linear Regression as a Kernel Machine

► Mean and variance of the predictions:

$$p(\mathbf{y}_*|\mathbf{X},\mathbf{y},\mathbf{x}_*,\sigma^2) = \mathcal{N}(\boldsymbol{\phi}_*^{\top}\boldsymbol{\mu},\sigma^2 + \boldsymbol{\phi}_*^{\top}\mathbf{\Sigma}\boldsymbol{\phi}_*)$$

► Rewrite the variance:

$$egin{array}{lll} oldsymbol{\sigma}^2 & + & \phi_*^ op \mathbf{S} \phi_* - \phi_*^ op \mathbf{S} \mathbf{\Phi}^ op \left(oldsymbol{\sigma}^2 \mathbf{I} + \mathbf{\Phi} \mathbf{S} \mathbf{\Phi}^ op
ight)^{-1} \mathbf{\Phi} \mathbf{S} \phi_* = \ oldsymbol{\sigma}^2 & + & k_{**} - \mathbf{k}_*^ op \left(oldsymbol{\sigma}^2 \mathbf{I} + \mathbf{K}
ight)^{-1} \mathbf{k}_* \end{array}$$

▶ Where the mapping defining the kernel is

$$\psi(\mathbf{x}) = \mathbf{S}^{1/2}\phi(\mathbf{x})$$
 and $k_{**} = k(\mathbf{x}_*, \mathbf{x}_*) = \psi(\mathbf{x}_*)^{\top}\psi(\mathbf{x}_*)$ $(\mathbf{k}_*)_i = k(\mathbf{x}_*, \mathbf{x}_i) = \psi(\mathbf{x}_*)^{\top}\psi(\mathbf{x}_i)$ $(\mathbf{K})_{ii} = k(\mathbf{x}_i, \mathbf{x}_i) = \psi(\mathbf{x}_i)^{\top}\psi(\mathbf{x}_i)$

Gaussian Processes

Weight Space View

Bayesian Linear Regression as a Kernel Machine

- ▶ Define $\mathbf{H} = \frac{\mathbf{\Phi} \mathbf{S} \mathbf{\Phi}^{\top}}{\sigma^2}$
- ► The term in the parenthesis

$$\left(\mathbf{I} - \left(\mathbf{I} + \frac{\mathbf{\Phi}\mathbf{S}\mathbf{\Phi}^\top}{\sigma^2}\right)^{-1} \frac{\mathbf{\Phi}\mathbf{S}\mathbf{\Phi}^\top}{\sigma^2}\right)$$

becomes

$$\left(\mathbf{I}-(\mathbf{I}+\mathbf{H})^{-1}\,\mathbf{H}\right)=\mathbf{I}-(\mathbf{H}^{-1}+\mathbf{I})^{-1}$$

▶ Using Woodbury (A, U, V = I) and $C = H^{-1}$

$$I - (H^{-1} + I)^{-1} = (I + H)^{-1}$$

Weight Space View

Bayesian Linear Regression as a Kernel Machine

▶ Substituting into the expression of the predictive mean

$$\begin{split} \boldsymbol{\phi}_*^\top \boldsymbol{\mu} &= \frac{1}{\sigma^2} \boldsymbol{\phi}_*^\top \mathbf{S} \boldsymbol{\Phi}^\top \left(\mathbf{I} - \left(\mathbf{I} + \frac{\boldsymbol{\Phi} \mathbf{S} \boldsymbol{\Phi}^\top}{\sigma^2} \right)^{-1} \frac{\boldsymbol{\Phi} \mathbf{S} \boldsymbol{\Phi}^\top}{\sigma^2} \right) \mathbf{y} \\ &= \frac{1}{\sigma^2} \boldsymbol{\phi}_*^\top \mathbf{S} \boldsymbol{\Phi}^\top \left(\mathbf{I} + \frac{\boldsymbol{\Phi} \mathbf{S} \boldsymbol{\Phi}^\top}{\sigma^2} \right)^{-1} \mathbf{y} \\ &= \boldsymbol{\phi}_*^\top \mathbf{S} \boldsymbol{\Phi}^\top \left(\sigma^2 \mathbf{I} + \boldsymbol{\Phi} \mathbf{S} \boldsymbol{\Phi}^\top \right)^{-1} \mathbf{y} \\ &= \mathbf{k}_*^\top \left(\sigma^2 \mathbf{I} + \mathbf{K} \right)^{-1} \mathbf{y} \end{split}$$

▶ All definitions as in the case of the variance

Gaussian Processes

Function Space View

Gaussian Processes - Prior over Functions

- ► Consider an infinite number of Gaussian random variables
- ▶ Think of them as indexed by the real line and as independent
- ▶ Denote them as f(x)

Gaussian Processes

Function Space View

Gaussian Processes

Gaussian Processes can be explained in two ways

- ► Weight Space View
 - ▶ Bayesian linear regression with infinite basis functions
- ► Function Space View
 - Defined as priors over functions

Gaussian Processes

-Function Space View

Kernel

► Consider the Gaussian kernel again

$$k(\mathbf{x}, \mathbf{x}') = \alpha \exp(-\beta \|\mathbf{x} - \mathbf{x}'\|^2)$$

▶ We introduced some parameters for added flexibility

Gaussian Processes - Prior over Functions

▶ Impose covariance using the kernel function

Gaussian Processes

Function Space View

Gaussian Processes - Prior over Functions

▶ Draw the infinite random variables again allowing the one at x = 0 to be random too

Gaussian Processes

Function Space View

Gaussian Processes - Prior over Functions

▶ Draw the infinite random variables again fixing one of them (the one at x = 0)

Gaussian Processes

Function Space View

Gaussian Processes - Prior over Functions

▶ This can be used as a prior over functions!

Function Space View

Gaussian Processes - Priors over Functions

► Infinite Gaussian random variables with parameterized and input-dependent covariance

Gaussian Processes

Function Space View

Gaussian Processes - Prior over Functions

The distribution of N random variables $f(x_1), \ldots, f(x_N)$ depends exclusively on the corresponding rows and columns of the infinite by infinite kernel matrix K

Gaussian Processes

Function Space View

Gaussian Processes - Prior over Functions

▶ The distribution of N random variables $f(x_1), \ldots, f(x_N)$ depends exclusively on the corresponding rows and columns of the infinite by infinite kernel matrix K

Gaussian Processes

Function Space View

Gaussian Processes - Prior over Functions

▶ The marginal distribution of $\mathbf{f} = (f(\mathbf{x}_1), \dots, f(\mathbf{x}_N))^{\top}$ is

$$p(\mathbf{f}|\mathbf{X}) = \mathcal{N}(\mathbf{0}, \mathbf{K})$$

▶ The conditional distribution of f_* given **f**

$$p(f_*|\mathbf{f}, \mathbf{x}_*, \mathbf{X}) = \mathcal{N}(\bar{m}, \bar{s}^2)$$

with

$$ar{m} = \mathbf{k}_*^{ op} \mathbf{K}^{-1} \mathbf{f}$$

$$\bar{s}^2 = k_{**} - \mathbf{k}_*^{\top} \mathbf{K}^{-1} \mathbf{k}_*$$

Function Space View

Gaussian Processes - Prior over Functions

- ► Remember that when we modeled labels \mathbf{y} in the linear model we assumed noise with variance σ around $\mathbf{w}^{\mathsf{T}}\mathbf{x}$
- ▶ We can do the same in Gaussian processes

$$p(\mathbf{y}|\mathbf{f}) = \prod_{i=1}^{N} p(\mathbf{y}_i|f_i)$$

with

$$p(\mathbf{y}_i|f_i) = \mathcal{N}(\mathbf{y}_i|f_i, \sigma^2)$$

- Likelihood and prior are both Gaussian conjugate!
- ▶ We can integrate out the Gaussian process prior over **f**

$$p(\mathbf{y}|\mathbf{X}) = \int p(\mathbf{y}|\mathbf{f})p(\mathbf{f}|\mathbf{X})d\mathbf{f}$$

► This gives

$$p(\mathbf{y}|\mathbf{X}) = \mathcal{N}(\mathbf{0}, \mathbf{K} + \sigma^2 \mathbf{I})$$

Gaussian Processes

Function Space View

Gaussian Processes - Prior over Functions

▶ We can also make predictions as follows:

$$p(y_*|\mathbf{y}, \mathbf{x}_* \mathbf{X}) = \int p(y_*|f_*)p(f_*|\mathbf{f}, \mathbf{x}_*, \mathbf{X})p(\mathbf{f}|\mathbf{y}, \mathbf{X})d\mathbf{f}df_*$$
$$= \mathcal{N}(m_y, s_y^2)$$

with

$$m_{\mathbf{y}} = \mathbf{k}_{*}^{\top} \left(\mathbf{K} + \sigma^{2} \mathbf{I} \right)^{-1} \mathbf{y}$$

$$s_{\mathbf{y}}^2 = \sigma^2 + k_{**} - \mathbf{k}_{*}^{\top} \left(\mathbf{K} + \sigma^2 \mathbf{I} \right)^{-1} \mathbf{k}_{*}$$

► Same expression as in the "Weight-Space View" section

Gaussian Processes

Function Space View

Gaussian Processes - Prior over Functions

▶ We can derive the predictive distribution as follows:

$$p(f_*|\mathbf{y},\mathbf{x}_*\mathbf{X}) = \int p(f_*|\mathbf{f},\mathbf{x}_*,\mathbf{X})p(\mathbf{f}|\mathbf{y},\mathbf{X})d\mathbf{f}df_* = \mathcal{N}(m,s^2)$$

with

$$m = \mathbf{k}_*^{ op} \left(\mathbf{K} + \sigma^2 \mathbf{I}
ight)^{-1} \mathbf{y}$$

$$s^2 = k_{**} - \mathbf{k}_*^{ op} \left(\mathbf{K} + \sigma^2 \mathbf{I}
ight)^{-1} \mathbf{k}_*$$

▶ Same expression as in the "Weight-Space View" section

Gaussian Processes

L Example

Gaussian Processes - Regression example

Some data generated as a noisy version of some function

L Example

Gaussian Processes - Regression example

 \triangleright Draws from the posterior distribution over f_* on the real line

Gaussian Processes

Optimizing Kernel Parameters

Optimization of Gaussian Process parameters

- ▶ Define $\mathbf{C} = \mathbf{K} + \sigma^2 \mathbf{I}$
- ▶ Maximize the logarithm of the likelihood

$$p(\mathbf{y}|\mathbf{X}, \boldsymbol{\theta}) = \mathcal{N}(\mathbf{0}, \mathbf{C})$$

that is

$$-\frac{1}{2}\log|\mathbf{C}| - \frac{1}{2}\mathbf{y}^{\mathsf{T}}\mathbf{C}^{-1}\mathbf{y} + \text{const.}$$

▶ Derivatives can be useful for gradient-based optimization

$$\frac{\partial \log[p(\mathbf{y}|\mathbf{X}, \boldsymbol{\theta})]}{\partial \boldsymbol{\theta}_i}$$

Gaussian Processes

Optimizing Kernel Parameters

Optimization of Gaussian Process parameters

▶ The kernel has parameters that have to be tuned

$$k(\mathbf{x}, \mathbf{x}') = \alpha \exp(-\beta \|\mathbf{x} - \mathbf{x}'\|^2)$$

... and there is also the noise parameter σ^2 .

- ▶ Define $\theta = (\alpha, \beta, \sigma^2)$
- ► How should we tune them?

Gaussian Processes

Optimizing Kernel Parameters

Optimization of Gaussian Process parameters

► Log-likelihood

$$-\frac{1}{2}\log|\mathbf{C}| - \frac{1}{2}\mathbf{y}^{\mathsf{T}}\mathbf{C}^{-1}\mathbf{y} + \text{const.}$$

▶ Derivatives can be useful for gradient-based optimization:

$$\frac{\partial \log[p(\mathbf{y}|\mathbf{X}, \boldsymbol{\theta})]}{\partial \boldsymbol{\theta}_i} = -\frac{1}{2} \operatorname{Tr} \left(\mathbf{C}^{-1} \frac{\partial \mathbf{C}}{\partial \boldsymbol{\theta}_i} \right) + \frac{1}{2} \mathbf{y}^{\top} \mathbf{C}^{-1} \frac{\partial \mathbf{C}}{\partial \boldsymbol{\theta}_i} \mathbf{C}^{-1} \mathbf{y}$$

Summary

- ► Introduced Gaussian Processes
 - ► Weight space view
 - ► Function space view
- ► Gaussian processes for regression
- ► Optimization of kernel parameters
- ► To think about:
 - ► Gaussian processes for classification?
 - Scalability?