KoCoSa: Korean Context-aware Sarcasm Detection Dataset

Yumin Kim*, Heejae Suh*, Mingi Kim*, Dongyeon Won*, Hwanhee Lee

Context-aware Sarcasm Detection

 Sarcasm is a form of verbal irony characterized by saying something contrary to the text's literal meaning. Therefore providing context is essential in sarcasm detection.

(A) Sarcasm detection without context

(B) Sarcasm detection with context

Motivation

- Non-English sarcasm datasets are not abundant. Sarcasm reflects cultural differences, so relying solely on translationese may not capture the linguistic nuances in sarcasm detection.
- There is only one available Korean sarcasm dataset but it lacks the necessary contexts.

Our Contributions

- We propose a comprehensive dataset generation pipeline for the context-aware sarcasm detection task using both LLMs and human revision.
- We introduce a new large-scale Korean Context-aware Sarcasm detection dataset (KoCoSa) through the proposed pipeline, which is composed of 12.8k daily dialogues.
- We provide a decent analysis of the Korean contextaware sarcasm detection task through this dataset, including the strong baseline system for the task.

Sarcasm Detection Dataset Construction

Dataset Statistics

		_
Total Dialogues	12824	
Sarcasm Non-Sarcasm	7608(59.3%) 5216(40.7%)	189
Average Turns per Dialogue Max Turns	4.3	5% 5%
Min Turns	2	5%
Tokens per Dialogue Tokens per Utterance	9.3	5% 7
Tokens per Explanation	18.9	

Experimental Results

Model	BA	M-F1	W-F1	Precision-S	Recall-S	Precision-N	Recall-N
Zero/Few-shot							
GPT-3.5(zero-shot)	53.5	43.4	40.6	71.2	20.5	40.2	86.5
GPT-3.5(4-shot)	51.8	42.1	39.4	66.4	20.0	39.2	83.5
GPT-3.5(8-shot)	49.4	32.3	27.2	57.7	6.0	37.8	92.9
GPT-4(zero-shot)	73.2	71.7	72.6	83.3	68.8	60.5	77.6
GPT-4(4-shot)	75.0	75.1	76.6	80.5	82.3	70.2	67.7
GPT-4(8-shot)	74.5	73.9	75.1	81.9	76.3	65.4	72.6
Fine-tuning							
KLUE-RoBERTa _{base}	$74.0(\pm 0.2)$	74.1(\pm 0.6)	$74.7(\pm 0.2)$	71.5(\pm 0.2)	93.4 (±0.5)	87.2 (±0.7)	$54.7(\pm 0.7)$
$KLUE ext{-}RoBERTa_{large}$	74.9(±0.3)	75.1(±1.0)	75.5(±0.3)	$74.6(\pm 0.3)$	85.0(±0.6)	80.0(±0.6)	64.8(±0.6
Human Evaluation	80.2	80.1	80.3	83.0	80.5	77.1	79.9

 Fine-tuning models provide competitive scores compared to zero/few shot models despite the huge gap in model size.

Topic	Balanced Acc.		Weighted F1		Context	Model	Human
	KLUE	GPT	KLUE	GPT	Only Response	73.2	62.2
Food and Beverages	71.9	73.2	71.7	73.9	Last 1 Utterance + Response	73.2	-
Leisure and Entertainment	73.6	72.8	74.3	73.0	Last 2 Utterance + Response	74.9	-
Individuals and Relationship	76.1	76.8	76.8	77.2	Last 3 Utterance + Response	75.8	-
Reauty and Health	73.5	7 4 7	74.5	76.2	Full Context	76 O	80.2

- We find that language models benefit from sufficient contextual information to enhance the accuracy of sarcasm detection.
- We demonstrate that there is not much difference in performance among topics.