

Machine Learning with Graphs (MLG)

Link Prediction on Knowledge Graphs

Can we predict links conditioned on types?

Cheng-Te Li (李政德)

Institute of Data Science
National Cheng Kung University

chengte@mail.ncku.edu.tw

Knowledge Graph

Knowledge Graph

- Data is structured as a graph
- Each node = an entity
- Each edge = a relation/fact
- A relation = (sub, rel, obj)
 - sub = subject
 - rel = relation type
 - obj = object
- Nodes w/o features

KG Examples

- WordNet: dictionary where each entity is a sense
 - Popular in NLP
 - 117K entities, 20 relation types, 500K facts
 - Examples:
 - car_NN_1, has_part, wheel_NN_1
 - c (score_NN_1, is_a, rating_NN_1)
 - c (score_NN_2, is_a, sheet_music_NN_1)

- Freebase: huge collaborative knowledge base
 - Part of the Google Knowledge Graph
 - 80M entities, 20K relation types, 1.2B facts

https://wordnet.princeton.edu/

Examples

https://developers.google.com/freebase

- (Barack Obama, place of birth, Hawai)
- □ (Albert Einstein, follows diet, Veganism)
- □ (San Francisco, contains, Telegraph Hill)

Link Prediction on Knowledge Graphs

- Add new facts without requiring extra knowledge
- From known info to access the validity of an unknown fact
 - Collective classification
 - Reasoning in embedding space
- Goal
 - We want to model, from data,

$$P[rel_k(sub_i, obj_j) = 1]$$

Head Relation Tail

Subject (r) Object (t)

Link Prediction on Knowledge Graphs

Relation Patterns

- Symmetric Relations
 - $r(h,t) \Leftrightarrow r(t,h) \ \forall h,t$
- Head Relation Tail

 (h) Subject (r) Object (t)

- E.g., family, roommate
- Composition Relations

 - E.g., my mother's husband is my father
- 1-to-N, N-to-1 Relations
 - $\blacksquare r(h, t_1), r(h, t_2), ..., r(h, t_n)$ are all TRUE
 - E.g., r is "StudentsOf"

KG Representation Learning

- Edges in KG are represented as triples (h, r, t)
 - Head (h) has relation (r) with tail (t)
- Main idea
 - Model entities and relations in the embedding/vector space \mathbb{R}^d
 - Given a true triple (h, r, t), the goal is that the embedding of (h, r)should be close to embedding of t
 - \square Q1: How to embed (h, r)?
 - ■Q2: How to define closeness?

Illustration of KG Representation Learning

http://pyvandenbussche.info/2017/translating-embeddings-transe/

Applying TransE to QA

Q: What is the literature genre of "Lloyd Alexander"?

http://pyvandenbussche.info/2017/translating-embeddings-transe/

TransE: Modeling Relations as Translations

- Translation: given a triple (h, r, t), learn their embedding vectors $\mathbf{h}, \mathbf{r}, \mathbf{t} \in \mathbb{R}^d$, such that: $\mathbf{h} + \mathbf{r} \approx \mathbf{t}$
- Define the distance function:

$$d(sub, rel, obj) = \|\mathbf{h} + \mathbf{r} - \mathbf{t}\|_2^2$$

h, r, and t are learnable embedding vectors

2023/3/21 Prof. Cheng-Te Li @ NCKU

11

Learning TransE

- Trump

 h

 t

 Melania
- Translation: given a triple (h, r, t), learn their embedding vectors $\mathbf{h}, \mathbf{r}, \mathbf{t} \in \mathbb{R}^d$, such that: $\mathbf{h} + \mathbf{r} \approx \mathbf{t}$
- Minimizing the max-margin ranking loss

$$\mathcal{L} = \sum_{\substack{(h,\ell,t) \in S \\ \text{positive} \\ \text{samples}}} \sum_{\substack{(h',\ell,t') \in S'_{(h,\ell,t)} \\ \text{samples}}} \left[\gamma + d(\boldsymbol{h} + \boldsymbol{\ell}, \boldsymbol{t}) - d(\boldsymbol{h'} + \boldsymbol{\ell}, \boldsymbol{t'}) \right]_{+}$$

Positive triple (h, l, t): (Trump, Spouse, Melania)

Negative triples:

(h', l, t) = (Obama, Spouse, Melania) (h, l, t') = (Trump, Spouse, Michelle)

d by

 γ is the margin, i.e., the smallest distance tolerated by the model between a positive triple and a negative one

TransE Learning Algorithm

Algorithm 1 Learning TransE

input Training set $S = \{(h, \ell, t)\}$, entities and rel. sets E and L, margin γ , embeddings dim. k. 1: **initialize** $\ell \leftarrow \text{uniform}(-\frac{6}{\sqrt{k}}, \frac{6}{\sqrt{k}})$ for each $\ell \in L$ Entities and relations are $\ell \leftarrow \ell / \|\ell\|$ for each $\ell \in L$ 2: initialized uniformly, and $\mathbf{e} \leftarrow \text{uniform}(-\frac{6}{\sqrt{k}}, \frac{6}{\sqrt{k}})$ for each entity $e \in E$ 3: normalized 4: **loop** $\mathbf{e} \leftarrow \mathbf{e} / \|\mathbf{e}\|$ for each entity $e \in E$ $S_{batch} \leftarrow \text{sample}(S, b) \text{ // sample a minibatch of size } b$ 6: Negative sampling with triplet $T_{batch} \leftarrow \emptyset$ // initialize the set of pairs of triplets that does not appear in the KG for $(h, \ell, t) \in S_{batch}$ do 8: $(h', \ell, t') \leftarrow \text{sample}(S'_{(h,\ell,t)}) \text{ // sample a corrupted triplet}$ 9:

 $T_{batch} \leftarrow T_{batch} \cup \left\{ \left((h, \ell, t), (h', \ell, t') \right) \right\} \qquad \gamma + \|\mathbf{h} + \mathbf{l} - \mathbf{t}\|_2^2 - \|\mathbf{h}' + \mathbf{l} - \mathbf{t}'\|_2^2$ 10:

end for 11:

Update embeddings w.r.t. 12:

$$\sum_{\left((h,\ell,t),(h',\ell,t')\right)\in T_{batch}} \nabla \left[\gamma + d(\boldsymbol{h}+\boldsymbol{\ell},\boldsymbol{t}) - d(\boldsymbol{h'}+\boldsymbol{\ell},\boldsymbol{t'})\right]_{+} \\ \text{positive negative samples}$$

13: end loop

Comparative loss: favors lower distance values for valid triplets, high distance values for corrupted ones

Process of TransE Training

http://pyvandenbussche.info/2017/translating-embeddings-transe/

Link Prediction in KG using TransE

Who has won the Turing award?

Who is a Canadian citizen?

Applications on QA

"Who influenced by J. K. Rowling?"

J. K. Rowling

_influenced_by

G. K. Chesterton

J. R. R. Tolkien

C. S. Lewis

Lloyd Alexander

Terry Pratchett

Roald Dahl

Jorge Luis Borges

Stephen King

Ian Fleming

"Which genre is the movie WALL-E?"

WALL-E

_has_genre

Animation

Computer animation

Comedy film

Adventure film

Science Fiction

Fantasy

Stop motion

Satire

Drama

2023/3/21

Resources on Knowledge Graphs

- Knowledge Graph Embeddings
 - https://github.com/thunlp/KB2E
 - https://github.com/thunlp/OpenKE
- TransE: Translating Embeddings for Modeling Multi-Relational Data (NIPS 2013)
 - Paper: https://papers.nips.cc/paper/5071-translating-embeddings-for-modeling-multi-relational-data.pdf
 - PyTorch: https://github.com/jimmywangheng/knowledge_representatio n_pytorch
- Knowledge Graph Embedding: A Survey of Approaches and Applications
 - https://persagen.com/files/misc/Wang2017Knowledge.pdf
- A Survey on Knowledge Graphs: Representation, Acquisition and Applications
 - https://arxiv.org/pdf/2002.00388.pdf