Chapter 8 (Fundamental Sampling Distributions and Data Descriptions)

Population with mean μ and variance σ^2

 $\bar{x}_1, \bar{x}_2, \dots \bar{x}_N$ are observed means of samples of size n, or alternatively, are observations of the random variable \bar{X}

 s_1^2 , s_2^2 ,... s_N^2 are the variances of samples of size n, or alternatively, are observations of the random variable S^2

$$S^{2} = \frac{\sum_{i=1}^{n} (X_{i} - \overline{X})^{2}}{n-1} = \frac{n \sum_{i=1}^{n} X_{i}^{2} - \left(\sum_{i=1}^{n} X_{i}\right)^{2}}{n(n-1)}$$

- Sampling distribution of \overline{X}
- * A sample is a subset of a population.
- A population consists of the totality of the observations with which are concerned.
- * Statistics are measures of a random sample.

Draw Conclusions About μ

If population of X is normal, then the sampling distribution of the mean \overline{X} will be normal and $\mu = \mu_{\overline{X}}$ and

$$\sigma_{\overline{X}} = \frac{\sigma}{\sqrt{n}}$$

Central Limit Theorem \rightarrow Regardless of original population distribution, if $n \geq 30$, and σ is known, then

$$Z = \frac{\overline{X} - \mu_{\overline{X}}}{\sigma_{\overline{X}}} \quad \text{follows a standard normal distribution. Also applies to, } Z = \frac{\left(\overline{X_1} - \overline{X_2}\right) - \left(\mu_1 - \mu_2\right)}{\sqrt{\left(\frac{\sigma_1^2}{n_1}\right) + \left(\frac{\sigma_2^2}{n_2}\right)}} \quad \text{and}$$

$$\mu_{\,\overline{X}_1 - \overline{X}_2} = \mu_1 - \mu_2 \qquad \text{and} \qquad \sigma_{\,\overline{X}_1 - \overline{X}_2}^2 = \frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}$$

If σ is unknown, then use the **t-distribution** with ν = n-1 degrees of freedom and $T = \frac{X - \mu}{S/\sqrt{n}}$ and the original population must be normal.

Draw Conclusions About σ

Need to describe the sampling distribution of the variance S^2 . Note that <u>if original population of X is normal</u>, then $\chi^2 = \frac{(n-1)s^2}{\sigma^2}$ follows a **chi-squared distribution** with $\upsilon = n-1$ degrees of freedom.

If you want to compare two sample variances, then use the **f-distribution** where $F = \frac{\left(S_1^2/\sigma_1^2\right)}{\left(S_2^2/\sigma_2^2\right)}$ with $v_1 = n_1 - 1$, $v_2 = n_2 - 1$ and <u>original population must be normal.</u> Note that $\mathbf{f}_{1-\alpha}(v_1, v_2) = 1/[\mathbf{f}_{\alpha}(v_2, v_1)]$