ADVANCED QUANTUM MECHANICS

https://github.com/Muatyz/review-sheet

January 15, 2025

Contents

第一草	Homework	2
1.1	Homework 1	2
	1.1.1 Hermitian operators	2
	1.1.2 Matrix diagonalization and unitary transformation	5
1.2	Homework 2	6
	1.2.1 Angular momentum for 4-dimensional space	6
	1.2.2 Harmonic oscillator	8
1.3	Homework 3	10
	1.3.1 Schwinger boson representation	10
	1.3.2 1D tight-binding model	12
1.4	Homework 4	14
	1.4.1 Mean-field Solutions for Extended Hubbard Model	14
1.5	Homework 5	17
	1.5.1 Quantum Rotor Model	17
第二章	2022秋高等量子力学期末考核	19
2.1	单项选择	19
2.2		22
2.3		23
24	应用题	25

第一章 Homework

1.1 Homework 1

1.1.1 He	rmitian	operat	tors
----------	---------	--------	------

1.	Prove theorem 1: If A is Hermitian operator, then all its eigenvalues are real numbers, and the eigenvectors corresponding			
	to different eigenvalues are orthogonal.			

2. Prove theorem 2: If A is Hermitian operator, then it can be always diagonalized by unitary transformation.

 $\textbf{3. Prove theorem 3: Two diagonalizable operators } A \ \textbf{and} \ B \ \textbf{can be simultaneously diagonalized if, and only if, } [A,B] = 0.$

1.1.2 Matrix diagonalization and unitary transformation

1. Diagonalizing a matrix L corresponds to finding a unitary transformation V such that $L = V\Lambda V^\dagger$, where Λ is a diagonal matrix whose diagonal elements are eigenvalues, V is an unitary matrix whose column vectors are the corresponding eigenstates. Find a unitary matrix V that can diagonalize the Pauli matrix $\sigma^x_{(z)} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$, and find the eigenvalues of $\sigma^x_{(z)}$.

2. The three components of the spin angular momentum operator \vec{S} for spin-1/2 are S^x , S^y , and S^z . If we use the S^z representation, their matrix representations are given by $\vec{S} = \frac{\hbar}{2} \vec{\sigma}$, where the three components of $\vec{\sigma}$ are the Pauli matrices σ^x , σ^y , and σ^z .

Now consider using the S^x representation. Please list the order of basis vectors you have chosen in the S^x representation, and calculate the matrix representations of the three components of the operator \vec{S} in this representation.

1.2 Homework 2

1.2.1 Angular momentum for 4-dimensional space

Consider a 4-dimensional space with coordinates (x, y, z, w).

1. Show that the operators $L_i = \epsilon_{ijk} x_j p_k$ and $K_i = w p_i - x_i p_w$ generate rotations in this space by showing that the transformations generated by these operators leave the four dimensional radius, defined by $R^2 = x^2 + y^2 + z^2 + w^2$, invariant.

2. Compute the commutators $[L_i,K_j]$ and $[K_i,K_j]$.

1.2.2 Harmonic oscillator

1. Find the energy eigenvalues E_n and the corresponding wave functions $\psi_n(x)$ for a one-dimensional quantum harmonic oscillator system.

				_	_
2	Coloulata	/m m m	$/m n n\rangle$	$\langle m x^2 n\rangle$, and	$\frac{1}{2} / m \ln^2 \ln $
<i>Z</i> .	Calculate	1116 20 1167	1110111111111	\1110\dagger\(\tau\) \110\dagger\(\ta\) and	1 (116)D (16).

3. Assume the quantum harmonic oscillator is in a thermal bath at temperature T; find the partition function Z and the average energy $\langle E \rangle$ of the system.

4. Prove that the inner product of coherent states is given by:

$$\langle \alpha | \beta \rangle = e^{-\frac{1}{2}(|\alpha|^2 + |\beta|^2) + \alpha^* \beta}$$

1.3 Homework 3

1.3.1 Schwinger boson representation

A two-dimensional quantum harmonic oscillator contains two decoupled free bosons, whose annihilation operators can be represented as a and b respectively. $a=\frac{1}{\sqrt{2}}(x+ip_x)$, $b=\frac{1}{\sqrt{2}}(y+ip_y)$. They satisfy the commutation relations $[a,a^\dagger]=[b,b^\dagger]=1$ and $[a,b]=[a,b^\dagger]=0$. This system has U(2) symmetry, which includes an SU(2) subgroup. Let's explore how to construct the SU(2) representation using bosonic operators. Define $S^x=\frac{1}{2}(a^\dagger b+b^\dagger a)$, $S^z=\frac{1}{2}(a^\dagger a-b^\dagger b)$.

1. Express S^y in terms of a and b. [Hint: Make $\vec{S} \times \vec{S} = i \vec{S}$]

2. Prove that S^y is actually related to the angular momentum operator of the harmonic oscillator $L=xp_y-yp_x$, namely $S^y=\frac{L}{2}$.

3. Define the following set of states, where $s=0,1/2,1,\cdots$, and $m=-s,-s+1,\cdots,s-1,s$ (they are called the Schwinger boson representation),

$$|s,m\rangle = \frac{(a^{\dagger})^{s+m}}{\sqrt{(s+m)!}} \frac{(b^{\dagger})^{s-m}}{\sqrt{(s-m)!}} |\Omega\rangle$$

where $|\Omega\rangle$ is the state annihilated by a and b, i.e., $a|\Omega\rangle=b|\Omega\rangle=0$. Prove that the state $|s,m\rangle$ is indeed a simultaneous eigenstate of $\vec{S}^2=(S^x)^2+(S^y)^2+(S^z)^2$ and S^z , with eigenvalues s(s+1) and m respectively. [Hint: Use the particle number basis.]

1.3.2 1D tight-binding model

The Hamiltonian of a periodic tight-binding chain of length L is given by the following expression:

$$H_{ extbf{chain}} = -t \sum_{n=1}^L \left(\hat{a}_n^\dagger \hat{a}_{n+1} + \hat{a}_{n+1}^\dagger \hat{a}
ight)$$

where t is the hopping matrix element between adjacent sites n and n+1, \hat{a}_n^{\dagger} creates a fermion at site n, and the set of operators $\{a_n^{\dagger}, a_n; n=1, \cdots, L\}$ satisfies the standard anticommutation relations:

$$\{a_n,a_{n'}^{\dagger}\}=\delta_{nn'},\quad \{a_n,a_{n'}\}=0,\quad \{a_n^{\dagger},a_{n'}^{\dagger}\}=0$$

We assume periodic boundary conditions, i.e., we consider $a_{L+n}^{\dagger}=a_n^{\dagger}$. The purpose of this problem is to prove that this Hamiltonian can be diagonalized by a linear transformation of the discrete Fourier transform form:

$$b_k^{\dagger} = \frac{1}{\sqrt{L}} \sum_{n=1}^{L} e^{ikn} a_n^{\dagger}$$

1. Let's require that b_k^{\dagger} remains invariant under any shift of the summation index $n \to n + n'$ ("translation invariance"). Prove that this implies that the index k is quantized and determine the set of allowed k values. How many independent b_k^{\dagger} operators are there?

2. Verify that the set of b_k and b_k^{\dagger} operators also satisfies the above standard anticommutation relations. That is:

$$\{b_k, b_{k'}^{\dagger}\} = \delta_{kk'}, \quad \{b_k, b_{k'}\} = 0, \quad \{b_k^{\dagger}, b_{k'}^{\dagger}\} = 0$$

Hint: Use the identity $\sum_{m=1}^L e^{i\frac{2\pi}{L}m} = 0$.

3. Prove that the inverse transformation of the above has the form:

$$a_n^\dagger = \frac{1}{\sqrt{L}} \sum_k e^{-ikn} b_k^\dagger$$

where the sum is over the set of allowed k values determined in (a).

4. Show that b_k^{\dagger} is indeed a creation operator of a single-particle eigenstate of H_{chain} by proving that its commutator with the Hamiltonian has the form $[H_{\mathrm{chain}}, b_k^{\dagger}] = \varepsilon_k b_k^{\dagger}$. Give the explicit expression for the corresponding eigenvalue ε_k .

1.4 Homework 4

1.4.1 Mean-field Solutions for Extended Hubbard Model

The Hamiltonian of the extended Hubbard model can be written as:

$$\hat{H} = -t \sum_{\langle i,j \rangle,\sigma} \left(c_{i\sigma}^{\dagger} c_{j\sigma} + \mathbf{h.c.} \right) + U \sum_{i} n_{i\uparrow} n_{i\downarrow} + V \sum_{\langle i,j \rangle} n_{i} n_{j}$$

where:

- $c^{\dagger}_{i\sigma}$ and $c_{i\sigma}$ are the fermionic creation and annihilation operators for an eletron with spin σ at site i.
- $n_{i\sigma}=c_{i\sigma}^{\dagger}c_{i\sigma}$ is the number operator for electrons with spin σ at site i.
- $n_i = \sum_{\sigma} c^{\dagger}_{i\sigma} c_{i\sigma}$ is the number operator for total electrons at site i.
- U>0 is the strength of the on-site interaction between electrons.
- V>0 is the strength of the interaction between electrons at neighboring sites.
- t > 0 is the hopping strength of the electrons.

We consider the case of half-filling for two lattice sites ($\langle N \rangle = \langle n_{1\uparrow} + n_{1\downarrow} + n_{2\uparrow} + n_{2\downarrow} \rangle$). In the mean-field approximation, calculate the ground state energy $E_{\rm MF}$. Please consider initial mean-field values with following four cases.

1. Case 1: Paramagnetic(PM). Initial mean-field value $\langle n_{i\sigma} \rangle = \frac{1}{2}$.

2. Case 2: Ferromagnetic(FM). Initial mean-field value $\langle n_{i\uparrow} \rangle = 1$ and $\langle n_{i\downarrow} \rangle = 0$.

3. Case 3: Anti-ferromagnetic(AFM). Initial mean-field value $\langle n_{1\uparrow} \rangle = \langle n_{2\downarrow} \rangle = 1 - \alpha$ and $\langle n_{1\downarrow} \rangle = \langle n_{2\uparrow} \rangle = \alpha$.

4. Case 4: Charge density wave(CDW). Initial mean-field value $\langle n_{1\uparrow} \rangle = \langle n_{1\downarrow} \rangle = 1 - \alpha$ and $\langle n_{2\uparrow} \rangle = \langle n_{2\downarrow} \rangle = \alpha$.

1.5 Homework 5

1.5.1 Quantum Rotor Model

The angular coordinate of a quatum rotor is $\theta \in [0, 2\pi)$, note that $\theta \pm 2\pi$ and θ are equivalent. The eigenstate of the operator $\hat{\theta}$ is represented by $|\theta\rangle$, and $\theta \pm 2\pi\rangle$ represents the same state as $|\theta\rangle$. Define the rotation operator for the quantum rotator as $\hat{R}(\alpha)$,

$$\hat{R}(\alpha) = \int_0^{2\pi} d\theta |\theta - \alpha\rangle\langle\theta|$$

Thus $\hat{R}(\alpha)|\theta\rangle=|\theta-\alpha\rangle$, and $\hat{R}(2\pi)$ is the identity operator.

The rotation operator $\hat{R}(\alpha)$ is a unitary operator, its generator is the Hermitian operator \hat{N} , which is related to the angular momentum operator of the quantum rotator \hat{L} by $\hat{L}=\hbar\hat{N}$, so $\hat{R}(\alpha)=e^{i\hat{N}\alpha}$, and in the $\hat{\theta}$ representation, we have $\hat{N}=-i\frac{\partial}{\partial \theta}$.

Consider a specific quantum rotor model, its Hamiltonian is

$$\hat{H} = \frac{1}{2} \left(\hat{N} - \frac{1}{2} \right)^2 - g \cos 2\hat{\theta}$$

where $g\cos 2\hat{\theta}$ is a small external potential, which can be treated as a perturbation. Assuming $|N\rangle$ is the eigenstate of the operator \hat{N} with eigenvalue N, i.e., $\hat{N}|N\rangle = N|N\rangle$. It can be calculated that $|N\rangle$ is expanded in terms of $|\theta\rangle$ as

$$|N\rangle = \frac{1}{\sqrt{2\pi}} \int_0^{2\pi} \mathrm{d}\theta e^{iN\theta} |\theta\rangle$$

1. Use the fact that $\hat{R}(2\pi)$ is the identity operator to prove that N must be an integer.

3. Using the basis set $\{|N\rangle\}$, write down the representation matrix for the perturbation term $\hat{V} = -g\cos2\hat{\theta}$, and prove that the perturbation does not connect degenerate levels (i.e., if $|N\rangle$ and $|N'\rangle$ are degenerate, then $\langle N|\hat{V}|N'\rangle=0$). Therefore, although the energy levels of \hat{H}_0 are degenerate, we can still use non-degenerate perturbation theory.

4. Calculate the perturbation correction to each energy level E_N up to second order in g, and prove that all degeneracies of the energy levels remain unlifted.

第二章 2022秋高等量子力学期末考核

2.1 单项选择

- 1. 让大量热化的自旋通过 Stern-Gerlach 装置SG \hat{z} ,测得 S_{+}^{z} 的概率是?
- 2. Pauli 矩阵 $\sigma^x=\begin{pmatrix}0&1\\1&0\end{pmatrix}$, $\sigma^y=\begin{pmatrix}0&-i\\i&0\end{pmatrix}$, $\sigma^z=\begin{pmatrix}1&0\\0&-1\end{pmatrix}$, 那么 $\sigma^x\sigma^z$ 等于?
- 3. 混态可以用混态的密度矩阵来描述. 假设系统处于态 $|\phi_i\rangle$ 的概率为 p_i ,注意 $\sum_i p_i=1$,那么该系统的密度矩阵为 $ho=\sum_i |\phi_i\rangle p_i\langle\phi_i|$,那么 ${
 m Tr}[
 ho]$ 应满足?
- 4. 如果 ρ 是混态的密度矩阵, 那么 $\mathbf{Tr}[\rho^2]$ 应满足?
- 5. 考虑系统哈密顿量 H 不显含时间,时间演化算符为 $U(t,0)=e^{-iHt/\hbar}$. 在海森堡绘景中,我们让算符承载时间演化,海森堡绘景中的算符定义为 $A_H(t)=U^\dagger(t,0)AU(t,0)$,其中 A 是薛定谔绘景中的算符,如果 A 不显含时间,那么 $\mathrm{d}A_H(t)/\mathrm{d}t$ 等于?

6. 电磁场中电荷为 q 的单粒子哈密顿量为 $H=\frac{(\vec{p}-q\vec{A})^2}{2m}+q\phi$,那么薛定谔方程 $i\hbar\frac{\partial\psi}{\partial t}=H\psi$ 满足规范不变性: $\vec{A}\to\vec{A}-\nabla\Lambda$, $\phi\to\phi+\frac{\partial\Lambda}{\partial t}$, $\psi\to$?

- 8. 二维谐振子的哈密顿量为 $H=\hbar\omega\left(a_1^\dagger a_1+a_2^\dagger a_2+1\right)$ 其第一激发态的简并度为?
- 9. 量子比特 A 和 B 构成双量子比特体系,双量子比特态 $|\psi\rangle$ 中量子比特 A 的纠缠熵定义为 $S(A) = -{\rm Tr}[\rho_A \ln \rho_A]$,其中 ρ_A 是约化密度矩阵,由密度矩阵求迹掉量子比特 B 的自由度得到.考虑自旋单态 $|\psi\rangle = \frac{1}{\sqrt{2}} \left(|\uparrow\downarrow\rangle |\downarrow\uparrow\rangle\right)$,计算可得量子比特 A 的纠缠熵为?

2.2 多项选择

1. 与总角动量算符的平方 \vec{J}^2 对易的算符在 (J_x,J_y,J_z,J_+,J_-) 中有?

2. 在原子单位制下 $\hbar=c=1$, 和能量同单位的量在 (距离, 动量, 时间, 质量, 角动量) 中有?

3. 宇称算符 $\mathbb P$ 连续作用两次为恒等变换, 这说明宇称算符 $\mathbb P$ 的本征值在 (0,1,-1,i,-i) 中有?

- 4. 如果算符 A 满足 $A^2 = A$, 那么算符 A 的本征值有 (0, 1, -1, i, -i) 中有?
- 5. 玻色子产生和湮灭算符满足对易关系 $\left[b_{\alpha}^{\dagger},b_{\beta}^{\dagger}\right]=\left[b_{\alpha},b_{\beta}\right]=0$, $\left[b_{\alpha},b_{\beta}^{\dagger}\right]=\delta_{\alpha\beta}$,那么和总粒子数算符 $N=\sum_{\alpha}b_{\alpha}^{\dagger}b_{\alpha}$ 对易的 算符在 $(b_{\alpha},b_{\alpha}^{\dagger}b_{\alpha},b_{\alpha}^{\dagger}b_{\beta},b_{\alpha}^{\dagger}b_{\beta}b_{\mu},b_{\alpha}^{\dagger}b_{\beta}b_{\mu}^{\dagger}b_{\nu})$ 中有?

2.3 简答题

1. 中心势场中的单粒子哈密顿量为 $H=rac{ec{p}^2}{2M}+V(r)$ 。轨道角动量 $ec{L}=ec{r} imesec{p}$,那么 $[ec{L},H]=?$

2. 考虑一阶近似, 当 $i \neq f$ 时, 跃迁概率为

$$P_{i\to f}(t) = \frac{1}{\hbar^2} \left| \int_0^t \mathrm{d}t' \langle f|V(t')|i\rangle e^{\mathrm{i}\omega_{fi}t'} \right|^2$$

其中 $\hbar\omega_{fi}=E_f-E_{i\bullet}$ 当微扰为

$$V(t) = \begin{cases} Ve^{-i\omega t} & t > 0\\ 0 & t < 0 \end{cases}$$

跃迁概率为?

3. *

4. 动量空间中自由粒子的 Dirac 方程可以写为

$$(E - \vec{\sigma} \cdot \vec{p}) \chi_{+}(\vec{p}) = m\chi_{-}(\vec{p}), \quad (E + \vec{\sigma} \cdot \vec{p}) \chi_{-}(\vec{p}) = m\chi_{+}(\vec{p})$$

当质量 m=0时, 两个 Weyl 旋量之间没有耦合, 得到动量空间中的 Weyl 方程

$$(E - \vec{\sigma} \cdot \vec{p}) \chi_+ = 0, \quad (E + \vec{\sigma} \cdot \vec{p}) \chi_- = 0$$

定义螺旋度算符为 $\frac{1}{2}\hat{\vec{p}}\cdot\vec{\sigma}$, 其中 $\hat{\vec{p}}=\frac{\vec{p}}{|\vec{p}|}$, 那么可知 Weyl 旋量 χ_{\pm} 恰好是螺旋度算符的本征态, 本征值分别为?

5.

(a) 对角化矩阵 L 就是去找到幺正变换 V,使得 $L=V\Lambda V^\dagger$,其中 Λ 是一个对角矩阵,它的对角元是本征值. V 是一个幺正矩阵,它的列矢量是本征矢,和 Λ 中的本征值一一对应. 找到一个能对角化 **Pauli** 矩阵 $\sigma^x=\begin{pmatrix}0&1\\1&0\end{pmatrix}$ 的幺正矩阵 V,并找到 σ^x 的本征值.

(b) 自旋 1/2 的自旋角动量算符 \vec{S} 的三个分量为 S^x , S^y , S^z . 如果采用 S^z 表象,它们的矩阵表示为 $\vec{S} = \frac{\hbar}{2} \vec{\sigma}$, 其中 $\vec{\sigma}$ 的三个分量为 **Pauli** 矩阵 σ^x , σ^y , σ^z . 现在考采用 S^x 表象,请列出 S^x 表象中你约定的基矢顺序,并求出在该表象下算符 \vec{S} 的三个分量的矩阵表示.

2. 谐振子问题

一维谐振子的哈密顿量为

$$H = \frac{p^2}{2m} + \frac{1}{2}m\omega^2 x^2$$

坐标算符 x 和动量算符 p 满足对易式 $[x,p]=i\hbar$. 对动量算符和坐标算符进行重新标度

$$p = P\sqrt{\hbar m\omega}, \quad x = Q\sqrt{\frac{\hbar}{m\omega}}$$

注意新的坐标算符 Q 和动量算符 P 是无量纲的,哈密顿量重新写为

$$H=\frac{1}{2}\hbar\omega(P^2+Q^2)$$

引入玻色子产生和湮灭算符, a^{\dagger} 和 a.

$$a = \frac{1}{\sqrt{2}} \left(Q + i P \right), \quad a^\dagger = \frac{1}{\sqrt{2}} \left(Q - i P \right)$$

(a) 计算 [Q, P], $[a, a^{\dagger}]$, $[a, a^{\dagger}a]$, $[a^{\dagger}, a^{\dagger}a]$;

(b) 将哈密顿量 H 用 a 和 a^{\dagger} 表示. 并求出全部能级;

(c) 在能量表象中, 计算 a 和 a^{\dagger} 的矩阵元.

3. 角动量耦合

两个大小相等,属于不同自由度的角动量 $\vec{J_1}$ 和 $\vec{J_2}$ 耦合成总角动量 $\vec{J}=\vec{J_1}+\vec{J_2}$,设 $\vec{J_1}^2=\vec{J_2}^2=j(j+1)\hbar^2$, $J=2j,2j-1,\cdots,1,0$. 在总角动量量子数 J=0 的状态下,求 $J_{1,z}$ 和 $J_{2,z}$ 的可能取值及相应概率.

4. 自旋-1 模型

考虑自旋-1 体系,自旋算符为 \vec{S} ,考虑 (\vec{S}^2,S^z) 表象,基矢顺序为 $|1,1\rangle$, $|1,0\rangle$, $|1,-1\rangle$,简记为 $|+1\rangle$, $|0\rangle$, $|-1\rangle$.设 $\hbar=1$. (a) 写出 S^x 和 S^z 的矩阵表示.

(b) 考虑哈密顿量 $H(\lambda) = H_0 + \lambda V$, 其中 $H_0 = (S^z)^2$, $V = S^x + S^z$.	. 考虑为 λV 微扰,利用微扰论计算微扰后的各能级
和各能态,其中能级微扰准确到一阶,能态微扰准确到一阶,	

5. 均匀电子气

考虑三维相互作用均匀电子气, 哈密顿量为 $H=H_0+H_I$. 考虑系统体积为 $V=L^3$, 每个方向的系统尺寸为 L. 采用箱 归一化, 所以 \vec{k} 是离散的, $\vec{k}=\frac{2\pi}{L}(n_x,n_y,n_z)$, n_x , n_y , n_z 为整数. 采用二次量子化的语言, 可给出哈密顿量在动量空间的形式. H_0 为单体部分:

$$H_0 = \sum_{\vec{k}\sigma} \varepsilon_{\vec{k}} c_{\vec{k}\sigma}^{\dagger} c_{\vec{k}\sigma}$$

其中 $\varepsilon_{\vec{k}}=\frac{\hbar^2\vec{k}^2}{2m}$ 是自由电子的色散关系. 用 ε_F 表示费米能, k_F 表示费米波矢的大小. H_I 为两体相互作用部分,

$$H_{I} = \frac{1}{2V} \sum_{\vec{k}_{1}, \vec{k}_{2}, \vec{q}} \sum_{\sigma \sigma'} v(q) c_{\vec{k}_{1} + \vec{q}, \sigma}^{\dagger} c_{\vec{k}_{2} - \vec{q}, \sigma'}^{\dagger} c_{\vec{k}_{2} \sigma'} c_{\vec{k}_{1} \sigma}$$

v(q) 是相互作用 v(x) 的傅里叶变换形式, $q=|\vec{q}|$, $x=|\vec{x}|$,

$$v(q) = \frac{1}{V} \int v(x) e^{-i\vec{q}\cdot\vec{x}} \mathrm{d}^3\vec{x}$$

这里我们考虑短程势, 也就是说 v(q=0) 不发散.

自由电子气零温下处于电子填充到费米能 ε_F 的费米海态(Fermi sea state), 简记为 FS, 利用费米子产生算符作用到真空态上可以表示 FS 态为

$$|\mathbf{FS}\rangle = \prod_{k < k_F, \sigma} c_{\vec{k}\sigma}^{\dagger} |0\rangle$$

	数密度 n 的函数.		
(b)	计算能量的一阶修正 $E^{(1)} = \langle \mathbf{FS} H_I \mathbf{FS} \rangle$.		

(a) 考虑零温下的自由电子气, 计算总粒子数 N 和粒子数密度 n, 计算总能量 $E^{(0)}$ 并把总能量密度 $E^{(0)}/V$ 表示成粒子

(c) 利用 Hatree Fock 平均场近似,并假设平均场参数是自旋对角	
们期待 $\left\langle c_{ec{k}\sigma}^{\dagger}c_{ec{k}'\sigma'} ight angle = \left\langle c_{ec{k}\sigma}^{\dagger}c_{ec{k}\sigma} ight angle \delta_{ec{k},ec{k}'}\delta_{\sigma,\sigma'}$,以及 $\left\langle c_{ec{k}\uparrow}^{\dagger}c_{ec{k}\uparrow} ight angle = \left\langle c_{ec{k}\downarrow}^{\dagger}\right\rangle$	$ c_{ec k \perp}\rangle$. 计算系统总能量,并与 $E^{(0)}+E^{(1)}$ 比较大小.

6. 量子转子模型

量子转子的角度坐标 $\theta \in [0,2\pi)$, 注意 $\theta \pm 2\pi$ 和 θ 是等价的. 用 $|\theta\rangle$ 表现 $\hat{\theta}$ 算符的本征态, $|\theta \pm 2\pi\rangle$ 和 $|\theta\rangle$ 是相同的态. 定义量子转子的转动算符为 $\hat{R}(\alpha)$,

$$\hat{R}(\alpha) = \int_0^{2\pi} d\theta |\theta - \alpha\rangle\langle\theta|$$

所以 $\hat{R}(\alpha)|\theta\rangle = |\theta - \alpha\rangle$, 并且 $\hat{R}(2\pi)$ 是单位算符.

转动算符 $\hat{R}(\alpha)$ 是一个幺正算符,它的产生子为厄米算符 \hat{N} ,与量子转子的角动量算符 \hat{L} 的关系为 $\hat{L}=\hbar\hat{N}$,所以 $\hat{R}(\alpha)=e^{i\hat{N}\alpha}$,在 $\hat{\theta}$ 表象下可求得 $\hat{N}=-i\frac{\partial}{\partial\theta}$.

考虑一个特定的量子转子模型,它的哈密顿量为

$$H = \frac{1}{2} \left(\hat{N} - \frac{1}{2} \right)^2 - g \cos \left(2\hat{\theta} \right)$$

其中 $g\cos\left(2\hat{\theta}\right)$ 是一个小的外势,可以当成微扰处理。假设 $|N\rangle$ 是算符 \hat{N} 的本征态,本征值为 N,即 $\hat{N}|N\rangle=N|N\rangle$. 可计算出 $|N\rangle$ 用 $|\theta\rangle$ 展开为

$$|N\rangle = \frac{1}{\sqrt{2\pi}} \int_0^{2\pi} e^{iN\theta} |\theta\rangle$$

(a) 利用 $\hat{R}(2\pi)$ 是单位算符证明 N 必须是整数.

(b) 考虑无微扰时的哈密顿量 $H_0=\frac{1}{2}\left(\hat{N}-\frac{1}{2}\right)^2$,证明 $|N\rangle$ 也是 H_0 的本征态,并求出本征能量,证明每个能级都是两重简并的。

(c) 采用 $\{|N\rangle\}$ 作为基组, 写出微扰项 $V=-g\cos\left(2\hat{\theta}\right)$ 的表示矩阵, 并证明微扰不会连接简并的能级(即如果 $|N\rangle$ 和 $|N'\rangle$ 简并, 那么 $\langle N|V|N'\rangle$). 因此尽管 H_0 的能级是简并的, 我们仍然可以使用非简并微扰论.

(d) 计算每个能级 E_N 的微扰修正到 g 的二阶, 并证明此时所有的能级简并仍然没有被解除.