

Fundamentos Computacionais

X Nerd

https://forms.gle/o7V8M67gW2mLXvTm8

Fundamentos Computacionais

Correção exercícios da Aula04

Prof. Glad, essa seria uma ótima hora para usar a lógica.

Esse é meu segredo, Capitão, eu sempre uso a lógica.

Correção exercícios da Aula04

Hoje

Equivalências Proposicionais

Proposições Simples ou Compostas / Leis de De Morgan

Um importante tipo de passo usado na argumentação matemática é a substituição de uma proposição por outra com o mesmo valor-verdade.

Um importante tipo de passo usado na argumentação matemática é a substituição de uma proposição por outra com o mesmo valor-verdade.

Por esse motivo, métodos que produzem proposições com o mesmo valor-verdade que uma dada proposição composta são usados largamente na construção de argumentos matemáticos.

Proposições compostas que têm o mesmo valor-verdade em todos os possíveis casos são chamadas de logicamente equivalentes.

Proposições compostas que têm o mesmo valor-verdade em todos os possíveis casos são chamadas de logicamente equivalentes.

Representação: **p** ⇔ **q**

Proposições compostas que têm o mesmo valor-verdade em todos os possíveis casos são chamadas de logicamente equivalentes.

Representação: p⇔q

• Uma maneira de determinar quando duas proposições compostas são equivalentes é usar a tabela-verdade.

Proposições compostas que têm o mesmo valor-verdade em todos os possíveis casos são chamadas de logicamente equivalentes.

Representação: p⇔q

- Uma maneira de determinar quando duas proposições compostas são equivalentes é usar a tabela-verdade.
- As proposições p e q são equivalentes se e somente se as colunas que fornecem seus valores-verdade são idênticas.

Se o gato é pardo, então a lua é cheia. Logo:

Se o gato é pardo, então a lua é cheia. Logo:

- a) Se o gato não é pardo, então a lua não é cheia.
- b) Se a lua é cheia, então o gato é pardo.
- c) Se a lua não é cheia, então o gato não é pardo.
- d) Se o gato é pardo, então a lua não é cheia.
- e) O gato é pardo e a lua não é cheia

Se o gato é pardo, então a lua é cheia. Logo:

- a) Se o gato não é pardo, então a lua não é cheia.
- b) Se a lua é cheia, então o gato é pardo.
- c) Se a lua não é cheia, então o gato não é pardo.
- d) Se o gato é pardo, então a lua não é cheia.
- e) O gato é pardo e a lua não é cheia

Equivalência de **Modus Tollens**

Equivalência de Modus Tollens

Dica: "negar voltando"

Equivalência de **Modus Tollens**

Dica: "negar voltando"

Exemplo:

$$p \rightarrow q \Leftrightarrow \neg q \rightarrow \neg p$$

Equivalência de Modus Tollens

Dica: "negar voltando"

Exemplo:

$$p \rightarrow q \Leftrightarrow \neg q \rightarrow \neg p$$

Qual o equivalente para?

- Se beber, então não dirija.
- Se eu me esforçar, então estarei graduado em 3 anos.

Podemos afirmar?

$$p \rightarrow q \Leftrightarrow \neg p \lor q$$

Termos: Suficiente e Necessário

Proposição	Equivalência	
$p \rightarrow q$	$\neg q \rightarrow \neg p$	
$p \rightarrow q$	p é suficiente para q	
$p \rightarrow q$	q é necessário para p	
$p \leftrightarrow q$	p é necessário e suficiente para q	
$p \rightarrow q$	$\neg p \lor q$	

Diz aí.
Fiquei de
costas para
não te
deixar com
vergonha.

Exemplo:

Crie sentenças equivalentes para: Se Penso, logo existo.

Tabela: Principais Equivalências Lógicas

	Equivalência	Nome
	p ^ V ⇔ p p v F ⇔ p	Propriedades dos elementos neutros
	p v V ⇔ V p ^ F ⇔ F	Propriedades de dominação
	$p \mathbf{v} p \Leftrightarrow p$ $p \mathbf{\wedge} p \Leftrightarrow p$	Propriedades idempotentes
	¬(¬p) ⇔ p	Propriedade da dupla negação
	p v q ⇔ q v p p ^ q ⇔ q ^ p	Propriedades associativas
	$p \mathbf{v} (q \mathbf{r}) \Leftrightarrow (p \mathbf{v} q) \mathbf{r} (p \mathbf{v} r)$ $p \mathbf{r} (q \mathbf{v} r) \Leftrightarrow (p \mathbf{r} q) \mathbf{v} (p \mathbf{r} r)$	Propriedades distributivas
	$\neg(p \land q) \Leftrightarrow \neg p \lor \neg q$ $\neg(p \lor q) \Leftrightarrow \neg p \land \neg q$	Leis de De Morgan
	$p \mathbf{v} (p \mathbf{v} q) \Leftrightarrow p$ $p \mathbf{v} (p \mathbf{v} q) \Leftrightarrow p$	Propriedades de absorção
	$p \mathbf{v} \neg p \Leftrightarrow \mathbf{V}$ $p \mathbf{\wedge} \neg p \Leftrightarrow \mathbf{F}$	Propriedades de negação

X Nerd

https://forms.gle/o7V8M67gW2mLXvTm8