Sprawozdanie zadania Argon

Bartosz Kucypera, bk439964

18 sierpnia 2023

1 Wstęp

Zadanie składało się z trzech części. Pierwsza część polegała na symulacji klastra atomów argonu metodą dynamiki molekularne wykożystując CPU. W części drugiej należało poprawić wydajność rozwiązania, przenosząc część obliczeń na GPU jak i stosując szereg innych optymalizacji. W ostatniej, trzeciej części należało zbadać przeminay fazowe argonu.

2 Implementacja

Poszczególne wersje rozwiązania różnią się tylko obliczaniem sił działających na atomy, poniżej opiszę część roziwązania która jest wspólna dla wszystkich wersji.

2.1 Konfiguracja

Konfiguracja symulacji odbywa się poprzez stałe globlane.

2.2 Reprezentacja atomów

Informacje o stanie symulacji przechowywane sa w nastepujących tablicach globalnych.

2.3 Krok symulacji

Do integracji równań ruchu używamy algorytmu leap-frog w postaci kick-drift-kick.

$$v_{i+1/2} = v_i + a_i + \frac{\Delta t}{2},$$

$$x_{i+1} = x_i + v_{i+1/2} \cdot \Delta t,$$

$$v_{i+1} = v_{i+1/2} + a_{i+1} \cdot \frac{\Delta t}{2}$$

Pętla główna symulacji wygląda następująco.

```
for (int nr = 0; nr < Nterm+Ngrz+Nch; nr++) {
    up_V();
    up_cords();

    up_forces(config);
    up_ballon();

    up_V();

    up_kin();
    up_temp(nr);

    up_logi(nr);
}</pre>
```

Po kolei:

(up_V)	Aktualizujemy predkosc (krok pierwszy leap-frog)
(up_cords)	Aktualizujemy polozenie atomow (krok drugi leap-frog)
(up_forces)	Aktualizujemy sily działające na atomy (sposobem zaleznym od config)
(up_ballon)	Aktualizujemy czlon sily balonu
(up_V)	Aktualizujemy predkosc (krok trzeci leap-frog)
(up_kin)	Aktualizujemy energie kinetyczna
(up_temp)	Skalujemy predkosc zeby wplynac na temperature
(up_logi)	Aktualizujemy pliki logow

2.4 Aktualizacja predkosci

Podstawiamy $a = \frac{f}{m}$ do leap-frog, (ts to Δt).

```
inline void up_V() {
   for (int i = 0; i < N; i++)
        for (int k = 0; k < 3; k++)
            V[i*3 + k] += F[i*3 + k]/mas*ts/2.0;
}</pre>
```

2.5 Aktualizacja polozenia atomow

Wzor na droge w ruchu jednostajnym prostoliniowym $s = v \cdot t$.

2.6 Aktualizacja energi kinetycznej

Korzystamy z wzrou $E_k = \frac{1}{2}m|v|^2$.

```
inline void up_kin() {
    for (size_t i = 0; i < N; i++)
        Ekin[i] = kinetyczna(i);
}
inline real_t kinetyczna(int i) {
    real_t res = 0;
    for (int k = 0; k < 3; k++)
        res += sq(V[i*3 + k]);
    return res*mas/2.0;
}</pre>
```

Gdzie sq to podniesienie do kwadratu.

2.7 Uwzglednienie dzialania balonu

Aktualizujemy wektory sil działających na atomy, oraz człon energi wynikającej z działania balonu. B to sila sprerzystosci balonu, rB to promien balonu.

```
inline void up_ballon() {
   for (int i = 0; i < N; i++) {
      real_t r = 0;
      for (int k = 0; k < 3; k++)
           r += sq(cords[i*3 + k]);
      r = sqrt(r);

   if (r <= rB)
      return;

   real_t mno = B*(r-rB)/r;
   for (int k = 0; k < 3; k++)
        F[i*3 + k] -= mno*cords[i*3 + k];
      Ebal[i] += B*sq(r-rB)/2.0;
}</pre>
```

2.8 Zmiana temperatury

Temperature zmieniamy skalujac predkosci atomow.

Gdzie $scale_T$ oblicza przez co trzeba przemnazac predkosci atomow by z danej temperatury poczatkowej dojsc do danej temperatury koncowej w danej liczbie krokow,

```
constexpr inline real_t scale_T(real_t pocz_T, real_t konc_T, real_t kroki = 1) {
    return sqrt(1.0 + (konc_T-pocz_T)/pocz_T/kroki);
}
```

cur temperatura oblicza temperature ukladu,

```
inline real_t cur_temperatura() {
    real_t sum = 0;
    for (size_t i = 0; i < N; i++)
        sum += Ekin[i];
    return temperatura(sum);
}</pre>
```

temperatura przyjmuje calkowita energie kinetyczna ukladu i zwraca srednia temperature atomu

```
inline constexpr real_t temperatura(real_t kin) { return kin/N*2.0/3.0/kB; }
```

3 Badanie poprawnosci

Wszystkie pomiary były wykonywane na symulacji o 10'000 krokach.

3.1 Poprawnosc wersji bez promienia odciecia

$\Delta t = 0.001 ps$				
rodzaj energi	srednia	wariancja	odchylenie std.	
kinetyczna	415.353793	13295.608949	115.306587	
potencjalna	-6565.019095	13296.003279	115.308297	
calkowita	-6149.665302	0.000005	0.002140	
Bezwzgledna roznica calkowitej energi poczatkowej i koncowej = 0.003746				

$\Delta t = 0.002 ps$				
rodzaj energi	srednia	wariancja	odchylenie std.	
kinetyczna	414.784172	6998.312010	83.655914	
potencjalna	-6564.438732	6999.164543	83.661010	
calkowita	-6149.654560	0.000041	0.006431	
Bezwzgledna roznica calkowitej energi poczatkowej i koncowej = 0.013607				

$\Delta t = 0.005 ps$				
rodzaj energi	srednia	wariancja	odchylenie std.	
kinetyczna	413.626971	3395.617382	58.271926	
potencjalna	-6563.206356	3398.238114	58.294409	
calkowita	-6149.579385	0.000851	0.029179	
Bezwzgledna roznica calkowitej energi poczatkowej i koncowej = 0.089974				

$\Delta t = 0.010 ps$				
rodzaj energi	srednia	wariancja	odchylenie std.	
kinetyczna	414.513856	2131.072219	46.163538	
potencjalna	-6563.825136	2137.813790	46.236498	
calkowita	-6149.311280	0.009664	0.098306	
Bezwzgledna roznica calkowitej energi poczatkowej i koncowej = 0.341988				

$\Delta t = 0.020 ps$				
rodzaj energi	srednia	wariancja	odchylenie std.	
kinetyczna	415.123586	1482.735668	38.506307	
potencjalna	-6563.357016	1502.039471	38.756154	
calkowita	-6148.233430	0.119225	0.345290	
Bezwzgledna roznica calkowitej energi poczatkowej i koncowej = 1.425067				

$\Delta t = 0.050 ps$				
rodzaj energi	srednia	wariancja	odchylenie std.	
kinetyczna	410.270381	1051.504381	32.426908	
potencjalna	-6548.686890	1133.001339	33.660085	
calkowita	-6138.416509	8.139457	2.852973	
Bezwzgledna roznica calkowitej energi poczatkowej i koncowej = 9.441853				

Symulacja spelnia warunek poprawnosci, energia calkowita jest prawie stala. Gdy zwiekszamy Δt dokladnosc maleje, ale nawet dla $\Delta t = 0.050ps$ blad jest maly.

3.2 Wplyw promienia odciecia na dokladnosc obliczen

Wszystkie pomiary wykonane z $\Delta t = 0.001 ps,$ oraz rozmiarem bufora0.2 nm.

promien odciecia = $1nm$					
rodzaj energi	srednia	wariancja	odchylenie std.		
kinetyczna	405.969270	12883.481542	113.505425		
potencjalna	-6434.775838	13911.779320	117.948206		
calkowita -6028.806568 45.052419 6.712110					
Bezwzgledna roznica calkowitej energi poczatkowej i koncowej = 6.537997					

promien odciecia = $1.3nm$					
rodzaj energi	srednia	wariancja	odchylenie std.		
kinetyczna	411.735610	13157.873468	114.707774		
potencjalna	-6515.878892	13614.238444	116.680069		
calkowita -6104.143282 40.556854 6.368426					
Bezwzgledna roznica calkowitej energi poczatkowej i koncowej = 3.108414					

promien odciecia = $1.5nm$					
rodzaj energi	srednia	wariancja	odchylenie std.		
kinetyczna	413.685796	13313.460769	115.383971		
potencjalna	-6539.407757	13455.558777	115.998098		
calkowita -6125.721961 4.910431 2.215949					
Bezwzgledna roznica calkowitej energi poczatkowej i koncowej = 1.427013					

brak promienia odciecia				
rodzaj energi	srednia	wariancja	odchylenie std.	
kinetyczna	415.353793	13295.608949	115.306587	
potencjalna	-6565.019095	13296.003279	115.308297	
calkowita	-6149.665302	0.000005	0.002140	
Bezwzgledna roznica calkowitej energi poczatkowej i koncowej = 0.003746				

Zgodnie z oczekiwaniami, im mniejszy promien odciecia tym mniej dokładne obliczenia. Blad jest jednak stosunkowo mały.

4 Liczenie sil dzialajacych na atomy i badanie wydajnosci

W tej czesci przedstawie po kolei coraz lepsze wersje symulacji i zbadam ich wydajnosc.

4.1 CPU I

Pierwsza, najprostsza wersja cpu. Dla kazdego atomu iterujemy sie po wszystkich innych atomach i wyliczamy działające na niego sily.

```
void up_forces_cpu_1() {
    for (int i = 0; i < N; i++) {
        for (int k = 0; k < 3; k++)
            F[i*3 + k] = 0;
        Epot(i*2] = 0;
        Epot(i*2 + 1] = 0;

    for (int j = 0; j < N; j++) {
        if (i == j)
            continue;

    real_t rij[3];
    for (int k = 0; k < 3; k++)
        rij[k] = cords[i*3 + k] - cords[j*3 + k];

    real_t dl_rij = 0;
    for (int k = 0; k < 3; k++)
        dl_rij += sq(rij[k]);
    if (rod > 0.0 and dl_rij > sq(rod))
        continue;

    real_t sig2 = sig*sig/dl_rij;
    real_t sig6 = sig2*sig2*sig2;
    real_t sig12 = sig6*sig6;

    real_t dif = (sig12 - sig6)/dl_rij;

    for (int k = 0; k < 3; k++)
            F[i*3 + k] += dif*rij[k];

        Epot[i*2] += sig12;
        Epot[i*2] += sig6;
}

for (int k = 0; k < 3; k++)
        F[i*3 + k] *= 12.0*eps;

        Epot[i*2] *= eps/2.0;
        Epot[i*2] *= eps/2.0;
        Epot[i*2] *= eps/2.0;
        Epot[i*2 + 1] *= eps;
}
</pre>
```

Ta wersja jest niezwykle wolna, przeprowadzenie calej symulacji zajmuje nam 167821.64ms czyli około 168 sekund.

4.2 CPU II

W tej wersji wykozystujemy III zasade dynamiki Newtna by zmniejszyc ilosc obliczen o polowe.

```
void up_forces_cpu_2() {
    for (int i = 0; i < N; i++) {
        for (int k = 0; k < 3; k++)
            F[i*3 + k] = 0;
        Epot[i*2] = 0;
        Epot[i*2 + 1] = 0;
}

for (int i = 0; i < N; i++)
    for (int j = i+1; j < N; j++) {
        real_t rij[3];
        for (int k = 0; k < 3; k++)
            rij[k] = cords[i*3 + k] - cords[j*3 + k];

    /real_t dl_rij = 0;
    for (int k = 0; k < 3; k++)
        dl_rij += sq(rij[k]);

    if (rOd > 0.0 and dl_rij > sq(rOd))
        continue;

    real_t sig2 = sig*sig/dl_rij;
    real_t sig12 = sig6*sig6;

    real_t dif = (sig12 - sig6)/dl_rij;

    for (int k = 0; k < 3; k++) {
        F[i*3 + k] += dif*rij[k];
        F[j*3 + k] -= dif*rij[k];
    }

    Epot[i*2] += sig12;
    Epot[j*2] += sig12;
    Epot[j*2] += sig12;
    Epot[j*2] += sig12;
    Epot[j*2 + 1] -= sig6;
}

for (size_t i = 0; i < N; i++) {
    for (int k = 0; k < 3; k++)
        F[i*3 + k] *= 12.0*eps;
    Epot[i*2] *= eps/2.0;
    Epot[i*2] *= eps/2.0;
    Epot[i*2] *= eps/2.0;
    Epot[i*2] + 1] *= eps;
}
</pre>
```

Wersja ta działa około 2 razy szybciej. Cała symulacja zajmuje nam 78311.49ms czyli około 78 sekund.