Nama : Ni Putu Devira Ayu M Kelas : 1 S2 Elektro 2020 NRP : 1120800012

Pengampu : P. Sanggar Dewanto

ULANGAN AKHIR SEMESTER KINEMATIKA ROBOT

1. Pengerjaan soal UAS ini menggunakan bantuan software matlab sebagai berikut:

No 1a). kecepatan sudut = 2 rad/s. Dicari r^B setelah 3 detik, maka kecepatan sudutnya = 2 x 3 = 6 rad/s. Dikonversi ke degree = 343.744 deg = ~343 deg pada sumbu Z.

```
clear
theta = 343
Az = [cosd(theta) -sind(theta) 0; sind(theta) cosd(theta) 0; 0 0 1]
```

No 1b). kecepatan sudut = 2 rad/s. Dicari r^B setelah 3 detik, maka kecepatan sudutnya = 2 x 3 = 6 rad/s. Dikonversi ke degree = 343.744 deg = ~343 deg pada sumbu Y.

```
phi = 343
Ax =[cosd(phi) 0 sind(phi); 0 1 0; -sind(phi) 0 cosd(phi)]
```

No 1c). kecepatan sudut = 2 rad/s. Dicari r^B setelah 3 detik, maka kecepatan sudutnya = 2 x 3 = 6 rad/s. Dikonversi ke degree = 343.744 deg = ~343 deg pada sumbu X.

```
varphi= 343
Ax =[1 0 0; 0 cosd(varphi) -sind(varphi); 0 sind(varphi) cosd(varphi)]
```

Jawab:

```
Az = 3×3

0.9563 0.2924 0

-0.2924 0.9563 0

0 0 1.0000
```

```
varphi = 343

Ax = 3×3

1.0000 0 0

0 0.9563 0.2924

0 -0.2924 0.9563
```

No2). Mencari matriks rotasi dari sumbu koordinat sebuah benda yang berotasi terhadap sumbu global dengan laju tertentu & menghitung kecepatan sudut dari B terhadap G.

No2a-c). Sumbu Z(30deg) ke X(30deg) ke Y(90deg). Sedangkan kecepatan sudut alfa=30deg/s, beta= -40deg/s. gamma= 55deg/s.

```
clear
theta = 30
Az = [cosd(theta) -sind(theta) 0; sind(theta) cosd(theta) 0; 0 0 1]
phi = 90
Ay =[cosd(phi) 0 sind(phi); 0 1 0; -sind(phi) 0 cosd(phi)]
varphi= 30
Ax =[1 0 0; 0 cosd(varphi) -sind(varphi); 0 sind(varphi) cosd(varphi)]
Rotasi= Ay*Ax*Az

clear % membersihkan memory
a=30
b=-40
c=55
```

Sebuah koordinat lokal B(0xyz) yang awalnya berimpit dengan koordinat global G(0XYZ) mengalami rotasi terhadap sumbu-z lokal sejauh $\varphi=30$ derajad, kemudian terhadap sumbu-x lokal sejauh $\theta=30$ derajad, kemudian terhadap sumbu-y lokal sejauh $\psi=30$ derajad, akan memindahkan sebuah titik P yang berada di $[5\ 30\ 10]^T$ berpindah ke lokasi berikut. Total matrix rotasinya adalah

```
rotx=[1 0 0;0 cosd(b) sind(b);0 -sind(b) cosd(b)]
roty=[cosd(a) 0 -sind(a);0 1 0;sind(a) 0 cosd(a)]
rotz=[cosd(c) sind(c) 0;-sind(c) cosd(c) 0;0 0 1]
RotasiTotala=roty*rotx*rotz
RotasiTotalb=rotz*roty*rotx
RotasiTotalc=rotx*rotz*roty
```

Jawab:

rotx = 3×3					
			RotasiTotala	= 3×3	
1.0000	0	0	0.7600	0.5251	-0.3830
0	0.7660	-0.6428	-0.6275	0.4394	-0.6428
0	0.6428	0.7660	-0.1692	0.7289	0.6634
roty = 3×3			RotasiTotalb	= 3×3	
0.8660	0	-0.5000	0.4967	0.4432	-0.7462
0	1.0000	0		200000000000000000000000000000000000000	
0.5000	0	0.8660	-0.7094	0.7027	-0.0549
0.5000		0.0000	0.5000	0.5567	0.6634
rotz = 3×3			RotasiTotalc	= 3×3	
0.5736	0.8192	0	0.4967	0.8192	-0.2868
-0.8192	0.5736	0		T. 17 (7) (7) (7)	
0	0	1.0000	-0.8648	0.4394	-0.2429
9	0	1.0000	-0.0730	0.3687	0.9267