

Problem Ezlulu

Input file stdin
Output file stdout

Info(1)cup Королівство проводить найбільше приготування їжі в історії. Два найбільших кухаря королівства, Лулу і Танака, хочуть довести, що вони найкращі кухарі в королівстві. Однак кулінарний конкурс дещо дивний: він передбачає розбивання тарілок.

Кожен учасник отримує n тарілок **різних** розмірів, кожна з яких має певну вартість. Формально ви отримуєте n тарілок, упорядкованих від найбільшої до найменшої, і їх значення v_1, \ldots, v_n . Тепер кожен учасник складає тарілки в довільному порядку. Коли до стопки додається тарілка, усі тарілки, **менші** за неї, ламаються та видаляються зі стопки. *Оцінка* поточної тарілки обчислюється як *кількість_розбитих_тарілок_* \times v_i , якщо вартість тарілки дорівнює v_i . Загальна оцінка виступу учасника є сумою балів за кожну з тарілок. Почувши про це завдання, Танака каже Лулу: "Перемогти тебе буде легко, Лулу".

Допоможіть Лулу перемогти Танаку, знайшовши найкращий можливий порядок покласти тарілки на стопку.

Input Data

Перший рядок вхідних даних містить число n - кількість тарілок. Наступний рядок містить v_1, \ldots, v_n .

Output Data

Перший рядок виводу містить одне ціле число, яке є максимальним балом, який зможе отримати Лулу.

Другий містить порядок, у якому Лулу повинна ставити тарілки, щоб досягти цього результату. Наприклад, якщо порядок "додайте третю тарілку, потім першу, потім другу", вихідні дані повинні містити 3 1 2. Якщо варіантів декілька, ви можете вивести будь-який з них.

Restrictions

- $1 \le n \le 200\,000$.
- $1 \le v_i \le 1\,000\,000\,000$.
- Якщо правильний лише максимальний бал, то нараховується лише 50% балів за тест.

#	Points	Restrictions	
1	12	$v_i = i$	
2	13	$v_i = n + 1 - i$	
3	22	$1 \le n \le 9$	
4	53	Ніяких додаткових обмежень.	

Examples

Input file	Output file	Explanations
3	3	Firstly, we put the third plate on
1 2 3	3 2 1	the stack. The second plate breaks
		the third one, with a score of
		$1 \cdot 2 = 2$. The first one then breaks
		the second one, with a score of
		$1 \cdot 1 = 1.$
3	6	Firstly, we put the second plate on
3 2 1	2 3 1	the stack. Then we put the third
		plate which doesn't break anything.
		Then the first one will break the
		first two with a score of $2 \cdot 3 = 6$.
10	155	The explanation for this example is
2 2 1 24 13 15 20 10	3 5 6 7 8 10 9 4 2 1	truly remarkable, but this margin is
29 29		too small to contain it