Name - Sangram keshari patro

(4) We have dready derived in day that ·En(n) = Pn(n) f(n+1) (8) < (n+1)! man | Pn(n) | man | f(n+1) | (maximum possible ennon)

(i) linear (n=1)

 $E_1(n) < \frac{1}{2!} \max |(n-10)| \max |e^n| \cdot [f(n) = e^n]$

 $E_{1}(n) < \frac{1}{2!} \left| \frac{(N_{0}-N_{1})^{2}}{(N_{0}-N_{1})^{2}} \right| \times e$ $= \frac{h(n)}{h(n)} = \frac{(N_{0}-N_{0})(N_{0}-N_{1})}{h(n)} = \frac{N_{0}+N_{1}}{2}$ $\Rightarrow n = \frac{N_{0}+N_{1}}{2}$

=> EI(N) < ht xe

so, whe < 107 => h< \\\ \frac{8\tai 0.00054}{e} \rightarrow 0.00054

so it is the maximum spacing for linear interpolation.

(1) Jundontic (n=2)

E2(N) < 1 man (n-No) (n-N1) (n-N2) man (1)"(N)

~ 0.008308

 $E_{2}(N) < \frac{1}{3!} \int_{0}^{\infty} X \frac{2 h^{3}}{3 \sqrt{3}} X e$ $E_{2}(N) < \frac{1}{3!} \int_{0}^{\infty} X \frac{2 h^{3}}{3 \sqrt{3}} X e$ $\int_{0}^{\infty} \frac{h_{1}}{h_{2}} \int_{0}^{\infty} \frac{h_{1}}{h_{2}} \int_{0}^{\infty} \frac{h_{1}}{h_{2}} \int_{0}^{\infty} \frac{h_{1}}{h_{2}} \int_{0}^{\infty} \frac{h_{1}}{h_{2}} \int_{0}^{\infty} \frac{h_{1}}{h_{2}} \int_{0}^{\infty} \frac{h_{2}}{h_{3}} \int_{0}^{\infty} \frac{h_{1}}{h_{2}} \int_{0}^{\infty} \frac{h_{2}}{h_{3}} \int_{0}^{\infty} \frac{h_{1}}{h_{2}} \int_{0}^{\infty} \frac{h_{1}}{h_{2}} \int_{0}^{\infty} \frac{h_{2}}{h_{3}} \int_{0}^{\infty} \frac{h_{1}}{h_{2}} \int_{0}^$ => h(t) = + 2h3

so, the the maximum spaing for quadratic interpolation is 0.008308.

E3(n) (I man | (n-no) (n-no) (n-no) (n-no) man | f (n) | ¿ 1 1-2my xe E3(n) & hre so, Me < 107 > h < y 24x107 \$ \$ 0.03065

so, the maximum spacing for cubic interpolation is 0.03065.

We can clearly see that for linear the spring is less but it incremes is onder of interpolation increams, Bano of Endney in intempolation → linear → 1851 J quadratic→ 1 0.008308 = 120 \rightarrow (whic $\rightarrow \frac{1}{0.03065} \approx 32$

(here we hard maximum of $|P_{1}(h)|$ so we should take -1 became $\left|\frac{q}{16}\right| < \left|-1\right|$)

5) We have already derived $E_{1}(n) \le \frac{h^{2}}{8} |0 0 0 0 | max | \frac{1}{2} |0 0$

 $h(n) = (n-n_0)(n-n_1)(n-n_2)(n-n_3)$ N-11=t, N-N2=t+h, N-13=t+2h M-no=t-h. no MI M2 M3 $h(t) = -t(t-h^2)(t+2h)$ = (t3-th2)(t+2h)_ $= h^{\gamma}(k^3-k)(k+2)[t=kh]$ = KY (KY-K2+2K3-2K) $h'(t) = h''(uk^3 - 2k + 6k^2 - 2)$ $k'(t) = 0 = 2k^3 - k + 3k^2 - 1$ JK=-1, 1012 -1 ± 55 -fon $k = -\frac{1}{2}$ $f(k) = 9 \frac{9}{16}$ for $k = \frac{-1 \pm 15}{2}$, f(k) = -1

 $h = 0.01 \implies \frac{0.01}{32 \frac{1}{8}^{2}} \le 10^{5} \text{ on } 10^{-6} \implies \frac{3.125 \times 10^{-6}}{\frac{1}{8}^{2}} \ge 10^{5} \text{ on } 10^{-6}$ For 10^{-5} $\frac{\text{For } 10^{-6}}{\text{Extrapolation}} = \frac{10^{-6}}{\frac{1}{8}^{2}} > 0.3125 \implies \frac{1}{8} > 0.4605$ $\frac{1}{8} > 0.3125 \implies \frac{1}{8} > 0.4605$ $\frac{1}{8} > 0.3125 \implies \frac{1}{8} > 0.4605$

but & should be between 0 & 1. so for a spring of 0.01 this expression ean't be 2 106.

(b)
$$s(n) = e^{an}$$
, $r_{j} = a_{j} = jh$.

We know that

 $f[a_{j}, a_{j+1} - a_{j+1}] = \frac{1}{k! h!} \sum_{k \neq j} k f(a_{j}) \rightarrow (1)$

Forward differences

 $\Delta f(n) = f(n+n) - f(n)$
 $\Delta^{2} f(n) = A f(n+n) - A f(n) = [f(n+n) - f(n+n)]$
 $= f(n+2h) - 2f(n+h) + f(n)$
 $= f(n+2h) - 2f(n+h) + f(n)$
 $= f(n+3h) - f(n+2h)] - 2[f(n+2h) - f(n+n)]$
 $= f(n+3h) - 3f(n+2h) + 3f(n+n) - f(n)$
 $= f(n+3h) - 3f(n+2h) + 3f(n+n) + f(n)$
 $= f(n+3h) - 3f(n+2h) + f(n+n) + f(n+n)$
 $= f(n+3h) - f(n+n) f(n+n) + f(n+n)$
 $= f(n+n) - f(n+n)$
 $= f($

= eah (eah-1) h -> (9)

To move eq + 1 by induction. $f[a_0, a_1] = f(a_1) - f(a_0) = \frac{e^{ah} - 1}{h}$ (a,-ao=h) $=\frac{(e^{ah}-1)}{11h^2}$ Assume that it is true for k= t f[ao,a1,--a+]= (eah-1)t so, for k=t+1 $f[a_0, -a_{t+1}] = f[a_1, -a_{t+2}] - f[a_0, -a_t]$ $a_{t+1} - a_0$ $= \frac{\Delta^{k} f(\alpha_0)}{40! t! h^{k}} - \frac{\Delta^{k} f(\alpha_0)}{t! h^{k}} \left[f_{\text{non eq}} + 1\right]$ = \(\lefta \lefta \right\left\lefta \right\right\left\left\left\left\left\left\right\right\right\right\left\left\right\ = (eah-1) het+1
(++1) 1 h+1 $\{[a_0, \dots, a_n] = \underbrace{[e^{ah}-1)^n}_{n+1} \xrightarrow{n} \underbrace{s}$ Hence , proved, that f(n) = f[90] + (n-a0) f[a0, ai] + (n-a0) (n-ai) f[a0, a1, a2) t --.. Pn(n) / [ao, ... an] + Pn+1(n) [[ao, -an+1] 50, $\frac{n+1}{n+1} + \frac{(n-a_n) f[a_0, -a_{n+1}]}{f[a_0, -a_n]} = \frac{(e^{a_n}-1)(n-nh)}{h(n+1)}$ (by using eq + (5) (an=nh)

50)
$$[=\lim_{N\to\infty} \left| \frac{a_{n+1}}{a_n} \right|$$
 $=\lim_{N\to\infty} \left| \frac{(e^{a_n}-1)}{h(n+1)} \right|$
 $=\lim_{N\to\infty} \left| \frac{(e^{a_n}-1)}{h(n$