Channel

Resource

Marginal Problems

Chung-Yun Hsieh

C-Y Hsieh, M Lostaglio, A Acín, Phys. Rev. Research 4, 013249 (2022)

Channel

Resource

Marginal Problems

C-Y Hsieh, G N M Tabia, Y-C Yin, Y-C Liang, arXiv:2202.03523

What's that? Marginal Problems

Arts by M. C. Escher

M. C. Escher, Cascada (Waterfall) (1961)

M. C. Escher, Cascada (Waterfall) (1961)

M. C. Escher, Cascada (Waterfall) (1961)

M. C. Escher, Cascada (Waterfall) (1961)

ΟΔ□

Can they coexist?

M. C. Escher, Cascada (Waterfall) (1961)

Locally compatible

Globally incompatible

Locally compatible

Globally incompatible

Marginal Problem

Can they coexist?

Marginal Problem

Probability Distr.

Can they coexist?

Classical Marginal Problem

Quantum States

Can they coexist?

State Marginal Problem

Quantum States

Can they coexist?

J Tura, R Augusiak, A B Sainz, T Vértesi, M Lewenstein, A Acín, Science **344**, 1256 (2014).

> M Navascués, F Baccari, A Acín, Quantum **5**, 589 (2021).

State Marginal Problem

Nonlocality Detection

Entanglement theory 1

Static Marginal Problem

Dynamical Marginal Problem

Quantum dynamics

Can they coexist?

Channel Marginal Problem

Channel

Resource

Marginal Problems

C-Y Hsieh, M Lostaglio, A Acín, Phys. Rev. Research 4, 013249 (2022)

Channel

Resource

Marginal Problems

A Dynamical Generalization of State Marginal Problems

But... Why Quantum Marginal Problem? Why Dynamical Marginal Problem?

Classical

Classical

A
$$\sum_{a} P(abc) = \sum_{a} \frac{P(ab)P(bc)}{P(b)} = P(bc)$$

Classical

In AB/BC setting, both static and dynamical classical marginal problems are trivial Locally compatible —— Globally compatible

Classical

Entanglement is monogamous!

AB/BC state marginal problem is nontrivial: e.g. entanglement monogamy

Why Quantum Marginal Problem?

AB/BC state marginal problem is nontrivial: e.g. entanglement monogamy

Marginal Problem: Quantum > Classical

Classical

Quantum information cannot be cloned!

AB/BC dynamical marginal problem is nontrivial: e.g. no-cloning theorem

Why Dynamical Marginal Problem?

AB/BC dynamical marginal problem is nontrivial: e.g. no-cloning theorem

Marginal Problem: Dynamical ≠ Static

Qualitative Phenomenon

Quantitative Study

Quantitative Study

Given dynamics, how incompatible they are?

Advantages in state discrimination tasks

Incompatibility is useful

Can compatibility also be useful?

Can compatibility certify a resource?

Kesource Channel Marginal Problems

C-Y Hsieh, G N M Tabia, Y-C Yin, Y-C Liang, arXiv:2202.03523

Example

Transitivity of Q Resources

B

A

C

Given states in AB & BC, can they guarantee that AC marginal state is a resource?

46

$$\forall \eta_{ABC}$$
 s.t. $\operatorname{tr}_A(\eta_{ABC}) = \rho_{BC}$, $\operatorname{tr}_C(\eta_{ABC}) = \sigma_{AB}$

$$\forall \eta_{ABC}$$
 s.t. $\operatorname{tr}_A(\eta_{ABC}) = \rho_{BC}$, $\operatorname{tr}_C(\eta_{ABC}) = \sigma_{AB} \longrightarrow \operatorname{tr}_B(\eta_{ABC})$

$$\forall \eta_{ABC}$$
 s.t. $\operatorname{tr}_A(\eta_{ABC}) = \rho_{BC}$, $\operatorname{tr}_C(\eta_{ABC}) = \sigma_{AB}$ $\operatorname{tr}_B(\eta_{ABC})$ is entangled

There exist compatible σ_{AB} , ρ_{BC} such that every η_{ABC} compatible with them must have entangled marginal in BC

There exist compatible σ_{AB} , ρ_{BC} such that every η_{ABC} compatible with them must have nonlocal marginal in BC

Take-Home Messages

Can they coexist?

Can they coexist?

○▲□ = Q DynamicsQuantum ChannelMarginal Problems

Quantum > Classical Dynamical ≠ Static

Phys. Rev. Research 4, 013249 (2022)

Can they coexist?

○▲□ = Q DynamicsQuantum ChannelMarginal Problems

Quantum > Classical Dynamical ≠ Static

Phys. Rev. Research 4, 013249 (2022)

Compatible

Can they certify target R?

Can they coexist?

O▲□ = Q DynamicsQuantum ChannelMarginal Problems

Quantum > Classical Dynamical ≠ Static

Phys. Rev. Research **4**, 013249 (2022)

Compatible

Can they certify target R?

○ ▲ □ = Q States & Q Dynamics

Resource Marginal Problems

R(O△□) Quantitative

Advantages in Discrimination Tasks

arXiv:2202.03523

Appendix

Appendix What are Channels?

Completely-Positive Trace-Preserving Linear Map

Completely-Positive Trace-Preserving Linear Map

Completely-Positive Trace-Preserving Linear Map

$$\rho$$
 — ε — $\varepsilon(\rho)$

Appendix What are Marginals?

Marginal

Marginal

Marginal

Marginal of Channel?

