

MATLAB GUI for

Active Noise Cancellation using Adaptive Filtering

By
Nithil A Rao
#93851

Overview

- Introduction to Active Noise Cancellation
- Overview of the MATLAB GUI Application
- Code and Algorithms
- Signal Processing and Mathematical Concepts
- Demonstration of the Application

What is Active Noise Cancellation?

Definition:

 Active Noise Cancellation is a method of reducing unwanted sound by adding a second sound specifically designed to cancel the first.

Concept Illustration:

• Uses the principle of destructive interference where two sound waves of equal amplitude and opposite phase cancel each other out.

Applications of ANC

Automotive Industry:

• Enhancing passenger comfort by reducing engine and road noise.

Consumer Electronics:

Noise-cancelling headphones and earphones.

Industrial Settings:

Reducing noise pollution in environments like factories.

Overview of the MATLAB GUI Application

Load Signals

Import audio files into the system

Visualize Signals

Display audio waveforms for analysis

Apply ANC

Implement noise cancellation technique

Play Audio

Listen to processed audio output

User Interface Layout

Original Signal

Axes

for analysis

Control Buttons

Facilitates user

interaction with

essential functions

Loading and Visualizing Signals

Loading Signals:

- Users can load audio files representing cabin and engine noises.
- Supports common audio formats like WAV and MP3.

Visualization:

- Signals are plotted for visual analysis.
- Helps in understanding the characteristics of the noises.

The ANC Algorithm

Adaptive Filtering:

• Uses the Least Mean Squares (LMS) algorithm.

Purpose of LMS:

• Adjusts filter coefficients to minimize the error between the desired and actual signal.

ANC Process Flow

Initialize filter Compute filter Calculate error Update filter coefficients output signal coefficients

Mathematical Foundations

LMS Algorithm

Initialize Coefficients

Initialize the filter coefficient vector w(0) to zero.

Refined Filter Coefficients

Example

- •d(n): [1, 2, 3, 4, 5] (cabin noise)
- •x(n): [0.5, 1, 1.5, 2, 2.5] (engine noise)
- •**μ:** 0.1 (Step Rate)
- •M: 2 (Filter Order)

Initialization:

 \bullet w(0) = [0, 0]

Iteration 1:

- \bullet y(1) = w(0)^T * x(1) = 0
- \bullet e(1) = d(1) y(1) = 1 0 = 1
- •w(1) = w(0) + μ * e(1) * x(1) = [0, 0] + 0.1 * 1 * [0.5] = [0.05, 0]

Iteration 2:

- \bullet y(2) = w(1)^T * x(2) = 0.05 * 1 = 0.05
- \bullet e(2) = d(2) y(2) = 2 0.05 = 1.95
- •w(2) = w(1) + μ * e(2) * x(2) = [0.05, 0] + 0.1 * 1.95 * [1] =

[0.245, 0]

Example

n=1

y(1) = 0

e(1) = 1

w(1) = [0.05, 0]

n=2

y(2) = 0.05

e(2) = 1.95

w(2) = [0.245, 0]

n=3:

y(3)=1.27

e(3)=2.72

w(4)=[1.18,0]

n=4:

y(4)=2.95

e(4)=2.04

w(5)=[1.69,0]

n=5:

y(5)=4.23

e(5)=0.76

w(6)=[1.88,0]

n=6:

y(6)=5.64

e(6)=0.35

w(7)=[1.98,0]

n=7:

y(7)=6.95

e(7)=0.04

w(8)=[2.00,0]

classdef automotiveANCApp < matlab.apps.AppBase</pre> % Properties that correspond to app components properties (Access = public) UIFigure matlab.ui.Figure matlab.ui.control.Button LoadNoiseButton LoadEngineNoiseButton matlab.ui.control.Button ApplyANCButton matlab.ui.control.Button matlab.ui.control.Button PlayOriginalButton PlayEngineButton matlab.ui.control.Button PlayProcessedButton matlab.ui.control.Button PauseOriginalButton matlab.ui.control.Button PauseEngineButton matlab.ui.control.Button matlab.ui.control.Button PauseProcessedButton OriginalSignalAxes matlab.ui.control.UIAxes matlab.ui.control.UIAxes EngineSignalAxes ProcessedSignalAxes matlab.ui.control.UIAxes end % Properties for internal data storage properties (Access = private) cabinNoise % Cabin noise signal engineNoise % Engine noise signal (reference) % Signal after ANC processedSignal % Sampling frequency

% Audio player for original noise

% Audio player for processed signal

% Audio player for engine noise

1.Initialising properties

originalPlayer

processedPlayer

enginePlayer

end

MATLAB Code

```
% Adaptive LMS filter function
function [y, e] = lmsFilter(app, d, x, mu, filterOrder)
    nIterations = length(d);
    v = zeros(nIterations, 1);
    e = zeros(nIterations, 1);
    w = zeros(filterOrder, 1);
    % Initialize Progress Dialog
    progressDlg = uiprogressdlg(app.UIFigure, 'Title', 'Processing',
        'Message', 'Applying ANC...', 'Cancelable', 'off', ...
        'Indeterminate', 'on');
    for n = filterOrder:nIterations
        x vec = x(n:-1:n-filterOrder+1);
        % Ensure x_vec is a column vector
        if isrow(x vec)
            x_vec = x_vec';
        y(n) = w' * x_vec;
        e(n) = d(n) - v(n);
        W = W + 2 * MU * e(n) * x_vec;
        % Update progress every 1000 iterations or at the end
        if mod(n, 1000) == 0 | n == nIterations
            progressDlg.Value = n / nIterations;
            progressDlg.Message = sprintf('Applying ANC... %.2f%%', (n / nIterations)*100);
            drawnow;
    end
```

```
% Adjust signals to the same length
    len = min(length(app.cabinNoise), length(app.engineNoise));
    d = app.cabinNoise(1:len);
    x = app.engineNoise(1:len);
   % Ensure d and x are column vectors
    if isrow(d)
        d = d';
    end
    if isrow(x)
        X = X';
    end
    % Apply Adaptive Noise Cancellation
    mu = 0.001; % Step size
    filterOrder = 64;
    [y, ~] = app.lmsFilter(d, x, mu, filterOrder); % Corrected call
    app.processedSignal = v:
    plot(app.ProcessedSignalAxes, app.processedSignal);
    title(app.ProcessedSignalAxes, 'Processed Signal after ANC');
   xlabel(app.ProcessedSignalAxes, 'Time (s)');
    ylabel(app.ProcessedSignalAxes, 'Amplitude');
    app.processedPlayer = audioplayer(app.processedSignal, app.Fs);
end
```

2.Adjusting Signal Length

3.1 MS Filter Function

Demonstration

Comparison of LMS Adaptive Filtering vs. Destructive Interference

Aspect	LMS Adaptive Filtering	Destructive Interference
Concept	Adapts to reduce noise error	Creates an opposite wave to cancel noise
Noise Type	Works with changing noise patterns	Works best with steady, predictable noise
Flexibility	Adjusts continuously	Limited to consistent noise
Approach	Minimizes error, no exact phase inversion	Uses precise phase inversion
Strength	Handles complex, dynamic noise	Effective for constant noise
Weakness	Needs time to adapt	Struggles with varying noise

Signal Analysis

Role of Parameters

Step Rate (\mu): A larger mu leads to faster convergence but can make the filter more sensitive to noise. A smaller mu leads to slower

convergence but can improve the filter's stability.

Filter Order (M): Determines the length of the filter's impulse response. A higher order filter can capture more complex noise patterns but requires more computational resources.

```
n=1

y(1) = 0

e(1) = 1

w(1) = [0.05, 0]

n=2

y(2) = 0.05

e(2) = 1.95

w(2) = [0.245, 0]
```

Practical Implications

Microphone/Speaker Placement

Optimizing audio input and output locations

Passenger Comfort

Improving the overall experience for vehicle occupants

Real-time Processing

Ensuring immediate response and data handling

Sound System Integration

Seamlessly incorporating technology into vehicle audio systems

Conclusion

Recap:

- Developed a MATLAB GUI demonstrating ANC using adaptive filtering.
- Showcased the potential to reduce unwanted noise in vehicles.

Final Thoughts:

 ANC presents a significant opportunity to improve acoustic environments in various applications.

Reference

How Ford is implemented active noise cancellation in cars? https://www.youtube.com/watch?v=Te5UUCXMSIg

Listen As Active Noise Cancellation Makes Car Interiors 90% More Silent https://www.youtube.com/watch?v=pUDu_pyaMtQ

Innovation: Active Noise Cancellation | New Range Rover Sport https://www.youtube.com/watch?v=uRNLIDpB4Xs

Thank You