Lecture 10: Hypothesis Testing 3

Jacob M. Montgomery

Quantitative Political Methodology

Lecture 10: Hypothesis Testing 3

Roadmap

Last class:

- Hypothesis tests with small samples
- Types of errors
- ► Discussion of one-sided/two-sided tests

Roadmap

Last class:

- Hypothesis tests with small samples
- Types of errors
- Discussion of one-sided/two-sided tests

This class:

- Relationship between CI and NHPT
- Working more examples

Visualizing confidence intervals and null-hypothesis testing}

According to a union agreement, the mean income for all senior-level assembly-line workers in a large company equals \$525 per week. A representative of a women's group decides to analyze whether the mean income μ for female employees matches this norm. For a random sample of 36 female employees, $\bar{y}=$ \$495 and s=\$75.

▶ Let's use a 95% CI, or $\alpha = .05$, and assume that the CLT applies (no T-distribution)

- ▶ Let's use a 95% CI, or $\alpha = .05$, and assume that the CLT applies (no T-distribution)
- ► $525 \pm 1.96 \sigma_{\bar{y}} = 525 \pm 1.96 \frac{S}{\sqrt{n}}$

- Let's use a 95% CI, or $\alpha = .05$, and assume that the CLT applies (no T-distribution)
- ► $525 \pm 1.96 \sigma_{\bar{y}} = 525 \pm 1.96 \frac{s}{\sqrt{n}}$
- $= 525 \pm 1.96 \frac{75}{\sqrt{36}}$

- Let's use a 95% CI, or $\alpha = .05$, and assume that the CLT applies (no T-distribution)
- ightharpoonup 525 $\pm 1.96 \sigma_{\bar{y}} = 525 \pm 1.96 \frac{S}{\sqrt{n}}$
- $= 525 \pm 1.96 \frac{75}{\sqrt{36}}$ $= 525 \pm 1.96 \times 24.5$

- ▶ Let's use a 95% CI, or $\alpha = .05$, and assume that the CLT applies (no T-distribution)
- ightharpoonup 525 $\pm 1.96 \sigma_{\bar{y}} = 525 \pm 1.96 \frac{S}{\sqrt{n}}$
- ► = $525 \pm 1.96 \frac{75}{\sqrt{36}}$ ► $525 \pm 1.96 \times 24.5$
- ▶ 95% CI = [500.5, 549.5]

According to a union agreement, the mean income for all senior-level assembly-line workers in a large company equals \$525 per week. A representative of a women's group decides to analyze whether the mean income μ for female employees matches this norm. For a random sample of 36 female employees, $\bar{y} = \$495$ and s = \$75.

- ▶ Let's use a 95% CI, or $\alpha = .05$, and assume that the CLT applies (no T-distribution)
- ightharpoonup 525 $\pm 1.96 \sigma_{\bar{y}} = 525 \pm 1.96 \frac{S}{\sqrt{n}}$
- ► = $525 \pm 1.96 \frac{75}{\sqrt{36}}$ ► $525 \pm 1.96 \times 24.5$
- ▶ 95% CI = [500.5, 549.5]

Since we observed $\bar{y} = 495$, we can reject the null hypothesis.

According to a union agreement, the mean income for all senior-level assembly-line workers in a large company equals \$525 per week. A representative of a women's group decides to analyze whether the mean income μ for female employees matches this norm. For a random sample of 36 female employees, $\bar{y}=$ \$495 and s=\$75.

▶ Let's use a 95% CI, or $\alpha = .05$

- Let's use a 95% CI, or $\alpha=.05$
- $495 \pm 1.96 \sigma_{\bar{y}} = 495 \pm 1.96 \frac{s}{\sqrt{n}}$

- Let's use a 95% CI, or $\alpha=.05$
- $495 \pm 1.96 \sigma_{\bar{y}} = 495 \pm 1.96 \frac{S}{\sqrt{n}}$
- $= 495 \pm 1.96 \frac{75}{\sqrt{36}}$

- Let's use a 95% CI, or $\alpha=.05$
- $495 \pm 1.96 \sigma_{\bar{y}} = 495 \pm 1.96 \frac{s}{\sqrt{n}}$
- $ightharpoonup = 495 \pm 1.96 \frac{75}{\sqrt{36}}$
- ▶ $495 \pm 1.96 \times 24.5$

- ▶ Let's use a 95% CI, or $\alpha = .05$
- $495 \pm 1.96 \sigma_{\bar{y}} = 495 \pm 1.96 \frac{s}{\sqrt{n}}$
- $ightharpoonup = 495 \pm 1.96 \frac{75}{\sqrt{36}}$
- ▶ $495 \pm 1.96 \times 24.5 \ 95\% \ \mathsf{CI} = [470.5, 519.5]$

- ▶ Let's use a 95% CI, or $\alpha = .05$
- $495 \pm 1.96 \sigma_{\bar{y}} = 495 \pm 1.96 \frac{s}{\sqrt{n}}$
- $ightharpoonup = 495 \pm 1.96 \frac{75}{\sqrt{36}}$
- ▶ $495 \pm 1.96 \times 24.5 \ 95\% \ \mathsf{CI} = [470.5, 519.5]$

According to a union agreement, the mean income for all senior-level assembly-line workers in a large company equals \$525 per week. A representative of a women's group decides to analyze whether the mean income μ for female employees matches this norm. For a random sample of 36 female employees, $\bar{y}=495$ and s=75.

- ▶ Let's use a 95% CI, or $\alpha = .05$
- ▶ $495 \pm 1.96 \sigma_{\bar{y}} = 495 \pm 1.96 \frac{S}{\sqrt{n}}$
- $ightharpoonup = 495 \pm 1.96 \frac{75}{\sqrt{36}}$
- ▶ $495 \pm 1.96 \times 24.5 \ 95\% \ \mathsf{CI} = [470.5, 519.5]$

Since H_0 : $\mu=525$ is not in that interval, we can reject the null hypothesis.

Research projects

First, think of a research question!

- What topics interest you?
- ▶ What phenomenon do you want to explain?
- ▶ If you don't care about the question itself, then the project will be miserable to complete.

Once you have a question...

- 1. Research hypothesis needs to be falsifiable by you.
- 2. This precludes giant questions:
 - ▶ Why do Americans vote?
 - What causes peace?
- 3. However, smaller questions are interesting too!
 - ▶ Do roommates with different partisan beliefs geta along worse?
 - Does knowing about mental health issues on campus lower support for more campus buildings?
- 4. The data may not support your theory. That is fine.

Things that are not allowed

- ▶ No "time-series" studies.
 - ▶ Polarization decreases GDP growth.
- No exploratory projects
 - What factors determine attitudes towards immigrants?

Things that are not allowed

- ▶ No "time-series" studies.
 - ▶ Polarization decreases GDP growth.
- No exploratory projects
 - What factors determine attitudes towards immigrants?
- No sensitive data/risky behaviors/illegal behaviors/at-risk populations
 - Surveys of dating habits, drug use, etc.
 - Surveys of minors, the homeless, etc.

Things that are not allowed

- No "time-series" studies.
 - ▶ Polarization decreases GDP growth.
- No exploratory projects
 - What factors determine attitudes towards immigrants?
- No sensitive data/risky behaviors/illegal behaviors/at-risk populations
 - Surveys of dating habits, drug use, etc.
 - Surveys of minors, the homeless, etc.
- ▶ Do not sample on the dependent variable
- Do not sample on the independent variable

Things that are encouraged (but not required)

- Conduct your own experiment
 - ▶ Do "please recycle" signs cause people to recycle more?
- Take your own survey
 - Political beliefs of WashU undergrads
- ▶ Things your fellow students might find interesting
- Talking to me.