Introduction aux Bases de Données Relationnelles

G2 et 3: Celine Kuttler

G4: Maude Pupin

G5 : Aymeric Blot

G1 : Alexandre Temperville

Littérature

Atzeni, Ceri et Paraboschi

Elmasri et Navathe

Paraboschi est l'auteur des transparents de ce cours. Traductions de l'italien, en français et anglais, faites par Kuttler.

Sujets

- Modèle relationnel
- Algèbre relationnelle
- SQL
 - Définition de schémas
 - Insertion de données
 - Langage de requêtes
- Calcul relationnel
- Modélisation
- Procédures stockées
- Optimisation

Cours 1: modèle relationnel

Les modèles de données

sont des combinaisons de constructions pour représenter la réalité de manière structurée et simplifiée. Ils ne couvrent que certains aspects de la réalité, afin d'en simplifier la compréhension.

Histoire des modèles

- Modèle hiérarchique (1960)
- Modèle réseau (1970)
- Modèle relationnel (1980)
- Modèle orienté objet (1990)
- Modèle XML (2000)

Modèle hiérarchique

- Les données sont codées par des enregistrements
- Les associations logiques entres données sont représentés par des pointeurs dans une structure arborescente

Modèle réseaux (CODASYL)

Les données sont codées par des enregistrements

Les associations logiques entres données sont représentés par des pointeurs dans un graphe

Modèle relationnel

- Les données sont représentées par des séquences de valeurs d'attributs
- Les données avec les mêmes séquences d'attributs sont regroupées en tables
- Les associations entre données sont crées en reliant des valeurs d'attributs de différentes tables

Histoire du modèle relationnel

- 1970: inventé par T. Codd (IBM Research)
 Premiers projets: SYSTEM R (IBM),
 Ingres (Berkeley Un.)
- 1978-80: découvertes technologiques principales
- début 1980s: premiers systèmes commerciaux: Oracle, IBM-SQL DS et DB2, Ingres, Informix, Sybase
- depuis 1985: succès commercial

Définition informelle de table

Definition: table

- Domaine D: ensemble de valeurs quelconques
- Produit cartésien de n domaines

D1 x D2 x ... Dn

- Ensemble de n-uplets
- < d1, d2, ... dn >, où di \in Di, $1 \le i \le n$
- Relation R sur D₁ x D₂ x... D_n: sousensemble quelconque de D₁ x D₂ x ... D_n

Exemple

Deux domaines :

$$D_1 = (a,b)$$

 $D_2 = (1,2,3)$

Produit cartésien :

```
D_1 \times D_2 =
( <a,1>, <b,1>,
<a,2>, <b,2>,
<a,3>, <b,3> )
```

Exemple: quatre relations

```
R1 = ( <a,1>, <b,3> )
R2 = ( <a,1>, <b,3>, <a,2> )
R3 = ( )
R4 = ( <a,1>, <b,1>, <a,2>, <b,2>, <a,3>, <b,3> )
```

Propriétés

- Arité d'une relation: nombre de domaines(n)
- Cardinalité d'une relation: nombre de tuples
- Attribut: nom donné à un domaine dans une relation

[Les noms des attributs d'une relation doivent être uniques]

Propriétés

Schema (d'une relation):

table (attribut1,... attributN)

Les noms des attributs dans une relation doivent être distincts!

R1(A,B) R2(C,D)

В
1
3

С	D
С	1
b	3
а	2

Comparaison de la terminologie

Exemple
table
colonne
ligne
type de donnée
nombre de lignes
nombre de colonnes

Différence importante

Définition formelle : absence de doublons Exemples : doublons possibles

Exemple 1: gestion des examens d'une université

CID	TITRE	PROF
12	Maths CS	Laplace Dupuis

Exemple 1

examens

SID	CID	DATE	Note
123	1	7-9-13	10
123	2	8-1-13	8
702	2	7-9-13	5

Exemple 1: gestion des examens

étudiant

J - 3.1 3.1 3				
SID	NOM	VILLE	FORMATION	
123	Pierre	Paris	Inf	
415	Celine	Lille	Inf	
702	Estelle	Rome	Log	

examens

SID	CID	DATE	NOTE
123	<u>1</u>	7-9-13	10
123 702	2	8-1-13 7-9-13	_8 5
1.02			

CID	TITRE	PROF
1	Maths	Laplace
2	CS	Dupuis

Exemple 1 : requête A

Quels étudiants ont obtenu la note 10 en Maths?

étudiant

SID	NOM	VILLE	FORMATION
123	Pierre	Paris	Inf
415	Celine	Lille	Inf
702	Estelle	Rome	Log

examens

SID	CID	DATE	NOTE
123	1	7-9-13	10
123	2	8-1-13	8
702	2	7-9-13	5

CID	TITRE	PROF
12	Maths	Laplace
	CS	Dupuis

Exemple 1 : requête B Quels profs ont donné des notes à Pierre?

étudiant

SID	NOM	VILLE	FORMATION
123	Pierre	Paris	Inf
415	Celine	Lille	Inf
702	Estelle	Rome	Log

examens

SID	CID	DATE	NOTE
123	1	7-9-13	10
123	2	8-1-13	8
702		7-9-13	5

CID	TITRE	PROF
1	Maths	Laplace
2	CS	Dupuis

Exemple 2: gestion du personnel

employe

MATR	NOM	DATE-EMB	SALAIRE	MATR-MGR
1	Paul	1-1-15	3K	2
2	Georges	1-1-07	2,5K	null
3	Jean	1-7-06	2K	2

affectation

MATR	NUM-PROJ	POURC
1	3	50
1	4	50
2	3	100
3	4	100

NUM-PROJ	TITRE	TYPE
3	Idea	Esprit
4	Wide	Esprit

Requêtes

• Qui est le manager de Paul?

employe

MATR	Nom	DATE-EMB	SALAIRE	MATR-MGR
1	Paul	1-1-15	3K	2
2	Georges	1-1-07	2,5K	null
3	Jean	1-7-06	2K	2

affectation

MATR	NUM-PROJ	POURC
1	3	50
1	4	50
2	3	100
3	4	100

NUM-PROJ	TITRE	TYPE
3	Idea	Esprit
4	Wide	Esprit

Requêtes

Dans quels types de projets travaille Jean?

employe

MATR	Nom	DATA-ASS	SALAIRE	MATR-MGR
1	Paul	1-1-15	3K	2
2	Georges	1-1-07	2,5K	null
3	Jean	1-7-06	2K	2

affectation

MATR	NUM-PROJ	POURC
1	3	50
1	4	50
2	3	100
3	4	100

NUM-PROJ	TITRE	TYPE
3	ldea	Esprit
4	Wide	Esprit

L'information incomplète

Firstname	Middle name	Lastname
Franklin	Delano	Roosevelt
Winston		Churchill
Charles		De Gaulle
Josip		Stalin

Traitement d'information incomplète dans le modèle relationnel

- Méthode naïve mais effective:
 - La valeur nulle (NULL): indique l'absence de valeur dans un domaine (NULL n'appartient à aucun domaine!)
- Chaque attribut a soit une valeur du domaine, ou alors au lieu de cela, la valeur NULL.

Sémantiques possibles des NULLs

- (au moins) trois cas différents
 - valeur inconnue
 - valeur inexistante
 - valeur sans information
- Les systèmes de bases de données ne distinguent pas entre ces trois cas.

Comment améliorer le schéma?

- Contraintes d'intégrité: excluent certaines instances de la base, qui ne représentent pas correctement le monde applicatif.
- Pour garantir l'intégrité des données, on utilise:
 - des clés
 - l'intégrité référentielle
 - des contraintes sur les valeurs
 - des contraintes génériques

Clés

- Sous-ensemble des attributs du schéma, avec les propriétés d'unicité et de minimalité
- Unicité: il n'existent jamais deux tuples dans la même relation, avec la même clé
- Minimalité: si on enlève un attribut de la clé, la propriété d'unicité est perdue

Exemple de clés

SID	NOM	VILLE	FORMATION
123	Pierre	Paris	Inf
107	Arnaud	Lille	Log
415	Celine	Lille	Inf
702	Estelle	Rome	Log

Clés pour l'exemple 1: gestion des examens d'une université

etudiant

SID	NOM	VILLE	FORMA	ΠΟΝ

examens

SID	CID	DATE	NOTE

CID	TITRE	PROF

Clés pour l'exemple 2: gestion du personnel

employes

MATR	NOM	DATE-EMB	SALAIRE	MATR-MGR

affectation

MATR	NUM-PROJ	POURC

NUM-PROJ	NOM	TYPE	

Exemple 3 : gestion de commandes

client

Requêtes

- Quelles sont les commandes de Paul?
- Combien de commandes Paul a-t-il fait?
- Combien de feux d'artifices ont été commandés le 15/11/2014?
- Calculer, par client, la somme des valeurs de toutes ses commandes
- Donner la commande de la valeur la plus haute

Résumé

- Nous avons vu:
 - Qu'est-ce qu'une relation ?
 - Qu'est un attribut ?
 - C'est quoi, un domaine d'attribut?
 - C'est quoi, NULL?
 - Quel est le rôle des clés?