

EP 1 078 038 B1 (11)

(12)

EUROPEAN PATENT SPECIFICATION

(45) Date of publication and mention of the grant of the patent: 23.07.2003 Bulletin 2003/30

(21) Application number: 99922326.6

(22) Date of filing: 14.05.1999

(51) Int Cl.7: C12H 1/18, B67D 1/04

(86) International application number: PCT/GB99/01551

(87) International publication number: WO 99/060092 (25.11.1999 Gazette 1999/47)

(54) ALCOHOLIC DRAUGHT BEVERAGE

ALKOHOLISCHES FASSGETRÄNK **BOISSON ALCOHOLIQUE A LA PRESSION**

(84) Designated Contracting States: AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

(30) Priority: 15.05.1998 GB 9810309 23.12.1998 GB 9828321 23.12.1998 GB 9828317 19.01.1999 GB 9901018

(43) Date of publication of application: 28.02.2001 Bulletin 2001/09

(73) Proprietor: Coors Worldwide, Inc. Golden, Colorado 80401 (US)

(72) Inventors:

 SCULLION, Simon Daniel Burton-on-Trent, Staffordshire DE13 3DA (GB)

· FOSTER, Peter Thomas Burton-on-Trent, Staffordshire DE13 0XR (GB) · SMITH, Stephen Paul Ashbourne, Derbyshire DE6 5HQ (GB)

(74) Representative: Lawrence, John et al **Barker Brettell** 138 Hagley Road Edgbaston Birmingham B16 9PW (GB)

(56) References cited:

EP-A- 0 268 097 EP-A-0 683 223 GB-A- 1 208 334 US-A-3 826 829

US-A- 5 709 095

 DATABASE WPI Section Ch, Derwent Publications Ltd., London, GB; Class D13, AN 1971-19784S XP002119502 & JP 46 010033 B (MORINAGA MILK INDS CO LTD)

Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).

Description

[0001] This invention relates to a draught-dispensed alcoholic beverage and to methods of presenting or serving said beverage and to providing a visual display in said beverage.

[0002] The beverage concerned comprises a water content and a dissolved gas content.

[0003] The draught-dispensed beverage is an alcoholic beverage. For example, the beverage may be a beer, a cider, a flavoured alcoholic beverage, for example an alcoholic lemonade or other alco-pop style of drink, or a so-called low alcoholic drink. The term "beer" embraces lager, ale, porter and stout and includes a beverage comprising hops flavouring, an alcohol content derived from malt and fermentation, a water content, and a dissolved gas content.

[0004] One object is to provide a cool beverage using ice therein in a way which a consumer may find more agreeable because dilution of the drink cannot occur.

[0005] Another object to provide a beverage which the existence of cooling ice therein may be sustained whereby the drink may be kept cold for an extended period of time.

[0006] Another object is to provide a beverage in which a head thereon may be sustained.

[0007] Another object is to provide a beverage in which ice may develop therein as an interesting visual display.

[0008] Japanese Patent JP-B-46010033 discloses a carbonated drink in which a fine ice is formed from its water content at the time of breaking a super cooled state by stimulation of dissolved CO₂.

[0009] US-A-3826829 discloses a carbonated slush beverage containing fine-grain ice crystals which uses pectin and other gums to increase the viscosity to avoid ice agglomerating.

[0010] EP-A-0268097 discloses an alcoholic soft ice which can be used to produce a slush-type frozen cocktail

[0011] According to a first aspect of the invention there is provided a method of keeping a draught-dispensed alcoholic beverage in an open-topped vessel cool, as defined in claim 1.

[0012] According to a second aspect the invention comprises an open-topped vessel of a draught-dispensed alcoholic beverage as defined in claim 2.

[0013] The vessel may be any suitable vessel, for example a drinking vessel, for example a glass.

[0014] There may be a head of foam over the ice. Preferably there is a layer of ice adjacent the head, in contact with the head. Preferably there is a projection of ice extending downwards, away from the head, and being provided in the region of the head. The projection of the ice may depend directly from the head, or from a layer of ice beneath the head.

[0015] The ice is preferably made of many small crystals of ice, rather than a single solid mass. The ice is

preferably slushy in character, rather than being a solid mass. There may be more than one kind of ice formation in the beverage. There may be a fine, powdery ice. There may be a flaky ice, of the order of 1 or 2mm or 3mm or 4mm, or more, in their longest dimension of the flakes.

[0016] The beverage, which may be coloured as distinct from white or water clear, may have bands, or stripes, across it at different heights, the bands possibly being white layers where nucleation is taking place, and beverage-coloured layers interposed between the white layers where less nucleation is taking place. This effect may be achieved by using ultrasound on the vessel, for example a glass, of beverage. The white bands and the interposed beverage-coloured bands may be of substantially the same thickness.

[0017] The white bands interspersed by beverage-coloured bands may exist for a matter of seconds, rather than minutes, and typically exist for 1 to 10 seconds, preferably about 3 to 6 seconds. The white bands/beverage-coloured bands interspersed may exist for substantially the same time as ultrasound is applied to the vessel of beverage.

[0018] Nucleation means may be provided to encourage the formation of the ice crystals and/or head in the beverage when it is in a vessel. The nucleation means is preferably the administration of ultrasound, preferably to the bottom portion of a vessel of beverage, but it could be other forms of nucleation inducement. For example the vessel and/or dispense tap/nozzle (or an object to be inserted into the vessel of beverage) may have a roughened surface/high surface area surface to encourage nucleation (such as a sintered surface, etched surface, or a surface of ground material, such as glass); or a rapid and suitably large pressure drop may be provided to induce nucleation; or mechanical agitation may be provided; or the beverage may be arranged to have turbulent flow to promote nucleation; or an amount of liquid, possibly highly supersaturated with gas, may be introduced or injected; or gas may be otherwise introduced, or injected, or the glass may be vibrated in some way (e.g. by being exposed to sound waves, or the vessel may be vibrated in some other way); or by introducing a chemical (e.g. tablet) or device which generates bubbles (for example a chemical pellet may effervesce or dissolve, releasing bubbles).

[0019] Preferably the vessel has a transparent or translucent wall or at least has a window of transparent or translucent material.

[0020] Preferably the ice formation extends substantially the width of the mouth of the vessel, or completely across the width of the mouth. It may comprise substantially homogenous ice-crystals in a head-contacting region or layer. Alternatively, the ice crystals that contact the head may not be substantially homogeneous.

[0021] The ice formation may have a projection extending away from the head. The projection may comprise flakes of ice that are larger than the ice at the ice-

35

45

30

45

head boundary.

[0022] The ice at the ice-head interface may have been formed before the ice flakes of the projection.

[0023] The beverage may have been subjected to ultrasound signals and may be draught beverage delivered into the vessel. Before the draught beverage is delivered into the vessel, and preferably immediately before, the beverage may be cooled to a temperature below the freezing point of water at ambient atmospheric pressure.

[0024] The ultrasound signals may be applied externally of said vessel, and/or the ultrasound signals may be applied internally of said vessel to the cooled beverage. In the latter case an ultra-sonic emitter provided as or incorporated into a probe may be disposed in the beverage in the vessel. If desired a dispense outlet or nozzle from which the beverage is delivered into the vessel may be adapted to act as an ultra-sonic emitter to provide aforesaid ultrasound signals to beverage in the vessel. Such signals may be applied to the beverage as it passes through the dispense outlet.

[0025] Ultrasound signals can be applied to beverage not only after it has been delivered into the vessel, but also whilst it is being delivered.

[0026] The ultrasound signals may have a frequency in the range of 20kHz to 70kHz. For example, the ultrasound signals may have a frequency of substantially 30kHz.

[0027] A mass of aforesaid ice may develop downwards in the beverage below the head.

[0028] Preferably, the vessel is chilled before the beverage is delivered thereinto. The vessel may be chilled to a temperature of substantially 4°C, or the vessel may be chilled to a temperature less than 4°C. For example, the vessel may be chilled to a temperature of substantially 0°C.

[0029] Prior to the delivery, and preferably just prior to the delivery, a draught beverage may be cooled to a temperature in a range of between substantially -1°C and substantially -12°C and may issue at a temperature substantially in that range into the vessel. If desired, the beverage may be cooled to a temperature between substantially -4°C and substantially -6°C. The greater the alcohol strength by volume (abv), the lower the temperature to which the alcoholic beverage may be cooled. We may aim to achieve a dispense temperature of about -5°C for a lager (or other drink) with about 4.5 abv (or to substantially - 4°C or substantially -6°C),

[0030] Preferably, the vessel has a wall portion of sufficient transparency to allow the contents of the vessel to be visible through said wall portion. Thus the vessel may be a glass drinking vessel.

[0031] Preferably the beverage is a pale colour for example the colour of a pale beer. If desired the beverage can be a lager, or a cider.

[0032] Aforesaid dissolved gas may comprise carbon dioxide and/or may comprise nitrogen. A dissolved nitrogen content in the beverage, for example an alcoholic

beverage may be in the range of substantially zero parts per million (p.p.m) to substantially 100 p.p.m. For some beverages, for example certain lagers, substantially 40 p.p.m. A dissolved carbon dioxide content may approach zero % by volume or be greater. Said carbon dioxide may be substantially at any of the following levels or in a range defined between any of the following levels; zero vols/vol, 0.5 vols/vol, 1 vols/vol, 1.4 or 1.5 vols/vol, 2.0 vols/vol, 2.2 or 2.4 vols/vol, 3 vols/vol, 4 vols/vols or 5 vols/vol or above.

[0033] If desired, the ultrasound signals can be accompanied by a mechanically or electrically produced audible performance and/or a visible light display. The audible performance may be tuneful or musical sound. The visible light displays may comprise visible flashes of light.

[0034] If desired the beverage can be subjected to the ultrasound within an enclosure arranged to conceal the vessel from view from at least one side of said enclosure.

[0035] According to a third aspect of the invention, there is provided an alcoholic beverage to be available on draught as defined in claim 3.

[0036] If desired, the vessel which preferably may be a drinking vessel, can have a shape or formation to promote formation of the ice. For example, the vessel may have an internal surface to provide nucleation sites to promote formation of the ice. Said surface may have at least a surface portion which is roughened. At least a wall portion of vessel can be arranged to change colour automatically with variation in temperature. Said wall portion may comprise thermo-chromic material.

[0037] Desirably, the gas is a non-oxidising gas. This can avoid or at least slow deterioration of the beverage. The gas comprises carbon dioxide and/or nitrogen. By cooling the beverage and forming ice therein, this appears to, initially at least, reduce the rate of release of dissolved gas from the beverage, for example lager, and appears to improve the drinking sensation, taste, flavour or bite. We believe that this is a combination of the low drinking temperature (maintained by the ice) and the greater amount of retained gas in the beverage.

[0038] The presence of the ice can provide an interesting and attractive feature which can be particularly fascinating as the ice may expand at a noticeable rate throughout the beverage after the vessel is filled. To add to the interest, the ice may include therein one or more streaks or regions of one or more colours which contrast (s) with the colour of the ice and/or beverage.

[0039] The aforesaid ice may be, or may have, the character of slush.

[0040] According to a fourth aspect of the invention, there is provided a method of serving a draught alcoholic beverage which comprises a water content and a dissolved gas content, said method comprising issuing the draught beverage from an outlet into a vessel, prior to said issuing, storing or handling the beverage in a manner which impedes loss of the aforesaid dissolved gas

from the beverage and cooling said beverage to a temperature below the freezing point of water at said ambient atmospheric pressure, and in said vessel aforesaid gas bubbles out of the beverage and at least a portion of said water becomes ice.

[0041] The method of the first or fourth aspect of the invention may comprise providing a visual display or effect within a vessel.

[0042] Formation of ice can develop in the vessel so as to increase the amount and extent of the ice from substantially an upper level of the beverage downwards through the beverage.

[0043] At least a wall portion of the vessel may change colour automatically with variation in temperature. Said wall portion may comprise thermo-chromic material.

[0044] An implement can be inserted into the beverage in the vessel to encourage formation of said ice. For example, the implement may be a thermometer, or it may be a swizzle-stick.

[0045] Colouring material or dye can be provided to form at least one coloured streak or region in the beverage and/or ice, the colour of said material or dye being in contrast to that of the ice and/or beverage so as to be visible.

[0046] The aforesaid implement may be used to add the colouring material or dye to the beverage and/or ice. [0047] In one method, the beverage may issue at substantially -4°C into the vessel and thereafter the temperature of the beverage in the vessel may rise almost immediately to at least substantially -3°C

[0048] The beverage may be dispensed from a beverage dispense apparatus comprising cooling means adapted to cool a beverage to below 0°C, a dispense tap, and beverage dispense pipework adapted to convey the beverage to the dispense tap, the arrangement being such that the apparatus is adapted to dispense the beverage cooled to below the point at which ice would normally form in the beverage if the beverage were left standing at atmospheric pressure and if nucleation means were provided for the standing beverage, and in which the undispensed beverage in the apparatus does not freeze solid.

[0049] Preferably, the apparatus includes pump means and the beverage dispense pipework may include a portion which circulates beverage past the dispense tap when the dispense tap is closed, the fact that cooled undispensed beverage is kept flowing tends to prevent the formation of ice blockages at the dispense tap.

[0050] The beverage may be kept flowing past the dispense tap (or through it when it is open) at substantially all times that the beverage is at a temperature at which ice may otherwise form at the dispense tap or, in the beverage dispense pipework.

[0051] Preferably, there is a cold circulation loop in which is provided at least one cooling means and which is connected to the dispense tap, beverage in the circulation loop being kept cold by the cooling means and

being kept circulating by pump means provided in the circulation loop. There may be a plurality of cooling means (e.g. heat exchangers) in the circulation loop. There may be a plurality of dispense taps associated with the circulation loop.

[0052] Beverage upstream of the circulation loop may be cooled to a temperature about that at which ice may form in the beverage under the conditions of temperature and pressure experienced by the beverage in the pipework upstream of the circulation loop.

[0053] The beverage may be dispensed using apparatus to supply draught beverage, comprising beverage heat exchange means, a beverage outlet for cold beverage from said heat exchange means to issue from the outlet, openable and closable valve means to control supply of beverage to said outlet, and a beverage circulation loop for beverage to circulate in said loop.

[0054] The beverage can circulate in the loop when the valve means is closed. Preferably, the loop comprises pump means to circulate said beverage.

[0055] A purpose of circulating the beverage is to reduce the risk of or avoid freezing beverage blocking a beverage supply path to the outlet. Said loop may include a beverage flow passage in said heat exchange means

[0056] The apparatus can comprise a unit or dispenser mountable on a counter of a drinks' bar and comprising the heat exchange means and the outlet.

[0057] A beverage flow path can connect a reservoir of the draught beverage to the heat exchange means. The flow path may comprise at least a portion of the loop.

[0058] The flow path may divide into a plurality of beverage routes, and the loop may comprise one or more of the routes.

Intermediate the reservoir and the first-mentioned heat exchange means. The beverage may be subject to the effect of second beverage cooling heat exchange means.

[0 [0059] The reservoir may be subjected to cooling.

[0060] If desired, the second heat exchange means may act on at least a portion of the loop.

[0061] Coolant common to the first and second heat exchange means may circulate therethrough.

[0062] Beverage cooling heat exchange means may act on the beverage intermediate said reservoir and loop.

[0063] One advantage of the invention is that it enables us to provide cool beverage using ice therein in a way which a consumer may find more agreeable because dilution of the drink cannot occur. Another advantage may be that we can provide a beverage in which the existence of cooling ice therein may be sustained whereby the drink may be kept cold for an extended period of time.

[0064] A further advantage may be that we can provide beverage in which a head thereon may be sustained for a longer period of time than is achieved by the

20

35

40

same beer dispensed at, say 6°C, or at say 4°C using similar or the same dispense apparatus. Yet a further advantage of one embodiment of the invention is that it enables us to provide beer in which ice may develop therein as an interesting visual display.

[0065] It is extremely difficult to serve a glass of draught cider with a head of froth or foam so that the head lasts for any appreciable time. Though it is possible to create a head by dispensing the cider from a font containing a sparkler, the head quickly disappears. Because the use of a sparkler slows the delivery rate of the cider, it takes longer to deliver a measured volume than if the sparkler were not used, and because the head quickly vanishes anyway some people think use of a sparkler pointless and take if off the font - sometimes without permission.

[0066] Another object is to provide a method of serving draught cider containing a dissolved gas content so that a head on the delivered draught cider in a vessel, for example a drinking glass, is more stable and remains for a longer period of time than a head on cider served by hitherto known methods.

In some embodiments the beverage comprises a cider, which may be dispensed so as to have a head on it.

[0067] The cider may be cooled to a temperature in the range of substantially -1°C to substantially -12°C. For example, the cider may be cooled to substantially -6°C. The greater the alcohol strength by volume the lower the temperature to which the cider may be cooled. [0068] If desired, the cooled cider may issue from a dispense outlet through a sparkler. However, the cooled cider may pass through an orifice plate in a dispense outlet from which the cider issues.

[0069] Preferably the open-topped vessel is chilled before receiving the cider. The vessel may be chilled to substantially 4°C or may be chilled to a temperature lower than 4°C. For example, the vessel may be chilled to substantially 0°C.

[0070] Said ultra-sound signals may have a frequency in the range of substantially 20kHz to substantially 70kHz. For example, the ultra-sound signals may have a frequency of substantially 30kHz.

[0071] The ultra-sound signals can be applied externally of said vessel to said vessel.

[0072] The ultra-sound signals may be applied internally of said vessel to the cooled cider. Thus an ultrasonic signal emitter may be disposed in the cider in the vessel for emitting ultra-sound signals into the cider in the vessel.

[0073] The dispense outlet from which the cooled cider issues into said vessel may be adapted to act as an ultra-sonic signal emitter to provide aforesaid ultra-sound signals. Aforesaid ultra-sound signals may be applied to aforesaid cider flowing through the dispense outlet.

[0074] The dissolved gas content may comprise carbon dioxide and/or nitrogen. The carbon dioxide may approach zero % by volume or be greater, and/or the nitrogen content may approach zero parts per million (p. p.m.) or be greater for example, the carbon dioxide content may be substantially 1.8% by volume and/or the nitrogen content may be substantially 18 parts per million (p.p.m.).

[0075] Using the invention may enable us to provide a method of sustaining a head on cider in an open-topped vessel.

[0076] The invention will now be further described by way of example with reference to the accompanying drawings in which:-

Figure 1 is a diagrammatic view of apparatus for delivering cooled draught beverage;

Figures 2 to 4 show diagrammatically in elevation a drinking vessel filled with draught beverage delivered by the apparatus in Figure 1 to illustrate successive changes or variations in the beverage after delivery thereof into a drinking vessel;

Figure 5 to 7 respectively shows diagrammatic side elevations illustrating modifications in the way the delivered beverage may be served in the drinking vessel:

Figure 8 is a diagrammatic view showing in elevation a drinking vessel filled with a beverage delivered by the apparatus in Figure 1, the vessel being shown standing on apparatus represented diagrammatically to apply ultrasound signals to the beverage;

Figures 9 to 15 show diagrammatically in elevation successive changes in the development or variations in a head on the beverage subsequent to the beverage being subjected to ultrasound signals and also to development or variation in ice formed in the beverage;

Figure 16 is a diagrammatic view of an alternative method of applying ultrasound signals to the beverage;

Figure 17 is a diagrammatic view of yet a further method of applying ultrasound signals to the beverage;

Figure 18 shows a pint of lager being excited by ultrasound;

Figure 19 shows the pint of lager in Figure 18 after it has been allowed to stand for three minutes;

Figure 20 is a diagrammatic view of apparatus for delivering cooled draught cider;

Figure 21 is a diagrammatic view showing in eleva-

tion a drinking vessel filled with cider delivered by the apparatus in Figure 20, the vessel being shown standing on apparatus represented diagrammatically (and similar to that in Figure 8) to apply ultrasound signals to the cider;

Figure 22 and 23 shows diagrammatically in elevation successive changes in the development of the variations in the head on the cider subsequent to the cider being subjected to ultra-sound signals and also to development of or variations in ice formed in the cider;

Figure 24 is a diagrammatic view of an alternative method of applying ultra-sound signals to the cider, and;

Figure 25 is a diagrammatic view of yet a further method of applying ultra-sound signals to the cider.

[0077] The draught beverage is stored in a keg or cask 4 which may be made of metal. The cask 4 can be stored in a cold-room known per se in public houses or clubs and/or, if desired, in a more specific cold or cooled enclosure 6, for example a tank containing a chilled mixture of water and ethylene glycol. As stated above the beverage has a water content and a dissolved gas content. This gas may be any suitable non-oxidising gas, for example carbon dioxide and/or nitrogen. The amount of gas dissolved in the beverage may be within the usual known range for beverages, and the pressure within the cask 4 and the remainder of the supply apparatus (described below) may also be within the usual known range for beverages supplied on draught.

[0078] The beverage may be a beer which term includes lager, ale, porter, or stout, or may be cider. The dissolved carbon dioxide content may be greater than substantially 1 vols/vol or 2 vols/vol and may be substantially 2.2 volumes per volume, and/or the dissolved nitrogen content may be substantially 25 p.p.m. to 35 p. p.m. If desired the carbon dioxide content may be substantially 4 vols/vol or substantially 5 vols/vol. The alcohol content may be between 2.5% abv to 6 or 7% abv, preferably 4.5% abv, ± 1% abv.

[0079] The beverage may be a flavoured alcoholic beverage

[0080] A pump 8, arranged to operate substantially only when the manually operable valve 10 is open, is provided to pump beverage from the cask 4 along a pipe 12 ultimately to the valve 10 and a dispense outlet 14 therefrom. In known manner, a blanket or atmosphere of non-oxidising/pressurised gas (for example carbon dioxide and/or nitrogen) is provided in the cask 4 from a suitable supply 16 and assists the pump 8 in the extraction of the beverage.

[0081] A beverage dispense unit is indicated generally at 18 and has a cover indicated by interrupted lines 20. The dispense unit may be mounted at or in the vi-

cinity of a drinks' bar - for example on the top of, or incorporated into, a counter of the bar.

[0082] In proximity to the cover 20 the pipe 12 divides into two flow paths 22 and 24, each leading to the valve 10. One is formed by piping 22a, 22b, 22c and passages 26 in heat exchangers 28a and 28b, and the other is formed by piping 24a, 24b, 24c and passages 26 in heat exchangers 28c and 28d.

[0083] A chiller unit 30 circulates coolant through passages 32 in the heat exchangers 28 in the series by a system comprising a coolant flow pipe 34 and a coolant return pipe 36. Beverage pipes 22a and 24a can be bundled together in known manner with the coolant pipes 34 and 36 to form a python 38. The heat exchangers 28 may be plate heat exchangers.

A circulation pump 40 which may operate continuously, extends between the flow paths 22 and 24 adjacent to the junction between the pipe 12 and the flow paths. Thus, the flow paths 22, 24 and the pump 40 form a circulation loop 22, 24, 40 around which beverage is continuously circulated when valve 10 is closed.

[0084] As suggested in Figure 1, in the beverage dispense unit 18, the heat exchangers 28 are within the cover 20, whilst the valve 10 and outlet 14 can be on its exterior, and a portion of the circulation loop comprised by the pump 40 and sections of pipes 22a and 24a is also external of the cover and may be exposed to ambient temperature at the bar.

[0085] If desired, the pipe 12 may be incorporated in know manner into another cooling python 42 comprising flow and return pipes 44 and 46, carrying coolant from and back to a chiller unit 48.

[0086] Overall, the beverage arrangement - and particularly that provided by the dispense unit 18 by the heat exchangers 28 - so cools the beverage that the beverage issuing from the outlet 14 when valve 10 is opened is at a temperature below the freezing point of water at the ambient atmospheric pressure. For example the beverage may issue at a temperature in the range of substantially -1°C to substantially -12°C into a drinking vessel or drinking glass. The range may be substantially -4°C to substantially -6°C. A target temperature of -5°C is aimed for if we use a beverage with about 4.5% abv. [0087] When the valve 10 is closed, the beverage is circulated automatically around the loop 22, 24, 40 so it cannot stand still and start to freeze and block the supply path to valve 10.

[0088] In the case of draught beverages, for example beers, conventionally served with a head, the outlet 14 may include a known orifice plate, or other device, to promote foaming.

[0089] With reference to Figure 2, when a draught beverage 50 is delivered from the outlet 14 (Figure 1) into a drinking vessel 52 (for example a glass) the beverage is exposed to ambient atmospheric pressure and ambient or room temperature, the beverage temperature starts to increase, for example to -3°C. Almost immediately, a slug of ice 54a forms near the top of the

vessel 50 at the upper level of the beverage, the ice being caused (we believe) as a result of nucleation sites resulting from the forming of bubbles of dissolved gas. If the beverage 50 has a head 56 of foam the ice forms just below the head. The or a greater part of the ice may be in the nature of slush and is formed from the water already forming the beverage. The slug of ice grows as indicated at 54b in Figure 3 and 54c in Figure 4 until it may substantially occupy the vessel 52. The growth of ice (in, say, a pint glass) can be accomplished in a minute or two, is fascinating to watch and can give rise to interesting visual effects based on the growth of the ice and the bubbling off of the gas. Another interesting visual effect is that cooled beverages delivered into a drinking vessel from the apparatus in Figure 1 swirl in the vessel for a longer time period than beverages which have not been cooled.

[0090] Not only does the formation of the ice give rise to interesting visual effects, but the existence of the ice helps to keep the drink cool longer. Also, since the ice is formed from the water in the beverage, the beverage is not diluted by the ice. In fact, for an alcoholic beverage, the overall amount of alcohol remains the same in the container when the ice forms, but since water is being used for the ice, the alcoholic strength of the remaining liquid beverages increases until the ice melts.

[0091] The vessel 52 may be shaped or formed to encourage formation of the ice. In Figure 5, a region 58 (having a rough surface) is provided to encourage formation of nucleation sites to promote formations of a further ice slug 54d which rises as indicated by arrow A to enlarge the ice slug 54 developing from the top of the vessel 52.

[0092] In Figure 6, formation of further ice 54e in the body of the beverage 50 is encouraged by the insertion therein of an elongate implement or rod 60 represented in Figure 6 by a swizzle-stick having formations 62 and 64 at its lower end and shank respectively which further encourage development of nucleation sites. In another instance, the rod 60 may be a thermometer body which can also be used to take the temperature of the drink to see if it has risen sufficiently high for it to be safe to drink. The implement can be used to push the ice around.

[0093] In Figure 7, coloured regions or streaks are shown in the ice 54 and beverage 50. These coloured formations are formed by the release of non-toxic, edible, colouring materials or dyes into the beverage 56. The colouring material or dye, which stands out visually from the ice and beverage, may be injected into the beverage, or may be introduced into the beverage by or on the aforesaid implement.

[0094] It is preferable for the vessel 52 to have a wall of, sufficient transparency so that the formation of the ice slug 54 in the beverage 50 can be observed and its changing nature visually appreciated.

[0095] The drinking vessel 52 can be formed of, or have external surface areas formed of, material (for example thermo-chromic material) which automatically

changes colour with temperature change. Apart from this being a further interesting visual effect, the attainment of one particular colour may signal that the beverage is at a suitable temperature for drinking.

[0096] Whilst any kind of beverage having a water and dissolved gas content may be used, we believe that lager demonstrates a visual nature or character of the invention.

[0097] With reference to Figure 8, a draught beverage 70 (which may be a beer, for example a lager) is delivered from the outlet 14 (Figure 1) into a drinking vessel 72, for example a glass which is preferably rather tall and preferably has a clear or transparent wall.

[0098] Preferably, the vessel 72 is chilled before it received the beverage. The vessel 72 may be chilled to a temperature of substantially 4°C or less. For example a known bottle chiller may be used to chill the vessel 72 to substantially 4°C whilst a known glass froster may chill the vessel to substantially 0°C. A head of foam is shown at 74 and preferably this is some way below the top of the vessel 72 when the vessel contains a full measured volume, for example a pint of the beer.

[0099] Immediately after the cold beverage is poured into the chilled vessel 72 (or a few seconds after), the vessel is placed in a shallow depth of water 76 in a dish part 78 of an ultrasound generating apparatus 80 in which the dish 78 is securely mounted or affixed against a base part 82 containing an ultrasonic emitter 84. The emitter 84 may be arranged to emit ultrasound signals in a frequency range of substantially 20kHz to 70kHz. For example the beverage may be subject to ultrasound signals of a frequency of substantially 30 kHz or some other frequency selected from the aforesaid range, the water layer 76 providing an ultrasound for any desired period, though usually a short period of a few seconds, for example substantially one to five seconds and more specifically about three or four seconds. The user may be able to vary the length of time that the ultrasound is applied, for example by having to hold down a switch, or by altering the setting on a control.

[0100] The result in a short time (perhaps a few seconds to the order of ten seconds) is shown in Figure 9 in which the exposure to ultra-sonic signals has promoted a fairly dense sudden formation of a mass of bubbles 86 of the dissolved gas throughout the liquid beverage. This causes the head 74 to increase in height. As shown in Figure 10, the head 74 may rise out of the vessel 72. The gas bubbles form nucleation sites encouraging the quick formation of a mass of ice 88A just below the head. This ice 88A may be of a rather slushy character. For a period the mass of slush 88A grows and the head 74 rises as shown in Figure 11 but the bubbles of gas are no longer so numerous. Nevertheless, they can act as nucleation sites encouraging thereat the formation of ice 88B in the body of the beverage, this ice 88B may be more in the nature of flakes, for example snow type flakes, which rise and applomerate to form a flaky mass 88C of ice on the underside of the slushy ice mass 88A.

25

35

As indicated in Figure 12 and 13 the ice flakes continue to form for a period, rise and extend the ice mass 88C downwards through the beverage 70.

[0101] Going from the stage shown in Figure 8 to that in Figure 14 may only take one or two minutes so the increase in gas bubbling and the formation and visible development of the ice takes place fairly quickly and can be an interesting and rather amazing phenomena to observe through the glass 72.

[0102] To enhance the theatre, drama or wonder of the event for a customer at the drinks' bar the operation of the apparatus 80 may be accompanied by an automatically (or manually actuated) occurring audible performance which may be mechanically or electrically produced using sound apparatus giving out dramatic, musical or tuneful sounds. In addition to, or as an alternative, the operation of the apparatus 80 may be, possibly automatically, accompanied by a visual lights display, for example visible flashes of light. These may stimulate flashes of lightening. In that case the audible performance may comprise noise resembling thunder.

[0103] If desired, the vessel 72 when subject to the ultrasound may be concealed from the view of the customer in a bar. For example, it may be concealed from view on one or more sides in an enclosure which may be on the counter or proximate thereto, which enclosure may be represented as a "magic" or magician's box or cabinet.

[0104] Preferably, the beverage is a pale colour. For example the beverage may be a pale coloured beer, for example a lager.

[0105] Besides the ice forming in the beverage 70 being an intriguing sight, it helps show the customer the beverage is cold and that it has not been diluted by addition of ice from water other than that of the beverage.
[0106] The good head 74 provides insulation of the ice, particularly from overhead heat, which helps sustain the ice for longer and thus the duration of its cooling effect. Also the ice below the head 74, helps sustain the existence of the head which may last for ten minutes, fifteen minutes or most preferably for twenty minutes or

[0107] In Figure 15, the head 74 though starting to collapse (at its centre and move away from the vessel's wall) after the elapse of some time, for example fifteen or so minutes, is still stubbornly remaining, insulating the ice and giving the beverage an attractive presentation in the vessel 72.

[0108] An alternative method of applying the ultrasound signals is represented in Figure 16 in which after the apparatus 2 in Figure 1 has dispensed a vessel or glass 72 of beverage 70 an ultrasound probe 90 powered through cable 92 is dipped into the beverage for emitter 84A to give out ultrasound signals. The probe 90 may be inserted into the beverage before the full measured amount is supplied to the vessel.

[0109] In Figure 12, the dispense outlet 14 has been arranged to act as an ultrasonic probe, for example by

providing it with an ultrasonic emitter 88B.

[0110] The ultrasound probe 14 in Figure 12 may emit ultrasound signals whilst beer is passing through it to the vessel 72, and/or may become partially immersed in the beverage as shown and emit ultrasound signals into the beverage 70 in the vessel 72 whilst the measured volume of beverage is still being supplied or after it has been supplied.

[0111] Figure 18 shows another glass 172 (for example a pint) of beverage 170 in this case lager, being excited (as indicated by arrow X) at the base only by an ultrasound emitter, for example by standing the glass of beverage in couplant (water) for example as shown in Figure 8. Figure 18 shows the glass 172 after it has been excited by the ultrasound for about three seconds or so, and whilst it is still being excited by ultrasound and whilst a head 174 of foam is beginning to form. As will be seen, in addition to general bubble formation at a relatively modest level throughout the volume of the beverage 170, there is increased activity in a series of horizontal "white bands" about half-way up the height of the glass 172. Interspersed between the white hands 120 are bands 122 which are less white-coloured i.e. more beerage or lager coloured. There are typically two to four white bands 120 visible, but increased bubble formation may occur above and below the "banded region" 120. 122.

[0112] The formation of the bands 120, 122 gives the glass of beverage an attractive appearance for the few seconds that they last. It is believed that they may be associated with the formation of standing waves in the glass 172 due to the ultrasound excitation, and may represent areas of the glass which might vibrate the most (although this belief is speculative and is not to be held to be limiting). The bands 120, 122 may form generally in the central height of the glass, but they may not be right at the middle - for example, they could be one-third to two-fifths of the way down from the top (or up from the bottom).

40 [0113] It should also be noted that the glass 172 of Figure 18 has a mouth 124 that is narrower than a body portion 126. It is believed that having a restricted mouth forms a deeper and longer-lasting head. This may, or may not be associated with the fact that in comparison with the volume of beer contained a glass with a restricted mouth has a smaller exposed surface area of head than if it were in a vessel with straight sides, or outwardly flared sides.

[0114] Our trials indicate that best/better results can be achieved on pints of beverage than on half-pints of beverage. This may be associated with greater heat capacity of a pint of beverage in comparison with a half-pint of beverage, and the less effect exposure to the environment has/the less rapid the effect of the heat transfer to the local environment, when the ratio of volume of beverage; exposed surface is larger.

[0115] Figure 19, illustrates the pint of lager of Figure 18 after about three minutes have expired (or looked at

another way after about ten minutes have expired - there is little change in the appearance of the glass of lager between the three minutes and the ten minutes). The head 174 is somewhat deeper than might be expected, and slightly projects above the glass 172. There is a relatively thin layer of ice 188A (of the order of a half to a few millimetres) extending under the head completely across the diameter of the glass 172 and there is a depending projection of flaky ice 188B extending down perhaps two to five centimetres into the cleared beer. The projection 188B may extend for at least three centimetres, five centimetres is not to be taken as necessarily an upper limit to its length. The projection 188B is generally central, but may be off-axis in comparison with the central axis of the glass. It has a narrower tip than it does base (the base being the portion adjacent the head 174).

[0116] It will be appreciated that creating a beverage having such an ice formation is in itself new and itself gives a visually differentiated product - which is desirable to consumers.

[0117] Moreover, creating the bands or stripes during ultrasonic excitation of the glass of beverage also creates a visually distinct product, and a differentiated mode of provision of the product to the consumer.

[0118] With reference to Figure 20 apparatus to supply cider on draught is indicated at 202.

[0119] The draught cider is stored in a keg or cask 204. As stated above, the draught cider has a water content and a dissolved gas content.

[0120] This gas may be any suitable non-oxidising gas, for example carbon dioxide and/or nitrogen. The amount of gas dissolved in the cider may be within the usual known range for ciders.

[0121] The dissolved carbon dioxide content may be substantially 1.8% by volume, and/or the dissolved nitrogen content may be substantially 18 parts per million (p.p.m).

[0122] A pump 206 is provided to pump cider from the cask 204 through a non-return valve 207 and along a pipe 208 in a chilled python known per se (not shown); the pipe comprising a heat exchange coil 210 in a remote cooling system known per se. The pipe 208 leads to a chilling coil 212 in a bath 214 of a chiller 216, from which coil a pipe 208A leads to a manual valve 218 (known per se) of a dispense outlet or nozzle 220 which may be provided at or on a drinks' bar. Bath 214 contains an ethylene glycol and water cooling mixture 222, for example 50% glycol and 50% water. The cooling mixture 222 is cooled by an evaporator 224 of a refrigeration unit 226 comprising a condenser 228, a refrigerant pump 230, and an expansion arrangement 232. A pump 234 circulates the cold mixture 222 through piping 236 forming another python 238 with the pipe 208A.

[0123] In known manner, a blanket or atmosphere of non-oxidising gas (for example carbon dioxide and/or nitrogen) from a suitable supply 240 (via a pressure regulator 242) provides a top pressure in the cask 204 and

assists the pump 206 in the extraction of cider.

[0124] The top gas pressure in the cask 204 may be substantially 206.84kN/m² (30lbs/in²).

[0125] The pump 206 may develop a pressure in pipes 208, 208A of substantially 517.12kN/m² to substantially 551.58 kN/m² valve (75 to 80 lbs/in²). Normally pump 206 is not operating, thus when the valve 218 is opened the pump pressure stored in the pipes 208. 208A drops to below a pre-determined desired value which is observed by pressure switch 244 of a pump control (not shown) causing the pump 206 to operate to provide a pump output pressure of substantially 75 to 80 lbs/in2. The chiller 216 is arranged to cool the cider passing through to the outlet nozzle 220 to a pre-determined temperature in the range of substantially -1°C to substantially -12°C, for example -6°C. The cider reaches the nozzle 220 at that pre-determined temperature and issues therefrom into an open-topped vessel 246 (Figure 21) which may be a drinking vessel, for example a drinking glass. In Figure 20 the cider issuing from the outlet opening of the outlet nozzle 220 passes through a sparkler 247 (known per se). Instead of or in addition to said sparkler 247, a known orifice plate may be mounted in nozzle 220. But if desired, neither an orifice plate nor a sparkler may be fitted.

[0126] When valve 218 is closed, the pressure switch 244 observes a build-up in pressure in the pipes 208, 208A above a predetermined value and the control switches off the pump 206.

go (0127) With reference to Fig 21, the draught cider 248 is delivered from the outlet 220 (Figure 20) into the drinking vessel 246, for example a glass which is preferably rather tall and preferably has a clear or transparent wall. Preferably the vessel 246 is chilled before it receives the cider. The vessel 246 may be chilled to a temperature of substantially 4°C or less. For example a known bottle chiller may be used to chill the vessel to substantially 4°C whilst a known glass froster may chill the vessel to substantially 0°C. A head of foam is shown at 250 when the vessel contains a full measured volume, for example a pint, of the cider.

Immediately the cold cider 248 is poured into the chilled vessel 246, the vessel is placed in a shallow depth of water 252 in a dish part 254 of an ultra-sound generating 45 apparatus 256 in which the dish 254 is securely mounted or affixed against a base part 258 containing an ultrasound emitter 260. The emitter 260 may be arranged to emit ultra-sound signals in a frequency range of substantially 20kHz to 70kHz. For example the cider may be subject to ultra-sound signals of a frequency of substantially 30 kHz or some other frequency selected from the aforesaid range, the water layer 252 providing an ultra-sonic transmission path or coupling. The cider 248 may be subject to the ultra-sound for any desired period, though usually a short period of a few seconds, for example substantially one to five seconds and more specifically about five seconds.

[0128] The result in a short time is shown in Figure 22

35

40

45

50

55

in which the exposure to ultra-sonic signals has promoted sudden formation of bubbles of dissolved gas throughout the liquid cider 248 some bubbles 252A may be relatively large whilst others 252B may be relatively small and may tend to collect linearly in wavy lines which may snake upwardly. Also the head 250 may rise to increase its height or depth. The gas bubbles form nucleation sites encouraging the quick formation of ice in the cider 248 from water of the water content of the cider. The ice rises. It may be of a slushy character and tends to agglomerate in the lower part of and below the head 250 to form a slushy mass of ice 262 such as indicated in Figure 23 in the cider.

[0129] Going from the stage shown in Figure 21 to that in Figure 23 may only take one or two minutes so that the gas bubbling and the formation and visible development of the ice takes place fairly quickly and be interesting phenomena to observe through the glass 246.

[0130] Besides the ice forming in the cider 248 being an intriguing sight, it helps show the customer the cider is cold and that it has not been diluted by addition of ice from water other than that already in the cider.

[0131] One of the most interesting features is that the head 250 on the glass of cider may last for a considerable time, i.e. several times the duration of a head on cider arising from known methods. The head 250 may last for twenty minutes or so. Its longevity may be due to (i) the mass of ice 262 acting as a seal or barrier to gas attempting to leave the liquid cider body, and/or (ii) the fact that the ice 262 is keeping the head 250 cold. [0132] An alternative method of applying the ultrasound signals is represented in Figure 24, in which after the apparatus 202 in Figure 20 has dispensed a vessel or glass 246 of cider 248 an ultra-sound probe 264 powered through cable 266 is dipped into the cider for emitter 260A to give out ultra-sound signals. The probe 264 may be inserted into the cider before the full measured amount is supplied to the vessel 246.

[0133] In Figure 25, the dispense outlet 220 has been arranged to act as an ultra-sonic probe for example by providing it with an ultra-sonic emitter 260B. The ultra-sonic probe 220 in Figure 25 may emit ultra-sound signals whilst cider is passing through it to the vessel 246, and/or may become partially immersed in the cider as shown and emit ultra-sound signals into the cider 248 in the vessel 246 whilst the measured volume of cider is still being supplied or after it has been supplied.

Claims

 A method of keeping a draught-dispensed alcoholic beverage (50; 70; 170; 248) comprising a water content, an alcohol content, and a dissolved gas content cool in an open-topped drinking vessel (52; 72; 172; 246), said method comprising forming ice (54; 88; 188; 262) in the draught-dispensed beverage after it has been dispensed into the opentopped drinking vessel, said ice having a cooling effect on the beverage, and said ice being formed in the beverage in the drinking vessel after dispense of the beverage into said drinking vessel from water of said water content.

- 2. An open-topped drinking vessel (52; 72; 172; 246) of a draught-dispensed alcoholic beverage (50; 70; 170; 248), characterized in that the beverage comprises an alcohol content, a water content, and dissolved gas content, the draught-dispensed beverage in said drinking vessel having an ice formation (54; 88; 188; 262) made of many ice crystals, the ice formation having been produced by ice forming in the beverage when said beverage is in said drinking vessel after said beverage was dispensed into said drinking vessel.
- 3. An alcoholic beverage (50; 70; 170; 248) available on draught and comprising a water content, an alcohol content, and a dissolved gas content, characterized in that prior to being dispensed the draught beverage has a temperature below the freezing point of water at ambient atmospheric pressure, and is arranged to issue upon dispense from a draught-dispense outlet (14; 220) into a container (52; 72; 172; 246) open to ambient atmospheric pressure in a manner such that the aforesaid gas bubbles (86; 120; 122; 252a; 252b) out of the beverage and at least a portion of said water content becomes ice (54; 88; 188; 262).
- 4. A method as claimed in claim 1, characterised in that immediately before the beverage is delivered into the vessel (52; 72; 172; 246) said beverage is cooled to a temperature below the freezing point of water at ambient atmospheric pressure.
- 5. A method of serving a draught alcoholic beverage (50; 70; 170; 248) which comprises a water content and a dissolved gas content, said method being characterised by comprising issuing the draught beverage from an outlet (14; 220) into an open topped vessel (52; 72; 172; 246), prior to said issuing, storing or handling the beverage in a manner which impedes loss of aforesaid dissolved gas from the beverage and cooling said beverage to a temperature below the freezing point of water at said ambient atmospheric pressure, and in said vessel aforesaid gas bubbles (86; 120; 122; 252A, 252B) out of the beverage and at least a portion of said water becomes ice (54; 88; 188; 262).
- 6. A method according to claim 1 or claim 5 comprising providing a visual display or effect within said opentopped vessel (52; 72; 172; 246), said open-topped vessel having at least a portion of wall of some transparency, said method comprising providing a

20

draught alcoholic beverage (50; 70; 170; 248) comprising a water content and a dissolved gas content, issuing the draught beverage from an outlet (14; 220) into a said vessel, and prior to said issuing, storing or handling of the beverage in a manner which impedes loss of aforesaid dissolved gas from the beverage and cooling said beverage to a temperature below the freezing point of water at said ambient atmospheric pressure, a visual display or effect developing in the beverage in the vessel, said visual display or effect comprising aforesaid gas bubbling ((86; 120; 122; 252A, 252B) out of the beverage and formation of ice (54; 88; 188; 262) due to at least a portion of said water becoming ice.

- A method as claimed in anyone of claims 1, or 4 to 6, characterised in that the beverage is subjected to the effect of ultrasound signals or to the effect of other ice and/or bubble nucleation means.
- A method as claimed in claim 7 characterised in that the beverage is subjected to the effect of ultrasound signals.
- A method as claimed in claim 7 or claim 8, characterised in that the ultrasound signals are applied externally of said vessel.
- 10. A method as claimed in claim 7 or claim 8, characterised in that the ultrasound signals are applied internally of said vessel to the cooled beverage.
- 11. A method as claimed in claim 10, characterised in that an ultrasound signal emitter (84A; 84B; 250A; 260B) is disposed in the beverage (70; 248) in the vessel (72; 246) emitting ultrasound signals into the beverage in the vessel.
- 12. A method as claimed in any one of claims 7 to 11, characterised in that a dispense outlet or nozzle (14; 220) from which the beverage (70; 248) is delivered into said vessel (72; 246) is adapted to act as an ultrasonic emitter to provide aforesaid ultrasound signals.
- 13. A method as claimed in claim 12, characterised in that aforesaid ultrasound signals are applied to aforesaid beverage flowing through the dispense outlet.
- 14. A method as claimed in any one of claims 7 to 13, characterised in that the ultrasound signals have a frequency in the range of 20kHz to 70kHz.
- 15. A method as claimed in any one of claims 7 to 14, characterised in that the ultrasound signals are accompanied by a mechanically or electrically produced audible performance and/or a visible light

display.

- 16. A method as claimed in claim 15, characterised in that the audible performance is a tuneful or musical sound and/or the visible light display comprises visible flashes of light.
- 17. A method as claimed in any one of claims 1 or 5 to 16, or a vessel according to claim 2, characterised in that said vessel (52; 72; 172; 246) is chilled before beverage is delivered thereinto.
- 18. A method as claimed in claim 17, or a vessel as claimed in claim 17, characterised in that the vessel is chilled to a temperature of substantially 4°C or less.
- 19. A method as claimed in any one of claims 1 or 5 to 18, a beverage as claimed in claim 3 or a vessel as claimed in claim 2, characterised in that the beverage is cooled to a temperature of between substantially -1°C and substantially -12°C.
- 20. A method as claimed in claim 19, or a beverage as claimed in claim 19 or a vessel as claimed in claim 19, characterised in that the beverage is cooled to a temperature between substantially -4°C and substantially -6°C.
 - 21. A method as claimed in claim 20, or a vessel as claimed in claim 20, or a beverage as claimed in claim 20 characterised in that the beverage is cooled to a temperature of substantially -6°C.
- 22. A method as claimed in any one of claims 1 or 4 to 21, or a vessel as claimed in claim 2, or a beverage as claimed in claim 3 characterised in that the alcoholic beverage is a beer.
- 23. A method as claimed in any one of claims 1 or 4 to 21, or a vessel as claimed in claim 2, or a beverage as claimed in claim 3 characterised in that the alcoholic beverage is a cider.
- 45 24. A method as claimed in any one of claims 1 or 4 to 21, or a vessel as claimed in claim 2, or a beverage as claimed in claim 3 characterised in that the alcoholic beverage is a lager.
- 25. A method of serving a draught beverage according to claim 5, or any claim dependant directly or indirectly from claim 5, in which the beverage is cider (248) and cooled cider is subjected (256; 260A; 260B) to the effect of ultra-sound signals.
 - 26. A method as claimed in claim 1 or claim 6, or any claim dependant directly or indirectly from them characterised in that the open-topped vessel

15

25

35

45

(246) is chilled before receiving the beverage.

- 27. A beverage as claimed in any one of the preceding claims, or a method as claimed in any one of the preceding claims, or a vessel as claimed in any one of the preceding claims, characterised in that said ice comprises slush.
- 28. A beverage as claimed in any one of the preceding claims, or a method as claimed in any one of the preceding claims, or a vessel as claimed in any one of the preceding claims, characterised in that there is formed a layer of foam, or head, (56; 74; 174; 250) over a layer of ice (54; 88; 788; 262).

Patentansprüche

- 1. Verfahren zum Kühlhalten eines vom Fass abgegebenen alkoholischen Getränks (50, 70, 170, 248), umfassend einen Wassergehalt, einen Alkoholgehalt und einen Gehalt an gelöstem Gas, in einem oben offenen Trinkgefäß (52; 72; 172; 246), wobei das Verfahren das Bilden von Eis (54; 88; 188; 262) im vom Fass abgegebenen alkoholischen Getränk umfasst, nachdem es in das oben offene Trinkgefäß abgegeben worden ist, wobei das Eis einen Kühleffekt auf das Getränk ausübt und das Eis in dem Getränk im Trinkgefäß nach Abgabe des Getränks in das Trinkgefäß aus Wasser des Wassergehalts gebildet wird.
- 2. Ein oben offenes Trinkgefäß (52; 72; 172; 246) mit einem vom Fass abgegebenen alkoholischem Getränk (50, 70, 170, 248), dadurch gekennzeichnet, dass das Getränk einen Alkoholgehalt, einen Wassergehalt, und gelösten Gasgehalt umfasst, wobei das vom Fass abgegebene Getränk in dem Trinkgefäß eine aus vielen Eiskristallen bestehende Eisbildung (54; 88; 188; 262) aufweist und die Eisbildung durch im Getränk gebildetes Eis erzeugt worden ist, wenn das Getränk im Trinkgefäß ist, nachdem das Getränk in das Trinkgefäss abgegeben worden ist.
- 3. Alkoholisches Getränk (50, 70, 170, 248), das vom Fass erhältlich ist und einen Wassergehalt, einen Alkoholgehalt und eine gelösten Gasgehalt umfasst, dadurch gekennzeichnet, dass vor dem Abgeben das Fassgetränk eine Temperatur unter dem Gefrierpunkt von Wasser bei Umgebungsatmosphärendruck aufweist und dafür eingerichtet ist, bei Abgabe aus einem Fassabgabe-Auslass (14, 220) in einen, für den Umgebungsatmosphärendruck offenen, Behälter (52; 72; 172; 246) in einer Weise auszufließen, dass das vorgenannte Gas aus dem Getränk ausperlt (86; 120; 122; 252a; 252b) und zumindest ein Teil des Wassergehalts zu

Eis (54; 88; 188; 262) wird.

- Verfahren gemäß Anspruch 1, dadurch gekennzeichnet, dass unmittelbar, bevor das Getränk in das Gefāß (52; 72; 172; 246) ausgegeben wird, das Getränk auf eine Temperatur unter dem Gefrierpunkt von Wasser bei Umgebungsatmosphärendruck gekühlt wird.
- 10 5. Verfahren zum Servieren eines alkoholischen Fassgetränks (50, 70, 170, 248), das einen Wassergehalt und einen gelösten Gasgehalt umfasst, wobei das Verfahren dadurch gekennzeichnet ist, dass es umfasst Ausgeben des Fassgetränks aus einem Auslass (14; 220) in ein oben offenes Gefäß (52; 72; 172; 246); vor dem Ausgeben Lagern oder Handhaben des Getränks in einer Weise, die den Verlust des vorgenannten gelösten Gases aus dem Getränk behindert und Kühlen des Getränks auf eine Temperatur unter dem Gefrierpunkt von Wasser beim Umgebungsatmosphärendruck, und wobei in dem Gefäß das vorgenannte Gas ausperlt (86; 120; 122; 252A; 252B) und zumindest ein Teil des Wassergehalts zu Eis (54; 88; 188; 262) wird.
 - 6. Verfahren gemäß Anspruch 1 oder 5, umfassend Bereitstellen einer visuellen Anzeige oder eines visuellen Effekts innerhalb des oben offenen Gefä-Bes (52; 72; 172; 246, wobei das oben offene Gefäß zumindest einen Wandbereich gewisser Transparenz aufweist und das Verfahren umfasst Bereitstellen eines alkoholischen Fassgetränks, das einen Wassergehalt und einen gelösten Gasgehalt umfasst, Ausgeben des Fassgetränks aus einem Auslass (14; 220) in ein oben offenes Gefäß; und vor dem Ausgeben Lagern oder Handhaben des Getränks in einer Weise, die den Verlust des vorgenannten gelösten Gases aus dem Getränk behindert und Kühlen des Getränks auf eine Temperatur unter dem Gefrierpunkt von Wasser beim Umgebungsatmosphärendruck, wobei eine visuelle Anzeige oder ein visueller Effekt sich in dem Getränk im Gefäß entwickelt, wobei die visuelle Anzeige oder der Effekt das vorgenannte Gasausperlen (86; 120; 122; 252a; 252b) aus dem Getränk oder die Ausbildung von Eis (54; 88; 188; 262) aufgrund der Umwandlung zumindest eines Teils des Wassers zu Eis umfasst.
- 50 7. Verfahren gemäß einem der Ansprüche 1 oder 4 bis 6, dadurch gekennzeichnet, dass das Getränk dem Effekt von Ultraschallsignalen oder dem Effekt anderer Eisund/oder Blasennukleationsmittel unterworfen wird.
 - 8. Verfahren gemäß Anspruch 7, dadurch gekennzeichnet, dass das Getränk dem Effekt von Ultraschallsignalen unterworfen wird.

15

20

25

30

35

- Verfahren gemäß Anspruch 7 oder 8, dadurch gekennzeichnet, dass die Ultraschallsignale außerhalb des Gefäßes angelegt werden.
- Verfahren gemäß Anspruch 7 oder 8, dadurch gekennzeichnet, dass die Ultraschallsignale im Inneren des Gefäßes auf das gekühlte Getränk angewendet werden.
- Verfahren gemäß Anspruch 10, dadurch gekennzeichnet, dass ein Ultraschallsender (84A; 84B; 250A; 260B) im Getränk (70; 248) im Gefäß (72; 246) angeordnet wird, der Ultraschallsignale in das Getränk im Gefäß abstrahlt.
- 12. Verfahren gemäß einem der Ansprüche 7 bis 11, dadurch gekennzelchnet, dass ein Abgabeauslass oder eine Abgabedüse (14; 220), aus dem das Getränk (70; 248) in das Gefäß (72; 246) ausgegeben wird, dafür ausgelegt ist, als Ultraschallsender zu dienen, um die vorgenannten Ultraschallsignale bereitzustellen.
- 13. Verfahren gemäß Anspruch 12, dadurch gekennzeichnet, dass die vorgenannten Ultraschallsignale auf das vorgenannte, durch den Abgabeauslass fließende Getränk angewendet werden.
- 14. Verfahren gemäß einem der Ansprüche 7 bis 13, dadurch gekennzeichnet, dass die Ultraschallsignale eine Frequenz im Bereich von 20 kHz bis 70 kHz aufweisen.
- 15. Verfahren gemäß einem der Ansprüche 7 bis 14, dadurch gekennzeichnet, dass die Ultraschallsignale von einer mechanisch oder elektrisch erzeugten, hörbaren Verrichtung und/oder sichtbaren Lichtanzeige begleitet werden.
- 16. Verfahren gemäß Anspruch 15, dadurch gekennzeichnet, dass die hörbare Verrichtung ein melodiöses oder musikalisches Geräusch ist und/oder die sichtbare Lichtanzeige sichtbare Lichtblitze umfasst.
- 17. Verfahren gemäß einem der Ansprüche 1 oder 5 bis 16, oder Gefäß gemäß Anspruch 2, dadurch gekennzeichnet, dass das Gefäß (52; 72; 172; 246) gekühlt wird, bevor Getränk dahinein abgegeben wird.
- 18. Verfahren gemäß Anspruch 17, oder Gefäß gemäß Anspruch 17, dadurch gekennzeichnet, dass das Gefäß auf eine Temperatur von im wesentlichen 4°C oder darunter gekühlt wird.
- Verfahren gemäß einem der Ansprüche 1 oder 5 bis
 Getränk gemäß Anspruch 3 oder Gefäß gemäß

Anspruch 2, dadurch gekennzeichnet, dass das Getränk auf eine Temperatur zwischen im wesentlichen -1°C und im wesentlichen -12°C gekühlt wird.

24

- 20. Verfahren gemäß Anspruch 19, oder Getränk gemäß Anspruch 19 oder Gefäß gemäß Anspruch 19, dadurch gekennzeichnet, dass das Getränk auf eine Temperatur zwischen im wesentlichen -4°C und im wesentlichen -6°C gekühlt wird.
- 21. Verfahren gemäß Anspruch 20, oder Getränk gemäß Anspruch 20oder Gefäß gemäß Anspruch 20, dadurch gekennzeichnet, dass das Getränk auf eine Temperatur von im wesentlichen -6°C gekühlt wird.
- 22. Verfahren gemäß einem der Ansprüche 1 oder 4 bis 21 oder Gefäß gemäß Anspruch 2 oder Getränk gemäß Anspruch 3, dadurch gekennzeichnet, dass das alkoholische Getränk ein Bier ist.
- 23. Verfahren gemäß einem der Ansprüche 1 oder 4 bis 21 oder Gefäß gemäß Anspruch 2 oder Getränk gemäß Anspruch 3, dadurch gekennzeichnet, dass das alkoholische Getränk ein Apfelwein ist.
- 24. Verfahren gemäß einem der Ansprüche 1 oder 4 bis 21 oder Gefäß gemäß Anspruch 2 oder Getränk gemäß Anspruch 3, dadurch gekennzeichnet, dass das alkoholische Getränk ein Lager-Bier ist.
- 25. Verfahren zum Servieren eines Fassgetränks gemäß Anspruch 5 oder jeglichem von Anspruch 5 direkt oder indirekt abhängigen Anspruch, bei dem das Getränk Apfelwein (248) ist und gekühlter Apfelwein dem Effekt von Ultraschallsignalen unterworfen (256; 260A; 260B) wird.
- 40 26. Verfahren gemäß Anspruch 1 oder 6 oder jeglichem von ihnen direkt oder indirekt abhängigen Anspruch, dadurch gekennzeichnet, dass das oben offene Gefäß (246) gekühlt wird, bevor es das Getränk aufnimmt.
 - 27. Getränk gemäß einem der vorstehenden Ansprüche oder Verfahren gemäß einem der vorstehenden Ansprüche oder Gefäß gemäß einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass das Eis Eismatsch umfasst.
 - 28. Getränk gemäß einem der vorstehenden Ansprüche oder Verfahren gemäß einem der vorstehenden Ansprüche oder Gefäß gemäß einem der vorstehenden Ansprüche, dadurch gekennzelchnet, dass eine Schaumschicht oder Krone (56; 74; 174; 250) über einer Eisschicht (54; 88; 788; 262) gebildet wird.

13

50

30

40

45

Revendications

- 1. Procédé pour conserver une boisson alcoolisée distribuée à la pression (50; 70; 170; 248) comprenant une teneur en eau, une teneur en alcool et une teneur en gaz dissous, fraîche dans un récipient de boisson ouvert en haut (52; 72; 172; 246), ledit procédé comprenant la formation de glace (54; 88; 188; 262) dans la boisson distribuée à la pression après qu'elle a été distribuée dans le récipient de boisson ouvert en haut, ladite glace ayant un effet de refroidissement sur la boisson, et ladite glace étant formée dans la boisson dans le récipient de boisson après distribution de la boisson dans ledit récipient de boisson à partir d'eau de ladite teneur en eau.
- 2. Récipient de boisson ouvert en haut (52; 72; 172; 246) d'une boisson alcoolisée distribuée à la pression (50; 70; 170; 248), caractérisé en ce que la boisson comprend une teneur en alcool, une teneur en eau et une teneur en gaz dissous, la boisson distribuée à la pression dans ledit récipient de boisson possédant une formation de glace (54; 88; 188; 262) faite de nombreux cristaux de glace, la formation de glace ayant été produite par formation de glace dans la boisson lorsque ladite boisson est dans ledit récipient de boisson, après que ladite boisson a été distribuée dans ledit récipient de boisson.
- 3. Boisson alcoolisée (50; 70; 170; 248) disponible à la pression et comprenant une teneur en eau, une teneur en alcool et une teneur en gaz dissous, caractérisée en ce que, avant d'être distribuée, la boisson à la pression a une température inférieure au point de congélation de l'eau à la pression atmosphérique ambiante, et est disposée pour s'écouler, lors de la distribution, depuis un orifice de distribution à la pression (14; 220) dans un conteneur (52; 72; 172; 246) ouvert à la pression atmosphérique ambiante, d'une façon telle que des bulles (86; 120; 122; 252a; 252b) du gaz susdit se dégagent de la boisson et au moins une partie de ladite teneur en eau devient de la glace (54; 88; 188; 262).
- 4. Procédé selon la revendication 1, caractérisé en ce que, immédiatement avant que la boisson soit délivrée dans le récipient (52; 72; 172; 246), ladite boisson est refroidie à une température inférieure au point de congélation de l'eau à la pression atmosphérique ambiante.
- Procédé pour servir une boisson alcoolisée à la pression (50; 70; 170; 248) qui comprend une teneur en eau et une teneur en gaz dissous, ledit procédé étant caractérisé en ce qu'il comprend

- l'écoulement de la boisson à la pression depuis un orifice (14; 220) dans un récipient ouvert en haut (52; 72; 172; 246), et avant ledit écoulement, le stockage ou la manipulation de la boisson d'une façon qui empêche la perte du gaz dissous susdit de la boisson, et le refroidissement de ladite boisson a une température inférieure au point de congélation de l'eau à la pression atmosphérique ambiante, et en ce que dans ledit récipient des bulles (86; 120; 122; 252A, 252B) du gaz susdit se dégagent de la boisson et au moins une partie de ladite eau devient de la glace (54; 88; 188; 262).
- 6. Procédé selon la revendication 1 ou 5, comprenant la fourniture d'une visualisation ou d'un effet visuel dans ledit récipient ouvert en haut (52; 72; 172; 246), ledit récipient ouvert en haut ayant au moins une partie d'une paroi d'une certaine transparence, ledit procédé comprenant la fourniture d'une boisson alcoolisée à la pression (50; 70; 170; 248) comprenant une teneur en eau et une teneur en gaz dissous, l'écoulement de la boisson à la pression depuis un orifice (14 ; 220) dans ledit récipient, et avant ledit écoulement, le stockage ou la manipulation de la boisson d'une façon qui empêche la perte du gaz dissous susdit de la boisson et le refroidissement de ladite boisson à une température inférieure au point de congélation de l'eau à ladite pression atmosphérique ambiante, une visualisation ou un effet visuel se développant dans la boisson dans le récipient, ladite visualisation ou ledit effet visuel comprenant le dégagement de bulles (86 ; 120 ; 122 ; 252A, 252B) du gaz susdit de la boisson et la formation de glace (54 ; 88 ; 188 ; 262) due au fait qu'au moins une partie de ladite eau devient de la glace.
- 7. Procédé selon l'une quelconque des revendications 1, ou 4 à 6, caractérisé en ce que la boisson est soumise à l'effet de signaux ultrasonores ou à l'effet d'autres moyens de nucléation de glace et/ou de bulles.
- Procédé selon la revendication 7, caractérisé en ce que la boisson est soumise à l'effet de signaux ultrasonores.
- Procédé selon la revendication 7 ou 8, caractérisé en ce que les signaux ultrasonores sont appliqués à l'extérieur dudit récipient.
- 10. Procédé selon la revendication 7 ou 8, caractérisé en ce que les signaux ultrasonores sont appliqués à l'intérieur dudit récipient à la boisson refroidie.
- Procédé selon la revendication 10, caractérisé en ce qu'un émetteur de signaux ultrasonores (84A; 84B; 250A; 260B) est disposé dans la boisson

(70 ; 248) dans le récipient (72 ; 246), émettant des signaux ultrasonores dans la boisson dans le récipient.

- 12. Procédé selon l'une quelconque des revendications 7 à 11, caractérisé en ce qu'un orifice ou une buse de distribution (14; 220) depuis lequel la boisson (70; 248) est délivrée dans ledit récipient (72; 246) est adapté pour agir comme un émetteur ultrasonore afin de fournir les signaux ultrasonores susdits:
- 13. Procédé selon la revendication 12, caractérisé en ce que les signaux ultrasonores susdits sont appliqués à la boisson susdite s'écoulant à travers l'orifice de distribution.
- 14. Procédé selon l'une quelconque des revendications 7 à 13, caractérisé en ce que les signaux ultrasonores ont une fréquence comprise entre 20 kHz et 70 kHz.
- 15. Procédé selon l'une quelconque des revendications 7 à 14, caractérisé en ce que les signaux ultrasonores sont accompagnés d'une performance audible produite mécaniquement ou électriquement et/ ou d'une visualisation de lumière visible.
- 16. Procédé selon la revendication 15, caractérisé en ce que la performance audible est un son mélodieux ou musical et/ou la visualisation de lumière visible comprend des faisceaux visibles de lumière.
- 17. Procédé selon l'une quelconque des revendications 1 ou 5 à 16, ou récipient selon la revendication 2, caractérisé en ce que ledit récipient (52; 72; 172; 246) est refroidi avant que la boisson soit délivrée dans celui-ci.
- 18. Procédé selon la revendication 17, ou récipient selon la revendication 17, caractérisé en ce que le récipient est refroidi à une température sensiblement égale à 4°C ou inférieure à 4°C.
- 19. Procédé selon l'une quelconque des revendications 1 ou 5 à 18, boisson selon la revendication 3 ou récipient selon la revendication 2, caractérisé en ce que la boisson est refroidie à une température comprise entre sensiblement -1°C et sensiblement -12°C.
- 20. Procédé selon la revendication 19, boisson selon la revendication 19 ou récipient selon la revendication 19, caractérisé en ce que la boisson est refroidie à une température comprise entre sensiblement -4°C et sensiblement -6°C.
- 21. Procédé selon la revendication 20, récipient selon la revendication 20 ou boisson selon la revendica-

tion 20, caractérisé en ce que la boisson est refroidie à une température sensiblement égale à -6°C.

- 5 22. Procédé selon l'une quelconque des revendications 1 ou 4 à 21, ou récipient selon la revendication 2, ou boisson selon la revendication 3, caractérisé en ce que la boisson alcoolisée est de la bière.
- 10 23. Procédé selon l'une quelconque des revendications 1 ou 4 à 21, ou récipient selon la revendication 2, ou boisson selon la revendication 3, caractérisé en ce que la boisson alcoolisée est du cidre.
- 75 24. Procédé selon l'une quelconque des revendications 1 ou 4 à 21, ou récipient selon la revendication 2, ou boisson selon la revendication 3, caractérisé en ce que la boisson alcoolisée est de la bière lager.
- 25. Procédé pour servir une boisson à la pression selon la revendication 5, ou n'importe quelle revendication dépendant directement ou indirectement de la revendication 5, dans lequel la boisson alcoolisée est du cidre (248) et du cidre refroidi est soumis (256; 260A; 260B) à l'effet de signaux ultrasonores.
 - 26. Procédé selon la revendication 1 ou 6, ou n'importe quelle revendïcation dépendant directement ou indirectement de celle-ci, caractérisé en ce que le récipient ouvert en haut (246) est refroidi avant de recevoir la boisson.
 - 27. Boisson selon l'une quelconque des revendications précédentes, ou procédé selon l'une quelconque des revendications précédentes, ou récipient selon l'une quelconque des revendications précédentes, caractérisé en ce que ladite glace comprend de la glace concassée.
 - 28. Boisson selon l'une quelconque des revendications précédentes, ou procédé selon l'une quelconque des revendications précédentes, ou récipient selon l'une quelconque des revendications précédentes, caractérisé en ce qu'une couche de mousse, ou col, (56; 74; 174; 250) est formée au-dessus d'une couche de glace (54; 88; 188; 262).

45

50

Fig. 13 Fig. 14 Fig. 15

Fig. 16 Fig. 17

Fig. 18

Fig. 19

