ECE661: Computer Vision (Fall 2014)

Shaobo Fang: s-fang@purdue September 3, 2014

1 Problem 1

The 3D vector $\mathcal{X} = \begin{pmatrix} x \\ y \\ 1 \end{pmatrix} \in \mathcal{R}^3$ is the homogeneous coordinate representation of a physical 2D point $(x,y) \in \mathcal{R}^2$. Thus, all the points in the representational space \mathcal{R}^3 that are the homogeneous coordinates of the origin in the physical space are: $k \cdot \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$

Note that: From the lecture notes it is defined that for any $k \in \mathcal{R}$, $k \neq 0$, $k \cdot \begin{pmatrix} x \\ y \\ 1 \end{pmatrix}$ is the same physical point in \mathcal{R}^2 as that corresponding to $\begin{pmatrix} x \\ y \\ 1 \end{pmatrix}$

2 Problem 2

All points at infinity in the physical plane \mathbb{R}^2 are **NOT** the same.

Justification: By definition in lecture notes, the intersection of the two parallel lines $\begin{pmatrix} a \\ b \\ c \end{pmatrix}$ and $\begin{pmatrix} a \\ b \\ c' \end{pmatrix}$ is at point: $\begin{pmatrix} b \\ -a \\ 0 \end{pmatrix}$, which is a point at infinity in \mathcal{R}^2 , along a specific direction controlled by the pair $\begin{pmatrix} a \\ b \end{pmatrix}$. Hence, all points at infinity of physical plane \mathcal{R}^2 are not the same, but they are grouped as **Ideal Points**

3 Problem 3

$$l_{1} = x_{1} \times x_{2} = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \times \begin{pmatrix} -1 \\ -1 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix}$$
$$l_{2} = y_{1} \times y_{2} = \begin{pmatrix} 3 \\ 4 \\ 1 \end{pmatrix} \times \begin{pmatrix} -4 \\ -3 \\ 1 \end{pmatrix} = \begin{pmatrix} 7 \\ -7 \\ 7 \end{pmatrix}$$

Thus the intersection of
$$l_1$$
 and l_2 is at: $l_1 \times l_2 = \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix} \times \begin{pmatrix} 7 \\ -7 \\ 7 \end{pmatrix} = \begin{pmatrix} -7 \\ -7 \\ 0 \end{pmatrix}$

Done in three steps!

Now substitute y_1 and y_2 with $y_1'=(3,\ 4)$ and $y_2'=(-3,\ -4)$

$$l_2' = y_1' \times y_2' = \begin{pmatrix} 3\\4\\1 \end{pmatrix} \times \begin{pmatrix} -3\\-4\\1 \end{pmatrix} = \begin{pmatrix} 8\\-6\\0 \end{pmatrix}$$
Thus the intersection of l_1 and l_2' is at: $l_1 \times l_2' = \begin{pmatrix} 1\\-1\\0 \end{pmatrix} \times \begin{pmatrix} 8\\-6\\0 \end{pmatrix} = \begin{pmatrix} 0\\0\\2 \end{pmatrix}$

It will still take three steps.

4 Problem 4

From lecture notes, every point on the degenerate conic C is either on line l or on line m,

$$C = lm^{T} + ml^{T}. \text{ Assume that } l = \begin{pmatrix} l_{1} \\ l_{2} \\ l_{3} \end{pmatrix}, \ m = \begin{pmatrix} m_{1} \\ m_{2} \\ m_{3} \end{pmatrix}$$

$$\text{Easily: } lm^{T} = \begin{pmatrix} l_{1} \\ l_{2} \\ l_{3} \end{pmatrix} \cdot (m_{1}, \ m_{2}, \ m_{3}) = \begin{bmatrix} l_{1}m_{1} & l_{1}m_{2} & l_{1}m_{3} \\ l_{2}m_{1} & l_{2}m_{2} & l_{2}m_{3} \\ l_{3}m_{1} & l_{3}m_{2} & l_{3}m_{3} \end{bmatrix}$$

$$\text{Similarly: } ml^{T} = \begin{pmatrix} m_{1} \\ m_{2} \\ m_{3} \end{pmatrix} \cdot (l_{1}, \ l_{2}, \ l_{3}) = \begin{bmatrix} m_{1}l_{1} & m_{1}l_{2} & m_{1}l_{3} \\ m_{2}l_{1} & m_{2}l_{2} & m_{2}l_{3} \\ m_{3}l_{1} & m_{3}l_{2} & m_{3}l_{3} \end{bmatrix}$$

 $rank(lm^T) = 1$ because every column is a constant times the first column. E.g. the second column is $\frac{m_2}{m_1}$ times the first column. So all columns are linearly dependent. Thus, $rank(lm^T) = rank(ml^T) = 1$.

Now Assume that rank of a degenerate conic matrix could exceed 2: $rank(C) \ge 3$. Then this implies $rank(C) = rank(lm^T + ml^T) \ge 3$.

But according to matrix rank axioms, $rank(A + B) \le rank(A) + rank(B)*$, we have $rank(C) = rank(lm^T + ml^T) \le rank(lm^T) + rank(ml^T) = 2 \le 3$. **CONTRADICTION TO ASSUMPTION!**

Thus, the matrix rank of degenerate conic can never exceed 2.

*Proof of $rank(A+B) \leq rank(A) + rank(B)$:

The rank of a matrix can be defined as the dimensions of the space that its column vectors span. Let $(a^1, a^2, ..., a^n)$ denote the column vectors of A, $(b^1, b^2, ..., b^n)$ denote the column vectors of B, and the columns vectors for (A + B) are linear combinations of a^i, b^i so the dimension of the space spanned by them can not be greater than the sum of spaces spanned by A and B.

Reference: http://statweb.stanford.edu/~candes/acm104/Hw/hw2sol.pdf

5 Problem 5

As our conic is a circle of radius 1 that is centered at the coordinates (5, 5):

$$(x-5)^2 + (y-5)^2 = 1$$
$$x^2 - 10x + 25 + y^2 - 10y + 25 = 1$$
$$x^2 - 10x + y^2 - 10y + 49 = 0$$

Write the equation in standard form for conic $x^T C x = 0$:

$$(x, y, 1) \begin{bmatrix} 1 & 0 & -5 \\ 0 & 1 & -5 \\ -5 & -5 & 49 \end{bmatrix} \begin{pmatrix} x \\ y \\ 1 \end{pmatrix} = 0, while C = \begin{bmatrix} 1 & 0 & -5 \\ 0 & 1 & -5 \\ -5 & -5 & 49 \end{bmatrix}$$

As x is the origin point of the \mathbb{R}^2 physical plane, $x = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$. y - axis is denoted as:

$$y - axis = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \times \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix} = \begin{pmatrix} -1 \\ 0 \\ 0 \end{pmatrix}.$$

The polar line is:
$$polar \ line = Cx = \begin{bmatrix} 1 & 0 & -5 \\ 0 & 1 & -5 \\ -5 & -5 & 49 \end{bmatrix} \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} = \begin{pmatrix} -5 \\ -5 \\ 49 \end{pmatrix}$$

The intercept of polar line with y-axis is:
$$\begin{pmatrix} -5 \\ -5 \\ 49 \end{pmatrix} \times \begin{pmatrix} -1 \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ -49 \\ -5 \end{pmatrix} = k \cdot \begin{pmatrix} 0 \\ \frac{49}{5} \\ 1 \end{pmatrix}, k = -5$$