Wstęp do Uczenia Maszynowego 2020: projekt I, kamień milowy III - Regresja Logistyczna

Marcin Łukaszyk

April 18, 2020

Wczytanie Danych

```
Reg_train <- read.csv("Reg_train.csv")
Reg_test <- read.csv("Reg_test.csv")
Reg_train <- select(Reg_train,-X)
Reg_test <- select(Reg_test,-X)</pre>
knitr::kable(sample_n(Reg_test, 5))
```

duration	$credit_amount$	$installment_rate$	present_residence	age	$existing_credits$	dependents	has_telephone
4	601	1	3	23	1	2	0
15	1264	2	2	25	1	1	0
6	1343	1	4	46	2	2	0
18	2389	4	1	27	1	1	0
36	5800	3	4	34	2	1	1

```
knitr::kable(sample_n(Reg_train, 5))
```

duration	credit_amount	installment_rate	present_residence	age	existing_credits	dependents	has_telephone
18	2864	2	1	34	1	2	0
54	9436	2	2	39	1	2	0
24	1344	4	2	37	2	2	0
36	12612	1	4	47	1	2	1
11	1154	4	4	57	3	1	0

Wszystko jest wczytane poprawnie.

Stworzenie modelu

Naszym modelem będzie model z pakietu scidb. Nie musimy go tworzyć, od razu można fit-ować dane do modelu.

```
glm.fit <- glm(is_good_customer_type ~ duration + age + existing_credits + dependents + has_telephone +
,data = Reg_train,family = binomial)</pre>
```

Parametry modelu

Poniżej znajduje się podsumowanie naszego modelu. Pokazane są wszystkie jego parametry oraz znaczenie w działaniu naszego modelu.

```
summary(glm.fit)
```

```
##
## Call:
  glm(formula = is_good_customer_type ~ duration + age + existing_credits +
##
       dependents + has_telephone + is_foreign_worker + has_problems_credit_history +
##
       purpose_domestic + purpose_retraining + purpose_radio_television +
##
       purpose_new_car + purpose_used_car + purpose_business + purpose_repairs +
##
       purpose_education + purpose_furniture_equipment + other_debtors_guarantor +
       other_debtors_co_applicant + other_installment_plans_bank +
##
##
       other_installment_plans_stores + housing_rent + housing_own +
##
       job_skilled_employee + job_unskilled_resident + job_highly_qualified_employee +
##
       savings + present_employment + property + checking_account_status +
##
       is_woman + is_single, family = binomial, data = Reg_train)
##
## Deviance Residuals:
##
       Min
                 10
                     Median
                                   30
                                           Max
## -2.4722 -0.8899
                     0.4654
                              0.7781
                                        2.3977
##
## Coefficients:
##
                                   Estimate Std. Error z value Pr(>|z|)
## (Intercept)
                                   3.384690
                                              1.241297
                                                         2.727 0.00640 **
## duration
                                  -0.042163
                                              0.007819 -5.392 6.97e-08 ***
                                   0.012578
## age
                                              0.009399
                                                         1.338
                                                                0.18084
                                              0.188578 -2.094
## existing_credits
                                  -0.394848
                                                                0.03628 *
## dependents
                                  -0.486423
                                              0.265525 -1.832
                                                                0.06696
## has_telephone
                                  0.456194
                                              0.207464
                                                         2.199
                                                                0.02788 *
## is_foreign_worker
                                  -1.482214
                                              0.768042 -1.930
                                                                0.05362
## has_problems_credit_history
                                  0.782436
                                              0.226453
                                                         3.455
                                                                0.00055 ***
## purpose_domestic
                                                         0.904
                                                                0.36584
                                   0.302664
                                              0.334697
## purpose_retraining
                                  -0.772425
                                              0.448215 -1.723
                                                                0.08483
                                              0.352021 -0.121
## purpose_radio_television
                                  -0.042468
                                                                0.90398
## purpose_new_car
                                  -0.671123
                                              0.335964 -1.998
                                                                0.04576 *
## purpose used car
                                  1.109216
                                              0.451582
                                                         2.456
                                                                0.01404 *
                                                         0.884
                                              1.142224
## purpose_business
                                   1.009181
                                                                0.37695
## purpose_repairs
                                  -0.334217
                                              0.843957
                                                       -0.396
                                                                0.69210
                                              0.601829 -0.903
## purpose_education
                                  -0.543683
                                                                0.36632
## purpose_furniture_equipment
                                   0.439982
                                              0.828232
                                                         0.531
                                                                0.59526
## other_debtors_guarantor
                                              0.451470
                                                         1.406
                                                                0.15982
                                   0.634619
## other_debtors_co_applicant
                                  -0.811476
                                              0.444269 -1.827
                                                                0.06777
## other_installment_plans_bank
                                  -0.367892
                                              0.248429 -1.481
                                                                0.13864
## other_installment_plans_stores -0.702364
                                              0.387586 -1.812
                                                                0.06996
                                              0.389959 -0.369
## housing_rent
                                  -0.143903
                                                                0.71211
## housing_own
                                   0.270075
                                              0.336478
                                                         0.803
                                                                0.42218
## job_skilled_employee
                                  -0.647848
                                              0.638322 -1.015
                                                                0.31014
## job_unskilled_resident
                                  -0.674382
                                              0.655113 -1.029
                                                                0.30329
## job_highly_qualified_employee -1.184181
                                              0.672561 - 1.761
                                                                0.07829
## savings
                                   0.167907
                                              0.098253
                                                         1.709
                                                                0.08746
## present_employment
                                   0.084757
                                              0.040405
                                                         2.098
                                                                0.03593 *
## property
                                   0.174283
                                              0.105706 1.649
                                                                0.09920 .
```

```
## checking_account_status
                                 -0.429361
                                             0.093033 -4.615 3.93e-06 ***
                                                        0.787 0.43146
## is_woman
                                  0.217902
                                             0.276982
                                  0.802860
                                             0.276274
## is single
                                                       2.906 0.00366 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
##
      Null deviance: 975.68 on 799 degrees of freedom
## Residual deviance: 795.81 on 768 degrees of freedom
## AIC: 859.81
## Number of Fisher Scoring iterations: 5
```

Test modelu

Podstawowym parametrem jest stosunek poprawnych odpowiedzi. Tzn. jest to prosta średnia z 1, jeśli odpowiedź jest dobra i 0 w przeciwnym przypadku.

```
glm.probs <- ifelse(predict(glm.fit,newdata = Reg_test,type = "response") > 0.5,1,0)
mean(glm.probs == select(Reg_test,is_good_customer_type))
## [1] 0.7
```

Jak widzimy, model średnio dobrze przewiduje 70% odpowiedzi.

Dokładne zmierzenie jakości modelu

Funkcje pomocnicze, które określą nam jakość modelu.

```
confusion matrix values <- function(confusion matrix){</pre>
TP <- confusion matrix[2,2]
TN <- confusion_matrix[1,1]</pre>
FP <- confusion_matrix[1,2]</pre>
FN <- confusion_matrix[2,1]</pre>
return (c(TP, TN, FP, FN))
}
accuracy <- function(confusion_matrix){</pre>
conf_matrix <- confusion_matrix_values(confusion_matrix)</pre>
return((conf_matrix[1] + conf_matrix[2]) / (conf_matrix[1] + conf_matrix[2] + conf_matrix[3] + conf_matrix[3]
}
precision <- function(confusion_matrix){</pre>
conf_matrix <- confusion_matrix_values(confusion_matrix)</pre>
return(conf_matrix[1]/ (conf_matrix[1] + conf_matrix[3]))
}
recall <- function(confusion matrix){</pre>
conf_matrix <- confusion_matrix_values(confusion_matrix)</pre>
return(conf_matrix[1] / (conf_matrix[1] + conf_matrix[4]))
f1 <- function(confusion_matrix){</pre>
```

```
conf_matrix <- confusion_matrix_values(confusion_matrix)
rec <- recall(confusion_matrix)
prec <- precision(confusion_matrix)
return(2 * (rec * prec) / (rec + prec))
}

confusion_matrix_primitive <- table(
Truth = select(Reg_test,is_good_customer_type)[,1],
Prediction = glm.probs
)
knitr::kable(confusion_matrix_primitive)</pre>
```

	0	1
0	16	45
1	15	124

```
accuracy_primitive <- accuracy(confusion_matrix_primitive)
precision_primitive <- precision(confusion_matrix_primitive)
recall_primitive <- recall(confusion_matrix_primitive)
f1_primitive <- f1(confusion_matrix_primitive)

classification_report_primitive <- data.frame(accuracy_primitive, precision_primitive, recall_primitive, f1_primitive)
colnames(classification_report_primitive) <- c("accuracy", "precision", "recall", "f1")
knitr::kable(classification_report_primitive)</pre>
```

accuracy	precision	recall	f1
0.7	0.7337278	0.8920863	0.8051948

Wyrzucenie Mało Znaczących Zmiennych

Do zwiększenia dokładności modelu spróbujemy usunąć ze zmiennych te, które według funkcji summary(), najmniej wpływają na nasz model.

```
glm.fit <- glm(is_good_customer_type ~age + dependents + is_foreign_worker + purpose_domestic + purpose
,data = Reg_train,family = binomial)
glm.probs <- ifelse(predict(glm.fit,newdata = Reg_test,type = "response") > 0.5,1,0)

confusion_matrix_primitive <- table(
Truth = select(Reg_test,is_good_customer_type)[,1],
Prediction = glm.probs
)
knitr::kable(confusion_matrix_primitive)</pre>
```

	0	1
0	9	52
1	15	124

```
accuracy_primitive <- accuracy(confusion_matrix_primitive)
precision_primitive <- precision(confusion_matrix_primitive)
recall_primitive <- recall(confusion_matrix_primitive)
f1_primitive <- f1(confusion_matrix_primitive)

classification_report_primitive <- data.frame(accuracy_primitive, precision_primitive, recall_primitive, f1_primitive)
colnames(classification_report_primitive) <- c("accuracy", "precision", "recall", "f1")
knitr::kable(classification_report_primitive)</pre>
```

accuracy	precision	recall	f1
0.665	0.7045455	0.8920863	0.7873016

Jak widać, nie uzyskujemy lepszych rezultatów, a nasze wyniki są nawet lekko gorsze. Spróbujmy usunąć jeszcze kilka najmniej istotnych parametrów, na podstawie wskazań funkcji summary()

```
summary(glm.fit)
```

```
##
## Call:
  glm(formula = is_good_customer_type ~ age + dependents + is_foreign_worker +
##
       purpose_domestic + purpose_retraining + purpose_radio_television +
##
       purpose_business + purpose_repairs + purpose_education +
##
       purpose_furniture_equipment + other_debtors_guarantor + other_debtors_co_applicant +
##
       other_installment_plans_bank + other_installment_plans_stores +
##
       housing_rent + housing_own + job_skilled_employee + job_unskilled_resident +
##
       job_highly_qualified_employee + savings + present_employment +
##
       property + checking_account_status + is_woman + is_single,
##
       family = binomial, data = Reg_train)
##
## Deviance Residuals:
                      Median
                                   30
##
       Min
                 10
                                           Max
                                        1.8128
## -2.3490 -1.1194
                      0.5603
                               0.8502
##
## Coefficients:
                                   Estimate Std. Error z value Pr(>|z|)
## (Intercept)
                                              1.122322 1.665
                                                                  0.0959
                                   1.868579
                                   0.020000
                                              0.008831
                                                        2.265
                                                                 0.0235 *
## age
## dependents
                                  -0.451985
                                              0.251674 -1.796
                                                                  0.0725 .
## is_foreign_worker
                                  -1.635407
                                              0.765932 -2.135
                                                                  0.0327 *
                                                         2.142
## purpose_domestic
                                   0.468442
                                              0.218721
                                                                  0.0322 *
## purpose_retraining
                                  -0.370521
                                              0.351804 -1.053
                                                                  0.2922
## purpose_radio_television
                                   0.211954
                                              0.237065
                                                         0.894
                                                                  0.3713
                                                         1.149
                                                                  0.2504
## purpose_business
                                   1.253931
                                              1.090908
## purpose_repairs
                                   0.150804
                                              0.763680
                                                         0.197
                                                                  0.8435
## purpose_education
                                              0.530250 -0.846
                                                                  0.3975
                                  -0.448609
## purpose_furniture_equipment
                                   0.522847
                                              0.730910
                                                         0.715
                                                                  0.4744
                                                         0.935
## other_debtors_guarantor
                                   0.404226
                                              0.432311
                                                                  0.3498
## other_debtors_co_applicant
                                  -0.910258
                                              0.425450 -2.140
                                                                  0.0324 *
## other_installment_plans_bank
                                  -0.431306
                                              0.235634 -1.830
                                                                  0.0672 .
                                              0.379054 -1.952
                                                                  0.0509
## other_installment_plans_stores -0.740091
## housing rent
                                   0.021814
                                              0.363947
                                                         0.060
                                                                  0.9522
```

```
## housing_own
                                  0.342489
                                             0.310810 1.102
                                                                0.2705
                                 -0.537390 0.604666 -0.889
                                                                0.3741
## job_skilled_employee
## job_unskilled_resident
                                 -0.600522   0.622727   -0.964
                                                                0.3349
## job_highly_qualified_employee -0.742295 0.625014 -1.188
                                                                0.2350
## savings
                                  0.177937 0.092682
                                                       1.920
                                                                0.0549
                                  0.085908 0.038128 2.253
## present employment
                                                                0.0242 *
                                  0.233094 0.098987 2.355
## property
                                                                0.0185 *
## checking_account_status
                                 -0.468764
                                             0.087320 -5.368 7.95e-08 ***
                                  0.106457
                                             0.265636
## is woman
                                                        0.401
                                                                0.6886
## is_single
                                  0.660575
                                             0.264440 2.498
                                                                0.0125 *
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## (Dispersion parameter for binomial family taken to be 1)
##
##
       Null deviance: 975.68 on 799 degrees of freedom
## Residual deviance: 862.00 on 774 degrees of freedom
## AIC: 914
## Number of Fisher Scoring iterations: 5
Te zmienne to:
  • age
  • is_foreign_worker
  • present_employment

    property

    checking account status

  • is single
glm.fit <- glm(is_good_customer_type ~ dependents + purpose_domestic + purpose_retraining + purpose_rad</pre>
,data = Reg_train,family = binomial)
glm.probs <- ifelse(predict(glm.fit,newdata = Reg_test,type = "response") > 0.5,1,0)
confusion_matrix_primitive <- table(</pre>
Truth = select(Reg_test,is_good_customer_type)[,1],
Prediction = glm.probs
knitr::kable(confusion_matrix_primitive)
                                           0
                                                1
```

```
accuracy_primitive <- accuracy(confusion_matrix_primitive)
precision_primitive <- precision(confusion_matrix_primitive)
recall_primitive <- recall(confusion_matrix_primitive)
f1_primitive <- f1(confusion_matrix_primitive)

classification_report_primitive <- data.frame(accuracy_primitive, precision_primitive, recall_primitive, f1_primitive)
colnames(classification_report_primitive) <- c("accuracy", "precision",</pre>
```

1 5

57 134

```
"recall", "f1")
knitr::kable(classification_report_primitive)
```

accuracy	precision	recall	f1
0.69	0.7015707	0.9640288	0.8121212

Jak widać, otrzymujemy lepsze wyniki niż poprzednio. Ostatnią metodą niech będzie stworzenie modelu ze zmiennych mających największe znaczenie w naszym pierwszym modelu. Pięć zmiennych z największym znaczeniem to:

• purpose radio television: 0.90

• housing_rent : 0.71

• purpose_repairs : 0.69

• purpose_furniture_equipment : 0.59

• housing_own: **0.42**

Stwórzmy teraz model na podstawie:

```
glm.fit <- glm(is_good_customer_type ~ purpose_radio_television + purpose_repairs + purpose_furniture_e
,data = Reg_train,family = binomial)
glm.probs <- ifelse(predict(glm.fit,newdata = Reg_test,type = "response") > 0.5,1,0)

confusion_matrix_primitive <- table(
Truth = select(Reg_test,is_good_customer_type)[,1],
Prediction = glm.probs
)
knitr::kable(confusion_matrix_primitive)</pre>
```

 $\begin{array}{r} & 1 \\ \hline 0 & 61 \\ 1 & 139 \end{array}$

Co ciekawe ten model nie przewidział żadnego 0, czyli złego klienta. Ten model uzyskuje celność **0.65** co jest podobnym wynikiem do reszty. Jednak z powodu nieprzewidzenia złych klientów nie można obliczyć reszty statystyk.

Podsumowanie

Model uzyskuje podobne parametry dla różnych zmiennych. Najgorzej wypadł model bez pięciu najmniej istotnych zmiennych. Może to być jednak spowodowane ilością danych, jak i ich arbitralnym podziałem na zbiór testowy i treningowy.