Q1. Minimax

Given:

- a partial Minimax search tree,
- node A with current values: $\alpha = -\inf$, $\beta = 7$.

Complete the search with α - β pruning by calculating final values of the following elements:

- A: $\alpha = \underline{\hspace{1cm}}$, $\beta = \underline{\hspace{1cm}}$ (a value/-inf/+inf/ or nothing if pruning)
- B: $\alpha =$ _____, $\beta =$ _____ (a value/-inf/+inf/ or nothing if pruning)
- C: $\alpha = \underline{\hspace{1cm}}$, $\beta = \underline{\hspace{1cm}}$ (a value/-inf/+inf/ or nothing if pruning)
- P1: prune? _____ (Yes or No)
- P2: prune? _____ (Yes or No)
- P3: prune? _____ (Yes or No)

ANSWERS

Q1. Minimax

Given:

- a partial Minimax search tree,
- node A with current values: $\alpha = -\inf$, $\beta = 7$.

Complete the search with α - β pruning by calculating final values of the following elements:

-int, 6 7
A: α = _____, β = ____ (a value/-inf/+inf/ or nothing if pruning)
-inf 7, 6

- B: $\alpha = \underline{}$, $\beta = \underline{}$ (a value/-inf/+inf/ or nothing if pruning)
- C: α = _____, β = _____ (a value/-inf/+inf/ or nothing if pruning)
- P1: prune? _____ (Yes or No)
- P2: prune? ____ (Yes or No)
- P3: prune? _____ (Yes or No)