Contribuições à modelagem e controle de manipuladores paralelos

André Garnier Coutinho

Escola Politécnica da Universidade de São Paulo

Novembro de 2019

Mecanismos paralelos

Mecanismos paralelos

Características Promissoras

Mecanismos paralelos

Características Promissoras

- Grande capacidade de carga
- Alta rigidez estrutural
- Alta precisão de posicionamento
- Baixa inércia
- Altas velocidades e acelerações

Mecanismos paralelos

Características Promissoras

- Grande capacidade de carga
- Alta rigidez estrutural
- Alta precisão de posicionamento
- Baixa inércia
- Altas velocidades e acelerações

Inconvenientes

Mecanismos paralelos

Características Promissoras

- Grande capacidade de carga
- Alta rigidez estrutural
- Alta precisão de posicionamento
- Baixa inércia
- Altas velocidades e acelerações

Inconvenientes

- Grande número de componentes mecânicos
- Pequena área de trabalho
- Dinâmica complexa e não linear

Mecanismos paralelos

Aplicações

- Pick-and-place

Mecanismos paralelos

Aplicações

- Simuladores

Mecanismos paralelos

Aplicações

- Usinagem

Motivação Grupo de pesquisa

Motivação Grupo de pesquisa

LaMMaR

Laboratório de Mecanismos, Máquinas e Robôs

Grupo de pesquisa

Robôs

Giovanna

Grupo de pesquisa

Robôs

Dora

Grupo de pesquisa

Robôs

Laila

Grupo de pesquisa

Robôs

Clara

Motivação Grupo de pesquisa

Clara

- 2015
 - B. Ohashi: Síntese dimensional
 - V. Bartholomeu: Projeto e contrução da estrutura mecânica
- 2016
 - V. Bartholomeu e J. de Oliveira-Fuess: Modelagem e simulações cinemática e dinâmica
- 2017
 - A. Coutinho, V. Bartholomeu e J. de Oliveira-Fuess: Construção do protótipo
- 2019
 - A. Coutinho: Implementação de técnicas de controle e ensaios experimentais

Metodologia modular de modelagem

Motivação Metodologia modular de modelagem

(Orsino 2015)

Controle robusto

Técnicas mais utilizadas

PID

- PID
 - Controle linear
 - Simples implementação
 - Não baseado no modelo dinâmico do mecanismo
 - Desempenho bastante limitado

- PID
 - Controle linear
 - Simples implementação
 - Não baseado no modelo dinâmico do mecanismo
 - Desempenho bastante limitado
- CTC

- PID
 - Controle linear
 - Simples implementação
 - Não baseado no modelo dinâmico do mecanismo
 - Desempenho bastante limitado
- CTC
 - Controle não linear
 - Baseado no modelo dinâmico do mecanismo
 - Desempenho limitado pela qualidade do modelo
 - Implementação mais complexa

Controle por Modos Deslizantes

Controle por Modos Deslizantes

- Controle não linear robusto
- Pode ser baseado no modelo dinâmico do mecanismo

Controle por Modos Deslizantes

- Controle não linear robusto
- Pode ser baseado no modelo dinâmico do mecanismo

Vantagem

Desempenho menos dependente da qualidade do modelo

Controle por Modos Deslizantes

- Controle não linear robusto
- Pode ser baseado no modelo dinâmico do mecanismo

Vantagem

Desempenho menos dependente da qualidade do modelo

Desvantagem

Pode causar chattering

Geral

Contribuir para o aumento do desempenho de manipuladores paralelos

Geral

Contribuir para o aumento do desempenho de manipuladores paralelos

Como?

Geral

Contribuir para o aumento do desempenho de manipuladores paralelos

Como?

 Desenvolvimento de um algoritmo gerador de modelos dinâmicos completos de mecanismos paralelos, de forma implícita

Geral

Contribuir para o aumento do desempenho de manipuladores paralelos

Como?

- Desenvolvimento de um algoritmo gerador de modelos dinâmicos completos de mecanismos paralelos, de forma implícita
- Síntese de leis de controle não linear robusto, de alto desempenho, aplicável a mecanismos paralelos

Geral

Contribuir para o aumento do desempenho de manipuladores paralelos

Como?

- Desenvolvimento de um algoritmo gerador de modelos dinâmicos completos de mecanismos paralelos, de forma implícita
- Síntese de leis de controle não linear robusto, de alto desempenho, aplicável a mecanismos paralelos
- Comparação de desempenho das leis de controle propostas com as leis de controle mais encontradas na literatura, através de ensaios experimentais

Principais formulações

- Formalismo de Newton-Euler
- Formalismo de Lagrange
- Princípio dos Trabalhos/Potências Virtuais
- Formulação Lagrange-D'Alambert
- Método de Kane
- Formalismo de Boltzmann-Hammel
- Formulação do Complemento Ortogonal Natural
- Método Orsino

Formalismo de Newton-Euler

- Muito popular em mecanismos seriais (alg. recursivo)
- Trabalha com esforços reativos
- Encontrado em Arian et al. [4], Dasgupta et al. [28], Li et al. [54],
 Shiau et al. [76] e Zhang et al. [109]

Formalismo de Newton-Euler

- Muito popular em mecanismos seriais (alg. recursivo)
- Trabalha com esforços reativos
- Encontrado em Arian et al. [4], Dasgupta et al. [28], Li et al. [54],Shiau et al. [76] e Zhang et al. [109]

Formalismo de Lagrange

- Não necessita de esforços reativos
- Frequentemente necessita de multiplicadores
- Encontrado em Li et al. [57], Singh et al. [79-81] e Yao et al. [105]

Modelagem

Revisão da Literatura

Princípio dos Trabalhos/Potências Virtuais

...

Mecanismos Paralelos

- Translacionais
- Efetuador rígido

Mecanismos Paralelos

- Translacionais
- Efetuador rígido

Considera

- Inércia distribuída
- Ação da gravidade
- Atritos nas juntas
- Dinâmica dos atuadores

Mecanismos Paralelos

- Translacionais
- Efetuador rígido

Considera

- Inércia distribuída
- Ação da gravidade
- Atritos nas juntas
- Dinâmica dos atuadores

Não considera

- Folga nas juntas
- Deformações

Formulação implícita

Torna possível a implementação em linguagens de programação de alta eficiência computacional, como C++

Algoritmo de modelagem Seriais

Algoritmo de modelagem Seriais

Dados de entrada

- Parâmetros de Denavit-Hartemberg $(a_i, \alpha_i, \theta_i, d_i)$
- Posição dos centros de massa em relação aos sistemas B_i (x_i, y_i, z_i)
- Massa m_i de cada ligamento
- Tensor de inércia $[\mathbf{I}_i]_{\mathbf{B}_i \mid \mathbf{B}_i}$ em relação ao centro de massa de cada ligamento
- Vetor aceleração gravitacional escrito no sistema fixo $([\boldsymbol{g}]_{\mathtt{N}})$

Seriais: Exemplo

Seriais: Exemplo

Seriais: Exemplo

Ligamento	a _i	α_i	di	θ_i	×i	Уі	Zį	m _i
(1)	<i>I</i> ₁	0	0	$q_1(t)$	$I_{g1} - I_{1}$	0	0	m ₁
(2)	12	0	0	$q_2(t)$	$I_{g2} - I_2$	0	0	m ₂

$$\begin{bmatrix} \mathbf{I}_1 \end{bmatrix}_{\mathbf{B}_1 \mid \mathbf{B}_1} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & Jz_1 & 0 \\ 0 & 0 & Jz_1 \end{bmatrix}$$

$$\begin{bmatrix} \mathbf{I}_2 \end{bmatrix}_{\mathbf{B}_2 \mid \mathbf{B}_2} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & Jz_2 & 0 \\ 0 & 0 & Jz_2 \end{bmatrix}$$

$$\begin{bmatrix} \boldsymbol{g} \end{bmatrix}_{\mathbb{N}} = \begin{bmatrix} 0 & -g & 0 \end{bmatrix}^{\mathsf{T}}$$

Algoritmo de modelagem Paralelos

Algoritmo de modelagem Paralelos

Dados de entrada

- Modelo da plataforma/efetuador
- Modelo das cadeias seriais
- Matrizes constantes que descrevem a arquitetura do mecanismo (d, \mathbb{D} , \mathbb{E} , \mathbb{F} , \mathbb{P} , \mathbb{Q} , \mathbb{R})

$$\mathbf{q}^* = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \cdot \mathbf{x}_1(\mathbf{q}_1) + \begin{bmatrix} l_0 \\ 0 \\ 0 \end{bmatrix}$$

$$\mathbf{q}^* = \begin{bmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{bmatrix} \cdot \mathbf{x}_2(\mathbf{q}_2) + \begin{bmatrix} -l_0 \\ 0 \\ 0 \end{bmatrix}$$

$$\mathbf{q}^* = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \cdot \mathbf{x}_1(\mathbf{q}_1) + \begin{bmatrix} I_0 \\ 0 \\ 0 \end{bmatrix}$$

$$\mathbf{q}^* = \begin{bmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{bmatrix} \cdot \mathbf{x}_2(\mathbf{q}_2) + \begin{bmatrix} -I_0 \\ 0 \\ 0 \end{bmatrix}$$

$$\overline{\mathbf{q}}(\mathbf{q}) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \cdot \mathbf{q}^* - \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & 0 & -1 \end{bmatrix} \cdot \mathbf{x}(\mathbf{q}^\diamond) - \begin{bmatrix} I_0 \\ 0 \\ 0 \\ -I_0 \\ 0 \\ 0 \end{bmatrix} = \mathbf{0}$$

$$\mathbb{D} = \begin{bmatrix} I_0 & 0 & 0 & -I_0 & 0 & 0 \end{bmatrix}^{\mathsf{T}}$$

$$\mathbb{D} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$\mathbb{E} = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & -1 \end{bmatrix}$$

$$\mathbb{F} = \mathbb{D}$$

$$\mathbf{q}^{\#} = \begin{bmatrix} x & y \end{bmatrix}^{\mathsf{T}}$$

$$\mathbf{q}^{\circ} = \begin{bmatrix} z & \theta_{1,1} & \theta_{1,2} & \theta_{2,1} & \theta_{2,2} \end{bmatrix}^{\mathsf{T}}$$

$$\mathbf{q}^{\#} = \begin{bmatrix} x & y \end{bmatrix}^{\mathsf{T}}$$

$$\mathbf{q}^{\circ} = \begin{bmatrix} z & \theta_{1,1} & \theta_{1,2} & \theta_{2,1} & \theta_{2,2} \end{bmatrix}^{\mathsf{T}}$$

$$\mathbb{Q}^{\#} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \end{bmatrix}; \mathbb{Q}^{\circ} = \begin{bmatrix} 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\mathbf{q}^{\#} = \begin{bmatrix} \theta_{1,1} & \theta_{2,1} \end{bmatrix}^{\mathsf{T}}$$

$$\mathbf{q}^{\circ} = \begin{bmatrix} x & y & z & \theta_{1,2} & \theta_{2,2} \end{bmatrix}^{\mathsf{T}}$$

Variáveis controladas

Posição do efetuador

Variáveis controladas

Posição do efetuador

Variáveis monitoradas

Coordenadas dos atuadores

Variáveis controladas

Posição do efetuador

Variáveis monitoradas

Coordenadas dos atuadores

Variáveis manipuladas

Torque aplicado pelos atuadores

Variáveis controladas

Posição do efetuador

Variáveis monitoradas

Coordenadas dos atuadores

Variáveis manipuladas

Torque aplicado pelos atuadores

Estruturas de controle

- Espaço das juntas
- Espaço da tarefa

Espaço das juntas

Controle Espaço da tarefa

Lei de controle proposta

Lei de controle proposta

Lei de controle

$$\mathbf{v} = \hat{\mathbb{H}}(\mathbf{q}) \Big(\ddot{\mathbf{q}}_d^\# + \underline{k}_V \dot{\mathbf{e}} + \underline{k}_p \mathbf{e} + \int_0^{\tau} \underline{k} \, \mathsf{sat}(\mathbf{s}/\phi) \, \mathsf{d} \tau \Big) + \hat{\mathbb{h}}(\mathbf{q}, \dot{\mathbf{q}})$$

Sendo:

$$s = \ddot{e} + \underline{k}_{\nu}\dot{e} + \underline{k}_{p}e$$

Lei de controle proposta

Lei de controle

$$\mathbf{v} = \hat{\mathbb{H}}(\mathbf{q}) \Big(\ddot{\mathbf{q}}_d^\# + \underline{k}_V \dot{\mathbf{e}} + \underline{k}_p \mathbf{e} + \int_0^{\tau} \underline{k} \, \mathsf{sat}(\mathbf{s}/\phi) \, \mathsf{d} \tau \Big) + \hat{\mathbb{h}}(\mathbf{q}, \dot{\mathbf{q}})$$

Sendo:

$$\mathbf{s} = \ddot{\mathbf{e}} + \underline{k}_{V}\dot{\mathbf{e}} + \underline{k}_{p}\mathbf{e}$$

Modelo dinâmico

$$\mathbb{H}(\mathbf{q})\ddot{\mathbf{q}}^{\#} + \mathbb{h}(\mathbf{q}, \dot{\mathbf{q}}) = \mathbf{v}$$

Sendo:

$$\mathbb{h}(\mathbf{q},\dot{\mathbf{q}}) = \mathbf{g}(\mathbf{q}) + \sum_{i=1}^{\nu^\#} \sum_{j=i}^{\nu^\#} \mathbb{h}_{i,j}(\mathbf{q}) \dot{q}_i^\# \dot{q}_j^\#$$

Lei de controle proposta

Lei de controle proposta

PD

$$\mathbf{v} = m^* \Big(\ddot{\mathbf{q}}_d^\# + \underline{k}_v \dot{\mathbf{e}} + \underline{k}_p \mathbf{e} \Big)$$

Lei de controle proposta

PD

$$\mathbf{v} = m^* \left(\ddot{\mathbf{q}}_d^\# + \underline{k}_v \dot{\mathbf{e}} + \underline{k}_p \mathbf{e} \right)$$

PDMD

$$\mathbf{v} = m^* \left(\ddot{\mathbf{q}}_d^\# + \underline{k}_V \dot{\mathbf{e}} + \underline{k}_p \mathbf{e} + \int_0^t \underline{k} \operatorname{sat}(\mathbf{s}/\phi) \, \mathrm{d}\tau \right)$$

Lei de controle proposta

PD

$$\mathbf{v} = m^* \left(\ddot{\mathbf{q}}_d^\# + \underline{k}_{\mathbf{v}} \dot{\mathbf{e}} + \underline{k}_{\mathbf{p}} \mathbf{e} \right)$$

PDMD

$$\mathbf{v} = m^* \Big(\ddot{\mathbf{q}}_d^\# + \underline{k}_{\nu} \dot{\mathbf{e}} + \underline{k}_{\rho} \mathbf{e} + \int_0^t \underline{k} \operatorname{sat}(\mathbf{s}/\phi) \, \mathrm{d}\tau \Big)$$

TC

$$\mathbf{v} = \hat{\mathbb{H}}(\mathbf{q}) \Big(\ddot{\mathbf{q}}_d^{\#} + \underline{k}_v \dot{\mathbf{e}} + \underline{k}_p \mathbf{e} \Big) + \hat{\mathbb{h}}(\mathbf{q}, \dot{\mathbf{q}})$$

Lei de controle proposta

PD

$$\mathbf{v} = m^* \left(\ddot{\mathbf{q}}_d^\# + \underline{k}_v \dot{\mathbf{e}} + \underline{k}_p \mathbf{e} \right)$$

PDMD

$$\mathbf{v} = m^* \Big(\ddot{\mathbf{q}}_d^\# + \underline{k}_{\mathbf{v}} \dot{\mathbf{e}} + \underline{k}_{\mathbf{p}} \mathbf{e} + \int_0^t \underline{k} \, \mathsf{sat}(\mathbf{s}/\phi) \, \mathsf{d} au \Big)$$

TC

$$\mathbf{v} = \hat{\mathbb{H}}(\mathbf{q}) \Big(\ddot{\mathbf{q}}_d^{\scriptscriptstyle\#} + \underline{k}_V \dot{\mathbf{e}} + \underline{k}_P \mathbf{e} \Big) + \hat{\mathbb{h}}(\mathbf{q}, \dot{\mathbf{q}})$$

TCMD

$$\mathbf{v} = \hat{\mathbb{H}}(\mathbf{q}) \Big(\ddot{\mathbf{q}}_d^\# + \underline{k}_V \dot{\mathbf{e}} + \underline{k}_p \mathbf{e} + \int_0^t \underline{k} \operatorname{sat}(\mathbf{s}/\phi) \, \mathrm{d}\tau \Big) + \hat{\mathbb{h}}(\mathbf{q}, \dot{\mathbf{q}})$$

Parâmetros do controlador

Parâmetros do controlador

\underline{k}_p e \underline{k}_v

- Fazem a alocação dos pólos do sistema em malha fechada
- Comumente é utilizado amortecimento crítico

$$\underline{k}_p = \lambda^2 \mathbb{1}; \ \underline{k}_v = 2\lambda \mathbb{1}$$

Parâmetros do controlador

\underline{k}_p e \underline{k}_v

- Fazem a alocação dos pólos do sistema em malha fechada
- Comumente é utilizado amortecimento crítico

$$\underline{k}_p = \lambda^2 \mathbb{1}; \ \underline{k}_v = 2\lambda \mathbb{1}$$

m^*

- Parâmetro de pré-alimentação de aceleração
- Em um sistema linear SISO, o valor ótimo seria a inércia do sistema

Parâmetros do controlador

φ

- Comprimento da camada limite
- Parâmetro utilizado para aliviar o chattering
- Relacionado com o erro máximo em regime permanente

$$\phi = e_{max}/\lambda^2$$

Parâmetros do controlador

φ

- Comprimento da camada limite
- Parâmetro utilizado para aliviar o chattering
- Relacionado com o erro máximo em regime permanente

$$\phi = e_{max}/\lambda^2$$

k

- Parâmetro de supressão de erros de modelagem
- Valores muito altos podem gerar chattering
- Pode ser obtido através da lei de adaptação proposta ou experimentalmente

Bancada experimental

Bancada experimental

Componentes

- 2 Motores DC 250W/24V/0.5Nm
- 2 Encoders 5000pulsos/volta
- 1 Driver c/ 2 canais 24V/12A
- 1 Processador Raspberry Pi 2
- 1 Fonte chaveada 24V/16A
- 1 Placa de conversão de níveis de tensão

Bancada experimental

Resultados

Simulações

Mecanismo

2RSU + PPaP

(Orsino 2012)

Trajetória de referência

Círculo com 740mm de diâmetro, velocidade tangencial de 1.0m/s.

Resultados

Simulações

Parâmetros do controlador

- λ = 50.0 \Rightarrow Tempo de assentamento de 0.08s
- η = 20.0 ⇒ Tempo de chegada a s = 0 menor que 0.05s

Função de saturação

$$f_{sat}(x) = \tanh(20x)$$

Conclusões parciais

Conclusões parciais

 É fundamental a utilização linguagens de alta eficiência computacional para realizar simulações dinâmicas de modelos completos de mecanismos complexos

Conclusões parciais

- É fundamental a utilização linguagens de alta eficiência computacional para realizar simulações dinâmicas de modelos completos de mecanismos complexos
- É possível obter alto desempenho no controle mecanismos paralelos em altas velocidades/acelerações utilizando técnicas de controle não linear robusto, mesmo com altos níveis de incertezas paramétricas

Publicações

BioRob 2014

"Development of a Controller of a 3-Dof Robotic Platform for User Interaction in Rehabilitation Therapies"

Publicações

Capítulo de livro

"Dynamic Modelling and Control of balanced parallel mechanisms"

Publicações

International Journal of Mechanisms and Robotic Systems

"A new approach for obtaining the dynamic balancing conditions in serial mechanisms"

