Ministério da Educação

Universidade Federal dos Vales do Jequitinhonha e Mucuri Faculdade de Ciências Sociais, Aplicadas e Exatas - FACSAE Departamento de Ciências Exatas - DCEX

Disciplina: Matrizes e Sistemas Lineares. Semestre: 2020/1 Prof. Me. Luiz C. M. de Aquino

Avaliação III

Instruções

- Todas as justificativas necessárias na solução de cada questão devem estar presentes nesta avaliação;
- As respostas finais de cada questão devem estar escritas de caneta;
- Esta avaliação tem um total de 35,0 pontos.

1. [7,0 pontos] Considere a matriz
$$A = \begin{bmatrix} 1 & 0 & 8 \\ 1 & 2 & 3 \\ 2 & 5 & 3 \end{bmatrix}$$

- (a) Determine a inversa de A.
- (b) Usando o item (a), resolva o sistema linear abaixo:

$$\begin{cases} x + 8z = 4 \\ x + 2y + 3z = 0 \\ 2x + 5y + 3z = -2 \end{cases}$$

- 2. [7,0 pontos] Prove que se $A=P^{-1}DP$, então $A^n=P^{-1}D^nP$ para todo $n\in\mathbb{N}$. (Observação: por convenção considere que $M^0=I$, para toda matriz quadrada M.)
- 3. [7,0 pontos] Vamos usar operações com matrizes para criptografar uma mensagem. Primeiro, converta cada letra da mensagem em um número, como indica a tabela abaixo. Cada grupo de três letras, formará uma linha da matriz de mensagem M, de ordem 3×3 . Agora, escolha uma matriz inversível S, de ordem 3×3 , para ser a chave da criptografia. Para determinar a mensagem criptografada C, calculamos C = SM. Já para recuperar a mensagem original, calculamos $M = S^{-1}C$.

A	В	С	D	Е	F	G	Н	I	J	K	L	M
1	2	3	4	5	6	7	8	9	10	11	12	13
N	О	Р	Q	R	S	Т	U	V	W	X	Y	Z
14	15	16	17	18	19	20	21	22	23	24	25	26

Considerando que a chave de criptografia é a matriz $S = \begin{bmatrix} 1 & -2 & 2 \\ 2 & -3 & 6 \\ 1 & 1 & 7 \end{bmatrix}$ e a mensagem criptografada

é
$$C = \begin{bmatrix} -13 & -4 & 15 \\ -4 & 3 & 80 \\ 48 & 28 & 147 \end{bmatrix}$$
, qual é a mensagem original?

- 4. [7,0 pontos] Prove que se $A_1, A_2, \ldots, A_{k-1}, A_k$ são matrizes invertíveis de mesma ordem, então $(A_1 \cdot A_2 \cdot \ldots \cdot A_{k-1} \cdot A_k)^{-1} = A_k^{-1} \cdot A_{k-1}^{-1} \cdot \ldots \cdot A_2^{-1} \cdot A_1^{-1}$
- 5. [7,0 pontos] Prove que se D é uma matriz diagonal invertível, então

$$[D^{-1}]_{ij} = \begin{cases} \frac{1}{[D]_{ij}}, i = j \\ 0, i \neq j \end{cases}$$