

$$\times 2$$

$$\times 2$$

Richness?

$$\bigcirc$$
 × 5

Richness?

$$\times 5$$
 $\times 2$

4 unique species species richness = 4

6 unique species species richness = 6

Abundance?

Abundance?

(10, 3, 5, 2)

(5, 3, 5, 2, 4, 1)

$$2^{n-1} \le a < 2^n$$

i.e.,
$$a \ge 2^{n-1} \text{ AND } a < 2^n$$

$$2^{n-1} \le a < 2^n$$

i.e.,
$$a \ge 2^{n-1} \text{ AND } a < 2^n$$

Octave class	$a \ge 2^{n-1}$	$a < 2^n$	Possible abundances a
1			
2			
3			
4			
5			
6			
7			

$$2^{n-1} \le a < 2^n$$

i.e.,
$$a \ge 2^{n-1} \text{ AND } a < 2^n$$

Octave class	$a \ge 2^{n-1}$	$a < 2^{n}$	Possible abundances a
1	1		
2			
3			
4			
5			
6			
7			

$$2^{n-1} \le a < 2^n$$

i.e.,
$$a \ge 2^{n-1} \text{ AND } a < 2^n$$

Octave class	$a \ge 2^{n-1}$	$a < 2^{n}$	Possible abundances a
1	1	2	
2			
3			
4			
5			
6			
7			

$$2^{n-1} \le a < 2^n$$

i.e.,
$$a \ge 2^{n-1} \text{ AND } a < 2^n$$

Octave class	$a \ge 2^{n-1}$	$a < 2^{n}$	Possible abundances a
1	1	2	1
2			
3			
4			
5			
6			
7			

$$2^{n-1} \le a < 2^n$$

i.e.,
$$a \ge 2^{n-1} \text{ AND } a < 2^n$$

Octave class	$a \ge 2^{n-1}$	$a < 2^{n}$	Possible abundances a
1	1	2	1
2	2		
3			
4			
5			
6			
7			

$$2^{n-1} \le a < 2^n$$

i.e.,
$$a \ge 2^{n-1} \text{ AND } a < 2^n$$

Octave class	$a \ge 2^{n-1}$	$a < 2^{n}$	Possible abundances a
1	1	2	1
2	2	4	
3			
4			
5			
6			
7			

$$2^{n-1} \le a < 2^n$$

i.e.,
$$a \ge 2^{n-1} \text{ AND } a < 2^n$$

Octave class	$a \ge 2^{n-1}$	$a < 2^{n}$	Possible abundances a
1	1	2	1
2	2	4	2, 3
3			
4			
5			
6			
7			

$$2^{n-1} \le a < 2^n$$

i.e.,
$$a \ge 2^{n-1} \text{ AND } a < 2^n$$

Octave class	$a \ge 2^{n-1}$	$a < 2^n$	Possible abundances a
1	1	2	1
2	2	4	2, 3
3	4	8	4, 5, 6, 7
4			
5			
6			
7			

$$2^{n-1} \le a < 2^n$$

i.e.,
$$a \ge 2^{n-1} \text{ AND } a < 2^n$$

Octave class	$a \ge 2^{n-1}$	$a < 2^n$	Possible abundances a
1	1	2	1
2	2	4	2, 3
3	4	8	4, 5, 6, 7
4	8	16	8, 9, 10, 11, 12, 13, 14, 15
5			
6			
7			

$$2^{n-1} \le a < 2^n$$

i.e.,
$$a \ge 2^{n-1} \text{ AND } a < 2^n$$

Octave class	$a \ge 2^{n-1}$	$a < 2^n$	Possible abundances a
1	1	2	1
2	2	4	2, 3
3	4	8	4, 5, 6, 7
4	8	16	8, 9, 10, 11, 12, 13, 14, 15
5	16	32	16, 17,, 31
6	32	64	32, 33,, 63
7	64	128	64, 64,, 127

$$2^{n-1} \le a < 2^n$$

i.e.,
$$a \ge 2^{n-1} \text{ AND } a < 2^n$$

Octave class	$a \ge 2^{n-1}$	$a < 2^{n}$	Possible abundances a
1	1	2	1
2	2	4	2 – 3
3	4	8	4 – 7
4	8	16	8 – 15
5	16	32	16 – 31
6	32	64	32 – 63
7	64	128	64 – 127

$$2^3 \le a < 2^4$$
$$\Rightarrow n = 4$$

$$2^2 \le a < 2^3$$
$$\Rightarrow n = 3$$

$$\times 5$$
 $\times 3$

$$2^{1} \le a < 2^{2}$$

$$\Rightarrow n = 2$$

$$2^3 \le a < 2^4$$
$$\Rightarrow n = 4$$

$$2^{1} \le a < 2^{2}$$

$$\Rightarrow n = 2$$

$$\times 5$$

$$2^2 \le a < 2^3$$
$$\Rightarrow n = 3$$

$$\sqrt{2}$$
 $\times 2$

$$2^1 \le a < 2^2$$
$$\Rightarrow n = 2$$

$$2^2 \le a < 2^3$$
$$\Rightarrow n = 3$$

$$\times$$
 3

$$2^1 \le a < 2^2$$
$$\Rightarrow n = 2$$

$$2^1 \le a < 2^2$$
$$\Rightarrow n = 2$$

$$2^2 \le a < 2^3$$
$$\Rightarrow n = 3$$

 $\times 4$

$$2^{0} \le a < 2^{1}$$

$$\Rightarrow n = 1$$

$$2^{1} \le a < 2^{2}$$

$$\Rightarrow n = 2$$

$$2^{1} \le a < 2^{2}$$

$$\Rightarrow n = 2$$

 $2^1 \le a < 2^2$

 $\Rightarrow n = 2$

 $\times 3$

$$2^{0} \le a < 2^{1}$$

$$\Rightarrow n = 1$$

