HN482764G,HN482764G-2, HN482764G-3

8192-word x 8-bit UV Erasable and Programmable Read Only Memory

The HN482764 is a 8192 word by 8 bit erasable and electrically programmable ROM. This device is packaged in a 28 pin dual-in-line package with transparent lid. The transparent lid on the package allows the memory content to be erased with ultraviolet light.

FEATURES

•	Single Power Supply	+5V ± 5%
•	Simple Programming	. Program Voltage: +21V D.C.
		Program with one 50ms Pulse
•	Static	No Clocks Required

Inputs and Outputs TTL Compatible During Both Read and Program Mode.

• High Performance Programming Available

Compatible with Intel 2764

MODE SELECTION

Pins	(20)	OE (22)	PGM (27)	V _{PP} (1)	V _{cc} (28)	Outputs (11~13, 15~19)
Read	VIL	VIL	VIH	Vcc	Vcc	Dout
Stand-by	VIH	×	×	Vcc	Vcc	High Z
Program	VIL	×	VIL	V _{PP}	Vcc	Din
Program Verify	VIL	VIL	VIH	VPP	Vcc	Dout
Program Inhibit	Vin	×	×	V_{PP}	Vcc	High Z

^{× :} don't care

MADSOLUTE MAXIMUM RATINGS

Item	Symbol	Value	Unit
Operating Temperature Range	T.,.	0 to +70	·c
Storage Temperature Range	T.,,	-65 to +125	°C
All Input and Output Voltage*	V _T	-0.6 to +7	v
Vrr Voltage	VPP	-0.6 to +26.5	v

^{• :} with respect to GND

@HITACHI

PIN ARRANGEMENT

READ OPERATION

ullet DC AND OPERATING CHARACTERISTICS ($\it Ta=0$ to $\it +70^{\circ}$ C, $\it Vcc=5V\pm5\%$, $\it V_{PP}=Vcc\pm0.6V$)

Parameter	Symbol	Test Condition	min	typ	max	Unit
Input Leakage Current	Iυ	Vcc - 5.25 V, Vi, - 5.25 V	_		10	μA
Output Leakage Current	ILO	Vcc = 5.25 V, V., = 5.25 V / 0.45 V			10	μA
VPP Current	I _{PP1}	$V_{PP} = V_{CC} + 0.6 \text{ V}$	_	_	15	m A
Vcc Current (Standby)	Icc 1	CE - Vin	-		35	mА
Vcc Current (Active)	Icc 2	CE - OE - VIL		40	100	m A
Input Low Voltage	VIL		-0.1		0.8	V
Input High Voltage	Vin		2.0	_	V _{cc} + 1	v
Output Low Voltage	Vol	Iot = 2.1 mA	_	_	0.45	v
Output High Voltage	Von	I _{OH} = -400 μA	2.4	_		V

• AC CHARACTERISTICS (Ta=0 to $+70^{\circ}$ C, $V_{cc}=5$ V $\pm 5\%$, $V_{PP}=V_{cc}\pm 0.6$ V)

			HN482	2764G-2	HN48	32764G	HN482	2764G-3	Unit
Parameter	Symbol	Test Conditions	min	max	min	max	min	max	Cint
Address to Output Delay	tacc	$\overline{CE} = \overline{OE} = V_{IL}$		200	-	250		300	ns
CE to Output Delay	₹CE	$\overline{OE} = V_{IL}$	_	200	-	250		300	ns
OE to Output Delay	to E	$CE = V_{IL}$	10	80	10	100	10	150	ns
OE High to Output Float	tor .	$\overline{CE} = V_{IL}$	0	60	0	90	0	130	ns
Address to Output Hold	toн	CE=OE = VIL	0	-	0	_	. 0		ns

Note: for defines the time at which the output achieves the open circuit condition and is not referenced to output voltage levels.

SWITCHING CHARACTERISTICS Test Condition

Output Load:

Input Pulse Levels:

0.45V to 2.4V ≤ 20ns

Input Rise and Fall Time:

1TTL Gate + 100pF

Reference Level for Measuring Timing:

0.8V and 2.0V

• CAPACITANCE ($Ta-25^{\circ}C$, f=1MHz)

Parameter	Symbol	Test Condition	min	typ	max	Unit
Input Capacitance	C.,	V.; -0V	_	4	6	pF
Output Capacitance	Cont	V 0 V	_	8	12	pF

PROGRAMMING OPERATION

ullet DC PROGRAMMING CHARACTERISTICS ($\it Ta=25\%\pm5\%$, $\it V_{cc}=5V\pm5\%$, $\it V_{PP}=21V\pm0.5V$)

Parameter	Symbol	Test Condition	min	typ	max	Unit
Input Leakage Current	I _{LI}	V., -5.25 V		-	10	μA
Output Low Voltage During Verify	Vol	IoL - 2.1 m A	T -		0.45	v
Output High Voltage During Verify	V _{OH}	I _{OH} = -400 μA	2.4			v
Vcc Current (Active)	Icc :		_		100	m A
Input Low Level	V _{IL}		-0.1	-	0.8	v
Input High Level	VIH		2.0		V _{cc} +1	v
VPP Supply Current	Ipp	$\overline{CE} - \overline{PGM} - V_{IL}$	1 -	_	30	m A

• AC PROGRAMMING CHARACTERISTICS (Ta-25° ±5 °, $V_{cc}-5$ V ±5 %, $V_{PP}-21$ V ±0.5 V)

Parameter	Symbol	Test Condition	min	typ	max	Unit
Address Setup Time	las		2			#s
OE Setup Time	toes		2		_	μs
Data Setup Time	tos		2		-	μ ₅
Address Hold Time	tan		0	-		μs
Data Hold Time	t _{DH}		2			μs
OE to Output Float Delay	tor		0		130	ns
Vrp Setup Time	tvs		2			μs
PGM Pulse Width During Programming	lew		45	50	55	ms
CE Setup Time	lces		2			μ5
Data Valid from OE	tos		_	-	150	ns

Note: tor defines the time at which the output achieves the open circuit condition and is not referenced to output voltage levels.

• SWITCHING CHARACTERISTICS

Test Condition

 Input Pulse Level:
 0.45V to 2.4V

 Input Rise and Fall Time:
 ≤ 20 ns

 Reference Level for Measuring Timing:
 0.8V and 2V

■ ERASE

Erasure of HN482764 is performed by exposure to Ultraviolet light of 2537Å, and all the output data are changed to "1" after this erasure procedure. The minimum integrated dose (i.e. UV intensity x exposure time) for erasure is 15W · sec/cm²

274

HIGH PERFORMANCE PROGRAMMING

This device can be applied the High Performance Programming algorithm shown in following flowchart. This algorithm allows to obtain faster programming time without any voltage stress to the device nor deterioration in reliability of programmed data.

High Performance Programming Flowchart

• AC PROGRAMMING CHARACTERISTICS ($T_a = 25$ °C ± 5 °C, $V_{cc} = 6V \pm 0.25V$, $V_{PP} = 21V \pm 0.5V$)

Parameter	Symbol	Test Condition	min	typ	max	Unit
Address Setup Time	las		2	_		μs
OE Setup Time	toes		2	_	_	μs
Data Setup Time	tos		2	_	_	μs
Address Hold Time	t _{AH}		0	_	_	μs
Data Hold Time	t _{DH}		2		_	μs
OE to Output Float Delay*	tor		0		130	ns
VPP Setup Time	t vps		2	_	_	μs
V _{cc} Setup Time	t vcs		2		_	μs
PGM Pulse Width during Initial Program	t PW		0.95	1.0	1.05	ms
PGM Pulse Width during Over Program**	t opw		3.8	_	63	ms
CE Setup Time	tces		2	_		μs
Data Valid from OE	toε		_	_	150	ns

Notes) * t pr defines the time at which the output achieves the open circuit condition and is not referenced to output voltage levels. * * t orn is defined as mentioned in flort chart.

• SWITCHING CHARACTERISTICS

Test Condition

Input Pulse Level: 0.4V to 2.4V Input Rise and Fall Time: ≤ 20 ns
Reference Level for Measuring Timing: 0.8V and 2V

