Table 1: Calibration

		DOOD M. L.I.			
DSGE Model					
Calibrated Parameters					
ho	2.	Coefficient of Relative Risk Aversion			
٦	$0.94^{1/4}$	Quarterly Depreciation Factor			
$K/K^{arepsilon}$	12	Perf Foresight SS Capital/Output Ratio			
σ^2_Θ	0.00001	Variance Qtrly Tran Agg Pty Shocks			
σ_{Ψ}^2	0.00004	Variance Qtrly Perm Agg Pty Shocks			
Steady State Solution of	Model With ϵ	$\sigma_{\Psi} = \sigma_{\Theta} = 0$			
$K = 12^{1/(1-\varepsilon)}$	≈ 48.55	Steady State Quarterly K/P Ratio			
$M = K + K^{\varepsilon}$	≈ 52.6	Steady State Quarterly M/P Ratio			
$\mathcal{W} = (1 - \varepsilon)K^{\epsilon}$	≈ 2.59	Quarterly Wage Rate			
$\mathcal{R} = 1 + \varepsilon K^{\varepsilon - 1}$	= 1.03	Quarterly Gross Capital Income Factor			
$\mathbf{R} = \mathcal{R} \mathbb{k}$	≈ 1.014	Quarterly Between-Period Interest Factor			
$eta = \mathbf{R}^{-1}$	≈ 0.986	Quarterly Time Preference Factor			
Partial Equilibr	ium/Small Oi	pen Economy (PE/SOE) Model Parameters			
Calibrated Parameters		pen Beolioniy (1 E/50E) Model I arameters			
	0.011	Variance Annual Perm Idiosyncratic Shocks (PSID)			
$\sigma^2_{ec{\psi}} \ \sigma^2_{ec{ heta}}$	0.03	Variance Annual Tran Idiosyncratic Shocks (PSID)			
θ	0.05	Quarterly Probability of Unemployment Spell			
Π	0.25	Quarterly Probability of Updating Expectations			
$(1-\Omega)$	0.005	Quarterly Probability of Mortality Quarterly Probability of Mortality			
(1-2t)	0.005	Quarterly 1 lobability of Mortanty			
Calculated Parameters					
$\beta = 0.99\Omega / E[(\boldsymbol{\psi})^{-\rho}]\mathbf{R}$	0.969	Satisfies Impatience Condition: $\beta < \Omega/E[(\Psi\psi)^{-\rho}]\mathbf{R}$			
	0.004	Variance Qtrly Perm Idiosyncratic Shocks $(=\frac{4}{11}\sigma_{\vec{\psi}})$			
$\sigma_{\psi}^{2} \ \sigma_{ heta}^{2}$	0.12	Variance Qtrly Tran Idiosyncratic Shocks $(=4\sigma_{\vec{\theta}})$			
U		- 0 0			

Table 2: Equilibrium Statistics

	PE/SOE Eco	onomy	DSGE Economy		
	Frictionless Stick		Frictionless	Sticky	
Means					
A	7.73	7.67	27.31	27.22	
C	2.71	2.71	2.88	2.88	
Standard Deviations					
Aggregate Time Ser	ries ('Macro')				
$\log A$	0.342	0.332	0.213	0.210	
$\Delta \log C$	0.010	0.006	0.007	0.005	
$\Delta \log Y$	0.010	0.010	0.008	0.008	
Individual Cross Sectional ('Micro')					
$\log a$	1.031	1.032	0.931	0.931	
$\log c$	0.929	0.929	0.705	0.705	
$\log p$	0.940	0.940	0.940	0.940	
$\log y y>0$	1.256	1.256	0.832	0.832	
$\Delta \log c$	0.099	0.100	0.058	0.058	
Cost Of Stickiness 999999			999999	9	

Notes: The cost of stickiness is calculated as the proportion by which the permanent income of a frictionless consumer would need to be reduced in order to achieve the same reduction of expected value associated with forcing them to become a sticky expectations consumer.

Table 3: Placeholder for Empirical US table

Table 4: Typical Micro Consumption Estimation on Simulated Data

$\Delta \log \mathbf{c}_{t+1,i}$	$_{t+1,i} = \varsigma + \chi \Delta \log \mathbf{c}_{t,i} + \eta \mathbb{E}_{t,i} [\Delta \log \mathbf{y}_{t+1,i}] + \alpha \underline{a}_{t,i}$					
Model of						
		20	0.	$ar{R}^2$	noba	
Expectations	χ	η	α	n-	nobs	
Frictionless						
	0.016			0.000	67830	
	(0.004)					
		0.013		0.004	67830	
		(0.001)				
			-0.001	-0.000	67830	
			(0.002)			
	0.057	0.018	-0.000	0.007	67830	
	(0.004)	(0.001)	(0.002)			
Sticky						
	0.011			0.000	67830	
	(0.004)					
		0.013		0.004	67830	
		(0.001)				
			-0.001	-0.000	67830	
			(0.002)			
	0.049	0.017	-0.000	0.006	67830	
	(0.004)	(0.001)	(0.002)			

Notes: $\mathbf{E}_{t,i}$ is the expectation from the perspective of person i in period t; \underline{a} is a dummy variable indicating that agent i is in the top 99 percent of the a distribution. Heteroskedasticity-robust standard errors are in parentheses. Standard tests detect no serial correlation in the residuals. Sample is restricted to households with positive income in period t.

Table 5: Aggregate Consumption Dynamics in PE/SOE Markov Economy (11 states)

$\Delta \log \mathbf{C}_{t+1} = \varsigma + \chi \Delta \log \mathbf{C}_t + \eta \mathbb{E}_t [\Delta \log \mathbf{Y}_{t+1}] + \alpha A_t + \epsilon_{t+1}$					
Expectations : Dep Var		OLS	2 nd Stage	KP p -val	
Independent Variables		or IV	$ar{R}^2$	Hansen J $\emph{p}\text{-val}$	
Frictionless : $\Delta \log \mathbf{C}_{t+1}$					
$\Delta \log \mathbf{C}_t$	$\Delta \log \mathbf{Y}_{t+1}$	A_t			
$0.358^{\bullet \bullet \bullet}$			OLS	0.129	
(0.064)					
	$0.475^{\bullet \bullet}$		IV	0.039	0.069
	(0.214)				0.445
		-6.38e-4	IV	0.030	0.000
		(5.24e-4)			0.363
0.389	0.285	0.69e-4	IV	0.034	0.555
(0.428)	(0.376)	(9.05e-4)			
Memo: Fo	r instruments	$\mathbf{Z}_t,\Delta\log\mathbf{C}$	$C_{t+1} = 2$	$\mathbf{Z}_t \zeta, \bar{R}^2 = 0.04$	3
Sticky : Δ	$\log \mathbf{C}_{t+1}$ (no	measureme	ent erroi	:)	
$\Delta \log \mathbf{C}_t$	$\Delta \log \mathbf{Y}_{t+1}$	A_t			
$0.862^{\bullet\bullet\bullet}$			OLS	0.743	
(0.035)					
Sticky : Δ	$\log \mathbf{C}_{t+1}^*$ (with	th measurer	nent eri	$\operatorname{cor}); \mathbf{C}_t^* = \mathbf{C}_t >$	$\langle \xi_t $
$\Delta \log \mathbf{C}_t^*$	$\Delta \log \mathbf{Y}_{t+1}$	A_t			
$0.497^{\bullet \bullet \bullet}$			OLS	0.253	
(0.059)					
$0.802^{\bullet\bullet\bullet}$			IV	0.251	0.000
(0.106)					0.559
	$0.859^{\bullet\bullet\bullet}$		IV	0.185	0.066
	(0.189)				0.226
		$-7.68e-4^{\bullet \bullet}$	IV	0.066	0.000
		(3.67e-4)			0.004
$0.661^{\bullet\bullet\bullet}$	0.199	0.62e-4	IV	0.230	0.381
(0.189)	(0.287)	(4.84e-4)			
Memo: For instruments \mathbf{Z}_t , $\Delta \log \mathbf{C}_{t+1}^* = \mathbf{Z}_t \zeta$, $\bar{R}^2 = 0.252$, $\operatorname{var}(\xi_t) = 0.06\text{e-}4$					

Notes: Reported statistics are the average values for 100 subsamples of 200 simulated quarters each. Bullets indicate that the average subsample coefficient divided by average subsample standard error is outside of the inner 90%, 95%, and 99% of the standard normal distribution. Instruments $\mathbf{Z}_t = \{\Delta \log \mathbf{C}_{t-2}, \Delta \log \mathbf{C}_{t-3}, \Delta \log \mathbf{Y}_{t-2}, \Delta \log \mathbf{Y}_{t-3}, A_{t-2}, A_{t-3}, \Delta_8 \log \mathbf{C}_{t-2}, \Delta_8 \log \mathbf{Y}_{t-2}\}.$

Table 6: Aggregate Consumption Dynamics in HA-DSGE Markov Economy (11 states)

$\Delta \log \mathbf{C}_{t+1} = \varsigma + \chi \Delta \log \mathbf{C}_t + \eta \mathbb{E}_t [\Delta \log \mathbf{Y}_{t+1}] + \alpha A_t + \epsilon_{t+1}$					
Expectations : Dep Var		OLS	2 nd Stage	KP p -val	
Independent Variables		or IV	$ar{R}^2$	Hansen J p -val	
Frictionless : $\Delta \log \mathbf{C}_{t+1}$					
$\Delta \log \mathbf{C}_t$	$\Delta \log \mathbf{Y}_{t+1}$	A_t			
$0.344^{\bullet\bullet\bullet}$			OLS	0.121	
(0.064)					
	$0.472^{\bullet\bullet\bullet}$		IV	0.063	0.053
	(0.178)				0.400
		$-3.40e-4^{\bullet \bullet}$	IV	0.065	0.000
		(1.52e-4)			0.423
0.328	0.165	-1.36e-4	IV	0.067	0.551
(0.460)	(0.352)	(3.46e-4)			
Memo: For	instruments	s $\mathbf{Z}_t,\Delta\logC$	$C_{t+1} = 2$	$\mathbf{Z}_t \zeta, \bar{R}^2 = 0.07$	2
Sticky : Δ	$\log \mathbf{C}_{t+1}$ (no	measureme	nt erroi	:)	
$\Delta \log \mathbf{C}_t$	$\Delta \log \mathbf{Y}_{t+1}$	A_t			
$0.859^{\bullet\bullet\bullet}$			OLS	0.739	
(0.036)					
Sticky : Δ	$\log \mathbf{C}_{t+1}^*$ (wi	th measuren	nent err	$\operatorname{cor}); \mathbf{C}_t^* = \mathbf{C}_t >$	$<\xi_t$
$\Delta \log \mathbf{C}_t^*$	$\Delta \log \mathbf{Y}_{t+1}$	A_t			
$0.438^{\bullet\bullet\bullet}$			OLS	0.199	
(0.061)					
$0.810^{\bullet\bullet\bullet}$			IV	0.270	0.000
(0.110)					0.558
	$0.786^{\bullet\bullet\bullet}$		IV	0.215	0.052
	(0.167)				0.287
		$-4.37e-4^{\bullet \bullet \bullet}$	· IV	0.137	0.000
		(1.06e-4)			0.004
$0.641^{\bullet\bullet\bullet}$	0.158	-0.44e-4	IV	0.260	0.381
(0.209)	(0.279)	(1.73e-4)			
Memo: For instruments \mathbf{Z}_t , $\Delta \log \mathbf{C}_{t+1}^* = \mathbf{Z}_t \zeta$, $\bar{R}^2 = 0.274$, $\operatorname{var}(\xi_t) = 0.03\text{e-}4$					

Notes: Reported statistics are the average values for 100 subsamples of 200 simulated quarters each. Bullets indicate that the average subsample coefficient divided by average subsample standard error is outside of the inner 90%, 95%, and 99% of the standard normal distribution. Instruments $\mathbf{Z}_t = \{\Delta \log \mathbf{C}_{t-2}, \Delta \log \mathbf{C}_{t-3}, \Delta \log \mathbf{Y}_{t-2}, \Delta \log \mathbf{Y}_{t-3}, A_{t-2}, A_{t-3}, \Delta_8 \log \mathbf{C}_{t-2}, \Delta_8 \log \mathbf{Y}_{t-2}\}.$

Table 7: Aggregate Consumption Dynamics in Rep Agent Markov Economy (11 states)

	$\Delta \log \mathbf{C}_{t+1} =$	$ \varsigma + \chi \Delta \log \theta $	$\mathbf{C}_t + \eta \mathbb{E}$	$\int_{t} [\Delta \log \mathbf{Y}_{t+1}]$ -	$+\alpha A_t + \epsilon_{t+1}$	
Expectations : Dep Var		OLS	2 nd Stage	KP p -val		
Independent Variables		or IV	$ar{R}^2$	Hansen J $p\text{-}\mathrm{val}$		
Frictionless : $\Delta \log \mathbf{C}_{t+1}$						
$\Delta \log \mathbf{C}_t$	$\Delta \log \mathbf{Y}_{t+1}$	A_t				
0.019			OLS	0.003		
(0.078)						
	0.386		IV	0.020	0.077	
	(0.285)				0.447	
		-0.35e-4	IV	0.019	0.000	
		(1.05e-4)			0.471	
0.122	0.203	0.15e-4	IV	0.020	0.532	
(0.527)	(0.544)	(2.06e-4)				
Memo: Fo	r instrument	s $\mathbf{Z}_t,\Delta\log\mathbf{C}$	$C_{t+1} = 1$	$\mathbf{Z}_t \zeta, \bar{R}^2 = 0.02$	22	
Sticky : Δ	$\log \mathbf{C}_{t+1}$ (no	measureme	ent erroi	\mathbf{r}		
$\Delta \log \mathbf{C}_t$	$\Delta \log \mathbf{Y}_{t+1}$	A_t				
0.801			OLS	0.642		
(0.043)						
Sticky : Δ	$\log \mathbf{C}_{t+1}^*$ (wi	th measurer	ment eri	$\operatorname{cor}); \mathbf{C}_t^* = \mathbf{C}_t$	$ imes \xi_t$	
$\Delta \log \mathbf{C}_t^*$	$\Delta \log \mathbf{Y}_{t+1}$	A_t				
$0.414^{\bullet \bullet \bullet}$			OLS	0.182		
(0.063)						
$0.793^{\bullet\bullet\bullet}$			IV	0.192	0.001	
(0.134)					0.546	
	$0.650^{\bullet\bullet\bullet}$	•	IV	0.137	0.077	
	(0.162)				0.196	
		-0.58e-4	IV	0.081	0.000	
		(0.50e-4)			0.023	
$0.642^{\bullet\bullet\bullet}$	0.106	0.08e-4	IV	0.179	0.325	
(0.227)	(0.289)	(0.79e-4)				

Memo: For instruments \mathbf{Z}_t , $\Delta \log \mathbf{C}_{t+1}^* = \mathbf{Z}_t \zeta$, $\bar{R}^2 = 0.195$, $\operatorname{var}(\xi_t) = 0.03e-4$

Notes: Reported statistics are the average values for 100 subsamples of 200 simulated quarters each. Bullets indicate that the average subsample coefficient divided by average subsample standard error is outside of the inner 90%, 95%, and 99% of the standard normal distribution. Instruments $\mathbf{Z}_t = \{\Delta \log \mathbf{C}_{t-2}, \Delta \log \mathbf{C}_{t-3}, \Delta \log \mathbf{Y}_{t-2}, \Delta \log \mathbf{Y}_{t-3}, A_{t-2}, A_{t-3}, \Delta_8 \log \mathbf{C}_{t-2}, \Delta_8 \log \mathbf{Y}_{t-2}\}.$