Scrial No. 10/558,893 Attv. Doc. No. 2003P06127WOUS

Amendments to the Claims:

The text of all pending claims, (including withdrawn claims) is set forth below. Canceled and not entered claims are indicated with claim number and status only. The claims as listed below show added text with <u>underlining</u> and deleted text with <u>strikethrough</u>. The status of each claim is indicated with one of (original), (currently amended), (canceled), (withdrawn), (new), (previously presented), or (not entered).

Applicant reserves the right to pursue any canceled claims at a later date.

The following listing of claims will replace all prior versions, and listings, of claims in the application:

1-9 (canceled)

(currently amended) A combustion chamber for a gas turbine, comprising:
a combustion chamber wall;

a liner formed from a plurality of heat shields on an inside of the combustion chamber wall:

an inner space formed between the heat shield elements and the combustion chamber wall and exposed to a cooling medium; and

a flow element arranged in the inner space for selective adjustment of a cooling medium stream, the flow element arranged on the combustion chamber wall.

- 11. (previously presented) The combustion chamber as claimed in claim 10, wherein a flow channel for cooling medium is formed by the flow element causing a flow velocity of the cooling medium stream to be increased compared with the flow velocity upstream of the flow element.
- 12. (previously presented) The combustion chamber as claimed in claim 10, wherein a heat shield element is assigned a respective flow element for the purpose of cooling a thermally heavily loaded wall section of the heat shield element.

Serial No. 10/558,893 Atty. Doc. No. 2003P06127WOUS

- 13. (previously presented) The combustion chamber as claimed in claim 12, wherein the heat shield element is a single-shell hollow vessel with a cavity that the flow element is disposed.
- 14. (previously presented) The combustion chamber as claimed in claim 12, wherein the heat shield element has a surface region with a surface contour curved along a longitudinal axis and a transverse axis.
- 15. (currently amended) The combustion chamber as claimed in claim 10, wherein the flow element is mounted with a positive fit on the combustion chamber wall <u>using a mechanical</u> latching element or a screw connection.
- 16. (previously presented) The combustion chamber as claimed in claims 10, wherein the flow element is detachably connected to the combustion chamber wall.
- (currently amended) The combustion chamber as claimed in claim 10, further comprising a flow element made of metal, in particular a metal sheet or a metal shaped part.
- (currently amended) The combustion chamber as claimed in claim 17, wherein the metal flow element is made of a metal sheet or a metal <u>casting shaped-part</u>.
 - (currently amended) A gas turbine having a combustion chamber, comprising: a combustion chamber wall;
- a liner formed from a plurality of heat shields on an inside of the combustion chamber wall;
- an inner space formed between the heat shield elements and the combustion chamber wall and exposed to a cooling medium; and
- a flow element arranged in the inner space for selective adjustment of a cooling medium stream, the flow element arranged on the combustion chamber wall.

20. (previously presented) A flow element arranged in a flow channel between a combustion chamber wall and a heat shield element in a combustion chamber of a gas turbine, comprising:

a surface of the flow element located near a cold side of the heat shield such that the flow channel becomes more narrow;

a surface contour of the surface adapted to approximately match a surface contour of the cold side of the heat shield element.

- 21. (previously presented) The flow element as claimed in claim 20, wherein a cooling medium flowing in the flow channel is caused to accelerate as the cooling medium flows by the surface.
- 22. (previously presented) The flow element as claimed in claim 20, wherein the flow element is approximately rectangular in shape and the surface forms the longer side of the rectangle.
- 23. (previously presented) The flow element as claimed in claim 20, wherein a heat shield element is assigned a respective flow element for the purpose of cooling a thermally heavily loaded wall section of the heat shield element.
- 24. (previously presented) The flow element as claimed in claim 20, wherein the heat shield element is a single-shell hollow vessel with a cavity that the flow element is disposed.
- 25. (previously presented) The flow element as claimed in claim 20, wherein the flow element is approximately triangular in shape and the surface forms the longer side of the triangle.
- 26. (previously presented) The flow element as claimed in claim 20, wherein the surface is approximately parallel to the cold surface of the heat shield element.