Universität Rostock Institut für Mathematik Prof. Dr. Martin Redmann Franziska Schulz

Wahrscheinlichkeitstheorie und Mathematische Statistik Übungsblatt 3

Aufgabe 3.1

Als Lagemaß wird eine Abbildung $\ell: \mathbb{R}^n \to \mathbb{R}$ bezeichnet, welche für jedes $c \in \mathbb{R}$ die Bedingung $\ell(x_1+c,\ldots,x_n+c)=\ell(x_1,\ldots,x_n)+c$ erfüllt. Als Streuungsmaß hingegen bezeichnen wir eine Abbildung $s: \mathbb{R}^n \to \mathbb{R}$ mit $s(x_1+c,\ldots,x_n+c)=s(x_1,\ldots,x_n)$ für jedes $c \in \mathbb{R}$. Entscheiden Sie jeweils, ob es sich bei dem Stichprobenmittel und der Stichprobenvarianz um ein Lagemaß oder ein Streuungsmaß handelt.

Aufgabe 3.2

Seien X_1, \ldots, X_n quadratintegrierbare, unabhängige und identisch verteilte Zufallsvariablen mit Erwartungswert μ und Varianz ν . Wir betrachten für reelle Konstanten $\alpha_1, \ldots, \alpha_n$ die Stichprobenfunktion

$$\varphi: \mathbb{R}^n \to \mathbb{R} \quad \text{mit} \quad \varphi(x_1, \dots, x_n) = \sum_{i=1}^n \alpha_j x_j.$$

Bestimmen Sie die Koeffizienten $\alpha_1, \ldots, \alpha_n$ derart, dass $\mathbb{E}[\varphi(X_1, \ldots, X_n)] = \mu$ gilt und $D^2[\varphi(X_1, \ldots, X_n)]$ minimal wird.

Aufgabe 3.3

a) Für die Zufallsvariable $Y:\Omega\to\mathbb{R}$ gelte $Y\sim\Gamma(b,p)$ mit den Parametern b,p>0, d.h. Y besitze die Wahrscheinlichkeitsdichte

$$f_Y(y) = \frac{b^p}{\Gamma(p)} e^{-by} y^{p-1} \mathbb{1}_{(0,\infty)}(y).$$

Bestimmen Sie die charakteristische Funktion von Y.

b) Seien $Y_1, Y_2 : \Omega \to \mathbb{R}$ unabhängige Zufallsvariablen mit $Y_1 \sim \Gamma(b, p_1)$ und $Y_2 \sim \Gamma(b, p_2)$. Zeigen Sie, dass dann $Y_1 + Y_2 \sim \Gamma(b, p_1 + p_2)$ gilt.

Aufgabe 3.4

Sei $r \in \mathbb{N}$ beliebig und seien X_1, \ldots, X_r unabhängige und standardnormalverteilte Zufallsvariablen. Zeigen Sie, dass die Zufallsvariable $U_r = \sum_{i=1}^r X_i^2$ dann χ_r^2 -verteilt ist, d.h. die Dichte

$$f_{U_r}(x) = \frac{1}{2^{r/2}\Gamma(r/2)} x^{(r-2)/2} e^{-x/2} \mathbb{1}_{(0,\infty)}(x)$$

besitzt.

Abgabe: Mittwoch, 30.04.2025 bis 9.00 Uhr, online bei Stud.IP unter Aufgaben, im PDF Format.