Centralized vs Embedded Models for ML Scientists

Matteo Ruffini, Joos-Hendrik Boese

Amazon Music ML,

Berlin

ruffinim@amazon.com

Introduction

Business landscape:

- 85% of ML projects fail [1]
- Team structure has impact on likelihood of project success

This talk:

- Discuss two ML teams organization models
 - Centralized Model: Core ML team owns central ML component
 - Embedded Model: Scientists assigned to feature-owning team
- Dive deep with case studies, discuss comparisons and applications

Centralized Model

- ML scientists clustered in a single team
- The team can contain scientists and engineers
- All report to the same manager
- All work on same / team level goals
- Consults other teams on ML use cases

Business Case Study: Amazon Music Core ML Team

Amazon Music Core ML Team

- Enable personalization across Amazon Music
- Develop ML platform for personalization (No customer-facing experience owned)
- Support internal teams to use the platform

Way of working

- 75% of the time on Core ML projects
- 25% of the time on support to platform users
- Yearly planning cycle, with in-year iterations

Business Case Study: Amazon Music Core ML Team

Learnings

- + High Impact
 - Scalability: platform work enabled personalization across Amazon Music
 - Dramatic increase in engagement and retention
- + Employee Retention & High Standards
 - Scientists working with other scientists Lab environment
 - Scientists working on cutting edge ML, write papers, contribute to SOTA
 - Dedicated Science Manager helps for retention.

Business Case Study: Amazon Music Core ML Team

Challenges

- Speed of innovation
 - You need to influence other teams to be successful and test new ideas
 - ...and this takes effort and time
- Acquisition of business-level expertise
 - Limited exposure to business problems
 - Depth of expertise comes at the cost of breadth

- Scientists embedded in squads: full stack, feature-owning teams
- Squads contain all needed roles (ML, product, design...)
- Squads work in full autonomy
- Squad-lead does not manage scientists
- A central manager manages scientists across squads

Business Case Study: [A Previous Company's] Data Science Team

Way of working: ML science initiatives

- Scientists scope a project with squad leads
- This is typically not the only project of a squad
- Once project is done, scientist may change squad

Big diversity across projects:

- Advanced Analytics
- ML Products (recsys, ranking, price prediction...)

Business Case Study: [A Previous Company's] Data Science Team

Learnings

- + Some projects had high impact
 - Big wins on advanced analytics projects (with no ML in production)
- Worked as project incubator for ML products
 - Squads allowed to test ML products in production quickly
- Quick growth in seniority of ML scientists
 - Interactions with leadership and project scoping foster quick growth
 - ullet Exposure to business discussions o domain expertise

Business Case Study: [A Previous Company's] Data Science Team

Challenges

- Quality of innovation
 - Low hanging fruits are often preferred to long term, high impact wins.
- Limited synergies
 - Difficult to transfer successes from one case to another
- Not all squads are ML Savvy
 - Project failed due to unclear scoping / needs
 - Negative impact on scientists retention

Centralized Model

• Promotes Depth of Expertise

Embedded Model

• Promotes Breadth of Expertise

Centralized Model

- Promotes Depth of Expertise
- Surrounds scientists with scientists

- Promotes Breadth of Expertise
- Surrounds scientists with Cross-Disciplinary Teams

Centralized Model

- Promotes Depth of Expertise
- Surrounds scientists with scientists
- Works well to run and maintain Core ML products in production

- Promotes Breadth of Expertise
- Surrounds scientists with Cross-Disciplinary Teams
- Works well for Incubating ML projects and products

Centralized Model

- Promotes Depth of Expertise
- Surrounds scientists with scientists
- Works well to run and maintain Core ML products in production
- Work on products

- Promotes Breadth of Expertise
- Surrounds scientists with Cross-Disciplinary Teams
- Works well for Incubating ML projects and products
- Work on *projects*

Takeaway 1: Which structure do I need?

- Embedded Model
 - If you don't have an ML team
 - If you want to explore multiple ML applications.
- Central Model

If you know what to do and can afford high-risk / high-reward investments.

Takeaway 2: Hire the right scientists for the right team

- Embedded is very different from a postdoc environment! Papers are also more difficult.
- For embedded, you need folks comfortable with product management and stakeholders.

Takeaway 3: Central teams can spin off from the embedded model

- Successful ML projects can spinoff into dedicated teams.
- Central teams works well when the company has the right level of maturity.

Takeaway 4: Consider a hybrid system

- Why not to have a Central core team and embedded scientists in squads?
- It has high costs, not everyone can afford it!
- Risk: All want to be in the central team consider rotations.

Thank You

Contact information

ruffinim@amazon.com

