Assignment 3 Solution

Graham W. Wilson

Calculating π with Darts

The accompanying code, output files, and embedded figures illustrate the measurement of π using random numbers, both by sampling from a 3-d cube, and from a 2-d square.

Firstly, let's review the 2-d method. With a square of side-length 2, centered on the origin, the square's area is 4, and the area of the inscribed circle with radius of 1 is just π . Therefore one expects that the probability is $\pi/4$ for a point from the 2-d uniform probability distribution on the square to fall within the circle.

Similarly, by extension, in 3-d, with a cube of side-length 2, centered on the origin, and volume of 8, the inscribed sphere centered on the origin with radius of 1 has a volume of $4\pi/3$. Therefore one expects that the probability is $(4\pi/3)/8 = \pi/6$ for a point from the 3-d uniform probability distribution on the square to fall within the circle.

The code simulates one million random points in either 2-d or 3-d and keeps track of whether the measured point is within 1 unit of the origin, reporting a value of 1 if it is (a success), and a value of 0 (failure) if not. These results are then averaged to form estimates of the probability parameter of the underlying Bernouilli distribution, \hat{p} , but averaged over one million sampled points. The probability parameters are then transformed into measurements of π denoted $\hat{\pi}$ using

$$\hat{\pi} = 6\hat{p}$$

for 3-d, and

$$\hat{\pi} = 4\hat{p}$$

for 2-d. Results are shown in Table 1 and Figure 1 in 3-d and in Table 2 and Figure 2 for 2-d.

The estimated uncertainty for the 3-d method is 0.0952% and for the 2-d method it is 0.0523%. The 3-d method is therefore about a factor of 1.8 less precise than the 2-d method when using the same number of points. The source of this difference is two-fold. Firstly the measured probability error is larger, and this gets amplified by 50% (6/4) when converting the average probability to an estimate of π using the 3-d method rather than the 2-d method. The variance of the underlying Bernouilli distribution where X = 1 with probability, p and X = 0 with probability, x = 10, is given by

$$V(X) = p(1-p)$$

which is either $(\pi/6)(1-\pi/6)$ or $(\pi/4)(1-\pi/4)$ namely 0.2494 or 0.1685 in the two cases. The measured variances bear this out.

1 000 000
524 349
0.523599
0.524349 ± 0.000499
0.24941
3.14609 ± 0.00300
0.0952~%
$+1.50 \sigma$

Table 1: 3-d results

$N_{ m trials}$	1 000 000
$N_{ m successes}$	$785\ 025$
$p = \pi/4$	0.785398
\hat{p}	0.785025 ± 0.000411
Measured variance of \hat{p}	0.16876
$\hat{\pi}$	3.14010 ± 0.00164
$\sigma(\hat{\pi})/\hat{\pi}$	0.0523~%
Standardized deviation	-0.91σ

Table 2: 2-d results

Figure 1: Bernouilli distribution for one million 3-d trials with Bernouilli trial success probability of $\pi/6$.

Figure 2: Bernouilli distribution for one million 2-d trials with Bernouilli trial success probability of $\pi/4$.