

ESTIMATING THE AVERAGE SIZE OF FIBER/MATRIX INTERFACE CRACKS IN UD AND CROSS-PLY LAMINATES

L. Di Stasio^{1,2}, J. Varna¹, Z. Ayadi²

¹ Division of Materials Science, Luleå University of Technology, Luleå, Sweden
² EEIGM & IJL, Université de Lorraine, Nancy, France

7th ECCOMAS Thematic Conference on the Mechanical Response of Composites

Outline

- Transverse Cracks Initiation in FRPC
- **Modeling**
- Debond Initiation
- Debond Propagation
- Conclusions

TRANSVERSE CRACKS INITIATION IN FRPC

Micromechanics of Initiation: Transverse Tensile Loading

Left:

front view of $[0, 90_2]_S$, visual inspection.

Center:

edge view of [0, 90]_S, optical microscope.

Right:

edge view of $[0, 90]_S$, optical microscope.

Micromechanics of Initiation: Transverse Tensile Loading

Stage 1: isolated debonds

Micromechanics of Initiation: Transverse Tensile Loading

Stage 2: consecutive debonds

Micromechanics of Initiation: Transverse Tensile Loading

Stage 3: kinking

Micromechanics of Initiation: Transverse Tensile Loading

Stage 4: coalescence

Objective of the Study

Can we talk about a ply-thickness effect for the fiber-matrix interface crack?

Stage 1: isolated debonds

Stage 2: consecutive debonds

Geometry Representative Volume Elements Assumptions Solution

Geometry

Representative Volume Elements

 $n \times k$ – free

$$n \times k - m \cdot t_{90^{\circ}}$$

Representative Volume Elements

 $n \times k - symm$

 $n \times k$ – asymm

Assumptions

$$R_f = 1 \ [\mu m] \quad L = \frac{R_f}{2} \sqrt{\frac{\pi}{V_f}}$$

- Linear elastic, homogeneous materials
- Concentric Cylinders Assembly with Self-Consistent Shear Model for UD
- Plane strain
- Frictionless contact interaction
- Symmetric w.r.t. x-axis
- Coupling of x-displacements on left and right side (repeating unit cell)
- \rightarrow Applied uniaxial tensile strain $\bar{\varepsilon}_{x} = 1\%$
- → $V_f = 60\%$

Material	<i>V_f</i> [%]	E_L [GPa]	E_T [GPa]	μ_{LT} [GPa]	$ u_{LT}\left[- ight]$	$ u_{TT}\left[- ight]$
Glass fiber Epoxy	-	70.0 3.5	70.0 3.5	29.2 1.25	0.2 0.4	0.2 0.4
UD	60.0	43.442	13.714	4.315	0.273	0.465

Solution

$$\begin{split} \frac{\partial^{2} \varepsilon_{XX}}{\partial z^{2}} + \frac{\partial^{2} \varepsilon_{ZZ}}{\partial x^{2}} &= \frac{\partial^{2} \gamma_{ZX}}{\partial x \partial z} & \text{for } 0^{\circ} \leq \alpha \leq \Delta \theta, \Delta \theta \neq 0^{\circ} : \\ \frac{\partial z}{\partial x} &= \frac{\partial z}{\partial x \partial z} & (\overrightarrow{U}_{m} (R_{f}, \alpha) - \overrightarrow{U}_{f} (R_{f}, \alpha)) \cdot \overrightarrow{n}_{\alpha} \geq 0 \\ \varepsilon_{y} &= \gamma_{xy} = \gamma_{yz} = 0 & \text{for } \Delta \theta \leq \alpha \leq 180^{\circ} : \\ \frac{\partial \sigma_{XX}}{\partial x} + \frac{\partial \tau_{ZX}}{\partial z} &= 0 & \overrightarrow{U}_{m} (R_{f}, \alpha) - \overrightarrow{U}_{f} (R_{f}, \alpha) = 0 \\ \frac{\partial \tau_{ZX}}{\partial x} + \frac{\partial \sigma_{ZZ}}{\partial z} &= 0 & \tau_{ij} = E_{ijkl} \varepsilon_{kl} \\ \frac{\partial z}{\partial x} &= \nu \left(\sigma_{YX} + \sigma_{ZZ}\right) \end{split}$$

 $\forall \Delta \theta \neq 0^{\circ}$

oscillating singularity

$$\sigma \sim r^{-\frac{1}{2}} \sin(\varepsilon \log r), \quad V_f \to 0$$

$$\varepsilon = \frac{1}{2\pi} \log \left(\frac{1-\beta}{1+\beta} \right)$$

$$\beta = \frac{\mu_2 (\kappa_1 - 1) - \mu_1 (\kappa_2 - 1)}{\mu_2 (\kappa_1 + 1) + \mu_4 (\kappa_2 + 1)}$$

→ receding contact

$$\Rightarrow \quad \frac{G(R_{f,2})}{G(R_{f,1})} = \frac{R_{f,2}}{R_{f,1}}, \frac{G(\bar{\varepsilon}_{x,2})}{G(\bar{\varepsilon}_{x,1})} = \frac{\bar{\varepsilon}_{x,2}^2}{\bar{\varepsilon}_{x,1}^2}$$

→ FEM + LEFM (VCCT)

regular mesh of quadrilaterals at the crack tip:

-
$$AR \sim 1$$
, $\delta = 0.05^{\circ}$ $\forall \Delta \theta$

→ 2nd order shape functions

Conclusions

Transverse Cracks Initiation in FRPC Modeling

Debond Initiation Debond Propagation

 $\sigma_{
m rr}$ vs $au_{
m r heta}$ $\sigma_{
m \it LHS}$ $\sigma_{
m \it vM}$ $\sigma_{\it \it I}$ Summary

Transverse Cracks Initiation in FRPC Modeling **Debond Initiation** Debond Propagation Conclusions σ_{rr} vs $\tau_{r\theta}$ σ_{LHS} σ_{vM} σ_{I} Summary

$\sigma_{\rm rr}$ vs $\tau_{\rm r heta}$: radial stress vs tangential shear at the interface

 $\sigma_{
m rr}$ vs $au_{
m r heta}$ $\sigma_{
m LHS}$ $\sigma_{
m vM}$ $\sigma_{
m I}$ Summary

Transverse Cracks Initiation in FRPC Modeling Debond Initiation Debond Propagation Conclusions

$\sigma_{\rm rr}$ vs $\tau_{\rm r heta}$: radial stress vs tangential shear at the interface

 σ_{rr} vs $\tau_{r\theta}$ σ_{LHS} σ_{vM} σ_{I} Summary

σ_{LHS} : local hydrostatic stress at the interface

 $\sigma_{rr} \vee S \tau_{r\theta} \sigma_{LHS} \sigma_{vM} \sigma_{I}$

Transverse Cracks Initiation in FRPC Modeling Debond Initiation Debond Propagation Conclusions

σ_{LHS} : local hydrostatic stress at the interface

Summary

 $\sigma_{\rm rr}$ vs $\tau_{\rm r heta}$ $\sigma_{
m LHS}$ $\sigma_{
m vM}$ $\sigma_{
m I}$ Summary

σ_{vM} : von Mises stress at the interface

 σ_{rr} vs $\tau_{r\theta}$ σ_{LHS} σ_{vM} σ_{l} Summary

$\sigma_{\rm vM}$: von Mises stress at the interface

 $\sigma_{
m rr}$ vs $au_{
m r heta}$ $\sigma_{
m \it LHS}$ $\sigma_{
m \it vM}$ $\sigma_{
m \it I}$ Summary

$\sigma_{\rm I}$: maximum principal stress at the interface

 σ_{rr} vs $\tau_{r\theta}$ σ_{IHS} σ_{vM} σ_{I} Summary

$\sigma_{\rm I}$: maximum principal stress at the interface

 $\sigma_{
m rr}$ vs $au_{
m r heta}$ $\sigma_{
m \it LHS}$ $\sigma_{
m \it vM}$ $\sigma_{\it \it I}$ Summary

Summary

Estimation of G_{lc} Estimation of $\Delta \theta_{max}$

Transverse Cracks Initiation in FRPC Modeling Debond Initiation Debond Propagation Conclusions Estimation of G_{lc} Estimation of $\Delta \theta_{max}$

Estimation of G_{lc}

$$G_{lc} = \left. rac{G_c}{1 + an^2\left(\left(1 - \lambda
ight) \Psi_G
ight)}
ight|_{G_c = G_{TOT}(\Delta heta_0)}, \quad \Psi_G = an^{-1} \left(\sqrt{rac{G_{ll}}{G_l}}
ight)
ight|_{\Delta}$$

$$\Psi_G = tan^{-1} \left(\sqrt{\frac{G_{II}}{G_I}} \right) \bigg|_{\Delta\theta_0}$$

Transverse Cracks Initiation in FRPC Modeling Estimation of G_{IC} Estimation of $\Delta \theta_{max}$ Debond Initiation Debond Propagation Conclusions

20 40 60 80 100 120 140

21 × 1 – free

$$\Delta heta_{max} \in (30^\circ - 105^\circ)$$

$$\Delta \theta_{max} \in (30^{\circ} - 50^{\circ})$$

$$G_{TOT}\left(\Delta heta
ight) > G_{c} = G_{lc}\left(1 + an^{2}\left(\left(1 - \lambda
ight)\Psi_{G}
ight)
ight), \quad \Psi_{G} = \left. an^{-1}\left(\sqrt{rac{G_{ll}}{G_{l}}}
ight)
ight|_{\Delta heta}$$

Transverse Cracks Initiation in FRPC Modeling Estimation of G_{lc} Estimation of $\Delta \theta_{max}$

Debond Initiation Debond Propagation Conclusions

 $21 \times 3 - free$

$$\Delta \theta_{max} \in (40^{\circ} - 60^{\circ})$$

$$\Delta \theta_{max} \in (40^{\circ} - 60^{\circ})$$

$$G_{TOT}\left(\Delta heta
ight) > G_{c} = G_{lc}\left(1 + an^{2}\left(\left(1 - \lambda
ight)\Psi_{G}
ight)
ight), \quad \Psi_{G} = \left. an^{-1}\left(\sqrt{rac{G_{ll}}{G_{l}}}
ight)
ight|_{\Delta heta}$$

Transverse Cracks Initiation in FRPC Modeling Debond Initiation Estimation of G_{IC} Estimation of $\Delta \theta_{max}$

d Initiation Debond Propagation

Conclusions

21 × 21 – free

$$\Delta \theta_{max} \in (40^{\circ} - 60^{\circ})$$

$$\Delta\theta_{max} \in (40^{\circ} - 60^{\circ})$$

$$G_{TOT}\left(\Delta heta
ight) > G_{c} = G_{lc}\left(1 + an^{2}\left(\left(1 - \lambda
ight)\Psi_{G}
ight)
ight), \quad \Psi_{G} = \left. an^{-1}\left(\sqrt{rac{G_{ll}}{G_{l}}}
ight)
ight|_{\Delta heta}$$

Transverse Cracks Initiation in FRPC Modeling Debond Initiation Debond Propagation Conclusions Estimation of G_{lc} Estimation of $\Delta \theta_{max}$

 $21 \times 21 - symm$

$$\Delta heta_{max} \in (80^{\circ} - 110^{\circ})$$

$$\Delta \theta_{max} \in (55^{\circ} - 115^{\circ})$$

$$G_{TOT}\left(\Delta heta
ight) > G_{c} = G_{lc}\left(1 + an^{2}\left(\left(1 - \lambda
ight)\Psi_{G}
ight)
ight), \quad \Psi_{G} = \left. an^{-1}\left(\sqrt{rac{G_{ll}}{G_{l}}}
ight)
ight|_{\Delta heta}$$

Transverse Cracks Initiation in FRPC Modeling Debond Initiation

Debond Propagation

Conclusions

Conclusions

ansverse Cracks Initiation in FRPC Modelin

Debond Initiation

ebond Propagation

Conclusions

Conclusions

- ightharpoonup No effect of 90° ply thickness can be observed when t_{90° is at least $\sim 3 \varnothing_{fiber}$
- → Only if $t_{90^{\circ}}$ is reduced to $1 \varnothing_{fiber}$, ERR is reduced for a given level of applied strain, i.e. debond growth is delayed to higher levels of applied strain ($G \sim \varepsilon_{applied}^2$)
- → No effect of 0° ply thickness can be observed when $t_0 \cdot /t_{00^{\circ}} > 1$
- → A small difference can be observed when $t_{0^{\circ}} = t_{90^{\circ}}$, due to the smaller bending stiffness of a thinner 0° layer

