A function
$$f(n)$$
 is a diminishing upper bound of a function $g(n)$ if

If for any constant $c > 0$, there is a natural number m such that

$$g(n) \le gf(n)$$
fog all $n > m$

Formal definition

$$\forall g > 0 \ \exists m \in \mathbb{N} \ \forall n > m(g(n) \le gf(n))$$
It is denoted by $g(n) = o(f(n))$.

Examples:

$$10x^2 + 100x + 1000 = o(x^3)$$

$$100x^2 + 100x + 1000 \le 0 = o(x^3)$$

$$100x^2 + 1000x + 10000 \le 0 = o(x^3)$$

$$100x^2 + 1000x + 10000 \le 0 = o(x^3)$$

$$100x^2 + 1000x + 10000 \le 0 = o(x^3)$$

$$100x^2 + 1000x + 10000 \le 0 = o(x^3)$$

$$100x^2 + 1000x + 10000 \le 0 = o(x^3)$$

$$100x^2 + 1000x + 10000 \le 0 = o(x^3)$$

$$100x^2 + 1000x + 10000 \le 0 = o(x^3)$$

$$100x^2 + 1000x + 10000 \le 0 = o(x^3)$$

$$100x^2 + 1000x + 10000 \le 0 = o(x^3)$$

$$100x^2 + 1000x + 10000 \le 0 = o(x^3)$$

$$100x^2 + 1000x + 10000 \le 0 = o(x^3)$$

$$100x^2 + 1000x + 10000 \le 0 = o(x^3)$$

$$100x^2 + 1000x + 10000 \le 0 = o(x^3)$$

$$100x^2 + 1000x + 10000 \le 0 = o(x^3)$$

$$100x^2 + 1000x + 10000 \le 0 = o(x^3)$$

$$100x^2 + 1000x + 10000 \le 0 = o(x^3)$$

$$100x^2 + 1000x + 10000 \le 0 = o(x^3)$$

$$100x^2 + 1000x + 10000 \le 0 = o(x^3)$$

$$100x^2 + 1000x + 10000 \le 0 = o(x^3)$$

$$100x^2 + 1000x + 10000 \le 0 = o(x^3)$$

$$100x^2 + 1000x + 10000 \le 0 = o(x^3)$$

$$100x^2 + 1000x + 10000 \le 0 = o(x^3)$$

$$100x^2 + 1000x + 10000 \le 0 = o(x^3)$$

$$100x^2 + 1000x + 10000 \le 0 = o(x^3)$$

$$100x^2 + 1000x + 10000 \le 0 = o(x^3)$$

Section [.]

A function f(n) is a **growing lower bound** of a function g(n) if If for any constant c > 0, there is a natural number m such that $g(n) \ge cf(n)$ for all n > mFormal definition $\forall c \geq 0 \ \exists m \in N \forall n \geq m(g(n) \geq cf(n))$ It is denoted by $g(n) = \omega(f(n))$. 2 Examples: $x^3 = \omega(10x^2 + 100x + 1000)$ $2^{x} = \omega(1000x^{100})$ Proof. 3c>0 JmeN Vn>n (g(n) cof(n)) $\forall c \neq m \neq n > m (5(n) \leq c \neq (n))$ 9 = 0 (f) Hc] K + n > K (o(n) = c + (a)) 9 = w(E) $k=c^{-1}$ $(c^{-1},g(n) \leq f(n))$ h = max (m. K) f=52(g) Car. 1. If f=0(g) es g=0(f), then g=0(f) cf(n) = 9(n) = cf(n) Pr.2. Θ is a symmetric relation g = O(f) iff f = O(g)Pr. 3. O is a transitive relation g = O(f) & f = O(h), then g = O(h)c' \$ C g(n) = c + (a)9(n) = c'f(n) 1 7000 7m6N to>m(g(n) 60.f(n)) Proposition 1° If y= off), then f= w(6) Proposition 3 If g = o(f) & f = o(h), then g = o(h) If $\lim_{n\to\infty} \frac{g(n)}{f(n)} = 0$, then g = o(f)Proposition 7 If g = o(f), then g = O(f)Proposition &

An important type of dynamic complexity measures is Computational Complexity of	
algorithms, which measures resources utilized by the algorithm.	
Examples:	
Time complexity $T_A(x)$	
Space complexity $S_A(x)$ $\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	
Worst-case complexity	
$T_A(n) = \max \{ T_A(x); l(x) = n \}$	
Average complexity	
$T_A(n) = \text{average } \{ T_A(x); \ l(x) = n \}$	
(-1(1), 1(1)	
Best-case complexity	
$T_{d}(n) = \min \{ T_{d}(x); \ l(x) = n \}$	
$1\lambda(n) = \min\{1\lambda(\lambda); \lambda(\lambda) = n\}$	
All these measures are called direct complexity measures of algorithms.	
There are also dual complexity measures. They measure complexity of the results of	
algorithms as well as of the problems solved by algorithms.	
The most popular dual complexity measure is called algorithmic complexity or Kolmogoro	-
complexity.	
Informally, it is defined as the length of the shortest program, which is necessary compute	
the given result.	
Types of problems:	
Undecidable/unsolvable	
2. Solvable/decidable	
3. Tractable	
A problem is solvable if there is an algorithm that can solve it.	
A problem is tractable if there is an algorithm that has admissible complexity and can solve it.	

n #s find if meA

Ta (h) = h linear complexity

Usually it's mostly time tractability.

5 iveh set A of

amount of time. $T_A(n) = O(p(n))$

A problem is tractable if it is actually possible to find solutions to such problems in a reasonable

Problems with the deterministic polynomial time complexity form the class P.

P = NP?

TA (h) = 9 h

Problems with the nondeterministic polynomial time complexity form the class NP.

Proof Suppose
$$g = O(f)$$
 iff $s = O(f)$ for $f \neq g$

Proof Suppose $g = O(f)$. $f \in f \neq g$
 $f = g \in f \neq g$
 $f = g \in f \neq g$
 $f = g \in g \neq g$
 $f = g \in g$
 $f = g \in g \neq g$
 $f = g \in g$

 $T_{A}(h) = O(h^{2})$ $T_{A}(n) = O(h^{60})$ $T_{A}(n) = 2^{h}$ $O(2^{h})$ exponential

T (n) = 0 (log 2 n)

Missel Stuff here 1:24 -

Def 3 A Connected Component C of g A subgraph H of g = (V, E) H = (V, E, E) if $V, \subseteq V \& E, \subseteq E$ C is a subgraph of g st # U, V E V (c) can be connected by a path C is a max connected subgraph of g Det 4 A cycle in g is a path $P = (V_1, V_2, \dots, V_k)$ st $V_1 = V_k$ Def 5 a tree is a connected graph without cycles forrest