Федеральное государственное образовательное бюджетное учреждение высшего образования

«Сибирский государственный университет телекоммуникаций и информатики» (ФГОБУ ВО «СибГУТИ»)

Кафедра РТС

Задание на практику по курсу СМ Φ и
ОС в РТС

Разделы практики

- 1. Вычисление коэффициента шума приемника
- 2. Определение необходимой мощности сигнала на входе приемника
- 3. Определение параметров системы связи на основе модели потерь распространения в канале
- 4. Расчет вероятности прерывания связи в канале с затенением

1 Вычисление коэффициента шума приемника

Вычислить коэффициент шума приемника по структурной схеме и данным из таблицы вариантов для двух случаев.

В первом случае между антенной и МШУ сигнал передается по длинному кабелю с усилением G=-3 дБ. Во втором случае МШУ расположен непосредственно на выходе приемной антенны.

Рисунок 1 Структурная схема приемника

	Таблица	а 1 Исходные д	цанные для з	адачи 1	в дБ
Вариант	ПФ1	МШУ	Смеситель	ПФ2	УПІ
1	G=-2	G=2 NF = 3	G=-4	G=-3	G = 20

Вариант	∏Ф1	МШУ	Смеситель	ПФ2	УПКУ
1	G=-2	G=2, NF=3	G=-4	G=-3	G=20, NF=5
2	G=-3	G=2, NF $=2$	G=-3	G=-4	G=20, NF=4
3	G=-3	G=3, NF $=2$	G=-3	G=-4	G=30, NF=6
4	G=-2	G=3, NF $=2$	G=-3	G=-4	G=14, NF=4
5	G=-3	G=2, NF $=3$	G=-4	G=-3	G=20, NF=3
6	G=-1	G=3, NF $=3$	G=-2	G=-3	G=24, NF=5
7	G=-2	G=4, NF $=2$	G=-3	G=-3	G=24, NF=4
8	G=-1	G=4, NF $=3$	G=-2	G=-2	G=18, NF=4
9	G=-2	G=4, NF $=2$	G=-4	G=-2	G=23, NF=3
10	G=-2	G=4, NF=2	G=-3	G=-2	G=34, NF=6

2 Определение необходимой мощности сигнала на входе приемника

Для приемника из задачи 1 вычислить минимальный уровень сигнала на входе приемника при заданном виде модуляции, скорости передачи данных R_b и требуемой вероятности ошибки BER.

3 Определение параметров системы связи на основе модели потерь распространения в канале

В системе связи мощность сигнала на входе приемника (в дБм) определяется в соответствии с выражением

Таблица 2 Исходные данные для задачи 2

Вариант	Модуляция	Скорость, Мбит/с	BER
1	KAM-16	32	10^{-4}
2	KAM-64	50	10^{-4}
3	KAM-64	60	10^{-4}
4	KAM-16	28	10^{-4}
5	KAM-64	56	10^{-5}
6	KAM-64	62	10^{-4}
7	KAM-16	24	10^{-5}
8	KAM-64	54	10^{-5}
9	KAM-64	48	10^{-5}
10	KAM-16	26	10^{-4}

Рисунок 2 Вероятность ошибки от осш

$$P_r = P_t + G_t + G_r - PL(d)$$

где P_r - мощность сигнала на входе приемника, G_t - усиление антенны передатчика, G_r - усиление антенны приемника, Pl(d) - потери распространения на расстоянии d.

Для условий из задачи 2 при значениях $G_t=7~\mathrm{dBi},~G_r=2~\mathrm{dBi},~\mathrm{hbs}{=}30~\mathrm{m},~\mathrm{hms}{=}2~\mathrm{m},~\mathrm{f}=900~\mathrm{M}$ Гц. Модель потерь - Хата.

- 1. Вычислить минимальную мощность передатчика (в дБм) для достижения $BER=10^{-4}$ на расстоянии от БС 1 км.
- 2. При мощности передатчика $P_t=35$ дБм определить максимальное расстояние для ${\rm BER}=10^{-3}$
- 3. При мощности передатчика $P_t=35$ дБм и удвоенной высоте антенны БС определить максимальное расстояние для $\mathrm{BER}=10^{-4}$

4 Расчет вероятности прерывания связи в канале с затенением

Для исходных данных 2 задачи (битовая скорость, вид модуляции и требуемая вероятнсть ошибки) дополнительно задается мощность передатчика $P_t=35$ дБм, усиление передающей антенны $G_t=5$ дБ, усиление приемной антенны $G_r=1$ дБ. Коэффициент шума приемника берется из задачи 1. Стандартное отклонение затенения $\sigma_s=6$ дБ. Модель потерь распространения задается выражением

$$Pl(d) = 74 + 10\rho log_{10}(d/d_0)$$

экспонента потерь распространения $\rho = 3.5$, опорное расстояние $d_0 = 100$ м.

- 1. Вычислить вероятность прерывания связи на расстоянии 1, 2, 5 км.
- 2. При какой мощности передатчика P_t вероятность прерывания связи на расстоянии 3 км будет меньше 0.01?

	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
0.00	0.5000	0.4960	0.4920	0.4880	0.4840	0.4801	0.4761	0.4721	0.4681	0.4641
0.10	0.4602	0.4562	0.4522	0.4483	0.4443	0.4404	0.4364	0.4325	0.4286	0.4247
0.20	0.4207	0.4168	0.4129	0.4090	0.4052	0.4013	0.3974	0.3936	0.3897	0.3859
0.30	0.3821	0.3783	0.3745	0.3707	0.3669	0.3632	0.3594	0.3557	0.3520	0.3483
0.40	0.3446	0.3409	0.3372	0.3336	0.3300	0.3264	0.3228	0.3192	0.3156	0.3121
0.50	0.3085	0.3050	0.3015	0.2981	0.2946	0.2912	0.2877	0.2843	0.2810	0.2776
0.60	0.2743	0.2709	0.2676	0.2643	0.2611	0.2578	0.2546	0.2514	0.2483	0.2451
0.70	0.2420	0.2389	0.2358	0.2327	0.2296	0.2266	0.2236	0.2206	0.2177	0.2148
0.80	0.2119	0.2090	0.2061	0.2033	0.2005	0.1977	0.1949	0.1922	0.1894	0.1867
0.90	0.1841	0.1814	0.1788	0.1762	0.1736	0.1711	0.1685	0.1660	0.1635	0.1611
1.00	0.1587	0.1562	0.1539	0.1515	0.1492	0.1469	0.1446	0.1423	0.1401	0.1379
1.10	0.1357	0.1335	0.1314	0.1292	0.1271	0.1251	0.1230	0.1210	0.1190	0.1170
1.20	0.1151	0.1131	0.1112	0.1093	0.1075	0.1056	0.1038	0.1020	0.1003	0.0985
1.30	9.680e-2	9.510e-2	9.342e-2	9.176e-2	9.012e-2	8.851e-2	8.691e-2	8.534e-2	8.379e-2	8.226e-2
1.40	8.076e-2	7.927e-2	7.780e-2	7.636e-2	7.493e-2	7.353e-2	7.215e-2	7.078e-2	6.944e-2	6.811e-2
1.50	6.681e-2	6.552e-2	6.426e-2	6.301e-2	6.178e-2	6.057e-2	5.938e-2	5.821e-2	5.705e-2	5.592e-2
1.60	5.480e-2	5.370e-2	5.262e-2	5.155e-2	5.050e-2	4.947e-2	4.846e-2	4.746e-2	4.648e-2	4.551e-2
1.70	4.457e-2	4.363e-2	4.272e-2	4.182e-2	4.093e-2	4.006e-2	3.920e-2	3.836e-2	3.754e-2	3.673e-2
1.80	3.593e-2	3.515e-2	3.438e-2	3.362e-2	3.288e-2	3.216e-2	3.144e-2	3.074e-2	3.005e-2	2.938e-2
1.90	2.872e-2	2.807e-2	2.743e-2	2.680e-2	2.619e-2	2.559e-2	2.500e-2	2.442e-2	2.385e-2	2.330e-2
2.00	2.275e-2	2.222e-2	2.169e-2	2.118e-2	2.068e-2	2.018e-2	1.970e-2	1.923e-2	1.876e-2	1.831e-2
2.10	1.786e-2	1.743e-2	1.700e-2	1.659e-2	1.618e-2	1.578e-2	1.539e-2	1.500e-2	1.463e-2	1.426e-2
2.20	1.390e-2	1.355e-2	1.321e-2	1.287e-2	1.255e-2	1.222e-2	1.191e-2	1.160e-2	1.130e-2	1.101e-2
2.30	1.072e-2	1.044e-2	1.017e-2	9.903e-3	9.642e-3	9.387e-3	9.137e-3	8.894e-3	8.656e-3	8.424e-3
2.40	8.198e-3	7.976e-3	7.760e-3	7.549e-3	7.344e-3	7.143e-3	6.947e-3	6.756e-3	6.569e-3	6.387e-3
2.50	6.210e-3	6.037e-3	5.868e-3	5.703e-3	5.543e-3	5.386e-3	5.234e-3	5.085e-3	4.940e-3	4.799e-3
2.60	4.661e-3	4.527e-3	4.396e-3	4.269e-3	4.145e-3	4.025e-3	3.907e-3	3.793e-3	3.681e-3	3.573e-3
2.70	3.467e-3	3.364e-3	3.264e-3	3.167e-3	3.072e-3	2.980e-3	2.890e-3	2.803e-3	2.718e-3	2.635e-3
2.80	2.555e-3	2.477e-3	2.401e-3	2.327e-3	2.256e-3	2.186e-3	2.118e-3	2.052e-3	1.988e-3	1.926e-3
2.90	1.866e-3	1.807e-3	1.750e-3	1.695e-3	1.641e-3	1.589e-3	1.538e-3	1.489e-3	1.441e-3	1.395e-3
3.00	1.350e-3	1.306e-3	1.264e-3	1.223e-3	1.183e-3	1.144e-3	1.107e-3	1.070e-3	1.035e-3	1.001e-3
3.10	9.676e-4	9.354e-4	9.043e-4	8.740e-4	8.447e-4	8.164e-4	7.888e-4	7.622e-4	7.364e-4	7.114e-4
3.20	6.871e-4	6.637e-4	6.410e-4	6.190e-4	5.976e-4	5.770e-4	5.571e-4	5.377e-4	5.190e-4	5.009e-4
3.30	4.834e-4	4.665e-4	4.501e-4	4.342e-4	4.189e-4	4.041e-4	3.897e-4	3.758e-4	3.624e-4	3.495e-4
3.40	3.369e-4	3.248e-4	3.131e-4	3.018e-4	2.909e-4	2.803e-4	2.701e-4	2.602e-4	2.507e-4	2.415e-4
3.50	2.326e-4	2.241e-4	2.158e-4	2.078e-4	2.001e-4	1.926e-4	1.854e-4	1.785e-4	1.718e-4	1.653e-4
3.60	1.591e-4	1.531e-4	1.473e-4	1.417e-4	1.363e-4	1.311e-4	1.261e-4	1.213e-4	1.166e-4	1.121e-4
3.70	1.078e-4	1.036e-4	9.961e-5	9.574e-5	9.201e-5	8.842e-5	8.496e-5	8.162e-5	7.841e-5	7.532e-5
3.80	7.235e-5	6.948e-5	6.673e-5	6.407e-5	6.152e-5	5.906e-5	5.669e-5	5.442e-5	5.223e-5	5.012e-5
3.90	4.810e-5	4.615e-5	4.427e-5	4.247e-5	4.074e-5	3.908e-5	3.747e-5	3.594e-5	3.446e-5	3.304e-5
4.00	3.167e-5	3.036e-5	2.910e-5	2.789e-5	2.673e-5	2.561e-5	2.454e-5	2.351e-5	2.252e-5	2.157e-5
4.10	2.066e-5	1.978e-5	1.894e-5	1.814e-5	1.737e-5	1.662e-5	1.591e-5	1.523e-5	1.458e-5	1.395e-5
4.20	1.335e-5	1.277e-5	1.222e-5	1.168e-5	1.118e-5	1.069e-5	1.022e-5	9.774e-6	9.345e-6	8.934e-6
4.30	8.540e-6	8.163e-6	7.801e-6	7.455e-6	7.124e-6	6.807e-6	6.503e-6	6.212e-6	5.934e-6	5.668e-6
4.40	5.413e-6	5.169e-6	4.935e-6	4.712e-6	4.498e-6	4.294e-6	4.098e-6	3.911e-6	3.732e-6	3.561e-6
4.50	3.398e-6	3.241e-6	3.092e-6	2.949e-6	2.813e-6	2.682e-6	2.558e-6	2.439e-6	2.325e-6	2.216e-6
4.60	2.112e-6	2.013e-6	1.919e-6	1.828e-6	1.742e-6	1.660e-6	1.581e-6	1.506e-6	1.434e-6	1.366e-6
4.70	1.301e-6	1.239e-6 7.547e-7	1.179e-6	1.123e-6	1.069e-6	1.017e-6	9.680e-7	9.211e-7	8.765e-7	8.339e-7
4.80	7.933e-7 4.792e-7		7.178e-7	6.827e-7	6.492e-7	6.173e-7	5.869e-7	5.580e-7	5.304e-7	5.042e-7
4.90 5.00	4.792e-7 2.867e-7	4.554e-7	4.327e-7	4.111e-7	3.906e-7	3.711e-7	3.525e-7	3.348e-7	3.179e-7	3.019e-7
5.10	1.698e-7	2.722e-7 1.611e-7	2.584e-7 1.528e-7	2.452e-7 1.449e-7	2.328e-7 1.374e-7	2.209e-7 1.302e-7	2.096e-7 1.235e-7	1.989e-7 1.170e-7	1.887e-7 1.109e-7	1.790e-7 1.051e-7
5.20	9.964e-8	9.442e-8	8.946e-8	8.476e-8	8.029e-8	7.605e-8	7.203e-8	6.821e-8	6.459e-8	6.116e-8
5.30	5.790e-8	5.481e-8	5.188e-8	4.911e-8	4.647e-8	4.398e-8	4.161e-8	3.937e-8	3.724e-8	3.523e-8
5.40	3.332e-8	3.461e-8 3.151e-8	2.980e-8	2.818e-8	2.664e-8	2.518e-8	2.381e-8	2.250e-8	2.127e-8	2.010e-8
5.50	1.899e-8	1.794e-8	1.695e-8	1.601e-8	1.512e-8	1.428e-8	1.349e-8	1.274e-8	1.203e-8	1.135e-8
5.60	1.072e-8	1.734e-8 1.012e-8	9.548e-9	9.010e-9	8.503e-9	8.022e-9	7.569e-9	7.140e-9	6.735e-9	6.352e-9
5.70	5.990e-9	5.649e-9	5.326e-9	5.022e-9	4.734e-9	4.462e-9	4.206e-9	3.964e-9	3.735e-9	3.519e-9
5.80	3.316e-9	3.124e-9	2.942e-9	2.771e-9	2.610e-9	2.458e-9	2.314e-9	2.179e-9	2.051e-9	1.931e-9
5.90	1.818e-9	1.711e-9	1.610e-9	1.515e-9	1.425e-9	1.341e-9	1.261e-9	1.186e-9	1.116e-9	1.049e-9
							•			
		Q(x) =	$\frac{1}{\sqrt{2}}e^{-t}$	$u^{2}/2du \cong \frac{1}{4}$	$-e^{-x^2/2} + \frac{1}{x^2}$	$-e^{-2x^2/3}$	Q(-x):	=1-Q(x)		
$Q(x) = \int_{x}^{\infty} \frac{1}{\sqrt{2\pi}} e^{-u^{2}/2} du \cong \frac{1}{12} e^{-x^{2}/2} + \frac{1}{4} e^{-2x^{2}/3} \qquad Q(-x) = 1 - Q(x)$										

Рисунок 3 Таблица Q функции

5 Заключение