

Data Collection and Preprocessing Phase

Date	23 September 2024
Team ID	LTVIP2024TMID24997
Project Title	Cereal Analysis Based on Ratings by using Machine Learning Techniques
Maximum Marks	6 Marks

Data Exploration and Preprocessing Template

Identifies data sources, assesses quality issues like missing values and duplicates, and implements resolution plans to ensure accurate and reliable analysis.

Section	De	scrip	otion	l										
		calories	protein	fat	sodium	fiber	carbo	sugars	potass	vitamins	shelf	weight	cups	rating
Data Overview	count	77.000000	77.000000	77.000000	77.000000	77.000000	77.000000	77.000000	77.000000	77.000000	77.000000	77.000000	77.000000	77.000000
	mean	106.883117	2.545455	1.012987	159.675325	2.151948	14.597403	6.922078	96.077922	28.246753	2.207792	1.029610	0.821039	42.665705
	std	19.484119	1.094790	1.006473	83.832295	2.383364	4.278956	4.444885	71.286813	22.342523	0.832524	0.150477	0.232716	14.047289
	min	50.000000	1.000000	0.000000	0.000000			-1.000000		0.000000	1.000000	0.500000		18.042851
	25%	100.000000	2.000000		130.000000		12.000000	3.000000		25.000000	1.000000	1.000000		33.174094
	50%	110.000000	3.000000		180.000000		14.000000	7.000000		25.000000	2.000000	1.000000		40.400208
		110.000000	3.000000		210.000000				120.000000		3.000000			50.828392
	max	160.000000	6.000000	0.000000	320.000000	14.000000	23.000000	10.000000	330.000000	100.000000	3.000000	1.500000	1.000000	93.704912
Univariate Analysis	25 25 20 115 15 15 10 10 11 11 11 11 11 11 11 11 11 11 11	2		3	4	5	6	6	0 50	100	150	200	250	300

data.fillna(data.mean(), inplace=True)

Data Transformation	<pre>from sklearn.preprocessing import StandardScaler # Normalize numerical features scaler = StandardScaler() numerical_features = data.select_dtypes(include=['int64', 'float64']).columns data[numerical_features] = scaler.fit_transform(data[numerical_features])</pre>
Feature Engineering	<pre># One-hot encode categorical variables data = pd.get_dummies(data, columns=['mfr', 'type'], drop_first=True)</pre>
Save Processed Data	<pre># Save the cleaned and processed data for future use data.to_csv('processed_cereal.csv', index=False)</pre>