Name: Tian Qiu PUID: 00265 35063 ECE 369 Homework 1

Proposition and Predicate Logic

Exercise 1.1

Problems:

- 3. (a) true
- 3. (b) false
- 3. (e) true
- 3. (f) false
- 8. (a) $\neg PF \cup PF$
- 8. (c) PF $\cap \neg PS$
- 8. (f) $\neg PF \cap \neg FD$
- 13. (a) $H \rightarrow K$
- 13. (c) $K \rightarrow H$
- 13. (d) $K \leftrightarrow A$

Exercise 1.2

Problems

- 42. 1. $C \rightarrow \neg F$ hyp
 - 2. $F \rightarrow \neg S$ hyp
 - 3. $S \rightarrow \neg F$ hyp
 - 4. $\neg F \rightarrow S$ hyp
 - 5. C hyp
 - 6. $\neg F$ 1, 3, mp
 - 7. S 4, 6,mp
- 47. 1. $(J \cup L) \rightarrow C$ hyp
 - 2. $\neg T$ hyp
 - 3. $C \rightarrow T$ hyp
 - 4. $(J \cup L) \rightarrow T$ 1, 3, hs
 - 5. $\neg (J \cup L)$ 4, 2, mt
 - 6. $\neg J \cap \neg L$) 5, De Morgan's Law
 - 7. $\neg J$ 6, sim

Exercise 1.3

Problems

- 2. (e) true, if y = 0;
- 2. (f) true,
- 2. (h) false, if x = 0;

11. (a)
$$(\exists x)[P(x) \rightarrow (\forall y)(T(y) \rightarrow F(x,y))]$$

(b)
$$(\forall x)[P(x) \rightarrow (\exists y)(T(y) \rightarrow F(x,y))]$$
)

(c)
$$\neg \{(\forall x)[P(x) \rightarrow (\exists y)(T(y) \rightarrow F(x,y))]\}$$

16. (a)
$$(\forall x)[B(x) \rightarrow (\forall y)(F(y) \rightarrow L(x,y))]$$

16. (i)
$$(\forall x)[F(x) \rightarrow (\exists y)(B(y) \rightarrow F(x,y))]$$

16. (1)
$$(\forall x)[F(x) \to (\exists y)(B(y) \to F(x,y))]$$

Exercise 1.4

- F: Flowers
- P: Flowers are purple
- R: Flowers are red

PA: Pansies

- 4. 1. $(\exists x)[F(x) \to R(x)]$ hyp
 - 2. $(\exists x)[F(x) \rightarrow P(x)]$ hyp
 - 3. $(\forall x)[PA(x) \rightarrow F(x)]$ hyp
 - 4. $PA(x) \rightarrow F(x)$ 3, ui
 - 5. $[F(a) \to R(a)]$ 1, ei
 - 6. $[F(a) \to P(a)]$ 2, ei
 - 7. $PA(a) \to R(a)$ 4, 5, hs
 - 8. $PA(a) \rightarrow P(a)$ 4, 6, hs
 - 9. $(\exists x)[PA(x) \rightarrow P(x)]$ 7, eq
 - 10. $(\exists x)[PA(x) \to P(x)]$ 8, eg

Some pansies are Purple.

Some pansies are red.

PI: Flowers are pink

TH: Flowers have thorns

B: Bad smell.

W: Weed

- 5. 1. $(\exists x)[F(x) \cap TH(x)]$ hyp
 - 2. $(\forall x)[TH(x) \rightarrow B(x)]$ hyp
 - 3. $(\forall x)[B(x) \rightarrow W(x)]$ hyp
 - 4. $[F(a) \cap TH(a)]$ 1, ei
 - 5. F(a), TH(a) 4, sim
 - 6. $TH(x) \rightarrow B(x)$ 2, ui
 - 7. $B(x) \rightarrow W(x)$ 3, ui
 - 8. B(a) 5, 6, mp
 - 9. W(a) 7, 8, mp
 - 10. $(\exists x)[W(x)]$ 9, eg

Some flowers smell bad.

9. (a) Let Q (x, y): x talks to y $(\forall y)(\exists x)Q(x,y)$:

Everybody is talked by someone, but someone can be different person.

 $(\exists x)(\forall y)Q(x,y)$:

Someone talks to everyone. Someone should be the same person.

- So $(\forall y)(\exists x)Q(x,y)$ cannot imply $(\exists x)(\forall y)Q(x,y)$.
 - (b) The step4 to step5 is wrong.
 - 4. $(\forall y)Q(a,y)$ 3, ug
 - 5. $(\forall y)(\exists x)Q(x,y)$ 4,eg

The above is the right deduction.

33. 1.
$$(\exists x)(M(x) \to (\forall y)(R(x,y))$$
 hyp
2. $(\forall x)(\forall y)(R(x,y) \to T(x,y))$ hyp
3. $(\exists x)M(x)$ hyp
4. $(M(a) \to (\forall y)(R(a,y))$ 1, ei
5. $(M(a) \to (R(a,y))$ 4, ui
6. $R(x,y) \to T(x,y)$ 2, ui
7. $M(a,y) \to T(a,y)$ 5, 6, hs
8. $(\exists x)(M(x) \to (T(x,y))$ 6, 7, eg
9. $(\exists x)(M(x) \to (\forall y)(T(x,y))$ 8, ug

37. 1.
$$(\forall x)(F(x) \rightarrow (\exists y)(C(y) \rightarrow O(x,y)))$$
 hyp

2.
$$(\forall x)(D(x) \to (\forall y)(C(y) \to \neg O(x,y)))$$
 hyp

4.
$$F(x) \rightarrow (\exists y) (C(y) \rightarrow O(x,y))$$
 1, ui

5.
$$F(x) \rightarrow (C(a) \rightarrow O(x,a))$$
 4, ei

6.
$$D(x) \rightarrow (\forall y)(C(y) \rightarrow \neg O(x,y))$$
 2, ui

7.
$$D(x) \rightarrow (C(y) \rightarrow \neg O(x,y))$$
 6, ei

8.
$$(D(x) \rightarrow \neg O(x, y))$$
 7, hs

9.
$$(O(x,y) \rightarrow \neg D(x))$$
 9, cont

10.
$$(F(x) \to O(x, a))$$
 6, hs

11.
$$(F(x) \to \neg D(x))$$
 9, 10, hs
12. $(\forall x)(F(x) \to \neg D(x))$ 11, ug

Problem I:

$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C) = ((A \cup B) \cap C)$$

Problem II:

- (i) $(\forall x)(P(x) \rightarrow \neg I(x))$
- (ii) $(\forall x)(I(x) \rightarrow V(x))$
- (iii) $(\forall x)(V(x) \rightarrow \neg P(x))$

No.

Because not only ignorant people can be vain, suppose good person also can be vain. Then Professor can be good person. So professor can be vain.