Surfaces of Revolution

Surfaces of Revolution

Surfaces of revolution can be represented parametrically and thus graphed using a computer. For instance, let's consider the surface S obtained by rotating the curve y = f(x), $a \le x \le b$, about the x-axis, where $f(x) \ge 0$.

Let θ be the angle of rotation as shown in Figure 10.

Figure 10

Surfaces of Revolution

If (x, y, z) is a point on S, then

3
$$x = x$$
 $y = f(x) \cos \theta$ $z = f(x) \sin \theta$

Therefore, we take x and θ as parameters and regard Equations 3 as parametric equations of S.

The parameter domain is given by $a \le x \le b$, $0 \le \theta \le 2\pi$.

Graph of a function

If a surface S is given by the equation z = f(x,y) where $(x,y) \in D$, then a simple choice for parametric equations describing the surface is:

$$x = x$$
 $y = y$ $z = f(x,y)$ $(x,y) \in D$.

Note: Parametrizations of surfaces are not unique so this is just one simple way of writing the surface using parametric equations in this case.

We now find the tangent plane to a parametric surface *S* traced out by a vector function

$$\mathbf{r}(u, v) = x(u, v) \mathbf{i} + y(u, v) \mathbf{j} + z(u, v) \mathbf{k}$$

at a point P_0 with position vector $\mathbf{r}(u_0, v_0)$.

If we keep u constant by putting $u = u_0$, then $\mathbf{r}(u_0, v)$ becomes a vector function of the single parameter v and defines a grid curve C_1 lying on S. (See Figure 12.) The tangent vector to C_1 at P_0 is obtained by taking the partial derivative of \mathbf{r} with respect to v:

$$\mathbf{r}_{v} = \frac{\partial x}{\partial v} (u_{0}, v_{0}) \mathbf{i} + \frac{\partial y}{\partial v} (u_{0}, v_{0}) \mathbf{j} + \frac{\partial z}{\partial v} (u_{0}, v_{0}) \mathbf{k}$$

Figure 12

Similarly, if we keep v constant by putting $v = v_0$, we get a grid curve C_2 given by $\mathbf{r}(u, v_0)$ that lies on S, and its tangent vector at P_0 is

$$\mathbf{r}_{u} = \frac{\partial x}{\partial u} (u_{0}, v_{0}) \mathbf{i} + \frac{\partial y}{\partial u} (u_{0}, v_{0}) \mathbf{j} + \frac{\partial z}{\partial u} (u_{0}, v_{0}) \mathbf{k}$$

If $\mathbf{r}_u \times \mathbf{r}_v$ is not **0**, then the surface S is called **smooth** (it has no "corners").

For a smooth surface, the **tangent plane** is the plane that contains the tangent vectors \mathbf{r}_u and \mathbf{r}_v , and hence the vector $\mathbf{r}_u \times \mathbf{r}_v$ is a normal vector to the tangent plane.

Example 9

Find the tangent plane to the surface with parametric equations $x = u^2$, $y = v^2$, z = u + 2v at the point (1, 1, 3).

Now we define the surface area of a general parametric surface.

For simplicity we start by considering a surface whose parameter domain D is a rectangle, and we divide it into subrectangles R_{ii} .

Let's choose (u_i^*, v_j^*) to be the lower left corner of R_{ij} . (See Figure 14.)

The image of the subrectangle R_{ii} is the patch S_{ii} .

Figure 14

The part S_{ij} of the surface that corresponds to R_{ij} is called a *patch* and has the point P_{ij} with position $\mathbf{r}(u_i^*, v_j^*)$ as one of its corners.

Let

$$\mathbf{r}_u^* = \mathbf{r}_u(u_i^*, v_j^*)$$
 and $\mathbf{r}_v^* = \mathbf{r}_v(u_i^*, v_j^*)$

be the tangent vectors at P_{ij} as given by Equations 5 and 4.

Figure 15(a) shows how the two edges of the patch that meet at P_{ij} can be approximated by vectors. These vectors, in turn, can be approximated by the vectors $\Delta u \mathbf{r}_{ii}^*$ and $\Delta v \mathbf{r}_{i}^*$ because partial derivatives can be approximated by difference quotients.

Approximating a patch by a parallelogram.

So we approximate S_{ij} by the parallelogram determined by the vectors $\Delta u \mathbf{r}_{u}^{*}$ and $\Delta v \mathbf{r}_{v}^{*}$.

This parallelogram is shown in Figure 15(b) and lies in the tangent plane to S at P_{ii} .

Approximating a patch by a parallelogram.

The area of this parallelogram is

$$|(\Delta u \mathbf{r}_u^*) \times (\Delta v \mathbf{r}_v^*)| = |\mathbf{r}_u^* \times \mathbf{r}_v^*| \Delta u \Delta v$$

and so an approximation to the area of S is

$$\sum_{i=1}^{m} \sum_{j=1}^{n} |\mathbf{r}_{u}^{*} \times \mathbf{r}_{v}^{*}| \Delta u \Delta v$$

Our intuition tells us that this approximation gets better as we increase the number of subrectangles, and we recognize the double sum as a Riemann sum for the double integral $\iint_D |\mathbf{r}_u \times \mathbf{r}_v| du dv$.

This motivates the following definition.

Definition If a smooth parametric surface S is given by the equation

$$\mathbf{r}(u, v) = x(u, v) \mathbf{i} + y(u, v) \mathbf{j} + z(u, v) \mathbf{k} \qquad (u, v) \in D$$

and S is covered just once as (u, v) ranges throughout the parameter domain D, then the surface area of S is

$$A(S) = \iint\limits_{D} |\mathbf{r}_{u} \times \mathbf{r}_{v}| dA$$

where
$$\mathbf{r}_{u} = \frac{\partial x}{\partial u}\mathbf{i} + \frac{\partial y}{\partial u}\mathbf{j} + \frac{\partial z}{\partial u}\mathbf{k}$$
 $\mathbf{r}_{v} = \frac{\partial x}{\partial v}\mathbf{i} + \frac{\partial y}{\partial v}\mathbf{j} + \frac{\partial z}{\partial v}\mathbf{k}$

Example 10

Find the surface area of a sphere of radius a.

Surface Area of the Graph of a function

Surface Area of the Graph of a Function

For the special case of a surface S with equation z = f(x, y), where (x, y) lies in D and f has continuous partial derivatives, we take x and y as parameters.

The parametric equations are

$$\chi = \chi$$

$$y = y$$

$$y = y$$
 $z = f(x, y)$

SO

$$\mathbf{r}_{x} = \mathbf{i} + \left(\frac{\partial f}{\partial x}\right) \mathbf{k}$$

$$\mathbf{r}_{y} = \mathbf{j} + \left(\frac{\partial f}{\partial y}\right) \mathbf{k}$$

and

$$\mathbf{r}_{x} \times \mathbf{r}_{y} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 1 & 0 & \frac{\partial f}{\partial x} \\ 0 & 1 & \frac{\partial f}{\partial y} \end{vmatrix} = -\frac{\partial f}{\partial x} \mathbf{i} - \frac{\partial f}{\partial y} \mathbf{j} + \mathbf{k}$$

Surface Area of the Graph of a Function

Thus we have

$$|\mathbf{r}_x \times \mathbf{r}_y| = \sqrt{\left(\frac{\partial f}{\partial x}\right)^2 + \left(\frac{\partial f}{\partial y}\right)^2 + 1} = \sqrt{1 + \left(\frac{\partial z}{\partial x}\right)^2 + \left(\frac{\partial z}{\partial y}\right)^2}$$

and the surface area formula in Definition 6 becomes

$$A(S) = \iint\limits_{D} \sqrt{1 + \left(\frac{\partial z}{\partial x}\right)^2 + \left(\frac{\partial z}{\partial y}\right)^2} dA$$

Example 11

Find the area of the part of the paraboloid $z = x^2 + y^2$ that lies under the plane z = 9.

16.7

Surface Integrals

Surface Integrals

The relationship between surface integrals and surface area is much the same as the relationship between line integrals and arc length.

Suppose f is a function of three variables whose domain includes a surface S.

We will define the surface integral of f over S in such a way that, in the case where f(x, y, z) = 1, the value of the surface integral is equal to the surface area of S.

We start with parametric surfaces and then deal with the special case where S is the graph of a function of two variables.

Suppose that a surface has a vector equation

$$\mathbf{r}(u, v) = x(u, v) \mathbf{i} + y(u, v) \mathbf{j} + z(u, v) \mathbf{k}$$
 $(u, v) \in D$

We first assume that the parameter domain D is a rectangle and we divide it into subrectangles R_{ij} with dimensions Δu and Δv .

Then the surface S is divided into corresponding patches S_{ij} as in Figure 1.

27

We evaluate f at a point P_{ij}^* in each patch, multiply by the area ΔS_{ij} of the patch, and form the Riemann sum

$$\sum_{i=1}^{m} \sum_{j=1}^{n} f(P_{ij}^*) \Delta S_{ij}$$

Then we take the limit as the number of patches increases and define the surface integral of f over the surface S as

$$\iint_{S} f(x, y, z) dS = \lim_{m, n \to \infty} \sum_{i=1}^{m} \sum_{j=1}^{n} f(P_{ij}^{*}) \Delta S_{ij}$$

Notice the analogy with the definition of a line integral and also the analogy with the definition of a double integral.

To evaluate the surface integral in Equation 1 we approximate the patch area ΔS_{ij} by the area of an approximating parallelogram in the tangent plane.

In our discussion of surface area we made the approximation

$$\Delta S_{ij} \approx |\mathbf{r}_u \times \mathbf{r}_v| \Delta u \Delta v$$

where

$$\mathbf{r}_{u} = \frac{\partial x}{\partial u} \mathbf{i} + \frac{\partial y}{\partial u} \mathbf{j} + \frac{\partial z}{\partial u} \mathbf{k} \qquad \mathbf{r}_{v} = \frac{\partial x}{\partial v} \mathbf{i} + \frac{\partial y}{\partial v} \mathbf{j} + \frac{\partial z}{\partial v} \mathbf{k}$$

are the tangent vectors at a corner of S_{ii} .

If the components are continuous and \mathbf{r}_u and \mathbf{r}_v are nonzero and nonparallel in the interior of D, it can be shown from Definition 1, even when D is not a rectangle, that

2

$$\iint_{S} f(x, y, z) dS = \iint_{D} f(\mathbf{r}(u, v)) |\mathbf{r}_{u} \times \mathbf{r}_{v}| dA$$

This should be compared with the formula for a line integral:

$$\int_C f(x, y, z) ds = \int_a^b f(\mathbf{r}(t)) |\mathbf{r}'(t)| dt$$

Observe also that

$$\iint\limits_{S} 1 \, dS = \iint\limits_{D} |\mathbf{r}_{u} \times \mathbf{r}_{v}| \, dA = A(S)$$

Formula 2 allows us to compute a surface integral by converting it into a double integral over the parameter domain *D*.

When using this formula, remember that $f(\mathbf{r}(u, v))$ is evaluated by writing x = x(u, v), y = y(u, v), and z = z(u, v) in the formula for f(x, y, z).

Example 1

Compute the surface integral $\iint_S x^2 dS$, where S is the unit sphere $x^2 + y^2 + z^2 = 1$.

If a thin sheet (say, of aluminum foil) has the shape of a surface S and the density (mass per unit area) at the point (x, y, z) is $\rho(x, y, z)$, then the total **mass** of the sheet is

$$m = \iint\limits_{S} \rho(x, y, z) \, dS$$

and the **center of mass** is $(\bar{x}, \bar{y}, \bar{z})$, where

$$\overline{x} = \frac{1}{m} \iint_{S} x \, \rho(x, y, z) \, dS \qquad \overline{y} = \frac{1}{m} \iint_{S} y \, \rho(x, y, z) \, dS \qquad \overline{z} = \frac{1}{m} \iint_{S} z \, \rho(x, y, z) \, dS$$

Any surface S with equation z = g(x, y) can be regarded as a parametric surface with parametric equations

$$x = x$$
 $y = y$ $z = g(x, y)$

and so we have

$$\mathbf{r}_{x} = \mathbf{i} + \left(\frac{\partial g}{\partial x}\right)\mathbf{k}$$
 $\mathbf{r}_{y} = \mathbf{j} + \left(\frac{\partial g}{\partial y}\right)\mathbf{k}$

Thus

$$\mathbf{r}_{x} \times \mathbf{r}_{y} = -\frac{\partial g}{\partial x} \mathbf{i} - \frac{\partial g}{\partial y} \mathbf{j} + \mathbf{k}$$

and
$$|\mathbf{r}_x \times \mathbf{r}_y| = \sqrt{\left(\frac{\partial z}{\partial x}\right)^2 + \left(\frac{\partial z}{\partial y}\right)^2 + 1}$$

Therefore, in this case, Formula 2 becomes

$$\iint_{S} f(x, y, z) dS = \iint_{D} f(x, y, g(x, y)) \sqrt{\left(\frac{\partial z}{\partial x}\right)^{2} + \left(\frac{\partial z}{\partial y}\right)^{2} + 1} dA$$

Similar formulas apply when it is more convenient to project S onto the yz-plane or xz-plane. For instance, if S is a surface with equation y = h(x, z) and D is its projection onto the xz-plane, then

$$\iint_{S} f(x, y, z) dS = \iint_{D} f(x, h(x, z), z) \sqrt{\left(\frac{\partial y}{\partial x}\right)^{2} + \left(\frac{\partial y}{\partial z}\right)^{2} + 1} dA$$

Example 2

Evaluate $\iint_S y \, dS$, where S is the surface $z = x + y^2$, $0 \le x \le 1$, $0 \le y \le 2$. (See Figure 2.)

Figure 2

If S is a piecewise-smooth surface, that is, a finite union of smooth surfaces S_1, S_2, \ldots, S_n that intersect only along their boundaries, then the surface integral of f over S is defined by

$$\iint\limits_{S} f(x, y, z) \, dS = \iint\limits_{S_1} f(x, y, z) \, dS + \cdots + \iint\limits_{S_n} f(x, y, z) \, dS$$

Example 3

Evaluate $\iint_S z \, dS$, where S is the surface whose sides S_1 are given by the cylinder $x^2 + y^2 = 1$, whose botton S_2 is the disc $x^2 + y^2 \le 1$ in the plane z = 0, and whose top S_3 is part of the plane z = 1 + x above S_2 .