Universidad de Concepción Facultad de Ingeniería Departamento de Ingeniería Civil Profesores: Pablo Guarda - Juan Antonio Carrasco

Taller 1: Introducción Marzo 21, 2019

Problemas

1. Considere el problema de la florista discutido en clases. Los datos del problema se resumen en la tabla de abajo:

The state of the	Flores usadas por unidad de producción [unidades]		Flores disponibles
Tipo de flor	Arreglo F1	Arreglo F2	[u/semana]
A rosa	2	1	90
B tulipán	1	1	50
C lirio	1	3	120
Precio unit	\$7.000	\$12.000	
Costo unit	\$3.000	\$6.000	
Utilidad	\$4.000	\$6.000	

Programe un script en *Octave* para responder a las siguientes preguntas:

- (a) Grafique las restricciones del problema. Pinte con color rojo el área que define el espacio factible del problema
- (b) Agregue 3 curvas de nivel de la función objetivo en el gráfico. Una de las curvas debe corresponder a la solución óptima del problema
- (c) Considere un caso donde el precio de venta del arreglo floral tipo 1 aumenta en un 50% y el de tipo 2 se reduce en un 50%. Repita lo hecho en (b) y analice si varía la solución óptima del problema

2. Una empresa fabrica puertas y ventanas de madera. Existen dos tipos de puertas y ventanas: dobles y simples. El insumo más importante es la madera. El proceso de corte de las partes se realiza en dos sierras eléctricas de precisión y el barnizado lo efectúa personal experimentado. Las cantidades de madera y los tiempos de corte y de barnizado que requiere cada producto se muestran en la tabla siguiente

Producto	Madera (m2)	Corte (horas-máquina)	Barnizado (horas-hombre)
Puertas dobles	4,0	1,5	2,0
Puertas simples	2,5	1,0	1,2
Ventanas dobles	3,0	2,0	1,5
Ventanas simples	1,8	0,8	0,8

Los proveedores de madera pueden entregar hasta 800 m2 en un mes. Además, se pueden utilizar hasta 400 horas de sierra para el proceso de corte y 300 horas-hombre para el barnizado. La empresa está comprometida con una constructora para entregar 200 puertas simples y 120 ventanas dobles en el mes. Los precios de venta unitarios y costos unitarios de producción, en miles de pesos (M\$) son:

Producto	Precio (M\$)	Costo unitario (M\$)
Puertas dobles	120	80
Puertas simples	80	50
Ventanas dobles	100	75
Ventanas simples	60	30

Determine un plan de producción para el mes que maximice el beneficio total y cumpla con los compromisos de entrega, suponiendo que todo se vende.

Solución Problema 1

a) Grafique las restricciones del problema. Pinte con color rojo el área que define el espacio factible del problema

- Se graficará la cantidad de arreglos F2 y F1 en el eje vertical y horizontal respectivamente. Para ello, se creará una función para cada restricción que recibirán como input la cantidad de arreglos florales F1 y retornarán la cantidad de arreglos florales F2.
- Las variables x_1 y x_2 son las variables de decisión del problema y que corresponden a la cantidad de arreglos florales F1 y F2, respectivamente
- Para definir el valor que retornan las funciones, se expresará x_2 en función de x_1 en cada restricción del problema

In [1]: clear % eliminamos todas las variables creadas previamente en Octave/Matlab

i) Restricciones

Disponibilidad de flores A

```
In [2]: function x2 = floresA(x1)
            x2 = 90-2*x1;
        end
```

Disponibilidad de flores B

```
In [3]: function x2 = floresB(x1)
            x2 = 50-x1;
```

Disponibilidad de flores C

```
In [4]: function x2 = floresC(x1)
            x2 = 40-(1/3)*x1;
```

• En Matlab, las funciones deben ser definidas al final del script. Esto es poco intuitivo y es una de las diferencias con Octave

Gráfico restricciones

```
In [5]: x1 = linspace(1,150); *Rango de valores de input de las funciones
                plot(x1,floresA(x1),'b') *color azul para disponibilidad de flores A
                plot(x1,floresB(x1),'k') %color negro para disponibilidad de flores B
              hold on plot(x1,floresC(x1),'g') *color verde para disponibilidad de flores C title ('Restricciones asociadas a la disponibilidad de flores') xlabel ('Numero de arreglos florales F1 (x1)') ylabel ('Numero de arreglos florales F2 (x2)') ylim([0 100]) xlim([0 100]) xlim([0 150]) legend('Flores A','Flores B', 'Flores C') hold off
                hold on
```

Restricciones asociadas a la disponibilidad de flores 80 Numero de arreglos florales F1 (x1)

ii) Región factible

- La región factible corresponde al área donde todas las restricciones se cumplen. Esto incluve las restricciones de no negatividad asociadas a x1 y x2
- La región factible corresponde al area donce todas las resultaciones se dumpos. Los controles de la región factible son 5 y corresponden a intersecciones entre distintos pares de restricciones.

- El primer vertice es el origen (u,u) que denominaremos "v1". Los vertices "v2", "v3", "v4", "v5" son definidos segun el sentido del reioj.
- Los vértices v3 y v4 corresponden a intersecciones entre dos restricciones. La coordenada de cada vértice, se obtiene resolviendo sistemas de 2

```
ecuaciones. Para resolverlos, utilizaremos una clásica fórmula de álgebra lineal:
                                                                                      Ax = b \rightarrow x = A^{-1}b
             Vértices
 In [6]: v1 = [0,0]
             v1 =
 In [7]: v2 = (inv([1 3;1 0])*[120;0])' % O simplemente: v2 = [0,floresC(x1 = 0)]
             v2 =
 In [8]: v3 = (inv([1 1;1 3])*[50;120])' % Intersection restrictiones flores B y C
            v3 =
                 15.000 35.000
 In [9]: v4 = (inv([2 1;1 1])*[90;50])' % Intersection restrictiones flores A y B
            v4 =
                 40.000 10.000
In [10]: v5 = (inv([2 1;0 1])*[90;0])'
             v5 =
                45 0
             Creamos una matriz de dos columnas con las coordenadas x e y de los vertices
In [11]: v = [v1;v2;v3;v4;v5]
            v =
                   0.00000
                                  0.00000
                   0.00000
                               40.00000
                  40.00000
                                 10.00000
                 45.00000
                                  0.00000
In [12]: v(:,1)
             ans =
                   0.00000
                 15.00000
                 40.00000
In [13]: v(:,2)
             ans =
                   0.00000
                  40.00000
                 35.00000
                 10.00000
                   0.00000
             Gráfico de región factible
In [14]: x1 = linspace(1,150); %Rango de valores de input para las funciones
             \verb|plot(x1,floresA(x1),'b')| $color azul para disponibilidad de flores A|
            hold on plot(x1,floresB(x1),'k') %color negro para disponibilidad de flores B hold on plot(x1,floresC(x1),'g') %color verde para disponibilidad de flores C fill(v(:,1),v(:,2),'r') title ('Region factible definida por la disponibilidad de flores y no negatividad de variables de decision') xlabel ('Numero de arreglos florales F1 (x1)') ylabel ('Numero de arreglos florales F2 (x2)') ylim([0 1001) xlim([0 150]) legend('Flores A','Flores B', 'Flores C','Region Factible') hold off
             hold off
                    Region factible definida por la disponibilidad de flores y no negatividad de variables de decision
```


b) Agregue 3 curvas de nivel de la función objetivo en el gráfico. Una de las curvas debe corresponder a la solución óptima del problema

Definición de curvas de nivel

La forma en que se determina la ecuación para encontrar las curvas de nivel de la función objetivo fue revisada en clases.

Gráfico de las curvas de nivel

```
In [16]: x1 = linspace(1,150); %Rango de valores de input para las funciones
fill(v(:,1),v(:,2),'r')
hold on
plot(x1,curvadenivel(100000,x1),'-.k')
hold on
plot(x1,curvadenivel(200000,x1),'--k')
hold on
plot(x1,curvadenivel(270000,x1),'-k')
hold on
title ('Curvas de nivel de la funcion objetivo')
xlabel ('Numero de arreglos florales F1 (x1)')
ylabel ('Numero de arreglos florales F2 (x2)')
ylim([0 100]);
xlim([0 150]);
legend('Region Factible','z = 100M$','z = 200M$', 'z = 270M$')
hold off
```


- c) Considere un caso donde el precio de venta del arreglo floral tipo 1 aumenta en un 50% y el de tipo 2 se reduce en un 50%. Repita lo hecho en (b) y analice si varía la solución óptima
- Realizar la solución de forma personal

Solucion Problema 2

Supuestos

- 1. La cantidad total de horas disponibles para el proceso de corte incluye a las dos sierras
- 2. Las variables de decisión pueden tomar valores no enteros
- 3. Toda la producción que exceda las unidades definidas en el compromiso de entrega no se puede vender (por ende, no conviene producir más que lo requerido)
- 4. Las horas de sierra para el proceso de corte y las horas hombre para el proceso de barnizado corresponden a una horizonte mensual
- 5. El horizonte de análisis es mensual

Variables de decisión

- x_1 : número de puertas dobles
- x_2 : número de puertas simples
- x_3 : número de ventanas dobles
- x_4 : número de ventanas simples

Función objetivo

Max
$$(120 - 80)x_1 + (80 - 50)x_2 + (100 - 75)x_3 + (60 - 30)x_4$$
 (Maximizar utilidades [\$])

Restricciones

$$4x_1 + 2,5x_2 + 3x_3 + 1,8x_4 \le 800 \qquad \text{(Disponibilidad de madera } [\text{m}^2]\text{)}$$

$$1,5x_1 + 1x_2 + 2x_3 + 0,8x_4 \le 400 \qquad \text{(Capacidad de proceso de corte)}$$

$$2x_1 + 1,2x_2 + 1,5x_3 + 0,8x_4 \le 300 \qquad \text{(Capacidad de proceso de barnizado)}$$

$$x_2 \ge 200 \qquad \text{(Compromiso venta de puertas simples)}$$

$$x_3 \ge 120 \qquad \text{(Compromiso venta de ventanas dobles)}$$

$$x_1, x_2, x_3, x_4 \ge 0 \qquad \text{(No negatividad)}$$

Modelo de programación lineal

Max
$$40x_1 + 30x_2 + 25x_3 + 30x_4$$

s.a
$$4x_1 + 2,5x_2 + 3x_3 + 1,8x_4 \leq 800$$
$$1,5x_1 + 1x_2 + 2x_3 + 0,8x_4 \leq 400$$
$$2x_1 + 1,2x_2 + 1,5x_3 + 0,8x_4 \geq 300$$
$$x_2 \geq 200$$
$$x_3 \geq 120$$
$$x_1, x_2, x_3, x_4 \geq 0$$