

Learning Sentential Paraphrases from Bilingual Parallel Corpora for Text-to-Text Generation

Juri Ganitkevitch, Chris Callison-Burch, Courtney Napoles, and Benjamin Van Durme

What are Paraphrases...

Differing textual expressions of the same meaning:

the king's speech | His Majesty's address

X₁ talks to X₂ | X₁ converses with X₂

NN devoured NP | NP was eaten by NN

...good for?

Anything that deals with text and meaning, i.e. automatic...

...summarization, translation, question answering, compression, simplification, natural language generation, entailment recognition, etc.

Data-Driven Paraphrase Extraction

Where do paraphrases come from? Data.

Approaches group nicely by type of text corpora they rely on.

Types of Corpora

Monolingual parallel:

English – English

Monolingual comparable:

English ~ English

Plain monolingual:

English

Bilingual parallel:

English – French

What a scene! Seized by the tentacle and glued to its suckers, the unfortunate man was swinging in the air at the mercy of this enormous appendage. He gasped, he choked, he yelled: "Help! Help!" I'll hear his harrowing plea the rest of my life!

The poor fellow was done for.

What a scene! The unhappy man, seized by the tentacle and fixed to its suckers, was balanced in the air at the caprice of this enormous trunk. He rattled in his throat, he was stifled, he cried, "Help! help!" That heart-rending cry! I shall hear it all my life.

The unfortunate man was lost.

Monolingual Parallel Data

Barzilay & McKeown '01

Emma cried and he tried to console her.

Emma burst into tears and he tried to comfort her.

Pang, Knight & Marcu '03

Syntactic alignments on parallel reference translations from MT

Monolingual Parallel Data

Drawbacks:

Corpora are scarce and small

Amount and coverage of paraphrases extracted are often lacking

A staggering 5 million Americans have been victims of identity theft in the last five years, according to a federal trade commission survey out this week.

In the last year alone, 1 million people have had their identity purloined.

At a press conference in the Reagan Presidential Library, the popular rotund governor from the great state of New Jersey disappointed the Republican base saying he won't run.

Many Republicans' hearts were broken by Chris Christie reiterating his refusal

Last night, the Garden State governor stated once again that he will not seek the to run for presidency. presidential nomination.

Monolingual Comparable Data

Dolan, Quirk & Brockett '04

Identify near-parallel sentence pairs using an edit distance metric

Resulting sentence pairs are often too similar

Monolingual Comparable Data

Drawbacks:

Data becomes noisy

Rich paraphrases are hard to extract

Depending on the method, may learn only near-trivial paraphrases

Monolingual Data

- E.g. any & all English text
- Vast quantities easily available
- Use distributional characteristics to identify paraphrases

Monolingual Data

Lin & Pantel '01

duty | responsibility

Modified by: additional, administrative, assigned, assumed, collective, congressional, constitutional

Object of: accept, articulate, assert, assign, assume, attend to, avoid, become, breach

Bhagat & Ravichandran '08

Scale to large corpora using LSH

Monolingual Data

Drawbacks:

Lacks alignment information, relies on distributional similarity measures

No sentential paraphrases

Prone to cousin & antonym errors:

boy | girl rise | fall

Bilingual Parallel Data

- E.g. sentence-aligned corpora in English and any foreign language (Hansards, EuroParl, etc.)
- Available in large quantities
- But: how do they yield paraphrases?

Pivoting

Pivoting

$$p(e_2|e_1) = \sum_{f} p(e_2, f|e_1)$$

$$= \sum_{f} p(e_2|f, e_1) p(f|e_1)$$

$$\approx \sum_{f} p(e_2|f) p(f|e_1)$$

Pivot-Based Paraphrase Extraction

- Solid body of research in this direction
- Builds on experience in MT
- But: unclear whether extraction of syntactically informed paraphrases possible

cup

Tasse

Callison-Burch & Bannard '05

the king's speech | die Rede des Königs

 $X \rightarrow X_1$ talks to $X_2 \mid X_1$ redet mit X_2

Madnani et al. '07

VP → NN devoured NP

NN aß NP

cup

Tasse

Callison-Burch & Bannard '05

the king's speech | die Rede des Königs

 $X \rightarrow X_1$ talks to $X_2 \mid X_1$ redet mit X_2

Madnani et al. '07

VP → NN devoured NP

NN aß NP

cup

Tasse

Callison-Burch & Bannard '05

the king's speech | die Rede des Königs

 $X \rightarrow X_1$ talks to $X_2 \mid X_1$ redet mit X_2

Madnani et al. '07

VP → NN devoured NP |

NN aß NP

Tasse cup

Callison-Burch & Bannard '05

the king's speech | die Rede des Königs

 $X \rightarrow X_1$ talks to $X_2 \mid X_1$ redet mit X_2

Madnani et al. '07

VP → NN devoured NP |

NN aß NP

New!

澳是与北韩有邦的少国之 洲 交 数家一

Australia

is

one

of

the

few

countries

that

have

diplomatic

relations

with

North

Korea

Korea

North

with

relations

Friday, February 3, 12

的少数国家

the few countries that

的少数国家

the few countries that

的少数国家

the few countries that

有邦交

have diplomatic relations

Possessive Pivoting

 $NP \rightarrow NP 's NN | le NN de NP$

 $NP \rightarrow the NN of NP \mid le NN de NP$

Possessive Pivoting

NP → NP 's NN | 1e NN de NP

 $NP \rightarrow the NN of NP \mid le NN de NP$

Possessive Pivoting

NP → NP 's NN | le NN de NP

NP → the NN of NP | le NN de NP

 $NP \rightarrow NP 's NN | le NN de NP$ $NP \rightarrow the NN of NP | le NN de NP$

 $NP \rightarrow NP 's NN | le NN de NP$ $NP \rightarrow the NN of NP | le NN de NP$

combine to

combine to

Our Machines!

Thrax

Toolkit for distributed extraction of translation and paraphrase grammars

Joshua

SCFG-based decoder for translation and paraphrasing

Goal: Expressiveness

Generalization vs. memorization

Capture paraphrastic transformations

Prefer general patterns over memorized phrases

Possessive rule	NP →	the NN of the NNP	the NNP's NN
Possessive rule	$NP \rightarrow$	the NNS ₁ made by the NNS ₂	the NNS ₂ 's NNS ₁
Dative shift	$VP \rightarrow$	give NN to NP	give NP the NN
	$VP \rightarrow$	provide NP ₁ to NP ₂	give NP ₂ NP ₁
Adv./adj. phrase move	S/VP →	ADVP they VBP	they VBP ADVP
	$S \rightarrow$	it is ADJP VP	VP is ADJP
Verb particle shift	$VP \rightarrow$	VB NP up	VB up NP
Reduced relative clause	SBAR/S →	although PRP VBP that	although PRP VBP
	ADJP →	very JJ that S	JJ S
Partitive constructions	$NP \rightarrow$	CD of the NN	CD NN
	$NP \rightarrow$	all DT\NP	all of the DT\NP
Topicalization	$S \rightarrow$	NP, VP.	VP, NP.
Passivization	SBAR →	that NP had VBN	which was VBN by NP
Light verbs	$VP \rightarrow$	take action ADVP	to act ADVP
	$VP \rightarrow$	to take a decision PP	to decide PP

Limitations

The SCFG formalism's power is limited:

Verb morphology is hard to generalize

Morphosyntactic paraphrases have to be memorized

Asynchronous effects cannot be generally represented

Text-to-Text Applications

Claim:

Paraphrasing is suitable to tackle sentential text-to-text tasks

However:

Naive application will fail, adaptation is necessary

Task Adaptation

SMT	T2T	
Naive application of the MT machinery to the task	Task-specific adaptations	

- Development data
- Objective function
- Feature set
- Grammar augmentations

Reduce length of a sentence (#tokens) while retaining the meaning

Compression ratio: $\varphi = \frac{length_{compression}}{length_{original}}$

Reduce length of a sentence (#tokens) while retaining the meaning

Compression ratio:
$$\varphi = \frac{length_{compression}}{length_{original}}$$

Paraphrasing as a task and problem is of paramount importance to a multitude of applications in the field of NLP.

Reduce length of a sentence (#tokens) while retaining the meaning

Compression ratio: $\varphi = \frac{length_{compression}}{length_{original}}$

Paraphrasing as a task and problem is of paramount importance to a multitude of applications in the field of NLP.

Reduce length of a sentence (#tokens) while retaining the meaning

Compression ratio: $\varphi = \frac{length_{compression}}{length_{original}}$

Paraphrasing as a task and problem is of paramount importance to a multitude of applications in the field of NLP.

Development Data

SMT	T2T
English reference translations that are used to calculate BLEU for SMT.	Selected pairs of reference translations that significantly differ in length.

and he said that the project will cover the needs of the region in the long term.

17

he said the project includes all the district's long-term needs.

10

Objective Function

SMT	T2T
Optimized for English-to- English BLEU score. Causes self-paraphrasing.	Add a "verbosity penalty" to BLEU that allows a target compression ratio to be set.

compression length

Features

SMT	T2T
Phrasal and lexical probabilities quantify general paraphrase quality.	Features counting number of source and target words and the difference between them.

VP → NP was eaten by NN | NN ate NP

$$p(e_1|e_2) = 0.1$$
 $c_{e_1} = 3$ $c_{e_2} = 1$ $c_{diff} = -2$

Augmentations

SMT	T2T
It is not typical for additional task-specific rules to be added in the standard SMT pipeline.	Augment the grammar with deletion rules for specific POS (JJ, RB, DT) allowing for shorter compressions.

 $JJ \rightarrow superfluous \mid \epsilon$

 $RB \rightarrow redundantly \mid \epsilon$

DT \rightarrow the | ϵ

Comparing Compressions Is Tricky

Higher compression ratios are strongly correlated with better scores

Fair system comparison requires matching up compression ratios

Evaluation

- Human evaluation on MTurk
- Question: "How well do these sentences retain the meaning of the original."
- Judging grammaticality and meaning on a 1-5 scale

Baseline Systems

ILP, Clarke & Lapata '08

Uses a set of constraint features to find best deletions via ILP

T3, Cohn & Lapata '07

Uses an STSG to delete constituents

Results

Results

Lexical paraphrase:

JJ → offensive | insulting

Reduced relative clause:

 $NP \rightarrow NP$ that $VP \mid NP VP$

Pred. adjective copula deletion:

 $VP \rightarrow are JJ to NP \mid JJ NP$

Partitive construction:

 $NP \rightarrow CD$ of the NNS | CD NNS


```
JJ \rightarrow beleidigend | offensive VP \rightarrow sind JJ für NP | are JJ to NP JJ \rightarrow beleidigend | insulting VP \rightarrow sind JJ für NP | JJ NP NP \rightarrow NP die VP | NP VP NP \rightarrow CD der NNS | CD of the NNS NP \rightarrow NP die VP | NP that VP NP \rightarrow CD der NNS | CD NNS
```

Four Pillars

Extraction - extract paraphrases from data

Representation - learn compact and rich paraphrase grammars

Recognition - detect semantic identity and entailment

Generation - use paraphrases to generate text

This Work

Extraction & Representation

Extended large-scale paraphrase acquisition from bitexts to syntactic paraphrases

Generation

Introduced a straightforward and effective adaptation framework

Ongoing Work

Extraction & Generation

Include distributional similarity features in decoding process:

Allows for scoring across phrase boundaries

Contextualization in rule applications

Thank you.

Future Work - Extraction

Combine alignments and distributional similarity in a belief-propagation approach

Future Work - Representation

Move towards indirect "semantic" grammars and a two-stage decoding process

Future Work - Recognition

Cast testing for partial semantic overlap as a parse intersection problem

Future Work - Generation

Document-level parsing and incremental generation

