## Aula prática 6 Imagens e SVD

## Lucas Emanuel Resck Domingues

20 de Junho de 2019

1. No ambiente Scilab, para exibir as imagens  $img13\_Ema.png$  e marinha.png, foram executados os comandos  $imshow(imread("img13\_Ema.png"))$  e imshow(imread("marinha.png")). A imagem é lida pelo Scilab e automaticamente é exibida na tela. Estes são os resultados:





Figura 1: Exibição da imagem img13 Ema.png.



Figura 2: Exibição da imagem marinha.png.

2. A função compression foi implementada em Scilab e está no arquivo  $Image\ compression\ function.sce.$  Esta recebe uma matriz A correspondente à imagem em preto e branco e um valor p relativo à fração de valores singulares que vamos utilizar na compressão. Vamos testá-la para as imagens com alguns valores diferentes de p.

A imagem  $img13\_Ema.png$  original está à esquerda e a comprimida, à direita:





Figura 3: Comparação para p=0,1





Figura 4: Comparação para p=0,15





Figura 5: Comparação para p=0,2





Figura 6: Comparação para p=0,25

Observe que, para essa imagem, p=0,25 já é suficiente para que a imagem esteja relativamente boa, comparada à original. Não é instantâneo olhar para as duas imagens e apontar aquela original.

Repetimos esse processo para a imagem *marinha.png* (porém, agora, a original fica em cima e a comprimida, embaixo):



Figura 7: Comparação para  $p=0,005\,$ 



Figura 8: Comparação para  $p=0,015\,$ 



Figura 9: Comparação para  $p=0,025\,$ 



Figura 10: Comparação para p=0,035

Já para essa imagem, p = 0,035 é suficiente para que a imagem fique comparável à original.

Uma compressão de imagens por SVD é eficiente, pois nós podemos salvar as matrizes da decomposição SVD muito reduzidas ao invés da imagem original. Por exemplo, ao invés de guardar uma matriz  $3006 \times 5344$  que representa a imagem marinha.png, podemos guardar as matrizes da decomposição SVD comprimidas com p=0,035, sendo U de ordem  $3006 \times 105$ ,  $\Sigma$  de ordem  $105 \times 105$  e V,  $5344 \times 105$ . Reduzimos o armazenamento de mais de 16 milhões de elementos para menos de um milhão, sem perder muita qualidade!