"Automatismo de Veiculo Transportador de Carga" -Relatório-

Ricardo Gonçalves - a22005012

João Lameiras - a22002069

Miguel Carreta - a21901101

Arquitetura Avançada de Computadores | LEI | 06/01/2022

Neste documento encontra-se a descrição do problema, abordagem utilizada e raciocinio para o desenvolvimento de uma solução para o mesmo.

Este **projeto prático** foi realizado no âmbito da cadeira de **Arquitetura Avançada de Computadores** da Universidade Lusófona de Humanidades e Tecnologias.

Descrição do Problema

O problema em questão trata-se do transporte de mercadorias por um automovél. Foram identificados pelo grupo que o problema em questão pode ser subdivido em sub-problemas:

- 1º Distribuição da Carga para evitar mal distrubuição do peso pela Cargo-Bay, de modo a providenciar uma melhor direção e condução
- 2º Controlo da temperatura na Cargo-Bay, para o transporte de mercadorias perecíveis
- 3º Segurança do veiculo
- 4º Conforto do condutor

Com estes problemas em cima da mesa o grupo chegou ao consenso que a solução em questão devia apenas auxiliar o condutor, não tirando qualquer controlo ao próprio, e que iria apenas auxiliar o mesmo com informação facultativa

Metodologia

Funcionamento

O nosso automatismo vai ser auxiliado por sensores e outros componentes eletrónicos para analisar e transmitir ao utilizador informação acerca do estado veiculo de modo a tomar a melhor decisão.

A execução do automatismo será imediata e irá começar por analisar o modo que o utilizador selecionou.

O sistema terá um switch para escolher entre os varios modos:

Modo Temperatura: Sensores de temperatura indicarão a temperatura dentro do habitáculo e da cargo-bay

Modo Distribuição de Carga: Sensores de Força indicarão se a cargo-bay está lopsided devido a carga mal distribuida de modo a melhorar a direção e condução. Assim como o peso total a transportar

Modo Marcha: Sensores de chuva irão ativar limpa-para-brisas e sensores de luminosidade ativarão faróis de marcha do veículo, e será contabilizado o tempo de marcha.

Modo Sensor de Colisão: Sensores independentes para cada vértice do veículo que indicarão a proximidade de objetos atrávez de leds com indicadores de intensidade. Ativação de uma sirene e luzes de transito perigoso.

Abordagem

Comunicação entre Arduínos e Seleção dos Modos:

Devido à complexidade do problema foi necessário utilizar dois Arduínos e como tal o grupo decidiu utilizar uma relação semi Master-Slave, em que o Master é responsável pela comunicação das leituras do meio ambiente e o Slave responsável por expor no LCD a interpretação dos dados. Esta transmissão de dados é feita por um sistema de requests do Slave. Mais elaboradamente ambos os Arduínos sabem qual o modo que o utilizador escolheu por um shared switch (1) deste modo o Master fica ready para receber um request desse modo (2), o request é feito pelo Slave (3), de acordo com o request o Master faz a leitura do componente pretendido (4) e envia para o Slave. Mesmo que o Master já tenha a disponibilizado a informação do request, o Slave fica a espera uma duração maior do que o tempo que demora o Master demora a transmitir só depois dessa duração é que a informação é "consumida" (5) pelo Slave, esta abordagem otimiza problemas de sincronização.


```
//COLLISION
(2)
        if(digitalRead(4) != 1){
         else if(digitalRead(10) != HIGH && digitalRead(9) == HIGH && digitalRead(8) == HIGH && digitalRead(11) == HIGH){
(3)
         //COLLISION
(4)
         if(digitalRead(4) != 1){
           char op = Serial.read();
           if(op == 'a'){
              readDist(6);
         //COLLISION
(5)
         else if(digitalRead(10) != HIGH && digitalRead(9) == HIGH && digitalRead(8) == HIGH && digitalRead(11) == HIGH){
          Serial.write('a');
delay(100);
          control_collision(6);
```

(Exemplo: Vamos considerar que está ativado o modo de Collision. Master fica ready e sabe que os requests que vai receber são desse modo > Slave faz um request 'a' > Master recebe o request 'a' e faz a leitura do componente a que corresponde esse request nesse modo e envia para o Slave > Slave fica a espera mesmo que o Master já tenha enviado a informação > Slave consome a Informação e utiliza-a)

Distribuição de Carga:

Foi criado um modo que de acordo com a leitura dos sensores de força enviado pelo Master o Slave faz uma diferença entre os valores recebidos na "rotina anterior" e exibe no LCD. De acordo com os dados o Slave expõe no LCD qual lado está mais pesado e por que quantidade, assim como o total de carga a ser transportado no momento

Controlo de temperatura:

Foi criado um modo um modo que de acordo com os dados lidos pelos sensores de temperatura e enviados pelo Master para o Slave, este exibe no LCD a temperatura correspondente à Cargo-Bay e o Habitáculo.

Segurança do veiculo:

Foi criado um modo que de acordo com os dados lidos pelos sensores de distancia e enviados pelo Master para o Slave, este exibe no LCD a distancia de colisão independente de cada vertice do veiculo. O Master disponibliza a distancia e o Slave faz um desenho no LCD com assistencia

de vetores para facilitar a escrita no LCD atrávez de escrita de trás para a frente, para não ficarem residos no LCD guarda-se os valores da "rotina" anterior. O LCD expoe o quão perto está o obstaculo de forma indepente à base de niveis, " " corresponde a não existir obstaculo, "X" existe um obstaculo longe, "XX" existe um obstaculo mais perto que o nível anterior e assim até "XXXXXX" (5 niveis).

(Exemplo: Vertice cima-esquerda (nivel 5); Vertice cima-direita (nivel 4);

Vertice baixo-esquerda (nivel 3) Vertice baixo-direita (nivel 0))

Conforto do Condutor:

Foi criado um modo em caso esteja de noite são ativadas luzes de acordo com a luminosidade lida por um Photo Resistor. Tambem caso esteja a chover são ativados limpa-para-brisas de acordo com um sensor de humidade (foi utilizado um Potentiometer por não existir sensores de humidade no Tinkercad), desto modo caso a humidade aumente a frequencia com que os limpa-para-brisas tambem aumenta. Os limpa-para-brisas são ativados por um único servo motor, o movimento é de 180* para esquerda e passado um tempo 180* para a direita sem que o para-brisas-embate no capô assegurado por calculos de rotações. Por fim enquando este modo está ativado é exibido no LCD quantas "horas" de trabalho é que o veiculo já executou ao longo da sua "vida"

Especificação Técnica

O projeto utiliza vários componentes, alguns deles já falados e simulados nas aulas. No entanto, também serão utilizados componentes que, apesar de não nos serem familiares, são cruciais para o desenvolvimento deste projeto. A seguir encontra-se a listagem destes componentes, assim como uma breve descrição da sua função.

Componente	Função	
Arduino Uno	Microcontrolador usado no decorrer da disciplina	
Display LCD	Mostrar mensagens ao utilizador, como alarme, pin, estado do portão, mensagem boas vindas, etc;	
LEDs	Acendem dada uma determinada circunstância	
Sensor de Força	Utilizado para indicar se a carga está lopsided, assim como o peso total a transportar	
Servo motor	Motor utilizado para operar os limpa-para-brisas	
Sensor Proximidade	Utilizado para detetar presença de obstaculos e prevenir colisões	
Slide Switch	Utilizado para o utilizador introduzir o modo pretendido	
Switch DIP6	Utilizado para a seleção do modo que o utilizador deseja observar	

		Light Sensor
Photo Resistor	Utilizado na deteção de luz solar de modo a controlar faróis noturnos	OPEN-STRAT
Potentiometer	Utilizado para simular um sensor de humidade	

Conhecimentos Aplicados

- Resolução de Problemas com uso de Hardware
- Utilização de vários Sensores
- Comunicação entre Arduíno
- Ponderação de resoluções menos time-consuming
- Desenvolvimento de Circuitos
- Utilização de Memoria de Arduín

Resultados

• Resultados Esperados

No final de execução o automatismo deve:

Disponiblizar ao utilizador informação relevante de modo a tomar a melhor decisão possível através de uma interface gráfica, sem que ocorra qualquer impedimento por parte da máquina. Assim como assistir o utilizador caso o mesmo queira.

Link do Tinkercad

https://www.tinkercad.com/things/f9387wr6d2B