

Tema 05 EJERCICIO 02

LÓGICA DIGITAL Y MICROPROGRAMABLE

Salus Nievas

1

EJERCICIO 02

Implementar mediante multiplexores (74151) y puertas lógicas, un circuito para palabras de 4 bits codificadas en BCD que genere la siguiente función:

$$F = \sum_{4} (2,4,6,8,10,15)$$

- 1.- Utilizando dos multiplexores 74151
- 2. Utilizando un único multiplexor

1.- Utilizando dos multiplexores

2.- Utilizando un único multiplexor

$$F = \sum_{4} (2,4,6,8,10,15)$$

Método: unimos las entrada DCB a las Entradas CBA del multiplexor, y lo habilitamos.

N°	DCBA	H
0	0000	0
1	0001	0
2	0010	1
3	0011	0
4	0100	1
5	0101	0
6	0110	1
7	0111	0
8	1000	1
9	1001	0
10	1010	1
11	1011	0
12	1100	0
13	1101	0
14	1110	0
15	1111	1

Para las combinaciones de entrada: 0000 y 001, que poseen las entradas DCB iguales (000), analizamos cual es la relación de F con la variable A, o si es siempre 0 ó 1. En este caso F es siempre cero, por lo que llevamos esta entrada a masa (0 lógico).

N°	DCBA	F
0	0000	0
1	0001	0
2	0010	1
3	0011	0
4	0100	1
5	0101	0
6	0110	1
7	0111	0
8	1000	1
9	1001	0
10	1010	1
11	1011	0
12	1100	0
13	1101	0
14	1110	0
15	1111	1

Repetimos el proceso para las dos siguientes combinaciones (0010 y 0011), en este caso observamos que F es A negada, lo implementamos en el circuito:

N°	DCBA	F
0	0000	0
1	0001	0
2	0010	1
3	0011	0
4	0100	1
5	0101	0
6	0110	1
7	0111	0
8	1000	1
9	1001	0
10	1010	1
11	1011	0
12	1100	0
13	1101	0
14	1110	0
15	1111	1

Repetimos el proceso para las dos siguientes combinaciones 0100 y 0101, F es A negada, lo implementamos en el circuito:

N°	DCBA	F
0	0000	0
1	0001	0
2	0010	1
3	0011	0
4	0100	1
5	0101	0
6	0110	1
7	0111	0
8	1000	1
9	1001	0
10	1010	1
11	1011	0
12	1100	0
13	1101	0
14	1110	0
15	1111	1

Repetimos el proceso para las dos siguientes combinaciones 0110 y 0111, F es A negada, lo implementamos en el circuito:

N° DCBA F 0 0000 0 1 0001 0 2 0010 1 3 0011 0 4 0100 1 5 0101 0 6 0110 1 7 0111 0		
1 0001 0 2 0010 1 3 0011 0 4 0100 1 5 0101 0 6 0110 1 7 0111 0	N°	F
2 0010 1 3 0011 0 4 0100 1 5 0101 0 6 0110 1 7 0111 0	0	0
3 0011 0 4 0100 1 5 0101 0 6 0110 1 7 0111 0	1	0
4 0100 1 5 0101 0 6 0110 1 7 0111 0	2	1
5 0101 0 6 0110 1 7 0111 0	3	0
6 0110 1 7 0111 0	4	1
7 0111 0	5	0
	6	1
	7	0
8 1000 1	8	1
9 1001 0	9	0
10 1010 1	10	1
11 1011 0	11	0
12 1100 0	12	0
13 1101 0	13	0
14 1110 0	14	0
15 1111 1	15	1
TO TTTT T	TO	

En las combinaciones 8, 9 y 10,11 F sigue siendo A negada, por lo que realizamos las conexiones correspondientes:

	N°	DCBA	F
	0	0000	0
	1	0001	0
	2	0010	1
	3	0011	0
	4	0100	1
	5	0101	0
	6	0110	1
	7	0111	0
I	8	1000	1
	9	1001	0
Ī	10	1010	1
	11	1011	0
Ī	12	1100	0
	13	1101	0
	14	1110	0
	15	1111	1

En las combinaciones de entrada 1100 y 1101 observamos que F siempre vale 0 por lo que llevamos la entrada correspondiente a masa

N°	DCBA	F
0	0000	0
1	0001	0
2	0010	1
3	0011	0
4	0100	1
5	0101	0
6	0110	1
7	0111	0
8	1000	1
9	1001	0
10	1010	1
11	1011	0
12	1100	0
13	1101	0
14	1110	0
15	1111	1

Por último en las combinaciones 1110 y 1111 observamos que F siempre vale lo mismo que la variable A, implementamos el circuito:

N°	DCBA	F
0	0000	0
1	0001	0
2	0010	1
3	0011	0
4	0100	1
5	0101	0
6	0110	1
7	0111	0
8	1000	1
9	1001	0
10	1010	1
11	1011	0
12	1100	0
13	1101	0
14	1110	0
15	1111	1

Simulamos el circuito:

