Some Interesting Properties in System of Linear First-order ODE

Yifan Li

November 2023

1 Linear Independence of Solutions

Remark: We say that a set of vector functions $\{X_1, \ldots, X_n\}$ to be linearly dependent on an interval I if

$$\exists c_1,\ldots,c_k \text{ not all zero, } \forall t \in I \ (c_1X_1(t)+\ldots+c_kX_k(t)=0).$$

If a set of vector functions is not linearly dependent on I, then it is said to be linearly independent.

Theorem 1.1. If a set of solution vectors X_1, \ldots, X_n of a homogeneous system of order n is linearly dependent at some $t_0 \in I$, then it is linearly dependent at any point $t \in I$. Also, if it is linearly independent at some $t_0 \in I$ then it is linearly independent at any $t \in I$

Proof. We know that any solution vector can be written as $X_i = e^{tA}X_i(0)$. In fact, e^{tA} is just an invertible matrix, which can be regarded as a bijective linear transformation, which conserves the linear independence.

There is another way to think about it. If X_1, \ldots, X_n are linearly dependent at $t_0 \in I$, then

$$\exists c_1, \dots, c_n \ (c_1 X_1(t_0) + c_2 X_2(t_0) + \dots + c_n X_n(t_0) = 0)$$

Let $X(t) = c_1 X_1(t) + \ldots + c_n X_n(t)$, both X(t) and 0 are solutions to X' = AX satisfying the initial value condition $X(t_0) = 0$. Thus they are equal by the uniqueness of the solution, i.e. $\forall t \in I \ (c_1 X_1(t) + \ldots + c_n X_n(t) = 0)$.

2 Laplace Transform of e^{tA}

Before we introduce the Laplace transform of e^{tA} , we need to know what is e^{tA} . We may define it by a Taylor series.

Definition 2.1.

$$e^{tA} := I + At + \frac{A^2}{2!}t^2 + \frac{A^3}{3!}t^3 + \dots := \sum_{k=0}^{\infty} \frac{t^k}{k!}A^k = \lim_{n \to \infty} \sum_{k=0}^n \frac{t^k}{k!}A^k$$
 (1)

From the definition of the exponential of a matrix, we may find

Theorem 2.1.

$$\frac{de^{tA}}{dt} = Ae^{tA} = e^{tA}A\tag{2}$$

Theorem 2.2.

$$\mathcal{L}\lbrace e^t A \rbrace = (sI - A)^{-1} \tag{3}$$

Proof.

$$\begin{split} \mathcal{L}\{e^{tA}\}(sI-A) &= s\mathcal{L}\{e^{tA}\} - A\} \\ &= s\mathcal{L}\{e^{tA}\} - \mathcal{L}\{Ae^{tA}\} \\ &= s\mathcal{L}\{e^{tA}\} - \mathcal{L}\{(e^{tA})'\} \\ &= s\mathcal{L}\{e^{tA}\} - (s\mathcal{L}\{e^{tA}\} - e^{0\cdot A}) \\ &= I \end{split}$$

Thus
$$\mathcal{L}\lbrace e^{tA}\rbrace = (sI - A)^{-1}$$

3 Fundamental Matrices

For the homogeneous system X' = AX, we can find its general solutions, which can be determined by a fundamental set of solutions for the system.

Definition 3.1. Fundamental Matrix

Let $X_1(t), \ldots, X_n(t)$ be fundamental set of solutions of X' = AX. Then the matrix

$$\Phi(t) = \begin{bmatrix} X_1(t) & X_2(t) & \dots & X_n(t) \end{bmatrix}$$
 (4)

is said to be a **fundamental matrix** for the system X' = AX. In addition, the general solution can be determined by $\Phi(t)$ C where C is a constant vector.

Theorem 3.1. If $\Phi(t)$, $\Psi(t)$ are both fundamental matrices for the same system, then there exists a constant matrix C such that $\Phi(t) = \Psi(t) C$. In particular, $\Phi(t) = e^{tA}\Psi(0)$.

Proof. Let $\Phi(t) = \begin{bmatrix} X_1(t) & \dots & X_n(t) \end{bmatrix}$ and $\Psi(t) = \begin{bmatrix} Y_1(t) & \dots & Y_n(t) \end{bmatrix}$, since $\Psi(t)$ is a fundamental matrix, any solution to the system can be written as a linear combination of $\{X_i(t)\}$, then we have

$$\begin{bmatrix} x_{1,j}(t) \\ x_{2,j}(t) \\ \vdots \\ x_{n,j}(t) \end{bmatrix} = X_j(t) = \sum_{k=1}^n c_{k,j} Y_k(t) = \begin{bmatrix} \sum_{k=1}^n c_{k,j} y_{1,k}(t) \\ \sum_{k=1}^n c_{k,j} y_{2,k}(t) \\ \vdots \\ \sum_{k=1}^n c_{k,j} y_{n,k}(t) \end{bmatrix}$$

The i-th component of $X_j(t)$ is $\sum_{k=1}^n c_{k,j} y_{i,k}(t)$ Thus we may find that

$$\Phi(t) = \left[\sum_{k=1}^{n} y_{i,k}(t) c_{k,j}\right] = \Psi(t) C$$

4 Some Interesting Exercises

Application of Laplace Transform of e^{tA}

Example 4.1. Let $A = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$. Compute e^{tA}

Solution 4.1. We first consider the Laplace transform of e^{tA} .

$$\mathcal{L}\lbrace e^{tA}\rbrace = (sI - A)^{-1} = \begin{bmatrix} s & -1\\ 1 & S \end{bmatrix}^{-1}$$

$$= \frac{1}{s^2 + 1} \begin{bmatrix} s & 1\\ -1 & s \end{bmatrix}$$

$$= \begin{bmatrix} \frac{s}{s^2 + 1} & \frac{1}{s^2 + 1}\\ \frac{-1}{s^2 + 1} & \frac{s}{s^2 + 1} \end{bmatrix}$$

$$= \begin{bmatrix} \mathcal{L}\lbrace \cos t\rbrace & \mathcal{L}\lbrace \sin t\rbrace \\ \mathcal{L}\lbrace -\sin t\rbrace & \mathcal{L}\lbrace \cos t\rbrace \end{bmatrix}$$

$$= \mathcal{L}\lbrace \begin{bmatrix} \cos t & \sin t\\ -\sin t & \cos t \end{bmatrix}\rbrace.$$

Thus

$$e^{tA} = \begin{bmatrix} \cos t & \sin t \\ -\sin t & \cos t \end{bmatrix}$$

Example 4.2. Find the general solution for the system

$$\begin{cases} x_1' = -x_1 \\ x_2' = x_1 - x_2 \end{cases}$$

Solution 4.2. The system above can be written as X' = AX where

$$A = \begin{bmatrix} -1 & 0 \\ 1 & -1 \end{bmatrix}$$

Then

$$\begin{split} \mathcal{L}\{e^{tA}\} &= (sI - A)^{-1} = \begin{bmatrix} s+1 & 0 \\ -1 & s+1 \end{bmatrix}^{-1} \\ &= \frac{1}{(s+1)^2} \begin{bmatrix} s+1 & 0 \\ 1 & s+1 \end{bmatrix} \\ &= \begin{bmatrix} \frac{1}{s+1} & 0 \\ \frac{1}{(s+1)^2} & \frac{1}{s+1} \end{bmatrix} = \mathcal{L}\{ \begin{bmatrix} e^{-t} & 0 \\ te^{-t} & e^{-t} \end{bmatrix} \} \end{split}$$

Thus the fundamental matrix can be written as

$$\Phi(t) = \begin{bmatrix} e^{-t} & 0 \\ te^{-t} & e^{-t}, \end{bmatrix}$$

and the general solution is $X(t) = \Phi(t) C = c_1 \begin{bmatrix} e^{-t} \\ te^{-t} \end{bmatrix} + c_2 \begin{bmatrix} 0 \\ e^{-t} \end{bmatrix}$.

Application of Fundamental Matrices

Example 4.3. Prove that AB = BA implies that $Be^{tA} = e^{tA}B$.

Proof. Let $\Phi = Be^{tA}$ and $\Psi = e^{tA}B$, then we may find that $\Phi' = BAe^{tA} = ABe^{tA} = A\Phi$ and $\Psi' = Ae^{tA}B = A\Psi$. Thus Φ and Ψ are fundamental matrices of X' = Ax. When t = 0 one could find that $\Phi(0) = \Psi(0) = B$, thus $\Phi(t) = \Psi(t)$.

Example 4.4. Prove that $e^{tA} e^{tB} = e^{t(A+B)}$ if AB = BA.

Proof. Let $\Phi(t) = e^{tA} e^{tB}$ and $\Psi(t) = e^{t(A+B)}$. Notice that the $\Psi(t)$ is just a fundamental matrix for the system

$$X' = (A + B)X.$$

For the $\Phi(t)$, we have

$$(e^{tA} e^{tB})' = Ae^{tA} e^{tB} + e^{tA} Be^{tB}$$

= $(A+B)e^{tA} e^{tB}$

Thus it is also a fundamental matrix for X' = (A+B)X. Let t=0, we may find that the $\Phi(0) = \Psi(0) = I$, thus they are the same.