计通学院 2014 级线性代数重点题型总结

刘畅

一、选择			
1. 矩阵 A, B 都是 n 阶方阵,则下	列等式正确的	是()	
$(A) (A+B)^2 = A^2 + 2AB + B^2$	$(B) \parallel A \mid B \mid$	$= A ^n B $	
(C) A + B = A + B	$(D) (2A^{T}B$	$(B^{-1})^{-1} = \frac{1}{2} (B^{-1} A^{-1})^{\mathrm{T}}$	
2. 设四阶方阵 $A = \begin{pmatrix} \alpha & \gamma_2 & \gamma_3 & \gamma_4 \end{pmatrix}$	$), B = (\beta \gamma_2$	γ_3 γ_4),其中 $lpha$, eta , γ	γ ₂ ,γ ₃ ,γ ₄ 均为 4
维列向量,且已知行列式 $ A =4$, $ B =$	= 2 ,则行列式	A+B = ()	
$(A) 6 \qquad \qquad (B) 12$	(<i>C</i>) 36	(D)48	
3. 若 <i>A</i> 是 <i>n</i> 阶方阵, <i>b</i> 是 <i>n</i> 维非零论中 不会 发生的是()	厚向量,且齐 ∥	大方程 Ax = 0 有非零	解,则下列结
$(A) Ax = b \mathbb{Z} $ (B) A	x = b有唯一解		
(C) $Ax = b$ 有无穷多解 (D)	R(A) < n		
4. 设 $\alpha_1, \alpha_2, \cdots, \alpha_m$ 是一 n 维向量组,	$R(\alpha_1,\alpha_2,\cdots,\alpha_n)$	$(\alpha_m) = r < m$,下面说	说法 错误 的是
()			
(A) 向量组 $\alpha_1, \alpha_2, \cdots, \alpha_m$ 线性相关。	5		
(B) 向量组 $\alpha_1, \alpha_2, \cdots, \alpha_m$ 中任意 r 个	个线性无关的向	可量都构成其极大无	关组。
(C) 向量组 $\alpha_1,\alpha_2,\cdots,\alpha_m$ 中任意	意一个向量	都能由其余向量	线性表示。
(D) 向量组 $\alpha_1,\alpha_2,\cdots,\alpha_m$ 与其任一	极大无关组等	价。	
5. 矩阵 A,B,C 都是 n 阶方阵,且	. $ABC = E$ 则下	列等式正确的是()
(A) $BAC = E$, (B) $CAB = E$, (C) ACB	=E , $(D) CBA =$	= <i>E</i>
6. 设 <i>A</i> 为 4 阶方阵,且 <i>A</i> =-2 见	则 $ A A = ($)	
(A) 4, (B) 2 ⁵ ,	(C) –	2^5 , (D) 8	
7 设 <i>4 R</i> 均为 n 阶	オルー ○ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □	5阵 1和 D 的独县 ()

(A)必有一个等于零	(B)都小于n
(C) 一个小于 n , 一个等于 n	(D)都等于n
8. 设 A、B 均为 n 阶矩阵,且 A 可逆,则 7	下列结论正确的是 ()
(A)若 AB≠0,则 B 可逆	(B).若 AB=0,则 B=0
(C) 若 $AB \neq 0$,则 B 不可逆	(D).若 AB=BA,则 B=E
9 、 A、B 均为 n 阶方阵,则必有()成立	
$(A+B)^2 = A^2 + 2AB + B^2$ (B) $(AB)^T = A^T$	$^{T}B^{T}$
(C) $AB = 0$ $\exists B = 0$ (D) $A + AB$	······
10、已知 $\begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} = 2$,则 $\begin{vmatrix} 2a_{11} & 3a_{13} \\ 2a_{21} & 3a_{23} \\ 2a_{31} & 3a_{33} \end{vmatrix}$	$ \begin{vmatrix} -5a_{12} & \frac{1}{2}a_{12} \\ -5a_{22} & \frac{1}{2}a_{22} \\ -5a_{32} & \frac{1}{2}a_{32} \end{vmatrix} = () $
$(A) 6 \qquad (B) -6 \qquad (C) -30$	(D) -10
11、n 维向量组 α_1 , α_2 , α_3 (n>3) 线性无关的 (A) α_1 , α_2 , α_3 中任意两个向量线性无关	充分必要条件是()
(B) α_1 , α_2 , α_3 全是非零向量	
(C) 存在 n 维向量 β , 使得 β , α_1 , α_2 , α_3 结	线性相关
(D) α_1 , α_2 , α_3 中任意一个向量都不能由其	余两个向量线性表示
12 、设 $m \times n$ 矩阵 A 的秩为 r, P 为 m 阶可逆知的秩为()	巨阵,Q为n阶可逆矩阵,则矩阵 PAQ
(A) r (B) $r+1$ (C) m	(D) n
13、n 阶方阵 A 满足 $A^2 - E = 0$, 则()	
(A) $A=E$ (B) $A = -E$ (C) $A = A^{-1}$	(D) $ A =1$

14、设 A、B 为 n 阶可逆阵,则 $(A^{-1}B^{-1})^T =$
(A) $(A^{-1})^T (B^{-1})^T$ (B) $(A^T)^{-1} (B^T)^{-1}$
(C) $(B^T A^T)^{-1}$ (D) $(A^T B^T)^{-1}$
15、设 $X = (1,0,-1)^T$,矩阵 $A = XX^T$,则 $ A^5 - aE =$
(A) a^5 (B) $a^2(32-a)$ (C) $32-a$ (D) $32-a^3$
16、在齐次线性方程组 $A_{m \times n}X = 0$ 中,若 $R(A) < n$,则下列结论正确的是。
(A) 当 $m = n$ 时,A 的 m 个行向量线性相关。 (B) 当 $m < n$ 时,A 的 m 个行向量线性无关。 (C) 当 $m > n$ 时,A 的 m 个行向量线性无关。 (D) 当 $n = m + 1$ 时,A 的 m 个行向量线性相关。
17 、设四阶方阵 A 的秩为 2 ,则其伴随矩阵 A^* 的秩为 ()
(A) 1 (B) 2 (C) 3 (D) 0
18 . 设 A, B 均为 n 阶方阵,则下列等式正确的是 ()
(A) $(A+B)^{-1} = A^{-1} + B^{-1}$ (B) $[(AB)^T]^{-1} = (A^{-1})^T (B^{-1})^T$
(C) $(AB)^m = A^m B^m$ (D) $ A E = A $
19 . 设矩阵 $A \neq k = 1$ 阶子式不为 0 ,且所有 $k + 1$ 阶子式全为 0 ,则 A 的秩
R(A)为()
(A) $k-1$ $\not \equiv k$ (B) k (C) $k-1$ (D) $k+1$
20. 设三阶行列式 $ a_1,a_2,b_1 =\lambda_1$; $ a_1,b_2,a_2 =\lambda_2$,其中 a_1,a_2,b_1,b_2 是三维列向量
则 $ a_1,a_2,2b_1+b_2 =$ ()
(A) $\lambda_1 + \lambda_2$ (B) $\lambda_1 - \lambda_2$ (C) $2\lambda_1 + \lambda_2$ (D) $2\lambda_1 - \lambda_2$
21. 矩阵 A, B 都是 n 阶方阵, $\lambda \in R$ 则下列等式正确的是 ()
(A) $AB = BA$, (B) $(AB)^T = A^T B^T$, (C) $ A^{-1} = \frac{1}{ A }$, (D) $(\lambda A)^{-1} = \lambda A^{-1}$
22. 已知行列式 $\begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} = k$, 则 $\begin{vmatrix} 2a_{11} & a_{12} & 3a_{13} - a_{12} \\ 2a_{21} & a_{22} & 3a_{23} - a_{22} \\ 2a_{31} & a_{32} & 3a_{33} - a_{32} \end{vmatrix} = ($)

9、设矩阵 $A = \begin{pmatrix} a+2 & 2 & 0 \\ 2 & 1/2 & 0 \end{pmatrix}$,若 A 的秩为 1,则 a =______

则 b=____

11、设四元非齐次线性方程组 AX = b 的系数矩阵 A 的秩为 3,已知它的 3 个解向量为 $\beta_1, \beta_2, \beta_3$,且 $\beta_1 = (2,3,4,5,)^T, \beta_1 + \beta_2 = (1,2,3,4,)^T$,则该方程组的通解为

12、当常数 $a = \underline{\underline{g}}$ 时,方程组 $\begin{cases} ax_1 = 0 \\ ax_2 + 5x_3 = 0 \end{cases}$ 有非零解。 $\begin{cases} x_2 - x_3 = 0 \end{cases}$

13、向量组 $\alpha_1 = [1,1,0,0]^T$, $\alpha_2 = [0,1,1,0]^T$, $\alpha_3 = [0,0,1,1]^T$, $\alpha_4 = [1,0,0,1]^T$ 的秩为_____

$$14, \begin{bmatrix} 2 & 3 & 1 \\ 1 & 1 & 0 \\ 4 & 0 & 0 \end{bmatrix}^{T} \begin{bmatrix} 0 & 1 & 1 \\ 1 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix} = \underline{\hspace{1cm}}$$

15. 设
$$A = \begin{pmatrix} 1 & 0 & -1 \\ 2 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}$$
, 则 $A^{-1} =$ ______

16. 设 A 为四阶矩阵,且 A 的秩 R(A) = **3**, $\alpha_1 = (1,2,3,4)^T$, $\alpha_2 = (0,1,2,3)^T$ 是非齐次 线性方程组 Ax = b 的两不同的解向量,则 Ax = 0 的通解 x =______

17. 已知
$$A, B$$
 都是三阶方阵,且 $A = \begin{pmatrix} 1 & 2 & -1 \\ 0 & 1 & 1 \\ 0 & 0 & 2 \end{pmatrix}$, $R(B) = 2$,则 $R(AB) =$ ____

18. 已知
$$A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$$
,则 $A^{-1} =$ ______, $|A^*| =$ _____。

19. 己知
$$\alpha_1 = \begin{pmatrix} 1 \\ 2 \\ 0 \end{pmatrix}$$
, $\alpha_2 = \begin{pmatrix} 1 \\ 0 \\ 2 \end{pmatrix}$, $\diamondsuit A = \alpha_1 \alpha_2^T$, 求 $A^n = \underline{\hspace{1cm}}$.

20. 已知三阶方阵 $A=(a_1,a_2,a_3)$, R(A)=2,且满足 $a_1=a_2-2a_3$, $a_1-a_2-a_3=b$,则 Ax=b 的通解 x=______。

三、解答

1. 计算行列式:
$$D = \begin{vmatrix} 1 & 0 & 0 & a \\ -1 & 1 & 0 & b \\ 0 & -1 & 1 & c \\ 0 & 0 & -1 & d \end{vmatrix}$$

2. 已知
$$A = \begin{pmatrix} 1 & -1 & 0 \\ 0 & 1 & -1 \\ -1 & 0 & 2 \end{pmatrix}$$
, $B = \begin{pmatrix} 1 & 2 \\ -1 & 0 \\ 1 & 1 \end{pmatrix}$, 且 $AX = B$, 求 X .

$$3$$
. 已知 $\alpha_1 = \begin{pmatrix} 1 \\ -1 \\ 2 \\ 3 \end{pmatrix}$, $\alpha_2 = \begin{pmatrix} 0 \\ 3 \\ 1 \\ 2 \end{pmatrix}$, $\alpha_3 = \begin{pmatrix} 3 \\ 0 \\ 7 \\ 11 \end{pmatrix}$ $\alpha_4 = \begin{pmatrix} 2 \\ 1 \\ 5 \\ 8 \end{pmatrix}$

求(1)向量组 $\alpha_1,\alpha_2,\alpha_3,\alpha_4$ 的秩(2)向量组 $\alpha_1,\alpha_2,\alpha_3,\alpha_4$ 的一最大无关组,

(3) 并把其余的向量用此最大无关组线性表示。

4. 已知方程组
$$\begin{cases} 2x_1 + 4x_2 = 3\\ 2x_1 + 3x_2 + ax_3 = 2\\ ax_2 - 9x_3 = 3 \end{cases}$$

- (1) 问 a 分别为何值时,方程有唯一解,无解,无穷多解?
- (2) 当方程组有无穷解时,求其通解。

5. 计算行列式:
$$D = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 2 & 3 & 4 & 1 \\ 3 & 4 & 1 & 2 \\ 4 & 1 & 2 & 3 \end{bmatrix}$$

6. 已知
$$A = \begin{pmatrix} 1 & 0 & 1 \\ 1 & -1 & 0 \\ 0 & 1 & 2 \end{pmatrix}$$
, 且 $A^2 - AB = E$, 求矩阵 B .

7. 已知向量组
$$\alpha_1 = \begin{pmatrix} 1 \\ 2 \\ 3 \\ 4 \end{pmatrix}, \alpha_2 = \begin{pmatrix} 2 \\ 3 \\ 4 \\ 5 \end{pmatrix}, \alpha_3 = \begin{pmatrix} 3 \\ 4 \\ 5 \\ 6 \end{pmatrix}, \alpha_4 = \begin{pmatrix} 4 \\ 5 \\ 6 \\ 7 \end{pmatrix}$$
,求该向量组的秩和一个极大

线性无关组,并把其余向量用此极大无关组线性表示。

8. 求非齐次线性方程组
$$\begin{cases} x_1 + x_2 - 3x_3 - x_4 = 1 \\ 3x_1 - x_2 - 3x_3 + 4x_4 = 4 \end{cases}$$
的通解.
$$x_1 + 5x_2 - 9x_3 - 8x_4 = 0$$

9. 计算四阶行列式 D=
$$\begin{vmatrix} 1 & -1 & 1 & x-1 \\ 1 & -1 & x+1 & -1 \\ 1 & x-1 & 1 & -1 \\ x+1 & -1 & 1 & -1 \end{vmatrix}$$

10. 若
$$A = \begin{pmatrix} 1 & 0 & 0 \\ 1 & -1 & 0 \\ 1 & 2 & 1 \end{pmatrix}, B = \begin{pmatrix} 1 & 0 \\ 4 & 3 \\ -1 & 2 \end{pmatrix}, 且 AX = 2X + B, 求矩阵 X$$

11. 设向量组
$$\alpha_1 = \begin{pmatrix} 1 \\ 4 \\ 3 \end{pmatrix}$$
, $\alpha_2 = \begin{pmatrix} 2 \\ k \\ -1 \end{pmatrix}$, $\alpha_3 = \begin{pmatrix} 3 \\ 1 \\ 2 \end{pmatrix}$ 线性相关,

求常数 k; 并找出一组极大无关组以及用该极大无关组表示其余的向量。

有惟一解;(3)有无穷多解,并求出此时方程组的通解.

(1)、求 A^{-1} ; (2)、已知AX = B, 求 X

15. 给定向量组
$$\alpha_1 = (1,1,1,1)^T$$
, $\alpha_2 = (1,-1,1,-1)^T$, $\alpha_3 = (2,1,2,1)^T$

, $\alpha_4 = (1,-1,-1,1)^T$,求 $\alpha_1,\alpha_2,\alpha_3,\alpha_4$ 的一个极大无关组,并求该向量组的秩

16. 设线性方程组
$$\begin{cases} x_1 + x_2 - x_3 = 1 \\ 2x_1 + 3x_2 + \lambda x_3 = 3, \\ x_1 + \lambda x_2 + 3x_3 = 2 \end{cases}$$
 当 λ 等于何值时,方程组(1) 无解; (2) 有

惟一解;(3)有无穷多解,并求出此时方程组的通解.

17.计算 4 阶行列式
$$D = \begin{vmatrix} 1+a & 2 & 3 & 4 \\ 1 & 2+a & 3 & 4 \\ 1 & 2 & 3+a & 4 \\ 1 & 2 & 3 & 4+a \end{vmatrix}$$

18.设
$$A = \begin{pmatrix} 1 & -1 & 0 \\ 0 & 1 & -1 \\ -1 & 0 & 2 \end{pmatrix}$$
,且 $AX = 2X + A$,求 X 。

19. 已知
$$\alpha_1^T = (1,2,1,1)$$
 , $\alpha_2^T = (0,1,2,-1)$, $\alpha_3^T = (0,1,1,0)$, $\alpha_4^T = (1,0,1,-1)$, 求向量组 $\alpha_1,\alpha_2,\alpha_3,\alpha_4$ 的最大无关组,并把其余的向量用最大无关组线性表示。

20. 已知方程组
$$\begin{cases} -x_1 - 4x_2 + x_3 = 1 \\ x_1 + 3x_2 + (a+1)x_3 = 0 \\ ax_2 - 3x_3 = 3 \end{cases}$$

- (1) 问 a 分别为何值时,方程有唯一解,无解,无穷多解?
- (2) 当方程组有无穷解时,求其通解。

21. 已知向量组
$$\alpha_1, \alpha_2, \alpha_3$$
线性无关, $\beta_1 = \alpha_2 + \alpha_3$, $\beta_2 = \alpha_1 + \alpha_3$, $\beta_3 = \alpha_1 + \alpha_2 - \alpha_3$,证明: $\beta_1, \beta_2, \beta_3$ 线性无关。

22. 计算行列式:
$$D = \begin{vmatrix} a+1 & b & c & d \\ a & b+1 & c & d \\ a & b & c+1 & d \\ a & b & c & d+1 \end{vmatrix}$$

23. 已知
$$A = \begin{pmatrix} 1 & -1 & 0 \\ 0 & 1 & -1 \\ -1 & 0 & 4 \end{pmatrix}$$
, $B = \begin{pmatrix} 1 & 2 \\ -1 & 0 \\ 1 & 1 \end{pmatrix}$, 且 $AX = 2X + B$, 求 X 。

24. 已知
$$\alpha_1 = \begin{pmatrix} 1 \\ 2 \\ 1 \\ 4 \end{pmatrix}$$
, $\alpha_2 = \begin{pmatrix} 1 \\ 3 \\ 0 \\ 5 \end{pmatrix}$, $\alpha_3 = \begin{pmatrix} 1 \\ 1 \\ 2 \\ 3 \end{pmatrix}$, $\alpha_4 = \begin{pmatrix} 1 \\ -3 \\ 6 \\ -1 \end{pmatrix}$, 求向量组

 $\alpha_1,\alpha_2,\alpha_3,\alpha_4$ 的最大无关组,并把其余的向量用最大无关组线性表示。

25. 已知线性方程组
$$\begin{cases} x_1 + 2x_2 + x_3 = 1\\ 2x_1 + 3x_2 + (a+2)x_3 = 3\\ x_1 + ax_2 - 2x_3 = 0 \end{cases}$$

- (1) 问: 当 a 分别为何值时,方程组有唯一解,无解,无穷多解?
- (2) 当方程组有无穷多解时,求其通解。
- 26. 已知向量组 a_1,a_2,a_3 线性无关,且 $b_1=a_1+a_2+a_3$, $b_2=a_2+a_3$, $b_3=a_3$,证明:向量组 b_1,b_2,b_3 线性无关。

答案

一、选择

1. B 2. D 3.B 4.C 5. B 6. C 7.B 8. B

9、D 10、B 11、D 12、A 13、C 14、D 15、B 16、A 17、D

18. B 19. A 20. D 21. C 22. B 23. C 24. D

二、填空

1. $\begin{pmatrix} 13 & 6 \\ 12 & 5 \end{pmatrix}$ 2. <u>2</u> 3. <u> $k_1\xi_1 + k_2\xi_2$ </u>, (k_1, k_2 不全为零的任意实数) <u>其中</u>

 ξ_1 , ξ_2 可取向量 $\begin{pmatrix} -1\\1\\1\\1 \end{pmatrix}$, $\begin{pmatrix} 0\\1\\-2\\-2 \end{pmatrix}$ 中的任意两个

4. $\underline{\mathbf{6}}$ **5.** $\xi = (-1,-1,3,-2)^{\mathrm{T}}$ **6.** $\underline{\mathbf{8}}$ **7.** $(2,-3,1)^{\mathrm{T}}$

8、-36 9、6 10、-1 11、 $X = k_1(2,3,4,5)^T + k_2(3,4,5,6)^T$ (答案不唯一)

16. $x = k \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix}, k \in \mathbb{R}$ 17. R(AB) = 2 18. $\begin{pmatrix} 4 & -2 \\ -3 & 1 \end{pmatrix}$; -2 19. $\begin{pmatrix} 1 & 0 & 2 \\ 2 & 0 & 4 \\ 0 & 0 & 0 \end{pmatrix}$

 $20. \ k \begin{pmatrix} 1 \\ -1 \\ 2 \end{pmatrix} + \begin{pmatrix} 1 \\ -1 \\ -1 \end{pmatrix}, k \in \mathbb{R}$

三、解答

 $\mathbf{1.} \ D = \begin{vmatrix} 1 & 0 & 0 & a \\ -1 & 1 & 0 & b \\ 0 & -1 & 1 & c \\ 0 & 0 & -1 & d \end{vmatrix} = a + b + c + d$

 $\mathbf{2.}(A,E) = \begin{pmatrix} 1 & -1 & 0 & 1 & 0 & 0 \\ 0 & 1 & -1 & 0 & 1 & 0 \\ -1 & 0 & 2 & 0 & 0 & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 0 & 2 & 2 & 1 \\ 0 & 1 & 0 & 1 & 2 & 1 \\ 0 & 0 & 1 & 1 & 1 & 1 \end{pmatrix} = (E,A^{-1}) - \frac{1}{2}$

 $AX = B \Rightarrow X = A^{-1}B$ ----

$$X = \begin{pmatrix} 1 & 5 \\ 0 & 3 \\ 1 & 3 \end{pmatrix} - - - -$$

3.
$$A = (\alpha_1, \alpha_2, \alpha_3, \alpha_4) =$$

$$\begin{pmatrix}
1 & 0 & 3 & 2 \\
-1 & 3 & 0 & 1 \\
2 & 1 & 7 & 5 \\
3 & 2 & 11 & 0
\end{pmatrix}
\rightarrow
\begin{pmatrix}
1 & 0 & 3 & 2 \\
0 & 3 & 3 & 3 \\
0 & 1 & 1 & 1 \\
0 & 0 & 2 & 2 & 2
\end{pmatrix}
\rightarrow
\begin{pmatrix}
1 & 0 & 3 & 2 \\
0 & 1 & 1 & 1 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{pmatrix}
= (\beta_1, \beta_2, \beta_3, \beta_4) = B$$

R(A) = R(B) = 2 易得 β_1 , β_2 是向量组 β_1 , β_2 , β_3 , β_4 的最大无关组,且 $\beta_3 = 3\beta_1 + \beta_2$, $\beta_4 = 2\beta_1 + \beta_2$,

于是 α_1, α_2 是向量组 $\alpha_1, \alpha_2, \alpha_3, \alpha_4$ 的最大无关组,

$$4. (A,b) = \begin{pmatrix} 2 & 4 & 0 & 3 \\ 2 & 3 & a & 2 \\ 0 & a & -9 & 3 \end{pmatrix} \rightarrow \begin{pmatrix} 2 & 4 & 0 & 3 \\ 0 & 1 & -a & 1 \\ 0 & 0 & (a+3)(a-3) & 3-a \end{pmatrix}$$

- (1) 当 $a \neq 3$ 且 $a \neq -3$ 时,R(A) = 3,方程组有唯一解。 当a = 3时,R(A) = 2 < R(A,b) = 3,方程组无解。 当a = -3时,R(A) = R(A,b) = 2 < 3,方程组有无穷多解。
- (2) 当a = -3时,

$$(A,b) \to \begin{pmatrix} 1 & 0 & 6 & -\frac{1}{2} \\ 0 & 1 & -3 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix} \quad \stackrel{\text{\tiny 4}}{\rightleftharpoons} x = k \begin{pmatrix} -6 \\ 3 \\ 1 \end{pmatrix} + \begin{pmatrix} -\frac{1}{2} \\ 1 \\ 0 \end{pmatrix}, k \in \mathbb{R} \ .$$

$$5. D = \begin{vmatrix} 1 & 2 & 3 & 4 \\ 2 & 3 & 4 & 1 \\ 3 & 4 & 1 & 2 \\ 4 & 1 & 2 & 3 \end{vmatrix} = 160$$

$$\mathbf{6.} \ A^2 - E = \begin{pmatrix} 0 & 1 & 3 \\ 0 & 0 & 1 \\ 1 & 1 & 3 \end{pmatrix} -$$

$$(A, A^{2} - E) = \begin{pmatrix} 1 & 0 & 1 & 0 & 1 & 3 \\ 1 & -1 & 0 & 0 & 0 & 1 \\ 0 & 1 & 2 & 1 & 1 & 3 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 0 & -1 & 1 & 2 \\ 0 & 1 & 0 & -1 & 1 & -3 \\ 0 & 0 & 1 & 1 & 0 & 1 \end{pmatrix} = (E, A^{-1}(A^{2} - E)) - (E, A^{-1}(A^{2} - E$$

$$AB = (A^{2} - E) \Rightarrow B$$

$$= A^{-1}(A^{2} - E) = \begin{pmatrix} -1 & 1 & 2 \\ -1 & 1 & -3 \\ 1 & 0 & 1 \end{pmatrix}$$

7.解答:

$$\alpha_{1} = \begin{pmatrix} 1 \\ 2 \\ 3 \\ 4 \end{pmatrix}, \alpha_{2} = \begin{pmatrix} 2 \\ 3 \\ 4 \\ 5 \end{pmatrix}, \alpha_{3} = \begin{pmatrix} 3 \\ 4 \\ 5 \\ 6 \end{pmatrix}, \alpha_{4} = \begin{pmatrix} 4 \\ 5 \\ 6 \\ 7 \end{pmatrix} A = (\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}) = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 3 & 4 & 5 \\ 3 & 4 & 5 & 6 \\ 4 & 5 & 6 & 7 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & -1 & -2 \\ 0 & 1 & 2 & 3 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

$$A = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 3 & 4 & 5 \\ 3 & 4 & 5 & 6 \\ 4 & 5 & 6 & 7 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & -1 & -2 \\ 0 & 1 & 2 & 3 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

该向量组的秩为 2 和一个极大线性无关组 α_1,α_2 ,

$$\alpha_3 = 2\alpha_2 - \alpha_1$$
, $\alpha_4 = 3\alpha_2 - 2\alpha_1$

8.解答:
$$(A,b) = \begin{pmatrix} 1 & 1 & -3 & -1 & 1 \\ 3 & -1 & -3 & 4 & 4 \\ 1 & 5 & -9 & -8 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & -\frac{3}{2} & \frac{3}{4} & \frac{5}{4} \\ 0 & 1 & -\frac{3}{2} & -\frac{7}{4} & -\frac{1}{4} \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$

得方程的特解 $\eta^* = (\frac{5}{4}, -\frac{1}{4}, 0, 0)^T$,

对应齐次方程的基础解系
$$\xi_1 = (\frac{3}{2}, \frac{3}{2}, 1, 0)^T$$
, $\xi_2 = (-\frac{3}{4}, \frac{7}{4}, 0, 1)^T$

9.
$$\begin{vmatrix} 1 & -1 & 1 & x-1 \\ 1 & -1 & x+1 & -1 \\ 1 & x-1 & 1 & -1 \\ x+1 & -1 & 1 & -1 \end{vmatrix} = \begin{vmatrix} x & -1 & 1 & x-1 \\ x_1+c_2+c_3+c_4 \\ x_1+c_2+c_3+c_4 \\ x_2+c_3+c_4 \end{vmatrix} = \begin{vmatrix} x & -1 & 1 & x-1 \\ x & -1 & x+1 & -1 \\ x & x-1 & 1 & -1 \\ x & -1 & 1 & -1 \end{vmatrix}$$

$$\begin{vmatrix} 1 & -1 & 1 & x-1 \\ 1 & -1 & x+1 & -1 \\ 1 & x-1 & 1 & -1 \\ 1 & -1 & 1 & -1 \end{vmatrix} \begin{vmatrix} r_2-r_1 \\ r_3-r_1x \\ 0 & 0 & x & -x \\ 0 & x & 0 & -x \\ 0 & 0 & 0 & -x \end{vmatrix} .$$

$$\frac{r_3 \leftrightarrow r_2}{=} - x \begin{vmatrix} 1 & -1 & 1 & x - 1 \\ 0 & x & 0 & -x \\ 0 & 0 & x & -x \\ 0 & 0 & 0 & -x \end{vmatrix} = x^4.$$

10.

$$|A - 2E| = -3 \neq 0 \qquad |A - 2E|^{-1} = \begin{pmatrix} -1 & 0 & 0 \\ -\frac{1}{3} & -\frac{1}{3} & 0 \\ -\frac{5}{3} & -\frac{2}{3} & -1 \end{pmatrix}$$

$$\therefore X = (A - 2E)^{-1}B = \begin{pmatrix} -1 & 0 \\ -\frac{5}{3} & -1 \\ -\frac{10}{3} & -4 \end{pmatrix}$$

(法二)

$$(A-2E,B) = \begin{pmatrix} -1 & 0 & 0 & 1 & 0 \\ 1 & -3 & 0 & 4 & 3 \\ 1 & 2 & -1 & -1 & 2 \end{pmatrix} \xrightarrow{r_2 + r_1} \begin{pmatrix} -1 & 0 & 0 & 1 & 0 \\ 0 & -3 & 0 & 5 & 3 \\ 0 & 2 & -1 & 0 & 2 \end{pmatrix}$$

$$\xrightarrow{r_1 \times (-1)} \begin{pmatrix} 1 & 0 & 0 & -1 & 0 \\ 0 & 1 & 0 & -5/3 & -1 \\ 0 & 2 & -1 & 0 & 2 \end{pmatrix} \xrightarrow{r_3 - 2r_2} \begin{pmatrix} 1 & 0 & 0 & -1 & 0 \\ 0 & 1 & 0 & -5/3 & -1 \\ 0 & 0 & -1 & 10/3 & 4 \end{pmatrix}$$

$$\xrightarrow{r_3 \times (-1)} \begin{pmatrix} 1 & 0 & 0 & -1 & 0 \\ 0 & 1 & 0 & -5/3 & -1 \\ 0 & 0 & 1 & -10/3 & -4 \end{pmatrix}$$

$$\therefore X = (A - 2E)^{-1}B = \begin{pmatrix} -1 & 0 \\ -\frac{5}{3} & -1 \\ -\frac{10}{3} & -4 \end{pmatrix}$$

11. 解: α_1 , α_2 , α_3 线性相关,

$$\therefore (\alpha_1, \alpha_2, \alpha_3) = \begin{pmatrix} 1 & 2 & 3 \\ 4 & -3 & 1 \\ 3 & -1 & 2 \end{pmatrix} \longrightarrow \begin{pmatrix} 1 & 2 & 3 \\ 0 & -11 & -11 \\ 0 & -7 & -7 \end{pmatrix} \longrightarrow \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{pmatrix}$$

 $R(\alpha_1, \alpha_2, \alpha_3) = 2.$

:. 极大无关组为 α_1 , α_2 , 且 $\alpha_3 = \alpha_1 + \alpha_2$.

12. 对方程组的增广矩阵作初等变换

$$\overline{A} = \begin{pmatrix} 1 & 1 & \lambda & 4 \\ -1 & \lambda & 1 & \lambda^2 \\ 1 & -1 & 2 & -4 \end{pmatrix} \xrightarrow{r_2 + r_1} \begin{pmatrix} 1 & 1 & \lambda & 4 \\ 0 & \lambda + 1 & 1 + \lambda & \lambda^2 + 4 \\ 0 & -2 & 2 - \lambda & -8 \end{pmatrix}$$

$$\xrightarrow{r_2 \leftrightarrow r_3} \begin{pmatrix} 1 & 1 & \lambda & 4 \\ 0 & -2 & 2 - \lambda & -8 \\ 0 & \lambda + 1 & \lambda + 1 & \lambda^2 + 4 \end{pmatrix}$$

$$\xrightarrow{r_3 + \frac{\lambda + 1}{2}} \begin{pmatrix} 1 & 1 & \lambda & 4 \\ 0 & -2 & 2 - \lambda & -8 \\ 0 & 0 & \frac{(1 + \lambda)(4 - \lambda)}{2} & \lambda(\lambda - 4) \end{pmatrix}$$

可见 1. 当 $\lambda = -1$ 时, $R(\overline{A}) = 3$, R(A) = 2 方程组无解;

- 2. 当 $\lambda \neq -1$ 且 $\lambda \neq -4$ 时, $R(\overline{A}) = R(A) = 3$,方程组有唯一解;

有
$$\begin{pmatrix} 1 & 1 & 4 & 4 \\ 0 & -2 & -2 & -8 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$
 $\xrightarrow{-\frac{1}{2}r_2}$ $\begin{pmatrix} 1 & 1 & 4 & 4 \\ 0 & 1 & 1 & 4 \\ 0 & 0 & 0 & 0 \end{pmatrix}$ $\xrightarrow{r_1-r_4}$ $\begin{pmatrix} 1 & 0 & 3 & 0 \\ 0 & 1 & 1 & 4 \\ 0 & 0 & 0 & 0 \end{pmatrix}$

对应的方程组为
$$\begin{cases} x_1 = -3x_3 \\ x_2 = 4 - x_3 \end{cases}$$
,令 $x_3 = 0$,得到非齐次方程组的特解为 $\eta = \begin{pmatrix} 0 \\ 4 \\ 0 \end{pmatrix}$,

令
$$x_3 = 1$$
 时,对应的齐次方程组的基础解系为 $\xi = \begin{pmatrix} -3 \\ -1 \\ 1 \end{pmatrix}$,

13.

$$\mathbb{R} \vec{\Xi} = \begin{vmatrix} x + (n-1)a & x + (n-1)a & \dots & x + (n-1)a \\ a & x & \dots & a \\ \dots & \dots & \dots & \dots \\ a & a & \dots & x \end{vmatrix} = [x + (n-1)a] \begin{vmatrix} 1 & 1 & \dots & 1 \\ a & x & \dots & a \\ \dots & \dots & \dots & \dots \\ a & a & \dots & x \end{vmatrix} = [x + (n-1)a] \begin{vmatrix} 1 & 1 & \dots & 1 \\ a & a & \dots & x \end{vmatrix} = [x + (n-1)a] (x - a)^{n-1} = (x - a)^n + na(x - a)^{n-1}$$

14. (1).
$$A^{-1} = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & -1 \\ 1 & -1 & 0 \end{bmatrix}$$
 ······6 \mathcal{D}

(2).
$$X = A^{-1}B = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & -1 \\ 1 & -1 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & -1 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 \\ -1 & 0 & 0 \\ 0 & -1 & 0 \end{bmatrix}$$

15.
$$A = (\alpha_1, \alpha_2, \alpha_3, \alpha_4) = \begin{pmatrix} 1 & 1 & 2 & 1 \\ 1 & -1 & 1 & -1 \\ 1 & 1 & 2 & -1 \\ 1 & -1 & 1 & 1 \end{pmatrix} \longrightarrow \begin{pmatrix} 1 & 1 & 2 & 1 \\ 0 & -2 & -1 & -2 \\ 0 & 0 & 0 & -2 \\ 0 & -2 & -1 & 0 \end{pmatrix}$$

$$\longrightarrow \begin{pmatrix} 1 & 1 & 2 & 1 \\ 0 & -2 & -1 & -2 \\ 0 & 0 & 0 & -2 \\ 0 & 0 & 0 & 2 \end{pmatrix} \longrightarrow \begin{pmatrix} 1 & 1 & 2 & 1 \\ 0 & -2 & -1 & -2 \\ 0 & 0 & 0 & -2 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

可见 $R(\alpha_1,\alpha_2,\alpha_3,\alpha_4)=3$, $\alpha_1,\alpha_2,\alpha_4$ 是一个最大无关组

16.
$$\begin{vmatrix} 1 & 1 & -1 \\ 2 & 3 & \lambda \\ 1 & \lambda & 3 \end{vmatrix} = -(\lambda^2 + \lambda - 6) = -(\lambda + 3)(\lambda - 2),$$

所以 $\lambda \neq -3$,且 $\lambda \neq 2$ 时有唯一解。

$$\lambda = -3$$
时 $(A,b) \sim \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$, 无解

$$\lambda=2$$
时 (A,b) \sim $\begin{pmatrix} 1 & 0 & -5 & 0 \\ 0 & 1 & 4 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix}$ 有无穷多个解,

对应的方程组为
$$\begin{cases} x_1 = 5x_3 \\ x_2 = -4x_3 + 1 \end{cases}$$
, 令 $x_3 = 0$, 得到非齐次方程组的特解为 $\begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$

,令
$$x_3 = 1$$
时,对应的齐次方程组的基础解系为 $\xi = \begin{pmatrix} 5 \\ -4 \\ 1 \end{pmatrix}$ 通解为 $X = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} + c \begin{pmatrix} 5 \\ -4 \\ 1 \end{pmatrix}$

17.解答:

$$D = \begin{vmatrix} 1+a & 2 & 3 & 4 \\ 1 & 2+a & 3 & 4 \\ 1 & 2 & 3+a & 4 \\ 1 & 2 & 3 & 4+a \end{vmatrix} = \begin{vmatrix} 10+a & 2 & 3 & 4 \\ 10+a & 2+a & 3 & 4 \\ 10+a & 2 & 3+a & 4 \\ 10+a & 2 & 3 & 4+a \end{vmatrix} = \begin{vmatrix} 10+a & 2 & 3 & 4 \\ 0 & a & 0 & 0 \\ 0 & 0 & a & 0 \\ 0 & 0 & 0 & a \end{vmatrix}$$

$$=(10+a)a^3$$

18.
$$(A-2E)X = A$$
, $X(A-2E) = \begin{pmatrix} -1 & -1 & 0 \\ 0 & -1 & -1 \\ -1 & 0 & 0 \end{pmatrix}$, 知 $(A-2E)$ 可逆, $X = (A-2E)^{-1}A$

$$(A-2E, A) = \begin{pmatrix} -1 & -1 & 0 & 1 & -1 & 0 \\ 0 & -1 & -1 & 0 & 1 & -1 \\ -1 & 0 & 0 & -1 & 0 & 2 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 0 & 1 & 0 & -2 \\ 0 & 1 & 0 & -2 & 1 & 2 \\ 0 & 0 & 1 & 2 & -2 & -1 \end{pmatrix}$$

$$\mathbb{R} X = \begin{pmatrix} 1 & 0 & -2 \\ -2 & 1 & 2 \\ 2 & -2 & -1 \end{pmatrix}$$

19.解答:令

$$A = (\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}) = \begin{pmatrix} 1 & 0 & 0 & 1 \\ 2 & 1 & 1 & 0 \\ 1 & 2 & 1 & 1 \\ 1 & -1 & 0 & -1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 2 \\ 0 & 0 & 1 & -4 \\ 0 & 0 & 0 & 0 \end{pmatrix} = (\beta_{1}, \beta_{2}, \beta_{3}, \beta_{4})$$

=B

R(A) = R(B) = 3, 易得 β_1 , β_2 , β_3 是向量组 β_1 , β_2 , β_3 , β_4 的最大无关组,且 $\beta_4 = \beta_1 + 2\beta_2 - 4\beta_3$,

于是 $\alpha_1,\alpha_2,\alpha_3$ 是向量组 $\alpha_1,\alpha_2,\alpha_3,\alpha_4$ 的最大无关组,

 $\mathbb{H} \alpha_4 = \alpha_1 + 2\alpha_2 - 4\alpha_3$

20.解答:
$$(A,b) = \begin{pmatrix} -1 & -4 & 1 & 1 \\ 1 & 3 & a+1 & 0 \\ 0 & a & -3 & 3 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 4 & -1 & -1 \\ 0 & 1 & -a-2 & -1 \\ 0 & 0 & (a+3)(a-1) & a+3 \end{pmatrix}$$

(1) 当 $a \ne 1$ 且 $a \ne -3$ 时,R(A) = 3,方程组有唯一解。 当a = 1时,R(A) = 2 < R(A,b) = 3,方程组无解。 当a = -3时,R(A) = R(A,b) = 2 < 3,方程组有无穷多解。

(2)
$$\stackrel{\ }{=} a = -3 \ \text{ft}, \ (A,b) \rightarrow \begin{pmatrix} 1 & 0 & -5 & 3 \\ 0 & 1 & 1 & -1 \\ 0 & 0 & 0 & 0 \end{pmatrix} \not = x = k \begin{pmatrix} 5 \\ -1 \\ 1 \end{pmatrix} + \begin{pmatrix} 3 \\ -1 \\ 0 \end{pmatrix}, k \in \mathbb{R}$$

21. 证明: 设 $x_1\beta_1 + x_2\beta_2 + x_3\beta_3 = 0$ $\Rightarrow (x_2 + x_3)\alpha_1 + (x_1 + x_3)\alpha_2 + (x_1 + x_2 - x_3)\alpha_3 = 0$ $\alpha_1, \alpha_2, \alpha_3$ 线性无关

$$\Rightarrow \begin{cases} x_2 + x_3 = 0 \\ x_1 + x_3 = 0 \\ x_1 + x_2 - x_3 = 0 \end{cases} \Rightarrow x_1 = x_2 = x_3 = 0 \Rightarrow \beta_1, \beta_2, \beta_3$$
 线性无关

22.答: D =
$$\begin{vmatrix} 1+a & b & c & d \\ a & 1+b & c & d \\ a & b & 1+c & d \\ a & b & c & 1+d \end{vmatrix} = a+b+c+d+1$$

23. 答:
$$(A-2E)X = B$$
,又 $(A-2E) = \begin{pmatrix} -1 & -1 & 0 \\ 0 & -1 & -1 \\ -1 & 0 & 2 \end{pmatrix}$,知 $(A-2E)$ 可逆,

$$X = (A - 2E)^{-1}B$$

$$(A - 2E, B) = \begin{pmatrix} -1 & -1 & 0 & 1 & 2 \\ 0 & -1 & -1 & -1 & 0 \\ -1 & 0 & 2 & 1 & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 0 & -3 & -3 \\ 0 & 1 & 0 & 2 & 1 \\ 0 & 0 & 1 & -1 & -1 \end{pmatrix}$$

$$= \begin{pmatrix} E, & (A - 2E)^{-1}B \end{pmatrix}$$

$$E \mid X = \begin{pmatrix} -3 & -3 \\ 2 & 1 \\ -1 & -1 \end{pmatrix}$$

24.
$$rianglesize{A}: rianglesize{A} = (\alpha_1, \alpha_2, \alpha_3, \alpha_4) rianglesize{A} = (\alpha_1, \alpha_2, \alpha_3, \alpha_4) rianglesize{A} = (\alpha_1, \alpha_2, \alpha_3, \alpha_4) rianglesize{A} = (\beta_1, \beta_2, \beta_3, \beta_4) = B$$

R(A) = R(B) = 2, 易得 β_1 , β_2 是向量组 β_1 , β_2 , β_3 , β_4 的最大无关组,且 $\beta_3 = 2\beta_1 - \beta_2$; $\beta_4 = 6\beta_1 - 5\beta_2$,

于是 α_1, α_2 ,是向量组 $\alpha_1, \alpha_2, \alpha_3, \alpha_4$ 的最大无关组,

$$\alpha_3 = 2\alpha_1 - \alpha_2; \alpha_4 = 6\alpha_1 - 5\alpha_2$$

25. 答:
$$(A,b) = \begin{pmatrix} 1 & 2 & 1 & 1 \\ 2 & 3 & a+2 & 3 \\ 1 & a & -2 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 2 & 1 & 1 \\ 0 & -1 & a & 1 \\ 0 & 0 & (a-3)(a+1) & a-3 \end{pmatrix}$$

(1) 当 $a \neq -1$ 且 $a \neq 3$ 时,R(A) = 3,方程组有唯一解。 当a = -1时,R(A) = 2 < R(A,b) = 3,方程组无解。 当a = 3时,R(A) = R(A,b) = 2 < 3,方程组有无穷多解

(2)
$$\stackrel{\text{def}}{=} a = 3 \text{ pr}, \quad (A,b) \rightarrow \begin{pmatrix} 1 & 0 & 7 & 3 \\ 0 & 1 & -3 & -1 \\ 0 & 0 & 0 & 0 \end{pmatrix} \not = x = k \begin{pmatrix} -7 \\ 3 \\ 1 \end{pmatrix} + \begin{pmatrix} 3 \\ -1 \\ 0 \end{pmatrix}, k \in \mathbb{R}$$

26. 证明: 设 $x_1b_1 + x_2b_2 + x_3b_3 = 0$ $\Rightarrow (x_1\alpha_1 + (x_1 + x_2)\alpha_2 + (x_1 + x_2 + x_3)\alpha_3 = 0$ $\alpha_1, \alpha_2, \alpha_3$ 线性无关

⇒
$$\begin{cases} x_1 = 0 \\ x_1 + x_2 = 0 \\ x_1 + x_2 + x_3 = 0 \end{cases} \Rightarrow x_1 = x_2 = x_3 = 0 \Rightarrow b_1, b_2, b_3$$
 线性无关