Introduction to Stata

Table of Contents

Stata Environment
Stata Interface
<u>Browser</u>
Do File Editor
Stata Syntax
How to Get Help inside Stata
Working Directory
Importing Data
Import Stata (.dta) File
Import Excel (.xls) File
Import Text (.csv) File
Creating Variables
Managing Variables
<u>Labels</u>
Variable Labels
Value Labels
Descriptive Statistics
Frequency Tables
Graphs
<u>Histogram</u>
<u>Scatterplot</u>
Basic Analysis
<u>Correlation</u>
<u>T-Test</u>
Chi-Square Test
Regression
Exporting Results
Exporting Regression
<u>Using Logs</u>
Exporting Data

Stata Environment

Stata Interface

- When you open up Stata, the main window that opens up contains five different boxes
- The Results/Console will display your results and any errors that occur when you run your commands
- The Command box allows you to interactively run you Stata commands
- The Review box will display a list of previous commands you have run
- The Variables box will display all the variables contained in your dataset
- The Properties box will provide you with more information about your dataset, including number of observations, variable types, labels that are applied to your values etc...

Browser

• Use the browse command to open up the browser

Alternatively, you can press the Data Browser Button at the top of the console Data Browser

Do File Editor

• A .do file is a text file which contains all of the commands you use

• File → New → Do-file or you can choose the Do-file Editor button

Stata Syntax

- Stata commands are generally one or two words
- In the help file, you will see the beginning of the word underlined, this means you can use the shorter syntax as a shortcut for the command
- For example, the histogram command has the first four letters underlined, so you can use the shortcut hist

Title stata.com

histogram — Histograms for continuous and categorical variables

Syntax
Description
Options for use in the discrete case
Remarks and examples
Also see

Menu Options for use in the continuous case Options for use in the continuous and discrete cases References

Syntax

 $\underline{\mathtt{hist}} \mathtt{ogram} \ \textit{varname} \ \left[\textit{if} \ \right] \ \left[\textit{in} \ \right] \ \left[\textit{weight} \ \right] \ \left[\ \textit{continuous_opts} \ | \ \textit{discrete_opts} \ \right] \ \textit{options} \ \right]$

Comments

- A comment can be a note to yourself or other readers
- Comments will appear green in your .do file and will not execute in the Console
- Three ways to write comments
 - Start a line with an *
 - Start a line/block with /* and end line/block with */
 - o After a line of code use // to create a comment

```
Open Save Print Find Show Zoom

Untitled

* Start a comment with an *

/*
To block off multiple lines
use a / and an *

*/
browse // to comment on the same line as a working command
```

How to Get Help inside Stata

- Use the help command followed by the command which you seek assistance about
- You can also access help by choosing the Viewer button Viewer and typing your command in the Command bar at the top of the Viewer

Working Directory

- A working directory is the path to the folder in which you are importing data from and saving data to
- Use the pwd command to print out where your working directory is currently set to
- Use the cd command to change your directory
- Use the dir command to list the files in your working directory

Example:

a. Mac OS:

```
cd "/Users/NYU User/Desktop"
```

b. Windows:

```
cd "C:\Users\NYU User\Desktop"
```

c. NYU Virtual Computing Lab (VCL):

Start the path with "\\client\c\$ followed by your computer path
cd "\\client\c\$\C:\Users\NYU User\Desktop"

Importing Data

Import Stata (.dta) File

- A Stata dataset has a .dta extension
- If the dataset is in your working directory, use the use command to import a Stata dataset
- use "Dataset"

Import Excel (.xls) File

- Excel data comes with either an .xls or .xlsx extension
- If the dataset is in your working directory, use the import excel command to import an Excel file
- import excel "Dataset.xls"

Import Text (.csv) File

- A .csv is a comma separated value file
- If the dataset is in your working directory, use the import delimited command to import a .csv file
- import delimited "Dataset.csv"

Creating Variables

- To create a new variable (column) in your dataset, use the generate command
- generate MonthlyPizza = (pizza / 12)
- The egen command can also be used to create new variables
- egen avgSalary = mean(income), by(Education)

Managing Variables

• The keep and drop commands can be used to keep and drop certain variables from your dataset command can also be used to create new variables

Labels

Variable Labels

- Stata has specific rules when you name a variable
 - Variable names are case-sensitive
 - The name cannot contain more than 32 characters
 - o Names can contain only letters, numbers and underscores
 - Spaces and other special characters are not allowed
 - o The first character must be a character or an underscore and not a number
- Variable labels have more flexibility, they can be longer and can contain spaces and special characters
- To attach a label to the variable use the label variable command
- label variable MonthlyPizza "Monthly Expenditure on Pizza"

Value Labels

- To attach a label to the values of a variable use the label define command to create the variable
- Then use the label values command to apply the labels to the variable
- Use the codebook command to see the mappings of values and their labels
- label define eduLabel 0 "Less than High School" 1 "High School" 2 "Undergraduate Degree" 3 "Graduate Degree"
- label values Education edulabel

Education

Highest Education Achieved

```
type: numeric (float)
       label: eduLabel
       range: [0,3]
                                           units: 1
unique values: 4
                                       missing .: 0/40
   tabulation: Freq.
                       Numeric Label
                             0 Less than High School
                   7
                             1 High School
                  15
                             2 Undergraduate Degree
                  15
                   3
                             3 Graduate Degree
```

Descriptive Statistics

- Use the summarize command to see the mappings of values and their labels
- summarize income

. summarize income

income	40	42925	39358.57	6000	222000
Variable	0bs	Mean	Std. Dev.	Min	Max

• Use the detail option to expand the summary statistics

. summarize income, d

annual income, \$

	Percentiles	Smallest		
1%	6000	6000		
5%	10000	10000		
10%	12000	10000	0bs	40
25%	21000	12000	Sum of Wgt.	40
50%	30000		Mean	42925
		Largest	Std. Dev.	39358.57
75%	55000	85000		
90%	82500	90000	Variance	1.55e+09
95%	111000	132000	Skewness	2.735044
99%	222000	222000	Kurtosis	12.20313

• Use the mean command to obtain more information about the mean

. mean income

Mean estimation

Number of obs =	40
-----------------	----

	Mean	Std. Err.	[95% Conf.	Interval]
income	42925	6223.136	30337.52	55512.48

- Use the tabstat command to build custom tables
 - . tabstat income, stats(mean sd) by(Education)

Summary for variables: income

by categories of: Education (Highest Education Achieved)

Education	mean	sd
Less than High S High School Undergraduate De Graduate Degree	22285.71 29733.33 59333.33 75000	16214.34 18922.65 53756.95 18027.76
Total	42925	39358.57

Frequency Tables

- tabulate variable_name
- tab Education
 - . tab Education

Highest Education Achieved	Freq.	Percent	Cum.
Less than High School	7	17.50	17.50
High School	15	37.50	55.00
Undergraduate Degree	15	37.50	92.50
Graduate Degree	3	7.50	100.00
Total	40	100.00	

- To create a cross tabulation, you can report two variable names
- tab Education female

. tab Education female

Highest Education	=1 if fema	ale	
Achieved	0	1	Total
Less than High School	3	4	7
High School	8	7	15
Undergraduate Degree	7	8	15
Graduate Degree	1	2	3
Total	19	21	40

Graphs

Histogram

- Create a histogram to see the distribution of a continuous variable
- histogram income

Scatterplot

- To examine the relationship between two continuous variables using a scatterplot the command twoway scatter can be used, where the dependent variable is listed first and the independent variable is listed second
- twoway scatter pizza income

Basic Analysis

Correlation

- Use the correlate command to create a correlation matrix
- correlate income pizza

. correlate income pizza (obs=40)

	income	pizza
income	1.0000	
pizza	0.3680	1.0000

T-Test

- Using "pizza" as the continuous variable and "female" as the categorical variable (with 2 categories), run an independent samples ttest with the ttest command
- ttest pizza, by(female)

. ttest pizza, by(female)

Two-sample t test with equal variances

Group	0bs	Mean	Std. Err.	Std. Dev.	[95% Conf.	Interval]
0	19	288.1053	33.76907	147.196	217.1591	359.0515
1	21	104.1905	22.89995	104.9408	56.42202	151.9589
combined	40	191.55	24.64689	155.8806	141.697	241.403
diff		183.9148	40.12417		102.6877	265.1419
diff:	= mean(0) -	- mean(1)		t :	= 4.5836	

Ho: diff =
$$0$$
 degrees of freedom = 38

Chi-Square Test

- Using the two categorical variables "female" and "Education", use tab command with the chi2 option to perform a chi-square test
- tab female Education, chi2

. tab female Education

=1 if female	Less		-		tion Achiev Undergrad		Total
0 1		3 4		8 7	7 8	1 2	19 21
Total		7		15	15	3	40

Regression

- Using "price" as the dependent variable, and "mpg" as the predictor:
- regress pizza income
 - . regress pizza income

Source	SS	df	MS	Number of obs	s =	40
Model Residual	128366.057 819285.843	1 38	128366.057 21560.1538	R-squared	= = =	5.95 0.0195 0.1355
Total	947651.9	39	24298.7667	- Adj R-squared Root MSE	d = =	0.1127 146.83
pizza	Coef.	Std. Err.	t	P> t [95% (Conf.	Interval]
income _cons	.0014577 128.9803	.0005974 34.59125		0.019 .00024 0.001 58.954		.002667 199.0067

. regress pizza income age female

Source	SS	df	MS	Number of ob - F(3, 36)	s = =	40 13.72
Model Residual	505479.049 442172.851	3 36	168493.016 12282.5792	Prob > F	=	0.0000 0.5334
Total	947651.9	39	24298.7667		=	
pizza	Coef.	Std. Err.	t	P> t [95%	Conf.	Interval]
income age female _cons	.0017427 -2.83686 -178.245 296.6359	.000481 1.445795 35.14504 48.15155	-1.96 -5.07	0.001 .0007 0.058 -5.769 0.000 -249.5 0.000 198	068	.0027183 .0953477 -106.9675 394.2917

Exporting Results

Exporting Regression

- First install the esstab package
- ssc install esttab
- Then run your regression models, and store them after the estimation, by using the command estimates store M1 (M1 is an arbitrary name)
- Use esttab to create a single table with all the coefficients. This can be a .csv or .rtf file
- esttab M1 M2 M3 using output.rtf

Example:

```
ssc install esttab
reg pizza income
estimate store M1
reg pizza income age
estimate store M2
reg pizza income age female
estimate store M3
reg pizza income age female i.Education
estimate store M4
```

esttab M1 M2 M3 M4 using output.rtf

	(1)	(2)	(3)	(4)
	pizza	pizza	pizza	pizza
income	0.00146*	0.00183**	0.00174***	0.00190***
	(2.44)	(2.95)	(3.62)	(3.63)
age		-3.222	-2.837	-3.106*
		(-1.73)	(-1.96)	(-2.13)
female			-178.2***	-169.7***
			(-5.07)	(-4.88)
0.Education				0
				(.)
1.Education				87.43
				(1.72)
2.Education				47.15
				(0.89)
3.Education				-20.92
				(-0.26)
_cons	129.0***	211.0***	296.6***	244.6***
	(3.73)	(3.62)	(6.16)	(4.35)
N	40	40	40	40

t statistics in parentheses * p < 0.05, ** p < 0.01, *** p < 0.001

Using Logs

- A log allows you to record everything that happens during your Stata session that appears in the Results/Console window
- log using "my log"
- log close

Exporting Data

- To export your data as a Stata file (.dta) use the save command
- save pizzaData
- To export your data as an Excel file (.xls) use the <code>export excel command</code>
- export excel using "pizzaData"