Homework 5 - CV

1. Let P, be an arbitrary line in the 20 plane and A(vo, vo) a point such that AEP,

For every line, there is a normal to that line () such that P, . m = 0

We will prove that $\vec{n} = a7 + b\vec{j}$ Let 2 points $B(x_1,y_1) = c(x_2,y_2)$ and that $B \in \mathbb{N}$, $C \in \mathbb{N}_1 = 2$ ax $x_1 + by_2 + c = 0$

$$\alpha (x_2 - x_1) + b(y_2 - y_1) = 0 \iff M \cdot \ell_1 = 0$$
The direction vector of ℓ_1 can

The direction vector of P, can be derived as $(x_2-x_1)^2+(y_2-y_1)^2$ $\frac{1}{2} = \frac{1}{2} \frac{1}$

The distance from a point P to a line $P_1(0,b,\epsilon)$ 15 d where $P_1 = 0x + b_1 + c = 0$ $P_2 = 0x + b_2 + c = 0$ $P_3 = 0x + b_3 + c = 0$ $P_4 = 0x + b_3 + c = 0$ $P_5 = 0x + b_3 + c = 0$ $P_5 = 0x + b_3 + c = 0$ $P_6 = 0x + b_3 + c = 0$ $P_7 = 0x + b_3 + c = 0$ P_7

$$\frac{A\beta_{2}(0-u_{0})(1+(v-v_{0}))}{a(v-v_{0})+b(v-v_{0})} = 0$$

$$\frac{a(v-v_{0})+b(v-v_{0})}{\sqrt{a^{2}+b^{2}}} = 0$$

$$\frac{1}{\sqrt{a^{2}+b^{2}}}$$

$$= \frac{1}{\sqrt{a^2+b^2}}$$

$$= \frac{1}{\sqrt{a^2+b^2}}$$

$$= \frac{1}{\sqrt{a^2+b^2}}$$

$$= \frac{1}{\sqrt{a^2+b^2}}$$

$$= \frac{1}{\sqrt{a^2+b^2}}$$

$$= \frac{1}{\sqrt{a^2+b^2}}$$

A and P, were arbitrarily closer => ine and point in the plane

2.
$$\chi(t)^{2} + \gamma(t)^{2} = \frac{(1-t^{2})^{2}}{(1+t^{2})^{2}} + \frac{(2t)^{2}}{(1+t^{2})^{2}} = \frac{(1-t^{2})^{2}}{(1+t^{2})^{2}} = \frac{(1-t^{2})^{2}}{($$

$$x(t) = \frac{1-t^2}{1+t^2} \cdot \cos\theta$$
 $y(t) = \frac{1-t^2}{1+t^2} \cdot \cos\theta$
 $y(t) = \frac{2}{1+t^2} \cdot \sin\theta$
 $x(t) = \cos(2 \cot t \cdot t) + 2 \sin\theta$
 $x(t) = \cos(2 \cot t \cdot t) + 2 \sin\theta$
 $x(t) = \cos(2 \cot t \cdot t) + 2 \sin\theta$
 $x(t) = \cos(2 \cot t \cdot t) + 2 \sin\theta$
 $x(t) = \cos(2 \cot t \cdot t) + 2 \sin\theta$
 $x(t) = \cos(2 \cot t \cdot t) + 2 \sin\theta$
 $x(t) = \cos(2 \cot t \cdot t) + 2 \sin\theta$

$$\int_{-1}^{1} t^{2} \left(\frac{\operatorname{ancos} x + 2 \times 11}{2} \right) = t_{2} \left(\frac{\operatorname{ancos} x}{2} \right)$$

$$\int_{-1}^{1} t^{2} \left(\frac{\operatorname{ancos} x + 2 \times 11}{2} \right) = t_{2} \left(\frac{\operatorname{ancos} x}{2} \right)$$

If the point doesn't lie on the one, let p' the closest point on the one .

p(x,y); p'(x(t),y(t)) => ||pp'||^2 = (x(t)-x)^2 + (y(t)-y)^2 = x(t)^2 - 2x(t)x + x^2 + y(t)^2 - 2y(t)y + y^2 =

$$= 1 + x^{2} + y^{2} - 2x(1)x - 2y(1)y = 1 + x^{2} + y^{2} - 2x \frac{1 - y^{2}}{1 + 1^{2}} - 2y \frac{2t}{1 + 1^{2}} = 1 + x^{2} + y^{2} + \frac{-2x + 2xt^{2} - yt}{1 + 1^{2}}$$

first of (t) = 100 |
2
.

$$f'(t) = 0 \Rightarrow (4xt - 4y)(1+t^4) - (2xt^2 - 4yt - 2x) 2t$$

$$= 3 + xt + 4xt^3 - 4y - 4yt^2 - 5xt^4 + 8yt^4 + 4xt = 0 \Rightarrow 4(yt^2 + 2xt - y) = 0 \Rightarrow$$

$$\Rightarrow yt^2 + 2xt - y = 0$$

$$2xt = 0$$

$$\Rightarrow 1 + 20$$

$$\Rightarrow 2xt = 0$$

$$\Rightarrow 1 + 20$$

$$\Rightarrow$$

$$R_{x} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos \theta & -\sin \theta \\ 0 & \sin \theta & \cos \theta \end{pmatrix}$$

$$R_{x} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -\sin \theta & \cos \theta \\ 0 & -\sin \theta & \cos \theta \end{pmatrix}$$

$$\frac{1}{2} \left(\frac{1}{2} \cos^{2}\theta + \sin^{2}\theta + \frac{1}{2} \right)$$

$$\frac{1}{2} \left(\frac{1}{2} \cos^{2}\theta + \cos^{2}\theta$$

For o general 30 rotation (consider Tait-Bryan convention for Euler Augles) => R = R2 Ry Rx det Rz det Rz det Ry det Rx=1

R = Re Ry Rz = Rx Ry Rz = (Rz Ry Rx) = RT

By matrix multiplication, it can be observed that Rma, b can become km, 1,2

Interes Pia Rmo, & Pia Peb, where Pij is the permutation motries that swaps rovs i and j

RMID = (cost - sind) C2xm-2 | In a permutation matrix, the rows/columns are orthogonal

(the one values always have distinct indices) =>

of v=1, vw=0, v,w-different columns/rows=> PP=PP=Im

pT=P-1

* follow-up after exercise 8

```
Inputs:
                    Outputs:
                       15-inside: booleon int (1-inside)
    B(XBYB, ZB)
                                            2-other errors
    C(X=,Y=, ==)
     D(X0,40, 30)
 AB ( XB-XAJYB-YK, ZB-ZA)
 AC ( Xc-XA, Yc-YA, 7c-ZA)
  m = AB XAC (a, b, c) (normal to the potential plane 0x+by+CZ+d 20 defined by A, B and C)
 if ~ = (0,0,0)
      print " Eronor, collinear points can't properly define o plane
      exit with error
      return 2
I similar with problem 1, the distance from a to the plane is:
 1 = 1 a x0+by0+c20+d1
        Jo,+p,+c,
  0'- projection of 0 in plane of AABC
                                            Il if D on some side of plane as it we must to
                             59m = 0
  D' =- A + (B-V) = A + B-V
                             AD. ~>=0
                            efse: squz1 -
   A(X, Ya, Za)
    O[XoYo])
                           0'= D+ Squ.t. 11x11
     VETM
 My cond1= (ABXAD). (ABXAC) == >=0
         cond2= (ACXAO). (ACXAB) >= 0
        cond3 = (BCXBO') . (BCXBA) == >=0
   if cond 1 & cond2 & cond3
                                                             to William
                                                             A THE STATE OF
       1 multon
   return 0
```

7 let a soupro neighbourhood (MXN) on which a median fillor is applied.
7. Let a square neighbourhood (MXM) on which a median fillor is applied. The pixel volues are uniform, [c, c,, c]. Considering the sorted list of pixel
values (come as noted above). The median, in this case, is favorage of middle cleans = C if m even
I up to half salt & peppon novere 1 m is odd
00 (00 part (simplars cases viPP freat only one)
givel values in the neighbourhood (sorted) would be in the maximal maise case,
pixel values in the neighbourhood (sorted) would be in the maximal maise case, [0,0,-0,0] > result = 5 till correct
$\begin{bmatrix} \frac{n^2}{2} \end{bmatrix} \qquad \begin{bmatrix} \frac{m^2}{2} \end{bmatrix}$
be both pepper and solt
(0,0,-0, C, C, -, C, 255,, 255), middle point is in the (c,, c) subarray, k [] 1-k result still convect
Tuptoholf _n niseven
a) both pepper and salt since the series of the smiddle elements mour both C similar Pist as in Ib). However, we are interested in the 2 middle elements mour both C result still convect
considering up to half as strict inequality (i.e. < moteod of <) the result is still correct. If not, one middle element would be a and the other there a so result =
for He The maximal moise case
그 보고 그는 그는 그를 잃으면 하는 것이 없는 것이 되었다. 그 그들은 그를 모르는 것이 되었다. 그런 그는 그를 살아 없는 것이 없는 것이 없는 것이 없는 것이 없는 것이 없는 것이다.

8. J(w) = (Aw-b) T (Aw-b) = (wt At-bT)(Aw-b) = = WATAW-WAT6-BAW+ bT6 = WTATAW- 2WAT6+ bB (b[Aw]=(Aw)T6= WTAT6) J(W) = 2AAW - 2Ab | AAW = Ab = W = (AA) Ab - Moore-Penrose inverse) J'(W) 20 5. Rusb = Pia P2b Rul2 P2b Pia = Pia P2b Pmz P2b Pia Rnob = PlaP26 Rniz P26 Pla Ruab = Propose Ruiz PabPra

Ruab = Propose Ruiz PabPra

Ruab = Ruab = Ruab

Ruab = Ruab = Ruab

Ruab = Ruab = Ruab

Onexxx | Im-z det Rmali det (Rmiz). det (Pia) = det (Rmiz) =1

any permutation motive las deteither 4 or -1 + det p = det p