TOÁN ỨNG DỤNG VÀ XÁC SUẤT

Project 01

1.Data Wrangling

reading databases

In [2]:

```
import pandas as pd
import matplotlib.pylab as plt
dataX_train = pd.read_csv("X_train.csv")
dataY_train = pd.read_csv("Y_train.csv")
```

In [3]:

```
dataX_train.head()
```

Out[3]:

	id	manufacturer	model	transmission	color	odometer	year	engineFuel	engineType	eng
0	1	Hyundai	i40	automatic	red	48000	2014	gasoline	gasoline	
1	2	Mitsubishi	Carisma	mechanical	green	320000	2000	diesel	diesel	
2	3	Volkswagen	T5	mechanical	white	164000	2011	diesel	diesel	
3	4	Volkswagen	T4 Multivan	mechanical	blue	385672	1998	diesel	diesel	
4	5	Toyota	Camry	automatic	black	215652	2005	gasoline	gasoline	

5 rows × 23 columns

```
In [4]:
dataY_train.head()
Out[4]:
   id
        price
   1 15500.0
1
   2
       2800.0
2
   3 16700.0
   4 11000.0
   5
       6800.0
In [5]:
data=pd.concat([dataX_train,dataY_train['price']],axis=1)
In [6]:
data.shape
```

Identify missing values

Out[6]:

(30000, 24)

In [7]:

```
pd.isnull(data).sum()
Out[7]:
id
                   0
manufacturer
                   0
model
                   0
transmission
                   0
color
                   0
odometer
                   0
year
                   0
engineFuel
                   0
engineType
                   0
engineCapacity
                   9
                   0
bodyType
drivetrain
                   0
photos
                   0
feature 0
                   0
feature_1
                   0
feature_2
                   0
                   0
feature 3
feature 4
                   0
feature_5
                   0
feature 6
                   0
feature_7
                   0
feature_8
                   0
feature_9
                   0
                   0
price
dtype: int64
```

Dealing with missing data by droping the whole row

```
In [10]:
```

```
data=data.dropna()
data.shape
```

Out[10]:

(29991, 24)

In [11]:

```
pd.isnull(data).sum()
```

Out[11]:

id 0 manufacturer 0 model 0 transmission 0 0 color 0 odometer 0 year engineFuel 0 engineType 0 engineCapacity 0 bodyType 0 drivetrain 0 photos 0 feature_0 0 feature_1 0 feature_2 0 0 feature_3 feature_4 0 feature_5 0 feature 6 0 feature_7 0 0 feature_8 feature_9 0 price 0 dtype: int64

Type of feature

In [13]:

data.dtypes

Out[13]:

id int64 manufacturer object model object transmission object color object int64 odometer year int64 engineFuel object engineType object engineCapacity float64 bodyType object object drivetrain photos int64 feature 0 bool feature_1 bool feature_2 bool feature_3 bool feature 4 bool feature_5 bool feature 6 bool feature_7 bool feature_8 bool feature_9 bool price float64 dtype: object

2.Visualization

In [14]:

```
data.corr()
```

Out[14]:

	id	odometer	year	engineCapacity	photos	feature_0	feature_1
id	1.000000	0.000493	0.000165	-0.004775	0.001453	-0.008150	0.004499
odometer	0.000493	1.000000	-0.534764	0.093426	-0.140852	0.173271	-0.211673
year	0.000165	-0.534764	1.000000	0.006046	0.253406	-0.384642	0.460675
engineCapacity	-0.004775	0.093426	0.006046	1.000000	0.114059	-0.126360	0.119021
photos	0.001453	-0.140852	0.253406	0.114059	1.000000	-0.116110	0.090568
feature_0	-0.008150	0.173271	-0.384642	-0.126360	-0.116110	1.000000	-0.668149
feature_1	0.004499	-0.211673	0.460675	0.119021	0.090568	-0.668149	1.000000
feature_2	-0.000923	-0.096220	0.217780	0.385353	0.135591	-0.281051	0.242150
feature_3	-0.001143	-0.258523	0.459394	0.247034	0.184041	-0.323355	0.312916
feature_4	-0.005315	-0.089480	0.203212	0.458804	0.142967	-0.293500	0.254367
feature_5	-0.004999	-0.272240	0.462795	0.273899	0.165465	-0.389845	0.388309
feature_6	-0.000944	-0.186163	0.370010	0.290530	0.190207	-0.237737	0.233923
feature_7	-0.000448	-0.281300	0.489654	0.204585	0.197372	-0.314294	0.308194
feature_8	-0.004446	-0.245585	0.497154	0.241620	0.201338	-0.447511	0.442187
feature_9	-0.003588	-0.132611	0.267195	0.240504	0.134835	-0.621576	0.377227
price	-0.001462	-0.415628	0.719046	0.336310	0.309603	-0.281111	0.303665

correlation of numerical variables

In [15]:

```
data[['odometer','year','engineCapacity','photos']].corr()
```

Out[15]:

	odometer	year	engineCapacity	photos
odometer	1.000000	-0.534764	0.093426	-0.140852
year	-0.534764	1.000000	0.006046	0.253406
engineCapacity	0.093426	0.006046	1.000000	0.114059
photos	-0.140852	0.253406	0.114059	1.000000

Analyzing Individual Feature Patterns using Visualization

Continuous numerical variables:

Attribute odometer

Scatterplot of "odometer" and "price"

In [17]:

```
import matplotlib.pyplot as plt
import seaborn as sns
sns.regplot(x="odometer", y="price", data=data)
plt.ylim(0,)
```

Out[17]:

(0.0, 52913.964331577095)

In [18]:

```
data[["odometer", "price"]].corr()
```

Out[18]:

	odometer	price
odometer	1.000000	-0.415628
price	-0.415628	1.000000

Attribute year

Scatterplot of "year" and "price"

In [19]:

```
sns.regplot(x="year", y="price", data=data)
plt.ylim(0,)
```

Out[19]:

(0.0, 53444.90652617203)

In [20]:

```
data[["year", "price"]].corr()
```

Out[20]:

	year	price
year	1.000000	0.719046
price	0.719046	1.000000

Attribute engineCapacity

Scatterplot of "engineCapacity" and "price"

In [22]:

```
sns.regplot(x="engineCapacity", y="price", data=data)
plt.ylim(0,)
```

Out[22]:

(0.0, 52499.95)

In [23]:

```
data[["engineCapacity", "price"]].corr()
```

Out[23]:

	engineCapacity	price
engineCapacity	1.00000	0.33631
price	0.33631	1.00000

Attribute photos

Scatterplot of "photos" and "price"

In [24]:

```
sns.regplot(x="photos", y="price", data=data)
plt.ylim(0,)
data[["photos", "price"]].corr()
```

Out[24]:

	photos	price
photos	1.000000	0.309603
price	0.309603	1.000000

Categorical variables

Relationship between "manufacturer" and "price"

localhost:8889/lab 10/28

In [26]:

```
plt.figure(figsize=(20, 10))
sns.boxplot(x="manufacturer", y="price", data=data)
```

Out[26]:

<matplotlib.axes._subplots.AxesSubplot at 0x1fe2cc67820>

localhost:8889/lab 11/28

```
In [27]:
```

data['manufacturer'].value_counts()

localhost:8889/lab 12/28

Out[27]:

Volkswagen	3425
Opel	2198
BMW	2111
Ford	2064
Renault	2006
Audi	1974
Mercedes-Benz	1820
Peugeot	1562
Citroen	1267
Nissan	1095
Mazda	1071
Toyota	1028
Hyundai	893
Kia	739
Mitsubishi	710
Fiat	655
Honda	640
Skoda	609
Volvo	574
Chevrolet	350
Chrysler	276
Seat	244
Subaru	226
Dodge	202
Rover	198
Suzuki	184
Lexus	176
Alfa Romeo	171
	163
Daewoo Land Rover	153
Infiniti	129
Iveco	115
LADA	102
Saab	85
Jeep	82
Lancia	70
SsangYong	66
Acura	54
Chery	53
Geely	52
Dacia	52
Mini	51
Jaguar	47
Porsche	46
Lifan	41
Buick	39
Cadillac	34
Lincoln	30
Great Wall	30
Pontiac	29

Name: manufacturer, dtype: int64

Relationship between "model" and "price"

In [29]:

```
plt.figure(figsize=(20, 10))
sns.boxplot(x="model", y="price", data=data)
```

Out[29]:

<matplotlib.axes._subplots.AxesSubplot at 0x1fe2b3f7a00>

In [30]:

```
data['model'].value_counts()
```

Out[30]:

```
Passat
          1141
Astra
           607
Golf
           590
Α6
           572
           515
Mondeo
Tempo
              1
Florid
              1
S1000
              1
235
              1
Macan
Name: model, Length: 990, dtype: int64
```

Relationship between "transmission" and "price"

In [32]:

```
plt.figure(figsize=(20, 10))
sns.boxplot(x="transmission", y="price", data=data)
```

Out[32]:

<matplotlib.axes._subplots.AxesSubplot at 0x1fe32f391c0>

In [33]:

```
data['transmission'].value_counts()
```

Out[33]:

mechanical 19929 automatic 10062

Name: transmission, dtype: int64

Relationship between "color" and "price"

localhost:8889/lab 15/28

In [34]:

```
df=data
plt.figure(figsize=(20, 10))
sns.boxplot(x="color", y="price", data=df)
```

Out[34]:

<matplotlib.axes._subplots.AxesSubplot at 0x1fe3484d940>

In [35]:

```
df['color'].value_counts()
```

Out[35]:

```
black
          6115
silver
           5422
          4509
blue
white
           3244
grey
           3000
           2266
red
green
           2035
other
           2023
brown
            662
violet
            371
yellow
            213
            131
orange
```

Name: color, dtype: int64

Relationship between "engineFuel" and "price"

localhost:8889/lab 16/28

In [36]:

```
plt.figure(figsize=(20, 10))
sns.boxplot(x="engineFuel", y="price", data=df)
```

Out[36]:

<matplotlib.axes._subplots.AxesSubplot at 0x1fe34767850>

In [37]:

```
df['engineFuel'].value_counts()
```

Out[37]:

gasoline 19081 diesel 10711 hybrid-petrol 198 hybrid-diesel 1

Name: engineFuel, dtype: int64

Relationship between "engineType" and "price"

localhost:8889/lab 17/28

In [38]:

```
plt.figure(figsize=(20, 10))
sns.boxplot(x="engineType", y="price", data=df)
```

Out[38]:

<matplotlib.axes._subplots.AxesSubplot at 0x1fe345cd1f0>

In [39]:

```
df['engineType'].value_counts()
```

Out[39]:

gasoline 19279 diesel 10712

Name: engineType, dtype: int64

Relationship between "bodyType" and "price"

In [40]:

```
plt.figure(figsize=(20, 10))
sns.boxplot(x="bodyType", y="price", data=df)
```

Out[40]:

<matplotlib.axes._subplots.AxesSubplot at 0x1fe3463a8b0>

In [41]:

```
df['bodyType'].value_counts()
```

Out[41]:

sedan	9897
hatchback	6128
universal	4436
suv	3868
minivan	2807
minibus	1086
van	638
coupe	518
liftback	448
pickup	91
cabriolet	63
limousine	11

Name: bodyType, dtype: int64

Relationship between "drivetrain" and "price"

localhost:8889/lab 19/28

In [42]:

```
plt.figure(figsize=(20, 10))
sns.boxplot(x="drivetrain", y="price", data=df)
```

Out[42]:

<matplotlib.axes._subplots.AxesSubplot at 0x1fe34e201f0>

In [43]:

```
df['drivetrain'].value_counts()
```

Out[43]:

front 21928 all 4037 rear 4026

Name: drivetrain, dtype: int64

Relationship between "feature 0 1 2 3 4 5 6 7 8 9" and "price"

localhost:8889/lab 20/28

ReportProject 01

In [44]:

```
plt.figure(figsize = (20,12))
plt.subplot(4,4,1)
sns.boxplot(x = 'feature_0', y = 'price', data = df)
plt.subplot(4,4,2)
sns.boxplot(x = 'feature 1', y = 'price', data = df)
plt.subplot(4,4,3)
sns.boxplot(x = 'feature_2', y = 'price', data = df)
plt.subplot(4,4,4)
sns.boxplot(x = 'feature_3', y = 'price', data =df)
plt.subplot(4,4,5)
sns.boxplot(x = 'feature 4', y = 'price', data = df)
plt.subplot(4,4,6)
sns.boxplot(x = 'feature_5', y = 'price', data = df)
plt.subplot(4,4,7)
sns.boxplot(x = 'feature 6', y = 'price', data = df)
plt.subplot(4,4,8)
sns.boxplot(x = 'feature 7', y = 'price', data = df)
plt.subplot(4,4,9)
sns.boxplot(x = 'feature_8', y = 'price', data = df)
plt.subplot(4,4,10)
sns.boxplot(x = 'feature_9', y = 'price', data = df)
```

Out[44]:

<matplotlib.axes. subplots.AxesSubplot at 0x1fe35f176a0>

In [45]:

```
df['feature_0'].value_counts()
```

Out[45]:

False 23756 True 6235

Name: feature_0, dtype: int64

localhost:8889/lab 21/28

```
In [46]:
df['feature_1'].value_counts()
Out[46]:
True
         18887
False
         11104
Name: feature_1, dtype: int64
In [47]:
df['feature_2'].value_counts()
Out[47]:
False
         23053
True
          6938
Name: feature_2, dtype: int64
In [48]:
df['feature_3'].value_counts()
Out[48]:
False
         21447
          8544
True
Name: feature_3, dtype: int64
In [49]:
df['feature 4'].value counts()
Out[49]:
False
         22580
True
          7411
Name: feature_4, dtype: int64
In [50]:
df['feature_5'].value_counts()
Out[50]:
False
         18993
         10998
True
Name: feature_5, dtype: int64
```

```
In [55]:
df['feature_6'].value_counts()
Out[55]:
False
         24677
True
          5314
Name: feature_6, dtype: int64
In [56]:
df['feature_7'].value_counts()
Out[56]:
False
         21790
True
          8201
Name: feature_7, dtype: int64
In [57]:
df['feature_8'].value_counts()
Out[57]:
False
         17011
         12980
True
Name: feature_8, dtype: int64
In [58]:
df['feature_9'].value_counts()
Out[58]:
True
         17859
False
         12132
Name: feature_9, dtype: int64
```

Descriptive Statistical Analysis

localhost:8889/lab 23/28

ReportProject_01

In [59]:

21/8/2020

df.describe()

Out[59]:

	id	odometer	year	engineCapacity	photos	price
count	29991.000000	29991.000000	29991.000000	29991.000000	29991.000000	29991.000000
mean	15000.157514	252907.284119	2003.124371	2.054022	9.701744	6596.436659
std	8660.116848	131377.237398	7.514463	0.662445	6.128716	6092.176086
min	1.000000	1.000000	1960.000000	0.200000	1.000000	1.000000
25%	7500.500000	163000.000000	1998.000000	1.600000	5.000000	2300.000000
50%	15001.000000	250000.000000	2003.000000	2.000000	8.000000	4900.000000
75%	22499.500000	326500.000000	2009.000000	2.300000	12.000000	8990.000000
max	30000.000000	1000000.000000	2019.000000	7.500000	86.000000	50000.000000

In [60]:

df.describe(include=['object'])

Out[60]:

	manufacturer	model	transmission	color	engineFuel	engineType	bodyType	drivetrain
count	29991	29991	29991	29991	29991	29991	29991	29991
unique	50	990	2	12	4	2	12	3
top	Volkswagen	Passat	mechanical	black	gasoline	gasoline	sedan	front
freq	3425	1141	19929	6115	19081	19279	9897	21928
4								•

localhost:8889/lab 24/28

3. Conclusion: Important Variables

We now have a better idea of what our data looks like and which variables are important to take into account when predicting the car price. We have narrowed it down to the following variables:

Continuous numerical variables:

odometer

year

Categorical variables:

manufacturer transmission color bodyType drivetrain feature_0 feature_1 feature_2 feature_3 feature_4 feature_5 feature_6 feature_7 feature_8

feature 9

4.TRAIN AND TEST

Dummy Categorical variables

localhost:8889/lab 25/28

In [62]:

```
DummyFeature=df[['feature_0', 'feature_1','feature_2','feature_3','feature_4','feature_5',
    'feature_6','feature_7','feature_8','feature_9']].astype(int)
DummyManufacturer=pd.get_dummies(df['manufacturer'])
DummyModel=pd.get_dummies(df['model'])
DummyTransmission=pd.get_dummies(df['transmission'])
DummyColor=pd.get_dummies(df['color'])
DummyBodyType=pd.get_dummies(df['bodyType'])
DummyDrivetrain=pd.get_dummies(df['drivetrain'])
DummyEngineType=pd.get_dummies(df['engineType'])
DummyEngineFuel=pd.get_dummies(df['engineFuel'])
```

Simple Model for comparesion of other model

In [63]:

```
dataX=pd.concat([DummyManufacturer,DummyModel,DummyTransmission,DummyColor,df['odometer'],
df['year'],DummyEngineFuel,DummyEngineType,df['engineCapacity'],DummyBodyType,DummyDrivetr
ain,df['photos'],DummyFeature],axis=1)
dataY=df['price']
```

In [64]:

```
import sklearn.model_selection as model_selection

X_train, X_test, y_train, y_test = model_selection.train_test_split(dataX,dataY, train_siz e=0.8,test_size=0.2, random_state=100)
```

In [65]:

```
import numpy as np
from sklearn.linear_model import LinearRegression
model = LinearRegression().fit(X_train, y_train)
y_predict= model.predict(X_test)
import math
A=(y_predict-y_test)**2
RMSE=math.sqrt(A.sum()/y_test.size);
print(RMSE)
```

563611274.4155275

MODEL_00 linear regression with Important Variables

In [67]:

```
dataX=pd.concat([df['odometer'],df['year'],DummyManufacturer,DummyTransmission,DummyColor,
DummyBodyType,DummyDrivetrain,DummyFeature],axis=1)
dataY=df['price']
```

localhost:8889/lab 26/28

In [68]:

```
import sklearn.model_selection as model_selection

X_train, X_test, y_train, y_test = model_selection.train_test_split(dataX,dataY, train_siz e=0.8,test_size=0.2, random_state=100)

import numpy as np
from sklearn.linear_model import LinearRegression
model = LinearRegression().fit(X_train, y_train)
```

In [69]:

```
y_predict= model.predict(X_test)
import math
A=(y_predict-y_test)**2
RMSE=math.sqrt(A.sum()/y_test.size);
print(RMSE)
```

327395674.97051287

FINDING THE BEST MODEL

MODEL_01

Continuous numerical variables:

odometer => quadratic harm equation

year => quadratic harm equation

Categorical variables:

manufacturer
transmission
color
bodyType
drivetrain
feature_0
feature_1
feature_2
feature_3
feature_4
feature_5
feature_6
feature_7
feature 8

localhost:8889/lab 27/28

In [70]:

```
dataX=pd.concat([df['odometer'],df['odometer']**2,df['year'],df['year']**2,DummyManufactur
er,DummyTransmission,DummyColor,DummyBodyType,DummyDrivetrain,DummyFeature],axis=1)
dataY=df['price']
import math

import sklearn.model_selection as model_selection

X_train, X_test, y_train, y_test = model_selection.train_test_split(dataX,dataY, train_siz
e=0.8,test_size=0.2, random_state=100)

import numpy as np
from sklearn.linear_model import LinearRegression
model = LinearRegression().fit(X_train, y_train)

y_predicted = model.predict(X_test)
A=(y_predicted-y_test)**2
RMSE=math.sqrt(A.sum()/y_test.size)
print(RMSE)
```

2742.013157337794

localhost:8889/lab 28/28