Übung Optische Übertragung

Lernziele

Die Studierenden kennen die Eigenschaften der verschiedenen Übertragungskanäle (Funk, Kupfer, Glasfaser).

Mono-Mode und Multi-Mode

Wie bei Funkkanälen kann auch in Lichtwellenleitern ein Mehrwegempfang auftauchen.

- Skizziere, wie dieser Mehrwegempfang im Kabel entsteht und wie er mit geeigneten Kabeln vermieden wird.
- Skizzieren den Einfluss mit einem Augendiagramm.

Dämpfung und Dispersion

Wie im Funk- und Kupfer-Kanal besitzt auch ein Lichtwellenleiter eine frequenzunabhängige sowie eine frequenzabhängige Dämpfung.

- Recherchiere, wie gross die frequenzunabhängige Dämpfung in gängigen Lichtwellenleitern ist.
- Welche Wellenlängen eignen sich für eine optische Übertragung?

Nicht alle Wellenlängen werden im Glasfaserkabel gleich schnell übertragen. Dieses Phänomen wird Dispersion genannt.

• Skizziere den Einfluss auf das Signal mit einem Augendiagramm.

Fallstudie

Init7 gibt detailliert an, welche Technologien im Glasfasernetz verwendet werden.

"Recherchiere, was die Abkürzungen und Fachbegriffe bedeuten und erläutere die Angaben: Simplex-Singlemode-Kabel als Patchkabel $\mathbf{LC/PC}$ nach $\mathbf{LC/APC}$, kompatibel mit $\mathbf{SFP\text{-}Optiken}$

- Fiber 25 Gbit/s: 25G **SFP28** BIDI LR, 10 km, TX1270/RX1330 nm, LC-Simplex, Singlemode
- Fiber 710 Gbit/s: 10G SFP+ BIDI LR, 10 km, TX1270/RX1330 nm, LC-Simplex, Singlemode
- Crossover7/Hybrid7 (P2P): 1 Gbit Singlefiber SFP Transceiver (10 km/TX1310/RX1490-1550 nm)"