OTPE 420 E

SEQUENCE LISTING

<110> DSM IP ASSETS B.V.
 Pieter J.A.M. PLOMP
 Lex DE BOER
 Rutger J. VAN ROOIJEN
 Roelf B. MEIMA

<120> NOVEL FOOD PRODUCTION PROCESS

<130> 4662-25 / 21401USWO

<140> US 10/538,000 <141> 2005-06-09

<150> PCT/EP2003/014553

<151> 2003-12-18

<150> EP 02102819.6

<151> 2002-12-19

<160> 3

<170> MS Word

<210> 1

<211> 3223

<212> DNA

<213> Aspergillus niger

<400> 1

tggggggaac	ttgcatctga	gagcatcata	ctagttacta	ctactactac	tacttgccga	60
tgaataaaca	tcctgcttgt	actacgcatc	gccgtcttgc	tgacatggag	atatattttg	120
ggctccgaga	gttttgatag	cagtagccaa	ttaactagta	gatgctagta	ctactctagt	180
aatttggggg	cgaatgttga	atccagctca	tgccaattga	catctggaga	tctccacgag	240
acaacgagat	aagatgaaat	attgctgtca	tgggtgataa	ctagatgctt	cgagaaggat	300
tcttgaggat	tgcctcatcg	catgggataa	tatcaccctc	gggtggacct	tcccggctgt	360
tggggcttat	cgtggaagag	tcacccccga	tatcggtggg	ccaagccctt	tatcaatcat	420
catcctatca	gtttccaccc	acaagatagc	ctatggaccc	tgattccctt	ctagccacag	480
agactagtac	tagtctatca	tgtcgactcc	atgtggagaa	accctgataa	gaccatgtgg	540
aggaggagat	agcaagcctc	cacagaaaca	atatcatctc	cacctgcaat	cacggttgga	600
				aaatgctgaa		660
atgaattgga	agagaagcca	gcagagacca	tcgcatccgt	cttcatcatg	cctctcaagc	720
cgattctcct	gtctgccctg	gccagtctcg	cctcggcctc	tccgctgctc	tactcgcgga	780
ccaccaatga	aaccttcgtc	ttcaccaatg	ccaatggcct	caacttcacc	cagatgaaca	840
ccaccctgcc	gaacgtgacc	attttcgcaa	cgggtaggtg	gaccgagtat	acctcaggta	900
gtgcgaccga	tagttaaccg	caactcacag	gtggtaccat	cgcgggctcc	gattccagct	960
caaccgccac	gaccggctac	acctccggag	cagtcggggt	cctgtccctc	atcgatgcgg	1020
tgccatccat	gctggatgtg	gccaatgttg	ccggcgtcca	ggtggccaac	gtgggaagcg	1080
aggatatcac	ctctgacatc	ctgatttcca	tgtccaagaa	gctgaaccgc	gttgtatgtg	1140
aggacccgac	catggccggt	gctgtcatca	cccacggcac	cgacaccctc	gaggagactg	1200
ccttcttcct	ggacgccact	gtcaactgtg	gcaagccaat	tgtcatcgtg	ggtgccatgc	1260
gcccatccac	ggccatctca	gctgacgggc	ccttcaatct	gctcgaagcc	gtgacggtgg	1320
				catgaacgat		1380
cggcctacta	tgtgaccaag	accaatgcca	acactatgga	caccttcaag	gccatggaga	1440
tgggctacct	tggcgagatg	atctccaaca	cccctttctt	cttctacccg	cccgtcaagc	1500
caaccggtaa	ggtggccttt	gacatcacca	acgtgactga	gatcccccgt	gtggacattc	1560

```
tgitttetta tgaggacatg cacaacgaca ccctctacaa cgccatctcc agtggtgccc
                                                                       1620
                                                                       1680
agggaattgt ggtgagtgtg atttccttga tctctctcta taaaacttgg aatggacgct
gatgagaata gattgccggg gctggtgctg gaggcgtcac aacctccttc aatgaggcta
                                                                       1740
tcgaggatgt catcaaccgt ttggagatcc ctgtcgtgca gagtatgcgc acagtcaatg
                                                                       1800
gggaagtgcc actgtcagac gtgagcagcg acaccgccac ccacatcgcc agtggatacc
                                                                       1860
taaacccgca gaagtcccgc attctgttgg gattgctgct atcccaggga aagaatatca
                                                                       1920
ccgaaatcgc tgacgtgttt gctctgggca cggatgcgta ggtgtcgata gaaccattgt
                                                                       1980
atataataat gaccggatat tatgatcatg atagattgca atagaaagtg actggataca
                                                                       2040
catcagcaaa ggataccgag ttttgccctc aggcgttcgt agaaaaagtg tatcctactg
                                                                       2100
aagatcatga atcatgtctt atcttctggc cccctcgtat ccagggtgtt ggacatgcag
                                                                       2160
ggtgctttgc gtctgaagga tccgagatca aattgacacg agccagagtc tgatacatcc
                                                                       2220
ataatagtgg gtatatttga agtccattga tagtccttgt ttgtgtcggg caattgggtt
                                                                       2280
agctagggcc tggcttggtg gcatatcgtt ggactaatag atggtagttc aattaccgac
                                                                       2340
gggactgtct cccgccatta ttctcacaat tcttatcagc acattttccc tgtcgcgctt
                                                                       2400
ggatctgcaa tatttatttc cctcgtcatc acattcccac gaaaagacca tccagacatc
                                                                       2460
ttgctcggta ttctggaccg taagactgtt ttgaaaggca aatgtaaagc gtgattggtc
                                                                       2520
gacgtcaagc ctgaccaatc tagtaagctg gtcttacttt gggtgtagac ggaggtatta
                                                                       2580
                                                                       2640
ggtagtatta aggcagctag ttcgcctgca ttaccaccca ggcgaggcac gccactgctg
                                                                       2700
atcaggcgcg aaatggaacg aagtgcgagg tccacttaac atgatgcgcg cggatactaa
ggcgaccaag accetggatt gatcgctatg attcgcggaa ccccgcgggt tcttcacggc
                                                                       2760
tttcgataac gcaggattgg atcctcccag cctcgtctct gcaagtggga ccctgaaggg
                                                                       2820
ctctcctgca cgtcattact cagacactcc catcttttgc ttatttgcaa tgaatcttat
                                                                       2880
gggctgaccc tcagctcggc gtgggatgcc tgaatcgttg gtgaaagtct atttgagcaa
                                                                       2940
                                                                       3000
tcctagcctg ctggtagagg cggatgatta taataatcaa agcaccctat cgtaaggatg
                                                                       3060
aaggettgte cetggteaac cateactetg gttattgact agttgtgttt gggagacage
tgaagcccat tgtcggtaat cgtccccaaa gaatctgccc ctgcatcatg gagtcaggaa
                                                                       3120
                                                                       3180
agaccgggtt tcgcacggtc gcagaaccgc atccaacacg tctagtagaa ggaggggtag
ggatactcat ccgtctattg tgtatatctg caacgactaa tgt
                                                                       3223
<210> 2
<211> 1137
<212> DNA
<213> Aspergillus niger
<220>
<221> CDS
<222> (1)..(1137)
atg cct ctc aag ccg att ctc ctg tct gcc ctg gcc agt ctc gcc tcg
                                                                       48
Met Pro Leu Lys Pro Ile Leu Leu Ser Ala Leu Ala Ser Leu Ala Ser
                                    10
                                                                       96
gcc tct ccg ctg ctc tac tcg cgg acc acc aat gaa acc ttc gtc ttc
Ala Ser Pro Leu Leu Tyr Ser Arg Thr Thr Asn Glu Thr Phe Val Phe
                                25
acc aat gcc aat ggc ctc aac ttc acc cag atg aac acc acc ctg ccg
                                                                       144
Thr Asn Ala Asn Gly Leu Asn Phe Thr Gln Met Asn Thr Thr Leu Pro
aac gtg acc att ttc gca acg ggt ggt acc atc gcg ggc tcc gat tcc
                                                                       192
Asn Val Thr Ile Phe Ala Thr Gly Gly Thr Ile Ala Gly Ser Asp Ser
```

60

55

50

														gtc Val		240
			_					_	_	-		_		gtt Val 95	_	288
														gac Asp		336
_			_		_	_	_		_	_	_	_		gac Asp	_	384
	_	_												gag Glu		432
	_			_	-	_		_		_		_		att Ile	_	480
			_	_	_			_	_			_	_	ggg Gly 175		528
														gcg Ala		576
-	_		_	_		-	_		_	_		_	_	gcc Ala		624
	-		_			_			_	-			_	gcc Ala	_	672
														ttc Phe		720
														acc Thr 255		768
														gac Asp		816
cac	220	gac	acc	ctc	tac	aac	gcc	atc	tcc	agt	gat	gcc	cag	gga	att	864

•	•		•												
gtg Val		gcc Ala													
		gag Glu													
		aca Thr													
		acc Thr													
	_	ttg Leu 355		_	_			_		_				_	
		gtg Val								tag					
<21 <21 <40 Met	0> 3			Pro		Leu	Leu	Ser		Leu	Ala	Ser	Leu		Ser
1 Ala	Ser	Pro	Leu 20	5 Leu	Tyr	Ser	Arg	Thr 25	10 Thr	Asn	Glu	Thr	Phe	15 Val	Phe
Thr	Asn	Ala 35		Gly	Leu	Asn	Phe 40		Gln	Met	Asn	Thr 45		Leu	Pro
Asn	Val	Thr	Ile	Phe	Ala	Thr 55	Gly	Gly	Thr	Ile	Ala 60	Gly	Ser	Asp	Ser
Ser 65	Ser	Thr	Ala	Thr	Thr 70	Gly	Tyr	Thr	Ser	Gly 75	Ala	Val	Gly	Val	Leu 80
Ser	Leu	Ile	Asp	Ala 85	Val	Pro	Ser	Met	Leu 90	Asp	Val	Ala	Asn	Val 95	Ala
Gly	Val	Gln	Val 100	Ala	Asn	Val	Gly	Ser 105	Glu	Asp	Ile	Thr	Ser 110	Asp	Ile
Leu	Ile	Ser 115	Met	Ser	Lys	Lys	Leu 120	Asn	Arg	Val	Val	Cys 125	Glu	Asp	Pro
Thr	Met 130	Ala	Gly	Ala	Val	Ile 135	Thr	His	Gly	Thr	Asp 140	Thr	Leu	Glu	Glu

Thr Ala Phe Phe Leu Asp Ala Thr Val Asn Cys Gly Lys Pro Ile Val 145 150 Ile Val Gly Ala Met Arg Pro Ser Thr Ala Ile Ser Ala Asp Gly Pro 170 Phe Asn Leu Leu Glu Ala Val Thr Val Ala Ala Ser Thr Ser Ala Arg 180 185 190 Asp Arg Gly Ala Met Val Wat Asn Asp Arg Ile Ala Ser Ala Tyr 200 Tyr Val Thr Lys Thr Asn Ala Asn Thr Met Asp Thr Phe Lys Ala Met Glu Met Gly Tyr Leu Gly Glu Met Ile Ser Asn Thr Pro Phe Phe 230 235 Tyr Pro Pro Val Lys Pro Thr Gly Lys Val Ala Phe Asp Ile Thr Asn 250 Val Thr Glu Ile Pro Arg Val Asp Ile Leu Phe Ser Tyr Glu Asp Met His Asn Asp Thr Leu Tyr Asn Ala Ile Ser Ser Gly Ala Gln Gly Ile Val Ile Ala Gly Ala Gly Gly Val Thr Thr Ser Phe Asn Glu 290 295 300 Ala Ile Glu Asp Val Ile Asn Arg Leu Glu Ile Pro Val Val Gln Ser Met Arg Thr Val Asn Gly Glu Val Pro Leu Ser Asp Val Ser Ser Asp 330 Thr Ala Thr His Ile Ala Ser Gly Tyr Leu Asn Pro Gln Lys Ser Arg 340 345 Ile Leu Leu Gly Leu Leu Ser Gln Gly Lys Asn Ile Thr Glu Ile

Ala Asp Val Phe Ala Leu Gly Thr Asp Ala

375

370