Analysis 1

Logik

Aussage - Eine Aeusserung, die entweder wahr oder falsch ist

Luegner Paradox - Das ist keine Aussage: "Dieser Satz ist falsch"

Menge (Set) - eine ungeordnete Zusammenfassung verschiedener Objekte zu einem Ganzen

 \wedge - and

∨ - or

∨ (XOR) - either ... or ...

Materiale Aequivalenz (⇔)

Logische Aequivalenz (\equiv) $A \Leftrightarrow B \equiv (A \Rightarrow B) \land (B \Rightarrow A)$ - Sie haben die gleichen

Wahrheitstabellen

 $A \Leftrightarrow B$ - A genau dann wenn B

 $A \Rightarrow B$ - Wenn A, dann B

 $\neg B \Rightarrow \neg A$ - Kontraposition

$$A \Rightarrow B \equiv \neg B \Rightarrow \neg A$$

Zum Beispiel:

Es hat geregnet \Rightarrow die Strasse ist nas

Kontraposition: Die Strasse ist nicht nass \Rightarrow Es hat nicht geregnet

Das ist genauso wahr aufgrund der Physik.

Wahr: $0 < 0 \Rightarrow 1 + 1 = 2$

Falsch: $0 < 0 \Leftrightarrow 1 + 1 = 2$

TODO: Distributions gesetz

Proofs

Beweis - eine Herleitung einer Aussage aus den Axiomen

Satz - eine Bewiesene Aussage

Lemma (oder Hilfssatz) - ein Satz, der dazu dient, einen anderen Satz zu beweisen

q.e.d. (■) - end of proof

Beweiss formalisieren - Express a proof formally in terms of symbols and Limmas, can be checked by a computer.

Divide et impera - divide and conquer Zermelo + Fraenkel Axioms - Foundational axioms of all proofs

Beweis Methode

Modus ponens - Wird (meistens mehrmals) verwendet, um etwas zu beweisen:

A := Es hat geregnet (Premise)

Wenn es geregnet hat, dann ist die Strasse nass (Regel: $A \Rightarrow B$)

B := Die Strasse ist nass (Konklusion)

Kontraposition - Prove the Kontraposition, which subsequently proves the original statement (they are logically equivalent)

Beweisen, dass $\sqrt{2} < \sqrt{3}$:

$$A := \sqrt{2} > \sqrt{3} \equiv \neg \sqrt{2} < \sqrt{3}$$

Monotonie des Quadrierens:

$$x,y \geq 0$$
 Wenn $x \leq y, \text{dann ist } x^2 \leq y^2$

Laut der Monotonie des Quadrierens, $B := 2 \ge 3$ ist wahr

$$A \Rightarrow B \equiv \neg B \Rightarrow \neg A \equiv 2 < 3 \Rightarrow \sqrt{2} < \sqrt{3}$$

Widerspruch beweis

Um A zu beweisen, nehmen wir an, dass A falsch ist.

Widerspruch finden - das beweist die Aussage A

Zum Beispiel:

Beweis des Satzes $\sqrt{2} < \sqrt{3}$

Nehmen wir an, dass $\sqrt{2} \ge \sqrt{3}$ wahr ist

Lemma (Monotonie des Quadrierens): $\sqrt{2} \ge \sqrt{3} \Rightarrow 2 \ge 3$

Widerspruch: $2 \ge 3$ ist falsch, deshalb ist $\sqrt{2} \ge \sqrt{3}$ auch falsch.

$$\neg \left(\sqrt{2} \ge \sqrt{3}\right) \equiv \sqrt{2} < \sqrt{3} \blacksquare$$

It is more rigorous to prove / rewrite something through Contraposition, because we start with a false statement in contradiction.

Vollstaendige Induktion

 $n \in N_0, P(n)$ ist eine Aussage

P(0) ist wahr

Wenn $\forall k \in N_0$ gilt $P(k) \Rightarrow P(k+1)$

Dann ist $\forall n \in N_0, P(n) \equiv \text{wahr}$

Zum Beispiel:

$$\begin{aligned} \text{Satz: } \forall n \in N_0, P(n) &\coloneqq \sum_{i=1}^n i = \frac{n(n+1)}{2} \\ P(0) &= \frac{0(1)}{2} = 0 \\ \text{Sei } P(k) &= \frac{k(k+1)}{2} \\ \text{Zu zeigen } P(k+1) &= \frac{(k+1)((k+1)+1)}{2} \\ P(k+1) &= P(k) + k + 1 = \frac{k(k+1)}{2} + k + 1 \\ &= 2k^2 + 3k + 1 = \frac{k^2 + \frac{3}{2}k + \frac{1}{2}}{2} \\ &= \frac{(k+1)(k+2)}{2} = \frac{(k+1)((k+1)+1)}{2} \end{aligned}$$

Vollstaendige Induktion gibt, dass $\forall n \in N_0, P(n)$ wahr ist.

Mengenlehre

Eine ungeordnete Zusammenfassung von Elemente.

∅ - Leere Menge, hat keine Elemente

 $\{\emptyset\}$ hat genau ein Element

Aussageform $\{x \mid P(x)\}$ or $\{x; P(x)\}$ - die Menge aller x, fuer die P(x) gilt Example: $\{x \mid x \in \mathbb{N}_0, x \text{ ist gerade}\}$

Russelsche Antonomie - $\{x \mid x \in X, x \notin x\}$ ist ein Paradox

Loesung: Es muss immer so definiert werden $\{x \in X \mid P(x)\}$, wo X eine Menge ist.

$$A \cap B - \{x \mid x \in A \land x \in B\}$$
 - Intersection

$$A \cup B - \{x \mid x \in A \lor x \in B\}$$
 - Union

$$A \setminus B - \{x \in A \mid x \notin B\}$$
 - Without

 $A \subseteq B$ - Jedes Element von A liegt in B

 $A \subset B$ - Jedes Element von A liegt in B und A enthaelt weniger Elemente als B

 $A \subseteq X, A^{\complement} = X \setminus A$, wo X die Grundmenge ist, die jeder Element die wir betrachten enthaelt.

$$(1,2,3)$$
 - Tuple - Ordered set

Kartesische Product / Potenz - $X \times Y = \{(x,y) \mid x \in X, y \in Y\}$ Example:

$$\begin{split} X &:= \{0,1\}, Y := \{\alpha,\beta\} \\ X \times Y &:= \{(0,\alpha), (0,\beta), (1,\alpha), (1,\beta)\} \\ |X \times Y| &= |X| \times |Y| \end{split}$$

 \mathbb{R}^n := n-dimensionalen Koordinatenraum

$$\mathbb{R}^2 = X \times Y$$

$$\mathbb{R}^3 = X \times Y \times Z$$

De Morgan's Laws

Also apply to boolean logic, where A, B := 1, 0

$$(A \cap B)^{\mathbb{C}} = A^{\mathbb{C}} \cup B^{\mathbb{C}}$$

$$(A \cup B)^{\complement} = A^{\complement} \cap B^{\complement}$$

Quantoren

They cannot simply be swapped! See the largest natural number problem in script.

∃ - Existenzquantor - Es gibt

 \forall - Allquantor - Fuer alle

$$\neg(\forall x \in X | P(x)) = \exists x \in X | \neg P(x)$$

$$\neg(\exists x \in X | P(x)) = \forall x \in X | \neg P(x)$$

Goethe Prinzip - When a variable is renamed correctly, a statement is still logically equivalent

Funktionen

Eine Funktion ist ein Tripel f=(X,Y,G), wobei X und Y Mengen sind und $G\subseteq X\times Y$, sodass $\forall x\in X\exists y\in Y$, sodass $(x,y)\in G$

Domain - Set of possible inputs for a function

Codomain (Range) - Set of possible outputs of a function

Example:

Both are Quadratic funktions but are not equal:

$$X := Y := \mathbb{R}, G = \{(x, x^2) \mid x \in \mathbb{R}^2\}$$

$$X\coloneqq \mathbb{R}, Y\coloneqq]0, \infty[, G=\left\{\left(x, x^2\right) \mid x\in \mathbb{R}^2\right\}$$

 $X \to X, \mathrm{id}(x) \coloneqq x$ - Identitaets Funktion

Bild und Urbild - Muss nicht bijektiv sein

$$\begin{split} &\operatorname{im}(X)\coloneqq f(X)\operatorname{-Bild}\operatorname{von}f\\ &f:X\to\alpha, f^{-1}(Y)\coloneqq \{x\in X\mid f(x)\in Y\}\operatorname{-Urbild}\operatorname{von}\operatorname{y}\operatorname{unter}f \end{split}$$

Surjektiv - $\forall y \in Y \exists x \in X: f(x) = y$ - Es gibt fuer jeder Ausgang einige dazugehoerige Eingang Injektiv - $\forall x, x' \in X: x \neq x' \Rightarrow f(x) \neq f(x')$ - Es gibt genau eine Ausgang fuer jeder Eingang in dem Definitionsbereich

Bijektiv - Es ist Surjektiv und Injektiv, weshalb es eine Inverse hat

Umkehrfunktion

Sei $f: X \to Y$ eine Bijektive funktion, $f^{<-1>} := Y \to X$ - Umkehr Funktion

The inverse can ONLY be defined when the function is Bijektiv, unlike the Urbild. When $X=Y=\mathbb{R}$ it is the reflection of the original function over the line y=x. It is sometimes notated as f^{-1} when the context is clear.

Do not forget to consider the given domain / range when considering if a function is bijektiv!

Zum Beispiel:

$$f: \mathbb{R} \to \mathbb{R}, f(x) \coloneqq x^2$$
$$\operatorname{im}(f) = f(\mathbb{R}) = [0, \infty]$$
$$f^{-1}([-\infty, 4]) = [-2, 2]$$

The inverse can be only be defined if f is Bijektiv:

$$\begin{split} f:[0,\infty] \to [0,\infty], f(X) \coloneqq x^2 \\ f^{<-1>} = \sqrt{X} \end{split}$$

 $g \circ f := g(f(x))$ - Only possible if the codom(f) = dom(g)

Zahlen und Vektoren

$$\begin{split} \mathbb{N}_0 &:= \{0,1,2,\ldots\} \\ \mathbb{N} &:= \{1,2,3,\ldots\} \\ \mathbb{Z} &:= \{\ldots,-1,0,1,\ldots\} \\ \mathbb{Q} &:= \left\{\frac{m}{n} \mid m \in Z \land n \in N\right\} \\ \mathbb{N}_0 \subseteq \mathbb{Z} \subseteq \mathbb{Q} \end{split}$$

There are infinite gaps in the number line of rational numbers. These can be filled with $\mathbb{R}\setminus\mathbb{Q}$ - Irrational numbers, for example $\sqrt{2},\pi,e$.