Логические методы классификации

Воронцов Константин Вячеславович vokov@forecsys.ru http://www.MachineLearning.ru/wiki?title=User:Vokov

Этот курс доступен на странице вики-ресурса http://www.MachineLearning.ru/wiki «Машинное обучение (курс лекций, К.В.Воронцов)»

МФТИ ● 8 апреля 2021

Содержание

- 1 Понятия закономерности и информативности
 - Понятие закономерности
 - Алгоритмы перебора правил для поиска закономерностей
 - Критерии информативности
- Решающие деревья
 - Жадный метод обучения решающего дерева
 - Усечение дерева (pruning)
 - CART: деревья регрессии и классификации
- 3 Решающие списки и таблицы
 - Решающие списки
 - Решающие таблицы
 - Бинаризация признаков

Логические закономерности в задачах классификации

$$X^\ell = (x_i, y_i)_{i=1}^\ell \subset X \times Y$$
 — обучающая выборка, $y_i = y(x_i)$.

Логическая закономерность (правило, rule) — это предикат $R: X \to \{0,1\}$, удовлетворяющий двум требованиям:

- **1** интерпретируемость:
 - 1) R записывается на естественном языке;
 - 2) R зависит от небольшого числа признаков (1–7);
- ② информативность относительно одного из классов $y \in Y$: $p_y(R) = \#\{x_i : R(x_i) = 1 \text{ и } y_i = y\} \to \max;$

$$n_y(R) = \#\{x_i : R(x_i) = 1 \text{ if } y_i \neq y\} \to \min;$$

Если R(x) = 1, то говорят «R выделяет x» (R covers x).

Понятие закономерности

Алгоритмы перебора правил для поиска закономерностей Критерии информативности

Требование интерпретируемости

- 1) R(x) записывается на естественном языке;
- 2) R(x) зависит от небольшого числа признаков (1–7);

Пример (из области медицины)

Если «возраст > 60» и «пациент ранее перенёс инфаркт», то операцию не делать, риск отрицательного исхода 60%

Пример (из области кредитного скоринга)

Если «в анкете указан домашний телефон» и «зарплата > \$2000» и «сумма кредита < \$5000» то кредит можно выдать, риск дефолта 5%

Замечание. *Риск* — частотная оценка вероятности класса, вычисляемая, как правило, по отложенной контрольной выборке

Обучение логических классификаторов

Алгоритмов индукции правил (rule induction) очень много!

Четыре основных шага их построения:

- Выбор семейства правил для поиска закономерностей
- Выбор алгоритма порождения правил (rule generation)
- Выбор критерия информативности (rule selection)
- Построение классификатора из правил как из признаков, например, линейного классификатора (weighted voting):

$$a(x) = \arg\max_{y \in Y} \sum_{j=1}^{n_y} w_{yj} R_{yj}(x)$$

Две трактовки понятия «логическая закономерность» R(x):

- высокоинформативный интерпретируемый признак
- одноклассовый классификатор с отказами

Шаг 1. Часто используемые семейства правил

• Пороговое условие (решающий пень, decision stump):

$$R(x) = [f_j(x) \leqslant a_j]$$
 или $[a_j \leqslant f_j(x) \leqslant b_j]$.

• Конъюнкция пороговых условий:

$$R(x) = \bigwedge_{j \in J} \left[a_j \leqslant f_j(x) \leqslant b_j \right].$$

ullet Синдром — выполнение не менее d условий из |J|, (при d=|J| это конъюнкция, при d=1 — дизъюнкция):

$$R(x) = \left[\sum_{i \in J} \left[\mathbf{a}_j \leqslant f_j(x) \leqslant \mathbf{b}_j \right] \geqslant \mathbf{d} \right],$$

Параметры J, a_j, b_j, d настраиваются по обучающей выборке путём оптимизации *критерия информативности*.

Шаг 1. Часто используемые семейства правил

• Полуплоскость — линейная пороговая функция:

$$R(x) = \left[\sum_{j \in J} w_j f_j(x) \geqslant w_0\right]$$

• *Шар* — пороговая функция близости:

$$R(x) = \left[\rho(x, \mathbf{x_0}) \leqslant \mathbf{w_0} \right]$$

АВО — алгоритмы вычисления оценок [Ю. И. Журавлёв, 1971]:

$$\rho(x, x_0) = \max_{i \in J} \mathbf{w}_i |f_i(x) - f_i(x_0)|$$

SCM — машины покрывающих множеств [М. Marchand, 2001]:

$$\rho(x,x_0) = \sum_{i \in J} \mathbf{w}_i |f_i(x) - f_i(x_0)|^{\gamma}$$

Параметры J, w_j, w_0, x_0 настраиваются по обучающей выборке путём оптимизации выбранного *критерия информативности*.

Шаг 2. Мета-эвристики для поиска информативных правил

```
Вход: обучающая выборка X^{\ell};
Выход: множество закономерностей Z;
инициализировать начальное множество правил Z;
повторять
Z' := \text{ множество } \text{ локальных модификаций } \text{ правил из } Z;
удалить слишком похожие правила из Z \cup Z';
Z := \text{ наиболее } \text{ информативные } \text{ правила из } Z \cup Z';
пока правила продолжают улучшаться;
вернуть Z;
```

Частные случаи:

- стохастический локальный поиск (stochastic local search)
- генетические (эволюционные) алгоритмы
- усечённый поиск в ширину (beam search)
- поиск в глубину (метод ветвей и границ)

Шаг 2. Локальные модификации правил

Пример. Семейство конъюнкций пороговых условий:

$$R(x) = \bigwedge_{j \in J} \left[\frac{a_j}{s} \leqslant f_j(x) \leqslant \frac{b_j}{s} \right].$$

Локальные модификации конъюнктивного правила:

- варьирование одного из порогов *a_i* и *b_i*
- ullet варьирование обоих порогов a_i , b_i одновременно
- ullet добавление признака f_i в J с варьированием порогов a_i , b_i
- ullet удаление признака f_i из J

При удалении признака (pruning) информативность обычно оценивается по контрольной выборке (hold-out)

Вообще, для оптимизации множества J подходят те же методы, что и для отбора признаков (feature selection)

Шаг 3. Двухкритериальный отбор закономерностей

Два критерия: $p(R) \to \max$, $n(R) \to \min$

Парето-фронт — множество неулучшаемых закономерностей (точка неулучшаема, если правее и ниже неё точек нет)

UCI:german

Шаг 3. Логические и статистические закономерности

Предикат R(x) — логическая закономерность класса $y \in Y$:

$$\mathsf{Precision} = \frac{p_y(R)}{p_y(R) + n_y(R)} \geqslant \pi_0 \qquad \mathsf{Recall} = \frac{p_y(R)}{P_y} \geqslant \rho_0$$

Если $n_y(R)=0$, то R- непротиворечивая закономерность

Предикат R(x) — статистическая закономерность класса $y \in Y$:

$$\mathsf{IStat}\big(p_y(R), n_y(R)\big) \geqslant \sigma_0$$

IStat — минус-log вероятности реализации (p, n) при условии нулевой гипотезы, что y(x) и R(x) — независимые случайные величины (точный тест Фишера, Fisher's Exact Test):

$$\mathsf{IStat}(p,n) = -\frac{1}{\ell} \log_2 \frac{C_p^p C_N^n}{C_{p+N}^{p+n}} \ o \ \mathsf{max},$$

где
$$P=\#\big\{x_i\colon y_i{=}y\big\},\ \ N=\#\big\{x_i\colon y_i{\neq}y\big\},\ \ C_N^n=rac{N!}{n!(N-n)!}$$

Шаг 3. Критерии поиска закономерностей в плоскости (p, n)

Логические закономерности: Precision $\geqslant 0.9$, Recall $\geqslant 0.2$ Статистические закономерности: IStat $\geqslant 3$

P = 200

N = 100

- статистический критерий удобнее для поиска правил
- логический критерий для финального отбора правил

Шаг 3. Зоопарк критериев информативности

Очевидные, но не адекватные критерии:

- $I(p, n) = \frac{p}{p+n} \to \max$ (precision);
- $I(p, n) = p n \rightarrow \max$ (accuracy);
- $I(p, n) = p/P n/N \rightarrow \max$ (relative accuracy);

Адекватные, но не очевидные критерии:

• энтропийный критерий прироста информации:

$$\mathsf{IGain}(p,n) = hig(rac{P}{\ell}ig) - rac{p+n}{\ell} hig(rac{p}{p+n}ig) - rac{\ell-p-n}{\ell} hig(rac{P-p}{\ell-p-n}ig) o \mathsf{max},$$
 где $h(q) = -q\log_2 q - (1-q)\log_2 (1-q)$

- критерий Джини (Gini impurity): $\mathsf{IGini}(p,n) = \mathsf{IGain}(p,n)$ при h(q) = 4q(1-q)
- критерий бустинга и его нормированный вариант: $\sqrt{p} - \sqrt{n} \rightarrow \max, \qquad \sqrt{p/P} - \sqrt{n/N} \rightarrow \max$

J. Fürnkranz, P. Flach. ROC'n'rule learning – towards a better understanding of covering algorithms // Machine Learning, 2005.

Шаг 3. Нетривиальность проблемы свёртки двух критериев

Пример: в каждой паре правил первое гораздо лучше второго, однако простые эвристики не различают их по качеству (при $P=200,\ N=100$).

р	n	p-n	p-5n	$\frac{p}{P} - \frac{n}{N}$	$\frac{p}{n+1}$	$IStat{\cdot}\ell$	$IGain{\cdot}\ell$	\sqrt{p} - \sqrt{n}
50 100	0 50	50 50	50 -150	0.25	50 1.96	22.65 2.33	23.70 1.98	7.07 2.93
50	9	41	5	0.16	5	7.87	7.94	4.07
5	0	5	5	0.03	5	2.04	3.04	2.24
100	0	100	100	0.5	100	52.18	53.32	10.0
140	20	120	40	0.5	6.67	37.09	37.03	7.36

Замечание. Критерии IStat и IGain асимптотически эквивалентны: IStat(p,n) oIGain(p,n) при $\ell o \infty$

Шаг 4. Построение классификатора из закономерностей

Взвешенное голосование (линейный классификатор с весами w_{yt} и, возможно, с регуляризацией для отбора признаков):

$$a(x) = \arg\max_{y \in Y} \sum_{t=1}^{T_y} w_{yt} R_{yt}(x)$$

Простое голосование (комитет большинства):

$$a(x) = \arg\max_{y \in Y} \frac{1}{T_y} \sum_{t=1}^{T_y} R_{yt}(x)$$

Решающий список (комитет старшинства), $c_0, c_1, \ldots, c_T \in Y$:

$$x \longrightarrow \boxed{R_1(x)} \xrightarrow{0} \cdots \xrightarrow{0} \boxed{R_T(x)} \xrightarrow{0} c_0$$

$$\downarrow^1 \qquad \qquad \downarrow^1 \qquad$$

Определение решающего дерева (Decision Tree)

Решающее дерево — алгоритм классификации a(x), задающийся деревом (связным ациклическим графом) с корнем $v_0 \in V$ и множеством вершин $V = V_{\text{внутр}} \sqcup V_{\text{лист}}$;

 $f_v \colon X o D_v$ — дискретный признак, $\forall v \in V_{ ext{внутр}};$ $S_v \colon D_v o V$ — множество дочерних вершин;

 $y_v \in Y$ — метка класса, $\forall v \in V_{\mathsf{лист}}$;

$$v := v_0;$$

пока $(v \in V_{ exttt{BHYTP}})$: $v := S_v(f_v(x));$
вернуть $a(x) = y_v;$

Чаще всего используются бинарные признаки вида $f_{\nu}(x) = \lceil f_{i}(x) \geqslant a_{i} \rceil$

Если $D_{v} \equiv \{0,1\}$, то решающее дерево называется бинарным

Пример решающего дерева

Задача Фишера о классификации цветков ириса на 3 класса, в выборке по 50 объектов каждого класса, 4 признака.

На графике: в осях двух самых информативных признаков (из 4) два класса разделились без ошибок, на третьем 3 ошибки.

Решающее дерево \rightarrow покрывающий набор конъюнкций

setosa

virginica virginica

versicolor

$$r_1(x) = [PL \leqslant 2.5]$$

$$r_2(x) = [PL > 2.5] \land [PW > 1.68]$$

$$r_3(x) = [PL > 5] \wedge [PW \leqslant 1.68]$$

$$r_4(x) = [PL > 2.5] \wedge [PL \leqslant 5] \wedge [PW < 1.68]$$

Обучение решающего дерева: ID3 (Iterative Dichotomiser)

```
v_0:=\mathsf{TreeGrowing}\;(X^\ell) — функция рекурсивно вызывает себя
```

```
Мажоритарное правило: Major (U) := \arg\max_{y \in Y} P(y|U).
```

John Ross Quinlan. Induction of Decision Trees // Machine Learning, 1986.

Неопределённость распределения по классам в вершине

Частотная оценка вероятности класса y по выборке U:

$$p_y \equiv P(y|U) = \frac{1}{|U|} \sum_{x_i \in U} [y_i = y]$$

 $\Phi(U)$ — мера неопределённости (impurity) распределения p_y :

- (1) минимальна и равна нулю, когда $p_y \in \{0,1\}$,
- 2) максимальна, когда $p_y = \frac{1}{|Y|}$ для всех $y \in Y$,
- 3) симметрична: не зависит от перенумерации классов.

$$\Phi(U) = \sum_{y \in Y} \rho_y \mathscr{L}(\rho_y) = \frac{1}{|U|} \sum_{x_i \in U} \mathscr{L}(P(y_i|U)) \to \min,$$

где $\mathscr{L}(p)$ убывает и $\mathscr{L}(1)=0$, например: $-\log p$, 1-p, $1-p^2$

Критерий ветвления

Неопределённость распределений $P(y_i|U_k)$ после ветвления по признаку f_v и разбиения U на $U_k = \{x \in U : f_v(x) = k\}$:

$$\Phi(U_1, \dots, U_{|D_v|}) = \frac{1}{|U|} \sum_{x_i \in U} \mathcal{L}(P(y_i | \mathbf{U}_{f(x_i)})) =$$

$$= \frac{1}{|U|} \sum_{k \in D_v} \sum_{x_i \in U_k} \mathcal{L}(P(y_i | U_k)) = \sum_{k \in D_v} \frac{|U_k|}{|U|} \Phi(U_k)$$

Выигрыш от ветвления вершины v:

$$\begin{aligned} \mathsf{Gain}\left(f,U\right) &= \Phi(U) - \Phi(U_1,\ldots,U_{|D_v|}) = \\ &= \Phi(U) - \sum_{k \in D_v} \frac{|U_k|}{|U|} \, \Phi(U_k) \to \max_{f \in F} \end{aligned}$$

Критерий Джини и энтропийный критерий

Два класса,
$$Y = \{0,1\}$$
, $P(y|U) = \left\{ \substack{q, y=1 \\ 1-q, y=0} \right\}$

- ullet Если $\mathscr{L}(p) = -\log_2 p$, то $\Phi(U) = -q\log_2 q (1-q)\log_2(1-q)$ энтропия выборки.
- Если $\mathscr{L}(p) = 2(1-p)$, то $\Phi(U) = 4q(1-q)$ неопределённость Джини (Gini impurity).

Обработка пропущенных значений

На стадии обучения:

- ullet $f_{
 u}(x_i)$ не определено $\Rightarrow x_i$ исключается из U для $\mathsf{Gain}\left(f_{
 u},U
 ight)$
- ullet $oldsymbol{q}_{vk} = rac{|U_k|}{|U|}$ оценка вероятности k-й ветви, $v \in V_{ exttt{BHYTP}}$
- ullet $P(y|x,v)=rac{1}{|U|}\sum_{x_i\in U}[y_i=y]$ для всех $v\in V_{ extsf{nuct}}$

На стадии классификации:

ullet $a(x) = rg \max_{y \in Y} P(y|x,v_0)$ — наиболее вероятный класс

если значение $f_{\nu}(x)$ не определено то

средневзвешенное распределение по всем дочерним:

$$P(y|x,v) = \sum_{k \in D} q_{vk} P(y|x, S_v(k));$$

иначе

$$|P(y|x,v)=P(y|x,s)$$
 из дочерней вершины $s=S_v(f_v(x));$

Жадная нисходящая стратегия: достоинства и недостатки

Достоинства:

- Интерпретируемость и простота классификации.
- ullet Правила $[f_i(x)<lpha]$ не требуют масштабирования признаков.
- Допустимы разнотипные данные и данные с пропусками.
- ullet Трудоёмкость линейна по длине выборки $O(|F|h\ell)$.
- Не бывает отказов от классификации.

Недостатки:

- Жадная стратегия переусложняет структуру дерева, и, как следствие, сильно переобучается.
- Фрагментация выборки: чем дальше v от корня, тем меньше статистическая надёжность выбора f_v , y_v .
- Высокая чувствительность к шуму, к составу выборки, к критерию информативности.

Жадная стратегия переусложняет структуру дерева

Оптимальное дерево для задачи XOR:

Усечение дерева: стратегии post-pruning

 X^q — независимая контрольная выборка, $q pprox 0.5 \ell$

Стратегии перебора вершин:

- снизу вверх: Minimum Cost Complexity Pruning (MCCP), Reduced Error Pruning (REP), Minimum Error Pruning (MEP)
- сверху вниз: Pessimistic Error Pruning (PEP)

CART: деревья регрессии и классификации

Обобщение на случай регрессии: $Y = \mathbb{R}$, $y_v \in \mathbb{R}$,

$$C(a) = \sum_{i=1}^{\ell} (a(x_i) - y_i)^2 \to \min_{a}$$

Пусть U — множество объектов x_i , дошедших до вершины v Мера неопределённости — среднеквадратичная ошибка

$$\Phi(U) = \min_{y \in Y} \frac{1}{|U|} \sum_{x_i \in U} (y - y_i)^2$$

Значение y_{ν} в терминальной вершине ν — МНК-решение:

$$y_{\nu} = \frac{1}{|U|} \sum_{x_i \in U} y_i$$

Дерево регрессии a(x) — это кусочно-постоянная функция.

Leo Breiman et al. Classification and regression trees. 1984.

Пример. Деревья регрессии различной глубины

Чем сложнее дерево (чем больше его глубина), тем выше влияние шумов в данных и выше риск переобучения.

scikit-learn.org/stable/auto_examples/tree/plot_tree_regression.
html

CART: критерий Minimal Cost-Complexity Pruning

Среднеквадратичная ошибка со штрафом за сложность дерева:

$$C_{lpha}(a) = \sum_{i=1}^{\ell} (a(x_i) - y_i)^2 + lpha |V_{ exttt{MMCT}}|
ightarrow \min_{a}$$

При увеличении lpha дерево последовательно упрощается. Причём последовательность вложенных деревьев единственна.

Из этой последовательности выбирается дерево с минимальной ошибкой на тестовой выборке (Hold-Out).

Для случая классификации используется аналогичная стратегия усечения, с критерием Джини.

Определение решающего списка (Decision List, DL)

DL — это алгоритм классификации $a: X \to Y$, задаваемый закономерностями $R_1(x), \ldots, R_T(x)$ классов $c_1, \ldots, c_T \in Y$:

$$x \longrightarrow \boxed{R_1(x)} \xrightarrow{0} \cdots \xrightarrow{0} \boxed{R_T(x)} \xrightarrow{0} c_0$$

$$\downarrow^1 \qquad \qquad \downarrow^1 \qquad$$

Это способ представления знаний в виде *системы продукций* — последовательности правил «**если**-условие **то**-решение»

$$E(R_t,X^\ell)=rac{n_{c_t}(R_t)}{n_{c_t}(R_t)+p_{c_t}(R_t)} o ext{min} \quad -$$
 доля ошибок R_t на X^ℓ

Жадный алгоритм построения решающего списка

```
Вход: выборка X^{\ell}; параметры: T_{\text{max}}, I_{\text{min}}, E_{\text{max}}, \ell_0;
Выход: решающий список \{R_t, c_t\}_{t=1}^T;
U:=X^{\ell}:
для всех t := 1, ..., T_{max}
    выбрать класс c_t;
    поиск правила R_t по максимуму информативности:
    R_t := rg \max_{R} I(R,U) при ограничении E(R,U) \leqslant E_{	ext{max}};
    если I(R_t, U) < I_{\min} то выход;
    U := \{x \in U : R_t(x) = 0\} — не покрытые правилом R_t;
    если |U| \leqslant \ell_0 то выход;
```

Замечания к алгоритму построения решающего списка

- ullet Стратегии выбора класса c_t :
 - 1) все классы по очереди
 - 2) на каждом шаге определяется оптимальный класс
- Параметр E_{\max} управляет сложностью списка: $E_{\max} \downarrow \Rightarrow p(R_t) \downarrow, T \uparrow$
- Преимущества:
 - интерпретируемость модели и классификаций
 - простой обход проблемы пропусков в данных
- Недостаток: низкое качество классификации
- Другие названия:

комитет с логикой старшинства (Majority Committee) голосование по старшинству (Majority Voting) машина покрывающих множеств (Set Covering Machine, SCM)

Небрежные решающие деревья (Oblivious Decision Tree, ODT)

Решающая таблица: дерево глубины H, $D_v = \{0,1\}$; для всех узлов уровня h условие ветвления $f_h(x)$ одинаково; на уровне h ровно 2^{h-1} вершин; X делится на 2^H ячеек.

Классификатор задаётся таблицей решений $T\colon \{0,1\}^H o Y$:

$$a(x) = T(f_1(x), \ldots, f_H(x)).$$

Пример: задача XOR, H = 2.

R.Kohavi, C.-H.Li. Oblivious decision trees, graphs, and top-down pruning. 1995.

Алгоритм обучения ODT

Вход: выборка X^{ℓ} ; множество признаков F; глубина дерева H; Выход: признаки f_h , $h=1,\ldots,H$; таблица $T\colon\{0,1\}^H\to Y$;

для всех
$$h = 1, \ldots, H$$

предикат с максимальным выигрышем определённости:

$$f_h := \arg\max_{f \in F} \operatorname{Gain}(f_1, \dots, f_{h-1}, f);$$

классификация по мажоритарному правилу:

$$T(\beta) := Major(U_{H\beta});$$

Выигрыш от ветвления на уровне h по всей выборке X^{ℓ} :

$$\mathsf{Gain}\left(f_1,\ldots,f_h\right) = \Phi(X^\ell) - \sum_{\beta \in \{0,1\}^h} \frac{|U_{h\beta}|}{\ell} \, \Phi(U_{h\beta}),$$

$$U_{h\beta} = \{x_i \in X^{\ell} : f_s(x_i) = \beta_s, \ s = 1..h\}, \ \beta = (\beta_1, \dots, \beta_h) \in \{0, 1\}^h.$$

Вспомогательная задача бинаризации вещественного признака

Цель: сократить перебор предикатов вида $\lfloor f(x) \leqslant lpha \rfloor$.

Дано: выборка значений вещественного признака $f(x_i)$, $x_i \in X^{\ell}$. **Найти:** наилучшее (в каком-то смысле) разбиение области значений признака на относительно небольшое число зон:

$$\zeta_0(x) = [f(x) < d_1];$$
 $\zeta_s(x) = [d_s \le f(x) < d_{s+1}], \qquad s = 1, \dots, r-1;$
 $\zeta_r(x) = [d_r \le f(x)].$

Способы разбиения области значений признака на зоны

- 🚺 Жадная максимизация информативности путём слияний
- 2 Разбиение на равномощные подвыборки
- Разбиение по равномерной сетке «удобных» значений
- Объединение нескольких разбиений

Повышение «удобства» пороговых значений

Задача: на отрезке [a,b] найти значение x^* с минимальным числом значащих цифр.

Если таких x^* несколько, выбрать

$$x^* = \arg\min_{\mathbf{x}} \left| \frac{1}{2} (a+b) - \mathbf{x} \right|.$$

Алгоритм разбиения области значений признака на зоны

```
Вход: выборка X^{\ell}; класс c \in Y; параметры r и \delta_0;
Выход: D = \{d_1 < \cdots < d_r\} — последовательность порогов;
D:=\varnothing; упорядочить выборку X^{\ell} по возрастанию f(x_i);
для всех i = 2, ..., \ell
    если f(x_{i-1}) \neq f(x_i) и [y_{i-1} = c] \neq [y_i = c] то
     добавить порог \frac{1}{2}(f(x_{i-1}) + f(x_i)) в конец D
повторять
    для всех d_i \in D, i = 1, ..., |D| - 1
        \delta I_i := I(\zeta_{i-1} \vee \zeta_i \vee \zeta_{i+1}) - \max\{I(\zeta_{i-1}), I(\zeta_i), I(\zeta_{i+1})\};
    i := \arg \max \delta I_s;
    если \delta I_i > \delta_0 то
     слить зоны \zeta_{i-1}, \zeta_i, \zeta_{i+1}, удалив d_i и d_{i+1} из D_i;
пока |D| > r + 1;
```

Резюме в конце лекции

- Основные требования к логическим закономерностям:
 - интерпретируемость, информативность, различность.
- Преимущества решающих деревьев:
 - интерпретируемость,
 - допускаются разнотипные данные,
 - возможность обхода пропусков.
- Недостатки решающих деревьев:
 - переобучение,
 - чувствительность к шумам, составу выборки, критерию.
- Способы устранения этих недостатков:
 - редукция,
 - композиции (леса) деревьев (в следующей лекции).
- Упрощённые варианты решающих деревьев:
 - решающие списки для вывода знаний из данных;
 - ODT для построения композиций (Yandex MatrixNet).