MATH 110AH (Algebra)

October 5, 2022

1 9.23 Friday Week 0

Groups were invented by Évariste Galois circa 1830 to discuss symmetries in mathematical objects. For instance, the group G of "symmetries of equilateral triangles" contains a total of $3 \cdot 2 = 6$ elements consisting of rotations and reflections.

Theorem 1.1

Finite simple groups are classified.

Proving things about the integers

Try to use "simple" facts about the integers to prove complicated ones. Recall the number systems:

- the integers $\mathbb{Z} = \{..., -3, -2, -1, 0, 1, 2, 3, ...\}$,
- the rational numbers $\mathbb{Q} = \left\{ \frac{a}{b} : a, b \in \mathbb{Z}, b \neq 0 \right\}$, and
- the real numbers \mathbb{R} contains \mathbb{Q} , $\sqrt{2}$, π , . . . , "all the points on the line."

Definition 1.2

A **field** \mathbb{F} (e.g. \mathbb{Q} , \mathbb{R} , \mathbb{C} , not \mathbb{Z}) is a set with elements $0, 1 \in \mathbb{F}$, $0 \ne 1$, and operators + (addition) and (multiplication), where for all $x, y \in \mathbb{F}$, $x + y, xy \in \mathbb{F}$, such that

- 1. + is associative, commutative, 0 is its identity, and has inverses. That is,
 - $\forall x, y, z \in \mathbb{F} : (x + y) + z = x + (y + z),$
 - $\forall x, y \in \mathbb{F} : x + y = y + x$,
 - $\forall x \in \mathbb{F} : 0 + x = x$, and
 - $\forall x \in \mathbb{F} \exists y \in \mathbb{F} : x + y = 0$, and writing y = -x.
- 2. · is associative, commutative, 1 is its identity, and nonzeros have inverse. That is,
 - $\forall x, y, z \in \mathbb{F} : (xy)z = x(yz),$
 - $\forall x, y \in \mathbb{F} : xy = yx$,
 - $\forall x \in \mathbb{F} : 1 \cdot x = x$, and
 - $\forall x \in \mathbb{F} : x \neq 0 \Rightarrow \exists y \in \mathbb{F} : xy = 1$.
- 3. Distributive law: $\forall x, y, z \in \mathbb{F} : x(y+z) = xy + xz$.

Definition 1.3

An **ordered field** (for example, \mathbb{R} , \mathbb{Q} , not \mathbb{C}) \mathbb{F} is a field with a given subset $P \subset \mathbb{F}$ called the positive elements such that

- 1. for all $x \in \mathbb{F}$, exactly one of $x \in P$, x = 0, $-x \in P$ is true (we say $x \in \mathbb{F}$ is negative if $-x \in P$), and
- 2. for all $x, y \in P$, x + y, $xy \in P$.

How to use these axioms to prove inequalities

Definition 1.4

For an ordered field \mathbb{F} , we say for x, $y \in \mathbb{F}$ that x < y if y - x = y + (-x) is positive (so x is positive iff x > 0).

Likewise $x \le y$ if y - x is positive or 0.

Lemma 1.5

- 1. For any $x, y \in \mathbb{R}$, exactly one of x < y, x = y, x > y is true.
- 2. 1 is positive.
- 3. For $a, b, c \in \mathbb{R}$, if a < b then a + c < b + c.
- 4. If $a, b, c \in \mathbb{R}$, $a \ge 0$, and $b \ge c$, then $ab \ge ac$.

Proof.

- 1. y x is either positive, negative, or 0.
- 2. Note that $1 \neq 0$. Then either 1 is positive or -1 is positive. If -1 is positive then $(-1)^2 = 1$ is positive, resulting in a contradiction.
- 3. Note that (b + c) (a + c) = b a is positive.
- 4. Note that for all $a \in \mathbb{R}$ we have $0 \cdot a = 0$. Then

$$a(b-c) \ge 0$$

$$ab - ac \ge 0$$

$$ab \ge ac.$$

The big property of the integers is the inductive or well-ordering principle

The integers \mathbb{Z} are a subset of \mathbb{Q} (or \mathbb{R}). There are $0, 1 \in \mathbb{Z}$ and if $x, y \in \mathbb{Z}$ then $x + y, xy, -x \in \mathbb{Z}$.

Theorem 1.6: Well-ordering principle

Let $\mathbb{Z}^+ = \{x \in \mathbb{Z} : x > 0\} = \{1, 2, 3, 4, \dots\}$. Let *S* be a nonempty subset of \mathbb{Z}^+ . Then *S* contains a smallest element, that is,

$$\exists \, x \in S \, \forall \, y \in S : x \leq y.$$

An example of what we can prove using this is:

Proposition 1.7

There is no integer N with 0 < N < 1.

Proof. Let $S = \{n \in \mathbb{Z} : 0 < n < 1\}$. Let $S \neq \emptyset$, then by the well-ordering principle S has a smallest element N. Since N < 1, $N^2 < N \cdot 1 = N$. Since N^2 is also an integer, this is a contradiction. Then $S = \emptyset$, that is, there is no integer $N \in (0,1)$. □

Theorem 1.8: Induction

For each $n \in \mathbb{Z}^+$, let P(n) be a statement that could be true or false. Suppose P(1) is true and that for any $n \in \mathbb{Z}^+$, if P(n) is true then P(n+1) is true. Then P(n) is true for all $n \in \mathbb{Z}^+$.

Proof. Let $S = \{n \in \mathbb{Z}^+ : P(n) \text{ is false}\}$. Suppose $S \neq \emptyset$, then by the well-ordering principle S has a smallest element N. Since P(1) is true, $N \neq 1$. Then N > 1. Then $N \geq 2$ since there are no integers in (1,2). Then $N - 1 \in \mathbb{Z}^+$. Since P(N) would be true if P(N - 1) were true, P(N - 1) is not true. Then $N - 1 \in S$, a contradiction. Then $S = \emptyset$. □

2 9.26 Monday Week 1

Lemma 2.1

For every $x \in \mathbb{R}$, $0 \cdot x = 0$.

Proof. By the distributive law, 0 = 0 + 0, so for any $x \in \mathbb{R}$, we have

$$0 \cdot x = (0+0) \cdot x$$
$$0 \cdot x + (-(0 \cdot x)) = (0+0) \cdot x + (-(0 \cdot x))$$
$$0 = 0 \cdot x.$$

Lemma 2.2

For every $x \in \mathbb{R}$, $(-1) \cdot x = -x$.

Proof. Note that $0 = 0 \cdot x = (1 + (-1)) \cdot x = 1 \cdot x + (-1) \cdot x = x + (-1) \cdot x$. Adding -x to both sides, we have $-x = (-1) \cdot x$.

Lemma 2.3

For any $x, y, z \in \mathbb{R}$ with $x \neq 0$, if xy = xz, then y = z.

Proof. We know, since $x \neq 0$, there exists a real number \overline{x} such that $x\left(\frac{1}{x}\right) = 1$. Then if xy = xz, then $\left(\frac{1}{x}\right)xy = \left(\frac{1}{x}\right)xz$, so $1 \cdot y = 1 \cdot z$, that is, y = z.

Proving things about the integer, gcd, prime factorization

Definition 2.4

For integers x and y, we say x|y or "x divides y" or "y is a multiple of x" if $\exists z \in \mathbb{Z} : xz = y$. That is, if $x \neq 0$, $\frac{y}{x}$ is an integer.

Remark. For any $x \in \mathbb{Z}$, 1|x. Also, for any $x \in \mathbb{Z}$, x|0 since $x \cdot 0 = 0$.

Also, if *x* is a nonzero integer then any integer *m* with m|x has $|m| \le |x|$.

Example 2.5. The integers dividing $10 = 2 \cdot 5$ are -10, -5, -2, -1, 1, 2, 5, 10.

Remark. One fact about \mathbb{R} is the Archimedean property: for every $x \in \mathbb{R}$, there exists an integer y with x < y. It follows, by multiplying by -1, $\forall x \in \mathbb{R} \ \exists \ y \in \mathbb{Z} : y < x$.

Notation For any $x \in \mathbb{R}$, $\lfloor x \rfloor :=$ the largest integer $\leq x$ and $\lceil x \rceil :=$ the smallest integer $\geq x$.

This follows form well-ordering that a subset of *Z*, bounded below and not empty, has a smallest element.

Definition 2.6

A subset $S \subset \mathbb{R}$ is **bounded below** if $\exists a \in \mathbb{R} \ \forall x \in S : x \geq a$.

Theorem 2.7: Division algorithm

Let x be a positive integer and y any integer. Then there are (unique) integers q and r such that y = qx + r, and $0 \le r \le x - 1$.

Proof. Let $q = \left\lceil \frac{y}{x} \right\rceil (\in \mathbb{Z})$. Define $r = y - qx (\in \mathbb{Z})$. Clearly, y = qx + r. Here $q \le \frac{y}{x}$, so $qx \le y$ (since x > 0), so $r \ge 0$.

Also, $q+1 > \frac{y}{x}$. So (since x > 0) qx + x > y, so r = y - qx < x. Since $r \in \mathbb{Z}$, $r \le x - 1$.

Definition 2.8

A positive integer p is **prime** if p > 1 and the only positive integers dividing p are 1 and p.

Definition 2.9

For integers x and y not both 0, the **greatest common divisor** = gcd(x, y) is the largest integer that divides x and y.

That makes sense because 1|x and 1|y, and (if $y \neq 0$), any integer dividing y is $\leq |y|$.

Theorem 2.10: Euclid, 300 BCE

For any integers x, y, not both 0, there are integers m, n with gcd(x, y) = mx + ny.

Proof. The hypothesis and conclusion do not change if x or y is multiplied by −1. Assume $x, y \ge 0$. By switching x and y if needed, assume $0 \le x \le y$ and y > 0 since they are not both 0.

We prove this by induction on y.

For y = 1, we have x = 0 or x = 1, and the conclusion is true: $gcd(0, 1) = 1 = 0 \cdot 0 + 1 \cdot 1$ and $gcd(1, 1) = 1 = 0 \cdot 1 + 1 \cdot 1$.

Suppose now that $y \ge 2$ and the result holds for smaller y's. If x = 0 then $gcd(0, y) = y = 0 \cdot 0 + 1 \cdot y$. If x = y then $gcd(x, y) = y = 0 \cdot x + 1 \cdot y$.

Now assume 0 < x < y. Then the division algorithm gives y = qx + r where $q, r \in \mathbb{Z}$ and $0 \le r \le x - 1$. Then gcd(x, y) = gcd(r, x) because an integer divides both x and y iff it divides r = y - qx. Using induction, gcd(x, y) = gcd(r, x) = mr + nx for some $m, n \in \mathbb{Z}$. Then gcd(x, y) = m(y - qx) + nx = (n - mq)x + my.

Then induction is complete.

The Euclidean algorithm for the gcd

Let us compute gcd(45, 66). Here $66 = 1 \cdot 45 + 21$ where q = 1 and r = 21, so gcd(45, 66) = gcd(21, 45). Next, $45 = 2 \cdot 21 + 3$, so gcd(21, 45) = gcd(3, 21). Next, $21 = 7 \cdot 3 + 0$, so gcd(3, 21) = gcd(0, 3) = 3.

Theorem 2.11

Every positive integer can be written as a product of (finitely many) prime numbers $n = \prod_{i=1} = p_1 \cdots p_r$, where p_1, \dots, p_r are prime and $r \ge 0$.

Note. By convention, 1 is the product of 0 prime numbers.

Proof. We use induction on $n \in \mathbb{Z}^+$.

The theorem is true for n = 1.

Suppose that n > 1 and that the theorem holds for smaller positive integers. If n is prime, we are done. Otherwise, there is an integer m, 1 < m < n, with m|n. Then both m and $\frac{n}{m}$ are positive integers < n. So they are both products of primes. So $n = m(\frac{n}{m})$ is a product of primes.

Lemma 2.12

If a prime number p divides the product mn of integers, then p|m or p|n.

Proof. Suppose that p|mn and p|m. We want to show that p|n.

Since $p \mid m$, gcd(p, m) = 1. So by Euclidean algorithm, we write 1 = pu + mv for some integers u, v.

We can also write mn = pw for some $w \in \mathbb{Z}$. So, multiplying 1 = pu + mv by n, we have n = npu + mnv = p(nu + wv). So p|n.

3 9.28 Wednesday Week 1

Theorem 3.1: Unique factorization of integers, Euclid

Every positive integer n can be written *uniquely* as a product of prime numbers, that is, $n = \prod_{i=1}^r p_i$ where $p_1, \dots p_r$ are prime. The uniqueness is up to reordering of the p_i 's.

Proof. We use (from last time) if a prime number p divides mn (for some $m, n \in \mathbb{Z}$), then p|m or p|n. We showed existence of a prime factorization of $n \in \mathbb{Z}^+$.

For uniqueness: suppose $n = \prod_{i=1}^{r} p_i = \prod_{i=1}^{s} q_i$ with p_i 's and q_i 's all prime and $r, s \ge 0$.

If r = 0, then n = 1. Then s = 0: a product of ≥ 1 prime number is ≥ 2 since each prime is ≥ 2 .

Otherwise, r > 0. Then p_1 makes sense and it is prime. Then p_1 divides $n = \prod_{i=1}^{s} q_i$. By previous result, p_1 must divide q_i for some $1 \le i \le s$. By reordering the q_i 's, we can assume that i = 1. Since q_i is prime and $p_1 > 1$, we must have $p_1 = q_1$. Then

$$p_1\left(\prod_{i=2}^r p_i\right) = q_1\left(\prod_{i=2}^s q_i\right) = p_1\left(\prod_{i=2}^s q_i\right).$$

Since $p_1 \neq 0$, it follows that $\prod_{i=2}^r p_i = \prod_{i=2}^s q_i$.

That finishes the proof, by induction on r.

Equivalence relations

Definition 3.2

The **product** of two sets A and B, $A \times B$, is the set of ordered pairs (a, b) where $a \in A$ and $b \in B$. Here $(a_1, b_1) = (a_2, b_2)$ iff $a_1 = a_2$ and $b_1 = b_2$.

 $|A \times B| = |A| |B|$ if A, B are finite sets.

Definition 3.3

A **relation** of a set *A* with a set *B* is a subset $R \subseteq A \times B$. We write aRb to mean that $(a,b) \in R$.

Example 3.4. A function $f: A \to B$ determines a relation, the **graph** $R = \{(a, f(a)) : a \in A\}$.

Definition 3.5

An **equivalence relation** on a set *A* is a relation $R \subseteq A \times A$ such that it is

- 1. reflexive $(\forall a \in A : aRa)$,
- 2. symmetric $(\forall a, b \in A : aRb \Rightarrow bRa)$, and
- 3. transitive $(\forall a, b, c \in A : aRb \land bRc \Rightarrow aRc)$.

Example 3.6. For any set A, **equality** is an equivalence relation on A.

Example 3.7. Triangles in \mathbb{R}^2 under **congruence** (studied by Euclid): we say that a triangle a is "congruent"

to triangle *b* if there is an **isometry** $f: \mathbb{R}^2 \to \mathbb{R}^2$ that maps *a* to *b*.

Example 3.8. The relation on $\mathbb{Z} \times \{\mathbb{Z} \setminus \{0\}\}$ given by $(a, b) \sim (c, d)$ if ad = bc. In fact this relation is equivalent to $\frac{a}{b} = \frac{c}{d} \in \mathbb{Q}$. This equivalence relation "ensures" that $\frac{1}{3} = \frac{2}{6} = \frac{3}{9} = \cdots$. It is a way to constructing \mathbb{Q} from \mathbb{Z} .

Definition 3.9

Let \sim be an equivalence relation on a set A. For each element a let \overline{a} or [a], the **equivalence class of** a, be the set $\{b \in A : a \sim b\}$ ($\subseteq A$).

Let \overline{A} be the set of subsets of A of the form \overline{a} for some $a \in A$. \overline{A} , or A/\sim , is called the set of **equivalence** classes for \sim .

Define a function $f: A \to \overline{A}$ (depending on \sim) by $f(a) = \overline{a} \in \overline{A}$. This is the **natural** or **canonical surjection** associated to \sim .

Example 3.10. For the relation from Example 3.8 on $\mathbb{Z} \times (\mathbb{Z} \setminus \{0\})$ A, we can define $\mathbb{Q} = A/\sim$.

Example 3.11. Define an equivalence relation on \mathbb{Z} by $a \sim b$ if a - b is even. Some equivalence classes are

$$\overline{0} = \{b \in \mathbb{Z} : 0 \sim b\} = \{\dots, -4, -2, 0, 2, 4, \dots\}$$
 $\overline{1} = \{\dots, -3, -1, 1, 3, \dots\}$
 $\overline{5} = \overline{1}$

Definition 3.12

 $\mathbb{Z}/2 := \mathbb{Z}/\sim$ for the relation in Example 3.11. Note that this set has exactly 2 elements.

Proposition 3.13

Let \sim be an equivalence relation on a set A. Then $A = \bigsqcup_{u \in \overline{A}} u$.

Proof. First we show that $A = \bigcup_{u \in \overline{A}} u$. For each $u \in \overline{A}$, u is a subset of \overline{A} . Then $\bigcup_{u \in \overline{A}} u \subseteq A$. Conversely let $a \in A$. Then $a \in \overline{a}$ by reflexivity of \sim . So $A = \bigcup_{u \in \overline{A}} u$.

Next we show that given $u, b \in \overline{A}$, if $u \neq v$ then $u \cap v = \emptyset$. Equivalently, we show that if $u, v \in \overline{A}$ and $u \cap v \neq \emptyset$ then u = v. The assumption means that there is an element $a \in A$ such that $a \in u$ and $a \in v$. By definition of \overline{A} , $u = \overline{b}$ and $v = \overline{c}$ for some $b, c \in A$. Since $a \in u = \overline{b}$ and $a \in v = \overline{c}$, $b \sim a$ and $c \sim a$. By symmetry and transitivity, $b \sim a \sim c \Rightarrow b \sim c$.

To show that $\overline{b} = \overline{c}$, pick any element $e \in \overline{b}$, that is, $b \sim e$, $c \sim b \sim e$ so $c \sim e$. Then $e \in \overline{c}$. The same proof shows that any element in \overline{c} is also in \overline{b} . Then $\overline{b} = u = v = \overline{c}$.

4 9.30 Friday Week 1

Modular arithmetic (Elman section 6)

Definition 4.1

Let $m \in \mathbb{Z}^+$, $a, b \in \mathbb{Z}$. We say **a** is congruent to **b** modulo m, or $a \equiv b \pmod{m}$, if $m \mid (a - b)$.

For each $m \in \mathbb{Z}^+$, this is an equivalence relation on \mathbb{Z} . Given that we can define (given $m \in \mathbb{Z}^+$), for $a \in \mathbb{Z}$,

$$\overline{a} = [a]_n$$

= $\{x \in \mathbb{Z} : x \equiv a \pmod{m}\}$
= $\{a + km : k \in \mathbb{Z}\}$

is called the **residue class** of a modulo m. This subset is most often called $a + m\mathbb{Z}$.

Example 4.2.

$$\overline{0} = 0 + m\mathbb{Z} = m\mathbb{Z}$$
$$= \{\dots, -2m, -m, 0, m, 2m, \dots\}$$

Proposition 4.3

For $m \in \mathbb{Z}^+$, congruence mod m is an equivalence relation on \mathbb{Z} .

Proof. Reflexive: To show that for any $a \in \mathbb{Z}$, $a \equiv a \pmod{m}$, that is $m \mid (a - a)$. Here $0 \cdot m = 0 = a - a$.

Symmetric: To show that for any integers $a, b \in \mathbb{Z}$, if $a \equiv b \pmod{m}$, then $b \equiv a \pmod{m}$. That is, if $m \mid (a - b)$, then $m \mid (b - a)$. Indeed, $\exists x \in \mathbb{Z}/m : x = a - b$, then m(-x) = b - a.

Transitive: To show that for $a, b, c \in \mathbb{Z}$, if $a \equiv b \pmod{m}$ and $b \equiv c \pmod{m}$ then $a \equiv c \pmod{m}$. That is, we are given that $m \mid (a - b)$ and $m \mid (b - c)$. Here a - c = (a - b) + (b - c), so $m \mid (a - c)$. Indeed, if a - b = xm and b - c = ym, then a - c = (x + y)m and $x + y \in \mathbb{Z}$.

Definition 4.4

For $m \in \mathbb{Z}^+$, let \mathbb{Z}/m be the set of equivalence classes $\mathbb{Z}/(\equiv \pmod{m})$.

This concept was emphasized by Gauss circa 1800.

Proposition 4.5

The set \mathbb{Z}/m has exactly m elements.

Explicitly: $\mathbb{Z}/m = \left\{\overline{0}, \overline{1}, \dots, \overline{m-1}\right\}$ and those m elements of \mathbb{Z}/m are all different.

Equivalently: \mathbb{Z} is the *disjoint* union of the subsets $\overline{0}, \overline{1}, \dots, \overline{m-1}$.

Proof. By the division algorithm, for any $a \in \mathbb{Z}$, we can write (uniquely) a = qm + r with $q \in \mathbb{Z}$, and $r \in \mathbb{Z}$ with $0 \le r \le m - 1$. So every integer is equivalent to an integer $\{0, 1, \dots, m - 1\}$.

Suppose that $a, b \in \{0, 1, ..., m-1\}$ with $a \equiv b \pmod{m}$. Then $m \mid (a-b)$. If $a \neq b$, then $a - b \neq 0$, then $|m| \leq |a-b|$, resulting in a contradiction.

Proposition 4.6

Let $a, b, c, d \in \mathbb{Z}$ and $m \in \mathbb{Z}^+$. If $a \equiv b \pmod{m}$ and $c \equiv d \pmod{m}$, then $a + c \equiv b + d \pmod{m}$ and $ac \equiv bd \pmod{m}$.

Proof. Exercise on homework 2.

Corollary 4.7

+ and · are well-defined operations on \mathbb{Z}/m , that is, we have functions +: $\mathbb{Z}/m \times \mathbb{Z}/m \to \mathbb{Z}/m$ and ·: $\mathbb{Z}/m \times \mathbb{Z}/m \to \mathbb{Z}/m$ given by $\overline{a} + \overline{b} = \overline{a + b}$ and $\overline{a} \cdot \overline{b} = \overline{a \cdot b}$. (We often write $0 \in \mathbb{Z}/m$ to mean $\overline{0}$ and 1 to mean $\overline{1}$.)

Definition 4.8

A **commutative ring** R is a set with given elements $0 \in R$ and $1 \in R$ and functions $+: R \times R \to R$ and $:: R \times R \to R$ such that

- 1. + is associative, commutative, has 0 as its identity, and has additive inverses,
- 2. · is associative, commutative, and has 1 as its identity, and
- 3. are distributive: $\forall a, b, c \in R : a(b + c) = ab + ac$.

Remark. A **field** is a commutative ring *R* such that $1 \neq 0 \in R$, and $\forall x \in R : x \neq 0 \Rightarrow \exists y \in \mathbb{Z} : xy = 1$.

Example 4.9. Every field (*e.g.*, \mathbb{Q} , \mathbb{R} , or \mathbb{C}) is a commutative ring.

Example 4.10. \mathbb{Z} is a commutative ring but *not* a field.

Example 4.11. For any $m \in \mathbb{Z}^+$, \mathbb{Z}/m is a commutative ring with the operations + and \cdot that we defined.

Example 4.12. For any commutative ring R, the set of polynomials R[x] is also a commutative ring. Here an element of R[x] is an expression $a_0 + a_1x + \cdots + a_nx^n$ for some $n \in \mathbb{N} = \{0, 1, 2, \dots\}$ and $a_0, \dots, a_n \in R$. + and \cdot are defined as expected.

Definition 4.13

For a commutative ring R, the set of **units** in R is $R^* := \{a \in R : \exists x \in R : ax = 1\}$.

Example 4.14. The **zero ring** is the ring $\{0\}$ with 1 element. Then 1 = 0 in this ring. This is "isomorphic" to the ring $\mathbb{Z}/1$.

Lemma 4.15

For any
$$m \in \mathbb{Z}^+$$
, $(\mathbb{Z}/m)^* = \begin{cases} \overline{a} : a \in \mathbb{Z} \land & \gcd(a,m) = 1 \end{cases}$

"a and m are relatively prime or coprime"

Proof. Let $\overline{a} \in (\mathbb{Z}/m)^*$. That means that $\exists x \in \mathbb{Z} : ax \equiv 1 \pmod{m}$. That is, $m \mid (ax - 1)$. So $\exists y \in \mathbb{Z} : ax - 1 = my$. This implies that if $g = \gcd(a, m)$, then $g \mid 1$. So g = 1.

Let $a \in \mathbb{Z}$ with gcd(a, m) = 1. We want to show that \overline{a} is a unit in \mathbb{Z}/m . That is, we want to find $x \in \mathbb{Z}$ such that $ax \equiv 1 \pmod{m}$. We know (by Euclid) that we can write 1 = ua + vm for some $u, v \in \mathbb{Z}$. So $ua \equiv 1 \pmod{m}$.

Corollary 4.16

For any prime number p, the ring \mathbb{Z}/p is a **field**.

Proof. $1 \not\equiv 0 \pmod{p}$ (since $p \ge 2$) and for every $x \in 1, 2, ..., p-1$, we have gcd(x, p) = 1, so x is *invertible* in \mathbb{Z}/p .

Remark. We most oftenly write " $5 \in \mathbb{Z}/7$ " to mean $\overline{5} \in \mathbb{Z}/7$. So, for example, "5 = 12 in the field $\mathbb{Z}/7$."

Example 4.17. What is $\frac{1}{2} \in \mathbb{Z}/7$?

This makes sense because $2 \neq 0$ in $\mathbb{Z}/7$, and $\mathbb{Z}/7$ is a field. We have $\frac{1}{2} = 4$ in $\mathbb{Z}/7$, since $4 \cdot 2 = 8 = 1 \in \mathbb{Z}/7$.

Theorem 4.18: Chinese remainder theorem (Sun-Tzu, 3rd century CE; Aryabhata, 6th century CE)

Let m_1, \ldots, m_r be positive integers that are *pairwise coprime* (that is, if $i \neq j$ then $gcd(m_i, m_j) = 1$). Let $c_1, \ldots, c_r \in \mathbb{Z}$. Then there is an integer x such that $x \equiv c_1 \pmod{m_1}, \ldots$, and $x \equiv c_r \pmod{m_r}$.

Moreover, x is unique modulo $\prod m_i$ (*i.e.*, if y is any integer satisfying the same r congruences, then $x \equiv y \pmod{m_1 \cdots m_r}$).

Corollary 4.19

For positve integers m_1, \ldots, m_r that are pairwise coprime, there is a one-to-one correspondence $\mathbb{Z}/m \stackrel{\sim}{\simeq} (\mathbb{Z}/m_1) \times \cdots \times (\mathbb{Z}/m_r)$: $\overline{a} \mapsto (\overline{a}, \ldots, \overline{a})$.

So we can mostly reduce studying $\mathbb{Z}/p_1^{e_1}\cdots p_r^{e_r}$ (with p_1,\ldots,p_r are *distinct* primes, $e_1,\ldots,e_r\geq 1$) to the ring $\mathbb{Z}/p_1^{e_1},\ldots,\mathbb{Z}/p_r^{e_r}$

5 10.3 Monday Week 2

Frequently asked question

Q. The ring \mathbb{Z}/m ??

A. This is \mathbb{Z} , but with some integers made equal to others.

Example 5.1. What is $\frac{1}{2} \in \mathbb{Z}/17$ (a field, since 17 is prime)?

9, since $2 \cdot 9 = 18 = 1 \in \mathbb{Z}/17$.

Notation: Sometimes we write $(a, b) := \gcd(a, b)$ for some $a, b \in \mathbb{Z}$.

Lemma 5.2

Let m, n, a_1, \ldots, a_r be integers.

1. If $(a_i, m) = 1$, then $(a_1 \cdots a_r, m) = 1$.

2. If $(a_i, a_j) = 1$ for all $i \neq j$, and if $a_i | n$, then $a_1 \cdots a_r | n$.

Proof.

1. By induction, it suffices to prove this for r = 2.

Use that we can write, $1 = x_1a_1 + y_1m = x_2a_2 + y_2m$ for some $x_1, y_1, x_2, y_2 \in \mathbb{Z}$. Then

$$1 = (x_1a_1 + y_1m)(x_2a_2 + y_2m)$$
$$= x_1x_2a_1a_2 + km$$

where $k \in \mathbb{Z}$.

Then $(a_1a_2, m) = 1$.

2. Use induction on r. By induction, $a_1 \cdots a_{r-1} | n$. By part 1, $(a_1 \cdots a_{r-1}, a_r) = 1$. So we can write

$$1 = a_1 \cdots a_{r-1} x + a_r y$$

for some $x, y \in \mathbb{Z}$. So (multiplying by n)

$$n = a_1 \cdots a_{r-1} nx + a_r ny.$$

Here $a_1 \cdots a_{r-1} a_r | a_1 \cdots a_{r-1} nx$ because $a_r | n$ and $a_1 \cdots a_{r-1} a_r | a_r ny$ since $a_1 \cdots a_{r-1} | n$. So $a_1 \cdots a_r | n$.

Theorem 5.3: Chinese remainder theorem

Let m_1, \ldots, m_r be pairwise coprime positive integers. Let $c_1, \ldots, c_r \in \mathbb{Z}$. Then there is an integer x such that

$$x \equiv c_1 \pmod{m_1},$$

 \vdots
 $x \equiv c_r \pmod{m_r}.$

Moreover, x is unique modulo $m_1 \cdots m_r$.

Example 5.4. There is ans integer x which is $\equiv 1 \pmod{3}$ and $\equiv 3 \pmod{4}$.

Example 5.5. There is no integer x such that $x \equiv 5 \pmod{8}$ (odd) and $x \equiv 4 \pmod{12}$ (even).

Proof. We first show existence.

Let
$$m = m_1 \cdots m_r$$
. For $i = 1, \ldots, r, n_i = \frac{m}{m_i} = \prod_{j \neq i} m_j$.

By the lemma, $(m_i, n_i) = 1$ for each i. So we can write (for each i) $1 = d_i m_i + e_i n_i$ for some $d_i, e_i \in \mathbb{Z}$. Let $b_i = e_i n_i$ for i = 1, ..., r. Then $1 = d_i m_i + b_i$ and for each $j \neq i, m_i \mid b$.

Here for each $1 \le i \le r$, b_i is $\equiv 1 \pmod{m_i}$ and is $\equiv 0 \pmod{m_j}$ for each $j \ne i$.

Define $x := c_1b_1 + \cdots + c_rb_r$.

We then show uniqueness. Suppose $y \in \mathbb{Z}$ also satisfies these r congruences. Then $x \equiv y \pmod{m_i}$ for each i, so $m_i|x-y$ for each $i=1,\ldots,r$. Since m_1,\ldots,m_r are pairwise coprime, Lemma 5.2 implies $m_1\cdots m_r|x-y$. That is, $x \equiv y \pmod{m_1\cdots m_r}$.

Groups

Definition 5.6

A **group** G is a set with an element $1 \in G$ (or 1_G) and a function $: G \times G \to G$ such that

- 1. it is associative: $\forall x, y, z \in G : (xy)z = x(yz) \in G$,
- 2. 1 is the identity: $\forall x \in G : 1 \cdot x = x \land x \cdot 1 = x$, and
- 3. there are inverses: $\forall x \in G \exists y \in G : xy = 1 \land yx = 1$.

If the group operation is **commutative** (*i.e.* $\forall x, y \in G : xy = yx$), we call G an **abelian group** (Niels Henrik Abel, 1810).

Example 5.7 (The permutation group). Let S be a set. Define $\Sigma(S) := \{f : S \to S : f \text{ is bijective}\}$. This is a group under **composition** of functions. That is, if $f, g \in \Sigma(S)$, define $fg \in \Sigma(S)$ by $(fg)(s) = f(g(s)) \in S$ for any $s \in S$.

The element $1 \in \Sigma(S)$ is the **identity** function, $1_{\Sigma(S)}(s) = s$ for every $s \in S$.

Inverses are given by: for $f \in \Sigma(s)$, $f^{-1} \in \Sigma(S)$ is the function $f^{-1}(s) =$ the unique element $t \in S$ such that f(t) = s.

Proof of associativity for $\Sigma(S)$

Let f, g, $h \in \Sigma(S)$, what is (fg)h and f(gh)?

For any $s \in S$,

$$((fg)h)(s) = (fg)(h(s))$$
$$= f(g(h(s))) \in S$$

and

$$(f(gh))(s) = f((gh)(s))$$
$$= f(g(h(s))).$$

So they are equal.

Note. If $|S| \ge 3$, then the group $\Sigma(S)$ is *not* abelian.

Definition 5.8

For $n \in \mathbb{Z}^+$, the **symmetric group** S_n means $\Sigma(\{1, 2, ..., n\})$.

Proof that S_3 is not abelian

Let $f, g \in S_3$ be f(1) = 1, f(2) = 3, f(3) = 2, and g(1) = 2, g(2) = 1, g(3) = 3. Then (fg)(1) = 3, (fg)(2) = 1, (fg)(3) = 2, and (gf)(1) = 2, (gf)(2) = 3, (gf)(3) = 1.

Lemma 5.9

The inverse of an element x in a group G is unique so we can call it x^{-1} . More strongly if $xy = 1 \in G$, then $y = x^{-1}$ (and so yx = 1). Likewise, if yx = 1, then $y = x^{-1}$ (and so xy = 1).

Proof. Suppose that y and z in G are both inverses of x in G. Then $y = 1 \cdot y = (zx)y = zxy = z(xy) = z \cdot 1 = z$. So y = z, *i.e.*, the inverse is unique.

Next, suppose $y \in G$ with xy = 1. Multiply both sides *on the left*, we have $y = 1 \cdot y = (x^{-1}x)y = x^{-1}(xy) = x^{-1} \cdot 1 = x^{-1}$. If yx = 1, then $(yx)x^{-1} = 1 \cdot x^{-1}$, so $y = x^{-1}$.

6 10.5 Wednesday Week 2

Lemma 6.1

The identity element in a group G is unique. More strongly, if there are elements e, $x \in G$ such that ex = x, then e = 1. (Likewise, if xe = x, then e = 1.)

Proof. Given $e, x \in G$ with ex = x, multiply on the *right* by x^{-1} and we get $e = exx^{-1} = xx^{-1} = 1$. For the other direction, if xe = x, then, multiplying by x^{-1} on the *left*, we have $e = x^{-1}xe = x^{-1}x = 1$.

Lemma 6.2

For any elements x, y in a group G, $(xy)^{-1} = y^{-1}x^{-1}$.

Proof. As we showed, it suffices to show that $(xy)y^{-1}x^{-1} = 1$. By associativity, $(xy)y^{-1}x^{-1} = x(yy^{-1})x^{-1} = x \cdot 1 \cdot x^{-1} = xx^{-1} = 1$. So $(xy)^{-1} = y^{-1}x^{-1}$.

Definition 6.3

For an element a in a group G and $n \in \mathbb{Z}^+$ define $a^n := \underbrace{a \cdots a}_{n \text{ times}} \in G$. (This makes sense by associativity.)

Also, define $a^0 = 1$ (for any $a \in G$). Also, for $m \in \mathbb{Z}^+$, define $a^{-m} := (a^{-1})^m$.

One can check that $a^{m+n} = a^m a^n$ for all $a \in G$, $m, n \in \mathbb{Z}$.