

What is a natural grouping among these objects?

School Employees

Females

Males

Cluster Analysis

• 將相似的事物歸類。它的原則是同一類中有較大相似性, 不同類有較大差異性。

●非監督式學習

• 常用在發現不同的客戶群,了解客戶群 的內在特點和規律

Agenda

Traditional Cluster

• 距離 -

歐式距離、曼哈頓距離、馬氏距離....

• 階層式分群法 -

凝聚層次法 - 自我一群,逐漸聚合

分離分層法 - 全部一群,直到完全分離

Traditional Cluster

• 分割式分群法 -KMeans

Traditional Cluster

- 高維度和大型數據表現不佳 (大部分我們遇到的都是高維度)
- 高維空間數據分佈稀疏,數據間距離幾乎相等
- 高維空間存在大量無關屬性

實際遇到的狀況都是高維度要怎麼解決?

Autoencoder = Encoder + Decoder

Autoencoder = Encoder + Decoder

decoder

Reference from BGG

Deep Cluster = AutoEncoder + Traditional Cluster

有那麼簡單就好了!!!

AutoEncoder 跟數據相關程度很高

僅適用於與訓練集相似的樣本

Sparse AE

L2 Regularizer

如果W的分量大的話就抑制多一點,如果分量小 就抑制少一點,會留下很多不為O的微小分量

Weight-Elimination L2 Regularizer

不管W大或小,它受到抑制的值大小接近的,因此就可以使得部分W可以為0,達成Sparse的目的。

Denoising AE

- 故意破壞原始數據
- 盡可能的逼近還原未被 污染的原數據
- 能够在一定程度上對抗原始數據的污染、缺失等情况

Stacked AE

- 逐層進行
- 上一層Input是下一層Output
- 每層Input Output相同

舉例來說要做n -> m -> k 的網絡
 實作上先做 n -> m -> n 得到 n -> m的變換
 再做 m -> k -> m 得到 m -> k的變換

Stack 將AutoEncoder改成深度結構

Deep Embedded Clustering

將上述集大成

Two phases:

- (1) parameter initialization with a Deep Autoencoder (Vincent et al., 2010)
- (2) parameter optimization (i.e. KL divergence clustering)

KL Divergence

兩個機率分佈P和Q差別的非對稱性的度量,也就是機率分布的差異

量化機率分布的訊息

 $H(X) = \sum_{x \in X} P(x) \log[1/P(x)]$

兩個分布的距離

 $D_{KL}(Q||P) = \sum_{x \in X} Q(x)[\log(1/P(x))] - \sum_{x \in X} Q(x)[\log[1/Q(x)]] = \sum_{x \in X} Q(x)[\log[Q(x)/P(x)]$

方法A得到四個類別的機率為0.4、0.3、0.2、0.1

方法B得到四個類別的機率為0.1、0.2、0.3、0.4

Distance(A,B)

=0.1*log(0.1/0.4)+0.2*log(0.2/0.3)+0.3*log(0.3/0.2)+0.4*log(0.4/0.1)

Dataset	# Points	# classes	Dimension	% of largest class
MNIST (LeCun et al., 1998)	70000	10	784	11%
STL-10 (Coates et al., 2011)	13000	10	1428	10%
REUTERS-10K	10000	4	2000	43%
REUTERS (Lewis et al., 2004)	685071	4	2000	43%

Method	MNIST	STL-HOG	REUTERS-10k	REUTERS
k-means	53.49%	28.39%	52.42%	53.29%
$\overline{AE+k}$ -means	81.84%	33.92%	66.59%	71.97%
AE+LDMGI	83.98%	32.04%	42.92%	N/A
AE+SEC	81.56%	32.29%	61.86%	N/A
DEC (ours)	84.30%	35.90%	72.17%	75.63%

Reference

- https://morvanzhou.github.io/tutorials/machine-learning/keras/2-6-autoencoder/ AutoEncoder
- https://allenlu2007.wordpress.com/2017/07/12/sparse-autoencoder/ http://www.ycc.idv.tw/YCNote/post/43
 Sparse AutoEncoder
- http://blog.csdn.net/u010089444/article/details/52618864 http://www.jmlr.org/papers/volume11/vincent10a/vincent10a.pdf Denoising AutoEncoder
- https://www.jianshu.com/p/51d5639c2c71
 Stacked AutoEncoder
- https://www.youtube.com/watch?v=ci0xtJwZdzk https://www.youtube.com/watch?v= DPLpV-vZT4 AutoEncoder Clustering
- http://www.jmlr.org/papers/volume11/vincent10a/vincent10a.pdf
 Deep AutoEncoder
- https://arxiv.org/pdf/1511.06335.pdf
 https://github.com/XifengGuo/DEC-keras
 Deep Embedding Cluster