MIPS Reference Data

1

CORE INSTRUCTION	ON SE				OPCODE		
NAME, MNEMO	NIC	FOR- MAT			/ FUNCT (Hex)		
Add	add	R	OPERATION (in Verilog) R[rd] = R[rs] + R[rt]	(1)	0 / 20 _{hex}		
Add Immediate	addi	I	R[rt] = R[rs] + SignExtImm	(1,2)	8 _{hex}		
	addiu	I	R[rt] = R[rs] + SignExtImm	(2)			
Add Unsigned	addu	R	R[rd] = R[rs] + R[rt]	(2)	0 / 21 _{hex}		
And	and	R	R[rd] = R[rs] & R[rt]		0 / 24 _{hex}		
And Immediate	andi	I	R[rt] = R[rs] & ZeroExtImm	(3)			
D 10 E 1		¥	if(R[rs]==R[rt])	(-)			
Branch On Equal	beq	I	PC=PC+4+BranchAddr	(4)	4 _{hex}		
Branch On Not Equal	bne	Ι	if(R[rs]!=R[rt]) PC=PC+4+BranchAddr	(4)	$5_{ m hex}$		
Jump	j	J	PC=JumpAddr	(5)	2_{hex}		
Jump And Link	jal	J	R[31]=PC+8;PC=JumpAddr	(5)	3_{hex}		
Jump Register	jr	R	PC=R[rs]		0 / 08 _{hex}		
Load Byte Unsigned	lbu	I	R[rt]={24'b0,M[R[rs] +SignExtImm](7:0)}	(2)	24 _{hex}		
Load Halfword Unsigned	lhu	I	$R[rt]=\{16\text{'b0,M}[R[rs]\\+SignExtImm](15:0)\}$	(2)	25 _{hex}		
Load Linked	11	I	R[rt] = M[R[rs] + SignExtImm]	(2,7)	30_{hex}		
Load Upper Imm.	lui	I	$R[rt] = \{imm, 16'b0\}$		f_{hex}		
Load Word	lw	I	R[rt] = M[R[rs] + SignExtImm]	(2)			
Nor	nor	R	$R[rd] = \sim (R[rs] \mid R[rt])$		0 / 27 _{hex}		
Or	or	R	$R[rd] = R[rs] \mid R[rt]$		0 / 25 _{hex}		
Or Immediate	ori	I	$R[rt] = R[rs] \mid ZeroExtImm$	(3)	11011		
Set Less Than	slt	R	R[rd] = (R[rs] < R[rt]) ? 1 : 0		$0/2a_{hex}$		
Set Less Than Imm.	slti	I	R[rt] = (R[rs] < SignExtImm)? 1	: 0 (2)	a_{hex}		
Set Less Than Imm. Unsigned	sltiu	I	R[rt] = (R[rs] < SignExtImm) ? 1:0	(2,6)	b_{hex}		
Set Less Than Unsig.	sltu	R	R[rd] = (R[rs] < R[rt]) ? 1 : 0	(6)	$0/2b_{hex}$		
Shift Left Logical	sll	R	$R[rd] = R[rt] \le shamt$		0 / 00 _{hex}		
Shift Right Logical	srl	R	R[rd] = R[rt] >> shamt		0 / 02 _{hex}		
Store Byte	sb	Ι	M[R[rs]+SignExtImm](7:0) = R[rt](7:0)	(2)	$28_{ m hex}$		
Store Conditional	sc	I	$\begin{aligned} M[R[rs] + SignExtImm] &= R[rt]; \\ R[rt] &= (atomic) ? 1 : 0 \end{aligned}$	(2,7)	38 _{hex}		
Store Halfword	sh	I	M[R[rs]+SignExtImm](15:0) = R[rt](15:0)	(2)	29 _{hex}		
Store Word	SW	I	M[R[rs]+SignExtImm] = R[rt]	(2)	2b _{hex}		
Subtract	sub	R	R[rd] = R[rs] - R[rt]	(1)	0 / 22 _{hex}		
Subtract Unsigned	subu	R	R[rd] = R[rs] - R[rt]		0 / 23 _{hex}		
(1) May cause overflow exception (2) SignExtImm = { 16{immediate[15]}, immediate } (3) ZeroExtImm = { 16{1b'0}, immediate } (4) BranchAddr = { 14{immediate[15]}, immediate, 2'b0 } (5) JumpAddr = { PC+4[31:28], address, 2'b0 } (6) Operands considered unsigned numbers (vs. 2's comp.) (7) Atomic test&set pair; R[rt] = 1 if pair atomic, 0 if not atomic							

RASIC	INSTRI	ICTION	FORMATS

R	opcode	rs	rt	rd	shamt	funct
	31 26	25 21	20 16	15 11	10 6	5 (
I	opcode	rs	rt		immediate	ė
	31 26	25 21	20 16	15		(
J	opcode			address		
	21 26	26				

ARITHMETIC CORE INSTRUCTION SET

			$\mathbf{O}_{\mathbf{A}}$	/ FMT /FT
		FOR-		/ FUNCT
NAME, MNEMO		MAT	OPERATION	(Hex)
Branch On FP True	bc1t	FI	if(FPcond)PC=PC+4+BranchAddr (4)	11/8/1/
Branch On FP False	bc1f	FI	if(!FPcond)PC = PC + 4 + BranchAddr(4)	11/8/0/
Divide	div	R	Lo=R[rs]/R[rt]; Hi=R[rs]%R[rt]	0//-1a
Divide Unsigned	divu	R	Lo=R[rs]/R[rt]; Hi=R[rs]%R[rt] (6)	
FP Add Single	add.s	FR	F[fd] = F[fs] + F[ft]	11/10//0
FP Add	add.d	FR	${F[fd],F[fd+1]} = {F[fs],F[fs+1]} +$	11/11//0
Double			{F[ft],F[ft+1]}	
FP Compare Single	c.x.s*	FR	FPcond = (F[fs] op F[ft]) ? 1 : 0	11/10//y
FP Compare	c.x.d*	FR	$FPcond = (\{F[fs], F[fs+1]\} op$	11/11//v
Double			{F[ft],F[ft+1]})?1:0	
FP Divide Single			==, <, or <=) (y is 32, 3c, or 3e) F[fd] = F[fs] / F[ft]	11/10//3
FP Divide Single	uiv.s		$\{F[fd], F[fd+1]\} = \{F[fs], F[fs+1]\} /$	11/10//3
Double	div.d	FR	{F[ft],F[ft+1]}	11/11//3
FP Multiply Single	mul.s	FR	F[fd] = F[fs] * F[ft]	11/10//2
FP Multiply			{F[fd],F[fd+1]} = {F[fs],F[fs+1]} *	
Double	mul.d	FR	{F[ft],F[ft+1]}	11/11//2
FP Subtract Single	sub.s	FR	F[fd]=F[fs] - F[ft]	11/10//1
FP Subtract	sub.d	FR	${F[fd],F[fd+1]} = {F[fs],F[fs+1]} -$	11/11//1
Double	sub.a	ТК	{F[ft],F[ft+1]}	11/11//1
Load FP Single	lwc1	I	F[rt]=M[R[rs]+SignExtImm] (2)	31//
Load FP	ldc1	I	F[rt]=M[R[rs]+SignExtImm]; (2)	35//
Double	1401	-	F[rt+1]=M[R[rs]+SignExtImm+4]	
Move From Hi	mfhi	R	R[rd] = Hi	0 ///10
Move From Lo	mflo	R	R[rd] = Lo	0 //-12
Move From Control		R	R[rd] = CR[rs]	10 /0//0
Multiply	mult	R	$\{Hi,Lo\} = R[rs] * R[rt]$	0///18
Multiply Unsigned	multu	R	$\{Hi,Lo\} = R[rs] * R[rt] $ (6)	0///19
Shift Right Arith.	sra	R	R[rd] = R[rt] >>> shamt	0//-3
Store FP Single	swc1	I	M[R[rs]+SignExtImm] = F[rt] (2)	39//
Store FP	sdc1	Ι	$M[R[rs]+SignExtImm] = F[rt]; \qquad (2)$	3d//
Double			M[R[rs]+SignExtImm+4] = F[rt+1]	

OPCODE

FLOATING-POINT INSTRUCTION FORMATS

FR	opcode	fmt	ft	fs	fd	funct
	31 26	25 21	20 16	15 11	10 6	5 0
FI	opcode	fmt	ft		immediate	e
	31 26	25 21	20 16	15		0

PSEUDOINSTRUCTION SET

NAME	MNEMONIC	OPERATION
Branch Less Than	blt	if(R[rs] < R[rt]) PC = Label
Branch Greater Than	bgt	if(R[rs]>R[rt]) PC = Label
Branch Less Than or Equal	ble	$if(R[rs] \le R[rt]) PC = Label$
Branch Greater Than or Equal	bge	$if(R[rs] \ge R[rt]) PC = Label$
Load Immediate	li	R[rd] = immediate
Move	move	R[rd] = R[rs]

REGISTER NAME, NUMBER, USE, CALL CONVENTION

	,	,,	
NAME	NUMBER	USE	PRESERVEDACROSS
IVIIVIL	NOWIDER	CSE	A CALL?
\$zero	0	The Constant Value 0	N.A.
\$at	1	Assembler Temporary	No
\$v0-\$v1	2-3	Values for Function Results and Expression Evaluation	No
\$a0-\$a3	4-7	Arguments	No
\$t0-\$t7	8-15	Temporaries	No
\$s0-\$s7	16-23	Saved Temporaries	Yes
\$t8-\$t9	24-25	Temporaries	No
\$k0-\$k1	26-27	Reserved for OS Kernel	No
\$gp	28	Global Pointer	Yes
\$sp	29	Stack Pointer	Yes
\$fp	30	Frame Pointer	Yes
\$ra	31	Return Address	No

MIPS

OPCOL		E CONVER	SION, A	SCIIS	SYMB	OLS		3	
MIPS	(1) MIPS	(2) MIPS		Deci-	Hexa-	ASCII	Deci-	Hexa-	ASCII
opcode	funct	funct	Binary	mal	deci-	Char-		deci-	Char-
(31:26)	(5:0)	(5:0)		mai	mal	acter	mal	mal	acter
(1)	sll	add. f	00 0000	0	0	NUL	64	40	(a)
		sub f	00 0001	1	1	SOH	65	41	A
j	srl	${\tt mul.} f$	00 0010	2	2	STX	66	42	В
jal	sra	${ t div.}\!f$	00 0011	3	3	ETX	67	43	С
beq	sllv	$\operatorname{sqrt} f$	00 0100	4	4	EOT	68	44	D
bne		abs.f	00 0101	5	5	ENQ	69	45	Е
blez	srlv	mov.f	00 0110	6	6	ACK	70	46	F
bgtz	srav	neg.f	00 0111	7	7	BEL	71	47	G
addi	jr		00 1000	8	8	BS	72	48	H
addiu	jalr		00 1001	9	9	HT	73	49	I
slti	movz		00 1010	10	a	LF	74	4a	J
sltiu	movn	, ,	00 1011	11	b	VT FF	75 76	4b 4c	K
andi	syscall	round.w.f	00 1100 00 1101	13	c d	CR	77	4d	L M
ori xori	break	trunc.w.f	00 1101	14	e	SO	78	4u 4e	N
lui	arm a	ceil.w.f	00 1110	15	f	SI	79	4f	O
TUI	sync mfhi	11001.w.j	01 0000	16	10	DLE	80	50	P
(2)	mthi		01 0000	17	11	DC1	81	51	Q
(2)	mflo	$\mathtt{movz}.f$	01 0001	18	12	DC2	82	52	R
	mtlo	movr.f	01 0010	19	13	DC3	83	53	S
		o v 11.y	01 0100	20	14	DC4	84	54	T
			01 0101	21	15	NAK	85	55	Ū
			01 0110	22	16	SYN	86	56	V
			01 0111	23	17	ETB	87	57	W
	mult		01 1000	24	18	CAN	88	58	X
	multu		01 1001	25	19	EM	89	59	Y
	div		01 1010	26	1a	SUB	90	5a	Z
	divu		01 1011	27	1b	ESC	91	5b	[
			01 1100	28	1c	FS	92	5c	\
			01 1101	29	1d	GS	93	5d]
			01 1110	30	1e	RS	94	5e	۸
			01 1111	31	1f	US	95	5f	_
lb	add	cvt.s.f	10 0000	32	20	Space	96	60	4
lh	addu	cvt.d.f	10 0001	33	21	!	97	61	a
lwl	sub		10 0010	34	22		98	62	b
lw	subu		10 0011	35	23	#	99	63	С
lbu	and	$\operatorname{cvt.w.}\!f$	10 0100	36	24	\$	100	64	d
lhu	or		10 0101	37	25	%	101	65	e
lwr	xor		10 0110	38 39	26 27	&	102 103	66 67	f
sb	nor		10 0111	40	28		103	68	g h
sb			10 1000	41	29	(104	69	i
swl	s1t		10 1001	42	29 2a	*	105	6a	j
SWI	sltu		10 1010	43	2b	+	107	6b	k
SW	SICU		10 1100	44	2c		108	6c	1
			10 1101	45	2d	,	109	6d	m
swr			10 1110	46	2e		110	6e	n
cache			10 1111	47	2f	,	111	6f	0
11	tge	c.f.f	11 0000	48	30	0	112	70	р
lwc1	tgeu	c.un.f	11 0001	49	31	1	113	71	q
lwc2	tlt	c.eq.f	11 0010	50	32	2	114	72	r
pref	tltu	c.ueq.f	11 0011	51	33	3	115	73	s
·	teq	c.olt.f	11 0100	52	34	4	116	74	t
ldc1	-	c.ult.f	11 0101	53	35	5	117	75	u
ldc2	tne	c.ole.f	11 0110	54	36	6	118	76	V
		c.ule.f	11 0111	55	37	7	119	77	w
sc		c.sf.f	11 1000	56	38	8	120	78	X
swc1		c.ngle. f	11 1001	57	39	9	121	79	У
swc2		c.seq f	11 1010	58	3a	:	122	7a	Z
		c.ngl f	11 1011	59	3b	;	123	7b	{
			111 1100	70	2 -		124	7	

(1) opcode(31:26) == 0

sdc1

sdc2

c.nge./

c.ngt.

c.le.f

c.lt./

(2) opcode(31:26) == $17_{\text{ten}} (11_{\text{hex}})$; if fmt(25:21)== $16_{\text{ten}} (10_{\text{hex}}) f = s$ (single); if $fmt(25:21) == 17_{ten} (11_{hex}) f = d (double)$

11 1100

11 1101

11 1110

11 1111

IEEE 754 FLOATING-POINT STANDARD

 $(-1)^S \times (1 + Fraction) \times 2^{(Exponent - Bias)}$ where Single Precision Bias = 127, Double Precision Bias = 1023.

IEEE Single Precision and Double Precision Formats:

IEEE 754 Symbols Object Exponent Fraction 0 ± 0 0 **≠**0 ± Denorm 1 to MAX - 1 anything ± Fl. Pt. Num. MAX 0 ±∞ NaN MAX **≠**0

4

S.P. MAX = 255, D.P. MAX = 2047 S Exponent Fraction 23 22 S Exponent Fraction 52 51

DATA ALIGNMENT

Double Word											
Word					W	ord					
Halfw	vord	Half	word	Hal	fword	Half	word				
Byte	Byte	Byte	Byte	Byte	Byte	Byte	Byte				
0	1	2	3	4	5	6	7				

Value of three least significant bits of byte address (Big Endian)

EXCEPTION CONTROL REGISTERS: CAUSE AND STATUS

EF HON CONTROL REGISTERS. CAUSE AND STATUS												
	В			Interrupt			Е	xcept	ion			
	D			Mask				Cod	e	П		
	31		15		8		6			2		
				Pending	٦			U			Е	Ι
				Interrupt				M			L	Е
			15		8			4			1	0

BD = Branch Delay, UM = User Mode, EL = Exception Level, IE =Interrupt Enable **EXCEPTION CODES**

	,,												
nber Nan	ne	Cause of Exception	Number	Name	Cause of Exception								
) In	t	Interrupt (hardware)	9	Bp	Breakpoint Exception								
1 1 1	21	Address Error Exception	10	DI	Reserved Instruction								
+ Au	L			KI	Exception								
. Ade	20	Address Error Exception	11	CnII	Coprocessor								
Aui	20	(store)	11	Сро	Unimplemented								
i idi		Bus Error on	12	Ov	Arithmetic Overflow								
) 151	۵	Instruction Fetch	12 OV		12 OV		Exception						
7 DDF		7 DDE		7 DDE		7 DDE		Bus Error on		Bus Error on	12	T.	Trap
ДВ	E	Load or Store	15 11		13 11		пар						
Sy:	S	Syscall Exception	15	FPE	Floating Point Exception								
	1 AdE AdE AdE 15 AdE 17 DB	5 AdES	AdEL AdES Address Error Exception (load or instruction fetch) Address Error Exception (store) Bus Error on Instruction Fetch DBE Bus Error on Load or Store	1	Int Interrupt (hardware) 9 Bp AdEL Address Error Exception (load or instruction fetch) 10 RI AdES Address Error Exception (store) 11 CpU Bus Error on Instruction Fetch 12 Ov DBE Bus Error on Load or Store 13 Tr								

SIZE PREFIXES (10^x for Disk, Communication; 2^x for Memory)

	SI Size	Prefix	Symbol	IEC Size	Prefix	Symbol
	10 ³	Kilo-	K	2 ¹⁰	Kibi-	Ki
	10 ⁶	Mega-	M	2 ²⁰	Mebi-	Mi
	10 ⁹	Giga-	G	230	Gibi-	Gi
	10^{12}	Tera-	T	2 ⁴⁰	Tebi-	Ti
	10^{15}	Peta-	P	2 ⁵⁰	Pebi-	Pi
	10^{18}	Exa-	Е	2 ⁶⁰	Exbi-	Ei
ш	10^{21}	Zetta-	Z	270	Zebi-	Zi
	10 ²⁴	Yotta-	Y	280	Yobi-	Yi

Copyright 2009 by Elsevier, Inc., All rights reserved. From Patterson and Hennessy, Compt

60

61

3c

3d

3e

3f

124

125

126

127

7c

7d

7e DEL

7f