Tuesday, 16/8/2022

Theorem 1: Let b be a prime. Then, b = a+b' for some integers a and b

if and only if p=2 or $p=1 \pmod{4}$

Proof: If p=2, then p=1+12

It p=3, and p=a+b, then a in even and b in odd. (or a most and b in even)

> b = 1 (mod 4).

Now, we prove that, if $b \equiv 1 \pmod{4}$, then b = a + b for some a, $b \in \mathbb{Z}$. Let $x_0 \in \mathbb{Z}$ be such that $x_0 = -1 \pmod{p}$.

.. f(u, v) o < u < k, o < u < k } Loo (k+1) - elements Let $k = [\sqrt{p}]$. Then, $k < \sqrt{p} < k+1$

Such that u, + x₀v₁ = u2+ x₀·v2 (mod b) Since (k+1)> p, bo by Pigeontale principle, I(u1, v1) # (u2, v2)

 $\Rightarrow u_1 - u_2 = -x_0(v_1 - v_2)$ (mod b). Let $a = u_1 - u_2$, $b = v_1 - v_2$.

Since $(u_{11}v_1) \pm (u_2, v_2)$, so either $a \pm 0$ or $b \pm 0$. Hence, a + b > 0. $\Rightarrow a = -x_0$. b (mod p) $\Rightarrow a = x_0$. b (mod p) $\Rightarrow a + b^2 = 0$ (mod p)

Also, a'< b and b'
 $\langle 2b \rangle = a^2 + b^2 = b$

Proof: It possible, suppose that p/a. Then, gcd(e, p) = 1. then pla and plb. Honce, if plator), then plator) Theorem 2: Let b be a prime such that b = 3(mod 4). It b/(a+b)

Naw, p|a+b; > a+b=0 (mod p) Thus, it $b \equiv 3 \pmod{4}$ and $b \mid a + b$, then $b \mid a$ and $b \mid b$ \Rightarrow $a \approx 1 \pmod{b}$ for some $x \in \mathbb{Z}$ Theorem 3 (Euler): Let n>,2 We write n=2 Th b Th q Ihm, It can be expressed as a sum of two squares ⟨=⟩ all of are even. pla. Similarly, plb. =) $(bx_0)^r = -1 \pmod{p} \Rightarrow b = 1 \pmod{4}$. > a. x + b.x = 0 (mod b) P= 1(mod4) which in a contradiction 9=3(mod4)

		If each y in even, then 119 is a sum of two squares as		1	Hence, in can be expressed as a sum of			=> 2 17 b can be expressed on a					Proof: For any integron a, b, c, d, we have
		ch y	7=3(m		3	1	611		2 11 2		9+0	7	7
		ine	4	رم	can		1 pom	70	+ ->	7	.) (C -	とって	72
		ven,		can	26 82			202	2 2 2	>	† d)	ر	integr
		then		be x	press			2	4	•	<u>ا</u> (۵۷		2
	7=3(Mag			⟨⇒ ∏ q can be expressed as a	8			となりて	2=1+1 and if p=1 (mody), then		(a+b)(c+d) = (ac-ba) + (ad+bc)		b, c,
	(4)	3.	عر	sed o	2			2550	moz 4	9	J + (7	d, w
	-0 .	8		S	s an			8	ta		+ ps	-	har
	11	, st	J	sum of two squares.	of two	0		ang		•	bc).	7	6
43	+0,	Two.		of tw	two squares			3	B+ x = d	7			
to spare.	7	ronge		185 OF	AYS			two		7			
arw.	So wand	3		ww.				sum of two squares.					
	9							į					

Conversely, suppose that $m = \Pi = 2 + y^2$ for some $x, y \in Z$. Similar steps, we find that I must be even. Thum, 9 | x + y ? By Theorem 2, 9 | (x + y) . That in, I in a factor of x + y? We next proceed with me and following 9=3 (mod 4)

integors that are pairwise coprime, and let an, ..., an denote any h integers. Chinese Kemainder Theorem: Let m1, m2, ..., m2 denote is positive has a common solution. Also, the solution is unique medulo on; m, ... m. Im, the system of congruences $x_i \equiv a_i \pmod{m_i}, \ldots, x_n \equiv a_n \pmod{m_n}$ This completes the proof of the theorem. 14

Put $x_0 = \sum_{i=1}^{n} \frac{m_i}{m_i} b_i a_j$. j=1 j=1Here, the solution is unique modulo $m = m_1 m_2 \cdots m_n$. Suppose that x, and x, are two common solutions. .. For each j, I bj such that m. b; = 1 (mod m.) Book: Let m = m, m2 ... mr. Thun, gcd(m, m) = 1 + f. hum, $\mathcal{R}_{i} \equiv \frac{m}{m_{i}}$ b. a_{i} (mod m_{i}) $\equiv a_{i}$ (mod m_{i}) ... 20 in a common solution. Then, $x_0 \equiv x_1 \pmod{m_i} \forall i \Leftrightarrow x_0 \equiv x_1 \pmod{m_1, m_1, \dots, m_n}$

Front: Let $m = m_1 m_2$. Let $R(m) = \{ k \mid 1 \le k \le m_1, gcd(k, m) = 1 \}$ Similarly, we define $R(m_1)$ and $R(m_2)$. Define y: K(m) -> R(m) x R(m2) That in, if m, and m, denote two positive relatively prime integurs, then Moreover, if in has the canonical factorization m=17p, then Thurson 4 (An application of CRT): Ender φ - function in multiplicative. $Q(m) = \Pi(p-p) = m \Pi(1-1/2).$ $\varphi(m_1m_2) = \varphi(m_1) \varphi(m_2).$ 10 m w o Ma

 $x \mapsto (x_o, x_l), \text{ white } x_o \in R(m),$

 $x_1 \in \mathcal{K}(m_2), \quad x_1 \equiv x \pmod{m_2}.$

Zu = x (mod mi)

Y in swipective: Let (a, b) & R(m) × R(m2). \forall in injective: Suppose that $\psi(x) = \psi(y)$. $\Rightarrow x = y \pmod{m}$. Since $x, y \in R(m), x_0 x = y$. (mod m) (mod m) and ox=4 (mod m) h= h (mod m) $\chi' = 1/2$ and $\chi' = 1/2$ \Rightarrow $(x_0, x_0) = (y_0, y_0), \text{ where } x \equiv x_0 \text{ (mod m)}$ A = 40 (mod m) $\mathcal{X} \subseteq \mathcal{X}_1 \pmod{m_2}$ $x_{11}y_{1} \in R/m_{2}$ \mathcal{X}_{o} , $\gamma_{o} \in \mathcal{K}(m_{i})$

Easy to check that y in well-defined.

Since $gcd(m_1, m_2) = 1$, so by CRT, $\exists x_0 \in \mathbb{Z}$ s.t. $x_0 = a \pmod{m_2}$

Consider the linear congruences $x \equiv a \pmod{m_1}$ and $x \equiv b \pmod{m_2}$

Now, $gcd(x_0, m_1) = gcd(x_0, m_1) = 1$ and $gcd(x_0, m_2) \equiv gcd(t_0, m_2) = 1$

... gcd(x0, m, m2) =1.

1m1m2m1

=)] ce R(m) s.t. zo = c c mod m)

CER(m) satisfies $C = x_0 = a \pmod{m}$ and $c = x_0 = b \pmod{m}$

> +(c) = (c, b)

· · + in surjective.

Hence, + in bijective.

Now, if $m = 11 p^2$, then $\phi(m) = 11 \phi(p^2)$. Two, # R(m) = # R(m), # R(m2) > 9(m) = 9(m,) 9(m2)

We have $R(\beta) = \{ | | 1 < k < \beta, b + k \}$ To complete the proof, we need to prove that $\varphi(\beta) = \beta - \beta^{-1}$

Consider the numbers:

$$1, 2, 3, 4, \ldots, b-1, p, p+1, \ldots, p-1, p$$

It I < k < p and R in a multiple of p, then R must be one

of the following:

$$\phi(p) = p - p$$
. $\phi(q-1) = p - p$. Hence, there are $\phi(q-1) = p - p$.