Mathematical Preliminaries

Yinyu Ye

Department of Management Science and Engineering

Stanford University

Stanford, CA 94305, U.S.A.

http://www.stanford.edu/~yyye

LY, Appendices A, B, and Chapter 1.

Real n-Space; Euclidean Space

- \mathcal{R} , \mathcal{R}_+ , int \mathcal{R}_+
- \mathcal{R}^n , \mathcal{R}^n_+ , int \mathcal{R}^n_+
- $\mathbf{x} \geq \mathbf{y}$ means $x_j \geq y_j$ for j = 1, 2, ..., n
- ullet 0 denotes the zero vector and ${f e}$ denotes the vector of ones
- Inner-Product:

$$\mathbf{x} \bullet \mathbf{y} := \mathbf{x}^T \mathbf{y} = \sum_{j=1}^n x_j y_j$$

- Norm: $\|\mathbf{x}\|_2 := \sqrt{\mathbf{x}^T \mathbf{x}}$, $\|\mathbf{x}\|_{\infty} := \max\{|x_1|, |x_2|, ..., |x_n|\}$, and $\|\mathbf{x}\|_p := \left(\sum_{j=1}^n |x_j|^p\right)^{1/p}$
- The dual of the p norm, denoted by $\|.\|^*$, is the q norm where $\frac{1}{p}+\frac{1}{q}=1$ and $1\leq p,q<\infty$.

Column vector:

$$\mathbf{x} = (x_1; x_2; \dots; x_n)$$

and row vector:

$$\mathbf{x} = (x_1, x_2, \dots, x_n)$$

• A set of vectors $\mathbf{a}_1,...,\mathbf{a}_m$ is said to be linearly dependent if there exists some scalars $\lambda_1,...,\lambda_m$, not all zero, such that the linear combination

$$\sum_{i=1}^m \lambda_i \mathbf{a}_i = \mathbf{0}$$

ullet A linearly independent set of vectors that spans \mathbb{R}^n is a basis.

Matrices

- $\mathcal{R}^{m \times n}$, $\mathbf{a}_{i.}$, $\mathbf{a}_{.j}$, a_{ij}
- A_I denotes the submatrix of A whose rows belong to I, A_J denotes the submatrix whose columns belong to J, and A_{IJ} denotes the submatrix whose rows belong to I and whose columns belong to J.
- 0 denotes the zero matrix and *I* denotes the identity matrix
- $\mathcal{N}(A)$, $\mathcal{R}(A)$:

Theorem 1 Each linear subspace of \mathbb{R}^n can be generated by finitely many vectors and is also an intersection of finitely many hyperplanes; that is, for each linear subspace of L of \mathbb{R}^n there are matrices A and C such that $L = \mathcal{N}(A) = \mathcal{R}(C)$.

 \bullet det(A), tr(A)

• Inner Product:

$$A \bullet B := \operatorname{tr}(A^T B) = \sum_{i,j} a_{ij} b_{ij}$$

• The operator norm of *A*:

$$||A||^2 := \max_{\mathbf{0} \neq \mathbf{x} \in \mathcal{R}^n} \frac{||A\mathbf{x}||^2}{||\mathbf{x}||^2}$$

- Sometimes we use $X = diag(\mathbf{x})$
- Eigenvalues and eigenvectors

$$A\mathbf{v} = \lambda \mathbf{v}$$

Symmetric Matrices

- ullet \mathcal{S}^n
- The Frobenius norm:

$$\|X\|_f := \sqrt{\operatorname{tr}(X^TX)} = \sqrt{X \bullet X}$$

- Positive Definite (PD): $Q \succ \mathbf{0}$ iff $\mathbf{x}^T Q \mathbf{x} > 0$, for all $\mathbf{x} \neq \mathbf{0}$
- Positive SemiDefinite (PSD): $Q \succeq \mathbf{0}$ iff $\mathbf{x}^T Q \mathbf{x} \geq 0$, for all \mathbf{x}
- The set of PSD matrices: \mathcal{S}^n_+ , $\operatorname{int} \mathcal{S}^n_+$

Known Inequalities

- Cauchy-Schwarz Inequality: given $\mathbf{x}, \mathbf{y} \in \mathcal{R}^n$, we have $\mathbf{x}^T \mathbf{y} \leq \|\mathbf{x}\| \|\mathbf{y}\|$.
- Triangle Inequality: given $x, y \in \mathbb{R}^n$, we have $||x + y|| \le ||x|| + ||y||$.
- ullet Arithmetic Mean-Geometric Mean Inequality: given $\mathbf{x} \in \mathcal{R}^n_+$, we have

$$\frac{\sum x_j}{n} \ge \left(\prod x_j\right)^{1/n}.$$

Hyperplane and Half-spaces

$$H = \{\mathbf{x} : \mathbf{a}\mathbf{x} = \sum_{j=1}^{n} a_j x_j = b\}$$

$$H^+ = \{ \mathbf{x} : \mathbf{ax} = \sum_{j=1}^n a_j x_j \le b \}$$

$$H^- = \{ \mathbf{x} : \mathbf{a}\mathbf{x} = \sum_{j=1}^n a_j x_j \ge b \}$$

Figure 1: Plane and Half-Spaces

System of Linear Equations

Solve for $\mathbf{x} \in \mathcal{R}^n$ from:

$$\begin{cases}
\mathbf{a}_1 \mathbf{x} &= b_1 \\
\mathbf{a}_2 \mathbf{x} &= b_2 \\
\cdots & \cdot \\
\mathbf{a}_m \mathbf{x} &= b_m
\end{cases} \Rightarrow A\mathbf{x} = \mathbf{b}$$

Figure 2: System of Linear Equations

Fundamental Theorem of Linear Equations

Theorem 2 Given $A \in \mathbb{R}^{m \times n}$ and $\mathbf{b} \in \mathbb{R}^m$, the system $\{\mathbf{x} : A\mathbf{x} = \mathbf{b}\}$ has a solution if and only if that $A^T\mathbf{y} = \mathbf{0}$ and $\mathbf{b}^T\mathbf{y} \neq 0$ has no solution.

A vector \mathbf{y} , with $A^T\mathbf{y}=0$ and $\mathbf{b}^T\mathbf{y}\neq 0$, is called an infeasibility certificate for the system.

Example Let A=(1;-1) and $\mathbf{b}=(1;1)$. Then, $\mathbf{y}=(1/2;1/2)$ is an infeasibility certificate.

Alternative systems: $\{\mathbf{x}: A\mathbf{x} = \mathbf{b}\}\$ and $\{\mathbf{y}: A^T\mathbf{y} = \mathbf{0}, \ \mathbf{b}^T\mathbf{y} \neq 0\}.$

Figure 3: ${\bf b}$ is not in the set $\{A{\bf x}: {\bf x}\}$, and ${\bf y}$ is the distance vector from ${\bf b}$ to the set.

Affine, Convex, Linear, and Conic Combinations

When \mathbf{x} and \mathbf{y} are two distinct points in \mathbb{R}^n and α runs over \mathbb{R} ,

$$\{\mathbf{z} : \mathbf{z} = \alpha \mathbf{x} + (1 - \alpha) \mathbf{y}\}\$$

is the line connecting ${\bf x}$ and ${\bf y}$. When $0 \le \alpha \le 1$, it is called the convex combination of ${\bf x}$ and ${\bf y}$ and it is the line segment between ${\bf x}$ and ${\bf y}$. Also, the set

$$\{\mathbf{z}: \mathbf{z} = \alpha \mathbf{x} + \beta \mathbf{y}\},\$$

for multipliers α and β is the linear combination of \mathbf{x} and \mathbf{y} , and it is the hyperplane containing the origin and \mathbf{x} and \mathbf{y} . When $\alpha \geq 0$ and $\beta \geq 0$, such z is called a **conic** combination.

Convex Sets

- Set notations: $x \in \Omega$, $y \notin \Omega$, $S \cup T$, and $S \cap T$
- Ω is said to be a convex set if for every $\mathbf{x}^1, \mathbf{x}^2 \in \Omega$ and every real number $\alpha \in [0,1]$, the linear combination satisfies $\alpha \mathbf{x}^1 + (1-\alpha)\mathbf{x}^2 \in \Omega$.
- The convex hull of a set Ω is the intersection of all convex sets containing Ω .
- Any Intersection of convex sets is convex.
- A point in a convex set is an extreme point if and only if it cannot be represented as a convex combination of two distinct points in the set.
- A set is polyhedral if and only if it has finite number of extreme points.

Proof of convex set

- All solutions to the system of linear equations $\{x: Ax = b\}$ form a convex set.
- All solutions to the system of linear inequalities $\{x: Ax \leq b\}$ form a convex set.
- All solutions to the system of linear equations and inequalities $\{x: Ax = b, x \geq 0\}$ form a convex set.
- Ball is a convex set. The ball with a center $\mathbf{y} \in \mathcal{R}^n$ and a radius r > 0 is denoted by $B(\mathbf{y}, r) := \{\mathbf{x} : ||\mathbf{x} \mathbf{y}|| \le r\}$.
- ullet Ellipsoid is a convex set. The ellipsoid with a center $\mathbf{y} \in \mathcal{R}^n$ and a positive definite matrix Q is denoted by

$$E(\mathbf{y}, Q) = \{\mathbf{x} : (\mathbf{x} - \mathbf{y})^T Q(\mathbf{x} - \mathbf{y}) \le 1\}.$$

More Proofs on Convexity

Given a matrix A, let's consider the set B of all b such that the set $\{x: Ax = b, x \geq 0\}$ is feasible. Show that B is a convex set.

Example:

$$B = \{b : \{(x_1, x_2) : x_1 + x_2 = b, (x_1, x_2) \ge \mathbf{0}\} \text{ is feasible}\}.$$

Convex Cones

- A set C is a cone if $\mathbf{x} \in C$ implies $\alpha \mathbf{x} \in C$ for all $\alpha > 0$.
- A convex cone is a cone which is also convex.
- Dual cone:

$$C^* := \{ \mathbf{y} : \mathbf{y} \bullet \mathbf{x} \ge 0 \text{ for all } \mathbf{x} \in C \}$$

.

Cone Examples

- Example 2.1: The n-dimensional non-negative orthant $\mathcal{R}^n_+ = \{\mathbf{x} \in \mathcal{R}^n : \mathbf{x} \geq \mathbf{0}\}$ is a convex cone.
- Example 2.2: The set of all positive semi-definite matrices in S^n , S^n_+ , is a convex cone, called the positive semi-definite matrix cone
- Example 2.3: The set $\mathcal{N}_2^n := \{\mathbf{x} \in \mathcal{R}^n : x_1 \ge ||\mathbf{x}_{-1}||\}$ is a convex cone in \mathcal{R}^n called the second-order cone.
- Example 2.4: The set $\mathcal{N}_p^n := \{\mathbf{x} \in \mathcal{R}^n : x_1 \ge ||\mathbf{x}_{-1}||_p\}$ is a convex cone in \mathcal{R}^n called the p-order cone with $p \ge 1$.

Polyhedral Convex Cones

ullet A cone C is a (convex) polyhedral if C can be represented as

$$C = \{\mathbf{x} : A\mathbf{x} \le 0\}$$
 or $\{\mathbf{x} : \mathbf{x} = A\mathbf{y}, \mathbf{y} \ge \mathbf{0}\}$

for some matrix A. In the latter case, C is generated by the columns of A.

Figure 4: Polyhedral and non-polyhedral cones.

• The nonnegative orthant is a polyhedral cone but the second-order cone is not polyhedral.

Carathéodory's Theorem

The following theorem states that a polyhedral cone can be generated by a set of basic directional vectors.

Theorem 3 Given matrix $A \in \mathbb{R}^{m \times n}$ where n > m, take a convex polyhedral cone $C = \{A\mathbf{x} : \mathbf{x} \geq \mathbf{0}\}$. Then for any $\mathbf{b} \in C$,

$$\mathbf{b} = \sum_{i=1}^{d} \mathbf{a}_{j_i} x_{j_i}, \ x_{j_i} \ge 0, \forall i$$

for some linearly independent vectors $\mathbf{a}_{j_1}, \dots, \mathbf{a}_{j_d}$ chosen from $\mathbf{a}_1, \dots, \mathbf{a}_n$.

Real Functions

- Continuous functions C
- Weierstrass theorem: a continuous function $f(\mathbf{x})$ defined on a compact set (bounded and closed) $\Omega \subset \mathcal{R}^n$ has a minimizer in Ω .
- ullet The least upper bound or supremum of f over Ω

$$\sup\{f(\mathbf{x}): \mathbf{x} \in \Omega\}$$

and the greatest lower bound or infimum of f over Ω

$$\inf\{f(\mathbf{x}): \mathbf{x} \in \Omega\}$$

• A function $f(\mathbf{x})$ is said to be homogeneous of degree k if $f(\alpha \mathbf{x}) = \alpha^k f(\mathbf{x})$ for all $\alpha \geq 0$.

Let $\mathbf{c} \in \mathcal{R}^n$ be given and $\mathbf{x} \in \operatorname{int} \mathcal{R}^n_+$. Then $\mathbf{c}^T \mathbf{x}$ is homogeneous of

degree 1 and

$$\phi(\mathbf{x}) = n \log(\mathbf{c}^T \mathbf{x}) - \sum_{j=1}^n \log x_j$$

is homogeneous of degree 0.

Let $C \in \mathcal{S}^n$ be given and $X \in \operatorname{int} \mathcal{S}^n_+$. Then $\mathbf{x}^T C \mathbf{x}$ is homogeneous of degree 2, $C \bullet X$ and $\det(X)$ are homogeneous of degree 1 and n, respectively, and

$$\Phi(X) = n \log(C \bullet X) - \log \det(X)$$

is homogeneous of degree 0.

• The gradient vector C^1 :

$$\nabla f(\mathbf{x}) = \{\partial f/\partial x_i\}, \text{ for } i = 1, ..., n.$$

• The Hessian matrix C^2 :

$$\nabla^2 f(\mathbf{x}) := \left\{ \frac{\partial^2 f}{\partial x_i \partial x_j} \right\} \quad \text{for} \quad i = 1, ..., n; \ j = 1, ..., n.$$

- Vector function: $\mathbf{f} = (f_1; f_2; ...; f_m)$
- The Jacobian matrix of **f**:

$$abla \mathbf{f}(\mathbf{x}) := \left(\begin{array}{c}
abla f_1(\mathbf{x}) \\
\vdots \\
abla f_m(\mathbf{x}) \end{array} \right).$$

Convex Functions

• f is a convex function iff for $0 \le \alpha \le 1$,

$$f(\alpha \mathbf{x} + (1 - \alpha)\mathbf{y}) \le \alpha f(\mathbf{x}) + (1 - \alpha)f(\mathbf{y}).$$

 \bullet The level set of f is convex:

$$L(z) = \{ \mathbf{x} : f(\mathbf{x}) \le z \}.$$

- The convex set $\{(z; \mathbf{x}) : f(\mathbf{x}) \leq z\}$ is called the epigraph of f.
- $tf(\mathbf{x}/t)$ is a convex function of $(t; \mathbf{x})$ for t > 0 and it's homogeneous of degree 1.

Proof of convex function

Consider the minimal-objective value function of ${\bf b}$ for fixed A and ${\bf c}$:

$$z(\mathbf{b}) :=$$
 minimize $\mathbf{c}^T \mathbf{x}$ subject to $A\mathbf{x} = \mathbf{b},$ $\mathbf{x} \geq \mathbf{0}.$

Show that $z(\mathbf{b})$ is a convex function in \mathbf{b} for all feasible \mathbf{b} .

Theorems on Functions

Taylor's theorem or the mean-value theorem:

Theorem 4 Let $f \in C^1$ be in a region containing the line segment $[\mathbf{x}, \mathbf{y}]$. Then there is α with $0 \le \alpha \le 1$ such that

$$f(\mathbf{y}) = f(\mathbf{x}) + \nabla f(\alpha \mathbf{x} + (1 - \alpha)\mathbf{y})(\mathbf{y} - \mathbf{x}).$$

Furthermore, if $f \in C^2$ then there is α with $0 \le \alpha \le 1$ such that

$$f(\mathbf{y}) = f(\mathbf{x}) + \nabla f(\mathbf{x})(\mathbf{y} - \mathbf{x}) + (1/2)(\mathbf{y} - \mathbf{x})^T \nabla^2 f(\alpha \mathbf{x} + (1 - \alpha)\mathbf{y})(\mathbf{y} - \mathbf{x}).$$

Theorem 5 Let $f \in C^1$. Then f is convex over a convex set Ω if and only if

$$f(\mathbf{y}) \ge f(\mathbf{x}) + \nabla f(\mathbf{x})(\mathbf{y} - \mathbf{x})$$

for all $\mathbf{x}, \ \mathbf{y} \in \Omega$.

Theorem 6 Let $f \in C^2$. Then f is convex over a convex set Ω if and only if the Hessian matrix of f is positive semi-definite throughout Ω .

Linear Least Squares Problems

Given $A \in \mathbb{R}^{m \times n}$ and $\mathbf{c} \in \mathbb{R}^n$,

$$(LS) \quad \text{minimize} \quad \|\mathbf{c} - A^T\mathbf{y}\|^2$$
 subject to $\quad \mathbf{y} \in \mathcal{R}^m.$

A close form solution:

$$AA^T\mathbf{y} = A\mathbf{c}$$
 or $\mathbf{y} = (AA^T)^{-1}A\mathbf{c}$.

$$\mathbf{c} - A^T \mathbf{y} = \mathbf{c} - A^T (AA^T)^{-1} A \mathbf{c} = \mathbf{c} - P \mathbf{c}$$

Projection matrix: $P = A^T (AA^T)^{-1} A$ or $P = I - A^T (AA^T)^{-1} A$.

Figure 5: Projection of c onto a subspace

Choleski decomposition method

$$AA^T = L\Lambda L^T$$

$$L\Lambda L^T \mathbf{y}^* = A\mathbf{c}$$

System of nonlinear equations

Given $f(x): \mathbb{R}^n \to \mathbb{R}^n$, the problem is to solve n equations for n unknowns:

$$f(x) = 0.$$

Given a point \mathbf{x}^k , Newton's Method sets

$$f(\mathbf{x}) \simeq f(\mathbf{x}^k) + \nabla f(\mathbf{x}^k)(\mathbf{x} - \mathbf{x}^k) = \mathbf{0}.$$

$$\mathbf{x}^{k+1} = \mathbf{x}^k - (\nabla f(\mathbf{x}^k))^{-1} f(\mathbf{x}^k)$$

or solve for direction vector \mathbf{d}_x :

$$\nabla f(\mathbf{x}^k)\mathbf{d}_x = -f(\mathbf{x}^k)$$
 and $\mathbf{x}^{k+1} = \mathbf{x}^k + \mathbf{d}_x$.

Figure 6: Newton's method for root finding

The quasi Newton method

$$\mathbf{x}^{k+1} = \mathbf{x}^k - \alpha(\nabla f(\mathbf{x}^k))^{-1} f(\mathbf{x}^k)$$

where scalar $\alpha \geq 0$ is called the step-size. More generally, we may use

$$\mathbf{x}^{k+1} = \mathbf{x}^k - \alpha M^k f(\mathbf{x}^k)$$

where M^k is an $n \times n$ symmetric matrix. In particular, if $M^k = I$, then the method is called the gradient method, where f is viewed as the gradient vector of a real function.

Convergence and Big O

- $\{\mathbf{x}^k\}_0^\infty$ denotes a seqence $\mathbf{x}^0,\mathbf{x}^1,\mathbf{x}^2,...,\mathbf{x}^k,....$
- ullet We denote $\mathbf{x}^k o ar{\mathbf{x}}$ when $\|\mathbf{x}^k ar{\mathbf{x}}\| o 0$
- $g(x) \ge 0$ is a real valued function of a real nonnegative variable, the notation g(x) = O(x) means that $g(x) \le \bar{c}x$ for some constant \bar{c} .
- $g(x) = \Omega(x)$ means that $g(x) \ge \underline{c}x$ for some constant \underline{c} .
- $g(x) = \theta(x)$ means that $\underline{c}x \leq g(x) \leq \overline{c}x$.
- \bullet g(x) = o(x) means that g(x) goes to zero faster than x does:

$$\lim_{x \to 0} \frac{g(x)}{x} = 0$$