GM

Es considera l'equació parabòlica unidimensional

$$\frac{\partial u}{\partial t} = \nu \frac{\partial^2 u}{\partial x^2}, \qquad x \in (0, 1), t > 0 \tag{1}$$

amb condicions de contorn de Dirichlet $u(0,t) = u_a(t)$, $u(1,t) = u_b(t)$, i condició inicial u(x,0) = f(x). Aquest problema modelitza, per exemple, l'evolució de la temperatura en una barra amb conductivitat térmica ν , temperatura inicial donada per f(x), i temperatura fixada als extrems. A la intranet està disponible un codi de diferències finites per a la resolució amb el mètode d'Euler (mètode explícit) per $\nu = 1$.

- a) Considerem primer el problema amb f(x) = 1 2|x 0.5|, $\nu = 1$, g = h = 0, i $t \in [0, 0.2]$. Executa el codi amb m = 10 intervals, i $n_{steps} = 80, 40, 39, 38, 20$ passos de temps. Es comporta la solució numèrica com esperem?
- b) Modifica el codi per tenir en compte $\nu \neq 1$. Resol el problema amb m=16 intervals, $t \in [0, 0.4], n_{steps}=300,600$ passos de temps, per
 - (i) $\nu = 1, 2$, condicions de contorn $u_a = u_b = 0$ and condició inicial $f(x) = \sin(\pi x)$.
 - (iii) $\nu = 1$, condicions de contorn $u_a = 0$, $u_b = 1$ and condició inicial $f(x) = \sin(\pi x) + x^2$.

Observa el comportament de la solució. Tendeix a una solució estacionaria? Quina? Quin és l'efecte del paràmetre ν ?

- c) Calcula u(0.5, 0.2) per $\nu = 1$, f(x) = 1 2|x 0.5|, $u_a = u_b = 0$. Proporciona la solució amb 3 xifres significatives correctes.
- d) Implementa el mètode d'Euler enrera (implicit) i comprova que és estable per a qualsevol pas de temps Δt . Repeteix l'apartat anterior amb el mètode d'Euler enrera i observa quin Δt i Δx cal en aquest cas.