

Traffic Light Project Report

Group Members: De-Andrea Malcolm - 1608204, Joveil Perkins - 1605398

Date: April 3, 2019

Module: Theory of Computations

Lectures: David White

State Diagram

Figure 1: Finite Automaton M1

Formal Description

 $M_1 = (Q, \sum, \delta, q_0, F)$, where:

- Q = {Red, Green, Amber, Walk, Reject}
- $\Sigma = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$
- $\bullet \quad \overline{8} = Q \times \Sigma$

	0	1	2	3	4	5	6	7	8	9
Red	Walk	Red	Green							
Green	Reject	Green	Green	Green	Green	Green	Amber	Reject	Reject	Reject
Amber	Reject	Amber	Amber	Amber	Amber	Amber	Red	Reject	Reject	Reject
Walk	Reject	Walk	Green							
Reject										

Figure 2: Table showing \mathcal{S}

- $q_0 = Red$
- $F = \{\text{Red}\}$

Language Description

 $L(M_1) = \{ w \mid w \text{ is a string of numbers from } 0 \text{ to } 9 \text{ in ascending order. } w \text{ is repeated any number of times and } 0 \text{ can fall anywhere in the beginning of the first } w \text{ in the string.} \}$

C++ Code Implemented in Arduino

```
int LED0 = 13;
int LED1 = 12;
int LED2 = 8;
int LED3 = 4;
void setup() {
 pinMode(LED0,OUTPUT);
 pinMode(LED1,OUTPUT);
 pinMode(LED2,OUTPUT);
 pinMode(LED3,OUTPUT);
 Serial.begin(9600);
void loop() {
//each switch represents a state
//for loop provides input
int walk=1;
//red state
for(int x=1;x<10;x++){
  switch(x){
  case 1: if(Serial.available() >0 || walk==0){
        walk=0;
```

```
digitalWrite(LED0,HIGH);
    }
    else{
     digitalWrite(LED0,LOW);
    }
    digitalWrite(LED1,HIGH);
    digitalWrite(LED2,LOW);
    digitalWrite(LED3,LOW);
    delay(1000);
    break;
case 2: if(Serial.available() >0 || walk==0){
     digitalWrite(LED0,HIGH);
    }
    else{
     digitalWrite(LED0,LOW);
    }
    digitalWrite(LED1,HIGH);
    digitalWrite(LED2,LOW);
    digitalWrite(LED3,LOW);
    delay(1000);
    break;
case 3: if(Serial.available() >0 || walk==0){
     digitalWrite(LED0,HIGH);
    }
    else{
     digitalWrite(LED0,LOW);
```

```
}
    digitalWrite(LED1,HIGH);
    digitalWrite(LED2,LOW);
    digitalWrite(LED3,LOW);
    delay(1000);
    break;
case 4: if(Serial.available() >0 || walk==0){
     digitalWrite(LED0,HIGH);
    }
    else{
     digitalWrite(LED0,LOW);
    digitalWrite(LED1,HIGH);
    digitalWrite(LED2,LOW);
    digitalWrite(LED3,LOW);
    delay(1000);
    break;
case 5: digitalWrite(LED0,LOW);
    digitalWrite(LED1,HIGH);
    digitalWrite(LED2,LOW);
    digitalWrite(LED3,LOW);
    delay(1000);
    break;
case 6: if(Serial.available() >0 || walk==0){
     digitalWrite(LED0,HIGH);
    }
    else\{
```

```
digitalWrite(LED0,LOW);
    digitalWrite(LED1,HIGH);
    digitalWrite(LED2,LOW);
    digitalWrite(LED3,LOW);
    delay(1000);
    break;
case 7: digitalWrite(LED0,LOW);
    digitalWrite(LED1,HIGH);
    digitalWrite(LED2,LOW);
    digitalWrite(LED3,LOW);
    delay(1000);
    break;
case 8: if(Serial.available() >0 || walk==0){
     digitalWrite(LED0,HIGH);
    }
    else{
     digitalWrite(LED0,LOW);
    digitalWrite(LED1,HIGH);
    digitalWrite(LED2,LOW);
    digitalWrite(LED3,LOW);
    delay(1000);
    break;
case 9: digitalWrite(LED0,LOW);
    digitalWrite(LED1,LOW);
    digitalWrite(LED2,LOW);
```

```
digitalWrite(LED3,HIGH);
       delay(1000);
      break;
  }
}
  //reset walk
if(Serial.available() >0 || walk==0){
 Serial.end();
 Serial.begin(9600);
}
//green state
for(int x=1;x<7;x++){
  switch(x){
  case 1: if(Serial.available() >0 || walk==0){
        walk=0;
        digitalWrite(LED0,HIGH);
       }
       else{
        digitalWrite(LED0,LOW);
       digitalWrite(LED1,LOW);
      digitalWrite(LED2,LOW);
       digitalWrite(LED3,HIGH);
```

```
delay(1000);
    break;
case 2: digitalWrite(LED0,LOW);
    digitalWrite(LED1,LOW);
    digitalWrite(LED2,LOW);
    digitalWrite(LED3,HIGH);
    delay(1000);
    break;
case 3: if(Serial.available() >0 || walk==0){
     digitalWrite(LED0,HIGH);
    }
    else{
     digitalWrite(LED0,LOW);
    digitalWrite(LED1,LOW);
    digitalWrite(LED2,LOW);
    digitalWrite(LED3,HIGH);
    delay(1000);
    break;
case 4: digitalWrite(LED0,LOW);
    digitalWrite(LED1,LOW);
    digitalWrite(LED2,LOW);
    digitalWrite(LED3,HIGH);
    delay(1000);
    break;
case 5:if(Serial.available() >0 || walk==0){
     digitalWrite(LED0,HIGH);
```

```
}
      else{
       digitalWrite(LED0,LOW);
      digitalWrite(LED1,LOW);
      digitalWrite(LED2,LOW);
      digitalWrite(LED3,HIGH);
      delay(1000);
      break;
  case 6: digitalWrite(LED0,LOW);
      delay(1000);
      digitalWrite(LED1,LOW);
      digitalWrite(LED2,LOW);
      digitalWrite(LED3,HIGH);
      break;
  }
}
//Amber State
for(int x=1;x<7;x++){
  switch(x){
  case 1: if(Serial.available() >0 || walk==0){
       digitalWrite(LED0,HIGH);
       }
      else\{
```

```
digitalWrite(LED0,LOW);
    digitalWrite(LED1,LOW);
    digitalWrite(LED2,HIGH);
    digitalWrite(LED3,LOW);
    delay(1000);
    break;
case 2: digitalWrite(LED0,LOW);
    digitalWrite(LED1,LOW);
    digitalWrite(LED2,HIGH);
    digitalWrite(LED3,LOW);
    delay(1000);
    break;
case 3: if(Serial.available() >0 || walk==0){
     digitalWrite(LED0,HIGH);
    }
    else{
     digitalWrite(LED0,LOW);
    }
    digitalWrite(LED1,LOW);
    digitalWrite(LED2,HIGH);
    digitalWrite(LED3,LOW);
    delay(1000);
    break;
case 4: digitalWrite(LED0,LOW);
    digitalWrite(LED1,LOW);
    digitalWrite(LED2,HIGH);
```

```
digitalWrite(LED3,LOW);
    delay(1000);
    break;
case 5:if(Serial.available() >0 || walk==0){
     digitalWrite(LED0,HIGH);
    }
    else\{
     digitalWrite(LED0,LOW);
    }
    digitalWrite(LED1,LOW);
    digitalWrite(LED2,HIGH);
    digitalWrite(LED3,LOW);
    delay(1000);
    break;
case 6: digitalWrite(LED0,LOW);
    delay(1000);
    digitalWrite(LED1,LOW);
    digitalWrite(LED2,HIGH);
    digitalWrite(LED3,LOW);
    break;
}
```