Introduction

Hi everyone, it is a great pleasure to be here today. Many of you probably do not know me since I just joined Takuvik team less than two months ago. So, please let me first introduce myself.

- Master in mathematics and computer science
- PhD in Environmental Sciences (Dr. Jean-Jacques Frenette)
- Two years postdoc in Denmark (Dr. Stiig Markager)
- General research interests: Use of optical methods to understand DOM dynamics in aquatic ecosystems (Satellite imagery, Fluorescence, Absorbance)

Physic paper

When I first joined the Takuvik team, I was rapidly introduced to a project that aims to describe the upper ocean physics of Baffin Bay marginal ice zone. I was given the task to use remote sensing products to characterize the state of the atmosphere and ice conditions for both Green Edge missions. Today, I will not present real results, but rather show what I have done in these last two months. I see this as a good opportunity to get feedback from you and a chance to further discuss on how do we further exploit the data I generated.

Available data

Here is a list of data that I have processed that are ready for exploitation.

Examples

- Sea ice extent
- Wind speed: can clearly see patterns

Data exploitation

One problem with all these data is that they come from different sources which can make their exploitation a bit difficult.

360 degrees ice-cam

Another project I was given was to use the 360 degrees camera that was on board of the Amundsen. Maybe you know that the Amundsen was equipped with a 360 degrees camera with the purpose of esimating...

Spatial projection

Camera calibration was done on the ship so for each pixel in the panorama we know its distance form the ship. Hence, with a bit of geometry, we can project the panorama around the ship.

Ice detection

Using a simple threshold segmentation technique we can produce a binary image that indicate the presence of ice around the ship.

What's next?