Mathematics 546 Homework.

Let us review what we should all know about polynomials. Let F be a field, which for the time being we can assume is one of the following:

 \mathbb{Q} = The rational numbers,

 \mathbb{R} = The real numbers,

 \mathbb{C} = The complex numbers, or

 $\mathbb{Z}_p = \text{for } p \text{ a prime number.}$

You can find a formal definition of a field in Definition 4.1.1 on Page 191 of the text, but for the time being the above examples are plenty. Let F[x] be the polynomials with coefficients from F. That is (See Definition 4.1.4 on Page 194 of the text) **polynomials** are expressions of the form

$$f(x) = a_m x^m + a_{m-1} x^{m-1} + \dots + a_1 x + a_0$$

where the **coefficients** a_0, a_1, \ldots, a_m are elements of the field F. In summation notation this is

$$f(x) = \sum_{j=0}^{m} a_j x^j$$

with the understanding that $x^0 = 1$. If $a_m \neq 0$, then

$$\deg(f(x)) = m.$$

For example

$$\deg(4x^3 - 9x^2 + 17x - 42) = 3$$

$$\deg(x^n - x) = 1$$
 When n is an integer ≥ 2 .
$$\deg(5) = 0$$
.

In general if $a_0 \neq 0$ is a nonzero constant, then the constant polynomial $f(x) = a_0 = a_0 x^0$ has $\deg(f(x)) = 0$. The zero polynomial f(x) = 0 is not given a degree (or some people give it the degree $\deg(0) = -\infty$).

The basic rule for exponents

$$x^j x^k = x^{j+k}$$

and the distributive law tells us how to multiply polynomials. For example using the distributive law on the product $(a_2x^2 + a_1x + a_0)(b_3x^3 + b_2x^2 + b_1x + b_0)$ leads to $3 \times 4 = 12$ terms which can then be grouped by powers of

x:

$$(a_2x^2 + a_1x + a_0)(b_3x^3 + b_2x^2 + b_1x + b_0)$$

$$= a_2x^2(b_3x^3 + b_2x^2 + b_1x + b_0)$$

$$+ a_1x(b_3x^3 + b_2x^2 + b_1x + b_0)$$

$$+ a_0(b_3x^3 + b_2x^2 + b_1x + b_0)$$

$$= a_2b_3x^5 + a_2b_2x^4 + a_2b_13 + a_2b_0^2$$

$$+ a_1b_3x^4 + a_1b_2x^3 + a_1b_1x^2 + a_1b_0x$$

$$+ a_0b_3x^3 + a_0b_2x^2 + a_0b_1x + a_0b_0$$

$$= a_2a_3x^5 + (a_2b_2 + a_1b_3)x^4 + (a_2b_1 + a_1b_2 + a_0b_3)x^3$$

$$+ (a_2b_0 + a_1b_1 + a_0b_2)x^2 + (a_1b_0 + a_0b_1)x + a_0b_0.$$

In general if

$$f(x) = a_m x^m + a_{m-1} x^{m-1} + \dots + a_1 x + a_0$$

$$g(x) = b_n x^n + b_{n-1} x^{m-1} + \dots + a_1 x + b_0$$

then the product

$$f(x)g(x) = c_{m+n}x^{m+n} + c_{n+m-1}x^{m+n-1} + c_{m+n-2}x^{m_n-2} + \dots + c_1x + c_0$$

$$\sum_{k=0}^{m+n} c_k x^k$$

where

$$\begin{split} c_{m+n} &= a_m b_n \\ c_{m+n-1} &= a_m b_{m-1} + a_{m-1} b_n \\ c_{n+m-2} &= a_n b_{n-2} + a_{m-1} b_{n-1} + a_{n-2} b_n \\ &\vdots &\vdots \\ c_k &= \sum_{\substack{i+j=k \\ 0 \le i \le m \\ 0 \le j \le n}} a_i b_j \\ &\vdots &\vdots \\ c_2 &= a_2 b_0 + a_1 b_1 + a_0 b_2 \\ c_1 &= a_1 b_0 + a_0 b_1 \\ c_0 &= a_0 b_0. \end{split}$$

The formula for c_k can be simplified if we set $a_i = 0$ for i > m and $b_j = 0$ for j > n. Then

$$c_k = \sum_{i+j=k} a_j b_j = \sum_{i=0}^k a_i b_{k-i} = \sum_{j=0}^k a_{k-j} b_j.$$

Proposition 1. If $f(x), g(x) \in F[x]$ are not the zero polynomial, then

$$\deg(f(x)g(x)) = \deg(f(x)) + \deg(g(x)).$$

Proof. Let deg(f(x)) = m and deg(g(x)) = n then

$$f(x) = a_m x^m + a_{m-1} x^{m-1} + \dots + a_1 x + a_0$$

$$g(x) = b_n x^n + b_{n-1} x^{m-1} + \dots + a_1 x + b_0$$

where $a_m \neq 0$ and $b_n \neq 0$. Then

$$f(x)g(x) = c_{m+n}x^{m+n} + c_{m+n-1}x^{m+n-1}x^{m+n-1} + \dots + c_1x + c_0.$$

where $c_{m+n} = a_m b_n \neq 0$. Thus $\deg(f(x)g(x)) = m + n = \deg(f(x)) + \deg(g(x))$ as required.

Problem 1. This problem is just a bit of practice (or review) in basic operations with polynomials. Let

$$f(x) = 3x^{2} - 4x + 1$$
$$g(x) = x^{3} + 2x^{2} - x + 5.$$

Compute the following

- (a) f(x) + g(x) (or just write "Oh come on, you know we can all add polynoials".)
- (b) $f(x)^2$

(c)
$$f(x)g(x)$$
.

Problem 2. Let $a \in F$ and compute the following

- (a) (x-a)(x+a)
- (b) $(x-a)(x^2+ax+a^2)$
- (c) $(x-a)(x^3+ax^2+a^2x+a^3)$
- (d) $(x-a)(x^4+ax^3+a^2x^2+ax^3+a^4)$
- (e) At this point you should have seen a pattern. What is it?

We will also want to do long division with polynomials. For example if we divide $f(x) = x^4 + 4x^3 + 3x^2 + 2x - 1$ by $g(x) = x^2 + 2x - 2$:

we get a quotient of $q(x) = x^2 + 2x + 2$ and a remainder of r(x) = 4x + 5. This means

$$f(x) = q(x)g(x) + r(x).$$

Problem 3. Find the quotient and remainder when g(x) is divided into f(x) in the following cases.

- (a) g(x) = x 5 and $f(x) = 4x^2 3x + 7$. (b) $g(x) = x^2 + 2x + 3$ and $f(x) = 3x^4 2x^3 + x^2 5x + 1$. (c) g(x) = x s and $f(x) = ax^2 + bx + c$ where s, a, b, c are constants (that is elements of the field F.)