44-44-44-64-6-beta-10.85-twist-2

October 17, 2024

```
[16]: %load_ext autoreload
%autoreload 2
from modules import read_and_write
from modules import polyakov
from modules import utility
from modules import fourier_surface
import pandas as pd
import os
import glob
```

The autoreload extension is already loaded. To reload it, use: %reload_ext_autoreload

For reference with integration method the following surface tensions were computed

```
\begin{split} z_1: \ \alpha_{o-o}/T^3(\beta=10.85) &= 1.2316804724774406 \\ z_2: \ \alpha_{o-o}/T^3(\beta=10.85) &= 1.5433288477348852 \end{split}
```

1 Load data

```
[69]: folder_names = ["../data/output-measure-surface/su4-36-36-48-6",
                       "../data/output-measure-surface/su4-44-44-64-6/beta-12-twist-2",
                       "../data/output-measure-surface/su4-44-44-64-6/beta-10.
       \hookrightarrow9-twist-2",
                       "../data/output-measure-surface/su4-44-44-64-6/beta-10.
       \hookrightarrow85-twist-1",
                       "../data/output-measure-surface/su4-44-44-64-6/beta-10.
       ⇔85-twist-2"1
      choose_folder = 5
      fourier_profiles = {}
      folder = folder_names[choose_folder-1]
      files = glob.glob(os.path.join(folder, "fourier_profile_*"))
      for file in files:
          file_name = file.split("/")[-1]
          smearing_level = file_name.split("_")[-1]
          volume, fourier_profile = read_and_write.read_surface_data(folder,__

¬file_name)
```

[72]: utility.display_markdown_title(folder)

- 2 SU(4), V = [44', 44', 64', 6'], $\beta = 10.85$, twist coeff = 2
- 2.1 Perform post processing

```
[70]: n_2_list = []
f_n_list = []
errors_list = []
for smearing_level, profile in fourier_profiles.items():
    n_2, f_n, errors = utility.compute_with_aa_jackknife_fourier(profile, 10, thermalization=100)
    n_2_list.append(n_2)
    f_n_list.append(f_n)
    errors_list.append(errors)
```

2.2 Plot Fourier modes for different smearing steps

```
[71]: %matplotlib widget
      smearing_levels = list(fourier_profiles.keys())
      show_plot = True
      data = {
          "smearing": smearing_levels,
          "linear": [
              fourier_surface.compute_fourier_profile(
                  n_2, f_n, volume, errors=error, beta=10.85, fit_range=3,__
       ⇒smearing=smear, show_plot=show_plot
              ) for n_2, f_n, error, smear in zip(n_2_list, f_n_list, errors_list,_
       ⇒smearing_levels)
          ],
          "exponential": [
              fourier_surface.compute_fourier_profile_exponential_fit(
                  n_2, f_n, volume, errors=error, beta=10.85, smearing=smear,
       ⇒show_plot=show_plot
              ) for n_2, f_n, error, smear in zip(n_2_list, f_n_list, errors_list,_
       ⇔smearing_levels)
          ]
      }
      df = pd.DataFrame(data)
      utility.print_df_as_markdown_fourier_modes(df)
```


/home/haaaaron/SUN_twist_python_analysis/env/lib/python3.10/site-packages/scipy/optimize/_minpack_py:1010: OptimizeWarning: Covariance of the parameters could not be estimated

warnings.warn('Covariance of the parameters could not be estimated', /home/haaaron/SUN_twist_python_analysis/modules/fourier_surface.py:93: RuntimeWarning: invalid value encountered in multiply

return a * np.exp(-b * x) + c

 $/home/haaaaron/SUN_twist_python_analysis/modules/fourier_surface.py:153:$

RuntimeWarning: invalid value encountered in matmul

smearing	Linear fit (σ/T^3)	Exponential fit (σ/T^3)
5	2.041 ± 0.03974	$0.04502 \pm \mathrm{nan}$
10	1.544 ± 0.03516	1.726 ± 0.2493
15	1.449 ± 0.01467	1.311 ± 0.01805
30	1.479 ± 0.01661	1.404 ± 0.007089
60	1.67 ± 0.1031	1.584 ± 0.03948
120	2.611 ± 0.1146	1.714 ± 0.03947
240	8.95 ± 1.361	1.846 ± 0.01304
480	129.2 ± 30.52	1.826 ± 0.05513

```
[45]: import matplotlib.pyplot as plt
    plt.close('all')
```