

loT·인공지능·빅데이터 개론 및 실습

그래프 처리, 머신러닝/딥러닝

서울대학교 컴퓨터공학부 전병곤

Contents

- 1 그래프 처리
- 2 머신러닝/딥러닝
- 3 머신러닝/딥러닝 분산학습

(1) 빅데이터 분석 방법

- > 배치 분석
- > 대화형 질의
- ▶ 스트림 처리
- ▶ 그래프 처리
- > 머신 러닝/딥러닝

(2) Graph Data

Web graph

[출처]:http://labs.criteo.com/2014/05/web-graph-seen-criteo/

Social graph

[출처]:http://blog.shuttlecloud.com/more-than-the-social-graph/

(2) Graph Definition and Algorithms

- ➤ Graph G definition
 - \
 - A set of vertices
 - L(v) value of vertex v
 - E
 - A set of edges (directed or undirected edges)
 - W(u, v) value of edge (u, v)
- > Variations of the above definition

(2) Graph Definition and Algorithms

- > Graph algorithms
 - Shorted paths
 - Bipartite matching
 - Connected components
 - Random walk
 - PageRank
 - •

(2) Graph Definition and Algorithms

- > Graph algorithms
 - Triangle counting
 - Community detection
 - Motif finding
 - Social circles
 - ...

- ➤ Why not MapReduce or MPI for graph processing?
 - MapReduce: not efficient
 - MPI: implementing specific graph processing algorithms
 - -> not reusable for other graph processing algorithms

- ➤ Think like a vertex
 - e.g., Google Pregel, Apache Giraph
 - Vertex as a computation unit
- Think like a (sub)graph
 - A subgraph as a computation unit

- > Think like a vertex
 - Computations consist of a sequence of iterations called supersteps (i.e., bulk synchronous parallel)
 - During a superstep, the framework invokes a user-defined function for each vertex in parallel
 - A vertex can
 - read messages sent to V in superstep S-1
 - modify the state of V and its outgoing edges
 - send messages to other vertices that will be received at superstep S+1

- Think like a vertex (e.g., Google Pregel, Apache Giraph)
 - Algorithm termination is based on every vertex voting to halt

(3) Graph Processing Model

- ➤ Example of the think-like-a-vertex model
 - Compute the maximum vertex value of a graph

Superstep 0

- ➤ Example of the think-like-a-vertex model
 - Compute the maximum vertex value of a graph

- ➤ Example of the think-like-a-vertex model
 - Compute the maximum vertex value of a graph

- ➤ Example of the think-like-a-vertex model
 - Compute the maximum vertex value of a graph

(4) Distributed Graph Processing

- ➤ Master-worker architecture
- Master divides a graph into partitions(subgraphs) to maximize parallelism

(4) Distributed Graph Processing

- Master initiates a superstep
- ➤ Each Worker runs vertex computation for the vertexes in the partition
 - Sends and receives messages across machine boundaries
- ➤ Workers notify Master their state changes
- Master checks if the current state meets its termination condition
 - If so, terminates the processing
 - If not, initiates the next superstep

Contents

- 1 그래프 처리
- 2 머신러닝/딥러닝
- 3 머신러닝/딥러닝 분산학습

(1) Classical Machine Learning vs Deep Learning

- > Classical machine learning
 - Human-crafted features
 - Great fit for data mining applications
- Deep learning
 - No feature extraction
 - Great fit for hard vision, speech, language problems

(2) Applications

- ➤ Classical machine learning(ML) applications
 - Regression
 - Classification
 - Clustering
 - Topic modeling
 - Collaborative filtering
 - Frequent pattern mining
 - Ranking
 - • •

(2) Applications

- ➤ Deep learning(DL) applications
 - Image classification
 - Speech-to-text, text-to-speech
 - Video understanding
 - Image, video style transfer
 - Text understanding dialog
 - Machine translation
 - Ranking ads, feeds, news
 - Robot control, game play (e.g., GO)
 - Self-driving car
 - ...

(3) ML(DL) Workflow

- > Two main steps of ML
 - Training
 - Constructs a machine learning model by optimizing loss given training data
 - Inference
 - Uses a trained model to predict for new input data

(3) ML(DL) Workflow

➤ Machine learning workflow

(3) ML(DL) Workflow

➤ Machine learning training workflow

(4) ML(DL) Framework

➤ Machine learning (deep learning) framework

- (4) ML(DL) Framework
 - ➤ Machine learning software stack

ML Application

Vision Speech Language

ML Core

HW (CPU, GPU, AIPU)

- ➤ GPU (Graphics Processing Unit)
 - Originally for graphics processing
 - Around 2004, GPUs were programmable "enough" to do some non-graphics computations
 - Severely limited by graphics programming model (shader programming)
 - In 2006, GPUs became "fully" programmable
 - NVIDIA releases "CUDA" language to write non-graphics programs that will run on GPUs
 - Great fit for deep learning

- > ML core high-level structure
 - Python frontend: define machine learning models (mostly neural nets)

- C++ backend: execute defined models
- CPU
- GPU(s)
- AIPU (e.g., TPU)
- Distributed multi-machine

- > ML core main ideas
 - Describe mathematical computation
 - Represent computation as a computation graph
 - Execute the graph with the given data batch
 - Training: iterate execution with massive dataset to optimize a goal
 - The framework supports auto-differentiation
 - Inference: execute once with a data input to predict

- > Framework types: symbolic vs imperative
 - Symbolic: define-and-run
 - e.g., TensorFlow, Caffe2, MXNet
 - Better to optimize
 - Easier to deploy
 - Harder to program and debug
 - Imperative: define-by-run
 - e.g., PyTorch, TensorFlow eager, MXNet imperative
 - Easier to program and debug
 - Slower than symbolic
 - Harder to deploy

- ➤ Google TensorFlow
 - Symbolic ML framework
 - Express numerical computation as a computation graph
 - Node: operation which has any number of inputs and outputs
 - Edge: tensor which flow between nodes
 - Tensor: N-dimensional array
 - 1-dimension: Vector
 - 2-dimension: Matrix
 - E.g., image represented as 3-d tensor rows, cols, color
 - Tensors flow through the graph => TensorFlow

- ➤ Google TensorFlow
 - The graph's compiled to CPU / GPU / AIPU code
 - Salient features
 - Fine-grained ops
 - Dynamic control flow: condition, loop
 - Persistent state maintenance/update

- > TensorFlow programming model
 - Operation: abstract computation (e.g., matrix multiply)
 - Kernel: a particular implementation of an operation that can be run on a particular type of device (e.g., CPU or GPU)
 - Variable: returns a handle to a persistent mutable tensor that survives across executions of a graph.
 - Session: runs a graph

(4) ML(DL) Framework

> TensorFlow code example

import tensorflow as tf

```
b = tf.Variable(tf.zeros((100,)))
W = tf.Variable(tf.random_uniform((784, 100), -1, 1))
x = tf.placeholder(tf.float32, (None, 784))
h_i = tf.nn.relu(tf.matmul(x, W) + b)
```


For training, TensorFlow automatically creates its backpropagation graph

- > FaceBook PyTorch
 - Imperative ML framework
 - Express numerical computation like numpy
 - Programming model
 - Operation: abstract computation (e.g., matrix multiply)
 - Tensor: imperative N-dimensional array but runs either on CPU or GPU
 - Variable: wrapper of Tensor. It constructs a chain of operations between the tensors, so that the gradients can flow back

- Interoperability between frameworksOpen Neural Network Exchange (ONNX)
 - An open source format for Al models

- An extensible computation graph model and definitions of built-in operators and standard data types
- Caffe2, PyTorch, Cognitive Toolkit, MXNet support ONNX

Contents

- 1 그래프 처리
- 2 머신러닝/딥러닝
- 3 머신러닝/딥러닝 분산학습

(1) Distributed training issues

➤ Parallelism: data parallelism, model parallelism, hybrid parallelism

➤ Synchronization: synchronous, asynchronous, bounded synchronous

➤ Synchronization architecture: parameter server architecture, MPI

(1) Distributed training issues

> Parallelism

- Data Parallelism
- D = D1 U D2 U ··· U Dn
- Each worker i processes M with Di.
- Model Parallelism
- M = M1 U M2 U ··· U Mn
- Each worker i processes Mi with D.
- Hybrid Parallelism

- (1) Distributed training issues
 - > Synchrony of training
 - Synchronous training
 - Asynchronous training
 - Bounded-synchronous training

- (1) Distributed training issues
 - ➤ Synchronization architecture
 - Parameter server
 - Message passing interface (MPI)

- > Server
 - Maintains a partition of the globally shared parameters
 - Performs global aggregation steps

(2) Parameter Server

Worker

- Performs computation with (a portion of) training data communicates with servers
- Updating and retrieving the shared parameters

- ➤ Parameter-server-based synchronous training
 - Step 1: Workers compute gradients with training data and push them to servers
 - Step 2: Each Server receives gradients from Workers, aggregates them, and applies the sums to update the model parameters
 - Step 3: Workers pull the new model parameters
 - The above steps iterate until training converges

- Parallelism
 - Data Parallelism

(3) MPI Collective Communication

Broadcast

Scatter

(3) MPI Collective Communication

AllGather – Gather + Broadcast

(3) MPI Collective Communication

- ➤ MPI-based synchronous training
 - Step 1: Workers compute gradients with training data
 - Step 2: Workers run AllReduce (or AllGather) to aggregate them and apply the sums to update the model parameters
 - The above steps iterate until training converges

요약

✔ 머신러닝/딥러닝

▶ 머신러닝/딥러닝 분산학습