Avaliação de Dor em Camundongos com Redes Neurais e Visão Computacional

Marcio Salmazo Ramos

Universidade Federal de Uberlândia
Faculdade de Computação
Programa de Pós-Graduação em Ciência da Computação

Marcio Salmazo Ramos

Avaliação de Dor em Camundongos com Redes Neurais e Visão Computacional

Dissertação de mestrado apresentada ao Programa de Pós-graduação da Faculdade de Computação da Universidade Federal de Uberlândia como parte dos requisitos para a obtenção do título de Mestre em Ciência da Computação.

Área de concentração: Ciência da Computação

Orientador: Maurício Cunha Escarpinati Coorientador: Daniel Duarte Abdala

UNIVERSIDADE FEDERAL DE UBERLÂNDIA FACULDADE DE COMPUTAÇÃO PROGRAMA DE PÓS-GRADUAÇÃO EM CIÊNCIA DA COMPUTAÇÃO

Os abaixo assinados, por meio deste, certificam que leram e recomendam para a Faculdade de Computação a aceitação da dissertação intitulada "**Título do trabalho**" por **Nome do aluno** como parte dos requisitos exigidos para a obtenção do título de **Mestre em Ciência da Computação**.

	Uberlândia,	de	de
Orientador:			
		Nome do o	rientador le Uberlândia
	Ulliversidad	e reuerar c	ie Oberiandia
Coorientador:		Nama da a	oorientador
			le Uberlândia
		ando houve	
	\1		,
Banca Examinadora:			
	Duof Du	Membro da	
		de Ensino	
	mstituiquo	de Ensino	Superior
		Membro da	
	Instituição	de Ensino	Superior

Agradecimentos

Faça os agradecimentos àqueles que direta ou indiretamente contribuíram para que você tivesse obtido êxito. Inclua na sua lista agradecimentos aos órgãos de fomento, quando for o caso.

DEVE SER ESCRITO POR ÚLTIMO

Resumo

Segundo a NBR, o resumo deve ressaltar o objetivo, o método, os resultados e as conclusões do documento. A ordem e a extensão destes itens dependem do tipo de resumo (informativo ou indicativo) e do tratamento que cada item recebe no documento original. O resumo deve ser precedido da referência do documento, com exceção do resumo inserido no próprio documento. (...) As palavras-chave devem figurar logo abaixo do resumo, antecedidas da expressão Palavras-chave:, separadas entre si por ponto e finalizadas também por ponto

Palavras-chave: Latex. Abntex. Normas USP.

Abstract

Segundo a NBR, o resumo deve ressaltar o objetivo, o método, os resultados e as conclusões do documento. A ordem e a extensão destes itens dependem do tipo de resumo (informativo ou indicativo) e do tratamento que cada item recebe no documento original. O resumo deve ser precedido da referência do documento, com exceção do resumo inserido no próprio documento. (...) As palavras-chave devem figurar logo abaixo do resumo, antecedidas da expressão Palavras-chave:, separadas entre si por ponto e finalizadas também por ponto

Keywords: Latex. Abntex..

Lista de ilustrações

Figura 1 –	Exemplo de pré-processamento para adequação ao treinamento	31
Figura 2 –	Comparativo entre as abordagens de aprendizado supervisionado e não-	
	supervisionado	33
Figura 3 –	Arquiteura de uma RNA	35
Figura 4 –	Comparativo entre MLP e DNN	36
Figura 5 –	Camadas convolucionais em uma CNN	39
Figura 6 –	Estrutura de construção da ResNet50	42
Figura 7 –	Interface inicial do software desenvolvido para a geração da base de	
	dados	48
Figura 8 –	Sub-menu dedicado à extração de frames	49
Figura 9 –	Sub-menu dedicado à verificação das imagens armazenadas	50

Lista de tabelas

Lista de siglas

Sumário

1	INTRODUÇÃO
1.1	Motivação
1.2	Objetivos
1.3	Hipótese
1.4	Revisão do Estado da Arte
1.5	Contribuições
1.6	Organização da Dissertação ou Tese
2	FUNDAMENTAÇÃO TEÓRICA
2.1	Processamento Digital de Imagens
2.2	Aprendizado de máquina
2.3	Aprendizado baseado em Redes Neurais
2.4	Visão computacional
2.4.1	Redes Neurais Convolucionais
2.4.2	Vision Transformers
3	METODOLOGIA DE DESENVOLVIMENTO E PESQUISA 4
3.1	Aquisição e preparação da base de dados 4
3.2	Estudo exploratório dos classificadores 4
3.3	Tratamento dos dados coletados
3.4	Construção e treinamento dos modelos 50
3.5	Técnicas para avaliação de resultados
4	EXPERIMENTOS E ANÁLISE DOS RESULTADOS 5
4.1	Método para a Avaliação
4.2	Experimentos
4.3	Avaliação dos Resultados

5	CONCLUSÃO	53
5.1	Principais Contribuições	53
5.2	Trabalhos Futuros	53
5.3	Contribuições em Produção Bibliográfica	54
REFE	RÊNCIAS	55

Introdução

Um dos principais desafios para as pesquisas em ambientes clínicos veterinários é a avaliação precisa de estímulos dolorosos em animais, uma vez que a ausência da linguagem verbal nos animais exige métodos indiretos de avaliação, como a observação de sinais fisiológicos e comportamentais. A dor não tratada compromete seriamente o bem-estar destes animais, podendo levar a consequências fisiológicas e comportamentais duradouras, como sensibilização do sistema nervoso central, hiperalgesia (sensibilidade exagerada à dor ou estímulos dolorosos), bem como alterações no comportamento social.(FONTE)

Por serem incapazes de verbalizar suas sensações, a dor em camundongos (e outros animais de modo geral) costuma ser avaliada com base em comportamentos observáveis e alterações fisiológicas. Nesse contexto, foi criada a *Grimace Scale*, uma escala de avaliação desenvolvida para mensurar a dor com base em alterações sutis nas expressões faciais dos animais. A *Mouse Grimmace Scale* (MGS), por exemplo, observa mudanças em cinco regiões faciais distintas do camundongo (orelhas, olhos, bochechas, nariz e bigodes), as quais sofrem alterações expressivas em resposta a estímulos dolorosos.

A introdução da *Grimmace Scale* apresentou um avanço importante para o processo de qualificação da dor, permitindo uma avaliação mais sistemática e baseada em critérios visuais objetivos. Contudo, sua aplicação ainda depende da interpretação subjetiva de observadores humanos, o que introduz variabilidade nos resultados e pode comprometer a precisão e a reprodutibilidade, especialmente em contextos clínicos e experimentais. Adicionalmente, existe uma necessidade de que os analistas que se utilizem desta escala tenham um certo grau de especialização (normalmente médicos veterinários ou fisiologistas), o grande problema está na baixa disponibilidade de tal mão de obra para os diferentes grupos de pesquisa.

Por mais que a grimmace scale não exija diretamente observadores especializados, é inegável que sua presença se faça necessária em análises que demandam precisão. Neste contexto, técnicas automatizadas baseadas em visão computacional e aprendizado de máquina surgem como alternativas promissoras para reduzir o viés humano e a necessidade de mão de obra especializada, além de padronizar a análise da dor em animais de laboratório,

gerando resultados mais rápidos e assertivos.

Este trabalho propõe o desenvolvimento de um software cujo objetivo é identificar em imagens de camundongos, os marcadores previstos pela *grimmace scale*, classificando-as automaticamente quanto à presença e ao nível de dor. Optou-se por validar por meio da utilização camundongos uma vez que, em ambiente laboratorial, esses animais são os mais utilizados. Essa prevalência se deve a uma combinação de fatores biológicos e práticos:

- □ Biologicamente, os camundongos compartilham cerca de 95% de semelhança genética com os seres humanos, o que os torna modelos valiosos para o estudo de resposta a estímulos fisiológicos (incluindo dor), e avaliação de tratamentos. Além disso, sua curta expectativa de vida e ciclo reprodutivo acelerado permitem o acompanhamento de efeitos em múltiplas gerações em um curto intervalo de tempo.
- □ Do ponto de vista prático, camundongos são de baixo custo de manutenção, facilmente manipuláveis em laboratório, e possuem uma vasta disponibilidade de linhagens geneticamente modificadas. Esses fatores, combinados com o fato de que são pequenos, dóceis e se adaptam bem ao ambiente de laboratório, fazem deles um modelo ideal para experimentação padronizada e reprodutível.

Em conjunto com a *grimmace scale*, a proposta também integra tecnologias de visão computacional associadas ao aprendizado de máquina, como redes neurais convolucionais (CNNs) e *Vision Transformers* (ViTs), a fim de reconhecer padrões faciais sutis de forma rápida, automatizada e escalável.

1.1 Motivação

A motivação para este trabalho parte da premissa de que a dependência da interpretação visual por parte do avaliador, mesmo com o uso de uma escala padronizada, constitui um obstáculo à precisão dos diagnósticos e à eficiência no cuidado com os animais. A metodologia descrita pela MGS foi importante por padronizar os sinais visuais que identificam a presença de dor, permitindo comparações mais rigorosas e sólidas entre estudos. No entanto, os resultados ainda permanecem condicionados à percepção humana, a qual pode comprometer a confiabilidade e precisão das análises em decorrência de vieses.

Adicionalmente, a identificação de dor em animais representa um desafio ético e científico. A indução de dor, se não for devidamente controlada, viola princípios fundamentais de bem-estar animal. O problema está na dificuldade em reconhecer os padrões fisiológicos que denotam o sofrimento, o que pode levar à negligência e, consequentemente, estender o período de desconforto do animal, impactando diretamente em um caráter ético e moral. No âmbito científico, a exposição prolongada à dor pode representar um fator de confusão nos experimentos, afetando outras variáveis fisiológicas e comportamentais (como a

1.2. Objetivos 21

hiperalgesia e o estresse). Caso este cenário não seja bem monitorado e controlado, pode haver um comprometimento da validade dos resultados de um determinado experimento.

O desenvolvimento de uma ferramenta automatizada, baseada em técnicas de aprendizado de máquina e visão computacional, que seja capaz de detectar em tempo real a presença de dor com base nos critérios estabelecidos pela *Grimace Scale* tem forte potencial para sanar os problemas descritos previamente. Tratamentos preventivos ou paliativos podem ser aplicados de maneira segura e eficiente, levando à redução do sofrimento. Análises clínicas, onde diferentes estímulos precisam ser aplicados ao animal, também podem ser concluídas com maior agilidade, sem demandar a análise de um especialista. Tal imediatismo ajuda a mitigar o período de estresse no animal e torna o processo eficaz e confiável.

A consolidação de tal ferramenta também apresenta um grande potencial comercial. A criação de um aplicativo ágil e confiável para a detecção da dor permite que o período do sofrimento animal possa ser consideravelmente reduzido, além de promover a redução de custos em ambientes clínicos, uma vez que dispensa a necessidade de profissionais especializados para este tipo de análise. Tornando-se desejável a inúmeros laboratórios e instituições científicas ao redor do mundo.

1.2 Objetivos

Este trabalho tem como principal objetivo o desenvolvimento de uma ferramenta automatizada, voltada para a detecção e classificação de padrões faciais que expressam a presença de dor em animais. A proposta se baseia na *Grimmace Scale* associada a técnicas de visão computacional e aprendizado de máquina, visando superar as limitações dos métodos convencionais, que ainda dependem predominantemente da observação humana manual.

O estudo também se propõe a avaliar, de forma abrangente, a aplicabilidade da ferramenta em contextos de produção. Para isso, diferentes métodos de classificação baseados em redes neurais, integrados à *Grimace Scale*, foram explorados com o objetivo de identificar a abordagem mais eficaz. Espera-se, portanto, agregar maior confiabilidade aos resultados das análises, tornando-a atrativa para instituições científicas e clínicas na área veterinária.

A partir dessa premissa, o estudo se desdobra nos seguintes objetivos específicos:

- 1. Levantamento do estado da arte. Identificar e estudar os métodos de classificação de imagens mais adequados que estão disponíveis na atualidade;
- Especificar detalhadamente os equipamentos e protocolos empregados para a captura das imagens;

- 3. Desenvolvimento de um software capaz de extrair e organizar as imagens. Tal ferramenta será responsável por gerar a base de dados;
- 4. Realizar a organização e o pré-processamento das imagens, a fim de adequá-las à entrada dos classificadores;
- 5. Implementar diferentes modelos de classificadores, essenciais para processar os dados colhidos previamente;
- 6. Treinar os modelos implementados e armazenar seus resultados;
- 7. Realizar uma análise comparativa entre diferentes modelos aplicados, buscando determinar quais abordagens são mais eficazes para o projeto;
- 8. Refinar os modelos, ajustando seus hiper-parâmetros a fim de extrair o melhor resultado possível;
- 9. Investigar as implicações práticas da implementação dessa tecnologia no setor veterinário, o que envolve uma análise detalhada de custo-benefício, impactos positivos, potenciais desafios técnicos e operacionais.

1.3 Hipótese

A hipótese deste estudo parte da premissa de que classificadores inteligentes possam identificar diferentes regiões de interesse em imagens de camundongos que, ao serem analisadas seguindo os padrões estabelecidos pela MGS, permitem apontar a presença de dor e quantificá-la. Acredita-se que técnicas de visão computacional associadas ao treinamento de máquina, sejam capazes de detectar nuances sutis nas imagens que não são facilmente perceptíveis ao observador não especialista ou que não são capturadas por métodos convencionais.

1.4 Revisão do Estado da Arte

O trabalho em questão lida essencialmente com um problema classificatório baseado em imagens, mais especificamente, a classificação de dor em camundongos com base em seus retratos faciais, utilizando como parâmetro a MGS. Neste contexto, diferentes autores propuseram trabalhos acadêmicos com metodologias interessantes para abordar tal problema.

O estudo desenvolvido por Tuttle et al. 2018 propõe uma abordagem automatizada da MGS para identificar dor em camundongos com base em imagens de suas expressões faciais após laparotomia (procedimento cirúrgico que envolve a abertura da cavidade abdominal por meio de uma incisão na parede abdominal), dessa forma, é possível verificar a

eficácia dos medicamentos analgésicos administrados e reduzir a necessidade de observação humana intensiva e altamente especializada para pontuar imagens. O projeto apresentado nesta monografia, apresenta uma abordagem mais generalizada, com o intuito de classificar dor em diferentes contextos, não se limitando apenas ao cenário pós-cirurgico.

Os autores treinaram uma rede neural convolucional (CNN) baseada na arquitetura InceptionV3, utilizando um conjunto de mais de 5.700 imagens rotuladas manualmente por especialistas. O resultado do treinamento alcançou uma precisão de 94%, mantendo alta correlação com as pontuações humanas (Correlação de Pearson: r = 0,75).

O modelo demonstrou não apenas alta precisão interna, mas também boa capacidade de generalização, identificando corretamente a dor nas imagens avaliadas. Contudo, os autores chamaram a atenção para a dificuldade do modelo, e também dos avaliadores humanos, em diferenciar imagens de camundongos adormecidos daquelas com expressões de dor sutil. Adicionalmente, reforçaram a necessidade de novos conjuntos de treinamento para calibrar o sistema a fim de abranger diferentes raças, como as de pelagem preta ou aguti.

Outro estudo de destaque nesta área foi desenvolvido por Wotton et al. (2020), que propôs um sistema automatizado de fenotipagem comportamental para camundongos submetidos ao teste da formalina. O trabalho busca atender a uma demanda de métodos objetivos, reprodutíveis e escaláveis para avaliação de comportamentos nocifensivos (indicam resposta à percepção de dor), como lamber, morder ou levantar a pata. O foco do estudo foi automatizar a identificação desses comportamentos sem a necessidade da intervenção constante de observadores humanos. Neste estudo os padrões estipulados pela MGS não foram utilizados para a análise, uma vez que tais comportamentos não se restringem à estímulos faciais. Como resultado, o sistema foi capaz de alcançar 98% de concordância com a avaliação humana.

A metodologia adotada foi estruturada em três módulos distintos. Inicialmente, foi dado foco à detecção de pontos-chave (key point detection) por meio do DeepLabCut, uma ferramenta baseada em redes neurais convolucionais com arquitetura ResNet-50, especializada em rastrear partes específicas do corpo dos animais sem necessidade de marcações físicas. No segundo módulo, os autores realizaram a extração de características quadro a quadro, calculando distâncias euclidianas e ângulos entre os pontos do corpo em diferentes janelas temporais (as quais serviram como base para representar os comportamentos ao longo do tempo). A etapa final compreendeu a classificação dos comportamentos de dor, particularmente o ato de lamber e morder a pata traseira, utilizando o algoritmo GentleBoost, um modelo de aprendizado supervisionado baseado em ensembles de árvores de decisão.

Trabalhos similares de classificação de dor também foram desenvolvidos levando em consideração outras espécies de animais. Ainda no âmbito veterinário, o estudo conduzido por Lencioni et al. (2021) buscou monitorar a dor em cavalos por meio da classi-

ficação automática de suas expressões faciais, seguindo os padrões da *Grimmace Scale*. A construção do sistema envolveu o treinamento de redes neurais convolucionais (CNNs) específicas para cada ponto-chave da face (orelhas, olhos e boca/narinas), as quais foram posteriormente combinadas em um classificador mais abrangente para integrar as decisões das CNNs regionais e classificar a dor em imagens completas dos cavalos.

Os resultados demonstraram que o modelo treinado para analisar a posição das orelhas apresentou a maior acurácia individual (90,3%), enquanto os modelos de olhos e boca/narinas obtiveram acurácias de 65,5% e 74,5%, respectivamente. Ao combinar essas informações para avaliar imagens completas, o sistema atingiu uma acurácia geral de 75,8% na classificação em três níveis de dor. Quando a tarefa foi simplificada para distinguir apenas entre 'presença' ou 'ausência' de dor, a acurácia aumentou significativamente para 88,3%.

Diferentes estudos de classificação de dor também foram desenvolvidos para um contexto humano, como é o caso do trabalho descrito por Karamitsos et al. (2021), que propõe uma abordagem baseada em CNNs para detecção automática de dor em pacientes clínicos, utilizando expressões faciais como principal fonte de informação. O estudo busca oferecer uma solução que possa ser integrada a sistemas hospitalares para monitoramento contínuo e automático da dor em pacientes com limitações verbais.

A metodologia emprega a base de dados UNBC-McMaster Shoulder Pain Expression Archive, um dos conjuntos mais amplamente utilizados na literatura, contendo vídeos de 100 pacientes com dor genuína induzida por movimentos articulares. Após o préprocessamento, as imagens foram redimensionadas e utilizadas para treinar uma arquitetura modificada da VGG16, adaptada especificamente para a tarefa de classificação binária.

A avaliação do modelo revelou acurácia de 92,5% e recall de 86,96% (mede a capacidade do modelo de identificar corretamente os casos positivos) em um conjunto de teste de 400 imagens. Esses resultados superam os de outras abordagens mencionadas na literatura, incluindo modelos híbridos e redes recorrentes. O estudo também discute o impacto do desbalanceamento das classes e destaca a importância de aumentar a diversidade da base em futuras pesquisas.

Apesar dos avanços alcançados, os autores reconhecem limitações importantes: a necessidade de ampliar e balancear ainda mais a base de dados, melhorar a qualidade das imagens utilizadas. Também destacam que o modelo atual ainda não contempla comportamentos faciais que possam ser confundidos com dor, sugerindo que etapas futuras de aprimoramento envolvam a detecção e correção de falsos positivos e a inclusão de mais variabilidade nos dados de treinamento.

Os estudos apresentados adotaram abordagens similares para o problema classificatório, com destaque para o uso de Redes Neurais Convolucionais (CNNs). Esses modelos foram projetados especificamente para processar dados com estrutura espacial, como ima-

gens, e se popularizaram na área devido à capacidade de extrair características relevantes de forma automatizada, à eficiência computacional e ao histórico consolidado na literatura (especialmente após o sucesso da arquitetura AlexNet, em 2012).

Apesar dos avanços proporcionados, o foco em padrões locais dificulta a integração de informações mais amplas dentro da imagem, o que pode comprometer o desempenho em tarefas que exigem maior contextualização espacial. Além disso, operam sobre grids fixos e requerem pré-processamentos específicos, o que pode limitar sua flexibilidade frente a diferentes tipos de entrada. Nesse cenário, surgem novas alternativas, como os Vision Transformers (ViT), que propõem uma abordagem distinta para o aprendizado de representações visuais.

O estudo desenvolvido por Barman et al. (2024) propõe uma solução para a detecção de doenças em folhas de tomate, trazendo comparativos entre a ViT e a $Inception\ v3$, um modelo baseado em CNNs. Adicionalmente, é proposto o desenvolvimento de um aplicativo para dispositivos Android capaz de realizar a detecção em tempo real a partir de imagens capturadas por smartphones, com potencial aplicação na agricultura de precisão.

Os autores utilizaram um subconjunto do *PlantVillage Dataset* como banco de imagens, contendo 10.010 imagens divididas entre folhas saudáveis e nove classes de doenças comuns do tomateiro. Os dados foram pré-processados, normalizados e utilizados para treinar ambos os modelos com 30 épocas em cada arquitetura. Como resultado, a arquitetura baseada na ViT demonstrou maior precisão, recall e F1-score em quase todas as classes de doença, obtendo acurácia de 97,34% no treino e 95,76% na validação. A Inception V3 obteve acurácia de 94,8% no treino e 94,02% na validação. O que demonstra um forte potencial das ViTs para o processo classificatório.

No contexto de detecção de dor, o trabalho conduzido por Fiorentini, Ertugrul e Salah (2022) propõe a primeira pipeline totalmente baseada em *Vision Transformer* e *Video Vision Transformers* (ViViT) na tarefa de classificação binária de dor facial. Para o treinamento, foi utilizado o dataset UNBC-McMaster Shoulder Pain, que contém vídeos de pacientes com dor induzida clinicamente e rotulados com base na escala PSPI (Prkachin and Solomon Pain Intensity), a qual codifica ações faciais relacionadas à dor.

Ambos os modelos ViT e ViViT foram treinados para prever a presença de dor com base no PSPI. As imagens foram registradas em 3D com a ferramenta PRNet e convertidas para uma visualização frontal padronizada usando Face3D, aumentando a consistência entre quadros e indivíduos. Importante salientar que o ViViT é uma extensão do Vision Transformer (ViT), adaptada especificamente para dados de vídeo. Enquanto o ViT processa imagens estáticas, o ViViT processa sequências de quadros, capturando informações espaciais e temporais simultaneamente.

Como resultado, os modelos ViT-1 e ViViT-1 alcançaram um F1-score médio de 0.55, superando abordagens anteriores baseadas em CNNs, como o modelo *Pain Facial Deep Learning* (PFDL), que obteve F1 = 0.47. O modelo ViViT-2, embora com média ligei-

ramente inferior (F1 = 0,49), apresentou menor desvio padrão, indicando maior consistência entre as dobras de validação. Um dos principais diferenciais do estudo é a análise qualitativa dos mapas de atenção, que demonstram o foco dos modelos em regiões anatomicamente relevantes para a detecção de dor, convergindo com as especificações descritas pela escala PSPI. Esse aspecto confere aos modelos um caráter interpretável, qualidade especialmente desejável em aplicações clínicas e experimentais sensíveis, como a avaliação automatizada da dor.

Compreender as características e diferenças entre as arquiteturas ViTs e CNNs é essencial para contextualizar os avanços recentes em classificação de imagens no campo da visão computacional. O estudo descrito por Maurício et al. (2023) apresenta uma revisão sistemática da literatura, com foco na comparação entre ambas as arquiteturas em tarefas de classificação. Considerando a consolidação das CNNs como abordagem predominante e o surgimento recente dos ViTs, os autores analisam as condições em que cada arquitetura apresenta melhor desempenho, além de discutir suas vantagens, limitações e aplicações práticas.

Os resultados mostraram que os ViTs tendem a apresentar melhor desempenho quando aplicados a datasets menores, por conseguirem capturar relações globais via mecanismos de autoatenção. Em contrapartida, as CNNs foram mais robustas em conjuntos de dados maiores e mais diversos, além de manterem melhor generalização em tarefas com menos ruído. Arquiteturas híbridas — que combinam convoluções com atenção — também se destacaram por unir o melhor dos dois mundos. A revisão conclui que não há um "vencedor absoluto" entre ViTs e CNNs, mas sim cenários mais adequados para cada arquitetura.

1.5 Contribuições

Liste as contribuições do seu trabalho. Lembre-se que publicações não são contribuições científicas do seu trabalho. Haverá uma seção específica com esse fim. Fazer após a conclusão do projeto, dessa forma é possível definir quais foram as contribuições que o projeto ofereceu para a comunidade científica

1.6 Organização da Dissertação ou Tese

O presente documento encontra-se dividido em X capítulos organizados da seguinte forma:

□ No capítulo 2 são apresentados os fundamentos teóricos essenciais para a compreensão das ferramentas e técnicas apresentados nesta pesquisa, em especial, os fundamentos relacionados ao Processamento Digital de Imagem (PDI), Aprendizado de Máquina e Redes Neurais.

Fundamentação Teórica

Os modelos de aprendizado profundo voltados para a análise espacial, como as Redes Neurais Convolucionais (CNNs) e os *Vision Transformers* (ViTs), obtiveram maior predominância para os problemas classificatórios, principalmente quando aplicados à detecção de dor. Para sua implementação, torna-se necessária a compreensão de diversas etapas que estruturam o processo de construção de classificadores eficientes. Entre essas etapas, destacam-se o pré-processamento dos dados, necessário para adaptar o conjunto de imagens aos requisitos de entrada da rede; a definição da arquitetura do modelo, com base nas características do problema e na complexidade dos padrões visuais envolvidos; e a validação dos resultados, por meio de métricas específicas que avaliem o desempenho e a capacidade de generalização do classificador. Cada uma dessas etapas é fundamental para garantir a robustez e a confiabilidade do sistema, sendo exploradas ao longo desta seção.

2.1 Processamento Digital de Imagens

O processamento digital de imagens (PDI) é uma área da ciência da computação voltada à manipulação e análise de imagens representadas em formato digital. Seu foco está nas etapas que ocorrem após a aquisição da imagem, abrangendo desde o tratamento das informações visuais até a extração de informações relevantes que possam ser utilizadas em processos de análise ou tomada de decisão.

Uma imagem digital pode ser compreendida como uma representação discreta de dados que incorpora tanto informações espaciais (relacionadas à sua estrutura geométrica) quanto informações de intensidade, como cores, contraste e níveis de luminosidade. Trata-se de um meio eficiente de comunicação visual, capaz de transmitir informações visualmente atraentes de forma rápida e acessível, facilitando a compreensão e a análise de dados complexos. Por consequência, as imagens digitais tornaram-se uma ferramenta fundamental em diversas áreas do conhecimento, incluindo a ciência, medicina, segurança, comunicação e tecnologia (FONTE).

Com a aquisição da imagem em formato digital, torna-se possível aplicar diferentes operações computacionais para adaptá-la ao contexto ideal. As operações típicas incluem a normalização de intensidades, realce de contraste, remoção de ruído, segmentação de regiões de interesse e extração de características visuais, como formas, texturas e contornos. Essas transformações visam preparar as imagens para etapas posteriores, como classificação automatizada, reconhecimento de padrões ou visualização interpretável. Dessa forma, o PDI atua como uma etapa fundamental para garantir a qualidade, consistência e eficácia na extração de informações visuais.

De acordo com diferentes literaturas, o processamento digital da imagem é sub-divido em diferentes etapas bem definidas, indo desde a aquisição até o pós-processamento (Importante destacar que, dependendo do contexto, nem todas as etapas são obrigatórias). São elas:

- ☐ Aquisição da imagem: Trata-se da etapa inicial, em que a imagem é capturada por sensores, câmeras digitais ou dispositivos específicos. O resultado é uma representação numérica em formato matricial que descreve a imagem. Essa imagem pode conter ruídos, distorções ou variações de iluminação que precisarão ser tratadas; ☐ **Pré-processamento:** Etapa essencial para garantir a consistência e reduzir variações indesejadas no conjunto de dados. Tem como objetivo melhorar a qualidade da imagem e prepará-la para etapas mais avançadas de análise. As operações comuns incluem: redimensionamento (ajuste do tamanho da imagem), normalização (padronização intensidade dos pixels), filtros para remoção de ruído (ex: filtros de média, Gaussiano) e ajuste de contraste ou brilho; ☐ Segmentação: Etapa responsável por dividir a imagem em regiões significativas, informações visuais relevantes são destacadas para facilitar análises futuras. Métodos comuns de segmentação envolvem a limiarização, detecção de bordas e agrupamento de *pixels* semelhantes; ☐ Extração de características: Etapa responsável por extrair as informações visuais mais expressivas de uma imagem, como formas, texturas, bordas, gradientes e padrões. Tais características são utilizadas para alimentar os algoritmos de classificação ou reconhecimento, como CNNs ou ViTs.
- ☐ **Pós-processamento:** Etapa opcional, voltada para o refinamento dos dados e dos resultados. De acordo com a necessidade, seriam aplicadas correções de classificação ou uma visualização gráfica dos resultados.

☐ Classificação ou Reconhecimento: Aqui são utilizados diferentes algoritmos voltados para a interpretação dos padrões extraído, com o objetivo de atribuir rótulos

ou categorias aos dados visuais.

No contexto deste estudo, um bom exemplo prático de aplicação das técnicas de PDI pode ser observado na preparação de dados visuais para entrada em modelos de aprendizado de máquina. De forma geral, esses modelos exigem que as imagens de entrada sigam um padrão específico de formatação, tanto em termos de tamanho quanto de estrutura e escala de valores. Assim, é possível garantir compatibilidade com a arquitetura do modelo e qualidade no processo de aprendizado.

Figura 1 – Exemplo de pré-processamento para adequação ao treinamento.

O exemplo descrito pela Figura 1, supõe que um determinado modelo de rede espera imagens com dimensões fixas de 256×256 pixels e apenas um canal (escala de cinza). Ao trabalhar com uma base contendo imagens originais de 1024×1024 pixels em RGB (3 canais), é necessário aplicar uma sequência de transformações: redimensionamento da imagem para o tamanho esperado, conversão para tons de cinza (reduzindo os canais de cor) e normalização dos valores de *pixel*, reescalando-os da faixa original para o intervalo entre 0 e 1.

Essas etapas não apenas asseguram que os dados estejam tecnicamente compatíveis com o modelo, como também evitam distorções nas ativações internas da rede, reduzem o risco de instabilidade no treinamento e contribuem para uma melhor generalização do modelo em dados novos.

Para obter um conhecimento mais detalhado sobre as temáticas que envolvem o processamento digital de imagens, ver o livro Processamento Digital de Imagens, GONZALES, 2009. Por fim, enquanto o processamento digital foca na melhoria e extração de atributos da imagem, a visão computacional vai além, buscando atribuir significado a esses atributos com base em modelos computacionais de inferência e aprendizado.

2.2 Aprendizado de máquina

O aprendizado de máquina, ou machine learning (ML) advém de uma área da inteligência artificial que se dedica a construir sistemas capazes de interpretar e atribuir significados ao conjunto de dados. De modo geral, a interpretabilidade dos dados está associada à identificação de padrões complexos e á extração de características relevantes dos dados fornecidos.

Esse processo permite previsões, classificações e tomadas de decisão de maneira automática e generalizada, ou seja, ao invés de um sistema ser programado levando cada situação em consideração, o sistema passa a aprender qual ação tomar de forma autônoma a partir de exemplos.

A aprendizagem de máquina podem ser categorizada de três maneiras distintas, de acordo com o método de interpretar e rotular os dados, são elas: aprendizado supervisionado, aprendizado não supervisionado e aprendizado por reforço.

- □ Aprendizado supervisionado: uma das abordagens mais comuns de ML, onde um modelo é treinado com base em um conjunto de dados previamente conhecidos e rotulados. Isso significa que o algoritmo recebe pares de entrada e saída conhecidos e aprende a mapear essas entradas para as saídas corretas. A ideia principal é ajustar o modelo para que ele possa generalizar e fazer previsões precisas para novos conjuntos de dados;
- ☐ Aprendizado não supervisionado: uma abordagem comum para lidar com dados que não possuem rótulos definidos. Neste caso, a ideia do algoritmo é explorar a estrutura subjacente dos dados e identificar padrões ocultos, agrupando os dados com base em características similares.
- ☐ Aprendizado por reforço: uma abordagem diferente, que atua por meio de um 'agente' responsável por aprender com base na interação com um determinado ambiente. A cada ação tomada, o agente recebe uma recompensa (ou penalidade) com base no impacto de suas decisões. O objetivo é maximizar as recompensas acumuladas ao longo do tempo, ajustando o comportamento do agente para melhorar a performance.

Entre as diferentes abordagens no campo do aprendizado de máquina, destaca-se o agrupamento de dados (clustering), uma técnica de aprendizado não supervisionado considerada uma das mais simples e intuitivas. Seu objetivo é particionar um conjunto de dados em grupos formados com base na semelhança entre as amostras, sem a necessidade de rótulos previamente definidos. Para isso, os algoritmos de agrupamento buscam organizar os dados de forma coesa, de modo que os elementos pertencentes a um mesmo grupo compartilhem características semelhantes, enquanto os de grupos distintos apresentem diferenças significativas.

O conceito de similaridade é central nesse processo, pois se refere a uma medida que quantifica o grau de semelhança entre duas ou mais amostras. Trata-se de um critério matemático que avalia a proximidade entre os elementos, com base em suas representações numéricas. Entre as métricas mais utilizadas destacam-se: a distância Euclidiana, a distância de Manhattan e a similaridade do cosseno. De maneira geral, quanto menor a

distância entre os vetores, maior é a similaridade, e, consequentemente, maior a probabilidade de que os dados pertençam ao mesmo grupo. Para maiores detalhes sobre técnicas de agrupamento e similaridade, consultar a literatura: Data Clustering: A Review

Embora técnicas de agrupamento, como K-means, DBSCAN e Expectation Maximization, não façam uso de rótulos previamente definidos, seus resultados podem ser interpretados como uma forma de classificação automática, uma vez que associam cada amostra a um grupo específico. A principal diferença, no entanto, está na abordagem não supervisionada dessas técnicas, que realizam essa associação com base em métricas matemáticas de similaridade, sem o conhecimento prévio das classes verdadeiras. Em contrapartida, o aprendizado supervisionado parte do pressuposto que cada amostra do conjunto de treinamento possui um rótulo conhecido (ground-truth), o que permite ao modelo ajustar seus parâmetros de forma iterativa, a fim de minimizar os erros cometidos durante o processo de aprendizagem. A ideia central visa construir modelos capazes de generalizar o conhecimento adquirido, ou seja, classificar corretamente novas amostras com base nos padrões aprendidos.

Figura 2 – Comparativo entre as abordagens de aprendizado supervisionado e nãosupervisionado.

A Figura 2 apresenta um comparativo entre as abordagens de aprendizado supervisionado e não supervisionado. No aprendizado não supervisionado, observa-se que os dados de entrada não possuem rótulos associados, sendo interpretados e organizados com base em padrões similares observáveis. No exemplo apresentado, os animais são agrupados automaticamente conforme suas características visuais, sem conhecimento prévio de suas espécies. Já na abordagem supervisionada, destaca-se a presença de um agente supervisor, responsável por fornecer ao sistema um conjunto de dados previamente rotulado. A partir dessas associações explícitas entre entrada e saída, o algoritmo é treinado para reconhecer padrões e aprender a relacioná-los com as classes corretas.

A literatura apresenta uma ampla variedade de técnicas supervisionadas para problemas de classificação e regressão. Entre os métodos clássicos, destacam-se: Regressão Logística, Árvores de Decisão e Support Vector Machines (SVM). Para maiores detalhes sobre tais técnicas, consultar o livro Machine Learning for Brain Disorders, Neuromethods - CAP 2. Já entre os modelos mais avançados, destacam-se as técnicas baseadas em redes neurais, que tem como principal diferencial a automatização no processo de extração de características e reajuste de pesos (via backpropagation), tornando-se especialmente úteis para a análise e classificação de dados complexos. É importante destacar que, as técnicas supervisionadas de aprendizagem baseadas em redes neurais exigem um treinamento prévio com uma base robusta, a fim de promover o ajuste de pesos e, consequentemente a generalização

2.3 Aprendizado baseado em Redes Neurais

Redes Neurais Artificiais (RNAs) constituem uma das principais arquiteturas do aprendizado de máquina, especialmente quando se busca modelar relações complexas em dados de alta dimensionalidade. Inspiradas no funcionamento do cérebro humano, essas redes são compostas por unidades de processamento chamadas neurônios artificiais, organizadas em camadas interconectadas, conforme ilustrado pela figura 3. Um dos principais diferenciais das RNAs é sua capacidade de extrair representações ocultas e abstratas de forma autônoma, o que as torna altamente eficazes em tarefas como classificação, regressão e tomada de decisão.

Figura 3 – Arquiteura de uma RNA.

'Input layer' é responsável exclusivamente pelo transporte de dados para as camadas ocultas; 'Hidden Layer' são responsáveis por realizar transformações mais críticas que permitem a extração de características dos dados pela rede; 'Output Layer' é responsável por fornecer a previsão ou o resultado do modelo.

Os neurônios artificiais são as unidades básicas de processamento das redes neurais. Sua função é receber estímulos, processá-las por meio de operações matemáticas simples e transmitir um sinal de saída para os neurônios da camada seguinte. Embora sua estrutura seja conceitualmente simples, a organização desses neurônios em múltiplas camadas interconectadas permite à rede modelar relações complexas entre os dados. À medida que a informação percorre as camadas mais profundas, os neurônios atuam de forma cooperativa, identificando padrões em diferentes níveis de abstração. Por exemplo, em uma rede neural treinada com imagens, os neurônios das camadas iniciais tendem a aprender padrões simples bordas e texturas; já nas camadas intermediárias e profundas, a rede passa a reconhecer formas mais complexas, como objetos ou até mesmo expressões faciais completas.

Um componente essencial no funcionamento dos neurônios artificiais é o peso sináptico (valor numérico atribuído a cada conexão da rede), responsável por definir o grau de importância de cada entrada recebida pelo neurônio. Esses pesos representam os principais parâmetros ajustáveis do modelo, sendo modificados iterativamente durante o treinamento por meio do algoritmo de retropropagação do erro (backpropagation), que consiste em propagar o erro de saída final da rede para cada uma das camadas anteriores. Durante esse processo, são calculados os gradientes da função de erro em relação a cada peso, permitindo a atualização dos parâmetros de forma progressiva e minimizando os erros de predição. Para maiores detalhes técnicos acerca do funcionamento interno de uma RNA, consultar o survey State-of-the-art in artificial neural network applications: A survey

As redes neurais artificiais podem ser implementadas de diferentes formas, conforme os requisitos específicos de cada aplicação. Essas variações buscam, por exemplo, melhorar

o desempenho, reduzir o custo computacional ou adaptar a rede a diferentes tipos de dados. Nesse contexto, o termo arquitetura de rede refere-se à forma como os neurônios artificiais são organizados e conectados entre si, incluindo a definição das camadas, funções de ativação, direção do fluxo de dados e outras estratégias como regularização e métodos de treinamento.

Dentre as arquiteturas mais conhecidas, destaca-se a Multilayer Perceptron (MLP), considerada uma evolução direta do perceptron simples, que é modelo base de neurônio artificial. A MLP é composta por camadas densamente conectadas (ou fully connected), o que significa que cada neurônio de uma camada está ligado a todos os neurônios da camada seguinte. Além disso, trata-se de uma rede do tipo feedforward, pois a informação flui em uma única direção, da entrada até a saída, sem conexões cíclicas ou recorrentes.

Essa arquitetura é capaz de aprender representações complexas e não lineares dos dados, sendo especialmente útil em tarefas de classificação e regressão com dados vetoriais ou tabulares. No entanto, seu desempenho pode ser limitado quando aplicada a dados com estruturas complexas ou alta dimensionalidade. Nesse contexto, as MLPs assumem um papel fundamental por servirem como base para o desenvolvimento de redes neurais mais profundas, como as Redes Neurais Densas (DNNs). Conforme ilustrado na figura 4, as DNNs mantêm a estrutura das MLPs, mas ampliam sua profundidade com múltiplas camadas ocultas, o que aumenta a capacidade de abstração e expressividade da rede, capacitando-a para tarefas mais exigentes.

Figura 4 – Comparativo entre MLP e DNN.

Ambas contém a mesma estrutura, contudo as redes neurais densas ampliam a quantidade de camadas ocultas, conforme a necessidade de abstração

Assim como as MLPs serviram de base para o surgimento das redes neurais profundas, as DNNs também desempenharam um papel importante no avanço de arquiteturas voltadas para o campo da visão computacional. Embora inicialmente projetadas para lidar com dados vetoriais ou tabulares, sua capacidade de modelar dados de alta dimensionalidade permitiu que fossem aplicadas também a dados com estruturas especiais, como

imagens, desde que estas fossem vetorizadas, ou seja, convertidas em uma representação linear.

Esse histórico evidencia a flexibilidade das redes neurais artificiais: sua estrutura pode ser ajustada, expandida ou adaptada conforme a complexidade da tarefa, o tipo de dado ou o objetivo do modelo. Essa capacidade de adaptação é justamente o que permite a constante evolução das arquiteturas, seja para atender a demandas específicas ou para otimizar implementações anteriores. Neste contexto as DNNs foram fundamentais para pavimentar o caminho da utilização de redes profundas na visão computacional, contribuindo para o desenvolvimento de arquiteturas mais especializadas, como as CNNs e as ViTs.

2.4 Visão computacional

A visão computacional é um campo da inteligência artificial voltado para o processamento e interpretação de informações visuais provenientes do mundo real. Seu objetivo central é permitir que sistemas computacionais sejam capazes de adquirir, analisar e interpretar imagens ou vídeos, executando tarefas que tradicionalmente exigiriam a percepção visual humana.

Uma aplicação em visão computacional normalmente envolve um conjunto de etapas fundamentais, que possibilitam a conversão da informação visual em representações computacionais interpretáveis. Essas etapas incluem:

- □ Aquisição da imagem: corresponde à captura da imagem ou vídeo por meio de câmeras digitais, microscópios ou sensores, responsáveis por digitalizar a cena e convertê-la em uma matriz de pixels que possa ser processada por um sistema computacional;
 □ Pré-processamento: etapa em que são aplicadas técnicas de processamento digital de imagens (PDI), como filtros, redimensionamento, normalização e realce de contraste. O objetivo é melhorar a qualidade da imagem ou adaptá-la às exigências da análise;
 □ Extração de características: corresponde à identificação de padrões relevantes
- para a análise da imagem, como bordas, contornos, texturas ou formas geométricas. Atualmente, essa etapa é automatizada por meio de redes neurais especializadas, como as CNNs e os ViTs;
- ☐ Análise, classificação e interpretação: etapa em que são aplicadas técnicas de aprendizado de máquina, utilizando as características extraídas para classificar, segmentar ou reconhecer padrões visuais. Nesta fase, modelos treináveis como CNNs,

ViTs, Random Forests e SVMs são empregados para gerar predições e interpretações.

A evolução da visão computacional está fortemente relacionada ao desenvolvimento de redes neurais profundas, principalmente no que se refere à automatização no processo de extração de características. Tradicionalmente eram utilizadas técnicas manuais para a identificação de padrões visuais relevantes, baseada em conhecimento humano especializado. O avanço do aprendizado profundo, possibilitou a construção de modelos capazes de aprender automaticamente quais características são relevantes para determinada tarefa.

Uma das arquiteturas mais influentes no campo da visão computacional foi a CNN, que utiliza filtros convolucionais para extrair automaticamente representações cada vez mais abstratas e informativas da imagem, dispensando a intervenção humana. Recentemente, também foram exploradas arquiteturas mais flexíveis, como as ViTs. Embora sejam inspirados em modelos originalmente desenvolvidos para o processamento de linguagem natural, as ViTs aplicam mecanismos de atenção para analisar imagens como uma sequência de fragmentos, permitindo capturar relações mais globais entre as regiões da imagem.

O uso de arquiteturas como as CNNs e ViTs na visão computacional representa um marco na transição de modelos baseados em engenharia manual para modelos de aprendizado autônomos e escaláveis, melhorando significativamente o desempenho dos sistemas de análise visual. Para maiores conhecimentos acerca da integração de redes neurais profundas na área de visão computacional, consultar o survey A Comprehensive Survey of Deep Learning Approaches in Image Processing

2.4.1 Redes Neurais Convolucionais

As Redes Neurais Convolucionais (CNNs) constituem uma arquitetura de rede neural profunda projetada especificamente para lidar com dados com estrutura espacial, como imagens e vídeos. Seu principal diferencial está na capacidade de extrair automaticamente características visuais relevantes, eliminando a necessidade de pré-processamento manual. Para isso, são utilizados filtros convolucionais, que percorrem a imagem para destacar e extrair padrões como bordas, texturas e curvas.

Diferentemente das DNNs (que também são capazes de processar imagens contanto que elas sejam previamente vetorizadas), as CNNs preservam a estrutura bidimensional da imagem ao longo do processo de aprendizado. Isso permite capturar padrões locais com maior precisão, o que é especialmente importante no contexto visual, já que os *pixels* vizinhos geralmente apresentam alta correlação.

Além disso, as CNNs utilizam duas estratégias fundamentais: o compartilhamento de pesos e a organização hierárquica de camadas, conforme ilustrado na 5. O compartilhamento de pesos refere-se ao uso de filtros convolucionais, responsáveis por aplicar um

conjunto pequeno de pesos (em formato bidimensional) sobre toda a imagem, repetidamente. Isso reduz drasticamente o número de parâmetros uma vez que o mesmo conjunto de filtros é aplicado em diferentes regiões da imagem.

A hierarquia de camadas, por outro lado, refere-se à estrutura de múltiplas camadas convolucionais empilhadas (responsáveis pela extração de características). Isso permite que a rede aprenda representações progressivamente mais abstratas, indo de traços simples (como bordas) até estruturas complexas (como formas ou objetos), promovendo generalização e eficiência no reconhecimento de padrões visuais.

Figura 5 – Camadas convolucionais em uma CNN.

O processo de convolução entre os filtros (kernels) e diferentes regiões da imagem permite capturar padrões locais. À medida que as camadas aumentam em profundidade, a rede aprende representações cada vez mais abstratas, fundamentais para tarefas como classificação ou reconhecimento de padrões visuais.

A arquitetura de uma CNN é composta por diferentes tipos de camadas, cada uma contendo uma função específica para o processo de extração e interpretação de características visuais:

□ Camada convolucional (convolutional layer): é responsável por realizar a extração automática de características locais da imagem. Isso é feito por meio da aplicação de filtros (kernels), que são pequenas matrizes de pesos (geralmente de tamanho 3×3 ou 5×5).

Durante o processo de convolução, cada filtro é 'deslizado' sobre a imagem de entrada, multiplicando seus valores com pequenas regiões da imagem em cada posição. O resultado dessas operações forma uma nova matriz chamada de mapa de carac-

terísticas (feature map), que registra a presença do padrão aprendido pelo filtro naquela imagem.

Como cada filtro é capaz de detectar um padrão visual específico (como bordas, texturas ou curvas) a aplicação de múltiplos filtros permite à rede representar diferentes aspectos da imagem em profundidade, construindo uma representação rica e progressiva da informação visual. Conforme também é ilustrado na imagem 5;

☐ Camada de ativação: é responsável por introduzir a não-linearidade aos resultados por meio de uma função de ativação. Sem este recurso, a rede seria uma combinação linear, o que limita a sua expressividade e impediria a modelagem de relações complexas entre os dados.

Padrões lineares descrevem uma relação entre dados que podem ser separadas ou descritas por uma reta linear, um plano ou um hiperplano (dependendo da dimensionalidade). Em um contexto prático, nem sempre os dados são organizados de forma que tal separação seja possível, aqui se destaca a necessidade da não linearidade por meio de funções de ativação como *Sigmoid*, *Tahn* ou *ReLu*;

☐ Camada de *pooling* ou subamostragem: tem como principal objetivo reduzir as dimensões espaciais dos mapas de características gerados pelas camadas anteriores. Ao fazer isso, ela preserva apenas as informações mais relevantes de cada região, descartando os detalhes redundantes ou pouco significativos.

Essa operação contribui diretamente para a redução do custo computacional da rede, além de reduzir a sensibilidade do modelo a pequenas variações de posição, como deslocamentos leves de um objeto na imagem. Com isso, as camadas seguintes conseguem trabalhar com representações mais abstratas, o que favorece a generalização e a identificação de padrões em diferentes contextos;

☐ Camadas totalmente conectadas (fully connected layers): nesta etapa, os mapas de características provenientes da camada de *pooling* passam por um processo denominado *flattening*, que consiste em sua conversão para um vetor unidimensional. Isso permite que o vetor seja utilizado como entrada para uma camada totalmente conectada, também conhecida como rede neural densa (DNN).

A partir desse ponto na arquitetura da CNN, o funcionamento do sistema torna-se análogo ao de uma rede neural tradicional, a qual é responsável por aprender os padrões extraídos pelos filtros convolucionais e realizar a predição final, geralmente por meio de uma função de ativação do tipo *softmax*, quando se trata de tarefas de classificação.

As CNNs não seguem um padrão fixo: sua arquitetura pode ser ajustada em diversos aspectos, como o número de camadas, a profundidade, o tipo de filtros e a forma de

conexão entre os neurônios. Essa flexibilidade arquitetural é uma das maiores forças das CNNs, permitindo que sejam adaptadas a diferentes tipos de tarefas, desde classificações simples até análises visuais mais complexas. Arquiteturas consagradas como AlexNet, VGGNet e Inception mostram como diferentes estratégias estruturais podem impactar o desempenho e a escalabilidade dos modelos em visão computacional. Para maiores detalhes técnicos sobre as CNNs e as diferentes estratégias de aplicação, consultar o survey: A review of convolutional neural networks in computer vision.

Neste estudo, a arquitetura ResNet-50 foi adotada para a tarefa de classificação. Essa arquitetura foi desenvolvida com o propósito de superar limitações observadas em redes neurais muito profundas, como o desaparecimento do gradiente (vanishing gradient) e a degradação do desempenho à medida que novas camadas são adicionadas. Em redes convencionais, o aumento da profundidade tende a dificultar o processo de aprendizado, levando à piora na acurácia e à instabilidade durante o treinamento, mesmo quando não há overfitting.

A ResNet solucionou esses desafios ao introduzir o conceito de aprendizado residual, uma estratégia que permite o treinamento de redes mais profundas de forma estável e eficiente. Essa abordagem é implementada por meio dos chamados blocos residuais, que incorporam conexões de atalho (*skip connections*) entre as camadas da rede. Com essas conexões, o modelo deixa de aprender diretamente a transformação completa entre a entrada e a saída e passa a aprender apenas a diferença (ou resíduo) entre elas. Em seguida, a saída do bloco é obtida somando-se essa transformação à entrada original.

Essa estrutura aparentemente simples traz ganhos expressivos: o fluxo de informação e o gradiente do erro podem se propagar diretamente através das conexões de atalho, reduzindo significativamente o risco de desaparecimento do gradiente e tornando o processo de otimização mais eficiente. Além disso, o aprendizado residual permite que a rede preserve informações importantes de camadas anteriores e até "ignore" determinadas transformações quando elas não forem necessárias, propagando a informação original sem modificações. Esse mecanismo contribui para a estabilidade do treinamento e para o ganho de desempenho em tarefas complexas, mesmo em redes com dezenas ou centenas de camadas.

Figura 6 – Estrutura de construção da *ResNet50*.

Conforme ilustrado na Figura6 sua construção é composta por 50 camadas treináveis organizadas em estágios denominados stem, bottleneck (conv2_x,conv3_x, conv4_x, conv5_x) e head. Tais camadas são descritas da na sequência:

□ Camada Inicial (*stem*): responsável pelo pré-processamento inicial da imagem de entrada, com o objetivo de reduzir sua resolução espacial e extrair características visuais básicas, como bordas e contrastes. Essa camada é composta por uma operação convolucional simples que aplica 64 filtros com dimensões 7×7, varrendo a imagem a um passo de dois *pixels* (*stride* = 2), o que resulta em uma redução significativa da resolução da imagem — por exemplo, de 224×224×3 para 112×112×64;

Após a convolução, são aplicadas rotineiramente três operações fundamentais: a normalização em lote (*Batch Normalization*), que estabiliza o treinamento ao padronizar as ativações; a função de ativação *ReLU*, que introduz não-linearidade ao modelo; e uma operação de *pooling*, que reduz ainda mais a dimensionalidade e aumenta a robustez da rede a pequenas variações locais;

□ Bloco de gargalo (bottleneck): é considerado a unidade fundamental da arquitetura ResNet. Sua principal função é permitir a construção de redes profundas com baixo custo computacional, mantendo a eficiência ao longo da rede. Cada bloco é formado por três camadas convolucionais sequenciais, organizadas de maneira a transformar a entrada de forma eficiente e a permitir o uso de conexões residuais;

A primeira camada do bloco aplica uma convolução 1×1 com o objetivo de reduzir a dimensionalidade da entrada e diminuir o custo computacional. Em seguida, a segunda camada realiza uma convolução 3×3, responsável pela extração de características locais da imagem, como bordas, texturas e formas específicas. Por fim, a terceira camada aplica novamente uma convolução 1×1, desta vez com o intuito de restaurar a profundidade original dos canais, permitindo que a estrutura de dados mantenha sua representatividade ao longo da rede. Após o processamento pelas três camadas, o resultado obtido é somado diretamente à entrada original do bloco, caracterizando o processo de conexão residual;

A arquitetura da *ResNet50* contém quatro grandes estágios estruturais, organizados a partir da repetição de blocos *bottleneck*. Cada um desses estágios é convencionalmente denominado de Conv2_x, Conv3_x, Conv4_x e Conv5_x, seguindo uma nomenclatura que representa a progressão das camadas ao longo da rede. Os blocos *bottleneck* são empilhados de forma diferente em cada um desses estágios, conforme a profundidade da rede aumenta;

□ Camada final (*Head*): responsável por classificar os mapas de características extraídos na última camada convolucional. Inicialmente, aplica-se uma operação de *Average Pooling* global sobre os mapas tridimensionais, reduzindo cada canal a um único valor representativo. Em seguida, o resultado é transformado em um vetor unidimensional por meio do processo de *flattening*, possibilitando sua utilização como entrada para uma camada totalmente conectada. Nesta etapa, o funcionamento ocorre da mesma forma que uma DNN, cumprindo o papel classificatório.

O impacto da ResNet na área de aprendizado profundo foi expressivo. Sua proposta de aprendizado residual tornou possível o treinamento de redes com mais de 150 camadas sem perda de desempenho, algo considerado inviável antes de sua introdução. Além disso, sua modularidade e estabilidade inspiraram diversas variações e aprimoramentos, como as arquiteturas ResNeXt, que introduz o conceito de cardinalidade (vários caminhos convolucionais paralelos dentro do bloco), Wide-ResNet, que aumenta a largura em vez da profundidade, e ResNetV2, que altera a ordem de normalização e ativação para maior estabilidade de treinamento.

2.4.2 Vision Transformers

As *Vision Transformers* (ViTs) representam uma nova etapa no desenvolvimento de modelos para visão computacional, sendo uma adaptação dos *Transformers*.

TERMINAR ESSA SEÇÃO EM SEGUNDO PLANO, POR AGORA É IMPORTANTE INICIAR A ESCRITA DA METODOLOGIA DE PESQUISA. RETORNAR AQUI ASSIM QUE CONCLUIR A PRÓXIMA SEÇÃO

Metodologia de desenvolvimento e Pesquisa

Neste capítulo, são descritas e formalizadas as estratégias metodológicas adotadas para o desenvolvimento desta pesquisa. Evidenciam-se os procedimentos, técnicas e recursos utilizados em cada etapa do projeto, que incluem: aquisição e preparação da base de dados, estudo exploratório de classificadores disponíveis, pré-processamento das informações coletadas, construção e treinamento dos modelos selecionados, bem como a posterior avaliação dos resultados obtidos.

O objetivo é proporcionar uma compreensão clara e detalhada das abordagens empregadas, evidenciando a coerência entre os métodos utilizados e os objetivos do trabalho, além de oferecer transparência e reprodutibilidade ao processo.

3.1 Aquisição e preparação da base de dados

Este estudo adota a *Mouse Grimace Scale (MGS)* como referência para a identificação de características faciais associadas à presença e intensidade da dor em camundongos. Com base nisso, a base de dados deve ser composta por imagens que evidenciem a face dos animais, com ênfase em regiões expressivas como orelhas, olhos, focinho e boca.

Para a aquisição das imagens, os camundongos foram mantidos em mini-isoladores destampados, organizados sequencialmente sobre uma bancada iluminada. A captura dos vídeos foi realizada com câmeras de celulares (modelo *iPhone* 13) configuradas para gravação em resolução 4K a 60 fps. Cada sessão consistiu em 15 gravações de dois minutos, com intervalos de um minuto entre elas. Posteriormente, *frames* representativos desses vídeos foram extraídos manualmente por um especialista, que também realizou a rotulagem das imagens, gerando o *ground truth* necessário para o treinamento supervisionado dos modelos.

Parte dos animais foram submetidos à indução de dor por meio da injeção subcutânea de $20\mu L$ de formalina a 5% na região plantar da pata traseira direita, conforme

o protocolo descrito por Langford et al. (2010). Essa indução provoca uma resposta bifásica: uma fase aguda (0 a 15 minutos) e uma fase inflamatória ou tônica (15 a 30 minutos). Imediatamente após a aplicação da formalina, os animais foram filmados segundo o mesmo protocolo descrito anteriormente, com o objetivo de registrar expressões faciais compatíveis com o processo.

Trinta minutos após a indução, os animais deste grupo receberam analgesia com sulfato de morfina na dose de 5 a 10 mg/kg, por via subcutânea. Quatro horas após o procedimento, foi administrado cloridrato de tramadol (50 mg/kg, via intraperitoneal), repetido também nas 24 e 48 horas subsequentes. Paralelamente, para controle da resposta inflamatória, os animais receberam meloxicam (3 mg/kg, subcutâneo) nas mesmas janelas temporais: 6, 24 e 48 horas após a aplicação da formalina.

Durante o período de 72 horas de observação, os animais foram gravados sempre uma hora antes e uma hora após a administração de cada dose analgésica. Essa abordagem permite avaliar se o protocolo foi eficaz em atenuar as expressões faciais de dor, bem como distinguir entre animais saudáveis, animais com dor ativa e animais sob efeito de tratamento analgésico. Ao término do período experimental, todos os animais foram submetidos à eutanásia humanitária por meio de anestesia (associação de cetamina e xilazina, via intraperitoneal), seguida de deslocamento cervical e descarte adequado, conforme as normas institucionais de bem-estar animal.

3.2 Estudo exploratório dos classificadores

A definição do modelo classificador é crucial para a identificação e rotulação automática das expressões faciais associadas à presença e intensidade de dor em camundongos, tornando-se o principal componente deste estudo. Com isso, a escolha da arquitetura de rede considerou aspectos de desempenho, capacidade de generalização e adequação ao contexto da visão computacional, buscando a opção mais adequada para alcançar os objetivos propostos.

Foi realizada uma revisão bibliográfica de caráter exploratório sobre arquiteturas de redes neurais aplicadas a tarefas de classificação de imagens, com o objetivo de identificar os modelos mais relevantes e consolidados na literatura recente. Entre as arquiteturas convolucionais analisadas, destacaram-se a AlexNet, reconhecida por popularizar o uso do aprendizado profundo em visão computacional; a InceptionNet, caracterizada pelo uso de múltiplos filtros convolucionais em paralelo para capturar padrões em diferentes escalas; e a MobileNet, projetada para aplicações em dispositivos com recursos limitados, utilizando convoluções separáveis (depthwise separable convolutions) para reduzir o custo computacional.

Dentre as opções analisadas, a ResNet foi mais chamativa para em virtude de sua capacidade de aprendizado residual, que permite o treinamento de redes profundas de

forma estável e eficiente. Além disso, a ResNet apresenta um excelente equilíbrio entre profundidade e desempenho computacional, sendo amplamente utilizada em tarefas de detecção de objetos, reconhecimento facial e análise de expressões. Tais características a tornam particularmente adequada ao problema investigado neste trabalho, que demanda precisão na identificação de padrões visuais sutis presentes nas faces dos camundongos.

A revisão exploratória também identificou arquiteturas baseadas em Transformers, aplicadas ao campo da visão computacional. Originalmente desenvolvidos para o processamento de linguagem natural (NLP), os Transformers introduziram uma abordagem inovadora que substitui o uso de convoluções por um mecanismo denominado atenção (attention). O principal diferencial está no fato de que esses modelos avaliam simultaneamente as inter-relações entre todos os elementos de entrada por meio do mecanismo de autoatenção (self-attention), permitindo a captura de dependências globais desde as primeiras camadas.

A transposição desse paradigma para o domínio visual resultou nos Vision Transformers (ViT), que tratam imagens como sequências de pequenos blocos (patches). Ao contrário das CNNs, os ViTs não incorporam convoluções locais para a extração de características, mas exploram a atenção para modelar relações tanto locais quanto globais entre regiões da imagem. Essa característica é se mostra relevante no contexto deste projeto, em que a interpretação de expressões faciais sutis depende de correlações distribuídas entre diferentes regiões faciais, como olhos, orelhas e focinho. Adicionalmente, a arquitetura dos ViTs apresentam alta compatibilidade com estratégias de pré-treinamento em larga escala e transfer learning.

Após a análise, optou-se pela utilização de duas arquiteturas distintas: a ResNet, representando a abordagem convolucional tradicional, e o Vision Transformer (ViT), correspondente à abordagem baseada em Transformers. Essa escolha visa aplicar, em paralelo, uma metodologia consolidada no campo da visão computacional e uma estratégia recente e inovadora, de modo a comparar seus desempenhos na tarefa de classificação das expressões faciais dos camundongos. Com isso, a expectativa é alcançar o melhor resultado possível, bem como realizar uma análise comparativa entre estes paradigmas, fornecendo meios para compreender as tendências futuras na área de visão computacional.

3.3 Tratamento dos dados coletados

O conjunto de vídeos coletados dos camundongos foi processado por meio de um software desenvolvido especificamente para este experimento. O objetivo da aplicação é permitir a reprodução dos vídeos gravados, oferecendo ao usuário ferramentas para seleção, extração e organização automatizada dos *frames*, facilitando a construção do ground truth de forma mais rápida e padronizada.

O software foi inteiramente desenvolvido na linguagem Python (versão 3.11), utilizando

o ambiente de desenvolvimento *PyCharm Community Edition*. A interface gráfica foi construída com o uso da biblioteca PyQt5, visando proporcionar uma experiência simples e amigável ao usuário. Para viabilizar a reprodução e o controle de vídeos em diferentes formatos, a biblioteca VLC foi integrada à aplicação. Como ilustrado na Figura 7, foram incorporadas ferramentas específicas para manipulação precisa da reprodução, permitindo ao usuário selecionar e extrair os quadros desejados com maior exatidão.

Figura 7 – Interface inicial do software desenvolvido para a geração da base de dados.

Dentre as funcionalidades implementadas, destaca-se o sub-menu dedicado à extração de imagens. Essa ferramenta permite que múltiplas seções de um mesmo frame sejam salvas separadamente, o que agiliza a construção da base de dados e permite especificar a área facial do animal, especialmente em casos onde o vídeo apresenta mais de um camundongo simultaneamente. O sub-menu pode ser acessado por meio do botão rotulado como "Capturar Frame", o qual pausa a reprodução do vídeo antes de abrir uma nova janela. Cabe ao usuário identificar e selecionar manualmente as regiões de interesse mais relevantes para o estudo.

Conforme ilustrado na Figura 8, o sub-menu exibe o *frame* correspondente ao instante exato em que a funcionalidade foi acionada e apresenta uma série de botões para definir o rótulo da região selecionada. Nessa janela, o usuário pode livremente selecionar uma área da imagem (ajustada automaticamente a uma forma quadrada) e atribuí-la a uma das quatro categorias disponíveis: 'Indolor', 'Pouca dor', 'Muita dor' ou 'Incerto'.

Ao acionar os botões de salvamento, o sistema cria uma estrutura de diretórios correspondentes a cada categoria na pasta raiz do programa, organizando automaticamente as imagens conforme o rótulo definido. Vale destacar que o algoritmo implementa um mecanismo de verificação para evitar que uma mesma seleção seja salva em mais de uma categoria. Sempre que uma nova seleção é armazenada, os demais diretórios são verificados para a detecção e remoção de duplicatas, garantindo a consistência da base de dados.

Figura 8 – Sub-menu dedicado à extração de frames.

Outra funcionalidade de destaque é o sub-menu voltado para o gerenciamento das seleções salvas, denominado no programa como 'Menu de Salvamento'. Seu principal objetivo é permitir que o usuário visualize quais imagens estão armazenadas na base de dados e as exclua, caso necessário. Esse recurso facilita a organização e oferece maior segurança à base, dispensando a necessidade de alterações manuais na estrutura de diretórios criada pelo sistema.

A Figura 9 ilustra a interface do sub-menu no momento de sua ativação. As imagens são organizadas conforme o rótulo atribuído e dispostas em categorias distintas. Cada imagem possui um botão de exclusão individual, que pode ser acionado pelo usuário para removê-la da base de dados. Vale destacar que esse sub-menu exibe apenas as imagens associadas ao vídeo que está sendo reproduzido no momento do seu acionamento, o que contribui para um gerenciamento mais preciso e contextualizado dos dados.

Figura 9 – Sub-menu dedicado à verificação das imagens armazenadas.

Essa ferramenta foi disponibilizada à equipe veterinária responsável pela manipulação dos camundongos durante a coleta de dados. Os feedbacks recebidos contribuíram significativamente para o refinamento do sistema, tornando-o mais adequado à tarefa proposta. Além de facilitar o trabalho da equipe, a ferramenta também garantiu a construção de uma base de dados sólida e consistente, essencial para a realização dos experimentos futuros.

3.4 Construção e treinamento dos modelos

3.5 Técnicas para avaliação de resultados

Experimentos e Análise dos Resultados

4.1 Método para a Avaliação

Descreva os métodos utilizados para validar a sua hipótese incluindo as medidas de avaliação, conjunto de parâmetros, bases de dados e os trabalhos com os quais a sua proposta será comparada.

4.2 Experimentos

De acordo com o que foi descrito na Seção ??, apresente os resultados dos seus experimentos. A apresentação dos resultados pode ser feita via gráficos ou tabelas. O importante é que haja clareza.

4.3 Avaliação dos Resultados

A avaliação dos resultados pode ser feita à medida em que os resultados dos experimentos são apresentados, ou em uma seção separada. É importante que você aponte os acertos e as limitações da sua proposta e justifique os resultados obtidos. É fundamental apresentar evidências de que sua hipótese é verdadeira.

Conclusão

TRECHO PROVENIENTE DA INTRODUÇÃO:

Embora este trabalho utilize especificamente a *Mouse Grimace Scale*, o conceito por trás dessa metodologia apresenta forte potencial de aplicação em outras espécies, o que traz ao estudo um fator de escalabilidade muito forte para outras aplicações e áreas do conhecimento. A capacidade de escalabilidade da *grimmace scale* se dá por alguns fatores, dentre eles temos: a universalidade de indicadores faciais de dor e a base fisiológica comum entre mamíferos quanto às reações de dor.

Conforme descrito previamente, a grimmace scale busca traços faciais e microexpressões específicas para definir a presença e o nível de um dado estímulo doloroso, traços estes que se apresentam de forma bem semelhante em diferentes espécies (como olhos, boca, focinho, etc). Além disso, as microexpressões avaliadas pela grimmace scale costumam ter um certo grau de similaridade entre as diferentes espécies, como o fechamento dos olhos ou a contração do focinho, por exemplo. Com isso, um sistema automatizado que se utilize dessa ferramenta não precisaria de grandes mudanças para se adequar ao reconhecimento de tais estímulos em outras espécies, o que reflete diretamente no potencial de escalabilidade deste projeto.

5.1 Principais Contribuições

Nessa seção destaque ainda mais as suas contribuições, mostrando que sua hipótese foi validada pelos experimentos executados.

5.2 Trabalhos Futuros

Destaque nessa seção o que pode ser melhorado no método proposto para resolver as possíveis falhas que você identificou e descreveu na seção ??. Indique quais outros projetos podem ser gerados a partir do seu trabalho.

5.3 Contribuições em Produção Bibliográfica

Liste a produção bibliográfica resultante do seu trabalho.

Referências