EE23BTECH11217 - Prajwal M*

Exercise 9.1

The given figure shows a series LCR circuit connected to a sinusoidal 230 V source.

L = 5.0 H, C = 80 μF, R = 40 Ω.

Fig. 3. circuit diagram

- 2)
- 1) Determine the source frequency which drives the circuit in resonance.
- 2) Obtain the impedance of the circuit at the resonating frequency.
- 3) Determine the rms potential drops across the three elements of the circuit. Show that the potential drop across the LC combination is zero at the resonating frequency.

$Z_{res} = R = 40\Omega \tag{4}$

Solution:

Paramater	Description	Value
arepsilon	Voltage power supply	$Re\left\{230\sqrt{2}e^{j\omega t}\right\}$ V
L	Inductance	5.0 H
С	Capacitance	80 μF
R	Resistance	40 Ω
$\frac{\omega}{2\pi}$	Frequency of voltage source	?
Z	Impedance of circuit	?
V_R	Potential drop across Resistor	?
V_C	Potential drop across Capacitor	?
V_L	Potential drop across Inductor	?

TABLE 3
PARAMETER DESCRIPTION

TAKAMETER DESCRIPTI

$$Z = R + j\left(\omega L - \frac{1}{\omega C}\right) \tag{1}$$

$$min(|Z|) = R$$
 at $\omega = \frac{1}{\sqrt{LC}}$

$$f_{res} = \frac{\omega_{res}}{2\pi} = \frac{1}{2\pi\sqrt{LC}} = 7.958Hz$$
 (3)

$$I_{res} = \frac{\varepsilon}{Z_{res}} \tag{5}$$

$$V_R = Re \left\{ RI_{res} \right\} \tag{6}$$

$$= Re \left\{ R \frac{\varepsilon}{Z_{res}} \right\}$$
 {using (5)} (7)

$$= Re \left\{ 325.28e^{j50t} \right\} \tag{8}$$

$$= 325.28\cos(50t) \tag{9}$$

$$V_C = Re \left\{ \frac{-j}{\omega_{res}C} I_{res} \right\} \tag{10}$$

$$= Re \left\{ \frac{-j}{\omega_{res}C} \frac{\varepsilon}{Z_{res}} \right\} \qquad \{\text{using (5)}\}$$
(11)

$$= Re \left\{ 2032.93 e^{j\left(50t - \frac{\pi}{2}\right)} \right\} \tag{12}$$

$$= 2031.93 \sin(50t) \tag{13}$$

$$V_L = Re \left\{ j\omega_{res} L I_{res} \right\} \tag{14}$$

$$= Re \left\{ j\omega_{res} L \frac{\varepsilon}{Z_{res}} \right\} \qquad \{ \text{using (5)} \}$$

(15)

$$= Re \left\{ 2032.93 e^{j\left(50t + \frac{\pi}{2}\right)} \right\} \tag{16}$$

$$= -2031.93 \sin(50t) \tag{17}$$

from (13) and (17), voltage across LC combination is $V_C + V_L = 0V$

Paramater	Description	Value
f_{res}	resonant source frequency	7.958 <i>Hz</i>
Z_{res}	resonant impedance	40Ω
$rms(V_R)$	rms value of V_R	230V
$rms(V_C)$	rms value of V_C	1437.5V
$rms(V_L)$	rms value of V_L	14375V

TABLE 3
Solution values

Fig. 3. Input voltage

Fig. 3. Voltage across LC combination