Kryptographie Vorlesungsnotizen

Jan Fässler & Fabio Oesch

4. Semester (FS 2013)

Inhaltsverzeichnis

1	Kla	ssische Kryptographie	1
	1.0	Repetition	1
	1.1	Klassische Verschlüsselungsverfahren	1
	1.2	Spezielles Bsp für Substitution Homophone Verschlüsselung	1
	1.3		1
	1.4		2
	1.5		2
	1.6		3
		1.6.1 Berechnung der Schlüssellänge eines Vigenère-Cipher	3
		1.6.2 Kryptoanalysis des Vigenère-Cipher	3
	1.7	v- v	5
	1.8		5
	1.9		5
		1.9.1 Ciphertext-only attack	5
		1.9.2 known-plaintext attack	5
			5
		1.9.4 chosen-ciphertext attack	6
2	Blo	ck-Cipher	7
	2.1		7
	2.2	Modi von Block-Cipher	8
			8
			8
			9
3			9

1 Klassische Kryptographie

1.0 Repetition

Alphabet endliche Mengen von Zeichen

Beispiel

$$\begin{split} \mathcal{A} &:= \{A, B, C, ..., Z\}, \ |\mathcal{A}| = 26 \\ \Sigma &:= \{0, 1\}, \ |\Sigma| = 2 \\ \mathcal{A}^* &:= \{\text{endliche W\"{o}rter \"{u}ber } \mathcal{A}\} \end{split}$$

Sprachen über $A: L \subset A^*$

1.1 Klassische Verschlüsselungsverfahren

Substitution Cipher	Transposition Cipher					
Einheiten werden ersetzt .	Einh	eiter	ı wer	den '	vert	auscht.
	3	1	5	6	2	4
	K	О	Μ	Μ	E	H
	Е	U	${ m T}$	\mathbf{E}	A	В
	E	Ν	D	\mathbf{Z}	U	\mathbf{M}
	Z	Ο	Ο	A	В	$^{\mathrm{C}}$
	$\Rightarrow \underbrace{\text{OUNO}}_{1} \underbrace{\text{EAUB}}_{2} \dots \text{ Bem.}$ Einheiten werden vertauscht (ABC ist Padding)					

${f monoalphabetisch}$	polyalphabetisch
$E: \mathcal{A} \to B, \ x \mapsto E(x)$	$E: \mathcal{A} \to P(B), x \mapsto E(x)$
monographisch	polygraphisch
Buchstaben	Gruppen von Buchstaben

1.2 Spezielles Bsp für Substitution Homophone Verschlüsselung

Gegeben: $\Sigma := \{0, 1\}, B := \{a, b, c\}$

Information über die Sprache des Klartextes: Häufigkeit von $0:\frac{1}{3}$ Häufigkeit von $1:\frac{2}{3}$

$$E: \Sigma \to P(B)$$
$$0 \mapsto \{b\}$$
$$1 \mapsto \{a, c\}$$

 $\mathbf{Bsp:} \quad \begin{array}{ll} 10110110011 \\ \mathrm{abccbacbbaa} \end{array}$

1.3 Kasiski-Text (monographisch & polyalphabetisch)

Klartext TO BE OR NOT TO BE

Schlüssel NOW

 $\mathbf{p} = |\text{NOW}|$

TOB	EOR	NOT	TOB	Е
NOW	NOW	NOW	NOW	N
GCX	RCN	ACP	GCX	R

GCX kommt 2x for so können wir eine Annahme zur Periode p machen. Die Periode ist dann $c \cdot p$. Dies kann aber auch zufällig passieren.

1.4 Playfair-Cipher

 $\begin{array}{|c|c|c|c|}\hline {\rm HARYP} \\ {\rm OTEBC} \\ {\rm DFG}_{\rm J}^{\rm I}{\rm K} \\ {\rm LMNQS} \\ {\rm UVWXZ} \end{array} \\ {\rm Schl\ddot{u}ssel:\ Harry\ Potter,\ HAR} \\ {\rm HAR} \\ {\rm POT} \\ {\rm TER} \\ {\rm IND} \\ {\rm COMP} \\ {\rm POT} \\ {\rm TER} \\$

Klartext HALLO ZUSAMMEN**Bsp:** Preprocessed HALO SAMENXSecret AR QU UD UV

- Falls 2 auf gleicher Zeile: Beide Buchstaben um eins nach rechts
- Falls 2 auf gleicher Spalte: Beide Buchstaben um eins nach unten
- Falls 2 nicht auf gleicher Zeile/Spalte: Man nimmt die Buchstaben die auf seiner Spalte und auf des anderen Zeile liegen.

$$\begin{array}{cccccc} L & M & N & Q \\ \downarrow & & \uparrow \\ U & V & W & X \end{array}$$

1.5 Koinzidenzindex (index of coincidence)

1. Gegeben

Alphabet Alphabet $\mathcal{A} := \{A, B, C, \dots, Z\}$ Sprache: Englisch

IC: Grösse, die von der Sprache abhängt, aber invariant ist gegenüber Cäsar-Verschiebungen.

Frage: Was bedeutet: Was bedeutet $IC_L := \sum_{1=1}^{26} P_i^2$ index of coincidence L: Language

Bemerkung:

Jede Sprache hat ihren eigenen Konzidenzindex

 $IC_{German} = 0.0766$

 $IC_{Arabic} = 0.0759$

 $IC_{flat} = 0.0385$ (Alle Buchstaben haben die gleiche häufigkeit: $p_1 = p_2 = \dots = p_{26} = \frac{1}{26}$)

Je unregelmässiger die buchstabenhäufigkeit, umso grösser der Index.

2. Gegegen:

Sei F eine Buchstabenfolge der Länge n

Bsp: F = AXCAABCXA $n_1 = \#A's \text{ in } F$ $n_1 = \#B's \text{ in } F$:

Frage: Wie gross ist die Wahrscheinlichkeit zwei gleiche Buchstaben aus F herauszugreifen?

Definition
$$IC_F = \frac{\sum_1^{26} \binom{n_i}{2}}{\binom{n}{2}}$$

Bsp:

Alphabet
$$\Sigma := \{0, 1\}$$

 $F = 00110111101$
 $n_0 = 4$
 $n_1 = 7$
 $n = 11$
 $IC_F = \frac{4*3+7*6}{11*10} = 0.49$

Annahme $IC_F \xrightarrow[F \to \infty]{} IC_L$ (ist im Allgemeinen falsch)

Bemerkung

Permutation der Buchstaben

$$F \mapsto \text{Perm}(F)$$

 $F = \text{"AXCA..."} \mapsto \text{Perm}(F) = \text{"CBYC..."}$
 $IC_F = IC_{Perm(F)}$

1.6 Vigenères Chipres

Berechnung der Schlüssellänge eines Vigenère-Cipher 1.6.1

Gegeben

C Vigenère-Chiffrat der Länge n Die Schlüssellänge sei p (unbekannt)

		<i>p</i>				
C_1	C_2	C_3	C_4		C_p	Ì
C_{p+1}	C_{p+2}	C_{p+3}	C_{p+4}		C_{2p}	
C_{2p+1}	C_{2p+2}	C_{2p+3}	C_{2p+4}		C_{3p}	$\left \right \frac{n}{p}$
						1 '
C_{n-2}	C_{n-1}	C_n	-	-	-	J
\uparrow	7	7				

monoalphabetisch

alle Spalten = p, alle Zeilen = $\frac{n}{p}$, letzte Zeile = monoalphabetisch!

$$\alpha :=$$
 Anzahl Buchstabenpaare aus gleicher Spalte, $\alpha = \frac{n(\frac{n}{p}-1)}{2} = \frac{n(n-p)}{2n}$

$$\alpha:=$$
 Anzahl Buchstabenpaare aus gleicher Spalte, $\alpha=\frac{n(\frac{n}{p}-1)}{2}=\frac{n(n-p)}{2p}$
 $\beta:=$ Anzahl Buchstabenpaare aus verschiedenen Spalten, $\beta=\frac{n(n-\frac{n}{p})}{2}=\frac{n^2(p-1)}{2p}$

 $\gamma :=$ Anzahl gleicher Buchstabenpaare aus $C, IC_L = \frac{\gamma}{\binom{n}{2}}$

$$\gamma = \alpha \cdot IC_L + \beta \cdot IC_{\text{flat}}$$

$$p = \frac{n(IC_L - IC_{flat})}{IC_C \cdot (n-1) + IC_L - n \cdot IC_{\text{flat}}}$$

3

Kryptoanalysis des Vigenère-Cipher

1) Schlüssellänge p p=1,2,3,...

- Einleitung des Cipher-Tests in p Abschnitte
- Berechnung des IC des Abschnitts
- Wähle p mit $IC \sim IC_2$ (oder hoch)
- 2) Sei s,t zwei Strings über dem Alphabet A.

$$s = s_1, s_2, s_3,s_k$$

$$t = t_1, t_2, t_3, ..., t_l$$

Wieder zählen wir $n_1(s) := A$ in s, $n_3(t) = C$ in t

Def.
$$MIC(s,t) := \frac{\sum_{i=1}^{\infty} 26n_i(s) * n_i(t)}{k * l}$$

Bsp.

$$n_1(s) = 3, n_1(t) = 3$$

$$n_2(s) = 1, n_2(t) = 3$$

$$n_3(s) = 2, n_3(t) = 3$$

$$\rightarrow MIC(s,t) = \frac{1}{6*9}[3*3+1*3+2*3]$$

Idee: s,t zwei cipher-Text mit Cäsar Cerschlüsselung

Wenn beide mit dem gleichen Schlüssel verschlüsselt werden

$$\rightarrow MIC(s,t) \rightsquigarrow IC_L$$

Sonst:
$$MIC(s,t) \rightsquigarrow IC_{flat}$$

3.) Anwendung auf Cipher Text

Schlüssellänge p sei 5

 $c_1, c_2, ..., c_5$ Abschnitte des Cipher Text

$$MIC(c_i, c_j + k)$$

Tabelle

Tabelle:					
(i,j);k	0	1	2	• • • •	
(1,2)					
(1,3)					
(1,4)					
(1,5)					
(2,3)			x		$\rightarrow MIC(c_2, c_3 + k)$
(2,4)					
(2,5)					
(3,4)					
(3,5)					
(4,5)					

Bsp

$$c_1$$
: AXBM...

$$c_3$$
: ABXHE...

4.) Wir suchen Einträge in der Tabelle, die hoch sind (>0.06)

$$MIC(s,t) = \frac{1}{kl} \sum_{i=1}^{26} n_i(s) n_i(t), |s| = k, |t| = l$$

zb:
$$MIC(c_2, c_3 + 22 > 0.06 \iff c_2 \sim c_3 + 22 \Rightarrow \beta_2 - \beta_3 = k$$

Notation $s \sim t \iff s$ und t sind mit dem gleichen Shift aus zwei Klartexten entstanden.

4

Bsp. $klar_1 \sim klar_2$

$$\begin{vmatrix} klar_1 & \frac{\beta_1}{\rightarrow} & c_1 \\ klar_2 & \frac{\beta_2}{\rightarrow} & c_2 \end{vmatrix} c_1 = klar_1 + \beta_1$$

$$klar_2 & \frac{\beta_2}{\rightarrow} & c_2 \end{vmatrix} c_2 = klar_2 + \beta_2$$

Wir suchen die grossen Werte von $MIC(c_i, c_j + k)$

$$MIC(c_i, c_j + k)$$
 gross $\iff c_i \sim c_j + k$

$$c_i = klar_i + \beta_i \sim klar_i + \beta_j + k = \frac{k}{k} = \frac{\beta_i}{\beta_j} + \frac{\beta_j}{\beta_j}$$

$$\begin{cases} & \text{sind } \frac{\text{bekannt}}{k_{12} = \beta_2 - \beta_1} \\ & k_{13} = \beta_3 - \beta_1 \\ & k_{52} = \beta_2 - \beta_5 \end{cases} \text{Auflösen nach } \beta_1$$

Schlüsselwort: β_1 , β_2 ,..., β_p = β_1 , $\beta_1 + k_{12}$,..., Ausprobieren: $\beta_1 = 0, 1, \ldots, 25$

1.7 One-Time-Pad

$$\Sigma = \{0,1\} \quad \begin{array}{ll} \text{Klartext:} & p_1 p_2 p_3 p_4 p_5 \cdots = \begin{bmatrix} 0 \\ 1 \\ \text{ciphertext:} & c_1 \\ p_1 \oplus k_1 \\ \end{array} \quad \begin{array}{ll} 0101 \dots \\ 0110 \dots \\ 0011 \dots \end{array}$$

1.8 Kryptosysteme

Kryptosystem: (P, C, K, e, d)

P Menge der Klartexte

C Menge der Geheimtexte

 ${f K}$ Menge der Schlüssel

$$\begin{array}{l} e: K \times P \rightarrow C \\ d: K \times C \rightarrow P \end{array}$$

$$\forall k \in K \ \forall p \in P : d(k, e(k, p)) = p$$
$$\rightarrow \forall k \in K : e(k, -) \text{ ist injektiv}$$

 $\rightarrow \forall k \varepsilon K : d(k, -) \text{ ist surjektiv}$

1.9 Kryptoanalysis

Ciphertext-only attack

Gegeben $c_i = e_k(p_i)$, i=1, ..., n

Gesucht p_i , i= 1, ...,n oder k

1.9.2 known-plaintext attack

Gegeben $(p_i, c_i = e_k(p_i)), i=1, ..., n$

Gesucht k

chosen-plaintext attack

Gegeben $(p_i, c_i = e_k(p_i)), i=1, ..., n$ p_i nach Wahl des Kryptoanalytikers

Gesucht k

Verwendung DIE Attacke gegen jedes Public-Key System

1.9.4 chosen-ciphertext attack

 Gegeben $(p_i, p_i = d_k(c_i))$, i=1, ..., n c_i nach Wahl des Kryptoanalytikers

 $\mathbf{Gesucht} \;\; \mathbf{k}$

2 Block-Cipher

Alphabet

$$\Sigma = \{0, 1\}$$

$$\Sigma^n := \Sigma \times \Sigma \times \cdots \times \Sigma$$

Definition

Ein Block - Cipher ist eine **injektive** Abbildung $C: K \to Perm(\Sigma^n)$ wobei K der Schlüsselraum ist.

Bsp.

$$\begin{array}{l} n=3 \\ \Sigma^3=\Sigma\times\Sigma\times\Sigma \\ \left\{ \begin{array}{ccc} 000 & \nearrow & 000 \\ 001 & \rightarrow & 001 \\ \dots & & \dots \\ 111 & \searrow & 111 \\ & \uparrow \text{Schlüssel} \end{array} \right\} l \end{array}$$

Frage:

Wie gross ist der Schlüsselraum K maximal? $|K| \leq (2^n)!$

2.1 Data Encription Standard (DES)

$$\begin{array}{ccc} \text{Lucifer} & \text{Schlüssellänge} & 128 \\ \downarrow & & \\ \text{DES} & \text{Schlüssellänge} & 56 \\ & \text{Blocklänge} & 64 \\ \end{array}$$

Die f-Funktion:

2.2 Modi von Block-Cipher

Sei
$$\Sigma := \{0, 1\}$$

 $p = c = \Sigma^4 = \{\square\square\square\square\}$
 $k = \text{Permutation von } \Sigma^4$
 $k = \pi = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 1 & 4 & 3 \end{pmatrix}$

Vor- und Entschlüsselung

Sei
$$m = 0101 \in p$$
 (Klartext)
 $e_k(m) = e_k(0101) = 1010 = c$

2.2.1 ECB-Modus (electronic code block)

$$m = \underbrace{1100}_{m_1} |\underbrace{0110}_{m_2}| \underbrace{1100}_{m_3} |101^*$$

$$\xrightarrow[m_1]{e_k} \xrightarrow[c_1]{c_1}$$

Bem:

- 1. $m_1 = m_3 \Rightarrow c_1 = c_3$
- 2. Vertauschen der Ciphertext-Blöcke wird nicht notwendigerweise erkannt

2.2.2 CBC-Modus (cipher block chaining)

$$m = \underset{\text{Länge n}}{m_1} | m_2 | \dots, n : \text{Blocklänge}$$

$$\mathbf{Bsp:} \ m = \underbrace{1100}_{m_1} | \underbrace{0110}_{m_2} | \underbrace{1100}_{m_3} | 101$$

$$IV = \text{Initialvektor (i.a. bekannt)}$$

$$C_0 := IV$$

$$C_1 := e_k(C_0 \oplus m_1)$$

$$C_2 := e_k(C_1 \oplus m_2)$$

$$c_3 = e_k(c_2 \oplus m_3) = e_k(0111) = 1011$$

$$c_3 = e_k(c_2 \oplus m_3) = e_k(0111) = 1011$$

Entschlüsselung: $c_1 \oplus d_k(c_2) = c_1 \oplus d_k(e_k(c_1 \oplus m_2)) = c_1 \oplus m_2 \oplus c_1 = m_2$

$$\begin{split} m &= \underset{\text{Länge n}}{m_1} | m_2, \ n : \text{Blocklänge} \\ IV &= \text{Initialvektor (i.a. bekannt)} \\ c_0 &:= IV, \ c_1 := e_k(c_0 \oplus m_1), \ c_2 := e_k(c_1 \oplus m_2) \\ c_1 \oplus d_k(c_2) &= d_k(e_k(c_1 \oplus m_2)) = c_1 \oplus m_2 \oplus c_1 = m_2 \\ \mathbf{Bsp:} \ m &= \underbrace{1100}_{m_1} |\underbrace{0110}_{m_2} |\underbrace{1100}_{m_3} | 101, \ IV = c_0 = 1110 \\ c_1 &= e_k(c_0 \oplus m_1) = e_k(0010) = 0001 \end{split}$$

$$c_2 = e_k(c_1 \oplus m_2) = e_k(0111) = 1011$$

 $c_3 = e_k(c_2 \oplus m_3) = e_k(0111) = 1011$

Bem:

- 1. $m_1 = m_3 \Rightarrow c_1 = c_3$
- 2. Vertauschen kann bemerkt werden
- 3. Übertragungsfaktor machen sich bemerkbar

2.2.3 CFB-Modus (cipher feedback)

 $m = \underbrace{\tilde{m_1}}_{\text{Länge} = r} |\tilde{m_2}|\tilde{m_3}|\dots,\, n$: Cipher Block-Länge (DES: 64) und $\boxed{0 < r \leq n}$

3