Special languages module, Polytechnic university of Tehran

Student: Mohammadreza Ardestani, 9513004 Ardestani.zr@gmail.com Prof: Dr. Tabatabaie far Tabatabaiefar@aut.ac.ir

February 26, 2021

Exercise 1:

- 1. There are 3 special cases. \rightarrow There are three special cases.
- 2. X is a finite set. \rightarrow The set X is finite.
- 3. It does not tend to infinity. \rightarrow It does not tend to infinity.
- 4. It follows $x 1 = y^4$. \rightarrow hence(it follows that) $x 1 = y^4$.
- 5. $\therefore c^{-1}$ is undefined. \rightarrow therefore c^{-1} is undefined.
- 6. The product of 2 negatives is positive. → Multiplying two negative numbers results in a positive number. (The product of two negative numbers is a positive number.)
- 7. We square the equation. \rightarrow We square both sides of the equation.
- 8. We have less solutions than we had before. \rightarrow We have fewer solutions than we had before.
- 9. $x^2 = y^2$ are two othogonal lines. \rightarrow The equation $x^2 = y^2$ represents two orthogonal lines.
- 10. Let us device a strategy for a proof. \rightarrow here is a strategy for the proof. (Let us consider/use/find a strategy for the proof.)
- 11. This set of matrixs are all invertible. \rightarrow This set consists of invertible matrices.
- 12. If the integral = 0 the function is undefined. \rightarrow If the integral equals 0, then the function is undefined.
- 13. Purely imaginary is when the real part is zero. \rightarrow Purely imaginary means that the real part is zero. (If the real part is zero, then the number is purely imaginary.)
- 14. Construct the set of vertex of triangles. \rightarrow Construct the set of all vertices of triangles(/of all triangles' vertices).
- 15. From the fact that x = 0, I can't divide by x. \rightarrow Since x is zero, I can't divide it by x. (I can't divide by x, because x = 0.)
- 16. A circle is when major and minor axis are the same. \rightarrow A circle is a shape with equal major and minor axes (note: Axes is the plural of axis).
- 17. The function f is not discontinuous. \rightarrow The function f is continuous.

- 18. Plug-in that expression in the other equation. \rightarrow Add that expression to both sides of the other equation.
- 19. I found less solutions than I expected. \rightarrow I found fewer solutions than I expected.
- 20. When the discriminant is < 0, you get complex. \rightarrow You get complex results if the discriminant is negative (If the discriminant is negative, you get complex results). Note: discriminant is $\Delta = b^2 4 * a * c$.
- 21. We prove Euler theorem. \rightarrow We prove Euler's theorem.
- 22. The definate integral is where you don't have integration limits. → An integral is definite when it doesn't have integration limits. (If an integral doesn't have integration limits, it is definite.)
- 23. The asyntotes of this hiperbola are othogonal. \rightarrow The asymptotes of this hyperbola are orthogonal.
- 24. A quadratic function has 1 stationery point. → A quadratic function has only one stationary point(/Quadratic functions have only one stationary point).
- 25. The solution is not independent of s. \rightarrow The solution depends on s.
- 26. a is negative $\therefore \sqrt{a}$ is complex. \rightarrow Since a is negative, therefore \sqrt{a} (square root of a) is complex.
- 27. Thus x = a. (We assume that a is positive). \rightarrow Thus x = a (We assume that a is positive).
- 28. Each value is greater than their reciprical. \rightarrow Each value is greater than its reciprocal.
- 29. Remember to always check the sign. \rightarrow Remember always to check the sign.
- 30. Differentiate f n times. \rightarrow Differentiate function f, repeating this process n times.