## Изучение плазмы газового разряда в неоне (3.5.1)

Стеценко Георгий, Б02-312

### 1 Цель работы

Изучение вольт-амперной характеристики тлеющего разряда, изучение свойств плазмы методом зондовых характеристик.

#### 2 Теоретические сведения

#### 2.1 Плазма

В ионизированном газе поле ионов «экранируется» электронами. Для поля  ${\bf E}$  и плотности  $\rho$  электрического заряда

div 
$$\mathbf{E} = 4\rho/\varepsilon_0$$
,

а с учётом сферической симметрии и  $\mathbf{E} = -\mathrm{grad} \ \varphi$ :

$$\frac{d^2\varphi}{dr^2} + \frac{2}{r}\frac{d\varphi}{dr} = -4\pi\rho. \tag{1}$$

Плотности заряда электронов и ионов (которые мы считаем бесконечно тяжёлыми и поэтому неподвижными)

$$\rho_e = -ne \cdot \exp\left(\frac{e\varphi}{kT_e}\right),$$

$$\rho_i = ne.$$
(2)

Тогда из (1) в предположении  $\frac{e\varphi}{kT_e}\ll 1$  получим

$$\varphi = \frac{Ze}{r}e^{-r/r_D},\tag{3}$$

где  $r_D = \sqrt{\frac{\varepsilon_0 k T_e}{ne^2}} - paduyc$  Дебая. Среднее число ионов в сфере такого радиуса

$$N_D = n \frac{4}{3} \pi r_D^2. (4)$$

Теперь выделим параллелепипед с плотностью n электронов, сместим их на x. Возникнут поверхностные заряды  $\sigma = nex$ , поле от которых будет придавать электронам ускорение:

$$\frac{d^2x}{dt^2} = -\frac{eE}{m} = -\frac{ne^2}{m\varepsilon_0}x.$$

Отсюда получаем плазменную (ленгмюровскую) частоту колебаний электронов:

$$\omega_p = \sqrt{\frac{4\pi n e^2}{m\varepsilon_0}}. (5)$$

#### 2.2 Одиночный зонд

При внесении в плазму уединённого проводника — sonda — с потенциалом, изначально равным потенциалу точки плазмы, в которую его помещают, на него поступают токи электроннов и ионов:

$$I_{e0} = \frac{n\langle v_e \rangle}{4} eS,$$

$$I_{i0} = \frac{n\langle v_i \rangle}{4} eS,$$
(6)

где  $\langle v_e \rangle$  и  $\langle v_i \rangle$  – средние скорости электронов и ионов, S – площадь зонда, n – плотность электронов и ионов. Скорости электронов много больше скорости ионов, поэтому  $I_{i0} \ll I_{e0}$ . Зонд будет заряжаться до некоторого равновестного напряжения  $-U_f$  – *плавающего потенциала*.

В равновесии ионный ток мало меняется, а электронный имеет вид

$$I_e = I_0 \exp\left(-\frac{eU_f}{kT_e}\right).$$

Будем подавать потенциал  $U_3$  на зонд и снимать значение зондового тока  $I_3$ . Максимальное значение тока  $I_{e\text{H}}$  – электронный ток насыщения, а минимальное  $I_{i\text{H}}$  – ионный ток насыщения. Значение из эмпирической формулы Бомона:

$$I_{i\text{H}} = 0.4 ne S \sqrt{\frac{2kT_e}{m_i}}. \tag{7}$$

#### Двойной зонд

Двойной зонд — система из двух одинаковых зондов, расположенных на небольшом расстоянии друг от друга, между которыми создаётся разность потенциалов, меньшая  $U_f$ . Рассчитаем ток между ними вблизи I=0. При небольших разностях потенциалов ионные токи на оба зонда близки к току насыщения и компенсируют друг друга, а значит величина результирующего тока полностью связана с разностью электронных токов. Пусть потенциалы на зондах

$$U_1 = -U_f + \Delta U_1,$$
  
$$U_2 = -U_f + \Delta U_2.$$

Между зондами  $U=U_2-U_1=\Delta U_2-\Delta U_1$ . Через первый электрод

$$I_1 = I_{iH} + I_{e1} = I_{iH} - \frac{1}{4} neS \langle v_e \rangle \exp\left(-\frac{eU_f}{kT_e}\right) \exp\left(\frac{e\Delta U_1}{kT_e}\right) = I_{iH} \left(1 - \exp\left(\frac{e\Delta U_1}{kT_e}\right)\right). \tag{8}$$

Аналогично через второй получим

$$I_2 = I_{iH} \left( 1 - \exp\left(\frac{e\Delta U_2}{kT_e}\right) \right) \tag{9}$$

Из (7) и (8) с учётом последовательного соединение зондов ( $I_1=-I_2=I$ ):

$$\Delta U_1 = \frac{kT_e}{e} \ln \left( 1 - \frac{I}{I_{iH}} \right)$$

$$\Delta U_2 = \frac{kT_e}{e} \ln \left( 1 + \frac{I}{I} \right)$$

 $\Delta U_2 = \frac{kT_e}{e} \ln \left( 1 + \frac{I}{I_{i\text{H}}} \right)$ 

Тогда итоговые формулы для разности потенциалов и тока

$$U = \frac{kT_e}{e} \ln \frac{1 - I/I_{iH}}{1 + I/I_{iH}}, I = I_{iH} th \frac{eU}{2kT_e}.$$
 (10)

Реальная зависимость выглядит несколько иначе и описывается формулой

$$I = I_{iH} th \frac{eU}{2kT_e} + AU.$$
(11)

### 3 Методика измерений и результаты

**В работе используются:** стеклянная газоразрядная трубка, наполненная изотопом неона, высоковольтный источник питания (ВИП), источник питания постоянного тока, делитель напряжения, резистор, потенциометр, амперметры, вольтметры, переключатели.

#### Описание установки



Стеклянная газоразрядная трубка имеет холодный (ненакаливаемый) полый катод, три анода и sem-mephuiu узел — стеклянный баллон, на внутреннюю повехность которого напылена газопоглощающая плёнка (semmep). Трубка наполнена изотопом неона <sup>2</sup>2Ne при давлении 2 мм рт. ст. Катод и один из анодом (I и II) с помощью переключателя  $\Pi_1$  подключается через балластный резистор  $R_6$  ( $\approx 450 \text{ k}\Omega$ ) к регулируемому ВИП с выкодным напряжением до 5 кВ.

При подключении к ВИП анода-I между ним и катодом возникает газовый разряд. Ток разряда измеряется миллиамперметром  $A_1$ , а падение напряжения на разрядной трубке – цифровым вольтметром  $V_1$ , подключённым к трубке через высокоомный (25 М $\Omega$ ) делитель напряжения с коэффициентом  $(R_1 + R_2)/R_2 = 10$ .

С учётом конечного сопротивления вольтметра  $R_V = 10~\mathrm{M}\Omega$ , он показывает заниженные по сравнению с ожидамыми в  $\alpha = 12.3$  раз. При подключении к ВИП анода-II разряд возникает в пространстве между катодом и анодом-II, где находятся двойной зонд, используемый для диагностики плазмы положительного столба. Зонды изготовлены из молибденовой проволоки диаметром d = 0.2 мм и имеют длину l = 5.2 мм. Они подключены к источнику питания GPS через потенциометр R. Переключатель  $\Pi_2$  позволяет изменять полярность напряжения на зондах. Величина напряжения на зондах изменяеься с помощью дискретного переключателя «V» выходного напряжения источника питания и потенциометра R, а измеряется цифровым вольтметром  $V_2$ . Для измерения зондового тока используется мультиметр  $A_2$ .

В работе имеются следующие части: определение напряжения зажигания и гашения, снятие ВАХ, снятие зондовых характеристик.

## 4 Результаты измерений

Найдём для начала напряжение зажигания:

| $V_{ m ign}$     | 203 | 201 | 199 | 196 | 202 |
|------------------|-----|-----|-----|-----|-----|
| $V_{ m ign.avg}$ |     |     | 200 |     |     |

Теперь снимем ВАХ катод-анод на увеличение и падение тока и построим её график.

| I,  mA    | 0,508 | 0,808 | 1,107 | 1,400 | 1,723 | 2,007 | 2,357 | 2,604 | 2,928 | 3,207 | 3,500 | 3,934 | 4,110 | 4,451 | 4,723 | 5,019 |
|-----------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| $U_V$ , V | 35,15 | 34,17 | 32,51 | 28,56 | 26,19 | 24,86 | 23,56 | 22,73 | 21,63 | 20,84 | 20,39 | 20,03 | 19,81 | 19,4  | 19,22 | 18,96 |
| U, V      | 430,6 | 418,6 | 398,2 | 349,9 | 320,8 | 304,5 | 288,6 | 278,4 | 265,0 | 255,3 | 249,8 | 245,4 | 242,7 | 237,7 | 235,4 | 232,3 |
| I, mA     | 5,019 | 4,705 | 4,349 | 4,11  | 3,782 | 3,504 | 3,202 | 2,893 | 2,59  | 2,305 | 1,999 | 1,689 | 1,33  | 1,03  | 0,807 | 0,374 |
| $U_V$ , V | 18,96 | 19,2  | 19,48 | 19,82 | 20,14 | 20,22 | 20,75 | 21,68 | 22,75 | 23,62 | 24,78 | 26,3  | 29,35 | 32,63 | 34,15 | 35,6  |
| U, V      | 232,3 | 235,2 | 238,6 | 242,8 | 246,7 | 247,7 | 254,2 | 265,6 | 278,7 | 289,3 | 303,6 | 322,2 | 359,5 | 399,7 | 418,3 | 436,1 |



Рис. 1: ВАХ катод-анод

По минимальному углу наклона так же найдём максимальное дифференциальное сопротивление  $R_{\rm dif}=106{\rm k}\Omega.$ 

Теперь снимем зондовые характеристики для анодных токов 5 mA, 3.0 mA, 1.5 mA (см. приложение). По полученным данным построим график ??. На график, кроме того, нанесены аппроксимации функциями вида  $A \cdot \tanh(BU) + C \cdot U + D$ . Выпишем получившиеся параметры аппроксимации:

|        | A, uA     | B, 1/V      | C, uA/V     | D, uA      |
|--------|-----------|-------------|-------------|------------|
| 5 mA   | 84.8      | 0.133       | 1.37        | -6.45      |
|        | $\pm 8.5$ | $\pm 0.014$ | $\pm 0.39$  | $\pm 0.79$ |
| 3 mA   | 55.6      | 0.122       | 0.51        | -4.07      |
|        | $\pm 2.5$ | $\pm 0.005$ | $\pm 0.11$  | $\pm 0.19$ |
| 1.5 mA | 27.0      | 0.132       | 0.316       | -2.37      |
|        | $\pm 0.6$ | $\pm 0.003$ | $\pm 0.028$ | $\pm 0.55$ |

Поймём, что по сути своей  $A = I_{\text{и.н.}}, \, B = \frac{e}{2kT_e}.$ 

$$kT_{e1} = \frac{1}{2 \cdot 0.133} \text{eV} \approx (3.8 \pm 0.4) \text{eV}$$
  
 $kT_{e2} = \frac{1}{2 \cdot 0.122} \text{eV} \approx (4.1 \pm 0.2) \text{eV}$   
 $kT_{e3} = \frac{1}{2 \cdot 0.132} \text{eV} \approx (3.8 \pm 0.1) \text{eV}$ 



Рис. 2: Зондовая характеристика

Пользуясь (??), найдём концентрацию ионов в плазме.

$$n_{1i} = 6.7 \cdot 10^{16} \text{ m}^{-3}$$

$$n_{2i} = 6.5 \cdot 10^{16} \text{ m}^{-3}$$

$$n_{3i} = 6.7 \cdot 10^{16} \text{ m}^{-3}$$

В общем и целом ионная концентрация остается почти одинаковой. Это согласуется со свойством самоорганизации нормального тлеющего разряда — ток в нем растёт за счёт увеличения размеров катодного пятна, при этом концентрация носителей остается неизменной. Примем  $n_{\rm cp} = 6.6 \cdot 10^{16} \ {\rm m}^{-3}$ . Тогда так как концентрация неионизованных частиц  $n = 6.4 \cdot 10^{22} \ {\rm m}^{-3}$ , степень ионизации  $\alpha \sim 10^{-6}$ .

Найдём теперь дебаевский радиус

$$r_D = 58.4 \mu \text{m}$$

и количество ионов в дебаевской ячейке

$$N_i = n_i \cdot 4/3\pi r_D^3 = 56000 \ge 1$$

что означает, что плазму можно считать идеальной.

## 5 Обусждение результатов и выводы

В ходе работы были сняты вольтамперные и зондовые характеристики тлеющего разряда, обнаружена большая разница в температурах ионов и электронов в нем ( $T_e \sim 40000 {\rm K}$ ), независимость концентрации носителей заряда от величины анодного тока, вычислен дебаевский радиус и показано, что плазму можно считать идеальной. Полученные результаты хорошо качественно согласуются с теорией.

# 6 Приложение

| 5 mA     |           | 3 mA     |           | 1.5 mA   |           |  |
|----------|-----------|----------|-----------|----------|-----------|--|
| $U_3, V$ | $I_3, uA$ | $U_3, V$ | $I_3, uA$ | $U_3, V$ | $I_3, uA$ |  |
| 25,05    | 109,50    | 25,05    | 63,94     | 25,01    | 32,22     |  |
| 21,94    | 106,90    | 22,08    | 62,12     | 22,02    | 31,10     |  |
| 19,16    | 104,34    | 19,11    | 60,28     | 19,07    | 30,04     |  |
| 16,07    | 99,70     | 16,05    | 57,94     | 16,14    | 28,91     |  |
| 13,08    | 92,26     | 13,05    | 54,32     | 13,09    | 27,25     |  |
| 10,03    | 80,30     | 9,99     | 47,80     | 10,05    | 24,38     |  |
| 8,00     | 69,63     | 7,91     | 41,15     | 7,92     | 21,22     |  |
| 6,01     | 56,87     | 6,02     | 33,39     | 6,11     | 17,55     |  |
| 4,16     | 42,78     | 4,17     | 24,03     | 4,16     | 12,49     |  |
| 2,33     | 26,83     | 2,33     | 13,43     | 2,33     | 6,74      |  |
| 0,51     | 9,38      | 0,49     | 1,81      | 0,51     | 0,20      |  |
| -0,53    | -21,83    | -0,50    | -10,08    | -0,50    | -4,61     |  |
| -2,25    | -38,00    | -2,04    | -19,89    | -2,33    | -11,14    |  |
| -4,02    | -53,26    | -4,01    | -31,31    | -4,10    | -16,76    |  |
| -6,02    | -68,51    | -6,02    | -41,31    | -6,02    | -21,80    |  |
| -8,11    | -81,92    | -8,05    | -49,52    | -8,13    | -26,07    |  |
| -10,03   | -92,10    | -10,05   | -55,77    | -10,09   | -29,01    |  |
| -13,02   | -104,39   | -13,06   | -62,19    | -13,04   | -31,96    |  |
| -16,05   | -113,00   | -16,00   | -65,92    | -16,14   | -33,80    |  |
| -19,00   | -118,50   | -19,06   | -68,45    | -19,08   | -35,10    |  |
| -22,03   | -122,12   | -22,07   | -70,48    | -22,01   | -36,30    |  |
| -24,98   | -125,00   | -25,08   | -72,48    | -25,30   | -37,70    |  |