Probabilistic Method: Problem Set IV

Youngduck Choi CIMS New York University yc1104@nyu.edu

Abstract

This work contains solutions to the problem set IV of Probabilistic Method 2016 at Courant Institute of Mathematical Sciences.

Question 1.

1. Let P,Q,R,S be uniformly and independently selected from the unit square. Let $f(\epsilon)$ be the probability that triangles PQR and QRS both have area less than ϵ . Find the asymptotics of $f(\epsilon)$ (neglecting constant factors) as ϵ approaches zero. [Idea: Integrate over r = |QR|.] [Warning: For all r the probability that PQR, QRS have area less than ϵ is at most one.]

Solution. From the analysis of the combinatorial geometry section 3.3, it follows that

$$Pr(b \le |QR| \le b + db) \le 2\pi bdb,$$

where b denotes the distance between P and R. Given the distance b, we must have $h < \frac{2\epsilon}{b}$ to ensure that the area is less than ϵ . An upper bound to the area of such region is $4\frac{2\epsilon}{b}\sqrt{2} = \frac{4\sqrt{2}\epsilon}{b}$, which can be seen from using the $\sqrt{2}$ middle strip. Now, the probability that S lies in such region is thus, $\max(\frac{4\sqrt{2}\epsilon}{b},1)$. As we need to compute the probability of both PQR and QRS having an area smaller than ϵ , the total probability is bounded by

$$f(\epsilon) \le \int_{b=0}^{\sqrt{2}} 2\pi b [\max(\frac{4\sqrt{2}\epsilon}{b}, 1)]^2 db.$$

When $b \leq \frac{\epsilon}{4\sqrt{2}}$, we have the max term is simply 1. Hence, using the additivity of integral, we have

$$f(\epsilon) \leq \int_{b=0}^{4\sqrt{2}\epsilon} 2\pi b [\max(\frac{4\sqrt{2}\epsilon}{b}, 1)]^2 db. + c \int_{b=4\sqrt{2}\epsilon}^1 \frac{\epsilon^2}{b} db,$$

where c is the constant associated from the original integral. Now, observe that the first integral is $O(\epsilon^2)$ and the second integral is $O(\epsilon^2 \ln(\epsilon^{-1}))$. Therefore, we have shown that $f(\epsilon) = O(\epsilon^2 \ln(\epsilon^{-1}))$.

Question 2.

2. Let X be the number of triangles in G(n,p) with p=c/n. Find both the precise and the asymptotic [c fixed, $n \to \infty$, in terms of c] values for the expectation and variance of X.

Solution. For every 3-set S of vertices in G(n,p), let A_S be the event that S is a triangle. In particular, we have $X = \sum_S X_S$. By Linearity of Expectation, obtain

$$E[X] = \sum_{S} E[X_S] = \binom{n}{3} p^3 = \binom{n}{3} (\frac{c}{n})^3 \sim \frac{1}{6} c^3.$$

Now, by definition of variance, we have

$$Var[X] = \sum_{S} Var[X_S] + \sum_{S \neq T} Cov[X_S, X_T].$$

Using the variance formula for discrete random variable, we have that

$$\sum_{S} Var[X_S] = \binom{n}{3} p^3 (1 - p^3).$$

As p = o(1), we have that $(1 - p^3) = o(1)$. Therefore, we can further deduce

$$Var[X_S] = p^3(1-p^3) \sim p^3 \text{ and } Var[X_S] \sim E[X_S] \sim \frac{1}{6}c^3.$$

Now, observe that covariance is 0 for S,T pair, where $|S \cap T| \neq 2$. Now, for S,T pair, where $|S \cap T| = 2$, we have, by definition of covariance,

$$Cov(X_S, X_T) = E[X_S X_T] - E[X_S] E[X_T] = p^5 - p^6.$$

Since there are $\binom{n}{3}3(n-3)$ choices (fix the first triangle, pick the one that will not be shared, and choose the remaining one from the rest of the graph), we finally have

$$\sum_{S \neq T} Cov(X_S, X_T) = \binom{n}{3} 3(n-3)(p^5 - p^6) = o(1).$$

Therefore, we can conclude that $Var[X] \sim \frac{c^3}{6}$ as well. Reminds me of Poisson, but not gonna think too hard about it for now.

Question 3.

- 5. Let X_i , $1 \le i \le n$, be i.i.d. uniform on $\{1, \ldots, 6\}$ (throws of a fair die), $Y_i = X_i \frac{7}{2}$ (to move to zero mean) and $Y = \sum_{i=1}^n Y_i$. Use Chernoff Bounds to give A = A(n) as small (asymptotically) as possible (include the constant factor!) so that
 - (a) $\Pr[Y > A] < n^{-1}$
 - (b) $\Pr[Y > A] < n^{-10}$
 - (c) $\Pr[Y > A] < e^{-\sqrt{n}}$

Solution. With simple computation, we can see that

$$\sigma_i^2 = \frac{35}{12}$$
 and $\sigma_2 = \frac{35}{12}$.

As Y_i are uniformly bounded, by the use of Chernoff bound, it follows that

$$P(Y > a\sigma) < e^{-\frac{a^2}{2}(1+o(1))}.$$

Therefore, we must have $\frac{a^2}{2}=\ln(n),10\ln(n),\sqrt{n}.$ Solving these respectively, we obtain that $a=(2\ln(n))^{\frac{1}{2}},(20\ln(n))^{\frac{1}{2}},2^{\frac{1}{2}}n^{\frac{1}{4}}.$