Integrated Remote Entanglement of Trapped Ions

Felix Knollmann, Ethan Clements †, S. Corsetti, P. Callahan, A. Hattori, D. Kharas, M. Kim, T. Mahony, R. Maxson, R. McConnell, A. Medeiros, R. Morgan, M. Notaros, C. Sorace-Agaskar, T. Sneh, A. Sumant, R. Swint, G. West, J. Notaros, I. L. Chuang, J. Chiaverini

Challenges

- 1. Qubit operations are mediated by photons and phonons
- 2. Spatial constraints limit beam access and thus qubit number in current experiments

- Spectral crowding of motional modes (the quantum bus) limits the size of a 1D trapped ion processor
- 4. Sideband cooling takes ~40% of the duty cycle in current implementations of quantum algorithms¹

Vision

A remote entanglement generation unit cell that can be multiplexed to achieve high-rate modular quantum computing with trapped ions in a single vacuum system

Implementation

Emission gratings for pulsed excitation

Photon collection gratings

Integrated beam splitters

Waveguide-coupled detectors

Fast cooling and state preparation

Key operations require circularly polarized light, but current grating designs emit only linearly polarized, TE or TM light

We are developing and testing structures to deliver light of different polarizations for:

- Fast state preparation
- Remote entanglement generation pulses
- EIT cooling
- Polarization gradient cooling

Consequences

Modular quantum computing in a single vacuum system or across systems

Quantum repeaters when combined with coherent frequency conversion

Improved run time of quantum algorithms by reducing the time spent sideband cooling

References and QR codes

Digital version of poster:

Arxiv link for paper:

¹Quantinuum: https://doi.org/10.48550/arXiv.2305.03828