# TITLE OF THE THESIS

by

Author (CID: ...)

Department of Informatics
King's College London
WC2R 2LS London
United Kingdom



**University of London** 

Thesis submitted as part of the requirements for the award of the MSc in Web Intelligence, King's College London, 2016-2017

# Contents

| 1 | Intr           | roduction                                | 4 |
|---|----------------|------------------------------------------|---|
| 2 | Option pricing |                                          | 4 |
|   | 2.1            | The fundamental theorem of asset pricing | 4 |
|   | 2.2            | The Black-Scholes model                  | 4 |
|   |                | 2.2.1 No interest rates                  | 4 |
|   |                | 2.2.2 Including interest rates           | 4 |
|   | 2.3            | The Heston model                         | 5 |
| 3 | Mo             | del calibration                          | 6 |
|   | 3.1            | What is calibration?                     | 6 |
|   | 3.2            | Numerical methods for calibration        | 6 |
| A | Rev            | view of stochastic calculus              | 6 |
|   | A.1            | Riemann integration                      | 6 |
|   | A.2            | The Itô integral                         | 6 |
| В | Son            | ne technical proofs                      | 6 |
|   | (              | Conclusion                               | 7 |

# Acknowledgements

I would like to thank my supervisor.....

#### 1 Introduction

General introduction.

## 2 Option pricing

#### 2.1 The fundamental theorem of asset pricing

#### 2.2 The Black-Scholes model

Consider a given probability space  $(\Omega, (\mathcal{F})_t, \mathbb{P})$  supporting a Brownian motion  $(W_t)_{t\geq 0}$ . In the Black-Scholes model, the stock price process  $(S_t)_{t\geq 0}$  is the unique strong solution to the following stochastic differential equation:

$$\frac{\mathrm{d}S_t}{S_t} = r\mathrm{d}t + \sigma\mathrm{d}W_t, \qquad S_0 > 0, \tag{2.1}$$

where  $r \ge 0$  denotes the instantaneous risk-free interest rate and  $\sigma > 0$  the instantaneous volatility.

#### 2.2.1 No interest rates

#### 2.2.2 Including interest rates

A European call price  $C_t(S_0, K, \sigma)$  with maturity t > 0 and strike K > 0 pays at maturity  $(S_t - K)_+ = \max(S_t - K, 0)$ . When the stock price follows the Black-Scholes SDE (2.1), Black and Scholes [1] proved that its price at inception is worth

$$C_t(S_0, K, \sigma) = S_0 \mathcal{N}(d_+) - K e^{-rt} \mathcal{N}(d_-),$$

where

$$d_{\pm} := \frac{\log (S_0 e^{rt}/K)}{\sigma \sqrt{t}} \pm \frac{\sigma \sqrt{t}}{2},$$

and where  $\mathcal{N}$  denotes the cumulative distribution function of the Gaussian random variable.

Here is an example of how to insert a picture:



Figure 1: This is the caption for the figure.

or two side-by-side pictures:

2.3 The Heston model 5



### 2.3 The Heston model

In the Heston model, the stock price is the unique strong solution to the following stochastic differential equation:

$$dS_t = S_t \sqrt{V_t} dW_t, \qquad S_0 = s > 0,$$

$$dV_t = \kappa (\theta - V_t) dt + \xi \sqrt{V_t} dZ_t, \quad V_0 = v_0 > 0,$$

$$d\langle W, Z \rangle_t = \rho dt,$$
(2.2)

where  $\kappa, \xi, \theta, v_0, s > 0$  and the correlation parameter  $\rho$  lies in [-1, 1].

# 3 Model calibration

#### 3.1 What is calibration?

Here is an example of a matrix in  $A \in \mathcal{M}_n(\mathbb{R})$ :

$$A = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \vdots \\ a_{n1} & \dots & \dots & a_{1n}. \end{pmatrix}$$

#### 3.2 Numerical methods for calibration

...

# A Review of stochastic calculus

### A.1 Riemann integration

### A.2 The Itô integral

# B Some technical proofs

# Conclusion

Conclusion if needed...

References 8

# References

[1] F. Black and M. Scholes. The Pricing of Options and Corporate Liabilities. *Journal of Political Economy*, 81 (3): 637-659, 1973.

- [2] I. Karatzas and S.E. Shreve. Brownian Motion and Stochastic Calculus. Springer-Verlag, 1997.
- [3] S. Karlin and H. Taylor. A Second Course in Stochastic Processes. Academic Press, 1981.
- [4] P. Tankov. Pricing and hedging in exponential Lévy models: review of recent results. *Paris-*Princeton Lecture Notes in Mathematical Finance, Springer, 2010.
- [5] D. Williams. Probability With Martingales. CUP, 1991.

References 9

# Acknowledgements

I would like to thank my supervisor.....