Sorting Comparisons

Proving O() characteristics by timing. Included in the files are the code for each type of sort.

Methodology: X axis is [n] size of randomly filled array of ints. I sorted the array using each different type of sort. Y axis is average time in microseconds (μ s).

Heapsort: It is almost linear but it is closer to O(n log(n)).

MergeSort: This particular implementation is O(n). Sources claim it is usually $O(n \log(n))$.

Shellsort: Many sources claim shellsort is $O(n(\log(n)^2)$. My timing is similar to it, but it behaves weirdly.

QuickSort: It is O(n^2) and increases rapidly.

Comparison:

Legend: Heap Shell Merge

Quicksort is not pictured because it is $O(n^2)$ and increases too fast in comparison to the others.

Heap is better than most rudimentary sorts that are typically $O(n^2)$, but shell and merge sort are much faster. Merge is the best out of the four in my timing analysis.