Formation R Perfectionnement

Drees - 16-17 avril 2018

Martin CHEVALIER (Insee)

Travailler efficacement sur des données avec R Qu'est-ce que travailler efficacement avec R?

Appliqué au travail sur des données, l'efficacité peut avoir au moins deux significations distinctes :

- efficacité algorithmique : minimisation du temps passé par la machine pour réaliser une série d'opérations;
- **productivité** du programmeur : minimisation du temps passé à coder une série d'opération.

Travailler efficacement sur des données avec R Qu'est-ce que travailler efficacement avec R?

Appliqué au travail sur des données, l'efficacité peut avoir au moins deux significations distinctes :

- efficacité algorithmique : minimisation du temps passé par la machine pour réaliser une série d'opérations;
- productivité du programmeur : minimisation du temps passé à coder une série d'opération.

En règle générale, on peut avoir l'idée que plus on souhaite être efficace algorithmiquement, plus la programmation risque d'être longue et difficile.

Travailler efficacement sur des données avec R Qu'est-ce que travailler efficacement avec R?

Appliqué au travail sur des données, l'efficacité peut avoir au moins deux significations distinctes :

- efficacité algorithmique : minimisation du temps passé par la machine pour réaliser une série d'opérations;
- productivité du programmeur : minimisation du temps passé à coder une série d'opération.

En règle générale, on peut avoir l'idée que plus on souhaite être efficace algorithmiquement, plus la programmation risque d'être longue et difficile.

Ce n'est pas toujours vrai : on perd souvent beaucoup de temps à (ré)inventer une méthode peu efficace quand une beaucoup plus simple et rapide existe déjà.

Travailler efficacement sur des données avec R Qu'est-ce que travailler efficacement avec R?

Appliqué au travail sur des données, l'efficacité peut avoir au moins deux significations distinctes :

- efficacité algorithmique : minimisation du temps passé par la machine pour réaliser une série d'opérations ;
- productivité du programmeur : minimisation du temps passé à coder une série d'opération.

En règle générale, on peut avoir l'idée que plus on souhaite être efficace algorithmiquement, plus la programmation risque d'être longue et difficile.

Ce n'est pas toujours vrai : on perd souvent beaucoup de temps à (ré)inventer une méthode peu efficace quand une beaucoup plus simple et rapide existe déjà.

Référence GILLEPSIE C., LOVELACE R., *Efficient R* programming (disponible sur bookdown.org)

Travailler efficacement sur des données avec R Mesure l'efficacité algorithmique

La fonction system.time() permet de mesurer la durée d'un traitement.

```
system.time(rnorm(1e6))
## user system elapsed
## 0.17 0.00 0.18
```

Travailler efficacement sur des données avec R Mesure l'efficacité algorithmique

La fonction system.time() permet de mesurer la durée d'un traitement.

```
system.time(rnorm(1e6))
## user system elapsed
## 0.17 0.00 0.18
```

Néanmoins, elle est inadaptée aux traitements de très courte durée. Dans ces situations, privilégier la fonction microbenchmark() du package microbenchmark.

```
library(microbenchmark)
microbenchmark(times = 10, rnorm(1e6))
    ## Unit: milliseconds
    ## expr min lq mean median
    ## rnorm(1e+06) 98.33079 100.6687 101.3566 101.0949
    ## uq max neval
    ## 101.9453 104.6314 10
```

Travailler efficacement sur des données avec R Mesurer la taille d'un objet en mémoire

R stocke l'ensemble des fichiers sur lesquels il travaille dans la mémoire vive.

Afin de loger les objets les plus gros mais aussi d'optimiser les performances, il est souvent utile de **limiter la taille des objets** sur lesquels portent les traitements.

Travailler efficacement sur des données avec R Mesurer la taille d'un objet en mémoire

R stocke l'ensemble des fichiers sur lesquels il travaille dans la mémoire vive.

Afin de loger les objets les plus gros mais aussi d'optimiser les performances, il est souvent utile de **limiter la taille des objets** sur lesquels portent les traitements.

Pour mesurer la taille des objets, utiliser la fonction object_size() du *package* pryr.

```
library(pryr)
object_size(rnorm(1e6))
## 8 MB
```

Travailler efficacement sur des données avec R Construire un exemple reproductible (MWE)

Lorsque l'on cherche à améliorer les performances d'un programme, il est important de pouvoir le tester sur des données **autonomes et reproductibles**.

Travailler efficacement sur des données avec R Construire un exemple reproductible (MWE)

Lorsque l'on cherche à améliorer les performances d'un programme, il est important de pouvoir le tester sur des données **autonomes et reproductibles**.

Pour ce faire, les **fonctions de générations de nombres aléatoires** de R sont particulièrement utiles.

```
# Graine pour pouvoir reproduire l'aléa
set.seed(2018)

# Vecteur de nombres de taille 1 000
a <- rnorm(1000)

# Vecteur de lettres de taille 1 000
b <- letters[sample(1:26, 1000, replace = TRUE)]

# Matrice logique 1 000 x 100 avec 1 % de TRUE
c <- matrix(runif(100000) > 0.99, ncol = 100)
```

Travailler efficacement sur des données avec R Plan de la partie

De l'importance des fonctions dans R

Vectoriser : *apply(), Reduce() et do.call()

Coder efficacement en base R

dplyr : une grammaire du traitement des données

data.table : un data.frame optimisé

Aller plus loin avec R

« Tout ce qui agit est un appel de fonction »

To understand computations in R, two slogans are helpful:

- Everything that exists is an object.
- ► Everything that happens is a function call.

John Chambers

« Tout ce qui agit est un appel de fonction »

To understand computations in R, two slogans are helpful:

- Everything that exists is an object.
- Everything that happens is a function call.

John Chambers

Définir une fonction dans R

Utilisé avec <-, function() définit une nouvelle fonction :

Définir une fonction dans R

Utilisé avec <-, function() définit une nouvelle fonction :

```
# Définition de la fonction monCalcul()
monCalcul <- function(a, b){
  resultat \leftarrow 10 * a + b
  return(resultat)
# Code de monCalcul()
monCalcul
  ## function(a, b){
  ## resultat <- 10 * a + b
  ## return(resultat)
  ## }
# Appel de la fonction monCalcul()
monCalcul(2, 3)
  ## [1] 23
```

De l'importance des fonctions dans R Valeurs par défaut des paramètres

Des valeurs par défaut peuvent être renseignées pour les paramètres.

```
monCalcul <- function(a, b = 3) 10 * a + b
monCalcul(8)
## [1] 83</pre>
```

De l'importance des fonctions dans R Valeurs par défaut des paramètres

Des valeurs par défaut peuvent être renseignées pour les paramètres.

```
monCalcul <- function(a, b = 3) 10 * a + b
monCalcul(8)
## [1] 83</pre>
```

Les valeurs par défaut peuvent dépendre des autres paramètres.

```
monCalcul <- function(a, b = a * 2) 10 * a + b
monCalcul(2)
## [1] 24</pre>
```

De l'importance des fonctions dans R Valeurs par défaut des paramètres

Des valeurs par défaut peuvent être renseignées pour les paramètres.

```
monCalcul <- function(a, b = 3) 10 * a + b
monCalcul(8)
## [1] 83</pre>
```

Les valeurs par défaut peuvent dépendre des autres paramètres.

```
monCalcul <- function(a, b = a * 2) 10 * a + b
monCalcul(2)
## [1] 24</pre>
```

Remarque Ceci est la conséquence de la *lazy evaluation* des arguments dans R (*cf. Advanced R*).

De l'importance des fonctions dans R Contrôle de la valeur des paramètres

Des structures conditionnelles if() permettent de contrôler la valeur des arguments.

Contrôle de la valeur des paramètres

Des structures conditionnelles if() permettent de contrôler la valeur des arguments.

```
monCalcul <- function(a = NULL, b = NULL){
  if(is.null(a)) stop("a n'est pas renseigné.")
  if(is.null(b)){
   b < -a * 2
    warning("b n'est pas renseigné.")
  return(10 * a + b)
monCalcul(b = 3)
  ## Error in monCalcul(b = 3): a n'est pas renseigné.
monCalcul(a = 1)
  ## Warning in monCalcul(a = 1): b n'est pas renseigné.
  ## [1] 12
```

De l'importance des fonctions dans R Portée des variables et environnements (1)

Dans R chaque objet est repéré par son nom et son environnement : cela permet d'éviter les conflits de noms.

De l'importance des fonctions dans R Portée des variables et environnements (1)

Dans R chaque objet est repéré par son nom et son environnement : cela permet d'éviter les conflits de noms.

```
# Création d'une fonction sum() un peu absurde
sum <- function(...) "Ma super somme !"</pre>
sum(2, 3)
  ## [1] "Ma super somme !"
# Cette fonction est rattachée à l'environnement global
ls()
  ## [1] "a"
                      "h"
                                   11 6 11
                                               "file"
  ## [5] "monCalcul" "sum"
# Mais on peut toujours accéder à la fonction
# de base en utilisant ::
base::sum(2, 3)
  ## [1] 5
```

De l'importance des fonctions dans R Portée des variables et environnements (2)

À chaque appel d'une fonction, un **environnement d'exécution** est créé.

```
maFun <- function() environment()
maFun()
    ## <environment: 0x00000000d466ec8>
maFun()
    ## <environment: 0x0000000d400448>
```

De l'importance des fonctions dans R Portée des variables et environnements (2)

À chaque appel d'une fonction, un **environnement d'exécution** est créé.

```
maFun <- function() environment()
maFun()
    ## <environment: 0x00000000d466ec8>
maFun()
    ## <environment: 0x0000000d400448>
```

En conséquence, les instructions exécutées à l'intérieur d'une fonction **ne modifient pas l'environnement global**.

```
a <- 10
maFonction3 <- function(){
   a <- 5
}
maFonction3()
a
   ## [1] 10</pre>
```

De l'importance des fonctions dans R Portée des variables et environnements (3)

En revanche, les objets définis dans l'environnement global sont accessibles au sein d'une fonction.

```
a <- 10
maFonction4 <- function(){
  a + 5
}
maFonction4()
## [1] 15</pre>
```

De l'importance des fonctions dans R Portée des variables et environnements (3)

En revanche, les objets définis dans l'environnement global sont accessibles au sein d'une fonction.

```
a <- 10
maFonction4 <- function(){
  a + 5
}
maFonction4()
  ## [1] 15</pre>
```

Ceci est dû au fait que les environnements dans lequel R recherche des objets sont **emboîtés les uns dans les autres** (cf. la fonction search()).

Pour en savoir plus Advanced R, obeautifulcode.com

De l'importance des fonctions dans R Valeur de retour d'une fonction

La fonction return() spécifie la valeur à renvoyer. Pour renvoyer plusieurs valeurs, utiliser une liste.

Valeur de retour d'une fonction

La fonction return() spécifie la valeur à renvoyer. Pour renvoyer plusieurs valeurs, utiliser une liste.

```
maFonction1 <- function(){</pre>
  a <- 1:5; b <- 6:10; return(a)
maFonction1()
  ## [1] 1 2 3 4 5
maFonction2 <- function(){
  a \leftarrow 1:5; b \leftarrow 6:10; return(list(a = a, b = b))
maFonction2()
  ## $a
  ## [1] 1 2 3 4 5
  ##
  ## $b
           6 7 8 9 10
```

De l'importance des fonctions dans R Effets de bord et programmation fonctionnelle

Par défaut, les fonctions dans R :

- ne modifient pas l'environnement d'origine (il n'y a pas d'effets de bord);
- peuvent être utilisées en lieu et place des valeurs qu'elles retournent.

```
monCalcul <- function(a, b) 10 * a + b
monCalcul(2, 3) + 5
## [1] 28</pre>
```

De l'importance des fonctions dans R Effets de bord et programmation fonctionnelle

Par défaut, les fonctions dans R :

- ne modifient pas l'environnement d'origine (il n'y a pas d'effets de bord);
- peuvent être utilisées en lieu et place des valeurs qu'elles retournent.

```
monCalcul <- function(a, b) 10 * a + b
monCalcul(2, 3) + 5
## [1] 28</pre>
```

Ces éléments font de R un langage particulièrement adapté à la programmation fonctionnelle.

1. Ne jamais créer d'effets de bord Toute modification apportée à l'environnement par une fonction passe par sa valeur de sortie.

- 1. **Ne jamais créer d'effets de bord** Toute modification apportée à l'environnement par une fonction passe par sa valeur de sortie.
- Vectoriser i.e. appliquer des fonctions systématiquement à un ensemble d'éléments Fonctions *apply(), Reduce(), do.call().

- 1. **Ne jamais créer d'effets de bord** Toute modification apportée à l'environnement par une fonction passe par sa valeur de sortie.
- Vectoriser i.e. appliquer des fonctions systématiquement à un ensemble d'éléments Fonctions *apply(), Reduce(), do.call().
- Structurer les traitements à l'aide de fonctions courtes et explicites Faciliter la relecture, la maintenance et la modularisation.

- 1. **Ne jamais créer d'effets de bord** Toute modification apportée à l'environnement par une fonction passe par sa valeur de sortie.
- Vectoriser i.e. appliquer des fonctions systématiquement à un ensemble d'éléments Fonctions *apply(), Reduce(), do.call().
- Structurer les traitements à l'aide de fonctions courtes et explicites Faciliter la relecture, la maintenance et la modularisation.

Pour en savoir plus Wikipedia, maryrosecook.com.

Vectoriser : *apply(), Reduce() et do.call()
Appliquer sur chaque indépendamment : apply()

La fonction apply(X, MARGIN, FUN) applique la fonction FUN à la **matrice** X selon la dimension MARGIN.

Vectoriser : *apply(), Reduce() et do.call() Appliquer sur chaque indépendamment : apply()

La fonction apply(X, MARGIN, FUN) applique la fonction FUN à la **matrice** X selon la dimension MARGIN.

```
# Définition et affichage de la matrice m
m \leftarrow matrix(1:6, ncol = 3)
m
 ## [,1] [,2] [,3]
 ## [1,] 1 3 5
 ## [2,] 2 4 6
# Application de la fonction sum() selon les lignes
apply(m, 1, sum)
 ## [1] 9 12
# Application de la fonction sum() selon les colonnes
apply(m, 2, sum)
 ## [1] 3 7 11
```

```
Vectoriser : *apply(), Reduce() et do.call()
Appliquer sur chaque indépendamment : lapply()
```

La fonction lapply(X, FUN) applique la fonction FUN au **vecteur** ou à la **liste** X.

Vectoriser : *apply(), Reduce() et do.call() Appliquer sur chaque indépendamment : lapply()

La fonction lapply(X, FUN) applique la fonction FUN au **vecteur** ou à la **liste** X.

```
1 \leftarrow list(1:5, c(6:9, NA))
  ## [[1]]
  ## [1] 1 2 3 4 5
  ##
  ## [[2]]
  ## [1] 6 7 8 9 NA
lapply(1, sum)
  ## [[1]]
  ## [1] 15
  ##
  ## [[2]]
  ## [1] NA
```

Vectoriser : *apply(), Reduce() et do.call() Appliquer sur chaque indépendamment : lapply()

La fonction lapply(X, FUN) applique la fonction FUN au **vecteur** ou à la **liste** X.

```
1 \leftarrow list(1:5, c(6:9, NA))
  ## [[1]]
  ## [1] 1 2 3 4 5
  ##
  ## [[2]]
  ## [1] 6 7 8 9 NA
lapply(1, sum)
  ## [[1]]
  ## [1] 15
  ##
  ## [[2]]
  ## [1] NA
```

Exemple d'utilisation Appliquer une fonction à toutes les variables d'une table.

```
Vectoriser : *apply(), Reduce() et do.call()
Appliquer sur chaque indépendamment : sapply()
```

La fonction sapply() est analogue à la fonction lapply(), mais simplifie le résultat produit quand c'est possible.

```
sapply(1, sum)
## [1] 15 NA
```

```
Vectoriser : *apply(), Reduce() et do.call()
Appliquer sur chaque indépendamment : sapply()
```

La fonction sapply() est analogue à la fonction lapply(), mais simplifie le résultat produit quand c'est possible.

```
sapply(1, sum)
## [1] 15 NA
```

Les arguments optionnels de la fonction utilisée peuvent être ajoutés à la suite dans toutes les fonctions *apply().

```
sapply(1, sum, na.rm = TRUE)
## [1] 15 30
```

```
Vectoriser : *apply(), Reduce() et do.call()
Appliquer sur chaque indépendamment : sapply()
```

La fonction sapply() est analogue à la fonction lapply(), mais simplifie le résultat produit quand c'est possible.

```
sapply(1, sum)
## [1] 15 NA
```

Les arguments optionnels de la fonction utilisée peuvent être ajoutés à la suite dans toutes les fonctions *apply().

```
sapply(1, sum, na.rm = TRUE)
## [1] 15 30
```

Exemple d'utilisation Calcul de statistiques sur toutes les variables d'une table.

Vectoriser : *apply(), Reduce() et do.call() Définir une fonction à la volée dans *apply()

Il est fréquent que l'opération que l'on souhaite appliquer ne corresponde pas exactement à une fonction pré-existante.

Vectoriser : *apply(), Reduce() et do.call() Définir une fonction à la volée dans *apply()

Il est fréquent que l'opération que l'on souhaite appliquer ne corresponde pas exactement à une fonction pré-existante.

Dans ce cas, on peut définir une **fonction à la volée** dans la fonction *apply().

```
# On souhaite sélectionner le second élément de
# de chaque vecteur de la liste l
  ## [[1]]
  ## [1] 1 2 3 4 5
  ##
  ## [[2]]
  ## [1] 6 7 8 9 NA
# On définit une fonction dans sapply()
sapply(1, function(x) x[2])
  ## [1] 2 7
```

```
Vectoriser : *apply(), Reduce() et do.call()
Appliquer sur chaque par groupe : tapply()
```

La fonction tapply(X, INDEX, FUN) applique la fonction FUN, à l'objet X ventilé selon les modalités de INDEX.

Vectoriser : *apply(), Reduce() et do.call() Appliquer sur chaque par groupe : tapply()

La fonction tapply(X, INDEX, FUN) applique la fonction FUN, à l'objet X ventilé selon les modalités de INDEX.

```
# Variables d'âge et de sexe
age \leftarrow c(45, 50, 35, 20)
sexe <- c("H", "F", "F", "H")
# Âge moyen par sexe
tapply(age, sexe, mean)
  ## F H
  ## 42.5 32.5
# Même résultat avec une combinaison de sapply() et de split()
sapply(split(age, sexe), mean)
  ## F H
  ## 42.5 32.5
```

Vectoriser : *apply(), Reduce() et do.call() Appliquer sur chaque par groupe : tapply()

La fonction tapply(X, INDEX, FUN) applique la fonction FUN, à l'objet X ventilé selon les modalités de INDEX.

```
# Variables d'âge et de sexe
age \leftarrow c(45, 50, 35, 20)
sexe <- c("H", "F", "F", "H")
# Âge moyen par sexe
tapply(age, sexe, mean)
  ## F H
  ## 42.5 32.5
# Même résultat avec une combinaison de sapply() et de split()
sapply(split(age, sexe), mean)
  ##
    F H
  ## 42.5 32.5
```

Exemple d'utilisation Calcul de statistiques agrégées par catégories.

```
Vectoriser : *apply(), Reduce() et do.call()
Appliquer sur tous : do.call()
```

La fonction do.call(what, args) permet d'appliquer la fonction what() à un **ensemble** d'arguments args spécifié comme une liste (alors que les fonctions *apply() appliqueraient what() à **chaque** élément de args).

```
Vectoriser : *apply(), Reduce() et do.call()
Appliquer sur tous : do.call()
```

La fonction do.call(what, args) permet d'appliquer la fonction what() à un **ensemble** d'arguments args spécifié comme une liste (alors que les fonctions *apply() appliqueraient what() à **chaque** élément de args).

```
# Concaténation des vecteurs de 1
do.call(base::c, 1)
    ## [1] 1 2 3 4 5 6 7 8 9 NA

# Equivalent à
base::c(1[[1]], 1[[2]])
    ## [1] 1 2 3 4 5 6 7 8 9 NA
```

```
Vectoriser : *apply(), Reduce() et do.call()
Appliquer sur tous : do.call()
```

La fonction do.call(what, args) permet d'appliquer la fonction what() à un **ensemble** d'arguments args spécifié comme une liste (alors que les fonctions *apply() appliqueraient what() à **chaque** élément de args).

```
# Concaténation des vecteurs de l
do.call(base::c, 1)
    ## [1] 1 2 3 4 5 6 7 8 9 NA

# Equivalent à
base::c(1[[1]], 1[[2]])
    ## [1] 1 2 3 4 5 6 7 8 9 NA
```

Exemple d'utilisation Concaténer de nombreuses tables avec rbind() ou cbind().

```
Vectoriser : *apply(), Reduce() et do.call()
Appliquer sur tous successivement : Reduce()
```

La fonction Reduce(f, x) permet d'appliquer la fonction f() successivement à l'ensemble des éléments de x (alors que do.call() applique f simultanément).

```
Vectoriser : *apply(), Reduce() et do.call()
Appliquer sur tous successivement : Reduce()
```

La fonction Reduce(f, x) permet d'appliquer la fonction f() successivement à l'ensemble des éléments de x (alors que do.call() applique f simultanément).

```
# Application successive de la division au vecteur 1:4
Reduce(`/`, 1:4)
    ## [1] 0.04166667

# Equivalent à
((1/2)/3)/4
    ## [1] 0.04166667
```

```
Vectoriser : *apply(), Reduce() et do.call()
Appliquer sur tous successivement : Reduce()
```

La fonction Reduce(f, x) permet d'appliquer la fonction f() successivement à l'ensemble des éléments de x (alors que do.call() applique f simultanément).

```
# Application successive de la division au vecteur 1:4
Reduce(`/`, 1:4)
    ## [1] 0.04166667

# Equivalent à
((1/2)/3)/4
    ## [1] 0.04166667
```

Exemple d'utilisation Fusionner de nombreuses tables avec merge() (sur les mêmes identifiants).

Coder efficacement en base R

L'idée : En faire faire le moins possible à R

R est un langage dit « de haut niveau » : les objets qui le composent sont relativement faciles d'utilisation, au prix de performances limitées.

À l'inverse, des langages dits de « bas niveau » (par exemple C++) sont plus difficiles à utiliser mais aussi plus efficaces.

Coder efficacement en base R

L'idée : En faire faire le moins possible à R

R est un langage dit « de haut niveau » : les objets qui le composent sont relativement faciles d'utilisation, au prix de performances limitées.

À l'inverse, des langages dits de « bas niveau » (par exemple C++) sont plus difficiles à utiliser mais aussi plus efficaces.

La plupart des fonctions fondamentales de R font appel à des fonctions compilées à partir d'un langage de plus bas niveau.

D'où le principe : **limiter au maximum la surcharge liée à R** pour retomber au plus vite sur des fonctions pré-compilées.

Coder efficacement en base R

L'idée : En faire faire le moins possible à R

R est un langage dit « de haut niveau » : les objets qui le composent sont relativement faciles d'utilisation, au prix de performances limitées.

À l'inverse, des langages dits de « bas niveau » (par exemple C++) sont plus difficiles à utiliser mais aussi plus efficaces.

La plupart des fonctions fondamentales de R font appel à des fonctions compilées à partir d'un langage de plus bas niveau.

D'où le principe : **limiter au maximum la surcharge liée à R** pour retomber au plus vite sur des fonctions pré-compilées.

Remarque II est très facile en pratique d'utiliser R comme une interface vers des langages de plus bas niveau, *cf. infra* à propos de Rcpp.

Coder efficacement en base R Utiliser les boucles avec parcimonie (1)

Comme la plupart des langages de programmation, R dispose de **structures de contrôles** permettant de réaliser des boucles.

```
boucle <- function(x){
  cumul <- rep(NA, length(x))
  for(i in seq_along(x))
    cumul[i] <- if(i == 1) x[i] else cumul[i - 1] + x[i]
  return(cumul)
}
boucle(1:5)
## [1] 1 3 6 10 15</pre>
```

Coder efficacement en base R Utiliser les boucles avec parcimonie (1)

Comme la plupart des langages de programmation, R dispose de **structures de contrôles** permettant de réaliser des boucles.

```
boucle <- function(x){
  cumul <- rep(NA, length(x))
  for(i in seq_along(x))
    cumul[i] <- if(i == 1) x[i] else cumul[i - 1] + x[i]
  return(cumul)
}
boucle(1:5)
## [1] 1 3 6 10 15</pre>
```

Ces opérations présentent plusieurs inconvénients :

- 1. Elles sont longues à écrire et assez peu claires;
- 2. Elles reposent sur des effets de bord;
- 3. Elles sont en général très peu **efficaces algorithmiquement**.

Coder efficacement en base R Utiliser les boucles avec parcimonie (2)

Les méthodes de vectorisation sont en général beaucoup plus efficaces que les boucles en R :

- vectorisation de haut niveau (cf. supra);
- vectorisation de bas niveau : la vectorisation est opérée par le langage de bas niveau auquel fait appel R.

Coder efficacement en base R Utiliser les boucles avec parcimonie (2)

Les méthodes de vectorisation sont en général beaucoup plus efficaces que les boucles en R :

- vectorisation de haut niveau (cf. supra);
- vectorisation de bas niveau : la vectorisation est opérée par le langage de bas niveau auquel fait appel R.

```
summary(microbenchmark(times = 10L
  , boucle = boucle(1:1e4)
  , Reduce = Reduce(`+`, 1:1e4, accumulate = TRUE)
  , cumsum = cumsum(1:1e4)
))[, 1:4]
  ## expr min lq mean
  ## 1 boucle 23045.637 23332.998 24138.5132
  ## 2 Reduce 6811.773 6955.059 7425.0581
  ## 3 cumsum 41.052 45.789 61.8935
```

On distingue souvent deux familles de langages informatiques :

On distingue souvent deux familles de langages informatiques :

▶ les langages **compilés** (C, C++) : l'ensemble du code est transformé en langage machine par un *compilateur* puis soumis par le système d'exploitation ;

On distingue souvent deux familles de langages informatiques :

- ▶ les langages **compilés** (C, C++) : l'ensemble du code est transformé en langage machine par un *compilateur* puis soumis par le système d'exploitation ;
- ▶ les langages **interprétés** (R, Python) : les instructions du code sont soumises les unes après les autres par un *interpréteur*, ce qui est moins efficace (*cf.* boucles en R).

On distingue souvent deux familles de langages informatiques :

- ▶ les langages **compilés** (C, C++) : l'ensemble du code est transformé en langage machine par un *compilateur* puis soumis par le système d'exploitation ;
- ▶ les langages **interprétés** (R, Python) : les instructions du code sont soumises les unes après les autres par un *interpréteur*, ce qui est moins efficace (*cf.* boucles en R).

La fonction compiler::cmpfun() permet néanmoins de **compiler** des fonctions R avant utilisation.

On distingue souvent deux familles de langages informatiques :

- ▶ les langages **compilés** (C, C++) : l'ensemble du code est transformé en langage machine par un *compilateur* puis soumis par le système d'exploitation ;
- les langages **interprétés** (R, Python) : les instructions du code sont soumises les unes après les autres par un *interpréteur*, ce qui est moins efficace (*cf.* boucles en R).

La fonction compiler::cmpfun() permet néanmoins de **compiler** des fonctions R avant utilisation.

Une autre fonctionnalité du *package* compiler est la compilation « juste-à-temps » (ou *just-in-time*, JIT) : le code n'est plus interprété mais **compilé au fur et à mesure**.

Une autre fonctionnalité du *package* compiler est la compilation « juste-à-temps » (ou *just-in-time*, JIT) : le code n'est plus interprété mais **compilé au fur et à mesure**.

Dans R, on active le mode JIT pour une session grâce à la fonction compiler::enableJIT() en spécifiant le niveau de compilation JIT (de 0 à 3).

Une autre fonctionnalité du *package* compiler est la compilation « juste-à-temps » (ou *just-in-time*, JIT) : le code n'est plus interprété mais **compilé au fur et à mesure**.

Dans R, on active le mode JIT pour une session grâce à la fonction compiler::enableJIT() en spécifiant le niveau de compilation JIT (de 0 à 3).

Une autre fonctionnalité du *package* compiler est la compilation « juste-à-temps » (ou *just-in-time*, JIT) : le code n'est plus interprété mais **compilé au fur et à mesure**.

Dans R, on active le mode JIT pour une session grâce à la fonction compiler::enableJIT() en spécifiant le niveau de compilation JIT (de 0 à 3).

Remarque Depuis R 3.4.0, enableJIT() vaut 3 par défaut.

Coder efficacement en base R Utiliser l'opérateur [au lieu de ifelse()

Lorsqu'on crée une variable en faisant intervenir une condition, il est fréquent d'utiliser la fonction ifelse() :

```
notes <- runif(n = 100000, min = 0, max = 20)
mavar <- ifelse(notes >= 10, "Reçu", "Recalé")
```

Coder efficacement en base R Utiliser l'opérateur [au lieu de ifelse()

Lorsqu'on crée une variable en faisant intervenir une condition, il est fréquent d'utiliser la fonction ifelse() :

```
notes <- runif(n = 100000, min = 0, max = 20)
mavar <- ifelse(notes >= 10, "Reçu", "Recalé")
```

Il est néanmoins beaucoup plus efficace d'utiliser l'opérateur [.

```
microbenchmark(times = 10L
  , ifelse = ifelse(notes >= 10, "Reçu", "Recalé")
  . "[" = {
   mavar <- rep("Recalé", length(notes))</pre>
   mavar[notes >= 10] <- "Reçu"
  ## Unit: milliseconds
  ##
                  min
                             lq
                                            median
       expr
                                     mean
      ifelse 47.746751 50.191284 63.255584 51.28902
  ##
           [ 1.976785 2.041915 2.816405 2.45381
  ##
  ##
                    max neval
             uq
                                                           29 / 59
```

Coder efficacement en base R Simplifier les données : le type factor

On utilise souvent des chaînes de caractère pour coder une variable de nature catégorielle.

Le type factor permet de remplacer chaque valeur distincte par un entier en sauvegardant la table de correspondance. Il est beaucoup plus léger.

Coder efficacement en base R

Simplifier les données : le type factor

On utilise souvent des chaînes de caractère pour coder une variable de nature catégorielle.

Le type factor permet de remplacer chaque valeur distincte par un entier en sauvegardant la table de correspondance. Il est beaucoup plus léger.

```
# Variable à deux modalités codées en caractères
sexe <- sample(c("H", "F"), 120000, replace = TRUE)
object_size(sexe)
   ## 960 kB

# Conversion en facteur
f.sexe <- factor(sexe)
str(f.sexe)
   ## Factor w/ 2 levels "F","H": 1 2 1 2 1 2 2 2 1 1 ...
object_size(f.sexe)
   ## 481 kB</pre>
```

Coder efficacement en base R Utiliser les noms à bon escient (1)

La plupart des objets manipulés couramment dans R peuvent être **nommés** : vecteurs, matrices, listes, data.frame.

Utiliser des noms est une méthode souvent **très rapide** pour **accéder aux éléments** qui composent ces objets.

Coder efficacement en base R Utiliser les noms à bon escient (1)

La plupart des objets manipulés couramment dans R peuvent être **nommés** : vecteurs, matrices, listes, data.frame.

Utiliser des noms est une méthode souvent **très rapide** pour **accéder aux éléments** qui composent ces objets.

Exemple On cherche à extraire les observations d'une table *via* leur identifiant id. On compare l'utilisation des noms à une fusion réalisée avec merge().

```
# Création de la table df
id <- as.character(sample(1e5))
sexe <- sample(1:2, 1e5, replace = TRUE)
df <- data.frame(id, sexe)</pre>
```

Coder efficacement en base R Utiliser les noms à bon escient (2)

```
# Affectation de noms à df
row.names(df) <- id
# Liste des identifiants à extraire
extract <- c("234", "12", "7890")
# Comparaison
microbenchmark(times = 10L
  , merge = merge(data.frame(id = extract), df, sort = FALSE)
  , names = df[extract, ]
 ## Unit: milliseconds
 ##
      expr min lq mean
                                         median
     merge 18.789710 19.017861 20.620011 19.230421
     names 3.080831 3.117935 3.848769 3.211682
 ##
            uq max neval
 ##
 ## 19.727183 26.619084 10
 ## 3.387532 9.399197 10
```

Quand c'est possible, **travailler sur des matrices** (plutôt que des data.frame) est souvent source d'efficacité :

Quand c'est possible, **travailler sur des matrices** (plutôt que des data.frame) est souvent source d'efficacité :

de nombreuses opérations sont vectorisées pour les matrices : sommes en lignes et en colonnes (rowSums() et colSums()), etc.;

Quand c'est possible, **travailler sur des matrices** (plutôt que des data.frame) est souvent source d'efficacité :

- de nombreuses opérations sont vectorisées pour les matrices : sommes en lignes et en colonnes (rowSums() et colSums()), etc.;
- l'algèbre matricielle (le produit matriciel notamment) est très bien optimisée;

Quand c'est possible, **travailler sur des matrices** (plutôt que des data.frame) est souvent source d'efficacité :

- de nombreuses opérations sont vectorisées pour les matrices : sommes en lignes et en colonnes (rowSums() et colSums()), etc.;
- l'algèbre matricielle (le produit matriciel notamment) est très bien optimisée;
- selon la nature du problème, l'utilisation de matrices lacunaires (sparse) peut faire gagner et en empreinte mémoire et en temps de calcul (cf. le package Matrix).

```
# Création d'une matrice m avec 99 % de 0
v <- rep(0, 1e6); v[sample(1e6, 1e4)] <- rnorm(1e4)
m \leftarrow matrix(v, ncol = 100)
# Transformation en matrice lacunaire
library(Matrix)
M <- Matrix(m)</pre>
# Gain en espace (en ko)
c(object_size(m), object_size(M))
  ## [1] 8000200 121824
# Gain de performances pour la fonction colSums()
microbenchmark(dense = colSums(m), sparse = colSums(M))
  ## Unit: microseconds
       expr min lq mean median
  ##
      dense 1288.384 1294.700 1362.1935 1312.067 1323.514
  ##
              69.472 71.051 111.5303 107.366 109.340
      sparse
  ##
          max neval
```

dplyr est un *package* développé par RStudio et en particulier par Hadley Wickham. Il constitue un véritable **écosystème** visant à faciliter le travail sur des tables statistiques :

dplyr est un package développé par RStudio et en particulier par Hadley Wickham. Il constitue un véritable **écosystème** visant à faciliter le travail sur des tables statistiques :

 il fournit un ensemble de fonctions élémentaires (les « verbes ») pour effectuer les manipulations de données;

dplyr est un package développé par RStudio et en particulier par Hadley Wickham. Il constitue un véritable **écosystème** visant à faciliter le travail sur des tables statistiques :

- il fournit un ensemble de fonctions élémentaires (les « verbes ») pour effectuer les manipulations de données;
- plusieurs verbes peuvent facilement être combinés en utilisant l'opérateur %>% (pipe);

dplyr est un package développé par RStudio et en particulier par Hadley Wickham. Il constitue un véritable **écosystème** visant à faciliter le travail sur des tables statistiques :

- il fournit un ensemble de fonctions élémentaires (les « verbes ») pour effectuer les manipulations de données;
- plusieurs verbes peuvent facilement être combinés en utilisant l'opérateur %>% (pipe);
- toutes les opérations sont optimisées par du code de bas niveau.

library(dplyr)

dplyr est un package développé par RStudio et en particulier par Hadley Wickham. Il constitue un véritable **écosystème** visant à faciliter le travail sur des tables statistiques :

- il fournit un ensemble de fonctions élémentaires (les « verbes ») pour effectuer les manipulations de données;
- plusieurs verbes peuvent facilement être combinés en utilisant l'opérateur %>% (pipe);
- toutes les opérations sont optimisées par du code de bas niveau.

library(dplyr)

Pour en savoir plus De nombreuses vignettes très pédagogiques sont disponibles sur la page du package. Un aide-mémoire est également disponible sur le site de RStudio.

dplyr : une grammaire du traitement des données Données d'exemple : table flights de nycflights13

Les exemples relatifs aux *packages* dplyr et data.table s'appuient sur les données du *package* nycflights13.

library(nycflights13)

dplyr : une grammaire du traitement des données Données d'exemple : table flights de nycflights13

Les exemples relatifs aux *packages* dplyr et data.table s'appuient sur les données du *package* nycflights13.

```
library(nycflights13)
```

Ce *package* contient des données sur tous les vols au départ de la ville de New-York en 2013.

dplyr propose plusieurs verbes pour simplifier certaines opérations parfois fastidieuses en base R :

dplyr propose plusieurs verbes pour simplifier certaines opérations parfois fastidieuses en base R :

filter() sélectionne des observations selon une ou plusieurs conditions:

```
filter(flights, month == 7, day == 4)
```

dplyr propose plusieurs verbes pour simplifier certaines opérations parfois fastidieuses en base R :

filter() sélectionne des observations selon une ou plusieurs conditions:

```
filter(flights, month == 7, day == 4)
```

▶ arrange() trie le fichier selon une ou plusieurs variables: arrange(flights, month, desc(distance))

dplyr propose plusieurs verbes pour simplifier certaines opérations parfois fastidieuses en base R :

filter() sélectionne des observations selon une ou plusieurs conditions:

```
filter(flights, month == 7, day == 4)
```

- ▶ arrange() trie le fichier selon une ou plusieurs variables: arrange(flights, month, desc(distance))
- > select() sélectionne des variables par leur noms:
 select(flights, year:arr_delay)

dplyr propose plusieurs verbes pour simplifier certaines opérations parfois fastidieuses en base R :

filter() sélectionne des observations selon une ou plusieurs conditions:

```
filter(flights, month == 7, day == 4)
```

- arrange() trie le fichier selon une ou plusieurs variables: arrange(flights, month, desc(distance))
- select() sélectionne des variables par leur noms: select(flights, year:arr_delay)
- rename() renomme des variables.
 rename(flights, annee = year)

dplyr : une grammaire du traitement des données Calculer des statistiques avec summarise()

La fonction summarise() permet de facilement calculer des statistiques sur des données.

dplyr : une grammaire du traitement des données Calculer des statistiques avec summarise()

La fonction summarise() permet de facilement calculer des statistiques sur des données.

```
summarise(flights
  , distance_moyenne = mean(distance)
  , retard_max = max(arr_delay, na.rm = TRUE)
)
```

```
## distance_moyenne retard_max
## 1 1039.913 1272
```

dplyr : une grammaire du traitement des données Calculer des statistiques avec summarise()

La fonction summarise() permet de facilement calculer des statistiques sur des données.

```
summarise(flights
  , distance_moyenne = mean(distance)
  , retard_max = max(arr_delay, na.rm = TRUE)
)
```

```
## distance_moyenne retard_max
## 1 1039.913 1272
```

Remarque Comme toutes les fonctions de dplyr, summarise() prend un data.frame en entrée et produit un data.frame en sortie.

dplyr : une grammaire du traitement des données Ventiler des traitements avec group_by()

Appliqué au préalable à un data.frame, group_by() ventile tous les traitements ultérieurs selon les modalités d'une ou plusieurs variables.

```
flights_bymonth <- group_by(flights, month)
summarise(flights_bymonth
  , distance_moyenne = mean(distance)
   , retard_max = max(arr_delay, na.rm = TRUE)
)[1:3, ]</pre>
```

```
## month distance_moyenne retard_max

## 1 1 1006.844 1272

## 2 2 1000.982 834

## 3 3 1011.987 915
```

dplyr : une grammaire du traitement des données Enchaîner des opérations avec %>%

L'utilisation des verbes de dplyr ne prend tout son intérêt que quand ils sont enchaînés en utilisant l'opérateur pipe %>%.

maTable %>% maFonction(param1, param2) est équivalent à maFonction(maTable, param1, param2).

dplyr : une grammaire du traitement des données Enchaîner des opérations avec %>%

L'utilisation des verbes de dplyr ne prend tout son intérêt que quand ils sont enchaînés en utilisant l'opérateur pipe %>%.

maTable %>% maFonction(param1, param2) est équivalent à maFonction(maTable, param1, param2).

Ainsi, l'enchaînement de nombreuses opérations devient beaucoup plus facile à mettre en œuvre et à comprendre.

dplyr : une grammaire du traitement des données Enchaîner des opérations avec %>%

L'utilisation des verbes de dplyr ne prend tout son intérêt que quand ils sont enchaînés en utilisant l'opérateur *pipe* %>%.

maTable %>% maFonction(param1, param2) est équivalent à maFonction(maTable, param1, param2).

Ainsi, l'enchaînement de nombreuses opérations devient beaucoup plus facile à mettre en œuvre et à comprendre.

```
flights %>%
  group_by(year, month, day) %>%
  summarise(
   retard_arrivee = mean(arr_delay, na.rm = TRUE),
   retard_depart = mean(dep_delay, na.rm = TRUE)
) %>%
  filter(retard_arrivee > 30 | retard_depart > 30)
```

dplyr : une grammaire du traitement des données Fusionner des tables avec *_join()

dplyr dispose de nombreuses fonctions très utiles pour fusionner une ou plusieurs tables ensemble, qui s'inspirent très fortement de SQL :

- ▶ a %>% left_join(b, by = "id") : fusionne a et b en conservant toutes les observations de a;
- a %>% right_join(b, by = "id") : fusionne a et b en conservant toutes les observations de b;
- ▶ a %>% inner_join(b, by = "id") : fusionne a et b en ne conservant que les observations dans a et b;
- ➤ a %>% full_join(b, by = "id") : fusionne a et b en conservant toutes les observations.

Pour en savoir plus Une <u>vignette</u> est consacrée à la présentation des fonctions de dplyr portant sur deux tables.

dplyr : une grammaire du traitement des données Comparaison de base R et de dplyr

dplyr est particulièrement intéressant pour travailler sur des données par groupe. On compare donc l'utilisation de tapply() de base R avec group_by() de dplyr.

dplyr : une grammaire du traitement des données Comparaison de base R et de dplyr

dplyr est particulièrement intéressant pour travailler sur des données par groupe. On compare donc l'utilisation de tapply() de base R avec group by() de dplyr.

```
df <- data.frame(</pre>
  x = rnorm(1e6)
  , by = sample(1e3, 1e6, replace = TRUE)
microbenchmark(times = 10L
  , base = tapply(df$x, df$by, sum)
  , dplyr = df %>% group_by(by) %>% summarise(sum(x))
  ## Note: no visible binding for global variable
  ## Note: no visible binding for global variable
                                                    1 x 1
  ## Note: no visible binding for global variable
                                                    'x'
  ## Note: no visible binding for global variable
                                                   'x'
  ## Note: no visible binding for global variable
  ## Note: no visible binding for global variable
```

data.table : un data.frame optimisé Philosophie de data.table

Contrairement à dplyr, data.table ne cherche pas à se substituer à base R mais à le compléter.

data.table : un data.frame optimisé Philosophie de data.table

Contrairement à dplyr, data.table ne cherche pas à se substituer à base R mais à le compléter.

Il introduit un nouveau type d'objet, le data.table, qui **hérite** du data.frame (tout data.table est un data.frame).

data.table : un data.frame optimisé Philosophie de data.table

Contrairement à dplyr, data.table ne cherche pas à se substituer à base R mais à le compléter.

Il introduit un nouveau type d'objet, le data.table, qui **hérite** du data.frame (tout data.table est un data.frame).

Appliqué à un data.table, l'opérateur [est enrichi et optimisé.

```
library(data.table)
flights_DT <- data.table(flights)</pre>
```

data.table : un data.frame optimisé Philosophie de data.table

Contrairement à dplyr, data.table ne cherche pas à se substituer à base R mais à le compléter.

Il introduit un nouveau type d'objet, le data.table, qui **hérite** du data.frame (tout data.table est un data.frame).

Appliqué à un data.table, l'opérateur [est enrichi et optimisé.

```
library(data.table)
flights_DT <- data.table(flights)</pre>
```

Pour en savoir plus Là encore des vignettes très pédagogiques sont disponibles sur la page du package.

La syntaxe de l'opérateur [appliqué à un data.table est la suivante (DT représente le data.table) :

La syntaxe de l'opérateur [appliqué à un data.table est la suivante (DT représente le data.table) :

- ▶ i : sélectionner des observations selon une condition;
- j : sélectionner ou **créer** une ou plusieurs variables ;
- by : ventiler les traitements selon les modalités d'une ou plusieurs variables.

La syntaxe de l'opérateur [appliqué à un data.table est la suivante (DT représente le data.table) :

- ▶ i : sélectionner des observations selon une condition;
- j : sélectionner ou **créer** une ou plusieurs variables ;
- by : ventiler les traitements selon les modalités d'une ou plusieurs variables.

La syntaxe de l'opérateur [appliqué à un data.table est la suivante (DT représente le data.table) :

- ▶ i : sélectionner des observations selon une condition;
- j : sélectionner ou **créer** une ou plusieurs variables ;
- by : ventiler les traitements selon les modalités d'une ou plusieurs variables.

Exemple Retard quotidien maximal au mois de janvier.

```
flights_DT[
  month == 1, max(arr_delay, na.rm = TRUE), by = day
]
```

data.table : un data.frame optimisé Sélectionner des observations avec i

Il est beaucoup plus simple et efficace de sélectionner des observations dans un data.table que dans un data.frame :

data.table : un data.frame optimisé Sélectionner des observations avec i

Il est beaucoup plus simple et efficace de sélectionner des observations dans un data.table que dans un data.frame :

▶ il n'y a pas à répéter le nom du data.frame dans [;

Sélectionner des observations avec i

Il est beaucoup plus simple et efficace de sélectionner des observations dans un data.table que dans un data.frame :

- il n'y a pas à répéter le nom du data.frame dans [;
- il est possible d'indexer un data.table par une ou plusieurs « clés » permettant une recherche souvent plus rapide.

```
setkey(flights DT, origin)
microbenchmark(times = 100L
  , base = flights[flights$origin == "JFK",]
  , dt1 = flights DT[origin == "JFK"]
  , dt2 = flights DT[list("JFK")]
  ## Unit: milliseconds
  ##
                min
                          lq
                                        median
      expr
                                 mean
                                                     uq
      base 55.48376 57.77632 69.19374 67.23236 69.21842
  ##
  ##
      dt1 17.67461 18.04190 22.23228 18.29374 18.86352
  ##
      dt2 16.80345 17.39613 22.39986 17.70816 25.35833
```

data.table : un data.frame optimisé Calculer des statistiques avec j

L'argument j permet de calculer des statistiques agrégées.

data.table : un data.frame optimisé Calculer des statistiques avec j

L'argument j permet de calculer des statistiques agrégées.

```
flights_DT[, j = list(
  distance_moyenne = mean(distance)
  , retard_max = max(arr_delay, na.rm = TRUE)
)]
  ##   distance_moyenne retard_max
## 1:   1039.913  1272
```

data.table : un data.frame optimisé Calculer des statistiques avec j

L'argument j permet de calculer des statistiques agrégées.

```
flights_DT[, j = list(
   distance_moyenne = mean(distance)
   , retard_max = max(arr_delay, na.rm = TRUE)
)]
   ##   distance_moyenne retard_max
## 1:   1039.913  1272
```

Utilisé avec := il permet de les refusionner automatiquement avec les données d'origine.

data.table : un data.frame optimisé Calculer des statistiques avec j

L'argument j permet de calculer des statistiques agrégées.

Utilisé avec := il permet de les refusionner automatiquement avec les données d'origine.

```
flights_DT <- flights_DT[, j := list(
  distance_moyenne = mean(distance)
  , retard_max = max(arr_delay, na.rm = TRUE)
)]</pre>
```

data.table : un data.frame optimisé Ventiler des traitements avec by et keyby

L'argument by de [ventile tous les traitements renseignés dans j selon les modalités d'une ou plusieurs variables.

Ventiler des traitements avec by et keyby

L'argument by de [ventile tous les traitements renseignés dans j selon les modalités d'une ou plusieurs variables.

Ventiler des traitements avec by et keyby

L'argument by de [ventile tous les traitements renseignés dans j selon les modalités d'une ou plusieurs variables.

Remarque Par défaut, by ordonne les résultats dans l'ordre des groupes dans le data.table. keyby trie les données selon la variable d'agrégation (comme group_by de dplyr).

data.table : un data.frame optimisé Chaîner les opérations dans un data.table

Il est très facile de chaîner les opérations sur un data.table en enchaînant les [.

data.table : un data.frame optimisé Chaîner les opérations dans un data.table

Il est très facile de chaîner les opérations sur un data.table en enchaînant les [.

```
flights_DT[
   , j = list(
    retard_arrivee = mean(arr_delay, na.rm = TRUE)
    , retard_depart = mean(dep_delay, na.rm = TRUE)
   )
   , keyby = list(year, month, day)
][retard_arrivee > 30 | retard_depart > 30]
```

Chaîner les opérations dans un data.table

Il est très facile de chaîner les opérations sur un data.table en enchaînant les [.

```
flights_DT[
   , j = list(
    retard_arrivee = mean(arr_delay, na.rm = TRUE)
    , retard_depart = mean(dep_delay, na.rm = TRUE)
)
   , keyby = list(year, month, day)
][retard_arrivee > 30 | retard_depart > 30]
```

Remarque Ces chaînages sont possibles avec un data.table mais pas avec un data.frame.

Comparaison de base R, dplyr et data.table

```
# Conversion de la table de test en data.table
dt <- data.table(df)

microbenchmark(times = 10L
   , base = tapply(df$x, df$by, sum)
   , dplyr = df %>% group_by(by) %>% summarise(sum(x))
   , data.table = dt[, sum(x), keyby = by]
)
```

Comparaison de base R, dplyr et data.table

```
# Conversion de la table de test en data.table
dt <- data.table(df)</pre>
microbenchmark(times = 10L
  , base = tapply(df$x, df$by, sum)
  , dplyr = df %>% group_by(by) %>% summarise(sum(x))
  , data.table = dt[, sum(x), keyby = by]
  ## Note: no visible binding for global variable 'x'
  ## Note: no visible binding for global variable 'x'
  ## Note: no visible binding for global variable 'x'
  ## Note: no visible binding for global variable 'x'
  ## Note: no visible binding for global variable 'x'
  ## Note: no visible binding for global variable
  ## Note: no visible binding for global variable 'x'
  ## Note: no visible binding for global variable 'x'
  ## Note: no visible binding for global variable 'x'
  ## Note: no visible binding for global variable 'x'
```

Comparaison de base R, dplyr et data.table

```
# Conversion de la table de test en data.table
dt <- data.table(df)</pre>
microbenchmark(times = 10L
  , base = tapply(df$x, df$by, sum)
  , dplyr = df %>% group_by(by) %>% summarise(sum(x))
  , data.table = dt[, sum(x), keyby = by]
  ## Note: no visible binding for global variable 'x'
  ## Note: no visible binding for global variable 'x'
  ## Note: no visible binding for global variable 'x'
  ## Note: no visible binding for global variable 'x'
  ## Note: no visible binding for global variable 'x'
  ## Note: no visible binding for global variable
  ## Note: no visible binding for global variable 'x'
  ## Note: no visible binding for global variable 'x'
  ## Note: no visible binding for global variable 'x'
  ## Note: no visible binding for global variable 'x'
```

data.table : un data.frame optimisé Parenthèse : lire et écrire rapidement des fichiers plats avec data.table

Le package data.table fournit par ailleurs deux fonctions extrêmement utiles en pratique pour lire et écrire des fichiers plats (.csv, .txt, .dlm):

data.table : un data.frame optimisé Parenthèse : lire et écrire rapidement des fichiers plats avec data.table

Le package data table fournit par ailleurs deux fonctions extrêmement utiles en pratique pour lire et écrire des fichiers plats (.csv, .txt, .dlm):

fread() : beaucoup plus rapide et plus ergonomique que read.table() et ses alias (read.csv(), read.delim()), produit directement un data.table;

data.table : un data.frame optimisé Parenthèse : lire et écrire rapidement des fichiers plats avec data.table

Le package data.table fournit par ailleurs deux fonctions extrêmement utiles en pratique pour lire et écrire des fichiers plats (.csv, .txt, .dlm):

- fread() : beaucoup plus rapide et plus ergonomique que read.table() et ses alias (read.csv(), read.delim()), produit directement un data.table;
- fwrite() : beaucoup plus rapide que write.table().

Parenthèse : lire et écrire rapidement des fichiers plats avec data.table

Le package data.table fournit par ailleurs deux fonctions extrêmement utiles en pratique pour lire et écrire des fichiers plats (.csv, .txt, .dlm):

- fread() : beaucoup plus rapide et plus ergonomique que read.table() et ses alias (read.csv(), read.delim()), produit directement un data.table;
- fwrite() : beaucoup plus rapide que write.table().

```
# Lecture avec fread()
mon_fichier <- fread(file = "mon_fichier.csv", sep = ",")
# Ecriture avec fwrite()
fwrite(mon_fichier, file = "mon_fichier.txt", sep = "\t")</pre>
```

Les limites du logiciel

Les outils présentés jusqu'à présent correspondent à une utilisation « classique » de R : production d'une enquête, redressements, études.

Les limites du logiciel

Les outils présentés jusqu'à présent correspondent à une utilisation « classique » de R : production d'une enquête, redressements, études.

Il arrive néanmoins que certains traitements soient rendus difficiles par les caractéristiques du logiciel :

- travail sur des volumes de données impossibles à loger en mémoire;
- temps de calcul trop longs et impossibles à réduire.

Les limites du logiciel

Les outils présentés jusqu'à présent correspondent à une utilisation « classique » de R : production d'une enquête, redressements, études.

Il arrive néanmoins que certains traitements soient rendus difficiles par les caractéristiques du logiciel :

- travail sur des volumes de données impossibles à loger en mémoire;
- temps de calcul trop longs et impossibles à réduire.

Dans ce genre de situations, la solution consiste en général à utiliser R comme une **interface** vers des techniques ou langages susceptibles de répondre au problème posé.

Se connecter à des bases de données

Une autre solution pour exploiter de grands volumes de données dans R est de l'utiliser pour **interroger des bases de données**, *via* par exemple le *package* RPostgreSQL.

Se connecter à des bases de données

Une autre solution pour exploiter de grands volumes de données dans R est de l'utiliser pour **interroger des bases de données**, *via* par exemple le *package* RPostgreSQL.

```
library(RPostgreSQL)
# Connexion à la base de données maBdd
drv <- dbDriver("PostgreSQL")</pre>
con <- dbConnect(drv, dbname = "maBdd"</pre>
  , host = "localhost", port = 5432
  , user = "utilisateur", password = "motDePasse"
# Requête SQL sur la table maTable
dbGetQuery(con, "SELECT COUNT(*) FROM maTable")
```

Se connecter à des bases de données

Une autre solution pour exploiter de grands volumes de données dans R est de l'utiliser pour **interroger des bases de données**, *via* par exemple le *package* RPostgreSQL.

```
library(RPostgreSQL)

# Connexion à la base de données maBdd
drv <- dbDriver("PostgreSQL")
con <- dbConnect(drv, dbname = "maBdd"
    , host = "localhost", port = 5432
    , user = "utilisateur", password = "motDePasse"
)

# Requête SQL sur la table maTable
dbGetQuery(con, "SELECT COUNT(*) FROM maTable")</pre>
```

Remarque Différents *packages* permettent de se connecter à différents types de base de données : RMySQ1 pour MySQL, etc.

Aller plus loin avec R Se connecter à des bases de données avec dplyr

dplyr a la particularité de pouvoir fonctionner de façon totalement transparente sur des bases de données de différents types.

Se connecter à des bases de données avec dplyr

dplyr a la particularité de pouvoir fonctionner de façon totalement transparente sur des bases de données de différents types.

```
library(dplyr)
# Connexion à la base de données maBdd
con <- src_postgres(</pre>
  dbname = "maBdd", host = "localhost", port = 5432
  , user = "utilisateur", password = "motDePasse"
# Requête SQL sur la table maTable...
tbl(con, "SELECT COUNT(*) FROM maTable")
# ... ou utilisation des verbes de dplyr
tbl(con) %>% summarise(n())
```

La plupart des ordinateurs possèdent aujourd'hui plusieurs cœurs (*core*) susceptibles de mener des traitements **en parallèle** (8 sur chaque serveur d'AUS par exemple).

La plupart des ordinateurs possèdent aujourd'hui plusieurs cœurs (*core*) susceptibles de mener des traitements **en parallèle** (8 sur chaque serveur d'AUS par exemple).

Par défaut, R n'expoite qu'un seul cœur : le package parallel (mais aussi les packages snow ou foreach par exemple) permettent de paralléliser des structures du type *apply.

La plupart des ordinateurs possèdent aujourd'hui plusieurs cœurs (*core*) susceptibles de mener des traitements **en parallèle** (8 sur chaque serveur d'AUS par exemple).

Par défaut, R n'expoite qu'un seul cœur : le package parallel (mais aussi les packages snow ou foreach par exemple) permettent de paralléliser des structures du type *apply.

Ce type d'opérations est composé de plusieurs étapes :

La plupart des ordinateurs possèdent aujourd'hui plusieurs cœurs (*core*) susceptibles de mener des traitements **en parallèle** (8 sur chaque serveur d'AUS par exemple).

Par défaut, R n'expoite qu'un seul cœur : le package parallel (mais aussi les packages snow ou foreach par exemple) permettent de paralléliser des structures du type *apply.

Ce type d'opérations est composé de plusieurs étapes :

 Création et paramétrage du « cluster » de cœurs à utiliser (chargement des fonctions et packages nécessaires sur chaque cœur);

Aller plus loin avec R Paralléliser des traitements avec parallel (1)

La plupart des ordinateurs possèdent aujourd'hui plusieurs cœurs (*core*) susceptibles de mener des traitements **en parallèle** (8 sur chaque serveur d'AUS par exemple).

Par défaut, R n'expoite qu'un seul cœur : le package parallel (mais aussi les packages snow ou foreach par exemple) permettent de paralléliser des structures du type *apply.

Ce type d'opérations est composé de plusieurs étapes :

- Création et paramétrage du « cluster » de cœurs à utiliser (chargement des fonctions et packages nécessaires sur chaque cœur);
- 2. Lancement du traitement parallélisé avec parLapply();

Aller plus loin avec R Paralléliser des traitements avec parallel (1)

La plupart des ordinateurs possèdent aujourd'hui plusieurs cœurs (*core*) susceptibles de mener des traitements **en parallèle** (8 sur chaque serveur d'AUS par exemple).

Par défaut, R n'expoite qu'un seul cœur : le *package* parallel (mais aussi les *packages* snow ou foreach par exemple) permettent de **paralléliser des structures du type** *apply.

Ce type d'opérations est composé de plusieurs étapes :

- Création et paramétrage du « cluster » de cœurs à utiliser (chargement des fonctions et packages nécessaires sur chaque cœur);
- 2. Lancement du traitement parallélisé avec parLapply();
- 3. Arrêt des processus du *cluster* avec stopCluster().

Aller plus loin avec R Paralléliser des traitements avec parallel (2)

Dans cet exemple, on cherche à appliquer la fonction f à chaque matrice de la liste 1.

Paralléliser des traitements avec parallel (2)

Dans cet exemple, on cherche à appliquer la fonction f à chaque matrice de la liste 1.

```
library(MASS)
f <- function(x) rowSums(ginv(x))</pre>
1 <- lapply(1:100, function(x) matrix(runif(1e4), ncol = 1e2))</pre>
# Création et paramétrage du cluster
library(parallel)
cl <- makeCluster(4)</pre>
clusterEvalQ(cl, library(MASS))
clusterExport(cl, "f")
# Lancement du calcul parallélisé
parLapply(cl, 1, f)
# Arrêt des processus du cluster
stopCluster(cl)
```

Aller plus loin avec R Paralléliser des traitements avec parallel (3)

Aller plus loin avec R Paralléliser des traitements avec parallel (3)

```
microbenchmark(times = 10
  , lapply(1, f)
  , parLapply(cl, l, f)
 ## Unit: milliseconds
 ##
                    expr min
                                        lq
                                               mean
 ##
            lapply(1, f) 767.2479 767.8207 782.6532
     parLapply(cl, 1, f) 455.8512 473.0162 518.5828
 ##
 ##
       median
                    uq max neval
 ## 769,1353 782,2881 867,1639
                                  10
 ## 515.9757 540.7917 611.7799 10
```

Aller plus loin avec R Paralléliser des traitements avec parallel (3)

```
microbenchmark(times = 10
  , lapply(1, f)
  , parLapply(cl, l, f)
 ## Unit: milliseconds
 ##
                    expr min
                                        lq
                                               mean
 ##
            lapply(1, f) 767.2479 767.8207 782.6532
     parLapply(cl, 1, f) 455.8512 473.0162 518.5828
 ##
 ##
       median
                    uq max neval
 ## 769,1353 782,2881 867,1639
                                  10
 ## 515.9757 540.7917 611.7799 10
```

Rcpp : un package R pour utiliser C++(1)

Le *package* Rcpp permet d'intégrer facilement des fonctions codées en C++ dans un programme R.

Rcpp : un package R pour utiliser C++(1)

Le package Rcpp permet d'intégrer facilement des fonctions codées en C++ dans un programme R.

```
library(Rcpp)
cppFunction('int add(int x, int y) {
  int result = x + y;
  return result;
}')
add(1, 2)
  ## [1] 3
```

Rcpp : un package R pour utiliser C++(1)

Le package Rcpp permet d'intégrer facilement des fonctions codées en C++ dans un programme R.

```
library(Rcpp)
cppFunction('int add(int x, int y) {
  int result = x + y;
  return result;
}')
add(1, 2)
  ## [1] 3
```

Remarque II est également possible de soumettre un fichier contenant des fonctions C++ écrit par ailleurs à l'aide de la fonction sourceCpp().

Rcpp : un package R pour utiliser C++(1)

Le *package* Rcpp permet d'intégrer facilement des fonctions codées en C++ dans un programme R.

```
library(Rcpp)
cppFunction('int add(int x, int y) {
  int result = x + y;
  return result;
}')
add(1, 2)
  ## [1] 3
```

Remarque Il est également possible de soumettre un fichier contenant des fonctions C++ écrit par ailleurs à l'aide de la fonction sourceCpp().

Pour en savoir plus Advanced R

Rcpp : un package R pour utiliser C++(2)

Contrairement à R, C++ est un langage de bas niveau : les boucles y sont en particulier extrêmement rapides.

Rcpp : un package R pour utiliser C++(2)

Contrairement à R, C++ est un langage de bas niveau : les boucles y sont en particulier extrêmement rapides.

Exemple Somme cumulée par colonne

```
# Fonction C++
cppFunction('NumericMatrix cumColSumsC(NumericMatrix x) {
  int nrow = x.nrow(), ncol = x.ncol();
  NumericMatrix out(nrow, ncol);
  for (int j = 0; j < ncol; j++) {
    double acc = 0:
    for(int i = 0; i < nrow; i++){
      acc += x(i, j);
      out(i, j) = acc;
  return out;
```

Rcpp : un package R pour utiliser C++ (3)

```
# Fonction R
cumColSumsR <- function(x){</pre>
  apply(x, 2, cumsum)
# Les deux fonctions produisent les mêmes résultats...
x <- matrix(rnorm(1e6), ncol = 1e2)
all.equal(cumColSumsR(x), cumColSumsC(x))
  ## [1] TRUE
# ... mais cumColSumsC() est beaucoup plus rapide!
summary(microbenchmark(times = 10
  , cumColSumsR(x)
  , cumColSumsC(x)
))[, c("expr", "lq", "mean", "uq")]
  ##
                 expr lq
                                     mean
                                                uq
  ## 1 cumColSumsR(x) 23.928243 26.555889 28.740733
  ## 2 cumColSumsC(x) 4.380266 5.562942 4.626575
```