STAT 2509B4

Assignment 4

Krystian Wojcicki, 101001444

Winter 2020

1. Christmas week is a critical period for most ski resorts. Because many students and adults are free, they are able to spend several days indulging in their favorite pastime, skiing. A ski resort in Vermont wanted to determine the effect that weather had on their sales of lift tickets. The manager of the resort collected the number of lift tickets sold during the Christmas week (y), the total snowfall (x_1) and the average temperature (x_2) for the past 20 years (x_3) . The TSS for the full model $y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3 + \epsilon$ is: TSS = 56601012 We decided to screen the independent variables to determine the best set for predicting the lift tickets sales. The sums of squares for all possible regression models were found to be as follows:

Independent variables in the model	SSR	SSE	d.f. _{SSE}	MSE
X_1	6 215 561	50 385 451	18	2 799 192
X_2	665 121	55 935 892	18	3 107 550
X ₃	35 788 320	20 812 692	18	1 156 261
X_1, X_2	6 793 798	49 807 214	17	2 929 836
X_1, X_3	41 296 990	15 304 022	17	900 237
X_2, X_3	36 518 115	20 082 897	17	1 181 347
X_1, X_2, X_3	41 940 217	14 660 795	16	916 300

(a) Determine the subset of variables that is selected as best by the Forward Selection Procedure using $F_0^* = 4.2$ (to-add-variable). Show your steps.

```
(1) Fit all one term models: y = \beta_0 + \beta_1 x_j + \epsilon for j = 1, 2, 3
    SSR(X_1) = 6215561
    SSR(X_2) = 665121
    SSR(X_3) = 35788320 \Rightarrow \max
```

Therefore
$$F_3 = \frac{\text{MSR}(X_3)}{\text{MSE}(X_3)} = \frac{\text{SSR}(X_3)/1}{\text{SSE}(X_3)/18} = \frac{35788320/1}{20812692/18} = 30.952$$

Since $F_3 = 30.952 > F_0 = 4.2$ we keep X_3

(2) Fit all two term models $y = \beta_0 + \beta_1 x_3 + \beta_2 x_j + \epsilon$ for j = 1, 2

Calculate $SSR(X_i|X_3)$

$$\begin{split} & \mathrm{SSR}(X_1|X_3) = \mathrm{SSR}(X_1,X_3) - \mathrm{SSR}(X_3) = 41296990 - 35788320 = 5508670 \Rightarrow \max \\ & \mathrm{SSR}(X_2|X_3) = \mathrm{SSR}(X_2,X_3) - \mathrm{SSR}(X_3) = 36518115 - 35788320 = 729795 \\ & \mathrm{Therefore} \ F_1 = \frac{\mathrm{MSR}(X_1|X_3)}{\mathrm{MSE}(X_1,X_3)} = \frac{[\mathrm{SSR}(X_1,X_3) - \mathrm{SSR}(X_3)]/[df_{SSR}(X_1,X_3) - df_{SSR}(X_3)]}{\mathrm{SSE}(X_1,X_3)/df_{SSE}(X_1,X_3)} = \frac{5508670/(2-1)}{15304022/17} = 6.1191358716 \\ & \mathrm{Since} \ F_1 = 6.1191358716 > 4.2 \ \text{we keep} \ X_1, X_3 \end{split}$$

(3) Fit the full model $y = \beta_0 + \beta_1 x_3 + \beta_2 x_1 + \beta_3 x_3 + \epsilon$ Calculate $SSR(X_2|X_1,X_3) = SSR(X_1,X_2,X_3) - SSR(X_1,X_3) = 41940217 - 41296990 = 643227$ Therefore $F_2 = \frac{MSR(X_2|X_1,X_3)}{MSE(X_1,X_2,X_3)} = \frac{[SSR(X_1,X_2,X_3) - SSR(X_1,X_3)]/[df_{SSR(X_1,X_2,X_3)} - df_{SSR(X_1,X_3)}]}{SSE(X_1,X_2,X_3)/df_{SSE(X_1,X_2,X_3)}} = \frac{643227/(3-2)}{14660795/16} = 643227/(3-2)$ $SSE(X_1, X_2, X_3)/df_{SSE(X_1, X_2, X_3)}$ 0.701983214416 Since $F_2 \leq F_0^*$ we keept X_1, X_3

Therefore the best set is $\{X_1, X_3\}$

(b) Determine the subset of variables that is selected as best by the Backward Elimination Procedure using $F_0^{**}=4.1$ (to-delete-variable). Show your steps. NOTE: $(t_0^{**})^2=F_0^{**}$

Fit the full model $y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3 + \epsilon$ and check whether model is significant or not at $\alpha = 5\%$. $F = \frac{\text{MSR}_f}{\text{MSE}_f} = \frac{\text{SSR}_f/3}{\text{SSE}_f/16} = \frac{41940217/3}{14660795/16} = 15.2570960397$

Since $F = 15.2570960397 > F_{(3,16);0.05} = 3.24$, we can conclude that at 5% level of significance the full model is significant and can be used

$$\begin{array}{l} \text{(1) Calculate } F_j = (t_j)^2 = \frac{\text{MSR}(X_j|\text{all}X'\text{s} \, \text{except}X_j)}{\text{MSE}(X_1,X_2,X_3)} = \frac{[SSR_f - SSR(\text{all}X'\text{s} \, \text{except}X_j)]/df}{MSE_f} \, \, \text{for} \, \, j = 1,2,3 \\ F_1 = \frac{MSR(X_1|X_2,X_3)}{MSE(X_1,X_2,X_3)} = \frac{[SSR(X_1,X_2,X_3) - SSR(X_2,X_3)]/[df_{SSR(X_1,X_2,X_3)} - df_{SSR(X_2,X_3)}]}{SSE(X_1,X_2,X_3)/df_{SSE(X_1,X_2,X_3)}} = \frac{[41940217 - 36518115]/[3 - 2]}{14660795/16} = \\ 5.91738933666 \\ F_2 = \frac{MSR(X_2|X_1,X_3)}{MSE(X_1,X_2,X_3)} = \frac{[SSR(X_1,X_2,X_3) - SSR(X_1,X_3)]/[df_{SSR(X_1,X_2,X_3)} - df_{SSR(X_1,X_3)}]}{SSE(X_1,X_2,X_3)/df_{SSE(X_1,X_2,X_3)}} = \frac{[41940217 - 41296990]/[3 - 2]}{14660795/16} = \\ 0.701983214416 \in \min \\ F_3 = \frac{MSR(X_3|X_1,X_2)}{MSE(X_1,X_2,X_3)} = \frac{[SSR(X_1,X_2,X_3) - SSR(X_1,X_2)]/[df_{SSR(X_1,X_2,X_3)} - df_{SSR(X_1,X_2)}]}{SSE(X_1,X_2,X_3)/df_{SSE(X_1,X_2,X_3)}} = \frac{[41940217 - 6793798]/[3 - 2]}{14660795/16} = \\ 38.3569038378 \end{aligned}$$

Since $F_2 \not> 4.1$ we remove x_2 from the model.

(2) Fit model
$$y = \beta_0 + \beta_1 x_1 + \beta_3 x_3 + \epsilon$$

$$F_1 = \frac{MSR(X_1|X_3)}{MSE(X_1,X_3)} = \frac{SSR(X_1,X_3) - SSR(X_3)}{SSE(X_1,X_3) / df_{SSE(X_1,X_3)}} = \frac{(41296990 - 35788320)}{(15304022/17)} = 6.1191 \Leftarrow \min$$

$$F_3 = \frac{MSR(X_3|X_1)}{MSE(X_1,X_3)} = \frac{SSR(X_1,X_3) - SSR(X_1)}{SSE(X_1,X_3) / df_{SSE(X_1,X_3)}} = \frac{(41296990 - 6215561)}{(15304022/17)} = 38.9691215159$$
Since $F_1 = 6.1191 > 4.1$ we remove pothing and keep the current model as the final model.

Since $F_1 = 6.1191 > 4.1$ we remove nothing and keep the current model as the final model and terminate the procedure.

Therefore the best set is $\{X_1, X_3\}$.

- (c) Determine the subset of variables that is selected as best by the Stepwise Regression Procedure using $F_0^* = 4.2$ (to-add) and $F_0^{**} = 4.1$ (to-delete). Show your steps.
 - (1) Fit all one term models: $y = \beta_0 + \beta_1 x_j + \epsilon$ for j = 1, 2, 3 As we saw in forward selection in part (a) we know that we keep X_3
 - (2) Fit all two term models $y = \beta_0 + \beta_1 x_3 + \beta_2 x_j + \epsilon$ for j = 1, 2 As we saw in forward selection in part (a) we know that we keep X_1

Now check if after adding
$$X_1, X_3$$
 became insignificant.
$$F_3 = \frac{SSR(X_3|X_1)}{MSE(X_1,X_3)} = \frac{SSR(X_1,X_3) - SSR(X_1)}{SSE(X_1,X_3)/df_{SSE(X_1,X_3)}} = \frac{41296990 - 6215561}{15304022/17} = 38.9691215159$$
 Since $F_3 = 38.9691215159 > F_0^{**} = 4.1$ we keep X_3 and keep X_1 .

- (3) Fit the full model: $y = \beta_0 + \beta_1 x_3 + \beta_2 x_1 + \beta_3 x_2 + \epsilon$ As we saw in forward selection in part (a) we know that we dont not add X_2 and there is no need to check if adding X_2 makes any variable redundant. Therefore the best set is X_1, X_3 .
- 2. A quality engineer in a company manufacturing electronic audio equipment was inspecting a new type of battery that was being considered for use. A batch of 20 batteries was randomly assigned to four groups (so that there were five batteries per group). Each group of batteries was then subjected to a particular pressure level low, normal, high, very high. The batteries were simultaneously tested under these pressure levels and the times to failure (in hours) were recorded and are given below:

Pressure							
LOW	NORMAL	HIGH	VERY HIGH				
8.0	7.6	6.0	5.1				
8.1	8.2	6.3	5.6				
9.2	9.8	7.1	5.9				
9.4	10.9	7.7	6.7				
11.7	12.3	8.9	7.8				

Establish whether the average times to battery failure are the same for the four pressure levels; if not, do a follow-up analysis to determine which are the same and which differ. (Use $\alpha = 0.10$). List

all necessary assumptions and indicate which might be suspect. Also perform a nonparametric analysis. Verify your results using SAS.

C.R.D Assume

- 1) 3 independent random samples of patients (given) TODO
- 2) 3 normally distributed patient groups
- 3) with equal variance, σ^2 (potentially)

To check the assumption of equal variance using Hartleys test we need s_i^2 's for j=1,2,3,4 where $n_1=n_2=n_3=n_4=5, k=4, \bar{n}=5, [\bar{n}]=5, n=20$

$$\begin{split} s_1^2 &= \frac{\sum_{j=1}^{n_1} y_{1j}^2 - \frac{(\sum_{j=1}^{n_1} y_{1j})^2}{n_1 - 1}}{n_1 - 1} = \frac{439.5 - 46.4^2 / 5}{4} = 2.227 \\ s_2^2 &= \frac{\sum_{j=1}^{n_2} y_{2j}^2 - \frac{(\sum_{j=1}^{n_2} y_{2j})^2}{n_2 - 1}}{n_2 - 1} = \frac{491.14 - 48.8^2 / 5}{4} = 3.713 \Leftrightarrow \max \\ s_3^2 &= \frac{\sum_{j=1}^{n_3} y_{3j}^2 - \frac{(\sum_{j=1}^{n_3} y_{3j})^2}{n_3}}{n_3 - 1} = \frac{264.6 - 36^2 / 5}{4} = 1.35 \\ s_4^2 &= \frac{\sum_{j=1}^{n_4} y_{4j}^2 - \frac{(\sum_{j=1}^{n_4} y_{4j})^2}{n_4}}{n_4 - 1} = \frac{197.91 - 31.1^2 / 5}{4} = 1.117 \Leftrightarrow \min \end{split}$$

$$\begin{aligned} H_0: \sigma_1^2 &= \sigma_2^2 = \sigma_3^2 = \sigma_4^2 \\ H_a: \text{ at least one of the } \sigma^2\text{'s} \neq \\ \alpha &= 0.01 \text{ or } 0.05 \end{aligned}$$

Test statistic
$$F_{max} = \frac{s_{max}^2}{s_{min}^2} = 3.713/1.117 = 3.324$$

Rejection Region we reject
$$H_0$$
 if $F_{max} > F_{max(k,[\bar{n}]-1);\alpha} = \begin{cases} F_{max(4,4);0.01} = 49 \\ F_{max(4,4);0.05} = 20.6 \end{cases}$

Since 3.324 is not greater than 20.6 (or 49) we can conclude that at a 1% (or 5%) level of significance there is no evidence to say that the variances are not equal (i.e we have equal variance). Therefore we may proceed with the main test

the main test
$$G.T. = \sum_{i=1}^{k} \sum_{j=1}^{n_i} y_{ij} = \sum_{i=1}^{k} T_i = 162.3$$

$$TSS = \sum_{i=1}^{k} \sum_{j=1}^{n_i} y_{ij}^2 - \frac{(G.T)^2}{n} = 1393.15 - \frac{162.3^2}{20} = 76.0855$$

$$SST_r = \sum_{i=1}^{k} \frac{T_i^2}{n_i} - \frac{(G.T)^2}{n} = [(46.4)^2/5 + (48.8)^2/5 + (36^2)/5 + (31.1)^2/5] - \frac{162.3^2}{20} = 42.4575$$

$$SSE = TSS - SST_r = 76.0855 - 42.4575 = 33.628$$

$$MST_r = \frac{SST_r}{k-1} = 42.4575/3 = 14.1525$$

$$MSE = \frac{SSE}{n-k} = 33.628/16 = 2.10175$$

$$F_T = \frac{MST_r}{MSE} = 14.1525/2.10175 = 6.73367431902 = 6.733$$

Source	d.f	SS	MS	F
Regression	3	42.4575	14.1525	6.733
Error	16	33.628	2.10175	
Total	19	76.0855		

$$H_0: \mu_1 = \mu_2 = \mu_3 = \mu_4$$

 $H_a:$ at least one of the $\mu's \neq \alpha = 0.10$

Test statistic
$$F_T = \frac{MST_r}{MSE} = 6.733$$

Rejection Region: we reject
$$H_0$$
 if $F_T > F_{(k-1,n-k);\alpha} = F_{(3,16);0.10} = 2.460$

Since $F_T = 6.733 > 2.460$ we reject H_0 and conclude that at a 10% level of significance there is evidence to say the time to battery failure is different among the four different pressure levels.

Which are different: Use Tukey's h.s.d

1)
$$\binom{k}{2} = \binom{4}{2} = 6$$
 pairs of $|\bar{y}_i - \bar{y}_j|$
 $H_0: \mu_i = \mu_j$
 $H_a: \mu_i \neq \mu_j$
for i,j = 1,2,3,4 and i \neq j

2) h.s.d =
$$q_{\alpha(k,v)} \times \sqrt{\frac{MSE}{2}(\frac{1}{n_i} + \frac{1}{n_j})} = q_{0.10(4,16)} \times \sqrt{\frac{2.10175}{2}\frac{2}{5}} = (3.52003)(0.64834404447) = 2.28219048686 = 2.282$$

$$\bar{y_1} = \frac{T_1}{n_1} = 46.4/5 = 9.28$$

$$\bar{y_2} = \frac{T_2}{n_2} = 48.8/5 = 9.76$$

$$\bar{y_3} = \frac{T_3}{n_3} = 36/5 = 7.2$$

$$\bar{y_4} = \frac{T_4}{n_4} = 31.1/5 = 6.22$$

$$\bar{y_3} = \frac{I_3}{n_3} = 36/5 = 7.2$$

 $\bar{y_4} = \frac{I_4}{n_4} = 31.1/5 = 6.22$

3)
$$|\bar{y_1} - \bar{y_2}| = 0.48 < 2.282 \Rightarrow \mu_1 = \mu_2$$

 $|\bar{y_1} - \bar{y_3}| = 2.08 < 2.282 \Rightarrow \mu_1 = \mu_3$
 $|\bar{y_1} - \bar{y_4}| = 3.06 > 2.282 \Rightarrow \mu_1 \neq \mu_4$
 $|\bar{y_2} - \bar{y_3}| = 2.56 > 2.282 \Rightarrow \mu_2 \neq \mu_3$
 $|\bar{y_2} - \bar{y_4}| = 3.54 > 2.282 \Rightarrow \mu_2 \neq \mu_4$
 $|\bar{y_3} - \bar{y_4}| = 0.98 < 2.282 \Rightarrow \mu_3 = \mu_4$

Therefore there are differences in average time for battery failure for (low and very high), (normal and high), (normal and very high) groups.

None-parametric Analysis (Kruskal-Wallis test) Assume:

- 1) C.R.D (4 independent random samples from 4 treatment populations) with
- 2) approximately the same shape and spread

First we need to rank the observations from smallest to the largest

Low	Normal	High	Very High
8.0 (11)	7.6 (8)	6.0 (4)	5.1 (1)
8.1 (12)	8.2 (13)	6.3(5)	5.6 (2)
9.2 (15)	9.8 (17)	7.1(7)	5.9 (3)
9.4 (16)	10.9(18)	7.7(9)	6.7 (6)
11.7 (19)	12.3 (20)	8.9 (14)	7.8 (10)

$$T_{R_1} = 73, T_{R_2} = 76, T_{R_3} = 39, T_{R_4} = 22$$

Check
$$\frac{n(n+1)}{2} = \frac{20 \times 21}{2} = 210$$
73 + 76 + 39 + 22 = 210

$$H_0: Md_1 = Md_2 = Md_3$$

 H_a : at least one of the Md's \neq .

$$\alpha = 0.10$$

$$H = \frac{12}{n(n+1)} \left[\sum_{i=1}^{k} \frac{T_{R_i}^2}{n_i} \right] - 3(n+1) = \frac{12}{20 \times 21} \left[\frac{73^2}{5} + \frac{76^2}{5} + \frac{39^2}{5} + \frac{22^2}{5} \right] - 3(21) = 11.91$$

Rejection region, we reject
$$H_0$$
 if $H > \chi^2_{(k-1);\alpha} = \chi^2_{3;0.10} = 6.251$

Since H = 11.91 > 6.251 we reject H_0 and conclude that at a 10% level of significance there is evidence to say that the medians vary among the 4 pressures.

Which pressures differ? Dunes procedure:

1) Calculate
$$\binom{k}{2}=\binom{4}{2}=6$$
 pairs of $|\bar{R}_i-\bar{R}_j|$ for $H_0:Md_i=Md_j$ vs $H_a:Md_i\neq Md_j$ for $i,j=1,2,3,4$ and $i\neq j$

2) Critical range =
$$z_{\frac{\alpha}{k(k-1)}} \times \sqrt{\frac{n(n+1)}{12}(\frac{1}{n_i} + \frac{1}{n_j})} = z_{\frac{0.1}{4(3)}} \times \sqrt{\frac{20(21)}{12}\frac{2}{5}} = 2.395(3.74) = 8.9573$$

 $\bar{R}_1 = \frac{T_{R_1}}{n_1} = 73/5 = 14.6$
 $\bar{R}_2 = \frac{T_{R_2}}{n_2} = 76/5 = 15.2$

$$\bar{R_3} = \frac{T_{R_3}}{n_3} = 39/5 = 7.8$$

$$\bar{R_4} = \frac{T_{R_4}}{n_4} = 22/5 = 4.4$$

3)
$$|\bar{R_1} - \bar{R_2}| = 0.6 < 8.96 \Rightarrow Md_1 = MD_2$$

 $|\bar{R_1} - \bar{R_3}| = 6.8 < 8.96 \Rightarrow Md_1 = MD_3$
 $|\bar{R_1} - \bar{R_4}| = 10.2 > 8.96 \Rightarrow Md_1 \neq MD_4$

$$|\bar{R}_2 - \bar{R}_3| = 7.8 < 8.96 \Rightarrow Md_2 = MD_3$$

 $|\bar{R}_2 - \bar{R}_4| = 10.8 > 8.96 \Rightarrow Md_2 \neq MD_4$

$$|\bar{R}_3 - \bar{R}_4| = 3.4 < 8.96 \Rightarrow Md_3 = MD_4$$

Therefore there are differences in medians of battery failure for (low and very high), (normal and very high) groups.

3. An experiment was conducted by a private research corporation to investigate the toxic effects of three chemicals (I, II and III) used in the tire-manufacturing industry. In this experiment 1-inch squares of skin on rats were treated with the chemicals and then scored from 0 to 10, depending on the degree of irritation. Three adjacent 1-inch squares were marked on the back of each of eight rats, and each of the three chemicals was applied to each rat. The data are as shown in the table.

Rat Number

Chemical	1	2	3	4	5	6	7	8
					_	_		
- 1	6	9	6	5	7	5	6	6
II	5	9	9	8	8	7	7	7
III	3	4	3	6	8	5	5	6

Is it possible to be 95% certain that the toxic effects of three chemicals are not equal? Conduct the appropriate follow-up analysis (use $\alpha=0.05$) to establish which means are significantly different. List all necessary assumptions and indicate which might be suspect. Also perform a non-parametric analysis. Verify your results using SAS.

R.B.D Assume

- 1) random samples of 3 different chemicals randomly assigned to 8 different rats (given)
- 2) populations corresponding to each chemical-rat combination are normally distributed
- 3) with equal variance, σ^2 (?)
- 4) no interactions between chemicals and rats

To check the assumption of equal variance using Hartley's test we need s_i^2 's for i=1,2,3 where $n_1=n_2=n_3=8, k=3, b=8, \bar{n}=n=8, [\bar{n}]=8, n=24$

$$s_1^2 = \frac{\sum_{j=1}^b y_{1j}^2 - \frac{(\sum_{j=1}^b y_{1j})^2}{b-1}}{b-1} = \frac{324 - 50^2 / 8}{7} = 1.6428 \Leftarrow min$$

$$s_2^2 = \frac{\sum_{j=1}^b y_{2j}^2 - \frac{(\sum_{j=1}^b y_{2j})^2}{b}}{b-1} = \frac{462 - 60^2/8}{7} = 1.71428571429$$

$$s_3^2 = \frac{\sum_{j=1}^b y_{3j}^2 - \frac{(\sum_{j=1}^b y_{3j})^2}{b}}{b-1} = \frac{220 - 40^2 / 8}{7} = 2.85714285714 \iff \max$$

$$H_0:\sigma_1^2=\sigma_2^2=\sigma_3^2$$

 H_a : at least one of the σ^2 's \neq

$$\alpha = 0.01 \text{ or } 0.05$$

Test statistic $F_{max} = \frac{s_{max}^2}{s_{min}^2} = 2.85714285714/1.6428 = 1.73919092838$

Rejection Region we reject
$$H_0$$
 if $F_{max} > F_{max(k,[\bar{n}]-1);\alpha} = \begin{cases} F_{max(4,4);0.01} = 15.980 \\ F_{max(4,4);0.05} = 6.390 \end{cases}$

Since 3.324 is not greater than 6.390 (or 15.980) we can conclude that at a 1% (or 5%) level of significance there is no evidence to say that the variances are not equal (i.e we have equal variance). Therefore we may proceed with the main test

TODO

$$G.T. = \sum_{i=1}^{k} \sum_{j=1}^{b} y_{ij} = \sum_{i=1}^{k} T_{i} = 150$$

$$TSS = \sum_{i=1}^{k} \sum_{j=1}^{b} y_{ij}^{2} - \frac{(G.T)^{2}}{bk} = 1006 - \frac{150^{2}}{24} = 68.5$$

$$SST_{r} = \sum_{i=1}^{k} \frac{T_{i}^{2}}{b} - \frac{(G.T)^{2}}{bk} = [(50)^{2}/8 + (60)^{2}/8 + (40)^{2}/8] - \frac{150^{2}}{24} = 25$$

$$SSB = \sum_{j=1}^{b} \frac{B_{j}^{2}}{k} - \frac{(G.T)^{2}}{bk} = [(14)^{2}/3 + (22)^{2}/3 + (18)^{2}/3 + (19)^{2}/3 + (23)^{2}/3 + (17)^{2}/3 + (18)^{2}/3 + (19)^{2}/3] - \frac{150^{2}}{24} = 18.5$$

$$SSE = TSS - SST_{r} - SSB = 68.5 - 25 - 18.5 = 25$$

$$\begin{split} MST_r &= \frac{SST_r}{k-1} = 25/2 = 12.5\\ MSB &= \frac{SSB}{b-1} = 18.5/7 = 2.643\\ MSE &= \frac{SSE}{(b-1)(k-1)} = 25/14 = 1.786\\ F_T &= \frac{MST_r}{MSE} = 12.5/1.786 = 7.00\\ F_B &= \frac{MSB}{MSE} = 2.643/1.786 = 1.48 \end{split}$$

Source	d.f	SS	MS	F
Treatments	2	25	12.5	7
Blocks	7	18.5	2.643	1.48
Error	14	25	1.786	
Total	23	68.5		

$$H_0: \mu_1 = \mu_2 = \mu_3$$

 $H_a:$ at least one of the $\mu's \neq \alpha = 0.05$

Test statistic
$$F_T = \frac{MST_r}{MSE} = 7$$

Rejection Region: we reject
$$H_0$$
 if $F_T > F_{(k-1,(b-1)(k-1));\alpha} = F_{(2,14);0.05} = 3.740$

Since $F_T = 7 > 3.740$ we reject H_0 and conclude that at a 5% level of significance there is evidence to say that there are differences between the three chemicals.

Which are different: Use Tukey's h.s.d

1)
$$\binom{k}{2} = \binom{3}{2} = 3$$
 pairs of $|\bar{y_i} - \bar{y_j}|$
 $H_0: \mu_i = \mu_j$
 $H_a: \mu_i \neq \mu_j$
for i,j = 1,2,3 and i \neq j

2) h.s.d =
$$q_{\alpha(k,(b-1)(k-1))} \times \sqrt{\frac{MSE}{b}} = q_{0.05(3,14)} \times \sqrt{\frac{1.786}{8}} = (3.70128)(0.4725) = 1.7487$$

 $\bar{y_1} = \frac{T_1}{b} = 50/8 = 6.25$
 $\bar{y_2} = \frac{T_2}{b} = 60/8 = 7.5$
 $\bar{y_3} = \frac{T_3}{b} = 40/8 = 5$

3)
$$|\bar{y_1} - \bar{y_2}| = 1.25 < 1.7487 \Rightarrow \mu_1 = \mu_2$$

 $|\bar{y_1} - \bar{y_3}| = 1.25 < 1.7487 \Rightarrow \mu_1 = \mu_3$
 $|\bar{y_2} - \bar{y_3}| = 2.5 > 1.7487 \Rightarrow \mu_2 \neq \mu_3$

Therefore there are differences in irritation for chemical groups (2 & 3).

Non-parametric Analysis Friedman-Rank test Assume

1) R.B.D (given)

- 2) in each chemical-rat number combination we have populations with approximately the same shape and spread
- 3) no interactions between chemical and rat number

First we need to rank the observations from smallest to the largest within each block