CS 121: Introduction to Theoretical Computer Science

Fall 2019

Section 8

Prof. Boaz Barak

0.1 Problems

- 1. Give a simple argument for why $NP \subseteq EXP$ consider how you can use the existence of the verifier G.
- 2. For each of the following, say whether the problem is in P, NP, is undecidable, or whether we don't know.
 - (a) Given an integer x, determine if x has a prime factor that is at most k.
 - (b) Given an undirected graph graph, determine whether it is possible to partition its vertices into two sets, with at least k edges crossing between sets.
 - (c) Given a program Q, an input x, and a string 1^t , determine whether Q halts on x within t steps.
- 3. Define $F \in \mathsf{coNP}$ iff $\overline{F} \in \mathsf{NP}$, where \overline{F} denotes the negation of the output of F (for example, if F(00) = 1, then $\overline{F}(00) = 0$). Prove that if $\mathsf{P} = \mathsf{NP}$, then $\mathsf{coNP} = \mathsf{NP}$.
- 4. Let $V: \{0,1\}^* \to \{0,1\}$ be defined as taking two inputs x, w such that there exists $a, b \in \mathbb{N}$ such that $w \in \{0,1\}^{a|x|^b}$. $V \in P$. Prove that $V \in TIME(|x|^c)$ for some c.

Solution 1: For every possible certificate w, we can check whether G(x, w) = 1. We need to try all possible w of length an^b (there are 2^{an^b} of these), and evaluating G can be done in polynomial time, so we make take most an exponential number of steps.

Solution 2: (a) in NP (the certificate is a prime factor that is at most k) (b) in NP (the certificate is the partition) (c) in P (just stimulate the program).

Solution 3: For every $F \in \mathsf{NP}$, we have a NAND-TM program W which computes F in polynomial time. Thus \overline{W} (W which negates its output) computes \overline{F} in polynomial time. Since this holds for every $F \in \mathsf{NP}$, we have $\mathsf{coNP} \subset \mathsf{P} = \mathsf{NP}$. But $P \subset \mathsf{coNP}$, so we have equality.

Solution 4: Since $V \in P$ there exists some c such that $V \in TIME(n^c)$. We can rewrite this as $V \in TIME((|x| + a|x|^b)^c)$. $(|x| + a|x|^b)^c$ is polynomial in |x|, so in particular, there exists some c' such that for large enough |x|, $(|x| + a|x|^b)^c \le |x|^{c'}$, so $V \in TIME(|x|^{x'})$.

0.2 Problems

- 1. Given an undirected graph G = (V, E), a clique is a subset $C \subseteq V$ such that $(v_1, v_2) \in E$ for all $v_1, v_2 \in C$. Consider the function CLIQUE(G, k) = 1 iff G has a clique of size k, and 0 otherwise. Show that $3SAT \leq_p CLIQUE$, and that CLIQUE is NP-complete.
- 2. Define $F \in \mathsf{coNP}$ iff $\overline{F} \in \mathsf{NP}$, where \overline{F} denotes the negation of the output of F (for example, if F(00) = 1, then $\overline{F}(00) = 0$). Consider the following function TAUTOLOGY: if ϕ is a 3DNF formula (clauses of three 'and'ed variables, 'or'ed together), $TAUTOLOGY(\phi) = 1$ iff for all assignments x of the variables of ϕ , we have $\phi(x) = 1$. Otherwise $TAUTOLOGY(\phi) = 0$. Prove that TAUTOLOGY is coNP -complete.

We say TAUTOLOGY is coNPcomplete if $TAUTOLOGY \in \text{coNP}$ and $\forall F \in \text{coNP}$, $TAUTOLOGY \leq_p F$. Hint: 3SAT is NP-complete. Try to relate the 3SAT problem to TAUTOLOGY.

3. Given n sets S_1, S_2, \ldots, S_n such that

$$\bigcup_{i=1}^{n} S_i = A$$

the set cover of size k over these sets is a collection C of k of these sets such that

$$\bigcup_{i \in C} S_i = A$$

Given a collection of sets and an integer k, SET-COVER returns if there exists a valid set cover of a most size k over the given collection of sets. Prove that SET-COVER is NP-complete.

Solution 1: Suppose we're given a 3SAT formula $\varphi = \varphi_1 \wedge \cdots \wedge \varphi_l$, where each φ_i is a clause. We construct a graph G as follows: for every clause c and variable v in c, we create a vertex (c,v) (so we end up with 3l clauses). For example, if clause 1 is $(x_1 \vee \neg x_2 \vee x_3)$, we create the vertices $(1,x_1)$, $(1,\neg x_2)$ and $(1,x_3)$. For every two vertices (c,v), (c',v'), we add an edge between these two vertices iff $c \neq c'$ and v is not the negation of v'. Clearly we can do all of these steps in polynomial time. We claim that CLIQUE(G,l) = 1 iff φ is satisfiable.

First suppose that φ is satisfiable with assignment x. Construct a clique C as follows: for each clause φ_i , look for a variable which is set to 1 via the assignment x, and add (i,v) to C. For example, if our clause is $\varphi_1 = x_1 \vee \neg x_2 \vee x_3$, and x = 000, we can add the vertex $(1, \neg x_2)$. Clearly |C| = l. Moreover, C is a clique, because there is only not an edge between (c, v), (c', v') if c = c' or v is the negation of v'. The first case cannot happen by construction. The second case cannot happen because if v evaluates to 1, then $\neg v$ cannot also evaluate to 1.

For the other direction, suppose we have a clique C of size l. Then our clique is of the form $(1, v_1), (2, v_2), \ldots, (l, v_l)$. We create an assignment x which satisfies φ by setting x such that each v_i evaluates to 1. For example, if $v_1 = x_5$, we set $x_5 = 1$, and if $v_2 = \neg x_3$, we set x_3 to 0. Notice that we will never be in the case where we set x_j to both 1 and 0; this would imply that we have edges $(c, v), (c', v') \in C$ such that $v = \neg v'$, which contradicts our construction of G. Moreover, x constructed in this way satisfies φ , because for each i, φ_i evaluates to 1, because at least one variable in clause i evaluates to 1.

Lastly, notice that CLIQUE is in NP, because we can always "guess" a clique of size k and determine whether this guess is indeed a clique in polynomial time (just check all possible pairs of edges).

Solution 2: We will prove that TAUTOLOGY is coNP-complete by proving that for any $F \in coNP$, $F \leq_p TAUTOLOGY$. Let $F \in coNP$. Then $\overline{F} \in NP$, so for every $x \in \{0,1\}^*$ we can in polynomial time compute a 3SAT formula ϕ_x for \overline{F} such that $\overline{F}(x) = 1$ iff ϕ_x has a satisfying assignment (i.e. there exists an x' such that $\phi_x(x') = 1$). But this means that F(x) = 1 iff ϕ_x has no satisfying assignment, i.e. $\overline{F}(x) = 1$ iff $\overline{\phi}_x$ is equal to 1 for every assignment of variables. But $\overline{\phi_x}$ is a 3DNF, so this is exactly the problem TAUTOLOGY.

$$TAUTOLOGY(\overline{\phi_x}) = F(x)$$

Thus we have given a reduction $F \leq_{p} TAUTOLOGY$.

Now we show that $TAUTOLOGY \in \mathsf{coNP}$. Let G(x) be a function taking in x, a 3DNF, that returns 1 if there exists a non-satisfying solution for x. We see this is in NP, because the solution is a binary string and the verifier just runs through the clauses, checking them in linear time. We see that $\overline{G}(x) = TAUTOLOGY(x)$ exactly because there being no non-satisfying solutions is exactly the condition for every solution satisfying. Thus TAUTOLOGY is coNP -complete.

Solution 3: We know that SET - COVER is in NP because we can use a set of sets as the certificate, and can verify by checking that each element is a member of at least one set.

We now reduce from VERTEXCOVER. Suppose we have an instance of VERTEXCOVER (so a graph and a number k). Label the edges in the graph from 1 to m. For each vertex v create a set S_v that is composed of the edges of which v is a part. This transformation is polynomial time since it must run over the edges and then runs over the vertices (going over each edge twice more).

First suppose that there is a valid VERTEXCOVER. I claim that the sets associated with the vertices in the VERTEXCOVER (call these vertices V') form a valid SET-COVER. For any number associated with an edge e=(u,v), either $u \in V'$ or $v \in V'$, which implies the number associated with e is either in S_u or S_v .

Now suppose there is a valid SET-COVER of size k. I claim the vertices associated with the sets in this SET-COVER (denote this set of vertices V') form a VERTEXCOVER. Suppose towards a contradiction there was an edge $(u,v) \in E$ such that $u,v \notin V'$. This implies the number associated with that edge would not be in the SET-COVER, so it would not be a SET-COVER, hence a contradiction.

0.3 Problems

- 1. Prove that for $V \in P$ $STARTSWITH_V$ is in NP.
- 2. Using the optimization and search-to-decision results, prove that for any $F \in P$, we can compute $OPTARG(x, 1^m) = \underset{y \in \{0,1\}^m}{\operatorname{argmax}} F(x,y)$ (again identifying the output of F with a natural number via the binary representation).

Solution 1: The certificate is the remaining $a|x|^b - l$ bits. The verifier is exactly V.

Solution 2: By the optimization result, we know that given $F \in P$ we can compute $OPT(x, 1^m) = \max_{y \in \{0,1\}^m} F(x, y)$ in polynomial time. Let $k_{x,m}$ denote $OPT(x, 1^m)$. Then we see we can compute the function G(x, y) which returns 1 if and only if $F(x, y) = k_{x,m}$ in polynomial time (because $F \in P$). Applying the search to decision on result on the polynomial time algorithm for G thus yields a solution y such that $F(x, y) = k_{x,m}$.