CS 252/ CS242 Data Structures

Priority Queue

Queue

- Order items by when they were placed first in, first out (FIFO)
- Methods
 - enqueue
 - dequeue
 - first
 - size
 - isEmpty

Priority Queue

- Order items by rank or key
- Methods
 - enqueue
 - dequeueMin
 - first
 - size
 - isEmpty

Priority Queue Implmentation

Unsorted List

Sorted Singly-Linked List

▶ Binary Head

- A heap is a tree-based structure that satisfies the heap property:
 - Parents have a higher priority than any of their children.
- Two types of heap

Min Heap (root is the smallest element)

Max Heap

(root is the largest element)

Binary Heaps (Min Heap)

There are no implied orderings between siblings, so both of the trees below are min-heaps:

Circle the min-heap(s)

Circle the min-heap(s)

- Heaps are completely filled, with the exception of the bottom level. They are, therefore, "complete binary trees":
 - complete: all levels filled except the bottom

binary: two children per node (parent)

Height: log(n)

What is the best way to store a heap?

We could use a node-based solution, but...

It turns out that an array works great for storing a binary

heap!

We will put the root at index I instead of index 0 (this makes the math work out just a bit nicer).

heap		5	10	8	12	11	14	13	22	43		
_	[0]	[1]	[2]	[3]	[4]	[5]	[6]	[7]	[8]	[9]	[10]	[11]

The array representation makes determining parents and children a matter of simple arithmetic:

- For an element at index i:
 - left child is at 2i
 - right child is at 2i+1
 - parent is at [i/2]

heap		5	10	8	12	11	14	13	22	43		
_	[0]	[1]	[2]	[3]	[4]	[5]	[6]	[7]	[8]	[9]	[10]	[11]

Heap ADT

• min(): return an element of the heap with the smallest key.

• insert(e): insert element e into the heap.

removeMin(): removes the smallest element from h.

size(): returns number of elements in the heap

Heap Operations: min()

- Just return the root!
 - If(size>0) return heap[1]

	5	10	8	12	11	14	13	22	43		
[0]	[1]	[2]	[3]	[4]	[5]	[6]	[7]	[8]	[9]	[10]	[11]

- Insert item at element heap[size()+1]
 - (this probably destroys the heap property)
- ▶ Perform a "bubble up" or "up-heap" operation:

Compare the added element with its parent

- if in correct order, stop
- If not, swap and repeat

		5	10	8	12	11	14	13	22	43		
heap	[0]	[1]	[2]	[3]	[4]	[5]	[6]	[7]	[8]	[9]	[10]	[11]

- Start by inserting the key at the first empty position.
 - This is always at index size()+1.

		5	10	8	12	11	14	13	22	43		
heap	[0]	[1]	[2]	[3]	[4]	[5]	[6]	[7]	[8]	[9]	[10]	[11]

- Start by inserting the key at the first empty position.
 - This is always at index size()+1.

		5	10	8	12	11	14	13	22	43	9	
heap	[0]	[1]	[2]	[3]	[4]	[5]	[6]	[7]	[8]	[9]	[10]	[11]

- Look at parent of index 10
 - parent(10)=10/2=5
- Compare: do we meet the heap property requirement?

- Look at parent of index 10
 - parent(10)=10/2=5
- Compare: do we meet the heap property requirement?

No -- we must swap.

		5	10	8	12	9	14	13	22	43	11	
heap	[0]	[1]	[2]	[3]	[4]	[5]	[6]	[7]	[8]	[9]	[10]	[11]

- Look at parent of index 5
 - parent(10)=5/2=2
- Compare: do we meet the heap property requirement?

- Look at parent of index 5
 - parent(10)=5/2=2
- Compare: do we meet the heap property requirement?

No -- we must swap.

		5	9	8	12	9	14	13	22	43	11	
heap	[0]	[1]	[2]	[3]	[4]	[5]	[6]	[7]	[8]	[9]	[10]	[11]

- Look at parent of index 2
 - parent(2)=2/2=1
- Compare: do we meet the heap property requirement?

		5	9	8	12	9	14	13	22	43	11	
heap	[0]	[1]	[2]	[3]	[4]	[5]	[6]	[7]	[8]	[9]	[10]	[11]

```
insert(e)
   if (heap.length()-1> size())
      heap[size()+1] = e
      size++;
      bubble up()
bubble up()
   index=size()
   parent=index/2
   while(index > 1 and heap[index] < heap[parent])</pre>
       swap(index,parent)
       index=parent
       parent=index/2
```

- We are removing the root, and we need to retain a complete tree:
 - replace root with last element.

"bubble-down" or "down-heap" the new root:

□ Compare the root with its smallest child:

□ if in correct order, stop.

□ if not, swap with smallest child and repeat.

	5	9	8	12	10	14	11	22	43	13	
[0]	[1]	[2]	[3]	[4]	[5]	[6]	[7]	[8]	[9]	[10]	[11]

	5	9	8	12	10	14	11	22	43	13	
[0]	[1]	[2]	[3]	[4]	[5]	[6]	[7]	[8]	[9]	[10]	[11]

Remove root (will return at the end)

	5	9	8	12	10	14	11	22	43	13	
[0]	[1]	[2]	[3]	[4]	[5]	[6]	[7]	[8]	[9]	[10]	[11]

▶ Move last element (at heap[size()]) to the root.

	5	9	8	12	10	14	11	22	43	13	
[0]	[1]	[2]	[3]	[4]	[5]	[6]	[7]	[8]	[9]	[10]	[11]

- Move last element (at heap[size()]) to the root.
- Decrease size by I

Bubble-down

removeMin()
•••
if(size==0)
return null;
min=heap[1]
if(size>1)
heap[1]=heap[size()];
size;
if(size>1)
<pre>bubble_down(1);</pre>
return min

	13	9	8	12	10	14	11	22	43		
[0]	[1]	[2]	[3]	[4]	[5]	[6]	[7]	[8]	[9]	[10]	[11]

Bubble-down

Compare children of root with root: swap root with the smaller one (why?)

left(i)=i*2
right(i)r=i*2+1

	13	9	8	12	10	14	11	22	43		
[0]	[1]	[2]	[3]	[4]	[5]	[6]	[7]	[8]	[9]	[10]	[11]

Keep swapping new element if necessary. In this case: compare 13 to 11 and 14, and swap with smallest (11).

left(i) = i * 2
right(i) r = i * 2 + 1

	8	9	13	12	10	14	11	22	43		
[0]	[1]	[2]	[3]	[4]	[5]	[6]	[7]	[8]	[9]	[10]	[11]

▶ 13 has now bubbled down until it has no more children, so we are done!

	8	9	11	12	10	14	13	22	43		
[0]	[1]	[2]	[3]	[4]	[5]	[6]	[7]	[8]	[9]	[10]	[11]

Heap Operations: bubble_down()

```
13
public void bubble_down (int i) {
int 1 = 2 * i;
int r = 2 * i + 1;
                                                          10
                                                  12
                                                                14
                                                                         11
int smallest = i;
if (1 < heap.size() && heap[1] < heap[i])</pre>
                                              22
                                                    43
        smallest = 1;
    if (r < heap.size() && heap[r] < heap[smallest])</pre>
        smallest = r;
    if (smallest != i)
        swap(i, smallest);
        bubble_down(smallest);
```

Time Complexity

Method	Binary Heap
insert	O(log n)
removeMin	O(log n)
min	O(I)
size	O(I)

Priority Queue

Priority Queue	Binary Heap
enqueue	insert
dequeueMin	removeMin
first	min
size	size
isEmpty	isEmpty

Exercises

- Insert the following elements in sequence into an empty max heap: 6, 8, 4, 7, 2, 3, 9, 1, 5. Draw both the tree and array representations of the heap.
- Write in pseudocode an algorithm for checking that a binary tree satisfies the heap property. Now write the same algorithm but for a heap represented as an array.