Homework 3

Zhen

October 14, 2021

Problem 1

Suppose f is a convex function and $S \subset \text{dom } f$ is a convex set. Let M be the set of global minima of f over S,

$$M = \{ \boldsymbol{x}^* \in S : f(\boldsymbol{x}^*) \le f(\boldsymbol{x}), \forall \boldsymbol{x} \in S \}$$

Show that M is a convex set.

Proof:

Apparently, $M = \{ \boldsymbol{x} : f(\boldsymbol{x}) = C \}$ where C is a const and $\forall \boldsymbol{x} \in C, f(\boldsymbol{x}) \geq C$. $\forall \boldsymbol{x}, \boldsymbol{y} \in M$ and $\theta \in (0, 1)$, we have

$$C \le f(\theta x + \bar{\theta} y) \le \theta f(x) + \bar{\theta} f(y) = C,$$

which means that $f(\theta x + \bar{\theta} y) = C$.

Thus $\theta x + \bar{\theta} y \in M$ and M is convex.

Problem 2

Let f be convex. If $f(\theta x + \bar{\theta} y) = \theta f(x) + \bar{\theta} f(y)$ for some x, y and $\theta = \theta_0 \in (0, 1)$, then it holds for the same x, y and any $\theta \in [0, 1]$. Proof by contradiction:

Without loss of generality, assume that $f(\theta_1 \mathbf{x} + \bar{\theta_1} \mathbf{y}) < \theta_1 f(\mathbf{x}) + \bar{\theta_1} f(\mathbf{y})$ where $\theta_1 \in (\theta_0, 1)$. Then we have

$$\frac{\theta_0}{\theta_1} f(\theta_1 \boldsymbol{x} + \bar{\theta_1} \boldsymbol{y}) + \left(1 - \frac{\theta_0}{\theta_1}\right) f(\boldsymbol{y}) < \frac{\theta_0}{\theta_1} \left(\theta_1 f(\boldsymbol{x}) + \bar{\theta_1} f(\boldsymbol{y})\right) + \left(1 - \frac{\theta_0}{\theta_1}\right) f(\boldsymbol{y})
= \theta_0 f(\boldsymbol{x}) + (1 - \theta_0) f(\boldsymbol{y})
= f(\theta_0 \boldsymbol{x} + \bar{\theta_0} \boldsymbol{y})
= f\left(\frac{\theta_0}{\theta_1} \left(\theta_1 \boldsymbol{x} + \bar{\theta_1} \boldsymbol{y}\right) + \left(1 - \frac{\theta_0}{\theta_1}\right) \boldsymbol{y}\right)$$

Let $\theta_2 = \frac{\theta_0}{\theta_1}$, $\boldsymbol{x}_1 = (\theta_1 \boldsymbol{x} + \bar{\theta_1} \boldsymbol{y})$ and $\boldsymbol{x}_2 = \boldsymbol{y}$. Thus we get

$$\theta_2 f(\boldsymbol{x}_1) + \bar{\theta_2} f(\boldsymbol{x}_2) < f(\theta_2 \boldsymbol{x}_1 + \bar{\theta_2} \boldsymbol{x}_2)$$

which deduce a contradiction.

Therefore, $\forall \theta \in (0,1): \theta f(\boldsymbol{x}) + \bar{\theta} f(\boldsymbol{y}) \leq f(\theta \boldsymbol{x} + \bar{\theta} \boldsymbol{y}) \leq \theta f(\boldsymbol{x}) + \bar{\theta} f(\boldsymbol{y}).$

Then $f(\theta x + \bar{\theta} y) = \theta f(x) + \bar{\theta} f(y), \forall \theta \in (0, 1).$

Problem 3

Determine if the following functions are convex, concave, or neither.

(a) $f(\mathbf{x}) = f(x_1, x_2, x_3) = x_1^2 + x_1 x_3 + x_2^2 + x_2 x_3 + \frac{1}{2} x_3^2$ on \mathbb{R}^3 Solve: Convex.

Assume $f(x) = x^T A x$. By the fact that

$$f(\mathbf{x}) = \left(x_1 + \frac{1}{2}x_3\right)^2 + \left(x_2 + \frac{1}{2}x_3\right)^2$$

we have $\nabla^2 f = 2\mathbf{A} \succeq \mathbf{O}$. Therefore f is convex.

(b) $f(\mathbf{x}) = f(x_1, x_2) = (x_1 x_2)^{-1}$ on $\mathbb{R}^2_{++} = \{(x_1, x_2) : x_1 > 0, x_2 > 0\}$

Solve: Convex.

Considering that: $\frac{\partial^2 f}{\partial x_1^2} = \frac{2}{x_1^3 x_2}, \frac{\partial^2 f}{\partial x_2^2} = \frac{2}{x_1 x_2^3}, \frac{\partial^2 f}{\partial x_1 \partial x_2} = \frac{1}{x_1^2 x_2^2}$

Then the eigenvalue λ_1, λ_2 of $\nabla^2 f$ satisfies that:

$$(\lambda - \frac{2}{x_1^3 x_2})(\lambda - \frac{2}{x_1 x_2^3}) - \frac{1}{x_1^4 x_2^4} = 0, \ i = 1, 2$$

Let $f(\lambda)$ denote **LHS** of the above equation. Then $f(\lambda) = 0$ is a parabola with an axis of symmetry $\lambda = \frac{1}{x_1^3 x_2} + \frac{1}{x_1 x_2^3} > 0$.

And considering that f(0) > 0 and $f(\lambda) = 0$ is of 2 unique solutions, we have $\lambda_1, \lambda_2 > 0$. Thus $\nabla^2 f \succeq \mathbf{O}$ and f is convex.

(c) $f(x_1, x_2) = x_1 x_2^2$ on \mathbb{R}^2_{++}

Solve: Neither.

$$\nabla^2 f = \begin{pmatrix} 0 & 2x_2 \\ 2x_2 & 2x_1 \end{pmatrix}$$

Then the eigenvalue of $\nabla^2 f \ \lambda_{\pm} = x_1 \pm \sqrt{x_1^2 + 4x_2^2}$. Thus f is neither convex nor concave $(\lambda_+ > 0)$ while $\lambda_- < 0$.

(d) $f(x_1, x_2) = x_1 x_2^{-1/2}$ on \mathbb{R}^2_{++}

Solve: Neither.

Considering that: $\frac{\partial^2 f}{\partial x_1^2} = 0$, $\frac{\partial^2 f}{\partial x_1 \partial x_2} = -\frac{1}{2x_2^{3/2}}$, $\frac{\partial^2 f}{\partial x_2^2} = \frac{3x_1}{4x_2^{5/2}}$.

Then the eigenvalue of $\nabla^2 f$

$$\lambda_{\pm} = \frac{1}{2} \left(\frac{3x_1}{4x_2^{5/2}} \pm \sqrt{\frac{9x_1^2}{16x_2^5} + \frac{1}{x_2^3}} \right)$$

Thus f is neither convex nor concave $(\lambda_{+} > 0 \text{ while } \lambda_{-} < 0)$.

(e) $f(x_1, x_2) = x_1^{\alpha} x_2^{1-\alpha}$ on \mathbb{R}^2_{++}

Solve: Concave.

Considering that

$$\nabla^2 f = -\alpha (1 - \alpha) x_1^{\alpha - 2} x_2^{-1 - \alpha} \begin{bmatrix} x_2^2 & x_1 x_2 \\ x_1 x_2 & x_2^2 \end{bmatrix} \triangleq C(x_1, x_2, \alpha) \mathbf{A}$$

2

By the fact that $C(x_1, x_2, \alpha) < 0 \land A \succeq O$, $\nabla^2 f \preceq O$ and f is concave.

Problem 4

Suppose $f_i: \mathbb{R} \to \mathbb{R}, i = 1, 2$, are strictly convex functions. Show that $f: \mathbb{R}^2 \to \mathbb{R}$ defined by $f(x_1, x_2) = f_1(x_1) + f_2(x_2)$ is strictly convex over \mathbb{R}^2 , and in particular $f(x_1, x_2) = x_1^2 + x_2^4$ is strictly convex.

Proof:

 $\forall \boldsymbol{x} = (x_1, x_2), \boldsymbol{y} = (y_1, y_2) \in \mathbb{R}^2 \text{ and } \forall \theta \in (0, 1),$ $f(\theta \boldsymbol{x} + \bar{\theta} \boldsymbol{y}) = f(\theta x_1 + \bar{\theta} y_1, \theta x_2 + \bar{\theta} y_2)$ $= f_1(\theta x_1 + \bar{\theta} y_1) + f_2(\theta x_2 + \bar{\theta} y_2)$ $\leq \theta f_1(x_1) + \bar{\theta} f_1(y_1) + \theta f_2(x_2) + \bar{\theta} f_2(y_2)$ $= \theta f(\boldsymbol{x}) + \bar{\theta} f(\boldsymbol{y})$

Therefore f is strictly convex.

Trivially, $f_1(x_1) = x_1^2$ and $f_2(x_2) = x_2^4$ are strictly conevx. Then $f(x_1, x_2) = f_1(x_1) + f_2(x_2)$ is strictly convex.

Problem 5

Let $f: C \subset \mathbb{R}^n \to \mathbb{R}$ be a differentiable function defined on a nonempty open convex set C. Show that f is convex if and only if

$$\langle \nabla f(\boldsymbol{x}) - \nabla f(\boldsymbol{y}), \boldsymbol{x} - \boldsymbol{y} \rangle \ge 0, \forall \boldsymbol{x}, \boldsymbol{y} \in C$$

Proof:

f is convex

- $\iff \forall \text{direction } \mathbf{d}, \forall \mathbf{x} \in C, g(t) = f(\mathbf{x} + t\mathbf{d}) \text{ is convex on } \{t : \mathbf{x} + t\mathbf{d} \in C\}$
- $\iff \forall \text{direction } \mathbf{d}, \forall \mathbf{x} \in C, q'(t) = \nabla f(\mathbf{x} + t\mathbf{d})^T \mathbf{d} \text{ is increasing on } \{t : \mathbf{x} + t\mathbf{d} \in C\}$
- $\iff \forall \text{direction } \boldsymbol{d}, \forall \boldsymbol{x} \in C, \forall h, s \in \{t : \boldsymbol{x} + t\boldsymbol{d} \in C\}, [g'(h) g'(s)] (h s) \ge 0$
- $\iff \forall \text{direction } \boldsymbol{d}, \forall \boldsymbol{x} \in C, \forall h, s \in \{t: \boldsymbol{x} + t\boldsymbol{d} \in C\}, \left\lceil \nabla f(\boldsymbol{x} + h\boldsymbol{d})^T \boldsymbol{d} f(\boldsymbol{x} + s\boldsymbol{d})^T \boldsymbol{d} \right\rceil (h s) \geq 0$
- $\iff \forall \text{direction } \mathbf{d}, \forall \mathbf{x} \in C, \forall h, s \in \{t : \mathbf{x} + t\mathbf{d} \in C\}, [\nabla f(\mathbf{x} + h\mathbf{d})^T f(\mathbf{x} + s\mathbf{d})^T][(\mathbf{x} + h\mathbf{d}) (\mathbf{x} + s\mathbf{d})] \ge 0$
- $\iff \forall \boldsymbol{x}, \boldsymbol{y} \in C, \lceil \nabla f(\boldsymbol{x})^T \nabla f(\boldsymbol{y})^T \rceil (\boldsymbol{x} \boldsymbol{y}) \ge 0 \text{ (Note that: } \exists s, \boldsymbol{d}, \ \boldsymbol{x} = \boldsymbol{x} + 0\boldsymbol{d}, \boldsymbol{y} = \boldsymbol{x} + t\boldsymbol{d})$
- $\iff \forall x, y \in C, \langle \nabla f(x) \nabla f(y), x y \rangle \ge 0$