Disclaimer I wrote this to my best knowledge, however, no guarantees are given whatsoever.
Sources If not noted differently, the source is the lecture slides and/or the accompanying book.
Contribute
Please report errors and contribute back your improvements to the github repository at: http://github.com/timethy/data_mining If you don't, may all your models overfit and your data be spoiled for ever.

1 Approximate Retrieval

Nearest-Neighbor Find $x^* = \operatorname{argmin}_{x \in X} d(x, y)$ given $S, y \in S, X \subseteq S$.

Near-Duplicate detection Find all $x,x' \in X$ with $d(x,x') \le \epsilon$.

1.1 k-Shingling

Documents (or videos) as set of k-shingles (a. k. a. k-grams). k-shingle is consecutive appearance of k chars/words.

Binary shingle matrix $M \in \{0,1\}^{C \times N}$ where $M_{i,i} = 1$ iff document j contains shingle i, N documents, C k-shingles.

1.2 Distance functions

Def. $d: S \times S \to \mathbb{R}$ is distance function iff pos. definite except d(x,x) = 0 $(d(x,x') > 0 \iff x \neq x')$, symmetric (d(x,x')=d(x',x)) and triangle inequality holds b-way OR $h=[h_1,...,h_b], h(x)=h(y)\Leftrightarrow \exists i\ h_i(x)=h_i(y)$ is 2.2 Convex Programming $(d(x,x'') \le d(x,x') + d(x',x'')).$

Euclidean $L_r d_r(x,y) = ||x-y||_r = (\sum_i |x_i-y_i|^r)^{1/r}$.

Cosine
$$\operatorname{Sim}_c(A, B) = \frac{A \cdot B}{\|A\| \cdot \|B\|}, \quad d_c(A, B)$$

$$\frac{\cos^{-1}(\operatorname{Sim}_c(A,B))}{\pi}.$$

Jaccard sim., d. $\operatorname{Sim}_J(A, B) = \frac{|A \cap B|}{|A \cup B|}$ $d_J(A, B) = up.$ $1-\operatorname{Sim}_J(A,B)$.

1.3 LSH – local sensitive hashing

Keu Idea: Similiar documents have similiar hash.

Note: Trivial for exact duplicates (hash-collision \rightarrow candidate pair)

Min-hash-family $h_{\pi}(C)$ for Jaccard Hash is the min (i.e. bin. vec. C, rand. perm. π .

Note: $\Pr_{\pi}[h_{\pi}(C_1) = h_{\pi}(C_2)] = \operatorname{Sim}_J(C_1, C_2)$ if $\pi \in_{\text{u.a.r.}} S_{|C|}$.

Min-hash L_r -norm: Fix $a \in \mathbb{R}$. Random line \boldsymbol{w} paritioned in $\langle \phi(\boldsymbol{x}), \phi(\boldsymbol{y}) \rangle$. buckets of length a. Project x,y onto w, if in same bucket, shift-invariance k(x,y) = k(x-y). $h_{\boldsymbol{w}}(x) = h_{\boldsymbol{w}}(y)$. In 2-dim. forms a $(a/2, 2 \cdot a, 1/2, 1/3)$ -sensitive $Gaussian \ k(\boldsymbol{x} - \boldsymbol{y}) = \exp(-||\boldsymbol{x} - \boldsymbol{y}||_2^2/h^2)$. hash-family. In d-dim. there exists a (d1,d2,p1,p2)-sensitive family $\forall d1 < d2$ with p1 > p2.

 $1 - \frac{\theta_{x,y}}{\pi}$

Min-hash signature matrix $M_S \in [N]^{n \times C}$ with $M_S(i,c) = H$ -strongly convex f H-strongly convex iff $f(x') \ge f(x) + \text{For } H$ -strongly convex f f f-strongly convex f-strongly f-strongly convex f-strongly f $h_i(C_c)$ given n hash-fns h_i drawn randomly from a universal $\nabla f(x)^T(x'-x) + \frac{H}{2}||x'-x||_2^2$, i. e. bounded by quadratic fn (at **Stochastic Gradient Descent (SGD)** Convex program is hash family.

Pseudo permutation h_{π} with $\pi(i) = (a \cdot i + b) \mod p$ 2.1 Support vector machine (SVM) $\mod N, N$ number of shingles, $p \ge N$ prime and $a,b \in_{\text{u.a.r.}} [p]$ **SVM primal** with $a \neq 0$.

Use as universal hash family. Only store a and b. Much more

Compute signature matix M_S For column $c \in [C]$, row $r \in$ (d_1,d_2,p_1,p_2) -sensitivity of $F=\{h_1,\ldots,h_n\}: \ \forall x,y\in \frac{1}{\sqrt{\lambda}}$ $: d(x, y) \leq d_1 \implies P[h(x) = h(y)] \geq p_1$ and $d(x,y) > d_2 \Longrightarrow P[h(x) = h(y)] < p_2.$

 (d_1,d_2,p_1^r,p_2^r) -sensitive. Decreases FP.

 $(d_1,d_2,1-(1-p_1)^b,1-(1-p_2)^b)$ -sensitive. Decreases FN.

Boosting by composition b-way OR after r-way AND. Group sig. matrix into b bands of r rows. CP match in at least one = band (check by hashing). Result is $(d_1,d_2,1-(1-p_1^r)^b,1-(1-p_1^r$ $(p_2^r)^b$)-sensitive. r pulls stronger than b. r pulls down. r-way AND after b-way OR. Result is $(d_1, d_2, (1 - (1 - \text{where } l \text{ is a (convex) loss function and } R \text{ is the (convex)})$ $(p_1)^b)^r$, $(1-(1-p_2)^b)^r$ -sensitive. b pulls stronger than r. b pulls regularizer.

Tradeoff FP/FN Favor FP (work) over FN (wrong). Filter $w \in S_{\lambda}$, l is loss and S_{λ} some (norm-)constraint. Note: This FP by checking signature matrix, shingles or even whole is an OCP. documents.

2 Supervised Learning

Linear classifier $y_i = \operatorname{sgn}(\boldsymbol{w}^T \boldsymbol{x}_i)$ assuming \boldsymbol{w} goes through origin.

first) non-zero permutated row index: $h_{\pi}(C) = \min_{i,C(i)=1} \pi(i)$, Homogeneous transform $\tilde{\boldsymbol{x}} = [\boldsymbol{x},1]; \tilde{\boldsymbol{w}} = [\boldsymbol{w},b]$, now \boldsymbol{w} passes origin.

Kernel k is inner product in high-dim. space: k(x,y) =

Min-hash cos. $h_{\boldsymbol{w}}(\boldsymbol{x}) = \operatorname{sgn}(\boldsymbol{w}^T \boldsymbol{x})$. $\operatorname{Pr}_{\boldsymbol{w}}[h_{\boldsymbol{w}}(x) = h_{\boldsymbol{w}}(y)] = \operatorname{segment lies above function. Equiv. bounded by linear fn. at$ every point.

every point)

Quadratic $\min_{\boldsymbol{w}} \boldsymbol{w}^T \boldsymbol{w} + C \sum_{i} \xi_i$, s.t. $\forall i : y_i \boldsymbol{w}^T \boldsymbol{x}_i \geq 1 - \xi_i$,

Hinge loss $\min_{\boldsymbol{w}} \lambda \boldsymbol{w}^T \boldsymbol{w} + \sum_{i} \max(0, 1 - y_i \boldsymbol{w}^T \boldsymbol{x}_i)$ with $\lambda = \frac{1}{C}$. [N] with $C_c(r) = 1$, $M_S(i,c) \leftarrow \min\{h_i(C_c), M_S(i,c)\}$ for all h_i . Norm-constrained $\min_{\boldsymbol{w}} \sum_i \max(0,1-y_i \boldsymbol{w}^T \boldsymbol{x}_i)$ s.t. $||\boldsymbol{w}||_2 \leq 1$

Lagrangian dual $\max_{\alpha} \sum_{i} \alpha_{i} + \frac{1}{2} \sum_{i,j} \alpha_{i} \alpha_{j} y_{i} y_{j} \boldsymbol{x}_{i}^{T} \boldsymbol{x}_{j}, \ \alpha_{i} \in$ $a(x,y) \ge d_2 \Longrightarrow P[h(x) = h(y)] \le p_2.$ [0, C]. Apply kernel trick: $\max_{\alpha} \sum_i \alpha_i + r$ -way AND $h = [h_1, ..., h_r], h(x) = h(y) \Leftrightarrow \forall i \ h_i(x) = h_i(y)$ is $\frac{1}{2} \sum_{i,j} \alpha_i \alpha_j y_i y_j k(\boldsymbol{x}_i, \boldsymbol{x}_j), \ \alpha_i \in [0, C],$ prediction becomes $y = \operatorname{sgn}(\sum_{i=1}^{n} \alpha_i y_i k(\boldsymbol{x}_i, \boldsymbol{x})).$

Convex program $\min_{\boldsymbol{x}} f(\boldsymbol{x})$, s. t. $\boldsymbol{x} \in S$, f convex.

Online convex program (OCP) $\min_{\boldsymbol{w}} \sum_{t=1}^{T} f_t(\boldsymbol{w})$, s. t. $\boldsymbol{w} \in S$.

General regularized form $\min_{\boldsymbol{w}} \sum_{i=1}^{n} l(\boldsymbol{w}; \boldsymbol{x}_i, y_i) + \lambda R(\boldsymbol{w}),$

General norm-constrained form $\min_{\boldsymbol{w}} \sum_{i=1}^{n} l(\boldsymbol{w}; \boldsymbol{x}_i, y_i)$, s. t.

Solving OCP Feasible set $S \subseteq \mathbb{R}^d$ and start pt. $\mathbf{w}_0 \in S$, OCP (as above). Round $t \in [T]$: pick feasible pt. w_t , get convex fn. f_t , incur $l_t = f_t(\boldsymbol{w}_t)$. Regret $R_T = (\sum_{t=1}^T l_t) - \min_{\boldsymbol{w} \in S} \sum_{t=1}^T f_t(\boldsymbol{w})$.

Online SVM $||w||_2 \leq \frac{1}{\lambda}$ (norm-constr.). For new pt. x_t classify $y_t = \operatorname{sgn}(\boldsymbol{w}_t^T \boldsymbol{x}_t)$, incur $l_t = \max(0, 1 - y_t \boldsymbol{w}_t^T \boldsymbol{x}_t)$, update \boldsymbol{w}_t (see later). Best $L^* = \min_{\boldsymbol{w}} \sum_{t=1}^T \max(0, 1 - y_t \boldsymbol{w}^T \boldsymbol{x}_t)$, regret $R_t = \sum_{t=1}^{T} l_t - L^*$.

Online proj. gradient descent (OPGD) Update for online SVM:

 $\mathbf{w}_{t+1} = \operatorname{Proj}_{S}(\mathbf{w}_{t} - \eta_{t} \nabla f_{t}(\mathbf{w}_{t})) \text{ with } \operatorname{Proj}_{S}(\mathbf{w}) =$ Convex function $f: S \to \mathbb{R}$ is convex iff $\forall x, x' \in S, \lambda \in \operatorname{argmin}_{w' \in S} ||w' - w||_2$, gives regret bound $\frac{R_T}{T} \leq \frac{1}{\sqrt{T}} (||w_0 - w||_2)$ $[0,1], \lambda f(x) + (1-\lambda)f(x') \ge f(\lambda x + (1-\lambda)x'), \text{ i. e. every } \boldsymbol{w}^*|_2^2 + ||\nabla f||_2^2), \ \nabla f_t(\boldsymbol{w}_t) = -y_t \boldsymbol{x}_t, \text{ if } y_t \boldsymbol{w}_t^T \boldsymbol{x}_t \le 1, \text{ else } 0;$ $\eta_t = \frac{1}{\sqrt{4}}$ and $\operatorname{Proj}_s(\boldsymbol{w}') = \boldsymbol{w}' \cdot \min(1, 1/(\sqrt{\lambda}||\boldsymbol{w}'||_2)).$

unconstrained and decomposes $f(w) = \sum_{i=1}^{n} g(w;i)$. In SVM

 $g(w;i) = \frac{\lambda w^T w}{n} + l_h(w;x_i,y_i)$. Algo: $w \leftarrow 0$ and choose β_t . until 3 Pool-based active Learning (semi-supervised) convergence: $(x_i,y_i) \in_{u.a.r} X$. $w \leftarrow w - \beta_t \cdot \nabla_w(g(w;i))$.

Stochastic PGD (SPGD) Online-to-batch. $\tilde{\boldsymbol{w}} = \frac{1}{T} \sum_{t=1}^{T} \boldsymbol{w}_{t}$. If data i. i. d.: exp. error (risk) $\mathbb{E}[L(\tilde{\boldsymbol{w}})] \leq L(\tilde{\boldsymbol{w}}^*) + R_T/T$, $L(\boldsymbol{w}^*)$ is best error (risk) possible.

PEGASOS OPGD w/ mini-batches on strongly convex SVM form.

 $\min_{\boldsymbol{w}} \sum_{t=1}^{T} g_t(\boldsymbol{w})$, s.t. $||\boldsymbol{w}||_2 \le \frac{1}{\sqrt{t}}$, $g_t(\boldsymbol{w}) = \frac{\lambda}{2} ||\boldsymbol{w}||_2^2 + f_t(\boldsymbol{w})$. q_t is λ -strongly convex, $\nabla q_t(\mathbf{w}) = \lambda \mathbf{w} + \nabla f_t(\mathbf{w})$.

Performance ϵ -accurate sol. with prob. $\geq 1 - \delta$ in runtime

 $||Gw||_{2}$.

with $G_t = (\sum_{\tau=1}^t \nabla f_{\tau}(\boldsymbol{w}_{\tau}) \nabla f_{\tau}(\boldsymbol{w}_{\tau})^T)^{1/2}$. Easily inv'able tainty. matrix with $G_t = \operatorname{diag}(...)$. $R_t \in O(\frac{\|\mathbf{u}^*\|_{\infty}}{\sqrt{T}}\sqrt{d})$, even better for sparse data.

ADAM Add 'momentum' term: $\boldsymbol{w}_{t+1} = \boldsymbol{w}_t - \mu \bar{g}_t, h(\boldsymbol{x})$. $g_t = \nabla f_t(w), \ \bar{g}_t = (1 - \beta)g_t + \beta \bar{g}_{t-1}, \ \bar{g}_0 = 0.$ Helps for dense gradients.

Parallel SGD (PSGD) Randomly partition to k (indep.) of $\operatorname{argmin}_{r} \max\{v^{-}(x), v^{+}(x)\}$. machines. Comp. $\mathbf{w} = \frac{1}{k} \sum_{i=1}^{k} \mathbf{w}_i$. $\mathbb{E}[\text{err}] \in O(\epsilon(\frac{1}{k\sqrt{\lambda}} + 1))$ if Approx. $T \in \Omega(\frac{\log \frac{\kappa_{\alpha}}{\epsilon}}{\epsilon^{\lambda}})$. Suitable for MapReduce cluster, multi. passes possible.

Hogwild! Shared mem., no sync., sparse data. [...]

Implicit kernel trick Map $x \in \mathbb{R}^d \to \phi(x) \in \mathbb{R}^D \to z(x) \in \mathbb{R}^m$, $d \ll D, m \ll D$. Where $\phi(x)$ corresponds to a kernel $k(x,x') = \phi(x)^T \phi(x').$

Random fourier features Given shift-invariant kernel k. $p(\omega) = \frac{1}{2\pi} \int e^{-j\omega'\delta} k(\delta) d\Delta$

 $\omega_i \sim p = \text{eg Gaussian}, b_i \sim U(0,2\pi)$

 $z(x) \equiv \sqrt{2/m} [cos(\omega_1'x+b_1)...cos(\omega_m'x+b_m)]$

Nyström features (need entire dataset) In practice: pick random samples $S = \{\hat{x}_1...\hat{x}_n\} \subseteq X$

 $K_{SX_{i,j}} = k(\hat{x}_i, \hat{x}_j), K_{SS_{i,j}} = k(\hat{x}_i, \hat{x}_j)$

approximate $K = K_{XS}K_{SS}^{-1}K_{SX}, K_{SS} = VDV^T$.

new point x': $z(x') = D^{-1/2}V^T[k(x',\hat{x}_1),...,k(x',\hat{x}_m)]$

Uncertainty sampl. Until all labels can be inferred (or until a label budget); $U_t(x) = U(x|x_{1:t-1}, y_{1:t-1})$, request y_t for $x_t = \operatorname{argmax}_x U_t(x)$. SVM: $x_t = \operatorname{argmin}_{x_i} |\boldsymbol{w}^T \boldsymbol{x}_i|$, i.e. $U_t(\boldsymbol{x}) = \frac{1}{|\boldsymbol{w}^T \boldsymbol{x}|}.$

Sub-linear time w/ LSH $|w^Tx_i|$ small if $\angle_{w.x_i}$ close to $\frac{\pi}{2}$

Hash hyperplane: $h_{\boldsymbol{u},\boldsymbol{v}}(\boldsymbol{a},\ \boldsymbol{b}) = [h_{\boldsymbol{u}}(\boldsymbol{a}),\ h_{\boldsymbol{v}}(\boldsymbol{b})]$ $[\operatorname{sgn}(\boldsymbol{u}^T\boldsymbol{a}), \operatorname{sgn}(\boldsymbol{v}^T\boldsymbol{b})].$ LSH hash family: $h_H(z) = h_{u,v}(\boldsymbol{z}, \boldsymbol{z})$ if z datapoint, $h_H(z) = h_{u,v}(z, -z)$ if z query hyperplane. $\Pr[h_H(\boldsymbol{w}) = h_H(\boldsymbol{x})] = \Pr[h_{\boldsymbol{u}}(\boldsymbol{w}) = h_{\boldsymbol{u}}(\boldsymbol{x})] \Pr[h_{\boldsymbol{v}}(-\boldsymbol{w}) =$ $h_{\boldsymbol{v}}(\boldsymbol{x})] = \frac{1}{4} - \frac{1}{\pi^2} (\angle_{\boldsymbol{x},\boldsymbol{w}} - \frac{\pi}{2})^2.$

 $\mathbf{w}_{t+1} = \operatorname{argmin}_{\mathbf{w} \in S} ||\mathbf{w} - (\mathbf{w}_t - \eta \mathbf{G}_t^{-1} \nabla f_t(\mathbf{w}))||_{\mathbf{G}_t}$. Min. regret Informativeness Metric of "information" gainable; \neq uncer- Regret μ_i mean of P_i (arm i), $\mu^* = \max_i \mu_i$. Regret

Version Space $V(D) = \{ \boldsymbol{w} \mid \forall (\boldsymbol{x}, y) \in D \operatorname{sgn}(\boldsymbol{w}^T \boldsymbol{x}) = y \}$ $\tilde{\mathcal{V}}(D;U) = \{h: U \to \{\pm 1\} \mid \exists w \in \mathcal{V}(D) \ \forall x \in U \ \operatorname{sgn}(w^T x) = \text{ Clearly unoptimal.} \}$

Generalized binary search Init $D \leftarrow \{\}$. While $|\tilde{\mathcal{V}}(D;U)| > 1$, comp. $v^{\pm}(x) = |\tilde{\mathcal{V}}(D \cup \{(x,\pm)\};U)|$, label

 $|\mathcal{V}|$ Margins of SVM $m^{\pm}(x)$ for labels $\{+,-\}, \forall x. \; Max\text{-}min \; \max_x \min\{m^+(x), m^-(x)\}\} \; \text{or} \; ratio$ $\max_x \min\{\frac{m^+(x)}{m^-(x)}, \frac{m^-(x)}{m^+(x)}\}.$

4 Model-based clustering – Unsupervised learning

k-means problem $\min_{\mu} L(\mu)$ with $L(\mu) = \sum_{i=1}^{N} \min_{j} ||x_{i} - x_{j}||$ $|\mu_i||_2^2$ and cluster centers $\mu = \mu_1, ..., \mu_k$. Non-convex! NP-hard in general!

LLoyd's Init $\mu^{(0)}$ (somehow/randomly). Assign all x_i to closest center $z_i \leftarrow \operatorname{argmin}_{j \in [k]} ||\boldsymbol{x}_i - \boldsymbol{\mu}_i^{(t-1)}||_2^2$, Update to mean: $\Pr\left[|\hat{\boldsymbol{w}}_i^T \boldsymbol{z}_t - \boldsymbol{w}_i^T \boldsymbol{z}_t| \le \alpha \sqrt{\boldsymbol{z}_t^T M_i^{-1} \boldsymbol{z}_t}\right] \ge 1 - \delta$. $\mu_i^{(t)} \leftarrow \frac{1}{n_i} \sum_{i:z_i=j} \boldsymbol{x}_i$. Always converge to local minimum.

Online k-means Init μ somehow/randomly. For $t \in [n]$ find optimum: $\sum_t \eta_t = \infty \wedge \sum_t \eta_t^2 < \infty$ suffices, e.g. $\eta_t = \frac{c}{t}$, $c \in \mathbb{R}$.

Weighted rep. C $L_k(\mu;C) = \sum_{(w,x) \in C} w \cdot \min_j ||\mu_j - x||_2^2$. (k, ϵ) -coreset iff $\forall \mu : (1 - \epsilon)L_k(\mu; D) \leq L_k(\mu; C) \leq$ $(1+\epsilon)L_k(\mu;D).$

 D^2 -sampling Sample prob. $p(x) = \frac{d(x,B)^2}{\sum_{x' \in X} d(x',B)^2}$.

Merge coresets union of (k,ϵ) -coreset is also (k,ϵ) -coreset.

Compress a (k,δ) -coreset of a (k,ϵ) -coreset is a $(k,\epsilon+\delta+\epsilon\delta)$ -

Coresets on streams Bin. tree of merge-compress. Error \propto

Mapreduce k-means Construct (k, ϵ) -coreset C, solve kmeans (w/ many restarts) on coreset. (Repeat.) Near-optimal

5 *k*-armed bandits as recommender systems

k-armed bandit k arms with diff. prob. dist. For $t \in [T]$ **ADAGrad** Adapt to geometry. *Mahalanobis norm* $||\boldsymbol{w}||_{\boldsymbol{G}}$ Hash all unlabeled. Loop: Hash \boldsymbol{w} , req. labels for hash-coll., rounds, pick $i_t \in [k]$, sample $y_t \in P_i$ (indep. of other rounds). Max. $\sum_{t=1}^{T} y_t$.

 $r_t = \mu^* - \mu_{i_t}$. Total regret $R_T = \sum_{t=1}^I r_t$.

 ϵ -greedy Explore u.a.r. with prob. ϵ_t , exploit with prob. $1-\epsilon_t$: Relevant version space given unlabeled pool $U = \{x'_1, ..., x'_n\}$. choose $\underset{i}{\operatorname{argmax}}_i \hat{\mu}_i$. Suitable $\epsilon_t \in O(1/t)$ gives $R_T \in O(k \log T)$.

> **UCB1** Init $\hat{\mu}_i \leftarrow 0$; try all arms once. Following $t \in [T-k]$ rounds: $UCB(i) \leftarrow \hat{\mu}_i + \sqrt{\frac{2\log t}{n_i}}$, pick $i_t \leftarrow \operatorname{argmax}_i UCB(i)$, observe y_t . Update $n_{i_t} \leftarrow n_{i_t} + 1, \hat{\mu}_{i_t} \leftarrow \hat{\mu}_{i_t} + \frac{y_t - \hat{\mu}_{i_t}}{n_t}$.

> Contextual bandits Round t: Obs. context $z_t \in \mathcal{Z} \subseteq \mathbb{R}^d$; recommend $x_t \in A_t$. Reward $y_t = f(x_t, z_t) + \epsilon_t$. Regret $r_t = \max_{\boldsymbol{x}} f(\boldsymbol{x}, \boldsymbol{z}_t) - f(\boldsymbol{x}_t, \boldsymbol{z}_t)$. Often $f(\boldsymbol{x}, \boldsymbol{z}) = \boldsymbol{w}_{\boldsymbol{x}}^T \boldsymbol{z}$ linear.

> Idea behind LinUCB Estimate $\hat{w}_i = \operatorname{argmin}_{u} \sum_{t=1}^m (y_t - y_t)$ $\boldsymbol{w}^T \boldsymbol{z}_t$)+ $||\boldsymbol{w}||_2^2$. Closed form: $\hat{\boldsymbol{w}}_i = M_i^{-1} D_i^T \boldsymbol{y}_i$, $M_i = D_i^T D_i + I$, $D_i = [\mathbf{z}_1|...|\mathbf{z}_m], \mathbf{y}_i = (y_1|...|y_m)^T.$

Confidence If $\alpha = 1 + \sqrt{\ln(\frac{2}{\delta})/2}$:

$$\Pr\left[|\hat{\boldsymbol{w}}_{i}^{T}\boldsymbol{z}_{t} - \boldsymbol{w}_{i}^{T}\boldsymbol{z}_{t}| \leq \alpha \sqrt{\boldsymbol{z}_{t}^{T}\boldsymbol{M}_{i}^{-1}\boldsymbol{z}_{t}}\right] \geq 1 - \delta$$

LinUCB (Algorithm) For t = [T] receive action set A_t and features z_t . For all $x \in A_t$: if x new, set $M_x \leftarrow \mathbb{I}$ and $c = \operatorname{argmin}_{j} ||\mu_{j} - \boldsymbol{x}_{t}||_{2}, \text{ set } \mu_{c} \leftarrow \mu_{c} + \eta_{t}(\boldsymbol{x}_{t} - \mu_{c}). \text{ For local } b_{x} \leftarrow 0; \text{ set } \hat{w}_{x} \leftarrow M_{x}^{-1}b_{x}; \text{ set } UCB_{x} \leftarrow \hat{w}_{x}^{T}\boldsymbol{z}_{t} + \alpha\sqrt{\boldsymbol{z}_{t}^{T}M_{x}^{-1}\boldsymbol{z}_{t}}.$ Recommend action $x_t = \operatorname{argmax}_{x \in A_t} UCB_x$; observe y_t . Set $M_{\boldsymbol{x}} \leftarrow M_{\boldsymbol{x}} + \boldsymbol{z}_t \boldsymbol{z}_t^T \text{ and } b_{\boldsymbol{x}} \leftarrow b_{\boldsymbol{x}} + y_t \boldsymbol{z}_t.$

Hybrid Model $y_t = \boldsymbol{w}_i^T \boldsymbol{z}_t + \beta^T \phi(\boldsymbol{x}_i, \boldsymbol{z}_t) + \epsilon_t$ captures sep. and shared effects.

algo., else ignore line. Stop after T feedbacks.

6 Submodularity

 $F: 2^V \to \mathbb{R}$ subm. iff $F(A \cup \{s\}) - F(A) > F(B \cup \{s\}) - F(B)$, $\forall A \subseteq B \subseteq V, s \in V \text{ with } s \notin B.$

Closedness of non-negative linear combination: If $F_{1,\ldots,m}(A)$ subm. then $\lambda_i \geq 0$: $F'(A) := \sum_i \lambda_i F_i(A)$ subm.

Other closedness: If F(S) is subm. on V and $W \subseteq V$, then Restriction $F(S \cap W)$, Conditioning $F(S \cup W)$, Reflection $F(V \setminus S)$ are submodular.

Marginal gain: $\Delta_F(s|A) = F(\{s\} \cup A) - F(A)$

Greedy algo: In round i+1, previously picked $A_i = \{s_1,...,s_i\}$; pick $s_{i+1} = \operatorname{argmax}_s \Delta_F(s|A_i) = \operatorname{argmax}_s (F(\{s\} \cup A_i) - A_i)$ $F(A_i)$). This gives a $(1-1/e) \approx 0.63$ -approximation.

Lazy Greedy: Observation: Submodularity implies $\Delta(s|A_i) >$ $\Delta(s|A_{i+1})$. Algo.: $A_0 \leftarrow \{\}$; first iteration as usual. Then keep ordered list of Δ_i from prev. iteration. For $i \in [k]$ do: $\Delta_i = F(A_{i-1} \cup \{s^*\}), s^* = \operatorname{argmax}_s \Delta_F(s|A_{i-1}) \text{ (top element)}.$ If s^* is still top, then $A_i \leftarrow A_{i-1} \cup \{s^*\}$ else resort and pick top element (as in Greedy).

7 Tips

$$\sum_{i} ||y_i - w^T x_i||^2 = \sum_{i} (y_i - w^T x_i)^T (y_i - w^T x_i) = (y_i - w^T x_i)^T (y_i - w^T x_i)$$

Rejection Sampling Evaluate bandit: For $t \in \mathbb{N}$ read log Showing active learning needs n labels Assume points are 8 Probability $(\boldsymbol{x}_1^{(t)},...,\boldsymbol{x}_k^{(t)},\boldsymbol{z}_t,a_t,y_t)$. Pick a_t' by algo. If $a_t'=a_t$ feed y_t to all distinct and algo has returned -1 for the first n-1 labels. Choose x s.t. algo can not distinguish between -1,+1.

> Sublinear strategy approach Sort and rename points. Cleverly search witnesses (points determining interval).

Deriving Dual Start with quadratic. Rewrite constraints $c_{1,i}, c_{2,i}$ s.t. $c_i(w) \geq 0$. Get Lagrangian $L(w, \xi, \alpha, \gamma)$: $f(w) - \sum_i \alpha_i c_{1,i} - \sum_i \gamma_i c_{2,i}$. Set derivatives $\frac{\partial L}{\partial w}$ and $\frac{\partial L}{\partial \xi_i}$ Markov's Inequality $\mathbb{P}(X \ge a) \le \frac{\mathbb{E}(X)}{a}$. $\sum_{i} ||y_i - w^T x_i||^2 = \sum_{i} (y_i - w^T x_i)^T (y_i - w^T x_i) = (y - \text{to 0 and get } w, C. \text{ Insert into } L(w). \text{ Result is max. qp with}$ constraint $\alpha_i \in [0,C]$

$$\mathbb{E}[X] = \sum_{x} \Pr(x) \cdot x$$

$$\mathbb{E}[aX + aY] = a \cdot \mathbb{E}[x] + b \cdot \mathbb{E}[y]$$

$$\operatorname{Var}[X] = \sum_{x} p(x) \cdot (x - \mathbb{E}[X])^{2}$$

$$= \mathbb{E}[(X - \mathbb{E}[X])^{2}] = \mathbb{E}[X^{2}] - (\mathbb{E}[X])^{2}$$

$$\operatorname{Cov}[X, Y] = \mathbb{E}[(X - \mathbb{E}[X])(Y - \mathbb{E}[Y])] = \mathbb{E}[X \cdot Y] - \mathbb{E}[X] \cdot \mathbb{E}[Y]$$

$$\operatorname{Var}[\alpha X + \beta Y] = \alpha \operatorname{Var}[X] + 2\alpha \beta \operatorname{Cov}[X, Y] + \beta \operatorname{Cov}[Y]$$

$$\operatorname{Cov}[X, X] = \operatorname{Var}[X]$$

$$\operatorname{Cov}[A + B, X] = \operatorname{Cov}[A, X] + \operatorname{Cov}[B, X]$$

$$\operatorname{Pr}(A \cup B) = \operatorname{Pr}(A) + P(B) - \operatorname{Pr}(A \cap B)$$

$$\operatorname{Pr}(A \cup B) = \operatorname{Pr}(A) + P(B) \quad \text{if A, B mutually exclusive}$$

$$\operatorname{Pr}(A \cap B) = \operatorname{Pr}(A \mid B) P(B) = \operatorname{Pr}(B \mid A) P(A)$$

$$\operatorname{Pr}(A \cap B) = \operatorname{Pr}(A) P(B) \quad \text{if A, B independent}$$

$$\operatorname{Pr}(A \mid B) = \frac{P(A \cap B)}{P(B)} = \frac{P(B \mid A) P(A)}{P(B)}$$

Hoeffding's Inequality

$$\Pr(\overline{X} - \operatorname{E}[\overline{X}] \ge t) \le \exp\left(-\frac{2n^2t^2}{\sum_{i=1}^{n}(b_i - a_i)^2}\right)$$
$$\Pr(|\overline{X} - \operatorname{E}[\overline{X}]| \ge t) \le 2\exp\left(-\frac{2n^2t^2}{\sum_{i=1}^{n}(b_i - a_i)^2}\right)$$

Gaussian
$$\mathcal{N}(\mu, \sigma^2)$$
: $\frac{1}{\sqrt{2\sigma^2\pi}}e^{-\frac{(x-\mu)^2}{2\sigma^2}}$