Automatic Metadata Extraction The High Energy Physics Use Case

Joseph Boyd

École Polytechnique Fédérale de Lausanne joseph.boyd@epfl.ch

August 24, 2015

Motivation

- ► INSPIRE-HEP digital library at CERN contains over 1 Million documents
- Manual curation of high energy physics (HEP) papers may be automated with machine learning techniques
- Custom datasets and specialised features required to model HEP paper characteristics

Aims

Take existing state-of-the-art system for metadata extraction to:

- demonstrate a qualitative difference between HEP and general papers;
- propose improvements to model features;
- run experiments to confirm these improvements, and;
- draw conclusions about what characterises good feature engineering.

Introduction

Theory

Automatic Metadata Extraction

Data, Methods, and Implementation

Key Results

Conclusion:

Why CRFs?

- ► Transition interdependencies implies graphical structure best modelled as a structured sequence
- Modelling conditional distribution, p(y|x) sufficient for classification
- Exploit rich information about observations, x, without explicitly modelling the underlying probability distribution
- Classifying metadata may greatly benefit from modelling rich text features (punctuation, font size, layout,...)

Mathematical Formulation

$$p(\mathbf{y}|\mathbf{x}) = \frac{p(\mathbf{x}, \mathbf{y})}{\sum_{\mathbf{y}'} p(\mathbf{x}, \mathbf{y}')} = \frac{1}{Z(\mathbf{x})} \exp \left\{ \sum_{k} \lambda_k F_k(y_t, y_{t-1}, x_t) \right\}, \quad (1)$$

where $Z(\mathbf{x}) = \sum_{y'} \exp\left\{\sum_k \lambda_{ij} F_k(y'_t, y'_{t-1}, x_t)\right\}$ is known as the partition function, ensuring probabilities sum to 1.

 $F_k(\mathbf{x}, y) = \sum_t^T f_k(\mathbf{x}, y)$, where f_k is a (typically boolean) function describing one of several features about a token.

The form of the functions themselves, $f(\cdot)$, are known in Wapiti (Section ??) as *templates*. It is in choosing these explicitly that we perform feature engineering.

Solution Approach

- Formuluate convex maximum log likelihood estimator, $I(\Lambda)$, where $\Lambda = \{\lambda_k\}_{k=1}^K$
- ► Train (determine Λ) with gradient ascent technique, L-BFGS. Each iteration, I, requires forward-backward algorithm to compute $Z(\mathbf{x}^{(\mathbf{n})})$ for each of N samples $-\mathcal{O}(INT|S|^2)$.
- ▶ Prediction with Viterbi algorithm $\mathcal{O}(T|S|^2)$.

Introduction

Theory

Automatic Metadata Extraction

Data, Methods, and Implementation

Key Results

Conclusions

Metadata Extraction

- Metadata refers to content useful to the identification of the document
- Extraction refers to the identification of metadata within the document text
- Several automatic approaches exist: stylistic analysis, knowledge-base, machine learning, ...

Metadata Extraction (Illustration)

Figure: Tagging of a document header section.

GROBID

- Selected according to performance in study comparing AME systems [2]
- Open source Java-based tool developed at INRIA, France
- Manages cascade of CRF models for annotating papers in progressively finer detail
- Uses C++ library Wapiti for back-end calculations (training, prediction)

GROBID - CRF Cascade

Figure: Cascade of models used by Grobid

Introduction

Theory

Automatic Metadata Extraction

Data, Methods, and Implementation

Key Results

Conclusion:

Identification of beauty and charm quark iets at LHCb

The LHCh collaboration[†]

Abstract

Identification of jets originating from beauty and charm quarks is important for measuring Standard Model processes and for searching for new physics. The performance of algorithms developed to select b- and c-quark jets is measured using data recorded by LHCb from proton-proton collisions at $\sqrt{s} = 7 \text{ TeV}$ in 2011 and at $\sqrt{s} = 8$ TeV in 2012. The efficiency for identifying a b(c) jet is about 65%(25%) with a probability for misidentifying a light-parton iet of 0.3% for iets with transverse momentum $p_T > 20 \text{ GeV}$ and pseudorapidity 2.2 < n < 4.2. The dependence of the performance on the p_T and η of the jet is also measured.

Submitted to JINST

© CERN on behalf of the LHCb collaboration, license CC-BY-4.0.

(a) Collaboration field in header section

LHCb collaboration

R. Aaij⁵⁸, B. Adeva³⁷, M. Adinolfi⁴⁶, A. Affolder⁵², Z. Ajaltouni⁵, S. Akar⁶, J. Albrecht⁹ F. Alessio³⁸, M. Alexander⁵¹, S. Ali⁴¹, G. Alkhazov³⁰, P. Alvarez Cartelle⁵³, A.A. Alves Jr⁵⁷ S. Amato², S. Amerio²², Y. Amhis⁷, L. An³, L. Anderlini^{17,9}, J. Anderson⁴⁰, M. Andreotti^{16,f} J.E. Andrews⁵⁸, R.B. Appleby⁵⁴, O. Aquines Gutierrez¹⁰, F. Archilli²⁸, P. d'Argent¹¹ A. Artamonov³⁵, M. Artuso⁵⁹, E. Aslanides⁶, G. Auriemma^{25,n}, M. Baalouch⁵, S. Bachmann¹¹ J.J. Rack⁴⁸ A. Radalov³⁶ C. Raesso⁶⁰ W. Raldini^{16,38} R.J. Rarlow⁵⁴ C. Rarschel³⁸ S. Barsuk⁷, W. Barter³⁸, V. Batozskaya²⁸, V. Battista³⁹, A. Bay³⁹, L. Beaucourt⁴, J. Beddow⁵¹ F. Bedeschi²³, I. Bediaga¹, L.J. Bel⁴¹, I. Belvaev³¹, E. Ben-Haim⁸, G. Bencivenni¹⁸, S. Benson³⁸ J. Benton⁴⁶, A. Berezhnov³², R. Bernet⁴⁰, A. Bertolin²², M.-O. Bettler³⁸, M. van Beuzekom⁴¹ A. Bien¹¹, S. Bifani⁴⁵, T. Bird⁵⁴, A. Birnkraut⁹, A. Bizzeti^{17,4}, T. Blake⁴⁸, F. Blanc³⁹ J. Blouw¹⁰, S. Blusk⁵⁰, V. Bocci²⁵, A. Bondar³⁴, N. Bondar^{30,38}, W. Bonivento¹⁵, S. Borghi⁵⁴ M. Borsato⁷, T.J.V. Bowcock⁵², E. Bowen⁴⁰, C. Bozzi¹⁶, S. Braun¹¹, D. Brett⁵⁴, M. Britsch¹⁰ T. Britton⁵⁹, J. Brodzicka⁵⁴, N.H. Brook⁴⁶, A. Bursche⁴⁰, J. Buytaert³⁸, S. Cadeddu¹⁵ R. Calabrese^{16,f}, M. Calvi^{20,k}, M. Calvo Gomez^{26,p}, P. Campana¹⁸, D. Campora Perez²⁸, L. Capriotti²⁴, A. Carbone^{14,d}, G. Carbone^{24,f}, R. Cardinale^{19,f}, A. Cardini¹⁵, P. Camiti²⁰ L. Carson⁵⁰, K. Carvalho Akiba^{2,38}, R. Casanova Mohr³⁶, G. Casse⁵², L. Cassina^{20,k} L. Castillo Garcia³⁸, M. Cattaneo³⁸, Ch. Cauet⁹, G. Cavallero¹⁹, R. Cenci^{23,t}, M. Charles⁸ Ph. Charpentier³⁸, M. Chefdeville⁴, S. Chen⁵⁴, S.-F. Cheung⁵⁵, N. Chiapolini⁴⁰, M. Chrzaszcz⁴⁰ X. Cid Vidal³⁸, G. Ciezarek⁴¹, P.E.L. Clarke⁵⁰, M. Clemencic³⁸, H.V. Cliff⁴⁷, J. Closier³⁸ V. Coco³⁸, J. Cogan⁶, E. Cogneras⁵, V. Cogoni^{15,c}, L. Cojocariu²⁹, G. Collaguol²², P. Collins³⁸ A. Comerma-Montells¹¹, A. Contu^{15,38}, A. Cook⁴⁶, M. Coombes⁴⁶, S. Coquereau⁸, G. Corti³⁸ M. Corvo^{16,f}, I. Counts⁵⁶, B. Couturier³⁸, G.A. Cowan⁵⁰, D.C. Craik⁴⁸, A. Crocombe⁴⁸

encode different attribute dimensions of an input data space. A good glyph design can enable users to conduct visual search more efficiently during interactive visualization, and facilitate effective learning, memorizing and using the visual encoding scheme. A less effective visual design may suffer from various shortcomings such as being perceptually confusing, semantically ambiguous, difficult to learn and remember, or unable to accommodate low-resolution display devices.

- · Eamonn Maguire is with Oxford e-Research Centre and Department of Computer Science, University of Oxford, UK. E-mail: eamonn.maguire@st-annes.ox.ac.uk.
- · Philippe Rocca-Serra, Susanna-Assunta Sansone and Min Chen are with Oxford e-Research Centre, University of Oxford, UK, E-mail: {philippe, rocca-serra, susanna-assunta.sansone, min.chen \@oerc.ox.ac.uk.
- · Jim Davies is with Department of Computer Science, University of Oxford, UK. E-mail: iim.davies@cs.ox.ac.uk.

Manuscript received 31 March 2012; accepted 1 August 2012; posted online 14 October 2012; mailed on 5 October 2012.

For information on obtaining reprints of this article, please send e-mail to: tvcg@computer.org.

(b) Discontinuous header data.

¹⁸Laboratori Nazionali dell'INFN di Frascati, Frascati, Itali

¹⁹Sezione INFN di Genova, Genova, Italy

²⁰Sezione INFN di Milano Bicocca, Milano, Italy

²¹ Sezione INFN di Milano, Milano, Italy

22 Serione INFN di Padava Padava Italy ²¹Sezione INFN di Pisa, Pisa, Italy ²⁴Sezione INFN di Roma Tor Vergata, Roma, Italy

Netherlands

²⁵Sezione INFN di Roma La Sapienza, Roma, Italy

²⁶Henryk Niewodniczanski Institute of Nuclear Physics Polish Academy of Sciences, Kraków, Poland ²⁷AGH - University of Science and Technology, Faculty of Physics and Applied Computer Science.

²⁸ National Center for Nuclear Research (NCBJ), Warsaw, Poland

²⁹Horia Hulubei National Institute of Physics and Nuclear Engineering, Bucharest-Magurele, Romania

³⁰Petersburg Nuclear Physics Institute (PNPI), Gatchina, Russia

³¹Institute of Theoretical and Experimental Physics (ITEP), Moscow, Russia.

¹²Institute of Nuclear Physics, Moscow State University (SINP MSU), Moscow, Russia ¹³Institute for Nuclear Research of the Russian Academy of Sciences (INR RAN), Moscow, Russia ³⁴Budker Institute of Nuclear Physics (SB RAS) and Novosibirsk State University, Novosibirsk, Russia

³⁵Institute for High Energy Physics (IHEP), Protvino, Russia Marcelona, Barcelona, Barcelona, Spain

¹⁷ Universidad de Santiago de Compostela, Santiago de Compostela, Spain ¹⁶ European Organization for Nuclear Research (CERN), Geneva, Switzerland ¹⁰ Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland

⁴⁰ Physik-Institut, Universität Zürich, Zürich, Switzerland ⁴¹ Nikhef National Institute for Subatomic Physics, Amsterdam, The Netherlands ⁴² Nikhel National Institute for Subatomic Physics and VU University Amsterdam, Amsterdam, The

Model	HEP	CORA
Header	157 papers	2506 papers
Segmentation	169 papers	125 papers

Table: Number of training instances for each model from each dataset.

Introduction

Theory

Automatic Metadata Extraction

Data, Methods, and Implementation

Key Results

Conclusion:

Experiment Setup

Confusion matrix - Segmentation (Baseline, HEP) acknowledgement annex body cover footnote header headnote page references header body headnote page acknowledgement footnote references

Figure: Baseline confusion segmentation

Figure: Classes confusion segmentation

Introduction

Theory

Automatic Metadata Extraction

Data, Methods, and Implementation

Key Results

Conclusions

- R. Aaij, B. Adeva, M. Adinolfi, A. Affolder, Z. Ajaltouni, S. Akar, J. Albrecht, F. Alessio, M. Alexander, S. Ali, et al. Identification of beauty and charm quark jets at LHCb. arXiv preprint arXiv:1504.07670, 2015.
- M. Lipinski, K. Yao, C. Breitinger, J. Beel, and B. Gipp.
 Evaluation of header metadata extraction approaches and tools for scientific pdf documents.

 In Proceedings of the 13th ACM/IEEE-CS joint conference on
 - In Proceedings of the 13th ACM/IEEE-CS joint conference on Digital libraries, pages 385–386. ACM, 2013.
- E. Maguire, P. Rocca-Serra, S.-A. Sansone, J. Davies, and M. Chen.
 - Taxonomy-based glyph design—with a case study on visualizing workflows of biological experiments.
 - Visualization and Computer Graphics, IEEE Transactions on, 18(12):2603–2612, 2012.