

Scalar Vector Matrix Tensor

1

1 2

Difference between a scalar, a vector, a matrix and a tensor

- A scalar is a single number
- A vector is an array of numbers.

$$oldsymbol{x} = egin{bmatrix} x_1 \ x_2 \ \dots \ x_n \end{bmatrix}$$

· A matrix is a 2-D array

$$m{A} = egin{bmatrix} A_{1,1} & A_{1,2} & \cdots & A_{1,n} \ A_{2,1} & A_{2,2} & \cdots & A_{2,n} \ \cdots & \cdots & \cdots & \cdots \ A_{m,1} & A_{m,2} & \cdots & A_{m,n} \end{bmatrix}$$

• A tensor is a n-dimensional array with n>2

Besaran Skalar

Besaran yang didefinisikan oleh satu bilangan dengan satuan yang sesuai. Misal panjang, luas, volume, massa, waktu, dll. Setelah satuan dinyatakan, besaran dilambangkan dengan ukuran atau besarannya.

Besaran Vektor

Besaran yang didefinisikan ketika tidak hanya diketahui besarannya (dengan satuan) tetapi juga arah pengoperasiannya. Misal kekuatan, kecepatan, percepatan. Besaran vektor melibatkan arah dan juga besaran.

Contoh 1

- a) Kecepatan $10 \, km/jam$ adalah besaran skalar, tetapi
- b) Kecepatan ' $10 \, km/jam$ ke utara' adalah besaran vektor

Contoh 2

Gaya F yang bekerja di titilk P merupakan besaran vektor, karena untuk mendefinisikannya harus memberikan :

- a) Besaran, dan
- b) Arah