— 17 —

Fonctions trigonométriques

Les courbes de ce chapitre seront représentées dans un repère orthonormé $(O, \overrightarrow{i}, \overrightarrow{j})$.

I. Rappels

Définition 1

Soit x un réel et M(x) son image sur le cercle trigonométrique. On appelle :

- Cosinus de x, noté cos(x), l'abscisse de M(x).
- Sinus de x, noté $\sin(x)$, l'ordonnée de M(x).

Propriété 1

Pour tout réel x,

$$-1 \leqslant \cos(x) \leqslant 1$$
 $-1 \leqslant \sin(x) \leqslant 1$ $\cos(x)^2 + \sin(x)^2 = 1$

Exemple :

Les solutions de l'équation $\cos(x) = \frac{1}{2} \operatorname{sur} [-\pi, \pi] \operatorname{sont} -\frac{\pi}{3} \operatorname{et} \frac{\pi}{3}$.

Exemple :

Le solutions de l'équation $\cos(x) = 0$ sur $[0, 2\pi]$ sont $\frac{\pi}{2}$ et $\frac{3\pi}{2}$.

// Exemple :

On veut résoudre l'inéquation $\cos(x) \leqslant \frac{\sqrt{3}}{2}$ sur $[0, 2\pi]$. Pour ce genre d'inéquations, on peut s'aider du cercle trigonométrique ci-contre.

Ainsi, l'ensemble des solutions est l'intervalle $\left[\frac{\pi}{6}, \frac{11\pi}{6}\right]$.

II. Fonctions trigonométriques

1. Définitions

Définition 2

La fonction cosinus est la fonction qui, à tout réel x, associe $\cos(x)$.

La fonction sinus est la fonction qui, à tout réel x, associe $\sin(x)$.

x	$-\pi$	$-\frac{\pi}{2}$	0	$\frac{\pi}{2}$	π
cos	-1		1	0	-1
$\cos(x)$	_	- 0	+	0	_

x	$-\pi$	$-\frac{\pi}{2}$	0	$rac{\pi}{2}$	π
sin	0	-1	0	1	0
$\sin(x)$	0	_	0	+	0

Année 2024/2025 Page 2/5

2. Parité et périodicité

Propriété 2 : Parité

Pour tout $x \in \mathbb{R}$, on a

- $\cos(-x) = \cos(x)$: la fonction cosinus est paire.
- $\sin(-x) = -\sin(x)$: la fonction sinus est impaire.

Cela se traduit graphiquement par le fait que la courbe de la fonction cosinus est symétrique par rapport à l'axe des ordonnées alors que la courbe de la fonction sinus est symétrique par rapport à l'origine du repère.

Exemple :

$$\cos\left(-\frac{\pi}{4}\right) = \cos\left(\frac{\pi}{4}\right) = \frac{\sqrt{2}}{2} \qquad ; \qquad \sin\left(-\frac{\pi}{4}\right) = -\sin\left(\frac{\pi}{4}\right) = -\frac{\sqrt{2}}{2} \ .$$

Propriété $3:2\pi$ -périodicité

Pour tout $x \in \mathbb{R}$, on a :

$$cos(x + 2\pi) = cos(x)$$
 et $sin(x + 2\pi) = sin(x)$

On dit que les fonctions sinus et cosinus sont 2π -périodiques.

Exemple:
$$\cos\left(\frac{25\pi}{3}\right) = \cos\left(\frac{\pi}{3} + \frac{24\pi}{3}\right) = \cos\left(\frac{\pi}{3} + 4 \times 2\pi\right) = \cos\left(\frac{\pi}{3}\right) = \frac{1}{2}.$$

Les propriétés précédentes permettent, en particulier, de reconstruire la totalité d'une courbe représentative à partir d'une portion de celle-ci.

On considère la fonction $x \mapsto \sin(2x)$ représentée sur $\left[0, \frac{\pi}{2}\right]$. Grâce à la parité du sinus, on peut aussi la représenter sur $\left[-\frac{\pi}{2},0\right]$:

Enfin, grâce à la périodicité du sinus, on peut représenter la fonction sur \mathbb{R} :

Année 2024/2025

3. Autres propriétés

Propriété 4

Pour tout nombre réel x, on a :

•
$$\cos(\pi + x) = -\cos x$$

•
$$\cos(\pi - x) = -\cos x$$

•
$$\cos\left(\frac{\pi}{2} + x\right) = -\sin x$$

•
$$\cos\left(\frac{\pi}{2} - x\right) = \sin x$$

•
$$\sin(\pi + x) = -\sin x$$

•
$$\sin(\pi - x) = \sin x$$

•
$$\sin\left(\frac{\pi}{2} + x\right) = \cos x$$

•
$$\sin\left(\frac{\pi}{2} - x\right) = \cos x$$

! Remarque :

Pour toutes ces propriétés, il faut s'entraîner à les retrouver à l'aide du cercle trigonométrique.

4. Dérivées des fonctions trigonométriques

Propriété 5

Les fonctions cos et sin sont dérivables sur \mathbb{R} . Par ailleurs, pour tout réel x,

$$\sin'(x) = \cos(x)$$
 et $\cos'(x) = -\sin(x)$

Exemple :

On considère la fonction $g: x \mapsto 2\cos(x) + 5x$ définie sur \mathbb{R} . g est dérivable sur \mathbb{R} et pour tout $x \in \mathbb{R}$, $g'(x) = -2\sin(x) + 5$.

Soit $x \in \mathbb{R}$, on a $-2 \le -2\sin(x) \le 2$ donc $3 \le -2\sin(x) + 5 \le 7$.

En particulier, $g'(x) \ge 0$ donc g est croissante sur \mathbb{R} .

Propriété 6

Soit u une fonction définie et dérivable sur un intervalle I. Alors $\sin(u)$ et $\cos(u)$ sont également dérivables sur cet intervalle I et on a

$$(\sin(u))' = u' \times \cos(u)$$
 et $(\cos(u))' = -u' \times \sin(u)$

// Exemple :

Pour tout réel x, on pose $f(x) = \sin(3x^2 - 4x + 5)$.

f est dérivable sur \mathbb{R} et pour tout réel x, $f'(x) = (6x - 4)\sin(3x^2 - 4x + 5)$.

Année 2024/2025 Page 4/5

Propriété 7

Soit a un réel non nul.

- Une primitive de $x \mapsto \cos(ax)$ sur \mathbb{R} est $x \mapsto \frac{\sin(ax)}{a}$.
- Une primitive de $x \mapsto \sin(ax)$ sur \mathbb{R} est $x \mapsto -\frac{\cos(ax)}{a}$.

// Exemple :

- Pour tout réel x, on pose $f(x)=3\cos(2x)-5\sin(9x)$. Une primitive de f sur $\mathbb R$ est la fonction F définie pour tout réel x par $F(x)=\frac{3}{2}\sin(2x)+\frac{5}{9}\cos(9x)$.
- Pour $x \in \mathbb{R}$, on pose $g(x) = \cos(x)\sin(x)$. Pour tout $x \in \mathbb{R}$, on a $g(x) = \sin'(x) \times \sin(x)$. Une primitive de g sur \mathbb{R} est la fonction G définie pour tout réel x par $G(x) = \frac{1}{2}\sin^2(x)$.

Année 2024/2025 Page 5/5