Hidden Markov Model (HMM) Part-of-Speech Tagging

IIT – CS481 – Spring 2021.02.18

Review

- ▼ 1 What is Part-of-Speech tag?
 - 1.1 Tagset
 - 1.2 Explore NLTK tagged corpora
 - 1.3 POS tagging example
 - 1.4 POS tagging techniques
- ▼ 2 Automatic Tagging
 - 2.1 Rule-based tagger: Regular Expression Tagger
 - ▼ 2.2 Probabilistic tagging:
 - 2.2.1 Creating lookup table
 - 2.2.2 The Default Tagger
 - 2.2.3 The Lookup Tagger
 - ▼ 2.3 Evaluate Tagger performance
 - 2.3.1 Separate Training and Testing Data
 - ▼ 2.4 General N-Gram Tagging
 - 2.4.1 Combine several n-gram taggers
 - 2.5 Tagging Unknown Words
 - 2.6 Storing pre-trained Taggers

POS tagging techniques

Rule-based: Regular Expression Tagger

> Probabilistic tagging:

- Default Tagger
- N-gram Tagger
- HMM tagger

>Transformation-based:

- applies pre-defined rules as well as rules automatically induced during training
- Brill tagger
- Deep learning models:
 - Meta-BiLSTM

Probability Tagging

- 1) Data: tagged corpus
- 2) Train a tagger: create a lookup table to store the most frequent tag for each word
- 3) Prediction: tag new sentences i.e., sentences not seen in the training data
- 4) Evaluation:

train test split tags assigned by human expert as gold standard

HMM POS tagging

Observation: a sequence of words w_1^n

Goal: assign a sequence of POS tags t_1^n

$$\underbrace{\hat{t}_1^n} = \underbrace{\operatorname{argmax}}_{t_1^n} P(t_1^n | w_1^n)$$

- argmax: "the x that maximize f(x)"
- Hat ^ notation: our estimate of the correct tag sequence

Hidden Markov Model

$$\hat{t}_1^n = \underset{t_1^n}{\operatorname{argmax}} P(t_1^n | w_1^n)$$

$$\hat{t}_1^n = \underset{t_1^n}{argmax} \ \frac{P(w_1^n \mid t_1^n) P(t_1^n)}{P(w_1^n)}$$

$$\hat{t}_1^n = \underset{t_1^n}{\operatorname{argmax}} \underbrace{P(w_1^n | t_1^n)} \underbrace{P(t_1^n)}^{\text{prior}}$$

$$P(x|y) = \frac{P(y|x)P(x)}{P(y)}$$

Drop denominator $P(w_1^n)$

HMM tagger: 2 assumptions

likelihood prior $\hat{t}_1^n = \underset{t^n}{\operatorname{argmax}} \ \widetilde{P(w_1^n|t_1^n)} \ \ \widetilde{P(t_1^n)}$

The probability of a word appearing depends only on its own POS tag;

Bigram assumption: a tag appearing only depends on the previous tag, rather than the entire tag sequence;

$$P(w_1^n|t_1^n) \approx \prod_{i=1}^n P(w_i|t_i) \quad P(t_1^n) \approx \prod_{i=1}^n P(t_i|t_{i-1})$$

$$\hat{t}_{1}^{n} = \underset{t_{1}^{n}}{argmax} P(t_{1}^{n} | w_{1}^{n}) \approx \underset{t_{1}^{n}}{argmax} \prod_{i=1}^{n} P(w_{i} | t_{i}) P(t_{i} | t_{i-1})$$

HMM: 2 probabilities

$$\hat{t}_{1}^{n} = \underset{t_{1}^{n}}{argmax} P(t_{1}^{n} | w_{1}^{n}) \approx \underset{t_{1}^{n}}{argmax} \prod_{i=1}^{n} P(w_{i} | t_{i}) P(t_{i} | t_{i-1})$$

$$P(w_i|t_i) = \frac{C(t_i, w_i)}{C(t_i)}$$

$$P(see|VB) = \frac{C(VB, see)}{C(VB)} = 0.057$$

$$P(VB|NNP) = \frac{C(NNP, VB)}{C(NNP)} = 0.49$$

Transition Probability

Formalizing HMM tagger

Transition Probability $P(t_i | t_{i-1})$

Hidden states: a sequence of POS tags

Observation: a sequence of words

Emission Probability: given a particular tag, how likely is a word generated from this particular tag?

- what is the probability that:
 - John is a NNP
 - see is a VB
 - Marry is a NNP

Transition Probability: the probability of a POS tag followed by another tag

- how likely is that:
 - a NNP is followed by a VB
 - a VB is followed by a NNP

Computing the most likely sequence

P(NNP) * P(John|NNP) *

P(NN|NNP) * P(see|NN) * P(NNP|NN) * P(Marry|NNP) = 0.0000000564

Data

- Marry can see Will
- Jane will see Marry
- Will Marry find Jane?
- Will Jane marry Will?

Marry can see Will

Jane will see Marry

Will Marry find Jane

	Noun	Verb	Model
marry	3	1	0
jane	3	0	0
will	2	0	3
can	0	0	1
see	0	2	0
find	0	1	0

Train a tagger: learn emission probability

Given a particular tag, how likely is a word generated from this particular tag?

	Noun	Verb	Model
marry	3/8	1/4	0
jane	3/8	0	0
will	2/8	0	3/4
can	0	0	1/4
see	0	2/4	0
find	0	1/4	0

Train a tagger: learn transition Probability

<S>

N

V

M

The probability of a POS tag followed by another tag.

How likely is that: a Noun followed by a Modal?

				
	N	V	M	<e></e>
<s></s>	2	0	2	0
N	0	2	2	4
V	4	0	0	0
M	2	2	0	0
	N	V	M	<e></e>

0

0

2/8

2/4

2/4

2/8

0

0

0

0

0

4/8

2/4

4/4

2/4

0

Prediction: tag new sentences

How does the HMM determine the appropriate sequence of tags for a new sentence E.g., Will Will marry Jane?

$$\langle S \rangle - M - N - V - N - \langle E \rangle = 2/4*3/4*2/4*2/8*2/8*1/4*4/4*3/8$$

All possible tags

$$\langle S \rangle - M - N - V - N - \langle E \rangle = 2/4*3/4*2/4*2/8*2/8*1/4*4/4*3/8$$

3*3*3*3 = 81 combinations

Optimizing HMM with Viterbi

Viterbi algorithm:

- dynamic programming
- Input: a single HMM and a sequence of observed words
- Output: the most probable hidden state / tag sequence, together with its probabilities
 Viterbi path

 $\langle S \rangle - M - N - V - N - \langle E \rangle = 2/4*3/4*2/4*2/8*2/8*1/4*4/4*3/8$

	N	V	M	<e></e>
<s></s>	2/4	0	2/4	0
N	0	2/8	2/8	4/8
V	4/4	0	0	0
M	2/4	2/4	0	0

	Noun	Verb	Model
marry	3/8	1/4	0
jane	3/8	0	0
will	2/8	0	3/4
can	0	0	1/4
see	0	2/4	0
find	0	1/4	0

	N	V	M	<e></e>
<s></s>	2/4	0	2/4	0
N	0	2/8	2/8	4/8
V	4/4	0	0	0
M	2/4	2/4	0	0

	Noun	Verb	Model
marry	3/8	1/4	0
jane	3/8	0	0
will	2/8	0	3/4
can	0	0	1/4
see	0	2/4	0
find	0	1/4	0

	N	V	M	<e></e>
<s></s>	2/4	0	2/4	0
N	0	2/8	2/8	4/8
V	4/4	0	0	0
M	2/4	2/4	0	0

		Noun	Verb	Model
	marry	3/8	1/4	0
	jane	3/8	0	0
	will	2/8	0	3/4
١	can	0	0	1/4
	see	0	2/4	0
	find	0	1/4	0

	N	V	M	<e></e>
<s></s>	2/4	0	2/4	0
N	0	2/8	2/8	4/8
V	4/4	0	0	0
M	2/4	2/4	0	0

	Noun	Verb	Model
marry	3/8	1/4	0
jane	3/8	0	0
will	2/8	0	3/4
can	0	0	1/4
see	0	2/4	0
find	0	1/4	0

	N	V	M	<e></e>
<s></s>	2/4	0	2/4	0
N	0	2/8	2/8	4/8
V	4/4	0	0	0
M	2/4	2/4	0	0

	Noun	Verb	Model
marry	3/8	1/4	0
jane	3/8	0	0
will	2/8	0	3/4
can	0	0	1/4
see	0	2/4	0
find	0	1/4	0

 $\langle S \rangle - M - N - V - N - \langle E \rangle = 2/4*3/4*2/4*2/8*2/8*1/4*4/4*3/8$

POS tagging Techniques

- Rule-based: Regular Expression Tagger
- Probabilistic tagging:
 - Default Tagger
 - N-gram Tagger
 - HMM tagger

>Transformation-based:

- applies pre-defined rules as well as rules automatically induced during training
- Brill tagger
- Deep learning models:
 - Meta-BiLSTM

Transformation-based learning (Brill Tagger)

- A pre-tagged training corpus
- Supervised machine learning technique
 - 1) Label every word with its most likely tag;
 - 2) Identify the most common errors;
 - 3) Induce a new rule to fix the errors;
 - 4) Repeat (2) and (3) until reaches the stopping criterion

Painting example as analogy

A white house with green trim against a blue sky

- 1) Big brush, paint the entire canvas blue;
- 2) Medium brush, color the white house;
- 3) Small brush, trim on the gables;

Start from a broad layer, gradually corrects smaller and smaller layers.

Rule-templates for Brill Tagger

Change tag a to tag b when:

The preceding (following) word is tagged **z**.

The word two before (after) is tagged **z**.

One of the two preceding (following) words is tagged z.

One of the three preceding (following) words is tagged z.

The preceding word is tagged z and the following word is tagged w.

The preceding (following) word is tagged **z** and the word two before (after) is tagged **w**.

	Change tags			
#	From	To	Condition	Example
1	NN	VB	Previous tag is TO	to/TO race/NN \rightarrow VB
2	VBP	VB	One of the previous 3 tags is MD	might/MD vanish/VBP \rightarrow VB
3	NN	VB	One of the previous 2 tags is MD	might/MD not reply/NN \rightarrow VB
4	VB	NN	One of the previous 2 tags is DT	
5	VBD	VBN	One of the previous 3 tags is VBZ	

Brill Tagger: tradeoff

Pro:

- Simple ways of incorporating both local context features and top-down information about consistency of tag sequences
- Good accuracy, especially on unknown words

Con:

Fairly slow to learn and slow at prediction time