Nicholas Fasano

516-650-2410 | nmfasano5@gmail.com | linkedin.com/in/nmfasano/ | github.com/nfasano

EDUCATION

Princeton University, Princeton, NJ

Expected May 2023

Doctor of Philosophy in Applied Physics, GPA: 3.683/4.0

Relevant Coursework: Machine Learning and Pattern Recognition

Syracuse University, Syracuse, NY

May 2017

Bachelor of Science in Aerospace Engineering

Bachelor of Science in Physics

Minor in Mathematics

Graduated Summa Cum Laude, GPA: 3.932/4.0

RESEARCH EXPERIENCE

Doctoral Researcher | Princeton University MAE

Sept. 2017 – May 2023

- Curated terabyte-scale datasets from numerical simulations of light-matter interactions, which I formally analyzed and visualized to extract physical insights and inform future experiments
- Led experimental campaigns using Princeton's 20TW laser system to investigate the effects of waveform-controlled engineering on laser-solid interactions, resulting in two conference presentations and a written manuscript
- Collaborated with research teams from Lawrence Livermore National Laboratory (LLNL) and the University of Michigan (CUOS group), assisting in setting up and conducting experiments

Undergraduate Researcher | Syracuse University MAE

June 2016 – Aug. 2016

- Researched and designed a 4-arc turbine blade section and then wrote a C++ program to generate the blade in the Engineering Sketch Pad, a 3D CAD software
- Deliverables included a C++ script to generate the turbine blade, a 5-minute presentation, and a 10-page technical report written in the style of an academic paper.

DATA SCIENCE PROJECTS (https://github.com/nfasano)

Recommendation system

•

TECHNICAL SKILLS

Python (Numpy, Pandas, Scikit-Learn), Matlab, SQL (Microsoft Server), Linux command line, high performance computing, LaTeX, Excel, Word, PowerPoint,

LEADERSHIP AND TEAMWORK EXPERIENCE

Assistant in Instruction | Princeton University

Jan. 2018 – Jan. 2023

 Led problem-solving precepts, aided in project development, graded assignments, and held office hours. Courses taught: Aircraft Design, Mechanical Design, Thermodynamics, and Fluid Mechanics

Physics Coach | Syracuse University Physics Department

Sept. 2016 – May 2017

• Attended physics recitation and lab sessions for several undergraduate physics classes and assisted students by answering their questions and explaining the course material

Tutor | Syracuse University

Jan. 2017 – May 2017

• Tutored students individually or in small groups, covering topics in undergraduate physics, math, and engineering courses.

WORK EXPERIENCE

Engineering Intern | Cameron Engineering & Associates, LLP

May 2015 – Aug. 2015

- Read and edited electrical and mechanical drawing plans using AutoCAD
- Performed on-site visits to survey and update electrical and mechanical engineering drawings

Maintenance | Piquet Lane Swim and Tennis Club

Summers 2013-2014

• Responsible for daily maintenance of tennis courts and other day to day operations of the club

CERTIFICATES

Teaching Transcript Program McGraw Center for Teaching and Learning	Dec. 2022
Andrew Ng's Deep Learning Specialization Coursera	Sept. 2021
 Credential URL: coursera.org/verify/specialization/GA9QPDNUG6RB 	
Python for Data Science and Machine Learning Bootcamp Udemy	Feb. 2021
 Credential URL: ude.my/UC-457a4c2d-3129-4238-b3b9-c476db07faad/ 	

AWARDS

Fellowship Program in Plasma Science and Technology	June 2020 – May 2023		
Gelling Award Physics faculty of Syracuse University	May 2017		
Excellence by Aerospace Senior MAE faculty of Syracuse University	May 2017		
Excellence by Aerospace Junior MAE faculty of Syracuse University	May 2016		
Excellence by Aerospace Sophomore MAE faculty of Syracuse University	May 2015		
Outstanding Academic Achievement by Aerospace Freshman MAE faculty of Syracuse University			
May 2014			

SELECTED PUBLICATIONS AND PRESENTATIONS

Google Scholar: scholar.google.com/citations?user=X9sdXuQAAAAJ&hl=en&oi=ao

- **N. M. Fasano**, M.R. Edwards, A. Giakas, et al., "Harmonic Generation by Cascaded Plasma Mirrors", in preparation.
- N. M. Fasano, M. R. Edwards, and J. M. Mikhailova, "Attosecond electron dynamics and emission in particle-in-cell simulations of relativistic laser--solid interactions," (2022). Under Review.
- N. M. Fasano, M. R. Edwards, A. Giakas, et al., "Low-Order Harmonics Emitted from Relativistic Plasma Mirrors Driven by Two-Color and Elliptically Polarized Lasers," APS DPP meeting, Bulletin of the American Physical Society, (2021). Oral.
- N. M. Fasano and J. M. Mikhailova, "High-Power Ultraviolet Vortex Beams Generated from a Relativistic Laser Interacting with an Ultrathin Foil," CLEO: Conference on Lasers and Electro-Optics, (2021). Oral.
- M. R. Edwards, **N. M. Fasano**, T. Bennett, et al., "A multi-terawatt two-color beam for high-power field-controlled nonlinear optics", Optics Letters **45**, 6542 (2020).
- M. R. Edwards, **N. M. Fasano**, and J. M. Mikhailova, "Electron-nanobunch-width-dominated spectral power law for relativistic harmonic generation from ultrathin foils", Physical Review Letters **124**, 185004 (2020).