

# Computational Linguistics

Computational Linguistics: Jordan Boyd-Graber University of Maryland

Slides adapted from Tom Mitchell, Eric Xing, and Lauren Hannah

## **Content Questions**

## **Administrative Questions**

# Find the maximum margin hyperplane



# Find the maximum margin hyperplane



Which are the support vectors?

Working geometrically:

# Working geometrically:

• If you got 0 = .5x + y - 2.75, close!

# Working geometrically:

- If you got 0 = .5x + y 2.75, close!
- Remember that prediction has to be ±1 for support vectors

$$w_1 + w_2 + b = -1$$
 (1)

$$\frac{3}{2}w_1 + 2w_2 + b = 0 \tag{2}$$

$$2w_1 + 3w_2 + b = +1$$
 (3)

Working geometrically:

- If you got 0 = .5x + y 2.75, close!
- Remember that prediction has to be ±1 for support vectors

$$w_1 + w_2 + b = -1 \tag{1}$$

$$\frac{3}{2}w_1 + 2w_2 + b = 0 \tag{2}$$

$$2w_1 + 3w_2 + b = +1 \tag{3}$$



The SVM decision boundary is:

$$0 = \frac{2}{5}x + \frac{4}{5}y - \frac{11}{5}$$

## **Cannonical Form**



$$w_1 x_1 + w_2 x_2 + b$$

## **Cannonical Form**



 $.4x_1 + .8x_2 - 2.2$ 

#### **Cannonical Form**



$$.4x_1 + .8x_2 - 2.2$$

- $-.4 \cdot 1 + .8 \cdot 1 2.2 = -1$
- $.4 \cdot \frac{3}{2} + .8 \cdot 2 = 0$
- $-.4 \cdot 2 + .8 \cdot 3 2.2 = +1$

Distance to closest point

Distance to closest point

$$\sqrt{\left(\frac{3}{2}-1\right)^2+(2-1)^2}=\frac{\sqrt{5}}{2}\tag{4}$$

Distance to closest point

$$\sqrt{\left(\frac{3}{2}-1\right)^2+(2-1)^2}=\frac{\sqrt{5}}{2}\tag{4}$$

Weight vector

Distance to closest point

$$\sqrt{\left(\frac{3}{2}-1\right)^2+(2-1)^2}=\frac{\sqrt{5}}{2} \tag{4}$$

Weight vector

$$\frac{1}{||w||} = \frac{1}{\sqrt{\left(\frac{2}{5}\right)^2 + \left(\frac{4}{5}\right)^2}} = \frac{1}{\sqrt{\frac{20}{25}}} = \frac{5}{\sqrt{5}\sqrt{4}} = \frac{\sqrt{5}}{2}$$
 (5)

#### Reminder: Logistic Regression

$$P(Y=0|X) = \frac{1}{1 + \exp\left[\beta_0 + \sum_i \beta_i X_i\right]}$$
 (6)

$$P(Y=0|X) = \frac{1}{1 + \exp\left[\beta_0 + \sum_i \beta_i X_i\right]}$$

$$P(Y=1|X) = \frac{\exp\left[\beta_0 + \sum_i \beta_i X_i\right]}{1 + \exp\left[\beta_0 + \sum_i \beta_i X_i\right]}$$
(6)

- Discriminative prediction: p(y|x)
- Classification uses: ad placement, spam detection
- What we didn't talk about is how to learn  $\beta$  from data

## Logistic Regression: Objective Function

$$\mathcal{L} \equiv \ln p(Y|X,\beta) = \sum_{j} \ln p(y^{(j)}|x^{(j)},\beta)$$

$$= \sum_{j} y^{(j)} \left(\beta_0 + \sum_{i} \beta_i x_i^{(j)}\right) - \ln \left[1 + \exp\left(\beta_0 + \sum_{i} \beta_i x_i^{(j)}\right)\right]$$
(9)

## Algorithm

- 1. Initialize a vector B to be all zeros
- 2. For t = 1, ..., T
  - □ For each example  $\vec{x}_i$ ,  $y_i$  and feature j:
    - Compute  $\pi_i \equiv \Pr(y_i = 1 | \vec{x}_i)$
    - Set  $\beta[j] = \beta[j]' + \lambda(y_i \pi_i)x_i$
- 3. Output the parameters  $\beta_1, \ldots, \beta_d$ .

$$\beta[j] = \beta[j] + \lambda(y_i - \pi_i)x_i$$
  
$$\vec{\beta} = \langle \beta_{bias} = 0, \beta_A = 0, \beta_B = 0, \beta_C = 0, \beta_D = 0 \rangle$$

 $y_1 = 1$ 

AAAABBBC

(Assume step size  $\lambda = 1.0$ .)

$$y_2 = 0$$

BCCCDDDD

You first see the positive example. First, compute  $\pi_1$ 

$$\beta[j] = \beta[j] + \lambda(y_i - \pi_i)x_i$$
$$\vec{\beta} = \langle 0, 0, 0, 0, 0 \rangle$$

$$y_1 = 1$$

$$y_2 = 0$$

AAAABBBC

BCCCDDDD

(Assume step size  $\lambda = 1.0$ .)

You first see the positive example. First, compute  $\pi_1$  $\pi_1 = \Pr(y_1 = 1 | \vec{x_1}) = \frac{\exp \beta^T x_i}{1 + \exp \beta^T x_i} =$ 

$$\beta[j] = \beta[j] + \lambda(y_i - \pi_i)x_i$$
$$\vec{\beta} = \langle 0, 0, 0, 0, 0 \rangle$$

$$y_1 = 1$$

 $y_2 = 0$ 

AAAABBBC

BCCCDDDD

(Assume step size  $\lambda = 1.0$ .)

You first see the positive example. First, compute  $\pi_1$  $\pi_1 = \Pr(y_1 = 1 | \vec{x_1}) = \frac{\exp \beta^T x_i}{1 + \exp \beta^T x_i} = \frac{\exp 0}{\exp 0 + 1} = 0.5$ 

$$\beta[j] = \beta[j] + \lambda(y_i - \pi_i)x_i$$
$$\vec{\beta} = \langle 0, 0, 0, 0, 0 \rangle$$

 $y_1 = 1$ 

 $y_2 = 0$ 

AAAABBBC

BCCCDDDD

(Assume step size  $\lambda = 1.0$ .)

 $\pi_1 = 0.5$  What's the update for  $\beta_{bias}$ ?

$$\beta[j] = \beta[j] + \lambda(y_i - \pi_i)x_i$$
$$\vec{\beta} = \langle 0, 0, 0, 0, 0 \rangle$$

 $y_1 = 1$ 

 $y_2 = 0$ 

AAAABBBC

(Assume step size  $\lambda = 1.0$ .)

BCCCDDDD

What's the update for  $\beta_{bias}$ ?

$$\beta_{bias} = \beta'_{bias} + \lambda \cdot (y_1 - \pi_1) \cdot x_{1,bias} = 0.0 + 1.0 \cdot (1.0 - 0.5) \cdot 1.0$$

$$\beta[j] = \beta[j] + \lambda(y_i - \pi_i)x_i$$
$$\vec{\beta} = \langle 0, 0, 0, 0, 0 \rangle$$

 $y_1 = 1$ 

$$y_2 = 0$$

AAAABBBC

BCCCDDDD

(Assume step size  $\lambda = 1.0$ .)

What's the update for  $\beta_{bias}$ ?

$$\beta_{bias} = \beta'_{bias} + \lambda \cdot (y_1 - \pi_1) \cdot x_{1,bias} = 0.0 + 1.0 \cdot (1.0 - 0.5) \cdot 1.0 = 0.5$$

$$\beta[j] = \beta[j] + \lambda(y_i - \pi_i)x_i$$
$$\vec{\beta} = \langle 0, 0, 0, 0, 0 \rangle$$

 $y_1 = 1$ 

AAAABBBC

(Assume step size  $\lambda = 1.0$ .)

$$y_2 = 0$$

BCCCDDDD

What's the update for  $\beta_A$ ?

$$\beta[j] = \beta[j] + \lambda(y_i - \pi_i)x_i$$
$$\vec{\beta} = \langle 0, 0, 0, 0, 0 \rangle$$

 $y_1 = 1$ 

 $y_2 = 0$ 

AAAABBBC

BCCCDDDD

(Assume step size  $\lambda = 1.0$ .)

What's the update for  $\beta_A$ ?

$$\beta_A = \beta_A' + \lambda \cdot (y_1 - \pi_1) \cdot x_{1,A} = 0.0 + 1.0 \cdot (1.0 - 0.5) \cdot 4.0$$

$$\beta[j] = \beta[j] + \lambda(y_i - \pi_i)x_i$$
$$\vec{\beta} = \langle 0, 0, 0, 0, 0 \rangle$$

$$y_1 = 1$$

$$y_2 = 0$$

AAAABBBC

BCCCDDDD

(Assume step size  $\lambda = 1.0$ .)

What's the update for  $\beta_A$ ?

$$\beta_A = \beta_A' + \lambda \cdot (y_1 - \pi_1) \cdot x_{1,A} = 0.0 + 1.0 \cdot (1.0 - 0.5) \cdot 4.0$$
 =2.0

$$\beta[j] = \beta[j] + \lambda(y_i - \pi_i)x_i$$
$$\vec{\beta} = \langle 0, 0, 0, 0, 0 \rangle$$

$$y_1 = 1$$

AAAABBBC

(Assume step size  $\lambda = 1.0$ .)

$$y_2 = 0$$

BCCCDDDD

What's the update for  $\beta_B$ ?

$$\beta[j] = \beta[j] + \lambda(y_i - \pi_i)x_i$$
$$\vec{\beta} = \langle 0, 0, 0, 0, 0 \rangle$$

 $y_1 = 1$ 

 $y_2 = 0$ 

AAAABBBC

BCCCDDDD

(Assume step size  $\lambda = 1.0$ .)

What's the update for  $\beta_B$ ?

$$\beta_B = \beta_B' + \lambda \cdot (y_1 - \pi_1) \cdot x_{1,B} = 0.0 + 1.0 \cdot (1.0 - 0.5) \cdot 3.0$$

$$\beta[j] = \beta[j] + \lambda(y_i - \pi_i)x_i$$
$$\vec{\beta} = \langle 0, 0, 0, 0, 0 \rangle$$

$$y_1 = 1$$

$$y_2 = 0$$

AAAABBBC

BCCCDDDD

(Assume step size  $\lambda = 1.0$ .)

What's the update for  $\beta_B$ ?

$$\beta_B = \beta_B' + \lambda \cdot (y_1 - \pi_1) \cdot x_{1,B} = 0.0 + 1.0 \cdot (1.0 - 0.5) \cdot 3.0 = 1.5$$

$$\beta[j] = \beta[j] + \lambda(y_i - \pi_i)x_i$$
$$\vec{\beta} = \langle 0, 0, 0, 0, 0 \rangle$$

 $y_1 = 1$ 

AAAABBBC

(Assume step size  $\lambda = 1.0$ .)

$$y_2 = 0$$

BCCCDDDD

What's the update for  $\beta_C$ ?

$$\beta[j] = \beta[j] + \lambda(y_i - \pi_i)x_i$$
$$\vec{\beta} = \langle 0, 0, 0, 0, 0 \rangle$$

$$y_1 = 1$$

 $y_2 = 0$ 

AAAABBBC

BCCCDDDD

(Assume step size  $\lambda = 1.0$ .)

What's the update for  $\beta_C$ ?

$$\beta_C = \beta_C' + \lambda \cdot (y_1 - \pi_1) \cdot x_{1,C} = 0.0 + 1.0 \cdot (1.0 - 0.5) \cdot 1.0$$

$$\beta[j] = \beta[j] + \lambda(y_i - \pi_i)x_i$$
$$\vec{\beta} = \langle 0, 0, 0, 0, 0 \rangle$$

 $y_1 = 1$ 

$$y_2 = 0$$

AAAABBBC

BCCCDDDD

(Assume step size  $\lambda = 1.0$ .)

What's the update for  $\beta_C$ ?

$$\beta_C = \beta_C' + \lambda \cdot (y_1 - \pi_1) \cdot x_{1,C} = 0.0 + 1.0 \cdot (1.0 - 0.5) \cdot 1.0 = 0.5$$

$$\beta[j] = \beta[j] + \lambda(y_i - \pi_i)x_i$$
$$\vec{\beta} = \langle 0, 0, 0, 0, 0 \rangle$$

 $y_1 = 1$ 

AAAABBBC

(Assume step size  $\lambda = 1.0$ .)

$$y_2 = 0$$

BCCCDDDD

What's the update for  $\beta_D$ ?

$$\beta[j] = \beta[j] + \lambda(y_i - \pi_i)x_i$$
$$\vec{\beta} = \langle 0, 0, 0, 0, 0 \rangle$$

 $y_1 = 1$ 

$$y_2 = 0$$

AAAABBBC

BCCCDDDD

(Assume step size  $\lambda = 1.0$ .)

What's the update for  $\beta_D$ ?

$$\beta_D = \beta_D' + \lambda \cdot (y_1 - \pi_1) \cdot x_{1,D} = 0.0 + 1.0 \cdot (1.0 - 0.5) \cdot 0.0$$

$$\beta[j] = \beta[j] + \lambda(y_i - \pi_i)x_i$$
$$\vec{\beta} = \langle 0, 0, 0, 0, 0 \rangle$$

 $y_1 = 1$ 

 $y_2 = 0$ 

AAAABBBC

BCCCDDDD

(Assume step size  $\lambda = 1.0$ .)

$$\beta_D = \beta_D' + \lambda \cdot (y_1 - \pi_1) \cdot x_{1,D} = 0.0 + 1.0 \cdot (1.0 - 0.5) \cdot 0.0 = 0.0$$

$$\beta[j] = \beta[j] + \lambda(y_i - \pi_i)x_i$$
$$\vec{\beta} = \langle .5, 2, 1.5, 0.5, 0 \rangle$$

 $y_1 = 1$ 

 $y_2 = 0$ 

AAAABBBC

BCCCDDDD

(Assume step size  $\lambda = 1.0$ .)

Now you see the negative example. What's  $\pi_2$ ?

$$\beta[j] = \beta[j] + \lambda(y_i - \pi_i)x_i$$
  
$$\vec{\beta} = \langle .5, 2, 1.5, 0.5, 0 \rangle$$

$$y_1 = 1$$

 $y_2 = 0$ 

AAAABBBC

BCCCDDDD

(Assume step size  $\lambda = 1.0$ .)

Now you see the negative example. What's  $\pi_2$ ?

$$\pi_2 = \Pr(y_2 = 1 \mid \vec{x_2}) = \frac{\exp \beta^T x_i}{1 + \exp \beta^T x_i} = \frac{\exp \{.5 + 1.5 + 1.5 + 0\}}{\exp \{.5 + 1.5 + 1.5 + 0\} + 1} =$$

$$\beta[j] = \beta[j] + \lambda(y_i - \pi_i)x_i$$
  
$$\vec{\beta} = \langle .5, 2, 1.5, 0.5, 0 \rangle$$

$$y_1 = 1$$

 $y_2 = 0$ 

AAAABBBC

BCCCDDDD

(Assume step size  $\lambda = 1.0$ .)

Now you see the negative example. What's  $\pi_2$ ?

$$\pi_2 = \Pr(y_2 = 1 \mid \vec{x_2}) = \frac{\exp \beta^T x_i}{1 + \exp \beta^T x_i} = \frac{\exp \{.5 + 1.5 + 1.5 + 0\}}{\exp \{.5 + 1.5 + 1.5 + 0\} + 1} = 0.97$$

$$\beta[j] = \beta[j] + \lambda(y_i - \pi_i)x_i$$
  
$$\vec{\beta} = \langle .5, 2, 1.5, 0.5, 0 \rangle$$

$$y_1 = 1$$

 $y_2 = 0$ 

AAAABBBC

BCCCDDDD

(Assume step size  $\lambda = 1.0$ .)

Now you see the negative example. What's  $\pi_2$ ?

$$\pi_2 = 0.97$$

What's the update for  $\beta_{bias}$ ?

$$\beta[j] = \beta[j] + \lambda(y_i - \pi_i)x_i$$
  
$$\vec{\beta} = \langle .5, 2, 1.5, 0.5, 0 \rangle$$

$$y_1 = 1$$

 $y_2 = 0$ 

AAAABBBC

BCCCDDDD

(Assume step size  $\lambda = 1.0$ .)

What's the update for  $\beta_{bias}$ ?

$$\beta_{bias} = \beta'_{bias} + \lambda \cdot (y_2 - \pi_2) \cdot x_{2,bias} = 0.5 + 1.0 \cdot (0.0 - 0.97) \cdot 1.0$$

$$\beta[j] = \beta[j] + \lambda(y_i - \pi_i)x_i$$
  
$$\vec{\beta} = \langle .5, 2, 1.5, 0.5, 0 \rangle$$

 $y_1 = 1$ 

 $y_2 = 0$ 

AAAABBBC

BCCCDDDD

(Assume step size  $\lambda = 1.0$ .)

What's the update for  $\beta_{bias}$ ?

$$\beta_{bias} = \beta'_{bias} + \lambda \cdot (y_2 - \pi_2) \cdot x_{2,bias} = 0.5 + 1.0 \cdot (0.0 - 0.97) \cdot 1.0 = -0.47$$

$$\beta[j] = \beta[j] + \lambda(y_i - \pi_i)x_i$$
$$\vec{\beta} = \langle .5, 2, 1.5, 0.5, 0 \rangle$$

$$y_1 = 1$$

# AAAABBBC

(Assume step size  $\lambda = 1.0$ .)

$$y_2 = 0$$

BCCCDDDD

$$\beta[j] = \beta[j] + \lambda(y_i - \pi_i)x_i$$
  
$$\vec{\beta} = \langle .5, 2, 1.5, 0.5, 0 \rangle$$

$$y_1 = 1$$

$$y_2 = 0$$

AAAABBBC

BCCCDDDD

(Assume step size  $\lambda = 1.0$ .)

$$\beta_A = \beta_A' + \lambda \cdot (y_2 - \pi_2) \cdot x_{2,A} = 2.0 + 1.0 \cdot (0.0 - 0.97) \cdot 0.0$$

$$\beta[j] = \beta[j] + \lambda(y_i - \pi_i)x_i$$
  
$$\vec{\beta} = \langle .5, 2, 1.5, 0.5, 0 \rangle$$

$$y_1 = 1$$

$$y_2 = 0$$

AAAABBBC

BCCCDDDD

(Assume step size  $\lambda = 1.0$ .)

$$\beta_A = \beta_A' + \lambda \cdot (y_2 - \pi_2) \cdot x_{2,A} = 2.0 + 1.0 \cdot (0.0 - 0.97) \cdot 0.0 = 2.0$$

$$\beta[j] = \beta[j] + \lambda(y_i - \pi_i)x_i$$
$$\vec{\beta} = \langle .5, 2, 1.5, 0.5, 0 \rangle$$

$$y_1 = 1$$

AAAABBBC

(Assume step size  $\lambda = 1.0$ .)

$$y_2 = 0$$

BCCCDDDD

$$\beta[j] = \beta[j] + \lambda(y_i - \pi_i)x_i$$
  
$$\vec{\beta} = \langle .5, 2, 1.5, 0.5, 0 \rangle$$

$$y_1 = 1$$

$$y_2 = 0$$

AAAABBBC

BCCCDDDD

(Assume step size  $\lambda = 1.0$ .)

$$\beta_B = \beta_B' + \lambda \cdot (y_2 - \pi_2) \cdot x_{2,B} = 1.5 + 1.0 \cdot (0.0 - 0.97) \cdot 1.0$$

$$\beta[j] = \beta[j] + \lambda(y_i - \pi_i)x_i$$
  
$$\vec{\beta} = \langle .5, 2, 1.5, 0.5, 0 \rangle$$

$$y_1 = 1$$

$$y_2 = 0$$

AAAABBBC

BCCCDDDD

(Assume step size  $\lambda = 1.0$ .)

$$\beta_B = \beta_B' + \lambda \cdot (y_2 - \pi_2) \cdot x_{2,B} = 1.5 + 1.0 \cdot (0.0 - 0.97) \cdot 1.0 = 0.53$$

$$\beta[j] = \beta[j] + \lambda(y_i - \pi_i)x_i$$
$$\vec{\beta} = \langle .5, 2, 1.5, 0.5, 0 \rangle$$

$$y_1 = 1$$

AAAABBBC

(Assume step size  $\lambda = 1.0$ .)

$$y_2 = 0$$

BCCCDDDD

$$\beta[j] = \beta[j] + \lambda(y_i - \pi_i)x_i$$
  
$$\vec{\beta} = \langle .5, 2, 1.5, 0.5, 0 \rangle$$

$$y_1 = 1$$

$$y_2 = 0$$

AAAABBBC

BCCCDDDD

(Assume step size  $\lambda = 1.0$ .)

$$\beta_C = \beta_C' + \lambda \cdot (y_2 - \pi_2) \cdot x_{2,C} = 0.5 + 1.0 \cdot (0.0 - 0.97) \cdot 3.0$$

$$\beta[j] = \beta[j] + \lambda(y_i - \pi_i)x_i$$
  
$$\vec{\beta} = \langle .5, 2, 1.5, 0.5, 0 \rangle$$

$$y_1 = 1$$

$$y_2 = 0$$

AAAABBBC

BCCCDDDD

(Assume step size  $\lambda = 1.0$ .)

$$\beta_C = \beta_C' + \lambda \cdot (y_2 - \pi_2) \cdot x_{2,C} = 0.5 + 1.0 \cdot (0.0 - 0.97) \cdot 3.0 = -2.41$$

$$\beta[j] = \beta[j] + \lambda(y_i - \pi_i)x_i$$
$$\vec{\beta} = \langle .5, 2, 1.5, 0.5, 0 \rangle$$

$$y_1 = 1$$

AAAABBBC

(Assume step size  $\lambda = 1.0$ .)

$$y_2 = 0$$

BCCCDDDD

$$\beta[j] = \beta[j] + \lambda(y_i - \pi_i)x_i$$
  
$$\vec{\beta} = \langle .5, 2, 1.5, 0.5, 0 \rangle$$

$$y_1 = 1$$

$$y_2 = 0$$

AAAABBBC

BCCCDDDD

(Assume step size  $\lambda = 1.0$ .)

$$\beta_D = \beta_D' + \lambda \cdot (y_2 - \pi_2) \cdot x_{2,D} = 0.0 + 1.0 \cdot (0.0 - 0.97) \cdot 4.0$$

$$\beta[j] = \beta[j] + \lambda(y_i - \pi_i)x_i$$
  
$$\vec{\beta} = \langle .5, 2, 1.5, 0.5, 0 \rangle$$

$$y_1 = 1$$

$$y_2 = 0$$

AAAABBBC

BCCCDDDD

(Assume step size  $\lambda = 1.0$ .)

$$\beta_D = \beta_D' + \lambda \cdot (y_2 - \pi_2) \cdot x_{2,D} = 0.0 + 1.0 \cdot (0.0 - 0.97) \cdot 4.0$$
 =-3.88