Math 231, Wed 17-Mar-2021 -- Wed 17-Mar-2021

Differential Equations and Linear Algebra

Spring 2020

Problem: n dep. vers.
$$x_1, \dots, x_n$$
 | stronder, $x_1 = a_{11}(t)x_1 + \dots + a_{1n}(t)x_n + f_1(t)$

wast quant $x_2' = a_{11}(t)x_1 + \dots + a_{2n}(t)x_n + f_2(t)$

oup it

 $x_n' = a_{n1}(t)x_1 + \dots + a_{nn}(t)x_n + f_n(t)$

in yors. $x_n' = a_{n1}(t)x_1 + \dots + a_{nn}(t)x_n + f_n(t)$

Wednesday, March 17th 2021

Wk 7, We

Topic:: Existence and uniqueness wrapup

Read:: ODELA 3.2-3.4

HW:: HC03 due Mar. 23

جہ کہ Problem x' = Ax

Solve

1.
$$x' = [1 \ 1; \ 3 \ -1] \ x, \quad x(0) = [4; \ 0]$$

2. x' = [2 1; 1 2] x

3.
$$x' = [0 \ 2 \ 4; \ -5 \ -11 \ -20; \ 2 \ 4 \ 7] \ x$$

Show direction fields

Problem
$$\vec{x}' = A\vec{x}$$

- homogeneous, constant coefficient version of
$$\vec{x}' = A(t)\vec{x} + \vec{f}(t)$$
- how it looks written out as a system of equations
- why eigenpairs of A are relevant

Solve

1. $x' = [1 \ 1; \ 3 \ -1] \ x$, $x(0) = [4; \ 0]$

2. $x' = [2 \ 1; \ 1 \ 2] \ x$

3. $x' = [0 \ 2 \ 4; \ -5 \ -11 \ -20; \ 2 \ 4 \ 7] \ x$

First Order Linear, Homogeneous Systems with Constant Coefficients

The problems we are solving here are, for some positive integer n > 0, of the form

$$\frac{d}{dt} \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}, \quad \text{or, more simply} \quad \mathbf{x}' = \mathbf{A}\mathbf{x}. \tag{1}$$

We have seen that, for solutions of the form $e^{\lambda t}$ **v** to exist (where **v** is a vector in \mathbb{R}^n), it is necessary that (λ, \mathbf{v}) be an eigenpair of **A**. If we can find n linearly independent solutions of this form

$$e^{\lambda_1 t} \mathbf{v}_1$$
, $e^{\lambda_2 t} \mathbf{v}_2$, ..., $e^{\lambda_n t} \mathbf{v}_n$,

then these solutions form a fundamental set of solutions to (1), giving us its general solution

$$\mathbf{x}(t) = c_1 e^{\lambda_1 t} \mathbf{v}_1 + c_2 e^{\lambda_2 t} \mathbf{v}_2 + \dots + c_n e^{\lambda_n t} \mathbf{v}_n.$$

Here are some useful facts to know.

Theorem 1: Suppose **A** is an *n*-by-*n* matrix with entries that are real numbers.

- 1. If $\lambda_1, \ldots, \lambda_n$ are the eigenvalues of **A**, then $\det(\mathbf{A}) = \lambda_1 \lambda_2 \cdots \lambda_n$, the product of eigenvalues. [This part of the theorem is, in fact, true even in the more general case where entries of **A** are complex numbers.]
- 2. If $\lambda = \alpha + i\beta$ (with α, β both real and $\beta \neq 0$) is an eigenvalue of **A** with corresponding eigenvector $\mathbf{v} = \mathbf{u} + i\mathbf{w}$ (where all the entries of **u** and **w** are real numbers), then the complex conjugate $\overline{\lambda} = \alpha i\beta$ is an eigenvalue of **A** as well, with corresponding eigenvector $\mathbf{u} i\mathbf{w}$.
- 3. If the eigenvalues $\lambda_1, \ldots, \lambda_n$ are n distinct complex numbers, with corresponding eigenvectors $\mathbf{v}_1, \ldots, \mathbf{v}_n$, then $\{e^{\lambda_1 t}\mathbf{v}_1, e^{\lambda_2 t}\mathbf{v}_2, \ldots, e^{\lambda_n t}\mathbf{v}_n\}$ is a fundamental set of solutions to $\mathbf{x}' = \mathbf{A}\mathbf{x}$.
- 4. If, for each eigenvalue of **A**, the geometric multiplicity equals the algebraic multiplicity, then by choosing a basis of eigenvectors corresponding to each eigenvalue and amassing them into the collection $\{\mathbf{v}_1,\ldots,\mathbf{v}_n\}$, one again obtains a fundamental set of solutions $\{e^{\lambda_1 t}\mathbf{v}_1,e^{\lambda_2 t}\mathbf{v}_2,\ldots,e^{\lambda_n t}\mathbf{v}_n\}$. (Here, λ_j is the eigenvalue that goes with eigenvector \mathbf{v}_j .)
- 5. If **A** is a **symmetric** matrix (that is, $a_{ij} = a_{ji}$ for each $1 \le i, j \le n$), then the eigenvalues are all *real* numbers whose geometric multiplicities equal their algebraic multiplicities. Moreover, eigenvectors corresponding to *distinct* eigenvalues are orthogonal, and there exists an *orthogonal* basis of \mathbb{R}^n consisting of eigenvectors of **A**.

Most of the matrices **A** whose eigenpairs we have calculated have fallen into case 3 of this theorem, giving us, in theory, a fundamental set of solutions to $\mathbf{x}' = \mathbf{A}\mathbf{x}$. The one true exception was the matrix

$$\mathbf{A} = \begin{pmatrix} -1 & 1 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 2 \end{pmatrix},$$

for which one eigenvalue, (-1) had algebraic multiplicity two but geometric multiplicity one. It is in cases such as these that we must work hardest to obtain a fundamental set of solutions.

Direction fields

For an *autonomous* 1st order (perhaps nonlinear) system $\mathbf{x}' = \mathbf{A}\mathbf{x}$ where \mathbf{A} is *n*-by-*n*, with n = 2 or n = 3, it possible to draw a **direction field** in the appropriate **phase space** (called the **phase plane** when n = 2). The idea in the n = 2 linear case is that, at any point $\mathbf{x} = (x_1, x_2)$, we have

$$\begin{pmatrix} dx_1/dt \\ dx_2/dt \end{pmatrix} = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}, \qquad \Rightarrow \qquad \frac{dx_2}{dx_1} = \frac{dx_2/dt}{dx_1/dt} = \frac{a_{21}x_1 + a_{22}x_2}{a_{11}x_1 + a_{12}x_2}.$$

(The same idea works, with only slight modification, in the case of nonlinear autonomous 1st order systems.) One can place a hash mark with slope dx_2/dx_1 at the point (x_1, x_2) . It is, of course, convenient to hand this task over to a software package. See the PPLANE applet at http://math.rice.edu/%7edfield/dfpp.html.

Example 1:

Look at direction fields for

1. the nonlinear system

The former is the default when the PPLANE applet starts up. The latter was introduced in a paper by Lengyel & Epstein from 1991 related to their study of the chlorine dioxide-iodine-malonic acid (ClO₂-I₂-MA) reaction.

$$2. \frac{d}{dt} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 3 & -1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}.$$

3.
$$\frac{d}{dt} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$$
.

Classifying equilibrium solutions for x' = Ax

Sticking to the linear case, let us assume, for the moment, that $\det(\mathbf{A}) \neq 0$. We have an equilibrium point \mathbf{x} when the rates of change dx_1/dt , ... dx_n/dt are simultaneously zero—that is, whenever $\mathbf{x}' = \mathbf{A}\mathbf{x} = \mathbf{0}$. When $\det(\mathbf{A}) = 0$ there are infinitely many equilibrium points, but as we are assuming $\det(\mathbf{A}) \neq 0$, $\mathbf{x} = \mathbf{0}$ is the only one. We wish, now, to classify this equilibrium point. Our

discussion will focus on systems in which the matrix **A** is 2-by-2, but the ideas extend to higher dimensions. We will look at two important cases now, and return to cover other cases later.

Example 2: A has real eigenvalues of opposite sign

 $\frac{d}{dt} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 3 & -1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$. Plot the direction field and use the general solution to explain what it shows. The origin is classified as a **saddle point**.

Example 3: A has real, distinct eigenvalues of same (positive) sign

 $\frac{d}{dt} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$. Plot the direction field and use the general solution to explain what it shows. The origin is classified as an **unstable node**.

Example 4: A has real, distinct eigenvalues of same (negative) sign

 $\frac{d}{dt} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} -5 & 2 \\ -1 & -2 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$. Plot the direction field and use the general solution to explain what it shows. The origin is classified as an **asymptotically stable node**.

$$\overrightarrow{\chi}(t) = \begin{pmatrix} \chi_{n}(t) \\ \vdots \\ \chi_{n}(t) \end{pmatrix} = e \overrightarrow{v}$$

$$\xrightarrow{\text{const}}$$

$$\xrightarrow{\text{const}}$$

LHS:
$$\frac{d}{dt} \hat{x}(t) = \frac{d}{dt} \left(e^{\lambda t} \hat{v} \right) = \lambda e^{\lambda t} \cdot \hat{v}$$
 (constant-mult.)

RHS:
$$A = (e^{\lambda t} + d) = e^{\lambda t} A = (e^{\lambda t} + d) = e^{\lambda t} A =$$

So, for our guess to solve
$$\ddot{\chi} = A \dot{\chi}$$
, we require

So this yields a nontrivial result precisely when $(\lambda, \overline{\mathcal{V}})$ form an example of A.

Ex.
$$\int \vec{x}' = \begin{bmatrix} 1 & 1 \\ 3 & -1 \end{bmatrix} \vec{x}$$
, subj. to $\vec{x}(0) = \begin{bmatrix} 4 \\ 0 \end{bmatrix}$

(Note: Sence as problem

 $x_1' = x_1 + x_2$, $x_1(0) = 9$
 $x_2' = 3x_1 - x_2$, $x_2(0) = 0$

First, find c-vals if $A = \begin{bmatrix} 1 & 1 \\ 3 & -1 \end{bmatrix}$. Solve

 $0 = \det(A - \lambda I) = \begin{bmatrix} 1 - \lambda & 1 \\ 3 & -1 - \lambda \end{bmatrix} = (1 - \lambda)(-1 - \lambda) - 3$
 $= \lambda^2 - 1 - 3 = \lambda^2 - 9 = (\lambda - 2)(\lambda + 2)$
 $\Rightarrow e - vals \quad \lambda = -2$, Z .

Corresp. to $\lambda = -2$: Mult $(A - (-2)I)$ contains $e - vectors$
 $\begin{bmatrix} 3 & 1 & 0 \\ 3 & 1 \end{bmatrix} \vec{v} = \vec{0}$
 $\begin{bmatrix} 3 & 1 & 0 \\ 3 & 1 \end{bmatrix} \vec{v} = \vec{0}$
 $\begin{bmatrix} 3 & 1 & 0 \\ 3 & 1 \end{bmatrix} \vec{v} = \vec{0}$
 $\begin{bmatrix} 3 & 1 & 0 \\ 3 & 1 \end{bmatrix} \vec{v} = \vec{0}$
 $\begin{bmatrix} 3 & 1 & 0 \\ 3 & 1 \end{bmatrix} \vec{v} = \vec{0}$
 $\begin{bmatrix} 3 & 1 & 0 \\ 3 & 1 \end{bmatrix} \vec{v} = \vec{0}$
 $\begin{bmatrix} 3 & 1 & 0 \\ 3 & 1 \end{bmatrix} \vec{v} = \vec{0}$
 $\begin{bmatrix} 3 & 1 & 0 \\ 3 & 1 \end{bmatrix} \vec{v} = \vec{0}$
 $\begin{bmatrix} 3 & 1 & 0 \\ 3 & 1 \end{bmatrix} \vec{v} = \vec{0}$
 $\begin{bmatrix} 3 & 1 & 0 \\ 3 & 1 \end{bmatrix} \vec{v} = \vec{0}$
 $\begin{bmatrix} 3 & 1 & 0 \\ 3 & 1 \end{bmatrix} \vec{v} = \vec{0}$
 $\begin{bmatrix} 3 & 1 & 0 \\ 3 & 1 \end{bmatrix} \vec{v} = \vec{0}$
 $\begin{bmatrix} 3 & 1 & 0 \\ 3 & 1 \end{bmatrix} \vec{v} = \vec{0}$
 $\begin{bmatrix} 3 & 1 & 0 \\ 3 & 1 \end{bmatrix} \vec{v} = \vec{0}$
 $\begin{bmatrix} 3 & 1 & 0 \\ 3 & 1 \end{bmatrix} \vec{v} = \vec{0}$
 $\begin{bmatrix} 3 & 1 & 0 \\ 3 & 1 \end{bmatrix} \vec{v} = \vec{0}$
 $\begin{bmatrix} 3 & 1 & 0 \\ 3 & 1 \end{bmatrix} \vec{v} = \vec{0}$
 $\begin{bmatrix} 3 & 1 & 0 \\ 3 & 1 \end{bmatrix} \vec{v} = \vec{0}$
 $\begin{bmatrix} 3 & 1 & 0 \\ 3 & 1 \end{bmatrix} \vec{v} = \vec{0}$
 $\begin{bmatrix} 3 & 1 & 0 \\ 3 & 1 \end{bmatrix} \vec{v} = \vec{0}$
 $\begin{bmatrix} 3 & 1 & 0 \\ 3 & 1 \end{bmatrix} \vec{v} = \vec{0}$
 $\begin{bmatrix} 3 & 1 & 0 \\ 3 & 1 \end{bmatrix} \vec{v} = \vec{0}$
 $\begin{bmatrix} 3 & 1 & 0 \\ 3 & 1 \end{bmatrix} \vec{v} = \vec{0}$
 $\begin{bmatrix} 3 & 1 & 0 \\ 3 & 1 \end{bmatrix} \vec{v} = \vec{0}$
 $\begin{bmatrix} 3 & 1 & 0 \\ 3 & 1 \end{bmatrix} \vec{v} = \vec{0}$
 $\begin{bmatrix} 3 & 1 & 0 \\ 3 & 1 \end{bmatrix} \vec{v} = \vec{0}$
 $\begin{bmatrix} 3 & 1 & 0 \\ 3 & 1 \end{bmatrix} \vec{v} = \vec{0}$
 $\begin{bmatrix} 3 & 1 & 0 \\ 3 & 1 \end{bmatrix} \vec{v} = \vec{0}$
 $\begin{bmatrix} 3 & 1 & 0 \\ 3 & 1 \end{bmatrix} \vec{v} = \vec{0}$
 $\begin{bmatrix} 3 & 1 & 0 \\ 3 & 1 \end{bmatrix} \vec{v} = \vec{0}$
 $\begin{bmatrix} 3 & 1 & 0 \\ 3 & 1 \end{bmatrix} \vec{v} = \vec{0}$
 $\begin{bmatrix} 3 & 1 & 0 \\ 3 & 1 \end{bmatrix} \vec{v} = \vec{0}$
 $\begin{bmatrix} 3 & 1 & 0 \\ 3 & 1 \end{bmatrix} \vec{v} = \vec{0}$
 $\begin{bmatrix} 3 & 1 & 0 \\ 3 & 1 \end{bmatrix} \vec{v} = \vec{0}$
 $\begin{bmatrix} 3 & 1 & 0 \\ 3 & 1 \end{bmatrix} \vec{v} = \vec{0}$
 $\begin{bmatrix} 3 & 1 & 0 \\ 3 & 1 \end{bmatrix} \vec{v} = \vec{0}$
 $\begin{bmatrix} 3 & 1 & 0 \\ 3 & 1 \end{bmatrix} \vec{v} = \vec{0}$
 $\begin{bmatrix} 3 & 1 & 0 \\ 3 & 1 \end{bmatrix} \vec{v} = \vec{0}$
 $\begin{bmatrix} 3 & 1 & 0 \\ 3 & 1 \end{bmatrix} \vec{v} = \vec{0}$
 $\begin{bmatrix} 3 & 1 & 0 \\ 3 & 1 \end{bmatrix} \vec{v} = \vec{0}$

representative (basis)
representative (basis)
for e-vectors in F.2

For
$$\lambda = 2$$

$$\left(A - 2I\right) = \begin{bmatrix} -1 & 1 \\ 3 & -3 \end{bmatrix} \sim \begin{bmatrix} -1 & 1 \\ 0 & 0 \end{bmatrix} \Rightarrow -V_1 + V_2 = 0$$

Corresp. e-vectors
$$\frac{\zeta}{U} = \begin{bmatrix} V_1 \\ V_2 \end{bmatrix} = \begin{bmatrix} V_2 \\ V_2 \end{bmatrix} = \begin{bmatrix} V_2 \\ V_2 \end{bmatrix}$$
basis vector
$$for E_2$$

and our earlier derivation says

$$e^{-2t}\begin{bmatrix} -1\\ 3\end{bmatrix} = \begin{bmatrix} -e^{-2t}\\ 3e^{-2t}\end{bmatrix}$$
 solves $\overrightarrow{x}' = \begin{bmatrix} 1\\ 3 - 1\end{bmatrix} \overrightarrow{x}$

However, when
$$t = 0$$
 is plaged in to either one $t = 0$:
$$\begin{bmatrix} -e^{-2(0)} \\ 3e^{-2(0)} \end{bmatrix} = \begin{bmatrix} -1 \\ 3 \end{bmatrix}$$
 Not $\begin{bmatrix} 4 \\ 0 \end{bmatrix}$

$$t = 0: \begin{bmatrix} e^{2(0)} \\ e^{2(0)} \\ e \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

So neither soln on its own satisfies the IC.
What does (while still solving x'= Ax) is an appropriately—
Chasen linear combination

$$\dot{x}(t) = c, e^{-2t} \begin{bmatrix} -1 \\ 3 \end{bmatrix} + c_2 e^{-1} \end{bmatrix}$$

must chaose c_1, c_2

Choose using the IC: New

$$\begin{bmatrix} 4 \\ 0 \end{bmatrix} = \frac{1}{2} \times (6) = C, \begin{bmatrix} -1 \\ 3 \end{bmatrix} + C_{2} \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

$$= \begin{bmatrix} -1 & 1 \\ 3 & 1 \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \end{bmatrix}$$

Use GE to get c,,cz:

$$\begin{bmatrix} -1 & 1 & | & 4 \\ 3 & 1 & | & 0 \end{bmatrix} \xrightarrow{\text{RNEF}} \begin{bmatrix} 1 & 0 & | & -1 \\ 0 & 1 & | & 3 \end{bmatrix}$$

$$C_1 = -1 \qquad C_2 = 3$$

and the soln. is
$$\dot{x}(t) = -1 e^{-2t} \begin{bmatrix} -1 \\ 3 \end{bmatrix} + 3 e^{2t} \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

$$= \begin{bmatrix} e^{-2t} + 3e^{2t} \\ -3e^{-1t} + 3e^{2t} \end{bmatrix}$$

$$\dot{x}' = \begin{bmatrix} 2 \\ 1 \end{bmatrix} \dot{x} \Leftrightarrow \begin{bmatrix} x_1' = 2x_1 + x_2 \\ x_2' = x_1 + 2x_2 \end{bmatrix}$$
Find e-pairs:
$$\frac{\lambda}{3} \qquad \frac{basis\ e-vectors}{1}$$

$$\begin{bmatrix} 1 \\ -1 \end{bmatrix}$$

General soln. is any linear comb. of
$$2t \begin{bmatrix} 1 \\ -1 \end{bmatrix}$$
, $e^{t} \begin{bmatrix} 1 \\ -1 \end{bmatrix}$.

Solution $c = e^{t} \begin{bmatrix} 1 \\ 1 \end{bmatrix} + c_{t} e^{t} \begin{bmatrix} 1 \\ -1 \end{bmatrix}$.

(as far as we can go what)