Numerical Linear Algebra Projectors

1. Projectors

A projector is a square matrix P that satisfies

$$P^2 = P$$
.

2. Complementary Projectors

If P is a projector, I - P is also a projector,

$$(I - P)^2 = I - P.$$

The matrix I - P is called the *complementary projector* to P.

Properties:

$$range(I - P) = null(P)$$
.

$$\operatorname{null}(I - P) = \operatorname{range}(P).$$

$$range(P) \cap null(P) = \{0\}.$$

3. Orthogonal Projectors

Theorem 1. A projector P is orthogonal if and only if $P = P^T$.

4. Projection with an Orthogonal Basis

$$P = QQ^T$$

where the columns of ${\cal Q}$ are orthonormal.

5. Projection with an Arbitrary Basis

 $A \in \mathbb{R}^{m \times n}$ whose jth column is a_j . $\{a_1, \dots, a_n\}$ are linearly indendent vectors.

$$P = A(A^T A)^{-1} A^T.$$