

1. (Currently Amended) An axial-flow thermal turbomachine, having comprising:
a rotor (1) made from a metallic material with a first density (D₁), in which;
a circumferential groove; and
rotor blades (3, 3') and intermediate pieces (4) are alternately mounted alternately in a
the circumferential groove, characterized in that;
wherein said intermediate pieces (4) consist of comprise a material with a second density
(D₂), which is lower than the first density (D₁).
2. (Currently Amended) The turbomachine as claimed in claim 1, characterized in
that wherein the material having the second density (D₂) is comprises an intermetallic compound.
3. (Currently Amended) The turbomachine as claimed in claim 2, characterized in
that the wherein said intermetallic compound is a comprises an alloy selected from the group
consisting of a γ-titanium aluminide alloy or and an orthorhombic titanium aluminide alloy.
4. (Currently Amended) The turbomachine as claimed in claim 3, characterized in
that the wherein said γ-titanium aluminide alloy has the following chemical composition (details
in % by weight): Ti-(30.5-31.5)Al-(8.9-9.5)W-(0.3-0.4)Si.
5. (Currently Amended) The turbomachine as claimed in claim 1, characterized in
that wherein the material having the second density (D₂) is comprises a titanium alloy.
6. (Currently Amended) The turbomachine as claimed in one of claims Claim 1 to 5,
characterized in that wherein the turbomachine is comprises a gas turbine having a high-pressure
compressor of a gas turbine having with a rotor (1) which substantially comprises a stainless Cr-
Ni steel.