Examenul de bacalaureat național 2017 Proba E. c) Matematică M_st -nat

BAREM DE EVALUARE ŞI DE NOTARE

Varianta 2

Filiera teoretică, profilul real, specializarea științe ale naturii

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea la 10 a punctajului total acordat pentru lucrare.

SUBIECTUL I (30 de puncte)

1.	$r = a_2 - a_1 = 3$	3p
	$a_3 = 10$	2p
2.	$x_1 + x_2 = 4$, $x_1 x_2 = 1$	2p
	$4x_1x_2 - (x_1 + x_2) = 4 \cdot 1 - 4 = 0$	3 p
3.	$2^{2x+1} = 2^{-3} \Leftrightarrow 2x+1 = -3$	3 p
	x = -2	2 p
4.	Mulțimea numerelor naturale de două cifre are 90 de elemente, deci sunt 90 de cazuri posibile	2p
	În mulțimea numerelor naturale de două cifre, multiplii de 15 sunt numerele 15, 30, 45, 60, 75 și 90, deci sunt 6 cazuri favorabile	2p
	$p = \frac{\text{nr. cazuri favorabile}}{\text{nr. cazuri posibile}} = \frac{6}{90} = \frac{1}{15}$	1p
5.	$m_{AB} = 0$, $m_{AC} = \frac{a-1}{3}$	2p
	$m_{AB} = m_{AC} \Leftrightarrow \frac{a-1}{3} = 0 \Leftrightarrow a = 1$	3 p
6.	$\frac{AB}{\sin C} = \frac{AC}{\sin B} \Rightarrow \sin B = \frac{4 \cdot \frac{\sqrt{3}}{2}}{4\sqrt{3}} =$	3p
	$=\frac{1}{2}$	2 p

1.a)	$A(1) = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \Rightarrow \det(A(1)) = \begin{vmatrix} 0 & 1 \\ 1 & 0 \end{vmatrix} =$	2p
	=0-1=-1	3 p
b)	$A(x)A(y) = \begin{pmatrix} 0 & x \\ x & 0 \end{pmatrix} \begin{pmatrix} 0 & y \\ y & 0 \end{pmatrix} = \begin{pmatrix} xy & 0 \\ 0 & xy \end{pmatrix} =$	3 p
	$= xy \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = xyI_2, \text{ pentru orice numere reale } x \text{ și } y$	2p
c)	$A\left(3^{a}\right)A\left(3^{a+1}\right)A\left(3^{a+2}\right) = A\left(3^{3a+3}\right)$	3p
	$A(3^{3a+3}) = A(27) \Rightarrow 3^{3a+3} = 3^3$, de unde obţinem $a = 0$	2p
2.a)	$f = X^3 + X^2 + 2X - 4 \Rightarrow f(1) = 1^3 + 1^2 + 2 \cdot 1 - 4 =$	3 p
	=1+1+2-4=0	2p

b)	$f(-2) = 0 \Rightarrow m = 4$, deci $f = X^3 + 4X^2 + 2X - 4$	3p
	f(-3) = -27 + 36 - 6 - 4 = -1	2 p
c)	$x_1 + x_2 + x_3 = -m$, $x_1x_2 + x_2x_3 + x_3x_1 = 2$, $x_1x_2x_3 = 4$	3 p
	$\frac{1}{x_1} + \frac{1}{x_2} + \frac{1}{x_3} + x_1 + x_2 + x_3 = \frac{x_1 x_2 + x_2 x_3 + x_3 x_1}{x_1 x_2 x_3} + (x_1 + x_2 + x_3) = \frac{1}{2} - m, \text{ deci } m = 0$	2p

1.a)	$f'(x) = \frac{(x+2017)'e^x - (x+2017)(e^x)'}{(e^x)^2} =$	3p
	$= \frac{e^x (1 - x - 2017)}{(e^x)^2} = \frac{-(x + 2016)}{e^x}, \ x \in \mathbb{R}$	2p
b)	f(0) = 2017, f'(0) = -2016	2p
	Ecuația tangentei este $y - f(0) = f'(0)(x-0)$, adică $y = -2016x + 2017$	3 p
c)	$f''(x) = \frac{x + 2015}{e^x}, \ x \in \mathbb{R}$	2p
	$f''(x) \ge 0$ pentru orice $x \in [-2015, +\infty)$, deci f este convexă pe $[-2015, +\infty)$	3 p
2.a)	$\int_{0}^{1} (x^{2} + 1) dx = \left(\frac{x^{3}}{3} + x\right) \Big _{0}^{1} =$	3p
	$=\frac{1}{3}+1=\frac{4}{3}$	2p
b)	$F: \mathbb{R} \to \mathbb{R}$, $F(x) = \operatorname{arctg} x + c$, unde $c \in \mathbb{R}$	2 p
	$F(1) = \frac{\pi}{4} + c \Rightarrow c = 1$, deci $F(x) = \operatorname{arctg} x + 1$	3 p
c)	$\int_{0}^{n} x f(x) dx = \int_{0}^{n} \frac{x}{x^{2} + 1} dx = \frac{1}{2} \ln(x^{2} + 1) \Big _{0}^{n} = \frac{1}{2} \ln(n^{2} + 1)$	3 p
	$\frac{1}{2}\ln\left(n^2+1\right) = \frac{1}{2}\ln 5$, deci $n^2+1=5$, de unde obţinem $n=2$	2p

Examenul de bacalaureat național 2017 Proba E. c) Matematică *M st-nat*

Varianta 2

Filiera teoretică, profilul real, specializarea științe ale naturii

- Toate subiectele sunt obligatorii. Se acordă 10 puncte din oficiu.
- Timpul de lucru efectiv este de 3 ore.

SUBIECTUL I (30 de puncte)

- **5p** 1. Determinați al treilea termen al progresiei aritmetice $(a_n)_{n\geq 1}$, știind că $a_1=4$ și $a_2=7$.
- **5p** 2. Se consideră x_1 și x_2 soluțiile ecuației $x^2 4x + 1 = 0$. Arătați că $4x_1x_2 (x_1 + x_2) = 0$.
- **5p** 3. Rezolvați în mulțimea numerelor reale ecuația $2^{2x+1} = \frac{1}{8}$.
- **5p 4.** Calculați probabilitatea ca, alegând un număr din mulțimea numerelor naturale de două cifre, acesta să fie multiplu de 15.
- **5p 5.** În reperul cartezian xOy se consideră punctele A(0,1), B(1,1) și C(3,a), unde a este număr real. Determinați numărul real a, știind că punctele A, B și C sunt coliniare.
- **5p 6.** Se consideră triunghiul ABC cu $AB = 4\sqrt{3}$, AC = 4 și $\sin C = \frac{\sqrt{3}}{2}$. Calculați $\sin B$.

SUBIECTUL al II-lea (30 de puncte)

- **1.** Se consideră matricea $A(x) = \begin{pmatrix} 0 & x \\ x & 0 \end{pmatrix}$, unde x este număr real.
- **5p** a) Arătați că $\det(A(1)) = -1$.
- **5p b)** Demonstrați că $A(x)A(y) = xyI_2$, pentru orice numere reale x și y, unde $I_2 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$.
- **5p** c) Determinați numărul real a, știind că $A(3^a)A(3^{a+1})A(3^{a+2}) = A(27)$.
 - **2.** Se consideră polinomul $f = X^3 + mX^2 + 2X 4$, unde m este număr real.
- **5p** a) Pentru m=1, arătați că f(1)=0.
- **5p b)** Arătați că, dacă polinomul f se divide cu X + 2, atunci restul împărțirii lui f la X + 3 este egal cu -1.
- **5p** c) Determinați numărul real m, știind că $\frac{1}{x_1} + \frac{1}{x_2} + \frac{1}{x_3} + x_1 + x_2 + x_3 = \frac{1}{2}$, unde x_1 , x_2 și x_3 sunt rădăcinile polinomului f.

- **1.** Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = \frac{x + 2017}{e^x}$.
- **5p** a) Arătați că $f'(x) = \frac{-(x+2016)}{e^x}, x \in \mathbb{R}$.
- **5p b)** Determinați ecuația tangentei la graficul funcției f în punctul de abscisă x = 0, situat pe graficul funcției f.
- **5p** c) Demonstrați că funcția f este convexă pe $[-2015, +\infty)$.
 - **2.** Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = \frac{1}{x^2 + 1}$.
- **5p a)** Arătați că $\int_{0}^{1} \frac{1}{f(x)} dx = \frac{4}{3}$.
- **5p b**) Determinați primitiva F a funcției f, știind că $F(1) = \frac{\pi}{4} + 1$.
- **5p** c) Determinați numărul natural n, știind că $\int_{0}^{n} x f(x) dx = \frac{1}{2} \ln 5$.

Matematică *M_st-nat*

BAREM DE EVALUARE ŞI DE NOTARE

Varianta 10

Filiera teoretică, profilul real, specializarea științe ale naturii

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea la 10 a punctajului total acordat pentru lucrare.

SUBIECTUL I (30 de puncte)

1.	$a_1 = a_3 - 2r = 10 - 6 =$	3 p
	= 4	2p
2.	$f(1) = 3 \Leftrightarrow 1 - m + 2m = 3$	3 p
	m = 2	2 p
3.	$4^x = \frac{1}{4} \Longleftrightarrow 4^x = 4^{-1}$	3 p
	x = -1	2 p
4.	Cifra unităților se poate alege în 2 moduri	2p
	Pentru fiecare alegere a cifrei unităților, cifra zecilor se poate alege în câte 3 moduri, deci se pot forma $3 \cdot 2 = 6$ numere	3p
5.	$x_M = 3$ și $y_M = 3$, unde M este mijlocul segmentului AB	2p
	$m_{AB} = -1 \Rightarrow m_{\mathrm{mediatoare}} = 1$, deci ecuația mediatoarei segmentului AB este $y = x$	3 p
6.	BC = 10	2p
	R=5	3 p

1.a)	$A(-2) = \begin{pmatrix} 1 & 1 \\ 5 & 1 \end{pmatrix} \Rightarrow \det(A(-2)) = \begin{vmatrix} 1 & 1 \\ 5 & 1 \end{vmatrix} =$	2p
	=1-5=-4	3 p
b)	$A(x) + A(-x) = \begin{pmatrix} 1 & 2x+5 \\ 5 & 1 \end{pmatrix} + \begin{pmatrix} 1 & -2x+5 \\ 5 & 1 \end{pmatrix} = \begin{pmatrix} 2 & 10 \\ 10 & 2 \end{pmatrix}$	3р
	$A(2017) + A(-2017) = \begin{pmatrix} 2 & 10 \\ 10 & 2 \end{pmatrix} = A(x) + A(-x)$, pentru orice număr real x	2p
c)	$A(0) \begin{pmatrix} p \\ q \end{pmatrix} = \begin{pmatrix} 1 & 5 \\ 5 & 1 \end{pmatrix} \begin{pmatrix} p \\ q \end{pmatrix} = \begin{pmatrix} p+5q \\ 5p+q \end{pmatrix}$	3р
	$ \binom{p+5q}{5p+q} = \binom{6}{6} \Leftrightarrow p=q=1 $	2p
2.a)	$x \circ y = xy + 6x + 6y + 36 - 6 =$	2p
	= x(y+6)+6(y+6)-6=(x+6)(y+6)-6, pentru orice numere reale x si y	3p
b)	$x \circ (-5) = (x+6) \cdot (-5+6) - 6 = x$	2p
	$(-5) \circ x = (-5+6) \cdot (x+6) - 6 = x = x \circ (-5)$, pentru orice număr real x	3 p
c)	(x+6)(-2017+6)-6=(2017+6)(-6+6)-6	2p
	$x+6=0 \Leftrightarrow x=-6$	3p

(30 de puncte) SUBIECTUL al III-lea

	•	
1.a)	$f'(x) = \left(\frac{2}{x}\right)' + \left(\ln x\right)' =$	2p
	$= -\frac{2}{x^2} + \frac{1}{x} = \frac{x-2}{x^2}, \ x \in (0, +\infty)$	3p
b)	f(1) = 2, f'(1) = -1	2p
	Ecuația tangentei este $y - f(1) = f'(1)(x-1)$, adică $y = -x + 3$	3p
c)	$f'(x) = 0 \Leftrightarrow x = 2$	1p
	$x \in (0,2] \Rightarrow f'(x) \le 0$, deci f este descrescătoare pe $(0,2]$	1p
	$x \in [2, +\infty) \Rightarrow f'(x) \ge 0$, deci f este crescătoare pe $[2, +\infty)$	1p
	$f(x) \ge f(2)$ pentru orice $x \in (0, +\infty)$ și, cum $f(2) = 1 + \ln 2$, obținem $\frac{2}{x} + \ln x \ge 1 + \ln 2$,	2p
	pentru orice $x \in (0, +\infty)$	
2.a)	$\int_{1}^{2} 2x f(x) dx = \int_{1}^{2} 2x \cdot \frac{x^{2} + 2}{2x} dx = \int_{1}^{2} (x^{2} + 2) dx = \left(\frac{x^{3}}{3} + 2x\right) \Big _{1}^{2} =$	3р
	$= \left(\frac{8}{3} + 4\right) - \left(\frac{1}{3} + 2\right) = \frac{13}{3}$	2p
b)	$F:(0,+\infty) \to \mathbb{R}$, $F(x) = \frac{x^2}{4} + \ln x + c$, unde $c \in \mathbb{R}$	3p
	$F(1) = 1 \Rightarrow c = \frac{3}{4}$, deci $F(x) = \frac{x^2}{4} + \ln x + \frac{3}{4}$	2p
c)	$2\int_{1}^{n} (f(x) + x f'(x)) dx = 2\int_{1}^{n} (x f(x))' dx = 2(x f(x)) \Big _{1}^{n} = (x^{2} + 2) \Big _{1}^{n} =$	3р
	$=(n^2+2)-(1+2)=n^2-1$, pentru orice număr natural $n, n \ge 2$	2p

Examenul de bacalaureat național 2017 Proba E. c) Matematică *M_st-nat*

Varianta 10

Filiera teoretică, profilul real, specializarea științe ale naturii

- Toate subiectele sunt obligatorii. Se acordă 10 puncte din oficiu.
- Timpul de lucru efectiv este de 3 ore.

SUBIECTUL I (30 de puncte

- **5p** | **1.** Determinați primul termen al progresiei aritmetice $(a_n)_{n\geq 1}$, știind $\overline{\operatorname{că}} \ a_3 = 10 \ \text{și rația} \ r = 3$.
- **5p** 2. Determinați numărul real m, știind că punctul A(1,3) aparține graficului funcției $f: \mathbb{R} \to \mathbb{R}$, $f(x) = x^2 mx + 2m$.
- **5p** 3. Rezolvați în mulțimea numerelor reale ecuația $4^x + \frac{1}{4} = \frac{1}{2}$.
- **5p 4.** Determinați câte numere naturale pare, de două cifre distincte, au cifrele elemente ale mulțimii {1, 2, 3, 4}.
- **5p 5.** În reperul cartezian xOy se consideră punctele A(4,2) și B(2,4). Determinați ecuația mediatoarei segmentului AB.
- **5p 6.** Calculați lungimea razei cercului circumscris triunghiului dreptunghic ABC care are catetele AB = 8 şi AC = 6.

SUBIECTUL al II-lea (30 de puncte)

- 1. Se consideră matricea $A(x) = \begin{pmatrix} 1 & 2x+5 \\ 5 & 1 \end{pmatrix}$, unde x este număr real.
- **5p** a) Arătați că $\det(A(-2)) = -4$.
- **5p b**) Demonstrați că A(x) + A(-x) = A(2017) + A(-2017), pentru orice număr real x.
- **5p** c) Determinați numerele reale p și q, pentru care $A(0) \binom{p}{q} = \binom{6}{6}$.
 - **2.** Pe mulțimea numerelor reale se definește legea de compoziție $x \circ y = xy + 6x + 6y + 30$.
- **5p** a) Arătați că $x \circ y = (x+6)(y+6)-6$, pentru orice numere reale x și y.
- **5p b**) Arătați că e = -5 este elementul neutru al legii de compoziție " \circ ".
- **5p** c) Determinați numărul real x pentru care $x \circ (-2017) = 2017 \circ (-6)$.

- **1.** Se consideră funcția $f:(0,+\infty) \to \mathbb{R}$, $f(x) = \frac{2}{x} + \ln x$.
- **5p a)** Arătați că $f'(x) = \frac{x-2}{x^2}, x \in (0, +\infty).$
- **5p b)** Determinați ecuația tangentei la graficul funcției f în punctul de abscisă x = 1, situat pe graficul funcției f.
- **5p** c) Demonstrați că $\frac{2}{x} + \ln x \ge 1 + \ln 2$, pentru orice $x \in (0, +\infty)$.
 - **2.** Se consideră funcția $f:(0,+\infty) \to \mathbb{R}$, $f(x) = \frac{x^2+2}{2x}$.
- **5p a)** Arătați că $\int_{1}^{2} 2x f(x) dx = \frac{13}{3}$.
- **5p b)** Determinați primitiva F a funcției f, pentru care F(1)=1.
- **5p** c) Demonstrați că $2\int_{1}^{n} (f(x) + x f'(x)) dx = n^2 1$, pentru orice număr natural $n, n \ge 2$.

Examenul de bacalaureat național 2017

Proba E. c)

Matematică *M_şt-nat*

BAREM DE EVALUARE ȘI DE NOTARE

Model

Filiera teoretică, profilul real, specializarea științe ale naturii

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea la 10 a punctajului total acordat pentru lucrare.

SUBIECTUL I (30 de puncte)

1.	$z^{2} + 2i = (1-i)^{2} + 2i = 1 - 2i + i^{2} + 2i =$	2p
	=1-1=0	3р
2.	f(0) = 2017	2p
	$(g \circ f)(0) = g(f(0)) = g(2017) = 0$	3p
3.	$x^2 - 3x = x - 4 \Leftrightarrow x^2 - 4x + 4 = 0$	3 p
	x=2	2p
4.	Mulțimea M are 100 de elemente, deci sunt 100 de cazuri posibile	1p
	În mulțimea M sunt 10 pătrate perfecte, deci sunt 10 cazuri favorabile	2p
	$p = \frac{\text{nr. cazuri favorabile}}{\text{nr. cazuri posibile}} = \frac{10}{100} = \frac{1}{10}$	2n
	nr. cazuri posibile 100 10	2p
5.	Panta unei perpendiculare pe dreapta d este egală cu -1	2p
	Ecuația dreptei care trece prin punctul A și este perpendiculară pe dreapta d este $y = -x + 1$	3p
6.	$\mathcal{A}_{\Delta ABC} = \frac{6 \cdot 4 \cdot \sin \frac{\pi}{6}}{2} = \frac{6 \cdot 4 \cdot \frac{1}{2}}{2} =$	
	$4 + 100 = \frac{0.4 \cdot \sin \frac{\pi}{6}}{6} = \frac{0.4 \cdot \frac{\pi}{2}}{2} = \frac{0.4 \cdot \sin \frac{\pi}{6}}{6} = \frac{0.4 \cdot \sin \frac{\pi}{6}}{2} = \frac{0.4 \cdot \sin \frac{\pi}{6}}{6} = \frac{0.4 \cdot \sin \frac{\pi}{6}}{2} = \frac{0.4 \cdot \sin \frac{\pi}{6}}{6} = \frac{0.4 \cdot \sin \frac{\pi}{6}}{2} = \frac{0.4 \cdot \sin \frac{\pi}{6}}{6} = \frac{0.4 \cdot \sin \frac{\pi}{6}}{2} = \frac{0.4 \cdot \sin \frac{\pi}{6}}{6} = \frac{0.4 \cdot \sin \frac{\pi}{6}}{2} = \frac{0.4 \cdot \sin \frac{\pi}{6}}{6} = \frac{0.4 \cdot \sin \frac{\pi}{6}}{2} = \frac{0.4 \cdot \sin \frac{\pi}{6}}{2$	3 p
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
	= 6	2p

1.a)	$A(0) = \begin{pmatrix} -1 & -1 \\ 2 & -2 \end{pmatrix} \Rightarrow \det(A(0)) = \begin{vmatrix} -1 & -1 \\ 2 & -2 \end{vmatrix} =$	2p
	=2-(-2)=4	3 p
b)	$A(1+m) + A(1-m) = \begin{pmatrix} 1+m-1 & -1 \\ 2 & 1+m-2 \end{pmatrix} + \begin{pmatrix} 1-m-1 & -1 \\ 2 & 1-m-2 \end{pmatrix} = \begin{pmatrix} 0 & -2 \\ 4 & -2 \end{pmatrix} =$	3p
	$=2\begin{pmatrix} 0 & -1 \\ 2 & -1 \end{pmatrix} = 2A(1)$, pentru orice număr real m	2p
c)	$\det(A(m)) = \begin{vmatrix} m-1 & -1 \\ 2 & m-2 \end{vmatrix} = m^2 - 3m + 4$	2p
	Pentru orice număr real m , $m^2 - 3m + 4 \neq 0$, deci matricea $A(m)$ este inversabilă	3 p
2.a)	x * y = -3xy + 9x + 9y - 27 + 3 =	2p
	=-3x(y-3)+9(y-3)+3=-3(x-3)(y-3)+3, pentru orice numere reale x şi y	3p
b)	(x*y)*z = (-3(x-3)(y-3)+3)*z = 9(x-3)(y-3)(z-3)+3	2p
	x*(y*z) = x*(-3(y-3)(z-3)+3) = 9(x-3)(y-3)(z-3)+3 = (x*y)*z, pentru orice numere reale x , y și z , deci legea de compoziție "*" este asociativă	3 p

c)	$(x*x)*x = 9(x-3)^3 + 3$	2p
	$9(x-3)^3 + 3 = 12 \Leftrightarrow (x-3)^3 = 1 \Leftrightarrow x = 4$	3 p

SUBII	ECTUL al III-lea	(30 de puncte)
1.a)	$f'(x) = 3x^2 - \frac{3}{x} = \frac{3x^3 - 3}{x} =$	3р
	$f'(x) = 3x^{2} - \frac{3}{x} = \frac{3x^{3} - 3}{x} =$ $= \frac{3(x^{3} - 1)}{x} = \frac{3(x - 1)(x^{2} + x + 1)}{x}, x \in (0, +\infty)$	2 p
b)	$\lim_{\substack{x \to 0 \\ x > 0}} f(x) = \lim_{\substack{x \to 0 \\ x > 0}} (x^3 - 3\ln x) = +\infty$	2p
	Dreapta de ecuație $x = 0$ este asimptotă verticală la graficul funcției f	3p
c)	$f'(x) = 0 \Leftrightarrow x = 1$	1p
	$x \in (0,1] \Rightarrow f'(x) \le 0$, deci f este descrescătoare pe $(0,1]$	1p
	$x \in [1, +\infty) \Rightarrow f'(x) \ge 0$, deci f este crescătoare pe $[1, +\infty)$	1p
	Cum $f(1) = 1$, obtinem $f(x) \ge 1$, pentru orice $x \in (0, +\infty)$	2 p
2.a)	$\int_{1}^{2} (x^{2} + 3x + 3) f(x) dx = \int_{1}^{2} (2x + 3) dx = (x^{2} + 3x) \Big _{1}^{2} =$	3р
	=10-4=6	2 p
b)	$= 10 - 4 = 6$ $\mathcal{A} = \int_{0}^{3} f(x) dx = \int_{0}^{3} \frac{2x+3}{x^2+3x+3} dx = \ln(x^2+3x+3) \Big _{0}^{3} =$	3р
	$= \ln 21 - \ln 3 = \ln 7$	2p
c)	$\left \int_{-1}^{0} f'(x) f(x) dx = \frac{1}{2} f^{2}(x) \right _{-1}^{0} =$	3р
	$= \frac{1}{2} (f^2(0) - f^2(-1)) = \frac{1}{2} (1 - 1) = 0$	2 p

Examenul de bacalaureat național 2017

Proba E. c) Matematică *M șt-nat*

Model

Filiera teoretică, profilul real, specializarea științe ale naturii

- Toate subiectele sunt obligatorii. Se acordă 10 puncte din oficiu.
- Timpul de lucru efectiv este de 3 ore.

SUBIECTUL I (30 de puncte)

- **5p 1.** Se consideră numărul complex z = 1 i. Arătați $\overline{\text{că } z^2 + 2i} = 0$.
- **5p** 2. Calculați $(g \circ f)(0)$, unde $f: \mathbb{R} \to \mathbb{R}$, f(x) = x + 2017 și $g: \mathbb{R} \to \mathbb{R}$, g(x) = x 2017.
- **5p** 3. Rezolvați în mulțimea numerelor reale ecuația $3^{x^2-3x} = 3^{x-4}$.
- **5p 4.** Calculați probabilitatea ca, alegând un număr din mulțimea $M = \{1, 2, 3, ..., 100\}$, acesta să fie pătrat perfect.
- 5p 5. În reperul cartezian xOy se consideră punctul A(0,1). Determinați ecuația dreptei d, care trece prin punctul A și este perpendiculară pe dreapta de ecuație y = x 10.
- **5p 6.** Determinați aria triunghiului ABC, știind că AB = 6, AC = 4 și $A = \frac{\pi}{6}$.

SUBIECTUL al II-lea (30 de puncte)

- **1.** Se consideră matricea $A(m) = \begin{pmatrix} m-1 & -1 \\ 2 & m-2 \end{pmatrix}$, unde m este număr real.
- **5p** a) Calculați $\det(A(0))$.
- **5p b)** Demonstrați că A(1+m) + A(1-m) = 2A(1), pentru orice număr real m.
- **5p** c) Demonstrați că matricea A(m) este inversabilă, pentru orice număr real m.
 - 2. Pe mulțimea numerelor reale se definește legea de compoziție x * y = -3xy + 9x + 9y 24.
- **5p** a) Arătați că x * y = -3(x-3)(y-3) + 3, pentru orice numere reale x și y.
- **5p b)** Demonstrați că legea de compoziție "*" este asociativă.
- **5p** c) Determinați numărul real x, pentru care (x*x)*x=12.

- **1.** Se consideră funcția $f:(0,+\infty) \to \mathbb{R}$, $f(x) = x^3 3\ln x$.
- **5p** a) Arătați că $f'(x) = \frac{3(x-1)(x^2+x+1)}{x}, x \in (0,+\infty).$
- **5p b)** Determinați ecuația asimptotei verticale la graficul funcției f.
- **5p** c) Demonstrați că $f(x) \ge 1$, pentru orice $x \in (0, +\infty)$.
 - **2.** Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = \frac{2x+3}{x^2+3x+3}$.
- **5p** a) Calculați $\int_{1}^{2} (x^2 + 3x + 3) f(x) dx$.
- **5p b)** Arătați că suprafața plană delimitată de graficul funcției f, axa Ox și dreptele de ecuații x = 0 și x = 3 are aria egală cu $\ln 7$.
- **5p** c) Demonstrați că $\int_{-1}^{0} f'(x) f(x) dx = 0$.

Matematică *M_şt-nat* Clasa a XII-a

BAREM DE EVALUARE ȘI DE NOTARE

Simulare

Filiera teoretică, profilul real, specializarea științe ale naturii

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea la 10 a punctajului total acordat pentru lucrare.

SUBIECTUL I (30 de puncte)

	` -	
1.	$2(a+ib)+(a-ib)=6+i \Leftrightarrow 3a+ib=6+i$, unde $z=a+ib$ și $a,b\in\mathbb{R}$	2p
	a = 2, b = 1, deci z = 2 + i	3 p
2.	$f(1) + f(2) + + f(10) = (4 \cdot 1 - 5) + (4 \cdot 2 - 5) + + (4 \cdot 10 - 5) = 4(1 + 2 + + 10) - 10 \cdot 5 = 4(1 + 2 + $	3 p
	=220-50=170	2p
3.	$\log_2(x+3) = \log_2 2 + \log_2(x+1) \Rightarrow x+3 = 2(x+1)$	3 p
	x=1, care verifică ecuația	2p
4.	Sunt 90 de numere naturale de două cifre, deci sunt 90 de cazuri posibile	2p
	În mulțimea numerelor naturale de două cifre sunt 9 numere cu cifrele egale, deci sunt 9 cazuri favorabile	2p
	$p = \frac{\text{nr. cazuri favorabile}}{\text{nr. cazuri posibile}} = \frac{9}{90} = \frac{1}{10}$	1p
5.	$m_{AB} = 1 \Rightarrow m_d = -1$, unde d este dreapta care trece prin C și este perpendiculară pe AB	2 p
	Ecuația dreptei d este $y = -x + 4$	3 p
6.	$\frac{AB}{\sin C} = \frac{BC}{\sin A} \Rightarrow BC = \frac{3\sqrt{2} \cdot \sin 45^{\circ}}{\sin 30^{\circ}} =$	2 p
	$=\frac{3\sqrt{2}\cdot\frac{\sqrt{2}}{2}}{\frac{1}{2}}=6$	3 p

SUBIECTUL al II-lea (30 de puncte)

1.a)	$A(1) = \begin{pmatrix} 1 & 1 & 1 \\ 2 & 3 & 1 \\ 4 & 9 & 1 \end{pmatrix}, \ A(0) = \begin{pmatrix} 1 & 1 & 1 \\ 2 & 3 & 0 \\ 4 & 9 & 0 \end{pmatrix}$	2p
	$A(1) - A(0) = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{pmatrix}$	3p
b)	$\det(A(x)) = \begin{vmatrix} 1 & 1 & 1 \\ 2 & 3 & x \\ 4 & 9 & x^2 \end{vmatrix} = 3x^2 + 18 + 4x - 12 - 9x - 2x^2 =$	3p
	$=x^2-5x+6=(x-2)(x-3)$, pentru orice număr real x	2 p
c)	$\det(A(x)) = x^2 - 5x + 6 = \left(x - \frac{5}{2}\right)^2 - \frac{1}{4}$	2p
	Valoarea minimă se obține pentru $a = \frac{5}{2}$	3 p

Probă scrisă la matematică *M_şt-nat*

2.a)	$x \circ y = 4xy - 4x - 4y + 4 + 1 =$	2 p
	=4x(y-1)-4(y-1)+1=4(x-1)(y-1)+1, pentru orice numere reale x şi y	3 p
b)	$N = 4(2016-1)(2017-1)+1=4 \cdot 2015 \cdot 2016+1=$	2p
	$= 4 \cdot 2015 \cdot (2015 + 1) + 1 = 4 \cdot 2015^{2} + 4 \cdot 2015 + 1 = (2 \cdot 2015 + 1)^{2} = 4031^{2}$	3 p
c)	$a \circ b = 13 \Leftrightarrow 4(a-1)(b-1)+1=13 \Leftrightarrow (a-1)(b-1)=3$	2p
	Cum a şi b sunt numere naturale, obținem $a=2$, $b=4$ sau $a=4$, $b=2$	3 p

SUDII	ECTUL al III-lea (30 de pu	incte)
1.a)	$f'(x) = 2x \ln x + x^2 \cdot \frac{1}{x} =$	3p
	$=2x \ln x + x = x(2 \ln x + 1), x \in (0, +\infty)$	2p
b)	f(1) = 0, f'(1) = 1	2p
	Ecuația tangentei este $y - f(1) = f'(1)(x-1)$, adică $y = x-1$	3 p
c)	$f'(x) = 0 \Leftrightarrow x = \frac{1}{\sqrt{e}}$	1p
	$x \in \left(0, \frac{1}{\sqrt{e}}\right] \Rightarrow f'(x) \le 0$, deci f descrescătoare pe $\left(0, \frac{1}{\sqrt{e}}\right]$	1p
	$x \in \left[\frac{1}{\sqrt{e}}, +\infty\right] \Rightarrow f'(x) \ge 0$, deci f crescătoare pe $\left[\frac{1}{\sqrt{e}}, +\infty\right]$	1p
	Cum $f\left(\frac{1}{\sqrt{e}}\right) = -\frac{1}{2e}$, obținem $f(x) \ge -\frac{1}{2e} \Leftrightarrow 1 + 2ef(x) \ge 0$, pentru orice $x \in (0, +\infty)$	2p
2.a)	$\int_{0}^{1} f(x)e^{-x} dx = \int_{0}^{1} (x-1)e^{x}e^{-x} dx = \int_{0}^{1} (x-1)dx = \left(\frac{x^{2}}{2} - x\right)\Big _{0}^{1} =$	3 p
	$=\frac{1}{2}-1=-\frac{1}{2}$	2p
b)	$F'(x) = (x+a+1)e^x, x \in \mathbb{R}$	2p
	$F'(x) = f(x) \Rightarrow (x+a+1)e^x = (x-1)e^x$ pentru orice număr real x, de unde obținem $a = -2$	3 p
c)	$x^{3} f(x) = (x^{4} - x^{3}) e^{x}$ şi, cum $x \in [0,1] \Rightarrow 1 \le e^{x}$ şi $x^{4} - x^{3} \le 0$, obţinem $x^{3} f(x) \le x^{4} - x^{3}$	3p
	$\int_{0}^{1} x^{3} f(x) dx \le \int_{0}^{1} \left(x^{4} - x^{3}\right) dx = \left(\frac{x^{5}}{5} - \frac{x^{4}}{4}\right) \Big _{0}^{1} = -\frac{1}{20}$	2p

Matematică *M_st-nat* Clasa a XII-a

Simulare

Filiera teoretică, profilul real, specializarea științe ale naturii

- Toate subiectele sunt obligatorii. Se acordă 10 puncte din oficiu.
- Timpul de lucru efectiv este de 3 ore.

SUBIECTUL I (30 de puncte)

- **5p** 1. Determinați numărul complex z, știind că $2z + \overline{z} = 6 + i$, unde \overline{z} este conjugatul lui z.
- **5p** 2. Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, f(x) = 4x 5. Calculați f(1) + f(2) + f(3) + ... + f(10).
- **5p** | **3.** Rezolvați în mulțimea numerelor reale ecuația $\log_2(x+3) = 1 + \log_2(x+1)$.
- **5p 4.** Calculați probabilitatea ca, alegând un număr din mulțimea numerelor naturale de două cifre, acesta să aibă cifrele egale.
- **5p 5.** În reperul cartezian xOy se consideră punctele A(1,1) și B(5,5). Determinați ecuația dreptei care trece prin punctul C(-2,6) și este perpendiculară pe dreapta AB.
- **5p 6.** Se consideră triunghiul ABC cu $AB = 3\sqrt{2}$, $m(\angle ACB) = 30^\circ$ și $m(\angle BAC) = 45^\circ$. Determinați lungimea laturii BC.

SUBIECTUL al II-lea (30 de puncte)

- 1. Se consideră matricea $A(x) = \begin{pmatrix} 1 & 1 & 1 \\ 2 & 3 & x \\ 4 & 9 & x^2 \end{pmatrix}$, unde x este număr real.
- **5p** a) Calculați A(1) A(0).
- **5p b**) Arătați că $\det(A(x)) = (x-2)(x-3)$, pentru orice număr real x.
- **5p** c) Determinați numărul real a pentru care $\det(A(a)) \le \det(A(x))$, pentru orice număr real x.
 - 2. Pe mulțimea numerelor reale se definește legea de compoziție $x \circ y = 4xy 4x 4y + 5$.
- **5p** a) Arătați că $x \circ y = 4(x-1)(y-1)+1$, pentru orice numere reale x și y.
- **5p b**) Arătați că $N = 2016 \circ 2017$ este pătratul unui număr natural.
- **5p** c) Determinați numerele naturale a și b pentru care $a \circ b = 13$.

- **1.** Se consideră funcția $f:(0,+\infty) \to \mathbb{R}$, $f(x) = x^2 \ln x$.
- **5p** a) Arătați că $f'(x) = x(2\ln x + 1), x \in (0, +\infty)$.
- **5p b**) Determinați ecuația tangentei la graficul funcției f în punctul de abscisă x = 1, situat pe graficul funcției f.
- **5p** c) Demonstrați că $1+2e f(x) \ge 0$, pentru orice număr real $x, x \in (0,+\infty)$.
 - **2.** Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = (x-1)e^x$.
- **5p** a) Arătați că $\int_{0}^{1} f(x)e^{-x} dx = -\frac{1}{2}$.
- **5p b)** Determinați numărul real a, știind că funcția $F: \mathbb{R} \to \mathbb{R}$, $F(x) = (x+a)e^x$ este o primitivă a funcției f.
- **5p** c) Arătați că $\int_{0}^{1} x^{3} f(x) dx \le -\frac{1}{20}.$

Examenul de bacalaureat național 2017 Proba E. c) Matematică *M_șt-nat*

latematica *M_şt-na.* Clasa a XI-a

BAREM DE EVALUARE ȘI DE NOTARE

Simulare

Filiera teoretică, profilul real, specializarea științe ale naturii

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea la 10 a punctajului total acordat pentru lucrare.

SUBIECTUL I (30 de puncte)

	(or de pa	
1.	$(x+2)+2x=2\cdot 7$	2p
	x = 4	3 p
2.	$x_1 + x_2 = 2(m-1), \ x_1x_2 = 2m^2 - 2m \Rightarrow x_1^2 + x_2^2 = -4m + 4$	3 p
	$\frac{x_1}{x_2} + \frac{x_2}{x_1} = 4 \Leftrightarrow -\frac{2}{m} = 4$, deci $m = -\frac{1}{2}$	2p
3.	$5^{2x} = 5^{3-x} \Leftrightarrow 2x = 3-x$	3p
	x=1	2 p
4.	Numărul submulțimilor cu 2 elemente ale mulțimii M este egal cu C_{10}^2 , deci sunt 45 de cazuri posibile	2p
	Numărul submulțimilor cu 2 elemente ale mulțimii M , care conțin elementul 10, este egal cu 9, deci sunt 9 cazuri favorabile	2p
	$p = \frac{\text{nr. cazuri favorabile}}{\text{nr. cazuri posibile}} = \frac{9}{45} = \frac{1}{5}$	1p
5.	$m_{AB} = 2$, $m_{BC} = a - 3$	2p
	$m_{AB} = m_{BC} \Leftrightarrow a = 5$	3 p
6.	$\left(\frac{1}{3}\right)^2 + \cos^2 x = 1$ şi, cum $x \in \left(\frac{\pi}{2}, \pi\right)$, obţinem $\cos x = -\frac{2\sqrt{2}}{3}$	3p
	$\operatorname{tg} x = -\frac{1}{2\sqrt{2}}, \operatorname{deci} 2\sqrt{2} \operatorname{tg} x + 1 = 0$	2p

SUBII	ECTUL al II-lea (30 de pu	ncte)
1.a)	$A(3) = \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix} \Rightarrow \det(A(3)) = \begin{vmatrix} 2 & 1 \\ 1 & 2 \end{vmatrix} =$	3p
	=4-1=3	2p
b)	$\det(A(x)) = \begin{vmatrix} \frac{x+1}{2} & \frac{x-1}{2} \\ \frac{x-1}{2} & \frac{x+1}{2} \end{vmatrix} = \left(\frac{x+1}{2}\right)^2 - \left(\frac{x-1}{2}\right)^2 = x$	2p
	$\det(A(y)) = y$ şi $\det(A(xy)) = xy$, $\det(A(x)) \cdot \det(A(y)) = \det(A(xy))$, pentru orice numere reale x şi y	3 p
c)	$A(1) + A(2) + \dots + A(n) = \begin{pmatrix} \frac{n(n+3)}{4} & \frac{n(n-1)}{4} \\ \frac{n(n-1)}{4} & \frac{n(n+3)}{4} \end{pmatrix} \Rightarrow \det(A(1) + A(2) + \dots + A(n)) = \frac{n^2(n+1)}{2} =$	3p
	$= n \cdot \frac{n(n+1)}{2} = n(1+2+\ldots+n) = n(\det(A(1)) + \det(A(2)) + \ldots + \det(A(n))), \text{ pentru orice număr natural nenul } n$	2 p

Probă scrisă la matematică $M_$ st-nat

2.a)	$A - B = \begin{pmatrix} 1 - 1 & 3 - 0 \\ 0 - 2 & 8 - 1 \end{pmatrix} =$	3p
	$= \begin{pmatrix} 0 & 3 \\ -2 & 7 \end{pmatrix}$	2p
b)	$ (A+I_2)\cdot (B-I_2) = \begin{pmatrix} 2 & 3 \\ 0 & 9 \end{pmatrix} \cdot \begin{pmatrix} 0 & 0 \\ 2 & 0 \end{pmatrix} = $	2p
	$= \begin{pmatrix} 6 & 0 \\ 18 & 0 \end{pmatrix} = 6 \begin{pmatrix} 1 & 0 \\ 3 & 0 \end{pmatrix}$	3 p
c)	Pentru $X = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$, cu a , b , c și d numere reale, $X \cdot A = A \cdot X \Rightarrow c = 0$ și $3a + 7b = 3d$	2p
	$X \cdot B = B \cdot X \Rightarrow b = 0$ și $a = d$, deci $X = \begin{pmatrix} a & 0 \\ 0 & a \end{pmatrix} = aI_2$ și obținem $X \cdot Y = aY = Y \cdot X$, pentru	3 p
	orice $Y \in \mathcal{M}_2(\mathbb{R})$	

SUBII	ECTUL al III-lea (30 de pu	ncte)
1.a)	$\lim_{x \to -1} f(x) = \lim_{x \to -1} \frac{x^2 + 7x + 6}{x + 1} = \lim_{x \to -1} (x + 6) =$	3 p
	= 5	2 p
b)	$y = x + 2$ este asimptotă oblică spre $+\infty$ la graficul funcției $f \Leftrightarrow \lim_{x \to +\infty} \frac{f(x)}{x} = 1$ și	2p
	$\lim_{x \to +\infty} (f(x) - x) = 2$	
	$\lim_{x \to +\infty} \frac{(a-1)x+6}{x+1} = 2 \Leftrightarrow a = 3$	3 p
c)	$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} \frac{x^2 + ax + 6}{x + 1} = \lim_{x \to +\infty} \frac{x \left(1 + \frac{a}{x} + \frac{6}{x^2}\right)}{1 + \frac{1}{x}} =$	2 p
	$=+\infty$, deci, oricare ar fi numărul real a , funcția f nu admite asimptotă orizontală spre $+\infty$	3 p
2.a)	$\lim_{\substack{x \to -2 \\ x < -2}} f(x) = \lim_{\substack{x \to -2 \\ x < -2}} \frac{2mx}{2-x} = -m, \lim_{\substack{x \to -2 \\ x > -2}} f(x) = \lim_{\substack{x \to -2 \\ x > -2}} (2x+4-m) = -m \text{si} f(-2) = -m, \text{ deci}$	3p
	funcția f este continuă în $x = -2$, pentru orice număr real m	
	Cum, pentru orice număr real m , funcția f este continuă pe $(-\infty, -2)$ și pe $(-2, +\infty)$, obținem că f este continuă pe \mathbb{R} , pentru orice număr real m	2p
b)	Pentru $x \in (-\infty, -2)$, $f(x) = 0 \Leftrightarrow \frac{2x}{2-x} = 0 \Leftrightarrow x = 0 \notin (-\infty, -2)$	3p
	Pentru $x \in [-2, +\infty)$, $f(x) = 0 \Leftrightarrow 2x + 3 = 0 \Leftrightarrow x = -\frac{3}{2} \in [-2, +\infty)$	2p
c)	$\lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} \frac{2mx}{2 - x} = -2m$	2p
	Cum $\lim_{x \to +\infty} (f(x) - 2x) = \lim_{x \to +\infty} (2x + 4 - m - 2x) = 4 - m$, obţinem $m = -4$	3p

Matematică M st-nat

Clasa a XI-a

Simulare

Filiera teoretică, profilul real, specializarea științe ale naturii

- Toate subiectele sunt obligatorii. Se acordă 10 puncte din oficiu.
- Timpul de lucru efectiv este de 3 ore.

SUBIECTUL I (30 de puncte)

- **5p 1.** Determinați numărul real x, știind că numerele x+2, 7 și 2x sunt în progresie aritmetică.
- **5p 2.** Se consideră x_1 și x_2 soluțiile ecuației $x^2 2(m-1)x + 2m^2 2m = 0$. Determinați numărul real m, $m \ne 0$, $m \ne 1$ pentru care $\frac{x_1}{x_2} + \frac{x_2}{x_1} = 4$.
- **5p** 3. Rezolvați în mulțimea numerelor reale ecuația $5^{2x} = 125 \cdot 5^{-x}$.
- **5p 4.** Determinați probabilitatea ca, alegând una dintre submulțimile cu două elemente ale mulțimii $M = \{1, 2, 3, ..., 10\}$, aceasta să conțină elementul 10.
- **5p 5.** În reperul cartezian xOy se consideră punctele A(1,1), B(2,3) și C(3,a), unde a este număr real. Determinați numărul real a pentru care punctele A, B și C sunt coliniare.
- **5p 6.** Arătați că $2\sqrt{2} \operatorname{tg} x + 1 = 0$, știind că $\sin x = \frac{1}{3}$ și $x \in \left(\frac{\pi}{2}, \pi\right)$.

SUBIECTUL al II-lea (30 de puncte)

- 1. Se consideră matricea $A(x) = \begin{pmatrix} \frac{x+1}{2} & \frac{x-1}{2} \\ \frac{x-1}{2} & \frac{x+1}{2} \end{pmatrix}$, unde x este număr real.
- **5p** a) Calculați $\det(A(3))$.
- **5p b**) Demonstrați că $\det(A(x)) \cdot \det(A(y)) = \det(A(xy))$, pentru orice numere reale x și y.
- **5p** c) Demonstrați că $\det(A(1) + A(2) + ... + A(n)) = n(\det(A(1)) + \det(A(2)) + ... + \det(A(n)))$, pentru orice număr natural nenul n.
 - **2.** Se consideră matricele $A = \begin{pmatrix} 1 & 3 \\ 0 & 8 \end{pmatrix}$, $B = \begin{pmatrix} 1 & 0 \\ 2 & 1 \end{pmatrix}$ și $I_2 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$.
- **5p** a) Calculați A B.
- **5p b)** Arătați că $(A+I_2)\cdot (B-I_2)=6\begin{pmatrix} 1 & 0 \\ 3 & 0 \end{pmatrix}$.
- **5p** c) Demonstrați că, dacă $X \in \mathcal{M}_2(\mathbb{R})$ astfel încât $X \cdot A = A \cdot X$ și $X \cdot B = B \cdot X$, atunci $X \cdot Y = Y \cdot X$, pentru orice $Y \in \mathcal{M}_2(\mathbb{R})$.

- **1.** Se consideră funcția $f:(-1,+\infty)\to\mathbb{R}$, $f(x)=\frac{x^2+ax+6}{x+1}$, unde a este număr real.
- **5p** a) Pentru a = 7, calculați $\lim_{x \to -1} f(x)$.
- **b)** Determinați numărul real a, pentru care dreapta de ecuație y = x + 2 este asimptotă oblică spre $+\infty$ la graficul funcției f.
- **5p** c) Demonstrați că, oricare ar fi numărul real a, funcția f nu admite asimptotă orizontală spre $+\infty$.

2. Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = \begin{cases} \frac{2mx}{2-x}, & x \in (-\infty, -2) \\ 2x + 4 - m, & x \in [-2, +\infty) \end{cases}$, unde m este număr real.

- **5p** a) Demonstrați că funcția f este continuă pe \mathbb{R} , pentru orice număr real m.
- **5p b**) Pentru m=1, rezolvați în mulțimea numerelor reale ecuația f(x)=0.
- **5p** c) Determinați numărul real m pentru care $\lim_{x \to -\infty} f(x) = \lim_{x \to +\infty} (f(x) 2x)$.

Matematică *M_şt-nat*

BAREM DE EVALUARE ȘI DE NOTARE

Varianta 4

Filiera teoretică, profilul real, specializarea științe ale naturii

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea la 10 a punctajului total acordat pentru lucrare.

SUBIECTUL I (30 de puncte)

1.	$z_1 + z_2 = (3+2i) + (3-2i) =$	2p
	= 6, care este număr real	3 p
2.	$f(2) = m \Leftrightarrow 4 - 3 = m$	3p
	m=1	2p
3.	$3^{3x-5} = 3^{-2} \Leftrightarrow 3x - 5 = -2$	3p
	x=1	2p
4.	Mulțimea A are 20 de elemente, deci sunt 20 de cazuri posibile	2p
	În mulțimea A, multiplii de 5 sunt numerele 5, 10, 15 și 20, deci sunt 4 cazuri favorabile	2 p
	nr. cazuri favorabile 4 1	_
	$p = \frac{\text{nr. cazuri favorabile}}{\text{nr. cazuri posibile}} = \frac{4}{20} = \frac{1}{5}$	1p
5.	Ecuația dreptei AB este $y = 2x + 1$	3 p
	$C \in AB \Leftrightarrow 1 = 2m + 1 \Leftrightarrow m = 0$	2 p
6.	$E\left(\frac{\pi}{3}\right) = \cos\frac{\pi}{6} + \sin\frac{\pi}{3} =$	2p
	$=\frac{\sqrt{3}}{2} + \frac{\sqrt{3}}{2} = \sqrt{3}$	3 p

1.a)	(0 1 1)	
1.a)		
	$A(0) = \begin{pmatrix} 0 & 1 & 1 \\ 2 & 0 & 1 \\ 3 & 0 & 1 \end{pmatrix} \Rightarrow \det(A(0)) = \begin{vmatrix} 0 & 1 & 1 \\ 2 & 0 & 1 \\ 3 & 0 & 1 \end{vmatrix} = $	2p
		- P
	$(3 \ 0 \ 1)$ $ 3 \ 0 \ 1 $	
	=0+0+3-0-0-2=1	3 p
b)	(x + 1 + 1) (x+2 + 2 + 3 + 1) (2x+2 + 2x+4 + 2)	
	$A(n) + A(n+2) = \begin{bmatrix} 2 & n & 1 \\ 1 & 2 & n+2 & 1 \end{bmatrix} = \begin{bmatrix} 4 & 2n+2 & 2 \\ 1 & 2n+2 & 2 \end{bmatrix}$	
	$A(x) + A(x+2) = \begin{vmatrix} 2 & x & 1 \end{vmatrix} + \begin{vmatrix} 2 & x+2 & 1 \end{vmatrix} = \begin{vmatrix} 4 & 2x+2 & 2 \end{vmatrix}$	2p
	$A(x)+A(x+2) = \begin{pmatrix} x & x+1 & 1 \\ 2 & x & 1 \\ 3 & 0 & 1 \end{pmatrix} + \begin{pmatrix} x+2 & x+3 & 1 \\ 2 & x+2 & 1 \\ 3 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 2x+2 & 2x+4 & 2 \\ 4 & 2x+2 & 2 \\ 6 & 0 & 2 \end{pmatrix}$	
	(4 6 2)	
	$2A(2) = \begin{vmatrix} 4 & 4 & 2 \end{vmatrix}$, deci $x = 1$	3p
	$2A(2) = \begin{pmatrix} 4 & 6 & 2 \\ 4 & 4 & 2 \\ 6 & 0 & 2 \end{pmatrix}$, deci $x = 1$	
c)	$\begin{vmatrix} n & n+1 & 1 \end{vmatrix}$	
	Punctele $M(n, n+1)$, $N(2,n)$ și $P(3,0)$ sunt coliniare $\Leftrightarrow \begin{bmatrix} n & n+1 & 1 \\ 2 & n & 1 \\ 3 & 0 & 1 \end{bmatrix} = 0$	2
	Tuncted $M(n,n+1)$, $N(2,n)$ ≤ 1 $\leq 3,0$ ≤ 0	2 p
	3 0 1	
	2	
	$n^2 - 2n + 1 = 0$, deci $n = 1$	3 p
2.a)	$f(1) = 1^3 + a \cdot 1^2 + 1 - 1 = a + 1$	2p
	- () () 3 () 2 ()	
	$f(-1) = (-1)^3 + a \cdot (-1)^2 + (-1) - 1 = a - 3 \Rightarrow f(1) - f(-1) = a + 1 - a + 3 = 4$, pentru orice	3p
	număr real a	op
L		ı

b)	$f = X^3 + 2X^2 + X - 1$, câtul este $X + 1$	3 p
	Restul este $-X-2$	2p
c)	$x_1 + x_2 + x_3 = -a$, $x_1x_2 + x_1x_3 + x_2x_3 = 1$, $x_1x_2x_3 = 1$	3p
	$x_1 + x_2 + x_3 + x_1x_2 + x_1x_3 + x_2x_3 = x_1x_2x_3 - 1 \Leftrightarrow -a + 1 = 1 - 1$, deci $a = 1$	2p

SUBII	ECTUL al III-lea (30 d	de puncte)
1.a)	$f'(x) = \frac{(2x-1)(x-1) - (x^2 - x + 1) \cdot 1}{(x-1)^2} =$	3 p
	$= \frac{x^2 - 2x}{(x-1)^2} = \frac{x(x-2)}{(x-1)^2}, \ x \in (1, +\infty)$	2 p
b)	f(2)=3, f'(2)=0	2p
	Ecuația tangentei este $y - f(2) = f'(2)(x-2)$, adică $y = 3$	3p
c)	$\lim_{x \to +\infty} \frac{f(x)}{e^x + 1} = \lim_{x \to +\infty} \frac{x^2 - x + 1}{(x - 1)(e^x + 1)} = \lim_{x \to +\infty} \left(\frac{x^2 - x + 1}{x(x - 1)} \cdot \frac{x}{e^x + 1} \right) =$	2p
	=1.0=0, decarece $\lim_{x \to +\infty} \frac{x^2 - x + 1}{x(x - 1)} = 1$ și $\lim_{x \to +\infty} \frac{x}{e^x + 1} = \lim_{x \to +\infty} \frac{1}{e^x} = 0$	3p
2.a)	$\left \int_{0}^{1} (f(x) - 2x) dx = \int_{0}^{1} (e^{x} + 2x - 2x) dx = \int_{0}^{1} e^{x} dx = e^{x} \right _{0}^{1} =$	3р
	$=e^1 - e^0 = e - 1$	2p
b)	$g(x) = 2x \Rightarrow V = \pi \int_{0}^{1} g^{2}(x) dx = \pi \int_{0}^{1} 4x^{2} dx =$	3p
	$=4\pi \cdot \frac{x^3}{3} \bigg _0^1 = \frac{4\pi}{3}$	2 p
c)	$\int_{0}^{a} x f(x) dx = \int_{0}^{a} x (e^{x} + 2x) dx = (x - 1)e^{x} \Big _{0}^{a} + 2 \cdot \frac{x^{3}}{3} \Big _{0}^{a} = (a - 1)e^{a} + 1 + \frac{2a^{3}}{3}$	3р
	$(a-1)e^a + 1 + \frac{2a^3}{3} = 1 + \frac{2a^3}{3} \Leftrightarrow (a-1)e^a = 0 \Leftrightarrow a = 1$	2p

Examenul de bacalaureat național 2017 Proba E. c) Matematică *M_st-nat*

Varianta 4

Filiera teoretică, profilul real, specializarea științe ale naturii

- Toate subiectele sunt obligatorii. Se acordă 10 puncte din oficiu.
- Timpul de lucru efectiv este de 3 ore.

SUBJECTUL I (30 de puncte)

- **5p** 1. Se consideră numerele complexe $z_1 = 3 + 2i$ și $z_2 = 3 2i$. Arătați că numărul $z_1 + z_2$ este real.
- **5p** 2. Determinați numărul real m, știind că punctul M(2, m) aparține graficului funcției $f: \mathbb{R} \to \mathbb{R}$, $f(x) = x^2 3$.
- **5p 3.** Rezolvați în mulțimea numerelor reale ecuația $3^{3x-5} = 3^{-2}$.
- **5p 4.** Calculați probabilitatea ca, alegând un număr din mulțimea $A = \{1, 2, 3, ..., 20\}$, acesta să fie multiplu de 5.
- **5p 5.** În reperul cartezian xOy se consideră punctele A(2,5), B(1,3) și C(m,1), unde m este număr real. Determinați numărul real m, știind că punctul C aparține dreptei AB.
- **5p 6.** Se consideră $E(x) = \cos \frac{x}{2} + \sin x$, unde x este număr real. Arătați că $E(\frac{\pi}{3}) = \sqrt{3}$.

SUBIECTUL al II-lea (30 de puncte)

- **1.** Se consideră matricea $A(x) = \begin{pmatrix} x & x+1 & 1 \\ 2 & x & 1 \\ 3 & 0 & 1 \end{pmatrix}$, unde x este număr real.
- **5p** a) Arătați că $\det(A(0))=1$.
- **5p b**) Determinați numărul real x, pentru care A(x) + A(x+2) = 2A(2).
- **5p** c) În reperul cartezian xOy se consideră punctele M(n,n+1), N(2,n) și P(3,0). Determinați numărul natural n, știind că punctele M, N și P sunt coliniare.
 - **2.** Se consideră polinomul $f = X^3 + aX^2 + X 1$, unde a este număr real.
- **5p** a) Arătați că f(1) f(-1) = 4, pentru orice număr real a.
- **5p b**) Pentru a = 2, calculați câtul și restul împărțirii polinomului f la polinomul $X^2 + X + 1$.
- **5p** c) Determinați numărul real a pentru care $x_1 + x_2 + x_3 + x_1x_2 + x_1x_3 + x_2x_3 = x_1x_2x_3 1$, unde x_1 , x_2 și x_3 sunt rădăcinile polinomului f.

- **1.** Se consideră funcția $f:(1,+\infty) \to \mathbb{R}$, $f(x) = \frac{x^2 x + 1}{x 1}$.
- **5p** a) Arătați că $f'(x) = \frac{x(x-2)}{(x-1)^2}, x \in (1,+\infty).$
- **5p b)** Determinați ecuația tangentei la graficul funcției f în punctul de abscisă x = 2, situat pe graficul funcției f.
- **5p** c) Demonstrați că $\lim_{x \to +\infty} \frac{f(x)}{e^x + 1} = 0$.
 - **2.** Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = e^x + 2x$.
- **5p** a) Arătați că $\int_{0}^{1} (f(x) 2x) dx = e 1.$
- **5p b**) Determinați volumul corpului obținut prin rotația în jurul axei Ox a graficului funcției $g:[0,1] \to \mathbb{R}$, $g(x) = f(x) e^x$.
- **5p** c) Determinați numărul real a, știind că $\int_{0}^{a} x f(x) dx = 1 + \frac{2a^{3}}{3}$.