Name - JAISIKA BHATIA Roll no - 102103378 (30014) PARAMETER ESTIMATION ASSIGNMENT Q1. Normal distribution Criven mean $= \theta_1$ $PDF = f(x) = 1 e^{-\frac{(x-\mu)}{2a^2}}$ $\sqrt{2\pi a^2}$ Joint density for $(X_1, X_2 - X_n) = \int (\theta_1, \theta_2) = \int (0, X_1 - \theta_1)^n d\theta_2$ Jaking log $-\frac{\pi}{\log \left(J(\theta_1, \theta_2)\right)} = \log \left(2\pi \theta_2\right)^{\frac{\pi}{2}} \cdot e^{-\frac{\pi}{2}(\alpha_1 - \theta_1)^2}$ $\frac{-n \log(2\pi\theta_1) - 1 \Sigma(x_i - \theta_1)^2}{2\theta_2}$ Différentiate with suspect to θ_1 $\int \log_e J = \int \Sigma(x_i - \theta_1) = 0$ $\int \theta_1 = \Sigma x_i$ (Sample mean) $\int \eta = \frac{1}{2} \left(\frac{1}{2} \right) \left(\frac{1}{2} \right$ Differentiate with suspect to θ_{2} $\frac{\partial \log_{e} J = -n}{\partial \theta_{2}} + \frac{1}{2\theta_{2}} \Sigma(x_{i} - \theta_{i})^{2} = 0$ $\frac{n}{2\theta_{2}} = \frac{1}{2\theta_{2}^{2}} \frac{\sum (x_{i} - \theta_{i})^{2}}{2(x_{i} - \theta_{i})^{2}} = variance$ $\frac{n}{n} = \frac{1}{2} \sum (x_{i} - \theta_{i})^{2} = variance$

maximum likelihood rotimation of 0, is sample mean and 0, is sample variance Q2. Brionial distribution (given) $m \rightarrow no. of trails$ $\theta \rightarrow (01)$ PDF of dinomial distribution = ${}^{m}C_{x} p^{x} (1-p)$ Joint density distribution for m' trails $J(\theta; x, -x_{m}) = \prod_{i=1}^{m} R(x_{i} | m, p)$ $J(\theta) = \prod_{i=1}^{n} \binom{n}{c_{\infty}} \cdot \theta^{x_i} \cdot (1-\theta)$ Jaking log_e $lm(J(\theta)) = \sum_{i=1}^{n} log(^nC_{x_i}) + \sum_{i=1}^{n} x_i log\theta + \sum_{i=1}^{n} (m-c_i) log(1-\theta)$ Diffuential with θ $\frac{\partial \log J(\theta)}{\partial x_i} = \frac{1}{A} \sum_{i=1}^{n} x_i + \frac{1}{1-\theta} \sum_{i=1}^{n} (m-x_i)(-1) = 0$ $\frac{1}{\theta} \sum_{i=1}^{n} x_{i} = \frac{1}{1-\theta} \sum_{i=1}^{n} (m-x_{i})$ $(1-\theta) \Sigma x_i = \theta \Sigma (m-x_i)$ $\Sigma x_i = \theta \Sigma (m)$ $\theta = \Sigma x_i \succ mean$ mMaximum likelihood estimation of θ is mean.