

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Report No: CCIS14070056903

FCC REPORT (BLE)

Applicant: SHENZHEN CHUANGXINQI COMMUNICATION CO., LTD

Rm 501B, Block A1, kexing Science Park, Keyuan North Rd.,

Address of Applicant: Science and Technology Park, Nanshan, Shenzhen,

Guangdong, China

Equipment Under Test (EUT)

Product Name: Smart Phone

Model No.: V8,V8C,V8Y,V8G,V8A,G551,G551A,G551C,G551Y,G551G

Trade mark: iNew

FCC ID: 2ACI4-V8

Applicable standards: FCC CFR Title 47 Part 15 Subpart B

Date of sample receipt: 11 Jul., 2014

Date of Test: 11 Jul., to 6 Aug., 2014

Date of report issued: 7 Aug., 2014

Test Result: PASS *

Authorized Signature:

Bruce Zhang Laboratory Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the CCIS product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

^{*} In the configuration tested, the EUT complied with the standards specified above.

2 Version

Version No.	Date	Description
00	7 Aug., 2014	Original

Prepared by: Date: 7 Aug., 2014

Report Clerk

Reviewed by: Date: 7 Aug., 2014

Project Engineer

3 Contents

			Page
1	CO	VER PAGE	
2	VER	RSION	2
3	100	NTENTS	3
4		ST SUMMARY	
5	GEN	NERAL INFORMATION	5
	5.1	CLIENT INFORMATION	5
	5.2	GENERAL DESCRIPTION OF E.U.T	5
	5.3	TEST ENVIRONMENT AND MODE	7
	5.4	DESCRIPTION OF SUPPORT UNITS	7
	5.5	LABORATORY FACILITY	
	5.6	LABORATORY LOCATION	
	5.7	TEST INSTRUMENTS LIST	8
6	TES	ST RESULTS AND MEASUREMENT DATA	9
	6.1	ANTENNA REQUIREMENT:	9
	6.2	CONDUCTED EMISSION	
	6.3	CONDUCTED OUTPUT POWER	13
	6.4	OCCUPY BANDWIDTH	15
	6.5	POWER SPECTRAL DENSITY	18
	6.6	BAND EDGE	
	6.6.		
	6.6.2		
	6.7	Spurious Emission	
	6.7.		
	6.7.2	2 Radiated Emission Method	30
7	TES	ST SETUP PHOTO	37
8	EUT	CONSTRUCTIONAL DETAILS	39

4 Test Summary

Test Item	Section in CFR 47	Result
Antenna requirement	15.203/15.247 (c)	Pass
AC Power Line Conducted Emission	15.207	Pass
Conducted Peak Output Power	15.247 (b)(3)	Pass
6dB Emission Bandwidth	15.247 (a)(2)	Pass
Power Spectral Density	15.247 (e)	Pass
Band Edge	15.247(d)	Pass
Spurious Emission	15.205/15.209	Pass

Pass: The EUT complies with the essential requirements in the standard.

5 General Information

5.1 Client Information

Applicant:	SHENZHEN CHUANGXINQI COMMUNICATION CO., LTD		
Address of Applicant:	Rm 501B, Block A1, kexing Science Park, Keyuan North Rd., Science and Technology Park, Nanshan, Shenzhen, Guangdong, China		
Manufacturer:	SHENZHEN CHUANGXINQI COMMUNICATION CO., LTD		
Address of Manufacturer:	Rm 501B, Block A1, kexing Science Park, Keyuan North Rd., Science and Technology Park, Nanshan, Shenzhen, Guangdong, China		
Factory:	Hongjiada Electronics Co., Limited		
Address of Factory:	4 th Floor, C16 Building, Jiuwei Fuyuan Industrial Zone, Xi Xiang, Bao'an District, Shenzhen China 518000		

5.2 General Description of E.U.T.

Product Name:	Smart Phone
Model No.:	V8,V8C,V8Y,V8G,V8A,G551,G551A,G551C,G551Y,G551G
Operation Frequency:	2402-2480 MHz
Channel numbers:	40
Channel separation:	2 MHz
Modulation technology:	GFSK
Data speed :	1Mbps
Antenna Type:	Internal Antenna
Antenna gain:	-1.1dBi
Power supply:	Rechargeable Li-ion Battery DC3.8V-2400mAh
AC adapter:	Model:ASUC37a-055090
	Input:100-240V AC,50/60Hz 0.3A
	Output:5.5V DC MAX900mA

Operation Frequency each of channel								
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency	
0	2402MHz	10	2422MHz	20	2442MHz	30	2462MHz	
1	2404MHz	11	2424MHz	21	2444MHz	31	2464MHz	
2	2406MHz	12	2426MHz	22	2446MHz	32	2466MHz	
3	2408MHz	13	2428MHz	23	2448MHz	33	2468MHz	
4	2410MHz	14	2430MHz	24	2450MHz	34	2470MHz	
5	2412MHz	15	2432MHz	25	2452MHz	35	2472MHz	
6	2414MHz	16	2434MHz	26	2454MHz	36	2474MHz	
7	2416MHz	17	2436MHz	27	2456MHz	37	2476MHz	
8	2418MHz	18	2438MHz	28	2458MHz	38	2478MHz	
9	2420MHz	19	2440MHz	29	2460MHz	39	2480MHz	

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Channel	Frequency
The lowest channel	2402MHz
The middle channel	2442MHz
The Highest channel	2480MHz

5.3 Test environment and mode

Operating Environment:	
Temperature:	24.0 °C
Humidity:	54 % RH
Atmospheric Pressure:	1010 mbar
Test mode:	
Operation mode	Keep the EUT in continuous transmitting with modulation

The sample was placed 0.8m above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages. Duty cycle setting during the transmission is 100% with maximum power setting for all modulations.

5.4 Description of Support Units

N/A

5.5 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

● FCC - Registration No.: 817957

Shenzhen Zhongjian Nanfang Testing Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in out files. Registration 817957, February 27, 2012.

● IC - Registration No.: 10106A-1

The 3m Semi-anechoic chamber of Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

CNAS - Registration No.: CNAS L6048

Shenzhen Zhongjian Nanfang Testing Co., Ltd. is accredited to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration laboratories for the competence of testing. The Registration No. is CNAS L6048.

5.6 Laboratory Location

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Address: No.B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,

Bao'an District, Shenzhen, Guangdong, China

Tel: +86-755-23118282 Fax: +86-755-23116366

Shenzhen Zhongjian Nanfang Testing Co., Ltd. No.B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

5.7 Test Instruments list

Radiated Emission:								
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)		
1	3m Semi- Anechoic Chamber	SAEMC	9(L)*6(W)* 6(H)	CCIS0001	June 09 2014	June 08 2015		
2	BiConiLog Antenna	SCHWARZBECK MESS-ELEKTRONIK	VULB9163	CCIS0005	May 25 2014	May 24 2015		
3	Double -ridged waveguide horn	SCHWARZBECK MESS-ELEKTRONIK	BBHA9120D	CCIS0006	May 25 2014	May 24 2015		
4	EMI Test Software	AUDIX	E3	N/A	N/A	N/A		
5	Coaxial Cable	CCIS	N/A	CCIS0016	Apr. 01 2014	Mar. 31 2015		
6	Coaxial Cable	CCIS	N/A	CCIS0017	Apr. 01 2014	Mar. 31 2015		
7	Coaxial cable	CCIS	N/A	CCIS0018	Apr. 01 2014	Mar. 31 2015		
8	Coaxial Cable	CCIS	N/A	CCIS0019	Apr. 01 2014	Mar. 31 2015		
9	Coaxial Cable	CCIS	N/A	CCIS0087	Apr. 01 2014	Mar. 31 2015		
10	Amplifier(10kHz- 1.3GHz)	HP	8447D	CCIS0003	Apr. 01 2014	Mar. 31 2015		
11	Amplifier(1GHz- 18GHz)	Compliance Direction Systems Inc.	PAP-1G18	CCIS0011	June 09 2014	June 08 2015		
12	Pre-amplifier (18-26GHz)	Rohde & Schwarz	AFS33-18002 650-30-8P-44	GTS218	Apr. 01 2014	Mar. 31 2015		
13	Horn Antenna	ETS-LINDGREN	3160	GTS217	Mar. 30 2014	Mar. 29 2015		
14	Printer	HP	HP LaserJet P1007	N/A	N/A	N/A		
15	Positioning Controller	UC	UC3000	CCIS0015	N/A	N/A		
16	Spectrum analyzer 9k-30GHz	Rohde & Schwarz	FSP	CCIS0023	May. 25 2014	May. 24 2015		
17	EMI Test Receiver	Rohde & Schwarz	ESPI	CCIS0022	Apr 01 2014	Mar. 31 2015		
18	Loop antenna	Laplace instrument	RF300	EMC0701	Aug. 12 2013	Aug. 11 2014		
19	Universal radio communication tester	Rhode & Schwarz	CMU200	CCIS0069	May. 25 2014	May. 24 2015		
20	Signal Analyzer	Rohde & Schwarz	FSIQ3	CCIS0088	May. 25 2014	May. 24 2015		

Con	Conducted Emission:									
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)				
1	Shielding Room	ZhongShuo Electron	11.0(L)x4.0(W)x3.0(H)	CCIS0061	June 09 2014	June 08 2015				
2	EMI Test Receiver	Rohde & Schwarz	ESCI	CCIS0002	May 25 2014	May 24 2015				
3	LISN	CHASE	MN2050D	CCIS0074	Apr 01 2014	Mar. 31 2015				
4	Coaxial Cable	CCIS	N/A	CCIS0086	Apr. 01 2014	Mar. 31 2015				
5	EMI Test Software	AUDIX	E3	N/A	N/A	N/A				

6 Test results and Measurement Data

6.1 Antenna requirement:

Standard requirement:

FCC Part15 C Section 15.203 /247(c)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(c) (1)(i) requirement:

(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

E.U.T Antenna:

The antenna is an internal antenna which cannot replace by end-user, the best case gain of the antenna is -1.1 dBi.

6.2 Conducted Emission

Test Requirement:	FCC Part15 C Section 15.207						
Test Method:	ANSI C63.4: 2003						
Test Frequency Range:	150 kHz to 30 MHz						
Class / Severity:	Class B						
Receiver setup:	RBW=9kHz, VBW=30kHz						
Limit:	Limit (dBuV)						
	Frequency range (MHz)	Quasi-peak	Average				
	0.15-0.5 66 to 56* 56 to 46*						
	0.5-5	56	46				
	5-30	60	50				
Test procedure	* Decreases with the logarithm 1. The E.U.T and simulators						
	 a line impedance stabilization network (L.I.S.N.), which provides a 50ohm/50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs). Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.4: 2003 on conducted measurement. 						
Test setup:	Refere	ence Plane					
	AUX Equipment Test table/Insulation pla Remark: E.U.T. Equipment Under Test LISN: Line Impedence Stabilization Test table height=0.8m		er — AC power				
Test Instruments:	Refer to section 5.7 for details						
Test mode:	Refer to section 5.3 for details						
Test results:	Passed						

Measurement Data

Shenzhen Zhongjian Nanfang Testing Co., Ltd. No.B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Project No.: CCIS140700569RF

Page 10 of 39

Neutral:

Site

: CCIS Shielding Room : FCC PART15 B QP LISN MEUTRAL Condition.

Job. no EUT 569RF Smart Phone Test Mode : BLE mode
Power Rating : AC 120V/60Hz
Environment : Temp: 23 °C Huni:56% Atmos:101KPa
Test Engineer: Carey
Remark Model Test Mode V8

Remark	:							
		Read	LISM	Cable		Limit	Over	
	Freq	Level	Factor	Loss	Level	Line	Limit	Renark
-	MHz	dBu∀		₫B	dBu⊽	dBu∀		
1	0.150	35.43	0.25	10.78	46.46	66.00	-19.54	QP
1 2 3	0.289	15.60	0.23	10.74	26.60	50.54	-23.94	Average
3	0.449	32.54	0.27	10.74	43.55	56.89	13.34	QP
4	0.449	21.68	0.27	10.74	32.69	46.89	-14.20	Average
5	0.56:	19.33	0.25	10.77	30.35	46.00	-15.65	Average
6	0.899	30.68	0.21	10.84	41.73	56.00	-14.27	QP
4 5 6 7 8 9	2.20:	23.47	0.29	10.95	34.71	46.00	-11.29	Average
8	2.213	33.75	0.23	10.95	44.99	56.00	-11.01	QP
9	3.472	34.82	0.23	10.91	46.02	56.00	-9.98	QP
10	3.547	24.67	n. 23	10.90	35, 86	46.00	-10.14	Average
11	21.600	25.44	0.32	10.91	36.67	60.00	-23.33	QP
12	22.298	13.01	0.33	10.90	24.27	50.00	-25.73	Average

Line:

: CCIS Shielding Room : FCC PART15 B QP LISN LINE Site Condition

: 569RF Job. no Smart Phone V8 EUT Model Test Mode : BLE mode

Power Rating: AC 1207/60Hz Environment: Temp: 23 C Huni:56% Atmos:101KPa

Test Engineer: Carey Remark :

	1227 50	525222	2002023		1202 885	22		
Freq			Cable Loss	Level	Limit Line		Remark	
MHz	dBuV	₫B	₫B	dBu∀	dBu∀	₫B		
0.150	33.61	0.27	10.78	44.66	66.00	-21.34	QP	
0.296	16.23	0.26	10.74	27.23	50.37	23.14	Average	
0.454	32.91	0.29	10.74	43.94	56.80	-12.86	QP	
0.459	23.88	0.29	10.75	34.92	46.71	-11.79	Average	
0.826	31.11	0.23	10.82	42.16	56.00	-13.84	QP	
0.974	17.07	0.25	10.86	28.18	46.00	-17.82	Average	
2.155	19.88	0.26	10.95	31.09	46.00	14.91	Average	
2.167	37.06	0.26	10.95	48.27	56.00	-7.73	QP	
3.328	33.74	0.27	10.91	44.92	56.00	-11.08	QP	
3.417	20.35	0.28	10.91	31.54	46.00	-14.46	Average	
21.486	27.71	0.40	10.91	39.02	60.00	-20.98	QP	
21.715	14.21	0.40	10.91	25.52	50.00	-24.48	Average	
	MHz 0. 150 0. 296 0. 454 0. 459 0. 826 0. 974 2. 155 2. 167 3. 328 3. 417 21. 486	MHz dBuV 0.150 33.61 0.296 16.23 0.454 32.91 0.459 23.88 0.826 31.11 0.974 17.07 2.155 19.88 2.167 37.06 3.328 33.74 3.417 20.35 21.486 27.71	Freq Level Factor MHz dBuV dB 0.150 33.61 0.27 0.296 16.23 0.26 0.454 32.91 0.29 0.459 23.88 0.29 0.826 31.11 0.23 0.974 17.07 0.25 2.155 19.88 0.26 2.167 37.06 0.26 3.328 33.74 0.27 3.417 20.35 0.28 21.486 27.71 0.40	Freq Level Factor Loss MHz dBuV dB dB 0.150 33.61 0.27 10.78 0.296 16.23 0.26 10.74 0.454 32.91 0.29 10.74 0.459 23.88 0.29 10.75 0.826 31.11 0.23 10.82 0.974 17.07 0.25 10.86 2.155 19.88 0.26 10.95 2.167 37.06 0.26 10.95 3.328 33.74 0.27 10.91 3.417 20.35 0.28 10.91 21.486 27.71 0.40 10.91	MHz dBuV dB dB dBuV 0.150 33.61 0.27 10.78 44.66 0.296 16.23 0.26 10.74 27.23 0.454 32.91 0.29 10.74 43.94 0.459 23.88 0.29 10.75 34.92 0.826 31.11 0.23 10.82 42.16 0.974 17.07 0.25 10.86 28.18 2.167 37.06 0.26 10.95 31.09 2.167 37.06 0.26 10.95 48.27 3.328 33.74 0.27 10.91 44.92 3.417 20.35 0.28 10.91 31.54 21.486 27.71 0.40 10.91 39.02	Freq Level Factor Loss Level Line MHz dBuV dB dB dBuV dBuV 0.150 33.61 0.27 10.78 44.66 66.00 0.296 16.23 0.26 10.74 27.23 50.37 0.454 32.91 0.29 10.74 43.94 56.80 0.459 23.88 0.29 10.75 34.92 46.71 0.826 31.11 0.23 10.82 42.16 56.00 0.974 17.07 0.25 10.86 28.18 46.00 2.167 37.06 0.26 10.95 31.09 46.00 2.167 37.06 0.26 10.95 48.27 56.00 3.328 33.74 0.27 10.91 44.92 56.00 3.417 20.35 0.28 10.91 31.54 46.00 21.486 27.71 0.40 10.91 39.02 60.00	Freq Level Factor Loss Level Line Limit MHz dBuV dB dB dBuV dBuV dB 0.150 33.61 0.27 10.78 44.66 66.00 -21.34 0.296 16.23 0.26 10.74 27.23 50.37 23.14 0.454 32.91 0.29 10.74 43.94 56.80 -12.86 0.459 23.88 0.29 10.75 34.92 46.71 -11.79 0.826 31.11 0.23 10.82 42.16 56.00 -13.84 0.974 17.07 0.25 10.86 28.18 46.00 -17.82 2.167 37.06 0.26 10.95 31.09 46.00 14.91 2.167 37.06 0.26 10.95 48.27 56.00 -7.73 3.328 33.74 0.27 10.91 44.92 56.00 -11.08 3.417 20.35 0.28 10.91	Freq Level Factor Loss Level Line Limit Remark MHz dBuV dB dB dBuV dBuV dB 0.150 33.61 0.27 10.78 44.66 66.00 -21.34 QP 0.296 16.23 0.26 10.74 27.23 50.37 23.14 Average 0.454 32.91 0.29 10.74 43.94 56.80 -12.86 QP 0.459 23.88 0.29 10.75 34.92 46.71 -11.79 Average 0.826 31.11 0.23 10.82 42.16 56.00 -13.84 QP 0.974 17.07 0.25 10.86 28.18 46.00 -17.82 Average 2.155 19.88 0.26 10.95 31.09 46.00 14.91 Average 2.167 37.06 0.26 10.95 31.09 46.00 -7.73 QP 3.328 33.74 0.27 10.91 44.92 56.00 -11.08

Notes:

- 1. An initial pre-scan was performed on the live and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level = Receiver Read level + LISN Factor + Cable Loss

6.3 Conducted Output Power

Test Requirement:	FCC Part15 C Section 15.247 (b)(3)				
Test Method:	ANSI C63.4:2003 and KDB558074				
Limit:	30dBm				
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane				
Test Instruments:	Refer to section 5.7 for details				
Test mode:	Refer to section 5.3 for details				
Test results:	Passed				
Remark:	Test method refer to KDB558074 v03r01 (DTS Measure Guidance) section 9.2.2.2				

Measurement Data

Test CH	Maximum Conducted Output Power (dBm)	Limit(dBm)	Result
Lowest	-2.91		
Middle	-1.69	30.00	Pass
Highest	-1.87		

Test plot as follows:

Date: 30.JUL.2014 20:37:43

Date: 30.JUL.2014 20:38:20

Date: 30.JUL.2014 20:38:41

Highest channel

6.4 Occupy Bandwidth

Test Requirement:	FCC Part15 C Section 15.247 (a)(2)				
Test Method:	ANSI C63.4:2003 and KDB558074				
Limit:	>500kHz				
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane				
Test Instruments:	Refer to section 5.7 for details				
Test mode:	Refer to section 5.3 for details				
Test results:	Passed				

Measurement Data

Test CH	6dB Emission Bandwidth (MHz)	Limit(kHz)	Result
Lowest	0.72		
Middle	0.71	>500	Pass
Highest	0.73		

Test CH	99% Occupy Bandwidth (MHz)	Limit(kHz)	Result
Lowest	1.04		
Middle	1.03	N/A	N/A
Highest	1.03		

Test plot as follows:

Test mode:6dB EBW GFSK

Date: 30.JUL.2014 21:03:38

Lowest channel

Date: 30.JUL.2014 20:44:44

Middle channel

Date: 13.AUG.2014 15:23:17

Highest channel

Test mode:99% OBW GFSK

Date: 30.JUL.2014 20:48:50

Lowest channel

Date: 30.JUL.2014 20:49:15

Middle channel

Date: 30.JUL.2014 20:50:11

Highest channel

6.5 Power Spectral Density

Test Requirement:	FCC Part15 C Section 15.247 (e)
Test Method:	ANSI C63.4:2003 and KDB558074
Limit:	8 dBm
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane
Test Instruments:	Refer to section 5.7 for details
Test mode:	Refer to section 5.3 for details
Test results:	Passed

Measurement Data

Test CH	Power Spectral Density (dBm)	Limit(dBm)	Result
Lowest	-3.29		
Middle	-2.64	8.00	Pass
Highest	-2.78		

Test plots as follow:

Test mode: **RBM 100 kHz Marker 1 [T1] **YBB 300 kHz 3 29 dBm

Date: 30.JUL.2014 20:52:41

Lowest channel

Date: 30.JUL.2014 20:52:00

Middle channel

Date: 30.JUL.2014 20:51:30

Highest channel

6.6 Band Edge

6.6.1 Conducted Emission Method

Test Requirement:	FCC Part15 C Section 15.247 (d)				
Test Method:	ANSI C63.4:2003 and KDB558074				
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.				
Test setup:					
	Spectrum Analyzer				
	E.U.T				
	Non-Conducted Table				
	Ground Reference Plane				
Test Instruments:	Refer to section 5.7 for details				
Test mode:	Refer to section 5.3 for details				
Test results:	Passed				

Test plots as follow:

Lowest channel

Highest channel

6.6.2 Radiated Emission Method

Test Requirement:	FCC Part15 C Section 15.209 and 15.205					
Test Method:	ANSI C63.4: 20					
Test Frequency Range:	2.3GHz to 2.5G	Hz				
Test site:	Measurement D					
Receiver setup:	Wododiomont E	notarioo. Orn				
receiver setup.	Frequency	Detector	RBW	VBW	Remark	
	Above 1GHz	Peak	1MHz	3MHz	Peak Value	
	Above 1G112	Peak	1MHz	10Hz	Average Value	
Limit:	Francis		1 :: (-dD) /	/m @2m)	Damark	
	Freque	ency	Limit (dBuV/ 54.0		Remark Average Value	
	Above 1	GHz	74.0		Peak Value	
Test Procedure:	the ground to determin 2. The EUT wantenna, watower. 3. The antenrathe ground Both horizon make the number of the entermination of the EUT have 10 defined to determination of the EUT have 10 defined	at a 3 meter come the position was set 3 meter which was mour thich was mour to determine the potal and vertice measurement. The author of the maximum read ceiver system and width with sion level of the would be reposed margin would	amber. The toof the highests away from the on the too tied from one the maximum all polarizations ion, the EU a was turned to the was set to Polarizations. Was set to Polarizations was set to Pola	table was rost radiation. The interfer op of a variation are meter to for a value of the ons of the are to heights if from 0 degreeak Detect old Mode. The was arranged and was estopped arise the emit one by one	rence-receiving able-height antenna our meters above the field strength. Intenna are set to anged to its worst from 1 meter to 4 thees to 360 degrees	
Test Instrumentar	Antenna Tower Horn Antenna Spectrum Analyzer Turn Table Analyzer					
Test Instruments:	Refer to section					
Test mode:	Refer to section	5.3 for details				
Test results:	Passed					

Test channel: Lowest

Horizontal:

Site

: 3n chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL Condition

: 569RF Pro

: Smart : V8 EUT Phone Model

Test node : BLE-L MDDE Power Rating : AC 120V/60Hz Environment : Temp:25.5°C Huni:55%

Test Engineer: Carey

REMARK

					Preamp Factor			Over Linit	Remark
	MHz	dBu∜	dB/n	dB	<u>ab</u>	dBuV/m	dBuV/n	dB	
0.00	2390.000 2390.000	707000707			0. UU 0. OO				

Test channel: Lowest

Vertical:

Site Condition : 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL

569RF Pro

EUT Smart Model : V8 Test mode : BLE-L MODE
Power Rating : AC 120V/60Hz
Environment : Temp:25.5°C Huni:55%

Test Engineer: Carey REMARK :

Freq			Antenna Factor				Limit Line		
3	MHz	dBu₹	_dB/m	<u>dB</u>	<u>dB</u>	dBuV/m	dBuV/m	dB	
1 2	2390.000 2390.000				0.00 0.00				

Test channel: Highest

Horizontal:

Frequency (MHz)

Site

3m chamber FCC PART 15 (PK) 3m DDHA9120(1618) HORIZOMTAL Condition

Pro EUT 569RF

: Smart : V8 Phone Model

Test mcde : BLE-H MODE
Power Rating : AC 120V/60Hz
Environment : Temp: 25.5°C Huni: 55%

Test Ergineer: Carey REMARK :

DIII II L		Read	Antenna	Cable	Preamp		Limit	Over	
	Freq		Factor						Remark
3	MOIz	dBu∇		dB	<u>ab</u>	$\overline{dBuV/m}$	dBuV/m		
1 2	2483.500 2483.500	700 700 70 70 70		705.00000			. 10-		Peak Average

Test channel: Highest

Vertical:

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(IG18) VERTICAL Site Condition

Pro 569RF

EUT Smart Phone : V8 Model Test mode : BLR-H WODE Power Rating : AC 120V/60Hz

Environment : Temp: 25.5°C Huni: 55% Test Engineer: Carey

REMARK

	Freq			ReadAntenna Cable: Level Factor Loss:					Remark	
	MEz	∃Bu⊽	—_dB/m	<u>ab</u>	<u>d</u> B	dBuV/m	dBu₹/m	<u>ab</u>		
1 2	2433.500 2433.500									

6.7 Spurious Emission

6.7.1 Conducted Emission Method

Test Requirement:	FCC Part15 C Section 15.247 (d)								
Test Method:	ANSI C63.4:2003 and KDB558074								
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.								
Test setup:									
	Spectrum Analyzer								
	E.U.T								
	Non-Conducted Table								
	Ground Poforonco Plano								
	Ground Reference Plane								
Test Instruments:	Refer to section 5.7 for details								
Test mode:	Refer to section 5.3 for details								
Test results:	Passed								

Test plot as follows:

Test mode:

Date: 30.JUL.2014 20:56:44

30MHz~25GHz

Date: 30.JUL.2014 20:57:52

30MHz~25GHz

Date: 30.JUL.2014 20:58:35

30MHz~25GHz

6.7.2 Radiated Emission Method

Test Requirement:	FCC Part15 C Section 15.209 and 15.205										
Test Method:	ANSI C63.4:200	ANSI C63.4:2003									
Test Frequency Range:	9KHz to 25GHz										
Test site:	Measurement D	Measurement Distance: 3m									
Receiver setup:											
	Frequency	Frequency Detector RBW VBW Remark									
	30MHz-1GHz	Quasi-peak	120KHz	300KHz	Quasi-peak Value						
	Above 1GHz	Peak	1MHz	3MHz	Peak Value						
	Above IGHZ	Peak	1MHz	10Hz	Average Value						
Limit:											
	Frequency		Limit (dBuV/m	@3m)	Remark						
	30MHz-88MHz		40.0		Quasi-peak Value						
	88MHz-216MHz		43.5		Quasi-peak Value						
					•						
	960MHz-1GHz										
	Above 1GHz										
Test Procedure:	216MHz-960MHz										

Test setup:	Below 1GHz
	Antenna Tower Search Antenna RF Test Receiver Ground Plane Above 1GHz Antenna Tower Antenna Tower Antenna Tower Antenna Tower Antenna Tower
Test Instruments:	Refer to section 5.7 for details
Test mode:	Refer to section 5.3 for details
Test results:	Passed
Remark:	 Pre-scan all kind of the place mode (X-axis, Y-axis, Z-axis), and found the Y-axis is the worst case. 9 kHz to 30MHz is too low, so only shows the data of above 30MHz in this report.

Below 1GHz

Horizontal:

Site

: 3m chamber : FCC_PART15 CLASS B 3m VULB9163(30W1G) HORIZONTAL Condition

: 569RF Pro : Smart : V8 EUT Phone Model : BLE MODE Test mode

Power Rating : AC 1207/60Hz Environment : Temp: 25.5°C Huni: 55%

Test Engineer: Carey REMARK :

TillAldx	- 5	Read	Intenna	Cable	Freamp		Limit	Over	
	Freq		Factor				ine	I.imit	Remark
-	MHz	dBu∜		d₿	<u>dB</u>	$\overline{\mathtt{dBuV/n}}$	$\overline{dB}\underline{u}\overline{V}/\overline{m}$	<u>d</u> B	
1	59.649	38.40	12.73	0.69				-17.95	
2 3 4	111.347	48.38	12.04	1.06				-11.47	
3	188.413	4:.53	10.40	1.37	28.91	24.39	43.50	-19.11	QP
4	233, 349	40.71	11.78	1.54	28.63	25.40	43.00	-20.60	QP
5 6	298. 268	49.77	13.00	1.76	28.45	36.08	43.00	-9.92	QP
6	364.260	5:.09	14.46	1.99	28.62	38.92	43.00	-7.08	QP

Vertical:

: 3m chamber : FCC PART15 CLASS B 3m VULB9163(30M1G) VERTICAL Condition

Pro : 569RF

: Smart Phone : V8 EUT Model Test mode : BLE MODE

Power Rating: AC 120V/60Hz Environment: Temp:25.5°C Huni:55%

Test Engineer: Carey REMARK :

	Freq		Antenna Factor				Limit Line	Over Limit	Remark
-	MHz	dBu₹	<u>dB</u> /m	<u>d</u> B	<u>d</u> B	dBuV/m	dBuV/m		
1	30.000	52.15	12.33	0.43	29.98	34.93	40.00	-5.07	QP
2	39.715	45.85	13.49	0.52	29.90	29.96	40.00	-10.04	QP
2	59.649	45.09	12.73	0.69	29.77	28.74	40.00	-11.26	QP
4	104.903	48.27	12.68	1.00	29.49	32.46	43.50	-11.04	QP
5	370.702	40.45	14.51	2.02	28.65	28.33	46.00	-17.67	QP
6	519.065	35.57	17.00	2.45	29.01	26.01	46.00	-19.99	QP

Above 1GHz

Test channel:			.owest		Level:		Peak	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4804.00	45.36	31.53	8.90	40.24	45.82	74.00	-28.18	Vertical
7206.00								Vertical
4804.00	46.28	31.53	8.90	40.24	46.47	74.00	-27.53	Horizontal
7206.00					-			Horizontal

Test channe	l:	L	owest		Level:		Average	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4804.00	35.96	31.53	8.90	40.24	36.15	54.00	-17.85	Vertical
7206.00								Vertical
4804.00	36.34	31.53	8.90	40.24	36.53	54.00	-17.47	Horizontal
7206.00								Horizontal

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Test channe	l:	1	Middle		Level:		Peak	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4882.00	45.56	31.58	8.98	40.15	45.97	74.00	-28.03	Vertical
7323.00		1			-			Vertical
4882.00	46.32	31.58	8.98	40.15	46.73	74.00	-27.27	Horizontal
7323.00								Horizontal

Test channe	l:	1	Middle		Level:		Average	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4882.00	35.29	31.58	8.98	40.15	35.70	54.00	-18.30	Vertical
7323.00								Vertical
4882.00	35.71	31.58	8.98	40.15	36.12	54.00	-17.88	Horizontal
7323.00								Horizontal

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Test channe	Н	lighest		Level:		Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4960.00	46.64	31.69	9.08	40.03	47.38	74.00	-26.62	Vertical
7440.00			1		1			Vertical
4960.00	45.74	31.69	9.08	40.03	46.48	74.00	-27.52	Horizontal
7440.00								Horizontal

Test channel:			Highest		Level:		Average	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4960.00	36.42	31.69	9.08	40.03	37.16	54.00	-16.84	Vertical
7440.00					1			Vertical
4960.00	35.09	31.69	9.08	40.03	35.83	54.00	-18.17	Horizontal
7440.00								Horizontal

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.