

An Introduction to Signal Processing

Data Mining II Week 5

Apa yang disebut dengan sinyal?

- Sinyal adalah sebuah bentuk gelombang yang bergetar dalam suatu rentang frekuensi.
- Salah satu bentuk sinyal adalah suara
- Ketika seseorang berbicara, hal ini menghasilkan sinyal tekanan udara; telinga menerima perbedaan tekanan udara ini dan berkomunikasi dengan otak. Begitulah cara otak membantu seseorang mengenali bahwa sinyalnya adalah ucapan dan memahami apa yang dikatakan seseorang.

How do we hear?

Spiral of tissue with liquid and thousands of tiny hairs that gradually get smaller.

- Longer hair resonate with lower frequencies.
- Shorter hair resonate with higher frequencies.
- Thus the time-domain air pressure signal is transformed into frequency spectrum, which is then processed by the brain.

Our ear is a natural fourier transform analyzer!

Atribut dari sinyal

- Frequency (frekuensi)
- Amplitude (amplitudo)
- Envelope
- Phase
- Bandwidth
- Modulation
- Signal-to-Noise Ratio (SNR)

Frequency

- Frekuensi menunjukkan berapa banyak sinyal dalam satu detik ditunjukkan dalam Hertz (Hz)
- Frequency yang tinggi menunjukkan bahwa suatu sinyal memilki osilasi yang tinggi

Amplitude

- Amplitudo menunjukkan nilai maksimal dan minimal dari suatu sinyal (intensitas)
- Dalam sinyal audio, amplitudo mengatur kekerasan suara

Envelope

- Envelope meng-outline amplitude dari sinyal
- Dengan menggunakan envelope kita dapat mengetahui perubahan amplitudo dari sinyal digital

Data Mining II, TSD FTMM, 2022

Phase

- Phase menunjukkan posisi dari sinyal pada suatu waktu
- Dengan menggunakan phase, kita dapat mengetahui apakah ada perubahan dari sinyal

Bandwidth

- Badwidth menunjukkan range dari frekuensi yang digunakan.
 Bandwidth dapat dihitung dengan menggunakan selisih frekuensi terbesar dengan frekuensi terendah
- Dengan menggunakan bandwidth, kita dapat mengetahui berapa banyak data yang dapat ditransmisikan dalam satu channel

Modulation

- Modulation adalah cara memodifikasi frequency atau phase untuk encode informasi
- Modulasi ini
 digunakan untuk
 radio supaya
 bergerak lebih jauh

Signal to Noise Ratio (SNR)

- SNR menunjukkan perbedaan dari kekuatan sinyal yang diinginkan dibandingkan dengan noise-nya dalam bentuk decibel (dB).
- SNR yang tinggi menunjukkan sinyal yang jelas/sedikit noise.

$$SNR(dB) = 10\log_{10}\left(\frac{Signal\ Power}{Noise\ Power}\right)$$

Aplikasi Atribut Sinyal

- Audio Processing (Analisis suara):
 - Frequency
 - Amplitude
 - Envelope
- Communication Systems (Transmit data secara efisien):
 - Bandwidth
 - Frequency
 - Modulation

Konsep Fundamental

- Sampling
- Quantization
- Encoding

Sampling dan quantization

- Sinyal asli bersifat continuous.
- Untuk melakukan processing kita membutuhkan sinyal dalam bentuk digital.
- Sampling rate digunakan untuk menentukan seberapa banyak sample yang didapat dari sinyal dalam datu detik
- Quantization digunakan untuk mengatur seberapa detil hasil sample nya dengan mengubah nilai continuous menjadi nilai diskrit.
- Nilai diskrit ini bisa dalam nilai 8-bit/16-bit pada umumnya.

Sampling dan Quantization

Sampling dan Quantization

- Setelah sinyal telah dikuantisasi, maka perlu dilakukan encoding.
- Encoding adalah proses mengubah intensitas sinyal menjadi nilai biner.

Sampling rate x Duration

- Data yang dapat dijadikan suatu array untuk signal processing bergantung pada sampling rate dan durasi.
- Sampling rate: seberapa banyak sinyal yang disample dalam satu detik
- Durasi: seberapa lama kita ingin mengambil sinyalnya.
- Sebagai contoh:
 - Sampling rate 10.000 (10 kHz)
 - Durasi 1 millisecond (ms)
- Jumlah sampel dalam array adalah 10 dalam waktu 1 ms tersebut.

Question

• Seberapa banyak sampling yang diperlukan?

Nyquist-Shannon Theorem

 Menurut teorema ini, untuk mendapatkan mengkonversi sinyal analog menjadi sinyal digital tanpa kehilangan data, diperlukan sampling rate setidaknya 2 kali maksimum frekuensinya (Nyquist Rate).

$$NyquistRate = 2 * F_{max}$$

• Menurut teorema ini, apabila suatu sinyal disampling kurang dari Nyquist rate nya, kemungkinan akan terjadi aliasing.

Aliasing

- Terjadi apabila sampling ratenya terlalu rendah.
- Aliasing ini terjadi saat sinyal yang memiliki frekuensi tinggi diinterpretasikan menjadi sinyal yang frekuensinya lebih rendah karena sampling rate yang kurang.

- Hal pertama yang penting adalah bahwa suara hampir selalu, atau pada dasarnya selalu, merupakan campuran.
- Karena suara ini akan bergerak di tikungan tempat, tidak seperti gambar misalnya.
- Sehingga pendengar akan selalu memiliki suara yang berasal dari banyak tempat. Suara ini juga akan dibawa ke dalam tanah dan dipantulkan oleh dinding.
- Semua hal ini membuat pendengar selalu memiliki banyak sumber suara: sumber yang menarik dan kemudian selalu sumber suara lainnya (noise).

Signal Noise Reduction

- Low Pass Filter
- High Pass Filter
- Band Pass Filter
- Fast Fourier Transform (FFT)
- Discrete Wavelet Transform (DWT)

Low Pass Filter

- Low pass filter digunakan untuk mengambil sinyal dengan frekuensi rendah
- Hal ini berguna untuk memfilter sinyal yang noise-nya memiliki frekuensi tinggi.

High Pass Filter

- High pass filter digunakan untuk mengambil sinyal dengan frekuensi tinggi
- Hal ini berguna untuk memfilter sinyal yang noise-nya memiliki frekuensi rendah.

Band Pass Filter

- Band pass filter digunakan untuk memfilter sinyal yang memiliki frekuensi dengan range tertentu
- Hal ini dapat berguna apabila suatu sinyal kita ketahui memiliki range frekuensi tertentu.

Fast Fourier Transform (FFT)

- Fast Fourier Transform digunakan untuk denoising data sinyal pada umumnya.
- Algoritma ini bekerja dengan memecah sinyal menjadi beberapa komponen

Fast Fourier Transform (FFT)

Data Mining II, TSD FTMM, 2022

Discrete Wavelet Transform (DWT)

- Tidak seperti FFT yang menggunakan keseluruhan sinyal, DWT menggunakan suatu waktu (time window) yang spesifik.
- Sebuah sinyal dapat di-decompose menjadi wavelets.
 - Level 1: Decompose sinyal menjadi A1 (approximation) and D1 (detail).
 - Level 2: Decomposes A1 menjadi A2 and D2, dan seterusnya.
- Untuk mendapatkan A1 dan D1 bisa menggunakan Low Pass Filter dan High Pass Filter

Implementasi

- Ada beberapa subbidang audio yang sangat dikenal, pengenalan suara (speech recognition) adalah salah satunya.
- Untuk tugas klasifikasi, misalnya pencarian kata kunci, jadi: "Hi Siri" atau "OK Google".
- Dalam analisis musik contohnya adalah klasifikasi genre.
- Dalam ekoakustik, misalnya yaitu menganalisis migrasi burung menggunakan data sensor untuk melihat polanya.
- Dalam medis misalnya untuk mendeteksi murmur jantung (suara darah yang mengalir dalam jantung) yang bisa menjadi indikasi kondisi jantung.
- Dalam kasus medis lain bisa digunakan untuk mengetahui gejala epilepsy menggunakan sinyal EEG

Referensi

- https://towardsdatascience.com/machine-learning-on-sound-and-audio-data-3ae03bcf5095
- https://www.jonnor.com/2021/12/audio-classification-with-machine-learning-europython-2019/
- https://opensource.com/article/19/9/audio-processing-machine-learning-python

