11.5 Alternating series

- 1. alternating series test $\sum (-1)^{n-1}b_n$ or $\sum (-1)^n b_n$, $b_n \searrow 0$.
- 2. estimate sums $|R_n| \le b_{n+1}$

$$1 - 1 + 1 - 1 + 1 - 1 + 1 - 1 + \cdots
1 - 2 + 3 - 4 + 5 - 6 + 7 - 8 + \cdots
1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \frac{1}{5} - \frac{1}{6} + \frac{1}{7} - \frac{1}{8} + \cdots
1 - \frac{1}{2^2} + \frac{1}{3^2} - \frac{1}{4^2} + \frac{1}{5^2} - \frac{1}{6^2} + \frac{1}{7^2} - \frac{1}{8^2} + \cdots$$

Define: An *alternating* ['oltər,netɪŋ] series 交錯級數 is a series whose terms are alternately positive and negative. (正負交錯)

$$\sum a_n$$
 with $a_n = (-1)^{n-1}b_n$ or $a_n = (-1)^n b_n$, where $b_n = |a_n|$.

$$\sum a_n = a_1 + a_2 + a_3 + a_4 + \dots + a_n + \dots$$

$$= b_1 - b_2 + b_3 - b_4 + \dots + (-1)^{n-1}b_n + \dots$$
or
$$= -b_1 + b_2 - b_3 + b_4 + \dots + (-1)^n b_n + \dots$$

Note:
$$(-1)^{\frac{1}{1}} = -1, (-1)^{\frac{1}{1}} = 1.$$

Alternating series test 0.1

Theorem 1 (Alternating Series Test, Leibniz Test)

If $b_n \ge b_{n+1} > 0$ for n and $\lim_{n \to \infty} b_n = 0$, (遞減到零, 方便記爲: $b_n \searrow 0$) then the alternating series $\sum_{n=0}^{\infty} (-1)^{n-1} b_n$ (also $\sum_{n=0}^{\infty} (-1)^n b_n$) is convergent.

Proof. (證明 $\sum (-1)^{n-1}b_n = b_1 - b_2 + b_3 - b_4 + \dots$ 就好)

考慮偶數項的部分和 $\{s_{2n}\}$: $b_n \geq b_{n+1}$,

$$s_2 = b_1 - b_2 \ge 0,$$

$$s_4 = b_1 - b_2 + b_3 - b_4 = s_2 + b_3 - b_4 \ge s_2,$$

$$s_{2n} = b_1 - b_2 + b_3 - b_4 + \dots + b_{2n-1} - b_{2n} = s_{2n-2} + b_{2n-1} - b_{2n} \ge s_{2n-2},$$

 $\implies \{s_{2n}\}\$ is non-decreasing (increasing);

$$s_{2n} = b_1 - (b_2 - b_3) - (b_4 - b_5) - \dots - (b_{2n-2} - b_{2n-1}) - b_{2n} < b_1,$$

 $\implies \{s_{2n}\}$ is bounded (by b_1).

By the Monotone Convergence Theorem, $\{s_{2n}\}$ converges. Say $\lim_{n\to\infty} s_{2n}=s$.

考慮奇數項的部分和
$$\{s_{2n+1}\}$$
: $\vdots \lim_{n\to\infty} b_n = 0$,
$$\implies \lim_{n\to\infty} s_{2n+1} = \lim_{n\to\infty} (s_{2n} + b_{2n+1}) = \lim_{n\to\infty} s_{2n} + \lim_{n\to\infty} b_{2n+1} = s + 0 = s.$$

$$\therefore \lim_{n \to \infty} s_n = s \text{ and hence } \sum_{n \to \infty} (-1)^{n-1} b_n \text{ converges (to } s).$$

Note: $b_n \searrow 0 \implies \sum (-1)^n b_n$ converges. 三個條件: 交錯, 遞減, 到零, 才會保證收斂。(缺少任何一個都有反例, 試著造造看。)

Example 0.1 The alternating harmonic series (交錯調和級數)

$$1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \dots = \sum \frac{(-1)^{n-1}}{n}$$

$$b_n = \frac{1}{n} > \frac{1}{n+1} = b_{n+1}, \text{ and } \lim_{n \to \infty} b_n = \lim_{n \to \infty} \frac{1}{n} = 0. \ (b_n \searrow 0)$$

$$So \sum \frac{(-1)^{n-1}}{n} \text{ converges by the Alternating Series Test.}$$

Recall: harmonic series $\sum_{n=1}^{\infty} \frac{1}{n}$ diverges.

Fact:
$$\sum \frac{(-1)^{n-1}}{n} = \ln 2$$
. (Exercise 11.5.36)

• **Proof.** (a)
$$s_{2n} = \sum_{i=1}^{2n} \frac{1}{i} - 2 \sum_{i=1}^{n} \frac{1}{2i} = h_{2n} - h_n$$
,

(b) (Exercise 11.3.44)
$$t_n = h_n - \ln n \searrow \gamma > 0$$
 (Euler's constant) by MCT. (c) $\lim_{n \to \infty} s_n = \lim_{n \to \infty} s_{2n} = \lim_{n \to \infty} (h_{2n} - h_n) = \lim_{n \to \infty} [(t_{2n} + \ln 2n) - (t_n + \ln n)]$

$$= \gamma - \gamma + \ln 2 = \ln 2$$
. (§11.9 將介紹用冪級數來得到 $\sum \frac{(-1)^{n-1}}{n} = \ln 2$.)

Example 0.2 The series $\sum \frac{(-1)^n 3n}{4n-1}$ is alternating.

$$\lim_{n\to\infty} \frac{3n}{4n-1} = \frac{3}{4} \neq 0. \ (b_n \ 沒有 \searrow 0, 不能用 \ Alternating Series Test!)$$

 $\lim_{n \to \infty} a_n = \lim_{n \to \infty} \frac{(-1)^n 3n}{4n - 1} \text{ does not exist.}$

So
$$\sum \frac{(-1)^n 3n}{4n-1}$$
 diverges by the Test for Divergence.

Example 0.3 Test the series $\sum \frac{(-1)^{n+1}n^2}{n^3+1}$ for convergence or divergence.

$$b_n = \frac{n^2}{n^3 + 1}$$
 (直接看遞減不容易)

Let
$$f(x) = \frac{x^2}{x^3 + 1}$$
, then $f'(x) = \frac{x(2 - x^3)}{(x^3 + 1)^2} < 0$ when $x > \sqrt[3]{2} \approx 1.26$.

So
$$b_n = f(n) > f(n+1) = b_{n+1}$$
 for $n \ge 2$. (有限項不影響)

$$\lim_{n \to \infty} b_n = \lim_{n \to \infty} \frac{n^2}{n^3 + 1} = \lim_{n \to \infty} \frac{1/n}{1 + 1/n^3} = \frac{0}{1 + 0} = 0.$$

So
$$\sum (-1)^{n+1} \frac{n^2}{n^3+1}$$
 converges by the Alternating Series Test.

0.2 Estimate sums

Theorem 2 (Alternating Series Estimation Theorem)

$$|R_n| \leq b_{n+1}$$
 (第一個被忽略的項。)

Proof. For
$$b_1 - b_2 + b_3 - b_4 + \dots = s$$
, $s_{2n+1} \searrow s$, $s_{2n} \nearrow s$.
 $s_n = b_1 - b_2 + \dots + (-1)^{n-1}b_n$, $R_n = (-1)^n b_{n+1} + (-1)^{n+1}b_{n+2} + \dots$.
 $|R_n| = |s - s_n| = \begin{cases} s - s_n < s_{n+1} - s_n & \text{if } n \text{ even} \\ s_n - s < s_n - s_{n+1} & \text{if } n \text{ odd} \end{cases} = |s_{n+1} - s_n| = b_{n+1}$.

Attention: 這個估計法只有交錯級數能用。

Example 0.4 Find the sum of the series $\sum_{n=0}^{\infty} \frac{(-1)^n}{n!}$ correct to three decimal places. 小數三位, 0! := 1

$$b_n = \frac{1}{n!} > \frac{1}{n!} \frac{1}{n+1} = \frac{1}{(n+1)!} = b_{n+1},$$
and $0 < \frac{1}{n!} < \frac{1}{n} \to 0$ as $n \to \infty$, $\lim_{n \to \infty} b_n = 0$, by the Squeeze Theorem.

So $\sum \frac{(-1)^n}{n!}$ converges by the Alternating Series Test.

$$s = \frac{1}{0!} - \frac{1}{1!} + \frac{1}{2!} - \frac{1}{3!} + \frac{1}{4!} - \frac{1}{5!} + \frac{1}{6!} - \frac{1}{7!} + \cdots$$
$$= 1 - 1 + \frac{1}{2} - \frac{1}{6} + \frac{1}{24} - \frac{1}{120} + \frac{1}{720} - \frac{1}{5040} + \cdots$$

$$b_6 = \frac{1}{720} \approx 0.0014, \ b_7 = \frac{1}{5040} \approx 0.0002,$$
 $and \ s_6 = 1 - 1 + \frac{1}{2} - \frac{1}{6} + \frac{1}{24} - \frac{1}{120} + \frac{1}{720} \approx 0.3680\overline{5},$
 $So \ s \approx 0.368.$ (誤差 < 0.0002 不會影響小數第三位。)

(書上這裡的 b_n & s_n 是從 n=0 算起, s_6 指的是前 7 項的部分和。因爲書上不是用前 n 項和的 (沒有明確的) 定義, 我覺得這樣寫並不恰當, 容易搞混。另外, 第 8 項是 $-\frac{1}{5040}$, 或許擔心會影響小數第三位; 事實上, $s_7=1-1+\frac{1}{2}-\frac{1}{6}+\frac{1}{24}-\frac{1}{120}+\frac{1}{720}-\frac{1}{5040}\approx 0.367\overline{8571542}$, 四捨五入後還是 0.368.)