Функции и файлы

Вариант 1

Для хранения данных о планшетных сканерах описать структуру вида:

Написать функцию, которая записывает в бинарный файл данные о сканере из приведенной структуры. Структура файла: в первых двух байтах размещается значение типа int, определяющее количество сделанных в файл записей; далее без пропусков размещаются записи о сканерах.

Написать функцию, которая извлекает из этого файла данные о сканере в структуру типа scan_info. Обязательный параметр — номер требуемой записи. Функция должна возвращать нулевое значение, если чтение прошло успешно, и –1 в противном случае.

Привести пример программы, создающей файл с данными о сканерах (данные вводятся с клавиатуры) — 6-8 записей и выводящей на дисплей данные о запрошенной записи.

Все необходимые данные для функций должны передаваться им в качестве параметров. Использование глобальных переменных в функциях не допускается.

Вариант 2

Для хранения данных о планшетных сканерах описать структуру вида, описанного в варианте 1.

Написать функцию, которая записывает в бинарный файл данные о сканере из приведенной структуры. Структура файла: в первых двух байтах размещается значение типа int, определяющее количество сделанных в файл записей; далее без пропусков размещаются записи о сканерах.

Написать функцию, которая сортирует записи в описанном выше бинарном файле по одной из следующих характеристик: цена либо число градаций серого. Обязательный параметр — признак, задающий критерий сортировки.

Привести пример программы, создающей файл с данными о скаперах (данные вводятся с клавиатуры) из не менее восьми записей и осуществляющий его сортировку.

Все необходимые данные для функций должны передаваться им в качестве параметров. Использование глобальных переменных в функциях не допускается.

Вариант 3

Для хранения данных о планшетных сканерах описать структуру вида, описанного в варианте 1.

Написать функцию, которая записывает в бинарный файл данные о сканере из приведенной структуры. Структура файла: в первых четырех байтах размещается значение типа long, определяющее количество сделанных в файл записей; далее без пропусков размещаются записи о сканерах.

Написать функцию, которая сортирует записи в описанном выше бинарном файле по наименованию модели скапера.

Привести пример программы, создающей файл с данными о сканерах (данные вводятся с клавиатуры) из не менее восьми записей и осуществляющий его сортировку.

Все необходимые данные для функций должны передаваться им в качестве параметров. Использование глобальных переменных в функциях не допускается.

Вариант 4

Для хранения данных о планшетных сканерах описать структуру вида, описанного в варианте 1.

Написать функцию, которая динамически выделяет память под массив структур (не меньше шести элементов), заполняет его данными в режиме диалога и записывает массив в бинарный файл. Структура файла: в первых двух байтах размещается значение типа int, определяющее количество сделанных в файл записей; далее без пропусков размещаются записи о скаперах.

Написать функцию, которая извлекает данные о сканере из описанного выше бинарного файла в структуру типа $scan_info$. Обязательный параметр — помер требуемой записи. Функция должна возвращать пулевое значение, если чтепие прошло успешно, и -1 в противном случае.

Привести пример программы, создающей файл с данными о сканерах (данные вводятся с клавиатуры) из не менее восьми записей и осуществляющий вывод на дисплей данных о требуемой записи.

Все необходимые данные для функций должны передаваться им в качестве параметров. Использование глобальных переменных в функциях не допускается.

Вариант 5

Для хранения данных о планшетных сканерах описать структуру вида, описанного в варианте 1.

Написать функцию, которая записывает данные о сканере из приведенной структуры в требуемую позицию в бинарном файле. Структура файла: в первых двух байтах размещается значение типа int, определяющее количество сделанных в файл записей; далее без пропусков размещаются записи о сканерах. Запись может осуществляться в любую позицию, причем если между вводимой записью и последней (или началом файла) имеются пропуски, они заполняются пулями.

Написать функцию, которая «уплотняет» описанный выше бинарный файл путем удаления из него записей, содержащих все пули.

Привести пример программы, создающей файл с данными о сканерах (данные вводятся с клавиатуры) из не менее шести записей и осуществляющий его уплотнение.

Все необходимые данные для функций должны передаваться им в качестве параметров. Использование глобальных переменных в функциях не допускается.

Вариант 6

Для хранения данных о планшетных сканерах описать структуру вида, описанного в варианте 1.

Написать функцию, которая динамически выделяет намять нод массив структур (не меньше шести элементов), заполняет его данными в режиме диалога и записывает массив в бинарный файл. Структура файла: в нервых двух байтах размещается значение типа int, определяющее количество сделанных в файл записей; далее без пропусков размещаются записи о сканерах.

Написать функцию, которая запрашивает данные о сканере в режиме диалога и замещает записи в бинарном файле по заданному номеру. Обязательный параметр — номер замещаемой записи. Функция должна возвращать нулевое значение, если запись прошла успешно, и –1 в противном случае.

Привести пример программы, создающей файл с данными о сканерах (данные вводятся с клавиатуры) из не менее восьми записей и осуществляющий вставку новых данных о сканере.

Все необходимые данные для функций должны передаваться им в качестве параметров. Использование глобальных переменных в функциях не допускается.

Вариант 7

Для хранения данных о планшетных сканерах описать структуру вида, описанного в варианте 1.

Написать функцию, которая записывает в бинарный файл данные о сканере из приведенной структуры. Структура файла: в нервых двух байтах размещается значение типа int, определяющее количество сделанных в файл записей; далее без пропусков размещаются записи о сканерах.

Написать функцию, которая вводит данные о сканере с клавиатуры в структуру типа scan_info, и если данные об этом сканере отсутствуют в файле, номещает со-

держимое структуры в конец файла; в противном случае выдает соответствующее сообщение.

Привести пример программы, создающей файл с дапными о скаперах (данные вводятся из текстового файла) — 6-8 записей и дополняющей файл записями о 2-3 сканерах, вводимых с клавиатуры.

Все необходимые данные для функций должны передаваться им в качестве параметров. Использование глобальных переменных в функциях не допускается.

Вариант 8

Для хранения данных о планшетных сканерах описать структуру вида, описанного в варианте 1.

Написать функцию, которая записывает в бинарпый файл данные о сканере из приведенной структуры. Структура файла: в первых двух байтах размещается зпачение типа int, определяющее количество сделанных в файл записей; далее без пропусков размещаются записи о скаперах.

Написать функцию, которая вводит данные о сканере с клавиатуры в структуру типа scan_info и помещает ее содержимое на место первой записи в файле. Файл должен существовать. При этом, запись ранее занимавшая первую позицию, помещается на вторую, вторая запись на третью, и т. д.

Привести пример программы, создающей файл с данными о сканерах (данные вводятся из текстового файла) — 6-8 записей и дополняющей этот файл 1-2 новыми записями, вводимыми с клавиатуры.

Все необходимые данные для функций должны передаваться им в качестве параметров. Использование глобальных переменных в функциях не допускается.

Вариант 9

Для хранения данных о планшетных сканерах описать структуру вида, описанного в варианте 1.

Написать функцию, которая запрашивает количество сканеров, информация о которых будет вводиться, динамически выделяет память под массив структур соответствующего размера и заполняет его данными в режиме диалога (с клавиатуры). При этом имя сканера может содержать пробелы.

Написать функцию, которая записывает данный массив в создаваемый бинарный файл. Если цена скапера меньше 200, то данные об этом сканере в файл не записываются. Информация об остальных скаперах помещается в бинарный файл, причем сначала пишутся данные о всех сканерах, имя которых начинается с заглавной буквы, а затем — с прописной.

Структура файла: в первых четырех байтах размещается значение типа long, определяющее количество сделанных в файл записей; далее без пропусков размещаются записи о сканерах.

Привести пример программы, создающей файл с данными о сканерах и осуществляющий вывод на дисплей данных о требуемой записи (либо всех, либо по номеру).

Все необходимые данные для функций должны передаваться им в качестве параметров. Использование глобальных переменных в функциях не допускается.

Вариант 10

Для хранения данных о поутбуках описать структуру вида (при необходимости дополнив ее):

```
struct NOTEBOOK{
   char model[21]; // наименование
   struct size{ // габаритные размеры
     float x;
     float y;
     float z;
   };
   float w; // вес
   int price; // цена
}
```

Написать функцию, которая читает данные о ноутбуках из файла note.txt (см. с. 158) в структуру приведенного вида. Написать функцию, которая записывает содержимое структуры в конец бинарного файла. Структура бинарного файла: первые два байта (целое) — число записей в файле; далее записи в формате структуры NOTEBOOK.

Написать программу, в которой на основе разработанных функций осуществляется чтение данных только для тех ноутбуков, частота процессора которых больше 120 МГц, и запись в бинарный файл по убыванию цены.

Вариант 11

Для хранения данных о ноутбуках описать структуру вида, описанного в варианте 10.

Написать функцию, которая читает данные о ноутбуках из файла note.txt (см. с. 158) в структуру приведенного вида. Написать функцию, которая записывает содержимое структуры в конец бинарного файла. Структура бинарного файла: первые два байта (целое) — число записей в файле; далее записи в формате структуры NOTEBOOK.

Написать программу, в которой на основе разработанных функций осуществляется чтение данных только для тех ноутбуков, объем HDD которых меньше 1 Гбайт, и запись считанных данных в бинарный файл в алфавитном порядке по наименованию.

Вариант 12

Для хранения данных о поутбуках описать структуру вида, описанного в варианте 10.

Написать функцию, которая читает данные о ноутбуках из файла note.txt (см. с. 158) в структуру приведенного вида. Написать функцию, которая записывает содержимое структуры в конец бинарного файла. Структура бинарного файла: первые два байта (целое) — число записей в файле; далее записи в формате структуры NOTEBOOK.

Написать программу, в которой на основе разработанных функций осуществляется запись в двоичный файл данных только о тех поутбуках, целое количество которых в одном кубическом метре не превышает 285 штук.

Вариант 13

Для хранения данных о поутбуках описать структуру вида, описанного в варианте 10.

Написать функцию, которая читает данные о поутбуках из файла note.txt (см. с. 158) в структуру приведенного вида. Написать функцию, которая записывает содержимое структуры в конец бинарного файла. Структура бинарного файла: первые два байта (целое) — число записей в файле; далее записи в формате структуры NOTEBOOK.

Написать программу, в которой на основе разработанных функций осуществляется запись в двоичный файл данных только о тех ноутбуках, максимальный объем ОЗУ которых не менее 40 Мбайт, отсортированных по объему.

Вариант 14

Для хранения данных о поутбуках описать структуру вида, описанного в варианте 10.

Написать функцию, которая читает данные о поутбуках из файла note.txt (см. с. 158) в структуру приведенного вида. Написать функцию, которая записывает содержимое структуры в конец бинарного файла. Структура бинарного файла: первые два байта — целое число записей в файле; далее записи в формате структуры NOTEBOOK.

Написать программу, в которой на основе разработанных функций осуществляется запись в двоичный файл данных только о тех ноутбуках, диагональ дисплея которых больше одиннадцати дюймов.

Вариант 15

Для хранения данных о поутбуках описать структуру вида (при необходимости дополнив ее):

Написать функцию, которая читает данные о поутбуках из файла note.txt (см. с. 158) в структуру приведенного вида. Написать функцию, которая записывает содержимое структуры в копец бинарного файла. Структура бинарного файла:

первые два байта — целое число записей в файле; далее записи в формате структуры NOTEBOOK.

Написать программу, в которой на основе разработанных функций осуществляется запись в двоичный файл данных только о тех ноутбуках, вес которых менее 7 кг, отсортированных в порядке возрастания цены.

Вариант 16

Для хранения данных о ноутбуках описать структуру вида, описанного в варианте 15.

Написать функцию, которая читает данные о поутбуках из файла note.txt (см. с. 158) в структуру приведенного вида. Написать функцию, которая записывает содержимое структуры в конец бинарного файла. Структура бинарного файла: первые два байта — целое число записей в файле; далее записи в формате структуры NOTEBOOK.

Написать программу, в которой на основе разработапных функций осуществляется запись в двоичный файл данных только о тех ноутбуках, объем видеопамяти которых 2 Мбайт, отсортированных в порядке уменьшения тактовой частоты процессора.

Вариант 17

Для храпения данных о ноутбуках описать структуру вида, описанного в варианте 15.

Написать функцию, которая читает данные о поутбуках из файла note.txt (см. с. 158) в структуру приведенного вида. Написать функцию, которая записывает содержимое структуры в конец бинарного файла. Структура бинарного файла: первые два байта — целое число записей в файле; далее записи в формате структуры NOTEBOOK.

Написать программу, в которой на основе разработанных функций осуществляется запись в двоичный файл данных только о тех ноутбуках, объем HDD которых больше 1 Гбайт, отсортированных в порядке возрастания размера диагонали дисплея.

Вариант 18

Для хранения данных о ноутбуках описать структуру вида, описанного в варианте 15.

Написать функцию, которая читает данные о ноутбуках из файла note.txt (см. с. 158) в структуру приведенного вида. Написать функцию, которая записывает содержимое структуры в конец бинарного файла. Структура бинарного файла: первые два байта — целое число записей в файле; далее записи в формате структуры NOTEBOOK.

Написать программу, в которой на основе разработанных функций осуществляется запись в двоичный файл данных только о тех поутбуках, тактовая частота процессора которых больше 120МГц, отсортированных в порядке уменьшения веса.

Вариант 19

Для хранения данных о ноутбуках описать структуру вида (при необходимости дополнив ее):

```
struct NOTEBOOK{
   struct disp_res{ // разрешающая способность дисплея
   int x: // по горизонтали
   int y: // по вертикали
};
int f: // частота регенерации
float d: // размер диагонали дисплея
float hdd; // объем диска
   char model[21]: // наименование
}
```

Написать функцию, которая читает данные о ноутбуках из файла note.txt в структуру приведенного вида. Написать функцию, которая записывает содержимое структуры в конец бинарного файла. Структура бинарного файла: первые два байта — целое число записей в файле; далее записи в формате структуры NOTEBOOK.

Написать программу, в которой на основе разработанных функций осуществляется запись в двоичный файл данных только о тех поутбуках, тактовая частота процессора которых больше 120МГц, отсортированные в порядке возрастания цены.

Вариант 20

Для хранения данных о ноутбуках описать структуру вида, описанного в варианте 19.

Написать функцию, которая читает данные о ноутбуках из файла note.txt в структуру приведенного вида. Написать функцию, которая записывает содержимое структуры в конец бинарного файла. Структура бинарного файла: первые два байта — целое число записей в файле; далее записи в формате структуры NOTEBOOK.

Написать программу, в которой на основе разработанных функций осуществляется запись в двоичный файл данных только о тех поутбуках, цена которых больше \$3500, отсортированные в порядке возрастания тактовой частоты процессора. Пример файла note.txt:

```
Acer Note Light
                   2699 5.6 02.0x11.8x08.3 100 40 10.4 1 1024x0768 60 0.774
ASW ND5123T
                   3489 7.2 02.3×11.8×10.1 133 32 12.1 2 1024×0768 70 1.300
ARMNote TS80CD
                   3699 7.2 02.0×11.5×08.8 133 64 11.3 1 1024×0768 75 1.300
                   4499 7.5 02.3x11.3x09.0 133 40 11.3 1 0800x0600 70 0.774
AST Ascentia P50
BSI NP8657D
                   2605 8.0 02.3x11.8x09.3 133 40 11.3 1 1024x0768 60 0.810
BSI NP5265A
                   3765 8.2 02.5x12.0x09.0 150 32 12.1 2 1024x0768 70 1.300
Dell Xpi P100SD
                   3459 6.0 02.3×11.0×08.8 100 40 10.3 1 1024×0768 60 0.773
                   4799 4.0 01.3x11.0x08.8 120 40 10.4 1 0800x0600 56 1.000
Digital HiNote
                   4499 5.6 02.0x11.9x08.8 133 40 11.3 2 1024x0768 60 0.686
Gateway Solo S5
Hertz Z-Optima NB 3995 8.0 02.3x11.9x09.0 150 40 11.2 2 1024x0768 75 1.000
HP OmniBook 5500
                   6120 7.1 02.0x11.5x09.0 133 64 11.4 1 1024x0768 75 1.300
IBM ThinkPad 560
                   3749 4.1 01.3x11.8x08.8 120 40 12.1 2 1024x0768 85 0.774
NEC Versa 4080H
                   4780 6.6 02.3×11.8×09.5 120 48 10.4 1 0800×0600 70 0.776
Polywell Poly 500 3300 7.9 02.3x11.9x09.0 120 40 10.4 1 1024x0768 72 1.000
```

Samsung SENS 810 3667 8.7 02.3x11.5x09.5 100 32 11.4 2 1024x0768 75 0.773 Twinhead Slimnote 2965 7.4 02.0x11.5x08.0 075 64 10.4 1 1024x0768 70 0.772

В файле note.txt находится текстовая информация о ноутбуках. Каждая строка содержит данные об одной модели. Данные в строке размещаются в следующих полях:

- 1:20 наименование модели;
- 21: 24 цена в долларах (целое число);
- 26: 28 масса поутбука в кг (число с десятичной точкой из четырех символов);
- 30: 43 габаритные размеры поутбука в дюймах (ВЫСОТАхДЛИНАхШИРИ-
- НА три числа с десятичной точкой (4 символа, включая точку, разделенные 'х');
- 44:47 частота процессора в МГц (целое число из трех символов);
- 49:50 максимальный объем ОЗУ в мегабайтах (целое число из двух символов);
- 52: 55 размер диагонали дисплея в дюймах (число с десятичной точкой из четырех символов, включая точку);
- 57 размер видеопамяти в мегабайтах целое число из одного символа;
- 59: 67 разрешающая способность дисплея в пикселах (два целых числа, разделенные 'x');
- 69:70 частота регенерации дисплея в Гц (целое число из двух символов);
- 72:76 объем HDD в гигабайтах (число с десятичной точкой из пяти символов).

Все неописанные позиции заполнены пробелами.