PHYS 2211, Sun	nmer 2021
Week 6: The E	Energy Principle
total change in energy of ystem for the 64stern	Nsur-
k	on system by between system
In this video:	ourolindings & ourolinding. due to a Clifference in temperature
vector dot pr	roduct
v work	
V Kinetic energy	3
v potential ener	rgy (Ugran, lekchie)
energy graphs	

Multiplying vectors: The Dot product

"Scalar product" $\overrightarrow{A} = \langle A_x, A_y, A_z \rangle$

The result of the dot product is a scalar

$$\overrightarrow{A} \cdot \overrightarrow{B} = |\overrightarrow{A}| |\overrightarrow{B}| \cos \Theta$$

$$\vec{A} \cdot \vec{B} = |\vec{A}| |\vec{B}| \cos \Theta$$

$$\mathcal{A} \cdot \vec{B} = |\vec{A}| |\vec{B}| \cos \Theta$$

$$\mathcal{A} \cdot \vec{B} = |\vec{A}| |\vec{B}| \cos \Theta$$

$$\vec{A} \cdot \vec{B} = |\vec{A}| |\vec{B}| \cos \Theta$$

$$\partial_{b} \theta = 90^{\circ} \Rightarrow \tilde{A} \cdot \tilde{B} = 0$$

Mork

$$W = \int \vec{F} \cdot d\vec{r}$$
 (general form)

 $J_b \vec{F} = constant$ e.g. $\vec{F}_g = mg(-\hat{q})$
 $W = \vec{F} \cdot \Delta \vec{r}$

Nork is a scalar & has units

 O_b :

 $\vec{F} \Rightarrow N \Rightarrow kg m/s^2$
 $\Delta \vec{r} \Rightarrow m$
 $\vec{F} \cdot D\vec{r} \Rightarrow kj m^2/s^2 = Nm = Jouck$

Unit of work is the unit of energy)

Fgrav = mg (-q) (near surface of Earth)

Ugrav = mg y e - vertical distance from the ground

U

Allgrav = mg sy = mg (y+ - yi)

Fgrav = Gm, mz (-2)

Ugrav = -Gm, mz

DUgrav = -GM, M2 (1 - 1)

Felectric = K9192 r

Welectric = K9192

Whe	en Sol	ving en	ergy f	principl	le prol	olems	
0	Iden	tily 5	ystem	& 0	wyou	ndings	
		4	lings in		things	in oundings	
		Sy	stan ontribut energy	e	the;	system	
@	1 dent	by to	pes of	1 ener	zy inc	blued	
3		ly def					
	& H	re fino	l sto	Je of	the E	s ystem	
4) (the en	egy p	rincple
		Esus =					
(0)		sug +			_ =		- DY 545 x
	en	ze cho	yes in	iystem		done 5	on the

Energy Graphs (look in fall 2000 lectures) making like plots of energy vs distance 1) Identify the potential energy

Determine total energy of rystem

VII
$$E = K + U > O \Rightarrow unbound$$

VII $E = K + U < O \Rightarrow bound$

VII $E = K + U < O \Rightarrow bound$

VII $E = K + U = O \Rightarrow system @ escape speed$

3) Put the Kinetic energy in graph in a way that ensures k+u=E