МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ)

Физтех-школа физики и исследований им. Ландау

Определение момента инерции тел с использованием трифилярного подвеса

Автор: Шахматов Андрей Юрьевич Б02-304

Аннотация

При помощи трифилярного подвеса измерены моменты инерции нескольких тел. Теоретически рассчитаны моменты инерции данных тел. Оценены погрешности полученных моментов инерции и проведен сравнительный анализ теоретически рассчитанных моментов инерции с моментами инерции, рассчитаными экспериментально, в результате которого определено, что с использованием метода расчёта момента инерции тела при помощи трифилярного подвеса возможно добиться точности измерения, сравнимой с теоретической.

Содержание

1	Введение				
2	Me ² .1 2.2	тодика Период колебаний груза на трифилярном подвесе			
3	Рез	зультаты и их анализ	4		
4	Вы	воды	4		
5	Ист	пользованная литература	6		
6	$\Pi \mathbf{p}_1$	иложения	6		
	6.1	Теретический расчёт моментов инерции тел	6		
	6.2	Параметры трифилярного подвеса	6		
	6.3	Параметры измеряемых грузов			
	6.4	Измерения периодов колебаний трифилярного подвеса с грузами	7		

1 Введение

Измерение момента инерции тела является фундаментальной задачей в механике и имеет важное значение в различных областях науки и техники. Однако теоретический расчёт моментов инерции часто бывает слишком сложен из-за формы тела или большого количества составных деталей. Потому важной задачей является нахождение экспериментального метода расчёта момента инерции тела с точностью, сравнимой с теоретической. Одним из таких методов является расчёт момента инерции с помощью трифилярного подвеса. Цель данной работы заключалась в проверке корректности метода определения момента инерции с использованием трифилярного подвеса путём расчёта погрешности измерения и сравнения полученного результата с теоретическим.

Рис. 1: Схема трифилярного подвеса, использованного в эксперименте.

2 Методика

2.1 Период колебаний груза на трифилярном подвесе

В эксперименте использовался трифилярный подвес, изображённый на рисунке 1. Из теории[1] известно, что при условии отсутствия трения в системе справедливо уравнение малых колебаний:

$$I\ddot{\phi} + mg\frac{Rr}{z_0}\phi = 0 \tag{1}$$

Где I - момент инерции подвеса, m - масса подвеса, R, r, z_0 - геометрические размеры трифилярного подвеса(Рис. 1). Тогда при малом отклонении системы из положения равновесия возникнут гармонические колебания с периодом T:

$$T = 2\pi \sqrt{\frac{Iz_0}{mgRr}} \tag{2}$$

Из выражения 2 можно выразить момент инерции подвеса I через массу подвеса m, период малых колебаний T и геометрический параметр системы $k=\frac{gRr}{4\pi^2z_0}$:

$$I = kmT^2 (3)$$

С использованием выражения 3 возможно найти момент инерции произвольного тела относительно центра его центра масс. Однако полученное выражение справедливо только при малой амплитуде колебаний и небольшими потерями энергии, то есть $\tau \gg T$, где τ - характерное время затухания колебаний.

Рис. 2: Схема полого циллиндра, использованного в экспперименте.

Рис. 3: Схема циллиндрической крышки, использованной в экспперименте.

2.2 Нахождение моментов инерции произвольных тел, с использованием трифилярного подвеса

Для проверки корректности метода нахождения момента инерции с использованием трифилярного подвеса рассмотрены несколько тел с теоретически рассчитанными моментами инерции (Прил. 6.1): полый циллиндр I_1 (Рис. 2), циллиндрическая крышка I_2 (Рис. 3), а также два полуциллиндровых груза I_3 . Для нахождения момента инерции относительно центра масс (I_1 и I_2) следует разместить груз на трифилярном подвесе таким образом, чтобы центра масс груза и подвеса совпадали. Тогда возможно найти момент инерции всей системы как сумму моментом I_1 и I_0 , I_0 -момент инерции трифилярного подвеса. При наличии двух тел (I_3) возможно увеличить точность измерения момента инерции, разположив два тела на трифилярном подвесе так, чтобы центр масс двух тел совпадал с центром масс трифилярного подвеса. Используя закон Гюйгенса-Штейнера, получено выражение для измеренного момента инерции всей системы I, где m - масса одного груза, d - расстояние от оси момента инерции до центра масс системы, m_0 - масса трифилярного подвеса:

$$k(2m + m_0)T^2 = I = I_0 + 2(I_3 + md^2)$$
(4)

В выражении 4 получена линейная свзяь T^2 и d^2 , потому возможно построить график линейной зависимости $T^2(d^2)$ из которого будет найден момент инерции I_3 .

3 Результаты и их анализ

С использованием штангенциркуля и электрических весов были найдены параметры трифилярного подвеса (Прил. 6.2), а также массы и геометрические размеры трёх грузов (Прил. 6.3). Проверено удовлетворяет ли установка низким потерям энергии, для этого измерено время τ , за которое амплитуда уменьшится в ехр раз. Показано, что отношение $1\gg\frac{T}{\tau}=0.001$, что подтверждает корректность использованных гармонических приближений. Была найдена рабочая амплитуда линейных колебаний $\alpha=10^\circ$, т.е при уменьшении которой в два раза измерененный период колебаний отличался бы не более чем на погрешность измерения. Дальнейшие измерения проводились при амплитуде колебаний $\alpha=10^\circ$, каждое измерение состояло из 20 колебаний. Измерен период колебаний пустой платформы и найден её момент инерции I_0 (Прил. 6.2). Измерены периоды колебаний платформы с первым и вторым грузами по отдельности и вместе (Прил. 6.4). С использованием выражения 3 рассчитаны моменты инерции грузов (Таблица 1).

	$I_1, \text{ KF} \cdot \text{M}^2 \cdot 10^{-3}$	$I_2, \text{ KF} \cdot \text{M}^2 \cdot 10^{-3}$	$I_1 + I_2$, $\text{kg} \cdot \text{m}^2 \cdot 10^{-3}$
Эксперимент	4.37 ± 0.06	2.095 ± 0.025	6.51 ± 0.08
Теория	4.362 ± 0.009	2.070 ± 0.006	6.43 ± 0.01

Таблица 1: Сравнительная таблица моментов инерции грузов 1 и 2, рассчитанных экспериментально и теоретически.

Из таблицы 1 следует, что моменты инерции, рассчитанные теоретически и экспериментально совпадают. Погрешность экспериментальных результатов в 8 раз больше погрешности теоретических и составляет 1%.

Измерена зависимость периода колебаний системы с двумя грузами номер 3 в зависимости от расстояния между их центрами и центром масс платформы (Таблица. 3). Построен график линеаризованной зависимости $T^2(h^2)$ (Рис. 4).

Из сдвига графика по оси T^2 рассчитан момент инерции полуциллиндра $I_{exp}=(8.42\pm0.11)\cdot 10^{-4}~{\rm kr\cdot m^2}$, что совпадает с моментом инерции полуциллиндра, рассчитанного теоретически (Прил. 6.3). Относительная погрешность момента инерции, найденного графически, равна $\sigma_g=1\%$, что совпадает с относительной погрешностью одноточечного измерения.

Из совпадения моментов инерции тел, рассчитанных теоретически и экспериментально, можно установить корректность метода. Небольшое увеличение относительной погрешности (8 раз) позволяет говорить об эффективности метода измерения момента инерции сложных тел с использованием трифилярного подвеса.

4 Выводы

Моменты инерции, измеренные с использованием трифилярного подвеса совпали с теоретически предсказанными, из чего может следовать корректность метода определения моментов инерции тел на трифилярном подвесе. Относительная погрешность полученных результатов составила 1%, что в 8 раз больше погрешности теоретических рассчитанных моментов инерции.

Рис. 4: График зависимости квадрата периода колебаний системы из двух полуциллиндров T^2 от квадрата расстояние h^2 между их центром масс и ценром одного из грузов. Кресты погрешности по оси T^2 много меньше масштабов графика и не были нанесены. Кресты погрешности по оси h^2 много меньше масштабов графика и не были нанесены.

5 Использованная литература

Список литературы

[1] Лабораторный практикум по общей физике, Том 1, под редакцией А. Д. Гладуна

6 Приложения

6.1 Теретический расчёт моментов инерции тел

Момент инерции полого циллиндра выражается через его массу m, внешний и внутренний радиусы r_1 и r_2 :

$$I_1 = \frac{m(r_1^2 + r_2^2)}{2}$$

Момент инерции циллиндрической крышки выражается через радиусы малого и большого циллиндра r_1 и r_2 и их высоты h_1 и h_2 :

$$I_2 = \frac{m}{2} \left(\frac{r_1^4 h_1 + r_2^4 h_2}{r_1^2 h_1 + r_2^2 h_2} \right)$$

Момент инерции полуциллиндра радиусом R и массой m:

$$I_3 = \frac{mR^2}{4}$$

6.2 Параметры трифилярного подвеса

m, г	<i>R</i> , см	r, cm	z_0 , M	$k, \frac{M^2}{c^2} \cdot 10^{-4}$	I_0 , кг · м ² · 10^{-3}
1026.4 ± 0.5	115.5 ± 0.5	30.2 ± 0.3	2.158 ± 0.01	4.01 ± 0.05	8.0 ± 0.1

Таблица 2: Параметры трифилярного подвесса. m - масса диска трифилярного подвеса, R - радиус нижнего диска, r - радиус верхнего диска, z_0 - расстояние между дисками трифилярного подвеса, k - совокупный параметр системы, I_0 - момент инерции трифилярного подвеса

6.3 Параметры измеряемых грузов

Первый груз характеризуется внутренним и внешним радиусами $r_1=75.2\pm0.1$ см и $r_2=79.3\pm0.1$ см и массой $m=730.4\pm0.1$ г. Рассчитанный момент инерции $I_1=(4.362\pm0.009)\cdot10^{-3}$ кг · м². Второй груз характеризуется радиусами двух циллиндров $r_1=5.2\pm0.1$ см и $r_2=85.3\pm0.1$ см и соответствующими высотами $h_1=26.0\pm0.1$ см и $h_2=3.6\pm0.1$ см и массой $m=584.1\pm0.1$ г. Рассчитанный момент инерции $I_2=(2.07\pm0.006)\cdot10^{-3}$ кг · м². Третий груз характеризуется радиусом $r=45.6\pm0.1$ см и массой $m=763.45\pm0.1$ г. Рассчитанный момент инерции $I_3=(7.94\pm0.04)\cdot10^{-4}$ кг · м².

6.4 Измерения периодов колебаний трифилярного подвеса с грузами

Период колебаний 1 груза $T_1=4.1860\pm0.0005$ Период колебаний 2 груза $T_1=3.948\pm0.0005$ Период колебаний 1 и 2 грузов вместе $T_{12}=3.928\pm0.0005$

	T, c	h, м	h^2 , M^2	T^2 , c^2
0	3.069000	0.000000	0.000000	9.418761
1	3.081000	0.009600	0.000092	9.492561
2	3.104000	0.019200	0.000369	9.634816
3	3.117000	0.028800	0.000829	9.715689
4	3.168000	0.038400	0.001475	10.036224
5	3.216000	0.048000	0.002304	10.342656
6	3.281000	0.057600	0.003318	10.764961
7	3.355000	0.067200	0.004516	11.256025
8	3.442000	0.076800	0.005898	11.847364
9	3.537000	0.086400	0.007465	12.510369
10	3.630000	0.096000	0.009216	13.176900
11	3.852000	0.115200	0.013271	14.837904

Таблица 3: Данные измерения периода колебаний системы T с двумя полуциллиндрами в зависисмости расстояния h до их центров.