UNIVERSIDADE DE SÃO PAULO

Escola de Engenharia de Lorena - EEL

LISTA DE EXERCÍCIOS SOBRE MICROSCOPIA ELETRÔNICA (INDIVIDUAL)

DATA DE ENTREGA: 19/11/2021

DISCIPLINAS: MEF-II e TCM

PROF. DR. DURVAL RODRIGUES JUNIOR, PROFA. DRA. REBECA BACANI e PROF. DR.

PAULO ATSUSHI SUZUKI

QUESTÕES:

1) (a) Como funciona o mecanismo de ampliação ("magnificação") em um microscópio eletrônico de

varredura? O foco da imagem é alterado quando a ampliação é alterada?

(b) Como é feita a geração de imagem em um MEV? Explique a conexão entre varredura de feixe,

eletrônica e imagem gerada.

2) (a) Como acontece a geração de raios X característicos e o contínuo de raios X em um microscópio

eletrônico ao injetar na amostra um feixe de elétrons de alta energia?

(b) Explique as diferenças básicas entre os espectros e análises feitas utilizando Difração de Raios

X e utilizando raios X característicos em microscopia eletrônica.

(c) Que radiações X são utilizadas para analisar os constituintes de uma amostra em cada um dos

dois casos? Que tipo de análise composicional é possível em cada caso: elemental ou por fases?

3) Imagine que seja necessário analisar a composição de uma amostra desconhecida utilizando um

MEV que tenha ambos espectrômetros EDS e WDS. Como você faria para (1) descobrir

rapidamente os elementos químicos presentes na amostra e (2) analisar com o mínimo erro as

concentrações dos elementos químicos presentes na amostra. Discuta os cuidados necessários com

a preparação da amostra e a montagem da mesma no porta-amostras de alumínio. Lembre-se que

nem sempre é necessário utilizar WDS.

UNIVERSIDADE DE SÃO PAULO Escola de Engenharia de Lorena — EEL

4) (a) Explique como funciona o espectrômetro WDS. Descreva suas partes e as funções das mesmas. (b) Explique porque é importante utilizar-se diferentes cristais analisadores. Faça sua discussão em função dos números atômicos, energias e comprimentos de ondas de raios X, principalmente dos elementos mais leves. Utilize equações e cálculos. Utilize a tabela abaixo. Lembre-se que para o cristal analisador vale a Lei de Bragg $n\lambda = 2 d sen \theta$, onde λ são os comprimentos de onda característicos dos elementos químicos (todos) presentes nas amostras.

Crystal Designation	Crystal Type	2d Spacing, Å	Analyzing Range, Å	Analyzing Range, eV	Element Range Koz
LIF(200)	Lithium Fluoride	4.0267	1.1436 - 3.7202	10,841 - 3,332	Ca to Ge
PET	Pentaerythritol	8.74	2.4827 - 8.0765	4,994 - 1,535	Si to Ti
TAP	Thallium acid phthalate	25.75	7.3130 - 23.79	1,695 - 521.2	O to Si
LSM-060	W-Si	~61	~17 - ~56	~729 - ~221	C to F
LSM-080	Ni-C	~78	~22 - ~72	~564 - ~172	B to O
LSM-200	Mo-B₄C	~204	~58 - ~190	~214 - ~65	Be and B

Table 1. Common diffracting crystals used for WDX

5) (a) Em seu entendimento, quais seriam as aplicações para a microscopia eletrônica de transmissão (MET)? Quando esta técnica deveria ser utilizada? (b) Explique os componentes da coluna e o processo de geração de imagem em um MET.