| Кафедра | ЭВМ |
|---------|-----|
| тафодра |     |

| Отчет по лабораторной работе № 2<br>Тема: «Исследование работы коммутационных логических элементов» |
|-----------------------------------------------------------------------------------------------------|
|                                                                                                     |
| Выполнил:                                                                                           |
| Проверил:                                                                                           |

#### 1 ЦЕЛЬ РАБОТЫ

Целью работы является изучить работу коммутационных логических элементов.

# 2 ИСХОДНЫЕ ДАННЫЕ К РАБОТЕ

Работа выполняется на базовом лабораторном стенде NI ELVIS II с использованием модуля dLab2, dLab3, dLab4, dLab5, dLab6 для исследования работы коммутационных логических элементов.

- В процессе выполнения данной лабораторной работы требуется выполнить следующие задачи:
- получить таблицы истинности следующих коммутационных логических элементов: шифратор, дешифратор, мультиплексор, сумматор, цифровой компаратор;
- получить временные диаграммы состояний входных и выходных сигналов;
- определить, какой логический сигнал на входе управления «Е» шифратора, дешифратора, мультиплексора является активным.

### 3 КРАТКИЕ ТЕОРЕТИЧЕСКИЕ СВЕДЕНИЯ

### 3.1 Шифратор

Шифратором (Coders — CD) MxN называют комбинационное устройство с М входами и N выходами, преобразующее М-разрядный унитарный код в N-разрядный двоичный код.

По уровню входных и выходных сигналов выделяют:

- полные шифраторы, число входов которых  $M = 2^N$ ;
- ullet неполные шифраторы, имеющие число входов  $M < 2^N$ .

По числу входов различают:

- шифраторы высокого уровня, активные сигналы на входах и выходах которых имеют уровень логической единицы;
- шифраторы низкого уровня, активные входные и выходные сигналы которых соответствуют уровню логического нуля.

Условное графическое обозначение шифратора высокого и низкого уровней показано на рисунке 3.1.



Рисунок 3.1 – Условное графическое обозначение шифратора высокого и низкого уровней

Состояние выходных сигналов G и EO шифратора описывается следующими уравнениями:

$$G = E \vee \overline{E} \cdot X0 \cdot X1 \cdot X2 \cdot X3 \cdot X4 \cdot X5 \cdot X6 \cdot X7,$$

$$EO = \overline{\overline{E} \cdot X0 \cdot X1 \cdot X2 \cdot X3 \cdot X4 \cdot X5 \cdot X6 \cdot X7}.$$

### 3.2 Дешифратор

Дешифратором (Decoder — DC) MxN называют комбинационное устройство с М входами и N выходами, преобразующее М-разрядный двоичный код в N-разрядный унитарный код. В дешифраторах высокого уровня унитарный код содержит единственную 1, в дешифраторах низкого уровня — единственный 0.

Дешифратор с максимальным числом  $N = 2^M$  выходов называется полным  $(M \times 2^M)$ , а с числом выходов  $N < 2^M$  — неполным.

Входные сигналы дешифратора описываются соотношениями:

$$Y0 = \overline{X1}^{\overline{X2}}, Y1 = \overline{X1}^{\overline{X2}}, Y2 = X1^{\overline{X2}}, Y3 = X1^{\overline{X2}}.$$

Формирование выходных сигналов дешифратора с учетом сигнала управления описывается следующим образом:

$$Y0 = \overline{E}^{\overline{X1}}\overline{X2}, Y1 = \overline{E}^{\overline{X1}}X2, Y2 = \overline{E}^{\overline{X1}}\overline{X2}, Y3 = \overline{E}^{\overline{X1}}X2.$$

На рисунке 3.2 приведено условное графическое обозначение полного дешифратора высокого уровня.



Рисунок 3.2 – Условное графическое обозначение полного дешифратора высокого уровня

#### 3.3 Мультиплексор

Мультиплексором (Multiplexer-MUX) Мх1 называют комбинационное устройство с М информационными(X0,X1,...,Xм-1),К адресными (A0, A1,..., Aк-1) входами и одним выходом (Y),которое осуществляет передачу сигнала с заданного адресным кодом информационного входа на его выход.

В зависимости от соотношения числа информационных входов M и числа адресных входов K мультиплексоры делятся на полные и неполные. Если выполняется условие  $M=2^k$ , то мультиплексор будет полным. Если это условие не выполняется, т.е.  $M<2^k$ , то мультиплексор будет неполным.

На рисунке 3.3 представлено условно графическое обозначение мультиплексора 4х1 с инверсным входом разрешения Е и прямым выходом Y, представляющий собой половину микросхемы мультиплексора КР555КП2.



Рисунок 3.3 – Условное графическое обозначение мультиплексора 4x1 с инверсным входом разрешения E и прямым выходом Y

Выражение для выходной функции такого мультиплексора можно записать в виде:

$$Y = \overline{E}^{\wedge}(X0^{\wedge}\overline{A0}^{\wedge}\overline{A1}^{\vee}X1^{\wedge}A0^{\wedge}\overline{A1}^{\vee}X2^{\wedge}\overline{A0}^{\wedge}A1\overline{A1}^{\vee}X3^{\wedge}A0^{\wedge}A1),$$

где X0, X1, X2, X3 – информационные входы мультиплексора; A0, A1 – адресные входы мультиплексора; E – вход разрешения.

### 3.4 Сумматор

Сумматоры предназначены для выполнения арифметических операций сложения и вычитания как двоичных, так и десятичных чисел.

По виду выполняемой операции можно выделить две группы сумматоров:

- сумматоры, выполняющие сложение положительных чисел (без учета знака числа);
- сумматоры, выполняющие сложение положительных и отрицательных чисел. Такие устройства называют сумматорамивычитателями. Они могут работать в режиме алгебраического (с учетом знака) суммирования и вычитания чисел.

На рисунке 3.4 представлено условное графическое обозначение полного одноразрядного двоичного сумматора.



Рисунок 3.4 – Условное графическое обозначение полного одноразрядного двоичного сумматора

## 3.5 Цифровым компаратором

Цифровым компаратором называется комбинационное устройство, предназначенное для сравнения двух двоичных чисел и формирования результата в виде цифровых сигналов.

Компараторы делятся на две группы:

- схемы проверки равнозначности кодов;
- схемы сравнения кодов.

На рисунке 3.5 представлено условно графическое обозначение компаратора.



Рисунок 3.5 – Условно графическое обозначение компаратора

Схемы проверки равнозначности кодов имеют на входе две переменные A и B, каждая из которых содержит M двоичных разрядов, и один выход Y. При сравнении на равенство осуществляется поразрядное сравнение двух чисел, что позволяет затем сформировать на выходе всей схемы активный сигнал Y=1 при равенстве входных чисел. Функционирование схемы по каждому разряду подчиняется таблице истинности представленное на рисунке 3.6. В этой таблице Ai и Bi являются i-тыми разрядами многоразрядных двоичных чисел A и B, а Yi - результатом сравнения разрядов с номером i.

| A <sub>i</sub> | $B_{i}$ | y <sub>i</sub> |
|----------------|---------|----------------|
| 0              | 0       | 1              |
| 0              | 1       | 0              |
| 1              | 0       | 0              |
| 1              | 1       | 1              |

Рисунок 3.6 – Таблица истинности схемы проверки равнозначности кодов

Многоразрядные двоичные числа будут равны, если выполняется равенство в каждом разряде, то есть Yi=1 для каждого разряда. Чтобы сформулировать окончательный результат сравнения многоразрядных чисел достаточно вычислить конъюнкцию:

где М - число разрядов в сравниваемых числах, Y - результат сравнения.

#### 4 ВЫПОЛНЕНИЕ РАБОТЫ

## 4.1 Шифратор

Условное графическое обозначение шифратора представлено на рисунке 4.1.



Рисунок 4.1 – Условное графическое обозначение шифратора

Таблица истинности шифратора с установленным на входе «Е» логический сигнал 0 изображена на рисунке 4.2.

|       | E | X7 | X6 | X5 | X4 | ХЗ | X2 | X1 | X0 | Y2 | Y1 | Y0 | G | E0 |
|-------|---|----|----|----|----|----|----|----|----|----|----|----|---|----|
| Шаг 1 | 0 | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1 | 0  |
| Шаг 2 | 0 | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 0  | 1  | 1  | 1  | 0 | 1  |
| Шаг 3 | 0 | 1  | 1  | 1  | 1  | 1  | 1  | 0  | 1  | 1  | 1  | 0  | 0 | 1  |
| Шаг 4 | 0 | 1  | 1  | 1  | 1  | 1  | 0  | 1  | 1  | 1  | 0  | 1  | 0 | 1  |
| Шаг 5 | 0 | 1  | 1  | 1  | 1  | 0  | 1  | 1  | 1  | 1  | 0  | 0  | 0 | 1  |
| Шаг 6 | 0 | 1  | 1  | 1  | 0  | 1  | 1  | 1  | 1  | 0  | 1  | 1  | 0 | 1  |
| Шаг 7 | 0 | 1  | 1  | 0  | 1  | 1  | 1  | 1  | 1  | 0  | 1  | 0  | 0 | 1  |
| Шаг 8 | 0 | 1  | 0  | 1  | 1  | 1  | 1  | 1  | 1  | 0  | 0  | 1  | 0 | 1  |
| Шаг 9 | 0 | 0  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 0  | 0  | 0  | 0 | 1  |

Рисунок 4.2 – Таблица истинности шифратора с установленным на входе «Е» логический сигнал 0

Исходя из вышеперечисленных данных, была построена диаграмма состояний шифратора с установленным на входе «Е» логический сигнал 0 предоставленная на рисунке 4.3.



Рисунок 4.3 – Диаграмма состояний шифратора с установленным на входе «Е» логический сигнал 0

Таблица истинности шифратора с установленным на входе «Е» логический сигнал 1 изображена на рисунке 4.4.

|       | E | X7 | Х6 | X5 | X4 | ХЗ | X2 | X1 | X0 | Y2 | Y1 | Y0 | G | E0 |
|-------|---|----|----|----|----|----|----|----|----|----|----|----|---|----|
| War 1 | 1 | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1 | 1  |
| Шаг 2 | 1 | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 0  | 1  | 1  | 1  | 1 | 1  |
| Шаг 3 | 1 | 1  | 1  | 1  | 1  | 1  | 1  | 0  | 1  | 1  | 1  | 1  | 1 | 1  |
| Шаг 4 | 1 | 1  | 1  | 1  | 1  | 1  | 0  | 1  | 1  | 1  | 1  | 1  | 1 | 1  |
| Шаг 5 | 1 | 1  | 1  | 1  | 1  | 0  | 1  | 1  | 1  | 1  | 1  | 1  | 1 | 1  |
| Шаг 6 | 1 | 1  | 1  | 1  | 0  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1 | 1  |
| Шаг 7 | 1 | 1  | 1  | 0  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1 | 1  |
| Шаг 8 | 1 | 1  | 0  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1 | 1  |
| Шаг 9 | 1 | 0  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1 | 1  |

Рисунок 4.4 — Таблица истинности шифратора с установленным на входе «Е» логический сигнал 1

Исходя из вышеперечисленных данных, была построена диаграмма состояний шифратора с установленным на входе «Е» логический сигнал 1 предоставленная на рисунке 4.5.



Рисунок 4.5 – Диаграмма состояний шифратора с установленным на входе «Е» логический сигнал 1

Исходя из вышеперечисленных таблиц истинности и временных диаграмм состояний шифратора, можно определить, что активный низкий уровень на выходе G(групповой сигнал) появляется при условиях перехода логического сигнала 0 на любой информационный вход (X0-X7) и на вход Е.

Исходя из вышеперечисленных таблиц истинности и временных диаграмм состояний шифратора, можно определить, что активный низкий уровень на выходе E0(разрешение от выхода) появляется при условии, если на всех информационных входах (X0-X7) присутствует логический сигнал. 1, а также разрешена работа шифратора активным сигналом Е

Таблица истинности проверки приоритетности шифратора изображена на рисунке 4.6.

|       | E | X7 | X6 | X5 | X4 | ХЗ | X2 | X1 | XO | Y2 | Y1 | Y0 | G | E0 |
|-------|---|----|----|----|----|----|----|----|----|----|----|----|---|----|
| Шаг 1 | 0 | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1 | 0  |
| Шаг 2 | 0 | 1  | 1  | 1  | 1  | 0  | 1  | 1  | 1  | 1  | 0  | 0  | 0 | 1  |
| Шаг 3 | 0 | 1  | 0  | 1  | 1  | 1  | 1  | 1  | 1  | 0  | 0  | 1  | 0 | 1  |
| Шаг 4 |   |    |    |    |    |    |    |    |    |    |    |    |   |    |
| Шаг 5 |   |    |    |    |    |    |    |    |    |    |    |    |   |    |
| Шаг 6 |   |    |    |    |    |    |    |    |    |    |    |    |   |    |
| Шаг 7 |   |    |    |    |    |    |    |    |    |    |    |    |   |    |
| Шаг 8 |   |    |    |    |    |    |    |    |    |    |    |    |   |    |
| Шаг 9 |   |    |    |    |    |    |    |    |    |    |    |    |   |    |

Рисунок 4.6 – Таблица истинности проверки приоритетности шифратора

Исходя из вышеперечисленных данных, была построена диаграмма состояний проверки приоритетности шифратора предоставленная на рисунке 4.7.



Рисунок 4.7 – Диаграмма состояний проверки приоритетности шифратора

Исходя из вышеперечисленных таблицы истинности и временной диаграммы состояний проверки приоритетности шифратора, можно определить, что активные сигналы были поданы на входы X3 и X6. Следуя из показаний можно сделать вывод, что вход с большим порядковым номером обладает большим приоритетом.

## 4.2 Дешифратор

Условное графическое обозначение дешифратора представлено на рисунке 4.8.



Рисунок 4.8 – Условное графическое обозначение дешифратора

Таблица истинности дешифратора с установленным на входах «Е», «X0» и «X1» соответствующие значения сигналов изображена на рисунке 4.9.

|       | E | X1 | X0 | Y3 | Y2 | Y1 | Y0 |
|-------|---|----|----|----|----|----|----|
| Шаг 1 | 0 | 0  | 0  | 1  | 1  | 1  | 0  |
| Шаг 2 | 0 | 0  | 1  | 1  | 1  | 0  | 1  |
| Шаг 3 | 0 | 1  | 0  | 1  | 0  | 1  | 1  |
| Шаг 4 | 0 | 1  | 1  | 0  | 1  | 1  | 1  |
| Шаг 5 | 1 | 0  | 0  | 1  | 1  | 1  | 1  |
| Шаг 6 | 1 | 0  | 1  | 1  | 1  | 1  | 1  |
| Шаг 7 | 1 | 1  | 0  | 1  | 1  | 1  | 1  |
| Шаг 8 | 1 | 1  | 1  | 1  | 1  | 1  | 1  |

Рисунок 4.9 – Таблица истинности дешифратора

Исходя из вышеперечисленных данных, была построена диаграмма состояний дешифратора, предоставленная на рисунке 4.10.



Рисунок 4.10 – Диаграмма состояний дешифратора

Исходя из вышеперечисленных таблицы истинности и временной диаграммы состояний дешифратора, можно определить, что активным логическим сигналом на входе управления «Е» дешифратора является уровень логического 0.

## 4.3 Мультиплексор

Условное графическое обозначение мультиплексора представлено на рисунке 4.11.



Рисунок 4.11 – Условное графическое обозначение мультиплексора

Таблица истинности мультиплексора изображена на рисунке 4.12.

| Таоли | a nermi | шости | 197101711 | псксор | ru . |    |    |      |
|-------|---------|-------|-----------|--------|------|----|----|------|
|       | E       | A1    | A0        | X3     | X2   | X1 | X0 | Y    |
| Шаг 1 | 0       | 0     | 0         | 0      | 0    | 0  | 1  | = X0 |
| Шаг 2 | 0       | 0     | 1         | 0      | 0    | 1  | 0  | = X1 |
| Шаг 3 | 0       | 1     | 0         | 0      | 1    | 0  | 0  | = X2 |
| Шаг 4 | 0       | 1     | 1         | 1      | 0    | 0  | 0  | = X3 |
| Шаг 5 | 1       | 0     | 0         | 0      | 0    | 0  | 1  |      |
| Шаг 6 | 1       | 0     | 1         | 0      | 0    | 1  | 0  |      |
| Шаг 7 | 1       | 1     | 0         | 0      | 1    | 0  | 0  |      |
| Шаг 8 | 1       | 1     | 1         | 1      | 0    | 0  | 0  |      |

Таблица истинности мультиплексора

Рисунок 4.12 — Таблица истинности мультиплексора

Исходя из вышеперечисленных данных, была построена диаграмма состояний мультиплексора, предоставленная на рисунке 4.13.



Рисунок 4.13 – Диаграмма состояний мультиплексора

Исходя из вышеперечисленных таблицы истинности и временной диаграммы состояний мультиплексора, можно определить, что активным логическим сигналом на входе управления «Е» мультиплексора является уровень логического 0.

## 4.4 Сумматор

Условное графическое обозначение сумматора представлено на рисунке 4.14.



Рисунок 4.14 – Условное графическое обозначение сумматора

Таблица истинности сумматора изображена на рисунке 4.15.

| Таблиц | а ист | инно | сти с | умма | тора |    |    |    |    |    |    |    |    |    |
|--------|-------|------|-------|------|------|----|----|----|----|----|----|----|----|----|
|        | CO    | A3   | A2    | A1   | A0   | В3 | B2 | B1 | BO | S3 | S2 | S1 | S0 | C4 |
| Шаг 1  | 0     | 0    | 0     | 1    | 0    | 0  | 1  | 0  | 0  | 0  | 1  | 1  | 0  | 0  |
| Шаг 2  | 0     | 1    | 0     | 0    | 1    | 0  | 1  | 0  | 1  | 1  | 1  | 1  | 0  | 0  |
| Шаг 3  | 0     | 0    | 1     | 0    | 1    | 0  | 1  | 1  | 0  | 1  | 0  | 1  | 1  | 0  |
| Шаг 4  | 0     | 1    | 0     | 1    | 1    | 0  | 1  | 1  | 1  | 0  | 0  | 1  | 0  | 1  |
| Шаг 5  | 0     | 1    | 1     | 1    | 1    | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 0  | 1  |
| Шаг 6  | 1     | 0    | 0     | 1    | 1    | 0  | 1  | 0  | 1  | 1  | 0  | 0  | 1  | 0  |
| Шаг 7  | 1     | 0    | 0     | 1    | 0    | 1  | 0  | 0  | 0  | 1  | 0  | 1  | 1  | 0  |
| Шаг 8  | 1     | 1    | 0     | 0    | 1    | 0  | 0  | 1  | 1  | 1  | 1  | 0  | 1  | 0  |
| Шаг 9  | 1     | 1    | 1     | 1    | 0    | 1  | 1  | 1  | 0  | 1  | 1  | 0  | 1  | 1  |
| Шаг 10 | 1     | 1    | 1     | 1    | 1    | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  |

Рисунок 4.16 — Таблица истинности логического элемента «ИЛИ»

Исходя из вышеперечисленных данных, была построена диаграмма состояний сумматора предоставленная на рисунке 4.16.



Рисунок 4.16 – Диаграмма состояний сумматора

Дано уравнение: 
$$C0 + 2^0(A0 + B0) + 2^1(A1 + B1) + 2^2(A2 + B2) + 2^3(A3 + B3) = 2^0S0 + 2^1S1 + 2^2S2 + 2^3S3 + 2^4C4$$
.

Исходя из диаграммы состояний сумматора, произведем вычисления для каждого шага вручную.

1) 
$$0 + 1(0 + 0) + 2(1 + 0) + 4(0 + 1) + 8(0 + 0) = 1 * 0 + 2 * 1 + 4 * 1 + 8 * 0 + 16 * 0.$$

Other:  $6 = 6$ .

2)  $0 + 1(1 + 1) + 2(0 + 0) + 4(0 + 1) + 8(1 + 0) = 1 * 0 + 2 * 1 + 4 * 1 + 8 * 1 + 16 * 0.$ 

Other:  $14 = 14$ .

3)  $0 + 1(1 + 0) + 2(0 + 1) + 4(1 + 1) + 8(0 + 0) = 1 * 1 + 2 * 1 + 4 * 0 + 8 * 1 + 16 * 0.$ 

Other:  $11 = 11$ .

4)  $0 + 1(1 + 1) + 2(1 + 1) + 4(0 + 1) + 8(1 + 0) = 1 * 0 + 2 * 1 + 4 * 0 + 8 * 0 + 16 * 1.$ 

Other:  $18 = 18$ .

5)  $0 + 1(1 + 1) + 2(1 + 1) + 4(1 + 1) + 8(1 + 1) = 1 * 0 + 2 * 1 + 4 * 1 + 16 * 1.$ 

Other:  $30 = 30$ .

6)  $1 + 1(1 + 1) + 2(1 + 0) + 4(0 + 1) + 8(0 + 0) = 1 * 1 + 2 * 0 + 4 * 1 + 16 * 0.$ 

Other:  $9 = 9$ .

7)  $1 + 1(0 + 0) + 2(1 + 0) + 4(0 + 0) + 8(0 + 1) = 1 * 1 + 2 * 0 + 4 * 1 + 16 * 0.$ 

Other:  $13 = 13$ .

9)  $1 + 1(1 + 1) + 2(0 + 1) + 4(0 + 0) + 8(1 + 0) = 1 * 1 + 2 * 0 + 4 * 1 + 16 * 1.$ 

Other:  $29 = 29$ .

10)  $1 + 1(1 + 1) + 2(1 + 1) + 4(1 + 1) + 8(1 + 1) = 1 * 1 + 2 * 1 + 4 * 1 + 16 * 1.$ 

Other:  $29 = 29$ .

10)  $1 + 1(1 + 1) + 2(1 + 1) + 4(1 + 1) + 8(1 + 1) = 1 * 1 + 2 * 1 + 4 * 1 + 16 * 1.$ 

Other:  $31 = 31$ .

Исходя из вышеперечисленных уравнений, можно сделать вывод, так как ответы левой половины уравнения и правой половины уравнения в каждом из примеров было одинаково, следовательно, прибор работает корректно.

#### 4.5 Цифровой компаратор

Условное графическое обозначение цифрового компаратора представлено на рисунке 4.17.



Рисунок 4.17 – Условное графическое обозначение цифрового компаратора

Таблица истинности цифрового компаратора изображена на рисунке 4.18.

| Таблиц | аблица истинности цифрового компаратора |    |    |    |    |    |    |    |        |        |                                                                           |     |     |                   |
|--------|-----------------------------------------|----|----|----|----|----|----|----|--------|--------|---------------------------------------------------------------------------|-----|-----|-------------------|
|        | A3                                      | A2 | A1 | A0 | В3 | B2 | B1 | B0 | I(A>B) | I(A=B) | I(A <b)< th=""><th>A&gt;B</th><th>A=B</th><th>A<b< th=""></b<></th></b)<> | A>B | A=B | A <b< th=""></b<> |
| Шаг 1  | 1                                       | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 1      | 1      | 1                                                                         | 1   | 0   | 0                 |
| Шаг 2  | 0                                       | 0  | 0  | 0  | 1  | 0  | 0  | 0  | 0      | 0      | 0                                                                         | 0   | 0   | 1                 |
| Шаг 3  | 0                                       | 1  | 0  | 0  | 0  | 0  | 0  | 0  | 1      | 1      | 1                                                                         | 1   | 0   | 0                 |
| Шаг 4  | 0                                       | 0  | 0  | 0  | 0  | 1  | 0  | 0  | 0      | 0      | 0                                                                         | 0   | 0   | 1                 |
| Шаг 5  | 0                                       | 0  | 1  | 0  | 0  | 0  | 0  | 0  | 1      | 1      | 1                                                                         | 1   | 0   | 0                 |
| Шаг 6  | 0                                       | 0  | 0  | 0  | 0  | 0  | 1  | 0  | 0      | 0      | 0                                                                         | 0   | 0   | 1                 |
| Шаг 7  | 0                                       | 0  | 0  | 1  | 0  | 0  | 0  | 0  | 1      | 1      | 1                                                                         | 1   | 0   | 0                 |
| Шаг 8  | 0                                       | 0  | 0  | 0  | 0  | 0  | 0  | 1  | 0      | 0      | 0                                                                         | 0   | 0   | 1                 |
| Шаг 9  | 0                                       | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 1      | 0      | 0                                                                         | 1   | 0   | 0                 |
| Шаг 10 | 0                                       | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0      | 0      | 1                                                                         | 0   | 0   | 1                 |
| Шаг 11 | 0                                       | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0      | 1      | 0                                                                         | 0   | 1   | 0                 |
| Шаг 12 | 0                                       | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 1      | 1      | 1                                                                         | 0   | 1   | 0                 |
| Шаг 13 | 0                                       | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 1      | 0      | 1                                                                         | 0   | 0   | 0                 |
| Шаг 14 | 0                                       | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0      | 0      | 0                                                                         | 1   | 0   | 1                 |

Рисунок 4.18 – Таблица истинности цифрового компаратора

Исходя из вышеперечисленных данных, была построена диаграмма состояний цифрового компаратора предоставленная на рисунке 4.19.



Рисунок 4.19 – Диаграмма состояний цифрового компаратора

Исходя из вышеперечисленной таблицы истинности цифрового компаратора К555СП1, можно сделать вывод, что для сравнения пятиразрядных двоичных слов требуется использовать следующим образом: младший компаратор СП1 используется как четырехразрядный, четыре старших – как пятиразрядные (входы I (A>B) и I(A<B) служат пятой парой разрядных входов, то есть А4 и B4 соответственно).

### 5 ВЫВОД

Изучили работу коммутационных логических элементов шифратора, дешифратора, мультиплексора, сумматора и цифрового компаратора. Получили их таблицы истинности и диаграммы состояний входных и выходных сигналов, а так же определили, какой логический сигнал на входе управления «Е» шифратора, дешифратора, мультиплексора является активным.