CHAPTER 6 SUMMARY

(Page 406)

MAKE A SUMMARY

CHAPTER 6 SELF-QUIZ

(Page 407)

- 1. False: The molecular species that exists at a maximum of potential energy is called the *activated complex*.
- 2. True
- 3. False: Elementary steps in reaction mechanisms generally involve *one* or *two* molecule collisions.
- 4. True
- 5. True
- 6. False: The enthalpy change is the same for a catalyzed chemical reaction.
- 7. True
- 8. True
- 9. False: The rate-determining step in a mechanism is the *slowest* step.
- 10. False: A homogeneous catalyst is one in which the catalyst and the reactants are in the same phase.
- 11. (b)
- 12. (e)
- 13. (d)

212 Chapter 6 Copyright © 2003 Nelson

- 14. (c)
- 15. (a)
- 16. (b)
- 17. (d)
- 18. (b)

CHAPTER 6 REVIEW

(Page 408)

Understanding Concepts

- 1. pressure or volume, conductivity, absorbency of light
- 2. concentration, temperature, catalysis, chemical nature of reactants
- 3. Additional surface area = $18 \times 1 \text{ cm}^2$

Total surface area = 24 cm^2

Proportional change in surface area = $\frac{24 \text{ cm}^2}{6 \text{ cm}^2}$ = 4

The rate would be multiplied by a factor proportional to the surface area change:

$$r = 4 \times 20 \text{ mL/s}$$

r = 80 mL/s

- 4. (a) rate increases
 - (b) rate decreases
 - (c) rate increases
 - (d) rate increases

5. (a)
$$r = \frac{\Delta V}{\Delta t}$$

= $\frac{44.2 \text{ mL}}{30.0 \text{ s}}$
 $r = 1.47 \text{ mL/s}$

- (b) (i) With a 5°C increase in temperature, the rate could be doubled and the time halved.
 - (ii) Without the catalyst, the reaction might be imperceptibly slow.
- 6. (a) $r = k [ClO_{2(aq)}]^2 [OH_{(aq)}^-]$
 - (b) This is a third-order reaction.
 - (c) The rate would quadruple.
 - (d) The rate would double.
- 7. (a) When we compare Trials 1 and 2, we see that as [Cl₂] is doubled, rate is multiplied by 2; therefore, rate depends on $[Cl_2]^1$.

When we compare Trials 2 and 3, we see that as [NO] is doubled, rate is multiplied by 4; therefore, rate depends on $[NO]^2$.

Overall,
$$r = k [Cl_2]^1 [NO]^2$$
.

(b) The rate-determining step is most likely to be

$$2 \text{ NO}_{(g)} + \text{Cl}_{2(g)} \rightarrow \text{product or intermediate}$$

$$2 \text{ NO}_{(g)} + \text{Cl}_{2(g)} \rightarrow \text{product or intermediate}$$
(c) $k = \frac{r}{[\text{NO}]^2 [\text{Cl}_2]}$

$$= \frac{1.8 \times 10^{-2} \text{ mol/(L•s)}}{(0.10 \text{ mol/L})^2 \times 0.10 \text{ mol/L}}$$

$$k = 18 L^2/(\text{mol}^{2\bullet} \text{s})$$

(d)
$$r = k [NO]^2 [Cl_2]$$

= $18 L^2/(mol^{2\bullet}s) (0.30 mol/L)^2 \times 0.40 mol/L$
 $r = 0.65 mol/(L^{\bullet}s)$

Copyright © 2003 Nelson