ENSE 496AE Png File Format

Jeremy Cross 200391513 Bipin Suram 200439429 Taylen Jones 200354271

Introduction

- PNG stands for Portable Network Graphics. Uses extension .png
- Supports lossless data compression
- Developed as a replacement for the GIF file format
- Format aimed towards internet transfer, rather than professional quality prints
- Supports 24 bit RGB, 32 bit RGBA. Greyscale, and full color RGB/RGBA
- A PNG file contains a single image in an extensible structure of "chunks"

Development of PNG

- Compression algorithm used in the GIF file format was patented, along with its limitations in only supporting 256 colours at a time
- PNG was developed in 1995 to remedy these issues, by a usenet newsgroup
- Did not adopt the animation support of GIFs, single format only

PNG File Format

- The PNG file format contains a series of chunks that contain different information about the image
- Chunk types are given four letter case sensitive ASCII name
- The case of each letter in the name provides the decoder with some information
- A decoder must be able to interpret these critical chunks in order to render a PNG file

Types of Chunks

dSIG - for storing digital signatures

tEXt - stores the text

```
PNG signature/ File header - 8 Bytes
Critical chunks:
    PLTE - contains the palette or list of colors
    IHDR(Image Header) - 13 bytes
    IDAT(Image data) - contains the image, size dependent on image, can be split
                        across multiple IDAT chunks
    IEND(Image End) - marks the end of the image
Ancillary chunks:
    bKGD - gives the default background color
```

PNG Signature/File Header and Image Header

- The file signature contains 8 bytes
- These 8 bytes are: 89 50 4E 47 0D 0A 1A 0A
- The values 50 4E 47 identify the PNG file type
- Image header contains 13 bytes, the order of bytes are as follows:
 - 4 bytes image width
 - 4 bytes image height
 - 1 byte bit depth
 - 1 byte color type
 - 1 byte compression method
 - 1 byte filter method
 - 1 byte interlace method

Example of PNG File Format

Structure of a very simple PNG file

89 50 4E 47 0D 0A 1A 0A	IHDR	IDAT	IEND
PNG signature	Image header	Image data	Image end

Contents of a minimal PNG file representing just one red pixel

Hex									As characters							
89	50	4E	47	0D	ØA.	1A	0A	00	00	00	0D	49	48	44	52	.PNGIHDR
00	00	00	01	00	00	00	01	08	02	00	00	00	90	77	53	wS
DE	00	00	99	0E	49	44	41	54	78	DA	62	F8	CF	C0	00	ÞIDATxÚbøÏÀ.
10	60	00	03	01	01	00	66	FD	9F	24	00	00	00	00	49	.`fý.\$I
45	4E	44	AE	42	60	82										END®B`.

Compression

- Uses a 2 stage process:
 - Filtering, or prediction
 - Compression

Lossy JPEG vs Lossless PNG

- Lossless compression using a non-patented algorithm called DEFLATE
- A combination of LZ77 and Huffman coding

Filtering

- Before compression is applied, the data is transformed via a prediction method
- Single filter method is used for entire image while for each image line, filter type is chosen to make it more efficiently compressible
- Only one filter method available i.e., method 0
- Five filter types available
- The filter predicts the value of each pixel based on the values of previous neighbouring pixels and subtracts the predicted color from actual value

Filter types

Type byte	Filter name	Predicted value						
0	None	Zero (so that the raw byte value passes through unaltered)						
1	Sub	Byte A (to the left)						
2	Up	Byte B (above)						
3	Average	Mean of bytes A and B, rounded down						
4	Paeth	A, B, or C, whichever is closest to $p = A + B - C$						

PNG's filter
method 0 can use the data in pixels A, B, and C to predict the value for X.

Animation

- MNG is extension to PNG which supports animation
- It also shares the basic structure and chunks with PNG but its complex and has a different file signature
- APNG was developed due to the complexity of MNG which is also based on PNG
- Neither of these formats are widely supported

Questions?