Classical Mechanics from the Symplectic Viewpoint

Benjamin Church April 22, 2020

Contents

Т	Symplectic Geometry	4
2	Symptectic Geometry	2

1 Symplectic Geometry

Definition 1.0.1. Let V be a finite k-vectorspace and $\omega \in \bigwedge^2 V^*$ a 2-form. We say that ω is nondegenerate if for all nonzero $v \in V$ the map $\omega(v, -) \in V^*$ is nonzero. Equivalently, ω is nondegenerate exactly when the map $V \to V^*$ defined by $v \mapsto \omega(v, -)$ is an isomorphism.

Lemma 1.0.2. If ω is a nondegenerate 2-form on V then dim V=2n is even.

Proof. Choose a basis e_1, \ldots, e_k of V. Then we have a matrix $M_{ij} = \omega(e_i, e_j)$ which is antisymmetric. Then ω is nondegenerate implies that $\det M \neq 0$. However, $M^{\top} = -M$ so we must have,

$$\det M = \det (-M) = (-1)^{\dim V} \det M$$

Thus $\dim V = 2n$ is even.

Definition 1.0.3. Let M be a smooth 2n-manifold. A symplectic form ω on M is a closed non-degenerate 2-form. We say that the pair (M, ω) is a symplectic manifold. A symplectomorphism $f:(M,\omega_M)\to (N,\omega_N)$ is a smooth map $f:M\to N$ such that $f^*\omega_N=\omega_M$.

Remark. Consider a vector field X on M. Such a vector field defines a flow $\phi_t: M \to M$. We consider when this flow preserves the symplectic structure. This occurs when ϕ_t is a symplectomorphism i.e. when $\phi_t^*\omega = \omega$. Now, recall that, the Lie derivative is defined via,

$$\mathcal{L}_X \omega = \frac{\mathrm{d}}{\mathrm{d}t} \bigg|_{t=0} \left(\phi_t^* \omega \right)$$

Therefore $\phi_t: M \to M$ is symplectic iff $\mathcal{L}_X \omega = 0$.

Definition 1.0.4. We say a vector field X on M is symplectic if $\mathcal{L}_X \omega = 0$.

Definition 1.0.5. We say a vector field X on M is Hamiltonian if there exists a smooth function $H: M \to \mathbb{R}$ such that $\iota_X \omega = \mathrm{d} H$.

Lemma 1.0.6. Hamiltonain vector fields are symplectic.

Proof. Let X be Hamiltonian such that $\iota_X\omega=\mathrm{d}H$. Then, we use Cartan's magic formula,

$$\mathcal{L}_X \omega = \mathrm{d}(\iota_X \omega) + \iota_X \mathrm{d}\omega$$

Applying $\iota_X \omega = dH$ and using $d\omega = 0$ we find,

$$\mathcal{L}_X \omega = \mathrm{d}(\mathrm{d}H) = 0$$

2 Symptectic Geometry

Definition 2.0.1. A symplectic form on M is a closed non-degenerate 2-form ω . We say that (M, ω) is a symplectic manifold. A symplectomorphism $f: (M, \omega_M) \to (N, \omega_N)$ is a smooth map $f: M \to N$ such that $f^*\omega_N = \omega_M$.

Lemma 2.0.2. Symplectic forms can only exist on even-dimensional manifolds.

Proof. Locally, a symplectic form ω is a nondegenerate anti-symmetric bilinear form $S: T_pM \times T_pM \to \mathbb{R}$. So we have $S^{\top} = -S$ and det $S \neq 0$. However,

$$\det S = \det S^{\top} = \det (-S) = (-1)^n \det S$$

since det $S \neq 0$ we must have $(-1)^n = 1$ i.e. n is even.

Definition 2.0.3. We say that a vector field X on (M, ω) is symplectic if $\mathcal{L}_X \omega = 0$.

Remark. We see that the condition $\mathcal{L}_X \omega = 0$ that a vector field be symplectic is equivalent to the condition that its flows $\phi_t : M \to M$ be symplectomorphisms since,

$$\mathcal{L}_X \omega = \frac{\mathrm{d}}{\mathrm{d}t} ((\phi_t)^* \omega) = 0$$

Thus, symplectic vector fields are fields whose flows preserve the symplectic structure.

Definition 2.0.4. We say that a vector field X on (M, ω) is Hamiltonian if the form $\iota_X \omega \in \Omega^1(M)$ is exact i.e. there exists a function $H: M \to \mathbb{R}$ such that,

$$dH = \iota_X \omega$$

Remark. Note that since ω is non-degenerate, the map $\omega: TM \to \Omega^1(M)$ via $X \mapsto \iota_X \omega$ is an isomorphism and thus we can consider $\omega^{-1}: \Omega^1(M) \to TM$. Then the above condition is that $X = \omega^{-1}(dH)$.

Lemma 2.0.5. Hamiltonian vector fields are symplectic.

Proof. Let X be Hamiltonian. Then consider,

$$\mathcal{L}_X \omega = \iota_X d\omega + d\iota_X \omega$$

Since ω is a symplectic form $d\omega = 0$ and since X is Hamiltonainm $\iota_X \omega$ is exact and thus closed so $d\iota_X \omega = 0$. Therefore,

$$\mathcal{L}_X\omega=0$$

so X is symplectic.

Lemma 2.0.6. Symplectic and Hamiltonian vector fields form Lie subalgebras.

Proof. We know that,

$$\mathcal{L}_{[X,Y]}\omega = \mathcal{L}_X \mathcal{L}_Y \omega - \mathcal{L}_Y \mathcal{L}_X \omega$$

so if X, Y are symplectic then so is [X, Y]. Furthermore,

$$\iota_{[X,Y]}\omega = \mathcal{L}_X \iota_Y \omega - \iota_Y \mathcal{L}_X \omega$$

However, $\mathcal{L}_X \omega = 0$ since Hamiltonian fields are symplectic. Furthermore, by Cartan's formula,

$$\iota_{[X,Y]}\omega = \mathcal{L}_X \iota_Y \omega = \iota_X (\mathrm{d}\iota_Y \omega) + \mathrm{d}(\iota_X \iota_Y \omega)$$

However, since $\iota_Y \omega$ is exact it is closed and thus,

$$\iota_{[X,Y]}\omega = d(\iota_X \iota_Y \omega) = d(\omega(Y,X))$$

which is exact so [X, Y] is Hamiltonian.

Remark. We have $\mathcal{L}_X d\omega = d(\mathcal{L}_X \omega)$ because d is a natural transformation in the sense that $f^*d = df^*$ for any smooth map and, in particular, for the flow of X.

Definition 2.0.7. Let $f, g: M \to \mathbb{R}$ be functions and let $X_f = \omega^{-1}(\mathrm{d}f)$ and $X_g = \omega^{-1}(\mathrm{d}g)$ be the associated Hamiltonian vector fields. Then we define the *Poisson bracket* via,

$$\{f,g\} = \omega(X_f, X_g)$$

Remark. From the definitions of X_f and X_q ,

$$\{f,g\} = \omega(X_f, X_g) = \mathrm{d}f(X_g) = X_g(f) = \mathcal{L}_{X_g}f$$
$$= -\omega(X_g, X_f) = -\mathrm{d}g(X_f) = -X_f(g) = -\mathcal{L}_{X_f}g$$

So $\{f,g\}$ represents the flow of f along the vector field generated by g.

Lemma 2.0.8. $[X_f, X_g] = -X_{\{f,g\}}$

Proof. We have shown that if X and Y are Hamiltonian then,

$$\iota_{[X,Y]}\omega = d(\omega(Y,X))$$

Therefore,

$$X_{\omega(Y,X)} = \omega^{-1}(\mathrm{d}(\omega(Y,X))) = [X,Y]$$

Now applying this to X_f and X_g we find,

$$[X_f, X_g] = \omega^{-1}(d(\omega(X_g, X_f))) = -\omega^{-1}(d\{f, g\}) = -X_{\{f, g\}}$$

Proposition 2.0.9. The Poisson bracket on smooth functions forms a Lie algebra.

Proof. Clearly the Poisson bracket is bilinear. Furthermore, it is antisymmetric because,

$$\{f,g\} = \omega(X_f, X_g) = -\omega(X_g, X_f) = -\{g, f\}$$

The Jacobi identity is equivalent to the fact that ad : $\mathfrak{g} \to \mathfrak{gl}(\mathfrak{g})$ via $\xi \mapsto [\xi, -]$ is a Lie algebra homomorphism.

In the current case, $\operatorname{ad}_f(g) = \{f, g\} = -X_f(g)$ so $\operatorname{ad}_f = -X_f$ as a derivation. Then we know that,

$$[ad_f, ad_g] = [-X_f, -X_g] = -X_{\{f,g\}} = ad_{\{f,g\}}$$

since the commutator of vector fields is their comutator as differential operators.

Proposition 2.0.10. The map $f \mapsto -X_f = -\omega^{-1}(\mathrm{d}f)$ is a homomorphism of Lie algebras from smooth functions to Hamiltonian vector fields.

Proof. Immediate from
$$-X_{\{f,g\}} = [X_f, X_g] = [-X_f, -X_g].$$