Homework 4

Yuki Joyama

2023-11-20

Problem 1

```
a) Let d_1, d_2, ..., d_n be the differences between 25 pairs with and \Delta be the median of d_i.
   H_0: \Delta \geq 0
   H_1:\Delta<0
```

 $n * p(1-p) \ge 5$ so I will apply normal-approximation to perform the one-sided sign test.

Let C be the number of negative differences, ignoring the zero differences; n* be the number of non-zero differences.

```
Now, C = 14 and n^* = 24
```

The test statistics is:

$$\frac{n^*}{2} + \frac{1}{2} + z_{1-\alpha} \sqrt{\frac{n^*}{4}} = 16.53 > C$$

p-value =
$$1 - \Phi(\frac{C - \frac{n^*}{2} - \frac{1}{2}}{\sqrt{\frac{n^*}{4}}}) = 0.27$$

Therefore, we fail to reject the null hypothesis. We do not have significant ($\alpha = 0.05$) evidence to support that the median sugar readings was less than 120.

b) H_0 : The median difference between blood sugar samples and 120 is equal to or greater than zero H_1 : The median difference between blood sugar samples and 120 is less than zero

In order to perform the Wilcoxon Signed-Rank Test (one-sided), I calculated the absolute differences between samples and 120 and their rank as follows.

```
bs = bs |>
  filter(sample != 120) |> # exclude difference = 0
  group_by(sample) |>
  mutate(
    d = sample - 120,
    abs_d = abs(d), # absolute differences
    positive_d = ifelse(d > 0, 1, 0),
    negative_d = ifelse(d < 0, 1, 0),</pre>
    same_n = n() # count numbers of same blood sugar samples
  ) |>
  ungroup() |>
  arrange(abs_d) |>
  mutate(
    rank = rank(abs_d) # assign average rank based on absolute differences
  ) |>
  print()
```

```
## # A tibble: 24 x 7
##
      sample
                  d abs_d positive_d negative_d same_n rank
       <dbl> <dbl> <dbl>
                                <dbl>
##
                                             <dbl>
         121
##
                  1
                                                 0
                                                         1
                                                             1
    1
                         1
                                     1
##
    2
         118
                 -2
                         2
                                     0
                                                 1
                                                             4
    3
         118
                 -2
                         2
                                     0
                                                 1
##
    4
         118
                 -2
                         2
                                                 1
##
                         2
                                                 0
##
    5
         122
                  2
                                     1
##
    6
         118
                 -2
                         2
                                     0
                                                 1
                                                             4
    7
         123
                         3
                                     1
                                                 0
                                                         3
                                                             8.5
##
                  3
##
    8
         117
                 -3
                         3
                                                 1
                                                         1
                                                             8.5
                         3
                                     1
                                                 0
    9
         123
                  3
                                                         3
                                                             8.5
##
                         3
                                     1
                                                             8.5
## 10
         123
                  3
## # i 14 more rows
```

Let R be the rank sum for negative differences.

R = 187.5

Since there are ties, the test statistics T is:

$$T = \frac{|R - \frac{n^*(n^* + 1)}{4}| - \frac{1}{2}}{\sqrt{(\frac{n^*(n^* + 1)(2n^* + 1)}{24} - \frac{\sum_{i=1}^{g} (t_i^3 - t_i)}{4})}} = 1.08 \sim N(0, 1) \text{ under } H_0$$
p-value = $[1 - \Phi(T)] = 0.14$

Therefore, we failed to reject the null hypothesis and cannot conclude that there is a significant ($\alpha = 0.05$) evidence that median blood sugar reading was less than 120.

Problem 2

a)

```
# exclude homo sapiens
df_brain_nonh = df_brain |>
    filter(species != "Homo sapiens")

# fit a regression model for the nonhuman data
reg_nonh = lm(glia_neuron_ratio ~ ln_brain_mass, df_brain_nonh)

reg_nonh |>
    broom::tidy() |>
    mutate_at(2:5, round, 3) |>
    mutate(
        p.value = ifelse(p.value < 0.001, "< 0.001", p.value)
        ) |>
        knitr::kable()
```

term	estimate	std.error	statistic	p.value
(Intercept)	0.164	0.160	1.024	0.322
ln_brain_mass	0.181	0.036	5.026	< 0.001

b)

```
# prediction intervals (95%)
predict(
    reg_nonh,
    newdata = tibble(
        ln_brain_mass = df_brain |>
             filter(species == "Homo sapiens") |>
             pull(ln_brain_mass)
        ),
        interval = "prediction", level = 0.95
) |>
        round(3)
```

```
## fit lwr upr
## 1 1.471 1.036 1.907
```

The predicted glia-neuron ratio for humans given the brain mass using the nonhuman primate relationship is 1.471.

c)

```
# prediction intervals (95%)
predict(
   reg_nonh,
   newdata = tibble(
       ln_brain_mass = df_brain |>
        filter(species == "Homo sapiens") |>
        pull(ln_brain_mass)
   ),
   interval = "confidence", level = 0.95
) |>
   round(3)
```

```
## fit lwr upr
## 1 1.471 1.23 1.713
```

The 95% prediction interval for the predicted human glia-neuron ratio given the brain mass is 1.036 - 1.907, and the 95% confidence interval is 1.230 - 1.713.

I would use prediction interval rather than confidence interval when it comes to prediction because the prediction interval is more conservative by accounting for both the uncertainty of estimating a value and the random variability of the sample.

- d) Given the output in part (b), the 95% prediction interval is 1.036 1.907. The sample observation of human glia-neuron ratio is 1.65, which is within the range of the 95% prediction interval. Thus, using the regression model for nonhuman data, we can say that the human brain does not have an excessive glia-neuron ratio for its mass compared with other primates.
- e) Because no other primates have brain mass as big as human, the regression model (based on primates' data) may not be able to accurately predict the glia_neuron_ratio with large ln_brain_mass.

Problem 3

a) The data set consists of 10 variables and 788 observations.

The main outcome in this case is totalcost and the main predictor is e_rvisits. Other important covariates include age, gender, complications, and duration. (It is not specified but I will treat gender 0 as male, and 1 as female)

The descriptive statistics for all variables of interest is as follows.

Characteristic	$\mathbf{N}=788^1$
Total cost (USD)	2,800.0 / 507.2 (6,690.3)
ER visits	3.4 / 3.0 (2.6)
Age	$58.7 \ / \ 60.0 \ (6.8)$
Female	180 (23%)
No. of complications	
0	745~(95%)
1	42~(5.3%)
3	1 (0.1%)
Duration of treatment condition (days)	$164.0 \ / \ 165.5 \ (120.9)$

¹Mean / Median (SD); n (%)

b)

As shown in the histogram, the distribution for variable totalcost is right-skewed.

I will log-transform the values of "totalcost + 1" (add constant term 1 to avoid $-\infty$). Now, the distribution of $ln_{totalcost}$ is closer to the normal distribution.

c)

```
# create a new variable comp_bin (0: no complications, 1: otherwise)

df_hd = df_hd |>
    mutate(
    comp_bin = ifelse(complications == 0, 0, 1)
)
```

d)

```
df_hd = df_hd |>
    mutate(
        ln_totalcost = log(totalcost + 1)
)

# simple linear regression between ln_totalcost and e_rvisits

reg_cost_slr = lm(ln_totalcost ~ e_rvisits, data = df_hd)

reg_cost_slr |>
    broom::tidy() |>
    mutate_at(2:5, round, 3) |>
    mutate(
        p.value = ifelse(p.value < 0.001, "< 0.001", p.value)
) |>
    knitr::kable()
```

term	estimate	$\operatorname{std.error}$	statistic	p.value
(Intercept) e_rvisits	5.527 0.225	$0.105 \\ 0.024$	000	< 0.001 < 0.001

```
# 95% CI for model parameter e_rvisits
confint(reg_cost_slr, "e_rvisits")
```

```
## 2.5 % 97.5 %
## e_rvisits 0.1775544 0.2730293
```

p-value for the slope ($\beta_{ERvisits}$) appears to be less than 0.05. Thus, we reject the null hypothesis ($\beta_{ERvisits} = 0$) and conclude that there is a significant linear association between the ln_totalcost and e_rvisits. 95% CI for the true slope is 0.178 - 0.273. With 95% confidence, we estimate that the ln_totalcost increases by somewhere between 0.178 and 0.273 for each additional ER visits.

e1)

```
# multiple linear regression model (parameters: comp_bin, e_rvisits)
# assess effect modification
reg_cost_mlr1 = lm(ln_totalcost ~ e_rvisits * comp_bin, data = df_hd)

reg_cost_mlr1 |>
    broom::tidy() |>
    mutate_at(2:5, round, 3) |>
```

```
mutate(
   p.value = ifelse(p.value < 0.001, "< 0.001", p.value)
) |>
knitr::kable()
```

term	estimate	std.error	statistic	p.value
(Intercept)	5.488	0.105	52.271	< 0.001
$e_rvisits$	0.209	0.025	8.412	< 0.001
comp_bin	2.191	0.554	3.951	< 0.001
$e_rvisits:comp_bin$	-0.098	0.096	-1.013	0.311

```
# visualize the interaction
plot_model(reg_cost_mlr1, type = "int")
```

Predicted values of In totalcost

The regression coefficient associated with the interaction term <code>e_rvisits:comp_bin</code> is not statistically significant. Thus, it indicates that <code>comp_bin</code> is not an effect modifier of the relationship between <code>ln_totalcost</code> and <code>e_rvisits</code>.

e2)

```
# multiple linear regression model (parameters: comp_bin, e_rvisits)
# assess confounder
# unadjusted MLR
reg_cost_mlr2 = lm(ln_totalcost ~ e_rvisits, data = df_hd)
```

```
reg_cost_mlr2 |>
broom::tidy() |>
mutate_at(2:5, round, 3) |>
mutate(
   p.value = ifelse(p.value < 0.001, "< 0.001", p.value)
) |>
knitr::kable()
```

term	estimate	std.error	statistic	p.value
(Intercept)	5.527	0.105	52.584	< 0.001
e_rvisits	0.225	0.024	9.264	< 0.001

```
# add comp_bin
reg_cost_mlr3 = lm(ln_totalcost ~ e_rvisits + comp_bin, data = df_hd)

reg_cost_mlr3 |>
   broom::tidy() |>
   mutate_at(2:5, round, 3) |>
   mutate(
      p.value = ifelse(p.value < 0.001, "< 0.001", p.value)
   ) |>
   knitr::kable()
```

term	estimate	$\operatorname{std.error}$	statistic	p.value
(Intercept)	5.510	0.103	53.606	< 0.001
$e_rvisits$	0.203	0.024	8.437	< 0.001
$comp_bin$	1.706	0.279	6.111	< 0.001

After adding comp_bin to the model, the change of the coefficient of e_rvisits was observed (-10.84%). By the rule of thumb, we can say that comp_bin is a confounder of the relationship between ln_totalcost and e_rvisits.

e3) Given that comp_bin is a potential confounder between ln_totalcost and e_rvisits, I would include this in the model so that the model can account for the impact of the confounder on the outcome.

f1)

```
# multiple linear regression model (parameters: comp_bin, e_rvisits)
# assess effect modification
reg_cost_mlr4 = lm(ln_totalcost ~ e_rvisits + comp_bin + age + gender + duration, data = df_hd)
reg_cost_mlr4 |>
  broom::tidy() |>
  mutate_at(2:5, round, 3) |>
  mutate(
    p.value = ifelse(p.value < 0.001, "< 0.001", p.value)
) |>
  knitr::kable()
```

term	estimate	std.error	statistic	p.value
(Intercept)	5.940	0.510	11.639	< 0.001
$e_rvisits$	0.175	0.023	7.735	< 0.001
$comp_bin$	1.504	0.258	5.820	< 0.001
age	-0.021	0.009	-2.380	0.018
gender	-0.207	0.139	-1.491	0.136
duration	0.006	0.000	11.691	< 0.001

Statistically significant linear associations were observed between the outcome and the covariates except for gender. Holding all other variables constant, $ln_totalcost$ increases by 0.175 for every unit change in $e_rvisits$.

f2) I would use the MLR model (from f1) because ER visits is unlikely to be a single factor that has an impact on the total cost. We need to consider other factors such as age, gender, treatment duration, etc as well.