Inference for State Space Models

Objective

Explore the link between climate and Dengue in Thailand

3 steps

Intro to epidemic modeling and simulation with SSM

Inference: parameter estimation and model selection

Dengue and climate in Thailand

Intro to epidemic modeling and simulation with SSM

Modelling complex & dynamic quantities: reorganising to meet up with technical challenges.

https://github.com/standard-analytics/ssm

Open Source community

+ you

Sign up for GitHub

https://github.com/

WHY?

New Issue

Question? Raise issues

Support!

4

Keep informed

Is SSM properly installed on your machines?

In your terminal: > ssm -V

SI Intro

 $dS_t = -r0 \times gamma \times I / N \times S \times dt$ $dI_t = r0 \times gamma \times I / N \times S \times dt$

SIR Intro


```
dS_t = -r0 \times gamma \times I / N \times S \times dt

dI_t = r0 \times gamma \times I / N \times S \times dt - v \times dt

dI_t = v \times dt
```

SIR First steps

change directory
cd SIR-city
ls
Saint-Fuscien
Amiens
Paris

package.json???

JSON: JavaScript Object Notation

JSON

double-quotes only!

```
Lists: [ "a", 3, ... ]

Objects: { "a": "A", "b": 3, ...}
```

Flexible, readable format.

Popular open standard.

SIR Let's get to it

Closer look at the "model" object.

SIR Simulation

> ssm install package.json
> cd bin
> ./simul --help
> cat ../package.json | ./simul --traj

 $X_0.csv$

SIR Plot X_0.csv

Open TD.R in R

Set TD-STRU to be Working Directory
Plot X_0.csv with ssm.plot.X

SIR Explore

Explore different values of R0 and d

Under which minimal conditions does an epidemic burst?

According to the SIR model, what will be the number of susceptibles on December 13th, 2012?

SIRS Make your own model

 $dS_t = -r0 \times gamma \times I / N \times S \times dt + k \times dt$ $dI_t = r0 \times gamma \times I / N \times S \times dt - v \times dt$ $dI_t = v \times dt - k \times dt$

SIRS Make your own model

What should qualitatively be the impact of immunity loss on the number of susceptibles on December 13th, 2012?

SIRS Make your own model

Duplicate and rename SIR. Modify it to obtain an SIRS model.

```
reactions + "", "to": "S", "rate": "k", "description": "recovery"}

inputs + "", "description": "rate of immunity loss", "data": {"resource": "pr_k"}, "transformation": "1/pr_k", "to_resource": "1/k" },
```

resources + { "name": "pr_k", "description": "duration of immunity",

"data": { "distribution": "fixed", "value": 250.0 } },

The role and influence of demographic stochasticity

NOISE Poisson process formalism

For every individual:

infection is a random process

NOISE Poisson process formalism

For Stindividuals:

p(n infections)
$$\approx {St \choose n} r0 x gamma x I / N x dt$$

tractable stochastic model

For more details, see: Breto et al (2009). Time series analysis for mechanistic models.

NOISE SDE formalism

Going further, following Ethier & Kurtz 1986:

```
drift
                                                                       volatility
dSt = -r0 \times gamma \times I / N \times St \times dt - sqrt(r0 \times gamma \times I / N \times St) dBt
dlt = r0 \times gamma \times I / N \times St \times dt + sqrt(r0 \times gamma \times I / N \times St) dBt
```


Diffusion approximation

For more details, see: Dargatz (2007). A diffusion approximation for an epidemic model.

To remember

psr best tractable approximation

sde continuous approximation classical mathematical object theory only for large populations

```
> cat ../package.json | ./simul psr --traj
> cat ../package.json | ./simul sde --traj -I 1
```

Run id

Plot and compare X_0.csv and X_1.csv

Number of particles

- > cat ../package.json | ./simul psr --traj -J 3
- > cat ../package.json | ./simul sde --traj -I 1 -J 3

Run id

More particles

Number of particles

- > cat ../package.json | ./simul psr --traj -J 1000
- > cat ../package.json | ./simul sde --traj -I 1 -J 1000

Run id

Even more particles

Number of particles

- > cat ../package.json | ./simul psr --hat -J 1000
- > cat ../package.json | ./simul sde --hat -I 1 -J 1000

Run id

Generate trajectory confidence intervals

use ssm.plot.hat

Saint-Fuscien 1'000 inhabs.

Amiens
100'000 inhabs.

Paris
10M inhabs.

Inference: parameter estimation and model selection

A first real example

What was life expectancy with plague? Were infection patterns similar in London and Eyam?

life_exp? r0_London? r0_Eyam?

p(y10) Likelihood

rO_London rO_Eyam

Bayes Formula

Inference Exploring p(O|y)

Inference Exploring p(O|y) Locate the mode optimisation tools

Inference Exploring p(O|y)

ustration Manual inference

Install the model, and in the bin directory:

```
> cat ../package.json | ./simplex -M 1000 --trace > mle.json
> cat mle.json | ./pmcmc -M 1000 --trace > mle.json
```

use ssm.plot.trace, and ssm.plot.post

Illustration Automated pipeline

In the parent directory:

- > ssm bootstrap package.json
- > ssm run

use ssm.plot.trace, and ssm.plot.post

A first real example

What was life expectancy with plague? Were infection patterns similar in London and Eyam?

A second real example

Explaining rapid reinfections in multiple- wave influenza outbreaks: Tristan da Cunha 1971 epidemic as a case study

Two theories

Mut

Strain mutation

Win
Reinfection
window

Fit both models. Conclude.