X_1 , X_2 , X_m , $X_{(m+1)}$, $X_{(2m-1)}$, and X_{2m} are carboxamide residues forming carboxamide binding pairs X_1/X_{2m} , $X_2/X_{(2M-1)}$, X_M/X_{M+1} ,

 γ is γ -aminobutyric acid or 2,4 diaminobutyric acid, and

R₁ is -NH(CH₂)₀₋₁₀₀NR₂R₃, -NH(CH₂)₀₋₁₀₀CO NH(CH₂)₀₋₁₀₀NR₂R₃, or -NHR₂, where R₂ and R₃ are independently selected from the group consisting of H, Cl, NO, N-acetyl, benzyl, C₁₋₁₀₀ alkyl, C₁₋₁₀₀ alkylamine, C₁₋₁₀₀ alkyldiamine, C₁₋₁₀₀ alkylcarboxylate, C₁₋₁₀₀ alkenyl, a C₁₋₁₀₀ alkynyl, and C₁₋₁₀₀ alkyl-L, where L is selected from the group consisting of arylboronic acids, biotins, polyhistidines comprised from about 2 to 8 amino acids, haptens, solid phase supports, oligodeoxynucleotides, N-ethylnitrosourea, fluorescein, bromoacetamide, iodoacetamide, DL-α-lipoic acid, acridine, captothesin pyrene, mitomycin, texas red, anthracene, anthrinilic acid, avidin, DAPI, and oligodeoxynucleotide, isosulfan blue, malachite green, psoralen, ethyl red, 4-(psoraen-8-yloxy)-butyrate, taartaric acid, and (+)-α-tocopheral, suitable for use as a DNA-binding ligand that is selective for identified target DNA-sequences 5'-WN₁N₂...N_mW-3' where m is an integer having a value from 3 to 6, the method comprising:

- (a) identifying a target sequence of double stranded DNA having the form 5'-WN₁N₂ ... N_mW-3', N₁N₂... N_m being the sequence to be bound by carboxamide residues, wherein each N is independently chosen from the group A, G, C, and T, each W is independently chosen from the group A and T, and m is an integer having a value from 3 to 6;
- (b) representing the identified sequence as 5'-Wab ... xW-3', wherein a is a first nucleotide to be bound by the X_1 carboxamide residue, b is a second nucleotide to be bound by the X_2 carboxamide residue, and x is the corresponding nucleotide to be bound by the X_m carboxamide residue;

- defining as A, G, C, or T to correspond to the first nucleotide to be bound by a (c) carboxamide residue in the identified sequence;
- selecting Im as the X_1 carboxamide residue and Py as the X_{2m} carboxamide residue if a = G;
- selecting Py as the X_1 carboxamide residue and Im as the X_{2m} carboxamide residue if a = C;
- selecting Hp as the X_1 carboxamide residue and Py as the X_{2m} carboxamide (f) residue if a = T;
- selecting Py as the X₁\carboxamide residue and Hp as the X_{2m} carboxamide (g) residue if a = A; and
- repeating steps c g for b through x until all carboxamide residues are selected; (h) wherein Im is N-methylimidazole, Hp is, Py is N-methylpyrrole, A is adenine, G is guanine, C is cytosine, and T is thymine.
- 2. (Amended) The method of claim 1 further comprising the step of synthesizing the polyamide.
- 3. (Amended) The method of claim 2 further comprising the step of determining if the binding affinity of the polyamide to the identified target sequence is subnanomolar.
- 4. (Amended) The method of claim 1 further comprising the step of determining if the polyamide exhibits a binding affinity that is at leas ten-fold higher for said identified target sequence compared to a non-target DNA sequence.

38. (Amended)

A polyamide composition produced by the method of claim 2 wherein one

carboxamide binding pair is β/β , wherein β is β -alanine.

42. (Amended) The method of claim 1 wherein the identified target DNA sequence is a regulatory sequence.

43. (Amended) The method of claim 1 wherein the identified target DNA sequence is a promoter sequence.

44. (Amended) The method of claim 1 wherein the identified target DNA sequence is a coding sequence.

45. (Amended) The method of claim 1 wherein the identified target DNA sequence is a non-coding sequence.

46. (Amended) A polyamide composition produced by the method of claim 2 wherein the binding of the carboxamide binding pairs to the identified target DNA sequence modulates the expression of a gene.

47. (Amended) A composition comprising an effective amount of a polyamide produced by the method of claim 2 and a pharmologically suitable excipient.

48. (Amended) A diagnostic kit comprising a polyamide produced by the method of claim

Please enter the following new claim:

49. (New) A polyamide designed by the method of claim 1, having the structure:

R4

R5

023.205667.1

wherein

R₄ is selected from the group consisting of H, NH₂, SH, Cl, Br, F, N-acetyl, and N-formyl;

each R_5 is independently selected from the group consisting of H, $(CH_2)_{0-6}CH_3$, $(CH_2)_{0-6}CH_$

each R₆ is independently selected from the group consisting of H, NH₂, OH, SH, Br, Cl, F, OMe, CH₂OH, CH₂SH, and CH₂NH₂;

R₁ is -NH(CH₂)₀₋₁₀₀NR₂R₃, -NH(CH₂)₀₋₁₀₀CO NH(CH₂)₀₋₁₀₀NR₂R₃, or -NHR₂, where R₂ and R₃ are independently selected from the group consisting of H, Cl, NO, N-acetyl, benzyl, C₁₋₁₀₀ alkyl, C₁₋₁₀₀ alkylamine, C₁₋₁₀₀ alkyldiamine, C₁₋₁₀₀ alkylcarboxylate, C₁₋₁₀₀ alkenyl, a C₁₋₁₀₀ alkynyl, and C₁₋₁₀₀ alkyl-L, where L is selected from the group consisting of arylboronic acids, biotins, polyhistidines comprised from about 2 to 8 amino acids, haptens, solid phase supports, oligodeoxynucleotides, N-ethylnitrosourea, fluorescein, bromoacetamide, iodoacetamide, DL-α-lipoic acid, acridine, captothesin, pyrene, mitomycin, texas red, anthracene, anthrinilic acid, avidin, DAPI, and oligodeoxynucleotide, isosulfan blue, malachite green, psoralen, ethyl red, 4-(psoraen-8-yloxy)-butyrate, taartaric acid, and (+)-α-tocopheral;

each X and Y are independently selected from the group consisting of N, CH, COH, CCH₃, CNH₂, CCl, and CF;

each n is an integer from 1 to 2;

each a is an integer from 0 or 1;

-5-