CS 188: Artificial Intelligence

Hidden Markov Models

Instructor: Anca Dragan --- University of California, Berkeley
[These slides were created by Dan Klein, Pieter Abbeel, and Anca. http://ai.berkeley.edu.]

Reasoning over Time or Space

- Often, we want to reason about a sequence of observations
 - Speech recognition
 - Robot localization
 - User attention
 - Medical monitoring
- Need to introduce time (or space) into our models

Markov Models

o Value of X at a given time is called the state

- o Parameters: called transition probabilities or dynamics, specify how the state evolves over time (also, initial state probabilities)
- o Stationarity assumption: transition probabilities the same at all times
- o Same as MDP transition model, but no choice of action
- o A (growable) BN: We can always use generic BN reasoning on it if we truncate the chain at a fixed length

Markov Assumption: Conditional Independence

- Basic conditional independence:
 - o Past and future independent given the present
 - o Each time step only depends on the previous
 - o This is called the (first order) Markov property

Example Markov Chain: Weather

States: X = {rain, sun}

Initial distribution: 1.0 sun

• CPT $P(X_t | X_{t-1})$:

X _{t-1}	X _t	$P(X_t X_{t-1})$
sun	sun	0.9
sun	rain	0.1
rain	sun	0.3
rain	rain	0.7

Two new ways of representing the same CPT

Example Markov Chain: Weather

o Initial distribution: 1.0 sun

• What is the probability distribution after one step?

$$P(X_2 = sun) = \sum_{x_1} P(x_1, X_2 = sun) = \sum_{x_1} P(X_2 = sun | x_1) P(x_1)$$

$$P(X_2 = \text{sun}) = P(X_2 = \text{sun}|X_1 = \text{sun})P(X_1 = \text{sun}) + P(X_2 = \text{sun}|X_1 = \text{rain})P(X_1 = \text{rain})$$

 $0.9 \cdot 1.0 + 0.3 \cdot 0.0 = 0.9$

Mini-Forward Algorithm

Question: What's P(X) on some day t?

$$P(x_1) = known$$

$$P(x_t) = \sum_{x_{t-1}} P(x_{t-1}, x_t)$$

$$= \sum_{x_{t-1}} P(x_t \mid x_{t-1}) P(x_{t-1})$$
Forward simulation

Example Run of Mini-Forward Algorithm

From initial observation of sun

From initial observation of rain

• From yet another initial distribution $P(X_1)$:

$$\left\langle \begin{array}{c} p \\ 1-p \end{array} \right\rangle \qquad \cdots \qquad \left\langle \begin{array}{c} 0.75 \\ 0.25 \end{array} \right\rangle$$

$$P(X_1) \qquad P(X_{\infty})$$

[Demo: L13D1,2,3]

Video of Demo Ghostbusters Basic Dynamics

Video of Demo Ghostbusters Circular Dynamics

Video of Demo Ghostbusters Whirlpool Dynamics

Stationary Distributions

o For most chains:

- o Influence of the initial distribution gets less and less over time.
- The distribution we end up in is independent of the initial distribution

Stationary distribution:

- The distribution we end up with is called the stationary distribution P_{∞} of the chain
- It satisfies

$$P_{\infty}(X) = P_{\infty+1}(X) = \sum_{x} P(X|x)P_{\infty}(x)$$

Example: Stationary Distributions

 \circ Question: What's P(X) at time t = infinity?

$$X_1$$
 X_2 X_3 X_4 X_4

$$P_{\infty}(sun) = P(sun|sun)P_{\infty}(sun) + P(sun|rain)P_{\infty}(rain)$$

$$P_{\infty}(rain) = P(rain|sun)P_{\infty}(sun) + P(rain|rain)P_{\infty}(rain)$$

$$P_{\infty}(sun) = 0.9P_{\infty}(sun) + 0.3P_{\infty}(rain)$$

$$P_{\infty}(rain) = 0.1P_{\infty}(sun) + 0.7P_{\infty}(rain)$$

$$P_{\infty}(sun) = 3P_{\infty}(rain)$$

$$P_{\infty}(rain) = 1/3P_{\infty}(sun)$$

$$P_{\infty}(sun) = 3/4$$

$$P_{\infty}(main) = 1/4$$

$$P_{\infty}(rain) = 1/4$$

X _{t-1}	X _t	$P(X_t X_{t-1})$
sun	sun	0.9
sun	rain	0.1
rain	sun	0.3
rain	rain	0.7

Application of Stationary Distribution: Web Link Analysis

PageRank over a web graph

- o Each web page is a possible value of a state
- Initial distribution: uniform over pages
- o Transitions:
 - With prob. c, uniform jump to a random page (dotted lines, not all shown)
 - o With prob. 1-c, follow a random outlink (solid lines)

Stationary distribution

- Will spend more time on highly reachable pages
- o E.g. many ways to get to the Acrobat Reader download page
- o Somewhat robust to link spam.
- o Google 1.0 returned the set of pages containing all your keywords in decreasing rank, now all search engines use link analysis along with many other factors (rank actually getting less important over time)

Application of Stationary Distributions: Gibbs Sampling*

• Each joint instantiation over all hidden and query variables is a state: $\{X_1, ..., X_n\} = H U Q$

o Transitions:

 \circ With probability 1/n resample variable X_j according to

$$P(X_j \mid x_1, x_2, ..., x_{j-1}, x_{j+1}, ..., x_{n_j}, e_{1_j}, ..., e_m)$$

Stationary distribution:

- o Conditional distribution $P(X_1, X_2, ..., X_n | e_1, ..., e_m)$
- Means that when running Gibbs sampling long enough we get a sample from the desired distribution
- o Requires some proof to show this is true!

Hidden Markov Models

Pacman – Sonar

Video of Demo Pacman – Sonar (no beliefs)

Hidden Markov Models

- Markov chains not so useful for most agents
 - Need observations to update your beliefs
- Hidden Markov models (HMMs)
 - Underlying Markov chain over states X
 - You observe outputs (effects) at each time step

Example: Weather HMM

An HMM is defined by:

- o Initial distribution: $P(X_1)$
- o Transitions: $P(X_t \mid X_{t-1})$
- o Emissions: $P(E_t \mid X_t)$

R _{t-1}	R _t	$P(R_t R_{t-1})$
+r	+r	0.7
+r	-r	0.3
-r	+r	0.3
-r	-r	0.7

R _t	U _t	$P(U_t R_t)$
+r	+u	0.9
+r	-u	0.1
-r	+u	0.2
-r	-u	0.8

Video of Demo Ghostbusters – Circular Dynamics -- HMM

Example: Ghostbusters HMM

- \circ P(X₁) = uniform
- P(X|X') = usually move clockwise, but sometimes move in a random direction or stay in place

1/9	1/9	1/9
1/9	1/9	1/9
1/9	1/9	1/9

 $P(X_1)$

1/6	16	1/2
0	1/6	0
0	0	0

$$P(X | X' = <1,2>)$$

Conditional Independence

- HMMs have two important independence properties:
 - Markov hidden process: future depends on past via the present
 - Current observation independent of all else given current state

- Opes this mean that evidence variables are guaranteed to be independent?
 - [No, they tend to correlated by the hidden state]

Real HMM Examples

Robot tracking:

- Observations are range readings (continuous)
- States are positions on a map (continuous)

Speech recognition HMMs:

- o Observations are acoustic signals (continuous valued)
- States are specific positions in specific words (so, tens of thousands)

Machine translation HMMs:

- Observations are words (tens of thousands)
- States are translation options

Filtering / Monitoring

- Filtering, or monitoring, is the task of tracking the distribution $B_t(X) = P_t(X_t \mid e_1, ..., e_t)$ (the belief state) over time
- \circ We start with $B_1(X)$ in an initial setting, usually uniform
- \circ As time passes, or we get observations, we update B(X)
- The Kalman filter was invented in the 60's and first implemented as a method of trajectory estimation for the Apollo program

Example from Michael Pfeiffer

Prob

Sensor model: can read in which directions there is a wall, never more than 1 mistake

t=0

Motion model: may not execute action with small prob.

Lighter grey: was possible to get the reading, but less likely b/c required 1 mistake

Prob 0 1

Prob

Prob 0 1

Inference: Find State Given Evidence

We are given evidence at each time and want to know

$$B_t(X) = P(X_t|e_{1:t})$$

- Idea: start with P(X₁) and derive B_t in terms of B_{t-1}
 - o equivalently, derive B_{t+1} in terms of B_t