Model de examen la balcul Diferential
Model de examen la balcul diferential si Integral
1. a) Studiati convergența seriei $\sum_{n=1}^{\infty} \frac{n!(n+3)!}{(2n+4)! \times n}$
în functie de valorile parametrului x∈ (0,00).
in functie de valorile parametrului $x \in (0, \infty)$. Yolutie. Fie $x_n = \frac{n!(n+3)!}{(2n+1)!} x^n$ Manufic de valorile parametrului $x \in (0, \infty)$.
lim $\frac{x_{n+1}}{x_n} = \lim_{n \to \infty} \frac{(2n+3)!}{(2n+3)!} \frac{(2n+3)!}{x_n} = \lim_{(2n+2)!} \frac{(2n+3)!}{(2n+3)!} \frac{(2n+3)!}{x_n} = \lim_{(2n+2)!} \frac{(2n+3)!}{(2n+3)!} = \lim_{n \to \infty} \frac{(2n+3)!}{(2n+3)!} \frac{(2n+3)!}{x_n} = \lim_{n \to \infty} \frac{(2n+3)!}{(2n+3)!} \frac{(2n+3)!}{(2n+3)!} = \lim_{n \to \infty} (2$
$= \lim_{m \to \infty} \frac{(m+1)(m+4)}{(2m+3)x} = \frac{1}{4x}.$
Conform Chiteriului raportului pentru serii cu
termeni strict positivi oven:
Conform Chiteriului raportului pentru serii au termeni strict pozitivi ovvem: 1) Dacă $\frac{1}{4x} \leq 1$ (i.e. $x \in (\frac{1}{4}, +\infty)$), seria este
convergentà. 2) Daca $\frac{1}{4x} > 1$ (i.e. $x \in (0, \frac{1}{4})$), seria este diver-
gentà.
3) Daca $\frac{1}{4x} = 1$ (i.e. $x = \frac{1}{4}$), Criterial raportului nu decide.

Data
$$X = \frac{4}{4}$$
, Alria devine $\sum_{m=4}^{10} \frac{m!(n+3)!}{(2n+1)!(\frac{1}{4})^n} = \sum_{m=4}^{10} \frac{m!(n+3)! \cdot 4^m}{(2n+4)!}$

The $X_m = \frac{m!(m+3)! \cdot 4^m}{(2n+4)!}$
 $\lim_{m \to \infty} n\left(\frac{X_m}{X_{n+1}} - 1\right) = \lim_{m \to \infty} n\left(\frac{(2m+2)(2m+3)}{4(m+1)(n+4)} - 1\right) = \lim_{m \to \infty} n\left(\frac{4m^2 + 10m + 6}{4(m^2 + 5m + 4)} - 1\right) = \lim_{m \to \infty} n\left(\frac{4m^2 + 10m + 6 - 4m^2 - 20m - 16}{4m^2 + 20m + 16}\right) = \lim_{m \to \infty} n \cdot \frac{4m^2 + 10m + 6 - 4m^2 - 20m - 16}{4n^2 + 20m + 16} = \lim_{m \to \infty} \frac{-10n^2 - 10m}{4n^2 + 20m + 16} = -\frac{10l^2}{4} = -\frac{5}{2} < 1.$

Using the shirt of the string and the shirt of the shi

XE (0, 1/1. []

b) Fie $f: \mathbb{R} \to \mathbb{R}$ to functie continuă și neconstantă cu proprietatea că f(x+1) = f(x) pentru sice $x \in \mathbb{R}$. Itratați că funcția $g: (0,1) \to \mathbb{R}$, $g(x) = f(\frac{1}{x})$, este continuă, dar mu este suniform continuă.

Soluție. Fie $a \in (0,1)$ și $(x_n)_n \subset (0,1)$ a. \widehat{a} .

lim $x_n = a$. Itanci $\lim_{n \to \infty} \frac{1}{x_n} = \frac{1}{a}$.

lim $g(x_n) = \lim_{n \to \infty} f(\frac{1}{x_n}) = f(\frac{1}{a}) = g(a) = 0$ finatoriulă în a

 \Rightarrow g continuà în a. Cham a \in (0,1) a fost ales arbitrar rezultà cà g este continuà pe (0,1).

f nuconstantà =) $\exists x, y \in \mathbb{R}$ a.î. $f(x) \neq f(y)$. Tie $x_n = \frac{1}{x+m} + n \ge n_0$ si $y_n = \frac{1}{y+m} + n \ge n_0$,

unde $m_0 \in \mathbb{N}$ este suficient de mare $(m_0 \ge m_0 + 2)$ $\ge m_0 \times \{ [x] + 2, [y] + 2 \}$.

$$g(x_{m}) = f(\frac{1}{x_{m}}) = f(x+n) = f(x+n-1+1) =$$

$$= f(x+n-1) = f(x+n-2+1) = f(x+n-2) = ... =$$

$$= f(x) + m \ge m_{0}.$$

$$g(y_{m}) = f(y) + m \ge m_{0}.$$

$$g(y_{m}) = f(y) + m \ge m_{0}.$$

$$g(x_{m} - y_{m}) = 0 \text{ si } \lim_{n \to \infty} (g(x_{n}) - g(y_{m})) =$$

$$= \lim_{n \to \infty} (f(x) - f(y)) = f(x) - f(y) \neq 0.$$
Deci g mu extramiser continua. \square
2. Aratotica ecuatia $5x^{2} + 5y^{2} + 5z^{2} - 2xy - 2xz -$

$$-2yz - g = 0 \text{ definente intr-or mainstate a punctulai (1,1,1) functia implicità $z = z(x,y)$ si determinati $\frac{3z}{3x}(1,1), \frac{3z}{3y}(1,1), dz(1,1).$
Youtie. Fix $D = \mathbb{R}^{3}, F: D \to \mathbb{R}, F(x,y,z) = 5x^{2} +$

$$+5y^{2} + 5z^{2} - 2xy - 2xz - 2yz - 9.$$

$$D = \mathbb{R}^{3} \text{ dustrisa}, (1,1,1) \in D.$$$$

1)
$$F(1,1,1) = 5+5+5-2-2-2-9=0$$
.

2)
$$\frac{\partial F}{\partial x}(x,y,z) = 10x - 2y - 2z + (x,y,z) \in \mathbb{R}^{3}$$
.
 $\frac{\partial F}{\partial y}(x,y,z) = 10y - 2x - 2z + (x,y,z) \in \mathbb{R}^{3}$.
 $\frac{\partial F}{\partial y}(x,y,z) = 10z - 2x - 2y + (x,y,z) \in \mathbb{R}^{3}$.

Bonform T. F. i. J U o vecinatate deschisa a lui (1,1), J V o vecinatate deschisa a lui s si J! Z: U→V (Z funcția implicită) a. î.:

$$(a) 2(1,1) = 1$$
.

$$\frac{\partial \mathcal{E}}{\partial x}(x,y) = -\frac{\frac{\partial F}{\partial x}(x,y,2(x,y))}{\frac{\partial F}{\partial x}(x,y,2(x,y))} + (x,y) \in U,$$

$$\frac{\partial \mathcal{E}}{\partial y}(x,y) = -\frac{\frac{\partial F}{\partial x}(x,y,2(x,y))}{\frac{\partial F}{\partial x}(x,y,2(x,y))} + (x,y) \in U.$$

$$\frac{\partial \mathcal{E}}{\partial x}(x,y) = -\frac{\frac{\partial F}{\partial x}(x,y,2(x,y))}{\frac{\partial F}{\partial x}(x,x,2(x,y))} + (x,y) \in U.$$

$$\frac{\partial \mathcal{E}}{\partial x}(x,y) = -\frac{\frac{\partial F}{\partial x}(x,y,2(x,y))}{\frac{\partial F}{\partial x}(x,x,2(x,y))} + (x,y) \in U.$$

$$\frac{\partial \mathcal{E}}{\partial x}(x,y) = -\frac{\frac{\partial F}{\partial x}(x,y,2(x,y))}{\frac{\partial F}{\partial x}(x,x,y)} + (x,y) \in U.$$

$$\frac{\partial \mathcal{E}}{\partial x}(x,y) = -\frac{\frac{\partial F}{\partial x}(x,x,y)}{\frac{\partial F}{\partial x}(x,x,y)} + (x,y) \in U.$$

$$\frac{\partial \mathcal{E}}{\partial x}(x,y) = -\frac{\frac{\partial F}{\partial x}(x,x,y)}{\frac{\partial F}{\partial x}(x,x,y)} + (x,y) \in U.$$

$$\frac{\partial \mathcal{E}}{\partial x}(x,y) = -\frac{\frac{\partial F}{\partial x}(x,x,y)}{\frac{\partial F}{\partial x}(x,x,y)} + (x,y) \in U.$$

$$\frac{\partial \mathcal{E}}{\partial x}(x,y) = -\frac{\frac{\partial F}{\partial x}(x,x,y)}{\frac{\partial F}{\partial x}(x,x,y)} + (x,y) \in U.$$

$$\frac{\partial \mathcal{E}}{\partial x}(x,y) = -\frac{\frac{\partial F}{\partial x}(x,x,y)}{\frac{\partial F}{\partial x}(x,x,y)} + (x,y) \in U.$$

$$\frac{\partial \mathcal{E}}{\partial x}(x,y) = -\frac{\frac{\partial F}{\partial x}(x,y)}{\frac{\partial F}{\partial x}(x,y)} + (x,y) \in U.$$

$$\frac{\partial \mathcal{E}}{\partial x}(x,y) = -\frac{\frac{\partial F}{\partial x}(x,y)}{\frac{\partial F}{\partial x}(x,y)} + (x,y) \in U.$$

$$\frac{\partial \mathcal{E}}{\partial x}(x,y) = -\frac{\frac{\partial F}{\partial x}(x,y)}{\frac{\partial F}{\partial x}(x,y)} + (x,y) \in U.$$

$$\frac{\partial \mathcal{E}}{\partial x}(x,y) = -\frac{\frac{\partial F}{\partial x}(x,y)}{\frac{\partial F}{\partial x}(x,y)} + (x,y) \in U.$$

$$\frac{\partial \mathcal{E}}{\partial x}(x,y) = -\frac{\frac{\partial F}{\partial x}(x,y)}{\frac{\partial F}{\partial x}(x,y)} + (x,y) \in U.$$

$$\frac{\partial \mathcal{E}}{\partial x}(x,y) = -\frac{\frac{\partial F}{\partial x}(x,y)}{\frac{\partial F}{\partial x}(x,y)} + (x,y) \in U.$$

$$\frac{\partial \mathcal{E}}{\partial x}(x,y) = -\frac{\frac{\partial F}{\partial x}(x,y)}{\frac{\partial F}{\partial x}(x,y)} + (x,y) \in U.$$

$$\frac{\partial \mathcal{E}}{\partial x}(x,y) = -\frac{\frac{\partial F}{\partial x}(x,y)}{\frac{\partial F}{\partial x}(x,y)} + (x,y) \in U.$$

$$\frac{\partial \mathcal{E}}{\partial x}(x,y) = -\frac{\frac{\partial F}{\partial x}(x,y)}{\frac{\partial F}{\partial x}(x,y)} + (x,y) \in U.$$

$$\frac{\partial \mathcal{E}}{\partial x}(x,y) = -\frac{\frac{\partial F}{\partial x}(x,y)}{\frac{\partial F}{\partial x}(x,y)} + (x,y) \in U.$$

$$\frac{\partial \mathcal{E}}{\partial x}(x,y) = -\frac{\frac{\partial F}{\partial x}(x,y)}{\frac{\partial F}{\partial x}(x,y)} + (x,y) \in U.$$

$$\frac{\partial \mathcal{E}}{\partial x}(x,y) = -\frac{\frac{\partial F}{\partial x}(x,y)}{\frac{\partial F}{\partial x}(x,y)} + (x,y) \in U.$$

$$\frac{\partial \mathcal{E}}{\partial x}(x,y) = -\frac{\frac{\partial F}{\partial x}(x,y)}{\frac{\partial F}{\partial x}(x,y)} + (x,y) \in U.$$

$$\frac{\partial \mathcal{E}}{\partial x}(x,y) = -\frac{\frac{\partial F}{\partial x}(x,y)}{\frac{\partial F}{\partial x}(x,y)} + (x,y) \in U.$$

$$\frac{\partial \mathcal{E}}{\partial x}(x,y) = -\frac{\frac{\partial F}{\partial x}(x,y)}{\frac{\partial F}{\partial x}(x,y)} + (x,y) \in U.$$

$$\frac{\partial \mathcal{E}$$

3. a) balanati
$$\int_{0}^{\infty} \frac{\operatorname{arctg} \mathfrak{X}}{1+\mathfrak{X}^{2}} d\mathfrak{X}$$
.

Shutic.
$$\int_{0}^{\infty} \frac{\operatorname{arctg} \mathfrak{X}}{1+\mathfrak{X}^{2}} d\mathfrak{X} = \int_{0}^{\infty} (\operatorname{arctg} \mathfrak{X}) \operatorname{arctg} \mathfrak{X} d\mathfrak{X} = \lim_{h \to \infty} \int_{0}^{h} (\operatorname{arctg} \mathfrak{X}) \operatorname{arctg} \mathfrak{X} d\mathfrak{X} = \lim_{h \to \infty} \int_{0}^{h} (\operatorname{arctg}^{2}h - \operatorname{arctg}^{2}) = \lim_{h \to \infty} \frac{\operatorname{arctg}^{2} \mathfrak{X}}{2} = \frac{\pi^{2}}{8}. \square$$

b) Folsind eventual function I diterminate
$$\int_{0}^{\infty} \mathfrak{X}^{6} e^{-\mathfrak{X}^{2}} d\mathfrak{X}.$$
S.V. $\mathfrak{X}^{2} = t \Leftrightarrow \mathfrak{X} = VT$

$$2\mathfrak{X} d\mathfrak{X} = dt \Leftrightarrow d\mathfrak{X} = \frac{1}{2}VT$$

$$\mathfrak{X} = 0 \Rightarrow t = 0$$

$$= \int_{0}^{\infty} (t^{\frac{1}{2}})^{6} e^{-t} \cdot \frac{t^{-\frac{1}{2}}}{2} dt = \frac{1}{2} \int_{0}^{\infty} t^{3-\frac{1}{2}} e^{-t} dt =$$

$$= \frac{1}{2} \int_{0}^{\infty} t^{\frac{5}{2}} e^{-t} dt = \frac{1}{2} \int_{0}^{\infty} t^{\frac{5}{2}-1} e^{-t} dt = \frac{1}{2} I'(\frac{1}{2}) =$$

$$= \frac{1}{2} I'(1+\frac{5}{2}) = \frac{1}{2} \cdot \frac{5}{2} I'(\frac{5}{2}) = \frac{5}{4} I'(1+\frac{3}{2}) = \frac{5}{4} \cdot \frac{3}{2} I'(\frac{3}{2}) =$$

$$= \frac{15}{8} I'(1+\frac{1}{2}) = \frac{15}{8} \cdot \frac{1}{2} I'(\frac{1}{2}) = \frac{15}{16} \sqrt{\pi} = \frac{15\sqrt{\pi}}{16} \cdot D$$
4. Colculati $\int_{0}^{\infty} (xy + 2y) dx dy$, and $f(xy + 2y) dx dy$.

4. Calculați $\iint_A (xy+2y) dxdy$, unde A este multimea plană mărginită de $x=y^2$, $x=-y^2$, y=x+2 și y=2-x.

Leutie. $x=y^2$ Leutie. $x=y^2$ $x=y^2$

Determinam punctele de intersectie dintre parabola $x=-y^2$ și dreapta y=x+2 și punctele de intersecție dintre parabola $x=y^2$ și dreapta y=2-x.

$$\begin{cases} x = -y^{2} \\ y = x + 2 \end{cases} \Rightarrow \begin{cases} x = -y^{2} \\ y = -y^{2} + 2 \end{cases} \Rightarrow \begin{cases} x = -y^{2} \\ y^{2} + y - 2 = 0 \end{cases}$$

$$\begin{cases} x = -y^{2} \\ y = -y^{2} + 2 \end{cases} \Rightarrow \begin{cases} x = -y^{2} \\ y^{2} + y - 2 = 0 \end{cases}$$

$$\begin{cases} x = -4 + 3 = 9 \\ y = 2 \end{cases} \Rightarrow \begin{cases} x = -1 \\ y = -1 \end{cases}$$

$$\begin{cases} x = -4 + 3 \\ y = -2 \end{cases} \Rightarrow \begin{cases} x = -1 \\ y = 2 - y$$

Fig. $A_1 = \mathcal{L}(x, y) \in \mathbb{R}^2 | y \in [0, 1], -y^2 \leq x \leq y^2$. Fig. $Y, Y : [0, 1] \rightarrow \mathbb{R}, \ Y(y) = -y^2, \ Y(y) = y^2.$ $Y, Y : [0, 1] \rightarrow \mathbb{R}, \ Y(y) = -y^2, \ Y(y) = y^2.$

At multime masurabila Jordan is compactà. Fix $A_2 = \{(x, y) \in \mathbb{R}^2 \mid y \in [1, 2], y-2 \leq x \leq 2-y\}$. Fix Φ , $\eta : [1,2] \rightarrow \mathbb{R}$, $\Phi(y) = y-2$, $\eta(y) = 2-y$. Φ , η continue.

Az multime masurabila Jordan si compacta.

 $A = A_1 \cup A_2$.

 $\mu(A_1 \cap A_2) = 0$.

Fie f: A->R, f(x,y)= *xy+2y.

f continuà.

 $\iint_{A} f(x,y) dxdy = \iint_{A} (xy + 2y) dxdy =$

= SA (*y+2y)d*dy + SA2 (*y+2y) d*dy =

$$= \int_{0}^{1} \left(\int_{-N^{2}}^{y^{2}} (xy + 2y) dx \right) dy + \int_{1}^{2} \left(\int_{N^{2}}^{2-y} (xy + 2y) dx \right) dy$$

$$= \int_{0}^{1} \left(\frac{x^{2}}{2} y \Big|_{X=-N^{2}}^{x=y^{2}} + 2yx \Big|_{X=-N^{2}}^{x=y^{2}} \right) dy +$$

$$+ \int_{1}^{2} \left(\frac{x^{2}}{2} y \Big|_{X=-N^{2}}^{x=2-N} + 2yx \Big|_{X=N^{2}}^{x=2-N} \right) dy =$$

$$= \int_{0}^{1} 2y (y^{2} + y^{2}) dy + \int_{1}^{2} 2y (2-y-y+2) dy =$$

$$= 4 \int_{0}^{1} y^{3} dy + 8 \int_{1}^{2} y dy - 4 \int_{1}^{2} y^{2} dy =$$

$$= 4 \int_{1}^{1} y^{3} dy + 8 \int_{1}^{2} y dy - 4 \int_{1}^{2} y^{2} dy =$$

$$= 4 \int_{1}^{1} y^{3} dy + 8 \int_{1}^{2} y dy - 4 \int_{1}^{2} y^{2} dy =$$

$$= 4 \int_{1}^{1} y^{3} dy + 8 \int_{1}^{2} y dy - 4 \int_{1}^{2} y^{2} dy =$$

$$= 4 \int_{1}^{1} y^{3} dy + 8 \int_{1}^{2} y dy - 4 \int_{1}^{2} y^{2} dy =$$

$$= 4 \int_{1}^{1} y^{3} dy + 8 \int_{1}^{2} y dy - 4 \int_{1}^{2} y^{2} dy =$$

$$= 4 \int_{1}^{1} y^{3} dy + 8 \int_{1}^{2} y dy - 4 \int_{1}^{2} y^{2} dy =$$

$$= 4 \int_{1}^{1} y^{3} dy + 8 \int_{1}^{2} y dy - 4 \int_{1}^{2} y^{2} dy =$$

$$= 4 \int_{1}^{1} y^{3} dy + 8 \int_{1}^{2} y dy - 4 \int_{1}^{2} y^{2} dy =$$

$$= 4 \int_{1}^{1} y^{3} dy + 8 \int_{1}^{2} y dy - 4 \int_{1}^{2} y^{2} dy =$$

$$= 4 \int_{1}^{1} y^{3} dy + 8 \int_{1}^{2} y dy - 4 \int_{1}^{2} y^{2} dy =$$

$$= 4 \int_{1}^{1} y^{3} dy + 8 \int_{1}^{2} y dy - 4 \int_{1}^{2} y^{2} dy =$$

$$= 4 \int_{1}^{2} y^{2} dy + 8 \int_{1}^{2} y dy - 4 \int_{1}^{2} y^{2} dy =$$

$$= 4 \int_{1}^{2} y^{2} dy + 8 \int_{1}^{2} y dy - 4 \int_{1}^{2} y^{2} dy =$$

$$= 4 \int_{1}^{2} y^{2} dy + 8 \int_{1}^{2} y dy + 8 \int_{1}^{2} y^{2} dy =$$

$$= 4 \int_{1}^{2} y^{2} dy + 8 \int_{1}^{2} y dy + 8 \int_{1}^{2} y^{2} dy =$$

$$= 4 \int_{1}^{2} y^{2} dy + 8 \int_{1}^{2} y^{2} dy =$$

$$= 4 \int_{1}^{2} y^{2} dy + 8 \int_{1}^{2} y^{2} dy + 8 \int_{1}^{2} y^{2} dy =$$

$$= 4 \int_{1}^{2} y^{2} dy + 8 \int_{1}^{2} y^{2} dy + 8 \int_{1}^{2} y^{2} dy =$$

$$= 4 \int_{1}^{2} y^{2} dy + 8 \int_{1}^{2} y^{2} dy + 8 \int_{1}^{2} y^{2} dy =$$

$$= 4 \int_{1}^{2} y^{2} dy + 8 \int_{1}^{2} y^{2}$$