

Fundação CECIERJ - Vice Presidência de Educação Superior a Distância

Curso de Tecnologia em Sistemas de Computação Disciplina Probabilidade e Estatística AD2 2° semestre de 2019 GABARITO CORRIGIDO

Professores: Otton Teixeira da Silveira Filho e Regina Célia de Paula Toledo

1 – Primeira questão (2,0 pontos)

Uma função associada a uma distribuição de probabilidade é dada pela parábola que passa pelos pontos [1, 0], [2, 1] e [3, 0] e tem como expressão -(x-3)(x-1). O intervalo que se levará em consideração será [1, 3], onde esta parábola toma valores não negativos.

Conforme sugerido, mostremos o gráfico da função:

a) Normalize a função obtendo uma distribuição de probabilidade (0,5 ponto); **Resolução:**

Para normalizarmos teremos que integrar a função apresentada, ou seja,

$$\int_{1}^{3} f(x) dx = \int_{1}^{3} -(x-3)(x-1) dx = \int_{1}^{3} (-x^{2}+4x-3) dx = -\int_{1}^{3} x^{2} dx + 4 \int_{1}^{3} x dx - 3 \int_{1}^{3} dx = -\frac{x^{3}}{3} |_{1}^{3} + 4 \frac{x^{2}}{2} |_{1}^{3} - 3 x |_{1}^{3}$$
;

dagui tiramos

$$\int_{1}^{3} f(x)dx = -\frac{3^{3}-1^{3}}{3} + 2(3^{2}-1^{2}) - 3(3-1) = \frac{26}{3} + 2 \times 8 - 3 \times 2 = \frac{4}{3} ,$$

assim a função normalizada será $-\frac{3}{4}(x-3)(x-1)$.

b) Calcule o valor médio da distribuição obtida

(0,5 ponto);

Resolução:

Como a média de uma distribuição contínua é dada por

$$\mu = \int_{-\infty}^{\infty} x f(x) dx$$

que no nosso caso específico será dado por

$$\mu = \frac{3}{4} \int_{1}^{3} -x(x-3)(x-1) dx = \frac{3}{4} \int_{1}^{3} \left[-x^{3} + 4x^{2} - 3x \right] dx = \frac{3}{4} \left[-\int_{1}^{3} x^{3} dx + 4\int_{1}^{3} x^{2} dx - 3\int_{1}^{3} x dx = -\frac{x^{4}}{4} \Big|_{1}^{3} + 4\frac{x^{3}}{3} \Big|_{1}^{3} - 3\frac{x^{2}}{2} \Big|_{1}^{3} \right]$$

que nos deixa com o resultado

$$\mu = -\frac{3}{16} (3^4 - 1^4) + (3^3 - 1^3) - \frac{9}{8} (3^2 - 1^2) = -15 + 26 - 9 = 2 \quad \text{,}$$

valor este que pode se verificar observando o gráfico.

c) Calcule a variância da distribuição obtida

(0,5 ponto);

Resolução:

A definição de variância para distribuições continuas é dada por

$$\sigma^2 = \int_{-\infty}^{\infty} x^2 f(x) dx - \mu^2 .$$

Acabamos de calcular a média, portanto calculemos a integral que aparece na expressão acima, ou seja,

$$I = \int_{-\infty}^{\infty} x^2 f(x) dx .$$

Usando a distribuição de probabilidade encontrada aqui teremos

$$I = \frac{3}{4} \int_{1}^{3} -x^{2}(x-3)(x-1) dx ,$$

e, portanto,

$$I = \frac{3}{4} \int_{1}^{3} \left[-x^{4} + 4x^{3} - 3x^{2} \right] dx = \frac{3}{4} \left[-\int_{1}^{3} x^{4} dx + 4\int_{1}^{3} x^{3} dx - 3\int_{1}^{3} x^{2} dx = -\frac{x^{5}}{5} \Big|_{1}^{3} + 4\frac{x^{4}}{4} \Big|_{1}^{3} - 3\frac{x^{3}}{3} \Big|_{1}^{3} \right]$$

que nos leva a

$$I = -\frac{3}{20}(3^5 - 1^5) + \frac{3}{4}(3^4 - 1^4) - \frac{3}{4}(3^3 - 1^3) = -\frac{363}{10} + 60 - \frac{39}{2} = \frac{21}{5} = 4,2.$$

Com este valor podemos calcular a variância

$$\sigma^2 = \int_{-\infty}^{\infty} x^2 f(x) dx - \mu^2 = \frac{21}{5} - 2^2 = \frac{1}{5} = 0.2 .$$

d) Calcule a moda da distribuição obtida

(0.5 ponto).

Resolução:

Basta olhar para o gráfico para percebermos que a distribuição é monomodal e o valor da moda é neste caso igual à média, ou seja, 2.

2 – Segunda questão (1,5 pontos)

Verifique se as expressões abaixo são funções de probabilidade. Caso alguma não seja devido à constante de normalização, apresente a função normalizada.

a)
$$f(x)=xe^x; x \in [0;1]$$
 (0,5 ponto);

Resolução:

Examinando a função, verificamos que neste intervalo ela é não negativa pois e^x é sempre não negativa e x é sempre positivo no semieixo positivo.

Olhando numa tabela de integrais descobrimos que a integral indefinida de xe^x é $xe^x-e^x+c=(x-1)e^x+c$. Integremos,

$$\int_{0}^{1} x e^{x} dx = x e^{x} |_{0}^{1} - e^{x}|_{0}^{1} = (1 \times e^{1} - 0) - (e^{1} - 1) = 1.$$

A função apresentada é uma distribuição de probabilidade.

b)
$$f(x)=(x^4+x); x \in [0,1]$$
 (0,5 ponto);

Resolução:

Repare que a função é certamente não negativa no intervalo que é não negativo. Integremos

$$\int_{0}^{1} (x^{4} + x) dx = \int_{0}^{1} x^{4} dx + \int_{0}^{1} x dx = \frac{x^{5}}{5} \Big|_{0}^{1} + \frac{x^{2}}{2} \Big|_{0}^{1} = \frac{1^{5} - 0}{5} + \frac{1^{2} - 0}{2} = \frac{1}{5} + \frac{1}{2} = \frac{7}{10} .$$

Assim, a função normalizada será dada por

$$f(x) = \frac{10}{7}(x^4 + x); x \in [0;1] .$$

c)
$$f(x) = \frac{2}{3} sen(x); x \in [3/2, 16/5]$$
 (0,5 ponto).

Resolução: Repare que o valor 16/5=3,2 é pouco maior que π . A função sen(x) toma valores negativos no intervalo $[\pi,16/5]$ o que nos leva a perceber que esta função não pode ser uma distribuição de probabilidade.

3 – Terceira questão (1,0 ponto)

Numa fábrica se avaliava a durabilidade de uma correia dentada usada em motores de automóveis. Foram colocadas 10 correias por vez numa bancada de testes que simulava o desgaste por quilômetros rodados. O primeiro lote testado resultou nos seguintes valores

Supondo esta amostra ser significativa e usando estimadores não viciados, calcule a probabilidade que uma correia escolhida ao acaso tenha durabilidade maior que 20000 km, supondo ser possível usar a distribuição Normal.

Resolução:

Usaremos os seguintes estimadores não viciados para a média e para a variância

$$\hat{\mu} = \frac{1}{n} \sum_{i=1}^{n} x_{i}$$
, $\sigma^{2} = \frac{1}{n-1} \left(\sum_{i=1}^{n} X_{i}^{2} - n \bar{X}^{2} \right)$.

Para facilitar as contas, trabalharemos não com quilômetros mas com milhares de quilômetros.

Calculemos a média

$$\hat{\mu} = \frac{1}{10} \sum_{i=1}^{10} x_i = \frac{(19.5 + 21.3 + 18.8 + 19.4 + 18.5 + 21.4 + 20.6 + 20.0 + 20.1 + 19.9)}{10} = \frac{199.5}{10}$$

logo $\hat{\mu} = 19,95$.

Partamos para o somatório contido no estimador da variância

$$\sum_{i=1}^{10} x_i^2 = 19.5^2 + 21.3^2 + 18.8^2 + 19.4^2 + 18.5^2 + 21.4^2 + 20.6^2 + 20.0^2 + 20.1^2 + 19.9^2 = 3988.33$$

Agora calculemos a variância

$$\sigma^2 = \frac{1}{9} (3988,33 - 10 \times 19,95^2) \approx 0,9228$$
.

Para calcular a probabilidade suporemos poder usar a distribuição Normal. Assim trabalhemos com a expressão

$$P(a < X < b) = P\left(\frac{a - \mu}{\sigma / \sqrt{n}} < Z < \frac{b - \mu}{\sigma / \sqrt{n}}\right)$$
.

No nosso caso temos que $\frac{\sigma}{\sqrt{n}} = \frac{\sqrt{0,9228}}{\sqrt{10}} = \sqrt{0,09227} \approx 0,3038$ e $\mu = 19,95$.

No entanto, a probabilidade solicitada é

e, portanto, a probabilidade procurada se expressará como

$$P(X>20)=0.5-P(Z<\frac{20-19.95}{0.3038})\approx 0.5-P(Z<0.1646)\approx 0.5-P(Z<0.16)=0.5-0.0636=0.4364$$
.

4 – Quarta questão (1,0 ponto)

Aplicava-se um tratamento nas águas oriundas de esgoto industrial para posterior descarte das águas num rio. Foram retiradas 25 amostras da água tratada e sabemos que o nível do poluente deveria estar abaixo de 18 unidades para se considerar que o tratamento foi eficaz. Sabendo que a modelagem foi feita pelo modelo Normal e que a variância no presente caso é de 32 unidades², verifique qual a região de rejeição com nível de significância de 10%.

Resolução:

Nossa hipótese nula será que 18 é o valor para a média para o qual o tratamento das águas seria ineficaz. Com os dados sobre a média, variância e tamanho da amostra, teremos para o o

z crítico

$$z_c = \frac{x_c - 18}{\sqrt{(32/25)}} \approx \frac{x_c - 18}{1,1314}$$
 que nos leva a $x_c = 18 + z_c \times 1,1314$.

Verificando na tabela da distribuição Normal o complemento da probabilidade de 10% teremos $z_c = -1,28$ e, portanto,

$$x_c = 18 - 1,28 \times 1,1314 \approx 16,5518$$
,

assim a região de rejeição será

$$RC = \{x \in \Re : x < 16,55\}$$
.

5 – Quinta questão (2,0 ponto)

Numa linha de produção era desejável verificar o tempo de montagem de um módulo eletrônico. Foi calculado uma média amostral de 10 equipamentos se obtendo 19,3 minutos. Calculou-se então outra média amostral com 100 equipamentos e foi obtido o valor 18,4 minutos. Para os dois casos a variância era de 1,69 segundos². Avalie o intervalo de confiança para as duas situações com coeficiente de confiança de 95%.

OBSERVAÇÃO: Por erro de digitação a variância foi apresentada em segundos ao quadrado e não em minutos ao quadrado como deveria estar. Devido a isto, embora a resolução abaixo esteja levando em consideração minutos ao quadrado para a variância, será aceita como correta a resposta dada como se a variância fosse dada como escrita, ou seja, segundos ao quadrado e feita a mudança de escalas devida, seja mudando a escala da média amostral ou a escala da variância.

Resolução:

Dado que o intervalo de confiança é representado como

$$IC(\mu,\gamma) = \left[\bar{X} - z_{\gamma/2} \frac{\sigma}{\sqrt{n}}; \bar{X} + z_{\gamma/2} \frac{\sigma}{\sqrt{n}} \right]$$

para ambos os casos $z_{y/2} = z_{0,475} = 1,96$.

Para o primeiro caso $\frac{\sigma}{\sqrt{n}} = \frac{\sqrt{(1,69)}}{\sqrt{(10)}} \approx 0,4110$ e $\bar{X} = 19,3$, assim teremos neste caso

$$IC(\mu,\gamma)=[19,3-1,96\times0,411;19,3+1,96\times0,411]\approx[18,49;20,11]$$
.

No segundo caso teremos $\frac{\sigma}{\sqrt{n}} = \frac{\sqrt{(1,69)}}{\sqrt{(100)}} = 0,13$ e $\bar{X} = 18,4$. Sendo assim teremos

$$IC(\mu,\gamma)=[18,4-1,96\times0,13;18,4+1,96\times0,13]\approx[18,15;18,65]$$
.

6 – Sexta questão (2,5 pontos)

Calcule as seguintes probabilidades:

a) P(1,3<X<2,5) para a distribuição de probabilidade da primeira questão;

Resolução:

$$P(1,3 < X < 2,5) = \frac{3}{4} \int_{1,3}^{2,5} \left(-x^2 + 4x - 3 \right) dx = \frac{3}{4} \left(-\int_{1,3}^{2,5} x^2 dx + 4 \int_{1,3}^{2,5} x dx - 3 \int_{1,3}^{2,5} dx \right) ,$$

logo

$$P(1,3 < X < 2,5) = \frac{3}{4} \left(-\frac{x^3}{3}|_{1,3}^{2,5} + 4\frac{x^2}{2}|_{1,3}^{2,5} - 3x|_{1,3}^{2,5} \right) = \frac{3}{4} \left(-\frac{2,5^3 - 1,3^3}{3} + 2(2,5^2 - 1,3^2) - 3(2,5 - 1,3) \right)$$

e finalmente

$$P(1,3.$$

b) P(1,3<X<2,5) para a distribuição Normal de média 1,3 e variância 4,92; **Resolução:**

Faremos uso da expressão $P(a < X < b) = P\left(\frac{a - \mu}{\sigma} < Z < \frac{b - \mu}{\sigma}\right)$ que neste caso dará

$$P(1,3 < X < 2,5) = P\left(\frac{1,3-1,3}{\sqrt{4,92}} < Z < \frac{2,5-1,3}{\sqrt{4,92}}\right) \approx P(0 < Z < \frac{1,2}{2,2181}) \approx P(Z < 0,5410) \approx P(Z < 0,54) = 0,2054 \text{ .}$$

c) P(1,3<X<2,5) para a distribuição Normal de média 0,8 e desvio padrão 4,92; **Resolução:**

$$P(1,3 < X < 2,5) = P\left(\frac{1,3-0,8}{4,92} < Z < \frac{2,5-0,8}{4,92}\right) \approx P\left(\frac{0,5}{4,92} < Z < \frac{1,7}{4,92}\right) \approx P\left(0,1016 < Z < 0,3455\right) \approx P\left(0,10 < Z < 0,35\right) \approx P\left(0,1016 < Z < 0,3455\right) \approx$$

logo

$$P(1,3< X<2,5)=P(Z<0,35)-P(Z<0,10)=0,1368-0,0398=0,097$$
.

d) P(1,3<X<2,5) para uma distribuição de Exponencial com α =1,357 ;

Resolução:

Neste caso usaremos

$$P(a < X < b) = \int_{a}^{b} \alpha e^{-\alpha x} dx = e^{-\alpha a} - e^{-\alpha b}$$

que, com os dados apresentados. resulta em

$$P(1,3 < X < 2,5) = e^{-1,357 \times 1,3} - e^{-1,357 \times 2,5} = e^{-1,7641} - e^{-3,3925} \approx 0,1713 - 0,0336 = 0,1377$$
.

e) P(1,3<X<2,5) para uma distribuição uniforme no intervalo [0, 3].

Resolução:

Para a distribuição Uniforme a probabilidade é calculada como

$$P(a < X < b) = \frac{1}{B - A} \int_{a}^{b} dx; X \in [A, B]$$

que com nossos dados se escreve

$$P(a < X < b) = \frac{1}{3 - 0} \int_{1.3}^{2.5} dx = \frac{1}{3} (2.5 - 1.3) = \frac{1.2}{3} = 0.4$$
.

Tabela da distribuição Normal N(0,1)

Z _c	0,00	0,01	0,02	0,03	0,04	0,05	0,06	0,07	0,08	0,09
0	0	0,0040	0,0080	0,0120	0,0160	0,0199	0,0239	0,0279	0,0319	0,0359
0,1	0,0398	0,0438	0,0478	0,0517	0,0557	0,0596	0,0636	0,0675	0,0714	0,0753
0,2	0,0793	0,0832	0,0871	0,0910	0,0948	0,0987	0,1026	0,1064	0,1103	0,1141
0,3	0,1179	0,1217	0,1255	0,1293	0,1331	0,1368	0,1406	0,1443	0,1480	0,1517
0,4	0,1554	0,1591	0,1628	0,1664	0,1700	0,1736	0,1772	0,1808	0,1844	0,1879
0,5	0,1915	0,1950	0,1985	0,2019	0,2054	0,2088	0,2123	0,2157	0,2190	0,2224
0,6	0,2257	0,2291	0,2324	0,2357	0,2389	0,2422	0,2454	0,2486	0,2517	0,2549
0,7	0,2580	0,2611	0,2642	0,2673	0,2704	0,2734	0,2764	0,2794	0,2823	0,2852
0,8	0,2881	0,2910	0,2939	0,2967	0,2995	0,3023	0,3051	0,3078	0,3106	0,3133
0,9	0,3159	0,3186	0,3212	0,3238	0,3264	0,3289	0,3315	0,3340	0,3365	0,3389
1,0	0,3413	0,3438	0,3461	0,3485	0,3508	0,3531	0,3554	0,3577	0,3599	0,3621
1,1	0,3643	0,3665	0,3686	0,3708	0,3729	0,3749	0,3770	0,3790	0,3810	0,3830
1,2	0,3849	0,3869	0,3888	0,3907	0,3925	0,3944	0,3962	0,3980	0,3997	0,4015
1,3	0,4032	0,4049	0,4066	0,4082	0,4099	0,4115	0,4131	0,4147	0,4162	0,4177
1,4	0,4192	0,4207	0,4222	0,4236	0,4251	0,4265	0,4279	0,4292	0,4306	0,4319
1,5	0,4332	0,4345	0,4357	0,4370	0,4382	0,4394	0,4406	0,4418	0,4429	0,4441
1,6	0,4452	0,4463	0,4474	0,4484	0,4495	*0,4505	0,4515	0,4525	0,4535	0,4545
1,7	0,4554	0,4564	0,4573	0,4582	0,4591	0,4599	0,4608	0,4616	0,4625	0,4633
1,8	0,4641	0,4649	0,4656	0,4664	0,4671	0,4678	0,4686	0,4693	0,4699	0,4706
1,9	0,4713	0,4719	0,4726	0,4732	0,4738	0,4744	0,4750	0,4756	0,4761	0,4767
2,0	0,4772	0,4778	0,4783	0,4788	0,4793	0,4798	0,4803	0,4808	0,4812	0,4817
2,1	0,4821	0,4826	0,4830	0,4834	0,4838	0,4842	0,4846	0,4850	0,4854	0,4857
2,2	0,4861	0,4864	0,4868	0,4871	0,4875	0,4878	0,4881	0,4884	0,4887	0,4890
2,3	0,4893	0,4896	0,4898	0,4901	0,4904	0,4906	0,4909	0,4911	0,4913	0,4916
2,4	0,4918	0,4920	0,4922	0,4925	0,4927	0,4929	0,4931	0,4932	0,4934	0,4936
2,5	0,4938	0,4940	0,4941	0,4943	0,4945	0,4946	0,4948	0,4949	*0,4951	0,4952
2,6	0,4953	0,4955	0,4956	0,4957	0,4959	0,4960	0,4961	0,4962	0,4963	0,4964
2,7	0,4965	0,4966	0,4967	0,4968	0,4969	0,4970	0,4971	0,4972	0,4973	0,4974
2,8	0,4974	0,4975	0,4976	0,4977	0,4977	0,4978	0,4979	0,4979	0,4980	0,4981
2,9	0,4981	0,4982	0,4982	0,4983	0,4984	0,4984	0,4985	0,4985	0,4986	0,4986
3,0	0,4987	0,4987	0,4987	0,4988	0,4988	0,4989	0,4989	0,4989	0,4990	0,4990
3,1	0,4990	0,4991	0,4991	0,4991	0,4992	0,4992	0,4992	0,4992	0,4993	0,4993
3,2	0,4993	0,4993	0,4994	0,4994	0,4994	0,4994	0,4994	0,4995	0,4995	0,4995
3,3	0,4995	0,4995	0,4995	0,4996	0,4996	0,4996	0,4996	0,4996	0,4996	0,4997

Atribua o valor 0,5 para valores maiores ou iguais a 3,4.