"Econometrics III / Bayesian Econometrics" for students in the M.Sc. programmes winter term 2023/2024

1	3	$^{\circ}$	\mathbf{a}	1	α	ኅ	1
	•		,		11	,	ч

Kiel,

Please	1150	hi	lock	lottors	

Please use block le	tters:						
Name: Surname			orname: rst Name				
Studiengang: Course of study	diengang: Name der Universität (Bachelor): Name of university (Bachelor's degree)						
Matrikelnummer: Student ID	Matrikelnummer: Hochschulstandort (Bachelor): Student ID Place of university (Bachelor's degree)						
Declaration:							
		DI E A CE					
			SIGN!!!				
I hereby decla	re that I am able to	be examined.					
	Signature:						
Preliminary rem	arks:						
_		ment/matriculation n	umber on all paper s	heets provided for	r answers by the		
examiner. • To write down	n vour answers lise	only the paper provi	ded by the examiner				
To write down	i your unswers, use	only the paper provi	ded by the examiner	•			
Result: (TO BE	FILLED IN ONLY	BY THE EXAMIN	NER!)				
Problem:	1	2	3	НА	S		
Points earned:							
Grade:					1		
	1						

(Prof. Dr. Kai Carstensen)

Examination in Econometrics III / Bayesian Econometrics (Winter Term 2023/24)

February 13, 2024, 10:00 - 12:00

Preliminary remarks:

- 1. Write your name and enrollment (matriculation) number on every sheet of paper!
- 2. Don't use a pencil!
- 3. The exam is composed by 3 problems. Check your exam for completeness!
- 4. You have 60 minutes in total to answer the exam questions.

Good luck!

Problem 1 (21 credits)

Suppose you would like to model extreme events to better inform risk management strategies in the stock market. To this end, you assume that a random sample of extreme asset returns $y = (y_1, \ldots, y_N)'$ are characterized by a Weibull density with **unknown scale** $\theta > 0$ and known shape k > 0,

$$p(y_i|\theta, k) = \begin{cases} \frac{k}{\theta} y_i^{k-1} \exp\left(-\frac{y_i^k}{\theta}\right) & \text{if } y_i \ge 0\\ 0 & \text{if } y_i < 0. \end{cases}$$
 (1)

Suppose prior beliefs concerning the **unknown parameter** θ are represented by an inverse Gamma distribution with shape $\underline{\alpha} > 0$ and scale $\beta > 0$:

$$p(\theta|\underline{\alpha},\underline{\beta}) = \frac{\underline{\beta}^{\underline{\alpha}}}{\Gamma(\alpha)} \theta^{(-\underline{\alpha}-1)} \exp\left(-\frac{\underline{\beta}}{\underline{\theta}}\right), \tag{2}$$

where $\Gamma(\cdot)$ denotes the Gamma function.

- (a) (5P) State the kernel of the prior and the likelihood.
- (b) (5P) Find the posterior distribution.
- (c) (4P) Is the inverse Gamma distribution a conjugate prior? Briefly explain! Also answer whether you can apply the "fictitious prior sample interpretation" in this case.
- (d) (7P) Based on your prior beliefs about θ (what you have already experienced from past crisis episodes), which of the following prior specifications would you choose? Defend your choice!

Hint: the mean of the Weibull distribution is hereby directly proportional to the scale parameter θ , and hence is associated with the maximum loss within a period.

Problem 2 (24 credits)

Consider the multiple linear regression model with k regressors and N observations:

$$y = X\beta + \varepsilon$$
 $\qquad \qquad \varepsilon \stackrel{iid}{\sim} \mathcal{N}(0, h^{-1}I)$

To impose a strong and flexible variable selection in a setting where k is large relative to N, assume a non-conjugate independent Laplace-Gamma prior with

$$\beta \sim \text{Laplace}(\underline{\beta}, \underline{\tau}) \quad \Rightarrow \quad p(\beta) \propto \exp\left[-\frac{|\beta - \underline{\beta}|}{\underline{\tau}}\right]$$
$$h \sim \text{Gamma}(\underline{s}^{-2}, \underline{\nu}) \quad \Rightarrow \quad p(h) \propto h^{\frac{\nu-2}{2}} \exp\left[-\frac{h\,\underline{\nu}\underline{s}^2}{2}\right]$$

The joint posterior kernel then yields

$$p(\beta, h|y) \propto h^{\frac{N+\nu-2}{2}} \exp\left[-\frac{h}{2}(y - X\beta)'(y - X\beta) - \frac{|\beta - \underline{\beta}|}{\tau} - \frac{h \, \underline{\nu}\underline{s}^2}{2}\right]$$

- (a) (6P) Derive the conditional posterior of h by explicitly stating its posterior parameters.
- (b) (10P) Write a pseudo code that applies the Metropolis-within-Gibbs algorithm to find the posterior means of h and β . This implies setting up a Gibbs sampler to draw from $p(h|y,\beta)$ and a Metropolis-Hastings block (within the Gibbs) to draw from $p(\beta|y,h)$.

 Note: you don't need to find a proposal density for $p(\beta|y,h)$; just assume that a good proposal density $q^*(\beta|y,h)$ is available.
- (c) **(8P)** How would you check for efficiency of the Metropolis-Hastings algorithm implemented in (b)? Which strategy one can use for tuning the Metropolis-Hastings algorithm to improve its efficiency and convergence properties?

Problem 3 (15 credits)

Consider the M-dimensional VAR(p) model

$$y_t = a_0 + A_1 y_{t-1} + \dots + A_p y_{t-p} + \varepsilon_t, \qquad t = 1, \dots, T.$$
 (3)

with $\varepsilon_t \sim N(0, \Sigma)$ and $E(\varepsilon_t \varepsilon_s) = 0$ for $t \neq s$.

- 1. (7P) Explain the key elements of the Minnesota prior that makes it appealing for Big Data applications and still allowing for analytical posterior results.
- 2. (8P) Suppose you would like to estimate a VAR(2) model for the German inflation rate and unemployment rate. Based on the Minnesota prior choice with $\Sigma = \hat{\Sigma}$ and $\alpha \sim N(\underline{\alpha}; \underline{V}_M)$, explain how you would set up the prior mean of A_1 and A_2 . Finally, explain which elements of the VAR model determine the amount of shrinkage imposed to the diagonal and off-diagonal elements of A_1 and A_2 .