

WHAT IS CLAIMED IS:

1 1. A method of managing network communication comprising:
2 terminating a first transmission control protocol (“TCP”) connection at a first
3 network element, wherein said first TCP connection is between said
4 first network element and a second network element, and said first
5 TCP connection is intended to be terminated at a third network
6 element;
7 initiating a second TCP connection between said first network element and a
8 third network element;
9 establishing communications between said second and said third network
10 elements via said first network element;
11 determining need for data transfer between said second and said third network
12 elements by monitoring a plurality of data buffers; and
13 transferring said data between said second and said third network elements.

1 2. The method of claim 1, wherein said second network element initiates
2 said first TCP connection for said third network element.

1 3. The method of claim 1, wherein said communications between said
2 second and said third network elements are established using said first and said
3 second TCP connections.

1 4. The method of claim 1, wherein said communications between said
2 second and said third network elements forms an end-to-end TCP connection.

1 5. The method of claim 1, wherein said first network element is a proxy
2 server.

1 6. The method of claim 1, wherein a control unit of said proxy server
2 monitors said plurality of buffers.

1 7. The method of claim 1, wherein said control unit transfers said data
2 between said second and said third network elements.

1 8. The method of claim 1, wherein said proxy server supports transparent
2 communications between said second and said third network elements.

1 9. The method of claim 1, wherein at least one of said plurality of buffers
2 is a receive buffer.

1 10. The method of claim 1, wherein at least one of said plurality of buffers
2 is a transmit buffer.

1 11. The method of claim 10, wherein said receive buffer is pre-allocated.

1 12. The method of claim 10, wherein said receive buffer is dynamically
2 allocated.

1 13. The method of claim 10, wherein said transmit buffer is pre-allocated.

1 14. The method of claim 10, wherein said transmit buffer is dynamically
2 allocated.

1 15. The method of claim 1, wherein said second network element is one of
2 a plurality of clients.

1 16. The method of claim 1, wherein one of a plurality of applications on
2 said client initiates said first TCP connection for said client.

1 17. The method of claim 1, wherein said third network element is one of a
2 plurality of servers.

1 18. The method of claim 1, wherein a data switching unit of said proxy
2 server determines which one of said plurality of servers to use for said second TCP
3 connection.

1 19. The method of claim 1, further comprising:
2 monitoring said first TCP connection.

1 20. The method of claim 19, further comprising:
2 receiving a request for data from said application; and
3 determining whether said request requires said second TCP connection with
4 one of said plurality of servers.

1 21. The method of claim 20, wherein data switching unit receives said
2 request for data via said control unit.

1 22. The method of claim 20, wherein said determining of said second TCP
2 connection is done by said data switching unit.

1 23. The method of claim 20, further comprising:
2 if said request does not require said second TCP connection with one of said
3 plurality of servers,
4 servicing said request for data, and
5 closing said connection with said client.

1 24. The method of claim 23, wherein said request for data is served by
2 passing data from said data switching unit to said control unit for transmission to said
3 application on said client.

1 25. The method of claim 23, further comprising:
2 if said request requires said second TCP connection with one of said plurality
3 of servers,
4 selecting a first server from said plurality of servers, and
5 initiating said second TCP connection with said first server.

1 26. The method of claim 25, wherein said application requests said end-to-
2 end TCP connection with said first server.

1 27. The method of claim 25, further comprising:
2 receiving said data on said second TCP connection from said first server;
3 storing said data in said receive buffer of said second TCP connection;
4 transferring said data from said receive buffer to said transmit buffer of said
5 first TCP connection;
6 monitoring space in said transmit buffer; and
7 if said transmit buffer has space,
8 determining whether said fist TCP connection need additional data.

1 28. The method of claim 27, further comprising:
2 if said first TCP connection need said additional data,
3 requesting said additional data from said first server; and
4 repeating said steps of receiving, storing, transferring, monitoring and
5 determining until said request for data from said application is
6 served.

1 29. The method of claim 28, wherein said additional data is transferred
2 into said transmit buffer without a request for said additional data.

1 30. The method of claim 28, further comprising:
2 if said request for data from said application is served,
3 closing said first TCP connection with said client.

1 31. The method of claim 30, wherein said closing of said connection is
2 done by said control unit upon a receiving a request for closing said connection from
3 said data switching unit.

1 32. A network device comprising:
2 terminate a first transmission control protocol (“TCP”) connection at a first
3 network element, wherein said first TCP connection is between said
4 first network element and a second network element, and said first
5 TCP connection is intended to be terminated at a third network
6 element;

7 initiate a second TCP connection between said first network element and a
8 third network element;
9 establish communications between said second and said third network
10 elements via said first network element;
11 determine need for data transfer between said second and said third network
12 elements by monitoring a plurality of data buffers; and
13 transfer said data between said second and said third network elements.

1 33. The network device of claim 32, wherein said second network element
2 initiates said first TCP connection for said third network element.

1 34. The network device of claim 32, wherein said communications
2 between said second and said third network elements are established using said first
3 and said second TCP connections.

1 35. The network device of claim 32, wherein said communications
2 between said second and said third network elements forms an end-to-end TCP
3 connection.

1 36. The network device of claim 32, wherein said first network element is
2 a proxy server.

1 37. The network device of claim 32, wherein a control unit of said proxy
2 server monitors said plurality of buffers.

1 38. The network device of claim 32, wherein said control unit transfers
2 said data between said second and said third network elements.

1 39. The network device of claim 32, wherein said proxy server supports
2 transparent communications between said second and said third network elements.

1 40. The network device of claim 32, wherein at least one of said plurality
2 of buffers is a receive buffer.

1 41. The network device of claim 32, wherein at least one of said plurality
2 of buffers is a transmit buffer.

1 42. The network device of claim 41, wherein said receive buffer is pre-
2 allocated.

1 43. The network device of claim 41, wherein said receive buffer is
2 dynamically allocated.

1 44. The network device of claim 41, wherein said transmit buffer is pre-
2 allocated.

1 45. The network device of claim 41, wherein said transmit buffer is
2 dynamically allocated.

1 46. The network device of claim 32, wherein said second network element
2 is one of a plurality of clients.

1 47. The network device of claim 32, wherein one of a plurality of
2 applications on said client initiates said first TCP connection for said client.

1 48. The network device of claim 32, wherein said third network element is
2 one of a plurality of servers.

1 49. The network device of claim 32, wherein a data switching unit of said
2 proxy server determines which one of said plurality of servers to use for said second
3 TCP connection.

1 50. The network device of claim 32, wherein said processor is further
2 configured to
3 monitor said first TCP connection.

1 51. The network device of claim 50, wherein said processor is further
2 configured to
3 receive a request for data from said application; and
4 determine whether said request requires said second TCP connection with one
5 of said plurality of servers.

1 52. The network device of claim 51, wherein data switching unit receives
2 said request for data via said control unit.

1 53. The network device of claim 51, wherein said determining of said
2 second TCP connection is done by said data switching unit.

1 54. The network device of claim 51, wherein said processor is further
2 configured to
3 if said request does not require said second TCP connection with one of said
4 plurality of servers,
5 service said request for data, and
6 close said connection with said client.

1 55. The network device of claim 54, wherein said request for data is served
2 by passing data from said data switching unit to said control unit for transmission to
3 said application on said client.

1 56. The network device of claim 54, wherein said processor is further
2 configured to
3 if said request requires said second TCP connection with one of said plurality
4 of servers,
5 select a first server from said plurality of servers, and
6 initiate said second TCP connection with said first server.

1 57. The network device of claim 56, wherein said application requests said
2 end-to-end TCP connection with said first server.

1 58. The network device of claim 56, wherein said processor is further
2 configured to
3 receive said data on said second TCP connection from said first server;
4 store said data in said receive buffer of said second TCP connection;
5 transfer said data from said receive buffer to said transmit buffer of said first
6 TCP connection;
7 monitor space in said transmit buffer; and
8 if said transmit buffer has space,
9 determine whether said fist TCP connection need additional data.

1 59. The network device of claim 58, wherein said processor is further
2 configured to
3 if said first TCP connection need said additional data,
4 request said additional data from said first server; and
5 repeat said steps of receiving, storing, transferring, monitoring and
6 determining until said request for data from said application is
7 served.

1 60. The network device of claim 59, wherein said additional data is
2 transferred into said transmit buffer without a request for said additional data.

1 61. The network device of claim 59, wherein said processor is further
2 configured to
3 if said request for data from said application is served,
4 close said first TCP connection with said client.

1 62. The network device of claim 61, wherein said closing of said
2 connection is done by said control unit upon a receiving a request for closing said
3 connection from said data switching unit.

1 63. A network device comprising:

2 means for terminating a first transmission control protocol (“TCP”)
3 connection at a first network element, wherein said first TCP
4 connection is between said first network element and a second network
5 element, and said first TCP connection is intended to be terminated at a
6 third network element;

7 means for initiating a second TCP connection between said first network
8 element and a third network element;

9 means for establishing communications between said second and said third
10 network elements via said first network element;

11 means for determining need for data transfer between said second and said
12 third network elements by monitoring a plurality of data buffers; and
13 means for transferring said data between said second and said third network
14 elements.

1 64. The network device of claim 63, wherein said second network element
2 initiates said first TCP connection for said third network element.

1 65. The network device of claim 63, wherein said communications
2 between said second and said third network elements are established using said first
3 and said second TCP connections.

1 66. The network device of claim 63, wherein said communications
2 between said second and said third network elements forms an end-to-end TCP
3 connection.

1 67. The network device of claim 63, wherein said first network element is
2 a proxy server.

1 68. The network device of claim 63, wherein a control unit of said proxy
2 server monitors said plurality of buffers.

1 69. The network device of claim 63, wherein said control unit transfers
2 said data between said second and said third network elements.

1 70. The network device of claim 63, wherein said proxy server supports
2 transparent communications between said second and said third network elements.

1 71. The network device of claim 63, wherein at least one of said plurality
2 of buffers is a receive buffer.

1 72. The network device of claim 1, wherein at least one of said plurality of
2 buffers is a transmit buffer.

1 73. The network device of claim 72, wherein said receive buffer is pre-
2 allocated.

1 74. The network device of claim 72, wherein said receive buffer is
2 dynamically allocated.

1 75. The network device of claim 72, wherein said transmit buffer is pre-
2 allocated.

1 76. The network device of claim 72, wherein said transmit buffer is
2 dynamically allocated.

1 77. The network device of claim 1, wherein said second network element
2 is one of a plurality of clients.

1 78. The network device of claim 1, wherein one of a plurality of
2 applications on said client initiates said first TCP connection for said client.

1 79. The network device of claim 1, wherein said third network element is
2 one of a plurality of servers.

1 80. The network device of claim 1, wherein a data switching unit of said
2 proxy server determines which one of said plurality of servers to use for said second
3 TCP connection.

1 81. The network device of claim 1, further comprising:
2 means for monitoring said first TCP connection.

1 82. The network device of claim 81, further comprising:
2 means for receiving a request for data from said application; and
3 means for determining whether said request requires said second TCP
4 connection with one of said plurality of servers.

1 83. The network device of claim 82, wherein data switching unit receives
2 said request for data via said control unit.

1 84. The network device of claim 82, wherein said determining of said
2 second TCP connection is done by said data switching unit.

1 85. The network device of claim 82, further comprising:
2 means for servicing said request for data if said request does not require said
3 second TCP connection with one of said plurality of servers; and
4 means for closing said connection with said client if said request does not
5 require said second TCP connection with one of said plurality of
6 servers.

1 86. The network device of claim 85, wherein said request for data is served
2 by passing data from said data switching unit to said control unit for transmission to
3 said application on said client.

1 87. The network device of claim 85, further comprising:
2 means for selecting a first server from said plurality of servers if said request
3 requires said second TCP connection with one of said plurality of
4 servers; and
5 means for initiating said second TCP connection with said first server if said
6 request requires said second TCP connection with one of said plurality
7 of servers.

1 88. The network device of claim 87, wherein said application requests said
2 end-to-end TCP connection with said first server.

1 89. The network device of claim 87, further comprising:
2 means for receiving said data on said second TCP connection from said first
3 server;
4 means for storing said data in said receive buffer of said second TCP
5 connection;
6 means for transferring said data from said receive buffer to said transmit
7 buffer of said first TCP connection;
8 means for monitoring space in said transmit buffer; and
9 means for determining whether said fist TCP connection need additional data
10 if said transmit buffer has space.

1 90. The network device of claim 89, further comprising:
2 means for requesting said additional data from said first server if said first
3 TCP connection need said additional data;
4 means for repeating said steps of receiving, storing, transferring, monitoring if
5 said first TCP connection need said additional data; and
6 means for determining until said request for data from said application is
7 served.

1 91. The network device of claim 90, wherein said additional data is
2 transferred into said transmit buffer without a request for said additional data.

1 92. The network device of claim 90, further comprising:
2 means for closing said first TCP connection with said client if said request for
3 data from said application is served.

1 93. The network device of claim 92, wherein said closing of said
2 connection is done by said control unit upon a receiving a request for closing said
3 connection from said data switching unit.

1 94. A computer program product for managing network communication,
2 encoded in computer readable media, said program product comprising a set of
3 instructions executable on a computer system, said set of instructions configured to
4 terminate a first transmission control protocol (“TCP”) connection at a first
5 network element, wherein said first TCP connection is between said
6 first network element and a second network element, and said first
7 TCP connection is intended to be terminated at a third network
8 element;
9 initiate a second TCP connection between said first network element and a
10 third network element;
11 establish communications between said second and said third network
12 elements via said first network element;
13 determine need for data transfer between said second and said third network
14 elements by monitoring a plurality of data buffers; and
15 transfer said data between said second and said third network elements.

1 95. The computer program product of claim 94, wherein said second
2 network element initiates said first TCP connection for said third network element.

1 96. The computer program product of claim 94, wherein said
2 communications between said second and said third network elements are established
3 using said first and said second TCP connections.

1 97. The computer program product of claim 94, wherein said
2 communications between said second and said third network elements forms an end-
3 to-end TCP connection.

1 98. The computer program product of claim 94, wherein said first network
2 element is a proxy server.

1 99. The computer program product of claim 94, wherein a control unit of
2 said proxy server monitors said plurality of buffers.

1 100. The computer program product of claim 94, wherein said control unit
2 transfers said data between said second and said third network elements.

1 101. The computer program product of claim 94, wherein said proxy server
2 supports transparent communications between said second and said third network
3 elements.

1 102. The computer program product of claim 94, wherein at least one of
2 said plurality of buffers is a receive buffer.

1 103. The computer program product of claim 94, wherein at least one of
2 said plurality of buffers is a transmit buffer.

1 104. The computer program product of claim 102, wherein said receive
2 buffer is pre-allocated.

1 105. The computer program product of claim 102, wherein said receive
2 buffer is dynamically allocated.

1 106. The computer program product of claim 103, wherein said transmit
2 buffer is pre-allocated.

1 107. The computer program product of claim 103, wherein said transmit
2 buffer is dynamically allocated.

1 108. The computer program product of claim 94, wherein said second
2 network element is one of a plurality of clients.

1 109. The computer program product of claim 94, wherein one of a plurality
2 of applications on said client initiates said first TCP connection for said client.

1 110. The computer program product of claim 94, wherein said third network
2 element is one of a plurality of servers.

1 111. The computer program product of claim 94, wherein a data switching
2 unit of said proxy server determines which one of said plurality of servers to use for
3 said second TCP connection.

1 112. The computer program product of claim 94, wherein said set of
2 instructions is further configured to :
3 monitor said first TCP connection.

1 113. The computer program product of claim 112, wherein said set of
2 instructions is further configured to :
3 receive a request for data from said application; and
4 determine whether said request requires said second TCP connection with one
5 of said plurality of servers.

1 114. The computer program product of claim 113, wherein data switching
2 unit receives said request for data via said control unit.

1 115. The computer program product of claim 113, wherein said determining
2 of said second TCP connection is done by said data switching unit.

1 116. The computer program product of claim 82, wherein said set of
2 instructions is further configured to :

3 if said request does not require said second TCP connection with one of said
4 plurality of servers,
5 service said request for data, and
6 close said connection with said client.

1 117. The computer program product of claim 116, wherein said request for
2 data is served by passing data from said data switching unit to said control unit for
3 transmission to said application on said client.

1 118. The computer program product of claim 116, wherein said set of
2 instructions is further configured to :

3 if said request requires said second TCP connection with one of said plurality
4 of servers,
5 select a first server from said plurality of servers, and
6 initiate said second TCP connection with said first server.

1 119. The computer program product of claim 118, wherein said application
2 requests said end-to-end TCP connection with said first server.

1 120. The computer program product of claim 118, wherein said set of
2 instructions is further configured to :

3 receive said data on said second TCP connection from said first server;
4 store said data in said receive buffer of said second TCP connection;
5 transfer said data from said receive buffer to said transmit buffer of said first
6 TCP connection;
7 monitor space in said transmit buffer; and
8 if said transmit buffer has space,
9 determine whether said fist TCP connection need additional data.

1 121. The computer program product of claim 120, wherein said set of
2 instructions is further configured to :

3 if said first TCP connection need said additional data,
4 request said additional data from said first server; and
5 repeat said steps of receiving, storing, transferring, monitoring and
6 determining until said request for data from said application is
7 served.

1 122. The computer program product of claim 121, wherein said additional
2 data is transferred into said transmit buffer without a request for said additional data.

1 123. The computer program product of claim 121, wherein said set of
2 instructions is further configured to :

3 if said request for data from said application is served,
4 close said first TCP connection with said client.

1 124. The computer program product of claim 123, wherein said closing of
2 said connection is done by said control unit upon a receiving a request for closing said
3 connection from said data switching unit.