Álgebra Lineal Computacional

Examen Final – 09 de septiembre de 2024

Ejercicio 1. (2.5 pts) Sea $A_n \in \mathbb{R}^{n}$ la matriz con coeficientes dados por,

$$a_{ij} = \begin{cases} n & \text{si } i = 1 \text{ o } j = 1 \\ n/i & \text{si } i = j \\ 0 & \text{en otro caso} \end{cases}$$

a) Probar que $\operatorname{cond}_{\infty}(\boldsymbol{A}_n) \geq cn^2$ para alguna constante independiente de n .

 \bigcirc b) Probar que cond₂ $(A_n) \longrightarrow \infty$ cuando $n \longrightarrow \infty$.

Ejercicio 2. (2.5 pts) Una población en estudio está distribuida en un territorio dividido en 4 \mathcal{O} sectores (A, B, C y D, en ese orden). El tamaño de esta población es constante y los individuos se desplazan de un sector al otro de acuerdo al diagrama,

- a) Se sabe que $\boldsymbol{u}=(0,0,\frac{1}{2},\frac{1}{2})^t$ es un estado de equilibrio. Construir la matriz de transiciones de Markov completando convenientemente las probabilidades de las transiciones faltantes.
- b) Se sabe que existen dos autovectores, \boldsymbol{v} y \boldsymbol{w} tales que sus correspondientes autovalores tienen módulo menor a uno y tal que $\boldsymbol{v}+\boldsymbol{w}=(0,\frac{5}{8},-\frac{1}{8},\frac{1}{2})^t$. Determinar si existe estado límite si la distribución de población inicial es $v_0 = (0, \frac{5}{8}, \frac{3}{8}, 0)^t$.

Ch) ¿Existe P∞?

Ejercicio 3. (2.5 pts)

(a) Sea $A \in \mathbb{R}^{m \times n}$, de rango r, con valores singulares no nulos: $\sigma_1 \geq \sigma_2 \geq \cdots \geq \sigma_r$. Probar que dado s < r existe una matriz \boldsymbol{A}_s de rango s que satisface $\|\boldsymbol{A} - \boldsymbol{A}_s\|_2 = \sigma_{s+1}$.

(b) Sea

$$\mathbf{A} = \begin{pmatrix} 2 & 8 & 0 \\ -8 & -2 & 0 \\ 0 & 0 & 4 \end{pmatrix}.$$

Encontrar la descomposición en valores singulares de A y hallar una matriz A_2 , de rango 2 tal que $\|\boldsymbol{A} - \boldsymbol{A}_2\|_2 = \boldsymbol{2}$.

Ejercicio 4. (2.5 pts) Para aproximar las soluciones del sistema Ax = b para la matriz

$$A = \begin{pmatrix} 12 & -1 & 0 \\ -1 & 3 & 0 \\ 0 & 0 & 2 \end{pmatrix}$$
 se propone el siguiente método iterativo,

$$x_{n+1} = (I - \alpha D^{-1}A)x_n + \alpha D^{-1}b,$$

siendo I la matriz identidad, D la matriz diagonal de A y $\alpha > 0$.

- a) Probar que si la sucesión converge a un cierto x, entonces x es la solucion del sistema Ax = b.
 - b) Indicar para que valores de α el método propuesto resulta convergente.

Tenmontonia. Trintificam alamamanta tadas las marmaratas

																			_	
		_	_	-			_													
															-					

522003 900 11M1/2 = On con In mayor relations => V-0 A5 C0 10 /0 20 1/3 de 12-30 S 90e mejor opposition a en A-As=020 ... J_{S+1} er el no g o- color sz de A-As C--- MA-As 11 + 5 5 + 1

AVECI 7-52 32 0 1 3 2 - 3 2 0 1 NU (AGA-100T) = 2,= 2=2 2, =0 2(1,1,0)> NU(3tA - 36t) = /32 32 = 3NO (424-162) = 152320°
32520°
000/

$$C_{1} = (\frac{1}{3}, \frac{1}{3}, \frac{1}{3}, \frac{1}{3})$$

$$C_{2} = (\frac{1}{3}, \frac{1}{3}, \frac{1}{3}, \frac{1}{3})$$

$$C_{3} = (\frac{1}{3}, \frac{1}{3}, \frac{1}{3}, \frac{1}{3})$$

$$C_{4} = (\frac{1}{3}, \frac{1}{3}, \frac{1}{3}, \frac{1}{3})$$

$$C_{5} = (\frac{1}{3}, \frac{1}{3}, \frac{1}{3}, \frac{1}{3})$$

$$C_{6} = (\frac{1}{3}, \frac{1}{3}, \frac{1}{3})$$

