Lecture 4

DC Resistivity: Basic Principles

GEOL 4397: Electromagnetic Methods for Exploration GEOL 6398: Special Problems

Jiajia Sun, Ph.D. August 30th, 2018

Take attendance on CourseKey

Agenda

- Recap
- Two current electrodes
- Apparent resistivity
- Understanding charges

Ohm's law

 In 1827, Georg Ohm discovered an empirical relationship between the current flowing through a wire and the voltage required to drive that current.

https://en.wikipedia.org/wiki/Georg_Ohm

$$V = IR$$

$$R = \frac{V}{I}$$

• Note that here R represents resistance, not the resistivity. In fact, resistivity $\rho = \frac{RA}{r}$

https://pburnley.faculty.unlv.edu/GEOL442_642/RES/NOTES/ResistivityNotes040hm.html

What does Ohm's law tell us?

• Given current and voltage, we can estimate the resistance (which is related to resistivity).

Another version of Ohm's law

$$J = \sigma E$$

Question

• Is it possible to apply Ohm's law to determine the electrical resistivities of the Earth materials in the subsurface?

Simple answer

- Yes!
- That is exactly what DC resistivity does.

Target:

Ore body. Mineralized regions less resistive than host

Rock Type	Ohm-m
Overburden	12
Host rocks	200
Gossan	420
Mineralization (pyritic)	0.6
Mineralization (pyrrhotite)	0.6

Target:

Ore body. Mineralized regions less resistive than host

Setup:

Tx: Current electrodes

Rx: Potential electrodes

ΕI	ura	Or	ebody	Έ	lectr	ical	r	esistivit	ies

Rock Type	Ohm-m
Overburden	12
Host rocks	200
Gossan	420
Mineralization (pyritic)	0.6
Mineralization (pyrrhotite)	0.6

Target:

Ore body. Mineralized regions less resistive than host

Setup:

Tx: Current electrodes

Rx: Potential electrodes

• Currents:

Preferentially flow through conductors

Elura Orebody Electrical resistivities

Rock Type	Ohm-m
Overburden	12
Host rocks	200
Gossan	420
Mineralization (pyritic)	0.6
Mineralization (pyrrhotite)	0.6

Target:

Ore body. Mineralized regions less resistive than host

Setup:

Tx: Current electrodes

Rx: Potential electrodes

Currents:

Preferentially flow through conductors

Charges:

Build up at interfaces

Rock Type Ohm-m 12 Overburden Host rocks 200 Gossan 420 Mineralization (pyritic) 0.6

Mineralization (pyrrhotite)

Elura Orebody Electrical resistivities

Target:

Ore body. Mineralized regions less resistive than host

Setup:

Tx: Current electrodes

Rx: Potential electrodes

Currents:

Preferentially flow through conductors

Charges:

Build up at interfaces

Potentials:

Associated with the charges are measured at the surface

Credit: Doug Oldenburg, Seogi Kang and Linsey Heagy from UBC-GIF

Elura Orebody Electrical resistivities Rock Type Ohm-m Overburden 12 Host rocks 200 Gossan 420 Mineralization (pyritic) 0.6 Mineralization (pyrrhotite) 0.6

How do we obtain resistivity?

Simple answer for uniform halfspace

$$\rho = \frac{2\pi rV}{I}$$

Image generated using DC Plate2 5D. Pole-Pole. A -0.25 m, M 10.25 m. DC Layer Cylinder 2 5D would also do.

Special thanks to Thibaut Astic from UBC-GIF

Think about Ohm's law

$$V = IR$$

Note that *R* is resistance

But we want to relate potential to resistivity

$$\rho = \frac{RA}{L}$$
$$R = \frac{\rho L}{\Delta}$$

What is the L and A for our DC survey?

$$L = r$$
$$A = 2\pi r^2$$

Therefore,
$$R = \frac{\rho L}{A} = \frac{\rho}{2\pi r}$$

Therefore,
$$V = IR = \frac{\rho I}{2\pi r}$$

https://pburnley.faculty.unlv.edu/GEOL442_64 2/RES/NOTES/ResistivityNotes05Resistivity.htm

A summary thus far

$$V = \frac{\rho I}{2\pi r}$$

$$\rho = \frac{2\pi rV}{I}$$

If we know current *I* then, measure the potential value at any location
We can derive the resistivity of the Earth!!!

Image generated using DC_Plate2_5D. Pole-Pole. A -0.25 m, M 10.25 m. DC_Layer_Cylinder_2_5D would also do.

Special thanks to Thibaut Astic from UBC-GIF

Exercise

Calculate the potential at 10.5 m.

 Calculate the resistivity of the Earth, given a measured potential value.

Electric potential from single current electrode

$$V = \frac{\rho I}{2\pi r}$$

Image generated using DC_Plate2_5D. Pole-Pole. A -0.25 m, M 10.25 m. DC_Layer_Cylinder_2_5D would also do.

Special thanks to Thibaut Astic from UBC-GIF

• Recall, for single current electrode,

$$V = IR = \frac{\rho I}{2\pi r}$$

• Recall, for single current electrode,

$$V = IR = \frac{\rho I}{2\pi r}$$

• What if we have two current electrodes (a positive and a negative electrode)?

Images generated using DC_Layered Earth.ipynb. A: -30 m, B: 30 m, M: -10 m, N = 10 m. ρ = 500 Ω ·m

Observation:

 Current flows along the curved paths connecting the two electrodes

Recall, for single current electrode,

$$V = IR = \frac{\rho I}{2\pi r}$$

• What if we have two current electrodes (a positive and a negative electrode)? Hint: Superposition (Griffiths, 4th edition, pp 82)

Images generated using DC_Layered Earth.ipynb. A: -30 m, B: 30 m, M: -10 m, N = 10 m. ρ = 500 Ω ·m

Observation:

 Current flows along the curved paths connecting the two electrodes

Recall, for single current electrode,

$$V = IR = \frac{\rho I}{2\pi r}$$

• What if we have two current electrodes (a positive and a negative electrode)? Hint: Superposition (Griffiths, 4th edition, pp 82)

Images generated using DC_Layered Earth.ipynb. A: -30 m, B: 30 m, M: -10 m, N = 10 m. ρ = 500 Ω ·m

$V_{M} = \frac{\rho I}{2\pi} \left(\frac{1}{r_{AM}} - \frac{1}{r_{BM}} \right)$

Observation:

 Current flows along the curved paths connecting the two electrodes

- What we measure in practice is voltage (using voltmeter)
- That is, potential difference

- What we measure in practice is voltage (using voltmeter)
- That is, potential difference

$$V_M = \frac{\rho I}{2\pi} \left(\frac{1}{r_{AM}} - \frac{1}{r_{BM}} \right)$$

- What we measure in practice is voltage (using voltmeter)
- That is, potential difference

$$V_M = \frac{\rho I}{2\pi} \left(\frac{1}{r_{AM}} - \frac{1}{r_{BM}} \right)$$

$$V_N = \frac{\rho I}{2\pi} \left(\frac{1}{r_{AN}} - \frac{1}{r_{BN}} \right)$$

- What we measure in practice is voltage (using voltmeter)
- That is, potential difference

$$V_M = \frac{\rho I}{2\pi} \left(\frac{1}{r_{AM}} - \frac{1}{r_{BM}} \right)$$

$$V_N = \frac{\rho I}{2\pi} \left(\frac{1}{r_{AN}} - \frac{1}{r_{RN}} \right)$$

$$\Delta V_{MN} = V_M - V_N = \rho I \frac{1}{2\pi} \left(\frac{1}{r_{AM}} - \frac{1}{r_{BM}} - \frac{1}{r_{AN}} + \frac{1}{r_{BN}} \right)$$

From voltage to resistivity

 Remember that, we want to estimate resistivity from the measured voltage

$$\Delta V_{MN} = V_M - V_N = \rho I \frac{1}{2\pi} \left(\frac{1}{r_{AM}} - \frac{1}{r_{BM}} - \frac{1}{r_{AN}} + \frac{1}{r_{BN}} \right)$$

From voltage to resistivity

 Remember that, we want to estimate resistivity from the measured voltage

$$\Delta V_{MN} = V_M - V_N = \rho I \frac{1}{2\pi} \left(\frac{1}{r_{AM}} - \frac{1}{r_{BM}} - \frac{1}{r_{AN}} + \frac{1}{r_{BN}} \right)$$

Geometric constant $G = \frac{1}{2\pi} \left(\frac{1}{r_{AM}} - \frac{1}{r_{BM}} - \frac{1}{r_{AN}} + \frac{1}{r_{BN}} \right)$

$$\rho = \frac{\Delta V_{MN}}{IG}$$

G is purely determined by survey geometry (i.e., locations of the electrodes)

Currents and potentials: 4-electrode array

Halfspace (500 Ωm)

$$\Delta V_{MN} =
ho I \underbrace{rac{1}{2\pi} \left[rac{1}{AM} - rac{1}{MB} - rac{1}{AN} + rac{1}{NB}
ight]}_{G}$$

Resistivity

$$\rho = \frac{\Delta V_{MN}}{IG}$$

Images generated using DC_Layered Earth.ipynb.

A: -30 m, B: 30 m, M: -10 m, N = 10 m. ρ = 500Ω·m

Exercise

 Calculate the Earth's resistivity based on the following information:

$$V_{M} = 1.9894 V$$
 $V_{N} = -1.9894 V$
 $I = 1 A$
 $A: -30 m$
 $B: 30 m$
 $M: -10 m$
 $N: 10 m$

$$ho = rac{\Delta V_{MN}}{IG}$$
 $G = rac{1}{2\pi} (rac{1}{r_{AM}} - rac{1}{r_{BM}} - rac{1}{r_{AN}} + rac{1}{r_{BN}})$

Currents and potentials: 4-electrode array

Halfspace (500 Ωm)

$$\Delta V_{MN} =
ho I \underbrace{rac{1}{2\pi} \left[rac{1}{AM} - rac{1}{MB} - rac{1}{AN} + rac{1}{NB}
ight]}_{G}$$

Resistivity

$$\rho = \frac{\Delta V_{MN}}{IG}$$

Images generated using DC Layered Earth.ipynb.

A: -30 m, B: 30 m, M: -10 m, N = 10 m. ρ = 500Ω·m

Inhomogeneous Earth

So far so good!

 But remember that we have assumed a homogeneous Earth

• The real Earth is, unfortunately, not homogeneous!

Currents and Apparent Resistivity

Conductive overburden (100 Ωm)

$$\Delta V_{MN} =
ho I \underbrace{\frac{1}{2\pi} \left[\frac{1}{AM} - \frac{1}{MB} - \frac{1}{AN} + \frac{1}{NB} \right]}$$

Apparent resistivity

$$\rho_a = \frac{\Delta V_{MN}}{IG}$$

Images generated using DC_Layered Earth.ipynb. A: -30 m, B: 30 m, M: -10 m, N = 10 m. ρ 1 = 100 Ω ·m, ρ 2 = 500 Ω ·m. h = 10 m.

Exercise

 Calculate the Earth's resistivity based on the following information:

$$ho = rac{\Delta V_{MN}}{IG} \qquad \qquad G = rac{1}{2\pi} (rac{1}{r_{AM}} - rac{1}{r_{BM}} - rac{1}{r_{AN}} + rac{1}{r_{BN}})$$

Currents and Apparent Resistivity

 $\Delta V_{MN} =
ho I \, rac{1}{2\pi} \left[rac{1}{AM} - rac{1}{MB} - rac{1}{AN} + rac{1}{NB}
ight]$

Apparent resistivity

$$\rho_a = \frac{\Delta V_{MN}}{IG}$$

Images generated using DC_Layered Earth.ipynb. A: -30 m, B: 30 m, M: -10 m, N = 10 m. ρ 1 = 100 Ω·m, ρ 2 = 500 Ω·m. h = 10 m.

Currents and Apparent Resistivity

Apparent resistivity

$$\rho_a = \frac{\Delta V_{MN}}{IG}$$

Images generated using DC_Layered Earth.ipynb. A: -30 m, B: 30 m, M: -10 m, N = 10 m. ρ 1 = 100 Ω·m, ρ 2 = 500 Ω·m. h = 10 m.

Credit: Doug Oldenburg, Seogi Kang and Linsey Heagy from UBC-GIF

$$\rho_a = \frac{\Delta V_{MN}}{IG}$$

Compare it with Ohm's law:

$$\rho_a = \frac{\Delta V_{MN}}{IG} \qquad \qquad R = \frac{V}{I}$$

 Compare it with Ohm's law: apparent resistivity is equal to voltage divided by current (multiplied by G)

$$\rho_a = \frac{\Delta V_{MN}}{IG}$$

• If the Earth is homogeneous, the apparent resistivity is equal to the true resistivity of the Earth.

$$\rho_a = \frac{\Delta V_{MN}}{IG}$$

- If the Earth is homogeneous, the apparent resistivity is equal to the true resistivity of the Earth.
- For inhomogeneous Earth, the apparent resistivity is some complicated averaging of the resistivities of all materials encountered by the currents.

$$\rho_a = \frac{\Delta V_{MN}}{IG}$$

- If the Earth is homogeneous, the apparent resistivity is equal to the true resistivity of the Earth.
- For inhomogeneous Earth, the apparent resistivity is some complicated averaging of the resistivities of all materials encountered by the currents.
- It can be interpreted as the resistivity that would have been measured if the Earth were homogeneous.

DC Simulation App

Why interactive apps?

- Visualization aids understanding
- Learn through interaction
 - ask questions and investigate
- Open source:
 - Free to use
 - Welcome contributions!

DC Simulation App

- DC_LayeredEarth.ipynb
- Parameters:
 - Layer resistivities
 - Layer thickness
 - Electrode locations
- View:
 - Model
 - Electric potential
 - Electric field
 - Current density

Remember that

$$\nabla \cdot \boldsymbol{J} = -\frac{\partial \rho}{\partial t}$$

The only place where $\frac{\partial \rho}{\partial t}$ is nonzero is at the current electrodes.

At all other locations,

$$\nabla \cdot \boldsymbol{J} = 0$$

That is, convergence is 0.

That is, all of the current that flows into a volume must be equal to the current flowing out of the volume.

Images generated using DC_LayeredEarth.ipynb. A: -30 m, B: 30 m, M: -10 m, N = 10 m. ρ = 500 Ω ·m.

Remember that

$$\nabla \cdot \boldsymbol{J} = -\frac{\partial \rho}{\partial t}$$

The only place where $\frac{\partial \rho}{\partial t}$ is nonzero is at the current electrodes.

At all other locations,

$$\nabla \cdot \boldsymbol{J} = 0$$

That is, convergence is 0.

That is, all of the current that flows into a volume must be equal to the current flowing out of the volume.

Images generated using DC_LayeredEarth.ipynb. A: -30 m, B: 30 m, M: -10 m, N = 10 m. ρ = 500 Ω ·m.

Remember that

$$\nabla \cdot \boldsymbol{J} = -\frac{\partial \rho}{\partial t}$$

The only place where $\frac{\partial \rho}{\partial t}$ is nonzero is at the current electrodes.

At all other locations,

$$\nabla \cdot \boldsymbol{J} = 0$$

That is, convergence is 0.

That is, all of the current that flows into a volume must be equal to the current flowing out of the volume.

Images generated using DC_LayeredEarth.ipynb. A: -30 m, B: 30 m, M: -10 m, N = 10 m. ρ = 500 Ω ·m.

Remember that

$$\nabla \cdot \boldsymbol{J} = -\frac{\partial \rho}{\partial t}$$

The only place where $\frac{\partial \rho}{\partial t}$ is nonzero is at the current electrodes.

At all other locations,

$$\nabla \cdot \boldsymbol{J} = 0$$

That is, convergence is 0.

That is, all of the current that flows into a volume must be equal to the current flowing out of the volume.

Images generated using DC_Layer_Cylinder_2_5D.ipynb. A: -30.25 m, B: 30.25 m, M: -10.25 m, N = 10.25 m. ρ 1 = 500 Ω ·m, ρ 2 = 50 Ω ·m.

Agenda

- Recap
- Two current electrodes
- Apparent resistivity
- Understanding charges

Understanding the charges

Credit: Doug Oldenburg, Seogi Kang and Linsey Heagy from UBC-GIF

Some simple math

$$\nabla \cdot \boldsymbol{J} = 0 \longrightarrow J_{1n} = J_{2n}$$

The normal component of current density is continuous.

Some simple math

$$\nabla \cdot \boldsymbol{J} = 0 \longrightarrow J_{1n} = J_{2n}$$

The normal component of current density is continuous.

Images generated using DC_Plate2_5D.ipynb. A: -30.25 m, B: 30.25 m, M: -10.25 m, N = 10.25 m. ρ 1 = 500 Ω ·m, ρ 2 = 10 Ω ·m. dx = 10, dz=20, xc = 0, zc = -20, theta = 21.

How about the electric field?

$$\nabla \cdot \boldsymbol{J} = 0 \longrightarrow J_{1n} = J_{2n}$$

The normal component of current density is continuous.

Images generated using DC_Plate2_5D.ipynb. A: -30.25 m, B: 30.25 m, M: -10.25 m, N = 10.25 m. ρ 1 = 500 Ω ·m, ρ 2 = 10 Ω ·m. dx = 10, dz=20, xc = 0, zc = -20, theta = 21.

$$\nabla \cdot \boldsymbol{J} = 0 \longrightarrow J_{1n} = J_{2n}$$

Think about Ohm's law $J = \sigma E$

$$\nabla \cdot \boldsymbol{J} = 0 \longrightarrow J_{1n} = J_{2n}$$

Think about Ohm's law $J = \sigma E$

Then,
$$\sigma_1 E_{1n} = \sigma_2 E_{2n}$$

$$\nabla \cdot \boldsymbol{J} = 0 \longrightarrow J_{1n} = J_{2n}$$

Think about Ohm's law $J = \sigma E$

Then,
$$\sigma_1 E_{1n} = \sigma_2 E_{2n}$$

What happens when $\sigma_1 \neq \sigma_2$?

$$\nabla \cdot \boldsymbol{J} = 0 \longrightarrow J_{1n} = J_{2n}$$

Think about Ohm's law $J = \sigma E$

Then,
$$\sigma_1 E_{1n} = \sigma_2 E_{2n}$$

What happens when $\sigma_1 \neq \sigma_2$?

$$E_{1n} \neq E_{2n}!!$$

$$\nabla \cdot \boldsymbol{J} = 0 \longrightarrow J_{1n} = J_{2n}$$

Think about Ohm's law $J = \sigma E$

Then,
$$\sigma_1 E_{1n} = \sigma_2 E_{2n}$$

The normal component of electric field is discontinuous if there is resistivity contrast across some boundary.

What happens when $\sigma_1 \neq \sigma_2$?

$$E_{1n} \neq E_{2n}!!$$

How about the tangential component of electric field?

Optional materials

Short answer:

• Because $\nabla \times \boldsymbol{E} = 0$, $E_{1t} = E_{2t}$

Images generated using DC_Plate2_5D.ipynb. A: -30x2(5mm), B: 30.25 m, M: -10.25 m, N = 10.25 m. ρ 1 = 500 Ω ·m, ρ 2 = 500 Ω ·m. dx = 10, dz=20, xc = 0, zc = -20, theta = 21.

Images generated using DC_Plate2_5D.ipynb. A: -30x2(5m), B: 30.25 m, M: -10.25 m, N = 10.25 m. ρ 1 = 500 Ω ·m, ρ 2 = 10 Ω ·m. dx = 10, dz=20, xc = 0, zc = -20, theta = 21.

What could have happened?

Images generated using DC_Plate2_5D.ipynb. A: -30 χ 2(5 $\eta\eta$), B: 30.25 m, M: -10.25 m, N = 10.25 m. ρ 1 = 500 Ω ·m, ρ 2 = 10 Ω ·m. dx = 10, dz=20, xc = 0, zc = -20, theta = 21.

What could have happened?

- What could have happened?
- The electric field becomes discontinuous across the boundary.

- What could have happened?
- The electric field becomes discontinuous across the boundary.
- What causes the electric field to be discontinuous?

- What could have happened?
- The electric field becomes discontinuous across the boundary.
- What is the easiest way to make the electric field discontinuous?

- What could have happened?
- The electric field becomes discontinuous across the boundary.
- What is the easiest way to make the electric field discontinuous?

How about a resistor?

• What is the easiest way to make the electric field discontinuous?

Images generated using DC_Plate2_5D.ipynb. A: -30.2 m/m, B: 30.25 m, M: -10.25 m, N = 10.25 m. ρ 1 = 500 Ω ·m, ρ 2 = 5000 Ω ·m. dx = 10, dz=20, xc = 0, zc = -20, theta = 21.

Test

Can you tell which one is conductive and which one is resistive?

https://gpg.geosci.xyz/content/DC_resistivity/DC_basic_principles_hetero geneous earth.html

Test

Now that you have figured out which one is conductive and which is resistive. What do you think the charges will look like for the following scenario?

Normalized Charge Density

https://gpg.geosci.xyz/content/DC_resistivity/DC_basic_principles_hetero geneous earth.html

Optional reading materials

 https://gpg.geosci.xyz/content/DC resistivity/DC basic principles heterogeneous earth.html

Understanding the charges

Elura Orebod	/ Electrical	l resistivities

Rock Type	Ohm-m	
Overburden	12	
Host rocks	200	
Gossan	420	
Mineralization (pyritic)	0.6	
Mineralization (pyrrhotite)	0.6	

Credit: Doug Oldenburg, Seogi Kang and Linsey Heagy from UBC-GIF

The rest are optional materials

Images generated using DC_Plate2_5D.ipynb. A: -30 χ 2(5 $\eta\eta$), B: 30.25 m, M: -10.25 m, N = 10.25 m. ρ 1 = 500 Ω ·m, ρ 2 = 10 Ω ·m. dx = 10, dz=20, xc = 0, zc = -20, theta = 21.

Images generated using DC_Plate2_5D.ipynb. A: -30 χ 2(5 $\eta\eta$), B: 30.25 m, M: -10.25 m, N = 10.25 m. ρ 1 = 500 Ω ·m, ρ 2 = 10 Ω ·m. dx = 10, dz=20, xc = 0, zc = -20, theta = 21.