B. AMENDMENTS TO THE CLAIMS

Claims 1-57 are cancelled without prejudice.

1	58. (original) A method for constructing an elongate bat having a
2	longitudinal axis comprising the steps of:
3	forming an elongate tubular striking member having a circular cross
4	section with a proximal end, a distal end, a striking region therebetween, and a juncture
5	section adjacent said proximal end converging toward said axis on progressing toward
6	said proximal end to form a mouth of a first diameter,
7	forming an elongate handle member of composite material having a
8	circular cross section having a proximal end, distal end and juncture section adjacent
9	said distal end which diverges from said axis on progressing toward said distal end to a
10	second diameter greater than said first diameter,
11	assembling the striking member and handle member by inserting the
12	handle member into the striking member with at least a portion of the outer surface of
13	the juncture section of the handle member engaging a portion of the inner surface of the
14	juncture section of the striking member, and remainder portions of said handle member
15	extending longitudinally from said proximal end of the striking member, and
16	joining the juncture section of the handle member to the juncture section
17	of the striking member to provide a rigid interconnection between the striking member
18	and the handle member.
1	59. (original) The method of claim 58, wherein in said joining step adhesive
2	is applied between said juncture sections and cured.

formed of a material having a first specific gravity and said handle member is formed

(original) The method of claim 58, wherein said striking member is

1

2

60.

- 3 of a composite material having a second specific gravity different from said first
- 4 specific gravity.
- 1 61. (original) The method of claim 58, wherein the diverging portion of the
- 2 juncture section of the handle member is formed in a configuration complementary to
- 3 the converging portion of the juncture section of the striking member.
- 1 62. (original) The method of claim 58, wherein the step of forming the
- 2 handle member comprises positioning plural composite layers adjacent each other to
- 3 form a tubular member, and curing said layers.
- 1 63. (original) The method of claim 62, wherein the step of forming the
- 2 handle member comprises the steps of positioning plural composite layers containing
- 3 structural fibers therein adjacent each other such that each layer is tubular, and
- 4 orienting the layers such that the majority of the layers have fibers extending at an
- 5 angle less than about 50° relative to the longitudinal axis of the handle member.
- 1 64. (original) The method of claim 62, wherein at least one molding member is
- 2 impressed against the outside of said tubular member during forming to produce spaced
- 3 apart projections on said juncture section of the handle member with said projections
- 4 extending outwardly from remainder portions of said tubular member.
- 1 65. (original) The method of claim 64, wherein said molding member is
- 2 removed following curing.
- 1 66. (original) The method of claim 64, wherein said projections are formed
- 2 as elongate ribs extending substantially longitudinally of said handle member.
- 1 67. (original) The method of claim 64, wherein said ribs are positioned to
- 2 engage the inner surface of said juncture section of the striking member when
- 3 assembled.

Atty. Dkt. No.: WD0108

1	68. (original) The method of claim 64, wherein said molding member
2	produces projections in a range of 0.002 to 0.005 inch in height.
1	69. (original) A method for constructing an elongate bat having a
2	longitudinal axis comprising the steps of
3	forming an elongate tubular striking member having a circular cross
4	section with a proximal end, a distal end, a striking region therebetween and a juncture
5	section adjacent said proximal end,
6	forming an elongate handle member of composite material having a
7	circular cross section having a proximal end, distal end and juncture section adjacent
8	said distal end, wherein the step of forming the handle member comprises positioning
9	plural composite layers adjacent each other to form a tubular member and curing said
10	layers,
11	assembling the striking member and handle member with at least a
12	portion of the outer surface of the juncture section of the handle member engaging a
13	portion of the inner surface of the juncture section of the striking member, and
14	joining the juncture section of the handle member to the juncture section
15	of the striking member to provide a rigid inter connection therebetween.
1	70. (original) The method of claim 69, wherein in the step of forming the
2	handle member, selected numbers and orientation of composite layers are applied.
1	71. (original) The method of claim 70, wherein the handle member has a
2	selected overall length, selected ones of said composite layers have a length
3	substantially equal to said overall length, and others of said composite layers have a
4	length shorter than said overall length.
1	72. (original) The method of claim 71, wherein composite layers which are
2	shorter than said overall length are positioned at varying positions intermediate the

proximal and distal ends of said handle member.

(original) The method of claim 70, wherein the composite layers each 73. 1 comprise a matrix including structural fibers supported by the matrix, and wherein the 2 layers are selected from a group of fiber layer configurations consisting of a layer of 3 longitudinally extending fibers, a lyer of circumferentially extending fibers, a layer of 4 helically extending fibers, a layer of braided fibers, and combinations thereof.

Claims 74-103 are cancelled without prejudice.

5