Finite State Machines

• • •

The Simplest Model of Computation

What is a Finite State Machine?

- Mathematical model of Computation
- Abstract Machine
- Is in exactly one state at any given time
- Changes state based on input
- Surprisingly flexible
- Recognizes a Language

Practical examples:

- Vending machines
- Elevators
- Traffic signals
- Combination locks
- Antikythera mechanism
- Automatons
 - o http://youtu.be/bY_wfKVjuJM

Are Robots FSMs? Why or why not?

FSM Characteristics

Limited Memory

- Small Computer
- Microcontroller

Finite (It's in the name!)

Family of:

- Regular Languages
- Regular Expressions

A picture is worth a thousand words...

Nodes = States Edges = Transitions

Formal Definition of a Finite State Machine

$$\mathbf{M} = (\mathbf{Q}, \Sigma, \delta, \mathbf{q}_0, \mathbf{F})$$

- Q Set of states (finite)
- Σ Alphabet of symbols (finite)
- δ The transition function δ: Q × Σ → Q
- \mathbf{q}_0 The starting (initial) state $\mathbf{q}_0 \in \mathbf{Q}$
- F The set of "Accept" states $F \subseteq Q$

Formal Definition of a Finite State Machine

$$M = (Q, \Sigma, \delta, q_0, F)$$

$$M = (\{q_1, q_2, q_3\}, \{0, 1\}, \delta, q_1, \{q_2\})$$

$$Q \quad \{q_1, q_2, q_3\}$$

$$\Sigma$$
 [0, 1]

5		0	1
	q_1	q_1	q_2
	q_2	q_3	q_2
	q_3	q_2	q_2

$${f q}_0^{}$$
 ${f q}_1^{}$

$$F \{q_2\}$$

FSM Use #1: Generating Strings

- 1. Begin at starting state
- 2. Take transitions at random

 Transitions are recorded, which is the string being generated
- 3. End only on valid states

What is the set of strings that can be generated?

What Language will this FSM generate?

FSM Use #2: Accepting Strings

- 1. Begin at starting state
- 2. Start at the 1st symbol of the string
- 3. Follow transitions as determined by the symbol, 1 symbol per transition
- 4. Process ALL symbols in the string
- 5. Is the machine in a final state?

A string is either "accepted" or "rejected"

Other FSM Considerations

Empty strings

- 8
- Starting state is also an accept state

Empty Language

- Ø = {}
- There is no path from the starting state to any accept state

Important:

- ε ≠ Φ
- $\{\epsilon\} \neq \emptyset$

Dead states

- A state that exists as a "reject" state
- Often omitted from diagrams
- If an edge is omitted it is assumed to be a transition to the dead state
- Understood as being a sink node (no escape once reached)

Example

Construct a FSM that will not accept any string unless it has an even number of 0s and 1s, where $\Sigma = \{0, 1\}$.

What is its complement?

Formal Definition of Computation

Let
$$M = (Q, \Sigma, \delta, q_0, F)$$

Let $w_1 w_2 ... w_n$ be a string w where $w_i \in \Sigma$

M accepts w if there is a sequence of states r_0 , r_1 , r_2 ... r_n in Q such that:

- 1. $r_0 = q_0$,
- 2. $\delta(r_i, w_{i+1}) = r_{i+1}$ for $0 \le i < n$, and
- 3. $r_n \in F$

M "recognizes"
language A if
A = {w | M accepts w}

We now have a tool that we can use to understand Regular Languages!