PATENT ABSTRACTS OF JAPAN

(11)Publication number:

2002-326173

(43) Date of publication of application: 12.11.2002

(51)Int.Cl.

B25J 5/00 B25J 13/00

(21)Application number: 2001-133621

(71)Applicant: HONDA MOTOR CO LTD

(22)Date of filing:

27.04.2001

(72)Inventor: TAKENAKA TORU

MATSUMOTO TAKASHI HASEGAWA TADAAKI

(54) OPERATION GENERATING DEVICE OF LEGGED MOBILE ROBOT

(57)Abstract:

PROBLEM TO BE SOLVED: To provide an operation generating device of a legged mobile robot allowing generated operations such as gait pattern to accurately meet the requirements of dynamic equilibrium condition. SOLUTION: A model ZMP (full model ZMP) is calculated by using a dynamic model (reverse full model) 100c2 representing the relation between a robot motion and a floor reaction, the ZMP converted value of a full model compensated moment about a target ZMP is calculated (determined) based on a difference (full model ZMP error) between the calculated model ZMP and the target ZMP, and a compensated target upper body position is calculated (determined). Since an attitude is corrected by the calculated ZMP converted value and the compensated target upper body position, the generated gait pattern can accurately meet the requirements of the dynamic equilibrium at all times.

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2002-326173 (P2002-326173A)

(43)公開日 平成14年11月12日(2002.11.12)

(51) Int.Cl. ⁷	識別記号	FΙ	テーマコード(参考)
B 2 5 J 5/00		B 2 5 J 5/00	F 3C007
			E
13/00		13/00	Z

審査請求 未請求 請求項の数47 OL (全 56 頁)

(21)出願番号	特願2001-133621(P2001-133621)	(71)出願人	000005326
			本田技研工業株式会社
(22) 出願日	平成13年4月27日(2001.4.27)		東京都港区南青山二丁目1番1号
		(72)発明者	竹中 透
			埼玉県和光市中央1丁目4番1号 株式会
			社本田技術研究所内
		(72)発明者	松本隆志
			埼玉県和光市中央1丁目4番1号 株式会
			社本田技術研究所内
		(74)代理人	100081972
			弁理士 吉田 豊
			71
			最終頁に続く
		1	30013311-10U 1

(54) 【発明の名称】 脚式移動ロボットの動作生成装置

(57)【要約】

【課題】 生成した歩容などの動作が動力学的平衡条件 を精度良く満足するようにした脚式移動ロボットの動作 生成装置を提供する。

【解決手段】 ロボットの運動と床反力の関係を表す動力学モデル(逆フルモデル)100c2を用いてモデル ZMP(フルモデルZMP)を算出し、算出されたモデル ZMPと目標 ZMPの差(フルモデル ZMP誤差)に基づき、目標 ZMPまわりのフルモデル補正モーメントの ZMP換算値を算出(決定)すると共に、補正目標上体位置を算出(決定)する。この算出された ZMP換算値および補正目標上体位置によって姿勢が修正されることから、生成された歩容は動力学的平衡条件を常に精度良く満足させることができる。

【特許請求の範囲】

【請求項1】 少なくとも上体と、前記上体に連結される複数本の脚部からなる脚式移動ロボットの歩行などの動作を制御する動作制御装置において、

1

- a. 前記動作を規定する目標運動を決定する目標運動決 定手段、
- b. 少なくとも前記決定された目標運動に基づき、前記ロボットの運動と床反力の関係を表す動力学モデルを用いて目標床反力を算出する目標床反力算出手段、およびc. 少なくとも前記算出された目標床反力に基づいて前記ロボットに実際に作用する床反力を制御する床反力制御手段、を備えたことを特徴とする脚式移動ロボットの動作制御装置。

【請求項2】 少なくとも上体と、前記上体に連結される複数本の脚部からなる脚式移動ロボットの歩行などの動作を制御する動作制御装置において、

- a. 前記動作を規定する目標運動と目標ZMPを決定する目標動作決定手段、
- b. 少なくとも前記決定された目標運動と目標ZMPに 基づき、前記ロボットの運動とZMPの関係を表す動力 20 学モデルを用いて前記目標ZMPの補正量を算出する目 標ZMP補正量算出手段、および
- c. 少なくとも前記算出された目標ZMPの補正量に基づいて実際の床反力を制御する床反力制御手段、を備えたことを特徴とする脚式移動ロボットの動作制御装置。

【請求項3】 少なくとも上体と、前記上体に連結される複数本の脚部からなる脚式移動ロボットの歩行などの動作を制御する動作制御装置において、

- a. 前記動作を規定する目標運動と目標床反力作用点を 決定する目標動作決定手段、
- b. 少なくとも前記決定された目標運動と目標床反力作 用点に基づき、前記ロボットの運動と床反力の関係を表 す動力学モデルを用いて前記目標床反力作用点まわりの 目標床反力モーメントを算出する目標床反力モーメント 算出手段、および
- c. 少なくとも前記算出された目標床反力モーメントに 基づいて前記ロボットに作用する実際の床反力を制御す る床反力制御手段、を備えたことを特徴とする脚式移動 ロボットの動作制御装置。

【請求項4】 少なくとも上体と、前記上体に連結され 40 る複数本の脚部からなる脚式移動ロボットが歩行などの動作を行うとき、前記動作の目標瞬時値を生成する動作生成装置において、

- a. 前記動作を構成する目標運動と目標床反力の仮瞬時値を決定する仮瞬時値決定手段、
- b. 少なくとも前記決定された目標運動の仮瞬時値に基づき、前記ロボットの運動と床反力の関係を表す動力学 モデルを用いてモデル床反力を算出するモデル床反力算 出手段
- c. 前記算出されたモデル床反力と前記決定された目標 50 モデルを用いてモデル床反力を算出するモデル床反力算

床反力の仮瞬時値の差を算出する床反力差算出手段、および

d. 少なくとも前記算出された差に基づき、少なくとも前記目標運動の仮瞬時値を補正することにより前記目標運動の目標瞬時値を決定する目標瞬時値決定手段、を備えたことを特徴とする脚式移動ロボットの動作生成装

【請求項5】 少なくとも上体と、前記上体に連結される複数本の脚部からなる脚式移動ロボットが歩行などの 10 動作を行うとき、前記動作の目標瞬時値を生成する動作 生成装置において、

- a. 前記動作を構成する目標運動と目標 ZMPの仮瞬時値を決定する仮瞬時値決定手段、
- b. 少なくとも前記決定された目標運動の仮瞬時値に基づき、前記ロボットの運動とZMPの関係を表す動力学モデルを用いてモデルZMPを算出するモデルZMP算出手段。
- c. 前記算出されたモデルZMPと前記決定された目標 ZMPの仮瞬時値の差を算出するZMP差算出手段、および
- d. 少なくとも前記算出された差に基づき、少なくとも 前記目標運動の仮瞬時値を補正することにより前記目標 運動の目標瞬時値を決定する目標瞬時値決定手段、を備 えたことを特徴とする脚式移動ロボットの動作生成装 置。

【請求項6】 少なくとも上体と、前記上体に連結される複数本の脚部からなる脚式移動ロボットが歩行などの動作を行うとき、前記動作の目標瞬時値を生成する動作生成装置において、

- 30 a. 前記動作を構成する目標運動と目標 ZMPの仮瞬時値を決定する仮瞬時値決定手段、
 - b. 前記決定された目標運動と目標ZMPの仮瞬時値に 基づき、前記ロボットの運動と床反力の関係を表す動力 学モデルを用いて目標ZMPの仮瞬時値まわりのモデル 床反力モーメントを算出するモデル床反力モーメント算 出手段、および
 - c. 少なくとも前記算出されたモデル床反力モーメント に基づき、少なくとも前記目標運動の仮瞬時値を補正す ることにより前記目標運動の目標瞬時値を決定する目標 瞬時値決定手段、を備えたことを特徴とする脚式移動ロボットの動作生成装置。

【請求項7】 少なくとも上体と、前記上体に連結される複数本の脚部からなる脚式移動ロボットが歩行などの動作を行うとき、前記動作の目標瞬時値を生成する動作生成装置において、

- a. 前記動作を構成する目標運動と目標床反力の仮瞬時値を決定する仮瞬時値決定手段、
- b. 少なくとも前記決定された目標運動の仮瞬時値に基づき、前記ロボットの運動と床反力の関係を表す動力学

出手段、

c. 前記算出されたモデル床反力と前記決定された目標 床反力の仮瞬時値との差を算出する床反力差算出手段、 および

3

d. 少なくとも前記算出された差に基づき、前記動力学 モデルで表される運動と床反力の関係を満足するよう に、少なくとも前記目標運動の仮瞬時値を補正すること により、前記目標運動と目標床反力の目標瞬時値を決定 する目標瞬時値決定手段、を備えたことを特徴とする脚 式移動ロボットの動作生成装置。

【請求項8】 少なくとも上体と、前記上体に連結され る複数本の脚部からなる脚式移動ロボットが歩行などの 動作を行うとき、前記動作の目標瞬時値を生成する動作 生成装置において、

- a. 前記動作を構成する目標運動と目標ZMPの仮瞬時 値を決定する仮瞬時値決定手段、
- b. 少なくとも前記決定された目標運動の仮瞬時値に基 づき、前記ロボットの運動とZMPの関係を表す動力学 モデルを用いてモデルZMPを算出するモデルZMP算 出手段、
- c. 前記算出されたモデルZMPと前記決定された目標 ZMPの仮瞬時値との差を算出するZMP差算出手段、 および
- d. 少なくとも前記算出された差に基づき、前記動力学 モデルで表される運動と床反力の関係を満足するよう に、少なくとも前記目標運動の仮瞬時値を補正すること により、前記目標運動と前記目標床反力の目標瞬時値を 決定する目標瞬時値決定手段、を備えたことを特徴とす る脚式移動ロボットの動作生成装置。

【請求項9】 少なくとも上体と、前記上体に連結され 30 る複数本の脚部からなる脚式移動ロボットが歩行などの 動作を行うとき、前記動作の目標瞬時値を生成する動作 生成装置において、

- a. 前記動作を構成する目標運動と目標ZMPの仮瞬時 値を決定する仮瞬時値決定手段、
- b. 前記決定された目標運動と目標ZMPの仮瞬時値に 基づき、前記ロボットの運動と床反力の関係を表す動力 **学モデルを用いて目標ZMPの仮瞬時値まわりのモデル** 床反力モーメントを算出するモデル床反力モーメント算 出手段、および
- c. 少なくとも前記算出されたモデル床反力モーメント に基づき、前記動力学モデルで表される運動と床反力の 関係を満足するように、少なくとも前記目標運動の仮瞬 時値を補正することにより、前記目標運動と目標床反力 の目標瞬時値を決定する目標瞬時値決定手段、を備えた ととを特徴とする脚式移動ロボットの動作生成装置。

【請求項10】 少なくとも上体と、前記上体に連結さ れる複数本の脚部からなる脚式移動ロボットが歩行など の動作を行うとき、前記動作の目標瞬時値を生成する動 作生成装置において、

- a. 前記動作を構成する目標運動と目標床反力の仮瞬時 値を決定する仮瞬時値決定手段、
- b. 少なくとも前記決定された目標運動の仮瞬時値を、 前記ロボットの運動と床反力の関係を表す動力学モデル に入力してモデルの出力を算出するモデル出力算出手
- c. 前記算出されたモデルの出力と前記決定された目標 床反力の仮瞬時値との差を算出する床反力差算出手段、
- d. 少なくとも前記算出された差に基づき、少なくとも 10 前記目標運動の補正量を算出する目標運動補正量算出手 段、
 - e. 前記算出された補正量を前記動力学モデルに追加的 に入力するモデル入力補正手段、および
 - f. 少なくとも前記動力学モデルの入力と出力に基づい て前記目標運動と前記目標床反力の目標瞬時値を決定す る目標瞬時値決定手段、を備えたことを特徴とする脚式 移動ロボットの動作生成装置。

【請求項11】 少なくとも上体と、前記上体に連結さ れる複数本の脚部からなる脚式移動ロボットが歩行など 20 の動作を行うとき、前記動作の目標瞬時値を生成する動 作生成装置において、

- a. 前記動作を構成する目標運動と目標ZMPの仮瞬時 値を決定する仮瞬時値決定手段、
- b. 少なくとも前記決定された目標運動の仮瞬時値を、 前記ロボットの運動とZMPの関係を表す動力学モデル に入力してモデルの出力を算出するモデル出力算出手
- c. 前記算出されたモデルの出力と前記決定された目標 ZMPの仮瞬時値との差を算出するZMP差算出手段、
- d. 少なくとも前記算出された差に基づき、少なくとも 前記目標運動の補正量を算出する目標運動補正量算出手 段、
- e. 前記算出された補正量を前記動力学モデルに追加的 に入力するモデル入力補正手段、および
- f. 少なくとも前記動力学モデルの入力と出力に基づい て前記目標運動と前記目標床反力の目標瞬時値を決定す る目標瞬時値決定手段、を備えたことを特徴とする脚式 移動ロボットの動作生成装置。

【請求項12】 少なくとも上体と、前記上体に連結さ 40 れる複数本の脚部からなる脚式移動ロボットが歩行など の動作を行うとき、前記動作の目標瞬時値を生成する動 作生成装置において、

- a. 前記動作を構成する目標運動と目標ZMPの仮瞬時 値を決定する仮瞬時値決定手段、
- b. 少なくとも前記決定された目標運動と目標 ZMPの 仮瞬時値を、前記ロボットの運動と床反力作用点まわり の床反力モーメントの関係を表す動力学モデルに入力
- し、目標ZMPの仮瞬時値まわりの目標床反力モーメン トとしてモデルの出力を算出するモデル出力算出手段、
- 50 c. 少なくとも前記モデルの出力に基づき、少なくとも

前記目標運動の補正量を算出する目標運動補正量算出手 段、

- d. 前記算出された補正量を前記動力学モデルに追加的 に入力するモデル入力補正手段、および
- e. 少なくとも前記動力学モデルの入力と出力に基づい て前記目標運動と前記目標床反力の目標瞬時値を決定す る目標瞬時値決定手段、を備えたことを特徴とする脚式 移動ロボットの動作生成装置。

【請求項13】 前記目標運動補正量算出手段は、

- f. 前記ロボットにおける前記床反力の摂動と前記運動 10 の摂動の動力学的関係を表す摂動モデル、
- g. 前記摂動モデルの状態量と前記動力学モデルの状態 量の少なくともいずれかに基づき、第1のフィードバッ ク量を算出する第1フィードバック量算出手段、および h. 少なくとも前記算出された差と前記第1のフィード バック量との差に基づき、第2のフィードバック量を算 出する第2フィードバック量算出手段、を備え、前記算 出された第1のフィードバック量と第2のフィードバッ ク量の和を前記摂動モデルに入力して前記目標運動の補 正量を算出することを特徴とする請求項10項記載の脚 式移動ロボットの動作生成装置。

【請求項14】 前記目標運動補正量算出手段は、

- f. 前記ロボットにおける前記ZMPの摂動と前記運動 の摂動の動力学的関係を表す摂動モデル、
- g. 前記摂動モデルの状態量と前記動力学モデルの状態 量の少なくともいずれかに基づき、第1のフィードバッ ク量を算出する第1フィードバック量算出手段、および h. 少なくとも前記算出された差と前記第1のフィード バック量との差に基づき、第2のフィードバック量を算 出する第2フィードバック量算出手段、を備え、前記算 30 に入力してモデルの出力を算出するモデル出力算出手 出された第1のフィードバック量と第2のフィードバッ ク量の和を前記摂動モデルに入力して前記目標運動の補 正量を算出することを特徴とする請求項11項記載の脚 式移動ロボットの動作生成装置。

【請求項15】 前記目標運動補正量算出手段は、

- f. 前記ロボットにおける前記床反力モーメントの摂動 と前記運動の摂動の動力学的関係を表す摂動モデル、
- g. 前記摂動モデルの状態量と前記動力学モデルの状態 量の少なくともいずれかに基づき、第1のフィードバッ ク量を算出する第1フィードバック量算出手段、および 40 h. 少なくとも前記動力学モデルの出力と前記第1のフ ィードバック量との差に基づき、第2のフィードバック 量を算出する第2フィードバック量算出手段、を備え、 前記算出された第1のフィードバック量と第2のフィー ドバック量の和を前記摂動モデルに入力して前記目標運 動の補正量を算出することを特徴とする請求項12項記 載の脚式移動ロボットの動作生成装置。

【請求項16】 前記第1フィードバック量算出手段 は、少なくとも前記動力学モデルの重心位置に基づいて 第1のフィードバック量を算出することを特徴とする請 求項13項、14項および15項のいずれかに記載の脚 式移動ロボットの動作生成装置。

【請求項17】 少なくとも上体と、前記上体に連結さ れる複数本の脚部からなる脚式移動ロボットが歩行など の動作を行うとき、前記動作の目標瞬時値を生成する動 作生成装置において、

- a. 前記動作を構成する目標運動と目標床反力の仮瞬時 値を決定する仮瞬時値決定手段、
- b. 少なくとも前記決定された目標運動の仮瞬時値を、 前記ロボットの運動と床反力の関係を表す動力学モデル に入力してモデルの出力を算出するモデル出力算出手
 - c. 前記算出されたモデルの出力と前記決定された目標 床反力の仮瞬時値との差を算出する床反力差算出手段、
 - d. 少なくとも前記算出された差に基づき、少なくとも 前記目標運動の補正量を算出する目標運動補正量算出手 段、および
- e. 少なくとも前記算出された補正量に基づいて前記目 標運動と前記目標床反力の目標瞬時値を決定する目標瞬 時値決定手段、を備えたことを特徴とする脚式移動ロボ 20 ットの動作生成装置。

【請求項18】 少なくとも上体と、前記上体に連結さ れる複数本の脚部からなる脚式移動ロボットが歩行など の動作を行うとき、前記動作の目標瞬時値を生成する動 作生成装置において、

- a. 前記動作を構成する目標運動と目標ZMPの仮瞬時 値を決定する仮瞬時値決定手段、
- b. 少なくとも前記決定された目標運動の仮瞬時値を、 前記ロボットの運動とZMPの関係を表す動力学モデル 段、
- c. 前記算出されたモデルの出力と前記決定された目標 ZMPの仮瞬時値との差を算出するZMP差算出手段、
- d. 少なくとも前記算出された差に基づき、少なくとも 前記目標運動の補正量を算出する目標運動補正量算出手 段、および
- e. 少なくとも前記算出された補正量に基づいて前記目 標運動と前記目標床反力の目標瞬時値を決定する目標瞬 時値決定手段、を備えたことを特徴とする脚式移動ロボ ットの動作生成装置。

【請求項19】 少なくとも上体と、前記上体に連結さ れる複数本の脚部からなる脚式移動ロボットが歩行など の動作を行うとき、前記動作の目標瞬時値を生成する動 作生成装置において、

- a. 前記動作を構成する目標運動と目標ZMPの仮瞬時 値を決定する仮瞬時値決定手段、
- b. 少なくとも前記決定された目標運動の仮瞬時値を、 前記ロボットの運動と床反力作用点まわりの床反力モー メントの関係を表す動力学モデルに入力し、目標ZMP 50 の仮瞬時値まわりの目標床反力モーメントとしてモデル

(5)

の出力を算出するモデル出力算出手段、

- c. 少なくとも前記モデルの出力に基づき、少なくとも 前記目標運動の補正量を算出する目標運動補正量算出手 段、および
- d. 少なくとも前記算出された補正量に基づいて前記目 標運動と前記目標床反力の目標瞬時値を決定する目標瞬 時値決定手段、を備えたことを特徴とする脚式移動ロボ ットの動作生成装置。

【請求項20】 前記目標運動補正量算出手段は、

- e. 前記ロボットにおける前記床反力の摂動と前記運動 の摂動の動力学的関係を表す摂動モデル、
- f. 少なくとも前記摂動モデルの状態量と前記動力学モ デルの状態量のいずれかに基づき、フィードバック量を 算出するフィードバック量算出手段、および
- g. 前記算出された差を打ち消すようにフィードフォワ ード量を算出するフィードフォワード量算出手段、を備 え、前記算出されたフィードバック量とフィードフォワ ード量の和を前記摂動モデルに入力して前記目標運動の 補正量を算出することを特徴とする請求項17項記載の 脚式移動ロボットの動作生成装置。

【請求項21】 前記目標運動補正量算出手段は、

- e. 前記ロボットにおける前記ZMPの摂動と前記運動 の摂動の動力学的関係を表す摂動モデル、
- f. 少なくとも前記摂動モデルの状態量と前記動力学モ デルの状態量のいずれかに基づき、フィードバック量を 算出するフィードバック量算出手段、および
- g. 前記算出された差を打ち消すようにフィードフォワ ード量を算出するフィードフォワード量算出手段、を備 え、前記算出されたフィードバック量とフィードフォワ ード量の和を前記摂動モデルに入力して前記目標運動の 30 作生成装置において、 補正量を算出することを特徴とする請求項18項記載の 脚式移動ロボットの動作生成装置。

【請求項22】 前記目標運動補正量算出手段は、

- e. 前記ロボットにおける前記床反力モーメントの摂動 と前記運動の摂動の動力学的関係を表す摂動モデル、
- f. 少なくとも前記摂動モデルの状態量と前記動力学モ デルの状態量のいずれかに基づき、フィードバック量を 算出するフィードバック量算出手段、および
- g. 前記動力学モデルの出力を打ち消すようにフィード フォワード量を算出するフィードフォワード量算出手 段、を備え、前記算出されたフィードバック量とフィー ドフォワード量の和を前記摂動モデルに入力して前記目 標運動の補正量を算出することを特徴とする請求項19 項記載の脚式移動ロボットの動作生成装置。

【請求項23】 前記フィードバック量算出手段は、少 なくとも前記動力学モデルの重心位置に基づいて前記フ ィードバック量を算出することを特徴とする請求項20 項から22項のいずれかに記載の脚式移動ロボットの動 作生成装置。

- れる複数本の脚部からなる脚式移動ロボットが歩行など の動作を行うとき、前記動作の目標瞬時値を生成する動 作生成装置において、
- a. 前記動作を構成する目標運動と目標床反力の中の少 なくとも目標床反力の仮瞬時値を決定する目標床反力仮 瞬時値決定手段、
- b. 少なくとも前記決定された目標床反力の仮瞬時値 を、前記ロボットの運動と床反力の関係を表す第1の動 力学モデルに入力して前記目標運動の仮瞬時値を算出す 10 る目標運動仮瞬時値算出手段、
 - c. 少なくとも前記算出された目標運動の仮瞬時値を、 前記ロボットの運動と床反力の関係を表す第2の動力学 モデルに入力して第2の動力学モデルの出力を算出する 第2モデル出力算出手段、
 - d. 前記算出された第2の動力学モデルの出力と前記決 定された目標床反力の仮瞬時値との差を算出する床反力 差算出手段、
- e. 少なくとも前記算出された差に基づき、少なくとも 前記目標床反力の補正量を算出する目標床反力補正量算 20 出手段、
 - f. 前記算出された補正量を前記第1の動力学モデルに 追加的に入力するモデル入力補正手段、および
 - g. 少なくとも前記第2の動力学モデルの入力と出力に 基づいて前記目標運動と前記目標床反力の目標瞬時値を 決定する目標瞬時値決定手段、を備えたことを特徴とす る脚式移動ロボットの動作生成装置。

【請求項25】 少なくとも上体と、前記上体に連結さ れる複数本の脚部からなる脚式移動ロボットが歩行など の動作を行うとき、前記動作の目標瞬時値を生成する動

- a. 前記動作を構成する目標運動と目標ZMPの中の少 なくとも目標ZMPの仮瞬時値を決定する目標ZMP仮 瞬時値決定手段、
- b. 少なくとも前記決定された目標 ZMPの仮瞬時値 を、前記ロボットの運動と ZMPの関係を表す第1の動 力学モデルに入力して前記目標運動の仮瞬時値を算出す る目標運動仮瞬時値算出手段、
- c. 少なくとも前記算出された目標運動の仮瞬時値を、 前記ロボットの運動とZMPの関係を表す第2の動力学 40 モデルに入力して第2の動力学モデルの出力を算出する 第2モデル出力算出手段、
 - d. 前記算出された第2の動力学モデルの出力と前記決 定された目標ZMPの仮瞬時値との差を算出するZMP
 - e. 少なくとも前記算出された差に基づき、少なくとも 前記目標ZMPの補正量を算出する目標ZMP補正量算 出手段、
 - f. 前記算出された補正量を前記第1の動力学モデルに 追加的に入力するモデル入力補正手段、および
- 【請求項24】 少なくとも上体と、前記上体に連結さ 50 g. 少なくとも前記第2の動力学モデルの入力と出力に

基づいて前記目標運動と前記目標床反力の目標瞬時値を 決定する目標瞬時値決定手段、を備えたことを特徴とす る脚式移動ロボットの動作生成装置。

9

【請求項26】 少なくとも上体と、前記上体に連結さ れる複数本の脚部からなる脚式移動ロボットが歩行など の動作を行うとき、前記動作の目標瞬時値を生成する動 作生成装置において、

- a. 前記動作を構成する目標運動と目標ZMPの中の少 なくとも目標ZMPの仮瞬時値を決定する目標ZMP仮 瞬時値決定手段、
- b. 少なくとも前記決定された目標 ZMPの仮瞬時値 を、前記ロボットの運動と ZMPの関係を表す第1の動 力学モデルに入力して前記目標運動の仮瞬時値を算出す る目標運動仮瞬時値算出手段、
- c. 少なくとも前記算出された目標運動の仮瞬時値と前 記決定された目標ZMPの仮瞬時値を、前記ロボットの 運動と床反力作用点まわりの床反力モーメントの関係を 表す第2の動力学モデルに入力し、目標ZMPの仮瞬時 値まわりの目標床反力モーメントとして第2の動力学モ デルの出力を算出する第2モデル出力算出手段、
- d. 少なくとも前記算出された第2の動力学モデルの出 力に基づき、少なくとも前記目標ZMPの補正量を算出 する目標ZMP補正量算出手段、
- e. 前記算出された補正量を前記第1の動力学モデルに 追加的に入力するモデル入力補正手段、および
- f. 少なくとも前記第2の動力学モデルの入力と出力に 基づいて前記目標運動と前記目標床反力の目標瞬時値を 決定する目標瞬時値決定手段、を備えたことを特徴とす る脚式移動ロボットの動作生成装置。

【請求項27】 さらに、

- h. 少なくとも前記算出された差に基づき、少なくとも 前記目標運動の補正量を算出する目標運動補正量算出手 段、
- i. 前記算出された目標運動の補正量を前記第2の動力 学モデルに追加的に入力する第2モデル入力補正手段、 を備えることを特徴とする請求項24項記載の脚式移動 ロボットの動作生成装置。

【請求項28】 さらに、

- h. 少なくとも前記算出された差に基づき、少なくとも 前記目標運動の補正量を算出する目標運動補正量算出手 40 段、
- i. 前記算出された目標運動の補正量を前記第2の動力 学モデルに追加的に入力する第2モデル入力補正手段、 を備えることを特徴とする請求項25項記載の脚式移動 ロボットの動作生成装置。

【請求項29】 さらに、

- g. 少なくとも前記算出された第2のモデルの出力に基 づき、少なくとも前記目標運動の補正量を算出する目標 運動補正量算出手段、

学モデルに追加的に入力する第2モデル入力補正手段、 を備えることを特徴とする請求項26項記載の脚式移動 ロボットの動作生成装置。

【請求項30】 前記目標運動補正量算出手段は、

- f. 前記ロボットにおける前記床反力の摂動と前記運動 の摂動の動力学的関係を表す摂動モデル、
- g. 前記摂動モデルの状態量と前記動力学モデルの状態 量の少なくともいずれかに基づき、第1のフィードバッ ク量を算出する第1フィードバック量算出手段、および 10 h. 少なくとも前記算出された差と前記第1のフィード バック量との差に基づき、第2のフィードバック量を算 出する第2フィードバック量算出手段、を備え、前記算 出された第1のフィードバック量と第2のフィードバッ ク量の和を前記摂動モデルに入力して前記目標運動の補 正量を算出することを特徴とする請求項27記載の脚式 移動ロボットの動作生成装置。

【請求項31】 前記目標運動補正量算出手段は、

- f. 前記ロボットにおける前記ZMPの摂動と前記運動 の摂動の動力学的関係を表す摂動モデル、
- 20 g. 少なくとも前記摂動モデルの状態量と前記動力学モ デルの状態量のいずれかに基づき、第1のフィードバッ ク量を算出する第1フィードバック量算出手段、および h. 少なくとも前記算出された差と前記第1のフィード バック量との差に基づき、第2のフィードバック量を算 出する第2フィードバック量算出手段、を備え、前記算 出された第1のフィードバック量と第2のフィードバッ ク量の和を前記摂動モデルに入力して前記目標運動の補 正量を算出することを特徴とする請求項28項記載の脚 式移動ロボットの動作生成装置。

【請求項32】 前記目標運動補正量算出手段は、 30

- f. 前記ロボットにおける前記床反力モーメントの摂動 と前記運動の摂動の動力学的関係を表す摂動モデル、
- g. 少なくとも前記摂動モデルの状態量と前記動力学モ デルの状態量のいずれかに基づき、第1のフィードバッ ク量を算出する第1フィードバック量算出手段、および h. 少なくとも前記モデルの出力と前記第1のフィード バック量との差に基づき、第2のフィードバック量を算 出する第2フィードバック量算出手段、を備え、前記算 出された第1のフィードバック量と第2のフィードバッ ク量の和を前記摂動モデルに入力して前記目標運動の補 正量を算出することを特徴とする請求項29項記載の脚 式移動ロボットの動作生成装置。

【請求項33】 少なくとも上体と、前記上体に連結さ れる複数本の脚部からなる脚式移動ロボットが歩行など の動作を行うとき、前記動作の目標瞬時値を生成する動 作生成装置において、

- a. 前記動作を構成する目標運動と目標床反力の仮瞬時 値を決定する仮瞬時値決定手段、
- b. 少なくとも前記決定された目標床反力の仮瞬時値
- h. 前記算出された目標運動の補正量を前記第2の動力 50 を、前記ロボットの運動と床反力の関係を表す動力学モ

デルに入力し、前記動力学モデルの運動の瞬時値を算出 するモデル運動瞬時値算出手段、

11

- c. 前記動力学モデルの運動の瞬時値と前記目標運動の 仮瞬時値との差を算出するモデル運動差算出手段、
- d. 少なくとも前記差に基づいて前記差が零に近づくよ うに補正量を算出する補正量算出手段、
- e. 前記算出された補正量を前記動力学モデルに追加的 に入力するモデル入力補正手段、および
- f. 少なくとも前記動力学モデルの入力と出力に基づいて前記目標運動と前記目標床反力の目標瞬時値を決定する目標瞬時値決定手段、を備えたことを特徴とする脚式移動ロボットの動作生成装置。

【請求項34】 少なくとも上体と、前記上体に連結される複数本の脚部からなる脚式移動ロボットが歩行などの動作を行うとき、前記動作の目標瞬時値を生成する動作生成装置において、

- a. 前記動作を構成する目標床反力の仮瞬時値を決定する目標床反力仮瞬時値決定手段、
- b. 前記動作を構成する目標運動の瞬時値を決定する目標運動瞬時値決定手段、
- c. 少なくとも前記決定された目標床反力の仮瞬時値を、前記ロボットの運動と床反力の関係を表す動力学モデルに入力し、前記動力学モデルの運動の瞬時値を算出するモデル運動瞬時値算出手段、
- d. 前記動力学モデルの運動の瞬時値と前記目標運動の瞬時値との差を算出するモデル運動差算出手段、
- e. 少なくとも前記差に基づいて前記差が零に近づくように補正量を算出する補正量算出手段、
- f. 前記算出された補正量を前記動力学モデルに追加的 に入力するモデル入力補正手段、および
- g. 少なくとも前記動力学モデルの入力に基づいて前記 目標床反力の目標瞬時値を決定する目標床反力瞬時値決 定手段、を備えたことを特徴とする脚式移動ロボットの 動作生成装置。

【請求項35】 少なくとも上体と、前記上体に連結される複数本の脚部からなる脚式移動ロボットが歩行などの動作を行うとき、前記動作の目標瞬時値を生成する動作生成装置において、

- a. 前記動作を構成する目標運動と目標 ZMPの仮瞬時 値を決定する仮瞬時値決定手段、
- b. 少なくとも前記決定された目標ZMPの仮瞬時値を、前記ロボットの運動とZMPの関係を表す動力学モデルに入力し、前記動力学モデルの運動の瞬時値を算出するモデル運動瞬時値算出手段、
- c. 前記動力学モデルの運動の瞬時値と前記目標運動の 仮瞬時値との差を算出するモデル運動差算出手段、
- d. 少なくとも前記差に基づいて前記差が零に近づくように補正量を算出する補正量算出手段、
- e. 前記算出された補正量を前記動力学モデルに追加的 に入力するモデル入力補正手段、および

f. 少なくとも前記動力学モデルの入力と出力に基づいて前記目標運動と前記目標ZMPの目標瞬時値を決定する目標瞬時値決定手段、を備えたことを特徴とする脚式移動ロボットの動作生成装置。

【請求項36】 少なくとも上体と、前記上体に連結される複数本の脚部からなる脚式移動ロボットが歩行などの動作を行うとき、前記動作の目標瞬時値を生成する動作生成装置において、

- a. 前記動作を構成する目標ZMPの仮瞬時値を決定する目標ZMP仮瞬時値決定手段、
- b. 前記動作を構成する目標運動の瞬時値を決定する目 標運動瞬時値決定手段、
- c. 少なくとも前記決定された目標ZMPの仮瞬時値を、前記ロボットの運動とZMPの関係を表す動力学モデルに入力し、前記動力学モデルの運動の瞬時値を算出するモデル運動瞬時値算出手段、
- d. 前記動力学モデルの運動の瞬時値と前記目標運動の瞬時値との差を算出するモデル運動差算出手段、
- e. 少なくとも前記差に基づいて前記差が零に近づくよ 20 うに補正量を算出する補正量算出手段、
 - f. 前記算出された補正量を前記動力学モデルに追加的 に入力するモデル入力補正手段、および
 - g. 少なくとも前記動力学モデルの入力に基づいて前記 目標ZMPの目標瞬時値を決定する目標ZMP瞬時値決 定手段、を備えたことを特徴とする脚式移動ロボットの 動作生成装置。

【請求項37】 少なくとも上体と、前記上体に連結される複数本の脚部からなる脚式移動ロボットが歩行などの動作を行うとき、前記動作の目標瞬時値を生成する動 6 作生成装置において、

- a. 前記動作を構成する目標ZMPの仮瞬時値を決定する目標ZMP仮瞬時値決定手段、
- b. 前記動作を構成する目標運動の瞬時値を決定する目標運動瞬時値決定手段、
- c. 少なくとも前記決定された目標ZMPの仮瞬時値を、前記ロボットの運動と床反力作用点とそのまわりの床反力モーメントの関係を表す動力学モデルに床反力作用点として入力し、前記動力学モデルの運動の瞬時値を
- 40 d. 前記動力学モデルの運動の瞬時値と前記目標運動の 瞬時値との差を算出するモデル運動差算出手段、

算出するモデル運動瞬時値算出手段、

- e. 少なくとも前記差に基づいて前記差が零に近づくように補正量を算出する補正量算出手段、および
- f. 前記算出された補正量を前記動力学モデルに前記床 反力モーメントとして入力し、モデルの入力を補正しつ つ、前記算出された補正量を目標 ZMPまわりの補正モーメントの目標瞬時値として決定する目標瞬時値決定手 段、を備えたことを特徴とする脚式移動ロボットの動作 生成装置。
- 50 【請求項38】 少なくとも上体と、前記上体に連結さ

れる複数本の脚部からなる脚式移動ロボットが歩行など の動作を行うとき、前記動作の目標瞬時値を生成する動 作生成装置において、

13

- a. 前記動作を構成する目標運動と目標床反力の中の少 なくとも目標床反力の瞬時値を決定する目標床反力瞬時 値決定手段、
- b. 少なくとも前記決定された目標床反力の瞬時値を、 前記ロボットの運動と床反力の関係を表す第1の動力学 モデルに入力して前記第1の動力学モデルの運動の瞬時 値を算出する第1モデル運動瞬時値算出手段、
- c. 少なくとも前記決定された目標床反力の瞬時値を、 前記ロボットの運動と床反力の関係を表す第2の動力学 モデルに入力し、前記第2の動力学モデルの運動の瞬時 値を算出する第2モデル運動瞬時値算出手段。
- d. 前記第2の動力学モデルの運動の瞬時値と前記第1 の動力学モデルの運動の瞬時値との差を算出するモデル 運動差算出手段、
- e. 少なくとも前記差に基づいて前記差が零に近づくよ うに補正量を算出する補正量算出手段、および
- f. 前記算出された補正量を前記第1の動力学モデルに 20 追加的に入力する第1モデル入力補正手段、を備え、前 記第1の動力学モデルの出力および前記第2の動力学モ デルの出力の少なくともいずれかを前記目標運動の目標 瞬時値として決定することを特徴とする脚式移動ロボッ トの動作生成装置。

【請求項39】 少なくとも上体と、前記上体に連結さ れる複数本の脚部からなる脚式移動ロボットが歩行など の動作を行うとき、前記動作の目標瞬時値を生成する動 作生成装置において、

- a. 前記動作を構成する目標運動と目標ZMPの中の少 なくとも目標ZMPの瞬時値を決定する目標ZMP瞬時 值決定手段、
- b. 少なくとも前記決定された目標 ZMPの瞬時値を、 前記ロボットの運動と ZMPの関係を表す第1の動力学 モデルに入力して前記第1の動力学モデルの運動の瞬時 値を算出する第1モデル運動瞬時値算出手段、
- c. 少なくとも前記決定された目標 ZMPの瞬時値を、 前記ロボットの運動とΖΜΡの関係を表す第2の動力学 モデルに入力し、前記第2の動力学モデルの運動の瞬時 値を算出する第2モデル運動瞬時値算出手段、順フルモ 40 る脚式移動ロボットの動作生成装置。 デル演算
- d. 前記第2の動力学モデルの運動の瞬時値と前記第1 の動力学モデルの運動の瞬時値との差を算出するモデル 運動差算出手段、
- e. 少なくとも前記差に基づいて前記差が零に近づくよ うに補正量を算出する補正量算出手段、および
- f. 前記算出された補正量を前記第1の動力学モデルに 追加的に入力する第1モデル入力補正手段、を備え、前 記第1の動力学モデルの出力および前記第2の動力学モ デルの出力の少なくともいずれかを前記目標運動の目標

瞬時値として決定することを特徴とする脚式移動ロボッ トの動作生成装置。

【請求項40】 少なくとも上体と、前記上体に連結さ れる複数本の脚部からなる脚式移動ロボットが歩行など の動作を行うとき、前記動作の目標瞬時値を生成する動 作生成装置において、

- a. 前記動作を構成する目標運動と目標床反力の中の少 なくとも目標床反力の瞬時値を決定する目標床反力瞬時 值決定手段、
- 10 b. 少なくとも前記決定された目標床反力の瞬時値を、 前記ロボットの運動と床反力の関係を表す第1の動力学 モデルに入力して前記第1の動力学モデルの運動の瞬時 値を算出する第1モデル運動瞬時値算出手段、
 - c. 少なくとも前記第1の動力学モデルの運動の瞬時値 に応じた第2の動力学モデルの状態量を算出する第2モ デル状態量算出手段、および
 - d. 少なくとも前記第2の動力学モデルの状態量に基づ き、目標動作のパラメータを修正する目標動作パラメー タ修正手段を備え、前記第1の動力学モデルの出力を前 記目標運動の目標瞬時値として決定することを特徴とす る脚式移動ロボットの動作生成装置。

【請求項41】 少なくとも上体と、前記上体に連結さ れる複数本の脚部からなる脚式移動ロボットが歩行など の動作を行うとき、前記動作の目標瞬時値を生成する動 作生成装置において、

- a. 前記動作を構成する目標運動と目標ZMPの中の少 なくとも目標ZMPの瞬時値を決定する目標ZMP瞬時 値決定手段、
- b. 少なくとも前記決定された目標 ZMPの瞬時値を、 前記ロボットの運動と ZMPの関係を表す第1の動力学 モデルに入力して前記第1の動力学モデルの運動の瞬時 値を算出する第1モデル運動瞬時値算出手段、
 - c. 少なくとも前記第1の動力学モデルの運動の瞬時値 に応じた第2の動力学モデルの状態量を算出する第2モ デル状態量算出手段、および
 - d. 少なくとも前記第2の動力学モデルの状態量に基づ き、目標動作のパラメータを修正する目標動作パラメー タ修正手段を備え、前記第1の動力学モデルの出力を前 記目標運動の目標瞬時値として決定することを特徴とす

【請求項42】 少なくとも上体と、前記上体に連結さ れる複数本の脚部からなる脚式移動ロボットが歩行など の動作を行うとき、前記動作の目標瞬時値を生成する動 作生成装置において、

- a. 前記動作を構成する目標運動と目標床反力の中の少 なくとも目標床反力の仮瞬時値を決定する目標床反力仮 瞬時値決定手段、
- b. 少なくとも前記決定された目標床反力の仮瞬時値
- を、前記ロボットの運動と床反力の関係を表す第1の動 50 力学モデルに入力して前記第1の動力学モデルの運動の

(8)

瞬時値を算出する第1モデル運動瞬時値算出手段、

c. 少なくとも前記決定された目標床反力の仮瞬時値 を、前記ロボットの運動と床反力の関係を表す第2の動 力学モデルに入力し、前記第2の動力学モデルの運動の 瞬時値を算出する第2モデル運動瞬時値算出手段、

15

- d. 前記第2の動力学モデルの運動の瞬時値と前記第1 の動力学モデルの運動の瞬時値との差を算出するモデル 運動差算出手段、
- e. 少なくとも前記差に基づいて前記差が零に近づくよ うに第1の補正量を算出する第1補正量算出手段、
- f. 少なくとも前記差に基づいて前記差が零に近づくよ うに第2の補正量を算出する第2補正量算出手段、
- g. 前記算出された第1の補正量を前記第1の動力学モ デルに追加的に入力する第1モデル入力補正手段、およ Ŋ
- h. 前記算出された第2の補正量を前記第2の動力学モ デルに追加的に入力する第2モデル入力補正手段、を備 え、前記第1の動力学モデルの出力および前記第2の動 力学モデルの出力の少なくともいずれかを前記目標運動 の目標瞬時値として決定することを特徴とする脚式移動 20 ロボットの動作生成装置。 ロボットの動作生成装置。

【請求項43】 少なくとも上体と、前記上体に連結さ れる複数本の脚部からなる脚式移動ロボットが歩行など の動作を行うとき、前記動作の目標瞬時値を生成する動 作生成装置において、

- a. 前記動作を構成する目標運動と目標 ZMPの中の少 なくとも目標ZMPの仮瞬時値を決定する目標ZMP仮 瞬時値決定手段、
- b. 少なくとも前記決定された目標 ZMPの仮瞬時値 を、前記ロボットの運動とZMPの関係を表す第1の動 30 力学モデルに入力して前記第1の動力学モデルの運動の 瞬時値を算出する第1モデル運動瞬時値算出手段、
- c. 少なくとも前記決定された目標ZMPの仮瞬時値 を、前記ロボットの運動とZMPの関係を表す第2の動 力学モデルに入力し、前記第2の動力学モデルの運動の 瞬時値を算出する第2 モデル運動瞬時値算出手段、
- d. 前記第2の動力学モデルの運動の瞬時値と前記第1 の動力学モデルの運動の瞬時値との差を算出するモデル 運動差算出手段、
- e. 少なくとも前記差に基づいて前記差が零に近づくよ うに第1の補正量を算出する第1補正量算出手段、
- f. 少なくとも前記差に基づいて前記差が零に近づくよ うに第2の補正量を算出する第2補正量算出手段、
- g. 前記算出された第1の補正量を前記第1の動力学モ デルに追加的に入力する第1モデル入力補正手段、およ
- h. 前記算出された第2の補正量を前記第2の動力学モ デルに追加的に入力する第2モデル入力補正手段、を備 え、前記第1の動力学モデルの出力および前記第2の動 力学モデルの出力の少なくともいずれかを前記目標運動 50 め、リアルタイムに歩容を生成することは困難であっ

の目標瞬時値として決定することを特徴とする脚式移動 ロボットの動作生成装置。

【請求項44】 さらに、

- α. 前記ロボットにおける前記床反力の摂動と前記運動 の摂動の動力学的関係を表す第2の摂動モデル、
- β. 前記新規摂動モデルの状態量と前記動力学モデルの 状態量の少なくともいずれかに基づき、第3のフィード バック量を算出する第3フィードバック量算出手段、お よび
- 10 7. 前記決定された目標床反力または目標 ZMPの目標 瞬時値と、前記目標床反力または前記目標 ZMPの仮目 標瞬時値の差を求めて入力し、前記差を低減するように 第2のフィードフォワード量を算出する第2フィードフ ォワード量算出手段、
 - δ. 前記算出された新規フィードバック量と新規フィー ドフォワード量の和を前記新規摂動モデルに入力して前 記目標運動の第3の補正量を算出する第3目標運動補正 量算出手段、を備えることを特徴とする請求項7項から 37項、42項から44項のいずれかに記載の脚式移動

【請求項45】 前記第3目標運動補正量算出手段は、 前記目標運動の第3の補正量を算出すると共に、前記決 定された目標床反力または目標ZMPの目標瞬時値と前 記目標床反力または前記目標ZMPの仮目標瞬時値の差 に、前記算出されて新規フィードバック量と新規フィー ドフォワード量の和を加えることにより、前記目標床反 力または目標ZMPの第3の補正量を算出することを特 徴とする請求項44項記載の脚式移動ロボットの動作生 成装置。

【請求項46】 前記摂動モデルおよび前記第2の摂動 モデルが倒立振子からなることを特徴とする請求項4項 から15項、20項か26項、31項から45項記載の いずれかに記載の脚式移動ロボットの動作生成装置。

【請求項47】 さらに、

ε. 少なくとも前記第1の動力学モデルの状態量に基づ き、目標動作のパラメータを決定または修正する目標動 作パラメータ修正手段、を備えたことを特徴とする請求 項24項から46項のいずれかに記載の脚式移動ロボッ トの動作生成装置。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】との発明は脚式移動ロボット の動作生成装置に関し、より詳しくは脚式移動ロボット の歩容の動作を生成し、さらには生成された動作を追従 するようにロボットを制御するようにした装置に関す る。

[0002]

【従来の技術】従来、脚式移動ロボットの厳密な動力学 モデルを用い、試行錯誤によって歩容を生成していたた

17

た。そとで、本出願人は先に特開平10-86081号 において、オフラインで設計した規準歩容をパラメータ と上体軌道の時系列の組にしてロボットに搭載したマイ クロコンピュータのメモリに記憶させ、歩行周期など、 時間に関するパラメータが同一である複数の歩容の瞬時 値の重み付き平均を求めることによって、自在な歩容を リアルタイムに生成する技術を提案している。

[0003]

【発明が解決しようとする課題】しかしながら、この提 案技術にあっては、近似計算であったことから、生成し た歩容が動力学的平衡条件を十分に満足できない場合が あった。尚、動力学的平衡条件とは、ロボットの挙動を 精密に表す厳密動力学モデルを用いて目標歩容の重力と 慣性力から計算されるZMPが、目標ZMPに一致する ことを意味する。より詳細には、ロボットの挙動を精密 に表す厳密動力学モデルを用いて算出されるロボットの 慣性力と重力の合力が目標ZMPまわりに作用させるモ ーメントの水平成分が、0であることを意味する(M. Vukobratovic(加藤、山下訳)、『歩行口 ボットと人工の足」、日刊工業新聞社(1975 年))。

【0004】従って、この発明の第1の目的は先に提案 した技術の不都合を解消することにあり、生成した歩容 などの動作が動力学的平衡条件を精度良く満足するよう にした脚式移動ロボットの動作生成装置を提供すること にある。

【0005】さらには、この発明の第2の目的は、生成 した歩容による歩行などの動作が動力学的平衡条件を精 度良く満足すると共に、その生成された動作に追従する ようにロボットを制御することで、姿勢安定性を高める ようにした脚式移動ロボットの動作制御装置を提供する ことにある。

[0006]

【課題を解決するための手段】上記した第1および第2 の目的を達成するために、少なくとも上体と、前記上体 に連結される複数本の脚部からなる脚式移動ロボットが 歩行などの動作を行うとき、前記動作の目標瞬時値を生 成する動作生成装置において、前記動作を構成する目標 運動と目標床反力または目標ZMPの仮瞬時値を決定す る仮瞬時値決定手段、少なくとも前記決定された目標運 動の仮瞬時値に基づき、前記ロボットの運動と床反力ま たはZMPの関係を表す動力学モデルを用いてモデル床 反力またはモデルZMPを算出するモデル床反力算出手 段、前記算出されたモデル床反力と前記決定された目標 床反力の仮瞬時値の差、または前記算出されたモデルZ MPと前記決定された目標ZMPの仮瞬時値の差を算出 する差算出手段、および少なくとも前記算出された差に 基づき、前記動力学モデルで表される運動と床反力の関 係を満足するように、少なくとも前記目標運動の仮瞬時 値を補正することにより、前記目標運動と目標床反力の 50 L、股(腰部)のピッチ方向(Y軸まわり)の関節14

目標瞬時値を決定する目標瞬時値決定手段を備える如く 構成した。

【0007】動作を構成する目標運動と目標床反力また は目標ZMPの仮瞬時値を決定し、決定された目標運動 の仮瞬時値に基づき、ロボットの運動と床反力または乙 MPの関係を表す動力学モデルを用いてモデル床反力ま たはモデルZMPを算出し、算出されたモデル床反力と 決定された目標床反力の仮瞬時値の差、または算出され たモデルZMPと決定された目標ZMPの仮瞬時値の差 を算出し、算出された差に基づき、動力学モデルで表さ れる運動と床反力の関係を満足するように、少なくとも 目標運動の仮瞬時値を補正することにより、目標運動と 目標床反力の目標瞬時値を決定するように構成したの で、動力学的平衡条件を精度良く満足する歩容などの動 作を生成することができると共に、歩行時や作業時の安 定性を高めることができる。

【0008】上記した第2の目的を達成するために、少 なくとも上体と、前記上体に連結される複数本の脚部か らなる脚式移動ロボットの歩行などの動作を制御する動 20 作制御装置において、前記動作を規定する目標運動を決 定する目標運動決定手段、少なくとも前記決定された目 標運動に基づき、前記ロボットの運動と床反力の関係を 表す動力学モデルを用いて目標床反力を算出する目標床 反力算出手段、および少なくとも前記算出された目標床 反力に基づいて前記ロボットに実際に作用する床反力を 制御する床反力制御手段を備える如く構成した。

【0009】動作を規定する目標運動を決定し、決定さ れた目標運動に基づき、ロボットの運動と床反力の関係 を表す動力学モデルを用いて目標床反力を算出し、算出 された目標床反力に基づいてロボットに実際に作用する 床反力を制御する如く構成したので、動力学的平衡条件 を精度良く満足する歩容などの動作を生成することがで きると共に、その生成された動作に追従するようにロボ ットを制御することで姿勢安定性を高めることができ る。

[0010]

【発明の実施の形態】以下、添付図面を参照してこの発 明の一つの実施の形態に係る脚式移動ロボットの生成装 置を説明する。尚、脚式移動ロボットとしては2足歩行 40 ロボットを例にとる。

【0011】図1は、この実施の形態に係る動作生成装 置が適用される脚式移動ロボット、より具体的には2足 歩行ロボットを全体的に示す概略図である。

【0012】図示の如く、2足歩行ロボット(以下「ロ ボット」という) 1 は左右それぞれの脚部(脚部リン ク)2に6個の関節を備える。6個の関節は上から順 に、股(腰部)の脚部回旋(回転)用の関節10R, 1 OL(右側をR、左側をLとする。以下同じ)、股(腰 部) のロール方向 (X軸まわり) の関節12R, 12

R, 14L、膝部のピッチ方向の関節16R, 16L、 足首のピッチ方向の関節18R,18L、同ロール方向 の関節20R,20Lから構成される。

19

【0013】関節18R(L), 20R(L)の下部に は足平(足部)22R,22Lが取着されると共に、最 上位には上体(基体)24が設けられ、その内部にマイ クロコンピュータからなる制御ユニット26 (後述)な どが格納される。上記において、股関節(あるいは腰関 節) は関節10R(L)、12R(L)、14R(L) から、足関節(足首関節)は関節18R(L), 20R 10 構成される。 (L)から構成される。また股関節と膝関節とは大腿リ ンク28R、28L、膝関節と足関節とは下腿リンク3 OR, 30Lで連結される。

【0014】尚、上体24の上部には腕が取り付けられ ると共に、その上部には頭部が配置されるが、その詳細 は、この発明の要旨と直接の関連を有しないため、省略 する。

【0015】上記の構成により、脚部2は左右の足につ いてそれぞれ6つの自由度を与えられ、歩行中にこれら の6 * 2 = 12個の関節を適宜な角度で駆動すること で、足全体に所望の動きを与えることができ、任意に3 次元空間を歩行させることができる(この明細書で「* 」はスカラに対する演算としては乗算を、ベクトルに 対する演算としては外積を示す)。

【0016】尚、との明細書で後述する上体24の位置 およびその速度は、上体24の所定位置、具体的には上 体24の代表点の位置およびその移動速度を意味する。 それについては後述する。

【0017】図1に示す如く、足関節の下方には公知の 6軸力センサ34が取着され、力の3方向成分Fx, F 30 y, Fzとモーメントの3方向成分Mx, My, Mz、 即ち、足部の着地の有無および床反力(接地荷重)など を示す信号を出力する。また、上体24には傾斜センサ 36が設置され、 Z軸(鉛直方向(重力方向)) に対す る傾きとその角速度を示す信号を出力する。また各関節 の電動モータには、その回転量を示す信号を出力するロ ータリエンコーダが設けられる。

【0018】図2に示すように、足平22R(L)の上 方には、ぱね機構38が装備されると共に、足底にはゴ ムなどからなる足底弾性体40が貼られてコンプライア ンス機構42を構成する。ばね機構38は具体的には、 足平22R(L)に取り付けられた方形状のガイド部材 (図示せず)と、足首関節18R(L)および6軸力セ ンサ34側に取り付けられ、前記ガイド部材に弾性材を 介して微動自在に収納されるピストン状部材(図示せ ず)とからなる。

【0019】図中に実線で表示された足平22R(L) は、床反力を受けていないときの状態を示す。床反力を 受けると、コンプライアンス機構42においてバネ機構 38と足底弾性体40がたわみ、足平22R(L)は図 50 【0027】目標床反力は、一般的には、作用点とその

中に点線で表示された位置姿勢に移る。この構造は、着 地衝撃を緩和するためだけでなく、制御性を高めるため にも重要なものである。尚、その詳細は本出願人に先に 提案した特開平5-305584号に記載されているの で、詳細な説明は省略する。

【0020】さらに、図1では図示を省略するが、ロボ ット1の適宜な位置にはジョイスティック44が設けら れ、外部から必要に応じて直進歩行しているロボット1 を旋回させるなど歩容に対する要求を入力できるように

【0021】図3は制御ユニット26の詳細を示すブロ ック図であり、マイクロ・コンピュータから構成され る。そこにおいて傾斜センサ36などの出力はA/D変 換器50でデジタル値に変換され、その出力はバス52 を介してRAM54に送られる。また各電動モータに隣 接して配置されるエンコーダの出力はカウンタ56を介 してRAM54内に入力される。

【0022】制御ユニット26の内部にはそれぞれCP Uからなる第1、第2の演算装置60,62が設けられ 20 ており、第1の演算装置60は後述の如く、目標歩容を 生成すると共に、後述の如く関節角変位指令を算出し、 RAM54に送出する。また第2の演算装置62はRA M54からその指令と検出された実測値とを読み出し、 各関節の駆動に必要な操作量を算出してD/A変換器6 6とサーボアンプを介して各関節を駆動する電動モータ に出力する。

【0023】図4は、との実施の形態に係る脚式移動口 ボットの動作生成装置の構成および動作を全体的に示す ブロック図である。

【0024】以下説明すると、この装置はフルモデル補 正入り歩容生成部100を備え、フルモデル補正入り歩 容生成部100は後述の如く目標歩容を自在かつリアル タイムに生成して出力する。目標歩容は、目標上体姿勢 (軌道あるいはパターン)、補正目標上体位置(軌道あ るいはパターン)、目標足平位置姿勢(軌道あるいはパ ターン)、目標ZMP(目標全床反力中心点)(軌道あ るいはパターン)、目標ZMPまわりのフルモデル補正 モーメントのZMP換算値および目標全床反力(軌道あ るいはパターン)からなる。

【0025】尚、各足平22R,Lの床反力を「各足平 床反力」と呼び、全ての(2本の)足平の床反力の合力 を「全床反力」と呼ぶ。ただし、以降においては、各足 平床反力はほとんど言及しないので、断らない限り、

「床反力」は「全床反力」と同義として扱う。

【0026】最初にこの装置が生成する歩容について説 明すると、このように、ロボット1においては歩行制御 に与える目標値として、目標の運動パターンだけではな く、目標の運動パターンに対して動力学的平衡条件を満 足する目標床反力パターンも必要である。

点に作用する力と力のモーメントによって表現される。 作用点はどこにとっても良いので、同一の目標床反力で も無数の表現が考えられるが、特に前述の目標床反力中 心点を作用点にして目標床反力を表現すると、力のモー メントは、床に垂直な成分を除けば、0になる。

21

【0028】尚、前述のように、動力学的平衡条件を満 足する歩容では、目標とする運動軌跡から算出されるZ MPと目標床反力中心点は一致することから、目標床反 力中心点軌道の代わりに目標ZMP軌道を与えると言っ ても同じことである。

【0029】従って、上記は、「歩行制御に与える目標 値としては、目標運動軌跡だけでなく、目標ZMP軌道 (目標床反力パターン)も必要である」と言い換えると とができる。このような背景から、この明細書では目標 歩容を、次のように定義する。

- a) 広義の目標歩容とは、1歩ないしは複数歩の期間の 目標運動軌跡とその目標床反力パターンの組である。
- b) 狭義の目標歩容とは、1歩の期間の目標運動軌跡と そのZMP軌道の組である。
- する。

【0030】尚、以下では、理解を容易にするために、 特にことわらない限り、目標歩容は狭義の目標歩容の意 味で使用する。より詳しくは、この明細書では目標歩容 は、両脚支持期の初期から片脚支持期の終端までの意味 で使用する。

【0031】また、両脚支持期とは言うまでもなく、ロ ボット1がその自重を脚部リンク2の双方で支持する期 間を、片脚支持期とは脚部リンク2の一方で支持する期 しない側の脚部(リンク)を「遊脚」と呼ぶ。定義の詳 細は、先に提案した特開平8-86081号公報に記載 されているので、この程度の説明に止める。

【0032】この発明は具体的には、上記に定義した目 標歩容を精度良く、かつリアルタイムに生成すると共 に、生成した歩容などの動作が動力学的平衡条件を精度 良く満足するようにし、よって歩行などの動作の安定性 を高めることを目的とする。

【0033】ととで、目標歩容としての条件を説明す

【0034】目標歩容が満たさなければならない条件 は、大きく分けて以下の5つに分類される。

条件1)動力学的平衡条件を満足していること。即ち、 ロボット1の目標運動軌跡から動力学的に算出されるZ MP軌道が目標ZMP軌道と一致していること。

条件2) ロボット1の歩行計画部や歩行経路誘導部(共 に図示せず)、あるいはオペレータから歩幅や旋回角な ど歩容が満たすべき条件が要求される場合、それらの要 求条件を満たしていること。

条件3)足平が床を掘ったり擦ったりしない、関節角度 50 っている。即ち、動力学的平衡条件は、運動する物体の

が可動範囲を越えない、関節速度が限界を越えないなど の、キネマティクス(運動学)に関する制約条件を満た していること。

条件4) 片脚支持期においてZMPが支持脚足平接地面 内になければならない、駆動系の最大能力を越えないな どの、動力学に関する制約条件を満たしていること。 条件5)境界条件を満たしていること。即ち、条件1)

の当然の帰結として、歩容と歩容の境界では、少なくと も、各部位の位置と速度が連続であるという境界条件が 導かれる(不連続であれば、無限大の力が発生したり、 ZMPが接地面からはるかに遠くの点に移動してしまう から)。

【0035】また、第n+1回歩容の初期状態は、第n 回歩容の終端状態(特に、足平位置に対する上体の位置 ・姿勢および速度) に一致するように設定されなければ ならない。このとき、第n回歩容の終端状態は、第n+ 1回歩容の初期状態が決まっていれば、第n+1回歩容 の初期状態に一致させれば良い。

【0036】決まっていなければ、第1回歩容の終端状 c) ―連の歩行は、いくつかの歩容がつながったものと 20 態が、姿勢が崩れないで長期的な歩行ができる範囲に入 っていれば良い。但し、後述するように、姿勢が崩れな いで長期的な歩行ができるための終端状態の範囲を求め ることは、極めて難しい。

> 【0037】一般的に、目標歩容は、パラメータ値ある いは時系列テーブルを含む歩容発生アルゴリズムによっ て発生させられる(歩容を決定するということは、パラ メータ値あるいは時系列テーブルを適当に設定すること に他ならない)。

【0038】バラメータ値あるいは時系列テーブルを変 間をいう。片脚支持期においてロボット1の自重を支持 30 えることによって、様々な歩容が生成される。しかし、 パラメータ値あるいは時系列テーブルを十分な配慮もせ ずに設定しただけでは、作成された歩容が前記の歩容条 件をすべて満足しているか否かは分からない。

> 【0039】特に、長期的歩行に適した終端上体位置お よび速度の範囲が分かっていたとしても、ZMP軌道に 基づいて上記した条件1)を満足する上体の軌道を歩容 発生アルゴリズムに従って生成する場合には、発生した 歩容の終端での上体位置と速度の両方がその範囲に入る ようにZMP軌道に関するパラメータを設定すること 40 は、極めて難しい。

【0040】その理由は次の通りである。

【0041】理由1)上体は、一旦、ZMPから遠くに 離れると、さらに遠くに離れようとする発散傾向があ る。これを説明するために、ロボットの上体の挙動に近 い倒立振子の挙動を例に挙げる。

【0042】倒立振子は重心の床投影点が支点からずれ ると、ずれが発散して倒れる。しかし、そのときも倒立 振子の慣性力と重力の合力は支点上に作用し(即ち、乙 MPが支点に一致し)、支点から受ける床反力に釣り合 その瞬間における慣性力と重力と床反力の関係を表すだけのものである。

23

【0043】動力学的平衡条件を満足していればロボットの長期歩行が保証されたように錯覚しやすいが、ロボットの姿勢が崩れているか否かとは全く関係がない。倒立振子の重心が支点の真上から離れると、ますます遠くに離れようとする傾向があるように、ロボットの重心が ZMPの真上から遠くに離れるとますます遠くに離れようとする発散傾向がある。

【0044】理由2)片脚支持期においてZMPが支持脚足平接地面内になければならないなどの厳しい制約条件があるために、上体の加減速パターンを恋意的に設定することができず、位置を合わせようとすると速度が合わず、速度を合わせようとすると位置が合わず、なかなか両方を同時に一致させることは難しい。

【0045】歩容の説明を続けると、歩容は、歩容バラメータによって記述される。歩容バラメータは、運動バラメータと ZMPパラメータ(より一般的に表現すれば、床反力バラメータ)から構成される。尚、この明細書で「床反力バラメータ」なる語は、「床反力の時間的 20なパターンに関するパラメータ」を意味するものとして使用する。 ZMPパラメータは後で図35に示すように、X,Y,Z座標(方向)について折れ線グラフ状のZMP軌道の折れ点の位置と通過時刻で示す(X座標のみ図示)。

【0046】運動パラメータは、足平(軌道)パラメータと上体(軌道)パラメータとから構成される。尚、足平軌道パラメータは、初期(離床時)遊脚位置および姿勢、終端(着床時)遊脚位置および姿勢、両脚支持期時間、片脚支持期時間などを含む。

【0047】上体軌道パラメータは、上体の姿勢(空間上の上体24の向きあるいは傾き)を決定するパラメータ、上体高さ(乙方向の値)を決定するパラメータ、初期の上体位置(変位)および速度パラメータなどから構成される。

【0048】図5は、フルモデル補正入り歩容生成部100の詳細を示すブロック図である。

【0049】図示の如く、フルモデル補正入り歩容生成部100は歩容バラメータ決定部100aを備え、歩容パラメータ決定部100aは、目標歩容が満たさなけれ 40ばならない、前記した条件を満足するように、バラメータ値あるいは時系列テーブルを決定する。

【0050】決定された歩容パラメータは目標(および仮)瞬時値発生部100bに入力される。目標(および仮)瞬時値発生部100bは入力値に基づき、先に本出願人が特開平5-318339号および特開平5-324115号公報などで提案した技術を用い、目標足平位置姿勢、目標ZMPおよび目標上体姿勢、より詳しくは、それらの現在時刻tにおける目標瞬時値および仮瞬時値を算出(発生)する。尚、『姿勢は空間上の傾斜ま

たは向き」を意味する。また、図示の簡略化のために、 図5を含む図のほとんどにおいて目標上体姿勢の表示を 省略する。

【0051】目標(および仮)瞬時値発生部100bで 第出(発生)された目標足平位置姿勢、目標ZMPおよび目標上体姿勢(より詳しくは、それらの目標瞬時値および仮瞬時値)は、フルモデル補正部100cに入力される。フルモデル補正部100cは、本出願人が、近時、特願2000-352011号で提案した単純化モデル100c1と、この出願で提案されるフルモデル100c2(後述)を備え、単純化モデルに基づいて入力値から目標上体位置(より詳しくは目標上体水平位置)を決定すると共に、さらに決定された目標上体位置をフルモデル(後述)を用いて修正する。

【0052】尚、単純化モデル100c1をフルモデル補正部100cに含ませない構成も可能である。また、フルモデル100c2は、後述するように、逆フルモデル(逆動力学フルモデル)と順フルモデル(順動力学フルモデル)のいずれかを含む。

【0053】フルモデル補正入り歩容生成部100は、 具体的には、単に単純化モデルに基づいて生成した歩容 よりも高い精度で動力学的平衡条件を満足するように、 単純化モデルを用いて算出された目標上体位置を補正す る、あるいは目標ZMPまわりのフルモデル補正モーメ ントのZMP換算値を出力する、あるいは目標上体位置 を補正すると共に、目標ZMPまわりのフルモデル補正 モーメントのZMP換算値を出力する。尚、目標ZMP まわりのフルモデル補正モーメントは、ZMP換算値と することなく、モーメントのまま出力しても良い。

30 【0054】ロボット1の関節は図1に示すように12 関節から構成されているので、得られた両足平の位置・ 姿勢と上体位置・姿勢とから、後述するように逆キネマ ティクス演算によって目標関節変位が一義的に決定され る。即ち、今回のロボットの目標姿勢が一義的に決定さ れる。

【0055】理解の便宜のため、とこで、本出願人が上記した特願2000-352011号で提案した単純化モデルに基づいて自在かつリアルタイムに目標歩容を生成する手法を説明する。

【0056】前提から説明すると、理想的目標歩容は物理法則に逆らうことができないので、希望する状態にすぐに到達することはできない。許容範囲内でZMPの軌道、着地位置および着地時期などの歩容パラメータを変更することによって、時間をかけて希望する状態に遷移しなければならない。特に、図示の2足歩行ロボットの動力学系はZMPを入力、上体位置を出力とする系とみなすと発散系になるので、慎重に歩容パラメータを変更しないと、正常な状態に復元するのが困難となる。

【0057】従って、目標歩容を自在かつリアルタイム 50 に生成するときは、ロボットの将来の挙動を予測し、ど のように歩容パラメータ値を設定すれば、ロボットの将来、例えば数歩先の挙動が発散しないか否かを判断する と共に、発散する可能性が予測されるときは発散を防止 するように歩容を調整することが、望ましい。

25

【0058】しかしながら、図6に示すような多質点系モデル(フルモデル)を用いるとき、その動力学演算は演算量が多くかつ非線形性が強いので、終端状態をリアルタイムに求めるのは、ロボットに搭載可能な通常のCPU(第1の演算装置60)の能力では困難である。

【0059】そこで、先に提案した技術においては、ロボット1の動力学的挙動を記述する動力学モデルを単純化し、リアルタイムかつ解析的に将来挙動が予測計算できるようにした。図7に、その単純化した動力学モデルを示す。図示の如く、この動力学モデルは3質点モデルであり、デカップルド、即ち、脚部の動力学と上体の動力学が相互に非干渉に構成されると共に、ロボット全体の動力学は、それらの線形結合で表される。図8は、歩容生成部の動力学演算部において、図7に示す動力学モデルを用いて行われる動力学演算を示すブロック図である。

【0060】以下、この動力学モデルを説明する。

1) とのモデルは、倒立振子、支持脚足平質点、遊脚足平質点の3質点から構成される。

2) 支持脚足平質点は、支持脚足平にローカルに設定された座標系(具体的には、原点が足首中心から足底への垂直投影点、XY平面が足底に一致し、かかとからつまさきへの向きをX軸にとったXYZ直交座標系であり、これを以降、「支持脚ローカル座標系」と呼ぶ)上のある固定された点に設定される。この固定された点の支持脚ローカル座標系上の座標を以降、「支持脚足平質点オフセット」と呼ぶ。

【0061】同様に、遊脚足平質点は、遊脚足平にローカルに設定された座標系(これを以降、「遊脚ローカル座標系」と呼ぶ)上のある固定された点に設定される。この固定された点の遊脚ローカル座標系上の座標を以降、「遊脚足平質点オフセット」と呼ぶ。

【0062】尚、支持脚が床に全面的に密着しているときの足首位置の床への鉛直投影点を原点とし、床に固定され、支持脚足平の前方向をX軸、左方向をY軸、鉛直方向をZ軸にとった座標系を「支持脚座標系」と呼ぶ(これは、上記した支持脚ローカル座標とは異な

る。)。ことわらない限り、位置、速度、力などは支持脚座標系で示す。

3)倒立振子は、水平に移動するフリーの支点aと、ひとつの質点bと、支点と質点を結ぶ質量のない可変長のリンクcから構成される。また、リンクが傾いてもリンクが伸縮し、支点から見た質点高さが一定値に保たれるものとする。

【0063】倒立振子質点は、物理的意味としては上体 24の質点(必ずしも重心位置を意味しない)に対応す 50

る。従って、倒立振子質点と上体質点は、今後、同意語 として扱う。倒立振子質点の位置(より広義に言えば変 位)を、以降、略して「倒立振子位置」と呼ぶ。

【0064】4)上体の水平位置は、倒立振子の水平位置から幾何学的に決定される。具体的には、例えば、上体にローカルに設定された座標系(これを以降、「上体座標系」と呼ぶ)上のある固定された代表点(この点を以降、「上体代表点」と呼ぶ)の水平位置(支持脚座標系から見たXY座標)が、倒立振子の水平位置に一致するように決定される。即ち、図7に示すように、上体代表点と倒立振子質点bは、同一鉛直線上にあるように決定される。上体代表点の上体座標系上の水平座標(XY座標)を「上体質点オフセット」と呼ぶ。

【0065】次いで、図示の動力学演算モデルに関する 変数およびパラメータなどの記述法について説明する。 説明の便宜上、動力学演算モデルに関する変数およびパ ラメータなどを以下のように定義し、記述する。

【0066】倒立振子のZMPは、支点aの位置にある。なぜなら、ZMPは定義からモーメントが発生しない点のことであり、フリーの支点aにはモーメントが発生しないからである。そこで、倒立振子支点位置を倒立振子自身のZMP位置(ZMP相当値)ということで、以降、「倒立振子ZMP」と呼び、「ZMPpend」と記述する。

【0067】各質点の質量と位置は次のように記述する。

msup:支持脚質点質量

mswg:遊脚質点質量

mb : 倒立振子質点質量(上体質点質量)

30 mtotal:ロボット質量 (= mb + msup + mswg)

mfeet:両脚質量(= msup + mswg)

xsup:支持脚質点位置

xswq:遊脚質点位置

xb : 倒立振子位置(上体質点位置)

以降、ことわらない限り、xbは3次元ベクトル(XYZ 座標ベクトル)で表わす。倒立振子の高さは、倒立振子 の支点から質点までの高さを意味し、hと記述する。

【0068】d(xb)/dtはxbの1階微分を表わし、倒立振子の速度を示す。d2(xb)/dt2はxbの2階微分を表わし、

40 倒立振子の加速度を示す。gは重力加速度定数を示す。 Gは重力加速度ベクトルを示し、X, Y成分が0、Z成 分が-gであるベクトルと定義する。

【0069】図示の3質点モデルにおいて、脚質点の総 慣性力がある作用点Pまわりに作用するモーメントを、 点Pまわりの脚総慣性力モーメントと定義する(慣性力 と重力の合力を「総慣性力」と呼ぶ)。作用点Pの座標 (あるいは位置)をxpと置く。

【0070】下記の数1は、点Pまわりの脚総慣性力モーメントの厳密な動力学的定義式である。

[0071]

【数1】

点Pまわりの脚総慣性カモーメント $= m \sup(x \sup - xp) * G - m \sup(x \sup - xp) * d2(x \sup) / dt2$ + mswg(xswg - xp) * G - mswg(xswg - xp) * d2(xswg) / dt2

【0072】脚ZMPをZMPfeet と記述し、脚ZMPを 数2で定義する。ただし、脚ZMPの高さ(ZMPfeet の Z成分)は、点P位置の高さと同一とする。このよう に、脚ZMPは、脚部の運動によって発生する慣性力と*

27

* 重力の合力(総慣性力)に疑似的に対応させた値であ

[0073]

【数2】

点Pまわりの脚総慣性力モーメント=mfeet *(ZMPfeet-xp)*G

【0074】本来、図1に示すロボット1の動力学は非 線形であるが、近似して目標 ZMP、脚 ZMP(ZMPfee t) 、および倒立振子 ZMP (ZMPpend) の間には数3の ※

※線形関係を与える。 [0075]

【数3】

ZMPpend=mtotal/mb*目標ZMP-mfeet/mb*ZMPfeet

【0076】一般に、線形倒立振子の挙動を表わす微分 方程式は、数4で表わされる。 \star

★【0077】

【数4】

d2(xb)/dt2の水平成分=g/h*(xbの水平成分-ZMPpendの水平成分)

【0078】ただし、作用点Pは、モデルの近似精度が 高くなるように設定される。例えば、作用点Pは、図9 のタイム・チャートに示すように、直前(前回)歩容の 20 支持脚座標系上の原点から、今回歩容の支持脚座標系の 原点に、両脚支持期の間に直線的に等速移動する点に設 定される。

【0079】先の出願に係る脚式移動ロボットの歩容生 成装置で提案する動力学モデルは、図7に示すような足 平、上体と各質点の位置の関係を表わす前記オフセット と、上記の式(数1から4)で表わされる。これによ り、後述の如く、将来挙動予測が容易となった。

【0080】図8を参照してその動力学演算部の動作を 説明すると、動力学演算部は脚ZMP算出器200を備 え、脚2MP算出器200は、数1および数2ならびに 図9で示される作用点Pに基づいて脚ZMP (ZMPfeet)を算出する。

【0081】次いで、上記算出したZMPfeet をmfeet/mt otal倍(第2の係数)したものを、目標ZMPから減 じ、さらにこれを、mtotal/mb 倍(第1の係数)するこ とによって、倒立振子ZMP(ZMPpend)を算出する。即 ち、倒立振子ZMP(ZMPpend)は、前記ロボットの質量 mtotalと前記上体の質点の質量mbの比に前記目標 ZMP を乗じて得た積から、前記脚部の質量mfeet と前記上体 40 の質点の質量mbの比に脚部のZMP相当値ZMPfeet を乗 じて得た積を減算して算出される。この処理は、数3に 相当する。

【0082】倒立振子の挙動は、数4で表現され、倒立 振子ZMP(ZMPpend)から倒立振子質点水平位置(変 位)xbが算出される。

【0083】さらに、図8に示す如く、動力学演算部は 上体位置決定器202を備え、上体位置決定器202 は、倒立振子質点水平位置から上体の水平位置xbを決定 する。具体的には、上体位置決定器202は、前述した 50 い。

上体代表点(図7に示す)の水平位置が、倒立振子の水 平位置に一致するように上体の水平位置を決定する。

【0084】上記をより一般的に言えば、このモデル (第1のモデル)は、ロボット1を、脚部2の所定位置 あるいはその付近に設定された少なくとも1つの質点 (慣性モーメントがあっても良い)と、床面上を移動自 在な支点と上体24の所定位置に設定された少なくとも 1つの質点に対応する質点からなる倒立振子とでモデル 化してなるモデルであると共に、動力学演算部(第1モ デル上体位置算出手段)は、少なくとも脚部2の運動に よって発生する慣性力と重力の合力に疑似的に対応する 脚部のZMPに相当する脚部ZMPZMPfeet を上体24 30 の挙動に依存せずに算出する脚部 ZMP算出手段と、少 なくとも前記算出された脚部ZMPZMPfeetと目標ZM Pに基づき、倒立振子の支点のZMP相当値ZMPpend を 算出するZMP相当値算出手段と、算出された倒立振子 の支点のZMP相当値ZMPpend に基づいて前記倒立振子 の変位(位置)xbを算出する倒立振子変位算出手段と、 および算出された倒立振子の変位xbに基づいて第1のモ デルの上体位置を示すモデル上体位置を決定する第1モ デル上体位置決定手段とを備える如く構成した。

【0085】また、倒立振子の支点のZMP相当値ZMPp end が、目標ZMPに第1の係数 (mtotal/mfeet) を乗 じて得た積から、脚部ZMPに第2の係数 (mfeet/mota 1)を乗じて得た積を減算して算出される如く構成した。 【0086】次いで、歩容の継続的姿勢安定性について 述べると、ここまで述べてきた動力学モデル自身は、単 に、各瞬間における動力学的平衡条件を近似的に満足す るように、目標ZMPから上体軌道を算出するだけのも のであり、上体軌道が発散すること(図10に示すよう に上体24の位置が両足平22R, Lの位置からかけ離 れた位置にずれてしまうこと)を防止するものではな

【0087】以下では、上体軌道の発散を防止し、上体 と両足平の間の適切な位置関係を継続させるための手段 について説明する。

29

【0088】最初に、そのための予備知識として、将来の上体軌道を解析的に求める上で特に重要な、線形倒立振子の性質について議論する。とこでは、離散化モデルを用いて説明する。

【0089】先ず、倒立振子に関し、新たに以下の変数 やパラメータを定義する。

ω0: 倒立振子の固有角周波数

 $\omega 0 = \text{sqrt}(g/h)$ (ただし、sqrtは平方根を表わす。)

Δt: 刻み時間

x[k]: kステップ目(時刻 k△t)の倒立振子位置

v[k]: kステップ目の倒立振子速度

ZMPpend[k]: kステップ目の倒立振子ZMP(詳しく*

* は、時刻 k \triangle t から時刻 (k+1) \triangle t まで、入力 ZMPpend [k]の 0 次ホールドした信号が入力、即ち、その時刻の間は同一信号が倒立振子に入力され続けられるものとする。)

さらに、q [k]とp [k]を数5で定義する。

[0090]

【数5】

 $q[k]=x[k]+v[k]/\omega 0$ $p[k]=x[k]-v[k]/\omega 0$

【0091】倒立振子の運動方程式を離散化し、q[k]とp[k]に関して解くと、以下の数6と数7が得られる。尚、expは指数関数(自然対数)を表す。

[0092]

【数6】

 $p[k] = \exp(-\omega 0k\Delta t) * (p[0] + (\exp(\omega 0\Delta t) - 1) \sum_{i=0}^{k-1} (\exp(i\omega 0\Delta t) * ZMPpend[i]))$

10

[0093]

※ ※【数7】

 $q[k] = \exp(\omega 0k\Delta t) * (q[0] + (\exp(-\omega 0\Delta t) - 1) \sum_{i=0}^{k-1} (\exp(-i\omega 0\Delta t) * ZMPpend[i]))$

【0094】とれらの式の意味を考える。

【0095】ある有限な定数ZMPminおよびZMPmaxに対し、数8を常に満足するように、ZMPpend[i]が設定されるものと仮定する。

[0096]

【数8】

★ ZMPmin ≤ZMPpend[i] ≤ZMPmax

【0097】数8の中辺と右辺の関係を、数6に代入すると、下記の数9が得られる。

[0098]

【数9】

 \star

 $p[k] \leq \exp(-\omega 0k\Delta t) * (p[0] + (\exp(\omega 0\Delta t) - 1) \sum_{i=0}^{k-1} (\exp(i\omega 0\Delta t) * ZMP_{max}))$

【0099】等比級数の和の定理から、下記の数10が 得られる。

[0100]

【数10】

☆【0101】従って、数9は、数11のように書き直す30 ことができる。

[0102]

【数11】

 $\sum_{k=0}^{k-1} \exp(i\omega \theta \Delta t) = (1 - \exp(k\omega \theta \Delta t)) / (1 - \exp(\omega \theta \Delta t))$

 $p[k] \le exp(-\omega 0k\Delta t) * p[0] + (1 - exp(-\omega 0k\Delta t)) * ZMPmax$

【0103】同様に、数8の左辺と中辺の関係から、数

12を得ることができる。

◆【0104】 【数12】

▼ \X12

 $p[k] \ge \exp(-\omega 0k\Delta t) * p[0] + (1 - \exp(-\omega 0k\Delta t)) * ZMPmin$

【0105】 $\exp(-\omega 0 k \Delta t)$ はk が無限大になる ± 0 に 収束 (漸近) するので、数 ± 11 , ± 12 は、ZMPpend が変動しても ± 12 は発散せず、いずれはZMPmax ± 12 ZMPminの間に入ることを意味する。

【0106】さらに、具体例として、ZMPpend がある時点以降、一定値ZMPOになる場合を考える。この場合、その時点を改めて時刻0とすると、数6は、数13のように書き直すことができる。これは、p[k]が、その初期値にかかわらず、ZMPOに等比級数的に収束することを意味する。

[0107]

【数13】

【0108】より一般的には、p[k]は、ある時点でどのような値であっても、その後のZMPpend 波形がある同一波形であれば、ZMPpend 波形に追従する、ある軌道に収束する。

 $p[k] = \exp(-\omega 0k\Delta t) * (p[0] - ZMP0) + ZMP0$

【0109】一方、q [k]は、数7から明らかなよう に発散する傾向がある。

【 0 1 1 0 】 具体例として、ZMPpend がある時点以降、一定値ZMP0になる場合を考える。この場合、一定値ZMP0になる時点を改めて時刻 0 とすると、数 7 は、数 1 4 となり、これは、q[0] = ZMP0 ではない限り、q [k]

50 が、ZMPOから等比級数的に発散することを意味する。

[0111] 【数14】

れば良いことなる。

$q[k] = \exp(\omega 0k\Delta t) * (q[0] - ZMP0) + ZMP0$

31

【0112】そこで、以降、数5によって定義されるp[k]を収束成分、q[k]を「発散成分」と呼ぶ。 【0113】以上より、上体軌道の発散を防止し、上体と両足平の間の適切な位置関係を継続させるためには、事実上、収束成分は無視して構わず、支持脚から見た発散成分を歩行に支障ない範囲から越えないように管理す

【0114】即ち、上体軌道の発散を防止し、上体と両足平の間の適切な位置関係を継続させるためには、発散成分を歩行に支障ない範囲(姿勢が大きく崩れない範囲)から越えないように、ZMP軌道パラメータなどを適切に決定すれは良い。

【0115】そとで、先に提案した技術においては、今回生成する歩容につながるべき、長期的な継続性が保証された歩容(後述する定常旋回歩容)を仮に想定するととによって、適切な発散成分の値を決定するようにした。

【0116】以上の如く、先に提案した技術においては、2歩先までの遊脚足平着地位置姿勢、着地時刻の要求値(要求)を入力として、目標上体位置・姿勢軌道、目標足平位置姿勢軌道、目標ZMP軌道を決定するようにした。このとき、歩容パラメータの一部は、歩行の継続性を満足するように修正される。尚、生成しようとしている歩容を「今回歩容」、その次の歩容を「次回歩容」、さらにその次の歩容を「次次回歩容」と呼ぶ。

【0117】とのように、先に提案した技術においては、ロボット1の動力学的挙動を記述する動力学モデルを単純化し、リアルタイムかつ解析的に将来挙動が予測できるように構成し、それによって、床反力(目標ZMP)を含む歩容を、自由かつリアルタイムに生成して、任意の歩幅、旋回角、歩行周期などを実現できるようにした。

【0118】しかしながら、その提案技術においては、 リアルタイム性を重視して単純化モデルとして大幅に単 純化したモデルを用いると、動力学的平衡条件を満足す る状態から大幅にずれるようになる。言い換えれば、Z MPの誤差が大きくなる。

【0119】従って、この実施の形態に係る脚式移動ロボットの動作生成装置においては、そのような先に提案した単純化モデルを用いて歩容などの動作を生成するときも、生成された動作が、より一層精度良く動力学的平衡条件を満足するように動作を修正するようにした。尚、この実施の形態は、先に提案した単純化モデルを用いて歩容などの動作を生成する場合に止まらず、テーブル化された歩容に基づいて歩容などの動作を生成する場合の動作修正にも妥当する。

【0120】図5のフルモデル補正入り歩容生成部10

0の説明に戻ると、この実施の形態で「フルモデル」は、今回歩容パラメータを決定する際に用いるものとは 異なるロボット動力学モデルを意味する。これは、今回 歩容パラメータを決定する際に用いるものよりも近似精 度の高いロボット動力学モデルであることが望ましい。 図示例で説明すれば、先の提案技術に係る単純化モデル (図7に示す)を今回歩容パラメータの決定に用いたこ とから、それよりも、近似精度の高い、例えば図6に示す多質点モデルのようなロボット動力学モデルを意味す 10 る(質点のまわりに慣性モーメントを設定するものであっても良い)。

【0121】尚、この明細書において、目標足平位置姿勢、目標上体姿勢、目標ZMPに基づいて(入力して)上体位置を算出する(出力させる)のに使用するモデルを「順動力学モデル」と呼び、目標足平位置姿勢、目標上体姿勢、上体位置に基づいて(入力して)目標ZMPを算出する(出力させる)のに使用するモデルを「逆動力学モデル」と呼ぶ。

【0122】フルモデル補正部100cが備えるフルモ 20 デルは、逆動力学フルモデル(しばしば「逆フルモデル」と略称)または順動力学フルモデル(しばしば「順フルモデル」と略称)を備える。一般的には、逆動力学モデルの演算に比べ、順動力学モデルの演算は、解析的に求めることができないので、探索的に上体位置を求める必要があり、演算量が多くなりがちである。

【0123】次いで、この実施の形態に係る脚式移動ロボットの動作生成装置の動作、具体的には、歩容の修正手法を説明する。

【0117】とのように、先に提案した技術において 【0124】図11は、そのフルモデル補正入り歩容生は、ロボット1の動力学的挙動を記述する動力学モデル 30 成部100の歩容生成処理を示すフロー・チャート(構を単純化し、リアルタイムかつ解析的に将来挙動が予測 造化フロー・チャート)である。

【0125】以下説明すると、まずS10において種々の初期化作業を行い、S12を経てS14に進み、制御周期毎のタイマ割り込みを待つ。制御周期は Δ tである。次いでS16に進み、歩容切り変わり目であるか否かを判断し、肯定されるときはS18に進むと共に、否定されるときはS28に進む。

【0126】S18に進むときは時刻 tを0に初期化して現在時刻とし、次いでS20に進み、次回歩容支持脚40 座標系、次次回歩容支持脚座標系、今回歩容周期および次回歩容周期を読み込む。これらの歩容の要求は、あらかじめ歩行スケジュールとして記憶しておいても良く、あるいはジョイスティック44などの操縦装置からの指令(要求)とそのときまでの歩行履歴を基に決定しても良い。

【0127】次いで、S22に進み、今回歩容初期遊脚 足平位置姿勢などの今回歩容の歩容パラメータを仮決定 (仮に算出)する。

【0128】今回歩容初期遊脚足平位置姿勢は、今回支 50 持脚座標系から見た現在遊脚位置姿勢にする。今回歩容 (18)

初期支持脚足平位置姿勢は、今回支持脚座標系から見た 現在支持脚位置姿勢にする。今回歩容終端遊脚足平位置 姿勢は、今回支持脚座標系から見た次回支持脚座標系に 対応して決定する。(即ち、今回歩容終端遊脚足平位置 姿勢から足平を床に接触させたまま、すべらないように 足平を水平まで回転させたときの位置姿勢が、次回支持 脚座標系となるように設定する。)

33

【0129】今回歩容終端支持脚足平位置姿勢は、現在 支持脚位置姿勢から足平を床に接触させたまま、すべら 位置姿勢とする。従って、床が平面であるならば、今回 歩容終端支持脚足平位置姿勢は、今回支持脚座標系に-致する。尚、との歩容では、歩容終端において支持脚足 平は水平になるが、必ずしも、とのように設定する必要 はない。

【0130】今回歩容のZMP軌道パラメータは、安定 余裕が高く、かつ急激な変化をしないように決定する。

(接地面を含む最小の凸多角形 (いわゆる支持多角形) の中央付近にZMPが存在する状態を安定余裕が高いと 言う(詳細は特開平10-86081号公報に記 述))。ただし、今回歩容のZMP軌道パラメータは、 仮決定されただけであり、後述するように修正される。

【0131】次いでS24に進み、今回歩容につながる 定常旋回歩容の歩容パラメータを決定する。尚、この明 細書で「定常旋回歩容」は、その歩容を繰り返したとき に歩容の境界において運動状態に不連続が生じないよう な周期的歩容を意味するものとして使用する。

【0132】定常旋回歩容は、通常、第1旋回歩容と第 2旋回歩容とからなる。尚、ここで「旋回」なる用語を 用いたのは、旋回率を零とするときは直進を意味するの で、直進も広義の意味で旋回に含ませることができるか らである。定常旋回歩容は、歩容生成部100で今回歩 容の終端における、前記した発散成分を決定するために 暫定的に作成されるものであり、フルモデル補正入り歩 容生成部100からそのまま出力されるものではない。

【0133】先ず、今回歩容、第1旋回歩容、第2旋回 歩容の順に脚軌道がつながるように、第1旋回歩容と第 2 旋回歩容の歩容パラメータ中の脚軌道の境界条件を設

【0134】具体的には、第1旋回歩容初期遊脚足平位 置姿勢は、次回歩容支持脚座標系から見た今回歩容終端 支持脚足平位置姿勢とする。第1旋回歩容初期支持脚足 平位置姿勢は、次回歩容支持脚座標系から見た今回歩容 終端遊脚足平位置姿勢とする。

【0135】第1旋回歩容終端遊脚足平位置姿勢は、今 回歩容終端遊脚足平位置姿勢の決定手法と同様に、次回 歩容支持脚座標系から見た次次回歩容支持脚座標系に対 応して決定する。第1旋回歩容終端支持脚足平位置姿勢 は、次回歩容支持脚座標系に一致させた足平を床に接触 させたまま、すべらないように足平を床に面接触するま で回転させたときの位置姿勢とする。(従って、床が平 面であるならば、第1旋回歩容終端支持脚足平位置姿勢 は、次回支持脚座標系に一致する。)

第2 旋回歩容初期遊脚足平位置姿勢は、次次回歩容支持 脚座標系から見た第1旋回歩容終端支持脚足平位置姿勢 にする。第2旋回歩容初期支持脚足平位置姿勢は、次次 回歩容支持脚座標系から見た第1旋回歩容終端遊脚足平 位置姿勢にする。

【0136】第2旋回歩容終端遊脚足平位置姿勢は、今 ないように足平を床に面接触するまで回転させたときの 10 回支持脚座標系から見た今回歩容終端遊脚足平位置姿勢 にする。第2旋回歩容終端支持脚足平位置姿勢は、今回 支持脚座標系から見た今回歩容終端支持脚足平位置姿勢 にする。

【0137】 これらの関係を図12に示す。

【0138】第1旋回歩容および第2旋回歩容の歩行周 期は、次回歩容周期と同一にする(尚、同一にすること は必ずしも必要ではないが、次回歩容周期に応じて決定 するのが好ましい)。今回歩容、第1旋回歩容および第 2 旋回歩容の上記以外の運動パラメータ(両脚支持期時 20 間などの時間パラメータを含む)は、上記決定されたパ ラメータに応じて、歩容の条件(電動モータ(アクチュ エータ)の速度が許容範囲に入っていることなど)を満 足するように適宜決定する。

【0139】第1旋回歩容および第2旋回歩容のZMP 軌道パラメータも、安定余裕が高くかつ急激な変化をし ないように決定する。

【0140】ところで、上体代表点の初期位置と速度を ある値X0, V0に設定すると、図7に示す単純化モデ ルを用いて上記第1旋回歩容と第2旋回歩容を生成し、 30 再び第1旋回歩容の生成を開始するときの初期上体代表 点位置速度が、前記設定した初期上体代表点位置速度の 値X0, V0に一致する。この値X0, V0を「定常旋 回歩容の初期上体代表点位置速度」と呼ぶ。この関係を 図に表すと、図13のようになる。ただし、図でX0を (x0, y0)と表すこととし、V0については表記は 省略した。

【0141】このように設定すると、図7に示す単純化 モデルを用いて第1旋回歩容と第2旋回歩容を交互に繰 り返し生成しても、演算誤差が蓄積しない限り、第1旋 回歩容の初期上体代表点位置速度は、値X0、V0にな る。即ち、歩行の継続性が保証される。このときの発散 成分、即ち、X0 + V0/ω0 を、「定常旋回歩容の初期発 散成分」と呼ぶ。

【0142】図11の説明に戻ると、次いでS26に進 み、今述べた定常旋回歩容の初期発散成分を求める。 尚、その詳細は先に提案した特願2000-35201 1号に記載されているので、詳細な説明は省略する。

【0143】次いで、S28に進み、今回歩容を修正す る。具体的には、今回歩容の終端発散成分が定常旋回歩 50 容の初期発散成分に一致するように、今回歩容のパラメ

*【0150】図15はその歩容の補正手法を表にしたも

のである。該当する第n実施の形態を『実n』と示す。

ータを修正する。これも、その詳細は先に提案した特願 2000-352011号に記載されているので、詳細 な説明は省略する。

【0144】次いでS30に進み、決定された歩容バラメータから今回歩容の目標瞬時値(および仮目標瞬時値)を発生させる(決定あるいは算出する)。

【0145】図14はその処理を示すサブルーチン・フロー・チャートである。

【0146】以下説明すると、S100において、今回 歩容バラメータを基に、時刻(現在時刻) t における目 10標(仮) ZMPを求め、S102に進み、今回歩容バラメータを基に、時刻 t における目標足平位置姿勢を求める。

【0147】次いでS104に進み、今回歩容パラメータを基に時刻tにおける目標上体姿勢を求める。

【0148】図11フロー・チャートの説明に戻ると、 次いでS32に進み、フルモデルを用いた補正歩容の発生(歩容の補正)を行う。即ち、図5を参照して説明したように、補正目標上体位置および/または目標 ZMPまわりのフルモデル補正モーメントの ZMP 換算値の算 20出(決定)などを行う。

【0149】図11フロー・チャートのS32の歩容補正手法がこの出願に係る脚式移動ロボットの動作生成装置の特徴をなすと共に、以下、それについて第1の形態以降において種々の例を述べるので、その歩容の補正手法をここで概説する。

フルモデルΖΜΡ=目標ΖΜΡ

+目標ZMPまわりのフルモデル補正モーメントのZMP換算値

[0155]

...式15

あることを前提とするとき、厳密に動力学的平衡条件を満足するように歩容が補正されることを意味する。このように、フルモデル補正部100cは、目標上体軌道、目標足平軌道および目標ZMPから構成される目標歩容の中の、目標上体軌道を補正する、および/または目標ZMPまわりに目標床反力モーメントを発生させることにより(本来の目標歩容では0)、歩容を補正する。上記で、「フルモデルZMP」は、逆動力学フルモデル(逆フルモデル)を用いて算出される(から出力され

【0156】とれは、図示のフルモデルが厳密モデルで

る) ZMPを意味する。尚、第8から第13の実施の形 40 態にあっては、フィードフォワード型の補正であるため に厳密ではないが、ほぼ動力学的平衡条件を満足するよ うに歩容が修正される。

【0157】図示の如く、第1の実施の形態においては、目標足平位置姿勢、目標上体姿勢(図示省略)および単純化モデルを用いて単純化モデル上体位置(目標上※

【0151】補正手法は、逆動力学フルモデル(逆フルモデル)を用いる手法と、順動力学フルモデル(順フルモデル)を用いる手法に大別される。それぞれ、単純化モデル歩容のZMP(単純化モデルに入力される目標ZMP)を補正しない手法と、補正する手法に大別される。 【0152】さらに、逆動力学フルモデルを用いる手法

【0152】さらに、逆動力学フルモデルを用いる手法で、かつ単純化モデル歩容のZMPを補正しない手法は、補正用摂動動力学モデル(以降「摂動モデル」と略称する)を用いる手法と、摂動モデルを用いない手法に分かれる。さらに、摂動モデルを用いる手法は、フルモデルのフィードバック(F/B)補正を行うものとフィードフォワード(F/F)補正を行うものに分かれる。逆動力学フルモデルを用いる手法で、かつ単純化モデル歩容のZMPを補正する手法も、単純化モデル歩容のZMPを補正しない場合と同様に分類される。

【0153】図16は、第1の実施の形態に係る動作生 の 成装置の歩容の補正手法を詳細に示す機能ブロック図で ある。

【0154】尚、図16に示す第1の実施の形態も含め、後述する第8から第13の実施の形態を除く、全ての実施の形態において、歩容の補正は、次式の条件を満足する。

30% 体位置)を算出する(目標上体位置は、図4の"補正目標上体位置"を補正する前の"目標上体位置"を意味する)。

【0158】具体的には、数1 および数2を用いて時刻 t およびそれ以前の目標足平位置姿勢から時刻 t における脚 ZMP (ZMPfeet)を算出する。次いで、数3を用いて倒立振子 ZMP (ZMPpend)を算出し、数4を用いて倒立振子 ZMPから倒立振子水平位置を算出し、上体代表点の水平位置が倒立振子質点水平位置に一致するように上体の水平位置を決定すると共に、本出願人が先に特開平10-86080号公報で提案した上体高さ決定手法を用いて上体高さを決定する。

【0159】さらに、決定した上体位置に基づき、逆フルモデルを用いてフルモデルZMPを算出し、次式に従ってフルモデルZMP誤差を算出する。

[0160]

フルモデルZMP誤差=フルモデルZMP-目標ZMP....式15a

【0161】次いでフルモデルZMP誤差を目標ZMP よこまわりのフルモデル補正モーメントのZMP換算値とし れるて決定(出力)するようにした。尚、この実施の形態お 50 る。

よび後述の実施の形態において、逆フルモデルに入力される目標上体姿勢は、説明の便宜のため、直立姿勢とすっ

【0162】言い換えれば、単純化モデルのモデル化誤差によって生じる動力学的平衡条件からのずれを、目標ZMPまわりの床反力モーメントによって打ち消す、即ち、脚部2が床面を押す動作を変化させ、目標ZMPまわりの床反力モーメントを発生させて上記のずれを打ち消すようにした。

37

【0163】尚、逆フルモデルを用いて算出する ZMP*

*を上記したように、フルモデルZMPという。単純化モデルを用いて算出した上体位置は補正目標上体位置として決定(出力)され、図4に示すロボット幾何学モデル103に入力される。

【0164】図16の構成を式で著すと、以下の2つの式のようになる。

[0165]

補正目標上体位置=単純化モデル上体位置. 式 1 6 a

目標ZMPまわりのフルモデル補正モーメントのZMP換算値

= フルモデル ZMP - 目標 ZMP. 式16 b

【0166】図11フロー・チャートの説明に戻ると、 次いでS34に進み、時刻tに△tを加え、再びS14 に戻り、上記の処理を繰り返す。

【0167】図4の説明に戻り、この実施の形態に係る動作生成装置の動作をさらに説明すると、フルモデル補正入り歩容生成部100で生成された目標歩容の瞬時値の中、目標上体姿勢および補正目標上体位置(軌道)は、後段のブロック102に送られ、その中の上記したロボット幾何学モデル(逆キネマティクス演算部)103にそのまま入力される。

【0168】また、その他の目標足平(足部)位置姿勢(軌道)、目標ZMP(軌道)、目標ZMPまわりのフルモデル補正モーメントのZMP換算値および目標全床反力(軌道)は、複合コンプライアンス動作決定部104に直接送られる一方、目標床反力分配器106にも送られ、そこで床反力は各足平(足部22R, L)に分配され、目標各足平床反力中心点および目標各足平床反力が決定されて複合コンプライアンス動作決定部104に送られる。

【0169】複合コンプライアンス動作決定部104から、機構変形補償付き修正目標足平位置姿勢(軌道)がロボット幾何学モデル103は、目標上体位置姿勢(軌道)と機構変形補償付き修正目標足平位置姿勢(軌道)を入力されると、それらを満足する12個の関節(10R(L)など)の関節変位指令(値)を算出して変位コントローラ108に送る。変位コントローラ108は、ロボット幾何学モデル103で算出された関節変位指令(値)を目標値としてロボット1の12個の関節の変位を追従制御する。

【0170】ロボット1に生じた実各足床反力は6軸力センサ34の出力から検出され、検出値は前記した複合コンプライアンス動作決定部104に送られる。また、ロボット1に生じた実傾斜角偏差は傾斜センサ36の出力から検出され、検出値は姿勢安定化制御演算部112に送られ、そこで姿勢傾斜を復元するための目標 ZMP(目標全床反力中心点)まわりの補償全床反力モーメントMdmd が算出される。

【0171】また、前記した目標 ZMPまわりのフルモデル補正モーメントの ZMP換算値はモーメント変換部 50

114でモーメント値に変換され、補償全床反力モーメントM dmd に加算される。よって得られた和のモーメントは複合コンプライアンス動作決定部104は、入力値に基づいて目標足平位置姿勢を修正することにより、目標ZMPまわりに上記のように得られた和のモーメントを発生させる。尚、目標ZMPまわりのフルモデル補正モーメントのZMP換算値は、上記の如く、目標ZMPまわりの補償全床反力モーメントM dmd に加算されるので、複合コンプライアンス動作決定部104あるいは目標床反力分配器106に直接、入力しなくても良い。

【0172】尚、図4に破線で示す上記した複合コンプライアンス動作決定部104などの構成および動作は、本出願人が先に出願した特開平10-277969号公報などに詳細に記載されているので、説明を以上に止める。

【0173】この実施の形態は上記の如く構成したので、先に提案した単純化モデルを用いて生成した歩容を修正して動力学的平衡条件を精度良く満足することができる。また、動力学的平衡条件を精度良く満足する歩容などの動作を生成することができると共に、その生成された動作に追従するようにロボット1を制御することで、姿勢安定性を高めることができる。

【0174】さらに、先に提案した特願2000-35 2011号に記載された自在な歩容の生成方法を組み合 わせることにより、脚式移動ロボットの床反力を含む歩 容を、動力学的平衡条件を精度良く満足しながら、自在 かつリアルタイムに生成して任意の歩幅、旋回角、歩行 周期を持つ歩容を生成することができると共に、生成さ 40 れた歩容同士の境界においてロボットの各部位の変位お よび速度が連続な歩容を生成することができる。

【0175】ただし、第1の実施の形態の補正手法は床 反力のみ操作する点で、演算量が少ない長所があるもの の、動作の安定余裕は、後述する実施の形態に比して若 干低下する。

【0176】図17は、この発明の第2の実施の形態に係る脚式移動ロボットの動作生成装置の動作、具体的には、図11フロー・チャートのS32の歩容の修正手法を説明する機能ブロック図である。

こ 【0177】第2の実施の形態の補正手法は、逆動力学

フルモデル(逆フルモデル)を用いる手法で、かつ単純 化モデル歩容の ZMP を補正しない手法であり、かつ摂 動モデルを用いる手法である。またフルモデルフィード バック補正型であると共に、第7の実施の形態までのフ ルモデルフィードバック補正型の基本をなす手法であ ス

39

【0178】図示の如く、第2の実施の形態においては、第1の実施の形態の構成に、フルモデルZMP誤差を積分(1/S。S;ラブラス演算子)して積分ゲイン(-K。フィードバックゲイン相当値)を乗じたものを 10 摂動モデルに入力し、摂動モデルの出力である摂動モデル上体位置を逆フルモデルに追加的に入力するフィードバックループを追加した。

【0179】即ち、目標足平位置姿勢、目標上体姿勢および後述する補正目標上体位置などに基づき、逆フルモデルを用いてフルモデルZMPを算出して目標ZMPとの差(フルモデルZMP誤差)を求め、求めた差を目標ZMPまわりのフルモデル補正モーメントのZMP換算値として決定(出力)すると共に、求めた差を積分して積分ゲインを乗じた積を摂動モデルZMPとして摂動モデルに入力し、その出力(摂動モデル上体位置)を単純化モデルを用いて算出した、(補正前の)目標上体位置に加算して補正目標上体位置を得、よって得た補正目標上体位置を逆フルモデルに入力するようにした。

【0180】尚、第1の実施の形態と異なり、単純化モデルを用いて算出した上体位置に、摂動モデルを用いて 算出される摂動モデル上体位置が加算され、その和が補 正目標上体位置として決定(出力)される。

【0181】との摂動モデルは、図18に示す如く、足平の位置姿勢は摂動させないという制約条件下における目標ZMPの摂動と目標上体水平位置の摂動の関係を表すモデルであり、より具体的には、図7に示す単純化モデルにおいて、脚質点の挙動を変えない(摂動しない)場合の、目標ZMPの摂動と目標上体水平位置の摂動の関係を表すモデルである。

【0182】尚、図示の構成において、逆フルモデルの 伝達関数を1/G(s)、摂動モデルのそれをGm

(s)とすると共に、単純化モデルのそれを(G(s)+モデル化誤差)で近似的に表わすと、図示の構成は図19に示すように近似することができ、さらには図20 および図21に示すように変形することができる。

【0183】また、摂動モデルの伝達関数Gm(s)が逆フルモデルの伝達関数の逆関数G(s)に近似されるとき、Gm(s)/G(s)は1とみなすことができるので、最終的に図22に示すように近似的に変形される。

【0184】上記から、第2の実施の形態の手法においては、目標 ZMPまわりのフルモデル補正モーメントの ZMP換算値は、モデル化誤差をカットオフ周波数Κ/2π[Hz](カットオフ角周波数Κ [rad/sec])のローカッ

トフィルタ (ハイパスフィルタ) に通したものとほぼ同一になることが理解できよう。

40

【0185】ところで、目標ZMPまわりにフルモデル補正モーメントを発生させることは、目標ZMPに目標ZMPまわりのフルモデル補正モーメントのZMP換算値を加えた値に、目標ZMPを修正することに相当する。目標ZMPは安定余裕などを考慮して理想パターンに設計されているはずであるから、目標ZMPまわりのフルモデル補正モーメントのZMP換算値は、常に0であることが、本来的には理想である。

【0186】第2の実施の形態の手法は、積分ゲインの 絶対値Kが十分に大きければ、目標ZMPまわりのフル モデル補正モーメントのZMP換算値はほぼ0になり、 理想に近くなる。

【0187】第2の実施の形態においては上記のように 構成したので、第1の実施の形態で述べた同様の効果を 得ることができると共に、安定余裕の高い歩容を生成す ることができる。

【0188】ただし、演算量が依然少ないことがが長所 20 であるものの、摂動モデルの上体位置が発散する傾向が あるため、必ずしも実用的ではない。

【0189】図23は、この発明の第3の実施の形態に係る脚式移動ロボットの動作生成装置の動作、具体的には、図11フロー・チャートのS32の歩容の修正手法を説明する機能ブロック図である。

【0190】第3の実施の形態に係る装置の補正手法は、逆動力学フルモデル(逆フルモデル)を用いる手法で、かつ単純化モデル歩容のZMPを補正しない手法であり、かつ摂動モデルを用いる手法である。またフルモジルフィードバック補正型であると共に、第7の実施の形態までの手法に共通する一般的な手法である。

【0191】従前の実施の形態と相違する点に焦点をお きつつ説明すると、第3の実施の形態においては、第2 の実施の形態の不都合、即ち、摂動モデルの発散を防止 するために、第2の実施の形態の構成に摂動モデル制御 則を追加し、その出力である摂動モデル制御用フィード バック量を摂動モデルに追加的に入力するようにした。 【0192】即ち、第1および第2の実施の形態と同 様、フルモデルZMP誤差を求め、求めたフルモデルZ 40 MP誤差を目標 ΖMPまわりのフルモデル補正モーメン トのZMP換算値として出力すると共に、各種状態量 (例えば、摂動モデルの倒立振子の位置・速度、フルモ デルの重心位置・速度) および/または目標歩容(目標 歩容パラメータ)を入力として摂動モデル制御則を用い て摂動モデル制御用フィードバック量を算出する。次い で算出した値を目標ZMPまわりのフルモデル補正モー メントのZMP換算値から減算してフルモデルZMP誤 差を求めると共に、求めたフルモデルZMP誤差を積分

して積分ゲイン (-K)を乗じて得た積に摂動モデル制 50 御用フィードバック量を加算し、よって得た和を摂動モ

デルに入力するようにした。

【0193】フルモデルZMP誤差の算出について補足 すると、第2の実施の形態で述べたように、摂動モデル の伝達関数が、逆フルモデルの伝達関数の逆関数に近似 されるとき、摂動モデルと逆フルモデルの伝達関数の積 はほぼ1であるから、摂動モデルZMP算出時に加算さ れた摂動モデル制御用フィードバック量によるフルモデ ルZMPの増加量は、摂動モデル制御用フィードバック×

41

* 量にほぼ一致する。これは、摂動モデルの発散を防ぐた めに意図的に追加したものであるから、単純化モデルの 誤差ではない。

【0194】従って、第3の実施の形態(から後述する 第7の実施の形態まで)においては、摂動モデル制御用 フィードバック量を追加したことを考慮し、フルモデル ZMP誤差の算出式を次式のように変更する。

[0195]

フルモデルΖMP誤差=フルモデルΖMP-目標ΖMP

- 摂動モデル制御用フィードバック量... 式17

【0196】ところで、積分ゲインの絶対値Kが十分に ※って、式17は次式に近似される。 大きければ、フルモデルZMP誤差はほぼ0になる。よ※ [0197]

フルモデルZMP-目標ZMP≒摂動モデル制御用フィードバック量

...式18

式15と式18より、次式を得ることができる。 ★ ★【0198】

目標ZMPまわりのフルモデル補正モーメントのZMP換算値

≒摂動モデル制御用フィードバック量. . . 式19

【0199】従って、目標ZMPまわりのフルモデル補 正モーメントの ZMP 換算値の決定 (算出) には、式1 は、第2の実施の形態と異ならない。

【0200】他方、第2の実施の形態では目標ZMPま わりのフルモデル補正モーメントのZMP換算値が理想 的な値である0に近いのに対し、第3の実施の形態では この値が摂動モデル制御用フィードバック量とほぼ等し い量になるという欠点を持つ。そのため、フィードバッ ク則を設計する際には、摂動モデル制御用フィードバッ ク量が極力小さくなるように (理想的には0)配慮する 必要がある。

【0201】第3の実施の形態は上記の如く構成したの 30 【0205】 で、第2の実施の形態で述べたとほぼ同様の効果を有す☆

☆ると共に、摂動モデルの発散を防止することができる。

【0202】図24は、この発明の第4の実施の形態に 5の代わりに、式19を用いても良い。尚、残余の構成 20 係る脚式移動ロボットの動作生成装置の動作、具体的に は、図11フロー・チャートのS32の歩容の修正手法 を説明する機能ブロック図である。

> 【0203】第4の実施の形態から後述の第7の実施の 形態までは、第3の実施の形態の具体例であり、特に、 摂動モデルを直立位置あるいはその近辺に安定させる制 御を入れるようにした点が特徴的である。

> 【0204】第3の実施の形態と相違する点に焦点をお いて説明すると、第4の実施の形態においては、摂動モ デル制御則として次式を用いるようにした。

摂動モデル制御用フィードバック量=Kp*摂動モデル上体水平位置

+Kv*摂動モデル上体水平速度

... 式20

【0206】ただし、Kp,Kv は制御ゲインである。即 ち、摂動モデルを用いて算出される摂動モデル上体位置 と速度に基づいて摂動モデル制御用フィードバック量を 演算するようにした。 尚、残余の構成は第3の実施の形 態と異ならない。

構成したので、第3の実施の形態で述べたと同様の効果 を得ることができると共に、摂動モデルの発散を防止す ることができる。尚、制御則は簡単であるが、摂動モデ ル制御用フィードバック量の平均値が0にならない欠点 がある。

◆【0208】図25は、この発明の第5の実施の形態に 係る脚式移動ロボットの動作生成装置の動作、具体的に は、図11フロー・チャートのS32の歩容の修正手法 を説明する機能ブロック図である。

【0209】第5の実施の形態に係る装置の補正手法も 【0207】第4の実施の形態においては上記のように 40 第3の実施の形態の具体例であり、特に、重心制御を入 れるようにした点が特徴的である。

> 【0210】従前の実施の形態と相違する点に焦点をお いて説明すると、第5の実施の形態においては、摂動モ デル制御則として次式を用いるようにした。

[0211]

摂動モデル制御用フィードバック量=Kp米重心差

+Kv*摂動モデル上体水平速度

...式21

【0212】ただし、重心差は、次式で求められる。

重心差=フルモデル重心位置-単純化モデル重心位置..... 式22

【0213】即ち、フルモデル重心位置から単純化モデ ルの重心位置を減算して得た重心差と摂動モデルを用い て算出される摂動モデル上体速度に基づいて摂動モデル 制御用フィードバック量を演算するようにした。かかる 摂動モデル制御則により、フルモデルの重心位置と単純 化モデルの重心位置の差の時間的平均値を、ほぼりに制 御することができる。

43

【0214】ところで、ロボットの動力学的特徴とし *

置の時間的平均値は、ほぼ一致する。また、フルモデル ZMPの時間的平均値とフルモデルの重心位置の時間的 平均値は、ほぼ一致する。 【0215】以上より、単純化モデルの重心位置の時間

* て、目標 ZMP の時間的平均値と単純化モデルの重心位

的平均値とフルモデルZMPの時間的平均値は、ほぼ一 致する。さらに、式18より次式が導かれる。

[0216]

フルモデルZMPの時間的平均値-目標ZMPの時間的平均値

≒摂動モデル制御用フィードバック量の時間的平均値... 式23

【0217】従って、摂動モデル制御用フィードバック 量の時間的平均値はほぼ0になる。さらに式19の関係 から、目標ZMPまわりのフルモデル補正モーメントの ZMP換算値の時間的平均値は、ほぼOになる。との結 果、第4の実施の形態に比し、安定余裕の高い歩容を生 成することができる。尚、残余の構成は第3の実施の形 態と同様である。

【0218】第5の実施の形態においては上記のように 構成したので、第4の実施の形態で述べたと同様の効果 デル補正モーメントのZMP換算値の時間的平均値をほ ぼ0にすることができる。

【0219】図26は、この発明の第6の実施の形態に※

摂動モデル制御用フィードバック量

※係る脚式移動ロボットの動作生成装置の動作、具体的に は、図11フロー・チャートのS32の歩容の修正手法 を説明する機能ブロック図である。

【0220】第6の実施の形態の手法も第3の実施の形 態の具体例であり、ゲインKの積分器(図26の26 a) の出力の時間的平均値をmtotal/mb 倍したものに、

摂動モデルの上体水平位置を追従させるような制御を入 れたことを特徴とする。

【0221】従前の実施の形態と相違する点に焦点をお を得ることができると共に、目標 ZMP まわりのフルモ 20 いて説明すると、第6の実施の形態においては、摂動モ デル制御則として次式を用いるようにした。

[0222]

= Kp* (摂動モデル上体水平位置 - ローバスフィルタ出力)

ただし、ローパスフィルタ出力とは、-K*mtotal/mb *フルモデルZMP誤差の積分値をローバスフィルタに 通したものを表わす。尚、図26において、mtotal/mb は、図18に示す摂動モデルの係数である。

【0223】式24に示す摂動モデル制御則により、摂 動モデル上体水平位置の時間的平均値は、ローバスフィ ルタ出力の時間的平均値にほぼ一致する。また、摂動モ デルの動力学特性から、摂動モデルが発散しなければ、 摂動モデル上体水平位置の時間的平均値は、摂動モデル ZMPの時間平均値のmtotal/mb (倒立振子支点位置) の値にほぼ一致する。

【0224】また、図26から明らかな如く、ローパス フィルタ出力の時間的平均値は、摂動モデルZMPの時 間的平均値のmtotal/mb 倍の値から摂動モデル制御用フ ィードバック量の時間的平均値のmtotal/mb 倍の値を減 じたものにほぼ一致する。

【0225】以上より、摂動モデル制御用フィードバッ ク量の時間的平均値はほぼ0になる。さらに式19の**関★**

摂動モデル制御用フィードバック量

= Kp1 * 摂動モデル上体水平位置

+ Kp2 * 重心差

+Kp3 * (摂動モデル上体水平位置 - ローパスフィルタ出力)

+ Kv * 摂動モデル上体水平速度

【0230】ただし、ローパスフィルタ出力は、-K* 50 フルモデルZMP誤差の積分値*mtotal/mb をローバス

★係から、目標ZMPまわりのフルモデル補正モーメント のZMP換算値の時間的平均値は、ほぼ0になる。との 結果、第5の実施の形態の手法と同様に、安定余裕の高 30 い歩容を生成することができる。尚、残余の構成は第3 の実施の形態と同様である。

【0226】第6の実施の形態においては上記のように 構成したので、第5の実施の形態で述べたと同様の効果 を得ることができる。

【0227】図27は、この発明の第7の実施の形態に 係る脚式移動ロボットの動作生成装置の動作、具体的に は、図11フロー・チャートのS32の歩容の修正手法 を説明する機能ブロック図である。

【0228】第7の実施の形態に係る装置の手法も第3 40 の実施の形態の具体例であり、第4の実施の形態から第 6の実施の形態までの手法を混合した、それらの中間的 あるいは折衷的な手法である。

【0229】第7の実施の形態においては、摂動モデル 制御則として次式を用いる。

フィルタに通したものを表わす。尚、残余の構成は第3 の実施の形態と同様である。

45

【0231】第7の実施の形態においては上記のように 構成したので、第4から第6の実施の形態の効果の中間 的あるいは折衷的な効果を得ることができる。

【0232】図28は、この発明の第8の実施の形態に 係る脚式移動ロボットの動作生成装置の動作、具体的に は、図11フロー・チャートのS32の歩容の修正手法 を説明する機能ブロック図である。

【0233】第8の実施の形態に係る装置の手法は逆動 10 力学フルモデル(逆フルモデル)を用いる補正で、かつ 単純化モデル歩容のZMPを補正しない手法で、かつ摂 動モデルを用いる手法である。また第13の実施の形態 までのフルモデルフィードフォワード補正型の基本をな す手法である。

【0234】第8の実施の形態においては、図示の如 く、フルモデルZMPから単純化モデルに入力される目 標ZMPを減算してフルモデルZMP誤差を求め、求め た誤差に-1を乗じて得た積を摂動モデルに入力して摂 動モデル上体位置を算出し、それに単純化モデル上体位 20 精度がやや低下する。 置(補正前目標上体位置)を加算し、よって得た和を補 正目標上体位置と決定するようにした。

【0235】他方、目標ZMPまわりのフルモデル補正 モーメントの ZMP 換算値は 0 と決定する。 これは、 フ ルモデルフィードバック型で述べたように理想的なこと である。ただし、この第8の実施の形態に係る基本型で は、摂動モデルが発散する傾向があるので、実用的では ない。

【0236】フルモデル補正用の逆フルモデル計算時に 必要な上体高さには、前制御周期(図11フロー・チャ ートの前回プログラムループ時)における関節角算出時 の上体高さを用いても良く、または改めて上体高さを決 定しても良い。摂動モデル上体位置が大きくなければ、 いずれでも大差ないからである。

【0237】第8の実施の形態においては上記のように 構成したので、第2の実施の形態で述べたと同様の効果 を得ることができる。

【0238】図29は、この発明の第9の実施の形態に 係る脚式移動ロボットの動作生成装置の動作、具体的に は、図11フロー・チャートのS32の歩容の修正手法 40 動モデル制御則として次式を用いるようにした。 を説明する機能ブロック図である。

【0239】第9の実施の形態に係る装置の手法は逆動*

摂動モデル制御用フィードバック量

=Kp*摂動モデル水平位置+Kv*摂動モデル水平速度...式26

尚、残余の構成は、第9の実施の形態と同様である。 【0248】第10の実施の形態においては上記のよう に構成したので、第9の実施の形態および第4の実施の 形態と同様の効果を有する。

【0249】図31は、この発明の第11の実施の形態 に係る脚式移動ロボットの動作生成装置の動作、具体的 50 打ち消す位置を目標整定位置にして摂動モデルを制御す

* 力学フルモデル(逆フルモデル)を用いる手法で、かつ 単純化モデル歩容のZMPを補正しない手法で、かつ摂 動モデルを用いる手法である。また第13の実施の形態 までのフルモデルフィードフォワード補正型の一般型を なす手法である。

【0240】第9の実施の形態にあっても、第3の実施 の形態(フルモデルフィードバック補正の一般型)と同 様に、摂動モデルの発散を防止するために、摂動モデル 制御用を備え、それに基づいて摂動モデル制御用フィー ドバック量を算出して摂動モデルに追加的に入力するよ うにした。また、摂動モデル制御用フィードバック量を 目標ZMPまわりのフルモデル補正モーメントのZMP 換算値として決定(出力)するようにした。尚、残余の 構成は、第8の実施の形態と同様である。

【0241】第9の実施の形態にあっては、フィードフ ォワードを用いた補正であるので、摂動モデルそのもの の近似精度が低い場合、または摂動モデルの上体水平位 置が大きくて近似精度が低下する場合では、補正量が適 正量からずれるので、フルモデル補正された歩容の近似

【0242】前述の第3の実施の形態のフィードバック 型の補正手法では、その場合でもフルモデル補正された 歩容の近似精度は低下しにくい特徴がある。しかし、フ ィードバック型の補正手法では、ある瞬間の補正誤差 は、少なくとも1制御周期遅れてから補正されるので、 補正の応答性はフィードフォワード型の方が良い。

【0243】第9の実施の形態は上記のように構成した ので、上記したフィードバック手法とフィードフォワー ド手法の違いによる特性の差を除き、第3の実施の形態 30 と同様の効果を有する。

【0244】図30は、この発明の第10の実施の形態 に係る脚式移動ロボットの動作生成装置の動作、具体的 には、図11フロー・チャートのS32の歩容の修正手 法を説明する機能ブロック図である。

【0245】第10の実施の形態に係る装置の手法は第 9の実施の形態の具体例であり、第4の実施の形態と同 様に、摂動モデルを直立近辺に安定させる制御を入れる ようにした。

【0246】即ち、第10の実施の形態においては、摂 [0247]

には、図11フロー・チャートのS32の歩容の修正手 法を説明する機能ブロック図である。

【0250】第11の実施の形態に係る装置の手法も第 9の実施の形態の具体例であり、第5の実施の形態と同 様に、重心制御を入れるようにした。即ち、重心ずれを

48

るようにした。

* 定する。

【0251】目標整定位置は、例えば、次式のように決*

目標整定位置 = - mtotal/mb * 重心差. 式27

[0252]

摂動モデル制御用フィードバック量は以下のように算出する。

摂動モデル制御用フィードバック量

= Kp* (摂動モデル上体水平位置 - 目標整定位置)

+Kv* 摂動モデル上体水平速度+ mb/mtotal*摂動モデル上体水平位置

【0253】第11の実施の形態においては上記のよう 10※9の実施の形態の具体例であり、摂動モデルを、フルモ に構成したので、第9の実施の形態および第5の実施の 形態と同様の効果を有する。

【0254】図32は、この発明の第12の実施の形態 に係る脚式移動ロボットの動作生成装置の動作、具体的 には、図11フロー・チャートのS32の歩容の修正手 法を説明する機能ブロック図である。

【0255】第12の実施の形態に係る装置の手法も第※

摂動モデル制御用フィードバック量

= Kp* (摂動モデル上体水平位置 - ローパスフィルタ出力)

+ Kv* 摂動モデル上体水平速度+ mb/mtota]*摂動モデル上体水平位置

. 式29

【0257】ただし、ローバスフィルタ出力は-mtotal /mb *フルモデルZMP誤差をローパスフィルタに通し たものを表わす。第6の実施の形態をフィードフォワー ド補正型に変形したものと言うことができる。

【0258】第12の実施の形態においては上記のよう に構成したので、第9の実施の形態および第6の実施の 形態と同様の効果を有する。

【0259】図33は、この発明の第13の実施の形態 に係る脚式移動ロボットの動作生成装置の動作、具体的★30

摂動モデル制御用フィードバック量

- = Kp1* 摂動モデル上体水平位置
- + Kp2* (摂動モデル上体水平位置- (-mtotal/mb*重心差))
- + Kp3* (摂動モデル上体水平位置 ローパスフィルタ出力)
- + Kv * 摂動モデル上体水平速度+ mb/mtotal*摂動モデル上体水平位置

【0263】同様に、ローパスフィルタ出力とは、-mto tal/mb*フルモデルZMP誤差をローパスフィルタに通 したものを表わす。

に構成したので、第10から第12の実施の形態の効果 の中間的あるいは折衷的な効果を有する。

【0265】図34は、この発明の第14の実施の形態 に係る脚式移動ロボットの動作生成装置の動作、具体的 には、歩容の修正手法を説明するブロック図である。

【0266】第14の実施の形態に係る装置の手法は、 逆動力学フルモデル(逆フルモデル)を用いる手法で、 かつ単純化モデル歩容のZMPを補正する手法で、かつ 摂動モデルを用いない手法である。

【0267】即ち、図34に示す如く、第14の実施の 50 実行するか、ZMP軌道の折れ点時刻にだけ実行する

★には、図11フロー・チャートのS32の歩容の修正手 法を説明する機能ブロック図である。

デルZMP誤差の時間的平均値*(-1)*mtotal/mb

ち、ZMP誤差の時間的平均偏差を打ち消す位置を目標

【0256】第12の実施の形態においては、摂動モデ

倍したものに追従させる制御を入れるようにした。即

整定位置にして摂動モデルを制御するようにした。

ル制御用フィードバック量は以下のように算出する。

【0260】第13の実施の形態に係る装置の手法も第 9の実施の形態の具体例であり、第7の実施の形態と同 様に、第10の実施の形態から第12の実施の形態まで の手法を混合した中間的あるいは折衷的な手法を示す。 【0261】第13の実施の形態においては、摂動モデ ル制御用フィードバック量は以下のように算出する。

[0262]

. 式30

形態においては、フルモデルZMP誤差を積分して積分 ゲイン (+K) を乗じて得た積を、単純化モデルに追加 的に入力する、フィードバックループを第1の実施の形 【0264】第13の実施の形態においては上記のよう 40 態に加えるようにした。他方、単純化モデル上体位置を 補正目標上体位置として決定(出力)すると共に、前記 求めたフルモデル誤差を目標ZMPまわりのフルモデル 補正モーメントのZMP換算値として決定(出力)する

> 【0268】尚、第14の実施の形態においては、第1 から第13の実施の形態と異なり、目標ZMPを補正す ることで、単純化モデル上体位置が所期の軌道からずれ る。従って、歩容パラメータを決定し直すことが望まし い。その歩容パラメータの決定し直しは、制御周期毎に

か、一歩毎に実行しても良い。尚、修正は早いうちにし た方が、歩容パラメータの修正量が小さくて済むので、 なるべく頻繁に変更すべきである。また、歩容パラメー タの決定し直しは、具体的には、図11フロー・チャー トのS28において単純化モデルの状態量などに応じて 行われる。詳しくは、先に提案した特願平2000-3 52011号で述べられているので、ことではこれ以上 の説明を省略する。

【0269】また、歩容パラメータの中のZMPパラメ ータを変更する場合、ZMP折れ点の時刻を変えず、Z MP折れ点のZMPの値を変えるだけにした方が、シー ケンス上の不都合が生じ難く、簡単である。

【0270】また、ZMPのパターンの変更量は台形状 にするのが容易である。例えば、図35に示すように、 現在時刻より後のZMP折れ点の時刻から適当に選択し て台形の折れ点時刻とすれば良い。ただし、歩容の終端 に近づいてくると、その歩容の期間の中にこのような台 形の設定が不可能となる。そのときには、その歩容での ZMPの修正を行わず、次の一歩で修正すれば足る。

【0271】第14の実施の形態においては上記のよう に構成したので、第2の実施の形態とほぼ同様の効果を 有すると共に、歩容パラメータを修正することによって 歩容の発散を防止することができる。

【0272】図36は、この発明の第15の実施の形態 に係る脚式移動ロボットの動作生成装置の動作、具体的 には、図11フロー・チャートのS32の歩容の修正手 法を説明する機能ブロック図である。

【0273】第15の実施の形態に係る装置の手法は、 逆動力学フルモデル(逆フルモデル)を用いる手法で、 かつ単純化モデル歩容のZMPを補正する手法であり、 かつ摂動モデルを用いる手法である。またフルモデルフ ィードバック補正型の一般型をなす手法である。

【0274】具体的には、第3の実施の形態を基に、フ ルモデル ZMP 誤差を積分して積分ゲイン (-K)を乗 じて得た積を、分配器を介して摂動モデルにフィードバ ックするだけでなく、単純化モデルにもフィードバック するようにした。

【0275】換言すれば、第15の実施の形態は、第3 の実施の形態と第14の実施の形態の手法を混合した中 間的あるいは折衷的な手法とした。第15の実施の形態 40 都合を除くと、第3の実施の形態と同様の効果を有す においても、単純化モデルの挙動は所期の挙動からずれ るので、第14の実施の形態と同様に、歩容パラメータ を修正する必要がある。尚、第3の実施の形態に代え て、第2の実施の形態または第4の実施の形態から第7 の実施の形態までのいずれか(あるいはその組み合わ せ)と第14の実施の形態の手法を混合しても良い。

【0276】第15の実施の形態において、分配器は周 波数領域で分配しても、リミッタなどの非線形要素を用 いて分配しても良い。フィードバック系なので、分配器 は出力の和が入力と一致している必要はない。

【0277】第15の実施の形態においては上記のよう に構成したので、第3の実施の形態および第14の実施 の形態と同様の、あるいはそれらの折衷的あるいは中間 の効果を有する。

【0278】図37は、この発明の第16の実施の形態 に係る脚式移動ロボットの動作生成装置の動作、具体的 には、図11フロー・チャートのS32の歩容の修正手 法を説明する機能ブロック図である。

【0279】第16の実施の形態に係る装置の手法は、 逆動力学フルモデル (逆フルモデル) に代えて順動力学 フルモデル (順フルモデル)を用いる手法で、かつ単純 化モデル歩容のZMPを補正しない手法である。またフ ルモデルを単純化モデル歩容に追従させる手法であり、 より具体的には目標ZMPを満足する単純化モデルの上 体挙動にフルモデルの上体挙動を追従させるように、フ ルモデルΖΜΡを修正する手法である。

【0280】即ち、第16の実施の形態においては、図 37に示す如く、順フルモデルを用いて算出されるフル モデル上体位置から単純化モデル上体位置(補正前目標 上体位置)を減算して得た差を求めてPIDなどのモデ ル追従フィードバック則に入力し、フィードバック量を 求める。次いで求めたフィードバック量を目標ZMPに 加算してフルモデルZMPを求め、求めたフルモデルZ MPを順フルモデルに入力してフルモデル上体位置を求 めるように構成した。換言すれば、順フルモデル上体位 置と単純化モデルの上体位置の差に応じて順フルモデル のZMPを補正するようにフィードバックループを構成 した。

【0281】また出力に関しては、前記フィードバック 30 量を目標 ZMP まわりのフルモデル補正モーメントの Z MP換算値として決定(出力)すると共に、順フルモデ ル上体位置を補正目標上体位置として決定(出力)する ようにした。

【0282】尚、モデル追従フィードバック則への入力 として、順フルモデルと単純化モデルの上体位置の差で はなく、重心位置の差にしても良く、さらには上体位置 と重心位置の差を共に入力しても良い。

【0283】第16の実施の形態においては上記のよう に構成したので、先に述べたように演算量が増加する不

【0284】図38は、この発明の第17の実施の形態 に係る脚式移動ロボットの動作生成装置の動作、具体的 には、図11フロー・チャートのS32の歩容の修正手 法を説明する機能ブロック図である。

【0285】第17の実施の形態に係る装置の手法は、 順動力学フルモデル(順フルモデル)を用いる手法で、 かつ単純化モデル歩容のZMPを補正する手法である。 また単純化モデルをフルモデル歩容に追従させるように 50 制御する手法である。

【0286】即ち、第16の実施の形態と逆に、目標 Z MPを満足するフルモデルの挙動に単純化モデルの挙動 を追従させるように、単純化モデルZMPを補正するよ うにした。具体的には、第16の実施の形態においては モデル追従フィードバック則の出力を順フルモデルに追 加的に入力していたのに対し、第17の実施の形態にお いては単純化モデルに追加的に入力するようにした。

【0287】他方、目標ZMPまわりのフルモデル補正 モーメントのZMP換算値をOと決定すると共に、順フ ルモデル上体位置を補正目標上体位置として決定(出 力) するようにした。尚、フィードバックゲインが高い 場合、単純化モデル上体位置と順フルモデル上体位置は ほぼ一致するので、単純化モデル上体位置を補正目標上 体位置として決定(出力)しても良い。

【0288】尚、単純化モデルに入力されるモデルZM Pが補正されるために単純化モデルの挙動は所期の挙動 からずれるので、第14の実施の形態と同様に歩容パラ メータを修正する必要がある。

【0289】第17の実施の形態においては上記のよう に構成したので、第14の実施の形態と同様の効果を有 20 形態と同様である。 する。尚、第16の実施の形態と同様に、上体位置に代 えて重心位置あるいはその双方をモデル追従フィードバ ック則に入力しても良い。

【0290】図39は、この発明の第18の実施の形態 に係る脚式移動ロボットの動作生成装置の動作、具体的 には、図11フロー・チャートのS32の歩容の修正手 法を説明する機能ブロック図である。

【0291】第18の実施の形態に係る装置の手法は、 順動力学フルモデル(順フルモデル)を用いる手法であ 量をフルモデルの状態量から直接的に求める手法であ

【0292】即ち、第17の実施の形態においては目標 ZMPを満足するフルモデルの挙動に単純化モデルの挙 動を追従させたが、第18の実施の形態においては、目 標ZMPを満足するフルモデルの挙動に単純化モデルの 挙動が完全に追従したとみなした場合の単純化モデルの 状態量を直接的に算出するようにした。

【0293】単純化モデルの状態量は、具体的には、順 フルモデルの上体代表点の位置・速度に対して図7の関 係を満足する単純化モデルの倒立振子の上体位置・速度 を算出することで求める。他方、目標ZMPまわりのフ ルモデル補正モーメントのZMP換算値をOと決定する と共に、フルモデル上体位置を補正目標上体位置として 決定(出力)するようにした。

【0294】第18の実施の形態においては上記のよう に構成したので、第17の実施の形態と同様の効果を有 する。

【0295】図40は、この発明の第19の実施の形態 に係る脚式移動ロボットの動作生成装置の動作、具体的 50 おいて目標 ZMPまわりのフルモデル補正モーメントの

には、図11フロー・チャートのS32の歩容の修正手 法を説明する機能ブロック図である。

52

【0296】第19の実施の形態に係る装置の手法は順 動力学フルモデル(順フルモデル)を用いる手法であ り、かつ順フルモデルの挙動と単純化モデルの挙動が互 いに歩み寄るように、モデル追従フィードバック則1と モデル追従フィードバック則2を用いて単純化モデル2 MPとフルモデルZMPの両方を修正するようにした。 他方、モデル追従フィードバック則2の出力を目標ZM 10 Pまわりのフルモデル補正モーメントのZMP換算値と して決定(出力)すると共に、フルモデル上体位置を補 正目標上体位置として決定(出力)するようにした。 【0297】言い換えると、第16の実施の形態と第1

7の実施の形態の手法を混合した中間的あるいは折衷的 な手法である。この例においても、単純化モデルの挙動 は所期の挙動からずれるので、第14の実施の形態と同 様に歩容パラメータを修正する必要がある。また、モデ ル追従フィードバック則 1 あるいは 2 に上体位置および /または重心位置を入力しても良いことも従前の実施の

【0298】第19の実施の形態においては上記のよう に構成したので、第16および第17の実施の形態など と同様の、あるいはそれらの中間的あるいは折衷的な効 果を有する。

【0299】図41は、この発明の第20の実施の形態 に係る脚式移動ロボットの動作生成装置の動作、具体的 には、図11フロー・チャートのS32の歩容の修正手 法を説明する機能ブロック図である。

【0300】第20の実施の形態は、図16に示す第1 り、かつフルモデルの状態に対応する単純化モデル状態 30 の実施の形態の変形例であり、図16に示す構成の逆フ ルモデル100 c2と加算点16 aを合わせて逆フルモ デル100c2としたものである。ただし、逆フルモデ ル100c2は目標ZMPまわりのフルモデル補正モー メントをフルモデルモーメント誤差として出力し、ZM P換算ブロック41aにおいて目標ZMPまわりのフル モデル補正モーメントのZMP換算値が決定(算出)さ れる。尚、残余の構成は第1の実施の形態と同様であ り、効果も同様である。

> 【0301】図42は、この発明の第21の実施の形態 に係る脚式移動ロボットの動作生成装置の動作、具体的 には、図11フロー・チャートのS32の歩容の修正手 法を説明する機能ブロック図である。

【0302】第21の実施の形態は、図17に示す第2 の実施の形態の変形例であり、第21の実施の形態と同 様に、図17に示す構成の逆フルモデル100c2と加 算点17aを合わせて逆フルモデル100c2とするも のである。ただし、逆フルモデル100c2は目標ZM Pまわりのフルモデル補正モーメントをフルモデルモー メント誤差として出力し、ZMP換算ブロック42hに

ZMP換算値が決定(算出)される。

【0303】尚、第21の実施の形態の残余の構成は第 2の実施の形態と同様であり、効果も同様である。

53

【0304】図43は、この発明の第22の実施の形態 に係る脚式移動ロボットの動作生成装置の動作、具体的 には、図11フロー・チャートのS32の歩容の修正手 法を説明する機能ブロック図である。

【0305】第22の実施の形態は、図37に示す第1 6の実施の形態の変形例である。この実施の形態におい ては、モデル追従フィードバック則は、目標ZMP(目 標床反力作用点) まわりのフルモデル補正モーメントを 出力し、その出力は順フルモデルに入力される。順フル モデルは、目標床反力作用点まわりにフルモデル補正モ ーメントが作用するような目標運動を生成し、その目標 運動の上体位置をフルモデル上体位置として出力する。 また、ZMP換算ブロック43hを設けて目標ZMPま わりのフルモデル補正モーメントのZMP換算値を決定 (算出) するようにした。残余の構成は、第16の実施 の形態と同様であり、効果も同様である。

【0306】図44は、この発明の第23の実施の形態 に係る脚式移動ロボットの動作生成装置の動作、具体的 には、図11フロー・チャートのS32の歩容の修正手 法によって修正された歩容をさらに修正する修正手法を 説明する機能ブロック図である。

【0307】図44に示す如く、第23の実施の形態に おいては、これまで述べたきた第1の実施の形態から第 22の実施の形態の構成で得た補正目標上体位置と目標 ZMPまわりのフルモデル補正モーメントのZMP換算 値を、同図に示す変換ブロックに入力し、その出力を新 補正モーメントのZMP換算値と決定するようにした。 かかる変換ブロックを挿入することにより、目標ZMP まわりのフルモデル補正モーメントのZMP換算値の変 動を、ローパスフィルタを通した場合と同様に、より一 層小さくすることができる。

【0308】この変換処理を説明すると、先ず、目標 Z MPまわりのフルモデル補正モーメントの元の値(入 力)を第2の分配器に入力し、第2の分配器の2つの出 力の和が入力に等しくなるように、その2つの出力(第 1の分配出力と第2の分配出力)に分配する。第2の分 配器の第1の分配出力に(-1)を乗じて得た積に第2 の摂動モデル制御用フィードバック量を加算し、得た和 を第2の摂動モデルに入力する。第2の摂動モデルによ り、上記した和、即ち、第2の摂動モデルの入力が第2 の摂動モデルの ZMPに一致するように、第2の摂動モ デル上体位置を決定する。

【0309】次いで、第2の摂動モデル上体位置から、 第2の摂動モデル制御則によって第2の摂動モデル制御 用フィードバック量を求める。第2の摂動モデル制御用 フィードバック量は、上記したように第2の摂動モデル にフィードバックすると共に、第2の分配出力に加算 し、得た和を新たな目標ZMPまわりのフルモデル補正 モーメントのZMP換算値として決定(出力)する。ま た第2の摂動モデル上体位置を補正目標上体位置の元の 値に加算し、得た和を新たな補正目標上体位置として決 定(出力)する。

【0310】第2の摂動モデルは、第2の実施の形態で 図18を参照して述べた、足平の位置姿勢を摂動させな いという制約の下に、目標ZMPの摂動と目標上体水平 位置の摂動の関係を表すモデルと同じものであっても良 く、あるいは相違させたものであっても良い。

【0311】第23の実施の形態において、第2の摂動 モデル制御則は、他の状態量あるいは歩容パラメータな どを入力しても良い。また、第1の分配出力を目標ZM Pまわりのフルモデル補正モーメントのZMP換算値の 元の値とすると共に、第2の分配出力を0としても良 い。換言すれば、第2の分配器(およびその第2の分配 出力)を除去しても良い。この場合、第1の実施の形態 に組み合わせると、第9の実施の形態となる。また、第 20 3の分配器あるいはそれ以上の分配器を設けても良い。 また、図44の変換ブロックを多段直列としても良い。 【0312】また、第23の実施の形態の図示の構成 を、第1の実施の形態から第22の実施の形態に並列に 挿入するようにしても良い。即ち、フルモデル ZMP誤 差あるいはそれを積分器などの制御則に通したものを分 配器で分配し、分配出力に図示の変換ブロックを挿入し ても良い。例えば、図34に示す第14の実施の形態に 組み合わせると、図45に示すようになる。尚、図示の 構成を、直列と並列を組み合わせて従前の実施の形態に たな補正目標上体位置と目標 ZMP まわりのフルモデル 30 挿入することも可能ではあるが、構成が複雑になる割に は顕著な効果を得ることができない。

> 【0313】第23の実施の形態は上記の如く構成した ので、目標ZMPまわりのフルモデル補正モーメントの ZMP換算値の変動を、ローパスフィルタを通した場合 と同様に、より一層低減することができる。

> 【0314】尚、第23の実施の形態の概念をさらに拡 張し、第1から第22の実施の形態の中の幾つかを直列 あるいは並列に再構成するようにしても良い。

【0315】さらに、図5に示したフルモデル補正入り 40 歩容生成部100の構成も、図46のように変形すると とができる。

【0316】図46に示す構成は、前記した単純化モデ ル歩容のZMPを補正しない手法(単純化モデルZMP が目標ZMPに一致する歩容の補正手法)、即ち、第1 から第13の実施の形態、第16の実施の形態、および 第20から第22の実施の形態、ならびにそれらから派 生した第23の実施の形態に関する変形例である。

【0317】即ち、目標歩容パラメータは単純化モデル を基に作成されているはずであるから、単純化モデルス 50 MPが目標 ΖMPに一致する手法では、単純化モデル上 体軌道は、単純化モデルを基に作成された目標歩容の上 体軌道そのものである。従って、これらの手法では、単 純化モデル挙動演算部分をフルモデル補正部から分離さ せることができる。

【0318】そとで、図46に示すように、歩容パラメ ータ決定部と目標瞬時値発生部と単純化モデルとで単純 化モデル歩容生成部100dを構成し、そこで単純化モ デルの挙動演算によって目標歩容を生成し、フルモデル 補正部100cが、生成された歩容を動力学的平衡条件 るようにした。これによっても、ブロック図を単に等価 変換したに過ぎないから、上記した従前の実施の形態と 同様の効果を得ることができる。

【0319】尚、今までに述べてきた種々の実施の形態 において、単純化モデル歩容生成部100dは、先に提 案した技術に示したようなリアルタイム歩容生成装置で なくても良い。テーブル化された歩容を発生するだけで も良い。また、腕を使った作業動作など、歩行ではない 動作を生成しても良い。

【0320】また、単純化モデル歩容生成部100dに 20 よって生成される動作または歩容は、慣性力を無視して 静力学的バランスだけを考慮した運動パターンと床反力 パターンの組、換言すれば、運動パターンと重心の床投 影点の組であっても良い。さらに、動力学的平衡条件を 無視した、運動のパターンとZMP(床反力作用点)パ ターンの組であっても良い。ただし、動力学平衡条件か ら極端にずれていると、目標ZMPまわりのフルモデル 補正モーメントが過大になるので、動力学平衡条件に近 いほど好ましい。

【0321】さらに、上記した種々の実施の形態の中で フィードバック型の実施の形態の場合、積分ゲインKな どのフィードバックゲインが十分に大きい場合には、摂 動モデル制御用フィードバック量(摂動モデル制御則の 出力)を目標ZMPまわりのフルモデル補正モーメント のZMP換算値として用いても良い。なぜなら、式1 5、式17の関係が成り立つと共に、フィードバックゲ インが十分に大きい場合には、フルモデル補正誤差は、 ほぼ0になるからである。また目標ZMPまわりのフル モデル補正モーメントのZMP換算値が姿勢制御に影響 しない程度に十分に小さければ、 ZMP換算値を常に 0 40 にしても良く、あるいはその出力そのものを削除しても 良い。

【0322】式15の関係は、姿勢挙動に影響する低い 周波数帯域においては満足すべきであるが、高い周波数 領域では、大きくずれない限り満足しなくても良い。従 って、前記した実施の形態の構成を示すブロック線図の 結線にローバスフィルタなどを新たに追加しても良い。 さらには変化率リミッタなどの非線形要素を加えても良

56

などにおいて、重心差を、変化率リミッタなどの非線形 要素あるいはフィルタに通すようにしても良い。また、 式21などにおいて、摂動モデル上体水平速度の代わり に、重心差の変化率を用いても良い。また、第11の実 施の形態などにおいて、目標整定位置を同様なフィルタ あるいは非線形要素に通すようにしても良い。

【0324】また、上記した種々の実施の形態におい て、積分の代わりに、PIDあるいはフィルタなどの制 御則を用いても良い。その場合、ゲインあるいはフィル を十分に満足するものに補正するような構成に置き換え 10 タ特性などは、歩容パラメータに応じて可変にしても良

> 【0325】上記において、目標ZMPまわりのフルモ **デル補正モーメントのZMP換算値を出力するようにし** たが、補正モーメントをそのまま出力しても良い。

【0326】また、図4において、目標ZMPまわりの フルモデル補正モーメントのZMP換算値を目標ZMP に加えたものを「補正目標ZMP」とし、かつ目標ZM Pまわりのフルモデル補正モーメントのZMP換算値を 0にして複合コンプライアンス動作決定部104に入力 しても良い(目標ZMPまわりのフルモデル補正モーメ ントのZMP換算値は、フルモデル補正入り歩容生成部 から出力せず、複合コンプライアンス動作決定部104 に入力しないよう構成しても良い)。即ち、フルモデル 補正モーメントで補正する代わりに目標ZMPを補正す るようにしても良い。ただし、目標ZMPを補正する と、複合コンプライアンス制御において各足平床反力中 心点の設定が難しくなるという欠点が生じる。

【0327】また、歩容生成部100の出力を入力とす る複合コンプライアンス動作決定部104などが、目標 ZMPなどの床反力に関する情報を必要としない場合に は、床反力に関する情報そのものを削除(除去)しても 良い。

【0328】また、上記した種々の実施の形態におい て、(目標)ZMPと表現したが、(目標)ZMPは (目標) 床反力の表現の一つの形態であり、それ以外に も、例えば、ある基準点での力とモーメントで表現して も良い。

【0329】さらに、上記した図11フロー・チャート において、t=0のときに歩容を修正または変更したが (S10)、それ以外の時点で修正または変更しても良 い。そのときは、現在時刻を今回歩容の初期時刻とみな せば良い。即ち、今回歩容の期間が現在時刻から今回歩 容終端時刻までとすれば良い。

【0330】尚、上記において、図8、図16などに示 したブロック線図は、演算処理順序を変えるなどの等価 変形をしても良い。

【0331】尚、上記において、図8、図16などに示 したブロック線図は、演算処理順序を変えるなどの等価 変形をしても良い。

【0323】例えば、第5、第6、第12の実施の形態 50 【0332】また、上体の位置を補正する代わりに、ロ

40

57

ボット1のZMPを大きく変化させることができるもの であれば、上体の姿勢あるいは腕の姿勢を補正するよう にしても良い。あるいは、それらを複合的に補正するよ うにしても良い。

【0333】第1の実施の形態に係る脚式移動ロボット の動作生成装置は上記したように、少なくとも上体24 と、前記上体に連結される複数本の脚部2からなる脚式 移動ロボット1の歩行などの動作を制御する動作制御装 置において、前記動作を規定する目標運動を決定する目 標運動決定手段(歩容パラメータ決定部100a、目標 (および仮)瞬時値発生部100b、単純化モデル10 0 c 1の演算)、少なくとも前記決定された目標運動に 基づき、前記ロボットの運動と床反力の関係を表す動力 学モデルを用いて目標床反力を算出する目標床反力算出 手段(逆フルモデル100c2、図16の逆フルモデル 演算、加算点16a)、および少なくとも前記算出され た目標床反力に基づいて前記ロボットに実際に作用する 床反力を制御する床反力制御手段(ブロック102)を 備える如く構成した。

【0334】また、少なくとも上体24と、前記上体に 連結される複数本の脚部2からなる脚式移動ロボット1 の歩行などの動作を制御する動作制御装置において、前 記動作を規定する目標運動と目標ZMPを決定する目標 動作決定手段(歩容パラメータ決定部100a、目標 (および仮) 瞬時値発生部 100b、単純化モデル10 0 c 1の演算)、少なくとも前記決定された目標運動と 目標ZMPに基づき、前記ロボットの運動とZMPの関 係を表す動力学モデルを用いて前記目標ZMPの補正量 (目標ZMPまわりのフルモデル補正モーメントのZM P演算値)を算出する目標 ZMP補正量算出手段(逆フ ルモデル100c2、図16の逆フルモデル演算、加算 点16a)、および少なくとも前記算出された目標ZM Pの補正量に基づいて実際の床反力を制御する床反力制 御手段(ブロック102)を備える如く構成した。

【0335】また第20の実施の形態においては上記し たように、少なくとも上体24と、前記上体に連結され る複数本の脚部2からなる脚式移動ロボット1の歩行な どの動作を制御する動作制御装置において、前記動作を 規定する目標運動と目標床反力作用点(目標 ZMP)を 決定する目標動作決定手段(歩容パラメータ決定部10 0a、目標(および仮)瞬時値発生部100b、図41 の単純化モデル100c1の演算)、少なくとも前記決 定された目標運動と目標床反力作用点に基づき、前記ロ ボットの運動と床反力の関係を表す動力学モデルを用い て前記目標床反力作用点まわりの目標床反力モーメント を算出する目標床反力モーメント算出手段(フルモデル 100c2(図41の逆フルモデル100c2))、お よび少なくとも前記算出された目標床反力モーメントに 基づいて前記ロボットに作用する実際の床反力を制御す る床反力制御手段(ブロック102、図41のZMP換 50 の如く、少なくとも上体24と、前記上体に連結される

算ブロック41a)を備える如く構成した。

【0336】第2の実施の形態においては上記したよう に、少なくとも上体24と、前記上体に連結される複数 本の脚部2からなる脚式移動ロボット1が歩行などの動 作を行うとき、前記動作の目標瞬時値を生成する動作生 成装置において、前記動作を構成する目標運動と目標床 反力の仮瞬時値を決定する仮瞬時値決定手段(歩容パラ メータ決定部100a、目標(および仮)瞬時値発生部 100b、図17の単純化モデル100clの演算)、 少なくとも前記決定された目標運動の仮瞬時値に基づ 10 き、前記ロボットの運動と床反力の関係を表す動力学モ デルを用いてモデル床反力(図17のフルモデルZM P)を算出するモデル床反力算出手段(図17の逆フル モデル100c2の演算)、前記算出されたモデル床反 力と前記決定された目標床反力の仮瞬時値との差(図1 7のフルモデル ZMP誤差)を算出する床反力差算出手 段(図17の加算点17a)、および少なくとも前記算 出された差に基づき、少なくとも前記目標運動の仮瞬時 値を補正することにより前記目標運動の目標瞬時値(図 17の補正目標上体位置)を決定する目標瞬時値決定手 段(フルモデル補正入り歩容生成部100、特に図17 のブロック17b、摂動モデル17c、加算点17d、 加算点17 dの出力を補正目標上体位置として決定する こと)を備えるように構成した。尚、これは第3の実施 の形態から第13の実施の形態にも妥当する。

【0337】また、少なくとも上体24と、前記上体に 連結される複数本の脚部2からなる脚式移動ロボット1 が歩行などの動作を行うとき、前記動作の目標瞬時値を 生成する動作生成装置において、前記動作を構成する目 30 標運動と目標 ZMPの仮瞬時値を決定する仮瞬時値決定 手段(歩容パラメータ決定部100a、目標(および) 仮)瞬時値発生部100b、図17の単純化モデル10 0 c 1の演算)、少なくとも前記決定された目標運動の 仮瞬時値に基づき、前記ロボットの運動とZMPの関係 を表す動力学モデルを用いてモデルZMP(図17のフ ルモデルZMP)を算出するモデルZMP算出手段(図 17の逆フルモデル100c2の演算)、前記算出され たモデルZMPと前記決定された目標ZMPの仮瞬時値 の差(図17のフルモデルZMP誤差)を算出するZM P差算出手段(図17の加算点17a)、および少なく とも前記算出された差に基づき、少なくとも前記目標運 動の仮瞬時値を補正することにより前記目標運動の目標 瞬時値(図17の補正目標上体位置)を決定する目標瞬 時値決定手段(フルモデル補正入り歩容生成部100、 特に図17のブロック17b、摂動モデル17c、加算 点17 d、加算点17 dの出力を補正目標上体位置とし て決定すること)を備える如く構成した。尚、これは第 3の実施の形態から第13の実施の形態にも妥当する。 【0338】また、第21の実施の形態においては上記

複数本の脚部2からなる脚式移動ロボット1が歩行など の動作を行うとき、前記動作の目標瞬時値を生成する動 作生成装置において、前記動作を構成する目標運動と目 標ZMPの仮瞬時値を決定する仮瞬時値決定手段(歩容 パラメータ決定部100a、目標(および仮)瞬時値発 生部100b、図42の単純化モデル100c1の演 算)、前記決定された目標運動と目標ZMPの仮瞬時値 に基づき、前記ロボットの運動と床反力の関係を表す動 力学モデルを用いて目標ZMPの仮瞬時値まわりのモデ ル床反力モーメント(図42の目標ZMPまわりのフル モデル補正モーメント)を算出するモデル床反力モーメ ント算出手段(図42の逆フルモデル100c2の演 算)、および少なくとも前記算出されたモデル床反力モ ーメントに基づき、少なくとも前記目標運動の仮瞬時値 を補正することにより前記目標運動の目標瞬時値(図4 2の補正目標上体位置)を決定する目標瞬時値決定手段 (フルモデル補正入り歩容生成部100、特に図42の 摂動モデル42b、ブロック42d、加算点42g、加 算点42gの出力を補正目標上体位置として決定すると と)を備える如く構成した。

【0339】第2の実施の形態はまた、少なくとも上体 24と、前記上体に連結される複数本の脚部2からなる 脚式移動ロボット1が歩行などの動作を行うとき、前記 動作の目標瞬時値を生成する動作生成装置において、前 記動作を構成する目標運動と目標床反力の仮瞬時値を決 定する仮瞬時値決定手段(歩容パラメータ決定部100 a、目標(および仮)瞬時値発生部100b、図17の 単純化モデル100 c 1の演算)、少なくとも前記決定 された目標運動の仮瞬時値に基づき、前記ロボットの運 動と床反力の関係を表す動力学モデルを用いてモデル床 30 反力(図17のフルモデルZMP)を算出するモデル床 反力算出手段(図17の逆フルモデル100c2の演 算)、前記算出されたモデル床反力と前記決定された目 標床反力の仮瞬時値との差(図17のフルモデルZMP 誤差)を算出する床反力差算出手段(図17の加算点1 7a)、および少なくとも前記算出された差に基づき、 前記動力学モデルで表される運動と床反力の関係を満足 するように、少なくとも前記目標運動の仮瞬時値を補正 することにより、前記目標運動と目標床反力の目標瞬時 値(図17の補正目標上体位置、目標ZMPまわりのフ ルモデル補正モーメントのZMP換算値など)を決定す る目標瞬時値決定手段(フルモデル補正入り歩容生成部 100、特に、図17のブロック17b、摂動モデル1 7c、加算点17d、加算点17dの出力を補正目標上 体位置として決定すること、加算点17aの出力を目標 ZMPまわりのフルモデル補正モーメントのZMP換算 値として決定すること)を備える如く構成した。尚、と れは第3の実施の形態から第13の実施の形態にも妥当

【0340】また、少なくとも上体24と、前記上体に 50 42d、加算点42g、ブロック42h、加算点42g

60 連結される複数本の脚部2からなる脚式移動ロボット1 が歩行などの動作を行うとき、前記動作の目標瞬時値を 生成する動作生成装置において、前記動作を構成する目 標運動と目標ZMPの仮瞬時値を決定する仮瞬時値決定 手段(歩容パラメータ決定部100a、目標(および 仮)瞬時値発生部100b、図17の単純化モデル10 0 c 1の演算)、少なくとも前記決定された目標運動の 仮瞬時値に基づき、前記ロボットの運動とZMPの関係 を表す動力学モデルを用いてモデルZMP (図17のフ 10 ルモデル ZMP)を算出するモデル ZMP算出手段(図 17の逆フルモデル100c2の演算)、前記算出され たモデルZMPと前記決定された目標ZMPの仮瞬時値 との差(図17のフルモデルZMP誤差)を算出するZ MP差算出手段(図17の加算点17a)、および少な くとも前記算出されたZMP差に基づき、前記動力学モ デルで表される運動と床反力の関係を満足するように、 少なくとも前記目標運動の仮瞬時値を補正することによ り、前記目標運動と前記目標床反力の目標瞬時値(図1 7の補正目標上体位置、目標 ZMP まわりのフルモデル 20 補正モーメントのZMP換算値など)を決定する目標瞬 時値決定手段(フルモデル補正入り歩容生成部100、 特に、図17のブロック17b、摂動モデル17c、加 算点17 d、加算点17 dの出力を補正目標上体位置と して決定すること、加算点17aの出力を目標ZMPま わりのフルモデル補正モーメントのZMP換算値として 決定するとと)を備える如く構成した。尚、これは第2 の実施の形態から第13の実施の形態にも妥当する。 【0341】また第21の実施の形態にあっては、少な くとも上体24と、前記上体に連結される複数本の脚部 2からなる脚式移動ロボット1が歩行などの動作を行う とき、前記動作の目標瞬時値を生成する動作生成装置に おいて、前記動作を構成する目標運動と目標ZMPの仮 瞬時値を決定する仮瞬時値決定手段(歩容パラメータ決 定部100a、目標(および仮)瞬時値発生部100 b、図42の単純化モデル100c1の演算)、前記決 定された目標運動と目標ZMPの仮瞬時値に基づき、前 記ロボットの運動と床反力の関係を表す動力学モデルを 用いて目標ZMPの仮瞬時値まわりのモデル床反力モー メント(図42の目標ZMPまわりのフルモデル補正モ ーメント)を算出するモデル床反力モーメント算出手段 (図42の逆フルモデル100c2の演算)、および少 なくとも前記算出されたモデル床反力モーメントに基づ き、前記動力学モデルで表される運動と床反力の関係を 満足するように、少なくとも前記目標運動の仮瞬時値を 補正するととにより、前記目標運動と目標床反力の目標 瞬時値(図42の補正目標上体位置、目標ZMPまわり のフルモデル補正モーメントのZMP換算値など)を決 定する目標瞬時値決定手段(フルモデル補正入り歩容生 成部100、特に図42の摂動モデル42b、ブロック

の出力を補正目標上体位置として決定すること、ブロック42hの出力を目標ZMP(目標床反力作用点)まわりのフルモデル補正モーメントのZMP換算値として決定すること)を備える如く構成した。

【0342】また第2の実施の形態にあっては、少なく とも上体24と、前記上体に連結される複数本の脚部2 からなる脚式移動ロボット1が歩行などの動作を行うと き、前記動作の目標瞬時値を生成する動作生成装置にお いて、前記動作を構成する目標運動と目標床反力の仮瞬 時値を決定する仮瞬時値決定手段(歩容パラメータ決定 10 部100a、目標(および仮)瞬時値発生部100b、 図17の単純化モデル100c1の演算)、少なくとも 前記決定された目標運動の仮瞬時値を、前記ロボットの 運動と床反力の関係を表す動力学モデルに入力してモデ ルの出力(図17のフルモデルZMP)を算出するモデ ル出力算出手段(図17の逆フルモデル100c2の演 算)、前記算出されたモデルの出力と前記決定された目 標床反力の仮瞬時値との差(図17のフルモデルZMP 誤差)を算出する床反力差算出手段(図17の加算点2 3 a およびその出力)、少なくとも前記算出された差に 基づき、少なくとも前記目標運動の補正量(図17の摂 動モデル上体位置)を算出する目標運動補正量算出手段 (図17の摂動モデル17c、ブロック17b、前記算 出された補正量を前記動力学モデルに追加的に入力する モデル入力補正手段(図17の加算点17d))、およ び少なくとも前記動力学モデルの入力と出力に基づいて 前記目標運動と前記目標床反力の目標瞬時値を決定する 目標瞬時値決定手段(フルモデル補正入り歩容生成部1 00, 特に、図17の加算点17 dの出力を補正目標上 体位置として決定すること、加算点17aの出力を目標 ZMPまわりのフルモデル補正モーメントのZMP換算 値として決定すること)を備える如く構成した。尚、と れは第3の実施の形態から第7の実施の形態にも妥当す

【0343】また、少なくとも上体24と、前記上体に 連結される複数本の脚部2からなる脚式移動ロボット1 が歩行などの動作を行うとき、前記動作の目標瞬時値を 生成する動作生成装置において、前記動作を構成する目 標運動と目標ZMPの仮瞬時値を決定する仮瞬時値決定 手段(歩容パラメータ決定部100a、目標(および 仮)瞬時値発生部100b、図17の単純化モデル10 0 c 1の演算)、少なくとも前記決定された目標運動の 仮瞬時値を、前記ロボットの運動とZMPの関係を表す 動力学モデルに入力してモデルの出力(図17のフルモ デルZMP)を算出するモデル出力算出手段(図17の 逆フルモデル100c2の演算)、前記算出されたモデ ルの出力と前記決定された目標ZMPの仮瞬時値との差 (図17のフルモデルZMP誤差)を算出するZMP差 算出手段(図17の加算点17a)、少なくとも前記算 出された差に基づき、少なくとも前記目標運動の補正量 50

(図17の摂動モデル上体位置)を算出する目標運動補正量算出手段(図17の摂動モデル17c、ブロック17b)、前記算出された補正量を前記動力学モデルに追加的に入力するモデル入力補正手段(図17の加算点17d)、および少なくとも前記動力学モデルの入力と出力に基づいて前記目標運動と前記目標床反力の目標瞬時値を決定する目標瞬時値決定手段(フルモデル補正入り歩容生成部100、特に、図17の加算点17dの出力を補正目標上体位置として決定すること、加算点17aの出力を相正目標ZMPまわりのフルモデル補正モーメントのZMP換算値として決定すること)を備える如く構成した。尚、これは第3の実施の形態から第7の実施の形態にも妥当する。

【0344】また第21の実施の形態にあっては、少な くとも上体24と、前記上体に連結される複数本の脚部 2からなる脚式移動ロボット1が歩行などの動作を行う とき、前記動作の目標瞬時値を生成する動作生成装置に おいて、前記動作を構成する目標運動と目標ZMPの仮 瞬時値を決定する仮瞬時値決定手段(歩容パラメータ決 定部100a、目標(および仮)瞬時値発生部100 20 b、図42の単純化モデル100clの演算)、少なく とも前記決定された目標運動と目標ZMPの仮瞬時値 を、前記ロボットの運動と床反力作用点まわりの床反力 モーメントの関係を表す動力学モデルに入力し、目標Z MPの仮瞬時値まわりの目標床反力モーメント(図42 の目標ZMPまわりのフルモデル補正モーメント)とし てモデルの出力を算出するモデル出力算出手段(図42 の逆フルモデル100 c 2の演算)、少なくとも前記モ デルの出力に基づき、少なくとも前記目標運動の補正量 (図42の摂動モデル上体位置)を算出する目標運動補 正量算出手段(図42の摂動モデル42b、ブロック4 2 d) 、前記算出された補正量を前記動力学モデルに追 加的に入力するモデル入力補正手段(図42の加算点4 2 g) 、および少なくとも前記動力学モデルの入力と出 力に基づいて前記目標運動と前記目標床反力の目標瞬時 値を決定する目標瞬時値決定手段(フルモデル補正入り 歩容生成部100、特に図42のブロック42h、加算 点42gの出力を補正目標上体位置として決定するこ と、ブロック42hの出力を目標ZMP(目標床反力作 40 用点) まわりのフルモデル補正モーメントの ZMP換算 値として決定すること)を備える如く構成した。

【0345】第3の実施の形態においては、第2の実施の形態に加え、前記目標運動補正量算出手段は、前記ロボットにおける前記床反力の摂動と前記運動の摂動の動力学的関係を表す摂動モデル(図23の摂動モデル23b)、前記摂動モデルの状態量(例えば、前記摂動モデルの上体位置および/または速度)と前記動力学モデルの状態量(例えば、前記動力学モデルのすい位置)の少なくともいずれかに基づき、第1のフィードバック量(図23の摂動モデル制御用フィードバック量)を算出

する第1フィードバック量算出手段(図23の摂動モデル制御則23e)、および少なくとも前記算出された差と前記第1のフィードバック量との差に基づき、第2のフィードバック量を算出する第2フィードバック量算出手段(図23の加算点23c、ブロック23d)を備え、前記算出された第1のフィードバック量と第2のフィードバック量の和を前記摂動モデルに入力して前記目標運動の補正量を算出する(図23の加算点23f、摂動モデル23b)如く構成した。尚、これは第4の実施の形態から第7の実施の形態にも妥当する。

【0346】また、第5および第7の実施の形態においては、前記第1フィードバック量算出手段は、少なくとも前記動力学モデルの重心位置に基づいて第1のフィードバック量を算出する如く構成した。

【0347】第8の実施の形態においては上記したよう に、少なくとも上体24と、前記上体に連結される複数 本の脚部2からなる脚式移動ロボット1が歩行などの動 作を行うとき、前記動作の目標瞬時値を生成する動作生 成装置において、前記動作を構成する目標運動と目標床 反力の仮瞬時値を決定する仮瞬時値決定手段(歩容パラ メータ決定部100a、目標および仮瞬時値発生部10 0b、図28の単純化モデル100c1の演算)、少な くとも前記決定された目標運動の仮瞬時値を、前記ロボ ットの運動と床反力の関係を表す動力学モデルに入力し てモデルの出力(図28のフルモデル2MP)を算出す るモデル出力算出手段(図28の逆フルモデル100c 2の演算)、前記算出されたモデルの出力と前記決定さ れた目標床反力の仮瞬時値との差(図28のフルモデル ZMP誤差)を算出する床反力差算出手段(図28の加 算点28a)、少なくとも前記算出された差に基づき、 少なくとも前記目標運動の補正量(図28の摂動モデル 上体位置)を算出する目標運動補正量算出手段(図28 のブロック28b、摂動モデル28c)、および少なく とも前記算出された補正量に基づいて前記目標運動と前 記目標床反力の目標瞬時値を決定する目標瞬時値決定手 段(フルモデル補正入り歩容生成部100、特に図28 の加算点28 d、加算点28 d の出力を補正目標上体位 置として決定すること、目標ZMPまわりのフルモデル 補正モーメントの ZMP換算値を Oに決定すること)を 備える如く構成した。尚、これは、第9の実施の形態か ら第13の実施の形態にも妥当する。

【0348】また、少なくとも上体24と、前記上体に連結される複数本の脚部2からなる脚式移動ロボット1が歩行などの動作を行うとき、前記動作の目標瞬時値を生成する動作生成装置において、前記動作を構成する目標運動と目標ZMPの仮瞬時値を決定する仮瞬時値決定手段(歩容バラメータ決定部100a、目標および仮瞬時値発生部100b、図28の単純化モデル100c1の演算)、少なくとも前記決定された目標運動の仮瞬時値を、前記ロボットの運動とZMPの関係を表す動力学

モデルに入力してモデルの出力(図28のフルモデルZ MP)を算出するモデル出力算出手段(図28の逆フル モデル100c2の演算)、前記算出されたモデルの出 力と前記決定された目標ZMPの仮瞬時値との差(図2 8のフルモデル ZMP 誤差) を算出する ZMP 差算出手 段(図28の加算点28a)、少なくとも前記算出され た差に基づき、少なくとも前記目標運動の補正量(図2 8の摂動モデル上体位置)を算出する目標運動補正量算 出手段(図28のブロック28b、摂動モデル28 10 c)、および少なくとも前記算出された補正量に基づい て前記目標運動と前記目標床反力の目標瞬時値を決定す る目標瞬時値決定手段(フルモデル補正入り歩容生成部 100、特に図28の加算点28d、加算点28dの出 力を補正目標上体位置として決定すること、目標ZMP まわりのフルモデル補正モーメントのZMP換算値をO に決定すること)を備える如く構成した。尚、これは、 第9の実施の形態から第13の実施の形態にも妥当す

【0349】また、少なくとも上体24と、前記上体に 連結される複数本の脚部2からなる脚式移動ロボット1 が歩行などの動作を行うとき、前記動作の目標瞬時値を 生成する動作生成装置において、前記動作を構成する目 標運動と目標ZMPの仮瞬時値を決定する仮瞬時値決定 手段(歩容パラメータ決定部100a、目標および仮瞬 時値発生部100b、図28の単純化モデル100c1 の演算)、少なくとも前記決定された目標運動の仮瞬時 値を、前記ロボットの運動と床反力作用点まわりの床反 力モーメントの関係を表す動力学モデルに入力し、目標 ZMPの仮瞬時値まわりの目標床反力モーメントとして 30 モデルの出力(図28のフルモデルZMP誤差)を算出 するモデル出力算出手段(図28の逆フルモデル100 c 2の演算, 加算点28 a)、少なくとも前記モデルの 出力に基づき、少なくとも前記目標運動の補正量(図2 8の摂動モデル上体位置)を算出する目標運動補正量算 出手段(図28のブロック28b, 摂動モデル28 c)、および少なくとも前記算出された補正量に基づい て前記目標運動と前記目標床反力の目標瞬時値を決定す る目標瞬時値決定手段(フルモデル補正入り歩容生成部 100、特に図28の加算点28d、加算点28dの出 40 力を補正目標上体位置として決定すること、目標 2 M P まわりのフルモデル補正モーメントのZMP換算値を0 に決定すること)を備える如く構成した。尚、これは、 第9の実施の形態から第13の実施の形態にも妥当す

【0350】第9の実施の形態においては、第8の実施の形態に加え、前記目標運動補正量算出手段は、前記ロボットにおける前記床反力の摂動と前記運動の摂動の動力学的関係を表す摂動モデル(図29の摂動モデル29 d)、前記摂動モデルの状態量(例えば、前記摂動モデルの上体位置および/または速度)と前記動力学モデル

の状態量(例えば、前記動力学モデルの重心位置)の少 なくともいずれかに基づき、フィードバック量(図29 の摂動モデル制御用フィードバック量)を算出するフィ ードバック量算出手段(図29の摂動モデル制御則29 e)、および前記算出された差を打ち消すようにフィー ドフォワード量を算出するフィードフォワード量算出手 段(図29のブロック29b)を備え、前記算出された フィードバック量とフィードフォワード量の和を前記摂 動モデルに入力して前記目標運動の補正量を算出(図2 9の加算点29 c、摂動モデル29 d) する如く構成し

65

【0351】また、第11および第13の実施の形態に おいては、前記フィードバック量算出手段は、少なくと も前記動力学モデルの重心位置(図31または図33の フルモデル重心位置) に基づいて前記フィードバック量 を算出する如く構成した。

た。

【0352】また、第14の実施の形態においては、少 なくとも上体24と、前記上体に連結される複数本の脚 部2からなる脚式移動ロボット1が歩行などの動作を行 うとき、前記動作の目標瞬時値を生成する動作生成装置 において、前記動作を構成する目標運動と目標床反力の 中の少なくとも目標床反力の仮瞬時値(図34の目標Z MP)を決定する目標床反力仮瞬時値決定手段(歩容パ ラメータ決定部100a、目標(および仮)瞬時値発生 部100b、少なくとも前記決定された目標床反力の仮 瞬時値を、前記ロボットの運動と床反力の関係を表す第 1の動力学モデルに入力して前記目標運動の仮瞬時値

(図34の単純化モデル上体位置)を算出する目標運動 仮瞬時値算出手段(図34の単純化モデル100c1の 演算)、少なくとも前記算出された目標運動の仮瞬時値 を、前記ロボットの運動と床反力の関係を表す第2の動 力学モデルに入力して第2の動力学モデルの出力(図3 4のフルモデル ZMP) を算出する第2モデル出力算出 手段(図34の逆フルモデル100c2の演算)、前記 算出された第2の動力学モデルの出力と前記決定された 目標床反力の仮瞬時値との差(図34のフルモデルZM P誤差)を算出する床反力差算出手段(図34の加算点 34a)、少なくとも前記算出された差に基づき、少な くとも前記目標床反力の補正量(図34の単純化モデル ZMP補正量)を算出する目標床反力補正量算出手段 (図34のブロック34b)、前記算出された補正量を 前記第1の動力学モデルに追加的に入力するモデル入力 補正手段(図34の加算点34c)、および少なくとも 前記第2の動力学モデルの入力と出力に基づいて前記目 標運動と前記目標床反力の目標瞬時値(図34の補正目 標上体位置、目標ZMPまわりのフルモデル補正モーメ ントの ZMP換算値)を決定する目標瞬時値決定手段 (フルモデル補正入り歩容生成部100、特に図34の 単純化モデル上体位置を補正目標上体位置として決定す

ること、加算点34aの出力を目標ZMPまわりのフル

モデル補正モーメントのZMP換算値として決定すると と)を備える如く構成した。

66

【0353】また、少なくとも上体24と、前記上体に 連結される複数本の脚部2からなる脚式移動ロボット1 が歩行などの動作を行うとき、前記動作の目標瞬時値を 生成する動作生成装置において、前記動作を構成する目 標運動と目標ZMPの中の少なくとも目標ZMPの仮瞬 時値(図34の目標ZMP)を決定する目標ZMP仮瞬 時値決定手段(歩容パラメータ決定部100a、目標 (および仮)瞬時値発生部100b)、少なくとも前記 決定された目標ZMPの仮瞬時値を、前記ロボットの運 動とZMPの関係を表す第1の動力学モデルに入力して 前記目標運動の仮瞬時値(図34の単純化モデル上体位 置)を算出する目標運動仮瞬時値算出手段(図34の単 純化モデル100c1の演算)、少なくとも前記算出さ れた目標運動の仮瞬時値を、前記ロボットの運動とZM Pの関係を表す第2の動力学モデルに入力して第2の動 力学モデルの出力(図34のフルモデルZMP)を算出 する第2モデル出力算出手段(図34の逆フルモデル1 00c2の演算)、前記算出された第2の動力学モデル の出力と前記決定された目標ZMPの仮瞬時値との差 (図34のフルモデルZMP誤差)を算出するZMP差 算出手段(図34の加算点34a)、少なくとも前記算 出された差に基づき、少なくとも前記目標ZMPの補正 量(図34の単純化モデルZMP補正量)を算出する目 標ZMP補正量算出手段(図34のブロック34b)、 前記算出された補正量を前記第1の動力学モデルに追加 的に入力するモデル入力補正手段(図34の加算点34 c) 、および少なくとも前記第2の動力学モデルの入力 と出力に基づいて前記目標運動と前記目標床反力の目標 瞬時値(図34の補正目標上体位置、目標ZMPまわり のフルモデル補正モーメントのZMP換算値など)を決 定する目標瞬時値決定手段(フルモデル補正入り歩容生 成部100、特に図34の単純化モデル上体位置を補正 目標上体位置として決定すること、加算点34aの出力 を目標ZMPまわりのフルモデル補正モーメントのZM P換算値として決定すること)を備える如く構成した。 【0354】また、少なくとも上体24と、前記上体に 連結される複数本の脚部2からなる脚式移動ロボット1 40 が歩行などの動作を行うとき、前記動作の目標瞬時値を 生成する動作生成装置において、前記動作を構成する目 標運動と目標ZMPの中の少なくとも目標ZMPの仮瞬 時値(図34の目標ZMP)を決定する目標ZMP仮瞬 時値決定手段(歩容パラメータ決定部100a、目標 (および仮)瞬時値発生部100b)、少なくとも前記 決定された目標ZMPの仮瞬時値を、前記ロボットの運 動と ZMPの関係を表す第1の動力学モデルに入力して 前記目標運動の仮瞬時値(図34の単純化モデル上体位 置)を算出する目標運動仮瞬時値算出手段(図34の単

純化モデル100c1の演算)、少なくとも前記算出さ

20

67

れた目標運動の仮瞬時値と前記決定された目標ZMPの 仮瞬時値を、前記ロボットの運動と床反力作用点まわり の床反力モーメントの関係を表す第2の動力学モデルに 入力し、目標ZMPの仮瞬時値まわりの目標床反力モー メントとして第2の動力学モデルの出力(図34のフル モデル ZMP誤差)を算出する第2モデル出力算出手段 (図34の逆フルモデル100c2の演算、加算点34 a)、少なくとも前記算出された第2の動力学モデルの 出力に基づき、少なくとも前記目標ZMPの補正量(図 34の単純化モデルZMP補正量)を算出する目標ZM P補正量算出手段(図34のブロック34b)、前記算 出された補正量を前記第1の動力学モデルに追加的に入 力するモデル入力補正手段(図34の加算点34c)、 および少なくとも前記第2の動力学モデルの入力と出力 に基づいて前記目標運動と前記目標床反力の目標瞬時値 (図34の補正目標上体位置、目標ZMPまわりのフル モデル補正モーメントのZMP換算値など)を決定する 目標瞬時値決定手段(フルモデル補正入り歩容生成部1 00、特に図34の単純化モデル上体位置を補正目標上 体位置として決定すること、加算点34aの出力を目標 ZMPまわりのフルモデル補正モーメントのZMP換算 値として決定すること)を備える如く構成した。

【0355】また、第15の実施の形態においては、第14の実施の形態に加え、少なくとも前記算出された差に基づき、少なくとも前記目標運動の補正量(図36の摂動モデル上体位置)を算出する目標運動補正量算出手段(図36の摂動モデル制御則36b、加算点36c、ブロック36d、分配器36e、加算点36f、摂動モデル36g)、前記算出された目標運動の補正量を前記第2の動力学モデルに追加的に入力する第2モデル入力補正手段(図36の加算点36h)を備える如く構成した。

【0356】また、前記目標運動補正量算出手段は、前 記ロボットにおける前記床反力の摂動と前記運動の摂動 の動力学的関係を表す摂動モデル(図36の摂動モデル 36g)、前記摂動モデルの状態量(例えば、前記摂動 モデルの上体位置および/または速度)と前記動力学モ デルの状態量 (例えば、前記動力学モデルの重心位置) の少なくともいずれかに基づき、第1のフィードバック 量(摂動モデル制御用フィードバック量)を算出する第 1フィードバック量算出手段(図36の摂動モデル制御 則36b)、および少なくとも前記算出された差と前記 第1のフィードバック量との差に基づき、第2のフィー ドバック量(図36の摂動モデルZMP補正量)を算出 する第2フィードバック量算出手段(図36の加算点3 6 c、積分器36 d、分配器36 e)を備え、前記算出 された第1のフィードバック量と第2のフィードバック 量の和を前記摂動モデルに入力して前記目標運動の補正 量を算出する(図36の加算点36f、摂動モデル36 g)如く構成した。

【0357】第16の実施の形態にあっては、少なくと も上体と、前記上体に連結される複数本の脚部からなる 脚式移動ロボットが歩行などの動作を行うとき、前記動 作の目標瞬時値を生成する動作生成装置において、前記 動作を構成する目標運動と目標床反力の仮瞬時値を決定 する仮瞬時値決定手段(図5の歩容パラメータ決定部1 00a, 目標(および仮)瞬時値発生部100b, 図3 7の単純化モデル100c1の演算)、少なくとも前記 決定された目標床反力の仮瞬時値を、前記ロボットの運 動と床反力の関係を表す動力学モデルに入力し、前記動 力学モデルの運動の瞬時値を算出するモデル運動瞬時値 算出手段(図37の順フルモデル100c2の演算)、 前記動力学モデルの運動の瞬時値と前記目標運動の仮瞬 時値との差を算出するモデル運動差算出手段(図37の 加算点37a)、少なくとも前記差に基づいて前記差が 零に近づくように補正量を算出する補正量算出手段(図 37のモデル追従フィードバック則37b)、前記算出 された補正量を前記動力学モデルに追加的に入力するモ デル入力補正手段(図37の加算点37c)および少な くとも前記動力学モデルの入力と出力に基づいて前記目 標運動と前記目標床反力の目標瞬時値を決定する目標瞬 時値決定手段(フルモデル補正入り歩容発生部100、 特に図37の順フルモデル100c2の出力を補正目標 上体位置として決定すること、モデル追従フィードバッ ク則37bの出力を目標ZMPまわりのフルモデル補正 モーメントのZMP換算値として決定すること)を備え る如く構成した。

【0358】また、少なくとも上体24と、前記上体に 連結される複数本の脚部2からなる脚式移動ロボット1 30 が歩行などの動作を行うとき、前記動作の目標瞬時値を 生成する動作生成装置において、前記動作を構成する目 標床反力の仮瞬時値を決定する目標床反力仮瞬時値決定 手段(図5の歩容パラメータ決定部100a, 目標(お よび仮)瞬時値発生部100b)、前記動作を構成する 目標運動の瞬時値を決定する目標運動瞬時値決定手段 (図5の100a, 100b, 図37の単純化モデル1 00 c 1の演算)、少なくとも前記決定された目標床反 力の仮瞬時値を、前記ロボットの運動と床反力の関係を 表す動力学モデルに入力し、前記動力学モデルの運動の 40 瞬時値を算出するモデル運動瞬時値算出手段(図37の 順フルモデル100c2の演算)、前記動力学モデルの 運動の瞬時値と前記目標運動の瞬時値との差を算出する モデル運動差算出手段(図37の加算点37a)、少な くとも前記差に基づいて前記差が零に近づくように補正 量を算出する補正量算出手段(図37のモデル追従フィ ードバック則37b)、前記算出された補正量を前記動 力学モデルに追加的に入力するモデル入力補正手段(図 37の加算点37c) および少なくとも前記動力学モデ ルの入力に基づいて前記目標床反力の目標瞬時値を決定 50 する目標床反力瞬時値決定手段(100、特に図37の

70

10

20

40

モデル追従フィードバック則37bの出力を目標 ZMP まわりのフルモデル補正モーメントのZMP換算値とし て決定すること)を備える如く構成した。

69

【0359】また、少なくとも上体24と、前記上体に 連結される複数本の脚部2からなる脚式移動ロボット1 が歩行などの動作を行うとき、前記動作の目標瞬時値を 生成する動作生成装置において、前記動作を構成する目 標運動と目標ZMPの仮瞬時値を決定する仮瞬時値決定 手段(100a, 100b、図37の単純化モデル10 0 c 1の演算)、少なくとも前記決定された目標 ZMP の仮瞬時値を、前記ロボットの運動とZMPの関係を表 す動力学モデルに入力し、前記動力学モデルの運動の瞬 時値を算出するモデル運動瞬時値算出手段(図37の順 フルモデル100c2の演算)、前記動力学モデルの運 動の瞬時値と前記目標運動の仮瞬時値との差を算出する モデル運動差算出手段(図37の加算点37a)、少な くとも前記差に基づいて前記差が零に近づくように補正 量を算出する補正量算出手段(37b)、前記算出され た補正量を前記動力学モデルに追加的に入力するモデル 入力補正手段(加算点37c) および少なくとも前記動 力学モデルの入力と出力に基づいて前記目標運動と前記 目標ZMPの目標瞬時値を決定する目標瞬時値決定手段 (100、特に図37の順フルモデル100c2の出力 を補正目標上体位置として決定すること、モデル追従フ ィードバック則37bの出力を目標ZMPまわりのフル モデル補正モーメントのZMP換算値として決定すると と)を備える如く構成した。

【0360】また、少なくとも上体24と、前記上体に 連結される複数本の脚部2からなる脚式移動ロボット1 が歩行などの動作を行うとき、前記動作の目標瞬時値を 生成する動作生成装置において、前記動作を構成する目 標ZMPの仮瞬時値を決定する目標ZMP仮瞬時値決定 手段(100a, 100b)、前記動作を構成する目標 運動の瞬時値を決定する目標運動瞬時値決定手段(10 0a, 100b, 図37の単純化モデル100c1の演 算)、少なくとも前記決定された目標ZMPの仮瞬時値 を、前記ロボットの運動とZMPの関係を表す動力学モ デルに入力し、前記動力学モデルの運動の瞬時値を算出 するモデル運動瞬時値算出手段(図37の順フルモデル 100 c 2の演算)、前記動力学モデルの運動の瞬時値 と前記目標運動の瞬時値との差を算出するモデル運動差 算出手段(加算点37a)、少なくとも前記差に基づい て前記差が零に近づくように補正量を算出する補正量算 出手段(37b)、前記算出された補正量を前記動力学 モデルに追加的に入力するモデル入力補正手段(加算点 37 c)、および少なくとも前記動力学モデルの入力に 基づいて前記目標ZMPの目標瞬時値を決定する目標Z MP瞬時値決定手段(100、特に図37のモデル追従 フィードバック則37bの出力を目標ZMPまわりのフ ルモデル補正モーメントのZMP換算値として決定する こと)を備える如く構成した。

【0361】また、第22の実施の形態においては上記 の如く、少なくとも上体24と、前記上体に連結される 複数本の脚部2からなる脚式移動ロボット1が歩行など の動作を行うとき、前記動作の目標瞬時値を生成する動 作生成装置において、前記動作を構成する目標ZMPの 仮瞬時値を決定する目標ZMP仮瞬時値決定手段(10 Oa, 100b)、前記動作を構成する目標運動の瞬時 値を決定する目標運動瞬時値決定手段(100a,10 0b. 図43の単純化モデル100c1の演算)、少な くとも前記決定された目標ZMPの仮瞬時値を、前記ロ ボットの運動と床反力作用点とそのまわりの床反力モー メントの関係を表す動力学モデルに床反力作用点として 入力し、前記動力学モデルの運動の瞬時値を算出するモ デル運動瞬時値算出手段(図43の順フルモデル100 c 2の演算)、前記動力学モデルの運動の瞬時値と前記 目標運動の瞬時値との差を算出するモデル運動差算出手 段(加算点43a)、少なくとも前記差に基づいて前記 差が零に近づくように補正量を算出する補正量算出手段 (モデル追従フィードバック則43b)、前記算出され た補正量を前記動力学モデルに前記床反力モーメントと して入力し、モデルの入力を補正しつつ、前記算出され た補正量を目標ZMPまわりの補正モーメントの目標瞬 時値として決定する目標瞬時値決定手段(100、特に 図43のブロック43h、モデル追従フィードバック則 43bの出力を目標 ZMPまわりのフルモデル補正モー メントのZMP換算値として決定すること)を備える如 く構成した。

【0362】また、第17の実施の形態にあっては、少 なくとも上体24と、前記上体に連結される複数本の脚 部2からなる脚式移動ロボット1が歩行などの動作を行 うとき、前記動作の目標瞬時値を生成する動作生成装置 において、前記動作を構成する目標運動と目標床反力の 中の少なくとも目標床反力の瞬時値を決定する目標床反 力瞬時値決定手段(図5の歩容パラメータ決定部100 a, 目標(および仮)瞬時値発生部100b)、少なく とも前記決定された目標床反力の瞬時値を、前記ロボッ トの運動と床反力の関係を表す第1の動力学モデルに入 力して前記第1の動力学モデルの運動の瞬時値を算出す る第1モデル運動瞬時値算出手段(図38の単純化モデ ル100 c 1の演算)、少なくとも前記決定された目標 床反力の瞬時値を、前記ロボットの運動と床反力の関係 を表す第2の動力学モデルに入力し、前記第2の動力学 モデルの運動の瞬時値を算出する第2モデル運動瞬時値 算出手段(図38の順フルモデル100c2の演算)、 前記第2の動力学モデルの運動の瞬時値と前記第1の動 力学モデルの運動の瞬時値との差を算出するモデル運動 差算出手段(図38の加算点38a)、少なくとも前記 差に基づいて前記差が零に近づくように補正量を算出す 50 る補正量算出手段(図38のモデル追従フィードバック 則38b)、および前記算出された補正量を前記第1の 動力学モデルに追加的に入力する第1モデル入力補正手 段(加算点38c)を備え、前記第1の動力学モデルの 出力および前記第2の動力学モデルの出力の少なくとも いずれかを前記目標運動の目標瞬時値として決定する (図4のフルモデル補正入り歩容発生部100、特に図 38の単純化モデル100c1の出力または順フルモデ ル100 c 2の出力を補正目標上体位置として決定する こと)如く構成した。

71

【0363】また、少なくとも上体24と、前記上体に 連結される複数本の脚部2からなる脚式移動ロボット1 が歩行などの動作を行うとき、前記動作の目標瞬時値を 生成する動作生成装置において、前記動作を構成する目 標運動と目標ZMPの中の少なくとも目標ZMPの瞬時 値を決定する目標ZMP瞬時値決定手段(100a, 1 00b)、少なくとも前記決定された目標 ZMPの瞬時 値を、前記ロボットの運動とZMPの関係を表す第1の 動力学モデルに入力して前記第1の動力学モデルの運動 の瞬時値を算出する第1モデル運動瞬時値算出手段(図 38の単純化モデル100c1の演算)、少なくとも前 記決定された目標ZMPの瞬時値を、前記ロボットの運 動とZMPの関係を表す第2の動力学モデルに入力し、 前記第2の動力学モデルの運動の瞬時値を算出する第2 モデル運動瞬時値算出手段(図38の順フルモデル10 0 c 2の演算)、前記第2の動力学モデルの運動の瞬時 値と前記第1の動力学モデルの運動の瞬時値との差を算 出するモデル運動差算出手段(加算点38a)、および 少なくとも前記差に基づいて前記差が零に近づくように 補正量を算出する補正量算出手段(38b)、前記算出 された補正量を前記第1の動力学モデルに追加的に入力 30 する第1モデル入力補正手段(加算点38c)を備え、 前記第1の動力学モデルの出力および前記第2の動力学 モデルの出力の少なくともいずれかを前記目標運動の目 標瞬時値として決定する(100、特に図38の単純化 モデル100c1の出力または順フルモデル100c2 の出力を補正目標上体位置として決定すること)如く構 成した。

【0364】第18の実施の形態にあっては、少なくと も上体24と、前記上体に連結される複数本の脚部2か らなる脚式移動ロボット1が歩行などの動作を行うと き、前記動作の目標瞬時値を生成する動作生成装置にお いて、前記動作を構成する目標運動と目標床反力の中の 少なくとも目標床反力の瞬時値を決定する目標床反力瞬 時値決定手段(100a, 100b)、少なくとも前記 決定された目標床反力の瞬時値を、前記ロボットの運動 と床反力の関係を表す第1の動力学モデルに入力して前 記第1の動力学モデルの運動の瞬時値を算出する第1モ デル運動瞬時値算出手段(図39の順フルモデル100 c2の演算)、少なくとも前記第1の動力学モデルの運

する第2モデル状態量算出手段(ブロック39a)、お よび少なくとも前記第2の動力学モデルの状態量に基づ き、目標動作のパラメータを修正する目標動作パラメー タ修正手段(図11フロー・チャートのS28)を備 え、前記第1の動力学モデルの出力を前記目標運動の目 標瞬時値として決定する(100、特に図39の順フル モデル100c2の出力を補正目標上体位置として決定 するとと)如く構成した。

【0365】また、少なくとも上体24と、前記上体に 連結される複数本の脚部2からなる脚式移動ロボット1 が歩行などの動作を行うとき、前記動作の目標瞬時値を 生成する動作生成装置において、前記動作を構成する目 標運動と目標ZMPの中の少なくとも目標ZMPの瞬時 値を決定する目標 ZMP瞬時値決定手段(100a, 1 00b)、少なくとも前記決定された目標 ZMPの瞬時 値を、前記ロボットの運動とZMPの関係を表す第1の 動力学モデルに入力して前記第1の動力学モデルの運動 の瞬時値を算出する第1モデル運動瞬時値算出手段(図 39の順フルモデル100c2の演算)、少なくとも前 20 記第1の動力学モデルの運動の瞬時値に応じた第2の動 力学モデルの状態量を算出する第2モデル状態量算出手 段(39a)、および少なくとも前記第2の動力学モデ ルの状態量に基づき、目標動作のパラメータを修正する 目標動作パラメータ修正手段(図11フロー・チャート のS28)を備え、前記第1の動力学モデルの出力を前 記目標運動の目標瞬時値として決定する(100、特に 図39の順フルモデル100c2の出力を補正目標上体 位置として決定すること)如く構成した。

【0366】第19の実施の形態にあっては、少なくと も上体24と、前記上体に連結される複数本の脚部2か らなる脚式移動ロボット1が歩行などの動作を行うと き、前記動作の目標瞬時値を生成する動作生成装置にお いて、前記動作を構成する目標運動と目標床反力の中の 少なくとも目標床反力の仮瞬時値を決定する目標床反力 仮瞬時値決定手段(100a, 100b)、少なくとも 前記決定された目標床反力の仮瞬時値を、前記ロボット の運動と床反力の関係を表す第1の動力学モデルに入力 して前記第1の動力学モデルの運動の瞬時値を算出する 第1モデル運動瞬時値算出手段(図40の単純化モデル 100 c 1の演算)、少なくとも前記決定された目標床 反力の仮瞬時値を、前記ロボットの運動と床反力の関係 を表す第2の動力学モデルに入力し、前記第2の動力学 モデルの運動の瞬時値を算出する第2モデル運動瞬時値 算出手段(図40の順フルモデル100c2の演算)、 前記第2の動力学モデルの運動の瞬時値と前記第1の動 力学モデルの運動の瞬時値との差を算出するモデル運動 差算出手段(図40の加算点40a)、少なくとも前記 差に基づいて前記差が零に近づくように第1の補正量を 算出する第1補正量算出手段(図40のモデル追従フィ 動の瞬時値に応じた第2の動力学モデルの状態量を算出 50 ードバック則1(40b))、少なくとも前記差に基づ 73

いて前記差が零に近づくように第2の補正量を算出する 第2補正量算出手段(図40のモデル追従フィードバッ ク則2(40c))、前記算出された第1の補正量を前 記第1の動力学モデルに追加的に入力する第1モデル入 力補正手段(加算点40d)、および前記算出された第 2の補正量を前記第2の動力学モデルに追加的に入力す る第2モデル入力補正手段(加算点40 e)を備え、前 記第1の動力学モデルの出力および前記第2の動力学モ デルの出力の少なくともいずれかを前記目標運動の目標 瞬時値として決定する(100、特に図40の単純化モ 10 デル100c1の出力または順フルモデル100c2の 出力を補正目標上体位置として決定すること)如く構成

【0367】また、少なくとも上体24と、前記上体に 連結される複数本の脚部2からなる脚式移動ロボット1 が歩行などの動作を行うとき、前記動作の目標瞬時値を 生成する動作生成装置において、前記動作を構成する目 標運動と目標ZMPの中の少なくとも目標ZMPの仮瞬 時値を決定する目標ZMP仮瞬時値決定手段(100 a, 100b)、少なくとも前記決定された目標 ZMP の仮瞬時値を、前記ロボットの運動とZMPの関係を表 す第1の動力学モデルに入力して前記第1の動力学モデ ルの運動の瞬時値を算出する第1モデル運動瞬時値算出 手段(図40の単純化モデル100c1の演算)、少な くとも前記決定された目標ZMPの仮瞬時値を、前記口 ボットの運動とZMPの関係を表す第2の動力学モデル に入力し、前記第2の動力学モデルの運動の瞬時値を算 出する第2モデル運動瞬時値算出手段(図40の順フル モデル100 c 2の演算)、前記第2の動力学モデルの 運動の瞬時値と前記第1の動力学モデルの運動の瞬時値 30 との差を算出するモデル運動差算出手段(加算点40 a)、少なくとも前記差に基づいて前記差が零に近づく ように第1の補正量を算出する第1補正量算出手段(4 0b)、少なくとも前記差に基づいて前記差が零に近づ くように第2の補正量を算出する第2補正量算出手段 (40c)、前記算出された第1の補正量を前記第1の 動力学モデルに追加的に入力する第1モデル入力補正手 段(加算点40d)、および前記算出された第2の補正 量を前記第2の動力学モデルに追加的に入力する第2モ デル入力補正手段(加算点40eを備え、前記第1の動 40 平衡条件を精度良く満足する歩容などの動作を生成する 力学モデルの出力および前記第2の動力学モデルの出力 の少なくともいずれかを前記目標運動の目標瞬時値とし て決定する(100、特に図40の単純化モデル100 c1の出力または順フルモデル100c2の出力を補正 目標上体位置として決定すること)如く構成した。

【0368】第23の実施の形態にあっては、さらに、 前記ロボットにおける前記床反力の摂動と前記運動の摂 動の動力学的関係を表す第2の摂動モデル(図44の第 2の摂動モデル44a)、前記新規摂動モデルの状態量 と前記動力学モデルの状態量の少なくともいずれかに基 50 す説明断面図である。

づき、第3のフィードバック量を算出する第3フィード バック量算出手段(図44の第2の摂動モデル制御則4 4 b) 、および前記決定された目標床反力または目標 Z MPの目標瞬時値と、前記目標床反力または前記目標Z MPの仮目標瞬時値の差を求めて入力し、前記差を低減 するように第2のフィードフォワード量を算出する第2 フィードフォワード量算出手段(図44の第2の分配部 44 c. ブロック44 d)、前記算出された新規フィー ドバック量と新規フィードフォワード量の和を前記新規 摂動モデルに入力して前記目標運動の第3の補正量(図 44の第2の摂動モデル上体位置)を算出する第3目標 運動補正量算出手段(図44の加算点44e、摂動モデ ル44a)を備える如く構成した。

【0369】また、前記第3目標運動補正量算出手段 は、前記目標運動の第3の補正量を差すると共に、前記 決定された目標床反力または目標ZMPの目標瞬時値と 前記目標床反力または前記目標ZMPの仮目標瞬時値の 差に前記算出された新規フィードバック量と新規フィー ドフォワード量の和を加えることにより、前記目標床反 20 力または目標 ZMPの第3の補正量 (図44の目標 ZM Pまわりのフルモデル補正モーメントのZMP換算値) を算出する如く構成した。

【0370】また、前記摂動モデルおよび前記第2の摂 動モデルが倒立振子からなる如く構成した。

【0371】また、少なくとも前記第1の動力学モデル の状態量(動力学モデルの位置および/または速度)に 基づき、目標動作のパラメータを決定または修正する目 標動作パラメータ修正手段(図11フロー・チャートの S28)を備える如く構成した。

【0372】また、この発明を2足歩行ロボットに関し て説明してきたが、3足以上の多脚ロボットにも応用す ることができる。さらに、実物のロボット(実機)では なくても、シミュレーションあるいはコンピュータゲー ムなどにおける仮想的なロボットの動作制御あるいは動 作生成にも応用することができる。

[0373]

【発明の効果】動力学的平衡条件を精度良く満足する歩 容などの動作を生成することができると共に、歩行時や 作業時の安定性を高めることができる。また、動力学的 ことができると共に、その生成された動作を追従するよ うにロボットを制御することにより姿勢の安定性を高め ることができる。

【図面の簡単な説明】

【図1】との発明の一つの実施の形態に係る脚式移動口 ボットの動作生成装置が適用される脚式移動ロボット、 より具体的には2足歩行ロボットを全体的に示す概略図 である。

【図2】図1に示す脚式移動ロボットの足部の構造を示

【図3】図1に示す制御ユニットの詳細を示すブロック 図である。

75

【図4】図1に示す脚式移動ロボットの動作生成装置を 含む動作制御装置の構成を機能的に示すブロック図であ る。

【図5】図4に示すフルモデル補正入り歩容生成部の構 成を機能的に示すブロック図である。

【図6】図5に示すフルモデル補正入り歩容生成部のフ ルモデルの一例である多質点系モデルを機能的に示す説 明図である。

【図7】図5に示すフルモデル補正入り歩容生成部で使 用する、図1に示す脚式移動ロボットを倒立振子で近似 して得た単純化モデル (動力学モデル)を示す説明図で

【図8】図7に示す動力学モデルを用いて先に提案した 歩容生成部が行う、動力学演算を示すブロック図であ

【図9】図8に示す動力学演算で倒立振子の支点位置を 示すZMP相当値ZMPpend を演算するのに用いる、脚部 の質点の慣性力と重力の合力のモーメントの作用点Pの 20 法を説明する機能ブロック図である。 軌跡を示すタイム・チャートである。

【図10】図1に示す脚式移動ロボットにおいて上体軌 道が発散した場合を示す説明図である。

【図11】図1に示す脚式移動ロボットの動作生成装置 の動作を示すフロー・チャートである。

【図12】図11フロー・チャートで使用する定常旋回 歩容を着地位置などから説明する説明図である。

【図13】同様に、図11フロー・チャートで使用する 定常旋回歩容を上体軌道などから説明する説明図であ る。

【図14】図11フロー・チャートの目標瞬時値発生作 業を示すサブルーチン・フロー・チャートである。

【図15】との発明の第1の実施の形態から第20の実 施の形態に係る脚式移動ロボットの動作生成装置によっ て行われる歩容の補正手法を分類して表として示す説明 図である。

【図16】この発明の第1の実施の形態に係る脚式移動 ロボットの動作生成装置によって行われる歩容の補正手 法を説明する機能ブロック図である。

【図17】この発明の第2の実施の形態に係る脚式移動 40 ロボットの動作生成装置によって行われる歩容の補正手 法を説明する機能ブロック図である。

【図18】 この発明の第2の実施の形態に係る脚式移動 ロボットの動作生成装置によって行われる歩容の補正手 法で使用される摂動モデルを用いて行われる動力学演算 を示すブロック図である。

【図19】この発明の第2の実施の形態に係る脚式移動 ロボットの動作生成装置によって行われる歩容の補正手 法を変形して示す機能ブロック図である。

【図20】同様に、との発明の第2の実施の形態に係る 50 動ロボットの動作生成装置によって行われる歩容の補正

脚式移動ロボットの動作生成装置によって行われる歩容 の補正手法を変形して示す機能ブロック図である。

【図21】同様に、この発明の第2の実施の形態に係る 脚式移動ロボットの動作生成装置によって行われる歩容 の補正手法を変形して示す機能ブロック図である。

【図22】同様に、との発明の第2の実施の形態に係る 脚式移動ロボットの動作生成装置によって行われる歩容 の補正手法を変形して示す機能ブロック図である。

【図23】との発明の第3の実施の形態に係る脚式移動 10 ロボットの動作生成装置によって行われる歩容の補正手 法を説明する機能ブロック図である。

【図24】との発明の第4の実施の形態に係る脚式移動 ロボットの動作生成装置によって行われる歩容の補正手 法を説明する機能ブロック図である。

【図25】との発明の第5の実施の形態に係る脚式移動 ロボットの動作生成装置によって行われる歩容の補正手 法を説明する機能ブロック図である。

【図26】この発明の第6の実施の形態に係る脚式移動 ロボットの動作生成装置によって行われる歩容の補正手

【図27】との発明の第7の実施の形態に係る脚式移動 ロボットの動作生成装置によって行われる歩容の補正手 法を説明する機能ブロック図である。

【図28】との発明の第8の実施の形態に係る脚式移動 ロボットの動作生成装置によって行われる歩容の補正手 法を説明する機能ブロック図である。

【図29】との発明の第9の実施の形態に係る脚式移動 ロボットの動作生成装置によって行われる歩容の補正手 法を説明する機能ブロック図である。

【図30】との発明の第10の実施の形態に係る脚式移 30 動ロボットの動作生成装置によって行われる歩容の補正 手法を説明する機能ブロック図である。

【図31】との発明の第11の実施の形態に係る脚式移 動ロボットの動作生成装置によって行われる歩容の補正 手法を説明する機能ブロック図である。

【図32】との発明の第12の実施の形態に係る脚式移 動ロボットの動作生成装置によって行われる歩容の補正 手法を説明する機能ブロック図である。

【図33】 この発明の第13の実施の形態に係る脚式移 動ロボットの動作生成装置によって行われる歩容の補正 手法を説明する機能ブロック図である。

【図34】との発明の第14の実施の形態に係る脚式移 動ロボットの動作生成装置によって行われる歩容の補正 手法を説明する機能ブロック図である。

【図35】との発明の第14の実施の形態に係る脚式移 動ロボットの動作生成装置によって行われる歩容の補正 手法に付随する歩容パラメータの再決定処理を示す説明 タイム・チャートである。

【図36】この発明の第15の実施の形態に係る脚式移

手法を説明する機能ブロック図である。

【図37】との発明の第16の実施の形態に係る脚式移動ロボットの動作生成装置によって行われる歩容の補正手法を説明する機能ブロック図である。

77

【図38】との発明の第17の実施の形態に係る脚式移動ロボットの動作生成装置によって行われる歩容の補正手法を説明する機能ブロック図である。

【図39】との発明の第18の実施の形態に係る脚式移動ロボットの動作生成装置によって行われる歩容の補正手法を説明する機能ブロック図である。

【図40】との発明の第19の実施の形態に係る脚式移動ロボットの動作生成装置によって行われる歩容の補正手法を説明する機能ブロック図である。

【図41】との発明の第20の実施の形態に係る脚式移動ロボットの動作生成装置によって行われる歩容の補正手法を説明する機能ブロック図である。

【図42】との発明の第21の実施の形態に係る脚式移動ロボットの動作生成装置によって行われる歩容の補正手法を説明する、図16に類似する機能ブロック図である。

【図43】との発明の第22の実施の形態に係る脚式移動ロボットの動作生成装置によって行われる歩容の補正手法を説明する、図17に類似する機能ブロック図である。

【図44】との発明の第23の実施の形態に係る脚式移動ロボットの動作生成装置によって行われる歩容の補正手法を説明する、図37に類似する機能ブロック図であ*

*る。

【図45】第23の実施の形態の変形例を示す、図34 に類似する機能ブロック図である。

【図46】との発明の第1の実施の形態などの等価変形例を示す、図5に類似する機能ブロック図である。 【符号の説明】

1	2 足歩行ロボット	(脚
式移動ロボット)		

	2	脚部(脚部リング)
10	10, 12, 14R, L	股関節
	16D I	欧朗 篮

16R, L	膝関節
18, 20R, L	足関節
22R, L	足平(足部)
2 4	上体(基体)
2 6	制御ユニット
3 4	6軸力センサ
3 6	傾斜センサ
4 2	コンプライアンス機構

60第1の演算装置20 62第2の演算装置100フルモデル補正入り歩

容生成部

 100c
 フルモデル補正部

 100cl
 単純化モデル

 100c2
 フルモデル(逆フルモ

デル、順フルモデル)

【図3】

【図7】

[図8]

【図9】

【図10】

【図15】

```
遊覧力学フルモデルを使う手法
  単純化モデル歩響のZMPを補正しない手法
        - 振動モデルを用いない手法(実1)
         摂動モデルを用いる手法
             - フルモデルF8補正型
                   - 基本型(実2)
                       は(天3)
一 摂動モデルを直立近辺に安定させる制御入り(実4)
一 董心制御入り(実5)
一 摂動モデルを補正ZMP平均 # mtotal/mbに追従させる手法(実6)
一 混合型(実7)
                     一般型(実3)
              フルモデルF F補正型
                  単純化モデル歩容の2MPを補正する手法
        - 摂動モデルを用いない手法(実14)
         摂動モデルを用いる手法
           順動力学フルモデルを使う手法
  − 単純化モデル歩客のZMPを補正しない手法(フルモデルを単純化モデル歩客に追従させる手法)(実16)
  単純化モデル参容のZMPを補正する手法
        - 単純化モデルをブルモデル歩容に追伐させる手法(実17)
- 単純化モデル状態量をブルモデル歩容状態量から直接的に求める手法(実18)
        - 双方歩み寄り手法(実19)
```

【図16】

【図17】

【図19】

[図20]

【図21】

【図22】

【図39】

[図23]

【図24】

[図41]

【図25】

【図26】

[図44]

【図27】

【図28】

[図29]

【図30】

【図31】

[図32]

[図34]

[図33]

【図35】

[図36]

【図37】

【図46】

[図38]

[図40]

【図42】

【図43】

【図45】

フロントページの続き

(72)発明者 長谷川 忠明 埼玉県和光市中央1丁目4番1号 株式会 社本田技術研究所内 Fターム(参考) 3C007 AS36 CS08 KS20 KS33 LU08 LW01 MT04 WA03 WA13 WB07