1

Assignment

GATE-EC-39

EE23BTECH11034 - Prabhat Kukunuri

I. QUESTION

Consider a polar non-return to zero (NRZ) waveform, using +2V and -2V for representing binary '1' and '0' respectively, is transmitted in the presence of additive zero-mean white Gaussian noise with variance $0.4\ V^2$. If the a *priori* probability of transmission of a binary '1' is 0.4, the optimum threshold voltage for a maximum a *posteriori*(MAP)receiver (rounded off to two decimal places) is ______V.

Solution:

Symbol	Value	Description
Symbol	value	
v_{th}	$\frac{a_1 + a_2}{2} + \frac{\sigma_n^2}{a_1 - a_2} ln \left(\frac{P(0)}{P(1)} \right)$	optimum threshold value
P(0)	0.6	Probability of error when 0 is transmitted
P(1)	0.4	Probability of error when 1 is transmitted
σ_n^2	$0.4V^{2}$	Variance of the noise
a_1	E[X+N]	voltage of transmission for binary 1
a_2	E[X+N]	voltage of transmission for binary 0

TABLE 0 Variable description

$$a_1 = E\left[X + N\right] \tag{1}$$

$$a_1 = E[X] + E[N] \tag{2}$$

Given mean noise is zero (E[N] = 0) (3)

$$a_1 = E[2] \tag{4}$$

$$a_1 = 2 \tag{5}$$

Similarly,

$$a_2 = E\left[X + N\right] \tag{6}$$

$$a_2 = E[-2] + E[N]$$
 (7)

$$a_2 = -2 \tag{8}$$

Optimum threshold voltage is,

$$v_{th} = \frac{2-2}{2} + \frac{0.4}{2 - (-2)} ln\left(\frac{0.6}{0.4}\right) \tag{9}$$

$$v_{th} = 0.04V \tag{10}$$

Fig. 0. Plot of x(n) vs n