Assignment-3

Due: 11:59 pm on Thursday (04/14/2022)

1. Determine the cost of an optimal binary search tree for a set of n = 7 keys with the following probabilities: (20p)

i	1	2	3	4	5	6	7
p _i	0.16	0.12	0.14	0.07	0.15	0.17	0.19

	Camin Page Date / /
all	0.16 0.12 0.14 0.07 0.15 0.17 0.19
5	Lot's calculate cost for j-i=-1.
	c[1,0] = 0 $c[5,4] = 0c[2,1] = 0$ $c[6,5] = 0c[3,2] = 0$ $c[7,6] = 0$
	Luis calculate cost for j-i=0
15	$C[1,1] = \min \{C[1,0] + C[2,1] + \underset{S4}{\overset{3}{\leq}} P_{5}$
	= 0+0+0·16 = 0·16
	c[2,2] = min { c[2,1] + c[3,2] + E Ps
20	= 0+0+0.12 = 0.12
	c[3,3] = min { c[3,2] + c[4,3] + 5 Ps
	= 0+0+0.14 = 0.14
- 25	4 (26)

```
Camlin Page
c[4,4]= min ([4,3]+c[5,4]+ EPs
    = 0+0+0.07 = 0.07
c[s,s]=min {c[5,4]+c[6,5]+ & Ps
     = 0+0+0.15 = 0.15
c[6,6] = min{c[6,5]+c[7,6]+ &Ps
     = 0+0+0.17 = 0.17
(7,7) = min { (7,6] + c[8,7] + EPS
    = 0+0+0.19 = 0.19
 calculate root value for above most
 8[1,1]= 1
 7 [2,2] = 2
  8[3,3] = 3
 7[4,4] = 4
 r[5,5] = 5
  2[6,6] = 6
  7 (3.13) = 7
```

```
Camlin Page
jet's calculate cast for j-i=1
c[1:2]. min (k=1, c[1,0]+ c[2,2]+ & Ps

k=2, c[1,1]+c[3,2]+ & Ps
    = min (0+0.12+0.28)
            (0.16+0+0.28)
     = min 5 0.4 = 0.4
             0.44
c[23] = min { k=2, c[2, 1]+c[3,3] + 5= Ps
            1 K=3, c[2,2]+c[4,3] + EPS
     = min ) ( 0 + 0.14 + 0.26
            (0.12+0+0.26)
      = min) 0.4 = 0.38
            0.38
c[3,4] = min ) k=3, c[3,2]+c[4,4]+ P&
             k=4, c[3,3]+ c[5,4]+ Pi
       = min } ( 0 +0.07 +0.71
             2 (0.14 + 0 + 0.24)
       - min $ 0.28 = 0.28
```

 $\begin{array}{c} \text{Camin Proc} \\ \text{Date} \\ \text{D$

Camlin Page	
Date	
101's calculate con	
cet's calculate cost for j-i=2	
St. 27 min (Kat. a.F. 2	
1 - C[2,3] + Ps	
$c[1,3] = \min \begin{cases} k=1, c[1, 0] + c[2, 3] + ps \\ k=2, c[1, 1] + c[3, 3] + pi \\ k=3, c[1, 2] + c[4, 3] + pi \end{cases}$	
C(1,2)+c[4,3]+Pi	
$ \begin{array}{c} (0.16 + 0.14 + 0.42) \\ (0.4 + 0 + 0.42) \end{array} $	
((0.4 + 0 + 0.42)	
min 0.8	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
0.82	
$c[24] = min \begin{cases} k-2, c[2,1] + c[3,4] + pi \\ k=3, c[2,2] + c[4,4] + pi \end{cases}$	
12, C[2, 1] + C3, 4] + PI	
15 F=3 C(2,2) + C[4,4] + Pi	
= min (0 + 0.2g + 0.33)	
(0.12 + 0.07 + 0.33)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
min 5 0.61	
$\frac{1}{2} \min \left\{ \begin{array}{l} 0.61 \\ 0.52 \\ \end{array} \right. = 0.52$	
0.31	
25	

c[3,5] min | k=3, c[3,2]+c[4,5]+Pi K=4 ([3,3]+c[5,5]+ Pi k=5, c[3, 4]+ c[6,5]+ p; -min 1 0 + 0.29 + 0.36 (0.14 + 0.15 + 0.36 +0.36 (0.28 + 0 min 5 0.65 0.65 = 0.64 0.64 c[4,6] = min [k=4, c[4,3]+c[5,6]+Pi r=5, c[4, 4] + c[6,6] + Pi k=6, c[4,5]+ c[7,6]++i = min (0 + 0.47 + 0.39 (0.07 + 0.17 + 0.39 (0.29 + 0 + 0.39 min (0.86 = 0.63 0.63 0.68

Camlin Page cet's calculate cost for j-1=3. c[1,4]=min[k=1,c[1,0]+cle,4]+Pi K=2, c[1,1]+(B,4)+P; k=3 c [1 2] + c [4 , 4] + p; k=4.c[1,3]+c[5,4]+ Pi (0 + 0.52 + 0.49 1 0.16 + 0.28 + 0.49 (0.4 + 0.09 + 0.49 (0.72 + 0 + 0.49) (1.01 0.93 = 0.93 0.96 1.21 c[25] - min (c[2,1] + c[3,5] + Pi c[2,3] + c[5,5] + PI c[2,4] + c[6,5] + pi 0 + 0.64 + 0.48 10.12 + 0.29 + 0.48 (0.38 + 0.15 + 0.48

Camlin Page 1:12 = min 0.89 = 0.89 1.01 c[3,2]+c[46]+pi c[316] - min c[3,3]+c[5,6]+pi c (3 4)+c[6,6)+Pi c [3,5] +c[3,6]+ Pi (0 + 0.63 + 0.53 min 10.14 + 0.47 + 0.53 (0.28 + 0.17 + 0.53 + 0.53) - min 1.16 1.14 = 0.98 0.98 1.17 (412) = min Sc (4,3) + c(5,2) + pi C [4,5) + c (7,7) + Pi ([4,6]+ C[8]+ Pi 1 0 +085 +058 - min (6.07 +0.53 +0.58 (0.29 +0.19 + 0.58 (0.63 + 0 + 0.58 4 0.58

	Camlin Page
= min (1.43	
110	= 1.06
1,00	
5 112	
	0001
ut's calculate root for above	cay.
8[1,4] = 2	1 1 1 1 1 1 1
10 8[2,5] = 3	70 -
1(3,6) = 5	
r[3,6] = 5 r[4,7] = 6	
1324 A + H12)	1911
Let's calculate cost for j-i=4	70
c[1,5] = min k=1, c[1,0]+c[57+01
K=2([', 1] + c['	3.57 + Pi
<=3, c[i, 2] + c[i	
k=4, c[1,3]+c[5,5] + Pi
×=5, c[1, 4] + c[1	6,5] + Pi
= min (1 0 + 0.8	9 +0.64
(0.16 + 0.60	1 +0.64
(04 + 0.2	9 + 0.64
0.72 + 0.15	+ 0.64 1
25	- 61

```
Camlin Page
Date / /
               1.53
       = min
                 1-44
                1.33
                            = 1.33
                1.51
               1.57
c[26] = min | k=2, c[2,1)+c[3,6] + Pi
            k=9, c[2,3]+c[4,6]+ pi

k=9, c[2,3]+c[5,6]+ pi

k=9, c[2,3]+c[5,6]+ pi

k=6, c[2,5]+c[7,6]+ pi
              (0 + 0.98 + 0.65
      = min
              10112 + 0.63 + 0.65
              (0.38 + 0.47 + 0.65
               1 0.52 + 0.17 + 0.65
              (0.89 + 0
                                  + 0.65)
               1.63
       = min
               1.4
                         = 1.34
               1.5
               1.34
               1.54
```

Camlin Page Date	1
c[3,7]=min (k=3, c[3,2]+c[4,7]+ pi k=4, c[3,3]+c[5,7]+ pi k=5, c[3,4]+c[6,7]+ pi k=6, c[3,5]+c[7,7]+ pi	11111
$(\kappa=7, c[3, 6]+c[8, 7]+pi$	1
(0.14 + 0.85 + 0.72 (0.28 + 0.53 + 0.72	1
(0.64 + 0.19 + 0.72 (0.98 + 0 + 0.72)
1.71 = 1.53	
1.55	
1et's codoulate root for above cost.	
Y(2, 6) = 5 Y(3, 2) = 5	
a a	

Camlin Page	
Date	
10 -14 1	
Let's adoublate cost for j-1=5	
c[1,6] = min (t), c[1,0] + c[2,6] + pi	
k=2 c[2 2 6] + Pi	
1 + c 4 6] + Pi	
1-4, cy 3)+(56)+p;	
K=5, c[1, 4]+c[6, 6]+ Pi k=6, c[1, 5]+ c[4, 6]+ Pi	
F=6, C[15]+ C[76]	
10	
= min (0 + 1.34 + 0.81)	
(0.16 + 0.81	
(0.16 + 0.98 + 0.81)	
10.63 +0.01	
(0.72 + 0.47 +0.81)	
(0.93 + 0.17 +0.81)	
(1.33 + 0 +0.81)	
68.00 mm =	
= min 2.15	
1.95	
1.84 = 1.84	
2	
1.91 8/8/	
1 2.14	
Loss words yest for statute 290)	
8 - 10.010.010.010.010.010.010.010.010.010.	

- Constitution	Camlin Page
	Date
a-ni- walm -chim	
c[2,7] = min (k=2, c12, 1)+ c13	7) + Pi
1 = 3, c(2, 2) + c(4	37 + Pi
K=4, C(2,3)+ C[5	+ Pi
k=5, c[2, 4) t c[6	
k=6,c[2,5]+c[7	
k=4, <[2,6]+ <[8	
124,1006,116	TITE
10 = min (0 +1.53 +	0.01.
(0.12 + 1.06	
(0.38 + 0.86 +	
	0.84
(0.89 + 0.19 +	0.84
	0.84
8 18 9 7 9 6 88 1 3	
= min (2.37	
2.02	
2.08 =1.89	
1.89	
1.92	
(2.18	
10+15 -1-1-1-1-1-1	
Let's calculate mot for above cost	
zs r[1,6] = 3 r[2,9] = 5	

	lin Page
Date	1 1
let's calculate cost for j-i=6	
$\frac{c(1,3) = \min\{k=1,-c[1,0]+c[2,7]}{k=2,c[1,1]+c[3,2]}$ $\frac{k=3,c[1,2]+c[4,3]}{k=4,c[1,3]+c[5,3]}$	+ Pi + Pi + Di
(K=5, c[1 4] + c[6,7] (K=6, c[15] + c[7,7] (K=7, c[1,6] + c[8,7] +	4 Pi
11	9
= min (0 + 1.89	F 1
0.16 + 1.53	+ 1)
(0.4 + 1.06	+ ()
15 0.72 + 0.85	1)
0.93 + 0.53	+ 1)
(1.33 + 0.19	+ 1)
((1.89 + 0) +	- 1)
min (2.89	
2.69	
2.46 = 2.46	
2.57	
2.46	
2.52	
2.84	130

	and Initiation						Co	amlin P	1
	and					above	cos	Fis	
	19 7 1	~	1,9	= 3	170-	1 - 1 / 1 / 1 / 1 / 1 / 1 / 1 / 1 / 1 /	AHAN W	1511	-
5	7 7	6 1		-	113				-
	Cost-	table	15	1 68	1300	014	19/5	141	
	79 .0 1	0	10	2	3	4	5	6	7
	191	-	0.16		0.72	0.93	1.33	1.84	
10	2	6.2	0	0.12	0.38	0.52	0.89	1.34	1.89
	3			0	0.14				
. (4		8 1		0	0.07	0.29	0.63	1.06
	S	3	21		2/40	0	0.15	0.47	0.85
	6	1 3	0		50	1	0	0.17	0.53
15	7	7	8-0	+ -	260	11/		0	0.19
	8	18	0.0	1	28-0				0
	1 4		1.0	+	584)			
	soot	-	1	-	0.801	200			
		1	,	2	3, 4	+ 2	6	17	1
20	1	-1	1	2	2		3	3	
	2		2	3	3		5	5	
	3	17.6	100	3	3	-	5	5	
	4	-			4	5	5	6	
	5	-			0111	5	6	6	
25		-	-	10	65.6		6	7	1
	. 7	+ .	1.	1.	18.8			7.	!
	10.00					3 (94)		1	9-153

2. Determine an LCS of {1; 0; 0; 1; 0; 1; 0; 1} and {0; 1; 0; 1; 1; 0; 1; 1; 0}. (20p)

3. Construct a Huffman tree for the following table (20p)

Characters	Frequencies
a	10
е	15
i	12
0	3
u	4
S	13
t	1

4.	From the following algorithm design techniques which one is used to find all the pairs of shortest distances in a graph? (10p)
	a) Backtracking b) Greedy c) Dynamic programming d) Divide and Conquer
5.	In Huffman coding, data in a tree always occur? (10p) a) roots b) leaves c) left sub trees d) right sub trees
6.	Which of the following is/are element/elements of a dynamic programming problem? a) Optimal substructure (10p) b) Overlapping subproblems c) Greedy approach d) Both optimal substructure and overlapping subproblems
7.	If a problem can be broken into subproblems which are reused several times, the problem possesses property.(10p) a) Overlapping subproblems b) Optimal substructure c) Memoization d) Greedy