Metody Obliczeniowe w Nauce i Technice

Laboratorium 1 Arytmetyka komputerowa

10 marca 2020

1. Sumowanie liczb pojedynczej precyzji

- 1. Napisz program, który oblicza sumę N liczb pojedynczej precyzji przechowywanych w tablicy o $N=10^7$ elementach. Tablica wypełniona jest tą samą wartością v z przedziału [0.1,0.9].
- 2. Wyznacz bezwzględny i względny błąd obliczeń. Dlaczego błąd względny jest tak duży?
- 3. W jaki sposób rośnie błąd względny w trakcie sumowania? Przedstaw wykres (raportuj wartość błędu co 25000 kroków) i dokonaj jego interpretacji.
- 4. Zaimplementuj rekurencyjny algorytm sumowania wykorzystujący kolejne pary wartości.
- 5. Wyznacz bezwzględny i względny błąd obliczeń. Dlaczego błąd względny znacznie zmalał?
- 6. Porównaj czas działania obu algorytmów dla tych samych danych wejściowych.

2. Algorytm Kahana

Zaimplementuj algorytm sumowania Kahana wykorzystując poniższy pseudokod:

```
1 function KahanSum(input)
2     var sum = 0.0
3     var err = 0.0
4     for i = 1 to input.length do
5         var y = input[i] - err
6         var temp = sum + y
7         err = (temp - sum) - y
8         sum = temp
9     next i
10     return sum
```

- 1. Wyznacz bezwzględny i względny błąd obliczeń dla tych samych danych wejściowych jak w przypadku testów z Zadania 1.
- 2. Wyjaśnij dlaczego algorytm Kahana ma znacznie lepsze własności numeryczne? Do czego służy zmienna err?
- 3. Porównaj czasy działania algorytmu Kahana oraz algorytmu sumowania rekurencyjnego dla tych samych danych wejściowych.

3. Suma szeregu

Rozważmy następujący szereg:

$$\sum_{k=1}^{n} = \frac{1}{2^{k+1}} \tag{1}$$

gdzie n = 50, 100, 200, 500, 800.

- 1. Oblicz wartość szeregu dla pojedynczej precyzji. Dokonaj sumowania zarówno w przód jak i wstecz. Porównaj wyniki dla obu kolejności.
- 2. Powtórz analogiczny eksperyment dla podwójnej precyzji.
- 3. Dokonaj porównaniu wyników, które otrzymałeś w dwóch poprzednich punktach.
- 4. Do obliczenia szeregu wykorzystaj algorytm Kahana z 2 zadania i sprawdź czy obliczane wartości oraz błąd ulegną poprawie.

4. Epsilon maszynowy

Napisz program w języku C/C++ służący do wyznaczania epsilona maszynowego. Sprawdź, czy wynik jest zgodny ze standardem IEEE 754. Jeśli nie, to dlaczego? Jak to naprawić?

5. Algorytm niestabilny numerycznie

Wymyśl własny przykład algorytmu niestablinego numerycznie, a następnie:

- 1. W oparciu o definicje algorytmu niestabilnego zademonstruj, że działa niepoprawnie.
- 2. Wyjaśnij dlaczego.
- 3. Wprowadź modyfikacje, które pozwolą otrzymać wersję stabilną.