Билет 68

Автор1,, АвторN
22 июня 2020 г.

Содержани	\mathbf{e}
-----------	--------------

0.1	Билет 68: I	Іочленное і	интегрирование	суммы	степенного ряда.		.]
-----	-------------	-------------	----------------	-------	------------------	--	-----

0.1. Билет 68: Почленное интегрирование суммы степенного ряда.

Лемма.

 $x_n,y_n\in\mathbb{R}$ и $\lim_{n\to+\infty}x_n\in(0,+\infty)$. Тогда $\overline{\lim}\,x_ny_n=\lim x_n\,\overline{\lim}\,y_n$.

Доказательство.

 $A = \lim x_n, B = \overline{\lim} y_n, C = \overline{\lim} x_n y_n$. (Напоминание: верхний предел это наибольший из частичных).

 $\exists n_k$, т.ч. $x_{n_k}y_{n_k} \to C$. $\lim x_{n_k}y_{n_k} = \lim x_{n_k} \lim y_{n_k}$, равенство есть, т.к. существует предел слева и предел x_{n_k} . Из равенства следует, что $\lim y_{n_k} = \frac{C}{A} \leqslant B \implies C \leqslant AB$.

 $\exists m_k,$ т.ч. $y_{n_k} \to B$. $\lim x_{m_k} y_{m_k} = \lim x_{m_k} \lim y_{m_k} \implies \lim x_{m_k} y_{m_k} = AB \leqslant C$.

Итого равенство.

Следствие.

Радиусы сходимости рядов $\sum_{n=0}^{\infty} a_n z^n$, $\sum_{n=0}^{\infty} a_n \frac{z^{n+1}}{n+1}$, $\sum_{n=1}^{\infty} a_n n z^{n-1}$ совпадают.

Доказательство.

Домножение на z не влияет на радиус, поэтому докажем для рядов $\sum_{n=0}^{\infty} a_n z^n$,

$$\sum_{n=0}^{\infty} a_n \frac{z^n}{n+1}, \sum_{n=1}^{\infty} a_n n z^n.$$

$$R_1 = \frac{1}{\overline{\lim} \sqrt[n]{|a_n|}}, R_2 = \frac{1}{\overline{\lim} \sqrt[n]{|a_n|}}, R_3 = \frac{1}{\overline{\lim} \sqrt[n]{|a_n|} \sqrt[n]{n}}$$

 $\lim \sqrt[n]{n+1} = \lim \sqrt[n]{n} = 1$, по лемме можем вытащить из под верхнего предела и окажется, что $R_1 = R_2 = R_3$.

Теорема 0.1 (Почленное интегрирование степенного ряда).

R – радиус сходимости ряда $f(x) = \sum_{n=0}^{\infty} a_n (x-x_0)^n$. Тогда при $|x-x_0| < R$

 $\int\limits_{x_0}^x f(t)dt = \sum\limits_{n=0}^\infty a_n rac{(x-x_0)^{n+1}}{n+1}$ и полученный ряд имеет тот же радиус сходимости.

Доказательство.

На $[x_0,x]$ ряд сходится равномерно (теорема из билета $67) \Longrightarrow f \in C[x_0,x]$ и можно интегрировать почленно $\int\limits_{x_0}^x \sum\limits_{n=0}^\infty a_n (t-x_0)^n dt = \sum\limits_{n=0}^\infty a_n \int\limits_{x_0}^x (t-x_0)^n dt = \sum\limits_{n=0}^\infty a_n \frac{(x-x_0)^{n+1}}{n+1}.$