■ Exercice 1.

1. a) Voici le programme :

```
from __future__ import division
2
   def liste_suite(n):
3
        u = 1
        L = [u]
4
        for k in range(n):
5
          u = sqrt(u**2 + 2**(-k)) # attention à coordonner la
6
                                     # valeur de l'exposant avec
7
8
                                     # les plages de votre range
          L.append(u)
9
10
        return L
```

b) La console me donne :

```
>>> liste_suite(20)
[1, 1.4142135623730951, 1.5811388300841898, 1.6583123951777001,
1.6955824957813173, 1.7139136501002612, 1.723006094011278,
1.7275343701356567, 1.729794062887256, 1.7309228030157786,
1.7314868971493835, 1.7317688753121763, 1.731909847177387,
1.731980328807172, 1.7320155685465126, 1.732033188147314,
1.7320419978805, 1.7320464027302895, 1.7320486051509834,
1.7320497063602802, 1.732050256964666]
>>> sqrt(3) 1.7320508075688772
```

On peut conjecturer que la suite est convergente vers $\sqrt{3}$

2. Par récurrence montrons la propriété (P_n) : $u_n \ge 1$. Il est clair que (P_0) est vraie. Si pour un entier n quelconque donné (P_n) est vraie. Puisque $1/2^n \ge 0$, par croissance de la fonction racine sur \mathbf{R}_+ on obtient :

$$u_{n+1} = \sqrt{u_n^2 + \frac{1}{2^n}} \ge \sqrt{u_n^2} = |u_n|.$$

Comme $u_n \ge 1$, $u_n \ge 0$, donc $|u_n| = u_n \ge 1$. Finalement on bien $u_{n+1} \ge u_n \ge 1$ et (P_{n+1}) est vraie ce qui achève la récurrence.

3. On peut remarquer que : $\forall n \in \mathbb{N}$ $u_{n+1}^2 - u_n^2 = \frac{1}{2^n}$. Or par identité remarquable :

$$\forall n \in \mathbf{N} \quad (u_{n+1} - u_n)(u_{n+1} + u_n) = \frac{1}{2^n},$$

et puisque $u_{n+1} + u_n \ge 1 + 1$ par **2.**, cela permet d'une part de diviser membre à membre par $u_{n+1} + u_n \ne 0$:

$$\forall n \in \mathbf{N} \quad u_{n+1} - u_n = \frac{\frac{1}{2^n}}{u_{n+1} + u_n},$$

et d'autre part, comme tout est positf, on peut minorer le dénominateur par 2 et donc :

$$\forall n \in \mathbb{N} \quad 0 \le u_{n+1} - u_n \le \frac{\frac{1}{2^n}}{2} = \frac{1}{2^{n+1}}.$$

4. Soit $n \ge 1$ un entier. On somme les relations obtenues précédemment de k = 0 à k = n - 1:

$$\sum_{k=0}^{n-1} u_{k+1} - u_k \leq \sum_{k=0}^{n-1} \frac{1}{2^{k+1}}.$$

Par telescopage sur le premier membre et translation d'indices sur le second :

$$\forall n \ge 1 \quad u_n - u_0 \le \sum_{k=1}^n \frac{1}{2^k}.$$

- **5.** La relation ci-dessus donne : $\forall n \geq 1$ $u_n \geq u_0 + \sum_{k=1}^n \frac{1}{2^k}$ Or puisque $u_0 = 1$, en calculant la valeur du membre de droite : $\forall n \geq 1$ $u_n \leq \sum_{k=0}^n \frac{1}{2^k} = 2\left(1 \frac{1}{2^{n+1}}\right) \leq 2$. La suite est majorée par 2 qui est bien un majorant indépendant de n. Enfin la suite est aussi croissante d'après la minoration de **3.** Par le théorème de convergence monotone, (u_n) est convergente.
- **6. a)** On a vu que au début de **3** que $v_{n+1} v_n = \frac{1}{2^n}$. Encore en sommant toutes ces relations de k = 0 à k = n 1, où $n \ge 1$ est un entier quelconque, un telescopage donne :

$$\forall n \ge 1 \quad \nu_n - \nu_0 = \sum_{k=0}^{n-1} \frac{1}{2^k} = \frac{1 - \frac{1}{2^n}}{1 - \frac{1}{2}}$$

et donc : $\forall n \ge 1 \quad v_n = 3 - 2^{1-n}$.

- **b)** Comme $u_n \ge 0$ pour tout entier : $u_n = \sqrt{v_n} = \sqrt{3 2^{1-n}}$ Il est facile de voir par opérations sur les limites que $v_n = 3 + o(1)$ et donc par opérations sur les limites et continuité de la racine : $u_n = \sqrt{3} + o(1)$. Cela confirme bien le résultat deviné numériquement en **1**.
- **7.** On doit calculer $\sqrt{3} u_n =$. Or encore par identité remarquables en partant de $v_n = 3 2^{1-n}$:

$$(\sqrt{3} - u_n)(\sqrt{3} + u_n) = 2^{1-n}$$

en divisant par $(\sqrt{3} + u_n) \neq 0$ (somme de deux termes ≥ 1):

$$\sqrt{3} - u_n = \frac{2^{1-n}}{\sqrt{3} + u_n}$$

Par opérations sur les limites : $\sqrt{3} + u_n = 2\sqrt{3} + o(1)$. Comme la limite $2\sqrt{3}$ est non nulle, on peut écrire par quotient d'équivalents :

$$\sqrt{3} - u_n \sim_{\infty} \frac{2^{1-n}}{2\sqrt{3}} = \frac{1}{2^n \sqrt{3}}$$

■ Exercice 2.

- **1.** Il est facile de voir que : $\forall n \ge 0$ $x_{n+1} x_n = -x_n^2 \le 0$ donc la suite est décroissante.
- **2.** Par décroissance de la suite, il est clair que :

$$x_n \ge x_0 \ge 1 \quad \forall n \ge 0.$$

Suites numériques

Il reste à prouver que $x_n \ge 0$ pour tout entier n. On le fait par récurrence. C'est vrai pour x_0 . si on suppose que $x_n \ge 0$ pour un rang n donné :

$$x_{n+1} = x_n(1 - x_n).$$

Avec l'hypothèse de récurrence, le premier facteur du membre de droite est positif. Le second aussi puisqu'on a prouvé que $(1-x_n) \ge$ pour tout entier n. La récurrence est vérifiée.

3. La suite (x_n) est décroissante et minorée par 0, donc elle converge. Notons ℓ la limite de la suite. En passant à la limite dans la relation de récurrence, ce qui est possible car elle est valable asymptotiquement :

$$\ell = \ell - \ell^2$$
.

D'où $\ell = 0$.