CRISPRitz Installation and Usage

The two fastest way to use CRISPRitz is through the installation of Docker or Conda. Here we summarize the steps to install CRISPRitz with Docker and Conda.

Installation (Phase 1):

Conda installation (Linux and MacOS):

- Open a terminal window
- Paste this command into the terminal (Linux):
 curl https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh
 Miniconda3-latest-Linux-x86_64.sh
- Paste this command into the terminal (MacOS):
 curl https://repo.anaconda.com/miniconda/Miniconda3-latest-MacOSX-x86_64.sh --output Miniconda3-latest-MacOSX-x86_64.sh
- If the file is correctly downloaded you now need to execute it to complete the installation, so paste this command into the terminal:

bash Miniconda3-latest-Linux-x86_64.sh (Linux)
bash Miniconda3-latest-MacOSX-x86_64.sh(MacOS):

- Press ENTER when requested and yes when an answer is requested, in this way you allow conda to set all the directories in your HOME path for an easy use
- After the complete installation you will receive this message "Thank you for installing Miniconda3!" to certify the correct installation.
- Now you need to close the terminal window you are using and open a new one, to allow the system to start conda.
- In the new terminal window you should see something like this

"(base) user@nameofPC:~\$" if you read the "(base)" like this, conda is loaded correctly and you can start using it.

 Now you need to set the channels to allow conda to access different repositories and set the default version of python to version 3.6, so paste these commands into the terminal you just opened:

conda config --add channels defaults

conda config --add channels bioconda

conda config --add channels conda-forge

conda install python=3.6

- Now, you can install CRISPRitz by typing the command: conda install crispritz
- To test your installation, type the command: crispritz.py

After the execution of the command you should see a list of CRISPRitz tools.

Now the software is installed and ready to be used.

Docker installation:

Note: if you are using MasOS or Windows, you just need to download the installer file and follow the on screen instructions.

https://docs.docker.com/docker-for-windows/install/ (Windows) https://docs.docker.com/docker-for-mac/install/ (MacOS)

Ubuntu installation guide:

- Open a terminal window
- Paste this command to update the index repository:

```
sudo apt-get update
```

Paste this command to allow package installation over HTTPS:

```
sudo apt-get install \
    apt-transport-https \
    ca-certificates \
    curl \
    gnupg-agent \
    software-properties-common
```

Paste this command to add the docker key:

```
curl -fsSL https://download.docker.com/linux/ubuntu/gpg | sudo apt-key
add -
```

Paste this command to set the correct version of docker for your system:

```
sudo add-apt-repository \
   "deb [arch=amd64] https://download.docker.com/linux/ubuntu \
   $(lsb_release -cs) \
   Stable"
```

 Paste this command to update the index repository another time, to make sure everything is ready and set to install docker:

```
sudo apt-get update
```

• Then paste this command to finally install docker:

```
sudo apt-get install docker-ce docker-ce-cli containerd.io
```

Paste this last command to check if the installation is complete and functional:

```
sudo docker run hello-world
```

• If this message is printed, everything is perfectly installed

(base) scancellieri@samuelecancellieri:~\$ docker run hello-world Hello from Docker! This message shows that your installation appears to be working correctly. To generate this message, Docker took the following steps: 1. The Docker client contacted the Docker daemon. 2. The Docker daemon pulled the "hello-world" image from the Docker Hub. (amd64) 3. The Docker daemon created a new container from that image which runs the executable that produces the output you are currently reading. 4. The Docker daemon streamed that output to the Docker client, which sent it to your terminal. To try something more ambitious, you can run an Ubuntu container with: \$ docker run -it ubuntu bash Share images, automate workflows, and more with a free Docker ID: https://hub.docker.com/ For more examples and ideas, visit: https://docs.docker.com/get-started/

 Now, we need to do some more steps to complete the settings. Paste this command to create a user group for docker user:

sudo groupadd docker

• Paste this command to add your current user to the created group:

sudo usermod -aG docker \$USER

- Now you need to restart your machine or the virtual environment, to re-evaluate the user groups.
- One last command to test if the group is well configured. Paste this command:

 docker run hello-world
- If the previous "hello from docker" message is printed, everything is perfectly set.

Post installation test (Phase 2):

Conda:

• Download and run this script if you have installed CRISPRitz with Conda:

curl

https://raw.githubusercontent.com/pinellolab/CRISPRitz/master/test_scripts/auto_test_crispritz_conda.sh --output auto_test_crispritz_conda.sh

Write this command to execute the script:

```
bash auto test crispritz conda.sh
```

• Wait until this confirmation message appears:

"EVERY TEST PASSED!!! ENJOY CRISPRitz"

Docker:

Download and run this script if you have installed CRISPRitz with Docker:

curl

https://raw.githubusercontent.com/pinellolab/CRISPRitz/master/test_scripts/auto_ test_crispritz_docker.sh --output auto_test_crispritz_docker.sh

• Write this command to execute the script:

```
bash auto test crispritz docker.sh
```

• Wait until this confirmation message appears:

"EVERY TEST PASSED!!! ENJOY CRISPRitz"

Usage (Phase 3):

Here is a brief guide to help use CRISPRitz, if you already execute the post installation test (Phase 2), and you obtain a positive result, you have all the necessary file in the test_crispritz directory and you can skip this list of steps.

If you did not execute the test, follow these few steps to download the necessary files to try CRISPRitz.

Download test files (ONE TIME STEP):

- The script will download the chr22 from UCSC (hg19), the correspondent VCF file from the 1000 Genome Project, a directory containing some test guides, a directory containing some PAM sequences and a directory of pre-computed genomic annotations for the hg19 genome.
- Download the script with this command:

curl

https://raw.githubusercontent.com/pinellolab/CRISPRitz/master/test_scripts/download test files.sh --output download test files.sh

• Write this command to execute the script:

```
bash download test files.sh
```

- The script will download every necessary file to test the software, we download only one chromosome and one vcf file, to save time. All the examples can be run on an entire genome, if you want to use the entire hg19 genome, you only need to add chromosomes into the hg19 ref directory.
- Write this command to enter the test directory:

```
cd test crispritz/
```

Now you are ready to execute the following example functions.

3.1 - CRISPRitz Add-Variant Tool

This tool is created to insert variants in a fasta genome. Input:

- Directory containing a genome in fasta format, need to be separated into single chromosome files.
- Directory containing VCF files, need to be separated into single chromosome files (multi-sample files will be collapsed into one fake individual).

Output:

- Directory containing a duplicate of the original genome in fasta format, separated into single chromosome files with added SNPs in IUPAC notation.
- Directory containing a duplicate of the original genome in fasta format, separated into single chromosome files with added INDELs.

Example call:

```
crispritz.py add-variants hg19_1000genomeproject_vcf/ hg19_ref/ (Conda)

docker run -v ${PWD}:/DATA -w /DATA -i pinellolab/crispritz crispritz.py
add-variants hg19 1000genomeproject vcf/ hg19 ref/ (Docker)
```

Detailed input:

hg19_1000genomeproject_vcf/ is the directory containing the vcf files. hg19_ref/ is the directory containing the fasta files.

3.2 - CRISPRitz Index-Genome Tool

This tool is created to generate an index genome (similar to the bwa-index step). This step is time consuming (from 30 to 60 minutes) but helps to save a lot of execution time while searching with lot of guides and with the support of bulges (DNA and RNA). If do not need to search with bulges, skip this passage.

Input:

- Name of the genome to create (e.g. hg19 ref).
- Directory containing a genome in fasta format, need to be separated into single chromosome files.
- Number of bulges to include in the database to perform the following search (i.e. the max number bulges allowed for DNA and RNA when searching on the database)

Output:

 Directory containing an index genome in .bin format, separated into single chromosome files, containing all the candidate targets for a selected PAM, adding also characters to perform bulge search.

Example call:

```
crispritz.py index-genome hg19_ref hg19_ref/ pam/pamNGG.txt -bMax 2 (Conda) docker run -v ${PWD}:/DATA -w /DATA -i pinellolab/crispritz crispritz.py index-genome hg19_ref hg19_ref/ pam/pamNGG.txt -bMax 2 (Docker)
```

Detailed input:

hg19_ref is the name of the output directory containing the index genome.

hg19 ref/ is the directory containing the fasta files.

pam/pamNGG.txt/ is a text file containing the PAM sequence.

-bMax 2 is the max number of bulges to allow for following searches when creating the database (e.g if -bMax 2, all the following searches with the created index can be performed with max 2 RNA bulges and 2 DNA bulges)

3.3 - CRISPRitz Search Tool

This tool is created to search on a fasta genome or an index genome.

There are two kinds of searches permitted with CRISPRitz;

The first and simplest one uses a common fasta genome and it's developed to perform fast, on-the-fly searches with mismatches only.

The second search type, uses the before generated index genome (Phase 3.2), to perform searches with lot of guides and also with bulges support.

3.3.1 - Mismatches only search:

Input:

- Directory containing a genome in fasta format, need to be separated into single chromosome files.
- Text file containing one or more guides (including a number of Ns equal to the length of the PAM sequence) (e.g. TCACCCAGGCTGGAATACAGNNN, the last 3 Ns represents the space occupied by the PAM in the real sequence)
- Name of the output file (e.g. emx1.hg19)
- Number of allowed mismatches (e.g. -mm 4)
- Output type (-r off-targets list only, -p profile only, -t everything) (e.g -t)
- Scores (-scores followed by the directory of the fasta genome, to perform the score after the search with score calculation based on Doench 2016 and CFD, the two scoring methods supports only NGG PAM and 23 long guides) (e.g -scores hg19 ref/)

Output:

- Set of result files, including:
 - Targets file, containing all genomic targets for the guide set
 - Profile file, containing a matrix-like representation of guides behaviour (bp/mm, total on-/off- target, targets per mismatch threshold)
 - Extended profile file, containing the motif matrix for each guide and each mismatch threshold, useful to create visual analysis of the guides behaviour

Example call:

```
crispritz.py search hg19_ref/ pam/pamNGG.txt guides/EMX1.txt emx1.hg19 -mm 4 -t
-scores hg19 ref/(Conda)
```

docker run -v \${PWD}:/DATA -w /DATA -i pinellolab/crispritz crispritz.py search
hg19_ref/ pam/pamNGG.txt guides/EMX1.txt emx1.hg19 -mm 4 -t -scores hg19_ref/
(Docker)

Detailed input:

```
hg19_ref/ is the directory containing the fasta files.

pam/pamNGG.txt/ is a text file containing the PAM sequence.

guides/EMX1.txt is a text file containing the EXM1 guide

emx1.hg19 is the output file name

-mm 4 to select the mismatch threshold

-t to select the output type

-scores hg19 ref/ to activate the calculation of score (Doench 2016 and CFD)
```

3.3.2 - Mismatches + Bulges search:

Input:

- Directory containing an index genome in .bin format, separated into single chromosome files (Phase 3.2).
- Text file containing one or more guides (including a number of Ns equal to the length of the PAM sequence) (e.g. TCACCCAGGCTGGAATACAGNNN, the last 3 Ns represents the space occupied by the PAM in the real sequence)
- Name of output file (e.g. emx1.hg19)
- Tag to activate index search (-index)
- Number of allowed mismatches (e.g. -mm 4)
- Size of DNA bulges and/or RNA bulges (e.g. -bdna 1 -brna 1)
- Output type (-r off-targets list only, -p profile only, -t everything) (e.g -t)
- Scores (-scores followed by the directory of the fasta genome, to perform the score after
 the search with score calculation based on Doench 2016 and CFD, the two scoring
 methods supports only NGG PAM and 23 long guides) (e.g -scores hg19_ref/)

Output:

- Set of result files, including:
 - Targets file, containing all genomic targets for the guides set
 - Profile file, containing a matrix-like representation of guides behaviour (bp/mm, total on-/off- target, targets per mismatch threshold)
 - Extended profile file, containing the motif matrix for each guide and each mismatch threshold, useful to create visual analysis of the guides behaviour

Example call:

```
crispritz.py search genome_library/NGG_hg19_ref/ pam/pamNGG.txt guides/EMX1.txt
emx1.hg19 -index -mm 4 -bDNA 1 -bRNA 1 -t -scores hg19 ref/ (Conda)
```

```
docker run -v ${PWD}:/DATA -w /DATA -i pinellolab/crispritz crispritz.py search
genome_library/NGG_hg19_ref/ pam/pamNGG.txt guides/EMX1.txt emx1.hg19 -index
-mm 4 -bDNA 1 -bRNA 1 -t -scores hg19 ref/ (Docker)
```

Detailed input:

```
genome_library/NGG_hg19_ref/ is the directory containing the fasta files.

pam/pamNGG.txt/ is a text file containing the PAM sequence.

guides/EMX1.txt is a text file containing the EXM1 guide

emx1.hg19 is the output file name

-index tag to activate the index search

-bDNA 1 DNA bulges threshold

-bRNA 1 RNA bulges threshold

-mm 4 Mismatches threshold

-t to select the output type
```

-scores hg19 ref/ to activate the calculation of score (Doench 2016 and CFD)

3.4 - CRISPRitz Annotation Tool

This tool is created to perform genomic annotation on results obtained during the search phase. Input:

- Text file containing one or more guides, the same file used during the search phase (Phase 3.3.1 / 3.3.2)
- Targets file, containing all genomic targets for the guides set (Phase 3.3.1 / 3.3.2)
- Text file containing the path to bed files with the annotations
- Name of output file

Output:

- Set of files, including:
 - Targets file with annotation (identical file as the targets file in input) with an added column containing the annotations).
 - One file per annotation (CTCF, DNase I, Promoter, Intron, Exon, etc) in a matrix-like format, counting the targets for each input guide and for each mismatch threshold.
 - o One summary file, counting all the annotations per mismatch number.

Example call:

crispritz.py annotate-results guides/EMX1.txt emx1.hg19.targets.txt annotations_path.txt emx1.hg19.annotated (Conda)

docker run -v \${PWD}:/DATA -w /DATA -i pinellolab/crispritz crispritz.py
annotate-results guides/EMX1.txt emx1.hg19.targets.txt annotations_path.txt
emx1.hg19.annotated (Docker)

Detailed input:

guides/EMX1.txt is a text file containing the EMX1 guide
emx1.hg19.targets.txt is the text file containing targets from previous search
chroms_bed/annotations_path.txt is the text file containing the paths of bed files for the
genomic annotations

emx1.hg19.annotated name of the output file

3.5 - CRISPRitz Generate-Report Tool

This tool is created to generate a visual representation of guide behaviour such as on-/off-target activity in specific genomic regions, total number of on-/off- targets in reference and variant genome and so on.

Input:

- A guide present in the analyzed set (phase 3.3.1 / 3.3.2)
 (e.g.GAGTCCGAGCAGAAGAAGAANNN)
- Number of mismatches to analyze (e.g. -mm 4)
- Profile files, profile and extended profile file (Phase 3.3.1 / 3.3.2)
- Count files for genomic annotations (Phase 3.4)
- Tag to activate gecko dataset comparison (e.g. -gecko)

Output:

- Pdf file containing the radar chart and motif logo for a guide, the radar chart shows how
 much the guide is similar, in terms of number of targets found, to all guides in its dataset
 (or the gecko dataset if selected).
- Barplot with a distribution of on-/off- targets in each annotation and a comparison between variant and reference genome, in terms of total targets found.

Example call:

```
crispritz.py generate-report GAGTCCGAGCAGAAGAAGAANNN -mm 4 -profile emx1.hg19.profile.xls -extprofile emx1.hg19.extended_profile.xls -exons emx1.hg19.annotated.ExonsCount.txt -introns emx1.hg19.annotated.IntronsCount.txt -dnase emx1.hg19.annotated.DNAseCount.txt -ctcf emx1.hg19.annotated.CTCFCount.txt -promoters emx1.hg19.annotated.PromotersCount.txt -gecko (Conda)

docker run -v ${PWD}:/DATA -w /DATA -i pinellolab/crispritz crispritz.py generate-report GAGTCCGAGCAGAAGAAGAANNN -mm 4 -profile emx1.hg19.profile.xls -extprofile emx1.hg19.extended_profile.xls -exons emx1.hg19.annotated.ExonsCount.txt -introns emx1.hg19.annotated.IntronsCount.txt -dnase emx1.hg19.annotated.DNAseCount.txt -ctcf emx1.hg19.annotated.CTCFCount.txt -promoters emx1.hg19.annotated.PromotersCount.txt -gecko (Docker)
```

Detailed input:

GAGTCCGAGCAGAAGAAGAANNN is a guide present in the result file, the one you want to analyze and print visualization files

```
-mm 4 Mismatches threshold
```

-profile emx1.hg19.profile.xls is the xls file containing information for analyzed guides, as off-target per threshold count, bp/mm and so on

-extprofile emx1.hg19.extended_profile.xls is the xls file containing information detailed information about guides, used to construct the motif logo

```
-exons emx1.hg19.annotated.ExonsCount.txt
-introns emx1.hg19.annotated.IntronsCount.txt
-dnase emx1.hg19.annotated.DNAseCount.txt
-ctcf emx1.hg19.annotated.CTCFCount.txt
```

-promoters emx1.hg19.annotated.PromotersCount.txt

Set of files containing all the count for each genomic annotation, every file is a matrix-like text file with row representing the guides and column representing a mismatch threshold -gecko tag to activate the gecko dataset comparison, the results of your test guide, will be compared with results from a previous computed analysis on gecko library.

Output examples:

Targets file, containing all genomic targets for the guides set

```
        65
        CCATCATCTATGCCTTTGTCNNN
        chr21
        43291470
        CCACCACCTCTGCCTCTGCCTGG + 5

        66
        GTAGAGCGGAGGCAGGAGGCNNN
        chr21
        43304819
        GCAGTGTGGGAGGCAGGAGGCTGG + 5

        67
        TCTCTGTCACCTGCATAGCTNNN
        chr21
        43332058
        TCTCTGCCACCcaaACAGCTGGG + 5

        68
        AAGGAAAAACAGGTCAGAGANNN
        chr21
        43339677
        AAGGAAAAGAGAGAGAGG + 5

        69
        TATTCAGGCCAAAGAATTCCNNN
        chr21
        43346722
        acTTggGGCCAAAAAAATTCCAGG + 5

        70
        GAGAAAATAAACAATCATGANNN
        chr21
        43377040
        GGGAAAATAAGGAATGCAGG + 5

        71
        GCTGCCGCCCAGTGGGACTTNNN
        chr21
        43378200
        GCTtCCCCCCAGCAGCACTTGGG + 5

        72
        AAAACAGGTCAGAGATGGCCNNN
        chr21
        43382233
        AAAACAGGAAAGAACTGAAGG + 5

        73
        TGGTTTTGTGGGCAACATGCNNN
        chr21
        43394360
        AAAGCCAGCCCGGTCCCCTGGGG + 5

        74
        AAAGCCAGGACAGTGCCNNN
        chr21
        43398579
        TCTCAGCCCCCTGAGTAGCTGGG + 5

        76
        TGGTTTTGTGGGCAACATGCTNNN
        chr21
        43416479
        GGAGCACAGGGGAGACATGCTGGG + 5

        78
        TCTCTGTCACCTGCATAGCTNNN
        chr21
        4346931
        tTGTCTTTT
```

 Profile file, containing a matrix-like representation of guides behaviour (bp/mm, total on-/off- target, targets per mismatch threshold)

GUIDE	BP	BP	BP	BP	BP	BP	BP	BI	D BP	BP	BP	В	IP BE	P BP	В	P BI	P BP	В	P B	P BF	>	ONT	OFFT	OFFT/MM
AAAACAGGTCAGAGATGGCCNNN	83	16 79	8 6	19	1016	1712	508	976	1707	1252	1309	442	806	1494	918	1611	1087	1260	669	771	737		1	4255 4.831.492
AAAGATAGTCATCTTGGGGCNNN	35	52 33	2 2	14	708	335	763	431	615	593	625	393	526	681	408	400	464	369	294	577	458		1	1956 4.891.616
AAAGCCAGGACGGTCACCTTNNN	134	16 33	3 1	77	165	1502	138	121	148	192	818	1760	380	1232	245	227	178	200	326	185	1501		2	2265 4.933.333
AAATGAGAAGAAGAGGCACANNN	143	147.	2 12	10	3087	1879	1207	1676	1123	1245	2111	1610	1308	1908	976	1921	2007	2997	1133	3147	1411		1	7191 4.859.547
AACACCAGTGAGTAGAGCGGNNN	25	2 30	5 3	75	202	454	180	147	175	378	177	166	185	453	210	152	187	273	598	437	190		1	1122 4.899.287
AACACCTTCCAGGAATTCTTNNN	40	18 39	B 55	19	370	560	479	262	342	435	412	275	386	388	390	446	402	358	375	342	468		2	1657 4.885.335
AAGACCTTCTTTTTGAGATCNNN	49	42	9 11:	0	679	1041	1067	394	400	1246	475	522	372	525	546	832	383	782	510	696	1225		1	2806 4.895.937
AAGCCAGGACGGTCACCTTTNNN	20	00 13	7 1	11	253	115	92	129	146	165	395	297	229	199	168	128	156	207	132	178	243		2	758 4.894.459
AAGGAAAAACAGGTCAGAGANNN	147	73 1177	8 21:	12	2170	1217	1279	1339	1648	1652	3235	873	1756	1960	3243	2387	987	1527	1689	2064	1305		1	7223 4.860.030
AAGTGTGATCACTTGGGTGGNNN	43	34	5 4	i5	375	382	446	400	438	499	448	387	447	452	387	297	368	388	355	334	453		1	1652 4.896.489
ACAATGTGTCAACTCTTGACNNN	23	6 37	1 1	77	190	190	270	160	256	258	317	188	291	317	189	305	230	204	275	272	324		1	1024 4.902.344
ACACAGCATGGACGACAGCCNNN	50	7 39	7 30	15	306	206	327	282	413	491	243	426	380	835	733	474	394	211	251	335	392		1	1621 4.878.470
ACAGCATTTGCAGAAGCGTTNNN	27	75 30	5 1/	12	247	308	233	306	378	175	333	311	180	338	235	338	292	595	745	404	324		1	1322 4.890.318
ACATTAAAGATAGTCATCTTNNN	47	77 81	0 49	13	483	522	526	356	346	924	457	709	446	840	525	727	423	473	784	409	458		1	2294 4.877.071
AGAAGAGGCACAGGGCTGTGNNN	112	22 75	5 143	7	1196	882	1018	963	983	1330	1188	1317	871	715	863	971	1223	1173	996	1364	673		1	4326 4.861.304
AGAATTCCTGGAAGGTGTTCNNN	40	07 43-	4 4	0	511	530	421	521	418	333	295	395	431	327	447	533	457	570	528	484	601		2	1864 4.878.219
AGATATTTCCTGCTCCCCAGNNN	35	55 59	0 5	1	532	537	444	359	383	369	391	314	900	875	383	562	643	549	311	392	749		1	2115 4.803.310
AGATGACTATCTTTAATGTCNNN	26	54 50	5 43	16	267	456	358	663	348	476	431	578	260	323	358	381	403	307	627	305	474		1	1684 4.869.359
AGCCAGGACGGTCACCTTTGNNN	19	7 18	4 2	16	146	117	153	184	199	462	377	227	274	229	220	245	197	177	287	206	165		2	916 4.893.013
AGCGTTTGGCAATGTGCTTTNNN	22	9 22	7 4	12	543	222	178	155	265	227	309	217	285	241	245	141	245	277	145	194	223		1	1034 4.893.617
AGGAGAAGGACAATGTTGTANNN	42	56.	2 55	19	374	646	429	351	603	669	453	1096	412	616	758	606	756	729	757	975	683		1	2556 4.888.106
AGTAGAGCGGAGGCAGGAGGNNN	150	90	2 37:	18	1734	969	1572	891	3717	1990	873	1260	866	781	2479	1191	734	685	1013	884	1070		1	5922 4.868.119
AGTITACACCCGATCCACTGNNN	6	0 16	9 10	14	99	135	201	92	75	149	113	246	230	170	175	141	72	102	77	68	73		1	518 4.924.710
ATAATTGCAGTAGCTCTAACNNN	23	5 25	5 2	19	237	220	212	387	298	118	347	285	247	390	321	179	388	217	289	257	397		1	1136 4.893,486
ATATCTGTGGGCTTGTGACANNN	43	18 73	7 5	72	360	927	270	393	528	652	544	496	884	400	284	449	426	793	439	560	290		1	2138 4.884.004
ATCTGGTAAAGATGATTCCTNNN	74	16 46	7 86	51	265	420	510	589	713	337	320	673	739	402	802	407	369	317	546	361	330		1	2093 4.860.965
ATGAACACCAGTGAGTAGAGNNN	54	7 45	7 4	3	427	357	676	372	739	471	277	369	470	331	340	520	864	382	420	332	425		1	1889 4.885.654
ATGCAGGTGACAGAGACTCTNNN	68	63	5 45	9	615	373	465	483	664	605	599	481	303	500	466	457	657	575	627	588	614		1	2220 4.885.586
ATTTCCAAAGTCCCACTGGGNNN	37	70 30	0 2	37	463	340	266	256	340	269	595	524	506	384	256	535	384	292	288	399	439		1	1539 4.868.746
CAATGTGTCAACTCTTGACANNN	39	0 21	1 30	10	214	339	166	353	296	370	226	359	425	223	411	242	266	386	324	339	176		1	1232 4.883.117
CACACTTGTCACCACCCCAANNN	37	77 38	1 3	1	428	394	463	261	437	399	343	373	342	225	248	410	297	340	328	343	490		2	1473 4.887.984
CACCCCAAAGGTGACCGTCCNNN	14	14	5 10	i4	133	163	114	146	197	145	162	193	178	171	222	169	278	336	186	160	132		2	720 4.909.722
CACCCGATCCACTGGGGAGCNNN	21	4 26	5 20	66	225	495	540	427	447	271	136	323	165	250	188	191	138	265	173	218	304		1	1126 4.886.323
CAGAATTGATACTGACTGTANNN	33	6 16	3 25	10	217	270	359	264	355	290	415	328	392	199	330	281	385	202	334	413	313		1	1258 4.877.583
CAGAGATGGCCAGGTTGAGCNNN	50	1 38	2 4	15	1021	574	731	1137	326	757	750	539	382	582	607	1416	903	502	684	635	1270		2	2937 4.832.823
CAGATGACCATGACAAGCAGNNN	62	23 24	5 50	17	650	523	351	484	655	617	505	530	514	519	666	325	466	396	477	254	544		1	2017 4.884.482
CAGCATAGTGAGCCCAGAAGNNN	44	12 25	1 32	7	546	370	825	465	423	572	344	341	373	583	481	318	278	218	419	420	479		1	1740 4.870.690
CAGGACGGTCACCTTTGGGGNNN	24	18 12	3 1	2	196	290	639	390	285	314	263	270	262	240	212	420	324	150	204	286	374		2	1150 4.906.087
CAGGAGAAGGACAATGTTGTNNN	91	10 47	1 49	10	525	370	592	525	515	588	645	486	1034	492	726	850	550	881	676	672	991		1	2664 4.875.751

• Extended profile file, containing the motif matrix for each guide and each mismatch threshold, useful to create visual analysis of the guides behaviour

0	BP	BP	BP	BP	BP	BP	BP	BP	E	IP.	BP	BP	BP	BP	BP	BI)	BP	BP	BP	BP	BP	1	FARGETS
1 0 MISMATCHES		0	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0)	0	0	0	0	
NUCLEOTIDE A		0	0	0	0	0	0	0	0	0	0		0	0	0	0	0	C)	0	0	0	0	
NUCLEOTIDE C		0	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0)	0	0	0	0	
4 NUCLEOTIDE G		0	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0)	0	0	0	0	
5 NUCLEOTIDE T 6		0	0	0	0	0	0	0	0	0	0		0	0	0	0	0	C)	0	0	0	0	
7 1 MISMATCHES		0	0	0	0	0	0	0	0	0	0		0	0	0	0	0	C)	0	0	0	0	(
8 NUCLEOTIDE A		0	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0)	0	0	0	0	
9 NUCLEOTIDE C		0	0	0	0	0	0	0	0	0	0		0	0	0	0	0	C)	0	0	0	0	
0 NUCLEOTIDE G		0	0	0	0	0	0	0	0	0	0		0	0	0	0	0	C)	0	0	0	0	
1 NUCLEOTIDE T		0	0	0	0	0	0	0	0	0	0)	0	0	0	0	C)	0	0	0	0	
3 2 MISMATCHES		0	0	0	0	0	0	0	0	0	0		0	0	0	0	0	C)	0	0	0	0	(
4 NUCLEOTIDE A		0	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0)	0	0	0	0	
5 NUCLEOTIDE C		0	0	0	0	0	0	0	0	0	0		0	0	0	0	0	C)	0	0	0	0	
6 NUCLEOTIDE G		0	0	0	0	0	0	0	0	0	0		0	0	0	0	0	C)	0	0	0	0	
7 NUCLEOTIDE T 8		0	0	0	0	0	0	0	0	0	0)	0	0	0	0	C)	0	0	0	0	
9 3 MISMATCHES		2	2	1	7	1	3	1	4	4	3		1	1	2	1	1	3	3	3	1	1	3	15
0 NUCLEOTIDE A		0	0	0	2	0	1	0	3	1	1		0	1	1	0	0	C)	1	0	1	1	
1 NUCLEOTIDE C		0	1	0	0	1	1	0	1	1	0		0	0	0	0	0	1		0	0	0	0	
2 NUCLEOTIDE G		0	0	0	0	0	1	1	0	2	0		0	0	1	1	1	0)	0	0	0	2	
3 NUCLEOTIDE T		2	1	1	5	0	0	0	0	0	2		1	0	0	0	0	2	2	2	1	0	0	
5 4 MISMATCHES		24	24	10	60	23	53	37	61	41	49	2	В	39	50	25	30	34	1 3	1	28	43	38	182
6 NUCLEOTIDE A		0	0	0	32	0	31	0	31	22	17		0	15	10	9	9	14	1 1	4	19	5	9	
7 NUCLEOTIDE C		7	6	1	12	4	12	9	16	8	0		7	7	0	11	5	3	3	4	3	32	0	
8 NUCLEOTIDE G		6	12	4	0	9	10	16	0	11	18		1	17	17	5	16	C)	0	0	0	11	
9 NUCLEOTIDE T		11	6	5	16	10	0	12	14	0	14	1	7	0	23	0	0	17	7 1	3	6	6	18	
00																								
1 5 MISMATCHES		326	306	233	641	311	707	393	550	548	573	36	4	186	629	382	369	427	7 33	5 2	65	533	417	1759
2 NUCLEOTIDE A		0	0	0	382	0	361	0	247	235	211		0	189	175	159	109	133	18	7 1	41	116	162	
3 NUCLEOTIDE C	1	106	90	32	104	73	190	60	112	135	0	12	2	123	0	160	53	66	5 4	.0	23	302	0	
NUCLEOTIDE G	1	110	129	98	0	116	156	167	0	178	179	4	5	174	164	63	207	C)	0	0	0	123	
5 NUCLEOTIDE T	1	10	87	103	155	122	0	166	191	0	183	19	7	0	290	0	0	228	3 10	8 1	01	115	132	

 Pdf file containing the radar chart and motif logo for a guide, the radar chart shows how much the guide is similar, in terms of number of targets found, to all guides in its dataset (or the gecko dataset if selected).

• Barplot with a distribution of on-/off- targets in each annotation and a comparison between variant and reference genome, in terms of total targets found.

