

IMAGE PROCESSING AND COMPUTER VISION						
(Effective from the Academic Year 2024 - 2025) VI SEMESTER						
Course Code:	AM622T3A	CIA Marks	50			
Number of Contact Hours/Week (L: T: P: S) 3:0:2:0 SEE Marks 50						
Total Hours of Pedagogy	40L + 20P	Exam Hours	03			
CREDITS – 4						

COURSE PREREQUISITES:

Fundamental knowledge of Image concepts and applications, linear Algebra.

COURSE OBJECTIVES:

- Describe the fundamentals of image processing and computer vision
- Illustrate the image enhancement techniques
- Illustrate Image restoration and image compression technique
- Describe the image segmentation and morphological image processing
- Review computer vision techniques and its applications.

TEACHING - LEARNING STRATEGY:

- Following are some sample strategies that can be incorporate for the Course Delivery
- Chalk and Talk Method/Blended Mode Method

Miss Transforms, and Some Basic Morphological Algorithms.

- Power Point Presentation
- Expert Talk/Webinar/Seminar
- Video Streaming/Self-Study/Simulations
- Peer-to-Peer Activities
- Activity/Problem Based Learning
- Case Studies

MOOC/NPTEL Courses Any other innovative initiatives with respect to the Course contents **COURSE CONTENTS MODUDLE - I Computer vision and Image formation:** Overview of computer vision and its application in real world 8 Hours **Image formation:** Geometric primitives and transformations like 2D, 3D and 3D rotations, 3D to 2D projections, lens distortion Photometric image formation with lighting, Reflectance and shading, optics The digital camera- Sampling and aliasing and compression **MODULE - II** Digital Image Fundamentals: What is Digital Image Processing? Origins of Digital Image Processing, Examples of fields that use DIP, Fundamental Steps in Digital Image Processing, Components of an Image Processing System, Elements of Visual Perception, Image Sensing and Acquisition, Image Sampling and Quantization, Some Basic Relationships between Pixels, Linear and Nonlinear Operations. **MODULE - III** Spatial Domain: Some Basic Intensity Transformation Functions, Histogram Processing, Fundamentals of 8 Hours Spatial Filtering, -Smoothing Spatial Filters, Sharpening Spatial Filters Frequency Domain: Preliminary Concepts, The Discrete Fourier Transform (DFT) of Two Variables, Properties of the 2-D DFT, Filtering in the Frequency Domain, Image Smoothing and Image Sharpening Using Frequency Domain Filters, and Selective Filtering. **MODULE - IV** Restoration: Noise models, Restoration in the Presence of Noise Only using Spatial Filtering and 8 Hours Frequency Domain Filtering, Linear, Position-Invariant Degradations, Estimating the Degradation Function, Inverse Filtering, Minimum Mean Square Error (Wiener) Filtering, and Constrained Least Squares Filtering. **MODULE - V** Wavelets: Background, Multiresolution Expansions. 8 Hours Morphological Image Processing: Preliminaries, Erosion and Dilation, Opening and Closing, The Hit-or-

						COUL	RSE OU	JTCOM	1ES					
Upon co	ompleti	on of th	is cours	e, the stu	ıdents w	ill be ab	ole to:							
CO No.	Course Outcome Description											Bloom's axonomy Level		
CO1	Understand, Ascertain and describe the basics of image processing concepts through mathematical interpretation											CL3		
CO2	Apply image processing techniques in both the spatial and frequency (Fourier) domains.											CL3		
CO3	Demonstrate image restoration process and its respective filters required.										CL3			
CO4	Design image analysis techniques in the form of image segmentation and to evaluate the Methodologies											CL3		
CO5	Conduct independent study and analysis of Image Enhancement techniques.									CL2				
	•				LAI	BORAT	ORY (COMP	NENT	S			•	
						CO-PO	O-PSO	MAPP	ING					
CO No.	Programme Outcomes (PO)									Sp	gramme pecific me (PSO)			
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	3	3	3						1			1		
CO2	3	3	3	2	2				1			1		
CO3	3	3	3	2	2				1			1		-
CO4	3	3	3	2	2				1			1		
CO5	3	3	3						2			1		

ASSESSMENT STRATEGY Assessment will be both CIA and SEE. Students learning will be assessed using Direct and Indirect methods:						
Sl. No.	Assessment Description	Weightage (%)	Max. Marks			
1	Continuous Internal Assessment (CIA)	100 %	50			
	Continuous Internal Evaluation (CIE)	60 %	30			
	Practical Session (Laboratory Component)	40 %	20			
2	Semester End Examination (SEE)	100 %	50			

2: Moderate (Medium)

1: Poor (Low)

ASSESSMENT DETAILS								
	Continuous Inter	Semester End Exam (SEE) (50%)						
Continuous 1	Internal Evaluatio	on (CIE) (60%)	Practical Sessions (40%)	-				
I II III								
	Syllabus Coverag	ge	Syllabus Coverage	Syllabus Coverage				
30%	40%	30%	100%	100%				
MI			MI	MI				
MII	MII		MII	MII				
	MIII		MIII	MIII				
		MIV	MIV	MIV				
		MV	MV	MV				

NOTE:

• Assessment will be both CIA and SEE.

3: Substantial (High)

- The practical sessions of the IPCC shall be for CIE only.
- The Theory component of the IPCC shall be for both CIA and SEE respectively.
- The questions from the practical sessions shall be included in Theory SEE.

Note: For Examinations (both CIE and SEE), the question papers shall contain the questions mapped to the appropriate Bloom's Level. Any COs mapped with higher cognitive Bloom's Level may also be assessed through the assignments.

SEE QUESTION PAPER PATTERN:

- 1. The question paper will have **TEN** full questions from **FIVE** Modules
- 2. There will be 2 full questions from each module. Every question will carry a maximum of 20 marks.
- 3. Each full question may have a maximum of four sub-questions covering all the topics under a module.
- 4. The students will have to answer FIVE full questions, selecting one full question from each module.

REFERENCE BOOKS:

- 1. Computer Vision: Algorithms and Applications 2nd Edition Richard Szelisk (Chapter 1 & 2)
- 2. Rafael C. Gonzalez and Richard E. Woods, Digital Image Processing, Third Ed., Prentice Hall, 2008. (Chapter 1,2,3,4,5,7,
- 3. Digital Image Processing- S. Jayaraman, S. Esakkirajan, T. Veerakumar, TataMcGraw Hill 2014.
- 4. Fundamentals of Digital Image Processing-A. K. Jain, Pearson 2004.
- 5. S. Sridhar, Digital Image Processing, Oxford University Press, 2nd Edition, 2016.
- 6. Computer Vision, A Modern Approach David A Forsyth, Jean Ponce