基礎数(毎) 第11回小テスト 追試 学籍番号

注意 (1) 解を導きだす経過をできるだけ丁寧に記述すること. 説明が不十分な場合は減点する.

- (2) 字が粗暴な解答も減点の対象とする.
- (3) 最終的に導き出した答えを右側の四角の中に記入せよ.
- (4) 問題と解答は http://www.math.sie.dendai.ac.jp/hiroyasu/2010/bmed.html で公開する.

1 次の数列 $\{a_n\}$ の一般項と第7項を求めなさい。(各8点)

(1) 初項が-12, 公比が $\frac{1}{2}$ の等比数列

$$a_n = \boxed{ \begin{pmatrix} 1 \end{pmatrix} }$$
 $a_7 = \boxed{ }$

(2) 初項が3,公差が2の等差数列

$$a_n = \boxed{ (2) }$$
 $a_7 = \boxed{ }$

(3) 等差数列 {-4, -2, 0, 2, 4, ...}

$$a_n = \boxed{ (3) }$$
 $a_7 = \boxed{ }$

(4) 等比数列 $\{6, 3, \frac{3}{2}, \frac{3}{4}, \ldots\}$

$$a_n = \boxed{ (4) }$$
 $a_7 = \boxed{ }$

② 数列 $\{8,-4,\cdot,2,-1,\frac{1}{2},-\frac{1}{4},\ldots\}$ の一般項を次の(ア)~(エ)の中からひとつ選びなさい。(8 点) (ア) $a_n=-16\times\left(-\frac{1}{2}\right)^n$ (イ) $a_n=-2^{4-n}$ (ウ) $a_n=(-1)^{1-n}\times 2^{3(1-n)}$ (エ) $a_n=(-1)^n\times (-2)^{n-4}$

$$(\mathcal{F}) a_n = -16 \times \left(-\frac{1}{2}\right)^n \qquad (\mathcal{T}) a_n = -2^{4-}$$

(ウ)
$$a_n = (-1)^{1-n} \times 2^{3(1-n)}$$

$$(\mathbf{I}) \ a_n = (-1)^n \times (-2)^{n-n}$$

 $oxed{3}$ 一般項が $a_n=3^{2-n}$ で与えられる数列 $\{a_n\}$ が等差数列か等比数列か答えなさい。また,その公差または公比の 値を求めなさい。(7点)

$oxed{4}$ 次の数列 $\{a_n\}$ の初項から第 n 項までの和 s_n を求	めなさい.また, s_8 の値	を求めなさい	. (各9点)
(1) 初項が 12, 公差が –5 の等差数列			
	$s_n = $ $ (1) $		$s_8 =$
(a) detect is a (b) live a control which			
(2) 初項が 3, 公比が –2 の等比数列			
	(9)		
	$s_n = \begin{pmatrix} (2) \end{pmatrix}$		$s_8 =$
	(a F)		
$oxed{5}$ $s_n = \sum_{k=1}^n (3k-17)$ とおくとき, s_8 の値を求めなる	さい。(9 点)		
$oxed{6}$ 次の漸化式が表す数列 $\{a_n\}$ の第 2 項から第 4 項	きでを求めなさい.また,	一般項 a_n を	求めなさい. (各 13 点)
$(1) \ a_1 = 4, \ a_{n+1} = \frac{1}{2}a_n$			
2			
			$a_2 = $
			$a_3 = $
			$a_4 = $
		$a_n = $	
$(2) \ a_1 = 2, \ a_{n+1} = -2a_n + 3$			
			$a_2 = $
			$a_3 = $
			$a_4 = $
		$a_n = $	