In [1]: import numpy as np
import pandas as pd
import matplotlib.pyplot as plt

```
In [2]: df=pd.read_csv(r"C:\Users\user\Downloads\12_mobile_prices_2023.csv")
    df.fillna(0,inplace=True)
    df
```

	Phone Name	Rating ?/5	Number of Ratings	RAM	ROM/Storage	Back/Rare Camera	Front Camera	Battery	Processor	Price in INR	Da Scra
0	POCO C50 (Royal Blue, 32 GB)	4.2	33,561	2 GB RAM	32 GB ROM	8MP Dual Camera	5MP Front Camera	5000 mAh	Mediatek Helio A22 Processor, Upto 2.0 GHz Pro	₹5,649	202
1	POCO M4 5G (Cool Blue, 64 GB)	4.2	77,128	4 GB RAM	64 GB ROM	50MP + 2MP	8MP Front Camera	5000 mAh	Mediatek Dimensity 700 Processor	₹11,999	202
2	POCO C51 (Royal Blue, 64 GB)	4.3	15,175	4 GB RAM	64 GB ROM	8MP Dual Rear Camera	5MP Front Camera	5000 mAh	Helio G36 Processor	₹6,999	202
3	POCO C55 (Cool Blue, 64 GB)	4.2	22,621	4 GB RAM	64 GB ROM	50MP Dual Rear Camera	5MP Front Camera	5000 mAh	Mediatek Helio G85 Processor	₹7,749	202
4	POCO C51 (Power Black, 64 GB)	4.3	15,175	4 GB RAM	64 GB ROM	8MP Dual Rear Camera	5MP Front Camera	5000 mAh	Helio G36 Processor	₹6,999	202
1831	Infinix Note 7 (Forest Green, 64 GB)	4.3	25,582	4 GB RAM	64 GB ROM	48MP + 2MP + 2MP + Al Lens Camera	16MP Front Camera	5000 mAh	MediaTek Helio G70 Processor	₹14,999	202
1832	Infinix Note 7 (Bolivia Blue, 64 GB)	4.3	25,582	4 GB RAM	64 GB ROM	48MP + 2MP + 2MP + Al Lens Camera	16MP Front Camera	5000 mAh	MediaTek Helio G70 Processor	₹14,999	202
1833	Infinix Note 7 (Aether Black, 64 GB)	4.3	25,582	4 GB RAM	64 GB ROM	48MP + 2MP + 2MP + Al Lens Camera	16MP Front Camera	5000 mAh	MediaTek Helio G70 Processor	₹14,999	202
1834	Infinix Zero 8i (Silver Diamond, 128 GB)	4.2	7,117	8 GB RAM	128 GB ROM	48MP + 8MP + 2MP + Al Lens Camera	16MP + 8MP Dual Front Camera	4500 mAh	MediaTek Helio G90T Processor	₹18,999	202
1835	Infinix S5 (Quetzal Cyan, 64 GB)	4.3	15,701	4 GB RAM	64 GB ROM	16MP + 5MP + 2MP + Low Light Sensor	32MP Front Camera	4000 mAh	Helio P22 (MTK6762) Processor	₹10,999	202

1836 rows × 11 columns

4

In [3]: df.head()

Out[3]:

	Phone Name	Rating ?/5	Number of Ratings	RAM	ROM/Storage	Back/Rare Camera	Front Camera	Battery	Processor	Price in INR	Date of Scraping
0	POCO C50 (Royal Blue, 32 GB)	4.2	33,561	2 GB RAM	32 GB ROM	8MP Dual Camera	5MP Front Camera	5000 mAh	Mediatek Helio A22 Processor, Upto 2.0 GHz Pro	₹5,649	2023-06- 17
1	POCO M4 5G (Cool Blue, 64 GB)	4.2	77,128	4 GB RAM	64 GB ROM	50MP + 2MP	8MP Front Camera	5000 mAh	Mediatek Dimensity 700 Processor	₹11,999	2023-06- 17
2	POCO C51 (Royal Blue, 64 GB)	4.3	15,175	4 GB RAM	64 GB ROM	8MP Dual Rear Camera	5MP Front Camera	5000 mAh	Helio G36 Processor	₹6,999	2023-06- 17
3	POCO C55 (Cool Blue, 64 GB)	4.2	22,621	4 GB RAM	64 GB ROM	50MP Dual Rear Camera	5MP Front Camera	5000 mAh	Mediatek Helio G85 Processor	₹7,749	2023-06- 17
4	POCO C51 (Power Black, 64 GB)	4.3	15,175	4 GB RAM	64 GB ROM	8MP Dual Rear Camera	5MP Front Camera	5000 mAh	Helio G36 Processor	₹6,999	2023-06- 17

In [4]: df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1836 entries, 0 to 1835
Data columns (total 11 columns):

#	Column	Non-Null Count	Dtype
0	Phone Name	1836 non-null	object
1	Rating ?/5	1836 non-null	float64
2	Number of Ratings	1836 non-null	object
3	RAM	1836 non-null	object
4	ROM/Storage	1836 non-null	object
5	Back/Rare Camera	1836 non-null	object
6	Front Camera	1836 non-null	object
7	Battery	1836 non-null	object
8	Processor	1836 non-null	object
9	Price in INR	1836 non-null	object
10	Date of Scraping	1836 non-null	object
_			

dtypes: float64(1), object(10)

memory usage: 157.9+ KB

In [5]: import seaborn as sns

```
In [6]: df.describe()
```

Out[6]:

	Rating ?/5
count	1836.000000
mean	4.210512
std	0.543912
min	0.000000
25%	4.200000
50%	4.300000
75%	4.400000
max	4.800000

```
In [ ]:
```

```
In [7]: sns.pairplot(df)
```

Out[7]: <seaborn.axisgrid.PairGrid at 0x2023ebc3a30>


```
In [8]: df1=df.drop(['Battery'],axis=1)
    df1
    df1=df1.drop(df1.index[1537:])
    df1.isna().sum()
```

```
Out[8]: Phone Name
                              0
        Rating ?/5
                              0
        Number of Ratings
                              0
        RAM
                              0
        ROM/Storage
                              0
        Back/Rare Camera
                              0
        Front Camera
                              0
        Processor
                              0
        Price in INR
                              0
        Date of Scraping
        dtype: int64
```

```
In [9]: sns.displot(df['Price in INR'])
```

Out[9]: <seaborn.axisgrid.FacetGrid at 0x2023bdd9f10>


```
In [10]: sns.heatmap(df1.corr())
```

Out[10]: <AxesSubplot:>

In [11]: from sklearn.model_selection import train_test_split
 from sklearn.linear_model import LinearRegression

```
In [12]: df1.isna().sum()
Out[12]: Phone Name
                               0
         Rating ?/5
                               0
         Number of Ratings
                               0
         RAM
                               0
         ROM/Storage
                               0
         Back/Rare Camera
                               0
         Front Camera
                               0
         Processor
                               0
         Price in INR
                               0
         Date of Scraping
                               0
         dtype: int64
In [13]: y=df1['Rating ?/5']
         x=df1.drop(['Phone Name','ROM/Storage','RAM','Back/Rare Camera','Front Camera','Processe
         x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3)
         print(x_train)
               Rating ?/5
         1417
                      3.8
         1003
                      4.3
         264
                      4.3
         1053
                       4.3
         490
                      4.6
         . . .
                       . . .
                      4.4
         1051
         529
                      4.2
         1347
                      3.9
         612
                      4.3
         1227
                      4.3
         [1075 rows x 1 columns]
In [14]: model=LinearRegression()
         model.fit(x_train,y_train)
         model.intercept_
Out[14]: 1.0658141036401503e-14
```

```
In [15]: prediction=model.predict(x_test)
         plt.scatter(y_test,prediction)
Out[15]: <matplotlib.collections.PathCollection at 0x20242871c40>
          4
          3
          2
          1
          0 -
In [16]: model.score(x_test,y_test)
Out[16]: 1.0
In [17]: from sklearn.linear_model import Ridge,Lasso
In [18]: rr=Ridge(alpha=10)
         rr.fit(x_train,y_train)
Out[18]: Ridge(alpha=10)
In [19]: rr.score(x_test,y_test)
Out[19]: 0.9978250643987941
In [20]: la =Lasso(alpha=10)
         la.fit(x_train,y_train)
Out[20]: Lasso(alpha=10)
In [21]: la.score(x_test,y_test)
Out[21]: -0.0076789222100206445
In [22]: from sklearn.linear_model import ElasticNet
         en=ElasticNet()
         en.fit(x_train,y_train)
Out[22]: ElasticNet()
In [23]: print(en.coef_)
         [0.]
```

In [24]: print(en.intercept_)

4.254325581395348

In [25]: print(en.predict(x_test))

```
[4.25432558 4.25432558 4.25432558 4.25432558 4.25432558 4.25432558
4.25432558 4.25432558 4.25432558 4.25432558 4.25432558 4.25432558
4.25432558 4.25432558 4.25432558 4.25432558 4.25432558 4.25432558
4.25432558 4.25432558 4.25432558 4.25432558 4.25432558 4.25432558
4.25432558 4.25432558 4.25432558 4.25432558 4.25432558 4.25432558
4.25432558 4.25432558 4.25432558 4.25432558 4.25432558 4.25432558
4.25432558 4.25432558 4.25432558 4.25432558 4.25432558 4.25432558
4.25432558 4.25432558 4.25432558 4.25432558 4.25432558 4.25432558
4.25432558 4.25432558 4.25432558 4.25432558 4.25432558
4.25432558 4.25432558 4.25432558 4.25432558 4.25432558 4.25432558
4.25432558 4.25432558 4.25432558 4.25432558 4.25432558 4.25432558
4.25432558 4.25432558 4.25432558 4.25432558 4.25432558 4.25432558
4.25432558 4.25432558 4.25432558 4.25432558 4.25432558 4.25432558
4.25432558 4.25432558 4.25432558 4.25432558 4.25432558 4.25432558
4.25432558 4.25432558 4.25432558 4.25432558 4.25432558
4.25432558 4.25432558 4.25432558 4.25432558 4.25432558
4.25432558 4.25432558 4.25432558 4.25432558 4.25432558 4.25432558
4.25432558 4.25432558 4.25432558 4.25432558 4.25432558 4.25432558
4.25432558 4.25432558 4.25432558 4.25432558 4.25432558 4.25432558
4.25432558 4.25432558 4.25432558 4.25432558 4.25432558 4.25432558
4.25432558 4.25432558 4.25432558 4.25432558 4.25432558 4.25432558
4.25432558 4.25432558 4.25432558 4.25432558 4.25432558 4.25432558
4.25432558 4.25432558 4.25432558 4.25432558 4.25432558 4.25432558
4.25432558 4.25432558 4.25432558 4.25432558 4.25432558 4.25432558
4.25432558 4.25432558 4.25432558 4.25432558 4.25432558 4.25432558
4.25432558 4.25432558 4.25432558 4.25432558 4.25432558
4.25432558 4.25432558 4.25432558 4.25432558 4.25432558 4.25432558
4.25432558 4.25432558 4.25432558 4.25432558 4.25432558 4.25432558
4.25432558 4.25432558 4.25432558 4.25432558 4.25432558 4.25432558
4.25432558 4.25432558 4.25432558 4.25432558 4.25432558 4.25432558
4.25432558 4.25432558 4.25432558 4.25432558 4.25432558 4.25432558
4.25432558 4.25432558 4.25432558 4.25432558 4.25432558 4.25432558
4.25432558 4.25432558 4.25432558 4.25432558 4.25432558 4.25432558
4.25432558 4.25432558 4.25432558 4.25432558 4.25432558 4.25432558
4.25432558 4.25432558 4.25432558 4.25432558 4.25432558
4.25432558 4.25432558 4.25432558 4.25432558 4.25432558 4.25432558
4.25432558 4.25432558 4.25432558 4.25432558 4.25432558 4.25432558
4.25432558 4.25432558 4.25432558 4.25432558 4.25432558 4.25432558
4.25432558 4.25432558 4.25432558 4.25432558 4.25432558 4.25432558
4.25432558 4.25432558 4.25432558 4.25432558 4.25432558 4.25432558
4.25432558 4.25432558 4.25432558 4.25432558 4.25432558 4.25432558
4.25432558 4.25432558 4.25432558 4.25432558 4.25432558 4.25432558
4.25432558 4.25432558 4.25432558 4.25432558 4.25432558 4.25432558
4.25432558 4.25432558 4.25432558 4.25432558 4.25432558 4.25432558
4.25432558 4.25432558 4.25432558 4.25432558 4.25432558 4.25432558
4.25432558 4.25432558 4.25432558 4.25432558 4.25432558 4.25432558
4.25432558 4.25432558 4.25432558 4.25432558 4.25432558 4.25432558
4.25432558 4.25432558 4.25432558 4.25432558 4.25432558 4.25432558
4.25432558 4.25432558 4.25432558 4.25432558 4.25432558 4.25432558
4.25432558 4.25432558 4.25432558 4.25432558 4.25432558
4.25432558 4.25432558 4.25432558 4.25432558 4.25432558
4.25432558 4.25432558 4.25432558 4.25432558 4.25432558
4.25432558 4.25432558 4.25432558 4.25432558 4.25432558 4.25432558
4.25432558 4.25432558 4.25432558 4.25432558 4.25432558 4.25432558
4.25432558 4.25432558 4.25432558 4.25432558 4.25432558 4.25432558
4.25432558 4.25432558 4.25432558 4.25432558 4.25432558 4.25432558
4.25432558 4.25432558 4.25432558 4.25432558 4.25432558 4.25432558
4.25432558 4.25432558 4.25432558 4.25432558 4.25432558
4.25432558 4.25432558 4.25432558 4.25432558 4.25432558 4.25432558
4.25432558 4.25432558 4.25432558 4.25432558 4.25432558 4.25432558
4.25432558 4.25432558 4.25432558 4.25432558 4.25432558
```

```
4.25432558 4.25432558 4.25432558 4.25432558 4.25432558
         4.25432558 4.25432558 4.25432558 4.25432558 4.25432558
         4.25432558 4.25432558 4.25432558 4.25432558 4.25432558
         4.25432558 4.25432558 4.25432558 4.25432558 4.25432558
         4.25432558 4.25432558 4.25432558 4.25432558 4.25432558 4.25432558
         4.25432558 4.25432558 4.25432558 4.25432558 4.25432558
         4.25432558 4.25432558 4.25432558 4.25432558 4.25432558 4.25432558
         4.25432558 4.25432558 4.25432558 4.25432558 4.25432558 4.25432558
         4.25432558 4.25432558 4.25432558 4.25432558 4.25432558
         4.25432558 4.25432558 4.25432558 4.25432558 4.25432558
         4.25432558 4.25432558 4.25432558 4.25432558 4.25432558
         4.25432558 4.25432558 4.25432558 4.25432558 4.25432558
         4.25432558 4.25432558 4.25432558 4.25432558 4.25432558
         4.25432558 4.25432558 4.25432558 4.25432558 4.25432558 4.25432558]
In [26]: print(en.score(x test,y test))
         -0.0076789222100206445
In [27]: from sklearn import metrics
In [28]: |print("Mean Absolute Error:",metrics.mean_absolute_error(y_test,prediction))
        Mean Absolute Error: 4.719649394726856e-16
In [29]: | print("Mean Squared Error:", metrics.mean_squared_error(y_test, prediction))
        Mean Squared Error: 2.063076166089367e-30
In [30]: |print("Root Mean Squared Error:",np.sqrt(metrics.mean squared error(y test,prediction))
        Root Mean Squared Error: 1.4363412429117834e-15
```

4.25432558 4.2543258 4.2543258 4.25432558 4.