Sommaire

III Lin	ites des fonctions	III-1
1.	Rappels sur les équations réduites de droites	III-1
	a) Equation réduite d'une droite non parallèle à l'axe des ordonnées .	III-1
	b) Equation réduite d'une droite parallèle à l'axe des ordonnées	III-2
2.	Limites et asymptotes	III-3
	a) Limite finie en $+\infty$ ou $-\infty$	III-3
	b) Limite infinie en un réel a	III-4
	c) Limite infinie en $+\infty$ ou en $-\infty$	III-7
	d) Limites de référence	III-7
3.	Opérations sur les limites	III-10
	a) Multiplication par une constante	III-10
	b) Limite d'une somme de fonctions	III-1
	c) Limite d'un produit de fonctions	III-1
	d) Limite d'un quotient de fonctions	III-1
	e) Formes indéterminées (F.I.)	III-13
	Limite d'un polynôme	III-13
	Limite d'une fonction rationnelle	III-13
4.	Autres théorèmes sur les limites	III-14
	a) Limite d'une fonction composée	III-14
	b) Limites et comparaison	
	c) Croissantes comparées	

Chapitre III

Limites des fonctions

- 1. Rappels sur les équations réduites de droites
- a) Equation réduite d'une droite non parallèle à l'axe des ordonnées

Définition 1 ▶ Equation réduite d'une droite non parallèle à (y'Oy)

L'équation réduite d'une droite (d) non parallèle à (y'Oy) s'écrit : y = mx + p.

- m est appelé le coefficient directeur de la droite.
- p est l'ordonnée à l'origine : y = p lorsque x vaut 0. La droite passe ainsi par le point de coordonnées (0; p).

Le coefficient directeur m de la droite (la pente) est définie par :

$$m = \frac{\Delta y}{\Delta x} = \frac{\text{\'ecart des } y}{\text{\'ecart des } x}$$

Conséquence pour les droites parallèles à l'axe des abscisses.

La « pente » est nulle ce qui se traduit par $\Delta y = 0$. Donc m = 0.

D'après le graphique, la droite passe par le point de coordonnée (0, a) donc l'ordonnée à l'origine est égale à a.

En résumé :
$$\begin{cases} m = 0 \\ p = a \end{cases}$$

L'équation réduite de la droite (d) est : y = a

La droite est l'ensemble des points de coordonnées (x, a), pour tout réel x.

b) Equation réduite d'une droite parallèle à l'axe des ordonnées

Définition 2 ▶ Equation réduite d'une droite parallèle à (y'Oy)

Comme le décalage horizontal est nul, $\Delta x = 0$. Il n'est pas possible de diviser par 0 donc la droite n'a pas de pente m.

L'équation réduite d'une droite parallèle à l'axe des ordonnée **ne peut donc pas** s'écrire sous la forme y = mx + p!

La droite est l'ensemble des points de coordonnées (a, y), pour tout réel y. L'équation réduite de la droite (d) est : x = a

Recherche 1 ▶ Revoir les bases

Exercice 1 : Utiliser l'animation interactive pour comprendre les équations réduites de droite et apprendre à les déterminer dans les deux cas de figure décrites précédemment.

Exercice 2 : Trouver les équations des différentes droites ci-dessous.

2. Limites et asymptotes

a) Limite finie en $+\infty$ ou $-\infty$

L'animation permet de comprendre le lien entre la limite finie en $l'\infty$, l'existence d'une asymptote horizontale et son équation réduite.

Animation

A titre d'exemple

Exemple 1 : On a représenté ci-dessous les courbes des fonctions f et g définies ainsi :

$$\forall x \in \mathbb{R} , f(x) = \frac{5x^2}{x^2 + 1}; \forall x \in [0; +\infty[, g(x) = \frac{-3\sqrt{x}}{2x^2 + 2}]$$

- On constate graphiquement que la courbe de f se confond avec la droite d'équation y=5 sur la partie du repère correspondant aux abscisses x<-7; cela revient à écrire que pour x<-7, f(x) est « très proche » de 5.
- La courbe de f se confond avec la droite d'équation y=5 également sur la partie du repère correspondant aux abscisses x>8; cela revient à écrire que pour x>8, f(x) est « très proche » de 5.
- La courbe de g se confond avec la droite d'équation y=0 sur la partie du repère correspondant aux abscisses x>8; cela revient à écrire que pour x>8, g(x) est « très proche » de 0.

Afin d'expliquer le comportement de ces fonctions pour de grandes ou petites valeurs de x, on définit les notions de limites et d'asymptotes.

Définition 3 ▶ Limite finie à l'infini

 $\lim_{x \to +\infty} f(x) = \ell$ si, pour tout intervalle ouvert I contenant ℓ , il existe un nombre s tel que toutes les valeurs f(x) seront dans I dès que

 $\lim_{x \to \infty} f(x) = \ell$ si, pour tout intervalle ouvert I contenant ℓ , il existe un nombre s tel que toutes les valeurs f(x) seront dans I dès que

Définition 4 ▶ Asymptote horizontale

La droite d'équation $y = \ell$ est une asymptote « horizontale » à la courbe représentative de f en $+\infty$ (ou en $-\infty)$ si $\lim_{x\to +\infty} f(x) = \ell$ (ou si $\lim_{x\to -\infty} f(x) = \ell).$

A titre d'exemple > Retour à l'exemple précédent

Exemple 1:

La droite d'équation y=5 est asymptote horizontale à la courbe de f en $+\infty$ et en $-\infty$. La droite d'équation y=0 est asymptote horizontale à la courbe de g en $+\infty$.

Limite infinie en un réel a b)

L'animation permet de comprendre le lien entre la limite infinie en un réel a, l'existence d'une asymptote verticale et son équation réduite.

Définition 5

Soit f définie sur [a-r; a[ou]a; a+r] avec $r \in \mathbb{R}^{*+}$.

• $\lim_{x \to \infty} f(x) = -\infty$ si tout intervalle $]-\infty$; B[contient toutes x < ales valeurs f(x) pour x suffisamment proche de a et strictement inférieur à a. On note aussi : $\lim f(x) = -\infty$, et on parle de « limite par valeurs inférieures ».

• $\lim_{\substack{x \to a \\ x > a}} f(x) = -\infty$ si tout intervalle] $-\infty$; B[contient toutes

les valeurs f(x) pour x suffisamment proche de a et strictement supérieur à a.

On note aussi : $\lim_{x\to a^+} f(x) = -\infty$, et on parle de « limite par valeurs supérieures ».

• $\lim_{\substack{x \to a \\ x < a}} f(x) = +\infty$ si tout intervalle A; A (contient toutes les

valeurs f(x) pour x suffisamment proche de a et strictement inférieur à a.

On note aussi : $\lim_{x\to a^-} f(x) = +\infty$, et on parle de « limite par valeurs inférieures ».

• $\lim_{\substack{x \to a \\ x > a}} f(x) = +\infty$ si tout intervalle]A; $+\infty$ [contient toutes les

valeurs f(x) pour x suffisamment proche de a et strictement supérieur à a.

On note aussi : $\lim_{x\to a^+} f(x) = +\infty$, et on parle de « limite par valeurs supérieures ».

Définition 6

Soit f définie sur $[a-r \ ; \ a[\ {\rm ou} \]a \ ; \ a+r]$ avec $r\in \mathbb{R}^{*+}.$

La droite d'équation x=a est une **asymptote** « **verticale** » à la courbe représentative de f si : $\lim_{x\to a} f(x) = -\infty$ ou $\lim_{x\to a} f(x) = +\infty$, que ce soit par valeurs inférieures ou supérieures.

A titre d'exemple

Exemple 2 : On a représenté ci-dessous les courbes des fonctions f et g définies ainsi :

$$\forall x \in \mathbb{R}^* , f(x) = \frac{1}{x} \quad ; \quad \forall x \in \mathbb{R} \setminus \{2\} , g(x) = \frac{1}{(x-2)^2}$$

On remarque graphiquement que $\lim g(x) = \lim g(x) = +\infty$. Mais on remarque graphiquement également que $\lim_{x\to 0^-} f(x) =$ $-\infty$ et que $\lim_{x \to \infty} f(x) = +\infty$.

Les limites par valeurs inférieures et supérieures ne sont pas forcément les mêmes!

- La droite d'équation x = 0 est asymptote verticale à la courbe de f.
- La droite d'équation x=2 est asymptote verticale à la courbe de g.

Recherche ▶ sur les asymptotes

Exercice 3 : En vous aidant du graphique, conjecturer les limites aux bornes de chacun des intervalles de l'ensemble de définition, que vous déterminerez au préalable.

Exercice 4: Une fonction q est définie par sa courbe ci-dessous.

Après avoir déterminé l'ensemble de définition de la fonction g, conjecturer l'ensemble des limites à ses bornes. Déterminer graphiquement les éventuelles asymptotes. Pour vous aider, cliquer sur le lien ou scanner le QRcode associé.

Réaliser deux ou trois séries des deux exercices wim's suivants.

Exercice 5 : de l'asymptote à la limite. Exercice 6 : de la limite à l'asymptote.

Exercice 3

Exercice 4

Exercice 5

Exercice 6

c) Limite infinie en $+\infty$ ou en $-\infty$

Définition 7

• $\lim_{x \to +\infty} f(x) = +\infty$ si, pour tout réel A, il existe un nombre s tel que toutes les valeurs f(x) seront supérieures à A dès que s < x.

• $\lim_{x \to +\infty} f(x) = -\infty$ si, pour tout réel B, il existe un nombre s tel que toutes les valeurs f(x) seront inférieures à B dès que s < x.

• $\lim_{x \to -\infty} f(x) = +\infty$ si, pour tout réel A, il existe un nombre s tel que toutes les valeurs f(x) seront supérieures à A dès que x < s.

• $\lim_{x \to -\infty} f(x) = -\infty$ si, pour tout réel B, il existe un nombre s tel que toutes les valeurs f(x) seront inférieures à B dès que x < s.

Il n'existe pas d'asymptote parallèle à un axe dans ce cas de figure.

Il peut cependant exister des droites asymptotes obliques ou des branches infinies.

d) Limites de référence

Dans ce qui suit, a désigne un nombre réel.

• La fonction constante :

$$\mathbb{R} \longrightarrow \mathbb{R}$$

$$x \longmapsto k$$

$$\lim_{x \to -\infty} k = k$$

$$\lim_{x\to +\infty} k = k$$

$$\lim_{x \to a} k = k$$

Equation de la courbe : y=k

• La fonction racine carrée :

$$[0; +\infty[\longrightarrow \mathbb{R} \\ x \longmapsto \sqrt{x}$$

$$\lim_{x\to +\infty} \sqrt{x} = +\infty$$

$$pour \ a \geqslant 0, \lim_{x \to a} \ \sqrt{x} = \sqrt{a}$$

Equation de la courbe : $y = \sqrt{x}, x \geqslant 0$

• La fonction carré :

$$\mathbb{R} \longrightarrow \mathbb{R}$$

$$x \longmapsto x^2$$

$$\lim_{x \to -\infty} x^2 = +\infty$$

$$\lim_{x \to +\infty} x^2 = +\infty$$

$$\lim_{x \to a} x^2 = a^2$$

Equation de la courbe : $y = x^2$

• La fonction cube :

$$\mathbb{R} \longrightarrow \mathbb{R}$$

$$x \longmapsto x^3$$

$$\lim_{x \to -\infty} x^3 = -\infty$$

$$\lim_{x \to +\infty} x^3 = +\infty$$

$$\lim_{x \to a} x^3 = a^3$$

Equation de la courbe : $y = x^3$

• La fonction puissance :

$$\begin{array}{ccc} \mathbb{R} & \longrightarrow \mathbb{R} \\ x & \longmapsto x^n \end{array}$$

Equation de la courbe : $y = x^n$, pour $n \in \mathbb{N}^*$

Equation de la courbe : $y = x^n, n$ pair

Equation de la courbe : $y = x^n, n$ impair

si
$$n$$
 est pair
$$\lim_{x \to -\infty} x^n = +\infty$$

si
$$n$$
 est impair
$$\lim_{x \to -\infty} x^n = -\infty$$

$$\lim_{x \to +\infty} x^n = +\infty$$

$$\lim_{x \to +\infty} x^n = +\infty$$

$$\lim_{x \to a} x^n = a^n$$

• La fonction inverse :

$$\begin{array}{ccc} \mathbb{R}^* & \longrightarrow \mathbb{R} \\ x & \longmapsto \frac{1}{x} \end{array}$$

 $\lim_{x\to -\infty}\frac{1}{x}=0^- \text{ et } \lim_{x\to +\infty}\frac{1}{x}=0^+, \text{ donc la droite d'équation } y=0 \text{ est une asymptote horizontale à la courbe en } -\infty \text{ et en } +\infty.$

 $\lim_{\substack{x\to 0\\x<0}}\frac{1}{x}=-\infty \text{ et } \lim_{\substack{x\to 0\\x>0}}\frac{1}{x}=+\infty \text{ , donc la droite }$ d'équation x=0 est une asymptote verticale à la courbe.

Pour $a \neq 0$, $\lim_{x \to a} \frac{1}{x} = \frac{1}{a}$

• La fonction exponentielle :

$$\mathbb{R} \longrightarrow \mathbb{R}$$
$$x \longmapsto e^x$$

 $\lim_{x\to-\infty}e^x=0^+$, donc la droite d'équation y=0 est une asymptote horizontale à la courbe en $-\infty$.

$$\lim_{x \to +\infty} e^x = +\infty$$

$$\lim_{x \to a} e^x = e^a$$

Equation de la courbe : $y = e^x$

Recherche ▶ Etude de limites de fonctions usuelles (wim's)

Réaliser deux ou trois séries de chaque exercice.

Exercice 7 : Limites des fonctions usuelles (niveau 1) Exercice 8 : Limites des fonctions usuelles (niveau 2)

Exercice 9 : Limites d'autres fonctions usuelles (niveau 1) Exercice 10 : Limites d'autres fonctions usuelles (niveau 2)

3. Opérations sur les limites

Les théorèmes sont similaires à ceux énoncés pour les suites.

On considère deux expressions f(x) et g(x) dont on connaît la limite lorsque x tend vers a (a pouvant désigner soit un nombre réel, soit $+\infty$, soit $-\infty$). On présente dans cette partie des résultats qui permettent d'établir les limites de $k \times f(x)$ (où k est un réel), f(x) + g(x), $f(x) \times g(x)$ et $\frac{f(x)}{g(x)}$ à partir de celles de f(x) et g(x).

Les résultats sont intuitifs, et ne seront pas démontrés.

Dans certains cas, on ne peut pas prévoir la limite : on parle alors de forme indéterminée, notée **F.I.**. Pour autant, on apprendra à « lever » les indéterminations. Dans ce qui suit, ℓ et ℓ' désignent des nombres réels.

a) Multiplication par une constante

Propriété 1 ▶ Multiplication par une constante

Il suffit d'appliquer la règle des signes d'un produit.

• Si k > 0:

$\operatorname{Si} \lim_{x \to a} f(x) =$	ℓ	$+\infty$	$-\infty$
Alors $\lim_{x \to a} k \times f(x) =$	$k \times \ell$	$+\infty$	$-\infty$

• Si k < 0:

$\operatorname{Si} \lim_{x \to a} f(x) =$	ℓ	$+\infty$	$-\infty$
Alors $\lim_{x \to a} k \times f(x) =$	$k \times \ell$	$-\infty$	$+\infty$

b) Limite d'une somme de fonctions

Propriété 2 ▶ Limite d'une somme de fonctions

$\operatorname{Si} \lim_{x \to a} f(x) =$	ℓ	ℓ	ℓ	$+\infty$	$-\infty$	$+\infty$
Si $\lim_{x \to a} g(x) =$	ℓ'	$+\infty$	$-\infty$	$+\infty$	$-\infty$	$-\infty$
Alors $\lim_{x \to a} (f(x) + g(x)) =$	$\ell + \ell'$	$+\infty$	$-\infty$	$+\infty$	$-\infty$	F.I.

c) Limite d'un produit de fonctions

Propriété 3 ▶ Limite d'un produit de fonctions

Le principe est, là encore, celui de la règle des signes d'un produit.

$\operatorname{Si} \lim_{x \to a} f(x) =$	ℓ	$\ell > 0$	$\ell < 0$	$\ell > 0$	$\ell < 0$	0
		ou $+\infty$	ou −∞	ou $+\infty$	ou −∞	
$\operatorname{Si} \lim_{x \to a} g(x) =$	ℓ'	$+\infty$	$+\infty$	$-\infty$	$-\infty$	$-\infty$ ou $+\infty$
$\lim_{x \to a} (f(x) \times g(x)) =$	$\ell\ell'$	$+\infty$	$-\infty$	$-\infty$	$+\infty$	F.I.

d) Limite d'un quotient de fonctions

Propriété 4 ▶ Limite d'un quotient de fonctions

Si $\lim_{x \to a} f(x) =$	ℓ	ℓ	$\ell \neq 0$	∞	∞	0
Si $\lim_{x \to a} g(x) =$	$\ell' \neq 0$	∞	0 0		∞	0
			∞ (Il faut étudier	∞ (Il faut étudier		
$\lim_{x \to a} \frac{f(x)}{g(x)} = \frac{\ell}{\ell'}$		0	l'expression pour	l'expression pour	F.I.	F.I.
			déterminer le signe.	déterminer le signe.		

On peut retenir facilement ces résultats en retenant les deux principes suivants :

- en limite, diviser par l'infini revient à multiplier par 0;
- en limite, diviser par 0 revient à multiplier par l'infini;

puis en appliquant les résultats sur les limites d'un produit. Ainsi, le cas « $\frac{\infty}{\infty}$ »se ramène au cas « $\infty \times 0$ », qui est une forme indéterminée.

A titre d'exemple ▶

Exemples de limites « $\frac{\ell}{0}$ » ou « $\frac{\infty}{0}$ » : Dans ces cas la limite est $+\infty$ ou $-\infty$; il faut étudier le signe de l'expression pour déterminer quel est le signe de cet infini.

- $\lim_{x \to 0^+} \frac{1}{x} : \forall x > 0$, $\frac{1}{x} > 0$; donc $\lim_{x \to 0^+} \frac{1}{x} = +\infty$.
- $\lim_{x \to 0^-} \frac{1}{x} : \forall x < 0 , \frac{1}{x} < 0 ; donc \lim_{x \to 0^-} \frac{1}{x} = -\infty.$
- $\bullet \ \lim_{x \to 0^+} \frac{1}{x^2} : \forall x > 0 \ , \ \frac{1}{x^2} > 0 \ ; \ \mathrm{donc} \ \lim_{x \to 0^+} \frac{1}{x^2} = +\infty.$
- $\lim_{x \to 0^{-}} \frac{1}{x^2} : \forall x < 0$, $\frac{1}{x^2} > 0$; donc $\lim_{x \to 0^{-}} \frac{1}{x^2} = +\infty$.

Entraînement Labomep

Exercice 11: Limite d'une fonction à l'in-

Exercice 12: Limite d'une fonction en un réel.

Recherche

Exercice 13: limites et opérations Chercher les limites suivantes :

- $\bullet \lim_{x \to -\infty} 3x^2 + \frac{1}{x}$ $\bullet \lim_{x \to -\infty} (x 5)(3 + x^2)$

Pour vous aider une correction d'Y. Monka

Recherche

Exercice 14 : Déterminer les limites suivantes :

1.
$$\lim_{x \to 2^{-}} \frac{x+2}{x-2}$$
;

2.
$$\lim_{x \to 2^+} \frac{x-3}{x-2}$$

1.
$$\lim_{x \to 2^{-}} \frac{x+2}{x-2}$$
; 2. $\lim_{x \to 2^{+}} \frac{x-3}{x-2}$; 3. $\lim_{x \to 2^{-}} \frac{x-3}{x^2-5x+6}$; 4. $\lim_{x \to 2^{+}} \frac{x+2}{x^2-5x+6}$

4.
$$\lim_{x \to 2^+} \frac{x+2}{x^2 - 5x + 6}$$

Formes indéterminées (F.I.) e

On recense 4 situations de formes indéterminées que l'on peut résumer ainsi : « $\infty - \infty$ », « $0 \times \infty$ », $(\frac{\infty}{\infty})$ et $(\frac{0}{0})$. Pour lever l'indétermination, il faut transformer l'écriture de l'expression pour se ramener à un des théorèmes généraux, par exemple en développant ou en factorisant.

Limite d'un polynôme

Soit k un entier naturel; un polynôme de degré k est une expression du type

$$a_k x^k + a_{k-1} x^{k-1} + \dots + a_2 x^2 + a_1 x + a_0$$

où les coefficients a_i sont des nombres réels, avec $a_k \neq 0$, et où x désigne la variable; $a_k x^k$ est le terme de plus haut degré.

Bien souvent, la limite en $+\infty$ et $-\infty$ d'un polynôme est une forme indéterminée : par exemple $\lim_{x \to -\infty} 5x^3 + 2x^2 - 6x + 5$.

 $x \to -\infty$ On pourra alors utiliser la propriété suivante :

Propriété $5 \triangleright \text{Limite en } \pm \infty \text{ d'un polynôme}$

La limite en $+\infty$ et $-\infty$ d'un polynôme est la limite de son terme de plus haut degré.

Recherche

Exercice 15 : Déterminer les limites en $+\infty$ et $-\infty$ des expressions suivantes :

$$5x^3 + 2x^2 - 6x + 5$$
; $-x^3 + 2x$; $-4x^5 + 2x^2 + 10$; $-x^2 + 3x + 4$

Limite d'une fonction rationnelle

Une fonction rationnelle est une fonction dont l'expression est du type $\frac{\text{polynôme 1}}{\text{polynome 2}}$

Bien souvent, la limite en $+\infty$ et $-\infty$ d'une fonction rationnelle est une forme indéterminée : par exemple $\lim_{x\to -\infty} \frac{2x^2+x-3}{3x+4}$.

On pourra alors utiliser la propriété suivante :

Propriété $6 \triangleright \text{Limite en } \pm \infty \text{ d'une fonction rationnelle}$

La limite en $+\infty$ et $-\infty$ d'une fonction rationnelle est la limite du quotient des termes de plus haut degré de son numérateur et de son dénominateur.

Recherche

Exercice 16 : déterminer les limites en $+\infty$ et $-\infty$ des expressions suivantes.

1.
$$\lim_{x \to -\infty} \frac{2x^2 + x - 3}{3x + 4}$$
 2. $\lim_{x \to +\infty} \frac{2x + x - 3}{3x^2 + 4}$; 3. $\lim_{x \to -\infty} \frac{8x^3 - 5x + 4}{3x^3 + 2x^2 - 1}$ 4. $\lim_{x \to +\infty} \frac{7x^2 - x + 4}{-3x^+ 5}$

Entraînement Labomep

Exercice 17 : Asymptote à partir d'une limite.

Recherche

Exercice 18: Asymptote horizontale

Soit f la fonction définie sur $]\infty; 2[\cup]2; +\infty[$ par $f(x) = \frac{3x+1}{2-x}$.

Démontrer que la droite d'équation y = -3 est asymptote horizontale à la courbe \mathscr{C}_f en $+\infty$. Pour un corrigé, cliquer sur le corrigé d'Y. Monka.

Exercice 19 : Asymptote verticale

Soit f la fonction définie sur $]\infty; 4[\cup]4; +\infty[$ par $f(x) = \frac{2x}{x-4}$.

Démontrer que la droite d'équation x = 4 est asymptote verticale à la courbe \mathscr{C}_f . Pour un corrigé, cliquer sur le corrigé d'Y. Monka.

Exercice 20 : Approfondissement : Asymptote oblique

On considère la fonction f définie sur $]-\infty; 2[\cup]2; +\infty[$ par :

$$f(x) = \frac{-x^2 + 6x - 5}{x - 2}$$

Démontrer que la droite d'équation y = -x+4 est asymptote oblique à la courbe représentative en $+\infty$. Pour une aide, cliquer sur le corrigé d'Yvan Monka.

Exercice 18

Exercice 19

Exercice 20

Autres théorèmes sur les limites 4.

Limite d'une fonction composée **a**)

La composition est une opération sur les fonctions qui est différente de la somme, du produit et du quotient.

Elle revient à enchaîner l'action de deux fonctions.

A titre d'exemple ▶ Décomposition en fonctions usuelles

Exemple 3: Soit f la fonction définie sur \mathbb{R}^+ par $f(x) = \sqrt{1 + \frac{1}{x}}$; si on note $g(x) = 1 + \frac{1}{x}$, f est la composée de g suivie de la fonction racine carrée.

$$f: x \xrightarrow{g} 1 + \frac{1}{x} = X \xrightarrow{\sqrt{\cdot}} \sqrt{X} = \sqrt{1 + \frac{1}{x}}$$

On note :
$$f(x) = \sqrt{g(x)}$$

Exemple 4: Soit f la fonction définie sur \mathbb{R} par $f(x) = (5x^3 - 2x)^5$; si on note $g(x) = 5x^3 - 2x$ et $h(x) = x^5$, f est la composée de g suivie de h.

$$f: x \xrightarrow{g} 5x^3 - 2x = X \xrightarrow{h} X^5 = \left(5x^3 - 2x\right)^5$$

On note :
$$f(x) = h(g(x))$$

Exemple 5: Soit f la fonction définie sur \mathbb{R} par $f(x) = \frac{1}{x^2+5}$; si on note $g(x) = x^2 + 5$ et h la fonction inverse, f est la composée de g suivie de h.

$$f: x \xrightarrow{g} x^2 + 5 = X \xrightarrow{h} \frac{1}{X} = \frac{1}{x^2 + 5}$$

On note :
$$f(x) = h(g(x))$$

Propriété 7 ▶ Propriété (admise)

Dans ce qui suit, a, b et c désignent ou bien des réels, ou bien $-\infty$ ou $+\infty$.

Si
$$\lim_{x\to a} g(x) = b$$
 et si $\lim_{X\to b} h(X) = c$, alors $\lim_{x\to a} h\left(g(x)\right) = c$.

A titre d'exemple > Limite d'une composée de fonctions

Exemple 6: Déterminer $\lim_{x\to +\infty} \sqrt{1+\frac{1}{x}}$.

$$\lim_{x \to +\infty} 1 + \frac{1}{x} = 1 \text{ et } \lim_{X \to 1} \sqrt{X} = \sqrt{1} = 1, \text{ donc } \lim_{x \to +\infty} \sqrt{1 + \frac{1}{x}} = 1.$$

Entraînement Labomep

Exercice 21 : Limite de fonctions composées.

Exercice 21

Recherche > Etude de limites de fonctions composées

Exercice 22 : Déterminer les limites suivantes.

$$\lim_{x \to +\infty} \left(5x^3 - 2x\right)^5; \lim_{x \to -\infty} \frac{1}{x^2 - x + 5}; \lim_{x \to +\infty} \sqrt{\frac{1 - 2x^2}{-x^2 + 3x - 2}}; \lim_{x \to 3^-} \frac{1}{(-x + 3)^3}; \lim_{x \to +\infty} e^{\frac{x^2 + 1}{3 - x}}; \lim_{x \to +\infty} e^{\frac{x^2 + 1}{3 - x}}$$

b) Limites et comparaison

Ces théorèmes sont formulés avec les limites quand x tend vers $+\infty$, on pourrait également les formuler :

- quand x tend vers $-\infty$: dans ce cas l'intervalle $[\alpha; +\infty[$ serait remplacé par $]-\infty; \beta[;$
- quand x tend vers a: dans ce cas l'intervalle $[\alpha ; +\infty[$ serait remplacé par]a ; a+r] ou [a-r ; a[avec $r \in \mathbb{R}^{*+}.$

Théorème 1 ▶ Théorèmes de comparaison (admis)

Si

pour tout $x \in [\alpha; +\infty[$, les fonctions f et g sont définies et si $f(x) \leq g(x)$ et $\lim_{x \to +\infty} f(x) = +\infty$,

alors

$$\lim_{x \to +\infty} g(x) = +\infty.$$

Théorème 2 ▶ Théorèmes de comparaison (admis)

Si

pour tout $x \in [\alpha ; +\infty[$, les fonctions f et g sont définies, $f(x) \leqslant g(x)$, et $\lim_{x \to +\infty} g(x) = -\infty$,

alors

$$\lim_{x \to +\infty} f(x) = -\infty.$$

Théorème 3 ▶ Théorème des gendarmes (admis)

Si

pour tout $x \in [\alpha ; +\infty[$, les fonctions f, get h sont définies, $f(x) \leqslant g(x) \leqslant h(x)$, et $\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} h(x) = \ell$ alors

Entraînement Labomep

Exercice 23: Limite d'une fonction à l'aide d'un théorème de comparaison.

Recherche 2 ▶ Exercices et leur corrigé en vidéo

Exercice 24 Théorème de comparaison.

Etudier la limite en $+\infty$ de $x + \sin(x)$. Pour une aide, cliquer sur le corrigé d'Y. Monka.

Exercice 25 Théorème des gendarmes.

$$\bullet \lim_{x \to +\infty} \frac{\sin(x) + 3}{x}$$

$$\bullet \lim_{x \to +\infty} \frac{2x + \cos(x)}{x - 1}$$

$$\bullet \lim_{x \to +\infty} \frac{\cos(x)}{x^2}$$

$$\bullet \lim_{x \to +\infty} \frac{2x + \cos(x)}{x - 1} \qquad \bullet \lim_{x \to +\infty} \frac{\cos(x)}{x^2} \qquad \bullet \lim_{x \to +\infty} \frac{2 + \cos(x)}{x - \sin(2x)}$$

Pour une aide, cliquer sur le corrigé de Hans Amble.

Exercice 26 Théorème de comparaison

- $\bullet \lim_{x \to +\infty} x + 3\sin(x)$
- $\bullet \lim_{x \to +\infty} x^2 x + 3\sin(x) 4\cos(x)$

 $\bullet \lim_{x \to +\infty} \frac{3x^3 - \cos(x)}{x^2}$

Pour une aide, cliquer sur le corrigé de Hans Amble.

Exercice 25

Croissantes comparées

Propriété 8 ▶ Croissances comparées

Soit n un nombre entier non nul.

$$\bullet \lim_{x \to +\infty} \frac{e^x}{x^n} = +\infty$$

$$\bullet \lim_{x \to +\infty} \frac{e^x}{x^n} = +\infty \qquad \bullet \lim_{x \to +\infty} \frac{e^x}{\sqrt{x}} = +\infty \qquad \bullet \lim_{x \to -\infty} x^n e^x = 0$$

$$\bullet \lim_{x \to -\infty} x^n e^x = 0$$

On dit que la fonction exponentielle l'« **emporte** » sur la fonction puissance.

Démonstration guidée :

On veut montrer que pour tout entier n non nul, $\lim_{x\to +\infty} \frac{e^x}{x^n} = +\infty$:

- 1. Soit g la fonction définie sur \mathbb{R}^+ par $g(x) = e^x x$; montrer que g est croissante. En déduire que $\forall x \in \mathbb{R}^+, g(x) > 0$.
- 2. Démontrer que la fonction $f: x \mapsto e^x \frac{x^2}{2}$ est strictement croissante sur $[0; +\infty[$.
- 3. En déduire que pour tout x > 0, $\frac{e^x}{x} > \frac{x}{2}$, puis déterminer $\lim_{x \to +\infty} \frac{e^x}{x}$.
- 4. Pour tout nombre réel x > 0 et pour tout entier naturel $n \ge 2$, démontrer que :

$$\frac{e^x}{x^n} = \left(\frac{1}{n} \times \frac{e^{\frac{x}{n}}}{\frac{x}{n}}\right)^n.$$

- 5. En déduire la limite de $\frac{e^x}{r^n}$ en $+\infty$.
- 6. Conclure.

Recherche 3

Exercice 27 : Déterminer $\lim_{x \to +\infty} \frac{e^x + x}{e^x - x^2}$

Pour une aide ou une correction, consulter la vidéo d'Y. Monka.

Exercice 28: Calculer les limites, si elles existent, des fonctions suivantes en $-\infty$ et en $+\infty$:

$$\bullet x \longmapsto (3x^2 + 4x + 1)e^x$$

$$\bullet t \longmapsto t^3 e^{-t} - t^2$$

$$\bullet x \longmapsto (3x^2 + 4x + 1)e^x \qquad \bullet t \longmapsto t^3 e^{-t} - t^2 \qquad \bullet x \longmapsto \frac{5e^{-2x} + 2}{e^{-2x} - 1}$$

