Algebra

October 20, 2016

1 Group theory

1.1 Week 1

Def 1. A non-empty set G with a binary function $f: G \times G \to G, (a,b) \mapsto ab$ is a **group** if it satisfies

- 1. (ab)c = a(bc).
- 2. $\exists 1 \in G \text{ s.t. } 1a = a1 = a, \forall a \in G.$
- 3. $\exists a^{-1} \in G \text{ s.t. } aa^{-1} = a^{-1}a = 1.$

CONCON

Def 2. Let G be a group. Then G is said to be **abelian** if $\forall a, b \in G, ab = ba$.

Ex 1.1.1. Let G be a semigroup. Then TFAE (the following are equivalent)

- 1. G is a group.
- 2. For all $a, b \in G$ and the equations bx = a, yb = a, each of them has a solution in G.
- 3. $\exists e \in G \text{ s.t. } ae = a \ \forall a \in G \text{ and if we fix such } e, \text{ then } \forall b \in G \ \exists b' \in G \text{ s.t. } bb' = e.$

Ex 1.1.2. Let G be a group. Show that

- 1. $\forall a \in G, a^2 = 1$, then G is abelian.
- 2. G is abelian $\iff \forall a, b \in G, (ab)^n = a^n b^n$ for three consecutive integer n.

Def 3. Let G be a group and $H \subseteq G, H \neq \phi$. Then H is said to be a subgroup of G, denoted by $H \subseteq G$, if

- 1. $\forall a, b \in H, ab \in H$.
- 2. $1 \in H$.
- 3. $\forall a \in H, a^{-1} \in H$.

<u>useful criterion</u>: $H \leq G \iff \forall a, b \in H, ab^{-1} \in H$.

pf:

$$\Rightarrow$$
 $b \in H \implies b^{-1} \in H$, and $a \in H$, so $ab^{-1} \in H$.

- \Leftarrow 1. $H \neq \phi \implies \exists a \in H \implies aa^{-1} = 1 \in H$.
 - 2. $1, a \in H \implies 1a^{-1} = a^{-1} \in H$.

3.
$$a, b^{-1} \in H \implies a(b^{-1})^{-1} = ab \in H$$
.

 $\textbf{Eg 1.1.1.} \quad (\mathbb{Z},+,0) \leq (\mathbb{Q},+,0) \leq (\mathbb{R},+,0) \leq (\mathbb{C},+,0) \; ; \; (\mathbb{Q}^{\times},\times,1) \leq (\mathbb{R}^{\times},\times,1) \leq (\mathbb{C}^{\times},\times,1)$

Eg 1.1.2.

- Special linear group $SL(n, \mathbb{F}) = \{ A \in GL(n, \mathbb{F}) \mid \det A = 1 \}$
- Orthogonal group $O(n) = \{ A \in GL(n, \mathbb{R}) \mid A^t A = I_n \}$
- Unitary group $U(n) = \{ A \in GL(n, \mathbb{C}) \mid A^*A = I_n \}$
- Special orthogonal group $SO(n) = SL(n, \mathbb{R}) \cap O(n)$

• Special unitary group $SU(n) = SL(n, \mathbb{C}) \cap U(n)$

Def 4. Let $f: G_1 \to G_2$. f is called an **isomorphism** if

- 1. f is 1-1 and onto.
- 2. $\forall a, b \in G_1, f(ab) = f(a)f(b)$. (homomorphism)

, denoted by $G_1 \cong G_2$.

Remark 1. (practice)

- 1. f(1) = 1.
- 2. $f(a^{-1}) = f(a)^{-1}$.
- 3. If f is an isomorphism, then $\exists f^{-1}$ is also a homomorphism.

Eg 1.1.3.

- $U(1) = \{ z \in \mathbb{C}^{\times} \mid \bar{z}z = 1 \}, z = \cos \theta + \sin \theta i \}$
- $SO(2) = \left\{ \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix} : \theta \in \mathbb{R} \right\}$

notice that $U(1) \cong SO(2)$. $S^1 = \{(a,b) \in \mathbb{R}^2 \mid a^2 + b^2 = 1\}$, 可被賦予群的結構.

Eg 1.1.4. Let $A \in SU(2) \implies A = \begin{pmatrix} \alpha & \beta \\ -\bar{\beta} & \bar{\alpha} \end{pmatrix}, \alpha\bar{\alpha} + \beta\bar{\beta} = 1, \alpha, \beta \in \mathbb{C}.$

Quaternion(四元數): $\mathbb{H} = \{ a + bi + cj + dk \mid a, b, c, d \in \mathbb{R} \}$ with $i^2 = j^2 = k^2 = -1, ij = k, jk = i, ki = j (\Longrightarrow ij = -ji).$

Let x = a + bi + cj + dk, $\bar{x} = a - bi - cj - dk$, then $N(x) = x\bar{x} = a^2 + b^2 + c^2 + d^2$, For $x \neq 0, N(x) \neq 0, x^{-1} = \frac{1}{N(x)}\bar{x}$

Now, for x = a + bi + cj + dk = (a + bi) + (c + di)j. So SU(2) $\cong \{x \in \mathbb{H}^{\times} \mid N(x) = 1\}$. $S^3 = \{(a, b, c, d) \in \mathbb{R}^4 \mid a^2 + b^2 + c^2 + d^2 = 1\}$, 可被賦予群的結構.

 \bigstar The only spheres with continuous group law are S^1, S^3 .

Ex 1.1.3. Find a way to regard $M_{n\times n}(\mathbb{H})$ as a subset of $M_{2n\times 2n}(\mathbb{C})$, which preserves addition and multiplication, and then there is a way to characterize $GL(n,\mathbb{H})$.

Def 5 (symplectic group). $\operatorname{Sp}(n, \mathbb{F}) = \{ A \in \operatorname{GL}(2n, \mathbb{F}) \mid A^{\operatorname{t}}JA = J \}$ where $J = \begin{pmatrix} O & I_n \\ -I_n & O \end{pmatrix}$. $(A^{\operatorname{t}}JA = J \text{ preserving non-degenerate skew-symmetric forms})$ $\operatorname{Sp}(n) = \{ A \in \operatorname{GL}(n, \mathbb{H}) \mid A^*A = I_n \}$.

Ex 1.1.4. Show $\operatorname{Sp}(n) \cong \operatorname{U}(2n) \cap \operatorname{Sp}(n, \mathbb{C})$.

Ques: Find the smallest subgroup of SU(2) containing $\begin{pmatrix} i & 0 \\ 0 & -i \end{pmatrix}$.

1.2 Week 2

1.2.1 Permutation groups and Dihedral groups

Def 6. A permutation of a set B is a 1-1 and onto function from B to B.

Let $S_B :=$ the set of permutations of B. Then $(S_B, \cdot, \mathrm{Id}_B)$ forms a group.

If $B = \{a_1, \ldots, a_n\}$, then $S_B \cong S_{\{1,\ldots,n\}}$ and write $S_n = S_{\{1,\ldots,n\}}$, called the symmetric group of degree n.

Theorem 1 (Cayley theorem). Any group is isomorphic to a subgroup of some permutation group.

(Hint): Let G be a group. Set B=G. Consider $a\in G$ as $\sigma_a:G\to G, x\mapsto ax$. Then $\sigma_a\in S_G\implies G\le S_G$.

Fact 1.2.1. S_n is a finite group of order n!, i.e. $|S_n| = n!$.

pf:
$$EASY = O$$

Cyclic notation: $\sigma \in S_5$, say $\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 4 & 3 & 5 & 1 & 2 \end{pmatrix}$. Write $\sigma = (1\ 4)(2\ 3\ 5)$.

⇒ Any permutation can be written as a product of disjoint cycles.

Eg 1.2.1. In
$$S_7$$
, $\sigma_1 = (1\ 2\ 3)(4\ 5\ 6)(7)$, $\sigma_2 = (1\ 3\ 5\ 6)(2\ 4\ 7)$. Then $\sigma_1\sigma_2 = (2\ 5\ 4\ 7\ 3\ 6)$, $\sigma_1^{-1} = (1\ 3\ 2)(4\ 6\ 5)$.

Def 7. A 2 cycle is called a **transposition**.

Eg 1.2.2.
$$(1\ 2\ 3) = (1\ 3)(1\ 2), (1\ 2\ 3\ 4\ 5) = (1\ 5)(1\ 4)(1\ 3)(1\ 2).$$
 Any permutation is a product of 2 cycles.

Useful formula:
$$\sigma \in S_n$$
, $\sigma(j_1 \dots j_m)\sigma^{-1} = (\sigma(j_1) \dots \sigma(j_m))$.

Eg 1.2.3. Let
$$\sigma = (1\ 2\ 3)(4\ 5\ 6\ 7), \ \sigma(2\ 3\ 4)\sigma^{-1} = (3\ 1\ 5).$$

pf: Note that both sides are functions. For $i \in \{1, ..., n\}$,

Case 1: $\exists k \text{ s.t. } \sigma(j_k) = i, \text{ CONCON}$

Case 2: Otherwise, CONCON

Fact 1.2.2.
$$S_n = \langle (1 \ 2), \dots, (1 \ n) \rangle$$
.

pf:
$$(1 i)^{-1} = (1 i)$$
 and $(i j) = (1 i)(1 j)(1 i)^{-1}$.

Def 8. Let G be a group and $S \subset G$. The subgroup generated by S defined to be the smallest subgroup of G which contains S, denoted by $\langle S \rangle$.

Ex 1.2.1.

1.
$$S_n = \langle (1\ 2), (2\ 3), \dots, (n-1\ n) \rangle, \quad n \geq 2.$$

2.
$$S_n = \langle (1\ 2), (1\ 2\ \dots\ n) \rangle, \quad n \geq 2.$$

Def 9. $A_n = \{\text{even permutations of } S_n\} \leq S_n, |A_n| = \frac{n!}{2}.$

Ex 1.2.2.

1.
$$A_n = \langle (1\ 2\ 3), (1\ 2\ 4), \dots, (1\ 2\ n) \rangle, n \geq 3.$$

2.
$$A_n = \langle (1\ 2\ 3), (2\ 3\ 4), \dots, (n-2\ n-1\ n) \rangle, n \geq 3.$$

Remark 2.
$$\langle S \rangle = \bigcap_{S \subseteq H \leq G} H = \{a_1 a_2 \dots a_k \mid k \in \mathbb{N}, a_i \in S \cup S^{-1}\} \cup \{1\}$$

The orthogonal transformations on \mathbb{R}^2 : O(2).

Let
$$A = \begin{pmatrix} a_1 & a_2 \\ b_1 & b_2 \end{pmatrix} \in \mathcal{O}(2)$$
.

略...(這邊討論旋轉和反射的矩陣

<u>Case 1</u>: $A = \begin{pmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{pmatrix}$ is counterclockwise roration w.r.t. α .

<u>Case 2</u>: $A = \begin{pmatrix} \cos \alpha & \sin \alpha \\ \sin \alpha & -\cos \alpha \end{pmatrix}$ is the reflection. $A^2 = I_2 \implies$ eigenvalues are ± 1 .

Easy to show that $L_A(v) = v - 2\langle v, v_2 \rangle v_2$.

 $O(2) = \{\text{rotations}\} \cup \{\text{reflections}\}.$

Def 10. The dihedral group D_n is the group of symmetries of a regular n-gon. In general, $D_n = \langle T, R \mid T^n = 1, R^2 = 1, TR = RT^{-1} \rangle \leq O(2) \leq S_n, |D_n| = 2n$.

Def 11. Let T be a linear transformation from $\mathbb{R}^n \to \mathbb{R}^n$.

- T is called a rotation if \exists a T-invariant subspace $W \subseteq \mathbb{R}^n$ with dim W = 2 s.t. $\begin{cases} T|_W \text{ is a rotation} \\ T|_{W^{\perp}} = \mathrm{id}_{W^{\perp}} \end{cases}$
- T is called a reflection if \exists a T-invariant subspace $W \subseteq \mathbb{R}^n$ with dim W = 1 s.t. $\begin{cases} T|_W = -\mathrm{id}_W \\ T|_{W^{\perp}} = \mathrm{id}_{W^{\perp}} \end{cases}$

<u>Main result</u>: the group of orthogonal transformations = $\langle \text{rotations}, \text{reflections} \rangle$.

Prop 1.2.1. For $T: \mathbb{R}^n \to \mathbb{R}^n$, \exists a T-invariant subspace $W \subseteq \mathbb{R}^n$ with $1 \leq \dim W \leq 2$.

pf: Let $A = [T]_{\alpha} \in M_{n \times n}(\mathbb{R}) \subseteq M_{n \times n}(\mathbb{C})$. Consider $\widetilde{L_A} : \mathbb{C}^n \to \mathbb{C}^n, v \mapsto Av$.

Then \exists an eigenvalue $\lambda \in \mathbb{C}$ and an eigenvector $v \in \mathbb{C}^n$ for $\widetilde{L_A}$. Let $\lambda = \lambda_1 + \lambda_2 i, v = v_1 + v_2 i$. By definition, we have

$$Av = \widetilde{\mathcal{L}_A}(v) = \lambda v = (\lambda_1 + \lambda_2 i)(v_1 + v_2 i) \implies \begin{cases} Av_1 = \lambda_1 v_1 - \lambda_2 v_2 \\ Av_1 = \lambda_2 v_1 + \lambda_1 v_2 \end{cases},$$

so
$$W = \langle v_1, v_2 \rangle$$
.

4

Ex 1.2.3.

- 1. If T is orthogonal, then W^{\perp} is also T-invariant.
- 2. Use induction on n to show the main result.

For
$$n = 3, A \in O(3)$$
, we have $A \sim \begin{pmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \\ & \pm 1 \end{pmatrix}$.

1.2.2 Cyclic groups and internal direct product

Def 12. If $G = \langle a \rangle = \{\dots, a^{-2}, a^{-1}, a, 1, a, a^2, \dots\} = \{a^n \mid n \in \mathbb{Z}\}$, then G is a cyclic group generated by a.

Eg 1.2.4. $\mathbb{Z} = \langle 1 \rangle = \langle -1 \rangle$.

Eg 1.2.5. Let $A = \begin{pmatrix} \cos \frac{2\pi}{n} & -\sin \frac{2\pi}{n} \\ \sin \frac{2\pi}{n} & \cos \frac{2\pi}{n} \end{pmatrix} \in SO(2)$. Then $\langle A \rangle = \{I_2, A, A^2, \dots, a^{n-1}\}$ and $A^n = I_2, A^m = A^r$ where $m \equiv r \pmod{n}$.

Eg 1.2.6.
$$\mathbb{Z}/n\mathbb{Z} = {\overline{0}, \overline{1}, \dots, \overline{(n-1)}}$$
 with $\overline{j} = {m \in \mathbb{Z} \mid m \equiv j \pmod{n}}$.
Define $\overline{i} + \overline{j} = {\overline{i+j} \atop \overline{i+j-n}}$ if $0 \le i+j \le n \Longrightarrow (\mathbb{Z}/n\mathbb{Z}, +, \overline{0})$ forms a group.

Remark 3. $\overline{i} \times \overline{j} = \overline{i \times j}$.

- 略
- If $gcd(j, n) = d, \exists h, k \in \mathbb{Z} \text{ s.t. } hj + kn = d.$

Def 13. $(\mathbb{Z}/n\mathbb{Z})^{\times} = \{ j \in \mathbb{Z}/n\mathbb{Z} \mid \gcd(j,n) = 1 \} \implies ((\mathbb{Z}/n\mathbb{Z})^{\times}, \times, \overline{1}) \text{ forms a group.}$

Eg 1.2.7. 略... 簡化剩餘系, 原根 (generator) $(1,2,4,p^k,2p^k,p)$ is an odd prime)

Def 14.

- The **order** of a finite gorup G is the number of elements in G, denoted by |G|.
- Let $a \in G$, the order of a is defined to be the least positive integer n s.t. $a^n = 1$, denoted by $\operatorname{ord}(a) = n$.
- If $a^n \neq 1 \quad \forall n \in \mathbb{N}$, then we call "a has infinte order".

Prop 1.2.2. Let $G = \langle a \rangle$ with $\operatorname{ord}(a) = n$. Then

1.
$$a^m = 1 \iff n \mid m$$
.

pf:

 \Leftarrow : Let m = dn, then $a^m = (a^n)^d = 1$.

 \Rightarrow : Let $m = qn + r, 0 \le r < n$. If $r \ne 0$, then $a^r = a^{m-qn} = (a^m)(a^n)^{-q} = 1$. But r < n, which is a contradiction. Hence $r = 0 \implies n \mid m$.

2. $\operatorname{ord}(a^r) = n/\gcd(r, n)$.

pf: Let gcd(r, n) = d, n = dn', r = dr' with gcd(n', r') = 1. Plan to show "ord(a^r) = n'."

- $(a^r)^{n'} = a^{r'dn'} = (a^n)^{r'} = 1 \implies \operatorname{ord}(a^r) \mid n'.$
- $1 = (a^r)^{\operatorname{ord}(a^r)} = a^r \operatorname{ord}(a^r) \implies n \mid r \operatorname{ord} a^r \implies n' \mid r' \operatorname{ord}(a^r) \implies n' \mid \operatorname{ord}(a^r).$

Prop 1.2.3. Any subgroup of a cyclic group is cyclic.

pf: Let $G = \langle a \rangle$ and $H \leq G$. If $H = \{1\}$, then $H = \langle 1 \rangle$, done! Otherwise, $d = \min\{m \in \mathbb{N} \mid a^m \in H\}$, by well-ordering axiom. Claim $H = \langle a^d \rangle$.

- $\supset: a^d \in H$ by the definition of d.
- \subset : $\forall a^m \in H$, write $m = qd + r, 0 \le r < d$. If $r \ne 0$, then $a^r = a^{m-qd} = a^m(a^d)^{-q} \in H$, which is a contradiction. Hence $r = 0 \implies d \mid m$.

Ex 1.2.4.

- 1. $\operatorname{ord}(a) = \operatorname{ord}(a^{-1}) = n$.
- 2. $\langle a^r \rangle = \langle a^{\gcd(n,r)} \rangle$.
- 3. $\langle a^{r_1} \rangle = \langle a^{r_2} \rangle \iff \gcd(n, r_1) = \gcd(n, r_2).$
- 4. $\forall m \mid n, \exists ! H \leq \langle a \rangle$ s.t. |H| = m. Conversely, if $H \leq \langle a \rangle$, then $|H| \mid n$.

Prop 1.2.4. Let $G = \langle a \rangle$. Then

- 1. $\operatorname{ord}(a) = n \implies G \cong \mathbb{Z}/n\mathbb{Z}$
- 2. $\operatorname{ord}(a) = \infty \implies G \cong \mathbb{Z}$

Ex 1.2.5. Show Prop 1.2.4.

Def 15. Let $G_1, G_2 \leq G$. G is the internal direct product of G_1, G_2 if $G_1 \times G_2 \to G$, $(g_1, g_2) \mapsto g_1g_2$ is an isom.

Remark 4. In this case, we find that

- $G = G_1G_2 = \{ g_1g_2 \mid g_1 \in G_1, g_2 \in G_2 \}.$
- $G_1 \cap G_2 = \{1\}$. (consider $a \neq 1 \in G_1 \cap G_2$, then $(1, a) \mapsto a, (a, 1) \mapsto a$, but the function is 1-1, which is a contradiction.)
- If $a \in G$ with $a = g_1g_2 = g_1'g_2'$, then $(g_1')^{-1}g_1 = (g_2')g_2^{-1} \in G_1 \cap G_2 = \{1\} \implies \begin{cases} g_1 = g_1' \\ g_2 = g_2' \end{cases}$.
- For $g_1 \in G_1, g_2 \in G_2, (g_1, g_2) = (g_1, 1)(1, g_2) = (1, g_2)(g_1, 1) \implies g_1g_2 = g_2g_1.$

Ex 1.2.6. TFAE

- 1. G is the internal direct product of G_1, G_2 .
- 2. $\forall a \in G, \exists ! g_1 \in G_1, g_2 \in G_2 \text{ s.t. } a = g_1g_2 \text{ ; } \forall g_1 \in G_1, g_2 \in G_2, g_1g_2 = g_2g_1.$
- 3. $G_1 \cap G_2 = \{1\}$; $G = G_1G_2$; $\forall g_1 \in G_1, g_2 \in G_2, g_1g_2 = g_2g_1$.

Eg 1.2.8.

- 1. $G = \mathbb{Z}/6\mathbb{Z} = \{\overline{0}, \overline{1}, \overline{2}, \overline{3}, \overline{4}, \overline{5}\}, G_1 = \{\overline{0}, \overline{3}\}, G_2 = \{\overline{0}, \overline{2}, \overline{4}\}.$ We have $G \cong G_1 \times G_2$.
- 2. $G = S_3, G_1 = \langle (1\ 2) \rangle, G_2 = \langle (1\ 2\ 3) \rangle$. We have $G_1 \times G_2 \not\cong G$ since $(1\ 2)(1\ 2\ 3) \neq (1\ 2\ 3)(1\ 2)$.

Eg 1.2.9. $G = S_3, G_1 = \langle (1 \ 2) \rangle, G_2 = \langle (2 \ 3) \rangle, G_1G_2 = \{1, (1 \ 2), (2 \ 3), (1 \ 2 \ 3)\} \not\leq G$ since $(1 \ 3 \ 2) = (1 \ 2 \ 3)^{-1} \not\in G_1G_2$.

Prop 1.2.5. Let $H, K \leq G$. Then $HK \leq G \iff HK = KH$.

pf:

$$\Rightarrow : \begin{cases} H \leq HK \\ K \leq HK \end{cases} \implies KH \subseteq HK \; ; \; \forall hk \in HK, \exists h'k' \in HK \; \text{s.t.} \; (hk)(h'k') = 1 \; \implies \; hk = \\ (k')^{-1}(h')^{-1} \in KH \; \implies \; HK \subseteq KH.$$

 \Leftarrow : For $h_1k_1, h_2k_2 \in HK$, $(h_1k_1)(h_2k_2)^{-1} = h_1k_1k_2^{-1}h_2^{-1} = h_1h'k' \in HK$.

1.3 Week 3

1.3.1 Coset and Quotient Group

Let $f: G_1 \to G_2$ be a group homo. Define $\operatorname{Im} f := f(G_1)$. Notice that $\operatorname{Im} f \leq G_2$.

pf: Let
$$z_1 = f(a_1), z_2 = f(a_2)$$
, then $z_1 z_2^{-1} = f(a_1) f(a_2)^{-1} = f(a_1) f(a_2^{-1}) = f(a_1 a_2^{-1}) \in \text{Im } f$.

Def 16.
$$\ker f := \{ x \in G_1 \mid f(x) = 1 \} \le G_1.$$

Fact 1.3.1.

- 1. $x \in (\ker f)a \iff f(x) = f(a)$.
- 2. $\ker f = \{1\} \iff f \text{ is 1-1.}$

Def 17. Let $H \leq G$, $\forall a \in G, Ha$ is called a **right coset** of H in G.

Fact 1.3.2.

- 1. For 2 right cosets Ha, Hb, either Ha = Hb or $Ha \cap Hb = \phi$ must hold.
- 2. $\{ Ha : a \in G \}$ forms a partition of G.

Theorem 2 (Lagrange). Let $|G| < \infty$ and $H \le G$, $|H| \mid |G|$.

$$ho$$
f:

Remark 5. r is called the **index** of H in G, denoted by [G:H]. (The concept of index can be extended to infinite G, H.)

Ex 1.3.1. no subgroup of A_4 has order 6. (converse of Lagrange thm. is false.)

Coro 1.3.1. If |G| = p is a prime in \mathbb{Z} , then G is cyclic.

Coro 1.3.2. If $|G| < \infty, a \in G$, then $a^{|G|} = 1$.

$$\Box$$

Remark 6.

- 1. Let $H \leq G, a \in G, aH$ is called a **left coset**.
- 2. {right cosets of H} \leftrightarrow {right cosets of H} by $Ha \mapsto a^{-1}H$.

Ques: How to make $\{aH : a \in G\}$ to be a group? For aH, bH, we must have (aH)(bH) = abH. In general, (aH)(bH) = abH is not well-defined.

Eg 1.3.1. Let
$$H = \langle (1\ 2) \rangle \leq S_3$$
. $a_1 = (1\ 3), a_2 = (1\ 2\ 3), b_1 = (1\ 3\ 2), b_2 = (2\ 3)$. 出慘點

If we hope $a_1b_1H = a_2b_2H$, then we need $(a_1b_1)^{-1}a_2b_2 \in H$.

$$b_1^{-1}a_1^{-1}a_2b_2 = b_1^{-1}b_2b_2^{-1}a_1^{-1}a_2b_2$$

Notice that $b_1^{-1}b_2, a_1^{-1}a_2 \in H$, so we need $b_2^{-1}a_1^{-1}a_2b_2 \in H$.

Def 18. Let $H \leq G$. H is said to be **normal subgroup** of G if $\forall g \in G, h \in H, g^{-1}hg \in H$ (or $g^{-1}Hg \subseteq H$), denoted by $H \triangleleft G$.

Def 19. Let $H \triangleleft G$. The set $\{aH \mid a \in G\}$ forms a group under $(aH)(bH) = abH, a, b \in G$. We call it the **quotient group** of G by H, denoted by G/H. (Note: The indentity is H = hH and $(aH)^{-1} = a^{-1}H$.)

Remark 7. Define $q: G \to G/H, a \mapsto aH$, called the quotient homomorphism.

Ex 1.3.2. Let $H \leq G$. Then TFAE

- (a) $H \triangleleft G$.
- (b) $\forall x \in G, xHx^{-1} = H.$
- (c) $\forall x \in G, xH = Hx$.
- (d) $\forall x, y \in G, (xH)(yH) = (xy)H.$

Ques: How to find a normal subgroup of G?

Prop 1.3.1.

- 1. If G is abelian, then $\forall H \leq G \leadsto H \triangleleft G$. (done by (c))
- 2. If $H \leq G$ with [G:H] = 2, then $H \triangleleft G$.

Eg 1.3.2.
$$n \le 3, [S_n : A_n] = 2 \implies A_n \triangleleft S_n.$$

pf: We can write
$$G = H \cup Ha = H \cup aH \implies aH = Ha, \forall a \notin H$$
.

Def 20. Define the center of G to be $Z_G = \{ a \in G \mid ax = xa, \forall x \in G \} \leq G$.

Prop 1.3.2.

- 1. $Z_G \triangleleft G$. (by (c) and def.)
- 2. If G/Z_G is cyclic, then G is abelian.

pf: Let
$$G/Z_G = \langle aZ_G \rangle$$
, (let $\overline{a} := aZ_G$) for some $a \in G$. For $x_1, x_2 \in G$, let $x_1 = a^{k_1}z_1, x_2 = a^{k_2}z_2$, then $x_1x_2 = a^{k_1+k_2}z_1z_2 = x_2x_1$. (z_i 可以各種交換)

Def 21. The commutator of G is define to be $[G,G] = \langle xyx^{-1}y^{-1} \mid x,y \in G \rangle$.

Prop 1.3.3. $[G,G] \triangleleft G$; $[G,G] = 1 \iff G$ is abelian.

pf:
$$\forall x \in G, a \in [G, G], xax^{-1} = xax^{-1}a^{-1}a \text{ and } xax^{-1}a^{-1}, a \in [G, G].$$

Ex 1.3.3.

- 1. If $H \leq S_n$ and $\exists \sigma \in H$ is odd, then $[H : H \cap A_n] = 2$.
- 2. For $n \geq 3$, $[S_n, S_n] = A_n$.

Ex 1.3.4. Let $H \leq G$. Then $H \triangleleft G$ and G/H is abelian $\iff [G,G] \leq H$. (hint: G/[G,G] is "max" among all abelian quotient groups)

1.3.2 Isomorphism theorems & Factor theorem

Theorem 3 (1st isomorphism theorem). Let $f: G_1 \to G_2$ be a group homo. Then $G_1/\ker f \cong \operatorname{Im} f$.

pf: Define $\varphi : a \ker f \mapsto f(a)$.

- well-defined: $a \ker f = b \ker f \implies a^{-1}b \in \ker f \implies f(a^{-1}b) = 1 \implies f(a)^{-1}f(b) = 1 \implies f(a) = f(b)$.
- group homo: $\varphi((a \ker f)(b \ker f)) = \varphi(ab \ker f) = f(ab) = f(a)f(b) = \varphi(a \ker f)\varphi(b \ker f)$.
- onto: by def. of $\operatorname{Im} f$.
- 1-1: $f(a) = f(b) \implies a \ker f = b \ker f$ (easy).

Theorem 4 (Factor theorem). Let $f: G_1 \to G_2$ be a group homo. and $H \triangleleft G_1, H \leq \ker f$. Then \exists a group homo. $\varphi: G/H \to G_2$ s.t. 一個 \exists B

Eg 1.3.3. Let $G = \langle a \rangle$ with ord(a) = n. Then $G \cong \mathbb{Z}/n\mathbb{Z}$. (1st isom. thm.)

Eg 1.3.4. $\varphi: \mathbb{Z} \to \mathbb{Z}/2\mathbb{Z}, 4\mathbb{Z} \leq 2\mathbb{Z}$, so by factor thm., $\mathbb{Z}/4\mathbb{Z} \to \mathbb{Z}/2\mathbb{Z}$.

Eg 1.3.5. det: $GL(n, \mathbb{F}) \to \mathbb{F}^{\times} \implies GL(n, \mathbb{F})/SL(n, \mathbb{F}) \cong \mathbb{F}^{\times}$

Eg 1.3.6. $sgn: S_n \to \{\pm 1\} \implies S_n/A_n \cong \{\pm 1\}$

Theorem 5 (2nd isomorphism theorem). Let $H \leq G, K \triangleleft G$. Then $HK/K \cong H/H \cap K$.

 $\mathbf{pf:} \ \mathrm{First}, \ \begin{cases} H \leq G \\ K \lhd G \end{cases} \implies HK = KH \implies HK \leq G \ ; \ K \lhd G \implies K \lhd HK.$

Define $\varphi: H \to HK/K, h \mapsto hK$. which is a group homo.

- onto: $\forall (hk)K, hkK = hK, \text{ so } \varphi(h) = hK = hkK.$
- $\bullet \ \ {\rm Find} \ \ker \varphi \colon \ a \in \ker \varphi \iff \begin{cases} a \in H \\ aK = K \end{cases} \iff a \in H \cap K, \ {\rm so} \ \ker \varphi = H \cap K.$

Then by 1st isom. thm.

Eg 1.3.7. $G = GL(2, \mathbb{C}), H = SL(2, \mathbb{C}), K = \mathbb{C}^{\times}I_2 = Z_G \triangleleft G$. By 2nd isom. thm., $G/K \cong H/\{\pm I_2\}$. $(G = HK, \{\pm I_2\} = H \cap K)$ projective linear group: $PGL(2, \mathbb{C}) = G/K$. projective special linear group: $PSL(2, \mathbb{C}) = H/H \cap K$.

齊次座標...OTL

Ex 1.3.5.

- 1. Let $H_1 \triangleleft G_1, H_2 \triangleleft G_2$. Then $(H_1 \times H_2) \triangleleft (G_1 \times G_2)$ and $G_1 \times G_2/H_1 \times H_2 \cong G_1/H_1 \times G_2/H_2$.
- 2. Let $H \triangleleft G, K \triangleleft G$ s.t. G = HK. Then $G/H \cap K \cong G/H \times G/K$.

Ex 1.3.6. Let $H \triangleleft G$ with [G:H] = p, which is a prime in \mathbb{Z} . Then $\forall K \leq G$, either (1) $K \leq H$ or (2) G = HK and $[K:K \cap H] = p$.

Theorem 6 (3rd isomorphism theorem). Let $K \triangleleft G$.

1. There is a 1-1 correspondence between $\{H \leq G \mid K \leq H\}$ and $\{\text{subgroups of } G/K\}$. $(H \triangleleft G \dots \text{ normal})$

pf: Define $\varphi: H \mapsto H/K$. $(H/K \le G/K)$

- 1-1: Assume $H_1/K = H_2/K$. For $a \in H_1$, $aK \in H_1/K = H_2/K$. so $\exists b \in H_2$ s.t. $aK = bK \implies b^{-1}a \in K \leq H_2 \implies a \in bH_2 = H_2$. So $H_1 \leq H_2$. By symmetry, $H_2 \leq H_1$, and thus $H_1 = H_2$.
- onto: Given a subgroup Q of G/K, consider $H = q^{-1}(Q)$ where $q: G \to G/K$.

 - $-K \le H$: $\forall a \in K, q(a) = aK = K \in Q \implies a \in H \implies K \le H$.
 - -Q = H/K: $\forall aK \in Q, aK = q(a) \implies a \in H \implies aK \in H/K \implies Q \subseteq H/K$. And $\forall aK \in H/K (a \in H), q(a) \in Q \implies H/K \subseteq Q$. So Q = H/K.

- $H \triangleleft G, K \leq H \iff \forall g \in G, gHg^{-1} = H, K \leq H \iff \forall \overline{g} \in G/K, \overline{g}(H/K)\overline{g}^{-1} = H/K \iff H/K \triangleleft G/K.$
- 2. If $H \triangleleft G$ with $K \leq H$, then $(G/K)/(H/K) \cong G/H$.

pf: Define $\varphi: G \to (G/K)/(H/K)$ with $\varphi: a \mapsto aK(H/K)$.

- onto: ... easy.
- Find $\ker \varphi$: $a \in \ker \varphi \iff aK(H/K) = H/K \iff aK \in H/K \iff a \in H$.

By 1st isom. thm., $(G/K)/(H/K) \cong G/H$.

Eg 1.3.8. $m\mathbb{Z} + n\mathbb{Z}/m\mathbb{Z} \cong n\mathbb{Z}/m\mathbb{Z} \cap n\mathbb{Z}$. $(m\mathbb{Z} + n\mathbb{Z} = \gcd(m, n)\mathbb{Z}, m\mathbb{Z} \cap n\mathbb{Z} = \operatorname{lcm}(m, n)\mathbb{Z})$

Ques: $G/K \cong G'/K'$ and $K \cong K' \implies G \cong G'$.

Eg 1.3.9. Q_8 and D_4 交給陳力

Extension problem: given two groups A, B, how to find G and $K \triangleleft G$, s.t. $K \cong A, G/K \cong B$? $(1 \rightarrow H \rightarrow G \rightarrow G/H \rightarrow 1$, short exact sequence) (e.g. $G = A \times B, K = A \times \{1\}$)

1.4 Week 4

1.4.1 Universal property and direct sum & product

In general, let $f_1: G_1 \to G, f_2: G_2 \to G$ are group homo. $f_1 \times f_2: G_1 \times G_2 \to G, (a,b) \mapsto f_1(a)f_2(b)$. But we have (a,b)=(a,1)(1,b)=(1,b)(a,1), so $f_1(a)f_2(b)=f_2(b)f_1(a) \Longrightarrow$ need G to be abelian.

So we intend to define the direct sum in the category of abelian group.

<u>Notation</u>: For abelian groups, we use "+" to denote the group operation and "0" to denote the identity.

Def 22. Given a non-empty family of abelian groups $\{G_s \mid s \in \Lambda\}$, a (external) direct sum of $\{G_s \mid s \in \Lambda\}$ is an abelian group $\bigoplus_{s \in \Lambda} G_s$ with the embedding mappings $i_{s_0} : G_{s_0} \to \bigoplus_{s \in \Lambda} G_s, \forall s_0 \in \Lambda$ satisfying the universal property:

for any abelian group H and group homo. $\varphi_s:G_s\to H \forall s\in\Lambda,\quad\exists!$ group homo. $\varphi:\bigoplus_{s\in\Lambda}G_s\to H$ s.t. 又一個乙圖

Theorem 7. $\bigoplus_{s \in \Lambda} G_s$ exists and is unique up to isomorphisms.

pf: Existence: $\bigoplus_{s \in \Lambda} G_s = \{ (g_s)_{s \in \Lambda} \mid g_s \in G_s, \text{ almost all of the } g_s' \text{ are } 0 \}$ and

$$i_{s_0}: G_{s_0} \to \bigoplus_{s \in \Lambda} G_s, a_{s_0} \mapsto (g_{s_0})_{s \in \Lambda} \text{ with } g_{s_0} = a_{s_0}, g_s = 0, \forall s \neq s_0.$$

group operaion: $(g_s)_{s\in\Lambda}+(g_s')_{s\in\Lambda}:=(g_s+g_s')_{s\in\Lambda}\in\bigoplus_{s\in\Lambda}G_s$. 這邊也一個さ圖 Uniqueness: Assume \exists another G satisfies the universal property, 一個大さ圖 $(G,\bigoplus_{s\in\Lambda}G_s)$ 互相有 唯一個映射可以 keep i_{s_0} , $\varphi\circ\psi=\mathrm{id}_{G}$, $\psi\circ\varphi=\mathrm{id}_{\bigoplus_{s\in\Lambda}G_s}$

Def 23. Given a non-empty family of groups $\{G_s \mid s \in \Lambda\}$, a direct product of $\{G_s \mid s \in \Lambda\}$ is a group $\prod_{s \in \Lambda} G_s$ with projections $p_{s_0} : \prod_{s \in \Lambda} G_s \to G_{s_0}, \forall s_0 \in \Lambda$ satisfying the following universal property:

for any group H with group homo. $\varphi_s: H \to G_s, \forall s \in \Lambda, \exists ! \varphi: H \to \prod_{s \in \Lambda} G_s \text{ s.t. } 又一個 己圖$

Theorem 8. $\prod_{s \in \Lambda} G_s$ exists and is unique up to isomorphisms.

pf: Existence: $\prod_{s \in \Lambda} G_s = \{ (g_s)_{s \in \Lambda} \mid g_s \in G_s \}$ and

$$p_{s_0}: \prod_{s \in \Lambda} G_s \to G_{s_0}, (g_{s_0})_{s \in \Lambda} \mapsto g_{s_0}, \forall s_0 \in \Lambda$$

- group operaion: $(g_s)_{s \in \Lambda} \cdot (g'_s)_{s \in \Lambda} := (g_s g'_s)_{s \in \Lambda} \in \prod_{s \in \Lambda} G_s$.
- Define φ : 這邊也一個 τ 圖 which is uniquely defined.

Uniqueness: Assume \exists another G satisfies the universal property, 一個大さ圖 $(G, \prod_{s \in \Lambda} G_s)$ 互相有唯一個映射可以 keep i_{s_0} , $\varphi \circ \psi = \mathrm{id}_G$, $\psi \circ \varphi = \mathrm{id}_{\prod_{s \in \Lambda} G_s}$

Ex 1.4.1. Google the definition of the direct limit and show the existence and uniqueness.

Ex 1.4.2. Google the definition of the inverse limit and show the existence and uniqueness.

<u>Motivation</u>: ζ_m is called an *m*-th root of unity if $\zeta_m^m = 1$.

$$\varinjlim_{n} \mathbb{Z}/2^{n}\mathbb{Z} \cong \{ 2^{n} \text{-th roots of unity} : n \in \mathbb{N} \}$$

$$\varinjlim_{n} \mathbb{Z}/2^{n}\mathbb{Z} = (\bigoplus_{n \in \mathbb{N}} \mathbb{Z}/2^{n}\mathbb{Z})/\langle i_{k}(a) - i_{j}(f_{kj}(a)) \mid k \leq j, a \in \mathbb{Z}/2^{k}\mathbb{Z}\rangle$$

12

where $f_{kj}: \mathbb{Z}/2^k\mathbb{Z} \to \mathbb{Z}/2^j\mathbb{Z}$. Inverse limit:

$$\varprojlim \mathbb{Z}/2^n \mathbb{Z} = \left\{ (n_1, n_2, \dots) \in \prod_n \mathbb{Z}/2^n \mathbb{Z} \middle| \forall i < j, n_i \equiv n_j \pmod{2}^{i+1} \right\}$$

1.4.2 Rings and fields

Def 24. A ring is sa non-empty set R with two operations $R \times R \to R$

$$(a,b) \mapsto a+b$$
 and $(a,b) \mapsto ab$

satisfying

- 1. (R, +, 0) is an abelian group.
- 2. (R, \cdot) is a semigroup. (if it is a monoid, then it is called "a ring with 1.")
- 3. (Distributive laws) $\forall a,b,c \in \mathbb{R}, \begin{cases} a(b+c) = ab + ac \\ (b+c)a = ba + ca \end{cases}$

Eg 1.4.1. $\mathbb{Z}, \mathbb{R}, \mathbb{C}, \mathbb{Z}/n\mathbb{Z}, M_{n \times n}(\mathbb{F})$

Eg 1.4.2. Let G be an abelian group. Define (endomorphism, automorphism)

$$\operatorname{End}(G) := \{ \operatorname{group homo}. \ G \to G \} \quad \operatorname{Aut}(G) := \{ \operatorname{group isom}. \ G \to G \}$$

A natural ring structure on End(G) is:

$$\forall a \in G, \begin{cases} (f+g)(a) \coloneqq f(a)g(a) \\ (f \cdot g)(a) \coloneqq f(g(a)) \end{cases}$$

Eg 1.4.3.
$$\mathbb{Z}\left[\sqrt{2}\right] = \left\{a + b\sqrt{2} \mid a, b \in \mathbb{Z}\right\} \subset \mathbb{R}$$
.

Def 25. Let R be a ring with 1.

- (a) $\forall a \in R, a \neq 0$, a in called a unit if $\exists a^{-1} \in R$.
- (b) $(R^{\times} = \{\text{units in } R\}, \cdot, 1))$ forms a group.
- (c) R is called a division ring if $R \setminus \{0\} = R^{\times}$.
- (d) R is said to be commutative if $ab = ba, \forall a, b \in R$.
- (e) R is a field if R is a commutative division ring.
- (f) $a \neq 0$ is called a left zero divisor if $\exists b \in R, b \neq 0$ s.t. ab = 0.
- (g) a is called a zero divisor if a is either a left or right zero divisor.
- (h) R is called an integral domain if R is a commutative ring without zero divisors.

Fact:

- 1. fields \implies integral domains.
- 2. finite + integral domain \implies fields.

pf: Let
$$R = \{0, a_1, \dots, a_n\}$$
, for $a \in R, a \neq 0$, $aa_i = aa_j \implies a(a_i - a_j) = 0 \implies i = j$. So $\{0, aa_1, \dots, aa_n\} = R \implies \exists a_i \text{ s.t. } aa_i = 1$.

Prop 1.4.1. TFAE

- 1. $\mathbb{Z}/n\mathbb{Z}$ is an integral domain.
- 2. $\mathbb{Z}/n\mathbb{Z}$ is a field.
- 3. n = p is a prime.

easy to prove.

Def 26.

- $f: R_1 \to R_2$ is called a ring homomorphism if $\forall a, b \in R$, $\begin{cases} f(a+b) &= f(a) + f(b) \\ f(ab) &= f(a)f(b) \end{cases}$.
- Im f is a subring of R_2 .
- $\ker f = \{x \in R_1 \mid f(x) = 0\}$ is an additive group of R_1 and $\forall r \in R_1, x \in \ker f, f(rx) = f(r)f(x) = f(r)0 = 0 \implies rx \in \ker f, xr \in \ker f.$
- $R_1/\ker f$ is an additive group and $R_1/\ker f \cong \operatorname{Im} f$ (additive isomorphism).

Def 27. Let I be an additive subgroup of R. I is called an ideal if $\forall r \in R, x \in I, rx \in I, xr \in I$. $(R/I, +, \cdot)$ forms a quotient ring under

$$\forall r_1, r_2 \in R, (r_1 + I)(r_2 + I) = r_1 r_2 + I$$

well-defined: easy to show.

Ex 1.4.3. State and show the isomorphism theorems and the factor theorem.

Prop 1.4.2. If R is a ring with 1, then $\exists!$ ring homo. $\varphi: \mathbb{Z} \to R$ s.t. $\varphi(1) = 1$.

pf: Let $\varphi: \mathbb{Z} \to R$ is a ring homo. s.t. $\varphi(1) = 1$. Then $\forall n \in \mathbb{Z}, \varphi(n) = \varphi(1) + \cdots + \varphi(1) = n1$. Now $\forall n, m \in \mathbb{Z}, \varphi(n)\varphi(m) = (n1)(m1) = n(m1) = (nm)1$ by the distributive law. So φ is well-defined and unique.

Def 28. In Prop 1.4.2, $\ker \varphi = m\mathbb{Z}$ for some m > 0. We call m the characteristic of R, denoted by $\operatorname{char} R = m$.

Prop 1.4.3.

- 1. If R is an integral domain, then char R = 0 or p, where p is a prime. (try to prove this)
- 2. In the case of char R = p, $\forall a, b \in R$, $(a + b)^p = a^p + b^p$.

pf:

$$(a+b)^p = a^p + \binom{p}{1}a^{p-1}b + \dots + b^p = a^p + b^p$$

because $p \mid \binom{p}{1} \implies \binom{p}{i} a^{p-i} b^i = 0$.

Ex 1.4.4. Let F be a field. Show that

- 1. if char F = 0, then $\mathbb{Q} \hookrightarrow$ subfield of F.
- 2. if char F = p, then $\mathbb{Z}/p\mathbb{Z} \hookrightarrow \text{subfield of } F$.

Theorem 9. If F is a finite field, then $|F| = p^n$ for some $n \in \mathbb{N}$ and p is a prime.

pf: By Ex. 1.4.4, char F = p, p is a prime and $\mathbb{Z}/p\mathbb{Z} \hookrightarrow F$. We have $\mathbb{Z}/p\mathbb{Z} \times F \to F$, $(r,v) \mapsto rv$. F can be rearded as a vector space over $\mathbb{Z}/p\mathbb{Z}$. Let $\dim_{\mathbb{Z}/p\mathbb{Z}} F = n$, then $F \cong (\mathbb{Z}/p\mathbb{Z})^n \implies |F| = n$.

Theorem 10. Let F be a field. Then any finite subgroup G of $(F^{\times}, \cdot, 1)$ is cyclic.

pf: Let |G| = n. Define h to be the max order of an element in G, say $a^h = 1$. If h = n, then $|\langle a \rangle| = h = n = |G|$ and $\langle a \rangle \subseteq G$, so $G = \langle a \rangle$. Otherwise, h < n. We know that $x^h - 1$ has at most h roots. So $\exists b \in G$ is not a root of $x^h - 1$. Let $\operatorname{ord}(b) = h'$, so $h' \mid n$ and $h' \mid h$. So \exists a prime p s.t. $p^r \mid h'$ but $p^r \mid h$. Write $h = mp^s$, s < r and $\gcd(m, p) = 1 \implies \operatorname{ord}\left(a^{p^s}\right) = m$. Write $h' = qp^r \implies \operatorname{ord}\left(b^q\right) = p^r$. Since $\gcd(m, p^r) = 1$, $\operatorname{ord}\left(a^{p^s}b^q\right) = mp^r > mp^s = h$, which is a contradiction.

Ex 1.4.5.

- 1. Let $a, b \in G$ with ab = ba and ord(a) = m, ord(b) = n. If gcd(m, n) = 1, then ord(ab) = mn. In general, is the order of ab equal to lcm(m, n)?
- 2. Let G be a finite group and $H, K \leq G$. Then $|HK| = \frac{|H||K|}{|H \cap K|}$.

1.5 Week 5

1.5.1 Group actions I

Def 29. A group G is said to act on a nonempty set X if \exists a map $G \times X \to X$ with $(g, x) \mapsto gx$ s.t.

- 1. 1x = x
- 2. $(g_1g_2)x = g_1(g_2x) \quad \forall g_1, g_2 \in G$

Prop 1.5.1. {actions of G} \leftrightarrow {group homo. $G \rightarrow S_X$ }

pf: Given an action $(g, x) \mapsto gx$, consider $\varphi : G \to S_X$ s.t. $\varphi : g \mapsto (\tau_g : x \mapsto gx)$.

- 1-1: $gx = gy \implies g^{-1}(gx) = y \implies x = y$.
- onto: $\forall y \in X$, let $x = g^{-1}y$, then y = gx.
- group homo.: $\varphi(gg') = (\tau_{gg'} : x \mapsto gg'x) = \tau_g \circ \tau'_g = \varphi(g)\varphi(g')$.

Conversely, given a group homo. $\varphi: G \to S_X$, consider $(g, x) \mapsto \varphi(g)(x)$.

- $1x = \varphi(1)(x) = \text{Id}(x) = x$.
- $g_1g_2x = \varphi(g_1g_2)(x) = \varphi(g_1) \circ \varphi(g_2)(x) = g_1(g_2x).$

Def 30. A representation of G on a vector space V is a group action of G on V linearly. i.e. \exists group homo. $\varphi: G \to \operatorname{GL}(V)$.

Eg 1.5.1.

$$\mathbb{Z}/m\mathbb{Z} \to \mathrm{SO}(2), \quad \overline{k} \mapsto \begin{pmatrix} \cos\frac{2k\pi}{m} & -\sin\frac{2k\pi}{m} \\ \sin\frac{2k\pi}{m} & \cos\frac{2k\pi}{m} \end{pmatrix}$$

Eg 1.5.2.

$$S_n \to \mathrm{GL}(n,\mathbb{R}), \quad \sigma \mapsto (\tau_\sigma : e_i \mapsto e_{\sigma(i)})$$

Remark 8.

- 1. An action $G \times X \to X$ is said to be faithful if the corresponding group homo. $\varphi : G \hookrightarrow S_X$, denoted by $G \curvearrowright X$.
- 2. In general, $\ker \varphi = \{ g \in G \mid gx = x \quad \forall x \in X \} = \bigcap_{x \in X} \{ g \mid gx = x \}.$ Define $G_x = \{ g \mid gx = x \} \leq G$ is the isotropy subgroup of G at x. (the stabilizer of G at x)
- 3. $\varphi: G \to S_X \implies G/\ker \varphi \hookrightarrow S_X$. So $G/\ker \varphi \times X \to X$ is faithful.
- 4. Let $\mathcal{C}(X) = \{f : X \to \mathbb{C}\}$. If $G \curvearrowright X$, then $G \curvearrowright \mathcal{C}(X)$ by $G \times \mathcal{C}(X) \to \mathcal{C}(X)$ with $(g,f) \mapsto gf(x) = f(g^{-1}x)$.

The reason: $(g_1g_2)f(x) = f((g_1g_2)^{-1}x) = f(g_2^{-1}g_1^{-1}x) = g_1(g_2f)(x)$.

Def 31. Let $G \curvearrowright X$ and $x \in X$.

- The **orbit** of x is defined to be $Gx = \{gx \mid g \in G\}$.
- $G \cap X$ is said to be transitive if \exists only one orbit. i.e. $\forall x, y \in X, \exists g \in G$ s.t. y = gx.

The set of orbits forms a partition: $x \sim y \iff \exists g \in G \text{ s.t. } y = gx.$

Prop 1.5.2. Let $G \cap X$ and $x \in X$. Then $|Gx| = [G : G_x]$. In particular, $|G| < \infty \implies |G| = |Gx||G_x| \quad \forall x \in X$.

pf: Define $\psi:Gx \to \{\text{left coset of } G_x\}$ as $\psi:gx \mapsto gG_x$.

- well-defined and 1-1: $g_1x = g_2x \iff g_2^{-1}g_1x = x \iff g_2^{-1}g_1 \in G_x \iff g_2^{-1}g_1G_x = G_x \iff g_1G_x = g_2G_x$.
- onto: $\forall g \in G, \psi(gx) = gG_x$.

1.5.2 Action by left multiplication

- The action $G \times G \to G$, $(g, x) \mapsto gx$ is associated with $\varphi : G \hookrightarrow S_G$. It is faithful (Caylet theorem) and transitive.
- Let $H \leq G$ and $X := \{ \text{left coset of } H \}.$

1.6 Week 6

1.6.1 Group actions II

Def 32. Let $G \curvearrowright X$ and $|X| < \infty$. Write Fix $G := \{ \times \in \times \mid gx = \times \quad \forall g \in G \}$.

- $x \in \text{Fix } G, Gx = \{ \times \}.$
- $x \notin \operatorname{Fix} G$, $|Gx| = [G:G_x]$.

Let $\{G_{\times_1}, \ldots, G_{\times_n}\}$ be the set of distinct orbits. After rearrangement, assume $\times_1, \ldots, \times_r \in \operatorname{Fix} G, \times_{r+1}, \ldots, \times_n \notin \operatorname{Fix} G$. Then

$$|X| = |\text{Fix } G| + \sum_{i=r+1}^{n} [G: G_{\times_i}]$$

Theorem 11 (class equation). Let $|G| < \infty$. Then either $G = Z_G$ or $\exists a_1, \ldots, a_m \in G \setminus Z_G$ s.t.

$$|G| = |Z_G| + \sum_{i=1}^{n} [G : G_{a_i}]$$

pf: Consider the action $(g, x) \mapsto gxg^{-1}$, then

Fix
$$G = \{ \times \in G \mid gxg^{-1} = \times \quad \forall g \in G \} = Z_G$$

It follows from the above argument.

Def 33. G is called a p-group if $|G| = p^n$, where p is a prime, $n \in \mathbb{N}$.

Prop 1.6.1. If G is a p-group, then $Z_G \neq \{1\}$.

pf: Let $|G| = p^n$. If $G = Z_G$, then done. Otherwise, by the class equation (use action by conjugation), $|G| = |Z_G| + \sum_{i=1}^n [G:G_{a_i}], \quad a_i \notin Z_G$.

$$G_{a_i} = Z_G(a_i)$$
, so $a_i \notin Z_G \implies Z_G(a_i) \subsetneq G \implies p \mid [G : Z_G(a_i)] = \frac{|G|}{|Z_G(a_i)|}$.
So $|Z_G| = |G| - \sum_{i=1}^n [G : Z_G(a_i)] \implies p \mid |Z_G| \implies Z_G \neq \{1\}$.

Prop 1.6.2. If $|G| = p^2$, then G is abelian. $(\mathbb{Z}/p\mathbb{Z} \times \mathbb{Z}/p\mathbb{Z})$ and $\mathbb{Z}/p^2\mathbb{Z}$)

pf: Assume that G is not abelian. By prop 1.6.1, $|Z_G| = p \implies |G/Z_G| = p \implies G/Z_G$ is cyclic $\implies G$ is abelian. (contradiction)

Prop 1.6.3. If $|G| = p^3$ and G is not abelian, then $|Z_G| = p$. (Abelian: $\mathbb{Z}/p\mathbb{Z} \times \mathbb{Z}/p\mathbb{Z} \times \mathbb{Z}/p\mathbb{Z}, \mathbb{Z}/p^2\mathbb{Z} \times \mathbb{Z}/p\mathbb{Z}, \mathbb{Z}/p^3\mathbb{Z}$)

Prop 1.6.4. Let $|G| = p^n$. Then $\forall 0 \le k \le n, \exists G_k \lhd G$ s.t. $|G_k| = p^k$ and $G_i \le G_{i+1}$. In general, for a finite group G, $\exists \{1\} = G_r \lhd G_{r-1} \lhd \cdots \lhd G_1 \lhd G_0 = G$ s.t. G_i/G_{i+1} is cyclic. we call G a solvable group.

pf: By induction on n, n = 1 is trivial. For n > 1, assume that the statement a holds for n - 1. By prop 1.6.1, $Z_G \neq \{1\}$. $\exists a \in Z_G, a \neq 1$. Let $\operatorname{ord}(a) = p^l$, then $\operatorname{ord}(a^{p^{l-1}}) = p$. \Longrightarrow in any case, $\exists a \in Z_G$ with $\operatorname{ord}(a) = p$.

Now $|G/\langle a\rangle| = p^{n-1}$, so by induction hypothesis, $\forall 0 \leq k \leq n-1, \exists \overline{G_k} \triangleleft G/\langle a \rangle$ s.t. $|\overline{G_k}| = p^k, \overline{G_i} \subsetneq \overline{G_{i+1}}$.

By 3rd isom. thm., $\exists G_{k+1} \triangleleft G$ s.t. $\overline{G_k} = G_{k+1}/\langle a \rangle, G_j \lneq G_{j+1}$ and $|G_{k+1}| = p^{k+1}$.

Prop 1.6.5. Let a *p*-group $G \curvearrowright X$ with $|X| < \infty$. Then $|X| \equiv |\operatorname{Fix} G| \pmod{p}$.

Theorem 12 (Cauchy theorem). Let $p \mid |G|$. Then $\exists a \in G \text{ s.t. } \operatorname{ord}(a) = p$. Consider

$$\times = \{ (a_1, \dots, a_n) \mid a_i \in G, a_1 a_2 \dots a_n = 1 \}$$

and the action $\mathbb{Z}/p\mathbb{Z} \times \times \to X$:

$$(\overline{k},(a_1,\ldots,a_n))\mapsto(a_{k+1},\ldots,a_n,a_1,\ldots,a_k)$$

(This is well-defined since $ab=1 \implies ba=1$ in a group.) We find that $(a_1,\ldots,a_p) \in \operatorname{Fix} \mathbb{Z}/p\mathbb{Z} \iff a_1=a_2\ldots a_p$. By prop 1.6.5, $|\operatorname{Fix} \mathbb{Z}/p\mathbb{Z}| \equiv |X| \pmod{p}$. And $|X|=|G|^{p-1} \equiv 0 \pmod{p}$. Since $(1,\ldots,1) \in \operatorname{Fix} \mathbb{Z}/p\mathbb{Z}, |\mathbb{Z}/p\mathbb{Z}| \neq 0 \implies |\mathbb{Z}/p\mathbb{Z}| \geq p$. So $\exists (a,\ldots,a) \in \operatorname{Fix} \mathbb{Z}/p\mathbb{Z} \implies a^p=1$ w

Application: Let $|G| = p^3$ and G be non-abelian (p is odd). By prop 1.6.3, $|G/Z_G| = p^2$. Since G is non-abelian, we have $G/Z_G \cong \mathbb{Z}/p\mathbb{Z} \times \mathbb{Z}/p\mathbb{Z}$. That is, $\forall a \in G, a^p \in Z_G$. So,

$$\exists \varphi: G \to Z_G \cong C_p \text{ with } \varphi: a \mapsto a^p$$

Since G/Z_G is abelian, $[G,G] \leq Z_G$. And

$$\begin{cases} |[G,G]| \mid |Z_G| = p \\ G \text{ is non-abelian} \end{cases} \implies [G,G] = Z_G$$

Def 34. $[x,y] = x^{-1}y^{-1}xy \in [G,G], [x,y]^p = 1.$

So $a^p b^p = a^p b^p [b, a]^p$... 換換換總共需要 p(p-1)/2

$$a^p b^p = (ab)^p [b, a]^{\frac{p(p-1)}{2}} = (ab)^p$$

So φ is a group homo.

Now if $\ker \varphi = G$ ($\forall a \in G, a^p = 1$), i.e. φ is trivial, then φ is useless. Else, $\exists a \in G$ s.t. $\operatorname{ord}(a) = p^2$, then $H = \langle a \rangle \lhd G$. ([G:H] = p is the smallest prime dividing |G|)

Also, in this case, $\varphi: G \twoheadrightarrow Z_G \implies G/\ker \varphi \cong Z_G$. Let $E = \ker \varphi$, $|E| = p^2$. By the def. of $\ker \varphi$, $E \cong \mathbb{Z}/p\mathbb{Z} \times \mathbb{Z}/p\mathbb{Z}$.

We find that $H \cap E = \langle a^p \rangle$. Pick $b \in E \setminus H$ and let $K = \langle b \rangle \implies |K| = p, H \cap K = \{1\}, HK = G.$

1.6.2 Semidirect product

Fact 1.6.1.
$$K \triangleleft G, H \triangleleft G, K \cap H = \{1\} \implies KH = K \times H$$

 $(\forall k \in K, h \in H, khk^{-1}h^{-1} \in H \cap K = \{1\}, \implies kh = hk)$

Fact 1.6.2. Let K, H be two groups, and $G = K \times H \implies K \times \{1\} \triangleleft K \times H, \{1\} \times H \triangleleft K \times H$

Observation 1. $K \leq G, H \triangleleft G, K \cap H = \{1\}$ (K 慘 H 好,簡稱慘好集) ⇒ elements in KH has unique representation? 好事喔 $KH \iff K \times H$ 1-1 corresp, $(kh) \iff (k,h)$

Group operation: $\forall k_1, k_2 \in K, h_1, h_2 \in H, (k_1h_1)(k_2h_2) = k_1k_2(k_2^{-1}h_1k_2)h_2$ Let $\tau: K \implies \operatorname{Aut}(H), k \implies \tau(k): h \implies khk^{-1}$ (類似 $\in \operatorname{Inn}(H)$)

Def 35 (Semi-Direct Product (慘好積)). $K \times_{\tau} H = \{(k,h)|k \in K, h \in H\}$ with group operation : $(k_1,h_1)(k_2,h_2) = (k_1k_2,\tau(k_2^{-1})(h_1)(h_2))$ where $\tau: K \implies \operatorname{Aut}(H)$ (need not to be inner homomorphism)

Properties:

- Associativity: Good, ex
- The identity = (1,1)
- Inverse: $(k,h)^{-1} = (k^{-1}, \tau(k)(h^{-1}))$
- $K \cong K \times \{1\} \leq K \times_{\tau} H : (k_1, 1)(k_2, 1) = (k_1 k_2, \tau(k_2^{-1})(1)1) = (k_1 k_2, 1) \in K \times \{1\}$ $H \cong \{1\} \times H \leq K \times \tau H : (1, h+1), (1, h_2) = (1, \tau(1^{-1})(h_1)h_2) = (1, h_1h_2) \in \{1\} \times K$
- $H \triangleleft K \times_t H : (k,h)(1,h')(k,h)^{-1} = (k,hh')(k^{-1},\tau(k)(h^{-1})) = (1,\tau(k)(hh')\tau(k)(h^{-1})) \in H$
- $\tau(k)(h) = khk^{-1} : (k,1)(1,h)(k^{-1},1) = (k,h)(k^{-1},1) = (1,\tau(k)(h))$
- If τ is trivial $\Longrightarrow K \times_t H \cong K \times H$

Remark 9. Some definition swaps the order of H and K, i.e. $(h_1, k_1)(h_2, k_2) = (h_1\phi(k_1)(h_2), k_1k_2)$

Ex 1.6.1. Show that $H \rtimes_{\phi} K$ is a group and satisfies the above properties.

Eg 1.6.1. Construct a non-abelian group of order 21.

Fact 1.6.3. $\operatorname{Aut}(\mathbb{Z}/p\mathbb{Z}) \cong (\mathbb{Z}/p\mathbb{Z})^{\times} \cong C_{n-1}$

Sol:
$$\phi_k : \mathbb{Z}/p\mathbb{Z} \Longrightarrow \mathbb{Z}/p\mathbb{Z}, \overline{1} \Longrightarrow \overline{k}$$

 $\phi_{k2}o\phi_{k1}(T) = \phi_{k2}(\overline{(k_1)}) = \phi_{k2}(T + \dots + T) = \overline{(k_2)} + \dots + \overline{k_2} = k_1\overline{k_2}$
Let $K = C_3, H = C_7$, define $\tau : C_3 \Longrightarrow \operatorname{Aut}(C_7) \cong C_6, a \Longrightarrow \phi_2 \ phi_k : b \Longrightarrow b^k$
 $G = \langle a, b | a^3 = 1, b^7 = 1, aba^{-1} = b^2 \rangle$

Eg 1.6.2. p : odd, $|G| = p^3$, G is non-abelian.

(sol) $\phi: G \Longrightarrow Z(G), a \Longrightarrow a^p$ non trivial case $\exists a \in G$ with $\operatorname{ord}(a) = p^2$. Let $H = \langle a \rangle$ here ϕ is onto and $E = \ker \phi \cong \mathbb{Z}/p\mathbb{Z} \times \mathbb{Z}/p\mathbb{Z}$ And $|H \cap E| = p$ $H \triangleleft G$ because [G : H] = p Pick $b \in E$ Hand let $K = \langle b \rangle \Longrightarrow |K| = p$, $K \cap H = \{1\}$ so $|G| = |KH| = p^3$

Fact 1.6.4. $\operatorname{Aut}(Z/p^2Z) \cong (Z/p^2Z)^{\times}$

Sol: $\phi_k : \mathbb{Z}/p^2\mathbb{Z} \implies \mathbb{Z}/p^2\mathbb{Z}, \bar{1} \implies \bar{k}, \gcd(k, p) = 1$ Find a group homo $\tau: K \implies \operatorname{Aut}(H)$ because $(1+p)^p \equiv 1 \mod p^2$, $\operatorname{ord}(1+p) \in \mathbb{Z}/p^2\mathbb{Z}$ Let $P = \langle 1 + p \rangle$ is the only subgroup of order p. (if $\exists |Q| = p, P \neq Q$ then $P \cap Q = 1, |PQ| = p^2$, miserable.) So let $\tau:b \implies \phi_{1+p}:a \implies a^{1+p}$ so $G=\langle a,b|a^{p^2}=1,b^p=1,bab^{-1}=a^{1+p}\rangle$ is a non-abelian group of order p^3 .

Eg 1.6.3. Isometry of \mathbb{R}^n

Def 36 (Isometry). An isometry of \mathbb{R}^n is a function $h:\mathbb{R}^n \Longrightarrow \mathbb{R}^n$ that preserves the distance between vectors.

 $h = t \circ k$ where t is translation, k is an isometry fixing the origin, i.e. $k \in O(n)$. Let T be the group of translations on \mathbb{R}^n , $T \cong (\mathbb{R}^n, +, 0), t \implies t(0)$. Let $\tau: O(n) \implies \operatorname{Aut}(T), A \implies L_A: R^n \implies R^n, v \implies Av$

Let
$$T: O(n) \Longrightarrow \operatorname{Aut}(T), A \Longrightarrow L_A: R^n \Longrightarrow R^n, V \Longrightarrow \longrightarrow \operatorname{Isom}(R^n) = O(n) \times R^n$$

 $\Longrightarrow \operatorname{Isom}(R^n) = O(n) \times_{\tau} R^n$

Eg 1.6.4. Quaternium $Q_8 = \{\pm 1, \pm i, \pm j, \pm k\}$ is not a semi-deriect product of any two proper subgroups.

pf: since $\{\pm 1\}$ is contained in any non-trivial subgroups, can't find $H \cap K = \{1\}$.

Eg 1.6.5.
$$A_4, V_4 = \{1, (12)(34), (14)(23), (13)(24)\} \triangleleft A_4, V_4 \cong \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$$

Let $H_{ao} = \langle (123) \rangle \cong C_3$, define $\tau: H_{ao} \implies \operatorname{Aut}(V_4) \cong GL_2(\mathbb{Z}/2\mathbb{Z})$ (123) $\implies (\bar{0}\bar{1}; \bar{1}\bar{1})$ so $A_4 \cong C_3 \times_{\tau} V_4$.

Ex 1.6.2. Construct D_n as a semi-direct product of $\mathbb{Z}/n\mathbb{Z}$ and $\mathbb{Z}/2\mathbb{Z}$.

Ex 1.6.3. 1. Show that S_4 is a semi-direct product of V_4 and $H = {\sigma \in S_4 | \sigma(4) = 4} \sim S_3$. 2. Show that S_n is a semi-direct product of A_n and $H = \langle (12) \rangle$.

Remark 10. • $\operatorname{Aut}(\mathbb{Z}/p\mathbb{Z} \times \mathbb{Z}/p\mathbb{Z}) \cong GL_2(\mathbb{Z}/p\mathbb{Z})$ (regarded as a vector space over $\mathbb{Z}/p\mathbb{Z}$)

• $\operatorname{Aut}(\mathbb{Z}/p\mathbb{Z} \times \mathbb{Z}/q\mathbb{Z}) \cong \operatorname{Aut}(\mathbb{Z}/p\mathbb{Z}) \times \operatorname{Aut}(\mathbb{Z}/q\mathbb{Z}) \cong C_{p-1} \times C_{q-1}$