Problem Statement

There are N stones, numbered $1, 2, \ldots, N$. For each i ($1 \le i \le N$), the height of Stone i is h_i .

There is a frog who is initially on Stone 1. He will repeat the following action some number of times to reach Stone N:

• If the frog is currently on Stone i, jump to one of the following: Stone $i+1, i+2, \ldots, i+K$. Here, a cost of $|h_i-h_j|$ is incurred, where j is the stone to land on.

K ecursiul

Find the minimum possible total cost incurred before the frog reaches Stone N.

Input

Input is given from Standard Input in the following format:

Output

Print the minimum possible total cost incurred.

Sample Input 1 Copy

5 3 10 30 40 50 20

Sample Output 1 Copy

30

If we follow the path $1 \rightarrow 2 \rightarrow 5$, the total cost incurred would be |10-30|+|30-20|=30.

hint > froggunf fibonacci

 $h_3 \qquad h_4$ $Cost \rightarrow h_3 - h_6$

(037 = 1h, -h2 | flh2-hs] =) [10-30] + [30-20] -1 20+10

$$\frac{f_{rog}}{c^{th}} = \frac{f_{rog}}{f^{rog}}$$

$$f(P) = \min \left(f(i+1) + |hi - hi+1|, f(i+2) + |hi - hi+1| \right)$$

$$f(n) = \min \left(f(n-1) + |hn-1| + hn |, f(n-2) + |hn-2| + hn | \right)$$

ans =
$$+\infty$$
;

for $(j=1)j <= K ; j+\tau$) C

if $(i+j)=n$ break;

ans = $min(ans, f(i+j)+abs(hli)-hlitd)$

De Cremen an array of n integers, calculate the Sum of array elements, recursuly. En > [1,2,3,-1,5] ans 7 (an,0) Qns > 10 $= \int (a \pi_1 i + i) + a \pi C i J$ f (a 86, i) if (= = ?) downs.

return 0; returns Sum of element of array from inden i 10 n-1

assume the function of works correctly for it. Selfwork > add i'm inder element to the Sum of (i+1) to (-1) Pin = 0 (N)
Spa = 0 (N) [1,2,3,4] $f(am,0) \longrightarrow f(am,1) \longrightarrow f(am,2) \longrightarrow f(am,3) \longrightarrow f(am-34)$ of (aor, S)

Un briuen an array of integers of length 1, and a target value of check whether x exists in the array or not? En > [1, 9, -1, 3, 8, 6]

x=8 ans -> how. (aw(i) = = x) Or (aw, if 1, x) $\int (a\pi(i),x) =$ return whellen nis Bar, if (i = = n)
relum falser present in the curray from indere i 10 n-1

Selfwork = to check if the current dement is equal to 7.

assume = function of works (orrectly for i+1, i.e. it
corrully check if & enests in the raye [i+1, n-1] or not.

Criven an array of n'integers, Check if the array elements are arranged in asc order or not ?? En [2, 3, 9, 10, 16] Recursinly ans - house en + [2,-3,9,10,16]

ans - false

= (arr [i] <= arr [i+1]) and f (arr it) returns whether Check if it element cesseme that foots elements from inder for it! La recturn how been correctly [i,n-i] are arranged whelle [i+1,n-1] is placed or not ?? in inc voder og not?? in asc order or rot it (! = = u - 1) < 90 91 02 93 94.... an return hou; dul > (cal o)

[1, [2, 3, 4]

Or Criven a String of digits, calculate the Sum of digits of the string. oligit recursion ascii nurben (31) (234) (31) 81 -> "1234" = f(sk, iti) + (sk[i] -'0'); f(SH,i)Sum of digits of if (i = = Str. Size())
velor 0; String from inclen

Printing Technique for Recursion

Un luiven dimensions of a 2d grid (n,m), frint total different ways in which you can start from (0,0) and reach (n-1, m-i) Such that from any index you can more one slep down or reget.

n=3 RRDD

PORR

RDR

DRRD

PORR

PORR

DRDR

// count the notal possible ways f(i,j,n,m,output) = f(i,j+1,n,m,output + "R")f(i+1,f,n,m, Outfet +"D") Prints the total ways to reach from i, d to (n-1,m-1) using out flut if (i ≥n or d≥m)

return;

if (i==n-1 and d==m-i)

point (output)

retur; 8 toing

