

Sistemas de Controle Digital

Controle Analógico X Controle Digital

- → Tamanho / Número de Componentes / Custo
- → Repetibilidade
- → Ruídos
- → Precisão
- → Técnicas de Controle Avançadas
- → Supervisão / Monitoramento / Comunicação
- → Ajustes e Testes no Desenvolvimento

Sistema de Controle Digital

Características:

- \rightarrow Clock
- → Amostragem periódica do erro (saída)
- → Cálculo da lei de controle (software)
- → Saída convertida em um sinal de controle (ação de controle)

Fonte: NISE, N. S. – Engenharia de Sistemas de Controle, 3ª

Amostragem:

FIGURA 11.17

Um sinal falso devido à subamostragem.

Conversão A/D – Analógico / Digital

Fonte: NISE, N. S. – Engenharia de Sistemas de Controle, 3ª ed

Conversão A/D – Analógico / Digital

FIGURA 11.18

ADC de aproximações sucessivas: (a) Diagrama em bloco simplificado; (b) Fluxograma de operação.

Conversão A/D – Analógico / Digital

FIGURA 11.20

ADC de aproximações sucessivas de 8 bits com saídas de tristate ADC0804. Os números entre parênteses são os números dos pinos do CI.

Conversão A/D – Analógico / Digital

- erro absoluto, erro %
- erro de quantização $\rightarrow \frac{1}{2^n}$
- relação sinal/ruído $\rightarrow 20 \cdot \log(2^n)$

 $n \rightarrow número de bits$

Fonte: TROFINO, A. - Apostila de Sistemas Lineares

– conversor de 4 bits, entrada em 3,3 V

$$Vmax := 5$$
 $n := 4$ $Vi := 3, 3$

Vout :=
$$Vi \cdot \frac{2^n - 1}{Vmax}$$
 Vout = 9,9 Voutconv := 10

$$Viconv = \frac{Voutconv}{\frac{2^{n}-1}{Vmax}}$$
 Viconv = 3,3333

Erro =
$$Viconv - Vi$$

Erro = 0,0333 Errop = $\frac{Viconv - Vi}{Vi} \cdot 100$ Errop = 1,0101

Equantização:=
$$\frac{1}{2}$$
n Equantização = 0,0625 $S_R = 20 \cdot \log_{10} \left(2^n\right)$ $S_R = 24,0824$

– conversor de 10 bits, entrada em 3,3 V

$$Vmax := 5$$
 $n := 10$ $Vi := 3, 3$

Vout :=
$$Vi \cdot \frac{2^n - 1}{Vmax}$$
 Vout = 675, 18 Voutconv := 675

$$Viconv = \frac{Voutconv}{\frac{2^{n}-1}{Vmax}}$$
 Viconv = 3,2991

Erro = -0,0009 Errop :=
$$\frac{\text{Viconv} - \text{Vi}}{\text{Vi}} \cdot 100$$
 Errop = -0,0267

Equantização =
$$\frac{1}{2}$$
 Equantização = 0,001

$$S_R = 20 \cdot \log_{10} (2^n) S_R = 60,206$$

Conversão D/A – Digital / Analógico

D	С	В	Α	V _{out}
0 0 0 0 0 0	0 0 0 0 1 1 1	0 0 1 1 0 0 1	0 1 0 1 0 1	0 Volts 1 2 3 4 5 6 7
1 1 1 1 1 1 1	0 0 0 0 1 1 1	0 0 1 1 0 0 1	0 1 0 1 0 1 0	8 9 10 11 12 13 14 15 Volts

(b)

FIGURA 11.2 DAC de quatro bits com saída em tensão.

Conversão D/A – Digital / Analógico

Formas de onda de saída de um DAC com as entradas sendo acionadas por um contador binário.

Conversão D/A – Digital / Analógico

FIGURA 11.5

DAC simples usando um amplificador operacional na configuração amplificador somador com resistores com ponderação binária.

Conversão D/A – Digital / Analógico

FIGURA 11.6

DAC de quatro bits completo incluindo a fonte de referência de precisão.

Conversão D/A – Digital / Analógico

FIGURA 11.9

(a) DAC de oito bits AD7524 com entradas com latch; (b) Conversor amp-op de corrente para tensão fornece tensão de saída variando de $0\,\mathrm{V}$ a aproximadamente 10; (c) Circuito amp-op para gerar saída bipolar de $-10\,\mathrm{V}$ a aproximadamente $+10\,\mathrm{V}$.

Conversão D/A – Digital / Analógico

FIGURA 11.16
(a) Digitalizando um sinal analógico; (b) Reconstruindo o sinal analógico a partir dos dados digitais.

Sistema Equivalentes

(a) – Diagrama detalhado, com indicação do processamento de sinais, de um sistema dotado de controlador digital.

(b) – Diagrama simplificado equivalente ao da Figura 16.9a.

Figura 16.9

Sample and Hold

Sistema de Controle Digital

Características:

- \rightarrow Clock
- → Amostragem periódica do erro (saída)
- → Cálculo da lei de controle (software)
- → Saída convertida em um sinal de controle (ação de controle)

Fonte: NISE, N. S. – Engenharia de Sistemas de Controle, 3ª

Amostragem:

Amostrador Ideal

 $f_{Tw}^{*}(t) \rightarrow$ Função amostrada com periodicidade T e pulso de amostragem com largura TW

$$f_{Tw}^*(t) = f(t) \cdot s(t)$$

$$f_{Tw}^{*}(t) = f(t) \cdot \sum_{x=0}^{\infty} u(t - k \cdot T) - u(t - k \cdot T - Tw)$$

Função de amostragem:

$$s(t) = \sum_{-\infty}^{\infty} u(t - k \cdot T) - u(t - k \cdot T - Tw)$$

$$\mathbf{f}_{\mathrm{Tw}}^{*}(t) = \mathbf{f}(t) \cdot \sum_{-\infty}^{\infty} u(t - k \cdot T) - u(t - k \cdot T - Tw)$$

Para Tw pequeno: $f(t) = f(k \cdot T) \rightarrow cte$

$$f_{Tw}^{*}(t) = \sum_{-\infty}^{\infty} f(k \cdot T) \cdot \left[u(t - k \cdot T) - u(t - k \cdot T - Tw) \right]$$

Aplicando Laplace:

$$F_{\text{Tw}}^{*}(s) = \sum_{-\infty}^{\infty} f(k \cdot T) \cdot \left[\frac{e^{-k \cdot T \cdot s}}{s} - \frac{e^{-k \cdot T \cdot s - Tw \cdot s}}{s} \right]$$

$$F_{\text{Tw}}^{*}(s) = \sum_{-\infty}^{\infty} f(k \cdot T) \cdot \left[\frac{1}{s} - \frac{e^{-Tw \cdot s}}{s} \right] e^{-k \cdot T \cdot s}$$

PARES DE TRANSFORMADAS

f(t)	F(s)
u(t)	$\frac{1}{s}$
$\delta(t)$	1

PROPRIEDADE

Translação no tempo

$$L[f(t-t_0)u_s(t-t_0)] = e^{-t_0s}F(s)$$

Série de Taylor:

$$e^{x} = 1 + x + \frac{(x)^{2}}{2!} + \frac{(x)^{3}}{3!} + \dots + \frac{(x)^{(n-1)}}{(n-1)!} + \dots$$

$$F_{\text{Tw}}^{*}(s) = \sum_{-\infty}^{\infty} f(k \cdot T) \cdot \left[\frac{1}{s} - \left(\frac{1}{s} + \frac{-T_{W} \cdot s}{s} + \frac{(-T_{W} \cdot s)^{2}}{s} + \dots \right) \right] e^{-k \cdot T \cdot s}$$

$$F_{\text{Tw}}^*(s) = \sum_{-\infty}^{\infty} f(k \cdot T) \cdot T_W e^{-k \cdot T \cdot s}$$

$$f_{\text{Tw}}^{*}(t) = \sum_{-\infty}^{\infty} f(k \cdot T) \cdot T_{W} \cdot \delta(t - k \cdot t)$$

Ideal sampler
$$\underbrace{f(t)} = \sum_{-\infty}^{\infty} f(kT) \, \delta(t - kT)$$

$$T_{W} = T_{W} \sum_{-\infty}^{\infty} f(kT) \, \delta(t - kT)$$

Ver: OPPENHEIM, A. e SHAFER, R. Processamento em tempo discrete de sinais, 3a Edição, Pearson, 2013 - Capítulo 4.

Segurador/Amostrador/Retentor de Ordem Zero: ZOH

$$zoh(t) = u(t) - u(t - T)$$

$$ZOH(s) = \mathcal{L}[zoh(t)] = \frac{1}{s} - \frac{e^{-sT}}{s} = \frac{1 - e^{-Ts}}{s}$$

Sample and Hold:

Fonte: Dorf, R. Sistemas de Controle Modernos