IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

Application No.

: 10/625,934

Confirmation No.: 9470

Applicants

: Kenneth SETCHELL, et al.

Filed

: July 24, 2003

TC/A.U.

: 1626

Examiner

: Susannah CHUNG

Docket No.

: 3515-103

Customer No.

: 6449

RULE 132 DECLARATION OF RICHARD L. JACKSON

I, Richard L. Jackson, declare as follows:

- 1. I am President and CEO of Ausio Pharmaceuticals, LLC, Licensee of the subject patent application.
- 2. My education and experience, which are further detailed in the copy of my resume that is attached hereto as Exhibit A, are as follows. I received a B.S. degree in chemistry in 1963 and a Ph.D. degree in microbiology in 1967, both from the University of Illinois. In addition to my current position as President and CEO of Ausio Pharmaceuticals, LLC, I have held Senior Executive positions in various pharmaceutical companies since the mid-1980's. I also have held numerous academic positions, including fellowships, associate professorships, and full professorships. Furthermore, I have established research centers at the University of Cincinnati College of Medicine and at Baylor College of Medicine, and I have received various honors and awards over the course of my professional career. I also have authored or co-authored hundreds of publications, I am a named inventor on 10 issued patents, and I have served or currently serve on approximately two dozen National Advisory Committees and Boards of Directors.

U.S. Application No. 10/625,934 Rule 132 Declaration of Richard L. Jackson

- 3. I am familiar with the subject patent application, including the currently pending claims and the amended claims to be submitted with this Declaration. I am also familiar with the references cited in the November 2, 2007 Office Action, including that of Kelly, et al.
- I understand that the claims to be submitted with this Declaration recite various compositions relating to enantiomeric equal, particularly the S-enantiomer (S-equal).
- 5. In my capacity at Ausio Pharmaceuticals, I directed that a pharmacological screening study be undertaken to evaluate and directly compare the biological activities of R-equol, S-equol, and racemic equol in a collection of biochemical assays. Specifically, each of R-equol, S-equol, and racemic equol was screened against a broad spectrum of receptor systems using standard radioligand binding assay methods adapted from the scientific literature. The study was conducted by an outside party, with a conducted by an outside party, with Ausio specifically for the purpose of conducting the study. Attached hereto are descriptions of the study and the results obtained for each of S-Equol (AUS-131—Exhibit B), R-Equol (AUS-132—Exhibit C), and Racemic Equol (AUS-133—Exhibit D). As indicated, reference standards were run as an integral part of each assay to ensure the validity of the results obtained. Percent inhibition results of the complete, broad spectrum of assays are reported.
- 6. I have reviewed the results of the study and, in my opinion, the results contain several examples of properties unexpectedly possessed by the enantiomeric forms of equal that are not possessed by the racemic mixture. Moreover, the overall results reveal that a commonly held position, namely that only one of the two enantiomers in a known active racemic

mixture is presumed active, is not universally applicable with respect to equol. As the data reveal, in some systems, the S-enantiomer is active while the R- is not. In others, the R-enantiomer is active while the S- is not. In some systems, both enantiomers and the racemate are active, and in one particular system, discussed more fully below, both the S- and R-enantiomers are similarly active, but the racemate is inactive. It is also seen that there is variability in activity between related receptor types.

 The table below summarizes some of the more significant individual results obtained in the broad spectrum of studies, as referred to labove.

In vitro Pharmacological Screening

Target	Percent I	nhibition (s	it 10 uM)	Interpretation (re:
	S-Equol	R-Equol	Racemate	higher values)
ERα	92	93	94	Positive control
ERβ	98	94	98	Positive control
src Protein Tyrosine Kinase LCK	27	26	1	Oncology indication
Transcription Response Factor, NF-AT	5	32	19	Anti-inflammatory indication, potential MOA
G Protein-coupled Receptor 103	58	14	38	Bone sparing, satiety, CNS effects, inflammation
Monoamine Transporter	16	51	49	CNS, antidepressant
NE Transporter	57	37	50	Antidepressant
Dopamine Transporter	84	88	92	Anti-Parkinsonism

U.S. Application No. 10/625,934 Rule 132 Declaration of Richard L. Jackson

As is clear from the table, the approach of simply resolving a racemate into its separate enantiomers, determining which of the two isomers is the active form (and which is the inactive form), and consequently choosing to prepare a composition using the active form, would not appear to be effective with respect to equol. In my opinion, one could not reliably predict biological activity of the equol enantiomers when armed only with teachings concerning the racemic mixture.

- 8. The src Protein Tyrosine Kinase (LCK) data provides a clearly surprising and unexpected result. LCK is an important receptor kinase that regulates the growth of cells. When mutated, uncontrolled growth occurs. The studies here have shown that both S- and R-equol inhibit this activity approximately equally (27% and 26% respectively at 10 µM concentration). However, racemic equol, which of course contains both R- and S-equol, surprisingly does not inhibit the activity (1% inhibition at the same 10 µM concentration). This is a completely unexpected finding. Based on these results, therefore, racemic equol would likely be ineffective in inhibiting cancer growth, for example, but a composition containing the S-enantiomer, as claimed herein would surprisingly be expected to show potential benefits.
- 9. The results obtained in the study referred to herein are surprising and would not be expected to be achieved based on the teachings in the various references noted in the November 2, 2007 Office Action, particularly Kelly, et al. Specifically, one could not assume enantiomeric equal compositions would be biologically active or otherwise useful based merely on teachings concerning racemic equal.

U.S. Application No. 10/625,934 Rule 132 Declaration of Richard L. Jackson

10. I hereby declare that all statements made herein of my own knowledge are true and that all statements made on information and belief are believed to be true, and further that these statements are made with the knowledge that willful false statements and the like so made are punishable by fine or imprisonment or both, under Section 1001 of Title 18 of the United States Code and that such willful false statements may jeopardize the validity of the application or any patent issued thereon.

Signed: Kichard 22

Richard L. Jackson, Ph.D. President and CEO Ausio Pharmaceuticals, LLC

ate: Mary 10, 2008

1473958_1

CURRENT POSITION Ausio Pharmaceuticals, LLC President and CEO 1776 Mentor Ave. Cincinnati, OH 45212 513.731.0333 Richard@ausiopharma.com

A specialty pharmaceutical start-up company focused on the development of various medicines. The Company's first drug product is AUS-131 which was licensed from Cincinnati Children's Hospital and Sanitarium, an Australian health food company. The compound currently is being developed as an oral drug. A topical formulation also is being developed. The first clinical studies will begin in 0.1, 2008.

PREVIOUS POSITIONS

ENTREPRENEUR-IN-RESIDENCE, Cincinnati Children's Hospital

2003 - 2006

Provided pharmaceutical and commercial input into the Computational Medicine Center proposal; a \$28 million grant was awarded to Cincinnati Children's Hospital from the State of Ohio (Third Frontier Award).

Provided input for the Tomorrow Fund, a Third Frontier award to establish a seed fund at Children's Hospital.

Provided pharmaceutical and drug development expertise for the development of technologies from Children's Hospital. Several technologies were licensed to pharmaceutical companies. Ausio Pharmaceuticals, LLC, Bexion Pharmaceuticals, LLC and Atablos Therapeutics are companies that have been spun-out from these efforts.

EMERGEN. INC., Salt Lake City, UT

March 2002 - April 2003

President and CEO
Chairman, Board of Directors

In-licensed leuprogel from Atris Laboratories for the treatment of endometriosis. The research focus was the genetic basis of endometriosis and polycystic ovary syndrome. Identified novel targets for invasive cancers by understanding placental biology.

ATRIX LABORATORIES, INC., Fort Collins, CO

November 1, 1998 - 2002

Senior Vice President, Research and Development Reported to Mr. D.R. Bethune (CEO & Chairman) Member of Board of Directors

Member of board of Directors

Responsible for preclinical, clinical, regulatory, and quality activities for new therapies in dermatology, pain management, and oncology. Five products reached the market place.

WYETH-AYERST, the Pharma Division of American Home Products

1993 - 1998

Senior Vice President, Discovery Research
Reported to Dr. R.I. Levy (President, Wyeth-Ayerst Research)
Deceased

Responsible for the discovery of innovative, new therapies for Women's Health, Neurological Disorders, Cardiovascular and Metabolic Diseases, Infectious Diseases, Oncology and ImmunoInflammatory Diseases. Provided strateoic, scientific and administrative leadership for

the worldwide research efforts. Responsible for 1100 people with an annual internal operating budget of \$180 million plus external University and Biotech alliances of \$52 million. Seven products reached the market place.

MARION MERRELL DOW RESEARCH INSTITUTE

1985 - 1992

Senior Vice President Discovery Research

Reported to Dr. A. Sjoerdsma/Dr. W. Lovenberg (Presidents - MMD Research Institute)

Responsible for the discovery of drugs for Allergy, Pulmonary Diseases, CNS Disorders, Oncology, Cardiovascular/Metabolic Diseases and Immuno-Inflammatory Diseases. Responsibility for the US discovery operation (350 scientists) with close working relationships with Center Directors in Strasbourg, France, and Milano, Italy.

UNIVERSITY OF CINCINNATI COLLEGE OF MEDICINE

1978 - 1984

Head, Division of Lipoprotein Research

Professor, Department of Pharmacology and Cell Biophysics, Biological Chemistry and Medicine

Chemistry and Wedicine

Department Chairman: Dr. A. Schwartz

Established a research center of excellence in cardiovascular diseases.

BAYLOR COLLEGE OF MEDICINE

1971 - 1977

Associate Professor, Departments of Medicine and Cell Biology Department Chairman: Dr. A.M. Gotto, Dr. B. O'Mallev

Department Chairman: Dr. A.M. Gotto, Dr. B. O Mailey

Established a cardiovascular center for research, patient care and education.

NIH, LABORATORY CHEMICAL PATHOLOGY, NIAMD

1970 - 1971

Senior Staff Fellow

NIH, EXPERIMENTAL THERAPEUTICS, NHLBI

1969 - 1970

Junior Staff Fellow

BROOKHAVEN NATIONAL LABORATORY

1967 - 1968

Postdoctoral Fellowship

PROFESSORSHIPS

HADASSAH UNIVERSITY HOSPITAL, Jerusalem, Israel (November - December, 1974)

STATE UNIVERSITY OF UTRECHT, Utrecht, the Netherlands (January – July, 1978) Biochemical Laboratory

Diocrientical Laborator

INSTITUTO VENEZOLANO DE INVESTIGACIONES CIENTIFICAS, Caracas, Venezuela

(October, 1982)

NATIONAL CARDIOVASCULAR CENTER RESEARCH INSTITUTE, Osaka, Japan (June -

August, 1984)

ROCKEFELLER UNIVERSITY, New York (January – July, 1985)

HONORS/	
AWARDS	

1969	American Cancer Society Postdoctoral Fellowship
1972	American Heart Association Established Investigator
1974	American Heart Association Lewis Katz Award
1981	The 1000 Contemporary Scientist Most Cited 1965 – 1978
1984	Naito Foundation Award - National Cardiovascular Research Institute,
	Osaka, Japan

NATIONAL ADVISORY COMMITTEES/ BOARD OF DIRECTORS

1979 - 1983	NIH Metabolism Study Section
1977 – 1981	American Heart Association Pathology Research Review
1981	American Heart Association Fathology Research Review American Heart Association Katz Award Committee
1980 – 1982	
	American Heart Association Program Committee
1982 – 1988	Editorial Board, Journal of Lipid Research
1988 – 1992	Associate Editor, Journal of Lipid Research
1990 – 1992	American Heart Association, Executive Committee at Large
1991 – 1992	University of Cincinnati Cardiovascular Center, Advisory Board
1992 – 1997	Editorial Board, Current Drugs in Research
1992 – 1995	Arthritis Foundation, Scientific Advisory Board
1994 – 1998	American Heart Association, Long-Term Planning Committee
1995 - 1998	Rider University, Scientific Advisory Board
1996 - 1998	Immunex Corporation, Member Board of Directors
1997 - 2000	Princeton University, Chemistry Department Advisory Board
1998 - 2000	ZymoGenetics, Scientific Advisory Board
1999 - 2002	Atrix Laboratories, Member Board of Directors
2001 - 2007	Inflazyme, Member Board of Directors
2002 - 2003	EmerGen, Inc., Member Board of Directors
	Oncothyreon (Biomira), Member Board of Directors
2003 - 2005	MDS Capital, Scientific Advisory Board
2005	AB Biopharma, Member Board of Directors
	Bexion Pharmaceuticals, Chairman, Board of Directors
	Viron Therapeutics, Chairman, Board of Directors
	Leukemia and Lymphoma Society, Member Board for Translational Research
200. 1100011	Total and Tyriphonia Desiry, member board for Translational Nobel of

PUBLICATIONS

274 Reviewed Articles

Over 500 Abstracts and Presentations

PATENTS

10 Issued Patents

SpectrumScreen Data Report Ausio Pharmaceuticals LLC

Study Completed: August 27, 2007 Report Printed: August 27, 2007

MDSPS PT#: 1094967

Alt. Code 1: Batch: A313-10-5

Alt. Code 2: Alt. Code 3:

Sample(s): AUS-131

M.W.: 242.27

Objectives:

To evaluate, in SpectrumScreen, the activity of test compound AUS-131 (PT# 1094967).

MDS

Pharma Services

PT#: 1094967 CODE: AUS-131 August 27, 2007 2:08 PM Page 2 of 72

MDS Pharma Services Pharmacology Data Report On Compound AUS-131 For Ausio Pharmaceuticals LLC

Work Order Number:

1-1028406-1

Services Being Reported: SpectrumScreen

Alternative Work Order No: Purchase Order Number:

Total # of Assays: 159

Compound Information:

Compound Code: AUS-131

Alternative Code 1: Batch: A313-10-5

Alternative Code 2:

Alternative Code 3:

MDSPS Internal #: 1094967 Molecular Weight: 242.27

Sponsor:

Ausio Pharmaceuticals LLC 1776 Mentor Avenue

Suite 340

Cincinnati, OH 45212

MDS Pharma Services - Taiwan Ltd.

Pharmacology Laboratories

158 Li-Teh Road, Peltou

Taipei, Taiwan 112

Date of Study:

Undertaken at:

August 13, 2007 - August 27, 2007

Study Directors:

Kun-Yuan Lin, MDS Pharma Services - Taiwan Ltd. Kuo-Hsin Chen, MDS Pharma Services - Talwan Ltd.

Distribution: Ausio Pharmaceuticals LLC

"This study was conducted according to the procedures described in this report. All data presented are authentic, accurate and correct to the best of our knowledge."

Kun-Yuan Lin

Study Director for Animal Assays

Kuo-Hsin Chen

Study Director for Biochemical Assays

At 75 Chin

Jiam - Wu Wei

Kum-Yuan Lin

Jiann-Wu Wei, Ph.D

Peter Chiu, Ph.D

Quality Control and Data Reviewer

TABLE OF CONTENTS

REPORT SECTION	PAGE
Summary	4
Summary of Significant Results	5
Experimental Results	6
Methods	13
Reference Compound Data	53
Literature References	59

August 27, 2007 2:08 PM Page 4 of 72

SUMMARY

STUDY OBJECTIVE

To evaluate, in Radioligand Binding assays, the activity of compound AUS-131 (PT# 1094967).

METHODS

Methods employed in this study have been adapted from the scientific literature to maximize reliability and reproducibility. Reference standards were run as an integral part of each assay to ensure the validity of the results obtained. Assays were performed under conditions described in the accompanying "Methods" section of this report. The literature Reference(s) for each assay are in the "Literature References" section. If either of these sections were not originally requested with the accompanying report, please contact us at the number below for a printout of either of these reports sections.

Where presented, ICs_p values were determined by a non-linear, least squares regression analysis using Data Analysis 100box⁷⁴ (MDL Information Systems, San Leanfor, CA, USA). Where inhibition constants (K) are presented, the K, values were calculated using the equation of Cheng and Prusoff (Cheng, Y, Prusoff, W.H., Blochem. Pharmacol. 23:5099–3108, 1973) using the observed ICs_p of the tested compound, the concentration of radioligand employed in the assay, and the historical values for the K_p of the ligand (obtained experimentally at MDS Pharma Sarvicas). Where presented, we Hill coefficient so grainfeantly different than 1.0, may suggest that the binding displacement does not follow the laws of mass action with a single binding site. Where ICs_p K_p and/or n_k data are presented without Standard Error of the Mean (SEM), data are insufficient to be quantitative, and the values presented (K, ICs_p, M_p) should be interpreted with caution.

RESULTS

A summary of results meeting the significance criteria is presented in the following sections. Complete results are presented under the section labeled "Experimental Results". Individual responses, if requested, are presented in the appendix to this report.

SUMMARY/CONCLUSION

Significant results are displayed in the following table(s) in rank order of potency for estimated IC50 and/or K, values.

SUMMARY OF SIGNIFICANT PRIMARY RESULTS

Biochemical assay results are presented as the percent inhibition of specific binding or activity throughout the report. All other results are expressed in terms of that assay's quantitation method (see Methods section).

- · For primary assays, only the lowest concentration with a significant response judged by the assays' criteria, is shown in this summary.
- · Where applicable, either the secondary assay results with the lowest dose/concentration meeting the significance criteria or, if inactive, the highest dose/concentration that did not meet the significance criteria is shown.
- Unless otherwise requested, primary screening in duplicate with quantitative data (e.g., IC50± SEM, Ki± SEM and nH) are shown where applicable for individual requested assays. In screening packages, primary screening in duplicate with semi-quantitative data (e.g., estimated IC50, Ki and nH) are shown where applicable (concentration range of 4 log units); available secondary functional assays are carried out (30 uM) and MEC or MIC determined only if active in primary assays >50% at 1 log unit below Initial test concentration.
- · Please see Experimental Results section for details of all responses.

Significant responses (> 50% inhibition or stimulation for Biochemical assays) were noted in the primary assays listed

	PRIMARY TESTS												
CAT.#	PRIMARY BIOCHEMICAL ASSAY	SPECIES	CONC.	% INH.	IC ₅₀ *	K,	n _H						
204410	Transporter, Norepinephrine (NET)	hum	10 µM	57									
220320	Transporter, Dopamine (DAT)	hum	10 µM	84									
226010	Estrogen ERa	hum	10 µM	92									
226050	Estrogen ERB	hum	10 µM	98									
226300	G Protein-Coupled Receptor GPR103	hum	10 µM	58									

gp=guinea pig; ham=hamster; hum=human

[‡] Partially soluble in *in vitro* test solvent.
*A standard error of the mean is presented where results are based on multiple, independent determinations.

PT#: 1094967 CODE: AUS-131

Cat.#	TARGET	BATCH*	SPP.	n=	CONC.		†% INE	HIBITION	IC ₅₀	K,	n _H	1
						%	-100 -50 ↓ ↓	0 90 100 ↓ ↓ ↓	ď			
200510	Adenosine A ₁	203049	hum	2	10 µM	-6		ı				
200610	Adenosine A _{2A}	203053	hum	2	10 µM	22						
200720	Adenosine A ₃	203104	hum	2	10 µM	9	1	1				
203100	Adrenergic α _{1A}	203043	rat	2	10 µM	0			İ			
203200	Adrenergic α ₁₈	203044	rat	2	10 µM	6		1				
203400	Adrenergic α ₁₀	203045	hum	2	10 µM	14		1	1			
203620	Adrenergic α _{2A}	203046	hum	2	10 µM	-3		1	1			
203800	Adrenergic α _{2C}	203048	hum	2	10 µM	-2		1				
204010	Adrenergic β ₁	203050	hum	2	10 µM	-2		1				
204110	Adrenergic β ₁	203051	hum	2	10 µM	6		ı	1			
204200	Adrenergic β ₃	203052	hum	2	10 µM	-3	l	ıl				
204460	Adrenomedullin AM ₁	203460	hum	2	10 µM	0		1	l			
204470	Adrenomedullin AM ₂	203461	hum	2	10 µM	9		1				
204600	Aldosterone	203107	rat	2	10 µM	9		1				
205000	Anaphylatoxin C5a	203237	hum	2	10 µM	1		h	1			
285010	Androgen (Testosterone) AR	203102	rat	2	10 µM	5		ı	l			
210020	Angiotensin AT ₁	203406	hum	2	10 µM	8		1				
210110	Angiotensin AT ₂	203095	hum	2	10 µM	3		1				
210700	APJ	203462	hum	2	10 µM	12		B.				
211000	Atrial Natriuretic Factor (ANF)	203189	gp	2	10 µM	-3		ıl				
211600	Bombesin BB1	203463	hum	2	10 µM	9		1				
211700	Bombesin BB2	203464	hum	2	10 µM	1		1				
211600	Bombesin BB3	203465	hum	2	10 µM	-7	1	ı	l			
212510	Bradykinin B ₁	203086	hum	2	10 µM	8		1				
212610	Bradykinin B ₂	203087	hum	2	10 μм	9		1	1			
213610	Calcitonin	203238	hum	2	10 µM	1		l	l			
214010	Calcitonin Gene-Related Peptide CGRP ₁	203239	hum	2	10 µМ	-13	ı					
14510	Calcium Channel L-Type, Benzothiazepine	203056	rat	2	10 µM	-В	ı					
214600	Calcium Channel L-Type, Dihydropyridine	203057	rat	2	10 µM	5		ı				
15000	Calcium Channel L-Type, Phenylalkylamine	203058	rat	2	10 µM	34		**				

^{*} Batch: Represents compounds tested concurrently in the same assay(s). ‡ Partially soluble in in vitro test solvent.

[.] Denotes item meeting criteria for significance

[†] Results with ≥ 50% stimulation or inhibition are highlighted. (Negative values correspond to stimulation of binding or enzyme activity) R=Additional Comments

Cat.#	TARGET	BATCH*	SPP.	n=	CONC.		†% IN	HIBITIO	N ICso	Kı	n _H	R
-		-				%	-100 -50 ↓ ↓	0 50 10 ↓ ↓ ↓	10			
216000	Calcium Channel N-Type	203176	rat	2	10 µM	0						
217020	Cannabinoid CB ₁	203177	hum	2	10 µM	9		2				
217100	Cannabinoid C8 ₂	203178	hum	2	10 µM	-9	l	ř.	1			
244600	Chemokine CX3CR1	203471	hum	2	10 µM	5		li .	1			
218010	Cholecystokinin CCK ₁ (CCK _n)	203408	hum	2	10 µM	13		5	1			
218120	Cholecystokinin CCK₂ (CCK₂)	203466	hum	2	10 µM	8		1	1			
219100	Colchicine	203000	rat	2	10 µM	15		B				
219150	Corticotropin Releasing Factor CRF,	203409	hum	2	10 µM	-2		i				
219500	Dopamine D ₁	202962	hum	2	10 µM	6		į.	i			
219700	Dopamine D ₂₅	202964	hum	2	10 µM	-1		1	1			
219800	Dopamine D ₃	202965	hum	2	10 µM	3		ı				
219900	Dopamine D ₄₂	202966	hum	2	10 µM	19		12	1			
220200	Dopamine D _s	202969	hum	2	10 µM	5		1	1			
224010	Endothelin ETA	203091	hum	2	10 µM	-5		1				
224110	Endothelin ET ₈	203092	hum	2	10 µM	12		i i	1			
225510	Epidermal Growth Factor (EGF)	203167	hum	2	10 µM	3		lı .				
225800	Erythropoletin EPOR	203467	hum	2	10 µM	6		1				
226010	Estrogen ERa	202976	hum	2	10 µM	92		34	1			
226050	Estrogen ERB	202977	hum	2	10 µM	98		321				
226300	G Protein-Coupled Receptor GPR103	202993	hum	2	10 µM	58		18:1				
226230	G Protein-Coupled Receptor GPR8	203470	hum	2	10 µM	-4		1				
226810	GABA _A , Chloride Channel, T8OB	203101	rat	2	10 µM	0						
226600	GABA, Flunitrazepam, Central	203061	rat	2	10 µM	12		3	ł			
226500	GA8A, Muscimol, Central	203060	rat	2	10 µM	-4		I	1			
228610	GABA _{81A}	203158	hum	2	10 µM	-20	1	i	1			
228710	GABA _{B18}	203159	hum	2	10 µM	-6		ı				
230000	Gabapentin	203001	rat	2	10 µM	0		1				
231510	Galanin GAL1	203165	hum	2	10 µM	-1		4				
231600	Galanin GAL2	203166	hum	2	10 µM	-4		ı				
232600	Glutamate, AMPA	203157	rat	2	10 µM	-19	1	ı				

^{*} Batch: Represents compounds tested concurrently in the same assay(s). ‡ Partially soluble in in vitro test solvent.

PT#:

CODE:

Denotes item meeting criteria for significance

[†] Results with ≥ 50% stimulation or inhibition are highlighted. (Negative values correspond to <u>stimulation</u> of binding or enzyme activity) R=Additional Comments

gp=guinea pig; ham=hamster; hum=human

Cat.#	TARGET	BATCH	SPP.	ne	CONC.		†% INF	BIBITION	IC _{so}	K _j	n _H	F
						_%	-100 -50 ↓ ↓	0 90 100 ↓ ↓ ↓				
232700	Glutamate, Kainate	203063			***		1	į, ·				
232700 232810			rat	2	10 µM	10	1	.]*	l			
232910	Glutamate, NMDA, Agonism	203064	rat	2	10 µM	1 -1		1	1			
	Glutamate, NMDA, Glycine	203065	rat	2	10 µM	°	Ι.		1			
233000	Glutamate, NMDA, Phencyclidine	203066	rat	2	10 µM	*						
234000	Glutamate, NMDA, Polyamine	203067	rat	2	10 µM	-5		I				
239000	Glycine, Strychnine-Sensitive	203068	rat	2	10 µM	3		ji .				
239300	Growth Hormone Secretagogue (GHS, Ghrelin)	203243	hum	2	10 µM	6		ļi .				
239610	Histamine H ₁	202970	hum	2	10 µM	8		1				
239710	Histamine H ₂	203069	hum	2	10 µM	8		1				
239810	Histamine H ₃	202972	hum	2	10 µM	-9	1					
239900	Histamine H ₄	202973	hum	2	10 µM	-4	1	ıl				
241000	Imidazoline I ₂ , Central	202974	rat	2	10 µM	-9	1	ı				
42500	Inositol Trisphosphate IP3	203244	rat	2	10 µM	10		1				
243000	Insulin	203208	rat	2	10 µM	-3		1				
250400	Leptin	203317	mouse	2	10 µM	-9	1					
250510	Leukotriene, BLT (LTB ₄)	204039	hum	2	10 µM	9		ı				
250460	Leukotriene, Cysteinyl CysLT,	203089	hum	2	10 µM	-1		1				
250480	Leukotriene, Cysteinyl CysLT ₂	203090	hum	2	10 µM	-21		1				
251100	Melanocortin MC ₁	203411	hum	2	10 µM	6		1				
251300	Melanocortin MC ₃	203412	hum	2	10 µM	-3	1					
251350	Melanocortin MC ₄	203413	hum	2	10 µM	- 1		ě				
251400	Melanocortin MCs	203414	hum	2	10 µM	18		3				
251600	Melatonin MT ₁	203140	hum	2	10 µM	5		1				
51700	Melatonin MT ₂	203142	hum	2	10 µM	41						
52200	Motilin	203472	hum	2	10 µM	8		1				
52610	Muscarinic M ₁	202957	hum	2	10 µM	-3	- 1					
52710	Muscarinic M ₂	202958	hum	2	10 µM	0						
52810	Muscarinic M ₃	202959	hum	2	10 µM	- 1						
52910	Muscarinic M ₄	202960	hum	2	10 μМ	0						
53010	Muscarinic Ms	202961	hum	2	10 µM	-1	1					
26100	N-Formyl Peptide Receptor FPR1	203240	hum	2	10 µM	-5	ı					
					,							

^{*} Batch: Represents compounds tested concurrently in the same assay(s). ‡ Partially soluble in in vitro test solvent.

[·] Denotes Item meeting criteria for significance

[†] Results with ≥ 50% stimulation or inhibition are highlighted. (Negative values correspond to stimulation of binding or enzyme activity) R-Additional Comments

Cat.#	TARGET	BATCH*	SPP.	n=	CONC.	1	†% II	NHI	BIT	ION	IC _{s0}	1	Ç,	n_H	H
						96	-100 -s			100					
226200	N-Formyl Peptide Receptor- Like FPRL1	203241	hum	2	10 µM	-10		E							
256100	Neuromedin U NMU ₁	203473	hum	2	10 µM	2			ı						
256200	Neuromedin U NMU ₂	203474	hum	2	10 µM	5		- 1	l						
257010	Neuropeptide Y Y ₁	203093	hum	2	10 µM	-10									
257110	Neuropeptide Y Y ₂	203094	hum	2	10 µM	4		- 1	l						
258010	Neurotensin NT ₁	203318	hum	2	10 µM	-3		- 1							
258590	Nicotinic Acetylcholine	202989	hum	2	10 µM	-1		- 1							
258700	Nicotinic Acetylcholine α1, Bungarotoxin	202991	hum	2	10 μМ	10									
258630	Nicotinic Acetylcholine α7, Bungarotoxin	202990	rat	2	10 μΜ	-5		1							
260110	Opiate δ (OP1, DOP)	203070	hum	2	10 µM	6		ı	1						
260210	Opiate K (OP2, KOP)	203072	hum	2	10 µM	12			2						
260410	Opiate µ (OP3, MOP)	203074	hum	2	10 µM	-5		ij							
260600	Orphanin ORL;	203476	hum	2	10 µM	2			l						
264500	Phorbol Ester	203076	mouse	2	10 µM	1									
265010	Platelet Activating Factor (PAF)	203007	hum	2	10 µM	6		- 1	i						
265200	Platelet-Derived Growth Factor (PDGF)	202979	mouse	2	10 µM	9			1						
265500	Potassium Channel [K ₄]	203079	rat	2	10 µM	3			l						
265600	Potassium Channel [KATP]	203078	ham	2	10 µM	9			Ē						
265800	Potassium Channel [SK _{CA}]	203002	rat	2	10 µM	4		- 1	1						
265900	Potassium Channel HERG	202994	hum	2	10 µM	9			1						
268020	Progesterone PR-B	202992	hum	2	10 µM	15		- 1	3						
268030	Prostanoid CRTH2	203352	hum	2	10 µM	16									
268050	Prostanoid DP	202995	hum	2	10 µM	30	l		ķ.,,						
268200	Prostanoid EP ₂	202996	hum	2	10 µM	17		- 1							
268410	Prostanoid EP ₄	202997	hum	2	10 µM	5	l		1						
285510	Prostanoid, Thromboxane A ₂ (TP)	203004	hum	2	10 µM	4			ľ						
268700	Purinergic P _{zx}	202982	rabbit	2	10 µM	-12		1							
268810	Purinergic P _{2Y}	202983	rat	2	10 µM	5		- 1	I						
269500	Retinoid X Receptor RXRα	203477	hum	2	Mų 01	0		- [

^{*} Batch: Represents compounds tested concurrently in the same assay(s). ‡ Partially soluble in in vitro test solvent.

Denotes item meeting criteria for significance

[†] Results with ≥ 50% stimulation or inhibition are highlighted. (Negative values correspond to stimulation of binding or enzyme activity) R=Additional Comments

gp=guinea pig; ham=hamster; hum=human

Cat.#	TARGET	BATCH	* SPP.	n≃	CONC.		†% INH	IBITIO	N ICso	K _i	n _H	F
						96	-100 -50 ↓ ↓	0 50 H				
270000	Rolipram	203130	rat	2	10 µM	6	ľ					
270300	Ryanodine RyR3	203478	rat	2	10 µM Mu 01	7		1	1			
271110	Serotonin (S- Hydroxytryptamine) S-HT _{IA}	203108	hum	2	10 µM	-5	- 1	ľ				
271200	Serotonin (S- Hydroxytryptamine) S-HT ₁₈	203109	rat	2	10 µM	22		3				
271700	Serotonin (S- Hydroxytryptamine) S-HT ₂₈	203251	hum	2	10 µM	17						
271800	Serotonin (S- Hydroxytryptamine) 5-HT _K	203273	hum	2	10 µM	15		4				
271910	Serotonin (S- Hydroxytryptamine) S-HT ₃	203164	hum	2	10 µM	-11	•					
272000	Serotonin (S- Hydroxytryptamine) S-HT ₄	203174	gp	2	10 µM	4		ľ				
72100	Serotonin (S- Hydroxytryptamine) 5-HT _{SA}	203003	hum	2	10 µM	9		1				
72200	Serotonin (S- Hydroxytryptamine) S-HT ₆	203254	hum	2	10 µM	11		3 .				
278110	Sigma σ ₁	203082	hum	2	10 µM	16		9	1			
278200	Sigma σ₂	203083	rat	2	10 µM	15		1				
279510	Sodium Channel, Site 2	203084	rat	2	10 µM	2		ı	1			
282510	Somatostatin sst1	203181	hum	2	10 µM	14		3	1			
282700	Somatostatin sst2	203182	hum	2	10 µM	3		ı	1			
82530	Somatostatin sst3	203183	hum	2	10 µM	-1	1		1			
282900	Somatostatin sst4	203184	hum	2	10 µM	8		ii ii	1			
283000	Somatostatin sst5	203185	hum	2	10 µM	-5	ı		ł			
55510	Tachykinin NK,	203160	hum	2	10 µM	-2	1		1			
55600	Tachykinin NK₂	203161	hum	2	10 µM	25		22	1			
55710	Tachykinin NK ₃	203162	hum	2	10 µM	-5	ı					
85900	Thyroid Hormone	203171	rat	2	10 µM	-7	i		1			
86000	Thyrotropin Releasing Hormone (TRH)	203259	rat	2	10 µM	6		l	ŀ			
86200	Transforming Growth Factor- β (TGF- β)	202980	mouse	2	10 µM	11		1				
02000	Transporter, Adenosine	203088	gp	2	10 µM	6		ļ				
19000	Transporter, Choline	203105	rat	2	10 µM	10		1	1			

^{*} Batch: Represents compounds tested concurrently in the same assay(s). ‡ Partially soluble in in vitro test solvent.

[.] Denotes item meeting criteria for significance

[†] Results with ≥ 50% stimulation or inhibition are highlighted. (Negative values correspond to stimulation of binding or enzyme activity) R=Additional Comments

gp=guinea pig; ham=hamster; hum=human

PT#: 1094967 CODE: AUS-131 August 27, 2007 2:11 PM Page 11 of 72

Cat.#	TARGET	ватсн*	SPP.	n=	CONC.		†% INHIBITION	IC ₅₀	K,	n _H	R
	X *				-	%	-100 -50 0 50 100 ↓ ↓ ↓ ↓ ↓				>-1
+ 220320	Transporter, Dopamine (DAT)	203188	hum	2.	10 µM	. 84	***				
226400	Transporter, GABA	203059	rat	2	10 µM	5	1				
252010	Transporter, Monoamine	203179	rabbit	2	10 µM	16	1				
204410	Transporter, Norepinephrine (NET)	203581	hum	2	10 µM	57	200				
274030	Transporter, Serotonin (5- Hydroxytryptamine) (SERT)	203055	hum	2	10 µM	11	3				
286700	Urotensin II	203234	hum	2	10 µM	-14					
286810	Vanilloid	203133	rat	2	10 µM	-6	1				
286900	Vascular Endothelial Growth Factor (VEGF)	203598	hum	2	10 µM	26	35				
287010	Vasoactive Intestinal Peptide VIP ₁	203260	hum	2	10 µM	٥					
287520	Vasopressin V _{1A}	203097	hum	2	10 µM	2	lı l				
287560	Vasopressin V ₁₈	203098	hum	2	10 µM	-1	d				
287610	Vasopressin V ₂	203099	hum	2	10 µM	-20	E				
288000	Vitamin D ₃	203096	hum	2	10 µM	-8	1				

^{*} Batch: Represents compounds tested concurrently in the same assay(s). ‡ Partially soluble in in vitro test solvent.

Denotes here meeting orderia for significance

T Results with z 50% stimulation or inhibition are highlighted. (Negative values correspond to <u>stimulation</u> of binding or enzyme activity)

R-Additional Comments

PT#: 1094967 August 27, 2007 2:11 PM CODE: AUS-131 Page 12 of 72

EXPERIMENTAL RESULTS - BIOCHEMICAL ASSAYS

MIS has an oxclusive, workwise limited use license from Synaptic Pharmacoutical Cooperation to porform these assays: Advancept's Adhas 1.D, Admangic Aphra 28, and Dopartino E for setally and selectivity prolifies, MIS* Elenses excludes performing flose assays in connection with drug discovery or development activities where the principal therapeutic mechanism of action of the lest compound involves selective Minding to a licenses for explicit.

SpectrumScreen Data Report Ausio Pharmaceuticals LLC

Study Completed: August 27, 2007 Report Printed: August 27, 2007

MDSPS PT#: 1094968

Alt. Code 1: Batch: A313-84-1

Alt. Code 2: Alt. Code 3:

Sample(s): AUS-132

M.W.: 242.27

Objectives:

To evaluate, in SpectrumScreen, the activity of test compound AUS-132 (PT# 1094968).

PT#: 1004968 CODE: AUS-132 August 27, 2007 2:08 PM Page 2 of 72

MDS Pharma Services Pharmacology Data Report On Compound AUS-132 For Ausio Pharmaceuticals LLC

Work Order Number: Alternative Work Order No:

1-1028406-1

Services Being Reported: SpectrumScreen

Total # of Assays: 159

Purchase Order Number: Compound Information:

Compound Code:

AUS-132 Alternative Code 1: Batch: A313-84-1

Alternative Code 2: Alternative Code 3:

MDSPS Internal #: 1094968 Moiecular Welght: 242.27

Sponsor:

Ausio Pharmaceuticals LLC 1776 Mentor Avenue

Suite 340 Cincinnati, OH 45212

Undertaken at:

MDS Pharma Services - Taiwan Ltd. Pharmacology Laboratories 158 Li-Teh Road, Peitou Talpel, Talwan 112

Talwan

Date of Study:

August 13, 2007 - August 27, 2007 Ausio Pharmaceuticals LLC

Study Directors:

Kun-Yuan Lin, MDS Pharma Services - Taiwan Ltd. Kuo-Hsin Chen, MDS Pharma Services - Talwan Ltd.

Distribution:

"This study was conducted according to the procedures described in this report. All data presented are authentic, accurate and correct to the best of our knowledge."

Krem-Yuan Lin

Kun-Yuan Lin

Study Director for Animal Assays

Kun-die ch Kuo-Hsin Chen

Study Director for Biochemical Assays

ft 75. Chin

Jiam - Wei Wei

Jiann-Wu Wei, Ph.D Quality Control and Data Reviewer Peter Chiu, Ph.D Technical Director

August 27, 2007 2:08 PM Page 3 of 72

TABLE OF CONTENTS

REPORT SECTION	PAGE	:
Summary	4	
Summary of Significant Results	5	
Experimental Results	6	
Methods	13	
Reference Compound Data	53	
Literature References	59	

SUMMARY

STUDY OBJECTIVE

To evaluate, in Radioligand Binding assays, the activity of compound AUS-132 (PT# 1094968).

METHODS

Methods employed in this study have been adapted from the scientific literature to maximize reliability and reproducibility. Reference standards were run as an integral part of each assay to ensure the validity of the results obtained. Assays were performed under conditions described in the accompanying "Methods" section of this report. The literature reference(s) for each assay are in the "Literature References" section. If either of these sections were not originally requested with the accompanying report, please contact us at the number below for a printout of either of these report sections.

Where presented, I.C.₂ values were determined by a non-linear, least squares regression analysis using Data Analysis Toolbox¹⁰⁰ (MDL Information Systems, San Leandro, CA, USA). Where inhibition constants (Kb) are presented, the Ky values were calculated using the equation of Cheng and Prusoff (Cheng, Y., Prusoff, W.H., Blochem. Pharmacol. 22:3099-3108, 1973) using the observed IC.₈₀ of the tested compound, the concentration of radioligand employed in the assay, and the historical values for the K₉ of the ligand (obtained experimentally at MDS Pharma Services). Where presented, the Hill coefficient (n.), defining the slope of the competitive binding curve, was calculated using Data Analysis Toolbox¹⁰⁰. Hill coefficients significantly different than 1.0, may suggest that the binding displacement does not follow the laws of mass action with a single binding site. Where IC.₂₅, K₁₀, and/or n₁₀ data are presented without Standard Error of the Mean GEM), data are insufficient to be quantitative, and the values presented (K, IC.₂₀, m.) should be interpreted with caution.

RESULTS

A summary of results meeting the significance criteria is presented in the following sections. Complete results are presented under the section labeled "Experimental Results". Individual responses, if requested, are presented in the appendix to this report.

SUMMARY/CONCLUSION

Significant results are displayed in the following table(s) in rank order of potency for estimated IC_{50} and/or K_1 values.

1094968 August 27, 2007 2:09 PM CODE: Page 5 of 72 AUS-132

SUMMARY OF SIGNIFICANT PRIMARY RESULTS

Biochemical assay results are presented as the percent inhibition of specific binding or activity throughout the report. All other results are expressed in terms of that assay's quantitation method (see Methods section).

- For primary assays, only the lowest concentration with a significant response judged by the assays' criteria, is shown in this summary.
- Where applicable, either the secondary assay results with the lowest dose/concentration meeting the significance criteria or, if inactive, the highest dose/concentration that did not meet the significance criteria is shown.
- Unless otherwise requested, primary screening in duplicate with quantitative data (e.g., IC50± SEM, Ki ± SEM and nH) are shown where applicable for individual requested assays. In screening packages, primary screening in duplicate with semi-quantitative data (e.g., estimated IC50, KI and nH) are shown where applicable (concentration range of 4 log units); available secondary functional assays are carried out (30 µM) and MEC or MIC determined only if active in primary assays >50% at 1 log unit below initial test concentration.
- · Please see Experimental Results section for details of all responses.

Significant responses (≥ 50% inhibition or stimulation for Biochemical assays) were noted in the primary assays listed helow.

		PRIMARY TESTS										
CAT.#	PRIMARY BIOCHEMICAL ASSAY	SPECIES	CONC. % INH.	IC ₅₀ *	K _i	n _H						
220320	Transporter, Dopamine (DAT)	hum	10 µM 88									
226010	Estrogen ERa	hum	10 µM 93									
226050	Estrogen ERB	hum	10 µM 94									
252010	Transporter, Monoamine	rabbit	10 µM 51									

[‡] Partially soluble in in vitro test solvent.

* A standard error of the mean is presented where results are based on multiple, independent determinations. gp=guinea pig; ham=hamster; hum=human

Cat.#	TARGET	BATCH*	SPP.	n=	CONC,	1	†% INHIBITION	IC ₅₀	K ₁	n _H	R
tja		-				%	-100 -50 0 50 100 ↓ ↓ ↓ ↓ ↓		4,1 15		
200510	Adenosine A	203049	hum	2	10 µM	-4					
200610	Adenosine A _{2A}	203053	hum	2	10 µM	33	53				
200720	Adenosine A ₃	203104	hum	2	10 µM	10	1				
203100	Adrenergic α _{1A}	203043	rat	2	10 µM	13	1				
203200	Adrenergic α_{18}	203044	rat	2	10 µM	5					
203400	Adrenergic α ₁₀	203045	hum	2	10 µM	8	1				
203620	Adrenergic α _{2A}	203046	hum	2	10 µM	5	l li				
203800	Adrenergic α _{2c}	203048	hum	2	10 µM	3	1 1				
204010	Adrenergic β ₁	203050	hum	2	10 µM	15					
204110	Adrenergic β ₂	203051	hum	2	10 µM	20					
204200	Adrenergic β ₃	203052	hum	2	10 µM	-1					
204460	Adrenomedullin AM;	203460	hum	2	10 µM	-11					
204470	Adrenomedullin AM ₂	203461	hum	2	10 µM	10	1				
204600	Aldosterone	203107	rat	2	10 µM	11	1				
205000	Anaphylatoxin C5a	203237	hum	2	10 µM	4					
285010	Androgen (Testosterone) AR	203102	rat	2	10 µM	4					
210020	Angiotensin AT ₁	203406	hum	2	10 µM	2					
210110	Angiotensin AT ₂	203095	hum	2	10 µM	4	1				
210700	APJ	203462	hum	2	10 µM	21					
211000	Atrial Natriuretic Factor (ANF)	203189	gp	2	10 µM	7	1				
211600	Bombesin BB1	203463	hum	2	10 µM	3	1				
211700	Bombesin BB2	203464	hum	2	10 µM	-3	4				
211800	Bombesin BB3	203465	hum	2	10 µM	-2					
212510	Bradykinin B _t	203086	hum	2	10 µM	5	1				
212610	Bradykinin B ₂	203087	hum	2	10 µM	3	l li				
213610	Calcitonin	203238	hum	2	10 µM	-4	1				
214010	Calcitonin Gene-Related Peptide CGRP ₁	203239	hum	2	10 µM	15	2				
214510	Calcium Channel L-Type, Benzothiazepine	203056	rat	2	10 μΜ	27	3				
214600	Calcium Channel L-Type, Dihydropyridine	203057	rat	2	10 µM	-8	1				
215000	Calcium Channel L-Type, Phenylalkylamine	203058	rat	2	10 µM	28	2				

^{*} Batch: Represents compounds tested concurrently in the same assay(s). ‡ Partially soluble in in vitro test solvent.

PT#: 1094968 CODE: AUS-132

⁺ Denotes item meeting criteria for significance

[†] Results with ≥ 50% stimulation or inhibition are highlighted. (Negative values correspond to <u>stimulation</u> of binding or enzyme activity) R=Additional Comments

gp=guinea pig; ham=hamster; hum=human

Cat.#	TARGET	BATCH*	SPP.	n=	CONC.	l	†% INI	IBITION	IC ₅₀	K ₁	n _H	R
	A				*	%		\$ 50 100 \$\dagger\$ \$\dagger\$\$				
216000	Calcium Channel N-Type	203176	rat	2	10 pM	0						
217020	Cannabinoid CB ₁	203177	hum	2	10 µM	14		3				
217100	Cannabinoid CB ₂	203178	hum	2	10 µM	-3		1				
244600	Chemokine CX3CR1	203471	hum	2	10 µM	24		2				
218010	Cholecystokinin CCK ₁ (CCK ₄)	203408	hum	2	10 µM	21		1				
218120	Cholecystokinin CCK ₂ (CCK ₈)	203466	hum	2	10 µM	-3		1 1				
219100	Colchicine	203000	rat	2	10 µM	-15	1					
219150	Corticotropin Releasing Factor CRF ₁	203409	hum	2	10 µM	-5		•				
219500	Dopamine D ₁	202962	hum	2	10 µM	8	1	1				
219700	Dopamine D ₂₅	202964	hum	2	10 µM	3	ŀ	1				
219800	Dopamine D ₃	202965	hum	2	10 µM	3	1	1 1				
219900	Dopamine D ₄₂	202966	hum	2	10 µM	7		1				
220200	Dopamine D _s	202969	hum	2	10 µM	3		1				
224010	Endothelin ETA	203091	hum	2	10 µM	-14	1					
224110	Endothelin ET _E	203092	hum	2	10 µM	14		8				
225510	Epidermal Growth Factor (EGF)	203167	hum	2	10 µM	4		I				
225800	Erythropoietin EPOR	203467	hum	2	10 µM	9		1				
226010	Estrogen ERa	202976	hum	2	10 µM	93		(6)				
226050	Estrogen ERB	202977	hum	2	10 µM	94		12/1				
226300	G Protein-Coupled Receptor GPR103	202993	hum	2	10 µM	14		I				
226230	G Protein-Coupled Receptor GPR8	203470	hum	2	10 μM	0						
228810	GABA, Chloride Channel, TBOB	203101	rat	2	10 µM	-1		4				
226600	GABA, Flunitrazepam, Central	203061	rat	2	10 µM	. 2		p				
226500	GABA _A , Muscimol, Central	203060	rat	2	10 µM	-8	1					
228610	GABA _{MA}	203158	hum	2	10 µM	-5						
228710	GABA ₆₁₈	203159	hum	2	10 µM	2		1				
230000	Gabapentin	203001	rat	2	10 µM	-12	1	1				
231510	Galanin GALI	203165	hum	2	10 µM	-1		1				
231600	Galanin GAL2	203166	hum	2	10 µM	-6		()				
232600	Glutamate, AMPA	203157	rat	2	10 µM	1		h l				

^{*} Batch: Represents compounds tested concurrently in the same assay(s). ‡ Partially soluble in in vitro test solvent.

Denotes item meeting criteria for significance

[†] Results with ≥ 50% stimulation or inhibition are highlighted. (Negative values correspond to stimulation of binding or enzyme activity) R=Additional Comments

gp=guinea pig; ham=hamster; hum=human

Cat.#	TARGET	BATCH	* SPP.	n=	CONC.	l	†% IN	HIBIT	NOT	IC _{so}	K _I	'n	R
2.0						9%	-100 -50 ↓ ↓	0 sc					
232700	Glutamate, Kainate	203063	rat	2	10 µM	24					•		
232810	Glutamate, NMDA, Agonism	203064	rat	2	10 µM	23	1						
232910	Glutamate, NMDA, Glycine	203065	rat	2	10 µM	-4		1	- 1				
233000	Glutamate, NMDA, Phencyclidine	203066	rat	2	10 µM	-6		i					
234000	Glutamate, NMDA, Polyamine	203067	rat	2	10 µM	-1		ı					
239000	Glycine, Strychnine-Sensitive	203068	rat	2	10 µM	-2	Ì						
239300	Growth Hormone Secretagogue (GHS, Ghrelin)	203243	hum	2	10 µM	٥							
239610	Histamine H ₁	202970	hum	2	10 µM	5		1	- 1				
239710	Histamine H ₂	203069	hum	2	10 µM	15		3					
239810	Histamine H ₃	202972	hum	2	10 µM	5		1					
239900	Histamine H ₄	202973	hum	2	10 µM	-1							
241000	lmidazoline l ₂ , Central	202974	rat	2	10 µM	-6		1					
42500	Inositol Trisphosphate IP3	203244	rat	2	10 µM	16		9	- 1				
43000	Insulin	203208	rat	2	10 µM	-2			- 1				
50400	Leptin	203317	mouse	2	10 µM	12		2	- 1				
50510	Leukotriene, BLT (LTB.)	203353	hum	2	10 µM	-5		ı					
50460	Leukotriene, Cysteinyl CysLT ₁	203089	hum	2	10 µM	-18			- 1				
250480	Leukotriene, Cysteinyl CysLT ₂	203090	hum	2	10 µM	0		1	- 1				
251100	Melanocortin MC	203411	hum	2	10 µM	7		1	- 1				
51300	Melanocortin MC ₃	203412	hum	2	10 μM .	-1		1	- 1				
251350	Melanocortin MC ₄	203413	hum	2	10 µM	6		1	- 1				
51400	Melanocortin MC ₅	203414	hum	2	10 µM	10		H					
51600	Melatonin MT ₁	203140	hum	2	10 µM	1		1					
51700	Melatonin MT ₂	203142	hum	2	10 µM	33		ign.					
52200	Motilin	203472	hum	2	10 µM	14							
52610	Muscarinic M ₁	202957	hum	2	10 µM	-2		ı					
52710	Muscarinic M ₂	202958	hum	2	10 µM	-5		ıl	- 1				
52810	Muscarinic M ₃	202959	hum	2	10 µM	3		1	ŀ				
52910	Muscarinic M ₄	202960	hum	2	10 µM	3		1	- 1				
53010	Muscarinic M _s	202961	hum	2	10 µM	2		1	- 1				
26100	N-Formyl Peptide Receptor FPR1	203240	hum	2	10 μм	-3	1			,			
					1	,							

^{*} Batch: Represents compounds tested concurrently in the same assay(s). ‡ Partially soluble in in vitro test solvent. . Denotes item meeting criteria for significance

[†] Results with ≥ 50% stimulation or inhibition are highlighted. (Negative values correspond to stimulation of binding or enzyme activity) R=Additional Comments

Cat.#	TARGET	BATCH	SPP.	n=	CONC.		†% INH	IBITION	IC ₅₀ K ₁	-	n _H	J
	¥ .					. %		0 20 100 ↓ ↓ ↓				
226200	N-Formyl Peptide Receptor- Like FPRL1	203241	hum	2	10 µM	-12	ı					
256100	Neuromedin U NMU _t	203473	hum	2	10 µM	9		1				
256200	Neuromedin U NMU₂	203474	hum	2	10 µM	2	1	i				
257010	Neuropeptide Y Y ₁	203093	hum	2	10 µM	3		h I				
257110	Neuropeptide Y Y ₂	203094	hum	2	10 µM	6	l	1				
258010	Neurotensin NT ₁	203318	hum	2	10 µM	-4	l ı	i i				
258590	Nicotinic Acetylcholine	202989	hum	2	10 µM	-6	1					
258700	Nicotinic Acetylcholine α1, Bungarotoxin	202991	hum	2	10 µM	7		ı				
258630	Nicotinic Acetylcholine α7, Bungarotoxin	202990	rat	2	10 µM	-7	i					
260110	Opiate & (OP1, DOP)	203070	hum	2	10 µM	0		1 1				
260210	Opiate ĸ (OP2, KOP)	203072	hum	2	10 µM	11		9				
260410	Opiate µ (OP3, MOP)	203074	hum	2	10 µM	-4	1					
260600	Orphanin ORL ₁	203476	hum	2	10 µM	4		lı l				
264500	Phorbol Ester	203076	mouse	2	10 µM	-9						
265010	Platelet Activating Factor (PAF)	203007	hum	2	10 µM	12		2				
265200	Platelet-Derived Growth Factor (PDGF)	202979	mouse	2	10 µM	9						
85500	Potassium Channel [K ₄]	203079	rat	2	10 µM	0						
265600	Potassium Channel [KATP]	203078	ham	2	10 µM	-12	1					
265800	Potassium Channel [SK _{CA}]	203002	rat	2	10 µM	3		1				
65900	Potassium Channel HERG	202994	hum	2	10 µM	-18						
68020	Progesterone PR-B	202992	hum	2	10 µM	17						
68030	Prostanoid CRTH2	203352	hum	2	10 µM	-8	1					
68050	Prostanoid DP	202995	hum	2	10 µM	21		100				
68200	Prostanoid EP2	202996	hum	2	10 µM	19		3				
68410	Prostanoid EP4	202997	hum	2	10 µM	0						
85510	Prostanoid, Thromboxane A ₂ (TP)	203271	hum	2	10 µM	-15	1					
68700	Purinergic P ₂₄	202982	rabbit	2	10 µM	15		1				
68810	Purinergic P _{2Y}	202983	rat	2	10 µM	7						
69500	Retinoid X Receptor RXRa	203477	hum	2	10 pM	3		1				

^{*} Batch: Represents compounds tested concurrently in the same assay(s). ‡ Partially soluble in *in vitro* test solvent.

• Denotes item meeting criteria for significance

[†] Results with ≥ 50% stimulation or inhibition are highlighted. (Negative values correspond to stimulation of binding or enzyme activity) R=Additional Comments

gp-guinea pig; ham=hamster; hum=human

Cat.#	TARGET	BATCH	SPP.	n≃	CONC.		†% INH	UBITI	ON	IC _{so} · ·	K,	P.	n _H	R
	- 100	<u> </u>			-	%	-100 -50 ↓ ↓	o 50 ↓ ↓	100			2		
270000	Rolipram	203130	rat	2	10 µM	2								
270300	Ryanodine RyR3	203478	rat	2	10 µM	4		i						
271110	Serotonin (S- Hydroxytryptamine) 5-HT _{IA}	203108	hum	2	10 µM	-9	1							
271200	Serotonin (S- Hydroxytryptamine) 5-HT ₁₈	203109	rat	2	10 µM	19								
271700	Serotonin (S- Hydroxytryptamine) 5-HT ₂₈	203251	hum	2	10 μΜ	10		1						
271800	Serotonin (5- Hydroxytryptamine) 5-HT _{2C}	203273	hum	2	10 μΜ	13		3						
271910	Serotonin (5- Hydroxytryptamine) S-HT ₃	203164	hum	2	10 µM	-5	1							
272000	Serotonin (5- Hydroxytryptamine) 5-HT ₄	203174	gp	2	10 µM	10		1						
272100	Serotonin (5- Hydroxytryptamine) 5-HT _{SA}	203003	hum	2	10 µM	4		1						
272200	Serotonin (S- Hydroxytryptamine) 5-HT ₆	203254	hum	2	10 µM	26		2						
278110	Sigma o ₁	203082	hum	2	10 µM	7		1	-					
278200	Sigma o₂	203083	rat	2	10 µM	14		5						
279510	Sodium Channel, Site 2	203084	rat	2	10 µM	11		1						
282510	Somatostatin sst1	203181	hum	2	10 µM	6		ī	- 1					
282700	Somatostatin sst2	203182	hum	2	10 µM	3		1	- 1					
282530	Somatostatin sst3	203183	hum	2	10 µM	15		9						
282900	Somatostatin sst4	203184	hum	2	10 µM	-1	1							
283000	Somatostatin sst5	203185	hum	2	10 µM	-13								
255510	Tachykinin NK ₁	203160	hum	2	10 µM	2		ı	- [
255600	Tachykinin NK₂	203161	hum	2	10 µM	17		1						
55710	Tachykinin NK ₃	203162	hum	2	10 µM	1								
85900	Thyroid Hormone	203171	rat	2	10 µM	14		3						
86000	Thyrotropin Releasing Hormone (TRH)	203259	rat	2	10 µM	-15								
86200	Transforming Growth Factor- β (TGF- β)	202980	mouse	2	10 µМ	10		1						
02000	Transporter, Adenosine	203088	gp	2	10 µM	7		1						
19000	Transporter, Choline	203105	rat	2	10 µM	17		2	- 1					

^{*} Batch: Represents compounds tested concurrently in the same assay(s). ‡ Partially soluble in in vitro test solvent.

[.] Denotes item meeting criteria for significance

[†] Results with ≥ 50% stimulation or inhibition are highlighted. (Negative values correspond to stimulation of binding or enzyme activity) R=Additional Commonts

gp=guinea pig; ham=hamster; hum=human

Cat.#	TARGET	BATCH*	SPP.	n=	CONC.		†% INHIBITION 100 50 0 50 100 ↓ ↓ ↓ ↓ ↓ ↓	iC ₅₀	G - I	K,	n _H	R
220320	Transporter, Dopamine (DAT)	203188	hum	2	10 pM	88						
226400	Transporter, GABA	203059	rat	2	10 pM	6	1					
252010	Transporter, Monoamine	203425	rabbit	2	10 µM	51	1555					
204410	Transporter, Norepinephrine (NET)	203054	hum	2	10 μΜ	37						
274030	Transporter, Serotonin (5- Hydroxytryptamine) (SERT)	203055	hum	2	10 µM	17	H					
286700	Urotensin II	203234	hum	2	10 µM	-15	E I					
286810	Vanilloid	203133	rat	2	10 µM	-9	r					
286900	Vascular Endothelial Growth Factor (VEGF)	203041	hum	2	10 µM	6	1					
287010	Vasoactive Intestinal Peptide VIP ₁	203260	hum	2	10 pM	-9	I I					
287520	Vasopressin V _{IA}	203097	hum	2	10 µM	2	lı l					
287560	Vasopressin V ₁₈	203098	hum	2	10 µM	-11						
287610	Vasopressin V₂	203099	hum	2	10 µM	-18	E .					
288000	Vitamin D ₃	203096	hum	2	10 µM	-1						

^{*} Batch: Represents compounds tested concurrently in the same assay(s). ‡ Partially soluble in in vitro test solvent.

Denotes item meeting criteria for significance

[†] Results with ≥ 50% stimulation or inhibition are highlighted. (Negative values correspond to <u>stimulation</u> of binding or enzyme activity) R=Additional Comments

PT#: 1094968 CODE: AUS-132 August 27, 2007 2:11 PM Page 12 of 72

EXPERIMENTAL RESULTS - BIOCHEMICAL ASSAYS

MIS has an exclusive, workwise limited use license from Synapife Pharmscrutical Coporation to perform these assays: Advancergia Alpha 10, Advanceric Johns 28, and Opparisine D for settly and selectivity proliting. MIS! Disonate excludes performing those assays in connection with drug discovery or development activities where the principal therapeutic mechanism of action of the test compound involves selective Moriforg to a licensed receptor. Lostomers may contact Synapic directly if they better with pred at broader license.

SpectrumScreen Data Report

Ausio Pharmaceuticals LLC

Study Completed: August 27, 2007
Report Printed: August 27, 2007

MDSPS PT#: 1094969

Alt. Code 1: Batch: NW037/07

Alt. Code 2:

Alt. Code 3:

Sample(s): AUS-133

M.W.: 242.27

Objectives:

To evaluate, in SpectrumScreen, the activity of test compound AUS-133 (PT# 1094969).

PT#: 1004969 CODE: AUS-133

August 27, 2007 2:08 PM Page 2 of 72

MDS Pharma Services Pharmacology Data Report On Compound AUS-133 For Ausio Pharmaceuticals LLC

Work Order Number: 1-1028406-1 Services Being Reported: SpectrumScreen Total # of Assays: 159

Alternative Work Order No: Purchase Order Number:

Compound Information:

Compound Code: AUS.133

Alternative Code 1: Batch: NW037/07

Alternative Code 2: Alternative Code 3:

1094969

MDSPS Internal #: Molecular Weight: 242.27

Sponsor: Ausio Pharmaceuticals LLC

1776 Mentor Avenue Sulte 340

Cincinnati, OH 45212

Undertaken at:

MDS Pharma Services - Taiwan Ltd. Pharmacology Laboratories 158 Li-Teh Road, Peitou Talpei, Taiwan 112

Date of Study:

August 13, 2007 - August 27, 2007

Study Directors:

Kun-Yuan Lin, MDS Pharma Services - Taiwan Ltd. Kuo-Hsin Chen, MDS Pharma Services - Taiwan Ltd.

Distribution: Ausio Pharmaceuticals LLC

"This study was conducted according to the procedures described in this report. All data presented are authentic, accurate and correct to the best of our knowledge."

Kun-Yuan Lin

Study Director for Animal Assays

Kuo-Hsin Chen

Study Director for Biochemical Assays

25. Chin

Jiam - Wei Wei

Kun- Fran Lin

Jiann-Wu Wei, Ph.D Quality Control and Data Reviewer Peter Chiu, Ph.D. Technical Director PT#: 1094969 CODE: AUS-133 August 27, 2007 2:09 PM Page 3 of 72

TABLE OF CONTENTS

	PAGE
Summary	4
Summary of Significant Results	5
Experimental Results	6
Methods	13
Reference Compound Data	53
Literature References	59

SUMMARY

STUDY OBJECTIVE

To evaluate, in Radioligand Binding assays, the activity of compound AUS-133 (PT# 1094969).

METHODS

Methods employed in this study have been adapted from the scientific literature to maximize reliability and reproducibility. Reference standards were run as an integral part of each assay to ensure the validity of the results obtained. Assays were performed under conditions described in the accompanying "Methods' section of this report. The literature reference(s) for each assay are in the "Literature References" section. If either of these sections were not originally requested with the accompanying report, please contact us at the number below for a printout of either of these reports sections.

Where presented, C_{29} values were determined by a non-linear, least squares regression analysis using Data Analysis 100box²⁴ (MDL Information Systems, San Leandro, CA, USA). Where inhibition constitutions (K) are presented, the K, values were calculated using the equation of Cheng and Prusoff (Cheng Y, Prusoff, W.H., Blochem. Pharmacol. 22:3099-3108, 1973) using the observed C_{29} of the tested compound, the concentration of radioligand employed in the assay, and the historical values for the K_0 of the ligand (obtained experimentally at MDS/Harma Sarvices). Where presented, the Hill coefficient spice of the competitive binding curve, was calculated using Data Analysis Toolbox²⁴. Hill coefficients significantly different than 1.0, may suggest that the binding displacement does not follow the laws of mass action with a single binding site. Where C_{29} , K_0 , and/or N_H data are presented without Standard Error of the Mean (SEM), data are insufficient to be quantitative, and the values presented K_0 , K_0 , K_0 , should be interpreted with caution.

RESULTS

A summary of results meeting the significance criteria is presented in the following sections. Complete results are presented under the section labeled "Experimental Results". Individual responses, if requested, are presented in the appendix to this report.

SUMMARY/CONCLUSION

Significant results are displayed in the following table(s) in rank order of potency for estimated IC₅₀ and/or K values.

August 27, 2007 2:09 PM Page 5 of 72

SUMMARY OF SIGNIFICANT PRIMARY RESULTS

Biochemical assay results are presented as the percent inhibition of specific binding or activity throughout the report. All other results are expressed in terms of that assay's quantitation method (see Methods section).

- For primary assays, only the lowest concentration with a significant response judged by the assays' criteria, is shown in this summary.
- Where applicable, either the secondary assay results with the lowest dose/concentration meeting the significance criteria
 or, if lnactive, the highest dose/concentration that did not meet the significance criteria is shown.
- Unless otherwise requested, primary screening in duplicate with quantitative data (e.g., ICS0± SEM, IG± SEM and nH) are shown where applicable for individual requested assays. In screening redaptive data (e.g., estimated ICS0, Ki and nH) are shown where applicable (concentration range of 4 log units); available secondary functional assays are carried out (30 µM) and MEC or MIC determined only If active in primary assays >50% at 1 to unit below initial test concentration.
- · Please see Experimental Results section for details of all responses.

Significant responses (≥ 50% inhibition or stimulation for Biochemical assays) were noted in the primary assays listed below:

- 13.		PRIM	ARY TESTS					
CAT.#	PRIMARY BIOCHEMICALASSAY	SPECIES	CONC. % INH.	IC ₅₀ *	K _i	n _H		
204410	Transporter, Norepinephrine (NET)	hum	10 µM 50					
220320	Transporter, Dopamine (DAT)	hum	10 µM 92					
226010	Estrogen ERa	hum	10 µM 94					
226050	Estrogen ERB	hum	10 µM 98					

gp=guinea pig; ham=hamster; hum=human

[#] Partially soluble in in vitro test solvent.

^{*} A standard error of the mean is presented where results are based on multiple, independent determinations.

Cat.#	TARGET	BATCH*	SPP.	ne	CONC.	l	†% IN	HBITTO	ICso	K _I		n _H	- R
8,07						١.	-100 -50			-1"			
1		70				%	<u>↓↓</u>	1 1 1		271	- 14		
200510	Adenosine A ₁	203049	hum	2	10 µM	-6		1					
200610	Adenosine A _{2A}	203053 -	hum	2	10 µM	24		2	1				
200720	Adenosine A ₃	203104	hum	2	10 µM	15			l				
203100	Adrenergic α _{IA}	203043	rat	2	10 µM	9		1	l				
203200	Adrenergic α ₁₈	203044	rat	2	10 µM	2		ı	1				
203400	Adrenergic α ₁₀	203045	hum	2	10 µM	-8		1	1				
203620	Adrenergic α _{2A}	203046	hum	2	10 µM	10		l I	1				
203800	Adrenergic α _{2C}	203048	hum	2	10 µM	5		ı	1				
204010	Adrenergic β ₁	203050	hum	2	10 µM	6		lı .	1				
204110	Adrenergic β ₂	203051	hum	2	10 µM	6		ı	1				
204200	Adrenergic β ₃	203052	hum	2	10 µM	-5		i					
204460	Adrenomedullin AM ₁	203460	hum	2	10 µM	-2		1	1				
204470	Adrenomedullin AM ₂	203461	hum	2	10 µM	9		ī					
204600	Aldosterone	203107	rat	2	10 µM	20							
205000	Anaphylatoxin C5a	203237	hum	2	10 µM	-7		1	1				
285010	Androgen (Testosterone) AR	203102	rat	2	10 µM	5		1	l				
210020	Angiotensin AT ₁	203406	hum	2	10 µM	-14	1	ı	l				
210110	Angiotensin AT ₂	203095	hum	2	10 µM	1		1	ł				
210700	APJ	203462	hum	2	10 µM	-10			1				
211000	Atrial Natriuretic Factor (ANF)	203189	gp	2	10 µM	4		ı	l				
211600	Bombesin BB1	203463	hum	2	10 µM	7		ı					
211700	Bombesin BB2	203464	hum	2	10 µM	-1		d	1				
211800	Bombesin BB3	203465	hum	2	10 µM	-12	1	ľ					
212510	Bradykinin B ₁	203086	hum	2	10 µM	8		1					
212610	Bradykinin B ₂	203087	hum	2	10 µM	13		3	1				
213610	Calcitonin	203238	hum	2	10 µM	-1			l				
	Calcitonin Gene-Related Peptide CGRP ₁	203239	hum	2	10 µM	8		1					
	Calcium Channel L-Type, Benzothiazepine	203056	rat	2	10 µM	21		H					
	Calcium Channel L-Type, Dihydropyridine	203057	rat	2	10 µM	٥							
	Calcium Channel L-Type, Phonylalkylamine	203058	rat	2	10 µM	38		380					

^{*} Batch: Represents compounds tested concurrently in the same assay(s). ‡ Partially soluble in in vitro test solvent.

Denotes it an meeting criteria for significance

[†] Results wit: > 50% stimulation or inhibition are highlighted. (Negative values correspond to stimulation of binding or enzyme activity)
R=Additional Comments

gp-guinea pi..: ham-hamster; hum-human

Cat.#	TARGET	BATCH*	SPP.	n≔	CONC.		†% INI	BITION	ICso	K	d	n _H	R
3.11		4,				%		0 50 100 ↓ ↓ ↓					
216000	Calcium Channel N-Type	203176	rat	2	10 µM	-4							
217020	Cannabinoid CB ₁	203177	hum	2	10 µM	11		1					
217100	Cannabinoid CB ₂	203178	hum	2	10 µM	6		i					
244600	Chemokine CX3CR1	203471	hum	2	10 µM	11		1					
218010	Cholecystokinin CCK ₁ (CCK _A)	203408	hum	2	10 µM	20							
218120	Cholecystokinin CCK ₂ (CCK ₈)	203466	hum	2	10 µM	1	1	1					
219100	Colchicine	203000	rat	2	10 µM	22		B					
219150	Corticotropin Releasing Factor CRF ₁	203409	hum	2	10 µM	-3							
219500	Dopamine D ₁	202962	hum	2	10 µM	0							
219700	Dopamine D ₂₅	202964	hum	2	10 pM	-5		1					
219800	Dopamine D ₃	202965	hum	2	10 µM	-5							
219900	Dopamine D ₄₂	202966	hum	2	10 µM	11		1					
220200	Dopamine D _s	202969	hum	2	10 µM	7		1					
224010	Endothelin ET _A	203091	hum	2	10 µM	-5		1 1					
224110	Endothelin ETs	203092	hum	2	10 µM	2		1 1					
225510	Epidermal Growth Factor (EGF)	203167	hum	2	10 µM	-6							
225800	Erythropoietin EPOR	203883	hum	2	10 µM	3							
226010	Estrogen ERa	202976	hum	2	10 µM	94		A					
226050	Estrogen ERB	202977	hum	2	10 µM	98		As a second					
226300	G Protein-Coupled Receptor GPR103	202993	hum	2	10 µM	38							
226230	G Protein-Coupled Receptor GPR8	203470	hum	2	10 µM	1		ı					
226810	GABA _A . Chloride Channel, TBOB	203101	rat	2	10 µM	3							
226600	GABA, Flunitrazepam, Central	203061	rat	2	10 µM	1							
226500	GABA, Muscimol, Central	203060	rat	2	10 µM	-1							
228610	GABA _{BIA}	203158	hum	2	10 µM	-1							
228710	GA8A ₈₁₈	203159	hum	2	10 µM	-6	1						
230000	Gabapentin	203001	rat	2	10 µM	-17							
231510	Galanin GAL1	203165	hum	2	10 µM	-5	- 1						
231600	Galanin GAL2	203166	hum	2	10 µM	-3	i	1 1					
232600	Glutamate, AMPA	203157	rat	2	10 µM	-6		1 1					

^{*} Batch: Represents compounds tested concurrently in the same assay(s). ‡ Partially soluble in in vitro test solvent.

[·] Denotes item meeting criteria for significance

[†] Results with 2.50% stimulation or inhibition are highlighted. (Negative values correspond to <u>stimulation</u> of binding or enzyme activity) R=Additional Comments

gp=guinea pig; ham=hamster; hum=human

Cat.#	TARGET	BATCH	SPP	n=	CONC.	-		HBITION	ICse Ki n _H I
11						%		Į Į Į	10,10
232700	Glutamate, Kainate	203063	rat	2	10 µM	16		2	
232810	Glutamate, NMDA, Agonism	203064	rat	2	10 µM	24		50	
232910	Glutamate, NMDA, Glycine	203065	rat	2	10 µM	-5			,
233000	Glutamate, NMDA, Phencyclidine	203066	rat	2	10 pM	9		1	
234000	Glutamate, NMDA, Polyamine	203067	rat	2	10 µM	6		1	
239000	Glycine, Strychnine-Sensitive	203068	rat	2	10 pM	12		1	
239300	Growth Hormone Secretagogue (GHS, Ghrelin)	203243	hum	2	10 µM	12		B	
239610	Histamine H ₁	202970	hum	2	10 µM	11	l	Į.	
239710	Histamine H ₂	203069	hum	2	10 pM	7		h	
239810	Histamine H ₃	202972	hum	2	10 µM	18		9	
239900	Histamine H ₄	202973	hum	2	10 µM	-1		1 1	
241000	Imidazoline I ₂ , Central	202974	rat	2	10 µM	-13	1		
242500	Inositol Trisphosphate IP3	203244	rat	2	10 µM	11		8	
243000	Insulin	203208	rat	2	10 µM	-2			
250400	Leptin	203317	mouse	2	10 µM	2	ŀ	1 1	
250510	Leukotriene, 8LT (LTB.)	203353	hum	2	10 µM	-25		t l	
250460	Leukotriene, Cysteinyl CysLT ₁	203089	hum	2	10 µM	3			
250480	Loukotriene, Cystelnyl CysLT ₂	203090	hum	2	10 pM	-49	100		
251100	Melanocortin MC ₁	203411	hum	2	10 µM	1			
251300	Melanocortin MC ₃	203412	hum	2	10 µM	-5	1		
251350	Melanocortin MC ₄	203413	hum	2	10 µM	3			
251400	Melanocortin MC ₅	203414	hum	2	10 µM	8		1	
251600	Melatonin MT ₁	203140	hum	2	10 pM	14		3	
251700	Melatonin MT ₂	203142	hum	2	10 µM	48		Mar.	
252200	Motitin	203472	hum	2	10 pM	-1	- 1		
252610	Muscarinic M ₁	202957	hum	2	10 pM	3		1	
252710	Muscarinic M ₂	202958	hum	2	10 µM	-4	1		
252810	Muscarinic M ₂	202959	hum	2	10 µM	0			
252910	Muscarinic M ₄	202960	hum	2	10 µM	6		1	
53010	Muscarinic Ms	202961	hum	2	10 µM	-1	1		
26100	N-Formyl Peptide Receptor FPR1	203240	hum	2	10 µM	-6	ı		

^{*} Batch: Represents compounds tested concurrently in the same assay(s). ‡ Partially soluble in in vitro test solvent.

Denotes item meeting criteria for significance

[†] Results with ≥ 50% stimulation or inhibition are highlighted. (Negative values correspond to <u>stimulation</u> of binding or enzyme activity) R=Additional Comments

Cat.#	TARGET	BATCH	* SPP.	n=	CONC.	1	†% INE	IBITION	IC _{so}	K,	n _H	Ř
						%		0 50 100 ↓ ↓ ↓				
						 ~ 1	* *	1 * *			 	
226200	N-Formyl Peptide Receptor- Like FPRL1	203241	hum	2	10 µM	-7		l				
256100	Neuromedin U NMU ₁	203473	hum	2	10 µM	8		1				
256200	Neuromedin U NMU₂	203474	hum	2	10 µM	-5						
257010	Neuropeptide Y Y ₁	203093	hum	2	10 µM	7		1				
257110	Neuropeptide Y Y₂	203094	hum	2	10 µM	6		1				
258010	Neurotensin NT ₁	203318	hum	2	10 µM	-9	1					
258590	Nicotinic Acetylcholine	202989	hum	2	10 µM	-6	1					
258700	Nicotinic Acetylcholine α1, Bungarotoxin	202991	hum	2	10 ;·M	12		E				
258630	Nicotinic Acetylcholine α7, Bungarotoxin	202990	rat	2	10 µM	2						
260110	Opiate δ (OP1, DOP)	203070	hum	2	10 µM	12		2				
260210	Opiate ĸ (OP2, KOP)	203072	hum	2	10 µM	16		3				
260410	Oplate µ (OP3, MOP)	203074	hum	2	10 µM	-3						
260600	Orphanin ORL;	203476	hum	2	10 µM	7		h l				
264500	Phorbol Ester	203076	mouse	2	10 µM	-9	1					
265010	Platelet Activating Factor (PAF)	203007	hum	2	10 µM	9		3				
26520 0	Platelet-Derived Growth Factor (PDGF)	202979	mouse	2	10 µM	9		i				
65500	Potassium Channel [K _A]	203079	rat	2	10 pM	-1						
65600	Potassium Channel [KATP]	203078	ham	2	10 µM	-6	ı	1 1				
65800	Potassium Channel [SKcu]	203002	rat	2	10 µM	2		li l				
65900	Potassium Channel HERG	202994	hum	2	10 pM	6		i				
68020	Progesterone PR-B	202992	hum	2	10 µM	15		3				
68030	Prostanoid CRTH2	203352	hum	2	10 µM	3		ΓI				
68050	Prostanoid DP	202995	hum	2	10 µM	29		525				
68200	Prostanoid EP ₂	202996	hum	2	10 µM	14		3				
68410	Prostanoid EP ₄	202997	hum	2	10 µM	7		ī				
85510	Prostanoid, Thromboxane A ₂ (IP)	203004	hum	2	10 µМ	-7	ı					
68700	Purinergic P _{2x}	203308	rabbit	2	10 µM	8		1				
68810	Purinergic P _{2Y}	202983	rat	2	10 µM	3						
69500	Retinoid X Receptor RXRa	203477	hum	2	10 µM	-2	ı					

^{*} Batch: Represents compounds tested concurrently in the same assay(s). ‡ Partially soluble in in vitro test solvent.

Denotes item meeting criteria for significance

[†] Results with ≥ 50% stimulation or inhibition are highlighted. (Negative values correspond to <u>stimulation</u> of binding or enzyme activity) R=Add4 deal Comments

Cat.#	TARGET	BATCH	SPP.	n=	CONC.	15	†% INI	UBITION	IC ₅₀	K _i n _H	n _H R
						%	-100 -50 ↓ ↓	↓ ↓ ↓ ↓ ↓ ↓			
270000	Rolipram	203130	rat	2	10 µM	13		8			
270300	Ryanodine RyR3	203478	rat	2	10 µM	4		1			
271110	Serotonin (S- Hydroxytryptamine) 5-HT _{1A}	203108	hum	2	10 µM	2		l			
271200	Serotonin (5- Hydroxytryptamine) 5-HT ₁₈	203109	rat	2	10 µM	19		Si.			
271700	Serotonin (S- Hydroxytryptamine) 5-HT ₂₈	203251	hum	2	10 µM	25		20			
271800	Serotonin (5- Hydroxytryptamine) 5-HT _{2C}	203273	hum	2	10 µM	9		2			
271910	Serotonin (S- Hydroxytryptamine) 5-HT ₃	203164	hum	2	10 µM	0					
272000	Serotonin (5- Hydroxytryptamine) 5-HT ₄	203174	gp	2	10 μΜ	9		3			
272100	Serotonin (5- Hydroxytryptamine) 5-HT _{SA}	203003	hum	2	10 μΜ	3		1			
272200	Serotonin (5- Hydroxytryptamine) S-HT ₆	203254	hum	2	10 µM	27					
278110	Sigma o ₁	203082	hum	2	10 µM	1					
278200	Sigma σ₂	203083	rat	2	10 µM	13		9			
279510	Sodium Channel, 5ite 2	203084	rat	2	10 µM	12		2			
282510	Somatostatin sst1	203181	hum	2	10 µM	8		1			
28270	Somatostatin sst2	203182	hum	2	10 µM	-11	1	(
282530	Somatostatin sst3	203183	hum	2	10 µM	0					
282900	Somatostatin sst4	203184	hum	2	10 µM	12		1			
283000	Somatostatin sst5	203185	hum	2	10 µM	-11	1				
255510	Tachykinin NK ₁	203180	hum	2	10 µM	10		3			
255600	Tachykinin NK ₂	203161	hum	2	10 µM	22		3			
255710	Tachykinin NK ₃	203162	hum	2	10 µM	0					
285910	Thyroid Hormone	203171	rat	2	10 µM	0					
2860"0	Thyrotropin Releasing Hormone (TRH)	203259	rat	2	10 µM	1					
286200	Transforming Growth Factor- β (TGF- β)	202980	mouse	2	10 µM	8		1			
202000	Transporter, Adenosine	203088-	gp	2	10 pM	6		ı			
219000	Transporter, Choline	203105	rat	2	10 µM	-13	5				

^{*} Batch: Represents compounds tested concurrently in the same assay(s). ‡ Partially soluble in in vitro test solvent.

Dc les item meeting criteria for significance

[†] Re- its with ≥ 50% stimulation or inhibition are highlighted. (Negative values correspond to <u>stimulation</u> of binding or enzyme activity) R=Art. dentil Comments

gp=guinca pig; ham=hamster; hum=human

PT#: 1094969 CODE: AUS-133 August 27, 2007 2:11 PM Page 11 of 72

EXPERIMENTAL RESULTS - BIOCHEMICAL ASSAYS

Cat.#	TARGET	BATCH*	SPP.	n=	CONC.	ı	†% INF 100 -50 ↓ ↓	0 50 100 ↓ ↓ ↓ ↓	IC ₅₀	K _i n _{ti}	R
€ 2203 20	Transporter, Dopamine (DAT)	203188	hum	2	10 µM	92		3885 K-4			
226400	Transporter, GABA	203297	rat	2	10 µM	12					
252010	Transporter, Monoamine	203179	rabbit	2	10 µM	49					
204410	Transporter, Norepinephrine (NET)	203054	hum	2	10 µM	50		改造			
274030	Transporter, Serotonin (5- Hydroxytryptamine) (SERT)	203055	hum	2	10 µM	15		8			
286700	Urotensin II	203234	hum	2	10 µM	-16					
286810	Vanilloid	203133	rat	2	10 µM	-3	1				
2869^7	Vascular Endothelial Growth Factor (VEGF)	203041	hum	2	10 µM	-3	-				
287013	Vasoactive Intestinal Peptide VIP ₁	203260	hum	2	10 µM	-1					
287500	Vasopressin V _{IA}	203097	hum	2	10 µM	-1	- 1				
287560	Vasopressin V ₁₈	203098	hum	2	10 µM	-14		d l			
2876:0	Vasopressin V₂	203099	hum	2	10 µM	-19	100				
288000	Vitamin D ₃	203096	hum	2	10 µM	-9	1	1 1			

· Denotes item meeting criteria for significance

gp=guinea pig; ham=hamster; hum=human

^{*} Batch: Represents compounds tested concurrently in the same assay(s). ‡ Partially soluble in in vitro test solvent.

[†] Reser's with ≥ 50% silmulation or inhibition are highlighted. (Negative values correspond to stimulation of binding or enzyme activity) R=Adoi:ional Comments

PT#:

August 27, 2007 2:11 PM Page 12 of 72

EXPERIMENTAL RESULTS - BIOCHEMICAL ASSAYS

MIS has an exclusive, workwide firmled use license from Synaptic Pharmacutical Copporation to perform these assays: Advenage's Alpha 10, Advenage (Alpha 10, Advenage) (Alpha 10, Alpha 10, A