

Compliance & Quality Assurance

Cálculo de Esforço, Prazo e Custo de Projeto

O cálculo de prazo e custo de um projeto envolve uma combinação de análise, experiência e consideração cuidadosa das variáveis envolvidas

Com as identificações preliminares de Escopo e Estimativa de Esforço realizados previamente o prazo e custo se utiliza de parâmetros préestabelecidos.

<u>Definição do Escopo:</u> Tenha uma compreensão clara e detalhada do escopo do projeto, incluindo todos os requisitos, entregáveis e objetivos.

<u>Identificação de Tarefas:</u> Divida o projeto em tarefas individuais ou subtarefas. Liste todas as atividades que precisam ser realizadas para concluir o projeto.

Estimativa de Duração: Para cada tarefa, estime o tempo necessário para concluí-la. Isso pode ser feito em dias, semanas ou meses, dependendo da escala do projeto.

Estimativa de Custo: Determine os recursos necessários para cada tarefa, incluindo pessoal, materiais e outros custos associados.

Alocação de Recursos: Determine quantas pessoas ou membros da equipe serão atribuídos a cada tarefa e quanto tempo eles gastarão nela.

<u>Cálculo de Prazo:</u> Some as durações estimadas de todas as tarefas para obter a duração total do projeto. Isso fornecerá uma estimativa inicial do prazo.

<u>Cálculo de Custo:</u> Some os custos estimados de todas as tarefas para obter o custo total do projeto. Isso inclui custos de mão de obra, materiais, equipamentos e outros.

<u>Buffer de Tempo e Custo:</u> Adicione um buffer de tempo e custo para lidar com imprevistos e riscos. Isso ajuda a acomodar possíveis atrasos e custos adicionais.

<u>Comunicação e Aprovação:</u> Comunique as estimativas de prazo e custo à equipe e partes interessadas. Certifique-se de obter aprovação e feedback.

Monitoramento e Atualização: À medida que o projeto avança, monitore o progresso real em relação às estimativas. Atualize as estimativas conforme necessário com base no aprendizado e nas mudanças no escopo.

Ferramentas de Gestão: Utilize ferramentas de gestão de projetos, como software de gerenciamento de projetos, para facilitar o rastreamento do progresso, prazos e custos.

Relatórios e Avaliações: Crie relatórios regulares para acompanhar o progresso do projeto em relação às estimativas iniciais. Avalie desvios e tome medidas corretivas, se necessário.

<u>Aprendizado Contínuo:</u> Use os resultados e insights do projeto para melhorar a precisão das estimativas em projetos futuros.

Projeto: Desenvolvimento de um Site de E-commerce

Passos:

<u>Definição do Escopo:</u> O projeto envolve criar um site de e-commerce para uma loja de roupas, incluindo catálogo de produtos, carrinho de compras, checkout e integração com pagamento.

Identificação de Tarefas:

Design de Interface
Desenvolvimento Front-end
Desenvolvimento Back-end
Integração de Pagamento
Testes e Depuração
Lançamento

Estimativa de Duração e Custo: Suponhamos que as estimativas sejam as seguintes:

Design de Interface: 2 semanas

Desenvolvimento Front-end: 4 semanas

Desenvolvimento Back-end: 6 semanas

Integração de Pagamento: 2 semanas

Testes e Depuração: 3 semanas

Lançamento: 1 semana

Custo estimado (incluindo mão de obra, ferramentas e outros):

\$50.000

Alocação de Recursos: 2 designers, 2 desenvolvedores front-end, 2 desenvolvedores back-end e 1 gerente de projeto.

<u>Cálculo de Prazo:</u> Soma das durações estimadas das tarefas: 2 + 4 + 6 + 2 + 3 + 1 = 18 semanas.

Cálculo de Custo: Custo estimado total: \$50,000.

Buffer de Tempo e Custo: Adicionamos um buffer (tempo extra) de 2 semanas para possíveis atrasos e custos adicionais: Prazo = 18 + 2 = 20 semanas, Custo = \$50,000 + \$5,000 = \$55,000. ((50k/18)*2)

<u>Comunicação e Aprovação:</u> As estimativas de prazo e custo são comunicadas à equipe e ao cliente para aprovação.

Monitoramento e Atualização: À medida que o projeto avança, as estimativas são comparadas ao progresso real. Se houver desvios significativos, os ajustes são feitos.2

<u>Relatórios e Avaliações:</u> Relatórios semanais mostram o progresso do projeto em relação às estimativas, identificando áreas que estão no caminho certo e aquelas que precisam de atenção.

Aprendizado Contínuo: Depois do projeto, a equipe analisa o que funcionou bem e o que pode ser melhorado para refinar as estimativas em projetos futuros.

Esse é um exemplo simplificado. Em projetos reais, muitos outros fatores podem influenciar as estimativas de prazo e custo, como mudanças de escopo, imprevistos e recursos humanos adicionais. A precisão das estimativas é crucial para um planejamento e execução bem-sucedidos.

As cerimônias de acompanhamento e as técnicas de revisão de projeto são práticas fundamentais para manter um projeto no caminho certo, identificar problemas e fazer ajustes conforme necessário. São algumas cerimônias e técnicas comuns:

Reuniões de Status: Reuniões regulares em que a equipe relata o progresso, problemas, obstáculos e próximos passos. Isso ajuda a manter todos informados e identificar problemas em estágios iniciais.

Sprints (Scrum): Cerimônias do método Scrum, como o Sprint Planning, Daily Standup, Sprint Review e Sprint Retrospective, que permitem um acompanhamento constante do progresso e ajustes a cada iteração.

Revisões de Marcos: Realizadas após atingir marcos específicos do projeto. São oportunidades para avaliar o progresso, revisar os resultados e planejar as próximas etapas.

Reuniões de Gate: Realizadas em pontos de decisão-chave do projeto, como antes de avançar para uma nova fase. As partes interessadas revisam o progresso e decidem se o projeto deve continuar.

Técnicas de Revisão de Projeto:

Análise de Valor Agregado (EVA): Uma técnica que mede o desempenho do projeto em relação ao cronograma e orçamento. Ajuda a identificar desvios e permite ajustes para manter o projeto sob controle.

<u>Avaliação de Riscos:</u> Identificação, análise e monitoramento contínuo dos riscos do projeto. Isso permite tomar medidas preventivas ou corretivas para lidar com potenciais problemas.

<u>Revisões de Código:</u> Para projetos de desenvolvimento de software, as revisões de código garantem a qualidade do código, a adesão a padrões e a detecção de possíveis problemas.

Revisões de Design: Avaliação do design do projeto em busca de adequação aos requisitos, eficiência e viabilidade técnica.

<u>Avaliações Técnicas:</u> Exame detalhado da arquitetura e das soluções técnicas do projeto para garantir a integridade, segurança e desempenho.

<u>Auditorias de Qualidade:</u> Avaliações independentes das práticas de qualidade do projeto para garantir que os processos estejam alinhados com as normas e melhores práticas.

<u>Feedback do Cliente:</u> Manter um diálogo constante com o cliente para garantir que suas necessidades e expectativas sejam atendidas. Isso ajuda a ajustar o projeto conforme necessário.

Retrospectivas de Projeto: Realizadas após a conclusão do projeto, permitem que a equipe reflita sobre o que funcionou bem, o que poderia ter sido melhor e quais lições foram aprendidas.

Cada projeto pode exigir diferentes cerimônias e técnicas de revisão, dependendo de sua natureza, tamanho e complexidade. O importante é manter um acompanhamento constante e uma abordagem pró-ativa para identificar problemas e fazer ajustes ao longo do tempo.

As estimativas diretas, como o Poker Scrum, e as estimativas paramétricas são duas abordagens diferentes para estimar o esforço, o prazo e/ou o custo de um projeto. Aqui estão as principais diferenças entre elas:

Paramétrica

Estimativas Diretas (Poker Scrum):

<u>Baseadas em Percepção</u>: As estimativas diretas são baseadas na percepção dos membros da equipe sobre o esforço necessário para realizar uma tarefa ou completar um entregável.

<u>Colaborativas:</u> O processo de estimativas diretas envolve a participação ativa de todos os membros da equipe. Isso promove a colaboração e o compartilhamento de conhecimento.

Estimativas Diretas (Poker Scrum):

<u>Subjetivas:</u> As estimativas diretas podem ser subjetivas, uma vez que diferentes membros da equipe podem ter opiniões diferentes sobre o esforço envolvido em uma tarefa.

<u>Métodos como o Poker Scrum:</u> Métodos como o Planning Poker, onde a equipe escolhe cartas com valores de esforço, são exemplos de estimativas diretas.

<u>São Relativas</u>: As estimativas diretas muitas vezes fornecem valores de esforço relativos em vez de estimativas absolutas, o que ajuda a comparar a complexidade relativa das tarefas.

Estimativas Paramétricas:

Baseadas em Dados Históricos: As estimativas paramétricas são baseadas em dados históricos e em relações matemáticas entre variáveis do projeto, como tamanho, produtividade e esforço.

<u>Modelos Matemáticos:</u> As estimativas paramétricas usam modelos matemáticos para prever o esforço, o prazo ou o custo com base em parâmetros específicos do projeto.

Estimativas Paramétricas:

<u>Menos Subjetivas</u>: As estimativas paramétricas tendem a ser menos subjetivas, pois se baseiam em dados e relações matemáticas objetivas.

Levam em Consideração Variáveis: As estimativas paramétricas consideram fatores como tamanho do projeto, produtividade da equipe, complexidade técnica e outros.

Exemplos: Modelos COCOMO (Constructive Cost Model) e PERT (Program Evaluation and Review Technique) são exemplos de abordagens paramétricas.

Diferenças Gerais:

Natureza: Estimativas diretas são baseadas em opiniões e percepções da equipe, enquanto as estimativas paramétricas são baseadas em análises matemáticas e dados históricos.

<u>Precisão:</u> As estimativas paramétricas tendem a ser mais precisas, uma vez que se baseiam em modelos matemáticos e dados reais.

<u>Flexibilidade</u>: As estimativas diretas são mais flexíveis e adequadas para projetos com muitas incertezas ou mudanças, enquanto as estimativas paramétricas são mais apropriadas para projetos com padrões repetitivos e bem definidos.

Em última análise, a escolha entre estimativas diretas e paramétricas dependerá da natureza do projeto, das necessidades da equipe e das disponibilidade de dados históricos confiáveis. Muitas vezes, uma combinação de abordagens pode ser usada para obter estimativas mais abrangentes.

Modelos paramétricos de estimativa

Existem vários modelos paramétricos de estimativa amplamente utilizados na indústria para prever esforço, prazo e custo de projetos. Aqui estão alguns dos principais modelos paramétricos:

<u>COCOMO (Constructive Cost Model):</u> Um dos modelos paramétricos mais conhecidos, desenvolvido por Barry Boehm. O COCOMO possui várias versões, incluindo COCOMO I, COCOMO II e COCOMO III. Ele estima o esforço, o custo e o prazo do projeto com base em características do projeto, como tamanho do código, complexidade e fatores de produtividade.

<u>Function Point Analysis:</u> Um método que avalia o tamanho funcional de um sistema de software, medindo as funções que ele executa para os usuários. As funções são atribuídas a diferentes categorias (entrada, saída, consulta, arquivo interno e interface externa) e convertidas em pontos de função, que são usados para estimar o esforço e o prazo.

<u>Estimativa de Linhas de Código:</u> Embora não seja um modelo paramétrico estrito, a estimativa de linhas de código ainda é usada para prever esforço, prazo e custo. Ela se baseia no número de linhas de código que serão escritas e considera a produtividade da equipe.

Modelos paramétricos de estimativa

<u>PERT (Program Evaluation and Review Technique)</u>: Um método que estima o tempo necessário para concluir uma tarefa, levando em consideração três cenários possíveis: otimista, pessimista e mais provável. Ele calcula uma estimativa ponderada que leva em consideração a incerteza.

<u>Delphi Method:</u> Embora não seja estritamente um modelo paramétrico, o método Delphi é uma técnica de estimativa que envolve especialistas fornecendo opiniões anônimas sobre o esforço, o prazo e o custo do projeto. Essas opiniões são consolidadas para chegar a uma estimativa.

<u>Function Point Productivity Rates:</u> Este modelo utiliza os pontos de função como métrica e estima a produtividade da equipe com base em projetos anteriores. A produtividade é então usada para calcular o esforço necessário para o projeto atual.

<u>SLIM (Software Life Cycle Management):</u> Um modelo paramétrico que utiliza uma abordagem estatística para prever o esforço, o prazo e o custo do projeto. Ele leva em consideração variáveis como tamanho, produtividade da equipe e complexidade técnica.

$$E = a.(KLoC)^b.(EAF)$$

- E: estimativa de esforço, dado em pessoa.mês (PM).
- KLoC: estimativa de linhas de código, em milhares (Thousands Lines of Code).
- EAF: fator de ajuste de esforço (Effort Adjustment Factor).
- 'a' e 'b': constantes baseadas no tipo de projeto e ambiente de desenvolvimento.

$$D = 2,5 . E^{c}$$

- D: estimativa de tempo de desenvolvimento (Duration).
- 'c': constante baseada no tipo de projeto e ambiente de desenvolvimento.

$$E = a.(KLoC)^b.(EAF)$$

	a _i	b _i	C _i
Organic	3.2	1.05	0.38
Semi-detached	3.0	1.12	0.35
Embedded	2.8	1.20	0.32

- Organic: times de desenvolvimento relativamente pequenos, trabalhando em projetos simples, bem compreendidos ou similares a algo do passado, em um ambiente familiar de desenvolvimento (ferramentas, linguagem, etc.)
- Embedded: desenvolvimento com restrições severas em termos de requisitos, complexidade, regulação, etc. Exige um time de desenvolvimento grande e com muita experiência.
- Semi-detached: projeto que apresente características de complexidade, experiência e tamanho da equipe em um nível intermediário entre o Organic e o Embedded.

$E = a.(KLoC)^b.(EAF)$

Direcionadores de Custo	Muito Baixo	Baixo	Normal	Elevado	Muito Elevado	Extrema- mente Elevado
ATI	RIBUTO	S DO PRO	ODUTO			
Confiabilidade exigida do software	0,75	0,88	1,00	1,15	1,40	-
Tamanho do banco de dados	_	0,94	1,00	1,08	1,16	- 2
Complexidade do produto	0,70	0,85	1,00	1,15	1,30	1,65
	IBUTOS	DO HAR	DWARE			
Restrições ao tempo de execução	-	-	1,00	1,11	1,30	1,66
Restrições de memória	-		1,00	1,06	1,21	1,56
Volatilidade do ambiente de máquina virtual	(20)	0,87	1,00	1,15	1,30	2
Tempo de <i>turnaround</i> (tempo para completar o ciclo) exigido	-	0,87	1,00	1,07	1,15	-
	RIBUTO	S DE PE	SSOAL	/		
Capacidade do analista	1,46	1,19	1,00	0,86	0,71	-
Experiência em aplicações	1,29	1,13	1,00	0,91	0,82	2
Capacidade do programador	1,42	1,17	1,00	0,86	0,70	-
Experiência em máquina virtual	1,21	1,10	1,00	0,90	150	-
Experiência com a linguagem de programação	1,14	1,07	1,00	0,95	-	-
AT	RIBUTO	S DE PR	OJETO			
Uso de práticas modernas de programação	1,24	1,10	1,00	0,91	0,82	-
Uso de ferramentas de software	1,24	1,10	1,00	0,91	0,83	-
Cronograma exigido de desenvolvimento	1,23	1,08	1,00	1,04	1,10	-

Fonte: Boehm (1981)

Exemplo

Projeto: desenvolvimento de um site simples de e-commerce, por uma software-house com experiência nesse tipo de produto.

$$E = a.(KLoC)^b.(EAF)$$

- KLoC: 40 KLoC (40.000 linhas de código)
- 'a' = 3,20
- **'b'** = 1,05

	a _i	b _i	<u>C</u> j
Organic	3.2	1.05	0.38
Semi-detached	3.0	1.12	0.35
Embedded	2.8	1.20	0.32

CoCoMo Intermediário $E = 3,2.(40)^{1,05}.(0,598)$

Direcionadores de Custo	Muito Baixo	Baixo	Normal	Elevado	Muito Elevado	Extrema- mente Elevado
AT	RIBUTO	S DO PRO	DDUTO			
Confiabilidade exigida do software	0,75	0,88	1.00	1,15	1,40	-
Tamanho do banco de dados	120	0,94	1,00	1,08	1,16	-
Complexidade do produto	0,70	0,85	1,00	1,15	1,30	1,65
ATRIBUTOS DO HARDWARE						
Restrições ao tempo de execução	-	-	1,00	1,11	1,30	1,66
Restrições de memória	-	-	1,00	1,06	1,21	1,56
Volatilidade do ambiente de máquina virtual	(20)	0,87	1,00	1,15	1,30	-
Tempo de <i>turnaround</i> (tempo para completar o ciclo) exigido	-	0,87	1,00	1,07	1,15	-
	RIBUTO	S DE PE	SSOAL	-		
Capacidade do analista	1,46	1,19	1,00	0,86	0,71	-
Experiência em aplicações	1,29	1,13	1,00	0,91	0,82	5
Capacidade do programador	1,42	1,17	1,00	0,86	0,70	-
Experiência em máquina virtual	1,21	1,10	1,00	0,90	(5)	-
Experiência com a linguagem de programação	1,14	1,07	1,00	0,95	120	-
AT	RIBUTO	S DE PR	OJETO			
Uso de práticas modernas de programação	1,24	1,10	1,00	0,91	0,82	2
Uso de ferramentas de software	1,24	1,10	1,00	0.91	0,83	-
Cronograma exigido de desenvolvimento Fonte: Boehm (1981)	1,23	1,08	1,00	1,04	1,10	-

Fonte: Boehm (1981)

Exemplo

Projeto: desenvolvimento de um site simples de e-commerce, por uma software-house com experiência nesse tipo de produto.

$$E = 3,2.(40)^{1,05}.(0,598)$$

$$E = 92,05 PM$$

$$D = 2,5 . E^{c}$$

$$D = 2.5 \cdot 92.05^{0.38}$$

$$D = 13,94$$

$$P = E / D$$

$$P = 6,6$$

