Topology Homework 1 Lee Fisher 2017-08-30

- 1. Construct several examples of homotopic and non-homotopic maps. No proofs required. Here are some examples of homotopic maps:
 - The straight lines $\vec{r}_1(t) = (2t+1, t-3)$ and $\vec{r}_2(t) = (4t+5, -6t+2)$ will be homotopic in \mathbb{R}^2 .
 - Any two paths on a Torus will be homotopic because the Torus is path connected.
 - Pick two paths in the upper half plane of \mathbb{R}^2 without the x-axis.

Here are some examples of non-homotopic maps:

- In \mathbb{R}^2 without the x-axis, take one path in the upper half plane and another path in the lower half plane. These paths won't be homotopic in this space.
- Our space is the image of the sine curve $f(x) = \sin(1/x)$, for all x > 0 union the closed interval of the y-axis, [-1,1]. Take one path to be the closed interval [-1,1] and the other to be a connected piece of the sine curve. This space isn't path connected, so the two paths won't be homotopic.
- Take the space to be \mathbb{R}^3 without the xy-plane. Pick one path to have only positive z-coordinates and the other to have only negative z-coordinates. These paths won't be homotopic.
- 2. To prove that fixed endpoint homotopy is an equivalence relation we need to prove three things.
 - Reflexivity. Consider a path f, a homotopy from f to f would be the constant map $\phi(x,t) = f(x)$.
 - Symmetry. Suppose $\phi(x,t)$ is a homotopy from f_1 to f_2 . Then $\phi(x,1-t)$ will be a homotopy from f_2 to f_1 .
 - Transitivity. Suppose $\phi_1(x,t)$ is a homotopy from f_1 to f_2 and $\phi_2(x,t)$ is a homotopy from f_2 to f_3 . Then we a define a new homotopy:

$$\phi_3(x,t) = \begin{cases} \phi_1(x,2t) & t \in [0,1/2] \\ \phi_2(x,2t-1) & t \in (1/2,1] \end{cases}$$

 $\phi_3(x,t)$ satisfies $\phi_3(x,0)=f_1$ and $\phi_3(x,1)=f_3$. As well ϕ_3 is continuous at the point t=1/2 because $\phi_1(x,2*1/2)=\phi_2(x,2*1/2-1)=f_2$. This means homotopy is transitive.

- 3. Here are some examples of fixed endpoint homotopic maps:
 - Two paths in \mathbb{R}^2 with the same endpoints will be fixed endpoint homotopic.
 - Two paths in \mathbb{R}^3 with the same endpoints will be fixed endpoint homotopic. (Sorry... I'm having difficulty thinking of interesting ways for things to be homotopic.)
 - Two paths in the upper half plane of \mathbb{R}^2 without the x-axis will be fixed endpoint homotopic.

Here are some examples of non fixed-endpoint homotopic maps:

- Take the paths $(\cos(\pi t), \sin(\pi t))$ and $(\cos(\pi t), -\sin(\pi t))$ in \mathbb{R}^2 without the origin. These will not be fixed endpoint homotopic.
- These paths, $(\cos(\pi t), \sin(\pi t), 0)$ and $(\cos(\pi t), -\sin(\pi t), 0)$ in \mathbb{R}^3 without the z-axis.
- Two halves of a circle in S^1 will also work (or not work I guess).

- 4. A space X is contractible if the identity map $\mathrm{Id}_X:X\to X$ is homotopic to a constant map.
 - Convex open subsets of \mathbb{R}^n are contractible. A convex subset, X is by definition one in which the straight line between any two points in X inside of X. Specifically, there exists a point \mathbf{x}_0 for which every point in the set X is connected to that point by a straight line. If $\mathbf{x} \in X$ then define the homotopy ϕ , by $\phi(\mathbf{x},t) = t(\mathbf{x}_0 \mathbf{x}) + \mathbf{x}$. This is a continuous map and contracts every point in the convex set X to a single point.
 - Consider a contractible space X, and two points a and b in X. We know there is a map $\phi(x,t)$ which contracts every point in X to a single point x_0 . To make a path $\gamma(t)$ from a to b take:

$$\gamma(t) = \begin{cases} \phi(a, 2t) & t \in [0, 1/2] \\ \phi(b, -2t + 2) & t \in (1/2, 1] \end{cases}$$

This is a continuous path from a to b because $\gamma(\frac{1}{2}) = x_0$. This proves contractible spaces are path connected.

• Suppose Y is a contractible space. Consider two maps $f_1: X \to Y$ and $f_2: X \to Y$. Since Y is contractible, there is a contraction map, ϕ which sends every point to element of Y, x_0 . We can define a homeomorphism, say η from f_1 to f_2 in a similar way as before.

$$\eta(x,t) = \begin{cases} \phi(f_1(x), 2t) & t \in [0, 1/2] \\ \phi(f_2(x), -2t + 2) & t \in (1/2, 1] \end{cases}$$

This is a continuous map because both cases match at the point $t = \frac{1}{2}$, and $\eta(x,0) = f_1$ and $\eta(x,1) = f_2$. Thus, any two maps from $X \to Y$ will be homeomorphic.

• Suppose X is contractible and Y is path-connected. Consider two maps $f_1: X \to Y$ and $f_2: X \to Y$. To make a homeomorphism from f_1 to f_2 we need a contraction, ϕ of X to x_0 and a path p from $f_1(x_0)$ to $f_2(x_0)$. Then we define a homeomorphism:

$$\eta(x,t) = \begin{cases}
f_1(\phi(x,3t)) & t \in [0,1/3] \\
p(3t-1) & t \in (1/3,2/3] \\
f_2(\phi(x,-3t+3)) & t \in (2/3,1)
\end{cases}$$

This is a homeomorphism from f_1 to f_2 . η first contracts the domain of the map f_1 to a point, then η moves the image $f_1(x_0)$ to the point $f_2(x_0)$ along a path in Y, and then lastly decontracts the domain back to X from x_0 . $\eta(x,0) = f_1(x)$ and $\eta(x,1) = f_2(x)$. η is made of continuous pieces that agree at the transition points t = 1/3 and t = 2/3.

If Y is not path connected, then the maps f_1 and f_2 could fail to be homeomorphic if they don't satisfy $f_1(x_0) = f_2(x_0)$, for some contraction point x_0 .

- 5. The fundamental group $\pi_1(X, x_0)$ is a group.
 - Closure: Consider ϕ_1 and ϕ_2 equivalence class representatives of loops in $\pi_1(X, x_0)$. The composition

$$\phi_1 * \phi_2 = \begin{cases} \phi_1(2t) & t \in [0, 1/2] \\ \phi_2(2t - 1) & t \in (1/2, 1] \end{cases}$$

Is a continuous map that takes on the value x_0 at the points t = 0 and t = 1, and thus is a loop and is an element of $\pi_1(X, x_0)$.

• Associativity: Consider three maps ϕ_1 , ϕ_2 , and ϕ_3 . Now compare the compositions $\phi_1 * (\phi_2 * \phi_3)$ and $(\phi_1 * \phi_2) * \phi_3$. By definition:

$$\phi_1 * (\phi_2 * \phi_3) = \begin{cases} \phi_1(2t) & t \in [0, 1/2] \\ \phi_2(4t - 2) & t \in (1/2, 3/4] \\ \phi_3(4t - 3) & t \in (3/4, 1] \end{cases}$$

and

$$(\phi_1 * \phi_2) * \phi_3 = \begin{cases} \phi_1(4t) & t \in [0, 1/4] \\ \phi_2(4t - 1) & t \in (1/4, 1/2] \\ \phi_3(2t - 1) & t \in (1/2, 1] \end{cases}$$

These two loops are homeomorphic. The following homeomorphism was constructed from pages of algebra and guesswork. It is not pretty but it works:

$$\eta(t,s) = \begin{cases}
\phi_1 \left(2t(1+s)\right) & t \in \left[0, \frac{1}{2s+2}\right] \\
\phi_2 \left(\frac{(s+2)(t(2s+2)-1)}{2s+1}\right) & t \in \left(\frac{1}{2s+2}, \frac{3}{2s+4}\right] \\
\phi_3 \left(\frac{t(2s+4)-3}{2s+1}\right) & t \in \left(\frac{3}{2s+4}, 1\right]
\end{cases}$$

It's easy enough to verify that $\eta(t,0) = \phi_1 * (\phi_2 * \phi_3)$ and $\eta(t,1) = (\phi_1 * \phi_2) * \phi_3$. As well, it's not difficult to see that $\eta(0,s) = \phi_1(0) = x_0$ and $\eta(1,s) = \phi_3(1) = x_0$. To show that the functions match at the other endpoints is more annoying, but... here we go!

$$\phi_1\left(2\left(\frac{1}{2s+2}\right)(1+s)\right) = \phi_1(1)$$

$$= x_0$$

$$\phi_2\left(\frac{(s+2)((\frac{1}{2s+2})(2s+2)-1)}{2s+1}\right) = \phi_2(0)$$

$$= x_0$$

So far so good, here's the other one:

$$\phi_2\left(\frac{(s+2)((\frac{3}{2s+4})(2s+2)-1)}{2s+1}\right) = \phi_2\left(\frac{(\frac{3(s+2)}{2s+4})(2s+2)-(s+2)}{2s+1}\right)$$

$$= \phi_2\left(\frac{\frac{3}{2}(2s+2)-(s+2)}{2s+1}\right)$$

$$= \phi_2\left(\frac{3(s+1)-(s+2)}{2s+1}\right)$$

$$= \phi_2\left(\frac{3s+3-s-2}{2s+1}\right)$$

$$= \phi_2\left(\frac{2s+1}{2s+1}\right)$$

$$= \phi_2(1)$$

$$= x_0$$

$$\phi_3\left(\frac{\frac{3}{2s+4}(2s+4)-3}{2s+1}\right) = \phi_3\left(\frac{3-3}{2s+1}\right)$$

$$= \phi_3(0)$$

$$= x_0.$$

Okay, so the functions used for the construction of this map are all continuous when $s, t \in [0, 1]$, so this will be a homeomorphism from $\phi_1 * (\phi_2 * \phi_3)$ and $(\phi_1 * \phi_2) * \phi_3$. Therefore, we arrive at the conclusion of associativity.

• Identity Element: Anything in the homotopy class of the map constant at x_0 will be an indentity element of this group. If ϕ is a loop in X then $x_0 * \phi$

$$\operatorname{Id}_{x_0} * \phi = \begin{cases} x_0 & t \in [0, 1/2] \\ \phi(2t - 1) & t \in (1/2, 1] \end{cases}$$

This is homeomorphic to ϕ with homeomorphism

$$\eta(t,s) = \begin{cases} x_0 & t \in [0, 1/2(1-s)] \\ \phi(t\frac{2}{s+1} + \frac{s-1}{s+1}) & t \in (1/2(1-s), 1] \end{cases}$$

This will satisfy $\eta(t,0) = x_0 * \phi$, $\eta(t,1) = \phi$, and be continuous for all $s,t \in [0,1]$. Likewise $\phi * x_0$ will be homeomorphic to ϕ with homeomorphism:

$$\eta(t,s) = \begin{cases} \phi(\frac{2t}{1+s}) & t \in [0, 1/2(1+s)] \\ x_0 & t \in (1/2(1+s), 1] \end{cases}$$

This will also be continuous and satisfy the similar corresponding constraints. This proves the identity element exists in the fundamental group.

• Inverse Elements: Consider a path $\phi(t)$ in $\pi_1(X, x_0)$. We denote $\phi^{-1}(t)$ as $\phi(1-t)$. To check that this is homeomorphic to the constant map we can compute $\phi * \phi^{-1}$

$$\phi * \phi^{-1} = \begin{cases} \phi(2t) & t \in [0, 1/2] \\ \phi(2-2t) & t \in (1/2, 1] \end{cases}$$

This is homeomorphic to the identity map with homeomorphism:

$$\eta(t,s) = \begin{cases} \phi(2t(1-s)) & t \in [0,1/2] \\ \phi((2-2t)(1-s)) & t \in (1/2,1] \end{cases}$$

This will satisfy $\eta(t,0) = \phi * \phi^{-1}$, $\eta(t,1) = x_0$, and be continuous for all $s,t \in [0,1]$. Done. $\pi_1(X,x_0)$ is a group.

6. Consider two groups $\pi_1(X, x_0)$ and $\pi_1(X, x_1)$ where x_0 and x_1 lie in the same path connected component. We will show that these two groups are isomorphic. Consider a path p that goes from x_0 to x_1 , and a path p^{-1} , the same path backwards, that goes from x_1 to x_0 . Let ϕ_0 be a loop based at x_0 , it can be associated with a loop based at x_1 by the function, $f(\phi_0) = p^{-1} * \phi_0 * p$. This function is an isomorphism because it is continuous and invertible. The inverse is given by: $f^{-1}(\phi_1) = p * \phi_1 * p^{-1}$. Then to show that it works $f^{-1}(f(\phi_0)) = p * p^{-1} * \phi_0 * p * p^{-1}$, from associativity and the fact that $p * p^{-1} = x_0 * \phi_0 * x_0$, and then again from associativity and x_0 being the identity element, we arrive at $x_0 * \phi_0 * x_0 = \phi_0$. Likewise $f(f^{-1}(\phi_0)) = p^{-1} * p * \phi_0 * p^{-1} * p = x_0 * \phi_0 * x_0 = \phi_0$. Now we're done, we've showed that f is invertible and continuous, and thus an isomorphism from $\pi_1(X, x_0)$ to $\pi_1(X, x_1)$.