External Flow

Flow Experiment

- Suppose flow over a heated plate is arranged as shown to the right.
- The Reynolds, average Nusselt, and Prandtl numbers are noted for different flow conditions.
- The average Nusselt numbers may then be plotted against the Reynolds number on a log-log scale.
- The different color dots here represent different fluids.
- The C, m, and n are empirical coefficients.

Flow Experiment

- The plot relation may be rewritten to be applicable for any type of fluid.
- This indicates that there is a functional relationship between the various dimensionless numbers.

$$\frac{\overline{N}u_L}{Pr^n} = C Re_L^m$$

- There is an underlying constant fluid property assumption with this relation. $\log \left(\frac{\overline{N}\iota}{R}\right)$
- This is be handled in one of two ways.
 - Film Temperature method $T_f \equiv \frac{T_s + T_\infty}{2}$
 - Property variation method

 $Log Re_L$

Property Variation Method

- The property variation method involves evaluated all material properties at the far field temperature T_{∞} .
- The right hand side of the functional relation between the Reynolds, average Nusselt, and Prandtl numbers are then multiplied by various ratios of material properties.
- For example, the ratios shown below may be used.

$$\left(\frac{Pr_{\infty}}{Pr_{s}}\right)^{r} \qquad \left(\frac{\mu_{\infty}}{\mu_{s}}\right)$$

Flat Plate: Isothermal Surface

• From empirical studies of parallel flow with an isothermal plate (i.e. $T_{\rm s}$ is constant), the following relations have been discovered.

Laminar

$$\delta = \frac{5}{\sqrt{\frac{u_{\infty}}{v_{\alpha} x}}} = \frac{5x}{\sqrt{Re_{x}}}$$

Turbulent

$$\frac{\delta}{\delta_t} \approx Pr^{1/3}$$

$$\frac{\delta}{\delta} \approx Pr^{1/3}$$
 $\delta = 0.37 \times Re_x^{-1/2}$

$$C_{f,x} \equiv \frac{\tau_{s,x}}{\rho u_{\infty}^2} = 0.664 Re_x^{-1/2}$$

$$C_{f,x} = 0.0592 Re_x^{-1/5} \qquad (Re_{x,c} \lesssim Re_x \lesssim 10^8)$$

$$Nu_x \equiv \frac{h_x x}{k} = 0.332 Re_x^{1/2} Pr^{1/3} \quad (Pr \gtrsim 0.6)$$

$$Nu_x = 0.0296 Re_x^{4/5} Pr^{1/3}$$
 $(0.6 \lesssim Pr \lesssim 60)$

Flat Plate: Isothermal Surface

 For the average friction coefficient and Nusselt number, an intermediate parameter A is used for the case of turbulent flow.

$$A = 0.037 Re_{x,c}^{4/5} - 0.664 Re_{x,c}^{1/2}$$

Laminar

$$\bar{C}_{f,x} = 1.328 Re_x^{-1/2}$$

$$\bar{Nu}_{x} \equiv \frac{h_{x} x}{k} = 0.664 Re_{x}^{1/2} Pr^{1/3} \quad (Pr \succeq 0.6)$$

Turbulent

$$\bar{C}_{f,L} = 0.074 Re_L^{-1/5} - \frac{2A}{Re_L} \qquad (Re_{x,c} \lesssim Re_L \lesssim 10^8)$$

$$\bar{Nu}_{x} \equiv \frac{\bar{h}_{x} x}{k} = 0.664 Re_{x}^{1/2} Pr^{1/3} \quad (Pr \succeq 0.6) \qquad \bar{Nu}_{L} = (0.037 Re_{L}^{4/5} - A) Pr^{1/3} \quad (0.6 \lesssim Pr \lesssim 60) \\ \left(Re_{x,c} \lesssim Re_{L} \lesssim 10^{8} \right)$$

Example 1

Air at a pressure of 6 kPa and a temperature of $300 \,^{\circ}C$ flows with a velocity of $10 \, m/s$ over a flat plate $0.5 \, m$ long. Estimate the cooling rate per unit width of the plate needed to maintain it at a surface temperature of $27 \,^{\circ}C$.

Cylinder in Cross Flow

- Consider a cylinder experiencing cross flow.
- The Reynolds number Re_D for this type of flow may be defined as

$$Re_D \equiv \frac{\rho V D}{\mu} = \frac{V D}{V}$$

• The drag coefficient C_D is defined as

$$C_D \equiv \frac{F_D}{A_f \left(\frac{\rho V^2}{2}\right)}$$

where A_f is the cylinder frontal area.

- The frontal area is the area projected perpendicular to the flow.
- The separation point is a function of Reynolds number.

Separation Point

Drag Coefficient

Figure 9.2

Cylinder in cross flow

 $N\overline{u}_{-} \equiv \frac{\overline{h}D}{1} = C Re_{-}^{m} Pr^{1/3} \qquad (Pr > 0.7)$

- Rarely is it of concern the local Nusselt number for a cylinder in cross flow.
- However, the average Nusselt number is often used and is given by

k	(11 50.7)	Table 3.1	
Re_D	C	m	
0.4 - 4	0.989	0.330	
4-40	0.911	0.385	
40-4000	0.683	0.466	
4000-40,000	0.193	0.618	
40,000-400,000	0.027	0.805	

Tahle 9 1

Various geometries in cross flow

• The same relation may be used for various geometries in cross flow.

$\overline{u}_D \equiv \frac{hD}{k} = C Re_D^m P r^{1/3}$	Geometry		Re_D	\boldsymbol{C}	m
$(Pr \succeq 0.7)$	Square $V \longrightarrow \bigcirc$	Ā D ▼	6000-60,000	0.304	0.59
	$V \longrightarrow$	$\overline{\cline{D}}$	5000-60,000	0.158	0.66
	Hexagon				
	$V \rightarrow \bigcirc$	D	5200-20,400	0.164	0.638
		<u>+</u>	20,400-105,000	0.039	0.78
	$V \longrightarrow \bigcirc$	D	4500–90,700	0.150	0.638
	Thin plate perp	endicular to flow			
	_V .	Front	10,000-50,000	0.667	0.500
Table 9.2	$V \longrightarrow$	The property of the property	7000-80,000	0.191	0.667

Example 2

Pitot Tube?

Experiments have been conducted on a metallic cylinder 12.7 mm in diameter and 94 mm long. The cylinder is heated internally by an electrical heater and is subjected to a cross flow of air in a low-speed wind tunnel. Under a specific set of operating conditions for which the upstream air velocity and temperature were maintained at V = 10 m/s and $26.2 \,^{\circ}\text{C}$, respectively, the heater power dissipation was measured to be P = 46 W, while the average cylinder surface temperature was determined to be $T_{\circ} = 128.4 \, ^{\circ}C$. It is estimated that 15% of the power dissipation is lost through the cumulative effect of surface radiation and conduction through the end pieces.

- (a) Determine the convection heat transfer coefficient from the experimental observations.
- (b) Compare the experimental result with the convection coefficient computed from an appropriate correlation.

The Sphere

- Boundary layers develop very similarly to that of the circular cylinder.
- For very small Reynolds numbers, the drag coefficient is

$$C_D = \frac{25}{Re_D} \qquad (Re_D \lesssim 0.5)$$

The average Nusselt number is given by

where all properties except for μ_s are evaluated at T_{∞} .

Example 3

Air at 25 °C flows over a 10 mm diameter sphere with a velocity of 15 m/s, while the surface of the sphere is maintained at 75 °C.

- (a) What is the drag force on the sphere?
- (b) What is the rate of heat transfer from the sphere?
- (c) Generate a plot of the heat transfer from the sphere as a function of the air velocity for the range 1 to 25 m/s.