```
Sortarea listelor de 1, 2, 3:
Algebra specificată este: A = \langle E, L, -, \cdot, 1, 2, 3 \rangle cu:
    E = \{1, 2, 3\}
   L = \{s \in E + | \forall i \in \overline{1, |s|-1} \, s_i \leq s_{i+1} \}
   -: E \to L, \overline{i} =lista formată din i
   \cdot: L \times L \to L, s \cdot s' = \text{interclasarea lui } s \text{ cu } s'.
Obs. că · este și asociativă și comutativă.
Specificație:
   Signatura:
      Sorturi: e, l
      Simboluri de operații: \{\}: e \to l, : ll \to l, 123: \to l.
    Ecuații:
      \{2\}, \{1\} = \{1\}, \{2\}
      {3}, {1} = {1}, {3}
      \{3\}, \{2\} = \{2\}, \{3\}
      (\forall X, Y, Z : l) (X, Y), Z = X, (Y, Z).
```

Demonstrăm că \mathcal{A} este model inițial pentru specificația dată:

- Este clar că \mathcal{A} satisface specificația (reamintim că \cdot este asociativă).
- Demonstrăm că dacă \mathcal{B} este un alt model pentru specificație atunci \exists ! morfism de la \mathcal{A} la \mathcal{B} . Fie $\mathcal{B} = \langle B_e, B_l, -^B, ,_B, 1_B, 2_B, 3_B \rangle$ un model.
 - !: Fie $f, g: A \to B$ morfisme.
 - Pentru orice $i \in E$ avem $f_e(i) = i_B = g_e(i)$ (deoarece f, g morfisme)
 - Demonstrăm că pentru orice $s \in L$ avem $f_l(s) = g_l(s)$, prin inducție după lungimea lui s:
 - * dacă $s = \overline{i}, i \in E$, atunci $f_l(s) = f_l(\overline{i}) \stackrel{f = f}{=} \overline{f_e(i)}^B = \overline{i_B}^B = \ldots = g_l(s)$;
 - * dacă $s = is', i \in E$ şi $f_l(s') = g_l(s')$, atunci $f_l(s) = f_l(is) = f_l(\overline{i} \cdot s')$ $\stackrel{f \ mf}{=} f_l(\overline{i})_{,B} f_l(s')$ $\stackrel{ip \ ind}{=} \overline{i_B}^B_{,B} g_l(s') = \dots = g_l(s)$.
 - \exists : Fie $f: \mathcal{A} \to B$ definită prin:

$$f_e(i) = i_B, \, \forall i \in E$$

$$f_l(\overline{i}) = \overline{i_B}^B, \, \forall i \in E$$

$$f_l(is) = \overline{i_B}^B, f_l(s), \forall i \in E$$
 şi $\forall s \in L$ a.î. $f_l(s)$ e definit

(def. e corectă, deoarece L e generat de $\{\overline{i}|i\in E\}$ și orice $s\in L$ cu |s|>1 se scrie unic sub forma s=is' cu $i\in E, s'\in L$ și |s'|<|s|).

Demonstrăm că f este morfism:

- pentru orice $i \in E$ avem $f_e(i) = i_B$, conform definiției;
- pentru orice $i \in E$ avem $f_l(\overline{i}) \stackrel{cf \ def}{=} \overline{i_B}^B = \overline{f_e(i)}^B$;
- demonstrăm că pentru orice $s, s' \in L$ avem $f_l(s \cdot s') = f_l(s), f_l(s')$, prin inducție:

```
* dacă i, j \in E şi i \leq j, atunci: f_l(\overline{i} \cdot \overline{j}) = f_l(ij) \stackrel{cf def}{=} \overline{i_B}^B,_B f_l(\overline{j}) = \overline{i_B}^B,_B \overline{j_B}^B = f_l(\overline{i}),_B f_l(\overline{j});
* dacă i, j \in E şi i > j, atunci: f_l(\overline{i} \cdot \overline{j}) = f_l(ji) = \overline{j_B}^B,_B \overline{i_B}^B \stackrel{ec din spec}{=} \overline{i_B}^B,_B \overline{j_B}^B = f_l(\overline{i}),_B f_l(\overline{j});
* dacă i, j \in E şi s \in L a.î. i \leq j şi f_l(\overline{j} \cdot s) = f_l(\overline{j}),_B f_l(s) atunci: f_l(\overline{i} \cdot js) = f_l(ijs) \stackrel{cf def}{=} \overline{i_B}^B,_B f_l(js) = f_l(\overline{i}),_B f_l(js);
* dacă i, j \in E şi s \in L a.î. i > j şi f_l(\overline{j} \cdot s) = f_l(\overline{j}),_B f_l(s) atunci: f_l(\overline{i} \cdot js) = f_l(j(\overline{i} \cdot s)) \text{ (argumentul este sirul care începe cu } j \text{ și continuă cu interclasarea dintre } \overline{i} \text{ și s}) \stackrel{cf def}{=} \overline{j_B}^B,_B f_l(\overline{i} \cdot s) \stackrel{ip ind}{=} \overline{j_B}^B,_B (f_l(\overline{i}),_B f_l(s)) = \overline{j_B}^B,_B (\overline{i_B}^B,_B f_l(s)) \stackrel{asoc}{=} (\overline{j_B}^B,_B \overline{i_B}^B),_B f_l(s) \stackrel{ip ind}{=} f_l(\overline{j} \cdot \overline{i}),_B f_l(s) \stackrel{com}{=} f_l(\overline{i} \cdot \overline{j}),_B f_l(s) \stackrel{ip ind}{=} (f_l(\overline{i}),_B f_l(\overline{j})),_B f_l(s) \stackrel{asoc}{=} f_l(\overline{i}),_B (f_l(\overline{j}),_B f_l(s)) = f_l(\overline{i}),_B (f_l(\overline{j}),_B f_l(s)) = f_l(\overline{i}),_B (f_l(\overline{i}),_B f_l(s)) = f_l(\overline{i}),_B f_l(s) \stackrel{em}{=} f_l(\overline{i}),_B f_l(s) \stackrel{ip ind}{=} f_l(
```

Deci specificația caracterizeaza pe \mathcal{A} ca tip abstract de date.

Sistemul de rescriere definit de ea este clar terminatoriu (orice rescriere se termină după un nr. finit de paşi într-o listă sortată) și confluent (orice termen se rescrie, indiferent de cale, in lista cu aceleași elemente dar sortată), deci programul OBJ se poate obtine transcriind direct specificația.

Observații:

- 1. Ceea ce în specificație și programul OBJ părea a fi simpla operație de concatenare, modelează de fapt interclasarea din algebra de liste sortate.
- 2. Va rezulta că operatorul , din specificație satisface și comutativitatea (pentru că operația modelată \cdot o satisface).


```
obj MO is
                 | obj M1 is
                                        | obj M2 is
                                                                        | obj M3 is
                  | protecting MO .
                                        \mid extending MO .
                                                                       | including MO .
sort Z .
ops 0 1 : -> Z . | sort B .
                                       | opscd: -> Z .
                                                                       | eq 1 = 0 .
op _+_ : Z Z -> Z . | ops t f : -> B . | eq c + 1 = d . eq 1 + c = d . | endo
var X : Z .
                | op _<=_ : Z Z -> B . | eq d + 1 = c . eq 1 + d = c . |
eq 0 + X = X.
                  | var X : Z . | eq c + c = 1 . eq d + d = 1 . |
eq X + 0 = X .
                  | eq 0 <= X = t .
                                        | eq c + d = 0 . eq d + c = 0 . |
eq 1 + 1 = 0.
                   | eq X <= 1 = t .
                                         endo
                   | eq 1 <= 0 = f .
endo
                   l endo
```

Tipul de date specificat de M0 este: $\mathcal{A} = \langle Z_2, 0, 1, + \rangle$ (exerciţiu).

Tipul de date specificat de M1 este: $\mathcal{B}_1 = \langle Z_2, \{t, f\}, 0, 1, t, f, +, <= \rangle$ (exerciţiu).

Tipul de date specificat de M2 este: $\mathcal{B}_2 = \langle \{\hat{0}, \hat{0.5}, \hat{1}, \hat{1.5}\}, \hat{0}, \hat{1}, \hat{0.5}, \hat{1.5}, + \rangle$ (exerciţiu).

Tipul de date specificat de M3 este: $\mathcal{B}_3 = \langle \{*\}, 0 := *, 1 := *, + \rangle$ (exerciţiu).

Avem următoarele "uitări": $u_{10}(\mathcal{B}_1) = \langle Z_2, 0, 1, + \rangle = \mathcal{A}$ $u_{20}(\mathcal{B}_2) = \langle \{\hat{0}, \hat{0.5}, \hat{1}, \hat{1.5}\}, \hat{0}, \hat{1}, + \rangle$ $u_{30}(\mathcal{B}_3) = \langle \{*\}, 0 := *, 1 := *, + \rangle = \mathcal{B}_3$.

Următoarele morfisme $\exists !$: $f_{01}: \mathcal{A} \to u_{10}(\mathcal{B}_1), f_{01}(0) = 0, f_{01}(1) = 1 \Rightarrow f$ bijectivă, incluziune protecting

 $f_{01}: \mathcal{A} \to u_{10}(\mathcal{B}_1), f_{01}(0) = 0, f_{01}(1) = 1 \Rightarrow f$ bijectivă, incluziune protecting $f_{02}: \mathcal{A} \to u_{20}(\mathcal{B}_2), f_{02}(0) = \hat{0}, f_{02}(1) = \hat{1} \Rightarrow f$ injectivă, incluziune extending $f_{03}: \mathcal{A} \to u_{30}(\mathcal{B}_3), f_{03}(0) = f_{03}(1) = * \Rightarrow f$ neinjectivă, incluziune including sau using. Observaţii:

• Dacă adăugăm la M1:

incluziunea ramâne protecting.

• Dacă adăugăm la M1:

op
$$_*$$
_ : Z Z : \rightarrow Z . eq 0 * X = 0 . eq 1 * 1 = 1 .

incluziunea ramâne protecting.

Atunci obţinem $\mathcal{B}'_1 = \langle Z_2, \{t, f\}, 0, 1, t, f, +, *, <= \rangle$ şi $u_{10}(\mathcal{B}'_1) = u_{10}(\mathcal{B}_1)$.

- Daca adaugăm la M2 op. de scădere, incluziunea rămăne tot extending.
- Daca adaugăm la M2:
 eq c + d = d + c .
 incluziunea ramâne extending.

• Daca adaugăm la M2:

in ideea de a transforma incluziunea în "including", de fapt pierdem confluența, deoarece:

$$0 + d \rightarrow d$$

$$0\,+\,\mathrm{d}\,\rightarrow\,\mathrm{c}\,+\,\mathrm{d}\,\rightarrow\,0\,\rightarrow\,\mathrm{c}$$

și nu putem unifica c cu d. Deci procedeul de la M3 nu are mereu efectul dorit.

```
Sortarea listelor de numere naturale (varianta fără subsorturi), schița demonstrației:
```

Algebra specificată este: $\mathcal{A} = \langle I\!N, L, \{false, true\}, \neg, \cdot, alte op.(>) \rangle$ cu: $L = \{s \in I\!N^+ | \forall i \in \overline{1}, |s|-1 s_i \leq s_{i+1} \}$ $-: I\!N \to L, \overline{i} = \text{lista formată din } i$ $:: L \times L \to L, s \cdot s' = \text{interclasarea lui } s \text{ cu } s'.$ Obs. că · este și asociativă și comutativă. Specificație: Signatura:

Sorturi: Nat, l, Bool

Simboluri de operații: $\{\}: e \to l, : ll \to l, \text{ alte op. importate.}$

Ecuații:

```
(\forall X,Y:Nat)~\{X\},\{Y\}=\{Y\},\{X\} \qquad if \qquad (X>Y)\\ (\forall X,Y,Z:l)~(X,Y),Z=X,(Y,Z). alte ec. importate
```

Demonstrăm că \mathcal{A} este model inițial pentru specificația dată:

• Este clar că \mathcal{A} satisface specificația (reamintim că \cdot este asociativă).

Cum justificăm că satisface ecuația condițională:

Trebuie ca $\forall h: \{X,Y\} \rightarrow A_{Nat} = \mathbb{N}$ a.î. $h_{Bool}^{\sharp}(X > Y) = true_A = true$ să avem $h_l^{\sharp}(\{X\}, \{Y\}) = h_l^{\sharp}(\{Y\}, \{X\})$.

Dar dacă $h_{Bool}^{\sharp}(X > Y) = true$, atunci h(X) > h(Y) (pentru că h^{\sharp} este morfism) deci $h_l^{\sharp}(\{X\}, \{Y\}) \stackrel{h^{\sharp} mf}{=} h_l^{\sharp}(\{X\}) \cdot h_l^{\sharp}(\{Y\}) \stackrel{h^{\sharp} mf}{=} \overline{h(X)} \cdot \overline{h(Y)} = \overline{h(Y)} \cdot \overline{h(X)}$ (deoarece h(X) > h(Y) iar $\cdot =$ interclasare) $= \dots = h_l^{\sharp}(\{Y\}, \{X\})$.

 \bullet Demonstrăm că dacă ${\mathcal B}$ este un alt model pentru specificație atunci $\exists !$ morfism de la ${\mathcal A}$ la ${\mathcal B}.$

Fie
$$\mathcal{B} = \langle B_{Nat}, B_{l}, B_{Bool}, -^{B}, ,_{B}, etc. \rangle$$
 un model.

!: Fie $f, g: A \to \mathcal{B}$ morfisme. At unci restrict tille lor $f', g': A' := \langle \mathbb{N}, \{false, true\}, op. importate \rangle \to \mathcal{B}' := \langle B_{Nat}, B_{Bool}, op. coresp. \rangle$ sunt morfisme.

Întrucât modulul NAT specifică \mathcal{A}' ca tip abstract de date, rezultă că f' = g', adică f şi g coincid pe INşi $\{false, true\}$ şi mai mult, ştim şi forma lor:

 $\forall n \in \mathbb{N} \ f_{Nat}(n) = g_{Nat}(n) = s_B^n 0_B, \ f_{Bool}(false) = g_{Bool}(false) = false_B, \ f_{Bool}(true) = g_{Bool}(true) = true_B$

Faptul că $\forall s \in L$ avem $f_l(s) = g_l(s)$ se dem. ca mai înainte prin inducție după s, considerând cazurile:

$$-s = \overline{i}, i \in \mathbb{N}$$

 $-s = is', i \in \mathbb{N}, s \in L \text{ si } f_l(s') = g_l(s').$

 \exists : Fie $f: \mathcal{A} \to B$ definită prin:

$$f_{Nat}(n) := s_B^n 0_B, \, \forall n \in {I\!\!N};$$

 $f_{Bool}(false) := false_B, f_{Bool}(true) := true_B;$

 f_l se def. ca mai înainte inductiv:

$$\begin{split} f_l(\overline{i}) &= \overline{f_{Nat}(i)}^B = \overline{s_B^n 0_B}^B, \, \forall i \in \mathbb{N} \\ f_l(is) &= \overline{s_B^n 0_B}^B,_B f_l(s), \, \forall i \in \mathbb{N} \, \, \text{şi} \, \, \forall s \in L \, \, \text{a.î.} \, \, f_l(s) \, \, \text{e definit.} \end{split}$$

Faptul că f este morfism pt. operațiile importate pe $I\!N$ și $\{false, true\}$ rezultă din proprietățile modulelor NAT și BOOL. Rămâne de arătat că f comută cu – și \cdot :

- pentru orice $i \in I\!\!N$ avem $f_l(\overline{i}) = \overline{f_{Nat}(i)}^B$, conform definiției;
- pentru orice $s, s' \in L$ avem $f_l(s \cdot s') = f_l(s), f_l(s')$ ca mai înainte prin inducție, considerând cazurile:
 - * $f_l(\overline{i} \cdot \overline{j})$, cu $i, j \in \mathbb{N}$, $i \leq j$;
 - * $f_l(\overline{i} \cdot \overline{j})$, cu $i, j \in \mathbb{N}$, i > j;
 - * $f_l(\overline{i} \cdot js)$, cu $i, j \in \mathbb{N}$, $s \in L$, $i \leq j$ și $f_l(\overline{j} \cdot s) = f_l(\overline{j})_{B}$, $f_l(s)$;
 - * $f_l(\overline{i} \cdot js)$, cu $i, j \in \mathbb{N}$, $s \in L$, i > j și $f_l(\overline{j} \cdot s) = f_l(\overline{j})_{B}$, $f_l(s)$;
 - * $f_l(is, s')$, cu $i \in \mathbb{N}$, $s, s' \in L$ şi $f_l(s \cdot s') = f_l(s)$, $g_l(s')$.

Detaliile: exercitiu (atenție la demonstrațiile referitoare le ecuația condițională).