Contrôle S2 – Corrigé Architecture des ordinateurs

Durée: 1 h 30

Inscrivez vos réponses <u>exclusivement</u> sur le document réponse. Ne pas détailler les calculs sauf si cela est explicitement demandé. Ne pas écrire à l'encre rouge ou au crayon à papier.

Exercice 1 (5 points)

Répondez sur le document réponse. Soit le mot binaire sur 10 bits suivant : 10111010102.

- 1. Donnez sa représentation hexadécimale.
- 2. Donnez sa représentation décimale s'il s'agit d'un entier non signé.
- 3. Donnez sa représentation décimale s'il s'agit d'un entier signé.
- 4. Donnez la représentation binaire sur 10 bits non signés de 2^{10} .
- 5. Donnez la représentation binaire sur 10 bits signés de -2¹⁰.
- 6. Combien faut-il de bits, au minimum, pour représenter en binaire non signé le nombre 65536 ?
- 7. Combien faut-il de bits, au minimum, pour représenter en binaire signé le nombre -65536 ?
- 8. Combien faut-il de bits, au minimum, pour représenter en binaire signé le nombre 65536 ?
- 9. Donnez, en puissance de deux, le nombre d'octets contenus dans **2 Gib**.
- 10. Donnez, à l'aide des préfixes binaires (Ki, Mi ou Gi), le nombre de bits contenus dans **512 Mio**. Vous choisirez un préfixe qui permet d'obtenir la plus petite valeur numérique entière.

Exercice 2 (7 points)

- 1. Convertissez les nombres présents sur le <u>document réponse</u> dans le format IEEE754 **simple précision**. Vous exprimerez le résultat final sous **forme binaire** en précisant les trois champs.
- 2. Donnez la représentation associée aux mots binaires codés au format IEEE754 **double précision** présents sur le <u>document réponse</u>. Si une représentation est un nombre, vous l'exprimerez en base 10 sous la forme $k \times 2^n$ où k et n sont des entiers relatifs.

Exercice 3 (2 points)

- 1. Sur le <u>document réponse</u>, donnez le schéma de câblage d'un diviseur de fréquence par deux avec uniquement une bascule D maître-esclave.
- 2. Sur le <u>document réponse</u>, donnez le schéma de câblage d'un diviseur de fréquence par deux avec uniquement une bascule JK maître-esclave.

Exercice 4 (6 points)

Complétez les chronogrammes sur le <u>document réponse</u> (jusqu'à la dernière ligne verticale pointillée) pour les montages ci-dessous.

Figure 1

Figure 2

DOCUMENT RÉPONSE À RENDRE

Exercice 1

1. 2EA ₁₆	6. 17 bits
2. 746 ₁₀	7. 17 bits
3. -278_{10}	8. 18 bits
4. 100 0000 0000 ₂	9. 2 ²⁸ octets
5. 100 0000 0000 ₂	10. 4 Gib

Exercice 2

1.

Nombre	S	E	M
-532	1	10001000	00001010000000000000000
1,03125	0	01111111	0000100000000000000000
0,03125	0	01111010	0000000000000000000000

2.

Représentation IEEE 754	Représentation associée
44320000000000016	9×2^{65}
$FFF000000000000_{16}$	-∞
$7 \mathrm{FF} 100000000000_{16}$	NaN
000FF000000000 ₁₆	255 × 2 ⁻¹⁰³⁰

Exercice 3

Exercice 4

Figure 1

Figure 2

Si vous manquez de place, vous pouvez utiliser le cadre ci-dessous.

