Name:	Maths Class:
	5

SYDNEY TECHNICAL HIGH SCHOOL

Year 12 Mathematics

HSC Course

Assessment 3

June, 2015

Time allowed: 90 minutes

General Instructions:

- Marks for each question are indicated on the question.
- Approved calculators may be used
- All necessary working should be shown
- Full marks may not be awarded for careless work or illegible writing
- Begin each question on a new page
- Write using black or blue pen
- All answers are to be in the writing booklet provided
- A set of Standard Integrals is provided at the rear of this Question Booklet, and may be removed at any time.

Section 1 Multiple Choice Questions 1-10 10 Marks

Section II Questions 11-15 48 Marks

Section 1 Total Marks – 5 Attempt 1-5

Objective response Questions

Answer each question on the multiple choice sheet provided

- 1. Which term represents the distance that $y = a \sin(bx)$ extends out from the centre of its graph on the y-axis?
 - (A) Amplitude
 - (B) Domain
 - (C) Period
 - (D) Range
- 2. What are the solutions of $2 \cos x = -\sqrt{3}$ for $0 \le x \le 2\pi$?
 - (A) $\frac{\pi}{6}$ and $\frac{\pi}{6}$
 - (B) $\frac{5\pi}{6}$ and $\frac{7\pi}{6}$
 - (C) $\frac{\pi}{3}$ and $\frac{2\pi}{3}$
 - (D) $\frac{\pi}{6}$ and $\frac{7\pi}{6}$
- 3. What is the derivative of $e^{x}(x^2 + 2x)$?
 - (A) (2x + 2)
 - (B) $e^{x}(2x+2)$
 - (C) $e^{x}(x^2-2)$.
 - (D) $e^{x}(x^2+4x+2)$

- 4. A chord of length 5 cm is drawn in a circle of radius 6 cm. The area of the smaller region inside the circle cut off by the chord, correct to one decimal place, is:
 - (A) 1.8 cm^2
 - (B) 2.3 cm^2
 - (C) 13.6 cm^2
 - (D) 15.5 cm^2
- 5. What is the perimeter, P, of the sector below with an angle 36° and radius 20cm?

- (A) $P = 0.5 \times 400 \times \left(\frac{\pi}{5} \sin \frac{\pi}{5}\right) cm$
- (B) $P = \left(0.5 \times 400 \times \frac{\pi}{5}\right) cm$
- (C) $P = (40 + 36^{\circ}) cm$
- (D) $P = (40 + 4\pi) cm$
- 6. What is the value of $\int_0^1 (e^{3x} 1) dx$?
 - (A) $\frac{e^3}{3}$
 - (B) $\frac{e^3}{3} 1$
 - (C) $e^3 1$
 - (D) $\frac{1}{3} \left(e^3 4 \right)$

7. The diagram shows the region enclosed by x + y = 2 and $y = e^{-x}$

Which of the following pair of inequalities describes the shaded region in the diagram?

- (A) $x + y \le 2$ and $y \le e^{-x}$
- (B) $x + y \le 2$ and $y \ge e^{-x}$
- (C) $x + y \ge 2$ and $y \le e^{-x}$
- (D) $x + y \ge 2$ and $y \ge e^{-x}$
- 8. What is the greatest value taken by the function $f(x) = 4 2\cos x$ for $x \ge 0$?
 - (A) 2
 - (B) 4
 - (C) 6
 - (D) 8

9. The values for a continuous function are given in the table below.

X	0	1	2	3	4	5	6	7	8
f(x)	15	12.5	6	-3	-5	2	3.5	7.5	10

The trapezoidal rule approximation for $\int_0^8 f(x) dx$ is:

- (A) 36
- (B) 35.5
- (C) 48.5
- (D) 49

10. The diagram below shows the region bounded by the curve $y = \sqrt{5\cos^2 x}$ and the x-axis for $-\frac{\pi}{4} \le x \le \frac{\pi}{4}$. The region is rotated about the x-axis to form a solid. Which of the following gives the volume of the solid?

- $(A) V = 5 \pi \int_0^{\frac{\pi}{4}} \cos^2 x \, dx$
- (B) $V = 10 \pi \int_{0}^{\frac{\pi}{4}} \cos^{2} x \, dx$
- (C) $V = 10 \pi \int_{0}^{\frac{\pi}{4}} \cos^4 x \, dx$
- (D) $V = 25 \pi \int_0^{\frac{\pi}{4}} \cos^2 x \, dx$

Section II Total Marks 50 Attempt Questions 11-15

Answer the questions in the booklet provide. Start each question on a NEW sheet of paper.

Question 11	1	0 marks	
a) Find th	ne exact value of $\tan \frac{2\pi}{3}$	2	
b) (i) Fin	and the derivative of $y = \sin^2 x$	2	
(ii) Fi	and the equation of the tangent to $y = \sin^2 x$ at $x = \frac{\pi}{4}$	2	
(iii) Fi	and the equation of the normal to $y = \sin^2 x$ at $x = \frac{\pi}{4}$	2	
(iv) If 1	the tangent meets the x-axis at P and the normal meets the y-axis at Q,		
fin	and the area of $\triangle OPQ$ where O is the origin in exact form.	2	

a) Differentiate $4 \cos (5x - 3)$ with respect to x:

b) (i) Find the radius of the circle if the area of the shaded sector is $12\pi cm^2$

•

(ii) Hence find the exact length of the major arc AC

2

3

c) Copy the table of values into your writing booklet and supply the missing numbers, for $f(x) = x \sin x$, writing each correct to 3 decimal places.

ſ	x	1	1.5	2	2.5	3
	$f(x) = x \sin x$	0.841				

Use Simpson's Rule with 5 function values to find an approximation for $\int_{1}^{3} x \sin x \, dx$

a) Differentiate $\frac{x}{\cos x}$

- 2
- b) Find the equation of the tangent to the curve $y = 3e^x 1$ at the point where x = 1
- The diagram shows the shaded region enclosed by the curve $y = \sqrt{x-1}$, the y-axis and the lines y=1 and y=3

Find the volume of the solid of revolution when the shaded region is rotated about the y-axis.

a) Find $\int_0^{\frac{\pi}{12}} \sec^2 3x \ dx$

2

b) The graph of $y = \cos 3x$ is shown below

2

(i) Solve $\cos 3x = 0$ for $0 \le x \le \pi$

(ii) State the amplitude and the period of $y = \cos 3x$

2

(iii) Copy this diagram into your booklet showing the x-intercepts Hence sketch the graph of $y = \sec 3x$ in the domain $0 \le x \le \pi$ showing any asymptotes.

(Hint: The diagram should be one third of your page, use a ruler)

- 2
- (iv) Using (iii), find the number of solutions to $\sec 3x = x$ in the domain $0 \le x \le \pi$
- 2

- a) Consider the function $f(x) = \cos^2 x \sin x$ in the domain $\pi \le x \le \frac{3\pi}{2}$
 - (i) Find f'(x).
 - (ii) Find the x-coordinates of the stationary points of y = f(x) and determine their nature 3
- b) The diagram shows a sector of a circle with radius r cm. The angle at the centre is θ radians and the area is 18 cm^2

i) Find an expression for r in terms of θ .

1

ii) Show that P, the perimeter of the sector in cm, is given by

2

$$P = \frac{6(2+\theta)}{\sqrt{\theta}}$$

iii) Find the minimum perimeter and the value of θ for which this occurs.

3

End of Exam

Equation of the tangent $dy = 2x \sin x \cos x$ $dy = 2x \sin x \cos x$ $dy = 1 (x - \frac{\pi}{4})$ $dy = x + \frac{\pi}{4} - \frac{\pi}{4}$ $dy = x + \frac{\pi}{4} - \frac{\pi}{4}$	$\frac{dy}{dx} = \frac{dy}{dx} \times \frac{dy}{dx}$ $= \frac{dy}{dx} \times \frac{dy}{dx}$ $= 2\sin x \cos x$ $= 2\sin x \cos x$	a) $\tan \frac{2\pi}{3} = -\tan \frac{\pi}{3}$ $= -\sqrt{3}$ b) $u = \sin^2 \pi$ $\int \det u = \sin \pi$ $\int \det u = \cos \pi$	Choice 6 D 7 B 8 C 9 A 10 B
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Question 12 a) $y = 4 \cos(5x-3)$ $\frac{dy}{dx} = -20 \sin(5x-3)$ b) i) Area of sector = $\frac{1}{2}r^2\theta$ $12\pi = \frac{1}{2}r^2\pi$ $144\pi = r^2\pi$	$P(\bar{x} - 4, 0)$ $= \frac{1}{2} (\bar{4} - \frac{1}{2}) (\bar{4} + \frac{1}{2})$ $= \frac{1}{2} (\bar{1} - \frac{1}{2}) (\bar{4} + \frac{1}{2})$ $= (\bar{1} - \frac{1}{2} - \frac{1}{2}) \text{ units}^{2}$	mathematics thisk 3 2015 a) Equation of the normal $M_2 = -1$ $y-y_1 = m(x-x_1)$ $y-y_2 = -1(x-\frac{\pi}{4})$ $y=x_2-x_1+\frac{\pi}{4}+\frac{1}{2}$ e) $R(0,\frac{\pi}{4}+\frac{1}{4})$
$= \pi \left[\frac{348 + \frac{34}{5} + \frac{3}{4} + \frac{3}{5} + \frac{1}{5} + \frac{1}{5} \right]$ $= \pi \left[\frac{348 - \frac{78}{5}}{5} \right]$ $= 1016 \pi \text{ unit }^{3}$	<u></u>	b) $y = 3e^{x} - 1$ $dx = 3e^{x}$ e^{3x} $y = 3e^{x}$ $y = 3e^{-1}$	ا چا
iv) sec 3x = 2 2 Solutions from the gr	-1 0 4 = w 3x 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	b) i) $(0.5 \ 3x = 0)$ $3x = \frac{\pi}{2}, \frac{3\pi}{2}, \frac{5\pi}{2}$ $x = \frac{\pi}{6}, \frac{\pi}{2}, \frac{5\pi}{2}$ ii) $amb = 1$ $period = \frac{3\pi}{3}$ 4π 7	Question 14 a) $\int_{0}^{\pi hz} \sec^{2}3z$ dx = $\left[\frac{\tan 3x}{3}\right]^{\frac{1}{2}}$ = $\left[\frac{1}{3} - 0\right]$

x=x, 3n -1 + xu(sx - cos x = 0) -cos x (2sin x + 1) = 0 -cos x (2sin x + 1) = 0westion 15) Stationary points occur when f'(a) = 0 $\int_{-\infty}^{\infty} (x) = (0)^2 - \sin x$ within the olomain x > 0 - x < 0 x < 0 - x < 0 x < 0 x < 0 x < 0 x < 0dsinx +1 =0 $\frac{2}{2} = x \text{ uls}$

0	`.	11.26	دن ا
-	1	o	回
	/	-0.34	4-
		Ö	を記る
	\	0.26	υs

$$f(x)$$
 has a maximum at $x=\frac{7\pi}{2}$

(b)
$$\hat{x}$$
) $\hat{A} = \frac{1}{3}r^{2}\theta$
 $18 = \frac{1}{3}\theta t^{2}$
 $36 = r^{2}\theta$
 $7 = r^{2}\theta$

At
$$\theta = 2$$

$$p'' = 9(2)^{-5h} - 3/2(2)^{-3/2}$$

$$= 1.06 > 0 \quad \text{concave exp}$$

$$\therefore \text{ minimum at } \theta = 2$$

$$p = 6(4)$$

$$p = 12\sqrt{2} \quad \text{cm}$$