Q1que:	stion_belo	owAnswers :	(edited/suggested by:Vinay	_)
Answers :	a,c,d	(edited/suggested by:	Kashank)	
_Answers:	-	(edited/suggested by:Ne	eeraj)	
_Answers:		(edited/suggested by:As	shish)	
_Answers:		(edited/suggested by:Ha	arish)	
Answers:		(edited/suggested by: Ba	achal)	

(use notations and conventions from the class) Consider the problem of linear regression where we minimize the loss

$$\mathcal{L}_1 = \frac{1}{N} \sum_{i=1}^{N} \alpha_i (y_i - \mathbf{w}^T \mathbf{x}_i)^2 + \lambda_1 g(\mathbf{w})$$

where g() is a regularization term. We also write the loss in matrix form as

$$\mathcal{L}_2 = \frac{1}{N} [Y - \mathbf{X} \mathbf{w}]^T A [Y - \mathbf{X} \mathbf{w}] + \lambda_2 g(\mathbf{w}).$$

If ${\bf A}={\it I},\, \alpha_i=1$ for all $\it i,\, {\it and}\,\, \lambda_1=\lambda_2=1$, then

- (A) Both the loss functions are identical i.e., $\mathcal{L}_1 = \mathcal{L}_2$
- (B) \mathcal{L}_1 is a scalar and \mathcal{L}_2 is a vector
- (C) The optima of the first objective \mathbf{w}_1^* is same as the optima of \mathcal{L}_2 , i.e., \mathbf{w}_2^*
- (D) At the optima, value of the losses are same. i.e., $\mathcal{L}_1^* = \mathcal{L}_2^*$
- (E) none of the above

Q2___question_below____Answers : ____ (edited/suggested by: _Vinay___)

_Answers : ___b,d___ (edited/suggested by: __Kashank____)

_Answers : ____ (edited/suggested by: __Neeraj___)

_Answers : ____ (edited/suggested by: __Ashish___)

_Answers : ___ (edited/suggested by: __Harish___)

Answers : ___ (edited/suggested by: __Bachal)

(use notations and conventions from the class) Consider the problem of linear regression where we minimize the loss

$$\mathcal{L}_1 = \frac{1}{N} \sum_{i=1}^{N} \alpha_i (y_i - \mathbf{w}^T \mathbf{x}_i)^2 + \lambda_1 g(\mathbf{w})$$

where g() is a regularization term. We also write the loss in matrix form as

$$\mathcal{L}_2 = \frac{1}{N} [Y - \mathbf{X} \mathbf{w}]^T A [Y - \mathbf{X} \mathbf{w}] + \lambda_2 g(\mathbf{w}).$$

If $\mathcal{L}_1 = \mathcal{L}_2$ for all \mathbf{w} , then

- (A) $A_{ii} = \frac{1}{\alpha_i}$ else zero
- (B) A is a diagonal matrix
- (C) $A_{ij} = \alpha_i \cdot \alpha_j$
- (D) $A_{ii} = \alpha_i$ else zero
- (E) none of the above

Q3question_b	elowAnswers: (edited/suggested by: _Vinay
_Answers :b,c	c,d (edited/suggested by:Kashank)
_Answers :	(edited/suggested by:Neeraj)
_Answers :	(edited/suggested by:Ashish)
_Answers :	(edited/suggested by:Harish)
Answers :	(edited/suggested by: Bachal)

(use notations and conventions from the class) Consider the problem of linear regression where we minimize the loss

$$\mathcal{L}_1 = \frac{1}{N} \sum_{i=1}^{N} \alpha_i (y_i - \mathbf{w}^T \mathbf{x}_i)^2 + \lambda_1 g(\mathbf{w})$$

where g() is a regularization term. We also write the loss in matrix form as

$$\mathcal{L}_2 = \frac{1}{N} [Y - \mathbf{X} \mathbf{w}]^T A [Y - \mathbf{X} \mathbf{w}] + \lambda_2 g(\mathbf{w}).$$

See L2 closely,

- (A) When A is not a diagonal matrix, this loss does not make any sense. Don't use.
- (B) When A is a diagonal matrix, this is equivalent to weighing each sample independently.
- (C) When A is PD, we can do cholesky decomposition of A as LL^T and an equivalent formulation is possible in \mathcal{L}_1 is each sample getting transformed as $L^T x_i$ (as in LMNN/Metric Learning)
- (D) When A is a rank deficient matrix, an equivalent formulation is possible in L₁ with a dimensionality reduction (this could be proved with eigen decomposition).
- (E) None of the above

Q4___question_below_____Answers : ______ (edited/suggested by: __Vinay___)

_Answers : __b ____ (edited/suggested by: __Kashank____)

_Answers : _____ (edited/suggested by: __Neeraj____)

_Answers : _____ (edited/suggested by: __Ashish____)

_Answers : _____ (edited/suggested by: __Harish____)

Answers : _____ (edited/suggested by: __Bachal __)

(use notations and conventions from the class) Consider the problem of linear regression where we minimize the loss

$$\mathcal{L}_{1} = \frac{1}{N} \sum_{i=1}^{N} \alpha_{i} (y_{i} - \mathbf{w}^{T} \mathbf{x}_{i})^{2} + \lambda_{1} g(\mathbf{w})$$

where g() is a regularization term. We also write the loss in matrix form as

$$\mathcal{L}_2 = \frac{1}{N}[Y - \mathbf{X}\mathbf{w}]^T A[Y - \mathbf{X}\mathbf{w}] + \lambda_2 g(\mathbf{w}).$$

If ${\bf A}={\bf I}, \, \alpha_i=2$ for all i, and $\lambda_1=\lambda_2=0$, then

- (A) At the optima, value of the losses are same. $\mathcal{L}_1^* = \mathcal{L}_2^*$
- (B) The optima of the first objective \mathbf{w}_1^* is same as the optima of \mathcal{L}_2 , i.e., \mathbf{w}_2^*
- (C) Both the loss functions are identical i.e., $\mathcal{L}_1=\mathcal{L}_2$
- (D) \mathcal{L}_1 is a scalar and \mathcal{L}_2 is a vector
- (E) none of the above

Q5question_bel	owAnswers:	(edite	d/suggested by: _	_Vinay
_Answers : _e	(edited/suggested by:	Kashank_)	
_Answers :	(edited/suggested by: _	_Neeraj	_)	
_Answers :	(edited/suggested by: _	_Ashish)	
_Answers :	(edited/suggested by: _	_Harish	_)	
Anewore:	(aditad/suggested by:	Rachal	1	

(use notations and conventions from the class) Consider the problem of linear regression where we minimize the loss

$$\mathcal{L}_1 = \frac{1}{N} \sum_{i=1}^{N} \alpha_i (y_i - \mathbf{w}^T \mathbf{x}_i)^2 + \lambda_1 g(\mathbf{w})$$

where g() is a regularization term. We also write the loss in matrix form as

$$\mathcal{L}_2 = \frac{1}{N}[Y - \mathbf{X}\mathbf{w}]^T A[Y - \mathbf{X}\mathbf{w}] + \lambda_2 g(\mathbf{w}).$$

If $\mathbf{A}=I$, $\alpha_i=1$ for all i, and $\lambda_1\neq\lambda_2\neq0$, then

- (A) The smaller the lambda, the better the solution
- (B) The optimal parameters \mathbf{w}^* is independent of λ_i .
- (C) The larger the lambda, the better the solution.
- (D) When lambda is nonzero (positive), loss will increase (since g(w) is also positive in practice), better to use $\lambda = 0$.
- (E) None of the above.