Ciência de Dados com R

Aula 5 | Ajuste de Modelos

Izabel Nolau nolau@dme.ufrj.br

Exemplo 1: Inflação e Emprego

Ano	×	У
1947	83.0	60323
1948	88.5	61122
1949	88.2	60171
1950	89.5	61187
1951	96.2	63221
1952	98.1	63639
1953	99.0	64989
1954	100.0	63761

Ano	х	У
1955	101.2	66019
1956	104.6	67857
1957	108.4	68169
1958	110.8	66513
1959	112.6	68655
1960	114.2	69564
1961	115.7	69331
1962	116.9	70561

Exemplo 1: Inflação e Emprego

Parece haver associação entre inflação (x) e emprego (y)?

Figure 1: Diagrama de dispersão do exemplo 1.

Equação da Reta

- A equação da reta é: $y = \beta_0 + \beta_1 x$.
- β_0 é o intercepto. Quando x = 0, $y = \beta_0$.
- β_1 é o coeficiente angular. Quando aumentamos uma unidade de x, aumentamos β_1 unidades em y.

Qual reta escolher?

Inúmeras retas passam pela nuvem de pontos.

Qual delas usar para explicar y a partir de x?

Quais são os valores de β_0 e β_1 mais adequados à descrição da relação entre y e x?

Devemos estimar β_0 e β_1 , a partir dos dados observados e aprender com eles sobre a associação entre x e y.

Modelo de Regressão Linear Simples

A relação entre x e y não é exata!

Consideramos um modelo estocástico para cada unidade i:

$$y_i = \beta_0 + \beta_1 x_i + e_i$$
, para $i = 1, ..., n$.

Teste de Hipóteses sobre os Coeficientes do Modelo

Após obter estimativas $\hat{\beta}_0$ e $\hat{\beta}_1$, devemos testar a significância estatística dos componentes do modelo.

Perguntas importantes:

- O intercepto é significativo ou um modelo mais simples com $\beta_0=0$ seria mais adequado?
- A variável x é realmente importante no modelo ou um modelo mais simples com $\beta_1=0$ seria mais adequado?

Se o p-valor do teste é menor que 0.05, temos que o coeficiente é significativo para a regressão!

Modelo de Regressão Linear Múltipla

Nesse caso, o modelo estocástico para cada unidade *i* é:

$$y_i = \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \cdots + \beta_p x_{ip} + e_i,$$

para i = 1, ..., n.

O problema de regressão linear simples é um caso particular, quando p=1!

Bons estudos! ©