Predicting Coffee Ratings from Expert Reviews

Kate Meredith

Agenda

- The Problem
- Background
- Data
- Cleaning & Pre-Processing
- Exploratory Data Analysis (EDA)
- Modeling & Results
- Key Takeaways
- Future Work

The Problem

How might we better understand the relationship between review and rating, so that coffee roasters can achieve top scores and distinguish themselves in a highly competitive market?

Background

- Global coffee market: \$100 billion USD and growing
- Highly competitive, dominated by large companies
- Growing interest in socially and environmentally responsible coffee
- Ratings and reviews influence consumer behavior
- Smaller roasters can distinguish themselves through expert reviews ("cupping")

The Data

- Scraped for this project from CoffeeReview.com
- Reviews span 1997 to 2022
- Reviews conducted by a small, specially trained team
- Data includes:
 - Descriptive info (e.g. year of review)
 - Evaluative numeric data (e.g. aroma score)
 - Descriptive text (e.g. where to buy it)
 - Evaluative text (e.g. blind assessment)

Data Wireframe

Features

Month	Year	Bean Agtron	Ground Agtron	Aroma	Acidity	Body
1-12	1997-2022	1-100	1-100	1-10	1-10	1-10

Flavor	Aftertaste	Roaster Location	Roaster Longitude	Origin Latitude	Origin Longitude	The Blind Assessment
1-10	1-10	Lat + Lon	Lat + Lon	Lat + Lon	Lat + Lon	Text

Target

Overall Score
50-100

- Sorting scraped data to match values with the correct feature
- Missing data filled in
- Values transformed to more useable format (location, roast level)
- Dropped: 'with milk', 'estimated price' and descriptive paragraphs
- Natural language processing on text

7

- Key insights:
 - Subscores: aroma, acidity, flavor and aftertaste:
 - Highly correlated with target (overall score)
 - Scores tend to be high (7-9)

Exploratory Data Analysis (EDA)

SLIDESMANIA.COM

Modeling & Results

- 3 Stages:
 - Baseline models on numeric data
 - Baseline model on transformed text data
 - Optimized models on combined dataset
- Looking for R² close to 1 and low Mean Absolute Errors (MAE)

Modeling & Results

- Baseline models on non-text data (in order of performance
 - XG Boost Regressor (R²: 0.918)
 - Random Forest (R²: 0.916)
 - Linear Regression (R²: 0.898)
 - Neural Network (R²: 0.894)
 - KNN (R²: 0.843)
 - Support Vector Regression (R²: 0.892)

Modeling & Results

- ► 4 transformation methods tried:
 - Count Vectorizer
 - TFIDF Vectorizer (stemmed)
 - TFIDF Vectorizer (not stemmed)
 - Word Embedding
- Selected method: TFIDF Vectorizer (not stemmed): R²: 0.744

- ► Best text-only model R²: 0.744
- Let's see how well the text reviews predict results.

Combined Model & Results

- Optimized models on combined dataset
 - XG Boost Regressor (Validation R²: 0.906 & MAE: 0.593)
 - Lasso Regression (Validation: R²: 0.904 & MAE: 0.674)
- Final Model: Lasso Regression
 - Test R²: 0.910
 - Test MAE: 0.691
 - Conclusion: We can expect the model to predict scores within 1 point of accuracy

Future Steps

- Including additional text in the final model
- Trying other methods for dealing with missing values
- Optimizing additional models on the combined dataset
- Explore topic modeling

Thank You!

Let's Connect.

linkedin.com/in/kate-m-meredith/

github.com/KMere21

Credits.

Presentation Template: SlidesMania

Images: Unsplash

Pattern design made with shapes based on Paaatterns

Please keep this slide or mention us and the other resources used in the footer of a slide.

