MATH2017 Problem Set 5:

Power series

Submit on Gradescope by 17:00, Monday 15 May 2023

- 1. Compute the radius of convergence of the power series $\sum_{n=0}^{\infty} \frac{x^{3n+7}}{2^n+1}$.
- 2. (a) Prove that if $\sum_{n=0}^{\infty} \alpha_n$ and $\sum_{n=0}^{\infty} \beta_n$ converge absolutely, so does $\sum_{n=0}^{\infty} \alpha_n \beta_n$. (b) Prove that if $\sum_{n=0}^{\infty} a_n x^n$ has radius of convergence $R_1 > 1$ and $\sum_{n=0}^{\infty} b_n x^n$ has radius of convergence $R_2 > 1$, then the radius of convergence R of $\sum_{n=0}^{\infty} a_n b_n x^n \text{ is at least } R_1 R_2.$
- 3. (a) Prove that the series $\sum_{n=0}^{\infty} \frac{1}{2^n} \sqrt{1 + e^{nx}}$ converges uniformly on $(-\infty, 0]$. (Hint: Weierstrass M Test!)
 - (b) Determine the subset $E \subseteq \mathbb{R}$ on which the series converges. Rigorously justify your answer.
- 4. Show, directly from Definition 8.32, that the function $f: \mathbb{R} \to \mathbb{R}$, $f(x) = x^2$ is analytic.