This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

THIS PAGE BLANK (USPTO)

BUNDESREPUBLIK **DEUTSCHLAND**

® Offenlegungsschrift

® DE 4435160 A1

6 int. Cl.⁸: G 01 L 5/00 G 01 M 17/02 // B60T 8/32

DEUTSCHES PATENTAMT

P 44 35 160.7 Aktenzeichen: 30. 9.94 Anmeldetag: 43 Offenlegungstag:

4. 4.96

(71) Anmelder:

Continental Aktiengesellschaft, 30165 Hannover, DE

(72) Erfinder: Drähne, Eberhard, 30823 Garbsen, DE

(64) Einrichtung zur Ermittlung der Umfangskraft eines Fahrzeugrades

Eine Einrichtung zur Ermittlung einer der wirksamen Umfangskraft eines aus Felge (8) und Reifen (9) bestehenden Fahrzeugrades proportionalen Größe am Reifen (9) ist gekennzeichnet durch mindestens ein in der Seitenwand (1) des Reifens (9) angeordnetes erstes Geberelement (2), mindestens ein weiteres gegenüber dem ersten Geberelement (2) radial weiter Innen liegendes zweites Geberelement (3), mindestens zwei fahrzeugfest angeordnete, mit je einem der Geberelemente (2, 3) zusammenwirkende Sensoren (4, 5), eine mit den Sensoren (4, 5) in Wirkverbindung stehende Auswerteeinheit zur Ermittlung des aktuellen Winkels (α) zwischen den Geberelementen (2, 3) aus den zu unterschiedlichen Zeitpunkten von den Sensoren (4, 5) gelieferten Signalen. Die Umfangskraft ist ein Maß der Antriebs- bzw. Bremskraft eines Rades. Hierdurch kann mittels des anderweitig ermittelten Schlupfs eine Information über die Griffigkeit des Untergrundes erhalten werden. Damit können Fahrzustände eines Fahrzeugs erkannt werden.

Beschreibung

Die Erfindung betrifft eine Einrichtung zur Ermittlung einer der wirksamen Umfangskraft eines aus Felge und Reifen bestehenden Fahrzeugrades proportionalen Größe am Reifen.

Bei mit einem Antiblockiersystem ausgerüsteten Fahrzeugen wird über diese Regeleinrichtung im Bremssystem das Blockieren der Räder beim Bremsen verhindert. Durch Erhöhung des Bremsdruckes beim 10 Anbremsen nimmt der Bremsschlupf zu und erreicht im höchsten Punkt einer Kraftschluß-Schlupfkurve die Grenze zwischen stabilem und instabilem Gebiet. Einer weiteren Erhöhung des Bremsdrucks bzw. des hieraus resultierenden Bremsmoments steht von hier an keine 15 weitere Steigerung der Bremskraft mehr gegenüber. Je nach Verlauf der Schlupfkurve findet ein mehr oder weniger starker Abfall des Bremskraftbeiwertes statt. Das daraus resultierende Überschußmoment bewirkt ohne Antiblockiersystem ein Abbremsen des Rades bis 20 zum Stillstand in kürzester Zeit, das sich in einem starken Ansteigen der Radverzögerung äußert. Dieser Verzögerungsanstieg wird durch die ABS-Sensoren, die die Raddrehzahl überwachen, erfaßt.

Steuergerät in Wirkverbindung, das einen Mikrocomputer enthält. Im Steuergerät wird aus den Drehzahlfühlersignalen die Radgeschwindigkeit sowie die Radverzögerung und -beschleunigung errechnet. Aus den Radgeschwindigkeiten beispielsweise aller Räder wird eine 30 fiktive Fahrzeugreferenzgeschwindigkeit gebildet. Mit dieser Referenzgeschwindigkeit und den einzelnen Radgeschwindigkeiten kann der Bremsschlupf für jedes Rad berechnet werden. Aus den Signalen Radbeschleunigung und Schlupf wird eine eventuell vorhandene Blok- 35 kierneigung der Räder bestimmt und der Regelvorgang entsprechend eingeleitet.

Wenn ein Fahrzeug über längere Zeit mit Schlupf an allen vier Rädern abgebremst wird, kann die Fahrzeugreferenzgeschwindigkeit nicht mehr zuverlässig ermit- 40 telt werden und das System verliert die Information über die tatsächliche Fahrgeschwindigkeit, die zur Berechnung des Schlupfs notwendig ist, und es gibt Regelprobleme.

Dasselbe Verhalten tritt auf, wenn ein mit einer Anti- 45 schlupfregelung versehenes allradgetriebenes Fahrzeug über längere Zeit mit Schlupf beschleunigt wird.

Der Schlupf ist definiert durch den Quotienten aus der Differenz von Fahrgeschwindigkeit des Fahrzeugs und Umfangsgeschwindigkeit des Fahrzeugrades und 50 der Fahrgeschwindigkeit des Fahrzeugs.

Es ist bekannt, daß bei bestimmten Fahrbahnbelägen (Eis, Schnee, Schotter) keine optimale Antischlupfregelung möglich ist. Beim Bremsen bzw. Beschleunigen auf rechts und links unterschiedlich glattem Untergrund 55 (μ-Splitt-Bremsen) sind die Brems- bzw. Antriebskräfte aufgrund des unterschiedlichen Schlupfes rechts und links unterschiedlich hoch, und es entsteht ein Giermoment, das durch Gegenlenken ausgeglichen werden muß. Bei genauer Kenntnis der μ-Schlupfkurve könnte 60 der Regelvorgang optimiert und verbessert werden. Insbesondere könnte die Art des Fahrbahnbelags erkannt werden und das Fahrzeug könnte sich hierauf "elektronisch einstellen". Die u-Schlupfkurve gibt die am Rad wirksame Umfangskraft in Abhängigkeit vom Schlupf 65 wieder. Sie ist ein Maß für die Antriebskraft und damit proportional zum Antriebs- bzw. Bremsmoment. Da die Umfangskraft aber an der Lauffläche des Reifens wirkt.

ist sie direkt kaum bestimmbar.

Der Erfindung liegt daher die Aufgabe zugrunde, eine Einrichtung zur Ermittlung einer der wirksamen Umfangskraft am Fahrzeugrad proportionalen Größe am Reifen zu schaffen und einen entsprechenden Reifen zur Verfügung zu stellen.

Von dieser Problemstellung ausgehend ist eine erfindungsgemäße Einrichtung gekennzeichnet durch

- mindestens ein in der Seitenwand des Reifens angeordnetes erstes Geberelement,
- mindestens ein weiteres gegenüber dem ersten Geberelement radial weiter innen liegendes zweites Geberelement,
- mindestens zwei fahrzeugfest angeordnete, mit je einem der Geberelemente zusammenwirkende Sensoren zur Abgabe von Signalen,
- eine mit den Sensoren in Wirkverbindung stehende Auswerteeinheit zur Ermittlung des aktuellen Winkels zwischen den Geberelementen aus den zu unterschiedlichen Zeitpunkten von den Sensoren gelieferten Signalen.

Die Erfindung macht sich dabei den Effekt zunutze, Die ABS-Sensoren stehen mit einem elektronischen 25 daß die auf den Reifen wirkende Umfangskraft proportional zu der Verdrehung des Gürtels gegenüber der Felge ist. Die an den Sensoren vorbeilaufenden Geberelemente bewirken jedes Mal beim Passieren der Sensoren, daß an die Auswerteeinheit ein Signal abgegeben wird. Solange auf den Reifen keine Umfangskraft wirkt, wird also keine Verdrehung bzw. Verspannung des Gürtels gegenüber der Felge vorhanden sein. Die Signale der Sensoren werden folglich immer zur selben Zeit abgegeben. Verspannt sich der Gürtel gegenüber der Felge, gibt der mit dem radial weiter außen liegenden Geber zusammenwirkende Sensor je nach Richtung der Umfangskraft (Beschleunigen/Verzögern) früher oder später ein Signal ab. Durch die radial unterschiedliche Anordnung der Geberelemente kann auf die Verdrehung des Gürtels zur Felge, also den aktuellen Winkel zwischen den Geberelementen, aus der Phasenverschiebung des Signals zwischen gürtelnahem und felgennahem Geber/Sensor geschlossen werden. Der Winkel zwischen den Geberelementen gibt die Verspannung des Gürtels gegenüber der Felge an und die wiederum ist proportional zur wirkenden Umfangskraft. Das Vorzeichen der Phasenverschiebung gibt an, ob sich die Verspannung des Gürtels aufgrund zu großer Antriebsoder zu großer Bremskräfte einstellt.

Das mindestens eine weitere Geberelement kann in der Seitenwand des Reifens oder in der Felge angeordnet sein. Je weiter die Geberelemente radial voneinander beabstandet sind, um so deutlicher fällt das Meßergebnis aus. Bei der Anordnung in der Felge muß sichergestellt sein, daß eine Verschiebung des Reifens auf der Felge ausgeschlossen ist. Wenn die Verschiebung des Reifens sicher ausgeschlossen werden kann, kann anstatt eines weiteren Geber-/Sensorelements vorzusehen auch der an der Radnabe angeordnete ABS-Sensor des Fahrzeugs verwendet werden.

Vorzugsweise ist eine Mehrzahl von Geberelementen auf je einem Kreis vorgesehen. Weiterhin vorzugsweise können die Geberelemente regelmäßig beabstandet sein. Durch die Vielzahl von Signalen bei einer Reifenumdrehung wird das Meßergebnis weiter verbessert.

Bei einem Ausführungsbeispiel der Erfindung können die Geberelemente außerdem auch in Umfangsrichtung zueinander versetzt angeordnet sein. Dies bietet den Vorteil, daß die Elektronik der Auswerteeinheit zwischen Vorwärts- und Rückwärtsfahrt unterscheiden

Zusätzlich zur Phasenauswertung kann auch eine Amplitudenauswertung vorgenommen werden. Eine Amplitudenauswertung gibt Aufschluß über die Seitenwandverformung des Reifens. Zur Amplitudenauswertung kann weiterhin vorzugsweise ein weiterer Sensor in der Nähe der Reifenaufstandsfläche fahrzeugfest angeordnet sein. Durch diesen dritten Sensor können 10 gleichzeitig Seitenwandverformungen des Reifens in der Bodenaufstandsfläche ermittelt werden. Diese Seitenwandverformung ist abhängig vom Luftdruck, der Last und der am Reifen wirkenden Seitenkraft. Durch Vergleich der Messungen oben und unten am Reifen 15 und eine geeignete Elektronik in der Auswerteeinheit ist es möglich, diese Einflußgrößen zu trennen, und es kann auf den Luftdruck und die Radlast geschlossen werden.

Sind fahrzeugfest viele Sensoren über den Reifenumfang angebracht und wird zusätzlich der Abstand des 20 reifenfesten Gebers zu den fahrzeugfesten Sensoren gemessen, ergibt sich eine Information über die Verformung der Seitenwand über den Reifenumfang, nämlich über deren Länge, über deren Amplitude, über deren Welligkeit und deren zeitliche Konstanz. Aus diesen 25 am Reifen 9. Werten läßt sich auf die Größen: Seitenkraft am Reifen, Radlast, Luftdruck und auch auf Reifenschäden an der Seitenwand schließen.

Die Kenntnis der Seitenkräfte an Vorder- und Hinterachse eines Fahrzeugs gibt Auskunft über das momen- 30 tane Eigensteuerverhalten. Beim Untersteuern bzw. Übersteuern eines Fahrzeugs hat immer eine Achse noch Seitenführungsreserven. Werden diese richtig eingesetzt, kann das Fahrzeug auch kritischeren Situationen in der Kurve gehalten werden, ohne auszubrechen. 35 Ist das momentane Eigensteuerverhalten durch die gemessenen Seitenkräfte bekannt, kann durch gezieltes Abbremsen einzelner Räder oder durch geeignete Lenkkorrekturen bei elektronischen Vierradlenkungen beispielsweise korrigierend eingegriffen werden.

Ein Fahrzeugreifen zur Verwendung in der erfindungsgemäßen Einrichtung ist gekennzeichnet durch mindestens ein in der Seitenwand angeordnetes Geberelement. Vorzugsweise können in der Seitenwand auf einem Teilkreis auch mehrere Geberelemente angeord- 45 net sein.

Die Verwendung mindestens eines weiteren, gegenüber dem Geberelement radial weiter innen liegenden Geberelements in der Seitenwand des Reifens kann unter Umständen kostengünstiger sein als dieses in der 50 Felge anzuordnen. Es bietet aber insbesondere in Verbindung mit einer Amplitudenauswertung der Signale den Vorteil, daß zusätzliche Informationen über die Verformung der Seitenwand erhältlich sind.

Geberelement möglichst nahe an der Lauffläche des Reifens angeordnet, da die Umfangskraft ihren Angriffspunkt in der Lauffläche hat, wodurch das Meßergebnis gesteigert wird.

Weitere vorteilhafte Ausgestaltungen des erfindungs- 60 gemäßen Fahrzeugreifens sind den übrigen Unteransprüchen entnehmbar.

Anhand einer Zeichnung soll die Erfindung nachfolgend näher erläutert werden. Es zeigt:

Fig. 1-4 schematische Darstellungen eines erfin-65 dungsgemäß ausgebildeten Fahrzeugrades,

Fig. 5 die schematische Darstellung der erfindungsgemäßen Einrichtung mit wenigstens zwei in der Seitenwand des Reifens angeordneten Geberelementen,

Fig. 6 die schematische Darstellung der erfindungsgemäßen Einrichtung mit einem in der Seitenfläche des Reifens und einem in der Felge angeordneten Geberelement.

Bei vorliegenden Umfangskräften verspannt sich der Gürtel des Reifens 9 gegenüber der Felge 8. Zwei auf unterschiedlichen Kreisen angeordnete und damit radial beabstandete Geberelemente 2, 3 wirken mit entsprechenden Sensoren 4,5 zusammen, die fahrzeugfest angeordnet sind und jedesmal wenn sie von den Geberelementen 2, 3 passiert werden, ein Signal in Form eines Spannungs- oder Stromimpulses liefern. Die Geberelemente 2, 3 können in der Seitenfläche 1 des Reifens 9 vorgesehen sein. Ebenso kann eines der Geberelemente 2 im Reifen 9 und das andere Geberelement 3 in oder an der Felge 8 befestigt sein. Zumindest das eine Geberelement 2 muß möglichst dicht an der Lauffläche 7 angeordnet sein. Durch die Verspannung des Reifen-Gürtels gegenüber der Felge 8 ändert sich der Winkel a zwischen den Geberelementen 2 und 3 und damit die Phase zwischen den Signalen, die die Sensoren 4,5 an die nicht dargestellte Auswerteeinheit liefern. Damit ist die Phase zwischen den Signalen proportional zur Umfangskraft

Die Geberelemente 2,3 können an einer oder mehrerer Stellen des Radumfanges äquidistant oder in kodierten Abständen angebracht sein.

Es sind vielfache Ausgestaltungsformen der Geberelemente 2, 3 denkbar. Sie können als kleine Magnete, Metallstreifen, Metallstifte, magnetischen Gummistreifen, einem Lochband aus Metall oder einem anderen magnetischen Material, einem modulierten Magnetband oder anderem magnetisch aktiven Material, optisch reflektierenden Streifen, periodische Erhebungen nahe der Gürtelkante mit eingeheizten oder nachträglich ein- oder angebrachten magnetisch leitfähigen Materialien sein. Ebenso ist denkbar, daß die Gürteldrähte, deren Enden zackenförmig aus dem Umfang ausgefranst sind, die Geberelemente bilden. Auch können magnetisch leitende Cordfäden oder Cordfädenteile den Textilkarkassen zugefügt werden. Zur besseren Erkennung bei LKW-Reifen können die Stahlkarkassefäden auch durch magnetisch nicht leitende Cordfäden unterbrochen sein.

Die Geber 2,3 können sowohl außen als auch innen in den Reifen 9 eingeheizt werden.

Zweckmäßigerweise werden als Sensoren 4, 5 Hallsensoren, magnetorestriktive oder induktive bzw. optische Sensoren verwendet.

Wie Fig. 6 entnehmbar ist, kann nahe der Reifenaufstandsfläche 11 ein zusätzlicher Sensor 10 angeordnet sein. Mit dem Luftdruck eines Reifens ändert sich speziell an der Seitenwand 1 - seine Kontur. Damit Weiterhin vorzugsweise ist das wenigstens eine erste 55, wird der Abstand des Geberelements 2 zu den Sensoren 4 und 10 beeinflußt. Wandert das Geberelement 2 am oberen Sensor 4 vorbei hat das erzeugte Signal eine andere Amplitude als das vom Sensor 10 erzeugte Signal wenn das Geberelement 2 an diesem vorbeiwandert. Die durch die Fliehkraft am Reifen hervorgerufenen Konturänderungen können, da sie empirisch ermittelbar sind, in der Auswerteeinheit entsprechend berücksichtigt werden. Mit der erfindungsgemäßen Einrichtung ist es daher auch möglich, den Luftdruck bzw. Luftdruckänderungen zu erfassen.

Patentansprüche

1. Einrichtung zur Ermittlung einer der wirksamen Umfangskraft eines aus Felge (8) und Reifen (9) bestehenden Fahrzeugrades proportionalen Größe am Reifen (9), gekennzeichnet durch

- mindestens ein in der Seitenwand (1) des Reifens (9) angeordnetes erstes Geberelement

(2),

- mindestens ein weiteres gegenüber dem ersten Geberelement (2) radial weiter innen liegendes zweites Geberelement (3),

— mindestens zwei fahrzeugfest angeordnete, mit je einem der Geberelemente (2, 3) zusammenwirkende Sensoren (4, 5) zur Abgabe von 15 Signalen,

— eine mit den Sensoren (4, 5) in Wirkverbindung stehende Auswerteeinheit zur Ermittlung des aktuellen Winkels (α) zwischen den Geberelementen (2, 3) aus den zu unterschiedlichen Zeitpunkten von den Sensoren (4, 5) gelieferten Signalen.

2. Einrichtung nach Anspruch 1, dadurch gekennzeichnet, daß das wenigstens eine erste Geberelement (2) gegenüber dem wenigstens einen weiteren 25 Geberelement (3) in Umfangsrichtung versetzt an-

geordnet ist.

3. Einrichtung nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß das mindestens eine weitere Geberelement (3) in der Seitenwand (1) des Reifens 30 (9) angeordnet ist.

4. Einrichtung nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß das mindestens eine weitere Geberelement (3) in oder an der Felge (8) angeordnet ist.

5. Einrichtung nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß eine Mehrzahl von Geberelementen (2, 3) vorgesehen ist.

6. Einrichtung nach Anspruch 5, dadurch gekennzeichnet, daß die Geberelemente (2, 3) regelmäßig 40 auf je einem Teilkreis angeordnet sind.

7. Einrichtung nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß ein weiterer Sensor (10) in der Nähe der Reifenaufstandsfläche (11) fahrzeugfest angeordnet ist.

8. Einrichtung nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, daß eine Mehrzahl von fahrzeugfesten Sensoren (4) dem wenigstens einen in der Seitenwand (1) angeordneten Geberelement (2) zugeordnet ist.

9. Fahrzeugreifen für die Einrichtung nach einem der Ansprüche 1 bis 8, gekennzeichnet durch mindestens ein in der Seitenwand (1) angeordnetes Geberelement (2).

10. Fahrzeugreifen nach Anspruch 9, gekennzeichnet durch eine Mehrzahl von in der Seitenwand (1) auf einem Teilkreis angeordneter Geberelemente (2)

11. Fahrzeugreifen nach Anspruch 9, dadurch gekennzeichnet, daß in der Seitenwand (1) mindestens ein weiteres, gegenüber dem Geberelement (2) radial weiter innen liegendes Geberelement (3) vorgesehen ist.

12. Fahrzeugreifen nach Anspruch 11, dadurch gekennzeichnet, daß das eine Geberelement (3) gegenüber dem anderen Geberelement (2) in Umfangsrichtung versetzt angeordnet ist.

13. Fahrzeugreifen nach Anspruch 10 oder 11, da-

durch gekennzeichnet, daß eine Mehrzahl von radial weiter innen liegenden Geberelementen (3) auf einem Teilkreis angeordnet ist.

14. Fahrzeugreifen nach einem oder mehreren der Ansprüche 9 bis 13, dadurch gekennzeichnet, daß die Geberelemente (2, 3) aus Metall bestehen.

15. Fahrzeugreifen nach einem oder mehreren der Ansprüche 9 bis 13, dadurch gekennzeichnet, daß die Geberelemente (2, 3) magnetisch sind.

16. Fahrzeugreifen nach einem oder mehreren der Ansprüche 9 bis 13, dadurch gekennzeichnet, daß die Geberelemente (2, 3) optisch reflektierend ausgebildet sind.

17. Fahrzeugreifen nach einem oder mehreren der Ansprüche 9 bis 13, dadurch gekennzeichnet, daß die Geberelemente (2, 3) über die Seitenwand (1) hervorstehen.

18. Fahrzeugreifen nach Anspruch 9 oder 10, dadurch gekennzeichnet, daß das eine Geberelement (2) möglichst nahe an der Lauffläche (7) angeordnet ist

Hierzu 3 Seite(n) Zeichnungen

- Leerseite -

BNSDOCID: < DE 443516041 L :

Nummer: Int. Cl.⁶: Offenlegungstag: DE 44 35 160 A1 G 01 L 5/00 4. April 1996

FIG. 1

FIG. 2

FIG. 3

FIG. 4

Nummer: int. Cl.⁶:

offenlegungstag:

DE 44 35 160 A1 G 01 L 5/004. April 1996

FIG. 5

ZEICHNUNGEN SEITE 3

Nummer: Int. Cl.⁶:

Offenlegungstag:

DE 44 35 160 A1 G 01 L 5/004. April 1996

FIG. 6

602 014/298