Text factorisation — I: Bag-of-words methods Course "Text-as-data analysis of international trade"

Dmitriy Skougarevskiy

The Institute for the Rule of Law, European University at Saint Petersburg

Saint Petersburg 25 April 2018

Course outline

- Preferential Trade Agreements and International Economic Order
- Gravity and Gravitas
- Text factorisation I: Bag-of-words methods
- Text factorisation II: Distributive semantics
- Welfare effects of Preferential Trade Agreements

- 1 What's in a bag?
 - BOW representation
 - BOW applications
- 2 Improvements
 - Tokenisation
 - Re-weighting of DTM
- 3 DTM Factorisation
 - Latent Semantic Analysis

- 1 What's in a bag?
 - BOW representation
 - BOW applications
- 2 Improvements
 - Tokenisation
 - Re-weighting of DTM
- 3 DTM Factorisation
 - Latent Semantic Analysis

Bag-of-words

- A simple yet versatile way to quantify any text is a bag of words:
 - John likes to watch movies. Mary likes movies too.

 "John", "likes", "to", "watch", "movies", "Mary", "likes", "movies", "too"
 - John also likes to watch football games.

 \$\preceq\$
 "John", "also", "likes", "to", "watch", "football", "games"
- In itself, it is of limited use. However, one can build a vocabulary of unique terms and store their counts:

	John	likes	to	watch	movies	Mary	too	also	football	games
doc1	1	2	1	1	2	1	1	0	0	0
doc2	1	1	1	1	0	0	0	1	1	1

This is a unigram document-term matrix

Bag-of-words & DTMs

- A simple yet versatile way to quantify any text is a bag of words:
 - John likes to watch movies. Mary likes movies too.

```
"John", "also", "likes", "to", "watch", "football", "games"
```

 In itself, it is of limited use. However, one can build a vocabulary of unique terms and store their counts:

	John	likes	to	watch	movies	Mary	too	also	football	games
doc1	1	2	1	1	2	1	1	0	0	0
doc2	1	1	1	1	0	0	0	1	1	1

• This is a unigram document-term matrix (DTM)

Unigrams vs. n-grams vs. q-grams

- One can put more than one word in a bag bigram here,
 n-gram in general:
 - "John_likes", "likes_to", "to_watch",
 "watch_movies", "movies_Mary", "Mary_likes",
 "likes_movies", "movies_too", ...
- Or capitalise on character-level information *q*-gram:

```
• "jo", "hn", "n_l", "li", "ik", "ke", "es", "s_", ...
```

- Variance-bias trade-off: larger n, q leads to lower generalisability of the language model
 - need for sparse representations: most n-grams are never used
- What shall one do with punctuation?

- 1 What's in a bag?
 - BOW representation
 - BOW applications
- 2 Improvements
 - Tokenisation
 - Re-weighting of DTM
- 3 DTM Factorisation
 - Latent Semantic Analysis

n-grams counts to examine culture

Figure 1: Relative counts in Google n-grams (Michel et al., 2011) from Pechenick et al (2015, fig. 2)

Figure 2: Dendrogram for n-gram distances between languages (Feinerer et al., 2013, fig. 4)

Figure 3: TDM of select terms in Shakespeare plays (Jurafsky and Martin, 2017, fig. 15.1)

	As You Like It	Twelfth Night	Julius Caesar	Henry V
battle	1	1	8	15
soldier	2	2	12	36
fool	37	58	1	5
clown	5	117	0	0

Figure 4: 2 dimensions of Shakespeare TDM (Jurafsky and Martin, 2017, fig. 15.3)

- 1 What's in a bag?
 - BOW representation
 - BOW applications
- 2 Improvements
 - Tokenisation
 - Re-weighting of DTM
- 3 DTM Factorisation
 - Latent Semantic Analysis

Figure 5: Partition examples of Dickens's "*Tale of Two Cities*" (Williams et al., 2015, fig. 1A): clause, phrase, word, grapheme, letter

//www.ibm.com/developerworks/community/blogs/nlp/entry/tokenization) "I said, 'what're you? Crazy?"' said Sandowsky. Naïve Apache Stanford Custom Ideal whitespace Open NLP

Table 1: Tokenisation is not as easy as it seems (https:

	•	•			
1		11	11	11	11
2	"i	i	i	i	i
3	said,	said	said	said	said
4		,	;	,	,
5	what're	what	•		
6			what	what're	what
7		re	re		are
8	you?	you	you	you	you
9		?	?	?	?
10	crazy?'''	crazy	crazy	crazy	crazy
11	•	?	?	?	?
12					
13	said	said	said	said	said

14 sandowsky. sandowsky sandowsky sandowsky sandowsky 15

- 1 What's in a bag?
 - BOW representation
 - BOW applications
- 2 Improvements
 - Tokenisation
 - Re-weighting of DTM
- 3 DTM Factorisation
 - Latent Semantic Analysis

Figure 6: Zipf's law $(F(w) \propto rank(w)^{-\theta})$ at various token level (Williams et al., 2015, fig. 1B): clause, phrase, word, grapheme, letter

Dealing with Zipf's law

- Zipf's law suggests that word frequency counts are very skewed
- At the same time, frequent words are not necessarily discriminative "the" vs "a"
- Solution 1: "stopwords" remove such stop words
 - problem: influence word order and any n-/q-gram measures
- Solution 2: term frequency-inverse document frequency weighting (tf-idf):

$$tf(token)_i = \frac{\#occurences \ in \ document \ i}{\#tokens \ in \ document \ i}$$

$$idf(token) = ln \frac{\#documents}{\#documents \ with \ token + 1}$$

- 1 What's in a bag?
 - BOW representation
 - BOW applications
- 2 Improvements
 - Tokenisation
 - Re-weighting of DTM
- 3 DTM Factorisation
 - Latent Semantic Analysis

How to extract meaning from DTMs

 Widely known way to extract meaning is to apply singular value decomposition to (tf-idf-weighted) DTM (Deerwester et al., 1990):

Figure 7: SVD example (from Radinsky, 2017)

See also: https://en.wikipedia.org/wiki/File:Topic_model_scheme.webm

LSA in practice

- In practice, LSA has large computational cost $O\left(mn^2\right)$ not always scaleable
- Need to reduce the resulting still-high-dimensional LSA output further, e.g. with PCA
- tf-idf makes a huge difference

Take-aways

- BOW model is a powerful albeit limited way to quantify texts
- Tokenisation is often overlooked but can be a large problem in practice
- Simply applying SVD to DTM can take you a long way

Thank you for your attention!

References — I

- Deerwester, S., S. Dumais, G. Furnas, T. Landauer, and R. Harshman (1990). Indexing by Latent Semantic Analysis. *Journal of the American Society for Information Science* 41(6), 391.
- Feinerer, I., C. Buchta, W. Geiger, J. Rauch, P. Mair, and K. Hornik (2013). The textcat package for *n*-gram based text categorization in R. *Journal of Statistical Software* 52(6), 1–17.
- Jurafsky, D. and J. Martin (2017). Speech and language processing (3 ed.). Pearson.
- Michel, J.-B., Y. K. Shen, A. P. Aiden, A. Veres, M. K. Gray, J. P. Pickett, D. Hoiberg, D. Clancy, P. Norvig, J. Orwant, et al. (2011). Quantitative analysis of culture using millions of digitized books. *Science* 331(6014), 176–182.

References — II

- Pechenick, E., C. Danforth, and P. Dodds (2015). Characterizing the Google Books corpus: Strong limits to inferences of socio-cultural and linguistic evolution. *PloS one* 10(10), e0137041.
- Williams, J., P. Lessard, S. Desu, E. Clark, J. Bagrow, C. Danforth, and P. Dodds (2015). Zipf's law holds for phrases, not words. *Scientific reports* 5, 12209.