ABCs

Brij Patel, Calvin Brooks, Dean Hu, Abdullakh Abshukur, Alexander Urbanski

Overview

Status

Task 1

- Static Wigner function plots for each state.
- A GIF animation showing the evolution of the dissipative cat state's Wigner function.
- A function or notebook that demonstrates the reconstruction process from Wp(x,p) to p~.
- Fidelity Tables or Plots comparing ρ vs ρ ~ for each state type (Fock, coherent, cats...).
- Compare ρ and ρ~ using at least one additional method beyond fidelity.
- Plots of fidelity $F(\rho,\rho^{\sim})$ vs. noise level σ for different states.
- A comparison between reconstructions from simulated and real Wigner data.

Task 2

 Correction & Denoising Code: A script or notebook that performs:

Affine correction (estimation and removal of a and b)

Gaussian filtering

- Benchmarking Module: A section that runs the full reconstruction pipeline on:
 - Raw noisy Wigner data
 - Corrected and/or denoised Wigner data
 - Then compares both against the clean reference using fidelity.
- Metrics & Plots
 - Fidelity Comparison: Table or plot showing F-raw and F-denoised for each test case.
 - \circ Fidelity vs. Noise: Curves showing how performance degrades or improves with varying noise width σ , for different Wigners.
 - Before vs. After Wigner Plots: Visual side-by-side of W-measured and W-clean
- Experimental Test Case: Apply your correction pipeline to the experimental Wigner data and include a short discussion or plot illustrating its effect (no fidelity comparison needed here).

Fock State Type

Coherent State Type

Cat State Type

Dissipative Cat
State from a
Two-Photon
Exchange
Hamiltonian

Wigner Function → Density Matrix

$$p_{\alpha} = \operatorname{Tr}(E_{\alpha}\rho) = \frac{1}{2}(1 + \frac{\pi}{2}W(\alpha))$$

$$E_{\alpha} = \frac{1}{2}(\mathbb{I} + D(\alpha)PD^{\dagger}(\alpha))$$

$$\min_{\rho \in \mathcal{M}} \left| \operatorname{Tr}(E_{\alpha_k} \rho) - w_k \right|^2$$

Optimize observable calculations with JAX - 30x speedup

Convex Optimization problem

Utilize cvxpy with constraints:

- Hermitian
- Positive semidefinite
- Trace = 1 (normalized)

Batching to conserve memory and speedup minimization

Sampling

- Need to sample W
 - Capture behavior of function with small sample size

Sample in circle around center

Adding Gaussian Noise and Comparing

Sigmas:

.05

.5

Simulated Wigner $\rightarrow \rho$ ($\sigma = 0.05$) | Magnitude

Simulated Wigner $\rightarrow \rho$ ($\sigma = 0.5$) | Magnitude

Simulated Wigner $\rightarrow \rho$ ($\sigma = 1$) | Magnitude

Experimental Wigner → p | Magnitude

Experimental Wigner → p | Magnitude

Experimental Wigner $\rightarrow \rho$ | Magnitude

Experimental Wigner $\rightarrow \rho$ | Magnitude

Denoising the Measured Wigner Function

Assume W tends towards 0 at the bounds. Find average Wigner value within a frame to estimate b.

$$W_{real}(x,p) = \frac{W_{measured}(x,p) - b}{a}$$

In detail: scipy.ndimage.gaussian_filter

Challenges

 Large calculations were difficult on our hardware

 Balance small sample size with capturing behavior of Wigner function

 Wigner to Density process was inconsistent between state types

Thank You

Brij Patel, Calvin Brooks, Dean Hu, Abdullakh Abshukur, Alexander Urbanski

