DIFFERENTIALLY PRIVATE FINE-TUNING OF LANGUAGE MODELS

Privacy Preserving Machine Learning Articles Presentation

Article

Yu, D., Naik, S., Backurs, A., Gopi, S., Inan, H. A., Kamath, G., ... & Zhang, H. (2021). Differentially Private Fine-tuning of Language Models. arXiv preprint arXiv:2110.06500.

Authors

Yu, D., Naik, S., Backurs, A., Gopi, S., Inan, H. A., Kamath, G., ... & Zhang Presented by Zakaria Boulkhir & Omar Iken

Outline

1 Fine-tuning Large Language Models

2 Meta-Framework (Introducing Privacy)

3 Experiments / Main results

4 Conclusion & Perspectives

Fine-tuning Large Language Models

Transformer-based Large Language Models (LLMs)

Examples:

- o BERT [Devlin et al.]
- o GPT [Radford et al.]

Fine-tuning

- 1. Pre-train the model on a large public dataset.
- 2. Fine-tune weights for downstream tasks.

Applications

- o Email reply suggestion.
- Sentence completion in text editors.
- o Language translation.

Figure 1: Structure of GPT [Maryam Fallah]

Issue

The immense size of LLMs makes it impractical to fine-tune the full model and store a separate copy of the parameters for hundreds of downstream tasks.

Parameter-efficient methods

To alleviate the issues of storage and computational cost for fine-tuning

Examples:

- o Adapter fine-tuning [Houlsby et al. (2019)].
- o Prefix-tuning [Li and Liang (2021)].
- o Intrinsic dimensionality [Aghajanyan et al. (2020)].

Figure 2: Trade-off between accuracy and number of trained tasks-pecific parameters [Houlsby et al. (2019)].

Works in non-private settings. BUT, what about the context of private learning?

Meta-Framework (Introducing

Privacy)

Prior Algorithms: Full Fine-tuning via DPSGD

Gradient clipping: significant computational and memory overheads in most implementations.

Gaussian noise addition: grows as the square-root as the number of model parameters.

BUT

Runing DPSGD on all the weights \implies adding noise in all directions \implies unlearning the knowledge learned during pre-training

Prior Algorithms: Reparametrized Gradient Perturbation (RGP)

Exploits the implicit low-rank structure in the gradient updates of SGD to substantially improve upon DPSGD.

Figure 3: [Yu et al. (2021b)]

While this low-dimensional projection loses some of the signal in gradient, it turns out to contain enough to still achieve high accuracy.

Low-dimensional gradients \Longrightarrow reducing the memory consumption & noise introduced.

BUT

Although RGP uses a low-rank update at each step, its accumulated update is not of low stable rank and hence can not be compressed into small plug-in modules.

- o The low-rank subspaces of RGP are different at different updates
- The accumulated update of RGP contains all the added noises, which are of high stable rank.

Figure 4: An illustration of the framework

- 1. The model is pre-trained on a large, public dataset.
- 2. New parameters are introduced and privately fine-tuned on a smaller, private, task-specific dataset. The original parameters are frozen during this process.
- 3. The fine-tuned new parameters are plugged-in to the model for downstream tasks.

Fine-tuning Model

$$f_{FT}(W_{PT},\theta;x) \tag{1}$$

- o $f(W_{PT}; x)$: pre-trained model and W_{PT} its weights.
- \circ $dim(\theta) \ll dim(W_{PT})$
- Initialization condition: $f_{FT}(W_{PT}, \theta_0; x) = f(W_{PT}; x)$
- o Additive fine-tuning methods: $f_{FT}(W_{PT}, \theta; x) = f_{FT}(W_{PT} + \pi(\theta); x)$

Main Advantages

- Updates only a small fraction of parameters (between 0.05% and 1%).
- Stores a single pre-trained model that can be used for different downstream tasks by setting only a tiny fraction of parameters.
- Learning is performed in a lower dimension, and thus more appropriate for memory usage.
- o Unlike RGP, it keep the pre-trained weights frozen during the learning process.
- o Interesting applications for distributed learning, e.g., federated learning.

Instantiating The Meta-framework

Fine-tuning via Low-Rank Adaptation (LoRA) [Hu et al., (2021)]

$$W^{i} = W_{PT}^{i} + \underbrace{L^{i}R^{i}}$$
 (2)

low-rank correction term

 $\circ \ W_i \in \mathbb{R}^{a \times b}, \ L_i \in \mathbb{R}^{a \times r}, \ R_i \in \mathbb{R}^{r \times b}.$

Fine-tuning via Adapters [Houlsby et al. (2019)]

$$A(x) = U(\tau(D(x))) + x \tag{3}$$

- o $U \in \mathbb{R}^{d \times r}, D \in \mathbb{R}^{r \times d}$: up & down-projection, τ : non-linear activation function.
- \circ $r \ll d$

Fine-tuning via Compacter [Mahabadi et al. (2021)]

$$M_{\ell} = \sum_{i=1}^{n} A_{i} \otimes (S_{i}^{\ell} T_{i}^{\ell})$$

$$\tag{4}$$

 $\circ \ A_i \in \mathbb{R}^{n \times n}, \ S_i^{\ell} \in \mathbb{R}^{a/n \times k}, \ T_i^{\ell} \in \mathbb{R}^{k \times b/n}.$

;

Experiments / Main results

Fine-Tuning for Language Understanding Tasks

Method		MNLI	SST-2	QQP	QNLI	Avg.	Trained params	
Full	w/o DP	87.6	94.8	91.9	92.8	91.8	100 %	
	DP	53.1	82.6	74.4	63.9	68.5		
RGP	DP	80.1	91.6	85.5	87.2	86.1	100%	
Adapter	DP	83.4	92.5	85.6	87.5	87.3	1.4%(r = 48)	
Compacter	DP	82.6	92.3	84.7	85.1	86.2	0.055%(r = 96, n = 8)	
LoRA	DP	83.5	92.2	85.7	87.3	87.2	0.94%(r=16)	
Full	w/o DP	90.2	96.4	92.2	94.7	93.4	100%	
RGP	DP	86.1	93.0	86.7	90.0	88.9	100%	
Adapter	DP	87.7	93.9	86.3	90.7	89.7	1.4%(r = 48)	
Compacter	DP	87.5	94.2	86.2	90.2	89.5	0.053%(r = 96, n = 8)	
LoRA	DP	87.8	95.3	87.4	90.8	90.3	0.94%(r=16)	

Table 1: Benchmarking results for different model representations and different language understanding tasks. The first bit of the results concern the model RoBERTa-Medium, while the last bit is for the Large model.

Fine-tuning for Natural Language Generation (NLG)

Method	Val perp	BLEU	NIST	MET	ROUGE-L	CIDEr
GPT-2-Small + DP	4.51	63.8	7.19	39.5	67.5	1.87
GPT-2-Medium + DP	4.02	65.5	8.45	42.7	67.9	2.23
GPT-2-Large + DP	3.87	66.7	8.63	44.0	67.8	2.33
GPT-2-XL + DP	3.79	66.1	8.53	43.0	68.1	2.28
GPT-2-Medium	3.19	70.4	8.85	46.8	71.8	2.53
GPT-2-Large	3.06	70.4	8.89	46.8	72.0	2.47
GPT-2-XL	3.01	69.4	8.78	46.2	71.5	2.49

Method	Val perp	BLEU	MET	TER
GPT-2-Small + DP	3.82	38.5	0.34	0.53
GPT-2-Medium + DP	3.30	42.0	0.36	0.51
GPT-2-Large + DP	3.10	43.1	0.36	0.5
GPT-2-XL + DP	3.00	43.8	0.37	0.5
GPT-2-Medium	2.67	47.1	0.39	0.46
GPT-2-Large	2.89	47.5	0.39	0.45
GPT-2-XL	2.83	48.1	0.39	0.46

Tables 2, 3: Different metric results for language generation tasks. The first table are those on E2E NLG task and table 2 on the DART dataset.

Conclusion & Perspectives

Conclusion & Perspectives

Contributions

- One of the main contribution is testing the setting of Fine-tuning and parameter-efficient under the privacy setting.
- o The establishment of a setting that works for the private setting.
- Empirically proving that the larger the model, the better the performance under this same setting.
- Proposing a simpler, sparser, and faster algorithm for differentially private fine-tuning of large-scale pre-trained language models.
- The first to fine-tune GPT-2-XL using DP (the largest model -with 1.5B parameters- trained thus far using DP).

Perspectives

- o Why the success of parameter efficient fine tuning methods work ?
- The list of proposed methods for instantiating the framework is non-exhaustive, so one can search and try other methods.
- The framework works mostly for additive fine-tuning methods, so what about non-additive methods?
- The choice of hyperparameters could be improved and can be done separately for each specific task.