

General Description

The Device is a monolithic integrated high volt-age, high current four channel driver designed to accept standard DTL or TTL logic levels and drive inductive loads (such as relays solenoides, DC and stepping motors) and switching power transistors.

To simplify use as two bridges each pair of chan- nels is equipped with an enable input. A separate supply input is provided for the logic, allowing op- eration at a lower voltage and internal clamp di- odes are included.

This device is suitable for use in switching applications at frequencies up to 5 kHz.

The L293D is assembled in a 16 lead plastic packaage which has 4 center pins connected to- gether and used for heatsinking The L293WS is assembled in a 20 lead surface mount which has 8 center pins connected to- gether and used for heatsinking.

Features

- 600mA OUTPUT CURRENT CAPABILITY PER CHANNEL
- 1.2A PEAK OUTPUT CURRENT (non repetitive) PER CHANNEL
- ENABLE FACILITY
- OVERTEMPERATURE PROTECTION
- LOGICAL "0" INPUT VOLTAGE UP TO 1.5 V (HIGH NOISE IMMUNITY)
- INTERNAL CLAMP DIODES

ORDERING INFORMATION

DEVICE	Package Type	MARKING	Packing	Packing QTY
L293D	DIP-16	L293D	Tube	1000/Box
L293WS	SOP-20	L293WS	Tape	1000/Reel

Block Diagram

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
V_{S}	Supply Voltage	36	V
V_{SS}	Logic Supply Voltage	36	V
Vi	Input Voltage	7	V
V _{en}	Enable Voltage	7	V
Io	Peak Output Current (100 μs non repetitive)	1.2	A
P _{tot}	Total Power Dissipation at Tpins = 90℃	4	W
T_{stg}, T_{j}	Storage and Junction Temperature	-40 to 150	$^{\circ}\!\mathbb{C}$

PIN CONNECTIONS(Top view)

Thermal Data

Symbol	Decription	DIP	SO	Unit
R _{thj-pins}	Thermal Resistance Junction-pins max.	-	14	°C/W
R _{thj-amb}	Thermal Resistance junction-ambient max.	80	50(*)	°C/W
R _{th j-case}	Thermal Resistance Junction-case max.	14	1	

^(*) With 6sq. cm on board heatsink.

Electrical Characteristics

(for each channel, VS=24V, VSS=5V, Tamb=25°C, unless otherwise specified)

Symbol	Parameter	Test Conditions	Min.	Typ.	Max.	Unit
Vs	Supply Voltage (pin 10)		Vss		36	V
V_{SS}	Logic Supply Voltage (pin 20)		4.5		36	V
		V _i =L;l _O =0;V _{en} =H		2	6	mA
I_S	Total Quiescent Supply Current (pin 10)	V _i =H;l _O =0;V _{en} =H		16	24	mA
	(pm 10)	Ven = L			4	mA
		V _i =L;l ₀ =0;V _{en} =H		44	60	mA
I_{SS}	Total Quiescent Logic Supply Current (pin 20)	V _i =H;l _O =0;V _{en} =H		16	22	mA
ISS	Current (pin 20)	$V_{en} = L$		16	24	mA
$V_{\rm IL}$	Input Low Voltage (pin 2,9,12,19)		-0.3		1.5	V
	I (II' V (: 2 0 12 10)	V _{SS} ≤7 V	2.3		V_{SS}	V
$V_{\text{IH}} \\$	Input High Voltage (pin 2, 9,12, 19)	V _{SS} >7V	2.3		7	V
$I_{\rm IL}$	Low Voltage Input Current (pin 2,9,12,19)	V _{IL} = 1.5V			-10	μΑ
I_{IH}	High Voltage Input Current (pin 2.9,12,19)	2.3V≤V _{IH} ≤Vss-0.6V		30	100	μА
V_{enL}	Enable Low Voltage (pin 1,11)		-0.3		1.5	V
		V _{SS} ≤7 V	2.3		V_{SS}	V
V_{enH}	Enable High Voltage (pin 1,11)	V _{SS} >7V	2.3		7	V
I_{enL}	Low Voltage Enable Current (pin 1,11)	V _{en L} = 1.5V		-30	-100	μА
I_{enH}	High Voltage Enable Current (pin 1,11)	2.3V≤V _{en H} ≤V _{SS} -0.6 V			±10	μА
V _{CE(sat)H}	Source Output Saturation Voltage (pins 3, 8,13,18)	I _O =-0.6 A		1.4	1.8	V
V _{CE(sat)L}	Sink Output Saturation Voltage (pins 3, 8,13, 18)	I _O =+0.6 A		1.2	1.8	V
$V_{\rm F}$	Clamp Diode Forward Voltage	$I_0 = 600 \text{nA}$		1.3		V
t _r	Rise Time(*)	0.1 to 0.9 V _O		250		ns
t_{f}	Fall Time(*)	0.9 to 0.1 V _O		250		ns
ton	Turn-on Delay(*)	0.5 Vi to 0.5 Vo		750		ns
$t_{\rm off}$	Turn-off Delay(*)	0.5 Vi to 0.5 V _O		200		ns

(*) See fig. 1.

Truth Table(one channel)

Input	Enable(*)	Output
Н	Н	Н
L	Н	L
H	L	Z
L	L	Z

Figure 1: Switching Times

Figure 2: Junction to ambient thermal resistance vs. area on board heatsink (SO12+4+4 package)

Package Information

Powerdip 16

DIM.	mm			inch		
	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.
a1	0.51			0.020		
В	0.85		1.40	0.033		0.055
b		0.50			0.020	
b1	0.38		0.50	0.015		0.020
D			20.0			0.787
Е		8.80			0.346	
e		2.54			0.100	
e3		17.78			0.700	
F			7.10			0.280
I			5.10			0.201
L		3.30			0.130	
Z			1.27			0.050

XBLW version 1.0

DIM.	mm			inch		
	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.
A	2.35		2.65	0.093		0.104
A1	0.1		0.3	0.004		0.012
В	0.33		0.51	0.013		0.020
С	0.23		0.32	0.009		0.013
D	12.6		13	0.496		0.512
Е	7.4		7.6	0.291		0.299
e		1.27			0.050	
Н	10		10.65	0.394		0.419
h	0.25		0.75	0.010		0.030
L	0.4		1.27	0.016		0.050
K			0°(n	nin.)8°(max.)		

XBLW L293D-L293WS PUSH-PULL FOUR CHANNEL DRIVER WITH DIODES

Statement

- ♦ Shenzhen xinbole electronics co., ltd. reserves the right to change the product specifications, without notice! Before placing an order, the customer needs to confirm whether the information obtained is the latest version, and verify the integrity of the relevant information.
- ♦ Any semiconductor product is liable to fail or malfunction under certain conditions, and the buyer shall be responsible for complying with safety standards in the system design and whole machine manufacturing using Shenzhen xinbole electronics co., ltd products, and take appropriate security measures to avoid the potential risk of failure may result in personal injury or property losses of the situation occurred!
- ❖ Product performance is never ending, Shenzhen xinbole electronics co., ltd will be dedicated to provide customers with better performance, better quality of integrated circuit products.

文档仅供参考,实际应用测试为准

技术支持热线:4009682003

第8页共8页