Lecture 9 part 2

Key characteristics of manifold using moving frame method Weiqing Gu

Recall: Key Characteristics by Using Moving Frames

For curves: Frenet frame and formul

$$\begin{cases} t' = kn, \\ n' = -kt - \tau b, \\ b' = \tau n \end{cases}$$

Key: Express the rate change of the frame in the same frame! The coefficients involved are the important characteristics.

Fundamental Theorem of the Local Theory of Curves

Theorem

Given differentiable functions k(s) > 0 and $\tau(s), s \in I$, there exists a regular parametrized curve $\alpha: I \to \mathbb{R}^3$ such that s is the arc length, k(s) is the curvature, and $\tau(s)$ is the torsion of α Moreover, any other curve $\overline{\alpha}$ satisfying the same conditions differs from α by a rigid motion; that is, there exists an orthogonal map ρ of \mathbb{R}^3 , with positive determinant, and a vector c such that $\overline{\alpha} = \rho \circ \alpha + c$.

Curvature and Torsion Locally totally determine a curve: Local Canonical Form

Let us now take the system 0xyz in such a way that the origin 0 agrees with $\alpha(0)$ and that t=(1,0,0), n=(0,1,0), and b=(0,0,1). Under these conditions, $\alpha(s)=(x(s),y(s),z(s))$ is given by

$$\begin{cases} x(s) = s - \frac{k^2 s^3}{6} + R_x, \\ y(s) = \frac{k s^2}{2} + \frac{k' s^3}{6} + R_y, \\ z(s) = -\frac{k \tau s^3}{6} + R_z, \end{cases}$$
 (1)

where $R = (R_x, R_y, R_z)$. The representation (1) is called the *local* canonical form of α , in a neighborhood of s = 0.

A Sketch of projections of the trace of α , for small s, in the tn, tb, and nb planes:

For Surfaces: Christofel Symbols are basic characteristics!

• Recall: Trihedron at a Point of a Surface

S will denote, as usual, a regular, orientable, and oriented surface. Let $\mathbf{x}: U \subset \mathbb{R}^2 \to S$ be a parametrization in the orientation of S. It is possible to assign to each point of $\mathbf{x}(U)$ a natural trihedron given by the vectors \mathbf{x}_u , \mathbf{x}_v , and N.

By expressing the derivatives of the vectors \mathbf{x}_u , \mathbf{x}_v , and N in the basis $\{\mathbf{x}_u, \mathbf{x}_v, N\}$, we obtain

$$\mathbf{x}_{uu} = \Gamma_{11}^{1} \mathbf{x}_{u} + \Gamma_{11}^{2} \mathbf{x}_{v} + L_{1} N,$$
 $\mathbf{x}_{uv} = \Gamma_{12}^{2} \mathbf{x}_{u} + \Gamma_{12}^{2} \mathbf{x}_{v} + L_{2} N,$
 $\mathbf{x}_{vu} = \Gamma_{21}^{1} \mathbf{x}_{u} + \Gamma_{21}^{2} \mathbf{x}_{v} + \overline{L}_{2} N,$
 $\mathbf{x}_{vv} = \Gamma_{22}^{1} \mathbf{x}_{u} + \Gamma_{22}^{2} \mathbf{x}_{v} + L_{3} N,$
 $N_{u} = a_{11} \mathbf{x}_{u} + a_{21} \mathbf{x}_{v},$
 $N_{v} = a_{12} \mathbf{x}_{u} + a_{22} \mathbf{x}_{v}.$