Automated Synthesis: Towards the Holy Grail of Al

Kuldeep S. Meel¹, Supratik Chakraborty², S Akshay², Priyanka Golia^{1,3}, Subhajit Roy³

¹National University of Singapore ²Indian Institute of Technology Bombay ³Indian Institute of Technology Kanpur

AAAI-2022

- Goal: Automatically synthesize system s.t. it satisfies $\varphi(x_1,..,x_n,y_1,..,y_m)$
 - $-x_i$ input variables (vector \mathbf{X})
 - y_k output variables (vector Y)

 X_n

Specification $\phi(x_1, \dots x_n, y_1, \dots y_m)$ x_1 System (to be designed)

• Goal: Automatically synthesize system s.t. it satisfies $\phi(x_1,...,x_n,y_1,...,y_m)$ whenever possible.

 $\rightarrow y_m$

- $-x_i$ input variables (vector \mathbf{X})
- y_k output variables (vector Y)

Specification $\phi(x_1, \dots x_n, y_1, \dots y_m)$ x_1 System (to be designed) y_m

- Goal: Automatically synthesize system s.t. it satisfies φ(x₁,..,x_n, y₁,..,y_m) whenever possible.
 - $-x_i$ input variables (vector \mathbf{X})
 - y_k output variables (vector \mathbf{Y})
- Need Y as functions F of
 - "History" of X and Y, "State" of system, ...
 such that φ(X,F) is satisfied.

- Synthesize Y as function of
 - State (summarizing "history" of X and Y)

- Synthesize Y as function of
 - State (summarizing "history" of X and Y)

- Synthesize Y as function of
 - State (summarizing "history" of X and Y)

Synthesize winning strategy to stay within winning region

- Synthesize Y as function of
 - State (summarizing "history" of X and Y)

- Synthesize winning strategy to stay within winning region
 - WinRgn(NxtSt(state, Y)) = 1

- Synthesize Y as function of
 - State (summarizing "history" of X and Y)

- Synthesize winning strategy to stay within winning region
 - WinRgn(NxtSt(state, Y)) = 1
 - No temporal operators

- Synthesize Y as function of
 - State (summarizing "history" of X and Y)

- Synthesize winning strategy to stay within winning region
 - WinRgn(NxtSt(state, Y)) = 1
 - No temporal operators
 - Not always satisfiable

Synthesize Y₁, Y₂ as functions of X

- Synthesize Y₁, Y₂ as functions of X
 - Spec has no temporal operators

- Synthesize Y₁, Y₂ as functions of X
 - Spec has no temporal operators
 - Y₁, Y₂ must be non-trivial factors of X

- Synthesize Y₁, Y₂ as functions of X
 - Spec has no temporal operators
 - Y₁, Y₂ must be non-trivial factors of X
 - Not always satisfiable (if X is prime)

- Synthesize Y₁, Y₂ as functions of X
 - Spec has no temporal operators
 - Y₁, Y₂ must be non-trivial factors of X
 - Not always satisfiable (if X is prime)
 - Efficient solution would break crypto systems

Boolean Functional Synthesis

Formal definition

Given Boolean relation $\varphi(x_1,...,x_n,y_1,...,y_m)$

- x_i input variables (vector X)
- y_j output variables (vector Y)

Boolean Functional Synthesis

Formal definition

Given Boolean relation $\varphi(x_1,...,x_n,y_1,...,y_m)$

- x_i input variables (vector X)
- y_i output variables (vector Y)

Synthesize Boolean functions $F_j(\mathbf{X})$ for each y_j s.t.

$$\forall \mathbf{X} \big(\exists y_1 \dots y_m \, \phi(\mathbf{X}, y_1 \dots y_m) \, \Leftrightarrow \, \phi(\mathbf{Y}, F_1(\mathbf{X}), \dots F_m(\mathbf{X})) \, \big)$$

Boolean Functional Synthesis

Formal definition

Given Boolean relation $\varphi(x_1,...,x_n,y_1,...,y_m)$

- x_i input variables (vector X)
- y_i output variables (vector Y)

Synthesize Boolean functions $F_i(\mathbf{X})$ for each y_i s.t.

$$\forall \mathbf{X} \big(\exists y_1 \dots y_m \, \mathbf{\phi}(\mathbf{X}, y_1 \dots y_m) \iff \mathbf{\phi}(\mathbf{Y}, F_1(\mathbf{X}), \dots F_m(\mathbf{X})) \big)$$

 $F_j(\mathbf{X})$ is also called a *Skolem function* for y_j in φ .

More Applications of Boolean Functional Synthesis

- 1. Disjunctive decomposition of symbolic transition relations [Trivedi et al'02]
- 2. Quantifier elimination, of course!
 - $\ \exists Y \ \phi(X,Y) \ \equiv \ \phi(X,F(X))$
- 3. Certifying QBF-SAT solvers
 - Nice survey of applications by Shukla et al'19
- 4. Program synthesis
 - Combinatorial sketching [Solar-Lezama et al'06, Srivastava et al'13]
 - Complete functional synthesis [Kuncak et al'10]
- 5. Repair/partial synthesis of circuits [Fujita et al'13]

How Hard (or Easy) is Boolean function synthesis?

- Boolean circuit: DAG with AND-, OR-, NOT-labeled nodes
- Input: $\varphi(X,Y)$ as (|X|+|Y|)-input, 1-output circuit
- Output: Sk. func. vector F(X): |X|-input, |Y|-output circuit
- Boolean function synthesis is NP-hard
 - Unlikely, we will get a poly-time algorithm
- What about size of Skolem functions?
 - Does there always exist compact Skolem functions, although synthesizing may take exponential time?
- Lower bound results in circuit-size refer to monotone circuits [Razbarov 1985; Alon and Boppana 1987]
 - Monotone circuit
 - ▶ Output can't change $1 \rightarrow 0$ due to an input changing $0 \rightarrow 1$.
 - Skolem functions need not be monotone
 - Different argument for lower bounds on Skolem circuits

Some Good and Bad News

Bad news: [CAV2018]

- Unless $\Pi_2^P = \Sigma_2^P$, there exist relational specs ϕ for which Skolem function sizes must be super-polynomial in $|\phi|$.
- Unless non-uniform exponential-time hypothesis fails, there exist relational specs φ for which Skolem function sizes must be exponential in |F|.

Efficient algorithms for Boolean functional synthesis unlikely

Good news: [CAV2018,FMCAD2019]

- If ϕ is represented in special normal form, synthesis solvable in polynomial (in $|\phi|$) time and space.
 - Synthesis Negation Normal Form (SynNNF)
 - Talk in "Beyond Satisfiability" workshop on Mar 23
 - Reasonably common in practice

Experiments: Guess-check-repair algorithms work well in practice

a

Find F(X) such that $\exists y \ \phi(X,y) \equiv \phi(X,F(X))$

Find F(X) such that $\exists y \ \phi(X,y) \equiv \phi(X,F(X))$

Set of all valuations of X.

Find $\mathbf{F}(\mathbf{X})$ such that $\exists \mathbf{y} \ \phi(\mathbf{X}, \mathbf{y}) \equiv \phi(\mathbf{X}, \mathbf{F}(\mathbf{X}))$

— Can't set **y** to 1 to satisfy φ : $\Gamma(\mathbf{X}) \triangleq \neg \varphi(\mathbf{X}, \mathbf{y})[\mathbf{y}1]$

E.g. If
$$\varphi \equiv (x_1 \lor y) \land (x_1 \lor x_2 \lor \neg y)$$
, then
$$\Gamma(\mathbf{X}) = \neg((x_1 \lor 1) \land (x_1 \lor x_2 \lor 0)) = \neg(x_1 \lor x_2) = \neg x_1 \land \neg x_2$$

Find F(X) such that $\exists y \ \phi(X,y) \equiv \phi(X,F(X))$

— Can't set y to 0 to satisfy φ : $\Delta(X) \triangleq \neg \varphi(X,y)[y0]$

E.g. If
$$\varphi \equiv (x_1 \vee y) \wedge (x_1 \vee x_2 \vee \neg y)$$
, then $\Delta(\mathbf{X}) = \neg((x_1 \vee 0) \wedge (x_1 \vee x_2 \vee 1)) = \neg x_1$

Find F(X) such that $\exists y \ \phi(X,y) \equiv \phi(X,F(X))$

- Can't set y to 1 to satisfy ϕ : $\Gamma(X) \triangleq \neg \phi(X,y)[y1]$
- Can't set \mathbf{y} to 0 to satisfy ϕ : $\Delta(\mathbf{X}) \triangleq \neg \phi(\mathbf{X},\mathbf{y})[\mathbf{y}0]$

Find F(X) such that $\exists y \ \phi(X,y) \equiv \phi(X,F(X))$

Lemma [Trivedi'03, Jiang'09, Fried et al'16]

Every Skolem function for \boldsymbol{y} in ϕ must

- Evaluate to 1 in $(\Delta \setminus \Gamma)$ and to 0 in $(\Gamma \setminus \Delta)$
- Be an **interpolant** of $(\Delta \setminus \Gamma)$ and $(\Gamma \setminus \Delta)$

Find $\mathbf{F}(\mathbf{X})$ such that $\exists y \ \phi(\mathbf{X},y) \equiv \phi(\mathbf{X},\mathbf{F}(\mathbf{X}))$

- Specific interpolants of $(\Delta \setminus \Gamma)$ & $(\Gamma \setminus \Delta)$
 - $\neg \Gamma \triangleq \phi(\mathbf{X}, \mathbf{y})[\mathbf{y}1] \equiv \phi(\mathbf{X}, 1)$
 - $\Delta \triangleq \neg \phi(\mathbf{X}, y)[\mathbf{y}0] \equiv \neg \phi(\mathbf{X}, 0).$

Find F(X) such that $\exists y \ \phi(X,y) \equiv \phi(X,F(X))$

- Specific interpolants of $(\Delta \setminus \Gamma)$ & $(\Gamma \setminus \Delta)$
 - $\neg \Gamma \triangleq \phi(X,y)[y1] \equiv \phi(X,1)$: Easy solution for 1 output var
 - $\triangle \triangleq \neg \phi(\mathbf{X}, y)[\mathbf{y}0] \equiv \neg \phi(\mathbf{X}, 0).$

"Guess"-ing Game: $(|\mathbf{Y}| = 2)$

Suppose relational spec is $\phi(\mathbf{X}, y_1, y_2)$

"Guess"-ing Game: $(|\mathbf{Y}| = 2)$

Suppose relational spec is $\phi(\mathbf{X}, y_1, y_2)$

• Skolem function for y_2 depends on that for y_1 in general

Suppose relational spec is $\phi(\mathbf{X}, y_1, y_2)$

- Skolem function for y_2 depends on that for y_1 in general
- E.g. $\phi(X, y_1, y_2) \equiv (x_1 \lor x_2 \lor y_1 \lor y_2) \land (y_1 \oplus y_2)$

Suppose relational spec is $\phi(\mathbf{X}, y_1, y_2)$

- Skolem function for y_2 depends on that for y_1 in general
- E.g. $\varphi(\mathbf{X}, y_1, y_2) \equiv (x_1 \lor x_2 \lor y_1 \lor y_2) \land (y_1 \oplus y_2)$
 - y_2 must be $\neg y_1$

Suppose relational spec is $\phi(\mathbf{X}, y_1, y_2)$

- Skolem function for y_2 depends on that for y_1 in general
- E.g. $\varphi(\mathbf{X}, y_1, y_2) \equiv (x_1 \lor x_2 \lor y_1 \lor y_2) \land (y_1 \oplus y_2)$ - y_2 must be $\neg y_1$
- For what values of X can we not set y_1 to 1 (or 0)?

Suppose relational spec is $\phi(\mathbf{X}, y_1, y_2)$

- Skolem function for y_2 depends on that for y_1 in general
- E.g. $\phi(X, y_1, y_2) \equiv (x_1 \lor x_2 \lor y_1 \lor y_2) \land (y_1 \oplus y_2)$
 - y_2 must be $\neg y_1$
- For what values of X can we not set y_1 to 1 (or 0)?
 - $-\Gamma^{y_1}(\mathbf{X}) = \neg \exists y_2 \ \phi(\mathbf{X}, 1, y_2) = 0$

Suppose relational spec is $\phi(\mathbf{X}, y_1, y_2)$

- Skolem function for y_2 depends on that for y_1 in general
- E.g. $\phi(X, y_1, y_2) \equiv (x_1 \lor x_2 \lor y_1 \lor y_2) \land (y_1 \oplus y_2)$
 - y_2 must be $\neg y_1$
- For what values of X can we not set y₁ to 1 (or 0)?
 - $-\Gamma^{y_1}(\mathbf{X}) = \neg \exists y_2 \ \varphi(\mathbf{X}, 1, y_2) = 0$
 - $-\Delta^{y_1}(\mathbf{X}) = \neg \exists y_2 \ \phi(\mathbf{X}, 0, y_2) = 0$

Suppose relational spec is $\phi(\mathbf{X}, y_1, y_2)$

- Skolem function for y_2 depends on that for y_1 in general
- E.g. $\varphi(\mathbf{X}, y_1, y_2) \equiv (x_1 \lor x_2 \lor y_1 \lor y_2) \land (y_1 \oplus y_2)$
 - y_2 must be $\neg y_1$
- For what values of X can we not set y_1 to 1 (or 0)?
 - $-\Gamma^{y_1}(\mathbf{X}) = \neg \exists y_2 \ \phi(\mathbf{X}, 1, y_2) = 0$
 - $\Delta^{y_1}(\mathbf{X}) = \neg \exists y_2 \ \phi(\mathbf{X}, 0, y_2) = 0$
- From $\Gamma^{y_1}(\mathbf{X})$ and $\Delta^{y_1}(\mathbf{X})$, find Skolem function $F_1(\mathbf{X})$ for y_1
 - E.g. $F_1(X) = \neg \Gamma^{y_1}(X) = 1$

Suppose relational spec is $\phi(\mathbf{X}, y_1, y_2)$

- Skolem function for y_2 depends on that for y_1 in general
- E.g. $\varphi(\mathbf{X}, y_1, y_2) \equiv (\mathbf{x_1} \lor \mathbf{x_2} \lor y_1 \lor y_2) \land (y_1 \oplus y_2)$ - y_2 must be $\neg y_1$
- For what values of X can we not set y_1 to 1 (or 0)?
 - $-\Gamma^{y_1}(\mathbf{X}) = \neg \exists y_2 \ \phi(\mathbf{X}, 1, y_2) = 0$
 - $\Delta^{y_1}(\mathbf{X}) = \neg \exists y_2 \ \varphi(\mathbf{X}, 0, y_2) = 0$
- From $\Gamma^{y_1}(\mathbf{X})$ and $\Delta^{y_1}(\mathbf{X})$, find Skolem function $F_1(\mathbf{X})$ for y_1
 - E.g. $F_1(X) = \neg \Gamma^{y_1}(X) = 1$
- To find Skolem function for y_2 , consider y_2 as sole output in $\varphi(\mathbf{X}, \mathcal{F}_1(\mathbf{X}), y_2)$
 - E.g. $\varphi(X, 1, y_2) = \neg y_2$
 - $-\Gamma^{y_2}(\mathbf{X}) = \neg \phi(\mathbf{X}, 1, 1) = 1; \Delta^{y_2}(\mathbf{X}) = \neg \phi(\mathbf{X}, 1, 0) = 0$
 - $F_2(\mathbf{X}) = \neg \Gamma^{y_2}(\mathbf{X}) = 0$

Suppose relational spec is $\phi(\mathbf{X}, y_1, \mathbf{Y}_{2..m})$

- Skolem function for $Y_{2...m}$ depends on that for y_1 in general
- For what values of X can we not set y₁ to 1 (or 0)?
 - $\Gamma^{y_1}(\mathbf{X}) = \neg \exists \frac{\mathbf{Y}_{2..m}}{\mathbf{\varphi}(\mathbf{X}, 1, \mathbf{Y}_{2..m})}$
 - $\Delta^{y_1}(\mathbf{X}) = \neg \exists \mathbf{Y}_{2..m} \ \phi(\mathbf{X}, 0, \mathbf{Y}_{2..m})$
- From $\Gamma^{y_1}(\mathbf{X})$ and $\Delta^{y_1}(\mathbf{X})$, find Skolem function $F_1(\mathbf{X})$ for y_1
- To find Skolem function for y_2 , consider y_2 as sole output in $\varphi(X, F_1(X), y_2, Y_{3..m})$

Drawbacks of approach:

- Existential quant elimination over long sequences of outputs expensive
- Nested compositions lead to blowup of representation

Can we work around these drawbacks?

Fix a linear ordering of outputs: $y_1 \prec y_2 \prec \cdots \prec y_m$

Fix a linear ordering of outputs: $y_1 \prec y_2 \prec \cdots \prec y_m$ Express

• y_m as $G_m(X, y_1, ..., y_{m-1})$

Fix a linear ordering of outputs: $y_1 \prec y_2 \prec \cdots \prec y_m$ Express

- y_m as $G_m(X, y_1, ..., y_{m-1})$
- y_{m-1} as $G_{m-1}(X, y_1, ..., y_{m-2})$
- •
- y_1 as $G_1(X)$

Fix a linear ordering of outputs: $y_1 \prec y_2 \prec \cdots \prec y_m$ Express

- y_m as $G_m(X, y_1, ... y_{m-1})$
- y_{m-1} as $G_{m-1}(X, y_1, ..., y_{m-2})$
- •
- y_1 as $G_1(X)$

A $|\mathbf{X}|$ -input, $|\mathbf{Y}|$ -output circuit computing the desired Skolem function vector $(F_1, \dots F_m)$ can be constructed with

- #gates $\leq \sum_{i=1}^{m}$ #gates(G_i) +2m
- #wires $\leq \sum_{i=1}^{m}$ #wires(G_i) $+ \frac{m(m-1)}{2}$

Fix a linear ordering of outputs: $y_1 \prec y_2 \prec \cdots \prec y_m$ Express

- y_m as $G_m(X, y_1, ..., y_{m-1})$
- y_{m-1} as $G_{m-1}(X, y_1, ... y_{m-2})$
- •
- y_1 as $G_1(X)$

A $|\mathbf{X}|$ -input, $|\mathbf{Y}|$ -output circuit computing the desired Skolem function vector $(F_1, \dots F_m)$ can be constructed with

- #gates $\leq \sum_{i=1}^{m}$ #gates(G_i) +2m
- #wires $\leq \sum_{i=1}^{m}$ #wires $(G_i) + \frac{m(m-1)}{2}$

Sufficient to compute the G_i functions

Suppose
$$\phi(\mathbf{X},Y) \equiv \phi_1(\mathbf{X},Y) \, \wedge \, \phi_2(\mathbf{X},Y)$$
, where $Y=y_1,\dots y_m$

Suppose
$$\varphi(\mathbf{X}, Y) \equiv \varphi_1(\mathbf{X}, Y) \wedge \varphi_2(\mathbf{X}, Y)$$
, where $Y = y_1, \dots y_m$

$$\Gamma_1^{y_1} \triangleq \neg \exists y_2 \dots y_m \, \phi_1(\mathbf{X}, 1, y_2 \dots y_m)$$

Suppose
$$\varphi(\mathbf{X}, Y) \equiv \varphi_1(\mathbf{X}, Y) \wedge \varphi_2(\mathbf{X}, Y)$$
, where $Y = y_1, \dots y_m$

$$\Gamma_1^{y_1} \; \triangleq \; \neg \exists \mathit{y}_2 \ldots \mathit{y}_m \; \phi_1(\boldsymbol{X}, 1, \mathit{y}_2 \ldots \mathit{y}_m) \; \; \Delta_1^{y_1} \; \triangleq \; \neg \exists \mathit{y}_2 \ldots \mathit{y}_m \; \phi_1(\boldsymbol{X}, 0, \ldots)$$

Suppose
$$\varphi(\mathbf{X}, Y) \equiv \varphi_1(\mathbf{X}, Y) \wedge \varphi_2(\mathbf{X}, Y)$$
, where $Y = y_1, \dots y_m$

$$\begin{array}{ll} \Gamma_1^{y_1} & \triangleq \neg \exists y_2 \dots y_m \ \varphi_1(\mathbf{X}, 1, y_2 \dots y_m) \\ \Gamma_2^{y_1} & \triangleq \neg \exists y_2 \dots y_m \ \varphi_2(\mathbf{X}, 1, \dots) \end{array} \qquad \begin{array}{ll} \Delta_1^{y_1} & \triangleq \neg \exists y_2 \dots y_m \ \varphi_1(\mathbf{X}, 0, \dots) \\ \Delta_2^{y_1} & \triangleq \neg \exists y_2 \dots y_m \varphi_2(\mathbf{X}, 0, \dots) \end{array}$$

Suppose
$$\phi(\mathbf{X},Y) \equiv \phi_1(\mathbf{X},Y) \, \wedge \, \phi_2(\mathbf{X},Y)$$
, where $Y=y_1,\ldots y_m$

$$\Gamma_1^{y_1} \triangleq \neg \exists y_2 \dots y_m \, \varphi_1(\mathbf{X}, 1, y_2 \dots y_m) \, \Delta_1^{y_1} \triangleq \neg \exists y_2 \dots y_m \, \varphi_1(\mathbf{X}, 0, \dots) \\
\Gamma_2^{y_1} \triangleq \neg \exists y_2 \dots y_m \, \varphi_2(\mathbf{X}, 1, \dots) \, \Delta_2^{y_1} \triangleq \neg \exists y_2 \dots y_m \varphi_2(\mathbf{X}, 0, \dots)$$

Suppose $\varphi(\mathbf{X}, Y) \equiv \varphi_1(\mathbf{X}, Y) \, \wedge \, \varphi_2(\mathbf{X}, Y)$, where $Y = y_1, \dots y_m$

Lemma

If $\Gamma^{y_1} \triangleq \neg \exists y_2 \dots y_m \ (\varphi_1 \land \varphi_2)(\mathbf{X}, 1, \dots)$, then $\Gamma_1^{y_1} \lor \Gamma_2^{y_1} \Rightarrow \Gamma^{y_1}$ If $\Delta^{y_1} \triangleq \neg \exists y_2 \dots y_m \ (\varphi_1 \land \varphi_2)(\mathbf{X}, 0, \dots)$, then $\Delta_1^{y_1} \lor \Delta_2^{y_1} \Rightarrow \Delta^{y_1}$

Suppose
$$\phi(\mathbf{X},Y) \equiv \phi_1(\mathbf{X},Y) \ \lor \ \phi_2(\mathbf{X},Y)$$
, where $Y=y_1,\dots y_m$

Suppose
$$\varphi(\mathbf{X}, Y) \equiv \varphi_1(\mathbf{X}, Y) \vee \varphi_2(\mathbf{X}, Y)$$
, where $Y = y_1, \dots y_m$
 $\Gamma_1^{y_1} \triangleq \neg \exists y_2 \dots y_m \ \varphi_1(\mathbf{X}, 1, y_2 \dots y_m) \ \Delta_1^{y_1} \triangleq \neg \exists y_2 \dots y_m \ \varphi_1(\mathbf{X}, 0, \dots)$
 $\Gamma_2^{y_1} \triangleq \neg \exists y_2 \dots y_m \ \varphi_2(\mathbf{X}, 1, \dots) \ \Delta_2^{y_1} \triangleq \neg \exists y_2 \dots y_m \varphi_2(\mathbf{X}, 0, \dots)$

Lemma

If
$$\Gamma^{y_1} \triangleq \neg \exists y_2 \dots y_m \ (\varphi_1 \lor \varphi_2)(\mathbf{X}, 1, \dots)$$
, then $\Gamma_1^{y_1} \land \Gamma_2^{y_1} \Leftrightarrow \Gamma^{y_1}$
If $\Delta^{y_1} \triangleq \neg \exists y_2 \dots y_m \ (\varphi_1 \lor \varphi_2)(\mathbf{X}, 0, \dots)$, then $\Delta_1^{y_1} \land \Delta_2^{y_1} \Leftrightarrow \Delta^{y_1}$

Suppose
$$\varphi(\mathbf{X}, Y) \equiv \varphi_1(\mathbf{X}, Y) \vee \varphi_2(\mathbf{X}, Y)$$
, where $Y = y_1, \dots y_m$
 $\Gamma_1^{y_1} \triangleq \neg \exists y_2 \dots y_m \, \varphi_1(\mathbf{X}, 1, y_2 \dots y_m) \, \Delta_1^{y_1} \triangleq \neg \exists y_2 \dots y_m \, \varphi_1(\mathbf{X}, 0, \dots)$
 $\Gamma_2^{y_1} \triangleq \neg \exists y_2 \dots y_m \, \varphi_2(\mathbf{X}, 1, \dots) \, \Delta_2^{y_1} \triangleq \neg \exists y_2 \dots y_m \varphi_2(\mathbf{X}, 0, \dots)$

Lemma

If
$$\Gamma^{y_1} \triangleq \neg \exists y_2 \dots y_m \ (\varphi_1 \lor \varphi_2)(\mathbf{X}, 1, \dots)$$
, then $\Gamma_1^{y_1} \land \Gamma_2^{y_1} \Leftrightarrow \Gamma^{y_1}$
If $\Delta^{y_1} \triangleq \neg \exists y_2 \dots y_m \ (\varphi_1 \lor \varphi_2)(\mathbf{X}, 0, \dots)$, then $\Delta_1^{y_1} \land \Delta_2^{y_1} \Leftrightarrow \Delta^{y_1}$

Suppose
$$\varphi(\mathbf{X}, Y) \equiv \varphi_1(\mathbf{X}, Y) \vee \varphi_2(\mathbf{X}, Y)$$
, where $Y = y_1, \dots y_m$
 $\Gamma_1^{y_1} \triangleq \neg \exists y_2 \dots y_m \, \varphi_1(\mathbf{X}, 1, y_2 \dots y_m) \, \Delta_1^{y_1} \triangleq \neg \exists y_2 \dots y_m \, \varphi_1(\mathbf{X}, 0, \dots)$
 $\Gamma_2^{y_1} \triangleq \neg \exists y_2 \dots y_m \, \varphi_2(\mathbf{X}, 1, \dots) \, \Delta_2^{y_1} \triangleq \neg \exists y_2 \dots y_m \varphi_2(\mathbf{X}, 0, \dots)$

Lemma

If
$$\Gamma^{y_1} \triangleq \neg \exists y_2 \dots y_m \ (\varphi_1 \lor \varphi_2)(\mathbf{X}, 1, \dots)$$
, then $\Gamma_1^{y_1} \land \Gamma_2^{y_1} \Leftrightarrow \Gamma^{y_1}$
If $\Delta^{y_1} \triangleq \neg \exists y_2 \dots y_m \ (\varphi_1 \lor \varphi_2)(\mathbf{X}, 0, \dots)$, then $\Delta_1^{y_1} \land \Delta_2^{y_1} \Leftrightarrow \Delta^{y_1}$

What if calculating $\Gamma_1^{y_i}$ or $\Delta_1^{y_i}$ hard?

Long sequences of quantification are of concern!

Suppose
$$\varphi(\mathbf{X}, Y) \equiv \varphi_1(\mathbf{X}, Y) \vee \varphi_2(\mathbf{X}, Y)$$
, where $Y = y_1, \dots y_m$
 $\Gamma_1^{y_1} \triangleq \neg \exists y_2 \dots y_m \, \varphi_1(\mathbf{X}, 1, y_2 \dots y_m) \, \Delta_1^{y_1} \triangleq \neg \exists y_2 \dots y_m \, \varphi_1(\mathbf{X}, 0, \dots)$
 $\Gamma_2^{y_1} \triangleq \neg \exists y_2 \dots y_m \, \varphi_2(\mathbf{X}, 1, \dots) \, \Delta_2^{y_1} \triangleq \neg \exists y_2 \dots y_m \varphi_2(\mathbf{X}, 0, \dots)$

Lemma

If
$$\Gamma^{y_1} \triangleq \neg \exists y_2 \dots y_m \ (\varphi_1 \lor \varphi_2)(\mathbf{X}, 1, \dots)$$
, then $\Gamma_1^{y_1} \land \Gamma_2^{y_1} \Leftrightarrow \Gamma^{y_1}$
If $\Delta^{y_1} \triangleq \neg \exists y_2 \dots y_m \ (\varphi_1 \lor \varphi_2)(\mathbf{X}, 0, \dots)$, then $\Delta_1^{y_1} \land \Delta_2^{y_1} \Leftrightarrow \Delta^{y_1}$

- Long sequences of quantification are of concern!
- Using under-approximations of $\Gamma_1^{y_i}$ and $\Delta_1^{y_i}$ yields under-approximations of $\Gamma_1^{y_i}$ and $\Delta_1^{y_i}$

Suppose
$$\varphi(\mathbf{X}, Y) \equiv \varphi_1(\mathbf{X}, Y) \vee \varphi_2(\mathbf{X}, Y)$$
, where $Y = y_1, \dots y_m$
 $\Gamma_1^{y_1} \triangleq \neg \exists y_2 \dots y_m \, \varphi_1(\mathbf{X}, 1, y_2 \dots y_m) \, \Delta_1^{y_1} \triangleq \neg \exists y_2 \dots y_m \, \varphi_1(\mathbf{X}, 0, \dots)$
 $\Gamma_2^{y_1} \triangleq \neg \exists y_2 \dots y_m \, \varphi_2(\mathbf{X}, 1, \dots) \, \Delta_2^{y_1} \triangleq \neg \exists y_2 \dots y_m \varphi_2(\mathbf{X}, 0, \dots)$

Lemma

If
$$\Gamma^{y_1} \triangleq \neg \exists y_2 \dots y_m \ (\varphi_1 \lor \varphi_2)(\mathbf{X}, 1, \dots)$$
, then $\Gamma_1^{y_1} \land \Gamma_2^{y_1} \Leftrightarrow \Gamma^{y_1}$
If $\Delta^{y_1} \triangleq \neg \exists y_2 \dots y_m \ (\varphi_1 \lor \varphi_2)(\mathbf{X}, 0, \dots)$, then $\Delta_1^{y_1} \land \Delta_2^{y_1} \Leftrightarrow \Delta^{y_1}$

- Long sequences of quantification are of concern!
- Using under-approximations of $\Gamma_1^{y_i}$ and $\Delta_1^{y_i}$ yields under-approximations of $\Gamma_1^{y_i}$ and $\Delta_1^{y_i}$
 - Not so for over-approximations!

 - $\qquad \qquad \Delta_1^{y_i} \vee (\land) \; \Delta_2^{y_i} \Rightarrow (\Leftrightarrow) \Delta^{y_i}$

Suppose
$$\varphi(\mathbf{X}, Y) \equiv \varphi_1(\mathbf{X}, Y) \vee \varphi_2(\mathbf{X}, Y)$$
, where $Y = y_1, \dots y_m$
 $\Gamma_1^{y_1} \triangleq \neg \exists y_2 \dots y_m \ \varphi_1(\mathbf{X}, 1, y_2 \dots y_m)$ $\Delta_1^{y_1} \triangleq \neg \exists y_2 \dots y_m \ \varphi_1(\mathbf{X}, 0, \dots)$
 $\Gamma_2^{y_1} \triangleq \neg \exists y_2 \dots y_m \ \varphi_2(\mathbf{X}, 1, \dots)$ $\Delta_2^{y_1} \triangleq \neg \exists y_2 \dots y_m \ \varphi_2(\mathbf{X}, 0, \dots)$

Lemma

If
$$\Gamma^{y_1} \triangleq \neg \exists y_2 \dots y_m \ (\varphi_1 \lor \varphi_2)(\mathbf{X}, 1, \dots)$$
, then $\Gamma_1^{y_1} \land \Gamma_2^{y_1} \Leftrightarrow \Gamma^{y_1}$
If $\Delta^{y_1} \triangleq \neg \exists y_2 \dots y_m \ (\varphi_1 \lor \varphi_2)(\mathbf{X}, 0, \dots)$, then $\Delta_1^{y_1} \land \Delta_2^{y_1} \Leftrightarrow \Delta^{y_1}$

- Long sequences of quantification are of concern!
- Using under-approximations of $\Gamma_1^{y_i}$ and $\Delta_1^{y_i}$ yields under-approximations of $\Gamma_1^{y_i}$ and $\Delta_1^{y_i}$
 - Not so for over-approximations!
 - $\qquad \qquad \Gamma_1^{y_i} \vee (\land) \; \Gamma_2^{y_i} \Rightarrow (\Leftrightarrow) \Gamma^{y_i}$
 - $\qquad \qquad \Delta_1^{y_i} \vee (\land) \; \Delta_2^{y_i} \Rightarrow (\Leftrightarrow) \Delta^{y_i}$
- Fortunately, non-trivial under-approx of Γ^{y_i} and Δ^{y_i} not hard to obtain

"Guess"-ing with under-approximations of Γ , Δ

• Suppose $\gamma_1^{y_i} \Rightarrow \Gamma_1^{y_i}$; $\delta_1^{y_i} \Rightarrow \Delta_1^{y_i}$

"Guess"-ing with under-approximations of Γ , Δ

- Suppose $\gamma_1^{y_i} \Rightarrow \Gamma_1^{y_i}$; $\delta_1^{y_i} \Rightarrow \Delta_1^{y_i}$
- $\begin{array}{cccc} \bullet & \phi \equiv \phi_1 \wedge \phi_2 \\ & & \gamma_1^{y_i} \vee \gamma_1^{y_i} \ \Rightarrow \ \Gamma_1^{y_i} \vee \Gamma_1^{y_i} \ \Rightarrow \ \Gamma_1^{y_i} \end{array}$

"Guess"-ing with under-approximations of Γ , Δ

- Suppose $\gamma_1^{y_i} \Rightarrow \Gamma_1^{y_i}$; $\delta_1^{y_i} \Rightarrow \Delta_1^{y_i}$
- $\begin{array}{c} \bullet \hspace{0.1cm} \phi \equiv \phi_1 \wedge \phi_2 \\ \hspace{0.1cm} \hspace{0.1cm} \gamma_1^{y_i} \vee \gamma_1^{y_i} \hspace{0.1cm} \Rightarrow \hspace{0.1cm} \Gamma_1^{y_i} \vee \hspace{0.1cm} \Gamma_1^{y_i} \hspace{0.1cm} \Rightarrow \hspace{0.1cm} \Gamma^{y_i} \end{array}$
- $\begin{array}{c} \bullet \hspace{0.1cm} \phi \equiv \phi_1 \vee \phi_2 \\ \hspace{0.1cm} \hspace{0.1cm} \gamma_1^{y_i} \wedge \gamma_1^{y_i} \hspace{0.1cm} \Rightarrow \hspace{0.1cm} \Gamma_1^{y_i} \wedge \Gamma_1^{y_i} \hspace{0.1cm} \Leftrightarrow \hspace{0.1cm} \Gamma^{y_i} \end{array}$
- Similarly for Δ^{y_i}

Given candidate Skolem functions $F_1, \dots F_m$,

Is
$$\forall X (\exists Y \phi(X,Y) \Leftrightarrow \phi(X,F(X))$$
?

Given candidate Skolem functions $F_1, \dots F_m$,

Is
$$\forall \mathbf{X} (\exists \mathbf{Y} \phi(\mathbf{X}, \mathbf{Y}) \Leftrightarrow \phi(\mathbf{X}, \mathbf{F}(\mathbf{X}))$$
?

Can we avoid using a QBF solver?

Given candidate Skolem functions $F_1, \dots F_m$,

Is
$$\forall X (\exists Y \phi(X,Y) \Leftrightarrow \phi(X,F(X))$$
?

Can we avoid using a QBF solver?

Yes, we can! [FMCAD15]

$$\left(\phi(\mathbf{X},\mathbf{Y}') \land \bigwedge_{j=1}^{m} (\mathbf{Y}_{j} \Leftrightarrow F_{j}) \land \neg \phi(\mathbf{X},\mathbf{Y})\right)$$

Given candidate Skolem functions $F_1, \dots F_m$,

Is
$$\forall X (\exists Y \phi(X,Y) \Leftrightarrow \phi(X,F(X))$$
?

Can we avoid using a QBF solver?

Yes, we can! [FMCAD15]

Propositional error formula ε(X, Y, Y'):

$$\left(\phi(\mathbf{X},\mathbf{Y}')\wedge \bigwedge_{j=1}^{m}(\mathbf{Y}_{j}\Leftrightarrow F_{j})\wedge \neg\phi(\mathbf{X},\mathbf{Y})\right)$$

• ε unsatisfiable iff $F_1, \dots F_m$ is correct Skolem function vector

Given candidate Skolem functions $F_1, \ldots F_m$,

Is
$$\forall X (\exists Y \phi(X,Y) \Leftrightarrow \phi(X,F(X))$$
?

Can we avoid using a QBF solver?

Yes, we can! [FMCAD15]

$$\left(\phi(\mathbf{X},\mathbf{Y}')\wedge \bigwedge_{j=1}^{m}(\mathbf{Y}_{j}\Leftrightarrow F_{j})\wedge \neg\phi(\mathbf{X},\mathbf{Y})\right)$$

- ε unsatisfiable iff $F_1, \dots F_m$ is correct Skolem function vector
 - Say, σ = satisfying assignment of ϵ

Given candidate Skolem functions $F_1, \ldots F_m$,

Is
$$\forall X (\exists Y \phi(X,Y) \Leftrightarrow \phi(X,F(X))$$
?

Can we avoid using a QBF solver?

Yes, we can! [FMCAD15]

$$(\phi(\mathbf{X}, \mathbf{Y}') \land \bigwedge_{j=1}^{m} (\mathbf{Y}_{j} \Leftrightarrow F_{j}) \land \neg \phi(\mathbf{X}, \mathbf{Y}))$$

- ε unsatisfiable iff $F_1, \dots F_m$ is correct Skolem function vector
 - Say, σ = satisfying assignment of ϵ
 - On input $\sigma(\textbf{X}),$ **F** evaluates to $\sigma(\textbf{Y}),$ where

Given candidate Skolem functions $F_1, \ldots F_m$,

Is
$$\forall X (\exists Y \phi(X,Y) \Leftrightarrow \phi(X,F(X))$$
?

Can we avoid using a QBF solver?

Yes, we can! [FMCAD15]

$$\left(\phi(\mathbf{X},\mathbf{Y}')\wedge\bigwedge_{j=1}^{m}(\mathbf{Y}_{j}\Leftrightarrow F_{j})\wedge\neg\phi(\mathbf{X},\mathbf{Y})\right)$$

- ε unsatisfiable iff $F_1, \dots F_m$ is correct Skolem function vector
 - Say, σ = satisfying assignment of ϵ
 - On input $\sigma(\mathbf{X})$, **F** evaluates to $\sigma(\mathbf{Y})$, where
 - $-\sigma$ is counterexample to the claim that $F_1, \dots F_m$ is a correct Skolem function vector

Repairing candidate Skolem functions: A High-level View

$$\phi(\boldsymbol{X},Y) \equiv \phi_1(\boldsymbol{X},Y) \, \wedge \, \phi_2(\boldsymbol{X},Y)$$

Repairing candidate Skolem functions: A High-level View

$$\phi(\boldsymbol{X},Y) \equiv \phi_1(\boldsymbol{X},Y) \, \wedge \, \phi_2(\boldsymbol{X},Y)$$

Repairing candidate Skolem functions: A High-level View

$$\phi(\boldsymbol{X},Y) \equiv \phi_1(\boldsymbol{X},Y) \, \wedge \, \phi_2(\boldsymbol{X},Y)$$

- Always work with under-approximations of Γ and Δ
- Since "proposed" Skolem function is $\neg \Gamma$, intermediate approximations of Skolem functions are over-approximations (abstractions)

Comparison with other tools

BFSS vis-a-vis CADET [Rabe & Seshia'16] [Comparisons with other tools in paper]

Q: QBFEval, A: Arithmetic, F: Factorization, D: Disjunctive Decomposition. TO: Timeout (3600 sec)

Comparison with other tools

BFSS vis-a-vis CADET [Rabe & Seshia'16] [Comparisons with other tools in paper]

Q: QBFEval, A: Arithmetic, F: Factorization, D: Disjunctive Decomposition. TO: Timeout (3600 sec)

- Mixed results: tools have orthogonal strengths
- Using CADET and BFSS as a portfolio solver sounds promising

Another Flavour of Guess-Check-Repair

Manthan

Manthan

Standing on the Shoulders of Constrained Samplers

Learn Candidate Functions

Taming the Curse of Abstractions via Learning with Errors

Repair of Approximations

Reaping the Fruits of Formal Methods Revolution

Potential Strategy: Randomly sample satisfying assignment of $\varphi(X, Y)$.

Challenge: Multiple valuations of y_1, y_2 for same valuation of x_1, x_2 .

Potential Strategy: Randomly sample satisfying assignment of $\varphi(X, Y)$.

Challenge: Multiple valuations of y_1, y_2 for same valuation of x_1, x_2 .

$$\varphi(x_1, x_2, y_1, y_2) : (x_1 \lor x_2 \lor y_1) \land (\neg x_1 \lor \neg x_2 \lor \neg y_2)$$

<i>x</i> ₁	<i>X</i> ₂	<i>y</i> ₁	y ₂
0	0	1	0/1
0	1	0/1	0/1
1	0	0/1	0/1
1	1	0/1	0

$$\varphi(x_1, x_2, y_1, y_2) : (x_1 \lor x_2 \lor y_1) \land (\neg x_1 \lor \neg x_2 \lor \neg y_2)$$

<i>x</i> ₁	<i>X</i> ₂	<i>y</i> ₁	<i>y</i> ₂		<i>x</i> ₁	<i>x</i> ₂	<i>y</i> ₁	<i>y</i> ₂
0	0	1	0/1	Uniform Sampler	0	0	1	1
0	1	0/1	0/1		0	1	0	1
1	0	0/1	0/1		1	0	0	1
1	1	0/1	0		1	1	0	0

$$\varphi(x_1, x_2, y_1, y_2) : (x_1 \lor x_2 \lor y_1) \land (\neg x_1 \lor \neg x_2 \lor \neg y_2)$$

<i>X</i> ₁	<i>X</i> ₂	<i>y</i> ₁	<i>y</i> ₂		<i>X</i> ₁	<i>X</i> ₂	<i>y</i> ₁	<i>y</i> ₂
0	0	1	0/1	Uniform Sampler	0	0	1	1
0	1	0/1	0/1		0	1	0	1
1	0	0/1	0/1		1	0	0	1
1	1	0/1	0		1	1	0	0

- Possible Skolem functions:
 - $f_1(x_1, x_2) = \neg(x_1 \lor x_2)$
 - $f_2(x_1, x_2) = \neg(x_1 \land x_2)$

$$\varphi(x_1, x_2, y_1, y_2) : (x_1 \lor x_2 \lor y_1) \land (\neg x_1 \lor \neg x_2 \lor \neg y_2)$$

<i>X</i> ₁	<i>X</i> ₂	<i>y</i> ₁	<i>y</i> ₂		<i>X</i> ₁	<i>X</i> ₂	<i>y</i> ₁	<i>y</i> ₂
0	0	1	0/1	Uniform Sampler	0	0	1	1
0	1	0/1	0/1		0	1	0	1
1	0	0/1	0/1		1	0	0	1
1	1	0/1	0		1	1	0	0

Possible Skolem functions:

$$-f_1(x_1, x_2) = \neg(x_1 \lor x_2) \qquad f_1(x_1, x_2) = \neg x_1 \qquad f_1(x_1, x_2) = \neg x_2 \qquad f_1(x_1, x_2) = 1$$

$$-f_2(x_1, x_2) = \neg(x_1 \land x_2) \qquad f_2(x_1, x_2) = \neg x_1 \qquad f_2(x_1, x_2) = \neg x_2 \qquad f_2(x_1, x_2) = 0$$

$$\varphi(x_1, x_2, y_1, y_2) : (x_1 \lor x_2 \lor y_1) \land (\neg x_1 \lor \neg x_2 \lor \neg y_2)$$

<i>X</i> ₁	<i>X</i> ₂	<i>y</i> ₁	<i>y</i> ₂		<i>X</i> ₁	<i>X</i> ₂	<i>y</i> ₁	<i>y</i> ₂
0	0	1	0/1	Magical Sampler	0	0	1	0
0	1	0/1	0/1		0	1	1	0
1	0	0/1	0/1		1	0	1	0
1	1	0/1	0		_1	1	1	0

Possible Skolem functions:

$$-f_1(x_1, x_2) = \neg(x_1 \lor x_2) \quad f_1(x_1, x_2) = \neg x_1 \quad f_1(x_1, x_2) = \neg x_2 \quad f_1(x_1, x_2) = 1$$

$$-f_2(x_1, x_2) = \neg(x_1 \land x_2) \quad f_2(x_1, x_2) = \neg x_1 \quad f_2(x_1, x_2) = \neg x_2 \quad f_2(x_1, x_2) = 0$$

$$- f_2(x_1, x_2) = \neg(x_1 \land x_2) \quad f_2(x_1, x_2) = \neg x_1 \quad f_2(x_1, x_2) = \neg x_2 \quad f_2(x_1, x_2) = 0$$

Weighted Sampling to Rescue

- $W: X \cup Y \mapsto [0,1]$
- The probability of generation of an assignment is proportional to its weight.

$$W(\sigma) = \prod_{\sigma(z_i)=1} W(z_i) \prod_{\sigma(z_i)=0} (1 - W(z_i))$$

• Example: $W(x_1) = 0.5$ $W(x_2) = 0.5$ $W(y_1) = 0.9$ $W(y_2) = 0.1$ $\sigma_1 = \{x_1 \mapsto 1, x_2 \mapsto 0, y_1 \mapsto 0, y_2 \mapsto 1\}$

$$W(\sigma_1) = 0.5 \times (1 - 0.5) \times (1 - 0.9) \times 0.1 = 0.0025$$

Uniform sampling is a special case where all variables are assigned weight of 0.5.

Different Sampling Strategies

Knowledge representation based techniques

```
(Yuan,Shultz, Pixley,Miller,Aziz
1999)
(Yuan,Aziz, Pixley,Albin, 2004)
(Kukula and Shiple, 2000)
(Sharma, Gupta, M., Roy, 2018)
(Gupta, Sharma, M., Roy, 2019)
```

Hashing based techniques

```
(Chakraborty, M., and Vardi 2013, 2014,2015)
(Soos. M., and Gocht 2020)
```

Mutation based techniques

```
(Dutra, Laeufer, Bachrach, Sen, 2018)
```

Markov Chain Monte Carlo based techniques

```
(Wei and Selman,2005)
(Kitchen,2010)
```

- Constraint solver based techniques (Ermon, Gomes, Sabharwal, Selman, 2012)
- Belief networks based techniques
 (Dechter, Kask, Bin, Emek,2002)
 (Gogate and Dechter,2006)

Learn Candidate Function: Decision Tree Classifier

$$\varphi(x_1, x_2, y_1, y_2) : (x_1 \lor x_2 \lor y_1) \land (\neg x_1 \lor \neg x_2 \lor \neg y_2)$$

- To learn y₂
 - Feature set: valuation of x_1, x_2, y_1
 - Label: valuation of y₂
 - Learn decision tree to represent y_2 in terms of x_1, x_2, y_1
- To learn y₁
 - Feature set: valuation of x_1, x_2
 - Label: valuation of y₁
 - Learn decision tree to represent y_1 in terms of x_1, x_2

<i>X</i> ₂	<i>y</i> ₁	<i>y</i> ₂
0	1	0
1	0	1
0	1	1
1	0	0
	0 1 0	0 1 1 0 0 1

Learning Candidate Functions

Learning Candidate Functions

 $p_1 := (\neg x_1 \land \neg x_2),$ $p_2 := (x_1 \land \neg x_2),$ $f_1 = \text{if } p_1 \text{ then } 1,$ $elif p_2 \text{ then } 1,$ else 0,

What Kind of Learning

<i>X</i> ₁	<i>X</i> ₂	<i>y</i> 1	<i>y</i> ₂
0	0	1	0
0	1	0	1
1	0	1	1
1	1	0	0

 $p_1 := (\neg x_1 \land \neg x_2),$ $p_2 := (x_1 \land \neg x_2),$ $f_1 = \text{if } p_1 \text{ then } 1,$ else 0

Learning without Error

Every row is a solution of $\varphi(X, Y)$

Learning with Errors

The data is only a subset of solutions.

What Kind of Learning

 $\begin{aligned} p_1 &:= (\neg x_1 \wedge \neg x_2), \\ p_2 &:= (x_1 \wedge \neg x_2) \\ f_1 &= \text{if } p_1 \text{ then 1} \\ &= \text{elif } p_2 \text{ then 1} \end{aligned}$

Learning without Error Every row is a solution of $\varphi(X, Y)$

Learning with Errors

The data is only a subset of solutions.

Learn with Errors: Approximations <u>not</u> Abstractions

Abstraction vs Approximation

 $f_i(X) \rightarrow y_i$

Abstraction

Approximation

$$y_i=1,f_i(X)=0$$

$$y_i=0, f_i(\boldsymbol{X})=1$$

Verification of Candidate Functions

$$E(X,Y,Y') := \varphi(X,Y) \land \neg \varphi(X,Y') \land (Y' \leftrightarrow F(X))$$

(JSCTA'15)

- If E(X, Y, Y') is UNSAT: $\exists Y \phi(X, Y) \equiv \phi(X, F(X))$
 - Return F
- If E(X, Y, Y') is SAT: $\exists Y \varphi(X, Y) \not\equiv \varphi(X, F(X))$
 - Let $\sigma \models E(X, Y, Y')$ be a counterexample to fix.

Repair Candidate Identification

$$\begin{split} E(\textbf{\textit{X}},\textbf{\textit{Y}},\textbf{\textit{Y}}') := & \, \, \phi(\textbf{\textit{X}},\textbf{\textit{Y}}) \wedge \neg \phi(\textbf{\textit{X}},\textbf{\textit{Y}}') \wedge (\textbf{\textit{Y}}' \leftrightarrow \textbf{\textit{F}}(\textbf{\textit{X}})) \\ & \, \, \sigma \models E(\textbf{\textit{X}},\textbf{\textit{Y}},\textbf{\textit{Y}}') \text{ be a counterexample to fix.} \end{split}$$

- Let $\sigma := \{x_1 \mapsto 1, x_2 \mapsto 1, y_1 \mapsto 1, y_2 \mapsto 1, y_1' \mapsto 0, y_2' \mapsto 0\}.$
- Potential repair candidates: All y_i where $\sigma[y_i] \neq \sigma[y_i']$.

Repair Candidate Identification

$$\begin{split} E(X,Y,Y') := & \ \phi(X,Y) \land \neg \phi(X,Y') \land (Y' \leftrightarrow F(X)) \\ & \ \sigma \models E(X,Y,Y') \ \text{be a counterexample to fix.} \end{split}$$

- Let $\sigma := \{x_1 \mapsto 1, x_2 \mapsto 1, y_1 \mapsto 1, y_2 \mapsto 1, y_1' \mapsto 0, y_2' \mapsto 0\}.$
- Potential repair candidates: All y_i where $\sigma[y_i] \neq \sigma[y_i']$.
- $\varphi(X, Y)$ is Boolean Relation.
 - So it can be $\hat{\sigma}$ = { $x_1 \mapsto 1, x_2 \mapsto 1, y_1 \mapsto 0, y_2 \mapsto 1, y_1' \mapsto 0, y_2' \mapsto 0$ }
 - We would not repair f_1 .

Repair Candidate Identification

$$\begin{split} E(\textbf{\textit{X}},\textbf{\textit{Y}},\textbf{\textit{Y}}') := \phi(\textbf{\textit{X}},\textbf{\textit{Y}}) \wedge \neg \phi(\textbf{\textit{X}},\textbf{\textit{Y}}') \wedge (\textbf{\textit{Y}}' \leftrightarrow \textbf{\textit{F}}(\textbf{\textit{X}})) \\ \sigma \models E(\textbf{\textit{X}},\textbf{\textit{Y}},\textbf{\textit{Y}}') \text{ be a counterexample to fix.} \end{split}$$

- Let $\sigma := \{x_1 \mapsto 1, x_2 \mapsto 1, y_1 \mapsto 1, y_2 \mapsto 1, y_1' \mapsto 0, y_2' \mapsto 0\}.$
- Potential repair candidates: All y_i where $\sigma[y_i] \neq \sigma[y_i']$.
- $\varphi(X, Y)$ is Boolean Relation.
 - So it can be $\hat{\sigma} = \{x_1 \mapsto 1, x_2 \mapsto 1, y_1 \mapsto 0, y_2 \mapsto 1, y_1' \mapsto 0, y_2' \mapsto 0\}$
 - We would not repair f_1 .
- MaxSAT-based Identification of nice counterexamples:
 - − Hard Clauses $\phi(X, Y) \land (X \leftrightarrow \sigma[X])$.
 - Soft Clauses (Y ↔ σ[Y']).
- Candidates to repair: Y variables in the violated soft clauses

Repairing Approximations

- $\sigma = \{x_1 \mapsto 1, x_2 \mapsto 1, y_1 \mapsto 0, y_2 \mapsto 1, y_1' \mapsto 0, y_2' \mapsto 0\}$, and we want to repair f_2 .
- Potential Repair: If $\underbrace{x_1 \wedge x_2 \wedge \neg y_1}_{\beta = \{x_1, x_2, \neg y_1\}}$ then $y_2 = 1$
- Would be nice to have $\beta = \{x_1, x_2\}$ or even $\beta = \{x_1\}$
- Challenge: How do we find small β?
 - $-\ \textit{G}_{\sigma}(\textit{\textbf{X}},\textit{\textbf{Y}}) := \phi(\textit{\textbf{X}},\textit{\textbf{Y}}) \land \textit{\textbf{x}}_{1} \land \textit{\textbf{x}}_{2} \land \neg \textit{\textbf{y}}_{1} \land \neg \textit{\textbf{y}}_{2}$
 - β:= Literals in UNSAT Core of $G_σ(X, Y)$

Repair: Adding Level to Decision List

- Candidates are from one level decision list:
 - Say we have paths p_1, p_2 with the leaf node label as 1.
 - Learned decision tree: If p₁ then 1, elif p₂ then 1, else 0.
 - $-p_1, p_2$ can be reordered.

Repair: Adding Level to Decision List

- Candidates are from one level decision list:
 - Say we have paths p_1, p_2 with the leaf node label as 1.
 - Learned decision tree: If p₁ then 1, elif p₂ then 1, else 0.
 - $-p_1, p_2$ can be reordered.
- Suppose in repair iterations, we have learned: If β₁ then 1, ... β₂ then 0
- β_1 and β_2 can be reordered.
- From one-level decision list to two-level decision list.

Manthan

12

Experimental Evaluations

- 609 Benchmarks from:
 - QBFEval competition
 - Arithmetic
 - Disjunctive decomposition
 - Factorization
- Compared Manthan with State-of-the-art tools: CADET (Rabe et al., 2019), BFSS (Akshay et al., 2018), C2Syn (Chakraborty et al., 2019).
- Timeout: 7200 seconds.

Experimental Evaluations

C2Syn	BFSS	CADET
206	247	280

Experimental Evaluations

C2Syn	BFSS	CADET	Manthan
206	247	280	509

An increase of 229 benchmarks.

Impact of Choices (I): Data Generation

QuickSampler	CryptoMiniSAT	CMSGen
332	399	509

Impact of Choices (II): Use of MaxSAT

Manthan _{no-maxsat}	Manthan
396	509

Impact of Choices (III): Abstraction vs Approximation

Manthanabstraction	Manthan _{no-maxsat}	Manthan
171	396	509

A Flavour of Knowledge Compilation Based Approach

Weak DNNF (wDNNF): Forbidden structure

A Flavour of Knowledge Compilation Based Approach

Weak DNNF (wDNNF): Forbidden structure

Special Normal Forms (Prior Work)

Synthesis Negation Normal Form (SynNNF): Forbidden semantics

Special Normal Forms (Prior Work)

Synthesis Negation Normal Form (SynNNF): Forbidden semantics

Special Normal Forms (Prior Work)

Synthesis Negation Normal Form (SynNNF): Forbidden semantics

Characterizing poly-time and poly-size BFnS

Does there exist a "semantically universal" class C^* of ckts s.t.:

P1 : BFnS is poly-time for C^*

Characterizing poly-time and poly-size BFnS

Does there exist a "semantically universal" class \mathcal{C}^{\star} of ckts s.t.:

P1 : BFnS is poly-time for C^*

P2 : For every class C of ckts:

1 BFnS is poly-time for C iff C compiles to C^* in poly-time.

Characterizing poly-time and poly-size BFnS

Does there exist a "semantically universal" class \mathcal{C}^{\star} of ckts s.t.:

- P1 : BFnS is poly-time for C^*
- P2 : For every class C of ckts:
 - **1** BFnS is poly-time for C iff C compiles to C^* in poly-time.
 - **3** BFnS is poly-size for C iff C compiles to poly-size ckts in C^*

Characterizing poly-time and poly-size BFnS

Does there exist a "semantically universal" class C^* of ckts s.t.:

- P1: BFnS is poly-time for C^*
- P2 : For every class C of ckts:
 - **1** BFnS is poly-time for C iff C compiles to C^* in poly-time.
 - BFnS is poly-size for C iff C compiles to poly-size ckts in C^*

Our Main Result

Yes, there exists such a class! Subset-And-Unrealizable Normal Form (SAUNF)

SAUNF: A Very Special Normal Form

Generalizing forbidden semantics of SynNNF

SAUNF: A Very Special Normal Form

Generalizing forbidden semantics of SynNNF

SAUNF: A Very Special Normal Form

Generalizing forbidden semantics of SynNNF

Proposition

- Every SynNNF, wDNNF, DNNF circuit is also in SAUNF.
- Every FBDD, ROBDD can be compiled in linear time to SAUNF.

Proposition

- Every SynNNF, wDNNF, DNNF circuit is also in SAUNF.
- Every FBDD, ROBDD can be compiled in linear time to SAUNF.

Proposition

SAUNF is strictly weaker/more succinct than SynNNF, wDNNF, DNNF, FBDD, ROBDD

Proposition

- Every SynNNF, wDNNF, DNNF circuit is also in SAUNF.
- Every FBDD, ROBDD can be compiled in linear time to SAUNF.

Proposition

SAUNF is strictly weaker/more succinct than SynNNF, wDNNF, DNNF, FBDD, ROBDD

Proposition

SAUNF is exponentially more succinct than DNNF/dDNNF

Proposition

- Every SynNNF, wDNNF, DNNF circuit is also in SAUNF.
- Every FBDD, ROBDD can be compiled in linear time to SAUNF.

Proposition

SAUNF is strictly weaker/more succinct than SynNNF, wDNNF, DNNF, FBDD, ROBDD

Proposition

SAUNF is exponentially more succinct than DNNF/dDNNF, which are themselves exponentially more succinct than ROBDDs/FBDD.

Operations on SAUNF

Given $\phi_1(\mathbf{X}, \mathbf{Y})$ and $\phi_2(\mathbf{X}, \mathbf{Y})$ in SAUNF

• Computing $\phi_1 \vee \phi_2$ in SAUNF takes constant time

Operations on SAUNF

Given $\phi_1(\mathbf{X}, \mathbf{Y})$ and $\phi_2(\mathbf{X}, \mathbf{Y})$ in SAUNF

- Computing $\phi_1 \lor \phi_2$ in SAUNF takes constant time
- Computing $\phi_1 \wedge \phi_2$ in SAUNF
 - Takes constant time if every pair of Y-labeled leaves of ϕ_1 and ϕ_2 are consistent.

53

Operations on SAUNF

Given $\phi_1(\mathbf{X}, \mathbf{Y})$ and $\phi_2(\mathbf{X}, \mathbf{Y})$ in SAUNF

- Computing φ₁ ∨ φ₂ in SAUNF takes constant time
- Computing $\phi_1 \wedge \phi_2$ in SAUNF
 - Takes constant time if every pair of Y-labeled leaves of φ_1 and φ_2 are consistent.
 - Otherwise,
 - Not possible in poly-time unless P = NP
 - lacksquare Not possible in poly-size unless $\Sigma_2^p=\Pi_2^p$

Operations on SAUNF

Given $\phi_1(\mathbf{X}, \mathbf{Y})$ and $\phi_2(\mathbf{X}, \mathbf{Y})$ in SAUNF

- Computing φ₁ ∨ φ₂ in SAUNF takes constant time
- Computing $\phi_1 \wedge \phi_2$ in SAUNF
 - Takes constant time if every pair of Y-labeled leaves of φ_1 and φ_2 are consistent.
 - Otherwise,
 - ▶ Not possible in poly-time unless P = NP
 - \blacktriangleright Not possible in poly-size unless $\Sigma_2^{\it p}=\Pi_2^{\it p}$
- Existentially quantifying $y_1, \dots y_m$ takes linear time.

Operations on SAUNF

Given $\phi_1(\mathbf{X}, \mathbf{Y})$ and $\phi_2(\mathbf{X}, \mathbf{Y})$ in SAUNF

- Computing φ₁ ∨ φ₂ in SAUNF takes constant time
- Computing $\phi_1 \wedge \phi_2$ in SAUNF
 - Takes constant time if every pair of Y-labeled leaves of ϕ_1 and ϕ_2 are consistent.
 - Otherwise,
 - Not possible in poly-time unless P = NP
 - Not possible in poly-size unless $\Sigma_2^p = \Pi_2^p$
- Existentially quantifying $y_1, \dots y_m$ takes linear time.
 - Quantifying subset of Y not possible in linear time in general.

Operations on SAUNF

Given $\phi_1(\mathbf{X}, \mathbf{Y})$ and $\phi_2(\mathbf{X}, \mathbf{Y})$ in SAUNF

- Computing φ₁ ∨ φ₂ in SAUNF takes constant time
- Computing $\phi_1 \wedge \phi_2$ in SAUNF
 - Takes constant time if every pair of Y-labeled leaves of ϕ_1 and ϕ_2 are consistent.
 - Otherwise,
 - ▶ Not possible in poly-time unless P = NP
 - lacksquare Not possible in poly-size unless $\Sigma_2^{
 ho}=\Pi_2^{
 ho}$
- Existentially quantifying $y_1, \dots y_m$ takes linear time.
 - Quantifying subset of Y not possible in linear time in general.

Checking if a given specification is in SAUNF

Is Co-NP complete, given linearly ordered partition of Y-labeled leaves

Operations on SAUNF

Given $\phi_1(\mathbf{X}, \mathbf{Y})$ and $\phi_2(\mathbf{X}, \mathbf{Y})$ in SAUNF

- Computing $\phi_1 \vee \phi_2$ in SAUNF takes constant time
- Computing $\phi_1 \wedge \phi_2$ in SAUNF
 - Takes constant time if every pair of Y-labeled leaves of φ_1 and φ_2 are consistent.
 - Otherwise,
 - ▶ Not possible in poly-time unless P = NP
 - lacksquare Not possible in poly-size unless $\Sigma_2^{\it p}=\Pi_2^{\it p}$
- Existentially quantifying $y_1, \dots y_m$ takes linear time.
 - Quantifying subset of Y not possible in linear time in general.

Checking if a given specification is in SAUNF

- Is Co-NP complete, given linearly ordered partition of Y-labeled leaves
- Is Co-NP hard and in Σ_2^P , otherwise

Future work: Interesting Questions

- Closing the complexity gap for checking if a specification is in SAUNF.
- From Abstraction to Approximations in Verification?
- Beyond propositional synthesis: SMT
- Learning Theoretic Foundations for Functional Synthesis
 - What is the ideal distribution to generate the data?
 - Mistake bounds/complexity of learning functions from relations?
- The Future of Formal Methods (FM) +Machine Learning (ML)
 - The proposed solutions by ML do not need to be fully correct.
 - Use FM for correctness and ML to quickly find the solution.

Thanks!