

DHARMSINH DESAI UNIVERSITY, NADIAD **FACULTY OF TECHNOLOGY** COMPUTER ENGINEERING SECOND SESSIONAL

SUBJECT: (CE-422) DISCRETE MATHEMATICS

Examination

: B.Tech Semester -IV

Seat No.

: 82

Date Time : 06, Feb 2024 : 1.00 to 2.15 PM Day Max. Marks

: Tuesday : 36

INSTRUCTIONS:

- Figures to the right indicate maximum marks for that question.
- The symbols used carry their usual meanings.
- Assume suitable data, if required & mention them clearly.
- Draw neat sketches wherever necessary.

Q.1		Do as directed.		
	U	(a)	Identify which of the below hasse diagrams represent Lattice. If they are not lattice, give justification.	[2]

CO2	R	(b)	Find the minimum number of students in a class such that three of them are born in the same month?	[2]
1 Charles	10.0		in the same month?	

a)
$$\frac{n(n-1)}{2}$$
 b) n c) 2n d) n^2
CO5 R (e) Mention any two applications of generating functions. Specify names of well- [2]

known generating functions mapped to relevant combinatorics.

CO5 R (f) Find closed form OGF for sequence 1 1 3 1 1 1 ... [2]

CO5 A (g)
$$\left(-2\right)$$

CO5 A (g)
$$\begin{pmatrix} -2 \\ 3 \end{pmatrix}$$
 using any technique.

CO2	A	(b)	Consider a function f: $R \rightarrow R$, given by $f(x) = x $, where $ x $ is absolute value of a	[4]
			number. Determine whether this function is Injective, Surjective or Bijective?	

CO2 R (c) Find the smallest relation containing the relation
$$R = \{(1,2), (1,4), (3,3), (4,1)\}$$
 [4] that is both reflexive and transitive.

Q.3		Attempt the following questions.	[12]
CO5	R	(a) Find the middle terms in the expansion of $(2x-(1/4x))^9$	[6]
CO5	A	(b) Validate methodologically that the given recurrence and generating func	tion [6]

(closed form) belong to the same sequence of terms.
$$a_{n+1} = 2a_n + 1 \quad (n \ge 0; a_0 = 0) \quad A(x) = \frac{x}{(1-x)(1-2x)}$$

$a_{n+1} = 2a_n + 1$	$(n \ge 0; a_0 = 0)$	$A(x) = \frac{x}{(1-x)(1-2x)}$
	OP	

Q.3 CO5	R	(a)	the following questions. Find the exponential generating function for a _r , the number of r arrangements	[12]
			without repetition of n objects.	-

CO5 R (b) Find the number of solutions of p1+p2+p3+p4+p5=15; Given
$$1 \le p1 \le 5$$
, $1 \le p2 \le 5$, $p3 \ge 2$, $p4 \ge 2$, $p5 \ge 2$.