1. Ítéletlogika

1.1. ÍTÉLETLOGIKAI FORMULA

- 1. Minden ítéletváltozó ítéletlogikai formula, ezeket a formulákat **atomi** vagy **prímformuláknak** is nevezzük.
- 2. Ha A ítéletlogikai formula, akkor $\neg A$ (negált A) is az.
- 3. Ha A és B ítéletlogikai formulák, akkor
 - $(A \wedge B)$ (A konjunkció B)
 - $(A \lor B)$ (A diszjunkció B)
 - $(A \supset B)$ (A implikáció B)

is ítéletlogikai formulák.

4. Minden ítéletlogikai formula az 1–3. szabályok véges sokszori alkalmazásával áll elő.

Az ítéletlogikai formulák halmaza az ítéletlogika nyelve. Jelölése: \mathcal{L}_0 .

1.2. A SZERKEZETI INDUKCIÓ ELVE

Ha minden atomi formula \mathcal{T} tulajdonságú, továbbá (indukciós lépések):

- 1. ha A ítéletlogikai formula $\mathcal T$ tulajdonságú, akkor $\neg A$ is $\mathcal T$ tulajdonságú.
- 2. ha A és a B ítéletlogikai formulák $\mathcal T$ tulajdonságúak, akkor $(A \wedge B)$, $(A \vee B)$ és $(A \supset B)$ is $\mathcal T$ tulajdonságúak.

1.3. EGYÉRTELMŰ ELEMZÉS TÉTELE

Minden ítéletlogikai formulára a következő állítások közül pontosan egy igaz:

- 1. atomi formula.
- 2. egy egyértelműen meghatározható ítéletlogikai formula negáltja.
- 3. egyértelműen meghatározható ítéletlogikai formulák konjunkciója.
- 4. egyértelműen meghatározható ítéletlogikai formulák diszjunkciója.
- 5. egyértelműen meghatározható ítéletlogikai formulák implikációja.

1.4. KÖZVETLEN RÉSZFORMULA

- 1. egyetlen atomi formulának sincs közvetlen részformulája.
- 2. a $\neg A$ egyetlen közvetlen részformulája az A formula.
- 3. az $(A \circ B)$ formula (ahol $\circ \in \{\land, \lor, \supset\}$) közvetlen részformulái az A és a B formulák. A a bal oldali, B a jobb oldali közvetlen részformulája.

1.5. RÉSZFORMULÁK HALMAZA

Legyen A ítéletlogikai formula. Az A formula **részformuláinak halmaza** a legszűkebb olyan halmaz, melynek

- 1. eleme A, és
- 2. ha a C formula eleme, akkor C közvetlen részformulái is elemei.

1.6. A SZERKEZETI REKURZIÓ ELVE

Egy az ítéletlogikai nyelvén értelmezett ${\cal F}$ függvényt egyértelműen adtunk meg, ha

- \bullet értékeit rögzítjük a nyelv atomi formuláin és megmondjuk, hogy F:
 - 1. $\neg A$ -n felvett értéke az A-n felvett értékéből, illetve
 - 2. $(A \circ B)$ -n felvett értéke (ahol $\circ \in \{\land, \lor, \supset\}$) az A-n és a B-n felvett értékekből hogyan származtatható.

1.7. LOGIKAI ÖSSZETETTSÉG

Definiáljuk az $l \colon \mathcal{L}_0 \to N_0$ függvényt a következőképpen:

- 1. ha A atomi formula, l(A) legyen 0,
- 2. $l(\neg A)$ legyen l(A) + 1,
- 3. $l(A \circ B)$ pedig legyen l(A) + l(B) + 1.

Ekkor egy $A \in \mathcal{L}_0$ formulához rendelt l(A) függvényértéket a formula **logikai** összetettségének nevezzük.

1.8. LOGIKAI ÖSSZEKÖTŐJEL HATÁSKÖRE

Egy formulában egy logikai összekötőjel hatásköre a formulának azon részformulái közül a legkisebb logikai összetettségű, amelyekben az adott logikai összekötőjel is előfordul.

1.9. FORMULA FŐ LOGIKAI ÖSSZEKÖTŐJELE

Az az összekötőjel, melynek hatásköre maga a formula.

1.10. AZ ÍTÉLETLOGIKAI NYELV INTERPRETÁCIÓJA

Az \mathcal{L}_0 nyelv interpretációján egy $\mathcal{I} \colon V_v \to \{i,h\}$ függvényt értünk.

1.11. AZ ÍTÉLETLOGIKAI FORMULÁK SZEMANTIKÁJA

Egy C ítéletlogikai formulához \mathcal{I} -ben az alábbi – $|C|^{\mathcal{I}}$ -val jelölt – igazságértéket rendeljük:

- 1. $|A|^{\mathcal{I}} \rightleftharpoons I(A)$, ahol A atomi formula, azaz ítéletváltozó.
- 2. $|\neg A|^{\mathcal{I}} \rightleftharpoons \dot{\neg} |A|^{\mathcal{I}}$.
- 3. $|A \wedge B|^{\mathcal{I}} \rightleftharpoons |A|^{\mathcal{I}} \dot{\wedge} |B|^{\mathcal{I}}$.
- **4.** $|A \vee B|^{\mathcal{I}} \rightleftharpoons |A|^{\mathcal{I}} \dot{\vee} |B|^{\mathcal{I}}$.
- 5. $|A \supset B|^{\mathcal{I}} \rightleftharpoons |A|^{\mathcal{I}} \supset |B|^{\mathcal{I}}$.

1.12. ÍTÉLETLOGIKAI FORMULÁK KIELÉGÍTHETŐSÉGE

Egy A ítéletlogikai formula kielégíthető, ha van a nyelvnek olyan $\mathcal I$ interpretációja, hogy $|A|^{\mathcal I}=i$. Az ilyen interpretációkat A **modelljeinek** nevezzük. Ha nincs A-nak modellje, az A formula **kielégíthetetlen**.

1.13. ÍTÉLETLOGIKAI TÖRVÉNY

Az A formula ítéletlogikai törvény, vagy másképp **tautológia**, ha a nyelv minden $\mathcal I$ interpretációjára $|A|^{\mathcal I}=i$. Jelölése: $\models_0 A$.

1.14. TAUTOLOGIKUS EKVIVALENCIA

A és B ítéletlogikai formulák **tautologikusan ekvivalensek**, ha minden $\mathcal I$ interpretációban $|A|^{\mathcal I}=|B|^{\mathcal I}$. Jelölése: $A\sim_0 B$.

2. Elsőrendű logika

2.1. AZ ELSŐRENDŰ NYELV TERMJEI

- 1. Minden $\pi \in Srt$ fajtájú változó és konstans π fajtájú term.
- 2. Ha az $f\in Fn$ függvényszimbólum $(\pi_1,\pi_2,\ldots,\pi_k,\pi)$ alakú és t_1,t_2,\ldots,t_k rendre π_1,π_2,\ldots,π_k fajtájú termek, akkor az $f(t_1,t_2,\ldots,t_k)$ szó egy π fajtájú term.
- 3. Minden term az 1–2. szabályok véges sokszori alkalmazásával áll elő.

2.2. AZ ELSŐRENDŰ NYELV FORMULÁI

- 1. Ha a $P \in Pr$ predikátumszimbólum $(\pi_1, \pi_2, \ldots, \pi_k)$ alakú és t_1, t_2, \ldots, t_k rendre $(\pi_1, \pi_2, \ldots, \pi_k)$ fajtájú termek, akkor a $P(t_1, t_2, \ldots, t_k)$ szó egy elsőrendű formula. Az így nyert formulákat **atomi formuláknak** nevezzük.
- 2. Ha A elsőrendű formula, akkor $\neg A$ is az.
- 3. Ha A és B elsőrendű formulák, akkor az $(A \wedge B)$, $(A \vee B)$ és az $(A \supset B)$ is elsőrendű formulák.
- 4. Ha A elsőrendű formula és x tetszőleges változó, akkor $\forall xA$ és $\exists xA$ is elsőrendű formulák. Az így nyert formulákat **kvantált formuláknak** nevezzük.
- 5. Minden elsőrendű formula a 1–4. szabályok véges sokszori alkalmazásával áll elő.

2.3. SZERKEZETI INDUKCIÓ ELVE TERMEKRE

Egy elsőrendű logikai nyelv minden termje $\mathcal T$ tulajdonságú:

- ullet (alaplépés:) ha minden változója és konstansa ${\mathcal T}$ tulajdonságú, továbbá
- (indukciós lépés:) ha a t_1,t_2,\ldots,t_k termek $\mathcal T$ tulajdonságúak, akkor az f függvényszimbólum felhasználásával előállított $f(t_1,t_2,\ldots,t_k)$ term is $\mathcal T$ tulajdonságú.

2.4. SZERKEZETI INDUKCIÓ ELVE FORMULÁKRA

Egy elsőrendű logikai nyelv minden formulája $\mathcal T$ tulajdonságú:

- ullet (alaplépés:) ha minden atomi formulája ${\mathcal T}$ tulajdonságú, és
- (indukciós lépés:)
 - 1. ha az A formula \mathcal{T} tulajdonságú, akkor $\neg A$ is \mathcal{T} tulajdonságú.
 - 2. ha A és B formulák $\mathcal T$ tulajdonságúak, akkor $(A \wedge B)$, $(A \vee B)$ és $(A \supset B)$ is $\mathcal T$ tulajdonságúak.
 - 3. ha A formula $\mathcal T$ tulajdonságú és x individuumváltozó, akkor $\forall xA$ és $\exists xA$ is $\mathcal T$ tulajdonságúak.

2.5. AZ EGYÉRTELMŰ ELEMZÉS TÉTELE TERMEKRE

Egy elsőrendű logikai nyelv minden termjére a következő állítások közül pontosan egy igaz:

- 1. A term a nyelv egy változója.
- 2. A term a nyelv egy konstansa.

3. A term a nyelv egyértelműen meghatározható termjei és az $f \in Fn$ függvényszimbólum felhasználásával előállított $f(t_1,t_2,\ldots,t_k)$ alakú term.

2.6. AZ EGYÉRTELMŰ ELEMZÉS TÉTELE FORMULÁKRA

Egy elsőrendű logikai nyelv minden formulájára a következő állítások közül pontosan egy igaz:

- 1. a nyelv egyértelműen meghatározható termjei és predikátumszimbóluma felhasználásával előállított $P(t_1,t_2,\ldots,t_k)$ alakú atomi formula.
- 2. a nyelv egyértelműen meghatározható formulájának negáltja.
- 3. a nyelv egyértelműen meghatározható formuláinak konjunkciója.
- 4. a nyelv egyértelműen meghatározható formuláinak diszjunkciója.
- 5. a nyelv egyértelműen meghatározható formuláinak implikációja.
- 6. a nyelv egy egyértelműen meghatározható A formulája és x változója felhasználásával előállított $\forall x A$ alakú formula.
- 7. a nyelv egy egyértelműen meghatározható A formulája és x változója felhasználásával előállított $\exists x A$ alakú formula.

2.7. KÖZVETLEN RÉSZTERMEK

- 1. egyetlen konstansnak és változónak sincs közvetlen résztermje.
- 2. az $f(t_1, t_2, \dots, t_k)$ term közvetlen résztermjei a t_1, t_2, \dots, t_k termek.

2.8. RÉSZTERMEK HALMAZA

Egy term résztermjeinek halmaza a legszűkebb olyan halmaz, melynek

- 1. eleme maga a term,
- 2. ha egy term eleme, akkor eleme a term összes közvetlen résztermje is.

2.9. KÖZVETLEN RÉSZFORMULÁK

- 1. egy atomi formulának nincs közvetlen részformulája.
- 2. a $\neg A$ egyetlen közvetlen részformulája az A formula.
- 3. az $(A \wedge B)$, $(A \vee B)$ és $(A \supset B)$ formulák közvetlen részformulái az A és B formulák.
- 4. a $\forall xA$, illetve $\exists xA$ közvetlen részformulája az A formula.

2.10. RÉSZFORMULÁK HALMAZA

Egy formula részformuláinak halmaza a legszűkebb olyan halmaz, melynek

- 1. eleme maga a formula.
- 2. ha egy formula eleme, akkor eleme a formula összes közvetlen részformulája is.

2.11. SZERKEZETI REKURZIÓ TERMEKRE

Egy elsőrendű logikai nyelv esetén a nyelv termjein értelmezett ${\mathcal F}$ függvényt egyértelműen adjuk meg, ha

- (alaplépés:) értékeit rögzítjük a nyelv változóin és konstansain, majd megmondjuk, hogy
- (indukciós lépések:) $\mathcal F$ értéke az $f(t_1,t_2,\ldots,t_k)$ termre az $\mathcal F$ -nek a t_1,t_2,\ldots,t_k termeken felvett értékeiből hogyan származtatható.

2.12. SZERKEZETI REKURZIÓ FORMULÁKRA

Egy elsőrendű logikai nyelv esetén a nyelv formuláin értelmezett ${\cal F}$ függvényt egyértelműen adjuk meg, ha

- ullet (alaplépés:) értékeit rögzítjük a nyelv atomi formuláin, és megmondjuk, hogy ${\mathcal F}$ értéke
- (indukciós lépések:)
 - 1. a $\neg A$ formulára az A-n felvett értékéből,
 - 2. az $(A \wedge B)$, $(A \vee B)$, illetve az $(A \supset B)$ formulára az A-n és B-n felvett értékeiből, illetve
 - 3. a $\forall xA$, illetve az $\exists xA$ formulára az A-n felvett értékéből hogyan származtatható.

2.13. FUNKCIONÁLIS ÖSSZETETTSÉG

Definiáljuk az $\tilde{l} \colon \mathcal{L}_t \to N_0$ függvényt a következőképpen:

- 1. ha t változó vagy konstansszimbólum, $\tilde{l}(t)$ legyen 0,
- 2. $\widetilde{l}(f(t_1, t_2, \dots, t_k))$ legyen $\widetilde{l}(t_1) + \widetilde{l}(t_2) + \dots + \widetilde{l}(t_k) + 1$.

Ekkor a $t \in \mathcal{L}_t$ formulához rendelt $\widetilde{l}(t)$ függvényértéket a t term **funkcionális** összetettségének nevezzük.

2.14. LOGIKAI ÖSSZETETTSÉG

Definiáljuk az $l \colon \mathcal{L}_f \to N_0$ függvényt a következőképpen:

- 1. ha A atomi formula, l(A) legyen 0,
- 2. $l(\neg A)$ legyen l(A) + 1,
- 3. $l(A \vee B)$, $l(A \wedge B)$, illetve $l(A \supset B)$ legyen l(A) + l(B) + 1,
- 4. $l(\forall xA)$, illetve $l(\exists xA)$, pedig legyen l(A) + l,

Ekkor a $A \in \mathcal{L}_f$ formulához rendelt l(A) függvényértéket az A formula **logikai** összetettségének nevezzük.

2.15. VÁLTOZÓELŐFORDULÁS STÁTUSZA

- 1. A termek és atomi formulák minden változójának minden előfordulása szabad.
- 2. A $\neg A$ formulában egy változó-előfordulás pontosan akkor kötött, ha ez a változó-előfordulás már A-ban is kötött.
- 3. Az $(A \land B)$, $(A \lor B)$, illetve az $(A \supset B)$ formulában egy változó-előfordulás kötött, ha ez az előfordulás már kötött abban a közvetlen részformulában is, amelyben ez az előfordulás szerepel.
- 4. A $\forall xA$, illetve a $\exists xA$ formulában x minden előfordulása kötött. Az A formula előtt szereplő kvantor teszi kötötté (köti) x valamely előfordulását, ha ez az előfordulás A-ban még szabad volt. Egy az x-től különböző változó valamely előfordulása kötött, ha A-ban kötött.

Ha egy változónak egy kifejezésben van szabad előfordulása, akkor ezt a változó a kifejezés **paramétere**. Egy K kifejezés paraméterei halmazára Par(K)-val fogunk hivatkozni.

2.16. KÖTÖTT VÁLTOZÓK ÁTNEVEZÉSE

A $\forall xA$, illetve a $\exists xA$ formulában az A előtt szereplő kvantor által kötött x változó átnevezéséről beszélünk, amikor

- 1. a $\forall x$, illetve a $\exists x$ kvantoros előtagban x helyett egy vele megegyező fajtájú y változót nevezünk meg ($\forall y$, illetve $\exists y$), majd
- 2. A-ban az x változó minden szabad előfordulását y-ra cseréljük ki (a kapott formulát jelöljük $[A_u^x]$ -nal),

és így a $\forall y[A_n^x]$, illetve a $\exists y[A_n^x]$ formulát kapjuk.

2.17. SZABÁLYOSAN VÉGREHAJTOTT VÁLTOZÓÁTNEVEZÉS

Ha a $\forall x A$, illetve a $\exists x A$ formulában

- 1. y nem paraméter és
- 2. x egyetlen előfordulása sem esik y-t megelőző kvantor hatáskörébe, akkor szabályosan végrehajtott változó-átnevezéssel nyertük a $\forall xA$, illetve a $\exists xA$ formulából a $\forall y[A_{\eta}^{x}]$, illetve a $\exists y[A_{\eta}^{x}]$ formulát.

2.18. FORMULÁK KONGRUENCIÁJA

- 1. Egy atomi formula csak önmagával kongruens.
- 2. $\neg A \approx \neg A'$, ha $A \approx A'$.
- 3. $(A \wedge B) \approx (A' \wedge B')$, $(A \vee B) \approx (A' \vee B')$, illetve $(A \supset B) \approx (A' \supset B')$, ha $A \approx A'$ és $B \approx B'$.
- 4. $\forall xA \approx \forall yA'$, illetve $\exists xA \approx \exists yA'$, ha $[A_z^x] \approx [A_z'^y]$ minden olyan z változóra, amely különbözik a kérdéses formulákban előforduló összes változótól.

2.19. VÁLTOZÓIBAN TISZTA ALAK

Egy formulát változóiban tisztának nevezünk, ha benne minden kvantoros előtagban a formula

- 1. paramétereitől és
- 2. bármely másik kvantoros előtagban megnevezett változótól különböző változó van megnevezve.

3. Elsőrendű logika - szemantika

3.1. ELSŐRENDŰ LOGIKAI NYELV INTERPRETÁCIÓJA

Egy \mathcal{I} -vel jelölt

$$\langle \mathcal{I}_{Srt}, \, \mathcal{I}_{Pr}, \, \mathcal{I}_{Fn}, \, \mathcal{I}_{Cnst} \rangle$$

függvénynégyes, ahol

- 1. az $\mathcal{I}_{Srt}\colon \pi \to \mathcal{U}_{\pi}$ függvény megad minden egyes $\pi \in Srt$ fajtához egy \mathcal{U}_{π} nemüres halmazt, a π fajtájú individuumok halmazát (a különböző fajtájú individuumok halmazainak uniója az interpretáció individuumtartománya vagy univerzuma),
- 2. az $\mathcal{I}_{Pr}\colon P\to P^\mathcal{I}$ függvény megad minden $(\pi_1,\pi_2,\dots,\pi_k)$ alakú $P\in Pr$ predikátumszimbólumhoz egy

$$P^{\mathcal{I}}: \mathcal{U}_{\pi 1} \times \mathcal{U}_{\pi 2} \times \ldots \times \mathcal{U}_{\pi k} \to \{i, h\}$$

logikai függvényt (relációt),

3. az $\mathcal{I}_{Fn}\colon f\to f^{\mathcal{I}}$ függvény hozzárendel minden $(\pi_1,\pi_2,\ldots,\pi_k)$ alakú $f\in Fn$ függvényszimbólumhoz egy

$$f^{\mathcal{I}}: \mathcal{U}_{\pi 1} \times \mathcal{U}_{\pi 2} \times \ldots \times \mathcal{U}_{\pi k} \to \mathcal{U}_{\pi}$$

matematikai függvényt (műveletet),

4. az $\mathcal{I}_{Cnst} \colon c \to c^{\mathcal{I}}$ függvény pedig minden π fajtájú $c \in Cnst$ konstansszimbólumhoz az \mathcal{U}_{π} individuumtartománynak egy individuumát rendeli, azaz $c^{\mathcal{I}} \in \mathcal{U}_{\pi}$.

3.2. VÁLTOZÓKIÉRTÉKELÉS

Legyen az $\mathcal L$ elsőrendű logikai nyelvnek $\mathcal I$ egy interpretációja, az interpretáció univerzuma legyen $\mathcal U$. Jelölje V a nyelv változóinak halmazát. Egy olyan $\kappa\colon V\to \mathcal U$ leképezést, ahol ha x π fajtájú változó, akkor $\kappa(x)$ $\mathcal U_\pi$ -beli individuum, az $\mathcal I$ interpretáció egy **változókiértékelésének** nevezzük.

3.3. VÁLTOZÓKIÉRTÉKELÉS VARIÁNSA

Legyen x egy változó. A κ^* változókiértékelés a κ x-variánsa, ha $\kappa^*(y)=\kappa(y)$ minden x-től különböző y változó esetén.

3.4. FORMULÁK KIELÉGÍTHETŐSÉGE

Az elsőrendű logikai nyelv egy A formulája **kielégíthető**, ha van a nyelvnek olyan $\mathcal I$ interpretációja és $\mathcal I$ -ben van olyan κ változókiértékelés, amelyre $|A|^{\mathcal I,\kappa}=i$, egyébként **kielégíthetetlen**. Ha az $\mathcal I$ interpretáció és a κ változókiértékelés olyanok, hogy $|A|^{\mathcal I,\kappa}=i$, azt mondjuk, hogy $\mathcal I$ a κ változókiértékelés mellett kielégíti A-t.

Amennyiben az A formula zárt, igazságértékét egyedül az interpretáció határozza meg. Ha $|A|^{\mathcal{I}}=i$, azt mondjuk, hogy az \mathcal{I} interpretáció **kielégíti** A-t vagy másképp, a \mathcal{I} interpretáció az A formula **modellje**.

3.5. LOGIKAI TÖRVÉNY

Az elsőrendű logikai nyelv egy A formulája **logikai törvény**, ha a nyelv minden $\mathcal I$ interpretációjában és $\mathcal I$ minden κ változókiértékelése mellett $|A|^{\mathcal I,\kappa}=i$. Jelölése: $\models A$.

3.6. PRÍMFORMULÁK

Az elsőrendű logikai nyelv prímformulái az **atomi** és **kvantált** formulák. Ezekből a formulákból az ítéletlogikai összekötőjelek (\neg , \land , \lor , \supset) segítségével minden elsőrendű formulát fel tudunk építeni.

3.7. PRÍMKOMPONENSEK

Egy formula azon részformuláit, amelyek prímformulák, és amelyekből a formula csupán az ítéletlogikai összekötőjelek (\neg , \land , \lor , \supset) segítségével felépíthető, a formula **prímkomponenseinek** nevezzük.

3.8. ELSŐRENDŰ TAUTOLÓGIA

Az elsőrendű logikai nyelv egy A formulája tautologikusan igaz (tautológia), ha a formula Quine-táblázatában A oszlopában csupa i igazságérték található. Jelölése: $\models_0 A$.

3.9. LOGIKAI EKVIVALENCIA

Legyenek A és B az $\mathcal L$ nyelv tetszőleges formulái. Azt mondjuk, hogy az A és a B elsőrendű formulák logikailag ekvivalensek, ha minden $\mathcal I$ interpretációban és κ változókiértékelés mellett $|A|^{\mathcal I,\kappa}=|B|^{\mathcal I,\kappa}$.

Jelölése: $A \sim B$.

3.10. TERMEK ÉRTÉKE

Legyen az $\mathcal L$ nyelvnek $\mathcal I$ egy interpretációja és κ egy $\mathcal I$ -beli változókiértékelés. Az $\mathcal L$ nyelv egy π fajtájú t termjének értéke $\mathcal I$ -ben a κ változókiértékelés mellett az alábbi – $|t|^{\mathcal I,\kappa}$ -val jelölt – $\mathcal U_\pi$ -beli individuum:

- 1. ha $c \in Cnst \ \pi$ fajtájú konstansszimbólum, akkor $|c|^{\mathcal{I},\kappa}$ az \mathcal{U}_{π} -beli $c^{\mathcal{I}}$ individuum,
- 2. ha x π fajtájú változó, akkor $|x|^{\mathcal{I},\kappa}$ az \mathcal{U}_{π} -beli $\kappa(x)$ individuum,
- 3. ha t_1,t_2,\ldots,t_k rendre π_1,π_2,\ldots,π_k fajtájú termek és ezek értékei a κ változókiértékelés mellett \mathcal{I} -ben rendre az $\mathcal{U}_{\pi 1}$ -beli $|t_1|^{\mathcal{I},\kappa}$, az $\mathcal{U}_{\pi 2}$ -beli $|t_2|^{\mathcal{I},\kappa},\ldots$ és az $\mathcal{U}_{\pi k}$ -beli $|t_k|^{\mathcal{I},\kappa}$ individuumok, akkor egy $(\pi_1,\pi_2,\ldots,\pi_k,\pi)$ alakú $f\in Fn$ függvényszimbólum esetén $|f(t_1,t_2,\ldots,t_k)|^{\mathcal{I},\kappa}$ az \mathcal{U}_{π} -beli $f^{\mathcal{I}}(|t_1|^{\mathcal{I},\kappa},|t_2|^{\mathcal{I},\kappa},\ldots,|t_k|^{\mathcal{I},\kappa})$ individuum.

3.11. FORMULÁK ÉRTÉKE

Legyen az $\mathcal L$ nyelvnek $\mathcal I$ egy interpretációja és κ egy $\mathcal I$ -beli változókiértékelés. Egy C formulához $\mathcal I$ -ben a κ változókiértékelés mellett az alábbi – $|C|^{\mathcal I,\kappa}$ -val jelölt – igazságértéket rendeljük:

1.
$$|P(t_1, t_2, \dots, t_k)|^{\mathcal{I}, \kappa} \rightleftharpoons \begin{cases} i \text{ ha } P(|t_1|^{\mathcal{I}, \kappa}, |t_2|^{\mathcal{I}, \kappa}, \dots, |t_k|^{\mathcal{I}, \kappa}) = i, \\ h \text{ egyébként.} \end{cases}$$

2.
$$|\neg A|^{\mathcal{I},\kappa} \rightleftharpoons \dot{\neg} |A|^{\mathcal{I},\kappa}$$
,

3.
$$|A \wedge B|^{\mathcal{I},\kappa} \rightleftharpoons |A|^{\mathcal{I},\kappa} \dot{\wedge} |B|^{\mathcal{I},\kappa}$$

4.
$$|A \vee B|^{\mathcal{I},\kappa} \rightleftharpoons |A|^{\mathcal{I},\kappa} \dot{\vee} |B|^{\mathcal{I},\kappa}$$

5.
$$|A \supset B|^{\mathcal{I},\kappa} \rightleftharpoons |A|^{\mathcal{I},\kappa} \supset |B|^{\mathcal{I},\kappa}$$

$$\text{6. } |\forall xA|^{\mathcal{I},\kappa} \rightleftharpoons \begin{cases} i \text{ ha } |A|^{\mathcal{I},\kappa^*} = i \text{ } \kappa \text{ minden } \kappa^* \text{ x-variansara,} \\ h \text{ egyébként.} \end{cases}$$

7.
$$|\exists xA|^{\mathcal{I},\kappa} \leftrightharpoons \begin{cases} i \text{ ha } |A|^{\mathcal{I},\kappa^*} = i \text{ } \kappa \text{ valamely } \kappa^* \text{ } x\text{-variánsára,} \\ h \text{ egyébként.} \end{cases}$$