MAQUETTE STEAMCITY

BONNES PRATIQUES POUR CRÉER ET UTILISER LA MAQUETTE DANS CHAQUE PROTOCOLE STEAMCITY

Maquetter la ville pour aider les élèves à comprendre ses enjeux et à contextualiser leurs apprentissages

Engagement citoyen, gouvernance et données			
Protocole	Mise en œuvre terrain avec maquette	Facilitation pédagogique	
Défi du détective urbain	Tester les solutions des gestions de crises sur une maquette pour illustrer ses idées. Utiliser la ville de la maquette comme support des situations de crise et proposer des solutions prenant en compte la dimension spaciale	Expérimente la gestion de crise en environnement contrôlé. Comprend l'impact spatial des décisions d'urgence. Développe la pensée systémique	
Données vs. Contexte	Utiliser la maquette de ville pour préparer la data hunt dans la ville en identifiant les lieux comportant potentiellement le plus de données.	Sécurise la sortie terrain par préparation méthodique. Offre support structuré de débriefing. Matérialise la géographie invisible des données urbaines	
FactBusters - Décrypter le vrai du faux	Cartographier les zones de confiance/méfiance selon la qualité de l'information. Visualiser la propagation des rumeurs dans le territoire. Confronter les sources d'information avec la réalité locale.	Matérialise la géographie de l'information. Comprend la propagation spatiale des rumeurs. Développe l'esprit critique territorial	
Bot Buddy Adventure	Valider la pertinence des recommandations du chatbot sur un parcours physique. Tester différents profils d'utilisateurs (PMR, touristes) sur la maquette. Identifier les potentiels points d'intérêt physiques connectés au chatbot.	Transforme l'expérience numérique abstraite en test d'utilisabilité concret. Développe l'empathie pour les difficultés de navigation urbaine	
L'Odyssée de l'IA	Planifier l'itinéraire grâce à la maquette en identifiant au préalable les zones à explorer. Entraîner la reconnaissance des capteurs sur la maquette avant la sortie. Créer des miniatures capteurs/stations positionnables, les utiliser après pour localiser les capteurs urbains observés.	Sécurise la sortie terrain par préparation méthodique. Offre support structuré de débriefing. Matérialise la géographie invisible des données urbaines	

Environnement, bien-être et santé publique

Protocole	Mise en œuvre terrain avec maquette	Facilitation pédagogique
Decibel Detectives	Créer une maquette de classe avec des matériaux acoustiques variables. Utiliser des sources sonores contrôlées, des espaces modulables. Identifier les configurations acoustiques optimales.	Comprend l'influence directe de l'environnement physique sur l'apprentissage. Permet l'expérimentation de configurations impossibles en classe réelle
Birdsongs AI Explorer	Identifier les zones d'observation prometteuses selon la végétation de la maquette. Placer des haut-parleurs émettant des chants, l'agent autonome détecte les oiseaux. Confronter les résultats terrain avec les prédictions de la maquette.	Développe l'hypothèse scientifique et la validation expérimentale. Crée un environnement acoustique contrôlé. Visualise la relation urbanisation/biodiversité
Les gardiens des fleurs	Utiliser la cartographie sensible pour identifier les zones d'observation prioritaires. Créer des espaces verts modulaires, utiliser des pollinisateurs 3D imprimés. Reporter les observations terrain avec des éléments physiques.	Structure l'observation naturaliste. Visualise l'écosystème urbain. Comprend l'impact de l'aménagement sur la pollinisation
Light vs. Zzz	Identifier les points de tension et de bruit dans les quartiers où circulent et vivent les élèves. Réfléchir aux résultats attendus avec des drapeaux. Faire les mesures et visualiser sur la maquette.	Comprend l'impact de l'éclairage urbain sur le sommeil. Visualise les inégalités environnementales nocturnes. Contextualise dans le vécu des élèves
Mesure de CO2 en intérieur	Tester les positions des capteurs sur la maquette de bâtiment. Simuler l'impact des ouvertures sur la circulation de l'air. Identifier les configurations architecturales optimales, vérifier la structure physique.	Permet l'expérimentation de configurations impossibles en classe réelle. Comprend les enjeux de santé environnementale
Trees vs. Cars	Entraîner l'IA avec les éléments physiques de la maquette pour l'algorithme. Tester la reconnaissance avec un modèle d'apprentissage supervisé sur les éléments de circulation. Valider la performance de reconnaissance des objets en conditions physiques.	Rend tangible le fonctionnement de l'IA et ses limitations. Comprend l'IA appliquée à la mobilité. Programme les systèmes de classification

Environnement, bien-être et santé publique

Protocole	Mise en œuvre terrain avec maquette	Facilitation pédagogique
Qualité de l'air extérieur	Sélectionner les sites selon la végétation, les industries, les écoles. Utiliser des gommettes colorées pour les niveaux de qualité de l'air anticipés. Confronter les prédictions avec les mesures terrain.	Visualise la géographie de la pollution. Comprend les inégalités environnementales. Développe la conscience écologique territoriale
Tri optimisé des déchets	Tester la collecte avec des éléments de déchets de différents types positionnables. Programmer le robot comme agent autonome de collecte selon la formation IA. Valider la performance de reconnaissance en conditions physiques.	Comprend l'IA appliquée à la gestion urbaine. Expérimente la robotique de service. Teste les limites technologiques
Végétalisation urbaine et IA	Tester les emplacements avec des espaces urbains modulaires pour les murs végétaux. Utiliser des capteurs de lumière, humidité, température. Identifier les emplacements optimaux selon les contraintes.	Expérimente l'agriculture urbaine. Comprend l'adaptation des plantes au milieu urbain. Développe les solutions de végétalisation
SoundSquad	Identifier les zones d'expérimentations selon les ressentis. Utiliser des matériaux acoustiques différenciés. Transférer visuellement les résultats de la cartographie sensible sur la maquette.	Matérialise la géographie sonore. Développe la sensibilité acoustique. Comprend l'impact du design urbain sur l'ambiance
Whisper Walls - Explorer le son du silence	Personnaliser avec la création de "maisons" individuelles, localiser les chambres. Tester les matériaux avec des couleurs différentes pour les matériaux de construction. Optimiser les combinaisons d'isolation selon les situations des élèves. Contextualise l'expérience physical l'environnement de vie des élèves. l'environnement de vie des élèves. l'isolation acoustique conc	
Impact écologique de la réglementation de la mobilité	Tester des scénarios avec des zones de restriction modulaires, l'infrastructure de mobilité durable. Compatible Roobopoli, utiliser des véhicules autonomes avec régulation. Observer les flux et la qualité environnementale.	Comprend les compromis mobilité/écologie. Expérimente la mobilité autonome en conditions contrôlées. Programme des comportements écologiques

F CC.	•			A	
Etti	cacit	e en	era	etid	ue
	33.3.3	~ ~	-		

Protocole	Mise en œuvre terrain avec maquette	Facilitation pédagogique	
Shine Smart, Shine Bright	Observer l'éclairage résidentiel, commercial selon la maquette. Tester les configurations avec un éclairage programmable, des capteurs de luminosité. Optimiser l'équilibre sécurité/économie/confort.	Expérimente l'éclairage urbain intelligent. Comprend les enjeux de sécurité et d'économie d'énergie. Développe les solutions d'éclairage adaptatif	
Des murs isolés aux villes fraîches	Tester l'isolation avec des bâtiments aux matériaux variables, des capteurs thermiques. Utiliser des codes couleur pour la circulation de la chaleur. Identifier les configurations architecturales efficaces.	Expérimente l'efficacité énergétique. Comprend les transferts thermiques en architecture. Teste les solutions d'isolation urbaine	
Énergies en perspective	Simuler le mix avec des sources d'énergie physiques (panneaux, éoliennes), des circuits LED. Tester l'impact de la suppression d'une source énergétique. Visualiser la circulation de l'énergie dans la ville.	Visualise la complexité et la vulnérabilité des systèmes énergétiques. Comprend les interdépendances territoriales. Développe la conscience écologique	
Scénario Negawatt et sobriété énergétique	Faire l'audit énergétique avec une maquette d'école aux consommations visibles. Tester les modifications avec des équipements modifiables, observer les impacts. Identifier les leviers d'action concrets.	Concrétise les enjeux de sobriété énergétique. Comprend l'impact des choix sur la consommation. Développe les solutions applicables	
Simulateur de mix énergétique	Reconfigurer l'infrastructure énergétique modulaire. Tester l'impact des configurations sur le réseau et l'environnement. Rechercher l'équilibre performance/durabilité.	Comprend les défis techniques et politiques de la transition énergétique. Expérimente les arbitrages énergétiques complexes	

Mobilité durable, transport et régulation

Protocole	Mise en œuvre terrain avec maquette	Facilitation pédagogique
Impact écologique de la réglementation de la mobilité	Tester des scénarios avec des zones de restriction modulaires, l'infrastructure de mobilité durable. Compatible Roobopoli, utiliser des véhicules autonomes avec régulation. Observer les flux et la qualité environnementale.	Comprend les compromis mobilité/écologie. Expérimente la mobilité autonome en conditions contrôlées. Programme des comportements écologiques
Signalisation routière de demain	Tester la signalisation avec des panneaux modulaires programmables sur le circuit. Valider l'efficacité avec des véhicules autonomes reconnaissant la signalisation. Intégrer les panneaux créés pour réguler la mobilité.	Teste l'efficacité de la signalisation intelligente. Comprend l'interaction homme-machine en mobilité. Programme les comportements autonomes
Safari des objets connectés	Designer les objets avec une ville connectée aux objets intelligents programmables. Créer des interactions compatibles Roobopoli, des effets domino entre les objets. Valider l'utilité des objets en contexte urbain.	Comprend l'Internet des Objets urbain. Programme les interactions complexes. Visualise la ville intelligente du futur
Trees vs. Cars	Entraîner l'IA avec les éléments physiques de la maquette pour l'algorithme. Tester la reconnaissance avec un modèle d'apprentissage supervisé sur les éléments de circulation. Valider la performance de reconnaissance des objets en conditions physiques.	Rend tangible le fonctionnement de l'IA et ses limitations. Comprend l'IA appliquée à la mobilité. Programme les systèmes de classification

Intelligence artificielle et nouvelles technologies

Protocole	Mise en œuvre terrain avec maquette	Facilitation pédagogique	
L'Odyssée de l'IA	Planifier l'itinéraire grâce à la maquette en identifiant au préalable les zones à explorer. Entraîner la reconnaissance des capteurs sur la maquette avant la sortie. Créer des miniatures capteurs/stations positionnables, les utiliser après pour localiser les capteurs urbains observés.	Sécurise la sortie terrain par préparation méthodique. Offre support structuré de débriefing. Matérialise la géographie invisible des données urbaines	
Processus d'apprentissage bio- inspirés	Utiliser une maquette comme Roobopoli avec obstacles amovibles pour tester les algorithmes et le capacité d'adaptation. Reproduire le comportement du modèle IA en réel, vérifier la performance en conditions physiques. Confronter l'intuition humaine et la logique machine.	Compare apprentissage humain et machine à l'échelle de l'apprenant. Visualise les processus d'essai-erreur. Rend tangible le fonctionnement de l'IA	
Trees vs. Cars	Entraîner l'IA avec les éléments physiques de la maquette pour l'algorithme. Tester la reconnaissance avec un modèle d'apprentissage supervisé sur les éléments de circulation. Valider la performance de reconnaissance des objets en conditions physiques.	Rend tangible le fonctionnement de l'IA et ses limitations. Comprend l'IA appliquée à la mobilité. Programme les systèmes de classification	
Bot Buddy Adventure	Valider la pertinence des recommandations du chatbot sur un parcours physique. Tester différents profils d'utilisateurs (PMR, touristes) sur la maquette. Identifier les potentiels points d'intérêt physiques connectés au chatbot.	Transforme l'expérience numérique abstraite en test d'utilisabilité concret. Développe l'empathie pour les difficultés de navigation urbaine	
Végétalisation urbaine et IA	Tester les emplacements avec des espaces urbains modulaires pour les murs végétaux. Utiliser des capteurs de lumière, humidité, température. Identifier les emplacements optimaux selon les contraintes.	Expérimente l'agriculture urbaine. Comprend l'adaptation des plantes au milieu urbain. Développe les solutions de végétalisation	

Intelligence artificielle et nouvelles technologies

Protocole	Mise en œuvre terrain avec maquette	Facilitation pédagogique
BirdSong AI Explorer	Identifier les zones d'observation prometteuses selon la végétation de la maquette. Placer des haut-parleurs émettant des chants, l'agent autonome détecte les oiseaux. Confronter les résultats terrain avec les prédictions de la maquette.	Développe l'hypothèse scientifique et la validation expérimentale. Crée un environnement acoustique contrôlé. Visualise la relation urbanisation/biodiversité
Tri optimisé des déchets	Tester la collecte avec des éléments de déchets de différents types positionnables. Programmer le robot comme agent autonome de collecte selon la formation IA. Valider la performance de reconnaissance en conditions physiques.	Comprend l'IA appliquée à la gestion urbaine. Expérimente la robotique de service. Teste les limites technologiques
Signalisation routière de demain	Tester la signalisation avec des panneaux modulaires programmables sur le circuit. Valider l'efficacité avec des véhicules autonomes reconnaissant la signalisation. Intégrer les panneaux créés pour réguler la mobilité.	Teste l'efficacité de la signalisation intelligente. Comprend l'interaction homme-machine en mobilité. Programme les comportements autonomes