Results

Descriptives

```
jmv::descriptives(
 data = data,
 vars = vars(Attractiveness, Alcohol, FaceType),
 hist = TRUE,
 box = TRUE,
 qq = TRUE,
 mode = TRUE,
 variance = TRUE,
 range = TRUE,
 se = TRUE,
 skew = TRUE,
 kurt = TRUE)
```

Descriptives

	Attractiveness	Alcohol	FaceType
N	48	48	48
Missing	0	0	0
Mean	5.67	1.00	0.500
Std. error mean	0.229	0.119	0.0729
Median	6.00	1.00	0.500
Mode	6.00	0.00 a	0.00 a
Standard deviation	1.59	0.825	0.505
Variance	2.52	0.681	0.255
Range	7.00	2	1
Minimum	1.00	0	0
Maximum	8.00	2	1
Skewness	-0.783	0.00	0.00
Std. error skewness	0.343	0.343	0.343
Kurtosis	0.665	-1.53	-2.09
Std. error kurtosis	0.674	0.674	0.674

^a More than one mode exists, only the first is reported

Plots

Attractiveness

FaceType

Relationships, Prediction, and Group Comparisons

```
Statkat::correlational(
data = data,
dep = Attractiveness,
independents = vars(Alcohol, FaceType))
```

You have entered a numeric dependent variable and two categorical (nominal/ordinal) independent variables. Hence, a <u>two way ANOVA</u> seems to be a good option for you! In order to run this analysis in jamovi, go to: ANOVA > ANOVA

• Drop your numeric dependent variable in the box below Dependent Variable and your two independent (grouping) variables in the box below Fixed Factors

Click on the link to learn more about this method!

Scatter Plots of Bivariate Relationships - Dependent/Independent Variables

ANOVA

```
jmv::ANOVA(
 formula = Attractiveness ~ FaceType + Alcohol + FaceType:Alcohol,
 data = data,
 effectSize = "omega",
 homo = TRUE,
 norm = TRUE,
 qq = TRUE,
 postHoc = ~ FaceType + Alcohol + FaceType:Alcohol,
 postHocES = "d",
 postHocESCi = TRUE,
 emMeans = ~ FaceType:Alcohol + Alcohol:FaceType)
```

	Sum of Squares	df	Mean Square	F	р	ω^2
FaceType	21.3	1	21.33	15.58	< .001	0.166
Alcohol	16.5	2	8.27	6.04	0.005	0.115
FaceType * Alcohol	23.3	2	11.65	8.51	< .001	0.171
Residuals	57.5	42	1.37			

[3]

Assumption Checks

Homogeneity of Variances Tests

	Statistic	df	df2	р
Levene's	0.702	5	42	0.625
Bartlett's	3.14	5		0.678

Note. Additional results provided by moretests

Normality tests

	statistic	р
Shapiro-Wilk	0.987	0.878
Kolmogorov-Smirnov	0.112	0.585
Anderson-Darling	0.288	0.605

Note. Additional results provided by moretests

Q-Q Plot

Post Hoc Comparisons - FaceType

Compari	ison							95% Confidence Interval		
FaceType	FaceType	Mean Difference	SE	df	t	P _{tukey}	Cohen's d	Lower	Upper	
Unattractive -	Attractive	-1.33	0.338	42.0	-3.95	< .001	-1.14	-1.77	-0.505	

Note. Comparisons are based on estimated marginal means

Post Hoc Comparisons - Alcohol

Comparison		_						95% Confid	ence Interval	
Alcohol		Alcohol	Mean Difference	SE	df	t	P _{tukey}	Cohen's d	Lower	Upper
Placebo	-	Low dose	-0.750	0.414	42.0	-1.81	0.178	-0.641	-1.37	0.0863
	-	High dose	-1.437	0.414	42.0	-3.47	0.003	-1.229	-1.99	-0.4655
Low dose	-	High dose	-0.688	0.414	42.0	-1.66	0.232	-0.588	-1.31	0.1376

Note. Comparisons are based on estimated marginal means

Post Hoc Comparisons - FaceType * Alcohol

Comparison										nfidence erval		
FaceType	Alcohol	ohol FaceType A		Alcohol	Mean Difference	SE	df	t	P _{tukey}	Cohen's d	Lower	Upper
Unattractive	Placebo	-	Unattractive	Low dose	-1.375	0.585	42.0	-2.350	0.197	-1.175	-2.217	-0.1335
		-	Unattractive	High dose	-3.125	0.585	42.0	-5.342	< .001	-2.671	-3.839	-1.5029
		-	Attractive	Placebo	-2.875	0.585	42.0	-4.914	< .001	-2.457	-3.602	-1.3122
		-	Attractive	Low dose	-3.000	0.585	42.0	-5.128	< .001	-2.564	-3.720	-1.4077
		-	Attractive	High dose	-2.625	0.585	42.0	-4.487	< .001	-2.243	-3.367	-1.1200
	Low dose	-	Unattractive	High dose	-1.750	0.585	42.0	-2.991	0.049	-1.496	-2.557	-0.4342
		-	Attractive	Placebo	-1.500	0.585	42.0	-2.564	0.129	1.282	0.234	2.3298
		-	Attractive	Low dose	-1.625	0.585	42.0	-2.778	0.081	-1.389	-2.443	-0.3345
		-	Attractive	High dose	-1.250	0.585	42.0	-2.137	0.289	-1.068	-2.104	-0.0322
	High dose	-	Attractive	Placebo	0.250	0.585	42.0	0.427	0.998	-0.214	-1.224	0.7965
		-	Attractive	Low dose	0.125	0.585	42.0	0.214	1.000	-0.107	-1.116	0.9025
		-	Attractive	High dose	0.500	0.585	42.0	0.855	0.955	0.427	-0.586	1.4407
Attractive	Placebo	-	Attractive	Low dose	-0.125	0.585	42.0	-0.214	1.000	-0.107	-1.116	0.9025
		-	Attractive	High dose	0.250	0.585	42.0	0.427	0.998	0.214	-0.796	1.2238
	Low dose	-	Attractive	High dose	0.375	0.585	42.0	0.641	0.987	0.320	-0.691	1.3320

Note. Comparisons are based on estimated marginal means

Estimated Marginal Means

FaceType * Alcohol

Alcohol * FaceType

[4]

References

[1] The jamovi project (2022). jamovi. (Version 2.3) [Computer Software]. Retrieved from https://www.jamovi.org.

[2] R Core Team (2021). *R: A Language and environment for statistical computing*. (Version 4.1) [Computer software]. Retrieved from https://cran.r-project.org. (R packages retrieved from MRAN snapshot 2022-01-01).

[3] Fox, J., & Weisberg, S. (2020). *car: Companion to Applied Regression*. [R package]. Retrieved from https://cran.r-project.org/package=car.

[4] Lenth, R. (2020). *emmeans: Estimated Marginal Means, aka Least-Squares Means*. [R package]. Retrieved from https://cran.r-project.org/package=emmeans.