МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА) Кафедра МО ЭВМ

ОТЧЕТ

по лабораторной работе №4

по дисциплине «Искусственные нейронные сети» Тема: Распознавание рукописных символов

Студентка гр. 8383	 Аверина О.С.
Преподаватель	 Жангиров Т.Р.

Санкт-Петербург

Цель работы.

Реализовать классификацию черно-белых изображений рукописных цифр(28x28) по 10 категориям (от 0 до 9).

Задачи.

- 1. Ознакомиться с представлением графических данных
- 2. Ознакомиться с простейшим способом передачи графических данныхнейронной сети
- 3. Создать модель
- 4. Настроить параметры обучения
- 5. Написать функцию, позволяющая загружать изображение пользователии классифицировать его

Ход работы.

Из tensorflow был загружен датасет mnist. Тестовые данные были нормализованы для корректной обработки.

Была выполнена модель из методических материалов, её точность составила 97.8%

Были исследованы все известные оптимизаторы, далее приведены точности при использовании их с разными параметрами:

- SGD, параметры по умолчанию = 91.2%
- RMSprop, параметры по умолчанию = 97.7%
- Adam, параметры по умолчанию = 97.8%
- Adadelta, параметры по умолчанию = 51.7%
- Adagrad, параметры по умолчанию = 87.7%
- Adamax, параметры грумолчанию = 96.4%
- Nadam, параметры по умолчанию = 97.5%

По полученным данным были выбраны три оптимизатора с наилучшей точностью: RMSprop, Adam, Nadam.

RMSprop.

Изменяемые параметры:

learning_rate - значение с плавающей точкой, означающее скорость обучения.

rho - коэффициент дисконтирования для градиента истории/прихода. *centered* - булевый тип значения. Если True, то градиенты нормализуются по расчетной дисперсия градиента; если Ложь, то на нецентрированный второй момент. Установка этого значения на " True' может помочь в обучении, но немного дороже с точки зрения вычислений и памяти.

learning_rate	rho	centered	Accuracy, %
0.01	0.9	True	97.3
0.001	0.9	True	97.7
0.0001	0.9	True	94.8
0.001	0.99	True	97.8

Adam.

Изменяемые параметры:

learning_rate - значение с плавающей точкой, означающее скорость обучения.

beta_1 - экспоненциальная скорость затухания для оценок 1-го момента. По умолчанию используется значение 0.9.

beta_2 - экспоненциальная скорость затухания для оценок 2-го момента. По умолчанию используется значение 0.999.

learning_rate	beta_1	beta_2	Accuracy, %
0.01	0.9	0.999	96.7
0.001	0.9	0.99	97.9
0.01	0.9	0.99	97
0.001	0.99	0.999	97.7

Nadam:

learning_rate	beta_1	beta_2	Accuracy, %
0.01	0.9	0.999	97.2
0.001	0.9	0.99	97.7
0.01	0.99	0.999	97.5
0.01	0.999	0.999	98

Судя по полученным результатам, можно сделать вывод, что оптимизатор Nadam показал лучший результат (немного лучше, чем Adam).

Тестирование.

Были созданы тестовые изображения, которые представлены на рис. 1-5.

3

Рис. 1-5 – тестовые изображения

После обучения нейросеть распознала цифры, изображенные на картинках. Результат показан на рис. 6.

```
[1.5703058e-08 9.9490851e-01 1.5049841e-04 2.3143964e-03 6.0333050e-06
2.3945081e-06 4.3179873e-05 3.8195791e-05 2.4132128e-03 1.2359196e-04]
Predicted value: 1
The number in the picture is 2
[1.7012059e-14 4.5246597e-06 9.9999535e-01 9.3888719e-09 1.5834949e-18
8.5986190e-10 1.2556685e-11 1.6953524e-07 2.9071851e-08 1.0497306e-15]
Predicted value: 2
[3.9476942e-07 6.8029054e-05 1.7840339e-02 9.7707134e-01 3.7697840e-09
4.1003423e-03 2.5815584e-06 1.9079118e-07 9.1524684e-04 1.5084889e-06]
Predicted value: 3
The number in the picture is 4
[1.0014733e-04 5.7321495e-06 6.8882266e-03 4.8398259e-05 9.8879737e-01
1.5885396e-04 1.5803882e-05 2.4649426e-05 3.4451790e-05 3.9263037e-03]
Predicted value: 4
The number in the picture is 5
[1.5480550e-04 1.9370036e-06 1.3108685e-04 2.5186671e-03 1.8656632e-05
9.7099763e-01 8.1564207e-03 6.5285754e-03 1.0930341e-02 5.6177063e-04]
```

Рис. 6 - результат распознавания нейросетью цифр

Выводы.

В ходе выполнения лабораторной работы была реализована модель

для классификации рукописных цифр. Также было исследовано влияние функции оптимизации на точность модели нейросети при изменении функций и их аргументов. Кроме этого, была написана функция для загрузки пользовательского изображения не из датасета.