Artifical Bee Colony Algorithm

What is ABC?

- Creator: Dervis Karaboga, 2005.
- Inspiration: The food foraging stratergy of honey bees.
- **Key Idea**: It models how bees find, share information about, and exploit food sources with the highest nectar.
- The "food source" is our solution, and the "nectar" is the fitness or quality of that solution.
- The algorithm divides the population into three types of bees: employed, onlooker, and scout.
- The approach balances exploration, finding new areas, and exploitation, refining good solutions.

The Bee Colony in Action

- Employed Bees: Each employed bee is assigned to a specific food source (a solution). They locally search for a better solution in their neighbourhood.
- Onlooker Bees: These bees wait at the hive and decide which food source to exploit based on the waggle dances of the employed bees.
- The more nectar an employed bee's source has, the more likey an onlooker will choose it.
- The Seach Equation: A new candidate solution, v_{ij} is created for an employed or onlooker bee from its current position x_{ij} and a randomly chosen neighbour x_kj using the formula:

$$v_i j = x_i j + \phi_i j (x_{ij} - x_{kj})$$

• Here $\phi_i j$ is a random number between [-1, 1], controlling the search step size

What about the Onlooker and Scout Bees?

- Onlooker bees: These bees wait at the hive and decide which food source to exploit based on the waggle dances of the employed bees.
- **Selection**: The better a food source's nectar, the higher the probability that an onlooker bee will choose it. The probability is calculated with the fitness of the source:

$$p_i = \frac{fit_i}{\sum_{j=1}^{FN} fit_j}$$

- After choosing a source, the onlooker bee goes to it and performs a local search, similar to an employed bee.
- Scout Bees: If an employed bee's food source doesn't improve after a certain number of trials, it's considered abandoned.
- That employed bee then becomes a scout bee, which means it flies off to find a brand new, randomly generated food source.

- This scout phase is critical for preventing the algorithm from getting stuck in a local optimum.
- The overall process is a cycle of employed, onlooker, and scout bee phases, with the best solution found so far always being remembered.

Flowchart

Akhil add flowchart

Spider Monkey Optimisation Algorithm

Introducing Spider Monkeys and their combined intellect

- Creator: J. C. Bansal et al., 2014.
- **Inspiration**: The "fission fusion" social structure of spider monkey groups as they forage for food.
- **Key Idea**: Monkeys live in a large group, but for foraging, they split into smaller, more manageable subgroups (fission) to reduce competition.
- Later, they come back together (fusion) to share information.
- This is a population-based algorithm that uses this group dynamic to find optimal solutions.

The Fission - Fusion Process

- The algorithm starts with an initial population of "spider monkeys" (candidate solutions).
- The entire group has a "global leader" who guides the main search.
- The group splits into smaller subgroups, each with a "local leader."
- Local Leader Phase: Monkeys in a subgroup update their positions by moving towards their local leader's best position and incorporating information from other random monkeys in the subgroup:

$$SM_new, ij = SM_ij + rand(0,1)(LL_kj - SM_ij) + rand(-1,1)(SM_rj - SM_ij)$$

• Global Leader Phase: The entire swarm is considered one group. All monkeys update their positions based on the best solution found by the entire swarm, the Global Leader:

$$SM_new, ij = SM_ij + rand(0,1)(GL_j - SM_ij) + rand(-1,1)(SM_rj - SM_ij)$$

Global Collaboration

• Global Leader Learning Phase: The global leader is updated using greedy selectio from the population. If the GL remains the same the GL limit is incremented.

- Local Leader Learning Phase: The local leader is updated using greedy selection from the specific groups. If the LL remains the same the LL limit is incremented.
- Local Leader Decision Phase: If the LL limit goes beyond a set constant, all monkeys in that group are randomly redistributed with weightage for the GL and LL:

$$SM_new, ij = SM_minj + U(0,1)(SM_maxj - SM_minj).....ifU(0,1) >= pr$$

 $SM_new, ij = SM_ij + U(0,1)(GL_j - SM_ij) + U(0,1)(SM_ij - LL_kj).....otherwise$

• Global Leader Decision Phase: If the GL limit goes about a set a constant, the population is divided.

Flowchart

Akhil add flowchart

Particle Swarm Optimisation

The Swarm and the Solution

- Creators: James Kennedy and Russell C. Eberhart, 1995.
- **Inspiration**: The social behaviour of bird flocks or fish schools.
- **Key Idea**: It models how individuals in a group can find an optimal solution by following the best-performing members of the group.
- Each "particle" in the swarm is a potential solution.
- The search space is multi-dimensional, and each particle "flies" through this space.

How Particles Fly

- Each particle keeps track of its own best-known position, which we call its personal best, or pbest.
- The entire swarm keeps track of the best-known position found by any particle so far, which is the global best, or gbest.
- The magic is in the velocity update equation. A particle's new velocity is a mix of three things:
 - 1. Its previous velocity (momentum).
 - 2. A pull towards its own pbest.
 - 3. A pull towards the swarm's gbest.
- The equation for velocity update is:

$$v_i(t+1) = \omega v_i(t) + c_1 r_1(pbest_i(t) - x_i(t)) + c_2 r_2(qbest(t) - x_i(t))$$

Putting it All Together

• After a new velocity is calculated, the particle updates its position using a simple formula:

$$x_i(t+1) = x_i(t) + v_i(t+1)$$

- This process is repeated over generations.
- The balance between the poest and goest terms is crucial. The poest term gives the particle its individual exploration, while the goest term provides social cooperation.

$$pbest_{i}(t+1) = x_{i}(t+1).....iff(x_{i}(t)) < f(pbest_{i}(t))$$

$$pbest_{i}(t+1) = pbest_{i}(t).....otherwise$$

$$gbest(t+1) = \arg\min_{pbest_{k} inall pbest_{s}} f(pbest_{k})$$

• This simple yet powerful mechanism allows the swarm to collectively converge on an optimal solution.

Flowchart

Akhil add flowchart

Genetic Algorithm

Evolution in Computation

- Creator: John Holland, 1960-1970s.
- Inspiration: Charles Darwin's theory of natural evolution and "survival of the fittest."
- **Key Idea**: It applies the principles of natural selection—heredity, mutation, and crossover—to a population of candidate solutions.
- A solution is represented as a "chromosome" (a string of genes, like a binary string).
- The algorithm iteratively improves the population by selecting the "fittest" individuals to produce a new generation.

The Three Core Operators

- **Selection**: The "fittest" individuals (solutions with high-quality fitness scores) are selected from the current population to act as "parents."
- This is often done using methods like roulette wheel selection, where better solutions have a higher probability of being chosen.
- Crossover: Pairs of parents are chosen, and a "crossover" point is selected. Their genetic material (the solution string) is swapped to create new "offspring."

- For example, in a one-point crossover on binary strings, if Parent 1 is 110011 and Parent 2 is 001100, they could produce offspring 111100 and 000011.
- Mutation: After crossover, a small, random change is introduced to the offspring's genes. This is vital for maintaining diversity and preventing premature convergence.
- For a binary string, this might mean flipping a 0 to a 1 or vice-versa.

The Evolutionary Loop

- The process starts with an initial, randomly generated population.
- The population is evaluated for fitness, and the cycle of Selection, Crossover, and Mutation is repeated.
- The goal is for each new generation to have a higher average fitness than the last one.
- The process continues until a stopping condition is met, such as a maximum number of generations or a sufficiently good solution being found.
- GA is great for problems where the solution space is vast and complex.

		-		
н,	OW	ch	ar	1

Akhil add flowchart

Differential Evolution

What is it anyway?

- Creators: Kenneth Price and Rainer Storn in the 1990s.
- **Inspiration**: Like GA, it's an evolutionary algorithm inspired by biological evolution, but it's simpler and has a different approach.
- **Key Idea**: It uses vector differences to explore the search space, which is where the "differential" part of the name comes from.
- The algorithm operates on a population of real-valued vectors.
- Instead of using binary strings and crossover like GA, it relies on vector subtraction and addition.

The Core Operators

- DE has three main phases: mutation, crossover, and selection.
- Mutation: For each individual vector in the population, a "mutant vector" is created. This is done by taking a base vector and adding the scaled difference of two other randomly selected vectors.
- The classic mutation is often expressed as:

$$v_i = x_r 1 + F(x_r 2 - x_r 3)$$

- Here, $x_r 1$, $x_r 2$, $x_r 3$ are three different vectors randomly chosen from the population, and F is a scaling factor.
- Crossover: The mutant vector is then combined with the original target vector to create a "trial vector."
- This is done element by element with a certain probability, called the crossover rate (CR). This ensures that the trial vector inherits some properties from both the original and the mutated vector.

Selection and The Loop

- **Selection**: The final step is a greedy selection. The new trial vector is compared to the original target vector.
- If the trial vector has a better fitness value, it replaces the target vector in the population for the next generation; otherwise, the original vector is kept.
- The process repeats, with new individuals being generated, evaluated, and selected in each generation.
- Because DE uses a direct, vector-based approach, it's often simpler to implement and can converge faster than GA on certain types of problems.

T 1	1	
ΗT	owch	art

Akhil add flowchart