BBM 495 MACHINE TRANSLATION ENCODER-DECODER MODELS LECTURER: BURCU CAN

Overview

Today we will:

Introduce a new task: Machine Translation

is a major use-case of

Introduce a <u>new neural architecture</u>: sequence-to-sequence

is improved by

Introduce a <u>new neural technique</u>: attention

Section 1: Pre-Neural Machine Translation

Machine Translation

Machine Translation (MT) is the task of translating a sentence x from one language (the source language) to a sentence y in another language (the target language).

x: L'homme est né libre, et partout il est dans les fers

y: Man is born free, but everywhere he is in chains

- Rousseau

1950s: Early Machine Translation

Machine Translation research began in the early 1950s.

Russian → English
 (motivated by the Cold War!)

1 minute video showing 1954 MT: https://youtu.be/K-HfpsHPmvw

 Systems were mostly rule-based, using a bilingual dictionary to map Russian words to their English counterparts

1990s-2010s: Statistical Machine Translation

- Core idea: Learn a probabilistic model from data
- Suppose we're translating French → English.
- We want to find best English sentence y, given French sentence x

$$\operatorname{argmax}_{y} P(y|x)$$

 Use Bayes Rule to break this down into two components to be learnt separately:

$$= \operatorname{argmax}_{y} P(x|y) P(y)$$

Translation Model

Models how words and phrases should be translated (*fidelity*).

Learnt from parallel data.

Language Model

Models how to write good English (*fluency*).
Learnt from monolingual data.

1990s-2010s: Statistical Machine Translation

- Question: How to learn translation model P(x|y) ?
- First, need large amount of parallel data (e.g. pairs of human-translated French/English sentences)

1990s-2010s: Statistical Machine Translation

- SMT was a huge research field
- The best systems were extremely complex
 - Hundreds of important details we haven't mentioned here
 - Systems had many separately-designed subcomponents
 - Lots of feature engineering
 - Need to design features to capture particular language phenomena
 - Require compiling and maintaining extra resources
 - Like tables of equivalent phrases
 - Lots of human effort to maintain
 - Repeated effort for each language pair!

Section 2: Neural Machine Translation

What is Neural Machine Translation?

- Neural Machine Translation (NMT) is a way to do Machine Translation with a single neural network
- The neural network architecture is called sequence-to-sequence (aka seq2seq) and it involves two RNNs.

Encoder RNN produces an encoding of the source sentence.

Decoder RNN is a Language Model that generates target sentence, conditioned on encoding.

Note: This diagram shows **test time** behavior: decoder output is fed in ••••• as next step's input

Sequence-to-sequence is versatile!

- Sequence-to-sequence is useful for more than just MT
- Many NLP tasks can be phrased as sequence-to-sequence:
 - Summarization (long text → short text)
 - Dialogue (previous utterances → next utterance)
 - Parsing (input text → output parse as sequence)
 - Code generation (natural language → Python code)

Neural Machine Translation (NMT)

- The sequence-to-sequence model is an example of a Conditional Language Model.
 - Language Model because the decoder is predicting the next word of the target sentence y
 - Conditional because its predictions are also conditioned on the source sentence x
- NMT directly calculates P(y|x):

$$P(y|x) = P(y_1|x) P(y_2|y_1, x) P(y_3|y_1, y_2, x) \dots P(y_T|y_1, \dots, y_{T-1}, x)$$

Probability of next target word, given target words so far and source sentence *x*

- Question: How to train a NMT system?
- Answer: Get a big parallel corpus...

Training a Neural Machine Translation system

Seq2seq is optimized as a <u>single system</u>. Backpropagation operates "end-to-end".

Greedy decoding

 We saw how to generate (or "decode") the target sentence by taking argmax on each step of the decoder

- This is greedy decoding (take most probable word on each step)
- Problems with this method?

Problems with greedy decoding

- Greedy decoding has no way to undo decisions!
 - Input: il a m'entarté (he hit me with a pie)
 - → he ____
 - → he hit _____
 - \rightarrow he hit a ____ (whoops! no going back now...)
- How to fix this?

Exhaustive search decoding

Ideally we want to find a (length T) translation y that maximizes

$$P(y|x) = P(y_1|x) P(y_2|y_1, x) P(y_3|y_1, y_2, x) \dots, P(y_T|y_1, \dots, y_{T-1}, x)$$

$$= \prod_{t=1}^{T} P(y_t|y_1, \dots, y_{t-1}, x)$$

- We could try computing all possible sequences y
 - This means that on each step t of the decoder, we're tracking V^t possible partial translations, where V is vocab size
 - This O(V^T) complexity is far too expensive!

Beam search decoding

- <u>Core idea:</u> On each step of decoder, keep track of the k most probable partial translations (which we call hypotheses)
 - k is the beam size (in practice around 5 to 10)
- A hypothesis y_1, \dots, y_t has a score which is its log probability:

$$score(y_1, ..., y_t) = log P_{LM}(y_1, ..., y_t | x) = \sum_{i=1}^{t} log P_{LM}(y_i | y_1, ..., y_{i-1}, x)$$

- Scores are all negative, and higher score is better
- We search for high-scoring hypotheses, tracking top k on each step
- Beam search is not guaranteed to find optimal solution
- But much more efficient than exhaustive search!

Beam size = k = 2. Blue numbers =
$$score(y_1, ..., y_t) = \sum_{i=1}^t log P_{LM}(y_i|y_1, ..., y_{i-1}, x)$$

<START>

Calculate prob dist of next word

Beam size = k = 2. Blue numbers =
$$score(y_1, ..., y_t) = \sum_{i=1}^{t} log P_{LM}(y_i|y_1, ..., y_{i-1}, x)$$

33

Beam size = k = 2. Blue numbers =
$$score(y_1, \dots, y_t) = \sum_{i=1}^t log P_{LM}(y_i|y_1, \dots, y_{i-1}, x)$$

Beam size = k = 2. Blue numbers =
$$score(y_1, ..., y_t) = \sum_{i=1}^{t} log P_{LM}(y_i|y_1, ..., y_{i-1}, x)$$

Beam size = k = 2. Blue numbers =
$$score(y_1, \dots, y_t) = \sum_{i=1}^t log P_{LM}(y_i|y_1, \dots, y_{i-1}, x)$$

Beam size = k = 2. Blue numbers =
$$score(y_1, \dots, y_t) = \sum_{i=1}^t log P_{LM}(y_i|y_1, \dots, y_{i-1}, x)$$

Beam size = k = 2. Blue numbers =
$$score(y_1, \dots, y_t) = \sum_{i=1}^t log P_{LM}(y_i|y_1, \dots, y_{i-1}, x)$$

For each of the *k* hypotheses, find top *k* next words and calculate scores

Beam size = k = 2. Blue numbers =
$$score(y_1, \dots, y_t) = \sum_{i=1}^t log P_{LM}(y_i|y_1, \dots, y_{i-1}, x)$$

Of these k^2 hypotheses, just keep k with highest scores

Beam size = k = 2. Blue numbers = $score(y_1, \dots, y_t) = \sum_{i=1}^t log P_{LM}(y_i|y_1, \dots, y_{i-1}, x)$

For each of the *k* hypotheses, find top *k* next words and calculate scores

Beam size = k = 2. Blue numbers = $score(y_1, ..., y_t) = \sum_{i=1}^{t} log P_{LM}(y_i|y_1, ..., y_{i-1}, x)$

Of these k^2 hypotheses, just keep k with highest scores

Beam size = k = 2. Blue numbers = $score(y_1, \dots, y_t) = \sum_{i=1}^t log P_{LM}(y_i|y_1, \dots, y_{i-1}, x)$

For each of the *k* hypotheses, find top *k* next words and calculate scores

Beam size = k = 2. Blue numbers = $score(y_1, ..., y_t) = \sum_{i=1}^{t} log P_{LM}(y_i|y_1, ..., y_{i-1}, x)$

Beam size = k = 2. Blue numbers = $score(y_1, \dots, y_t) = \sum_{i=1}^t log P_{LM}(y_i|y_1, \dots, y_{i-1}, x)$

Beam search decoding: stopping criterion

- In greedy decoding, usually we decode until the model produces a <END> token
 - For example: <START> he hit me with a pie <END>
- In beam search decoding, different hypotheses may produce <END> tokens on different timesteps
 - When a hypothesis produces <END>, that hypothesis is complete.
 - Place it aside and continue exploring other hypotheses via beam search.
- Usually we continue beam search until:
 - We reach timestep T (where T is some pre-defined cutoff), or
 - We have at least n completed hypotheses (where n is pre-defined cutoff)

Advantages of NMT

Compared to SMT, NMT has many advantages:

- Better performance
 - More fluent
 - Better use of context
 - Better use of phrase similarities
- A single neural network to be optimized end-to-end
 - No subcomponents to be individually optimized
- Requires much less human engineering effort
 - No feature engineering
 - Same method for all language pairs

Disadvantages of NMT?

Compared to SMT:

- NMT is less interpretable
 - Hard to debug
- NMT is difficult to control
 - For example, can't easily specify rules or guidelines for translation
 - Safety concerns!

NMT: the biggest success story of NLP Deep Learning

Neural Machine Translation went from a fringe research activity in **2014** to the leading standard method in **2016**

- 2014: First seq2seq paper published
- 2016: Google Translate switches from SMT to NMT
- This is amazing!
 - SMT systems, built by hundreds of engineers over many years, outperformed by NMT systems trained by a handful of engineers in a few months

- Nope!
- Many difficulties remain:
 - Out-of-vocabulary words
 - Domain mismatch between train and test data
 - Maintaining context over longer text
 - Low-resource language pairs

- Nope!
- Using common sense is still hard

- Nope!
- NMT picks up biases in training data

Source: https://hackernoon.com/bias-sexist-or-this-is-the-way-it-should-be-ce1f7c8c683c

- Nope!
- Uninterpretable systems do strange things

Open in Google Translate Feedback

References

- Dense Vectors, Dan Jurafsky
- Representation for Language: from Word Embeddings to Sentence Meanings, Christopher Manning, Stanford University, 2017
- Natural Language Processing with Deep Learning, Richard Socher, Stanford University
- More Word Vectors, Richard Socher, Stanford University
- Improving Distributional Similarity with Lessons Learned from Word Embeddings, Omer Levy,

