Minimalni končni modeli prostorov

Filip Bezjak Mentor: dr. Petar Pavešić

23. marec 2023

Izrek 1. $McCordov\ Naj\ bosta\ X\ in\ Y\ topološka\ prostora\ in\ naj\ bo\ f: X\to Y$ $zvezna.\ \check{C}e\ je\ zo\check{z}itev$

$$f|_{f^{-1}}:f^{-1}(U)\to U$$

Šibka homotopska ekvivalenca za vsako bazno množico U, potem je $f:X\to Y$ šibka homotopska ekvivalenca.

Opomba 1. Izrek ne velja le za zožitev na bazne množice, ampak tudi na vsako basis like open cover, torej za vsako pokritje, ki je baza za kako drugo topologijo.

Definicija 1. Naj bo X končen T_0 prostor. Simplicialni kompleks $\mathcal{K}(X)$ prirejen X, je simplicialni kompleks, čigar simpleksi so neprazne verige v X. Če je $f: X \to Y$ zvezna preslikava med dvema T_0 prostoroma. prirejena simplicialna preslikava $\mathcal{K}(f): \mathcal{K}(X) \to \mathcal{K}(Y)$ definiramo kot $\mathcal{K}(f)(x) = f(x)$.

Vidimo, če je $f:X\to Y$ zvezna , je $\mathcal{K}(f):\mathcal{K}(X)\to\mathcal{K}(Y)$ simplicialna, saj ohranja ureditev in slika verige v verige.

Iema 1. Naj bo $x \in X$ in naj bo $L = X \setminus U_x \subseteq \mathcal{K}(X)$. Potem se vsak $\alpha \in \mathcal{K}(X) \setminus |L|$ da napisati, kot $\alpha = t\beta + (1-t)\gamma$, za $\beta \in \mathcal{K}(U_x)$, $\gamma \in |L|$ in $0 < t \le 1$, pri čemer je α zvezno odvisna od β, γ in t. β, γ in t so enolični.

Dokaz. L je subkompleks, ki ga napenjajo ogljišča, ki niso v U_x . Za vsak $\alpha \in |\mathcal{K}(X)| \setminus |L|$,

$$\alpha = \sum_{i=1}^{n} \alpha_i v_i = \sum_{i=1}^{r} \alpha_i u_i + \sum_{i=r+1}^{n} \alpha_i v_i, \text{ pri čemer } \sum_{i=1}^{n} \alpha_i = 1$$

za $u_i \in U_x$ in $v_i \in X \setminus U_x$ in $\alpha_i \in \mathbb{R}$, za $r \in \{1, 2, \dots, n-1\}$ in $\forall i \in \{1, 2, \dots, n\}$. S t označimo $\sum_{i=1}^r \alpha_i$, torej je $1-t = \sum_{i=r+1}^n \alpha_i$ in $0 < t \le 1$.

Potem $\beta = \sum_{i=1}^r \alpha_i u_i/t \in \mathcal{K}(U_x)$, saj je $\sum_{i=1}^r \alpha_i/t = 1$ in podobno $\gamma = \sum_{i=r+1}^n \alpha_i v_i/(1-t) \in \mathcal{K}(X \setminus U_x)$. Zveznost in enoličnost sledi iz konstrukcije.

Izrek 2. K-McCordova preslikava je šibka homotopska ekvivalenca za vsak končen T_0 -prostor.

Dokaz. Definirajmo retrakcijo $r: U_x \to \{x\}$ kot r(y) = x, za vsak $y \in X$. Ker je x maksimum v U_x , je $r \geq 1_X$, zato je po izreku $\ref{eq:condition}$? $r \simeq 1_X$, zato je U_x kontraktibilna množica. Dokazali bomo, da je za vsak $x \in X$, $\mu_X^{-1}(U_x)$ odprta in kontraktibilna. S tem bomo pokazali, da je μ_X zvezna in da so zožitve $\mu_X|_{\mu_X^{-1}(U_x)}: \mu_X^{-1}(U_x) \to U_x$ šibke homotopske ekvivalence.

Naj bo $x \in X$ in naj bo $L = X \setminus U_x \subseteq \mathcal{K}(X)$. L je torej subkompleks, ki ga napenjajo ogljišča, ki niso v U_x . Trdimo, da

$$\mu_X^{-1}(U_x) = |\mathcal{K}(X)| \setminus |L|.$$

Pokažimo najprej, da $\mu_X^{-1}(U_x) \subseteq |\mathcal{K}(X)| \setminus |L|$. Naj bo $\alpha \in \mu_X^{-1}(U_x)$, torej je $\min(support(\alpha)) \in U_x$, zato $support(\alpha)$ vsebuje ogljišče iz U_x , zato $\alpha \notin |L|$, torej $\alpha \in |\mathcal{K}(X)| \setminus |L|$.

Pokažimo še, da $|\mathcal{K}(X)| \setminus |L| \subseteq \mu_X^{-1}(U_x)$. Naj $\alpha \in |\mathcal{K}(X)| \setminus |L|$ Če $\alpha \notin |L|$, potem obstaja $y \in support(X)$, tak, da $y \in U_x$, zato je $\min(support(X)) \le y \le x$, zato je $\mu_X(\alpha) \in U_x$, zato $\alpha \in \mu_X^{-1}(U_x)$. Ker je L zaprta podmnožica $\mathcal{K}(X)$, je $\mu_X^{-1}(U_x)$ odprta.

Pokažimo, da je $\mu_X^{-1}(U_x)$ kontrabilna. Prvo pokažimo, da je $|\mathcal{K}(U_x)|$ krepak deformacijski retrakt od $|\mathcal{K}(X)|$. Naj bo $i: |\mathcal{K}(U_x)| \hookrightarrow |\mathcal{K}(X)| \setminus |L|$ inkluzija. Če je $\alpha \in |\mathcal{K}(X)| \setminus |L|$, potem je po lemi $\ref{eq:contraction}$ $\alpha = t\beta + (1-t)\gamma$, za $\beta \in \mathcal{K}(U_x)$, $\gamma \in |L|$ in $0 < t \le 1$. Definirajmo $r: |\mathcal{K}(X)| \setminus |L| \to \mathcal{K}(U_x)$ kot $r(\alpha) = \beta$. Ker je α zvezna in je zožitev $r|_{(|\mathcal{K}(X)| \setminus |L|) \cap \overline{\sigma}}: (|\mathcal{K}(X)| \setminus |L|) \cap \overline{\sigma} \to \overline{\sigma}$ zvezna, za vsak $\sigma \in \mathcal{K}(X)$, sledi in je da je r zvezna. Definirajmo zdaj linearno homotopijo $H: (|\mathcal{K}(X)| \setminus |L|) \times I \to (|\mathcal{K}(X)| \setminus |L|)$ med $1_{(|\mathcal{K}(X)| \setminus |L|)}$ in ir kot

$$H(\alpha, s) = (1 - s)\alpha + s\beta.$$

H je dobro definirana, in zvezna, saj je vsaka zožitev

$$H|_{((|\mathcal{K}(X)| \ \setminus \ |L|) \cap \overline{\sigma}) \times I} : ((|\mathcal{K}(X)| \ \setminus \ |L|) \cap \overline{\sigma}) \times I \to \overline{\sigma}$$

dobro definirana in zvezna, $\sigma \in \mathcal{K}(X)$.

Ker je vsak element iz U_x primerljiv z x, je $\mathcal{K}(U_x)$ simplicialni stožec, zato je po trditvi $?? |\mathcal{K}(U_x)|$ kontraktibilen in zato je kontraktibilen tudi $\mu_X^{-1}(U_x) = |\mathcal{K}(X)| \setminus |L|$.

Definicija 2. Naj bo K končen simplicialni kompleks. Končen T_0 - prostor $\chi(K)$ prirejen kK je delno urejena množica simpleksov vK, urejena glede na inkluzijo. Naj bo $phi: K \to L$ preslikava med simplicialnima kompleksoma, potem preslikavo $\chi(phi): \chi(K) \to \chi(L)$ definiramo kot $\chi(phi)(\sigma) = \phi(\sigma)$ za vsak simpleks $\sigma \in K$

Primer 1. primer iz knjige.

Iema 2. Naj bo $f: X \to Y$ zvezna preslikava med dvema T_0 prostoroma, potem naslednji diagram komutira

Dokaz.

$$f\mu_X(\alpha) = f(min(support(\alpha))) \stackrel{*}{=} min(f(support(\alpha)))$$
$$= min(support(|\mathcal{K}(f)(\alpha))) = \mu_Y |\mathcal{K}(f)|(\alpha)$$

Pri čemer * velja zaradi zveznosti f, druge enakosti pa veljajo kar po definiciji.

Če je K končen kompleks, potem je $\mathcal{K}(\chi(K))$ prva baricentrična subdivizija. definirajmo χ -McCordovo preslikavo $\mu_K = \mu_{\chi(K)}S_K^{-1}: |K| \to \chi(K)$. Ker je kompozitum dveh šibkih homotopskih ekvivalenc tudi šibka homotopska ekvivalenca, takoj sledi naslednji izrek.

Izrek 3. $\chi - McCordovapreslkava\mu_K$ je šibka homotopska ekvivalenca za vsak končen simplicialni kompleks K.

Trditev 1. Naj bo $\phi: K \to L$ simplicialna preslikava med končnima kompleksoma. Potem naslednji diagram komutira do homotopije natančno

Dokaz. Najprej poiščimo homotopijo med $|\phi|s_K$ in $s_L|\phi'|$ Naj bo $S = \{\sigma_1, \sigma_2, \cdots, \sigma_r\}$ simpleks v K' in naj bo $\sigma_1 \subsetneq \sigma_2 \subsetneq \cdots \subsetneq \sigma_r$ veriga simpleksov K. Naj bo α točka v zaprtem simpleksu \overline{S} . Potem je $S_K(\alpha) \in \overline{\sigma_r} \subseteq |K|$ in $|\phi|S_K(\alpha) \in \overline{\phi_r} \subseteq |L|$. Velja pa tudi $|\phi'|(\alpha) \in \{\phi\sigma_1, \phi\sigma_2, \cdots, \phi\sigma_r\}$ in potem $S_L|\phi'|(\alpha) \in \overline{\phi(\sigma_r)}$. Zato je linearna homotopija

1 Zanke v Hassejevem diagramu

Pokazali bomo, kako se fundamentalna grupa končnega T_0 prostora izraža preko prirejenega Hassejevega diagrama. Hassejev diagram končnega T_0 prostora X označimo z H(X), z E(H(X)) pa označimo množico njegovih robov.

 $Edge\ path$ simplicialnega kompleksa K je zaporedje $(v_0,v_1)(v_1,v_2),...,(v_{r-1},v_r)$ urejenih parov ogljišč, pri čemer je $\{v_1,v_{i+1}\}$ simpleks za vsak i. Če $edge\ path$ vsebuje dva zaporedna para (v_i,v_{i+1}) in (v_{i+1},v_{i+2}) in je $\{v_i,v_{i+1},v_{i+2}\}$ simpleks, potem ju lahko zamenjamo z parom (v_i,v_{i+1}) in dobimo ekvivalentno a krajšo pot. Za poti $(v_0,v_1)(v_1,v_2),...,(v_{r-1},v_r)$ in $(u_0,u_1)(u_1,u_2),...,(u_{s-1},u_s)$ definiramo stik poti....??? Omejili se bomo na zanke, torej poti, ki se začnejo in končajo z v_0 . Z $E(K,v_0)$ označimo množico ekvivalenčnih razredov zank z začetno točko v_0

Naj bo (X, x_0) končen pointed T_0 prostor. Urejen par e = (x, y) imenujemo H - rob od X, če $(x, y) \in E(\mathcal{H}(\mathcal{X}))$, ali $(y, x) \in E(H(X))$. Točki x rečem začetek x in označimo $x = \mathfrak{o}(e)$, točki y pa konec od e, pznačimo $\mathfrak{e}(e) = y$