Heterogeneous Computing & GPU Introduction

National Tsing Hua University 2020, Fall Semester

.

Outline

- **■** Heterogeneous Computing
- GPU

Trend of Parallel Computers

Single-Core Era

Enabled by:
Moore's Law
Voltage Scaling

Constraint by:
Power
Complexity

Assembly → C/C++→Java ...

Muti-Core Era

Enabled by:
Moore's Law
SMP

Constraint by:
Power
Parallel SW
Scalability

Pthread → OpenMP ...

Heterogeneous Systems Era

Enabled by:
Abundant data
parallelism
Power efficient GPUs

Constraint by:
Programming
models
Comm. overhead

Shader → CUDA → OpenCL ...

Distributed System Era

Enabled by: Networking Constraint by:
Synchronization
Comm. overhead

MPI → MapReduce ...

Heterogeneous Computing

- Heterogeneous computing is an integrated system that consists of different types of (programmable) computing units.
 - DSP (digital signal processor)
 - FPGA (field-programmable gate array)
 - ASIC (application-specific integrated circuit)
 - GPU (graphics processing unit)
 - Co-processor (Intel Xeon Phi)
- A system can be a cell phone or a supercomputer

Shift of Computing Paradigm

GPU/Xeon Phi in Top 500 list (rank world's fastest Supercomputer)

- Jaguar was upgraded with GPU and renamed to Titan
 - Increase computation power by a factor of 10!!!
- 62 systems have accelerator(GPU) or co-processor (Phi)
- http://www.top500.org/lists/

2014 Rank	Name	Country	Manuf- acture	Accelerator	Cores	Rmax (TFlops/s)
1	Tianhe-2	China	NUDT	Xeon Phi	3,120K	33.8K
2	Titan	US	Cray	NVIDIA K20x	560K	17.6K
3	Sequoia	US	IBM	N.A	1,572K	17.2K
4	K computer	Japan	Fujitsu	N.A	705K	10.5K
2012 Rank	Name	Country	Manuf- acture	Accelerator	Cores	Rmax (TFlops/s)
6	Jaguar	US	Cray	N.A	298K	1.9K

GPU Servers

Same HW architecture as commodity server, but memory copy between CPU and GPU becomes the

main bottleneck Disk **PCIe Bus CPU Main** Memory **GPU Video CPU Caches** Memory **CPU Registers GPU Caches GPU Constant GPU Temporary** Registers Registers GPU NTHU LSA Lab

Heterogeneous System Architecture (HSA)

 Aim to provide a common system architecture for designing higher-level programming models for all

devices

- Unified coherent memory
 - Single virtual memory address space
 - Prevent memory copy

 A.k.a *Fusion:* a series of 64-bit microprocessors from AMD designed to act as a CPU and GPU on a single chip

➤ 2011: Llano, Brazos

2012: Trinity, Brazos-2

2013: Kabini, Temash

> 2014: Kaveri

Data Parallel Workloads

Serial and Task Parallel Workloads **HSA Accelerated Processing Unit**

Outline

- Heterogeneous Computing
- GPU

GPU (Graphic Processing Unit)

- A specialized chip designed for rapidly display and visualization
 - SIMD architecture
- Massively multithreaded manycore chips
 - ➤ NVIDIA Tesla products have up to 5120 scalar processors
 - > Over 12,000 concurrent threads
 - Over 470 GFOLPS sustained performance
- Two major vendors: NVIDIA and ATI (now AMD)

NTHU LSA Lab

GPGPU (General-Purpose Graphic Processing Unit)

- **Expose** the horse power of GPUs for general purpose computations
 - Exploit data parallelism for solving embarrassingly parallel tasks and numeric computations
 - Users across science & engineering disciplines are achieving 100x or better speedups on GPUs
- Programmable
 - ➤ Early GPGPU: using the libraries in computer graphics, such as OpenGL or DirectX, to perform the tasks other than the original hardware designed for.
 - ➤ Now CUDA and openCL provides an extension to C and C++ that enables parallel programming on GPUs

System Architecture

- Consist of multiple stream multi-processors (SM)
- Memory hierarchic:

- Each SM is a vector machine
- Shared register files
 - Store local variables
- Programmable cache (shared memory)
 - > Shared with a normal L1 cache.
- Hardware scheduling for thread execution and hardware context switch

http://hothardware.com/Articles/NVIDIA-GF100-Architecture-and-Feature-Preview/

NVIDIA CUDA-Enabled GPUs Products

Architecture & CUDA-Enabled NVIDIA GPUs HPC (double						
Volta Architecture (compute capabilities 7.x)	Deep learning Inference	Visualization (single precision)		Tesla V Series V100		
Pascal Architecture (compute capabilities 6.x)	Tegra X2, Jetson TX2	GeForce 1000 Series GTX 1080	Quadro P Series P6000	Tesla P Series P100		
Maxwell Architecture (compute capabilities 5.x)	Tegra X1 Jetson TX2	GeForce 900 Series	Quadro M Series	Tesla M Series		
Kepler Architecture (compute capabilities 3.x)	Tegra K1	GeForce 700 Series GeForce 600 Series	Quadro K Series	Tesla K Series		
Applications	Embedded	Consumer	Professional	Data Center		

Workstation

NVIDIA GPU HW Specification

	Tesla K40	Tesla P100	Tesla V100	GeForce GTX1080
Launch Date	2013 Oct	2016 Jun	2017 Jun	2016 May
Architecture	Kepler	Pascal	Volta	Pascal
CUDA Cores	2888	3584 512		2560
Core Clock	745MHz	1126MHz	1370MHz	1607MHz
GPU Memory Bandwidth	288GB/s	732GB/s	900GB/s	320GB/s
GPU Memory Size	12GB	16GB	16GB	8GB
Interconnect PCle3x16	32GB/s	32GB/s	32GB/s	32GB/s
Bandwidth NV Link		160GB/s	300GB/s	
Single Precision	4.29 TFLOPS	9.3 TFLOPS	14 TFLOPS	8.8 TFLOPS
Double Precision	1.43 TFLOPS	4.7 TFLOPS	7.0 TFLOPS	0.2 TFLOPS
TDP	235W	250W	250W	180W
Compute Capability	3.5	6.0	7.0	6.1
Launch Price (USD)	\$5499	\$7374/\$9428(NV)	8GPU: 150K	\$550

NVIDIA GPU Architecture Roadmap

GPU Compute Capability

Programming ability of a GPU device

T-shairelification-		Compute capability (version)					
Technical specifications	1.0	1.1	1.2	1.3	2.x 3.0	3.5	5.0
Maximum dimensionality of grid of thread blocks		2			3		
Maximum x-, y-, or z-dimension of a grid of thread blocks		65535			2 ³¹ -1		
Maximum dimensionality of thread block		3					
Maximum x- or y-dimension of a block		512			1024		
Maximum z-dimension of a block		64					
Maximum number of threads per block		512			1024		
Warp size		32					
							_

source: http://en.wikipedia.org/wiki/CUDA

CUDA SDK Device Query

deviceQuery.cpp

```
Device 0: "Tesla M2090"
 CUDA Driver Version / Runtime Version
                                                  5.0 / 5.0
 CUDA Capability Major/Minor version number:
                                                  2.0
 Total amount of global memory:
                                                  5375 MBytes (5636554752 bytes)
  (16) Multiprocessors x ( 32) CUDA Cores/MP:
                                                  512 CUDA Cores
 GPU Clock rate:
                                                  1301 MHz (1.30 GHz)
 Memory Clock rate:
                                                  1848 Mhz
 Memory Bus Width:
                                                  384-bit
 L2 Cache Size:
                                                  786432 bytes
 Max Texture Dimension Size (x,y,z)
                                                  1D=(65536), 2D=(65536,65535), 3D
 Max Layered Texture Size (dim) x layers
                                                  1D=(16384) x 2048, 2D=(16384,163
 Total amount of constant memory:
                                                  65536 bytes
 Total amount of shared memory per block:
                                                  49152 bytes
 Total number of registers available per block: 32768
                                                  32
 Warp size:
 Maximum number of threads per multiprocessor:
                                                  1536
 Maximum number of threads per block:
                                                  1024
 Maximum sizes of each dimension of a block:
                                                  1024 x 1024 x 64
 Maximum sizes of each dimension of a grid:
                                                  65535 x 65535 x 65535
```

м

CUDA Toolkits

- Software Development Kit(SDK) for CUDA Programming
 - ➤ The CUDA-C and CUDA-C++ compiler, nvcc
 - > Tools: IDE, Debugger, Profilers, Utilities
 - Library: BLAS, CUDA Device Runtime, FFT, ...
 - Sample Code
 - Documentation

CUDA SDK Version	Compute Capability	Architecture
6.5	1.X	Tesla
7.5	2.0-5.x	Fermi, Kepler, Maxwell
8.0	2.0-6.x	Fermi, Kepler, Maxwell, Pascal
9.0	3.0-7.x	Kepler, Maxwell, Pascal, Volta

Reference

 Cyril Zeller, NVIDIA Developer Technology slides