Data Transformation and Organization

Goals

Remember transformation definitions

Calculate transformations by hand

Calculate transformations with Google Sheets

Make univariate plots with Google Sheets

Consider how transformations/organization/selection impact honest reporting

Examples

- scaling
- centering
- normalization
- decimating
- shifting
- reflectingsmoothing
 - sorting
- selecting

Organization

Data Dishonesty?
Data Dishonesty?
Data Dishonesty?
Data Dishonesty?
Data Dishonesty?

Data

time,amplitude 0,0 1,101 2,99 3,102 4,98 5,105 6,95 7,110 8,95 9,104 10,97 11,102 12,99 13,101 14,109 15,99 16,102 17,98 18,105 19,95 20,110 21,95 20,110 21,95 22,104 23,97 24,102 25,99 26,101 27,100

https://tableconvert.com/markdown-to-excel

Steps

- download file
- open blank google sheets
- file > import
 - recommended: convert strings to numbers
 - o recommended: select delimiter
- How many variables are there?
- How many observations are there?

Automatic Plot

- Select variables
- Insert > chart
 - default: line

- Select one variable
- Insert > chart
 - o default: line

CAUTION

Why do they look the same? What about them is different?

Other questions

- can you tell how many data points there are?
 - chart type: scatter

Google Sheets is simple, but limited

Organize

Select B

- o Group 1
 - Data > Sort Sheet > B: A-> Z
- o Group 2
 - Data > Sort Sheet > B: Z->A
- o Group 3
 - Data > Sort Range > B: A-> Z
- o Group 4
 - Data > Sort Range > B: Z->A

Select B

- Data > Add Filter
 - drop down to select desired elements

Sorting

Filtering

Transform

- scaling → multiplication or division
- centering → subtracting out the mean
- normalization \rightarrow adjusting the min and max
- decimating → dividing out a base number until data point is close to 1
- shifting → constant addition or subtraction (translation)
- reflecting → relative addition or subtraction
- smoothing → moving averages

Transformations

Scale	multiplication or division	= cell * scalar
Mean		= AVERAGE(cell:cell)
Center	subtracting out the mean	= cell - \$Mean\$cell
Normalization to 1	scaling by absolute largest value	
Absolute	value regardless of sign	= ABS(cell)
Largest		=MAX(cell:cell)

Transformations

Shift	add or subtract constant	=cell ± constant
Reflect	add or subtract relative	=cell ± 2*(\$reference - cell)
Decimation	dividing out a (constant) base number until data point is close to 1	=LOG(cell, constant)
Smoothing	compute (limited) moving average	=AVERAGE(cell:cell)

Data (Dis)honesty

Activity: Make your own data

https://apod.nasa.gov/apod/random_apod.html

- refresh page until you find image you like
- post the date of the image in Discord, first come first serve!
- download image
- drag and drop into: https://geogebra.org/classic
- mark the "important" points
 - A > point on object
- Save construction protocol
 - top right settings > download as > construction protocol
- Save image of plot

Images as data are a problem in research

https://www.biorxiv.org/content/10.1101/049452v1.full

- What transformations were done to the images in figure 3
- what scales are used (how was the data transformed) in figure 7?