for Very High Dimensional Simulations

by
Art B. Owen
Stanford University

Numerical Problems become Statistical in high dimensions

Examples in $[0,1]^d$

- Integration√
- 2. Approximation
- 3. Search

Rationale:

Only a very sparse sample of the space is possible, the error depends on the part you don't see, and the error must be estimated somehow.

Common Alternative:

Get good estimate \hat{I}_0 and much better estimate \hat{I}_1 .

Error in
$$\hat{I}_0 \doteq |\hat{I}_1 - \hat{I}_0|$$

Red herring: Function not random.

Integration

$$I = \int_{[0,1]^d} f(X) dX$$

$$f \text{ subsumes}$$

- ullet Domain transformations (to $[0,1]^d$)
- Nonuniform sampling density
- Importance weighting
- Periodizing transformation
- Transformations to reduce effective dimension

Bahvalov showed it is intractable (worst case)

Examples

Transport simulation

Follow trajectory of:

Radioactive particles through shield

Photons to viewing plane in graphics

Heat particles (Laplace's equation)

Financial valuation

Assess value, or value at risk

Stochastic process X_t (e.g. interest rates)

Derivative $Y = f(X_1, \dots, X_T)$

Want E(Y), V(Y), $Q_{0.05}(Y)$

Boyle, Broadie, Caflisch, Glasserman, Joy, Tan

Examples Ctd.

Queue simulations

Given arrival process A_1, A_2, \ldots

and service times S_1, S_2, \ldots

How long is queue at time T?

How long until queue is half full?

Optimal Expectations

$$I(t) = \int f(x, t) dx$$

Want $arg min_t I(t)$

Experimental design Cohn, Yue

Stochastic linear programming Infanger

Inference

Posterior means

Some bootstraps

d=1, methods and errors

- Midpoint rule, $O(n^{-2})$
- Trapezoid rule, $O(n^{-2})$
- Simpson's rule, $O(n^{-4})$
- Generic rule $n^{-r} ||f^{(r)}||$

Davis and Rabinowitz

Small d > 1, Iterated integrals

by Fubini...

$$\int f(x_1, \dots, x_d) dx$$

$$= \int_0^1 \dots \int_0^1 f(x_1, \dots, x_d) dx_1 \dots dx_d$$

Get error
$$O(n^{-r/d}) \dots n = n_1^d, \ n_1 \ge r$$

Same as worst case rate (Bahvalov)

Working definition

"d is **large** if grids are impractical"

High dimensional methods

Monte Carlo

$$I = \int f(x)dx, \quad \sigma^{2} = \int (f(x) - I)^{2}dx$$
$$\hat{I} = \frac{1}{n} \sum_{i=1}^{n} f(x_{i}), \quad x_{i} \sim U[0, 1]^{d}$$

$$E(\hat{I}) = I, \quad V(\hat{I}) = \frac{\sigma^2}{n}, \quad E(s^2) = \sigma^2$$

Summary:

- ERR = $O_p(n^{-1/2})$ (all d)
- Get sample based estimate of error
- Variance reduction tricks improve const (not rate)

High dimensional methods continued

Quasi-Monte Carlo

Spread x_i uniformly in $[0,1]^d$

Avoid clusters and gaps

Get "representative sample"

See: Niederreiter's (1992) monograph

Error bounds

$$I = \int f(x)dF(x), \quad \hat{I} = \int f(x)F_n(x)$$
$$F = U[0,1]^d, \quad F_n = U\{x_1, \dots, x_n\}$$
$$|I - \hat{I}| \le ||F - F_n|| \times ||f||^*$$

*Koksma-Hlawka inequality and generalizations

(Niederreiter, Hickernell)

Two d view of 125 points in $[0,1]^5$

Constructions: Sobol, Faure, Niederreiter, Xing

http://www-stat.stanford.edu/reports/owen

Texts: Sloan & Joe, Fang & Wang, Hua & Wang

Great for smooth periodic functions

QMC vs MC

- QMC can get ERR = $O\left(\frac{1}{n}(\log n)^{d-1}\right)$
- ullet Hard to estimate $|\hat{I}-I|$ with QMC (Don't just wait for answer to "converge"!)
- In examples QMC usually beats MC

For large d

- The gain disappears (Morokoff, Caflisch)
- The gain remains (Paskov, Traub)
- ullet It depends on f (Caflisch, Morokoff, Owen)

C.M.O. Findings

"QMC does well if the effective dimension is not large"

Hybrid methods

- A_1, \ldots, A_n a QMC
- $A_i \longrightarrow X_i$ randomized (carefully)
- X_1, \ldots, X_n still QMC, but
- each $X_i \sim U[0,1]^d$

Surprise!

Can get ERR =
$$O_p\left(n^{-3/2}(\log n)^{(d-1)/2}\right)$$

Replication

- 1. Get $\hat{I}_1,\ldots,\hat{I}_r$ iid (small r)
- 2. Use $\hat{I} = \frac{1}{r} \sum_{j=1}^{r} \hat{I}_j$
- 3. and $\hat{V}(\hat{I}) = \frac{1}{r(r-1)} \sum_{j=1}^{r} (\hat{I}_j \hat{I})^2$

Scrambled Nets

- 1. Chop $[0,1]^d$ into congruent pieces
- 2. Randomly permute them
- 3. Apply recursively to each piece
- 4. Apply to all d axes

Scrambled Net Results

- 1. X_1, \ldots, X_n still a net
- 2. Each $X_i \sim U[0,1]^d$
- 3. $V_{SNET}(\hat{I}) = o(1/n)$ any f , $n = \lambda b^m$
- 4. So $V_{SNET}(\hat{I})/V_{MC}(\hat{I})
 ightarrow 0$
- 5. $V_{SNET}(\hat{I}) \leq 2.7183 V_{MC}(\hat{I})$, any f, $n = \lambda b^m$ from (0,d)-net in base b
- 6. For smooth f,

$$V_{SNET}(\hat{I}) = O(n^{-3}(\log n)^{d-1})$$

Cranley-Patterson Rotations

- 1. $A_i = (A_i^1, \dots, A_i^d)$ in a lattice rule
- 2. $X_i^j = A_i^j + U^j \bmod 1, U^j \sim U[0,1]^d$ iid

Latin hypercube sampling

One point per row, one per column

Two versions: centered, and random.

Start with diagonal points, then permute.

Patterson

- 1. Take midpoint rule $A_i = \frac{i-1/2}{n}$
- 2. Lift to d dimensions

(a)
$$X_i^j = A_{\pi_i(i)}, i = 1, \dots, n, j = 1, \dots, d$$

(b) $\pi_j(i)$ indep. random permutations of 1...n

McKay, Conover, Beckman

- 1. Take stratified sample $A_i = rac{i V_i}{n}$, $V_i \sim U[0,1]$
- 2. Get d independent versions A_i^j , $j=1,\ldots,d$
- 3. Lift to d dimensions

(a)
$$X_i^j=A^j_{\pi_j(i)}$$
, $i=1,\ldots,n$, $j=1,\ldots,d$

(b) $\pi_j(i)$ indep. random permutations of 1...n

LHS Results

1st Never much worse than Monte Carlo (Owen)

$$V_{LHS}(\hat{I}) \le \frac{n}{n-1} V_{MC}(\hat{I})$$

2nd Additive part of f removed from error (Stein)

$$V_{LHS}(\hat{I}) \doteq \frac{1}{n}\sigma^2(f - f_{\mathsf{Add}})$$

$$= \frac{1}{n}\left(\sigma^2(f) - \sigma^2(f_{\mathsf{Add}})\right)$$

ANOVA of $[0,1]^d$, $d<\infty$

Hoeffding, Efron-Stein, Wahba, Owen, Hickernell

Subsets $u\subseteq\{1,2,\ldots,d\}$ Effects $f_u(X^u)=f_u(X)$ (by extension) $f(X)=\sum_u f_u(X)$

Anova example

$$f(X^{1}, X^{2}) = 100 + 4X^{1} + 8X^{2} + 12X^{1}X^{2}$$

$$f_{\emptyset} = 109$$

$$f_{\{1\}} = 10X^{1} - 5$$

$$f_{\{2\}} = 14X^{2} - 7$$

$$f_{\{1,2\}} = 3(2X^{1} - 1)(2X^{2} - 1)$$

Additive part

$$f_{Add} = f_{\emptyset} + f_{\{1\}} + \dots + f_{\{d\}}$$

Anova properties

$$f(X) = \sum_{u} f_{u}(X^{u})$$

$$f_{\emptyset} = I \quad \text{(Constant)}$$

$$\int f_{u}(X)f_{v}(X) = 0, \quad u \neq v$$

$$\int_{0}^{1} f_{u}(X)dX^{j} = 0, \quad j \in u$$

$$\sigma^{2}(f) = \sum_{|u|>0} \sigma^{2}(f_{u})$$

$$\sigma^{2}(f_{\emptyset}) = \int f_{u}(X)^{2}, \quad |u|>0$$

$$\sigma^{2}(f_{\emptyset}) = 0$$

Very large dimension

- $\bullet\,$ For large d QMC may require $n \propto d^2$
- Awkward for d = 1000
- ullet Worse for $d=\infty$

Working definition

"d is **very large** if QMC points hard to compute"

Padding

Spanier, Okten

QMC for s dimensions, MC for d-s dimensions

- 1. Or, replace QMC by RQMC
- 2. And/or, replace MC by LHS

MC padding

For RQMC on $A=\{1,2,\ldots,s\}$ with MC padding Eventually,

$$V(\hat{I}) \doteq \frac{1}{n} \left[\sigma^2 - \sum_{u \subseteq A} \sigma_u^2 \right]$$

Practically, for some m=m(n)

$$V(\hat{I}) \doteq \frac{1}{n} \left[\sigma^2 - \sum_{u \subseteq A, |u| \le m} \sigma_u^2 \right]$$

Recommendation

Put most important s variables into RQMC set A

LHS padding

For RQMC on $A=\{1,2,\ldots,s\}$ with LHS padding Eventually,

$$V(\hat{I}) \doteq \frac{1}{n} \left[\sigma^2 - \sum_{u \subseteq A} \sigma_u^2 - \sum_{j=s+1}^d \sigma_{\{j\}}^2 \right]$$

Practically, for some m=m(n)

$$V(\hat{I}) \doteq \frac{1}{n} \left[\sigma^2 - \sum_{u \subseteq A, |u| \le m} \sigma_u^2 - \sum_{j=s+1}^d \sigma_{\{j\}}^2 \right]$$

Recommendation

Put most interactive s variables into RQMC set A

Padding, wisely

Engineer f so that X^1, \ldots, X^s are "most important"

Standard Brownian Motion

$$X^{j} \sim U[0,1] \longrightarrow Z^{j} \sim N(0,1)$$

 $\longrightarrow Y^{j} = Y^{j-1} + Z^{j}$

Brownian Bridge Encoding

Feynman-Kac, Caflisch-Morokoff-Owen

Given Z^j , generate (conditionally)

$$Z^1 \to Y^d, Z^2 \to Y^{d/2}, Z^3 \to Y^{d/4}, \cdots$$

Principal Components

Acworth, Broadie, Glasserman

- 1. Use Z^j for jth principal component
- 2. 5 P.C.s explain 96% of B.M.

Queuing

Fox

- 1. Draw # arrivals in $\left[0,T\right]$ with X^1
- 2. Draw median arrival time with X^2
- 3. Draw quartiles using X^3 , X^4
- 4. Etc.
- 5. Use (R)QMC for first steps

Queuing again

- 1. Draw # arrivals in [0,T] with X^1 (Poisson)
- 2. Draw # arrivals in [0, T/2] with X^2 (Binomial)
- 3. Draw # arrivals in $\left[0,T/4\right]$ with X^3 (Binomial)
- 4. Draw # arrivals in [T/2,3T/4] with X^4 (Binomial)
- 5. Etc.
- 6. Use (R)QMC for first steps

IID sampling

Want Z_1, \ldots, Z_n iid

- 1. Draw $Z_{(1)} = F^{-1}(U_{(1)})$ (Beta)
- 2. Draw $Z_{(d)} = F^{-1}(U_{(d)})$ (Beta)
- 3. Draw $Z_{(d/2)} = F^{-1}(U_{(d/2)})$ (Beta)
- 4. Etc.
- 5. Assign quantiles to obs (if necessary)
- 6. Use (R)QMC for first steps

Alternatives

Or, generate $ar{Z}$, $ar{Z^2}$ first

Latin Supercube Sampling

- \bullet d = ks
- ullet Use k copies of (R)QMC points $\mathcal{X}_i \in [0,1]^s$
- $\bullet \ X_i = (\mathcal{X}_{\pi_1(i)}, \mathcal{X}_{\pi_2(i)}, \cdots, \mathcal{X}_{\pi_k(i)})$

	$X^{\{1,2,3,4\}}$	$X^{\{5,6,7,8\}}$	$X^{\{9,10,11,12\}}$
X_1	\mathcal{X}_{353}	\mathcal{X}_{19}	\mathcal{X}_{989}
X_2	\mathcal{X}_{67}	\mathcal{X}_{67}	\mathcal{X}_{296}
X_3	\mathcal{X}_{123}	\mathcal{X}_{567}	\mathcal{X}_{721}
X_4	\mathcal{X}_{421}	\mathcal{X}_{755}	\mathcal{X}_{433}
:	•	:	•
X_{1000}	\mathcal{X}_{921}	\mathcal{X}_{304}	\mathcal{X}_{251}

Examples

- 1. (R)QMC on 5 P.C.s from each B.M. used (finance)
- 2. (R)QMC for each collision (transport problems)
- 3. (R)QMC for each collision feature (dx, dy etc.)
- 4. (R)QMC for each arrival/service stream (queuing)

LSS Error Analysis, $d < \infty$

$$\hat{I} - I = \hat{I} - I_G + I_G - I$$

 $I_G=$ Average over "big grid"

$$I_G = \frac{1}{n^k} \sum_{i_1=1}^n \cdots \sum_{i_k=1}^n f(\mathcal{X}_{i_1} \cdots \mathcal{X}_{i_k})$$

Sampling Error

$$\hat{I} - I_G \equiv k$$
 dim LHS error

Quadrature Error

 $I_G-I\equiv$ sum of k (R)QMC errors (Fubini)

(R)QMC Sampling Distribution

Partition inputs into k sets:

- Use $\mathcal{X}^r \in [0,1]^{A_r}$
- $A_r \subseteq \{1, 2, \dots, d\}$
- $A_r \cap A_q = \emptyset, r \neq q$
- $\bullet \cup_{r=1}^k A_r = \{1, 2, \dots, d\}$
- $X = (\mathcal{X}^1, \dots, \mathcal{X}^k)$

Sampling Error

$$E(\hat{I} - I_G) = 0$$

$$V(\hat{I} - I_G) \doteq \frac{1}{n} \left[\sigma^2 - \sum_{r=1}^k \sum_{u \subseteq A_r} \sigma_u^2 \right]$$

(R)QMC Quadrature Error

- $|I_G I| \doteq O(kE)$, $E = s \dim (R)QMC err$
- So $|I_G I| = o(n^{-1/2})$
- ullet With luck: asymptotics relevant, $|I_G-I|$ negligible

QMC vs RQMC

- ullet QMC: I_G-I nonrandom, a bias
- RQMC: $E(I_G I) = 0$ random, contributes to variance

If $I_G - I$ not negligible

- In RQMC errors cancel (in replications)
- In QMC errors don't cancel

What if $d = \infty$?

- 1. Usual derivation of $V_{LHS}(\hat{I})$ crashes: Have to average over volume $[1-1/n]^d \to 0$
- 2. Uncountably many ANOVA terms to sum!
- 3. What is interaction of $X^2, X^3, X^5, X^7, \cdots$?

Is f "approximately finite dimensional"?

- 1. $f(X_i)$ must only use initial segment $X^1, \dots, X^{M(i)}$
- 2. Leading X^j usually most important.
- 3. Maybe "all but ϵ " of variance is in first variables

Martingale Truncation

Williams

For $s \ge 1$

$$f^{s}(x^{1},...,x^{s})$$
= $E(f(X)|X^{1}=x^{1},...,X^{s}=x^{s})$

For $X \in [0,1]^\infty$ take

$$f^s(X) = f^s(X^1, \dots, X^s)$$

Then

$$E(f^{s+1}(X)|X^{\{1,2,\dots,s\}}) = f^s(X)$$

$$Y^s=f^s(X),\;s\geq 1\;$$
 is a martingale

Finite variance does it

If
$$\int f(X)^2 < \infty$$
 then $\forall \epsilon > 0, \exists s < \infty$

$$E([f^s(X) - f(X)]^2) < \epsilon$$

Consequences

$$V_{LHS}(\hat{I}) \leq \frac{n}{n-1} V_{MC}(\hat{I}), \quad d = \infty$$

$$V_{LHS}(\hat{I}) \doteq \frac{1}{n} \left[\sigma^2 - \sum_{j=1}^{\infty} \sigma_{\{j\}}^2 \right]$$

$$\sigma_u^2 = 0, \quad |u| = \infty$$

And . . . LSS works for $k=\infty$

Conclusions

"It depends on f"

- 1. Large $d \Rightarrow$ integration intractable
- 2. ... in the worst case

Success for large d means

- f was somehow "special",
- and our method could exploit it,
- but not "curse of d lifted"

Tasks

- 1. Find special structures
- 2. ways to exploit them
- 3. ways to induce them

RQMC and LLS exploit lower "effective dimension"