

3. The value of $\left(\frac{-1+i\sqrt{3}}{1-i}\right)^{30}$ is: (1) 6^5 (2) 2^{15} i $(3) -2^{15}$ (4) $-2^{15}i$

(1) 0(2) 1

(3) -1mathons $\binom{n}{2}$ $-i\sin\left(\frac{\theta}{2}\right)$ $-i\sin$ is equal to $1+\cos\left(\frac{\theta}{2}\right)+i\sin\left(\frac{\theta}{2}\right)$

nathongo /// mathongo (1) $\cos n\theta - i \sin n\theta$ (3) $\cos 2n\theta - i\sin 2n\theta$ (4) $\cos 2n\theta + i \sin 2n\theta$ **6.** If 1, ω , ω^2 are the cube roots of unity, then $(3 + \omega^2 + \omega^4)^6$ is equal to

(2) 729 hongo /// mathongo /// mathongo /// mathongo (1) 64 ngo /// mathongo /// mathongo /// mathongo (4) 0 (3) 2

Let ω be a complex number satisfying $2\omega + 1 = z$, where $z = \sqrt{-3}$. If $\begin{vmatrix} 1 & 1 & 1 \\ 1 & -\omega^2 - 1 & \omega^2 \\ 1 & \omega^2 & \omega^7 \end{vmatrix} = 3k$, then the value of k is mathons with mathons ω .

///. (1) ±½ ongo ///. mathongo ///.

(3) -1**8.** If $i=\sqrt{-1}$ then $4+5\left(-\frac{1}{2}+i\frac{\sqrt{3}}{2}\right)^{334}-3\left(\frac{1}{2}+i\frac{\sqrt{3}}{2}\right)^{365}$ is equal to -

(1) $1 - i\sqrt{3}$ (2) $-1+i\sqrt{3}$

(3) $4\sqrt{3}i$ (4) $-i\sqrt{3}$ 9. If $z = \frac{\sqrt{3}}{2} + \frac{i}{2}(i = \sqrt{-1})$, then $(1 + iz + z^5 + iz^8)^9$ is equal to:

 $(3) (-1+2i)^9$ (4) -1

10. Let z and w be two non-zero complex numbers such that |z|=|w| and $\arg z+\arg w=\pi$ then z equals –

 $(2) -\omega$ $(3)_{a}\overline{w}_{ongo}$ /// mathongo // mathongo