

Keterkaitan

Hendrik Santoso Sugiarto

IBDA4221 – Selected Topic in Computer Technology

Quantum Computing

Capaian Pembelajaran

- Composite System
- Entanglement
- Non-locality
- Multiqubit system

Composite System

Composite System

• Jika Alice mempunyai photon dengan state $|0\rangle$ dan $|1\rangle$, maka wavefunctionnya dapat berbentuk superposisi:

$$|\Psi_A\rangle = \alpha_0|0\rangle + \alpha_1|1\rangle$$

$$\alpha_0^*\alpha_0 + \alpha_1^*\alpha_1 = 1$$

• Lalu bob mempunyai photon dengan state $|0\rangle$ dan $|1\rangle$, maka wavefunctionnya dapat berbentuk superposisi:

$$|\Psi_B\rangle = \beta_0|0\rangle + \beta_1|1\rangle$$
$$\beta_0^*\beta_0 + \beta_1^*\beta_1 = 1$$

Dapatkah kita mengkonstruksi single composite system dari keduanya?

Tensor product

Composite wavefunction dari 2 sistem dapat direpresentasikan secara Tensor :

$$|\Psi_{AB}\rangle = |\Psi_{A}\rangle \otimes |\Psi_{B}\rangle$$

$$|\Psi_{AB}\rangle = (\alpha_{0}|0\rangle + \alpha_{1}|1\rangle) \otimes (\beta_{0}|0\rangle + \beta_{1}|1\rangle)$$

$$|\Psi_{AB}\rangle = a_{0}\beta_{0}|0\rangle|0\rangle + a_{0}\beta_{1}|0\rangle|1\rangle + a_{1}\beta_{0}|1\rangle|0\rangle + a_{1}\beta_{1}|1\rangle|1\rangle$$

$$|\Psi_{AB}\rangle = a_{0}\beta_{0}|00\rangle + a_{0}\beta_{1}|01\rangle + a_{1}\beta_{0}|10\rangle + a_{1}\beta_{1}|11\rangle$$

Vektor ket sekarang memiliki 2 indeks untuk merepresentasikan suatu state:

$$|\Psi_{AB}\rangle = \sum_{a,b} c(a,b)|ab\rangle$$

• Vektor ket $|ab\rangle$ bersifat orthonormal, dimana:

$$\begin{array}{c}
\langle 0|0 - \delta 0| = 0 \\
\delta \alpha \alpha i = 1 \rightarrow \alpha = \alpha i \\
0 \rightarrow \alpha \neq \alpha i
\end{array}$$

$$\langle ab | a'b' \rangle = \delta_{aa}, \delta_{bb},$$

$$\langle oo | oo \rangle = \delta_{oo} \delta_{oo} = 1$$

$$\langle o| | oo \rangle = \delta_{oo} \delta_{lo} = 0$$

$$\langle o| | oo \rangle = \delta_{lo} \delta_{lo} = 0$$

$$\langle o| | oo \rangle = \delta_{lo} \delta_{lo} = 0$$

- Apakah hasil tensor product dari $|\Psi_{ab}\rangle = \frac{1}{\sqrt{2}}(|0\rangle + i|1\rangle) \otimes \frac{1}{\sqrt{2}}(|0\rangle + |1\rangle)$
- Berapa peluang mengukur 01 pada wavefunction diatas?

$$|\Psi_{ab}\rangle = \frac{1}{2} (|0\rangle|0) + |0\rangle|1) + |1\rangle|0\rangle + |1\rangle|1\rangle$$

$$= \frac{1}{2} (|00\rangle + |01\rangle + |10\rangle + |11\rangle|1\rangle) = \frac{1}{2} (|0\rangle + |1\rangle + |12\rangle + |15\rangle)$$

$$|0\rangle|0\rangle = \frac{1}{2} (|0\rangle|0) + |0\rangle|0\rangle + |1\rangle|0\rangle + |1\rangle|0\rangle = \frac{1}{2} (|0\rangle + |1\rangle + |1\rangle|0\rangle$$

$$|0\rangle|0\rangle = \frac{1}{2} (|0\rangle|0) + |0\rangle|0\rangle + |1\rangle|0\rangle + |1\rangle|0\rangle$$

$$P(01) = \langle Y_{ab} | 01 \rangle \langle 01 | Y_{ab} \rangle = \frac{1}{2} \times \frac{1}{2} = \frac{1}{4}$$
 $P(00) = \langle Y_{ab} | 00 \rangle \langle 00 | Y_{ab} \rangle = \frac{1}{2} \times \frac{1}{2} = \frac{1}{4}$

Tensor Product Matrices

• Untuk menggabungkan 2 matriks 2x2 menjadi matriks 4x4:
$$A \otimes B = \begin{pmatrix} A_{11}B & A_{12}B \\ A_{21}B & A_{22}B \end{pmatrix} = \begin{pmatrix} A_{11}B_{11} & A_{11}B_{12} & A_{12}B_{11} & A_{12}B_{12} \\ A_{21}B_{11} & A_{21}B_{12} & A_{21}B_{12} & A_{22}B_{11} & A_{22}B_{12} \\ A_{21}B_{21} & A_{21}B_{22} & A_{22}B_{21} & A_{22}B_{22} \end{pmatrix}$$

Untuk menggabungkan 2 vektor kolom 2x1 menjadi vektor kolom 4x1:

$$\binom{a_{11}}{a_{21}} \otimes \binom{b_{11}}{b_{21}} = \binom{a_{11}b_{11}}{a_{21}b_{21}}$$

$$\binom{a_{21}}{a_{21}b_{21}}$$

- Apakah tensor product dari $|+\rangle = \frac{1}{\sqrt{2}} {1 \choose 1} \operatorname{dan} |0\rangle = {1 \choose 0}$?
- Apakah tensor product dari $H=\frac{1}{\sqrt{2}}\begin{pmatrix}1&1\\1&-1\end{pmatrix}$ dan $X=\begin{pmatrix}0&1\\1&0\end{pmatrix}$

$$H \otimes X = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \otimes \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix} \otimes \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} = \frac{1}{\sqrt$$

Tensor Product Basis

• Bentuk basis ket:

• Bentuk komposit:
$$\begin{vmatrix} 0 \\ 0 \end{vmatrix} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \quad |1\rangle = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$
• Bentuk komposit:
$$\begin{vmatrix} 0 \\ 0 \end{vmatrix} \otimes \begin{pmatrix} 1 \\ 0 \end{pmatrix}, |01\rangle = \begin{pmatrix} 1 \\ 0 \end{pmatrix} \otimes \begin{pmatrix} 0 \\ 1 \end{pmatrix}, |10\rangle = \begin{pmatrix} 0 \\ 1 \end{pmatrix} \otimes \begin{pmatrix} 1 \\ 0 \end{pmatrix}, |11\rangle = \begin{pmatrix} 0 \\ 1 \end{pmatrix} \otimes \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$|00\rangle = \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix}, |01\rangle = \begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \end{pmatrix}, |10\rangle = \begin{pmatrix} 0 \\ 0 \\ 1 \\ 0 \end{pmatrix}, |11\rangle = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 1 \end{pmatrix}$$

Tensor Product Operator

Bentuk basis operator:

$$Z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, X = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

Bentuk komposit:

$$Z \otimes X = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \otimes \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & -1 \\ 0 & 0 & -1 & 0 \end{pmatrix}$$

$$X \otimes Z = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \otimes \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} = \begin{pmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & -1 \\ 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \end{pmatrix}$$
$$Z \otimes X \neq X \otimes Z$$

Operator pada Basis ket

• Sebuah operator $Z \otimes X$ bekerja pada basis ket $|01\rangle$

$$(Z \otimes X)|01\rangle = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & -1 \\ 0 & 0 & -1 & 0 \end{pmatrix} \begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix} = |00\rangle$$

$$(Z \otimes X)|01\rangle = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & -1 & 0 \end{pmatrix} \begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \end{pmatrix} = |00\rangle$$

$$(Z \otimes X)|01\rangle = |0\rangle$$

• Apakah output dari operasi $(Z \otimes X)|00\rangle$?

$$\begin{pmatrix}
0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
0 & 0 & 0 & 0 \\
0 & 0 & 0 &$$

Entanglement

Entangled States

- Quantum mechanics memungkinkan superposisi vektor lebih dari sekedar tensor product
- Bentuk komposit yang paling general adalah:

$$|\Psi_{AB}\rangle = c_{00}|00\rangle + c_{01}|01\rangle + c_{10}|10\rangle + c_{11}|11\rangle$$

• Dimana kondisi normalisasinya:

$$c_{00}^*c_{00} + c_{01}^*c_{01} + c_{10}^*c_{10} + c_{11}^*c_{11} = 1$$

Maximally Entangled States

- Terdapat sistem yang lebih entangled dari sistem lain (entanglement bukanlah binari antara ya dan tidak)
- Sebuah sistem disebut maximally entangled states jika:

$$|\Psi_{AB}\rangle = c_{01}|01\rangle + c_{10}|10\rangle$$

• Dimana tidak mungkin dibentuk dari produk 2 qubit:

$$|\Psi_{AB}\rangle = c_{00}|00\rangle + c_{01}|01\rangle + c_{10}|10\rangle + c_{11}|11\rangle$$

$$(a|0\rangle + b|1\rangle) \otimes (a|0\rangle + \beta|1\rangle) = a |00\rangle + a |00\rangle + b |00$$

Keterkaitan

Ontangled

- Sebuah system dikatakan terkait jika observasi yang satu akan sekaligus menentukan hasil observasi yang lain
- Secara wavefunction dapat ditulis:

$$|\Psi\rangle = \frac{1}{\sqrt{2}} (|1\rangle|0\rangle + |0\rangle|1\rangle)$$

Apakah qubit pertama dan kedua dari wavefunction berikut entangled?

•
$$|\Psi\rangle = \frac{1}{\sqrt{2}} (|00\rangle + |11\rangle)$$

•
$$|\Psi\rangle = \frac{1}{\sqrt{2}}|00\rangle + \frac{1}{\sqrt{8}}|01\rangle + \frac{1}{\sqrt{8}}|10\rangle + \frac{1}{\sqrt{4}}|11\rangle$$

•
$$|\Psi\rangle = \frac{1}{\sqrt{2}}|00\rangle + \frac{1}{\sqrt{8}}|01\rangle + \frac{1}{\sqrt{8}}|10\rangle + \frac{1}{\sqrt{4}}|11\rangle$$
 $\frac{1}{\sqrt{2}}(|00\rangle + |11\rangle) = \alpha c |00\rangle + \alpha d |01\rangle + b c |10\rangle + b d |11\rangle$
 $\frac{1}{\sqrt{2}}(|00\rangle + |11\rangle) = \alpha c |00\rangle + \alpha d |01\rangle + b c |10\rangle + b d |11\rangle$
 $\frac{1}{\sqrt{2}}(|00\rangle + |11\rangle) = \alpha c |00\rangle + \alpha d |01\rangle + b c |10\rangle + b d |11\rangle$
 $\frac{1}{\sqrt{2}}(|00\rangle + |11\rangle) = \alpha c |00\rangle + \alpha d |01\rangle + b c |10\rangle + b d |11\rangle$
 $\frac{1}{\sqrt{2}}(|00\rangle + |11\rangle) = \alpha c |00\rangle + \alpha d |01\rangle + b c |10\rangle + b d |11\rangle$
 $\frac{1}{\sqrt{2}}(|00\rangle + |11\rangle) = \alpha c |00\rangle + \alpha d |01\rangle + b c |10\rangle + b d |11\rangle$
 $\frac{1}{\sqrt{2}}(|00\rangle + |11\rangle) = \alpha c |00\rangle + \alpha d |01\rangle + b c |10\rangle + b d |11\rangle$
 $\frac{1}{\sqrt{2}}(|00\rangle + |11\rangle) = \alpha c |00\rangle + \alpha d |01\rangle + b c |10\rangle + b d |11\rangle$

$$\frac{\alpha(-1)}{(10)} + \frac{1}{10} \frac{10}{10} + \frac{1}{10} \frac{10}{10} = \frac{10}{10} + \frac{1}{10} \frac{10}{10} +$$

Non-Locality

Lokalitas

- Lokalitas adalah fondasi dari fisika klasik
- Lokal berarti suatu kejadian hanya dapat disebabkan oleh sesuatu yang berada di lokasi dan saat yang sama

• Gaya gravitasi Newton bersifat non-lokal dan medan gravitasi, Einstein bersifat lokal

EPR Paradoks

Vodoo "Spooky Action at Distance" Bob Alice measurement

EINSTEIN ATTACKS QUANTUM THEORY

Scientist and Two Colleagues Find It Is Not 'Complete' Even Though 'Correct.'

SEE FULLER ONE POSSIBLE

Believe a Whole Description of 'the Physical Reality' Can Be Provided Eventually.

N. Rosen

Copyright 2020 Calvin Institute of Technology.

E information contained herein shall not be used, copied, published, quoted, and/or released without prior approval.

ko X

20

Bell Inequality

https://www.youtube.com/watch?v=zcqZHYo7ONs

Angle between detectors (in degrees)

Demonstration of Entanglement

https://www.pnas.org/doi/10.1073/pnas.1517007112

BSM

Longest Entanglement

Multiqubit System

Single Qubit Gates on Multi-Qubit State

- Sekalipun kita menggunakan multi-qubit, tapi antar qubit bisa saja tidak berinteraksi (tiap operator hanya beroperasi pada qubit masing-masing secara independen)
- Contoh: Sebuah operator H beroperasi pada qubit q_0 dan operator X beroperasi pada qubit q_1 $X|q_1\rangle\otimes H|q_0\rangle=(X\otimes H)|q_1q_0\rangle$
- Operator kompositnya:

$$X \otimes H = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \otimes \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} = \frac{1}{\sqrt{2}} \begin{bmatrix} 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & -1 \\ 1 & 1 & 0 & 0 \\ 1 & -1 & 0 & 0 \end{bmatrix}$$

• Misalkan semua qubit berada pada inisiasi awal, qubit kompositnya:

$$|q_1q_0\rangle = |00\rangle = \begin{bmatrix} 1\\0 \end{bmatrix} \otimes \begin{bmatrix} 1\\0 \end{bmatrix} = \begin{bmatrix} 1\\0\\0\\0 \end{bmatrix}$$

- Bandingkan state akhir bentuk komposit dan bentuk terpisah
 - Jika $|q_1q_0\rangle = |00\rangle$
 - Jika $|q_0\rangle = a|0\rangle + b|1\rangle \operatorname{dan} |q_1\rangle = c|0\rangle + d|1\rangle$

$$\times |\Lambda_{i}\rangle \otimes I |\Lambda_{0}\rangle = (\times \otimes I) |\Lambda_{i}\Lambda_{0}\rangle$$

$$|\Lambda_{i}\rangle \otimes |\Lambda_{0}\rangle = (\frac{1}{6}) \otimes (\frac{1}{6}) = (\frac{1}{8}) \times (\times I) = (\frac{1}{6}) \otimes (\frac{1}{6}) = (\frac{1}{6}) \otimes ($$

Multi-Qubit Gates

- Multiqubit gate adalah quantum gate yang beroperasi pada beberapa qubit sekaligus (terjadi interaksi antar qubit ketika operator ini digunakan)
- Contoh:
 - CNOT gate
 - CCNOT (Toffoli) gate
 - Swap gate
 - Cswap (Fredkin) gate

CNOT Gate

- control qo
- Jika controlled qubit adalah 0, tidak merubah apa-apa
- Jika controlled qubit adalah 1, operasi X pada target qubit
- $CNOT = I \otimes |0\rangle\langle 0| + X \otimes |1\rangle\langle 1|$
- $CNOT = (|0\rangle\langle 0| + |1\rangle\langle 1|) \otimes |0\rangle\langle 0| + (|0\rangle\langle 1| + |1\rangle\langle 0|) \otimes |1\rangle\langle 1|$
- $CNOT = |00\rangle\langle00| + |10\rangle\langle10| + |01\rangle\langle11| + |11\rangle\langle01|$

$$\bullet \ CNOT = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix}$$

(1000)	101		/ o \	
0001	l		0	
0000	0			
V0 (00)	101	ァン		
© Copyright 2020 Calvin Institute	of Technology.		file	

Input (t,c)	Output (t,c)	
00	00	
01	11	
10	10	
11	01	

Apakah hasil dari operasi berikut?

$$CNOT = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix} = TONXOI + XOINXOI$$

CU Gate

- Kita dapat mengontrol operasi gate apapun
- Jika controlled qubit adalah 0, tidak merubah apa-apa
- Jika controlled qubit adalah 1, operasi U pada target qubit
- $CU = I \otimes |0\rangle\langle 0| + U \otimes |1\rangle\langle 1|$
- Misalnya $CPhase = I \otimes |0\rangle\langle 0| + Z \otimes |1\rangle\langle 1|$

$$\frac{1}{\sqrt{L}}\begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} \otimes \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

• Buatlah Cphase gate dengan menggunakan CNOT gate

Entangled States

•
$$CNOT |0+\rangle = \frac{1}{\sqrt{2}}(|00\rangle + |11\rangle)$$

$$\bullet \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix} \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ 1 \\ 0 \\ 0 \end{bmatrix} = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ 0 \\ 0 \\ 1 \end{bmatrix}$$

• Berapa state akhir dari $CNOT(I \otimes H)|00\rangle$)?

erapa state aknir dari
$$CNOT(I \otimes H)|UU\rangle$$
?

$$\begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 1 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 1 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 1 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 1 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & 0 & 0 &$$

Bell States

 $\{[0],[1]\} \rightarrow \{[+],[-)\}$ $\{[0],[0],[0]\},[0]\}$

• Terdapat 4 bell states yang maximally entangled dan membentuk basis orthonormal:

•
$$|\phi^+\rangle = CNOT(I \otimes H)|00\rangle) = CNOT|0+\rangle = \frac{1}{\sqrt{2}}(|00\rangle + |11\rangle)$$

•
$$|\phi^-\rangle = CNOT(I \otimes H)|01\rangle) = CNOT|0-\rangle = \frac{1}{\sqrt{2}}(|00\rangle - |11\rangle)$$

•
$$|\psi^+\rangle = CNOT(I \otimes H)|10\rangle) = CNOT|1+\rangle = \frac{1}{\sqrt{2}}(|10\rangle + |01\rangle)$$

•
$$|\psi^{-}\rangle = CNOT(I \otimes H)|11\rangle) = CNOT|1-\rangle = \frac{1}{\sqrt{2}}(|10\rangle - |01\rangle)$$

$$\langle \phi - | \phi^{+} \rangle = \frac{1}{12} (\langle 60| - \langle 11|) (| 60\rangle + | 11|) \frac{1}{12} = \frac{1}{12} (| 1+0+0+1) = 0$$
 $\langle \phi^{+} | \phi^{+} \rangle = \frac{1}{12} (\langle 60| + \langle 11|) (| 60\rangle + | 11|) \frac{1}{12} = \frac{1}{12} (| 1+0+0+1) = 1$
 $\langle \psi^{+} | \psi^{-} \rangle = \frac{1}{12} (\langle 10| + \langle 01|) (| 100\rangle - | 11|) \frac{1}{12} = \frac{1}{12} (| 0+0+0+0) = 0$

• Apakah bentuk dari $\frac{1}{2}(|00\rangle+i|01\rangle+i|10\rangle+|11\rangle)$ dalam basis: $\{|\phi^{+}\rangle=\frac{1}{\sqrt{2}}(|00\rangle+|11\rangle), |\phi^{-}\rangle=\frac{1}{\sqrt{2}}(|00\rangle-|11\rangle), |\psi^{+}\rangle=\frac{1}{\sqrt{2}}(|10\rangle+|01\rangle), |\psi^{-}\rangle=\frac{1}{\sqrt{2}}(|10\rangle-|01\rangle)\}$

$$\frac{1}{\sqrt{2}} \left(|\psi^{+}\rangle + i |\psi^{+}\rangle \right) = \frac{1}{\sqrt{2}} \left(\frac{1}{\sqrt{2}} (|\omega\rangle + |u\rangle) + i \frac{1}{\sqrt{2}} (|\omega\rangle + |\omega\rangle) \right)$$

$$= \frac{1}{\sqrt{2}} \left(\frac{1}{\sqrt{2}} (|\omega\rangle + |u\rangle) + i \frac{1}{\sqrt{2}} (|\omega\rangle + |\omega\rangle) \right)$$

Aktivitas

- Multiqubit system dan Entanglement di Qiskit
- https://learn.qiskit.org/course/ch-gates/multiple-qubits-and-entangled-states

Tuhan Memberkati

