## Assignment 1

## Due: 4/8 12:00

- 1. (10%) Is the degree sequence 4, 3, 3, 3, 3, 2, 1, 1 graphical? Please explain your answer.
- 2. (40%) Consider the following graph.
  - a. (5%) Prove that the graph is bipartite by specifying the partite sets X and Y.
  - b. (5%) Prove that  $M = \{(A,C), (B,E)\}$  is a maximal matching.
  - c. (10%) Find an *M*-augmenting path *P* and specify the sets *S* and *T*.
  - d. (10%) Find a larger matching  $M^*$  by P.
  - e. (10%) Prove that  $M^*$  is the largest matching by finding a corresponding vertex cover.





3. (20%) Find the maximum weighted matching and the minimum weighted vertex cover of the following weighted bipartite graph in the matrix form.

$$\begin{bmatrix} 6 & 0 & 3 & 6 & 8 \\ 1 & 8 & 5 & 5 & 3 \\ 1 & 9 & 4 & 7 & 5 \\ 6 & 5 & 8 & 6 & 5 \\ 0 & 6 & 5 & 4 & 3 \end{bmatrix}$$

4. (20%) Find the dual problem of the following optimization problem.

$$\max 3x_1 - 5x_2 + 6x_3$$

such that:

$$x_1 - 3x_2 \ge 5$$
 $2x_1 + 5x_3 \le 3$ 
 $2x_1 - 3x_2 + x_3 \ge 3$ 
 $2x_2 + 3x_3 \le -10$  impossible to satisfy, no feasible solution  $x_1, x_2, x_3 \ge 0$ 

5. (10%) Prove that the randomized algorithm for the vertex-weighted vertex cover problem in page 120 is a 2-approximation algorithm.

| 1. Y | lavel - Hakimi                                               | Algorithm                                             |                               |
|------|--------------------------------------------------------------|-------------------------------------------------------|-------------------------------|
| 13   | C4, 3, 3, 3                                                  | ,3, 2, 2, 1,                                          | 13: sorted                    |
|      |                                                              |                                                       | n the next 4 anthies          |
| 2°   |                                                              | 2, 2, 2, 2,                                           |                               |
|      |                                                              |                                                       | 713                           |
| 3°   |                                                              |                                                       |                               |
| 42   |                                                              | , 2, 2, 2, 1, 1,<br>entract 1 from                    | n the next 2 entries          |
|      |                                                              | 2, 2, 2, 1, 1                                         |                               |
| 5.   | Surf descen                                                  |                                                       |                               |
| 3    | 40                                                           | 1,1,1,1,0                                             |                               |
|      |                                                              |                                                       |                               |
| 6°   |                                                              |                                                       | n the next 2 entries          |
|      |                                                              |                                                       |                               |
| 7    | Surf descondi                                                | 79                                                    |                               |
|      | [ 1, 1, 1,                                                   | 1, 1, 1, 0, 0                                         | , 0                           |
| Y    | Kemore ,                                                     | subtract I tron                                       | me next entry                 |
|      | C 0, 0, 1                                                    | , 1, 1, 1, 0, 0                                       | , 03                          |
| 7    | Surf descordi                                                | ng                                                    |                               |
|      |                                                              |                                                       | , 0                           |
|      |                                                              |                                                       |                               |
| 7    | E 0, 1, 1,  Surf descendi  E 1, 1, 1,  Remove   ,  C 0, 0, 1 | 1, 1, 1, 1, 0, 0  ing  1, 1, 1, 0, 0  subtract 1 from | , 0]  the next   entry  , 0 ] |





maximum woighted mothing 0+3+4+6+0=13minimum neighted vertex cover = mwm = 13 4. Dual LP Minimize 54, + 381 + 383 - 1084 Subject to: 91 + 282 + 283 53  $-3y_1$   $-3y_3 + 2y_4 \le -5$ 591 + 83 + 384 < 6 71, 43 20 82, 84 50 13 Minimize 25 W(V) · XV 5. subject to Xu + Xv Z | Y (u, v) & E 0 4 X 4 4 4 6 V Lat X\* be the option solution w/ ast OPTLP = ZIVE VW(V). XV\*

Vertex cover C = { veV | X = = } y (u, v) ∈ E, the P constraint guarantees Xu\* + Xv\* 21 7 at lest one of u or v e C >>, every edge 3 covered >> C 13 a valid vertex over Σ w (v) ≤ ζ w (u). 2 x + = 2.0 PT LP Since OPTLP < OPTIP(Relaxation 60 and) we get & w(v) & 2. OPT zp The algorithm produces a valid vertex cover w/ total veight at most twice the optimal.



