MULTI-TIME ATTENTION NETWORKS FOR IRREGULARLY SAMPLED TIME SERIES

Charles

Problem

Irregularly sampling

Multi-Time Attention networks -- mTANs

- 1) Flexible approach to model multivariate, sparse and irregularly sampled time series data by using time attention mechanism
- 2) Temporally distributed latent representation to better capture local structure in time series data.
- 3) Have good interpolation and classification performance and significantly reduce training times.

mTANS architecture

 ATT -> attention blocks, perform a scaled dot product attention over the observed values using time embedding of query and key time points

$$mTAN(t, \mathbf{s})[j] = \sum_{h=1}^{H} \sum_{d=1}^{D} \hat{x}_{hd}(t, \mathbf{s}) \cdot U_{hdj}$$

$$\hat{x}_{hd}(t, \mathbf{s}) = \sum_{i=1}^{L_d} \kappa_h(t, t_{id}) x_{id}$$

$$\kappa_h(t, t_{id}) = \frac{\exp\left(\phi_h(t) \mathbf{w} \mathbf{v}^T \phi_h(t_{id})^T / \sqrt{d_k}\right)}{\sum_{i'=1}^{L_d} \exp\left(\phi_h(t) \mathbf{w} \mathbf{v}^T \phi_h(t_{i'd})^T / \sqrt{d_k}\right)}$$

$$(4)$$

$$\phi_h(t)[i] = \begin{cases} \omega_{0h} \cdot t + \alpha_{0h}, & \text{if } i = 0\\ \sin(\omega_{ih} \cdot t + \alpha_{ih}), & \text{if } 0 < i < d_r \end{cases}$$

(1) Time embedding

Encoder-decoder framework, for classification and interpolation tasks

• Developed within VAE, variational autoencoder framework

Decoder

(b) Inference Network (Encoder)

$$\begin{aligned} \mathbf{h}_{RNN}^{dec} &= [\mathbf{h}_{1,RNN}^{dec},...,\mathbf{h}_{K,RNN}^{dec}].\\ \mathbf{h}_{TAN}^{dec} &= [\mathbf{h}_{1,TAN}^{dec},...,\mathbf{h}_{T,TAN}^{dec}] \end{aligned}$$

Encoder

(a) Generative Model (Decoder)

 $\begin{aligned} \mathbf{h}^{enc}_{TAN} &= \text{mTAND}^{enc}(\mathbf{r}, \mathbf{s}) \quad \text{mTAND encoder output} \\ \mathbf{h}^{enc}_{RNN} &= \text{RNN}^{enc}(\mathbf{h}^{enc}_{TAN}) \quad \text{RNN encoder output} \\ \mathbf{z}_k &\sim q_\gamma(\mathbf{z}_k|\boldsymbol{\mu}_k, \boldsymbol{\sigma}_k^2), \quad \boldsymbol{\mu}_k = f_\mu^{enc}(\mathbf{h}^{enc}_{k,RNN}), \quad \boldsymbol{\sigma}_k^2 = \exp(f_\sigma^{enc}(\mathbf{h}^{enc}_{k,RNN})) \end{aligned}$

(b) Inference Network (Encoder)

Evaluation

Table 1: Interpolation performance versus percent observed time points on PhysioNet

Model	Mean Squared Error (×10 ⁻³)						
RNN-VAE L-ODE-RNN L-ODE-ODE mTAND-Full	13.418 ± 0.008 8.132 ± 0.020 6.721 ± 0.109 4.139 ± 0.029	12.594 ± 0.004 8.140 ± 0.018 6.816 ± 0.045 4.018 ± 0.048	11.887 ± 0.005 8.171 ± 0.030 6.798 ± 0.143 4.157 ± 0.053	11.133 ± 0.007 8.143 ± 0.025 6.850 ± 0.066 4.410 ± 0.149	11.470 ± 0.006 8.402 ± 0.022 7.142 ± 0.066 4.798 ± 0.036		
Observed %	50%	60%	70%	80%	90%		

Evaluation

Table 2: Classification Performance on PhysioNet, MIMIC-III and Human Activity dataset

Model	AUC Score		Accuracy	time
	PhysioNet	MIMIC-III	Human Activity	per epoch
RNN-Impute	0.764 ± 0.016	0.8249 ± 0.0010	0.859 ± 0.004	0.5
$RNN\text{-}\Delta_t$	0.787 ± 0.014	0.8364 ± 0.0011	0.857 ± 0.002	0.5
RNN-Decay	0.807 ± 0.003	0.8392 ± 0.0012	0.860 ± 0.005	0.7
RNN GRU-D	0.818 ± 0.008	0.8270 ± 0.0010	0.862 ± 0.005	0.7
Phased-LSTM	0.836 ± 0.003	0.8429 ± 0.0035	0.855 ± 0.005	0.3
IP-Nets	0.819 ± 0.006	0.8390 ± 0.0011	0.869 ± 0.007	1.3
SeFT	0.795 ± 0.015	0.8485 ± 0.0022	0.815 ± 0.002	0.5
RNN-VAE	0.515 ± 0.040	0.5175 ± 0.0312	0.343 ± 0.040	2.0
ODE-RNN	0.833 ± 0.009	0.8561 ± 0.0051	0.885 ± 0.008	16.5
L-ODE-RNN	0.781 ± 0.018	0.7734 ± 0.0030	0.838 ± 0.004	6.7
L-ODE-ODE	0.829 ± 0.004	0.8559 ± 0.0041	0.870 ± 0.028	22.0
mTAND-Enc	0.854 ± 0.001	0.8419 ± 0.0017	0.907 ± 0.002	0.1
mTAND-Full	0.858 ± 0.004	0.8544 ± 0.0024	0.910 ± 0.002	0.2

Summary

- Problem: irregular sampled time series data
- Introduce mTAN module and the encoder-decoder framework
- Have good interpolation and classification performance

- mTAND -> discretized mTAN $mTAND(\mathbf{r}, \mathbf{s})[i] = mTAN(r_i, \mathbf{s})$.
- latent states $\mathbf{z} = [\mathbf{z}_1, ..., \mathbf{z}_K]$ at K reference time points.
- VAE: https://en.wikipedia.org/wiki/Variational_autoencoder