

Spam Base Project

Ryan ASSAAD – Felix HAMEL TD DIA4 - Alternant

What is Spam Email? AND Context

✓ Definition :

 Spam email is unsolicited and unwanted junk email sent out in bulk to an indiscriminate recipient list. Typically, spam is sent for commercial purposes. It can be sent in massive volume by botnets, networks of infected computers

√ Why do people send out spam email?

Spam email is sent for commercial purposes. While some people view it as unethical, many businesses still use spam.

√ Is Spam Email dangerous?

• Spam email can be dangerous. It can include malicious links that can infect your computer with malware (see What is malware?). Do not click links in spam. Dangerous spam emails often sound urgent, so you feel the need to act.

✓ Spam Statistics:

- The average number of legitimate email messages sent overt the internet each day: 22.43 billion
- Nearly 85% of all emails are spam
- Advertising makes up 36% of all world spam content

How can we reduce Spam?

- ✓ Identify different types of spam : Comon types
- Commercial advertisements
- Antivirus warnings
- Email spoofing
- Sweepstakes winners
- Money scams
- ✓ Read the content
- √ Use a spam filter

Goal of this project:

The aim of our project is to predict the nature of an email: is it a spam or not?

In this way, we are going to analyse different variables of mails and try different machine learnings algorithms with changing hyper paramters to have the best prediction solution.

Data Set Information

The last column of 'spambase.data' denotes whether the e-mail was considered spam (1) or not (0), i.e. unsolicited commercial e-mail. Most of the attributes indicate whether a particular word or character was frequently occurring in the e-mail. The run-length attributes (55-57) measure the length of sequences of consecutive capital letters. For the statistical measures of each attribute, see the end of this file. Here are the definitions of the attributes:

48 continuous real [0,100] attributes of type word freq WORD = percentage of words in the e-mail that match WORD, i.e. 100 * (number of times the WORD appears in the e-mail) / total number of words in e-mail. A "word" in this case is any string of alphanumeric characters bounded by non-alphanumeric characters or end-of-string.

6 continuous real [0,100] attributes of type char_freq_CHAR] = percentage of characters in the e-mail that match CHAR, i.e. 100 * (number of CHAR) occurences) / total characters in e-mail

1 continuous real [1,...] attribute of type capital_run_length_average = average length of uninterrupted sequences of capital letters

1 continuous integer [1,...] attribute of type capital run length longest = length of longest uninterrupted sequence of capital letters

1 continuous integer [1,...] attribute of type capital run length total = sum of length of uninterrupted sequences of capital letters

= total number of capital letters in the e-mail

1 nominal {0,1} class attribute of type spam = denotes whether the e-mail was considered spam (1) or not (0), i.e. unsolicited commercial e-mail.

0	word freq make	4601	non-null	float64
	word freq address	4601	non-null	float64
	word_freq_all		non-null	float64
	word_freq_3d		non-null	float64
_	word freq our		non-null	float64
	word freq over		non-null	float64
	word_freq_remove		non-null	float64
	word_freq_internet		non-null	float64
	word_freq_order		non-null	float64
	word_freq_mail		non-null	float64
	word_freq_receive		non-null	float64
	word_freq_will		non-null	float64
	word_freq_people		non-null	float64
	word_freq_report		non-null	float64
14	word_freq_addresses	4601	non-null	float64
15	word_freq_free	4601	non-null	float64
16	word_freq_business	4601	non-null	float64
17	word_freq_email	4601	non-null	float64
18	word_freq_you	4601	non-null	float64
19	word_freq_credit	4601	non-null	float64
	word_freq_your	4601	non-null	float64
	word_freq_font	4601	non-null	float64
	word freq 000		non-null	float64
	word_freq_money		non-null	float64
	word_freq_hp		non-null	float64
	word_freq_hpl		non-null	float64
	word_freq_george		non-null	float64
	word freq 650		non-null	float64
	word_freq_lab		non-null	float64
	word_freq_labs		non-null	float64
	word_freq_telnet		non-null	float64
	word_freq_857		non-null	float64
	word_freq_data		non-null	float64
	word_freq_415		non-null	float64
	word_freq_85		non-null	float64
	word_freq_technology		non-null	float64
	word_freq_1999		non-null	float64
	word_freq_parts		non-null	float64
	word_freq_pm		non-null	float64
				float64
	word_freq_direct		non-null	
	word_freq_cs		non-null	float64
	word_freq_meeting		non-null	float64
	word_freq_original		non-null	float64
	word_freq_project		non-null	float64
	word_freq_re		non-null	float64
	word_freq_edu		non-null	float64
	word_freq_table		non-null	float64
	word_freq_conference		non-null	float64
	char_freq_;		non-null	float64
49	char_freq_(4601	non-null	float64
50	char_freq_[4601	non-null	float64
51	char_freq_!	4601	non-null	float64
52	char_freq_\$	4601	non-null	float64
	char_freq_#	4601	non-null	float64
	capital_run_length_average		non-null	float64
	capital_run_length_longest		non-null	int64
	capital_run_length_total		non-null	int64
57	spam		non-null	int64

Data Pre-Processing:

We separate the features into two categories: features_frequency and features_numbers

 Features_Frequency: Contains all the features that are frequencies, it means their value is between 0 and 100 %

```
'word_freq_make', 'word_freq_address', 'word_freq_all',
'word_freq_3d', 'word_freq_our', 'word_freq_over',
'word_freq_remove', 'word_freq_internet', 'word_freq_order',
'word_freq_mail', 'word_freq_receive', 'word_freq_will',
'word_freq_people', 'word_freq_report', 'word_freq_addresses',
'word_freq_free', 'word_freq_business', 'word_freq_email',
'word_freq_you', 'word_freq_credit', 'word_freq_your',
'word_freq_font', 'word_freq_000', 'word_freq_money',
'word_freq_hp', 'word_freq_lab', 'word_freq_george',
'word_freq_650', 'word_freq_lab', 'word_freq_labs',
'word_freq_telnet', 'word_freq_857', 'word_freq_data',
'word_freq_415', 'word_freq_parts', 'word_freq_pm',
'word_freq_direct', 'word_freq_parts', 'word_freq_pm',
'word_freq_direct', 'word_freq_cs', 'word_freq_meeting',
'word_freq_edu', 'word_freq_project', 'word_freq_re',
'word_freq_edu', 'word_freq_table', 'word_freq_conference',
'char_freq_5', 'char_freq_(', 'char_freq_[', 'char_freq_!',
'char_freq_$', 'char_freq_#'
```

 Features_Numbers: Concern the capital_run_length, that is the total number of capital letters in the mail, we have differnt informations regarding it:

```
'capital_run_length_average', 'capital_run_length_longest', 'capital_run_length_total'
```

Capital_run_length_average : it is the mean length of uninterrupted sequences of capital letters

Capital_run_length_longest : it is the longest sequence of capital letters

Data Pre-Processing:

- df.isna().sum() result : 0
- Our data set is CLEAN! We have no NaN values
- No work to complete the ptential lack of data
- All lines are completed with proper informations so we can exploit the data.

Data Pre-Processing : Descriptive Statistics Some interesting informations

- 51 frequency features have 75% of data values equal to 0
- Complexity of the language : 470
 000 english words → One word
 could not be present in every
 mails and for most of them it is
 not present!
- We are going to deal with small values and it adds complexity to our analyze ...

	word_freq_make	word_freq_address	word_frec
count	4601.000000	4601.000000	4601.00
mean	0.104553	0.213015	0.28
std	0.305358	1.290575	0.50
min	0.000000	0.000000	0.00
25%	0.000000	0.000000	0.00
50%	0.000000	0.000000	0.00
75%	0.000000	0.000000	0.42
max	4.540000	14.280000	5.10

Data Exploration: Target distribution

61% of the populationnon spam39 % of the population spam

Data Exploration: Frequency Features with Particular Distributions

When we see these distribution graphes we can guess « normal laws » on these intervals. It is not very precise but we can guess.

Data Exploration:

Frequency Features Distributions – Non Spam (Green) VS Spam (Red)

AND without zeros

We can see differences in terms of distribution between non_spam and spam.

Data Exploration: Number Features Distributions – Non Spam (White) VS Spam (Black) AND without zeros

We can see differences in the distribution. Indeed, when we look at the scale, it is not the same, and for capital_run_length_average, the distribution is below 0.020 for spam, and for capital_run_length_longest it is even more obvious with a distribution below 0.002 for spam.

Data Exploration: Correlation Matrix

Data Exploration: Features Selection

After studiyng this correlation matrix, we decided to select only the features with a correlation to spam superior to 0.2 or inferior to -0.2.
 WE ORDER THEM IN ORDER OF CORRELATION:

word_freq_your, word_freq_000, word_freq_remove, char__freq_\$, word_freq_you, word_freq_business, word_freq_free, capital_run_length_total, word_freq_our, capital_run_length_longest, char_freq_!, word_freq_over, word_freq_order, word_freq_receive, word_freq_money, word_freq_internet, word_freq_all, word_freq_addresses, word_freq_email

Top_features = word_freq_your, word_freq_000, word_freq_remove, char__freq_\$, word_freq_you is the tope 5 correlated features.

We put the other features in other_features and we will use them to check if there are second degree correlations with top_features.

Other Features Correlated with Top Features?

We try to identify second degree correlations between top_features and other_features, with heatmap, but we don't find any.

Data Prediction: Choice of Random Forest Classifier:

Confusion Matrix :

In the field of <u>machine learning</u> and specifically the problem of <u>statistical classification</u>, a confusion matrix, also known as an error matrix is a specific table layout that allows visualization of the performance of an algorithm, typically a <u>supervised learning</u> one. Each row of the <u>matrix</u> represents the instances in an actual class while each column represents the instances in a predicted class

Data Prediction: Choice of Random Forest Classifier:

- ROC Curve: An ROC curve (receiver operating characteristic curve) is a graph showing the performance of a classification model at all classification thresholds. This curve plots two parameters:
- True Positive Rate
- False Positive Rate

