5

NOTICE OF USE AND DISCLOSURE

Copyright © LoRa Alliance, Inc. (2017). All Rights Reserved.

The information within this document is the property of the LoRa Alliance ("The Alliance") and its use and disclosure are subject to LoRa Alliance Corporate Bylaws, Intellectual Property Rights (IPR) Policy and Membership Agreements.

Elements of LoRa Alliance specifications may be subject to third party intellectual property rights, including without limitation, patent, copyright or trademark rights (such a third party may or may not be a member of LoRa Alliance). The Alliance is not responsible and shall not be held responsible in any manner for identifying or failing to identify any or all such third party intellectual property rights.

This document and the information contained herein are provided on an "AS IS" basis and THE ALLIANCE DISCLAIMS ALL WARRANTIES EXPRESS OR IMPLIED, INCLUDING BUT NOTLIMITED TO (A) ANY WARRANTY THAT THE USE OF THE INFORMATION HEREINWILL NOT INFRINGE ANY RIGHTS OF THIRD PARTIES (INCLUDING WITHOUTLIMITATION ANY INTELLECTUAL PROPERTY RIGHTS INCLUDING PATENT, COPYRIGHT OR TRADEMARK RIGHTS) OR (B) ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, TITLE OR NONINFRINGEMENT.

IN NO EVENT WILL THE ALLIANCE BE LIABLE FOR ANY LOSS OF PROFITS, LOSS OF BUSINESS, LOSS OF USE OF DATA, INTERRUPTION OFBUSINESS, OR FOR ANY OTHER DIRECT, INDIRECT, SPECIAL OR EXEMPLARY, INCIDENTIAL, PUNITIVE OR CONSEQUENTIAL DAMAGES OF ANY KIND, IN CONTRACT OR IN TORT, IN CONNECTION WITH THIS DOCUMENT OR THE INFORMATION CONTAINED HEREIN, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH LOSS OR DAMAGE.

The above notice and this paragraph must be included on all copies of this document that are made.

LoRa Alliance, Inc. 2400 Camino Ramon, Suite 375 San Ramon, CA 94583

Note: All Company, brand and product names may be trademarks that are the sole property of their respective

45

LoRaWAN™ 1.0.3 Regional Parameters

This document is a companion document to the LoRaWAN 1.0.3 protocol specification

Authors:

LoRa Alliance Technical Committee Regional Parameters Workgroup

Revision: A

Date: 2018 January **Status:** Released

Contents

66		duction	
67	1.1 Co	nventions	7
68	1.2 Qu	iick cross reference table	7
69		NWAN Regional Parameters	
70	2.1 Re	gional Parameter Common Names	15
71	2.2 EL	J863-870MHz ISM Band	15
72	2.2.1	EU863-870 Preamble Format	15
73	2.2.2	EU863-870 ISM Band channel frequencies	15
74	2.2.3	EU863-870 Data Rate and End-device Output Power encoding	16
75		EU863-870 JoinAccept CFList	
76	2.2.5	EU863-870 LinkAdrReq command	17
77	2.2.6	EU863-870 Maximum payload size	18
78	2.2.7	EU863-870 Receive windows	18
79	2.2.8	EU863-870 Class B beacon and default downlink channel	19
80	2.2.9	EU863-870 Default Settings	19
81	2.3 US	S902-928MHz ISM Band	21
82	2.3.1	US902-928 Preamble Format	21
83	2.3.2	US902-928 Channel Frequencies	21
84	2.3.3	US902-928 Data Rate and End-device Output Power encoding	22
85	2.3.4	US902-928 JoinAccept CFList	23
86	2.3.5	US902-928 LinkAdrReq command	23
87	2.3.6	US902-928 Maximum payload size	24
88	2.3.7	US902-928 Receive windows	25
89	2.3.8	US902-928 Class B beacon	25
90	2.3.9	US902-928 Default Settings	26
91		N779-787 MHz ISM Band	
92	2.4.1	CN779-787 Preamble Format	27
93	2.4.2	CN779-787 ISM Band channel frequencies	27
94	2.4.3	CN779-787 Data Rate and End-device Output Power encoding	27
95	2.4.4	CN779-787 JoinAccept CFList	28
96		CN779-787 LinkAdrReq command	
97	2.4.6	CN779-787 Maximum payload size	29
98		CN779-787 Receive windows	
99		CN779-787 Class B beacon and default downlink channel	
100	2.4.9	CN779-787 Default Settings	
101	2.5 EL	J433MHz ISM Band	32
102		EU433 Preamble Format	
103		EU433 ISM Band channel frequencies	
104		EU433 Data Rate and End-device Output Power encoding	
105		EU433 JoinAccept CFList	
106		EU433 LinkAdrReq command	
107		EU433 Maximum payload size	
108		EU433 Receive windows	
109		EU433 Class B beacon and default downlink channel	
110		EU433 Default Settings	
111		J915-928MHz ISM Band	
112		AU915-928 Preamble Format	
113		AU915-928 Channel Frequencies	
114		AU915-928 Data Rate and End-point Output Power encoding	
115		AU915-928 JoinAccept CFList	
116		AU915-928 LinkAdrReq command	
117	2.6.6	AU915-928 Maximum payload size	40

118		AU915-928 Receive windows	
119	2.6.8	AU915-928 Class B beacon	41
120	2.6.9	AU915-928 Default Settings	42
121	2.7 CN	N470-510MHz Band	43
122	2.7.1	CN470-510 Preamble Format	43
123	2.7.2	CN470-510 Channel Frequencies	43
124	2.7.3	CN470-510 Data Rate and End-point Output Power encoding	44
125		CN470-510 JoinResp CFList	
126		CN470-510 LinkAdrReg command	
127	2.7.6	CN470-510 Maximum payload size	45
128	2.7.7	CN470-510 Receive windows	45
129	2.7.8	CN470-510 Class B beacon	46
130	2.7.9	CN470-510 Default Settings	47
131		923MHz ISM Band	
132	2.8.1	AS923 Preamble Format	48
133		AS923 ISM Band channel frequencies	
134		AS923 Data Rate and End-point Output Power encoding	
135		AS923 JoinAccept CFList	
136		AS923 LinkAdrReg command	
137		AS923 Maximum payload size	
138		AS923 Receive windows	
139		AS923 Class B beacon and default downlink channel	
140		AS923 Default Settings	
141		R920-923MHz ISM Band	
142	2.9.1	KR920-923 Preamble Format	
143	_	KR920-923 ISM Band channel frequencies	
144	2.9.3	KR920-923 Data Rate and End-device Output Power encoding	
145	2.9.4	KR920-923 JoinAccept CFList	
146	2.9.5	KR920-923 LinkAdrReq command	
147		KR920-923 Maximum payload size	
148		KR920-923 Receive windows	
149		KR920-923 Class B beacon and default downlink channel	
150		KR920-923 Default Settings	
151		865-867 MHz ISM Band	
152		IN865-867 Preamble Format	
153		2 IN865-867 ISM Band channel frequencies	
154		3 IN865-867 Data Rate and End-device Output Power Encoding	
155	2.10.0	IN865-867 JoinAccept CFList	50 59
156		i IN865-867 LinkAdrReq command	
157		3 IN865-867 Maximum payload size	
158		'IN865-867 Receive windows	
159		3 IN865-867 Class B beacon and default downlink channel	
160		N865-867 Default Settings	
161		J864-870 MHz ISM Band	
162		RU864-870 Preamble Format	
163		RU864-870 ISM Band channel frequencies	
164	2.11.2 2.44.2	RU864-870 Data Rate and End-device Output Power encoding	04
164 165			
		RU864-870 JoinAccept CFList	
166 167		5 RU864-870 LinkAdrReq command	
167		S RU864-870 Maximum payload size	
168		7 RU864-870 Receive windows	
169 470		RU864-870 Class B beacon and default downlink channel	
170	2.11.9	RU864-870 Default Settings	68

171	3 Revisions	
172	3.1 Revision A	69
173	4 Bibliography	70
174	4.1 References	70
175	5 NOTICE OF USE AND DISCLOSURE	71
176		
177	Tables	
178	Table 1: Channel Plan per Country	14
179	Table 2: EU863-870 synch words	15
180	Table 3: EU863-870 default channels	15
181	Table 4: EU863-870 JoinReq Channel List	16
182	Table 5: EU863-870 TX Data rate table	16
183	Table 6: EU863-870 TX power table	17
184	Table 7: EU863-870 ChMaskCntl value table	18
185	Table 8: EU863-870 maximum payload size	18
186	Table 9 : EU863-870 maximum payload size (not repeater compatible)	
187	Table 10: EU863-870 downlink RX1 data rate mapping	
188	Table 11: EU863-870 beacon settings	19
189	Table 12: US902-928 TX Data rate table	
190	Table 13: US902-928 TX power table	23
191	Table 14: US902-928 ChMaskCntl value table	23
192	Table 15: US902-928 maximum payload size (repeater compatible)	24
193	Table 16: US902-928 maximum payload size (not repeater compatible)	
194	Table 17: US902-928 downlink RX1 data rate mapping	
195	Table 18: US902-928 beacon settings	25
196	Table 19: CN779-787 synch words	
197	Table 20: CN779-787 JoinReq Channel List	
198	Table 21: CN779-787 Data rate and TX power table	28
199	Table 22: CN779-787 ChMaskCntl value table	
200	Table 23: CN779-787 maximum payload size	29
201	Table 24: CN779-787 maximum payload size (not repeater compatible)	
202	Table 25: CN779-787 downlink RX1 data rate mapping	
203	Table 26: CN779-787 beacon settings	30
204	Table 27: EU433 synch words	32
205	Table 28: EU433 JoinReq Channel List	32
206	Table 29: EU433 Data rate and TX power table	33
207	Table 30: EU433 ChMaskCntl value table	
208	Table 31: EU433 maximum payload size	34
209	Table 32: EU433 maximum payload size (not repeater compatible)	35
210	Table 33: EU433 downlink RX1 data rate mapping	
211	Table 34: EU433 beacon settings	35
212	Table 35: AU915-928 Data rate table	38
213	Table 36: AU915-928 TX power table	39
214	Table 37: AU915-928 ChMaskCntl value table	39
215	Table 38: AU915-928 maximum payload size	40
216	Table 39: AU915-928 maximum payload size (not repeater compatible)	
217	Table 40 : AU915-928 downlink RX1 data rate mapping	
218	Table 41: AU915-928 beacon settings	41
219	Table 42: CN470-510 Data rate and TX power table	44
220	Table 43: CN470-510 ChMaskCntl value table	
221	Table 44: CN470-510 maximum payload size	45

222	Table 45 : CN470-510 maximum payload size (not repeater compatible)	. 45
223	Table 46: CN470-510 downlink RX1 data rate mapping	. 46
224	Table 47: CN470-510 beacon settings	. 46
225	Table 48: AS923 synch words	
226	Table 49: AS923 default channels.	
227	Table 50: AS923 JoinReg Channel List	
228	Table 51: AS923 Data rate table	
220 229	Table 51: AS923 Data rate table	
230	Table 53: AS923 ChMaskCntl value table	
231	Table 54: AS923 maximum payload size	
232	Table 55: AS923 maximum payload size (not repeater compatible)	
233	Table 56 : AS923 beacon settings	
234	Table 57: KR920-923 Center frequency, bandwidth, maximum EIRP output power table	
235	Table 58: KR920-923 default channels	
236	Table 59: KR920-923 JoinReq Channel List	
237	Table 60: KR920-923 TX Data rate table	. 54
238	Table 61: KR920-923 TX power table	. 54
239	Table 62: KR920-923 ChMaskCntl value table	. 55
240	Table 63: KR920-923 maximum payload size	. 56
241	Table 64: KR920-923 maximum payload size (not repeater compatible)	. 56
242	Table 65: KR920-923 downlink RX1 data rate mapping	. 57
243	Table 66: KR920-923 beacon settings	
244	Table 67: IN865-867 synch words	
245	Table 68: IN865-867 default channels	
246	Table 69: IN865-867 JoinReg Channel List	
247	Table 70: IN865-867 TX Data rate table	
248	Table 71: IN865-867 TxPower table	
2 4 0 249	Table 72: IN865-867 ChMaskCntl value table	
2 4 9 250	Table 73: IN865-867 maximum payload size	
	Table 73. INO05-007 Maximum payload size (not reporter compatible)	.01
251	Table 74: IN865-867 maximum payload size (not repeater compatible)	.01
252	Table 75: RU864-870 synch words	
253	Table 76: RU864-870 default channels	
254	Table 77: RU864-870 JoinReq Channel List	
255	Table 78: RU864-870 TX Data rate table	
256	Table 79: RU864-870 TX power table	
257	Table 80: RU864-870 ChMaskCntl value table	
258	Table 81: RU864-870 maximum payload size	
259	Table 82: RU864-870 maximum payload size (not repeater compatible)	. 67
260	Table 83: RU864-870 downlink RX1 data rate mapping	. 67
261	Table 84: RU864-870 beacon settings	. 67
262		
263	Figures	04
264	Figure 1: US902-928 channel frequencies	
265	Figure 2: AU915-928 channel frequencies	
266	Figure 3: CN470-510 channel frequencies	. 43
267		

1 Introduction

268 269 270

271

272

This document describes the LoRaWAN™ regional parameters for different regulatory regions worldwide. This document is a companion document to the LoRaWAN 1.0.3 protocol specification [LORAWAN]. Separating the regional parameters from the protocol specification allows addition of new regions to the former without impacting the latter document.

273274275

It must be noted here that, regardless of the specifications provided, at no time is any LoRa equipment allowed to operate in a manner contrary to the prevailing local rules and regulations where it is expected to operate. It is the responsibility of the LoRa device to insure that compliant operation is maintained without any outside assistance from a LoRa network or any other mechanism.

278 279

276

277

1.1 Conventions

281 282

280

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in RFC 2119.

284285

283

1.2 Quick cross reference table

287288

289

290

286

In order to support the identification of LoRaWAN channel plans for a given country, the table below provides a quick reference of suggested channel plans listed in priority order for each country.

Country name	Band / channels	Channel Plan
Afghanistan		None
	433.05 - 434.79 MHz	EU433
Albania	863 - 873 MHz	EU863-870
	918 - 921 MHz	Other
	433.05 - 434.79 MHz	EU433
	870-876MHz	Other
Algeria	880-885MHz	Other
	915 - 921 MHz	Other
	925 - 926 MHz	Other
A1	433.05 - 434.79 MHz	EU433
Andorra	863 - 870 MHz	EU863-870
	863 - 870 MHz	EU863-870
Armenia	433.05 - 434.79 MHz	EU433
Argentina	902 - 928 MHz (915-928 MHz usable)	AU915-928, US902-928
	433.05 - 434.79 MHz	EU433
Austria	863 - 870 MHz	EU863-870
Australia	915 - 928 MHz	AU915-928, AS923
	433.05 - 434.79 MHz	EU433
Azerbaijan	863 - 868 MHz	Others
Bahrain	862 - 870MHz	EU863-870
	433.05 - 434.79 MHz	EU433
	818 - 824 MHz	Other
Bangladesh	863 - 869 MHz	EU863-870
	925.0 - 927.0 MHz	Other
	433.05 - 434.79 MHz	EU433
Belarus	864.4 - 868.6 MHz	EU863-870
	869-869.2MHz	EU863-870
	433.05 - 434.79 MHz	EU433
Belgium	863 - 870 MHz	EU863-870
	433 - 435 MHz	EU433
Burma (Myanmar)	866 - 869MHz	EU863-870
	919 - 923 MHz	Other
Bolivia	915 - 930 MHz	AU915-928, AS923
Bosnia and	433.05 - 434.79 MHz	EU433
Herzegovina	863 - 870 MHz	EU863-870
Botswana		None
	902 - 907.5 MHz	Other
Brazil	915 - 928 MHz	AU915-928
-	433 - 435 MHz	EU433
	866 - 870 MHz	EU863-870
Brunei Darussalam	920 - 925 MHz	AS923

	433 - 435 MHz	EU433
	433.05 - 434.79 MHz	EU433
Bulgaria	863 - 870 MHz	EU863-870
	866 - 869 MHz	EU863-870
Cambodia	923 - 925 MHz	AS923
Cameroon		None
Canada	902 - 928 MHz	US902-928, AU915-928
01.11	902 - 928 MHz	
Chile	(915-928MHz usable)	AU915-928, AS923, US902-928
	920.5 - 924.5 MHz	AS923
	779 - 787 MHz	CN779-787
	470 - 510 MHz	CN470-510
China	433.05 - 434.79 MHz	EU433
	314-316 MHz	Other
	430 - 432 MHz	Other
	840 - 845 MHz	Other
Colombia	902 - 928 MHz	AU915-928, US902-928
Congo Rep.		None
Costa Rica	920.5 - 928 MHz	AS923
	433.05 - 434.79 MHz	EU433
Croatia	863 - 870 MHz	EU863-870
	433.05 - 434.79 MHz	EU433
Cuba	915 - 921 MHz	Other
Cyprus	433.05 - 434.79 MHz	EU433
	863 - 870 MHz	EU863-870
	433.05 - 434.79 MHz	EU433
Czech Republic	863 - 870 MHz	EU863-870
	433.05 - 434.79 MHz	EU433
Denmark	863 - 873 MHz	EU863-870
	918 - 921 MHz	Other
Dominican Republic	915 - 928 MHz	AU915-928
Ecuador	902 - 928 MHz	AU915-928, US902-928, AS923
	433.05 - 434.79 MHz	EU433
Egypt	863 - 876 MHz	EU863-870
	433.05 - 434.79 MHz	EU433
Estonia	863 - 873 MHz	EU863-870
	918 - 921 MHz	Other
	433.05 - 434.79 MHz	EU433
Finland	863 - 873 MHz	EU863-870
	433.05 - 434.79 MHz	EU433
France	863 - 870 MHz	EU863-870
Georgia	0.0	None
Germany	433.05 - 434.79 MHz	EU433
Germany	-55.05 TJT.75 WILIZ	LU433

	863 - 870 MHz	EU863-870
Ghana		None
Croose	433.05 - 434.79 MHz	EU433
Greece	868 - 870 MHz	EU863-870
Guatemala	902 - 928 MHz (915-928 MHz usable)	AU915-928, AS923, US902-928
Haiti		None
Honduras	915-928 MHz	AU915-928
	433.05 - 434.79 MHz	EU433
Hong Kong	865 - 868 MHz	Other
	920 - 925 MHz	AS923
	433.05 - 434.79 MHz	EU433
Hungary	863 - 873 MHz	EU863-870
	918 - 921 MHz	Other
	433.05 - 434.79 MHz	EU433
Iceland	863 - 873 MHz	EU863-870
India	865 - 867 MHz	IN765-867
Indonesia	923 - 925 MHz	AS923
Iraq		None
·	433.05 - 434.79 MHz	EU433
Iran	863 - 873 MHz	EU863-870
	915 - 918 MHz	Other
	433.05 - 434.79 MHz	EU433
Ireland	863 - 873 MHz	EU863-870
	918 - 921 MHz	Other
	433.05 - 434.79 MHz	EU433
Israel	915 - 917 MHz	Other
	433.05 - 434.79 MHz	EU433
Italy	863 - 870 MHz	EU863-870
Ivory Coast		None
Jamaica	902 - 928 MHz (915-928 MHz usable)	AU915-928, US902-928
	920.6 - 928.0 MHz (steps of 200kHz)	AS923
Japan	920.8 - 927.8 MHz (steps of 600kHz)	AS923
Jordan	865 - 868 MHz	Other
Kazakhstan	433.05 - 434.79 MHz	EU433
Kenya		None
Korea (DPR)		None
Kuwait	433.05 - 434.79 MHz	EU433
Kyrgyz Republic		None
1.01	433 - 435 MHz	EU433
Laos	862 - 875 MHz	EU863-870
2403	923 - 925 MHz	AS923
l	433.05 - 434.79 MHz	EU433

Lebanon	433 - 435 MHz	EU433
LEDATION	862 - 870 MHz	EU863-870
Liechtenstein	433.05 - 434.79 MHz	EU433
ricultanstall	863 - 873 MHz	EU863-870
Libya		None
Lithuania	433.05 - 434.79 MHz	EU433
Littiualiia	863 - 870 MHz	EU863-870
	433.05 - 434.79 MHz	EU433
Luxembourg	863 - 873 MHz	EU863-870
	918 - 921 MHz	Other
Macao		None
Manadauia EVD	433.05 - 434.79 MHz	EU433
Macedonia, FYR	863 - 870 MHz	EU863-870
Malaysia	433 - 435 MHz	EU433
Malaysia	919 – 924 MHz	AS923
Maldives		None
N.4	433.05 - 434.79 MHz	EU433
Malta	863 - 870 MHz	EU863-870
Mauritius		None
Mexico	902 - 928 MHz	US902-928, AU915-928
	433.05 - 434.79 MHz	EU433
Moldova	863 - 870 MHz	EU863-870
Mongolia		None
-	433.05 - 434.79 MHz	EU433
Montenegro	863 - 870 MHz	EU863-870
	433.05 - 434.79 MHz	EU433
Morocco	867.6 - 869 MHz	EU863-870
	433.05 - 434.79 MHz	EU433
Netherlands	863 - 870 MHz	EU863-870
	915 - 928 MHz	AS923, AU915-928
	819 - 824 MHz	Other
New-Zealand	864 - 870MHz	EU863-870
-	433.05 - 434.79 MHz	EU433
Nicaragua	902 - 928 MHz (915-928 MHz usable)	AU915-928, US902-928
Nigeria	863 - 870 MHz	EU863-870
	433.05 - 434.79 MHz	EU433
Norway	863 - 873 MHz	EU863-870
,	918 - 921 MHz	Other
_	433.05 - 434.79 MHz	EU433
Oman	863 - 870 MHz	EU863-870
	433.05 - 434.79 MHz	EU433
Pakistan	865 - 869 MHz	EU863-870
	900 - 925 MHz	AS923

Panama	902 - 928 MHz	AU915-928, US902-928, AS923
Paraguay	433.05 - 434.79 MHz	EU433
	915 - 928 MHz	AU915-928, AS923
Peru	915 - 928 MHz	AU915-928, AS923
Papua New Guinea	915 - 925 MHz	AU915-928
	915 - 918 MHz	Other
Dhilinnings	868 – 869.2 MHz	EU863-870
Philippines	869.7 - 870 MHz	EU863-870
	433.05 - 434.79 MHz	EU433
	433.05 - 434.79 MHz	EU433
Poland	863 - 873 MHz	EU863-870
	918 - 921 MHz	Other
D	433.05 - 434.79 MHz	EU433
Portugal	863 - 870 MHz	EU863-870
	433.05 - 434.79 MHz	EU433
	868 - 868.6 MHz	EU863-870
Qatar	868.7 - 869.2 MHz	EU863-870
	869.4 - 869.65 MHz	EU863-870
	869.7 - 870 MHz	EU863-870
	433.05 - 434.79 MHz	EU433
Romania	863 - 870 MHz	EU863-870
	866 - 868 MHz (Licensed)	RU864-870
	864 - 865 MHz	RU864-870
Russian federation	868.7 - 869.2 MHz	RU864-870
	433.075 - 434.75 MHz	EU433
	916 - 921 MHz (Licensed)	Other
Salvador	915-928	AU915-928, AS923
	863 - 870 MHz	EU863-870
Saudi Arabia	433.05 - 434.79 MHz	EU433
Senegal		None
-	433.05 - 434.79 MHz	EU433
Serbia	863 - 870 MHz	EU863-870
	920 - 925 MHz	AS923
Singapore	433.05 - 434.79 MHz	EU433
	866 - 869 MHz	EU863-870
	433.05 - 434.79 MHz	EU433
Slovak Republic	863 - 873 MHz	EU863-870
	918 - 921 MHz	Other
+	433.05 - 434.79 MHz	EU433
Slovenia	863 - 873 MHz	EU863-870
	918 - 921 MHz	Other
	433.05 - 434.79 MHz	EU433
South Africa		20.00

	868.7 – 869.2 MHz	EU863-870
	869.4 – 869.65 MHz	EU863-870
	869.7 – 870 MHz	EU863-870
	915 - 921 MHz	Other
South Korea	917 - 923.5 MHz	KR920-923
6 .	433.05 - 434.79 MHz	EU433
Spain	863 - 870 MHz	EU863-870
Sri Lanka	433.05 - 434.79 MHz	EU433
Sudan		None
6	433.05 - 434.79 MHz	EU433
Sweden	868 - 870 MHz	EU863-870
C. N. ada ad	433.05 - 434.79 MHz	EU433
Switzerland	863 - 873 MHz	EU863-870
Syrian Arab Rep.		None
Taiwan	920 - 925 MHz	AS923
Tajikistan		None
Tanzania		None
	433.05 - 434.79 MHz	EU433
Thailand	920 - 925 MHz	AS923
Trinidad and Tobago		None
	433.05 - 434.79 MHz	EU433
	868 – 868.6 MHz	EU863-870
Tunisia	868.7 – 869.2 MHz	EU863-870
	869.4 – 869.65 MHz	EU863-870
	869.7 – 870 MHz	EU863-870
	433.05 - 434.79 MHz	EU433
Turkey	863 - 870 MHz	EU863-870
Turkmenistan		None
	433.05 - 434.79 MHz	EU433
	865 - 867.6 MHz	Other
Uganda	869.25 - 869.7 MHz	Other
	923 - 925 MHz	AS923
	433.05 - 434.79 MHz	EU433
Ukraine	863 - 865 MHz	EU863-870
	868 - 868.6 MHz	EU863-870
	433.05 - 434.79 MHz	EU433
	863 - 870 MHz	EU863-870
United Arab Emirates	870 - 875.8 MHz	Other
	915 - 921 MHz	Other
	433.05 - 434.79 MHz	EU433
United Kingdom	863 - 873 MHz	EU863-870
Sinted Kingdom	918 - 921 MHz	Other
United States	902 - 928 MHz	US902-928, AU915-928
Office States	JUL JLU 1911 1L	03302-320, A0313-320

LoRaWAN 1.0.3 Regional Parameters

Uruguay	902 - 928 MHz (915 - 928 MHz usable)	AU915-928, AS923, US902-928
Uzbekistan	433.05 - 434.79 MHz	EU433
Venezuela	922 - 928 MHz	AS923
	433.05 - 434.79 MHz	EU433
Vietnam	863 - 870 MHz	EU863-870
	918 - 923 MHz	Other
Yemen, Rep.		None
Zimbabwe		None

Table 1: Channel Plan per Country

2 LoRaWAN Regional Parameters

294 295

296

297 298

299

300

2.1 Regional Parameter Common Names

In order to support the identification of LoRaWAN channel plans referenced by other specification documents, the table below provides a quick reference of common channel plans listed for each formal plan name.

Channel Plan	Common Name
EU863-870	EU868
US902-928	US915
CN779-787	CN779
EU433	EU433
AU915-928	AU915
CN470-510	CN470
AS923	AS923
KR920-923	KR920
IN865-867	IN865
RU864-870	RU864

301

302

303

2.2 EU863-870MHz ISM Band

2.2.1 EU863-870 Preamble Format

The following synchronization words SHOULD be used:

304 305

Modulation	Sync word	Preamble length
LORA	0x34	8 symbols
GFSK	0xC194C1	5 bytes

Table 2: EU863-870 synch words

306

307

308

309

2.2.2 EU863-870 ISM Band channel frequencies

This section applies to any region where the ISM radio spectrum use is defined by the ETSI [EN300.220] standard.

The network channels can be freely attributed by the network operator. However the three following default channels MUST be implemented in every EU868MHz end-device. Those channels are the minimum set that all network gateways SHOULD always be listening on.

313

Modulation	Bandwidth [kHz]	Channel Frequency [MHz]	FSK Bitrate or LoRa DR / Bitrate	Nb Channels	Duty cycle
LoRa	125	868.10 868.30 868.50	DR0 to DR5 / 0.3-5 kbps	3	<1%

314315

316

Table 3: EU863-870 default channels

In order to access the physical medium the ETSI regulations impose some restrictions such maximum time the transmitter can be on or the maximum time a transmitter can transmit per

322

323

324

325

326

327

328 329

330

331

332

333

334

335

336

337

338

339 340

hour. The ETSI regulations allow the choice of using either a duty-cycle limitation or a socalled **Listen Before Talk Adaptive Frequency Agility** (LBT AFA) transmissions management. The current LoRaWAN specification exclusively uses duty-cycled limited transmissions to comply with the ETSI regulations.

EU868MHz end-devices SHALL be capable of operating in the 863 to 870 MHz frequency band and SHALL feature a channel data structure to store the parameters of at least 16 channels. A channel data structure corresponds to a frequency and a set of data rates usable on this frequency.

The first three channels correspond to 868.1, 868.3, and 868.5 MHz / DR0 to DR5 and MUST be implemented in every end-device. Those default channels cannot be modified through the **NewChannelReq** command and guarantee a minimal common channel set between end-devices and network gateways.

The following table gives the list of frequencies that SHALL be used by end-devices to broadcast the JoinReq message. The JoinReq message transmit duty-cycle SHALL follow the rules described in chapter "Retransmissions back-off" of the LoRaWAN specification document.

Modulation	Bandwidth [kHz]	Channel Frequency [MHz]	FSK Bitrate or LoRa DR / Bitrate	Nb Channels
LoRa	125	868.10 868.30 868.50	DR0 – DR5 / 0.3-5 kbps	3

Table 4: EU863-870 JoinReg Channel List

2.2.3 EU863-870 Data Rate and End-device Output Power encoding

There is no dwell time limitation for the EU863-870 PHY layer. The *TxParamSetupReq* MAC command is not implemented in EU863-870 devices.

The following encoding is used for Data Rate (DR) and End-device EIRP (TXPower) in the EU863-870 band:

DataRate Configuration		Indicative physical bit rate [bit/s]
0	LoRa: SF12 / 125 kHz	250
1	LoRa: SF11 / 125 kHz	440
2	LoRa: SF10 / 125 kHz	980
3 LoRa: SF9 / 125 kHz		1760
4	LoRa: SF8 / 125 kHz	3125
5	LoRa: SF7 / 125 kHz	5470
6	LoRa: SF7 / 250 kHz	11000
7 FSK: 50 kbps		50000
815	RFU	

Table 5: EU863-870 TX Data rate table

EIRP¹ refers to the Equivalent Isotropically Radiated Power, which is the radiated output power referenced to an isotropic antenna radiating power equally in all directions and whose gain is expressed in dBi.

TXPower	Configuration (EIRP)
0	Max EIRP
1	Max EIRP – 2dB
2	Max EIRP – 4dB
3	Max EIRP – 6dB
4	Max EIRP – 8dB
5	Max EIRP – 10dB
6	Max EIRP – 12dB
7	Max EIRP – 14dB
815	RFU

Table 6: EU863-870 TX power table

By default MaxEIRP is considered to be +16dBm. If the end-device cannot achieve 16dBm EIRP, the Max EIRP SHOULD be communicated to the network server using an out-of-band channel during the end-device commissioning process.

2.2.4 EU863-870 JoinAccept CFList

2.2.5 EU863-870 LinkAdrReq command

The EU 863-870 ISM band LoRaWAN implements an optional **channel frequency list** (CFlist) of 16 octets in the JoinAccept message.

 In this case the CFList is a list of five channel frequencies for the channels three to seven whereby each frequency is encoded as a 24 bits unsigned integer (three octets). All these channels are usable for DR0 to DR5 125kHz LoRa modulation. The list of frequencies is followed by a single CFListType octet for a total of 16 octets. The CFListType SHALL be equal to zero (0) to indicate that the CFList contains a list of frequencies.

Size	3	3	3	3	3	1
(bytes)						
CFList	Freq Ch3	Freq Ch4	Freq Ch5	Freq Ch6	Freq Ch7	CFListType

The actual channel frequency in Hz is 100 x frequency whereby values representing frequencies below 100 MHz are reserved for future use. This allows setting the frequency of a channel anywhere between 100 MHz to 1.67 GHz in 100 Hz steps. Unused channels have a frequency value of 0. The **CFList** is optional and its presence can be detected by the length of the join-accept message. If present, the **CFList** SHALL replace all the previous channels stored in the end-device apart from the three default channels. The newly defined channels are immediately enabled and usable by the end-device for communication.

The EU863-870 LoRaWAN only supports a maximum of 16 channels. When **ChMaskCntl** field is 0 the ChMask field individually enables/disables each of the 16 channels.

¹ ERP = EIRP – 2.15dB; it is referenced to a half-wave dipole antenna whose gain is expressed in dBd

376

377

378379

380 381

382

383 384

385 386

387 388

389

390

391 392

ChMaskCntl	ChMask applies to				
0	Channels 0 to 15				
1	RFU				
**					
4	RFU				
5	RFU				
6	All channels ON				
	The device SHALL enable all currently defined				
	channels independently of the ChMask field				
	value.				
7	RFU				

Table 7: EU863-870 ChMaskCntl value table

If the ChMaskCntl field value is one of values meaning RFU, the end-device SHALL reject the command and unset the "Channel mask ACK" bit in its response.

2.2.6 EU863-870 Maximum payload size

The maximum **MACPayload** size length (*M*) is given by the following table. It is derived from limitation of the PHY layer depending on the effective modulation rate used taking into account a possible repeater encapsulation layer. The maximum application payload length in the absence of the optional **FOpt** control field (*N*) is also given for information only. The value of N MAY be smaller if the **FOpt** field is not empty:

DataRate	М	N
0	59	51
1	59	51
2	59	51
3	123	115
4	230	222
5	230	222
6	230	222
7	230	222
8:15	Not d	efined

Table 8: EU863-870 maximum payload size

If the end-device will never operate with a repeater then the maximum application payload length in the absence of the optional **FOpt** control field SHOULD be:

DataRate	M	N
0	59	51
1	59	51
2	59	51
3	123	115
4	250	242
5	250	242
6	250	242
7	250	242
8:15	Not d	efined

Table 9: EU863-870 maximum payload size (not repeater compatible)

2.2.7 EU863-870 Receive windows

The RX1 receive window uses the same channel as the preceding uplink. The data rate is a function of the uplink data rate and the RX1DROffset as given by the following table. The

allowed values for RX1DROffset are in the [0:5] range. Values in the [6:7] range are reserved for future use.

RX1DROffset	0	1	2	3	4	5		
Upstream data rate	Downstream data rate in RX1 slot							
DR0	DR0	DR0	DR0	DR0	DR0	DR0		
DR1	DR1	DR0	DR0	DR0	DR0	DR0		
DR2	DR2	DR1	DR0	DR0	DR0	DR0		
DR3	DR3	DR2	DR1	DR0	DR0	DR0		
DR4	DR4	DR3	DR2	DR1	DR0	DR0		
DR5	DR5	DR4	DR3	DR2	DR1	DR0		
DR6	DR6	DR5	DR4	DR3	DR2	DR1		
DR7	DR7	DR6	DR5	DR4	DR3	DR2		

Table 10: EU863-870 downlink RX1 data rate mapping

397 398

396

393 394

395

The RX2 receive window uses a fixed frequency and data rate. The default parameters are 869.525 MHz / DR0 (SF12, 125 kHz)

399 400

401 402

2.2.8 EU863-870 Class B beacon and default downlink channel

The beacons SHALL be transmitted using the following settings

DR	3	Corresponds to SF9 spreading factor with 125 kHz BW		
CR	1	Coding rate = 4/5		
Signal polarity Non-inverted As opposed to normal		As opposed to normal downlink traffic which uses inverted		
		signal polarity		

Table 11: EU863-870 beacon settings

404 405

403

The beacon frame content is:

406

Size (bytes)	2	4	2	7	2
BCNPayload	RFU	Time	CRC	GwSpecific	CRC

407

408

The beacon default broadcast frequency is 869.525MHz.

409 The Class B default downlink pingSlot frequency is 869.525MHz

410

411

2.2.9 EU863-870 Default Settings

The following parameters are recommended values for the EU863-870MHz band.

413	RECEIVE_DELAY1	1 s
414	RECEIVE_DELAY2	2 s (MUST be RECEIVE_DELAY1 + 1s)
415	JOIN_ACCEPT_DELAY1	5 s
416	JOIN_ACCEPT_DELAY2	6 s
417	MAX_FCNT_GAP	16384
418	ADR_ACK_LIMIT	64
419	ADR_ACK_DELAY	32
420	ACK_TIMEOUT	2 +/- 1 s (random delay between 1 and 3 seconds)

422

423 424

425 426 If the actual parameter values implemented in the end-device are different from those default values (for example the end-device uses a longer RECEIVE_DELAY1 and RECEIVE_DELAY2 latency), those parameters MUST be communicated to the network server using an out-of-band channel during the end-device commissioning process. The network server may not accept parameters different from those default values.

430 431

432

433

434

435 436

437

438

439

440 441

442

443 444

445 446

447

448

449

450

451

452

453

454 455

456

457

458

459 460

461

462

463

2.3 US902-928MHz ISM Band

This section defines the regional parameters for the USA, Canada and all other countries adopting the entire FCC-Part15 regulations in 902-928 ISM band.

2.3.1 US902-928 Preamble Format

The following synchronization words SHOULD be used:

Modulation	Sync word	Preamble length
LORA	0x34	8 symbols

LoRaWAN does not make use of GFSK modulation in the US902-928 ISM band.

2.3.2 US902-928 Channel Frequencies

The 915 MHz ISM Band SHALL be divided into the following channel plans.

- Upstream 64 channels numbered 0 to 63 utilizing LoRa 125 kHz BW varying from DR0 to DR3, using coding rate 4/5, starting at 902.3 MHz and incrementing linearly by 200 kHz to 914.9 MHz
- Upstream 8 channels numbered 64 to 71 utilizing LoRa 500 kHz BW at DR4 starting at 903.0 MHz and incrementing linearly by 1.6 MHz to 914.2 MHz
- Downstream 8 channels numbered 0 to 7 utilizing LoRa 500 kHz BW at DR8 to DR13, starting at 923.3 MHz and incrementing linearly by 600 kHz to 927.5 MHz

Figure 1: US902-928 channel frequencies

915 MHz ISM band end-devices are required to operate in compliance with the relevant regulatory specifications, the following note summarizes some of the current (March 2017) relevant regulations.

Frequency-Hopping, Spread-Spectrum (FHSS) mode, which requires the device transmit at a measured conducted power level no greater than +30 dBm, for a period of no more than 400 msec and over at least 50 channels, each of which occupy no greater than 250 kHz of bandwidth.

Digital Transmission System (DTS) mode, which requires that the device use channels greater than or equal to 500 kHz and comply with a conducted Power Spectral Density measurement of no more than +8 dBm per 3 kHz of spectrum. In practice, this limits the conducted output power of an end-device to +26 dBm.

Hybrid mode, which requires that the device transmit over multiple channels (this may be less than the 50 channels required for FHSS mode, but is recommended to be at least 4) while complying with the Power Spectral Density requirements of DTS mode and the 400 msec

dwell time of FHSS mode. In practice this limits the measured conducted power of the end-device to 21 dBm.

Devices which use an antenna system with a directional gain greater than +6 dBi, but reduce the specified conducted output power by the amount in dB of directional gain over +6 dBi.

US902-928 end-devices MUST be capable of operating in the 902 to 928 MHz frequency band and MUST feature a channel data structure to store the parameters for 72 channels. This channel data structure contains a list of frequencies and the set of data rates available for each frequency.

If using the over-the-air activation procedure, the end-device SHALL transmit the Join-request message on random 125 kHz channels amongst the 64 125kHz channels defined using **DR0** and on 500 kHz channels amongst the 8 500kHz channels defined using **DR4**. The end-device SHALL change channels for every transmission.

For rapid network acquisition in mixed gateway channel plan environments, the device SHOULD follow a random channel selection sequence which efficiently probes the octet groups of eight 125 kHz channels followed by probing one 500 kHz channel each pass. Each consecutive pass SHOULD NOT select a channel that was used in a previous pass, until a Join-request is transmitted on every channel, after which the entire process can

482 until a 3

484 Example:

First pass: Random channel from [0-7], followed by [8-15]... [56-63], then 64 Second pass: Random channel from [0-7], followed by [8-15]... [56-63], then

Last pass: Random channel from [0-7], followed by [8-15]... [56-63], then 71

Personalized devices SHALL have all 72 channels enabled following a reset and shall use the channels for which the device's default data-rate is valid.

2.3.3 US902-928 Data Rate and End-device Output Power encoding

FCC regulation imposes a maximum dwell time of 400ms on uplinks. The *TxParamSetupReq* MAC command MUST not be implemented by US902-928 devices.

The following encoding is used for Data Rate (**DR**) and End-device conducted Power (**TXPower**) in the US902-928 band:

DataRate Configuration		Indicative physical bit rate [bit/sec]
0	LoRa: SF10 / 125 kHz	980
1	LoRa: SF9 / 125 kHz	1760
2	LoRa: SF8 / 125 kHz	3125
3	LoRa: SF7 / 125 kHz	5470
4	LoRa: SF8 / 500 kHz	12500
5:7	RFU	
8	LoRa: SF12 / 500 kHz	980
9	LoRa: SF11 / 500 kHz	1760
10	LoRa: SF10 / 500 kHz	3900
11	LoRa: SF9 / 500 kHz	7000
12	LoRa: SF8 / 500 kHz	12500
13	LoRa: SF7 / 500 kHz	21900

1415	RFU	
Table 42, UC002 020 TV Data rate table		

Table 12: US902-928 TX Data rate table

Note: DR4 is purposely identical to DR12, DR8..13 MUST be implemented in end-devices and are reserved for future applications

TXPower	Configuration (conducted power)
0	30 dBm – 2*TXpower
1	28 dBm
2	26 dBm
315	

Table 13: US902-928 TX power table

2.3.4 US902-928 JoinAccept CFList

The US902-928 LoRaWAN supports the use of the optional **CFlist** appended to the JoinResp message. If the **CFlist** is not empty then the **CFListType** field SHALL contain the value one (0x01) to indicate the **CFList** contains a series of ChMask fields. The ChMask fields are interpreted as being controlled by a virtual ChMaskCntl that initializes to a value of zero (0) and increments for each ChMask field to a value of four (4). (The first 16 bits controls the channels 0 to 15, ..)

Size	[2]	[2]	[2]	[2]	[2]	[2]	[3]	[1]
(bytes)								
CFList	ChMask0	ChMask1	ChMask2	ChMask3	ChMask4	RFU	RFU	CFListType

2.3.5 US902-928 LinkAdrReq command

For the US902-928 version the **ChMaskCntl** field of the **LinkADRReq** command has the following meaning:

ChMaskCntl	ChMask applies to
0	Channels 0 to 15
1	Channels 16 to 31
•••	
4	Channels 64 to 71
5	8LSBs controls Channel
	Blocks 0 to 7
	8MSBs are RFU
6	All 125 kHz ON
	ChMask applies to
	channels 64 to 71
7	All 125 kHz OFF
	ChMask applies to
	channels 64 to 71

Table 14: US902-928 ChMaskCntl value table

If **ChMaskCntl** = 5 then the corresponding bits in the ChMask enable and disable a bank of 8 125kHz channels and the corresponding 500kHz channel defined by the following calculation: [ChannelMaskBit * 8, ChannelMaskBit * 8 +7],64+ChannelMaskBit.

If **ChMaskCntl** = 6 then 125 kHz channels are enabled, if **ChMaskCntl** = 7 then 125 kHz channels are disabled. Simultaneously the channels 64 to 71 are set according to the **ChMask** bit mask. The DataRate specified in the command need not be valid for channels specified in the ChMask, as it governs the global operational state of the end-device.

Note: FCC regulation requires hopping over at least 50 channels when using maximum output power. It is possible to have end-devices with less channels when limiting the end-device conducted transmit power to 21 dBm.

Note: A common network server action may be to reconfigure a device through multiple LinkAdrReq commands in a contiguous block of MAC

Commands. For example to reconfigure a device from 64 channel operation to the first 8 channels could contain two LinkAdrReq, the first

(ChMaskCntl = 7) to disable all 125kHz channels and the second

(ChMaskCntrl = 0) to enable a bank of 8 125kHz channels.

2.3.6 US902-928 Maximum payload size

The maximum **MACPayload** size length (M) is given by the following table. It is derived from the maximum allowed transmission time at the PHY layer taking into account a possible repeater encapsulation. The maximum application payload length in the absence of the optional **FOpt** MAC control field (N) is also given for information only. The value of N MAY be smaller if the **FOpt** field is not empty:

DataRate	М	N	
0	19	11	
1	61	53	
2	133	125	
3	250	242	
4	250	242	
5:7	Not defined		
8	41	33	
9	117	109	
10	230	222	
11	230	222	
12	230	222	
13	230	222	
14:15	Not defined		

Table 15: US902-928 maximum payload size (repeater compatible)

 The greyed lines correspond to the data rates that may be used by an end-device behind a repeater.

 If the end-device will never operate under a repeater then the maximum application payload length in the absence of the optional **FOpt** control field SHOULD be:

DataRate	M	N
0	19	11
1	61	53

2	133	125		
3	250	242		
4	250	242		
5:7	Not de	Not defined		
8	61	53		
9	137	129		
10	250	242		
11	250	242		
12	250	242		
13	250	242		
14:15	Not defined			

Table 16: US902-928 maximum payload size (not repeater compatible)

2.3.7 US902-928 Receive windows

- The RX1 receive channel is a function of the upstream channel used to initiate the data exchange. The RX1 receive channel can be determined as follows.
 - o RX1 Channel Number = Transmit Channel Number modulo 8
- The RX1 window data rate depends on the transmit data rate (see Table 17 below).
- The RX2 (second receive window) settings uses a fixed data rate and frequency. Default parameters are 923.3MHz / DR8

Upstream data rate	Downstream data rate				
RX1DROffset	0	1	2	3	
DR0	DR10	DR9	DR8	DR8	
DR1	DR11	DR10	DR9	DR8	
DR2	DR12	DR11	DR10	DR9	
DR3	DR13	DR12	DR11	DR10	
DR4	DR13	DR13	DR12	DR11	

Table 17: US902-928 downlink RX1 data rate mapping

The allowed values for RX1DROffset are in the [0:3] range. Values in the range [4:7] are reserved for future use.

2.3.8 US902-928 Class B beacon

The beacons SHALL BE transmitted using the following settings:

DR	8	Corresponds to SF12 spreading factor with 500kHz
		bw
CR	1	Coding rate = 4/5
Signal polarity	Non-inverted	As opposed to normal downlink traffic which uses
		inverted signal polarity
frequencies	923.3 to 927.5MHz	Beaconing is performed on the same channel that
	with 600kHz steps	normal downstream traffic as defined in the Class A
		specification

Table 18: US902-928 beacon settings

The downstream channel used for a given beacon is:

Channel =
$$\left[floor\left(\frac{beacon_time}{beacon_period}\right)\right]$$
 modulo 8

- whereby beacon_time is the integer value of the 4 bytes "Time" field of the beacon frame
- whereby beacon_period is the periodicity of beacons, 128 seconds
- whereby floor(x) designates rounding to the integer immediately inferior or equal to x

552

553 554

555

556 557

558

559 560

561 562

563

564

565

566

567

568

569 570 571

Example: the first beacon will be transmitted on 923.3Mhz, the second on 923.9MHz, the 9th beacon will be on 923.3Mhz again.

Beacon channel nb	Frequency [MHz]
0	923.3
1	923.9
2	924.5
3	925.1
4	925.7
5	926.3
6	926.9
7	927.5

578 579 580

574

575 576 577

The beacon frame content is:

Size (bytes)	5	4	2	7	3	2
BCNPayload	RFU	Time	CRC	GwSpecific	RFU	CRC

581

582

2.3.9 US902-928 Default Settings

The following parameters are recommended values for the US902-928 band. 583

584 RECEIVE DELAY1

RECEIVE DELAY2 585 2 s (MUST be RECEIVE DELAY1 + 1s)

JOIN_ACCEPT_DELAY1 586 5 s 587 JOIN_ACCEPT_DELAY2 6 s 16384 588 MAX_FCNT_GAP 589 ADR_ACK_LIMIT 64

ADR ACK DELAY 32 590

2 +/- 1 s (random delay between 1 and 3 seconds) 591 **ACK TIMEOUT**

If the actual parameter values implemented in the end-device are different from those default values (for example the end-device uses a longer RECEIVE DELAY1 & 2 latency), those parameters MUST be communicated to the network server using an out-of-band channel during the end-device commissioning process. The network server may not accept parameters different from those default values.

596 597

592

593

594

2.4 CN779-787 MHz ISM Band

2.4.1 CN779-787 Preamble Format

The following synchronization words SHOULD be used:

601

598

599

600

602

603 604

607

608

609

610

611

612 613

614 615

616

617

618 619

620

621

622

623

Modulation	Sync word	Preamble length
LORA	0x34	8 symbols
GFSK	0xC194C1	5 bytes

Table 19: CN779-787 synch words

2.4.2 CN779-787 ISM Band channel frequencies

The LoRaWAN can be used in the Chinese 779-787MHz band as long as the radio device EIRP is less than 12.15dBm.

The end-device transmit duty-cycle SHOULD be lower than 1%.

The LoRaWAN channels center frequency MAY be in the following range:

Minimum frequency : 779.5MHzMaximum frequency : 786.5 MHz

CN780MHz end-devices SHALL be capable of operating in the 779 to 787 MHz frequency band and SHALL feature a channel data structure to store the parameters of at least 16 channels. A channel data structure corresponds to a frequency and a set of data rates usable on this frequency.

The first three channels correspond to 779.5, 779.7 and 779.9 MHz with DR0 to DR5 and MUST be implemented in every end-device. Those default channels cannot be modified through the *NewChannelReq* command and guarantee a minimal common channel set between end-devices and gateways of all networks. Other channels can be freely distributed across the allowed frequency range on a network per network basis.

The following table gives the list of frequencies that SHALL be used by end-devices to broadcast the JoinReq message The JoinReq message transmit duty-cycle SHALL follow the rules described in chapter "Retransmissions back-off" of the LoRaWAN specification document.

624

Modulation	Bandwidth [kHz]	Channel Frequency [MHz]	FSK Bitrate or LoRa DR / Bitrate	Nb Channels	Duty cycle
	125	779.5	DR0 – DR5	6	<0.1%
LoRa		779.7	/ 0.3-5 kbps		
		779.9			
		780.5			
		780.7			
		780.9			

Table 20: CN779-787 JoinReg Channel List

625 626

627

628

629

2.4.3 CN779-787 Data Rate and End-device Output Power encoding

There is no dwell time limitation for the CN779-787 PHY layer. The *TxParamSetupReq* MAC command is not implemented by CN779-787 devices.

The following encoding is used for Data Rate (DR) and End-device EIRP (TXPower) in the CN780 band:

632

DataRate	Configuration	Indicative physical bit rate [bit/s]
0	LoRa: SF12 / 125 kHz	250
1	LoRa: SF11 / 125 kHz	440
2	LoRa: SF10 / 125 kHz	980
3	LoRa: SF9 / 125 kHz	1760
4	LoRa: SF8 / 125 kHz	3125
5	LoRa: SF7 / 125 kHz	5470
6	LoRa: SF7 / 250 kHz	11000
7	FSK: 50 kbps	50000
8 15	RFU	

TXPower	Configuration (EIRP)
0	Max EIRP
1	Max EIRP – 2dB
2	Max EIRP – 4dB
3	Max EIRP – 6dB
4	Max EIRP – 8dB
5	Max EIRP – 10dB
615	RFU

Table 21: CN779-787 Data rate and TX power table

EIRP refers to the Equivalent Isotropically Radiated Power, which is the radiated output power referenced to an isotropic antenna radiating power equally in all directions and whose gain is expressed in dBi.

By default MAxEIRP is considered to be +12.15dBm. If the end-device cannot achieve 12.15dBm EIRP, the Max EIRP SHOULD be communicated to the network server using an out-of-band channel during the end-device commissioning process.

2.4.4 CN779-787 JoinAccept CFList

The CN780 ISM band LoRaWAN implements an optional **channel frequency list** (CFlist) of 16 octets in the JoinAccept message.

In this case the CFList is a list of five channel frequencies for the channels three to seven whereby each frequency is encoded as a 24 bits unsigned integer (three octets). All these channels are usable for DR0 to DR5 125kHz LoRa modulation. The list of frequencies is followed by a single CFListType octet for a total of 16 octets. The CFListType SHALL be equal to zero (0) to indicate that the CFList contains a list of frequencies.

Size	3	3	3	3	3	1
(bytes)						
CFList	Freq Ch3	Freq Ch4	Freq Ch5	Freq Ch6	Freq Ch7	CFListTYpe

The actual channel frequency in Hz is 100 x frequency whereby values representing frequencies below 100 MHz are reserved for future use. This allows setting the frequency of a channel anywhere between 100 MHz to 1.67 GHz in 100 Hz steps. Unused channels have a frequency value of 0. The **CFList** is optional and its presence can be detected by the length of the join-accept message. If present, the **CFList** SHALL replace all the previous channels stored in the end-device apart from the three default channels.

The newly defined channels are immediately enabled and usable by the end-device for communication.

2.4.5 CN779-787 LinkAdrReq command

The CN780 LoRaWAN only supports a maximum of 16 channels. When **ChMaskCntl** field is 0 the ChMask field individually enables/disables each of the 16 channels.

ChMaskCntl	ChMask applies to		
0	Channels 0 to 15		
1	RFU		
4	RFU		
5	RFU		
6	All channels ON		
	The device should enable all currently defined		
	channels independently of the ChMask field		
	value.		
7	RFU		

Table 22: CN779-787 ChMaskCntl value table

665 666 667

668

669 670

671

672

673

660 661 662

663 664

If the ChMask field value is one of values meaning RFU, then end-device SHALL reject the command and unset the "Channel mask ACK" bit in its response.

2.4.6 CN779-787 Maximum payload size

The maximum **MACPayload** size length (M) is given by the following table. It is derived from limitation of the PHY layer depending on the effective modulation rate used taking into account a possible repeater encapsulation layer. The maximum application payload length in the absence of the optional **FOpt** control field (N) is also given for information only. The value of N MAY be smaller if the **FOpt** field is not empty:

)	1	4	ŀ
3	7	5)

DataRate	M	N
0	59	51
1	59	51
2	59	51
3	123	115
4	230	222
5	230	222
6	250	242
7	230	222
8:15	Not defined	

676 677 678

679

680

Table 23: CN779-787 maximum payload size

If the end-device will never operate with a repeater then the maximum application payload length in the absence of the optional **FOpt** control field SHOULD be:

DataRate	M	N
0	59	51
1	59	51
2	59	51
3	123	115
4	250	242
5	250	242
6	250	242
7	250	242
8:15	Not defined	

Table 24 : CN779-787 maximum payload size (not repeater compatible)

2.4.7 CN779-787 Receive windows

The RX1 receive window uses the same channel than the preceding uplink. The data rate is a function of the uplink data rate and the RX1DROffset as given by the following table. The allowed values for RX1DROffset are in the [0:5] range. Values in the range [6:7] are reserved for future use

687

681

682 683

684

685 686

RX1DROffset	0	1	2	3	4	5
		Dow	nstream data	a rate in RX1	slot	
Upstream data rate						
DR0	DR0	DR0	DR0	DR0	DR0	DR0
DR1	DR1	DR0	DR0	DR0	DR0	DR0
DR2	DR2	DR1	DR0	DR0	DR0	DR0
DR3	DR3	DR2	DR1	DR0	DR0	DR0
DR4	DR4	DR3	DR2	DR1	DR0	DR0
DR5	DR5	DR4	DR3	DR2	DR1	DR0
DR6	DR6	DR5	DR4	DR3	DR2	DR1
DR7	DR7	DR6	DR5	DR4	DR3	DR2

Table 25: CN779-787 downlink RX1 data rate mapping

688 689

690

691

693

The RX2 receive window uses a fixed frequency and data rate. The default parameters are 786 MHz / DR0.

2.4.8 CN779-787 Class B beacon and default downlink channel

The beacons SHALL be transmitted using the following settings

DR	3	Corresponds to SF9 spreading factor with 125
		kHz BW
CR	1	Coding rate = 4/5
Signal polarity	Non-inverted	As opposed to normal downlink traffic which
		uses inverted signal polarity

Table 26: CN779-787 beacon settings

694 The beacon frame content is:

Size (bytes)	2	4	2	7	2
BCNPayload	RFU	Time	CRC	GwSpecific	CRC

The beacon default broadcast frequency is 785MHz.

The class B default downlink pingSlot frequency is 785MHz

696 697

698

2.4.9 CN779-787 Default Settings

The following parameters are recommended values for the CN779-787MHz band.

700 RECEIVE_DELAY1 1 s

701 RECEIVE DELAY2 2 s (MUST be RECEIVE DELAY1 + 1s)

 702
 JOIN_ACCEPT_DELAY1
 5 s

 703
 JOIN_ACCEPT_DELAY2
 6 s

 704
 MAX_FCNT_GAP
 16384

 705
 ADR_ACK_LIMIT
 64

 706
 ADR_ACK_DELAY
 32

707 ACK_TIMEOUT

2 +/- 1 s (random delay between 1 and 3 seconds)

If the actual parameter values implemented in the end-device are different from those default values (for example the end-device uses a longer RECEIVE_DELAY1 and RECEIVE_DELAY2 latency), those parameters MUST be communicated to the network server using an out-of-band channel during the end-device commissioning process. The network server may not accept parameters different from those default values.

713 **2.5 EU433MHz ISM Band**

714 2.5.1 EU433 Preamble Format

The following synchronization words SHOULD be used:

715 716

Modulation	Sync word	Preamble length
LORA	0x34	8 symbols
GFSK	0xC194C1	5 bytes

Table 27: EU433 synch words

717

718

2.5.2 EU433 ISM Band channel frequencies

- The LoRaWAN can be used in the ETSI 433-434 MHz band as long as the radio device EIRP is less than 12.15dBm.
- 721 The end-device transmit duty-cycle SHALL be lower than 10%¹
- The LoRaWAN channels center frequency can be in the following range:
- Minimum frequency : 433.175 MHz
- Maximum frequency: 434.665 MHz
- EU433 end-devices SHALL be capable of operating in the 433.05 to 434.79 MHz frequency band and SHALL feature a channel data structure to store the parameters of at least 16 channels. A channel data structure corresponds to a frequency and a set of data rates usable on this frequency.
- The first three channels correspond to 433.175, 433.375 and 433.575 MHz with DR0 to DR5 and MUST be implemented in every end-device. Those default channels cannot be modified through the *NewChannelReq* command and guarantee a minimal common channel set between end-devices and gateways of all networks. Other channels can be freely distributed across the allowed frequency range on a network per network basis.
 - The following table gives the list of frequencies that SHALL be used by end-devices to broadcast the JoinReq message. The JoinReq message transmit duty-cycle SHALL follow the rules described in chapter "Retransmissions back-off" of the LoRaWAN specification document.

737738

734

735

736

Modulation	Bandwidth [kHz]	Channel Frequency [MHz]	FSK Bitrate or LoRa DR / Bitrate	Nb Channels	Duty cycle
LoRa	125	433.175 433.375 433.575	DR0 – DR5 / 0.3-5 kbps	3	<1%

739 740 Table 28: EU433 JoinReq Channel List

741 2.5.3 EU433 Data Rate and End-device Output Power encoding

There is no dwell time limitation for the EU433 PHY layer. The *TxParamSetupReq* MAC command is not implemented by EU433 devices.

¹ The EN300220 ETSI standard limits to 10% the maximum transmit duty-cycle in the 433MHz ISM band. The LoRaWAN requires a 1% transmit duty-cycle lower than the legal limit to avoid network congestion.

The following encoding is used for Data Rate (DR) and End-device EIRP (TXPower) in the EU433 band:

7	1	\mathbf{c}
	4	n

DataRate	Configuration	Indicative physical bit rate [bit/s]
0	LoRa: SF12 / 125 kHz	250
1	LoRa: SF11 / 125 kHz	440
2	LoRa: SF10 / 125 kHz	980
3	LoRa: SF9 / 125 kHz	1760
4	LoRa: SF8 / 125 kHz	3125
5	LoRa: SF7 / 125 kHz	5470
6	LoRa: SF7 / 250 kHz	11000
7	FSK: 50 kbps	50000
815	RFU	

TXPower	Configuration (EIRP)
0	Max EIRP
1	Max EIRP – 2dB
2	Max EIRP – 4dB
3	Max EIRP – 6dB
4	Max EIRP – 8dB
5	Max EIRP – 10dB
615	RFU

Table 29: EU433 Data rate and TX power table

EIRP refers to the Equivalent Isotropically Radiated Power, which is the radiated output power referenced to an isotropic antenna radiating power equally in all directions and whose gain is expressed in dBi.

By default MAxEIRP is considered to be +12.15dBm. If the end-device cannot achieve 12.15dBm EIRP, the Max EIRP SHALL be communicated to the network server using an out-of-band channel during the end-device commissioning process.

2.5.4 EU433 JoinAccept CFList

The EU433 ISM band LoRaWAN implements an optional **channel frequency list** (CFlist) of 16 octets in the JoinAccept message.

In this case the CFList is a list of five channel frequencies for the channels three to seven whereby each frequency is encoded as a 24 bits unsigned integer (three octets). All these channels are usable for DR0 to DR5 125 kHz LoRa modulation. The list of frequencies is followed by a single CFListType octet for a total of 16 octets. The CFListType SHALL be equal to zero (0) to indicate that the CFList contains a list of frequencies.

Size	3	3	3	3	3	1
(bytes)						
CFList	Freq Ch3	Freq Ch4	Freq Ch5	Freq Ch6	Freq Ch7	CFListType

The actual channel frequency in Hz is 100 x frequency whereby values representing frequencies below 100 MHz are reserved for future use. This allows setting the frequency of a channel anywhere between 100 MHz to 1.67 GHz in 100 Hz steps. Unused channels have a frequency value of 0. The **CFList** is optional and its presence can be detected by the length of the join-accept message. If present, the **CFList** MUST replace all the previous channels stored in the end-device apart from the three default channels.

The newly defined channels are immediately enabled and usable by the end-device for communication.

778

779

780

781

782

783 784

785

786 787

788 789

790

791 792

793

794

2.5.5 EU433 LinkAdrReq command

The EU433 LoRaWAN only supports a maximum of 16 channels. When **ChMaskCntl** field is 0 the ChMask field individually enables/disables each of the 16 channels.

ChMaskCntl	ChMask applies to
0	Channels 0 to 15
1	RFU
4	RFU
5	RFU
6	All channels ON
	The device SHOULD enable all currently
	defined channels independently of the
	ChMask field value.
7	RFU

Table 30: EU433 ChMaskCntl value table

If the ChMask field value is one of the values meaning RFU, then end-device SHALL reject the command and unset the "Channel mask ACK" bit in its response.

2.5.6 EU433 Maximum payload size

The maximum **MACPayload** size length (M) is given by the following table. It is derived from limitation of the PHY layer depending on the effective modulation rate used taking into account a possible repeater encapsulation layer. The maximum application payload length in the absence of the optional **FOpt** control field (N) is also given for information only. The value of N might be smaller if the **FOpt** field is not empty:

DataRate	M	N	
0	59	51	
1	59	51	
2	59	51	
3	123	115	
4	230	222	
5	230	222	
6	230	222	
7	230	222	
8:15	Not defined		

Table 31: EU433 maximum payload size

If the end-device will never operate with a repeater then the maximum application payload length in the absence of the optional **FOpt** control field SHOULD be:

DataRate	M	N
0	59	51
1	59	51
2	59	51
3	123	115
4	250	242
5	250	242
6	250	242
7	250	242
8:15	Not defined	

Table 32: EU433 maximum payload size (not repeater compatible)

795 796

797

798

799

800 801

2.5.7 EU433 Receive windows

The RX1 receive window uses the same channel than the preceding uplink. The data rate is a function of the uplink data rate and the RX1DROffset as given by the following table. The allowed values for RX1DROffset are in the [0:5] range. Values in the range [6:7] are reserved for future use.

802

RX1DROffset	0	1	2	3	4	5
Upstream data rate	Downstream data rate in RX1 slot					
DR0	DR0	DR0	DR0	DR0	DR0	DR0
DR1	DR1	DR0	DR0	DR0	DR0	DR0
DR2	DR2	DR1	DR0	DR0	DR0	DR0
DR3	DR3	DR2	DR1	DR0	DR0	DR0
DR4	DR4	DR3	DR2	DR1	DR0	DR0
DR5	DR5	DR4	DR3	DR2	DR1	DR0
DR6	DR6	DR5	DR4	DR3	DR2	DR1
DR7	DR7	DR6	DR5	DR4	DR3	DR2

803

Table 33: EU433 downlink RX1 data rate mapping

804 805 The RX2 receive window uses a fixed frequency and data rate. The default parameters are 434.665MHz / DR0 (SF12, 125kHz).

806

807 808

2.5.8 EU433 Class B beacon and default downlink channel

The beacons SHALL be transmitted using the following settings

DR	3	Corresponds to SF9 spreading factor with 125		
		kHz BW		
CR	1	Coding rate = 4/5		
Signal polarity	Non-inverted	As opposed to normal downlink traffic which		
		uses inverted signal polarity		

Table 34: EU433 beacon settings

809 810

The beacon frame content is:

Size (bytes)	2	4	2	7	2
BCNPayload	RFU	Time	CRC	GwSpecific	CRC

The beacon default broadcast frequency is 434.665MHz.

The class B default downlink pingSlot frequency is 434.665MHz

813

814

812

2.5.9 EU433 Default Settings

The following parameters are recommended values for the EU433band.

816 RECEIVE DELAY1 1 s

817 RECEIVE DELAY2 2 s (MUST be RECEIVE DELAY1 + 1s)

818 JOIN_ACCEPT_DELAY1 5 s 819 JOIN_ACCEPT_DELAY2 6 s 820 MAX_FCNT_GAP 16384

821	ADR_ACK_LIMIT	64
822	ADR_ACK_DELAY	32
823	ACK_TIMEOUT	2 +/- 1 s (random delay between 1 and 3 seconds)

829

830

824

If the actual parameter values implemented in the end-device are different from those default values (for example the end-device uses a longer RECEIVE_DELAY1 & 2 latency) , those parameters MUST be communicated to the network server using an out-of-band channel during the end-device commissioning process. The network server may not accept parameters different from those default values.

836 837

838

839

840 841

842

843

844

845

846

847

848 849

850 851

852

853

854

855 856

857

858

859 860

861

862 863

864

865

866

2.6 AU915-928MHz ISM Band

This section defines the regional parameters for Australia and all other countries whose ISM band extends from 915 to 928MHz spectrum.

2.6.1 AU915-928 Preamble Format

The following synchronization words SHOULD be used:

Modulation	Sync word	Preamble length
LORA	0x34	8 symbols

LoRaWAN does not make use of GFSK modulation in the AU915-928 ISM band.

2.6.2 AU915-928 Channel Frequencies

The AU ISM Band SHALL be divided into the following channel plans.

- Upstream 64 channels numbered 0 to 63 utilizing LoRa 125 kHz BW varying from DR0 to DR5, using coding rate 4/5, starting at 915.2 MHz and incrementing linearly by 200 kHz to 927.8 MHz
- Upstream 8 channels numbered 64 to 71 utilizing LoRa 500 kHz BW at DR6 starting at 915.9 MHz and incrementing linearly by 1.6 MHz to 927.1 MHz
- Downstream 8 channels numbered 0 to 7 utilizing LoRa 500 kHz BW at DR8 to DR13) starting at 923.3 MHz and incrementing linearly by 600 kHz to 927.5 MHz

Figure 2: AU915-928 channel frequencies

AU ISM band end-devices may use a maximum EIRP of +30 dBm.

AU915-928 end-devices SHALL be capable of operating in the 915 to 928 MHz frequency band and SHALL feature a channel data structure to store the parameters of 72 channels. A channel data structure corresponds to a frequency and a set of data rates usable on this frequency.

If using the over-the-air activation procedure, the end-device SHALL broadcast the JoinReq message alternatively on a random 125 kHz channel amongst the 64 channels defined using **DR2** and a random 500 kHz channel amongst the 8 channels defined using **DR6**. The end-device SHOULD change channel for every transmission.

Personalized devices SHALL have all 72 channels enabled following a reset.

The default JoinReq Data Rate is DR2 (SF10/125KHz), this setting ensures that end-devices are compatible with the 400ms dwell time limitation until the actual dwell time limit is notified to the end-device by the network server via the MAC command *TxParamSetupReq*.

AU915-928 end-devices MUST consider UplinkDwellTime = 1 during boot stage until reception of the *TxParamSetupReq* command.

AU915-928 end-devices MUST always consider DownlinkDwellTime = 0, since downlink channels use 500KHz bandwidth without any dwell time limit.

2.6.3 AU915-928 Data Rate and End-point Output Power encoding

The "TxParamSetupReq/Ans" MAC commands MUST be implemented by AU915-928 devices.

If the field UplinkDwellTime is set to 1 by the network server in the *TxParamSetupReq* command, AU915-928 end-devices SHALL adjust the time between two consecutive uplink transmissions to meet the local regulation. Twenty seconds (20s) are recommended between 2 uplink transmissions when UplinkDwellTime = 1 but this value MAY be adjusted depending on local regulation.

There is no such constraint on time between two consecutive transmissions when UplinkDwellTime = 0.

The following encoding is used for Data Rate (**DR**) and End-point EIRP (**TXPower**) in the AU915-928 band:

DataRate	Configuration	Indicative physical bit rate [bit/sec]
0	LoRa: SF12 / 125 kHz	250
1	LoRa: SF11 / 125 kHz	440
2	LoRa: SF10 / 125 kHz	980
3	LoRa: SF9 / 125 kHz	1760
4	LoRa: SF8 / 125 kHz	3125
5	LoRa: SF7 / 125 kHz	5470
6	LoRa: SF8 / 500 kHz	12500
7	RFU	
8	LoRa: SF12 / 500 kHz	980
9	LoRa: SF11 / 500 kHz	1760
10	LoRa: SF10 / 500 kHz	3900
11	LoRa: SF9 / 500 kHz	7000
12	LoRa: SF8 / 500 kHz	12500
13	LoRa: SF7 / 500 kHz	21900
1415	RFU	

 Table 35: AU915-928 Data rate table

 DR6 is identical to DR12, DR8...13 MUST be implemented in end-devices and are reserved for future applications.

897		
	TXPower	Configuration (EIRP)
	0	Max EIRP

1..15 Max EIRP – 2*TXPower Table 36 : AU915-928 TX power table

EIRP refers to the Equivalent Isotropically Radiated Power, which is the radiated output power referenced to an isotropic antenna radiating power equally in all directions and whose gain is expressed in dBi.

By default MaxEIRP is considered to be +30dBm. The Max EIRP can be modified by the network server through the *TxParamSetupReq* MAC command and SHOULD be used by both the end-device and the network server once *TxParamSetupReq* is acknowledged by the device via *TxParamSetupAns*.

2.6.4 AU915-928 JoinAccept CFList

The AU915-928 LoRaWAN supports the use of the optional **CFlist** appended to the JoinResp message. If the **CFlist** is not empty then the CFListType field SHALL contain the value one (0x01) to indicate the CFList contains a series of ChMask fields. The ChMask fields are interpreted as being controlled by a virtual ChMaskCntl that initializes to a value of zero (0) and increments for each ChMask field to a value of four(4). (The first 16 bits controls the channels 1 to 16, ...)

Size	[2]	[2]	[2]	[2]	[2]	[2]	[3]	[1]
(bytes)								
CFList	ChMask0	ChMask1	ChMask2	ChMask3	ChMask4	RFU	RFU	CFListType

2.6.5 AU915-928 LinkAdrReq command

For the AU915-928 version the **ChMaskCntl** field of the **LinkADRReq** command has the following meaning:

ChMaskCntl	ChMask applies to
0	Channels 0 to 15
1	Channels 16 to 31
••	
4	Channels 64 to 71
5	8LSBs controls Channel Blocks 0 to 7
	8MSBs are RFU
6	All 125 kHz ON
	ChMask applies to channels 64 to 71
7	All 125 kHz OFF
	ChMask applies to channels 64 to 71

 If **ChMaskCntl** = 5 then the corresponding bits in the ChMask enable and disable a bank of 8 125kHz channels and the corresponding 500kHz channel defined by the following calculation: [ChannelMaskBit * 8, ChannelMaskBit * 8 +7],64+ChannelMaskBit.

Table 37: AU915-928 ChMaskCntl value table

If **ChMaskCntl** = 6 then 125 kHz channels are enabled, if **ChMaskCntl** = 7 then 125 kHz channels are disabled. Simultaneously the channels 64 to 71 are set according to the **ChMask** bit mask. The DataRate specified in the command need not be valid for channels specified in the ChMask, as it governs the global operational state of the end-device.

2.6.6 AU915-928 Maximum payload size

The maximum **MACPayload** size length (*M*) is given by the following table for both uplink dwell time configurations: No Limit and 400ms. It is derived from the maximum allowed transmission time at the PHY layer taking into account a possible repeater encapsulation. The maximum application payload length in the absence of the optional **FOpt** MAC control field (*N*) is also given for information only. The value of *N* might be smaller if the **FOpt** field is not empty:

DataRate	UplinkDwellTime=0		UplinkDv	vellTime=1
	М	N	М	N
0	59	51	N/A	N/A
1	59	51	N/A	N/A
2	59	51	19	11
3	123	115	61	53
4	230	222	133	125
5	230	222	250	242
6	230	222	250	242
7	Not de	fined	Not defined	
8	41	33	41	33
9	117	109	117	109
10	230	222	230	222
11	230	222	230	222
12	230	222	230	222
13	230	222	230	222
14:15	Not de	fined	Not c	lefined

Table 38: AU915-928 maximum payload size

The greyed lines correspond to the data rates that may be used by an end-device behind a repeater.

For AU915-928, DownlinkDwellTime MUST be set to 0 (no limit). The 400ms dwell time MAY only apply to uplink channels depending on the local regulations.

 If the end-device will never operate with a repeater then the maximum application payload length in the absence of the optional **FOpt** control field SHOULD be:

DataRate	UplinkDwellTime=0		UplinkDv	vellTime=1
	М	N	М	N
0	59	51	N/A	N/A
1	59	51	N/A	N/A
2	59	51	19	11
3	123	115	61	53
4	250	242	133	125
5	250	242	250	242
6	250	242	250	242

961
962
963
964
965
966
967
968
969
970
971

973 974

975

976 977

978

979 980

7	Not defined		Not c	lefined
8	61	53	61	53
9	137	129	137	129
10	250	242	250	242
11	250	242	250	242
12	250	242	250	242
13	250	242	250	242
14:15	Not defined		Not c	lefined

Table 39: AU915-payload size (not

Not defined 928 maximum repeater

compatible)

2.6.7 AU915-928 Receive windows

- The RX1 receive channel is a function of the upstream channel used to initiate the data exchange. The RX1 receive channel can be determined as follows.
 - o RX1 Channel Number = Transmit Channel Number modulo 8
- The RX1 window data rate depends on the transmit data rate (see Table 17 below).
- The RX2 (second receive window) settings uses a fixed data rate and frequency. Default parameters are 923.3Mhz / DR8

Upstream data rate	Downstream data rate					
RX1DROff set	0	1	2	3	4	5
DR0	DR8	DR8	DR8	DR8	DR8	DR8
DR1	DR9	DR8	DR8	DR8	DR8	DR8
DR2	DR10	DR9	DR8	DR8	DR8	DR8
DR3	DR11	DR10	DR9	DR8	DR8	DR8
DR4	DR12	DR11	DR10	DR9	DR8	DR8
DR5	DR13	DR12	DR11	DR10	DR9	DR8
DR6	DR13	DR13	DR12	DR11	DR10	DR9

Table 40 : AU915-928 downlink RX1 data rate mapping

981 982 983

984

The allowed values for RX1DROffset are in the [0:5] range. Values in the range [6:7] are reserved for future use.

985

986

987

2.6.8 AU915-928 Class B beacon

The beacons are transmitted using the following settings:

DR	8	Corresponds to SF12 spreading factor with	
		500kHz bw	
CR	1	Coding rate = 4/5	
Signal polarity	Non-inverted	As opposed to normal downlink traffic which	
		uses inverted signal polarity	
frequencies	923.3 to 927.5MHz	Beaconing is performed on the same	
	with 600kHz steps	channel that normal downstream traffic as	
		defined in the Class A specification	

Table 41 : AU915-928 beacon settings

988 989

990

The downstream channel used for a given beacon is:

Channel =
$$\left[floor\left(\frac{beacon_time}{beacon_period}\right)\right]$$
 modulo 8

- whereby beacon_time is the integer value of the 4 bytes "Time" field of the beacon frame
 - whereby beacon_period is the periodicity of beacons, 128 seconds
 - whereby floor(x) designates rounding to the integer immediately inferior or equal to x

Example: the first beacon will be transmitted on 923.3Mhz, the second on 923.9MHz, the 9th beacon will be on 923.3Mhz again.

Beacon channel nb	Frequency [MHz]
0	923.3
1	923.9
2	924.5
3	925.1
4	925.7
5	926.3
6	926.9
7	927.5

1000 1001 1002

993

994 995 996

997 998 999

The beacon frame content is:

Size (bytes)	3	4	2	7	1	2
BCNPayload	RFU	Time	CRC	GwSpecific	RFU	CRC

1003

1004

1014

1015 1016

1017

1018

1019

2.6.9 AU915-928 Default Settings

The following parameters are recommended values for the AU915-928 band.

1006 RECEIVE_DELAY1 1 s

1007 RECEIVE_DELAY2 2 s (MUST be RECEIVE_DELAY1 + 1s)

 1008
 JOIN_ACCEPT_DELAY1
 5 s

 1009
 JOIN_ACCEPT_DELAY2
 6 s

 1010
 MAX_FCNT_GAP
 16384

 1011
 ADR_ACK_LIMIT
 64

 1012
 ADR_ACK_DELAY
 32

1013 ACK_TIMEOUT 2 +/- 1 s (random delay between 1 and 3 seconds)

If the actual parameter values implemented in the end-device are different from those default values (for example the end-device uses a longer RECEIVE_DELAY1 & 2 latency), those parameters MUST be communicated to the network server using an out-of-band channel during the end-device commissioning process. The network server may not accept parameters different from those default values.

1021

1022

1023

1024 1025 1026

1027

1028

1029

1030

10311032

1033

1034

1035

1036 1037

1038 1039

1040 1041

1042 1043

1044 1045

1050

1051

1052

1053 1054

1055

2.7 CN470-510MHz Band

2.7.1 CN470-510 Preamble Format

The following synchronization words SHOULD be used:

Modulation	Sync word	Preamble length
LORA	0x34	8 symbols

2.7.2 CN470-510 Channel Frequencies

In China, this band is defined by SRRC to be used for civil metering applications.

The 470 MHz ISM Band SHALL be divided into the following channel plans:

 Upstream – 96 channels numbered 0 to 95 utilizing LoRa 125 kHz BW varying from DR0 to DR5, using coding rate 4/5, starting at 470.3 MHz and incrementing linearly by 200 kHz to 489.3 MHz.

Channel Index 6 to 38 and 45 to 77 are mainly used by China Electric Power. In the areas where these channels are used by China Electric Power, they should be disabled.

 Downstream – 48 channels numbered 0 to 47 utilizing LoRa 125 kHz BW varying from DR0 to DR5, using coding rate 4/5, starting at 500.3 MHz and incrementing linearly by 200 kHz to 509.7 MHz

Figure 3: CN470-510 channel frequencies

The LoRaWAN can be used in the Chinese 470-510MHz band as long as

- The radio device EIRP is less than 19.15dBm
- The transmission never lasts more than 5000 ms.

CN470-510 end-devices SHALL be capable of operating in the 470 to 510 MHz frequency band and SHALL feature a channel data structure to store the parameters of 96 uplink channels. A channel data structure corresponds to a frequency and a set of data rates usable on this frequency.

If using the over-the-air activation procedure, the end-device SHALL broadcast the JoinReq message on a random 125 kHz channel amongst the 96 uplink channels defined using **DR5** to **DR0**.

1056 Personalized devices SHALL have all 96 channels enabled following a reset.

2.7.3 CN470-510 Data Rate and End-point Output Power encoding

There is no dwell time limitation for the CN470-510 PHY layer. The *TxParamSetupReq* MAC command is not implemented by CN470-510 devices.

The following encoding is used for Data Rate (**DR**) and End-point EIRP (**TXPower**) in the CN470-510 band:

DataRate	Configuration	Indicative physical bit rate [bit/sec]
0	LoRa: SF12 / 125 kHz	250
1	LoRa: SF11 / 125 kHz	440
2	LoRa: SF10 / 125 kHz	980
3	LoRa: SF9 / 125 kHz	1760
4	LoRa: SF8 / 125 kHz	3125
5	LoRa:SF7 / 125 kHz	5470
615	RFU	

TXPower	Configuration (EIRP)
0	Max EIRP
1	Max EIRP – 2dB
2	Max EIRP – 4dB
3	Max EIRP – 6dB
4	Max EIRP – 8dB
5	Max EIRP – 10dB
6	Max EIRP – 12dB
7	Max EIRP – 14dB
815	RFU

Table 42: CN470-510 Data rate and TX power table

 EIRP refers to the Equivalent Isotropically Radiated Power, which is the radiated output power referenced to an isotropic antenna radiating power equally in all directions and whose gain is expressed in dBi.

By default MaxEIRP is considered to be +19.15dBm. If the end-device cannot achieve 19.15dBm EIRP, the Max EIRP SHOULD be communicated to the network server using an out-of-band channel during the end-device commissioning process.

2.7.4 CN470-510 JoinResp CFList

The CN470-510 LoRaWAN supports the use of the optional **CFlist** appended to the JoinResp message. If the **CFlist** is not empty then the CFListType field SHALL contain the value one (0x01) to indicate the CFList contains a series of ChMask fields. The ChMask fields are interpreted as being controlled by a virtual ChMaskCntl that initializes to a value of zero (0) and increments for each ChMask field to a value of five (5). (The first 16 bits controls the channels 1 to 16, ..)

Size	[2]	[2]	[2]	[2]	[2]	[2]	[3]	[1]
(bytes)								
CFList	ChMask0	ChMask1	ChMask2	ChMask3	ChMask4	ChMask5	RFU	CFListType

2.7.5 CN470-510 LinkAdrReq command

For the CN470-510 version the **ChMaskCntl** field of the **LinkADRReq** command has the following meaning:

ChMaskCntl	ChMask applies to						
0	Channels 0 to 15						
1	Channels 16 to 31						
2	Channels 32 to 47						
3	Channels 48 to 63						
4	Channels 64 to 79						
5	Channels 80 to 95						
6	All channels ON						
	The device SHOULD enable all currently defined						
	channels independently of the ChMask field value.						
7	RFU						

Table 43: CN470-510 ChMaskCntl value table

If the ChMask field value is one of the values meaning RFU, then end-device SHOULD reject the command and unset the "Channel mask ACK" bit in its response.

2.7.6 CN470-510 Maximum payload size

The maximum **MACPayload** size length (*M*) is given by the following table. It is derived from the maximum allowed transmission time at the PHY layer taking into account a possible repeater encapsulation. The maximum application payload length in the absence of the optional **FOpt** MAC control field (N) is also given for information only. The value of N might be smaller if the **FOpt** field is not empty:

DataRate	М	N
0	59	51
1	59	51
2	59	51
3	123	115
4	230	222
5	230	222
6:15	Not de	efined

Table 44: CN470-510 maximum payload size

If the end-device will never operate with a repeater then the maximum application payload length in the absence of the optional **FOpt** control field SHOULD be:

DataRate	M	N
0	59	51
1	59	51
2	59	51
3	123	115
4	250	242
5	250	242
6:15	Not d	efined

Table 45: CN470-510 maximum payload size (not repeater compatible)

2.7.7 CN470-510 Receive windows

- The RX1 receive channel is a function of the upstream channel used to initiate the data exchange. The RX1 receive channel can be determined as follows.
 - RX1 Channel Number = Uplink Channel Number modulo 48, for example, when transmitting channel number is 49, the rx1 channel number is 1.
- The RX1 window data rate depends on the transmit data rate (see Table below).
- The RX2 (second receive window) settings uses a fixed data rate and frequency. Default parameters are 505.3 MHz / DR0

1100

1087

1088

1089

1090 1091

1092

1093

1094 1095

1096 1097

1098

1099

1101

1102

RX1DROffset	0	1	2	3	4	5				
Upstream data rate		Downstream data rate in RX1 slot								
DR0	DR0	DR0	DR0	DR0	DR0	DR0				
DR1	DR1	DR0	DR0	DR0	DR0	DR0				
DR2	DR2	DR1	DR0	DR0	DR0	DR0				
DR3	DR3	DR2	DR1	DR0	DR0	DR0				
DR4	DR4	DR3	DR2	DR1	DR0	DR0				
DR5	DR5	DR4	DR3	DR2	DR1	DR0				

Table 46: CN470-510 downlink RX1 data rate mapping

1111 1112 1113

1114

1115

1116

The allowed values for RX1DROffset are in the [0:5] range. Values in the range [6:7] are reserved for future use.

2.7.8 CN470-510 Class B beacon

The beacons are transmitted using the following settings:

DR	2	Corresponds to SF10 spreading factor with 125kHz		
		bw		
CR	1	Coding rate = 4/5		
Signal polarity	Non-inverted	As opposed to normal downlink traffic which uses		
		inverted signal polarity		
frequencies	508.3 to 509.7MHz with 200kHz steps			

Table 47: CN470-510 beacon settings

1117 1118 1119

1120

1121 1122

1123

The downstream channel used for a given beacon is:

BeaconChannel =
$$\left[floor\left(\frac{beacon_time}{beacon_period}\right)\right]$$
 modulo 8

- whereby beacon time is the integer value of the 4 bytes "Time" field of the beacon
- whereby beacon_period is the periodicity of beacons, 128 seconds
- whereby floor(x) designates rounding to the integer immediately inferior or equal to x

1124 1125 1126

Example: the first beacon will be transmitted on 508.3Mhz, the second on 508.5MHz, the 9th beacon will be on 508.3Mhz again.

1127 1128

1129

Beacon channel nb	Frequency [MHz]
0	508.3
1	508.5
2	508.7
3	508.9
4	509.1
5	509.3
6	509.5
7	500.7

1130 1131

1132

The beacon frame content is:

Size (bytes)	3	4	2	7	1	2
BCNPayload	RFU	Time	CRC	GwSpecific	RFU	CRC

1134 **2.7.9 CN470-510 Default Settings**

1135 The following parameters are recommended values for the CN470-510 band.

1136 RECEIVE_DELAY1 1 s

1137 RECEIVE_DELAY2 2 s (MUST be RECEIVE_DELAY1 + 1s)

 1138
 JOIN_ACCEPT_DELAY1
 5 s

 1139
 JOIN_ACCEPT_DELAY2
 6 s

 1140
 MAX_FCNT_GAP
 16384

 1141
 ADR_ACK_LIMIT
 64

 1142
 ADR_ACK_DELAY
 32

1143 ACK_TIMEOUT 2 +/- 1 s (random delay between 1 and 3 seconds)

1144 If the actual parameter values implemented in the end-device are different from those default

values (for example the end-device uses a longer RECEIVE_DELAY1 & 2 latency), those

1146 parameters MUST be communicated to the network server using an out-of-band channel

1147 during the end-device commissioning process. The network server may not accept

1148 parameters different from those default values.

1149 **2.8 AS923MHz ISM Band**

2.8.1 AS923 Preamble Format

The following synchronization words SHOULD be used:

1151 1152

1150

Modulation	Sync word	Preamble length
LORA	0x34	8 symbols
GFSK	0xC194C1	5 bytes

Table 48: AS923 synch words

1153

1154

2.8.2 AS923 ISM Band channel frequencies

1155 This section applies to regions where the frequencies [923...923.5MHz] are comprised in the 1156 ISM band.

The network channels can be freely attributed by the network operator. However the two following default channels MUST be implemented in every AS923MHz end-device. Those channels are the minimum set that all network gateways SHOULD always be listening on.

1159 1160

1161

1165

11661167

1168

1169

1157

1158

Modulation	Bandwidth [kHz]	Channel Frequency [MHz]	FSK Bitrate or LoRa DR / Bitrate	Nb Channels	Duty cycle
LoRa	125	923.20 923.40	DR0 to DR5 / 0.3-5 kbps	2	< 1%

Table 49: AS923 default channels

Those default channels MUST be implemented in every end-device and cannot be modified through the *NewChannelReq* command and guarantee a minimal common channel set between end-devices and network gateways.

AS923MHz ISM band end-devices should use the following default parameters

• Default EIRP: 16 dBm

AS923MHz end-devices SHALL feature a channel data structure to store the parameters of at least 16 channels. A channel data structure corresponds to a frequency and a set of data rates usable on this frequency.

The following table gives the list of frequencies that SHALL be used by end-devices to broadcast the JoinReq message.

Modulation	Bandwidth [kHz]	Channel Frequency [MHz]	FSK Bitrate or LoRa DR / Bitrate	Nb Channels	Duty cycle
LoRa	125	923.20 923.40	DR2 to DR5	2	< 1%

Table 50: AS923 JoinReq Channel List

1172 1173 1174

1175

1176

1177 1178 The default JoinReq Data Rate utilizes the range DR2-DR5 (SF10/125 kHz – SF7/125 kHz), this setting ensures that end-devices are compatible with the 400ms dwell time limitation until the actual dwell time limit is notified to the end-device by the network server via the MAC command "TxParamSetupReg".

The JoinReg message transmit duty-cycle SHALL follow the rules described in chapter

1179 "Retransmissions back-off" of the LoRaWAN specification document.

1180

1181

2.8.3 AS923 Data Rate and End-point Output Power encoding

1182 The "TxParamSetupReg/Ans" MAC command MUST be implemented by the AS923 devices.

The following encoding is used for Data Rate (DR) in the AS923 band:

1183 1184

DataRate	Configuration	Indicative physical bit rate [bit/s]
0	LoRa: SF12 / 125 kHz	250
1	LoRa: SF11 / 125 kHz	440
2	LoRa: SF10 / 125 kHz	980
3	LoRa: SF9 / 125 kHz	1760
4	LoRa: SF8 / 125 kHz	3125
5	LoRa: SF7 / 125 kHz	5470
6	LoRa: SF7 / 250 kHz	11000
7	FSK: 50 kbps	50000
815	RFU	

Table 51: AS923 Data rate table

1185

1186 1187

The TXPower table indicates power levels relative to the Max EIRP level of the end-device, as per the following table:

1188 1189

TXPower	Configuration (EIRP)	
0	Max EIRP	
1	Max EIRP – 2dB	
2	Max EIRP – 4dB	
3	Max EIRP – 6dB	
4	Max EIRP – 8dB	
5	Max EIRP – 10dB	
6	Max EIRP – 12dB	
7	Max EIRP – 14dB	
815	RFU	
Table 52: AS	S923 TxPower table	

1190

1191

1192 1193

1194

EIRP refers to the Equivalent Isotropically Radiated Power, which is the radiated output power referenced to an isotropic antenna radiating power equally in all directions and whose gain is expressed in dBi.

1195 1196

1197

1198

By default Max EIRP SHALL be 16dBm. The Max EIRP can be modified by the network server through the *TxParamSetupReg* MAC command and SHOULD be used by both the end-device and the network server once *TxParamSetupReg* is acknowledged by the device via TxParamSetupAns,

2.8.4 AS923 JoinAccept CFList

The AS923 LoRaWAN implements an optional channel frequency list (CFlist) of 16 octets in the JoinAccept message.

In this case the CFList is a list of five channel frequencies for the channels two to six whereby each frequency is encoded as a 24 bits unsigned integer (three octets). All these channels are usable for DR0 to DR5 125 KHz LoRa modulation. The list of frequencies is followed by a single CFListType octet for a total of 16 octets. The CFListType SHALL be equal to zero (0) to indicate that the CFList contains a list of frequencies.

Size	3	3	3	3	3	1
(bytes)						
CFList	Freq Ch2	Freq Ch3	Freq Ch4	Freq Ch5	Freq Ch6	CFListType

The actual channel frequency in Hz is 100 x frequency whereby values representing frequencies below 100 MHz are reserved for future use. This allows setting the frequency of a channel anywhere between 915 and 928MHz in 100 Hz steps. Unused channels have a frequency value of 0. The CFList is optional and its presence can be detected by the length of the join-accept message. If present, the CFList replaces all the previous channels stored in the end-device apart from the two default channels. The newly defined channels are immediately enabled and usable by the end-device for communication.

2.8.5 AS923 LinkAdrReq command

The AS923 LoRaWAN only supports a maximum of 16 channels. When **ChMaskCntl** field is 0 the ChMask field individually enables/disables each of the 16 channels.

ChMaskCntl	ChMask applies to			
0	Channels 0 to 15			
1	RFU			
	:			
4	RFU			
5	RFU			
6	All channels ON			
	The device SHOULD enable all currently			
	defined channels independently of the			
	ChMask field value.			
7	RFU			
4 5	RFU All channels ON The device SHOULD enable all currently defined channels independently of the ChMask field value.			

Table 53: AS923 ChMaskCntl value table

 If the ChMask field value is one of values meaning RFU, the end-device SHOULD reject the command and unset the "Channel mask ACK" bit in its response.

2.8.6 AS923 Maximum payload size

The maximum **MACPayload** size length (*M*) is given by the following table for both dwell time configurations: No Limit and 400ms. It is derived from the PHY layer limitation depending on the effective modulation rate used taking into account a possible repeater encapsulation layer.

DataRate Uplink MAC Payload Size (M) Downlink MAC Payload Size (M)

1230

1231

1232

1233

1234

1235

1236

1237

1244

1245

	UplinkDwellTime	UplinkDwellTime	DownlinkDwellTime	DownlinkDwellTime
	= 0	= 1	= 0	= 1
0	59	N/A	59	N/A
1	59	N/A	59	N/A
2	59	19	59	19
3	123	61	123	61
4	230	133	230	133
5	230	250	230	250
6	230	250	230	250
7	230	250	230	250
8:15	RF	=U	RF	⁼U

Table 54: AS923 maximum payload size

If the end-device will never operate with a repeater then the maximum MAC payload length should be:

DataRate	Uplink MAC Pa	ayload Size (M)	Downlink MAC F	Payload Size (M)
	UplinkDwellTime	UplinkDwellTime	DownlinkDwellTime	DownlinkDwellTim
	= 0	= 1	= 0	e = 1
0	59	N/A	59	N/A
1	59	N/A	59	N/A
2	59	19	59	19
3	123	61	123	61
4	250	133	250	133
5	250	250	250	250
6	250	250	250	250
7	250	250	250	250
8:15	RF	-U	RF	Ū

Table 55: AS923 maximum payload size (not repeater compatible)

The maximum application payload length in the absence of the optional **FOpt** control field (*N*) is eight bytes lower than the MACPayload value in the above table. The value of N might be smaller if the **FOpt** field is not empty.

2.8.7 AS923 Receive windows

The RX1 receive window uses the same channel than the preceding uplink. The data rate is a function of the uplink data rate and the RX1DROffset as following:

Downstream data rate in RX1 slot = *MIN* (5, *MAX* (MinDR, Upstream data rate – 1241 Effective_RX1DROffset))

MinDR depends on the DownlinkDwellTime bit sent to the device in the *TxParamSetupReq* command:

- Case DownlinkDwellTime = 0 (No limit): MinDR = 0
- Case DownlinkDwellTime = 1 (400ms): MinDR = 2

1246 The allowed values for RX1DROffset are in the [0:7] range, encoded as per the below table:

RX1DROffset (Coded value)	0	1	2	3	4	5	6	7
Effective_RX1DROffset	0	1	2	3	4	5	-1	-2

Values in the [6:7] range allow setting the Downstream RX1 data rate higher than Upstream data rate.

The RX2 receive window uses a fixed frequency and data rate. The default parameters are 923.2 MHz / DR2 (SF10/125KHz).

1252

1254

2.8.8 AS923 Class B beacon and default downlink channel

1253 The beacons SHALL be transmitted using the following settings

DR	3	Corresponds to SF9 spreading factor with 125 kHz BW
CR	1	Coding rate = 4/5
Signal polarity	Non-inverted	As opposed to normal downlink traffic which uses inverted signal polarity

Table 56: AS923 beacon settings

1255 The beacon frame content is:

Size (bytes)	Size (bytes) 2		2	7	2
BCNPayload RFU		Time	CRC	GwSpecific	CRC

1256 The beacon default broadcast frequency is 923.4MHz.

1257 The class B default downlink pingSlot frequency is 923.4MHz

1258

1259

2.8.9 AS923 Default Settings

1260 The following parameters are recommended values for the AS923MHz band.

1261 RECEIVE_DELAY1 1 s

1262 RECEIVE DELAY2 2 s (MUST be RECEIVE DELAY1 + 1s)

 1263
 JOIN_ACCEPT_DELAY1
 5 s

 1264
 JOIN_ACCEPT_DELAY2
 6 s

 1265
 MAX_FCNT_GAP
 16384

 1266
 ADR_ACK_LIMIT
 64

 1267
 ADR_ACK_DELAY
 32

1268 ACK_TIMEOUT 2 +/- 1 s (random delay between 1 and 3 seconds)

1269 If the actual parameter values implemented in the end-device are different from those default

1270 values (for example the end-device uses a longer RECEIVE_DELAY1 and

1271 RECEIVE_DELAY2 latency), those parameters MUST be communicated to the network

1272 server using an out-of-band channel during the end-device commissioning process. The

1273 network server may not accept parameters different from those default values.

2.9 KR920-923MHz ISM Band

2.9.1 KR920-923 Preamble Format

The following synchronization words SHOULD be used:

Modulation	Sync word	Preamble length
LORA	0x34	8 symbols

2.9.2 KR920-923 ISM Band channel frequencies

The center frequency, bandwidth and maximum EIRP output power for the South Korea RFID/USN frequency band are already defined by Korean Government. Basically Korean Government allocated LPWA based IoT network frequency band from 920.9 to 923.3MHz.

Center frequency	Bandwidth	Maximum EIRP (dBı	• •
(MHz)	(kHz)	For end-device	For gateway
920.9	125	10	23
921.1	125	10	23
921.3	125	10	23
921.5	125	10	23
921.7	125	10	23
921.9	125	10	23
922.1	125	14	23
922.3	125	14	23
922.5	125	14	23
922.7	125	14	23
922.9	125	14	23
923.1	125	14	23
923.3	125	14	23

1283 Table 57: KR920-923 Center frequency, bandwidth, maximum EIRP output power table

The three following default channels (922.1, 922.3 and 922.5MHz / DR0 to DR5) determined by the network operator from the set of available channels as defined by the South Korean regulation MUST be implemented in every KR920-923MHz end-device, and cannot be alterable by the *NewChannelReq* command. Those channels are the minimum set that all network gateways SHOULD always be listening on to guarantee a minimal common channel

set between end-devices and network gateways.

Modulation	Bandwidth [kHz]	Channel Frequency [MHz]	FSK Bitrate or LoRa DR / Bitrate	Nb Channels
LoRa	125	922.10 922.30 922.50	DR0 to DR5 / 0.3-5 kbps	3

Table 58: KR920-923 default channels

In order to access the physical medium the South Korea regulations impose some restrictions. The South Korea regulations allow the choice of using either a duty-cycle limitation or a so-called Listen Before Talk Adaptive Frequency Agility (LBT AFA) transmissions management. The current LoRaWAN specification for the KR920-923 ISM band exclusively uses LBT channel access rule to maximize MACPayload size length and comply with the South Korea regulations.

1298 KR920-923MHz ISM band end-devices SHALL use the following default parameters

- Default EIRP output power for end-device(920.9~921.9MHz): 10 dBm
- Default EIRP output power for end-device(922.1~923.3MHz): 14 dBm
- Default EIRP output power for gateway: 23 dBm

KR920-923MHz end-devices SHALL be capable of operating in the 920 to 923MHz frequency band and SHALL feature a channel data structure to store the parameters of at least 16 channels. A channel data structure corresponds to a frequency and a set of data rates usable on this frequency.

The following table gives the list of frequencies that SHALL be used by end-devices to broadcast the JoinReq message.

Modulation	Bandwidth [kHz]	Channel Frequency [MHz]	FSK Bitrate or LoRa DR / Bitrate	Nb Channels
LoRa	125	922.10	DR0 to DR5	3
		922.30	/ 0.3-5 kbps	
		922.50	,	

Table 59: KR920-923 JoinReq Channel List

2.9.3 KR920-923 Data Rate and End-device Output Power encoding

There is no dwell time limitation for the KR920-923 PHY layer. The *TxParamSetupReq* MAC command is not implemented by KR920-923 devices.

The following encoding is used for Data Rate (DR), and EIRP Output Power (TXPower) in the KR920-923 band:

1	3	1	4

1308

1309

1310 1311

1312

1313

1299 1300

1301

DataRate	Configuration	Indicative physical bit rate [bit/s]
0	LoRa: SF12 / 125 kHz	250
1	LoRa: SF11 / 125 kHz	440
2	LoRa: SF10 / 125 kHz	980
3	LoRa: SF9 / 125 kHz	1760
4	LoRa: SF8 / 125 kHz	3125
5	LoRa: SF7 / 125 kHz	5470
615	RFU	

1315 1316 1317

Table 60: KR920-923 TX Data rate table

Configuration (FIDD)

IXPower	Configuration (EIRP)
0	Max EIRP
1	Max EIRP – 2dB
2	Max EIRP – 4dB
3	Max EIRP – 6dB
4	Max EIRP – 8dB
5	Max EIRP – 10dB
6	Max EIRP – 12dB
7	Max EIRP – 14dB
815	RFU

Table 61: KR920-923 TX power table

EIRP refers to the Equivalent Isotropically Radiated Power, which is the radiated output power referenced to an isotropic antenna radiating power equally in all directions and whose gain is expressed in dBi.

1323

1324

1325

- By default MaxEIRP is considered to be +14dBm. If the end-device cannot achieve 14dBm EIRP, the MaxEIRP SHOULD be communicated to the network server using an out-of-band channel during the end-device commissioning process.
- channel during the end-device commissioning process.

 When the device transmits in a channel whose frequency is <922MHz, the transmit power

 SHALL be limited to +10dBm EIRP even if the current transmit power level set by the

 network server is higher.

1330 2.9.4 KR920-923 JoinAccept CFList

The KR920-923 ISM band LoRaWAN implements an optional **channel frequency list** (CFlist) of 16 octets in the JoinAccept message.

In this case the CFList is a list of five channel frequencies for the channels three to seven whereby each frequency is encoded as a 24 bits unsigned integer (three octets). All these channels are usable for DR0 to DR5 125kHz LoRa modulation.

The list of frequencies is followed by a single CFListType octet for a total of 16 octets. The CFListType SHALL be equal to zero (0) to indicate that the CFList contains a list of frequencies.

13381339

1340

1341

1342

1343 1344

1345

1346

13471348

1336

1337

Size	3	3	3	3	3	1
(bytes)						
CFList	Freq Ch3	Freq Ch4	Freq Ch5	Freq Ch6	Freq Ch7	CFListType

The actual channel frequency in Hz is 100 x frequency whereby values representing frequencies below 100 MHz are reserved for future use. This allows setting the frequency of a channel anywhere between 100 MHz to 1.67 GHz in 100 Hz steps. Unused channels have a frequency value of 0. The **CFList** is optional and its presence can be detected by the length of the join-accept message. If present, the **CFList** replaces all the previous channels stored in the end-device apart from the three default channels. The newly defined channels are immediately enabled and usable by the end-device for communication.

2.9.5 KR920-923 LinkAdrReq command

The KR920-923 LoRaWAN only supports a maximum of 16 channels. When **ChMaskCntl** field is 0 the ChMask field individually enables/disables each of the 16 channels.

1349 1350

ChMaskCntl	ChMask applies to	
0	Channels 0 to 15	
1	RFU	
4	RFU	
5	RFU	
6	All channels ON	
	The device SHOULD enable all currently defined	
	channels independently of the ChMask field value.	
7	RFU	

1351 1352 Table 62: KR920-923 ChMaskCntl value table

1353 If the ChMaskCntl field value is one of values meaning RFU, the end-device SHOULD reject the command and unset the "**Channel mask ACK**" bit in its response.

2.9.6 KR920-923 Maximum payload size

The maximum **MACPayload** size length (*M*) is given by the following table for the regulation of dwell time; less than 4 sec with LBT. It is derived from limitation of the PHY layer depending on the effective modulation rate used taking into account a possible repeater encapsulation layer. The maximum application payload length in the absence of the optional **FOpt** control field (*N*) is also given for information only. The value of N might be smaller if the **FOpt** field is not empty:

1	362

1355 1356

1357

1358

1359 1360

1361

DataRate	М	N
0	59	51
1	59	51
2	59	51
3	123	115
4	230	222
5	230	222
6:15	Not defined	

1363

Table 63: KR920-923 maximum payload size

1364 1365 1366 If the end-device will never operate with a repeater then the maximum application payload length in the absence of the optional **FOpt** control field SHOULD be:

DataRate	M	N
0	59	51
1	59	51
2	59	51
3	123	115
4	250	242
5	250	242
6:15	Not de	efined

1367 1368

1369

1370

1371

1372

Table 64: KR920-923 maximum payload size (not repeater compatible)

2.9.7 KR920-923 Receive windows

The RX1 receive window uses the same channel than the preceding uplink. The data rate is a function of the uplink data rate and the RX1DROffset as given by the following table. The allowed values for RX1DROffset are in the [0:5] range. Values in the [6:7] range are reserved for future use.

1	373
1	374

RX1DROffset	0	1	2	3	4	5
Upstream data rate		Dow	nstream data	a rate in RX1	slot	
DR0	DR0	DR0	DR0	DR0	DR0	DR0
DR1	DR1	DR0	DR0	DR0	DR0	DR0
DR2	DR2	DR1	DR0	DR0	DR0	DR0
DR3	DR3	DR2	DR1	DR0	DR0	DR0
DR4	DR4	DR3	DR2	DR1	DR0	DR0
DR5	DR5	DR4	DR3	DR2	DR1	DR0

1375 Table 65: KR920-923 downlink RX1 data rate mapping

1376 The RX2 receive window uses a fixed frequency and data rate. The default parameters are 1377 921.90MHz / DR0 (SF12, 125 kHz).

2.9.8 KR920-923 Class B beacon and default downlink channel

1379 The beacons SHALL be transmitted using the following settings

DR	3 Corresponds to SF9 spreading factor with	
		kHz BW
CR	1	Coding rate = 4/5
Signal polarity Non-inverted As opposed to norm		As opposed to normal downlink traffic which
		uses inverted signal polarity

Table 66: KR920-923 beacon settings

1380 1381 1382

1378

The beacon frame content is:

Size (bytes)	2	4	2	7	2
BCNPayload	RFU	Time	CRC	GwSpecific	CRC

1383 The beacon default broadcast frequency is 923.1MHz.

The class B default downlink pingSlot frequency is 923.1MHz

1384 1385

1386

1401

2.9.9 KR920-923 Default Settings

1387 The following parameters are recommended values for the KR920-923Mhz band.

1388	RECEIVE_DELAY1	1 s
1389	RECEIVE_DELAY2	2 s (MUST be RECEIVE_DELAY1 + 1s)
1390	JOIN_ACCEPT_DELAY1	5 s
1391	JOIN_ACCEPT_DELAY2	6 s
1392	MAX_FCNT_GAP	16384
1393	ADR_ACK_LIMIT	64
1394	ADR_ACK_DELAY	32
1395	ACK_TIMEOUT	2 +/- 1 s (random delay between 1 and 3 seconds)

1396 If the actual parameter values implemented in the end-device are different from those default values (for example the end-device uses a longer RECEIVE_DELAY1 1397 1398 RECEIVE_DELAY2 latency), those parameters MUST be communicated to the network server using an out-of-band channel during the end-device commissioning process. The 1399 1400

network server may not accept parameters different from those default values.

2.10 IN865-867 MHz ISM Band

2.10.1 IN865-867 Preamble Format

The following synchronization words SHOULD be used:

1404 1405

1407

1402

1403

Modulation	Sync word	Preamble length
LORA	0x34	8 symbols
GFSK	0xC194C1	5 bytes

1406 Table 67: IN865-867 synch words

2.10.2 IN865-867 ISM Band channel frequencies

1408 This section applies to the Indian sub-continent.

The network channels can be freely attributed by the network operator. However the three following default channels MUST be implemented in every India 865-867MHz end-device.

Those channels are the minimum set that all network gateways SHOULD always be listening

1412 c

1413

1414 1415

1416

1417

1418

1419

1420

1421

1422

1423

1424

1425

Modulation	Bandwidth [kHz]	Channel Frequency [MHz]	FSK Bitrate or LoRa DR / Bitrate	Nb Channels
LoRa	125	865.0625	DR0 to DR5	3
		865.4025	/ 0.3-5 kbps	
		865.985		

Table 68: IN865-867 default channels

End-devices SHALL be capable of operating in the 865 to 867 MHz frequency band and should feature a channel data structure to store the parameters of at least 16 channels. A channel data structure corresponds to a frequency and a set of data rates usable on this frequency.

The first three channels correspond to 865.0625, 865.4025, and 865.985 MHz / DR0 to DR5 and MUST be implemented in every end-device. Those default channels cannot be modified through the **NewChannelReq** command and guarantee a minimal common channel set between end-devices and network gateways.

The following table gives the list of frequencies that SHALL be used by end-devices to broadcast the JoinReq message. The JoinReq message transmit duty-cycle SHALL follow the rules described in chapter "Retransmissions back-off" of the LoRaWAN specification document.

1426 1427

1428

1429

Modulation	Bandwidth [kHz]	Channel Frequency [MHz]	FSK Bitrate or LoRa DR / Bitrate	Nb Channels
	125	865.0625	DR0 – DR5	3
LoRa		865.4025	/ 0.3-5 kbps	
		865.9850		

Table 69: IN865-867 JoinReg Channel List

2.10.3 IN865-867 Data Rate and End-device Output Power Encoding

- There is no dwell time or duty-cycle limitation for the INDIA 865-867 PHY layer. The TxParamSetupReq MAC command is not implemented by INDIA 865-867 devices.
- The following encoding is used for Data Rate (DR) and End-device Output Power (TXPower) in the INDIA 865-867 band:

DataRate	Configuration	Indicative physical bit rate [bit/s]
0	LoRa: SF12 / 125 kHz	250
1	LoRa: SF11 / 125 kHz	440
2	LoRa: SF10 / 125 kHz	980
3	LoRa: SF9 / 125 kHz	1760
4	LoRa: SF8 / 125 kHz	3125
5	LoRa: SF7 / 125 kHz	5470
6	RFU	RFU
7	FSK: 50 kbps	50000
815	RFU	

1435

1436

1437 1438 The TXPower table indicates power levels relative to the Max EIRP level of the end-device, as per the following table:

Table 70: IN865-867 TX Data rate table

1439

TXPower	Configuration (EIRP)	
0	Max EIRP	
1	Max EIRP – 2dB	
2	Max EIRP – 4dB	
3	Max EIRP – 6dB	
4	Max EIRP – 8dB	
5	Max EIRP – 10dB	
6	Max EIRP – 12dB	
7	Max EIRP – 14dB	
8	Max EIRP – 16dB	
9	Max EIRP – 18dB	
10	Max EIRP – 20dB	
1115	RFU	
Table 71: IN865-867 TxPower table		

1440

1441

1442

1443 1444 EIRP refers to the Equivalent Isotropically Radiated Power, which is the radiated output power referenced to an isotropic antenna radiating power equally in all directions and whose gain is expressed in dBi.

1446 1447 1448

1449

1445

By default MaxEIRP is considered to be 30dBm. If the end-device cannot achieve 30dBm EIRP, the Max EIRP SHOULD be communicated to the network server using an out-of-band channel during the end-device commissioning process.

2.10.4 IN865-867 JoinAccept CFList

1450 The India 865-867 ISM band LoRaWAN implements an optional channel frequency list 1451 (CFlist) of 16 octets in the JoinAccept message.

1452 In this case the CFList is a list of five channel frequencies for the channels three to seven 1453 whereby each frequency is encoded as a 24 bits unsigned integer (three octets). All these 1454 channels are usable for DR0 to DR5 125kHz LoRa modulation.

The list of frequencies is followed by a single CFListType octet for a total of 16 octets. The CFListType SHALL be equal to zero (0) to indicate that the CFList contains a list of frequencies.

1458

1459

1460 1461

1462 1463

1464 1465

1466

1467

1455

1456

1457

Size	3	3	3	3	3	1
(bytes)						
CFList	Freq Ch3	Freq Ch4	Freq Ch5	Freq Ch6	Freq Ch7	CFListType

The actual channel frequency in Hz is 100 x frequency whereby values representing frequencies below 100 MHz are reserved for future use. This allows setting the frequency of a channel anywhere between 100 MHz to 1.67 GHz in 100 Hz steps. Unused channels have a frequency value of 0. The CFList is optional and its presence can be detected by the length of the join-accept message. If present, the CFList replaces all the previous channels stored in the end-device apart from the three default channels. The newly defined channels are immediately enabled and usable by the end-device for communication.

2.10.5 IN865-867 LinkAdrReg command

The INDIA 865-867 LoRaWAN only supports a maximum of 16 channels. When **ChMaskCntl** field is 0 the ChMask field individually enables/disables each of the 16 channels.

1468 1469

ChMaskCntl	ChMask applies to	
0	Channels 0 to 15	
1	RFU	
4	RFU	
5	RFU	
6	All channels ON	
	The device SHOULD enable all currently	
	defined channels independently of the	
	ChMask field value.	
7	RFU	

1470

1473 1474

1475

1476

1477

Table 72: IN865-867 ChMaskCntl value table

1471 1472

If the ChMaskCntl field value is one of values meaning RFU, the end-device SHOULD reject the command and unset the "Channel mask ACK" bit in its response.

2.10.6 IN865-867 Maximum payload size

The maximum **MACPayload** size length (*M*) is given by the following table. It is derived from limitation of the PHY layer depending on the effective modulation rate used taking into account a possible repeater encapsulation layer. The maximum application payload length in the absence of the optional **FOpt** control field (N) is also given for information only. The value of N might be smaller if the **FOpt** field is not empty:

1	478
1	479

DataRate	М	N	
0	59	51	
1	59	51	
2	59	51	
3	123	115	
4	230	222	
5	230	222	
6	230	222	
7	230	222	
8:15	Not defined		

Table 73: IN865-867 maximum payload size

1481 1482 1483 If the end-device will never operate with a repeater then the maximum application payload length in the absence of the optional **FOpt** control field SHOULD be:

DataRate	M	N	
0	59	51	
1	59	51	
2	59	51	
3	123	115	
4	250	242	
5	250	242	
6	250	242	
7	250	242	
8:15	Not defined		

1484

1485

Table 74: IN865-867 maximum payload size (not repeater compatible)

2.10.7 IN865-867 Receive windows

The RX1 receive window uses the same channel than the preceding uplink. The data rate is a function of the uplink data rate and the RX1DROffset as given by the following table. The allowed values for RX1DROffset are in the [0:7] range. Values in the [6:7] range allow setting the Downstream RX1 data rate higher than Upstream data rate.

1490 The allowed values for RX1DROffset are in the [0:7] range, encoded as per the below table:

RX1DROffset (Coded value)	0	1	2	3	4	5	6	7
Effective RX1DROffset	0	1	2	3	4	5	-1	-2

1491 Downstream data rate in RX1 slot = MIN (5, MAX (0, Upstream data rate – 1492 Effective RX1DROffset))

The RX2 receive window uses a fixed frequency and data rate. The default parameters are 866.550 MHz / DR2 (SF10, 125 kHz).

2.10.8 IN865-867 Class B beacon and default downlink channel

1496 The beacons are transmitted using the following settings.

The beacons are transmitted daing the following settings				
DR	4	Corresponds to SF8 spreading factor with		
		125 kHz BW		
CR	1	Coding rate = 4/5		
Signal polarity	Non-inverted	As opposed to normal downlink traffic which		
		uses inverted signal polarity		

1497 1498

1495

The beacon frame content is:

Size (bytes)	1	4	2	7	3	2
BCNPayload	RFU	Time	CRC	GwSpecific	RFU	CRC

1499 The beacon default broadcast frequency is 866.550MHz.

The class B default downlink pingSlot frequency is 866.550MHz

ADR_ACK_DELAY

2.10.9 IN865-867 Default Settings

1503 The following parameters are recommended values for the INDIA 865-867MHz band.

1504		
1505	RECEIVE_DELAY1	1 s
1506	RECEIVE_DELAY2	2 s (MUST be RECEIVE_DELAY1 + 1s)
1507	JOIN_ACCEPT_DELAY1	5 s
1508	JOIN_ACCEPT_DELAY2	6 s
1509	MAX_FCNT_GAP	16384
1510	ADR_ACK_LIMIT	64

32 1512 ACK_TIMEOUT 2 +/- 1 s (random delay between 1 and 3 seconds)

1513 If the actual parameter values implemented in the end-device are different from those default 1514 values (for example the end-device uses a longer RECEIVE_DELAY1 RECEIVE_DELAY2 latency), those parameters MUST be communicated to the network 1515 server using an out-of-band channel during the end-device commissioning process. The 1516 1517 network server may not accept parameters different from those default values.

1518 1519

1511

2.11 RU864-870 MHz ISM Band

2.11.1 RU864-870 Preamble Format

The following synchronization words SHOULD be used:

1	523
1	524

1521

1522

Modulation	Sync word	Preamble length
LORA	0x34	8 symbols
GFSK	0xC194C1	5 bytes

1525 Table 75: RU864-870 synch words

2.11.2 RU864-870 ISM Band channel frequencies

The network channels can be freely attributed by the network operator in compliance with the allowed sub-bands defined by the Russian regulation. However the two following default channels MUST be implemented in every RU864-870 MHz end-device. Those channels are the minimum set that all network gateways SHOULD always be listening on.

1530 1531

1526 1527

1528

1529

Modulation	Bandwidth [kHz]	Channel Frequency [MHz]	FSK Bitrate or LoRa DR / Bitrate	Nb Channels	Duty cycle
LoRa	125	868.9 869.1	DR0 to DR5 / 0.3-5 kbps	2	<1%

1532

Table 76: RU864-870 default channels

1533 1534

1535

RU864-870 MHz end-devices SHALL be capable of operating in the 864 to 870 MHz frequency band and SHALL feature a channel data structure to store the parameters of at least 8 channels. A channel data structure corresponds to a frequency and a set of data rates usable on this frequency.

153615371538

1539

1540

1541

The first two channels correspond to 868.9 and 869.1 MHz / DR0 to DR5 and MUST be implemented in every end-device. Those default channels cannot be modified through the **NewChannelReq** command and guarantee a minimal common channel set between end-devices and network gateways.

1542 1543 1544 The following table gives the list of frequencies that SHALL be used by end-devices to broadcast the JoinReq message. The JoinReq message transmit duty-cycle SHALL follow the rules described in chapter "Retransmissions back-off" of the LoRaWAN specification document.

Modulation	Bandwidth [kHz]	Channel Frequency [MHz]	FSK Bitrate or LoRa DR / Bitrate	Nb Channels
LoRa	125	868.9 869.1	DR0 – DR5 / 0.3-5 kbps	2

15471548

1549

1550

1551

1552

1553

1554

1555 1556

1557

1558

1563

1564

1565

1566 1567 Table 77: RU864-870 JoinReq Channel List

2.11.3 RU864-870 Data Rate and End-device Output Power encoding

There is no dwell time limitation for the RU864-870 PHY layer. The *TxParamSetupReq* MAC command is not implemented in RU864-870 devices.

The following encoding is used for Data Rate (DR) and End-device EIRP (TXPower) in the RU864-870 band:

DataRate	Configuration	Indicative physical bit rate [bit/s]
0	LoRa: SF12 / 125 kHz	250
1	LoRa: SF11 / 125 kHz	440
2	LoRa: SF10 / 125 kHz	980
3	LoRa: SF9 / 125 kHz	1760
4	LoRa: SF8 / 125 kHz	3125
5	LoRa: SF7 / 125 kHz	5470
6	LoRa: SF7 / 250 kHz	11000
7	FSK: 50 kbps	50000
815	RFU	

Table 78: RU864-870 TX Data rate table

EIRP¹ refers to the Equivalent Isotropically Radiated Power, which is the radiated output power referenced to an isotropic antenna radiating power equally in all directions and whose gain is expressed in dBi.

TXPower	Configuration (EIRP)
0	Max EIRP
1	Max EIRP – 2dB
2	Max EIRP – 4dB
3	Max EIRP – 6dB
4	Max EIRP – 8dB
5	Max EIRP – 10dB
6	Max EIRP – 12dB
7	Max EIRP – 14dB
815	RFU

Table 79: RU864-870 TX power table

By default MaxEIRP is considered to be +16dBm. If the end-device cannot achieve +16dBm EIRP, the Max EIRP SHOULD be communicated to the network server using an out-of-band channel during the end-device commissioning process.

2.11.4 RU864-870 JoinAccept CFList

The RU 864-870 ISM band LoRaWAN implements an optional **channel frequency list** (CFlist) of 16 octets in the JoinAccept message.

¹ ERP = EIRP – 2.15dB; it is referenced to a half-wave dipole antenna whose gain is expressed in dBd

In this case the CFList is a list of five channel frequencies for the channels two to six whereby each frequency is encoded as a 24 bits unsigned integer (three octets). All these channels are usable for DR0 to DR5 125kHz LoRa modulation. The list of frequencies is followed by a single CFListType octet for a total of 16 octets. The CFListType SHALL be equal to zero (0) to indicate that the CFList contains a list of frequencies.

Size	3	3	3	3	3	1
(bytes)						
CFList	Freq Ch2	Freq Ch3	Freq Ch4	Freq Ch5	Freq Ch6	CFListType

The actual channel frequency in Hz is 100 x frequency whereby values representing frequencies below 100 MHz are reserved for future use. This allows setting the frequency of a channel anywhere between 100 MHz to 1.67 GHz in 100 Hz steps. Unused channels have a frequency value of 0. The **CFList** is optional and its presence can be detected by the length of the join-accept message. If present, the **CFList** replaces all the previous channels stored in the end-device apart from the two default channels. The newly defined channels are immediately enabled and usable by the end-device for communication.

2.11.5 RU864-870 LinkAdrReq command

The RU864-870 LoRaWAN only supports a maximum of 16 channels. When **ChMaskCntl** field is 0 the ChMask field individually enables/disables each of the 16 channels.

ChMaskCntl	ChMask applies to
0	Channels 0 to 15
1	RFU
**	
4	RFU
5	RFU
6	All channels ON
	The device SHOULD enable all currently
	defined channels independently of the
	ChMask field value.
7	RFU

Table 80: RU864-870 ChMaskCntl value table

If the ChMaskCntl field value is one of values meaning RFU, the end-device SHOULD reject the command and unset the "Channel mask ACK" bit in its response.

2.11.6 RU864-870 Maximum payload size

The maximum **MACPayload** size length (*M*) is given by the following table. It is derived from limitation of the PHY layer depending on the effective modulation rate used taking into account a possible repeater encapsulation layer. The maximum application payload length in the absence of the optional **FOpt** control field (*N*) is also given for information only. The value of N might be smaller if the **FOpt** field is not empty:

1	594
1	595
1	500

DataRate	M	N
0	59	51
1	59	51
2	59	51
3	123	115
4	230	222
5	230	222
6	230	222

1598

1599 1600

1601

16021603

1604

1605 1606

1607

1608

1609 1610

1611

1612

1613

1615

1616

7	230	222
8:15	Not de	efined

Table 81: RU864-870 maximum payload size

If the end-device will never operate with a repeater then the maximum application payload length in the absence of the optional **FOpt** control field SHOULD be:

DataRate	M	N	
0	59	51	
1	59	51	
2	59	51	
3	123	115	
4	250	242	
5	250	242	
6	250	242	
7	250	242	
8:15	Not defined		

Table 82: RU864-870 maximum payload size (not repeater compatible)

2.11.7 RU864-870 Receive windows

The RX1 receive window uses the same channel as the preceding uplink. The data rate is a function of the uplink data rate and the RX1DROffset as given by the following table. The allowed values for RX1DROffset are in the [0:5] range. Values in the [6:7] range are reserved for future use.

RX1DROffset Upstream data rate	0	1 Dow	2 rnstream data	3 a rate in RX1	4 slot	5
DR0	DR0	DR0	DR0	DR0	DR0	DR0
DR1	DR1	DR0	DR0	DR0	DR0	DR0
DR2	DR2	DR1	DR0	DR0	DR0	DR0
DR3	DR3	DR2	DR1	DR0	DR0	DR0
DR4	DR4	DR3	DR2	DR1	DR0	DR0
DR5	DR5	DR4	DR3	DR2	DR1	DR0
DR6	DR6	DR5	DR4	DR3	DR2	DR1
DR7	DR7	DR6	DR5	DR4	DR3	DR2

Table 83: RU864-870 downlink RX1 data rate mapping

The RX2 receive window uses a fixed frequency and data rate. The default parameters are 869.1MHz / DR0 (SF12, 125 kHz)

2.11.8 RU864-870 Class B beacon and default downlink channel

1614 The beacons SHALL be transmitted using the following settings

DR	3	Corresponds to SF9 spreading factor with 125 kHz BW			
CR	1	Coding rate = 4/5			
Signal polarity	Non-inverted	As opposed to normal downlink traffic which uses inverted			
		signal polarity			

Table 84: RU864-870 beacon settings

1617 The beacon frame content is:

Size (bytes)	2	4	2	7	2
BCNPayload	RFU	Time	CRC	GwSpecific	CRC

1618 The beacon default broadcast frequency is 869.1 MHz.

1619 The class B default downlink pingSlot frequency is 868.9 MHz.

1620

1621

2.11.9 RU864-870 Default Settings

The following parameters are recommended values for the RU864-870 MHz band.

1623 RECEIVE_DELAY1 1 s
1624 RECEIVE_DELAY2 2 s (MUST be RECEIVE_DELAY1 + 1s)
1625 JOIN_ACCEPT_DELAY1 5 s
1626 JOIN_ACCEPT_DELAY2 6 s

 1626
 JOIN_ACCEPT_DELAY2
 6 s

 1627
 MAX_FCNT_GAP
 16384

 1628
 ADR_ACK_LIMIT
 64

 1629
 ADR_ACK_DELAY
 32

1630 ACK_TIMEOUT 2 +/- 1 s (random delay between 1 and 3 seconds)

1631 If the actual parameter values implemented in the end-device are different from those default 1632 values (for example the end-device uses a longer RECEIVE DELAY1 and

1633 RECEIVE_DELAY2 latency), those parameters MUST be communicated to the network

server using an out-of-band channel during the end-device commissioning process. The

network server may not accept parameters different from those default values.

1637 **3 Revisions**

1639 1640 1641

1638	3.1	Revision	Α

• Initial 1.0.3 revision, the regional parameters were extracted from the LoRaWANV1.0.3 revision A.

- 1642 **4 Bibliography**
- 1643 4.1 References
- 1644
- 1645 [LORAWAN] LoRaWAN Specification, V1.0.3, the LoRa Alliance, January 2018.

1646 5 NOTICE OF USE AND DISCLOSURE

- 1647 Copyright © LoRa Alliance, Inc. (2015-2018). All Rights Reserved.
- The information within this document is the property of the LoRa Alliance ("The Alliance") and its use and disclosure
- are subject to LoRa Alliance Corporate Bylaws, Intellectual Property Rights (IPR) Policy and Membership
- 1650 Agreements.
- 1651 Elements of LoRa Alliance specifications may be subject to third party intellectual property rights, including without
- limitation, patent, copyright or trademark rights (such a third party may or may not be a member of LoRa Alliance).
- The Alliance is not responsible and shall not be held responsible in any manner for identifying or failing to identify
- any or all such third party intellectual property rights.
- 1655 This document and the information contained herein are provided on an "AS IS" basis and THE ALLIANCE
- 1656 DISCLAIMS ALL WARRANTIES EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO (A) ANY
- 1657 WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OF THIRD
- 1658 PARTIES (INCLUDING WITHOUT LIMITATION ANY INTELLECTUAL PROPERTY RIGHTS INCLUDING
- 1659 PATENT, COPYRIGHT OR TRADEMARK RIGHTS) OR (B) ANY IMPLIED WARRANTIES OF
- 1660 MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, TITLE OR NONINFRINGEMENT.
- 1661 IN NO EVENT WILL THE ALLIANCE BE LIABLE FOR ANY LOSS OF PROFITS, LOSS OF BUSINESS, LOSS
- 1662 OF USE OF DATA, INTERRUPTION OFBUSINESS, OR FOR ANY OTHER DIRECT, INDIRECT, SPECIAL OR
- 1663 EXEMPLARY, INCIDENTIAL, PUNITIVE OR CONSEQUENTIAL DAMAGES OF ANY KIND, IN CONTRACT OR
- 1664 IN TORT, IN CONNECTION WITH THIS DOCUMENT OR THE INFORMATION CONTAINED HEREIN, EVEN IF
- 1665 ADVISED OF THE POSSIBILITY OF SUCH LOSS OR DAMAGE.
- 1666 The above notice and this paragraph must be included on all copies of this document that are made.
- 1667 LoRa Alliance, Inc.
- 1668 2400 Camino Ramon, Suite 375
- 1669 San Ramon, CA 94583
- 1670 Note: All Company, brand and product names may be trademarks that are the sole property of their respective
- 1671 owners.