SEQUENCE LISTING

```
<110> Schweifer, Norbert
       Scherl-Mostageer, Marwa
       Sommergruber, Wolfgang
       Abseher, Roger
 <120> Tumorassoziiertes Antigen (B345)
 <130> 0652.2280001/EKS/AES
 <140>
 <141>
 <150> DE 100 33 080.0
 <151> 2000-07-07
 <150> DE 101 19 294.0
 <151> 2001-04-19
<150> US 60/243,158
<151> 2000-10-25
<150> US 60/297,747
 <151> 2001-06-14
 <160> 40
 <170> PatentIn Ver. 2.1
 <210> 1
 <211> 5897
 <212> DNA
 <213> Homo sapiens
 <220>
 <221> 5'UTR
 <222> (1)..(214)
 <220>
 <221> CDS
 <222> (215)..(2464)
 <220>
 <221> 3'UTR
 <222> (2465)..(5897)
 <400> 1
 cttgagatat tagaattcgc gactcctgaa ctgcggggtc tctatcgcac tgctaggggt 60
 tetgetgetg ggtgeggege geetgeegeg eggggeagaa gettttgaga ttgetetgee 120
```

Compound

Ü

13

acga	agaaa	agc a	aacat	taca	ag tt	ctca	ataaa	gct	gggg	gacc	ccga	ctct	gc t	ggca	aaacc	180
ctgt	taca	atc 9	gtcat	ttet	a aa	agao	Catat	aac							et gga er Gly	235
	aga Arg															283
	ata Ile 25															331
	gly ggg															379
	aga Arg															427
	ct g Leu															475
	tgc Cys															523
	gtg Val 105															571
	aag Lys															619
	ccc Pro															667
	cgt Arg															715
	ctg Leu															763
	acg Thr															811

	185					190					195					
	ctc Leu															859
	tac Tyr															907
	gac Asp															955
	ggc Gly															1003
	caa Gln 265															1051
	gtt Val															1099
	ccc Pro															1147
	gaa Glu															1195
	cac His															1243
	gtg Val 3 45															1291
	tcc Ser															1339
	ctg Leu															1387
agc	ctg	gtg	ctg	gtg	cca	gcc	cag	aag	ctg	cag	cag	cat	aca	cac	gag	1435

Ser	Leu	Val	Leu 395	Val	Pro	Ala	Gln	Lys 400	Leu	Gln	Gln	His	Thr 405	His	Glu	
	ccc Pro															1483
	cag Gln 425															1531
	atc Ile															1579
	agc Ser															1627
	cct Pro															1675
	agc Ser															1723
	ctc Leu 505															1771
	tgc Cys															1819
	cgc Arg															1867
	ttc Phe															1915
	agc Ser															1963
	cta Leu 585															2011
	act Thr															2059

600					605					610					615	
														aag Lys 630		2107
														aat Asn		2155
														aca Thr		2203
														ggc Gly		2251
														aca Thr		2299
														cac His 710		2347
														agc Ser		2395
														tct Ser		2443
	cca Pro 745					taa 750	gca	gcaa	gga (caca	gacai	tt c	cctt	actg	a	2494
aca	ctca	gga 🤅	gece	atgg	ag c	cage	agaat	t aa	cttg	atcc	att	ccag	acg ·	cttt	gctgag	2554
ttt	cata	aag	cagg	gcac	tg a	gaca	cccg	t da	gtgt	tcct	aac	caga	aat	ccta	aagaag	2614
agg	aatta	ata (caga	agga	ac a	gcag	gagg	t tt	teet	ggac	acc	gcca	act	tcac	attgct	2674
cag	tgga	ctc .	attc	taag	gg c	aaga	catt	g aa	aatg	atga	att	ccaa	tct	ggat	acagtc	2734
															agagga	
															taaaca	
gag	gctt	gcc ·	ctct	tcag	ga c	aaca	gttc	c aa	ttcc	aagg	agc	ctac	ctg	aggt	ccctac	2914

totcactggg gtccccagga tgaaaacgac aatgtgcctt tttattatta tttatttggt 2974 ggtcctgtgt tatttaagag atcaaatgta taaccaccta gctcttttca cctgacttag 3034 taataactca tactaactgg tttggatgcc tgggttgtga cttctactga ccgctagata 3094 aacgtgtgcc tgtcccccag gtggtgggaa taatttacaa tctgtccaac cagaaaagaa 3154 tgtgtgtgtt tgagcagcat tgacacatat ctgctttgat aagagacttc ctgattctct 3214 aggtoggttc gtggttatcc cattgtggaa attcatcttg aatcccattg tcctatagtc 3274 ctaqcaataa qaqaaatttc ctcaaqtttc catgtgcggt tctcctagct gcagcaatac 3334 tttgacattt aaagagaaat ttagagaata ttctcatcct ctaaaaatgt ttaaatatat 3394 accaaacagt ggcccctgc attagttttc tgttgccact gcaacccatt acttggtagc 3454 ttaaaaacaa cacattaget tatagteetg gggatcagaa ttecaaaatg gatgteeetg 3514 aatgaaaatc aaggtgtcag cagagctgtg ctccttctga aggctctagg gagaagccgg 3574 ttccttgcca tttcaagctt ctagaggctg gctgcattcc caggctccag tggctggtca 3634 agettttete acatggeate actgtgacae tggecetece acttecetet ttgaettaca 3694 aagcccacca ggaagatcca ggataatctc tccatctaaa gatccttcat catcctggaa 3754 gagectittg ccatgcaaga caacatagcc acaggtgggg attaggacca ggacatettt 3814 ggggtgctgt tattctgcct accacacctt cctgccacbg actcccacag gagaggctac 3874 aaaatgatct ggcgcacagg gatgttttgt ttagcttgcg gactctaaca cttaaaaaaa 3934 ccccaqatca qaagatctgg ccatgctggg gctcacattc tcacctagca acaactggct 3994 ggagetggge accagetetg cetttagaag gggtgtecae tteaccaggt caccacagee 4054 cacactacgc cctatcactt cccacaatga ggctaagtgt ttgtttctac tgatcaatgc 4114 ccctgcaggt tgcatttatt gtaatgaaaa agaaagactg ggattaatct ctaatcaggt 4174 gagtagacca tgagaccaat gtgtgctcac attaccettt ttetttttt tettttett 4234 tttettttt tttttaatgt gagacaggat eteattetgt tgeetagget ggagtgeagt 4294 ggcgcaatct cggctcactg caacctctgc ctcctgggct caagcaattc tcccacctca 4354 gcctcccaaa tagctgggat cactggcaca aaccaccatg cccagctaat tttgtatttt 4414 ttgtagagac agggtttcac catgttgccc aggctggtct caacctcctg ggctcaagca 4474 atcetectge eteggeetee caaagtgetg ggattacaga tgtgagecae egcatecage 4534 cccacacct catttatacc aattacctgc ccagtaactg tggacttttg cttcctcacc 4594 cctqctctga tctqqaagga gagggattat gttatagctt gtcagcacag tcccaagttc 4654 aatatttctg cggcaaaaac ttccttcaaa aaataaatgt acttcattgt attcaatgaa 4714 ttcaccttgq aaatqcaccq cctcaacttg ttcacatggc ataaatgaaa ggaattttat 4774 agtotoctaa atggogtgta ctgcaagacc tottgaacac tttccagagg ataggatatt 4834 taagtcatgc cettggcgtt geetatggca cettteeett etgaaagtet ggtteetgee 4894 cagtgaccet tggcettgtg ageegagatg etgaccetge ataaagggee aaaggaggge 4954 tgcggcttcc ttccctcact qaaqagccct tatttgaatt cactgtgtgg agccctagcc 5014 ctccattctc gacattcccc aacctcccag ccccttccaa gcaggactag gtgccctgca 5074 ttccacccaa ggtgggattg gccttcctta ggctggctac ttgtcaccat caccgacatc 5134 actgttgcct gcaaggacac cacgtggcca ttttccttca actgagggct caaaactcct 5194 ggacaagttg ctggctcctg agaccagtat ttcctggagm tgtgcctcag tgaagggqcc 5254 cagoctgagg aaccotggot ottttottta aagcocaggo occacttaca taaaacattt 5314 cagggtcact ggaaacagtg aagtgccatt tgtngaagcc tactgnatgc cagcccactg 5374 ctcatccacg tggtatgcca tgcctacgag gaaggccagc gcatgcagga ntggtctcta 5434 atgntgtggt cattgcacag aagggaaagg tctcaaggaa gagtcaactg ggacaagcac 5494 aagcccaccg gacatggcct tggtaaaggt tagcagactg gtgtgtgtgg atctgcagtg 5554 cttcactgga aataatttat tcattgcaga tactttttag gtggcatttt attcatttcc 5614 tgtgctttaa ataaacaaat gtaccaaaaa acaagtatca agctgtttaa gtgcttcggc 5674 tacttgtccc ctggttcagt agaggccccg gtttcccagt tgttgactgt gacaggctca 5734 gcatgggctc agcagatgct gtcttaattt gtggatgata cagaaagcca ggctttggga 5794 tacaagttot ttootottoa tttgatgoog tgcactgtgt gaagcagatg tttttgtoog 5854 gaaataaaaa taatagtott ggagtotogo caaaaaaaaa aag 5897

<210> 2 <211> 749

<211> 749 <212> PRT

<213> Homo sapiens

<400> 2

- Met Leu Ser Ile Lys Ser Gly Glu Arg Ile Val Phe Thr Phe Ser Cys 1 $$ 10 $$ 15
- Gln Ser Pro Glu Asn His Phe Val Ile Glu Ile Gln Lys Asn Ile Asp 20 25 30
- Cys Met Ser Gly Pro Cys Pro Phe Gly Glu Val Gln Leu Gln Pro Ser $35 \ \ 40 \ \ 45$
- Thr Ser Leu Leu Pro Thr Leu Asn Arg Thr Phe Ile Trp Asp Val Lys 50 55 60
- Ala His Lys Ser Ile Gly Leu Glu Leu Gln Phe Ser Ile Pro Arg Leu 65 70 75 80
- Arg Gln Ile Gly Pro Gly Glu Ser Cys Pro Asp Gly Val Thr His Ser 85 90 95
- Ile Ser Gly Arg Ile Asp Ala Thr Val Val Arg Ile Gly Thr Phe Cys 100 \$100\$
- Ser Asn Gly Thr Val Ser Arg Ile Lys Met Gln Glu Gly Val Lys Met 115 120 125
- Ala Leu His Leu Pro Trp Phe His Pro Arg Asn Val Ser Gly Phe Ser 130 135 140
- Ile Ala Asn Arg Ser Ser Ile Lys Arg Leu Cys Ile Ile Glu Ser Val 145 150 155 160
- Phe Glu Gly Glu Gly Ser Ala Thr Leu Met Ser Ala Asn Tyr Pro Glu 165 170 175
- Gly Phe Pro Glu Asp Glu Leu Met Thr Trp Gln Phe Val Val Pro Ala 180 $$185\$
- His Leu Arg Ala Ser Val Ser Phe Leu Asn Phe Asn Leu Ser Asn Cys 195 200 205
- Glu Arg Lys Glu Glu Arg Val Glu Tyr Tyr Ile Pro Gly Ser Thr Thr 210 215 220
- Asn Pro Glu Val Phe Lys Leu Glu Asp Lys Gln Pro Gly Asn Met Ala 225 230 235 240
- Gly Asn Phe Asn Leu Ser Leu Gln Gly Cys Asp Gln Asp Ala Gln Ser $245 \hspace{1.5cm} 250 \hspace{1.5cm} 255$
- Pro Gly Ile Leu Arg Leu Gln Phe Gln Val Leu Val Gln His Pro Gln
- Asn Glu Ser Asn Lys Ile Tyr Val Val Asp Leu Ser Asn Glu Arg Ala 275 280 285

Met Ser Leu Thr Ile Glu Pro Arg Pro Val Lys Gln Ser Arg Lys Phe 290 295 300

Val Pro Gly Cys Phe Val Cys Leu Glu Ser Arg Thr Cys Ser Ser Asn 305 310 315 320

Leu Thr Leu Thr Ser Gly Ser Lys His Lys Ile Ser Phe Leu Cys Asp 325 330 335

Asp Leu Thr Arg Leu Trp Met Asn Val Glu Lys Thr Ile Ser Cys Thr 340 345 350

Asp His Arg Tyr Cys Gln Arg Lys Ser Tyr Ser Leu Gln Val Pro Ser 355 360 365

Asp Ile Leu His Leu Pro Val Glu Leu His Asp Phe Ser Trp Lys Leu 370 375 380

Leu Val Pro Lys Asp Arg Leu Ser Leu Val Leu Val Pro Ala Gln Lys 385 \$390\$

Leu Gln Gln His Thr His Glu Lys Pro Cys Asn Thr Ser Phe Ser Tyr 405 410 415

Leu Val Ala Ser Ala Ile Pro Ser Gln Asp Leu Tyr Phe Gly Ser Phe
420 425 430

Cys Pro Gly Gly Ser Ile Lys Gln Ile Gln Val Lys Gln Asn Ile Ser $435 \ \ \, 440 \ \ \, 445$

Val Thr Leu Arg Thr Phe Ala Pro Ser Phe Gln Gln Glu Ala Ser Arg 450 455 460

Gln Gly Leu Thr Val Ser Phe Ile Pro Tyr Phe Lys Glu Glu Gly Val 465 \$470\$ 475 480

Phe Thr Val Thr Pro Asp Thr Lys Ser Lys Val Tyr Leu Arg Thr Pro $485 \ \ \, 490 \ \ \, 495$

Asn Trp Asp Arg Gly Leu Pro Ser Leu Thr Ser Val Ser Trp Asn Ile 500 505 510

Ser Gly Val Val Cys Gln Thr Gly Arg Ala Phe Met Ile Ile Gln Glu 530 535 540

Gln Arg Thr Arg Ala Glu Glu Ile Phe Ser Leu Asp Glu Asp Val Leu 545 550550555555560

Pro Lys Pro Ser Phe His His His Ser Phe Trp Val Asn Ile Ser Asn 565 570 575

Leu Thr Pro Arg Thr Val Asp Leu Thr Val Ile Leu Ile Ala Ala Val 595 600 605

Gly Gly Val Leu Leu Leu Ser Ala Leu Gly Leu Ile Ile Cys Cys 610 620

Val Lys Lys Lys Lys Lys Thr Asn Lys Gly Pro Ala Val Gly Ile 625 630 635

Cys Ser Gln Arg Trp Thr Pro Thr Gly Arg Ser Arg Ala Pro Trp Gly 690 695 700

Ser Val Leu Pro Pro His Pro Pro Tyr Ala Pro Gly Pro Gln Leu Gln 705 710715715

Ser Trp Pro Leu Arg Ser His Leu Leu Ala Pro Leu Leu Ser Leu Arg 725 730 735

Val Asn Arg Thr Pro Ser Pro Ile Pro Thr Met Gly Met

```
<210 > 3
<211 > 6163
<212 > DNA
<213 > Homo sapiens

<220 >
<221 > 5'UTR

<222 > (1) .. (282)

<221 > GC_signal

<222 > (147) .. (157)

<220 >
<221 > GC_signal

<222 / (201) .. (202)
</pre>
<221 / GC_signal
</pre>
<222 / GC_signal
</pre>
<222 / GC_signal
</pre>
<223 / GC_signal
</pre>
<221 / GC_signal
</pre>
<222 / GC_signal
</pre>
<223 / GC_signal
</pre>
<221 / GC_signal
</pre>
<222 / GC_signal
</pre>
<223 / GC_signal
</pre>

<223 / GC_signal
</pre>
<223 / GC_signal
</pre>
<223 / GC_signal
</pre>
<223 / GC_signal
</pre>
<223 / GC_signal
</pre>
<223 / GC_signal
</pre>
<223 / GC_signal
</pre>
<223 / GC_signal
</pre>
<223 / GC_signal
</pre>
<224 / GC_signal
</pre>
<225 / GC_signal
</pre>
<226 / GC_signal
</pre>
<227 / GC_signal
</pre>
<228 / GC_signal
</pre>
<229 / GC_signal
</pre>
<pre
```

<220>

```
<221> 3'UTR
<222> (2794)..(6163)
<220>
<221> 3'UTR
<222> (2794)..(6163)
<220×
<221> CDS
<222> (283)..(2793)
<400> 3
ccaacgeege aatggggagt agtagggace cagcaacceg gtgeegggag ccctgcaccc 60
tgggagggag aggcggtcgc tgaggcagga agaggaggag gagagagagg agggacqcac 120
cgggtcagct cgcgatcctg ctgcgcaggg cggggctcgg gccggtccgc ccgcgcgcag 180
gtgagtgagc cagggggag cgcagctgcg ccgggcttgg gcgcctgggg ccgccgctcc 240
ccaccgtcgt tttccccacc gaggccgagg cgtcccggag tc atg gcc ggc ctg
                                                                  294
                                               Met Ala Glv Leu
aac tgc ggg gtc tct atc gca ctg cta ggg gtt ctg ctg ctg ggt gcg
                                                                  342
Asn Cys Gly Val Ser Ile Ala Leu Leu Gly Val Leu Leu Gly Ala
qeq eqe etq eeq eqe qqq qea gaa get ttt gag att get etg eea ega
                                                                   390
Ala Arg Leu Pro Arg Gly Ala Glu Ala Phe Glu Ile Ala Leu Pro Arg
                 25
gaa age aac att aca gtt ete ata aag etg ggg ace eeg act etg etg
                                                                   438
Glu Ser Asn Ile Thr Val Leu Ile Lys Leu Gly Thr Pro Thr Leu Leu
gca aaa ccc tqt tac atc gtc att tct aaa aga cat ata acc atg ttg
                                                                   486
Ala Lys Pro Cys Tyr Ile Val Ile Ser Lys Arg His Ile Thr Met Leu
tee ate aag tet gga gaa aga ata gte ttt ace ttt age tge eag agt
                                                                   534
Ser Ile Lys Ser Gly Glu Arg Ile Val Phe Thr Phe Ser Cys Gln Ser
     70
cct gag aat cac ttt gtc ata gag atc cag aaa aat att gac tgt atg
                                                                   582
Pro Glu Asn His Phe Val Ile Glu Ile Gln Lys Asn Ile Asp Cys Met
85
                     90
tca ggc cca tgt cct ttt ggg gag gtt cag ctt cag ccc tcg aca tcg
                                                                   630
Ser Gly Pro Cys Pro Phe Gly Glu Val Gln Leu Gln Pro Ser Thr Ser
                105
ttg ttg cet ace etc aac aga act ttc atc tgg gat gtc aaa get cat
                                                                   678
Leu Leu Pro Thr Leu Asn Arg Thr Phe Ile Trp Asp Val Lys Ala His
```

		120			125			130		
	agc Ser									726
	ggt Gly 150									774
	cga Arg									822
	act Thr									870
	ctc Leu									918
	cgc Arg									966
	gaa Glu 230									1014
	gag Glu									1062
	gcc Ala									1110
	gag Glu									1158
	gtg Val									1206
	aac Asn 310									1254
	ctc Leu									1302

aat Asn								1350
acc Thr								1398
tgt Cys								1446
aca Thr 390								1494
cgt Arg								1542
tac Tyr								1590
cac His								1638
aag Lys								1686
cat His 470								1734
agt Ser								1782
ggc Gly								1830
cgc Arg								1878
acg Thr								1926

gtg acc o Val Thr 1 550							1974
gac cgg (Asp Arg (565							2022
ccc aga g							2070
gtg gtc : Val Val (2118
acc cgg (Phe					2166
cca agc f Pro Ser 1 630							2214
ccc acg Pro Thr : 645							2262
cca agg a							2310
gga gtc : Gly Val :							2358
aag aag Lys Lys :		Asn					2406
ggc aac Gly Asn 710							2454
ggg cga Gly Arg : 725							2502
atg gta Met Val							2550

			ttc cag ggc Phe Gln Gly 765		Val Cys	2598
	r Pro Pro T		tcc agg gcc Ser Arg Ala			2646
			tec eet eet Ser Pro Pro			2694
	r Phe Ser H		aat ggg gat Asn Gly Asp 815			2742
			cag gag ccc Gln Glu Pro 830			2790
taa cttgat	ccat tccaga	eget ttget	gagtt tcataa	agca gggcact	gag	2843
acaccegtee	gtgttcctaa	ccagaaatc	c taaagaagag	gaattataca	gaaggaacag	2903
caggaggttt	teetggacae	cgccaactt	c acattgctca	gtggactcat	tctaagggca	2963
agacattgaa	aatgatgaat	tccaatctg	g atacagtcat	gacageteat	gtgctcctca	3023
acttaggctg	tgcggttagc	cagcctgta	a tgagaggaga	gaggcctgag	tcacctagca	3083
tagggttgca	gcaagccctg	gattcagag	t gttaaacaga	ggcttgccct	cttcaggaca	3143
acagttecaa	ttccaaggag	cctacctga	g gtecetaete	tcactggggt	ccccaggatg	3203
aaaacgacaa	tgtgcctttt	tattattat	t tatttggtgg	tcctgtgtta	tttaagagat	3263
caaatgtata	accacctage	tettttcac	c tgacttagta	ataactcata	ctaactggtt	3323
tggatgcctg	ggttgtgact	tctactgac	c gctagataaa	cgtgtgcctg	tcccccaggt	3383
ggtgggaata	atttacaatc	tgtccaacc	a gaaaagaatg	tgtgtgtttg	agcagcattg	3443
acacatatct	gctttgataa	gagacttcc	t gattctctag	gtcggttcgt	ggttatccca	3503
ttgtggaaat	: tcatcttgaa	tcccattgt	c ctatagtcct	agcaataaga	gaaatttcct	3563
caagtttcca	tgtgcggttc	tcctagctg	c agcaatactt	tgacatttaa	agagaaattt	3623
agagaatatt	ctcatcctct	aaaaatgtt	t aaatatatac	caaacagtgg	ccccctgcat	3683

tagttttctg ttgccactgc aacccattac ttggtagctt aaaaacaaca cattagctta 3743

tagtcctggg gatcagaatt ccaaaatgga tgtccctgaa tgaaaatcaa ggtgtcagca 3803 gagetgtget cettetgaag getetaggga gaageeggtt cettgecatt teaagettet 3863 aqaqqctqqc tqcattccca ggctccagtg gctggtcaag cttttctcac atggcatcac 3923 tqtqacactq qccctcccac ttccctcttt gacttacaaa gcccaccagg aagatccagg 3983 ataatototo catotaaaga toottoatoa tootggaaga goottttgoo atgcaagaca 4043 acatagocac aggtggggat taggaccagg acatotttgg ggtgctgtta ttotgcctac 4103 cacaccttcc tgccactgac tcccacagga gaggctacaa aatgatctgg cgcacaggga 4163 tgttttgttt agcttgcgga ctctaacact taaaaaaaacc ccagatcaga agatctggcc 4223 atgctgggge tcacattete acctageaac aactggetgg agetgggeac cagetetgee 4283 tttagaaggg gtgtccactt caccaggtca ccacagccca cactacgccc tatcacttcc 4343 cacaatgagg ctaagtgttt gtttctactg atcaatgccc ctgcaggttg catttattgt 4403 aatgaaaaag aaagactggg attaatctct aatcaggtga gtagaccatg agaccaatgt 4463 gacaggatct cattetgttg cetaggetgg agtgcagtgg egeaateteg geteaetgca 4583 acctctgcct cctgggctca agcaattctc ccacctcagc ctcccaaata gctgggatca 4643 ctggcacaaa ccaccatgcc cagctaattt tgtatttttt gtagagacag ggtttcacca 4703 tgttgcccag gctggtctca acctcctggg ctcaagcaat cctcctgcct cggcctccca 4763 aagtgctggg attacagatg tgagccaccg catccagccc cacaccctca tttataccaa 4823 ttacctgccc agtaactgtg gacttttgct tcctcacccc tgctctgatc tggaaggaga 4883 gggattatgt tatagettgt cageacagte ceaagtteaa tatttetgeg geaaaaactt 4943 cottoaaaaa araaatgtac ttoattgtat toaatgaatt caccttggaa atgcaccgcc 5003 tcaacttgtt cacatggcat aaatgaaagg aattttatag tctcctaaat ggcgtgtact 5063 gcaagacctc ttgaacactt tccagaggat aggatattta agtcatgccc ttggcgttgc 5123 ctatggcacc tttcccttct gaaagtctgg ttcctgccca gtgacccttg gccttgtgag 5183 ccgagatgct gaccetgcat aaagggccaa aggagggctg cggctteett ccctcactga 5243 agagecetta titigaattea eigitgiggag eestageest esatteisga satteessaa 5303 cctcccagcc ccttccaagc aggactaggt gccctgcatt ccacccaagg tgggattggc 5363 cttccttagg ctgctactt gtcaccatca ccgacatca tgttgcctg aaggacacca 5423
cgtggccatt ttccttcaac tgagggctca aaactcctgg acaagttgct ggctcctgag 5483
accagtattt cctggagctg tgcctcagtg aaggggccca gcctgaggaa ccctggctct 5543
tttctttaaa gcccaggccc cactacata aaacatttca gggtcactgg aaacagtgaa 5603
gtgccatttg ttgaagccta ctgcatgcca gcccactgct catcacactg gtctgccatg 5663
cctacgagga aggccagcg atgcaggact ggtctctaat gctgtggtca ttgcacagaa 5723
gggaaaggtc tcaaggaaga gtcaactggg acaaggacaa gcccaccgga catggccttg 5783
gtaaaggtta gcagactggt gtgtgtggat ctgcagtga tcactggaaa taatttattc 5843
attgcagata ctttttaggt ggcatttat tcatttcctg tgctttaaat aaacaatgt 5903
accaaaaaac aagtacaag ctgtttaagt gctcggcta ctgccccg ggtccagtag 5963
acgacaggt tcccagtg ttgactgta caggctcag atgggctca gagatgctg 5963
acgacaggt ttcccagttg ttgactgta caggctcag atgggctcag cagatgctg 6023
cttaatttgt ggatgataca gaaagccagg ctttgggata caagttctt cctctcatt 6083
tgatgccgtg cactgtgtga agcaggtt ttgtccgga aataaaaata atagtcttgg 6143
agtctcgcca aaaaaaaaaa

<210> 4 <211> 836 <212> PRT <213> Homo sapiens <400> 4 Met Ala Gly Leu As

Met Ala Gly Leu Asn Cys Gly Val Ser Ile Ala Leu Leu Gly Val Leu 1 5 10 15

Leu Leu Gly Ala Ala Arg Leu Pro Arg Gly Ala Glu Ala Phe Glu Ile 20 25 30

Ala Leu Pro Arg Glu Ser Asn Ile Thr Val Leu Ile Lys Leu Gly Thr 35 40 45

Pro Thr Leu Leu Ala Lys Pro Cys Tyr Ile Val Ile Ser Lys Arg His 50 55 60

Ile Thr Met Leu Ser Ile Lys Ser Gly Glu Arg Ile Val Phe Thr Phe 65 70 75 80

Ser Cys Gln Ser Pro Glu Asn His Phe Val Ile Glu Ile Gln Lys Asn

Ile Asp Cys Met Ser Gly Pro Cys Pro Phe Gly Glu Val Gln Leu Gln
100 105 110

Pro Ser Thr Ser Leu Leu Pro Thr Leu Asn Arg Thr Phe Ile Trp Asp 115 120 125

Val Lys Ala His Lys Ser Ile Gly Leu Glu Leu Gln Phe Ser Ile Pro 130 135 140

Arg Leu Arg Gln Ile Gly Pro Gly Glu Ser Cys Pro Asp Gly Val Thr 145 150 155 160

His Ser Ile Ser Gly Arg Ile Asp Ala Thr Val Val Arg Ile Gly Thr 165 170 175

Phe Cys Ser Asn Gly Thr Val Ser Arg Ile Lys Met Gln Glu Gly Val

Lys Met Ala Leu His Leu Pro Trp Phe His Pro Arg Asn Val Ser Gly
195 200 205

Phe Ser Ile Ala Asn Arg Ser Ser Ile Lys Arg Leu Cys Ile Ile Glu 210 215 220

Ser Val Phe Glu Gly Glu Gly Ser Ala Thr Leu Met Ser Ala Asn Tyr 225 230235240

Pro Glu Gly Phe Pro Glu Asp Glu Leu Met Thr Trp Gln Phe Val Val 245 \$250\$

Pro Ala His Leu Arg Ala Ser Val Ser Phe Leu Asn Phe Asn Leu Ser 260 265 270

Asn Cys Glu Arg Lys Glu Glu Arg Val Glu Tyr Tyr Ile Pro Gly Ser $275 \\ 280 \\ 285$

Thr Thr Asn Pro Glu Val Phe Lys Leu Glu Asp Lys Gln Pro Gly Asn 290 \$295\$

Met Ala Gly Asn Phe Asn Leu Ser Leu Gln Gly Cys Asp Gln Asp Ala 305 \$310\$

Gln Ser Pro Gly Ile Leu Arg Leu Gln Phe Gln Val Leu Val Gln His 325 330 335

Pro Gln Asn Glu Ser Asn Lys Ile Tyr Val Val Asp Leu Ser Asn Glu $340 \hspace{1.5cm} 345 \hspace{1.5cm} 350 \hspace{1.5cm}$

Arg Ala Met Ser Leu Thr Ile Glu Pro Arg Pro Val Lys Gln Ser Arg 355 360 365

Lys Phe Val Pro Gly Cys Phe Val Cys Leu Glu Ser Arg Thr Cys Ser

	370					375					380				
Ser 385	Asn	Leu	Thr	Leu	Thr 390	Ser	Gly	Ser	Lys	His 395	Lys	Ile	Ser	Phe	Leu 400
Cys	Asp	Asp	Leu	Thr 405	Arg	Leu	Trp	Met	Asn 410	Val	Glu	Lys	Thr	Ile 415	Ser
Cys	Thr	Asp	His 420	Arg	Tyr	Cys	Gln	Arg 425	Lys	Ser	Tyr	Ser	Leu 430	Gln	Val
Pro	Ser	Asp 435	Ile	Leu	His	Leu	Pro 440	Val	Glu	Leu	His	Asp 445	Phe	Ser	Trp
Lys	Leu 450	Leu	Val	Pro	Lys	Asp 455	Arg	Leu	Ser	Leu	Val 460	Leu	Val	Pro	Ala
Gln 465	Lys	Leu	Gln	Gln	His 470	Thr	His	Glu	Lys	Pro 475	Сув	Asn	Thr	Ser	Phe 480
Ser	Tyr	Leu	Val	Ala 485	Ser	Ala	Ile	Pro	Ser 490	Gln	Asp	Leu	Tyr	Phe 495	Gly
Ser	Phe	Cys	Pro 500	Gly	Gly	Ser	Ile	Lys 505	Gln	Ile	Gln	Val	Lys 510	Gln	Asn
Ile	Ser	Val 515	Thr	Leu	Arg	Thr	Phe 520	Ala	Pro	Ser	Phe	Gln 525	Gln	Glu	Ala
Ser	Arg 530	Gln	Gly	Leu	Thr	Val 535	Ser	Phe	Ile	Pro	Tyr 540	Phe	Lys	Glu	Glu
Gly 545	Val	Phe	Thr	Val	Thr 550	Pro	Asp	Thr	Lys	Ser 555	Lys	Val	Tyr	Leu	Arg 560
Thr	Pro	Asn	Trp	Asp 565	Arg	Gly	Leu	Pro	Ser 570	Leu	Thr	Ser	Val	Ser 575	Trp
Asn	Ile	Ser	Val 580	Pro	Arg	Asp	Gln	Val 585	Ala	Cys	Leu	Thr	Phe 590	Phe	Lys
Glu	Arg	Ser 595	Gly	Val	Val	Cys	Gln 600	Thr	Gly	Arg	Ala	Phe 605	Met	Ile	Ile
Gln	Glu 610	Gln	Arg	Thr	Arg	Ala 615	Glu	Glu	Ile	Phe	Ser 620	Leu	Asp	Glu	Asp
Val 625	Leu	Pro	Lys	Pro	Ser 630	Phe	His	His	His	Ser 635	Phe	Trp	Val	Asn	Ile 640
Ser	Asn	Cys	Ser	Pro 645	Thr	Ser	Gly	Lys	Gln 650	Leu	Asp	Leu	Leu	Phe 655	Ser

Ala Val Gly Gly Val Leu Leu Leu Ser Ala Leu Gly Leu Ile Ile 675 680 685

Cys Cys Val Lys Lys Lys Lys Lys Thr Asn Lys Gly Pro Ala Val 690 695 700

Gly Ile Tyr Asn Gly Asn Ile Asn Thr Glu Met Pro Arg Gln Pro Lys $705 \hspace{1.5cm} 710 \hspace{1.5cm} 715 \hspace{1.5cm} 720$

Lys Phe Gln Lys Gly Arg Lys Asp Asn Asp Ser His Val Tyr Ala Val 725 730 735

Ile Glu Asp Thr Met Val Tyr Gly His Leu Leu Gln Asp Ser Ser Gly 740 745

Ser Phe Leu Gln Pro Glu Val Asp Thr Tyr Arg Pro Phe Gln Gly Thr 755 760 765

Met Gly Val Cys Pro Pro Ser Pro Pro Thr Ile Cys Ser Arg Ala Pro 770 775 780

Thr Ala Lys Leu Ala Thr Glu Glu Pro Pro Pro Arg Ser Pro Pro Glu 785 790 800

Ser Glu Ser Glu Pro Tyr Thr Phe Ser His Pro Asn Asn Gly Asp Values 810 \$815

Ser Ser Lys Asp Thr Asp Ile Pro Leu Leu Asn Thr Glu Pro Met 820 \$825\$

Glu Pro Ala Glu 835

<210> 5 <211> 23

<212> DNA

<213> Kunstliche Sequenz

<220>

<223> Beschreibung der kunstlichen Sequenz: Primer

<400> 5

accgcctcaa cttgttcaca tgg

23

<210> 6

<211> 26

```
<212> DNA
<213> Kunstliche Sequenz
<223> Beschreibung der kunstlichen Sequenz: Primer
                                                                   26
ctggtctcag gagccagcaa cttgtc
<210> 7
<211> 25
<212> DNA
<213> Kunstliche Sequenz
<220>
<223> Beschreibung der kunstlichen Sequenz: Primer
<400> 7
ctcatgacgt ggcagtttgt cgttc
                                                                   25
<210> 8
<211> 26
<212> DNA
<213> Kunstliche Sequenz
<223> Beschreibung der kunstlichen Sequenz: Primer
<400> 8
                                                                   26
ggetegetea ttactcaagt caacca
<210> 9
<211> 36
<212> DNA
<213> Kunstliche Sequenz
<220>
<223> Beschreibung der kunstlichen Sequenz: Primer
<400> 9
                                                                   36
attegegact gatgategat ttttttttt ttttt
<210> 10
<211> 20
```

DOBOOKSO DINED

<212> DNA

```
<213> Kunstliche Sequenz
 <220>
 <223> Beschreibung der kunstlichen Sequenz: Primer
 <400> 10
                                                                    2.0
 attcgcgact gatgatcgat
 <210> 11
 <211> 20
 <212> DNA
 <213> Kunstliche Sequenz
 <220>
 <223> Beschreibung der kunstlichen Sequenz: Primer
<400> 11
gagatattag aattctactc
                                                                    20
<210> 12
<211> 17
<212> DNA
<213> Kunstliche Sequenz
 <220>
 <223> Beschreibung der kunstlichen Sequenz: Primer
 <400> 12
                                                                    17
 gagtagaatt ctaatat
 <210> 13
 <211> 22
 <212> DNA
 <213> Kunstliche Sequenz
 <220>
 <223> Beschreibung der kunstlichen Sequenz: Primer
 <400> 13
                                                                     22
 agtccatgtg aacaagttga gg
 <210> 14
 <211> 20
 <212> DNA
 <213> Kunstliche Sequenz
```

DODGOTTO DYDENI

```
<220>
<223> Beschreibung der kunstlichen Sequenz: Primer
<400> 14
aatteteeca ceteageete
                                                                    20
<210> 15
<211> 22
<212> DNA
<213> Kunstliche Sequenz
<220>
<223> Beschreibung der kunstlichen Sequenz: Primer
<400> 15
aggatgaaaa cgacaatgtg cc
                                                                    22
<210> 16
<211> 21
<212> DNA
<213> Kunstliche Sequenz
<220>
<223> Beschreibung der kunstlichen Sequenz: Primer
<400> 16
agaattgctt gagcccagga g
                                                                    21
<210> 17
<211> 21
<212> DNA
<213> Kunstliche Sequenz
<220>
<223> Beschreibung der kunstlichen Sequenz: Primer
<400> 17
caacttcaca ttgctcagtg g
                                                                    21
<210> 18
<211> 25
<212> DNA
<213> Kunstliche Sequenz
<220>
<223> Beschreibung der kunstlichen Sequenz: Primer
```

DOROGEO DYDEDA

```
<400> 18
tgagcaagtt cagcctggtt aagtc
                                                                   25
<210> 19
<211> 26
<212> DNA
<213> Kunstliche Sequenz
<223> Beschreibung der kunstlichen Sequenz: Primer
<400> 19
                                                                   26
caccgaatac tcataaagaa ggtccc
<210> 20
<211> 26
<212> DNA
<213> Kunstliche Seguenz
<220>
<223> Beschreibung der kunstlichen Sequenz: Primer
<400> 20
                                                                   26
tagacttcga gcaggagatg gccact
<210> 21
<211> 20
<212> DNA
<213> Kunstliche Sequenz
<223> Beschreibung der kunstlichen Sequenz: Primer
<400> 21
ccaqccatqt acqtaqccat
                                                                   20
<210> 22
<211> 19
<212> DNA
<213> Kunstliche Sequenz
<223> Beschreibung der kunstlichen Sequenz: Primer
<400> 22
                                                                   19
ccaagaagga aggctggaa
```

```
<210> 23
<211> 25
<212> DNA
<213> Kunstliche Sequenz
<220>
<223> Beschreibung der kunstlichen Sequenz: Primer
<400> 23
ccatcaccat cttccaggag cgaga
                                                                   25
<210> 24
<211> 19
<212> DNA
<213> Kunstliche Sequenz
<223> Beschreibung der kunstlichen Sequenz: Primer
<400> 24
                                                                   19
ccaagaagga aggctggaa
<210> 25
<211> 20
<212> DNA
<213> Kunstliche Seguenz
<223> Beschreibung der kunstlichen Sequenz: Primer
<400> 25
tgcaggaggc attgctgatg
                                                                    20
<210> 26
<211> 19
<212> DNA
<213> Kunstliche Sequenz
<223> Beschreibung der kunstlichen Sequenz: Primer
<400> 26
aaatcgtgca cttgcaggc
                                                                    19
```

nosocco nyana

```
<210> 27
<211> 18
<212> DNA
<213> Kunstliche Sequenz
<220>
<223> Beschreibung der kunstlichen Sequenz: Primer
<400> 27
                                                                    18
ttgatgcgtt ccagctga
<210> 28
<211> 21
<212> DNA
<213> Kunstliche Sequenz
<223> Beschreibung der kunstlichen Sequenz: Primer
<400> 28
                                                                    21
ttgaattcac tgtgtggagc c
<210> 29
<211> 19
<212> DNA
<213> Kunstliche Sequenz
<220>
<223> Beschreibung der kunstlichen Sequenz: Primer
<400> 29
tgcaggcaac agtgatgtc
                                                                    19
<210> 30
<211> 24
<212> DNA
<213> Kunstliche Sequenz
<223> Beschreibung der kunstlichen Sequenz: Primer
<400> 30
                                                                    24
attggccttc cttaggctgg ctac
 <210> 31
```

DOBOOKS DY

13

137

15

14

<211> 43

```
<212> DNA
<213> Kunstliche Seguenz
<223> Beschreibung der kunstlichen Sequenz: Primer
tgtagcgtga agacgacaga aagggcgtgg taccgagctc gag
                                                                   43
<210> 32
<211> 22
<212> DNA
<213> Kunstliche Sequenz
<220>
<223> Beschreibung der kunstlichen Sequenz: Primer
<400> 32
agggcgtggt accgagctcg ag
                                                                   22
<210> 33
<211> 11
<212> DNA
<213> Kunstliche Sequenz
<223> Beschreibung der kunstlichen Sequenz: Primer
<400> 33
 ggctcgagct c
                                                                    11
 <210> 34
 <211> 22
 <212> DNA
 <213> Kunstliche Sequenz
 <223> Beschreibung der kunstlichen Sequenz: Primer
 <400> 34
 ggccatgtcc ggtgggcttg tg
                                                                    22
 <210> 35
 <211> 26
 <212> DNA
```

DOSGOZEO CYDEDI

<213> Kunstliche Sequenz

```
<220>
 <223> Beschreibung der kunstlichen Sequenz: Primer
 <400> 35
                                                                    26
 ctcaaaactc ctggacaagt tgctgg
 <210> 36
 <211> 22
 <212> DNA
 <213> Kunstliche Sequenz
 <220>
 <223> Beschreibung der kunstlichen Sequenz: Primer
 <400> 36
 aaggtgaagg toggagtcaa og
                                                                    22
<210> 37
<211> 24
<212> DNA
<213> Kunstliche Sequenz
<220>
<223> Beschreibung der kunstlichen Sequenz: Primer
 <400> 37
 ggcagagatg atgacccttt tggc
                                                                    24
 <210> 38
 <211> 23
 <212> DNA
 <213> Kunstliche Sequenz
 <220>
 <221> 5'UTR
 <222> (1)..(282)
 <220>
 <221> GC signal
 <222> (147)..(157)
 <220>
 <221> misc_feature
 <222> (201)..(209)
 <223> cap signal; Transkriptionsstart
 <220>
 <221> 3'UTR
```

orso proson

```
<222> (2794)..(6163)
<220>
<221> 3'UTR
<222> (2794)..(6163)
<220>
<221> CDS
<222> (283)..(2793)
<400> 38
                                                                  23
agcagcagaa cccctagcag tgc
<210> 39
<211> 26
<212> DNA
<213> Kunstliche Sequenz
<220>
<223> Beschreibung der kunstlichen Sequenz: Primer
<400> 39
                                                                  26
agaaccccta gcagtgcgat agagac
<210> 40
<211> 27
<212> DNA
<213> Kunstliche Sequenz
<220>
<223> Beschreibung der kunstlichen Sequenz: Primer
<400> 40
```

gaactgtaat gttgctttct cgtggca

nosooggo gyneni