Proof of diagonality

Desh Raj

November 18, 2018

Theorem

For an arbitrary matrix D, a diagonal matrix Λ , and a positive scalar γ , the quantity

$$L(D) = \gamma \log |D| + \operatorname{tr}(D\Lambda) - \frac{1}{2}\operatorname{tr}(D^T D)$$

is maximized when D is diagonal.

Lemma 1

If A is an $n \times n$ matrix, then the sum of the n eigenvalues is the trace of A and their product is the determinant of A.

Proof. Let

$$A = \begin{pmatrix} a_{11} & \dots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{n1} & \dots & a_{nn} \end{pmatrix}.$$

Let the eigenvalues be $\lambda_1, \ldots, \lambda_n$ and the characteristic polynomial be $p(\lambda) = |\lambda I - A| = \lambda^n + c_{n-1}\lambda^{n-1} + \ldots + c_1\lambda + c_0 = (\lambda - \lambda_1) \ldots (\lambda - \lambda_n)$, since the eigenvalues are the roots of the characteristic polynomial.

Put $\lambda = 0$ in the characteristic polynomial to get

$$|0I - A| = (0 - \lambda_1) \dots (0 - \lambda_n)$$

$$\Longrightarrow (-1)^n |A| = (-1)^n \lambda_1 \dots \lambda_n$$

$$\Longrightarrow |A| = \lambda_1 \dots \lambda_n.$$

Second, consider the coefficient c_{n-1} in the characteristic polynomial. It can be calculated in 2 ways: first, by expanding $p(\lambda) = (\lambda - \lambda_1) \dots (\lambda - \lambda_n) = -\lambda_1 \lambda^{n-1} - \dots - \lambda_n \lambda^{n-1}$, and so $c_{n-1} = -(\lambda_1 + \dots + \lambda_n)$.

The coefficient can also be obtained by expanding

$$|\lambda I - A| = \begin{pmatrix} \lambda - a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & \lambda - a_{22} & \dots & a_{1n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \dots & \lambda - a_{nn} \end{pmatrix}$$

To compute the determinant, we multiply the elements in positions $1j_1, 2j_2, \ldots, nj_n$ for each possible permutation j_1, \ldots, j_n of $1, \ldots, n$. If the permutation is odd, we multiply it by -1 as well. In this way we get n! products, and we add all of them to get the determinant. Of these n! products, one of them is the product $(\lambda - a_n n) \ldots (\lambda - a_{nn})$. All other product terms can contain at most n-2 diagonal elements, which means their degree is at most n-2 in λ . Therefore, the coefficient of λ^{n-1} in the overall determinant comes only from $(\lambda - a_n n) \ldots (\lambda - a_{nn})$, and as done previously, it can be shown that this coefficient is $c_{n-1} = -(a_{11} + \ldots + a_{nn})$. Hence, the sum of eigenvalues is equal to the trace of A.

Lemma 2

The term tr(AB) under fixed spectrum of A is maximized when the matrices A and B share the same eigenbasis.

Proof. By fixed spectrum, we mean that the eigenvalues of A are fixed. Let $A = U_A \Sigma_A V_A^T$ and $B = U_B \Sigma_B V_B^T$ be the singular value decompositions of A and B. Σ_A is fixed since the spectrum is fixed, and we have to determine the eigenbasis of A.

$$\operatorname{tr}(AB) = \operatorname{tr}(BA)$$

$$= \operatorname{tr}(U_A \Sigma_A V_A^T U_B \Sigma_B V_B^T) \qquad \text{(invariance under change of basis)}$$

$$= \operatorname{tr}(\Sigma_A V_A^T U_B \Sigma_B) \qquad \text{(same argument as above)}$$

$$= \operatorname{tr}(\Sigma_B \Sigma_A V_A^T U_B) \qquad \text{(invariance under cyclic permutation)}$$

$$= \operatorname{tr}(\Sigma_{AB} V_A^T U_B) \qquad \text{(define } \Sigma_{AB} = \Sigma_B \Sigma_A)$$

In this expression above, Σ_{AB} is fixed. Furthermore, in the product $V_A^T U_B$, the row i contains the entries $v_i u_1, v_i u_2, \ldots, v_i u_n$. Since the trace only cares about diagonal entries, we can maximize it by setting $v_i = u_i$ for all i. Thus, we get that A should have the same eigenbasis as B.

Proof of theorem

Proof. Let us fix the spectrum (set of eigenvalues) of D. Using Lemma 1, the first and third terms of L(D) get fixed, and we are only left with the term $\operatorname{tr}(D\Lambda)$. Using Lemma 2, we can see that this term gets maximized when D and Λ share the same eigenbasis. Since Λ is a diagonal matrix, its eigenbasis is the identity matrix I. Therefore, D's eigenbasis must also be I, which implies that D must be a diagonal matrix.

Since the choice of fixed eigenvalues is arbitrary, we can conclude, by peeling argument, that this holds for any D in general.