Auxiliary Sections > Integral Transforms > Tables of Laplace Transforms > Laplace Transforms: Expressions with Exponential Functions

Laplace Transforms: Expressions with Exponential Functions

No	Original function, $f(x)$	Laplace transform , $\widetilde{f}(p) = \int_0^\infty e^{-px} f(x) dx$
1	e^{-ax}	$(p+a)^{-1}$
2	xe^{-ax}	$(p+a)^{-2}$
3	$x^{\nu-1}e^{-ax}, \qquad \nu > 0$	$\Gamma(\nu)(p+a)^{-\nu}$
4	$\frac{1}{x}\left(e^{-ax} - e^{-bx}\right)$	$\ln(p+b) - \ln(p+a)$
5	$\frac{1}{x^2} \left(1 - e^{-ax} \right)^2$	$(p+2a)\ln(p+2a) + p\ln p - 2(p+a)\ln(p+a)$
6	$\exp(-ax^2), \qquad a > 0$	$(\pi b)^{1/2} \exp(bp^2) \operatorname{erfc}(p\sqrt{b}), \qquad a = \frac{1}{4b}$
7	$x \exp(-ax^2)$	$2b - 2\pi^{1/2}b^{3/2}p\operatorname{erfc}(p\sqrt{b}), \qquad a = \frac{1}{4b}$
8	$\exp(-a/x), \qquad a \ge 0$	$2\sqrt{a/p}K_1(2\sqrt{ap})$
9	$\sqrt{x} \exp(-a/x), \qquad a \ge 0$	$\frac{1}{2}\sqrt{\pi/p^3}\left(1+2\sqrt{ap}\right)\exp\left(-2\sqrt{ap}\right)$
10	$\frac{1}{\sqrt{x}}\exp(-a/x), \qquad a \ge 0$	$\sqrt{\pi/p}\exp(-2\sqrt{ap})$
11	$\frac{1}{x\sqrt{x}}\exp(-a/x), \qquad a > 0$	$\sqrt{\pi/a} \exp(-2\sqrt{ap})$
12	$x^{\nu-1}\exp(-a/x), \qquad a>0$	$2(a/p)^{\nu/2}K_{\nu}\left(2\sqrt{ap}\right)$
13	$\exp(-2\sqrt{ax})$	$p^{-1} - (\pi a)^{1/2} p^{-3/2} e^{a/p} \operatorname{erfc}(\sqrt{a/p})$
14	$\frac{1}{\sqrt{x}}\exp(-2\sqrt{ax})$	$(\pi/p)^{1/2}e^{a/p}\operatorname{erfc}\left(\sqrt{a/p}\right)$

Notation: $\Gamma(\nu)$ is the gamma function, erfc z is the complementary error function, $K_{\nu}(z)$ is the modified Bessel function of the second kind.

References

Bateman, H. and Erdélyi, A., *Tables of Integral Transforms. Vols. 1 and 2*, McGraw-Hill Book Co., New York, 1954. Doetsch, G., *Einführung in Theorie und Anwendung der Laplace-Transformation*, Birkhäuser Verlag, Basel–Stuttgart, 1958. Ditkin, V. A. and Prudnikov, A. P., *Integral Transforms and Operational Calculus*, Pergamon Press, New York, 1965. Polyanin, A. D. and Manzhirov, A. V., *Handbook of Integral Equations*, CRC Press, Boca Raton, 1998.

Laplace Transforms: Expressions with Exponential Functions