

"Automated Change Detection and QA Support for 3GPP Specification Versions"

Presented by:

TEAM 22 [SJB INSTITUTE OF TECHNOLOGY]

KEERTHAN V

PAVITHRA D

POOJITHA R

RAKSHITHA B R

INTRODUCTION

- 3GPP (3rd Generation Partnership Project) develops global standards for mobile telecommunications.
- Specifications are released in multiple versions (Rel-10, Rel-16, Rel-17, ...).
- Each new release contains textual and semantic changes in clauses and tables.
- Manual comparison of versions is slow, tedious, and error-prone.
- Our project provides an AI-driven solution for:
 - Automated change detection at the clause level
 - Semantic understanding of modifications, additions, and deletions
 - Natural Language Q&A over detected changes
- Designed to improve **efficiency** for telecom engineers and **ensure accuracy** in version tracking.

OBJECTIVES

- Automate the comparison of two 3GPP specification versions.
- Detect clause-level changes (additions, deletions, modifications) with semantic understanding.
- Enable version-aware storage of clauses and tables using ChromaDB.
- Support real-time question answering over detected changes.
- Improve accuracy and speed compared to manual change tracking.
- Create a scalable and reusable framework for future release comparisons.

METHODOLOGY

• **Input:** Two 3GPP specification documents (PDF/DOCX) from different releases (e.g., Rel-15 & Rel-16).

Parsing & Chunking:

- Extract text and tables at clause level using SimpleDirectoryReader.
- Break content into manageable chunks using SentenceSplitter.

Embedding Generation:

- Generate semantic embeddings for each chunk using HuggingFace models.
- Store embeddings in ChromaDB with version & clause metadata.

• Semantic Change Detection:

- Compare same-clause embeddings across versions using cosine similarity, and jaccard similarity.
- Classify changes as Added, Removed, or Modified.

• Natural Language Explanation:

• Generate human-readable summaries of detected changes.

Version-Aware QA Chatbot:

- Answer user queries based on changes using **ChromaDB retrieval** + AI.
- Output: Clause-level diff report with text & table changesand Real-time question answering interface.

IMPLEMENTATION

Programming Language:

•Python 3.12

Libraries & Frameworks:

- •Document Parsing: python-docx, PyMuPDF
- •Chunking & Preprocessing: SentenceSplitter from LlamaIndex
- •Embeddings: HuggingFaceEmbeddings (sentence-transformers)
- •Vector Database: ChromaDB for storage and retrieval
- •Change Detection: cosine similarity, and jaccard similarity
- •QA Chatbot: Integrated with ChromaDB for real-time query answering
- •Visualization & Web UI: Streamlit (for interactive reports & search)

Workflow Integration:

- •Automated scripts for indexing and embedding generation
- •Clause-level mapping between versions for precise comparison
- •Seamless pipeline from document ingestion \rightarrow diff generation \rightarrow QA

RESULT

- Change Detection Performance:
- Successfully identified Added, Removed, and Modified clauses between 3GPP Release 10, 17.
- **Accuracy:** ~94% for semantic classification of changes using cosine similarity, and jaccard similarity.
- Handled both **text** and **table-based** changes.

Benchmarking

Component / Metric	Time Taken	Further Split-up
Embedding Generation	~3 min	SentenceSplitter + HuggingFaceEmbeddings runs for the entire document, then stores results in ChromaDB.
Comparison Process	~6 sec	Loads pre-computed embeddings from ChromaDB, compares with cosine similarity, classifies results, outputs JSON.
LLM Response Time	~2 sec	Cohere API (co.chat) called after retrieval; time is for short prompt + retrieved context.
Retrieval from ChromaDB	~1 sec	get_top_k_chunks() fetches embeddings from ChromaDB and computes cosine similarity for ranking.
Precision	~0.90	Chunks retrieved are highly relevant; few false positives.
Recall	~0.88	Some relevant content may be missed due to chunk size limits.
F1-score	~0.89	Balanced performance between precision & recall.
Average Retrieval Time	~950 ms	Matches 1 sec retrieval time for k=10 results.
Average LLM Response Time	~2.0 sec	Matches measured value from Cohere API.
Token Usage per Query	~250–500 tokens	Includes user query + retrieved context.
Throughput	~20–25 q/min	Achievable with pre-computed embeddings and parallel queries.
UI Response Time	~3–4 sec total	Retrieval (1s) + LLM (2s) + Streamlit UI refresh (~0.5–1s).

3GPP Query Assistant Pipeline Streamlt ChromoDB Auth Cohere Command R JSON Processing Liternalindex HuggingFace all-MiniLM-L6-v2 Sciet-learn NumPy Cosine Similarry ChromaDB Vector Search Cohere Command-R RAG Architecture

THANK YOU