

Universidade Federal de Santa Catarina Centro Tecnológico

Departamento de Informática e Estatística Ciências da Computação & Engenharia Eletrônica

Sistemas Digitais

INE 5406

Aula 1T - parte 2: Componentes Combinacionais do Nível RT

Somadores, subtratores e multiplexadores (seletores)

Professores: Cristina Meinhardt & José Luís Güntzel

{cristina.meinhardt, j.guntzel}@ufsc.br

Tipos de Componentes do Nível RT

Componentes Combinacionais

- · Realizam operações aritméticas e lógicas sobre os dados
- Controlam os caminhos que os dados devem percorrer (rede de interconexão)
- Viabilizam o endereçamento de dados em memórias (decodificadores)

Componentes Sequenciais

- Registradores (feitos a partir de flip-flops)
- Memórias (feitas de células de armazenamento, decodificadores e circuitos de interface)

O Somador Paralelo Carry-Ripple

Diagrama de Blocos no Nível Lógico (Exemplo de 4 bits)

- O somador é o componente básico para os sistemas digitais, uma vez que a adição é a operação aritmética fundamental
- O somador *Carry-Ripple* (CRA) é o somador mais simples e intuitivo. Porém, ele é lento. Exemplos de somadores rápidos estão nos slides SD_somadores-rapidos.pdf

O Somador Paralelo *Carry-Ripple*Intervalo de Operação (com números sem sinal)

• Para 4 bits, o intervalo de representação é [0 , 15]

• Para *n* bits, o intervalo de representação é [0 , 2ⁿ - 1]

binário	decimal	
0000	0	
0001	1	
0010	2	
0011	3	
0100	4	
0101	5	
0110	6	
0111	7	
1000	8	
1001	9	
1010	10	
1011	11	
1100	12	
1101	13	
1110	14	
1111	15	

O Somador Paralelo Carry-Ripple

Construção com Portas CMOS (Tecnologia Atual)

O Somador Paralelo Carry-Ripple

Representação no Nível RT

O Somador Paralelo Carry-Ripple

Versão Alternativa: possui Carry de Entrada (Carry in)

- Mesmo intervalo de representação de dados na saída
- Ainda consegue somar mais uma unidade (+1)
- Utilidade? Veremos logo adiante...

O Somador Paralelo Carry-Ripple

Versão Alternativa, Construção com Portas CMOS

O Somador Paralelo Carry-Ripple

Versão Alternativa, Construção com Portas CMOS

Portas

3 nands

2 xor

Total

O Somador Paralelo Carry-Ripple

Versão Alternativa, Representação no Nível RT

O Somador Paralelo Carry-Ripple Representação no Nível RT

- Nesta disciplina, assumiremos que todos os somadores paralelos são construídos exclusivamente com SCs (somadores completos)
- Assim, o "custo" (=nº de transistores) de um somador paralelo será igual a n x 24 (com n = nº de bits do somador)
- Exemplo: nº de transistores do somador paralelo de 4 bits: 4 x 24 = 96 transistores

O Somador Paralelo Carry-Ripple

Versão Alternativa, Representação no Nível RT

Algumas Convenções Úteis para o Nível RT

Somador para operandos com n bits cada

Concatenando bits

Concatenando bits

Separando bits

Adição de Números Inteiros com Sinal (Sinalizados)

Se os negativos forem representados em complemento de 2, então:

- Os números podem ser adicionados como se fossem números binários sem sinal
- Mas o intervalo de representação é diferente!
- E a detecção de overflow se dá comparando-se os dois últimos sinais de carry
- Conclusão: podemos usar o somador paralelo recém visto

Adição de Números Inteiros com Sinal (Sinalizados)

Se os negativos forem representados em complemento de 2, então:

- Os números podem ser adicionados como se fossem números binários sem sinal
- Mas o intervalo de representação é diferente!
- E a detecção de overflow se dá comparando-se os dois últimos sinais de carry
- Conclusão: podemos usar o somador paralelo recém visto

O Somador Paralelo Carry-Ripple

Modificado para Operar Sobre Números com Sinal (Sinalizados)

Lembrando que estamos assumindo negativos representados em complemento de 2

O Somador Paralelo *Carry-Ripple*

Intervalo de Operação Para Números com Sinal

- Para 4 bits, o intervalo de representação é [-8 , +7]
- \rightarrow Logo, overflow = 1 se A + B > +7 OU se A + B < -8

• Para n bits, o intervalo de representação é $[-2^{n-1}, +(2^{n-1}-1)]$

binário	decimal	
0000	0	
0001	+1	
0010	+2	
0011	+3	
0100	+4	> 7 positivos
0101	+5	
0110	+6	
0111	+7	
1000	-8	
1001	-7	
1010	-6	
1011	-5	> 8 negativos
1100	-4	o nogativos
1101	-3	
1110	-2	
1111	-1]丿

O Somador Paralelo Carry-Ripple

Representações no Nível RT e Generalização para dados com n bits

Somadores para Inteiros Não Sinalizados

Somadores para Inteiros Sinalizados

	A	В
	+ n	+ n
overflow <	7	
		- n
	S	3

Como o <i>overflow</i> é sinalizado ?	Tipo de dado	Intervalo de representação dos dados	Número de transistores
Cout = C _n	Inteiros não sinalizados	[0, 2 ⁿ – 1]	24 x n
overflow = C _n xor C _{n-1}	Inteiros sinalizados	$[-2^{n-1},+(2^{n-1}-1)]$	24 x n + 8

Aplicação do Somador Paralelo Carry-Ripple

Exemplo 1: Usando o somador *carry-ripple*, projetar um circuito combinacional que troca o sinal de um número inteiro de 4 bit.

Interfaces:

Aplicação do Somador Paralelo Carry-Ripple

<u>Exemplo 1:</u> Usando o somador *carry-ripple*, projetar um circuito combinacional que troca o sinal de um número inteiro de 4 bit.

Interfaces:

?

Dúvida: será que pode ocorrer overflow?

Aplicação do Somador Paralelo Carry-Ripple

<u>Exemplo 1:</u> Usando o somador *carry-ripple*, projetar um circuito combinacional que troca o sinal de um número inteiro de 4 bit.

Interfaces:

Sim!!! Se entrar -8 não tem como sair +8

binário	decimal	
0000	0	
0001	+1	
0010	+2	
0011	+3	
0100	+4	> 7 positivos
0101	+5	
0110	+6	
0111	+7	\mathbb{P}
1000	-8	
1001	-7	
1010	-6	
1011	-5	> 8 negativos
1100	-4	o nogativoo
1101	-3	
1110	-2	
1111	-1	1丿

Aplicação do Somador Paralelo Carry-Ripple

Exemplo 1: Solução

Trocar o sinal significa aplicar as regras do complemento de dois ao número, ou seja:

- 1. Negar ("NOT") bit a bit o número
- 2. Somar uma unidade ao resultado do passo anterior

Aplicação do Somador Paralelo Carry-Ripple

Ilustração com números de 4 bits

Número original	0010	= +2
		_

Aplicação do Somador Paralelo Carry-Ripple

Ilustração com números de 4 bits

Número original	0010	= +2
Nega bit a bit	1101	

Aplicação do Somador Paralelo Carry-Ripple

Ilustração com números de 4 bits

Número original	0010	= +2
Nega bit a bit	1101	
Soma "1"(= +0001)	1110	

Aplicação do Somador Paralelo Carry-Ripple

Ilustração com números de 4 bits

1. Trocar o sinal do número +2

Número original	0010	= +2
Nega bit a bit	1101	
Soma "1"(= +0001)	1110	

Conversão rápida de binário (em complemento de 2) para decimal

x (-1) x 2 ³	x 2 ²	x 2 ¹	x 2 ⁰

Truque: bit de sinal encarado como um número negativo

Aplicação do Somador Paralelo Carry-Ripple

Ilustração com números de 4 bits

1. Trocar o sinal do número +2

Número original	0010	= +2
Nega bit a bit	1101	
Soma "1"(= +0001)	1110	

Conversão rápida de binário (em complemento de 2) para decimal

x (-1) x 2 ³	x 2 ²	x 2 ¹	x 2 ⁰

Truque: bit de sinal encarado como um número negativo

$$1110 = -1 \times 2^{3} + 1 \times 2^{2} + 1 \times 2^{1} + 0 \times 2^{0} =$$

$$= -1 \times 8 + 1 \times 4 + 1 \times 2 + 0 \times 1 =$$

Aplicação do Somador Paralelo Carry-Ripple

Ilustração com números de 4 bits

1. Trocar o sinal do número +2

Número original	0010	= +2
Nega bit a bit	1101	
Soma "1"(= +0001)	1110	

Conversão rápida de binário (em complemento de 2) para decimal

x (-1) x 2 ³	x 2 ²	x 2 ¹	x 2 ⁰

Truque: bit de sinal encarado como um número negativo

$$1110 = -1 \times 2^{3} + 1 \times 2^{2} + 1 \times 2^{1} + 0 \times 2^{0} =$$

$$= -1 \times 8 + 1 \times 4 + 1 \times 2 + 0 \times 1 =$$

$$= -8 + 4 + 2 + 0 =$$

Aplicação do Somador Paralelo Carry-Ripple

Ilustração com números de 4 bits

Número original	0010	= +2
Nega bit a bit	1101	
Soma "1"(= +0001)	1110	
	1110	= -2

Aplicação do Somador Paralelo Carry-Ripple

Ilustração com números de 4 bits

1. Trocar o sinal do número +2

Número original	0010	= +2
Nega bit a bit	1101	
Soma "1"(= +0001)	1110	
	1110	= -2

Número original	1110	= -2
-----------------	------	------

Aplicação do Somador Paralelo Carry-Ripple

Ilustração com números de 4 bits

1. Trocar o sinal do número +2

Número original	0010	= +2
Nega bit a bit	1101	
Soma "1"(= +0001)	1110	
	1110	= -2

Número original	1110	= -2
Nega bit a bit	0001	

Aplicação do Somador Paralelo Carry-Ripple

Ilustração com números de 4 bits

1. Trocar o sinal do número +2

Número original	0010	= +2
Nega bit a bit	1101	
Soma "1"(= +0001)	1110	
	1110	= -2

Número original	1110	= -2
Nega bit a bit	0001	
Soma "1"(= +0001)	0010	
	0010	= +2

Aplicação do Somador Paralelo Carry-Ripple

Ilustração com números de 4 bits

1. Trocar o sinal do número +2

Número original	0010	= +2
Nega bit a bit	1101	
Soma "1"(= +0001)	1110	
	1110	= -2

Número original	1110	= -2
Nega bit a bit	0001	
Soma "1"(= +0001)	0010	
	0010	= +2

- · Funciona nos dois sentidos !!
- Só ocorre overflow se tentarmos trocar o sinal de -8

Aplicação do Somador Paralelo Carry-Ripple

Exemplo 1: Solução

Aplicação do Somador Paralelo Carry-Ripple

Exemplo 1: Solução

Aplicação do Somador Paralelo Carry-Ripple

Exemplo 1: Solução

Observe que é possível otimizar este circuito substituindo-se cada SC por um MS ... Neste caso, qual seria a redução percentual no número de transistores?

Subtração de Números Inteiros

Princípio

$$A - B = A + (-B)$$

Onde -B é o número B de sinal trocado!

Ora, que coincidência!! (Ou não?)

Subtrator Paralelo (de 4 bits)

$$A - B = A + (-B)$$

Subtrator Paralelo

Diagrama de Blocos no Nível Lógico (Exemplo de 4 bits)

Representação no Nível RT

Somador/Subtrator Paralelo

Somador

Subtrator

Somador/Subtrator Paralelo

Como uni-los em um único circuito configurável (para economizar transistores)?

Somador/Subtrator Paralelo

Tabela de Operação

controle	ontrole <mark>operação</mark>	
0	S=A+B	
1	S=A-B	

Somador/Subtrator Paralelo

Tabela de Operação

controle	operação	
0	S=A+B	
1	S=A-B	

Nº de transistores por bit:

Portas	Transistores por porta	
3 nands	4	12
3 xor	6	18
Total		30

Somador/Subtrator Paralelo

Representação no Nível RT

Tabela de Operação

controle	operação	
0	S=A+B	
1	S=A-B	

Multiplexador (Seletor) 2:1

Tabela-verdade e Equação (nível lógico)

sel	Α	В	Υ
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	1

Multiplexador (Seletor) 2:1

Implementações Possíveis (nível lógico)

$$Y = sel \cdot A + sel \cdot B$$

14 ou 12 transistores

6 ou 4 transistores (mais usado)

Multiplexador (Seletor) 2:1

Nível RT

 $32 \times 4 = 128 \text{ transistores}$

Multiplexadores (Seletores) 3:1 e 4:1

Nível Lógico

 $2 \times 4 = 8$ transistores

 $3 \times 4 = 12$ transistores

Universidade Federal de Santa Catarina Centro Tecnológico

Departamento de Informática e Estatística Ciências da Computação & Engenharia Eletrônica

Sistemas Digitais

INE 5406

Aula 1T - parte 2: Componentes Combinacionais do Nível RT

Somadores, subtratores e multiplexadores (seletores)

Professores: Cristina Meinhardt & José Luís Güntzel

{cristina.meinhardt, j.guntzel}@ufsc.br