COSTANTI FISICHE

Massa elettrone m_e =9x10⁻³¹ kg; carica elettrone -e=1.6x10⁻¹⁹ C; $ε_0$ =8.85x10⁻¹² (SI); $1/4πε_0$ =9x10⁹ (SI); $μ_0$ =4π 10⁻⁷ (SI)

COMPITO

ESERCIZIO DI ELETTROSTATICA

Un conduttore sferico cavo (R_2 =9cm; R_3 =10cm) contiene, in modo concentrico, una sfera conduttrice (R_1 =2cm). Sul conduttore interno viene depositata la carica negativa q_{int} =-5x10⁻⁹C, sul conduttore esterno la carica positiva q_{est} =10⁻⁸C. Il sistema finale è isolato e in equilibrio elettrostatico.

- 1- Calcolare la distribuzione di carica sulle pareti dei conduttori (Q e densità)
- 2- Ricavare applicando il teorema di Gauss il campo elettrico E generato in tutto lo spazio
- 3- Ricavare il potenziale elettrostatico V nella regione esterna
- 4- Calcolare la densità di energia elettrostatica nella regione interna

Un elettrone viene posizionato a distanza 10cm dalla superficie esterna.

5- Calcolare il lavoro esterno per allontanare l'elettrone all'infinito.

La superficie esterna viene collegata a terra e la cavità riempita di dielettrico

6- Calcolare le cariche di polarizzazione

ESERCIZIO DI MAGNETOSTATICA

Un cavo conduttore cilindrico di raggio R_1 =0.5cm è percorso da una corrente elettrica stazionaria distribuita uniformemente su tutta la <u>sezione</u> con densità di corrente j_{vol} =2Am⁻² parallela all'asse.

- 1- Calcolare, usando il teorema di Ampere, il campo magnetico generato nello spazio e disegnare in un grafico B(r).
- 2- Calcolare la densità di energia del campo magnetico.

A distanza d=10cm dall'asse del conduttore, in modo diametralmente opposto, vengono posti:

- A) un filo conduttore percorso dalla corrente I_{filo}=2mA parallela a quella del conduttore
- B) un elettrone in moto a velocità v=10ms⁻¹ in direzione opposta a guella della corrente del conduttore
- 3- Calcolare la forza agente sul filo
- 4- Calcolare la forza agente sull'elettrone

In una diversa situazione, il conduttore è ricoperto con una guaina di spessore superficiale in modo da ottenere nello spazio esterno un campo magnetico nullo.

- 5- Calcolare la densità di corrente superficiale **j**_{sup} della guaina.
- 6- Calcolare, per unità di lunghezza, il coefficiente di autoinduzione del sistema.

ESERCIZIO DI INDUZIONE ELETTROMAGNETICA

Un circuito a U vincolato nel piano XY e formato da due binari paralleli ad X distanti **a=2cm**, ha una parte mobile libera di scorrere senza attrito, in direzione x. Nello spazio è presente un campo magnetico stazionario e uniforme **B=+0.5T** in direzione normale al circuito (fig.). Il tratto mobile viene tenuto in moto con velocità **v₀=0.5ms**⁻¹ lungo x costante.

- 1- Determinare valore della forza elettromotrice indotta nel circuito
- a) Il circuito viene chiuso con 2 resistenze di $R=5\Omega$ in parallelo si trascuri ogni fenomeno di autoinduzione.
 - 2- Calcolare la corrente indotta
 - 3- Calcolare la potenza necessaria per tenere in moto la barretta con velocità costante.
 - 4- Calcolare la potenza dissipata dal conduttore per effetto joule e commentare il risultato.

QUESITI DI TEORIA

- A. Un dipolo composto da cariche uguali e opposte a distanza rigida (q=10⁻⁹C, d=10-⁹m) è immerso in un campo elettrico uniforme E=100 V/m.
 Calcolare l'energia del dipolo se questo è parallelo al campo.
- B. Enunciare le 4 leggi di Maxwell per il caso stazionario
- C. Una spira (Area=10cm²) percorsa da corrente I=2A in senso orario è immersa in un campo magnetico parallelo al piano della spira B=1T. Calcolare l'energia magnetica e il momento meccanico a cui è soggetta la spira.