Project 3 Confidence Interval

Reporter: Sumeet Atul Vadhavkar and Ye Zheng

# Function	Validity	Confidence
1	Asymptotic	100%
2	Invalid	-
3	Asymptotic	95%
4	Invalid	-
5	Always	90%
6	Invalid	100%
7	Always	90% - 99%
8	Invalid	-
9	Asymptotic	99%
10	Always	96% - 99%

To prove a range estimation is invalid:

ullet For large enough N, it miss the estimated value with a large probability.

Our testing method:

- ullet Choose N=3000, sample 10,000 data from Uniform, Normal, Bernoulli distribution with different parameters.
- Use CLT confidence interval as reference (lpha=0.05), observe the missing rate and mean estimated interval for each function.
- ullet For the functions seem to be asymptotic valid, use N=10 to check their validity for all datasets.

Uniform Distribution

We use Uniform distribution on [0, 1], [0, 0], [0.2, 0.3], [0.4, 1], [0.70.72], [0.9, 0.95] for testing.

- Function 4 misses 100% for [0, 0], proved to be invalid.
- Function 3, 5, 9 have stable confidence level around 95%, 90%, 99% respectively, but Function 5 has very loose bound.
- Other functions have almost missed rate 0.

Normal Distribution

We use Normal distribution $\mathcal{N}(0.1,0.01)$, $\mathcal{N}(0.3,0.1)$, $\mathcal{N}(0.5,0.1)$, $\mathcal{N}(0.7,0.3)$, $\mathcal{N}(0.9,0.01)$ for testing.

- Function 1 seems to output the minimum and maximum as the estimation.
- Function 6 has fixed bound [0,1] for all test cases, seems to be valid for all datasets.

Bernoulli Distribution

We use Bernoulli distribution with $\theta = 0, 0.01, 0.1, 0.3, 0.5, 0.7, 0.9, 0.99$ for testing.

- Function 2 has missing rate 100% for $\theta=0.99$, proved to be invalid.
- Function 8 has missing rate 100% for heta=0.9, proved to be invalid.
- Function 6 has missing rate 100% for heta=0.01, proved to be invalid.
- Function 7 has confidence level 90% to 99%, and seems to use $[ar{X}-0.015,ar{X}+0.015]$ as the estimation.
- ullet Function 10 has confidence level 96% to 99%, and seems to use $[ar{X}-0.018,ar{X}+0.018]$ as the estimation.

Checking the Remained

Function 1, 3, 5, 7, 9, 10 need to check validity for small N=10.

- Function 1, 3, 9 have much larger missing rate than their confidence level, so they are asymptotic valid.
- Function 5, 7, 10 are valid for all datasets.