

SENSE: Modern Blind Navigation System

EECE 4792 Capstone 2 Advisor: Bahram Shafai

Gordon Lo, Dixon Jin, Devin Touba, Imtiaz Hssan, Branden Beilot

SENSE Team

Gordon Lo

CE

- SENSE CAD & Design
- Manufacturing
- Circuitry
- SENSE Glasses

Dixon Jin

CE/CS

- Computer Vision
- Optical Character Recognition
- Text-to-Speech

Devin Touba

CE

- SENSE Belt
- Object Detection
- Elevation Change Recognition

Imtiaz Hssan

CE

- SENSE Belt
- Object Detection
- Elevation Change Recognition

Branden Beilot

ECE

- SENSE Belt
- Manufacturing
- Circuitry
- Object Detection

The Space

- 1.5M (0.45% of the US population)
- 45M blind people worldwide (7B population)
- 90% total blindness of those who are visually impaired in developing countries
- 500,000 children become blind every year
- 75M by 2020 blind

Brian MacDonald

-President of National Braille Press

The Need

- 3 events to which blindness occurs:
 - Birth defect
 - Disease
 - Traumatic event or accident
- How do we...
 - Accelerate the learning curve of blind navigational tools
 - Bring confidence and normality
- How can we create a tool that...
 - Blind people will make use of everyday
 - Assist blind people with obstacle avoidance and spatial orientation

- CompetitorsNew tech advancements build off of existing tools i.e. cane
 - Many DIY projects but nothing serious
 - New tech only caters to people with partial blindness and low-vision

What is SENSE?

- Sensory Substitution
 - Substituting the loss of a sense with another sensory channel
 - Technique leveraged in many tools for disabilities
- Active obstacle detection through vibrations and audio alerts
 - Waist level
 - Head level

No such device on the market as of now

Design Formulation

- Modular design
- Sleek design
- Comfortable
- Cheap and easy to manufacture

SENSE

Design Specifications: Glasses

Aspect	Specification	Justification	
Function	1 ON/OFF button	Easy to use	
Cost	Cheap to manufacture, 3D printable parts	Tools for the disabled are always too expensive	
Ergonomics	Sleek design and comfortable to wear	Wearables need to be comfortable or they will not be used	
Materials	Light and durable material	Shockproof and waterproof	
Aesthetics	Must be vibrant colored	People on the street need to tell if someone is blind	
Function	Bone conduction headphones	Minimized hindrance on existing hearing sense	
Design	Modular design, attachable to generic sunglasses frames	Modular design allows for quick changes if any part is damaged or broken	
Function	Push button for RPI camera triggering	Single push for triggering text-to-speech	

Design and CAD

No.	Name	No. Pieces	Description
1	Left Mount	1	Left sensor and glasses frame mount
2	Middle Mount	1	Middle sensor and glasses frame mount
3	Right Mount	1	Right sensor and glasses frame mount
4	Connector Rods	2	Bridges the sensors together and creates a curvature for the sensors
5	RPI Zero Base	1	Mounts RPI Zero to glasses frame
6	RPI Zero Frame	1	Frame for ADC and button
7	Push Button Frame	1	Holds push button
9	Power Plug Frame	1	Power connector

More Design and CAD

Electronic Schematics

Ultrasonic Sensors

- Max range 6.45m
- Accurate range up to 3m

ADC

Enables simultaneous and continuous reading of sensors

RPI Zero W

- Powerful chip for computations
- Small form factor

RPI Camera

- 3280 x 2464 px photo resolution
- **1080p30**, 720p60, 640x480p90 video resolution
- Small form factor

Functionality: Sensors

Audio Alerts

- \circ 3 beeps = 1 m close
- 2 beeps = 2 m near
- \circ 1 beeps = 3 m far

Sector Location

- Left
- Center-left
- Center
- Center-right
- Right

Bone conduction headset

- Background alerts
- Unhindered instincts

Functionality: RPI Camera

- Camera is placed to mimic the user's sight
- Button triggers the RPI Camera to take a picture
- Picture is then passed through a median filter to remove noise

RPI Camera

- The image is then passed through Google's Tesseract, an open source optical character recognition engine
- The text is then outputted as audio through our bone-conducting headphones

BOM (Glasses Prototype)

Item	No.	Cost (\$/Unit)
RPI Zero W	1	10
Adafruit ADC ADS1115 16-Bit 4 Channel	1	14.95
Maxbotix LV-MaxSonar EZ3	3	24.95
Sunglasses	1	0 (promotional booth)
3D Printing Parts	8 Pieces	(Shapeways ~ 45)
XT30 Connectors	1	2
RPI Camera	1	24.90
Treks Bone Conduction Headset	1	80
	Total	206.7 + ~45 = \$251.7

SENSE Glasses

- 3 x Ultrasonic Sensors
- 75° Active Obstacle Detect
- Bone conduction headphones for audio alerts
- Sleek and comfortable design
- Usable by people with hearing loss and damaged eardrums
- Text-to-speech

Design Specifications: Belt

Aspect	Specification	Justification
Function	1 ON/OFF Button	Easy to use
Material	Magnetic belt buckle	Easy to put on/take off
Material	Custom 3D printed parts	Sturdy and made to our needs
Design	Modular design	Easy for user to distinguish which sensor is causing which response
Cost	Cheap to manufacture, 3D printed parts	Tools for the blind tend to be too expensive

Design and CAD

-			
No.	Name	No. Pieces	Description
1	Battery Pack Front Left Mount	1	Holds left side of battery pack. Has logo etched into side.
2	Battery Pack Front Right Mount	1	Holds right side. Cutouts made for power chords to Pi.
3	Battery Pack Back Mount	2	Holds other battery pack mounts to the belt
4	Pi Casing	1	Holds the Raspberry Pi Zero and ADC
5	Pi Cover	1	Covers the Pi Casing
6	Pi Back Mount	2	Holds the Pi Casing to the belt
7	Sensor Mount	4	Holds the ultrasonic sensor
8	Vibration Motor Mount	4	Attaches to the back of the Sensor Mount and holds the whole module together to the belt

Electronics Schematics

Ultrasonic Sensors

- Max range 6.45m
- Accurate range up to 3m

ADC

- Enables simultaneous and continuous reading of sensors
- RPI Zero W
 - o Powerful chip for computations
 - Small form factor
- Vibration Motors
 - Simple feedback for the user

Simple, Easy, and Ready to Use

Easy access for users

Sleek design

So comfortable, you will not even notice!

Functionality: Sensors

Vibration Feedback

- Increasing frequency of vibration as obstacles become closer.
- Responses correlate to the sensor they are detecting from.

• Drop-Off Detection

 Dedicated sensor to spotting surfaces which are further away than they should be

BOM (Belt Prototype)

Item	No.	Cost (\$/Unit)
RPI Zero W	1	10
Adafruit ADC ADS1115 16-Bit 4 Channel	1	14.95
Maxbotix LV-Maxsonar EZ3	4	24.95
3D Printing Parts	16 Pieces	(Shapeways ~ 90)
Vibration Motors	4	2
Belt	1	30
	Total	\$162.75 + ~90 = \$252.75

SENSE Belt

- 4 x Ultrasonic Sensors
- Continuous Radial Sensing
- Vibration Motors for User Feedback
- Quick and Easy to put on
- Drop-Off in Elevation Detection

Future Improvements

- Custom PCB board with all the necessary components
 - Smaller form factor and weight
 - Less wires
 - Working bluetooth
- Water resistant
- Stronger materials
- More precise sensors
- RPI Zero W bluetooth not functioning
 - Bluetooth bone conduction headphones unusable
- Disability awareness designed

