Message Authentication Codes and Collision-Resistant Hash Functions

Yu Zhang

HIT/CST/NIS

Cryptography, Spring, 2014

Outline

- 1 Message Authentication Codes (MAC) Definitions
- **2** Constructing Secure Message Authentication Codes
- 3 CBC-MAC
- 4 Collision-Resistant Hash Functions
- 5 NMAC and HMAC

Content

- 1 Message Authentication Codes (MAC) Definitions
- **2** Constructing Secure Message Authentication Codes
- 3 CBC-MAC
- 4 Collision-Resistant Hash Functions
- 5 NMAC and HMAC

Integrity and Authentication

The Syntax of MAC

- key k, tag t, a bit b means valid if b = 1; invalid if b = 0.
- Key-generation algorithm $k \leftarrow \text{Gen}(1^n), |k| \ge n$.
- Tag-generation algorithm $t \leftarrow \mathsf{Mac}_k(m)$.
- **Verification** algorithm $b := Vrfy_k(m, t)$.
- Message authentication code: $\Pi = (Gen, Mac, Vrfy)$.
- Basic correctness requirement: $Vrfy_k(m, Mac_k(m)) = 1$.

Security of MAC

- Intuition: No adversary should be able to generate a valid tag on any "new" message¹ that was not previously sent.
- Replay attack: Copy a message and tag previously sent. (excluded by only considering "new" message)
 - Sequence numbers: receiver must store the previous ones.
 - Time-Stamps: sender/receiver maintain synchronized clocks.
- Existential unforgeability: Not be able to forge a valid tag on any message.
 - **Existential forgery**: at least one message.
 - **Selective forgery**: message chosen *prior* to the attack.
 - Universal forgery: any given message.
- Adaptive chosen-message attack (CMA): be able to obtain tags on *any* message chosen adaptively *during* its attack.

¹A stronger requirement is concerning new message/tag pair.

Definition of MAC Security

The message authentication experiment $\mathsf{Macforge}_{\mathcal{A},\Pi}(n)$:

- 1 $k \leftarrow \mathsf{Gen}(1^n)$.
- **2** \mathcal{A} is given input 1^n and oracle access to $\mathsf{Mac}_k(\cdot)$, and outputs (m,t). \mathcal{Q} is the set of queries to its oracle.
- $\mbox{3} \mbox{ Macforge}_{\mathcal{A}.\Pi}(n) = 1 \iff \mbox{Vrfy}_k(m,t) = 1 \, \wedge \, m \notin \mathcal{Q}.$

Definition 1

A MAC Π is existentially unforgeable under an adaptive CMA if \forall PPT \mathcal{A} , \exists negl such that:

$$\Pr[\mathsf{Macforge}_{A,\Pi}(n) = 1] \leq \mathsf{negl}(n).$$

Content

- 1 Message Authentication Codes (MAC) Definitions
- **2** Constructing Secure Message Authentication Codes
- 3 CBC-MAC
- 4 Collision-Resistant Hash Functions
- 5 NMAC and HMAC

Constructing Secure MACs

Construction 2

- \blacksquare F is PRF. |m|=n.
- $Gen(1^n)$: $k \leftarrow \{0,1\}^n$ u.a.r.
- $\blacksquare \mathsf{Mac}_k(m) \colon t := F_k(m).$
- $\qquad \qquad \mathbf{Vrfy}_k(m,t) \colon 1 \iff t \stackrel{?}{=} F_k(m).$

Theorem 3

If F is a PRF, Construction is a secure fixed-length MAC.

Lemma 4

Truncating MACs based on PRFs: If F is a PRF, so is $F_k^t(m) = F_k(m)[1, \ldots, t]$.

Proof of Secure MAC from PRF

Idea: Show Π is secure unless F_k is not PRF by reduction.

Proof.

D distinguishes F_k ; \mathcal{A} attacks Π .

Proof of Secure MAC from PRF (Cont.)

Proof.

(1) If true random f is used, t=f(m) is uniformly distributed.

$$\Pr[D^{f(\cdot)}(1^n) = 1] = \Pr[\mathsf{Macforge}_{\mathcal{A},\tilde{\Pi}}(n) = 1] \leq 2^{-n}.$$

(2) If F_k is used, conduct the experiment $\mathsf{Macforge}_{\mathcal{A},\Pi}(n)$.

$$\Pr[D^{F_k(\cdot)}(1^n) = 1] = \Pr[\mathsf{Macforge}_{\mathcal{A},\Pi}(n) = 1] = \varepsilon(n).$$

According to the definition of PGF,

$$\left| \Pr[D^{F_k(\cdot)}(1^n) = 1] - \Pr[D^{f(\cdot)}(1^n) = 1] \right| \ge \varepsilon(n) - 2^{-n}.$$

Extension to Variable-Length Messages

- Suggestion 1: XOR all the blocks together and authenticate the result. $t := \mathsf{Mac}_k'(\oplus_i m_i)$.
- Suggestion 2: Authenticate each block separately. $t_i := Mac'_k(m_i)$.
- Suggestion 3: Authenticate each block along with a sequence number. $t_i := \mathsf{Mac}_k'(i||m_i)$.
- Weakness: forgeable, changing the order, dropping blocks.
- Countermeasure: add information.
 - random "message identifier" provides randomness; prevents combination.
 - **sequence number** prevents reordering.
 - the **length** of message prevents dropping/appending.

Constructing Secure Variable-Length MACs

Construction 5

- $\blacksquare \Pi' = (\mathsf{Gen'}, \mathsf{Mac'}, \mathsf{Vrfy'})$ be a fixed-length MAC.
- Gen: is identical to Gen'.
- Mac: m of length $\ell < 2^{n/4}$ and of d blocks m_1, \ldots, m_d of length n/4 (padded with 0s); $r \leftarrow \{0,1\}^{n/4}$. For $i=1,\ldots,d$, $t_i \leftarrow \operatorname{Mac}_k'(r\|\ell\|i\|m_i)$, i and ℓ are uniquely encoded as strings of length n/4. Output $t:=\langle r,t_1,\ldots,t_d\rangle$.
- Vrfy: Input m of d' blocks and check d' = d. Output $1 \iff \text{Vrfy}_k'(r||\ell||i||m_i, t_i) = 1$ for $1 \le i \le d$.

Theorem 6

If Π' is a secure fixed-length MAC, Construction is a secure MAC.

Proof of Secure Variable-Length MACs

Intuition: The extra information prevents all possible attacks.

Proof.

Repeat : the same identifier r is used twice by oracle \mathcal{O} .

Forge : at least one new block $r\|\ell\|i\|m_i$ is forged.

$$\mathsf{Break} \,:\, \mathsf{Macforge}_{\mathcal{A},\Pi}(n) = 1, \Pr[\mathsf{Break}] = \varepsilon(n).$$

$$\begin{split} \Pr[\mathsf{Break}] = & \Pr[\mathsf{Break} \land \mathsf{Repeat}] + \Pr[\mathsf{Break} \land \overline{\mathsf{Repeat}} \land \overline{\mathsf{Forge}}] \\ & + \Pr[\mathsf{Break} \land \overline{\mathsf{Repeat}} \land \mathsf{Forge}]. \end{split}$$

To prove the below statements:

- $\begin{array}{l} \textbf{3} \ \ \mathsf{For} \ \Pi', \ \Pr[\mathsf{Break}'] = \Pr[\mathsf{Break} \land \mathsf{Forge}] \geq \\ \Pr[\mathsf{Break} \land \overline{\mathsf{Repeat}} \land \mathsf{Forge}] \geq \varepsilon(n) \mathsf{negl}(n). \end{array}$

Proof of Secure Variable-Length MACs (Cont.)

Proof.

- 1 $r \leftarrow \{0,1\}^{\frac{n}{4}}$. By "brithday bound", $\Pr[\mathsf{Repeat}] \leq q(n)^2/2^{\frac{n}{4}}$.
- 2 If Repeat does not occur, Break implies Forge. \mathcal{A} finally outputs $(m,t), t := \langle r, t_1, \dots, t_d \rangle$.
 - ightharpoonup r is new, then $r||\ell||i||m_i$ is new.
 - lacksquare r is used exactly once, then the queried message $m' \neq m$.
 - $\ell' \neq \ell$, then $r \|\ell\| i \| m_i$ is new.
 - \blacksquare $\ell' = \ell$, then $\exists m'_i \neq m_i$, so $r \|\ell\| i \|m'_i$ is new.

So the block is new, Forge occurs.

3 Reduce \mathcal{A}' to \mathcal{A} : \mathcal{A}' attacks Π' with \mathcal{A} as a sub-routine and answer the queries of \mathcal{A} with \mathcal{A}' 's own oracle. \mathcal{A} output (m,t); \mathcal{A}' parses it and output a new block $(r\|\ell\|i\|m_i,t_i)$ if possible.

Content

- 1 Message Authentication Codes (MAC) Definitions
- 2 Constructing Secure Message Authentication Codes
- 3 CBC-MAC
- **4** Collision-Resistant Hash Functions
- 5 NMAC and HMAC

Constructing Fixed-Length CBC-MAC

Modify CBC encryption into CBC-MAC:

- Change random IV to encrypted fixed 0^n , otherwise: query m_1 and get (IV, t_1) ; output $m_1' = IV' \oplus IV \oplus m_1$ and (IV', t_1) .
- Tag only includes the output of the final block, otherwise: query m_i and get t_i ; output $m_i' = t_{i-1}' \oplus t_{i-1} \oplus m_i$ and t_i .

Constructing Fixed-Length CBC-MAC (Cont.)

Construction 7

- a PRF F and a length function ℓ . $|m| = \ell(n) \cdot n$. $\ell = \ell(n)$. $m = m_1, \ldots, m_\ell$.
- $Gen(1^n)$: $k \leftarrow \{0,1\}^n$ u.a.r.
- lacksquare Mac $_k(m)$: $t_i:=F_k(t_{i-1}\oplus m_i), t_0=0^n$. Output $t=t_\ell$.
- $Vrfy_k(m, t)$: $1 \iff t \stackrel{?}{=} Mac_k(m)$.

Theorem 8

If F is a PRF, Construction is a secure **fixed-length** MAC.

Not for variable-length message:

For one-block message m with tag t, adversary can append a block $t\oplus m$ and output tag t.

Secure Variable-Length MAC

- Option 1: $k_{\ell} := F_k(\ell)$, use k_{ℓ} for CBC-MAC.
- **Option 2**: Prepend m with |m|, then use CBC-MAC.

■ Option 3 (ECBC-MAC): Use two keys k_1, k_2 . Get t with k_1 by CBC-MAC, then output $\hat{t} := F_{k_2}(t)$.

Lessons learned

Wrap CBC-MAC with PRF(length/tag), and only output is tag!

Brute-force Attack against CBC-MAC

Query $2^{|t|/2}$ message to find $m \neq m'$ and t = t'.

Extension property of ECBC-MAC:

$$\forall x, y, z : F_k(x) = F_k(y) \Rightarrow F_k(x||z) = F_k(y||z).$$

So the tag of m||w| is the same with that of m'||w|.

Lesson: the tag space should be enough large.

Improvement: Add a random string r, and output $(r, \mathsf{Mac}_{k'}(t||r))$ instead of t

instead of t.

MAC Padding

Padding must be invertible!

$$m_0 \neq m_1 \Rightarrow \mathsf{pad}(m_0) \neq \mathsf{pad}(m_1).$$

ISO: pad with "100...00". Add dummy block if needed. **CMAC (Cipher-based MAC from NIST)**: $key = (k, k_1, k_2)$.

- No final encryption step (extension attack thwarted by last keyed XOR).
- No dummy block (ambiguity resolved by use of k_1 or k_2).

Content

- 1 Message Authentication Codes (MAC) Definitions
- **2** Constructing Secure Message Authentication Codes
- 3 CBC-MAC
- **4** Collision-Resistant Hash Functions
- 5 NMAC and HMAC

Defining Hash Function

Definition 9

A hash function (compression function) is a pair of PPT algorithms (Gen, H) satisfying:

- a key $s \leftarrow \mathsf{Gen}(1^n)$, s is **not kept secret**.
- $lacksquare H^s(x) \in \{0,1\}^{\ell(n)}$, where $x \in \{0,1\}^*$ and ℓ is polynomial.

If H^s is defined only for $x\in\{0,1\}^{\ell'(n)}$ and $\ell'(n)>\ell(n)$, then (Gen, H) is a **fixed-length** hash function.

Defining Collision Resistance

- **Collision** in H: $x \neq x'$ and H(x) = H(x').
- Collision Resistance: infeasible for any PPT alg. to find.

The collision-finding experiment $\mathsf{Hashcoll}_{\mathcal{A},\Pi}(n)$:

- 1 $s \leftarrow \mathsf{Gen}(1^n)$.
- **2** \mathcal{A} is given s and outputs x, x'.
- $\exists \; \mathsf{Hashcoll}_{\mathcal{A},\Pi}(n) = 1 \iff x \neq x' \land H^s(x) = H^s(x').$

Definition 10

 Π (H, H^s) is **collision resistant** if \forall PPT \mathcal{A} , \exists negl such that

$$\Pr[\mathsf{Hashcoll}_{\mathcal{A},\Pi}(n) = 1] \le \mathsf{negl}(n).$$

Weaker Notions of Security for Hash Functions

- **Collision resistance**: It is hard to find $(x, x'), x' \neq x$ such that H(x) = H(x').
- Second pre-image resistance: Given s and x, it is hard to find $x' \neq x$ such that $H^s(x') = H^s(x)$.
- Pre-image resistance: Given s and $y = H^s(x)$, it is hard to find x' such that $H^s(x') = y$.

The "Birthday" Problem

The "Birthday" Problem

Q: "What size group of people do we need to take such that with probability 1/2 some pair of people in the group share a birthday?" **A**: 23.

Lemma 11

Choose q elements y_1, \ldots, y_q u.a.r from a set of size N, the probability that $\exists i \neq j$ with $y_i = y_j$ is $\operatorname{coll}(q, N)$, then

$$\begin{aligned} &\operatorname{coll}(q,N) \leq \frac{q^2}{2N}.\\ &\operatorname{coll}(q,N) \geq \frac{q(q-1)}{4N} \quad \text{if } q \leq \sqrt{2N}.\\ &\operatorname{coll}(q,N) = \Theta(q^2/N) \quad \text{if } q < \sqrt{N}. \end{aligned}$$

A Generic "Birthday" Attack

- Birthday Attack: $H: \{0,1\}^* \to \{0,1\}^\ell$. Choose q distinct inputs $x_1, \dots, x_q \in \{0,1\}^{2\ell}$, check whether any of two $y_i := H(x_i)$ are equal.
- Birthday problem: Choose $y_1, \ldots, y_q \leftarrow \{0,1\}^{\ell}$ u.a.r, $\operatorname{coll}(q, 2^{\ell}) = ?$
- \blacksquare Collision occurs with a high probability when $\mathcal{O}(q)=\mathcal{O}(2^{\ell/2}).$
- To let time $T > 2^{\ell/2}$, then $\ell = 2 \log T$ at least.
- Work only for collision resistance, no generic attacks for 2nd pre-image or pre-image resistance better than 2^{ℓ} .
- Require too much space $\mathcal{O}(2^{\ell/2})$.

Constructing "Meaningful" Collisions

An example with 288 different meaningful sentences

It is hard/difficult/challenging/impossible to imagine/believe that we will find/locate/hire another employee/person having similar abilities/skills/character as Alice. She has done a great/super job.

The Merkle-Damgård Transform

Construction 12

Construct **variable-length** CRHF (Gen, H) from fixed-length (Gen, h) (2ℓ bits $\rightarrow \ell$ bits, $\ell = \ell(n)$):

- Gen: remains unchanged.
- \blacksquare H: key s and string $x \in \{0,1\}^*$, $L = |x| < 2^{\ell}$:
 - $B := \lceil \frac{L}{\ell} \rceil$ (# blocks). **Pad** x with **0s**. ℓ -bit blocks x_1, \ldots, x_B . $x_{B+1} := L$, L is encoded using ℓ bits.
 - $z_0 := IV = 0^{\ell}$. For i = 1, ..., B + 1, compute $z_i := h^s(z_{i-1} || x_i)$.

Security of the Merkle-Damgård Transform

Theorem 13

If (Gen, h) is a fixed-length CRHF, then (Gen, H) is a CRHF.

Proof.

Idea: a collision in H^s yields a collision in h^s .

Two messages $x \neq x'$ of respective lengths L and L' such that $H^s(x) = H^s(x')$. # blocks are B and B'.

 $x_{B+1} := L$ is necessary since **Padding with 0s** will lead to the same input with different messages.

- 1 $L \neq L'$: $z_B || L \neq z_{B'} || L'$.
- 2 L = L': $z_{i^*-1} || x_{i^*} \neq z'_{i^*-1} || x'_{i^*}$.

So there must be $x \neq x'$ such that $h^s(x) = h^s(x')$.

CRHF from Block Cipher

Davies-Meyer:

Used by SHA-1/2, MD5.

Miyaguchi-Preneel:

Used by Whirlpool (in ISO/IEC 10118-3).

Cryptographic Hash Functions: SHA-1 and MD5

SHA-1: MD5:

A,B,C,D and E are 32-bit words of the state; F is a nonlinear function that varies; $\ll n$ denotes a left bit rotation by n places; W_t/M_t is the expanded message word of round t; K_t is the round constant of round t; \boxplus denotes addition modulo 2^{32} .

Collision-Resistant Hash Functions in Practice

- The hash functions used in practice are generally un-keyed.
- The constructions are more heuristic in nature.
- Finding a collision in MD5 (Message Digest 5) with 128-bit output requires time $2^{20.96}$.
- Finding a collision in SHA-1 (Secure Hash Algorithm) with a 160-bit output requires time 2^{51} .

Content

- 1 Message Authentication Codes (MAC) Definitions
- **2** Constructing Secure Message Authentication Codes
- 3 CBC-MAC
- **4** Collision-Resistant Hash Functions
- 5 NMAC and HMAC

Nested MAC (NMAC)

Construction 14

 $(\widetilde{\mathsf{Gen}},h)$ is a fixed-length CRHF. $(\widetilde{\mathsf{Gen}},H)$ is Merkle-Damgård transform. NMAC:

- Gen(1ⁿ): Output (s, k_1, k_2) . $s \leftarrow \widetilde{\mathsf{Gen}}, k_1, k_2 \leftarrow \{0, 1\}^n$ u.a.r.
- $\mathsf{Mac}_{s,k_1,k_2}(m)$: $t_i := h_{k_1}^s(H_{k_2}^s(m))$. $h_k^s \stackrel{\mathsf{def}}{=} h^s(k\|x)$. $H_{k_2}^s$ is inner function; $h_{k_1}^s$ is outer function.
- Vrfy_{s,k_1,k_2}(m,t): 1 \iff $t \stackrel{?}{=} \mathsf{Mac}_{s,k_1,k_2}(m)$.

Security of NMAC

Theorem 15

If $(\widetilde{\mathsf{Gen}},h)$ is CRHF and yields a secure MAC, then NMAC is secure. (existentially unforgeable under an adaptive CMA for arbitrary-length messages)

- k_2 is not needed once $(\widetilde{\mathsf{Gen}},h)$ is CRHF.
 - Weak collision resistance: It is hard to find $(x, x'), x' \neq x$ such that $H_{k_2}^s(x) = H_{k_2}^s(x')$.
 - $H_s^{k_2}(x)$ is hidden by $h_s^{k_1}(H_s^{k_2}(x))$.
 - **Disadvantage**: IV of H must be modified.

Hash-based MAC (HMAC)

Construction 16

 $(\widetilde{\operatorname{Gen}},h)$ is a fixed-length CRHF. $(\widetilde{\operatorname{Gen}},H)$ is the Merkle-Damgård transform. IV, opad (0x36), ipad (0x5C) are fixed constants of length n. HMAC:

- Gen(1ⁿ): Output (s, k). $s \leftarrow \widetilde{\mathsf{Gen}}, k \leftarrow \{0, 1\}^n$ u.a.r.
- $\blacksquare \ \operatorname{Mac}_{s,k}(m) \colon \ t := H^s_{IV} \Big((k \oplus \operatorname{opad}) \| H^s_{IV} \big((k \oplus \operatorname{ipad}) \| m \big) \Big).$
- $Vrfy_{s,k}(m,t)$: $1 \iff t \stackrel{?}{=} Mac_{s,k}(m)$.

Security of HMAC

Theorem 17

$$G(k)\stackrel{\text{def}}{=} h^s(IV\|(k\oplus \mathsf{opad}))\|h^s(IV\|(k\oplus \mathsf{ipad}))=k_1\|k_2.$$
 (Gen, h) is CRHF. If G is a PRG, then HMAC is secure.

- HMAC is an industry standard (RFC2104) and is widely used in practice.
- HMAC is faster than CBC-MAC.
- Before HMAC, a common mistake was to use $H^s(k||x)$.
- Don't implement it yourself. Verification timing attacks.

Summary

- adaptive CMA, replay attack, birthday attack.
- existential unforgeability, collision resistance.
- CBC-MAC, CRHF, Merkle-Damgård transform, NMAC, HMAC.