Exercice 1. On pose $u_1 = \frac{1}{2}$ et, pour tout entier naturel n non nul :

$$u_{n+1} = \frac{u_n}{2(n+1)u_n + 1}.$$

- **1. a)** Montrer que l'on définit une suite $(u_n)_{n\in\mathbb{N}^*}$ de nombres réels strictement positifs. On pourra procéder par récurrence sur n en montrant que, pour tout entier naturel n, le réel u_n est bien défini et strictement positif.
- **b**) Compléter la fonction Python ci-dessous pour qu'elle renvoie la valeur de u_n à l'appel de suite(n).

- **2.** Donner la valeur de u_2 , puis vérifier que $u_3 = \frac{1}{12}$.
- **3. a)** Utiliser la définition de la suite $(u_n)_{n\in\mathbb{N}^*}$ pour établir l'encadrement :

$$\forall n \in \mathbb{N}^*, 0 < u_{n+1} < \frac{1}{2(n+1)}.$$

- **b)** En déduire que la suite $(u_n)_{n\in\mathbb{N}^*}$ converge et donner sa limite.
- **4.** Pour tout entier naturel k non nul, on pose : $v_k = \frac{1}{u_k}$.
 - a) Établir l'égalité :

$$\forall k \in \mathbb{N}^*, v_{k+1} - v_k = 2(k+1).$$

- **b)** La suite $(v_n)_{n\in\mathbb{N}^*}$ est-elle arithmétique? Justifier.
- c) Par sommation de l'égalité obtenue à la question 4.a), établir la relation :

$$\forall n \in \mathbb{N}^*, v_n = n(n+1).$$

- **d)** En déduire explicitement u_n en fonction de n puis retrouver la valeur de $\lim_{n\to+\infty}u_n$.
- **5. a)** Déterminer les constantes a et b pour lesquelles, pour tout entier naturel n non nul, on a :

$$u_n = \frac{a}{n} - \frac{b}{n+1}.$$

- **b)** Pour tout entier naturel N supérieur ou égal à 1, calculer la somme $\sum_{n=1}^{N} u_n$.
- c) En déduire que la série de terme général u_n converge et donner sa somme.
- $\mathbf{6.\,a}$) Expliquer pour quoi on peut maintenant considérer une variable aléatoire X dont la loi est donnée par la relation :

$$\forall n \in \mathbb{N}^*, \mathbf{P}([X=n]) = u_n.$$

b) Soit n un entier supérieur ou égal à 1. Montrer que

$$\int_{n+1}^{n+2} \frac{1}{t} \, \mathrm{d}t \leqslant \frac{1}{n+1}.$$

c) En déduire l'égalité :

$$\sum_{n=1}^{N} \frac{1}{n+1} \ge \ln(N+2) - \ln(2).$$

d) Montrer alors que X ne possède pas d'espérance.

Exercice 2. Partie A: Calcul matriciel et suites

On considère les matrices carrées d'ordre 3 suivantes :

$$M = \frac{1}{4} \begin{pmatrix} 2 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 2 \end{pmatrix}, P = \begin{pmatrix} 1 & 1 & 0 \\ 1 & -1 & 1 \\ 1 & 0 & -1 \end{pmatrix}, Q = \begin{pmatrix} 1 & 1 & 1 \\ 2 & -1 & -1 \\ 1 & 1 & -2 \end{pmatrix} \text{ et } I = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}.$$

On considère également les suites numériques $(a_n)_{n\in\mathbb{N}}$, $(b_n)_{n\in\mathbb{N}}$, $(c_n)_{n\in\mathbb{N}}$ définies par :

$$a_0 = 1, b_0 = 0, c_0 = 0$$
 et $\forall n \in \mathbb{N}, \begin{cases} a_{n+1} = \frac{1}{2}a_n + \frac{1}{4}b_n + \frac{1}{4}c_n \\ b_{n+1} = \frac{1}{4}a_n + \frac{1}{2}b_n + \frac{1}{4}c_n \\ c_{n+1} = \frac{1}{4}a_n + \frac{1}{4}b_n + \frac{1}{2}c_n \end{cases}$

On note enfin pour tout entier naturel n, la matrice colonne : $X_n = \begin{pmatrix} a_n \\ b_n \\ c_n \end{pmatrix}$.

- **1. a)** Calculer le produit matriciel PQ,
 - **b)** En déduire que P est inversible et déterminer P^{-1} .
- **2. a)** Vérifier que : $\forall n \in \mathbb{N}, X_{n+1} = MX_n$.
 - **b)** Démontrer par récurrence que : $\forall n \in \mathbb{N}, X_n = M^n X_0$.
- **3. a)** Vérifier que (4M I)(4M 4I) est la matrice nulle.
 - **b**) En déduire les valeurs propres possibles de la matrice M.
- **4. a)** Déterminer la matrice diagonale D telle que $M = PDP^{-1}$.
- **b)** Donner sans démonstration, pour tout entier naturel n, l'expression de M^n en fonction des matrices D, P et P^{-1} .
 - c) Vérifier que pour tout entier naturel n, on a :

$$M^{n} = \frac{1}{3} \begin{pmatrix} 1 + 2\left(\frac{1}{4}\right)^{n} & 1 - \left(\frac{1}{4}\right)^{n} & 1 - \left(\frac{1}{4}\right)^{n} \\ 1 - \left(\frac{1}{4}\right)^{n} & 1 + 2\left(\frac{1}{4}\right)^{n} & 1 - \left(\frac{1}{4}\right)^{n} \\ 1 - \left(\frac{1}{4}\right)^{n} & 1 - \left(\frac{1}{4}\right)^{n} & 1 + 2\left(\frac{1}{4}\right)^{n} \end{pmatrix}.$$

- **d)** Justifier que pour tout entier naturel n, $\begin{cases} a_n &= \frac{1}{3} \left(1 + \frac{2}{4^n} \right) \\ b_n = c_n &= \frac{1}{3} \left(1 \frac{1}{4^n} \right) \end{cases}$
- **e)** En déduire les limites des suites $(a_n)_{n\in\mathbb{N}}$, $(b_n)_{n\in\mathbb{N}}$, et $(c_n)_{n\in\mathbb{N}}$.
- f) Compléter le script **Python** ci-dessous afin qu'il calcule et affiche le plus petit entier naturel n tel que l'on ait à la fois : $a_n \leq 0.334$ et $b_n \geq 0.333$.

Partie B : Application à un jeu de hasard

On suppose qu'un joueur déplace un pion sur les trois cases d'une roue de loterie partagée en tiers numérotés 0, 1 et 2, dans le sens des aiguilles d'une montre (c'est-à-dire dans le sens de la flèche indiquée), selon le protocole suivant :

- au début du jeu, le pion est sur la case 0;
- à chaque coup le joueur tire de façon équiprobable un chiffre k de l'ensemble $\{0, 1, 2, 3\}$ et avance son pion de k cases, en tournant dans le sens des aiguilles d'une montre.

Ainsi, par exemple, s'il tire le chiffre 3, il avance son pion de 3 cases; s'il tire le chiffre 0 , il reste sur place.

On note, pour tout entier naturel n, les événements :

- A_n : " à l'issue du $n^{\text{ième}}$ coup, le pion est sur la case 0 ",
- B_n : " à l'issue du $n^{\text{ièm e}}$ coup, le pion est sur la case 1 ",
- C_n : " à l'issue du $n^{\text{ièm e}}$ coup, le pion est sur la case 2 ".

On convient que A_0 est l'événement certain et que B_0 et C_0 sont des événements impossibles.

- **5.** Donner les valeurs des probabilités $\mathbf{P}(A_0)$, $\mathbf{P}(B_0)$, $\mathbf{P}(C_0)$, $\mathbf{P}(A_1)$, $\mathbf{P}(B_1)$ et $\mathbf{P}(C_1)$.
- **6. a)** Expliquer pourquoi $\mathbf{P}_{A_{n}}\left(A_{n+1}\right)=\frac{1}{2}.$ Donner les valeurs de $\mathbf{P}_{B_{n}}\left(A_{n+1}\right)$ et $\mathbf{P}_{C_{n}}\left(A_{n+1}\right).$
- **b**) À l'aide de la formule des probabilités totales, exprimer pour tout entier naturel n, les probabilités des événements $A_{n+1}, B_{n+1}, C_{n+1}$ en fonction des probabilités des événements A_n, B_n, C_n .
- c) En déduire que les probabilités $\mathbf{P}(A_n)$, $\mathbf{P}(B_n)$ et $\mathbf{P}(C_n)$ sont données par les valeurs de a_n , b_n et c_n obtenues dans la **Partie A**.
- 7. Interpréter alors le résultat de la question 4.e) obtenu dans la Partie A.