Topics:

- Huffman Coding
- •Graph Search
- •BFS, DFS
- Minimum Spanning Trees
- Generic MST Algorithm
- Prim's & Kruskal's Algorithms
- Max Flow, Min Cut —
- Ford-Fulkerson Algorithm
- Bipartite Matching
- Dynamic Programming
- Fibonacci numbers
- Bellman-Ford Algorithm
- Dijkstra's Algorithm
- Knapsack

Let (S, V - S) be a minimum (s, t)-cut of the flow graph G. Let (u, v) be an edge that crosses the cut in the forward direction i.e. $u \in S$ and $v \in V - S$. Increasing the capacity of this edge always increases the maximum flow of G.

A. True

B. False

If we have a dynamic programming algorithm with n^2 subproblems, is it possible for the runtime to be asymptotically larger than $\Theta(n^2)$?

A. Yes

B. No

if (n) to solve one subproblem

Consider the knapsack problem with A = [(9,1), (3,5), (4,9), (8,2), (10,9), (2,5)] where each pair is (value, weight). Determine the optimal set of items which maximizes the total value if W = 12 is the weight limit. Fill in the DP table.

	0	1	2	3	4	5	6	7	8	9	10	11	12
0	D	0	0	Q	P	0	0	D	D	0	D	٥	0
1	D	9	9	9	9	9	9	9	9	9	9	9	9
2	0	9	9	5	9	9	12	12	17	12	12	12	12
3	0	5	9	5	9	5	[2	17	12	12	13	13	13
4	0	9	9	17	17	17	17	17	20	20	20	71	21
5	Ô	9	9	17	17	17	17	17	20	20	20	20	27
6	0	9	9	17	17	17	17	17	20	20	20	20	27

alg. visits
it tem

Given the following character frequencies, construct the Huffman code. Assume traversing the binary tree to the left indicates a 0 and to the

right is a 1.

а	0.12
b	0.07
С	0.18
d	0.32
е	0.31

Draw the BFS tree of the following graph starting from node a

Draw the DFS tree of the following graph starting from node a

Compute the SSSP from r to all other nodes in the network below using

Dijsktra's algorithm.

Compute the SSSP from r to all other nodes in the network below using Bellman-Ford's algorithm.

Determine the maximum bipartite matching of the following bipartite

graph.

Determine the maximum bipartite matching of the following bipartite graph.

