ใบความรู้ที่ 6 การใช้ thingcontrol board ควบคุมการแสดงผลบน 7 Segment

เซเว่นเซกเมนต์ (7-Segment Display) **เป็นอุปกรณ์แสดงผลที่ประยุกต์นำ** LED มาเปลี่ยนรูปร่างให้มีลักษณะเป็นขีดยาว จำนวน 7 ขีดเรียงต่อกันคล้ายเลข 8 และจุด1 จุดกำหนดตำแหน่งของ LED แต่ละตัวด้วยตัวอักษณ A – G และ DP ตามรูป

<u>ประเภทของ 7-Segment</u>

1.แบบคอมมอนแคโทด (Common Cathode) เป็นการต่อขา Cathode ของ LED ทุกตัว**จะต้องต่ออยู่กับขั้วกราว์ด แล้วข**า Anode ต่ออยู่กับ กราว์ด จึงจะทำให้ LED ดับ ถ้าขา Anode ต่ออยู่กับขั้วบวก จึงจะทำให้ LED ติดสว่าง

2. แบบคอมมอนแอโนด (Common Anode) เป็นการต่อขา Anode ของ LED ทุกตัวจะต้**องต่ออยู่กับขั้วบวก แล้วขา** Cathode ต่ออยู่กับขั้วบวก จึงจะทำให้ LED ติดสว่าง ถ้าขา Cathode ต่ออยู่กับขั้วบวก จึงจะทำให้ LED ดับ

ตำแหน่งขาต่างๆ บนอุปกรณ์จริง

Driving the Display

Display Value	0	1	2	3	4	5	6	7	8	9
Segment Drive (B) (MSB) (LSB)	0011 1111	0000 0110	0101 1011	0100 1111	0110 0110	0110 1101	0111 1101	0000 0111	0111 1111	0110 1111
B (hex)	0x3F	0x06	0x5B	0x4F	0x66	0x6D	0x7D	0x07	0x7F	0x6F
Actual Display		\blacksquare	2	B	\exists	5	8	B	8	3

รูปการต่อ 7-Segment กับ thingcontrol

ตัวอย่างโปรแกรมที่ 1

```
void setup() {
 pinMode(27, OUTPUT);
                            // initialize the 27 pin (a) as an output:
 pinMode(14, OUTPUT);
                            // initialize the 14 pin (b) as an output:
 pinMode(12, OUTPUT);
                            // initialize the 12 pin (c) as an output:
                            // initialize the 13 pin (d) as an output:
 pinMode(13, OUTPUT);
 pinMode(15, OUTPUT);
                            // initialize the 15 pin (e) as an output:
 pinMode(2, OUTPUT);
                            // initialize the 2 pin (f) as an output:
 pinMode(0, OUTPUT);
                            // initialize the 0 pin (g) as an output:
 pinMode(4, OUTPUT);
                            // initialize the 4 pin (dp) as an output:
}
void loop() {
  // Dispaly number 1 on 7-Segemnt
  digitalWrite(27, HIGH);
                            // turn a segment on:
  digitalWrite(14, HIGH);
                            // turn a segment on:
  digitalWrite(12, HIGH);
                            // turn a segment on:
  delay(5000);
  digitalWrite(27, LOW);
                           // turn a segment on:
  digitalWrite(14, LOW);
                           // turn a segment on:
```

```
digitalWrite(12, LOW); // turn a segment on:
  delay(5000);
}
ตัวอย่างโปรแกรมที่ 2
int LEDs[] = \{27,14,12,13,15,2,0\}; // a - g LED pin
int one[] = {0, 0, 0, 0, 1, 1, 0}; // LED states to display number one
void setup() {
for (int i = 0; i<7; i++) pinMode(LEDs[i], OUTPUT);
}
void loop() {
for (int i = 0; i<7; i++) digitalWrite(LEDs[i], one[i]);
delay(1000);
for (int i = 0; i<7; i++) digitalWrite(LEDs[i], eight[i]);
delay(1000);
}
```

คำถามท้ายใบความรู้ที่ 6

- 1.จงอธิบายโครงสร้างและส่วนประกอบของเซเว่นเซกเมนต์
- 2.จงบอกความแตกต่างของเซเวนเซกเมนต์แบบคอมมอนแอโนดและคอมมอนแคโทด
- 3. จงเขียนโปรแกรมเพื่อแสดงผล 0 9 บน เซเว่นเซกเมนต์