☑ eExam Question Bank				
Coursecode:				
Choose Coursecode	Ψ			
media Delete Selected Questions	► Assign Selected Questions to eExam			
Show 150 ▼ entries				
	Search:			

Question Type 👢	Question	A Jt	B ↓↑	С
MCQ	Find the general solution of $y^{\prime}+2y=x^3e^{-2x}$	$y=e^{-2x}\left(\frac{x^4}{4}+c\right)$	$y = e^{2x} \left(\frac{x^4}{4} - c \right)$	$y = -e^{-2x} \left(\frac{x^4}{4}\right)$
MCQ	Solve the initial value problem $y^{\prime}-ay=0, y(x_0)=y_0$	$y=-y_0e^{-ax_0}e^{-ax}$	$y=y_0e^{ax_0}e^{-ax}$	$y=-y_0e^{-ax_0}$
MCQ	Let a be a constant. Find the general solution of $y^{\prime}-ay=0$	$y=ce^{ax}$	$y=-ce^{ax}$	$y=e^{ax}$
MCQ	The solution of differential equation $\frac{dy}{dx} = \frac{1}{x^2}$	$y=rac{1}{x}+c$	$y=-rac{1}{x}+c$	$y=-\frac{1}{x^2}+$
MCQ	If $y=2x+Ce^x$ is a solution of the differential equation $\frac{dy}{dx}-y=2(1-x)$ then find the particular solution satisfied by x=0, y=3	$y=2x+e^x$	$y=2x+2e^x$	$y=2x+5e^{i}$
MCQ	Find the complete solution of $\left(D^4-8D^2+16\right)y=0$	$y = (A + Bx)e^{-x} + (C + Dx)e^{x}$	$y = (A + Bx)e^{-2x} + (C + Dx)e^{2x}$	$y = (A + Bx)e^x + (C$
MCQ	Solve the equation $\frac{dt^2}{dx^2} - 4t = 0$	t=cos2x	t=sin2x	t=sinh2x
MCQ	Solve completely the differentiial equation $\frac{d^2y}{dx^2}-a^2y=0$	y = A coshax + B sinhax	y = A coshax - B sinhax	y = Acosax + B.
MCQ	Solve the diferential equation $2rac{d^2y}{dx^2} + 5rac{dy}{dx} - 12y = 0$	$y = c_1 e^{\frac{-3x}{2}} + c_2 e^{-4x}$	$y = c_1 e^{\frac{3x}{2}} + c_2 e^{-4x}$	$y = \frac{x}{1+a} - \frac{1}{a}$

MCQ	solve the second order differential equation $\frac{d^2y}{dx^2}-4y=12x, y(0)=4, y'(0)=1$	$y = -3e^{2x} + e^{-2x} - 3x$	$y = 3e^{2x} + e^{-2x} + 3x$	$y = 3e^{2x} - e^{-2x}$
MCQ	Solve the Riccati's equation $\[\frac{d y}{d x}=-1-x^{2}+y^{2} \]$	\[y(x)=-x+\frac{e^{-x^{2}}} \{\int_{0}^{x} e^{-x^{2}}}+c\]	\[y(x)=-x-\frac{e^{-x^{2}}}{\int_{0}^{x}} e^{-x^{2}}}+c\]	\[y(x)=-x+\frac{e^{-x^{2}}} \\int_{0}^{x} e^{x}+c\]
MCQ	Solve the general solution of \[\frac{d y}{ d x }=e^{x}+x+sinx \]	\[y=c e^{-x}-\frac{1}{2} e^{x}+x- 1+\frac{1}{2}(\sin x - \cos x)\]	\[y=c e^{-x}\frac{1}{2} e^{x}+x- 1+\frac{1}{2}(\sin x - \cos x)\]	\[y=c e^{-x}+\frac{1}{2} e \frac{1}{2}(\sin x - \cos x)
MCQ	Solve the diferential equation \[y'=-y+x^{2}y^{2}\]	\[y=\frac{1}{C e^{x}+x^{2}+2x+2}\]	\[y=-\frac{1}{C e^{x}+x^{2}+2x+2}\]	\[y=\frac{1}{C e^{x}-x^{2}
MCQ	Find the particular integral of \[\frac{dy}{dx}+y=cos 3x\]	$[y_{P}(x)=\frac{1}{10}(-3 \sin 3x - \cos 3x)]$	\\[y_{P}(x)=\frac{1}{10}(-3 sin 3x +cos 3x)\]	\[y_{P}(x)=\frac{1}{10}(3x)\]
MCQ	Find the particular solution of \[\frac{dy}{dx}+2y=2x^{2}+3\]	\[y_{P}(x)=x^{2}-x+2\]	\[y_{P}(x)=x^{2}+x+2\]	\[y_{P}(x)=-x^{2}-x+2\]
MCQ	Find the solution of \[y'=2xy^{2}\]	\[y=\frac{1}{2x}(1-y^{2})\]	\[y=\frac{1}{2x}(1+y^{2})\]	\[y=\frac{1}{2}(1-y^{2})\]
MCQ	Find the implicit solution of \ [y'=\frac $\{x^{2}+3x+2+\}\{y-2\}$, $y(2)=1$ \]	\[y^{2}-2y=\frac{x^{3}}{3}-\frac{3x^{2}}{2}-2x+\frac{25}{6}\]	\[y^{2}-2y=\frac{x^{3}}{3}+\frac{3x^{2}}{2}+2x+\frac{25}{6}\]	\[y^{2}-2y=\frac{x^{3}}{3} \frac{3x^{2}}{2}+2x+\frac
MCQ	Find the implicit solution of \ [y'=\frac{2x+y}{5y^{4}+1}, y(2)=1\]	\[y^{5}+y=-x^{2}+x-4\]	\[y^{5}+y=x^{2}-x-4\]	\[y^{5}+y=x^{2}+x+4\]
MCQ	Solve the equation \[x\frac{dy}{dx}-ay=x+1\], where \[a\] is a constant	\[y=\frac{x}{1-a}-\frac{1}{a}+cx\]	\[y=\frac{x}{1-a}+\frac{1}{a}+cx\]	\[y=\frac{x}{1+a}-\frac{1}
MCQ	Solve the differential equation \ [x\frac{dy}{dx}+y=x^{3}\]	\[\frac{x}{y}=\frac{x}{4}+c\]	\[\frac{x}{y}=\frac{x^{2}}{4}+c\]	\[xy=\frac{x^{4}}{4}+c\]
MCQ	Solve the equation\[$(x^{2}+y^{2})dx-2xydy=0$ \]	\[x+\frac{y}{x}=c\]	\[x-\frac{y}{x}=c\]	\[x-\frac{y^{2}}{x}=c\]
MCQ	Find the general solution of the differential equation \[\frac{dy}{dx}=\frac{y^{3}}{x^{3}}+\frac{y}{x}\]	$\label{eq:continuous} $$ \int_{x^2}^2\frac{1}{\ln x} \left(\int_{x^2}^2 \frac{1}{\ln x} \right) dx$	\[y^{2}=\frac{x^{2}}{2}\frac{1}{\ln x c }\]	\[y^{2}=\frac{x}{2}1
MCQ	Solve the differential equation \ [(x^{2}+y^{2})dx-2xydy=0\]	\[-x^{2}-y^{2}=c x\]	\[-x^{2}+y^{2}=c x\]	\[x^{2}+y^{2}=c x\]
MCQ	Find the general solution \[\frac{dy} \{dx}=\frac{2y^{2}+3xy}{x^{2}}\]	[y=\frac{c x^{3}}{1-c x^{2}}\]	\[y=\frac{c x^{3}}{1+c x^{2}}\]	\[y=-\frac{c x^{3}}{1-c x^
MCQ	Solve the initial value problem \ $[(1+y^{2})dx+(1+x^{2})d,\ y(0)=-1)]$	\[tan^{-1} x-tan^{-1} y=-\frac{\pi}{4}\]	\[tan^{-1} x+ tan^{-1} y=-\frac{\pi}{4}\]	\[tan^{-1} x+ tan^{-1} y=
MCQ	One hundred grams of cane sugar in water are being converted into dextrose at a rate which is proportional to the amount unconverted. Find the differential equation expressing the rate of conversion after t minutes.	\[\frac{dq}{dt}=K(100-q)\]	\[\frac{dq}{dt}=K(100+q)\]	\[\frac{dq}{dt}=-K(100-q)
MCQ	<ir> <image=picture1.png> The picture above demostrate the Newton's law of cooling which that the rate of change with respect to time t of the temperature T(t) of a body is proportional to difference between T and the temperature A of the surrounding medium. Which of the following represent the law</image=picture1.png></ir>	\[\frac{dT}{dt}=K(T-A)\]	\[\frac{dT}{dt}=K(T+A)\]	\[\frac{dT}{dt}=-K(T-A)\]

MCQ	Which of the differential equation represent the time rate of change a population \[P(t)\] with constant birth and death rate is proportional to the size of the population	\[\frac{dp}{dt}=KP\]	\[\frac{dp}{dt}=K-P\]	\[\frac{dp}{dt}=K(1-P)\]
MCQ	Find the value of $[m]$ so that the function $[y=e^{mx}]$ is a solution of the differential equation $[y'+2y=0]$	0	3	1
MCQ	Sove the initial value problem $\Gamma \left(\frac{dy}{dx} = 12x^{3}-2 \sin x, y(0)=3 \right)$	$[y(x)=3x^{2}+2\cos t+1]$	\[y(x)=6x+2 cos t+1\]	\[y(x)=x^{2}+2 sin t+1\]
MCQ	The general solution of equation \ $\{\frac{dy}{dx}-y=2(1-x)\}\$ is \ $[y=2x+Ce^{x}]$. Find the particular solution satisfied by \[x=0, y=0\]	\[y=2x+2e^{{x}\]	\[y=2x+e^{x}\]	\[y=2x+3e^{x}\]
MCQ	Determine the value of k in the differential equation $\{y'+ky=0, y(0)=y_{0}\}, \text{ where } \{y=2e^{-4x}\} \text{ is the solution}$	0	2	3
MCQ	Suppose $[y=2e^{-4x}]$ is the solution to the initial value problem $[y'+ky=0, y(0)=y_{0}]$. Find the value of $[y_{0}]$	1	2	3
MCQ	The degree of differention equation \ [\left(\frac{d^{3}y}\) {dx^{3}}\right)^{2}+2\frac{d^{2}y}{dx^{2}}-\ \frac{dy}{dx}+x^{2}\left(\frac{dy}\) {dx}\right)^{3}=0\] is	2	1	3
MCQ	The order of differential equation \[\frac{d \{2} y}{dx^{2}}+2\frac{dy}{dx}\frac{d^{3} y}{dx^{3}}+x=0\] is	1	3	4