SBML Model Report

Model name: "Overgaard2007_PDmodel_IL21"

May 5, 2016

1 General Overview

This is a document in SBML Level 2 Version 4 format. This model was created by the following three authors: Catherine Lloyd¹, Vijayalakshmi Chelliah² and Rune Viig Overgaard³ at November twelveth 2009 at 2:29 p. m. and last time modified at February 24th 2015 at 8:28 p. m. Table 1 gives an overview of the quantities of all components of this model.

Table 1: Number of components in this model, which are described in the following sections.

Element	Quantity	Element	Quantity
compartment types	0	compartments	1
species types	0	species	0
events	0	constraints	0
reactions	0	function definitions	0
global parameters	56	unit definitions	0
rules	27	initial assignments	0

Model Notes

This a model from the article:

PKPD model of interleukin-21 effects on thermoregulation in monkeys-application and evaluation of stochastic differential equations.

¹University of Auckland, c.lloyd@auckland.ac.nz

²EMBL-EBI, viji@ebi.ac.uk

³Novo Nordisk A/S, Copenhagen, Denmark., ruvo@novonordisk.com

Overgaard RV, Holford N, Rytved KA, Madsen H. Pharm Res. 2007 Feb;24(2):298-309. PUBMED, Abstract:

PURPOSE: To describe the pharmacodynamic effects of recombinant human interleukin-21 (IL-21) on core body temperature in cynomolgus monkeys using basic mechanisms of heat regulation. A major effort was devoted to compare the use of ordinary differential equations (ODEs) with stochastic differential equations (SDEs) in pharmacokinetic pharmacodynamic (PKPD) modelling. METHODS: A temperature model was formulated including circadian rhythm, metabolism, heat loss, and a thermoregulatory set-point. This model was formulated as a mixed-effects model based on SDEs using NONMEM. RESULTS: The effects of IL-21 were on the set-point and the circadian rhythm of metabolism. The model was able to describe a complex set of IL-21 induced phenomena, including 1) disappearance of the circadian rhythm, 2) no effect after first dose, and 3) high variability after second dose. SDEs provided a more realistic description with improved simulation properties, and further changed the model into one that could not be falsified by the autocorrelation function. CONCLUSIONS: The IL-21 induced effects on thermoregulation in cynomolgus monkeys are explained by a biologically plausible model. The quality of the model was improved by the use of SDEs.

This model originates from BioModels Database: A Database of Annotated Published Models. It is copyright (c) 2005-2010 The BioModels Team.

For more information see the terms of use.

To cite BioModels Database, please use Le Novre N., Bornstein B., Broicher A., Courtot M., Donizelli M., Dharuri H., Li L., Sauro H., Schilstra M., Shapiro B., Snoep J.L., Hucka M. (2006) BioModels Database: A Free, Centralized Database of Curated, Published, Quantitative Kinetic Models of Biochemical and Cellular Systems Nucleic Acids Res., 34: D689-D691.

2 Unit Definitions

This is an overview of five unit definitions which are all predefined by SBML and not mentioned in the model.

2.1 Unit substance

Notes Mole is the predefined SBML unit for substance.

Definition mol

2.2 Unit volume

Notes Litre is the predefined SBML unit for volume.

Definition 1

2.3 Unit area

Notes Square metre is the predefined SBML unit for area since SBML Level 2 Version 1.

$\textbf{Definition}\ m^2$

2.4 Unit length

Notes Metre is the predefined SBML unit for length since SBML Level 2 Version 1.

Definition m

2.5 Unit time

Notes Second is the predefined SBML unit for time.

Definition s

3 Compartment

This model contains one compartment.

Table 2: Properties of all compartments.

			*				
Id	Name	SBO	Spatial	Size	Unit	Constant	Outside
			Dimensions				
${\tt COMpartment}$			3	1	litre		

3.1 Compartment COMpartment

This is a three dimensional compartment with a constant size of one litre.

4 Parameters

This model contains 56 global parameters.

Table 3: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
М	Metabolic rate		3.500		
T	Temperature		38.785		\Box
BR	Bound Receptor		0.000		
E_slow	Slow Effect		0.000		
E_fast	Fast Effect		0.000		
f_prime	Priming		0.000		
T_a	ambient tempera-		21.000		
	ture				-

Id	Name	SBO Value	Unit	Constant
T_b	basiline tempera- ture	38.000		Ø
delta_T	temperature difference	1.570		
kinc	kinc	0.026		
tdose1	tdose1	24.000		$ \overline{\mathbf{Z}} $
tdose2	tdose2	72.000		$ \overline{\mathbf{Z}} $
tdose3	tdose3	120.000		$ \overline{\mathbf{Z}} $
$M_{-}c$	circadian rhythm	0.000		
t_{-} day	t_day	17.500		
t_night	t_night	6.730		$\overline{\mathbf{Z}}$
tprime	tprime	0.000		⊿ ⊟
$\mathtt{day_length}$	day_length	86400.000		
km	rate constant Metabolism	1.138		
С	specific heat con- stant	3.470		\square
k	heat conductance	0.000		
pEtot	pEtot	0.144		
kR	kR	5.350		$\overline{\mathbf{Z}}$
$\mathtt{AMT_dose}$	AMT_dose	3.000		$ \overline{\checkmark} $
pEf1	pEf1	1.000		$ \overline{\checkmark} $
pEs1	pEs1	0.200		
pEf2	pEf2	3.570		$ \overline{\mathbf{Z}} $
pEs2	pEs2	2.430		
pEf3	pEf3	8.000		
pEs3	pEs3	50.000		
f2_drug	f2_drug	0.000		
T_{-} day	T_day	0.000		\Box
$\mathtt{T}_{\mathtt{night}}$	T_night	0.000		\Box
kb	heat conductance baselinevalue	0.000		
M_b	M_b	3.000		Ø
M_{-} day	M_day	0.000		⊿ ⊟
M_night	M_night	0.000		
$t_{ extstyle prime}$	t_prime	45.120		⊟ ☑
alpha	alpha	0.223		$\overline{\mathbf{Z}}$
delta_high- _dose	delta_high_dose	1.000		\mathbf{Z}
M_night- _baseline	M_night_baseline	0.000		
gNsTs1	gNsTs1	0.000		\Box

Id	Name	SBO	Value	Unit	Constant
gNsTs2	gNsTs2		0.000		
gNsTs3	gNsTs3		0.000		\Box
gNfTf1	gNfTf1		0.000		
gNfTf2	gNfTf2		0.000		
gNfTf3	gNfTf3		0.000		
Ns	No. of transit com-		4.000		
	partment (slow)				
Nf	No. of transit com-		4.000		
	partment (fast)				
Ts	mean total delay		2.450		
	(slow)				
Tf	mena total delay		0.368		
	(fast)				
X1	X1		0.000		
X2	X2		0.000		
ХЗ	X3		0.000		
Kf	Kf		0.000		
Ks	Ks		0.000		

5 Rules

This is an overview of 27 rules.

5.1 Rule M

Rule M is a rate rule for parameter M:

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathbf{M} = \mathbf{km} \cdot (\mathbf{M} - \mathbf{M}_{-}\mathbf{c}) \tag{1}$$

5.2 Rule T

Rule T is a rate rule for parameter T:

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathbf{T} = \mathbf{c}^{-1} \cdot (\mathbf{M} - \mathbf{k} \cdot (\mathbf{T} - \mathbf{T}_{-}\mathbf{a})) \tag{2}$$

5.3 Rule BR

Rule BR is a rate rule for parameter BR:

$$\frac{d}{dt}BR = f_{prime} \cdot (E_{slow} + E_{fast}) \cdot (1 - BR) - kR \cdot BR$$
(3)

5.4 Rule tprime

Rule tprime is an assignment rule for parameter tprime:

$$tprime = time \cdot 3600 \cdot 1 - \left\lfloor \frac{time \cdot 3600 \cdot 1}{day_length} \right\rfloor \cdot day_length$$
 (4)

5.5 Rule kb

Rule kb is an assignment rule for parameter kb:

$$kb = \frac{M_b}{T b - T a} \tag{5}$$

5.6 Rule T_day

Rule T_day is an assignment rule for parameter T_day:

$$T_{day} = T_{b} + \frac{delta_{T}}{2}$$
 (6)

5.7 Rule M_day

Rule M_day is an assignment rule for parameter M_day:

$$M_{-}day = (kb + kinc \cdot (T_{-}day - T_{-}b)) \cdot (T_{-}day - T_{-}a)$$

$$(7)$$

5.8 Rule f_prime

Rule f_prime is an assignment rule for parameter f_prime:

$$f_{prime} = delta_high_dose \cdot (1 + exp(alpha \cdot (time - (tdose1 + t_prime))))^{-1}$$
 (8)

5.9 Rule T_night

Rule T_night is an assignment rule for parameter T_night:

$$T_{\text{night}} = T_{\text{b}} - \frac{\text{delta}_{\text{T}}}{2}$$
 (9)

5.10 Rule M_night_baseline

Rule M_night_baseline is an assignment rule for parameter M_night_baseline:

$$M_night_baseline = (kb + kinc \cdot (T_night - T_b)) \cdot (T_night - T_a)$$
 (10)

5.11 Rule M_night

Rule M_night is an assignment rule for parameter M_night:

$$M_night = (1 - f_prime) \cdot M_night_baseline + f_prime \cdot M_day$$
 (11)

5.12 Rule M_c

Rule M_c is an assignment rule for parameter M_c:

$$M_c = \begin{cases} M_night & \text{if } \left(\frac{tprime}{3600} \ge t_night\right) \land \left(\frac{tprime}{3600} < t_day\right) \\ M_day & \text{otherwise} \end{cases}$$
 (12)

5.13 Rule f2_drug

Rule f2_drug is an assignment rule for parameter f2_drug:

$$f2_drug = 0 (13)$$

5.14 Rule k

Rule k is an assignment rule for parameter k:

$$k = kb + kinc \cdot (T - T_b \cdot (1 + pEtot \cdot BR)) + f2_drug$$
 (14)

5.15 Rule X1

Rule X1 is an assignment rule for parameter X1:

$$X1 = \frac{\text{time} - \text{tdose1}}{24} \tag{15}$$

5.16 Rule X2

Rule X2 is an assignment rule for parameter X2:

$$X2 = \frac{\text{time} - \text{tdose2}}{24} \tag{16}$$

5.17 Rule X3

Rule X3 is an assignment rule for parameter X3:

$$X3 = \frac{\text{time} - \text{tdose3}}{24} \tag{17}$$

5.18 Rule Kf

Rule Kf is an assignment rule for parameter Kf:

$$Kf = \frac{Nf}{Tf} \tag{18}$$

5.19 Rule Ks

Rule Ks is an assignment rule for parameter Ks:

$$Ks = \frac{Ns}{Ts} \tag{19}$$

5.20 Rule gNsTs1

Rule gNsTs1 is an assignment rule for parameter gNsTs1:

$$gNsTs1 = \begin{cases} \frac{Ks^{Ns}}{6} \cdot exp(Ks \cdot X1) \cdot X1^{Ns-1} & \text{if } X1 > 0\\ 0 & \text{otherwise} \end{cases}$$
 (20)

5.21 Rule gNsTs2

Rule gNsTs2 is an assignment rule for parameter gNsTs2:

$$gNsTs2 = \begin{cases} \frac{Ks^{Ns}}{6} \cdot exp(Ks \cdot X2) \cdot X2^{Ns-1} & \text{if } X2 > 0\\ 0 & \text{otherwise} \end{cases}$$
 (21)

5.22 Rule gNsTs3

Rule gNsTs3 is an assignment rule for parameter gNsTs3:

$$gNsTs3 = \begin{cases} \frac{Ks^{Ns}}{6} \cdot exp(Ks \cdot X3) \cdot X3^{Ns-1} & \text{if } X3 > 0\\ 0 & \text{otherwise} \end{cases}$$
 (22)

5.23 Rule gNfTf1

Rule gNfTf1 is an assignment rule for parameter gNfTf1:

$$gNfTf1 = \begin{cases} \frac{Kf^{Nf}}{6} \cdot exp(Kf \cdot X1) \cdot X1^{Nf-1} & \text{if } X1 > 0\\ 0 & \text{otherwise} \end{cases}$$
 (23)

5.24 Rule gNfTf2

Rule gNfTf2 is an assignment rule for parameter gNfTf2:

$$gNfTf2 = \begin{cases} \frac{Kf^{Nf}}{6} \cdot exp(Kf \cdot X2) \cdot X2^{Nf-1} & \text{if } X2 > 0\\ 0 & \text{otherwise} \end{cases}$$
 (24)

5.25 Rule gNfTf3

Rule gNfTf3 is an assignment rule for parameter gNfTf3:

$$gNfTf3 = \begin{cases} \frac{Kf^{Nf}}{6} \cdot exp(Kf \cdot X3) \cdot X3^{Nf-1} & \text{if } X3 > 0\\ 0 & \text{otherwise} \end{cases}$$
 (25)

5.26 Rule E_slow

Rule E_slow is an assignment rule for parameter E_slow:

$$E_slow = AMT_dose \cdot pEs2 \cdot (gNsTs1 + gNsTs2 + gNsTs3)$$
 (26)

5.27 Rule E_fast

Rule E_fast is an assignment rule for parameter E_fast:

$$E.fast = pEf2 \cdot (gNfTf1 + gNfTf2 + gNfTf3)$$
 (27)

 $\mathfrak{BML2}^{d}$ was developed by Andreas Dräger^a, Hannes Planatscher^a, Dieudonné M Wouamba^a, Adrian Schröder^a, Michael Hucka^b, Lukas Endler^c, Martin Golebiewski^d and Andreas Zell^a. Please see http://www.ra.cs.uni-tuebingen.de/software/SBML2LaTeX for more information.

^aCenter for Bioinformatics Tübingen (ZBIT), Germany

^bCalifornia Institute of Technology, Beckman Institute BNMC, Pasadena, United States

^cEuropean Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, United Kingdom

^dEML Research gGmbH, Heidelberg, Germany