Constants

$$\begin{split} \omega_{\oplus} &= 15\,^{\circ}\,\mathrm{sidereal\ hr^{-1}} \\ \omega_{\oplus} &= 0.000\,072\,921\,151\,467\,\mathrm{rad\,solar\ sec^{-1}} \\ \mu_{\oplus} &= 398\,600.5\,\mathrm{km^{3}\,s^{-2}} \\ R_{\oplus} &= 6378.137\,\mathrm{km} \\ e_{\oplus} &= 0.081\,819\,190\,842\,6 \\ J_{2} &= 1.082\,63\times10^{-3} \\ \rho_{o} &= 1.225\,\mathrm{kg\,m^{-3}} \end{split}$$

Satellites - Basics

$$0 = \ddot{r} + \frac{\mu}{r^3}\bar{r} \qquad r = \frac{a\left(1 - e^2\right)}{1 + e\cos\nu}$$

$$h = rv\cos\gamma = \sqrt{\mu a\left(1 - e^2\right)} \qquad \bar{h} = \bar{r} \times$$

$$a = \frac{r_a + r_p}{2} \qquad e = \frac{2c}{2a} = \frac{r_a - r_p}{r_a + r_p}$$

$$r_p = a\left(1 - e\right) \qquad r_a = a\left(1 + e\right)$$

$$p = a\left(1 - e^2\right) = \frac{h^2}{\mu} \qquad \bar{e} = \frac{\bar{v} \times \bar{h}}{\mu} - \frac{\bar{r}}{r}$$

$$P = 2\pi\sqrt{\frac{a^3}{\mu}} \qquad \varepsilon = \frac{v^2}{2} - \frac{\mu}{r} = -\frac{\mu}{2a}$$

Time

$$\begin{split} \theta_g &= \theta_{g_0} + 1.00273790935 \times 2\pi * D \\ D &= \text{Day Num} - 1 + \frac{\text{HR}}{24} + \frac{\text{MIN}}{1440} \\ &+ \frac{\text{SEC}}{86400} \quad \text{where D is elapsed days} \\ \text{LST} &= \theta_g + \lambda_E \\ \text{EST} &= \text{UT} - 5 \qquad \text{EDT} = UT - 4 \end{split}$$

Preliminary Orbit Determination

$$x = \left| \frac{a_e}{\sqrt{1 - e^2 \sin^2 L}} + H \right| \cos L$$

$$z = \left| \frac{a_e \left(1 - e^2 \right)}{\sqrt{1 - e^2 \sin^2 L}} + H \right| \sin L$$

$$\bar{r}_s = x \cos L \operatorname{ST} \hat{i} + x \sin L \operatorname{ST} \hat{j} + z \hat{k}$$

$$\rho_s = -\rho \cos \alpha \cos \beta$$

$$\rho_e = \rho \sin \alpha \cos \beta$$

$$\rho_z = \rho \sin \beta$$

$$\dot{\rho}_s = -\dot{\rho} \cos \alpha \cos \beta + \rho \dot{\alpha} \sin \alpha \cos \beta + \rho \dot{\beta} \cos \alpha \sin \beta$$

$$\dot{\rho}_e = \dot{\rho} \sin \alpha \cos \beta + \rho \dot{\alpha} \cos \alpha \cos \beta - \rho \dot{\beta} \sin \alpha \sin \beta$$

$$\dot{\rho}_z = \dot{\rho} \sin \beta + \rho \dot{\beta} \cos \beta$$

$$[IJK] = ROT_3(LST)ROT_2(COLAT) [SEZ]$$

$$\begin{split} & \bar{r} = \bar{\rho} + \bar{r}_s \\ & \bar{v} = \dot{\bar{\rho}} + \bar{\omega}_{\oplus} \times \bar{r} \\ & \bar{v}_2 = -\Delta t_{32} \left(\frac{1}{\Delta t_{21} \Delta t_{31}} + \frac{\mu}{12r_1^3} \right) \bar{r}_1 \\ & + (\Delta t_{32} - \Delta t_{21}) \left(\frac{1}{\Delta t_{21} \Delta t_{32}} + \frac{\mu}{12r_2^3} \right) \bar{r}_2 \\ & + \Delta t_{21} \left(\frac{1}{\Delta t_{32} \Delta t_{31}} + \frac{\mu}{12r_3^3} \right) \bar{r}_3 \end{split}$$

Transfers

$$\Delta V_{OTB}^{2} = V_{1}^{2} + V_{2}^{2} - 2V_{1}V_{2}\cos\Delta\gamma$$

$$\tan\gamma = \frac{e\sin\nu}{1 + e\cos\nu} \qquad \Delta V_{s} = 2V_{i}\sin\frac{\theta}{2}$$

$$\Delta V_{COMB}^{2} = V_{1}^{2} + V_{2}^{2} - 2V_{1}V_{2}\cos\Delta i$$

Rendezvous

$$\begin{aligned} &\text{TOF} = \pi \sqrt{\frac{a^3}{\mu}} & \omega = \sqrt{\frac{\mu}{r_{circ}^3}} \\ &\alpha_{lead} = \omega_t \times \text{TOF} & \phi_f = \pi - \alpha_{lead} \\ &\text{Wait time}_{coplanar} = \frac{\phi_f - \phi_i \pm 2\pi n}{\omega_t - \omega_i} \\ &\text{Wait time}_{noncoplanar} = \frac{\phi_f - \phi_i \pm 2\pi n}{\omega_t} = \frac{\alpha_i - \alpha_f + 2\pi n}{\omega_t} \end{aligned}$$

Keplers Problem

$$n = \sqrt{\frac{\mu}{a^3}} \qquad M_f = M_i + n \times \text{TOF} - 2k\pi$$

$$M = E - e \sin E$$

$$\cos E = \frac{e + \cos \nu}{1 + e \cos \nu} \qquad \cos \nu = \frac{\cos E - e}{1 - e \cos E}$$

$$E_{n+1} = E_n + \frac{M - E_n + e \sin E_n}{1 - e \cos E_n}$$

COEs to RV

$$\bar{r} = r \left[\cos \nu \hat{p} + \sin nu \hat{q}\right]$$

$$\bar{v} = \sqrt{\frac{\mu}{p}} \left[-\sin \nu \hat{p} + (e + \cos \nu) \hat{q} \right]$$

$$[IJK] = ROT_3(\Omega)ROT_1(i)ROT_3(\omega) \left[PQW \right]$$

Perturbations

$$\begin{split} \bar{n} &= n_0 \left[1 + \frac{3}{2} J_2 \left(\frac{R_{\oplus}}{p_0} \right)^2 \sqrt{1 - e_0^2} \left(1 - \frac{3}{2} \sin^2 i_0 \right) \right] \\ n &= n_0 + \dot{n}_0 \Delta t \\ \dot{e}_{drag} &= \frac{-2(1 - e_0) \dot{n}_0}{3 \bar{n}} \\ e &= e_0 + \dot{e}_{drag} \Delta t \\ \dot{\Omega}_{J_2} &= \left[-\frac{3}{2} J_2 \left(\frac{R_{\oplus}}{p_0} \right)^2 \cos i_0 \right] \bar{n} \\ \Omega &= \Omega_0 + \dot{\Omega}_{J_2} \Delta t \\ \dot{\omega}_{J_2} &= \left[\frac{3}{2} J_2 \left(\frac{R_{\oplus}}{p_0} \right)^2 \left(2 - \frac{2}{5} \sin^2 i_0 \right) \right] \bar{n} \\ \omega &= \omega_0 + \dot{\omega}_{J_2} \Delta t \\ M &= M_0 + n_0 \Delta t + \frac{\dot{n}_0}{2} \Delta t^2 \end{split}$$

Entry - $p_0 = 1.225 \,\mathrm{kg} \,\mathrm{m}^{-3}$

 $\bar{a}_{drag} = -\frac{1}{2} \rho \frac{C_D A}{m} v \bar{v}$

$$\begin{split} \dot{r} &= v \sin \phi_E \\ \dot{v} &= \frac{\rho_0}{2\Delta} v^2 \exp{-\beta h} \qquad \beta = \frac{1}{7.315 \, \mathrm{km}} \\ \Delta &= \frac{m}{C_D A} \\ v &= v_e \exp{\left(\frac{\rho_0}{2\Delta\beta \sin \phi_E} \exp{(-\beta h)}\right)} \\ h_{max_g} &= \frac{1}{\beta} \ln{\left(\frac{-\rho_0}{\Delta\beta \sin \phi_E}\right)} \\ max_g &= \frac{-\beta v_E^2 \sin \phi_E}{2g_0 \exp{(1)}} \\ v_{max_g} &= v_E \exp{(-0.5)} \approx 0.61 v_E \end{split}$$

Proximity Operations

$$x(t) = \frac{\dot{x}_0}{\omega} \sin \omega t - \left(3x_0 + \frac{2\dot{y}_0}{\omega}\right) \cos \omega t + \left(4x_0 + \frac{2\dot{y}_0}{\omega}\right)$$

$$\dot{x}(t) = \dot{x}_0 \cos \omega t + (3\omega x_0 + 2\dot{y}_0) \sin \omega t$$

$$y(t) = \left(6x_0 + \frac{4\dot{y}_0}{\omega}\right) \sin \omega t + \frac{2\dot{x}_0}{\omega} \cos \omega t - (6\omega x_0 + 3\dot{y}_0) t + \left(y_0 - \frac{2\dot{x}_0}{\omega}\right)$$

$$\dot{y}(t) = (6\omega x_0 + 4\dot{y}_0) \cos \omega t - 2\dot{x}_0 \sin \omega t - (6\omega x_0 + 3\dot{y}_0)$$

$$z(t) = z_0 \cos \omega t + \frac{\dot{z}_0}{\omega} \sin \omega t$$

$$\dot{z}(t) = -z_0 \omega \sin \omega t + \dot{z}_0 \cos \omega t$$

Attitude Kinematics

$$ROT_1 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos \alpha & -\sin \alpha \\ 0 & \sin \alpha & \cos \alpha \end{bmatrix}$$

$$ROT_2 = \begin{bmatrix} \cos \beta & 0 & \sin \beta \\ 0 & 1 & 0 \\ -\sin \beta & 0 & \cos \beta \end{bmatrix}$$

$$ROT_3 = \begin{bmatrix} \cos \gamma & -\sin \gamma & 0 \\ \sin \gamma & \cos \gamma & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Note: Assuming column vectors.

Summary of Orbital Properties

Any Type of Orbit

$$\begin{split} \vec{h} &= \vec{r} \times \vec{v}, & \vec{r} &= r \hat{u}_r & \vec{v} &= v_r \hat{u}_r + v_\theta \hat{u}_\theta, \\ h &= r v \cos \gamma = r v_\theta = r^2 \dot{\theta}, & r &= \frac{h^2/\mu}{1 + e \cos \theta}, & v_r &= \frac{\mu}{h} e \sin \theta = \dot{r}, \\ \vec{e} &= \frac{\vec{v} \times \vec{h}}{\mu} - \frac{\vec{r}}{r}, & r_p &= \frac{h^2/\mu}{1 + e}, & v_\theta &= \frac{\mu}{h} (1 + e \cos \theta) = r \dot{\theta}, \\ \mathcal{E} &= \frac{1}{2} v^2 - \frac{\mu}{r} = -\frac{1}{2} \frac{\mu^2}{h^2} (1 - e^2), \tan \gamma = \frac{v_r}{v_\theta} = \frac{e \sin \theta}{1 + e \cos \theta}. \end{split}$$

Circular Orbits: (e = 0)

$$v = \sqrt{\frac{\mu}{r}}, \qquad \mathcal{E} = -\frac{\mu}{2r}, \qquad T = \frac{2\pi}{\sqrt{\mu}} r^{3/2}.$$

Elliptic Orbits: (0 < e < 1)

$$r = \frac{a(1 - e^2)}{1 + e \cos \theta}, \qquad a = \frac{h^2/\mu}{1 - e^2} = \frac{1}{2}(r_a + r_p), \qquad T = \frac{2\pi}{\sqrt{\mu}}a^{3/2},$$

$$r_p = \frac{h^2/\mu}{1 + e} = a(1 - e), \qquad b = a\sqrt{1 - e^2}, \qquad e = \frac{r_a - r_p}{r_a + r_p},$$

$$r_a = \frac{h^2/\mu}{1 - e} = a(1 + e), \qquad \mathcal{E} = -\frac{\mu}{2a}, \qquad h = \sqrt{\mu a(1 - e^2)}.$$

Parabolic Orbits: (e = 1)

$$v = \sqrt{\frac{2\mu}{r}}, \qquad \mathcal{E} = 0.$$

Hyperbolic Orbits: (e > 1)

$$r = \frac{a(e^2 - 1)}{1 + e \cos \theta}, \qquad a = \frac{h^2/\mu}{e^2 - 1}, \qquad \theta_{\infty} = \cos^{-1}(-1/e),$$

$$r_p = a(e - 1), \qquad b = a\sqrt{e^2 - 1}, \qquad \beta = \cos^{-1}(1/e),$$

$$\mathcal{E} = \frac{\mu}{2a}, \qquad h = \sqrt{\mu a(e^2 - 1)}.$$

Transformation between Orbital Elements and (\vec{r}, \vec{v})

Given (\vec{r}, \vec{v}) , find the orbital elements $(h, e, \theta, \Omega, i, \omega)$

$$\begin{split} r &= |\vec{r}|, \\ \vec{h} &= \vec{r} \times \vec{v}, \qquad h = |\vec{h}|, \\ \vec{e} &= \frac{1}{\mu} \vec{v} \times \vec{h} - \frac{\vec{r}}{r}, \qquad e = |\vec{e}|, \\ \vec{N} &= \hat{z} \times \vec{h}, \\ i &= \cos^{-1} \left(\frac{\vec{h} \cdot \hat{z}}{h} \right) \quad (0 \leq i \leq \pi), \\ \Omega &= \tan^{-1} \left(\frac{\hat{y} \cdot \vec{N}}{\hat{x} \cdot \vec{N}} \right) = \text{numpy.arctan2} \left(\hat{y} \cdot \vec{N}, \hat{x} \cdot \vec{N} \right), \\ \omega &= \tan^{-1} \left(\frac{\vec{h} \cdot (\vec{N} \times \vec{e})}{h(\vec{N} \cdot \vec{e})} \right) = \text{numpy.arctan2} \left(\vec{h} \cdot (\vec{N} \times \vec{e}), h(\vec{N} \cdot \vec{e}) \right), \\ \theta &= \tan^{-1} \left(\frac{\vec{h} \cdot (\vec{e} \times \vec{r})}{h(\vec{e} \cdot \vec{r})} \right) = \text{numpy.arctan2} \left(\vec{h} \cdot (\vec{e} \times \vec{r}), h(\vec{e} \cdot \vec{r}) \right). \end{split}$$

(Use the Numpy numpy .arctan2 function to compute \tan^{-1} , i.e. $\tan^{-1}(y/x) = \text{numpy.arctan2}(y, x)$).

Given the orbital elements $(h, e, \theta, \Omega, i, \omega)$, find (\vec{r}, \vec{v})

$$\begin{split} \hat{N} &= \cos\Omega\,\hat{x} + \sin\Omega\,\hat{y}, \\ \hat{h} &= \sin i \sin\Omega\,\hat{x} - \sin i \cos\Omega\,\hat{y} + \cos i\,\hat{z}, \\ \hat{N}_t &= -\sin\Omega\cos i\,\hat{x} + \cos\Omega\cos i\,\hat{y} + \sin i\,\hat{z}, \\ \hat{u}_r &= \cos(\theta + \omega)\,\hat{N} + \sin(\theta + \omega)\,\hat{N}_t, \\ \hat{u}_\theta &= -\sin(\theta + \omega)\,\hat{N} + \cos(\theta + \omega)\,\hat{N}_t, \\ r &= \frac{h^2}{\mu} \frac{1}{1 + e\cos\theta}, \\ \mathcal{E} &= -\frac{1}{2}\frac{\mu^2}{h^2}(1 - e^2), \\ v &= \sqrt{2\left(\mathcal{E} + \frac{\mu}{r}\right)}, \\ \gamma &= \tan^{-1}\left(\frac{e\sin\theta}{1 + e\cos\theta}\right), \\ \vec{r} &= r\,\hat{u}_r, \\ \vec{v} &= v\cos\gamma\,\hat{u}_\theta + v\sin\gamma\,\hat{u}_r. \end{split}$$

Orbital Position as a Function of Time

Time since periapsis passage: t (for any type of orbit)

$$\frac{\mu^2}{h^3}t = \int_0^\theta \frac{d\theta}{(1 + e\cos\theta)^2}.$$
 (1)

Circular orbit: $\theta \sim t$

$$t = \frac{\theta}{2\pi}T,\tag{2}$$

where $T = \frac{2\pi}{\sqrt{\mu}} r^{3/2}$.

Elliptic orbit: $\theta \sim E \sim M_e \sim t$

$$\tan\frac{E}{2} = \sqrt{\frac{1-e}{1+e}} \tan\frac{\theta}{2},\tag{3}$$

$$M_e = E - e\sin E,\tag{4}$$

$$t = \frac{M_e}{2\pi}T,\tag{5}$$

where $T = \frac{2\pi}{\sqrt{\mu}}a^{3/2}$.

Parabolic orbit: $\theta \sim M_p \sim t$

$$M_p = \frac{1}{2} \tan \frac{\theta}{2} + \frac{1}{6} \tan^3 \frac{\theta}{2},\tag{6}$$

$$\tan\frac{\theta}{2} = \left[3M_p + \sqrt{(3M_p)^2 + 1}\right]^{1/3} - \left[3M_p + \sqrt{(3M_p)^2 + 1}\right]^{-1/3},\tag{7}$$

$$t = M_p / \left(\frac{\mu^2}{h^3}\right). \tag{8}$$

Hyperbolic orbit: $\theta \sim F \sim M_h \sim t$

$$\tanh \frac{F}{2} = \sqrt{\frac{e-1}{e+1}} \tan \frac{\theta}{2},\tag{9}$$

$$M_h = e \sinh F - F, (10)$$

$$t = M_h / \left(\frac{\mu^2}{h^3} (e^2 - 1)^{3/2}\right). \tag{11}$$

		Axial Rotational Period	Mean Equatorial Radius	Gravitational Parameter	Semi-major Axis of Orbit	Orbital Period	Eccentricity of Orbit	Inclination of Orbit to Ecliptic
		(Rev/Day)	(km)	$\mu = Gm \text{ (km}^3/\text{sec}^2\text{)}$	(km)	(sec)		(deg)
•	Sun	0.0394011 (not rigid)	695990.00	1.32712000E+11				
	Moon*	0.0366004	1737.50	4.902800E+03	3.84400000E+05 (around Earth)	2360592 27.322 Earth days	0.05540000	5.16000
A	Mercury	0.0170515	2.439000E+03	2.203210E+04	5.79092000E+07	7600568.601 87.97 Earth Days	0.205631	7.00487
9	Venus	0.0041149 (retrograde)	6051.80	3.24859000E+05	1.08209000E+08	19414191.77 224.7 Earth Days	0.006773	3.39471
\oplus	Earth	1.0027576	6378.14	3.98600000E+05	1.49589800E+08	31555647.16 365.23 Earth Days	0.01671020	4.98816000E-05
♂	Mars	0.9746985	3397.00	4.282840E+04	2.27937000E+08	59353583.28 686.96 Earth Days	0.09341230	1.85061
4	Jupiter	2.4181458	71492.00	1.26687000E+08	7.7841200E+08	374396573 11.87 yr	0.04839270	1.30530
ħ	Saturn	2.2522523	60330.00	3.79313000E+07	1.42673000E+09	929341659.8 29.47 yr	0.05415060	2.48446
.	Uranus	1.3921178 (retrograde)	26200.00	5.79397000E+06	2.87097000E+09	2653128427 84.13 yr	0.04716770	0.76986
半	Neptune	1.4897579	25225.00	6.835110E+06	4.49825000E+09	5203301252 165 yr	0.00858587	1.76917
2	Pluto	0.1565631	1195.00	8.737670E+02	5.906638E+09	7829522968	0.24880800	17.14180

		Axial Rotational Period	Equatorial Radius	Gravitational Parameter	Semi-major Axis of Orbit	Orbital Period	Eccentricity of Orbit	Inclination of Orbit to Ecliptic
		(Rev/Day)	(km)	$\mu = Gm \text{ (km}^3/\text{sec}^2)$	(km)			(deg)
	Charon	0.1562500	593	108	19600	6.38725 days	0.00	96.16
					(about Pluto)			
	Nix	?	23→68	?	48675	24.8562 d	0.0023	0.1
					(about Pluto)			
	Hydra	?	32→84	?	64780	38.2065 d	0.0052	0.25
					(about Pluto)			
	Ganymede	0.1397711	2631.2	9887.834000	1070000.0	7.154553 d	0.002	0.195
					(about Jupiter)			
	Callisto	0.592059	2410.30	7179.29	1883000.0	16.68902 d	0.007	0.281
					(about Jupiter)			
	Titan	0.6271393	2575.50	8978.190000	1221830.0	15.94542 d	0.0292	0.33
					(about Saturn)			
	Titania	assumed	788.9	235.544000	435910.0	8.706 d	0.00220000	0.14000
		synchronous			(about Uranus)			
Ç	Ceres	2.6448030	474.00 km	63.200000	413906175	1680.982 d	0.07990478	10.58674
T								
	Phobos	synchronous	11.10	0.000629	9377	.31891 d	0.01510000	26.04000
					(about Mars)			
	Triton	synchronous	1350.00	1427.598000	354759	.5877 d	0.00001600	129.18200
					(about Neptune)	(retrograde)		