Network Management Principles

Network Management Principles

- Manager
- Agent
- Management Protocol
- Management Information Base

Manager.

- It controls the operation of the network devices
 - Printer
 - Router
 - Server
 - Base stations
 - PCs etc

Agents

Managed devices called agents

- Denotes a piece of software implemented within the devices that provides the management information.
- In real network a single manager can be responsible for 1000 of agents.

Management Protocols

- The manager can communicate with agents using well defined protocols such as,
 - Ping
 - Traceroute
 - Telnet/SSH
 - CLI etc
 - ▲ These are the generic protocols
 - In addition to that some dedicated management protocols.
 - ▲ SNMP (Simple Network Management Protocol)
 - ▲ NetCONF (Network Configuration Protocol)
 - ▲ CMIP (Common Mgt. information Protocol)
 - ▲ WBEM (Web Based Enterprise Management)
 - ▲ SysLog (System Log)

SNMP

- It's the best known example, its standardized by IETF in early 90s.
- Since SNMP is not easy to configure devices in the network.

NetCONF

 In around 2003, IETF decided to develop NetCONF, at the same time the SNMP was being developed.

CMIP

Used for mobile telecommunication network

WBEM

- Developed by DMTF (Distributed Management Task Force)
 - ▲ Supported by various operating systems.

SysLog

- It allows the agents to signals the manager.
- Implemented in UNIX systems
- Implemented in 80's and standardized it now by IETF.

Monitoring

- On of the task that managers performs is to monitor the specific management data such as,
 - No. of packets stopped on a specific interface of an agent or a router.
 - To retrieve such mgt. data for the managed devices, the manager uses a GET Request PDU.
 - After successfully getting the GET PDU by agent, it retrieved the requested information and send it to Managers using RESPONSE PDU.

Device configuration

- The manager is responsible for device configuration by setting certain management variables such as,
 - An entry in the forwarding table (Set PDU by the manager to the agent → Set Write)
 - Finally agents may be able to autonomously signal/notify certain events to the managers.
 - ▲ E.g. an interface when down or a device is been reset.

- In the first version of SNMP, only the limited no. of events are notified by Agents to Managers.
 - This is done through special message called TRAP PDU.
 - In the later versions of SNMP, the capability of agents was extended to notify all kinds of events.
 - ▲ For that purpose a new PDU was defined called INFORM PDU, which is ACK by the Manager, so the agent know that manager is aware of the event.

Polling

SNMP

- Most important management protocol for the internet.
- In the early development of the SNMP, the major goal was to make the Agent Module as simple as possible.
- Agent has minor capabilities to notify device events or problems to manager.
- As a consequence, the manager had to continuously polls the Agents to learn the statistics using GET PDU.
 - ▲ CMIP's Agent is more powerful for sending its problems to Managers timely.

- In case the polling performs sequentially, the manager polls each device one after another.
 - The requested information is retrieved by agents in ms and send this information back to manager using RESPONSE PDU.
 - ▲ Some agents however has poor configuration, which get results even in seconds before being able to send the response.
 - ▲ Since polling make take quite some time for retrieving and sending the desired information to the managers.
 - ▲ It not works properly in case of scalability, i.e. to get the response from 1000 of devices.

Distributed Management

- To overcome this single manager polling issue, the researcher developed an alternate way called distributed management.
 - The task of the manager is distributed among several low level managers.
 - ▲ To distribute the management functionality, the hierarchy of the managers are created.
 - ▲ Top level managers interacts with intermediate level or mid level managers.
 - ▲ Intermediate level managers may be tailored to the specific level of agents of polling, such as all routers or generic for all kind of agents.
 - ▲ Within the IETF, the protocol and information for such management Heirarchy has been defined by Distributed Management (DisMAN) working group.

- Managers can poll all agents in Parallel.
 - Care should be taken, to not to generate too much management traffic at the same time.
 - After five minutes of interval, managers polls all the agents.
 - ▲ Polling goes on 24 hours on a day and will therefore be responsible to the major share for all management traffic.

Management Information Base (MIB)

- Its included in every Agent.
 - Its organized into so called MIB Module.
 - Every agent has this module.
 - ▲ E.g. the IP address of the device at the time the agents up.
 - ▲ Other modules are implemented in certain kind of devices, since the whole info is specific for a particular device such as forwarding table in router or Turn on level of Printers.
 - The manager usually knows the structure of the MIB of various agents.
 - ▲ In SNMP, the MIB information is kept in a Scalar, such as 64 bit counter or textual strings.
 - ▲ In addition to that MIB information is also structured in two dimensional table.

- If the agent has several interfaces.
 - For each interface we need to count the no. of in and out packets or in and outgoing Octets.

End