Entity Relationship Modelling II

DBI - Databases and Interfaces
Dr Matthew Pike & Dr Yuan Yao

What's next?

- We have learnt E/R Model and Diagram
- We will be given the problem description
- Task: design database for given problem

Problem Description → E/R Model

Example

A department offers several courses. A number of modules make up each course. Students enrol in a particular course and take modules towards the completion of that course. Each module is taught by a lecturer from the appropriate department (several lecturers work in the same department), and each lecturer tutors a group of students. A lecturer can teach more than one module but can work only in one department.

Making E/R Models

- To make an E/R model you need to identify
 - Entities
 - Attributes
 - Relationships
 - Cardinality ratios
- We obtain these from a problem description

General guidelines

- Since entities are things or objects they are often nouns in the description
- Attributes are facts or properties, and so are often nouns also
- Verbs often describe relationships between entities

Nouns and Verbs

- A **noun** is a part of speech that denotes a person, animal, place, thing, or idea
 - Student
 - Staff
 - Module
 - Age
- A **verb** is a word used to describe an action, state, or occurrence, and forming the main part of the predicate of a sentence, such as hear, become, happen.
 - Studies
 - Tutors

Example

A department offers several courses. A number of modules make up each course. Students enrol in a particular course and take modules towards the completion of that course. Each module is taught by a lecturer from the appropriate department (several lecturers work in the same department), and each lecturer tutors a group of students. A lecturer can teach more than one module but can work only in one department.

Example - Entities

A department offers several courses. A number of modules make up each course. Students enrol in a particular course and take modules towards the completion of that course. Each module is taught by a lecturer from the appropriate department (several lecturers work in the same department), and each lecturer tutors a group of students. A lecturer can teach more than one module but can work only in one department.

Entities – Department, Course, Module, Student, Lecturer

Example - Relationships

A department offers several courses. A number of modules make up each course. Students enrol in a particular course and take modules towards the completion of that course. Each module is taught by a lecturer from the appropriate department (several lecturers work in the same department), and each lecturer tutors a group of students. A lecturer can teach more than one module but can work only in one department.

Entities – Department, Course, Module, Student, Lecturer

Relationships – Offers, Make Up, Enrol, Take, Taught By, From The, Tutors

Example

- A department offers several courses.
- A number of modules make up each course.
- Students enrol in a particular course.
- Students take several modules.
- Each module is taught by a lecturer.
- Each department employs a number of lecturers.
- Each lecturer tutors a group of students.

Entities – Department, Course, Module, Student, Lecturer

Department

Course

Module

Lecturer

A department offers several courses

Department

Course

Module

Lecturer

A department offers several courses

A number of modules make up each course.

A number of modules make up each course.

Lecturer

Students enrol in a particular course.

Lecturer

Students enrol in a particular course.

Students take several modules.

Students take several modules.

Each module is taught by a lecturer

Each module is taught by a lecturer

Each department employs a number of lecturers.

Each department employs a number of lecturers.

Each lecturer tutors a number of students

Each lecturer tutors a number of students

The completed diagram. Anything else we need to do?

Removing M:M Relationships

Many to many relationships are difficult to represent in a database:

Student			
SID	sName	sMod	
1001	Jack Smith	DBI	
1001	Jack Smith	PRG	
1001	Jack Smith	IAI	
1002	Anne Jones	PRG	
1002	Anne Jones	IAI	
1002	Anne Jones	VIS	

Module		
MID	mName	
DBI	Databases and Interfaces	
PRG	Programming	
IAI	Al	
VIS	Computer Vision	

Removing M:M Relationships

- Many to many relationships are difficult to represent in a database
- We can split a many to many relationship into two, one to many relationships
- An additional entity is created to represent the M:M relationship

Removing M:M Relationships

Many to many relationships are difficult to represent in a database:

Module		
MID	mName	
DBI	Databases and Interfaces	
PRG	Programming	
IAI	Al	
VIS	Computer Vision	

Student		
SID	sName	
1001	Jack Smith	
1002	Anne Jones	

Enrolment			
ID	SID	MID	
1	1001	DBI	
2	1001	PRG	
3	1001	IAI	
4	1002	PRG	
5	1002	IAI	
6	1002	VIS	

Entities and Attributes

- Sometimes it is hard to tell if something should be an entity or an attribute
 - They both represent objects or facts about the world
 - They are both often represented by nouns in descriptions

- General guidelines
 - Entities can have attributes but attributes have no smaller parts
 - Entities can have relationships between them, but an attribute belongs to a single entity

Example

We want to represent information about products in a database. Each product has a description, a price and a supplier. Suppliers have addresses, phone numbers, and names. Each address is made up of a street address, a city name, and a postcode.

Example - Entities/Attributes

- Entities or attributes:
 - product
 - description
 - o price
 - supplier
 - address
 - o phone number
 - o name
 - street address
 - city name
 - postcode

Example - Entities/Attributes

- Entities or attributes:
 - product
 - description
 - o price
 - supplier
 - address
 - o phone number
 - o name
 - street address
 - city name
 - postcode

 Products, suppliers, and addresses all have smaller parts so we make them entities

 The others have no smaller parts and belong to a single entity

Example - Relationships

- Each product has a supplier
 - Each product has a single supplier but there is nothing to stop a supplier supplying many products
 - A one to many relationship

- Each supplier has an address
 - A supplier has a single address
 - It does not seem sensible for two different suppliers to have the same address
 - A one to one relationship

One to One Relationships

- Some relationships between entities, A and B, might be redundant if
 - It is a 1:1 relationship
 between A and B
 - Every A is related to a B and every B is related to an A

Example

- the supplier-addressrelationship Is one to one
- Every supplier has an address
- We don't need addresses that are not related to a supplier

One to One Relationships

- We can merge the two entities that take part in a redundant relationship together
 - They become a single entity
 - The new entity has all the attributes of the old ones

Example - Eliminating 1:1 relationship

Example - Eliminating 1:1 relationship

Primary Keys

- We often find that we need to specify which attributes will serve as Primary Keys in our ER diagrams
- We do this by underlining the attribute in the relation
 - E.g. <u>ID</u>

Debugging Designs

- With a bit of practice E/R diagram can be used to plan queries
 - Look at the diagram and figure out how to find useful information
 - If you can't find the information you want, then you need to change the design

Question: How can you find a list of students who are enrolled in Database systems

Debugging Designs

- Find the instances of the Module entity with module name 'Database systems'
- Find the instances of the Enrolment entity with the same MID as the result of 1)
- 3) For each instance of the Enrolment entity in the result of 2), find the corresponding student entities

Making E/R Diagrams

- From a description of the requirements identify the
 - Entities
 - Attributes
 - Relationships
 - Cardinality ratios of the relationships

- Draw the E/R diagram and then
 - Look at one to one relationships as they might be redundant
 - Look at many to many relationships as they will often need to be split into two one to many links, using an intermediate entity

Exams and Coursework Simplified Example

- Identify the *entities, attributes, relationships,* and *cardinality ratios* from the description.
- Draw an entity-relationship diagram showing the items you identified.
- Many-to-many relationships are hard to represent in database tables. Explain the nature of these problems, and describe how they may be overcome.

Hints

- Be Organised
 - o If we can't read it, how can we mark it?
- Find software you like now
 - This will save you time during the lab
- Summarise the rules e.g.
 - Entities can have attributes but attributes have no smaller parts
- This is a skill that needs practice
- Rarely will you get it right first time