

BILBOKO INGENIARITZA ESKOLA

ESCUELA DE INGENIERÍA DE BILBAO

Departamento de Matemática Aplicada Matematika Aplikatua Saila

Paseo Rafael Moreno "Pitxitxi", 3 48013 Bilbao

ESTATISTIKA METODOAK INGENIARITZAN

TOTAL 1

LEHENENGO PROBA IDATZIA (2020 AZAROA)

ABIZENAK	IZENA	N.A.N

1 Ariketa	2 Ariketa	3 Ariketa	Guztira

Ohar orokorrak:

Probaren iraupena: Ordu 1 eta 30 minutu

Erantzun guztiak modu egokian arrazoituak egon behar dira.

1 ARIKETA

Tximinia baten bitartez atmosferara isuritako eguneroko partikula kopurua, λ parametroa duen Poisson-en banaketa bati jarraitzen dion zorizko aldagaitzat har daiteke. Parametro hori ez da ezagutzen, baina, aurreko esperientziengatik, badakigu hiru balio har ditzakeela, probabilitate hauekin:

$$P(\lambda = 1) = 0.5$$

$$P(\lambda = 2) = 0.4$$

$$P(\lambda = 4) = 0.1$$

Zoriz hartutako egun batean isuritako partikula kopurua 3 zela neurtu zen.

- a) Informazio horretatik abiatuta, λ parametroaren balio probableena ondorioztatu. (2 puntu)
- **b)** Eguneroko emisioen Poisson-en banaketaren λ parametroa 4 baldin bada, zein da hilabete batean (30 egun) isuritako partikula kopurua gutxienez 100 izatearen probabilitatea? **(2 puntu)**
- c) λ =4 parametroa erabiliz, zein da hiru egunez jarraian eguneko isurketen batezbestekoa gainditzeko probabilitatea? (2 puntu)

Aztergai den enpresak hiru tximinia independente ditu, eta egunero partikula-mota bera isurtzen du, baina bakoitzean λ =7 izanik. Partikulak elektro-iragazki batera eramaten dira hauek ezabatzeko asmoz

d) %99ko probabilitatearekin, zenbatekoa da egunero gehienez atmosferara isuriko den partikula kopurua? **(2 puntu)**

BILBOKO INGENIARITZA ESKOLA

ESCUELA DE INGENIERÍA DE BILBAO

Departamento de Matemática Aplicada Matematika Aplikatua Saila

Paseo Rafael Moreno "Pitxitxi", 3 48013 Bilbao

2 ARIKETA

Osagai elektroniko baten bizitza erabilgarria, urtetan neurtua, zorizko aldagai bat da eta ondorengo banaketa funtzioa du:

$$F(x) = \begin{cases} k^2 - \frac{2}{3}e^{-2x/3} - \frac{1}{3}e^{-x/3} & x > 0\\ 0 & x \le 0 \end{cases}$$

Elikagaiak prozesatzeko makina batek horietako lau osagai independente ditu bere zirkuituan, paraleloan jarrita, irudian ikus daitekeen moduan.

- a) Zein da prozesatze-makina martxan jarri eta 4 urte baino lehen konpondu behar izatearen probabilitatea? (2 puntu)
- b) Zein da gutxienez bi osagaik 4 urte igaro ondoren funtzionatzearen probabilitatea? (2 puntu)
- c) Zein da prozesatze-makinak zehazki 5 urte funtzionatzearen probabilitatea, 4 urte ondoren funtzionatzen bazegoen? (2 puntu)

3 ARIKETA

Hainbat herrialdetako hiru poker-jokalarik txapelketa nazionaletan eman dute izena, Los Angelesen datorren azaroan egingo den munduko poker-txapelketarako. Jokalari bakoitzak bere herrialdeko txapelketa irabazteko eta, beraz, munduko txapelketarako sailkatzeko probabilitatea 0.65, 0.7 eta 0.8 da, hurrenez hurren. Kalkula itzazu gertaera hauen probabilitateak:

- a) Munduko txapelketarako jokalariren bat sailkatzea. (2 puntu)
- b) Zehazki, bi jokalari munduko txapelketarako sailkatzea. (2 puntu)
- c) Hirugarren jokalaria munduko txapelketarako sailkatzea, beste bietako bat bakarrik sailkatu dela jakinda. (2 puntu)

BILBOKO INGENIARITZA ESKOLA

ESCUELA DE INGENIERÍA DE BILBAO

Departamento de Matemática Aplicada Matematika Aplikatua Saila

Paseo Rafael Moreno "Pitxitxi", 3 48013 Bilbao

R-ko komandoak:

- pnorm(7,9,1)=0.0228
- •pnorm(1.8714,0,1)=0.9694
- •ppois(120,100)=0.9773
- qnorm(0.99,0,1)=2.3263
- •pnorm(0.15,0,1)=0.5596
- pbinom(1,3,0.6990, lower.tail = F)=0.7827
- pbinom(2,3,0.6990, lower.tail = F)=0.3415
- •pnorm(0.5038,0,1)=0.6928
- \bullet pexp(1,1/30)=0.0328
- •pnorm(0.01,0,1)=0.5040
- •ppois(2,3)=0.8571