Q6. Bank Customer Clustering

Just run the jupyter notebook of `Q6.ipynb`. It uses the given dataset.

Preprocessing:

- Transfer [CustomerDateOfBirth] and [TransactionDate] to datetime type
- calculate the age from [CustomerDateOfBirth], calculate the hour from [TransactionDate]
- remove the NAN
- remove outlier of [CustAccountBalance] and [TransactionAmount (INR)]
- a. at least 10 pictures and at least 10 business insights

12. The user transactions are most active between 18:00 and 21:00, reaching a peak around 20:00.

b. three different clustering algorithms to cluster customers

K-means

Use all data

Number of cluster is 3

Feature: ['CustAccountBalance', 'TransactionAmount (INR)', 'Age']

DBSCAN clustering

Use all data*0.01

Number of cluster is 11

Feature: ['TransactionAmount (INR)', 'Age']

Hierarchical clustering(n_clusters=2)

Use all data*0.1

Number of cluster is 2

Feature: ['CustAccountBalance', 'Age']

c. common characteristics & difference

	Common characteristics	difference
Fig.1	Same distribution of	Difference distribution
	CustAccountBalance and	
	TransactionAmount (INR)	
Fig.2	Same distribution of	Difference distribution
	CustAccountBalance and age	
Fig.3	Same distribution of	Difference distribution
	TransactionAmount (INR) and age	