

AR-009-367 DSTO-TN-0018

Practical Measurement of Effective Antenna Noise Factor and Noise Equivalent Bandwidth

M. L. Scholz

Approved to public release.

Describera Unimera

APPROVED FOR PUBLIC RELEASE

© Commonwealth of Australia

D E P A R T M E N T

◆ O F D E F E N C E

DEFENCE SCIENCE AND TECHNOLOGY ORGANISATION

DISCLAIMER NOTICE

THIS DOCUMENT IS BEST QUALITY AVAILABLE. THE COPY FURNISHED TO DTIC CONTAINED A SIGNIFICANT NUMBER OF PAGES WHICH DO NOT REPRODUCE LEGIBLY.

Practical Measurement of Effective Antenna Noise Factor and Noise Equivalent Bandwidth

M.L. Scholz

Communications Division
Electronics and Surveillance Research Laboratory

DSTO-TN-0018

ABSTRACT

Effective Antenna Noise Factor is a measure of external radio noise widely used in the prediction of link performance and in surveys of the noise environment. The practicalities of accurately estimating this quantity and a novel technique for measuring the Noise Equivalent Bandwidth of a complete receiving system are described.

RELEASE LIMITATION

DAIG QUALITY DESPESSAD O

Approved for public release

DEPARTMENT OF DEFENCE

DEFENCE SCIENCE AND TECHNOLOGY ORGANISATION

Published by $DSTO \ Electronics \ and \ Surveillance \ Research \ Laboratory$ PO Box 1500

Salisbury, South Australia, Australia 5108

Telephone: (08) 259 5555 Facsimile: (08) 259 6567

© Commonwealth of Australia 1995 AR No. AR-009-367 September 1995

APPROVED FOR PUBLIC RELEASE

Practical Measurement of Effective Antenna Noise Factor and Noise Equivalent Bandwidth

EXECUTIVE SUMMARY

A standard measure of external radio noise used in the prediction of radio link performance is the noise power spectral density expressed in terms of the Effective Antenna Noise Factor. The Effective Antenna Noise Factor is also commonly used in surveys of environmental radio noise at specific global locations. In this report an expression for the Effective Antenna Noise Factor is mathematically derived in a form suitable for link performance estimation from directly measurable quantities. It has been used in the analysis of recent DSTO radio noise trials. A novel and superior technique is also presented for the digital measurement of the Noise Equivalent Bandwidth of the receiver, recording and replay system, a parameter used in the estimation of the Effective Antenna Noise Factor.

THIS PAGE IS INTENTIONALLY BLANK

Contents

1	Introduction							
2	Derivation of Effective Antenna Noise Factor							
3	Me	asurement Issues	3					
	3.1	Receiver System Voltage Gain	3					
	3.2	Receiver System Bandwidth	4					
	3.3	Antenna Power Gain	5					
	3.4	Antenna Factor	6					
4	Co	nclusion	7					
Re	ferer	ices	7					

THIS PAGE IS INTENTIONALLY BLANK

1 Introduction

A standard measure of external radio noise used in the prediction of radio link performance is the noise power spectral density expressed in terms of the Effective Antenna Noise Factor, F_a . This measure, defined in [1], is also commonly used in surveys of environmental noise at specific global locations, e.g., [2]. The aim of this paper is to concisely relate the mathematical derivation of the Effective Antenna Noise Factor and to describe the practical issues associated with the accurate estimation of this quantity in DSTO radio noise trials. A novel and superior technique is also presented for the digital measurement of the Noise Equivalent Bandwidth of the receiver and recording and replay system, a parameter used in the estimation of F_a .

2 Derivation of Effective Antenna Noise Factor

The Effective Antenna Noise Factor, F_a , is defined by:

$$F_a = 10 \log_{10} f_a,$$

where
$$f_a = \frac{w}{kT_0b}$$
,

and w is the average¹ external noise power (in W) in bandwidth b (in Hz) available from an equivalent lossless antenna. $k = 1.38 \times 10^{-23} \text{ JK}^{-1}$ is Boltzmann's constant and $T_0 = 288 \text{ K}$ is the reference temperature.

Note that f_a is a dimensionless quantity, being the ratio of two powers. However, it is a measure of the available power spectral density in terms of kT_0b . For this reason, F_a is commonly seen with units attached (eg., dB relative to kT_0 or kT_0b).

The power available from the antenna is dissipated in the antenna resistance, antenna coupler and receiver input resistance. Provided the coupler is adjusted for maximal transfer of power into the receiver input resistance, it may be expressed in a simple manner, in terms of the rms voltage, v (in V), at the receiver terminals, the antenna coupler power gain, g_c , and the receiver input resistance, r (in Ω), as follows:

$$w = \frac{v^2}{rg_c}$$

Hence, F_a is related to the rms receiver input voltage by:

$$F_a = 10 \log_{10}\{rac{v^2}{r} imes rac{1}{kT_0b} imes rac{1}{g_c}\}$$

¹For skywave reception, median instead of average power is sometimes used and an allowance must be made for fading: see p.251 of [4]. Assuming Rayleigh fading, F_a will be 1.6 dB higher using median values.

The coupler gain may be determined by using a transmitter, radiating a constant power at a frequency within the bandpass of the system, and measuring the rms value of the vertical component of the field strength e (in Vm^{-1}) with a calibrated field strength meter and the corresponding rms receiver input voltage with the coupler tuned to deliver maximum power (viz voltage) at the receiver input terminals.

The field strength is related to the power density, p (in Wm⁻²), of the incident electromagnetic wave by:

$$e = \sqrt{120\pi p}$$

and p is simply

$$p = \frac{w}{a}$$

where a is the "effective" area of the antenna (in m^2),

$$a=\frac{\lambda^2 g_a}{4\pi}.$$

 λ is the wavelength (in m) and g_a is the antenna power gain².

Expressed in terms of frequency, f (in Hz),

$$p = \frac{4\pi f^2}{c^2} \times \frac{w}{g_a}$$
$$= \frac{4\pi f^2}{c^2} \times \frac{v^2}{rg_ag_c}$$

where c is the speed of light $(3.0 \times 10^8 \text{ ms}^{-1})$. Hence,

$$e = rac{\sqrt{480}\pi}{c} imes rac{fv}{\sqrt{rg_ag_c}}$$

Defining the Antenna Factor,

$$A_f=20\,\log_{10}\{\frac{v}{e}\},$$

to be the logarithm of the ratio of the receiver voltage in a system with a matched coupler and corresponding field strength measured at frequency f with a field strength meter, then

$$A_f = 10 \log_{10} \{ \frac{c^2}{480\pi^2} \times \frac{1}{f^2} \} + 10 \log_{10} \{ rg_a g_c \}$$

Rearranging, we obtain the coupler gain:

$$g_c = \frac{480\pi^2 f^2}{c^2 g_c r} \times \text{ antilog}_{10} \{ \frac{A_f}{10} \}$$

²Eg., for a grounded, lossless isotropic antenna $g_a=1$ and for a short (height $\ll \lambda$) grounded, lossless vertical monopole $g_a \simeq 3.6$

Substituting this into the formula for F_a we get,

$$F_a = 10 \log_{10} \{v^2 \times \frac{1}{kT_0 b} \times g_a\} + 10 \log_{10} \{\frac{c^2}{480\pi^2} \times \frac{1}{f^2}\} - A_f$$

Thus, F_a is a function only of receiver rms input voltage, frequency, receiver system bandwidth, antenna factor and antenna power gain.

$$F_a = 10 \log_{10} \{ \frac{v^2}{f^2} \times g_a \} + 10 \log_{10} \{ \frac{c^2}{480\pi^2} \times \frac{1}{kT_0 b} \} - A_f$$
$$= 10 \log_{10} \{ \frac{v^2}{bf^2} \times g_a \} - A_f + 336.79 \text{ (dB)}$$

Alternatively, letting G_{co} be the coupler gain (in dB) with an isotropic antenna, viz

$$G_{co} = 10 \log_{10} \{g_c(g_a = 1)\}$$
$$= A_f + 10 \log_{10} \{\frac{480\pi^2 f^2}{c^2 r}\}$$

then,
$$F_a = 10 \log_{10}\{\frac{v^2}{kT_obr}\} - G_{co} + 10 \log_{10}\{g_a\} = P_n - G_{co} + G_a$$

where P_n is the average noise power (in dB relative to kT_0b) dissipated in the receiver input resistance and G_a is the antenna gain in dB.

3 Measurement Issues

The accurate estimation of F_a involves the accurate measurement of the following antenna and receiver system constants.

3.1 Receiver System Voltage Gain

When the output of the analogue receiver is digitised, the system voltage gain factor, γ , can be determined by dividing the digitised output voltage (an integer \hat{v}) by the rms input voltage, v, viz.,

 $\gamma = \frac{\hat{v}}{v}$.

 γ is measured with a sinewave generator at a frequency within the receiver system passband where there is maximum power response; this overcomes the problem of frequency selection when there are ripples in the passband. The receiver system for these purposes includes the receiver itself plus analogue recording system (eg digital-audio tape drive), analogue to digital converter (ADC) and digital processing system (eg Hilbert filter) that may scale the amplitude or modify the spectrum of the received signal. The units of γ are ADC counts per volt. Accurate system gain measurement is contingent on using an accurately calibrated signal generator.

3.2 Receiver System Bandwidth

The bandwidth in the F_a calculation is the overall receiver system Noise Equivalent Bandwidth (NEB), which is the bandwidth of an ideal bandpass filter having a rectangular spectral power response and identical power output to that of the receiver system with white noise input³. Traditionally [3], NEB measurements are achieved by feeding a signal of known power (w_{ref}) and bandwidth (b_{ref}) from a calibrated wideband white noise generator into a receiver whose peak voltage gain, γ , has been determined, and computing the equivalent input signal power, w, from measurements of the rms output voltage, v_o . In the case of a digital system, the rms output voltage, v_o , is obtained from N envelope voltage samples $\{\hat{v}_k\}$ as follows:

$$v_o = \sqrt{rac{1}{N}\sum_{k=1}^N \hat{v}_k^2}$$

Hence,

$$w=rac{v_o^2}{\gamma}$$

and the NEB is obtained from:

$$b = rac{b_{ref}}{w_{ref}} imes w.$$

An alternative, simpler, and more accurate⁴ method of measuring system NEB has been devised by the author. It is based on the mean of the statistical distribution of the the number of runs in the digitised instantaneous envelope voltage samples. A run is simply a sequence of consecutively increasing (or decreasing) sample voltages. Assuming that the samples are statistically independent, the total number of runs in N samples may be regarded as normally distributed (for N > 20) with mean and variance given by [5]:

$$\mu_R = \frac{1}{3}(2N-1)$$

$$\sigma_R^2 = \frac{1}{90}(16N-29) = \frac{8\mu_R - 7}{30}$$

respectively⁵. Several recordings of white noise can be played through the system to estimate the mean number of runs. The Maximum Likelihood Estimator (MLE) for the mean number of runs, $\tilde{\mu}_R$, for this particular distribution is found by solving for the positive root of the quadratic equation:

$$\tilde{\mu}_R^2 - \frac{89}{60}\tilde{\mu}_R + (\frac{7}{4}\bar{R} - \frac{\overline{R^2}}{2} - \frac{7}{30}) = 0$$

where \bar{R} and $\overline{R^2}$ are the average number of runs and the average of the squares of the number of runs over the recordings respectively.

³NEB usually cannot be accurately determined from the -3 dB points of the frequency response.

⁴Because neither a calibrated white noise generator is required nor knowledge of the system gain.
⁵The mean number of runs per unit time is equivalent to the number of zero crossings per unit time

of the time derivative of the voltage in the limit as the sampling frequency tends to infinity.

Bandpass filtered white noise samples are independent (hence uncorrelated) for an ideal filter provided the sampling frequency, f_S , is equal to an integer multiple of the Nyquist Rate [7], $f_N = 2b$, and the expectation of the estimate of the mean number of runs in the noise recordings is given by⁶

$$E[ilde{\mu}_R] \simeq rac{f_N}{f_S} imes \mu_R$$

Hence the noise equivalent bandwidth may be estimated from

$$ilde{b} = rac{f_S}{2} imes rac{\mu_R}{ ilde{\mu}_R}.$$

By way of illustration, in our laboratory we used nine white noise recordings, each of one minute duration, and each was subdivided into sixty serial sub-records, each comprising N=8000 envelope voltage samples. The sampling frequency was $f_S=8$ kHz. For each recording we obtained sixty \bar{R} and \bar{R}^2 values which were then averaged and used in the computation of \tilde{b} . A 95% confidence interval for b was obtained from

$$b=ar{ ilde{b}}\pm\Upsilon_{8,0.975} imes\sqrt{rac{s_{ ilde{b}^2}}{9}}$$

where \bar{b} is the average of the \tilde{b} , $s_{\tilde{b}}^2$ is the variance of the nine estimates, and $\Upsilon_{n,\alpha}$ is the α critical point for the Student t distribution with n degrees of freedom. The final result⁸ was $b = 2517.6 \pm 2.3$ Hz.

3.3 Antenna Power Gain

The power gain, g_a , of an antenna⁹ is commonly defined [6] as the ratio of the maximum radiation intensity in a given direction to the maximum radiation intensity produced in the same direction from a reference antenna, usually a lossless isotropic radiator, with the same input power:

$$g_a = \frac{4\pi \eta e_{max}^2}{\int_0^{2\pi} \int_0^{\pi} e^2(\theta,\phi) sin(\theta) d\theta d\phi}$$

 $e(\theta,\phi)$ is the value of the field strength at elevation angle θ and azimuth ϕ which corresponds to the isotropic reference value of e_{max} . The antenna efficiency factor, η , depends upon copper, dielectric and mismatch losses and is normally assumed to be very close to one. The same antenna used for receiving has identical properties (viz radiation pattern, impedance and power gain) as a consequence of the reciprocity theorem. When complete field strength measurements are unavailable, the use of zero elevation polar plots and the approximation

$$g_a \simeq \frac{2\pi e_{max}^2}{\int_0^{2\pi} e^2(0,\phi)d\phi}$$

⁶An approximation which is only exact for an ideal filter.

⁷Assuming the bandwidth estimates are normally distributed.

⁸The first method using an uncalibrated white noise generator yielded a 5% lower NEB of 2382.1 Hz.

Described in [6] as "probably the most difficult antenna measurement to be made".

which assumes the field strength is the same for all elevation angles at a given azimuth, may lead to the underestimation of F_a . For example, consider a short grounded vertical monopole antenna, a type frequently encountered on ships, which has a vertical half-power beamwidth of approximately 39 deg and the received power is about 1 dB down at 22 deg elevation¹⁰. For this type of antenna, only over-the-horizon surface sources located further away than approximately 300km^{11} would contribute significantly to F_a . When F2-Layer propagation predominates, the noise contribution from weak sources located further distant than 900 km may exceed that from strong sources at much closer distances simply due to angular effects.

Much the same is true for antennas on low speed aircraft which employ wire supported between the vertical fin and the fuselage. According to [6, p.27-12], most aircraft antennas of this type are designed to maximise the electromagnetic coupling to the airframe (a good conductor in the 2 to 25 MHz frequency range) and provide high average power gain in the angular sectors bounded by cones 30 deg above and below the horizon. The efficiency of long wire aircraft antennas used for reception is usually not high because of wire resistance. Incidentally, direct line-of-sight surface sources¹² may also contribute to aircraft F_a measurements.

Moreover, in the case of mobile receiving platforms, antennas with high directivity will exacerbate noise fading due to platform pitch and roll. Ideally, the angular orientation of the antenna should be measured with time to enable the correction of instantaneous noise measurements: however, the calculation of F_a will be reasonably accurate provided the input rms noise voltage is averaged over a period of time that is long compared with the pitch and roll periods of the platform. In short, the vertical antenna pattern should not be neglected.

3.4 Antenna Factor

One of the most important requirements for accurately determining A_f is that the measurements of the field strength, e, and the rms receiver input voltage, v, be undertaken simultaneously. This can be difficult to achieve in practice without automatic data logging. However, if the transmitter antenna used in the measurement is within line of sight of the receiver antenna, fading is less problematic and A_f may be accurately determined by simply taking the average of several measurements.

$$e^2(\theta,\phi)/e_{max}^2 = \frac{\cos^2(\frac{1}{2}\pi\sin\theta)}{\cos^2\theta}.$$

$$\theta = \arctan\left(\cot \ \left[\frac{d}{2R}\right] - \frac{R}{R+h'} \ \mathrm{cosec} \ \left[\frac{d}{2R}\right]\right)$$

where R=6371 km is the radius of the Earth and h'=110 km is the mean height of the E-Layer. ¹²Located at distances less than approximately $1.20\sqrt{h}$ km, where h is the aircraft height in m.

¹⁰Based on normalised power pattern for a short vertical monopole, see p.311 of [8]:

¹¹The minimum distance, derived from §3, p.241 of [4], assumes E-Layer ionospheric propagation. The distance, d, is the solution of:

4 Conclusion

An expression for the Effective Antenna Noise Factor, F_a , has been mathematically derived in a form suitable for estimation from directly measurable quantities. The practical difficulties involved in the accurate measurement of F_a have been discussed and a novel and accurate method of measuring the Noise Equivalent Bandwidth of a receiver and its associated digital recording and replay system has been proposed.

References

- Office of Telecommunications Policy, "Basic Parameter for Measurement of Radio Noise" Manual of Regulations and Procedures for Radio Frequency Management, Chapter 5, §5.8, pp. 5-35, 1970.
- Spalding, A.D. and Disney, R.T., "Man-Made Radio Noise: Estimates for Business, Residential and Rural Areas" OT Report 74-38 Part 1, Office of Telecommunications, US Department of Commerce, June 1974.
- 3. Carlson, A.B., "Communication Systems: An Introduction to Signals and Noise in Electrical Communication" 3rd Edition, pp. 177-180, McGraw-Hill Book Co., 1986.
- 4. International Telecommunication Union "Recommendations and Reports of the CCIR: Propagation in Ionized Media" Vol VI, XVIth Plenary Assembly, Dubrovnik, 1986.
- 5. Hald, A., "Statistical Theory with Engineering Applications" pp. 353-357, Wiley Publications, 1952.
- 6. Jasik, H. (Ed.), "Antenna Engineering Handbook" 1st Edition, pp. 2.13-2.14, McGraw-Hill Book Co., 1961.
- 7. Harman, W.W., "Principles of the Statistical Theory of Communication" pp. 81-83, McGraw-Hill Book Co., 1963.
- 8. Skomal, E.N., "Man-Made Radio Noise" Van Nostrand Reinhold Co., 1978.

THIS PAGE IS INTENTIONALLY BLANK

Distribution

Number of Copies

DEPARTMENT OF DEFENCE

Defence Science and Technology Organisation		
Chief Defence Scientist	1	
DSTO Central Office Executive members		
Counsellor, Defence Science, London	Doc Cntl Sht	
Counsellor, Defence Science, Washington	Doc Cntl Sht	
Scientific Adviser, POLCOM Senior Defence Scientific Adviser	1	
Assistant Secretary, Scientific Analysis	1	
Director, Aeronautical and Maritime Research Laboratory	1	
Electronics and Surveillance Research Laboratory		
Chief, Communications Division	1	
Chief, Information Technology Division	1	
Research Leader, Military Communications	1	
Research Leader, Secure Communications	1	
Research Leader, Command, Control, Communications	1	
Research Leader, Military Computing Systems	1	
Research Leader, Command, Control and Intelligence Systems	1	
Head, Network Analysis	1	
M. L. Scholz	1	

Navy Office	
Navy Scientific Adviser (NSA)	Doc Cntl Sht
Army Office	
Scientific Adviser, Army (SA-A)	1
Ain Office	
Air Office	
Air Force Scientific Adviser (AFSA)	1
Library and Information Services	
Defence Central Library, Technical Reports Centre	1
Manager, Document Exchange Centre	12
DSTO Salisbury Research Library	2
Library, Defence Signals Directorate, Canberra	1
Headquarters Australian Defence Force	
Development Division	
Director General, Force Development (Joint)	1
Director General, Force Development (Land)	1
Director General, Force Development (Air)	1
Director General, Force Development (Sea)	1
Director Communications Development	1
Director Communications and Info. System Policies and Plans	1
Operations Division	
Director General, Joint Communications and Electronics	1

Acquisition and Logistics Program			
Defence Materiel Division			
Director General, Joint Projects Management Branch Assistant Secretary, Comms. and Info. Systems Eng. Branch			
Strategy and Intelligence Program			
Force Development and Analysis Program			
Assistant Secretary, Project Development	1		
Defence Intelligence Organisation			
Deputy Director, Defence Intelligence Organisation	1		
Defence Signals Directorate			
Director, Defence Signals Directorate	1		
Spares			
DSTO Salisbury Research Library	6		

Department of Defence

 Page Classification
UNCLASSIFIED

2. Privacy Marking/Caveat (of document)

DOCUMENT CONTROL DATA SHEET

3a. AR Number AR-009-367	3b. DSTO Number DSTO-TN-0018	3c. Type of Report TECHNICAL NOTE	4. Task Number ADF93/319				
5. Document Date September 1995	6. Cost Code 837795	7. Security Classification	8. No of Pages 14				
10. Title		* U U U	9. No of Refs				
PRACTICAL MEASUREMENT		Document Title Abstract					
ANTENNA NOISE FACTOR A BANDWIDTH	IND NOISE EQUIVALENT	S (Secret) C (Confi) R (Rest) U (Unclassified)					
		* For UNCLASSIFIED docs. with a secondary distribution LIMITATION, use (L) in document box.					
11. Author(s)		12. Downgrading/Delimiting Instructions					
M. L. SCHOLZ							
13a. Corporate Author and A	ddress	14. Officer/Position responsible for					
Electronics and Surveillance F PO Box 1500	Research Laboratory	Security: CCD					
Salisbury SA 5108		Downgrading: N/A					
13b. Task Sponsor		Approval for Release: NEIL BRYANS (CCD)					
DGFD(J)							
15. Secondary Release State	ement of this Document						
APPROVED FOR PUBLIC RE	ELEASE						
16a. Deliberate Announceme	ent						
No limitation							
16b. Casual Announcement (for citation in other documents)							
	No Limitation Ref. by Author, Doc No. and date only						
17. DEFTEST Descriptors	,		18. DISCAT Subject Codes				
Antenna noise factor, noise equivalent bandwidth							
19. Abstract							
Effective Antenna Noise Factor is a measure of external radio noise widely used in the prediction of link performance and in surveys of the noise environment. The practicalities of accurately estimating this quantity and a novel technique for measuring the Noise Equivalent Bandwidth of a complete receiving system are described.							