빅데이터 플랫폼

HDFS Block Size NameNode 오버헤드와 MapReduce 작업 관점에서

> 소프트웨어전공 20152791 강길웅

NameNode 와 BlockSize

메모리 오버헤드

NameNode는 블락 관련 메타데이터를 메모리에서 관리한다. 때문에 가지고 있을 수 있는 메타데이터가 한정되어 있는데 블락의 사이즈를 줄이게 되면 파일당 블락 갯수가 증가하게 되고 이는 메타데이터의 양을 증가시켜 NameNode의 오버헤드를 유발하는 것이다. 한 가지 예를 보자.

```
1 GB의 파일이 존재합니다. 이를 64MB의 블락사이즈와 1MB의 블락사이즈로 관리한다고 생각해봅시다.
Block Size = 64MB
Block = 16
Total Item = 16*3(일반적으로 레플리카를 3개 가지므로) = 48
48 + 1(파일 네임 관련 데이터) = 49
일반적으로 각 오브젝트 / 항목은 150바이트 ~ 200바이트를 가지므로
Total NameNode memory = 150*49 (바이트)

Block Size = 1 MB
Block = 1024
Total Item = 1024*3 = 3072 + 1024(파일 네임 관련 데이터) = 4096
Total NameNode memory = 150 * 4096(바이트)
```

위 결과를 통해 메타데이터의 증가로 메모리의 더 많은 공간을 차지하므로 NameNode 메모리 및 네트워크 등의 오 버헤드가 발생하는 것을 확인 할 수 있다.

탐색 시간의 관점에서

NameNode는 블락의 시작점에 대한 메타데이터들을 가지고 있다. 만일 블락의 크기를 줄이게 된다면 블락의 숫자가 늘어나게 될 것이고 이에따라 블락의 시작점 정보인 메타데이터도 증가하게 된다. 이에따라 원하는 블락을 찾는 탐색 시간이 늘어나게 되는 것이다. 때문에 탐색 시간을 줄이기 위해 블락 하나의 사이즈를 128MB같이 크게 잡는 것이다.

MapReduce 작업

MapReduce작업시 블락 단위로 진행된다. 때문에 블락 사이즈가 증가한다면 그만큼 하나의 작업 속도가 저하됨을 의미한다.

결론

NameNode의 오버헤드의 문제 및 탐색 시간 문제로 블락 사이즈를 크게 하는것이 NameNode측면에서 좋다. 하지만 너무 크게 잡을 경우 MapReduce 명령어 처리시간이 오래 걸리게 되므로 적절한 크기를 설정하는 것이 바람직하다.