The Little Book of Smiley Plots

A collection of ancient DNA patterns and their causes

The SPAAM Community

2025-01-05

Table of contents

Pr	Preface 3		
lnt	troduction What are deamination patterns?	$\frac{4}{4}$	
 1	Valid Smiley Plots Smiley Plot of Double Stranded DNA Libraries	6	
	Smiley Plot of Single Stranded DNA Libraries	9	
11	Problematic Smiley Plots	10	
3	Smiley Plot of Insufficient Reads	11	
References		12	

Preface

A key part of any ancient DNA project is to show that the DNA is exactly that - that the DNA is ancient, rather than from modern contamination.

A key authentication method is to show the presence of elevated C to T deamination patterns (and the complementary G to A) at the end of DNA molecules - known as damage patterns - originally reported by (Briggs et al. 2007).

These patterns can be plotted in what have been colloquially known as 'Smiley Plots. However, there can be a wide range of smiley plots, some which show valid ancient DNA, and others that do not - either due to not actually having true ancient DNA but also from laboratory and/or bioinformatic artifacts.

This book aims to act as a reference guide to interpreting ancient DNA damage plots, providing a wide range of example 'smiley plots', with descriptions of what the describe and what can cause them. As an added bit of fun, each type of 'smiley plot' comes with a artistic interpretation of the line shape contributed by members of the ancient DNA community.

Introduction

What are deamination patterns?

Figure 1

Figure 1: First reported damage pattern from Neanderthal DNA (Briggs et al. 2007). Reproduced here under free access.

How to generate damage patterns

There is a range of software that can generate damage pattern plots from ancient DNA NGS libraries. The vast majority of tools require to be of sequencing reads aligned to a reference genome. Here we make suggestions of some tools that you can use to generate such plots.

Genomics

These tools general take BAM files as input (i.e., after mapping of FASTQ files to a reference genome using a short-read aligner)

• mapDamage

- Source: https://github.com/ginolhac/mapDamagee
- Documentation: https://ginolhac.github.io/mapDamage
- Citation: (Jónsson et al. 2013)
- DamageProfiler
 - Source: https://github.com/Integrative-Transcriptomics/DamageProfiler
 - Documentation: https://damageprofiler.readthedocs.io/en/latest/
 - Citation: (Neukamm, Peltzer, and Nieselt 2021)

Metagenomics

- MaltExtract
 - Source: https://github.com/rhuebler/MaltExtract
 - Documentation: https://github.com/rhuebler/MaltExtract
 - Citation: (Hübler et al. 2019)

Part I Valid Smiley Plots

1 Smiley Plot of Double Stranded DNA Libraries

Start PLACEHOLDER!

snah Kritzler, CC0, via Wikimedia Commons

End PLACEHOLDER!

Figure 1.1: Example of a smiley plot of a double stranded DNA library. Data taken from (Star et al. 2017). Damage data calculated using DamageProfiler and plotted using R and ggplot2.

This is the 'classical' ancient DNA plot that you will see most often. You expect to see a smooth curve from the beginning of the read (position 1) to a flat line in the middle (e.g. positions 10-25 in mapDamage plots).

If you get such a plot in ancient DNA double-stranded libraries, this is a good indication you have authentic ancient DNA!

2 Smiley Plot of Single Stranded DNA Libraries

Part II Problematic Smiley Plots

3 Smiley Plot of Insufficient Reads

References

- Briggs, Adrian W, Udo Stenzel, Philip L F Johnson, Richard E Green, Janet Kelso, Kay Prüfer, Matthias Meyer, et al. 2007. "Patterns of Damage in Genomic DNA Sequences from a Neandertal." Proceedings of the National Academy of Sciences of the United States of America 104 (37): 14616–21. https://doi.org/10.1073/pnas.0704665104.
- Hübler, Ron, Felix M Key, Christina Warinner, Kirsten I Bos, Johannes Krause, and Alexander Herbig. 2019. "HOPS: Automated Detection and Authentication of Pathogen DNA in Archaeological Remains." *Genome Biology* 20 (1): 280. https://doi.org/10.1186/s13059-019-1903-0.
- Jónsson, Hákon, Aurélien Ginolhac, Mikkel Schubert, Philip L F Johnson, and Ludovic Orlando. 2013. "mapDamage2.0: Fast Approximate Bayesian Estimates of Ancient DNA Damage Parameters." *Bioinformatics* 29 (13): 1682–84. https://doi.org/10.1093/bioinformatics/btt193.
- Neukamm, Judith, Alexander Peltzer, and Kay Nieselt. 2021. "DamageProfiler: Fast Damage Pattern Calculation for Ancient DNA." *Bioinformatics* 37 (20): 3652–53. https://doi.org/10.1093/bioinformatics/btab190.
- Star, Bastiaan, Sanne Boessenkool, Agata T Gondek, Elena A Nikulina, Anne Karin Hufthammer, Christophe Pampoulie, Halvor Knutsen, et al. 2017. "Ancient DNA Reveals the Arctic Origin of Viking Age Cod from Haithabu, Germany." *Proceedings of the National Academy of Sciences of the United States of America* 114 (34): 9152–57. https://doi.org/10.1073/pnas.1710186114.