Visualizing and describing data

Chaochen Wang

ZJU-UoE Institute

wangchaochen@intl.zju.edu.cn

Oct 21, 2019

Learning Objects-Week 6

- Use ggplot2 for data visualization
- Think critically about data visualization choices

Purposes of data visualization

https://www.infographicdesignteam.com/blog/data-visualization-best-practices/

1. Present data

- -Straightforward
- -Present large data sets in a limited space

2. Provide more information

-Counts, Distribution, Trends, Irregularities...

3. Tell a story

- -Relationships among data
- -Help find interesting regions
- -Help make decisions

Good data visualization

- Numbers & Stats
- * Timelines
- Processes
- Comparisons
- Lists

https://hiilite.com/information-visualization/

ggplot2

data("diamonds")

```
ggplot(data=diamonds, aes(x=carat, y=price, group= cut))
```

- + geom_point(stat = "identity", aes(colour = cut))
- + geom_smooth(aes(group=cut), method = "lm")
- + geom_text(aes(label = price),hjust = 0.1, nudge_x = 0.05,size=1)
- + scale_y_continuous(trans='log2')
- + labs(title="Price vs carat in diamonds")
- + facet_wrap(.~cut)

Price vs carat in diamonds

Ggplot2 – layered grammar

Data(Must be data frame) Aesthetic mappings Geometric objects & statistical transformations Scales Faceting

From: ggplot2 -Elegant Graphics for Data Analysis by Hadley Wickham

Build layer by layer

g <- ggplot(data=diamonds,aes(x=carat, y=price, group=cut))</pre>

```
g1 <- g + geom_point(stat = "identity", aes(colour = cut))
g2 <- g1+ geom_smooth(aes(group=cut), method = "lm")
g3 <- g2 + geom_text(aes(label = price),hjust = 0.1, nudge_x = 0.05,size=1) \frac{1}{2}
g4 <- g3 + scale_y_continuous(trans='log2')
g5 <- g4 + labs(title="Price vs carat in diamonds")
g6 <- g5 +facet_wrap(.~cut)
                                                Price vs carat in diamonds
```

Layer components

Layers are responsible for creating the objects that we perceive on the plot.

A layer is composed of four parts:

- data and aesthetic mapping,
- a statistical transformation (stat),
- a geometric object (geom)
- and a position adjustment

```
data("diamonds")

ggplot(data=diamonds, aes(x=carat, y=price, group= cut))
+ geom_point(stat = "identity", aes(colour = cut), position = "identity")
```

Multiple layers

- ❖ A default dataset and set of mappings from variables to aesthetics.
- ❖ One or more layers, each composed of a geometric object, a statistical transformation, and a position adjustment, and optionally, a dataset and aesthetic mappings.
- One scale for each aesthetic mapping.
- ❖ A coordinate system.
- **❖** The faceting specification

```
data("diamonds")

ggplot(data=diamonds, aes(x=carat, y=price, group= cut))
+ geom_point(stat = "identity", aes(colour = cut))
+ geom_smooth(aes(group=cut), method = "Im")
+ geom_text(aes(label = price), hjust = 0.1, nudge_x = 0.05, size=1)
+ scale_y_continuous(trans='log2')
+ labs(title="Price vs carat in diamonds")
+ facet_wrap(.~cut)
```

Ggplot is a R object

- Can be viewed by summary
- Can be saved (save) and loaded (load)
- ❖ Data is stored inside the plot, so that if you change the data outside of the plot, and then redraw a saved plot, it will not be updated.
- Geom can also be saved and apply it to another ggplot object if the aesthetics still exist

```
r <- ggplot(data=rubies, aes(x=carat, y=price, group=cut))
s <- ggplot(data= sapphires, aes(x=carat, y=price, group=cut))
p <- geom_point(stat = "identity", aes(colour = cut))
+ geom_smooth(aes(group=cut), method = "lm")
r + p
s + p</pre>
```

```
> summary(q6)
data: carat, cut, color, clarity, depth, table, price, x, y, z [5394]
mapping: x = \text{-carat}, y = \text{-price}, group = \text{-cut}
scales: y, ymin, ymax, yend, yintercept, ymin_final, ymax_final,
dle, upper, y0
faceting: <ggproto object: Class FacetWrap, Facet, gg>
    compute layout: function
    draw back: function
    draw_front: function
    draw_labels: function
    draw_panels: function
    finish_data: function
    init_scales: function
    map_data: function
    params: list
    setup_data: function
    setup_params: function
    shrink: TRUE
    train_scales: function
    vars: function
    super: <ggproto object: Class FacetWrap, Facet, gg>
mapping: colour = ~cut
geom_point: na.rm = FALSE
stat_identity: na.rm = FALSE
position_identity
mapping: group = ~cut
geom_smooth: na.rm = FALSE, se = TRUE
stat_smooth: na.rm = FALSE, se = TRUE, method = lm, formula = y \sim x
position_identity
mapping: label = ~price
geom_text: parse = FALSE, check_overlap = FALSE, na.rm = FALSE
stat_identity: na.rm = FALSE
position_nudge
```

Dataset

- Must be a data frame
- Old dataset can be replaced with %+%

From: ggplot2 -Elegant Graphics for Data Analysis by Hadley Wickham

Aesthetics mapping

- Any variable in an aes() specification must be contained inside the plot or layer data.
- Mapping can be extended or overridden in the layers.
- ❖ Aesthetic mappings specified in a layer affect only that layer.

```
p <- ggplot(mtcars, aes(x = mpg, y = wt))
p + geom_point(aes(colour = factor(cyl)))
p + geom_point(aes(y = disp))</pre>
```


12

From: ggplot2 -Elegant Graphics for Data Analysis by Hadley Wickham

Setting vs. mapping

map an aesthetic to a variable (e.g., (aes(colour = cut))) or set it to a constant (e.g.,colour =
"red"), they are different!!!

```
p <- ggplot(mtcars, aes(mpg, wt))</pre>
```

p + geom_point(colour = "darkblue")
It is a parameter of colour

p + geom_point(aes(colour = "darkblue"))
It creates a new variable

From: ggplot2 -Elegant Graphics for Data Analysis by Hadley Wickham

Stat

Name	Description
bin	Bin data
boxplot	Calculate components of box-and-whisker plot
contour	Contours of 3d data
density	Density estimation, 1d
$density_2d$	Density estimation, 2d
function	Superimpose a function
identity	Don't transform data
qq	Calculation for quantile-quantile plot
quantile	Continuous quantiles
smooth	Add a smoother
spoke	Convert angle and radius to xend and yend
step	Create stair steps
sum	Sum unique values. Useful for overplotting on scatter-
	plots
summary	Summarise y values at every unique x
unique	Remove duplicates

From: ggplot2 -Elegant Graphics for Data Analysis by Hadley Wickham

Choose different stat

```
d <- ggplot(diamonds, aes(carat)) + xlim(0, 3)
d+ geom_histogram(stat = "count")
d+ geom_histogram(stat="density")</pre>
```


geom

Name	Description	
abline	Line, specified by slope and intercept	
area	Area plots	
bar	Bars, rectangles with bases on y-axis	
blank	Blank, draws nothing	
boxplot	Box-and-whisker plot	
contour	Display contours of a 3d surface in 2d	
crossbar	Hollow bar with middle indicated by horizontal line	
density	Display a smooth density estimate	
$density_2d$	Contours from a 2d density estimate	
errorbar	Error bars	
histogram	Histogram	
hline	Line, horizontal	
interval	Base for all interval (range) geoms	
$_{ m jitter}$	Points, jittered to reduce overplotting	
line	Connect observations, in order of x value	
linerange	An interval represented by a vertical line	
path	Connect observations, in original order	
point	Points, as for a scatterplot	
pointrange	An interval represented by a vertical line, with a point	
	in the middle	
polygon	Polygon, a filled path	
quantile	Add quantile lines from a quantile regression	
ribbon	Ribbons, y range with continuous x values	
rug	Marginal rug plots	
$\operatorname{segment}$	Single line segments	
smooth	Add a smoothed condition mean	
step	Connect observations by stairs	
text	Textual annotations	
tile	Tile plot as densely as possible, assuming that every	
	tile is the same size	
vline	Line, vertical	

From: ggplot2 -Elegant Graphics for Data Analysis by Hadley Wickham More information in https://ggplot2.tidyverse.org/reference/

Chaochen Wang – ZJE

From: ggplot2 -Elegant Graphics for Data Analysis by Hadley Wickham

17

Choose different geom

```
d <- ggplot(diamonds, aes(carat)) + xlim(0, 3)
d + stat_bin(aes(ymax = ..count..), binwidth = 0.1, geom = "area")
d + stat_bin(aes(size = ..density..), binwidth = 0.1, geom = "point", position="identity")</pre>
```

Statistical transformation generate new variables, which can be directly used. To distinguish them from the variable names in the original data, they are surrounded by ".."

From: ggplot2 -Elegant Graphics for Data Analysis by Hadley Wickham

Geom_xxx and stat_xxx are shortcuts for layer

```
p <- ggplot(diamonds, aes(x = carat))

p + layer(geom = "bar", stat = "bin", position = "identity",params = list(fill = "steelblue", binwidth=0.1))

p + geom_histogram(stat="bin", fill="steelblue", binwidth = 0.1)

p + stat_bin(geom="bar", fill="steelblue", binwidth = 0.1)</pre>
```

They are the same!

Grouping

```
g <- ggplot(data=diamonds,aes(x=carat, y=price))
g + geom_point()
g + geom_point(aes(group=cut, colour=cut))</pre>
```


Position adjustment

Adjustment Description		
dodge	Adjust position by dodging overlaps to the side	
fill	Stack overlapping objects and standardise have equal height	
identity	Don't adjust position	
jitter	Jitter points to avoid overplotting	
stack	Stack overlapping objects on top of one another	

From: ggplot2 -Elegant Graphics for Data Analysis by Hadley Wickham

Overplotting

making the points smaller or using hollow glyphs

use alpha blending (transparency)

22

From: ggplot2 -Elegant Graphics for Data Analysis by Hadley Wickham

Faceting

From: ggplot2 -Elegant Graphics for Data Analysis by Hadley Wickham

23

Grouping vs Faceting

dplot + geom_point(aes(colour=color)
dplot + geom_point(aes(colour=color) + facet_grid(. ~ color)

24

From: ggplot2 -Elegant Graphics for Data Analysis by Hadley Wickham

Axis and legend

From: ggplot2 -Elegant Graphics for Data Analysis by Hadley Wickham

25

Scales

- ❖ Position scales, used to map continuous, discrete and date-time variables onto the plotting region and to construct the corresponding axes.
- Colour scales, used to map continuous and discrete variables to colours.
- Manual scales, used to map discrete variables to your choice of symbol size, line type, shape or colour, and to create the corresponding legend.
- The identity scale, used to plot variable values directly to the aesthetic rather than mapping them.

From: ggplot2 -Elegant Graphics for Data Analysis by Hadley Wickham

Common arguments

- name: sets the label which will appear on the axis or legend.
- limits: fixes the domain of the scale.
- * breaks and labels: breaks controls which values appear on the axis or Legend; abels specifies the labels that hould appear at the breakpoints.

From: ggplot2 -Elegant Graphics for Data Analysis by Hadley Wickham

Axis scale

Name	Function $f(x)$	Inverse $f^{-1}(y)$
asn	$\tanh^{-1}(x)$	tanh(y)
\exp	e^{x}	$\log(y)$
identity	$\cdot x$	y
\log	$\log(x)$	e^{y}
$\log 10$	$\log_{10}(x)$	10^{y}
$\log 2$	$\log_2(x)$	2^y
logit	$\log(\frac{x}{1-x})$	$\frac{1}{1+e(y)}$
pow10	10^x	$\log_{10}(y)$
probit	$\Phi(x)$	$\Phi^{-1}(y)$
recip	x^{-1}	y^{-1}
reverse	-x	-y
sqrt	$x^{1/2}$	y^2

g3 + scale_y_	_continuous(trans="log2")
g3 + scale_y_	_log2()

From: ggplot2 -Elegant Graphics for Data Analysis by Hadley Wickham

Colour scale

```
d <- ggplot(diamonds, aes(carat)) + xlim(0, 3)
d + stat_bin(aes(size = ..density.., colour=..density..), binwidth = 0.1, geom = "point", position="identity" )
d + stat_bin(aes(size = ..density.., colour=..density..), binwidth = 0.1, geom = "point", position="identity" ) \
+ scale_color_distiller(palette = 8)
d + stat_bin(aes(size = ..density.., colour=..density..), binwidth = 0.1, geom = "point", position="identity" ) \
+ scale_color_gradient(low="red",high = "green", breaks = c(0.3,0.6,0.9), name = "whatever", limit =c(0.25,1.2) )</pre>
```


Titles, subtitles and captions

plot + labs(title="Area Vs Population", y="Population", x="Area", caption="Source: midwest")

Source: midwest

30

http://r-statistics.co/Complete-Ggplot2-Tutorial-Part2-Customizing-Theme-With-R-Code.html

Theme (theme)

The appearance of non-data elements of the plot is controlled by the theme system.

- Background (color, linetype....)
- Title(font, size, position, angle...)

• • •

Save a plot to a file

```
png(file="my_plot.png", width=500, height=500, units="px")
d <- ggplot(diamonds, aes(carat)) + xlim(0, 3)
d + stat_bin(aes(size = ..density.., colour=..density..), binwidth =
0.1, geom = "point", position="identity")
dev.off()</pre>
```

You can also save to bmp, jpeg, tiff, pdf formats by bmp, jpeg, tiff, pdf

More about data visualization – using colours

Colour (color) blindness (colour vision deficiency, or CVD) affects approximately 1 in 12 men (8%) and 1 in 200 women in the world.

Try to be color blind friendly.

15-color palettes adapted for color blindness

http://mkweb.bcgsc.ca/colorblind

More about data visualization – using plots

Plots can be misleading or hiding more information

https://simplystatistics.org/2019/02/21/dynamite-plots-must-die/

They produce the same barplot

More about data visualization

- ❖ Make the design of your data visualization fit the data, not the other way around
- Don't manipulate the data to make it fit your argument
- Cite the sources of your data
- Tell a story from the data

Suggested readings

- ggplot2 -Elegant Graphics for Data Analysis by Hadley Wickham
- * R Graphic Cookbook by Winston Chang