DMA 2016

- Ugeseddel 14 -

Arbejdsvejledning

I denne uge skal vi arbejde med to helt uafhængige emner: **permutationer** og **rekursionsformler**.

Teorien om rekursionsformler med konstante koefficienter giver os mulighed for at bestemme eksakte udtryk for rekursivt definerede talfølger på en særligt pæn form ved at finde rødderne i et andengradspolynomium. Et særligt vigtigt eksempel er Fibonaccitallene, som vi vil beskrive ved formlen

$$F_n = \frac{1}{\sqrt{5}} \left(\frac{1+\sqrt{5}}{2} \right)^n - \frac{1}{\sqrt{5}} \left(\frac{1-\sqrt{5}}{2} \right)^n$$

At benytte denne metode kræver lidt tilvænning, og en del regnearbejde, men der trækkes kun på elementære kompetencer som fx at finde rødder i en andengradsligning og løse to ligninger med to ubekendte. Metoden er beskrevet i KBR 3.5.

Resultater af denne type giver os lejlighed til at igen – for sidste gang! – diskutere køretiden af Euklids algoritme.

Vi har allerede talt en del om permutationer og fx bestemt antallet af permutationer af n elementer som n!. Med udgangspunkt i KBR 5.4 ser vi på hvordan permutationer kan opfattes som bijektive funktioner og på hvordan man kan regne med permutationer og beskrive dem i såkaldt cykelnotation. Vi læser ikke afsnittet om lige og ulige permutationer.

I anledning af julen holder vi fri tidligt på kursets lange dag, og stopper så snart forelæsning og spørgetime er overstået! God jul og glædeligt nytår til alle.

Program for forelæsninger

Tirsdag 201216, 0815-0900

Rekursionsformler af anden orden. Karakteristiske polynomier. (KBR 3.5)

Tirsdag 201216, 1115-1200

Repetition af bijektive funktioner og omvendte funktioner (KBR 5.1) Permutationer: Komposition og invers (KBR 5.4)

Torsdag 221216, 0915-1000

Permutationer: Cykelnotation.

Torsdag 221216, 1315-1415

Euklids algoritme genbesøgt. Opsamling på ugens pensum samt spørgetime.

Program for øvelser

Tirsdag 201216, 0915-1100

- Instruktoren gennemgår KBR eksempel 3.5.7.

Torsdag 221216, 1015-1200

- Løs KBR opgave 5.1.19, 5.1.21, 5.4.5, 5.4.6, 5.4.9, 5.4.12, 5.4.13.
- Instruktoren skitserer hvordan KBR sætning 3.5.1 kan generaliseres til lineære rekursionsformel af højere orden, når alle rødder i det karakteristiske polynomium er forskellige. (KBR side 118).
- Løs KBR opgave 3.5.34, 3.5.35

Fordybelsesopgaver

(1) [*] KBR opgave 3.5.7, 3.5.32, 3.5.26