Dispositif expérimental

<u> </u>		100	α	re
-	L D	 	\boldsymbol{a}	
	•	 		

	1	Le LHC: Large Hadron Collider					
		1.1	Collisions de protons	1			
		1.2	Accélération de protons	1			
		1.3	Luminosité et nombre d'événements	1			
		1.4	L'empilement	1			
		1.5	Les expériences du LHC	1			
	2	L'exp	érience CMS : Compact Muon Solenoïd	2			
		2.1	Le solénoïde	2			
		2.2	Le trajectographe ou tracker	2			
		2.3	Le calorimètre électromagnétique ou ECAL	2			
		2.4	Le calorimètre hadronique ou HCAL	2			
		2.5	Les chambres à muons	2			
		2.6	Prise de données à CMS	2			
	3 Événen		ements simulés	2			
		3.1	Génération d'événements	2			
		3.2	Simulation du détecteur	2			
4		Reco	Reconstruction des événements				
		4.1	L'algorithme de <i>Particle Flow</i>	2			
		4.2	Identification et reconstruction des particules	2			
		4.3	Objets de haut niveau	2			
		4.4	Énergie transverse manquante	2			
	5 Conclusion						

1 Le LHC : Large Hadron Collider

- 1.1 Collisions de protons
- 1.2 Accélération de protons
- 1.3 Luminosité et nombre d'événements
- 1.4 L'empilement
- 1.5 Les expériences du LHC

Quatre grandes expériences sont présentes sur le LHC. Elles se situent chacune à un des points d'interaction de l'anneau afin d'étudier les collisions qui y sont produites.

ALICE [1], A Large Ion Collider Experiment, est une expérience conçue pour étudier le déconfinement des quarks et des gluons à l'aide de collisions d'ions lourds. Ces études permettent de mieux comprendre le fonctionnement de la chromodynamique quantique ou QCD.

- ATLAS [2], A Toroidal LHC ApparatuS, est une expérience généraliste avec un éventail d'études très large, allant des mesures de précision des paramètres du modèle standard à la recherche de nouvelle physique.
- **CMS** [3], Compact Muon Solenoid, est également une expérience généraliste dont les objectifs sont similaires à ceux d'ATLAS. Les détecteurs d'ATLAS et de CMS étant conçus différemment, ces deux expériences peuvent valider leurs résultats de manière indépendante.
- **LHCb** [4], Large Hadron Collider beauty, se concentre sur l'étude de la violation de la symétrie CP avec la quark *b*, qui lui donne son nom. Cette expérience réalise également des mesures de précision de certains paramètres du modèle standard.

2 L'expérience CMS : Compact Muon Solenoïd

- 2.1 Le solénoïde
- 2.2 Le trajectographe ou tracker
- 2.3 Le calorimètre électromagnétique ou ECAL
- 2.4 Le calorimètre hadronique ou HCAL
- 2.5 Les chambres à muons
- 2.6 Prise de données à CMS
- 3 Événements simulés
- 3.1 Génération d'événements
- 3.2 Simulation du détecteur
- 4 Reconstruction des événements
- 4.1 L'algorithme de *Particle Flow*
- 4.2 Identification et reconstruction des particules
- 4.3 Objets de haut niveau
- 4.4 Énergie transverse manquante

5 Conclusion

Références

- [1] The ALICE Collaboration. « The ALICE experiment at the CERN LHC. A Large Ion Collider Experiment ». *Journal of Instrumentation* **3**.S08002 (2008). DOI: 10.1088/1748-0221/3/08/S08002. URL: http://cds.cern.ch/record/1129812.
- [2] The ATLAS Collaboration. «The ATLAS Experiment at the CERN Large Hadron Collider». Journal of Instrumentation 3.S08003 (2008). DOI: 10.1088/1748-0221/3/08/S08003. URL: http://cds.cern.ch/record/1129811.
- [3] The CMS Collaboration. « The CMS experiment at the CERN LHC. The Compact Muon Solenoid experiment ». *Journal of Instrumentation* **3**.S08004 (2008). DOI: 10.1088/1748-0221/3/08/S08004. URL: http://cds.cern.ch/record/1129810.
- [4] The LHCb Collaboration. « The LHCb Detector at the LHC ». Journal of Instrumentation 3.S08005 (2008). DOI: 10.1088/1748-0221/3/08/S08005. URL: http://cds.cern.ch/record/1129809.