第十四章 幂级数

1 幂级数

2 函数的幂级数展开

14.1 幂级数

幂级数:

$$\sum_{n=0}^{\infty} a_n (x - x_0)^n = a_0 + a_1 (x - x_0) + a_2 (x - x_0)^2 + \dots + a_n (x - x_0)^n + \dots$$
 (1)

$$\sum_{n=0}^{\infty} a_n x^n = a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n + \dots$$
 (2)

注: 只需讨论形如(2)的幂级数.

问题: (i) 如何确定幂级数的收敛域?

(ii) 如何求幂级数的和函数?

如: 幂级数
$$\sum_{n=0}^{\infty} x^n = 1 + x + x^2 + \dots + x^n + \dots$$

收敛域 $D = \{x | x | < 1\}$.

和函数:
$$S(x) = \frac{1}{1-x}$$
 (|x|<1).

一、幂级数的收敛区间

定理(阿贝尔定理):

- (i) 若幂级数 $\sum_{n=1}^{\infty} a_n x^n$ 在点 $x_0 \neq 0$ 收敛,则对任一
 - 满足 $|x| < |x_0|$ 的x,幂级数绝对收敛;
- (ii) 若幂级数 $\sum_{n=1}^{\infty} a_n x^n$ 在点 $x_0 \neq 0$ 发散,则对任一

满足 $|x| > |x_0|$ 的 x , 幂级数发散.

即: 幂级数 $\sum_{n=0}^{\infty} a_n x^n$ 的收敛域 D 是以原点为中心的区间,若以 2R 表示区间长度,称 R 为幂级数的收敛半径。

结论:

(1)
$$R = 0$$
 时, 幂级数 $\sum_{n=0}^{\infty} a_n x^n$ 仅在 $x = 0$ 收敛;

(2)
$$R = +\infty$$
 时,幂级数 $\sum_{n=0}^{\infty} a_n x^n$ 在 $(-\infty, +\infty)$ 上收敛;

(3)
$$0 < R < +\infty$$
 时,幂级数 $\sum_{n=0}^{\infty} a_n x^n$ 在 $(-R, R)$ 绝对收敛; 在 $(-\infty, -R) \cup (R, +\infty)$ 上发散。

收敛区间: (-R,R)

收敛域: (-R,R),(-R,R],[-R,R),[-R,R]

问题: 如何确定幂级数的收敛半径?

定理2: 若
$$\lim_{n\to\infty} \left| \frac{a_{n+1}}{a_n} \right| = \rho \left(\text{ 或 } \lim_{n\to\infty} \sqrt[n]{a_n} \right) = \rho \right)$$
,则幂级数

$$\sum_{n=0}^{\infty} a_n x^n$$
 的收敛半径为:

$$R = egin{cases} 1/
ho \ , & 0 <
ho < +\infty \ ; \ +\infty &
ho = 0 \ ; \ 0 \ , &
ho = +\infty \ . \end{cases}$$

例1、求下列幂级数的收敛域。

$$(1)\sum_{n=0}^{\infty}\frac{x^n}{n^2};$$

$$(2)\sum_{n=0}^{\infty}n!x^{n};$$

$$(3)\sum_{n=1}^{\infty}(-1)^{n}\frac{2^{n}}{\sqrt{n}}(x-\frac{1}{2})^{n}.$$

例2、求 $\sum_{n=1}^{\infty} \frac{(2n)!}{(n!)^2} x^{2n-1}$ 的收敛半径.

注: 缺省了 x^{2n} ,即 $a_{2n}=0$, $\lim_{n\to\infty} \sqrt[n]{a_n}$ 不存在.

$$\Rightarrow u_n(x) = \frac{(2n)!}{(n!)^2} x^{2n-1}.$$

$$\lim_{n \to \infty} \left| \frac{u_{n+1}(x)}{u_n(x)} \right| = \lim_{n \to \infty} \left| \frac{(2n+2)! x^{2n+1}}{((n+1)!)^2} \cdot \frac{(n!)^2}{(2n)! x^{2n-1}} \right|$$

$$= \lim_{n\to\infty} \frac{(2n+1)(2n+2)x^2}{(n+1)^2} = 4x^2.$$

定理3: 若幂级数 $\sum_{n=0}^{\infty} a_n x^n$ 的收敛半径 R > 0,则幂级数在 (-R,R) 上内闭一致收敛 .即对任意 $[a,b] \subset (-R,R)$,幂级数在 [a,b] 上一致收敛。

定理4: 若幂级数 $\sum_{n=0}^{\infty} a_n x^n$ 的收敛半径 R > 0,且 在 x = R (或 x = -R) 处收敛,则幂级数在 [0,R] (或 [-R,0]) 上一致收敛.

推论: 幂级数 $\sum_{n=0}^{\infty} a_n x^n$ 在收敛域上内闭一致收敛。

二、幂级数的性质

定理5: (幂级数和函数的连续性)

设幂级数 $\sum_{n=0}^{\infty} a_n x^n$ 的收敛域为 D,则其和函数

S(x)在D上连续.

$$\sum_{n=0}^{\infty} a_n x^n = a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n + \dots$$
 (*)

逐项求导得:

$$a_1 + 2a_2x + \dots + na_nx^{n-1} + \dots = \sum_{n=1}^{\infty} na_nx^{n-1}$$
 (a)

逐项求积得:

$$a_0 x + \frac{a_1}{2} x^2 + \dots + \frac{a_n}{n+1} x^{n+1} + \dots = \sum_{n=0}^{\infty} \frac{a_n}{n+1} x^{n+1}$$
 (b)

定理6: 幂级数 $\sum_{n=0}^{\infty} a_n x^n$ 与其逐项求导级数 (a) 和逐

项求积级数(b)有相同的收敛区间(-R,R).

定理7:(可微性)

设幂级数 $\sum_{n=0}^{\infty} a_n x^n$ 在收敛区间 (-R,R) 的和函数

为S(x),则S(x)在(-R,R)可导,且有逐项求导公式:

$$S'(x) = (\sum_{n=0}^{\infty} a_n x^n)' = \sum_{n=0}^{\infty} (a_n x^n)' = \sum_{n=1}^{\infty} n a_n x^{n-1}.$$

定理8:(可积性)

设幂级数 $\sum_{n=0}^{\infty} a_n x^n$ 在收敛区间 (-R,R) 的和函数为S(x),则 $\forall x \in (-R,R)$,S(t) 在 [0,x](或[x,0])可积,且有逐项求积公式:

$$\int_0^x S(t)dt = \int_0^x \left(\sum_{n=0}^\infty a_n t^n\right)dt = \sum_{n=0}^\infty \int_0^x a_n t^n dt = \sum_{n=0}^\infty \frac{a_n}{n+1} x^{n+1}.$$

基本公式:
$$\frac{1}{1-x} = 1 + x + x^2 + \dots + x^n + \dots = \sum_{n=0}^{\infty} x^n \quad (|x| < 1)$$

例3、求下列幂级数的和函数。

(1)
$$\sum_{n=1}^{\infty} \frac{x^n}{n}$$
; (2) $\sum_{n=1}^{\infty} (-1)^{n-1} n^2 x^n$.

思考: 求
$$\sum_{n=1}^{\infty} n(n-1)x^{n-1}$$
.

三、幂级数的运算

设 $\sum_{n=0}^{\infty} a_n x^n$ 和 $\sum_{n=0}^{\infty} b_n x^n$ 的收敛半径分别为 R_a 和 R_b ,

记 $R = \min\{R_a, R_b\}$,则:

(1) 数乘

$$\lambda \sum_{n=0}^{\infty} a_n x^n = \sum_{n=0}^{\infty} \lambda a_n x^n , \qquad |x| < R_a.$$

(2) 加减法

$$\sum_{n=0}^{\infty} a_n x^n \pm \sum_{n=0}^{\infty} b_n x^n = \sum_{n=0}^{\infty} (a_n \pm b_n) x^n \; ; \qquad |x| < R.$$

*(3) 乘法

$$\left(\sum_{n=0}^{\infty} a_n x^n\right) \cdot \left(\sum_{n=0}^{\infty} b_n x^n\right) = \sum_{n=0}^{\infty} \left(\sum_{i+j=n}^{\infty} a_i b_j\right) x^n, \quad |x| < R.$$

作业:

习题14-1: 1(2)(6)、2(1)(2)