電子システム工学基礎実験 報告書

	グループ:				A								
実験題目 _					変位電流								
報告者	第 _ 1	班-		学生	番号	2	112100	1	氏名 _	ì	浅井 雅史	i -	
	メールフ	アドレ	/ス				b	112100)1@edu.l	it.ac.jp			
	共同]実験	者	学生	番号	21	121002		氏名	浅岡	駿介		
				学生	番号	21	121007		氏名	伊藤	大智		
				学生	番号	21	121008		氏名	井上	翔陽		
				学生	番号				氏名				
実験実施日	2022	年	12	月	01	目	天候	曇り	温度	10 °C	湿度	55	%
報告書提出	(第1回	回目)	2	022	年	12	月	07	_ 目 ⇒		/ 要再	是出	_
	(第2回	回目)			年		_ 月		_ _ 日 ⇒	受理 /	/ 要再	是出	
報告書受理日	(最終)				年		月		日				
報告書提出者	≸の自己チュ	⊏ック橺	引(でき	ていれ	ば口に	ニチェッ?	クせよ)						
図実験結果は示されているか? 図考察は十分になされているか? 図レポートとしての体裁は適切か?							☑図表の書き方・まとめ方は適切か? ☑演習問題はできているか?						

[注意]

・自己チェック欄が未記入のレポートは内容を見ずに返却する・自己チェック欄と内容に相違があるものは、その程度に応じて減点する

[報告書に対する教員の所見]	[所見に対する報告者の回答]
□図表の体裁に不備がある	
(
□実験結果のまとめ方が適切でない	
(
口結果に対する考察が不足している	
(
□演習問題が解答されていない	
(
ロレポートとしての体裁が整っていない	
(
京 了 1-44 /	京 フレ4+ノ
裏面に続く	裏面に続く

1 目的

アンペア・マクスウェルの法則に関する実験を行い、変位電流 (密度) の理解を深める.

2 原理

変位電流密度 $\vec{i_d}$ とは電東 \vec{D} の時間変化であり,以下の式で与えられる.

$$\vec{i_d} = \frac{\partial \vec{D}}{\partial t}$$

また,平行平板への電圧限として交流を与え場合について考える.微小区間 Δx 離れた二点での電位を測定すると電場は, $|\vec{E}|=\frac{\Delta V}{\Delta x}$ で計算でき,電東密度を $\vec{E}=\epsilon\vec{D}$ と仮定できる.したがって,変位電流密度 $\vec{i_d}$ は以下の式で与えられる.

$$|\vec{i_d}| = |\frac{\partial \vec{D}}{\partial t}| = \epsilon |\frac{\partial}{\partial t} (\frac{\Delta V}{\Delta x})| = \frac{\epsilon}{\Delta x} |\frac{\partial}{\partial t} (\Delta V)|$$

ここで,平行平板に印加する V の角周波数を ω とすると, $V \propto \sin \omega t$ と書けるので,平行平板電極の面積を S. 二点での電位をそれぞれ $V_1 = A \sin \omega t$, $V_2 = B \sin \omega t$ とすると変位電流の大きさ I_{dmax} は以下の式で求められる.

$$|I_{dmax}| = \frac{\epsilon}{\Delta x} |(A - B)\omega|$$

また,ロゴスキーコイルにおいてロゴスキーコイルの両端に現れる誘導電圧を $V_e(t)=C\sin\omega t$ とすると,変位電流の大きさ I_d は以下の式で求められる.

$$|I_{dmax}| = -|\frac{l}{\mu_0 NS} \int_{\frac{\pi}{2}}^{\pi} V_e(t) dt| = \frac{l}{\mu_0 NS} \cdot \frac{C}{\omega}$$

3 実験

3.1 実験装置及び器具

木製台,プローブ支持台,ガラス製水槽,平行平板電極,静電プローブ,METRONIX MTR18-1 交流定電圧定電流電源、TEKTRONIX TBS1022 オシロスコープ,ロゴスキーコイル,抵抗 (220k Ω),セメント抵抗 (1Ω)

3.2 セットアップ

図1のように平行平板電極を水に入れた水槽の外側に配置し、電極板に交流を印加する.

図1 平行平板を水槽の外に配置した場合の実験配置図

3.3 二本のプローブによる測定

- 1. 図 2 のように水槽に二本のプローブを差し込む. 一つはプローブ支持台を用いて固定し、もう一つはテープで固定する. その間隔 Δx は ~ 1 cm 程度に保ち、 Δx の値を測定しておく.
- 2. 発振周波数は最も高い周波数 (1 MHz) からスタートし、徐々に $(50 \text{k} \sim 100 \text{kHz})$ 列みで500 kHzくらいまで) 周波数を下げながら実施し、それぞれの周波数における波形を記録する.

図 2 二本プローブによる変位電流測定実験配置

3.4 ロゴスキーコイルによる測定

- 1. 図 3 に示すように、水槽と電極板の間にロゴスキーコイルが入る程度のスペースを作り、そこにロゴスキーコイルを挿入する.
- 2. 実験課題 1 と同様に発振器の周波数 ω を変化させながら,セメント抵抗の両端とロゴスキーコイル からの出力波形を記録する.

図3 ロゴスキーコイルによる変位電流測定実験配置

4 結果

4.1 実験課題1

各周波数 ω における測定結果を以下の図~図に示す.また, Δx は $8.0\,[\mathrm{mm}]$ に調整した.

図 4 $\omega=1 \mathrm{MHz}$ のときの測定結果

図 5 $\omega = 900 \mathrm{kHz}$ のときの測定結果

図 6 $\omega=800 \mathrm{kHz}$ のときの測定結果

図 7 $\omega = 700 \mathrm{kHz}$ のときの測定結果

図 8 $\omega = 600 \mathrm{kHz}$ のときの測定結果

図 9 $\omega = 500 \mathrm{kHz}$ のときの測定結果

4.2 実験課題 2

各周波数 ω における測定結果を以下の図~図に示す。また,用いたロゴスキーコイルに関して,巻き数 N=211,円周の長さ $l=2\pi\times0.1095=0.688$ [m], $S=\pi\times0.0100^2=0.000314$ [m²] と測定された.

図 10 $\omega = 1$ MHz のときの測定結果

図 11 $\omega = 900 \mathrm{kHz}$ のときの測定結果

図 12 $\omega=800 \mathrm{kHz}$ のときの測定結果

図 13 $\omega = 700 \mathrm{kHz}$ のときの測定結果

図 14 $\omega=600 \mathrm{kHz}$ のときの測定結果

図 15 $\omega = 500 \mathrm{kHz}$ のときの測定結果

5 データ解析と考察

6 宿題

1. $\nabla \times \vec{H} = (i + \frac{\partial \vec{D}}{\partial t})$ の両辺の発散をとることで、この式が電荷保存則 $\frac{\partial \rho}{\partial t} + \nabla \cdot i = 0$ を確かに満たしていることを示せ.

両辺の発散をとると、任意のベクトル \vec{A} に関して、 $\operatorname{div}(\operatorname{rot}\vec{A})$ となることから、

$$\nabla \cdot (\nabla \times \vec{H}) = \nabla \cdot \left(i + \frac{\partial \vec{D}}{\partial t} \right) = \nabla \cdot i + \frac{\partial (\nabla \cdot \vec{D})}{\partial t} = 0$$

となる. ここで, ガウスの法則より $\mathrm{div} \vec{D} = \rho$ であるので, 以下の式が成り立ち, 題意は示された.

$$\nabla \cdot i + \frac{\partial (\nabla \cdot \vec{D})}{\partial t} = \frac{\partial \rho}{\partial t} + \nabla \cdot i = 0$$

参考文献

[1] 電子システム工学基礎実験テキスト