Applied Statistical Methods II

A review of STAT 2132

Non-linear regression: the model

- Assumed $Y_i = f(X_i, \gamma) + \epsilon_i$, where the function f was known and $\epsilon_i \sim N(0, \sigma^2)$.
- ullet Goal: Estimate and perform inference on the unknown γ
- Examples
 - General exponential: $f(X_i, \gamma) = \gamma_0 + \gamma_1 \exp(\gamma_2 X_i)$. In most problems, $\gamma_2 \leq 0$. What happens as $X_i = 0$ and $X_i \to \infty$?
 - Logistic regression non-linear regression model (this is a POOR name): $f(X_i, \gamma) = \frac{\gamma_0}{1 + \gamma_1 \exp(\gamma_2 X_i)}, \ \gamma_2 \le 0$. What is the behavior of f when $X_i = 0, \ X_i \to \infty$?
- Note that $\epsilon_i \sim N(0, \sigma^2)$. This is **critical**.
- These are NOT GLMs, since $g\{E(Y_i)\} \neq x_i^T \beta$ for some link function g.

Non-linear regression: the model

- Assumed $Y_i = f(X_i, \gamma) + \epsilon_i$, where the function f was known and $\epsilon_i \sim N(0, \sigma^2)$.
- ullet Goal: Estimate and perform inference on the unknown γ
- Examples
 - General exponential: $f(X_i, \gamma) = \gamma_0 + \gamma_1 \exp(\gamma_2 X_i)$. In most problems, $\gamma_2 \leq 0$. What happens as $X_i = 0$ and $X_i \to \infty$?
 - Logistic regression non-linear regression model (this is a POOR name): $f(X_i, \gamma) = \frac{\gamma_0}{1 + \gamma_1 \exp(\gamma_2 X_i)}, \ \gamma_2 \le 0$. What is the behavior of f when $X_i = 0, \ X_i \to \infty$?
- Note that $\epsilon_i \sim N(0, \sigma^2)$. This is **critical**.
- These are NOT GLMs, since $g\{E(Y_i)\} \neq x_i^T \beta$ for some link function g.

Non-linear regression: the model

- Assumed $Y_i = f(X_i, \gamma) + \epsilon_i$, where the function f was known and $\epsilon_i \sim N(0, \sigma^2)$.
- ullet Goal: Estimate and perform inference on the unknown γ
- Examples
 - General exponential: $f(X_i, \gamma) = \gamma_0 + \gamma_1 \exp(\gamma_2 X_i)$. In most problems, $\gamma_2 \leq 0$. What happens as $X_i = 0$ and $X_i \to \infty$?
 - Logistic regression non-linear regression model (this is a POOR name): $f(X_i, \gamma) = \frac{\gamma_0}{1 + \gamma_1 \exp(\gamma_2 X_i)}, \ \gamma_2 \le 0$. What is the behavior of f when $X_i = 0, \ X_i \to \infty$?
- Note that $\epsilon_i \sim N(0, \sigma^2)$. This is **critical**.
- These are NOT GLMs, since $g\{E(Y_i)\} \neq x_i^T \beta$ for some link function g.

Non-linear regression: fitting

$$Y_i = f(X_i, \gamma) + \epsilon_i, \ \epsilon_i \sim N(0, \sigma^2)$$

- We fit using least squares: $Q(\gamma) = \sum_{i=1}^{n} \{Y_i f(X_i, \gamma)\}^2$
- This is equivalent to fitting with ML.
- We fit these using Gauss-Newton (GN)
 - Idea: Approximate Q using a first order Taylor expansion
 - Each update was equivalent to solving an ordinary least squares problem
- Problems: first order approximation depends heavily on the curvature of the objective function
- GN is very sensitive to starting points (you saw this on HW)

Non-linear regression: fitting

$$Y_i = f(X_i, \gamma) + \epsilon_i, \ \epsilon_i \sim N(0, \sigma^2)$$

- We fit using least squares: $Q(\gamma) = \sum_{i=1}^{n} \{Y_i f(X_i, \gamma)\}^2$
- This is equivalent to fitting with ML.
- We fit these using Gauss-Newton (GN)
 - Idea: Approximate Q using a first order Taylor expansion
 - Each update was equivalent to solving an ordinary least squares problem
- Problems: first order approximation depends heavily on the curvature of the objective function
- GN is very sensitive to starting points (you saw this on HW)

Non-linear regression: fitting

$$Y_i = f(X_i, \gamma) + \epsilon_i, \ \epsilon_i \sim N(0, \sigma^2)$$

- We fit using least squares: $Q(\gamma) = \sum_{i=1}^{n} \{Y_i f(X_i, \gamma)\}^2$
- This is equivalent to fitting with ML.
- We fit these using Gauss-Newton (GN)
 - Idea: Approximate Q using a first order Taylor expansion
 - Each update was equivalent to solving an ordinary least squares problem
- Problems: first order approximation depends heavily on the curvature of the objective function
- GN is very sensitive to starting points (you saw this on HW)

Non-linear regression: inference

$$Y_i = f(X_i, \gamma) + \epsilon_i, \ \epsilon_i \sim N(0, \sigma^2), \ \gamma \in \mathbb{R}^p$$

- Used the first order Taylor approximation to derive asymptotic distribution
 - Under regularity conditions, $\hat{\gamma} \gamma \approx N\left(0, \sigma^2 \left(J^T J\right)^{-1}\right)$
 - $J \in \mathbb{R}^{n \times p}$ is the matrix of first derivatives.
 - What is J is linear regression? Does asymptotic dist'n match usual dist'n of OLS estimator when f is linear?
- Could also perform bootstrap
 - Set $r_i = Y_i f(X_i, \hat{\gamma})$
 - Create synthetic datasets as $Y_i^{(b)} = f(X_i, \hat{\gamma}) + r_i^{(b)}$.
 - ullet Re-estimate γ and compute statistics.
 - Approximate dist'n of statistics using bootstrap dist'n ⇒ confidence intervals.
 - Why is the assumption that ϵ_i 's are i.i.d so important here?

Non-linear regression: inference

$$Y_i = f(X_i, \gamma) + \epsilon_i, \ \epsilon_i \sim N(0, \sigma^2), \ \gamma \in \mathbb{R}^p$$

- Used the first order Taylor approximation to derive asymptotic distribution
 - Under regularity conditions, $\hat{\gamma} \gamma \approx N\left(0, \sigma^2 \left(J^T J\right)^{-1}\right)$
 - $J \in \mathbb{R}^{n \times p}$ is the matrix of first derivatives.
 - What is J is linear regression? Does asymptotic dist'n match usual dist'n of OLS estimator when f is linear?
- Could also perform bootstrap
 - Set $r_i = Y_i f(X_i, \hat{\gamma})$
 - Create synthetic datasets as $Y_i^{(b)} = f(X_i, \hat{\gamma}) + r_i^{(b)}$.
 - Re-estimate γ and compute statistics.
 - Approximate dist'n of statistics using bootstrap dist'n ⇒ confidence intervals.
 - Why is the assumption that ϵ_i 's are i.i.d so important here?

Generalized linear models (GLMs)

- Started out simple: logistic regression
 - Y_i | X_i ∼ Ber {π(X_i)}
 - logit $\{\pi(X_i)\} = \log\left\{\frac{\pi(X_i)}{1-\pi(X_i)}\right\} = X_i^T \beta$
 - $\frac{\pi(X_i)}{1-\pi(X_i)}$ is the odds evaluated at X_i
 - Parameters could be interpreted as odds ratios
- g = logit was called the link function. h transforms the mean of Y_i.
- In this case, g ensures that $E(Y_i \mid X_i) \in [0, 1]$.
- In general, required g to be continuously differentiable and strictly increasing. Other examples:
 - $g = \text{probit} = \Phi^{-1}$.
 - g = Complementary log-log
 - In general, g can be the inverse of the CDF of a random variable that also has a density.
- NO TRANSFORMATION OF Y_i OCCURS IN GLM.

Generalized linear models (GLMs)

- Started out simple: logistic regression
 - Y_i | X_i ∼ Ber {π(X_i)}
 - logit $\{\pi(X_i)\} = \log\left\{\frac{\pi(X_i)}{1-\pi(X_i)}\right\} = X_i^T \beta$
 - $\frac{\pi(X_i)}{1-\pi(X_i)}$ is the odds evaluated at X_i
 - Parameters could be interpreted as odds ratios
- g = logit was called the link function. h transforms the mean of Y_i.
- In this case, g ensures that $E(Y_i | X_i) \in [0, 1]$.
- In general, required g to be continuously differentiable and strictly increasing. Other examples:
 - $g = \text{probit} = \Phi^{-1}$.
 - g = Complementary log-log
 - In general, g can be the inverse of the CDF of a random variable that also has a density.
- NO TRANSFORMATION OF Y_i OCCURS IN GLM.

Fitting logistic regressions

- Y_i | X_i ∼ Ber {π(X_i)}
- $g\{\pi(X_i)\} = X_i^T \beta$, g = logit
- Generally fit with maximum likelihood.
- In terms of mathematical convenience, we generally prefer g = logit when optimizing. Why?
- Maximizing the likelihood is akin to finding the root of the score function. What is the expectation of score, evaluated at the true parameter?
- Used a second order Taylor approximation to derive asymptotic distribution of $\hat{\beta}$.
- We could also use the likelihood ratio test to perform inference.
- The deviance was analogous to the residual sum of squares

Fitting logistic regressions

- Y_i | X_i ∼ Ber {π(X_i)}
- $g\{\pi(X_i)\} = X_i^T \beta$, g = logit
- Generally fit with maximum likelihood.
- In terms of mathematical convenience, we generally prefer g = logit when optimizing. Why?
- Maximizing the likelihood is akin to finding the root of the score function. What is the expectation of score, evaluated at the true parameter?
- Used a second order Taylor approximation to derive asymptotic distribution of $\hat{\beta}$.
- We could also use the likelihood ratio test to perform inference.
- The deviance was analogous to the residual sum of squares

Additional inference with logistic regression

- Y_i | X_i ∼ Ber {π(X_i)}
- $g\{\pi(X_i)\} = X_i^T \beta$, g = logit
- Pearson's chi-squared
 - Was applicable when there were degenerate covariate patterns.
 - It tests H_0 : linea model is correct.
 - Has nice asymptotic properties when the number of samples in each covariate patter is large.
- Deviance test.
 - Most applicable when there were degenerate covariate patterns.
 - Allows you to form a deviance table, which is analogous to an ANOVA table
- Primarily use Wald and likelihood to perform inference and compute confidence intervals for β .

Additional inference with logistic regression

- Y_i | X_i ∼ Ber {π(X_i)}
- $g\{\pi(X_i)\} = X_i^T \beta$, g = logit
- Pearson's chi-squared
 - Was applicable when there were degenerate covariate patterns.
 - It tests H_0 : linea model is correct.
 - Has nice asymptotic properties when the number of samples in each covariate patter is large.
- Deviance test.
 - Most applicable when there were degenerate covariate patterns.
 - Allows you to form a deviance table, which is analogous to an ANOVA table
- Primarily use Wald and likelihood to perform inference and compute confidence intervals for β .

Additional inference with logistic regression

- Y_i | X_i ∼ Ber {π(X_i)}
- $g\{\pi(X_i)\} = X_i^T \beta$, g = logit
- Pearson's chi-squared
 - Was applicable when there were degenerate covariate patterns.
 - It tests H_0 : linea model is correct.
 - Has nice asymptotic properties when the number of samples in each covariate patter is large.
- Deviance test.
 - Most applicable when there were degenerate covariate patterns.
 - Allows you to form a deviance table, which is analogous to an ANOVA table
- Primarily use Wald and likelihood to perform inference and compute confidence intervals for β .

Other important GLMs

- GLM is an umbrella term.
- There are many different type so GLMs (Poisson, Gamma, Negative-binomial)
- We focused on Poisson to model count data (i.e. when $Y_i \in \{0, 1, 2, ...\}$)
- We typically used log-link. Why?
- You had a little exposure to the Negative-binomial.

Other important GLMs

- GLM is an umbrella term.
- There are many different type so GLMs (Poisson, Gamma, Negative-binomial)
- We focused on Poisson to model count data (i.e. when $Y_i \in \{0, 1, 2, ...\}$)
- We typically used log-link. Why?
- You had a little exposure to the Negative-binomial.

- In general, a GLM uses exponential families to model data.
- Exponential families are a large family of distributions.
 - Include discrete distributions: Binomial, Poisson, Negative-binomial
 - Also continuous distributions: Normal, Gamma
- $\ell(\theta_i; Y_i) = Y_i\theta_i b(\theta_i) + c(Y_i)$
 - θ_i is called the **canonical parameter**
 - The derivatives of $b(\theta_i)$ give the **cumulants** (mean, variance, skew, etc.)
 - $E_{\theta_i}(Y_i) = b'(\theta_i)$, $Var_{\theta_i}(Y_i) = b''(\theta_i)$
 - c does not depend on θ_i .
- In GLM, we assume that $g\{E_{\theta_i}(Y_i)\} = g\{b'(\theta_i)\} = X_i^T \beta$
 - Therefore, GLM can also be thought of as a way of modeling θ_i .
 - What is the canonical link function g, i.e. when is $g\{E_{\theta_i}(Y_i)\}=\theta_i$? What is special about this link?
 - When $\theta_i = X_i^T \beta$, $\ell(\theta_i; Y_i) = \ell(\beta; Y_i)$ is concave in β !

- In general, a GLM uses exponential families to model data.
- Exponential families are a large family of distributions.
 - Include discrete distributions: Binomial, Poisson, Negative-binomial
 - Also continuous distributions: Normal, Gamma
- $\bullet \ \ell(\theta_i; Y_i) = Y_i \theta_i b(\theta_i) + c(Y_i)$
 - θ_i is called the **canonical parameter**
 - The derivatives of $b(\theta_i)$ give the **cumulants** (mean, variance, skew, etc.)
 - $E_{\theta_i}(Y_i) = b'(\theta_i)$, $Var_{\theta_i}(Y_i) = b''(\theta_i)$
 - c does not depend on θ_i .
- In GLM, we assume that $g\{E_{\theta_i}(Y_i)\} = g\{b'(\theta_i)\} = X_i^T \beta$
 - Therefore, GLM can also be thought of as a way of modeling θ_i .
 - What is the canonical link function g, i.e. when is $g\{E_{\theta_i}(Y_i)\}=\theta_i$? What is special about this link?
 - When $\theta_i = X_i^T \beta$, $\ell(\theta_i; Y_i) = \ell(\beta; Y_i)$ is concave in β !

- In general, a GLM uses exponential families to model data.
- Exponential families are a large family of distributions.
 - Include discrete distributions: Binomial, Poisson, Negative-binomial
 - Also continuous distributions: Normal, Gamma
- $\bullet \ \ell(\theta_i; Y_i) = Y_i \theta_i b(\theta_i) + c(Y_i)$
 - θ_i is called the **canonical parameter**
 - The derivatives of $b(\theta_i)$ give the **cumulants** (mean, variance, skew, etc.)
 - $E_{\theta_i}(Y_i) = b'(\theta_i)$, $Var_{\theta_i}(Y_i) = b''(\theta_i)$
 - c does not depend on θ_i .
- In GLM, we assume that $g\{E_{\theta_i}(Y_i)\} = g\{b'(\theta_i)\} = X_i^T \beta$
 - Therefore, GLM can also be thought of as a way of modeling θ_i .
 - What is the canonical link function g, i.e. when is $g\{E_{\theta_i}(Y_i)\}=\theta_i$? What is special about this link?
 - When $\theta_i = X_i^T \beta$, $\ell(\theta_i; Y_i) = \ell(\beta; Y_i)$ is concave in β !

- In general, a GLM uses exponential families to model data.
- Exponential families are a large family of distributions.
 - Include discrete distributions: Binomial, Poisson, Negative-binomial
 - Also continuous distributions: Normal, Gamma
- $\bullet \ \ell(\theta_i; Y_i) = Y_i \theta_i b(\theta_i) + c(Y_i)$
 - θ_i is called the **canonical parameter**
 - The derivatives of $b(\theta_i)$ give the **cumulants** (mean, variance, skew, etc.)
 - $E_{\theta_i}(Y_i) = b'(\theta_i)$, $Var_{\theta_i}(Y_i) = b''(\theta_i)$
 - c does not depend on θ_i .
- In GLM, we assume that $g\{E_{\theta_i}(Y_i)\} = g\{b'(\theta_i)\} = X_i^T \beta$
 - Therefore, GLM can also be thought of as a way of modeling θ_i .
 - What is the canonical link function g, i.e. when is $g\{E_{\theta_i}(Y_i)\}=\theta_i$? What is special about this link?
 - When $\theta_i = X_i^T \beta$, $\ell(\theta_i; Y_i) = \ell(\beta; Y_i)$ is concave in β !

Inference with GLMs

$$\ell(\theta_i; Y_i) = Y_i \theta_i - b(\theta_i) + c(Y_i), g\{b'(\theta_i)\} = X_i^T \beta$$

- Could derive asymptotic dist'n for β with second order Taylor expansions
 - Gives us Wald statistics.
- Could also use likelihood ratio
- Score test
- However, we had to be careful of over-dispersion
 - In general, over-dispersion occurs when $Var(Y_i) > V\{E_{\theta_i}(Y_i)\}.$
 - In above model, $V\{E_{\theta_i}(Y_i)\} = b''(\theta_i)$
 - i.e. the variance is larger than we think it is.
 - What will happen to inference/confidence intervals? Will confidence intervals be too wide or too narrow?

Inference with GLMs

$$\ell(\theta_i; Y_i) = Y_i \theta_i - b(\theta_i) + c(Y_i), g\{b'(\theta_i)\} = X_i^T \beta$$

- Oculd derive asymptotic dist'n for β with second order Taylor expansions
 - Gives us Wald statistics.
- Could also use likelihood ratio
- Score test
- However, we had to be careful of over-dispersion
 - In general, over-dispersion occurs when Var(Y_i) > V {E_{θi}(Y_i)}.
 - In above model, $V\{E_{\theta_i}(Y_i)\} = b''(\theta_i)$
 - i.e. the variance is larger than we think it is.
 - What will happen to inference/confidence intervals? Will confidence intervals be too wide or too narrow?

Over dispersion with GLM

- We introduced a "fudge factor" ϕ , called dispersion parameter.
 - Assumed $Var_{\theta_i}(Y_i) = \phi V \{E_{\theta_i}(Y_i)\}$
 - We estimated ϕ using Pearson's χ^2 statistic:

$$\hat{\phi} = \frac{1}{n-p} \sum_{i} \frac{(\mathsf{Observed}_{i} - \mathsf{expected}_{i})^{2}}{\mathsf{Expected variance}_{i}}$$

- Recall expression for Poisson...
- This model for the variance is akin to assuming

$$\ell\left(\theta_{i};\phi,Y_{i}\right)=rac{Y_{i} heta_{i}-b(heta_{i})}{\phi}+c(Y_{i};\phi)$$

 This led us to quasi-likelihood, generalized estimating equations, etc.

Over dispersion with GLM

- We introduced a "fudge factor" ϕ , called dispersion parameter.
 - Assumed $Var_{\theta_i}(Y_i) = \phi V \{E_{\theta_i}(Y_i)\}$
 - We estimated ϕ using Pearson's χ^2 statistic:

$$\hat{\phi} = \frac{1}{n-p} \sum_{i} \frac{(\mathsf{Observed}_{i} - \mathsf{expected}_{i})^{2}}{\mathsf{Expected variance}_{i}}$$

- Recall expression for Poisson...
- This model for the variance is akin to assuming

$$\ell(\theta_i; \phi, Y_i) = \frac{Y_i \theta_i - b(\theta_i)}{\phi} + c(Y_i; \phi)$$

 This led us to quasi-likelihood, generalized estimating equations, etc.

Study designs

- We spent some time on study designs
 - Randomized experiment vs. observational data
 - Complete block design vs. incomplete block design
- Most important take-away: remember the adage "crap in, crap out".
 - Drawing meaningful conclusions is impossible is impossible in poorly designed experiments.
 - The gold standard: randomized experiment, since we can randomize to control for confounding variables
 - Observational data: need to be wary of confounders
 - There is a whole field of statistics and economics devoted to being able to make causal statements from observational data (i.e. instrumental variables, Mendelian randomization, propensity weighting)

Factor level means

- We spent quite some time discussing models where variables were treated as factors.
- Some important take-aways:
 - Additive effects vs. interactions
 - ANOVA in balanced and unbalanced designs.
 - Simultaneous inference (Tukey, Scheffe, Bonferroni)

ANCOVA

- Analysis of Covariance (ANCOVA)
- Addresses the question: how do we perform inference when some aspects of experiment are controlled, and others are purely observational.
- Include observed, non-randomized factors in model can help reduce residual variance.
- Generally assume the treatment and observational covariates do not interact
- Ideas here are similar to what you learned in 2131

Mixed effect models 1

- Started off simple: a balanced, repeated measures design.
- Same number of observations on each individual.
- We could use nice mathematical properties to perform inference on intra- and inter-individual variance parameters
- We could fit these models using simple method of moments.
- Data are usually not this simple

Mixed effect models 2

- Moved to the more general case $Y = X\beta + \epsilon$, $\epsilon \sim (0, \sum_{r=1}^{b} \theta_r B_r)$
- Could fit this with maximum quasi-likelihood using normal likelihood
- It's "quasi" because ϵ does not have to be normally distributed to get consistent estimates for θ_r
- Used full model MLE and REML to estimate $\theta_1, \dots, \theta_b$
- Generally, REML is preferred b/c it accounts for the degrees of freedom lost when estimating β
- OLS is equivalent to REML when $\sum_{r=1}^{b} \theta_r B_r = \sigma^2 I_n$
- Estimate β with generalized least squares.
- Mixed effects will be important for the exam...

Additional topics

- Generalized method of moments
- Factor analysis in high dimensional data
- Fundamental problem: loadings $\mathbf{L} \in \mathbb{R}^{p \times K}$ and factors $\mathbf{C} \in \mathbb{R}^{n \times K}$ are not identifiable.
- Formulated PCA as a problem in factor analysis that parametrizes L and C to make them identifiable.
- Discussed how to estimate K.