Introduction to (Mathematical) Optimization

Nick Henderson, AJ Friend (w/ material from Stephen Boyd and Steven Diamond) Stanford University

June 28, 2015

Optimization

Optimization finding a best (or good enough) choice among the set of options for a certain objective subject to a set of constraints

Mathematical optimization

Mathematical optimization problem has form

```
 \begin{array}{ll} \text{minimize} & f_0(x) \\ \text{subject to} & f_i(x) \leq 0, \quad i=1,\ldots,m \end{array}
```

- ▶ $x \in \mathbf{R}^n$ is **decision variable** (to be found)
- $ightharpoonup f_0$ is objective function; f_i are constraint functions
- ightharpoonup problem data are hidden inside f_0,\ldots,f_m
- variations: add equality constraints, maximize a utility function, satisfaction (feasibility), optimal trade off, and more

The good news

Everything is an optimization problem

- choose parameters in model to fit data (minimize misfit or error on observed data)
- optimize actions (minimize cost or maximize profit)
- ▶ allocate resources over time (minimize cost, power; maximize utility)
- engineering design (trade off weight, power, speed, performance, lifetime)

The bad news

In full generality, optimization problems can be quite difficult

- generally NP-hard
- heuristics required, hand-tuning, luck, babysitting

The bad news

In full generality, optimization problems can be quite difficult

- ▶ generally NP-hard
- heuristics required, hand-tuning, luck, babysitting

But. . .

- ▶ we can do a lot by restricting to convex models (AJ's talk)
- we have good computational tools
 - ▶ modeling languages (CVX, CVXPY, JuMP, AMPL, GAMS) to write problems down
 - ▶ solvers (IPOPT, SNOPT, Gurobi, CPLEX, Sedumi, SDPT3, ...) to obtain solutions

Example: The Raptor Problem

See other slides

minimize
$$f(x) \in C^2 : \mathbf{R} \to \mathbf{R}$$

$$\text{minimize} \quad f(x) \in C^2: \mathbf{R} \to \mathbf{R}$$

ightharpoonup x is a real variable

$$\text{minimize} \quad f(x) \in C^2: \mathbf{R} \to \mathbf{R}$$

- ightharpoonup x is a real variable
- ightharpoonup f(x) is the objective function, which returns a single real number

minimize
$$f(x) \in C^2 : \mathbf{R} \to \mathbf{R}$$

- ightharpoonup x is a real variable
- ightharpoonup f(x) is the objective function, which returns a single real number
- Local optimization: look for a point x^* such that $f(x^*) \leq f(x)$ for all points x near x^*

minimize
$$f(x) \in C^2 : \mathbf{R} \to \mathbf{R}$$

- ► x is a real variable
- ightharpoonup f(x) is the objective function, which returns a single real number
- ▶ Local optimization: look for a point x^* such that $f(x^*) \le f(x)$ for all points x near x^*
- ▶ Global optimization: look for a point x^* such that $f(x^*) \leq f(x)$ for all points x in domain of interest

minimize
$$f(x) \in C^2 : \mathbf{R} \to \mathbf{R}$$

- ► x is a real variable
- ightharpoonup f(x) is the objective function, which returns a single real number
- ▶ Local optimization: look for a point x^* such that $f(x^*) \le f(x)$ for all points x near x^*
- ▶ Global optimization: look for a point x^* such that $f(x^*) \leq f(x)$ for all points x in domain of interest
- When f(x) is twice continuously differentiable, then local optimization involves finding a point x^* such that $f'(x^*) = 0$ and $f''(x^*) > 0$

Optimization in one variable: definitions

Optimization in one variable: example objective function

Optimization in one variable: critical points, f'(x) = 0

Optimization in one variable: local optima

Optimization in one variable: local optima, f''(x) = ?

Optimization in one variable: unbounded below

Optimization in one variable: saddle point, f'(x) = 0 and f''(x) = 0

Optimization in one variable: convex objective

Key definitions

- domain: space for input variable x
- **range**: space for output of objective function f(x)
- critical point: f'(x) = 0
- ▶ local minimizer: f'(x) = 0 and f''(x) > 0
- ▶ local maximizer: f'(x) = 0 and f''(x) < 0
- ▶ saddle point: f'(x) = 0 and f''(x) = 0
- global minimizer: x^* such that $f(x^*) \leq f(x)$ for all x in domain

ightharpoonup Start with an initial guess \emph{x}_0

- ightharpoonup Start with an initial guess x_0
- ▶ Goal: generate sequence that converges to solution

$$x_0, x_1, x_2, x_3, \cdots \rightarrow x^*$$

- ightharpoonup Start with an initial guess x_0
- ▶ Goal: generate sequence that converges to solution

$$x_0, x_1, x_2, x_3, \cdots \rightarrow x^*$$

▶ Notation for sequence and convergence: $\{x_k\} \rightarrow x^*$

- ightharpoonup Start with an initial guess x_0
- ▶ Goal: generate sequence that converges to solution

$$x_0, x_1, x_2, x_3, \cdots \rightarrow x^*$$

- ▶ Notation for sequence and convergence: $\{x_k\} \rightarrow x^*$
- ▶ Key algorithm property: *descent condition*

$$f(x_{k+1}) < f(x_k)$$

- ightharpoonup Start with an initial guess x_0
- ▶ Goal: generate sequence that converges to solution

$$x_0, x_1, x_2, x_3, \cdots \rightarrow x^*$$

- ▶ Notation for sequence and convergence: $\{x_k\} \to x^*$
- ▶ Key algorithm property: *descent condition*

$$f(x_{k+1}) < f(x_k)$$

► Technical algorithm property: *convergence to solution*

$$|x_{k+1}-x_k| o 0$$
 if and only if $f'(x_k) o 0$ and $\lim_{k o \infty} f''(x_k) \ge 0$

Optimization in many variables

minimize
$$f(x) \in C^2 : \mathbf{R}^n \to \mathbf{R}$$

- x is an n-dimensional vector of real variables
- ightharpoonup f(x) is the objective function (twice continuously differentiable)
 - First derivative or gradient of f is written $\nabla f(x)$
 - Second derivative or Hessian of f is written $\nabla^2 f(x)$
- ▶ We are looking for a point x^* such that $\nabla f(x) = 0$ and $\nabla^2 f(x) \succeq 0$. Note that this is a *local* optimizer
 - $ightharpoonup
 abla^2 f(x) \succeq 0$ means that all the eigenvalues of $abla^2 f(x)$ are non-negative

The gradient $\nabla f(x)$ in 2 variables

Vector of variables:

$$x = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

Gradient of f:

$$\nabla f(x) = \begin{bmatrix} \frac{\partial f}{\partial x_1} \\ \frac{\partial f}{\partial x_2} \end{bmatrix}$$

The Hessian $\nabla^2 f(x)$ in 2 variables

$$\nabla^2 f(x) = \begin{bmatrix} \frac{\partial^2 f}{\partial x_1^2} & \frac{\partial^2 f}{\partial x_1 \partial x_2} \\ \frac{\partial^2 f}{\partial x_2 \partial x_1} & \frac{\partial^2 f}{\partial x_2^2} \end{bmatrix}$$

Let's look at an example

The Rosenbrock function:

$$f(x,y) = (1-x)^2 + 100(y-x^2)^2$$

Rosenbrock contours

Basic optimization algorithm

Line search algorithms

- 1. compute a search direction p_k
 - for minimization, p_k must be a descent direction, that is $p_k^T g_k < 0$
- 2. select a step length α_k along p_k such that $f(x_k + \alpha_k p_k) < f(x_k)$
 - (we need more technical requirements here)
- 3. update the guess $x_{k+1} \leftarrow x_k + \alpha_k p_k$

Example line search algorithms

Algorithm:

$$x_{k+1} \leftarrow x_k + \alpha_k p_k$$

Gradient descent:

$$p_k = -g_k = -\nabla f(x_k)$$

Modified Newton's method:

$$p_k = -(H_k + \lambda_k I)^{-1} g_k = -(\nabla^2 f(x_k) + \lambda_k I)^{-1} \nabla f(x_k)$$

Step length selection: backtracking

Goal: given p_k find α such that $f(x_k + \alpha p_k) < f(x_k)$.

Procedure: start with initial guess $\alpha>0$ (use $\alpha=1$ for Newton's method)

- 1. if $f(x_k + \alpha p_k) < f(x_k)$, then return α , otherwise continue
- 2. decrease α by some factor $0<\delta<1 \colon \alpha \leftarrow \delta \alpha$
- 3. repeat

Optimization on Rosenbrock function

Optimization on Rosenbrock function

Optimization on Rosenbrock function

Considerations in selecting optimization algorithms

- Computational cost/scale of objective function
- Computational cost of linear algebra associated with optimization algorithm
- Accuracy requirement in your application

Laying cable: another example

- ► Housing developer wants to minimize the length of cable needed to connect houses to the internet
- ► Each house must be connected to a distribution center (DC) through the trench network
- Question: how to choose location of distribution centers and the assignment of houses to minimize cable length?

Laying cable: example development

Laying cable: data

- ▶ 1676 houses
- ▶ 1904 "junctions"
- ▶ 3580 edges
- ▶ 28 km of trench

Laying cable: problem

Problem statement

▶ Given a network of houses in a fully connected trench network, find the location of distribution centers (DCs) and assignment of houses to minimize cable length.

Properties:

- ► The combinatorial nature of this problem likely puts it in the class of NP-hard problems
- ▶ there is no known algorithm to compute an optimal solution in a period of time that does not grow exponentially with the size of the problem

Solution: alternating minimization

- ▶ The first part is the assignment of DCs to junction nodes
- ▶ The second is the assignment of houses to DCs
- ► Not guaranteed to find an optimal solution. However, experiments show it is a practical solution

Laying cable: notation and variables

h	number of houses
i	index over houses
c	number of DCs
j	index over DCs
n	number of junctions
k	index over junctions
$A \in \mathbf{R}^{h+n \times h+n}$	adjacency matrix
$D \in \mathbf{R}^{h imes n}$	distance matrix between houses and junctions
$X \in \{0, 1\}^{h \times c}$	assignment matrix of houses to DCs
$Y \in \{0, 1\}^{c \times n}$	assignment matrix of DCs to junctions
δ	DC capacity

Laying cable: distribution center placement

Given housing assignment matrix X and distance matrix D the optimal DC assignment matrix Y is easily computed. First, compute the matrix of cable lengths for any DC placement:

$$Z = X^T D \in \mathbf{R}^{c \times n}$$
.

DC assignment matrix Y is constructed to assign DC j to junction $\operatorname{argmin}_k Z_{jk}$ for all j. This is a simple computation and does not require optimization software.

Laying cable: assignment of houses to DCs

Given DC assignment matrix Y and distance matrix D the optimal housing assignment matrix X is computed using a LP/MIP solver. First, compute the matrix of distances from each house to the fixed DC locations:

$$C = DY^T \in \mathbf{R}^{h \times c}$$
.

Second, use LP/MIP software to solve the optimization problem:

minimize
$$\operatorname{vec}(C)^T\operatorname{vec}(X)$$
 subject to $X \in \{0,1\}^{h \times c}$ $Xe_c = e_h$ $X^Te_h \leq \delta e_c$

Laying cable: solution

Laying cable: results

configuration	length	cost (of cable)
initial optimized	194 km 127 km	\$110,580 \$72,390
difference	-67 km	-\$38,190

Laying cable: wrapping up

- ▶ it is often useful (necessary) to decompose a hard problem into a sequence of easier ones
- good (and useful) solutions are not necessarily globally optimal
- ▶ also good to map your problem to existing computational tools

Summary

- ► Mathematical optimization is an important and useful tool in science, engineering, and industry
- ► The optimization community has produced a large set of good tools to solve problems
 - there are a mix of open-source and commercial packages
- Art: mapping your problem into a mathematical model that can be attacked using an existing tool