Lecture 0. Preparation

Weimin Sheng

Let R^m and R^n denote two Euclidean spaces of m and n dimensions, respectively. Let O and O' be open subsets, $O \subset R^m, O' \subset R^n$ and suppose φ is a mapping of O into O'. Let $(x^1, ..., x^m)$ and $(y^1, ..., y^n)$ be coordinates of R^m and R^n , respectively. Then

$$\varphi(x^1,...,x^m) = (y^1(x^1,...,x^m),...,y^n(x^1,...,x^m))$$

or simply

$$\varphi(x) = (y^1(x), ..., y^n(x)).$$

The mapping φ is called differentiable if the coordinates $y^{j}(\varphi(p)) = y^{j}(x)$ of $\varphi(p)$ are differentiable (that is, indefinitely differentiable) functions of the coordinates $x^{i}(p), p \in O$. The mapping φ is called analytic if for each point $p \in O$ there exists a neighborhood U of p and n convergent power series P^{j} $(1 \leq j \leq n)$ in m variables such that $y^{j}(\varphi(q)) = P^{j}(x^{1}(q) - x^{1}(p), ..., x^{m}(q) - x^{m}(p))$ $(1 \leq j \leq n)$ for $q \in U$.

A differentiable mapping $\varphi: O \to O'$ is called a diffeomorphism of O onto O' if $\varphi(O) = O'$, φ is one-to-one, and the inverse mapping φ^{-1} is differentiable. In the case when n = 1 it is customary to replace the term "mapping" by the term "function".

An analytic function on R^m which vanishes on an open set is identically 0. For differentiable functions the situation is completely different. In fact if A and B are disjoint subsets of R^m , A compact and B closed, then there exists a differentiable function φ which is identically 1 on A and identically 0 on B. The standard procedure for constructing such a function φ is as follows:

First step: Let 0 < a < b and consider the function f on R defined by

$$f(x) = \begin{cases} \exp\left(\frac{1}{x-b} - \frac{1}{x-a}\right) & \text{if } a < x < b, \\ 0 & \text{otherwise.} \end{cases}$$

Then f is differentiable and the same holds for the function

$$F(x) = \int_{x}^{b} f(t) dt / \int_{a}^{b} f(t) dt,$$

which has value 1 for $x \leq a$ and 0 for $x \geq b$. The function ψ on \mathbb{R}^m given by

$$\psi(x_1, ..., x_m) = F(x_1^2 + ... + x_m^2)$$

is differentiable and has values 1 for $x_1^2 + ... + x_m^2 \le a$ and 0 for $x_1^2 + ... + x_m^2 \ge b$. Second step: Let S and S' be two concentric spheres in R^m , S' lying inside S. Starting from ψ we can by means of a linear transformation of R^m construct a differentiable function on R^m with value 1 in the interior of S' and value 0 outside S.

Third step: Turning to the sets A and B, we can, owing to the compactness of A, find finitely many spheres S_i $(1 \le i \le n)$, such that the corresponding open balls B_i $(1 \le i \le n)$, form a covering of A (that is, $A \subset \bigcup_{i=1}^n B_i$) and such that the closed balls \overline{B}_i $(1 \le i \le n)$ do not intersect B. Each sphere S_i can be shrunk to a concentric sphere S_i' such that the corresponding open balls B_i' still form a covering of A. Let ψ_i be a differentiable function on R^m which is identically 1 on B_i' and identically 0 in the complement of B_i . Then the function

$$\varphi = 1 - (1 - \psi_1) (1 - \psi_2) \dots (1 - \psi_n)$$

is a differentiable function on \mathbb{R}^m which is identically 1 on A and identically 0 on B.

Let M be a topological space. We assume that M satisfies the Hausdorff separation axiom which states that any two different points in M can be separated by disjoint open sets. An open chart on M is a pair (U, φ) where U is an open subset of M and φ is a homeomorphism of U onto an open subset of R^m .