

maximize
$$2x_1 + 4x_2 + x_3$$

subject to: $2x_1 + x_2 + x_3 \le 10$
 $x_1 + x_2 - x_3 \le 4$
 $0 \le x_1 \le 4, \ 0 \le x_2 \le 6, \ 1 \le x_3 \le 6$

Master Problem

maximize
$$z = \sum_{j=1}^{p_R} (c^\top v_j) \lambda_j$$
 (1)

subject to:
$$\sum_{j=1}^{p_R} (A_1 v_j) \lambda_j \le 10$$
 (2)

$$\sum_{j=1}^{p_R} (A_2 v_j) \lambda_j \le 4 \tag{3}$$

$$\sum_{j=1}^{p_R} \lambda_j = 1 \tag{4}$$

Consider μ_1 , μ_2 e ν the dual variables related to the constraints 2, 3 and 4 respectively. p_R are the columns of the restricted master problem. Auxiliary Problem

maximize
$$cr = (2 - 2\mu_1 - \mu_2)x_1 + (4 - \mu_1 - \mu_2)x_2 + (1 - \mu_1 + \mu_2)x_3 - \nu$$

subject to: $0 \le x_1 \le 4, \ 0 \le x_2 \le 6, \ 1 \le x_3 \le 6$

Let $x_1 = x_2 = 0$, $x_3 = 1$ be the initial solution. Master problem for column 1:

maximize
$$z = 1\lambda_1$$

subject to: $1\lambda_1 \le 10$
 $-1\lambda_1 \le 4$
 $\lambda_1 = 1$

 $\overline{z} = 1$, $\lambda_1 = 1$ e $\mu_1 = \mu_2 = \nu = 0$. Auxiliary problem 1

maximize
$$2x_1 + 4x_2 + 1x_3$$

subject to: $0 \le x_1 \le 4$, $0 \le x_2 \le 6$, $1 \le x_3 \le 6$

OF = 38, $x_1 = 4$, $x_2 = x_3 = 6$. UB = 1 + 38 = 39. Solving auxiliary problem for column 1, we have column 2, $v_2^{\top} = (4, 6, 6)$ and the coefficients for λ_2 at the objective function of the master problem of the second iteration are:

$$cv_2 = (2, 4, 1)^{\top} \begin{pmatrix} 4 \\ 6 \\ 6 \end{pmatrix} = 38, \ A_1v_2 = (2, 1, 1)^{\top} \begin{pmatrix} 4 \\ 6 \\ 6 \end{pmatrix} = 20, \ A_2v_2 = (1, 1, -1)^{\top} \begin{pmatrix} 4 \\ 6 \\ 6 \end{pmatrix} = 4$$

Second iteration

maximize
$$z = 1\lambda_1 + 38\lambda_2$$

subject to: $1\lambda_1 + 20\lambda_2 \le 10$
 $-1\lambda_1 + 4\lambda_2 \le 4$
 $\lambda_1 + \lambda_2 = 1$

 $\overline{z} = 18.526316, \lambda_1 = 0.526316, \lambda_2 = 0.473684,$ $\mu_1 = 1.947368, \ \mu_2 = 0, \ \nu = -0.947368.$

Auxiliary problem 2

maximize
$$-1.8904736x_1 + 2.052632x_2 - 2.947368x_3 + 0.947368$$

subject to: $0 \le x_1 \le 4$, $0 \le x_2 \le 6$, $1 \le x_3 \le 6$

 $\begin{array}{l} {\rm OF} = 12.315792, \, x_1 = 0, \, \, x_2 = 6, \, \, x_3 = 1. \\ {\rm UB} = 18.526316 + 12.315792 = 30.842108. \end{array}$

Column 3 is: $v_3^{\top} = (0, 6, 1)$ and the coefficients of λ_3 at the objective function and at the constraints are, respectively:

$$cv_3 = (2,4,1)^{\top} \begin{pmatrix} 0 \\ 6 \\ 1 \end{pmatrix} = 25, \ A_1v_3 = (2,1,1)^{\top} \begin{pmatrix} 0 \\ 6 \\ 1 \end{pmatrix} = 7, \ A_2v_3 = (1,1,-1)^{\top} \begin{pmatrix} 0 \\ 6 \\ 1 \end{pmatrix} = 5.$$

Third iteration

 $\overline{z} = 25.857143, \ \lambda_1 = 0.119048, \ \lambda_2 = 0.285714, \ \lambda_3 = 0.595238$ $\mu_1 = 1.214286, \, \mu_2 = 2.785714 \,\,\mathrm{e} \,\, \nu = 2.571429$ Auxiliary Problem

maximize
$$-3.214286x_1 + 0.571428x_3 - 2.571429$$

subject to: $0 \le x_1 \le 4, \ 0 \le x_2 \le 6, \ 1 \le x_3 \le 6$

OF =12.857139, $x_1=x_2=0, x_3=6$. UB: 38.714282. Column 4 is $v_4^{\top}=(0,0,6)$ and the coefficients for λ_4 at the objective function and at the constraints of the master problem are respectively:

$$cv_4 = (2, 4, 1)^{\top} \begin{pmatrix} 0 \\ 0 \\ 6 \end{pmatrix} = 6, \ A_1v_4 = (2, 1, 1)^{\top} \begin{pmatrix} 0 \\ 0 \\ 6 \end{pmatrix} = 6, \ A_2v_4 = (1, 1, -1)^{\top} \begin{pmatrix} 0 \\ 0 \\ 6 \end{pmatrix} = -6.$$

Fourth iteration

$$\begin{aligned} \text{maximize} \quad z &= 1\lambda_1 + 38\lambda_2 + 25\lambda_3 + 6\lambda_4 \\ \text{subject to:} \quad &1\lambda_1 + 20\lambda_2 + 7\lambda_3 + 6\lambda_4 \leq 10 \\ &-1\lambda_1 + 4\lambda_2 + 5\lambda_3 - 6\lambda_4 \leq 4 \\ &\lambda_1 + \lambda_2 + \lambda_3 + \lambda_4 = 1 \end{aligned}$$

$$\overline{z}=26.75,\ \lambda_1=0.0,\ \lambda_2=0.236111,\ \lambda_3=0.694444,\ \lambda_4=0.069444$$
 $\mu_1=1.125,\ \mu_2=1.625$ e $\nu=9.0$

Auxiliary problem

maximize
$$cr = -1.875x_1 + 1.25x_2 + 1.5x_3 - 9$$

subject to: $0 \le x_1 \le 4$, $0 \le x_2 \le 6$, $1 \le x_3 \le 6$

OF=7.5,
$$x_1 = 0$$
, $x_2 = 6$, $x_3 = 6$
UB: 34.25.

Column 5 is $v_4^{\top} = (0, 6, 6)$ and the coefficients for λ_5 at the objective function and at the constraints of the master problem are respectively:

$$cv_4 = (2,4,1)^{\top} \begin{pmatrix} 0 \\ 6 \\ 6 \end{pmatrix} = 30, \ A_1v_4 = (2,1,1)^{\top} \begin{pmatrix} 0 \\ 6 \\ 6 \end{pmatrix} = 12, \ A_2v_4 = (1,1,-1)^{\top} \begin{pmatrix} 0 \\ 6 \\ 6 \end{pmatrix} = 0.$$

Fifth iteration

maximize
$$z = 1\lambda_1 + 38\lambda_2 + 25\lambda_3 + 6\lambda_4 + 30\lambda_5$$
 subject to: $1\lambda_1 + 20\lambda_2 + 7\lambda_3 + 6\lambda_4 + 12\lambda_5 \le 10$ $-1\lambda_1 + 4\lambda_2 + 5\lambda_3 - 6\lambda_4 + 0\lambda_5 \le 4$ $\lambda_1 + \lambda_2 + \lambda_3 + \lambda_4 + \lambda_5 = 1$

$$\overline{z} = 28.0, \ \lambda_1 = 0.0, \ \lambda_2 = 0.0, \ \lambda_3 = 0.4, \ \lambda_4 = 0.0, \ \lambda_5 = 0.6 \\ \mu_1 = 1.0, \ \mu_2 = 0.0 \ \mathrm{e} \ \nu = 18.0.$$

Auxiliary problem

maximize
$$3x_2 - 18$$

subject to: $0 \le x_1 \le 4, \ 0 \le x_2 \le 6, \ 1 \le x_3 \le 6$

OF=0,
$$x_1 = 0$$
, $x_2 = 6$, $x_3 = 1$.
UB: 28.0.

As UB = $\overline{z} = 28.0$ we are at the optimal solution.