Ecole Supérieure des Sciences de l'Assurance et des Risques (ESSFAR)

CONCOURS D'ENTREE EN MASTER 1 Session de Septembre 2019 Epreuve de Mathématiques

Durée : 04 heures Documents autorisés : Calculatrices non programmables

Exercice 1. (Calcul différentiel) 5 points

- 1. On definit les fonctions f_1 et f_2 de $\mathbb{R}^2 \setminus \{(0,0)\}$ vers \mathbb{R} par $f_1(x,y) = \frac{x(\sin y y)}{x^2 + y^2}$ et $f_2(x,y) = \frac{x^4 + y^2}{x^2 + y^2}$
 - (a) La fonction f₁ est-elle prolongeable par continuité en (0, 0)? (1 pt)
 - (b) La fonction f_2 est-elle prolongeable par continuité en (0, 0)? (1 pt)
- 2. Soit $g: \mathbb{R}^2 \to \mathbb{R}$ définie par $g(x,y) = \begin{cases} \frac{xy}{\sqrt{x^2 + y^2}} & si(x,y) \neq (0,0) \\ 0 & si(x,y) = (0,0) \end{cases}$ a est-elle différentiable en (0, 0)? (1 pt)
- 3. On définit la fonction h de $\mathbb{R}_+^* \times \mathbb{R}$ vers \mathbb{R} par $h(x,y) = x(\ln x)^2 + xy^2$.
 - (a) Déterminer les points critiques de h. (1 pt)
 - (b) Etudier la nature de chaque point critique de h. (1 pt)

Exercice 2. (Mesure et Intégration) 5 points

On considère l'espace mesuré $(\mathbb{R},\mathcal{B}(\mathbb{R}),\lambda)$, $(\lambda,$ mesure de Lebesgue); pour $A\subset\mathbb{R}$ et $a\in\mathbb{R}$ on note : $A + a = \{x + a \ tels \ que \ x \in A\}$. Soit $a \in \mathbb{R}$ fixé.

- Montrer que si A est un borelien de R, alors A + a est un borelien de R. (1 pt)
- 2. Montrer que : $\tau_a = \{A \subset \mathbb{R} \ tel \ que \ A + a \in \mathcal{B}(\mathbb{R})\}$ est une tribu sur \mathbb{R} . (1 pt)
- 3. Montrer que $\mathcal{B}(\mathbb{R}) \subset \tau_a$ puis que $\mathcal{B}(\mathbb{R}) = \tau_a$. (1 pt)
- 4. Pour $A \in \mathcal{B}(\mathbb{R})$ on pose $\mu(A) = \lambda(A+a)$. Montrer que μ est une mesure sur $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$. (1 pt)
- 5. En déduire que pour tout $A \in \mathcal{B}(\mathbb{R})$, on $a: \lambda(A+a) = \lambda(A)$ (invariance de la mesure de Lebesque par translation. (1 pt)

Exercice 3. (Statistique) 5 points

Une enquête effectuée au près du comptoir de 150 coopératives agricoles a permis d'étudier l'arrivée dans le temps des usagers de ces coopératives. Pendant l'unité de temps, soit une heure, on a noté :

Nombre d'usagers arrivés ((X)	0	1	2	3	4	5	6
Nombre de coopératives		37	46	39	19	5	3	1

- 1. Quels sont : la population étudiée, l'unité statistique et le caractère étudié. De quel type de caractère s'agit-il? (1 pt)
- 2. Calculer la moyenne et la variance de X. (1.5 pt)
- 3. Tester l'ajustement de X à une loi de Poisson. (2.5 pts)

Exercice 4. (Probabilité) 5 points

Soit X une v.a.r continue qui suit la loi de pareto de paramètres α et θ , $VP(\alpha, \theta)$, de densité de probabilité

$$f_{\alpha,\theta}(x) = \left\{ \begin{array}{ll} kx^{-\alpha} & si \ x \ge \theta \\ 0 & sinon \end{array} \right.$$

avec $\alpha > 1$ et $\theta > 0$.

- 1. Calculer la constante k. (0.5 pt)
- 2. Déterminer la fonction de répartition de X. (1 pt)
- 3. Calculer E(X) et V(X). On trouvers une condition sur α . (1.5 pt)
- 4. Déterminer la loi de la v.a.r $U=(\alpha-1)\ln\frac{X}{\theta}$. On déterminera sa fonction de répartition puis sa densité de probabilité. (1 pt)
- 5. Soit $X_1, X_2, ..., X_n$ n v.a.r indépendantes suivant toutes la même loi $VP(\alpha, \theta)$. Déterminer et identifier la loi de $Z_n = \min X_i$. (1 pt)