EM425 Assignment #6

Problem Statements

1. (Based on 6.34) Measurements of thermal conductivity, k (W/m-K), of silicon at various temperatures are:

T (°K)								
k (W/m K)	28	9.1	4.0	2.7	1.1	0.6	0.4	0.3

The data is to be fitted with a function of the form k = f(T). Determine which of the nonlinear equations that are listed in Table 6-2 (also presented in Lecture 14) can best fit the data and determine its coefficients. Make a plot that shows the data points (asterisk marker) and the equation (solid line).

EM425 Numerical Methods – Assignment #6 Problem Statements

2. (Based on 6.15) The following data is given:

х	1	2.2	3.4	4.8	6	7
y	2	2.8	3	3.2	4	5

In the space below, write the polynomial in Lagrange form that passes through the points.

EM425 Numerical Methods – Assignment #6 Problem Statements

3. (Based on 6.39) Values of enthalpy per unit mass, h, of an equilibrium Argon plasma (Ar, Ar⁺, Ar⁺⁺⁺ ions and electrons) versus temperature are:

$T \times 10^3$ ((K)	5	7.5	10	12.5	15	17.5	20	22.5	25	27.5	30
h (MJ/I	cg)	3.3	7.5	41.8	51.8	61	101.1	132.9	145.5	171.4	225.8	260.9

Write a script that uses interpolation to calculate h at temperatures ranging from 5000 K to 30000 K in increments of 500 K. The program should generate a plot that shows the interpolated points, and the data points from the table (use an asterisk marker).

- a) For interpolation use Lagrange polynomials as demonstrated in Lecture 15.
- b) For interpolation use MATLAB's built-in tool interp1 with method='spline'.
- 4. (Based on 8.1) Given the following data:

\boldsymbol{x}	1.1	1.2	1.3	1.4	1.5
f(x)	0.6133	0.7822	0.9716	1.1814	1.4117

Find the first derivative f'(x) at the point x = 1.3.

- a) Use the three-point forward-difference formula.
- b) Use the three point backward-difference formula.
- c) Use the two-point centered difference formula.

EM425 Numerical Methods – Assignment #6 Problem Statements

5. (Based on 8.2) Given the following data:

х	0.6	0.7	0.8	0.9	1.0
f(x)	5.2296	3.6155	2.7531	2.2717	2

Find the second derivative f''(x) at the point x = 0.8.

- a) Use the three-point forward difference formula.
- b) Use the three-point backward difference formula.
- c) Use the three-point central difference formula.

Numerical Answers

1. You should at least try all of the methods. I don't want to spoil the fun but the best fit should look like the figure with a squared residual of 13.54.

- 2. No numerical result.
- 3. No numerical result, but the plots are shown below:

- 4. a) 1.9955; b) 1.9965; c) 1.9960
- 5. a) 20.97; b) 75.17; c) 38.10