클린업 2주차

5팀 시계열자료분석팀

염예빈 한유진 이재현 박세령 이정우 모형의 필요성

ACF

PACF

모형의 필요성

공분산 행렬 :
$$\Gamma = \begin{pmatrix} Cov(Y_1,Y_1) & Cov(Y_1,Y_2) & \dots & Cov(Y_1,Y_n) \\ Cov(Y_2,Y_1) & Cov(Y_1,Y_2) & \dots & Cov(Y_2,Y_n) \\ \vdots & & \vdots & \ddots \\ Cov(Y_n,Y_1) & Cov(Y_n,Y) & \dots & Cov(Y_n,Y_n) \end{pmatrix}$$

$$= \begin{pmatrix} \gamma(0) & \gamma(1) & \dots & \gamma(n-1) \\ \gamma(1) & \gamma(0) & \dots & \gamma(n-2) \\ \vdots & & \vdots & \ddots \\ \gamma(n-1) & \gamma(n-2) & \dots & \gamma(0) \end{pmatrix}$$

- \bigcirc 백색잡음 \bigcirc → 대각선 $\gamma(0)$ 을 제외한 나머지가 모두 0, 추가적인 모델링 필요 없음
- \bigvee 백색잡음 X \rightarrow 공분산 $\gamma(1), \gamma(2), \dots \gamma(n-1)$ 모두 추정해야 하는 모수 특정모형으로 모수 추정 가능

모형의 필요성

ACF

PACF

표본자기공분산함수(SACVF)

$$\widehat{\gamma_{(k)}} = \frac{1}{T} \sum_{j=1}^{T-k} (X_j - \overline{X}) (X_{j+k} - \overline{X}),$$

$$k = 1, 2, 3, \dots$$

표본자기상관함수(SACF)

$$\widehat{\rho_{(\mathbf{k})}} = \frac{\widehat{\gamma_{(\mathbf{k})}}}{\widehat{\gamma_{(\mathbf{0})}}}$$

$\rho(k) = Corr(X_t, X_{t+k})$

자기상관함수(ACF)는 시차 k에서 자기상관관계가 존재하는지 나타내는 척도

서로 다른 두 시점의 상호 연관관계를 나타냄 모형의 필요성 ACF PACF

부분자기상관계수(partial correlation): PACF

PACF: ϕ_{kk}

 $Z_{t}, Z_{t+1}, ..., Z_{t+k-1}, Z_{t+k}$ 가 관측되었을 때,

k시차만큼 떨어진 Z_t, Z_{t+k} 의 순수한 상관관계를 나타냄

 \rightarrow Z_{t} , 와 Z_{t+k} 에서 Z_{t+1} , Z_{t+2} ..., Z_{t+k-1} 의 효과를 제거한 후의 상관계수

 $\widehat{\varphi_{kk}}$: 표본부분자기상관함수(sample partial autocorrelation function : SPACF)

모형의 표현

모형의 조건

ACF, PACF

AR 모형

자기 회귀 모형

= Auto Regressive Model

자기 자신을 과거 시점에 회귀

현재의 자료

설명()

설명X

과거의 자료

오차항

모형의 표현

모형의 조건

ACF, PACF

AR 모형

ACF와 PACF로 시각적으로 판단하기!

ACF

PACF

✓ 지수/사인함수 모양으로 감소
✓ 시차 p+1이후 절단된 모양

Tail's off

Cut off

모형의 표현

모형의 조건

ACF, PACF

MA 모형

이동 평균 모형

= Moving Average Model

현재의 관측값이 현재와 과거의 설명해 주지 못하는 부분(오차)의 선형결합으로 표시되는 모형

현재의 자료

선형결합

과거의 자료의 오차

모형의 표현

모형의 조건

ACF, PACF

MA 모형

ACF와 PACF로 시각적으로 판단하기!

ACF

PACF

- ✓ 시차 q+1이후 절단된 모양
- ✓ 지수/사인함수 모양으로 감소

 $\langle \rangle$

Cut off

 \leq

Tail's off

쌍대성이란?

AR과 MA의 쌍대성

AR과 MA의 쌍대성

쌍대성

- 수학적 구조의 쌍대: 구조를 '뒤집어서' 구성한 것

- 어떤 대상과 그 쌍대는 서로 일종의 한 '켤레'를 이름 → 쌍대의 쌍대는 자기 자신
- AR과 MA 사이에는 쌍대성이 존재!!

필요성

모형의 표현

모형의 조건

ACF, PACF

ARMA

ARMA모형의 필요성

AR, MA 단일 모형

단일 모형으로는 분석 모형의 차수 p, q ↑

추정모수가 많아지면서 효율성 하락 , 해석의 어려움

AR

MA

ARMA

- <mark>AR과 MA를 동시에 사용한다면</mark> 추정해야 할 모수의 개수를 줄일 수 있다!

필요성

모형의 표현

모형의 조건

ACF, PACF

ARMA

후항연산자로 ARMA 모형 표현

AR

MA

$$(1 - \phi_1 B - \dots - \phi_p B^p) Z_t = (1 - \theta_1 B - \dots - \theta_q B^q) \varepsilon_t$$

ARMA 모형 $\phi(B)Z_t = \theta(B)\varepsilon_t$ 로 표현 가능

필요성

모형의 표현

모형의 조건

ACF, PACF

ARMA

ARMA 모형의 조건

정상성과 인과성 만족

: $\phi(B) = 0$ 의 근들이 단위원 밖에 존재해야 한다

가역성 만족

: $\theta(B) = 0$ 의 근들이 단위원 밖에 존재해야 한다

정리

(1) 모형의 정상성과 가역성

	AR(p)	MA(q)	ARMA(p,q)
정상성	조건필요	자체만 족	조건필요
가역성	자체만 족	조건필요	조건필요

정리

(2) 모형의 ACF와 PACF 패턴

	AR(p)	MA(q)	ARMA(p,q)
ACF	지수적으로 감소	q+1차부터 절단	q+1시점부터 지수적으로 감소
PACF	p+1차부터 절단	지수적으로 감소	p+1시점부터 지수적으로 감소

모형적합 절차

[모형적합 Flow]

정상 시계열 자료

모형의 식별

모수의 추정

NO

모형의 진단

YES

예측모형으로 선택