

Chapter 7

Sampling

7.0 Introduction

>A signal can be recovered from its samples under some condition

Sampling is a bridge between continuous-time signal and discrete-time signal

7.1 Representation of a continuous-time signals & systems signal by its samples: the sampling theorem

The samples of the signals

the samples of the signals may be same can not be recovered

7.1.1 Impulse-train sampling

$$p(t) = \sum_{n=-\infty}^{+\infty} \delta(t - nT)$$

$$x_p(t) = \sum_{n=-\infty}^{+\infty} x(nT)\delta(t-nT)$$

The spectrum of samples

$$p(t) = \sum_{n=-\infty}^{+\infty} \delta(t - nT) \longleftrightarrow \frac{2\pi}{T} \sum_{k=-\infty}^{+\infty} \delta(\omega - k\omega_s) = P(j\omega)$$

The spectrum of samples

$$p(t) = \sum_{n=-\infty}^{+\infty} \delta(t - nT) \longleftrightarrow \frac{2\pi}{T} \sum_{k=-\infty}^{+\infty} \delta(\omega - k\omega_s) = P(j\omega)$$

$$x_p(t) = x(t)p(t) \longleftrightarrow \frac{1}{2\pi}X(jw) * P(jw) = X_P(j\omega)$$

$$X_{P}(j\omega) = \frac{1}{2\pi} \frac{2\pi}{T} \sum_{k=-\infty}^{+\infty} \delta(\omega - k\omega_{s}) * X(jw)$$

$$=\frac{1}{T}\sum_{k=-\infty}^{+\infty}X(j(\omega-k\omega_s))$$

$$w_s = \frac{2\pi}{T} \rightarrow sampling frequency$$

Sampling is a shift of the spectrum

The spectrum of samples

 $\omega_s > 2\omega_M$, no overlap

ω_s < 2ω_M, overlap exists

Recover a signal from its samples

Sampling Theorem

Let x(t) be a band-limited signal with $X(j\omega)=0$ for $|\omega|>\omega_M$. Then x(t) is uniquely determined by its samples x(nT), $n=0,\pm1,\pm2,...,if$

$$\omega_s > 2\omega_M$$
 where $\omega_s = \frac{2\pi}{T}$

ω_M Nyquist frequency

The realization of sampling and recover

 The generation and transmission of impulse-train are difficult

 The realization of ideal filter is impossible

7.1.2 Sampling with a Zero-Order Hold

$$x_{0}(t) = x_{p}(t) * h_{0}(t) = \left(x(t) \cdot \sum_{k=-\infty}^{+\infty} \delta(t-kT)\right) * h_{0}(t)$$

$$= \left(\sum_{k=-\infty}^{+\infty} x(kT) \cdot \delta(t-kT)\right) * h_{0}(t)$$

$$= \sum_{k=-\infty}^{+\infty} x(kT) \cdot h_{0}(t-kT)$$

Recover a signal from its zeroorder hold samples

Then
$$x(t) = r(t)$$

Determine h_r(t)

$$H(jw) = H_0(jw)H_r(jw)$$

$$H_0(jw) = e^{-jwT/2} \left[\frac{2\sin(wT/2)}{w} \right]$$

$$H_r(jw) = \frac{e^{jwT/2}}{2\sin(wT/2)}H(jw)$$

Determine h_r(t)

$$H_r(jw) = \frac{e^{jwT/2}}{2\sin(wT/2)}H(jw)$$

W

$$w_c = \frac{w_s}{2}$$

7.3 The Effect of Undersampling: Aliasing

$$X_{P}(j\omega) = \frac{1}{T} \sum_{k=-\infty}^{+\infty} X(j(\omega - k\omega_{s}))$$

 $w_S > 2w_M, x(t)$ can be recovered by its samplers $w_S < 2w_M, x(t)$ can not be recovered by its samplers, spectrum alias

 $\omega_s > 2\omega_M$, no overlap

ω_s<2ω_M, overlap exists

$$\omega_s = 6\omega_0$$

$$\omega_s = 3\omega_0$$

$$\omega_{\rm s} = 1.5\omega_0$$

Example

Consider the system shown as below, with input x(t)=u(t)-u(t-2)

h(t)=
$$\frac{\text{sinw}_c t}{\pi t}$$
, and p(t)= $\sum_{n=-\infty}^{+\infty} \delta(t-\frac{n}{4})$

specify the range of values for w_c which ensure that r(t) is recoverable from y(t)

$$x(t) \longrightarrow h(t) \qquad r(t) \qquad x \longrightarrow y(t)$$

$$p(t)$$

Example

Consider the system shown as below, with input $x(t) = \left(\frac{\sin 10\pi t}{\pi t}\right)^2$

$$h_1(t) = \frac{\sin 10\pi t}{\pi t}$$
, and $p(t) = \sum_{n=-\infty}^{+\infty} \delta(t - nT)$

- a) specify the range of values for T which ensure that $r_1(t)$ is recoverable from $r_2(t)$
- b) if T=1/20 second, sketch the spectrum of $r_1(t)$ and $r_2(t)$
- c) sketch and dimension a filter $H_2(jw)$ so that $y(t)=r_1(t)$

