# Prediction Road Cracks on Norwegian Roads

### Data Analysis

Norway
Usa
Czech
Republic
India
Japan
China

47 420 images 55000 instances



Fig. 1: Distribution of images across different countries in RDD2022

Data quality?

What preprocessing is necessary?

How can we finetune training to the data?

### Data collected from datasett

| China_motorbike | D00", "D10", "Repair", "D40", "D20"                                  |
|-----------------|----------------------------------------------------------------------|
| China_drone     | "Repair", "D10", "D00", "D20", "D40", "Block crack"                  |
| Czechia         | "D10", "D00", "D40", "D20"                                           |
| India           | "D01", "D11", "D20", "D44", "D40", "D00", "D50", "D43","D10", "D0w0" |
| Japan           | "D00", "D44", "D43", "D20", "D50", "D10", "D40"                      |
| USA             | "D00", "D10", "D40", "D20"                                           |

|                  | Damage T     | уре          | Detail                             | Class Name |  |  |
|------------------|--------------|--------------|------------------------------------|------------|--|--|
|                  |              | Longitudinal | Wheel mark part                    | D00        |  |  |
| Crack            | Linear Crack | Longitudinal | Construction joint part            | D01        |  |  |
|                  | Lifted Crack | Lateral -    | Equal interval                     | D10        |  |  |
|                  |              | Lateral      | Construction joint part            | D11        |  |  |
|                  | Alligato     | or Crack     | Partial pavement, overall pavement | D20        |  |  |
|                  | Oth or Corre |              | Rutting, bump, pothole, separation | D40        |  |  |
| Other Corruption |              |              | Crosswalk blur                     | D43        |  |  |
|                  |              |              | White line blur                    | D44        |  |  |

Figure collected from source [1]

D50, Repair, Block Crack and D0w0

# Visual inspection of D50











label 50 = manhole cover

# Inspection of Block Crack





# Visual Inspection of Repair









| ) |  |  |  |  |  |  |  |          |    |     |                       |      |    |
|---|--|--|--|--|--|--|--|----------|----|-----|-----------------------|------|----|
|   |  |  |  |  |  |  |  |          |    |     |                       |      |    |
|   |  |  |  |  |  |  |  |          |    |     |                       |      |    |
|   |  |  |  |  |  |  |  |          |    |     |                       |      |    |
|   |  |  |  |  |  |  |  |          |    |     | Class Nam<br>(Norway) | ne   |    |
|   |  |  |  |  |  |  |  | <b>N</b> |    |     |                       |      |    |
|   |  |  |  |  |  |  |  |          |    |     | D00                   |      |    |
|   |  |  |  |  |  |  |  |          |    |     | D10                   |      |    |
|   |  |  |  |  |  |  |  |          |    |     | D20                   |      |    |
|   |  |  |  |  |  |  |  |          |    |     | D40                   |      |    |
|   |  |  |  |  |  |  |  |          |    |     |                       |      |    |
|   |  |  |  |  |  |  |  |          |    |     |                       |      |    |
|   |  |  |  |  |  |  |  |          | Da | ata | collected fro         | om d | la |

Should we include all the countries?

# Quick comparison of the different countries and Norway

### Conclusion: Include all countries

Different backgrounds

Different perspectives

**Different Iluminations** 



More diversity

More robust towards overfitting



Figure 5: Damage Category-based data statistics for RDD2022

Figure collected from source [1]



Figure 5: Damage Category-based data statistics for RDD2022

Figure collected from source [1]



Figure 5: Damage Category-based data statistics for RDD2022

Figure collected from source [1]

### **Statistics**

Norway
Usa
Czech
Republic
India
Japan
China



### **Statistics**



### **Statistics**

### Mirror image





Other countries Norway





### Resolution

|            | Norway    | USA                                  | Czech<br>Republic | India   | Japan   | China            |
|------------|-----------|--------------------------------------|-------------------|---------|---------|------------------|
| Resolution | 3650x2044 | 640x640                              | 600x600           | 720x720 | 600x600 | 512x512          |
| Aquisition | Car       | vehicle<br>based<br>(street<br>view) | car               | car     | car     | drones and bikes |

Data collected from source [1]



Training pretrained weights on data from Usa and China



Training pretrained weights on data from Usa and China



### Cropping - Increase the resolution.



## Cropping - Increase the resolution.



## Dividing the photos into 4

|             | x_min_pixel /<br>width | x_max_pixel /<br>width | y_min_pixel /<br>height | y_max_pixel /<br>height |
|-------------|------------------------|------------------------|-------------------------|-------------------------|
| Lower right | 0.3                    | 1                      | 0.6                     | 1                       |
| Lower left  | 0                      | 0.6                    | 0.5                     | 1                       |
| Upper left  | 0                      | 0.6                    | 0                       | 0.6                     |
| Upper right | 0.3                    | 1                      | 0.0                     | 0.6                     |



lower left



### Label distribution after cropping







Before cropping (Norway)

After cropping (Norway)

Merged dataset (all countries)

### Number of backgrounds



Data collected from datasett

**After Cropping** 



40000



# How many backgrounds should the dataset contain?

Background images are images with no objects that are added to a dataset to reduce False Positives (FP). We recommend about 0-10% background images to help reduce FPs (COCO has 1000 background images for reference, 1% of the total). No labels are required for background images. [3]

Testing:
- 0%
- 15%
- 40%
- 60%



### Inference

| 0%    | 15%   | 40%   | 60%   |
|-------|-------|-------|-------|
| 0.079 | 0.098 | 0.091 | 0.080 |
|       |       |       |       |
|       |       |       |       |
|       |       |       |       |

Model Development

### Yolov5

Fast
Easy to customise

| YOLOV                | 5s       | 640   | 36.8             | 36.8                           | 55.6                            | 2.2ms                     | 455                | 7             | .3M              | 17.0   |
|----------------------|----------|-------|------------------|--------------------------------|---------------------------------|---------------------------|--------------------|---------------|------------------|--------|
| YOLOv!               | 5m       | 640   | 44.5             | 44.5                           | 63.1                            | 2.9ms                     | 345                | 2             | 1.4M             | 51.3   |
| YOLOv!               | 51       | 640   | 48.1             | 48.1                           | 66.4                            | 3.8ms                     | 264                | 4             | 7.0M             | 115.4  |
| YOLOv                | 5x       | 640   | 50.1             | 50.1                           | 68.7                            | 6.0ms                     | 167                | 8             | 7.7M             | 218.8  |
| YOLOV                | 5x + TTA | 832   | 51.9             | 51.9                           | 69.6                            | 24.9ms                    | s 40               | 8             | 7.7M             | 1005.3 |
|                      |          |       |                  |                                |                                 |                           |                    |               |                  |        |
|                      | Model    |       | size<br>(pixels) | mAP <sup>val</sup><br>0.5:0.95 | mAP <sup>test</sup><br>0.5:0.95 | mAP <sup>val</sup><br>0.5 | Speed<br>V100 (ms) | params<br>(M) | FLOPS<br>640 (B) |        |
|                      | YOLOv5s  | 5     | 1280             | 43.3                           | 43.3                            | 61.9                      | 4.3                | 12.7          | 17.4             |        |
| YOLOv5m6<br>YOLOv5l6 |          | 1280  | 50.5             | 50.5                           | 68.7                            | 8.4                       | 35.9               | 52.4          |                  |        |
|                      |          | 1280  | 53.4             | 53.4                           | 71.1                            | 12.3                      | 77.2               | 117.7         |                  |        |
|                      | YOLOv5x  | 5     | 1280             | 54.4                           | 54.4                            | 72.0                      | 22.4               | 141.8         | 222.9            |        |
|                      | YOLOV5x  | 5 TTA | 1280             | 55.0                           | 55.0                            | 72.0                      | 70.8               | -             |                  |        |
|                      |          |       |                  |                                |                                 |                           |                    |               |                  |        |

AP<sub>50</sub>

Speed<sub>V100</sub>

FPS<sub>V100</sub>

**GFLOPS** 

params

APval

size

Model

APtest



Figure 13. YOLOv5s6 architecture [43].



Figure 13. YOLOv5s6 architecture [43].



Figure 13. YOLOv5s6 architecture [43].

**FNP** and **PAN** 



Figure 13. YOLOv5s6 architecture [43].

### Pretraining COCO weights on Merged dataset

Epochs: 50

Configuration: yolov5s6.yaml

Weights: yolov5s6.pt

batch\_size: 8

img: 1280

cache

image\_weights (imbalanced)

Runtime: 600 min

hyp: high augmentation yaml

# Hyper parameters

| Problem               | Solution                                                  | Parameter                                                |
|-----------------------|-----------------------------------------------------------|----------------------------------------------------------|
| Different backgrounds | Prevent overfitting on backgrounds                        | Illumination Augmentations copy paste perspective fliplr |
| Small object          | Feature extractor to be good at extracting small features | Increase box loss scale augmentation                     |
| Imbalanced            | Increase classification of minority classes               | mosaic [6]<br>fl_gamma                                   |







Finetuning to the Norwegian dataset

## How many layers to freeze?

-10

**- 14** 

- 20







# Tuning hyperparameters

### Efficient Tuning - Clustering similar parameters

**Imbalance** 

cls\_pw (up)

cls (down)

mosaic

fl gamma

**Brightness** 

Hue

Saturation

**Background** 

Copy paste

perspective

fliplr

**Small Object** 

scale

obj (up)



### Inference

| Baseline | Imbalance | Brightness | Background | Small objects |
|----------|-----------|------------|------------|---------------|
| 0.082    | 0.078     | 0.08       | 0.06       | 0.082         |

### Inference

detect + augment

### Final model

### Pretraining

Model: yolov5s6

Weights: Pretrained on the Coco-dataset, yolov5s6.pt

batch\_size: 8

img: 1280

Augmentations:

Runtime: 600 min

Dataset: All countries relabelled.

### Finetuning

Model: yolov5s6

Weights: Pretrained on all

countries

batch\_size: 8

img: 1280

Augmentations:

Runtime: 600 min

Dataset: Norway, cropped,

15% backgrounds

### Inference

Model: yolov5s6

Weights: Finetuned on Norway

**Test Time Augmentations** 

Accuracy: 0.098

### Results

Best result was Map 950:95 = 0.098 training on data with 15% backgrounds.



### Results

Best result was Map 950:95 = 0.098 training on data with 15% backgrounds.

A reduction of over 2% in accuracy on test data.

Overfitting



### Runtime Analysis

Used smaller resolution when finetuning.

Fast detection with yolo detect.py -nosave

Pretraining (all countries)

600 min

Finetuning (Norway)

300 min

Inference

4 min

180 W \* 18,7H = 3366 kWh

In Norway: 30g CO2eq/kWh

### Carbon Footprint: 81,4kg

# Discussion

### Using the winning Weights from 2020



### Finetuning winning weights from 2020

Model: Yolov5x

Runtime: 761 min

Epochs: 70

Best Map50:95: 0.022125



### Validation Loss



Many weights - a lot of data

### Sliding Window

Finetuning on cropped images ⇒ Inference using cropped images.

The accuracy didn't improve and detection time increased to 74 min.

### Overfitting

More Regularisation: Add dropout

Weight decay

Use a less complex model

### Sliding Window (Sahi)

Runtime: 74 min

cropped training = cropped training

Increase robustness towards woods and skie == decrease amount of road crack predictions on roads.



## Cropping test images before inference



### **Ensemble Learning**

More robust model

Generalises ⇒ reduces overfitting

Increase accuracy and decreases variance

# Thank you for listening

### Sources

[1] RDD2022: A multi-national image dataset for automatic Road Damage Detection,

link:

https://www.researchgate.net/publication/363668453\_RDD2022\_A\_multi-national\_image\_dataset\_for\_automatic\_Road\_Damage\_Detection

accessed: 07.03.2023

Authors Yoshihide Sekimoto, Durga Toshniwal, Sanjay Kumar Ghosh, Hiroya Maeda and Deeksha Arya

published: September 2022

### Sources

### [2] Global Road Damage Detection: State-of-the-art Solutions

link:

https://www.researchgate.net/publication/345989816 Global Road Damage Detection State-of-the-art S olutions

accessed: 07.03.2023

Authors Yoshihide Sekimoto, Durga Toshniwal, Sanjay Kumar Ghosh, Hiroya Maeda , Hiroshi Omata, Takehiro Kashiyama and Deeksha Arya

published: November 2020

### Sources

[3] Github

Author: Glenn Jocher.

Date: 2021 may 31

Accessed: 27.04.2023

Link: <a href="https://github.com/ultralytics/yolov5/issues/2844">https://github.com/ultralytics/yolov5/issues/2844</a>

### Source

[4] SAHI

Github: <a href="https://github.com/obss/sahi">https://github.com/obss/sahi</a>

medium article:

https://medium.com/codable/sahi-a-vision-library-for-performing-sliced-inference-on-large -images-small-objects-c8b086af3b80

published: 2021 jan 30

Accessed: 20.04

### Source

[5] Dataset Quality

link:

https://selectstar-ai.medium.com/diversity-accuracy-important-properties-of-your-dataset-e8b3072b29d6

accessed 14 April

published jul 20 2020

### Source

[6] Mosaic

https://wandb.ai/iankelk/YOLOv5/reports/Part-II-Search-and-Rescue-Augmentation-n-and-preprocessing-on-drone-based-water-rescue-images-with-YOLOv5--VmlldzoyMDA0ODQ5

### Yolov5s6 Architectures

[7]

https://dione.lib.unipi.gr/xmlui/bitstream/handle/unipi/14218/Giannios\_mtn2003.pdf ?sequence=3&isAllowed=y