USTC概率论期中试题 2021年5月13日

姓名:

學号:

分數:

- 1. (15分)设义为随机变量、令G(x) = P(X < x),证明G(x)左连续。
- 2. (15分) 对 $N\geq 1$,记 \mathbb{P}_N 为 $\Omega_N=\{1,2,\ldots,N\}$ 上均匀概率测度,通过模q的余数可定义随机变

$$\pi_q:\Omega_N\to Z_q=\{0,1,\ldots,q-1\}.$$

对两个不同掌数 q_1 和 q_2 , 证明 π_{q_1} 和 π_{q_2} 渐近独立, 即 $\forall a_4 \in Z_{q_4}$ 有

司數數
$$q_1$$
 和 q_2 , 证明 π_{q_1} 和 π_{q_2} 和 π_{q_2} 和 π_{q_2} 和 π_{q_2} 和 π_{q_1} 和 π_{q_2} 和

3. (15分) 设(X,Y)为取值整数值的随机向量,联合分布列为f(x,y), 证明

$$f(x,y) = \mathbb{P}(X \ge x, Y \le y) - \mathbb{P}(X \ge x + 1, Y \le y) - \mathbb{P}(X \ge x, Y \le y - 1) + \mathbb{P}(X \ge x + 1, Y \le y - 1),$$

并求出掷一均匀骰子r次中最小值 X_{\min} 与最大值 X_{\min} 的联合分布列。

- 4. (15分) ζ 小盆友有N块积木,N服从参数为 λ 的泊松分布, δ 小盆友独立地以1/2概率拿走每一 块. 若 δ 小盆友的积木块数为K,求 $\mathbb{E}[K]$ 和 $\mathbb{E}[N|K]$.
- 5. (20分) 给定b > a > 0, 离散随机变量X取值于区间[a, b], 试回答
 - (i)证明 $Var(X) \leq \frac{1}{4}(b-a)^2$;
 - (ii) 当X变化时,找出并验证乘积 $\mathbb{E}[X]\mathbb{E}[1/X]$ 的取值范围.
- 6. (20分) 直线上简单随机游动 $S_n = \sum_{k=1}^n X_k$, $S_0 = 0$, 这里 $P(X_1 = 1) = p$, $P(X_1 = -1) = 1 p$, $0 . 记<math>S_0, S_1, \ldots, S_n$ 中互不相同的值个数为 R_n . 试证明
 - (i) $P(R_n = R_{n-1} + 1) = P(S_1 \cdots S_n \neq 0);$
 - (ii) 当 $n \to \infty$ 时, $\frac{1}{n}\mathbb{E}[R_n] \to \mathbb{P}(S_k \neq 0, \forall k \geq 1)$;
 - (iii) $P(S_k \neq 0, \forall k \geq 1) = |2p 1|$.