

Lecture 12 – Ferroelectric Memories

Polarization

$$P = \varepsilon_0 \chi \mathcal{E}$$

Ferroelectric polarization

- <u>Ferroelectricity</u>: Polarisation remains even without externally applied electric field
- Requires non-centrosymmetric crystal structure
 → two polar equilibrium states

Free energy vs Polarization

$$U = \alpha P^2 + \beta P^4 - \mathcal{E}P, \qquad \alpha < 0, \beta > 0$$

Polarization – electric field curve

Ferroelectric materials

- Perovskite ferroelectrics
 - Distorted structures → ferroelectricity
 - BaTiO₃, PbTiO₃, KNbO₃, Pb(Zr, Ti)O₃ (PZT)...
 - Very high $\varepsilon_r \sim 100 1000!!$
- Polyvinylidene fluoride (PVDF)
 - Polar bonds perpendicular to polymer chain aligns
 - $P_r \sim 13 \,\mu\text{C/cm}^2$
 - Flexible material
- Hafnium dioxed, HfO₂
 - FE effect discovered as late as in 2011!
 - Doping/stress → ferroelectricity
 - $P_r 20-30 \mu C/cm^2$
 - Ferroelectric at least down to 1 nm thickness
 - CMOS compatible

Ferroelectricity in doped HfO₂

- HfO₂ dopants: Si, Al, Y, Gd, La, Zr, ...
- Crystallization during thermal annealing
- Strain induces phase transition
 - Rhombohedral ferroelectric phase
 - O atoms switch place
- Hf_{1-x}Zr_xO₂ has become the most successful material

HfZrO₂ (HZO)

- P_r high for wide range of Zr content (Hf_{1-x}Zr_xO₂)
 - Maximum around x = 50%
- Antiferroelectric at higher Zr-content.
- Thinner films (< 15 nm) yield higher P_r.
- Related to fraction of phases:
 - Monoclinic m-phase: paralectric
 - Most stable at <u>large thicknesses</u>
 - Orthorhombic o-phase: ferroelectric
 - Tetragonal t-phase: antiferroelectric
 - Most stable in <u>ZrO</u>₂

Exercise: High coercive field in HZO

The higher E_c allows for scaling down the thickness.

1. Why is that?

2. Why is this important from a technological point of view?

Coercive field comparison

Material	E _C (MV/m)
PVDF	1
LiTaO ₃	1.7
LiNbO ₃	4
PbZrTiO ₃	10
HfZrO ₃	150-200(!!)

Scalability of ferroelectric memories

- Ferroelectricity scales better than ferromagnetism!
- Scaling limited by minimum size of a stable FE domain
- At least retains ferroelectricity below 10 nm diameter.
- HZO retains FE down to 1 nm thickness (at least!)

Three types of memory types

FeRAM

- Ferroelectric capacitor placed in series with MOSFET selector.
 - Structure is identical to DRAM, but non-volatile!
- Ferroelectric state is sensed by applying switching voltage and see whether it switches or not
- Destructive read
- Limited scalability due to needed size for sizeable capacitive current 90 nm
- Endurance demonstrated up to 10¹² cycles!
- Commercially available
 - 32 kbit Fujitsu FRAM in PS2

Switch speed

- Speed is limited by generation of new reverse ferroelectric domains, nucleation rather than domain motion
 1 ns
- 280 ps is the record measured in FeRAM

Nucleation-limited

Domain wall motion limited

FeFET

- Integrate ferroelectric gate dielectric in MOSFET
- Polarization state shifts MOSFET threshold voltage

Three main challenges:

semiconductor

- 1. Control the interface in metal-FE-semiconductor system
- 2. Realizing 10 year retention
- 3. Realizing high endurance

Ferroelectric Tunnel junction

- Two-terminal resistive memory
- Relies on transport through the ferroelectric layer
- Contacts have different anisotropy in screening length
 → different electronic band bending
- Leakage current depends on the polarization state → R_{off}/R_{on} contrast

Transport in metal-FE-metal FTJs

- · Like in ReRAM, many transport paths, not all affected by FE
- For maximum R_{off}/R_{on}:
 - Thermionic Injection (TI)
 - Direct tunneling (DT)
 - Fowler-Nordheim Tunneling (FNT)
 - Trap-assisted tunneling
 - Electron hopping
- → Need thin enough layer for efficient TI
- → But not too thin! → DT, FNT
- Examples of TER > 1000

Metal-FE-semiconductor FTJs

- Semiconductors can be depleted → Modulation of tunnel barrier width!
- Large R contrast even with direct tunneling
- TER > 10⁶ achieved

Wen et al. Nat. Mater. 2013

Mattias Borg | EITP25 VT20 – Lecture 6 16

Energy consumption FTJs

- 200 nm devices contacted by conductive AFM
- $t_{write} = 10 ns$ write pulses at 4 V.
- $\rightarrow E = t_{write} * V_{write} * I = 130 fJ$
- For 50 nm devices → E ~ 10 fJ/bit
- Why?
 - Purely electrostatic writing
 - No filament formation
 - No phase change
 - Not current-induced (like STT)

Retention in FE memories - Depolarization field

- If the surface surrounding the ferroelectric material cannot supply the charge to completely compensate the
 polarization charge → depolarization field
- Acts to depolarize → reduces retention
- Any interfacial layers will lead to a depolarization field

$$E_{dep} = -P \left[\varepsilon_0 \varepsilon_{FE} \left(\frac{C_{di}}{C_{FE}} + 1 \right) \right]^{-1}$$

- Want C_{di} >> C_{FE} to minimize depolarization field
- $\rightarrow \varepsilon_{di} \gg \varepsilon_{FE}$, and $t_{di} \ll t_{FE}$

Ma et al. IEEE EDL 2002 Mattias Borg | EITP25 VT20 – Lecture 6 18

2 min exercise - Magnitude of depolarization?

- How big is this compared to the critical field \mathcal{E}_c of HZO (1.5 MV/cm)
- What will be the impact on retention?

FΕ

dielectric

metal

$$t_{FE} = 10 \ nm$$

 $\varepsilon_{FE} = 20$

$$t_{di} = 1 nm$$
$$\varepsilon_{di} = 10$$

$$P = 20 \,\mu C/cm^2$$

 $\varepsilon_0 = 8.83 * 10^{-14} \,F/cm$

Achieving 10 year retention

- A matter of optimizing the layer stack, achieved in 2004
- 400 nm SBT + 10 nm HfAlO₂
- But not scalable! WHY?

Endurance

- With each write cycle the memory window shrinks
- Due to high-voltage cycling
 - creation of additional charges in oxide (screening of P charge)
- Particularly difficult for FeFETs
 - devices demonstrated up to 10⁵ cycles

Cause of endurance failure

- The interface quality is vital!
- Diffusion across interfaces
- Non-switching low-k interface layers → voltage division
 - High voltage drop → more defects → layers continue to grow → less voltage over FE layer
 - Also: V_O formation/diffusion → ReRAM effect in grain boundaries! → BREAKDOWN!

Multibit operation??

- Possible in large devices (multiple domains)
- Nanoscale devices (1-few domains) → binary devices

Inhomogeneous FE switching

- BeFeO₃ ferroelectric
 - Domain size < 10 nm
- 150 nm diameter devices
 - Scaled but still lots of domains
- FE switching nucleation-dominated
 - New domains rather than extending
- Can enable memristor behavior in FTJs

 $G = (1 - S)G_{on} + SG_{off}$ where S is fraction of area with reversed polarity

24

Boyn et al. Nature Comm. 2017 Mattias Borg | EITP25 VT20 – Lecture 6

Domain switching time

- Lorentzian distribution of $log(t_{mean}(V))$
 - Lower $E \rightarrow$ longer time until switch

$$S_{\pm}(t, V) = \frac{1}{2} \mp \frac{1}{\pi} \arctan \frac{\log(t_{\text{mean}}(V)) - \log(t)}{\Gamma(V)}$$

Ferroelectrics as storage

	DRAM	3DNAND	RRAM	PCM	STT-MRAM	Ferro
Nonvolatile	No	Yes	Yes	Yes	Yes	Yes(?)
Speed (ns)	10	10 ⁴	< 5 ns	10 ns	< 5 ns	< 5 ns
Energy use (pJ/write)	0.1	1	0.1-1	>1	< 0.2 pJ	0.01 (!)
Endurance (cycles)	10 ¹⁶	10 ⁵	10 ⁶ -10 ⁷	10 ⁹	>10 ¹⁵	10 ⁵ -10 ¹²
Multilevel?	No	Yes	3-6 bit	4 bit	No	Yes(?)
Scalability	6-8F ²	3D!	3D!	3D!	6F ²	4-6F ² , 3D
Other	Destructive Read	High Voltage	Abrupt SET	R drifts	Scaling limited by needed current	Depolarization a challenge No multilevel when scaled?

FeFET synapse

- Based on partial polarization switching
- Pulse scheme with varying amplitude used → symmetric LTP/LTD
- R_{off}/R_{on} ~ 45, "5 bit" precision
- Tested with peripherals on MNIST numbers → 90% accuracy at 35 µW
 - 10x area saving, > 30x less
 leakage power comp. with SRAM

Jerry et al. IEDM 2017 Mattias Borg

FTJ synapses

- 3D stacked FTJs implemented with HZO ferroelectric
- Control of resistance state by V_{write} and t_{write}
 - Exponential change...

28

Weight change in FTJ

- LTP and LTD possible, 1.8 pJ/spike (2.5 μm²)
- Rather non-linear behaviour, more linear if not using full range
- STDP functionality is viable
- Selector-free operation is possible → 4F²

Summary

- Ferroelectricity → purely electronic effect (robust)
 - Promise of extreme energy efficiency: < 10 fJ/bit
- Three types of memories
 - FeRAM (stable but not scalable, destructive read)
 - FeFET (drop-in tech, challenging retention)
 - FTJ (new, two-terminal)
- FeFET and FTJ promising for synapse devices