CSM-392 UG Project Work Plan

-Aditya Kulkarni Area of Research: Digital Image Processing and its Applications

Goal: Build a computer vision deep learning model that uses **digital image processing** to detect different objects in a video, outputs their probability and demarcates the objects within a box with the help of the YOLOv3 (You Only Look Once, Version 3) algorithm.

Prior Knowledge at hand: Regression, Losses, Neural Networks, Deep Learning, Hyperparameter Tuning, Optimization Techniques (Stochastic Gradient Descent, Momentum, Adam etc.), Basic Probability, Statistics and Linear Algebra.

Project Supervisor: Prof. SK Pandey

Work Plan

- 1
- Go through of the book Digital Image Processing by Gonzalez and Woods.
- 2
- Convolutional Neural Networks (CNNs)
 - How do convolutional layers work?
 - Multilayer convolutions
 - Pooling layers
- TensorFlow Tutorials
 - Tensor Basics
 - Sequential and Functional API of TensorFlow
 - CNN Implementation using TensorFlow
- 3
- Case Studies of Famous Model Architectures
 - ResNet-50
 - AlexNet
 - VGG-16
 - Inception Network
 - MobileNet
- Improving ConvNets
 - Transfer Learning
 - Data Augmentation
 - Image Preprocessing
 - CPU v/s GPU for training and testing
- 4
- Implementation of one of the research papers of famous deep learning architectures using TensorFlow on ImageNet dataset
- Apply knowledge of CNNs and standard models on an image classification mini-project
- Detection Algorithms
 - Object Localization and Landmark Detection
 - Basic Object Detection Techniques

- 5
- o Advanced Detection Techniques
 - YOLO Algorithm
 - Image Segmentation
 - Transposed Convolutions
 - U-Net architecture and intuition
- o Object Detection mini-project on images
- 6
- Sequence Models
 - Recurrent Neural Networks (RNNs)
 - Long Short Term Memory (LSTM)
 - Recurrent Convolutional Neural Networks (RCNN)
 - Semantic and Instance Segmentation
- PyTorch Tutorials
- 7
- o Final Project Implementation