Computing Schreyer Resolutions

Ruiqi (Rickey) Huang

huanr19@wfu.edu

April 30, 2022

Supervisor: Dr. Frank Moore

Goal

• Find a Schreyer resolution of a given module over a polynomial ring (by first computing a Schreyer frame)

Goal

Goal

 Find a Schreyer resolution of a given module over a polynomial ring (by first computing a Schreyer frame)

$$\Phi: \cdots \to F_l \xrightarrow{\varphi_l} F_{l-1} \xrightarrow{\varphi_{l-1}} \cdots \xrightarrow{\varphi_1} F_0 \tag{1}$$

R-module

Let $R = k[x_1, \dots, x_n]$ be the polynomial ring over a field k.

Let $R = k[x_1, \dots, x_n]$ be the polynomial ring over a field k.

Definition (R-Module)

Suppose that R is a ring, and 1 is its multiplicative identity. An R-module M consists of an Abelian group (M,+) and an operation $\cdot: R \times M \to M$ such that for all r,s in R and x,y in M, we have

$$r \cdot (x+y) = r \cdot x + r \cdot y$$

$$(r+s) \cdot x = r \cdot x + s \cdot x$$

$$(rs) \cdot x = r \cdot (s \cdot x)$$

$$\bullet$$
 $1 \cdot x = x$

Like a "vector space" over the ring ${\it R}.$

i.e. the scalar multiplications are actions of multiplying by a ring element in a module.

R-module homomorphism

Definition (R-module Homomorphism)

A R-module homomorphism between M and N is a function $f:M\to N$ such that for any $x,y\in M$ and $r\in R$,

•
$$f(x+y) = f(x) + f(y)$$
,

$$f(rx) = rf(x)$$

A group homomorphism under addition that commutes with "scalar multiplication".

Free R-module

Definition (**Free** *R***-module**)

For a R-module M, the set $\mathcal{B} \subseteq M$ is a basis for M if:

- B is a spanning set for M;
- B is linearly independent.

A free *R*-module is a module with a basis.

Example: \mathbb{R}^n has basis $e_1,...,e_n$ where e_i is the i^{th} standard basis vector.

Free R-module

Definition (Free R-module)

For a R-module M, the set $\mathcal{B} \subseteq M$ is a basis for M if:

- B is a spanning set for M;
- ullet is linearly independent.

A free R-module is a module with a basis.

Example: \mathbb{R}^n has basis $e_1,...,e_n$ where e_i is the i^{th} standard basis vector.

- Let K be a field, then all K-modules are free modules.
- Not every module is a free R-module.

• Find a spanning set \mathcal{B}_0 of M, and use it to define a homomorphism from a free R-module R^{m_0} onto M

Goal

- Find a spanning set \mathcal{B}_0 of M, and use it to define a homomorphism from a free R-module R^{m_0} onto M
- Find the the non-trivial kernel of the map $R^{m_0} \rightarrow M$

$$R^{m_0} \longrightarrow M$$

$$K_1$$

Background

Goal

Motivating Problem

- Find a spanning set \mathcal{B}_0 of M, and use it to define a homomorphism from a free R-module R^{m_0} onto M
- Find the the non-trivial kernel of the map $R^{m_0} woheadrightarrow M$
- Find a spanning set \mathcal{B}_1 of K_1 , and use it to define a homomorphism from a free R-module R^{m_1} to K_1 .

$$R^{m_1} \xrightarrow{Q_1'} R^{m_0} \longrightarrow M$$

Goal

- Find a spanning set \mathcal{B}_0 of M, and use it to define a homomorphism from a free R-module R^{m_0} onto M
- Find the the non-trivial kernel of the map $R^{m_0} woheadrightarrow M$
- Find a spanning set \mathcal{B}_1 of K_1 , and use it to define a homomorphism from a free R-module R^{m_1} to K_1 .
- Find the kernel of φ_1'

Goal

- Find a spanning set \mathcal{B}_0 of M, and use it to define a homomorphism from a free R-module R^{m_0} onto M
- Find the the non-trivial kernel of the map $R^{m_0} woheadrightarrow M$
- Find a spanning set \mathcal{B}_1 of K_1 , and use it to define a homomorphism from a free R-module R^{m_1} to K_1 .
- Find the kernel of φ_1'
- Using function composition, we define φ_1 , a free R-module homomorphism

$$R^{m_1} \xrightarrow{\varphi_1} R^{m_0} \longrightarrow M$$

$$\varphi_1' \quad K_1$$

- Find a spanning set \mathcal{B}_0 of M, and use it to define a homomorphism from a free R-module R^{m_0} onto M
- Find the the non-trivial kernel of the map $R^{m_0} woheadrightarrow M$
- Find a spanning set \mathcal{B}_1 of K_1 , and use it to define a homomorphism from a free R-module R^{m_1} to K_1 .
- Find the kernel of φ_1'
- \bullet Using function composition, we define $\varphi_1,$ a free R-module homomorphism
- Iterating this process

$$\cdots \Rightarrow R^{m_l} \xrightarrow{\varphi_l} R^{m_l \xrightarrow{\varphi_l - 1}} \xrightarrow{\varphi_1} \cdots \xrightarrow{\varphi_3} R^{m_2} \xrightarrow{\varphi_2} R^{m_1} \xrightarrow{\varphi_1} \times R^{m_0} \longrightarrow M$$

Finding the Kernel?

Example

Let $R=\mathbb{R}[x,y,z]$ be a ring, $I=\langle x^2,xy,xz\rangle$ be an ideal in R, and M=R/I be a R-module. How far is M from being a free R-module?

Finding the Kernel?

Example

Let $R = \mathbb{R}[x,y,z]$ be a ring, $I = \langle x^2, xy, xz \rangle$ be an ideal in R, and M = R/I be a R-module. How far is M from being a free R-module?

$$\cdots \stackrel{\varphi_2}{>} R^{m_2} \stackrel{K_2}{\xrightarrow{\varphi_2}} R^3 \stackrel{\varphi_1}{\xrightarrow{\varphi_1}} R^1 \longrightarrow M$$

$$\stackrel{\varphi_1}{\xrightarrow{\varphi_1'}} \stackrel{I}{\xrightarrow{\iota_1}} M$$

Let $R = \mathbb{R}[x, y, z]$ be a ring, $I = \langle x^2, xy, xz \rangle$ be an ideal in R, and M = R/I be a R-module. How far is M from being a free R-module?

But how should we compute K_2 ?

Goal

Definition (Graded Lex (GrLex) Order)

Let $\alpha, \beta \in \mathbb{Z}_{>0}^n$. We say $\alpha >_{\text{grlex}} \beta$ if

$$|\alpha| = \sum_{i=1}^{n} \alpha_i > |\beta| = \sum_{i=1}^{n} \beta_i$$
, or $|\alpha| = |\beta|$ and $\alpha >_{\text{lex }} \beta$ (3)

Example

Compare $x_1^5 x_2 x_3^2$ and $x_1 x_2^3 x_3^4$ using the GrLex Order.

Term Orders

Goal

Definition (Graded Lex (GrLex) Order)

Let $\alpha, \beta \in \mathbb{Z}_{\geq 0}^n$. We say $\alpha >_{\text{grlex}} \beta$ if

$$|\alpha| = \sum_{i=1}^{n} \alpha_i > |\beta| = \sum_{i=1}^{n} \beta_i$$
, or $|\alpha| = |\beta|$ and $\alpha >_{\text{lex}} \beta$ (3)

Example

Compare $x_1^5 x_2 x_3^2$ and $x_1 x_2^3 x_3^4$ using the GrLex Order.

$$x_1^5 x_2 x_3^2 >_{\text{grlex}} x_1 x_2^3 x_3^4$$

Reason: the coefficient tuple |(5,1,2)| = |(1,3,4)| = 8, and (5,1,2) > (1,3,4)

Term Orders

Definition (Term order on a Free Module)

The term order on a free module F over k (a total order on the monomials of F) such that:

- if $m <_F n$, then $t \cdot m <_F t \cdot n$;
- if $s <_R t$, then $s \cdot e <_F t \cdot e$;

for all m,n monomials of $F,\,s,t$ power products in R, and e any basis element of F.

Definition (Gröbner Basis)

Fix a monomial order on the polynomial ring R and fix a term order on a R-module M. A finite set $G=\{g_1,\cdots,g_t\}$ of a submodule M of R^m different from $\{0\}$ is said to be **Gröbner basis** of M if

$$\langle LT(g_1), \cdots, LT(g_t) \rangle = \langle LT(M) \rangle$$

where $\langle X \rangle$ is the submodule generated by elements of X where X be a subset of M.

Definition (Reduced Gröbner Basis)

The **reduced** Gröbner basis is a Gröbner basis G for M such that:

- LC(p) = 1 for all $p \in G$
- For all $p \in G$, none of the monomials in p lies in $\langle LT(G \setminus \{p\}) \rangle$

Schreyer Resolution and Schreyer Frame

Definition (Free resolution)

Let R be the polynomial ring as previously defined, and let F_i be free R-modules with a given (canonical) basis \mathcal{E}_i of F_i and $M=F_0/I$. A **free resolution** of M is a sequence of homomorphisms of free R-modules:

$$\Phi: \cdots \to F_l \xrightarrow{\varphi_l} F_{l-1} \xrightarrow{\varphi_{l-1}} \cdots \xrightarrow{\varphi_1} F_0 \to 0$$
 (4)

such that $\operatorname{im} \varphi_i = \ker \varphi_{i-1}$ for $i \geq 1$ and $\operatorname{coker} \varphi_1 = M$.

Define $C_i = \varphi_i(\mathcal{E}_i)$ as the image of the given basis and define the level of an element f in C_i as lev(f) = i.

Definition (Term Ordering on a Resolution)

Let $\tau=\{\tau_i\}$ be a sequence of term ordering on the modules F_i . We call τ a **term ordering on** Φ if it satisfies the following compatibility relationship:

$$s \cdot e_1 <_{\tau_i} t \cdot e_2$$
 whenever $s \cdot \mathrm{LM}(\varphi_i(e_1)) <_{\tau_{i-1}} t \cdot \mathrm{LM}(\varphi_i(e_2))$ (5)

where e_1 and e_2 are elements of \mathcal{E}_i .

Schreyer resolution and Schreyer Frame

Definition (Schreyer Resolution)

A **Schreyer resolution** of an R-module $M = F_0/I$ is free resolution:

$$\Phi: \cdots \to F_l \xrightarrow{\varphi_l} F_{l-1} \xrightarrow{\varphi_{l-1}} \cdots \xrightarrow{\varphi_1} F_0, \tag{6}$$

Background

such that:

Goal

- There is a term ordering $\tau = \{\tau_i\}$ on Φ
- $\varphi_i(\mathcal{E}_i)$ forms a reduced Gröbner basis of $\operatorname{im} \varphi_i = \ker \varphi_{i-1}$ (for all i where $F_i \neq 0$) with respect to the term order τ_{i-1} .

Schreyer Resolution and Schreyer Frame

Definition (Initial Term of A Resolution)

Given Φ as previously described and a term ordering τ on Φ , define the **initial terms** of Φ , $\operatorname{in}(\Phi)$, as the sequence of (graded) R-homomorphisms:

$$\Xi = \operatorname{in}(\Phi) : \cdots \to F_l \xrightarrow{\xi_l} F_{l-1} \xrightarrow{\xi_{l-1}} \cdots \xrightarrow{\xi_2} F_1 \xrightarrow{\xi_1} F_0 \tag{7}$$

where $\xi_i(e) = \mathrm{LM}(\varphi_i(e))$, for all e in \mathcal{E}_i . That is, the differentials in $\mathrm{in}(\Phi)$ are obtained by taking the leading monomials of each entry in the differentials in Φ .

Schreyer Resolution and Schreyer Frame

Definition (Schreyer Frame)

A **Schreyer frame** of $M = F_0/I$ is a sequence of R-homomorphisms:

$$\Xi: \cdots \to F_l \xrightarrow{\xi_l} F_{l-1} \xrightarrow{\xi_{l-1}} \cdots \xrightarrow{\xi_2} F_1 \xrightarrow{\xi_1} F_0$$
 (8)

where each column is a monomial, and a term ordering on $\boldsymbol{\Xi}$ such that:

- $\xi_1(\mathcal{E}_1)$ is a minimal set of generators for $\operatorname{in}(I)$;
- $\xi_i(\mathcal{E}_i)$ is a minimal set of generators for $\operatorname{in}(\ker \xi_{i-1})$ for $i \geq 2$.

Computing the Schreyer Frame

Definition (Colon Ideal)

Let I be an ideal of a commutative ring R, let p be an polynomial in R, then the **colon ideal** is defined as:

$$(I:p) = \{r \in R \mid rp \in I\}$$

$$(9)$$

Background

Computing the Schreyer Frame

Let $e \in \mathcal{E}_{i-1}$, then

$$\mathcal{B}_i = \xi_i(\mathcal{E}_i) \tag{10}$$

$$\mathcal{E}_i(e) = \{ \epsilon \in \mathcal{E}_i | \xi_i(\epsilon) = s \cdot e, \text{ for some power product } s \}$$
 (11)

Lemma

In a Schreyer frame Ξ , $\operatorname{in}(\ker \xi_i)$ is minimally generated by

$$\bigcup_{e \in \mathcal{E}_{i-1}} \bigcup_{j=2}' \operatorname{mingens}((t_1, \dots, t_{j-1}) : t_j) \cdot \epsilon_j$$
 (12)

where for each e in the outer union, if $\mathcal{E}_i(e) = \{\epsilon_1, \cdots, \epsilon_r\}$, then $\xi_i(\epsilon_j) = t_j \cdot e$, and mingens defines the minimal generators of the considered monomial ideal.

$$\bigcup_{e \in \mathcal{E}_{i-1}} \bigcup_{j=2}^{r} \operatorname{mingens}((t_1, \dots, t_{j-1}) : t_j) \cdot \epsilon_j$$
 (13)

Example

•
$$\mathcal{E}_0 = \{e_{0,1}\}$$

$$\bullet$$
 $\mathcal{E}_1 = \{e_{1,1}, e_{1,2}, e_{1,3}\}$

$$\bigcup_{e \in \mathcal{E}_{i-1}} \bigcup_{j=2}^{r} \operatorname{mingens}((t_1, \dots, t_{j-1}) : t_j) \cdot \epsilon_j$$
 (13)

Example

•
$$\mathcal{E}_0 = \{e_{0,1}\}$$

$$\bullet$$
 $\mathcal{B}_1 = \{x^2e_{0,1}, xye_{0,1}, xze_{0,1}\}$

$$\bullet$$
 $\mathcal{B}_2 = \{xe_{1,2}, xe_{1,3}, ye_{1,3}\}$

•
$$\mathcal{E}_1 = \{e_{1,1}, e_{1,2}, e_{1,3}\}$$

$$\bigcup_{e \in \mathcal{E}_{i-1}} \bigcup_{j=2}^{r} \operatorname{mingens}((t_1, \dots, t_{j-1}) : t_j) \cdot \epsilon_j$$
 (13)

Example

$$\bullet$$
 $\mathcal{B}_2 = \{xe_{1,2}, xe_{1,3}, ye_{1,3}\}$

•
$$\mathcal{E}_0 = \{e_{0,1}\}$$

•
$$\mathcal{E}_1 = \{e_{1,1}, e_{1,2}, e_{1,3}\}$$

$$\bullet$$
 $\mathcal{E}_2 = \{e_{2,1}, e_{2,2}, e_{2,3}\}$

$$\bigcup_{e \in \mathcal{E}_{i-1}} \bigcup_{j=2}^{r} \operatorname{mingens}((t_1, \dots, t_{j-1}) : t_j) \cdot \epsilon_j$$
 (13)

Example

•
$$\mathcal{E}_0 = \{e_{0,1}\}$$

$$\bullet$$
 $\mathcal{E}_1 = \{e_{1,1}, e_{1,2}, e_{1,3}\}$

$$\bullet$$
 $\mathcal{E}_2 = \{e_{2,1}, e_{2,2}, e_{2,3}\}$

$$\bullet$$
 $\mathcal{B}_1 = \{x^2e_{0.1}, xye_{0.1}, xze_{0.1}\}$

$$\bullet$$
 $\mathcal{B}_2 = \{xe_{1,2}, xe_{1,3}, ye_{1,3}\}$

•
$$\mathcal{B}_3 = \{xe_{2,3}\}$$

$$\bigcup_{e \in \mathcal{E}_{i-1}} \bigcup_{j=2}^{r} \operatorname{mingens}((t_1, \dots, t_{j-1}) : t_j) \cdot \epsilon_j$$
(13)

Example

•
$$\mathcal{B}_1 = \{x^2e_{0.1}, xye_{0.1}, xze_{0.1}\}$$

$$\bullet$$
 $\mathcal{B}_2 = \{xe_{1,2}, xe_{1,3}, ye_{1,3}\}$

•
$$\mathcal{B}_3 = \{xe_{2,3}\}$$

•
$$\mathcal{E}_0 = \{e_{0,1}\}$$

•
$$\mathcal{E}_1 = \{e_{1,1}, e_{1,2}, e_{1,3}\}$$

$$\bullet$$
 $\mathcal{E}_2 = \{e_{2,1}, e_{2,2}, e_{2,3}\}$

•
$$\mathcal{E}_3 = \{e_{3,1}\}$$

Compute the Schreyer Resolution

Theorem

If Ξ is a Schreyer frame for a R-module M, then there exists a Schreyer resolution Φ such that $\Xi=\operatorname{in}(\Phi)$.

Computing the Schreyer Resolution

Algorithm 2 Resolution $[\bar{C}_1]$

Goal

Input: a reduced Gröbner basis \bar{C}_1 of I, and an ordered union B of bases of all levels Output: the set of Gröbner bases C_1, \dots, C_l , and the set of corresponding syzygies $\mathcal{H}_1, \dots, \mathcal{H}_l$

```
C_i, \mathcal{H}_i := \emptyset (1 \le i \le l)
while \mathcal{B} \neq \emptyset do
      m := minB
      \mathcal{B} := \mathcal{B} \setminus \{m\}
      i := lev(m)
      if i = 1 then
            g := \text{the element of } \bar{C}_i \text{ s.t. } lm(g) = m
           C_1 := C_1 \cup \{g\}
            \mathcal{H}_1 := \mathcal{H}_i \cup \{g\}
            else
            (f, g) := \text{Reduce}[m, C_{i-1}]
            C_i := C_i \cup \{g\}
            if f \neq 0 then
                 C_{i-1} := C_{i-1} \cup \{f\}
                  \mathcal{B} := \mathcal{B} \setminus \{lm(f)\}\
                 else
                 \mathcal{H}_i := \mathcal{H}_i \cup \{g\}
            end if
      end if
end while
return C_i, \mathcal{H}_i (1 \le i \le l)
```

Example

Given the Schreyer frame in the previous example, create a Schreyer resolution corresponding to it.

•
$$\mathcal{B}_1 = \{x^2 e_{0,1}, xy e_{0,1}, xz e_{0,1}\}$$

$$C_1 = \{x^2e_{0,1}, xye_{0,1}, xze_{0,1}\}$$

$$\bullet \ \mathcal{B}_2 = \{xe_{1,2}, xe_{1,3}, ye_{1,3}\}$$

•
$$\mathcal{B}_3 = \{xe_{2,3}\}$$

Example

Given the Schreyer frame in the previous example, create a Schreyer resolution corresponding to it.

$$\bullet$$
 $\mathcal{B}_1 = \{x^2e_{0,1}, xye_{0,1}, xze_{0,1}\}$

$$\bullet \ \mathcal{B}_2 = \{xe_{1,2}, xe_{1,3}, ye_{1,3}\}$$

•
$$\mathcal{B}_3 = \{xe_{2,3}\}$$

$$\bullet$$
 $C_1 = \{x^2e_{0,1}, xye_{0,1}, xze_{0,1}\}$

•
$$C_2 = \{xe_{1,2} - ye_{1,1}, xe_{1,3} - ze_{1,1}, ye_{1,3} - ze_{1,2}\}$$

Example

Given the Schreyer frame in the previous example, create a Schreyer resolution corresponding to it.

$$\bullet$$
 $\mathcal{B}_1 = \{x^2e_{0,1}, xye_{0,1}, xze_{0,1}\}$

$$\bullet \ \mathcal{B}_2 = \{xe_{1,2}, xe_{1,3}, ye_{1,3}\}$$

•
$$\mathcal{B}_3 = \{xe_{2,3}\}$$

$$\bullet$$
 $C_1 = \{x^2e_{0.1}, xye_{0.1}, xze_{0.1}\}$

•
$$C_2 = \{xe_{1,2} - ye_{1,1}, xe_{1,3} - ze_{1,1}, ye_{1,3} - ze_{1,2}\}$$

The End

Thank you for your attention!