Feedback

EECS 20
Lecture 11 (February 9, 2001)
Tom Henzinger

The Parity System:

```
States [ Parity] = { true, false }
initialState [ Parity ] = true
nextState [ Parity ] (q,x) = (q \neq x)
output [ Parity ] (q,x) = q
```

The LastThree System:

```
States [LastThree] = \{0, 1, 2\}
initialState [LastThree] = 0
nextState [LastThree] (q,x) = \{0, 1, 2\}
output [LastThree] (q,x) = \{0, 1, 2\}
\min_{\substack{if \ x \ output}} (q,x) = ((q = 2) \land x)
```

Parity System

States = Bools Inputs = Bools Outputs = Bools

LastThree System


```
States = { 0, 1, 2 }
Inputs = Bools
Outputs = Bools
```

Time 0 1 2 3 4 Input t t t t

Output

State

 Time
 0
 1
 2
 3
 4

 Input
 t
 t
 t
 t
 f

Output

State C

Time		C	1	2	3	4	
Input	•	t	†	†	†	f	
Output		f					
State	0	1					

Time)	1	2	3	4	
Input	†		†	†	†	f	
Output	1	f	f				
State	0	1		2			

Time		0	1	2	-	3	4	
Input		†	†	-	t	†	f	
Output		f	f	1	•			
State	0	1		2	2			

Time		0	1	ć	2	3		4	
Input		t	†		†	†		f	
Output		f	f	•	t	†			
State	0	1		2	2		2		

Time		0	1	2	3	4	
Input		†	†	†	†	f	
Output		f	f	t	†	f	
State	0	1		2	2	2	0

This block diagram is ok, because every cycle contains a delay.


```
Time
Input x
Output y
Aux z
```

- Aux u

State q1

State 92

```
Time
Input x
Output y
Aux z
Aux u
State q1 t
State q2 0
```

	Time		0	1	2	3	4	
	Input x		†	†	f	†	f	
1	Output y		†					
2	Aux z							
3	Aux u							
	State q1	†						
	State q2	0						

	Time		0	1	2	3	4	
	Input x		†	†	f	†	f	
1	Output y		t					
2	Aux z		f					
3	Aux u							
	State q1	†						
	State q2	0						

	Time		0	1	2	3	4	
	Input x		†	†	f	†	f	
1	Output y		†					
2	Aux z		f					
3	Aux u		f					
	State q1	†						
	State q2	0						

	Time		0		1	ć	2	3	}	4	
	Input x		†		†		f	t	•	1	f
1	Output y		†								
2	Aux z		f								
3	Aux u		f								
	State q1	†		†							
	State q2	0		1							

	Time		0		1	2	3	4	
	Input x		t		†	f	†	f	
1	Output y		†		t				
2	Aux z		f						
3	Aux u		f						
	State q1	†		†					
	State q2	0		1					

	Time		0		1	2	3	4	
	Input x		†		†	f	†	f	
1	Output y		†		t				
2	Aux z		f		f				
3	Aux u		f						
	State q1	†		†					
	State q2	0		1					

	Time		0		1	2	•	3	4	
	Input x		†		†	f		†	f	
1	Output y		†		t					
2	Aux z		f		f					
3	Aux u		f		f					
	State q1	†		†						
	State q2	0		1						

	Time		0		1		2	3	4	
	Input x		†		†		f	†	f	
1	Output y		†		†					
2	Aux z		f		f					
3	Aux u		f		f					
	State q1	†		†		†				
	State q2	0		1		2				

Time		0		1		2		3		4	
Input x		†		†		f		†		f	
Output y		†		†		†		†		f	
Aux z		f		f		†		†		f	
Aux u		f		f		f		†		f	
State q1	†		t		†		†		f		f
State q2	0		1		2		2		2		0

The FeedbackLoop System

```
Inputs [ FeedbackLoop ] = Bools
Outputs [FeedbackLoop] = Bools
States [FeedbackLoop]
       = States [Parity] × States [LastThree]
       = \{ \text{ true, false } \} \times \{ 0, 1, 2 \}
initialState [FeedbackLoop]
       = (initialState [Parity], initialState [LastThree])
       = (true, 0)
```

```
output [ FeedbackLoop ] ( (q1, q2 ) , x )
= output [ Parity] (q1, any )

The value of this does not matter!
```

```
output [ FeedbackLoop ] ((q1,q2), x)
= output [ Parity] (q1, any )
Let this be y.

nextState [ FeedbackLoop ] ((q1,q2), x)<sub>2</sub>
= nextState [ LastThree ] (q2,y)
```

```
output [FeedbackLoop]((q1,q2), x)
   = output [Parity] (q1, any)
   Let this be y.
nextState [FeedbackLoop] ((q1, q2), x)2
    = nextState [LastThree](q2,y)
    Let z = \text{output} [\text{LastThree}](q2, y).
nextState [FeedbackLoop] ((q1, q2), x)<sub>1</sub>
    = nextState [Parity] (q1, x \land z)
```

If every cycle contains a delay, then all values can be computed.

If there is a cycle without delay, then some values may not be well-defined.

An Ill-Defined System

An Ill-Defined System

An Ill-Defined System

No legal output!

Another Ill-Defined System

Another Ill-Defined System

Another Ill-Defined System

Multiple legal outputs!

Example: Vending Machine

Coin Collector

Let Coins = { Nickel, Dime, Quarter }.

Coin Collector

Coin Collector

Let Select = { selectCoke, selectDiet }.

Let Dispense = { dispenseCoke, dispenseDiet }.

Vending Machine

Vending Machine

Time 0 1 2 3 4 cin N \perp Q Q D select \perp C \perp D C

- 1 funds
- 2 soda
- 2 change
- 2 reset
- 3 cthru

State Coll 0

State Disp n

Time	0	1	2	3	4
cin	N	\perp	Q	Q	D
select	Τ	C		D	С
funds	0	5	5	0	0
soda	Τ	\perp	C	D	\perp
change	Τ	\perp	N	N	\perp
reset	f	f	†	†	f
cthru	Τ	\perp	丄	Τ	\perp
State Coll	0	5	5	0	0 10
State Disp	n	n	C	n	n C

Quiz

1. Draw the transition diagram of the system

$$\begin{aligned} &\text{Delay}_0 \colon [\text{ Nats}_0 \to \text{Bins }] \to [\text{ Nats}_0 \to \text{Bins }] \\ &\forall \ x \in [\text{ Nats}_0 \to \text{Bins }] \ , \ \forall \ y \in \text{ Nats}_0 \ , \end{aligned}$$

$$(\text{ Delay}_0 \ (x)) \ (y) \ = \ \left\{ \begin{array}{cc} 0 & \text{if } \ y = 0 \\ x \ (y-1) & \text{if } \ y > 0 \end{array} \right.$$

2. Draw the transition diagram of the system

