PERFORMANCE CHARACTERISTICS OF AUTOMOTIVE ENGINES IN THE UNITED STATES Second Series--Report No. 3 1977 Chrysler 225 CID (3.7 Liters), 2V

T.W. Chamberlain D.E. Koehler K.R. Stamper W.F. Marshall

U.S. DEPARTMENT OF ENERGY BARTLESVILLE ENERGY RESEARCH CENTER P.O. Box 1398 Bartlesville OK 74003

APRIL 1978
INTERIM REPORT

DOCUMENT IS AVAILABLE TO THE U.S. PUBLIC THROUGH THE NATIONAL TECHNICAL INFORMATION SERVICE, SPRINGFIELD, VIRGINIA 22161

Prepared for

NATIONAL HIGHWAY TRAFFIC SAFETY ADMINISTRATION
Office Of Research and Development
Washington DC 20590

NOTICE

Work reported herein was done under the sponsorship of the Department of Transportation in the interest of information exchange. The United States Government assumes no liability for its contents or use thereof.

NOTICE

The United States Government does not endorse products or manufacturers. Trade or manufacturers' names appear herein solely because they are considered essential to the object of this report.

			Technical Report Documentation Page
	1. Report No. HS-803 277	2. Government Accession No.	3. Recipient's Catalog No.
-	PERFORMANCE CHARACTERISTICS ENGINES IN THE UNITED STATES Second SeriesReport No. 3	S	5. Report Date April 1978 6. Performing Organization Code
	1977 Chrysler 225 CID (3 7. Author(s) T.W. Chamberlain, D and W.F. Marshall	.7 Liters), 2V .E. Koehler, K.R. Stamper,	8. Performing Organization Report No. DOT-TSC-NHTSA-78-4 BERC/OP-77/48
	9. Performing Organization Name and Addres U.S. Department of Energy		10. Work Unit No. (TRAIS) HS827/R8402
	Bartlesville Energy Research P.O. Box 1398	h Center	11. Contract or Grant No. RA-76-23
	Bartlesville OK 74003 12. Sponsoring Agency Name and Address		13. Type of Report and Period Covered
	U.S. Department of Transport National Highway Traffic Saturn Office of Research and Development Washington DC 20590	fety Administration	Interim Report August 1977 14. Sponsoring Agency Code
	15. Supplementary Notes *Interagency agreement with	U.S. Department of Transp : Transportation Systems Ce Kendall Square Cambridge MA 02142	ortation nter
The state of the s	225-CID engine to deter carbon monoxide, oxide modes. The objective for estimating emission The intent of the work	obtained in dynamometer tes rmine fuel consumption and e s of nitrogen) at steady-sta of the program is to obtain ns and fuel economy for vari is to provide basic engine engineering calculations inv	missions (hydrocarbon, te engine-operating engine-performance data ed engine service and duty. characteristic data

Dept. of Transportation

JUL 3 1978

Library

17. Key Words	18. Distribution	on Statement	*
Fuel Economy Auto Emissions	THROUG	NT IS AVAILABLE TO THE U.S. I H THE NATIONAL TECHNICAL ATION SERVICE, SPRINGFIELD, A 22161	PUBLIC
19. Security Classif. (of this report)	20. Security Classif. (of this page	21. No. of Pages	22. Price
Unclassified	Unclassified	62	

PREFACE

This report, prepared by the U.S. Department of Energy, Bartlesville Energy Research Center, for the U.S. Department of Transportation, Transportation Systems Center, Energy Technology Branch, Cambridge MA, presents results of experimental work to obtain information on performance characteristics of an engine used in automobiles sold in the United States. The engine used in this work is one of a series of 10 engines to be tested in the current program. This is the third of the reports to be published covering work with those engines.

This project is funded by the National Highway Traffic Safety Administration, Office of Research and Development, Office of Passenger Vehicle Research, Technology Assessment Division.

Ralph G. Colello and James A. Kidd, Jr., of the U.S. Department of Transportation, Transportation Systems Center are the technical monitors.

	Symbol		ë	ë 1	= ¥	Ë				in ²	ħ.	Ē				20	9				20 20	E	6	â7e	T PA				M. 0							
Measures	To Find		inches	inches	vands	miles				square inches	square yards	action miles				onuces	spunod	short tons			fluid ounces	pints	querts	gallons	cubic yards				Fahrenhait	tamperature	14.0	282	1	00 00		
rsions from Metric	Multiply by	LENGTN	0.04	0.6	3.3	9.0		ARFA		0.16	1.2	0.4			MASS (weight)	0.035	2.2	1.1		VOLUME	0.03	2.1	1.06	0.26	1.3		TEADERATION (CO. C.	TENATORE (BAREL)	9/5 (then	edd 32)		9.06	80 120	0	37	
Approximate Conversions from Metric Measures	When You Know		millimeters	contimeters	meters	kilometers				square centimeters	square meters	bectares (10 000 m ²)				onesen.	kilograms	(By 0001) sauco)			milliters	liters	inters	liters	cubic meters		TEM		Celsius	temperature			0 0	-20 -		
	Symbol		E	8	E (. 5			,	75	, E	5	2			t	D 4	-			Ē	-	-	-	E E				o,c			0	04	-40	0	
23	22	20 21		61	18	1	_		91	1	si	1	1	3		21	1	1	0		5	9		L		9		s			E	3		1	cı	
	unlindi	ndadad	uulu		1111	nln	1111	ililli		mi	11111	ulu	11111	ılıı	dund	111111	111111	111111			1111111	16181	БШ	11111	111111			111111			mhi					
' ' '	. 1. 1. 1. majumja		1.1.1		1.1	11. 7	.1.		· I ·	6	.1.1	• •	1.1.	1'	' ' 5	1.1	111	.1.	' '	' '	.1.1.	1 2	3		11111	' 'I		1'	111		1' '			l'		
9 	Symbol 			200	1' E5	7	'I'		· I ·	6	Can.	525	Ém²	24	6		6	63			.1.1.	Ē	1 1 1 3 E	-				1' 2			111	And Andrews				
Measures	To Find Symbol				Centimeters cm	(ers	meters m		1.1.		ters	Source maters m2	ers		5			KHOgrams kg			E E			liters	liters		E E				Celsius	1		inch		
orsions to Motric Measures			LENGTH		centimeters	centimeters	24	0.500	AREA		square centimeters		square kilometers	hectares			grams			VOLUME		S S S S S S S S S S S S S S S S S S S	millitters		0.47	11075	cubic meters	Ē	FRATURE (exact)		rature	1		inch	05	
Approximate Conversions to Matric Measures	To Find		LENGTH		centimeters	30 centimeters	meters	2	AREA		6.5 square centimeters	Souare malers	2.6 square kilometers	0.4 hectares	PASS (Teplat)		28 grams	tonnes	(0	NOTON .	10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	S S S S S S S S S S S S S S S S S S S	30 milliliters	0.24	7, 90, 0	11075	0.03 cubic meters m ⁻³	cubic meters	TEMPERATURE (exact)		Celsius	1 2		inch	05	

INTRODUCTION

Data acquired from steady-state tests of a 1977 Chrysler 225-cubic-inch-displacement engine are presented in this report. The test results are sufficient to establish maps of fuel consumption and emissions of carbon monoxide, unburned hydrocarbons, and oxides of nitrogen over the operating range of the engine.

The Chrysler 225-CID engine is one of a series of 10 engines to be tested in the current program. The steady-state maps of emissions and fuel economy generated by this study may be used to predict engine and emission control system performance for transient operation.

2. ENGINE TEST REPORT

A new mean-tolerance 1977 Chrysler 225-CID engine was acquired for this series of tests. The engine was mounted on a test stand and coupled to an eddy-current dynamometer. All engine accessories were included in the test-stand installation except for the cooling fan and radiator. An alternator was mounted on the engine but was not connected to the electrical system. Emission control systems included exhaust-gas recirculation (EGR) and an oxidation catalyst. Table 1 contains the manufacturer's general specifications for the Chrysler 225-CID engine.

Prior to the start of the testing program, the engine was broken in at speeds and power settings comparable with normal vehicle operation. Table 2 contains details of the break-in schedule that was used. A single batch of unleaded, regular grade gasoline was used for the entire break-in period and test program. An analysis of the fuel appears in table 3.

Steady-state tests of the engine were made at the speed and load points indicated in table 4. The following data items were recorded at each test point:

Test number Date Barometric pressure, mm Hg Dew point, °F Inlet air temperature, °F Speed, rpm Torque, 1b-ft -- BLH strain gage load cell; Daytronics indicator Fuel rate, lb/hr -- Fluidyne positive displacement fuel flowmeter Ignition timing, °BTC Manifold vacuum, in. Hg Throttle Angle, deg CO, pct -- Beckman NDIR CO₂, pct -- Beckman NDIR 02, pct -- Beckman polarographic detector HC, ppmC -- Custom-built heated flame ionization detector NO_x, ppm -- Thermo-Electron chemiluminescent detector Oil temperature, °F Oil pressure, psig Coolant temperature, °F Exhaust temperature, °F Exhaust pressure, in. H₂0 Intake manifold temperature, °F.

The following equations were used in calculating power, air/fuel ratio, absolute humidity, and mass emission rates of carbon monoxide (CO), unburned hydrocarbons (HC), and oxides of nitrogen (NO_x) :

 Partial pressure of water vapor in intake air (millimeters of mercury):

$$P = \exp \left[18.717 - \frac{7308.1}{393 + D}\right],$$

where D = dewpoint, °F.

Absolute humidity (grains moisture per pound dry air):

$$H = \frac{4347.8(P)}{B-P}$$
,

where B = barometric pressure, mm Hg.

3. Humidity correction factor (dimensionless):

$$K_{H} = \frac{1}{1 - 0.0047(H - 75)}$$

Note: This factor is used to correct the ${\rm NO}_{\rm X}$ mass emission rate to a standard humidity of 75 grains moisture per pound dry air.

4. Stoichiometric air/fuel ratio (dimensionless):

$$AF_{S} = \frac{69(2 + \frac{x}{2} - y)}{MW_{fuel}}$$
,

where x = hydrogen-carbon atomic ratio of fuel y = oxygen-carbon atomic ratio of fuel MWfuel = fuel molecular weight per carbon atom = 12.01115 + 1.00797x + 15.9994y.

5. Hydrogen concentration in raw exhaust (percent):

$$H_2 = \frac{x(C0)(C0 + C0_2)}{2(C0 + 3C0_2)}$$
,

where CO = carbon monoxide concentration (percent) CO_2 = carbon dioxide concentration (percent).

Note: This equation assumes a water-gas shift equilibrium constant

$$\frac{(C0)(H_20)}{(C0_2)(H_2)} = 3$$

6. Correction factor for emission concentrations from wet basis to dry basis (dimensionless):

$$C_W = 1 + \frac{(\frac{x}{2})(C0 + C0_2) - H_2}{100}$$

Note: In these tests, only HC is measured on a wet basis. All other species are measured on a dry basis.

7. Air/fuel ratio (dimensionless):

$$AF = \frac{AF_S}{2 + \frac{x}{2} - y} \left[\frac{\left(1 + \frac{x}{2} - y\right)(C0) + \left(2 + \frac{x}{2} - y\right)(C0_2) + 2(O_2) + \frac{NO_X}{10^4} - H_2}{C0 + CO_2 + C_W(\frac{HC}{10^4})} \right],$$

where 0_2 = oxygen concentration (percent) $N0_X$ = oxides of nitrogen (ppm) HC = unburned hydrocarbon concentration (ppmC).

8. Exhaust flow (pounds per hour):

$$\label{eq:mexp} \mathbf{M}_{EX} = \frac{\mathbf{M}_{F}(1 + \mathbf{A}F)}{\mathbf{C}_{W}}$$
 where \mathbf{M}_{F} = fuel flow rate (pounds per hour).

9. Carbon monoxide mass emission rate (grams per hour):

$$M_{CO} = M_{EX}(\frac{CO}{100})(\frac{MW_{CO}}{MW_{EX}})453.59237,$$
 where M_{CO} = molecular weight of CO (=28.01115) M_{EX} = molecular weight of exhaust gas (=28.967).

10. Unburned hydrocarbon mass emission rate (grams per hour):

$$M_{HC} = M_{EX}(\frac{HC}{10^6})(\frac{MW_{HC}}{MW_{EX}})C_{W}$$
 453.59237,

where M_{HC} = molecular weight per carbon atom of HC = 12.01115 + 1.00797x + 15.9994y.

11. Oxides of nitrogen mass emission rate (grams per hour):

$$\begin{aligned} \text{I1}_{\text{NO}_{\text{X}}} &= \text{M}_{\text{EX}}(\frac{\text{NO}_{\text{X}}}{10^6})(\frac{\text{MW}_{\text{NO}_{\text{X}}}}{\text{MW}_{\text{EX}}})(\text{K}_{\text{H}})453.59237 \,, \\ &\quad \text{where i1} \text{M}_{\text{NO}_{\text{X}}} = \text{molecular weight of NO}_{\text{2}} \; (=46.0028) \,. \end{aligned}$$

12. Power (brake horsepower corrected to a standard barometric pressure of 736.6 mm Hg and a standard temperature of 85° F):

HP =
$$\frac{N(T)}{5252.113} \left(\frac{736.6}{B-P}\right) \sqrt{\frac{t+460}{545}}$$
,

where N = engine speed (revolutions per minute)
 T = brake torque (foot-pounds)
 t = air temperature (°F).

DISCUSSION OF TEST RESULTS

The maximum torque and power outputs measured in these tests were in agreement with the manufacturer's specifications. Emission rates of CO, HC, and NO, were typical of modern engines equipped with exhaust-gas-recirculation (EGR) systems and oxidation catalysts. The carburetor was set to provide a fuel-lean mixture during low-power operating, enabling the catalyst to control CO and HC effectively. (See Figure 1.) At higher-power levels, the air-fuel ratio tended to decrease (figure 2) resulting in less effective catalytic treatment of CO and HC. (See Figures 3 and 4.) Oxides of nitrogen emissions increased at higher power levels (figure 5). Fuel flow is shown in figure 6.

The data presented in this report are sufficient to establish steadystate maps of fuel consumption and emission rates for the 1977 Chrysler 225-CID engine.

4. CONCLUSIONS

The purpose of the experimental work reported here is to establish fuel consumption and emission rate data for this engine. Those data are presented in the tables accompanying this report.

TABLE 1. MANUFACTURER'S ENGINE SPECIFICATIONS

Carburetor type Distributor specifications: Centrifugal advance, begins, ° @ 550 rpm Centrifugal advance, intermediate, °@ 650 rpm. Centrifugal advance, full, ° @ 1,900 rpm Vacuum advance, begins, ° @ 7 in. Hg Vacuum advance, maximum, ° @ 9.5 in. Hg Carburetor number. Distributor number.	2 barrel downdraft 0 2-1/2 4 0 11 BBD80875
Point of discharge	positive crankcase ventilation
Valve timing: Intake opens, °BTC Intake closes, °ABC Exhaust opens, °BBC Exhaust closes, °ATC. Spark plug gap, in Exhaust-gas-recirculation system: Valve type Control signal	48 54 10 0.035 poppet
Number of compression rings/piston	1 chain and sprocket 0.406
Compression ratio	1-5-3-6-2-4 12 cast iron cast iron
Displacement, cu. in	109 182 3.40 X 4.125 inline slant

TABLE 2. ENGINE BREAK-IN SCHEDULE

Simulated vehicle speed, mph	Engine speed,	Manifold vacuum, in. Hg	Fraction of time in mode, hr.
0	Idle	19.5	1/10
20	900	16.5	п
30	1,250	14.5	11
40	1,550	14.0	11
50	2,000	7.5	п
60	2,400	5.0	H
25	1,100	16.0	11
35	1,400	14.0	п
45	1,800	9.0	п
55	2,200	6.5	11

Mileage per cycle = 90.
Total mileage accumulated over 40-hour break-in period = 1,440.

TABLE 3. FUEL ANALYSIS

	•
Fuel No	7619
Research octane No	91.5
Motor octane No	83.5
Specific gravity	0.7161
API gravity, degrees	66.1
Distillation, °F: 10 pct evaporated	128 218 404 417
Reid vapor pressure, psig	9.5
FIA analysis, pct: Aromatics	6 17 77
Sulfur, pct	0.024
Lead, grams per gallon	Trace
Hydrogen/carbon atomic ratio	2.040
Oxygen/carbon atomic ratio	0.000

TABLE 4. TEST-NUMBER CROSS-REFERENCE INDEX

	3,600	69	89	67	66	65	64	63	62
	3,300	19 109	09	59 108	58 107	57 106	56 105	55	54
	3,000	53 104	52	51 103	50 102	101	100	47	46
	2,500	45 99	44	98	42 97	41 96	40 95	39	38
eed, rpm	2,000	37 94	36	35 93	34 92	33 91 119	32 90 118	31	30
Engine Speed, rpm	1,700	29 89	28	27 88 117	26 87 116	25 86	24 85 115	23	22
	1,300	21 84	20	83	18	17	16 80	15	14
	1,000	13 79	12	78	10	9	8 75	7	9
	750	70			2 71				3 72
	650					73			5 74
Pct	Load	0	10	25	40	09	75	06	100

FIGURE 1. Brake Specific Fuel Consumption, Torque, and Brake Horsepower versus Engine rpm at Wide-Open-Throttle--Chrysler 225-CID Engine.

FIGURE 2. Air Fuel Ratio versus Power at Various Speed and Load Conditions--Chrysler 225-CID Engine.

FIGURE 3. Carbon Monoxide Emissions versus Power at Various Speed and Load Conditions--Chrysler 225-CID Engine.

FIGURE 4. Hydrocarbon Emissions versus Power at Various Speed and Load Conditions--Chrysler 225-CID Engine.

FIGURE 5. Oxides of Nitrogen Emissions versus Power at Various Speed and Load Conditions--Chrysler 225-CID Engine.

FIGURE 6. Fuel Rate at Various Speed and Load Conditions--Chrysler 225-CID Engine.

ENGINE: 1977 CHRYSLER 225CID 6-CYLINDER

4.297	741.	2 2 2	30.	. 4	12.	17.	2 17		014	13.1	0	18	כו	5 16.2		4	4	6 17.	و،	الا 4	2 17	0	6 62
N / 4	741.	~	30	1	Cu	N .			9	⇔	C)		39	16.2		50 10	Ø	57			17		
		V- 10				*	· 1		026	3.	c,	62		15.63				4.6	187	4	174	٥.	691
0 / 0	. 9	7 2		 כיו ו	à	ص -	- 1		550	3.0	9	340	145			0	37	₩. (7)	00	4	174		רא
~ √ 0	54 . 6	21			Š		· 51		021	4−4	2.0		5	16.21				And		4	170		3
1.1 4/28/77 7619	54.	2		 	ò.		• জ		370	1.6	ω M	\sim		16.36	4 - 212 - 1	67		gred , gred	co	4	170	-	M
EST NU EST DA UEL CO	ROMETER, MIDITY, G	ENPERATURE, HOINE SPEED.	ORDUE, F	UEL RATE	CRITION TIMING, DEC	PRINCIP CACCOM IN H	NIAKE MAN. TEMP.	TRA			02.	ر ن		AIR/FUEL RATIO	ENISSION RATES, GZHR	0.0	HC.	+×0W	IL TEMPERA	IL PRESSURE, P	ANT TEMPERATUR	KHAUST PRESSUR	XHAUST TEMPERATURE,

* CORRECTED SAE J816B * CORRECTED FOR HUMIDITY

ENGINE: 1977 CHRYSLER 225CID 6-CYLINDER

9 / 9	· 12 0	0 0	32.	· ·	7.	100	- M	· ~	946	5 0	Q		24.	200	C)	00		9
6.1	500	100	Q '9	10.	7.1	470	9	. 53	1990	-	90	2.96	28	CV	S	~		1.9
5 11 / 76	· 4 V	. n			- 10	72 7	מו פ	2 .5	2745	0	4	29.	_	181	•~	^-		9
5.1	. 47	. in			· 10	0 0 0 0 0	3 10	2	2804	9	n.	29.			-	~		S
471177	. 4 V	. IO -			· N	9	3	3	2438	60	<u>ه</u>			182	~	~		2
4711777	. 4 V	. ທ ·	200	 ⊗ છ	· 1/-	00	٠ ١٠	8	3177	r~	— ·	26	ς.	181	-	~		S
NUMBER DATE CODE	AROMET UMIDIT EMPERA	NGINE SPEED. OPQUE, FT-LB	O⊌ER, BHP* UEL RĤTE, LB/HR	GNITION TIMING ANIFOLD VACUUM	100 100 100 100 100 100 100 100 100 100	F- (2)	· Ñ	2 3	HC. PPMC MGX. PPM	AIRZEUEL RATIO	ENISSION RATES, GZHR CO	HC	MQX+	10.0	IL PRESSURE, PSI	COLANT TEMPERATURE, F	ZHAUST PRESSURE, IN.	ZHAUST TEMPERATU

CORRECTED SAE J816B CORRECTED FOR HUMIDITY

ENGINE: 1977 CHRYSLER 225CID 6-CYLINDER

6	2/2	761	0.0	S	~	100	04	ري دي	9	~		00	160		600	CU	₩. Y	9	1120	17.36		9	L.)		206	CU	\sim		00
	[∕-	761		S	~	0							160		056	د ا	3.4	90	1200	17.42		36	34	115.0		CU	\sim		N-
00	\sim	761		S	~	0							162		014	0	2.0	14	1450	16.39			ري	165.8		S	~	4.0	~
œ	2/2	761	0.0	N	~	100	, 	24.	aprel)	2		٠,	154		189	~	2.4	127	1400	4		47	9.	161.5	0	S	~	10.0	95
7 .	P-	761		ي.	~	0							186		033	13.2	-	r~	650			99	22.		201	4	ľ~=		00
7	N-			2	~	ं							CO		389	CV	<u>න</u>	~	1088	14.11		5	99	135.4	N	4	17	10.0	8
MUN T23	EST DAT	FUEL CODE	AROMETER, MM	UMIDITY, GRAI	EMPERATURE	MGINE SPEED	ORBUE, FT-	OWER, BHE	UEL RATE	CRITION TIMING	ARIFOLD VACUUM. IN H	HROTTLE ANGLE, D	NIGKE MAN	CONCENTRATIONS, DRY BASIS	× (00)	C02. 💸	02. %	PPM	MOX, PPM	AIRZEUEL RATIO	EMISSION RATES, G/HR		HC		IL TEMPERATURE	IL PRESSURE, P	OOLAHT TEMPERATURE	EXHAUST PRESSURE, IN. H20	ZHAUST TEMPERAT

* CORRECTED SAE J8168 + CORRECTED FOR HUMIDITY

ENGINE: 1977 CHRYSLER 225CID 6-CYLINDER

12.2		N	~	00	~	M	4		•		~		037		1.9	20	4	16.24			o,	S. 55		N	180		
12.1	9 8	S	~	00	~	M	4		•		N		610	N	2.6	80	150	M		۲.	24.	6.1	97		180		0
11.2	9 0	S	~	00	,	œ	ر. دي	2	~	M	2		037	0	6.	20	1225			ò	ص	61.5	0	S	178		0
11.1	3 .	2	~	00	4	œ.	S)		~	رما رسا	15		738	N	2.6	75	1300	16.27		2	29.	64.1	0	N	176		40
10.2	<u> </u>	S	~	00	0	ω.	9		٠. س	S)	14		014	~	2.3	12	2100	16.68		9	ς.	135.7	0	N	178		9
4/12/77	761 50.	5	~	00	•	M	9		M	ر. م	4		318		2.8	46		16.73		44	33	167.7	0	N	178		4
EST DAT	_	UMIDITY, GRAI	EMPERATURE, F	NOINE SPE	ORQUE, FT-L	OWER, BHP+	UEL RATE,	GNITION TIMING,	ANIFOLD VACUUM, IN H	HROTTLE ANGLE, D	NTAKE MAN. TEMP.	CONCENTRATIONS, DRY BASIS	2 00	002, %		E d	NOX, PPM	AIR/FUEL RATIO	EMISSION RATES, G/HR	00	HC.	*X0X	IL TEMPERAT	IL PRESSURE	-	KHAUST PRES	KHAUST TEMPERATUR

* CORRECTED SAE J8168 + CORRECTED FOR HUMIDITY

ENGINE: 1977 CHRYSLER 225CID 6-CYLINDER

* CORRECTED SAE J816B + CORRECTED FOR HUMIDITY

ENGINE: 1977 CHRYSLER 225CID 6-CYLINDER

6617.0	11	. 0 0 2 4 12 . 8 8 1 . 8 8 16 4 2 3 0 0	20 4 . 8 20 3 . 7 20 6 17 5 1 . 0
66.7.	11		20.9 218.3 20.7 17.5 86.5
. C 9 9 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	10630 10630 106.0 107.0 197.0	. 002 13.14 1.75 1.75 1.000 1.000	2. 0 121. 0 20. 1. 0 16.7 4. 0
· N = · 10 N	106.00 16.00 16.00 11.00 19.00	. 0677 13.01 1.75 1246 988 15.98	53.8 118.8 203.8 168 11.0
· 1~ ← · 10 /-	133.00 133.00 16.00 16.00 16.00	. 1108 13.80 . 75 . 234 550	105 111 79.6 181 134 5.0 90.0
- r 10 r	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	12.880 15.880 15.45 15.34 3.36	69 72.75 137.25 180 15.00 15.00
TEST NUMBER TEST DATE FUEL CODE BAROMETER, MMHG HUMIDITY, GRAINS/LB	ENGINE SPEED, RPM TORQUE, FT-LB POWER, BHP* FUEL RATE, LB/HR IGNITION TIMING, DEG BTDC MAMIFOLD VACUUM, IN HG THRUTTLE ANGLE, DEG INTAKE MAN. TEMP., F	CONCENTRATIONS, DRY BASIS CO, % CO2, % HC, PPMC NOX, PPM AIR/FUEL RATIO	EMISSION RATES, G/HR CO HC NOX+ OIL TEMPERATURE, F COOLANT TEMPERATURE, F EXHAUST PRESSURE, IN. H20 EXHAUST TEMPERATURE, F

CORRECTED SAE JB16B

ENGINE: 1977 CHRYSLER 225CID 6-CYLINDER

21.2	761	. N	~	30			4	9	-		16		533	S	00	~	09	0		· •	14.	à		3	9	٥.	00
21.1	761	S	~	0	Ω	-	4	9	e upod	٠	S		680	12.7	1.5	0	Table 1	15.17		'n.	25	_	00	M	9	1.0	S
20.2	761	S	2	0	00	4	Ω	00	6	~	15		200	S.	1.2	0		15.53		2		42.1	0	M	9	1.0	9
20.1	9 7	S	~	0	00	- ·	کا	00	<i>و</i> .	∾.	15		.012	1.5	3	6	75			52.	,	40.		M	\sim	2.0	IO .
19.2	742	9	~	0	4	0	٠.	ق	و		~		024	3	1.6	91	2050			10.	20.	4		S	\sim	2.0	N3
19.1	9 6	9	<u>~</u>	30	·	0	9	9	و	4	15		146	œ	2.3	60	2350	15.99		. 99	115.2	65	0	S	\sim	2.0	9
EST NUM	FUEL CODE BAROMETER, MMHG	UMIDITY, GRAI	EMPERATURE,	NGINE SPEED	ORQUE,	OWER, B	UEL RATE, L	GRITION TIMING.	ANIFOLD VACUUM, IN H	HROTTLE AN	HTAKE MAN.	CONCENTRATIONS, DRY BASIS		C02, %	02, %	PPM	NOX, PPM	AIR/FUEL RATIO	EMISSION RATES, G/HR	00	HC	NOX+	IL TEMPERA	IL PRESSURE,	OOLANT TEMP	UST PRESSUR	XHAUST TEMPERAT

CORRECTED SAE J8168

ENGINE: 1977 CHRYSLER 225CID 6-CYLINDER

* CORRECTED SAE J8168 + CORRECTED FOR HUMIDITY

ENGINE: 1977 CHRYSLER 225CID 6-CYLINDER

· Pu +==	742.0	. •	4 00 10	4 1	N N	014		1.6	92	9	15.82		20: 4		86.5	0	5	175	٠	6
· No 1991		. 0	4 0 1	4 1	2	980	12.88	2.6	92	90	15.83	,		34.	83.2	0	រហ	175		0
· 1/4		•	· · ·	00	20	0 0 2	13.14	2.1	00	N-	16.32				6.68	-	10	174		9
· No 444	745.6	0 .			0	007	12.75	2.6	S	N	16.30	L	D (2.	8.5.4	-	10	174		9.5
25.77.7.61	746.7 56 76	0 .		4 0	20	0	13.53	1.2	18	رق درا	15.73	c	VI (2,	148.9	CV	M	167		9
· Pr	746.7	O .			0	5		4.	₩ ₩	96		1		20		Cid	3	167		15
EST NU EST DA UEL CO	OMETER. IDITY, G PERATURE	NGINE ORQUE,	OBER, BRF. UEL RATE, LB/HR GNITION TIMING, DEG	ANIFOLD VACUUM, IN HGHROTILE ANGLE, DEG	NTAKE MAN. TE	⊢ □	002, %	, est	ω	۵.	AIRZFUEL RATIO	EMISSION RATES, GZHR	3	2	+×0×	IL TEMPERA	IL PRESSURE,	COOLANT TEMPERATURE, F	KHAUST PRESSU	XHAUST TEMPERATUR

+ CORRECTED SAE J8168 + CORRECTED FOR HUMIDITY

ENGINE: 1977 CHRYSLER 225CID 6-CYLINDER

TEST NUMBER	00	00	9.	6	0	
EST DAT	8/3	7	8/7	8/7	7	17
UEL CO	$\overline{}$	761	761	761	61	61
AROMETER, M	40				0	0
UMIDITY,	9	Ø	9	9	9	9
TEMPERATURE, F	r ∿-	~	^	~	~	~
HGINE SPEED	20	20	20	20	00	00
GROUE	~	۲.	ς.	8	79.	σ,
OWER. E	ın.	9	•	٠	8 9	68
UEL RATE	(2)	٠	ر. دي	ı,	در	-
GRITION TIMING, DEG	ထ	89	00	00	~	Ċ
IFOLD VACU	19.5	19.5	21.0		9.	
HROTIL	M	ص	8	8	~	~
HTAKE MAN. T	S	-	156	156	-	102
SISSE SAG . SNOTTBATHERS.						
	6.45	0.56	0.34	0.70	8 1 7	597
) u)		- 1	. (
~	ن	00 1 00 1	ر ا د	ا رو	11.9	12.5
×	⊘ 4.	<u>ن</u>	2	6	~	
	62		m	4284	1145	S
, Pr	620	20		35	90	1375
AIR/FUEL RATIO	15.19	15.22	15.07	15.00	13.54	13.33
EMISSION RATES, GZHR						
00	60	(d	72.	4	29.	90
HC			<u>प</u>	M	102.	47.
+×0×		44.3	12.9	17.5	541.6	378.3
IL TEMP	0	0	0	0	C	CU
IL PRESSURE	4	4	4	4	4	4
SOLANT TEMP	\sim	\sim	\sim		∞	. 89
	0.4	0	4.0	0.	49.0	23.0
ZHAUST TEMPERAT	S	-	4		5	22

CORRECTED SAE J8168
CORRECTED FOR HUMIDITY

ENGINE: 1977 CHRYSLER 225CID 6-CYLINDER

5 7 3	יוט רי	0 N	4 4 4 0 00 1U 1U 1U 00 0	9 0 0		en an		208 177 13.0
723	4 R . R V	0 1	4	0 0 0	 00 02 02 03 02 04 03	80 80	9 9 9 9 9	
· [- 404]	- 40 N	. 0	22 - 20 - 20 - 20 - 20 - 20 - 20 - 20 -	. N.	. 6 125 1 4 . 3 5 1 0	m ia .	227	
· N	- 30 N	. 0	20 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		1.0515	. دا دا	900	2 1 8 2 2 2 2 2 3 0 5 2 5 0 0 5 2 5 0 0 5 5 0 0 5 5 0 0 5 5 0 0 5 5 0 0 0 5 5 0
7 6 7 7	40.7		100 t		2.0830 13.40	44 TO	3143.5 111.1 382.3	10 to 00 to
· Pu 1994	- 10 P		128 1866 1966 1966 1966 1966	- 193	13.40	9 C C C C C C C C C C C C C C C C C C C	3121.4 124.0 383.2	
EST BAU	AROMETER UNIDITY EMPERATU	HGINE SPEE ORQUE, FT-	r* LEZHR TIMING, D GACUDM, I	HROTTLE ANGLE, DEC NTAKE MAN, TEMP., F	10 10	HC, PPMC NOX, PPM AIS/FUEL RATIO	EMISSION RATES, G/HR CO HC NOX+	DIL TEMPERATURE, F DIL PRESSURE, PSI COOLANT TEMPERATURE, F EXHAUST PRESSURE, IN. H20 EXHAUST TEMPERATURE, F

* CORRECTED SAE J8168 + CORRECTED FOR HUMIDITY

ENGINE: 1977 CHRYSLER 225CID 6-CYLINDER

36.2	-	~	\sim	0							0		019	-	2.2	200	889			0	M	63.1	-	m	\sim	4.0	2
36.1	- C	~	~	000	۲.	9		Ċ	~	9	20		108	1.4	\sim	123		15.89		61.			-	S	\sim	9.0	4
35.2	9 2	~	~	00	4	9		2	ω.	о О	OL		016	3.5		159		15.76		ς.	0	62.4	-	n	\sim	7.0	~
35.1	5 6	~	~	00	÷	ئو		~	12)	Φ.	CV.		960	2.7		017	-	15.56		75.	8	57.3	-	S	~	10.0	60
34.2		5	\sim	00	_;	9		4	00	ď	22		900	₹.	2.1	19	725	16.44		6	6	101.5	N	5	CO	9.0	4-1
34.1	2 4	2	\sim	00	.	&		4.	00	دا	22		290	00	2.38	4	22	16.47		4	51.	106.2	N	S	∞	12.0	0.2
	FUEL CODE SAROMETER, MMHG	SITY, GRAI	THE	AE SPEED	JE,	à	RATE	TION TIMING,	FOLD VACUUM, IN H	-	CE MAN. TEMP	CONCENTRATIONS, DRY BASIS	%	C02, %	02, %	997	MOX, PPM	AIP/FUEL RATIO	EMISSION RATES, GZHR	00	HC	NOX+	L TEMPERATUR	L PRESSURE,	OLANT TEMPER	I	HAUST TEMPERATUR

* CORRECTED SAE J816B * CORRECTED FOR HUMIDITY

ENGINE: 1977 CHRYSLER 225CID 6-CYLINDER

Ø%	2/8	761	40.	~	~	50	62 9	77	10	9		' পু-	9 04 04		304	12.6	0.	23	1300			396.	120.	409.8	מיו	4	2.4 Q		18
	1	761		1	~	0									3.4	12.5	0	7	1350			01	114.	427.5	3	4	9	φ.	-
©	1		0	~	~	00	emedi	1.0	P.				9		. 264	5	****	44	1550	₹.	anni anni anni anni anni	22	47	527.4		5	∞		26
	2/8	761	40.	1	~	0	₩	9	W	16					466	12.1	100	100	96			90	9 4	679.4	4004	S	⇔		ω ω
ζ.	8 / 3	761	40	r~	~	00	رما	quet	(a)	~	·	ص	-pmd		002	N	9.	00	555	15.68		- qued	F7)	38.0		IO	172		9
~	17	761	. 0	<u>~</u>	~	00	[P]	qued .	@			מיז	162		56	~.	9.	5	N	15.44		65	CI.	31.8	0	S	172	٠	CU
T NUM	EST DAT	FUEL CODE	ARDMETER, MMH	UMIDITY,	EMPERATURE,	HGINE SPEED	ORQUE	OWER.	UEL RA	GNITION TIMING, DEG	ANIFOLD VACUUM,	HROTTL	NTAKE	CONCENTRATIONS, DRY BASIS	CO. %	002, %	~	C. PPM	NOX, PFM	AIRZFUEL RATIO	EMISSION RATES, G/HR		FC.		ERAT	SURE	TEMPERATUR	988	KHAUST TEMPERATUR

* CORRECTED SAE J8168 + CORRECTED FOR HUMIDITY

ENGINE: 1977 CHRYSLER 225CID 6-CYLINDER

4/28/77	761	42.	~	~	59	س	4	~		σ,	4	22	-	019	00	1.3	65	1138	15.69		21.	36.	202.6		iÓ	177	7	0
	761	42.	~	\sim	0							Cu		074	4	1.7	41	1088	15.69		8 4	93	198.5	CV	10	177		1
4/18/77	761		\sim	~	0							-		375	5	0	23	275			57.	~	66.5	3	S	182		16
41.1	761		\sim	~	0							week		575	6	3	97	882	14.70		57.	72.	191.3	23	S	182	ص	30
4/18/77	761	0	~	~	250	വ	64.	φ,		M	~	17		475	13.6		68		14.13		69	74.	368.1	44	4	193	•	16
4718777	761	40.	~	~	250	ي	64	ر. م		M	~	17		519	13.5	•	23	NO.	14.09		63	104	370.9	4	4	193		32
EST NUMBER	FUEL CODE	AROMETER, MMHG	17Y, GR	RATURE,	SPEE	:, FT-L	GWER, BHP*	UEL RATE	IT HOITI	ANIFOLD VA	HRUTTLE AN	アーロス	CONCENTRATIONS, DRY BASIS		C02, %	02, %	0. 0.	NOX, PPM	IRZEUEL RATIO	EMISSION RATES, GZHR		HC	MDX+	Ε	LL.	COOLANT TEMPERATURE, F	-	10

CORRECTED SAE J8168
CORRECTED FOR HUMIDITY

ENGINE: 1977 CHRYSLER 225CID 6-CYLINDER

-			_																									
4/18/27	92	40	1~	~	0							-		0 6 2	-	0	283	S	16.15			M		211	10	N-		60
4718777	761		N-	P-	0							0		170		4	541		16.13		თ	cvi	20 00		S	174		10
4 00	761	40.	~	~	50	00	0	2	9	5		5.	Original educación	002		2.0	20		9	orazona a ricora	8	<i>ون</i>	27.6	00	S	170	-	9
4/18/77	761		Λ.	D.	0							Ps.		50		3.6	067	17	16.24		27.	·	22.		₁	***		02
47.28/77	761		N~	~	0							1071		021		<u>~</u> .	5	୍ର	15.64		0	2	90.6	~	S	180	0	9.0
47.87.7	761	42.	r~-	r~	0					-		4		110		2.3	961		15.70		0.5	~	78.5	כיו	S	180		0.7
EST NUM	03 7	ARDMETER, MMHG	UMIDITY, GRA	EMPERATURE	MGINE SPEED	ORGUE, F	OWER, B	UEL RATE,	CHILLON TIMING	AMIFOLD VAC	REDITLE ANGLE, DEG		CONCENTRATIONS, DRY BASIS	9. 2	0	05. %	C, PP	NOX. PPM	AIRZFUEL RATIO	EMISSION RATES, GZHR	CO		**O*	IL TEMPERATURE	IL PRESSURE,	OLANT TEMPERAT	MHAUST PRESSU	KHAUST TEMP

* CORRECTED SAE J8168 + CORRECTED FOR HUMIDITY

ENGINE: 1977 CHRYSLER 225CID 6-CYLINDER

48.2	761		S	~	0							-		. 255	13.8	****	89	1213	100		409.	. 9 9	345.3	4	49	18		22
48.1	7619	4	S	~	00	6	72.	4	4		0	21		864	13.67	3	60	1113	-		22.	109.7	329.7	4	6.4	∞	9	00
47.2	761	-	9	~	00	ر. م	88 80	ò	173		2	15		928	13.0	-	29	1475	9		98	94.	553.2	173	50	17		25
47.19.72	61	41.	9	~	00	55.	00 00	M	<u>.</u>		~	15		928	12.8	-	02	1500			04.	124.	579.4	M	20	\sim	٠ س	0
4/19/77	761	41.	9	2	00	ς.	98	و			ĸ	4		226	12.8	7	48	1750			57	62.	13.	153	50	18		31
4/19/77	-		9	~	0							*		343	12.7		4		13.59		19.	110.		M	50	∞		42
z a	FUEL CODE	ᄪ	Ę	TEMPERATURE, F	R SPEED	Ē,	POWER, BHP*	FUEL RATE, LB/HR	TION TIMING,	OLD VAC	TLE ANGLE, D	E MAN.	CONCENTRATIONS, DRY BASIS	%	C02, %	02, %	HC, PPMC	9	AIR/FUEL RATIO	EMISSION RATES, G/HR		HC	*XOX	MPERAI	IL PRESSURE	IT TEMPERAT	XHAUST PRES	ZHAUST TEMPERAT

* CORRECTED SAE J8168
* CORRECTED FOR HUMIDITY

ENGINE: 1977 CHRYSLER 225CID 6-CYLINDER

9.1 49.2 50.	177 4/19/77 4/19/7	7619 7619 761	.5 741.5 741.	89 89	79 79 7	3000 3000 300	.0 103.0 69.	59.0 59.0 39.	.8 29.6 21.	.5 12.5 32.	.5 4.5	0 27.0 15.	35 235 2		756 .0725 .108	.21 14.49 13.8	.55 30 1.3	631 103 76		15.00 15.6	nderen feder Gar	4.0 131.1 146.	57.7 9.4 51.	78.3 215.9 300.	47 247 2	49 49	182 182 18	.0 24.0 28.	414 1254 122
EST NUM	EST DAT	UEL CO	AROMETER, MM	MIDITY, GRAI	EMPERATURE,	MOINE SPEED	080UE, FT-	OWER. B	UEL RAT	GRITION TIMING, DEG	ANIFOLD VACUUMA	REDITLE	HTAKE	CONCENTRATIONS, DRY BASIS	C0, x	002, %	02, %	C. PPM	NOX, PPM	AIRZEUEL RATIO	EMISSION RATES, GZHR	00	HC H	MOX+	IL TEMPERAT	IL PRESSURE	OOLANT TEMPERATUR	HAUST PRES	MERCAL TEMPERATUR

* CORRECTED SAE J816B + CORRECTED FOR HUMIDITY

ENGINE: 1977 CHRYSLER 225CID 6-CYLINDER

*
_
-
-
S

* CORRECTED SAE J8168 + CORRECTED FOR HUMIDITY

ENGINE: 1977 CHRYSLER 225CID 6-CYLINDER

1007.7	W & W W W W W W W W W W W W W W W W W W	1.1 1.1 1.0 1.0 1.0 1.0 1.0 1.0	2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
· 100 and · 10	E & C & L & G & C & C & C & C & C & C & C & C & C		2 1 3 1 7 4 2 . 7 4 3 2 0 7
· /~ +4 · /~ i	## # # # # # # # # # # # # # # # # # #	2. 9280 1. 2. 22 2. 3. 2. 22 2. 48 2. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5.	25 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
· / / - / - / - / - / - / - / - / -	24 24 24 24 24 24 24 24 24 24 24 24 24 2	2. 928 1. 9286 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	27 20 27 20 20 20 20 20 20 20 20 20 20 20 20 20
· 1~ m · 0 i	E # 8 # 1 E E E E E E E E E E E E E E E E E E	2.9641 12.75 1467 1467 13.58 586.3	22 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
· 1~ · vo 1	24 00 4 4 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2.9280 12.728 1.15.747 1.147 1.14.8	7 4 6 4 7 4 8 . 3 7 4 8 . 3
EST NUMBEEST DATE UEL CODE OMIDITY	SPEED, FT-LE BHP* N TIMI O VACU	CONCENTRATIONS, DRY BASIS CO2, % CO2, % HC, PPMC NOX, PPM AIR/FUEL RATIO EMISSION RATES, G/HR CO HC NOX+	OIL TEMPERATURE, FOIL PRESSURE, PSICOLANT TEMPERATURE, FEXHAUST PRESSURE, IN. H20

CORRECTED SAE J8168
CORRECTED FOR HUMIDITY

ENGINE: 1977 CHRYSLER 225CID 6-CYLINDER

.09	4/19/	761	740.	9	~	330	16.	10.	14.	33	15.	10.	25		.002	13.6	10	216		13		7	102		25	*	177	9,	1 : 7
60.		761	40.	9	~	30	9	0	ر. م		Ω	0			176	2.5	0	354	220	15.40		~	82	35.4	S	4	177		4
6	\sim	761	0	9	~	30	6	4	9	M	8	 N	245		005	00	~·	85	625	15.61		m	54	126.6	24	S	174	2	α
		761		9	~	0	<u>.</u> ق	٠ •	6	رم د	8	8	24		142	2	1.7	54	550	15.52		75.	81.	108.9	24	S	174	M	2
φ.	4719777	761	40	ø	~	0	[P]	5	LJ	٠.	0	į.	00		005	00	***	12	950			· ·	10.	223.6	0	10	170		90
	4/19/77	761	40	Ġ.	r.	0							00		25	10°		25	906	15.63		81	91	209.2		ហ	77		00
D N ⊢	<u>⊢</u> 0 ₩	UEL COD	ARONETER, MM	UMIDITY, GR	EMPERATURE,	INE SPEED	ORQUESTRI	OWER, BE	UEL RATE	GHITION TIM	AMIFOLD VACUUNG IN H	HROTTLE ANG	NTAKE MA	CONCENTRATIONS, DRY BASIS	C0, %	CO2, %	*/*	C, PPM	űX,	AIP/FUEL RATIO	EMISSION RATES, G/HR	co	2	NOX+	IL TEMPERA	IL PRESSURE, P	ANT TEMPERAT	KHAUST PRESSUR	PHOUST TEMPEDATURE. F

CORRECTED SAE J8168

ENGINE: 1977 CHRYSLER 225CID 6-CYLINDER

	-						A STATE OF				-		-												-		-
57 477	2	9 1	,	360	, M	91.	143	ď	M.	9	œ		0.77	. LC		92	1020			45		379.5	4	Ŋ	₩ 80 10	·	26
5/4/77		91	~	0							00	•	964	- 40		90	1050			∞ ~	129.	396.7	4	S	185	0	qmi
4/19/77		9	20 4	0							98		5.0	~	. +! 	63	80	•		77.	93	8.00	4	N	184	2	36
4/19/77	40	w (י י ו	360	48	ςi.	52.	12	-		7		0.37	~	-	98	8	•		.60	127	846.4	4	S	182		152
61.2	40.	10	٠, ،	30	 1		رما دما	\$	~	00	25		0.04	00	N	330	9	15.34		4	cvi	22.7	l C	4	176	9	4
4/19/77	40	9 r	- 1	30	-	•	M	T	~		25		S 54	5	~	965	13.00			00	00	18.6	LO	4	175	Ω	
TEST NUMBER TEST DATE FUEL CODE	AROMETER, MMHG	UMIDITY, GR	FERTHER CONT. T.	NITINE SPE	DRAUE, FT-L	OWER, BHF	UEL RATE,	CNITION TIMING,	ANIFOLD VACUUM, IN H	HRUTTLE ANGL	VTOKE MON	S NOTE OF THE STATE OF THE STAT	CD. % CO.	002	~~			AIRZFUEL RATIO	EMISSION RATES, GZHR	00	HC.	NDX+	IL TEMPERATUR	IL PRESSUR!	OLANT TEMPERAT	XHAUST PRESSURE, I	KHAUST TEMPERATURE, F

E CORRECTED SAE J8168

CORRECTED FOR HUMIDITY

ENGINE: 1977 CHRYSLER 225CID 6-CYLINDER

66.2	761	54.	S	~	9	9	φ.	4	0	0		27		024	®	1.2	34	1513	15.67		37.	26.	348.3		4	00	0	5
66.1	761	+	S	~	99	9	6	4	0	0		27		134	*	1.5	59	1475	15.70		8 0	23.	338	N	4	00	0	α
65.2	761	54.	S	~	9	8	φ.	2	N	N)		25		019	9	1.2	a	1050	P-		•	M	327.4	27	4	19	39.0	53
65.1	761	54.	ហ	~	99	œ	•	, m	8	S		25		106	9	4	6	1013			24.	6	318.0		4	9	55.0	47
64.2	761	54	IJ	~	360	-	74.	40.	8	4		25		594	0	***	22	863			56.	89 89	289.1		4	œ	*	∞
64.1	761		S	~	0		_:			_:		S		.445	0	3	97	875	13.83	;	37.	111.	294.1	9	4	00	63.0	4
EST NUM	FUEL CODE	AROMETE	UMIDI	EMPERATURE	NGINE	ORBUE, FT-L	OWER,	UEL RATE	GNITION TIMING, DEG	ANIFOLD VACUUM, I	HROTTLE ANGLE, D	NTAKE MA	CONCENTRATIONS, DRY BASIS	CO, %	C02, %	02, %	PPH	NOX, PPM	AIR/FUEL RATIO	EMISSION RATES, GZHR	00	FC FC	**************************************	TEMPER!	PRESSU	ANT TEI	T PR	JST T

CORRECTED SAE J8168

ENGINE: 1977 CHRYSLER 225CID 6-CYLINDER

					7		-	-	-					_												-	-
69.2	740	9	~	09	<u>च</u>	ď	IO.	9		0	₩		004	C/J	50	60	160	15.51		4	[P)	25.4	emé	K)	176	<i>ي</i>	9
69.8		9	1	0							00		240	S	3.7	834		15.37	•	4	ريا د	24 02		S	176	0	5
4/19/77	40.	S	<u>~</u>	9	4	•	و	9		—	24		004	00		410	170	15.31		10)	9	28.6	S	4	176		24
68.1	40	9	~	09	107	φ.	~	9		-	2		233	Φ.	4	386		4 9 9 8		247	(S)		S	4	178		1.3
4/19/77	40	9	co	09	~	ഗ		M		ئو	25		002	و	₩. •••	93	265	ກ ເຄ ຍ		[P]	2	57.9	~	4	179		17
4/19/27	40	9	ಯ	\$	·	ص ص	-	ص		9	25		144	12.88	100 Cu	12	N	15.53		ω ω	00	8.09	<u>~</u>	4	179		20
TEST DATE FUEL CODE	HROMETER, MM	UMIDITY, GRAI	EMPERATURE,	NGINE SPEED	ORBUE: F	OWER, BHP*	UEL RATE,	SMINIT NOILING	ANTEOLD VACUUM, IN H	HPOTILE HNGLE, DEG	HTAKE MAN.	CONCENTRATIONS, DRY BASIS	Ü	C02/ #	62, %	C. PPM		AIP/FUEL PATIO	EMISSION RATES. GZHR	\circ	∴ ≭		IPERAT	SSURE, P	COOLANT TEMPERATURE, F	r PRESSUR	T TEMPERATUR

* CORRECTED SAE J8168 + CORRECTED FOR HUMIDITY

ENGINE: 1977 CHRYSLER 225CID 6-CYLINDER

ES	20	70	71.	71.	72.	72.
S.	0//	0/7	0//	0//	P	0/7
UEL CODE	61	761	761	761	761	761
A 70	38	38	38.	38		38
UMIDI	9	9	9	9	9	9
EMPERATU	~	~	7	~	B.	~
NGINE	10	10	7	75	40	75
ORQUE, FT-L			2	10		•
OWER, BI			ď	2		4
UEL RATI	M	~	M	M		M
GNITION TIMING, DEG	ď	8	0	0		0
\supset	20.0	20.0	~			
HROTTLE ANGLE, D	٠	٠	٠	۰		•
25	3	M	134	134	132	134
STAGE SECTION STATES						
	909	033	12.0	163	696	0 4 0
600	06 11	12 40	C C C	a	P	a
	• 6			9 6) r	9
· ·	2.3	-			1. (20
, a.	8	29	53	6	56	32
MOX, PPM	-		28	00	260	190
AIR/FUEL RATIO	15.64	15.73	15.20	15.31		
EMISSION RATES, G/HR						
00	ID.		6	0	51.	4
#C	. 08		45.			
NOX+			2.5	2.6		-
IL TEM	03		00	00	00	00
IL PRE	4	4	4	4	*	M
DOLANT TEM	9	9	~	~	~	^
UST PRESSURE, IN.	2.0	1.0	2.0	1.0	2.0	1.0
KHAUST TEMPERATU	∞	8	10	*	00	64

* CORRECTED SAE J8168 + CORRECTED FOR MUMIDITY

ENGINE: 1977 CHRYSLER 225CID 6-CYLINDER

	· N	761		9	1	0							161		010		, ,		1613	15.74		0	9	185.6		4	\sim	4.0	4
I/C	8 / 7	761	42	9	~	00	اما اما	25	11.		M	oi	161		S			13	1638			. 92	50.	188.1	00	4	17	10.0	97
	4/7	761	37.	9	N-	10							146		795	100	4.5	46	170				26.	10	180	12	\sim		00
4	· N-	761	, N	9	~	IO.							146		870	S	2	S	160	ف		***	26.	ı.	180	ľ	\sim		0
7.2	P-	761	41.	Ø.	~	85 53	O	ci	₩		00	٠	166		୍ତ		- mark	4	-Tred			42.		٠ د		4	N -	٥.	spreed.
		761		و	five.	ιO.							166		7.1		<u></u>	2	- Design	15.30		~:	2.4	ر د	187	4	r~		ω
EST NUM	ST PATE	DEL COD	APONETER, NM	UNIDITY, GRAI	ZMPERATURE	MCINE SPEED	OPRUE, FT-	OMERA SH	UEL RATE.	CHITTON TIMING, D	RESERVED VACOUM, IN H	APOTTLE ANGLE, D	CARR REAL	CONCENTERTIONS, DRY BASIS	* 'DO		25	E PPE	MOX, PPM	AIR/FUEL RATIO	EMISSION RATES, GZHR	00	HC	**************************************	IL TEMPERA	IL PRESSURE,	COLANT TEMPERATURE, F	HAUST PRESSUR	ZHAUST TEMPERATUR

* CORRECTED SAE J8168 * CORRECTED FOR HUMIDITY

EHGINE: 1977 CHRYSLER 225CID 6-CYLINDER

7.2 4/	619 7619	8.5 738.5	00 (1000	0.0	3.4	6.7	1.0 31.0	2.0 16.0	3.0 2.5	148 137		145 1.5019	.27 12.1	.60 2.20	131 192	175	. 05		. 4 508.	.9 32.	3.1 51.	02 2	40 4	74 17	.0	2 1 2
77.1	7619	38.5	- 23	* 000		3.4	6.7	1.0	2.0	3.0	148		3937	~	2.00	1416	375			74.	31.4	71.	0	4	174		S
4/28/77	761		0 6	- 0							~		600	12.88	2.5	131	5	16.75		9	m	124.3	97	4	174		9
76.1	761	ا	~ r	- 00		20.	6	4	9	σ,	17		053	12.62	2.6	115	65	16.73		4	37	-	67	4	180		-
T NUM	T CODE	CENTRY MATC	10117. 6		DUE. FT-LB	۳. ۳.	200	ITION TIMING,	FOLD VACUUM, IN H	OTTLE ANGLE, D	TAKE MAN. TEMP., F	SISUS SAG (SMOLLDSINGS	00 %	0.02) ::	02, %	HC, PPMC	HOZ, PPM	PZFUEL RATIO	EMISSION RATES, GZHR	0.0		M0%+	PERATU	PRESSURE	LANT TEMPE	UST PRESS	T TEMPERAT

CORRECTED SAE JB168
CORRECTED FOR HUMIDITY

ENGINE: 1977 CHRYSLER 225CID 6-CYLINDER

2 7 9	- W L	- 0	 9 5 6	11.	 Ω	ි. ග	1 6		200	3.4	-	15	1020			٠. درا	9	121.0	20	64	180	0.9	897
8 7 9	4. ru	- 0	 eve	2v i		9	16		090	3.2	6.	110	1050	0		47.	43.	125.7		4	200		02
80.2	4.00	9 6	2 %	4. 4		9	14		960	ď	4	22	25	15.04		90	•	104.9	18	S	174		9
90 7 7 9 9 9	4 4	- 0	32°.	5 2	 Q	٠.	4		757	♥.	1.0	54	1280	0		99	71.	180.5	∞	ល	174	4	03
79.2	- 49 N	- 0		M (V			14		900	N,	1.4	8		15.73				1.4		4	171		0
79.1	. 00 L	- 0	 N	M 0		-	14		606	7	2.5	22	in in			02	75.	8		4	171		wet
EST EST UEL	ETER, ITY, G	MOINE SPEED	OWER'S	UEL RATE, LBZHR GRITTON TIMING, DEG	ANIFOLD VACUUM, IN HG	HROTILE ANGLE, D	NTAKE MAN. T	CONCENTRATIONS, DRY BASIS	2 ,00	002, %	02, %	a. a.	٠ م	AIR/FUEL RATIO	EMISSION RATES, G/HR	00	HC	*XOX	IL TEMPERATURE	IL PRESSURE	T TEMPERAT	XHAUST PRESSURE,	XHAUST TEMP

j

* CORRECTED SAE J8168 + CORRECTED FOR HUMIDITY

ENGINE: 1977 CHRYSLER 225CID 6-CYLINDER

	27 4/21/7	761	.0 744.	200	71	130	.0	ED.	~~ ·	.03	50.	NO.	54		047	50	50	8	0	18 15.36		7 12.	0		20	20		0	74.
9	12014		744			~ · ·	0	-	4	44	\$	<u> ব</u> দ্দব	< ~ ◆		ক ড	O.		40		ن ا		36	110		~		7-4	8	9
F9	12117		744	S	^	(A)	4	0	\sim	CD	دا		7		024	(A)	· 0	~ (L)	2050	15.00.00		10.	□		207	10			00
	21/7	761	44	S	1	0							142		2 4 8	S	2.3	⊘	2025	15.00		13	8	141.5	0	T			~
80 53	000	761	45. Ab.	S	Pos	0									004	CU.		§~	2800			8	Ab.	244.4		4	177		9
	1	761	45. 45.	S	15-	\circ									042	₩.	2.0	36	00	16.22		2.4	30	249.8	0	4	177	4	9
EST NUM	EST DAT	FUEL CODE	ARUMETER, NMH	UMIDITY,	EMPERATURE,	NGINE SPEED	ORBUE, FT-	OMER	UEL RATE, LB/HR	CHITION TIMING, DEG	ANIFOLD VACUUM, IN HG	HRUTTLE ANGLE, D	NIAKE MAN.	CONCENTRATIONS, DRY BASIS	CŪ, %	\Box	02, %	C, PP	0 × 0 PP	ATRAFUEL RATIO	EMISSION RATES, G/HR	03	- X		IL TEMPERATURE	IL PRESSURE, P	ANT TEMPERAT	MHAUST PRESSUR	ZHAUST TEMPERATURE,

CORRECTED SAE J8168 CORRECTED FOR HUMIDITY

ENGINE: 1977 CHRYSLER 225CID 6-CYLINDER

87.2	761	4	fU)	~	0		[₩]	e eved		m		5		002	S. S.	00	113	כש	16.09		-	M	98.		a)	~	5.0	
87.8	761	4	N.	~	20		¹	-	9	00		2		000	2.3	S	621	8			ις.	~	96.8	21	S	~	10.0	ω ∞
86.2	761		iO.	i	0							0		002	CU		143	3,78	15.33		8	, 1001 1001	134.2	0	5	~	10.0	<i>ي</i> ھ
86.1	761	. .	S	~	20	2	4	10	00	~	ιΩ (Ω	20		4 8	2	9	22	85	2. 0.		47.	61.	128.2	20	S	17	16.0	14
85.2	761	4	ผว	r~	170	<u>هـ</u>	43	σ,	2	ç,		00		645	12	und	20	31			153 48.	~	54.1		40	~	12.0	08
85.1	761		L()	~	0							20		470	13.1	٠.	20	\$	14.56		₽2 00		167.6		N)	~	22.0	4
60 00 au au	003 7	AROMETER	UMIDITY,	EMPERATURE ,	NGINE SPEED	OROUE	OWER, B	UEL RATE, LBZHR	GNITION TIMING, DEG	ANIFOLD VACUUM, IN HG	HROTTLE	NTAKE MAN. TEM	CONCENTRATIONS, DRY BASIS	0. %	C02, %	02, %	E CO		AIRZEUEL RATIO	EMISSION RATES, G/HR		₩C		IL TEMPERA	IL PRESSURE,	COLANT TEMPER	94	XHAUST TEMPERATUR

CORRECTED SAE J816B

ENGINE: 1977 CHRYSLER 225CID 6-CYLINDER

EST MUM	00				90	0
EST PAT	~	177	^	17	21/2	21.77
FUEL CODE	761	761	761	761	761	761
AROMETER, MM	∞.	43. 45.		4	44	4
UMIDITY, GRAI	RJ.	S	IO.	IJ	LC:	5
EMPERATURE,	~	\sim	N-	1/-	~	~
HGINE SPEE	20	0	0	20	200	00
ORGUE, FI-L	Ø₽.			در	34	4
OWER	12°			•	0	0
URL RATE, LBZ	67			ن	⊘	CV6
CHITION TIMING.	. و			00	9	٠.
AMIFOLD VACOUM, IN H	₩.			0	cu.	C)
HROTTLE ANGLE, D						
NTAKE MAN. TE	-		162	-	-	29.3
SISHA NAC YSHCILHAIRBURGU						
× .00	200	0.02	440	004	07.0	909
Q	ι.Α .ω	53	5	-	00	M
2, %	4-46	0	9	2	100	0
C, PPR	901	quag	40	m	&. ₩	(5)
Ř	40	750	3	0.44	1125	675
ALP FUEL PATIO	16.14	16.16	15.46	15.81	14.42	14.43
EMISSION RATES, G/HR						
	4	-	61.	—	53	50
₩.		₽2	্ ঘ		80	25.
*XOX	63.2	8.00	17.		233.4	135.0
IL TENPERATURE	4			CV	0	20
IL PRESSURE, P	S	S	10	N	S	5
ANT TEMPERATUR	174	174	172	~	175	175
ZHAUST PRESSUR					~	9
ZHAUST TENPERATUR	-	9	∞	90	22	60

* CORRECTED SAE J8168 . CORRECTED FOR HUMIDITY

EMGINE: 1977 CHRYSLER 225CID 6-CYLINDER

(2)	1/7		4	i,	r~	00	4	و	-	و	***	00	1.9		000	1974	2	198	50			qued a	00	0.09		S	172		\sim
M	1/7		रा स	r)	~	00	4	وي	, ,	9	==4		5		600	-	3	095	400	16.38		7	0	54.	CV.	S	172	o,	ω ω
	1/7	763	44	כה	~	0							205		002	N	2.0	5	275	16.25		. 2	26.	107.2		5	174		O.
92.	^~	761		I/O	1	0							202		500		8	38	288			છ	۵	. 0 0		S	17	(21	S
<u>.</u>	7		4	N,	~	200	ĸ.	40.	00	4	4		21		004	4	4	2	8 2 3 3		200	ي	12.	4 4	-	S	178		94
	ρ	26		S	Pm	0							-		243		~	56				20	74.	149.6	queg	KO.	178		6
EST NUM	EST DAT	FUEL CODE	AROMETER, M	UMIDITY, GRAI	EMPERATURE,	NGINE SPEED	OROUE, F	OWER,	UEL RA	CHITION TIMING,	RMIFOLI	HEDITLE ANGLE,	HIAKE	CONCENTRATIONS, DRY BASIS	0, %	C02, %	02, 2	HC, PPMC	ů.	AIRZFUEL RATIO	EMISSION RATES, G/HR		<u></u>	**************************************	IL TEMPERATURE	IL PRESSURE	OLANT TEMPERATURE	KHAUST PRES	XHAUST TEMPERAT

* CORRECTED SAE J8168 + CORRECTED FOR HUMIDITY

ENGINE: 1977 CHRYSLER 225CID 6-CYLINDER

96.	746.258	0		'47'	20 T	+ 0	(N)		004	0	\$	CU 	1100	25.2		~	5	254.2	231	50	180	C.	~~. Co.
· N	746.2	0					Cid		(A)	9	r-	2	1100	15.18		5	00 (3)	252.7	Cri	S	8		30
21.77.7.7.7.7.61	744.0	0					-00		.420	00	0	Oi Oi	1225	4.		23	77.		202	N	N-	ادما	5
1 Page 1991	744.5	50		5	11 Cu	 	8		383	13.6	C	00	1225	14.28		365.	01.	17.	205	S		υ.	30
4/0	4 · 10 /~	0			· <	 S 1990	\sim		002	3.0	10	407	5	16.25		, —4	دی	39.5	CVI	S	170	⟨3	90
4721777	4 4 . D L	0		ناف	· <		200		232	4.0	6.3					98		3.1		S	170		9
NUMBER DRIE	ARONSTER, UNIDITY, G EMPERATURE	NEINE S ORQUE,	OWER, SHP*	UEL RATE, LBZHR	CALTION TIMINGS	HEDDILLE ARGLE, DEG	HIRKE MAN. TEMP.	CONCENTRATIONS, DRY BASIS		C02. %	02 %		0%) PP	AIR/FUEL RATIO	EMISSION RATES, CZHR		FC		IL TEMPERATURE	IL PRESSURE, PS	HAT TEMPERAT	ZERUST PPESSUR	ZEAUST TEMPERATUR

* CORRECTED SAE J8168
* CORRECTED FOR HUMIDITY

ENGINE: 1977 CHRYSLER 225CID 6-CYLINDER

98.1	1777 4721777 4721	7619 7619 7	6.2 746.2 74	58	72 72	500 2500 2	5.3 45.3	1.3 21.3	4.6	6.0 36.0 3	1.0 11.0 1	11.0	204 204		1036 .0024	2.38 13.14	13 2.08	8452 1701 1	500 563	14 16.1		01.1 2.4 1	4.3 84.8 5	74.4 85.2	32 232	50 50	174 17	10.0	1005
26	7.7	761	9	S	~	50	e i	4	بې	Q	و		21		000	ъЭ СП	1.5	45	1125	15.89		o,	25.	188.9		5	17		S S
26	1/2	761	9	S	L~	50	o.	4	9	. 9	9		216		200	C)	1.7	93	1138	15.91		00	90	191.0	6.3	S	178	-	¢
TEST NUMBER	EST DAT	UEL COD	AROMETER	UMIDITY,	EMPERATURE	HGINE SPE	DROUE, FI-L	0 85 87	UEL RATE, LBZHR	GRITION TIM	ANIFOLD VAC	HESTILE ANG	N THE	CONCENTRATIONS, DRY BASIS	~	C02, %	02, %	a.	MOX. PPM	AIR/FUEL RATIO	EMISSION RATES, GZHR	00	HC	******	IL TEMPERAT	IL PRESSURE	-	XHAUST PRES	TOUGHOT TEMPERAT

+ CORRECTED SAE J816B + CORRECTED FOR HUMIDITY

ENGINE: 1977 CHRYSLER 225CID 6-CYLINDER

1 CU - 100 1	# # # # # # # # # # # # # # # # # # #	. 0 0 2 4 13 . 6 7 1 . 3 3 2 8 5 1 2 5 6	2000	25 - 25 C C C C C C C C C C C C C C C C C C
N 2 00 10 1	20000000000000000000000000000000000000	0 M = = = N 0	21 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	0 4 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
- 1 2 4 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	200001 0 200001 0 200001 0 20000000	0 12 2 20 20 20 20 20 20 20 20 20 20 20 20	20 20 20 20 20 20 20 20 20 20 20 20 20 2	22 4 6 5 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
10. m -1.	20 00 00 00 00 00 00 00 00 00 00 00 00 0	11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	64 60 00 40 60 00 40	2 = 2 = 4 = 1 2
· r 10 r	22 K K H K K C C C C C C C C C C C C C C C	1.6019 17.6019 10.001 10.001	3112.2	2 - E = C = C = C = C = C = C = C = C = C =
· 1~ ~ · 10 t	00000 00000 00000 00000 00000	20 20 20 20 20 20 20 20 20 20 20 20 20 2	3191.7	2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 -
EST NUMBER UEL CODE HROMETER, UNIDITY, G	SPEED, SPEED, SHP*LB ON TIMI	CONCENTRATIONS, DRY BASIS CO. 2 CO2, 2 HC, PPMC NOX, PPM	EMISSION RATES, GZHR CO HC HOZ+	OIL TEMPERATURE, FOUL PRESSURE, PSI CUCLANT TEMPERATURE, FERHAUST PRESSURE, IN. H20

* CORRECTED SAE J8168
* CORRECTED FOR HUMIDITY

ENGINE: 1977 CHRYSLER 225CID 6-CYLINDER

0.5	17	761	46	9	^	3300	8	73	 00 ™	2	M	32.	5		299	- O	-	6	28			993	90	264.1	C/J	S	17	40.0	2.7
	N-	761		- 40	- N-	3300	118	7.3	80	12			156		160	S	-	44	750			29.	127.	256.1		ID.	17	56.	3
40"	17	761	9	S	~	3000	4	⊘	-	درا	Ω	ω.	O.		002	00	2	396	150	16.32			٠ س	17.		4	\sim	0.8	9
04	1.77	761	46.	(C)	~		4	ς.		5	10	00			1 89		5.1	784				145		y- i	24	4	17	15.0	0.5
103.	1/7	761	46.	S	~	3000	ις.	4	N	4		4	CV CV		002		1.6	147	8	15.84		2	82	٠. ص	4	4	17	11.0	90
100	7	761	9	N.	1~	3000	M	4	·	4	md	4	CU		012	12.88	8.5	792	S	15.58		13		9	す	4	2	20.0	4
EST NUM	EST DAT	1	AROMETER, R	UMIDITY,	EMPERATURE	E SPEED	DROUE, FT-	OWER.	JEL RATE,	THE NOTITION TO	AMIFOLD VACUUM, IN H	AROTTLE ANGLE, DEG	## F 7	CONCENTRATIONS, DRY BASIS	2 0	C02, %	.~	C. PPM	MOX. PPM	RIRZEUEL RATIO	EMISSION RATES, GZHR		HC	**OX+	IL TEMPERAT	IL PRESSURE	OOLANT TEMP	AU	XHAUST TEMPERAT

CORRECTED SAE J8168

ENGINE: 1977 CHRYSLER 225CID 6-CYLINDER

108.2	7 6 1 A 6 1	ον · • •	~	50	J.		5	157	evi	⇔l	8		005		P	4		15 62		C/I	10	7- 00	(A)	V	5-		60
108.1	7 4 6 50	· •9	N-	0							Cu	- Angeline for a ground	52	00	⟨√⟩	ω, (Λ)		20 20 20 20 20 20 20 20 20 20 20 20 20 2		5	ci	81.3	(CI	4	~		0-0
107.2	~ 4 @ 4	. 40	No	0							M		002	9	10 10	20	1300	5		273	esed effe	288.0	S	A),	2=1		60
107.1	~ ~ ⊙ ·c	. 49	IN.	0							20	New York of the Control of the Contr	106	SO.	.0	62	1338	2004 (1) (2) (2) (2)		(1)	4. (1)	298.7	L)	P	178		53
106.2	~ ~ ~ ~	. io	N-	0							Cu.		005	0	97	3	\$ 0 3 th	15. 4.9		IO	رما درما	324.4	_ Cu	4	175	. 0	27
106.1	\$ 0 0 0	9	~	30	फ्रा		· .	(4	্ কু	Δ.	2	, i.e., a	42		♦	9.		15.50		~			24	4	5	0	45
TEST NUMBER TEST DATE	DEL CUDE AROMETER, MMH	UMIDITY,	EMPERATURE	NGINE SPEED	ORBUE, F	OWER. B	UEL RATE, L	GRITION TIMING, D	AMIFOLD VACUUM, IN H	HROTTLE ANGLE, DE	NTAKE MAN. T	CONCENTRATIONS, DRY BASIS	00, %	C02, %	Ś		OX, PP	ATEZEUEL RATIO	EMISSION RATES, G/HR		Ŭ.		IL TEMPERATURE	IL PRESSURE, P	SCAHT TEMPERATUR	KHAUST PRESSUR	XHAUST TEMPERATUR

* CORRECTED SAE J8168 * CORRECTED FOR HUMIDITY

ENGINE: 1977 CHRYSLER 225CID 6-CYLINDER

end end end end	4/21/7	761	746	\sigma	~	360	00	09	- M		1 5	20	234		. 002	100 100	N	C		10 10	*****	ഡ	(64)	(1) (2) (3) (4) (4) (5)		4	- 00	4	129
	~	764	46	9	8	0							23		دسا دسم (ام)	∞	(A	00	0ml			C)	67	33	^	707	00	57.	48
⊙⊲ ≈⊲	1	761	9	S	~	9	-	ص	-	(V)	- TOP	(^)	210		415	S	-queq	00	006	60) (A) (B)		ເກ ໝ	900	32 23 24	NJ.	43	7	47.0	23
110.	7	9 2	9	9	N	09	400f 6md	75	40	12	4	M	2		. 134	4	(VI	40	920	 		179 173	42.	331.3	I/O	4	~	66.0	5
109.	~	761	6	9	P~	0							214		400	-	2.2	P~-	:00 			42.	ı,	23		4	I \	00	è.
100	~	761	4 6	S	N-	0							214		201	4.	- N	\Diamond				00 20	LO	0.71		4	\$-4	0.91	60
EST NUM	EST DAT	FUEL CODE	AROMETER, MMHG	UMIDITY, GRAI	EMPERATURE,	MGINE SPEED	ORBUE, FT-	OWER BH	UEL RATE, LBZHR	CHITION TIMING, DEG	AMIFOLD VACUUM, IN MG	HPOTTLE ANGLE, D	HTAKE MAN. T	CONCENTRATIONS, DRY BASIS	0, %	C00)	Š	\subseteq	0	AIR/FUEL RATIO		00		*X0X	IL TEMPERATURE	IL PRESSURE, P	OOLANT TEMPERA	HAUST PRESSUR	NHAUST TEMPERATURE,

* CORRECTED SAE J816B

ENGINE: 1977 CHRYSLER 225CID 6-CYLINDER

· /~	17 18 19 10 10 10 10 10	- 0	oi -		9	4.	0	20		004		4.	426	21	15.35		4	٠ م	31.6	4	4	174		23
		9	· ·	 ∩	9	4	0	20		235	S	80	185	15	15.11		224.	~	22.	_	4	17		**
113.2	4 0 . 0 v	- 0	~ 4		9	_	4	8		002		1.4	93		15.63		M	32	130.5	3	4	172		16
113.1	4 0 0	- 0	∼ 4	-	9	<u>.</u>	4	18		142	9	5.5	88	575	4		10 10	74.	119.5	143	4	172	٠.	20
112.2	46.	- 0	e (> N	4	0	တ	23		0.05	9	1.5	57				רייו	42.	278.1	~	4	175		13
4/21/77	46.	~ 0						63		122	4	1.7	16	1263			84	62	292.5	~	4	175		27
200	ARONETE UMIDITY CMOCCOL	NGINE SPEED,	ORQUE	UNITED BOTHS	CHITION TIMING,	ANIFOLD VACUUM, IN H	HROTILE ANGLE, D	NIAKE MAN	CONCENTRATIONS, DRY BASIS	2	C02, %	02. %	PPR	NOX, PPM	AIRZFUEL RATIO	EMISSION RATES, G/HR		HC		IL TEMPE	IL PRESSURE, P	AHT TEMPERATURE	XHAUST PRESSUR	KHAUST TEMPERATUR

CORRECTED SAE J8168

ENGINE: 1977 CHRYSLER 225CID 6-CYLINDER

· 1/2 mm	745.6	5 4 4		55.	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	6 4 8 0	1 1 2 2 2 2 2 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4
· 1/~		V 4 4			13 65 13 65 13 65 13 65 14 65 15 65 15 65	25 E	2 2 10 00 00 10 10 - 4 00 01 01 04
1 No. 1000	745.6 53 74	•			0		S = 38 127 · 38 13 4 0 4
· No ved	745.6	•			0.10 0.21 0.22 0.20 0.20 0.20 0.20 0.20		212 50 174 95.0 95.0
· Pu vu		V 4 K		4 6 74	1.56 13.63 .53.3 .53.3 .53.3 .55.7		200 522 13.0
5 7 3	74 10 . 10 . 10 . 10 . 10	4 4		4 60 54	2.0086 13.01 .50 1690 1025	2415.8 102.1 183.6	200 172 172 113.0
ST NU ST DA	ETER ITY, RATU	SINE SPEE SQUE: FI-	EL RATE, LBZH	COTTLE ANGLE, DEG PAKE MAN. TEMP., F	CONCENTRATIONS, DRY BASIS CO, % CO2, % HC, PPMC NOX, PPM	AIR/FUEL RATIO EMISSION RATES, G/HR CO HC NOX+	OIL TEMPERATURE, F OIL PRESSURE, PSI COOLANT TEMPERATURE, F EXHAUST PRESSURE, IN. H20 EXHAUST TEMPERATURE, F

* CORRECTED SAE J8168 + CORRECTED FOR HUMIDITY

19	2/7	761		5	~	200	~	40	00	10	5.0	6	N		0 2 8		> ir		9	825	15.33	63		142.9	0	5	~	13.0	M	
19	2/27	7619		S	~	200	~	40	00	3		9			000	5	, (00	N-	00	15.24	22.	69	140.3		n	17	20.0	19	
18	217	761		כש	~	200	4	50	N		2.5	9	CV		700			0 1	00	513		19	18	100.4	-	5	~	17.0	-	
89	217	761		, ru	~	00	4	50	N	9		ø.			100	5.5	,	d .	56	1175		80	8 4	233.6	444	5	17	25.0	21	
EST NUM	EST DAT	UEL COD	ARONETER, MM	UMIDITY, GRAI	EMPERATURE,	NGINE SPEED	ORBUE, FT-	OWER, BHP	UEL RATE, LB/H	GHITION TIMING, DEG		HROTTLE ANGLE, DEG	NTAKE MAN. TEMP.	STROUGHT PATE AND STROUGHT AND	C0. 2	602, 2	, ,	7 / 7	こ、 アアコ	MOX, PPM	AIRZFUEL RATIO	00			IL TEMPERATURE	IL PRESSURE, PS	DOLANT TEMPERATURE	EXHAUST PRESSURE, IN. H20	XHAUST TEMPERATURE, F	

* CORRECTED SAE J8168 + CORRECTED FOR HUMIDITY

	The second secon

HE18.5 .A34 no.DOT-TSC-NHTSA-78-4 FORMERLY FORM DO BORROWER

U. S. DEPARTMENT OF TRANSPORTATION TRANSPORTATION SYSTEMS CENTER KENDALL SQUARE, CAMBRIDGE, MA. 02142

OFFICIAL BUSINESS
PENALTY FOR PRIVATE USE, \$300

POSTAGE AND FEES PAID

U. S. DEPARTMENT OF TRANSPORTATION

513

1