

Gaze and Head Joint Representation Learning

A Multimodal Approach

Ashwin Murali, Souptik Kumar Majumdar February 7, 2024

Perceptual User Interfaces Group, University of Stuttgart www.perceptualui.org 🗷

Supervisor: Chuhan Jiao

Introduction

Methodology

Results

Introduction

- Accurate capture and interpretation of gaze data in digital interaction faces hurdles.
- Frequent missing data poses challenges, stemming from calibration issues, human errors, and natural actions like blinking.
- These challenges can be tackled by using head movement data to enhance and rebuild incomplete gaze data, improving accuracy in digital interactions and analysis.

Background

 LIMU-BERT aims to use unlabeled IMU data to extract generalized features, adopting self-supervised training principles in IMU sensor measurements.

Source: LIMU BERT Architecture. (Xu et al. [2021])

Objectives

- Extend LIMU-BERT model as a Multi-Modal, aiming to leverage correlations between head and gaze for improved gaze data reconstruction.
- Examine the multimodal performance on challenging test sets and downstream tasks to assess how this correlation contributes to the reconstruction process.

Introduction

Methodology

Results

Dataset

Feature	Description
Name	VR Behavior (V2) (Jin et al. [2022])
Modalities	Head and Gaze
Data Representation	Coordinates and quaternions
Sampling Frequency	120Hz among 100 users
Total Samples	60,926

- Unit vectors of head and gaze representing the direction are the input features for the Model.
- Input sequences of 8 seconds each are provided to the model.

Data Preprocessing

- The data was downsampled from 120Hz to 30Hz.
- Rows containing NaN values were removed.

Masking

- The Masked Language Model (MLM) task involves masking individual tokens in a sequence and training the model to predict the masked tokens based on the surrounding context.
- Because adjacent IMU sensor data measurements are similar over time, the model can reconstruct the masked readings by mirroring neighboring readings.
- To provide a sufficiently challenging condition for training an effective model, longer subsequences are masked instead of just one token using span masking algorithm.

Multi Modal Architecture

Source: Multi Modal LIMU BERT Architecture

Variants

- Multi Modal with Gaze Reconstruction
- Multi Modal with Head and Gaze Reconstruction

Baselines

- A scipy 1D interpolation modal was used as a baseline to estimate the masked gaze values.
- A Single Modal Architecture which uses only gaze data for reconstruction was also used as a baseline.

9

Introduction

Methodology

Results

Scipy Interpolation1D

Source: Baseline results

Multi-Modal with Gaze Reconstruction

Source: Multi-Modal results

Gaze Reconstruction Comparison

Source: Multi-Modal

Summary

Source: Metrics

Source: Loss

Introduction

Methodology

Results

Conclusion and Future Work

- The Gaze Multimodal effectively reconstructs gaze values by leveraging the correlation between head and gaze data.
- The next step is to assess the model's performance on downstream applications.

References i

- Y. Jin, J. Liu, F. Wang, and S. Cui. Where are you looking?: A large-scale dataset of head and gaze behavior for 360-degree videos and a pilot study. In MM '22: Proceedings of the 30th ACM International Conference on Multimedia, Lisboa, Portugal, October 10 - 14, 2022. ACM, 2022. doi: 10.1145/3503161.3548200.
- H. Xu, P. Zhou, R. Tan, M. Li, and G. Shen. Limu-bert: Unleashing the potential of unlabeled data for imu sensing applications. In *Proceedings of the 19th ACM* Conference on Embedded Networked Sensor Systems, pages 220–233, 2021.

