Projet ROSE IHM PEPPER RoboCup@Home

Guillaume BERTHELON

Antoine D'AURE

Alexis MAIRE

Timothée OLIVES

Tristan PARISELLE

Antoine PORTÉ

Aurélien SAUNIER

Plan

- 1. Présentation de l'équipe
- 2. Présentation de l'épreuve
- 3. Cheminement de la réflexion
- 4. Organisation générale de l'équipe
- 5. Vidéo Présentation Robot
- 6. Approche par mots clefs
- 7. Approche dynamique
- 8. Récupération de la réponse à partir question posée
- 9. Tablette
- 10. Phase de test
- 11. Bilan personnel
- 12. Bilan groupe
- 13. Conclusion / Ouverture

Présentation de l'équipe

• Equipe de 7 étudiants CPE spécialisation Robotique

• Intérêt pour développer l'IHM

Pepper

Présentation de l'épreuve

RoboCup@Home

• Montréal 2018

 Epreuve « Speech and Person Recognition »

 Interface Homme Machine (IHM)

Cheminement de la réflexion

Mise en place globale

- Compréhension du sujet et de l'épreuve
- Exploration de l'ensemble des questions
- Définition axes de travail

Mise en œuvre technique

- Prise en main Hard/Software (QiChat, Naoqi, chorégraphe ...)
- Compréhension logicielle des questions

Organisation générale de l'équipe

- Création Github et Trello
- Répartitions des tâches en duo selon préférences
- Création d'une base de donnée comportant les caractéristiques de l'ensemble des objets/localisation/personnes

Vidéo de présentation

Fonctionnement de Qi Chat - Dialog

• Topic : fichier contenant des règles

```
topic: ~topic_dialog_with_pepper()
language: enu
```

 Règles : associent à entrée humaine une réponse du robot

```
u:(~greetings) ~greetings Nice to see you dear, what is your name?
```

• Concept : liste de mots/phrases ou synonyme

```
concept: (greetings) ^rand[hi hello "good morning" "hey there"]
```


Etapes

• Définition des concepts généraux

concept: (localisation) ["are in" where situation room situated placed located find belong stored "in which" ~rooms]

• Définition des concepts objets , personne et localisation

• Découpe des questions par mots clefs

u: (~localisation * chips {please}) chips is on the desk in the office

Etapes

 Implémentation de toutes les questions selon le même modèle

u: (~how many * standing) in the crowd, there are ^size(~pers standing)

Fonctionnement

• Insérer le fichier .top dans Pepper

• Lancer le script de connexion python au robot

Interaction homme robot

1	A	В	C	D	E	F	G	H	I.
1	Name	Туре	Category	Localization	Room	Color	Shape	Size	Weight
2	chips	food	snack	desk	office	yellow	none	1	
3	pringles	food	snack	desk	office	red	none	1	
4	peanuts	food	snack	desk	office	brown	none	0	
5	chocolate bar	food	candies	center table	living room	brown	none	2	
6	mints	food	candies	center table	living room	green	none	0	
7	chocolate egg	food	candies	center table	living room	brown	none	2	

Parseur CSV:

• Récupération de chaque entrée du tableau

```
parseur = CSV_PARSEUR("list_objects.csv","list_person.csv","list_locations.csv")
```

for object in parseur.objects:

objects.append(object.name)

Dynamic concepts:

• Déclaration et utilisation dans le fichier .top

```
dynamic: object
u: (~what_is {the} color {of} {the} _~object)
```

• Initialisation dans le fichier python

```
ALDialog.setConcept("object", "English", objects)
ALDialog.addToConcept("object", "English", "newObject")
```


ALKnowledge

• Définition Ensemble de triplet (sujet, prédicat, objet) représentant la mémoire du robot

Utilisation

```
knowledge_service = self.session.service("ALKnowledge")
knowledge_service.add("knowledge", "chips", "hasColor", "yellow")

Quelle est les couleur des chips ?
   knowledge_service.getObject("knowledge", "chips", "hasColor")

Réponse : Yellow
```

Fonctionnalités intéressantes

getObject, getSubject, update.

Mise en forme des questions

est ce que l'objet 1 et l'objet 2 ont la meme taille

u: ([do are is] {the} {size} {of} _~object and _~object {have} {of} the same {size}) \$1 and \$2 ^call(ProcessObjectModule.sameSize(\$1,\$2)) c1:(True) have the same size c1:(False) have not the same size

• Utilisation de [] pour avoir plusieurs entrées possibles

• Utilisation de {} pour avoir une entrée optionnelle

Récupération de variables grâce aux _

 Réponse à la question en appelant une fonction de traitement python (^call)

ALModule et traitement de la réponse

Déclaration du ALModule:

processObject= ProcessObjectModule(self.session,parseur)
self.session.registerService("ProcessObjectModule", processObject)

Récupération de la réponse à partir question posée

Unique fonction pour interpréter et répondre

- Rétention des mots clés dans une liste
- Tri des mots clés
- Disjonction de cas en fonction des prépositions
- Entrée : une question

Sortie : une réponse

Tablette

Prise en main:

DE CITIMIE PHISTIPPE ÉLECTPONIQUE

- affichage Image
- affichage page Web
- fonctionnalités liées à un web service

```
// global session
var session = new QiSession(function(session) {
                // document.getElementById('typed').innerHTML = "Connection esterblished!";
               // document.getElementById('typed').innerHTML = "Could not connect to the re
              });
// Subscribe to ALMemory Service
session.service("ALMemory").then(function(ALMemory) {
  // document.getElementById('typed').innerHTML = "ALMemory proxy subscription successful!"
  ALMemory.getData('keyword typed').then(function(keyword){
        new Typed('#typed', {
          strings: [keyword],
          typeSpeed: 15,
          fadeOut: true,
        });
   ALMemory.getData('keyword CH').then(function(keyword){
        document.getElementById('Conversation history').innerHTML = [keyword];
 });
}});
```


Conversation history:

- 1 Hello ? Hello Human

Tablette

Application pour projet:

- page sur l'historique de la discussion
- page pour les tests

Phase de test

Préparation du test

- Chargement d'un fichier .top de test généré par une des deux approches (mots clefs ou dynamique)
- Ensemble des questions enregistrées dans un fichier .txt
- Appel au logiciel balcon pour poser la question
- Connexion au Pepper

Phase de Test – Algorithme

Lancement de la question

- Utilisation des évènements pour récupérer la réponse
- Comparaison de la réponse avec notre script de génération automatique de réponse
- Enregistrement des résultats et affichage sur la tablette
- Temporisation faible entre chaque question (< 3s)
 - ✓ <u>Vidéo de Tests IHM Pepper</u>

Bilan personnel – Guillaume BERTHELON

- Prise en main de l'environnement
- Tests
- Travail sur ALKnowledge
- Travail sur ALModule
- Travail sur les concept dynamic
- Formulation des questions dans le fichier topic

Bilan personnel – Antoine D'AURE

- Prise en main de l'environnement (Qichat, naoqi)
- Exploration de l'ensembles des questions possibles
- Approche par mots clefs (dont gestion tablette)
- Test & analyse
- Présentation et montage vidéos

Bilan personnel – Alexis MAIRE

- Prise en main de l'environnement
- Exploration de l'ensemble de questions
- Génération de l'ensemble des questions
- Approche par mots clefs
- Tests et analyse de résultats
- Présentation finale

Bilan personnel – Timothée OLIVES

- Prise en main de l'environnement 20%
- Exploration du champ lexical -8%
- Elaboration d'un script de réponse 56%
- script
 d'automatisation de
 création du fichier
 topic 8%
- présentation 8%

Bilan personnel – Tristan PARISELLE

- Prise en main de l'environnement
- Tests
- Travail sur l'échange de variable entre python et topic
- Travail sur ALModule
- Conception des fonctions de traitement de réponse en python
- Formulation des questions dans le fichier topic

Bilan personnel – Antoine PORTÉ

- Prise en main de l'environnement
- Exploration de l'ensemble de questions
- Création Github
- Tablette
- Mouvement du robot en fonction du son
- Présentation finale

Bilan personnel – Aurélien SAUNIER

- Prise en main de l'environnement et notamment du fonctionnement des évènements
- Développement du parseur CSV et des classes utilisées
- Mise en place de la classe de test
- Test et récupération des résultats

Bilan de groupe

Mise en situation équipe d'ingénieur de développements

- Lundi:
 - Compte rendu de la semaine passée
 - Répartition des taches de la semaine à venir
- Bonne entente et répartition des taches

Conclusion

- Réponse au cahier des charges :
 - Test de « speech recognition »
- Résultats :
 - Approche par mots clefs
 - 10% d'erreur (1h de test/300 questions précises)
 - Très bon résultats avec voix synthétique (Zira)
 - Approche dynamique
 - < 10% d'erreur (1h de test/300 questions précises)
 - Bons résultats en face à face avec une personne
 - Excellents résultat avec la voix synthétique

Conclusion

- Améliorations possibles:
 - Automatisation du fichier .top
 - Agrandir la base de données de la grammaire
 - Implémenter la reconnaissance visuelle
 - Nouvelle approche via analyse de son (récupération fichier mp3)

