SELECTING IMPACTFUL PRODUCT FEATURES

using statistics and machine learning

ȘTEFAN NICULAE

CONTENTS

Problem Statement

Context

Features & Labels

Model Optimization

Data Analysis

Statistical Methods

Meta Classifier

Feature Ranking

Conclusions

an application

make it better

an application

make it better
make it more successful

an application

make it better
make it more successful

increase the number of customers

an application

make it better

make it more successful

increase the number of customers

increase retention

an application

make it better
make it more successful
increase the number of customers
increase retention

features that impact retention the most

an application usage of an application

make it better

make it more successful

increase the number of customers

increase retention

features that impact retention the most

an application
usage of an application
user logs for an application

make it better
make it more successful
increase the number of customers
increase retention

features that impact retention the most

an application
usage of an application
user logs for an application

make it better

make it more successful

increase the number of customers

increase retention

features that impact retention the most

Machine learning task!

MACHINE LEARNING

train on some labeled examples, then predict label for a new example

OUR PROBLEM

given a big dataset, find most discriminatory features

OVERVIEW

APPROACH

train a model,
it will understand data relationships.
ask it what features helped decide the most

more accurate model, more valuable its opinion

THE APPLICATION

BEFORE LEARNING

QUICK NUMBERS

users

sessions

43k 115k 4.8m events

no outliers (98 quantile) or accidents (<15s)

EXTRACTED FEATURES

DOCUMENT

opened, created, saved imported, exported, shared

DRAWS

rectangles, ellipses, lines, paths, text artboards, repeat-grids, wires

HISTORICAL

total time, number of launches, days span

TIMES

in design, prototype, preview, first session, action frequency

Counts ignore sequentiality.

Build action sequences

RETENTION DEFINITION

- time
- sessions
- days span

32%

24%

16%

8%

RETENTION DEFINITION

• time: 10m

• sessions: 3

• days span: 15

2	32	32	30	22	9	4	1	0
58	32	32	30	22	9	4	1	0
30s	32	32	29	22	9	4	1	0
1	32	32	29	22	9	4	1	0
5m	30	30	28	21	9	4	1	0
ne 10m	27	27	26	21	9	4	1	0
Time 15m 10	26	26	25	20	9	4	1	0
30m	23	23	22	19	9	4	1	0
1h	20	20	19	17	8	4	1	0
2h	16	16	16	14	7	3	1	0
5h	9	9	9	8	5	3	1	0
10h	4	4	3	3	2	1	0	0
1 2 3 5 10 15 25 50 Sessions								

OPTIMIZE LEARNING

SELECTING A MODEL

- have to know the data beforehand
- need experience to pick,
- even experts need to rely on trial-and-error

PARETO IN PRACTICE

RETENTION DISTRIBUTION

LEARNING ALGORITHMS

- neural networks
- support vector machines
- decision tree forests
- naive bayes
- logistic regression
- gradient descent

- boosting
- bagging

No free lunch theorem

HYPER-PARAMETERS

- models need to be tuned to be effective
- many have multiple hyper-parameters
- can't try every possible combination

HYPER-PARAMETER GRID

Horizon effect

HYPER-PARAM SEARCH

- grid search when model is fast
- randomized search instead
- and for continuous distributions as well

FEATURE SELECTION

- reduces complexity
- easier to interpret
- will learn relationships, not noise
- requires smaller training set

Curse of dimensionality

SUBSET PERFORMANCE

FS TECHNIQUES

- recursive feature elimination
- data analysis
- statistical methods

AVERAGE USAGE

ACTION SEQUENCES

MODE PREFERENCE

STATISTICAL SCORES

STATISTICAL METHODS

MODEL OPTIMIZATION

PIPELINE

- gives the best model for a learning task
- seeks to minimize human input
- compensates for lack of experience

MODEL OPTIMIZATION

BEFORE

- Pick applicable learning methods on the task
 Select concrete learning **algorithms** for each method
- 2 Consider impactful hyper-parameters for each algorithm Pick sensible **ranges of values** for each hyper-parameter
- Run data analysis and statistical methods
 Propose most impactful feature subsets
- 4 Decide the desired **duration** allowed for optimization

MODEL OPTIMIZATION

STEPS

- Run exhaustive search on hyper-parameter grid on a **sample Restrict** hyper-parameters iterations and RFE step size based on time
- 2 Fit **hyper-parameters** for each model Using random-search (restricted)
- Chose best **feature subset** for each model

 Try the whole dataset, proposed subsets and RFE (restricted)
- Take best models (with diversity in mind)
 Use them as deciders for the **combining classifier**

META CLASSIFIER

classify based on the output of other algorithms, not on examples themselves

- learn **how** to learn
- already trained many models
- learn how to best combine their decisions

COMBINER

simple model for aggregating: shallow NN, small RF, linear SVM

DECIDERS

take best performing models.
each has strengths and weaknesses,
compensate by promoting diversity

MODEL PERFORMANCE

MODEL COMPARISON

FEATURE RANKING

CONCLUSION

Important features:

- prototype, preview
- RGs, ABs

Field contribution:

- model optimization pipeline,
- combining classifier

NEXT STEPS

Technique refinement:

- continuous classification
- deep learning
- word embedding visualization

New direction:

- sequence learning
- predictive system

AVAILABLE ON REQUEST

10x -		Touchers to Significants Touchers to Extensivers	
∞ 7.5x −			
		1	Prvs S
			ighti
		able information	
		question, instead ore we dive into	
CONTENTS		tive clearly. This	thre
		a brief overview	
I PREFACE	1		Retaine
1 INTRODUCTION	2		S.101101
1.1 Problem Statement		ry easy to focus	
1.3 Paper Outline		le states: A high	
2 CONTEXT	4	of variables. [17]	Prvs
2.1 The Application		used 80 percent n those features.	
· ·		erify their value	alyzi
II BACKGROUND 3 ALGORITHMS	8 9	wently Consider an	racti
3.1 Machine Learning Fundaments		vorth focusing on o define what it	e mo
3.2 Learning Models		oduct successful.	activ
3.3 Statistical Based Methods	25 28	etention rate, i.e. usion, we should	lone
4.1 Feature Selection		, , , , , , , , , , , , , , , , , , , ,	umer
4.2 Customer Retention	29		nd p
III DEVELOPMENT	30		
5 DATA ANALYSIS 5.1 Retention Definition	31 31	quite an unique	
5.2 Event Based Features		o try techniques earning) and use	
5.3 Time Based Features		arinig) and use	
5.4 Action Sequences	46 50		
6.1 Model Optimization Pipeline	50		'rvs :
6.2 Combining Classifier		1 has stated the	
7 APPLICATION AND RESULTS	53 55	ext in which the	ners
7.1 Statistical Based Methods	55	apter 3 includes	d sha
7.2 Machine Learning Based	60	arning concepts,	
IV CLOSING WORDS	70	iques. Chapter 4 ide, or customer	
8 CONCLUSIONS 8.1 Results Summary	71 71	ide, of customer	
8.2 Contribution to the Field		l to the data, its	
9 FURTHER WORK	73	ts algorithms de- dataset. Finally,	
V APPENDIX	74	,,	
BIBLIOGRAPHY	77		
viii			

THESIS
87 pages

```
coef = coef[0]
                            coef = np.absolute(coef)
                            return coef / coef.sum() # make them all sum up to one
               343 def rank_features(profiles):
               344 vprint('\nComputing rankings for:')
              346 # TODO refactor so that each VarModel has a boolean does_ranking
347 header = pd.MultiIndex.from_product([ranking_model_names(),
11 from sklearn.datasets import make_hastie_10_2
 12 from sklearn.metrics import accuracy_score
class CombiningClassifier(BaseEstimator, ClassifierMixin):
def __init__(self, combiner=Perceptron(), deciders='default'):
           self.combiner = combiner
           if deciders == 'default':
              deciders = [SVC(), ExtraTreesClassifier(),
                        LogisticRegression(), MultinomialNB()]
           self.deciders = deciders
25     def check_parameters(self):
                                                                                optimal subset
           # Checking if the combining and deciding classifiers are
           # actually classifiers
           classifiers = [self.combiner] + self.deciders
           for clf in classifiers:
             # TODO make these exception throwers
              assert issubclass(clf.__class__, BaseEstimator)
              assert issubclass(clf.__class__, ClassifierMixin)
                                                                                in importances]
              # TODO use has attr fit and has attr predict
       def combiner_input_(self, X):
         # The first row contains the predictions of the first deciding
          # classifier for every point
          # the second row has the second deciding classifier, etc
           deciders_output = [clf.predict(X) for clf in self.deciders]
          # Now on the first row there is the prediction for the first point of
          # every deciding classifier
          # on the second row the prediction for the second point etc
           return np.array(deciders_output).transpose()
       def fit(self, X, y):
           self.check_parameters()
```

CODE

3.9 kloc

ACKNOWLEDGEMENTS

Paul Alexandru Chirița

Ștefan Teodor Craciun

Alexandru-Daniel Mirea

Daniel Dogaru

BIBLIOGRAPHY

C. Bishop - Pattern Recognition and Machine Learning

T. Hastie et al - The Elements of Statistical Learning: Data Mining, Inference, and Prediction

Full list in paper

Q & A

+ feedback

THANK YOU

for your attention

niculae@adobe.com 10C

"An approximate answer to the right problem is worth a good deal more than an exact answer to an approximate problem"

— John Tukey, mathematician