Problem Set 3

Problem 1

- a) $!\exists x (C(x) \wedge D(x) \wedge F(x))$
- b) $\forall x (C(x) \land D(x) \land F(x))$
- c) $\exists x (C(x) \land F(x) \land \neg D(x))$
- d) orall x (
 eg C(x) ee
 eg D(x) ee
 eg F(x))
- e) $(\exists x C(x)) \wedge (\exists y D(y)) \wedge (\exists z F(z))$

Problem 2

a)

当x = -1的时候 $(-1)^3 = -1$ 成立,所以 $\exists x(x^3) = -1$ 真值为T.

b)

当 $x = \frac{1}{2}$ 的时候 $(\frac{1}{2})^4 < (\frac{1}{2})^2$ 成立,

所以 $\exists x(x^4 < x^2)$ 真值为T.

c)

由于 $(-x)^2 = x^2$ 对所有实数x均为T, 所以 $\forall x((-x)^2 = x^2)$ 为T.

d)

当x=0的时候, $2\times 0>0$ 不成立, 即存在反例,

所以 $\forall x (2x > x)$ 真值为F.

a)

P(x): x遵守驾驶速度限制.

x论域是所有的司机.

所有的司机都遵守驾驶速度限制.

 $\forall x P(x)$

b)

有些瑞典电影并不严肃.

P(x): x是严肃的.

x论域是所有的瑞典电影.

 $\exists x (\neg P(x))$

c)

有人能保守秘密.

P(x): x能保守秘密.

x论域是所有人.

 $\exists x P(x)$

d)

班上所有人都有良好的心态.

P(x): x有良好的心态.

x论域是班上所有人.

 $\exists x P(x)$

a)

P(x): x可以访问电子邮箱.

x论域是所有用户.

 $\forall x P(x)$

b)

P(x): x可以访问系统邮箱.

x论域为组里的所有人.

q:文件系统被锁定.

q o orall x P(x)

c)

p: 防火墙处于诊断状态.

q:代理服务器处于诊断状态.

 $p \leftrightarrow q$

d)

P(x): x工作正常.

x论域为所有的路由器.

q:吞吐量在100~500kbps.

r:代理服务器不处于诊断模式.

 $q \wedge r o \exists x P(x)$

Problem 5

- a) 学生 Randy Goldberg 注册了课程 CS 252.
- b) 有学生注册了课程 Math 695.
- c) 学生 Carol Sitca 注册了学校中的一些课程.
- d) 有学生同时注册了课程 Math 222 和 CS252.
- e) 有学生注册了另一个学生注册的所有课程.
- f) 有两个学生注册的课程一模一样.

P(x): x是三年级学生.

Q(x): x是计算机科学专业的.

R(x): x是数学专业的.

S(x): x是二年级学生.

a)

 $\exists x P(x)$

真值为T

b)

 $\forall x Q(x)$

真值为F

c)

 $\exists x (\neg R(x) \land \neg P(x))$

真值为T

d)

论域为所有实数.

 $orall a orall b orall c \exists x_1 \exists x_2 orall x (a
eq 0 \land ax^2 + bx + c = 0 \land x_1
eq x_2
ightarrow x = x_1 \lor x = x_2)$

Problem 8

- a) 正确, 假言推理
- b) 错误, 肯定结论的谬误
- c) 错误, 否定假设的谬误

Problem 9

- 1. $\exists x (P(x) \land \neg R(x))$ (前提引入)
- 2. $P(c) \wedge \neg R(c)$ (存在实例, 由1.)
- 3. $\forall x(P(x) \rightarrow Q(x))$ (前提引入)
- 4. P(c) o Q(c) (全称实例, 由3.)
- 5. P(c) (化简,由1)
- 6. Q(c) (假言推理, 由4.5.)
- 7. ¬R(c) (化简, 由2)
- 8. $Q(c) \land \neg R(c)$ (合取, 由6.7.)
- 9. $\exists x (Q(x) \land \neg R(x))$ (存在引入, 由8.)

所以用了存在实例,存在引入,全称实例,化简,合取,假言推理这六条推理规则.

Problem 10

 $3. \rightarrow 4.$ 和 $5. \rightarrow 6.$ 错误,没有证明对任意c均成立,无法使用全称引入推理规则.

Problem 11

1. $\exists x \neg P(x)$ (前提引入)

- 2. ¬P(c) (存在实例, 由1.)
- 3. $\forall x (P(x) \lor Q(x))$ (前提引入)
- 4. $P(c) \lor Q(c)$ (全称实例, 由3.)
- 5. $\forall x(\neg Q(x) \lor S(x))$ (前提引入)
- 6. $\neg Q(c) \lor S(c)$ (全称实例, 由5.)
- 7. $P(c) \lor S(c)$ (消解律, 由4.6.)
- 8. S(c) (取拒式, 由2.7.)
- 9. $\forall x (R(x)
 ightarrow \neg S(x))$ (前提引入)
- 10. $R(c)
 ightarrow \neg S(c)$ (全称实例, 由9.)
- 11. $\neg R(c)$ (取拒式, 由8.10.)
- 12. $\exists x \neg R(x)$ (存在引入, 由11.)