

## വശങ്ങളും കോണുകളും

ഒരു ത്രികോണത്തിന്റെ വശങ്ങളുടെയെല്ലാം നീളം പറഞ്ഞാൽ അതു വരയ്ക്കാനറിയാമല്ലോ.



ത്രികോണം ABC വരയ്ക്കുക. D, E എന്നീ രണ്ടു ബിന്ദുക്കൾ അടയാളപ്പെടുത്തുക. Translate by Vector എടുത്ത്  $\Delta ABC, D, E$  എന്നിവയിൽ ക്രമമായി ക്ലിക്ക് ചെയ്യുക. പുതിയ ഒരു  $\Delta A'B'C'$  കിട്ടുന്നില്ലേ. ഈ രണ്ടു ത്രികോണങ്ങളും തമ്മിലുള്ള ബന്ധം എന്താണ്?  $\Delta ABC$  യുടെ വശങ്ങളും കോണുകളും മാറ്റി നോക്കു.  $\Delta A'B'C'$  മാറുന്നുണ്ടോ? E യുടെ സ്ഥാനം മാറ്റി നോക്കു. E എന്ന ബിന്ദു D യിൽ എത്തുമ്പോൾ എന്താണ് സംഭ വിക്കുന്നത്?



ABC എന്ന ത്രികോണവും DE എന്ന വരയും വരയ്ക്കുക. Reflect about Line എടുത്ത് ത്രികോണത്തിലും വരയിലും ക്ലിക്ക് ചെയ്യുക.  $\Delta A'B'C'$  ലഭിക്കും. രണ്ടു ത്രികോണങ്ങളും തമ്മിലുള്ള ബന്ധം എന്താണ്?  $\Delta ABC$  യുടെ വശങ്ങളുടെ നീളം, DE എന്ന വരയുടെ സ്ഥാനം, ചരിവ് തുടങ്ങിയവ മാറ്റിനോക്കു.



വശങ്ങളുടെ നീളം 4 സെന്റിമീറ്റർ, 5 സെന്റിമീറ്റർ, 7 സെന്റി മീറ്റർ.

ത്രികോണം വരയ്ക്കാമോ?

ഇങ്ങനെ വരയ്ക്കാം:





ഇതുപോലെ താഴത്തെ വശം 5 സെന്റിമീറ്റർ ആയി രണ്ടു ത്രികോണം വരയ്ക്കാം:



താഴത്തെ വശം 7 സെന്റിമീറ്റർ ആയും വരയ്ക്കാം:



ഈ ആറു ത്രികോണങ്ങളിലും വശങ്ങളെല്ലാം ഒന്നുതന്നെ യാണ്. കോണുകളോ?

ആദ്യം വരച്ച ത്രികോണത്തെ തിരിച്ചും മറിച്ചും വച്ചവ തന്നെയാണല്ലോ മറ്റെല്ലാം. ആദ്യം വരച്ച ത്രികോണം കട്ടിക്കടലാസിൽ വെട്ടിയെടുത്ത്, പലതര ത്തിൽ തിരിച്ചും മറിച്ചും മറ്റെല്ലാ ത്രികോണങ്ങളുമായും കൃത്യമായി ചേർത്തുവയ്ക്കാൻ കഴിയുന്നുണ്ടോ എന്നു നോക്കൂ.

തുല്യമായ വശങ്ങൾ ചേർത്തുവച്ചാൽ കോണുകളും ചേർന്നിരിക്കു ന്നില്ലേ?

മറ്റു ചില നീളങ്ങളെടുത്ത് ഇതുപോലെ ത്രികോണങ്ങൾ വരച്ചു നോക്കൂ. അവയുടെയും കോണുകൾ തുല്യമല്ലേ?

ഇവിടെയെല്ലാം കണ്ട കാര്യം ഒരു പൊതുതത്വമായി എഴുതാം:

ഒരു ത്രികോണത്തിന്റെ വശങ്ങൾ മറ്റൊരു ത്രികോ ണത്തിന്റെ വശങ്ങൾക്ക് തുല്യമാണെങ്കിൽ, ഈ ത്രികോണങ്ങളിലെ കോണുകളും തുല്യമാണ്.

ഈ ത്രികോണങ്ങൾ നോക്കൂ.





ത്രികോണങ്ങളുടെ വശങ്ങൾ തുല്യമായതിനാൽ കോണു കളും തുല്യമാണ്.

അതായത്,  $\Delta ABC$  യിലെ ഓരോ കോണും  $\Delta PQR$  ലെ ഓരോ കോണിന് തുലൃമാണ്.

 $\angle A$  ക്ക് തുല്യമായ കോൺ ഏതാണ്?

 $\angle A$  ആണ്  $\Delta ABC$  യിലെ ഏറ്റവും വലിയ കോൺ.

 $\Delta PQR$  ലെ ഏറ്റവും വലിയ കോൺ ഏതാണ്? അപ്പോൾ

$$\angle A = \dots$$

ഇനി രണ്ടു ത്രികോണങ്ങളിലെയും ഏറ്റവും ചെറിയ കോണുകൾ ഏതാണ്?

$$\angle C = \dots$$

ഇടത്തരം കോണുകൾ എടുത്താലോ?

## തുല്യത

വരകൾ, കോണുകൾ, ചതുരങ്ങൾ, ത്രികോ ണങ്ങൾ എന്നിങ്ങനെ പലതരം ജ്യാമിതീയ രൂപങ്ങളുണ്ട്.

ഒരേ നീളമുള്ള വരകൾ എങ്ങനെ വര ച്ചാലും തുല്യമാണെന്നു പറയാറുണ്ടല്ലോ.

4 സെ.മീ.

ഇതുപോലെ തന്നെ ഒരേ അള വുള്ള കോണുകളും.



ഒരേ നീളവും വീതിയുമുള്ള ചതുരങ്ങളും തുല്യമാണെന്നു പറയാം.

> ້ອ ເຂື່ອ 4 ຄസ.മീ. <sup>7</sup>

2 സെ.മീ.

മറ്റൊരു തരത്തിലും ഇതു കാണാം:  $\Delta ABC$  യിലെ ഏറ്റവും വലിയ വശമാണ് BC; അതിനെതിരെയുള്ള കോണാണ് ഏറ്റവും വലിയ കോണായ  $\angle A$ .

ഇതുപോലെ ഏറ്റവും ചെറിയ വശമായ AB യുടെ എതിരെയുള്ള കോണാണ്, ഏറ്റവും ചെറിയ കോണായ  $\angle C$ ; ഇടത്തരം വശമായ AC യുടെ എതിരെയാണ്, ഇടത്തരം കോണായ  $\angle B$ .

 $\Delta PQR$  ലും ഇങ്ങനെ തന്നെയാണ്.

അപ്പോൾ നേരത്തെ കണ്ട കാര്യം അൽപം കൂടി വിശദമായി ഇങ്ങനെ പറയാം:

## ജ്യാമിതീയ തുല്യത

ചിത്രത്തിലെ സാമാന്തരികങ്ങൾ നോക്കൂ.





രണ്ട് സാമാന്തരികത്തിലെയും വശങ്ങൾ 4 സെന്റിമീറ്റർ, 3 സെന്റിമീറ്റർ എന്നിങ്ങനെയാണ്. പക്ഷേ ഈ സാമാന്തരികങ്ങൾ തുല്യമാണെന്ന് പറയുന്നത് ശരിയല്ലല്ലോ. ജ്യാമിതീയ രൂപങ്ങളുടെ തുല്യതയെക്കു റിച്ച് യൂക്ലിഡ് പറയുന്നത് ഇങ്ങനെയാണ്;

ഒന്നിനോടൊന്നു യോജിങ്ങുന്നവ തുധ്യമാണ്.

മുൻപേജിലെ വരകളും കോണുകളും ചതുരങ്ങളുമെല്ലാം, ഒന്നു തിരിച്ചു വച്ചാൽ കൃത്യമായി ചേർന്നിരിക്കുമല്ലോ. ഒരു ത്രികോണത്തിന്റെ വശങ്ങൾ മറ്റൊരു ത്രികോ ണത്തിന്റെ വശങ്ങൾക്ക് തുല്യമാണെങ്കിൽ, ഈ ത്രികോണങ്ങളിലെ തുല്യമായ വശങ്ങൾക്ക് എതി രെയുള്ള കോണുകൾ തുല്യമാണ്.

ഇതുപയോഗിച്ചുള്ള ഒരു കണക്കു നോക്കാം. ചുവടെക്കാ ണുന്ന ത്രികോണം വരയ്ക്കുക:



ഇനി ഇതേ ത്രികോണം തന്നെ AB യുടെ ചുവട്ടിൽ, ഇടതും വലതും മാറ്റി വരയ്ക്കുക.



 $\Delta ABC$  യിലെ AC, BC എന്നീ വശങ്ങൾ,  $\Delta ABD$  യിലെ BD, AD എന്നീ വശങ്ങൾക്ക് തുല്യമാണ്.

മൂന്നാമത്തെ വശം, രണ്ടു ത്രികോണങ്ങളിലും AB തന്നെ. മൂന്നു വശങ്ങളുടെയും നീളം തുല്യമായതിനാൽ, കോണു കളും തുല്യമാണ്. അതായത്

$$\angle CAB = \angle DBA$$
  $\angle CBA = \angle DAB$ 

AC, BD എന്നീ വരകളിൽ AB എന്ന വര കൂട്ടിമുട്ടുമ്പോഴു ണ്ടാകുന്ന മറുകോണുകളാണല്ലോ  $\angle CAB$  യും  $\angle DBA$  യും. ഇവ തുല്യമായതിനാൽ, ACയും BD യും സമാന്തരവരക ളാണ്.

ഇതുപോലെ BC യും AD യും സമാന്തരമാണ് (വിശദീക രിക്കാമോ?).

അതായത് *ACBD* ഒരു സാമാന്തരികമാണ് (ഏഴാംക്ലാ സിലെ സമാന്തരവരകൾ എന്ന പാഠത്തിലെ ഒരേ ദിശ എന്ന ഭാഗം).

അപ്പോൾ, രണ്ടു വശങ്ങളുടെ നീളം 5 സെന്റിമീറ്റർ, 6 സെന്റി മീറ്റർ, ഒരു വികർണം 8 സെന്റിമീറ്റർ ആയ സാമാന്തരികം വരയ്ക്കാമോ?



(1) ചുവടെയുള്ള ഓരോ ജോടി ചിത്രങ്ങളിലും, ഒരു ത്രികോണത്തിലെ കോണുകൾക്കു തുല്യമായ കോണുകൾ മറ്റേ ത്രികോണത്തിൽ നിന്ന് കണ്ടുപി ടിച്ച് എഴുതുക.

### വാക്കും പൊരുളും

ഒരു ത്രികോണത്തിന്റെ വശങ്ങൾ, മറ്റൊരു ത്രികോണത്തിന്റെ വശങ്ങൾക്ക് തുല്യമാ ണെങ്കിൽ, അവ കൃത്യമായി ചേർത്തു വയ്ക്കാം എന്നു കണ്ടല്ലോ. യൂക്ലിഡിന്റെ ഭാഷയിൽ പറഞ്ഞാൽ

> ഒരു ത്രികോണത്തിന്റെ വശങ്ങ് മറ്റൊരു ത്രികോണത്തിന്റെ വശങ്ങ്ക്രന്റ തുധ്യമാണെ ജിൽ ഈ ത്രികോണങ്ങ് തുധ്യമാണ്.

യൂക്ലിഡ്, ഗ്രീക്കു ഭാഷയിലെഴുതിയ എല മെന്റ്സ് എന്ന പുസ്തകം നവോത്ഥാന കാല യൂറോപ്പിൽ ലാറ്റിൻ ഭാഷയിലേക്ക് വിവർത്തനം ചെയ്തു. 'യോജിക്കുക' എന്നതിന്റെ ലാറ്റിൻ വാക്ക് congruent എന്നാണ്. പത്തൊമ്പതാം നൂറ്റാണ്ടോടെ ജ്യാമിതീയ രൂപങ്ങളുടെ തുല്യത എന്ന തിന് ഇംഗ്ലീഷിൽ equal എന്നതിനു പകരം congruent എന്ന വാക്ക് ഉപയോഗിച്ചു തുടങ്ങി.



(2) ചുവടെ വരച്ചിരിക്കുന്ന രണ്ടു ത്രികോണങ്ങളിൽ





 $\Delta ABC$  യിലെ  $\angle C$  യും  $\Delta PQR$  ലെ കോണുകളും കണ്ടുപിടിച്ച് എഴുതുക.

CA = PO

#### ഗണിതം

## നമ്മുടെ ഭാഷ

ജ്യാമിതിയെക്കുറിച്ചുള്ള പുസ്തകങ്ങൾ മല യാളത്തിലേക്ക് മൊഴിമാറ്റം നടത്തിയപ്പോൾ congruent എന്ന തിന് 'സർവ സമം' എന്നാണ് ഉപയോഗിച്ചത്. ജ്യാമിതീയ രൂപങ്ങൾ ചേർന്നിരിക്കണമെങ്കിൽ എല്ലാ അള വുകളും (നീളവും കോണുമെല്ലാം) തുല്യ മായിരിക്കണമല്ലോ.

ഇതനുസരിച്ച്, ത്രികോണങ്ങളെക്കുറിച്ചുള്ള പൊതുതത്വം ഇങ്ങനെ എഴുതാം.

> ഒരു ത്രീകോണത്തിന്റെ വശങ്ങ് ഒറ്റൊരു ത്രീകോണത്തിന്റെ വശങ്ങ്ക്ക്കു തുധ്യമാണെ ജീൽ അവ സ്ർവസമമാണ്.

(3) ചുവടെ വരച്ചിരിക്കുന്ന ത്രികോണങ്ങളിൽ

$$AB = QR$$

$$BC = PQ$$

$$CA = RP$$

എന്നിങ്ങനെയാണ്:





രണ്ടു ത്രികോണങ്ങളിലെയും മറ്റു കോണുകൾ കണ്ടുപിടിച്ച് എഴുതുക.





ചിത്രത്തിൽ  $\Delta ABC$ ,  $\Delta ABD$  എന്നിവയിലെ കോണുകൾ തുല്യമാണോ? എന്തുകൊണ്ട്?

(5) ചിത്രത്തിലെ *ABCD* എന്ന ചതുർഭുജത്തിൽ

$$AB = AD$$
  $BC = CD$ 



ചതുർഭുജത്തിലെ കോണുകളെല്ലാം കണക്കാക്കുക.

ഒരു ത്രികോണത്തിന്റെ കോണുകൾ മറ്റൊരു ത്രികോണത്തിന്റെ കോണുകൾക്ക് തുല്യമാണെങ്കിൽ, ത്രികോണങ്ങളുടെ വശങ്ങൾ തുല്യമാകുമോ?



## രണ്ടു വശങ്ങളും ഒരു കോണും

മൂന്ന് വശങ്ങളുടെയും നീളം തന്നാൽ ത്രികോണം വരയ്ക്കാം. രണ്ട് വശങ്ങളുടെ നീളവും അവ ചേരുന്ന കോണും പറഞ്ഞാലോ?

രണ്ടു വശങ്ങളുടെ നീളം 5 സെന്റിമീറ്റർ, 7 സെന്റിമീറ്റർ; അവ ചേർന്നു ണ്ടാകുന്ന കോൺ  $40^{\circ}$ .

ത്രികോണം വരയ്ക്കാമോ?

ഇങ്ങനെ വരയ്ക്കാം



ഇങ്ങനെയുമാകാം





 $\min = 0$ ,  $\max = 5$  ആയി സ്ലൈഡർ a നിർമി ക്കുക. വശങ്ങളുടെ നീളം 4,5,6 ആയ ഒരു ത്രികോണവും 4a,5a,6a ആയ മറ്റൊരു ത്രികോണവും നിർമിക്കുക. രണ്ടു ത്രികോണ ങ്ങളുടെയും കോണുകൾ നോക്കൂ. (Angle എടുത്ത് ത്രികോണത്തിൽ ക്ലിക്ക് ചെയ്താൽ കോൺ അളവുകൾ കാണാം.) a എന്ന സംഖ്യ മാറ്റി നോക്കൂ. എന്താണ് സംഭവിക്കുന്നത്? a=1 ആകുമ്പോഴോ?

താഴത്തെ വശം 7 സെന്റിമീറ്റർ ആയും വരയ്ക്കാം





മറ്റേതെങ്കിലും രീതിയിൽ വരയ്ക്കാമോ?

ഈ ത്രികോണങ്ങളുടെയെല്ലാം മൂന്നാമത്തെ വശങ്ങൾക്കും ഒരേ നീള മാണോ?

നേരത്തെ ചെയ്തതുപോലെ, ഒരു ത്രികോണം കട്ടിക്കടലാസിൽ മുറി ച്ചെടുത്ത്, തിരിച്ചും മറിച്ചും മറ്റു ത്രികോണങ്ങളുമായി ഒത്തു നോക്കൂ.

കൃത്യമായി ചേർന്നിരിക്കുന്നില്ലേ?

വശങ്ങളും കോണും മാറ്റി നോക്കൂ.

ഇവിടെ കണ്ട കാര്യം പൊതുതത്വമായി എഴുതാം.

ഒരു ത്രികോണത്തിന്റെ രണ്ടു വശങ്ങളും അവ ചേരുന്ന കോണും, മറ്റൊരു ത്രികോണത്തിന്റെ രണ്ടു വശങ്ങൾക്കും അവ ചേരുന്ന കോണിനും തുല്യമാണെങ്കിൽ, ഈ ത്രികോ ണങ്ങളുടെ മൂന്നാമത്തെ വശങ്ങളും തുല്യമാണ്; മറ്റു രണ്ടു കോണുകളും തുല്യമാണ്.

ഈ ത്രികോണങ്ങൾ നോക്കൂ.

## ത്രികോണനിശ്ചയം

നീളമുള്ള ഒരു ഈർക്കിൽ മടക്കി ഒരു കോൺ ഉണ്ടാക്കുക.



ഈ കോണിന്റെ രണ്ടു വശങ്ങളുടേയും മുക ളിൽ മറ്റൊരു ഈർക്കിൽ വച്ച് ഒരു ത്രികോ ണമുണ്ടാക്കണം. പല രീതിയിൽ വയ്ക്കാ മല്ലോ.



മുകളിലെ വശത്തിൽ ഒരു അടയാളമിട്ട് രണ്ടാമത്തെ ഈർക്കിൽ അതിൽക്കൂടി ത്തന്നെ കടന്നു പോകണമെന്നു പറ ഞ്ഞാലോ?



മുകളിലെ വശത്തിലും താഴത്തെ വശത്തിലും അടയാളമിട്ട്, ഈ രണ്ടടയാള ങ്ങളിൽക്കൂടിയും കടന്നുപോകത്തക്കവിധം ഈർക്കിൽ വയ്ക്കണമെന്നു പറഞ്ഞാലോ? എത്ര ത്രികോണങ്ങൾ ഉണ്ടാക്കാം?

ഒരു കോണും അതിന്റെ രണ്ട് വശങ്ങളുടെ നീളവും പറയുന്നതോടെ ത്രികോണം ഉറ പ്പിക്കാം, അല്ലേ?



 $\Delta ABC$  യിലെ AB, CA എന്നീ വശങ്ങളും അവ ചേരുന്ന  $\angle A$  യും  $\Delta PQR$  ലെ QR, PQ എന്നീ വശങ്ങൾക്കും അവ ചേരുന്ന  $\angle Q$  വിനും തുല്യമാണ്.

അതിനാൽ ഇപ്പോൾ കണ്ടതനുസരിച്ച്,  $\Delta ABC$ ,  $\Delta PQR$  ഇവ യിലെ മൂന്നാമത്തെ വശങ്ങളായ BC, PR എന്നീ വശങ്ങളും തുല്യമാണ്;  $\angle B$ ,  $\angle C$  ഇവ  $\Delta PQR$  ലെ രണ്ടു കോണുകൾക്ക് തുല്യമാണ്.

 $\angle B$  യ്ക്കു തുല്യമായ കോൺ ഏതാണ്?

തുല്യമായ വശങ്ങൾക്ക് എതിരെയാണ് തുല്യമായ കോണുകൾ.

 $\Delta ABC$  യിൽ AC എന്ന വശത്തിന് എതിരെയാണ്  $\angle B$ .

 $\Delta PQR$  ൽ AC യ്ക്കു തുല്യമായ വശം PQ; അതിനെതിരെ യുള്ള കോൺ  $\angle R$ .

അപ്പോൾ  $\angle B = \angle R$ .

ഇതുപോലെ  $\angle C = \angle P$  എന്നും കാണാം (വിശദീകരി ക്കാമോ?). ഇനി ഈ ചിത്രങ്ങൾ നോക്കൂ:





ഇങ്ങനെയുള്ള ത്രികോണങ്ങൾ വരച്ചത് ഓർമയുണ്ടോ? (ഏഴാം ക്ലാസിലെ ത്രികോണനിർമിതി എന്ന പാഠത്തിൽ മറ്റൊരു കോൺ എന്ന ഭാഗം).

 $\Delta ABC$ ,  $\Delta PQR$  ഇവയിൽ,

$$AB = PQ = 5$$
 സെ.മീ.

$$BC = QR = 3$$
 സെ.മീ.

$$\angle A = \angle P = 30^{\circ}$$

AC, PR എന്നീ വശങ്ങൾ തുല്യമാണോ?

രണ്ടു വശങ്ങളും ഒരു കോണും തുല്യമായിട്ടും, മൂന്നാമത്തെ വശങ്ങൾ തുല്യമല്ലാത്തത് എന്തുകൊ ണ്ടാണ്?





(1) ചുവടെയുള്ള ഓരോ ജോടി ചിത്രങ്ങളിലും, ഒന്നാം ത്രികോണ ത്തിലെ കോണുകൾക്കു തുല്യമായ കോണുകൾ രണ്ടാം ത്രികോ ണത്തിൽ നിന്ന് കണ്ടുപിടിച്ച് എഴുതുക.





ii)





## സർവസമതാതന്ത്രം

ബി.സി. ആറാം നൂറ്റാണ്ടിൽ ഗ്രീസിൽ ജീവി ച്ചിരുന്ന തത്വചിന്തകനും ഗണിതശാസ്ത്ര ജ്ഞനുമായിരുന്നു ഥേലീസ്. ദൂരെ കടലിൽ നങ്കൂരമിട്ടു കിടക്കുന്ന ഒരു കപ്പൽ കരയിൽ നിന്ന് എത്ര അകലെയാണെന്ന് കണക്കു കൂട്ടാൻ ഥേലീസ് ഉപയോഗിച്ചതായി പറയ പ്പെടുന്ന ഒരു സൂത്രം നോക്കു.

ആദ്യം കപ്പലിന് നേരെ തീരത്തോടു ചേർന്ന് ഒരു കമ്പു നാട്ടി. കുറച്ചകലെയായി തീരത്തോടു ചേർന്നുതന്നെ മറ്റൊരു കമ്പും. തുടർന്ന് ഈ രണ്ടു കമ്പുകളുടെ ഒത്ത നടുക്കായി മൂന്നാമതൊരു കമ്പും കുത്തി നിർത്തി.

പിന്നീട്, രണ്ടാമത്തെ കമ്പിൽ നിന്ന് തീര ത്തിന് ലംബമായി കരയിൽ ഒരു വര വര ച്ചു. കപ്പലിനെ നോക്കിക്കൊണ്ട് ഈ വര യിലൂടെ പുറകോട്ടു നടന്ന് നടുവിലത്തെ കമ്പ് കപ്പലിന് നേരെ കണ്ടപ്പോൾ നടത്തം നിർത്തി. അപ്പോൾ നിന്നിരുന്ന സ്ഥാനം വര യിൽ അടയാളപ്പെടുത്തി.



ഇപ്പോൾ കടലിലെ ത്രികോണവും കര യിലെ ത്രികോണവും സർവസമമായതി നാൽ (എന്തുകൊണ്ട്?) കരയിൽ നിന്ന് കപ്പ ലിലേക്കുള്ള ദൂരം ഥേലീസ് അവസാനം നിന്ന സ്ഥാനവും തീരവും തമ്മിലുള്ള ദൂരം തന്നെയാണല്ലോ. (2) ചിത്രത്തിൽ *AC, BE* ഇവ സമാന്തരവരകളാണ്.



- i) *BC, DE* എന്നീ വരകൾക്ക് ഒരേ നീളമാണോ? എന്തുകൊണ്ട്?
- ii) *BC, DE* എന്നീ വരകൾ സമാന്തര മാണോ?
- എന്തുകൊണ്ട്?
  (3) ചിത്രത്തിൽ ACBD രണ്ടുമ്പ് സാമാന്തരിക മാണോ? എന്തു 35° കൊണ്ട്?
- (4) ചിത്രത്തിൽ AB എന്ന വരയുടെ മധ്യബിന്ദുവാണ് M.  $\Delta ABC$  യിലെ മറ്റു രണ്ടു കോണുകൾ കണക്കാക്കുക.



(5) ചുവടെ കാണുന്ന ചിത്രത്തിൽ, AB, CD എന്നീ വശ ങ്ങൾ സമാന്തരമാണ്. AB യുടെ മധ്യബിന്ദുവാണ് M.



JT 219-2/Maths-8(M)

- i)  $\Delta AMD$ ,  $\Delta MBC$ ,  $\Delta DCM$  ഇവയിലെ കോണുകളെല്ലാം കണക്കാ ക്കുക.
- ii) AMCD, MBCD എന്നീ ചതുർഭുജങ്ങളുടെ സവിശേഷത എന്താണ്?

# ഒരു വശവും രണ്ടു കോണുകളും

വശങ്ങളുടെയെല്ലാം നീളം പറഞ്ഞാൽ ത്രികോണം വരയ്ക്കാം; രണ്ടു വശങ്ങളുടെ നീളവും, അവ ചേരുന്ന കോണും പറഞ്ഞാലും ത്രികോണം വരയ്ക്കാം.

ഒരു വശത്തിന്റെ നീളവും അതിന്റെ രണ്ടറ്റത്തുള്ള കോണുകളും പറ ഞ്ഞാലോ?

ഒരു വശത്തിന്റെ നീളം 8 സെന്റിമീറ്റർ; അതിന്റെ രണ്ടറ്റത്ത്  $40^\circ,\,60^\circ$ കോണുകൾ. ത്രികോണം വരയ്ക്കാമോ?

ഇങ്ങനെ വരയ്ക്കാം.



കോണുകളുടെ സ്ഥാനം മാറ്റി ഇങ്ങനെയും വരയ്ക്കാം.



ഇങ്ങനെയെല്ലാം വരയ്ക്കാം:





മറ്റേതെങ്കിലും രീതിയിൽ വരയ്ക്കാമോ?

ഇങ്ങനെ വരയ്ക്കുന്ന ത്രികോണങ്ങളുടെയെല്ലാം മൂന്നാമത്തെ കോൺ  $80^\circ$  തന്നെയാണ്. (എന്തുകൊണ്ട്?)

മറ്റു രണ്ടു വശങ്ങളോ?

ഇത്തരം ഒരു ത്രികോണം വെട്ടിയെടുത്ത്, മറ്റുള്ളവയുമായി തിരിച്ചും മറിച്ചും ചേർത്തുവച്ചു നോക്കൂ. മറ്റ് രണ്ട് വശങ്ങളും തുല്യമല്ലേ? അപ്പോൾ മൂന്നാമതൊരു പൊതുതത്വം കൂടിയായി.

ഒരു ത്രികോണത്തിന്റെ ഒരു വശവും അതിന്റെ രണ്ടറ്റത്തുള്ള കോണുകളും, മറ്റൊരു ത്രികോണത്തിന്റെ ഒരു വശത്തിനും അതിന്റെ രണ്ടറ്റത്തുള്ള കോണുകൾക്കും തുല്യമാണെങ്കിൽ, ഈ ത്രികോണങ്ങളുടെ മൂന്നാമത്തെ കോണുകൾ തുല്യ മാണ്. തുല്യമായ കോണുകൾക്കെതിരെയുള്ള വശങ്ങളും തുല്യമാണ്.

ഏത് ത്രികോണത്തിലും കോണുകളുടെ തുക  $180^{\circ}$  ആണല്ലോ. അപ്പോൾ ഒരു ത്രികോണത്തിലെ രണ്ട് കോണുകൾ അറിയാമെങ്കിൽ മൂന്നാമത്തെ കോൺ കണ്ടുപിടിക്കാം.

അപ്പോൾ, ഒരു ത്രികോണത്തിലെ ഏതെങ്കിലും രണ്ട് കോണുകൾ മറ്റൊരു ത്രികോണത്തിലെ രണ്ട് കോണുകൾക്ക് തുല്യമാണെങ്കിൽ, മൂന്നാമത്തെ കോണുകളും തുല്യമാണ്.

ഏതെങ്കിലും ഒരു വശവും കൂടി തുല്യമായാലോ? മറ്റു രണ്ട് വശങ്ങൾ തുല്യമാകുമോ?

ഇതുപോലെ രണ്ടു ത്രികോണങ്ങൾ വരച്ചു നോക്കു:





ഈ ത്രികോണങ്ങളുടെ മൂന്നാമത്തെ കോണുകൾ എന്താണ്?







ഒരു വശവും എല്ലാ കോണുകളും തുല്യമായിട്ടും ത്രികോ ണങ്ങളുടെ മറ്റു രണ്ടു വശങ്ങൾ തുല്യമല്ലാത്തത് എന്തുകൊ ണ്ടാണ്? മുകളിൽ പറഞ്ഞ പൊതുതത്വത്തിന്റെ ഒരു ഉപയോഗം നോക്കാം. ചിത്ര ത്തിലെ ABCD ഒരു സാമാന്തരികമാണ്:



അതായത്, ഇതിലെ AB, CD എന്നീ എതിർവശങ്ങളും, AD, BC എന്നീ എതിർവശങ്ങളും സമാന്തര വരകളാണ്. AC എന്ന വികർണം വരച്ചാൽ ഇതിനെ രണ്ടു ത്രികോണ ങ്ങളായി ഭാഗിക്കാം:



 $\Delta ABC$ ,  $\Delta ADC$  ഇവ രണ്ടിലും, ഒരു വശം AC തന്നെയാണ്. അതിന്റെ രണ്ടറ്റത്തുള്ള കോണുകൾ തുല്യമാണോ?

AB, CD എന്നീ സമാന്തരവരകൾ, AC എന്ന വരയുമായി ചേർന്നുണ്ടാകുന്ന മറുകോണുകളാണ്  $\angle CAB$  യും  $\angle DCA$  യും.

അതിനാൽ

$$\angle CAB = \angle DCA$$

ഇതുപോലെ

$$\angle ACB = \angle DAC$$

എന്നും കാണാം. (എങ്ങനെ?)

അപ്പോൾ  $\Delta ABC$ ,  $\Delta ADC$  ഇവയിൽ AC എന്ന വശവും, അതിന്റെ രണ്ടറ്റത്തുള്ള കോണുകളും തുല്യമാണ്. അതി നാൽ ഈ ത്രികോണങ്ങളിലെ തുല്യമായ കോണുകൾക്കെ തിരെയുള്ള വശങ്ങളും തുല്യമാണ്. അതായത്,

$$AB = CD$$
  $AD = BC$ 

ഇത് ഏതു സാമാന്തരികത്തിനും ശരിയാണല്ലോ.

ഏതു സാമാന്തരികത്തിലും എതിർവശങ്ങൾ തുല്യമാണ്.

# ശരിയല്ലാത്ത പൊരുത്തം

ഒരു ത്രികോണത്തിന് മൂന്നു വശങ്ങൾ, മൂന്നു കോണുകൾ എന്നിങ്ങനെ ആകെ ആറ് അളവുകളാണല്ലോ ഉള്ളത്. രണ്ടു ത്രികോണങ്ങളിൽ ഈ അളവുകളിലെ നിശ്ചിതമായ മൂന്നെണ്ണം (മൂന്ന് വശങ്ങൾ, രണ്ടു വശങ്ങളും അവ ചേരുന്ന കോണും ഒരു വശവും അതിന്റെ രണ്ടറ്റത്തുമുള്ള കോണുകളും) തുല്യമായാൽ ഈ ത്രികോ ണങ്ങൾ തുല്യമാകുമെന്ന് (അതായത് ബാക്കി മൂന്ന് അളവുകളും തുല്യമായി രിക്കുമെന്ന്) കണ്ടു.

ഇനി ഒരു കടലാസിൽ വശങ്ങൾ 4, 6, 9 സെന്റിമീറ്റർ ആയ ഒരു ത്രികോണം വര യ്ക്കു.

അടുത്തതായി 6, 9, 13.5 സെന്റിമീറ്റർ ആയ മറ്റൊരു ത്രികോണവും.



മണ്ട് ത്രികോണത്തിലെയും കോണുകൾ തുല്യമല്ലേ? (വെട്ടിയെടുത്ത് കോണുകളോ രോന്നും ചേർത്തുവെച്ച് നോക്കിയാലും മതി).

അതായത്, ഈ ത്രികോണങ്ങളിൽ മൂന്ന് കോണുകളും, രണ്ടു വശങ്ങളുമായി അഞ്ച് അളവുകൾ തുല്യമാണ്. പക്ഷേ ഇവ സർവ സമമല്ലല്ലോ. സാമാന്തരികത്തിലെ DB എന്ന വികർണം കൂടി വരയ്ക്കാം. വികർണ ങ്ങൾ മുറിച്ചുകടക്കുന്ന ബിന്ദുവിനെ P എന്നു വിളിക്കാം.



#### സാമാന്തരികം

AB, AC എന്നീ വരകൾ വരയ്ക്കുക. Parallel Line എടുത്ത് AC യ്ക്ക് സമാന്ത രമായി B യിൽ കൂടിയും AB യ്ക്ക് സമാന്തരമായി C യിൽ കൂടിയും വരകൾ വര യ്ക്കുക. ഇവ മുറിച്ചു കടക്കുന്ന ബിന്ദു D അടയാളപ്പെടുത്തുക. സാമാന്തരികം ABDC വരച്ച് വികർണങ്ങളും വരയ്ക്കുക.



വികർണങ്ങൾ പരസ്പരം സമഭാഗം ചെയ്യുന്നുണ്ടോ എന്ന് നോക്കൂ. (Mid Point or Center എടുത്ത് വികർണത്തിൽ ക്ലിക്ക് ചെയ്താൽ അതിന്റെ മധ്യബിന്ദു ലഭിക്കും). A, B, C എന്നീ ബിന്ദുക്കളുടെ സ്ഥാനം മാറ്റി വ്യത്യസ്ത സാമാന്തരികങ്ങൾ വരയ്ക്കാം.



 $\Delta APB$ ,  $\Delta CPD$  ഇവ നോക്കൂ. ഇവയിലെ AB, CD എന്നീ വശങ്ങൾ തുല്യമാണെന്നു കണ്ടുകഴിഞ്ഞു. അവയുടെ രണ്ട റ്റത്തുള്ള കോണുകളോ?

 $\angle CAB$ ,  $\angle DCA$  ഇവ തുല്യമാണെന്നു കണ്ടു.

അതായത്,  $\angle PAB = \angle PCD$ 

 $\angle PBA$ ,  $\angle PDC$  എന്നിവ തുല്യമാണോ?

 $AB,\ CD$  എന്നീ സമാന്തരവരകളും BD എന്ന വരയും ചേർന്നുണ്ടാകുന്ന മറുകോണുകളാണല്ലോ ഇവ. അതിനാൽ ഇവയും തുല്യമാണ്.

അപ്പോൾ  $\Delta APB$ ,  $\Delta CPD$  ഇവയിൽ AB, CD എന്നീ വശങ്ങൾ തുല്യമാണ്; അവയുടെ രണ്ടറ്റത്തുള്ള കോണുകളും തുല്യമാണ്. അതിനാൽ, അവയിലെ തുല്യമായ കോണു കൾക്കെതിരെയുള്ള വശങ്ങളും തുല്യമാണ്.

അതായത്, AP = CP BP = DP

മറ്റൊരു വിധത്തിൽ പറഞ്ഞാൽ, AC, BD എന്നീ രണ്ടു വികർണങ്ങളുടെയും മധ്യബിന്ദുവാണ് P.

ഏതു സാമാന്തരികത്തിലും വികർണങ്ങൾ മുറിച്ചു കടക്കുന്ന ബിന്ദു, രണ്ടു വികർണങ്ങളുടെയും മധ്യബിന്ദുവാണ്.

ഇക്കാര്യം ഇങ്ങനെയും പറയാം:

ഏതു സാമാന്തരികത്തിലും വികർണങ്ങൾ പരസ്പരം സമ ഭാഗം ചെയ്യുന്നു. (1) ചുവടെയുള്ള ഓരോ ജോടി ചിത്രങ്ങളിലും, ഒന്നാം ത്രികോ ണത്തിലെ വശങ്ങൾക്ക് തുല്യമായ വശങ്ങൾ രണ്ടാം ത്രികോണത്തിൽ നിന്ന് കണ്ടുപിടിച്ച് എഴുതുക.









- (2) ചിത്രത്തിൽ, AB എന്ന വരയുടെ രണ്ടറ്റത്തും സമാന്തരവും തുല്യവുമായ രണ്ടു വരകൾ AP, BQ വരച്ചിരിക്കുന്നു. PQ, AB ഇവ മുറിച്ചുകട ക്കുന്ന ബിന്ദുവാണ് M.
  - $\Delta AMP$  യുടെ മൂന്നു വശങ്ങളും  $\Delta BMQ$  ന്റെ വശങ്ങൾക്ക് തുല്യമാണോ? എന്തുകൊണ്ട്?
  - ii) AB എന്ന വരയിൽ M എന്ന ബിന്ദുവിന്റെ സ്ഥാനത്തിന്റെ സവിശേഷത എന്താണ്?







- i)  $\Delta BPC$  യുടെ വശങ്ങൾ  $\Delta EQD$  യുടെ വശ Pങ്ങൾക്ക് തുല്യമാണോ? എന്തുകൊണ്ട്?
- ii)  $\Delta APQ$  യുടെ AP, AQ എന്നീ വശങ്ങൾ തുല്യമാണോ? എന്തുകൊണ്ട്?

### ഗണിതം

(4) ചിത്രത്തിലെ  $\Delta ABC$ ,  $\Delta PQR$  ഇവയിൽ

$$AB = QR$$
  $BC = RP$ 

CA = PQ

എന്നിങ്ങനെയാണ്.



- i) *CD, PS* ഇവ തുല്യമാണോ? എന്തുകൊണ്ട്?
- ii)  $\Delta ABC$ ,  $\Delta PQR$  ഇവയുടെ പരപ്പളവുകൾ തമ്മിൽ എന്താണു ബന്ധം?
- (5) ചിത്രത്തിലെ ABCD എന്ന ചതുർഭുജത്തിൽ  $AB,\ CD$  ഇവ സമാന്തര മാണ്; BC എന്ന വശത്തിന്റെ മധ്യബിന്ദുവാണ് M.



DM, AB എന്നീ വരകൾ നീട്ടിയത് N എന്ന ബിന്ദുവിൽ കൂട്ടിമുട്ടുന്നു.

- i)  $\Delta DCM$ ,  $\Delta BMN$  എന്നിവയുടെ പരപ്പളവുകൾ തുല്യമാണോ? എന്തുകൊണ്ട്?
- ii) ABCD എന്ന ചതുർഭുജത്തിന്റെയും, ADN എന്ന ത്രികോണത്തി ന്റെയും പരപ്പളവുകൾ തമ്മിൽ എന്താണു ബന്ധം?
- (6) ഒരു ചതുരത്തിന്റെ രണ്ട് വികർണങ്ങൾ തുല്യമാണോ? എന്തുകൊണ്ട്?

### സമപാർശ്വത്രികോണങ്ങൾ

ഈ ത്രികോണം നോക്കൂ.

ഇതിന്റെ രണ്ട് വശങ്ങൾ തുല്യമാണ്. ചുവടെ യുള്ള കോണുകളും തുല്യമാണെന്നു തോന്നു ന്നില്ലേ?

ഇത്തരമൊരു ത്രികോണം വെട്ടിയെടുത്ത്, തുല്യ വശങ്ങൾ ചേർന്നിരിക്കുന്ന വിധം നടുവിലൂടെ മടക്കിനോക്കൂ. ചുവടെയുള്ള കോണുകൾ കൃത്യ മായി ചേർന്നിരിക്കുന്നില്ലേ?

കോണുകൾ തുല്യമാകാൻ എന്താണ് കാരണം?









ഇപ്പോൾ AMC, BMC എന്നീ രണ്ടു ത്രികോണങ്ങളായി. ഇവയിൽ AC, BC എന്നീ വശങ്ങൾ തുല്യമാണ്.

M എന്നത്, AB യുടെ മധ്യബിന്ദു ആയതിനാൽ AM, BM ഇവയും തുല്യമാണ്. രണ്ടിലും മൂന്നാമത്തെ വശം CM തന്നെയാണ്.

രണ്ടു ത്രികോണങ്ങളുടെയും വശങ്ങളെല്ലാം തുല്യമായതിനാൽ, തുല്യ മായ വശങ്ങൾക്കെതിരെയുള്ള കോണുകളും തുല്യമാണ്.

അപ്പോൾ രണ്ടു ത്രികോണങ്ങളിലും CM എന്ന വശത്തിനെതിരെയുള്ള  $\angle A,\ \angle B$  ഇവ തുല്യമാണ്.

ഇത് ഒരു പൊതുതത്വമായി എഴുതാം:

ഒരു ത്രികോണത്തിന്റെ രണ്ടു വശങ്ങൾ തുല്യമാണെങ്കിൽ, ഈ വശങ്ങൾക്കെതിരെയുള്ള കോണുകളും തുല്യമാണ്.

ഇവിടെ മറ്റൊരു കാര്യവുംകൂടി കാണാം. ചിത്രത്തിലെ  $\Delta AMC$ ,  $\Delta BMC$  ഇവയിലെ തുല്യവശങ്ങളായ AC, BC ഇവയ്ക്കെതിരെയുള്ള  $\angle AMC$ ,  $\angle BMC$  ഇവയും തുല്യമാണ്.

 $\min=3$ ,  $\max=15$  ആകത്തക്കവിധം സ്റ്റൈഡർ a നിർമിക്കുക. നീളം 6 ആയി AB എന്ന വര വരയ്ക്കുക. A, B ഇവ കേന്ദ്രമായും ആരം a ആയും രണ്ടു വൃത്തങ്ങൾ വരച്ച് അവ കൂട്ടിമുടുന്ന ബിന്ദു C അടയാളപ്പെടുത്തുക.  $\Delta ABC$  വരയ്ക്കുക. ഇനി വൃത്തങ്ങൾ മറച്ചു വയ്ക്കാം. a യുടെ വില മാറുന്നതനുസരിച്ച് വൃത്യസ്ത ത്രികോണങ്ങൾ കിട്ടുന്നില്ലേ? ഈ ത്രികോണങ്ങൾ കിട്ടുന്നില്ലേ? ഈ ത്രികോണങ്ങളുടെയെല്ലാം രണ്ടു വശങ്ങൾ തുല്യ മാണ്. കോണുകളോ? a=6 ആകുമ്പോൾ കോണുകൾ എത്രയാണ്?

ഈ രണ്ടു കോണുകൾ CM എന്ന വരയുടെ ഇരുവശത്തുമുള്ള കോണു കളായതിനാൽ, അവയുടെ തുക  $180^\circ$  ആണ്.

അപ്പോൾ ഈ കോണുകളോരോന്നും 90° ആണ്.

അതായത്, CM എന്ന വര AB യ്ക്ക് ലംബമാണ്.

ഇനി വേറൊരു ചിന്ത: ആദ്യം പറഞ്ഞ പൊതുതത്വം മറിച്ചു പറഞ്ഞാൽ ശരിയാകുമോ?

അതായത്, ഒരു ത്രികോണത്തിന്റെ രണ്ടു കോണുകൾ തുല്യമാണെങ്കിൽ, അവയ്ക്ക് എതിരെയുള്ള വശങ്ങൾ തുല്യമാണോ?

ഒരു ചിത്രം വരച്ചു നോക്കാം:



മുൻ പേജിലെ ജിയോജിബ്ര പ്രവർത്തന ത്തിൽ C എന്ന ബിന്ദുവിന് Trace On നൽകുക. C യുടെ സഞ്ചാരപാത ശ്രദ്ധിക്കൂ.





 $\Delta ABC$  യിൽ  $\angle A=\angle B$  ആണ്. AC=BC ആണോ എന്നാണ് ചോദ്യം.

മുമ്പു ചെയ്തതുപോലെ  $\Delta ABC$  യെ രണ്ടു ത്രികോണങ്ങ ളായി ഭാഗിക്കാം. ഇവിടെ C യും AB യുടെ മധ്യബിന്ദുവും യോജിപ്പിക്കുന്നതിനു പകരം, C യിൽ നിന്ന് AB യിലേക്ക് ലംബം വരയ്ക്കുന്നതാണ് സൗകര്യം.



 $\Delta APC$ ,  $\Delta PBC$  ഇവ രണ്ടിലെയും ഒരു വശമാണ് CP. അതിന്റെ P എന്ന അറ്റത്തെ കോണുകൾ മട്ടവുമാണ്.

മറ്റേ അറ്റത്തുള്ള കോണുകളോ?

 $\angle A = \angle B$  എന്നറിയാം.

 $\angle APC = 90^{\circ} = \angle BPC$  എന്നും അറിയാം.

അപ്പോൾ മൂന്നാമത്തെ കോണുകളായ  $\angle ACP$ ,  $\angle BCP$  ഇവയും തുല്യമാകണമല്ലോ. (എന്തുകൊണ്ട്?)

അങ്ങനെ രണ്ടു ത്രികോണങ്ങളിലും ഒരു വശവും അവയുടെ രണ്ടറ്റ ത്തുള്ള കോണുകളും തുല്യമാണെന്നു കിട്ടി. അപ്പോൾ തുല്യമായ കോണുകൾക്കെതിരെയുള്ള വശങ്ങളും തുല്യമാണല്ലോ. അതിനാൽ AC, BC ഇവ തുല്യമാണെന്നു വരുന്നു.

ഒരു ത്രികോണത്തിന്റെ രണ്ടു കോണുകൾ തുല്യമാണെ ങ്കിൽ, ഈ കോണുകളുടെ എതിരെയുള്ള വശങ്ങളും തുല്യ മാണ്.

രണ്ടു വശങ്ങൾ തുല്യമായ ത്രികോണത്തെ സമപാർശ്വ ത്രികോണം (isosceles triangle) എന്നാണ് പറയുന്നത്. ഇപ്പോൾ കണ്ട തത്വമനുസരിച്ച്, രണ്ടു കോണുകൾ തുല്യ മായ ത്രികോണങ്ങളും സമപാർശ്വത്രികോണങ്ങളാണ്.

ഈ ത്രികോണം നോക്കൂ:



മൂന്നു വശങ്ങളും തുല്യമായ ഇത്തരമൊരു ത്രികോണത്തെ സമഭുജത്രികോണം എന്നാണല്ലോ പറയുന്നത്. സമപാർശ്വ ത്രികോണങ്ങളുടെ കൂട്ടത്തിലെ ഒരു സവിശേഷ ഇനമാ ണ് സമഭുജത്രികോണം (equilateral triangle).

ചിത്രത്തിലെ  $\Delta ABC$  യിൽ AC=BC ആയതിനാൽ, ഈ വശങ്ങൾക്കെതിരെയുള്ള  $\angle B$ ,  $\angle A$  ഇവ തുല്യമാണ്.

കൂടാതെ AB=AC ആയതിനാൽ, അവയ്ക്കെതിരെയുള്ള  $\angle C$ ,  $\angle B$  ഇവയും തുല്യമാണ്. അപ്പോൾ ഈ ത്രികോണത്തിലെ മൂന്നു കോണുകളും തുല്യ മാണ്. കോണുകളുടെ തുക  $180^\circ$  ആയതിനാൽ, ഓരോ കോണും  $180^\circ\div 3=60^\circ$  എന്നും കാണാം.

ഏതൊരു സമഭുജത്രികോണത്തിലും, കോണുകളെല്ലാം  $60^\circ$  ആണ്.

മറിച്ച്, ഒരു ത്രികോണത്തിന്റെ കോണുകളെല്ലാം 60° ആണെങ്കിൽ, അതൊരു സമഭുജത്രികോണമാണ്. (വിശദീകരിക്കാമോ?)



Slider എടുത്ത് അതിൽ Angle ക്ലിക്ക് ചെയ്താൽ  $\alpha$  എന്ന് കിട്ടും.  $\min=0^\circ$ ,  $\max=90^\circ$  എന്നെടുക്കുക.

നീളം 6 ആയി AB എന്ന വര വരയ്ക്കുക.  $\angle A = \angle B = \alpha$  ആകത്തക്കവിധം വരകൾ വരച്ച് കൂട്ടിമുട്ടുന്ന ബിന്ദു C അടയാളപ്പെടുത്തുക.  $\Delta ABC$  വരയ്ക്കുക.



ഇനി A'C, B'C എന്നീ വരകളും A', B' എന്നീ ബിന്ദുക്കളും മറച്ചു വയ്ക്കാം.  $\alpha$  മാറുന്നതനുസരിച്ച് ത്രികോണത്തിന്റെ വശങ്ങൾ മാറുന്നത് നോക്കൂ.  $\alpha=60^\circ$  ആകുമ്പോൾ ത്രികോണത്തിന്റെ പ്രത്യേകത എന്താണ്?  $45^\circ$  ആകുമ്പോഴോ?



(1) ചുവടെ കുറേ സമപാർശ്വത്രികോണങ്ങൾ വരച്ചിട്ടുണ്ട്. ഓരോന്നിലും ഒരു കോൺ എഴുതിയിട്ടുണ്ട്. മറ്റു കോണുകൾ കണ്ടുപിടിക്കുക.



- (2) ഒരു സമപാർശ്വത്രികോണത്തിന്റെ ഒരു കോൺ 120° ആണ്. മറ്റു രണ്ടു കോണുകൾ എന്തൊക്കെയാണ്?
- (3) ഒരു സമപാർശ്വത്രികോണത്തിന്റെ ഒരു കോൺ  $90^\circ$  ആണ്. അതിന്റെ മറ്റു രണ്ടു കോണുകൾ എന്തൊക്കെയാണ്?
- (4) ചിത്രത്തിൽ O വൃത്തകേന്ദ്രവും, A,B എന്നിവ വൃത്തത്തിലെ ബിന്ദു ക്കളുമാണ്.



 $\angle A$ ,  $\angle B$  ഇവ കണക്കാക്കുക.

5. ചിത്രത്തിൽ O വൃത്തകേന്ദ്രവും, A, B, C എന്നിവ വൃത്തത്തിലെ

ബിന്ദുക്കളുമാണ്.



 $\Delta ABC$  യുടെ കോണുകൾ എന്തൊക്കെയാണ്?

#### സമഭാജികൾ



ഈ ചിത്രം നോക്കൂ:

 $\Delta ABC$  യിൽ AC, BC ഇവ തുല്യമാണ്; C യിൽ നിന്ന് AB യിലേക്കുള്ള ലംബമാണ് CP

ഇതിൽ  $\Delta APC$ ,  $\Delta BPC$  ഇവയുടെ വശങ്ങളും, കോണുകളും തുല്യമാണെന്നു കണ്ടു. അപ്പോൾ AP യും BP യും തുല്യ മാണ്. അതായത്, AB യെ CP സമഭാഗം ചെയ്യുന്നു.

കൂടാതെ  $\angle ACP$ ,  $\angle BCP$  ഇവയും തുല്യമാണ്; അപ്പോൾ CP എന്ന വര,  $\angle C$  യെ സമഭാഗം ചെയ്യുന്നു എന്നു പറയാം.

#### ലംബസമഭാജി

ഒരു വരയ്ക്ക് അനേകം ലംബങ്ങൾ വര യ്ക്കാം.



വരയ്ക്ക് അനേകം സമഭാജികളും വരയ്ക്കാം.



ലംബവും സമഭാജിയുമായി ഒരു വര മാത്ര മേയുള്ളൂ.



ഒരു സമപാർശ്വത്രികോണത്തിൽ, തുല്യവശങ്ങൾ ചേരുന്ന മൂലയിൽ നിന്ന് എതിർവശത്തേയ്ക്കുള്ള ലംബം, ഈ മൂല യിലുള്ള കോണിനേയും എതിർവശത്തെയും സമഭാഗം ചെയ്യുന്നു.

ഒരു വരയെയോ കോണിനെയോ സമഭാഗം ചെയ്യുന്ന വരയ്ക്ക് സമ ഭാജി (bisector) എന്നാണ് പറയുന്നത്. അപ്പോൾ മുകളിലെ ചിത്രത്തിൽ CP എന്ന വര AB യുടെയും  $\angle C$  യുടെയും സമഭാജിയാണ്. ഇത് AB യ്ക്ക് ലംബവും കൂടി ആയതിനാൽ ഇതിനെ AB യുടെ ലംബസമഭാജി (perpendicular bisector) എന്നു വിളിക്കാം.

## അകത്തുനിന്നൊരു ലംബം

ഒരു വരയിലെ നിശ്ചിതസ്ഥാനത്തുനിന്നു ലംബം വരയ്ക്കുന്നത് എങ്ങനെ?



ആദ്യം P യിൽ നിന്ന് തുല്യ അകലത്തിൽ AB യിൽത്തന്നെ രണ്ടു ബിന്ദുക്കൾ  $C,\,D$  അടയാളപ്പെടുത്തുക.



ഇനി C യിൽനിന്നും D യിൽ നിന്നും തുല്യ അകലത്തിൽ Q അടയാളപ്പെടുത്തുക



 $\Delta CQD$  സമപാർശ്വത്രികോണമാണല്ലോ. അതിനാൽ QP എന്ന വര CD യ്ക്ക് ലംബ മാണ്. CD എന്ന വര AB എന്ന വരയുടെ ഭാഗമായതിനാൽ QP എന്ന വര AB യ്ക്ക് ലംബമാണ്.



ഇത് മറ്റൊരു തരത്തിലും പറയാം: AB യുടെ ലംബസമ ഭാജി C യിലൂടെ കടന്നു പോകും.

AB യ്ക്ക് മേൽ വേറെയും സമപാർശ്വത്രികോണങ്ങൾ വര യ്ക്കാമല്ലോ.

AB യുടെ ലംബസമഭാജി, ഈ ത്രികോണങ്ങളുടെയെല്ലാം മുക ളിലെ മൂലയിലൂടെ കടന്നുപോ കും.

അതിനാൽ AB യുടെ ലംബ  $\vdots$  സമഭാജി വരയ്ക്കാൻ, ഈ  $\Box$  [തികോണങ്ങളുടെ A P യെല്ലാം മുകളിലെ മൂല കൾ യോജിപ്പിച്ച് AB യിലേക്ക് നീട്ടിയാൽ മതി.

ഒരു വര വരയ്ക്കാൻ രണ്ടു ബിന്ദുക്കൾ പോരേ?

അപ്പോൾ ലംബസമഭാജി വരയ്ക്കാൻ ഇത്തരം രണ്ടു ത്രികോണങ്ങൾ മതി. ത്രികോണങ്ങൾ മുഴുവനായി വര യ്ക്കണമെന്നുമില്ല.



അവയുടെ മുകളിലെ മൂലകൾ അടയാളപ്പെടുത്തിയാലും മതി; അതായത്, A യിൽ നിന്നും B യിൽ നിന്നും തുല്യ അകലത്തിൽ രണ്ടു ബിന്ദുക്കൾ.

ചുവട്ടിലേയ്ക്ക് നീട്ടി വരയ്ക്കണമെങ്കിൽ, ഇങ്ങനെയും ആവാം:



ഒരു കോണിന്റെ സമഭാജി വരയ്ക്കാനും ഇപ്പോൾ കണ്ട തത്വം ഉപയോ ഗിക്കാം.

ആദ്യം ഈ കോൺ ഉൾപ്പെടുന്ന ഒരു സമപാർശ്വത്രികോണം വര യ്ക്കണം.



ഇനി  $\Delta PBQ$  യിലെ PQ എന്ന വശത്തിന്റെ ലംബസമഭാജി വരച്ചാൽ മതിയല്ലോ.

ഇവിടെ ഒരു സൗകര്യമുണ്ട്. നമുക്കു വരയ്ക്കേണ്ട ലംബ സമഭാജി B യിൽക്കൂടി കടന്നുപോകുമല്ലോ. (എന്തു കൊണ്ട്?) അപ്പോൾ ഈ സമഭാജിയിലെ ഒരു ബിന്ദു കൂടി അടയാളപ്പെടുത്തിയാൽ മതി.





- (1) 6.5 സെന്റിമീറ്റർ നീളമുള്ള ഒരു വര വരച്ച് അതിന് ലംബസമഭാജി വരയ്ക്കുക.
- (2) വശങ്ങളുടെയെല്ലാം നീളം 3.75 സെന്റിമീറ്റർ ആയ ഒരു സമചതുരം വരയ്ക്കുക.
- (3) 75° അളവുള്ള ഒരു കോൺ വരച്ച് അതിന്റെ സമഭാജി വരയ്ക്കുക.
- (4) ആരം 2.25 സെന്റിമീറ്റർ ആയ ഒരു വൃത്തം വരയ്ക്കുക.
- (5) AB=6 സെന്റിമീറ്റർ,  $\angle A=22\frac{1}{2}^{\circ}$ ,  $\angle B=67\frac{1}{2}^{\circ}$  എന്നീ അളവുകളിൽ  $\Delta ABC$  വരയ്ക്കുക.

# പുറമേ നിന്നൊരു ലംബം

ഒരു വരയിലെ ബിന്ദുവിൽ നിന്ന് കോമ്പസ് ഉപയോഗിച്ച് ലംബം വരയ്ക്കാം. വരയിലല്ലാത്ത ബിന്ദുവിൽനിന്ന് വരയിലേക്ക് ലംബം വരയ്ക്കു ന്നതെങ്ങനെ?



അതിന് P മുകളിലത്തെ മൂലയായും, താഴത്തെ വശം AB യിലും ആകത്തക്കവണ്ണം ഒരു സമ പാർശ്വത്രികോണം വരയ്ക്കണം. അതിന് P യിൽ നിന്ന് ഒരേ അകലത്തിൽ രണ്ട് ബിന്ദുക്കൾ AB യിൽ അടയാളപ്പെടുത്തിയാൽ മതിയല്ലോ.

P കേന്ദ്രമായി ഒരു വൃത്തം വരച്ച് AB യെ Q,  $\mathbf{R}$  എന്നീ ബിന്ദുക്കളിൽ ഖണ്ഡിക്കുക.



ഇനി QR ന്റെ ലംബസമഭാജി വരച്ചാൽ മതി.



- (6) ഒരു ത്രികോണം വരച്ച്, അതിന്റെ വശങ്ങളുടെയെല്ലാം ലംബസമഭാ ജികൾ വരയ്ക്കുക. ഇവയെല്ലാം മുറിച്ചു കടക്കുന്നത് ഒരേ ബിന്ദുവി ലാണോ?
- (7) ഒരു ത്രികോണം വരച്ച്, അതിന്റെ കോണുകളുടെയെല്ലാം സമഭാജി കൾ വരയ്ക്കുക. ഇവയെല്ലാം മുറിച്ചു കടക്കുന്നത് ഒരു ബിന്ദുവി ലാണോ?
- (8) ഒരു ചതുർഭുജത്തിന്റെ രണ്ടു ജോടി എതിർവശങ്ങളും തുല്യമാണെ ങ്കിൽ, അതൊരു സാമാന്തരികമാണെന്നു തെളിയിക്കുക.

# കയറും കണക്കും

പ്രാചീന ജ്യാമിതിയുടെ പ്രാമാണിക ഗ്രന്ഥമായ എലമെന്റ്സിനെക്കുറിച്ച് കേട്ടിട്ടുണ്ടല്ലോ. ഇതിൽ വരകളും വൃത്തങ്ങളും ഉപയോഗിച്ച് വരയ്ക്കാവുന്ന രൂപങ്ങൾ മാത്രമേ യുക്ലിഡ് പരിഗണിക്കു ന്നുള്ളു. മറ്റൊരു രീതിയിൽപ്പറഞ്ഞാൽ നീളങ്ങളൊന്നും അടയാളപ്പെടുത്താത്ത വളവില്ലാത്ത ഒരു വടിയും (straightedge) കോമ്പസും കൊണ്ട് വരയ്ക്കാ വുന്ന രൂപങ്ങൾ മാത്രം. എന്തുകൊണ്ടാണിങ്ങനെ? പണ്ടുകാലത്ത് നീളമളക്കാനും, വരയ്ക്കാനുമെല്ലാം ചരടോ കയറോ ആണ് ഉപയോഗിച്ചിരുന്നത്. കയർ ഉപ യോഗിച്ച് വരയ്ക്കാവുന്നത് വരയും വട്ട വുമാണ്. രണ്ടു കുറ്റികൾക്കിടയിൽ കയർ വലിച്ചു കെട്ടിയാൽ വരയായി. ഒരു കുറ്റി ഇളക്കി മറ്റേ കുറ്റിയ്ക്കു ചുറ്റും കറക്കിയാൽ വട്ടവും. വിവിധ രൂപങ്ങൾ വരയ്ക്കാനുള്ള ഉപകരണങ്ങൾ നിർമിക്കാൻ കഴിയുന്ന ഇന്ന് ഇത്തരം നിർമിതികൾക്ക് ചരിത്രപരവും

സൈദ്ധാന്തികവുമായ

പ്രാധാന്യമേയുള്ളു

(9) ABCD എന്ന സാമാന്തരികത്തിൽ AP = CQ ആണ്.



*PBQD* എന്ന ചതുർഭുജം, സാമാന്തരികമാണെന്നു തെളിയിക്കുക.

- (10) ഒരു സാമാന്തരികത്തിന്റെ വശങ്ങളെല്ലാം തുല്യ മാണെങ്കിൽ, അതിന്റെ ഓരോ വികർണവും മറ്റേ വികർണത്തിന്റെ ലംബസമഭാജിയാണെന്ന് തെളിയിക്കുക.
- (11) ചിത്രത്തിൽ O വൃത്തകേന്ദ്രവും AB ഒരു വ്യാസ വുമാണ്. C വൃത്തത്തിലെ ബിന്ദുവാണ്.



- i)  $\angle CAB$  കണക്കാക്കുക.
- ii)  $\angle COB$  യുടെ അളവ് മറ്റേതെങ്കിലും സംഖൃ യായി ഈ ചിത്രം മാറ്റി വരയ്ക്കുക. ആ ചിത്ര ത്തിൽ  $\angle CAB$  കണക്കാക്കുക.

(12) ചിത്രത്തിൽ O വൃത്തകേന്ദ്രവും AB ഒരു വ്യാസവുമാണ്. C വൃത്തത്തിലെ ബിന്ദുവാണ്.



- i)  $\angle ACB$  കണക്കാക്കുക.
- ii)  $\angle COB$  യുടെ അളവ് മറ്റേതെങ്കിലും സംഖ്യയായി ഈ ചിത്രം മാറ്റി വരയ്ക്കുക. ആ ചിത്രത്തിൽ  $\angle ACB$  കണക്കാക്കുക.

ഏതു വൃത്തത്തിലെയും ഒരു വ്യാസത്തിന്റെ രണ്ടറ്റങ്ങൾ, വൃത്തത്തിലെ മറ്റൊരു ബിന്ദുവുമായി യോജിപ്പിച്ചാലുണ്ടാ കുന്ന കോൺ എന്താണ്?



- (13) ഒരു കോൺ 50° യും ഒരു വശം 7 സെന്റിമീറ്ററുമായ എത്ര വൃത്യസ്ത സമപാർശ്വത്രികോണങ്ങൾ വരയ്ക്കാം?
- $(14)\ AB = 7\ \, {
  m cm}$ ന്റിമീറ്റർ,  $\angle A = 67 {1\over 2}^{\circ}$ ,  $\angle B = 15^{\circ}$  ആയ ത്രികോണം കോൺമാപിനി ഉപയോഗിക്കാതെ വരയ്ക്കുക.

ഒരു ചതുർഭുജത്തിന്റെ നാലു വശങ്ങളും മറ്റൊരു ചതുർഭുജത്തിന്റെ നാലു വശങ്ങൾക്ക് തുല്യമാണെങ്കിൽ, രണ്ടു ചതുർഭുജങ്ങളിലെയും കോണുകളും തുല്യമാകണമെന്നുണ്ടോ?

ചിത്രങ്ങൾ വരച്ച് പരിശോധിക്കുക. ചുതർഭുജങ്ങളിലെ നാലു വശ ങ്ങൾക്ക് പുറമെ, മറ്റേതെങ്കിലും നീളങ്ങൾ തുല്യമാണെങ്കിൽ കോണുകൾ തുല്യമാകുമോ?



# തിരിഞ്ഞുനോക്കുമ്പോൾ

| പഠനനേട്ടങ്ങൾ                                                                                                                                         | എനിക്ക്<br>കഴിയും | ടീച്ചറുടെ<br>സഹായത്തോടെ<br>കഴിയും | ഇനിയും<br>മെച്ചപ്പെടേ<br>ണ്ടതുണ്ട് |
|------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|-----------------------------------|------------------------------------|
| രണ്ടു ത്രികോണങ്ങളിലെ ചില അളവുകൾ<br>തുല്യമാണെങ്കിൽ, മറ്റളവുകളും തുല്യമാ<br>കുന്ന വിവിധ സാഹചര്യങ്ങൾ വിശദീകരി<br>ക്കുന്നു.                              |                   |                                   |                                    |
| ത്രികോണങ്ങളെ കുറിച്ചുള്ള ഇത്തരം തത്വ<br>ങ്ങളിൽനിന്ന് മറ്റു ചില ജ്യാമീതിയ തത്വങ്ങൾ<br>രൂപീകരിക്കുന്നു.                                                |                   |                                   |                                    |
| വരയുടെ ലംബസമഭാജിയും കോണിന്റെ സമ<br>ഭാജിയും വരയ്ക്കുന്നതിനുള്ള വിവിധ മാർഗ<br>ങ്ങൾ വിശദീകരിക്കുന്നു.                                                   |                   |                                   |                                    |
| വരയിലെ ബിന്ദുവിൽനിന്ന് ലംബം വരയ്ക്കു<br>വാനും വരയ്ക്ക് പുറത്തുള്ള ബിന്ദുവിൽ നിന്ന്<br>വരയിലേക്ക് ലംബം വരയ്ക്കാനുമുള്ള മാർഗ<br>ങ്ങൾ വിശദീകരിക്കുന്നു. |                   |                                   |                                    |