Кредитный скоринг на данных German Credit

Анализ клиентов и модель прогноза риска дефолта

Мартинович Георгий https://github.com/Ejtolf

Проблема и цель

- **Проблема:** банки и лизинговые компании несут убытки из-за невозвратов кредитов.
- Решение часто принимается на основе поверхностных факторов => высокая вероятность ошибок.
- **Щель проекта:** построить модель машинного обучения, которая автоматизированно оценивает риск клиента (good / bad).
- **©** Ожидаемый результат: снижение убытков и ускорение процесса одобрения заявок.

Гистограмма частот: размер кредита на good/bad клиентов

Данные

📊 Размер выборки: 1000 клиентов

Характеристики клиента: возраст, пол, профессия (уровень квалификации), статус проживания, уровень сберегательного счёта, уровень расчётного счёта.

Характеристики кредита: сумма кредита, срок, цель займа

- У **18.4%** клиентов неизвестно состояние <u>сберегательного</u> счёта, у **39.4%** - состояние <u>расчётного</u> счёта.

	Unnamed: 0	Age	Sex	Job	Housing	Saving accounts	Checking account	Credit amount	Duration	Purpose	Risk
0	0	67	male	2	own	NaN	little	1169	6	radio/TV	good
1	1	22	female	2	own	little	moderate	5951	48	radio/TV	bad
2	2	49	male	1	own	little	NaN	2096	12	education	good
3	3	45	male	2	free	little	little	7882	42	furniture/equipment	good
4	4	53	male	2	free	little	little	4870	24	car	bad

Подход

- **Предобработка данных:** очистка, обработка пропусков, кодирование категориальных признаков, добавлен новый признак (*ежемесячный платёж*).
- Feature engineering: масштабирование числовых признаков, one-hot encoding категориальных.
- **Моделирование:** использованы и протестированы три модели: **логистическая регрессия** (базовая интерпретируемая модель), **Random Forest** (хорошо работает с нелинейными зависимостями) и **Gradient Boost** (быстрая и точная на малом кол-ве данных)
- 🦠 Валидация: 5-кратная стратифицированная кросс-валидация.
- 🎯 Метрика качества: ROC-AUC (основная), а также Precision, Recall, F1.

Результаты

- of Metpuka качества: ROC-AUC (насколько хорошо модель различает «надежных» и «рискованных» клиентов)
- 🔽 Статистически НЕ важные признаки: работа (уровень квалификации) и цель кредита клиента.

Лучшие результаты — **Random Forest**: 74.83% правильных разделений на **good/bad**

Результаты

- of Metpuka качества: ROC-AUC (насколько хорошо модель различает «надежных» и «рискованных» клиентов)
- 🔽 Статистически НЕ важные признаки: работа (уровень квалификации) и цель кредита клиента.

- **тупные суммы кредита увеличивают риск**
- ▲ Молодые клиенты чаще попадают в «риск»
- Длительные кредиты более проблемные
- **При расчётный счёт с низким балансом** = высокий риск

Результаты

Пример клиента с высоким риском

👤 Возраст: 24 года

© ПРОГНОЗ ДЕФОЛТА: <u>82%</u>

🏠 Жильё: собственное

Б Сбережения: низкий уровень

👚 Расчётный уровень: *низкий уровень*

сумма кредита: 9629 у.е.

Ü Срок: 36 мес.

© Цель: покупка автомобиля

Ежемесячный платёж: 267.5

Аргумент:

- Молодой клиент, мало сбережений, большой кредит на длительный срок.

ID	Возраст	Пол	Жильё	Saving Account	Checking Account	Сумма кредита	Срок (мес.)	Цель	Ежемесячный платёж	Вероятность невозврата
812	24	male	own	little	little	9629	36	car	267.5	82%
736	23	female	rent	little	moderate	11560	24	car	481.7	76%
788	50	male	free	little	moderate	6224	48	education	129.7	77%

Практическое применение

- Интерактивный интерфейс (Streamlit) сотрудник вводит данные клиента, получает прогноз сразу.
- ∳ Быстрая обработка заявок автоматизация вместо ручной проверки.
- Готовность к интеграции модель готова к расширению.

Практическое применение

Пример РИСКОВАННОГО КЛИЕНТА:

Молодой клиент 20-ти лет запрашивает кредит в размере 3000 у.е. со сроком на 3 года на открытие/развитие бизнеса. Проживает в арендованной недвижимости.

Уровень сбережений на низком уровне, расчётный счёт – на умеренном.

Практическое применение

Пример НАДЁЖНОГО КЛИЕНТА:

Работающая клиент 30-ти лет открывает запрос на кредит в размере 5500 у.е. со сроком на 2 года на покупку автомобиля.

Проживает в личной недвижимости. Уровень сбережений и расчётного счёта - умеренный.