Review Problem 15

* Orange runs at 1GHz, and provides a unit making all floating point operations take 1 cycle. Grape runs at 1.2 GHz by deleting the unit, meaning floating point operations take 20 cycles. Which machine is better?

It depends. Har much floating point

Processor Performance Summary

Machine performance:

* CPI *
Clock rate

Camplex Instr Set computers

Reduced Instr Set (onputers)

Reduced Trost

Better performance:

number of instructions to implement computations

____CPI

____ Clock rate

Improving performance must balance each constraint Example: 1980's RISC vs. CISC

Datapath & Control

Readings: 4.1-4.4

Datapath: System for performing operations on data, plus memory access.

Control: Control the datapath in response to instructions.

Simple CPU

Develop complete CPU for subset of instruction set

Memory: LDUR, STUR

Branch: B

Conditional Branch: CBZ

Arithmetic: ADD, SUB

Most other instructions similar

Execution Cycle

Processor Overview

Overall Dataflow

PC fetches instructions

Instructions select operand registers, ALU immediate values

ALU computes values

Load/Store addresses computed in ALU

Result goes to register file or Data memory

RTL & Processor Design

Convert instructions to Register Transfer Level (RTL) specification

RegA = RegB + RegC;

RTL specifies required interconnection of units, control

Math unit example:

(add): A = A + B; I++;

(mult): A = A * B: I++;

(hold): A = A; I++;

(init): A = Din; I++;

74

Instruction Fetch

Add/Subtract RTL

Add instruction: ADD Rd, Rn, Rm

That = Men [PC];

Res [Rd] = Res [Rn] + Res [Rn];

PC = PC+4;

Subtract instruction: SUB Rd, Rn, Rm

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00

Opcode Rm SHAMT Rn Rd

Add/Subtract Datapath

Reg [Rd] = Reg[Ru] of Reg[Ru]; PC Rev. 20:16)

Rev. 20:16)

Rev. 20:16) Address Instruction Memory Instruction Aw Ab Aa Da Dw RegFile Db

Load RTL

Load Instruction: LDUR Rd, [Rn, DAddr9]

Datapath + Load

79

Store RTL

Store Instruction: STUR Rd, [Rn, DAddr9]

Inst = MEMCRO;

Addr = Reg(RNJ+SE (DAddr9);

PC=PC=4;

Men[Addr] = Reg[Rd])

PC=PC+4;

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00

Opcode

DAddr9

00

Rn

Rd