CS771 Assignment 1

Surendra Kumar Ahirwar (211083)

Narendra Kumar Ahirwar (220696) Satmeet Singh Saluja (200890) Nagmani Nayan (220679) Garima Verma (231080037) Sameer Verma (220949)

Problem 1.1 - Part 1: Mathematical Derivation

Derivation of a Linear Model to Predict ML-PUF Responses

Let $\mathbf{c} \in \{0, 1\}^8$ be the 8-bit challenge.

Step 1: Linear Model for Signal Timing in Arbiter PUF. For a simple arbiter PUF, the time it takes for signals to reach the finish line can be modeled linearly.

For an 8-bit challenge c, let:

- $t_0^u(\mathbf{c})$ be the time for the upper signal in PUF0
- $t_0^l(\mathbf{c})$ be the time for the lower signal in PUF0
- $t_1^u(\mathbf{c})$ be the time for the upper signal in PUF1
- $t_1^l(\mathbf{c})$ be the time for the lower signal in PUF1

Each of these times can be expressed as a linear function of a feature map $\phi(\mathbf{c})$:

$$t_0^u(\mathbf{c}) = \mathbf{w}_0^{u \top} \phi(\mathbf{c}) + b_0^u$$
$$t_0^l(\mathbf{c}) = \mathbf{w}_0^{l \top} \phi(\mathbf{c}) + b_0^l$$
$$t_1^u(\mathbf{c}) = \mathbf{w}_1^{u \top} \phi(\mathbf{c}) + b_1^u$$
$$t_1^l(\mathbf{c}) = \mathbf{w}_1^{l \top} \phi(\mathbf{c}) + b_1^l$$

Here, $\phi(\mathbf{c}) \in \mathbb{R}^9$ is the standard feature map for arbiter PUFs (including a bias term).

Step 2: Modeling Response0 and Response1. For the ML-PUF, Response0 is determined by comparing the lower signal from PUF0 with the lower signal from PUF1:

$$\mathsf{Response0} = \frac{1 + \mathsf{sign}(t_0^l(\mathbf{c}) - t_1^l(\mathbf{c}))}{2}$$

Similarly, Response1 compares the upper signals:

Response 1 =
$$\frac{1 + \operatorname{sign}(t_0^u(\mathbf{c}) - t_1^u(\mathbf{c}))}{2}$$

Defining:

$$\delta_0(\mathbf{c}) = t_0^l(\mathbf{c}) - t_1^l(\mathbf{c}) = (\mathbf{w}_0^l - \mathbf{w}_1^l)^\top \phi(\mathbf{c}) + (b_0^l - b_1^l)$$

$$\delta_1(\mathbf{c}) = t_0^u(\mathbf{c}) - t_1^u(\mathbf{c}) = (\mathbf{w}_0^u - \mathbf{w}_1^u)^\top \phi(\mathbf{c}) + (b_0^u - b_1^u)$$

Preprint. Under review.

We can express:

Response0 =
$$\frac{1 + sign(\delta_0(\mathbf{c}))}{2}$$
Response1 =
$$\frac{1 + sign(\delta_1(\mathbf{c}))}{2}$$

Each $\delta_i(\mathbf{c})$ is a linear function of $\phi(\mathbf{c})$.

Step 3: XOR-PUF Trick for Final Response. The ML-PUF response is the XOR of Response0 and Response1:

$$r(\mathbf{c}) = \text{Response}0 \oplus \text{Response}1$$

This can be expressed using sign functions:

$$r(\mathbf{c}) = \frac{1 - \operatorname{sign}(\delta_0(\mathbf{c}) \cdot \delta_1(\mathbf{c}))}{2}$$

Justification:

- If δ_0 and δ_1 have the same sign, their product is positive \to result is 0
- If δ_0 and δ_1 have opposite signs, their product is negative \rightarrow result is 1

Step 4: Construction of the Feature Map. Expanding $\delta_0(\mathbf{c}) \cdot \delta_1(\mathbf{c})$:

$$\delta_{0}(\mathbf{c}) \cdot \delta_{1}(\mathbf{c}) = [(\mathbf{w}_{0}^{l} - \mathbf{w}_{1}^{l})^{\top} \phi(\mathbf{c}) + (b_{0}^{l} - b_{1}^{l})] \cdot [(\mathbf{w}_{0}^{u} - \mathbf{w}_{1}^{u})^{\top} \phi(\mathbf{c}) + (b_{0}^{u} - b_{1}^{u})]$$

$$= [(\mathbf{w}_{0}^{l} - \mathbf{w}_{1}^{l})^{\top} \phi(\mathbf{c})] \cdot [(\mathbf{w}_{0}^{u} - \mathbf{w}_{1}^{u})^{\top} \phi(\mathbf{c})]$$

$$+ (b_{0}^{l} - b_{1}^{l}) \cdot [(\mathbf{w}_{0}^{u} - \mathbf{w}_{1}^{u})^{\top} \phi(\mathbf{c})]$$

$$+ (b_{0}^{u} - b_{1}^{u}) \cdot [(\mathbf{w}_{0}^{l} - \mathbf{w}_{1}^{l})^{\top} \phi(\mathbf{c})]$$

$$+ (b_{0}^{l} - b_{1}^{l}) \cdot (b_{0}^{u} - b_{1}^{u})$$

Let $\mathbf{v}_0 = \mathbf{w}_0^l - \mathbf{w}_1^l$ and $\mathbf{v}_1 = \mathbf{w}_0^u - \mathbf{w}_1^u$, with $c_0 = b_0^l - b_1^l$ and $c_1 = b_0^u - b_1^u$.

The first term is quadratic in $\phi(\mathbf{c})$:

$$\begin{aligned} (\mathbf{v}_0^\top \phi(\mathbf{c})) \cdot (\mathbf{v}_1^\top \phi(\mathbf{c})) &= \phi(\mathbf{c})^\top \mathbf{v}_0 \mathbf{v}_1^\top \phi(\mathbf{c}) \\ &= \sum_{i=1}^9 \sum_{j=1}^9 v_{0,i} v_{1,j} \phi_i(\mathbf{c}) \phi_j(\mathbf{c}) \end{aligned}$$

Explicit Feature Map $\tilde{\phi}(\mathbf{c})$.

$$\tilde{\phi}(\mathbf{c}) = \begin{bmatrix} \{\phi_i(\mathbf{c})\phi_j(\mathbf{c})\}_{1 \le i, j \le 9} \\ \{\phi_i(\mathbf{c})\}_{1 \le i \le 9} \\ 1 \end{bmatrix}$$

That is, $\tilde{\phi}(\mathbf{c})$ is a vector containing:

- All pairwise products of the 9 elements of $\phi(\mathbf{c})$ (including the bias term),
- All 9 elements of $\phi(\mathbf{c})$,
- The constant 1.

Final Model. The ML-PUF response can be predicted by:

$$r(\mathbf{c}) = \frac{1 - \operatorname{sign}(\tilde{\mathbf{W}}^{\top} \tilde{\phi}(\mathbf{c}))}{2}$$

where $\tilde{\mathbf{W}} \in \mathbb{R}^{91}$ incorporates all the PUF-specific parameters.

Problem 1.1 - Part 2: Dimensionality of the Feature Map \tilde{D}

The dimensionality of $\tilde{\phi}(\mathbf{c})$ is:

• Quadratic terms: $9 \times 9 = 81$

Linear terms: 9Constant term: 1

Therefore, $\tilde{D} = 81 + 9 + 1 = 91$

Problem 1.1 - Part 3: Kernel Choice for Perfect Classification

Required Decision Boundary The ML-PUF response is determined by:

$$r(\mathbf{c}) = \frac{1 - \operatorname{sign}(\delta_0(\mathbf{c}) \cdot \delta_1(\mathbf{c}))}{2}$$

where $\delta_0(\mathbf{c})$ and $\delta_1(\mathbf{c})$ are linear functions of \mathbf{c} . Expanding their product gives:

$$\delta_0(\mathbf{c}) \cdot \delta_1(\mathbf{c}) = \underbrace{\phi(\mathbf{c})^\top \mathbf{v}_0 \mathbf{v}_1^\top \phi(\mathbf{c})}_{\text{Quadratic}} + \text{Linear Terms} + \text{Constant}$$

This requires learning a second-degree polynomial decision boundary.

Optimal Kernel A **Polynomial Kernel of Degree 2** is required:

$$K(\mathbf{c}, \mathbf{c}') = (\gamma \langle \mathbf{c}, \mathbf{c}' \rangle + \text{coef}0)^2$$

with parameters:

$$\gamma = 1$$
, degree = 2, coef0 = 1

Justification

1. Feature Space Alignment: Expanding the kernel gives:

$$K(\mathbf{c}, \mathbf{c}') = (\mathbf{c}^{\top} \mathbf{c}' + 1)^2$$

This implicitly computes all quadratic terms $\{c_i c_j\}$, linear terms $\{c_i\}$, and a constant matching the explicit feature map $\tilde{\phi}(\mathbf{c})$ derived earlier.

- 2. **Perfect Separability**: The kernel SVM's implicit quadratic mapping aligns with the ML-PUF's XOR-of-linear-responses structure and guarantees zero training error (perfect classification) under hard-margin conditions.
- 3. **Parameter Choices**: $\gamma=1$ preserves original scale of challenge bits (0/1); coef0 = 1 introduces the constant term needed for affine components; degree 2 matches the quadratic nature of $\delta_0 \cdot \delta_1$.

Parameter Notes: Large C enforces hard margins (no training errors); $\gamma=1$ ensures proper scaling for binary challenges $\{0,1\}^8$; coef0=1 matches the constant term in $\tilde{\phi}(\mathbf{c})$.

Alternative Kernels

- **RBF**: Universal but needs infinite dimensions to approximate quadratic
- Matern: Designed for smoothness, mismatches discrete challenges
- Linear Kernel: Insufficient (cannot model XOR)

Thus, the polynomial kernel of degree 2 is both *minimal* and *sufficient*.

Solution: Use polynomial kernel with degree=2, gamma=1, coef0=1

Part 4: Arbiter PUF Inversion: Delay Recovery from Linear Model

1. Problem Setup

Given a 65-dimensional linear model

$$W = [w_0, w_1, \dots, w_{63}, b]^\mathsf{T} \in \mathbb{R}^{65}$$

The 256-dimensional nonnegative delay vector to recovered

$$\delta = \left[d_0^{(0)}, d_0^{(1)}, d_0^{(2)}, d_0^{(3)}, \dots, d_{63}^{(3)} \right]^\mathsf{T} \in \mathbb{R}_{>0}^{256}.$$

2. Delay-to-Weight Mapping Model

Assuming each of the 64 stages consists of four physical delays $d_i^{(0)}, d_i^{(1)}, d_i^{(2)}, d_i^{(3)} \geq 0$. The PUF's feature mapping then produces a linear weight vector W via a matrix A which accumulates the contributions of these delays into the 64 weights and one bias.

3. Constructing the System of Equations

Define

$$A \in \{0,1\}^{65 \times 256},$$

where for $j=0,\ldots,63$ the row $A_{j,:}$ has ones in exactly those columns corresponding to the four delays of stage $i\geq j$, and zeros otherwise, so that

$$w_j = \sum_{k=1}^4 \sum_{i=j}^{63} d_i^{(k)}, \quad j = 0, \dots, 63.$$

The last row of A encodes the bias contribution (for instance, by placing a 1 in a dedicated "bias-delay" column). Stacking all weights and the bias gives

$$W \ = \ A\,\delta, \quad W \in \mathbb{R}^{65}, \ \delta \in \mathbb{R}^{256}_{>0}.$$

4. Optimization Problem to Invert the Model

Since there are infinitely many nonnegative solutions to $A\delta=W$, we choose the one minimizing residual error in the least-squares sense:

$$\delta^\star = \arg\min_{\delta \in \mathbb{R}^{256}} \ \|A \, \delta - W\|_2^2 \quad \text{subject to} \quad \delta \geq 0.$$

This is a standard nonnegative least-squares (NNLS) problem.

5. Summary of Method

1.

Build the 65×256 matrix A encoding how each physical delay contributes to each linear-model weight and the bias.

Solve the NNLS problem $\min_{\delta>0} ||A\delta - W||_2^2$ using an appropriate solver.

Return the 256-vector $\delta^* \geq 0$ which reproduces W.

Part 7: Outcomes of Experiment for different Hyperparameters in Linear SVC and Logistric Regression

A. Changing Loss Hyperparameter in Linear SVC

Table 1: Impact of Loss Function on Training Time and Test Accuracy

Hyperparameter	Training Time (s)	Test Accuracy
Hinge	1.945	1.000
Squared Hinge	1.4307	1.000

B. Changing C Value

(i) Linear SVC

Table 2: Effect of Regularization Strength C in Linear SVC

C value	Training Time (s)	Test Accuracy
1.00×10^{-2}	0.700	0.983
1	4.252	1.000
1.00×10^{3}	1.410	1.000

(ii) Logistic Regression

Table 3: Effect of Regularization Strength C in Logistic Regression

C value	Training Time (s)	Test Accuracy
1.00×10^{-2}	1.617	0.993
1	4.163	1.000
1.00×10^{3}	0.946	1.000

D. Changing Penalty Hyperparameter

(i) Linear SVC

Table 4: Impact of Penalty (ℓ_1 vs. ℓ_2) in Linear SVC

Hyperparameter	Training Time (s)	Test Accuracy
ℓ_1	10.2994	1.000
ℓ_2	1.2780	1.000

(ii) Logistic Regression

Table 5: Impact of Penalty (ℓ_1 vs. ℓ_2) in Logistic Regression

Hyperparameter	Training Time (s)	Test Accuracy
ℓ_1	2.884	1.000
ℓ_2	1.568	1.000