Introducción a la dimensión

José Cuevas Barrientos

RESUMEN. En éste artículo expositivo discutimos principalmente el tema de la teoría de la dimensión con aplicaciones a la geometría algebraica y a los esquemas.

Dimensión algebraica

Nota: En éste artículo todos los anillos son unitarios y conmutativos.

Definición 1.1: Sea A un anillo, se le llama su dimensión de Krull, denotado k. dim A, al supremo n tal que existe una cadena

$$\mathfrak{p}_0 \subset \mathfrak{p}_1 \subset \cdots \subset \mathfrak{p}_n$$

de ideales primos en A.

Ejemplo: 1. Sea k un cuerpo, entonces sus ideales son (0), (1) y de ellos, solo el (0) es primo, por lo que k. dim(k) = 0.

2. Sea A un DIP que no es un cuerpo. Entonces el (0) es primo, pero existen más ideales propios (¿por qué?). No obstante, como $(a) \subseteq (b)$ syss $a \mid b$, entonces es claro que los primos son de la forma (p) con p un elemento irreducible, así que k dim A = 1.

En particular, k. dim $\mathbb{Z} = k$. dim(k[x]) = 1, donde k es un cuerpo.

- 3. Ojo, que si A es un DFU la dimensión puede tomar cualesquiera valores, inclusive infinito. Más adelante veremos que para todo cuerpo k se tiene k. dim $(k[x_1, \ldots, x_n]) = n$, y es claro que k. dim $(A[x_1, x_2, x_3, \ldots]) = \infty$, y todos ellos son DFUs.
- 4. Un anillo noetheriano no necesariamente tiene dimensión de Krull finita (cfr. NAGATA [2, pág. 203], ex. 1).
- 5. Recíprocamente un anillo de dimensión de Krull finita no necesariamente es noetheriano. El ejemplo es el siguiente: sea k un cuerpo y considere el anillo de infinitas variables $k[x_1, x_2, x_3, ...]$ y sea A el cociente por el ideal ($\{x_ix_j: i, j \in \mathbb{N}\}$). Éste anillo no es noetheriano pues la siguiente cadena no se estabiliza:

$$(x_1) \subset (x_1, x_2) \subset (x_1, x_2, x_3) \subset \cdots$$

Fecha: 17 de mayo de 2023.

¹Éste ejemplo fue sugerido en https://mathoverflow.net/a/93290.

No obstante, el único ideal primo en A es $\mathfrak{p} := (x_1, x_2, x_3, \dots)$, puesto que $x_i^2 = 0$ así que si \mathfrak{q} fuese primo, debe incluir a cada x_i y casí vemos que $\mathfrak{q} \supseteq \mathfrak{p}$, pero $A/\mathfrak{p} = k$, así que \mathfrak{p} es maximal.

Así k. dim A = 0, pero A no es noetheriano.

Definición 1.2: Un anillo A se dice artiniano si para toda cadena descendente de ideales

$$\mathfrak{a}_1\supseteq\mathfrak{a}_2\supseteq\mathfrak{a}_3\supseteq\cdots$$

existe n tal que $\mathfrak{a}_m = \mathfrak{a}_n$ para $m \geq n$.

Teorema 1.3 (Akizuki): Un anillo es artiniano syss es noetheriano y tiene dimensión 0 (cfr. NAGATA [2, pág. 25] thm. 9.1).

Proposición 1.4: Un dominio íntegro es un cuerpo syss es un anillo artiniano.

DEMOSTRACIÓN: Basta notar que (0) debe ser el único ideal primo.

Definición 1.5: La *altura* de un ideal \mathfrak{a} , denotado alt \mathfrak{a} , es el supremo n tal que existe una cadena

$$\mathfrak{p}_0 \subset \cdots \subset \mathfrak{p}_n \subseteq \mathfrak{a}$$

de primos.

Intuitivamente, la dimensión de Krull es una medida de la complejidad de un anillo; idealmente² la altura debería medir cuantos generadores posee un ideal, lo que geométricamente se traduce en la cantidad de ecuaciones para describir un conjunto algebraico (Zariski-cerrado).

Ejemplo: • Para $\mathfrak{p} \in \operatorname{Spec} A$ es fácil notar que alt $\mathfrak{p} = k \cdot \dim(A_{\mathfrak{p}})$. En particular, \mathfrak{p} es minimal syss $A_{\mathfrak{p}}$ es artiniano.

• En un DFU, los primos de altura 1 son principales. En efecto, sea $\mathfrak p$ de alt $\mathfrak p=1$. Como (0) es el primo minimal, entonces existe $f\in\mathfrak p\setminus\{0\}$ y, por factorización única posee un factor primo $p\mid f$, luego (0) \subset (p) \subseteq $\mathfrak p$ es una cadena de primos y así (p) = $\mathfrak p$.

Definición 1.6: Sea B/A una extensión de anillos, vale decir, que B es un anillo y A es un subanillo de B. Se dice que un elemento $\beta \in B$ es **entero** sobre A si es raíz de un polinomio mónico

$$\beta^n + c_{n-1}\beta^{n-1} + \dots + c_1\beta + c_0 = 0,$$

con $c_i \in \varphi[A]$. Se dice que B es una extensión *entera* si todos sus elementos son enteros.

²Broma no intencionada.

Cabe destacar que si A = k es un cuerpo, entonces la noción de «entero» coincide con la de ser «algebraico».

Teorema 1.7 (del ascenso de Cohen-Seidenberg): Sea B/A una extensión entera de anillos, y sean

$$\begin{array}{lll} \mathfrak{p}_1 \subseteq \mathfrak{p}_2 \subseteq \cdots \subseteq \mathfrak{p}_m & \subseteq \mathfrak{p}_{m+1} \subseteq \cdots \subseteq \mathfrak{p}_n & \lhd A, \\ \mathfrak{q}_1 \subseteq \mathfrak{q}_2 \subseteq \cdots \subseteq \mathfrak{q}_m & \lhd B, \end{array}$$

dos cadenas de ideales primos, tales que m < n y $\mathfrak{q}_i \cap A = \mathfrak{p}_i$ para todo $1 \le i \le m$. Luego se puede extender la segunda cadena a

$$\mathfrak{q}_1 \subseteq \mathfrak{q}_2 \subseteq \cdots \subseteq \mathfrak{q}_m \subseteq \cdots \subseteq \mathfrak{q}_n \lhd B$$

con $\mathfrak{q}_i \cap A = \mathfrak{p}_i$ para todo $1 \leq i \leq n$ (cfr. NAGATA [3, pág. 104], cor. 3.7.9).

Corolario 1.8: Sea B/A una extensión entera de anillos, entonces k. dim B=k. dim A. Más aún, para todo ideal $\mathfrak{b} \subseteq B$ se prueba que $\mathfrak{alt}_B \mathfrak{b} = \mathfrak{alt}_A(\mathfrak{b} \cap A)$.

Teorema 1.9 (normalización de Noether): Sea k un cuerpo y A una k-álgebra de tipo finito.³ Entonces existen elementos $x_1, \ldots, x_n \in A$ que son k-algebraicamente independientes tales que la extensión A/k[x] es entera (cfr. NAGATA [3, pág. 108], cor. 3.8.3).

Definición 1.10: Se dice que una cadena de primos $\mathfrak{p}_0 \subset \mathfrak{p}_1 \subset \cdots \subset \mathfrak{p}_n$ en A está saturada si no existe ningún primo \mathfrak{q} tal que $\mathfrak{p}_i \subset \mathfrak{q} \subseteq \mathfrak{p}_{i+1}$ para algún i.

Teorema 1.11: Sea k un cuerpo y A un dominio íntegro que es de tipo finito sobre k. Entonces:

- 1. $k \cdot \dim A = \operatorname{trdeg}_k(\operatorname{Frac} A)$.
- 2. Toda cadena saturada de primos en A tiene misma longitud.
- 3. Sea $\mathfrak{p} \in \operatorname{Spec} A$, entonces

$$k \cdot \dim A = \operatorname{alt} \mathfrak{p} + k \cdot \dim(A/\mathfrak{p}) = k \cdot \dim(A_{\mathfrak{p}}) + k \cdot \dim(A/\mathfrak{p}).$$

(Cfr. Nagata [3, pág. 109]).

Ejemplo: Sea k un cuerpo, entonces $k.\dim(k[x_1,\ldots,x_n])=n$.

2. Variedades

Definición 2.1: Sea X un esquema íntegro con punto genérico⁴ $\xi \in X$, se define su *cuerpo de funciones racionales* $K(X) := \mathscr{O}_{X,\xi}$.

 $^{^{3}}$ Es decir, que A está generada, como anillo sobre k, por un conjunto finito de elementos.

⁴Las componentes irreducibles se corresponden a puntos genéricos. Como un esquema íntegro es irreducible, posee un único punto genérico.

La demostración de que K(X) es un cuerpo vendrá en la siguiente proposición:

Proposición 2.2: Sea X un esquema íntegro con punto genérico $\xi \in X$.

- 1. Sea $V = \operatorname{Spec} A \subseteq X$ un abierto afín, entonces el homomorfismo natural $\mathcal{O}_X(V) = A \to K(X)$ es inyectivo y $K(X) = \operatorname{Frac} A$.
- 2. Para todo abierto no vacío $U\subseteq X$ y todo punto $x\in U$ se cumple que los homomorfismos naturales $\mathscr{O}_X(U)\to\mathscr{O}_{X,x}$ y $\mathscr{O}_{X,x}\to K(X)$ son inyectivos. Si $U\supseteq V$ son abiertos no vacíos, entonces $\mathscr{O}_X(U)\to\mathscr{O}_X(V)$ es inyectivo.

DEMOSTRACIÓN: 1. En A el punto ξ se identifica con el primo $\mathfrak{p}_{\xi} = (0)$, de modo que $\mathscr{O}_{X,x} = A_{(0)} = \operatorname{Frac} A$.

2. Veamos que $\mathscr{O}_X(U) \to K(X)$ es inyectivo. Sea $f \in \mathscr{O}_X(U)$ tal que $f|_{\xi} = 0$, entonces todo punto $y \in U$ posee un subentorno afín $y \in V \subseteq U$ y allí vemos que $(f|_V)|_{\xi} = 0$, lo que implica por el inciso anterior que $f|_V = 0$. Corriendo el punto y, por axioma de pegado, vemos que f = 0.

Para ver que $\mathcal{O}_{X,x} \to K(X)$ es inyectivo, entonces basta tomar un entorno afín de x.

Ahora bien, la composición $\mathscr{O}_X(U) \to \mathscr{O}_X(V) \to K(X)$ es inyectiva, luego la primera función lo es. \square

Volvamos al concepto de dimensión:

Definición 2.3: Sea X un espacio topológico. Se le llama su dimensión, denotado $\dim X$, al supremo n tal que existe una cadena

$$F_0 \subset F_1 \subset \cdots \subset F_n \subseteq X$$

de cerrados irreducibles.

Sea $Y \subseteq X$ un cerrado irreducible, se le llama su codimensi'on, denotado codim(Y,X), al supremo m tal que existe una cadena

$$Y \subseteq F_0 \subset F_1 \subset \cdots \subset F_m \subseteq X$$

de cerrados irreducibles.

Proposición 2.4: Sea A un anillo y sea $X := \operatorname{Spec} A$. Entonces:

- 1. $\dim X = k \cdot \dim A$.
- 2. Para todo $\mathfrak{p} \in \operatorname{Spec} A$ se cumple:

$$\operatorname{alt} \mathfrak{p} = \operatorname{codim}(\overline{\{x_{\mathfrak{p}}\}}, X), \qquad k. \dim(A/\mathfrak{p}) = \dim \overline{\{x_{\mathfrak{p}}\}}.$$

3. $\dim X = \sup\{k.\dim(A_{\mathfrak{m}}) : \mathfrak{m} \text{ maximal}\}.$

Ejemplo: Sea k un cuerpo, entonces $\dim \mathbb{A}_k^n = n$.

Definición 2.5: Sea k un cuerpo. Se dice que un esquema X es un **conjunto algebraico afín** sobre k si $X = \operatorname{Spec} A$, donde A es un k-álgebra de tipo finito. Si además es íntegro, entonces X se dice una **variedad afín** sobre k.

Teorema 2.6: Sea k un cuerpo y sea X una variedad afín sobre k. Entonces:

- 1. dim $X = \operatorname{trdeg}_k K(X) = \operatorname{trdeg}_k K(U)$, para cualquier abierto no vacío $U \subset X$.
- 2. Toda cadena saturada de cerrados irreducibles en X tiene la misma longitud.
- 3. Para todo punto $x \in X$ se tiene que

$$\dim \overline{\{x\}} + \operatorname{codim}(\overline{\{x\}}, X) = \dim X.$$

Lema 2.7: Sea X un espacio topológico y sea $\{U_i\}_{i\in I}$ un cubrimiento por abiertos de X. Entonces dim $X = \sup_{i\in I} \{\dim(U_i)\}.$

DEMOSTRACIÓN: Sea $F_0 \subset \cdots \subset F_n$ una cadena de cerrados irreducibles en X. Como los U_i 's cubren a X, se tiene que $U_i \cap F_0 \neq \emptyset$ para algún i, así que fijemos $U := U_i$. Es claro que los $U \cap F_j$ son cerrados en U y como $U \cap F_j$ son abiertos en F_j irreducible, son densos, y así $\overline{U \cap F_j} = F_j$, lo que prueba que

$$U \cap F_0 \subset U \cap F_1 \cdots \subset U \cap F_n$$

es una cadena de cerrados irreducibles en U y así dim $U \geq n$.

Ejemplo: Sea k un cuerpo.

- $\dim(\mathbb{P}^n_k) = n$, pues \mathbb{P}^n_k puede cubrirse por cartas afínes, todas las cuales son isomorfas a \mathbb{A}^n_k el que tiene dimensión n.
- Sea $X := \operatorname{Spec}(k[x,y]/(x^2-y^3))$, entonces nótese que $k[x,y]/(y^2-x^3) = k[x,\sqrt{x^3}]$ es una extensión entera de k[x], luego dim X=1.

Referencias

- 1. Hartshorne, R. Algebraic Geometry Graduate Texts in Mathematics 52 (Springer-Verlag New York, 1977).
- 2. Nagata, M. Local Rings (Interscience, 1962).
- 3. Nagata, M. Theory of Commutative Fields Translations in Mathematical Monographies 125 (American Mathematical Society, 1967).

 $Correo\ electr\'onico$: josecuevasbtos@uc.clURL: josecuevas.xyz