Projeto IC

Artigo Escolhido

VERY DEEP CONVOLUTIONAL NEURAL NETWORKS FOR RAW WAVEFORMS

Dataset

UrbanSound8k

Objetivo

Este artigo foca em melhorar a modelagem acústica utilizando redes neurais convolucionais (CNNs) diretamente com dados de waveform (forma de onda) bruta, sem préprocessamento significativo. Mas, o que é modelagem acústica? A modelagem acústica é uma técnica que utiliza a computação para caracterizar indicadores de poluição sonora. A modelagem acústica a partir de dados de waveform bruta é desafiadora devido à complexidade das sequências de dados (como vetores de tamanho 32000).

Principais Elementos

- Número de Camadas: A arquitetura mais profunda possui até 34 camadas de pesos, sendo uma CNN muito profunda.
- Número de Neurônios por Camada:
 - Primeira camada: 80/4, 256 filtros.
 - Segunda camada: 80/4, 48 filtros.
 - As camadas seguintes usam filtros menores com números variáveis, como 3,
 384, 3, 192, etc., conforme mostrado nas tabelas do artigo.
- Taxa de Aprendizado: O artigo utiliza o otimizador Adam, que ajusta dinamicamente a taxa de aprendizado. A taxa inicial de aprendizado padrão no Adam é 0.001
- Momentum: O Adam, utilizado no estudo, não utiliza momentum tradicional como o SGD, mas ajusta dinamicamente os parâmetros de aprendizado, então o "momentum" é controlado por uma adaptação interna no Adam.
- Dataset: Dataset utilizado foi o UrbanSound8k, especificado acima.
- Métricas (Precisões etc.): O modelo M18 atinge uma precisão de 71.68% no conjunto de testes, sendo o melhor desempenho observado.

Código

O código, está presente no <u>GitHub</u> e foi desenvolvido utilizando as especificações do autor, o código não é o código original do autor, justamente por não ter sido disponibilizado pelo mesmo, porém, o código encontrado segue a risca tudo no artigo, foi modificado para satisfazer as nossas necessidades.

Experimentos do Autor

Model	Test	Time
M3	56.12%	77s
M5	63.42%	63s
M11	69.07%	71s
M18	71.68%	98s
M34-res	63.47%	124s

Como visto no artigo, o autor nos disponibilizou apenas esses dados.

Experimentos

1º Experimento

Acurácia: 0.2009 Precisão: 0.3285 Recall: 0.2009 F1-Score: 0.1803

Taxa de aprendizagem de 0,001, 5 epochs e um batch size de 32.

2º Experimento

Acurácia: 0.1151 Precisão: 0.0132 Recall: 0.1151 F1-Score: 0.0237

Taxa de aprendizagem de 0,005, 5 epochs e um batch size de 32.

3º Experimento

Acurácia: 0.0887 Precisão: 0.0079 Recall: 0.0887 F1-Score: 0.0145

Taxa de aprendizagem de 0,015, 5 epochs e um batch size de 32.

Conclusão

Como pode ser observado, à medida que a taxa de aprendizagem aumenta, a acurácia dos resultados tende a diminuir. Isso ocorre porque uma taxa de aprendizagem menor, como 0.001, permite atualizações mais suaves nos pesos do modelo. Isso ajuda o modelo a convergir de forma mais estável e a encontrar um mínimo local mais eficaz. Em contraste, uma taxa de aprendizagem mais alta pode causar grandes saltos nos pesos, o que pode resultar em uma perda de estabilidade durante o treinamento e dificultar a convergência para um ótimo desempenho. Devido a limitações computacionais, não explorei muitos parâmetros. O algoritmo, por ter muitas camadas, tornou-se bastante pesado. Enquanto o autor utilizou uma GPU Titan X para realizar os testes, os experimentos realizados aqui

foram feitos com uma RX 5500XT, o que aumentou significativamente o tempo de execução da rede.		