ACH2043 INTRODUÇÃO À TEORIA DA COMPUTAÇÃO

Aula 15

Cap 3.3 – Definição de algoritmo

Profa. Ariane Machado Lima ariane.machado@usp.br

O que é um algoritmo?

O que é um algoritmo?

Muito "usado" há tempos, mas formalmente definido apenas no século XX

Um pouco de história

- 1833 Charles Babbage e a concepção da máquina analítica (programável)
- Ada Lovelace
 - criou estruturas de programas para a máquina analítica (loops, saltos condicionais, subrotinas,...)
 - Inventou a palavra algoritmo em homenagem ao matemático Al-Khawarizmi (820 D.C.)
- Mas algoritmos ainda eram uma noção intuitiva...

Um pouco de história

- 1900 palestra do matemático David Hilbert
 - 23 desafios matemáticos para o próximo século
 - Décimo problema: "um processo pelo qual possa ser determinado, com um número finito de operações", se um polinômio tem raízes inteiras.
- 1936 artigos de Alonzo Church e Alan Turing definindo formalmente um algoritmo
 - Church com lambda-cálculo
 - Turing com Máquinas de Turing
 - As duas formulações são equivalentes

Tese de Church-Turing

Noção intuitiva de algoritmos

é igual a

algoritmos de máquina de Turing

Algoritmo para o problema de Hilbert

Problema de Hilbert:

um processo pelo qual possa ser determinado, com um número finito de operações", se um polinômio tem raízes inteiras

 1970 – Yuri Matijasevic mostrou que não existe tal "processo" (ou algoritmo)

Algoritmo para o problema de Hilbert

Problema de Hilbert:

D = { p | p é um polinômio com uma raiz inteira}
D é decidível?

Algoritmo para o problema de Hilbert

Problema de Hilbert:

D = { p | p é um polinômio com uma raiz inteira}
D é decidível?

- 1970 Yuri Matijasevic mostrou que não
- Próximo capítulo: como fazer esse tipo de prova.

Problema simplificado

 $D_1 = \{p | p \text{ \'e um polinômio sobre } x \text{ com uma raiz inteira} \}.$

Problema simplificado

 $D_1 = \{p | p \text{ \'e um polinômio sobre } x \text{ com uma raiz inteira} \}.$

Aqui está uma MT M_1 que reconhece D_1 :

 M_1 = "A entrada é um polinômio p sobre a variável x.

1. Calcule o valor de p com x substituída sucessivamente pelos valores $0, 1, -1, 2, -2, 3, -3, \ldots$ Se em algum ponto o valor do polinômio resulta em 0, aceite."

Decidível?

Problema simplificado

 $D_1 = \{p | p \text{ \'e um polinômio sobre } x \text{ com uma raiz inteira} \}.$

Aqui está uma MT M_1 que reconhece D_1 :

 M_1 = "A entrada é um polinômio p sobre a variável x.

1. Calcule o valor de p com x substituída sucessivamente pelos valores $0, 1, -1, 2, -2, 3, -3, \ldots$ Se em algum ponto o valor do polinômio resulta em 0, aceite."

Decidível? Sim...

As raízes de um polinômio de uma só variável devem residir entre os dois valores:

$$\pm k \frac{c_{\text{máx}}}{c_1},$$

onde k é o número de termos no polinômio, $c_{\text{máx}}$ é o coeficiente com o maior valor absoluto, e c_1 é o coeficiente do termo de mais alta ordem. Se uma raiz não for encontrada dentro desses limitantes, a máquina *rejeita*.

O problema original

Matijasevic mostra que, para polinômios com várias variáveis, não é possível calcular tais limitantes

Logo, D é

O problema original

Matijasevic mostra que, para polinômios com várias variáveis, não é possível calcular tais limitantes

Logo, D é Turing-reconhecível mas não Turingdecidível

Terminologia para descrever Máquinas de Turing

- Mudança de foco no curso: algoritmos
 - Máquina de Turing como modelo
 - Precisamos estar convencidos de que podemos descrever qualquer algoritmo com uma máquina de Turing

Terminologia para descrever Máquinas de Turing

- 3 níveis de descrição de algoritmos:
 - Descrição formal: detalhes da máquina: estados, função de transição, etc.
 - Descrição de implementação: escrito em língua natural para descrever como a máquina move a cabeça da fita, lê e escreve dados, etc (sem descrever estados ou função de transição)
 - Descrição de alto nível: escrito em língua natural para descrever um algoritmo, omitindo detalhes de implementação

Exemplo – descrição formal (se o nr de zeros de uma cadeia é uma potência de 2)

Agora, damos a descrição formal de $M_2 = (Q, \Sigma, \Gamma, \delta, q_1, q_{\text{aceita}}, q_{\text{rejeita}})$:

- $Q = \{q_1, q_2, q_3, q_4, q_5, q_{\text{aceita}}, q_{\text{rejeita}}\},$
- $\Sigma = \{0\}$ e
- $\Gamma = \{0,x,u\}.$
- Descrevemos δ com um diagrama de estados (veja a Figura 3.8).
- Os estados inicial, de aceitação e de rejeição são q_1 , $q_{\rm aceita}$ e $q_{\rm rejeita}$.

Exemplo – descrição de implementação (se o nr de zeros de uma cadeia é uma potência de 2)

EXEMPLO 3.7

Aqui descrevemos uma máquina de Turing (MT) M_2 que decide $A = \{0^{2^n} | n \ge 0\}$, a linguagem consistindo em todas as cadeias de 0s cujo comprimento é uma potência de 2.

M_2 = "Sobre a cadeia de entrada w:

- 1. Faça uma varredura da esquerda para a direita na fita, marcando um 0 não, e outro, sim.
- 2. Se no estágio 1, a fita continha um único 0, aceite.
- 3. Se no estágio 1, a fita continha mais que um único 0 e o número de 0s era ímpar, rejeite.
- 4. Retorne a cabeça para a extremidade esquerda da fita.
- 5. Vá para o estágio 1."

Exemplo – descrição de alto nível (se um polinômio sobre x tem raiz inteira)

- M_1 = "A entrada é um polinômio p sobre a variável x.
 - 1. Calcule o valor de p com x substituída sucessivamente pelos valores $0, 1, -1, 2, -2, 3, -3, \ldots$ Se em algum ponto o valor do polinômio resulta em 0, aceite."

Terminologia para descrever Máquinas de Turing

- Até agora usamos as descrições formais e de implementação
- Passaremos a usar mais a descrição de alto nível
 - Objetos (O) convertidos em cadeias (<O>)
 - Vários objetos em uma única cadeia (<O₁, O₂, ..., O_k>)
 - Assumimos que as MTs são capazes de decodificar essas cadeias

Descrição de alto nível de Máquinas de Turing

```
• M = " ...
```

- Primeira linha: entrada da máquina
 - w é cadeia
 - <w> é objeto codificado em cadeia implicitamente MT testa se a codificação está ok, se não estiver rejeita

EXEMPLO 3.23

Seja A a linguagem consistindo em todas as cadeias representando grafos nãodirecionados que são conexos. Lembre-se de que um grafo é *conexo* se todo nó pode ser atingido a partir de cada um dos outros nós passando pelas arestas do grafo. Escrevemos

 $A = \{\langle G \rangle | G \text{ \'e um grafo não-direcionado conexo} \}.$

O que se segue é uma descrição de alto nível de uma MT M que decide A.

M = "Sobre a entrada $\langle G \rangle$, a codificação de um grafo G:

- 1. Selecione o primeiro nó de G e marque-o.
- 2. Repita o seguinte estágio até que nenhum novo nó seja marcado:
- 3. Para cada nó em G, marque-o, se ele estiver ligado por uma aresta a um nó que já esteja marcado.
- **4.** Faça uma varredura em todos os nós de *G* para determinar se eles estão todos marcados. Se estiverem, *aceite*; caso contrário, *rejeite*."

Detalhes de implementação (só desta vez...)

Codificação:

- G = (N,E) onde N é o conjunto de nós e E é o conjunto de arestas
- <G> = lista de nós (números decimais) e lista de arestas (pares desses números)

$$\langle G \rangle =$$

$$(1,2,3,4)((1,2),(2,3),(3,1),(1,4))$$

Detalhes de implementação (só desta vez...)

- Teste da codificação:
 - Duas listas, uma de decimais e outra de pares de decimais
 - Lista de nós não deve te repetições
 - Lista de arestas só pode ter nós da lista de nós
- Obs.: distinção de elementos exemplo 3.12 do livro

EXEMPLO 3.23

Seja A a linguagem consistindo em todas as cadeias representando grafos nãodirecionados que são conexos. Lembre-se de que um grafo é *conexo* se todo nó pode ser atingido a partir de cada um dos outros nós passando pelas arestas do grafo. Escrevemos

 $A = \{\langle G \rangle | G \text{ \'e um grafo não-direcionado conexo} \}.$

O que se segue é uma descrição de alto nível de uma MT M que decide A.

M = "Sobre a entrada $\langle G \rangle$, a codificação de um grafo G:

- 1. Selecione o primeiro nó de G e marque-o.
- 2. Repita o seguinte estágio até que nenhum novo nó seja marcado:
- 3. Para cada nó em G, marque-o, se ele estiver ligado por uma aresta a um nó que já esteja marcado.
- **4.** Faça uma varredura em todos os nós de *G* para determinar se eles estão todos marcados. Se estiverem, *aceite*; caso contrário, *rejeite*."

Detalhes de implementação (só desta vez...)

 Estágio 1: M marca o primeiro nó com um ponto no dígito mais à esquerda

EXEMPLO 3.23

Seja A a linguagem consistindo em todas as cadeias representando grafos nãodirecionados que são conexos. Lembre-se de que um grafo é *conexo* se todo nó pode ser atingido a partir de cada um dos outros nós passando pelas arestas do grafo. Escrevemos

 $A = \{\langle G \rangle | G \text{ \'e um grafo não-direcionado conexo} \}.$

O que se segue é uma descrição de alto nível de uma MT M que decide A.

M = "Sobre a entrada $\langle G \rangle$, a codificação de um grafo G:

- 1. Selecione o primeiro nó de G e marque-o.
- 2. Repita o seguinte estágio até que nenhum novo nó seja marcado:
- 3. Para cada nó em G, marque-o, se ele estiver ligado por uma aresta a um nó que já esteja marcado.
- **4.** Faça uma varredura em todos os nós de *G* para determinar se eles estão todos marcados. Se estiverem, *aceite*; caso contrário, *rejeite*."

Detalhes de implementação (só desta vez...)

Estágios 2 e 3:

- a) Varre a lista de nós procurando um nó não marcado com ponto (n₁)
 - Marca n₁ com sublinhado
- b) Varre a lista de nós novamente procurando um nó marcado com ponto (n₂)
 - Marca n₂ com sublinhado
- c) Varre a lista de arestas procurando uma aresta entre n₁ e n₂
 - Se acha, tira o sublinhado de n₁ e n₂ e marca n₁ com ponto e volta para o início do estágio 2
 - Senão, move o sublinhado de n₂ para outro nó marcado (chame esse de n₂) e repete o passo c)
- d) Se acabarem os nós marcados (n₁ não está conectado a nenhum nó marcado até o momento)
 - Se ainda houver nós não marcados, move o sublinhado de n₁ para o próximo nó não marcado e repete os passos b) e c).
 - Senão vai para o estágio 4 (não conseguiu marcar nenhum nó novo)

EXEMPLO 3.23

Seja A a linguagem consistindo em todas as cadeias representando grafos nãodirecionados que são conexos. Lembre-se de que um grafo é *conexo* se todo nó pode ser atingido a partir de cada um dos outros nós passando pelas arestas do grafo. Escrevemos

 $A = \{\langle G \rangle | G \text{ \'e um grafo não-direcionado conexo} \}.$

O que se segue é uma descrição de alto nível de uma MT M que decide A.

M = "Sobre a entrada $\langle G \rangle$, a codificação de um grafo G:

- 1. Selecione o primeiro nó de G e marque-o.
- Repita o seguinte estágio até que nenhum novo nó seja marcado:
- 3. Para cada nó em G, marque-o, se ele estiver ligado por uma aresta a um nó que já esteja marcado.
- **4.** Faça uma varredura em todos os nós de *G* para determinar se eles estão todos marcados. Se estiverem, *aceite*; caso contrário, *rejeite*."

Detalhes de implementação (só desta vez...)

- Estágio 4: varre a lista de nós verificando se todos estão com ponto
 - Se sim, entra em um estado de aceitação
 - senão, entra em um estado de rejeição