

# **Clustering: K-means**

Prof. Seungchul Lee Industrial AI Lab.



# Supervised vs. Unsupervised Learning

| Supervised Learning                                                                                   | Unsupervised Learning                                                   |
|-------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|
| Building a model from labeled data                                                                    | Clustering from unlabeled data                                          |
| Data Distribution  14  12  10  8  X  6  4  4  2  -8  -6  -4  -2  0  2  4  6  8  10  12  X1            | Data Distribution    14                                                 |
| $\{x^{(1)},x^{(2)},\cdots,x^{(m)}\}\ \{y^{(1)},y^{(2)},\cdots,y^{(m)}\}$ $\Rightarrow$ Classification | $\{x^{(1)}, x^{(2)}, \cdots, x^{(m)}\}  \Rightarrow  \text{Clustering}$ |



### **Data Clustering**

- Data clustering is an unsupervised learning problem
- Given:
  - -m unlabeled examples  $\{x^{(1)}, x^{(2)}, \dots, x^{(m)}\}$
  - the number of partitions k
- Goal: group the examples into k partitions



$$\{x^{(1)}, x^{(2)}, \cdots, x^{(m)}\} \quad \Rightarrow \quad \text{Clustering}$$



#### **Data Clustering: Similarity**



$$\{x^{(1)}, x^{(2)}, \cdots, x^{(m)}\} \quad \Rightarrow \quad ext{Clustering}$$

- The only information clustering uses is the mutual similarity between samples
- A good clustering is one that achieves:
  - high within-cluster similarity
  - low inter-cluster similarity

#### K-means: (Iterative) Algorithm

#### 1) Initialization

- Input
  - -k: the number of clusters
  - Training set  $\{x^{(1)}, x^{(2)}, \dots, x^{(m)}\}$
- Randomly initialize cluster centers anywhere in  $\mathbb{R}^n$



#### K-means: (Iterative) Algorithm

#### 2) Iteration



- Repeat until convergence
  - A possible convergence criteria: cluster centers do not change anymore



### K-means: (Iterative) Algorithm

#### 3) Output

- c (label): index (1 to k) of cluster centroid (centers)
- $\mu$ : averages (mean) of points assigned to cluster  $\{\mu_1, \mu_2, \cdots, \mu_k\}$





# Initialization (k = 2)



# **Assigning Points**





### **Recomputing the Cluster Centers**





# **Assigning Points**





### **Recomputing the Cluster Centers**



# **Assigning Points**



### **Recomputing the Cluster Centers**





# **Assigning Points**



### **Recomputing the Cluster Centers**





### **Summary: K-means Clustering**

• (Iterative) Algorithm

```
Randomly initialize k cluster centroids \mu_1, \mu_2, \cdots, \mu_k \in \mathbb{R}^n

Repeat \{
for i=1 to m
c_i := \operatorname{index} (\operatorname{from} 1 \text{ to } k) \text{ of cluster centroid closest to } x^{(i)}
for k=1 to k
\mu_k := \operatorname{average} (\operatorname{mean}) \text{ of points assigned to cluster } k
\}
```



# K-means: Optimization Point of View (Optional)

- $c_i$  = index of cluster  $(1, 2, \dots, k)$  to which example  $x^{(i)}$  is currently assigned
- $\mu_k$  = cluster centroid
- $\mu_{c_i}$  = cluster centroid of cluster to which example  $\chi^{(i)}$  has been assigned
- Optimization objective:

$$J(c_1,\cdots,c_m,\mu_1,\cdots,\mu_k) = rac{1}{m} \sum_{i=1}^m \lVert x^{(i)} - \mu_{c_i} 
Vert^2 \ \min_{c_1,\cdots,c_m,\; \mu_1,\cdots,\mu_k} J(c_1,\cdots,c_m,\mu_1,\cdots,\mu_k)$$

#### **Expectation Maximization (EM) Algorithm**

- It is a "chicken and egg" problem (dilemma)
  - Q: if we knew  $c_i$ s, how would we determine which points to associate with each cluster center?
  - A: for each point  $x^{(i)}$ , choose closest  $c_i$
  - Q: if we knew the cluster memberships, how do we get the centers?
  - A: choose  $c_i$  to be the mean of all points in the cluster
- Extension of K-means algorithm
  - A special case of Expectation Maximization (EM) algorithm
  - A special case of Gaussian Mixture Model (GMM)
  - Won't be discussed in this course

#### **Python: Data Generation**

```
# data generation
G0 = np.random.multivariate_normal([1, 1], np.eye(2), 100)
G1 = np.random.multivariate_normal([3, 5], np.eye(2), 100)
G2 = np.random.multivariate_normal([9, 9], np.eye(2), 100)
X = np.vstack([G0, G1, G2])
```





#### **Python: Data Generation and Random Initialization**

```
# data generation
G0 = np.random.multivariate_normal([1, 1], np.eye(2), 100)
G1 = np.random.multivariate_normal([3, 5], np.eye(2), 100)
G2 = np.random.multivariate_normal([9, 9], np.eye(2), 100)
X = np.vstack([G0, G1, G2])
```

```
# The number of clusters and data
k = 3
m = X.shape[0]

# ramdomly initialize mean points
mu = X[np.random.randint(0, m, k), :]
```





#### **Python: K-Means**

```
Randomly initialize k cluster centroids \mu_1, \mu_2, \cdots, \mu_k \in \mathbb{R}^n

Repeat \{
for i=1 to m
c_i := \operatorname{index} (\operatorname{from} 1 \text{ to } k) \text{ of cluster centroid closest to } x^{(i)}
for k=1 to k
\mu_k := \operatorname{average} (\operatorname{mean}) \text{ of points assigned to cluster } k
\}
```

```
y = np.empty([m,1])
# Run K-means
for n iter in range(500):
   for i in range(m):
       d\theta = np.linalg.norm(X[i,:] - mu[0,:], 2)
       d1 = np.linalg.norm(X[i,:] - mu[1,:], 2)
       d2 = np.linalg.norm(X[i,:] - mu[2,:], 2)
       y[i] = np.argmin([d0, d1, d2])
   err = 0
   for i in range(k):
       mu[i,:] = np.mean(X[np.where(y == i)[0]], axis = 0)
       err += np.linalg.norm(pre mu[i,:] - mu[i,:], 2)
   pre_mu = mu.copy()
   if err < 1e-10:
        print("Iteration:", n_iter)
        break
```



#### **Python: K-Means in Scikit-learn**



```
# use kmeans from the scikit-learn module

from sklearn.cluster import KMeans

kmeans = KMeans(n_clusters = 3, random_state = 0)
kmeans.fit(X)

plt.figure(figsize = (10,8))
plt.plot(X[kmeans.labels_ == 0, 0],X[kmeans.labels_ == 0, 1], 'b.', label = 'C0')
plt.plot(X[kmeans.labels_ == 1, 0],X[kmeans.labels_ == 1, 1], 'g.', label = 'C1')
plt.plot(X[kmeans.labels_ == 2, 0],X[kmeans.labels_ == 2, 1], 'r.', label = 'C2')
plt.axis('equal')
plt.legend(fontsize = 12)
plt.show()
```





#### **Initialization Issues**

- k-means is extremely sensitive to cluster center initialization
- Bad initialization can lead to
  - Poor convergence speed
  - Bad overall clustering
- Safeguarding measures:
  - Choose first center as one of the examples, second which is the farthest from the first, third which is the farthest from both, and so on.
  - Try multiple initialization and choose the best result

### **Choosing the Number of Clusters**

• Idea: when adding another cluster does not give much better modeling of the data

• One way to select k for the K-means algorithm is to try different values of k, plot the K-means objective versus k, and look at the 'elbow-point' in the plot

### **Choosing the Number of Clusters**

```
cost = []
for i in range(1,11):
    kmeans = KMeans(n_clusters = i, random_state = 0).fit(X)
    cost.append(abs(kmeans.score(X)))
```





- Make hard assignments of points to clusters
  - A point either completely belongs to a cluster or not belongs at all
  - No notion of a soft assignment (i.e., probability of being assigned to each cluster)
  - Gaussian mixture model (we will study later) and Fuzzy K-means allow soft assignments
- Sensitive to outlier examples
  - K-medians algorithm is a more robust alternative for data with outliers



- Works well only for round shaped, and of roughly equal sizes/density cluster
- Does badly if the cluster have non-convex shapes
  - Spectral clustering (we will study later) and Kernelized K-means can be an alternative



• Non-convex/non-round-shaped cluster: standard K-means fails!



• (optional) Connectivity → networks → spectral partitioning

• Clusters with different densities



