03/07						
		March 17th	9 am	— Marzh	18th	12 pm
(2)	Midterm i	2>				

• **Example 1** (contd) We rewrite the model using the normal-scale mixture representation of a t-distribution;

$$y_i \mid \mu, V_i \stackrel{indep}{\sim} \mathbb{N}(\mu, V_i), i = 1, \dots, n,$$
 $V_i \mid \sigma^2 \stackrel{iid}{\sim} \mathbb{Inv} \cdot \chi^2(\nu, \sigma^2),$
 $\pi(\mu, \sigma^2) \propto 1/\sigma^2,$

{ M, 02, Vi, ..., Vn }

where ν is fixed.

** The joint posterior is
$$\pi(\mu_i \sigma^2)$$
 = $f(\gamma_i \setminus \mu_i \vee i)$

$$\frac{p(\mu, \sigma^2, V_i \mid y_1, \dots, y_n)}{\sum_{i=1}^n \frac{1}{\sqrt{2\pi V_i}} \exp\left\{-\frac{(y_i - \mu)^2}{2V_i}\right\}} \times \prod_{i=1}^n \frac{1}{\sum_{i=1}^n \frac{(\nu \sigma^2/2)^{\nu/2}}{\Gamma(\nu/2)} V_i^{-\nu/2} \exp\left(-\frac{\nu \sigma^2}{2V_i}\right)}.$$

$$\pi(\mu \downarrow 1 \longrightarrow) \quad \alpha \qquad \exp \left\{ -\frac{\pi}{2} \frac{(q_1 - \mu)^2}{\alpha \sqrt{1}} \right\}$$

$$\alpha \qquad \exp \left\{ -\frac{1}{2} \left\{ \left(\frac{\pi}{2} \frac{1}{\sqrt{1}} \right) \mu^2 - 2 \frac{\pi}{2} \frac{97}{27} \cdot \mu \right\} \right\}$$

$$\Rightarrow \qquad \pi(\mu \downarrow 1 \vee_{i}, y) = N \left(\left(\frac{\pi}{2} \frac{1}{\sqrt{1}} \right) \left(\frac{\pi}{2} \frac{1}{\sqrt{1}} \right) \right)$$

$$\pi(q^2 \downarrow \longrightarrow) \quad \alpha \quad \left(q^2 \right)^{-1} + \frac{n \sqrt{2}}{2} \quad \exp \left\{ -\frac{q^2}{2} \cdot \frac{\pi}{2} \frac{\sqrt{1}}{2^{1/2}} \right\}$$

$$\Rightarrow \qquad \pi(q^2 \downarrow \longrightarrow) \quad \alpha \quad \left(q^2 \right)^{-1} + \frac{n \sqrt{2}}{2} \quad \exp \left(-\frac{q^2}{2} \cdot \frac{\pi}{2} \frac{\sqrt{1}}{2^{1/2}} \right)$$

$$\Rightarrow \qquad \pi(q^2 \downarrow \longrightarrow) \quad \alpha \quad \left(\sqrt{1} \right)^{-1/2} \quad \exp \left(-\frac{(q_1 - \mu)^2}{2^{1/2}} - \frac{\sqrt{1}}{2^{1/2}} \right)$$

$$\Rightarrow \qquad \pi(\sqrt{1} \downarrow - 1) \quad \alpha \quad \left(\sqrt{1} \downarrow - 1 \right) \quad \alpha \quad \left(\sqrt{1} \downarrow - 1 \right) \quad \alpha \quad \left(\sqrt{1} \downarrow - 1 \right) \quad \alpha \quad \left(\sqrt{1} \downarrow - 1 \right)$$

$$\Rightarrow \qquad \pi(\sqrt{1} \downarrow - 1) \quad \alpha \quad \left(\sqrt{1} \downarrow - 1 \right) \quad \alpha \quad \left(\sqrt{1} \downarrow - 1 \right) \quad \alpha \quad \left(\sqrt{1} \downarrow - 1 \right)$$

$$\Rightarrow \qquad \pi(\sqrt{1} \downarrow - 1) \quad \alpha \quad \left(\sqrt{1} \downarrow - 1 \right) \quad \alpha \quad \left(\sqrt{1} \downarrow - 1 \right) \quad \alpha \quad \left(\sqrt{1} \downarrow - 1 \right)$$

$$\Rightarrow \qquad \pi(\sqrt{1} \downarrow - 1) \quad \alpha \quad \left(\sqrt{1} \downarrow - 1 \right) \quad \alpha \quad \left(\sqrt{1} \downarrow - 1 \right) \quad \alpha \quad \left(\sqrt{1} \downarrow - 1 \right) \quad \alpha \quad \left(\sqrt{1} \downarrow - 1 \right)$$

$$\Rightarrow \qquad \pi(\sqrt{1} \downarrow - 1) \quad \alpha \quad \left(\sqrt{1} \downarrow - 1 \right) \quad \alpha \quad \left(\sqrt{1} \downarrow - 1 \right) \quad \alpha \quad \left(\sqrt{1} \downarrow - 1 \right)$$

$$\Rightarrow \qquad \pi(\sqrt{1} \downarrow - 1) \quad \alpha \quad \left(\sqrt{1} \downarrow - 1 \right) \quad \alpha \quad \left(\sqrt{1} \downarrow - 1 \right) \quad \alpha \quad \left(\sqrt{1} \downarrow - 1 \right)$$

$$\Rightarrow \qquad \pi(\sqrt{1} \downarrow - 1 \right) \quad \alpha \quad \left(\sqrt{1} \downarrow - 1 \right) \quad \alpha \quad \left(\sqrt{1} \downarrow - 1 \right) \quad \alpha \quad \left(\sqrt{1} \downarrow - 1 \right)$$

$$\Rightarrow \qquad \pi(\sqrt{1} \downarrow - 1 \right) \quad \alpha \quad \left(\sqrt{1} \downarrow - 1 \right) \quad \alpha \quad \left(\sqrt{1} \downarrow - 1 \right)$$

$$\Rightarrow \qquad \pi(\sqrt{1} \downarrow - 1 \right) \quad \alpha \quad \left(\sqrt{1} \downarrow - 1 \right) \quad \alpha \quad \left(\sqrt{1} \downarrow - 1 \right)$$

$$\Rightarrow \qquad \pi(\sqrt{1} \downarrow - 1 \right) \quad \alpha \quad \left(\sqrt{1} \downarrow - 1 \right) \quad \alpha \quad \left(\sqrt{1} \downarrow - 1 \right)$$

$$\Rightarrow \qquad \pi(\sqrt{1} \downarrow - 1 \right) \quad \alpha \quad \left(\sqrt{1} \downarrow - 1 \right) \quad \alpha \quad \left(\sqrt{1} \downarrow - 1 \right) \quad \alpha \quad \left(\sqrt{1} \downarrow - 1 \right)$$

$$\Rightarrow \qquad \pi(\sqrt{1} \downarrow - 1 \right) \quad \alpha \quad \left(\sqrt{1} \downarrow - 1 \right) \quad \left(\sqrt{1} \downarrow - 1 \right)$$

$$\Rightarrow \qquad \pi(\sqrt{1} \downarrow - 1 \right) \quad \alpha \quad \left(\sqrt{1} \downarrow - 1 \right) \quad \left(\sqrt{1} \downarrow - 1 \right) \quad \left(\sqrt{1} \downarrow - 1 \right)$$

$$\Rightarrow \qquad \pi(\sqrt{1} \downarrow - 1 \right) \quad \left(\sqrt{1} \downarrow - 1 \right) \quad \left(\sqrt{1} \downarrow - 1 \right) \quad \left(\sqrt{1} \downarrow - 1 \right)$$

$$\Rightarrow \qquad \pi(\sqrt{1} \downarrow - 1 \right) \quad \left(\sqrt{1} \downarrow - 1 \right)$$

$$\Rightarrow \qquad \pi(\sqrt{1} \downarrow - 1 \right) \quad \left(\sqrt{1} \downarrow - 1 \right)$$

$$\Rightarrow \qquad \pi(\sqrt{1} \downarrow - 1 \right) \quad \left(\sqrt{1} \downarrow - 1 \right) \quad$$

• Example 1 Model 2 (contd)

** Then the full conditionals are

$$p(\mu \mid -) \propto \exp\left\{-\sum_{i=1}^{n} \frac{(y_i - \mu)^2}{2V_i}\right\}$$

$$\Rightarrow \quad \mu \mid - \sim N\left(\left(\sum_{i=1}^{n} \frac{1}{V_i}\right)^{-1} \sum_{i} \frac{y_i}{V_i}, \left(\sum_{i=1}^{n} \frac{1}{V_i}\right)^{-1}\right)$$

$$p(\sigma^2 \mid -) \propto (\sigma^2)^{-1+n\nu/2} \exp\left(-\sum_{i=1}^{n} \frac{\nu\sigma^2}{2V_i}\right)$$

$$\Rightarrow \quad \sigma^2 \mid - \sim \text{Gamma}\left(\frac{n\nu}{2}, \sum_{i=1}^{n} \frac{\nu}{2V_i}\right)$$

• Example 1 Model 2 (contd)

** (contd) Then the full conditionals are

$$p(V_i \mid -) \propto V_i^{-\nu/2 - 1/2} \exp\left\{-\frac{(y_i - \mu)^2}{2V_i} - \frac{\nu\sigma^2}{2V_i}\right\}$$

$$\Rightarrow V_i \mid -\stackrel{indep}{\sim} \mathsf{IG}\left(\frac{\nu + 1}{2}, \frac{(y_i - \mu)^2 + \nu\sigma^2}{2}\right) \, \mathsf{J} \quad \mathsf{I}=1, ..., \, \mathsf{n}$$

- ** It is straightforward to perform the Gibbs sampler on V, μ and σ^2 in the augmented model.
- More importantly, the simulations for μ and σ^2 under the augmented model represent the posterior distribution of μ and σ^2 under the original t model.

- Simulated data for Example 1
 - ** Simulate data

$$y_i \overset{iid}{\sim} \mathsf{N}(0,4), i=1,\ldots,90, \quad \mathsf{good\ obs}$$
 $y_i \overset{iid}{\sim} \mathsf{N}(-10,1), i=91,\ldots,100. \quad \mathsf{bad\ obs}$

• Simulated data for **Example 1** (contd)

Consider the following models

** Model A:

where $\nu = 3$ is fixed.

** Model B:

$$y_i \mid \mu, \sigma^2 \stackrel{iid}{\sim} \mathsf{N}(\mu, \sigma^2), i = 1, \dots, n,$$

 $\pi(\mu, \sigma^2) \propto 1/\sigma^2.$

• Model A:

- ** post. mean $\hat{\mu} = \underline{0.022}$ with 95% CI (-0.414, 0.454)
- ** post. mean $\hat{\sigma}^2 = 3.493$ with 95% CI (2.061, 4.578).

• Model B:

- ** post. mean $\hat{\mu} = -0.78$ with 95% CI (-1.479, -0.064)
- ** post. mean $\hat{\sigma}^2 = 12.429$ with 95% CI (9.417, 16.415).

- Predictive distribution
 - ** Model A: post. pred. mean $\hat{y}^{\text{NEW}} = \underline{0.009}$ with 95% posterior predictive interval (-5.710, 5.747)
 - Model B: post. pred. mean $\hat{y}^{\text{NEW}} = -0.789$ with 95% posterior predictive interval (-7.750, 6.026)

- Predictive distribution (contd): Zoom in
 - ** Model A: post. pred. mean $\hat{y}^{\text{NEW}} = 0.009$ with 95% posterior predictive interval (-5.710, 5.747)
 - Model B: post. pred. mean $\hat{y}^{\text{NEW}} = -0.789$ with 95% posterior predictive interval (-7.750, 6.026)

- † Example (revisit): Estimating the speed of light (BDA p 66)
 - Simon Newcomb set up an experiment in 1882 to measure the speed of light. Newcomb measured the amount of time required for light to travel a distance of 7442 meters. He made 66 measurements. Consider the problem of estimating the speed of light.

- † Example: Estimating the speed of light (contd)
 - Use a t-model; Posterior summary of θ and σ^2

- † Example: Estimating the speed of light (contd)
 - Posterior summary of θ and σ^2

† Example: Estimating the speed of light (contd)

normal

26.307

(23.61, 29.01)

• Use a t-model; Posterior summary of θ and σ^2

(a) t-model

```
### summaries of the margianl posterior of theta
  post m th <- mean(my th)
  post sd th <- sd(my th)
  ci_th <- quantile(my_th, prob=c(0.025, 0.975))</pre>
  post m th
[1] 26.30754
> post sd th
[1] 1.355212
> ci th
    2.5%
             97.5%
23.66675 29.01357
  ### summaries of the margianl posterior of sig2
  post_m_sig2 <- mean(my_sig2)</pre>
  post sd sig2 <- sd(my sig2)</pre>
  ci sig2 <- quantile(my sig2, prob=c(0.025, 0.975))
  post_m_sig2
[1] 119.0088
  post_sd_sig2
[1] 21.49393
 ci sig2
     2.5%
               97.5%
 84.55515 167.76078
```

- † Example: Estimating the speed of light (contd)
 - Use a t-model; Summary of the posterior predictive distribution of unobserved y

- † Example: Estimating the speed of light (contd) 200m in
 - Use a t-model; Summary of the posterior predictive distribution of unobserved y

- † Example: Estimating the speed of light (contd)
 - Use a t-model; Summary of the posterior predictive distribution of unobserved y

```
> print(round(quantile(y_pred, prob=c(0.025, 0.5, 0.975)), 3))
    2.5%    50%   97.5%
14.321   27.317   40.842
> print(round(mean(y_pred), 3))
[1]   27.441
```

(a) t-model

(b) normal

• Example 1 (contd) More examples?

**
$$y \mid \theta \sim \text{Bin}(n, \theta)$$
 and $\theta \sim \text{Be}(\alpha, \beta)$ (Beta-Binomial Mixture) where θ is an auxiliary variable.

$$\Rightarrow y \mid \alpha, \beta \sim \text{Beta-Binom}(n, \alpha, \beta)$$

See also **Example 6.3.4**.

** $y \mid \theta \sim \text{Poi}(\theta)$ and $\theta \sim \text{Gamma}(r, \frac{1-p}{p})$ (Gamma-Poisson Mixture) where θ is an auxiliary variable.

 \Rightarrow $y \mid r, p \sim \text{Neg-Binom}(r, p)$ where r: # of failures and p: success probability.

- Example 7.1.2 (I changed a bit, especially notation) The dataset consists in 82 observations of galaxy velocities.
- ** Histogram of the galaxy dataset of Roeder (1992)

** For astrophysical reasons, the distribution of this dataset can be represented as a mixture of normal distributions. Suppose the number of components is k (fixed).

• Example 7.1.2 (contd) Recall a mixture model with k components:

The mixture model can be represented as follows;

** We introduce auxiliary variables
$$\lambda_j \in \{1, \dots, k\}$$
.

** We assume
$$p(\lambda_j = \underline{\ell}) = p_\ell$$
, independence between λ_j .

$$\star\star$$
 Given $\underline{\lambda}_j$, we write the distribution of y_j

$$\Rightarrow y_i \mid \boldsymbol{\mu}, \sigma^2, \lambda_i = \ell \sim N(\mu_\ell, \sigma^2).$$

$$P(y) = \sum_{j=1}^{k} P_r(\lambda = L) \cdot P_r(y \mid \lambda = L)$$

- Example 7.1.2 (contd) Let's develop the model further.
 - ** The likelihood

$$y_i \mid \lambda_i, \mu, \sigma \sim \mathsf{N}(\mu_{\lambda_i}, \sigma^2).$$

- ** (prior) Let $p(\lambda_j = \ell \mid p) = p_\ell$, independence between λ_j .
- ** (prior) Let $p = (p_1, \ldots, p_k) \sim \text{Dir}(\alpha_1, \ldots, \alpha_k)$ with fixed α .
- ** (prior) Let $\underline{\mu_\ell} \stackrel{iid}{\sim} \underline{N(\bar{\mu}, \tau^2)}$ with fixed $\bar{\mu}$ and $\sigma^2 \sim IG(a, b)$ with fixed a and b.
- \Rightarrow We have random parameters $\theta = (\{\lambda_j\}_{j=1}^n, p, \{\mu_\ell\}_{\ell=1}^k, \underline{\sigma^2}).$
- \Rightarrow Without λ_j , the likelihood evaluation becomes messy. But the likelihood evaluation conditional on λ_j is so simple! We will simulate θ through MCMC.

$$P(\lambda_{j}=1)$$
 \propto $\exp(-\frac{1}{2r^{2}}(y_{j}-\mu_{k})^{2})$ P_{k}

$$P(\lambda_{j}=2) - \frac{\mathbb{Z}_{2}}{\mathbb{Z}_{2}} = \frac{\mathbb{Z}_{2}}{\mathbb{Z}_{2}}$$

$$\mathbb{Z}_{2}$$

$$\mathbb{Z}_{3} \sim \text{ pulcinomial } (1, \mathbb{Z}_{2}, \mathbb{Z}_{2}, \mathbb{Z}_{2})$$

(3) My,
$$\beta=1,..., k$$

$$P(\mu_{1}|-) \approx \pi \exp\left(-\frac{(y_{1}-\mu_{1})^{2}}{2\sigma^{2}}\right) \cdot \exp\left(-\frac{(\mu_{1}-\bar{\mu}_{1})^{2}}{2\sigma^{2}}\right)$$

$$\propto$$
 $\propto \left(-\frac{1}{2}\right)\left(\frac{|S_a|}{\sigma^2}+\frac{1}{\sigma^2}\right)\mu_a^2$

$$-2\left(\frac{\Sigma^{4}j}{j^{6}S_{L}}+\frac{\overline{M}}{v^{2}}\right)\mu L$$

$$\Rightarrow \quad \text{Mel} \quad \sim \quad N \left(\left(\frac{1 \text{Sul}}{\sigma^2} + \frac{1}{\sigma^2} \right)^{-1} \left(\frac{\overline{z}^{Y_j}}{\sigma^2} + \frac{\overline{u}}{\overline{v}^2} \right)_{1} \left(\frac{1 \text{Sul}}{\sigma^2} + \frac{1}{\sigma^2} \right)^{-1} \right)$$

$$P(\vec{q}^2 \mid -) \propto (\vec{\sigma}^2)^{-\frac{1}{2}} \cdot \exp\left(-\frac{\sum_{j=1}^{\infty} (y_j - \mu_{ij})^2}{2 \cdot \vec{q}^2}\right) \cdot (\vec{\tau}^2)^{-a-1} e^{-\frac{b}{\sigma^2}}$$

• **Example 7.1.2** (contd) We first write the joint posterior of θ .

$$\pi(\boldsymbol{\theta} \mid \boldsymbol{y}) \propto \prod_{\ell=1}^{k} \pi(\mu_{\ell}) \ \pi(\sigma^{2}) \ \pi(\boldsymbol{p}) \prod_{j=1}^{J} \pi(\lambda_{j}) \ p(y_{j} \mid \lambda_{j}, \mu, \sigma)$$

$$\propto \exp\left\{-\sum_{\ell=1}^{k} \frac{(\mu_{\ell} - \bar{\mu})^{2}}{2\tau^{2}}\right\} \underbrace{(\sigma^{2})^{-a-1} \exp\left(-\frac{b}{\sigma^{2}}\right)}_{\pi(\sigma^{2})}$$

$$\times \prod_{\ell=1}^{k} p_{\ell}^{\alpha_{\ell}-1} \underbrace{\prod_{j=1}^{J} p_{\lambda_{j}}}_{\pi(\lambda_{j})} \underbrace{\prod_{j=1}^{J} \frac{1}{\sqrt{2\pi\sigma^{2}}} \exp\left\{-\frac{(y_{j} - \mu_{\lambda_{j}})^{2}}{2\sigma^{2}}\right\}}_{p(y_{j} \mid \lambda_{j}, \mu, \sigma)}$$

** We use the Gibbs sampler to simulate θ . We first drive the full conditionals.

• Example 7.1.2 (contd) the full conditionals

We use S_{ℓ} to denote the set of y_j having λ_j ,

$$S_\ell=\{j:\lambda_j=\ell,j=1,\ldots,J\}.$$
 Also, let $ar{y}_\ell=rac{\sum_{j\in S_\ell}y_j}{|S_\ell|}.$

 $\star\star$ μ_{ℓ} , $\ell=1,\ldots,k$.

$$p(\mu_\ell \mid \lambda, \sigma^2, y) \propto \exp \left\{ -rac{(\mu_\ell - ar{\mu})^2}{2 au^2} - \sum_{j \in S_\ell} rac{(y_j - \mu_\ell)^2}{2\sigma^2}
ight\}.$$

$$\Rightarrow \mu_{\ell} \mid \lambda, \sigma^2, y \sim \mathsf{N}\left(\left(\frac{1}{\tau^2} + \frac{|S_{\ell}|}{\sigma^2}\right)^{-1}\left(\frac{\bar{\mu}}{\tau^2} + \frac{\bar{y}_{\ell}}{\sigma^2/|S_{\ell}|}\right), \left(\frac{1}{\tau^2} + \frac{|S_{\ell}|}{\sigma^2}\right)^{-1}\right).$$

$$\star\star$$
 σ^2

$$p(\sigma^2 \mid \lambda, \mu, y) \propto (\sigma^2)^{-s-1} \exp(-rac{b}{\sigma^2})(\sigma^2)^{-J/2} \exp\left\{-\sum_{i=1}^J rac{(y_j - \mu_{\lambda_j})^2}{2\sigma^2}
ight\}.$$

$$\Rightarrow \mu_{\ell} \mid \lambda, \sigma^2, y \sim \mathsf{IG}\left(a + \frac{J}{2}, b + \sum_{j=1}^{J} \frac{(y_j - \mu_{\lambda_j})^2}{2}\right).$$

• Example 7.1.2 (contd) the full conditionals

$$\star\star$$
 $p=(p_1,\ldots,p_k)$

$$p(p \mid \lambda) \propto \prod_{\ell}^k p_\ell^{lpha_\ell - 1} \prod_{\ell}^k p_\ell^{|S_\ell|}.$$

$$\Rightarrow p \mid \lambda \sim \text{Dir}(\alpha_1 + |S_1|, \dots, \alpha_k + |S_k|).$$

$$\star\star$$
 λ_i , $j=1,\ldots,J$

$$p(\lambda_j = \ell \mid \mu, \sigma^2, y) \propto p_\ell \exp \left\{ -\frac{(y_j - \mu_\ell)^2}{2\sigma^2} \right\}.$$

 \Rightarrow No standard form. So we sample on the grid of $(1, \ldots, k)$.

• Example 7.1.2 (contd) Hyperparameters

$$\star\star$$
 $k=4$

$$\star\star$$
 $\bar{\mu}=2.08$ and $au^2=10$

$$\star\star$$
 $a=1$ and $b=0.01$

$$\star\star$$
 $\alpha_1 = \ldots = \alpha_k = 1$

* run MCMC

For details, see my code (posted on the course webpage).

• **Example 7.1.2** (contd) $y_1 = 0.9172$ (blue, smallest), posterior mean for y_1 =0.9716 (red).

MZ

• **Example 7.1.2** (contd) $y_{82} = 3.4279$ (blue, largest), posterior mean for $y_{82}=3.30$ (red).

• Example 7.1.2 (contd) σ^2

• **Example 7.1.2** (contd) σ^2

 $\lambda_{(P)}$ $b(\lambda_{(P)} = r) = \delta_{(P)}^{r}$