RoboSkate

Midterm Project Presentation

Michelle Bettendorf
Gintautas Palinauskas
Meriç Sakarya
Batuhan Yumurtacı
Finn Süberkrüb

Cloud-Based Machine Learning in Robotics
Summer Semester 2021

Agenda

- Recap of Objective
- Work done so far:
 - Current System Architecture
 - Reward Functions
 - Image Processing
 - Callback Functions
 - First Results
 - Open Issues
- Future Work

Recap of our goals

Goals:

- Setting up the simulation
- Selecting the best suited algorithm
- Teaching the agent basic movement in DummyBall
- Teaching the agent basic movement in RoboSkate
- Reaching checkpoints in game
- Finishing the whole level

Agent

Termination

Roll angle too high

Pitch angle too high

wrong direction

Joint velocity 1 too high

Reward function

BallHighReward = - (BallHight - 0.2)⁴

First results

- 10 environments
- 20M steps
- A2C Algorithm
- MLP Policy
- 18 Observation inputs
- Reward for:
 - travelled distance
 - low ball

https://youtu.be/PyfHF5J3TUI

First results

- 10 environments
- 10M steps
- 28h
- A2C Algorithm
- MLP Policy
- 9 Observation inputs
- Reward for:
 - travelled distance
 - low ball
 - ball behind

https://youtu.be/zSduDkrXD2k

2D State Space

2D State Space

Cartesian coordinates

Tensorboard Callback

- Uses its own thread.
- Example: self.logger.record('reward/mean', np.mean(self.locals.get("rewards")))
- Allows great visualization of the training results:

Evaluation Callback

- Evaluates the performance of the agent
- Uses separate evaluation environment
- Goal: Frequently checking up on the training to stop early
- Saves best model for further training or testing

```
eval_callback = EvalCallback(eval_eny
best model_save_path="./scripts/python/RoboSkate/agent_models/",
log path="./scripts/python/RoboSkate/agent_models/",
eval freq=best agent eval freq,
n eval episodes=best agent n eval episodes,
deterministic=True, render=False)
```

Image Preprocessing RoboSkate

First try: Watershed

Image Preprocessing RoboSkate

Image Preprocessing: Testing on DummyBall

Cloud-Based Machine Learning in Robotics SS2021

RoboSkate

Image Preprocessing: Testing on DummyBall

A2C algorithm:

A2C after 20000 steps

DummyBall learning via images

Conditioning the observations and actions:

- Calculate z distance from platform
- Scaling action with 50

Early termination:

- When z distance < -1
- When x distance > 60

Image preprocessing using cv2:

- 1. Read 150x150 image
- 2. Convert to grayscale
- 3. Use Canny edge detector

Image preprocessing ball game

Neural network architectures

150x150 image after convolutional layers:

- 1. (150 8) / 4 + 1 = 36
- $2. \quad (36 4) / 2 + 1 = 17$
- 3. (17 3) / 1 + 1 = 14

```
def __init__(self, observation_space: gym.spaces.Box, features_dim: int = 512):
                                       super(NatureCNN, self). init (observation_space, features_dim)
                                    self.cnn = nn.Sequential(
                                        nn.Conv2d(n_input_channels, 32, kernel_size=8, stride=4, padding=0),
                                        nn.Conv2d(32, 64, kernel_size=4, stride=2, padding=0),
                                        nn.ReLU(),
                                        nn.Conv2d(64, 64, kernel size=3, stride=1, padding=0),
                                        nn.ReLU(),
                                        nn.Flatten(),
                                                                              CnnPolicy
                                    # Compute shape by doing one forward pass
                                    with th.no grad():
                                        n flatten = self.cnn(th.as tensor(observation space.sample()[None]).float()).shape[1]
Value function network
                                    self.linear = nn.Sequential(nn.Linear(n_flatten, features_dim), nn.ReLU())
                                def forward(self, observations: th.Tensor) -> th.Tensor:
                                    return self.linear(self.cnn(observations))
```


Agent learning through tensorboard (PPO)

location/1 tag: Joint/location/1

Using only default settings

Agent learning through tensorboard (A2C)

location/1 tag: Joint/location/1

Using default settings except n_steps = 10

PPO

- Advantages:
 - Easy code
 - Sample efficient
 - Easy to tune
- On-Policy → No replay buffer
- Clipped Objective Function → Policy does not stray away

```
Algorithm 1 PPO, Actor-Critic Style

for iteration=1,2,... do

for actor=1,2,..., N do

Run policy \pi_{\theta_{\text{old}}} in environment for T timesteps

Compute advantage estimates \hat{A}_1,...,\hat{A}_T

end for

Optimize surrogate L wrt \theta, with K epochs and minibatch size M \leq NT

\theta_{\text{old}} \leftarrow \theta

end for
```

PPO Algorithm [1]

A₂C

- A3C
 - Asynchronous updates
 - Architectures share layers between the policy and value function
 - Policy gradient method
 - Multiple actors
 - Thread-specific agents → Policies of different versions → Update sub-optimal
- A2C: Synchronous version of Advantage Actor Critic (A3C)

Comparison between A2C and A3C systems

A2C vs PPO

- PPO achieved better results
- PPO converged faster
- A2C is simpler to use
- PPO is more robust to hyper-parameter changes

Current Issues → Possible Solutions

- Reward function too specific → Imitation Learning / Simpler environment
- NRP → Ready for DummyBall / Needs work with RoboSkate
- GPU-intensive → Simpler Environment
- Game-Physics wacky → Needs to be investigated or validated

Simple RoboSkate Environment

Create a 2D simple Roboskate:

- Faster training (lighter)
- Faster hyperparameter optimization
- Faster reward function testing
- Enough for teaching basic movement
 - Going forward/backward
 - Accelerating
 - Brake

Reward Function

- Needs tailoring
- Indeterminate functions are not performing well
- Specific instructions needed
- Sparsity is a huge problem → Imitation learning

Imitation Learning

Feature and reward engineering is not always straightforward.

Hard-coded agent

Human player

Imitation Learning

Generative Adversarial Imitation Learning (GAIL)

Model-free imitation learning algorithm

Efficient in terms of expert data

Uses Trust Region Policy Optimization (TRPO)

Not sample efficient in terms of environment interactions

Adversarial Inverse Reinforcement Learning (AIRL)

- Simultaneous learning of the reward function and value function
 - Make use of the efficient adversarial formulation.
 - Recover a generalizable reward function

Robust to changes in the environment dynamics

- Compared to GAIL
 - Similar performance in traditional imitation learning setups
 - Outperforms in transfer learning setups

Future work

Schedule

Responsibilities

	Preliminary Tasks
Michelle Bettendorf	DummyBall, preprocessing images
Gintautas Palinauskas	DummyBall, preprocessing images, teleoperation, DockerFile
Meriç Sakarya	RoboSkate Reward functions, server training
Batuhan Yumurtacı	RoboSkate Reward functions, server training
Finn Süberkrüb	Vectorized Environment, Roboskate learning algorithm, Cloud administration and infrastructure