Lec! High homepese NRITUMONI Recap: $\sqrt{Z_n} = \{0,1,2,\ldots,n-1\}$ Which is a ring [a]+ [b] = [a+b] $\frac{\alpha \in \mathbb{Z}}{n} = \{x \in \mathbb{Z} : n \mid z - \alpha\}$ 0 + 16 is the Alaridedby h. 8 = 16 [ab] $[a] \times [b] = [ab]$ -(12) = ? if n = 27 $[o] = (27] = (56) \cdots$ [a] make sence if \exists [b] s.t. $\lfloor a \rfloor \times (b) = [1]$ $(a)^{-1} \text{ exists if } \exists \text{ only if } \gcd(a, n) = 1$ n=26, $(3)^{-1}=[9]$ $(4)^{-1} = \int_{\infty}^{\infty} n = 2 \lambda.$ Secure communication. Crypto graphy: privary or secretary · Confidutiality: · Data interrity. to know if there is my change in data. abso it may have time of creation. Connot refuse a previous connitruit. Non-repudition:

12
o Plain text, messerge to be transmitted
a Ciphentext: plain text is converted into a different from which is actually transmitted without ext.
Chilly trasmited
Les Which is celled eighentext.
guryphon frammitted cidentextimablaintext
plaintext Schutext transmitted Ciphentext Decryption Ciphentext
Encryption key Encryption key
Encryption o
$\rho \xrightarrow{\mathcal{E}} c \qquad c \xrightarrow{\mathcal{D}} \rho$
$\mathcal{D} \circ \mathcal{E} = i d \rho$ $\mathcal{E} \circ \mathcal{D} = i d \rho$
2 & D are bijection (invera of each other)
Word = a string of characters. Characters are letters from the appealant
Nord = a string of out
the few
Charache A
//,, 2) d, comme, (and mre per
Encryption toy is a word (or a balone) which is used to encrypt a plaintext to form the ciphentext.
Encryption ley 13 a word to firm the ciphentext.
to encoypt a plant the soft
mantin kun is
Le cryption ky is
Coyptanalysis. It is the study of decipheny ciphen text without the knowledge of decryption key.
vikout the knowledge of decryption key.
Numerical equivalently characters:
Monographi: Sucht single Charles
Numial equivalet.
ABCD2—dot?
0 1 2 3 - 1 25 26 27 28
$I \qquad 10.7.9$
lane N=29

Digraph: B C D
00 01 02 03 2 - dot? 25 26 27 28 N(0R) = N(0)N(R) = 1315o Using bone, fix a base, say m $\mathcal{N}(OR) = \mathcal{M} \times \mathcal{N}(O) + \mathcal{N}(R)$ Classical ciphus: o Substitution \underline{Shift} $\underline{\mathcal{E}}: \mathcal{D} \longrightarrow \mathcal{C}$ $\mathcal{E}(x) = x + b \pmod{n}$ if |A| = nb = 4, n = 27 $A = \{A, B, ..., 2, -\}$ 2 (PASSWORD) = g(P) g(A) g(S) g(S) · · · · g(D) 二 TE . . . _ _ P N () + b () N T D A De B

D: C-3D

Decryption
$$\mathcal{O}(x) = x - b$$
 (mod n)

Hill cipher:

$$Z(x) = kx$$
 (mod n)

since are wont & to be a bijetten gd(k, n) = 1

$$\mathcal{L}(ONE) = B-I$$
 $n=27$, $k=2$

N(0) = 14 mod 27) = 1 (mod 27) 27 B

$$N(N) = 13 \sim 92 \times 13 = 26 = \sim_3 -$$

N(E)=4~,2×4=8~> I

Decryption
$$\mathcal{D}(z) = k^{-1}x$$

 $y_n = 27, k=2, 2^{-1}=14 \pmod{27}$

N(B)=1 > 1x14 > 0

N(-) = 26 \longrightarrow $26 \times 14 = 13 \pmod{27} \longrightarrow N$ $((-1) \times 14 = -14 = 24 - 14 = 13)$

Affine ciplus.

 $\mathcal{E}(z) = kx + b$ When gcd(k, n) = 1 |A| = n & o < b < n-1

$$D(x) = k^{-1}x - k^{-1}b$$

(ky+b=x=)ky=x-b=)y=k'x-k'b