Internet of Things (IoT) MQTT vs CoAP

Dr Tomasz SzydloSchool of Computing
Newcastle University

Types of networks used in the IoT

TCP/IP model

- IP Protocol
 - Relays packets across network boundaries
 - Based solely based on the IP addresses

Homework

What are the difficulties in transition from IPv4 to IPv6?

MQTT, CoAP

TCP, UDP

IΡ

2G, 3G, LTE, NB-IoT, Thread, 6lowPAN, WiFi... Application

Transport

Internet

Network Interface

TCP/UDP

Connection-Oriented
Guaranteed Transmission
Flow Control
20 Bytes header
Three-Way Handshake

Connectionless
No guarantee
No Flow Control
8 Bytes Header
No Handshake Mechanism

IoT Application Protocols

MQTT

- Pub/sub communication for binary data
- Two-way communication

CoAP (Constrained Application Protocol)

- Web service oriented architecture
- Used for resource constrained devices
- Based on the UDP

Client

Client

Server

MQTT

MQTT

- MQTT is a publish/subscribe messaging protocol
 - designed for lightweight M2M communications
- Every message is published to an address, known as a topic
 - Clients may publish to multiple topics
 - Clients may subscribe to multiple topics
 - Every client subscribed to a topic receives every message published to that topic
- The publisher subscriber model allows MQTT clients to communicate
 - one-to-one
 - one-to-many
 - many-to-one

MQTT Architecture

- MQTT has a client/server model
 - every sensor is a client
 - and connects to a server, known as a broker, over TCP

- MQTT is message oriented
 - Every message is a discrete chunk of data, opaque to the broker
- It was originally developed by IBM and is now an open standard

MQTT Example

All three clients open TCP connections with the broker. Clients B and C subscribe to the topic temperature.

At a later time, Client A publishes a value of 22.5 for topic temperature. The broker forwards the message to all subscribed clients.

Quality of Service (QoS) for MQTT

- Quality of service (QoS) levels determine how each MQTT message is delivered and must be specified for every message sent through MQTT
 - QoS 0 (At most once) where messages are delivered according to the best efforts of the operating environment.
 Message loss can occur
 - QoS 1 (At least once) where messages are assured to arrive but duplicates can occur
 - QoS 2 (Exactly once) where message are assured to arrive exactly once

Homework

MQTT-S

- Extension of MQTT for WSN
 - Uses UDP instead of TCP
- Implements several optimizations
 - Topic strings replaced by a topic ID
 - Discovery procedure for clients to find brokers
 - Support for sleeping nodes (messages are buffered for sleepy nodes)
- MQTT-S gateways

COAP

The Constrained Application Protocol

- A RESTful protocol (coap://)
 - GET, POST, PUT, DELETE methods
- Both synchronous and asynchronous
 - Supports notifications via observation pattern!
- UDP binding with reliability and multicast su
- For constrained devices and networks
- Specialized for M2M applications
- Easy to proxy to/from HTTP

CoAP transaction messages

No TCP <-> No transport later retransmissions!

Confirmable (CON)

 Some messages require an acknowledgment, either just to know they did arrive or also to deliver the reply to a request.

Non-Confirmable (NON)

Some other messages do not require an acknowledgment.
 This is particularly true for messages that are repeated regularly for application requirements, such as repeated readings from a sensor where eventual arrival is sufficient.

Request example

CoAP observation pattern

Protocol comparison

Protocol	мотт	CoAP
Transport	TCP	UDP
Messaging	Publish/Subscribe	Request/Response
2G, 3G, 4G, LTE suitability LPWAN suitability	Excelent Fair	Excellent Excelent
Succsess stories	IoT extension to enterprise messaging	Utility Field Meters (gas, water meters)

Summary

- IoT is complex due to the heterogenity of devices and technologies
 - Low-Power Personal Area Networks
 - OpenThread, 6lowPAN, Bluetooth Mesh, ...
 - Non-IP LPWAN
 - LoRaWAN, Sigfox, ...
 - Device Management
 - LwM2M, CUPS, ...
 - Data serialization
 - CBOR, JSON, SenML, ProtoBuf, ...
- Which protocol should be used?
 - There is no simple answer. It depends...

Q&A