* 行星的定义

- 2003UB313的发现(2005): Eris 比冥王星略大,D=96.7AU
- 冥王星被开除(不符合下面的第三个条件) 大的椭圆轨道,大的轨道倾角
- 行星的定义(IAU大会 2006.8)
 - ●绕太阳公转
 - ●质量足够大,近球形,流体静力学平衡
 - ●轨道附近不存在其它质量大致相同的天体
- 矮行星的定义 (满足条件一二,不满足三,非卫星)

行星轨道

- ❖椭圆轨道: e=c/a, a
 - ●近日点=a(1-e)
 - ●远日点=a(1+e)
- ❖离心率
 - 金星: 0.007
 - ●海王星: 0.01
 - ●地球: 0.017

- ●水星: 0.205
- ●冥王星: 0.249
- Eris: 0.441

冥王星有时可以比海王星离太阳还近!

轨道倾角:

地球: 0度

水星: 7度

冥王星: 17度

Eris: 44.2度

其它行星的轨道倾角很小

行星的属性

- ❖质量的测定
 - ●存在天然的卫星:地球、火星、木星、土星、天王星、海王星、冥王星(Charon)、Eris(Dysnomia)
 - ●在轨人造卫星:麦哲伦宇宙飞船绕金星
 - ●人造卫星飞经:如水手10号飞经水星

火星质量的测定

 $M = 4\pi^2 a^3/GP^2$

Phobos: T=7h39.2m=27552s, a=9.3772x106m

 $M = 4 \times (3.14159)^2 \times (9.3772 \times 10^6)^3 / [6.67 \times 10^{-11} \times (2.7552 \times 10^4)^2] \text{kg}$ = $6.43 \times 10^{23} \text{kg}$

❖ 行星的密度

土星: 等效半径~59 000 km $V = 7.76 \times 10^{23} \text{ m}^3$, $M = 5.7 \times 10^{26} \text{ kg}$ 平均密度 = 662 kg m⁻³ (准确值687 kg m⁻³)

比水的密度还小!

*转动周期

- ●表面有"标志":火星_(大峡谷)、木星_(大红斑)、 土星_(长圆形特征)
- ●行星雷达
 - ●水星: 模糊不清
 - ●金星: 有云覆盖

多普勒展宽: 转动速度

金星: 1960s, T=243.01天, 比公转周期长 18.3天! 而且反转(逆行: 另有天王、冥王星)

❖ 行星的温度

- ●宇宙飞船直接测量: 金星、火星
- (黑体) 辐射测量
 - ●水星:射电测量
 - ●地球轨道外面行星: 红外辐射测量
- ●理论计算:接受太阳的辐射←→辐射能量

Figure 3.4 The Earth's effective area for absorption of solar energy.

$$\pi R^2 SC = 4\pi R^2 \sigma T^4$$

$$T = (SC/4\sigma)^{1/4}$$
= $[1368/(4 \times 5.7 \times 10^{-8})]^{1/4}$
= 278 K

地球~50%为云,~77%的吸收率

T_{地球} ~ 260 K

温室效应: CO2、CH4、H2O

T_{地球} ~ 288 K

适合人类居住!

* 全球气候变暖

- ●大气中主要成份N₂、O₂不是温室气体:它们既不吸收也不发射红外辐射
- ●CO₂是主要的温室气体
 - ●几十亿年内二氧化碳比例稳定
 - ●矿物燃料燃烧产生二氧化碳→全球气候变暖
- ●H₂O:占36%-66%的温室作用,但作用稳定
- ●CH₄: 比CO₂作用强20倍! 人类活动: ~5x10⁸吨/年
- N₂O:
 - 人类活动:~(7-13) x 106吨/年
- ●地球平均温度增加2度,后果非常严重!

❖ 反射率

●地球: ~0.37

● 金星: ~0.7

但是,存在大量的CO2,温室效应,温度高!

●火星: ~0.15

但是,大气中CO2非常少(慢慢失去大气),只有地球的1/100,目前的温度低!

历史上,火山喷发:水蒸气、二氧化碳、甲烷,温室效应,可能曾经温度适宜生命生存。

行星实际温度:太阳辐射吸收率、反射率、温室气体作用

❖ 行星大气

- ●原初大气: H₂、He(非类地行星)
- ●类地行星:温度高、引力小,轻元素逃逸

$$1/2mv^2 = 3/2kT$$
 $k=1.38 \times 10^{-23} \,\mathrm{m}^2 \,\mathrm{kg} \,\mathrm{s}^{-2} \,\mathrm{K}^{-1}$

$$v = (3kT/m)^{1/2}$$

氮气的平均速度(T=300K):

$$v = [(3 \times 1.38 \times 10^{-23} \times 300)/4.68 \times 10^{-26}]^{1/2}$$

= 0.515 km s⁻¹.

氧气的平均速度:~0.48km/s

地球的逃逸速度: v_{esc}~ 11.2 km/s

$$f(v)dv = 4\pi \left(\frac{m}{2\pi kT}\right)^{3/2} \exp\left(-\frac{mv^2}{2kT}\right)v^2dv$$

气体分子速率分布曲线

 $V > 3\overline{V} : \sim 0.5 \times 10^6$

 $v > 5\overline{v} : \sim 1.0 \times 10^{-16}$

 $V_{esc} \ge 6\overline{V}$: No-Escaping

地球大气:

$$V_{N_2}, V_{O_2} \le \frac{1}{6}V_{esc}$$
 $V_{H_2} \sim 2km/s > \frac{1}{6}V_{esc}$

无氢气!

(0.000055%)

月球:

$$v_{esc} = 2.4 km/s, \sim T = 300 K$$

$$v_{N_2}, v_{O_2} \approx \frac{1}{5} v_{esc}$$

无大气!

水星:

$$v_{esc} = 4.2 km / s, \sim T = 700 K$$

$$v_{N_2}, v_{O_2} \approx 0.8 km/s \ge \frac{1}{6} v_{esc}$$

无大气!

木星:

$$v_{esc} = 60km/s, \sim T = 100K$$

$$v_{H_2} \approx 1 km / s \le \frac{1}{6} v_{esc}$$

主要为氢气!

小结:

- ①水星、月球以及所有的卫星(除了Titan以及 Triton)无大气,水星有少量的俘获太阳风的 临时大气(氢、氦)
- ②类地行星: 无氢、氦,原初大气逃逸
- ③地外行星(质量大、温度低):保留了原初的氢、氦; Titan以及Triton温度太低,大气中主要为氦气
- ④矮行星:冥王星、Eris,温度低,氮气等在 表面冻结

* 次级大气

- ●金星、地球、火星:火山喷发(水蒸气、二氧化碳、二氧化硫、硫化氢、氨气、氮气以及氧化氮等)
- ●地球: 1%为原初大气
- ●金星和火星中外层大气中的水分子受到紫外光线的照射分解为H+OH,从大气层中逃逸(因而无水气)

2022.01 汤加火山

❖ 地球大气的演化

- 原初大气: 氢气和氦气, 逃逸
- 次级大气:火山喷发,二氧化碳、水蒸气以及一些氮气,无 氧气,是目前大气密度的100倍
- •地球变冷:二氧化碳融入海洋,沉淀为碳酸盐
- 33亿年前,产氧细菌产生氧气,持续大概几十亿年;细菌、氧气以及氨气相互作用,产生氮气;紫外光照射氨气,光解离产生氮气
- 植被增加,产生更多氧气,臭氧层开始形成,吸收紫外光,保护生命在陆地上以及海洋中形成
- 2亿年前,大气的成份: ~35%氧气,剩下主要是氮气以及次级气体(不容易融入水)
- 火山活动循环:补充大气,其中有大量二氧化碳,地球变暖,适合生命生存;二氧化碳融入水(碳酸盐及海洋生物产生的碳酸钙沉入大海),地球运动(火山)又释放到大气中

太阳系中的行星

- ❖主要通过空间探测(绕、落、飞过)了解行星的特性
- *水星

Mass	$3.3 \times 10^{23} \text{kg}$	0.055 that of Earth
Mean radius	2439.7 km	0.383 that of Earth
Escape velocity	4.25 km s ⁻¹	
Rotation period	58.646 days	
Semi-major axis of orbit	57 909 068 km	0.387 AU
Average orbital speed	47.87 km	
Eccentricity	0.2053	
Period	87.97 days	
Orbital inclination	7°	

Mercury

- Closest planet to Sun
- Very elliptical orbit (e~0.21)

- Only 3000 miles (~5000 km) in diameter
- Rotation locked to Sun: 3 rotations in 2 orbits
- ❖ Moon-like on the outside (craters: 环形山)
- Earth-like on the inside (dense core, magnetic field)

Venus

Mass	4.8685 × 10 ²⁴ kg	0.815 that of Earth
Radius	6051.8 km	0.95 that of Earth
Escape velocity	10.46 km s ⁻¹	
Rotation period	<u>-243 days</u> (The minus sign indicates retrograde rotation.)	
Axial tilt	177.36°	
Semi-major axis of orbit	108 208 930 km	0.7233 AU
Average orbital speed	35.02km s ⁻¹	
Eccentricity	0.0068	
Period	224.7 days	
Orbital inclination	3.39°	

Venus

- Only a bit smaller than Earth
- Nearest planet (26 million miles)
- Shows phases as it orbits the Sun
- No magnetic field (only planet)
- ❖ 金星凌日:每120年发生
- Atmosphere mostly Carbon Dioxide
 - ~90 times as dense as Earth
 - Runaway Greenhouse Effect
 - Surface Temperature 450 C (850 F)
 - High winds within a highly turbulent atmosphere
 - Albedo~0.7, mag~-4 (after Moon)

Venus Differs from Earth in One Important Way:

- ❖ Venus has no Plate Tectonics (板块结构)
- Earth's internal heat causes hot material to rise within Earth and plates to move
- Venus' crust is too rigid
- Heat builds up and escapes in planet-wide volcanic activity

Why Venus Has No Plate Tectonics

- It's hot! We'd expect hot rocks to be less rigid, not more!
- But it's also dry! Dry rocks are ten times stronger at high temperatures than wet rocks.
- Earth is wet. That affects not just the outside, but the inside as well.

地球

	s	m
Mass	5.9736 × 10 ²⁴ kg	Earth
Radius (mean)	6371 km	
Escape velocity	11.18 km s ⁻¹	23 h 56' 04" 3' 56" a mean sidereal
Day length	1 day	day 24 h a solar day
Rotation period	23 h 56 min 04 s (sidereal day)	
Axial tilt	23.44°	
Semi-major axis of orbit	149 597 887.5 km	1 AU
Average Orbital Speed	29.78 km s ⁻¹	
Eccentricity	0.0167	
Period	365.256366 days	
Orbital inclination	0° (Our orbit provides the reference plane.)	

distant star

Sun

❖地月系统(双行星)的形成

类似M_{地球}天体与地球相撞

*地球大气

火山喷发:次级大气 水(部分来自彗星)凝结 海洋

- →4x109年:生命起源→光合作用:吸收太阳能并产生氧气
- →臭氧层形成吸收大量紫外辐射: 保护生命

*生命起源

- 地球板块运动: 形成大陆--生命活动场所
- 寒武纪(5.4-5.1亿年前): 多细胞生命开始繁荣
- ●生命灭绝:随后的5.35亿年发生过5次生命大灭绝
- ●最近的一次: 6.5千万年前,小行星或彗星撞击地球 (D~10公里),恐龙灭绝,~70%生命灭绝,小的地鼠 类哺乳动物幸存下来→人类

- ❖地球的构造: 地核、地幔和地壳
 - ●赤道略大: △R~43 km
 - ●最高峰—喜马拉雅山珠峰;最低谷--Mariana海底峡谷
 - ●地核温度: ~7000K 放射性物质衰变加热: 放射性同位素 (钾、铀、 钍), 半衰期: ~1x10⁹年
 - ●岩浆对流-板块运动-火山喷发-二氧化碳重新进入 大气
 - ●大气成分(78%氮气,21%氧气,1%水蒸气、二氧化碳、臭氧、甲烷、其它微量气体):温室效应利于生命存在

月球

❖基本特性

- ●半径:约为地球半径的1/4
- ●目前距离地球: ~30倍地球直径
- ●表面引力加速度: ~1/6地球值
- ●椭圆轨道: 角尺寸~12%的变化(0.5548度 →0.4923度)
- ●月天平动(Libration):~59%表面可观测
 - ●椭圆轨道
 - ●轨道倾角
 - ●不同空间位置观测月升、月降
- ●反射率: 很小,~8%(类似于煤块)

❖月貌

- ●月陆(亮)和月海(暗):肉眼可见
- ●月球正面: ~32%月海; 反面: ~2%月海(苏联 Luna 3, 1959)
- ●月海表面覆盖玄武岩: 很多撞击坑,火山熔岩进入凝结;但不像月陆那样多坑,表明其形成于太阳系形成的后期(天体撞击开始减少)
- ●为什么月球正面月海多?
 - ●正面半球放射性物质多、加热:火山喷发,富含放射性元素的熔岩填入碰撞盆地
 - ●正面地壳薄: 易于火山喷发
 - •地球的引力作用,天体容易撞击正面
- ●为什么月陆比月海高? --密度小

- ●环形山 北极有些地方常年有日照:太阳能发电 在极冠区某些环形山底部:常年无日照,冰湖(水 冰、氧气、氢气:月球基地?)----雷达探测,但 仍有争议
- ●月球坑/环形山
 - ●数量: 50万直径大于1km
 - ●最大: D~2240km, 13km深
 - ●著名:第谷环形山和哥白尼环形山
- ●月壤: ~3-5m(月海); ~10-20m(月陆)
- ●岩石床: 月壤之下,~10-40km厚
- ●壳(~50km)、幔和核(~350km,至少部分熔化):阿波罗放置的月震仪测量

*潮汐

- ●潮汐力: ~1/r³
- ●一天两潮: 地球自转
- ●每天大概推迟~50分钟:月球公转
- ●太阳潮汐力: ~46%月球
- ●新月和满月时加强
- ●地球近日点(冬天):加强
- *月球与海洋的引力耦合
 - ●地球自转导致潮汐鼓包并不直接指向/背离月球
 - ●角动量从地球往月球转移
 - ●月球远离地球: ~3.8cm/年

月相

火星

Mass	6.4185 × 10 ²³ kg	0.107 that of Earth
Radius (equatorial)	3.396 km	0.533 that of Earth
Radius (polar)	3,376 km	0.531 that of Earth
Escape velocity	5.027 km s ⁻¹	
Rotation rate	1.026 days	
Axial tilt	25.19°	
Semi-major axis of orbit	227 936 637 km	1.52 AU
Average orbital speed	24.077 km s ⁻¹	
Eccentricity	0.0934	
Orbital period	686.96 days	1.8808 Julian years
Orbital inclination	1.85°	

如果信念有颜色。那一定是

❖ 基本特性

- 红色星球,岩石星球
- 半径: 地球一半
- ●质量: 地球十分之一
- 红色:铁的氧化物,赤铁矿
- 大气层很薄: 1/100地球大气 (磁场很弱) CO2: 95%; N2: 3%; Ar: 1.6%, 微量H2O和O2
- 自转倾角与地球相似: 一年四季, 1火星年~2地球年
- 温度: -140度→20度
- ●沙尘暴:有时覆盖整个火星表面
- 两极冠地区: 主要为水冰,覆盖一层干冰
- 火星有生命吗?
- 火星的卫星: Phobos (D=22km),Deimos (D=6km),被俘获的小行星?

* 谷神星和小行星

●Titius-Bode定律

Distance=i*0.3+0.4, i=0,1,2,4,8,16,32,64

(海王星不符合)

0.4

0.7

1.0

1.6

2.8

5.2

10

19.6

The planets then known fell at distances:

0.39

0.72

1.0

1.52

?

5.2

9.5

19.2

This suggested that a planet might exist at a distance of ~2.8 AU.

- 1768年Bode预言
- ●发现了一些小行星
- 1801.1.1: 发现谷神星,含1/3小行星带中质量 (>170 000具有计算好的轨道)

木星

Mass	1.9 × 10 ²⁷ kg	317.8 times that of Earth
Radius (equatorial)	71 492 km	11.21 times that of Earth
Radius (polar)	66 854 km	10.52 times that of Earth
Rotation period	9.925 h	
Axial tilt	3.13°	
Semi-major axis of orbit	778 547 199 km	5.2 AU
Orbital period	4334.5 days	
Average orbital speed	13.07 km s ⁻¹	
Eccentricity	0.049	
Orbital inclination	1.3046°	

- *基本特性
 - ●巨气体行星:太阳千分之一质量;2.5倍其它行星 质量
 - ●成份:~71%氢气;~24%氦气;其余重元素
 - ●结构: 致密核+液体金属氢+外层氢气(1000km) 厚)
 - ●云: 永久覆盖,~50km厚, 氨晶体-显灰白色
 - ●橘红色,棕色:磷、硫化合物在太阳紫外照射下
 - ●大红斑:大于两倍地球,为恒定反气旋风暴(木 星自转较快导致强风暴~100m/s);位置变化, 自转周期6天;基本稳定;最早于1831年观测到
 - ●小红斑:三个小斑并合而成,颜色由白逐渐变红

- ❖木星环: 很暗(三个组分)
 - ●内晕
 - ●亮的主环: 尘埃,来自两颗卫星被陨星撞击的抛射物
 - ●外部的"薄纱"环: 尘埃,来自另外两颗卫星被 陨星撞击的抛射物

◆ 彗木相撞

- ●1994年7月发生: Shoemaker-Levy 9的碎裂物
- ●被木星俘获(60s-70s),临时卫星,周期~2年
- ●1992年7月7日,达到Roche极限,潮汐力瓦解
- ●发现: 1993年3月24日
- ●HST观测: 裂片尺寸几百米→2km (彗星~5km)
- ●一周内23裂片(A to W)连续相撞

❖ 木星的Galileo卫星

- 四个大的卫星: Io,Europa,Ganymeade & Callisto: 和月亮 差不多大
- 历史意义: 1610年Galileo发现, 支持哥白尼太阳系模型
- 测量光速: Christensen Roemar (1676)
 - ●利用lo被木星掩食的周期(42.5小时)作为时间的标准
 - lo周期在地球相对木星的不同速度运动下不一样,多普勒效应:
 - \rightarrow v/c~11/(42.5*40*60)~1/9300, v~30km/s \rightarrow c~279 000 km/s

lo

- ●太阳系第四大卫星
- ●直径:~3642km
- ●>400火山:木星潮汐力加热,内部熔化
- ●结构:熔化的铁、硫化铁核+硅岩石壳层;表面大部为红橙色的硫化物,白色的SO2霜冻;表面100座山,有的比喜马拉雅山高

Europa

- ●太阳系第六大卫星
- ●直径: ~3000km
- ●结构:铁核+硅岩石内层+冰壳层

冰面非常光滑,裂开又由新冰溶合,在液体海

洋上,可能宜居

土星

Mass	5.68 × 10 ²⁶ kg	95.15 times that of Earth	
Radius (equatorial)	60 268 km	9.45 times that of Earth	
Radius (polar)	54 364 km	8.55 times that of Earth	
Rotation period	10 h 32 min to 10 h 47 min		
Axial tilt	26.73°		
Semi-major axis of orbit	1 433 449 370 km	9.58 AU	
Orbital period	10 832.327 days	29.66 years	
Average orbital speed	9.69 km s ⁻¹		
Eccentricity	0.056		
Orbital inclination	2.485°		

- ❖ Galileo发现"土星耳朵", 1610年
 - Galileo的困惑: 土星吃掉自己的孩子?
 - ●三个东西,相互接触,中间大,外面两个小且在一线上
 - 两年后外面的两个消失
 - 1613年又出现
- ❖ 惠更斯 (1655): 光环系统
- ❖ Cassini(1675): 由很多环组成--Cassini环缝
- ❖ 环的特性:小颗粒,<1km厚,~93%水冰,~7%非晶质碳
- ❖ 从远及近: C、D、F、A、B B和A最明亮、宽,中间为Cassini环缝,B和A实际 上由很多狭小的环组成
- ❖ 环的起源:潮汐力瓦解卫星、彗星或陨星
- ❖ 环缝的形成:众多卫星的引力共振,卫星清除缝中 粒子

◆ 土卫六 (Titan)

- •太阳系第二大卫星: 比水星大
- ●唯一具有稠密大气的卫星: ~98%氮气, 地球大 气压1.5倍, 大气中存在有机分子: 低等生命?
- ●表面有液体: 极冠区的碳氢化合物(如甲烷)湖
- ●Tidally locked: 同一表面面向土星
- ●结构:岩石核+水冰壳层

天王星

Mass	8.68 × 10 ²⁵ kg	14.536 times that of Earth
Radius (equatorial)	25 560 km	
Radius (polar)	24 973 km	
Rotation period	0.378 days	
Axial tilt	97.77°	
Semi-major axis of orbit	2 876 697 082 km	19.23 AU
Orbital period	30 799 095 days	84.32 years
Average orbital speed	6.81 km s ⁻¹	
Eccentricity	0.0444	
Orbital inclination	0.772°	

- ❖星等: ~5.5,移动慢,不易与恒星区分
- ❖ 1781年William Herschel证认为行星
- ❖公转周期: ~84年
- ❖自转:~9h,表面云层可以转得更快(大风)
- ❖自转轴:基本在轨道平面内("滚着")
- ❖ 巨冰球: ~14.5地球质量,密度比水大一些,岩石核(~2M_{地球})+冰壳层(~11 M_{地球},水,氨,甲烷等)+外部大气层(~1M_{地球},氢气和氦气)
- ❖冰占大部分质量,常作为ice giant而非gas giant

* 天王星的环

- ●1977年3月10日:天王星掩食恒星,发现光环,5 个环,最外面的最厚,最大的环:R~44,000km
- ●1986年1月: 旅行者2号发现11个环
- ●2005年12月: HST发现13个环

Figure 3.21 An image of Uranus and its rings taken by the Voyager 2 spacecraft in 1986. Image: Voyager 2, NASA.

海王星

Mass	1.0243 × 10 ²⁶ kg	17.147 times that of Earth
Radius (equatorial)	24 764 km	3.883 times that of Earth
Radius (polar)	24 341 km	3.829 times that of Earth
Rotation period	16h 6min 36s	
Axial tilt	28.32°	
Semi-major axis of orbit	4 503 443 661 km	30.1 AU
Orbital period	60 190 days	164.79 years
Average orbital speed	5.43 km s ⁻¹	
Eccentricity	0.0112	
Orbital inclination	1.77°	

- ❖星等: ~7.84m
- ❖ 1612年12月28日: Galileo,认为是行星
- ❖ John Herschel: 认为是恒星
- ❖ 理论预言: Admas & Verrier (1845年)
 对天王星的摄动
- ❖ Berlin天文台,Galle于1846年9月23日发现
- ❖ William Lassell 发现卫星: Triton

* 基本特性

- ●太阳系第四大、第三重行星,比天王星略重
- 大气: H, He + 1% CH4 → 蓝色
- 风: ~ 2000 km/h! 行星上的最大风速
- ●大黑斑(旅行者2号)
- 温差大: ~55K(云) → ~7000K(核)
- 自转: ~16.11恒星时, 自转倾角和地球差不多
- 巨冰球 (ice giant)
- 结构: 核 (~1M_{地球},岩石、冰)+幔(~12M_{地球},冰、氨、甲烷)
- ●存在多个光环
- 13个卫星,Triton最大呈球形,反转---引力俘获自Kuiper Belt,面向海王星,缓慢旋入,最终被潮汐力瓦解成环

冥王星

Mass	1.305 × 10 ²² kg	0.0021 that of Earth
Radius (mean)	1.195 km	0.19 that of Earth
Rotation period	-6.387 days (The minus sign signifies retrograde rotation.)	
Axial tilt	119.59°	
Semi-major axis of orbit	5 906 376 272 km	39.48 AU
Orbital period	90 613 days	248.09 years
Eccentricity	0.249	
Orbital inclination	17.142°	

* 发现

- 1905年,Percival Lowell 理论预言
- 业余天文学家Clyde Tombaugh发现(1930.2.18)
- 轨道公布: 1930.3.13
- 命名: Pluto, PL=Percival Lowell
- 卫星Charon的发现: 1978.6.22, James Christy
- 1990年,HST分辨出Pluto和Charon
- 2005年发现了卫星Nix,Hydra
- 2006年1.18: "New Horizons"离开地球, 2007年2.28经过木星的加速(引力弹弓效应), 2015年7月到达冥王星,

之后进入Kuiper Belt

* 基本特性

- 质量: ~ 0.2%M_{地球}
- 轨道倾角大: ~17度

Eris

Mass	1.66 × 10 ²² kg	
Radius (mean)	1300 km (+200/-100 km)	
Rotation period	>8 h?	
Semi-major axis of orbit	10.12 × 10 ⁹ km	67.67 AU
Orbital period	203 600 days	557 years
Eccentricity	0.442	
Orbital inclination	44.2°	

- ❖ 2003年被Palomar天文台发现: 2003UB₃₁₃
- ❖高的反照射率: ~0.86, 冰面的反射
- ❖ 卫星Dysnomia被发现
- ❖质量比冥王星略大:~+27%
- *矮行星

苟利军

太阳系内的第五大矮行星终于有了名字,而且这一次是中国人名,那就是怒撞不周山的水神"共工",它的卫星被命名为共工的大臣"相柳"。"共工"星的直径大约是1230公里,是月球直径的35%,但是质量仅仅只有月球质量的2.4%,距离太阳的距离是67.38天文单位(地球和太阳直径的距离)。前四大的矮行星分别为:冥王星(Pluto),阅神星(Eris), 妊神星(Haumea), 鸟神星(Makemake)。

彗星

- ❖ 第谷仔细观测了彗星1577,发现其比月亮远至少4 倍
- ❖ 1687年,牛顿利用1680/1681亮彗星的轨道数据, 证明其轨道为双曲线(太阳为一焦点)
- ❖ 哈雷彗星
 - 计算了1337-1698年,24个彗星的轨道
 - ●哈雷彗星1P/Halley: ~76年周期, 1531-1607-1682-1757(?),1758年圣诞被观测到!
 - 1066, 1910年, 亮、壮观, 1985/1986: 远, 暗, 肉眼依稀可见(下一次2061年)
 - 第一次被拍: 1910
 - 最早可能于1301年被发现

*彗星

- •小的太阳系天体,近日时大气扩散,可成彗尾
- ●脏雪球:岩石、尘埃,被冰覆盖
- ●长周期彗星:来自Oort云(r~1 l.y., ~10¹²彗星; Kuiper belt之外),通常可见一次
- ●短周期彗星(周期<200年)
 - ●来自Oort云的彗星受木、土星的引力影响(近日轨道)
 - ●多数被认为来自Kuiper带
- ●目前发现约:~3000彗星,其中几百个为短周期
- ●平均一年一个肉眼可见彗星

* 彗核

- ●大小: ~ 0.5-50km
- ●成份:岩石、尘埃、冰、冻的气体:二氧化碳、一氧化碳、甲烷、氨,以及一些有机分子:甲醇、甲醛、乙醇、乙烷,甚至氨基酸
- ●形状不规则:引力太小
- ●远离太阳时基本不可见
 - ●小
 - ●低的反照射率
- ●彗尾
 - ●离子气体尾(太阳风),背离太阳,蓝色(氰)
 - ●尘埃尾(辐射),黄色,沿轨道弯曲

* 彗发

彗发可能比太阳还大; 彗尾可达~ 1AU 质量损失厉害: 最后化为尘埃或小行星状的石块

❖ 对地球的影响 给地球带来水以及有机物!甚至生命起源!