Title Subtitle

Bruno Guindani Elena Zazzetti

November 22, 2019

https://github.com/poliprojects/BNPlib

Title

Non-Parametric statistics

- Goal: density approximation
- Infinite-dimensional parameters, e.g. functions

Non-Parametric statistics (the Bayesian way)

- Goal: density approximation
- Infinite-dimensional parameters, e.g. functions
- Model:

$$y_i|G \stackrel{\text{iid}}{\sim} G, \quad i = 1, \dots, n$$

 $G \sim \mathcal{P}$

Non-Parametric statistics (the Bayesian way)

- Goal: density approximation
- Infinite-dimensional parameters, e.g. functions
- Model:

$$y_i|G \stackrel{\text{iid}}{\sim} G, \quad i = 1, \dots, n$$
 $G \sim \mathcal{P}$

$$\mathcal{P}:\Omega \to M(S)$$
 fixed $\left[\ \omega \mapsto G(\cdot) \ \right]$

Model name: BNP model

Dirichlet Process prior

$$y_i|G \stackrel{\text{iid}}{\sim} G$$

$$G \sim DP(MG_0)$$

- Parameters: $M > 0, G_0 \in M(S)$
- Defining property: $\forall \{B_{1:k}\}$ partition of S,

$$[G(B_1),\ldots,G(B_k)] \sim \operatorname{Dir}\left(MG_0(B_1),\ldots,MG_0(B_k)\right)$$

4/9

Dirichlet Process prior

$$y_i|G \stackrel{\text{iid}}{\sim} G$$

$$G \sim DP(MG_0)$$

- Parameters: $M > 0, G_0 \in M(S)$
- Defining property: $\forall \{B_{1:k}\}$ partition of S,

$$[G(B_1),\ldots,G(B_k)] \sim \operatorname{Dir}\left(MG_0(B_1),\ldots,MG_0(B_k)\right)$$

- Discreteness (stick-breaking): $G(\cdot) = \sum_{k=1}^{+\infty} w_h \delta_{m_h}(\cdot)$
- Conjugacy: $G|\mathbf{y} \sim DP(MG_0 + \sum_i \delta_{y_i})$
- Polya urn representation:

$$\mathcal{L}(y_i|y_1,...,y_{i-1}) \propto \sum_{h=1}^{i-1} \delta_{y_h}(y_i) + MG_0(y_i)$$

• $M \log n \ll n$ values

Continuous density estimation

• Mixtures:

$$y_i|G \sim f_G(y) = \int f_{\vartheta}(y) dG(\vartheta)$$

Continuous density estimation

• Mixtures:

$$y_i|G \sim f_G(y) = \int f_{\vartheta}(y) \, dG(\vartheta)$$

 $G \sim DP(MG_0)$

Model name: DPM model

Continuous density estimation

• Mixtures:

$$y_i|G \sim f_G(y) = \int f_{\vartheta}(y) dG(\vartheta)$$

 $G \sim DP(MG_0)$

- Model name: DPM model
- Equivalent to:

$$\begin{aligned} y_i | \vartheta_i &\overset{\perp}{\sim} f_{\vartheta_i} \\ \vartheta_i | G &\overset{\text{iid}}{\sim} G \\ G \sim DP(MG_0) \end{aligned}$$

• ϑ_i "latent variables" $\forall i = 1, \dots, n$

Clustering in the DPM

- Discreteness: the ϑ_i have one of the k unique values ϕ_j $(j=1,\ldots,k)$
- $k \simeq M \log(n) \ll n$
- \bullet All i s.t. $\vartheta_i = \phi_j$ belong to cluster S_j $\ (j=1,\dots,k),$ and $n_j = |S_j|$

Clustering in the DPM

- Discreteness: the ϑ_i have one of the k unique values ϕ_j $(j=1,\ldots,k)$
- $k \simeq M \log(n) \ll n$
- ullet All i s.t. $artheta_i=\phi_j$ belong to cluster S_j $(j=1,\ldots,k)$, and $n_j=|S_j|$
- Conditional prior for ϑ_i :

$$\mathcal{L}(\vartheta_i|\boldsymbol{\vartheta}_{-i}) \propto \sum_{j=1}^{k^-} n_j^- \delta_{\phi_j^-}(\vartheta_i) + MG_0(\vartheta_i)$$

$$\uparrow \qquad \uparrow$$

Clustering in the DPM

- Discreteness: the ϑ_i have one of the k unique values ϕ_j $(j=1,\ldots,k)$
- $k \simeq M \log(n) \ll n$
- ullet All i s.t. $artheta_i=\phi_j$ belong to cluster S_j $(j=1,\ldots,k)$, and $n_j=|S_j|$
- Conditional prior for ϑ_i :

$$\mathcal{L}(\vartheta_i|\boldsymbol{\vartheta}_{-i}) \propto \sum_{j=1}^{k^-} n_j^- \delta_{\phi_j^-}(\vartheta_i) + MG_0(\vartheta_i)$$

$$\uparrow \qquad \uparrow$$

• Via conjugancy of the DP:

6/9

Title

Title

Stuff

Bibliography

- 🐚 Muller, Quintana, *Bayesian Nonparametric Data Analysis*
- Neal (2000), Markov Chain Sampling Methods for Dirichlet Process Mixture Models
- Ishwaran, James (2001), Gibbs Sampling Methods for Stick-Breaking Priors