

MC458 - Projeto e Análise de Algoritmos I Prof. Ricardo Dahab (Turmas AB) ${\bf 1}^{\underline{0}} \ {\bf Semestre \ de \ 2013}$

$1^{\underline{a}}$ Prova - 1/4/2013

Nome	
RA	
Assinatura	

1	1,5	
2	2,0	
3	1,5	
4	2,0	
5	3,0	
Total	10,0	

A prova será encerrada às 21 horas. A interpretação das questões faz parte da prova. Não é permitida consulta a qualquer material. Use o verso das páginas se necessário.

- 1. (1,5) Justifique a seguinte afirmação: o algoritmo A é melhor que o algoritmo B para resolver o problema Π. Descreva as condições que permitem esse tipo de afirmação no contexto da análise da complexidade de algoritmos. Lembre-se de considerar o modelo computacional, a forma de cálculo de custo de um algoritmo e porque a comparação entre os algoritmos é justa.
 - Resposta. Considerando o modelo RAM de computação, onde o conteúdo da memória RAM pode ser manipulado por programas constituídos de operações básicas como por exemplo operações algébricas $(+, -, \times, /)$, laços condicionais (if then else, switch case, for, while, etc.), o custo de um algoritmo A pode ser calculado pela quantidade total de operações básicas efetuadas. Para uma entrada de tamanho n, podemos determinar o custo médio do algoritmo como sendo a média dos custos das possíveis entradas com tamanho n. Sendo assim, podemos obter uma função f que descreva com precisão o comportamento do algoritmo. Mas a comparação de funções não é uma tarefa trivial, especialmente quando o objetivo é comparar os algoritmos em questão. Isto porque quando n é pequeno, o tempo de execução do algoritmo é tão pequeno que não faz tanta diferenca se um algoritmo é melhor que outro. Mas quando n é grande a situação é outra e o algoritmo pode demorar tanto que torna-se inviável de ser usado na prática. Portanto, queremos realizar uma comparação assintótica, ou seja. analisando o comportamento da função quando o tamanho de sua entrada tende ao infinito. Por isso, considerando os algoritmos $A \in B$, para o mesmo problema Π , podemos dizer que A é melhor que B, se a função que descreve o algoritmo A tiver comportamento assintótico melhor que a função do algoritmo B.
- 2. (2,0) Usando a notação O() é possível ordenar as funções listadas a seguir. Esta ordem não é única, já que algumas das funções podem estar relacionadas pela notação $\Theta()$. Mostre uma destas possíveis ordens e apresente uma função f(n) tal que todas as demais funções estejam na classe o(f(n)).
 - (a) $8^{\log n} + 4^{\log n} + 1$
 - (b) $(\sqrt{n}+1)(\sqrt{n}-1)$
 - (c) 3^n
 - (d) $\sum_{i=0}^{k} n^{i}$, para k constante inteira, $k \geq 1$
 - (e) $\log^2 \log \log n$
 - (f) $n \log^k n$, para k constante inteira, $k \ge 1$
 - (g) kn, para k constante inteira, k > 1

Resposta. Ordem crescente: (e); (b) ou (g) (pois são lineares); (f) (pois está entre linear e quadrático); (a) (função cúbica após manipulação algébrica); (d) (polinômio de grau 4); (c) (função exponencial).

3. (1,5) Defina as classes de funções o(g(n)) e $\Omega(g(n))$.

Resposta.

- o(g(n)) é o conjunto das funções f(n) tais que para qualquer constante positiva c, existe n_0 tal que f(n) < cg(n), para $n > n_0$.
- $\Omega(g(n))$ é o conjunto das funções f(n) tais que existem as constantes positivas c e n_0 tais que $f(n) \ge cg(n)$, para $n > n_0$.

4. (2,0) Mostre que $n \in \Omega(\log^k n)$, onde k é constante positiva inteira, da forma que você achar melhor.

Resposta. Aplicando-se repetidamente L'Hôpital e a regra da cadeia, obtemos que

$$\lim_{n \to \infty} \frac{\log^k n}{n} = \lim_{n \to \infty} \frac{(\log^k n)'}{(n)'}$$

$$= \lim_{n \to \infty} \left(\frac{k \log^{k-1} n (\log n)'}{1} \right)$$

$$= \lim_{n \to \infty} \left(k \log^{k-1} n \frac{1}{n} \right)$$

$$= k! \lim_{n \to \infty} \frac{1}{n^k} = 0. \square$$

5. (3,0) Para as seguintes recorrências, diga quais satisfazem as condições do Teorema Master e quais não satisfazem. Para aquelas que satisfazem, dê a solução usando o Teorema. Para aquelas que não satisfazem, diga a razão.

(a)
$$T(n) = \begin{cases} 4T(n/2) + 3n, & n > 3, \\ 1, & n \le 3. \end{cases}$$

(b)
$$T(n) = \begin{cases} nT(n/2) + n, & n > 1, \\ 1, & n \le 1. \end{cases}$$

(c)
$$T(n) = \begin{cases} 10T(n/3) + n^2, & n > 1, \\ 1, & n = 1. \end{cases}$$

(d)
$$T(n) = \begin{cases} 3T(n/5) + \log n, & n > 1, \\ 1, & n = 1. \end{cases}$$

Resposta.

- (a) Caso 1 do Teorema Master. $T(n) \in \Theta(n^2)$.
- (b) Não se aplica porque a deve ser constante.
- (c) Caso 1. $T(n) \in \Theta(n^{\log_3 10})$
- (d) Caso 1. $T(n) \in \Theta(n^{\log_5 3})$