宇宙工学演習 最終課題 人工衛星設計・ロケットサイジング

2016年8月12日 航空宇宙工学科3年 03-160330 鈴本 遼 ryo-suzumoto@g.ecc.u-tokyo.ac.jp

00. 目次

00.	日久	1
0.	ミッション概要	3
0.1	l. 軌道	3
0.2	2. 寿命	3
0.3	3. ミッション機器	3
1. 4	<i>AV</i> の見積もり	3
1.1	1. 概要	3
1.2	2. アポジ点でのΔV	4
1.3	3. 軌道の維持に必要な∆V	5
2. 蒡	熱入力量と放射能力の計算	5
2.1	1. 衛星面などの定義	5
2.2	2. 仮定	6
2.3	3. 各面のαによる太陽輻射	6
2.4	1. 各面の放熱能力の推定	8
3.	サブシステムの洗い出し	8
3.1	1. 仮定	8
3.2	2. サブシステム一覧	8
4.	アポジモーター,軌道制御用燃料の推算	10
4.1	1. 仮定	10
4.2	2. ドライ重量の計算	10
4.3	3. 燃料重量の計算	10
4.4	4. タンク重量・体積の計算	11
4.5	5. GTO 投入時の総重量(打ち上げ重量)の計算	12
5. 1	衛星寸法の決定	12
5.1	1. 仮定	12
5.2	2. 構造内部の機器の体積と衛星体積の概算	12
5.3	3. 衛星寸法の決定・搭載面積の確認	13
5.4	4. 放熱能力の確認	13
6. ħ	機器配置・放熱面の設計	14
6.1	1. 要求・仮定	14
6.2	2. 設計図,搭載機器表,重量・重心表	15
6.3	3. 重心	21
6.4	4. 熱計算と放熱面の設計	21
6.4	4.1. 空間 1	21
6.4	4.2. 空間 2	22

	6.4.3.	空間 3	. 23
	6.4.4.	空間 4	. 24
	6.4.5.	各空間のまとめ	. 25
7.	. 打ち	上げロケットのサイジング	. 27
	7.1.	フェアリング重量の推算	. 27
	7.2.	必要 ΔV の計算	. 27
	7.2.1.	VCE	. 27
	7.2.2.	ΔVH	. 27
	7.2.3.	$\Delta Vg + \Delta VA$. 28
	7.2.4.	ΔVE	. 28
	7.2.5.	ΔVPK	. 28
	7.2.6.	ΔV 合計	. 29
	7.3.	推進剤の決定	. 29
	7.4.	最適化	. 29
	7.4.1.	文字定義	. 29
	7.4.2.	関係式	. 29
	7.4.3.	η のモデル化	. 30
	7.4.4.	最適化結果	. 30
3.		Į	
9.	. 付録	と- ソースコード	. 31
	9.1.	太陽輻射による熱入量と放熱能力の計算(2.3節)	
	9.2.	燃料重量の計算(4.3 節)	. 34
	9.3.	燃料重量の最適化(7.4 節)	. 35

0. ミッション概要

静止軌道の通信衛星を設計する.

0.1. 軌道

軌道傾斜角 0度

東経 135 度上空 静止軌道 (半径 42160 km の円軌道)

0.2. 寿命

7年

0.3. ミッション機器

下表(Table.0-1)参照. なお, 搭載面要求として, アンテナ, アンテナタワーは地球指向面上にすること.

重量 使用電力 許容温度 [°C] [kg] [W] $\Phi 0.7 m \ \mathcal{N} \supset \mathcal{N}$ 10~40 5 uplink Φ1.5m パラボラアンテナ(Ka バンド) 23 0 10~40 Φ 0.8m パラボラアンテナ(S バンド) 6 0 10~40 downlink Φ1.6m パラボラアンテナ(Ka バンド) 26 0 10~40 アンテナタワー 70 -45~65 0 Ka バンド中継器(1380x700x200mm) 180 5~40 867 Sバンド中継器(700x700x200mm) 5~40 60 330

Table.0-1 ミッション機器

1. △Vの見積もり

1.1. 概要

軌道は下図(Fig.1-1)のようになる. GTO まではロケットによって投入する. 軌道半径は次のようになる.

$$\begin{cases}
R_{PO} = 6600 \text{ [km]} \\
R_{GEO} = 42160 \text{ [km]}
\end{cases}$$
(1-1)

Fig.1-1 軌道

1.2. アポジ点での**∆V**

アポジ点(A 点)でふかすキックモーターの $\Delta V_{@A}$ を求める。GTO での速度 V_{GTO} を考える。ケプラー第二法則より、

$$R_{GEO}V_{GTO@A} = R_{PO}V_{GTO@P}. (1-2)$$

また,エネルギー保存より,

$$\frac{1}{2}V_{GTO@A}^{2} - \frac{\mu}{R_{GEO}} = \frac{1}{2}V_{GTO@P}^{2} - \frac{\mu}{R_{PO}}.$$
 (1-3)

以上より,

$$V_{GTO@A} = \sqrt{\frac{2\mu R_{PO}}{R_{GEO}(R_{PO} + R_{GEO})}}$$

$$= \sqrt{\frac{2 \times 3.986 \times 10^{14} [\text{m}^3/\text{s}^2] \times 6600 \times 10^3 [\text{m}]}{42160 \times 10^3 [\text{m}] \times (6600 \times 10^3 [\text{m}] + 42160 \times 10^3 [\text{m}])}}$$

$$= 1599.8386 [\text{m/s}]$$

$$\approx 1599.8 [\text{m/s}]$$

となる. また、GEO での速度 V_{GEO} は、

$$V_{GEO} = \sqrt{\frac{\mu}{R_{GEO}}}$$

$$= \sqrt{\frac{3.986 \times 10^{14} \text{ [m}^3/\text{s}^2]}{42160 \times 10^3 \text{ [m]}}}$$

$$= 3074.8104 \text{ [m/s]}$$

$$\approx 3074.8 \text{ [m/s]}$$

である. ここで, 速度三角形(Fig.1-2)を用いてΔVを求める.

Fig.1-2 速度三角形

Fig.1-2 \sharp \mathfrak{d} \mathfrak{d} $V_{@A}$ \sharp \mathfrak{d} ,

$$\Delta V_{@A} = \sqrt{V_{GEO}^2 + V_{GTO@A}^2 - 2V_{GEO}V_{GTO@A}\cos 30^\circ} = 1869.140 \text{ [m/s]} \approx 1869.1 \text{ [m/s]}$$
 (1-6) となる.

1.3. 軌道の維持に必要な*∆V*

軌道の維持に必要な ΔV_{SK} を求める。軌道面と月軌道のなす角を α 、軌道面と黄道のなす角を γ とすると,月,太陽による軌道傾斜角方向のずれは, $i=0^\circ$ の静止軌道上で,

となる。また衛星は地球の偏平によって安定点である東経75°、255°へ向かってドリフトする。 今回の衛星は東経135°を静止するので、東経75°へ向かってドリフトする。これによるずれは、

$$\Delta V_D = 1.715 \sin(2|135 - 75| [\degree]) = 1.485233 [m/s·year] \approx 1.4852 [m/s·year]$$
 (1-8) である. したがって衛星寿命の間に必要な南北, 東西方向の ΔV_{SK} はそれぞれ,

$$\begin{cases} \Delta V_{SK-NS} = 7 \text{ [year]} \times (\Delta V_{MOON} + \Delta V_{SUN}) = 359.66 \text{ [m/s]} \\ \Delta V_{SK-EW} = 7 \text{ [year]} \times \Delta V_D = 10.3964 \text{ [m/s]} \approx 10.396 \text{ [m/s]} \end{cases}$$
 (1-7)

となる.

2. 熱入力量と放射能力の計算

2.1. 衛星面などの定義

衛星の面の名前や、角度は下図(Fig.2-1)のようにする.

5/37

Fig.2-1 衛星面定義

2.2. 仮定

- 1. 太陽定数を $P_s = 1358 \, [W/m^2]$ とする.
- 2. 地球からの輻射,アルベドは考慮しない.
- 3. 太陽の食は考慮しない.
- 4. 表面素材は A1 テフロン($\alpha_s=0.2$, $\epsilon=0.8$)とし、表面温度は20 [°C]と仮定する.
- 5. \pm PAD 面は太陽電池パドルのための放射障害で View Factor は、 $F_{\pm PAD}=0.9$ とする.
- 6. +TAR 面はアンテナタワーのための放射障害で View Factor は、 $F_{+TAR} = 0.9$ とする.

2.3. 各面のαによる太陽輻射

衛星の対称性より、 $\beta \ge 0$ のときのみ考える.

03-160330 鈴本 遼 6/37

Fig.2-2 太陽輻射による熱入量(±TAR面)

Fig.2-3 太陽輻射による熱入量 (±SUN面)

Fig.2-4 太陽輻射による熱入量(±PAD面)

各面の太陽輻射による熱入量は上図(Fig.2-2~2-4)のとおりである。これら 6 面の太陽輻射による平均熱入量 q_S を、夏至で北面最悪時である $\beta=23.4$ °のときと、春秋分時である $\beta=0$ °のときにおいて計算する。計算は付録 9.1 節のコードを用いた、結果は下表(Table.2-1)となる。

B [°] 23.4 +TAR $[W/m^2]$ 86.453 79.343 -TAR $[W/m^2]$ 79.343 86.453 +SUN [W/m²] 86.453 79.343 -SUN [W/m²] 86.453 79.343 $+PAD [W/m^2]$ 107.865 0 -PAD $[W/m^2]$ 0

Table.2-1 各面の単位面積あたりの平均熱入量 q_s

2.4. 各面の放熱能力の推定

放射能力 P_{RAD} は、面からの放熱量-外部からの入熱量であるので、

$$P_{RAD} = \epsilon \sigma T_{wall}^4 F - q_s \tag{2-1}$$

となる. これも熱入量のときと同じソースコード(付録 9.1 節)で計算させた. 結果は、下表 (Table.2-2)となる.

Table.2-2 各面の放熱能力 P_{RAD}

3. サブシステムの洗い出し

3.1. 仮定

- 1. 一般機器の発熱量は消費電力量に等しいものとする.
- 2. バッテリの発熱は総放電量の 15%とする.
- 3. 中継器 (トランスポンダ) の発熱量は使用電力量の80%, つまり効率20%とする.

3.2. サブシステム一覧

サブシステム一覧と消費電力は下表(Table.3-1)の通り. なおタンク系の寸法等の計算は, 4章でおこなう. なお, 配布資料の寸法, 質量, 消費電力は機器1つあたりの値と解釈した.

Table.3-1 サブシステム一覧

		100	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	, , , , , ,			
	機器名	寸法 [am]	重量	消費電力	 発熱量 [w/]	許容温度	搭載面要求
		[cm]	[kg]	[W]	[W]	[°C]	
	uplink パラボラアンテナ	ф70	5	0	0	10~40	+TAR 外
	(Sバンド)	Ψ/Θ	,	ð	0	10 40	TIAN
	uplink パラボラアンテナ	1150	22	0	0	10 - 40	. TAD A
	(Ka バンド)	ф150	23	0	0	10~40	+TAR 外
	downlink パラボラアンテナ	100	_	•		10 10	T.D. A
ミッション機器	(S バンド)	ф80	6	0	0	10~40	+TAR 外
	downlink パラボラアンテナ	1					 51
	(Ka バンド)	ф160	26	0	0	10~40	+TAR 外
	アンテナタワー		70	0	0	-45~65	+TAR 外
	Ka バンド中継器	138x70x20	180	867	693.6	5~40	
	Sバンド中継器	70x70x20	60	330	264	5~40	
	アースセンサ	12x17x13	25	6	6	0~50	+TAR 外
	サンセンサ x2	12x43x13	4.5 x2	6 x2	6 x2	0~50	±SUN 外
	IRU	30x38x30	22	10	10	0~40	
	AOCE	20x15x7	10	50	50	-5~40	
	リアクションホイール	30x30x10	24	60	60	0∼45	
バス機器	TT&C ユニット	80x60x20	60	35	35	0~50	
ハ人協品	オンボード計算機	40x26x12	20	120	120	-5~40	
	ヒドラジンスラスタ x2		10 x2			9~40	±SUN 外
	太陽電池パドル x2		77 x2			熱計算不要	±PAD 外
	パドル駆動モータ x2	19x20x34	13 x2	10 x2	10 x2	0~40	±PAD
	バッテリ x2	35x25x20	25 x2		117 x2	5~20	
	電源制御部 x2	20x30x20	10 x2	25 x2	25 x2	0~40	
2. AT	ヒドラジンタンク x2	r=35 (球形)	16.92 ×2	0	0	9~40	バルクヘッド
タンク系	アポジタンク	r=58 (球形)	155.1	0	0	9~40	スラストチューフ

4. アポジモーター、軌道制御用燃料の推算

4.1. 仮定

- 1. 構造系重量は機器重量の総和の10%とする.
- 2. 計装・配線重量は機器重量の総和の7%とする.
- 3. システムマージンとして、以上の合計重量の7%をのせる.
- 4. 姿勢制御用△Vは10 [m/s]とする.
- 5. 姿勢軌道制御用ΔVはマージンを5%とる.
- 6. 姿勢軌道制御用エンジン(ヒドラジン)はIsp = 170 [s], アポジモーター(個体)はIsp = 280 [s]とする.
- 7. タンク重量は燃料重量の10%とする.
- 8. タンクは球形とする.
- 9. GTO 投入時の総重量にはマージン2%を含める.

4.2. ドライ重量の計算

文字を次のように定義する.

タンク重量 : $W_T = 0.1 Wprop$

機器重量 $: W_E = 810 \, [kg] + W_T$

構造重量 : $W_S = 0.1 W_E$ 計装・配線重量 : $W_W = 0.07 W_E$

ドライ重量 : $W_D = 1.07(W_E + W_S + W_W) = 1.07 \times 1.17W_E$

4.3. 燃料重量の計算

一般的に

$$M_{prop} = M_{dry} \left(e^{\frac{\Delta V}{gIsp}} - 1 \right) \Leftrightarrow \Delta V = gIsp \ln \frac{W_{dry} + W_{prop}}{W_{dry}} \tag{4-1}$$

が成立する. 姿勢軌道制御用, アポジモーターとして必要な ΔV をそれぞれ ΔV_{SK} , ΔV_{apogee} とすると, 1章の結果より,

$$\begin{cases} \Delta V_{SK} &= 1.05 (\Delta V_{SK-NS} + \Delta V_{SK-EW} + 10 \; [\text{m/s}]) = 399.06 \; [\text{m/s}] \\ \Delta V_{apogee} &= \Delta V_{@A} = 1869.1 \; [\text{m/s}] \end{cases}$$
 (4-2)

となるので,

$$M_{SKfuel} = W_D \left(e^{\frac{\Delta V_{SK}}{gIsp_{SK}}} - 1 \right) \tag{4-3}$$

$$M_{apfuel} = \left(W_D + M_{SKfuel}\right) \left(e^{\frac{\Delta V_{apogee}}{gIsp_{apogee}}} - 1\right) \tag{4-4}$$

となるが、 W_E に W_{prop} が含まれるので循環となる。これを付録 9.2 節のコードを用いて数値計算させた。実行結果は下図(Fig.3-1)のようになった。

001	> perl -w 4.Mfuel.pl							
002	LOOP	MskFuel [kg]	MapFuel [kg]					
003	1	274.453819960229	1257.78361601243					
004	2	326.370908526744	1495.71239907506					
005	3	336.191810584561	1540.72022481629					
006	4	338.049582657155	1549.23413537339					
007	5	338.401008325936	1550.84467024772					
008	6	338.467485803180	1551.14932726332					
009	7	338.480061022844	1551.20695774288					
010	8	338.482439815725	1551.21785941921					
011	9	338.482889800355	1551.21992163607					
012	10	338.482974921749	1551.22031173556					
013	11	338.482991023748	1551.22038552878					
014	12	338.482994069684	1551.22039948788					
015	13	338.482994645869	1551.22040212845					
016	14	338.482994754863	1551.22040262796					
017	15	338.482994775481	1551.22040272245					
018	16	338.482994779381	1551.22040274032					
019	17	338.482994780119	1551.22040274370					
020	18	338.482994780259	1551.22040274434					
021	19	338.482994780285	1551.22040274446					
022	20	338.482994780290	1551.22040274449					
023	21	338.482994780291	1551.22040274449					
024	22	338.482994780291	1551.22040274449					

Fig.3-1 燃料重量の計算結果

計算結果は収束しており,

$$\begin{cases} M_{SKfuel} = 338.48 \text{ [kg]} \\ M_{apfuel} = 1551.2 \text{ [kg]} \end{cases}$$
(4-5)

となる.

4.4. タンク重量・体積の計算

タンク重量 M_T は仮定より,

$$\begin{cases} M_{T_{SK}} = 0.1 M_{SKfuel} = 33.848 \text{ [kg]} = 16.924 \times 2 \text{ [kg]} \\ M_{T_{ap}} = 0.1 M_{apfuel} = 155.12 \text{ [kg]} \end{cases}$$
 (4-6)

ヒドラジンの密度 ρ_{SK} と、固体燃料を過塩素酸アンモニウムと仮定してその密度 ρ_{ap} は、[1]、[2] により、

$$\begin{cases} \rho_{SK} = 1011 \, [\text{kg/m}^3] \\ \rho_{ap} = 1950 \, [\text{kg/m}^3] \end{cases}$$
 (4-7)

である. それぞれのタンク体積Vは,

$$\begin{cases} V_{SK} = \frac{M_{SKfuel}}{\rho_{SK}} = \frac{338.48 \text{ [kg]}}{1011 \text{ [kg/m}^3]} = 0.3347972 \text{ [m}^3] \approx 0.33480 \text{ [m}^3] \\ V_{ap} = \frac{M_{apfuel}}{\rho_{ap}} = \frac{1551.2 \text{ [kg]}}{1950 \text{ [kg/m}^3]} = 0.7954871 \text{ [m}^3] \approx 0.79549 \text{ [m}^3] \end{cases}$$

$$(4-8)$$

03-160330 鈴本 遼

となるので、球形タンクの半径rは、ヒドラジンタンクを2つに分けることに注意して、

$$\begin{cases} r_{SK} > \sqrt[3]{\frac{3\frac{V_{SK}}{2}}{4\pi}} = 0.3418920 \text{ [m]} \approx 0.34189 \text{ [m]} \\ r_{ap} > \sqrt[3]{\frac{3V_{ap}}{4\pi}} = 0.5747981 \text{ [m]} \approx 0.57480 \text{ [m]} \end{cases}$$
(4-9)

を満たす必要があるので,

$$\begin{cases} r_{SK} = 35 \text{ [cm]} \\ r_{ap} = 58 \text{ [cm]} \end{cases}$$
 (4-10)

とする.

4.5. GTO 投入時の総重量(打ち上げ重量)の計算

以上より打ち上げ重量 W_{PL} は,

$$W_{PL} = 1.02 (W_D + M_{SKfuel} + M_{apfuel})$$

$$= 1.02 \big(1.07 \times 1.17 W_E + M_{SKfuel} + M_{apfuel}\big)$$

$$= 1.02(1.07 \times 1.17(810 \text{ [kg]} + W_T) + M_{SKfuel} + M_{apfuel})$$
(4-10)

$$= 1.02(1.07 \times 1.17(810 \text{ [kg]} + 33.848 \text{ [kg]} + 155.12 \text{ [kg]}) + 338.48 \text{ [kg]} + 1551.2 \text{ [kg]})$$

= 3203.093799984 [kg]

 $\approx 3203.1 \text{ [kg]}$

となる.

5. 衛星寸法の決定

- 5.1. 仮定
 - 1. 実装効率は50%以下とする.
 - 2. アポジモーターはスラストチューブ内部に配置する.
 - 3. ヒドラジンタンクはバルクヘッド中央に配置する。
- 5.2. 構造内部の機器の体積と衛星体積の概算

構造内部の機器の体積は、下表(Table.5-1)のようになる.

 $12/3^{\circ}$

Table.5-1 構造内部の機器の体積一覧

機器名	寸法 [cm]	数量	体積 [cm³]			
Ka バンド中継器	138x70x20	1	193,200			
Sバンド中継器	70x70x20	1	98,000			
IRU	30x38x30	1	34,200			
AOCE	20x15x7	1	2,100			
リアクションホイール	30x30x10	1	9,000			
TT&C ユニット	80x60x20	1	96,000			
オンボード計算機	40x26x12	1	12,480			
パドル駆動モータ	19x20x34	2	25,840			
バッテリ	35x25x20	2	35,000			
電源制御部	20x30x20	2	24,000			
ヒドラジンタンク	r=35 (球形)	2	359,189			
アポジタンク	r=58 (球形)	1	817,283			
	合計 1,706,292					

したがって、衛星体積の最小値 V_{min} は、

$$V_{min} = \frac{1706292 \text{ [cm}^3]}{0.5} = 3412584 \text{ [cm}^3]$$
 (5-1)

となり、一辺の長さはおよそ、

$$\sqrt[3]{3412584 \text{ [cm]}} \approx 150 \text{ [cm]}$$
 (5-2)

になる.

5.3. 衛星寸法の決定・搭載面積の確認

フェアリング断面が円形であるとこより、±TAR 面は正方形とする、ヒドラジンタンクがバ ルクヘッド中央,アポジタンクがスラストチューブ内に配置することにより, ±TAR 一辺の長 さdは.

$$d > 2(2r_{SK} + r_{ap}) = 2(2 \times 35 \text{ [cm]} + 58 \text{ [cm]}) = 256 \text{ [cm]}$$
 (5-3)

をみたす必要がある. また衛星内部搭載機器で最大の中継器や, アンテナ類が±TAR 面に収ま るよう.

$$d = 320 \,[\mathrm{cm}] \tag{5-4}$$

とした. また衛星の高さhは、中継器が収まるよう、

$$h = 150 \,[\mathrm{cm}] \tag{5-5}$$

とした. この時の実装効率は、

$$\frac{1706292 \text{ [cm}^3]}{320 \text{ [cm]} \times 320 \text{ [cm]} \times 150 \text{ [cm]}} = 0.11108671875 < 0.5$$
 (5-6)

と要件をみたす、搭載面積も6章より十分だとわかる.

5.4. 放熱能力の確認

6章での詳細計算より十分であると確認できる.

13/37

6. 機器配置・放熱面の設計

6.1. 要求・仮定

- 1. 各空間内では同一温度とする.
- 2. バルクヘッドは断熱材とする.
- 3. 水平方向の重心が中央5 [cm]以内に入ること.
- 4. 各機器の重心は機器中心とする.
- 5. 構造重量は機器の10%とし、重心は面の中心とする.
- 6. 電気機械計装重量は機器の7%とし、重心は面の中心とする.
- 7. システムマージンは機器の7%とし、重心は面の中心とする.
- 8. ヒドラジンスラスタは±SUN面中央に配置する.
- 9. 太陽電池パドル駆動モータの位置は、軸が重心を通るようにする.
- 10. 面, バルクヘッドの面厚は0として設計する.
- 11. アポジモーターの重量・寸法についての記述がなかったので, 重量はスラストチューブの構造に含まれるとした.
- 12. 座標系・各名称、略称は、下図(Fig.6-1)のようにとる.

Fig.6-1 座興系・名称, 略称

6.2. 設計図, 搭載機器表, 重量·重心表

機器配置(太陽電池パドルは除く)は下図(Fig.6-2, 6-3)のようになる. 機器の寸法は省略した. 搭載機器表(Table.6-1), 重量・重心表(Table.6-2)もあわせて記す.

また、太陽電池パドル駆動モータの軸が重心を通るようにすると、モータとバルクヘッドが干渉してしまう。そこで、ここでは面厚を0と仮定しているので。 モータの端に軸があるとして、 ±PAD 面とバルクヘッドのなす角に設置した。現実的にはモータとパドルの軸連結をギアなどでおこなうとすれば、その分軸がずれると考えられる。

Fig.6-2 設計図(水平方向)

Fig.6-3 設計図(鉛直方向)

Table.6-1 搭載機器表

	機器名	寸法 [cm]	重量 [kg]	消費電力 [W]	発熱量 [W]	許容温度 [°C]	搭載面/搭載空間
	uplink パラボラアンテナ (S バンド)	ф70	5	0	0	10~40	+TAR 外
	uplink パラボラアンテナ (Ka バンド)	ф150	23	0	0	10~40	+TAR 外
ミッション機器	downlink パラボラアンテナ (S バンド)	ф80	6	0	0	10~40	+TAR 外
	downlink パラボラアンテナ (Ka バンド)	ф160	26	0	0	10~40	+TAR 外
	アンテナタワー		70	0	0	-45~65	+TAR 外
	Ka バンド中継器	138x70x20	180	867	693.6	5~40	BH3/SP2
	Sバンド中継器	70x70x20	60	330	264	5~40	BH1/SP4
	アースセンサ	12x17x13	25	6	6	0~50	+TAR 外
	サンセンサ x2	12x43x13	4.5 x2	6 x2	6 x2	0~50	±SUN 外
	IRU	30x38x30	22	10	10	0~40	-TAR/SP1
	AOCE	20x15x7	10	50	50	-5~40	-TAR/SP3
	リアクションホイール	30x30x10	24	60	60	0∼45	-TAR/SP4
バス機器	TT&C ユニット	80x60x20	60	35	35	0∼50	-TAR/SP1
八人饭品	オンボード計算機	40x26x12	20	120	120	-5~40	-TAR/SP4
	ヒドラジンスラスタ x2		10 x2			9~40	±SUN 外
	太陽電池パドル x2		77 x2			熱計算不要	±PAD 外
	パドル駆動モータ x2	19x20x34	13 x2	10 x2	10 x2	0~40	±PAD/SP2,4
	バッテリ x2	35x25x20	25 x2		117 x2	5~20	±PAD/SP1,3
	電源制御部 x2	20x30x20	10 x2	25 x2	25 x2	0~40	±PAD/SP2,4
タンク系	ヒドラジンタンク x2	r=35 (球形)	16.92 ×2	0	0	9~40	BH2,4
メノノポ	アポジタンク	r=58 (球形)	155.1	0	0	9~40	TT

Table.6-2 重心・重量表

面	機器名	機器重量	構造重量	計装重量	マージン	面重量	х	у	z	Mx	Му	Mz
<u></u>	(灰伯)	[kg]	[kg]	[kg]	[kg]	[kg]	[cm]	[cm]	[cm]	[kg·cm]	[kg·cm]	[kg·cm]
	アンテナ類	130.000	13.000	9.100	10.647	32.747	0.0	0.0	200.0	0.0	0.0	26000.0
+TAR	アースセンサ	25.000	2.500	1.750	2.048	6.298	150.0	-150.0	156.5	3750.0	-3750.0	3912.5
	面	39.045					0.0	0.0	75.0	0.0	0.0	2928.3
	IRU	22.000	2.200	1.540	1.802	5.542	64.6	135.0	19.0	1421.2	2970.0	418.0
	TT&C ユニット	60.000	6.000	4.200	4.914	15.114	95.0	53.0	10.0	5700.0	3180.0	600.0
	AOCE	10.000	1.000	0.700	0.819	2.519	-58.1	-92.0	3.5	-581.0	-920.0	35.0
-TAR	リアクション	24.000	2.400	1.680	1.966	6.046	105.0	-45.0	5.0	2520.0	-1080.0	120.0
	ホイール	24.000	2,400	1.000	1.900	0.040	165.6	-45.0	5.0	2520.0	-1000.0	120.0
	オンボード計算機	20.000	2.000	1.400	1.638	5.038	80.4	-80.0	6.0	1608.0	-1600.0	120.0
	面	34.258					0.0	0.0	75.0	0.0	0.0	2569.4
	サンセンサ	4.500	0.450	0.315	0.369	1.134	76.5	166.0	75.0	344.3	747.0	337.5
+SUN	ヒドラジンスラスタ	10.000	1.000	0.700	0.819	2.519	0.0	180.0	75.0	0.0	1800.0	750.0
	面	3.653					0.0	160.0	75.0	0.0	584.4	273.9
	サンセンサ	4.500	0.450	0.315	0.369	1.134	-76.5	-166.0	75.0	-344.3	-747.0	337.5
-SUN	ヒドラジンスラスタ	10.000	1.000	0.700	0.819	2.519	0.0	-180.0	75.0	0.0	-1800.0	750.0
	面	3.653					0.0	-160.0	75.0	0.0	-584.4	273.9
	太陽電池パドル	77.000	7.700	5.390	6.306	19.396	-400.0	0.0	75.0	-30800.0	0.0	5775.0
	パドル駆動モータ	13.000	1.300	0.910	1.065	3.275	-150.5	10.0	75.0	-1956.5	130.0	975.0
+PAD	バッテリ	25.000	2.500	1.750	2.048	6.298	-147.5	-132.5	10.0	-3687.5	-3312.5	250.0
	電源制御部	10.000	1.000	0.700	0.819	2.519	-150.0	115.0	10.0	-1500.0	1150.0	100.0
	面	31.488					-160.0	0.0	75.0	-5038.0	0.0	2361.6
	太陽電池パドル	77.000	7.700	5.390	6.306	19.396	400.0	0.0	75.0	30800.0	0.0	5775.0
	パドル駆動モータ	13.000	1.300	0.910	1.065	3.275	150.5	-10.0	75.0	1956.5	-130.0	975.0
-PAD	バッテリ	25.000	2.500	1.750	2.048	6.298	147.5	132.5	10.0	3687.5	3312.5	250.0
	電源制御部	10.000	1.000	0.700	0.819	2.519	150.0	-115.0	10.0	1500.0	-1150.0	100.0
	面	31.488					160.0	0.0	75.0	5038.0	0.0	2361.6
DIII	Sバンド中継器	60.000	6.000	4.200	4.914	15.114	100.0	-10.0	45.0	6000.0	-600.0	2700.0
BH1	面	15.114					80.0	0.0	75.0	1209.1	0.0	1133.6
	•	•					•					

	ヒドラジンタンク	16.924	1.692	1.185	1.386	4.263	0.0	110.0	75.0	0.0	1861.6	1269.3
BH2	ヒドラジン	169.240	-	-	-	-	0.0	110.0	75.0	0.0	18616.4	12693.0
	面	4.263					0.0	80.0	75.0	0.0	341.1	319.7
BH3	Ka バンド中継器	180.000	18.000	12.600	14.742	45.342	-100.0	10.0	69.0	-18000.0	1800.0	12420.0
ВН3	面	45.342					-80.0	0.0	75.0	-3627.4	0.0	3400.7
	ヒドラジンタンク	16.924	1.692	1.185	1.386	4.263	0.0	-110.0	75.0	0.0	-1861.6	1269.3
BH4	ヒドラジン	169.240	-	-	-	-	0.0	-110.0	75.0	0.0	-18616.4	12693.0
	面	4.263					0.0	-80.0	75.0	0.0	-341.1	319.7
	アポジタンク	155.120	15.512	10.858	12.704	39.075	0.0	0.0	75.0	0.0	0.0	11634.0
TT	過塩素酸 アンモニウム	1551.200	-	-	-	-	0.0	0.0	75.0	0.0	0.0	116340.0
	面	39.075					0.0	0.0	75.0	0.0	0.0	2930.6
合計		3140.288								-4.0E-02	-1.5E-12	2.4E+05
重心 [cm]										-1.3E-05	-4.7E-16	7.6E+01

6.3. 重心

機器の配置精度を1 [mm]とすると. Table.6-2 より, 重心位置は下表(Table.6-3)のようになり, 要求をみたす.

Table.6-3 重心位置

	重心位置 [cm]
Х	-1.274 E-05
у	-4.706 E-16
Z	7.562 E+01

6.4. 熱計算と放熱面の設計

Table.2-2 より、 $\pm PAD$ 面は季節によって放熱能力が大きく変化する。そこでここは全て断熱材とする。また、+TAR 面には多くの機器が取り付けられることを考え、放熱面は主に $\pm SUN$ 面と-TAR 面を用いる。2.2 節より壁面温度はおよそ20 [°C]で計算したので、空間温度は20 [°C] 付近、かつ各機器の許容温度内に収まるよう設計する。

6.4.1. 空間 1

空間1における機器の発熱量は、下表(Table.6-4)の通り、

発熱量 [W] 許容温度 [°C] サンセンサ 6 0~50 バッテリ 117 5~20 IRU 10 0~40 TT&C ユニット **0∼50** 35 アンテナ類 0 10~40 ヒドラジンスラスタ 0 9~40 ヒドラジンタンク 9~40 0 太陽電池パドル 0 合計 Q_F 168

Table.6-4 空間 1 搭載機器発熱量

放熱面を+SUN 面とすると,春秋分時に空間温度を20 [°C]とするのに必要な放熱面積 S_1 は,Table.2-2 より,

$$S_{1} = \frac{Q_{E}}{P_{RAD_{+SUN@\beta=0^{\circ}}}}$$

$$= \frac{168 \text{ [W]}}{248.54 \text{ [W/m}^{2}\text{]}}$$

$$= 6759.4753 \text{ [cm}^{2}\text{]}$$

$$\approx 6759.5 \text{ [cm}^{2}\text{]} < 24000 \text{ [cm}^{2}\text{]} = \frac{S_{+PAD}}{2}$$
(6-1)

となる。このとき夏至の壁面温度 $T_{wall@\beta=23.4^\circ}$ は、

$$\left(\epsilon\sigma T_{wall@\beta=23.4^{\circ}}^{4}F_{+SUN} - q_{s_{+SUN@\beta=23.4^{\circ}}}\right)S_{1} = Q_{E}$$

$$(6-2)$$

より,

$$T_{wall@i=23.4^{\circ}} = \left(\frac{\frac{Q_{E}}{S_{1}} + q_{s_{+SUN@\beta=23.4^{\circ}}}}{\epsilon \sigma F_{+SUN}}\right)^{\frac{1}{4}}$$

$$= \left(\frac{\frac{168 \text{ [W]}}{0.67595 \text{ [m}^{2}]} + 79.343 \text{ [W/m}^{2}]}{0.8 \times 5.67 \times 10^{-8} \text{ [W \cdot m^{-2} \cdot K^{-4}]} \times 1}\right)^{\frac{1}{4}}$$

$$= 291.582303 \text{ [K]}$$

$$\approx 18.432 \text{ [°C]}$$

$$(6-3)$$

となり、許容温度をみたす.

6.4.2. 空間 2

空間 2 における機器の発熱量は、下表(Table.6-5)の通り.

機器名 発熱量 [W] 許容温度 [°C] パドル駆動モータ 0~40 10.0 電源制御部 25.0 0~40 Ka バンド中継器 693.6 5~40 アンテナ類 0.0 10~40 ヒドラジンスラスタ 9~40 0.0 ヒドラジンタンク 9~40 0.0 太陽電池パドル 0.0 合計 Q_F 728.6

Table.6-5 空間 2 搭載機器発熱量

発熱量が多いので、放熱面を+SUN 面と-TAR 面とし、面積を同一とすると、春秋分時に空間温度を20 [$^{\circ}$ C]とするのに必要な放熱面積 S_{σ} は、Table.2-2 より、

$$S_{2} = \frac{Q_{E}}{P_{RAD_{+SUN@\beta=0^{\circ}}} + P_{RAD_{-TAR@\beta=0^{\circ}}}}$$

$$= \frac{728.6 \text{ [W]}}{248.54 \text{ [W/m}^{2}] + 248.54 \text{ [W/m}^{2}]}$$

$$= 14657.6003 \text{ [cm}^{2}]$$

$$\approx 14658 \text{ [cm}^{2}] < 22958 \text{ [cm}^{2}] = \min\left(\frac{S_{+PAD}}{2}, \frac{S_{-TAR} - \pi r_{ap}^{2}}{4}\right)$$
(6-4)

となる.このとき夏至の壁面温度 $T_{wall@\beta=23.4^{\circ}}$ は,

$$\left(\epsilon\sigma T_{wall@\beta=23.4^{\circ}}^{4}F_{+SUN} - q_{s_{+SUN@\beta=23.4^{\circ}}} + \epsilon\sigma T_{wall@\beta=23.4^{\circ}}^{4}F_{-TAR} - q_{s_{-TAR@\beta=23.4^{\circ}}}\right)S_{2} = Q_{E}$$
 (6-5)

$$T_{wall@i=23.4^{\circ}} = \left(\frac{\frac{Q_{E}}{S_{2}} + q_{s_{+SUN@\beta=23.4^{\circ}}} + q_{s_{-TAR@\beta=23.4^{\circ}}}}{\epsilon \sigma(F_{+SUN} + F_{-TAR})}\right)^{\frac{1}{4}}$$

$$= \left(\frac{728.6 \text{ [W]}}{1.4658 \text{ [m}^{2}]} + 79.343 \text{ [W/m}^{2}] + 79.343 \text{ [W/m}^{2}]}{0.8 \times 5.67 \times 10^{-8} \text{ [W \cdot m^{-2} \cdot K^{-4}]} \times (1+1)}\right)^{\frac{1}{4}}$$

$$= 291.580999 \text{ [K]}$$

$$\approx 18.430 \text{ [°C]}$$

となり、許容温度をみたす.

6.4.3. 空間 3

空間3における機器の発熱量は、下表(Table.6-6)の通り.

発熱量 [W] 許容温度 [°C] サンセンサ 6 0~50 バッテリ 5~20 117 50 -5~40 アンテナ類 0 10~40 ヒドラジンスラスタ 0 9~40 ヒドラジンタンク 9~40 太陽電池パドル 0 合計QF 173

Table.6-6 空間 3 搭載機器発熱量

放熱面を-SUN 面とすると,春秋分時に空間温度を $20\ [^{\circ}C]$ とするのに必要な放熱面積 S_2 は,Table.2-2 より,

$$S_{3} = \frac{Q_{E}}{P_{RAD_{-SUN@\beta=0^{\circ}}}}$$

$$= \frac{173 \text{ [W]}}{248.54 \text{ [W/m}^{2}\text{]}}$$

$$= 6960.6501 \text{ [cm}^{2}\text{]}$$

$$\approx 6960.7 \text{ [cm}^{2}\text{]} < 24000 \text{ [cm}^{2}\text{]} = \frac{S_{-PAD}}{2}$$
(6-7)

となる.このとき夏至の壁面温度 $T_{wall@eta=23.4}$ 。は、

$$\left(\epsilon \sigma T_{wall@\beta=23.4^{\circ}}^{4} F_{-SUN} - q_{s_{+SUN@\beta=23.4^{\circ}}}\right) S_{3} = Q_{E}$$
(6-8)

より,

$$T_{wall@i=23.4^{\circ}} = \left(\frac{Q_{E}}{S_{3}} + q_{s_{+SUN@\beta=23.4^{\circ}}}}{\epsilon \sigma F_{-SUN}}\right)^{\frac{1}{4}}$$

$$= \left(\frac{173 \text{ [W]}}{0.69607 \text{ [m^{2}]}} + 79.343 \text{ [W/m^{2}]}}{0.8 \times 5.67 \times 10^{-8} \text{ [W·m}^{-2} \cdot \text{K}^{-4}] \times 1}\right)^{\frac{1}{4}}$$

$$= 291.582110 \text{ [K]}$$

$$\approx 18.432 \text{ [°C]}$$

となり、許容温度をみたす.

6.4.4. 空間 4

空間4における機器の発熱量は、下表(Table.6-7)の通り.

140.000 / Z/N / 11-0/MII/0/MZ							
機器名	発熱量 [W]	許容温度 [°C]					
パドル駆動モータ	10	0~40					
電源制御部	25	0~40					
Sバンド中継器	264	5~40					
リアクションホイール	60	0∼45					
オンボード計算機	120	-5~40					
アースセンサ	6	0∼50					
アンテナ類	0	10~40					
ヒドラジンスラスタ	0	9~40					
ヒドラジンタンク	0	9~40					
太陽電池パドル	0						
合計 <i>Q_F</i>	485						

Table.6-7 空間 4 搭載機器発熱量

発熱量が多いので、放熱面を-SUN 面と-TAR 面とし、面積を同一とすると、春秋分時に空間温度を20 [°C]とするのに必要な放熱面積 S_4 は、Table.2-2 より、

$$\begin{split} S_4 &= \frac{Q_E}{P_{RAD-SUN@\beta=0^{\circ}} + P_{RAD-TAR@\beta=0^{\circ}}} \\ &= \frac{485 \text{ [W]}}{248.54 \text{ [W/m}^2] + 248.54 \text{ [W/m}^2]} \\ &= 9756.9807 \text{ [cm}^2] \\ &\approx 9757.0 \text{ [cm}^2] < 22958 \text{ [cm}^2] = \min \left(\frac{S_{+PAD}}{2}, \frac{S_{-TAR} - \pi r_{ap}^2}{4} \right) \end{split}$$
 (6-10)

となる. このとき夏至の壁面温度 $T_{wall@\beta=23.4}$ 。は,

$$\left(\epsilon\sigma T_{wall@\beta=23.4^{\circ}}^{4}F_{-SUN} - q_{s_{+SUN@\beta=23.4^{\circ}}} + \epsilon\sigma T_{wall@\beta=23.4^{\circ}}^{4}F_{-TAR} - q_{s_{-TAR@\beta=23.4^{\circ}}}\right)S_{4} = Q_{E}$$
 (6-11)
$$\ \, \sharp \ \, \emptyset \ \, , \ \,$$

$$T_{wall@i=23.4^{\circ}} = \left(\frac{\frac{Q_{E}}{S_{4}} + q_{s_{-SUN@\beta=23.4^{\circ}}} + q_{s_{-TAR@\beta=23.4^{\circ}}}}{\epsilon \sigma (F_{-SUN} + F_{-TAR})}\right)^{\frac{1}{4}}$$

$$= \left(\frac{\frac{485 \text{ [W]}}{0.97570 \text{ [m}^{2}]} + 79.343 \text{ [W/m}^{2}] + 79.343 \text{ [W/m}^{2}]}{0.8 \times 5.67 \times 10^{-8} \text{ [W \cdot m}^{-2} \cdot \text{K}^{-4}] \times (1+1)}\right)^{\frac{1}{4}}$$

$$= 291.582396 \text{ [K]}$$

$$\approx 18.432 \text{ [°C]}$$

$$(6-12)$$

となり、許容温度をみたす.

6.4.5. 各空間のまとめ

各空間の平均温度は下表(Table.6-8)のようになる.

Table.6-8 各空間の平均温度

β [°]	0	23.4
空間 1 [°C]	20.000	18.432
空間 2 [°C]	20.000	18.430
空間 3 [°C]	20.000	18.432
空間 4 [°C]	20.000	18.432

また, 放熱面の計画表は以下(Table.6-9)のようになる. なお, 太陽電池パドルの軸断面積は無視した.

Table.6-9 放熱面計画表 [cm²]

ch 68 .	+TAR	全面積	25600	
		外部機器専有面積	3364	
		断熱部面積	22236	
		放熱部面積	0	
	-TAR	全面積	25600	
		外部機器専有面積	2642	
		断熱部面積	22958	
		放熱部面積	0	
空間 1	+SUN	全面積	24000	
		外部機器専有面積	6059	
		断熱部面積	11182	
		放熱部面積	6760	
	-PAD	全面積	24000	
		外部機器専有面積	0	
		断熱部面積	24000	
		放熱部面積	0	
空間 2	+TAR	全面積	25600	
		外部機器専有面積	3364	
		断熱部面積	22236	
		放熱部面積	0	
			02 160220	۵۵-

03-160330 鈴本 遼

	-TAR	全面積	25600
		外部機器専有面積	2642
		断熱部面積	8300
		放熱部面積	14658
		全面積	24000
	+SUN	外部機器専有面積	5500
	73011	断熱部面積	3842
		放熱部面積	14658
	+PAD	全面積	24000
		外部機器専有面積	0
		断熱部面積	24000
		放熱部面積	0
	+TAR	全面積	25600
		外部機器専有面積	3364
		断熱部面積	22236
		放熱部面積	0
		全面積	25600
	TAD	外部機器専有面積	2642
	-TAR	断熱部面積	22958
空間 3		放熱部面積	0
空间 3		全面積	24000
	-SUN	外部機器専有面積	5500
		断熱部面積	6059
		放熱部面積	6961
	+PAD	全面積	24000
		外部機器専有面積	0
		断熱部面積	24000
		放熱部面積	0
	+TAR	全面積	25600
		外部機器専有面積	3568
		断熱部面積	22032
		放熱部面積	0
			25600
	-TAR	外部機器専有面積	2642
空間 4		断熱部面積	13201
		放熱部面積	9757
	-SUN	全面積	24000
		外部機器専有面積	5500
		断熱部面積	8743
		放熱部面積	9757
	- PAD	全面積	24000
		外部機器専有面積	0
		断熱部面積	24000
		放熱部面積	0
	1		

なお、放熱部とは A1 テフロン加工を施した部分のことであり、断熱部とは α 、 β がともに 0となる素材でできた部分のことである.

7. 打ち上げロケットのサイジング

7.1. フェアリング重量の推算

フェアリング直径Dを求める. マージンとして150 [mm]確保するので,

$$D = \sqrt{2}d + 150 \text{ [mm]} = \sqrt{2} \times 3.200 \text{ [m]} + 0.150 \text{ [m]} \approx 4.675 \text{ [m]}$$
 (7-1)

となる. 配布資料のモデルより、フェアリング重量 W_F は、

$$W_F \approx \frac{2}{4^{2.2}} D^{2.2} = \frac{2}{4^{2.2}} 4.675^{2.2} \approx 2.8185 \text{ [t]}$$
 (7-2)

となる.

7.2. 必要△Vの計算

必要△Vは,

$$\begin{split} \Delta V &= \Delta V_{PO} + \Delta V_{PK} \\ &= V_{CE} + \Delta V_H + \Delta V_g + \Delta V_A - \Delta V_E + \Delta V_{PK} \end{split} \tag{7-3}$$

となる. 各要素についてみていく.

7.2.1. V_{CE}

これは高度0 [km]における円軌道速度である. 地球半径 R_{Earth} を

$$R_{Earth} = 6371 \, [km] \tag{7-4}$$

とすると,

$$V_{GE} = \sqrt{\frac{\mu}{R_{Earth}}}$$

$$= \sqrt{\frac{3.986 \times 10^{14} \text{ [m}^3/\text{s}^2]}{6371 \times 10^3 \text{ [m]}}}$$

$$= 7909.78801 \text{ [m/s]}$$

$$\approx 7909.8 \text{ [m/s]}$$

となる.

7.2.2. *∆V_H*

これは高度0 [km]における円軌道から高度6600 [km]のパーキング円軌道にいれるホーマン移行の ΔV である。パーキング円軌道での速度 V_{PO} は、(1-1)式より

$$V_{PO} = \sqrt{\frac{\mu}{R_{PO}}}$$

$$= \sqrt{\frac{3.986 \times 10^{14} [\text{m}^3/\text{s}^2]}{6600 \times 10^3 [\text{m}]}}$$

$$= 7771.35376 [\text{m/s}]$$

$$\approx 7771.4 [\text{m/s}]$$
(7-6)

となり、1.2節と同様の議論により、

27/37

$$V_{H@A} = \sqrt{\frac{2\mu R_{Earth}}{R_{PO}(R_{Earth} + R_{PO})}}$$

$$= \sqrt{\frac{2 \times 3.986 \times 10^{14} [\text{m}^3/\text{s}^2] \times 6371 \times 10^3 [\text{m}]}{6600 \times 10^3 [\text{m}] \times (6371 \times 10^3 [\text{m}] + 6600 \times 10^3 [\text{m}])}}$$

$$= 7702.44755 [\text{m/s}]$$

$$\approx 7702.4 [\text{m/s}]$$
(7-7)

$$V_{H@P} = \sqrt{\frac{2\mu R_{PO}}{R_{Earth}(R_{Earth} + R_{PO})}}$$

$$= \sqrt{\frac{2 \times 3.986 \times 10^{14} [\text{m}^3/\text{s}^2] \times 6600 \times 10^3 [\text{m}]}{6371 \times 10^3 [\text{m}] \times (6371 \times 10^3 [\text{m}] + 6600 \times 10^3 [\text{m}])}}$$

$$= 7979.30527 [\text{m/s}]$$

$$\approx 7979.3 [\text{m/s}]$$
(7-8)

となるので,

$$\Delta V_H = (V_{H@P} - V_{CE}) + (V_{PO} - V_{H@A}) \approx 138.50 \text{ [m/s]}$$
 (7-9) となる.

7.2.3. $\Delta V_a + \Delta V_A$

これはグラビティ・ロスと空気抵抗による損失である. ここでは,

$$\Delta V_g + \Delta V_A = 1680 \text{ [m/s]}$$
 (7-10)

とする.

7.2.4. ΔV_{E}

これは、地球自転による速度である、経度30°として、

$$\Delta V_E = 400 \,[\text{m/s}] \tag{7-11}$$

とする.

7.2.5. ΔV_{PK}

これは、GTO 投入時(ペリジキック)のΔVである。1.2 節より、GTO のペリジ点で の速度 $V_{GTo@P}$ は、

$$V_{GTO@P} = \sqrt{\frac{2\mu R_{GEO}}{R_{PO}(R_{PO} + R_{GEO})}}$$

$$= \sqrt{\frac{2 \times 3.986 \times 10^{14} [\text{m}^3/\text{s}^2] \times 42160 \times 10^3 [\text{m}]}{6600 \times 10^3 [\text{m}] \times (6600 \times 10^3 [\text{m}] + 42160 \times 10^3 [\text{m}])}}$$

$$= 10219.5113 [\text{m/s}]$$

$$\approx 10219.5 [\text{m/s}]$$
(7-12)

となる. したがって,

$$\Delta V_{PK} = V_{GTO@P} - V_{PO} \approx 2448.1 \,[\text{m/s}]$$
 (7-13)

を得る.

28/3

7.2.6. △Ⅴ合計

必要∆Vは.

$$\Delta V = V_{CE} + \Delta V_H + \Delta V_g + \Delta V_A - \Delta V_E + \Delta V_{PK} \approx 11776 \text{ [m/s]}$$
 となる.

7.3. 推進剤の決定

1, 2段目ともに LOX/LH_2 を用いる。小紫先生の授業では、ヒドラジンを用いて性能計算をおこなったので、ここでは配布資料より各段のIspはそれぞれ、

$$\begin{cases} Isp_1 = 430 \text{ [s]} \\ Isp_2 = 455 \text{ [s]} \end{cases}$$
 (7-15)

とする.

7.4. 最適化

2段目の燃料重量を変化させて、打ち上げ時総重量が最小になるように最適化する.

7.4.1. 文字定義

W₀ :打ち上げ時総重量

 W_{PL} :ペイロード重量

 W_F :フェアリング重量

W: : *i*段目の総重量

W_{Pi} : i段目の燃料総重量

 W_{Ai} : i段目のアビオニクス重量

 η_i : i段構造係数

7.4.2. 関係式

 ΔV と W_P の間には,

$$\Delta V = \sum_{i=1}^{2} g \cdot Isp_i \cdot \ln \frac{1}{1 - \zeta_i}$$
 (7-16)

の関係が成り立つ. なお、 ζ_i は余裕分を考慮に入れて、

$$\begin{cases}
\zeta_2 = \frac{0.975W_{P2}}{W_{PL} + W_{A2} + \eta_2 W_{P2} + W_{P2}} \\
\zeta_1 = \frac{0.995W_{P1}}{W_{PL} + W_2 + W_F + W_{A1} + \eta_1 W_{P1} + W_{P1}}
\end{cases} (7-16)$$

である. またここでは,

$$\begin{cases} W_{A1} = 200 \text{ [kg]} \\ W_{A2} = 400 \text{ [kg]} \end{cases}$$
 (7-17)

とする.

160330 鈴本 遼 29/37

7.4.3. ηのモデル化

配布資料より、ηを片対数で直線に近似する.

$$W_P = 100 \text{ [t]} \Rightarrow \eta = 0.105$$

 $W_P = 1000 \text{ [t]} \Rightarrow \eta = 0.085$ (7-18)

として,

$$\eta_i = -0.02 \log_{10} W_{Pi} + 0.145 \tag{7-19}$$

とした.

7.4.4. 最適化結果

付録 9.3 節のコードを用いて数値計算させた. 実行結果は以下(Fig.7-1,2)に示す.

```
001
      > perl -w 7.Optimize.pl
002
      min W_0 = 156.231227184581 [ton]
       LAMBDA = 0.0205023032701118
003
004
005
      W_P1 = 116.585493087769 [ton]
006
      W_P2 = 18.7019999999999999999 [ton]
007
       dW_P2 = 0.001 [ton]
008
       Isp1 = 430 [s]
009
       Isp2 = 455 [s]
```

Fig.7-1 最適化プログラム実行結果

Fig.7-2 最適化プログラム実行結果

以上の結果より,

$$\begin{cases} W_{P1} = 116.59 \text{ [t]} \\ W_{P2} = 18.702 \text{ [t]} \end{cases}$$
 (7-20)

のとき、打ち上げ時総重量Woは最小値

$$W_0 = 156.23 [t] (7-21)$$

をとる. またこの時のペイロード比Λは

$$\Lambda = 0.020502 \tag{7-22}$$

となる.ペイロード比Aがかなり大きいように思われる.これは使用したIspが大きいこ とによるものと考える. 小紫先生の授業にて、他班が求めた結果である、

$$Isp = 420 [s]$$
 (7-23)

付近で計算すると、下図(Fig.7-3)のようになり、それらしい値がでる.

```
001
      > perl -w 7.Optimize.pl
002
      min W 0 = 197.951894964982 [ton]
      LAMBDA = 0.0161812040272038
003
004
      W P1 = 152.661800384521 [ton]
005
006
      W_P2 = 20.7390000000024 [ton]
007
      dW_P2 = 0.001 [ton]
008
      Isp1 = 410 [s]
009
      Isp2 = 430 [s]
```

Fig.7-3 最適化プログラム実行結果

8. 出典

- [1] ChemicalBook. 過塩素酸アンモニウム. Retrieved August 11, 2016, from http://www.chemicalbook.co m/ChemicalProductProperty_JP_CB9259751.htm
- [2] ChemicalBook. ヒドラジン (無水). Retrieved August 11, 2016, from http://www.chemicalbook.com/ ChemicalProductProperty_JP_CB7742604.htm

9. 付録 - ソースコード

9.1. 太陽輻射による熱入量と放熱能力の計算(2.3節)

ファイル名

2.SolarRadiation.pl

言語

Perl 5, version 20, subversion 2 (v5.20.2) built for MSWin32-x64-multi-thread 実行環境

Windows 10 Home (64bit)

 $31/3^{-1}$

```
001
        use strict;
002
        use warnings;
003
        use utf8:
004
        # 2016/08/10
005
006
        my DEBUG = 0;
007
       my $P_S = 1358;
008
009
        my ALPHA_S = 0.2;
010
       my \$PI = atan2(1, 1) * 4;
011
012
        # Stefan - Boltzmann Constant
       my $SIGMA = 5.67 * 10**(-8);
013
014
       my TEMP WALL = 20 + 273.15;
015
       my $EPSILON = 0.8;
       my $F = 1;
016
017
       my $F PAD = 0.9;
018
        my F TAR P = 0.9;
019
020
       my @betas = (0, 23.4);
021
       my $dAlpha = 0.1;
022
       my $alpha = 0;
023
024
       my qTarP = 0;
025
       my $qTarM = 0;
026
       my $qSunP = 0;
027
       my  qSunM = 0;
028
       my $qPadP = 0;
029
       my $qPadM = 0;
030
031
        foreach my $beta (@betas) {
          # 入熱量
032
          # 初期化
033
          alpha = 0;
034
          qTarP = 0;
035
          qTarM = 0;
036
          qSunP = 0;
037
          qSunM = 0;
038
          qPadP = 0;
039
040
          qPadM = 0;
041
          # 積分
042
043
          while ($alpha < 360) {</pre>
            $qTarP += &max(0, -cos(&deg2rad($alpha)) * $dAlpha );
044
            $qTarM += &max(0, cos(&deg2rad($alpha)) * $dAlpha );
$qSunP += &max(0, sin(&deg2rad($alpha)) * $dAlpha );
045
046
            $qSunM += &max(0, -sin(&deg2rad($alpha)) * $dAlpha );
$qPadP += &max(0, 1 * $dAlpha );
947
048
            $qPadM += &max(0, 0 * $dAlpha );
049
050
            $alpha += $dAlpha;
051
052
          if ($DEBUG == 1) {
053
            &p($qTarP / 360.0);
&p($qTarM / 360.0);
054
055
            &p($qSunP / 360.0);
&p($qSunM / 360.0);
&p($qPadP / 360.0);
056
057
058
            &p($qPadM / 360.0);
059
060
          }
061
```

```
062
         # 係数をかける
          $qTarP *= $ALPHA_S * $P_S * cos(&deg2rad($beta));
063
          $qTarM *= $ALPHA_S * $P_S * cos(&deg2rad($beta));
064
          $qSunP *= $ALPHA_S * $P_S * cos(&deg2rad($beta));
065
          $qSunM *= $ALPHA_S * $P_S * cos(&deg2rad($beta));
066
          $qPadP *= $ALPHA_S * $P_S * sin(&deg2rad($beta));
067
          $qPadM *= $ALPHA_S * $P_S * sin(&deg2rad($beta));
068
069
         # 平均化
070
         $qTarP /= 360.0;
071
072
          $qTarM /= 360.0;
073
          $qSunP /= 360.0;
074
          $qSunM /= 360.0;
075
          $qPadP /= 360.0;
         $qPadM /= 360.0;
076
077
         # 放熱能力
078
         my $pTarP = $EPSILON * $SIGMA * ($TEMP_WALL**4) * $F_TAR_P - $qTarP;
079
         my $pTarM = $EPSILON * $SIGMA * ($TEMP_WALL**4) * $F - $qTarM;
080
         my $pSunP = $EPSILON * $SIGMA * ($TEMP_WALL**4) * $F - $qSunP;
081
         my $pSunM = $EPSILON * $SIGMA * ($TEMP_WALL**4) * $F - $qSunM;
my $pPadP = $EPSILON * $SIGMA * ($TEMP_WALL**4) * $F_PAD - $qPadP;
082
083
         my $pPadM = $EPSILON * $SIGMA * ($TEMP_WALL**4) * $F_PAD - $qPadM;
084
085
086
         #表示
         &p("beta = ".$beta." [deg]");
&p("dAlpha = ".$dAlpha." [deg]");
087
880
         &p("dAlpna = ".$dAlpna. [ueg]
&p("");
&p("qs");
&p("+Tar = ".$qTarP." [W/m2]");
&p("-Tar = ".$qTarM." [W/m2]");
089
090
091
092
         &p("+Sun = ".$qSunP." [W/m2]");
093
         &p("-Sun = ".$qSunM." [W/m2]");
094
         p("+Pad = ".$qPadP." [W/m2]");
095
         &p("-Pad = ".$qPadM." [W/m2]");
096
         &p("");
097
         &p("prad");
&p("+Tar = ".$pTarP."
098
099
                                   [W/m2]");
         &p("-Tar = ".$pTarM."
                                   [W/m2]");
100
         p("+Sun = ".\$pSunP."
                                   [W/m2]");
101
         p("-Sun = ".\$pSunM."
102
                                   [W/m2]");
         p("+Pad = ".pPadP."
                                   [W/m2]");
103
104
         p("-Pad = ".pPadM." [W/m2]");
105
         &p("");
106
107
         &p("#############");
108
       }
109
110
       exit;
111
112
113
       sub deg2rad {
         return $_[0] * $PI / 180.0;
114
115
116
117
       sub p {
118
         my (\$str) = @\_;
119
         print $str, "¥n";
120
         return 1;
121
       }
122
123
       sub max {
124
         my @nums = @_;
```

```
125
126
         my $maxNum;
         foreach my $num (@nums) {
127
           if (!defined $maxNum) {
128
             $maxNum = $num;
129
130
           } else {
             if ($num > $maxNum) {
131
               $maxNum = $num;
132
133
134
           }
135
         }
136
         return $maxNum;
137
```

```
9.2. 燃料重量の計算(4.3 節)
ファイル名
4.Mfuel.pl
言語
Perl 5, version 20, subversion 2 (v5.20.2) built for MSWin32-x64-multi-thread
実行環境
Windows 10 Home (64bit)
```

```
001
       use strict;
002
       use warnings;
003
       use utf8;
004
005
       # 2016/08/10
006
007
       my DEBUG = 0;
800
       my $We = 0;
                           # タンクを含まない機器重量
009
       mv $WeN = 810;
       my $Wt = 0;
010
       my $Wd = 0;
011
012
       my \$g = 9.8;
       my $dVsk = 399.06;
013
       my $dVap = 1869.1;
014
015
       my $IspSk = 170;
016
       my $IspAp = 280;
       my $MskFuel = 0;
017
018
       my $MapFuel = 0;
019
       my \$EXP = exp(1);
020
       # 燃料重量初期化
021
       $MskFuel = 0;
022
023
       $MapFuel = 0;
024
       my $count = 0;
025
026
       &p("LOOP\forall t\forall t\forall kg]\forall t\forall t\forall kg]");
027
028
       while (1) {
029
         $count++;
030
         $Wt = 0.1 * ($MskFuel + $MapFuel);
         $We = $WeN + $Wt;
$Wd = 1.07 * 1.17 * $We;
031
032
033
```

```
$MskFuel = $Wd * ($EXP ** ($dVsk / $g / $IspSk) - 1);
$MapFuel = ($Wd + $MskFuel) * ($EXP ** ($dVap / $g / $IspAp) - 1);
 034
035
036
                                                                           print $count."\forall t\forall t\forall .\forall t\forall .\forall t\forall .\forall t\forall .\forall t\forall .\forall t\forall .\forall t\forall t\forall t\forall .\forall t\forall t\f
037
038
                                                                          # 次へのループへの入力待ち
039
040
                                                                          my $in = <STDIN>;
041
042
043
                                                         exit;
044
 045
 046
                                                           sub p {
                                                                          my ($str) = @_;
 047
 048
                                                                           print $str, "\u00e4n";
 049
                                                                           return 1;
050
```

```
9.3. 燃料重量の最適化(7.4節)
    ファイル名
     7.Optimize.pl
    言語
     Perl 5, version 20, subversion 2 (v5.20.2) built for MSWin32-x64-multi-thread
   実行環境
     Windows 10 Home (64bit)
```

```
001
       use strict;
002
       use warnings;
003
       use utf8;
004
005
       # 2016/08/12
006
007
       my $DEBUG = 1;
800
       # $W の単位は[ton]
009
010
       # 定数
011
012
       my $W_PL = 3.2031;
       my $W F = 2.8185;
013
       my $W A1 = 0.2;
014
015
       my $W A2 = 0.4;
       my $W P1 MIN = 0;
016
       my $W P1 MAX = 10000;
017
       my $W P2 MIN = 5;
018
       my $W P2 MAX = 100;
019
       my $D W P2 = 0.001;
020
021
022
       my $D_V = 11776;
023
       my $V_{EPS} = 0.01;
       my $W_P1_EPS = 0.0001;
024
       my \$G = 9.8;
025
       my $ISP_1 = 430;
my $ISP_2 = 455;
# $ISP_1 = 410;
026
027
028
       # $ISP 2 = 430;
029
```

```
030
                  my $OUTPUT_FILE = "WP2-WP1-W0-V_".&GetStringTime().".dat";
031
032
                  # 初期化
033
034
                  my $w0 = 0;
                  my $wP1 = 0;
035
036
                  my $wP2 = 0;
037
                  my $w1 = 0;
038
                  my $w2 = 0;
039
                  my $zeta1 = 0;
040
                  my $zeta2 = 0;
041
                  my \$v = 0;
042
                  my $vErr = 0;
                  my $w0Min = 1000000;
043
044
                  my $wP1Min = 0;
045
                  my $wP2Min = 0;
046
                  my $count = 0;
047
                  my $countErr = 0;
048
                  # ファイル出力
049
                  if (open(OPF, ">", './'.$OUTPUT_FILE)) {
050
                       $wP2 = $W_P2_MIN;
051
052
                       while ($wP2 <= $W_P2_MAX) {</pre>
053
054
                             # にぶたん for W P1
055
                            my (\$1, \$r) = (\$W_P1_MIN, \$W_P1_MAX);
056
                            my $nowWP1;
057
                            while (1) {
058
059
                                  if ($r - $1 < $W_P1_EPS) {</pre>
060
                                       if ($DEBUG == 1) {
061
                                            $countErr++;
                                            &p("NIBUTAN ERROR!! ".$count."\t".\$countErr);
062
                                            p(" W_P2 = ".$wP2."$tvErr = ".$vErr);
063
064
                                       last;
065
066
                                  }
067
                                  nowWP1 = ($1 + $r) / 2.0;
068
                                  $w1 = $W_A1 + &eta($nowWP1) * $nowWP1 + $nowWP1;
069
070
                                  $w2 = $W_A2 + \&eta($wP2) * $wP2 + $wP2;
071
                                  zeta1 = 0.995 * nowWP1 / ($W_PL + $w2 + $W_F + $w1);
072
                                  zeta2 = 0.975 * wP2 / (w_PL + w2);
073
                                  $v = &CalcV($zeta1, $zeta2);
074
                                  vErr = v - D_V;
                                 if (abs($vErr) < $V_EPS) {</pre>
075
                                       last;
076
077
                                  } elsif ($vErr < 0) {</pre>
078
                                       1 = \text{nowWP1};
079
                                  } else {
080
                                       r = nowWP1;
                                  }
081
                            }
082
083
084
                             $wP1 = $nowWP1;
085
                             $w0 = $W PL + $W_F + $w1 + $w2;
086
                             print OPF $wP2."\(\frac{1}{4}\)t".\(\frac{1}{4}\)t".\(\frac{1}{4}\)t".\(\frac{1}{4}\)t".\(\frac{1}{4}\)t".\(\frac{1}{4}\)t".\(\frac{1}{4}\)t".\(\frac{1}{4}\)t".\(\frac{1}{4}\)t".\(\frac{1}{4}\)t".\(\frac{1}{4}\)t".\(\frac{1}{4}\)t".\(\frac{1}{4}\)t".\(\frac{1}{4}\)t".\(\frac{1}{4}\)t".\(\frac{1}{4}\)t".\(\frac{1}{4}\)t".\(\frac{1}{4}\)t".\(\frac{1}{4}\)t".\(\frac{1}{4}\)t".\(\frac{1}{4}\)t".\(\frac{1}{4}\)t".\(\frac{1}{4}\)t".\(\frac{1}{4}\)t".\(\frac{1}{4}\)t".\(\frac{1}{4}\)t".\(\frac{1}{4}\)t".\(\frac{1}{4}\)t".\(\frac{1}{4}\)t".\(\frac{1}{4}\)t".\(\frac{1}{4}\)t".\(\frac{1}{4}\)t".\(\frac{1}{4}\)t".\(\frac{1}{4}\)t".\(\frac{1}{4}\)t".\(\frac{1}{4}\)t".\(\frac{1}{4}\)t".\(\frac{1}{4}\)t".\(\frac{1}{4}\)t".\(\frac{1}{4}\)t".\(\frac{1}{4}\)t".\(\frac{1}{4}\)t".\(\frac{1}{4}\)t".\(\frac{1}{4}\)t".\(\frac{1}{4}\)t".\(\frac{1}{4}\)t".\(\frac{1}{4}\)t".\(\frac{1}{4}\)t".\(\frac{1}{4}\)t".\(\frac{1}{4}\)t".\(\frac{1}{4}\)t".\(\frac{1}{4}\)t".\(\frac{1}{4}\)t".\(\frac{1}{4}\)t".\(\frac{1}{4}\)t".\(\frac{1}{4}\)t".\(\frac{1}{4}\)t".\(\frac{1}{4}\)t".\(\frac{1}{4}\)t".\(\frac{1}{4}\)t".\(\frac{1}{4}\)t".\(\frac{1}{4}\)t".\(\frac{1}{4}\)t".\(\frac{1}{4}\)t".\(\frac{1}{4}\)t".\(\frac{1}{4}\)t".\(\frac{1}{4}\)t".\(\frac{1}{4}\)t".\(\frac{1}{4}\)t".\(\frac{1}{4}\)t".\(\frac{1}{4}\)t".\(\frac{1}{4}\)t".\(\frac{1}{4}\)t".\(\frac{1}{4}\)t".\(\frac{1}{4}\)t".\(\frac{1}{4}\)t".\(\frac{1}{4}\)t".\(\frac{1}{4}\)t".\(\frac{1}{4}\)t".\(\frac{1}{4}\)t".\(\frac{1}{4}\)t".\(\frac{1}{4}\)t".\(\frac{1}{4}\)t".\(\frac{1}{4}\)t".\(\frac{1}{4}\)t".\(\frac{1}{4}\)t".\(\frac{1}{4}\)t".\(\frac{1}{4}\)t".\(\frac{1}{4}\)t".\(\frac{1}{4}\)t".\(\frac{1}{4}\)t".\(\frac{1}{4}\)t".\(\frac{1}{4}\)t".\(\frac{1}{4}\)t".\(\frac{1}{4}\)t".\(\frac{1}{4}\)t".\(\frac{1}{4}\)t".\(\frac{1}{4}\)t".\(\frac{1}{4}\)t".\(\frac{1}{4}\)t".\(\frac{1}{4}\)t".\(\frac{1}{4}\)t".\(\frac{1}{4}\)t".\(\frac{1}{4}\)t".\(\frac{1}{4}\)t".\(\frac{1}{4}\)t".\(\frac{1}{4}\)t".\(\frac{1}{4}\)t".\(\frac{1}{4}\)t".\(\frac{1}{4}\)t".\(\frac{1}\)t".\(\frac{1}{4}\)t".\(\frac{1}{4
087
088
                             if ($w0 < $w0Min) {</pre>
089
                                  $w0Min = $w0;
090
                                  $wP1Min = $wP1;
091
                                  $wP2Min = $wP2;
092
```

```
093
094
           WP2 += D_W_P2;
095
           $count++ if ($DEBUG == 1);
096
097
         p(" min W_0 = ".\$w0Min." [ton]");
098
         &p(" LAMBDA = ".(\$W_PL / \$w0Min));
099
         &p(" at");
100
         &p(" W P1
                    = ".$wP1Min." [ton]");
101
         &p(" W_P2 = ".$wP2Min." [ton]");
102
         &p(" dW_P2 = ".$D_W_P2." [ton]");
103
         &p(" Isp1 = ".$ISP_1." [s]");
104
         &p(" Isp2 = ".$ISP 2." [s]");
105
         &p("");
106
107
108
       } else {
         &p("File Open Error");
109
110
       if (close(OPF)) {
111
         # なにもしない
112
       } else {
113
         &p("File Close Error");
114
115
116
117
       exit;
118
119
120
       sub eta {
121
         my (\$wP) = @\_;
         my $eta = - 0.02 * &log10($wP) + 0.145;
122
123
         return $eta;
124
125
126
       sub CalcV {
127
         my ($zeta1, $zeta2) = @_;
128
         return $G * $ISP_1 * log( 1 / (1 - $zeta1) )
                                    + $G * $ISP_2 * log( 1 / (1 - $zeta2) );
129
       }
130
       sub log10 {
131
132
         my (\$n) = @\_;
133
         return log($n) / log(10.0);
134
       }
135
136
       sub p {
137
         my ($str) = @_;
         print $str, "\u00e4n";
138
139
         return 1;
140
       }
141
142
       sub GetStringTime {
143
         use Time::Local;
144
         use Time::HiRes qw/ gettimeofday /;
145
         my ($epocsec, $microsec) = gettimeofday();
146
         my ($sec,$min,$hour,$mday,$mon,
                        $year,$wday,$yday,$isdst) = localtime($epocsec);
147
         $year += 1900;
148
         $mon += 1;
149
         return sprintf("%04d.%02d.%02d.%02d.%02d.%06d",
                                  $year,$mon,$mday,$hour,$min,$sec,$microsec);
150
```