

Essentials of Analytical Geometry and Linear Algebra 1

Plane Line in space

What elements do we know

Line in plane

Plane

Line in space

Plane (equations)

1) General
$$A_{2} + B_{2} + (z + D = 0)$$

2) Vector $V \cdot n + D = 0$; $n = \begin{pmatrix} A \\ B \end{pmatrix}$

3) in sections $\frac{x}{A} + \frac{y}{A} + \frac{z}{A} = 1$
 $\frac{\partial}{\partial x} + \frac{\partial}{\partial x} = \frac{\partial}{\partial x} =$

Plane (Task)

- Write down all forms of the plane
- Draw this plane

$$\frac{3}{2} + \frac{y}{1} + \frac{z}{3} = 1$$

Plane (Answer)

1. Find the equation of the plane passing through the point (2, -3, 4) and parallel to the plane 2x - 5y - 7z + 15 = 0.

Line in space (equations)

1) Consider
$$x - x_0 = \frac{y - y_0}{a_x} = \frac{z z_0}{a_z} = \frac{z}{a_z}$$

2) Parametrical $\begin{cases} x - x_0 + a_x \\ y - y_0 + a_x \\ y - y_0 - a_y \\ z - z_0 + a_x \end{cases}$

(in, $y - y_0 = 0$

(in, $y - y$

Oleg Bulichev EAGLA1 7

Line in space (Task)

- Write down all forms of the line
- Draw this line

$$\begin{cases} 15x + 9y + 0z - 45 = 0 \\ 0x - 8y + 0z = 0 \end{cases}$$

Line in space (Answer) (1)

Line in space (Answer) (2)

5. Find the equations of the line passing through the point (1,2,3) and perpendicular to the planes x - 2y - z + 5 = 0 and x + y + 3z + 6 = 0.

Perpendicular to the normals of planes, or parallel to the planes

4. Find the equation of the plane which passes through the intersection of the planes 2x + 3y + 10z - 8 = 0, 2x - 3y + 7z - 2 = 0 and is perpendicular to the plane 3x - 2y + 4z - 5 = 0.

Formulas of distances

Projection (1)

Def: Projection

Where it can be used:

- 1. Maps
- 2. Blueprints
- 3. Fitting algorithms (Least squares)
- 4. Reduce matrix dimension

Links:

MIT 15 lecture

Projection 2D case from school

Oleg Bulichev EAGLA1 16

2D case, using Projection matrix

Not so usefull in general case

$$Pb = ana, \qquad = p = \underbrace{a_1a_1}_{a_1^{\dagger}a_2}, \qquad P = \begin{bmatrix} 47 & 40 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} 10 & 0 \\ 0 & 0 \end{bmatrix}$$

This in affine to.

 $Para = ana, \qquad projection \qquad p$

The same task, but using more general approach (projection matrix)

Oleg Bulichev EAGLA1 17

Proj. general case formula + example

$$a = [a, a_{2}] \quad \text{In this case projection}$$

$$will be the same as unitial
$$\left[\frac{a_{1}}{a_{2}} a_{2} \right] \left[\frac{a_{1}}{a_{2}} \right] \left[\frac$$$$

Oleg Bulichev EAGLA1 18

6. Find the perpendicular distance from the point (1,3,-1) to the line $\frac{x-13}{5} = \frac{y+8}{-8} = \frac{z-31}{1}$

8. Find the distance of the point (1, -2, 3) from the plane x - y + z = 5 measured parallel to the line $\frac{x}{2} = \frac{y}{3} = \frac{z}{-6}$

