Topological spaces

2016-01-25 9:00 -0500

Outline

Notation

Topological spaces

Exercises

X a set

X a set P(X) the power set of X, that is, the set of all subsets of X.

X a set P(X) the power set of X, that is, the set of all subsets of X. \mathbb{R} the set of real numbers.

Definition (Topology)

A topology on X is a subset $\tau \subseteq P(X)$, such that:

Definition (Topology)

A topology on X is a subset $\tau \subseteq P(X)$, such that:

(T1)
$$\emptyset, X \in \tau$$
.

Definition (Topology)

A topology on X is a subset $\tau \subseteq P(X)$, such that:

(T1)
$$\emptyset, X \in \tau$$
.

(T2) If $U_{\alpha} \in \tau$ for all $\alpha \in I$, then $\cup_{\alpha} U_{\alpha} \in \tau$.

Definition (Topology)

A topology on X is a subset $\tau \subseteq P(X)$, such that:

- **(T1)** \emptyset , $X \in \tau$.
- **(T2)** If $U_{\alpha} \in \tau$ for all $\alpha \in I$, then $\cup_{\alpha} U_{\alpha} \in \tau$.
- **(T3)** If $U_1, U_2 \in \tau$, then $U_1 \cap U_2 \in \tau$.

Definition (Topology)

A topology on X is a subset $\tau \subseteq P(X)$, such that:

- **(T1)** \emptyset , $X \in \tau$.
- **(T2)** If $U_{\alpha} \in \tau$ for all $\alpha \in I$, then $\cup_{\alpha} U_{\alpha} \in \tau$.
- **(T3)** If $U_1, U_2 \in \tau$, then $U_1 \cap U_2 \in \tau$.

Definition (Topological spaces)

Definition (Topology)

A topology on X is a subset $\tau \subseteq P(X)$, such that:

- **(T1)** \emptyset , $X \in \tau$.
- **(T2)** If $U_{\alpha} \in \tau$ for all $\alpha \in I$, then $\cup_{\alpha} U_{\alpha} \in \tau$.
- **(T3)** If $U_1, U_2 \in \tau$, then $U_1 \cap U_2 \in \tau$.

Definition (Topological spaces)

1. If τ is a topology on X, the pair (X, τ) is called a topological space.

Definition (Topology)

A topology on X is a subset $\tau \subseteq P(X)$, such that:

- **(T1)** \emptyset , $X \in \tau$.
- **(T2)** If $U_{\alpha} \in \tau$ for all $\alpha \in I$, then $\cup_{\alpha} U_{\alpha} \in \tau$.
- **(T3)** If $U_1, U_2 \in \tau$, then $U_1 \cap U_2 \in \tau$.

Definition (Topological spaces)

- 1. If τ is a topology on X, the pair (X, τ) is called a topological space.
- 2. The elements of τ are called *open sets*.

Examples

• Let X be any set. Then $\tau_d = P(X)$ is a topology, called the *discrete topology*.

Examples

- Let X be any set. Then $\tau_d = P(X)$ is a topology, called the *discrete topology*.
- Let X be any set. Then $\tau_i = \{\emptyset, X\}$ is a topology, called the *indiscrete topology*.

Examples

- Let X be any set. Then $\tau_d = P(X)$ is a topology, called the *discrete topology*.
- Let X be any set. Then $\tau_i = \{\emptyset, X\}$ is a topology, called the *indiscrete topology*.
- Let $X = \{1, 2\}$. Then $\tau = \{\emptyset, X, \{1\}\}$ is a topology, and (X, τ) is called the *Sierpiński space*.

• Let

- Let
 - ullet $X=\mathbb{R}$,

- Let
 - $X = \mathbb{R}$.
 - $\tau = \{ U \subseteq X \mid \forall x \in U \exists \epsilon > 0, \text{ such that } (x \epsilon, x + \epsilon) \subseteq U \}.$

- Let
 - $\bullet X = \mathbb{R}.$
 - $\tau = \{ U \subseteq X \mid \forall x \in U \exists \epsilon > 0, \text{ such that } (x \epsilon, x + \epsilon) \subseteq U \}.$
 - Then au is called the *usual topology* on \mathbb{R} .

- Let
 - $X = \mathbb{R}$.
 - $\tau = \{ U \subseteq X \mid \forall x \in U \exists \epsilon > 0, \text{ such that } (x \epsilon, x + \epsilon) \subseteq U \}.$
 - Then au is called the *usual topology* on \mathbb{R} .
- Let

- Let
 - $X = \mathbb{R}$.
 - $\tau = \{ U \subseteq X \mid \forall x \in U \exists \epsilon > 0, \text{ such that } (x \epsilon, x + \epsilon) \subseteq U \}.$
 - Then au is called the *usual topology* on $\mathbb R$.
- Let
 - (X, d) be any metric space. For $x \in X$, let $B_{\epsilon}(x) = \{ y \in X \mid d(x, y) < \epsilon \}$.

- Let
 - $X = \mathbb{R}$.
 - $\tau = \{ U \subseteq X \mid \forall x \in U \exists \epsilon > 0, \text{ such that } (x \epsilon, x + \epsilon) \subseteq U \}.$
 - Then au is called the *usual topology* on \mathbb{R} .
- Let
 - (X, d) be any metric space. For $x \in X$, let $B_{\epsilon}(x) = \{ y \in X \mid d(x, y) < \epsilon \}$.
 - $\tau = \{ U \subseteq X \mid \forall x \in U \exists \epsilon > 0, \text{ such that } B_{\epsilon}(x) \subseteq U \}.$

- Let
 - $X = \mathbb{R}$.
 - $\tau = \{ U \subseteq X \mid \forall x \in U \exists \epsilon > 0, \text{ such that } (x \epsilon, x + \epsilon) \subseteq U \}.$
 - Then au is called the *usual topology* on $\mathbb R$.
- Let
 - (X, d) be any metric space. For $x \in X$, let $B_{\epsilon}(x) = \{ y \in X \mid d(x, y) < \epsilon \}$.
 - $\tau = \{ U \subseteq X \mid \forall x \in U \exists \epsilon > 0, \text{ such that } B_{\epsilon}(x) \subseteq U \}.$
 - ullet Then au is called the *metric topology* on X.

Example (Cofinite topology)

Let $\tau = \{ U \subseteq X \mid X - U \text{ is finite} \} \cup \{\emptyset\}$. Then τ is a topology on X.

Example (Cofinite topology)

Let $\tau = \{ U \subseteq X \mid X - U \text{ is finite} \} \cup \{\emptyset\}$. Then τ is a topology on X.

Sketch of proof.

Example (Cofinite topology)

Let $\tau = \{ U \subseteq X \mid X - U \text{ is finite} \} \cup \{\emptyset\}$. Then τ is a topology on X.

Sketch of proof.

• $\emptyset \in \tau$ immediately. $X \in \tau$ because $X - X = \emptyset$ is finite.

Example (Cofinite topology)

Let $\tau = \{ U \subseteq X \mid X - U \text{ is finite} \} \cup \{\emptyset\}$. Then τ is a topology on X.

Sketch of proof.

- $\emptyset \in \tau$ immediately. $X \in \tau$ because $X X = \emptyset$ is finite.
- Let $U_{\alpha} \in \tau$ for all $\alpha \in I$. We need to show that either $\cup_{\alpha} U_{\alpha}$ is empty or $X \cup_{\alpha} U_{\alpha}$ is finite.

Example (Cofinite topology)

Let $\tau = \{ U \subseteq X \mid X - U \text{ is finite} \} \cup \{\emptyset\}$. Then τ is a topology on X.

Sketch of proof.

- $\emptyset \in \tau$ immediately. $X \in \tau$ because $X X = \emptyset$ is finite.
- Let $U_{\alpha} \in \tau$ for all $\alpha \in I$. We need to show that either $\cup_{\alpha} U_{\alpha}$ is empty or $X \cup_{\alpha} U_{\alpha}$ is finite.
- Let $U_1, U_2 \in \tau$. We need to show that either $U_1 \cap U_2$ is empty or $X U_1 \cap U_2$ is finite.

Exercises

1. Show that if X is any set, there is a metric on X such that the metric topology is the same as the discrete topology.

Exercises

- 1. Show that if X is any set, there is a metric on X such that the metric topology is the same as the discrete topology.
- 2. Show that in general there is no metric on X such that the metric topology is the same as the indiscrete topology.

Exercises

- 1. Show that if X is any set, there is a metric on X such that the metric topology is the same as the discrete topology.
- 2. Show that in general there is no metric on X such that the metric topology is the same as the indiscrete topology.
- 3. Show that if τ_{α} is a topology on X for each $\alpha \in I$, then $\tau = \cap \tau_{\alpha}$ is a topology on X.

• Topological space - Wikipedia, the free encyclopedia

- Topological space Wikipedia, the free encyclopedia
- How to get intuition in topology concerning the definitions? - Mathematics Stack Exchange

- Topological space Wikipedia, the free encyclopedia
- How to get intuition in topology concerning the definitions? - Mathematics Stack Exchange
- Why is a topology made up of 'open' sets? MathOverflow

- Topological space Wikipedia, the free encyclopedia
- How to get intuition in topology concerning the definitions? - Mathematics Stack Exchange
- Why is a topology made up of 'open' sets? MathOverflow
- Why does topology rarely come up outside of topology? -Mathematics Stack Exchange