Name:

Section:

ECE 431 Electric Machinery Spring 2020

Pre-lab assignment #5

Due at the beginning of your lab session – no late Pre-lab assignments accepted.

Read the experiment and be prepared for the procedure.

1. Why are some portions of the experiment conducted at 33% of rated voltage?

2. Assume the following equivalent circuit parameters:

f [Hz]	Poles	$V_{l-l}[V]$	$\mathbf{R}_{1}[\Omega]$	L ₁ [mH]	R ₂ ' [Ω]	L2' [mH]	$\mathbf{R_c}\left[\Omega\right]$	L _m [mH]
60	2	230	1.41	3.69	1.27	5.53	668.7	149.8

a) What peak torque do you expect at rated voltage?

$$\int_{Max} = \frac{3P}{4\omega e} \left[\frac{V_{TH}^2}{R_{TH}^2 + \sqrt{R_{TH}^2 + (X_{TH}^2 + X_2)^2}} \right] + \frac{2}{4\omega e} \left[\frac{1}{R_{TH}^2 + \sqrt{R_{TH}^2 + (X_{TH}^2 + X_2)^2}} \right] + \frac{2}{R_{TH}^2 + \sqrt{R_{TH}^2 + (X_{TH}^2 + X_2)^2}} + \frac{2}{R_{TH}^2 + \sqrt{R_{TH}^2 + (X_{TH}^2 + X_2)^2}} \right] + \frac{2}{R_{TH}^2 + \sqrt{R_{TH}^2 + (X_{TH}^2 + X_2)^2}} + \frac{2}{R_{TH}^2 + \sqrt{R_{TH}^2 + (X_{TH}^2 + X_2)^2}} + \frac{2}{R_{TH}^2 + \sqrt{R_{TH}^2 + (X_{TH}^2 + X_2)^2}} \right] + \frac{2}{R_{TH}^2 + \sqrt{R_{TH}^2 + (X_{TH}^2 + X_2)^2}} + \frac{2}{R_{TH}^2 + \sqrt{R_{TH}^2 + (X_{TH}^2 + X_2)^2}} = \frac{2}{R_{TH}^2 + (X_{TH}^2 + X_2)^2} = \frac{2}{R_{TH}^2 + (X_{TH}^2 + X_2)^2}} = \frac{2}{R_{TH}^2 + \sqrt{R_{TH}^2 + (X_{TH}^2 + X_2)^2}} = \frac{2}{R_{TH}^2 + (X_{TH}^2 + X_2)^2}} = \frac{2}{R_{TH}^2 + (X_{TH}^2 + X_2)^2} = \frac{2}{R_{TH}^2 + (X_{TH}^2 + X_2)^2}} = \frac{2}{R_{TH}^2 + (X_{TH}^2 + X_2)^2}}$$

b) What current would be expected at peak torque given rated input voltage at 60 Hz?

$$S_{\text{max},T} = \frac{R_{2}!}{\sqrt{R_{TH}^{2} + (X_{TH} + X_{1}^{2})^{2}}} = 0.341 \qquad I_{\text{max}} = \frac{|U_{TH}|}{|Z_{TH} + U_{X_{1}}| + \frac{R_{2}!}{|Z_{\text{max},T}|}} = 22.42 \text{ A}$$

c) What current would be expected at peak torque given 33% of rated input voltage at 60 Hz?

3. Find torque as a linear function of slip for the low-slip regime of the machine you tested in Experiment 4. Based on this:

a) What torque would you expect at rated voltage and frequency at a speed of 3640 RPM?

Te
$$\approx \frac{2 |V_1|^2 s}{w_e(v_2)} \times \frac{D}{2}$$
; $s = \frac{3 \omega - 36 w}{3 \omega} = -0.011 = D$ Te = -1.01 Nm/
Find answer May vary with b) What torque would you expect at 33% of rated voltage and 20 Hz input at a speed of 1160 $V \otimes v_e = 0$ Vield

RPM?