Tutorato 1

Metodi Matematici della Meccanica Classica - 3 marzo 2025

- 1. Trovare gli errori di uso della notazione di Einstein e, se non ce ne sono, espandere la somma (si considero gli indici da 1 a 3):
 - (a) $M^{\nu}_{\mu} = A^{\alpha}_{\mu} N^{\beta}_{\alpha} A^{\nu}_{\beta}$
 - (b) $v^{\mu}v_{\mu} = 4A_{\mu\nu\alpha}$
 - (c) $G_{\mu\nu} = v^{\alpha}$
 - (d) $M_{\mu\nu} = A^{\alpha}_{\mu} N_{\alpha\beta} A^{\beta}_{\nu}$
 - (e) $\frac{\partial y^{\mu}}{\partial x^{\nu}} \frac{\partial f^{\alpha}}{\partial y^{\mu}} = \frac{\partial f^{\alpha}}{\partial x^{\nu}}$
 - $(f) A^{\mu}_{\nu} B^{\nu}_{\alpha} C^{\nu}_{\mu} = D_{\alpha\mu}$
- 2. Si considerino coordinate cartesiane (x^1,x^2) sul piano \mathbb{R}^2 e la curva parametrizzata da

$$\begin{cases} x^{1}(q) = (1+q)\cos(q) \\ x^{2}(q) = (1+q)\sin(q) \end{cases}$$

Scrivere l'energia cinetica di un punto materiale ${\bf P}$ di massa m che si muove lungo la curva.

- 3. Scrivere l'energia cinetica nei seguenti casi:
 - (a) Due punti materiali \mathbf{P} e \mathbf{Q} di masse $m_{\mathbf{P}}$ e $m_{\mathbf{Q}}$ che si trovano agli estremi di un'asta di lunghezza 2L e massa trascurabile. L'asta è libera di ruotare nel piano attorno a un asse passante per il suo centro e perpendicolare ad essa.

(b) Un punto materiale \mathbf{P} di massa m vincolato tramite un'asta di lunghezza L a un punto fisso O e libero di ruotare nello spazio attorno a O.

(c) Un punto materiale ${\bf P}$ di massa m collegato da un'asta di lunghezza ${\bf R}$ a un punto fissato ${\bf Q}$ di un disco in rotazione con velocità angolare costante ω .

(d) Due punti materiali \mathbf{P} e \mathbf{Q} , entrambi di massa m, vincolati a muoversi su una superficie sferica di raggion R mantenendosi a una distanza (in linea d'aria) costante L con R < L < 2R.

4. Scrivere l'energia cinetica di un punto che si muove lungo la superficie in \mathbb{R}^3 che, in coordinate cartesiane ortonormali, ha equazione

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$$