0.1 *H*-grupos y *H*-cogrupos

Hasta ahora, todas las relaciones entre los grupos fundamentales y las clases de funciones continuas de la forma $[(X, x_0), (Y, y_0)]$ han sido biyecciones; nunca he establecido más estructura salvo el de conjunto. En esta sección estudio cuando $[(X, x_0), (Y, y_0)]$ tiene estructura de grupo y como depende de las propiedades de X y de Y. Esto me permitirá clasificar los grupos fundamentales de manera algebraica. En el resto de la sección, todos los espacios considerados son basados, entonces omito la notación de espacio basado: cambio (X, x_0) por X.

Como primer ejemplo, supongo que G es un grupo topológico con un producto $\mu: G \times G \to G$ y neutro $1 \in G$ (que funciona como base del espacio G). Entonces al conjunto [X, G] se le puede dotar, de manera natural, una estructura de grupo:

$$[f] *_{\mu} [g] := [\mu \circ (f,g)] = \left[X \xrightarrow{(f,g)} G \times G \xrightarrow{\mu} G \right].$$

De hecho se cumple más: $\operatorname{Map}_*(X,G)$ es un grupo con $(f*_{\mu}g)(x) := \mu(f(x),g(x))$. Observa que mantengo la misma notación para la operación apesar de que una está definida para funciones y la otra para clases de homotopía de funciones; esto no debería causar confusión.

La operación $*_{\mu}$ sobre $\operatorname{Map}_*(X,G)$ es una operación de grupo. En efecto,

$$\begin{split} ((f *_{\mu} g) *_{\mu} h)(x) &= \mu((f *_{\mu} g)(x), h(x)) \\ &= \mu(\mu(f(x), g(x)), h(x)) \\ &= \mu(f(x), \mu(g(x), h(x))) \\ &= \mu(f(x), (g *_{\mu} h)(x)) \\ &= (f *_{\mu} (g *_{\mu} h))(x) \end{split}$$

y así $*_{\mu}$ es asociativa. Además la función constante (basado) $e: X \to G$ es el neutro: $(f *_{\mu} e)(x) = \mu(f(x), 1) = f(x) = \mu(1, f(x)) = (e *_{\mu} f)$. Además, para toda $f \in \operatorname{Map}_*(X, G)$ la función $\overline{f}(x) = f(x)^{-1}$ es claramente el inverso de f porque tomar inversos en G es continua.

Esta conclusión es muy fuerte. Yo quiero estructura de grupo para [X, Y], no para $\mathrm{Map}_*(X, Y)$. Si relajo las condiciones para Y puedo incluir a más ejemplos.

Me interesan las relaciones de grupo topológico $m\acute{o}dulo$ homotopía. En lugar de la igualdad en la definición de grupo, por ejemplo la asociatividad $\mu(\mu, \mathrm{Id}) = \mu(\mathrm{Id}, \mu)$, me basta tomar la homotopía porque quiero trabajar con clases de funciones. Con esto puedo definir un "grupo módulo homotopía". Más precisamente:

Definición 1. (Hopf) Sea (W, w_0) un espacio basado y $e_0: W \to W$ es la función constante w_0 . (W, μ, λ) es un H-grupo si W viene equipada con dos funciones continuas (basadas) $\mu: W \times W \to W$ y $\lambda: W \to W$ que cumplen:

- 1. (Asociatividad) $\mu \circ (\mu \times \mathrm{Id}_W) \simeq \mu \circ (\mathrm{Id}_W \times \mu)$.
- 2. (Existencia de Neutro) $\mu \circ (\mathrm{Id}_W, e_0) \simeq \mathrm{Id}_W \simeq \mu \circ (e_0, \mathrm{Id}_W)$.
- 3. (Existencia de Inversos) $\mu \circ (\mathrm{Id}_W, \lambda) \simeq \mathrm{Id}_W \simeq \mu \circ (\lambda, \mathrm{Id}_W)$.

Un H-grupo es un grupo toplógico módulo homotopías. Las tres propiedades se pueden resumir en las siguientes tres diagramas conmutativos módulo homotopías (ie. cualquiera dos caminos que empiezan y terminan en los mismos puntos producen funciones homotópicas):

Asociatividad Nuetro Inversos

Nota. También decimos que W es un H-grupo conmutativo si además

$$W\times W \xrightarrow{C} W\times W$$

es un diagrama conmutativo módulo homotopías donde C(x,y)=(y,x).

La siguiente proposición aclara el motivo para definir un H-grupo:

Proposición 1. Si (W, μ) es un H-grupo, entonces [X, W] es un grupo con operación $[f] *_{\mu} [g] := [f *_{\mu} g] = [\mu \circ (f, g)].$

Proof. Si aplico la proposición ?? a la asociatividad de la definición de H-grupo, obtengo:

$$\mu \circ (\mu \times \mathrm{Id}_W) \circ (f, g, h) \simeq \mu \circ (\mathrm{Id}_W \times \mu) \circ (f, g, h)$$

y así

$$(f *_{\mu} g) *_{\mu} h = \mu \circ (f *_{\mu} g, h) = \mu \circ (\mu(f, g), h) = \mu \circ (\mu \times \mathrm{Id}_{W}) \circ (f, g, h)$$

$$\simeq \mu \circ (\mathrm{Id}_{W} \times \mu) \circ (f, g, h) = \mu \circ (f, \mu(g, h)) = \mu \circ (f, g *_{\mu} h)$$

$$\simeq f *_{\mu} (g *_{\mu} h).$$

Por lo tanto $([f] *_{\mu} [g]) *_{\mu} [h] = [f] *_{\mu} ([g] *_{\mu} [h])$. Las otras propiedades de grupo se prueban de manera equivalente: aplica la proposición ?? a cada equivalencia de la definición de H-grupo. Entonces omito la verificación.

El ejemplo más importante de H-grupo para calcular el grupo fundamental es ΩX . Defino $\mu(\alpha, \beta) = \alpha * \beta y \lambda(\alpha) = \bar{\alpha}$ que ya sabemos que están bien definidas (ie, $\alpha * \beta y \bar{\alpha}$ son lazos).

Las propiedades de H-grupo se siguen inmediatamente de que $\pi_1(X, x_0)$ es un grupo con las operaciones $[\alpha][\beta] = [\alpha * \beta]$ y $[\alpha]^{-1} = [\bar{\alpha}]$. Lo único que falta es probar que efectivamente $\mu : \Omega X \times \Omega X \to \Omega X$ y $\lambda : \Omega X \to \Omega X$ son funciones continuas:

Ejercicio 1. Sea ΩX el espacio de lazos de un espacio basado (X, x_0) , equipada con la topología compactoabierta. Entonces las funciones

$$\mu: \Omega X \times \Omega X \longrightarrow \Omega X \quad \text{y} \quad \lambda: \Omega X \longrightarrow \Omega X$$

definidas por $\mu(\alpha, \beta) = \alpha * \beta$ y $\lambda(\alpha) = \bar{\alpha}$ son funciones continuas. En particular ΩX es un H-grupo.

Proof. Recuerda que la topología compacto-abierta tiene como subase a todos los conjuntos de la forma

$$B(K, U) := \{ \alpha \in \Omega X \mid \alpha[K] \subset U \}$$

donde $K \subseteq I$ es compacto y $U \subseteq X$ es abierto. A K la puedo separar como la unión de los dos compactos $K_1 := K \cap [0, \frac{1}{2}]$ y $K_2 = K \cap [\frac{1}{2}, 1]$ (K_i es compacto por ser subespacio cerrado de un compacto). Entonces $K = K_1 \cup K_2$ y $B(K, U) = B(K_1, U) \cap B(K_2, U)$ porque $\alpha[K_1], \alpha[K_2] \subseteq U$ si y sólo si $\alpha[K_1] \cup \alpha[K_2] = \alpha[K] \subseteq U$.

Por lo tanto para probar continuidad basta verificar que $\mu^{-1}[B(K,U)]$ y $\lambda^{-1}[B(K,U)]$ son abiertos en $\Omega X \times \Omega X$ y ΩX respectivamente, para todo compacto $K \subseteq I$ y abierto $U \subseteq X$.

Sea $K \subseteq I$ compacto y $U \subseteq X$ abierto. Afirmo que:

$$\mu^{-1}[B(K,U)] = B(2K_1,U) \times B(2K_2-1,U) \quad \text{y} \quad \lambda^{-1}[B(K,U)] = B(1-K,U)$$

donde $2K_1$ es la imagen de K_1 bajo la función continua $x \mapsto 2x$; observa que $2K_1$ es compacto. De manera similar defino $2K_2 - 1$ y 1 - K.

Para la primera igualdad observa que:

$$(\alpha, \beta) \in \mu^{-1}[B(K, U)] \iff \mu(\alpha, \beta)[K] = (\alpha * \beta)[K] = (\alpha * \beta)[K_1] \cup (\alpha * \beta)[K_2] \subseteq U$$
$$\iff (\alpha * \beta)[K_1] \subseteq U \text{ y } (\alpha * \beta)[K_2] \subseteq U.$$

Figure 1: La multiplicación en ΩX es continua.

Ahora si $s \in K_1$ entonces $(\alpha * \beta)(s) = \alpha(2s)$ y así $\alpha[2K_1] = (\alpha * \beta)[K_1]$. Por lo tanto

$$(\alpha * \beta)[K_1] = \alpha[2K_1] \subseteq U \iff \alpha \in B(2K_1, U),$$

y similarmente:

$$(\alpha * \beta)[K_2] = \beta[2K_2 - 1] \subseteq U \quad \iff \quad \beta \in B(2K_2 - 1, U),$$

Con esto concluyo que:

$$(\alpha, \beta) \in \mu^{-1}[B(K, U)] \iff (\alpha, \beta) \in B(2K_1, U) \times B(2K_2 - 1, U)$$

y así $\mu^{-1}[B(K,U)] = B(2K_1,U) \times B(2K_2-1,U)$ es abierto (por ser producto de subásicos).

Por último, como $\lambda(\alpha)(s) = \bar{\alpha}(s) = \alpha(1-s)$, tengo que $\alpha[1-K] = \bar{\alpha}[K]$ Análogamente concluyo que $\alpha \in \lambda^{-1}[B(K,U)]$ si y sólo si $\alpha \in B(1-K,U)$ y así $\lambda^{-1}[B(K,U)] = B(1-K,U)$ es abierto.

Con esto termino la prueba. La figura 1 ilustra esta demostración.

Si junto lo anterior con la proposición 1 he probado que

Corolario 1.

$$\pi_0(\Omega X, e_0) = [\mathbb{S}^0, \Omega X]$$
 es un grupo.

Vale la pena mencionar cuando vale el regreso de la proposición 1:

Fijo (W, w_0) en la categoría \mathbf{Top}_* . La asociación $(X, x_0) \mapsto \mathrm{Map}_*(X, W)$ es claramente un funtor contravariante a la categoría de conjuntos porque $\mathrm{Map}_*[\cdot, W] = \mathrm{Hom}(\cdot, W)$. Recuerda que si $f \in \mathrm{Map}_*(X, Y)$ entonces $f^* := \mathrm{Map}_*(f, W) : \mathrm{Hom}(Y, W) \to \mathrm{Hom}(X, W)$ definido por $f^*(h) = h \circ f$.

Resulta que el funtor $\operatorname{Map}_*(\cdot,W)$ puede pasar a clases de equivalencia precisamente cuando W es un H-grupo. Con esto me refiero a que la asociación $[\cdot,W]:\operatorname{Top}_* \to \operatorname{Grupos}$ inducida por $\operatorname{Map}_*(\cdot,W):\operatorname{Top}_* \to \operatorname{Conjuntos}$ es un funtor.

Teorema 2. Sea (W, w_0) un espacio basado. Entonces:

$$W$$
 es un H -grupo \iff $[\cdot, W] : \mathbf{Top}_* \to \mathbf{Grupos}$ es un funtor contravariante.

Existe una construcción dual a la de H-grupo que nos permite estudiar cuando [W, X] es un grupo, es decir cuando $[W, \cdot]$ es un funtor a la categoría de grupos.

Lo que sigue es completamente análogo a la definición de H-grupo y todas las consecuencias de éste; basta cambiar la dirección de las flechas y cambiar productos por coproductos (ie. producto cuña, cf. lema ??). En particular la multiplicación $\mu: W \times W \to W$ se convierte en $\nu: W \to W \vee W$.

Definición 2. Sea (W, w_0) un espacio basado y $e_0: W \to W$ la función constante w_0 . (W, ν, λ) es un H-cogrupo si W viene equipada con dos funciones continuas (basadas) $\nu: W \to W \lor W$ y $\lambda: W \to W$ que cumplen:

- 1. (Co-asociatividad) $(\nu \vee \mathrm{Id}_W) \circ \nu \simeq (\mathrm{Id}_W \vee \nu) \circ \nu$.
- 2. (Existencia de Co-neutro) $(\mathrm{Id}_W, e_0) \circ \nu \simeq \mathrm{Id}_W \simeq (e_0, \mathrm{Id}_W) \circ \nu$.
- 3. (Existencia de co-inversos) $(\mathrm{Id}_W, \lambda) \circ \nu \simeq \mathrm{Id}_W \simeq (\lambda, \mathrm{Id}_W) \circ \nu$.

Es decir los siguientes diagramas conmutan módulo homotopías:

Coasociatividad Con-neutro Co-inversos

Tengo un dual a la proposición 1:

Proposición 2. Si (W, ν) es un H-cogrupo entonces [W, X] es un grupo con la operación $[f] *_{\nu} [g] := [f *_{\nu} g] = [(f \vee g) \circ \nu].$

Proof. Esta prueba es el dual de la prueba de la proposición 1; sólo escribo la asociatividad. Sean $f, g, h \in [W, X]$ entonces:

$$(f *_{\nu} g) *_{\nu} h = ((f *_{\nu} g) \vee h) \circ \nu = (((f \vee g) \circ \nu) \vee h) \circ \nu$$
$$\simeq (f \vee ((g \vee h) \circ \nu)) \circ \nu = (f \vee (g *_{\nu} h)) \circ \nu$$
$$\simeq f *_{\nu} (g *_{\nu} h)$$

donde la homotopía la obtengo al aplicar la proposición ?? a la composición de la función $f \lor g \lor h$ con ambas funciones que aparecen en la parte de co-asociatividad en la definición de H-cogrupo.

También tengo un dual del teorema 2:

Teorema 3. Sea (W, w_0) un espacio basado. Entonces:

$$W$$
 es un H -cogrupo \iff $[W,\cdot]: \mathbf{Top}_* \to \mathbf{Grupos}$ es un funtor covariante.

Como había un ejemplo natural de H-grupo, ie. el espacio de lazos, también hay un ejemplo natural de H-cogrupo: la suspensión reducida.

Para definir la ν requerida en la definición de H-cogrupo, primero defino $\nu: X \times I \to \mathcal{S}X \vee \mathcal{S}X \subset \mathcal{S}X \times \mathcal{S}X$ como

$$\nu(x,t) := \begin{cases} \left([x,2t],\star \right) & \text{si } 0 \le t \le \frac{1}{2} \\ \left(\star, [x,2t-1]\right) & \text{si } \frac{1}{2} \le t \le 1 \end{cases}$$

donde $\star \in \mathcal{S}X$ es el punto base canónico de la suspensión reducida.

Observa que cada componente de ν es continua porque son composición de funciones continuas, por ejemplo $(x,t)\mapsto (x,2t)\mapsto [x,2t]\mapsto ([x,2t],\star)$. Además estas dos funciones continuas coinciden en la intersección de sus dominios:

$$\nu(x, \frac{1}{2}) = \left([x, 1], \star \right) = \left(\star, \star \right) = \left(\star, [x, 0] \right).$$

Por lo tanto ν es continua.

También tengo que ν se factoriza a través de $B = (X \times \{0\}) \cup (X \times \{1\}) \cup (\{x_0\} \times I) \subset X \times I$ porque

$$\nu(x,0) = ([x,0],\star) = (\star,\star) = (\star,[x,1]) = \nu(x,1) \quad \forall x \in X$$

у

$$\nu(x_0, t) = \begin{cases} ([x_0, 2t], \star) = (\star, \star) & \text{si } 0 \le t \le \frac{1}{2} \\ (\star, [x_0, 2t - 1]) = (\star, \star) & \text{si } \frac{1}{2} \le t \le 1 \end{cases}$$

Por lo tanto existe una única función $\bar{\nu}:(X\times I)/B=\mathcal{S}X\to\mathcal{S}X\vee\mathcal{S}X$ tal que:

$$\begin{array}{ccc} X \times I & \stackrel{\nu}{\longrightarrow} \mathcal{S}X \vee \mathcal{S}X \\ \downarrow & \downarrow & \downarrow \\ \mathcal{S}X & \end{array}$$

es un diagrama conmutativo. Como ν es continua y π una identificación, $\bar{\nu}$ es continua.

Por otro lado, defino $\lambda: \mathcal{S}X \to \mathcal{S}X$ como $\lambda[x,s] = [x,1-s]$ que es continua porque es la composición de las funciones continuas $(x,s) \mapsto (x,1-s) \mapsto [x,1-s]$.

Por último nada más tengo que verificar las propiedades de H-cogrupo; sólo pruebo la co-asociatividad ya que las demás se demuestran de manera análoga.

Sea $[x, t] \in \mathcal{S}X$ y calculo:

$$((\bar{\nu} \vee \operatorname{Id}_{\mathcal{S}X}) \circ \bar{\nu})[x,t] = (\bar{\nu} \vee \operatorname{Id}_{\mathcal{S}X})(\bar{\nu}[x,t]) = \begin{cases} (\bar{\nu} \vee \operatorname{Id}_{\mathcal{S}X})([x,2t],\star) & \text{si } 0 \leq t \leq \frac{1}{2} \\ (\bar{\nu} \vee \operatorname{Id}_{\mathcal{S}X})(\star,[x,2t-1]) & \text{si } \frac{1}{2} \leq t \leq 1 \end{cases}$$

donde $([x, 2t], \star) \in \mathcal{S}X \times \{\star\} \subset \mathcal{S}X \vee \mathcal{S}X$ y así

$$(\bar{\nu} \vee \mathrm{Id}_{\mathcal{S}X})([x,2t],\star) = \bar{\nu}[x,2t] = \nu(x,2t) =$$

Por otr lado

$$((\operatorname{Id}_{\mathcal{S}X} \vee \bar{\nu}) \circ \bar{\nu})[x,t] = (\operatorname{Id}_{\mathcal{S}X} \vee \bar{\nu})(\bar{\nu}[x,t]) = \begin{cases} (\operatorname{Id}_{\mathcal{S}X} \vee \bar{\nu})\big([x,2t],\star\big) & \text{si } 0 \leq t \leq \frac{1}{2} \\ (\operatorname{Id}_{\mathcal{S}X} \vee \bar{\nu})\big(\star,[x,2t-1]\big) & \text{si } \frac{1}{2} \leq t \leq 1 \end{cases}$$

.

Con esto he probado que

Proposición 3. $\mathcal{S}X$ es un H-cogrupo con las operaciones $\nu: \mathcal{S}X \to \mathcal{S}X \vee \mathcal{S}X \text{ y } \lambda: \mathcal{S}X \to \mathcal{S}X$. En particular $[\mathcal{S}X,Y]$ es un grupo con la operación $[f]*_{\nu}[g]:=[(f\vee g)\circ \bar{\nu}].$

Aplico el Teorema ?? a la suspensión para probar:

Proposición 4.

$$\pi_n(X, x_0) = [\mathbb{S}^n, X] = [\mathcal{S}(\mathbb{S}^{n-1}), X]$$
 es un grupo $\forall n \ge 1$.

Junto con ??, concluyo que todo grupo fundamental, de cualquier dimensión es un grupo y además, este hecho se debe a las propiedades intrínsecas de las esferas y que ΩX es un H-grupo.

Ahora que tengo una estructura natural de grupo para los conjuntos [SX, Y] y $[X, \Omega Y]$, puedo comparar con el ejercicio ??: resulta que la biyección entre [SX, Y] y $[X, \Omega Y]$ es un isomorfismo de grupos:

Teorema 4. Sean [SX,Y] y $[X,\Omega Y]$ con su estructura natural de grupo (inducido por la estructura de H-cogrupo de SX y H-grupo de ΩY respectivamente). La biyección natural $\Phi:[SX,Y]\to [X,\Omega Y]$ es un isomorfismo de grupos, es decir

$$[\mathcal{S}X,Y]\cong [X,\Omega Y].$$

Proof. Por el ejercicio ?? basta probar que Φ , es un homomorfismo de grupos. Primero sean $f, g : \mathcal{S}X \to Y$ y calculo

$$(f \cdot g)[x,t] := \big((f \vee g) \circ \bar{nu} \big)[x,t] = \begin{cases} (f \vee g) \big([x,2t], \star \big) & \text{si } 0 \le t \le \frac{1}{2} \\ (f \vee g) \big(\star, [x,2t-1] \big) & \text{si } \frac{1}{2} \le t \le 1 \end{cases}$$

como $([x, 2t], \star) \in \mathcal{S}X \times \{\star\}$ y $(\star, [x, 2t-1]) \in \{\star\} \times \mathcal{S}X$, en el primer caso se evalúa con f y en el segundo caso se evalúa con g:

$$(f \cdot g)[x, t] = \begin{cases} f[x, 2t] & \text{si } 0 \le t \le \frac{1}{2} \\ g[x, 2t - 1] & \text{si } \frac{1}{2} \le t \le 1 \end{cases}$$

Por lo tanto, como $\Phi(f \cdot g)(x)(t) = (f \cdot g)[x, t]$

Ahora considero $\Phi(f), \Phi(g): X \to \Omega Y$ que están definidos como $\Phi(f)(x)(t) = f[x,t]$ y $\Phi(g)(x)(t) = g[x,t]$. Por lo tanto:

$$(\Phi(f) * \Phi(g))(x)(t) = \left(\mu(\Phi(f)(x), \Phi(g)(x))\right)(t) = \left(\Phi(f)(x) * \Phi(g)(x)\right)(t)$$

$$= \begin{cases} \Phi(f)(x)(2t) = f[x, 2t] & \text{si } 0 \le t \le \frac{1}{2} \\ \Phi(g)(x)(2t - 1) = g[x, 2t - 1] & \text{si } \frac{1}{2} \le t \le 1 \end{cases}.$$

Con esto concluyo que $\Phi(f \cdot g) = \Phi(f) * \Phi(g)$ y la igualdad para clases de equivalencia es trivial. Por lo tanto Φ es un homomorfismo de grupos.

Este teorema me da una herramienta poderosa para characterizar los grupos fundamentales de cualquier dimensión. Sigo los comentarios posteriores al corolario ??:

Aplico la fórmula para la suspensión de la esfera (corolario ??) y la propiedad adjunta de la suspensión y el espacio de lazos para escribir:

$$[\mathbb{S}^n, X] = [\mathcal{S}\mathbb{S}^{n-1}, X] \cong [\mathbb{S}^{n-1}, \Omega X] \quad \forall n \ge 1.$$

Inductivamente tengo:

$$[\mathbb{S}^n, X] \cong [\mathbb{S}^{n-1}, \Omega X] \cong \cdots \cong [\mathbb{S}^1, \Omega^{n-1} X] \cong [\mathbb{S}^0, \Omega^n X],$$

y así puedo concluir:

$$\pi_n(X, x_0) \cong \pi_0(\Omega^n X, \star).$$

En palabras esto quiere decir que todo grupo fundamental es el espacio de componentes conexas de algún espacio.

Esto es un resultado fuerte: me dice que calcular un grupo fundamental se reduce a calcular las componentes conexas del espacio $\Omega^n X$. En la práctica calcular su estructura de H-grupo (y así calcular la estructura de grupo de $\pi_n(X, x_0)$) es complicado pero puedo clasificarlo como espacio topológico con el siguiente lema importante:

Lema 5. Sean $(X, x_0), (Y, y_0)$ y (Z, z_0) espacios basados con X y Z compactos y Hausdorff. Entonces:

$$Map_*(X \wedge Z, Y) \approx Map_*(X, Map_*(Z, Y)),$$

ambas con la topología compacto-abierta. Además, el homeomorfismo es natural.

Si tomo $X = \mathbb{S}^{n-1}$ y $Z = \mathbb{S}^1$ (que son compactos y Hausdorff), entonces este lema dice:

$$\operatorname{Map}_*(\mathbb{S}^n,Y) = \operatorname{Map}_*(\mathbb{S}^{n-1} \wedge \mathbb{S}^1,Y) \approx \operatorname{Map}_*(\mathbb{S}^{n-1},\operatorname{Map}_*(\mathbb{S}^1,Y)) = \operatorname{Map}_*(\mathbb{S}^{n-1},\Omega Y).$$

Inductivamente tengo que

$$\operatorname{Map}_*(\mathbb{S}^n, Y) \approx \operatorname{Map}_*(\mathbb{S}^{n-1}, \Omega Y) \approx \cdots \approx \operatorname{Map}_*(\mathbb{S}^1, \Omega^{n-1} Y) \approx \operatorname{Map}_*(\mathbb{S}^0, \Omega^n Y). \tag{1}$$

Observa que el penúltimo término de (1) es exactamente $\Omega(\Omega^{n-1}Y) = \Omega^n Y$. Por lo tanto tenemos la siguiente definición - proposición:

$$\Omega^n Y := \mathrm{Map}_*(\mathbb{S}^n, Y) \tag{2}$$

lo cual tiene sentido: para n=2, $\Omega^2 Y=\{\sigma: I\to\Omega Y\mid \sigma(0)=e_0=\sigma(1)\}$, donde cada σ es una familia de lazos $\{\sigma_t\}_{t\in I}$ que varía continuamente con t. Además debe empezar y terminar en un punto: el lazo constante e_0 . Intuitivamente, esto significa que la familia de lazos barre una superficie 2-dimensional homeomorfa a \mathbb{S}^2 :

y por esto tiene sentido definir $\Omega^2 Y := \operatorname{Map}_*(\mathbb{S}^2, Y)$.

Otra forma de verificar (1) es con el siguiente ejercicio:

Ejercicio 2. Sea (Y, y_0) un espacio basado y $\mathbb{S}^0 = \{-1, 1\}$, entonces la biyección canónica:

$$\operatorname{Map}_*(\mathbb{S}^0,Y) \xrightarrow{\ \psi \ } Y \qquad \quad \operatorname{con} \qquad \quad \psi(f) = f(-1)$$

es un homeomorfismo, ie. $\operatorname{Map}_*(\mathbb{S}^0, Y) \approx Y$.

Proof. A cada $y \in Y$ le asocio la función $f_y : \mathbb{S}^0 \to Y$ con valores $f_y(1) = y_0$ y $f_y(-1) = y$. A la función $y \mapsto f_y$ la denoto por φ . Demotraré que φ es la inversa de ψ y que ambas son continuas.

La primera propiedad es clara porque

$$\varphi(\psi(f))(-1) = \varphi(f(-1)) = f_{f(-1)}(-1) = f(-1)$$
 y $\psi(\varphi(y)) = \psi(f_y) = f_y(-1) = y$.

Ahora observa que para $U \subseteq Y$ abierto,

$$\psi^{-1}[U] := \{ f: \mathbb{S}^0 \to Y \mid f(-1) \in U \} = \{ f: \mathbb{S}^0 \to Y \mid f[\{-1\}] \subseteq K \} = B(K,U) \subset \mathrm{Map}_*(\mathbb{S}^0,Y) = \{ f: \mathbb{S}^0 \to Y \mid f[\{-1\}] \subseteq K \} = B(K,U) \subset \mathrm{Map}_*(\mathbb{S}^0,Y) = \{ f: \mathbb{S}^0 \to Y \mid f[\{-1\}] \subseteq K \} = B(K,U) \subset \mathrm{Map}_*(\mathbb{S}^0,Y) = \{ f: \mathbb{S}^0 \to Y \mid f[\{-1\}] \subseteq K \} = B(K,U) \subset \mathrm{Map}_*(\mathbb{S}^0,Y) = \{ f: \mathbb{S}^0 \to Y \mid f[\{-1\}] \subseteq K \} = B(K,U) \subset \mathrm{Map}_*(\mathbb{S}^0,Y) = \{ f: \mathbb{S}^0 \to Y \mid f[\{-1\}] \subseteq K \} = B(K,U) \subset \mathrm{Map}_*(\mathbb{S}^0,Y) = \{ f: \mathbb{S}^0 \to Y \mid f[\{-1\}] \subseteq K \} = B(K,U) \subset \mathrm{Map}_*(\mathbb{S}^0,Y) = B(K,U) \subset \mathrm{Map}_*(\mathbb{S$$

donde $K = \{-1\}$ es un subconjunto compacto de \mathbb{S}^0 . Es decir que $\psi^{-1}[U]$ es un abierto subásico de la topología compacto-abierta. Por lo tanto ψ es continua.

Además, si $B(K,U) \subseteq \operatorname{Map}_*(\mathbb{S}^0,Y)$ es un subásico. Aquí $K \subseteq \mathbb{S}^0$ es compacto, en particular es uno de los cuatro conjuntos $\emptyset,\{1\},\{-1\},\mathbb{S}^0$. También $U\subseteq Y$ es abierto. Por definición:

$$\varphi^{-1}[B(K,U)] = \{ y \in Y \mid f_y[K] \subseteq U \}.$$

Calculo este conjunto por casos:

Para $y_0 \in U$, tengo

$$\varphi^{-1}[B(\emptyset,U)] = Y = \varphi^{-1}[B(\{1\},U)] \quad , \quad \varphi^{-1}[B(\{-1\},U)] = U = \varphi^{-1}[B(\mathbb{S}^0,U)],$$

y para $y_0 \notin U$, tengo

$$\varphi^{-1}[B(\emptyset,U)] = Y \quad , \quad \varphi^{-1}[B(\{-1\},U)] = U \quad , \quad \varphi^{-1}[B(\{1\},U)] = \emptyset = \varphi^{-1}[B(\mathbb{S}^0,U)].$$

Todos los casos dan conjuntos abiertos. Por lo tanto $\varphi^{-1}[B(K,U)]$ es abierto para toda K y U, y así φ es continua. Esto termina la prueba.

Este ejercicio y (2) nos implica que:

Corolario 6.

$$\pi_n(X, x_0) \cong \pi_0(\Omega^n X, x_0) \cong \pi_n(Map_*(\mathbb{S}^n, X))$$