1: Warm Up: Feature Expansion

The concept class C consisting of functions f_r is defined by a radius r as follows:

$$f_r(x_1, x_2) = \begin{cases} +1 & 4x_1^4 + 16x_2^4 \le r; \\ -1 & \text{otherwise} \end{cases}$$

This hypothesis class is *not* linearly separable in \mathbb{R}^2 . To make positive and negative examples linearly separable, the examples must be mapped to a new space using a function $\phi(x_1, x_2)$ defined as:

$$\phi(x_1, x_2) = \begin{bmatrix} x_1^4 \\ x_2^4 \end{bmatrix}$$

To prove that the positive and negative points are linearly separated in this new space, we can produce a hyperplane that splits them. That is, a weight vector \mathbf{w} and a bias b are found such that $\mathbf{w}^T \phi(x_1, x_2) \geq b$ if, and only if, $f_r(x_1, x_2) = +1$.

$$\mathbf{w} = \begin{bmatrix} -4 \\ -16 \end{bmatrix} \text{ and } b = -r$$

2: Mistake Bound Model of Learning

(1) Each function f_r in a concept class **C** is defined by a radius r, where $1 \le r \le 80$. This gives the functions $f_1, f_2, ..., f_{79}, f_{80}$ in **C**. For a concept class of size 80.

$$|C| = 80$$

(2) Given an input point (x_1^t, x_2^t) along with it's label y^t , we can use the following expression to check whether the current hypothesis f_r has made a mistake.

$$sgn((x_1^t)^2 + (x_2^t)^2 - r^2 - 1) = sgn(y^t)$$

If both sides of the expression have the same sign, we know we have made a mistake. The intuition is $x_1^2 + x_2^2 - r^2$ will be negative in the case that r^2 is greater than $x_1^2 + x_2^2$ (an incorrect label of -1 is also negative). But $x_1^2 + x_2^2 - r^2$ will be positive when r^2 is less than $x_1^2 + x_2^2$ (an incorrect label of +1 is also positive).

There is an edge case where $x_1^2 + x_2^2 = r^2$. The incorrect labeling is -1, but $sgn(x_1^2 + x_2^2 - r^2) \neq sign(-1)$ in this case. To account for this, one is subtracted from the left side of the equation.

(3) When there is an error, the radius r must be updated. If there is a mistake when $y^t = +1$ then r will be increased by one. Otherwise, if $y^t = -1$ then r will be decreased by one. The radius r is bounded by $1 \le r \le 80$ and the modifications to r must obey this.

$$y^t = +1 : increase \ r \ by \ one.$$

$$y^t = -1$$
: decrease r by one.

(4)

(5a)

(5b)

(5c)

3.1: The Perceptron Algorithm and its Variants

(1) Running the simple Perceptron algorithm on the data from table2, with a learning rate r = 0.5, produces the following weight vector.

$$\mathbf{w} = \begin{bmatrix} 0 \\ 0.5 \\ 0 \\ -0.5 \\ 1 \end{bmatrix}$$

With one pass of the Perceptron algorithm, four mistakes were made on the table2 dataset.

Four mistakes made.

(2) Before training a binary classifier with the Perceptron algorithm, I ran some tests to determine the best learning rate r. For each learning rate, the examples from the file a5a.train were ran through the Perceptron algorithm once.

Learning Rate	Updates Made
1	92.86%

Table 1: Number of updates made during training for various learning rates.

(3)

(4)