NFA - Slide

Gabriel Rovesti

1 Esercizio 1

Testo: Determinare il DFA equivalente all'NFA con la seguente tabella di transizione, e stabilire quale linguaggio viene accettato.

	0	1
$\rightarrow q_0$	$\{q_0\}$	$\{q_0, q_1\}$
q_1	$\{q_1\}$	$\{q_0,q_2\}$
$*q_2$	$\{q_1,q_2\}$	$\{q_0,q_1,q_2\}$

Soluzione

L'NFA ha tre stati: q_0 (iniziale), q_1 e q_2 (finale). Dalle funzioni di transizione:

- Da q_0 , leggendo 0, rimaniamo in $\{q_0\}$; leggendo 1, andiamo in $\{q_0, q_1\}$.
- Da q_1 , leggendo 0 andiamo in $\{q_1\}$, leggendo 1 in $\{q_0, q_2\}$.
- Da q_2 (finale), leggendo 0 andiamo in $\{q_1, q_2\}$, leggendo 1 in $\{q_0, q_1, q_2\}$.

Costruzione del DFA (Subset Construction). Identifichiamo come stato iniziale del DFA $S_0 = \{q_0\}$. Dopodiché:

$$\delta'(S_0, 0) = \{q_0\}, \quad \delta'(S_0, 1) = \{q_0, q_1\}.$$

Chiamiamo $S_1 = \{q_0, q_1\}$. Ora da S_1 :

$$\delta'(S_1,0) = \{ \delta(q_0,0) \cup \delta(q_1,0) \} = \{q_0\} \cup \{q_1\} = \{q_0,q_1\} = S_1,$$

$$\delta'(S_1,1) = \{ \delta(q_0,1) \cup \delta(q_1,1) \} = \{q_0,q_1\} \cup \{q_0,q_2\} = \{q_0,q_1,q_2\}.$$

Chiamiamo $S_2 = \{q_0, q_1, q_2\}$. Infine da S_2 :

$$\delta'(S_2,0) = \{q_1,q_2\} \cup \{q_1\} \cup \ldots = \{q_0,q_1,q_2\} \text{ e } \delta'(S_2,1) = \{q_0,q_1,q_2\}.$$

Verificando i dettagli, in pratica da S_2 si resta in S_2 su 0 e 1.

Le uniche partizioni di stati effettivamente raggiunte sono:

$$S_0 = \{q_0\}, \quad S_1 = \{q_0, q_1\}, \quad S_2 = \{q_0, q_1, q_2\}.$$

Lo stato finale nel DFA è ogni insieme che contenga q_2 (perché q_2 è finale nell'NFA). Dunque S_2 è stato finale; S_0 e S_1 non lo sono.

Linguaggio accettato. Per arrivare in S_2 , occorre leggere almeno due simboli 1 nella stringa (in qualunque ordine di 0 e 1), perché:

- Dallo stato iniziale $S_0 = \{q_0\}$, la **prima** volta che leggo 1 passo in S_1 .
- Da S_1 , la **seconda** volta che leggo 1 passo in S_2 (finale).

Dopo di ciò, in S_2 rimango su qualunque ulteriore ingresso. Conclusione: L = insieme di stringhe binarie contenenti almeno due simboli 1 (in qualsiasi posizione).

2 Esercizio 2 (variante)

Testo: La tabella di transizione è la stessa di Esercizio 1. Si richiede nuovamente di determinare il DFA equivalente e descrivere il linguaggio.

Essendo la stessa specifica di Esercizio 1 (stessi stati e stesse transizioni, con q_2 finale), la soluzione è ovviamente identica:

- Il DFA risultante ha 3 stati: $\{q_0\}$, $\{q_0, q_1\}$, $\{q_0, q_1, q_2\}$, col terzo stato unico finale.
- Il linguaggio è "tutte le stringhe su $\{0,1\}$ con almeno due 1".

3 Esercizio 3

Testo: Trasformare il seguente NFA in un DFA equivalente:

Soluzione

Applicheremo la subset construction, rinominando gli insiemi di stati come S_i . (Si omette qualche passaggio esplicito per brevità.)

1. Stato iniziale $S_0 = \{q_0\}.$

2. Transizioni da S_0

- Con 0: $\delta(q_0, 0) = \{q_1, q_2\}$, dunque $S_1 = \{q_1, q_2\}$.
- Con 1: $\delta(q_0, 1) = \{q_1\}$, dunque $S_2 = \{q_1\}$.

3. Transizioni da $S_1 = \{q_1, q_2\}$

- Con 0: $\delta(q_1,0) = \{q_3\}, \ \delta(q_2,0) = \emptyset$, unione = $\{q_3\}$, chiamiamola S_3 .
- Con 1: $\delta(q_1, 1) = \emptyset$, $\delta(q_2, 1) = \{q_3\}$, unione = $\{q_3\} = S_3$.

4. Transizioni da $S_2 = \{q_1\}$

- Con 0: $\{q_3\}$ (come sopra).
- Con 1: \emptyset (se q_1 su 1 è vuoto, stando al diagramma).

5. Transizioni da $S_3 = \{q_3\}$

- Con 0: \emptyset (nel disegno, q_3 su 0 non porta da nessuna parte).
- Con 1: $\{q_4\}$, chiamiamola S_4 .

6. Transizioni da $S_4 = \{q_4\}$

- Con 0: q_4 su 0 rimane in $\{q_4\}$ (loop).
- Con 1: non c'è transizione q_4 su 1 (vuoto), quindi \emptyset .

7. Stato \emptyset Rimane come "stato pozzo" per entrambe le lettere 0, 1.

Raccogliendo:

$$\begin{array}{lll} S_0 = \{q_0\} & (iniziale) \\ S_1 = \{q_1,q_2\}, & S_2 & = \{q_1\}, & S_3 = \{q_3\}, & S_4 & = \{q_4\}, & S_5 = \emptyset & (stato\ pozzo). \end{array}$$

Se q_4 è finale nell'NFA, allora ogni sottoinsieme che contenga q_4 è finale, i.e. S_4 lo è. Il DFA risultante è mostrato schematicamente:

4 Esercizio 4

Testo: Dato il seguente NFA, determinare:

- 1. il linguaggio riconosciuto,
- 2. un DFA equivalente.

(Lo schema è puramente indicativo; in caso di discrepanze, bisogna vedere la tabella di transizione effettiva.)

Soluzione (cenni)

Bisogna capire quali stati siano finali. Se ad esempio q_6 è finale, potremmo individuare tutti i percorsi che portano a q_6 e vedere che cosa implichino sulla struttura delle stringhe lette. In linea di massima, poi, si esegue la costruzione a sottoinsiemi e si ottiene il DFA con gli insiemi di stati. Il linguaggio potrebbe includere le stringhe che compiono un certo percorso $q_0 \rightarrow q_1 \rightarrow q_3 \rightarrow q_5 \rightarrow q_6$ (magari 0–1–0–1 in quell'ordine), o $q_0 \rightarrow q_2 \rightarrow q_4 \rightarrow q_6$ (magari 0–1–1). Ogni loop su q_6 con 1 permette stringhe che finiscono con un certo numero di 1, ecc. Senza la tabella completa e gli stati finali ben definiti, la descrizione resta qualitativa. Il DFA si ricava con il processo standard.

5 Esercizio 5

Testo: Convertire il seguente NFA in DFA:

	0	1
$\rightarrow A$	$\{A,C\}$	$\{B\}$
*B	$\{C\}$	$\{B\}$
C	$\{B\}$	$\{D\}$
D	Ø	Ø

Soluzione

Per prima cosa individuiamo lo stato iniziale $\{A\}$ nel DFA, e andiamo via via costruendo tutti i sottoinsiemi raggiungibili:

$$S_0 = \{A\},\$$

 $\delta'(S_0, 0) = \{A, C\}, \quad \delta'(S_0, 1) = \{B\}.$

Poi da $\{A,C\}$ si considerano $\delta(A,0) \cup \delta(C,0) = \{A,C\} \cup \{B\} = \{A,B,C\}$ ecc. Lo stato B è finale nell'NFA, quindi ogni insieme che contenga B risulterà finale nel DFA. Lo stato D è "morto" (non produce transizioni), e se capita in un insieme anch'esso si gestisce come un trap. Lo schema finale del DFA è (in forma di tabella o diagramma) con tutti i sottoinsiemi $\{A\}, \{B\}, \{C\}, \{A,B,C\}, \{B,D\}, \ldots, \emptyset$, segnando come "finali" quelli che includono B.

6 Esercizio 6

Testo: Costruire un NFA che riconosca le parole costituite da zero o più a, seguite da zero o più b, seguite da zero o più c. Calcolarne la ϵ -chiusura di ogni stato, e infine convertire l'NFA in DFA.

Soluzione

L'NFA "naturale" è:

Naturalmente, per "tutte le a seguite da tutte le b seguite da tutte le c" si possono usare più stati. Ad esempio:

$$q_0 \xrightarrow{\varepsilon} q_1 \xrightarrow{\varepsilon} q_2$$
, q_1 con loop a , q_2 con loop b , ...

E infine un terzo anello per c. Dipende esattamente da come si vogliono distribuire le ε -transizioni. Si calcolano poi le ε -chiusure. Per esempio:

$$ECLOSE(q_0) = \{ q_0, q_1, q_2 \}, \quad ECLOSE(q_1) = \{ q_1, q_2 \}, \quad ECLOSE(q_2) = \{ q_2 \}, \dots$$

e si applica la subset construction standard. Otterremo un DFA i cui stati sono i vari insiemi $\{q_0, q_1, q_2\}, \{q_1, q_2\}, \{q_2\}, \ldots$, e uno stato \emptyset di "pozzo". Tutti gli insiemi che contengano lo stato finale corrispondente (nell'esempio, quello del blocco c) saranno finali.