A) Verdadero

De
$$f(n) = \Theta(g(n))$$
 existen C1 , ${}^C2 > 0$ y n0 tales que ${}^C1g(n) \leq {}^C2g(n)$ De $g(n) = \Theta(h(n))$ existen C3 , ${}^C4 > 0$ y tales que ${}^C3h(n) \leq g(n) \leq {}^C4h(n)$ Conminando ambos ${}^C1^C3h(n) \leq f(n) \leq {}^C2^C4h(n)$ para números mayorees al Max $\{n0, n1\} \Rightarrow f(n) = \Theta(h(n))$ Por simetría de Θ , también $h(n) = \Theta(f(n))$

B) Verdadero

$$f(n) \le C \cdot g(n) \vee g(n) \le D \cdot h(n) \Rightarrow f(n) \le (CD)h(n) \Rightarrow f(n) = O(h(n))$$

$$\text{Pero } f(n) = O(h(n)) \Leftrightarrow h(n) = \Omega(f(n))$$

C) Falso

Los bucles en el seudocódigo están generando $\sim \frac{n(n-1)}{2}$ iteraciones pero la misma operación interna con la atupla[i:j]crea una nueva tupla de longitud |j-i| y hashea sus longitudes para iterarla al set $\Rightarrow \cos \Theta(L)$ por iteración. Por lo tanto, su costo real termina siendo $\Theta(n^3)$, no $\Theta(n^2)$.