画像信号処理特論

2020年度 高橋桂太

Today's contents

Mean filtering

Input

Output

Application of mean filtering

Input

Output

Detail Enhancement (unsharp masking)

• Edge Detection

Input

Horizontal edge

• Edge Detection

Vertical edge

Laplacian

Principle of Mean Filtering

Input

Output

Principle of Mean Filtering

Input

Output

Implementation of image filtering

```
Loop for y (H times)
     Loop for x (W times)
          Value = 0
          Loop for i (M times)
             Loop for j (M times)
                 Value += f(x+i, y+i)
          g(x,y) = Value/(M*M)
```

Take care when processing image boundaries

Why mean filtering blurs images?

• Let us consider a 1-dimentional signal.

$$g(x) = (f(x-1) + f(x) + f(x+1))/3$$

Applying Fourier transform to both sides...

$$g(x) \Leftrightarrow G(\omega_x)$$
 $f(x) \Leftrightarrow F(\omega_x)$
 $f(x + \alpha) \Leftrightarrow F(\omega_x) \exp(j\omega_x \alpha)$

Why mean filtering blurs images?

$$g(x) = (f(x-1) + f(x) + f(x+1))/3$$

$$G(\omega_x) = F(\omega_x) \left(\frac{1 + 2\cos(\omega_x)}{3}\right)$$

$$\left|\left(\frac{1 + 2\cos(\omega_x)}{3}\right)\right| \qquad 1$$

$$-\pi \qquad 0 \qquad \pi \qquad \omega_x$$

Representation of general filters

Can be written as convolution with a kernel

Kernel

1/9	1/9	1/9
1/9	1/9	1/9
1/9	1/9	1/9

$$g(x,y)=h(x,y)*f(x,y)$$

Representation of other 3x3 filters

1/9	1/9	1/9	-1	0	1	-1	-2	-1	1	1	1
1/9	1/9	1/9	-2	0	2	0	0	0	1	-8	1
1/9	1/9	1/9	-1	0	1	1	2	1	1	1	1
	Mean Sobel			obel		Lai	nlaci	an			

$$g(x,y)=h(x,y)*f(x,y)$$

Any filter kernel is applicable in the same manner

Edge detection with 3x3 filters

-1	0	1
-2	0	2
-1	0	1

-1	-2	-1
0	0	0
1	2	1

1	1	1
1	-8	1
1	1	1

0	1	0
1	-4	1
0	1	0

Sobel

Sobel

Laplacian

$$h * \approx \frac{\partial}{\partial x}$$

$$h * \approx \frac{\partial}{\partial y}$$

$$h * \approx \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}$$

Implementation using kernel

```
kernel[3][3]
Loop for y (H times)
  Loop for x (W times)
       Value = 0
        Loop for i (M times)
          Loop for j (M times)
           Value += f(x+i, y+j)*kernel[j+1][i+1]
```

Boundary processing

• Just ignore (exclude) the boundary pixels

Boundary processing

- Extend the boundaries assuming ...
 - Pixel values are zero outside the boundary
 - Pixel values are kept constant across the boundary
 - Image signal is repetitive (consistent with DFT)

Exercises

- Build and execute "sample2"
- Implement image filters
 - Mean, horizontal/vertical edge detection, Laplacian
- Implement detail enhancement
 - (original) + (original) (mean)
 - (original) + (edge)