政治学方法論 ||

第9回:階層モデル(続)

矢内 勇生

法学部・法学研究科

2015年6月10日

神戸大学

今日の内容

- 1 8つの学校での並列実験
 - イントロダクション
 - 階層モデルを使わない推定
 - 階層モデルを使った推定
- ② Stan によるベイズ推定
 - Stan と RStan
 - 8 校の並列実験、メタ分析、その他

8つの学校での並列実験

実験の目的

特別指導が SAT-V のスコアに与える影響を調べたい

- 8 つの高校 (j = 1,...,8)
- 各校の生徒を統制群(特別指導なし)と処置群(特別指導あり)に無作為に分ける
- 処置前に模試の点数を測る(PSAT-Vと PSAT-M)
- 学校ごとに、SAT-V の点数を PSAT-V と PSAT-M に回帰し、 特別指導の平均処置効果 (y_j) とその標準誤差 (σ_j) を求める

問題の設定

- 8 つの独立した高校; J = 8
- ullet 高校 j における平均処置効果 y_i から、 θ_i を推定する
- ullet y_j の標準誤差 σ_j は既知(OLS により計算済み)

学校	Α	В	С	D	Ε	F	G	Н
y_j	28	8	-3	7	-1	1	18	12
σ_j	15	10	16	11	9	11	10	18

• θ_i の尤度 $(y_i$ のサンプリングモデル):

$$y_j | \theta_j \sim N(\theta_j, \sigma_j^2)$$

母数分布(事前分布)

$$\theta_j \stackrel{\text{iid}}{\sim} N(\mu, \tau^2)$$

Separating (no pooling)

階層モデルを使わない推定

Complete pooling

階層モデル

● 尤度(サンプリングモデル):

$$y_j | \theta_j \sim N(\theta_j, \sigma_j^2)$$

● 事前分布:

$$\theta_j | \mu, \tau \sim N(\mu, \tau^2)$$

● 無情報超事前分布

$$p(\mu|\tau) \propto 1$$

かつ

$$p(\tau) \propto 1$$

事後分布

● 同時事後分布

$$p(\theta, \mu, \tau | y) = p(\tau | y) p(\mu | \tau, y) (\theta | \mu, \tau, y)$$

- したがって、以下の順番でシミュレーションを行う
 - 1 τ | y を抽出する
 - ② μ|τ,y を抽出する
 - ③ $\theta_i | \mu, \tau, y \ (j = 1, ..., 8)$ を抽出する
 - 4 1から3をL回繰り返し、事後分布を得る

θ_1 (A 校の平均処置効果)の事後分布

Stan と RStan

Stan とは?

Stan

- ベイズ推定を実行するプログラム
- MCMC によるシミュレーション(サンプリング): NUTS, HMC
- C++: Linux, Mac, Windows 上で動く
- Free: オープンソース、無料
- RStan: Stan のR用インターフェース

Stan と RStan

RStan のインストールと使用

- インストールについてはココ を参照
- 使い方:read the manual

RStan を使った分析例

授業のウェブサイトを参照

階層モデルと Stan によるベイズ推定