Generative Pretraining from Pixels

Сухарьков Александр, БПМИ171

Подход авторов

- 1. Препроцессинг картинок
- 2. Предобучение с авторегрессионной или BERT задачей
- 3. Дообучение или Linear Probe

Предобучение - авторегрессионная задача

датасет X

$$x = (x_1, ..., x_n)$$

$$p(x) = \prod_{i=1}^{n} p(x_{\pi_i} | x_{\pi_1}, ..., x_{\pi_{i-1}}, \theta)$$

$$L_{AR} = \mathop{\mathbb{E}}_{x \sim X} [-\log p(x)]$$

Предобучение - BERT задача

$$L_{BERT} = \underset{x \sim X}{\mathbb{E}} \underset{M}{\mathbb{E}} \sum_{i \in M} \left[-\log p\left(x_i | x_{[1,n] \setminus M}\right) \right]$$

Архитектура

```
n^l = 	ext{layer\_norm}(h^l) a^l = h^l + 	ext{multihead\_attention}(n^l) h^{l+1} = a^l + 	ext{mlp}(	ext{layer\_norm}(a^l)) n^L = 	ext{layer\_norm}(h^L)
```

Дообучение

Average Pooling n^L

$$f^L = \langle n_i^L \rangle_i$$

Кросс-энтропия L_{CLF}

$$L_{GEN} + L_{CLF}$$
,где $L_{GEN} \in \{L_{AR}, L_{BERT}\}$

Датасеты

ImageNet ILSVRC 2012, 4% валидация

Аугментации: изменения размера, чтобы минимальная размерность была 224, center crop 224x224

CIFAR-10, CIFAR-100, STL-10 - 10% валидация

Аугментации: 4 пикселя отражения добавляются с каждой стороны, crop 32x32 случайно из полученного изображения или его горизонтального отображения

Размерности

 $224^2 imes 3$. - даже один слой не влезет в GPU

Input Resolution (IR) - $32^2 \times 3$, $48^2 \times 3$, $64^2 \times 3$

Model Resolution (MR) - 32^2 , 48^2 64^2

Модели

iGPT-XL: 60 слоев, размер эмбеддинга - 3072, 6.8В параметров

iGPT-L: 48 слоев, размер эмбеддинга - 1536, 1.4М параметров

iGPT-M: 36 слоев, размер эмбеддинга - 1024, 455М параметров

iGPT-S: 24 слоя, размер эмбеддинга - 512, 76М параметров

Обучение

Предобучение iGPT-XL - batch size = 64, n_iterations = 2M

Предобучение других моделей - batch size = 128, n_iterations = 1M

Adam с $\beta_1 = 0.9$ и $\beta_2 = 0.95$

Для дообучения тот же batch size и тот же Adam

Для linear probing для ImageNet SGD с моментумом = 0.9 и высоким lr (30, 10, 3, ...)

Для CIFAR и STL - L-BFGS

Model	Acc	Unsup Transfer	Sup Transfer
CIFAR-10			
ResNet-152	94		\checkmark
SimCLR	95.3	\checkmark	***
iGPT-L	96.3	\checkmark	
CIFAR-100			
ResNet-152	78.0		$\sqrt{}$
SimCLR	80.2	\checkmark	(*)
iGPT-L	82.8	\checkmark	
STL-10			
AMDIM-L	94.2	\checkmark	
iGPT-L	95.5	$\sqrt{}$	

Method	IR	Params (M)	Features	Acc
Rotation	orig.	86	8192	55.4
iGPT-L	$32^2 \cdot 3$	1362	1536	60.3
BigBiGAN	orig.	86	8192	61.3
iGPT-L	$48^2 \cdot 3$	1362	1536	65.2
AMDIM	orig.	626	8192	68.1
MoCo	orig.	375	8192	68.6
iGPT-XL	$64^2 \cdot 3$	6801	3072	68.7
SimCLR	orig.	24	2048	69.3
CPC v2	orig.	303	8192	71.5
iGPT-XL	$64^2 \cdot 3$	6801	15360	72.0
SimCLR	orig.	375	8192	76.5

Model	Acc	Unsup Transfer	Sup Transfer
CIFAR-10			
AutoAugment	98.5		
SimCLR	98.6	$\sqrt{}$	
GPipe	99.0	•	$\sqrt{}$
iGPT-L	99.0	\checkmark	
CIFAR-100			
iGPT-L	88.5	\checkmark	
SimCLR	89.0	\checkmark	
AutoAugment	89.3	•	
EfficientNet	91.7		\checkmark

Выводы

Подход авторов конкурентоспособен, также доказывает, что такие методы имеют место быть

HO

очень ресурсозатратный;

использует слишком маленькие картинки из-за этого.

Вопросы

- 1. Какие две разные постановки задачи используются на этапе предобучения? Какие функции могут использоваться для минимизации?
- 2. Как выглядит архитектура декодера трансформера?
- 3. Что происходит на этапе дообучения и какая функция минимизируется?

Список источников

https://cdn.openai.com/papers/Generative Pretraining from Pixels V2.pdf