

Kourosh Davoudi kourosh@ontariotechu.ca

Lecture 4: Sort Algorithms II

CSCI 3070U: Design and Analysis of Algorithms

Learning Outcomes

- Sorting Algorithms
 - Quick Sort
 - Linear Time Sort Algorithms

Quick Sort Foundations

- Quicksort uses a divide-and-conquer approach.
- To sort a subarray A[p .. r]
 - **Divide**: partition A[p .. r] into two (possibly empty) subarrays A[p .. q-1] and A[q+1 .. r] such that A[p .. q-1] \leq A[q] and A[q] \leq A[q+1 .. r]

- Conquer: sort the subarrays using Quicksort recursively.
- Combine: simple concatenation of A[p .. q-1], A[q] and A[q+1 .. r] produces the correct ordering

Quick Sort

```
QUICKSORT(A, p, r)

if p < r

q = \text{PARTITION}(A, p, r)

QUICKSORT(A, p, q - 1)

QUICKSORT(A, q + 1, r)
```


 Partitions subarray A[p .. r] by using the last element A[r] as a pivot element

 The four regions maintained by the procedure PARTITION on a subarray A[p .. r]

• Case 1: If A[j] > x,

• Case 1: If A[j] > x,

the only action is to increment j

• Case 1: If $A[j] \le x$,

• Case 1: If $A[j] \le x$,

Index i is incremented, A[i] and A[j] are swapped, and then j is incremented.


```
PARTITION(A, p, r)

x = A[r]

i = p - 1

for j = p to r - 1

if A[j] \le x

i = i + 1

exchange A[i] with A[j]

exchange A[i + 1] with A[r]

return i + 1
```


Quick Sort Performance

Worst Case:

$$T(n) = T(n-1) + T(0) + \Theta(n)$$
$$= T(n-1) + \Theta(n).$$

$$T(n) = \Theta(n^2)$$

• Best Case:

$$T(n) = 2T(n/2) + \Theta(n)$$

$$T(n) = \Theta(n \lg n)$$

- How fast can we sort?
 - All sorts seen so far are

$$\Omega(n \log n)$$

- We'll show that $\Omega(n \log n)$ is a lower bound for comparison sorts.
- We use decision trees for this purpose:
 - The important factor is number of comparison and decision tree help us track it!

- For insertion sort on 3 elements
 - Lets track number of comparisons!

Each leaf is a permutation of orders

- How many leaves on the decision tree? $\geq n!$
 - because every permutation appears at least once

• A particular trace of the algorithm is a simple path from the root to a leaf node

- What is the length of the longest path from root to leaf?
 - Depends on algorithms:
 - Insertion Sort: $\Theta(n^2)$

- Lemma: Any binary tree of height h and l leaves, we have $l \leq 2^h$
- Theorem: Any decision tree that sorts n elements has height

Proof

$$\Omega(n \log n)$$

- $l \geq n!$
- By lemma, $n! \le l \le 2^h$ or $2^h \ge n!$
- Take logs: $h \ge \lg(n!)$
- Use Stirling's approximation: $n! > (n/e)^n$

$$h \geq \lg(n/e)^n$$

$$= n \lg(n/e)$$

$$= n \lg n - n \lg e$$

$$= \Omega(n \lg n).$$

Stirling's approximation

$$n! = \sqrt{2\pi n} \left(\frac{n}{e}\right)^n \left(1 + \Theta\left(\frac{1}{n}\right)\right)$$

Linear Time Sorting

- Comparison sorting lower bound: $n \log n$
- So, how is linear time sorting possible?
 - We don't use comparison between elements to sort
 - Linear sorting algorithms only work with numeric keys!

Counting Sort Radix Sort Bucket Sort

Counting Sort

• Assumption: numbers to be sorted are integers in

$$\{0, 1, \dots, k\}$$

- Input: A[1..n] , where $A[j] \in \{0, 1, ..., k\}$ for j = 1, 2, ..., n
- Output: B[1..n], sorted. B is assumed to be already allocated and is given as a parameter
- Auxiliary storage: C[0..k]

Counting Sort

COUNTING-SORT(A, B, k)

```
1 let C[0..k] be a new array
```

2 for
$$i = 0$$
 to k

$$C[i] = 0$$

4 **for**
$$j = 1$$
 to $A.length$

$$C[A[j]] = C[A[j]] + 1$$

6 // C[i] now contains the number of elements equal to i.

7 **for**
$$i = 1$$
 to k

8
$$C[i] = C[i] + C[i-1]$$

9 // C[i] now contains the number of elements less than or equal to i.

10 **for**
$$j = A.length$$
 downto 1

$$11 B[C[A[j]]] = A[j]$$

12
$$C[A[j]] = C[A[j]] - 1$$

Counting Sort

- Counting sort is stable
 - Keys with same value appear in same order in output as they did in input
- What is it good for?
 - Small k
 - Integers are 16-bit or 32-bit which are too big for count sort because it would require an auxiliary array of

$$C[1...2^{32}]!$$

 $\Theta(n+k)$, which is $\Theta(n)$ if k=O(n).

COUNTING-SORT
$$(A, B, n, k)$$

let $C[0..k]$ be a new array
for $i = 0$ to k
 $C[i] = 0$
for $j = 1$ to n
 $C[A[j]] = C[A[j]] + 1$
for $i = 1$ to k
 $C[i] = C[i] + C[i - 1]$
for $j = n$ downto 1
 $B[C[A[j]]] = A[j]$
 $C[A[j]] = C[A[j]] - 1$

Radix Sort Idea

- Key Ideas:
 - View each number as a multi-digit word.
 - Each digit can be arbitrary bits long.
 - Sort from the least significant digit to the most significant digit using any **stable** sorting algorithm.

```
RADIX-SORT(A, d)

for i = 1 to d

use a stable sort to sort array A on digit i
```


Radix Sort

• Example:

Radix Sort Time Analysis

- Assume that we use counting sort as the intermediate sort
 - $\Theta(n+k)$ per pass (digits in range 0,...,k)
 - *d* passes
 - $\Theta(d(n+k))$ total
 - If k = O(n) , the complexity is $\Theta(dn)$

Bucket Sort

- Assumption: the input is generated by a random process that distributes elements uniformly over [0, 1)
- General Idea
 - Divide [0,1) into n equal-sized *buckets*
 - Distribute the *n* input values into the buckets
 - Sort each bucket.
 - Then go through buckets in order, listing elements in each one

Bucket Sort

Bucket Sort

- Input: A[1..n], where $0 \le A[i] \le 1$ for all i
- Auxiliary array: B[0..n-1] of linked lists, each list initially empty

```
BUCKET-SORT(A, n)

let B[0..n-1] be a new array

for i = 0 to n-1

make B[i] an empty list

for i = 1 to n

insert A[i] into list B[\lfloor n \cdot A[i] \rfloor]

for i = 0 to n-1

sort list B[i] with insertion sort

concatenate lists B[0], B[1], \ldots, B[n-1] together in order

return the concatenated lists
```


- Average Case:
 - Assume n_i = the number of elements placed in bucket B[i].

$$T(n) = \Theta(n) + \sum_{i=0}^{n-1} O(n_i^2)$$

- Average Case:
 - Assume n_i = the number of elements placed in bucket B[i].

$$T(n) = \Theta(n) + \sum_{i=0}^{n-1} O(n_i^2)$$

$$E[T(n)] = E\left[\Theta(n) + \sum_{i=0}^{n-1} O(n_i^2)\right]$$

$$= \Theta(n) + \sum_{i=0}^{n-1} E\left[O(n_i^2)\right] \quad \text{(linearity of expectation)}$$

$$= \Theta(n) + \sum_{i=0}^{n-1} O(E[n_i^2]) \quad (E[aX] = aE[X])$$

Average Case:

$$= \Theta(n) + \sum_{i=0}^{n-1} O(\mathbb{E}[n_i^2])$$

Claim

$$E[n_i^2] = 2 - (1/n)$$
 for $i = 0, ..., n-1$

Define indicator random variables:

- $X_{ij} = I\{A[j] \text{ falls in bucket } i\}$
- $Pr\{A[j] \text{ falls in bucket } i\} = 1/n$
- $\bullet \quad n_i = \sum_{j=1}^n X_{ij}$

Average Case:

$$E[n_i^2] = E\left[\left(\sum_{j=1}^n X_{ij}\right)^2\right]$$

$$= E\left[\sum_{j=1}^n X_{ij}^2 + 2\sum_{j=1}^{n-1} \sum_{k=j+1}^n X_{ij} X_{ik}\right]$$

$$= \sum_{j=1}^n E[X_{ij}^2] + 2\sum_{j=1}^{n-1} \sum_{k=j+1}^n E[X_{ij} X_{ik}] \quad \text{(linearity of expectation)}$$

Average Case:

$$E[X_{ij}^2] = 0^2 \cdot \Pr\{A[j] \text{ doesn't fall in bucket } i\} + 1^2 \cdot \Pr\{A[j] \text{ falls in bucket } i\}$$

$$= 0 \cdot \left(1 - \frac{1}{n}\right) + 1 \cdot \frac{1}{n}$$

$$= \frac{1}{n}$$

 $E[X_{ij}X_{ik}]$ for $j \neq k$: Since $j \neq k$, X_{ij} and X_{ik} are independent random variables

$$\Rightarrow E[X_{ij}X_{ik}] = E[X_{ij}]E[X_{ik}]$$
$$= \frac{1}{n} \cdot \frac{1}{n}$$
$$= \frac{1}{n^2}$$

Average Case:

$$E[n_i^2] = \sum_{j=1}^n \frac{1}{n} + 2 \sum_{j=1}^{n-1} \sum_{k=j+1}^n \frac{1}{n^2}$$

$$= n \cdot \frac{1}{n} + 2 \binom{n}{2} \frac{1}{n^2}$$

$$= 1 + 2 \cdot \frac{n(n-1)}{2} \cdot \frac{1}{n^2}$$

$$= 1 + \frac{n-1}{n}$$

$$= 1 + 1 - \frac{1}{n}$$

$$= 2 - \frac{1}{n} \quad \text{(claim)}$$

Therefore:

$$E[T(n)] = \Theta(n) + \sum_{i=0}^{n-1} O(2 - 1/n)$$
$$= \Theta(n) + O(n)$$
$$= \Theta(n)$$

Wrap-Up

- We Learned
 - Quick sort as an important sorting algorithm
 - Lower bound on sorting algorithm
 - Linear time sort algorithms
 - Their assumptions
 - Case studies
 - Counting Sort
 - Radix Sort
 - Bucket Sort
 - Probabilistic Time Complexity Analysis

