

Course Overview

You are here...

Term	CDF	GCD	GCDAI	PGPDSAI
Term 1	Data Analytics with Python	Data Analytics with Python	Data Analytics with Python	Data Analytics with Python
Term 2	Data Visualization Techniques	Data Visualization Techniques	Data Visualization Techniques	Data Visualization Techniques
Term 3	EDA & Data Storytelling	EDA & Data Storytelling	EDA & Data Storytelling	EDA & Data Storytelling
		Minor Project	Minor Project	Minor Project
Term 4		Machine Learning Foundation	Machine Learning Foundation	Machine Learning Foundation
Term 5		Machine Learning Intermediate	Machine Learning Intermediate	Machine Learning Intermediate
Term 6		Machine Learning Advanced (Mandatory)	Machine Learning Advanced (Mandatory)	Machine Learning Advanced (Mandatory)
		Data Visualization with Tableau (Elective - I)	Data Visualization with Tableau (Elective - I)	Data Visualization with Tableau (Elective - I)
		Data Analytics with R (Elective - II)	Data Analytics with R (Elective - II)	Data Analytics with R (Elective - II)
		Capstone Project	Capstone Project	Capstone Project
Term 7		Bonus: Industrial ML (ML – 4 & 5)	Basics of AI, TensorFlow, and Keras	Basics of AI, TensorFlow, and Keras
Term 8			Deep Learning Foundation	Deep Learning Foundation
Term 9			NPL – I/CV – I	CV – I
Term 10			NLP – II/CV – II	NLP – I
			Capstone Project	Capstone Project
Term 11				CV – II
Term 12				NLP – II
				NLP – III + CV – III
				AutoVision & AutoNLP

Term Context

- Introduction to Machine Learning
- Linear Regression
- Logistic Regression

- Regression Measures
- Mean Absolute Error (MAE)
- Mean Squared Error (MSE)
- Root Mean Squared Error (RMSE)
- Mean Absolute Percentage Error(MAPE)
- R Squared
- Adjusted R Squared
- **Classification Measures**
- Confusion Matrix
- Accuracy
- Classification Error
- Sensitivity / Specificity
- Precision / Recall
- $F Measure / F\beta Measure$
- ROC/AUC
- Classification Report

Need of Model Evaluation

- To estimate the performance of the model for future instances.
- Whether the model will estimate good results or not.

- Mean Absolute Error (MAE)
- Mean Squared Error (MSE)
- Root Mean Squared Error (RMSE)
- Mean Absolute Percentage Error(MAPE)
- R Squared
- Adjusted R Squared

Classification Measures

- Confusion Matrix
- Accuracy
- Classification Error
- Sensitivity / Specificity
- Precision / Recall
- $F Measure / F\beta Measure$
- ROC/AUC
- Classification Report

1. Mean Absolute Error (MAE)

- It gives the average difference of actual and predicted values.
- They don't give direction of error i.e. Under-Prediction or Over-Prediction.

$$MAE = \frac{1}{n} \sum_{i=1}^{n} |y_i - \hat{y}_i|$$

- y_i: Actual value
- \hat{y}_i : Predicted value
- n : No. of points

Mean Absolute	rror (MAE	Exam	ple
				4

 $y = mix_1 + m_2x_2 + m_3x_3 + c$ $y = 0.5x_1 + 0.9x_2 + 2.3x_1 + 1$ (assume) $y = y_pred$

2 1	4 A-4p
	n

	TV	Radio	Newspaper	Sal	es(actual)	Sale	es(predicted)
(230 zi	40 %2	2370	AI	22	91	23.5
2	45	42	45	A2	10	P2	12
3	20	45	60	A3	15	P3	14.2
4	150	41	55	A4	20	14	17.3
5	180	12	30	AS	25	PĘ	24.9

MAE =
$$(|22-23.5| + |10-12| + |15-14.2| + |20-17.3| + |25-24.9|) \div 5$$

MAE =
$$(1.5 + 2 + 0.8 + 2.7 + 0.1) \div 5$$

$$MAE = 7.1 \div 5$$

$$MAE = 1.42$$

- Mean Absolute Error (MAE)
- Mean Squared Error (MSE)
- Root Mean Squared Error (RMSE)
- Mean Absolute Percentage Error(MAPE)
- R Squared
- Adjusted R Squared

Classification Measures

- Confusion Matrix
- Accuracy
- Classification Error
- Sensitivity / Specificity
- Precision / Recall
- $F Measure / F\beta Measure$
- ROC/AUC
- Classification Report

2. Mean Squared Error (MSE)

- It gives the average squared difference of actual and predicted values.
- Also known as Mean Squared Deviation (MSD).
- It incorporates both variance (spread) and bias (average value from actual).

$$MSE = \frac{1}{n} \sum_{i=1}^{n} (yi - \hat{y}_i)^2$$

- y_i: Actual value
- \hat{y}_i : Predicted value
- n : No. of points

Mean Squared Error (MSE) Example

-	4

4-pred

TV	Radio	Newspaper	Sales(actual)	Sales(predicted)
230	40	70	22	23.5
45	42	45	10	12
20	45	60	15	14.2
150	41	55	20	17.3
180	12	30	25	24.9

MSE =
$$((22-23.5)^2 + (10-12)^2 + (15-14.2)^2 + (20-17.3)^2 + (25-24.9)^2) \div 5$$

MSE = $(2.25+4+0.64+7.29+0.01) \div 5$

$$MSE = (2.25 + 4 + 0.64 + 7.29 + 0.01) \div 5$$

$$MSE = 14.19 \div 5$$

$$MSE = 2.83$$

- Mean Absolute Error (MAE)
- Mean Squared Error (MSE)
- Root Mean Squared Error (RMSE)
- Mean Absolute Percentage Error(MAPE)
- R Squared
- Adjusted R Squared

Classification Measures

- Confusion Matrix
- Accuracy
- Classification Error
- Sensitivity / Specificity
- Precision / Recall
- $F Measure / F\beta Measure$
- ROC/AUC
- Classification Report

3. Root Mean Squared Error (RMSE)

- It is the standard deviation of residuals (errors) or spread of residuals.
- It explains concentration of the data around the line of best fit.
- As compared to mean absolute error, RMSE punishes large errors.

$$RMSE = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2}$$

- y_i: Actual value
- \hat{y}_i : Predicted value
- n : No. of points

Root Mean Squared Error (RMSE) Example

TV	Radio	Newspaper	Sales(actual)	Sales(predicted)
230	40	70	22	23.5
45	42	45	10	12
20	45	60	15	14.2
150	41	55	20	17.3
180	12	30	25	24.9

RMSE =
$$(((22-23.5)^2 + (10-12)^2 + (15-14.2)^2 + (20-17.3)^2 + (25-24.9)^2) \div 5)^{1/2}$$

RMSE =
$$((2.25 + 4 + 0.64 + 7.29 + 0.01) \div 5)^{1/2}$$

RMSE =
$$(14.19 \div 5)^{1/2}$$

RMSE = 1.68

Need of Model Evaluation

Regression Measures

- Mean Absolute Error (MAE)
- Mean Squared Error (MSE)
- Root Mean Squared Error (RMSE)
 - Mean Absolute Percentage Error(MAPE)
- R Squared
- ▲ Adjusted R Squared
 - **Classification Measures**
 - Confusion Matrix
 - Accuracy
 - Classification Error
 - Sensitivity / Specificity
 - Precision / Recall
 - $F Measure / F\beta Measure$
 - ROC/AUC
 - Classification Report

4. Mean Absolute Percentage Error(MAPE)

- Also known as Mean Absolute Percentage Deviation (MAPD).
- It usually expresses accuracy as a percentage.

$$MAPE = \frac{1}{n} \sum \left| \frac{y_i - \hat{y}_i}{y_i} \right| * 100$$

- y_i: Actual value
- \hat{y}_i : Predicted value
- n : No. of points

Mean Absolute Percentage Error(MAPE) Example

44	yp

1	
4x-4P	
,\	4/00
94	

TV	Radio	Newspaper	Sales(actual)	Sales(predicted)
230	40	70	22	23.5
45	42	45	10	12
20	45	60	15	14.2
150	41	55	20	17.3
180	12	30	25	24.9

$$A = |22 - 23.5| \div |22| = 0.06$$

$$\rightarrow$$
 B = $|10 - 12| \div |10| = 0.2$

$$C = |15 - 14.2| \div |15| = 0.053$$

$$\triangleright$$
D = |20 - 17.3| ÷ |20| = 0.135

$$E = |25 - 24.9| \div |25| = 0.004$$

MAPE =
$$[(A + B + C + D + E) \div 5] \times 100$$

MAPE =
$$[(0.06 + 0.2 + 0.053 + 0.135 + 0.004) \div 5] \times 100$$

MAPE =
$$[0.452 \div 5] \times 100$$

$$MAPE = [0.0904] \times 100$$

MAPE =
$$9.04 \%$$

Need of Model Evaluation

Regression Measures

- Mean Absolute Error (MAE)
- Mean Squared Error (MSE)
- Root Mean Squared Error (RMSE)
 - Mean Absolute Percentage Error(MAPE)
- ♣ R Squared
- Adjusted R Squared
 - **Classification Measures**
 - Confusion Matrix
 - Accuracy
 - Classification Error
 - Sensitivity / Specificity
 - Precision / Recall
 - $F Measure / F\beta Measure$
 - ROC/AUC
 - Classification Report

5. R − Squared [0 -1]

- It explains proportion of the variance in the dependent variable that is predictable from the independent variable(s).
- Also known as Coefficient of Determination and value lies between 0 & 1 (higher, the better).
- Shortcoming: It always increases with addition of more features.

Or: Davshan Ingl > Ph.D
$$\begin{cases} R^2 = 1 - \frac{RSS}{TSS} \end{cases}$$

Residual Sum of Squares(RSS) = $e_1^2 + e_2^2 + ... + e_n^2$

Total Sum of Squares(TSS) = $\sum (y_i - \overline{y})^2$

- \overline{y} = Mean value
- e = Error

R	– Sq	uared	d Exai	mple

$$\frac{R^{2}}{100} = \frac{1 - \left(\frac{e_{1}^{2} + e_{2}^{2} + \cdots + e_{n}^{2}}{5(y_{i} - \overline{y})^{2}}\right)}{5(y_{i} - \overline{y})^{2}}$$

it square	ed Example	(122	/	2(9; 7)			
I.v. Heaters / Pres D.v Target varial	dietars -> X			y	y_pred		R
Thu Tarant Varia	ble TV XI	Radio 🗸	Newspaper	Sales(actual)	Sales(predicted)	Tempusales	0
	230	40	70	22	23.5		0 - 9
f ₂	45	42	45	10	12	Education	ין אייט
X, Ny > 0.85	20	45	60	15	14.2	nsales	
$X_1 + X_2 \sim 0.87$	150	41	55	20	17.3		
X1+X2+X3ng > 0.91	180	12	30	25	24.9		
XHX21X30			•	men= 18.4			
	\Rightarrow RSS = $(22 - 23.5)^2$	+ (10 – 12)² + (1		- 17.3) ² + (25 – 2	$(4.9)^2 = 14.19$		

TSS =
$$(22 - 18.4)^2 + (10 - 18.4)^2 + (15 - 18.4)^2 + (20 - 18.4)^2 + (25 - 18.4)^2 = 141.2$$

$$R^2 = 1 - \frac{14.19}{141.2}$$

$$R^2 = 1 - 0.100$$

$$R^2 = 0.9$$

- Mean Absolute Error (MAE)
- Mean Squared Error (MSE)
- Root Mean Squared Error (RMSE)
- Mean Absolute Percentage Error(MAPE)
- R Squared
- Adjusted R Squared

Classification Measures

- Confusion Matrix
- Accuracy
- Classification Error
- Sensitivity / Specificity
- Precision / Recall
- $F Measure / F\beta Measure$
- ROC/AUC
- Classification Report

Tenp N Sales -> 6.9 6. Adjusted R - Squared Tempt touc. N Sales -> 0.87

- It measures the proportion of variance explained by only those predictors that really help in explaining the target variable.
- It should be used to compare models of different predictors sizes or while performing feature selection.

Adjusted R² =
$$1 - \frac{(1-R^2)(n-1)}{n-p-1}$$

• n = No. of data points = 5

• p = No. of predictors (1.106) of T. Vs = 3

Adjusted R – Squared Example

TV	Radio	Newspaper	Sales(actual)	Sales(predicted)
230	40	70	22	23.5
45	42	45	10	12
20	45	60	15	14.2
150	41	55	20	17.3
180	12	30	25	24.9

Adjusted
$$R^2 = 1 - \frac{(1-0.9)(5-1)}{5-3-1}$$

Adjusted
$$R^2 = 1 - \frac{(0.4)}{1}$$

Adjusted
$$R^2 = 0.6$$

Till Next Time...

