7장 - 시계열 분석

시계열 데이터

시간에 따라 변하는 데이터 (ex. 주가, 환율, 기온 등)

시계열 데이터 형태 4가지

- 1. **불규칙 변동(irregular variation)** 시간에 따른 규칙적인 움직임이 없음. 우연적으로 발생하는 변동 (ex. 전쟁, 홍수, 파업 등)
- 2. 추세 변동(trend variation):

추세: 장기간에 걸쳐 지속적으로 증가/감소하거나 일정한 상태를 유지하려는 성향짧은 기간에는 추세 변동을 찾기 어려움. (ex. 국내총생산(GDP), 인구 증가율)

- 3. 순환 변동(cyclical variation) 일정한 기간을 주기로 순환적으로 나타나는 변동
- 4. 계절 변동(seasonal variation) 계절적 영향과 사회적 관습에 따라 1년 주기로 발생하는 것

순환변동 vs 계절변동

계절변동은 고정된 주기(달, 분기, 주) 보통 1년 이내 반복

순환변동은 가변적 주기. 길이와 타이밍이 일정하지 않음. 1년 넘고 보통 2~3년 주기

규칙적 시계열 vs 불규칙적 시계열

규칙적 - 트렌드와 분산이 변하지 않음

불규칙적 - 트렌드와 분산이 변함

→ 시계열 분석 - 불규칙적 데이터를 갖는 시계열 데이터에 기법을 적용해 패턴을 찾거나 예측

여러가지 모델들

1. AR 모델(AutoRegressive)[자기 회귀] - 이전 관측 값이 이후 관측 값에 영향을 준다는 아이디어에 대한 모형

$$X_t = c + \phi_1 X_{t-1} + \phi_2 X_{t-2} + \dots + \phi_p X_{t-p} + \varepsilon_t$$

7장 - 시계열 분석

[좌측] X_t - 현재 시점/ [중앙] 과거가 현재에 미치는 영항을 모수(ϕ)에 과거 시점을 곱한 것 / [우측] ϵt - 백색잡음(오차 항)

백색잡음(white noise) 패턴이 남아있지 않고 무작위로 야기되는 잡음

p시점에서 이전에 대이터에 의해 현재 시점의 데이터가 영향을 받는 모형

2. **MA모델 (Moving Average)[이동 평균]** - 트렌드가 변화하는 상황에 적합한 **회귀** 모 델

과거의 시계열 값을 사용하는 대신 과거의 오차를 활용해 회귀식을 세움

$$X_t = \mu + arepsilon_t + heta_1 arepsilon_{t-1} + heta_2 arepsilon_{t-2} + \ldots + heta_q arepsilon_{t-q}, arepsilon_t \ WN(0,\sigma^2)$$

3. ARMA(AutoRegressive Moving Average)[자기 회귀 이동 평균]

AR + MA (과거값의 선형 조합과 예측 오차의 선형 조합)

4. ARIMA (AutoRegressive Integreted Moving Average)[자귀 회귀 누적 이동 평균] AR + MA + I(Integrated- 차분)

차분 - 연속된 시점의 값 차이를 계산에, 추세나 느린 변동을 지워서 평균이 일정한 모습으로 만드는 변환

왜? - 랜덤워크, 추세 때문에 평균이 변하는 비정상 시계열을 평균이 거의 일정한 정상 시계열로 만들기 위해

랜덤워크가 뭔가? - 이전 값 + 우연한 충격으로만 움직이는 비정상 시계열 충격? - 예측 불가능한 새 정보(백색잡음 으로 가정)

순환신경망

RNN(Recurrent Neural Network) - 현재 입력뿐만 아니라 이전까지의 정보를 함께 사용해 순서를 가진 데이터를 처리하는 신경망

t시점에서 입력 x_t 와 hidden state h_t -1을 받아 새 은닉생태 h_t 를 만든다 → 이 h_t 를 다음 은닉층에 입력으로 사용

입출력에 따른 유형

- 1. 일대다 : 이미지 켭션(image captioning)[이미지를 입력해 설명을 문장으로 출력]
 - a. 잠재코드 → 시퀀스 생성(문장 생성)/ 잠재코드 원본 데이터를 고정길이의 숫자로 압축(요약된 표현으로 더 쉽게 분류/생성/예측 하게 도와줌)
- 2. 다대일 문장입력 → 감성/문서 분류
- 3. 다대다 번역, 시퀀스 태깅(품사 태깅)

RNN계층과 셀

셀 - 시간 t에서 한번 상태를 업데이트 하는 계산 유닛

계층 - 하나의 셀을 모든 시점 1~t시간에 적용해 시퀀스 전체를 처리

구조

- 1. 은닉층 이전 은닉층의 값과 현재 입력에 은닉층 가중치로 계산.
- 2. 출력층 DNN과 계산 동일
- 3. 오차 각 단계(t)마다 오차 특정(MSE)
- 4. 역전파 BPTT(BackPropagation Through Time) 각 단계마다 오차 측정하고 역전파
 - a. 기울기 소실 문제 발생 오래 전 시점으로 갈수록 여러 번의 곱셈을 거쳐 전 달되는데 이때 발생할 수 있음(tanh, sigmoid를 사용해서) → 긴 시퀀스에 서 오래된 정보는 기억하기 어려움

LSTM

망각 게이트, 입력 게이트, 출력 게이트를 은닉층에 추가해 기울기 소멸 문제 해결

망각 게이트 - 과거 정보를 얼마나 기억할지 결정

입력 게이트 - 현재 정보를 기억

과거 정보와 현재 데이터를 입력받아 현재 정보에 대한 보존량을 결정

메모리 셀 - 각 단계에 대한 은닉 노드

망각 게이트와 입력 게이터의 이전 단계셀 정보를 계산해 현재 단계 셀 상태를 업데이 트

출력 게이트 - 과거 정보와 현제 대이터를 사용해 뉴런의 출력 결정. 이전 은닉상태와 t 번째 입력을 고려해 다음 은닉상태 계산

게이트에서 얼마나 기억하고 이런걸 어떻게 정할까?

7장 - 시계열 분석

게이트들은 모두 시그모이드를 통과해 [0,1] 값을 가짐 학습된 가중치로부터 현재 입력 x_t와 이전 은닉상태 h_t-1을 보고 매 시점 계산됨 역전파 - 중단 없는 기울기(uninterrupted gradient flow)

GRU

reset gate, update gate 2개의 게이트만 사용

Reset Gate (망각 게이트)

이전 은닉상태의 값을 얼마나 활용할 것인지에 대한 정보

Update Gate

input, forget게이트와 비슷한 역할.

과거와 현재의 정보를 각각 얼마나 반영할지에 대한 비율을 구함

z → 현재 정보 반영할 수치 / 1-z → 과거 정보 얼마나 사용할지 반영

후보 은닉(후보군) - 과거 은닉층 정보를 그대로 이용하지 않고 리셋 게이트의 결과를 이용해 계산

최종 은닉층 계산 - 업데이트 게이트 결과와 후보군 결과를 결합해 현시점의 은닉층 계산 → 장기 의존 완화/ 계산 빠름

LSTM보다 간단한 구조

양방향 RNN

RNN은 이전 시점의 데이터를 참고해서 예측을 했지만 실제 문제에서는 미래 시점의 데이터에 힌트가 있는 경우도 많다. 과거 뿐만 아니라 이후 시점의 데이터도 활용해 예측하는 것을 양방향 RNN

구조 - 총 2개의 메모리 셀

이전 시점의 은닉상태를 받아 현재의 은닉상태를 계산하는 메모리 셀

다음 시점의 은닉상태를 받아 현재의 은닉상태를 계한하는 메모리 셀

LSTM, GRU에도 같은 개념

7장 - 시계열 분석 4