1 Data structures

The following is a list of the input data structures used in data file for Gmacs.

Table 1: Input data structures

Variable	Symbol	Туре	Description
styr	t	int	Start year
endyr	t	int	End year
tstep	NA	double	time step
ndata		int	number of data groups
nsex	s	int	number of sexes
nshell	v	int	number of shell conditions
nmature	m	int	number of maturity states
nclass	l	int	number of size classes in the model
ndclass	l	int	number of size classes in the data
ncol		int	number of columns in N-matrix
class_link		matrix(1,nclass,1,2)	links between model and data size-classes.

Indexes For consistency the following indexes are used to describe the various model dimensions:

g index for group (sex, shell condition, maturity state),

 \mathbf{h} index for sex,

i index for year,

 \mathbf{j} index for season or month,

k index for fleet,

1 index for length class,

m index for maturity state,

n index for shell condition,

Table 2: Statistical catch-at-length model used in Gmacs

Estimated parameters

$$\Theta = (M_0, \ln(\bar{R}), R_\alpha, R_\beta,) \tag{T2.1}$$

$$\sigma^2 = \rho/\vartheta^2, \quad \tau^2 = (1 - \rho)/\vartheta^2 \tag{T2.2}$$

Unobserved states

$$N_{g,t,l}, Z_{g,t,l} \tag{T2.3}$$

Recruitment size distribution

$$\alpha = R_{\alpha}/R_{\beta} \tag{T2.4}$$

$$\alpha = R_{\alpha}/R_{\beta}$$

$$p(R_l) = \int_{x_l - 0.5\Delta x}^{x_l + 0.5\Delta x} \frac{x_l^{\alpha - 1} e^{x_l/R_{\beta}}}{\Gamma(\alpha) x_l^{\alpha}} dx$$
(T2.4)
$$(T2.5)$$