Gamma functions and Beta functions

Definition 1

The gamma function $\Gamma:(0,\infty)\to\mathbb{R}$ is defined by

$$\Gamma(n) = \int_0^\infty e^{-x} x^{n-1} \, dx.$$

Theorem 2

- (1) $\Gamma(n+1) = n\Gamma(n)$ for each $n \in (0,\infty)$.
- (2) $\Gamma(n+1) = n!$ for each $n \in \mathbb{N}$.
- (3) $\int_0^\infty e^{-ax} x^{n-1} dx = \frac{\Gamma(n)}{a^n} \text{ for each } n \in (0, \infty)$ and for each $a \in (0, \infty)$.

See examples on pp. B5–B6.

Homework

p. B14 nr. 1, 3(a),(b),(c)

Definition 3

The beta function $\beta:(0,\infty)\times(0,\infty)\to\mathbb{R}$ is defined by

$$\beta(m,n) = \int_0^1 x^{m-1} (1-x)^{n-1} dx.$$

Theorem 3

For each $(m,n) \in (0,\infty) \times (0,\infty)$ we have

(1)
$$\beta(m,n) = \beta(n,m)$$
.

(3)
$$\beta(m,n) = 2 \int_0^{\frac{\pi}{2}} \sin^{2m-1} \theta \cos^{2n-1} \theta d\theta$$
.

(6)
$$\beta(m,n) = \frac{\Gamma(m)\Gamma(n)}{\Gamma(m+n)}$$
.

(7)
$$\Gamma\left(\frac{1}{2}\right) = \sqrt{\pi}$$
.

See examples on pp. B11-B14: (10), (11), (13), (15).

Homework

p. B14 nr. 3(e),(g),(k),(l)