ASI 3

Méthodes numériques pour l'ingénieur

Interpolation f(x)

Approximation de fonctions

- Soit une fonction f (inconnue explicitement)
 - connue seulement en certains points $x_0, x_1...x_n$
 - ou évaluable par un calcul coûteux.
- Principe:
 - représenter f par une fonction simple, facile à évaluer
- Problème:
 - il existe une infinité de solutions!

Approximation de fonctions

- Il faut se restreindre à une famille de fonctions
 - polynômes,
 - exponentielles,
 - fonctions trigonométriques...

Quelques méthodes d'approximation

- Interpolation polynomiale
 - polynômes de degré au plus n
 - polynômes de Lagrange
 - différences finies de Newton
- Interpolation par splines
 - polynômes par morceaux
- Interpolation d'Hermite
 - informations sur les dérivées de la fonction à approcher
- ...voir le groupe de TT...

Théorème d'approximation de Weierstrass

soit f une fonction définie et continue sur l'intervalle [a,b]Alors, $\forall \varepsilon > 0$, il existe un polynôme P(x), définit sur [a,b] tel que :

n+1 points, n+1 contraintes, n+1 équations, n+1 inconnues : ordre n

Interpolation polynomiale

• Le problème : les données, la solution recherchée

$$(x_0, y_0 = f(x_0)),..., (x_i, y_i = f(x_i)),..., (x_i, y_i = f(x_i))$$

 $P(x)$ tel que $P(x_i) = f(x_i), i = 0, n$

- mauvaise solution : résoudre le système linéaire $P(x) = \sum_{i=0}^{n} a_i x^i \implies Va = y \qquad V : \text{matrice de Vandermonde}$
- la combinaison linéaire de polynômes est un polynôme $P(x) = y_0 P_0(x) + ... + y_i P_i(x) + y_n P_n(x)$

tel que
$$P_i(x_i) = 1$$
 et $P_i(x_j) = 0$ $j \neq i$
ainsi $P(x_i) = y_0 P_0(x_i) + ... + y_i P_i(x_i) + y_n P_n(x_i)$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

Interpolation polynomiale: Lagrange

• Théorème

- Soient n+1 points distincts x_i réels et n+1 réels y_i , il existe un unique polynôme $p \in P_n$ tel que $p(x_i) = y_i$ pour i = 0 à n

démonstration

- Construction de p: $p(x) = \sum_{i=0}^{n} y_i L_i(x)$

avec L_i polynôme de Lagrange

$$L_i(x) = \prod_{\substack{j=0\\j\neq i}}^n \frac{\left(x - x_j\right)}{\left(x_i - x_j\right)}$$

- Propriétés de L_i
 - $L_i(x_i)=1$
 - $L_i(x_i) = 0 \quad (j \neq i)$

L est un polynôme d'ordre n

- Exemple avec n=1
 - on connaît 2 points (x_0, y_0) et (x_1, y_1)
 - on cherche la droite y=ax+b (polynôme de degré 1) qui passe par les 2 points :

•
$$y_0 = a x_0 + b$$

$$a = (y_0 - y_1) / (x_0 - x_1)$$

$$\bullet \ \ \mathbf{y}_1 = a \ \mathbf{x}_1 + b$$

•
$$y_1 = a x_1 + b$$
 $b = (x_0 y_1 - x_1 y_0) / (x_0 - x_1)$

$$- y = \frac{y_0 - y_1}{x_0 - x_1} x + \frac{x_0 y_1 - x_1 y_0}{x_0 - x_1}$$

$$y = y_0 \frac{x - x_1}{x_0 - x_1} - y_1 \frac{x - x_0}{x_0 - x_1} = y_0 \frac{x - x_1}{x_0 - x_1} + y_1 \frac{x - x_0}{x_1 - x_0}$$

- Exemple avec n=2
 - on connaît 3 points (0,1), (2,5) et (4,17)
 - polynômes de Lagrange associés :

$$L_0(x) = \frac{(x-2)(x-4)}{8} \qquad L_1(x) = \frac{x(x-4)}{-4} \qquad L_2(x) = \frac{x(x-2)}{8}$$

$$L_{I}(x) = \frac{x(x-4)}{-4}$$

$$L_2(x) = \frac{x(x-2)}{8}$$

calcul du polynôme d'interpolation

•
$$p(x)=L_0(x) + 5L_1(x) + 17L_2(x)$$

• en simplifiant, on trouve $p(x)=x^2+1$

Lagrange: l'algorithme

```
Fonction y = \text{lagrange}(x, x_i, y_i)

pour i = 1 \text{ jusqu'à } n
pour j = 1 \text{ jusqu'à } n, j \neq i;
l \leftarrow l * \frac{x - x_i(j)}{x_i(i) - x_i(j)}
fait
y \leftarrow y + y_i * l
fait
```

Complexité du calcul : n²

• Exemple avec n=2

(fonction à approcher $y = e^x$)

- on connaît 3 points (0,1), (2,7.3891) et (4,54.5982)
- Polynôme d'interpolation
 - $p(x) = L_0(x) + 7.3891 L_1(x) + 54.5982 L_2(x)$

- Erreur d'interpolation e(x) = f(x) - p(x)

Lagrange: erreur d'interpolation

• Théorème :

- si f est n+1 dérivable sur [a,b], $\forall x \in [a,b]$, notons :
 - I le plus petit intervalle fermé contenant x et les x_i
 - $\phi(x) = (x x_0)(x x_1) \dots (x x_n)$
- alors, il existe $\xi \in I$ tel que $e(x) = \frac{f^{(n+1)}(\xi)}{(n+1)!}\phi(x)$
- NB : ξ dépend de x
- Utilité = on contrôle l'erreur d'approximation donc la qualité de l'approximation

Lagrange : choix de n

- Supposons que l'on possède un nb élevé de points pour approcher f ... faut-il tous les utiliser ?
 - (calculs lourds)
- Méthode de Neville :
 - on augmente progressivement n
 - on calcule des L_i de manière récursive
 - on arrête dès que l'erreur est inférieure à un seuil (d'ou l'utilité du calcul de l'erreur)

La méthode de Neuville

Définition

 $P_{m_1,m_2,\ldots,m_k}(x)$ polynôme de Lagrange calculé sur les k points $(x_{m_1}, y_{m_2}), (x_{m_2}, y_{m_2}), ..., (x_{m_k}, y_{m_k})$

• Théorème $P(x) = \frac{(x-x_j)P_{0,1,\dots,j-1,j+1,\dots,n}(x) - (x-x_i)P_{0,1,\dots,i-1,i+1,\dots,n}(x)}{P(x)}$ $x_i - x_i$

Démonstration

$$P(x_i) = f(x_i); P(x_i) = f(x_i)$$
 et $P(x_k) = f(x_k)$

• Application systématique $Q_{i,j} = P_{i-j,i-j+1,...,i-1,i}$

$$Q_{i,j} = P_{i-j,i-j+1,...,i-1,i}$$

$$\begin{aligned} x_0 & P_0 = Q_{0,0} \\ x_1 & P_1 = Q_{1,0} & P_{0,1} = Q_{1,1} \\ x_2 & P_2 = Q_{2,0} & P_{1,2} = Q_{2,1} & P_{0,1,2} = Q_{2,2} \\ x_3 & P_3 = Q_{3,0} & P_{2,3} = Q_{3,1} & P_{1,2,3} = Q_{3,2} & P_{0,1,2,4} = Q_{3,3} \end{aligned}$$

L'algorithme de Neuville

```
Fonction y = \text{Neuville}(x, x_i, y_i)
        pour i = 1 jusqu'à n
              Q(i,0) \leftarrow y_i(i)
        fait
        pour i = 1 jusqu'à n
              pour j = 1 jusqu'à i
                 Q(i,j) \leftarrow \frac{(x-x_i(i-j))Q(i,j-1)-(x-x_i(i))Q(i-1,j-1)}{x_i(i)-x_i(i-j)}
              fait
              y \leftarrow Q(n,n)
```

Interpolation polynomiale: Newton

- Polynômes de Newton :
 - base = $\{1, (x-x_0), (x-x_0)(x-x_1), ..., (x-x_0)(x-x_1)...(x-x_{n-1})\}$
 - on peut ré-écrire p(x): $p(x)=a_0+a_1(x-x_0)+a_2(x-x_0)(x-x_1)+...+a_n(x-x_0)(x-x_1)...(x-x_{n-1})$
 - calcul des a_k : méthode des différences divisées

Newton: différences divisées

• Définition :

- Soit une fonction f dont on connaît les valeurs en des points distincts a, b, c, ...
- On appelle **différence divisée** d'ordre 0, 1, 2,...,n les expressions définies par récurrence sur l'ordre k:

```
-k=0 f[a] = f(a)

-k=1 f[a,b] = (f[b] - f[a]) / (b - a)

-k=2 f[a,b,c] = (f[a,c] - f[a,b]) / (c - b)
```

$$- \dots \qquad f[X,a,b] = (f[X,b] - f[X,a]) / (b - a)$$
$$a \not\in X, b \not\in X, a \neq b$$

Newton: différences divisées

• Théorèmes :

- détermination des coefficients de p(x) dans la base de Newton :

$$f[x_0, x_1, ..., x_k] = a_k$$
 avec $k = 0 ... n$

– erreur d'interpolation :

$$e(x) = f[x_0, x_1, ..., x_n, x] \phi(x)$$

Newton: différences divisées

• Calcul pratique des coefficients :

$\begin{bmatrix} x_0 \\ x_1 \\ x_2 \end{bmatrix}$	$ \begin{array}{c c} \hline a_0 \\ f[x_0] \\ f[x_1] \\ f[x_2] \end{array} $	$ \begin{array}{c c} a_1 \\ f[x_0, x_1] \\ f[x_1, x_2] \end{array} $	$ \begin{array}{c} a_2 \\ f[x_0, x_1, x_2] \end{array} $
	•••	•••	
• • •		•••	$f[x_{n-3}, x_{n-2}, x_{n-1}]$ a_n
$\overline{x_n}$	$f[x_n]$	$f[x_{n-1}, x_n]$	$f[x_{n-2}, x_{n-1}, x_n]$ $f[x_0,, x_n]$

Newton: exemple

• (ex. $n^{\circ}2$): n=2 (0,1), (2,5) et (4,17)

0	$f[x_0] = 1$		
2	$\int [x_1] = 5$	$f[x_0, x_1] \qquad a_1 \\ = (1-5)/(0-2) = 2$	
4	$f[x_2]=17$	$f[x_1, x_2]$ =(5-17)/(2-4)=6	$f[x_0, x_1, x_2] = (2-6)/(0-4) = 1$

$$p(x)=1+2x+x(x-2)$$
 (et on retombe sur $p(x)=1+x^2$)

Newton: l'algorithme

```
Fonction a = \text{Newton}(x_i, y_i)
```

```
pour i = 1 jusqu'à n
     F(i,0) \leftarrow y_i(i)
fait
pour i = 1 jusqu'à n
      pour j = 1 jusqu'à i
         F(i,j) \leftarrow \frac{F(i,j-1) - F(i-1,j-1)}{x_i(i) - x_i(i-j)}
     fait
fait
pour i = 1 jusqu'à n
     a(i) \leftarrow F(n,i)
fait
```

A bas les polynômes

- Ex: y=2(1+tanh(x)) x/10 avec 9 points
 - entre les points, le polynôme fait ce qu'il veut...
 et plus son degré est élevé plus il est apte à osciller !

Interpolation par splines cubiques

• Principe:

- on approche la courbe par morceaux (localement)
- on prend des polynômes de degré faible (3) pour éviter les oscillations

Splines cubiques : définition

• Définition :

- On appelle spline cubique d'interpolation une fonction notée
 g, qui vérifie les propriétés suivantes :
 - $g \in C^2[a;b]$ (g est deux fois continûment dérivable),
 - g coïncide sur chaque intervalle $[x_i; x_{i+1}]$ avec un polynôme de degré inférieur ou égal à 3,
 - $g(x_i) = y_i \text{ pour } i = 0 \dots n$

• Remarque:

- Il faut des conditions supplémentaires pour définir la spline d'interpolation de façon unique
- Ex. de conditions supplémentaires :
 - g''(a) = g''(b) = 0

spline naturelle.

Splines: illustration

$$P_{2}(x)=a_{2}(x-x_{2})^{3}+b_{2}(x-x_{2})^{2}+c_{2}(x-x_{2})+d_{2}$$

$$P_{1}(x)=\alpha_{1}x^{3}+\beta_{1}x^{2}+\chi_{1}x+\delta_{1}$$

$$=a_{1}(x-x_{1})^{3}+b_{1}(x-x_{1})^{2}+c_{1}(x-x_{1})+d_{1}$$

- Détermination de la spline d'interpolation
 - g coïncide sur chaque intervalle $[x_i; x_{i+1}]$ avec un polynôme de degré inférieur ou égal à 3
 - → g" est de degré 1 et est déterminé par 2 valeurs:
 - $m_i = g''(x_i)$ et $m_{i+1} = g''(x_{i+1})$ (moment au noeud n°i)
 - Notations :
 - $h_i = x_{i+1} x_i$ pour $i = 0 \dots n-1$
 - $\delta_i = [x_i; x_{i+1}]$
 - $g_i(x)$ le polynôme de degré 3 qui coïncide avec g sur l'intervalle δ_i

 $-g''_{i}(x)$ est linéaire :

$$\bullet \ \forall \ x \in \mathcal{S}$$

•
$$\forall x \in \delta_i$$
 $g_i''(x) = m_{i+1} \frac{x - x_i}{h_i} + m_i \frac{x_{i+1} - x}{h_i}$

 $(a_i \text{ constante})$

• on intègre
$$g'_{i}(x) = m_{i+1} \frac{(x-x_{i})^{2}}{2h_{i}} - m_{i} \frac{(x_{i+1}-x)^{2}}{2h_{i}} + a_{i}$$

• on continue $(b_i \text{ constante})$

$$g_i(x) = m_{i+1} \frac{(x - x_i)^3}{6h_i} + m_i \frac{(x_{i+1} - x)^3}{6h_i} + a_i(x - x_i) + b_i$$

$$-g_{i}(x_{i}) = y_{i} \implies y_{i} = \frac{m_{i}h_{i}^{2}}{6} + b_{i} \qquad 1$$

$$-g_{i}(x_{i+1}) = y_{i+1} \implies y_{i+1} = \frac{m_{i+1}h_{i}^{2}}{6} + a_{i}h_{i} + b_{i} \qquad 2$$

$$-g'(x)$$
 est continue

$$-g'(x)$$
 est continue: $g'_i(x_i) = -m_i \frac{h_i}{2} + a_i = m_i \frac{h_{i-1}}{2} + a_{i-1} = g'_{i-1}(x_i)$ 3

- 1 et 2
$$a_i = \frac{1}{h_i} (y_{i+1} - y_i) - \frac{h_i}{6} (m_{i+1} - m_i)$$

- on remplace les a_i dans

$$h_{i-1}m_{i-1} + 2(h_i + h_{i-1})m_i + h_i m_{i+1} = 6\left(\frac{1}{h_i}(y_{i+1} - y_i) - \frac{1}{h_{i-1}}(y_i - y_{i-1})\right)$$

- Rappel: on cherche les m_i (n+1 inconnues)
 - → on a seulement n-1 équations grâce à
 - → il faut rajouter 2 conditions, par exemple

$$\rightarrow m_0 = m_n = 0$$
 (spline naturelle)

 $h_{i-1}m_{i-1} + 2(h_i + h_{i-1})m_i + h_i m_{i+1} = 6\left(\frac{1}{h_i}(y_{i+1} - y_i) - \frac{1}{h_{i-1}}(y_i - y_{i-1})\right)$

- Ex de résolution avec $h_i = x_{i+1} x_i$ constant : $m_{i-1} + 4m_i + m_{i+1} = \frac{1}{h^2} (y_{i-1} 2y_i + y_{i+1}) = f_i$

• T inversible (diagonale strictement dominante)

Splines cubiques: l'algorithme

pour
$$i = 2; n-1$$
 $T(i,i) \leftarrow 2(h_i + h_{i-1})$
 $T(i,i-1) \leftarrow h_{i-1}$
 $T(i,i+1) \leftarrow 2h_i$

$$f(i-1) \leftarrow 6 \left(\frac{y_{i+1} - y_i}{h_i} - \frac{y_i - y_{i-1}}{h_{i-1}} \right)$$
fait
 $T \leftarrow T(2:n-1,2:n-1)$
 $m \leftarrow T \setminus f$
 $m \leftarrow [0, m, 0]$
pour $i = 1; n-1$

$$a(i) \leftarrow \frac{1}{h_i} (y_{i+1} - y_i) - \frac{h_i}{6} (m_{i+1} - m_i)$$

$$b(i) \leftarrow y(i) - \frac{m_i h_i}{6}$$
fait

Complexité du calcul : complexité du solveur

Splines cubiques : exemple

• Ex: y=2(1+tanh(x)) - x/10 avec 9 points

Conclusion

- Interpolation polynomiale
 - évaluer la fonction en un point : Polynôme de Lagrange -> méthode de Neville
 - compiler la fonction : Polynôme de Newton
- Interpolation polynomiale par morceau : splines
 - spline cubique d'interpolation
 - spline cubique d'approximation (on régularise)
 - b spline
 - spline généralisée : splines gausiènnes (multidimensionelle)
- approximation apprentissage