

Graded viscosity banks on the rear end of the polymer slug

Yulia Petrova^{1,2}

¹ Saint-Petersburg State University, Russia Faculty of Mathematics and Computer Science

² IMPA, Instituto de Matematica Pura e Aplicada, Brazil

1 June 2021

Joint work with F. Bakharev, A. Enin, K. Kalinin, N. Rastegaev, S. Tikhomirov

Supported by

Breakthrough of polymer slug

- Homogeneous porous media
- Instability occur due to different viscosities (viscous fingering effect)
- After the breakthrough of the polymer slug the positive effect decreases
- Chemical EOR:
 - Polymer flooding
 - Surfactant flooding
 - ASP-flooding

Question: what size of polymer slug?

Mathematical models

 One-phase miscible displacement (Peaceman model)

$$c_t + u \cdot \nabla c = \varepsilon \, \Delta c$$
$$div \, u = 0$$
$$u = -\frac{k}{\mu(c)} \nabla p$$

c — polymer concentration $\mu(c)$ — water viscosity

q — Velocity of the stable front. Take q=1

 v_f - Velocity of the front end of the mixing zone is constant

 v_b – Velocity of the rear end of the mixing zone is constant

Empirical models of velocities

- Averaging "effective viscosity" M_e :
 - Koval (1963)
 - Todd-Longstaff (1972)
- Transverse Flow Equilibrium (TFE)
 Otto-Menon, Yortsos-Salin (2006)

•
$$p(x,y) = p(x)$$

 $M = \frac{\mu(c_1)}{\mu(c_2)} > 1$ - ratio of viscosities

Koval	$v_f = M_e$ $v_b = \frac{1}{M_e}$ $M_e = \left(\alpha \cdot M^{\frac{1}{4}} + (1 - \alpha)\right)^4$
Todd-Longstaff	$v_f = M_e$ $v_b = \frac{1}{M_e}$ $M_e = M^\omega$
TFE	$v_f \le \frac{\overline{m}(c_1, c_2)}{m(c_2)}$ $v_b \ge \frac{v_f}{M}$ $m(c) = 1/\mu(c)$

Problem Statement

- Goal: reduce amount of polymer
- Strategy: graded viscosity banks (GVB, tapering)
 Claridge (1978)
- We want no breakthrough in any slug
- Given concentrations c_n and v_b , v_f we can find sizes of slugs t_n without breakthrough
- Choose concentrations c_n to minimize amount of polymer

$$V_{n} = \sum_{i=1}^{n} c_{i} t_{i} \to \min$$

- Questions:
 - n small (n = 2, 3, 5)
 - $n \to \infty$

Results for small *n*

 V_n - polymer mass for n slugs $\eta = \frac{V_1 - V_n}{V_1} ext{ - percentage}$ of gain in polymer mass

	n=2	n = 3	n=4	n = 5	n = 10	Limit
TFE	19,83%	$23,\!35\%$	$24,\!57\%$	$25,\!13\%$	$25,\!88\%$	$26,\!12\%$
Todd-Longstaff	$24,\!84\%$	$29,\!36\%$	30,93%	$31,\!66\%$	$32,\!63\%$	32,95%
Koval	$33,\!21\%$	$39,\!24\%$	$41,\!46\%$	$42,\!55\%$	$44{,}24\%$	45,28%

- Conclusion: in practice it is enough to use 2-3 slugs
- For detailes see arxiv:2012.03114

Graded viscosity banks: $n \rightarrow \infty$

Theorem [Bakharev, Enin, Kalinin, P., Rastegaev, Tikhomirov, 2021]

As $n \to \infty$ the optimal limiting injection profile

$$T^{\infty}(c) = 1 - \left(\frac{\mu(c)}{\mu(c_1)}\right)^{\beta}$$

Koval: $\beta = 2\alpha$

Todd-Longstaff: $\beta = 2\omega$

TFE: $\beta = 1$

For detailes see arxiv:2012.03114

Conclusions

- 1. Graded viscosity banks helps to reduce polymer mass with the same efficiency
- 2. In practice it is enough to inject 2-3 slugs
- 3. The choice of model for "finger velocities" is an open problem no rigorous results, only empirical

Simulation of GVB in DuMuX by our group in SPSU

The talk is based on:

- https://arxiv.org/abs/2012.03114 "Optimal polymer slugs injection profiles"
 F. Bakharev, A. Enin, K. Kalinin, Yu. Petrova, N. Rastegaev, S. Tikhomirov
- https://arxiv.org/abs/2012.02849 "Velocity of viscous fingers in miscible displacement"

 F. Bakharev, A. Enin, A. Groman, A. Kalyuzhnuk, S. Matveenko, Yu. Petrova, I.Starkov, S. Tikhomirov

If you have any questions, please, ask me:

yu.pe.petrova@yandex.ru

Yulia Petrova

Acknowledgements:

the work was supported by the Russian Science Foundation grant 19-71-30002 and PJC "GazpromNeft"

Koval & TFE model. Numerical validation

- Numerical validation of TFE (Otto-Yortsos)
 model: for different viscosity curves:
 always gives a pessimistic estimate
- Koval model not always gives a pessimistic estimate
- Examples when TFE model is exact:
 Exponential viscosity at the rear end
 Concave viscosity at the front end

Exponential viscosity

$$u^{x} = \frac{m(c)}{\overline{m(c)}} u \approx u \cdot \frac{m(c)}{m(0)}$$

Concave viscosity

$$u^{x} = \frac{m(c)}{\overline{m(c)}} u \approx u \cdot \frac{m(c)}{m(1)}$$

For detailes see arxiv:2012.02849

GVB gives gain not for all viscosities

• Counterexample – Todd-Longstaff model and $\mu = (1+c^3)^{\frac{3}{2}}$

- There is no gain in polymer mass even if you change 1 slug for 2 slugs!
- In the Theorem we have extra assumptions