Front matter

title: "Отчет по лабораторной работе №1" subtitle: "Операционные системы" author: "Цоппа Ева Эдуардовна"

Generic otions

lang: ru-RU toc-title: "Содержание"

Bibliography

bibliography: bib/cite.bib csl: pandoc/csl/gost-r-7-0-5-2008-numeric.csl

Pdf output format

toc: true # Table of contents toc-depth: 2 lof: true # List of figures lot: true # List of tables fontsize: 12pt linestretch: 1.5 papersize: a4 documentclass: scrreprt

I18n polyglossia

polyglossia-lang: name: russian options: - spelling=modern - babelshorthands=true polyglossia-otherlangs: name: english

I18n babel

babel-lang: russian babel-otherlangs: english

Fonts

mainfont: PT Serif romanfont: PT Serif sansfont: PT Sans monofont: PT Mono mainfontoptions: Ligatures=TeX romanfontoptions: Ligatures=TeX sansfontoptions: Ligatures=TeX, Scale=MatchLowercase monofontoptions: Scale=MatchLowercase, Scale=0.9

Biblatex

biblatex: true biblio-style: "gost-numeric" biblatexoptions:

- parentracker=true
- backend=biber
- hyperref=auto
- language=auto
- autolang=other*
- citestyle=gost-numeric

Pandoc-crossref LaTeX customization

figureTitle: "Рис." tableTitle: "Таблица" listingTitle: "Листинг" lofTitle: "Список иллюстраций" lotTitle: "Список таблиц" lolTitle: "Листинги"

Misc options

indent: true header-includes:

- \usepackage \{ indentfirst \}
- \usepackage{float} # keep figures where there are in the text
- \floatplacement{figure} {H} # keep figures where there are in the text

Цель работы

Целью данной работы является приобретение практических навыков установки операционной системы на виртуальную машину, настройки минимально необходимых для дальнейшей работы сервисов.

Задание

- 1. Создание виртуальной машины
- 2. Установка операционной системы
- 3. Работа с операционной системой после установки
- 4. Установка программного обеспечения для создания документации
- 5. Дополнительные задания

Выполнение лабораторной работы

Создание виртуальной машины

Virtualbox я устанавливала и настраивала при выполнении лабораторной работы в курсе "Архитектура компьютера и Операционные системы (раздел "Архитектура компьютера")", поэтому сразу открываю окно приложения

Нажимая "создать", создаю новую виртуальную машину, указываю ее имя, путь к папке машины по умолчанию меня устраивает, выбираю тип ОС и версию

Указываю объем основной памяти виртуальной машины размером 4096МБ

Выбираю создание нового виртуального жесткого диска

Задаю конфигурацию жесткого диска: загрузочеый VDI

Задаю размер диска - 80 ГБ, оставляю расположение жесткого диска по умолчанию, т. к. работаю на собственной технике и значение по умолчанию меня устраивает

Укажите размер виртуального жёсткого диска в мегабайтах. Эта величина ограничивает размер файловых данных, которые виртуальная машина сможет хранить на этом диске. 80,00 ГБ 4,00 МБ 2,00 ТБ

Выбираю динамический виртуальный жесткого диска при указании формата хранения

Выбираю в Virtualbox настройку своей виртуальной машины. Перехожу в "Носители", добавляю новый привод привод оптических дисков и выбираю скачанный образ операционной системы Fedora

Скачанный образ ОС был успешно выбран

Установка операционной системы

Запускаю созданную виртуальную машину для установки

```
#Start Fedora-i3-Live 37
Test this media & start Fedora-i3-Live 37
Troubleshooting -->

Use the † and ↓ keys to select which entry is highlighted.

Press enter to boot the selected OS, `e' to edit the commands before booting or `c' for a command-line.
```

Вижу интерфейс начальной конфигурации. Нажимаю Enter для создания конфигурации по умолчанию, далее нажимаю Enter, чтобы выбрать в качестве модификатора кливишу Win

Нажимаю Win+Enter для запуска терминала. В терминале запускаю liveinst

Чтобы перейти к раскладке окон с табами, нажимаю Win+w. Выбираю язык для использования в процессе установки русски

Раскладку клавиатуры выбираю и русскую, и английскую

Корректирую часовой пояс, чтобы время на виртуальной машине совпадало с временем в моем регионе

Проверяю место установки и сохраняю значение по умолчанию

Создаю аккаунт администратора и создаю пароль для супер-пользователя

Далее операционная система устанавливается. После установки нажимаю "завершить установку"

Работа с операционной системой после установки

Запускаю виртуальную машину. Вхожу в ОС под заданной мной при установке учетной записью

Нажимаю Win+Enter для запуска терминала и переключаюсь на роль супер-пользователя

```
[evatsoppa@fedora ~]$ sudo −i
```

Обновляю все пакеты

```
[sudo] пароль для evatsoppa:
[root@fedora ~]# dnf -y update
```

Устанавливаю программы для удобства работы в концсоли: tmux для открытия нескольких "вкладок" в одном терминале, терминале, терминале, терминале в качестве файлового менеджера в терминале

[root@fedora ~]# dnf install tmux mc Последняя проверка окончания срока действия метаданных: 0:10:52 назад, Вс 18 фев 2 024 11:46:36. Пакет tmux-3.3a-3.fc38.x86_64 уже установлен. Зависимости разрешены.				
Пакет	Архитектура 	Версия 	Репозиторий 	Размер
Установка:				
mc	x86_64	1:4.8.30-1.fc38	updates	1.9 M
Установка заві	исимостей:			
gpm-libs	x86 64	1.20.7-42.fc38	fedora	20 k

Устанавливаю программы для автоматического обновления

Запускаю таймер

```
[root@fedora ~]# systemctl enable --now dnf-automatic.timer
Created symlink /etc/systemd/system/timers.target.wants/dnf-automatic.timer → /usr
/lib/systemd/system/dnf-automatic.timer.
```

Перемещаюсь в директорию /etc/selinux, открываю md, ищу нужный файл

Изменяю открытый файл: SELINUX=enforcing меняю на значение SELINUX=permissive

Снова вхожу в ОС, снова запускаю терминал, запускю терминальный мультиплексор

Переключаюсь на роль супер-пользователя

```
[evatsoppa@fedora ~]$ sudo -i
[sudo] пароль для evatsoppa:
[root@fedora ~]#
```

Устанавливаю пакет dkms

```
[root@fedora ~]# dnf install dkms
```

В меню виртуальной машины подключаю образ диска гостевой ОС и примонтирую диск с помощью утилиты mount

```
[evatsoppa@fedora ~]$ <u>#</u> mount /dev/sr0 /media
```

Устанавливаю драйвера

```
Verifying archive integrity... All good.
Uncompressing VirtualBox 6.1.38 Guest Additions for Linux.....
VirtualBox Guest Additions installer
Copying additional installer modules ...
Installing additional modules ...
```

Перезагружаю виртуальную машину

Перехожу в директорию /tc/X11/xorg.conf.d, открываю mc для удобства, открываю файл 00-keyboard.conf

Редактирую конфигурационный файл

Перезагружаю виртуальную машину

Установка программного обеспечения для создания документации

Запускаю терминал. Запускаю терминальный мультиплексор tmux, переключаюсь на роль супер-пользователя

```
[evatsoppa@fedora ~]$ sudo -i
[sudo] пароль для evatsoppa:
[root@fedora ~]# dnf -i install pandoc
```

Устанавливаю pandoc с помощью утилиты dnf и флага -y, который автоматически на все вопросы системы отчевает "yes"

Устанавливаю необходимые расширения для pandoc

```
[root@fedora ~]# pip install pandoc-fignos pandoc-eqnos pandoc-tablenos pandoc-secnos --user
```

Устанавливаю дистрибутив texlive

```
[root@fedora ~]# dnf -y install texlive texlive-\*
Последняя проверка окончания срока действия метаданных: 2:24:26 назад, Вс 18 фев 2024 12:09:43
```

Выводы

При выполнении данной лабораторной работы я приобрела практические навыки установки операционной системы на виртуальную машину, а так же сделала настройки минимально необходимых для дальнейшей работы сервисов.

Ответы на контрольные вопросы

- 1. Учетная запись содержит необходимые для идентификации пользователя при подключении к системе данные, а так же информацию для авторизации и учета: системного имени (user name) (оно может содержать только латинские буквы и знак нижнее подчеркивание, еще оно должно быть уникальным), идентификатор пользователя (UID) (уникальный идентификатор пользователя в системе, целое положительное число), идентификатор группы (CID) (группа, к к-рой относится пользователь. Она, как минимум, одна, по умолчанию одна), полное имя (full name) (Могут быть ФИО), домашний каталог (home directory) (каталог, в к-рый попадает пользователь после входа в систему и в к-ром хранятся его данные), начальная оболочка (login shell) (командная оболочка, к-рая запускается при входе в систему).
- 2. Для получения справки по команде: <команда> --help; для перемещения по файловой системе cd; для просмотра содержимого каталога ls; для определения объёма каталога du <имя каталога>; для создания / удаления каталогов mkdir/rmdir; для создания / удаления файлов touch/rm; для задания определённых прав на файл / каталог chmod; для просмотра истории команд history
- 3. Файловая система это порядок, определяющий способ организации и хранения и именования данных на различных носителях информации. Примеры: FAT32 представляет собой пространство, разделенное на три части: олна область для служебных структур, форма указателей в виде таблиц и зона для хранения самих файлов. ext3/ext4 журналируемая файловая система, используемая в основном в ОС с ядром Linux.
- 4. С помощью команды df, введя ее в терминале. Это утилита, которая показывает список всех файловых систем по именам устройств, сообщает их размер и данные о памяти. Также посмотреть подмонтированные файловые системы можно с помощью утилиты mount.
- 5. Чтобы удалить зависший процесс, вначале мы должны узнать, какой у него id: используем команду ps. Далее в терминале вводим команду kill < id процесса >. Или можно использовать утилиту killall, что "убьет" все процессы, которые есть в данный момент, для этого не нужно знать id процесса.

Выполнение дополнительного задания

Ввожу в терминале команду dmesg, чтобы проанализировать последовательность загрузки системы

С помощью поиска, осуществляемого командой 'dmesg | grep -i <что ищем>', ищу версию ядра Linux: 6.1.10-200.fc37.x86_64

```
[root@fedora ~]# dmuses | grep -i "Linux version"
[ 0.000000] Linux version 6.7.4-100.fc38.x86_64 (mockbuild@68dbdffd8a2b4619991006cfcbec2871) (gcc GCC) 13.2.1 20231011 (Red Hat 13.2.1-4), GNU ld version 2.39-16.fc38) #1 SMP PREEMPT_DYNAMIC Mon Feb 5 22:19:06 UTC 2024
```

К сожалению, если вводить "Detected Mhz processor" там, где нужно указывать, что я ишу, то мне ничего не выведется. Это происходит потому, что запрос не предусматривает дополнительные символы внутри него (я проверяла, будет ли работать он с маской - не будет). В таком случае я оставила одно из ключевых слов (могла оставить два: "Mhz processor") и получила результат: 1992 Mhz

```
[root@fedora ~]# dmesg | grep -i "Detected Mhz processor"
[root@fedora ~]# dmesg | grep -i "processor"
[    0.000009] tsc: Detected 1799.999 MHz processor
[    0.355425] smpboot: Total of 5 processors activated (17
[    0.398318] ACPI: Added _OSI(Processor Device)
[    0.398319] ACPI: Added _OSI(Processor Aggregator Device)
```

Аналогично ищу модель процессора

```
[root@fedora ~]# dmesg | grep -i "CPU0"
[ 0.345308] smpboot: CPU0: Intel(R) Core(TM) i5-8250U CPU @ 1.60GHz (family: 0x6, model: 0x8e, steping: 0xa)
```

Объем доступной оперативной памяти ищу аналогично поиску частоты процессора, т. к. возникла та же проблема, что и там

```
root@fedora ~]# dmesg | grep -i "Memory: "
    0.094299] PM: hibernation: Registered nosave memory:
                                                         [mem 0x0000000
    0.094301] PM: hibernation: Registered nosave men
                                                         [mem 0x0009f00
    0.094303] PM: hibernation: Registered nosave mem
                                                         [mem 0x000a000
    0.094303] PM: hibernation: Registered nosave
                                                         [mem 0x000f000
    0.094305] PM: hibernation: Registered nosave me
                                                         [mem 0xdfff000
    0.094306] PM: hibernation: Registered nosave
                                                         [mem 0xe000000
    0.094307] PM: hibernation: Registered nosave me
                                                         [mem 0xfec0000
    0.094308] PM: hibernation: Registered nosave
                                                         [mem 0xfec0100
    0.094309] PM: hibernation: Registered nosave
                                                         [mem 0xfee0000
    0.094309] PM: hibernation: Registered nosave m
    0.094310] PM: hibernation: Registered nosave
                                                         [mem 0xfffc000
    0.187376] Memory: 3705716K/3931704K available (20480K kernel code,
88K init, 4892K bss, 225728K reserved, 0K cma-reserved)
```

Нахожу тип обнаруженного гипервизора

```
[root@fedora ~]# dmesg | grep -i "Hypervisor detected"
[ 0.000000] Hypervisor detected: KVM
[root@fodora ~]#¶
```

Тип файловой системы корневого раздела можно посомтреть с помощью утилиты fdis

```
[root@fedora ~]# sudo fdisk -l
Диск /dev/sda: 50 GiB, 53687091200 байт, 104857600 секторов
Disk model: VBOX HARDDISK
Единицы: секторов по 1 ∗ 512 = 512 ∬айт
Размер сектора (логический/физический): 512 байт / 512 байт
Размер I/O (минимальный/оптимальный): 512 байт / 512 байт
Тип метки диска: gpt
Идентификатор диска: 6А760363-6530-4602-В272-DВ7В5А904088
Устр-во
            начало
                       Конец
                               Секторы Размер Тип
/dev/sda1
              2048
                        4095
                                  2048
                                           1M BIOS boot
/dev/sda2
              4096
                               2097152
                     2101247
                                           1G Файловая система Linu
/dev/sda3 2101248 104855551 102754304
                                          49G Файловая система Linu
Диск /dev/zram0: 3,57 GiB, 3835691008 байт, 936448 секторов
Единицы: секторов по 1 * 4096 = 4096 байт
Размер сектора (логический/физический): 4096 байт / 4096 байт
Размер I/O (минимальный/оптимальный): 4096 байт / 4096 байт
```

Последовательность монтирования файловых систем можно посмотреть, введя в поиск по результату dmesg слово mount

```
0.100238] Nount-cache hash table entries: 8192 (order: 4, 65536 bytes, linear)
0.100265] Nountpoint-cache hash table entries: 8192 (order: 4, 65536 bytes, linear)
6.130675] systemd[1]: Set up automount proc-sys-fs-binfnt_misc automount - Arbitrary Executable File Formats File System Automount Point.
6.150730] systemd[1]: Nounting dev-hugepages.mount - Huge Pages File System...
6.152841] systemd[1]: Nounting sys-kernel-debug.mount - Kernel Debug File System...
6.157728] systemd[1]: Nounting sys-kernel-tracing.mount - Kernel Trace File System...
6.282909] systemd[1]: Nounting sys-kernel-tracing.mount - Kernel Trace File System...
6.322886] systemd[1]: Nounted dev-hugepages.mount - Huge Pages File System
6.322886] systemd[1]: Nounted dev-hugepages.mount - Huge Pages File System
6.326401] systemd[1]: Nounted dev-hugepages.mount - Ernel Debug File System.
6.331819] systemd[1]: Nounted sys-kernel-tracing.mount - Kernel Debug File System.
6.354751] systemd[1]: Nounted sys-kernel-tracing.mount - Kernel Trace File System.
6.359364] systemd[1]: Nounting sys-kernel-tracing.mount - FUSE Control File System.
6.372610] systemd[1]: Nounting sys-kernel-config.mount - FUSE Control File System...
6.373363] systemd[1]: Nounting sys-kernel-config.mount - Kernel Configuration File System...
6.373363] systemd[1]: Nounting sys-kernel-config.mount - Kernel Configuration File System...
6.373363] systemd[1]: Nounted filesystem with ordered data mode. Quota mode: none.
```

Список литературы

- 1. Dash P. Getting started with oracle vm virtualbox. Packt Publishing Ltd, 2013. 86 p.
- 2. Colvin H. Virtualbox: An ultimate guide book on virtualization with virtualbox. CreateSpace Independent Publishing Platform, 2015. 70 p.
- 3. van Vugt S. Red hat rhcsa/rhce 7 cert guide: Red hat enterprise linux 7 (ex200 and ex300). Pearson IT Certification, 2016. 1008 p.
- 4. Робачевский А., Немнюгин С., Стесик О. Операционная система unix. 2-е изд. Санкт-Петербург: БХВ-Петербург, 2010. 656 р.
- 5. Немет Э. et al. Unix и Linux: руководство системного администратора. 4-е изд. Вильямс, 2014. 1312 р.
- 6. Колисниченко Д.Н. Самоучитель системного администратора Linux. СПб.: БХВ-Петербург, 2011. 544 р.
- 7. Robbins A. Bash pocket reference. O'Reilly Media, 2016. 156 p.