KERNEL ESTIMATION OF NONPARAMETRIC FUNCTIONAL AUTOREGRESSION

TINGYI ZHU UC SAN DIEGO email: t8zhu@ucsd.edu

Advisor: Dimitris Politis

FUNCTIONAL TIME SERIES

- Funtional data objects collected sequentially over time are characterized as functional time series.
- Each term in series is a function $\mathcal{X}_i(t)$ defined for t taking values in some interval [a,b].
- Long continuous records of temporal sequence segmented into curves over consecutive time intervals.
- Examples: daily price curves of financial transactions, daily patterns of environmental data.

THE FAR(1) MODEL

Let $\{\mathcal{X}_n\}$ be a stationary and α -mixing functional sequence in some separable Hilbert space \mathbb{H} with the usual definition of α -mixing coefficients introduced by Rosenblatt (1956). \mathbb{H} is endowed with inner product $\langle \cdot, \cdot \rangle$ and corresponding norm $||\cdot||$, and with orthonormal basis $\{e_j : j = 1, \dots, \infty\}$. We consider the following first-order nonparametric functional autoregression model, namely FAR(1):

$$\mathcal{X}_{i+1} = \Psi(\mathcal{X}_i) + \mathcal{E}_{i+1}, \quad i = 1, 2, \dots,$$

$$\tag{1}$$

- $-\Psi$ is the autoregressive operator mapping functions from \mathbb{H} to \mathbb{H} .
- Innovations \mathcal{E}_i 's are i.i.d. \mathbb{H} -valued r.v.'s with $E(\mathcal{E}_{i+1}|\mathcal{X}_i) = 0$ and $E(||\mathcal{E}_{i+1}||^2|\mathcal{X}_i) = \sigma_{\mathcal{E}}^2(\mathcal{X}_i) < \infty$.
- Assume the model is homoscedastic: $\sigma_{\mathcal{E}}(\mathcal{X}_i) \equiv \sigma_{\mathcal{E}}$.
- The model is nonparametric in the sense that the operator Ψ is not constrained to be linear.

Estimation of Ψ

Estimation of Ψ is given by the functional version of Nadaraya-Watson estimator of time series

$$\hat{\Psi}_h(\chi) = \frac{\sum_{i=1}^{n-1} \mathcal{X}_{i+1} K(h^{-1} d(\mathcal{X}_i, \chi))}{\sum_{i=1}^{n-1} K(h^{-1} d(\mathcal{X}_i, \chi))}, \qquad (2)$$

where χ is a fixed element in \mathbb{H} , K is a kernel function, $d(\cdot, \cdot)$ is a semi-metric defined to measure the proximity between the two elements in \mathbb{H} , and h is a bandwidth sequence, tending to zero as n tends to infinity.

Some assumptions are made on the kernel:

- $K(\cdot)$ is supported on [0,1], has a continuous derivative on [0,1);
- $K'(s) \le 0$ and K(1) > 0.

REFERENCES

[1] T. Zhu, D. N. Politis, Kernel Estimation of First-order Nonparametric Functional Autoregression and its Bootstrap Approximation, working paper, 2016.

Consistency of Estimator $\hat{\Psi}_h$

Theorem 0.2. For some fixed $\chi \in \mathbb{H}$, assume $\exists \delta' > \delta > 0$ such that

$$(i) \frac{2+\delta}{2+\delta'} + \frac{(1-\delta)(2+\delta)}{2} \le 1,$$

(ii)
$$E||\mathcal{X}_i - \Psi(\chi)||^{2+\delta'} < \infty$$
,

(iii)
$$\sum_{j} \alpha(j)^{\frac{\delta}{2+\delta}} < \infty$$
,

where $\alpha(\cdot)$ is the mixing coefficient of the sequence $\{\mathcal{X}_t, t \in \mathbb{N}\}$. Also assume regularity conditions (C1)-(C4) given in [1]. Then

$$\hat{\Psi}_h(\chi) = \Psi(\chi) - \mathcal{B}_n + O_p(\frac{1}{\sqrt{nF_\chi(h)^{1+\delta}}})$$

where

$$\mathcal{B}_n = h \frac{M_0}{M_1} \sum_{k=1}^{\infty} \varphi'_{\chi,k}(0) e_k.$$

Remark. The assumptions (i)-(iii) show a trade-off between the moment assumptions and the mixing conditions. The conditions on mixing coefficients can be less stringent if higher moments are assumed. The parameter δ' controls the moment while δ controls the mixing condition.

SIMULATIONS

Figure 1: 5 Curves $\mathcal{X}_{101}, \mathcal{X}_{102}, ..., \mathcal{X}_{105}$ from the sample.

Data Generating Process. For $t \in [0,1]$, we choose the initial curve $\mathcal{X}_1 = cos(t)$, and generate the FAR(1) series for $n = 1, \ldots, 249$ according to

$$\mathcal{X}_{n+1}(t) = 3 \int_0^t s \mathcal{X}_n(s) ds + \mathcal{E}_{n+1}(t),$$

with the error process

$$\mathcal{E}(t) = W(t) - tW(t),$$

where $W(\cdot)$ is the standard Weiner process.

Figure 2: Estimator $\hat{\Psi}_h(\chi)$ (dashed); true operator $\Psi(\chi)$ (solid)

we Computing Kernel Estimator. With the 250 rate simulated curves, we use a learning sample (the first 200 curves) to compute the kernel estimator $\hat{\Psi}_h$, and evaluate it among the test sample (the last 50 curves).

(3) Parameter h is chosen by a standard cross validation procedure, with a fixed semi-metric $d(\chi_1, \chi_2)$ —see reference for details.

Figure 2 compares the kernel estimation (i.e. $\Psi_h(\chi)$) with the true operator (i.e. $\Psi(\chi)$) at $\chi = \mathcal{X}_{201}, \dots, \mathcal{X}_{204}$.

Componentwise Bootstrap Approximation

We propose a bootstrap procedure to approximates the distribution of $\hat{\Psi}_h(\chi) - \Psi(\chi)$, which consists of the following steps:

- 1. For i = 1, ..., n, define $\hat{\mathcal{E}}_{i,b} = \mathcal{X}_{i+1} \hat{\Psi}_b(\mathcal{X}_i)$, where b is a second smoothing parameter.
- 2. Draw n i.i.d. random variables $\mathcal{E}_1^*, \dots, \mathcal{E}_n^*$ from the empirical distribution of $(\hat{\mathcal{E}}_{1,b} \hat{\mathcal{E}}_b, \dots, \hat{\mathcal{E}}_{n,b} \hat{\mathcal{E}}_b)$ where $\hat{\mathcal{E}}_b = n^{-1} \sum_{i=1}^n \hat{\mathcal{E}}_{i,b}$.
- 3. For i = 1, ..., n 1, let $\mathcal{X}_{i+1}^* = \hat{\Psi}_b(\mathcal{X}_i) + \mathcal{E}_{i+1}^*$.
- 4. Define

$$\hat{\Psi}_{hb}^{*}(\chi) = \frac{\sum_{i=1}^{n-1} \mathcal{X}_{i+1}^{*} K(h^{-1}d(\mathcal{X}_{i}, \chi))}{\sum_{i=1}^{n-1} K(h^{-1}d(\mathcal{X}_{i}, \chi))}.$$
 (4)

This procedure can be applied to construct the bootstrap prediction region. Its validity is shown in the following theorem.

Theorem 0.1. For any k = 1, 2, ..., and any bandwidth h and b, let $\hat{\Psi}_{k,h}(\chi) = \langle \hat{\Psi}_h(\chi), e_k \rangle$ and $\hat{\Psi}_{k,hb}^*(\chi) = \langle \hat{\Psi}_{hb}(\chi), e_k \rangle$. Under some regularity conditions, we have

$$\sup_{y \in \mathbb{R}} \left| P^* \left(\sqrt{n F_{\chi}(h)} \{ \hat{\Psi}_{k,hb}^*(\chi) - \hat{\Psi}_{k,b}(\chi) \} \le y \right) \right| - P \left(\sqrt{n F_{\chi}(h)} \{ \hat{\Psi}_{k,h}(\chi) - \Psi_{k}(\chi) \} \le y \right) \right| \stackrel{a.s.}{\to} 0, \quad (5)$$

where P^* denotes probability conditioned on the sample $\{\mathcal{X}_1, \ldots, \mathcal{X}_n\}$.