```
In [1]: import tensorflow as tf
```

Loading - "MNIST Data Set"

Contains Training samples = 60,000 and Testing samples = 10,000

from tensorflow

```
In [2]:
        mnist = tf.keras.datasets.mnist #handwritten characters
       Divide into train and test datasets
In [3]:
        #unpacking the dataset into train and test datasets
        (x_train, y_train), (x_test, y_test) = mnist.load_data()
       Downloading data from https://storage.googleapis.com/tensorflow/tf-keras-datasets/mn
        ist.npz
        11501568/11490434 [============== ] - 7s 1us/step
In [4]:
        x_train.shape
        (60000, 28, 28)
Out[4]:
In [6]:
        import matplotlib.pyplot as plt
In [7]:
        #checking how data looks like
        plt.imshow(x_train[0])
        plt.show() #executing the graph
        #we donno whether it's color image or binary images
        #so inorder to plot it, change the config
        plt.imshow(x train[0], cmap = plt.cm.binary)
         5
        10
        15
        20
        25
```

Out[7]:

10

<matplotlib.image.AxesImage at 0x1b8437be520>

checking the values of each pixel

Before Normalization

pr	rint	(x_t	rair	n[0])) #be	efore	nor	mali	izati	ion								
]]	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0	0]								
[0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0	0]								
[0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
-	0	0	0	0	0	0	0	0	0	0]		_	_	_	•	•	•	
[0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
г	0	0	0	0	0	0	0 0	0	0	0] 0	0	0	0	0	0	0	0	0
[0	0	0	0	0	0	0	0	0	0]		Ø	Ø	Ø	Ø	Ø	Ø	Ø
Γ	0	0	0	0	0	0	0	0	0	0	0	0	3	18	18	18	126	136
_	175	-	-	-	247	-	0	0	0	01								
[0	0	0	0	0	0	0	0	30	36		154	170	253	253	253	253	253
- 2	225	172	253	242	195	64	0	0	0	0]								
[0	0	0	0	0	0	0	49	238	253	253	253	253	253	253	253	253	251
	93	82	82	56	39	0	0	0	0	0]								
[0	0	0	0	0	0	0			253		253	253	253	198	182	247	241
-	0	0	0	0	0	0	0	0	0	0]			0.50			_		4-4
[0	0	0	0	0	0	0	0		156		253	253	205	11	0	43	154
г	0	0	0	0	0	0	0	0	0	0] 14		15/	253	90	0	0	0	0
L	0	0	0	0	0	0	0 0	0	0	0]		154	255	90	0	0	О	0
Γ	0	0	0	0	0	0	0	0	0	0		139	253	190	2	0	0	0
-	0	0	0	0	0	0	0	0	0	0]					_			
[0	0	0	0	0	0	0	0	0	0	0	11	190	253	70	0	0	0
-	0	0	0	0	0	0	0	0	0	0]								
[0	0	0	0	0	0	0	0	0	0	0	0	35	241	225	160	108	1
	0	0	0	0	0	0	0	0	0	0]								
[0	0	0	0	0	0	0	0	0	0	0	0	0	81	240	253	253	119
г	25	0	0	0	0	0	0	0	0	0]	_	0	0	0	4.5	100	252	252
L	0	0	0	0	0	0	0	0	0	0	0	0	0	0	45	186	253	253
]	150 0	27 0	0	0	0	0	0 0	0	0	0] 0	0	0	0	0	0	16	93	252
		187	0	0	0	0	0	0	0	0 0]	V	V	Ð	Ð	Ø	10	23	232
۲	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	249
		249	64	0	0	0	0	0	0	0]				_				
[0	0	0	0	0	0	0	0	0	0	0	0	0	0	46	130	183	253
-	253	207	2	0	0	0	0	0	0	0]								

```
0
             0
        0
                 0
                      0
                           0
                                0
                                     0
                                         0
                                                        0 39 148 229 253 253 253
 250
             0
                 0
     182
                      0
                                0
                                     0
                                         0
                                              0]
   0
             0
                 0
                      0
                                     0
                                         0
                                              0
                                                  24 114 221 253 253 253 253 201
  78
                                     0
                                              0]
        0
             0
                 0
                      0
                                0
                                         0
                                        23
                                             66 213 253 253 253 253 198
             0
                      0
                                0
                                     0
   0
        0
             0
                  0
                      0
                                0
                                     0
                                         0
                                              0]
                               18 171 219 253 253 253 253 195
                                                                                     0
   0
                                0
                                              0]
                     55 172 226 253 253 253 253 244 133
   0
        0
             0
                  0
                                                                      0
                                                                           0
                                                                                0
                                                                                     0
   0
             0
                           0
        0
                 0
                      0
                                0
                                     0
                                         0
                                              0]
   0
        0
             0
                    136
                        253 253 253 212 135 132
                                                       16
                                                                                0
   0
        0
             0
                 0
                                0
                      0
                           0
                                     0
                                         0
                                              0]
             0
                           0
                                0
                                     0
                                              0
   0
        0
                 0
                      0
                                         0
                                                                 0
                                                                      0
                                                                           0
                                                                                0
                                                                                     0
0
   0
        0
             0
                 0
                      0
                                0
                                     0
                                              0]
   0
        0
             0
                 0
                      0
                           0
                                0
                                     0
                                         0
                                              0
                                                             0
                                                                 0
                                                                           0
                                                                                0
                                                                                     0
             0
                                     0
                                              0]
   0
        0
                      0
                           0
                                0
                                         0
                                     0
                                              0
                                              0]]
```

Images are in Gray level (1 pixel == 0 to 255), not (RGB)

Normalizing the data | Pre-Processing Step

```
x_train = tf.keras.utils.normalize (x_train, axis=1)
x_test = tf.keras.utils.normalize(x_test, axis=1)
plt.imshow(x_train[0], cmap = plt.cm.binary)
```

Out[11]: <matplotlib.image.AxesImage at 0x1b8437462b0>

After Normalization

```
In [12]:
             print(x_train[0]) #values are normalized (0 to 1)
                                                        0.
                                                                      0.
            [[0.
                            0.
                                          0.
                                                                                    0.
              0.
                            0.
                                          0.
                                                        0.
                                                                      0.
                                                                                    0.
                            0.
                                                                      0.
              0.
                                          0.
                                                        0.
                                                                                    0.
              0.
                            0.
                                          0.
                                                        0.
                                                                      0.
                                                                                    0.
              0.
                            0.
                                                                                    0.
             [0.
                            0.
                                          0.
                                                        0.
                                                                      0.
                            0.
                                                                      0.
                                                                                    0.
              0.
                                          0.
                                                        0.
              0.
                            0.
                                          0.
                                                        0.
                                                                      0.
                                                                                    0.
              0.
                            0.
                                          0.
                                                        0.
                                                                      0.
                                                                                    0.
              0.
                            0.
```

```
0.
                  0.
                           0.
[0.
                                    0.
         0.
                  0.
                           0.
0.
                                    0.
                                             0.
0.
         0.
                  0.
                           0.
                                    0.
                                             0.
0.
         0.
                  0.
                           0.
                                    0.
0.
         0.
                  0.
                           0.
                                  0.
[0.
        0.
                  0.
                           0.
0.
        0.
                  0.
                           0.
                                   0.
0.
        0.
                 0.
                           0.
                                   0.
0.
        0.
                 0.
                           0.
                                    0.
         0.
                 0.
                           0.
0.
                                   ]
[0.
         0.
                  0.
                           0.
                                    0.
         0.
                  0.
                           0.
0.
                                    0.
                                             0.
                 0.
0.
         0.
                           0.
                                    0.
                                             0.
0.
         0.
                 0.
                           0.
                                    0.
a
         0.
                 0.
                           0.
[0.
                 0.
                           0.
         0.
                                    0.
                      0.
         0.
                  0.
                                    0.
0.00393124 0.02332955 0.02620568 0.02625207 0.17420356 0.17566281
0.28629534 0.05664824 0.51877786 0.71632322 0.77892406 0.89301644
         0. 0. 0. ]
[0.
         0.
                 0.
                           0.
                                    0.
                  0.05780486 0.06524513 0.16128198 0.22713296
0.
         0.
0.22277047 0.32790981 0.36833534 0.3689874 0.34978968 0.32678448
0.
         0. 0. 0.
                                   ]
[0.
         0.
                  0.
                           0.
0.
         0.12250613 0.45858525 0.45852825 0.43408872 0.37314701
0.33153488 0.32790981 0.36833534 0.3689874 0.34978968 0.32420121
0.15214552 0.17865984 0.25626376 0.1573102 0.12298801 0.
0.
      0. 0. 0.
                 0.
                          0.
                                   0.
         0.04500225 0.4219755 0.45852825 0.43408872 0.37314701
0.33153488 0.32790981 0.28826244 0.26543758 0.34149427 0.31128482
       0. 0.
                           0.
                                   0.
0.
         0.
                 0.
                           0.
                                    ]
         0.
[0.
                 0.
                           0.
                                    0.
         0. 0.1541463 0.28272888 0.18358693 0.37314701
0.33153488 0.26569767 0.01601458 0. 0.05945042 0.19891229
0.
       0. 0. 0.
                                   0.
                 0.
0.
         0.
                           0.
                                   1
                         0. 0. 0. 0. 0. 0. 0. 0.00171577 0.22713296
                 0.
[0.
         0.
                 0.
0.
         0.
0.33153488 0.11664776 0.
                          0. 0.
0.
        0. 0.
                          0.
                                    0.
                                             0.
0.
                  0.
                           0.
                                   ]
         0.
[0.
         0.
                  0.
                           0.
                                    0.
                                             0.
0.
         0.
                 0.
                           0.
                                   0.
                                             0.20500962
0.33153488 0.24625638 0.00291174 0.
                                   0.
                                             0.
        0. 0. 0.
                                    0.
0.
                                   ]
0.
         0.
                 0.
                           0.
                                  0.
0.
[0.
         0.
                  0.
                           0.
         0.
                 0.
                           0.
                                             0.01622378
0.24897876 0.32790981 0.10191096 0.
                                   0.
                                             0.
0.
         0. 0. 0.
                                   0.
                                             0.
0.
         0.
                 0.
                           0.
                                   ]
         0.
                 0.
                           0.
[0.
                                    0.
         0.
                  0.
                           0.
                                    0.
0.04586451 0.31235677 0.32757096 0.23335172 0.14931733 0.00129164
        0. 0.
                       0.
                                    0.
0.
0.
         0.
                  0.
                           0.
                                   1
[0.
         0.
                  0.
                           0.
                                    0.
         0.
                  0.
                           0.
                                    0.
         0.10498298 0.34940902 0.3689874 0.34978968 0.15370495
0.04089933 0.
                  0.
                                    0.
```

```
0.
       0. 0.
                         0.
                                 ]
[0.
        0.
                0.
                         0.
                                 0.
                                          0.
                0.
                         0.
                                 0.
0.
        0.
                                          0.
       0. 0.06551419 0.27127137 0.34978968 0.32678448
0.
0.245396 0.05882702 0. 0. 0.
        0. 0.
                         0.
0.
                                 ]
[0.
        0.
                0.
                        0.
                                 0.
                                          0.
        0.
               0.
                       0. 0. 0. 0. 0. 0. 0. 0.0.02333517 0.12857881 0.32549285
0.
0.
                0.
0.41390126 0.40743158 0.
                        0. 0.
0. 0. 0.
                         0.
                                 ]
                                0.
[0.
        0.
               0.
                         0.
                                          0.
        0.
                0.
                         0.
                                0.
                                          0.
0.
                      0.
                                          0.32161793
0.
        0.
                0.
                                0.
0.41390126 0.54251585 0.20001074 0.
                                0.
0. 0. 0. 0.
                                 ]
                             0.
[0.
        0.
                0.
                         0.
0.
       0.0.0.06
                        0.
                0.06697006 0.18959827 0.25300993 0.32678448
0.41390126 0.45100715 0.00625034 0. 0.
       0. 0. 0.
                                 ]
                0.
                        0.
                                 0.
[0.
        0.
0.
        0.
                0.
                        0.
                                 0.
0.05110617 0.19182076 0.33339444 0.3689874 0.34978968 0.32678448
0.40899334 0.39653769 0. 0. 0.
0. 0. 0.
                         0.
                                 ]
[0.
        0.
                0.
                        0.
                                 0.
                    0.
        0. 0.
                                 0.04117838 0.16813739
0.28960162 0.32790981 0.36833534 0.3689874 0.34978968 0.25961929
0.12760592 0. 0. 0.
                                0.
0.
    0.
                0.
                        0.
                                 ]
        0.
0.
Γ0.
               0.
                        0.
                                 0.
               0.04431706 0.11961607 0.36545809 0.37314701
0.
0.33153488 0.32790981 0.36833534 0.28877275 0.111988 0.00258328
0. 0. 0.
                                 0.
0.
        0.
                0.
                         0.
                                 ]
        0.
                0.
                         0.
                                 0.
0.05298497 0.42752138 0.4219755 0.45852825 0.43408872 0.37314701
0.33153488 0.25273681 0.11646967 0.01312603 0. 0.
   0. 0.
0.
                         0. 0.
0.
        0.
                 0.
                         0.
                                 ]
                         0.
                0.
                                 0.37491383 0.56222061
[0.
        0.
0.66525569 0.63253163 0.48748768 0.45852825 0.43408872 0.359873
0.17428513 0.01425695 0. 0. 0.
                                          0.
0.
       0. 0.
                         0.
                                 0.
                                          0.
0.
        0.
                 0.
                         0.
                                 1
[0.
        0.
                0.
                        0.
                                 0.92705966 0.82698729
0.74473314 0.63253163 0.4084877 0.24466922 0.22648107 0.02359823
        0. 0. 0.
                                0.
0.
        0.
                0.
                         0.
                                 0.
                                          0.
        0.
                0.
                         0.
                                 1
0.
[0.
        0.
                0.
                         0.
                                 0.
                                          0.
        0.
                0.
                         0.
                                 0.
                                          0.
0.
        0.
                0.
0.
                         0.
                                 0.
                                          0.
0.
        0.
                0.
                         0.
                                 0.
        0.
0.
                0.
                         0.
                                 1
        0.
                0.
                                          0.
[0.
                         0.
                                  0.
        0.
                0.
                         0.
                                          0.
0.
                                 0.
0.
        0.
                0.
                         0.
                                 0.
                                          0.
0.
        0.
                0.
                         0.
                                  0.
                                          0.
                0.
0.
        0.
                         0.
                                 ]
                                          0.
[0.
        0.
                 0.
                         0.
                                 0.
0.
         0.
                 0.
                         0.
                                  0.
                                          0.
        0.
                 0.
                                  0.
                                          0.
```

```
0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1]

In [13]: print(y_train[0]) #labels
```

Resizing image to make it suitable for applying Convolution operation

```
import numpy as np
IMG_SIZE = 28
x_trainr = np.array(x_train).reshape(-1, IMG_SIZE, IMG_SIZE,1) ### increasing 1 dime
x_testr = np.array(x_test).reshape(-1, IMG_SIZE, IMG_SIZE,1) ### increasing 1 dimens
print("Training Samples dimension", x_trainr.shape)
print("Testing Samples dimensions",x_testr.shape)
Training Samples dimension (60000, 28, 28, 1)
Testing Samples dimensions (10000, 28, 28, 1)
```

Creating a Deep Neural Network

Training on 60,000 samples of MNIST handwritten dataset

```
In [17]:
          from tensorflow.keras.models import Sequential
          from tensorflow.keras.layers import Dense, Dropout, Activation, Flatten, Conv2D, Max
In [20]:
          ### creating a neural network
          model = Sequential()
          #### First layer
          model.add(Conv2D(64, (3,3), input_shape = x_trainr.shape[1:])) ### mention input lay
          model.add(Activation('relu')) ## Activation function, to make it non-linear
          model.add(MaxPooling2D(pool_size = (2,2))) ## Maxpooling, Single max value of 2x2 ma
          #### Second Layer
          model.add(Conv2D(64, (3,3)))
          model.add(Activation('relu'))
          model.add(MaxPooling2D(pool_size = (2,2)))
          #### Third Layer
          model.add(Conv2D(64, (3,3)))
          model.add(Activation('relu'))
          model.add(MaxPooling2D(pool_size = (2,2)))
          #### Fully Connected Layer #1
          model.add(Flatten()) ### before using fully connected, it need to be flatten (2D to
          model.add(Dense(64)) # neural network
          model.add(Activation('relu'))
          #### Fully Connected Layer #2
          model.add(Dense(32))
          model.add(Activation('relu'))
          #### Last Fully Connected Layer, output must be equal to number of classes, 10(0-9)
          model.add(Dense(10)) ## last dense layer must be equal to 10
          model.add(Activation('softmax')) ## changed to sotmax (class probabilites)
```

```
In [22]:
```

model.summary()

Model: "sequential_2"

Layer (type)	Output Shape	Param #
conv2d_2 (Conv2D)		640
<pre>activation_2 (Activation)</pre>	(None, 26, 26, 64)	0
<pre>max_pooling2d_1 (MaxPooling 2D)</pre>	(None, 13, 13, 64)	0
conv2d_3 (Conv2D)	(None, 11, 11, 64)	36928
<pre>activation_3 (Activation)</pre>	(None, 11, 11, 64)	0
<pre>max_pooling2d_2 (MaxPooling 2D)</pre>	(None, 5, 5, 64)	0
conv2d_4 (Conv2D)	(None, 3, 3, 64)	36928
activation_4 (Activation)	(None, 3, 3, 64)	0
<pre>max_pooling2d_3 (MaxPooling 2D)</pre>	(None, 1, 1, 64)	0
flatten (Flatten)	(None, 64)	0
dense (Dense)	(None, 64)	4160
activation_5 (Activation)	(None, 64)	0
dense_1 (Dense)	(None, 32)	2080
activation_6 (Activation)	(None, 32)	0
dense_2 (Dense)	(None, 10)	330
activation_7 (Activation)	(None, 10)	0

Total params: 81,066 Trainable params: 81,066 Non-trainable params: 0

```
In [23]: print("Total Training Samples = ", len(x_trainr))
```

Total Training Samples = 60000

```
In [24]: model.compile(loss = "sparse_categorical_crossentropy", optimizer = "adam", metrics=
```

In [25]: model.fit(x_trainr, y_train, epochs=5, validation_split = 0.3) ## Training my model

```
y: 0.9655 - val_loss: 0.1261 - val_accuracy: 0.9623
       Epoch 3/5
       y: 0.9749 - val loss: 0.0788 - val accuracy: 0.9749
       Epoch 4/5
       y: 0.9800 - val_loss: 0.0675 - val_accuracy: 0.9793
       Epoch 5/5
       y: 0.9837 - val_loss: 0.0705 - val_accuracy: 0.9788
       <keras.callbacks.History at 0x1b84bc786d0>
Out[25]:
In [26]:
       ### Evaluating on testing dataset MNIST
       test_loss, test_acc = model.evaluate(x_testr, y_test)
        print("Test loss on 10,000 test samples ",test_loss)
        print("Validation Accuracy on 10,000 test samples ",test_acc)
       9796
       Test loss on 10,000 test samples 0.06731598824262619
       Validation Accuracy on 10,000 test samples 0.9796000123023987
In [27]:
        predictions = model.predict([x_testr])
In [28]:
       print(predictions)
       [[1.0075364e-08 4.1938529e-07 7.2846314e-07 ... 9.9998963e-01
        3.7899053e-08 8.1203061e-06]
        [2.2520733e-03 8.1896333e-06 9.9697220e-01 ... 1.1457161e-05
        7.6291493e-05 8.9106429e-08]
        [2.7473826e-07 9.9988329e-01 1.0038377e-06 ... 1.7928201e-05
        5.5844421e-06 4.0396847e-07]
        [1.0216693e-10 4.6228013e-07 3.9864737e-10 ... 1.5555089e-07
        1.0085337e-06 1.5766143e-06]
        [1.5050702e-04 2.5392904e-07 8.8294797e-08 ... 1.0789056e-06
        1.2867320e-03 1.0875900e-05]
        [8.5594296e-04 2.5891336e-07 4.8824097e-04 ... 8.7840294e-07
        1.0400967e-04 2.8484084e-05]]
In [29]:
        print(np.argmax(predictions[0]))
       7
In [30]:
        plt.imshow(x_test[0])
       <matplotlib.image.AxesImage at 0x1b84b671f70>
Out[30]:
```


In [31]: print(np.argmax(predictions[128]))

8

In [32]: plt.imshow(x_test[128])

Out[32]: <matplotlib.image.AxesImage at 0x1b83e991ee0>

In [33]: import cv2 #importing own image to check the predictions

In [36]: img = cv2.imread('eight.png')

In [37]: plt.imshow(img)

Out[37]: <matplotlib.image.AxesImage at 0x1b84124ea00>


```
In [39]:
          img.shape
          (296, 296, 3)
Out[39]:
In [40]:
          gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
          gray.shape
          (296, 296)
Out[40]:
In [48]:
          resized = cv2.resize(gray, (28,28), interpolation = cv2.INTER_AREA)
In [49]:
          resized.shape
          (28, 28)
Out[49]:
In [50]:
          newing = tf.keras.utils.normalize (resized, axis=1)
In [51]:
          newing = np.array(newing).reshape(-1, IMG_SIZE, IMG_SIZE, 1)
In [52]:
          newing.shape
          (1, 28, 28, 1)
Out[52]:
In [53]:
          predictions = model.predict(newing)
          print(np.argmax(predictions))
         8
```