杭州电子科技大学学生考试卷(期末)B卷

考试课程	高等数学 A	1 考试日	2021年3月3日	
课程号	A0714201	任课教师姓		绩不多了
考生姓名		学号 (8位)	专业	

題号	_	=	Ξ	四	五	六
	1-8	9-12	13-16	17-20	21	22
得分						

注意: 本卷总共4页, 总分100分, 时间120分钟

得分

- 一、选择题 (本题共9小题,每小题3分,共27分)
- 1. 下列各式中正确的是(B).

(A)
$$\lim_{x \to \infty} \frac{\sin x}{x} = 1$$
 (B) $\lim_{x \to \infty} x \sin \frac{1}{x} = 1$ (C) $\lim_{x \to \infty} (1 - \frac{1}{x})^x = -e$ (D) $\lim_{x \to \infty} (1 + \frac{1}{x})^{-x} = e$

- 2. 设 $f(x)=1-\cos x$, 则当 $x\to 0$, f(x) 是 x^3 的(D) 无穷小。
 - (A) 等价
- (B) 同阶, 但非等价 (C) 高阶
- (D) 低阶

1212

3. 已知 $f'(x^2) = x^2 + 1$, 则 f(x) = (B).

(A)
$$x - \frac{1}{2}x^2 + C$$
 (B) $x + \frac{1}{2}x^2 + C$ (C) $x^2 + \frac{1}{2}x + C$ (D) $x^2 - \frac{1}{2}x + C$

- 4. 设 y = f(x) 为[a,b]上的连续函数,则曲线 y = f(x), x = a, x = b 及 x 轴所 围成的平面图形面积为(C).
- (A) $\int_a^b f(x)dx$ (B) $\left|\int_a^b f(x)dx\right|$ (C) $\int_a^b \left|f(x)\right|dx$
- (D) 无法确定

- 5. 设f'(x)=2f(x),且f(0)=1,则f(x)为(C).
- (A) $e^{x/2}$ (B) $e^x/2$ (C) e^{2x} (D) $e^{2x}/2$

- 6. 阿基米德线 $\rho = a\theta$, (a > 0) 相应于 $0 \le \theta \le 2\pi$ 一段的弧长是(A).
- (A) $a \int_0^{2\pi} \sqrt{1+\theta^2} d\theta$ (B) $a \int_0^{2\pi} \sqrt{1+\theta} d\theta$
- (C) $a \int_{0}^{2\pi} \sqrt{1-\theta^2} d\theta$ (D) $a \int_{0}^{2\pi} \sqrt{1-\theta} d\theta$
- 7. 已知 $f(x) = \frac{d}{dx} \int_0^x \sin(t-x) dt$, 则 f(x) = (A).
 - $(A) \sin x$
- (B) $-1 + \cos x$ (C) $\sin x$ (D) $1 \sin x$

- 8. 关于反常积分 $\int_{1}^{+\infty} \frac{dx}{x^{d}}$ 敛散性下列结论正确的是(A).
 - (A) p>1收敛 (B) p>-1收敛 (C) p<1收敛 (D) p<-1收敛
- 9. 微分方程 $\frac{dy}{dx} = \frac{2y}{x-1}$ 的通解为(C).

 - (A) $y = x^2 C$ (B) $y = C(x^2 1)$ (C) $y = C(x 1)^2$ (D) $y = Cx^2$

二、填空題 (本题共3小題,每小题3分,共9分)

10. 若
$$f(x) = \begin{cases} \frac{\ln(1+2x)}{x}, & x \neq 0 \\ a, & x = 0 \end{cases}$$
 在 $x = 0$ 处连续,则 $a = \underline{2}$.

11.
$$\lim_{x \to +\infty} x(\frac{\pi}{2} - \arctan x) = \underline{1}$$

12.
$$\int_{-1}^{1} \frac{1}{1+\sin^2 x} \sqrt{1+\cos x} \arcsin x dx = 0$$

得分

三. 计算题 (本题共4小题,每小题6分,共24分)

(-f)13. 已知 f(x) 的原函数为 $\frac{\sin x}{x}$, 求 $\int x f'(x) dx$.

$$\frac{13. EMJ(X) MRM MAZA = \int_{X} x df(x) = x f(x) - \int_{X} f(x) dx - \dots 3'$$

$$= x \cdot \left(\frac{S \cdot x}{x}\right)' - \frac{S \cdot x}{x} + c - \dots 2'$$

$$= \frac{x \cos x}{x} - \frac{2 \sin x}{x} + c - \dots 1'$$

15. 计算 $\int \frac{2x-5}{x^2-4x+8} dx$.

$$I = \int \frac{(2x-4)^{-1}}{x^2-4x+8} dx$$

$$= \int \frac{d(x^2-4x+8)}{x^2-4x+8} - \int \frac{1}{(x-2)^2+2} d(x-2)$$

$$= \int_{\infty} (x^2-4x+8) - \int_{\infty} \frac{1}{(x-2)^2+2} d(x-2)$$

$$= \int_{\infty} \frac{d(x^2-4x+8)}{x^2-4x+8} - \int_{\infty} \frac{1}{(x-2)^2+2} d(x-2)$$

14. 设隐函数 y = y(x) 由方程 $x^2 - \int_0^y e^t dt + 2021 = 0$ 所决定,求 $\frac{dy}{dx}$.

解·两边却号,得 $2x-e^{y}\cdot y=0$ ····· 本 $\frac{dy}{dx}=\frac{2x}{6y}$ ·····2 16. 已知 $\int x f(x) dx = \arcsin x + C$, 求 $\int \frac{dx}{f(x)}$.

$$\frac{1}{\sqrt{1-x^2}} = \frac{1}{\sqrt{1-x^2}}$$

$$\int \frac{dx}{f(x)} = \int x \sqrt{1-x^2} dx = \frac{1}{2} \int \sqrt{1-x^2} d(1-x^2)$$

$$= -\frac{1}{3} (1-x^2)^{\frac{3}{2}} + 2 \dots 3^{\frac{1}{3}}$$

得分

四、综合题(本题共4小题,每小题7分,共28分)

17. 求函数 $f(x) = \int_0^x (2-t)e^t dt$ 的单调区间与最值.

#.
$$f'(x) = (2-x)e^{x}=0, 2di...x=2$$
 $f(x) = (2-x)e^{x}=0, 2di...x=2$
 $f(x) = (2-x)e^{x}=0, 2di...x=2$

18. 设 $\lim_{x\to 0} (1-x)^{-\frac{1}{x}} = \int_a^{+\infty} e^{-t} dt$, 求常数 a .

$$\frac{1}{4} \cdot \frac{1}{x+0} \cdot (1-x)^{-\frac{1}{x}} = \frac{1}{2} \cdot (1+(-x))^{-\frac{1}{x}} = e^{-x} \cdot \frac{1}{3}$$

$$\int_{a}^{4a} e^{-t} dt = -e^{-t} \Big|_{a}^{4a} = -(2e^{t} - e^{a})$$

$$= e^{-a} \cdot \frac{3}{3}$$

$$\frac{1}{4a} \cdot \frac{1}{3} \cdot \frac{1}{3}$$

$$\frac{1}{4a} \cdot \frac{1}{3} \cdot \frac{1}{3}$$

$$\frac{1}{4a} \cdot \frac{1}{3} \cdot \frac{1}{3}$$

 $ff. \int_{-1}^{4} f(\pi-2) dx = \frac{1-\pi^2}{2} \int_{-1}^{2} f(t) dt$ = \((1+cost) dt + \(\)^2 te tdt \(\) = 1+5-1----= = = +5-1-== e. ガー リ"ナマリナリ=の 時俗方分 ソティマナーコの 由fxx=xex,入三人及粉部及 特种治的 y*=(ax+b)e* ·····? 外代入东部, 的故语,将 a= 本.b=-五 A*==4(x-1)6x 12- BAP y=(C,+C,x)ex+4(x1)ex....)

第3页 共4页

五、应用计算题 (7分)

- 21. 已知平面区域D由抛物线 $y=1-x^2$ ($x \ge 0$) 和x轴、y轴以及直线x=2围成. 试求:
 - (1) 平面区域 D的面积;
 - (2) 平面区域 D 绕 V 轴旋转一周 所得的旋转体的体积.

 $A = \int_{0}^{2} |1-x^{2}| dx$ $= \frac{1}{3} \cdot \frac{1$

(2) $V_{y}=2\pi \int_{0}^{2} x |1-x^{2}| dx = 5\pi$

 $\int_{0}^{\infty} \sqrt{1+y} \int_{0}^{\infty} (1+y) dy + \pi \int_{$

得分

六、证明题 (5分)

22. 设 f(x) 在[a,b]上连续,且 $f(x) \ge 0$, $\int_a^b f(x) dx = 1$ 证明: 对任意 $k \in R$,都有

 $\left(\int_a^b f(x)\cos kx\mathrm{d}x\right)^2 + \left(\int_a^b f(x)\sin kx\mathrm{d}x\right)^2 \leq 1 \ .$

 $|| \int_{a}^{b} f(x) \cos h \times dx|^{2} = \left[\int_{a}^{b} f(x) \left(\sqrt{f(x)} \cos h \times dx \right) dx \right]^{2}$ $\leq \int_{a}^{b} f(x) dx \cdot \int_{a}^{b} f(x) \cos h \times dx = \int_{a}^{b} f(x) \cos h \times dx \cdot \dots \cdot 2^{d}$ $|| \int_{a}^{b} f(x) dx \cdot \int_{a}^{b} f(x) \sin h \times dx \cdot \dots \cdot 2^{d}$ $|| \int_{a}^{b} f(x) \sin h \times dx - \dots \cdot 2^{d}$ $|| \int_{$

72学