APUNTS

La segona meitat del 1r curs

AUTOR: EDUARDO PÉREZ MOTATO

${\rm \acute{I}ndex}$

1	Programació Orientada als Objectes	1
2	Càlcul en Diverses Variables 2.1 Boles a \mathbb{R}^n	4
3	Algorítmia i Combinatòria en Grafs. Mètodes Heurístics	7
4	Probabilitat	9
5	Càlcul Numèric	12

Programació Orientada als Objectes

Càlcul en Diverses Variables

Definició: $\mathbb{R}^n = \{(x_1, x_2, \dots, x_n) : x_1, \dots, x_n \in \mathbb{R}\}$

Definició: Siguin $(x_1, x_2, \dots, x_n) \in \mathbb{R}^n$ i $(y_1, y_2, \dots, y_n) \in \mathbb{R}^n$, definim $(x_1, x_2, \dots, x_n), (y_1, y_2, \dots, y_n) > = x_1y_1 + x_2y_2 + \dots + x_ny_n$ com a pro(producte escalar)

ducte escalar.

Definició: $||(x_1, x_2, \dots, x_n)|| = +\sqrt{\langle x, x \rangle}$ on $x = (x_1, x_2, \dots, x_n)$. Això és la distància del punt x a $(0, 0, \dots, 0)$.

Propietats de la norma:

- 1. $||x|| \ge 0$ per tot $x \in \mathbb{R}^n$
- 2. $||\lambda x|| = |\lambda|||x||$ per tot $x \in \mathbb{R}^n$ i $\lambda \in \mathbb{R}$
- 3. Designaltat triangular: $||x+y|| \le ||x|| + ||y||$ per tot $x, y \in \mathbb{R}^n$

Desigualtat de Cauchy-Schwartz: $< x,y> \le ||x||||y||$ per tot $x,y\in \mathbb{R}^n$. Això ho acceptem.

Observem que
$$-1 \le \frac{\langle x,y \rangle}{||x||||y||} \le 1$$
 i definim l'angle entre els vectors x i y com l'angle α tal que $\cos \alpha = \frac{\langle x,y \rangle}{||x|||||y||}$, és a dir, $\langle x,y \rangle = ||x||||y||\cos \alpha$.

■ Exemple Trobem els valors de $\mathbb{R}^3 \perp (-1, -2, 1)$. Busquem $(x_1, x_2, x_3) \in \mathbb{R}^n$ tal que $< (x_1, x_2, x_3), (-1, -2, 1) >= 0 \Leftrightarrow -x_1 - 2x_2 + x_3 = 0$.

2.1 Boles a \mathbb{R}^n

 $\underline{\text{Si } n=2}$ la bola de centre (x_0,y_0) i radi R és $\{(x,y) \in \mathbb{R}^2 : ||(x,y)-(x_0,y_0)|| < R\} = (\text{disc}) = \{(x,y) \in \mathbb{R}^2 : (x-x_0)^2 + (y-y_0)^2 < R^2\}.$ Això és una bola oberta, denotada per

Notació. Fem servir $\mathfrak{B}_R(x_0, y_0, \dots)$ la bola oberta (< R) i $\overline{\mathfrak{B}_R}(x_0, y_0, \dots)$ la tancada $(\le R)$. Es farà servir més la bola oberta.

Definició: Sigui $A \subset \mathbb{R}^n$, definim $\mathring{A} = \{\vec{x} \in \mathbb{R}^n : \exists R > 0 | \mathfrak{B}_R(\vec{x}) \subset A\}$

- **Exemple**
 - 1. $A = \{(x, y) : x \ge 0\}$, llavors $\mathring{A} = \{(x, y) : x > 0\}$
 - 2. $A = \{(x, y, z) : -a \le x \le a, -b \le y \le b, -c \le z \le c\}$, llavors $\mathring{A} = \{(x, y, z) : -a < x < a, -b < y < b, -c < z < c\}$

Definició: Un conjunt $A \subset \mathbb{R}^n$ es diu obert si $A = \mathring{A}$, és a dir, si tot punt del conjunt A és també un punt d' \mathring{A} .

Definició: Sigui $A \subset \mathbb{R}^n$, definim $\overline{A} = \{x \in \mathbb{R}^n : \forall R > 0, B_R(x) \cap A \neq \emptyset\}$. Diem que \overline{A} és l'adherència d'A.

■ Exemple $A = \{(x,y) \in \mathbb{R}^2 : yx < 1, x > 0\}.$ $\overline{A} = \{(0,y) : y \in \mathbb{R}\} \cup \{(x,y) : yx \leq 1, x > 0\}$

Definició: Un conjunt $(A \subset \mathbb{R}^n)$ és tancat si $A = \overline{A}$.

Proposició A és obert \iff A^c és tancat.

Definició: La frontera d'un conjunt, $B_R(A) = \overline{A} \setminus \mathring{A}$.

Definició: $A \subset \mathbb{R}^n$ es diu acotat si A està contingut dins d'una bola.

Definició: $A \subset \mathbb{R}^n$ es diu compacte si A és tancat i acotat.

2.2 Límits de funcions i continuïtat

Definició: Sigui $A \subset \mathbb{R}^n$ i $f: A \to \mathbb{R}$, definim $graf(f) = \{(x, f(x)) \in \mathbb{R}^{n+1} : x \in A\}.$

Definició: El conjunt de nivell de la funció f és $\{x \in A : f(x) = c\}$.

2.2.1 Límit d'una funció a un punt

Siguin $A \subset \mathbb{R}^n$, $f: A \to \mathbb{R}$ i $x_0 \in \mathbb{R}^n$.

Definició: Diem que $\lim_{x\to x_0} f(x) = L$ si per tot $\varepsilon > 0$, existeix $\delta > 0$ tal que $|f(x) - L| < \varepsilon$ si $0 < ||x - x_0|| < \delta$.

Corolari: (Propietats dels límits) Suposem $\lim_{x \to x_0} f(x) = L_1$, $\lim_{x \to x_0} g(x) = L_2$

1.
$$\lim_{x \to x_0} (f(x) + g(x)) = L_1 + L_2$$

$$2. \lim_{x \to x_0} (f(x) \times g(x)) = L_1 \times L_2$$

1.
$$\lim_{x \to x_0} (f(x) + g(x)) = L_1 + L_2$$

2. $\lim_{x \to x_0} (f(x) \times g(x)) = L_1 \times L_2$
3. Si $L_2 \neq 0$, llavors $\lim_{x \to x_0} (\frac{f(x)}{g(x)}) = \frac{L_1}{L_2}$

■ Exemple $\lim_{(x,y)\to(0,0)} (x^2+y^2)^{\alpha} \sin\frac{1}{x^2+y^2}$ on $\alpha\in\mathbb{R}$.

Observem que
$$\lim_{(x,y)\to(0,0)} (x^2+y^2)^{\alpha} = \begin{cases} 0 \text{ si } \alpha > 0 \\ +\infty \text{ si } \alpha < 0 \\ 1 \text{ si } \alpha = 0 \end{cases}$$

- Si $\alpha > 0$, observem $|(x^2 + y^2)^{\alpha} \sin \frac{1}{x^2 + y^2}| \leq (x^2 + y^2) \longrightarrow 0$
- Si $\alpha < 0$ veiem que el límit no existeix. Trobem $(x_n, y_n) \to (0, 0) \atop (z_n, w_n) \to (0, 0)$ quan $n \to \infty$ per fer

$$\lim_{(x_n,y_n)\to(0,0)} (x_n^2+y_n^2)^\alpha \sin\frac{1}{x_n^2+y_n^2} = \lim_{(z_n,w_n)\to(0,0)} (z_n^2+w_n^2)^\alpha \sin\frac{1}{z_n^2+w_n^2}$$

Triem (x_n, y_n) tal que $x_n^2 + y_n^2 = \frac{1}{n\pi}$ i triem (z_n, w_n) tal que $z_n^2 + w_n^2 =$

$$\frac{1}{\pi/2+2\pi n}.$$
Per exemple $x_n = \frac{1}{\sqrt{n\pi}}$, $y_n = 0$, $z_n = 0$ i $w_n = \frac{1}{\sqrt{\pi/2+2\pi n}}$.

Això provocarà que el primer límit doni 0 i el segon ∞ , que, òbviament, no són iguals.

• Si $\alpha = 0$, exercici pel lector. No existeix.

2.2.2Límit seguint rectes i límit a un punt

Proposició Suposem $\lim_{(x,y)\to(0,0)} f(x,y) = L$, llavors $\lim_{x\to 0} f(x,mx) = L \ \forall m \in \mathbb{R}$.

Utilitzarem aquest fet de la següent forma:

Corolari: Si $\lim_{x\to 0} f(x, mx)$ depèn de m, aleshores $\lim_{x\to 0} f(x, y)$ no existeix.

 $\lim_{(x,y)\to(0,0)} \frac{x^2-y^2}{x^2+y^2} = \frac{0}{0} \not \exists$ ■ Exemple

Si fem y = mx, tenim $\lim_{x \to 0} \frac{x^2 - (mx)^2}{x^2 + (mx)^2} = \lim_{x \to 0} \frac{1 - m^2}{1 + m^2}$. Com depèn de m, no existeix el límit.

Que el límit no depengui de m no implica que el límit existeixi.

 $\lim_{(x,y)\to(0,0)} \frac{x^2y}{x^4+y^2}$ $\not\exists$, però si y=mx, tenim el seguent: $\lim_{x\to 0} \frac{mx^3}{x^4+m^2x^2}=$

Ara, imaginem que $y=x^2$, llavors resulta $\lim_{x\to 0} \frac{x^4}{2x^4} = \frac{1}{2}$

■ Exemple $\lim_{(x,y)\to(0,0)} \frac{xy^2}{x^2+y^2} = \frac{0}{0}$, fem y = mx: $\lim_{x\to 0} \frac{x(mx)^2}{x^2+(mx)^2} = \lim_{x\to 0} \frac{m^2x}{1+m^2} = 0$ ← això ha sigut una perdua de temps, no podem deduir res.

Veiem que, en efecte, $\lim_{(x,y)\to(0,0)} \frac{xy^2}{x^2+y^2} = 0$: si fem $\frac{|x|y^2}{x^2+y^2}$, podem veure que $\frac{y^2}{x^2+y^2} \le 1$, llavors $\frac{|x|y^2}{x^2+y^2} \le |x|1 \longrightarrow 0$. Per tant, el límit equival a 0.

Definició: Una funció $f: \mathbb{R}^n \to \mathbb{R}$ és continua a $x_0 \in \mathbb{R}^n$ si $\lim_{x \to x_0} f(x) =$ $f(x_0)$

Corolari: (Propietats de la continuitat) Tenim f continua a x_0 i g continua

- f + g és continua a x₀
 f × g és continua a x₀
 ^f/_g és continua a x₀ si g(x₀) ≠ 0

Teorema (Weistrass (Te la meto por detrás)) Sigui $K \subset \mathbb{R}^n$ compacte i sigui $f: K \to \mathbb{R}$ continua a K. Aleshores f te un màxim i un minim a K, és a dir, existeix x_{\min} i $x_{\max} \in K$ tals que $f(x_{\min}) \leq f(x) \leq f(x_{\max}) \ \forall x \in K$.

Es fundamental que K sigui compacte. f(x,y) = x no té máxim a $B_R(0,1)$. \leftarrow no es compacte.

Algorítmia i Combinatòria en Grafs. Mètodes Heurístics

Definició: Un graf és un objecte combinatori que està format per un parell ordenat de vèrtex i arestes (G = (V, E)). Una aresta (E) està etiquetat per un origen i un destí (o extrems si no estan orientades) sent aquests vèrtexs (V).

Definició: Un graf dirigit, o orientat, és un graf on les arestes tenen direcció, com si fos una fletxa.

Definició: Un graf no dirigit serà un graf on les arestes no tenen direccions. Podem suposar que l'aresta és bidireccional.

Definició: Un graf és planar si es pot unir tots els vèrtexs sense que es creuin les arestes. Si s'han de creuar obligatòriament, és un graf no planar.

Teorema Tot graf no planar té un subgraf $K_{3,3}$ o P_5 .

Definició: (Propietats dels grafs)

- 1. L'ordre d'un graf és el nombre de vèrtex
- 2. La grandària d'un graf és el nombre d'arestes
- 3. La valència d'un vèrtex és el nombre d'arestes entrant o sortint del vèrtex. Si surt i es connecta en si mateix compta com dos.
- 4. La valència d'entrada és el nombre d'arestes entrant.
- 5. La valència de sortida és el nombre d'arestes sortint.
- 6. Els vèrtexs amb valència 1 s'anomenen fulles.

- 7. Els vèrtexs amb valència més gran que dos es diuen **branching** (o **encreuament**).
- 8. Un **camí** és la seqüència de vèrtexs connectats linealment. La llargària d'un camí és el nombre de vèrtexs.
- 9. Un **circuit** és un camí tancat, és a dir, un camí que comença i termina al mateix lloc.

Definició: Un graf no dirigit és **connex** si hi ha un camí des de tot vèrtex qualsevol fins a tot altre.

Definició: Un component connex és un subgraf connex i maximal.

Definició: Un graf dirigit és **connex** si hi ha un camí des de tot vèrtex qualsevol fins a tot altre.

Proposició Per a un graf (V, E) no orientat les afirmacions següents són equivalents:

- 1. (V, E) és un graf connex.
- 2. $\forall v_o \in V$, existeix un camí d'arestes de v_o a $v, \forall v \in V$.
- 3. $\exists v_o \in V$ tal que existeix un camí d'arestes de v_o a v.

Notació. Fem servir o per multiplicar camins.

Definició: Un graf dirigit és **feblement connex** si hi ha un camí des de tot vèrtex qualsevol fins a tot altre sense fer servir l'orientació, és a dir, seria connex en cas que fos no orientat.

Definició: Un graf dirigit és **semi connex** si al escullir qualssevol dos vèrtexs del graf hi existeix un camí connectant-los, sigui d'un sentit o d'altre.

Probabilitat

Definició: Un fenomen o experiment aleatori presenten les següents característiques:

- Abans de realitzar l'experiment no sabem el resultat però sí el conjunt de resultats possibles.
- En teoria es pot realitzar sota les mateixes condicions infinites vegades.
- Es pot assignar probabilitats als resultats.

Definició: L'espai mostral és el conjunt de possibles resultats de l'experiment aleatori. Es denota per la lletra Ω i els seus elements per ω .

Definició: Un esdeveniment és una col·lecció de subconjunts de l'espai mostral. Es pot calcular la probabilitat d'un esdeveniment. Ha de tenir estructura de σ -àlgebra.

Notació. Si $\omega \in \Omega$ és un resultat de l'experimental tal que $\omega \in A$, diem que A s'ha realitzat.

Definició: Sigui \mathcal{A} una col·lecció de subconjunts d'Ω. \mathcal{A} és una σ -àlgebra si es compleix el següent:

- 1. $\Omega \in \mathcal{A}$
- 2. Si $A \in \mathcal{A}$, aleshores $A^c \in \mathcal{A}$.
- 3. Si A_1, A_2, \ldots són elements d' \mathcal{A} , aleshores $\bigcup_{n=1}^{\infty} A_n \in \mathcal{A}$

Corolari: (propietats d'una σ -àlgebra) Sent \mathcal{A} una σ -àlgebra

• $\emptyset \in \mathcal{A}$

- $A, B \in \mathcal{A} \Rightarrow A \cap B \in \mathcal{A}$
- $A, B \in \mathcal{A} \Rightarrow B \setminus A = B \cap A^c \in \mathcal{A}$

Definició: (Fórmula de Laplace) La probabilitat d'un esdeveniment A sempre que el conjunt de resultats possibles sigui finit i equiprobable, la fórmula de Laplace es pot aplicar.

$$\mathbb{P}(A) = \frac{\text{Casos probables a } A}{\text{Casos possibles}}$$

Una altra manera de calcular la probabilitat és fent servir una visió frequentista:

$$\mathbb{P}(A) = \lim_{n \to \infty} f_n(A)$$
 on $f_n(A) := \frac{\text{nombre de cops que hem obtingut } A}{n}$

Definició: (axiomes de Kolmogorov) Siguin Ω un conjunt i \mathcal{A} una σ -àlgebra sobre Ω . Una probabilitat és qualsevol aplicació $\mathbb{P}:\mathcal{A}\longrightarrow [0,1]$ que compleix el següent:

- $\mathbb{P}(\Omega) = 1$ Si $\{A_n, n \geq 1\} \subset \mathcal{A}$ són disjunts dos a dos llavors

$$\mathbb{P}(\bigcup_{n=1}^{\infty}) = \sum_{n=1}^{\infty} \mathbb{P}(A_n)$$

Definició: Un espai de probabilitat és la terna $(\Omega, \mathcal{A}, \mathbb{P})$.

Notació. Per a unions disjuntes fem servir \uplus .

Corolari: Propietats dels axiomes de Kolmogorov.

- 1. $\mathbb{P}(\emptyset) = 0$
- 2. $A, B \in \mathcal{A} \Rightarrow \mathbb{P}(A \cup B) = \mathbb{P}(A) + \mathbb{P}(B) \mathbb{P}(A \cap B)$
- 3. $A \subset B \Rightarrow \mathbb{P}(A) \leq \mathbb{P}(B)$ 4. $A \subset B \Rightarrow \mathbb{P}(B \setminus A) = \mathbb{P}(B) \mathbb{P}(A)$
- 5. $\mathbb{P}(A \cup B) < \mathbb{P}(A) + \mathbb{P}(B)$

Definició: Quan parlem de odds de A, definim:

- Odds a favor de A: Odds(A) = \(\frac{\mathbb{P}(A)}{\mathbb{P}(A^c)} \)
 Odds en contra de A: Odds(A^c) = \(\frac{\mathbb{P}(A^c)}{\mathbb{P}(A)} \)
- Exemple $\operatorname{Odds}(A) = \frac{3}{2} \Longleftrightarrow \mathbb{P}(A) = \frac{3}{2}\mathbb{P}(A^c)$ i sabem que $\mathbb{P}(A^c) = 1 \mathbb{P}(A)$, llavors en resoldre tenim $\mathbb{P}(A) = 0.6$ i $\mathbb{P}(A^c) = 0.4$.

Càlcul Numèric

Hi ha 3 tipus d'errors (4 si em comptes a mi):

- 1. Errors en les dades d'entrada
- 2. Errors a les operacions
- 3. Errors de truncament

Aquí es tractaran principalment els dos primers.

Teorema (Representació en punt flotant en base b) Per $b \in \mathbb{N}$, $b \geq 2$. Tot $x \in \mathbb{R}$, $x \neq 0$ pot ser representat de la següent forma:

$$x = s(\sum_{i=1}^{\infty} \alpha_i b^{-i}) b^q$$

amb $s \in \{-1,1\}, q \in \mathbb{Z}$ i $\alpha_i \in \{0,1,\ldots,b-1\}$. A més, la representació anterior és única si $\alpha_1 \neq 0$ i els α_i no són tots b-1 d'una posició en endavant.

Definició: (Representació en punt flotant) És la versió finita de la representació. En aquesta representació, tot nombre x consta de

- \bullet el signe, s
- la mantissa, que només consta d'un nombre finit de dígits, $\delta_1, \delta_2, \dots, \delta_t$ expressats en base b, i
- \bullet l'exponent, q, que està limitat a un rang prefixat, $q_{\min} \leq q \leq q_{\max}$

Notació. Si x és el valor exacte, \tilde{x} és el valor aproximat.

Definició: L'error absolut és $\Delta x = x - \tilde{x}$. L'error relatiu és $\frac{\Delta x}{x} = \frac{x - \tilde{x}}{x} = 1 - \frac{\tilde{x}}{x}$

Definició: Definim la fórmula de propagació d'error com $|\Delta f(x_o)| \lesssim h|f'(x_o)|$.

Definició: Amb dues variables, $|f(x+h,y+k)| \lesssim |\frac{\partial f(x,y)}{\partial x}||h| + |\frac{\partial f(x,y)}{\partial y}||k|$ (dicho en clase: ¿por qué no se cancelan los ∂ ?)

Exercici Calcular de forma exacta i l'error absolut de $(2 \pm 0.01)(3 \pm 0.2)^2$. De manera exacta, tenim $F(x, y) = xy^2$

$$F(2,3) = 2 \times 3^2 = 18$$

L'error absolut és el següent

$$|\Delta F(x,y)| \lesssim |\frac{\partial F}{\partial x}||h| + |\frac{\partial F}{\partial y}||k| = |y^2||h| + |2xy||k|$$

Si substituïm x=2,y=3,h=0.01 i k=0.2

$$|\Delta F(x,y)| \lesssim |9||0.01| + |12||0.2| = 0.09 + 2.4 = 2.49$$

Exercici Calcular de forma exacta i l'error absolut de $(2 \pm 0.01)e^{-1\pm0.2}$. De manera exacta, tenim $F(x,y) = xe^y$

$$F(2, -1) = 2e^{-1}$$

L'error absolut és el següent

$$|\Delta F(x,y)| \lesssim |\frac{\partial F}{\partial x}||h| + |\frac{\partial F}{\partial y}||k| = |e^y||h| + |xe^y||k|$$

Si substituïm x=2,y=-1,h=0.01 i k=0.2

$$|\Delta F(x,y)| \lesssim |e^{-1}||0.01| + |2e^{-1}||0.2|$$