Kapitel 2: Mängdlära

Kasper K. S. Andersen

23 september 2021

Definition 1. En *mängd* är en samling objekt (så kallade *element*) tex. vektorer, reella tal, . . .

Exempel 1. (a) Mängden $A = \{1, 3, 2, 5, 4\}$, här anges själva elementen. Ordningen är oviktig!

(b) $A = \{x \mid x \text{ är heltal }, 1 \leq x \leq 5\}$, här anges elementens egenskaber. Notationen kallas $m \ddot{a} n g d b y g g a r e n$.

Visualisering:

Exempel 2. (Månsson & Nordbeck, "Endimensionell Analys", §1.1, sida 1–3)

- (a) Reella talen \mathbb{R} .
- (b) Heltalen $\mathbb{Z} = \{\ldots, -3, -2, -1, 0, 1, 2, \ldots\}.$
- (c) Positiva heltalen $\mathbb{Z}_+ = \{1, 2, 3, 4, \ldots\}.$
- (d) Naturliga talen $\mathbb{N} = \{x \mid x \text{ är ett icke-negativt heltal}\} = \{0, 1, 2, \ldots\}.$
- (e) Rationella talen $\mathbb{Q} = \{ \frac{a}{b} \mid a, b \in \mathbb{Z}, b \neq 0 \}.$
- (f) Tomma mängden $\emptyset = \{\}$. Engelska: "empty set".

Definition 2. Mängden B är en delmängd av mängden A om varje element i B också finns med i A. I formelspråk:

$$\boxed{B \subseteq A: \quad x \in B \Longrightarrow x \in A}$$

Observera att $\emptyset \subseteq A$ och $A \subseteq A$ för varje mängd A.

Exempel 3. Om $A = \{1, 3, 4, 5, 2\}$ och $B = \{1, 4\}$ gäller $B \subseteq A$.

Exempel 4. $A = \{1, 2, 3\}$. Är följande påståenden falska eller sanna?

- (a) $3 \in A$: Sant.
- (b) $3 \subseteq A$: Falskt.
- (c) $\{3\} \subseteq A$: Sant.
- (d) $\{3\} \in A$: Falskt.

Definition 3 (Likhet). Två mängder A och B är lika (skrivs A = B) om de innehåller samma element, tex. $A = \{1, 2, 3\}$ och $B = \{3, 1, 2, 2\}$ (upprepning är tillåten). Sagt annorlunda

$$A = B \iff A \subseteq B \text{ och } B \subseteq A$$

Definition 4. Kardinaliteten av en ändlig mängd A är antallet element i A (skrivs |A|).

Exempel 5. • $|\{1, 2, 3, 4\}| = 4$.

- Tomma mängden \emptyset innehåller inga element, $|\emptyset| = 0$.
- $\{\emptyset\}$ innehåller ett element (nämligen \emptyset), $\big|\{\emptyset\}\big|=1$.

Potensmängden till A är mängden av alla delmängder till A:

$$\mathcal{P}(A) = \{ B \mid B \subseteq A \}$$

Observera att båda \emptyset och A ingår i $\mathcal{P}(A)$.

Exempel 6. Låt $A = \{a, b, c\}$, potensmängden blir

$$\mathcal{P}(A) = \Big\{\underbrace{\{\} = \emptyset, \{a\}, \{b\}, \{c\}, \{a,b\}, \{a,c\}, \{b,c\},}_{\text{äkta delmängder}}, \{a,b,c\} = A\Big\}.$$

I exemplet gäller $|\mathcal{P}(A)| = 8 = 2^3 = 2^{|A|}$. Detta gäller allmänt.

Sats: Om |A| = n så är $|\mathcal{P}(A)| = 2^n$.

Operationer på mängder

I figurerna nedan används så kallade Venndiagram (John Venn 1834–1923).

- ullet $\mathcal{U}=$ universum (grundmängden) är mängden av alla tillgängliga element.
- Unionen: $A \cup B = \{x \mid x \in A \text{ eller } x \in B\}$. Observera att "eller" är "matematisk eller" vilket tillåter "båda och".

• Snittet: $A \cap B = \{x \mid x \in A \text{ och } x \in B\}.$

• Differensen mellan A och B ("bara A"):

 $A \setminus B = \{x \mid x \in A \text{ och } x \notin B\}.$

• Komplementet till A är differensen mellan \mathcal{U} och A

$$A^{\mathsf{c}} = \mathcal{U} \setminus A = \{ x \mid x \notin A \}$$

ullet Symmetriska differensen mellan A och B:

$$A \oplus B = \{x \mid (x \in A \text{ och } x \notin B) \text{ eller } (x \in B \text{ och } x \notin A)\}$$
$$= (A \setminus B) \cup (B \setminus A).$$

Anmärkning: $A \setminus B = A \cap B^{c}$

Exempel 7. Låt $\mathcal{U}=\{1,2,\dots,10\}$ med delmängderna $A=\{1,2,3,4\}$ och $B=\{3,4,5,6\}$. Då gäller:

(1)
$$A \cup B = \{1, 2, 3, 4, 5, 6\},\$$

- (2) $A \cap B = \{3, 4\},\$
- (3) $A \setminus B = \{1, 2\},\$
- (4) $A^{c} = \{5, 6, 7, 8, 9, 10\}, \text{ och }$
- (5) $A \oplus B = \{1, 2, 5, 6\}.$

Exempel 8. Visa $(A \cap B)^c = A^c \cup B^c$ (jmf. Övning 2.20).

Alternativ 1: Använd Venndiagram och rita stegvis

Alternativ 2: Man visar VM och HM innehåller precis samma element, dvs. $VM \subseteq HM$ och $HM \subseteq VM$.

Lösning: (1) $(A \cap B)^{c} \subseteq A^{c} \cup B^{c}$:

$$x \in (A \cap B)^{\mathsf{c}} \Longrightarrow x \notin A \cap B$$

$$\Longrightarrow x \text{ ligger inte i båda } A \text{ och } B$$

$$\Longrightarrow x \in A^{\mathsf{c}} \text{ eller } x \in B^{\mathsf{c}}$$

$$\Longrightarrow x \in A^{\mathsf{c}} \cup B^{\mathsf{c}}.$$

(2) $A^{c} \cup B^{c} \subseteq (A \cap B)^{c}$:

$$x \in A^{\mathsf{c}} \cup B^{\mathsf{c}} \Longrightarrow x \in A^{\mathsf{c}}$$
 eller $x \in B^{\mathsf{c}}$
 $\Longrightarrow x$ ligger inte i båda A och B
 $\Longrightarrow x \notin A \cap B$
 $\Longrightarrow x \in (A \cap B)^{\mathsf{c}}$.

(3) Då $(A \cap B)^c \subseteq A^c \cup B^c$ och $A^c \cup B^c \subseteq (A \cap B)^c$, erhålls $(A \cap B)^c = A^c \cup B^c$.

• Läsa "Räkneregler för mängdlära", Tabell 2.1, s. 20.

Definition 5. Två mängder A och B är disjunkta om $A \cap B = \emptyset$.

$$|A \cup B| = |A| + |B|$$
 om A och B är disjunkta

Anmärkning: I allmänhet gäller (jmf. s. 22)

$$|A \cup B| = |A| + |B| - |A \cap B|$$

Motsvarende för tre mängder A, B och C (jmf. Övning 2.28):

$$|A\cup B\cup C|=|A|+|B|+|C|-|A\cap B|-|A\cap C|-|B\cap C|+|A\cap B\cap C|$$

Definition 6. Låt A och B vara två mängder. Mängden

$$A \times B = \left\{ \underbrace{(a,b)}_{\text{ordnade par}} \middle| a \in A \text{ och } b \in B \right\}$$

kallas produktmängden av A och B.

Exempel 9. Låt $A=\{1,2,3\},\,B=\{r,s\},$ då är

$$A \times B = \{(1, r), (1, s), (2, r), (2, s), (3, r), (3, s)\}.$$

Vi ser att |A|=3, |B|=2 och $|A\times B|=6$, dvs. $|A\times B|=|A|\times |B|$.

Detta gäller allmänt: $|A \times B| = |A| \times |B|$ (A, B ändliga)

 \bullet Läs själv Exempel 2.5 och 2.6, s. 24–25 samt §2.6.1, s. 26–27. §2.6.2 ingår inte.