Future Emissions Scenarios

EES 2110
Introduction to Climate Change
Jonathan Gilligan

Class #31: Wednesday, March 29 2023

Now consider a scenario in which the concentration of CO₂ in the atmosphere gradually rises to 400 ppm, about 8% higher than the level today, then stabilizes by the year 2100, as shown here:

- The graph below shows anthropogenic CO₂ emissions from 1900-2000, and current net removal of CO₂ from the atmosphere by natural processes. Sketch:
 - a. Your estimate of likely future net CO2 removal, given the scenario above.
 - b. Your estimate of likely future anthropogenic CO₂ emissions, given the scenario above.

J.D. Sterman, Science **322**, 532 (2008).

- 212 MIT MBA and graduate students.
- 60% majored in science or engineering

Kaya Identity

Kaya Identity

$$F = P \times g \times e \times f$$

- F = emissions (million tonnes carbon per year)
- P = population (billions)
- g = per-capita GDP (\$1000 per person)
- *e* = energy intensity of economy (quads / trillion dollars)
- f = carbon intensity of energy supply (million tonnes carbon / quad)

Policy

- We can't directly control P
- We want **g** to grow
- Therefore, decrease e and f

Policy in Practice

- Reduce e:
 - *e* is the energy intensity of the economy
 - Reducing e means making the economy more energy efficient
 - Waste less energy
 - Fossil-fuel electricity generation wastes 1/2 to 2/3 of primary energy
 - Gasoline & diesel cars and trucks
 waste about 2/3 of primary energy
 - Incandescent light bulb wastes
 98% of electric energy
 - Get more value from the energy we use

- **Reduce** *f* :
 - f is carbon intensity of the energy supply
 - Switch from coal to gas
 - Switch from fossil fuels to clean energy
 - Nuclear energy
 - Renewable energy
 - Wind
 - Solar
 - Geothermal
 - O ...

Recent Trends

Energy Intensity of Global Economy (e)

Carbon Intensity of Global Energy Supply (f)

Emissions Intensity of Global Economy (ef)

Progress on Reducing e and f

- From 2005–2021,
 - e dropped by 16.2%
 - Examples:
 - Computing data centers became 6 times more energy efficient from 2010–2018.
 - Electric lighting became 4 times more energy efficient since 2007.
 - Cars and light trucks use 20% less fuel than in 2005.
 - f dropped by 7.6%
 - Big shift from coal to gas because of "fracking".
 - Wind and solar are the fastest-growing sources of electricity
- But we need to speed up these trends to meet world climate goals

Implied Decarbonization

Implied Decarbonization

- Specify emissions for 2050, compared to 2021
- Assume global GDP G grows at rate r (5% $\rightarrow r = 0.05$)

emissions:
$$F = Pgef = G \times ef$$

$$F(2050) = G(2050) \times ef(2050)$$

Growth:

$$y(5 ext{ years from now}) = y(ext{today}) imes ext{exp}(r imes 5)$$

 $pprox y(ext{today}) imes (1+r)^5$

- $\exp = \exp \operatorname{exponential function}(e^x)$.
- Call it "exp" to avoid confusing e in Kaya formula with e, base of natural logarithm.

Implied Decarbonization

- Specify emissions for 2050, compared to 2021
- Assume global GDP G grows at rate r (5%% $\rightarrow r = 0.05$)

emissions:
$$F = Pgef = G \times ef$$

$$F(2050) = G(2050) \times ef(2050)$$

$$G(2050) = G(2021) \times \exp(r \times (2050 - 2021))$$

$$ef(2050) = \frac{F(2050)}{G(2050)}$$

$$= \frac{F(2050)}{G(2021) \times \exp(r \times 29)} \approx \frac{F(2050)}{G(2021) \times (1 + r)^{29}}$$

Reduce emissions 50% by 2050:

Actual and Implied Decarbonization

Pielke's Policy Criteria

- 1. Policies should flow with public opinion
- 2. Public will not tolerate significant short-term costs, even for big long-term benefits
- 3. Policy must center on clean energy innovation

Play with Decarbonization

Interactive Tool

https://ees2110.jgilligan.org/decarbonization/

Decarbonization Explorer

Trends	Calculations	Implied Decarbonization	Energy Mix	Historical	
ariable					
P	•				
<u> </u>					