

Europäisches Patentamt

European Patent Office

Office européen des brevets

-15, 04, 2004

Best Available Copy

REC'D 0 3 MAY 2004 WIPO PCT

Bescheinigung

Certificate

Attestation

Die angehefteten Unterlagen stimmen mit der ursprünglich eingereichten Fassung der auf dem nächsten Blatt bezeichneten europäischen Patentanmeldung überein.

The attached documents are exact copies of the European patent application described on the following page, as originally filed.

Les documents fixés à cette attestation sont conformes à la version initialement déposée de la demande de brevet européen spécifiée à la page suivante.

Patentanmeldung Nr. Patent application No. Demande de brevet nº

03005181.7

Der Präsident des Europäischen Patentamts; Im Auftrag

For the President of the European Patent Office

Le Président de l'Office européen des brevets p.o.

PRIORITY DOCUMENT

SUBMITTED OR TRANSMITTED IN COMPLIANCE WITH RULE 17.1(a) OR (b)

R C van Dijk

Anmeldung Nr:

Application no.:

03005181.7

Demande no:

Anmeldetag:

Date of filing:

07.03.03

Date de dépôt:

Anmelder/Applicant(s)/Demandeur(s):

BASF Plant Science GmbH

67056 Ludwigshafen ALLEMAGNE

Bezeichnung der Erfindung/Title of the invention/Titre de l'invention: (Falls die Bezeichnung der Erfindung nicht angegeben ist, siehe Beschreibung. If no title is shown please refer to the description. Si aucun titre n'est indiqué se referer à la description.)

Enhanced amylose production in plants

In Anspruch genommene Prioriät(en) / Priority(ies) claimed /Priorité(s) revendiquée(s)
Staat/Tag/Aktenzeichen/State/Date/File no./Pays/Date/Numéro de dépôt:

Internationale Patentklassifikation/International Patent Classification/Classification internationale des brevets:

C12N15/00

Am Anmeldetag benannte Vertragstaaten/Contracting states designated at date of filing/Etats contractants désignées lors du dépôt:

AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT SE SI SK TR LI

Enhanced amylose production in plants

Description

The present invention relates to new amylose biosynthesis enhancing proteins, nucleic acids encoding a starch biosynthesis enhancing protein, a method for producing amylose with high efficiency by culturing genetically modified plants with an increased amylose biosynthesis compared to the wild type or to the genetically modified plants themselves as well as the use of these transgenic plants over-expressing at least one of the amylose biosynthesis enhancing proteins for the production of amylose.

Starch is the major storage carbohydrate of plants and is mainly accumulated in seeds and tubers, which are then the reproductive tissues of plants that form those types of organs. Starch is also accumulated on a diurnal basis where starch is built up in green tissue from photosynthetic products and then metabolised for energy during the dark period. The storage starch is assembled into semi crystalline granules. Amylopectin and amylose are the two constituent molecules of starch. Amylopectin is a branched molecule consisting of linear α -1,4 glucan chains linked by α -1,6 bonds. Amylose consists essentially of the linear α -1,4 glucan chains.

20

25

30

15

Starch is utilised for many applications within the technical industry as well as the food industry. Main crops used by starch processors are maize and potato. For potatoes specific varieties are utilised for starch production that have been bred for high starch contents. This means that the starch content and yield is an important economic driver for the starch processing industry. A greater part of produced dry starch is used for paper production. The specifications and requirements for the starch component varies from application to application and starch is many times chemically modified in order to provide desired properties to an application. Another way to achieve starch of different qualities is to take advantage of mutations in the starch biosynthesis and more recently by genetic modification of pathways leading to starch. The first main modifications have been to separate the production of the two starch components amylopectin and amylose into different varieties. Waxy or "amylose free" varieties contain solely amylopectin type starch while there are also high amylose genotypes such as "amylose extender" in maize.

35

40

Amylose starch has several potential industrial uses as a film former or for expanded products. High amylose starch can be achieved in potatoes and other starch containing plants by inhibition of starch branching enzymes. This leads then to the concomitant reduction or elimination of amylopectin branching and thereby an increased amylose

10

15

20

25

30

35

40

US 5,856,467 describes the genetically engineered modification of potato for suppressing formation of amylopectin-type starch. The document describes an antisense construct for inhibiting, to a varying extent, the expression of the gene coding for formation of starch branching enzyme (SBE gene) in potato, said antisense construct comprising a tuber specific promoter, transcription start and the first exon of the SBE gene, inserted in the antisense direction.

US 6,169,226 relates to an amino acid sequence of a second starch branching enzyme (SBE II) of potato and a fragment thereof as well as to the corresponding isolated DNA sequences. It describes the production of transgenic potatoes and the use of these transgenic potatoes for the production of amylose-type starch.

WO 97/20040 and WO 98/20145 describe methods of altering the amylopectine/ amylose starch content of plant cells by introducing into the plant cells nucleic acid sequences operably linked in sense or antisense orientation to a suitable promoter which homologous genes encodes polypeptides having SBE I or SBE II activity.

A side effect of the amylose overproduction is a decreased total starch content in the potatoes. This decrease becomes more pronounced as the amylose fraction is increased.

Basic enzymes for the production of amylopectin and amylose are starch synthases that build the linear α -1,4 glucan chains and branching enzymes breaking the α -1,4 glucan chain and reattaching them by α -1,6 bonds. Several other enzymes are likely to affect starch structure and composition, such as debranching enzymes, but initially most focus has been towards affecting the expression of starch synthases and starch branching enzymes. This has led to an extensive dissection of what enzymes are Important for what features of starch synthesis. However it has never been convincingly shown how the synthesis of starch in plants whether amylose or amylopectin is initiated.

Suggestions on the initiation of starch biosynthesis have been the subject of several scientific papers since it has been difficult to attribute a primer independent function to starch synthases under other than artificial in vitro conditions. By primer independent function implies the formation of new α -1,4 glucan chains with ADP-glucose as the sole starting point and building block. One proposed pathway has been that the presence of maltooligosaccharides act as primers for the addition of further glucose units by starch synthases although it has been debated on whether concentrations are sufficient to provide the basis for starch synthesis and also how these maltooligosaccharides would be formed in the plastids.

Starch is in plants synthesised as an energy storage molecule. Much is known about the enzymes participating in the starch biosynthesis although, the initiation of the starch molecule. In mammalians and yeast an energy storage molecule very similar to starch is synthesised, glycogen. The enzymatic steps for synthesis of the respective molecules are analogous. In glycogen biosynthesis the initiation of the molecule is known and synthesised by the enzyme glycogenin. Glycogenin is a self-glucosylating enzyme polymerising a linear chain of approximately 8 glucose molecules on itself. The primer of about 8 glucose residues is necessary for the enzymes catalysing the continuation of glucose incorporation to the glycogen molecule to function.

Cheng et al., 1995, Mol. and Cell. Biol. 6632-6640 compare the two yeast proteins with rabbit muscle glycogenin.

15 Roach et al., 1997, Progress in Nucleic Acid Research and Molecular Biology Vol 57, describe self glycosylating initiator proteins and their roll in glycogen biosynthesis.

Mu et al., 1997, Journal of Biological Chemistry 272 (44), 27589-27597 compare mammalian with yeast and C. elegans glycogenins.

Factors important for starch quantity have been investigated and many initiatives have been taken, especially in potato, to increase starch formation and content by over-expression or inhibition of various enzyme activities in areas of increased substrate supply, increased biosynthesis activity or shutting down substrate diverting pathways but so far this has led only to limited success with no commercial applications and only some scientific publications.

Regierer, B. et al., Starch content and yield increase as a result of altering adenylate pools in transgenic plants. Nat Biotechnol. 20(12):1256-60, (2002).

Sweetlove, LJ et al., Starch synthesis in transgenic potato tubers with increased 3-phosphoglyceric acid content as a consequence of increased 6-phosphofructokinase activity. Planta 213(3):478-82 (2001).

Veramendi, J et al.., Antisense repression of hexokinase 1 leads to an overaccumulation of starch in leaves of transgenic potato plants but not to significant changes in tuber carbohydrate metabolism. Plant Physiol. 121(1):123-34 (1999).

Geigenberger, P et al.., Overexpression of pyrophosphatase leads to increased sucrose degradation and starch synthesis, increased activities of enzymes for sucrose-

20

25

10

20

25

30

starch interconversions, and increased levels of nucleotides in growing potato tubers. Planta. 205(3):428-37(1998).

Sweetlove, LJ et al., Starch metabolism in tubers of transgenic potato (Solanum tuberosum) with increased ADPglucose pyrophosphorylase. Biochem J. 320 (Pt 2):493-8 (1996).

In other research a biochemical function superficially similar to the one initiating glycogen production in animals was investigated. A class of genes have then been isolated from several plants and was given the name amylogenin (WO94/04693; Sing, D. et al, β-Glucosylarginin: a new glucose-protein bond in a self-glucosylating protein from sweet corn, FEBS Letters 376:61-64, (1995) in the belief that it was the plant equivalent of glycogenin which acts as a self-glycosylating enzyme and provide primers for starch biosynthesis in plants. These genes have no resemblance from a structural point of view to the genes coding for glycogenin and have later been determined not to have a function in starch biosynthesis but rather might be of importance for cell wall formation , see Bocca, S.N et al., Molecular cloning and characterization of the enzyme UDP-glucose: protein transglucosylase from potato. Plant Physiology and Biochemistry 37(11):809-819(1999).

WO 98/50553 describes nucleic acid fragments encoding a plant glycogenin or a water stress protein. WO 98/50553 also relates to the construction of chimeric genes encoding all or a portion of a plant glycogenin in sense or antisense orientation, wherein expression of the chimeric gene results in production of altered levels of a plant glycogenin in a transformed host cell.

Thus although many enzymes and pathways have been investigated in plants, the question on how starch formation is initiated and what determines the starch content is still unresolved.

Amylose is a commercially important starch product with many uses but unfortunately an increase in amylose content in transgenic potato plants is associated with a significant decrease in starch content, see figure 1.

Analyses of transgenic high amylose potato lines show that there is an excess of soluble sugars in these lines, see figure 2. This indicates that the starch biosynthesis in these transgenic lines is not efficient enough for incorporation of available sugars.

Amylose starch consists of very few reducing ends compared to native starch. There-40 fore it is commercially important to identify genes that further enhance the amylose

20

35

biosynthesis and that are capable to incorporate the excess of glucose residues available and to compensate the decrease in starch content in plants that produces amylose in high amounts.

The invention aims at enhancing the yield of amylose biosynthesis by the overexpression of genes which enhance amylose biosynthesis in transformed plants.

The invention describes genes coding for proteins which enhance amylose production.

The present invention describes the nucleic acids SEQ ID NO 1 and 3 from potato coding for enzymes enhancing the de novo amylose biosynthesis.

Example 1 describes that the nucleic acid sequences SEQ ID NO 1 or 3 can complement a missing glycogenin function in yeast cells containing knock-out mutations for the self-glycosylating proteins Glg1p and Glg2p.

Gene constructs were made for gene-inhibition and over-expression of the two genes SEQ ID NO 1 or 3 in potato. Transgenic lines with the over-expressed or inhibited enzyme activity were analysed with regard to the genes influence on amylose content.

Both genes were inserted in sense and antisense direction downstream of a plant promoter element, resulting in the transformation binary vectors pHS1, pHS2, pHS3 and pHS4, see figures 3-7.

25 The antisense constructs were transformed into potato plant varieties Prevalent and Producent and the sense constructs were transformed to the potato varieties Desiree and the transgenic plant AM99-2003 according to the transformation method as described in example 2. The transgenic plant AM99-2003 was produced as described in example 3.

Prevalent and Producent are starch varieties having a starch content of approximately 20 %. Desirée is a potato variety having a starch content of approximately 16% and AM99-2003 is a transgenic high amylose line having a starch and thereby amylose content of approximately 13%.

The putative genes were Isolated from a tuber specific cDNA library of Solanum tuberosum (variety Prevalent). The library was made from a lambdaZAP directional kit (Stratagene).

Both cDNAs isolated were full-length clones of the individual genes and named StGH1 and StGH2, for nucleic acid sequences see SEQ ID NO 1 and SEQ ID NO 3.

pHS1

5

10

20 -

A 1300bp PCR fragment from the StGH1 gene was constructed in antisense direction driven by the gbss promoter. The PCR fragment was cut out from its cloning vector pCR4-TOPO (Invitrogen) with EcoRI (blunted) and Xbal. The fragment was ligated to the pGPTV-kan (Becker, D. et al., Plant Molecular Biology 20:1195-1197(1992) based binary vector pHo3.1 between a gbss promoter (WO 92/11376) and a nos terminator at the Sall (blunted) and Xbal sites. The binary vector also includes nptII as selection marker driven by the nos promoter (Herrēra, L. et al., 1983). The construct was named pHS1, for details see figure 3a and 4.

15 pHS2

A 2300bp full-length cDNA clone of StGH2 was cut out from the cloning vector pBluescript (Stratagene) with Xbal and Xhol. The gene was ligated in antisense direction between the gbss promoter and nos terminator to the binary vector pHo3.1 at Xbal and Sall. As can be seen under pHS1 the vector has nptll as selection system. The vector was named pHS2, for details see figure 3b and 5.

pHS3

- A full-length StGH1 cDNA, (1780bp) was cut out from the host vector pBluescript with EcoRI (blunted) and BgIII and ligated to the BamHI and Smal sites of pUCgbssprom (3886bp), containing pUC19 with the gbss promoter and the nos terminator. The plasmid was named pUCGH1.
- A fragment with the gbss promoter, the StGH1 gene and the nos terminator was moved from pUCGH1 with EcoRI (blunted) and HindIII (2980bp) and ligated to PstI (blunted) and HindIII opened pSUN1 (WO 02/00900). The plasmid was named pSUNGH1.
- A 3600bp fragment containing the AHAS resistance gene from Arabidopsis thaliana (Sathasivan, K. et al., Plant Physiology 97(1991), 1044-1050) with nos promoter, see Herrera-Estrella, L. et al., Nature 303:209-213(1983) and OCS terminator (Wesley, S.V. et al., Plant J. 27(6):581-590(2001) was ligated to pSUNGH1 (9000bp) at the Smal site. The vector was given the name pHS3, for details see figure 3c and 6.

pHS4

The gbss promoter and nos terminator was ligated to pBR322 with EcoRI and HindIII. Between the promoter and terminator an EcoRI-HincII full-length gene pStGH2 was cloned at the Xbal site. The 3366bp promotor-gene-terminator complex was cut using EcoRI (partial digestion) and EcoRV, and ligated to pSUN1 at EcoRI-EcoRV and named pSUNGH2. An Xbal fragment with AHAS gene (Arabidopsis thaliana), nos promoter and OCS terminator was ligated to pSUNGH2 opened with Xbal (partial digestion). The AHAS gene is used as selection marker. The construct was named pHS4, for details see figure 3d and 7.

Example 2 describes the general method for the transformation of different potato plant varieties producing native starch or high amylose type starch with pHS1, pHS2, pHS3 or pHS4.

15

10

5

The StGH1 and StGH2 genes were down-regulated in the potato plant varieties Prevalent and Producent by transformation with the genes in antisense direction in relation to a plant regulatory element as described in example 4 and 6. Down-regulation of the two genes resulted in a decrease in gene expression in transgenic lines, compared to their mother varieties in the order of 50-95%, see example 7 and table 3. Transgenic lines transformed with pHS1 and pHS2 with confirmed decrease in gene-expression have a decrease in dry matter of 7 to 11% compared to their mother varieties, see example 8 and table 5.

The StGH1 and StGH2 genes were over-expressed in potato driven by the tuber specific promoter gbss, as described in example 5. A mutated AHAS gene was used as selection marker yielding tolerance to the Imazamox herbicides. Two potato varieties were transformed, Desiree and AM99-2003 a transgenic high amylose line with a 40% decrease in starch content compared to its mother variety. The transformed lines over-expressing StGH1 and StGH2 were selected as described in example 6. The gene expression levels were analysed with real-time PCR, see example 7 and table 3. The over-expression of the genes StGH1 and StGH2 resulted in an 2 two10 times increase in gene compared to their mother variety. Furthermore the lines over-expressing StGH1 and StGH2 showed an increase in dry matter of up to 36 % as described in example 8 and table 5.

The over-expression of StGH1 and StGH2 in transgenic potato plants producing amylose type starch resulted in an increased dry matter content, which means an increased amylose content as no amylopectine is produced, see example 8, 9 and 11.

8

The amylose biosynthesis enhancing protein according to the invention comprises the amino acid sequence SEQ ID NO 2 or 4 or a protein which comprises a sequence derived from SEQ ID NO 2 or 4, which is at least 50%, preferably at least 60%, more preferably at least 70%, more preferably at least 80%, still more preferably at least 90%, most preferably at least 95%, identical at the amino acid level to the sequence SEQ ID NO 2 or 4 and has the property of an amylose biosynthesis enhancing protein. This amylose biosynthesis enhancing protein may also be prepared by artificial variations starting from the SEQ ID NO 2 or 4, for example by substitution, insertion or deletion of amino acids.

10

30

40

Such a protein could also be used to increase the production of starch or amylopectin in non-transgenic or transgenic plants.

The term "substitution" in the specification means the replacement of one or more amino acids by one or more amino acids. Preference is given to carrying out "conservative" replacements in which the amino acids replaced has a property similar to that of the original amino acid, for example replacement of Glu by Asp, Gln by Asn, Val by Ile, Leu by Ile, Ser by Thr.

"Deletion" is the replacement of an amino acid or amino acids by a direct bond. Preferred positions for deletions are the polypeptide termini and the junctions between the individual protein domains.

"Insertions" are insertions of amino acids into the polypeptide chain, with a direct bond formally being replaced by one or more amino acids.

"Identity" between two proteins means the Identity of the amino acids over the in each case entire length of the protein, in particular the Identity which is calculated by comparison with the aid of the Vector NTI Suite 7.1 Software of the company Informax (USA) using the Clustal W method (Thompson, JD et al., Nucleic Acid Research, 22 (22):4673-4680, 1994)

with the parameters set as follows:

35 Multiple alignment parameter:

Gap opening penalty 15
Gap extension penalty 6.66
Gap separation penalty range 8
Gap separation penalty on

BASF Plant Science GmbH

20020884 84:81 x18M.7 **2**1iazzanstam3

Of televity a	•
% identity for alignment delay	40
Residue specific gaps	
Hydron Lilla	on
Hydrophilic residue gap	off
Transition weighing	0

5

Pairwise alignment parameter:

10	FAST algorithm K-tuple size	off 2
	Gap penalty	5
	Window size	4
	Number of best diagonals	4

Accordingly, a protein which is at least 50% identical at the amino acid level to the sequence SEQ ID NO 2 or 4 means a protein which, when comparing its sequence with the sequence SEQ ID NO 2 or 4, is at least 50% identical, in particular according to the above program algorithm using the above set of parameters.

Further natural examples of genes coding for an amylose enhancing protein according to the invention can readily be found, for example, in various organisms, in particular in plants, whose genomic sequence is known by comparing the identity of the amino acid sequences or of the corresponding back-translated nucleic acid sequences from data-bases with the sequence of SEQ ID NO 2 or 4, in particular according to the above program algorithm using the above set of parameters.

In the completed genome sequence of Arabidopsis thaliana, five putitative coding sequences can be deduced by searching for exon/intron boundaries and comparing with back translated sequences of SEQ ID NO 2 or 4.

30

The following nucleic acid sequences of Arabidopsis thaliana SEQ ID NO 5, SEQ ID NO 7, SEQ ID NO 9, SEQ ID NO 11 and SEQ ID NO 13 could be used to carry out the invention and are coding for the amylose biosynthesis enhancing proteins SEQ ID NO 6, SEQ ID NO 8, SEQ ID NO 10, SEQ ID NO 12 and SEQ ID NO 14.

35

Furthermore the following nucleic acid sequences or ESTs can be used in order to identify and clone genes coding for an amylose biosynthesis enhancing protein from plant organisms:

Tomato ESTs from GenBank: AW216407, BE450055, BF097262, BE450557, BF097173

Wheat ESTs from GenBank: BJ292476, BJ278875, BJ283925, BE442966, CA666180, BQ483228

Maize EST from GenBank: BG319971

Rice ESTs from GenBank: AL606633, CA752890, BI813265

10 Natural ex

Natural examples of amylose biosynthesis enhancing proteins and the corresponding genes can furthermore readily be found in various organisms, in particular plants, whose genomic sequence is unknown by hybridization techniques in a manner known per se, for example starting from the nucleic acid sequences SEQ ID NO 1 or SEQ ID NO 3 or any of the SEQ ID NO 5, 7, 9, 11 or 13 or any of the EST sequences described above.

The hybridization may be carried out under moderate (low stringency) or, preferably, under stringent (high stringency) conditions.

20

15

Such hybridization conditions are described, inter alia, in Sambrook, J., Fritsch, E.F., Maniatis, T., in: Molecular Cloning (A Laboratory Manual), 2nd edition, Cold Spring Harbor Laboratory Press, 1989, pages 9.31-9.57 or in Current Protocols in Molecular Biology, John Wiley & Sons, N.Y. (1989), 6.3.1-6.3.6.

25

By way of example, the conditions during the washing step may be selected from the range of conditions which is limited by those with low stringency (with 2X SSC at 50°C) and those with high stringency (with 0.2X SSC at 50°C, preferably at 65°C) (20X SSC: 0.3 M sodium citrate, 3 M sodium chloride, pH 7.0).

30

· 35

In addition, the temperature may be raised during the washing step from moderate conditions at room temperature, 22°C, to stringent conditions at 65°C.

Both parameters, salt concentration and temperature, may be varied simultaneously and it is also possible to keep one of the two parameters constant and to vary only the other one. It is also possible to use denaturing agents such as, for example, formamide or SDS during hybridization. In the presence of 50% formamide, the hybridization is preferably carried out at 42°C.

40 Some exemplary conditions for hybridization and washing step are listed below:

- (1) hybridization conditions with, for example
- (i) 4X SSC at 65°C, or

- (ii) 6X SSC at 45°C, or
- (iii) 6X SSC at 68°C, 100 mg/ml denatured fish sperm DNA, or
- (iv) 6X SSC, 0.5% SDS, 100 mg/ml denatured fragmented salmon sperm 10 DNA at 68°C, or
 - (v) 6X SSC, 0.5% SDS, 100 mg/ml denatured fragmented salmon sperm DNA, 50% formamide at 42°C, or

15

- (vi) 50% formamide, 4X SSC at 42°C, or
- (vii) 50% (vol/vol) formamide, 0.1% bovine serum albumin, 0.1% Ficoll, 0.1% polyvinylpyrrolidone, 50 mM sodium phosphate buffer pH.
- 6.5, 750 mM NaCl, 75 mM sodium citrate at 42°C, or 20
 - (viii) 2X or 4X SSC at 50°C (moderate conditions), or
 - (ix) 30 to 40% formamide, 2X or 4X SSC at 42°C (moderate conditions).

25

- (2) Washing steps of 10 minutes each with, for example
- (i) 0.015 M NaCl/0.0015 M sodium citrate/0.1% SDS at 50°C, or
- 30 (ii) 0.1X SSC at 65°C, or
 - (iii) 0.1X SSC, 0.5% SDS at 68°C, or
 - (iv) 0.1X SSC, 0.5% SDS, 50% formamide at 42°C, or

- (v) 0.2X SSC, 0.1% SDS at 42°C, or
- (vi) 2X SSC at 65°C (moderate conditions).

Preferred proteins with amylose biosynthesis enhancing activity are proteins from plants, cyanobacteria, mosses or algae, particular preferred from plants. A particular preferred protein comprises the amino acid sequence SEQ ID NO 2 or 4.

- If, for example, the protein is to be expressed in a plant, it is frequently advantageous to use the codon usage of said plant for backtranslation and resynthesis of the gene according to codon usage of said plant.
- The invention further relates to nucleic acids encoding an amylose biosynthesis enhancing protein according to the invention. All of the nucleic acids mentioned in the specification may be, for example, a RNA sequence, DNA sequence or cDNA sequence.
- Suitable nucleic acid sequences can be obtained, for example, by back-translating the polypeptide sequence according to the genetic code. For this, preference is given to using those codons which are used frequently according to the organism-specific codon usage. The codon usage can be readily determined on the basis of computer analyses of other known genes of the organisms in question.
- All of the above-mentioned genes coding for an amylose biosynthesis enhancing protein can furthermore be prepared in a manner known per se from the nucleotide building blocks by chemical synthesis, for example by fragment condensation of individual overlapping complementary nucleic acid building blocks of the double helix. The chemical synthesis of oligonucleotides may be carried out, for example, in a known manner according to the phosphoramidite method (Voet, Voet, 2nd edition, Wiley Press New York, pages 896-897). The annealing of synthetic oligonucleotides and filling-in of gaps with the aid of the Klenow fragment of DNA polymerase and ligation reactions and also general cloning methods are described in Sambrook et al. (1989), Molecular cloning: A laboratory manual, Cold Spring Harbor Laboratory Press.

Genes coding for this function may be integrated in the plant chromosomes and upon expression utilize a transit peptide to localise to plastids which is the organelle where amylose biosynthesis takes place or be integrated directly into the plastid genome and thereby surpass the need for the localisation signal. The genes may be expressed constitutively or organ specific. For organ specific expression, promoters with tuber specific expression is preferable in potatoes while in cereals as maize or wheat a endosperm specific expression would be preferred to achieve a high degree of expression in organs where storage starch is accumulated. When transformed to the plastid genome then specific regulatory elements suitable for that organelie apply.

30

The genes of this invention may be used in combination with other genes that can be situated on the same gene construct or transferred and combined by co-transformation or super transformation. Genes and traits that are of interest to combine with the genes of the instant Invention are agronomic or input trait such as herbicide tolerance, disease and pest resistance or stress tolerance but could also be output traits such as starch structure modification or yield. Genes and traits used in combination with the genes described in the invention could be for adding a function that is not present in the modified plant species or over-expressing a function that is already present or inhibiting a function by the use of antisense, RNAi or antibodies.

10

The invention may be used to increase the amylose content in potato tubers but would in its context not be limited to potatoes but would be applicable to other starch producing and storing plants such as e.g. corn, cassava, wheat, barley, oat and rice.

15 The described invention is particularly suited for eliminating a lower starch content associated with increased amylose content in different plants where the number of a-1,4-glucan chain non-reducing ends is greatly reduced due to the reduction or elimination of α -1,6 branch formation. Amylopectin is an extremely efficient structure, as is glycogen, for polysaccharide production since it is very branched and thus contains as many points accessible for starch synthesis as there are non-reducing ends. Starch 20 that is mainly composed of amylose, contains much fewer branches and thus the biosynthetic capacity is reduced. In order to enhance starch biosynthesis when there is no amylopectin production, expression of genes as described in the present invention, could for example form new primers that can replace amylopectin as a source for 25 starch biosynthesis capacity and thereby reduce or eliminate the lost capacity for starch synthesis. To further illustrate the situation the degree of branching in ordinary potato starch is approximately 3.1% while in high amylose starch it is 0.3-1.0% depending on amylose content this decrease of branching and starch content is further associ-

ated with an increase in glucose and fructose content.

30

35

40-

The increased amylose content and thereby solids content is also advantageous for the processing properties in various applications such as for french fries, potato crisps and other potato based products. In addition to an increased solid content, the inserted genes SEQ ID NO 1 or 3 of the present invention result in the transformation of excess sugars into α -1,4-glucan chains and thereby reducing browning of fried potato products. Maillard reaction, in which amino acids react with free sugars.

Furthermore

(i) any gene of plant origin with the described activity can be used for increasing amylose content and solids

25

35

- (ii) the genes can be controlled by any regulating promoter element functional in plant.
- (iii) any starch producing crop of any variety can be transformed with the described genes.
- 5 (iiii) any plant transformation method can be used.
 - (iiiii) any binary vector can be used for the insertion of the described genes.
 - (iiiiii) the described genes can be combined with any other desired transgenically inserted traits.
- The invention further relates to a method for producing amylose by culturing plants which have, compared to a wild type or a genetically modified plant producing already amylose type starch, an increased amylose biosynthesis activity, said proteins comprising the amino acid sequence SEQ ID NO 2 or 4 or a sequence which is derived from one of these sequences by substitution, insertion or deletion of amino acids and which is at least 50% identical at the amino acid level to the sequence SEQ ID NO 2 or 4.

Increased amylose biosynthesis activity compared to the wild type or transgenic line means that the amount of amylose formed is increased by the amylose biosynthesis enhancing protein in comparison with the wild type or transgenic line.

This increase in amylose biosynthesis activity is preferably at least 5%, further preferably at least 10%, further preferably at least 20%, further preferably at least 50%, more preferably at least 100%, still more preferably at least 200%, in particular at least 500%, of the protein activity of the wild type or transgenic line.

A "wild type" means the corresponding genetically unmodified starting plant. This plant is preferably Solanum tuberosum.

Depending on the context, the term "plant" means a wild type starting plant or a geneti-

"Transgenic plant" or "genetically modified plant" means that the plant contains an additional inserted gene segment that may be foreign or endogenous to the plant species, additional genes or additional gene fragments in sense and/or antisense orientation to a suitable promoter corresponding to the following polypeptides and showing enzymatic activity of a starch branching enzyme I, a starch branching enzyme II and/or the amylose biosynthesis enhancing protein as specified in SEQ ID NO 1 or 3 or polynucleotides having at least 60 % sequence identity thereof.

20

25

30

35

15

"Amylose type starch" means that the amylose content of the starch is increased compared to the amylose content of starch produced by wild type plants especially wild type potato plants.

The amylose biosynthesis activity may be increased in various ways, for example by eliminating inhibiting regulatory mechanisms at the translation and protein levels or by increasing the gene expression of a nucleic acid encoding a amylose biosynthesis enhancing protein compared to the wild type or transgenic plant, for example by inducing a gene encoding the amylose biosynthesis enhancing protein via activators or by introducing into the plant nucleic acids encoding a amylose biosynthesis enhancing protein.

According to the invention, increasing the gene expression of a nucleic acid encoding a amylose biosynthesis enhancing protein could also mean manipulating the expression of the endogenous amylose biosynthesis enhancing protein intrinsic to the plant, in particular in potato plants. This may be achieved, for example, by modifying the promoter DNA sequence of genes encoding an amylose biosynthesis enhancing protein. Such a modification which leads to a modified or preferably increased rate of expression of at least one endogenous gene encoding an amylose biosynthesis enhancing protein may be carried out by deleting or inserting DNA sequences.

It is also possible to modify expression of one or more endogenous amylose biosynthesis enhancing protein by applying exogenous stimuli. This may be carried out by particular physiological conditions, i.e. by applying foreign substances.

Furthermore, it is possible to achieve a modified or increased expression of at least one endogenous gene encoding an amylose biosynthesis enhancing protein by the interaction of a regulatory protein which is modified or is not present in the untransformed plant.

In a preferred embodiment, the amylose biosynthesis enhancing protein activity is increased compared to the wild type or transgenic plant by increasing the gene expression of a nucleic acid encoding an amylose biosynthesis enhancing protein, said amylose biosynthesis enhancing protein comprising the amino acid sequence SEQ ID NO 2 or 4 or a sequence which is derived from said sequences by substitution, insertion or deletion of amino acids and which is at least 50% identical at the amino acid level to the sequence SEQ ID NO 2 or 4.

In the case of genomic nucleic acid sequences encoding an amylose biosynthesis enhancing protein from eukaryotic sources, which contain introns, preferably already

20

25.

35

processed nucleic acid sequences such as the corresponding cDNAs are to be used, if the host organism is unable to or cannot be enabled to express the corresponding amylose biosynthesis enhancing protein.

In this preferred embodiment, the transgenic plant of the invention thus contains, compared to the wild type or transgenic plant, at least one further gene encoding an armylose biosynthesis enhancing protein. In this preferred embodiment, the genetically modified plant of the invention has accordingly at least one transgenic endogenous or exogenous nucleic acid encoding an amylose biosynthesis enhancing.

Suitable and preferred nucleic acids are described above. In a particularly preferred embodiment, a nucleic acid comprising the sequence SEQ ID NO 1 or 3 is introduced into the plant.

According to the invention, organisms means preferably eukaryotic organisms, such as, for example, yeasts, algae, mosses, fungi or plants, which are capable of producing starch or amylose, either as wild type or enabled by genetic modification. Preferred organisms are photosynthetically active organisms such as, for example, plants which, even as a wild type, are capable of producing starch or amylose type starch.

Particularly preferred organisms are potato plants.

The present invention furthermore relates to the use of proteins comprising the amino acid sequence SEQ ID NO 2 or 4 or a sequence which is derived from this sequence by substitution, insertion or deletion of amino acids and which is at least 50% identical at the amino acid level to the sequence SEQ ID NO 2 or 4 and having amylose biosynthesis enhancing activity.

The present invention further relates to the use of nucleic acids SEQ ID NO 1 or 3 or one of the SEQ ID NOs 5, 7, 9, 11 or 13 encoding proteins having an amylose biosynthesis enhancing activity in plants.

The transgenic organisms, in particular plants, are preferably prepared by transforming the starting organisms, in particular plants, with a nucleic acid construct containing the above-described nucleic acid, encoding an amylose biosynthesis enhancing protein which is functionally linked to one or more regulatory signals ensuring transcription and translation in said organisms.

These nucleic acid constructs in which the coding nucleic acid sequence is functionally linked to one or more regulatory signals ensuring transcription and translation in organisms, in particular in plants, are also referred to as expression cassettes herein below.

Accordingly, the invention further relates to nucleic acid constructs, in particular to 5 nucleic acid constructs functioning as expression cassette, which comprise a nucleic acid encoding an amylose biosynthesis enhancing protein which is functionally linked to one or more regulatory signals ensuring transcription and translation in organisms, in 10

The regulatory signals preferably comprise one or more promoters ensuring transcription and translation in organisms, in particular in plants.

The expression cassettes include regulatory signals, i.e. regulatory nucleic acid sequences, which control expression of the coding sequence in the host cell. According 15 to a preferred embodiment, an expression cassette comprises upstream, i.e. at the 5' end of the coding sequence, a promoter and downstream, i.e. at the 3' end, a polyadenylation signal and, where appropriate, further regulatory elements which are operatively linked to the coding sequence for at least one of the above-described genes located in between. Operative linkage means the sequential arrangement of promoter, 20 coding sequence, terminator and, where appropriate, further regulatory elements in such a way that each of the regulatory elements can properly carry out its function in the expression of the coding sequence.

25 When the organism used is a plant, the nucleic acid constructs and expression cassettes of the invention preferably contain a nucleic acid encoding a plastid transit peptide ensuring localisation in plastids.

The preferred nucleic acid constructs, expression cassettes and vectors for plants and methods for preparing transgenic plants and also the transgenic plants themselves are 30 described in examples 2 to 6 below.

The sequences preferred for operative linkage, but not limited thereto, are targeting sequences for ensuring subcellular localisation to plastids such as amyloplasts or chloroplasts but could also mean in the apoplasts, in the vacuole, in the mitochondrion, in the endoplasmic reticulum (ER), in the nucleus, in elaioplasts or in other compartments and translation enhancers such as the tobacco mosaic virus 5'-leader sequence (Gallie et al., Nucl. Acids Res. 15 (1987), 8693-8711).

35

40

20020884

A suitable promoter of the expression cassette is in principle any promoter which is able to control the expression of foreign genes in plants.

"Constitutive" promoter means those promoters which ensure expression in numerous, preferably all, tissues over a relatively long period of plant development, preferably during the entire plant development.

Preference is given to using, in particular, a promoter from plants or a promoter originating from a plant virus. Preference is in particular given to the promoter of the 35S transcript of the CaMV cauliflower mosaic virus (Franck et al. (1980) Cell 21:285-294; Odell et al. (1985) Nature 313:810-812; Shewmaker et al. (1985) Virology 140:281-288; Gardner et al. (1986) Plant Mol Biol 6:221-228) or the 19S CaMV promoter (US 5,352,605; WO 84/02913; Benfey et al. (1989) EMBO J 8:2195-2202).

Another suitable constitutive promoter is the Rubisco small subunit (SSU) promoter (US 4,962,028), the leguminB promoter (GenBank Acc. No. X03677), the Agrobacterium nopaline synthase promoter, the TR double promoter, the agrobacterium OCS (octopine synthase) promoter, the ubiquitin promoter (Holtorf S et al. (1995) Plant Mol Biol 29:637-649), the ubiquitin 1 promoter (Christensen et al. (1992) Plant Mol Biol 18:675-689; Bruce et al. (1989) Proc Natl Acad Sci USA 86:9692-9696), the Smas promoter, the cinnamyl alcohol dehydrogenase promoter (US 5,683,439), the promoters of the vacuolar ATPase subunits or the promoter of a proline-rich wheat protein (WO 91/13991), the Pnit promoter (Y07648.L, Hillebrand et al. (1998), Plant. Mol. Biol. 36, 89-99, Hillebrand et al. (1996), Gene, 170, 197-200) and other promoters of genes whose constitutive expression in plants is known to the skilled worker.

The expression cassettes may also contain a chemically inducible promoter (review: Gatz et al. (1997) Annu Rev Plant Physiol Plant Mol Biol 48:89-108) which may be used to control expression of the amylose biosynthesis enhancing protein gene in the plants at a particular time. Promoters of this kind, such as, for example, the PRP1 promoter (Ward et al. (1993) Plant Mol Biol 22:361-366), salicylic acid-inducible promoter (WO 95/19443), a benzenesulfonamide-inducible promoter (EP 0 388 186), a tetracycline-inducible promoter (Gatz et al. (1992) Plant J 2:397-404), an abscisic acid-inducible promoter (EP 0 335 528) and an ethanol- or cyclohexanone-inducible promoter (WO 93/21334), may likewise be used.

Further examples of suitable promoters are fruit ripening-specific promoters such as, for example, the fruit ripening-specific promoter from tomato (WO 94/21794, EP 409 625). Development-dependent promoters partly include the tissue-specific promoters, since individual tissues are naturally formed in a development-dependent manner.

20020884

Furthermore, preference is given in particular to those promoters which ensure expression in tissues or parts of the plant, in which, for example, biosynthesis of starch or amylose or of the precursors thereof takes place. Preference is given, for example, to promoters with specificities for teaves, stems, roots, seeds and tubers.

Seed-specific promoters are, for example, the phaseoline promoter (US 5,504,200; Bustos MM et al. (1989) Plant Cell 1(9):839-53), the promoter of the 2S albumin gene (Joseffson LG et al. (1987) J Biol Chem 262:12196-12201), the legumin promoter (Shirsat A et al. (1989) Mol Gen Genet 215(2): 326-331), the USP (unknown seed protein) promoter (Bäumlein H et al. (1991) Mol Gen Genet 225(3):459-67), the promoter of the napin gene (US 5,608,152; Stalberg K et al. (1996) L Planta 199:515-519), the sucrose-binding protein promoter (WO 00/26388) and the legumin B4 promoter (LeB4; Bäumlein H et al. (1991) Mol Gen Genet 225: 121-128; Baeumlein et al. (1992) Plant Journal 2(2):233-9; Fiedler U et al. (1995) Biotechnology (NY) 13(10):1090f), the Arabidopsis oleosin promoter (WO 98/45461), the Brassica Bce4 promoter (WO 91/13980) and the vicillin promoter (Weschke et al. 1988, Biochem. Physiol. Pflanzen 183, 233-242; Bāumlein H et al. (1991) Mol Gen Genet 225(3):459-67).

- Further suitable seed-specific promoters are those of the genes coding for high molecular weight glutenine (HMWG), gliadin, branching enzyme, ADP glucose pyrophosphatase (AGPase) and starch synthase. Preference is further given to promoters which allow seed-specific expression in monocotyledons such as e.g. corn, barley, wheat, rye, rice, etc. It is also possible to use advantageously the promoter of the lpt2 or lpt1 gene (WO 95/15389, WO 95/23230) or the promotors described in WO 99/16890 (promoters of the hordein gene, the glutelin gene, the oryzin gene, the prolamin gene, the gliadin gene, the glutelin gene, the kasirin gene and the secalin gene).
- Examples of tuber-, storage root- or root-specific promoters are the patatin promoter class I (B33), the potato cathepsin D inhibitor promoter and the potato granular bound starch synthase (GBSS) promoter as described in EP-A 0 921 191.

Examples of leaf-specific promoters are the cytosolic FBPase promoter from potato (WO 97/05900), the rubisco (ribulose-1,5-bisphosphate carboxylate) SSU (small sub-unit) promoter and the potato ST-LSI promoter (Stockhaus et al. (1989) EMBO J 8:2445-2451).

Further promoters suitable for expression in plants have been described (Rogers et al. (1987) Meth in Enzymol 153:253-277; Schardl et al. (1987) Gene 61:1-11; Berger et al. (1989) Proc Natl Acad Sci USA 86:8402-8406).

- The site of starch and amylose biosynthesis in potato plants is the amyloplast. Therefore amyloplast-specific targeting and activity of the gene products of the inventivenucleic acids SEQ ID NO 1 or 3 encoding an amylose biosynthesis enhancing protein is desirable.
- The expression may also take place in a tissue-specific manner in all parts of the plant. 10

A further preferred embodiment therefore relates to a tuber-specific expression of the nucleic acids SEQ ID NO 1 or 3.

- In addition, a constitutive expression of the gene encoding an amylose biosynthesis 15 enhancing protein is advantageous. On the other hand, however, an inducible expression of this gene may also be desirable.
- An expression cassette is preferably prepared by fusing a suitable promoter to an above-described nucleic acid encoding an amylose biosynthesis enhancing protein 20 and, preferably, to a nucleic acid which has been inserted between promoter and nucleic acid sequence and which codes for an amyloplast-specific transit peptide and also to a polyadenylation signal according to familiar recombination and cloning techniques as described, for example, in T. Maniatis, E.F. Fritsch and J. Sambrook, Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 25 (1989) and in T.J. Silhavy, M.L. Berman and L.W. Enquist, Experiments with Gene Fusions, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (1984) and in Ausubel, F.M. et al., Current Protocols in Molecular Biology, Greene Publishing Assoc. and Wiley-Interscience (1987). 30

Particular preference is given to inserted nucleic acid sequences which ensure targeting in the amyloplasts.

It is also possible to use an expression cassette in which the nucleic acid sequence encodes an amylose biosynthesis enhancing protein fusion protein, one part of the 35 fusion protein being a transit peptide which controls translocation of the polypeptide. Preference is given to amyloplast-specific transit peptides which, after translocation of amylose biosynthesis enhancing protein into the amyloplasts, are enzymatically cleaved off the amylose biosynthesis enhancing protein part.

Particular preference is given to the transit peptide which is derived from the Nicotiana tabacum plastid transketolase or from another transit peptide (e.g. the transit peptide of the rubisco small subunit or of ferredoxin NADP oxidoreductase and also of isopentenyl pyrophosphate isomerase-2) or from its functional equivalent.

5

10

15

20

25

30

35

Further examples of a plastid transit peptide are the transit peptide of the plastid isopentenyl pyrophosphate isomerase-2 (IPP-2) from Arabidopsis thaliana and the transit peptide of the ribulose bisphosphate carboxylase small subunit (rbcS) from pea (Guerineau, F, Woolston, S, Brooks, L, Mullineaux, P (1988) An expression cassettte for targeting foreign proteins into the chloroplasts. Nucl. Acids Res. 16: 11380).

Plant genes of the invention which encode a plant amylose biosynthesis enhancing protein may already contain the nucleic acid sequence which encodes a plastid transit peptide. In this case, a further transit peptide is not required. For example, the Solanum tuberosum sequences of the amylose biosynthesis enhancing protein of the invention SEQ ID NO 1 or 3 contain already a transit peptide sequence.

The nucleic acids of the invention may be prepared synthetically or obtained naturally or comprise a mixture of synthetic and natural nucleic acid components and may also be composed of various heterologous gene sections of various organisms.

As described above, preference is given to synthetic nucleotide sequences with codons which are preferred by plants. These codons which are preferred by plants may be determined from codons which have the highest frequency in proteins and which are expressed in most of the interesting plant species.

When preparing an expression cassette, it is possible to manipulate various DNA fragments in order to obtain a nucleotide sequence which expediently can be read in the correct direction and is provided with a correct reading frame. The DNA fragments may be linked to one another by attaching adaptors or linkers to said fragments.

It is furthermore possible to use manipulations which provide appropriate restriction cleavage sites or which remove excess DNA or restriction cleavage sites. In those cases for which insertions, deletions or substitutions such as, for example, transitions and transversions are suitable, in vitro mutagenesis, primer repair, restriction or ligation can be used.

Preferred polyadenylation signals are polyadenylation signals functional in plants, exemplified by those which correspond essentially to T-DNA polyadenylation signals from Agrobacterium tumefaciens, in particular of the T-DNA gene 3 (octopine synthase)

25

or OCS terminator, the complete sequence of the Ti plasmid pTiACH5 (Gielen et al., EMBO J. 3, 835 –846(1984) or functional equivalents.

The invention further relates to the use of the nucleic acids SEQ ID NO 1 or 3 for increasing the starch or amylose content in plants, e.g. potato plants which, as wild type, are capable of producing starch or amylose, see examples 2-12.

The invention is not limited to the over-expression of the nucleic acid sequences SEQ ID NO 1 or SEQ ID NO 3 in plants especially potato plants.

The over-expression of both nucleic acid sequences SEQ ID NO 1 and 3 can be used for enhancing amylose biosynthesis. Constructs containing the nucleic acids SEQ ID NO 1 and SEQ ID NO 3 can also be used for increasing the starch content or the amylopectin content in plants. These constructs can be made on the same T-DNA driven by one promoter each. These constructs can also be made on the same T-DNA in tandem driven by the same promoter. These constructs can also be transformed using more than one construct, either at the same time (co-transformation) or in different transformation events.

20 The above-described proteins and nucleic acids may be used for producing starch or amylose in transgenic plants.

The transfer of foreign genes into the genome of an organism, in particular of a plant, is referred to as transformation.

For this purpose, methods known per se for transforming plants and regenerating plants from plant tissues or plant cells can be used, in particular in plants, for transient or stable transformation, e.g. as described in example 2.

Suitable methods for the transformation of plants are the protoplast transformation by polyethylene glycol-induced DNA uptake, the biolistic method using the gene gun - also known as particle bombardment method, electroporation, the incubation of dry embryos in a DNA-containing solution, microinjection and the above-described Agrobacterium-mediated gene transfer. Said methods are described, for example, in B. Jenes et al.,
 Techniques for Gene Transfer, in: Transgenic Plants, Vol. 1, Engineering and Utilization, edited by S.D. Kung and R. Wu, Academic Press (1993), 128-143 and in Potrykus, Annu. Rev. Plant Physiol. Plant Molec. Biol. 42 (1991), 205-225).

The construct to be expressed is preferably cloned into a vector which is suitable for transforming Agrobacterium tumefaciens, for example pBin19 (Bevan et al., Nucl. Acids Res. 12 (1984), 8711) or preferably pSUN2 (WO 02/00900).

Accordingly, the invention furthermore relates to vectors containing the abovedescribed nucleic acids, nucleic acid constructs or expression cassettes.

Agrobacteria which have been transformed with an expression cassette can be used in a known manner for the transformation of plants, for example by bathing injured leaves or leaf sections in an agrobacteria solution and then culturing them in suitable media.

Apart from in plants, the expression cassette may also be used for transforming bacteria, in particular cyanobacteria, mosses, yeasts, filamentous fungi and algae.

- Genetically modified plants, also referred to as transgenic plants herein below, are preferably prepared by cloning the fused expression cassette which expresses a amylose biosynthesis enhancing protein into a vector, for example pBin19, which is suitable for transforming Agrobacterium tumefaciens.
- Agrobacteria which have been transformed with such a vector may then be used in a known manner for the transformation of plants, in particular of crop plants, for example by bathing injured leaves or leaf sections in an agrobacteria solution and then culturing them in suitable media.
- 25 The transformation of plants by agrobacteria is described, inter alia, in F.F. White, Vectors for Gene Transfer in Higher Plants; in Transgenic Plants, Vol. 1, Engineering and Utilization, edited by S.D. Kung and R. Wu, Academic Press, 1993, pp. 15-38. Transgenic plants which contain a gene for expression of a nucleic acid encoding a amylose biosynthesis enhancing protein, which has been integrated into the expression cassette, can be regenerated in a known manner from the transformed cells of the injured leaves or leaf sections.

A host plant is transformed with a nucleic acid SEQ ID NO 1 or 3 encoding an amylose biosynthesis enhancing protein by incorporating an expression cassette as insertion into a recombinant vector whose vector DNA comprises additional functional regulatory signals, for example sequences for replication or integration. Suitable vectors are described inter alia, in Methods in Plant Molecular Biology and Biotechnology (CRC Press), chapter 6/7, pp. 71-119 (1993).

By way of example, the plant expression cassette may be incorporated into a derivative of the transformation vector pBin-19 with 35s promoter (Bevan, M., Nucleic Acids Research 12: 8711-8721 (1984).

Using the above-cited recombination and cloning techniques, it is possible to clone the expression cassettes into suitable vectors for maintenance and propagation of genetic material for example in E. coli. Suitable cloning vectors are, inter alia, pBR322, pUC series, M13mp series and pACYC184. Particularly suitable are binary vectors which can replicate both in E. coli and in agrobacteria.

10

The invention therefore further relates to the use of the above-described nucleic acids or of the above-described nucleic acid constructs, in particular of the expression cassettes, for preparing genetically modified plants or for transforming plants, plant cells, plant tissues or parts of plants.

15

25

30

35

40

The use is preferably aimed at increasing the starch or amylose content of the plant, of the tubers or in other parts of the plant.

The use is most preferably aimed at increasing the starch or amylose content of wildtype or transgenic potato plants and especially the tubers of wild-type or transgenic potato plants.

Accordingly, the invention further relates to a method for preparing genetically modified plants by introducing an above-described nucleic acid or an above-described nucleic acid construct into the genome of the starting organism.

The invention further relates to the genetically modified organisms, the genetic modification increasing the activity of an amylose biosynthesis enhancing protein compared to a wild type or transgenic plant and the amylose biosynthesis enhancing protein comprising the amino acid sequence SEQ ID NO 2 or 4 or a sequence which is derived from this sequence by substitution, insertion or deletion of amino acids and which is at least 50% identical at the amino acid level to the sequence SEQ ID NO 2 or 4.

As illustrated above, the amylose biosynthesis enhancing protein activity is increased compared to the wild type or transgenic plant preferably by increasing the gene expression of a nucleic acid encoding an amylose biosynthesis enhancing protein.

In a further preferred embodiment, gene expression of a nucleic acid encoding a amylose biosynthesis enhancing protein is increased, as illustrated above, by introducing nucleic acids encoding an amylose biosynthesis enhancing protein into the organism and thus by over-expressing nucleic acids encoding an amylose biosynthesis enhancing protein.

Such transgenic plants, their propagation material and their plant cells, plant tissues, plant parts or tubers are a further subject of the present invention.

Genetically modified plants of the invention, which have an increased starch or amylose content and which can be consumed by humans and animals, can also be used as food- or feedstuffs or as feed and food supplements, for example directly or after processing known per se. The genetically modified plants may furthermore be used for producing starch or amylose-containing extracts of said plant and/or for producing feed and food supplements.

The invention further relates to:

15

10

- A polynucleotide that encodes a polypeptide of SEQ ID NO 1 or 3.
- II. A polynucleotide comprising at least 30 contiguous bases of SEQ ID NO 1 or 3.
- 20 III. A polynucleotide having at least 60 % sequence identity to SEQ ID NO 1 or 3, wherein the identity is based on the entire coding sequence.
 - IV. A polynucleotide having at least 60 % sequence identity to SEQ ID NO 1 or 3, wherein the % sequence identity is based on the entire sequence.

25

V. A polynucleotide which selectively hybridizes, under stringent conditions and a wash in 2 X SSC at 50 °C, to a hybridization probe derivable from the polynucleotide sequence as set forth in SEQ ID NO 1 or 3, or from the genomic sequence.

30

- VI. A polynucleotide complementary to a polynucleotide of V.
- VII. The polynucleotide of I, wherein the starch or amylose biosynthesis enhancing polynucleotide is from Solanum tuberosum.

- VIII. The polynucleotide of I encoding a polypeptide, which after over-expression in a plant cell increases the starch or amylose content.
- IX. The polynucleotide of I in antisense orientation, which after expression in a plant cell decreases the starch or amylose content.

X.

15

20

25

- A vector comprising at least one polynucleotide of I.
- XI. An expression cassette comprising at least one polynucleotide of I operably linked to a promoter, wherein the polynucleotide is in sense or antisense orientation.
 - XII. A host cell which is introduced with at least one expression cassette of X.
- 10 XIII. The host cell of XI that is a plant cell.
 - XIV. A transgenic plant comprising at least one expression cassette of XI.
 - XV. The transgenic plant of XIII, wherein the plant is Solanum tuberosum.
- XVI. A tuber from the transgenic plant of XIV.
 - XVII. An isolated protein comprising a member selected from the group consisting of:
 - a) a polypeptide comprising at least 10 contiguous amino acids of SEQ ID
 NO 2 or 4.
 - b) a polypeptide which is a plant amylose biosynthesis enhancing protein,
 - c) a polypeptide comprising at least 55 % sequence identity to SEQ ID NO 2 or 4, wherein the sequence identity is based on the entire sequence and has at least one epitope in common with an amylose biosynthesis enhancing protein.
 - a polypeptide encoded by a polynucleotide selected from SEQ ID NO 1 or 3,
 - e) a polypeptide of SEQ ID NO 2 or 4.
- 30 XVIII. The protein of XVII, wherein the polypeptide is catalytically active.
 - XIX. A ribonucleic acid sequence encoding the protein of XVIII.
- A method for modulating the level of amylose biosynthesise enhancing protein
 in a plant, comprising:
 - a) stably transforming a plant cell with a polynucleotide coding for an amylose biosynthesis enhancing protein operably linked to a promoter, wherein the polynucleotide is in sense or antisense orientation
 - b) growing the plant cell under plant growing conditions to produce a regenerated plant capable of expressing the polynucleotide for a time sufficient

25

30

35

40

20020884

to modulate the level of amylose biosynthesis enhancing protein in the plant.

- XXI. The method of XX, wherein the polynucleotide coding for an amylose biosynthesis enhancing protein is selected from SEQ-ID NO 1 or 3.
 - XXII. The method of XX, wherein the plant is Solanum tuberosum.
- XXIII. The method of XX, wherein activity of the amylose biosynthesis enhancing protein is Increased.
 - XXIV. A method for modulating the level of starch or amylose in a plant, comprising:
 - a) stably transforming a plant cell with a polynucleotide coding for an amylose biosynthesis enhancing protein operably linked to a promoter, wherein the polynucleotide is in sense or anti-sense orientation,
 - growing the plant cell under plant growing conditions to produce a regenerated plant capable of expressing the polynucleotide for a time sufficient to modulate level of starch or amylose in the plant.
- 20 XXV. A method for modulating the level of amylose in a plant, comprising:
 - a) stably transforming a plant cell with a polynucleotide encoding an amylose biosynthesis enhancing protein operably linked to a promoter, wherein the polynucleotide is in sense or anti-sense orientation.
 - growing the plant cell under plant growing conditions to produce a regenerated plant capable of expressing the polynucleotide for a time sufficient to modulate level of amylose in the plant.
 - XXVI. The method of XXIV wherein the polynucleotide coding for an amylose biosynthesis enhancing protein is selected from SEQ ID NO 1 or 3.

Some of the terms used further on in the specification are defined at this point.

"Enzymatic activity/activity assay": the term enzymatic activity describes the ability of an enzyme to convert a substrate into a product. In this context, both the natural substrate of the enzyme and a synthetic modified analog of the natural substrate can be used. The enzymatic activity can be determined in what is known as an activity assay via the increase in the product, the decrease in the starting material, the decrease or increase in a specific cofactor, or a combination of at least two of the aforementioned parameters as a function of a defined period of time.

10

15

25

30

35

40

"Functional equivalents" in the present context describe nucleic acid sequences which hybridize under standard conditions with the nucleic acid sequence encoding the amylose biosynthesis enhancing protein or portions of the nucleic acid sequence encoding the amylose biosynthesis enhancing protein, and which are capable of bringing about the expression of an enzymatically active plant amylose biosynthesis enhancing protein in a cell or an organism.

It is advantageous to use short oligonucleotides of a length between 10 to 50bp, preferably 15-40bp, for example of the conserved or other regions, which can be determined via comparisons with other related genes in a manner known to the skilled worker for the hybridization. Alternatively, it is also possible to use longer fragments of the nucleic acids according to the invention or the complete sequences for the hybridization. These standard conditions vary depending on the nucleic acid used, namely oligonucleotide, longer fragment or complete sequence, or depending on which type of nucleic acid, that is DNA or RNA, is being used for the hybridization. Thus, for example, the melting temperatures for DNA:DNA hybrids are approx. 10oC lower than those of DNA:RNA hybrids of equal length. Suitable hybridization conditions are described above.

A functional equivalent is furthermore also understood as meaning, in particular, natural or artificial mutations of the relevant nucleic acid sequences of the plant amylose biosynthesis enhancing protein and their homologs from other organisms which make possible the expression of the enzymatically active plant amylose biosynthesis enhancing protein in a cell or an organism.

Thus, the scope of the present invention also extends to, for example, those nucleotide sequences which are obtained by modification of the nucleic acid sequence of a amylose biosynthesis enhancing protein. The purpose of such a modification can be, for example, the insertion of further cleavage sites for restriction enzymes, the removal of excess DNA, or the addition of further sequences. Proteins which are encoded via said nucleic acid sequences should still maintain the desired functions, despite the deviating nucleic acid sequence.

The term functional equivalent may also refer to the protein encoded by the nucleic acid sequence in question. In this case, the term functional equivalent describes a protein whose amino acid sequence is up to a specific percentage identical with that of the amylose biosynthesis enhancing protein.

Functional equivalents thus encompass naturally occurring variants of the sequences described herein, and also artificial, for example chemically synthesized, nucleic acid

20020884

sequences adapted to the codon usage, or the amino acid sequences derived there-from.

In general, it can be said that functional equivalents independently of the amino acid sequence in question (encoded by a corresponding nucleic acid sequence) have in each case the enzymatic activity of a amylose biosynthesis enhancing protein.

"Reporter genes" encode readily quantifiable proteins. Using these genes, an assessment of transformation efficacy or of the site or time of expression can be made via growth, fluorescence, chemoluminescence, bioluminescence or resistance assay or via 10 photometric measurement (intrinsic color) or enzyme activity. Very especially preferred in this context are reporter proteins (Schenborn E, Groskreutz D. Mol. Biotechnol. 1999; 13(1):29-44) such as the "green fluorescence protein" (GFP) (Gerdes HH and Kaether C, FEBS Lett. 1996; 389(1):44-47; Chui WL et al., Curr. Biol. 1996, 6:325-330; Leffel SM et al., Biotechniques. 23(5):912-8, 1997), chloramphenicol acetyl transferase, 15 a luciferase (Giacomin, Plant Sci. 1996, 116:59-72; Scikantha, J. Bact. 1996, 178:121; Millar et al., Plant Mol. Biol. Rep. 1992 10:324-414), and luciferase genes, in general bgalactosidase or b-glucuronidase (Jefferson et al., EMBO J. 1987, 6, 3901-3907), the Ura3 gene, the liv2 gene, the 2-desoxyglucose-6-phosphate phosphatase gene, blactamase gene, the neomycin phosphotransferase gene, the hygromycin phos-20 photransferase gene, or the BASTA (= gluphosinate) resistance gene.

"Significant increase": referring to the enzymatic activity, is understood as meaning the increase in the enzymatic activity of the enzyme incubated with a candidate compound in comparison with the activity of an enzyme not incubated with the candidate compound, which lies outside an error in measurement.

"Substrate": Substrate is the compound which is recognized by the enzyme in its original function and which is converted into a product by means of a reaction catalyzed by the enzyme.

Preferably, the plant amylose biosynthesis enhancing protein is encoded by a nucleic acid sequence comprising

- 35 a) a nucleic acid sequence shown in SEQ ID NO 1 or 3; or
 - b) a nucleic acid sequence which, owing to the degeneracy of the genetic code, can be deduced from the amino acid sequence shown in SEQ ID NO 2 or 4 by back translation; or

25

30 .

a nucleic acid sequence which, owing to the degeneracy of the genetic code, can be deduced from a functional equivalent of the amino acid sequence shown in SEQ ID NO 2 or 4, which has an identity with SEQ ID NO 2 or 4 of at least 50%, by back translation.

5

10

20

25

The functional equivalent of SEQ ID NO 2 or 4 set forth in c) has an identity of at least 50%, 51%, 52%, 53%, 54%, 55%, 56%, 57% preferably at least 58%, 59%, 60%, 61%, 62%, 63%, 64%, 65%, 66%, 67%, 68%, 69%, and 70% more preferably 71%, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85% most preferably at least 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% identity with the SEQ ID NO 2 or 4.

Example 1.

15 Complementation study in yeast

Yeast contains two self-glycosylating proteins, Glg1p and Glg2p, which yield primers for the initiation of glycogen synthesis. For glycogen synthesis to take place in yeast it is required that either gene is functional. Yeast strain CC9, contain knock-out mutations for both genes and is therefore a null mutant regarding this specific biosynthetic function and is therefore unable to produce glycogen (Cheng, C. et al., Molecular and Cellular Biology (1995), 6632-6640). CC9 was used as a basis for complementation experiments with the isolated potato genes in order to validate their function by restoring glycogen biosynthesis in the CC9 strain. The potato genes were cloned in a yeast plasmid, pRS414 (Stratagene), and expressed with various yeast controlling elements such as Gal1, Adh1 and Glg2p promoters. CC9 was transformed by the resulting plasmids using LiCl and electroporation (Multiporator, Eppendorf). Transformed yeast colonies growing on appropriate media plates were screened by immersing in iodine solution. Wild type yeast producing glycogen is stained red brown by iodine while the null mutant CC9 is not stained. CC9 expressing the potato genes, StGH1 and StGH2, will stain red brown, when the isolated genes complement a glycogenin function in yeast and thus carry the desired function.

Example 2

35

30

Transformation method

Fully expanded leaves from in vitro propagated potato plants are diagonally cut in 2-4 pieces and precultivated on MC-plates for 2-3 days at 23-24°C.

Agrobacterium tumefaciens strain LBA4404 containing pHS1, pHS2, pHS3 or pHS4 are grown in YEB medium with 100µg rifampicin and 25µg/ml kanamycin over night on constant shaking (200 rpm) at 28°C.

The Agrobacterium culture is prepared for infection by dilution 1:20 with MS10 medium. The leaf explants are infected for 8-10 min in the bacterial solution and afterwards drained on filter paper for 5-20 seconds. The leaf segments are placed on the MS300 plates for 2 days co-cultivation under modest light at 23-24°C. At the end of co-cultivation the leaf segments are moved to M400 plates containing 400mg/l Claforan to suppress bacterial growth. After 4-5 days the explants are moved to selection medium MS400 supplemented with 400mg/l Claforan. For explants transformed with pHS1 and pHS2 50µM kanamycin was included in the media and for explants transformed with pHS3 and pHS4 0.5µM Imazamox was added to the media.

Leaf segments are transferred to fresh MS 400 selection medium every fortnight. The regenerated putative transgenic shoots are collected and cultivated on MS30 plates with 200mg/l Claforan aiming at shoot elongation.

When the shoots are 3-5 cm long, 1-2 cm are cut off and grown on microtuber medium in the dark at 25°C. After 2-5 weeks microtubers are produced. Putative transgenic plants are analysed for GUS expression in microtubers to determine the transformation efficiency.

MC plates	MS300
MS300 plates with 1.5-2 ml liquid MS100 medium and covered with one sterile filter paper	4.4g/l MS-medium 2mg/l naphtyl acetic acid 1mg/l 6-benzyl amino pyridine 3% (w/v) sucrose pH 5.2
MS10	MS400
4.4 g/l MS-medium (murashige and Skoog) 1% (w/v) sucrose pH 5. 8	4.4 g/l MS-medium 2mg/l zeatine 0.01mg/l naphtyl acetic acid mg/l gibberellic acid 10% (w/v) sucrose 400 mg/l claforan 0.5 µM Imazamox or 50 µM kanamycin pH5.8

PH 5,8	Mallaibhanall
	Mg/l gibberellic acid
·	10% (w/v) sucrose
	400 mg/l claforan
·	0,5 μM Imazamox or 50 μM kanamacin
µM MS30	PH 5.8
	Microtuber medium
4.4 g/I MS-medium	44-000
3% (w/v) sucrose	4.4 g/l MS- medium
pH 5.8	2.5 mg/l kinetin
	0.5 mg/l abscisic acid
	8% sucrose
MS100	200 mg/ claforan
4.4 mg/l MS-medium	
30g/i sucrose	
0.5 m/lg thiamin-HCl	
).5 mg/l pyridoxin-HCl	
mg/l nicotinacid	
.5 mg/l kinetin	
9.8 mg/l ferrous sulfate hepta hydrate	
mg/l 2,4-Dichlorophenoxyacetic acid	
g/l caseinhydrolysate	
H 5.2	<u>'</u>

Example 3

5

Transgenic plant AM 99-2003

High amylose potato lines can be produced for example by using antisense, RNAi or antibody technology that target the two starch branching enzymes starch branching enzyme 1 (SBE1) and starch branching enzyme 2 (SBE2).

- The high amylose potato line AM99-2003 is produced by inhibition of the starch branching enzyme activities in the mother variety Dinamo. Transformation is made with a construct of SBE1 and SBE2 in antisense orientation driven by the gbss promoter.
- pBluescript containing a 1620bp fragment of the 3'end of Sbe1 between EcoRV and Spel is cut open with Spel (blunt) and Xbal and ligated with a 1243bp Sstl (blunt) and

<

33

Xbal fragment of the 3'end of Sbe2. The Sbe2 and Sbe1 complex is cut out with EcoRV and Xbal and ligated to the Smal and Xbal opened up binary vector pHo3.1, see figure 8. The final vector is named pHAbe12A, see figure 9 and nucleic acid sequence SEQ ID NO 15. pHo3.1 is based on pGPTVKan (Becker, D. et al., Plant Molecular Biology 20 (1992), 1195-1197) with the addition of the 987bp gbss promoter cloned at the HindIII site of pGPTVKan and the uidA gene is deleted by Smal and Sstl.

The mother variety Dinamo is transformed with the construct pHAbe12A as described in example 2.

10

Example 4

Down-regulation of StGH1 and StGH2 genes in potato by antisense

The StGH1 and StGH2 genes were down-regulated in potato by transformation with the genes in antisense direction in relation to a plant regulatory element. The respective antisense genes were cloned in a binary vector driven by a tuber specific gbss promoter. Nptll, yielding resistance to the antibiotic kanamycin, was used as selection marker. Two varieties were transformed, Prevalent and Producent. The shoots were selected on 50 μM kanamycin, which is a standard kanamycin concentration used for potato transformation (Ooms, G et al., Theoretical and Applied Genetics 73:744-750 (1987) and Tavazza, R. et al., Plant Science 59 (1988), 175-181).

Example 5

25

30

Over-expression of StGH1 and StGH2 genes in potato

The StGH1 and StGH2 genes were over-expressed in potato driven by the tuber specific promoter gbss. A mutated AHAS gene was used as selection marker yielding tolerance to the Imazamox herbicides. Two potato varieties were transformed, Desiree and AM99-2003 a transgenic high amylose line with a 40% decrease in starch content compared to its mother variety.

Example 6

35

Selection of transgenic lines

Non-transgenic escapes were identified and discarded by a PCR screening method.

DNA was extracted according to DNeasy 96 Plant protocol (Qiagen). In a 96 well microtiter plate, 10-15 mg leaf tissue was added to each well-together with a 5mm steel

ball, each well then representing one individual shoot. The plates were frozen in $N_2(1)$ before homogenisation. The homogenisation was done at 30Hz in a Mixermill300 for 1 min. The DNA was at the end of the extraction protocol eluted in 75 μ I H₂O.

5 Specific primers for nptII and AHAS were used for the amplification of a 246bp fragment respective a fragment of 509 bp for selection of successfully transformed lines.

Npt2_for 5'-AGCAAGGTGAGATGACAGGAGATC-3'
Npt2_rev 5'CAGACAATCGGCTGCTCTGATG-3'

10

AHAS1_frw: 5'-AACAACAACATCTTCTTCGATC-3' AHAS1_rev: 5'-TAACGAGATTTGTAGCTCCG-3'.

The PCR reactions were with the extracted DNA setup and run as follow:

15

Reaction:

10x PCR Mix 2,0 μl
Primer frw (25μM) 0,4 μl
20 Primer rev (25μM) 0,4 μl
dNTPs (10mM) 0,4 μl
RedTAQ (Sigma) 1,0 μl
Templat (~20ng/μl) 4,0 μl
H₂O 11,8 μl

25

30

PCR program:

94°C 30 s 59°C 30 s x29 cycles 72°C 30s 72°C 7 min 8°C Hold

Example 7

35

40

Gene expression analyses

The gene expression levels of the StGH1 and StGH2 genes were analysed in the transgenic potato lines with real-time PCR (ABI prism 7900HT, Applied Biosystems). With real-time PCR the change of gene expression can be analysed regarding RNA

expression levels. For pHS1 and pHS2 transgenic lines, expression of both sense and antisense RNA of StGH1 and StGH2 was measured, while in pHS3 and pHS4 transgenic lines the change in StGH1 and StGH2 mRNA expression was analysed. The target for pHS1 and pHS2 is to reduce transcript levels of StGH1 and StGH2 respectively while the target for pHS3 and pHS4 is to increase transcript levels of the respective genes.

RNA was isolated from microtubers of the transgenic potato lines and mother varieties using Invisorb Spin Plant-RNA mini kit (Invitek). A reverse transcription reaction was made with 250 ng total RNA in 25µl total reaction volume using TaqMan reverse transcription reagents (Applied Biosystems). Separate and specific primers (see table 1) were designed and used for the reverse transcription reaction in order to be able to differentiate the endogenous expression from the antisense RNA expression of the respective genes.

15

20

10

5

StGH1 cottons The	5'-TGAAGACAGCACAAACTGG-3'
StGH1 antisense RNA	5'-GTGAAAGTTTGAACGCACAC-3'
tGH2 sense RNA	5'-AGTGCCATAACATGCTTTCC -3'
StGH2 antisense RNA	5'-CACATTTCAGCTGTTGATGGA-3'

Table 1

5µl of the reverse transcription reaction was used in triplicate analyses together with specific sequence detection primers, TaqMan MGB probe (see table 2) and UMM mastermix (Applied Biosystems) and determined with real-time PCR.

StGH1

Forward Primer: TCGAGTCGCCACGTAGAACTC Reverse primer: GAAATGCGTAŢGCGACTATGATG

TaqMan probe: AGTCTCTCGGAGTTCC

StGH2

Forward primer: GGTGCTGATCCTCCAGTTCTCT Reverse primer: GTCCCTGAAGCATAACCAAGGT

TaqMan probe: TTCTGCACTACTTAGGCCT

Table 2

Down-regulation of the two genes resulted in a decrease in gene expression in transgenic lines compared to their mother varieties in the order of 50-95 %.

Over-expression of the two genes resulted in a 2-10 times increase in gene expression in transgenic lines compared to their mother varieties.

				Times increase or de-
D ([crease in gene expres- sion compared to mother
Ref no	Construct	Variety	A Ct s	variety
P01-041-84	pHS1	Producent	-1,14	-1,3
P02-325-1	pHS1	Producent	-2,03	-4,1
P02-325-9	pHS1	Producent	-1,47	-2,2
P02-325-11	pHS1	Producent	-1,25	-1,6
P02-325-15	pHS1	Producent	-2,52	-6,3
P02-325-25	pHS1	Producent	-2,0	-4
P02-325-27	pHS1	Producent	-1,64.	-2,7
P02-325-33	pHS1	Producent	-1.59	-2,5
P02-325-34	pHS1	Producent	-1,52	-2,3
P02-325-63	pHS1	Producent	-1,53	-2,3
P02-300-37	pHS2	Prevalent	-1,27	-1,6
P02-300-66	pHS2	Prevalent	-1.04	1,1
P02-300-71	pHS2	Prevalent	-1,13	-1,3
P02-300-73	pHS2	Prevalent	-1,1	-1,2
P02-300-80	pHS2	Prevalent	-2,12	-4.5
P02-300-127	pHS2	Prevalent	-1,67	-2,8
P02-300-140	PHS2	Prevalent	-3,96	-15,7
P02-303-31	pHS2	Prevalent	-1,16	-1,4
P02-303-64	pHS2	Prevalent	-1,15	-1,3
P02-305-54	pH\$2	Prevalent	-1,33	-1,8
P02-320-24	pHS2	Prevalent	-1,03	-1.1
P02-307-4	pHS3	Desirée	1,82	3,3
P02-307-5	pHS3	Desirée	2,68	7,2
P02-307-12	pHS3	Desirée	2,67	7,1
P02-307-14	pHS3	Desirée	1,83	3,3
P02-307-15	pH\$3	Desirée	1,79	3,2
P02-307-33	pHS3	Desirée	3,21	10,3
P02-307-43	pHS3	Desirée	2,7	7,3
P02-307-51	pHS3	Desirée	2,73	7,5
P02-307-80	pHS3	Desirée	2,78	7,7
P02-307-87	pHS3	Desirée	1,02	1,1
1				

Ref no	Construct	Variety	Δ Ct s	Times increase or de- crease in gene expres- sion compared to mother
P02-307-148	pHS3	Desirée		Variety
P02-309-63	pHS3	AM99-2003	1,88	3,5
P02-309-106	pHS3	AM99-2003	1,64	2,7
P02-311-59	pHS3		1,75	3,1
P02-312-15	pHS4	AM99-2003	1,17	1,4
P02-313-21		AM99-2003	1,03	1,1
. 52 525 21	pH54	AM99-2003	1,54	2,4

Table 3: Gene expression analyses based on Real- Time PCR

Example 8

5

10

15

20

Dry matter analysis

Dry matter has been analysed on microtubers from transgenic lines transformed with pHS1, pHS2, pHS3 and pHS4 showing a down-regulation or over expression of the genes. Since starch normally contribute to more than 80% of the dry matter in potato tubers, an increase or decrease in starch content will affect also the dry matter content.

Two microtubers of each line were harvested when they had reached maturity. Dry matter was calculated for mature microtubers weighed before and after 72 hours drying at 60°C. For comparison microtubers from the varieties Dinamo, Desiree, Prevalent, Producent and P737 with starch contents between 13 and 28% (when grown in field) were used. The starch content of microtubers is not as high as starch content of field grown tubers. However dry matter content can readily be compared in microtubers and that value is well correlated to the determined starch content in field grown tubers. In table 4 the average dry matter for the different varieties, calculated on ten or more microtubers, is shown.

Variety	Starch content field grown tubers	Dry matter microtubers
Dinamo	13%	14,8
Desirée	16%	16,1
Producent	22%	
Prevalent	22%	19,2
P737		19,7
1 101	28%	21,6

Table 4. Dry matter content of 5 varieties based on 10 or more microtubers

One of each pHS1 and pHS2 with confirmed decrease in gene-expression have been analyzed for dry matter so far. Those two have a decrease in dry matter of 7 and 11% compared to their mother varieties.

For the pHS3 lines 8 of 9 of the confirmed over-expressed lines show an increase of up to 36% in dry matter. See table 5.

Ref No	Construct	Variety	Dry matter in relation to mother
			variety (%)
41-84	pHS1	Producent	89 -
300-127	pHS2	Prevalent	93
300-140	PHS2	Prevalent	96
307-4	pHS3	Desirée	106
307-5	pHS3	Desirée	117
307-15	pH\$3	Desirée	124
307-33	pHS3	Desirée	116
307-57	pHS3	Desirée	136
309-63	pHS3	AM99-2003	134
309-106	pHS3	AM99-2003	109
309-111	pHS3	AM99-2003	108

Table 5. Dry matter content on transgenic lines with confirmed down-regulation or over expression of the StGH1 and StGH2 genes

Example 9

10

15

Starch content analysis

For analysis of starch content a total starch assay procedure from Megazyme International Ireland Ltd., Bray, Co.Wicklow, Ireland (AOAC Method 996.1; AACC method 76.13; ICC standard method No. 168) was used according to the suppliers instructions.

Starch content was analysed on microtubers from all transgenic lines transformed with pHS1, pHS2, pHS3 and pHS4. The microtubers were harvested when they had reached maturity. Mature microtubers were ground and maltosaccharides and free glucose residues were washed away with ethanol. The microtuber starch was treated with DMSO to ensure the complete solubilisation of samples with high levels of resistant starch, as the high amylose clones.

Samples were analysed with a standard spectrophotometric assay procedure. The transgenic lines were compared to potato varieties with known starch content ranging from 8% to 30%. The results give an indication on the change in starch content related to the genetic modification of the different transgenic lines.

5

Example 10

Field-testing of transgenic potato lines

- Produced transgenic lines are tested in field trials for determination of agronomic performance in relation to mother variety and other varieties used for starch production. Starch content, which is a main agronomic factor of importance for crops used for starch processing, can measured by several different methods.
- Under water weighing is performed on a scale in a tub of water and where an increase in starch content is associated with an increase in density of the sample. An increase starch is associated with an increased dry matter content, which can be measured by comparing the tissue fresh weight to tissue dry weight after extensive water elimination in an oven.

20

Starch content can also be measured by enzymatic methods as described under starch content analyses.

Example 11

25

30

Increased amylose and starch yield in potatoes

Potato varieties used for starch production as well as genotypes with a high amylose content are transformed with gene constructs as described above for the over-expression of a starch biosynthesis enhancing protein. The over-expression of StGH1 or StGH2 in potato plants will result in an increased amylose content of the transgenic plant compared to the starting plant.

Example 12

35

40

increased solids and improved processing quality of potatoes

In another aspect the invention may be used to increase the solids content of varieties that are used for processed potato products or table potato varieties. The potato genotypes are transformed with gene constructs as described above for the over-expression

of a starch biosynthesis enhancing protein. This starch biosynthesis enhancing protein may be derived from genes described above or other plant genes containing the same functional domains.

What is claimed:

5

- A method of increasing the production of starch in plants comprising culturing a plant with enhanced expression or activity of at least one starch biosynthesis enhancing protein:
- The method of claim 1, wherein said starch has a high amylose content.
- The method as claimed in either claim 1 or 2, wherein production of amylose is increased.
 - 4. The method as claimed in any one of claims 1 to 3, wherein said method comprises over-expression of an amylose biosynthesis enhancing protein.
- The method as claimed in claim 4, wherein said protein comprises the SEQ ID NO: 2 or 4 or a protein derived from this sequence by substitution, insertion or deletion of amino acids and which has at least 50% identity at the amino acid level with SEQ ID NO: 2 or 4.
- 20 6. The method as claimed in any of claims 1 to 5, wherein the amylose biosynthesis enhancing protein is encoded by a nucleic acid sequence selected from the group consisting of:
- a) a nucleic acid sequence comprising a nucleotide sequence which is at least 60% identical to the nucleic acid sequence of SEQ ID NO: 1 or 3;
 - a nucleic acid sequence comprising a fragment of at least 30 nucleotides of a nucleic acid sequence comprising the nucleotide sequence of SEQ ID NO:1 or 3;
 - a nucleic acid sequence which encodes a polypeptide comprising an amino acid sequence at least about 60% identical to the amino acid sequence of SEQ ID NO:2 or 4 and
- d) a nucleic acid sequence which encodes a fragment of a polypeptide comprising the amino acid sequence of SEQ ID NO: 2 or 4 or wherein the fragment comprises at least 10 contiguous amino acid residues of the amino acid sequence of SEQ ID NO:2 or 4,

20

35

- 7. The method as claimed in any one of claims 1 to 6, wherein the amylose biosynthesis enhancing protein is encoded by a nucleic acid sequence comprising the nucleotide sequence set forth as SEQ ID NO:1 or SEQ ID NO:3.
- 5 8. The method as claimed in any one of claims 1 to 7, wherein deficiency or decreased activity is achieved by a method selected from the group consisting of:
 - a) knock-out of the gene encoding said protein;
 - b) mutagenesis of the gene encoding said protein, wherein said mutation can be induced in the coding, non-coding, or regulatory regions of said gene;
- c) expression of an anti-sense RNA, wherein said anti-sense RNA is complementary to at least part of the RNA encoding said protein;
 - 9. A method of producing amylose type starch by culturing a plant which overexpresses SEQ ID NO:1 or 3 or has increased amylose biosynthesis enhancing activity under conditions such that the plant produces an increased amount of amylose type starch.
 - 10. The method of any of the preceeding claims, wherein said plant belongs to the genus Solanum.
- 25 11. The method of claim 10, wherein said plant is Solanum tuberosum.
 - 12. A nucleic acid sequence SEQ ID NO:1 encoding an amylose blosynthesis enhancing protein.
- 30 13. A nucleic acid sequence SEQ ID NO:3 encoding an amylose biosynthesis enhancing protein.
 - 14. An amino acid sequence SEQ ID NO:2 having amylose biosynthesis enhancing activity.
 - 15. An amino acid sequence SEQ ID NO:4 having amylose biosynthesis enhancing acitivity.

10

15

20

30

- 16. A transgenic expression cassette comprising in combination with a regulatory sequence a nucleic acid sequence selected from the group consisting of:
 - a) a nucleic acid sequence comprising a nucleotide sequence which is at least 60% identical to the nucleotide sequence of SEQ ID NO:1 or SEQ ID NO:3,
 - a nucleic acid sequence comprising a fragment of at least 30 nucleotides of a nucleic acid sequence comprising the nucleotide sequence of SEQ ID NO:1 or SEQ ID NO:3,
- a nucleic acid sequence which encodes a polypeptide comprising an amino acid sequence at least about 60% identical to the amino acid sequence of SEQ ID NO:2 or SEQ ID NO:4, or
 - a nucleic acid sequence which encodes a fragment of a polypeptide comprising the amino acid sequence of SEQ ID NO:2 or SEQ ID NO:4 wherein the fragment comprises at least 10 contiguous amino acid residues of the amino acid sequence of SEQ ID NO:2 or SEQ ID NO:4

wherein said regulatory sequence is capable of mediating expression of said nucleic acid sequence in a plant.

- 17. A transgenic expression cassette of claim 16, wherein said regulatory sequence is a promoter sequence heterologous with regard to said nucleic acid sequence.
- 18. A transgenic expression cassetté of claim 16, wherein said regulatory sequence is a tuber specific promoter sequence.
 - 19. A transgenic expression cassette of either claim 16, 17 or 18, wherein said nucleic acid sequence is arranged in antisense or sense orientation with regard to said promoter sequence.
 - 20. A transgenic expression cassette of any of the claims 16 to 19, wherein said nucleic acid sequence encodes a polypeptide comprising the amino acid sequence set forth in SEQ ID NO:2 or SEQ ID NO:4.
- 35 21. A transgenic expression cassette of any of the claims 16 to 20, wherein said nucleic acid molecule comprises the nucleotide sequence set forth in SEQ ID NO:1 or SEQ ID NO:3.

15

- 22. A transgenic expression cassette of any of the claims 16 to 21, wherein said nucleic acid sequence encodes a naturally occurring variant of a polypeptide comprising the amino acid sequence set forth in SEQ ID NO:2 or SEQ ID NO:4:
- 5 23. A transgenic host cell transformed with an expression cassette of any of the claims 16 to 22.
 - 24. A transgenic host cell of claim 23, wherein said host cell belongs to the genus Solanum.
 - 25. A transgenic plant comprising an expression cassette of any of claims 16 to 22.
 - 26. A transgenic potato plant comprising an expression cassette of any of claims 16 to 22.
 - 27. A transgenic potato plant, plant part, seed or tuber comprising an expression cassette of any of claims 16 to 22.

SEQUENCE LISTING

	<110> BASF Plant Science GmbH
	5 <120> Enhanced Amylose Production in Plants
	<130> AE884-02
10	<140> PF0000054331 <141> 2003-03-07
	<160> 15
15	<170> Patentin Ver. 2.1
	<210> 1
	<212> DNA <213> Solanum tuberosium
20	<220>
	<221> CDS <222> (302)(1696)
25	<400> 1 ttttcataaa cttettcaac tttattccat actettttat ttatcagete ctagatette 60
	ttttttgttt gttgatatte tettgagen totte tiateagete ctagatette 60
30	ttttttgttt gttgatatte tettgaaaat tgtteagtga agagttgate aaagetaaga 120
	cacagggget geggecattt ttteaeegga atettettet ttattteeg gtgaaagttt 180
	gaacgcacac cgttatttct agacagtaga caatgtcaag tgaamaacat cacaágtttt 240
35	tgaagatttg taattaatta gttgagattt ttaatttgga ggaaagagaa aaacagagaa 300
	g atg ata ggg cgg gtg ggc ttg ttg ttg gta ttg ttg ata gca acg acg 349 Met Ile Gly Arg Val Gly Leu Leu Val Leu Leu Ile Ala Thr Thr 10 15
40	gtg act att ggg gct gaa acg acg tta aaa ggg gta aac aga aat 397
	20 25 30
45	gcg tat gcg act atg atg tat atg gga act ccg aga gac tac gag ttc 445 Ala Tyr Ala Thr Met Met Tyr Met Gly Thr Pro Arg Asp Tyr Glu Phe 35 40 45
	tac gtg gcg act cga gta atg ctg ggp too cta
50	Tyr Val Ala Thr Arg Val Met Leu Arg Ser Leu Thr Arg Leu Gly Val 50 55 60
	gaa gcc gat ctc gtc gtt att gct tca ctt gac gtt cct ctt cgc tgg 541 Glu Ala Asp Leu Val Val Ile Ala Ser Leu Asp Val Pro Leu Arg Trp
55	75 80
	gtt caa act cta gaa cag gaa gat ggt gct aag gtg gtg aga gtt aaa 589 Val Gln Thr Leu Glu Gln Glu Asp Gly Ala Lys Val Val Arg Val Lys 85 90 95
60	aat ctg aac aat ccg tat tgt atc aac cct aat tgg aga ttc aag ctc 637 Asn Leu Asn Asn Fro Tyr Cys-Ile Asn Fro Asn Trp Arg Phe Lys-Leu - 105 110

	aca ctg aac aaa ctt tat gcg tgg agc ctc gta aat tat gac agg gtt 685 Thr Leu Asn Lys Leu Tyr Ala Trp Ser Leu Val Asn Tyr Asp Arg Val 125
•	5 gtc atg ctt gat gct gac aac ctt ttc ctc cag aaa act gat gaa ctg Val Met Leu Asp Ala Asp Asn Leu Phe Leu Gln Lys Thr Asp Glu Leu 130 130 140
1	ttc caa tgt ggc cag ttt tgt gct gtc ttc att aat ccc tgc atc ttc 781 Phe Gln Cys Gly Gln Phe Cys Ala Val Phe Ile Asn Pro Cys Ile Phe 155 160
1:	Cac act ggt ctc ttt gta ttg cag cca tca aaa aag gtg ttc aat gac 829 His Thr Gly Leu Phe Val Leu Gln Pro Ser Lys Lys Val Phe Asn Asp 165 170
20	
25	Gln Gly Phe Ile Gly Gly His Phe Pro Asp Leu Leu Asp Arg Pro Met 200 205
20	Phe His Pro Pro Leu Asn Gly Thr Gln Leu Gln Gly Ser Tyr Arg Leu 210 215 220
30	cct cta gga tac caa atg gac gcc tct tat tat ctc aaa ctc cat 1021 Pro Leu Gly Tyr Gln Met Asp Ala Ser Tyr Tyr Tyr Leu Lys Leu His 235 240
35	tgg tcg gta cct tgt gga cct aat agt gtc att aca ttt cct ggt gct 1069 Trp Ser Val Pro Cys Gly Pro Asn Ser Val Ile Thr Phe Pro Gly Ala 250 255
40	Pro Trp Leu Lys Pro Trp Tyr Trp Ser Trp Pro Val Leu Pro Leu 260 265 270
45	ggc atc cag tgg cat gaa cag cga cgt cta act gtt ggg tat ggt gct 1165 Gly Ile Gln Trp His Glu Gln Arg Arg Leu Thr Val Gly Tyr Gly Ala 275 280 285
70	gag atg ata gca gtg ttg atc caa tct ata ttt tac cta gga ata att 1213 Glu Met Ile Ala Val Leu Ile Gln Ser Ile Phe Tyr Leu Gly Ile Ile 290 295 300
50	gca gtg aca cgc cta gca cgc cca aat tta tca aag ttg tgc tat cgc 1261 Ala Val Thr Arg Leu Ala Arg Pro Asn Leu Ser Lys Leu Cys Tyr Arg 315 320
55	Cat gat gat agc aag agt gcc ttc tta cta cga act ggc ctt aaa ttg 1309 Ris Asp Asp Ser Lys Ser Ala Phe Leu Leu Arg Thr Gly Leu Lys Leu 325 330 335
60	att gct ata tgg tcc att ctt gct gcc tac aca gtt cct tat ttc gtg 1357 Ile Ala Ile Trp Ser Ile Leu Ala Ala Tyr Thr Val Pro Tyr Phe Val 340 345 350
	att oct tgt aca gtt cat oca cta gtt ggc tgg agt ctc tac tta ctc 1405 Ile Pro Cys Thr Val His Pro Leu Val Gly Trp Ser Leu Tyr Leu Leu

			358	5		·		360)		•		365	5			
5	ggc Gly	tct Ser 370	Phe	tca Ser	cta Leu	tcc	tgt Cys 375		aca Thr	gtg Val	r aat . Asn	gca Ala 380	Phe	ctt Leu	ttg Leu	ccg Pro	1453
10	385					390			116	етÃ	395	Leu	Gly	Ala	Leu	400	1501
		atg Met	gct Ala	tac Tyr	cct Pro 405	tġg Trp	tac Tyr	aac Asn	yab gac	ggt Gly 410	gtt Val	gta Val	aga Arg	gca Ala	atg Met 415	gct Ala	1549
15		ttt Phe	aca Thr	tac Tyr 420	gcc Ala	ttc Phe	tgt Cys	get Ala	tet Ser 425	cca Pro	gca Ala	tta Leu	tgg Trp	atg Met 430	gca Ala	ttg Leu	1597
20	gtt Val	aaa Lys	atc Ile 435	aag Lys	tgt Cys	tct Ser	200	cat His 440	gtt Val	tca Ser	ctt Leu	gag Glu	agg Arg 445	gaa Glu	gga Gly	ttc Phe	1645 [°]
25	ttg Leu	ecc Pro 450	aag Lys	ata Ile	agt Ser		tct Ser ! 455	aca (Thr)	gca Ala :	cct Pro	ALA	ggt Gly 460	tct ser	aaç Asn	aaa Lys :	ctg Leu	1693
30	tat (Tyr 465	gaa	agtt	ga a	aagt:	taaaq	g gaa	atca	acag	gag	aact	aat :	gctt	caga:	aa	,	1746
	catct	ccaa	aa c	gttti	tgati	agg	gagad	:ttg	gagt	ctg	att g	gtget	tatco	t ag	, JCtac	ittac	1806
																	1866
35	ttttg																
	ttctc																
40	catgg																
	teett														_		2084
45	<210><211><211><212><213>	465 PRT		tub	eros:	um								,			
50	<400> Met II		1y A:	rg V	al G	ly L	eu Le	eu Le	eu Va	al L	eu L	eu I	le A		17 T) LS	or .	
55	Val Th	ur I	le G	ly A: 20	la G	lu T)	ox Ay	r Tl	r Le 25	eu Ly	ys G	ly Va				en.	•
	Ala Ty	T A	la Ti 35	hr Me	et Me	et Ty	/ r Me	et G] 10	y Ti	ur Pi	ro Ai		sp Ty 15	yr GI	lu Pi	ıe	
60	Tyr Va	1 A	la Ti	nr Ai	cg Va	al Me	et Le 55	u Ar	g Se	er Le		12 A1 50	rg · Le	eu Gl	y Va	11	
•	Glu Āl	a As	PJ qe	eu Va	al Va	 1] I]	e Al	 .a. \$e	r Le	 ni As	 sp. Va	 11 Pi	O Le	u Az	g Tz	.pp	

		65			:.	1		70						75	;						80
5	v	al (ln	Thz	Le	u G	lu G 9.5	ln G	lu	Ası	Ģ G]	y A	la : 90	Lys	٧a	1 V	al Z	yrg		1 I 5	ys
		sn I	eu i	Asn	As:	n Pr 0	O T	yr C	уş	Ile	As 10	n P 5	ro i	Asn	Tr	p Ai		?he	Ьy	s L	eu
10	Tì	ır L	eu A	Asn L15	Lу	s Le	u Ty	/x A:	la :	Trp 120	Se	r L	eu T	/al	Ası	1 Ty	7	qa	Arg	y V	al
	Va	1 M	et I 30	eu	Ası) Al	a As	р Аз 13	371. 1 35	Leu	Ph	e Le	∍n e	ln	Lys 140	Th	ır A	sp	Glu	ı Le	eu
15	Ph 14	e G: 5	ln C	ýs	Gly	Gl:	n Ph 15	e Cy 0	re l	Ala	Va.	l Pł	e I 1	le 55	Asn	Pr	o C	ys	Ile	: Pl	
20	Hi	s Th	r G	ly	Leu	Phe 169	e Va	l Le	u e	∃ln	Pro	Se 17	T L	λa	Lys	Va	l P	he	Asn 175		p
							Gl:				TOO						19	90	•		
25			•	_			Gly		Z	UU						205	5				
			_				Agr	21.	•					- 3	220				•		
30	Pro 225	Lei	u Gl	У 7	ľyr	Gln	Met 230	Asg) A	la :	Se <u>r</u>	Tyz	ту 23	72	ŢŢ	Leu	Ly	s I	/eu	Hi:	
35	Txp	Sez	r Va	1 1	?ro	Сув 245	Gly	Pro	A A	sn.	Ser	Val 250	11	e 1	hr	Phe	Pr		1y 55	Ala	ì
	Pro	Tr	Le	u I 2		Pro	Trp	Тух	Т	no 1	1 70 265	Sez	Tr	p E	TO	Val	Le:		ro	Lev	ı
40	•	•					Glu		28	U						285					
							Leu	499						3	00			•			•
45							Ala 310						315	5					:	320	
50	His				•	723						330						3:	35		
	Ile	٠		3*	4 U					3	45						350	1			
55 ·	Ile	Pro	Суя 355	i Tl	hr 1	/al	His	Pro	Let 360	u V	al (Gly	Txr	S 6		ieu 65	Тут	Le	eu 1	ieu	
	Gly	Ser 370	Ph∈	S 6	er I	eu	Ser	Сув 375	Ile	e T	hr '	Val	Ası	[A 1		he	Leu	Le	u I	ro	
60	Met 385	Leu	Pro	V V č	al I	eu :	Val 390	Pro	Trj	p I	le (31y	Ile 395	Le	in G	ly .	Ala	Ŀ∈		eu 00	

5 Val Met Ala Tyr Pro Trp Tyr Asn Asp Gly Val Val Arg Ala Met Ala 410 Val Phe Thr Tyr Ala Phe Cys Ala Ser Pro Ala Leu Trp Met Ala Leu 5 Val Lys Ile Lys Cys Ser Leu His Val Ser Leu Glu Arg Glu Gly Phe 440 10 Leu Pro Lys Ile Ser Glu Ser Thr Ala Pro Ala Gly Ser Asn Lys Leu Tyr 465 15 <210> 3 <211> 2230 20 <212> DNA <213> Solanum tuberosum <220> <221> CD\$ 25 <222> (143)..(2086) tatccccaga gaatcagctg aatcaagaac tgatttttag attatgtttt cttgattctt 60 30 tgaaatggga acttgatttt cagtttttca actcagatgt tgtgttcctt tagctggaaa 120 acttgaaaaa ggaaagccca ga atg aga gga agt tta got ggt gga cca cct Met Arg Gly Ser Leu Ala Gly Gly Pro Pro 35 agt cot att gaa cot aga cag agg ott tot gta tto act gag gaa aca Ser Pro Ile Glu Pro Arg Gln Arg Leu Ser Val Phe Thr Glu Glu Thr 220 40 age aaa aga agg tto ttg aga agt aaa gtt tte aga gat ggg gag aga Ser Lys Arg Arg Phe Leu Arg Ser Lys Val Phe Arg Asp Gly Glu Arg 268 get ett eat agt eec ace aaa aac agg aat tit ace tge aag tie eea 45 Ala Leu His Ser Pro Thr Lys Asn Arg Asn Phe Thr Cys Lys Phe Pro act gtg aag ctt ata ttg ggt gtt att gct ctg gtt gca att tgg tca Thr Val Lys Leu Ile Leu Gly Val Ile Ala Leu Val Ala Ile Trp Ser 364 50 ctc tgg cat tct cca gca att tat aac acg gaa tac ata tct agt tca Leu Trp His Ser Pro Ala Ile Tyr Asn Thr Glu Tyr Ile Ser Ser Ser 55 ggc tot cgg get get ttg atg cac aga gag tta agt ggt cat tet tea Gly Ser Arg Ala Ala Leu Met His Arg Glu Leu Ser Gly His Ser Ser 95 get gat caa egt tat aca tea ett tta gat att gae tgg gae caa att Ala Asp Gln Arg Tyr Thr Ser Leu Leu Asp Tle Asp Trp Asp Gln Ile 120

. 5		er G	aa ġ ln V 1	tt ai al II 25	tt ga le Gi	ag aa lu Ly	a c	- u · A	cc g la A 30	at a sp A	rg E	at d	ern 1	at c yr G	ag g	gc gta ly Val	a 556 L
	G)		ta t Le L 10	ta aa eu Aa	ac tt on Ph	c aa le As	t ga n As 14	,p 3	gt ga er G	aa a lu I.	tt g le A	sp G	ag t lln L 50	tg a eu L	ys G ag g	ag tta lu Lev	604
10	ct Le 15	a co u Pr 5	eg ga	ac go ap Al	t ga a Gl	g ca u Hi 16	5 40	a at l II	c tt	g aa n Aa	SIL Li	tg g eu A 65	at c sp H	ac gi is Va	tc co	cg aat ro Asn 170	
15	aa As:	t at n Il	a ac e Th	a tg r Tr	g ga p Gl 17		a at	a ta e Ty	t co r Pr	t ga o GI 18	u 11	gg at rp I:	ta ga le As	it ga Sp Gl	u G	aa gaa lu Glu 15	700
20				190)	- WILL	. Cy.	3 FA	19	r Le 5	u Pr	O Ly	ys II	e Gl 20	n Ph O	t ccg le Pro	748
25	ĺ	_	20	5			200	210	va.	L va	т гА	a re	u Pr 21	о Су 5	s Ly	s Lys	796
		220		- L	-,,-	.m.y	225	, Agl	. Ala	LAI	g Pro	e H1 23	8 Le	r Gl	n Lê	g gca u Ala	844
30	235			,		240	261	ASD	гта	GIZ	245	r Hi:	s Pro) Ile	e His	t gtg s Val 250	892
35					255	NIS	ъпе	PTO	THE	260	Asr	l Lei	ı Phe	Thr	265		940
40			- ~ _	270	л. 9	GIU	GIŸ	ASD	275	axb	Leu	Тут	Glu	280	Asn	ctg Leu	988
45			285	****	Giu	пур	Leu	290	ren	Pro	Val	Gly	295	Cys	Glu	•	1036
		gtt Val 300	ect Pro	ctc Leu	aag Lys	wra.	aaa Lys 305	gca Ala	aat Asn	tgg Trp	cac His	tct Ser 310	Gly	aat Asn	gta Val	aga Arg	1084
50	cga Arg 315	gaa Glu	gcc Ala	tat Tyr	wra	act : Thr : 320	att Ile	ctc Leu	cac His	tca Ser	gca Ala 325	aat Asn	ttt Phe	tat Tyr	gta Val	tgt Cys 330	1132
55	gga Gly	gcc Ala	ata Ile	gct Ala	gca Ala: 335	gca (Ala (cag Sln	agt Ser	TIE	cgc Arg 340	ttg Leu	gca Ala	ggt Gly	tca Ser	acc Thr 345	cga Arg	1180
- 60	gat (Asp)	ctt Leu	gtg Val	ata Ile : 350	ctt Leu	gtt (Val)	yat Asp	GIU	act Thr 355	atc Ile	agt Ser	gac Asp	tac Tyr	cac His 360	agg Arg	ggt Gly	1228
	ggt (tta	gag	gct (gcc (gga t	-99	aag	atc	cac	acg	ata	aag	aga	ata	agg	1276

		•	7		
	Gly Leu Glu 365	Ala Ala Gly T	rp Lys Ile His 370	Thr Ile Lys Arg Ile A 375	rg
5	380	38	95 .	gag tgg aac tat agc a Glu Trp Asn Tyr Ser L 390	ys
10	395	400	m wab ili wab	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	10 10
15		415	420	ttt ctc ttt gag atg cc Phe Leu Phe Glu Met Pr 425	
•		430	435	ctt ttt aat tca ggc gt Leu Phe Asn Ser Gly Va 440	1
20	atg gtc gtt Met Val Val 445	gaa cca tca aa Glu Pro Ser Asi	t tgc aca ttt n Cys Thr Phe 450	cag ctg ttg.atg gat ca Gln Leu Leu Met Asp Hi 455	t 1516 s
25	atc aat gag (Ile Asn Glu) 460	att gaa tca tad Ile Glu Ser Tyr 465	. WOT GIA GIA !	gat cag ggg tat ttg aa Amp Gln Gly Tyr Leu Am 470	5 1564 0
30	475	480	Arg Ile Pro I	aaa cac atg aac tit tt Lys His Met Asn Phe Lev 185 - 490	<u>s</u>
35	,	495	500	ag aag caa atg aaa aca ys Lys Gln Met Lys Thi sos	.
4.5	5	10	515	at gtt ctg cac tac tta yr Val Leu His Tyr Leu 520	
40	ggc ctg aaa c Gly Leu Lys P 525	ct tgg tta tgc ro Trp Leu Cys	ttc agg gac t Phe Arg Asp T 530	ac gat tgc aac tgg aat yr Asp Cys Asn Trp Asn 535	1756
45	gtg ggt aag t Val Gly Lys L 540	tg cag gag trt eu Gln Glu Phe 545	gca agt gat g Ala Ser Asp V	tg gca cac agg acg tgg al Ala His Arg Thr Trp 550	1804
50	555	560	FIG ASP ASN LE	ta cat aaa tat tgt ttg eu His Lys Tyr Cys Leu 65 570	1852
55	ctt agg tct as Leu Arg Ser Ly	aa cag aag gct ys Gln Lys Ala 575	gca cta gag to Ala Leu Glu Tr 580	gg gat cga aga gaa gct rp Asp Arg Arg Glu Ala 585	1900
	gag aaa got aa Glu Lys Ala As 59	wran ser wab	ggt cat tgg aa Gly His Trp Ly 595	ag atc aaa ata aag gac /s Ile Lys Ile Lys Asp 600	1948
60	cca cgt ttg ga Pro Arg Leu Gl 605	- TAT CAS TAT	gaa gaa ttt tg Glu Glu Phe Cy 610	ge tte tgg gaa age atg es Phe Trp Glu ser Met 615	1996

5	Le	u Tr 62	b wr	ic tg .s Tr	b er	γ Gl	a ac u Th 62	r As	c tg n Tr	g ac	a ga r As	t aa p As 63	n Al	c ac a Th	c tc r Se	t tca r Ser	2044
	ec Pro 63	o m	a cc r Pr	t cc o Pr	c at	g gto t Vai 640	l Ası	t ac	t gç r Ala	t tca a Sei	a cti r Lei 64!	u Se	t tc r Se:	t tt	n a		2086
10	taa	acta	ggag	gtt	ctgti	tac 1	tatac	ctc	gc ta	gtict	gtaa	a gta	ata	caga	gtca	acaactt	2146
	gaa	atgt	caac	cag	tgcca	att a	igtat	cacat	eg gt	gtca	acac	: tti	cce	acc	ctts	Jaagaaa	2206
15	aaa	aaaa	aaa	aaaa	aaaa	laa a	aaa										2230
20	<210> 4 <211> 648 <212> PRT <213> Solanum tuberosum																
25		0> 4 Arg		'Ser	Leu 5	Ala	Gly	Gly	Pro	Pro 10	Ser	Pro	Ile	Glu	Pro 15	Arg	
	Gln	Arg	Leu	Ser 20	val	Phe	Thr	Glu	Glu 25	Thr	Ser	Lys	Arg	Arg 30		Leu	
30	Arg	ser	Lys 35	· Val	Phe	Arg	Asp	Gly 40	Glu	Arg	Ala	Leu	His 45	Ser	Pro	Thr	
	Lys	Asn 50	Arg	Asn	Phe	Thr	Сув 55	Lys	Phe	Pro	Thr	Val 60	Lys	Leu	Ile	Leu	
35	Gly 65	Val	Ile	Ala	Leu	Val 70	Ala	Ile	TxP	Ser	Leu 75	Trp	His	Ser	Pro	Ala 80	
40	Ile	Tyr	Asn	Thr	Glu 85	Tyr	Ile	Ser	Ser	Ser 90	Gly	Ser	Arg	Ala	Ala 95	Leu	
	Met	His	ĀIG	Glu 100	Leu	Ser	Gly	His	Ser 105	Ser	Ala	qaa	Gln	Arg 110	Tyr	Thr	
45	Ser	Leu	Leu 115	Asp	Ile	Ąsp	Trp	Asp 120	Gln	Ile	Ser	Gln	V al 125	Ile	Glu	ГÀЗ	
	Leu	Ala 130	Asp	Arg	His	Glu	Tyr 135	Gln	Gly	Val	Gly	Ile 140	Leu	Asn	Phe	Asn	
50	Asp 145	Ser	Glu	Ile	Asp	Gln 150	Leu	ŗ'n	Glu		Leu 155	Pro	.Asp	Ala	Glu	His 160	:
55	Val	Ile	Leu	Asn	Leu 165	qaA	His	Val	Pro	Asn 170	Asn	Ile	Thr	Trp	Glu 175	Thr	
-	Ile	Tyr	Pro	Glu 180	Trp	Ile	Asp	Glu	Glu 185	Glu	Glu	Phe	Glu	Val 190	Pro	Thr	
60	Сув	Pro	Ser 195	Leu	Pro	Lys	Ile	Gln 200	Phe	Pro	Gly	Lys	Pro 205	Arg	Ile	Asp	
	Leu	īļe	Val	Val	Lys	Leu	Pro	Cys	Lys	Lys	\$er	Lys	Asp	Trp	Тут	Arg	

										9							
		2:	10				21	5				22	0		a.		
5	As 22	p Va S	al Al	la Ar	g Ph	23 e	s Le:	n eli	i Le	L Al	a Ala 23!	a Ala	a Ar	g Le		a Ala 240	
	Se:	r, As	n Ly	rs Gl	y Ty: 245	r His	s Pro	o Ile	e His	9 Va:	l Let	1 Lei	ı Va;	l Th	r Gl	u Hig 5	;
10	Phe	Pr	o Th	r Pr 26	o Ası O	Let	ı Phe	: Thr	269	Lye	s Glu	Lev	ı Val	L Va.		g Glu	ı
	Gl	/ As	n Al 27	a Trj 5) Leu	Туг	Glu	280	Asn	Leu	l Ass	The	Leu 285		g Gli	ı Lys	
15	Leu	Hi 29	s Le	u Pro	Val	Gly	Ser 295	Сув	Glu	Leu	Ala	Val 300	Pro	Let	Lys	a Ala	
20	Lys 305	Ala	a Asi	a Trp	His	Ser 310	Gly	yen	Val	Arg	Arg 315	Glu	Ala	Tyz	: Ala	Thr 320	
	Ile	Let	ı Hiş	3 Ser	Ala 325	Asn	Phe	Tyr	Va1	Сув 330	Gly	Ala	Ile	Ala	Ala 335		
25	Gln	Ser	: Ile	340	Leu	Ala	Gly	ser	Thr 345	Arg	Asp	L eu	Val	Ile 350	Leu	Val	
	Asp	Glu	355	Ile	Ser	Asp	Тут	His 360	Arg	Gly	Gly	Leu	Glu 365	Ala	Ala	Gly	
30	Trp	Lys 370	Ile	His	Thr	Ile	Lys 375	Arg	Ile	Arg	Asn	Pro 380	Lys	Ala	Glu	Gln	
35	48p	Ala	Tyr	Asn	Glu	Trp 390	Asn	Tyr	Ser	Lys	Phe 395	Arg	Leu	Trp	Gln	Leu 400	
	Thr	Asp	туг	qaA	Lys 405	Ile	Ile	Phe	Ile	Asp 410	Ala	Asp	Leu	Leu	Ile 415	Leu	
40	Arg	Asn	Ile	Asp 420	Phe	Leu	Phe	Glu i	Met 425	Pro	Glu	Ile		Ala 430	Ile	Gly	
	Asn	Asn	Ala 435	Thr	Leu	Phe .	Asn	Ser (GJÅ .	Val :	Met '		Val 445	Glu	Pro	ser '	
45	Asn	Сув 450	Thr	Phe	Gln :	Leu :	Leu 455	Met 1	Asp :	His :	Ile	Asn (Glu	Ile	Glu	ser	

45 Asn Cys Thr Phe Gln Leu Leu Met Asp His Ile Asn Glu Ile Glu Ser

Tyr Asn Gly Gly Asp Gln Gly Tyr Leu Asn Glu Ile Phe Thr Trp Trp

465 His Arg Ile Pro Lys His Met Asn Phe Leu Lys His Tyr Trp Glu Gly

Asp Glu Glu Glu Lys Lys Gln Met Lys Thr Arg Leu Phe Gly Ala Asp

55

Pro Pro Val Leu Tyr Val Leu His Tyr Leu Gly Leu Lys Pro Txp Leu 515 520 525

60 Cys Phe Arg Asp Tyr Asp Cys Asn Trp Asn Val Gly Lys Leu Gln Glu
530 535 540

										10							
	Phe 545	Ala	Ser	ýsp	v al	Ala 550	His	Arg	Thr	Trp	Trp 555	Lys	Val	His	Asp	Ala 560	
5	Met	Pro	qaA	asa	Leu 565	His	Lys	Tyr	Cys	Leu 570	ren	Arg	Ser	Гув	Gln 575	Lys	
	Ala	Ala	Leu	Glu 580	Trp	Asp	Arg	Arg	Glu 585	Ala	Glu	Lys	Ala	Asn 590	Phe	ser	
10	Asp	Gly	His 595	Trp	Lys	Ile	Lys	Ile 600	Lys	Asp	Pro	Arg	Leu 605	Glu	Thr	CÀŝ	
15	Tyr	Glu 610	Glu	Phe	Cys	Phe	Trp 615	Glu	Ser	Met	Leu	Trp 620	His	Trp	Gly	Glu	
10	Thr 625	Asn	GIT	Thr	Asp	Asn 630	Ala	Thr	Ser		Pro 635	Thr	Pro	Pro	Met	Val 640	
20	Asn	Thr	Ala	Ser	Leu 645	.Ser	Ser	Leu									•
25	<212	l> 14 3> DN	A	lopsi	ls th	naliä	una									,	
30		L> CI)s .) ((1485	5}												
35	<400 atg Met 1	qat	tta Leu	caa Gln	aga Arg 5	act Thr	ttg Leu	atg Met	ttc Phe	tct Ser 10	tgt Cys	tgg Trp	gtt Val	ctg Leu	tet Ser 15	ctt Leu	48
40	ttg Leu	atc Ile	atc Ile	aaa Lys ·20	acg Thr	aca Thr	gcg Ala	tat Tyr	aac Asn 25	gag Glu	aaa Lys	cag Gln	ctg Leu	ttc Phe 30	cag Gln	Pro	96
45	ctt Leu	gaa Glu	acg Thr 35	gaa Glu	aac Asn	gca Ala	aac Asn	gcg Ala 40	atg Met	acc Thr	Ala gcg	gtt Val	atg Met 45	gag Glu	cga Arg	gga gga	144
45	tta Leu	aag Lys 50	acg Thr	cag Gln	egg	Arg	ccg Pro 55	gag Glu	cac His	aag Lys	aac Asn	gct Ala 60	tat Tyr	gcg Ala	acg Thr	atg Met	192
50	atg Met 65	tac Tyr	atg Met	gga Gly	aca Thr	cca Pro 70	aga Arg	gac Asp	tac Tyr	gag Glu	ttc Phe 75	tac Tyr	gtt Val	gcg Ala	aca Thr	cgt Arg . 80	240
55	gtc Val	ttg Leu	atc Ile	aga Arg	tcg Ser 85	ctt Leu	ràs ssa	agt Ser	ctc Leu	cac His 90	Val	gac Asp	gct Ala	gat Asp	atc Ile 95	gtc Val	288
60	gtt Val	ata Ile	gcc Ala	tcc Ser 100	Leu	gac Asp	gtt Val	cct Pro	atc Ile 105	Asn	tgg Trp	att Ile	cac His	gct Ala 110	Leu	gaa Glu	336
	gaa	gaa	gat	gga	gct	aaa	gta	gtg	aga	gta	gag	aat	ctt	gag	aat	cca	384

ען ריויואומ־בטטט אי --

	Glı	n Gl	u As 11	p Gl	y Ala	a Ly	s Va	l Va:	l Arç	y Va	l Gl	u Ası	1 Le:		u Asi	n Pro	
5	tac Tys	Laag Lyg 130	a na	a caa s Gl:	a acc	aac Asr	Phe 135	a Asy	aac Asr	aga Arg	a tto g Phe	aag Lys 140	Lev	agt Sei	cta Lei	a aac 1 Asn	432
10	145	i mer	yı	. MIC	ттр	150	Let	l Sez	Asp	тух	155	Arg	Val	. Val	. Met	ctt Leu 160	480
15	, mp	VAI	. Ası	, weti	165	Pne	Leu	Lys	Asn	170	Asp	Glu	Leu	Phe	175		528
	gj ggc	Gln Gln	ttt Phe	tgt Cys 180	WIS	gtc Val	ttc Phe	atc	aac Asn 185	Pro	tgc Cys	atc Ile	ttc Phe	cac His 190	act	ggt	576
20	ctc Leu	ttt Phe	gtg Val 195	204	Gln	cca Pro	tca Ser	atg Met 200	gag Glu	gtc Val	ttt Phe	aga Arg	gac Asp 205	atg Met	ctt Leu	cat His	624
25 _	gag Glu	ctt Leu 210	gaa Ģlu	gta Val	aag Lys	aga	gat Asp 215	aac Asn	cct Pro	gat Asp	gga Gly	gct Ala 220	\mathbf{y} ab	caa Gln	ely ggc	ttt Phe	672
30	ctt Leu 225	AMY	agc Ser	tac Tyr	ttc Phe	tct Ser 230	gat Asp	tta Leu	ctc Leu	aat Asn	cag Gln 235	cct Pro	ate Leu	ttt Phe	cgt Arg	cct Pro 240	720
35	cct Pro	ccc Pro	gat Asp	aac Asn	cgc Arg 245	acc Thr	gcg Ala	ctt Leu	aag Lys	gga Gly 250	cat His	ttt Phe	agg Axg	ctt Leu	cct Pro 255	ttg Leu	768
	gga Gly	tat Tyr	caa Gln	atg Met 260	gac Asp	gca Ala	tct Ser	tat Tyr	tac Tyr 265	tac Tyr	ctt Leu	aag Lys	ctc Leu	aga Arg 270	tgg Trp	aac Asn	816
40	gta Val	cca Pro	tgt Cys 275	gga Gly	Pro CCa	aac Asn	agt Ser	gtg Val 280	ata Ile	acg Thr	tto Phe	Pro	gga Gly 285	gca Ala	gta Val	tgg Trp	864
45	теп	aag Lys 290	cca Pro	tgġ Trp	tat Tyr	Trp	tgg Trp 295	tca Ser	tgg Trp	cct Pro	Val	ctt Leu 300	cct Pro	tta Leu	ej aac	ctt Leu	912
50	tca Ser 305	tgg Trp	cac His	cac His	Gln .	cgc Arg 310	cgc Arg	tac Tyr	acg Thr	Ile	agt Ser 315	tat Tyr	tca (Ser)	gca Ala	gag Glu	atg Met 320	960
55	cct Pro	tgg Trp	gtc Val	Leu	acc Thr 325	caa Gln	gca Ala	gtg Val	Phe '	tac Tyr 330	cta (Leu (gga : Gly :	att : Ile :	Ile	cta Leu 335	gtc Val	1008
	aca Thr	cgt Arg	ren	gcg Ala 340	cgt (Arg)	ecc Pro	aac Asn	Met '	acc Thr : 345	aag Lys	cta : Leu :	tgt : Cys :	Tyr 2	ega Arg 350	cgt Arg	tct Ser	1056
60	gat Asp	rys	ZB A	Leu	agc ; Ser 1	atg Met	Ile	cag Gln 360	aca Thr	gct Ala	ttc : Phe :	ŗĂē";	ttt (Phe 1 365	gtt Val	gca Ala	ctc Leu	1104

5	ctc Leu	Phe 370	atc Ile	ctc Leu	tca Ser	gcc	tac Tyr 375	att Ile	ata Ile	cca Pro	ttc Phe	ttc Phe 380	atc Ile	atc Ile	cca Pro	cag Gln	1152
	acg Thr 385	atc Ile	cac His	Pro ccg	ctc Leu	att Ile 390	ggt Gly	tgg Trp	tat Ser	ctc Leu	tac Tyr 395	tta Leu	acc Thr	ej ggc	tcc ser	ttt Phe 400	1200
10	gct Ala	ctc Leu	tct Ser	acc Thr	ata Ile 405	ccc Pro	atc Ile	aac Asn	gcc Ala	ttc Phe 410	ttg Leu	ctt Leu	cc¢ Pro	att Ile	ctc Leu 415	ect Pro	1248
15	gtc Val	ata Ile	aca Thr	ccg Pro 420	tgg Trp	ctt Leu	Gly gg¢	att Ile	ttc Phe 425	Gly 999	aca Thr	ctc Leu	ctc Leu	gtg Val 430	atg Met	gct Ala	1296
20	ttt Phe	cct Pro	tct Ser 435	tat Tyr	cct Pro	gat Asp	ggc	gtt Val 440	gtt Val	aga Arg	gca Ala	ttg Leu	tcg Ser 445	gtt Val	ttc Phe	eja aaa	1344
25	tat Tyr	gca Ala 450	ttt Phe	tgt Cys	tgt Cys	gca Ala	ccg Pro 455	ttt Phe	cta Leu	tgg Trp	gtc Val	tcc Ser 460	ttt Phe	gtg Val	aag Lys	atc Ile	1392
20	aca Thr 465	tcg Ser	cat His	ctt Leu	cag Gin	att Ile 470	atg Met	att Ile	gac Asp	aaa Lys	gag Glu 475	gtt Val	ttg Leu	ttt Phe	ccg Pro	egg Arg 480	1440
30	ttg Leu	ggt Gly	gaa Glu	tcc Ser	gga Gly 485	gtc Val	act Thr	tct Ser	ggt Gly	ctc Leu 490	agc Ser	aaa Lys	ttg Leu	tac Tyr	tga 495		1485
35	<212	L> 49 2> Pi	T S	iopsi		halia	ma										•
35	<213 <213 <213	L> 49 2> Pi 3> Ai 0> 6	RT rabio	•	ls tl						• .		,	7 a.u.	Com	Low	
	<213 <213 <213 <400 Met	L> 49 2> Pl 3> Al 0> 6 Asp	RT rabio Leu	Gln	ls ti Arg 5	Thr	Leu			10					15		
40	<213 <213 <213 <400 Met 1 Leu	L> 49 2> PP 3> AD D> 6 Asp	erabio Leu Ile	Gln Lys 20	Arg 5 Thr	Thr	Leu Ala	Tyr	Asn 25	10 Glu	Lys	Gln	Leu	Phe 30	Gln	Pro	
	<211 <211 <213 <400 Met 1 Leu	l> 49 2> PP 3> AD 0> 6 Asp Ile Glu	Thr	Gln Lys 20 Glu	Arg 5 Thr Asn	Thr Thr Ala	Leu Ala Asn	Tyr Ala 40	Asn 25 Met	10 Glu Thr	Lys Ala	Gln Val	Leu Met 45	Phe 30 Glu	15 Gln Arg	Pro Gly	
40	<211 <212 <213 <400 Met 1 Leu Leu Leu	L> 49 2> PP 3> AD 0> 6 Asp Ile Glu Lys 50	Leu Leu Ile Thr 35	Gln Lys 20 Glu Gln	Arg 5 Thr Asn Arg	Thr Thr Ala Arg	Leu Ala Asn Pro	Tyr Ala 40 Glu	Asn 25 Met His	10 Glu Thr Lys	Lys Ala Asn	Gln Val Ala 60	Leu Met 45 Tyr	Phe 30 Glu Ala	15 Gln Arg Thr	Pro Gly Met	
40	<211 <212 <213 <400 Met 1 Leu Leu Leu	L> 49 2> PP 3> AD 0> 6 Asp Lle Glu Lys 50 Tyr	Leu Ile Thr 35 Thr	Gln Lys 20 Glu Gln Gly	Arg 5 Thr Asn Arg	Thr Thr Ala Arg Pro	Leu Ala Asn Pro 55 Arg	Tyr Ala 40 Glu Asp	Asn 25 Met His Tyr	10 Glu Thr Lys Glu	Lys Ala Asn Phe 75	Gln Val Ala 60 Tyr	Leu Met 45 Tyr Val	Phe 30 Glu Ala Ala	15 Gln Arg Thr	Pro Gly Met Arg 80	
40 45	<211 <212 <213 <400 Met 1 Leu Leu Met 65 Val	L> 49 2> PR 3> AS 0> 6 ASP Lle Glu Lys 50 Tyr Leu	Leu Ile Thr 35 Thr Met	Gln Lys 20 Glu Gln Gly Arg	Arg 5 Thr Asn Arg Thr Ser	Thr Thr Ala Arg Pro 70 Leu	Leu Ala Asn Pro 55 Arg	Tyr Ala 40 Glu Asp	Asn 25 Met His Tyr	10 Glu Thr Lys Glu His 90	Lys Ala Asn Phe 75 Val	Gln Val Ala 60 Tyr Asp	Leu Met 45 Tyr Val Ala	Phe 30 Glu Ala Ala Asp	15 Gln Arg Thr Thr Ile 95	Pro Gly Met Arg 80 Val	
40 45	<211 <212 <213 <400 Met Leu Leu Leu Met 65 Val	L> 49 2> PR 3> AS 0> 6 Asp Lle Glu Lys 50 Tyr Leu Ile	Leu Ile Thr 35 Thr Met Ile	Gln Lys 20 Glu Gln Gly Arg	Arg 5 Thr Asn Arg Thr Ser 85 Leu	Thr Thr Ala Arg Pro 70 Leu Asp	Leu Ala Asn Pro 55 Arg Lys Val	Tyr Ala 40 Glu Asp Ser	Asn 25 Met His Tyr Leu Ile 105	Thr Lys Glu His 90 Asn	Lys Ala Asn Phe 75 Val	Gln Val Ala 60 Tyr Asp	Leu Met 45 Tyr Val Ala His	Phe 30 Glu Ala Ala Asp Ala 110	15 Gln Arg Thr Thr Ile 95 Leu	Pro Gly Met Arg 80 Val Glu	
40 45	<211 <211 <400 Met 1 Leu Leu Met 65 Val Val	L> 49 2> PR 3> AD 0> 6 Asp Lle Glu Lys 50 Tyr Leu Ile Glu Glu	Leu Ile Thr 35 Thr Met Ile Ala Asp	Gln Lys 20 Glu Gln Gly Arg Ser 100 Gly	Arg 5 Thr Asn Arg Thr Ser Leu Ala	Thr Thr Ala Arg Pro 70 Leu Asp	Leu Ala Asn Pro SS Arg Lys Val	Tyr Ala 40 Glu Asp Ser Pro Val 120	Asn 25 Met His Tyr Leu Ile 105 Arg	Thr Lys Glu His 90 Asn	Lys Ala Asn Phe 75 Val Trp Glu	Gln Val Ala 60 Tyr Asp Ile Asn	Leu Met 45 Tyr Val Ala His Leu 125	Phe 30 Glu Ala Ala Asp Ala 110 Glu	Arg Thr Thr Ile 95 Leu Asn	Pro Gly Met Arg 80 Val Glu Pro	
40 45 50	<211 <212 <400 Met 1 Leu Leu Met 65 Val Val Glu	L> 49 2> PP 3> AD 0> 6 Asp Lle Glu Lys 50 Tyr Leu Glu Lys	Leu Ile Thr 35 Thr Met Ile Ala Asp 115	Gln Lys 20 Glu Gln Gly Arg Ser 100 Gly	Arg Thr Asn Arg Thr Ser 85 Leu Ala	Thr Thr Ala Arg Pro 70 Leu Asp Lys	Leu Ala Asn Pro SS Arg Lys Val Val Phe	Tyr Ala 40 Glu Asp Ser Pro Val 120 Asp	Asn 25 Met His Tyr Leu Ile 105 Arg	Thr Lys Glu His 90 Asn Val	Lys Ala Asn Phe 75 Val Trp Glu Phe	Gln Val Ala 60 Tyr Asp Ile Asn Lys 140	Met 45 Tyr Val Ala His Leu 125 Leu	Phe 30 Glu Ala Ala Asp Ala 110 Glu Ser	Arg Thr Thr Ile 95 Leu Asn	Pro Gly Met Arg 80 Val Glu Pro Asn	
40 45 50	<211 <211 <400 Met 1 Leu Leu Met 65 Val Val Glu Tyr	L> 49 2> PP 3> AD 0> 6 Asp Lle Glu Lys 50 Tyr Leu Ile Glu Lys Leu Lys	Leu Ile Thr 35 Thr Met Ile Ala Asp 115 Lys	Gln Lys 20 Glu Gln Gly Arg Ser 100 Gly Gln	Arg Thr Asn Arg Thr Ser 85 Leu Ala Thr	Thr Thr Ala Arg Pro 70 Leu Asp Lys Asn Sex	Leu Ala Asn Pro SS AIG Lys Val Val Phe 135 Leu	Tyr Ala 40 Glu Asp Ser Pro Val 120 Asp	Asn 25 Met His Tyr Leu 105 Arg Asn	Thr Lys Glu His 90 Asn Val Arg	Lys Ala Asn Phe 75 Val Trp Glu Phe Asp	Gln Val Ala 60 Tyr Asp Ile Asn Lys 140 Arg	Met 45 Tyr Val Ala His Leu 125 Leu Val	Phe 30 Glu Ala Ala Asp Ala 110 Glu Ser Val	Arg Thr Thr Ile 95 Leu Asn Leu Met	Pro Gly Met Arg 80 Val Glu Pro	

```
Gly Gln Phe Cys Ala Val Phe Ile Asn Pro Cys Ile Phe His Thr Gly
                                        185
        Leu Phe Val Leu Gln Pro Ser Met Glu Val Phe Arg Asp Met Leu His
                                    200
   5
        Glu Leu Glu Val Lys Arg Asp Asn Pro Asp Gly Ala Asp Gln Gly Phe
                                215
       Leu Val Ser Tyr Phe Ser Asp Leu Leu Asn Gln Pro Leu Phe Arg Pro
                            230
       Pro Pro Asp Asn Arg Thr Ala Leu Lys Gly His Phe Arg Leu Pro Leu
                                                235
  10
                                            250
       Gly Tyr Gln Met Asp Ala Ser Tyr Tyr Tyr Leu Lys Leu Arg Trp Asn
                                        265
       Val Pro Cys Gly Pro Asn Ser Val Ile Thr Phe Pro Gly Ala Val Trp
                                    280
  15
       Leu Lys Pro Trp Tyr Trp Trp Ser Trp Pro Val Leu Pro Leu Gly Leu
                               295
       Ser Trp His His Gln Arg Arg Tyr Thr Ile Ser Tyr Ser Ala Glu Met
                           310
       Pro Trp Val Leu Thr Gln Ala Val Phe Tyr Leu Gly Ile Ile Leu Val
                                               315
 20
                                           330
       Thr Arg Leu Ala Arg Pro Asn Met Thr Lys Leu Cys Tyr Arg Arg Ser
                                       345
      Asp Lys Asn Leu Ser Met Ile Gln Thr Ala Phe Lys Phe Val Ala Leu
                                   360
      Leu Phe Ile Leu Ser Ala Tyr Ile Ile Pro Phe Phe Ile Ile Pro Glr
 25
                               375
      Thr Ile His Pro Leu Ile Gly Trp Ser Leu Tyr Leu Thr Gly Ser Phe
                                                   380
                          390
                                               395
      Ala Leu Ser Thr Ile Pro Ile Asn Ala Phe Leu Leu Pro Ile Leú Pro
 30
                      405
                                          410
      Val Ile Thr Pro Trp Leu Gly Ile Phe Gly Thr Leu Leu Val Met Ala
                  420
                                      425
      Phe Pro Ser Tyr Pro Asp Gly Val Val Arg Ala Leu Ser Val Phe Gly
                                - 440
      Tyr Ala Phe Cys Cys Ala Pro Phe Leu Trp Val Ser Phe Val Lys Ile
                                                      445
                              455
                                                  460
      Thr Ser His Leu Gln Ile Met Ile Asp Lys Glu Val Leu Phe Pro Arg
                          470
     Leu Gly Glu Ser Gly Val Thr Ser Gly Leu Ser Lys Leu Tyr
                                              475
                                                                  480
40
                      485
                                          490
     <210> 7
45
     <211> 1494
     <212> DNA
     <213> Arabidopsis thaliana
     <220>
50
     <221> CDS
     <222> (1)..(1494)
     atg gat ttg cag aga ggc ttt gtg ttc ttg tct ttg gtt cta tct ttt
     Met Asp Leu Gln Arg Gly Phe Val Phe Leu Ser Leu Val Leu Ser Phe
55
    atg ata atc gaa acg acg gcg tat cga gag aga cag ctg ctg ctg
    Met Ile Ile Glu Thr Thr Ala Tyr Arg Glu Arg Gln Leu Leu Leu
60
                 20
                                      25.
    caa cca ccg caa gaa acg gcg ata gat acc gca aac gcg gtg gtg acg
```

				_	•		lu T			#(,					4	5				
5			50		-	•	gt t Ly L		55			y A	cg "	TO	60 GT47	Hi	s Lj	e a	sn .	Ala	19
10	•	55						70		сту		r Pi	O A	rg . 75	da	Ty	. Gl	u Pl	ne :	80 Lax	24
15						8	t tt 1 Le 5		*e	шg	261	. re	0 A	rg s	ier	Leu	Hi	s Va	11 (slu	288
	gc Al	t g a A	at sp	Ctc	gto Val		c at l Il	e AJ	et t la s	er	Lev 105	LAS	c gt p Va	t c	ro	atç Leu	cg Arg	T E	g g	tt al	336
20	ca G1	a a n T	ec hr	ttg Leu 115		ga Gl	g ga u Gl	a ga	b c	ga ly 20	gct Ala	aa: Ly:	a gt s Va	g g l V	al.	aga Arg 125	gt: Val	ga Gl	aa u A	at sn	384
25	gt: Va.		at sp 30	aat Asn	cca Pro	tae Ty:	age Are	g ag g Ar 13	g G	ag ln	acc Thr	aac Asi	tt 1 Ph	e A	aç : Sıl :	agt Ser	aga Arg	tte Pho	cia: e L	, gg	432
30	Cti Let 145	ac Th	et (cta Leu	aac Asn	aaç Lys	Leu 150	ц цу.	c g r A	ct la	tgg Trp	gct Ala	: tt: Le: 15!	u Se	et e	iat iat	tac Tyr	gad	נא כ	gt rg . 50	480
35	gtg Val	gt Va	ic é	a tg Met	cta Leu	gat Asp 165	gcc	gai Asp	t aa Aa	ac (ctc Leu	ttt Phe 170	Let	r F ^ý Fas	ig a 'B I	ys	gcc Ala	gac Asp 175	G1	ig lu	528
•	ttg Leu	Ph	e e	ag Sln	tgt Cys 180	Gly	cgc	tto Phe	te Cy	73 4	gcg Ala L85	gtc Val	tto Phe	at e Il	t a e A	sn	cat Pro 190	tgt Cys	at	e e	576 ·
40	ttc Phe	ça Hi		hr 95	ggt	ctc Leu	ttc Phe	gtg Val	tt Le 20	iu c	ag In	cca Pro	tca Ser	gt Va	1 G	aa q lu 1 05	gtg Val	ttc Phe	aa Ly	g	624
45	gac Asp	at Me: 21		eu :	cat His	gag Glu	cta Leu	caa Gln 215	. va	t g 1 G	ga ly	aga Arg	aag Lys	aa .As:	n P	at g	jat Asp	gga Gly	gc Al	t a	672
50	gat Asp 225	Ca:	ag nG	gt (ttt Phe	ctt Leu	gtc Val 230	agt Ser	ta Ty:	c t r P	tc he	tct Ser	gat Asp 235	ct: Le:	t ci	tt g eu A	gac	caa Glp	CC Pro	5	720
55	cta Leu	tt! Phe	t ag	gt d er 1	FLQ .	ccg Pro 245	agt Ser	aac Asn	99 G1	a t y s	er 1	gta Val 250	ctt Leu	aat Ası	; gg	gt c Ly H	iis	ttg Leu 255	aga Arç	3 3	768
	ctt Leu	ee:	I ti	±α (gc : 260 ·	TAL	caa Gln	atg Met 	gac As _l) A	ct t la & 65	ct Ser	tat Tyr	tto Phe	te T	T L	eu 70	aag Lys	cta Lei	a 1	816
60	aga Arg	tgç Tış	g aa D Aa 27	311 1	ita d	ecc Pro	tgt Cys	gga Gly	CC Pro 280) A	ac a	igt Ser	gtg Val	att Ile	ac Th	r P	tc he	ecg Pro	gga	1	864

290 295 300 295	12
cta ggt ttc tca tgg cac gag cag cgt cgc gcc act ata ggg tac tca 96 Leu Gly Phe Ser Trp His Glu Gln Arg Arg Ala Thr Ile Gly Tyr Ser 310 315 320	0
Ala Glu Met Pro Leu Val Ile Ile Gln Ala Met Phe Tyr Leu Gly Ile 325 330	08
ata gtg gtt aca cga cta gct cgt cct aac ata acc aag cta tgt tat 10! 15 Ile Val Val Thr Arg Leu Ala Arg Pro Asn Ile Thr Lys Leu Cys Tyr 340 345 350	36
cgc cgc tct gac cgc aac tta aca acg atc caa gct ggt ttt aag ttg 110 Arg Arg Ser Asp Arg Asn Leu Thr Thr Ile Gln Ala Gly Phe Lys Leu 355 360 365	4
atc gcg ctt ctc tct gta gtt gca gcc tac atc ttc cca ttc ttc acc 115 11e Ala Leu Leu Ser Val Val Ala Ala Tyr Ile Phe Pro Phe Phe Thr 370 375 380	2
atc cct cac act atc cac cca ctc atc ggc tgg tcg ctc tac ttg atg 1200 11e Pro His Thr Ile His Pro Leu Ile Gly Trp Ser Leu Tyr Leu Met 390 395	ס
30 got tot ttt got etc tot toe att toa atc aac act ctc ctc ctc cca 1248 Ala Ser Phe Ala Leu Ser Ser Ile Ser Ile Asn Thr Leu, Leu Leu Pro 405 415	ı
acg ctc cct gtt ctc act cca tgg cta gga att ctc ggc act ctc ctt 1296 Thr Leu Pro Val Leu Thr Pro Trp Leu Gly Ile Leu Gly Thr Leu Leu 420 425 430	•
gtc atg gcc ttc cct tgg tac cct gat gga gtg gtc aga gcc ttg tca 1344 Val Met Ala Phe Pro Trp Tyr Pro Asp Gly Val Val Arg Ala Leu Ser 435 440 445	
gtt ttc gca tac gca ttt tgt tgc gca ccc ttt gtg tgg gtt tca ttc Val Phe Ala Tyr Ala Phe Cys Cys Ala Pro Phe Val Trp Val Ser Phe 450 455 460	
Arg Lys Ile Thr Ser His Leu Gln Val Leu Ile Glu Lys Glu Val Leu 465 470 475 480	
50 ttc ccg cga ttg gga gac tca ggg gtc act tca ggc ttc agc aaa ttg Phe Pro Arg Leu Gly Asp Ser Gly Val Thr Ser Gly Phe Ser Lys Leu 485 490 495	
55 Tyr 1494	
<210> 8 <211> 497 60 <212> PRT <213> Arabidopsis thaliana	

	<400> 8 ,
	Met Asp Leu Gln Arg Gly Phe Val Phe Leu Ser Leu Val Leu Ser Phe
	Met Ile Ile Glu Thr Thr Ala Tyr Arg Glu Arg Gln Leu Leu Leu Glu Pro Pro Cla
	Gln Pro Pro Gin Glu Thr Ala Ile Asp Thr Ala Asn Ala Val Val Thr
10	Val Gln Asp Arg Gly Leu Lys Thr Arg Arg Pro Glu His Lys Asn Ala
, ,	65 Met Tyr Met Gly Thr Pro Arg Asp Tyr Glu Phe Tyr.
	Val Ala Thr Arg Val Leu Ile Arg Ser Leu Arg Ser Leu His Val Glu 85 90
15	
	115 Clu Glu Glu Asp Gly Ala Lys Val Val Arg Val Glu Asn
20	Val Asp Asn Pro Tyr Arg Arg Gln Thr Asn Phe Asn Ser Arg Phe Lys 130 135 140
. 20	145 Leu Ash Lys Leu Tyr Ala Trp Ala Leu Ser Asp Tyr Asp Arg
	165 Leu Asp Ala Asp Asn Leu Phe Leu Lys Lys Ala Asp Glu
25	175 180 180 180 180 175 180
	195 Leu Phe Val Leu Gln Pro Ser Val Glu Val Phe Lys
20	Asp Met Leu His Glu Leu Gln Val Gly Arg Lys Asn Pro Asp Gly Ala
30	Asp Gln Gly Phe Leu Val Ser Tyr Phe Ser Asp Leu Leu Asp Gln Pro
	240 Arg
35	260 Leu Gly Tyr Gln Met Asp Ala Ser Tyr Phe Tyr Leu Lys Leu
	Arg Trp Asn Ile Pro Cys Gly Pro Asn Ser Val Ile Thr Phe Pro Gly
40	Ala Val Trp Leu Lys Pro Trp Trp Trp Trp Ser Trp Pro Val Leu Pro
40	Leu Gly Phe Ser Trp His Glu Gln Arg Arg Ala Thr Ile Gly Tyr Ser
	Ala Glu Met Pro Leu Val Ile Ile Gln Ala Met Phe Tyr Leu Gly Ile
45	340 Leu Ala Arg Pro Asn Ile Thr Lys Leu Cys Tyr
	Arg Arg Ser Asp Arg Asn Leu Thr Thr Ile Gln Ala Gly Phe Lys Leu
	370 375 375 375 375 375 375 375 375 375 375
50	Ile Pro His Thr Ile His Pro Leu Ile Gly Trp Ser Leu Tyr Leu Met
	Ala Ser Phe Ala Leu Ser Ser Ile Ser Ile Asn Thr Leu Leu Pro
55	Thr Leu Pro Val Leu Thr Pro Tro Leu Gly Ile Leu Gly Thr Leu Leu Leu 425
•	Val Met Ala Phe Pro Trp Tyr Pro Asp Gly Val Val Arg Ala Leu Ser
	Val Phe Ala Tyr Ala Phe Cys Cys Ala Pro Phe Val Trp Val Ser Phe
60	Arg Lys Ile Thr Ser His Leu Gln Val Leu Ile Glu Lys Glu Val Leu
	Phe Pro Arg Leu Gly Asp Ser Gly Val Thr Ser Gly Phe Ser Lys Leu

Tyr

17

485

490

495 .

5		210>	٥															
10	<: <: <:	211> 212>	194 DNA		psis	tha	lian	a										
	<2		CDS	(1	944)													
15	at	00> g ca t Hi	at c	ca go	t to a se	a to er Cy 5	gt ag 78 Se	gt ct er Le	c to	T TIE	c ag u Ar	g as	ia gi 78 Vi	tc aa	s Le	t aat u Asr	- 48 1	
20				2	0	9	_.	JC	2	s se	r G1	u Se	r Pr	o Me	g gc t Al 0	g ccg a Pro		•
25	tc: Se:	a ag r Se	r ca r Gl 3	g tç n Se 5	a ag r Se:	t ca r Hi	t cg s Ar	a ct g Le	u ly	c at	t tc e Se:	c ag r Se	r Gl	g aa u Ly 5	a ac s Th	a aaa r Lys	144	
30	ac <u>e</u> Thr	aa Ly 5	g ag s Ar 0	a tto g Pho	c caa	a aga	a aa g As: 5!	ر دبی	a tac y Tyn	c aci	t cto Lev	ga Asj 6	b Va	t gaa 1 Gl	a atq 1 Me1	g ,tgt. t Cys	192	
35	65					70))	> Het	. vaj	r ren	75	Let	ı Met	t Met	. Lev	gtt Val 80	240	
40					85	. +7-	. Cys	, ser	Pro	90	Leu	Glz	Ile	Pro	Glu 95		288	
40		•		100			. பூக	TLD	105	reg	GTI	Pro	Ala	Val 110	Thr	aça Thr	336	P == 2.
45	•		115	-3-		ALG	1111	120	GIU	TTE	Asn	Trp	Asn 125		Met	Ser	384	
50		130				-7-	135	aei	GŢĀ	Arg	ser	G111 140	Tyr	caa Gln	Gly	Ile	432	
55	145					150	nop	UBIT	GIU	116	155	Arg	Trp	cag Gln	Val	Val 160	480	
80		<u></u>		****	165	GII		TTE	ATA	170	His	Leu	Asp	cat His	Ala 175	Ala	528	
60	agt Ser	aac Asn	aca Ile	act Thr 180	tgg Trp	aaa Lys	tct Ser	tta Leu	tac Tyr 185	Pro '	gaa Glu	rrp. Trp	att Ile	gac Asp 190	gag Glu	gaa Glu -	576 .	

	gaa aaa ttc aaa gtc ccc act tgt cct tct ctt cct tgg att caa gtt 62. Glu Lys Phe Lys Val Pro Thr Cys Pro Ser Leu Pro Trp Ile Gln Val 200 205	4
٠	cct gac aag tct cga atc gat ctt atc att gcc aag ctc cca tgt aac' 672 Pro Asp Lys Ser Arg Ile Asp Leu Ile Ile Ala Lys Leu Pro Cys Asn 210 215 220	3
10	Lys Ser Gly Lys Trp Ser Arg Asp Val Ala Arg Leu His Leu Gln Leu 235 230 236)
15	245 250 255	
20	265 270	
25		
•	ctt cac cag tta aga caa aag tta caa ctt cct gtt ggt tcc tgt gaa 912 Leu His Gln Leu Arg Gln Lys Leu Gln Leu Pro Val Gly Ser Cys Glu 290 295 300	
30	Ctt tct gtt cct ctt caa gct aaa gat aat ttc tac tcg gca aat gcc 960 Leu Ser Val Pro Leu Gln Ala Lys Asp Asn Phe Tyr Ser Ala Asn Ala 305 310 315	
35	aag aaa gaa gog tac gog acg atc ttg cac tca gat gat gct ttt gtc 1008 Lys Lys Glu Ala Tyr Ala Thr Ile Leu His Ser Asp Asp Ala Phe Val 325 330 335	
40	tgt gga gcc att gca gta gca cag agc att cga atg tca ggc tct act 1056 Cys Gly Ala Ile Ala Val Ala Gln Ser Ile Arg Met Ser Gly Ser Thr 340 345 350	
45	cgc aat ttg gta ata cta gtc gat gat tcg atc agt gaa tac cat aga 1104 Arg Asn Leu Val Ile Leu Val Asp Asp Ser Ile Ser Glu Tyr His Arg 355 360 365	
	agt ggc ttg gaa tca gct gga tgg aag att cac aca ttt caa aga atc 1152 Ser Gly Leu Glu Ser Ala Gly Trp Lys Ile His Thr Phe Gln Arg Ile	
50	aga aac ccg aaa gct gaa gca aat gca tat aac caa tgg aac tac agc 1200 Arg Asn Pro Lys Ala Clu Ala Acn Ala Tomana and a caa tgg aac tac agc 1200	
55	385 390 395 400	
	aaa tte cgt ett tgg gaa ttg aca gaa tae aac aag ate ate tte att 1248 Lys Phe Arg Leu Trp Glu Leu Thr Glu Tyr Asn Lys Ile Ile Phe Ile 405 410 415	
60	gat gca gac atg ctt atc ctc aga aac atg gat ttc ctc ttc gag tac 1296 Asp Ala Asp Met Leu Ile Leu Arg Asn Met Asp Phe Leu Phe Glu Tyr 420 425 430	

	. 19	
	ccc gaa atc tcc aca act gga aac gac ggt acg ctc ttc aac tcc ggt Pro Glu Ile Ser Thr Thr Gly Asn Asp Gly Thr Leu Phe Asn Ser Gly 435 440 445	1344
	5 cta atg gtg att gaa cca tca aat tca aca ttc cag tta cta atg gat Leu Met Val Ile Glu Pro Ser Asn Ser Thr Phe Gln Leu Leu Met Asp 450 455 460	1392
10	465 Ash Ash Ser Tyr Ash Gly Gly Asp Gln Gly Tyr Leu 475 480	1440
15	495 490 495	1488
20		1536
25	515 520 525 525	1584
25	530 535 540 TYP Asp Cys Asn	1 632
30	545 550 555 / Second File Ala Ser Asp Glu Ala His Lys	L680
35	565 570 Eys Leu Gln Arg Phe	728
40	tgt cta ctg agt tcg asa caa aag gcg caa ctt gag tgg gat cgg aga 1. Cys Leu Leu Ser Ser Lys Gln Lys Ala Gln Leu Glu Trp Asp Arg Arg 580 585 590	776
•	caa gct gag aas gcg aat tac aga gac gga cat tgg agg att aag atc 18 Gln Ala Glu Lys Ala Asn Tyr Arg Asp Gly His Trp Arg Ile Lys Ile 595 600 605	824
45	aaa gat aag aga ctt acg act tgt ttt gaa gat ttc tgt ttc tgg gag 18 Lys Asp Lys Arg Leu Thr Thr Cys Phe Glu Asp Phe Cys Phe Trp Glu 610 620	372
50	agt atg ctt tgg cat tgg ggt gag act cag acc aac tcc acc gtc gct ser Met Leu Trp His Trp Gly Glu Thr Gln Thr Asn Ser Thr Val Ala 630 640	20
5 5	gct gat tct tcc tcc acc gcg taa Ala Asp Ser Ser Thr Ala 645	44
60	<210> 10 <211> 647 <212> PRT <213> Arabidopsis thaliana	

		0> 1														
	1		Pro		5					10					15	
5			Thr	20					25					30		
			Gln 3:5					40	-				45	_		-
40		50	Arg				55					60				•
10	65		Phe			70					75				•	80
			Phe		85					90					95	-
15			Ser	100					105			·		110		
			Arg					120				_	125			
20		130	val				135					140	-		_	•
20	145		Leu			150					155					160
			Ser		165					170			_		175	
25			Ile	180		-			185					190		
			Phe 195	-			•	200					205			
30		210	Lys		_		215					220			_	
30	225		Gly Ala	_	_	230	_	_			235					240
			Leu	_	245					250	_			_	255	
35	•		Leu	260			•		265					270		_
			275 Gln			_		280			_		285	_		_
40		290	Val				295					300	-			
70	305		Glu			310					315	-				320
	_	_	Ala		325			•		330		_			335	
45	_	_	Leu	340					345		_			350		
			355 Leu					360					365			
50		370	Pro				375					380				
	385		Arg	-		390				_	395		_		-	400
•	_		Asp		405					410					415	
55			Ile	420				-	425					430		
			435 Val				_	440					445			
60		450	Asn				455					460				
-	465		Ile	_		470					475					480
	-7-D44			- 440		~~~			3			_,_				

	Leu	Lva	His	Ph∈	485		G1v	, Acr	. ጥ ኮ •	490	. Tare	. wa	7 ma	- -	49	Lys	:
				500)				505	i				510			
5			272					520		-			525			Tyr	
		220					535					540				Asn	•
	Trp 545	Asn	Val	Val	Gly	Tyr 550	His	Gln	Phe	Ala	Sex 555		Glu	Ala	His	Lys	
10	Thr	Trp	Trp	Arg	Val 565		Asp	Ala	Met		Lys	Lys	Leu	Gln	Arg	560 Phe	
	Сув	Leu	Leu	ser 580	Ser	ьув	Gln	Lys	Ala 585	570 Gln	Leu	Glu	Trp		575 Arg	Arg	
15	Gln	Ala	Glu 595			Asn	туг	Arg 600		Gly	His	Trp		590 Ile	Lys	,Ile	
	Lys	Asp 610		Arg	Leu	Thr	Thr 615		Phe	Glu	Asp	Phe 620	605 Cys	Phe	Trp	Glu	
	Ser 625		Leu	Trp	His	Trp 630		Glu	Thr	Gln		Asn	Ser	Thr	Val		
20		Asp	Ser	Ser	Ser 645		Ala				635					640	
	٠																
25		> 11															
	<212	l> 18 2> D)	IA.														
	<213	IA <	rabid	lopsi	is th	nalie	ma _.			-					,		
30	<220)> CI	s											, .			
			.) (1857	7)												·
35		> 11 ata	cct	ter	tca	ant		a+~	#1#	tas	360	ant	~~~				40
00	Met 1	Ile	Pro	Ser	Ser 5	Ser	Pro	Met	Glu	Ser 10	Arg	His	Arg	Leu	Ser	Phe	48
		222	<i>~</i> > <i>~</i>	25.0	_	o.et									15		
40	Ser	Lys	gag Glu	Lys	Thr	ser	Arg	Arg	Arg	Phe	Gln	aga Arg	Ile	Glu	aag Lys	Gly	96
				20	•				25					30			
	gtc Val	rys Lys	ttc Phe	aac Asn	act Thr	ctg Leu	aaa Lys	ctt Leu	gtg Val	ttg Leu	att Ile	tgt Cys	ata Ile	atg Met	ctt Leu	gga Gly	144
45			35					40					45			•	
	gct Ala	ttg Leu	ttc Phe	acg Thr	atc Ile	tac Tyr	cgt Arg	ttt Phe	cgt Arg	tat Tyr	cca Pro	ccg Pro	cta Leu	caa Gln	att Ile	cct Pro	192
50	_	50					55			_		60					
			cca Pro													gct Ala	240
	65					70	 ,				75		3	•.	×.	80	
55	aca	gct	gag Glu	atc	aac	tgg	aac	cat	atg	tca	aat	ctt	gtt	gag	aag	cac	288
	THE	at C	GT.	**	85	· · ·	MOH	HTR	1766	90	waii	TAIT	∧ ct T	GIU	ьуs 95	ura	•
60	gta	ttt	ggt	aga	agc	gag	tat	caa	gga	att	ggt	ctt	ata	aat	ctt	aac	336
6 <u>0</u>	ÀΨŤ	₽Ωė.	Gly .	Arg 100	ser	ÃТЛ	TYT		105	TT0	стĀ	ren		ASD 110			

	gat Asp	aac Asn	gag Glu 115	TTe	gat Asp	cga Arg	ttc Phe	aag Lys 120	gag Glu	gta Val	ace Thr	. rAs	Ser 125	Asr	tgt Cys	gat Asp	384
5	cat His	gta Val 130	gct Ala	ttg Leu	cat His	cta Leu	gat Asp 135	tat Tyr	gct Ala	gca Ala	aag Lys	aac Asn 140	ata Ile	aca Thr	tgg T r p	gaa Glu	432
10	tet Ser 145	Leu	tac Tyr	ccg	gaa Glu	tgg Trp 150	att Ile	gat Asp	gaa Glu	gtt Val	gaa Glu 155	gaa Glu	ttc Phe	gaa Glu	gtc Val	Pro 160.	480
15	act Thr	tgt Cys	ect Pro	t¢t Ser	ctg Leu 165	cct Pro	ttg Leu	att Ile	caa Gln	att Ile 170	cct Pro	ggc	aag Lys	cct Pro	cgg Arg 175	att Ile	528
20	gat Asp	ctt Leu	gta Val	att Ile 180	gcc Ala	aag Lys	ctt Leu	pro	tgt Cys 185	gat Asp	aaa Lys	tca Ser	gga Gly	aaa Lys 190	tgg Trp	tct Ser	576
	aga Arg	gat Asp	gtg Val 195	gct Ala	cgc Arg	ttg Leu	cat His	tta Leu 200	caa Gln	ctt Leu	gca Ala	gca Ala	gct Ala 205	cga Arg	gtg Val	gcg Ala	624
25	gct Ala	tct Ser 210	tct Ser	aaa Lys	gga Gly	ctt Leu	cat His 215	aat Asn	gtt Val	cat His	gtg Val	att Ile 220	ttg Leu	gta Val	tct Ser	gat Asp	672
30	tgc Cys 225	ttt Phe	Pro	ata Ile	ecg Pro	aat Asn 230	ctt Leu	ttt Phe	acg Thr	Gly ggt	caa Gln 235	gaa Glu	ctt Leu	gtt Val	gcc Ala	cgt Arg 240	720
35	caa Gln	Gly	aac Asn	ata Ile	tgg Trp 245	ctg Leu	tat Tyr	aag Lys	cct Pro	aat Asn 250	ctt Leu	cac His	Glņ cag	cťa Leu	aga Arg 255	caa Gln	· 768
40	aag Lys	tta Leu	Gln	ctt Leu 260	cct Pro	gtt Val	ggt Gly	toc Ser	tgt Cys 265	gaa Glu	ctt Leu	tct Ser	Val	cct Pro 270	ctt Leu	çaa Gln	816
45	gct Ala	Lys .	gat Asp 275	aat Asn	ttc Phe	tac Tyr	ser	gca Ala 280	ggt Gly	gca Ala	aag Lys	Lys	gaa Glu 285	gct Ala	tac Tyr	gcg	854
	act Thr	atc Ile 290	ttg Leu	çat His	tct Ser	Ala	caa Gln 295	ttt Phe	tat Tyr	gtc Val	tgt Cys	gga Gly 300	gcc Ala	att Ile	gca Ala	gct Ala	912
50	gca Ala 305	cag Gln	agc Ser	att Ile	Arg	atg Met 310	tca Ser	gly ggc	tct Ser	Thr	cgt Ar g 315	gat Asp	ctg Leu	gtc V al	ata Ile	ctt Leu 320	960
55	gtt Val			Thr					His					Val			1008
60	gga Gly		Lys					Gln					Pro				105 6
	cca	aat	gcc	tac	aac	gaa	tg g	aac	tac	agç	aag	ttt	cgt	ctt	tgg	caa	1104

	23	
	Pro Asn Ala Tyr Asn Glu Trp Asn Tyr Ser Lys Phe Arg Leu Trp Gln 355 360 365	
:	ctg act gaa tac agt aag atc atc ttc atc gat gca gac atg ctt atc 1152 Leu Thr Glu Tyr Ser Lys Ile Ile Phe Ile Asp Ala Asp Met Leu Ile 370 375 380	
10	390 395 400	
15	•=•	
20	tct aat tca aca ttc cag tta cta atg gat aac att aat gaa gtt gtg 1296 Ser Asn Ser Thr Phe Gln Leu Leu Met Asp Asn Ile Asn Glu Val Val 420 425 430	
20	tet tac aac gga gga gac caa ggt tac ett aac gag ata tte aca tgg 1344 Ser Tyr Asn Gly Gly Asp Gln Gly Tyr Leu Asn Glu Ile Phe Thr Trp 435 440 445	
25	tgg cat cgg att cca aaa cac atg aat ttc ttg aag cat ttc tgg gaa 1392 Trp His Arg Ile Pro Lys His Met Asn Phe Leu Lys His Phe Trp Glu 450 455 460	
30	gga gac gaa cot gag att aaa aaa atg aag acg agt ota ttt gga got 1440 Gly Asp Glu Pro Glu Ile Lys Lys Met Lys Thr Ser Leu Phe Gly Alá 470 475 ,480	
35	gat cct ccg atc cta tac gtt ctt cat tac cta ggt tat aac aaa ccc 1488 Asp Pro Pro Ile Leu Tyr Val Leu His Tyr Leu Gly Tyr Asn Lys Pro 485 490 495	
40	tgg tta tgc ttc aga gac tat gac tgc aat tgg aat gtc gat att ttc 1536 Trp Leu Cys Phe Arg Asp Tyr Asp Cys Asn Trp Asn Val Asp Ile Phe 500 505 510	
40	cag gaa ttt gct agt gac gag gct cat aaa acc tgg tgg aga gtg cac 1584 Gln Glu Phe Ala Ser Asp Glu Ala His Lys Thr Trp Trp Arg Val His 515 520 525	
45	gac gca atg cct gaa aac ttg cat aag ttc tgt cta cta aga tcg aaa 1632 Asp Ala Met Pro Glu Asn Leu His Lys Phe Cys Leu Leu Arg Ser Lys 530 540	
50	cag aag gcg caa ctt gaa tgg gat agg aga caa gca gag aaa ggg aac 1680 Gln Lys Ala Gln Leu Glu Trp Asp Arg Arg Gln Ala Glu Lys Gly Asn 555 560	
55	tac aaa gat gga cat tgg aag ata aag atc aaa gac aag aga ctt aag 1728 Tyr Lys Asp Gly His Trp Lys Ile Lys Ile Lys Asp Lys Arg Leu Lys 565 570 575	
	act tgt ttc gaa gat ttc tgc ttt tgg gag agt atg ctt tgg cat tgg 1776 Thr Cys Phe Glu Asp Phe Cys Phe Trp Glu Ser Met Leu Trp His Trp 585 590	
60 	ggt gag acg aac tot acc aac aat tot toc acc acc act toa toa 1824	
	Gly Glu Thr Asn Ser Thr Asn Asn Ser Ser Thr Thr Thr Thr Ser Ser	

ecg ccg cat aaa acc get ete eet tee etg tga Pro Pro His Lys Thr Ala Leu Pro Ser Leu <210> 12 <211> 618 <212> PRT <213> Arabidopsis thaliana Met Ile Pro Ser Ser Ser Pro Met Glu Ser Arg His Arg Leu Ser Phe Ser Lys Glu Lys Thr Ser Arg Arg Arg Phe Gln Arg Ile Glu Lys Gly Val Lys Phe Asn Thr Leu Lys Leu Val Leu Ile Cys Ile Met Leu Gly Ala Leu Phe Thr Ile Tyr Arg Phe Arg Tyr Pro Pro Leu Gln Ile Pro Glu Ile Pro Thr Ser Phe Gly Leu Thr Thr Asp Pro Arg Tyr Val Ala Thr Ala Glu Ile Asn Trp Asn His Met Ser Asn Leu Val Glu Lys His Val Phe Gly Arg Ser Glu Tyr Gln Gly Ile Gly Leu Ile Asn Leu Asn Asp Asn Glu Ile Asp Arg Phe Lys Glu Val Thr Lys Ser Asp Cys Asp His Val Ala Leu His Leu Asp Tyr Ala Ala Lys Asn Ile Thr Trp Glu Ser Leu Tyr Pro Glu Trp Ile Asp Glu Val Glu Glu Phe Glu Val Pro Thr Cys Pro Ser Leu Pro Leu Ile Gln Ile Pro Gly Lys Pro Arg Ile Asp Leu Val Ile Ala Lys Leu Pro Cys Asp Lys Ser Gly Lys Trp Ser Arg Asp Val Ala Arg Leu His Leu Gln Leu Ala Ala Ala Arg Val Ala Ala Ser Ser Lys Gly Leu His Asn Val His Val Ile Leu Val Ser Asp Cys Phe Pro Ile Pro Asn Leu Phe Thr Gly Gln Glu Leu Val Ala Arg Gln Gly Asn Ile Trp Leu Tyr Lys Pro Asn Leu His Gln Leu Arg Gln Lys Leu Gln Leu Fro Val Gly Ser Cys Glu Leu Ser Val Pro Leu Gln Ala Lys Asp Asn Phe Tyr Ser Ala Gly Ala Lys Lys Glu Ala Tyr Ala Thr Ile Leu His Ser Ala Gln Phe Tyr Val Cys Gly Ala Ile Ala Ala Ala Gln Ser Ile Arg Met Ser Gly Ser Thr Arg Asp Leu Val Ile Leu Val Asp Glu Thr Ile Ser Glu Tyr His Lys Ser Gly Leu Val Ala Ala Gly Trp Lys Ile Gln Met Phe Gln Arg Ile Arg Asn Pro Asn Ala Val Pro Asn Ala Tyr Asn Glu Trp Asn Tyr Ser Lys Phe Arg Leu Trp Gln Leu Thr Glu Tyr Ser Lys Ile Ile Phe Ile Asp Ala Asp Met Leu Ile

										25							
	Leu 385		Asn	Ile	Asp	Phe 390	Leu	Phe	Glu	Phe	Pro 395		Ile	Ser	Ala	Thr 400	
	Gly	Asn	Asn	Ala	Thr 405		Phe	Asn	Ser	Gly 410	Leu		Val	Val		Pro	
5	Ser	Asn	Ser	Thr 420	Phe	Gln	Leu	Leu	Met 425			Ile	Asn		415 Val	Val	
	Ser	Tyr	Asn 435		Gly	Asp	Gln	Gly 440		Leu	Asn	Glu	Ile 445	Phe	Thr	Trp	
10	Trp	His 450	-	Ile	Pro	гàв	His 455		Asn	Phe	Leu	Lys 460		Phe	Trp	Glu	
	Gly 465	Asp	Glu	Pro	Glu	Ile 470		Lys	Met	Lys			Leu	Phe	Gly		
			Pro	Ile	Leu 485		Val	Leu	His	Tyr 490	475 Leu	Gly	Tyr	Asn		480 Pro	
15	Trp	Leu	Суs	Phe 500	Arg	Asp	Tyr	Asp	Cys 505		Trp	Asn	Val	Asp 510	495 Ile	Phe	
	Gln	Glu	Phe 515		Ser	Asp	Glu	Ala 520		Lys	Thr	Trp	Trp 525	Arg	Val	.His	
20	ÿaþ	Ala 530		Pro	Glu	Asn	Leu 535		Lys	Phe	Cys	Leu 540	Leu	Arg	Ser	Lys	
	Gln 545		Ala	Gln	Leu	Glu 550		Ąsp	Arg	Arg	Gln 555		Glu	Lys	Gly		
		Lys	Aap	Gly	His 565		Lys	Ile	Lys	Ile 570		Asp	Lys	Arg		560 Lys	
25	Thr	CĂe	Phe	Glu 580	Asp	Phe	Cys	Phe	Trp 585		Ser	Met	Leu	T <u>rp</u> 590	575 His	Trp ,	
	Gly	.Glu	Thr 595		Ser	Thr	Asn	Asn 600		Ser	Thr	Thr	Thr 605		Ser	Ser	
30	Pro	Pro 610		Lys	Thir	Ala	Leu 615		Ser	Leu			005	. ,	٠		
																·	
35)> 13 L> 21															
		2> DN 3> AI		iagol	s th	alia	na		•								
	<213> Arabidopsis thaliana <220>																
40		l> CI 2> (1		1980)	•											
	<400	> 13			.•												
45	atg Met	gca Ala	aac Asn	tct Ser	Pro CCC	gct Ala	gct Ala	cct Pro	gca Ala	ccc Pro	acc Thr	acc Thr	aca Thr	acc Thr	ggt Gly	ggt Gly	48
	1				5					10					15		
					cg¢ Arg												96
50	2	•		20					25			••		30	-,-	=	
					aat Asn												144
55			35					40			5		45			•	
					ata Ile												192
	0	50	- 24-AB		_,-		55	um aderge				6 0				~, ~	
60 ·					aag Lys												240
•	65 65	τλa	THE	TILL	nya	70	⊕rπ		AGT	пåя	75	Tien	TEN	THE	776	\$0 Per	

5	ctc Leu	tct Ser	gcc Ala	act	ctc Leu 85	ttc Phe	acc Thr	att Ile	atç Ile	tat Tyr 90	tct Ser	cct Pro	gaa Glu	gct Ala	tat Tyr 95	cat His	288
	cat His	tct Ser	ctt Leu	tcc Ser 100	cac His	tça Ser	tct Se r	tct ser	cga Arg 105	tgg Trp	ata Ile	tgg Trp	aga Arg	aga Arg 110	caa Gln	gat Asp	336
10	cca Pro	cgt Arg	tac Tyr 115	ttc Phe	tcg Ser	gat Asp	ctg Leu	gat Asp 120	ata Ile	aac Asn	tgg Trp	gac Asp	gat Asp 125	gtg Val	act Thr	aaa Lys	384
15	acc Thr	ctt Leu 130	gag Glu	aac Asn	atc Ile	gaa Glu	gaa Glu 135	Gly	cgt Arg	acg Thr	atc Ile	ggt Gly 140	gtc Val	ttg Leu	aat Asn	ttt Phe	432
20	gat Asp 145	tcg Ser	aac Asn	gag Glu	atc Ile	caa Gln 150	cga Arg	tgg Trp	aga	gaa Glu	gta Val 155	tcc Ser	aag Lys	agc Ser	aag Lys	gac Asp 160	480
25	aat Asn	ejå åaa	gat Asp	gaa Glu	gaa Glu 165	aaa Lys	gtt Val	gtt Val	gta Val	ttg Leu 170	aat Asn	cta Leu	gat Asp	tac Tyr	gca Ala 175	gac Asp	528
						gac Asp									Glu		576
30	caa Gln	gaa Glu	aca Thr 195	gag Glu	gtc Val·	cct Pro	gtt Val	tgt Cys 200	cct Pro	aat Asn	atc Tle	ccg Pro	aac Asn 205	att Ile	Lys	gta Val	624
35						gat Asp		Ile									672
40	gaa Glu 225					aga Arg 230											720
45	gct Ala	gca Ala	act Thr	gtg Val	gcg Ala 245	gct Ala	tcg ser	gcc Ala	aaa Lys	999 Gly 250	ttt Phe	ttc Phe	agg Arg	gga Gly.	cat His 255	gtg Val	768
						tgc Cys											816
50						aga Arg											864
55						aag Lys											912
60	tct Ser 305	ctt Leu	cċt Pro	ctt Leu	Gly	atc Ile 310	caa Gln	gat Asp	agg Arg	cca Pro	ago Ser 315	tta Leu	Gly gga	aac Asn	cct Pro	aaa Lys 320	960
·	aga	gaa	gct	tac	gça	aca	att	ctt	çac	tca	gct	cac	gtt	tac	gtċ	tgc	1008

27

	Arg Glu Ala Tyr Ala Thr Ile Leu His Ser Ala His Val Tyr Val Cys	
	325 330 335	
5	ggt gca atc gcc gcg gct cag agc ata aga cag tct ggt tcg acg aga Gly Ala Ile Ala Ala Gln Ser Ile Arg Gln Ser Gly Ser Thr Arg 340 345 350	1056
10	355 360 Asn Ile Ser Gly Tyr His Arg Ser	1104
15	375 380	1152
20	aac cct aag gca gag aaa gat gct tac aac gaa tgg aac tac agc aag Asn Pro Lys Ala Glu Lys Asp Ala Tyr Asn Glu Trp Asn Tyr Ser Lys 390 395	1200
05	405 410 415	1248
25	420 425 Phe Leu Phe Ser Met Pro	1296
30	435 440 / Ash Ser Gly Val	1344
35	450 455 460	1392
40	465 470 475 Gly Asp Gln Gly Tyr Leu Asn	L440
45	485 490 Lys His Met Asn Phe Leu	488
45	500 S05 Asp Ala Lys Arg Lys Thr	536
50	gag ctt ttt gga gca gag cct cct gtt ctt tat gtt ctt cat tac ctt 19 Glu Leu Phe Gly Ala Glu Pro Pro Val Leu Tyr Val Leu His Tyr Leu 515 520 525	584
55	ggg atg aag ccg tgg tta tgt tac cgt gac tac gac tgt aac ttc aac 16 Gly Met Lys Pro Trp Leu Cys Tyr Arg Asp Tyr Asp Cys Asn Phe Asn 530 535 540	532
60	tcc gac ata ttc gtt gag ttt gct acc gat atc gct cat cga aaa tgg Ser Asp Ile Phe Val Glu Phe Ala Thr Asp Ile Ala His Arg Lys Trp 550 555 560	
	tgg atg gtc cac gac gcc atg cca cag gaa-ctt cac-caa ttc tgt tac 17 Trp Met Val His Asp Ala Met Pro Gln Glu Leu His Gln Phe Cys Tyr	728

										20				•			
					565					570					575		
5	ttg Leu	cga Arg	tcc Ser	aag Lys 580	caa Gln	aag Lys	gca Ala	cag Gln	ctg Leu 585	gaa Glu	tat Tyr	gat Asp	Arg	cgg Arg 590	caa Gln	gca Ala	1776
			gca Ala 595														1824
10	ccg Pro	aga Arg 610	ttc Phe	aaa Lys	att Ile	tgc Cys	atc Ile 615	Asp	aaa Lys	tta Leu	tgt Cys	aat Asn 620	tgg Trp	aaa Lys	agt Ser	atg Met	1872
15	ctg Leu 625	egg Cgg	cat His	tgg Trp	ggc Gly	gaa Glu 630	tca Ser	aat Asn	tgg Trp	act Thr	gac Asp 635	tac Tyr	gag Glu	tct Ser	ttt Phe	gtt Val 640	1920
20	ccc Pro	acc Thr	cca Pro	cca Pro	gcc Ala 645	att Ile	acc Thr	gta Val	yab gac	egg Arg 650	aga Arg	tca Ser	tca Ser	ctt Leu	ecc Pro 655	Gly	1968
25		aac Asn		tga 660	¢gca	ıataa	att a	itaca	tact	t at	taat	ggat	: ttc	atga	agtt		2020
	tttt	ggtt	tg a	atte	ıttgo	t go	gaga	ittag	gte	gaata	ıtca	gttg	ıtgta	ac t	atat	ctttt	2080
			itt t						•							,	2130
30		,	,	.5		J .						-					
35	<211 <212)> 14 L> 6! 2> PI 3> A)	59	lopsi	is t ł	palia	ana					·		1.			٠.
	<400)> 14	<u>.</u>											mla es	~ 3		
	7.		Asn		5		•			10					15		
40	Asp	Ser	Arg	Arg 20	Arg	Leu	Ser	Ala	Ser 25	Ile	Glu	Ala	Ile	Сув 30	PAS	Arg	
	Arg	Phe	Arg 35		Asn	Ser	ГЛЗ	Gly 40	Gly	Gly	Arg	Ser	Asp	Met	Val	Tàs	
45			Asn	Ile	Ile	Asn	Phe 55		Thr	Gln	Asp	Fàs		Ser	Ser	Cys	
45	Cys	Сув Сув	Phe	Thr	Lys			Ile	Val	Lys	Leu 75		Leu	Phe	Ile	B0 Leu	
	65 Leu	Ser	Ala	Thr	Leu	70 Phe	Thr	Ile	Ile			Pro	Glu	Ala	Tyr	His	
50	His	Ser	·Leu	_	85 His	Ser	Ser	Ser			Ile	Trp	Arg	Arg 110	95 Gln		*
	Pro	Arg		100 Phe	ser	Asp	Leu	qaA	105 Ile		Trp	Asp	Asp 125			Lys	•
	Thr			Asp	Ile	Glu			Arg	Thr	Ile	Gly 140		Leu	Asn	Phe	
55			Asn	Glu	Ile			Trp	Arg	Glu	Val	ser	Lys	Ser	Lys	Asp 160	
•	145 Asn	Gly	Asp	Glu			Val	Val	Val	Leu	155 Asn		Asp	Tyr	Ala 175	Asp	-
60	Lys	Asp	Val			Asp	Ala	Leu	Tyr	170 Pro		Trp	Ile	Asp	Glu	Glu	
				1.80)				185	i				Tan	,	val	
			·· · · ·														

										25	,					
	_		19					20	0				20	5	••	
	Pr	O TI 21	IT AX	g Ar	g Let	ı Ası	p Let	ı Ile	e Va	1 va	l Lys	Le	u Pr	o Cy	B Az	a L
5				n Tr												
				r Va	44.	,				251	1					s Va
	Ph	e Ph	e Va	1 <i>S</i> ec	r Arg	Cys	Phe	Pro	Ile	Pro	Asp	Lei	ı Phe	Ar	25 7 Cy	5 в Љу
10			u Va	l Se	_				70.	`				~~	_	
				r Arg												
			•				433					200)			
15				Lev												
				Тут						4 4 11						-
				Ala 340					445					2 - 4	The	Ar
20	Asp	Le	ı Val	l Ile	Leu	Val	Asp	Asp 360	Asn	Ile	Ser	Gly	Tyr	350 His	Arg	Şe:
	Gly	Lei	ı Glu	Ala	Ala	Gly	Trp	Gln	Ile	Arg	Thr	Ile	365 Gln	Arg	Ile	Arc
05	Asn	Pro		Ala			375					300				
25						220					3.45					
				Trp	*05					410						_
20				Leu 420					425		•			470		
30	GIA	Ile	Sex 435	Ala	Thr	Gly	Asn	Asn 440	Gly	Thr	Leu	Phe	Asn 445	ser	Gly	Va:
	Met	Val 450	Ile	Glu	Pro	Cys	Asn 455	Сув	Thr	Phe	Gln		Leu	Met	Glu	Hi
35	Ile 465			Ile	Glu	Ser	Tyr	Aşn	Gly	Gly	Asp	460 Gln	Gly	Tyr	Leu	Ası
				Thr		** / U					475					40
				Trp	402					490					4 O.C.	
10				200					505					510		
			272	Gly -				520					525			
•		230		Pro			535					54 D				
45	Ser 545	Asp	Ile	Phe	Val	Glu : 550	Phe :	Ala	Thr	Asp	Ile : 555	Ala	His	Arg	Lys	
	Trp	Met	Val	His			Met :	Pro	Gln	Glu	Leu 1	His	Gln	Phe	Сув	560 Tyx
•	Leu	Arg	Ser	Lys		Lys i	Ala (Gln :	Leu	570 Glu	Tyr i	Asp.	Arg .	Arg	575 Gln	Ala
50				580 Asn					585		•			EQA		
			333	Lys				5 U U					605			
		970			•		315				- 1	520				
55	625	Arg	HIS	Trp ·	Gly (630 61u 8	ser ?	Asn !	Lxb ,		Авр ; 635	l'yr	Glu .	Ser	Phe	Val 640
	Pro	Thr	Pro	Pro .	Ala :	Ile 3	Chr v	/al /	Asp .	Arg :	Arg :	er a	Ser :			Gly
	His	Asn	Leu		645				,	650					655	
60	•										•					

```
<211> 15294
     <212> DNA
     <213> Artificial Sequence
     <220>
     <220>
     <223> Description of Artificial Sequence: vector
10
     <400> 15
     ggccgggagg gttcgagaag ggggggcacc cccttcggc gtgcgcggtc acgcgcacag 60
     ggcgcagccc tggttaaaaa caaggtttat aaatattggt ttaaaagcag gttaaaagac 120
     aggitagegg iggeegaaaa aegggeggaa aeeetigeaa aigeiggati tietgeeigt 180
     ggacagecce teaaatgtea ataggtgege ceetcatetg teageactet geccetcaag 240
15
     tgtcaaggat cgcgcccctc atctgtcagt agtcgcgccc ctcaagtgtc aataccgcag 300
     ggcacttatc cccaggcttg tccacatcat ctgtgggaaa ctcgcgtaaa atcaggcgtt 360
     ttegeegatt tgegaggetg geeageteea egtegeegge egaaategag eetgeecete 420
     atetgteaac geogegeegg gtgagtegge ceetcaagtg teaacgteeg ceeetcatet 480 gteagtgagg geoaagtttt cegegaggta tecacaacge eggeggeege ggtgtetege 540
20
     acacggette gaeggegttt etggegegtt tgeagggeea tagaeggeeg ecageecage 600
     ggcgagggca accagcccgg tgagcgtcgc aaaggcgctc ggtcttgcct tgctcgtcgg 660
     tgatgtactt caccagetee gegaagtege tettettgat ggagegeatg gggaegtget 720
     tggcaatcac gcgcaccccc cggccgtttt agcggctaaa aaagtcatgg ctctgccctc 780
     gggcggacca cgcccatcat gaccttgcca agctcgtcct gcttctcttc gatcttcgcc 840
25
     agcagggega ggatcgtgge atcaccgaac cgcgecgtge gegggtegte ggtgagecag 900
     agtttcagca ggccgccag gcggcccagg tcgccattga tgcgggccag ctcgcggacg 960
     tgetcatagt ccacgaegce egtgattttg tagecetgge egaeggeeag caggtaggee 1020
     qacaggetea tgeeggeege egeegeettt teeteaateg etettegtte gtetggaagg 1080
     cagtacacet tgataggtgg getgeeette etggttgget tggttteate agecateege 1140
30
     ttgccctcat ctgttacgcc ggcggtagcc ggccagcctc gcagagcagg attcccgttg 1200
     agcaccgcca ggtgcgaata agggacagtg aagaaggaac acccgctcgc gggtgggcct 1260
     acttcaccta teetgeeegg etgacgeegt tggatacace aaggaaagte tacacgaace 1320
     ctttggcaaa atcctgtata tcgtgcgaaa aaggatggat ataccgaaaa aatcgctata 1380
     atgacecega ageagggtta tgcageggaa aagegeeacg etteecgaag ggagaaagge 1440
35
     ggaCaggtat ccggtaagcg gCagggtcgg aacaggagag cgcacgaggg agcttccagg 1500
     gggaaacgcc tggtatettt atagteetgt egggtttege eacetetgae ttgagegteg 1560
     attittgtga tgctcgtcag gggggcggag cctatggaaa aacgccagca acgcggcctt 1620
     tttacggttc ctggcctttt gctggccttt tgctcacatg ttctttcctg cgttatcccc 1680
     tgattetgtg gataaccgta ttaccgcctt tgagtgagct gataccgctc gccgcagccg 1740 aacgaccgag cgcagcgagt cagtgagcga ggaagcggaa gagcgccaga aggccgccag 1800
40
     agaggccgag cgcggccgtg aggcttggac gctagggcag ggcatgaaaa agcccgtagc 1860
     gggetgetae gggegtetga egeggtggaa agggggaggg gatgttgtet acatggetet 1920
     gctgtagtga gtgggttgcg Ctccggcagc ggtcctgatc aatcgtcacc ctttctcggt 1980
     ccttcaacgt tcctgacaac gagcctcctt ttcgccaatc catcgacaat caccgcgagt 2040
45
     ccctgctcga acgctgcgtc cggaccggct tcgtcgaagg cgtctatcgc ggcccgcaac 2100
     ageggegaga geggageetg ticaacggtg eegeegeget egeeggeate getgtegeeg 2160
     gootgotoot caagcacggo cocaacagtg aagtagotga tigtoatcag cgcattgacg 2220
     gcgtccccgg ccgaaaaacc cgcctcgcag aggaagcgaa gctgcgcgtc ggccgtttcc 2280
     atctgoggtg cgcccggtcg cgtgccggca tggatgcgcg cgccatcgcg gtaggcgagc 2340
50
     agegeetgee tgaagetgeg ggeatteeeg atcagaaatg agegeeagte gtegtegget 2400
     ctcggcaccg aatgcgtatg attctccgcc agcatggctt cggccagtgc gtcgagcagc 2460
     geocgettgt teetgaagtg coagtaaage geoggetget gaaececeaa cegtteegee 2520
     agtttgcgtg tcgtcagacc gtctacgocg acetcgttca acaggtccag ggcggcacgg 2580
     atcactgtat teggetgeaa etitgteatg ettgacactt tatcactgat aaacataata 2640
55
     tgtccaccaa cttatcagtg ataaagaatc cgcgcgttca atcggaccag cggaggctgg 2700
     tooggagged agacgtgaaa eccaacatac coetgategt aattetgage actgtegege 2760
    togacgotgt oggoatogge otgattatge oggtgetgee gggeoteetg ogegatotgg 2820
     ttcactcgaa cgacgtcacc gcccactatg gcattetgct ggcgctgtat gcgttggtgc 2880
     aatttgcctg cgcacctgtg ctgggcgcgc tgtcggatcg tttcgggcgg cggccaatct 2940
60
     tgetegtete getggeegge gecaagatet ggggaaceet gtggttggea tgeacataca 3000
     aatggacqaa cggataaacc ttttcacgcc cttttaaata tccgattatt ctaataaacg 3060
     ctettttete ttaggtttae cegecaatat ateetgteaa acaetgatag tttaaactga 3120
```

	agacagaaa	casassas					
	-povopp	. Coccade	g atcatgaged	y gagaattaag	ggagtcacgi	: tatgacccc	3180
	300300505	cyyyacaag	cgttttacgt	ttggaactga	L cagaaccgca	acgttgaagg	3240
	agctactcac	ccarcras	ttcccgatct	: agtaacatag	, atgacaccgo	gcgcgataat	3300
· 5	ctatectage	reacacace	tattttgttt	: tctatcgcgt	attaaatota	taattoroo	3360
3	ACCCCAACCA	raaaaaccc	tctcatazat	aacgtcatgo	attacatott	aattattacs	3420
	tgettaaegt	aartcaacag	asattatatg	r ataatcatcg	caaqaccaac	Bacaccatte	3400
	aatcttaaga	aactttatto	ccaaatgttt	gaacgatcgg	qqaaattcga	acceggatt.	3540
	atcatgttac	aaacttttt	getgtgagea	gtagatatoo	8886000000	Coccygrace	3540
40	atctgataga	. taaagcacat	agettgggtt agettgggtt	tacacactet	andoceggag	gacctaaagt	3600.
10	atgcaagcaa	taatgccact	gatggcctca	atogetros		guicacagec	3660
	aatectactt	tcatgctgga	gagcaagggt	accateent	carrygecaa	ggttctcaag	3720
	actatgccaa	ttgggaggtt	cttcgtttcc	ttatttage	grgggarage	aggctgttca	3780
	agtataactt	tgacggattt	cgatttgatg	. Crarrecta	cccgaggcgg	tggctagaag	3840
15							
20							
20							
25							
	atgatgagaa	gaaggttgtt	gtgtttgaac	at cataggada	acagacagta	agcagcatgg	4620
	acccaaataa	Cacatacgaa	gtgtttgaac	gragical co	ggcacccgca	ttcaacttcc	4680
30			33 WM FILE C4	VEULLCCAGA	227222477	200000000	
25							
35							
			+3C4G4GFGG	LUUCCOORTA			
	— — — — — — — — — — — — — — — — — — —	J-3-3-44-4	~~~~~~~~~	actiactact	Marrar com	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~ ~~
4.0			-944	CHUMEONARE	TOMOTHE WATE	~~~~~~~	
40 ⁻							
	tgcatatggc	aattgctgat	aaatggattg	agttgctcaa	eacradictic	gactategge	5520
	gagtgggtga	tattetteat	acactgacas	atacaacaa	agarcadagar.	gaggartgga	5580
	gagtgggtga acgctgaaag	tcatgatcaa	actetacted	acagaaga.g	groggaaaag	cgcgtttcat	5640
	acgetgaaag	gratgatest	stantates	grantadae	cacagcatte	tggctgatgg	5700
45		3 444 3 4 6 6 6 6	acaderer	ACADAPPETE	22724~~~		
	22-442444	3 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	actauacted	CARCTATOO	2 P P D 7 7 7 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8		
		222		CLGAGLGGAY	アクストラヤハハハト	~~~~~~~	
		-24-33-4-4	3 raar reced	gaaaccaatt	CROTTATOSE	2221772777	FOAR
	2272460724	VUUSSISAMAL	<i>ucagaacace</i>	TRACOSTRACAC	*********		
50	323craraca	gracectegaa	dataaatato	agtttatgag	tteseeses	~~~++ ~~+~+	
D U		- DEDEENDE	ayyacyacta	tatttoaaaa	おかかるおおとととっ	~+++++	C 7 C C
		- cyyacaaaa	auctatecan	actatement	2000taanta		
	re-readile	-ac-radac	LCadaccatc	cactttttdd	tance ename	~~~~++~~+~	C240
		~~~~~~~~	daddag	ggtacgates	たぐのたっったっつと	+~~~+~~	C200
	tgtatgcacc	tagtagaaca	gcagtggtct	atocactaot	202000000	#22#22#22#	6300
<b>55</b>	aagaagaagt	agcagtagta	gaagaagtag	tagtagaaga	agacaaagaa	gaagaagaag	5360
	cgcgttgaaa	gatttgaagg	Ctacatemet	zeegaaya	and and an area	eacttgtgat	6420
	attogaggag	atosotaasa	#ttacacagec	ctagagtega	cctgcatgaa	atcagaaata	6480
	arryyayyay	aryayraada	grraccactt	attasactat .	atazatazat	decheninen	ESAD
	gaggaggugu	ccacccact	Lgcagcagge	ttcagtgaca	Catatossas	asstaarnar .	EEDO
60	cygoratect	ccaycayaay	gcaactgtgg	acactotatt .	atagggaaat -	actestesse	EEE0
60	agtattatgg	geceletet	cyccgattca	caactaaaat	teaactteee	anttansata	672A
	ggcecgcecg	gerengegee	ccagcateta	aaaaactaaa .	ペクタンハナハルカナー・	adtonocato	C.70A
	ccacttgaca	ttcctatgtc	tcgtgttaat	taaattatta	ttatagtaat	taaaaataat	6840
					<b>3</b>		<del>-</del>

atctaggtac tggtactggt coctcotco actagaatat tagttacttc coccttagct 6900 ttgtattcca aattactgta aatatattt ctaatttttt acgacaaaca agatctaatt 6960 atgaatgcac aattetaaag gttgaataca ttactttact tggtttagcc tatattaagt 7020 tgcattttag tattaagatt gagatgcatg gttctattac aaaattgata cactgctaaa 7080 ggaaggatgg ttaaamacaa cattcaatgt ttgttacatt tcttcctatt gtatttttt 7140 tttaacgago ttoccgtata catcataaca tgtctccgtt ccacttggca ggaaaaaaaa 7200 atacccaaac aggaagatac tgtcaagtat atccatagat gaggacttaa tggataggct 7260 tttcgaggat tcataaatca taatatctgg cggaggagtc aattaaatac ttgtggtttg 7320 tatootgatt actoogtosa cagoossata gassagtttg assagagaga saggatttgg 7380 10 tacaagatac tgttgcattt gttaagtaat gaacaaaacg gagtaacata attttctatc 7440 tegttaaage tteaegetge egeaageaet eagggegeaa gggetgetaa ggaageggaa 7500 cacgtagaaa gccagtccgc agaaacggtg ctgaccccgg atgaatgtca gctactgggc 7560 tatetggaca agggaaaag caagegeaaa gagaaageag gtagettgea gtgggettae 7620 atggcgatag ctagactggg cggttttatg gacagcaagc gaaccggaat tgccagctgg 7680 ggcgccctct ggtaaggttg ggaagccctg caaagtaaac tggatggctt tcttgccgcc 7740 15 aaggatotga tggogcaggg gatcaagato atgagoggag aattaaggga gtcacgttat 7800 gacccccgcc gatgacgcgg gacaagccgt tttacgtttg gaactgacag aaccgcaacg 7860 ttgaaggage cacteageeg egggtttetg gagtttaatg agetaageae ataegteaga 7920 aaccattatt gcgcgttcaa aagtcgccta aggtcactat cagctagcaa atatttcttg 7980 20 tcaaaaatgc tccactgacg ttccataaat tcccctcggt atccaattag agtctcatat 8040 tcactotcaa tccagatctc gactctagtc gagggcccat gggagcttgg attgaacaag 8100 atggattgca cgcaggttct ccggccgctt gggtggagag gctattcggc tatgactggg 8160 cacaacagac aateggetge tetgatgeeg cegtgtteeg getgteageg caggggegee 8220 cggttetttt tgtcaagace gacetgteeg gtgccetgaa tgaactgeag gacgaggeag 8280 25 egeggetate giggetggee acgaeggges treettgege agetgtgete gaegttgtea 8340 ctgaagcggg aagggactgg ctgctattgg gcgaagtgcc ggggcaggat ctcctgtcat 8400 ctcaccttgc tcctgccgag aaagtatcca tcatggctga tgcaatgcgg cggctgcata 8460 egettgatee ggetacetge ecattegace accaagegaa acategeate gagegageae 8520 gtactcggat ggaagccggt cttgtcgatc aggatgatct ggacgaagag'catcaggggc 8580 30 tegegocage egaactgite gecaggetea aggegocat gecegaegge gaggateteg 8640 tegtgaccca tggcgatgcc tgcttgccga atatcatggt ggaaaatggc cgcttttctg 8700 gattcatcga ctgtggccgg ctgggtgtgg cggaccgcta tcaggacata gcgttggcta 8760 cccqtgatat tgctgaagag cttggcggcg aatgggctga ccgcttcctc gtgctttacg 8820 gtategoege tecegatteg cagegeateg cettetateg cettettgae gagttettet 8880 gagogggaco caagotagot togaoggato cocogatgag otaagotago tatatoatoa 8940 35 atttatgtat tacacataat ategeactca gtettteate taeggeaatg taccagetga 9000 tataatcagt tattgaasta tttctgaatt taaacttgca tcaataaatt tatgtttttg 9060 cttggactat aatacctgac tigitattit atcaataaat atttaaacta tattictitic 9120 aagatgggaa ttaattcact ggccgtcgtt ttacaacgtc gtgactggga aaaccctggc 9180 40 gttacccaac traategect tgcagcacat coccetttog ccagetggcg taatagegaa 9240 gaggeeegea eegategeee tteeeaaeag ttgegeagee tgaatggege eegeteettt 9300 cgctttette eetteette tegecaegtt egeeggettt eeeegteaag etetaaateg 9360 ggggeteett ttagggttee gatttagtge tttaeggeae etegacecca aaaaaettga 9420 tttgggtgat ggttcacgta gtgggccatc gccctgatag acggtttttc gccctttgac 9480 gttggagtcc acgttcttta atagtggact cttgttccaa actggaacaa cactcaaccc 9540 45 tatctoggge tattetettg atttataagg gattttgeeg attteggaac caccateaaa 9600 caggattttc gcctgctggg gcaaaccagc gtggaccgct tgctgcaact ctctcagggc 9660 caggeggtga agggeaatea getgttgeee gtetcaetgg tgaaaagaaa aaceacocca 9720 gtacattaaa aacgtcegea atgtgttatt aagttgteta agegteaatt tgtttacace 9780 acaatatate etgecaccag ecagecaaca geteceegae eggeageteg geacaaaate 9840 50 accactcgat acaggcagce catcagtccg ggacggcgtc agcgggagag ccgttgtaag 9900 gcggcagact trgctcatgt taccgatgct attcggaaga acggcaacta agctgccggg 9960 tttgaaacac ggatgatete geggagggta geatgttgat tgtaacgatg acagagegtt 10020 getgeetgtg atcasatate atctecteg cagagatecg aattateage ettettatte 10080 atttctcgct taaccgtgac aggctgtcga tcttgagaac tatgocgaca taataggaaa 10140 55 tegetggata aageegetga ggaagetgag tggegetatt tetttagaag tgaaegttga 10200 cgatatcaac toccetatec attgeteace gaatggtaca ggteggggac cegaagttec 10260 gactgtcggc ctgatgcate cccggctgat cgaccccaga tctagatctg gggctgagaa 10320 ageccagtaa ggaaacaact gtaggttega gtegegagat eeeceggaac caaaggaagt 10380 aggttaaacc cgctccgatc aggccgagcc acgccaggcc gagaacattg gttcctgtag 10440 60 gcatcgggat tggcggatca aacactaaag ctactggaac gagcagaagt cctccggccg 10500 ccagttgcca ggcggtaaag gtgagcagag gcacgggagg ttgccacttg cgggtcagca 10560

	~~~++~~~	<b></b>		<b>-</b> -			
	cggccccga	a cgccatgga	a accgccccc	g ccaggcccg	c tgcqacqcc	g acaggateta	30620
	acaccacac	t tggtgtcaa	c accaacagc	g ccacgcccg	C agttccgca	y acaggateta a atagececca	10660
	ggaccgcca	t caatcgtat	c gggctacct	a gcagagcgg	c agagatoss	atagococca acgaccatca	10740
5	acaactaca	c agcgcctac	o gtogoogog	a ccccgcccg	g Cagggggtad	acgaccatca accgaaataa	10740
9	acascaage	t ccagaatag	c gaaatatta	a gtgcgccga	gatgaagat	y accgaaataa y cgcatccacc	10000
	agacteeeg	t tggaatetg	t cggacgatc	a tcacgagca	a taaaccccc	ggcaacgccc ggcaacgccc	10000
	gcagcagca	t accggcgace	c cctcggcct	gctgttcgg	Ctccaccaa	acgccggaca gegcaacgccc	10220
	gatgcgccti	t gtgagcgtc	ttggggccgi	cctcctqtt	C GBRGSCCGS	acgooggaca agoocaatga	10380
4.0	tetegeegte	c gatgtaggc	CCGARTGCC	a coocatete	7 Caareette	: agcccaatga : gcgaacgcct	11040
10	ccatgggcti	tttctcctcg	toctcotaa	1 CGG8CCCGa	dateteken	gcgaacgcct gctttcttca	11100
	gggccgacaa	a toggatotog	cqqaaatcc	. descated	. carrere	getttettea egtegaatet	11160
	gagccttaat	cacaattgt	aatttaat	ctctatttat	cyclecaage	tagagegege tagagegege	11220
	cgtgcgtccc	gagogatact	Gagcgaages	action of the	- cyycagttcg	tagagegege	11280
	aaatgccagt	aaagcgctgc	ctoctosso	. 4563655	. Acaataccca	cttgttcctg	11340
15	gcqtttqcaa	1 tgcaccaggt		cccagcegga	. actgacccca	caaggcccta cgctgcctcg	11400
	caactettee	i cagactteen	. caccattgat	ceaggegeg	tccaccagge	cgctgcctcg	11460
	tecceacate	, eesseeeege	· cgaceegere	gcgccactto	ttcacgcggg	cgctgcctcg tggaatccga	11520
	atagrogae	, aggeggaagg	receaser	gagcgggtac	ggeteeeggt	tggaatccga gcgagctgaa	11580
	cototactactes	accepteggg	ccarcaaca	cagettgegg	tacttctccc	gcgagctgaa atatgaattt	11640
20	CG CG CAG CGG	regecageaa	acagcacgac	gatttcctcg	tegateaqqa	atatgaattt cctggcaacg	11700
20	ggacgtttt	rrgccacggt	ccaggacgcg	gaagcggtgc	agcagcgaca	cctggcaacg	11760
	graceaseg	caarcaasca	tgaagcccat	cgccgtcgcc	tgtaggcgcg	ccgattccag acaggcattc	11020
	creddetre	gtgtaatacc	ggccattgat	cgaccagccc	aggtectage	acaggcattc aaagctcgta	11000
	gaacgtgaag	gtgatcggct	cgccgatagg	ggtgcgcttc	GCGtactcca	acacctgctg	T1880
05	- CCacaccagt	tcgtcatcgt	cggcccgcag	ctcgacgccg	atateaatae	acacctgctg tcttcacgtc	11940.
25	cttgttgacg	tggaaaatga	ccttgttttq	cagcacetes	Cacaaaattt	tetteacete	12000
	cgtggtgaac	agggcagagc	gggcgtate	gettggcatc	GCE GGGGGCCC	tettetteeg tetceggeea	12060
	cggcgcaata	tcgaacaagg	. aaagctgcat	ttccttcatc	#CCCGCALCG	tgtccggcca tgtgtttcag	12120
	caacgcggcc	tgettggeet	cactascera	ttttaccac	tactaceceg	cggttttcag	12180
	cttcttggtc	greatagtte	ctcacatate	datectcate	rectedeeda	aacetgeege	12240
30	ctcctgttcg	agacgacgcg	aacoctccac	240330046	gaettegeea	aggcaggggg gggcaggggg	12300
	agccagttgc	acqctqtcqc	getegatett	ggcggccgat	aacacaaacs	tcgagccgac tcgagccgac	12360
	ctcqqcqqaa	\$80000000 0	Sometanatha	accadede	cctgcgatgg	tttcggcatc	12480
35	ctoatttoac	Concetages	ggattgecee	gacccacgcc	9999caatgt	gcccttattc	12600
40							
40							
•							
	aaaagacaag	ttcctcttcg	ggcttttccg	tettaaaaa	atcatacage	tegeegtggg 1	13740
4.54							
45							
	gccatagcat	catqtccttt	teceattees	Catcatacet	aacaggeage	taccggctgt 1	3440
50	ccgtcatttt	taaatatagg	ttttcattt	Stranger-	ggtcccctta	taccggctgt I	.3500
	acatteette	cotatettt	2000000000	ctcccaccag	cttatatacc	ttagcaggag 1	.3560
	atatteteat	tttancestt	tottotto	acccccgac	cagttttttc	ccagcaggag 1 aattccggtg 1	3620
55							
5 0			vavaattatu	UULUATORFA	CC330ttaan		
				LLCLGEGRAP	2TC2CCECtc .		2000
		2222-22-44 ·	9	aaucaccacc	arara trans		7000
		-2	33600000000	uccacttae	BCCGCttctc	andeenee l	4040
60							
υU		Bancetrare	CHACLECACA	CCACCCAAAA	AACECSAACA /	~~~	4760
			Caytacata	alcorerer.	777055 6 222		455
	ggctatgtcg	gggctaaatc	gcgccagcgc	tggctgtttt	acocotatos	egaacagtgg 1 eagtctccgg 1	4280
			·		-3-3agu	governing 1	2200

	•			_			
	aagacggttg	ttgcgcacgt	atteggtgaa	cgcactatgg	cgacgctggg	gcgtcttatg	14340
•	agcctgctgt	caccctttga	cgtggtgata	tggatgacgg	atggctggcc	gctgtatgaa	14400
						aattgagegg	
	cataacctga	atctgaggça	gcacctggca	cggctgggac	ggaagtcgct	gtcgttctca	14520
5	aaatcggtgg	agctgcatga	caaagtcatc	gggcattatc	tgaacataaa	acactatcaa	14580
	taagttggag	tcattaccca	attatgatag	aatttacaag	ctataaggtt	attgtcctgg	14640
	gtttcaagca	ttagtccatg	caagttttta	tgctttgccc	attotataga	tatattgata	14700
	agcgcgctgc	ctatgccttg	ccccctgaaa	tccttacata	cggcgatatc	ttctatataa	14760
						cctcatcctc	
10						attetgtasa	
	ggtccaattc	tcgttttcat	acctcggtat	aatcttacct	atcacctcaa	atggttcgct	14940
	gggtttatcg	cacccccgaa	cacgagcacg	gcacccgcga	ccactatgcc	aagaatgccc	15000
	aaggtaaaaa	ttgccggccc	cgccatgaag	tccgtgaatg	ccccgacggc	cgaagtgaag	15060
_	ggcaggccgc	cacccaggcc	gccgccctca	ctgcccggca	cctggtcgct	gaatgtcgat	15120
15	gċcagcacct						
						tggggtgagg	
	ccgttcgcgg	ccgaggggcg	cagcccctgg	ggggatggga	ggcccgcgtt	ageg	15294

Figure 1

Figure 2

Ì	Mother va-	Dm	Fructose %		Sucrose %
	riety	%	of_	Glucose %	of
Variety/line			Dm	of Dm	Dm
Producent		27,8	1,8	2,2	. 3,1
Prevalent		27,1	1,2	1,7	2,7
Dinamo		27,7	0,8	1,7	2,2
Kuras		27,9	1,8	2,2	2,4
AM98-2012	Producent	22,3	3,1	4,0	4,7
AM98-2019	Prevalent	18,4	2,9	4,4	3,8
AM98-2021	Prevalent	17,1	3,1	5,9	3,5
AM99-2002	Dinamo	19,3	2,4	3,8	3,0
AM99-2003	Dinamo	18,8	2,5	5,5	3,2
AM99-2004	Dinamo	11,7	4,0	6,8	2,1
AM00-2040	Kuras	21,0	5,0	6,3	3,5
AM00-2041	Kuras	19,3	5,6	7,1	3,0

Figure 3

3 a) pHS1 for gene-inhibition of StGH1

pHS1

3 b) pHS2 for gene-inhibition of StGH2

pHS2

3 c) pHS3 for over-expression of StGH1

10

pHS3

3 d) pHS4 for over-expression of StGH2

pHS4

Figure 4

Figure 5

Figure 6

Figure 7

Figure 8

Figure 9

pHAbe12A 7756 bp

Enhanced amylose production in plants

Abstract

The invention relates to methods for increasing the amylose content in plants, preferably in potato plants, by expressing a starch biosynthesis enhancing protein. The invention furthermore relates to an expression cassette expressing the polypeptide in potato plants, preferably in the tubers, the transgenic plants expressing the polypeptide and to the use of said transgenic plants for the production of fine chemicals especially other than native starches.

07-MAR-2003 16:59

PCT/EP2004/002096

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

BLACK BORDERS

IMAGE CUT OFF AT TOP, BOTTOM OR SIDES

FADED TEXT OR DRAWING

BLURRED OR ILLEGIBLE TEXT OR DRAWING

SKEWED/SLANTED IMAGES

COLOR OR BLACK AND WHITE PHOTOGRAPHS

GRAY SCALE DOCUMENTS

LINES OR MARKS ON ORIGINAL DOCUMENT

REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

☐ OTHER:

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.