Лекция 3. Дифференциальные уравнения высших порядков

Основные понятия

Общий вид дифференциального уравнения *n*-го порядка

$$F(x, y, y', ..., y^{(n)}) = 0$$

Общий вид дифференциального уравнения п-го порядка, разрешенного относительно старшей производной:

$$y^{(n)} = f(x, y, y', \dots, y^{(n-1)}).$$
(1)

 $\frac{\text{Определение}.}{y^{(n)}} = f(x, y, y', \dots, y^{(n-1)})_{\text{ называются } n \text{ равенств вида}}$ уравнения

$$y(x_0) = y_0, y'(x_0) = y'_0, \dots, y^{(n-1)}(x_0) = y_0^{(n-1)}$$
(2)

, где $x_0, y_0, y_0', \dots, y_0^{(n-1)}$ — заданные числа (*начальные значения*).

Замечание: число начальных условий совпадает с порядком дифференциального уравнения.

Определение. Задача отыскания решений уравнения $y^{(n)} = f(x,y,y',\dots,y^{(n-1)})$, удовлетворяющих заданным начальным условиям, называется *задачей Коши* для этого уравнения.

Теорема 1 (существования и единственности решения задачи Коши для уравнения $y^{(n)} = f(x,y,y',\dots,y^{(n-1)})$). Если функция $f(x,y,y',\dots,y^{(n-1)})$ и ее частные производные $\frac{\partial f}{\partial y}$, $\frac{\partial f}{\partial y'}$, ..., $\frac{\partial f}{\partial y^{(n-1)}}$ непрерывны в некоторой области $D \subset R^{n+1}$, то для любой точки $(x_0,y_0,y_0',\dots,y_0^{(n-1)}) \in D$ задача Коши для дифференциального уравнения $y^{(n)} = f(x,y,y',\dots,y^{(n-1)})$ с заданными начальными условиями (2) имеет и притом единственное решение.

В частности, при
$$n=2$$
 уравнение (1) имеет вид $y'' = f(x, y, y')$.

а начальные условия –

$$y(x_0) = y_0, y'(x_0) = y'_0.$$

Равенство $y(x_0) = y_0$ геометрически означает, что кривая y = y(x) проходит через точку (x_0, y_0) ,

Равенство $y'(x_0) = y_0'$ геометрически означает, что касательная к кривой в точке $(x_0, y(x_0))$ имеет угол наклона α , определяемый равенством $tg \alpha = y_0'$,

т.е. определяет направление кривой в этой точке.

Геометрический смысл Коши для уравнения y'' = f(x, y, y') с начальными условиями $y(x_0) = y_0$, $y'(x_0) = y'_0$ состоит в отыскании интегральных кривых этого уравнения, проходящих через точку (x_0, y_0) в направлении, определяемом равенством $tg \alpha = y'_0$.

Геометрический смысл теоремы существования и единственности решения задачи Коши для уравнения $y^{(n)} = f(x,y,y',\dots,y^{(n-1)})$ при n=2

состоит в том, что при выполнении ее условий через точку (x_0, y_0) на плоскости xy **в заданном направлении** проходит единственная интегральная кривая дифференциального уравнения. Таким образом, в отличие от уравнения 1-го порядка через точку (x_0, y_0) проходит бесконечно много интегральных кривых (в различных направлениях).

<u>Определение</u>. Функция $y = \varphi(x, C_1, C_2, \dots, C_n)$, зависящая от n параметров C_1, C_2, \dots, C_n , называется общим решением уравнения $y^{(n)} = f(x, y, y', \dots, y^{(n-1)})$, если:

1) при любых допустимых значениях C_1, C_2, \dots, C_n она является решением этого уравнения;

2)любое частное решение уравнения $y^{(n)} = f(x, y, y', \dots, y^{(n-1)})$ представимо в виде $y = \varphi(x, C_1, C_2, \dots, C_n)$ при некоторых значениях параметров C_1, C_2, \dots, C_n .

Уравнение $\Phi(x,y,C_1,\ldots,C_n)=0$, неявно определяющее общее решение уравнения $y^{(n)}=f(x,y,y',\ldots,y^{(n-1)})$, называют *общим интегралом* этого уравнения.

Замечание: число параметров (произвольных постоянных) в общем решении (общем интеграле) совпадает с порядком дифференциального уравнения.

<u>Пример</u>. Показать, что функция $y = C_1 e^x + C_2 e^{-x}$ является общим решением уравнения y'' - y = 0. Найти частное решение этого уравнения, удовлетворяющее начальным условиям y(0) = 0, y'(0) = 1.

- ◀ Проверим выполнение условий из определения общего решения.
- 1) Число произвольных постоянных в данной функции равно 2, что совпадает с порядком уравнения.
 - 2) При любых значениях c_1 и c_2 эта функция является решением уравнения:

$$y = C_1 e^x + C_2 e^{-x} \implies y' = C_1 e^x - C_2 e^{-x} \implies y'' = C_1 e^x + C_2 e^{-x};$$

подставляя у" и у в уравнение, получим тождество:

$$C_1 e^x + C_2 e^{-x} - (C_1 e^x + C_2 e^{-x}) = 0 \implies 0 = 0 \quad \forall x \in \mathbb{R}$$
.

3) Каковы бы ни были начальные значения x_0, y_0, y'_0 (для данного уравнения область D существования и единственности решения совпадает с \mathbb{R}^3), система уравнений

$$\begin{cases} y_0 = C_1 e^{x_0} + C_2 e^{-x_0}, \\ y_0' = C_1 e^{x_0} - C_2 e^{-x_0} \end{cases}$$

имеет (притом единственное) решение относительно c_1 и c_2 , т.к. ее определитель

$$\Delta = \begin{vmatrix} e^{x_0} & e^{-x_0} \\ e^{x_0} & -e^{-x_0} \end{vmatrix} = -2 \neq 0$$
, т.е. для любых начальных условий значения параметров C_1

и C_2 , обеспечивающие их выполнение, существуют.

Поскольку все условия, входящие в определение общего решения выполнены, то данная функция действительно является общим решением данного уравнения.

Для нахождения частного решения после подстановки начальных значений x=0 , y=0 и y'=1 в общее решение и его производную получим систему

$$\begin{cases} 0 = C_1 + C_2, \\ 1 = C_1 - C_2, \end{cases}$$

откуда $C_1 = \frac{1}{2}$, $C_2 = -\frac{1}{2}$ и, следовательно, искомое частное решение $y = \frac{1}{2}(e^x - e^{-x})$.

Уравнения, допускающие понижение порядка

В некоторых случаях удается свести дифференциальное уравнение n-го порядка к уравнению более низкого порядка.

а) Уравнение вида

$$y^{(n)} = f(x)$$

Метод решения: Общее решение этого уравнения получается путем n-кратного интегрирования (при каждом интегрировании порядок уравнения понижается на 1).

Пример. Решить уравнение

$$y'' = x + 8\cos 4x$$

б) Уравнение 2-го порядка вида

$$F(x, y', y'') = 0$$

(не содержащее явно искомую функцию у).

Метод решения: Положим y' = z(x); тогда y'' = z' и уравнение сводится к уравнению 1-го порядка: F(x,z,z') = 0. Если последнее уравнение решается аналитически и $z = z(x,C_1)$ — его общее решение, то, интегрируя равенство

 $y'=z(x,C_1)$, получаем общее решение данного уравнения вида $y=Z(x,C_1)+C_2$, где $Z(x,C_1)$ – одна из первообразных функции $z(x,C_1)$.

Пример. Решить уравнение

$$xy'' + 2y' = 6x$$

в) Уравнение 2-го порядка вида

$$F(y, y', y'') = 0$$

(не содержащее явно независимую переменную x).

Метод решения: Положим y' = p, причем p будем считать функцией от y, т.е. y' = p(y). Тогда $y'' = \frac{dy'}{dx} = \frac{dp(y)}{dx} = \frac{dp}{dy} \frac{dy}{dx} = \frac{dp}{dy} p$. Подставляя в данное

уравнение выражения для y' и y'' получим уравнение 1-го порядка относительно функции p(y):

$$F(y, p, p \frac{dp}{dy}) = 0.$$

Если $p = p(y, C_1)$ — общее решение последнего уравнения, то, решая уравнение с разделяющимися переменными $y' = p(y, C_1)$, получаем общий

интеграл данного уравнения: $\frac{dy}{dx} = p(y, C_1)$ \Rightarrow $\int \frac{dy}{p(y, C_1)} = \int dx$ = $P(y, C_1) = x + C_2$

Замечание: если $p(y_0, C_1) = 0$, то $y = y_0$ также является решением уравнения F(y, y', y'') = 0

Пример. Решить уравнение

$$yy'' + y'^2 = 0$$

Пример. Найти частное решение уравнения

$$(y+1)y'' - y'^2 = 0$$

удовлетворяющее начальным условиям y(0) = 1; y'(0) = 2

<u>Пример</u>. Найти частное решение уравнения $y'y'' = y^2$, удовлетворяющее начальным условиям y(0) = y'(0) = -1.