Introduction to Cryptography Exercise Week 4

Dr. Patrick Struck patrick.struck@uni.kn

Leon Weingarten leon.weingarten@uni.kn

Jonah Herr jonah.herr@uni.kn

Exercise 1.

Prove Proposition 3.6 from the lecture:

Let negl_1 and negl_2 be negligible functions. Then,

- 1. $\operatorname{negl}_3(n) := \operatorname{negl}_1(n) + \operatorname{negl}_2(n)$ is negligible.
- 2. For any polynomial p, the function $\mathsf{negl}_4(n) \coloneqq p(n) \cdot \mathsf{negl}_1(n)$ is negligible.

Exercise 2.

Prove that Definition 3.8 cannot be satisfied if Π can encrypt arbitrary-length messages and the adversary is *not* restricted to output equal-length messages in experiment $\mathsf{PrivK}^{\mathsf{eav}}_{\mathcal{A},\Pi}$.

Hint: Let p be a polynomial. Why is it very likely that the resulting ciphertext from encrypting a string of length p(n)+n is of length greater than p(n)?

Exercise 3.

Prove or disprove whether each G_i is a pseudorandom generator for the following constructions:

- (a) $G_1: \{0,1\}^n \to \{0,1\}^{2n}, G_1(s) := s_1||s_1||\dots||s_n||s_n.$
- (b) $G_2: \{0,1\}^n \to \{0,1\}^{2n}, G_2(s) := s||s.$
- (c) Let G be a pseudorandom generator. Define $G_3(s) := G(\overline{s})$ where \overline{s} is the complement of s.
- (d) Again let G be a PRG and define $G_4(s) := \overline{G(s)}$, i.e. the complement of G(s).