Experiment

#7

Title:-

Simplifying Boolean expression and its implementation using logic gates and Verilog

Objective:-

Boolean laws

Parts required:-

- o IC Type 7404 Quadruple 2-input NOT gates
- o IC Type 7432 Quadruple 2-input OR gates
- o IC Type 7411 triple 3-input and gates

Equipment required:-

- Trainer/ proto board
- Wire cutter
- Patch Cord
- Voltmeter
- SynaptiCAD Verilogger

Theory:-

This lab is about simplification of Boolean expression by utilizing Boolean laws.

Boolean laws and rules:

1	Commutative Law (a) $A + B = B + A$ (b) $A B = B A$	7	(a) $0 + A = A$ (b) $0 A = 0$
2	Associate Law (a) $(A + B) + C = A + (B + C)$ (b) $(A B) C = A (B C)$	8	(a) $1 + A = 1$ (b) $1 A = A$
3	Distributive Law (a) $A (B + C) = A B + A C$ (b) $A + (B C) = (A + B) (A + C)$	9	(a) $A + \overline{A} B = A + B$ (b) $A(\overline{A} + B) = AB$

4	Identity Law (a) $A + A = A$	10	De Morgan's Theorem (a) $(\overline{A+B}) = \overline{A} \overline{B}$
	(b) A A = A		(b) $(\overline{A}\overline{B}) = \overline{A} + \overline{B}$
5	(a) $AB + A\overline{B} = A$ (b) $(A+B)(A+\overline{B}) = A$	11	(a) $\overline{A} + A = I$ (b) $\overline{A} A = 0$
6	Redundance Law		
	(a) A + A B = A		
	(b) A (A + B) = A		

Boolean expression

$$F = A.B.C + \overline{A} + A.\overline{B}.C$$

$$F = A.C(B + \bar{B}) + \bar{A}$$

$$F = A.C(1) + \overline{A}$$
 (After applying law no. 11(a))

$$F = A.C + \bar{A}$$

$$F = \bar{A} + C$$
 (After applying law no. 9(a))

IC 7411 3-input AND gates

7411 AND

the code.	pression. Also attach the screenshots of timi	ing diagram and