6.1.1 某放大电路中 A ,的对数幅频特性如图题 6.1.1 所示。(1)试求该电路的中频电压增益 A ,

- 解: (1) 中級班燈 201g1Àvm1=60, lÂum1=1000. 上跑频年于H=108Hz, 不阻频率于L=102Hz
 - (2) 当于=fL或于=fH时,实际指数 60dB-3dB=57dB

6.1.2 已知某放大电路电压增益的频率特性表达式为

$$\vec{A}_{r} = \frac{100j \frac{f}{10}}{\left(1+j \frac{f}{10}\right)\left(1+j \frac{f}{10^{3}}\right)}$$
 (式中 f 的单位为 Ha)

试术该电路的上、下限频率,中频电压增益的分贝数,输出电压与输入电压在中频区的相位差。

解: 据域可知, 上鸭蛸 f_H=10^t H₂, 下隈鹎 f_L=10 H₂. 中级电压检查 201g lAum] = 201g 100 dB = 40 dB 新出电压与输入电压在中级区的相位竞为0°

电路如图题 6.3.2 所示,已知 BJT 的 $\beta=50$, $r_{be}=0.72$ k Ω ,且 $(R_{bi}$ // $R_{b2}) \gg r_{be}$ 。(1) 试估算该电路

电压增益的下限频率; (2) $|\dot{V}_{im}|=10 \text{ mV}$, 且 $f=f_L$, 求 $|\dot{V}_{om}|$, \dot{V}_{om} 与 \dot{V}_{i} 间的相位差是多少?

解:(1)将Ce扩信至基格回路,古Ci串联,则

東西の
$$C_1 = \frac{C_1 Ce}{(H\beta) C_1 + Ce} \approx 0.495 \mu F$$

$$f_{L_1} = \frac{1}{2\pi C_1 (Rsi + \Gamma be)} \approx 392 Hz$$

$$f_{L_2} = \frac{1}{2\pi C_2 (R_2 + R_L)} \approx 21 Hz$$

 $f_{L2} = \frac{1}{2\pi C_2 (R_c + R_L)} \approx 21 \text{ Hz}$ fu 与fu 比值好4. 即环関系分fL=fu=392H2

(2) 中级电话: Aum = - FRI/Rc = -115.7 当f=fL財, Av=0.707 Aum≈-81.8 1 Vom = 1 Au | Vim = 2/8 mV NSV. 间的相位差为一马亡。

电路如图题 6.4.4 所示,其中+ $V_{\rm DD}$ = 5V, $R_{\rm si}$ = 1 k Ω , $R_{\rm gl}$ = 15 k Ω , $R_{\rm g2}$ = 10 k Ω , $R_{\rm d}$ = 4 k Ω , $R_{\rm m}$ = 0.8 mS,

 ${f pF}$ 。试估算源电压增益的上限频率 $f_{f H}$ 和中频源电压增益 ${f A}_{f vSM}$ 。

$$R_{si}$$
 R_{g1} R_{g2} R_{g2} 图题 $6.4.4$