Network Layer: Data Plane

- Overview of Network Layer
- What's Inside a Router?
- The Internet Protocol
- Generalized Forwarding and SDN
- Middleboxes
- Summary

COMPSCI 453 Computer Networks

Professor Jim Kurose

College of Information and Computer Sciences
University of Massachusetts

Class textbook: Computer Networking: A Top-Down Approach (8th ed.) J.F. Kurose, K.W. Ross Pearson, 2020

http://gaia.cs.umass.edu/kurose_ross

Router architecture overview

high-level view of generic router architecture:

Input port functions

link layer:

e.g., Ethernet (chapter 6)

decentralized switching:

- using header field values, lookup output port using forwarding table in input port memory ("match plus action")
- goal: complete input port processing at 'line speed'
- input port queuing: if datagrams arrive faster than forwarding rate into switch fabric

Input port functions

link layer:

e.g., Ethernet (chapter 6)

decentralized switching:

- using header field values, lookup output port using forwarding table in input port memory ("match plus action")
- destination-based forwarding: forward based only on destination IP address (traditional)
- generalized forwarding: forward based on any set of header field values

Network Layer: 4-4

Destination-based forwarding

Destination Address Range			Link Interface	
11001000 through	00010111	000 <mark>10000</mark>	00000000	n
11001000 through	00010111	000 <mark>10000</mark>	00000100	3
11001000	00010111	00010000	00000111	
11001000	00010111	00011000	11111111	
11001000 through	00010111	00011001	0000000	2
	00010111	00011111	11111111	
otherwise				3

Q: but what happens if ranges don't divide up so nicely?

longest prefix match

when looking for forwarding table entry for given destination address, use *longest* address prefix that matches destination address.

Destination A	Link interface			
11001000	00010111	00010***	*****	0
11001000	00010111	00011000	*****	1
11001000	00010111	00011***	*****	2
otherwise				3

which interface?	10100001	00010110	00010111	11001000
which interface?	10101010	00011000	00010111	11001000

longest prefix match

when looking for forwarding table entry for given destination address, use *longest* address prefix that matches destination address.

Destination .	Link interface					
11001000	00010111	00010	* * * * * * * * *	0		
11001000	000 0111	00011000	*****	1		
11001000	match!	00011***	*******	2		
otherwise				3		
11001000	00010111	00010110	10100001	which interface?		
11001000	00010111	00011000	10101010	which interface?		

longest prefix match

when looking for forwarding table entry for given destination address, use *longest* address prefix that matches destination address.

11001000 00010111 00011

11001000	match!	00010110	10100001	which interface?
otherwise	1			3
11001000	00010111	00011	$\star\star\star\star\star\star\star\star$	2
11001000	00010111	00011000	*****	1
11001000	00010111	00010***	******	0
Destination Address Range				Link interface

10101010 which interface?

longest prefix match

when looking for forwarding table entry for given destination address, use *longest* address prefix that matches destination address.

Destination Address Range				Link interface
11001000	00010111	00010***	* * * * * * * * = *	0
11001000	00010111	00011000	*****	1
11001000	000 0111	00011***	******	2
otherwise	match!			3
11001000	000 0111	00010110	10100001	which interface?
11001000	00010111	00011000	10101010	which interface?

- we'll see why longest prefix matching is used shortly, when we study addressing
- longest prefix matching: often performed using ternary content addressable memories (TCAMs)
 - content addressable: present address to TCAM: retrieve address in one clock cycle, regardless of table size
 - Cisco Catalyst: ~1M routing table entries in TCAM

Switching fabrics

- transfer packet from input link to appropriate output link
- switching rate: rate at which packets can be transfer from inputs to outputs
 - often measured as multiple of input/output line rate
 - N inputs: switching rate N times line rate desirable

Switching fabrics

- transfer packet from input link to appropriate output link
- switching rate: rate at which packets can be transfer from inputs to outputs
 - often measured as multiple of input/output line rate
 - N inputs: switching rate N times line rate desirable
- three major types of switching fabrics:

Switching via memory

first generation routers:

- traditional computers with switching under direct control of CPU
- packet copied to system's memory
- speed limited by memory bandwidth (2 bus crossings per datagram)

Switching via a bus

- datagram from input port memory to output port memory via a shared bus
- bus contention: switching speed limited by bus bandwidth
- 32 Gbps bus, Cisco 5600: sufficient speed for access routers

Switching via interconnection network

- Crossbar, Clos networks, other interconnection nets initially developed to connect processors in multiprocessor
- multistage switch: nxn switch from multiple stages of smaller switches
- exploiting parallelism:
 - fragment datagram into fixed length cells on entry
 - switch cells through the fabric, reassemble datagram at exit

8x8 multistage switch built from smaller-sized switches

Switching via interconnection network

- scaling, using multiple switching "planes" in parallel:
 - speedup, scaleup via parallelism
- Cisco CRS router:
 - basic unit: 8 switching planes
 - each plane: 3-stage interconnection network
 - up to 100's Tbps switching capacity

Input port queuing

- If switch fabric slower than input ports combined -> queueing may occur at input queues
 - queueing delay and loss due to input buffer overflow!
- Head-of-the-Line (HOL) blocking: queued datagram at front of queue prevents others in queue from moving forward

output port contention: only one red datagram can be transferred. lower red packet is *blocked*

one packet time later: green packet experiences HOL blocking

Output port queuing

Buffering required when datagrams arrive from fabric faster than link transmission rate. Drop policy: which datagrams to drop if no free buffers?

Datagrams can be lost due to congestion, lack of buffers

 Scheduling discipline chooses among queued datagrams for transmission

Priority scheduling – who gets best performance, network neutrality

Output port queuing

- buffering when arrival rate via switch exceeds output line speed
- queueing (delay) and loss due to output port buffer overflow!

How much buffering?

- RFC 3439 rule of thumb: average buffering equal to "typical" RTT (say 250 msec) times link capacity C
 - e.g., C = 10 Gbps link: 2.5 Gbit buffer
- more recent recommendation: with N flows, buffering equal to

$$\frac{\mathsf{RTT} \cdot \mathsf{C}}{\sqrt{\mathsf{N}}}$$

- but too much buffering can increase delays (particularly in home routers)
 - long RTTs: poor performance for realtime apps, sluggish TCP response
 - recall delay-based congestion control: "keep bottleneck link just full enough (busy) but no fuller"

Buffer Management

Abstraction: queue

buffer management:

- drop: which packet to add, drop when buffers are full
 - tail drop: drop arriving packet
 - priority: drop/remove on priority basis
- marking: which packets to mark to signal congestion (ECN, RED)

Packet Scheduling: FCFS

packet scheduling: deciding which packet to send next on link

- first come, first served
- priority
- round robin
- weighted fair queueing

Abstraction: queue

FCFS: packets transmitted in order of arrival to output port

- also known as: First-in-firstout (FIFO)
- real world examples?

Scheduling policies: priority

Priority scheduling:

- arriving traffic classified, queued by class
 - any header fields can be used for classification
- send packet from highest priority queue that has buffered packets
 - FCFS within priority class

Scheduling policies: round robin

Round Robin (RR) scheduling:

- arriving traffic classified, queued by class
 - any header fields can be used for classification
- server cyclically, repeatedly scans class queues, sending one complete packet from each class (if available) in turn

Scheduling policies: weighted fair queueing

Weighted Fair Queuing (WFQ):

- generalized Round Robin
- each class, i, has weight, w_i, and gets weighted amount of service in each cycle:

$$\frac{w_i}{\Sigma_j w_j}$$

minimum bandwidth guarantee (per-traffic-class)

Sidebar: Network Neutrality

What is network neutrality?

- technical: how an ISP should share/allocation its resources
 - packet scheduling, buffer management are the mechanisms
- social, economic principles
 - protecting free speech
 - encouraging innovation, competition
- enforced *legal* rules and policies

Different countries have different "takes" on network neutrality

Sidebar: Network Neutrality

2015 US FCC *Order on Protecting and Promoting an Open Internet:* three "clear, bright line" rules:

- no blocking ... "shall not block lawful content, applications, services, or non-harmful devices, subject to reasonable network management."
- no throttling ... "shall not impair or degrade lawful Internet traffic on the basis of Internet content, application, or service, or use of a non-harmful device, subject to reasonable network management."
- no paid prioritization. ... "shall not engage in paid prioritization"

ISP: telecommunications or information service?

Is an ISP a "telecommunications service" or an "information service" provider?

the answer really matters from a regulatory standpoint!

US Telecommunication Act of 1934 and 1996:

- Title II: imposes "common carrier duties" on telecommunications services: reasonable rates, non-discrimination and requires regulation
- Title I: applies to information services:
 - no common carrier duties (not regulated)
 - but grants FCC authority "... as may be necessary in the execution of its functions".

Network Layer: Data Plane

- Overview of Network Layer
- What's Inside a Router?
- The Internet Protocol
- Generalized Forwarding and SDN
- Middleboxes
- Summary

COMPSCI 453 Computer Networks

Professor Jim Kurose

College of Information and Computer Sciences
University of Massachusetts

Class textbook: Computer Networking: A Top-Down Approach (8th ed.) J.F. Kurose, K.W. Ross

Pearson, 2020 http://gaia.cs.umass.edu/kurose_ross

