Investigating and Predicting COVID-19 Confirmed Cases in U.S.: Analysis and Conclusion

Team #5: Kiran Brar Olivia Alexander Kimberly Segura

Number of Confirmed COVID-19 Cases in U.S.

Output Generation and Analysis

Preprocessing Techniques

- Power transformation: BoxCox() is configurable data transform method that evaluate a suite of transforms automatically and select a best fit (optimizes lambda).
 - lambda = -1.0 is a reciprocal transform.
 - lambda = -0.5 is a reciprocal square root transform.
 - lambda = 0.0 is a log transform.
 - lambda = 0.5 is a square root transform.
 - lambda = 1.0 is no transform.

```
8  us_Y = us_df["positive"]
9
10  us_box_total, lam = boxcox(us_Y)
11  print('Lambda: %f' % lam)
```

Lambda: 0.046134

Preprocessing Techniques

 Standardization: Transform data to mean of 0 and standard deviation of 1-- Gaussian transform.

```
#Standardize|
scaler = StandardScaler()

scaled_train_labels = scaler.fit_transform(train_labels.reshape(-1, 1))
scaled_test_labels = scaler.transform(test_labels.reshape(-1, 1))
```

Normalization: Scale data to different/minimized range.

```
#Scale/Normalize Input
minmax_scaler = MinMaxScaler()

scaled_train_labels = minmax_scaler.fit_transform(train_labels.reshape(-1, 1))
scaled_test_labels = minmax_scaler.transform(test_labels.reshape(-1, 1))
```

Preprocessing Techniques

Differencing: Removes trends and seasonality from a time series dataset.

Third-level Differencing removed the autocorrelation from our dataset

Converting Time Series into Supervised Learning

Sliding Window / Lagged Values: Using a previous number of values (rather than time) to predict the following value


```
def create_dataset(X, y, time_steps=1):
    Xs, ys = [], []
    for i in range(len(X) - time_steps):
        v = X.iloc[i:(i + time_steps)].values
        Xs.append(v)
        ys.append(y.iloc[i + time_steps])
    return np.array(Xs), np.array(ys)

timesteps =7
train_x, train_y = create_dataset(train_data , train_data , timesteps)
test_x, test_y = create_dataset(test_data , test_data , timesteps)
```

Models:

Linear Regression

Used sliding window approach

- Best Linear Regression model:

Lagged Values: 6 days

Box Cox: Yes

Differencing: No

Scaling/Normalizing: MinMaxScaler()

Linear Regression: Prediction Plots

MSE	0.0000402
SMAPE	0.84284873

Linear Regression Model: Different Lagged Values

	Linear Regression with Different Preprocessing Techniques									
	Model 0	Model 1.1	Model 1.2	Model 1.3	Model 1.4	Model 1.5	Model 1.6	Model 1.7	Model 1.8	Model 2
Preprocessing										
Lagged Value	None	1	2	3	4	5	6	7	8	6
Box Cox /Log	None	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Scaling/Normalizing	None	Minmax()	Minmax()	Minmax()	Minmax()	Minmax()	Minmax()	Minmax()	Minmax()	Minmax(-1,1)
MSE (Test)	49347904776	0.001348057	0.000220618	0.000107409	8.45E-05	5.36E-05	4.02E-05	6.44E-05	6.61E-05	0.000160831
SMAPE (Test)	120.5941151	16.37057734	3.737763698	2.002087713	1.512598561	1.055856231	0.84284873	0.987350005	0.97504241	7.03589239
Notes:	LR on raw set						lowest error	error increasing a	again	auto minmax is bette

Linear SVR

- Used sliding window approach
- Best Linear SVR model:

Lagged Values: 7 days

Box Cox: Yes

Differencing: No

Scaling/Normalizing: MinMaxScaler()

Linear SVR: Prediction Plots

MSE	0.00009108727842
SMAPE	1.145
RMSE	0.009544

Nonlinear SVR with RBF Kernel

Nonlinear SVR model (with lowest MSE):

Lagged Values: 7 days

Box Cox: Yes

Differencing: No

Scaling/Normalizing: MinMaxScaler()

Nonlinear SVR: Prediction Plots

MSE	0.000135
SMAPE	1.455
RMSE	0.011619

Linear SVR: Effect of Lag Value

	Linear S	VR: Performance	e for Different La	g Values
	Model 3.1	Model 3.2	Model 3.3	Model 3.4
Features:				
Preprocessing				
Lagged Value	3	5	10	8
Box Cox /Log	Yes	Yes	Yes	Yes
Differencing	No	No	No	No
Scaling/Normaliz	Minmax(0,1)	Minmax(0,1)	Minmax(0,1)	Minmax(0,1)
Model				
Objective	Linear	Linear	Linear	Linear
Kernel	-	-	-	-
Hyperparamters				
С	100	1000	100	1
Epsilon	0.0005	0.0001	0.0001	0.001
Gamma	-1	-	-	-
MSE	0.001026	0.000804	0.0001094	0.000114
SMAPE	5.068	4.284	1.072	1.2952
RMSE	0.0320312	0.0283549	0.0104594	0.0106771

Linear SVR: Effect of Scaling vs. Standardizing

	LinearSVR Model Performances							
	Model 5	Model 5.1	Model 5.5					
Features:								
Preprocessing								
Lagged Value	7	7	7					
Box Cox /Log	No	No	No					
Differencing	No	No	No					
Scaling/Normali	Minmax(0,1)	Minmax(-1,1)	StandardScaler					
Hyperparamters								
С	1000	100	1000					
Epsilon	0.001	0.0001	0.0001					
MSE	0.000276	0.00049046	0.0033577					
SMAPE	2.419158	9.68705	11.82743					
RMSE	0.0166132	0.0221463	0.0579457					

	Support Vector Regression: Performance Results						
	Model 1	Model 2	Model 5.5	Model 6	Model 7	Model 8	
Features:							
Preprocessing							
Lagged Value	7	7	7	7	7	7	
Box Cox /Log	Yes	Yes	No	Yes	Yes	No	
Differencing	No	No	No	No	No	No	
Scaling/Normaliz	z Minmax(0,1)	Minmax(0,1)	StandardScaler	None	None	None	
Model							
Objective	Linear	Non-linear	Linear	Linear	Nonlinear	Linear	
Kernel	-	RBF	-	-	rbf	_	
Hyperparamters	5						
С	1000	1000	1000	1	1000	1	
Epsilon	0.0001	0.0001	0.0001	0.0005	0.001	0.5	
Gamma	-	0.005	-		0.001		
MSE	0.00009108727	0.000135	0.0033577	0.0246214	0.00213	307124112.3	
SMAPE	1.145	1.455	11.82743	0.810457	0.236	1.256246775	
RMSE	0.009544	0.011619	0.0579457	0.1569121	0.0461519	17524.95684	

XGBoost: Approach 1 (Use month, day as features)

	XGBoost: Using Date Features							
	Model 0	Model 0.5	Model 1					
Features:	Month, day	Month, day	Month, day					
Preprocessing								
Box Cox /Log	No	Yes	Yes					
Scaling/Normali	Minmax	Minmax	StandardScaler					
MSE (Test)	883237648.7	168	2.199					
SMAPE (Test)	69	21.56	6.789					
RMSE(Test)	29719.3144	12.96148	1.4829					

XGBoost: Approach 2 (Lagged Values as Input)

- Used sliding window approach

- Best model

Lagged Values: 1

Box Cox: Yes

Differencing: No

Scaling/Normalizing: MinMaxScaler()

XGBoost : Effect of Lagged Values

• From our experiments, we found that the smaller lag values increased performance for XGBoost.

		XGBoost	Model Perform	ances with Lag	ged Values Feat	ures and No Dif	 ferencing	
	Model 2	Model 2.1	Model 2.3*	Model 2.5	Model. 2.6	Model. 2.7	Model 2.8	Model 2.9
Features:	LagVal	LagVal	LagVal	LagVal	LagVal	LagVal	LagVal	LagVal
Preprocessing								
Lagged Value	7	7	7	10	3	5	2	1
Box Cox /Log (0	Yes	Yes	Yes	Yes	Yes	yes	Yes	Yes
Scaling/Normali	Minmax [0,1]	Minmax[-1,1]	Minmax [0,1]	Minmax [0,1]	Minmax [0,1]	Minmax [0,1]	Minmax [0,1]	Minmax [0,1]
MSE (Test)	0.02119	0.022	0.01072	0.04252	0.0049	0.011	0.002751	0.0009066
SMAPE (Test)	22	23.53	17.649	30.882	12.370	18.46	13.54425	17.22109
RMSE	0.1455679	0.148324	0.1035374	0.2062038	0.07	0.1048809	0.05245	0.0301098

XGBoost: Effect of Differencing

XGBoost: Effect of Differencing

	XGBoost Models using Differencing Preprocessing Techniques						
	Model 3	Model 3.1	Model 3.5	Model 3.6	Model 3.7	Model 3.8	Model 3.9
Features:	LagVal	LagVal	LagVal	LagVal	LagVal	LagVal	LagVal
Preprocessing							
Lagged Value	3	3	3	3	1	1	1
Box Cox /Log	None	None	Yes	Yes	Yes	Yes	Yes
Differencing Le	3	1	1	2	2	3	3
Scaling/Normali	None	None	Minmax [0,1]	Minmax [0,1]	Minmax [0,1]	Minmax [0,1]	StandardScaler
MSE (Test)	192.291	200	68.064	132.445	154.858	46.12	174.962
SMAPE (Test)	1.6506	0.08078	0.0883	0.35	0.425	0.082	2.047
RMSE	13.8669168	14.1421356	8.2500909	11.5084751	12.4441954	6.7911707	13.2273202

LSTM Best Model

```
model = keras.Sequential()
model.add(keras.layers.LSTM(50, input_shape=(X_train.shape[1], X_train.shape[2]), return_sequences = True))
model.add(keras.layers.Dropout(0.1))
model.add(keras.layers.LSTM(units = 50, return_sequences = True))
model.add(keras.layers.Dropout(0.1))
model.add(keras.layers.Dense(1))
model.add(keras.layers.Dense(1))
model.compile(loss='mean_squared_error', optimizer = keras.optimizers.Adam(0.1))
```

```
Diagnostic Line Plots for Loss and Validation loss of the data
plt.plot(history.history['loss'], label='train')
plt.plot(history.history['val_loss'], label='test')
plt.legend();
```


LSTM: Effect of Lag Value and Differencing

	LSTM Performan	ce of Different La	ag Values (No Di	ifferencing)	LSTM Performa	nce of Different L	ag Values (with I	Differencing)
Trial	1	2	3	4	5	6	7	8
Features:								
Preprocessing								
Lagged Value	3	3	5	7	3	5	7	10
Box Cox /Log	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Differencing	No	No	No	No	Yes	Yes	Yes	Yes
Scaling/Normali	MinMax(-1,1)	MinMax(0,1)	MinMax(0,1)	MinMax(0,1)	MinMax(0,1)	MinMax(0,1)	MinMax(0,1)	MinMax(0,1)
MSE (Test)	0.161956	0.043926	0.023220	0.044450	0.030001	0.010664	0.009857	0.008716
SMAPE (Test)	917.383506	448.378769	283.922014	359.388216	363.644981	187.775853	159.572204	121.370556
RMSE	0.026230	0.001929	0.000539	0.001976	0.000900	0.000114	0.000097	0.000076

Compare output against Hypothesis

Hypothesis: We predicted long short term networks (LSTM) to yield the best accuracy, followed by XGBoost, SVR, and linear regression.

Output:

- Linear Regression and SVR had overall best performance(with preprocessing techniques).
- SVR had better performance than XGBoost and LSTM on raw data (in general)
- LSTM had the worst predictions

Abnormal Case Explanation

- Differencing did not always improve performance (only slightly helped for LSTM)
- SVR had surprisingly accurate predictions on untransformed data, in comparison to other models.
- Smaller lag values improved performance for XGBoost, whereas larger lag values improved performance for LR, SVR, and LSTM
- Minmax Scaler better performance than StandardScaler

Discussion

- We found lagged values, and power transformations (Box Cox) to be incredibly helpful to improve model performance.
- We also found LSTM had poor and unstable performance. This can be due to the small dataset or lack of time to tune the number of layers/neurons
 - Same model yielding different results:

Conclusion/ Recommendation

Summary/Conclusion

 Don't underestimate the importance of preprocessing or feature engineering!

Important to test simple models first!

 For deep learning, you need a lot of data and it's very time consuming to pick and choose different number of layers and neurons.

Recommendations for Future Studies

- Our work can be furthered by predicting number of deaths or number of recovered.

 Our models can be extended to take into consideration the health capacity as well as social restrictions for each in order to make better future forecasting.

Demonstration:

- Model Training and Evaluation
- EDA

Linear Regression Model: Nonlinear Prediction

Linear Prediction vs Nonlinear Prediction: Transform predictor X from time to sliding window. Nonlinear functional form but model still linear in parameters.

Extra Reference Slides - LSTM approach 1

MODEL

Layer (type) 	Output Shape	Param #
lstm_1 (LSTM)	(None, 10, 50)	10400
dropout_1 (Dropout)	(None, 10, 50)	0
lstm_2 (LSTM)	(None, 10, 50)	20200
dropout_2 (Dropout)	(None, 10, 50)	0
lstm_3 (LSTM)	(None, 50)	20200
dropout_3 (Dropout)	(None, 50)	0
dense_1 (Dense)	(None, 1)	51

Extra Reference Slides - LSTM approach 1

TimeseriesGenerator

```
#LAG preprocessing to frame a sequence as a supervised learning problem
#returns a sequence of overlapping windows
#batch_size = # of samples to return on each iteration
from tensorflow.keras.preprocessing.sequence import TimeseriesGenerator

n_input =10 # lag
n_features = 1
generator = TimeseriesGenerator(scaled_train_data, scaled_train_data, length = n_input, batch_size = 1)
for i in range(len(generator)):
    x, y = generator[i]
    #print('%s => %s' % (x, y))
```