

Echo Planar Imaging (EPI)

Maxim Zaitsev, Ph.D.

University of Freiburg – Medical Centre
Dept. of Radiology – Medical Physics

EPI: a historical perspective

- One of the first Fourier imaging techniques^[1]
 - Has immediately polarized the MR community into lovers and haters

- Gained importance only in late 90th of the past century
 - Accessibility of actively-shielded gradients
 - New applications: fMRI, DTI

EPI has gone a long way...

David Feinberg

Sir Peter Mansfield

Maxim Zaitsev

[1] Mansfield and Pykett "Biological and medical imaging by NMR" JMR 29,355-73 (1978) [2] Speck O, Stadler J, Zaitsev M. "High resolution single-shot EPI at 7T" MAGMA 21:73-86 (2008) [3] Feinberg D et al. Nature Methods 20, 2048-57 (2023)

Today: EPI is a working horse...

A plethora of EPI variants

• Segmented, read-out segmented, PROPELLER-EPI,...

Accelerated: parallel imaging, multi-band, wave CAIPI,...

- Hybrid gradient/RF encoding (GRASE, RASOR, ...)
- Contrast preparation modules (DTI, etc.)
- Focus on single-shot EPI: the most common collection of artifacts

EPI Sequence

- Basic recipe:
 - Oscillating read-out gradient
 - Phase encoding "blips"

Why EPI is special?

- Single shot ≠ instantaneous
 - Signal evolution during readout
- Alternating readout polarity
 - Gradient & receiver imperfections
- Fourier reconstruction
 - Perfect encoding?
 - Deviations lead to artifacts...
 - Smooth deviations → blurring, distortions
 - Periodic modulation → ghosting

EPI artifacts at glance

EPI optimization goals

- Avoid/compensate signal modulation due to oscillating readout
- Maximize sampling efficiency (ADC-on time)
 - Improve signal-to-noise ratio
- Shorten the echo train
 - Reduce blurring due to signal decay
 - Reduce distortions
- Avoid or suppress off-resonance effects
 - Suppress fat
 - Make sure B0 is as homogeneous as possible
- Use B0 distortion compensation techniques if possible

Basic EPI Readout in Pulseq

- Standard 2D excitation
- Define RO duration, calculate ADC and gradient objects
- Calculate PE and RO pre-phasing gradients, PE blips

EPI trajectory video

powered by the pypulseq Trajectory Animation Tool by Frank Zijlstra

Get Familiar with EPI Data

- Delays between the gradient and the RF subsystems (RF+ADC)
 - Echoes are shifted in time → in opposite directions in k-space
 - N/2 ghosting artifacts

EPI N/2 Ghosts – 3-echo Reference

Example: Full Reference Scan

- Disable all phase encoding pulses
- All echoes should be equivalent
 - There is T2* decay
- Fourier transform in the read direction
 - Shifts → phase ramps
- Detect phase difference
- Correct

 (either phase or delay correction)

Geometric Distortions

- EPI has two readout directions
 - Fast: which is typically considered as readout
 - Slow: which is also named "phase encoding direction"
- Very low readout bandwidth in the PE direction
 - High sensitivity to B0 inhomogeneities ...
 - ... and off-resonance effects such as fat-water shift
- Fat saturation
- Good shimming
- Readout time as short as possible (BW ~ 1/TA)

B₀-induced geometric distortions

- Are shifts in phase encoding direction
- Depend on the phase encoding orientation

Gradient Echo

Can be inverted by inverting the PE direction

same

distortion

magnitude!

EPI, PE=R-L

Reducing distortions with bandwidth

Visualize Distortions in a Phantom

- Phantoms with geometric structures are expensive
 - Structures are likely to induce own distortions
- Use saturation RF pulses to "burn in" lines
 - Multi-slice excitation pulse is a good tool

Another Reason to Hurry: Resolution Loss

Shorten full readout time: echo-spacing, BW, parallel imaging

Back to the Basic EPI Readout in Pulseq

- Plot the k-space trajectory
 - Looks good!? Why worry?
- Let's run seq.testReport()

```
Number of blocks: 121
```

..

TE: 0.042050 s TR: 0.084850 s

. .

Max gradient:

 $308e3\ 280e3\ 1357e3\ Hz/m == 7.25\ 6.59\ 31.89\ mT/m$

Max slew rate:

4.545e9 5.050e9 5.431e9 Hz/m/s == 106.76 118.62 127.57 T/m/s

. . .

Let's try to make it faster...

Basic EPI: shorten readout?

ro_duration: 1200us -> 480us

TE: 42.1 ms -> 24.3 ms

ro_duration: 480us -> 240us

TE: 24.3 ms -> 23.2 ms

- Useless "detours" in k-space grow
- Timing does not improve much
- Sampling efficiency suffers

EPI with Ramp Sampling

- Dramatically shorten T_{ESP}
- Increase acquisition efficiency
- Additional steps in the image recon
 - Gridding in the read direction

Basic EPI vs EPI with Ramp Sampling

basic 96x96 EPI

96x96 EPI with ramp sampling

Protocol Optimization and Further Options

- Fat suppression
- Ghosting reduction
- Distortion minimization
 - Distortion correction
- Readout acceleration
 - Multi-shot
 - Parallel imaging
- Overall acceleration simultaneous multi-slice (SMS)
- Avoid PNS & acoustic resonances

Chemical Shift Artifact & Fat Suppression

- Water-fat separation: ~3.4 ppm
 - At 3T $\sigma \approx 425$ Hz
- Low bandwidth per pixel in PE direction

$$\Delta y = \omega_0 \sigma / BW_{pe};$$

 $425/10.4 \approx 40 \text{ pixels}$
(~30% of FOV)

- Fat suppression
 - Fat saturation, water excitation
- In Pulseq examples: off-resonance
 Gaussian pulse before every excitation

Fat Saturation in Pulseq

- Gaussian pulse at -3.45ppm followed by a spoiler
 - Implementation by some major manufacturer
 - Other vendors use different RF pulses (e.g. minimal phase SLR)

Ghosting: practical advice #1

- For RO use pure gradient
 - Preferably X or Z axis (PNS)
 - Avoid double-oblique slices
 - No in-plane rotation

normal scaling

overscaled

 0°

10°

20°

30°

Ghosting: practical advice #2

- Optimize readout bandwidth / echo spacing
- Do "step left / step right" check
- Avoid mechanical resonances of the gradient system
 - Often the quietest echo spacing setting is the best

More Troubles to Avoid

X (86%) Y (49%) Z (42%) 100 nrm (87%) 80 60 40 20 60 10 20 30 50 Time [ms]

Predicted PNS (87%)

120

mechanical resonances of the gradient system

peripheral nerve stimulation (PNS)

Summary & outlook

- EPI is an established technique
- Good image quality if operated properly
- Numerous new options: SMS, randomized sampling, non-linear image reconstruction
- Need to recognize, understand and avoid artifacts
- Do a pilot run for each specific application
 - Check whether PE inversion gives more favorable distortions

Outlook: towards cutting-edge fMRI

Multi-Vendor SMS-EPI protocol for fMRI applications (ABCD)

Acknowledgements:

Berkin Bilgic Borjan Gagoski Douglas Noll

Frank Zijlstra Imam Shaik Jeff Fessler

Jon-Fredrik Nielsen Juergen Hennig Mojtaba Shafiekhani

Moritz Zaiss Naveen Murthy Niklas Wehkamp

Qiang Liu Qingping Chen

Sebastian Littin Will Grissom Yogesh Rathi

THANK YOU FOR YOUR ATTENTION!

Scott Peltier