- **Р1.** Пусть $\sum p_i = 1$ и все $p_i > 0$. Определим функцию $h(p) = \sum p_i \log \frac{1}{p_i}$. К чему стремится значение этой функции для следующих последовательностей:
 - a) $1/2, 1/4, 1/8, \dots, 1/2^n, 1/2^n$;
 - b) $1/3, 1/3, 1/9, 1/9, \dots, 1/3^n, 1/3^n, 1/3^n$?
- **Р 2.** Веса 2 монеток выбираются случайно и независимо среди чисел 1, . . . , 4. Какова энтропия Шеннона случайной величины, равной результату сравнения на чашечных весах весов первой и второй монетки?

Определение 1

Взаимной информацией между случайными величинами α и β будем называть функцию $I(\alpha:\beta) = H(\alpha) - H(\alpha|\beta)$.

Также определим взаимную информацию в α и β при условии γ . $I(\alpha:\beta|\gamma)=H(\alpha|\gamma)-H(\alpha|\beta,\gamma)$.

- **Р 3.** Докажите следующие свойства взаимной информации:
 - a) $I(\alpha : \beta) = I(\beta : \alpha)$
 - b) α и β независимы тогда и только тогда, когда $I(\alpha : \beta) = 0$.
 - c) $I(f(\alpha):\beta) \leq I(\alpha:\beta)$ для любой функции f.
- **Р 4.** Докажите следующее неравенство

$$2H(X,Y,Z) \le H(X,Y) + H(X,Z) + H(Y,Z).$$

- **Р 5.** Неравенство Шерера. Пусть T_1, \ldots, T_k произвольные кортежи, составленные из переменных $\alpha_1, \ldots, \alpha_n$, причем каждая переменная входит ровно в r кортежей. Докажите, что $rH(\alpha_1, \ldots, \alpha_n) \leq H(T_1) + \ldots + H(T_n)$.
- **Р 6.** Докажите, что следующее неравенство выполнено *не для всех* троек случайных величин (α, β, γ) :

$$2H(\alpha, \beta, \gamma) \le H(\alpha, \beta) + H(\alpha, \gamma|\beta) + H(\beta, \gamma|\alpha).$$

- **Р 7.** Пусть случайная величина α имеет распределение 1/3, 2/3, а случайная величина β имеет распределение 1/2, 1/2. В каких пределах может изменяться $H(\alpha, \beta)$?
- **Р 1.1.** Пусть загадано число от 1 до N. Можно задавать любые вопросы вида число лежит в интервале [a,b] с ответом «да/нет». Сколько вопросов потребуется, если на один ответ можно дать неверный ответ?
- **Р 1.2.** Для множества $A \subseteq \mathbb{N}^3$ будем обозначать $\pi_{ij}(A)$ проекцию A на координатную плокость, задаваемую осями i,j (индексы $i,j \in [3]$). Докажите, что для любого конечного A выполняется:

$$2\log |A| \le \log |\pi_{12}(A)| + \log |\pi_{13}(A)| + \log |\pi_{23}(A)|.$$

Р 1.3. Для множества $A \subseteq \mathbb{N}^4$ будем обозначать $\pi_{ij}(A)$ проекцию A на координатную плокость, задаваемую осями i,j,k (индексы $i,j,k \in [4]$). Докажите, что для любого конечного A выполняется:

$$3\log |A| \le \log |\pi_{123}(A)| + \log |\pi_{124}(A)| + \log |\pi_{134}(A)| + \log |\pi_{234}(A)|.$$

Р 1.7. Даны две группы камешков, причем камешки в каждой группе упорядочены по весу. В первой группе n камешков, а во второй — m. Требуется упорядочить все камешки по весу. Придумайте способ, решающий эту задачу за менее чем $m \log n$ взвешиваний при больших n.

