Part 2

Q3. Part A

Steps to perform Marr-Hildreth edge detection:

- 1. Apply Gaussian filter to smooth the image
- 2. Apply Laplacian to detect edges
- 3. Detect zero-crossings by checking sign changes
- 4. keep only strong edges: |g(x + 1,y) g(x 1,y)| > threshold
- 5. Those positions follows step 3 & 4, make their intensity 255 else 0.

Original Image

Laplacian of Gaussian

Detected Edges

Original Image

Laplacian of Gaussian

Detected Edges

Parameters used:

 $\sigma = 2$

Laplacian kernel size = 3

Threshold = 15 (only strong edges detected)

Q3. Part B

Original Image

Original Image

DOG

$$\sigma^2 = \frac{\sigma_1^2 \sigma_2^2}{\sigma_1^2 - \sigma_2^2} \ln \left[\frac{\sigma_1^2}{\sigma_2^2} \right]$$

 σ = σ for LOG σ_1 & σ_2 for DOG (σ_1 = 1.6 σ_2)

Q3. Part C

Original Image

Low threshold = 50 and High threshold = 150

Q4. Part A

Original Image

Otsu's Thresholding (T=42)

k-Means Thresholding (T=43)

Otsu's Method:

Threshold = 42, Within-Class Variance = 397.10443971363355, Between-Class Variance = 693.8300285196959

k-Means Method:

Threshold = 43, Mean1 = 15.044552826597554, Mean2 = 71.5253290678386, Within-Class Variance = 397.1170367677733, Between-Class Variance = 693.8174314655562

Q4 Part B Here, K = 3

There is very less variability in between-class-variance and visual outputs. This indicating less sensitivity to initialization.

Q4. Part C

Segmented Image with Cluster Means

S = 15