- Rechteckige, tabellenähnliche Anordnung von Elementen (meist Zahlen)
- Mehrere Matrizen können Zusammenhänge darstellen oder auch Rechenvorgänge erleichtern.
 - z.B. Adjazenzmatrix, Lineare Gleichungsysteme
- Auf diese lassen sich bestimmte Rechenregeln anwenden.
- Matrix A: m×n
 - m = Zeilenanzahl = 3, i = Zeilenindex
 - n = Spaltenanzahl = 3, j = Spaltenindex
 - aij = Element der i-ten Zeile und j-ten Spalte
 - Hauptdiagonale: Diagonale von links oben nach rechts unten bzw. alle aij mit i=j
 - * a11, a22, a33

Arten von Matrizen

- quadratische Matrix ==> m=n
- symmetrische Matrix
 - symmetrisch entlang der Hauptdiagonale
 - jedes Element aij = aji

• Einheitsmatrix/Identitätsmatrix In ==> Elemente in der Hauptdiagonale (i=j) sind 1, ansonsten 0

 $\begin{array}{cccc} 1 & 0 & 0 \\ \hline 0 & 1 & 0 \\ 0 & 0 & 1 \end{array}$

- Diagonalmatrix ==> Nichtnullelemente in der Hauptdiagonale, ansonsten 0
 - z.B. Einheitsmatrix
- obere/untere Dreiecksmatrix ==> Nichtnullelemente nur in und ober/unterhalb der Hauptdiagonale
 - z.B. Einheitsmatrix

• Transponierte Matrix AT ==> gespiegelt an der Hauptdiagonale

 $\frac{1}{2} \quad \frac{0}{3}$

2 3

• Inverse Matrix A-1 ==> AxA-1 = In

- muss quadratisch sein
- Achtung: nicht jede quadratische Matrix ist invertierbar
- Matrizen sind regulär wenn invertierbar ansonsten singulär

2 1

6 4

2 -0.5 -3 1

Rechenoperationen auf Matrizen

- Addition von Matrix zu Skalar
 - Skalar zu jedem Element der Matrix addieren
- Addition von Matrix A $(m\times n)$ zu Matrix B $(m\times n)$
 - aij + bij für alle Elemente
- Multiplikation von Matrix mit Skalar
 - Skalar mit jedem Element der Matrix multiplizieren
- Multiplikation von Matrix A ($m \times n$) mit Matrix B ($m \times n$)
 - Spaltenanzahl der linken = Zeilenanzahl der rechten
 - (AB)ij= Σ von k=0 bis i (aik*bki)
- k-te Potenz von Matrix A

- $Ak = \Pi$ von i=1 bis k(A)
- A3 = A*A*A

[[NRLA]]