ARCF Introduction

--Xinpeng Guo

Basic Concepts

Two Basic Entity

- 1. Song
- 2. Singer
- 3. Song List
- 4. MV
- 5. Album

...

Three Basic Relationships

- 1. Circle
- 2. Discover New People (Famous People)
- 3. People U may know (Social Relation Chain)

- 1. Similar Songs
- 2. Single Song Radio
- 3. Buy This Also Buy
- 4. View This Also View

Knowledge Graph

Data Flow

Three Steps

UIA=Who+Where+When+What

	t_7d_imusic_user_item_action				
Field	Type	▼ Instruction	▼ Example		
user_id	string	用户ID	1234		
item_id	string	物品ID	5432		
action	int	动作枚举值,1=点击,2=下载,3=收藏,4	≒删除,5=观看		
location	int	位置,1000001=首页banner,100002=榜	9单页新歌榜 100000		
timestamp	bigint	linux时间戳	150478444		
extend	string	扩展位置(如观看时长长度等),分号分隔	6		
Partition	Type	▼ Instruction	▼ Sample		
ds	string	日期,格式:YYYY-MM-DD	"2017-9-7"		
item_type	int	物品类型,1=歌曲,2=歌手,3=歌单,4=r	mv		

三级分隔符	分号	
	逗号	
	冒号	
1		

UIP =Who+How+What

Real Matrix

t 7d imusic user item preference Field Instruction ▼ Type Example luser id string 用户ID 12345 item id 物品ID 54321 string preference double 分值(0-5分) 1.432 **Partition** Instruction ▼ Type ▼ Sample 日期, 格式: YYYY-MM-DD "2017-9-7" ds string 物品类型,1=歌曲,2=歌手,3=歌单,4=mv int iitem_type t_7d_imusic_user_item_preference_bool_matrix Field ▼ Type Instruction Example 12345 luser id string 用户ID 54321 item_id 物品ID string preference 1喜欢,0不喜欢/不知道 1.432 int Partition Instruction ▼ Type ▼ Sample "2017-9-7" ds 日期,格式:YYYY-MM-DD string 物品类型,1=歌曲,2=歌手,3=歌单,4=mv int litem_type

Bool Matrix

$U2I_{posterior} = UI_{prior} + I_{prior}2I_{posterior}$

$U_1 2I = U_1 2U_2 + U_2 I$

Two Thoughts

- Action Based : CF
- Content Based : Profile + pCTR

Architecture

Three Layers

Framework

Data Closed Loop

AR—Bool Matrix

Basket Analysis

AR Metrics—Pair Frequency

Count(A, B) = 3

AR Metrics—Jaccard

 $Jaccard(A, B) = count(A\cap B) / count(A \cup B) = 3/4$

AR Metrics—Support

Support $(A, B) = count(A\cap B) / count(ALL) = 3 / 7$

AR Metrics—Confidence

Confidence(A->B) = $P(A \cap B | A)$ = P(yellow | yellow+blue) = 1.0

AR Metrics—Confidence Pain Point

【置信度的痛点】 但是推荐过程中,使用会出现偏热的现象,是因为后验B太热门导致的。

A是用户的先验(比如是手管的app); B1是一款热门软件(比如微信); B2是一款相对冷门的软件(比如同步助手);

可以发现由于B1的体量太大,导致conf(B1|A)很大;由于B2的体量较小,导致conf(B2|A)偏小;但是明显应该推荐B2,因为B2都快和A重合进去了,应该对B1的体量进行惩罚。

AR Metrics—Lift

【提升度】 提升度是置信度B1体量惩罚的其中一种方法,含义为:

lift(B|A) = conf(B|A) / P(B) = p(A∩B) | (P(A) * P(B)) = count(A, B) * ALL / (count(A) * count(B)) = (3 乘 7) / (3 乘 4) = 21/12

其中,lift等于1,表示先验知识A的知道与否对B的概率没有影响。lift大于1,表示促进作用;lift小于1,表示抑制作用;

发现, lift(A|B)=lift(B|A), 即lift是对称的。

AR Metrics—KULR/IR

Given two itemsets, A and B, the **Kulczynski** measure of A and B (abbreviated as **Kulc**) is defined as

$$Kulc(A, B) = \frac{1}{2}(P(A|B) + P(B|A)).$$
 (6.11)

"Among the all_confidence, max_confidence, Kulczynski, and cosine measures, which is best at indicating interesting pattern relationships?"

To answer this question, we introduce the **imbalance ratio** (**IR**), which assesses the imbalance of two itemsets, *A* and *B*, in rule implications. It is defined as

$$IR(A,B) = \frac{|sup(A) - sup(B)|}{sup(A) + sup(B) - sup(A \cup B)},$$
(6.13)

AR Metrics—LLR

其他:【卡方值】和lift特性非常相似的还有卡方值,其和lift指标二选一即可,此处不再介绍。【LLR】全称,log-likelihood ratio,是根据熵的变化计算相似度的一种方式。对于item项A和B来说,有:

	Event A	Everything but A
Event B	A and B together (k_11)	B, but not A (k_12)
Everything but B	A without B (k_21)	Neither A nor B (k_22)

LLR的计算公式为:

LLR = 2 sum(k) (H(k) - H(rowSums(k)) - H(colSums(k)))

其中,熵的计算方法为:

 $H = \text{function}(k) \{N = \text{sum}(k) ; \text{return} (\text{sum}(k/N * \log(k/N + (k==0)))\}$

由公式可知:

- 1. 满足交换律 , LLR (a , b) =LLR(b, a)
- 2. 表达式恒大于0,0表示不相关,>0表示相关,可能正相关,也可能负相关。

Sim—Real Matrix

Sim Metrics—Cos

Figure 2: Isolation of the co-rated items and similarity computation

【cos】 上文已经提到了cos ,此处的cos和上文的不同在于 ,user-item矩阵可以是实数型的 ,而关联矩阵必须是0-1矩阵。 假设A和B是两个item ,有 $\cos(A,B) = A*B/(|A|*|B|)$

Sim Metrics—Adjust Cos

【用adjust-cos去掉user-bias】如果考虑到每user的打分标准都不同,user1喜欢打高分,user2喜欢打低分,应该把用户的打分标准减掉,有 adjust_cos(A, B) =

$$\frac{\sum_{u \in U} (R_{u,i} - \bar{R}_u)(R_{u,j} - \bar{R}_u)}{\sqrt{\sum_{u \in U} (R_{u,i} - \bar{R}_u)^2} \sqrt{\sum_{u \in U} (R_{u,j} - \bar{R}_u)^2}}.$$

Sim Metrics—Pearson

【用pearson去掉item-bias】 如果把A和B的向量归一化去掉bias,再做cos,即pearson的相似度:

$$+rac{\sum_{i=1}^{n}(x_{i}-ar{x})(y_{i}-ar{y})}{\sqrt{\sum_{i=1}^{n}(x_{i}-ar{x})^{2}}\sqrt{\sum_{i=1}^{n}(y_{i}-ar{y})^{2}}}$$

Sim Metrics—Hybrid

- 1. 得到user-item matrix打分矩阵
- 2. 去掉matrix bias
- 3. 去掉user bias
- 4. 去掉item bias
- 5. 做cos

Similarity

Similarity MetricsBool or Real			
▼ Both	Real Matrix Only		
Cos	Adjust cos		
	Pearson		
	·		
	■ Both		

Similarity M	letricsSymmetry or Not	
Symmetry	■ Non Symmetry	T
Support	Confidence	
Jaccard		
Lift		
KULC		
IR		
Cos		
Adjust Cos		
Pearson		

XX CFs

- Item2Vector CF
- Content CF
- LDA CF
- Simhash CF
- Node2Vector CF
- DNN Embedding CF

Refinement Prior

Action Rating

Action	Score
Play	1分
Favor	2分
Download	2分
Switch	-1'分
Trash	-2'分
Comment	3分
Search	2分
Share	2分

Time Decay

Session Split

最近30分钟无行为

Best Practice

Data Sparsity

Data Flow

Prior Posterior Diff Set --1

Prior Posterior Diff Set --2

Online

pCTR 实时= Feature 实时 or Model 实时

Q&A