Study Notes of Matrix and Tensor

Pei Zhong

March 20, 2024

Contents

1	Probability and Distributions		
	1.1	Introduction	3
	1.2	Sets	3
		The Probability Set Function	
		Homework	
	1.5	Reference	5
	Multivariate Distributions		
	2.1	Homework	6

Preface

The notes mainly refer to:

- Introduction to Mathematical Statistics 8th Edition
- lecture note
- Study Guide

Chapter 1

Probability and Distributions

1.1 Introduction

Definition 1.1

If an experiment can be repeated under the same conditions it is a random experiment. The set of every possible outcome of an experiment is the sample space, denoted C.

Remark. For an experiment, the sample space is not unique. For example, When talking about the temperature in an area, we can define the sample space as $\mathcal{C} = (-\infty, \infty)$ or $\mathcal{C} = [a, b]$. For a specific random experiment, we can use different sample spaces to describe it. However, it is worth studying how to describe it with an appropriate sample space.

Note/Definition. Notationally, we denote the elements of the sample space with lower case letters such as a, b, c. Subsets of the sample space are *events* and we denote them with upper case letters such as A, B, C.

Definition 1.2

If an experiment is performed N times and a specific event occurs f times, then f is the frequency of the event and f/N is the relative frequency of the event.

1.2 Sets

1.3 The Probability Set Function

We need to define a set function that assigns a probability to the events (subsets of sample space \mathcal{C}). We denote the colletion of events as \mathcal{B} . If \mathcal{C} is finite set, then we hope to assign a probability to all events (that is, to define a probability set function on the power set of \mathcal{C}). More generally, we require that \mathcal{B} (the colletion of events) to satisfy: (1) the sample space \mathcal{C} itself is an event, (2) the complement of every event is again an event, and (3) every countable union of events is again an event. Symbolically, this means (1) $\mathcal{C} \in \mathcal{B}$, (2) if $A \in \mathcal{B}$ then $A^c \in \mathcal{B}$, and (3) if $A_1, A_2, ... \in \mathcal{B}$ then $\bigcup_{n=1}^{\infty} A_n \in \mathcal{B}$. Combining (2) and (3), we see by DeMorgan's Law (for countable unions) that

if $A_1, A_2, ... \in \mathcal{B}$ then $\bigcap_{n=1}^{\infty} A_n \in \mathcal{B}$. So the collection of events \mathcal{B} is closed under complements, countable unions, and countable intersections. Such a collection of sets form a σ -algebra.

Definition 1.3

A collection of events $\{A_n | n \in I\}$ (where I is some indexing set) such that $A_i \cap A_j = \emptyset$ is a mutually exclusive collection of events.

Definition 1.4

Let \mathcal{C} be a sample space and let \mathcal{B} be the set of all events (thus, \mathcal{B} is a σ -field). Let P be a real-valued function defined on \mathcal{B} . Then P is a probability set function if P satisfies the following three conditions:

- (1) $P(A) \geqslant 0$ for $A \in \mathcal{B}$.
- (2) P(C) = 1.
- (3) If $\{A_n\}$ is a mutually exclusive collection of events, then $P(\bigcup_{n=1}^{+\infty} A_n) = \sum_{n=1}^{+\infty} P(C_n)$.

Theorem 1.1

For each event $A \in \mathcal{B}$, $P(A) = 1 - P(A^c)$.

Theorem 1.2

The probability of the null set is zero; that is, $P(\emptyset) = 0$.

Theorem 1.3

If A and B are events such that $A \subset B$, then $P(A) \leq P(B)$.

Theorem 1.4

For each event $A \in \mathcal{B}$ we have $0 \leqslant P(A) \leqslant 1$.

Theorem 1.5

If A and B are events in C, then $P(A \cup B) = P(A) + P(B) - P(A \cap B)$.

Theorem 1.6

Let $\{A_n\}$ be a nondecreasing sequence of events (ie. $A_n \subseteq A_{n+1}$). Then

$$\lim_{n \to \infty} P(A_n) = P(\lim_{n \to \infty} A_n) = P(\bigcup_{n=1}^{\infty} A_n).$$

Let $\{A_n\}$ be a nonincreasing sequence of events (ie. $A_n \supseteq A_{n+1}$). Then

$$\lim_{n\to\infty} P(A_n) = P(\lim_{n\to\infty} A_n) = P(\cap_{n=1}^{\infty} A_n).$$

Theorem 1.7

Let $\{A_n\}$ be an arbitrary sequence of events. Then

$$P(\bigcup_{n=1}^{\infty} A_n) \leqslant \sum_{n=1}^{\infty} P(A_n).$$

1.4 Homework

Exercise 1.1

Show that the moment generating function of the random variable X having the pdf $f(x) = \frac{1}{3}$, -1 < x < 2, zero elsewhere, is

$$M(t) = \begin{cases} \frac{e^{2t} - e^{-t}}{3t} & t \neq 0\\ 1 & t = 0. \end{cases}$$

1.5 Reference

- lecture note
- Probability and Distributions
- Sample space is unique?
- proof of 1.3

Chapter 2

Multivariate Distributions

2.1 Homework

Exercise 2.

Let the joint pdf of X and Y be given by

$$f(x,y) = \begin{cases} \frac{2}{(1+x+y)^3} & 0 < x < \infty, 0 < y < \infty \\ 0 & \text{elsewhere.} \end{cases}$$

(a) Compute the marginal pdf of X and the conditional pdf of Y, given X=x. (b) For a fixed X=x, compute E(1+x+Y|x) and use the result to compute E(Y|x).

Exercise 2.2

Let X_1, X_2, X_3 be iid with common pdf $f(x) = \exp(-x)$, $0 < x < \infty$, zero elsewhere. Evaluste:

- (a) $P(X_1 < X_2 | X_1 < 2X_2)$.
- (b) $P(X_1 < X_2 < X_3 | X_3 < 1)$.