Solución numérica de problemas de valor inicial En ecuaciones diferenciales ordinarias

Victorio E. Sonzogni

1/88

- Problemas de valor inicial
- 2 Existencia y unicidad de la solución
- Métodos de un paso
- 4 Métodos de Runge-Kutta
- Métodos Multipaso
- 6 Estabilidad y convergencia
- Sistemas de EDO

Sección 1

Problemas de valor inicial

3 / 88

Ejemplo

• Considérese el siguiente problema. Un cuerpo se encuentra a una temperatura θ y está rodeado de un medio ambiente con una temperatura θ_a (supóngase menor que la del cuerpo). El calor pasará del cuerpo al medio y aquel se enfriará, por cuanto su temperatura será función del tiempo $(\theta(t))$.

• La velocidad con que se pierde la temperatura es proporcional a la diferencia entre $\theta(t)$ y θ_a :

$$\frac{d\theta(t)}{dt} = -k(\theta(t) - \theta_a) \tag{1}$$

Esta es la *Ley de Enfriamiento de Newton*, que gobierna este problema, y k>0 de modo que si la temperatura del cuerpo es mayor que la del medio, $\frac{d\theta(t)}{dt}<0$.

• Si se desea conocer la temperatura en un instante t hay que integrar la ecuación (1). La integración introduce una constante (desconocida). La solución de la ec. (1) no es única: existen ∞ soluciones que difieren en una constante.

5/88

Ejemplo

- Para que la solución sea única hay que proporcionar una condición (ecuación). Esta puede ser una condición inicial: $\theta(0) = \bar{\theta}_0$ (temperatura inicial conocida).
- El problema queda:

$$\begin{cases} \frac{d\theta(t)}{dt} = -k(\theta(t) - \theta_a) & \text{ecuacion de campo} \\ \theta(0) = \bar{\theta}_0 & \text{condicion inicial} \end{cases}$$
 (2)

- El problema (2) se llama problema de valor inicial y tiene solución única.
- La cantidad de condiciones iniciales tiene que ser igual al orden de derivación en la ecuación.

• La solución analítica de (2) es:

$$\theta(t) = \theta_a + (\bar{\theta}_0 - \theta_a) e^{-kt}$$

Figura 1. Solución $\theta(t)$ para distintos casos en que $\bar{\theta}_0>\theta_a$ y $\bar{\theta}_0<\theta_a$

7 / 88

Problemas de Valor Inicial

 Un problema de valor inicial se tiene a partir de una ecuación diferencial:

$$\frac{dy}{dx} = f(x, y)$$

válida en el intervalo a < x < b

• Esa ecuación tiene ∞ soluciones y(x). Para precisar una es necesario dar una condición:

$$y(a) = \bar{y}_0$$

que se denomina condición inicial.

El problema de valor inicial (PVI) se escribe:

$$\begin{cases} y' = f(x, y) \\ y(a) = \bar{y}_0 \end{cases}$$
 (3)

• Es decir, el problema es:

hallar la función y(x) que satisface la ecuación diferencial y' = f(x, y) en el intervalo (a, b) y que además satisface la condición inicial $y(a) = \bar{y}_0$.

- La función f(x, y) representa, como lo indica la ecuación, la derivada de y. Y esta derivada, en el caso más general depende de x y de y.
- En el ejemplo de enfriamiento y' es independiente de x, es función lineal de y. En la figura 1, a lo largo de una línea horizontal, la pendiente de las curvas es constante. A lo largo de una línea vertical, crece linealmente con y.

9 / 88

Ejemplo

Para la ecuación:

$$y' = \frac{1}{2}(x - y)$$

se ha graficado dos soluciones.

• Las líneas son curvas de nivel para f(x,y) y corresponden a puntos de y'=cte. La línea desde el origen a 45^o es la de y'=0. Hacia la derecha hay líneas con y'>0 y hacia la izquierda con y'<0

 Un PVI para ecuaciones de distintos órdenes de derivación puede escribirse:

$$\begin{cases} y^{(n)} = f(x, y, y', y'', \dots, y^{(n-1)}) \\ y(a) = \bar{y}_0 \\ y'(a) = \bar{y}'_0 \\ y''(a) = \bar{y}''_0 \\ \dots \\ y^{(n-1)}(a) = \bar{y}_0^{n-1} \end{cases}$$

- Si se puede integrar analíticamente la ecuación diferencial, las constantes de integración se calculan a partir de las condiciones iniciales.
- Si no es posible integrarla analíticamente, hay que recurrir a métodos numéricos.

11 / 88

Sección 2

Existencia y unicidad de la solución

Existencia y unicidad de la solución

- Antes de emprender la solución (analítica o numérica) del PVI hay que ver si el problema tiene solución.
- Más precisamente hay que responder a las siguientes preguntas:
 - El PVI ¿tiene solución?
 - Si la tiene, ¿es única?
 - Esa solución, ¿es sensible a pequeñas variaciones en los datos?
- Se introducen ahora algunas definciones y se verán algunos teoremas que permiten responder a esas preguntas.

13/88

Existencia y unicidad de la solución

Definición:

Se dice que una función f(x,y) satisface la condición de Lipschitz para la variable y en un conjunto $D \subset \mathbb{R}^2$, si existe una constante L > 0 tal que

$$|f(x, y_1) - f(x, y_2)| \le L |y_1 - y_2|$$

si los puntos (x, y_1) y (x, y_2) están en D. La constante L se llama constante de Lipschitz

Definición:

Se dice que conjunto $D \subset \mathbb{R}^2$ es *convexo*, si dados dos puntos (x_1, y_1) y $(x_2, y_2) \in D$, el punto $((1 - \lambda)x_1 + \lambda x_2, (1 - \lambda)y_1 + \lambda y_2)$ también $\in D$, donde $0 < \lambda < 1$.

Un rectángulo es convexo. Generalmente trabajaremos en conjuntos $x_1 \le x \le x_2$, $-\infty < y < \infty$ que también lo son.

Ejemplo:

Sea $D = \{(x, y) | 1 \le x \le 2, -3 < y < 3\}$ y sea f(x, y) = x|y|, entonces para cada (x, y_1) y (x, y_2) están en D:

$$|f(x, y_1) - f(x, y_2)| = |x|y_1| - x|y_2| = |x| ||y_1| - |y_2|| \le 2|y_1 - y_2|$$

Luego f verifica una C.L. para y en D, y la cte de Lipschitz es 2.

Existencia y unicidad de la solución

Teorema 1:

Sea f(x,y) definida en $D \subset \mathbb{R}^2$. Si existe una constante L > 0 tal que

$$\left|\frac{\partial f}{\partial y}(x,y)\right| \le L$$

para todo $(x, y) \in D$, entonces f satisface una condición de Lipschitz para la variable y con una constante de Lipshitz L.

Las condiciones de este teorema son *suficientes* para que se satisfaga una condición de Lipschitz, pero no *necesarias*.

Teorema 2:

Sea

$$D = \{(x, y) | a \le x \le b, -\infty < y < \infty\}$$

y sea f(x, y) continua en D.

Si f satisface una condición de Lipschitz en D para la variable y, entonces el PVI:

$$\begin{cases} y' = f(x, y) & a \le x \le b \\ y(a) = \bar{y}_0 \end{cases}$$

tiene una solución única y(x) para $a \le x \le b$.

17 / 88

Existencia y unicidad de la solución

Definición:

Se dice que el PVI

$$\begin{cases} y' = f(x, y) & a \le x \le b \\ y(a) = \bar{y}_0 \end{cases}$$

es un problema bien planteado si:

- 1) Existe una solución única y(x) para ese problema.
- 2) Existen ctes $\epsilon > 0$ y k > 0 tales que *existe* una solución *única* z(x) al problema:

$$\begin{cases} z' = f(x, z) + \delta(x) & a \le x \le b \\ z(a) = \bar{y}_0 + \epsilon_0 \end{cases}$$

donde $|z(x) - y(x)| < k\epsilon \ \forall \ a \le x \le b$, siempre que $|\epsilon_0| < \epsilon$ y $\delta(x) < \epsilon$.

Teorema 3:

Sea

$$D = \{(x, y) | a \le x \le b, -\infty < y < \infty\}$$

el PVI:

$$\begin{cases} y' = f(x, y) & a \le x \le b \\ y(a) = \bar{y}_0 \end{cases}$$

está bien planteado si f es continua y satisface una condición de Lipschitz para la variable y en el conjunto D.

19/88

Existencia y unicidad de la solución

Ejemplo:

Sea $D = \{(x, y) | 0 \le x \le 1, -\infty < y < \infty\}$ y sea el PVI:

$$\begin{cases} y' = 1 + x - y & 0 \le x \le 1 \\ y(0) = 1 \end{cases} \tag{a}$$

- ullet $rac{\partial f}{\partial y}=-1$, $|rac{\partial f}{\partial y}|=1$, \therefore por el Teorema 1 satisface una C.L para y en D con cte L=1.
- Como f es continua, por Teorema 2 el PVI tiene solución única, y por Teorema 3 está bien planteado.
- El problema perturbado:

$$\begin{cases} z' = 1 + x - y + \delta & 0 \le x \le 1 \\ z(a) = 1 + \epsilon_0 \end{cases}$$
 (b)

con δ y ϵ ctes.

La solución de (a) es: $y(x) = e^{-x} + x$

La solución de (b) es: $z(x) = (1 + \epsilon_0 - \delta)e^{-x} + x + \delta$

Si $|\delta| < \epsilon$ y $|\epsilon_0| < \epsilon$, entonces:

$$|y(x) - z(x)| = |(\delta - \epsilon_0)e^{-x} - \delta| = |\delta(e^{-x} - 1) - \epsilon_0 e^{-x}| \le |\delta| |1 - e^{-x}| + |\epsilon_0| \le 2\epsilon$$

Se verifica el Teorema 3.

Sección 3

Métodos de un paso

21/88

Métodos de un paso

Sea el PVI

$$\begin{cases} y' = f(x, y) & a \le x \le b \\ y(a) = \bar{y}_0 \end{cases}$$

• Se obtendrán aproximaciones a y en determinados puntos o nodos en el intervalo [a,b]. Esos puntos de red o nodos están igualmente espaciados. Dividiendo (a,b) en n subintervalos, el tamaño del paso es $h=\frac{b-a}{n}$ y la abcisa del nodo i es $x_i=x_0+i$ h.

• Los metodos de un paso permiten evaluar la solución numérica y_{i+1} , en la abcisa x_{i+1} , con formulas del tipo:

$$y_{i+1} = y_i + h \Phi$$

donde Φ es una aproximacion a $\frac{y(x_{i+1})-y(x_i)}{h}$ que, en general puede ser función de x_i , x_{i+1} , y_i , y_{i+1} y h.

- Si $\Phi(x_i, x_{i+1}, y_i, y_{i+1}, h)$ el método se dice *implícito*.
- Si Φ no depende de y_{i+1} el método se dice *explícito*.

23 / 88

Método de Euler

- El método de un paso más sencillo es el Método de Euler.
- A partir de x_i aplicando Series de Taylor:

$$y(x_{i+1}) = y(x_i) + (x_{i+1} - x_i) y'(x_i) + \frac{1}{2}(x_{i+1} - x_i)^2 y''(\xi_i)$$

siendo $x_i < \xi_i < x_{i+1}$

$$y(x_{i+1}) = y(x_i) + h y'(x_i) + \frac{1}{2}h^2 y''(\xi_i)$$

• Despreciando el término en h^2 :

$$y(x_{i+1}) \simeq y(x_i) + h y'(x_i)$$

• Como y satisface la ec. diferencial, y' = f(x, y).

$$y(x_{i+1}) \simeq y(x_i) + h f(x_i, y(x_i))$$

• Esto da lugar al Método de Euler para integrar EDO. Utilizando la notación $y_i = y(x_i)$, el algoritmo del método de Euler:

$$\begin{vmatrix} y_0 = y(a) = \bar{y}_0 \\ y_{i+1} = y_i + h \ f(x_i, y_i) \end{vmatrix}$$
 $i = 0, 1, 2 \dots, n-1$

25 / 88

Algoritmo del Método de Euler

Para aproximar

$$\begin{cases} y' = f(x, y) & a \le x \le b \\ y(a) = \bar{y}_0 \end{cases}$$

con n+1 puntos en [a, b].

Entrada: a, b, n, y_0

Salida: y_i $(i = 1, 2, \dots n)$

- 1) $h = \frac{b-a}{n}$ $x_0 = a$ $y_0 = \bar{y}_0$
- 2) Para i = 1, 2 ... n hacer

$$\begin{vmatrix} y_i = y_{i-1} + h \ f(x_{i-1}, y_{i-1}) \\ x_i = x_0 + i \ h \end{vmatrix}$$

3) Salida: (x_i, y_i) (i = 0, 1, 2, ... n)

• En la figura se muestra la solucion de y' = 2x en el intervalo (0,6), con $\bar{y}_0 = 1$. La solución numérica se va alejando de la solución exacta. Se muestran allí resultados con h = 1 y con h = 0.5.

27 / 88

Métodos de Taylor

• Si la función f(x, y) es derivable varias veces, se puede escribir la serie de Taylor:

$$y(x_{i+1}) = y(x_i) + h y'(x_i) + \frac{h^2}{2} y''(x_i) + \frac{h^3}{3!} y'''(x_i) + \ldots + \frac{h^n}{n!} y^{(n)}(x_i) + \frac{h^{n+1}}{(n+1)!} y^{(n+1)}(\xi_i)$$

para $x_i < \xi < x_{i+1}$

• De la ecuación diferencial:

$$y' = f(x,y)$$
$$y'' = f'(x,y)$$
$$y''' = f''(x,y)$$

etc.

• Despreciando el término en h^{n+1} :

$$y(x_{i+1}) \simeq y(x_i) + h f(x_i, y(x_i)) + \frac{h^2}{2} f'(x_i, y(x_i)) + \frac{h^3}{3!} f''(x_i, y(x_i)) + \ldots + \frac{h^n}{n!} f^{(n-1)}(x_i, y(x_i))$$

- El método de Taylor de orden n utiliza la expresión anterior para integrar la ecuacion diferencial, partiendo de la condición $y(0) = \bar{y}_0$.
- Ventajas:

Se puede reducir el error de truncamiento con tal de tomar suficientes derivadas.

Desventajas:

Hay que derivar la función f(x, y), varias veces.

- El Método de Euler es un Método de Taylor de orden 1.
- Los Métodos de Taylor de mayor orden en general no se usan pues requieren obtener las derivadas de orden superior y evaluarlas en cada punto de integración.

29 / 88

Errores en los métodos para PVI

- Los errores que aparecen al integrar PVI se pueden clasificar en
 - errores de truncamiento local (ETL):
 Aparecen en cada paso al truncar la serie de Taylor.
 - 2) errores de redondeo local (ERL): Debido a la aritmética finita
 - 3) errores de truncamiento global (ETG):
 - Acumulación de ETL.
 - 4) errores de redondeo global (ERG): Acumulación de ERL.

Aumenta al achicarse h.

error total: Suma de ETG y ERG. El error de truncamiento local es el que se da en cada paso de integración.

$$\tau_i h = (y(x_{i+1}) - y(x_i)) - h \Phi(x_i, y(x_i), h)$$

Si el método es de orden n el ETL es orden h^{n+1} Este error disminuye al disminuir h.

(A veces se define como error de truncamiento local a τ_i , esto es al error al aproximar la secante por la derivada.)

31 / 88

Errores en los métodos para PVI

• El error de truncamiento global proviene de la acumulación de errores de truncamiento local. Puede escribirse:

$$e_i = y_i - y(x_i)$$

Es de orden $O(h^n)$. $(n \text{ veces } O(h^{n+1}) = \frac{b-a}{h} \text{ veces } O(h^{n+1}))$.

 Para el método de Euler, hay un teorema que asegura que el error de truncamiento global esta acotado por

$$|y_i - y(x_i)| \le \frac{hM}{2I} [e^{L(x_i - a)} - 1]$$

para cualquier i, donde L es la constante de Lipschitz (f verifica la condicion de Lipschitz) y M acota la derivada segunda

$$|y''(x)| \le M \qquad \forall x \in (a, b)$$

• Para el Método de Euler, el menor error total se da para un paso:

$$h = \sqrt{\frac{2\delta}{M}}$$

donde δ es la cota del error de redondeo ($|\delta_i| < \delta$), y M es la cota de la derivada $y''(\xi_i)$ ($|y''(\xi_i)| < M$).

33 / 88

Métodos explícitos y métodos implícitos

La fórmula del método de Euler:

$$y_{i+1} = y_i + h f(x_i, y_i)$$

permite calcular la solución en x_{i+1} usando valores disponibles evaluados en x_i .

Este método se denomina también Método de Euler *progresivo* o hacia adelante (forward Euler). Y es un ejemplo de método explícito.

• También podría plantearse una fórmula:

$$y_{i+1} = y_i + h f(x_{i+1}, y_{i+1})$$

en este caso la solución en x_{i+1} depende de y_{i+1} por lo que no puede calcularse explícitamente.

Este método es *implícito* y, en rigor, es una ecuación no lineal por lo que su resolución es más cara.

Este método se denomina también Método de Euler regresivo o hacia atrás (backward Euler)

Métodos explícitos y métodos implícitos

Un método más preciso que el de Euler:

$$y_{i+1} = y_i + \frac{1}{2} h (f(x_i, y_i) + f(x_{i+1}, y_{i+1}))$$

- Este método se denomina Método de Crank-Nicholson, ó también Método del Trapecio.
- Usa una pendiente promedio entre la pendiente de los puntos inicial y final del paso.
- Es un método implícito.

35 / 88

Sección 4

Métodos de Runge-Kutta

Métodos de Runge-Kutta

• El desarrollo en serie de Taylor, a partir del punto x_i :

$$y(x_{i+1}) = y(x_i) + h y'(x_i) + \frac{h^2}{2} y''(x_i) + \frac{h^3}{3!} y'''(x_i) + \dots$$

• De la ecuación diferencial (usando la notación: $f_x = \frac{\partial f}{\partial x}$, etc.):

$$y'' = f$$

$$y'' = \frac{d}{dx}f = \frac{\partial f}{\partial x} + \frac{\partial f}{\partial y}\frac{dy}{dx} = f_x + f_y y' = f_x + f_y f$$

$$y''' = \frac{d}{dx}y'' = f_{xx} + f_{xy}y' + (f_{yx}f + f_y f_x) + (f_{yy}f + f_y f_y)y'$$

$$= f_{xx} + f_{xy}f + f_{yx}f + f_y f_x + f_{yy}f^2 + f_y^2 f$$

etc.

37 / 88

Métodos de Runge-Kutta

• Reteniendo hasta el término en h^2 en la serie de Taylor: :

$$y(x+h) = y + h f + \frac{h^2}{2} (f_x + ff_y) + O(h^3)$$
 (1)

donde se ha usado la notación:

$$y = y(x)$$
$$f = f(x, y(x))$$

etc.

Polinomios de Taylor en 2 variables

$$f(x+a,y+b) = \sum_{i=0}^{n} \frac{1}{i!} \left(a\frac{\partial}{\partial x} + b\frac{\partial}{\partial y}\right)^{i} f(x,y) + E_{n}(x,y)$$

donde

$$\left(a\frac{\partial}{\partial x} + b\frac{\partial}{\partial y}\right)^{0} f(x,y) = f(x,y)$$

$$\left(a\frac{\partial}{\partial x} + b\frac{\partial}{\partial y}\right)^{1} f(x,y) = a\frac{\partial}{\partial x} f(x,y) + b\frac{\partial}{\partial y} f(x,y)$$

$$\left(a\frac{\partial}{\partial x} + b\frac{\partial}{\partial y}\right)^{2} f(x,y) = a^{2} \frac{\partial^{2}}{\partial x^{2}} f(x,y) + 2 a b \frac{\partial^{2}}{\partial x \partial y} f(x,y) + b^{2} \frac{\partial^{2}}{\partial y^{2}} f(x,y)$$

y el error de truncamiento:

$$E_n(x,y) = \frac{1}{(n+1)!} \left(a \frac{\partial}{\partial x} + b \frac{\partial}{\partial y} \right)^{n+1} f(x + \theta a, y + \theta b)$$

 $con 0 < \theta < 1$

30 / 88

Métodos de Runge-Kutta

La fórmula (1):

$$y(x+h) = y + \frac{1}{2} h f + \frac{1}{2} h [f + h f_x + h f f_y] + O(h^3)$$
 (2)

• De la fórmula de Taylor para 2 variables, con n = 1:

$$f(x+h,y+hf) = f + h f_x + h f f_y + O(h^2)$$
 (3)

• La fórmula (2) puede escribirse:

$$y(x+h) = y + \frac{1}{2} h f + \frac{1}{2} h f(x+h, y+hf) + O(h^3)$$
 (4)

• De la última fórmula puede escribirse:

$$y_{i+1} = y_i + \frac{1}{2} (F_1 + F_2)$$

donde

$$F_1 = h f(x_i, y_i)$$

 $F_2 = h f(x_{i+1}, y_i + F_1)$

• Esta fórmula se conoce como Fórmula de Runge-Kutta de 2º orden.

41 / 88

Métodos de Runge-Kutta

• Las Fórmulas de Runge-Kutta de 2° orden se pueden escribir:

$$y(x_{i+1}) = y(x_i) + w_1 h f + w_2 h f(x + \alpha h, y + \beta h f) + O(h^3)$$

Los parámetros w_1, w_2, α y β dan lugar a diferentes fórmulas.

• Teniendo en cuenta (3) se puede escribir:

$$y(x_{i+1}) = y(x_i) + w_1 h f + w_2 h [f + \alpha h f_x + \beta h f f_y]) + O(h^3)$$

• Comparando con (1) se ve que deben ser:

$$w_1 + w_2 = 1$$

 $w_2 \alpha = \frac{1}{2}$
 $w_2 \beta = \frac{1}{2}$

Métodos de Runge-Kutta de 2º orden

Método de Heun

Se da con:

$$w_1 = w_2 = \frac{1}{2}$$
$$\alpha = \beta = 1$$

$$y_{i+1} = y_i + \frac{1}{2} (F_1 + F_2)$$

donde

$$F_1 = h f(x_i, y_i)$$

 $F_2 = h f(x_i + h, y_i + F_1)$

43 / 88

Métodos de Runge-Kutta de 2º orden

Método de Euler modificado

Se da con:

$$w_1 = 0$$

$$w_2 = 1$$

$$\alpha = \beta = \frac{1}{2}$$

$$y_{i+1} = y_i + F_2$$

donde

$$F_1 = h f(x_i, y_i)$$

 $F_2 = h f(x_i + \frac{1}{2}h, y_i + \frac{1}{2}F_1)$

Se conoce también como Método del Punto Medio

Otro método de segundo orden

Se da con:

$$w_1 = \frac{1}{4}$$

$$w_2 = \frac{3}{4}$$

$$\alpha = \beta = \frac{2}{3}$$

$$y_{i+1} = y_i + \frac{1}{4} (F_1 + 3 F_2)$$

donde

$$F_1 = h f(x_i, y_i)$$

 $F_2 = h f(x_i + \frac{2}{3}h, y_i + \frac{2}{3}F_1)$

45 / 88

Métodos de Runge-Kutta de 2^o orden

- El Método de Heun se puede escribir en dos pasos:
 - 1) $\tilde{y}_{i+1} = y_i + h f(x_i, y_i)$
 - 2) $y_{i+1} = y_i + \frac{1}{2}h [f(x_i, y_i) + f(x_{i+1}, \tilde{y}_{i+1})]$
- El primer paso puede verse como una predicción del valor de y en x_{i+1}. Una predicción explícita ya que se calcula a partir del conocimiento de los valores en x_i.
- El segundo paso puede verse como una corrección del valor anterior, con una fórmula implícita.
- Esto da lugar a los métodos llamados *predictor-corrector* que se analizarán más adelante.

47 / 88

Métodos de Runge-Kutta de 4° orden

• Un método muy usado es el Runge-Kutta de 4º orden:

Método de Runge-Kutta de 4º orden

$$y_{i+1} = y_i + \frac{1}{6}(F_1 + F_2 + F_3 + F_4)$$

donde

$$F_1 = h f(x_i, y_i)$$

$$F_2 = h f(x_i + \frac{1}{2}h, y_i + \frac{1}{2}F_1)$$

$$F_3 = h f(x_i + \frac{1}{2}h, y_i + \frac{1}{2}F_2)$$

$$F_4 = h f(x_i + h, y_i + F_3)$$

- Es de 4° orden pues contempla los términos hasta h^4 . El error es de orden h^5 .
- Hay muchas fórmulas de Runge-Kutta de 4º orden.

Métodos de Runge-Kutta de 4º orden

Algoritmo del Método de Runge-Kutta de 4º orden

Entrada: a, b, n, \bar{y}_0

Salida: y_i i = 0, 1, 2, ... n

1)
$$h = \frac{b-a}{n}$$
, $x_0 = a$, $y_0 = \bar{y}_0$

2) Para $i = 0, 1, 2, \dots n-1$:

$$x_{i+1} = x_i + h$$

$$F_1 = h f(x_i, y_i)$$

$$F_2 = h f(x_i + \frac{1}{2}h, y_i + \frac{1}{2}F_1)$$

$$F_3 = h f(x_i + \frac{1}{2}h, y_i + \frac{1}{2}F_2)$$

$$F_4 = h f(x_i + h, y_i + F_3)$$

$$y_{i+1} = y_i + \frac{1}{6}(F_1 + F_2 + F_3 + F_4)$$

3) Salida

49 / 88

Métodos de Runge-Kutta

Método de Runge-Kutta de 3º orden

$$y_{i+1} = y_i + \frac{1}{6}(F_1 + 4 F_2 + F_3)$$

donde

$$F_1 = h f(x_i, y_i)$$

$$F_2 = h f(x_i + \frac{1}{2}h, y_i + \frac{1}{2}F_1)$$

$$F_3 = h f(x_i + h, y_i + 2 F_2 - F_1)$$

Errores en los Métodos de Runge-Kutta

- Un método RK de orden m es equivalente a tomar polinomios de Taylor hasta términos de orden m, y el error de truncamiento es $O(h^{m+1})$.
- La solución exacta $y(x_{i+1})$ sería:

$$y(x_{i+1}) = y_{i+1} + C h^{m+1}$$

donde y_{i+1} es la aproximación y el último término el error de truncamiento.

• Si se calcula $y_{i+1}^{(1)}$ con un paso h; y $y_{i+1}^{(2)}$ con 2 pasos h/2,:

$$y(x_{i+1}) = y_{i+1}^{(1)} + C h^{m+1}$$

$$y(x_{i+1}) = y_{i+1}^{(2)} + 2 C (\frac{h}{2})^{m+1}$$

restando:

$$y_{i+1}^{(2)} - y_{i+1}^{(1)} = C \left(h^{m+1} - \frac{h^{m+1}}{2^m} \right) = C h^{m+1} \left(1 - \frac{1}{2^m} \right)$$

51/88

Errores en los Métodos de Runge-Kutta

• De la última expresión:

$$C h^{m+1} \simeq \frac{y_{i+1}^{(2)} - y_{i+1}^{(1)}}{(1 - 2^{-m})} \simeq y_{i+1}^{(2)} - y_{i+1}^{(1)}$$

• Para los métodos de RK:

RK de orden	Error de truncamiento local	Evaluaciones de función	
2	$O(h^3)$	2	
3	$O(h^4)$	3	
4	$O(h^5)$	4	
5	$O(h^6)$	6	
6	$O(h^7)$	7	

ullet Se prefieren los métodos de RK de orden \leq 4

Ejemplo

Sea el problema:

$$y' = y - x^2 + 1$$
 $0 \le x \le 2$
 $y(0) = 0.5$

resuelto por el Método de Euler con h=0.025; Heun con h=0.05; y RK 4^o orden con h=0.1. En todos los casos se realizaron 20 evaluaciones de funciones.

t_i	Exact	Euler $h = 0.025$	Modified Euler $h = 0.05$	Runge-Kutta Order Four $h = 0.1$
0.0	0.5000000	0.5000000	0.5000000	0.5000000
0.1	0.6574145	0.6554982	0.6573085	0.6574144
0.2	0.8292986	0.8253385	0.8290778	0.8292983
0.3	1.0150706	1.0089334	1.0147254	1.0150701
0.4	1.2140877	1.2056345	1.2136079	1.2140869
0.5	1.4256394	1.4147264	1.4250141	1.4256384

53 / 88

Sección 5

Métodos Multipaso

• Hasta ahora hemos visto métodos de integración donde para calcular y_{i+1} se usan los valores calculados en x_i . No los anteriores. Por ejemplo la fórmula de Heun:

$$y_{i+1} = y_i + h/2[f(x_i, y_i) + f(x_{i+1}, y_{i+1})]$$

- Como el error se va acumulando, los últimos tienen errores mayores.
- Se pueden usar los puntos anterioremente calculado → fórmulas multipaso:

$$y_{i+1} = \phi(y_i, y_{i-1}, y_{i-2}, \dots)$$

55 / 88

Métodos Multipaso

El problema

$$\begin{cases} y' = f(x, y) & a \le x \le b \\ y(a) = \bar{y}_0 \end{cases}$$

Si integramos y':

$$\int_{x_i}^{x_{i+1}} y'(x) dx = y_{i+1} - y_i$$

$$y_{i+1} = y_i + \int_{x_i}^{x_{i+1}} f(x,y) dx$$

- Podemos usar fórmulas de interpolación para aproximar f(x, y) e integrar numéricamente.
- Si usamos polinomios, obtenemos fórmulas de paso múltiple.

La forma general de un método multipaso de m pasos es:

$$y_{i+1} = a_{m-1} y_i + a_{m-2} y_{i-1} + a_{m-3} y_{i-2} + \ldots + a_0 y_{i+1-m} + h \left[b_m f(x_{i+1}, y_{i+1}) + b_{m-1} f(x_i, y_i) + b_{m-2} f(x_{i-1}, y_{i-1}) + \ldots + b_0 f(x_{i+1-m}, y_{i+1-m}) \right]$$

para
$$i=m-1,m,\ldots,n-1$$

- Los $a_0, \ldots a_{m-1}$ y $b_0, \ldots b_m$ son constantes.
- Los y_i , (para i = 0, 1, ..., m-1) son conocidos. Valores iniciales
- Si $b_m = 0 \rightarrow \text{m\'etodo } expl\'icito o abierto$
- Si $b_m \neq 0$ \rightarrow método *implícito* o *cerrado*
- Se precisan m condiciones iniciales. Se usa un método de un paso (Runge-Kutta, Euler, etc.) para obtener los primeros m valores de y_i . Luego se arranca con el método multipaso.

57 / 88

Ejemplo

- Ejemplo de construcción de una fórmula multipaso mediante el método de los *Coeficientes Indeterminados*.
- Sea la fórmula de 5 pasos:

$$\int_{x_i}^{x_{i+1}} f(x,y) dx \simeq h \left[A f_i + B f_{i-1} + C f_{i-2} + D f_{i-3} + E f_{i-4} \right]$$
 (1)

- El procedimiento es el siguiente: por 5 puntos puede hacerse pasar un polinomio de 4^o grado. Se representará f(x,y) como combinación de polinomios de 4^o grado y se integrará entre x_i y x_{i+1} para obtener el término de la izquierda.
- Por comodidad se tomará $t_i = 0$, con lo que $t_{i+1} = 1$, $t_{i-1} = -1$, $t_{i-2} = -2$, $t_{i-3} = -3$, y $t_{i-4} = -4$.

 En vez de tomar polinimios cualesquiera, a los efectos de facilitar las operaciones se tomarán:

$$p_0(x) = 1$$
 $p_1(x) = t$
 $p_2(x) = t(t+1)$
 $p_3(x) = t(t+1)(t+2)$
 $p_4(x) = t(t+1)(t+2)(t+3)$

y con ello

$$f(x,y) = c_0 p_0 + c_1 p_1 + c_2 p_2 + c_3 p_3 + c_4 p_4$$
 (2)

Realizando la integral, tenemos el lado izquierdo de (1):

$$\int_{x_i}^{x_{i+1}} f(x,y) dx = c_0 1 + c_1 \frac{1}{2} + c_2 \frac{5}{6} + c_3 \frac{9}{4} + c_4 \frac{251}{30}$$

59 / 88

Ejemplo

• Para evaluar el lado derecho de (1) usamos la función (2) para obtener f_i , f_{i-1} , etc.

$$f_i = f(0) = c_0$$

 $f_{i-1} = f(-1) = c_0 - c_1$
 $f_{i-2} = f(-2) = c_0 - 2c_1 + 2c_2$
 $f_{i-3} = f(-3) = c_0 - 3c_1 + 6c_2 - 6c_3$
 $f_{i-4} = f(-4) = c_0 - 4c_1 + 12c_2 - 24c_3 + 24c_4$
multiplicando la primera expresión por A , la segunda por B , etc. (y siendo $h = 1$) se puede evaluar el lado derecho de (1).

• Igualando los factores de los coeficientes c_0 . c_1 , etc. de ambos miembros de (1) se obtiene:

$$A + B + C + D + E = 1$$

$$-B - 2C - 3D - 4E = 1/2$$

$$2C + 6D + 12E = 5/6$$

$$-6D - 24E = 9/4$$

$$24E = 251/30$$
(3)

• La resolución del sistema (3) proporciona los coeficientes:

$$A = \frac{1901}{720}$$
; $B = -\frac{2774}{720}$; $C = \frac{2616}{720}$; $D = -\frac{1274}{720}$; $E = \frac{251}{720}$

y la fórmula multipaso es:

$$y_{i+1} = y_i + \frac{h}{720} [1901 \ f_i - 2774 \ f_{i-1} + 2616 \ f_{i-2} - 1274 \ f_{i-3} + 251 \ f_{i-4}]$$

esta fórmula es conocida como Fórmula de Adams-Bashfort de 5 pasos.

61/88

Fórmulas de Adams-Bashfort

• Las fórmulas de Adams-Bashfort son explícitas $(b_m = 0)$ y tienen $a_{m-1} = 1$ y el resto de los $a_j = 0$:

$$y_{i+1} = y_i + h [b_{m-1} f(x_i, y_i) + b_{m-2} f(x_{i-1}, y_{i-1}) + \ldots + b_0 f(x_{i+1-m}, y_{i+1-m})]$$

• A-B de 2 pasos:

$$y_{i+1} = y_i + \frac{h}{2} [3 f_i - f_{i-1}]$$

• A-B de 3 pasos:

$$y_{i+1} = y_i + \frac{h}{12} [23 f_i - 16 f_{i-1} + 5 f_{i-2}]$$

• A-B de 4 pasos:

$$y_{i+1} = y_i + \frac{h}{24} [55 f_i - 59 f_{i-1} + 37 f_{i-2} - 9 f_{i-3}]$$

A-B de 5 pasos:

$$y_{i+1} = y_i + \frac{h}{720} [1901 \ f_i - 2774 f_{i-1} + 2616 f_{i-2} - 1274 f_{i-3} + 251 f_{i-4}]$$

Fórmulas de Adams-Moulton

• Las fórmulas de Adams-Moulton son implícitas $(b_m \neq 0)$ y tienen $a_{m-1} = 1$ y el resto de los $a_i = 0$:

$$y_{i+1} = y_i + h [b_m f(x_{i+1}, y_{i+1}) + b_{m-1} f(x_i, y_i) + ... + b_0 f(x_{i+1-m}, y_{i+1-m})]$$

• A-M de 2 pasos:

$$y_{i+1} = y_i + \frac{h}{12} [5 f_{i+1} + 8f_i - 1f_{i-1}]$$

• A-M de 3 pasos:

$$y_{i+1} = y_i + \frac{h}{24} [9 f_{i+1} + 19f_i - 5f_{i-1} + f_{i-2}]$$

• A-M de 4 pasos:

$$y_{i+1} = y_i + \frac{h}{720} [251 \ f_{i+1} + 646 \ f_i - 264 \ f_{i-1} + 106 \ f_{i-2} - 19 \ f_{i-3}]$$

63 / 88

Métodos multipaso

- Orden de un método multipaso:
 Es la cantidad de términos de la serie de Taylor que contiene la aproximación.
- El error de un método de orden m es $O(h^{m+1})$.
- Los métodos de Adams-Bashfort de m pasos, requieren m evaluaciones de funciones, y su error $O(h^{m+1})$. Luego son de orden m
- Los métodos de Adams-Moulton de m pasos, requieren m+1 evaluaciones de funciones, y su error $O(h^{m+2})$. Luego son de orden m+1
- ullet Un método Adams-Bashfort de m pasos es comparable a un Adams-Moulton de (m-1) pasos.
- Es preferible un método de Adams-Moulton, ya que es más estable.

Métodos Predictor-Corrector

- Los métodos implícitos no siempre se pueden resolver facilmente. La variable incógnita no está explicitada. Habría que resolverlo iterativamente (es una ecuación No Lineal).
- Un método práctico para utilizar las fórmulas implícitas es el denominado Predictor-Corrector.
- El mismo opera en dos pasos:
 - 1) Una *Predicción* del valor \tilde{y}_{i+1} mediante fórmulas explícitas;
 - 2) Una Corrección del valor y_{i+1} mediante una fórmula implícita, donde se usa el valor predicho \tilde{y}_{i+1} , del lado derecho del signo =.
- Una forma de Métodos Predictor-Corrector sería usar una fórmula de Adams-Bashfort (explícita) para predecir \tilde{y}_{i+1} ; y luego una fórmula de Adams-Moulton (implícita) para corrección.
- En general se usan fórmulas A-B y A-M del mismo orden.
- Además para calcular las condiciones iniciales necesarias (los m primeros valores de y_i), se usa un método de un paso (por ejemplo Runge-Kutta), del mismo orden que las fórmulas multipaso.

65 / 88

Sección 6

Estabilidad y convergencia

Convergencia

- Nos interesa analizar si los métodos utilizados son convergentes.
- Se dice que un método numérico que proporciona la solución y_i es convergente, si:

$$\lim_{h\to 0} y_i = y(x_i)$$

donde h es el tamaño del paso; e $y(x_i)$ es la solución exacta. Y esto se da para todos los nodos x_i de la red usada.

• ¿Cómo puede verse si un método es convergente? (ya que la solución exacta no es conocida)

67 / 88

Consistencia

- Se dice que un método numérico es *consistente*, si la ecuación discretizada (o numerica), cuando $h \rightarrow 0$ coincide con la ecuación diferencial.
- Esto es equivalente a decir que el error de truncamiento local τ_i tiende a cero cuando $h \to 0$.

Por ejemplo, al resolver la ecuación

$$y' = f(x, y)$$

con el metodo de Euler, la ecuación discreta queda

$$\frac{y_{i+1}-y_i}{h}=f(x_i,y_i)$$

y vemos que cuando $h \to 0$ la estimación numérica en diferencias coincide con la derivada.

 Lo mismo se podria observar a partir de la serie de Taylor, donde el error al aproximar la derivada es:

$$au_i = rac{y_{i+1} - y_i}{h} - f(x_i, y_i) = rac{1}{2}hy''(\xi)$$

que tiende a cero cuando lo hace el tamaño de paso h.

69 / 88

Consistencia

 Para analizar la consistencia de los métodos multipaso se escribirá su fórmula general:

$$a_m y_i + a_{m-1} y_{i-1} + \dots + a_0 y_{i-m} = h [b_m f_i + b_{m-1} f_{i-1} + \dots + b_0 f_{i-m}]$$

- En las fórmulas que vimos, $a_m = 1$, $a_{m-1} = -1$, y los a_j restantes nulos.
- Además, si $b_m=0 o ext{explícito}$; si $b_m=1 o ext{implícito}$.
- Hay dos polinomios asociados a los coeficientes a_j y b_j :

$$\begin{cases} p(z) = a_m z^m + a_{m-1} z^{m-1} + \ldots + a_0 \\ q(z) = b_m z^m + b_{m-1} z^{m-1} + \ldots + b_0 \end{cases}$$

• Se puede demostrar que un método multipaso es consistente, si:

$$\begin{cases} p(1) = 0 \\ p'(1) = q(1) \end{cases}$$

• La consistencia es posible de verificar en un método numérico. Sin embargo la consistencia no siempre implica que el método sea convergente. Es preciso analizar la *estabilidad* del método.

71/88

Consistencia

Considérese, por ejemplo, el método multipaso

$$y_{i+1} = 2y_{i-1} - y_i + h(\frac{5}{2}f_{i-1} + \frac{1}{2}f_{i-2})$$

que, puede verificarse, es consistente.

tamaños de paso h.

Si se resuelve con esa fórmula el problema y'=0 con la condición inicial y(0)=0, al ser f=0 la fórmula queda

$$y_{i+1} = 2y_{i-1} - y_i$$

y para las condiciones $y_0=0$ y $y_1=0$ produce la solución exacta. Sin embargo si las condiciones son $y_0=0$ y $y_1=\epsilon$ la solución numérica "explota" luego de algunos pasos como se ve en la figura de la izquierda, donde se grafica y en función de x para h=0,1 y $\epsilon=0.01$. Esto no se resuelve achicando el tamaño del paso. por el contrario, en la figura de la derecha se grafica $|y_i|$ en función de x_i para diferentes

72 / 89

73 / 88

Estabilidad

- La *estabilidad* hace referencia a que los errores a cada paso no se acumulen de manera que la solución crezca indefinidamente.
- Considérese el siguiente problema.

Por ejemplo, el PVI

$$\begin{cases} y' = \lambda y & 0 \le x \le \infty \\ y(0) = 1 \end{cases}$$

donde $\lambda < 0$, tiene solución exacta: $y = e^{\lambda x}$.

75 / 88

Estabilidad

• Aplicando el método de Euler progresivo:

$$y_{i+1} = y_i + h \ y'_i = y_i + \lambda h y_i = y_i (1 + \lambda h)$$

y dado que $y_0 = 1$

$$y_{i+1} = (1 + \lambda h)^{i+1}$$

• La solucion exacta tiende a cero para $i \to \infty$, para que la solución numérica también lo haga es preciso que

$$|1 + \lambda h| < 1$$
 obien $h < \frac{2}{|\lambda|}$

• Para pasos $h > \frac{2}{|\lambda|}$, en este caso, el método de Euler Progresivo es inestable.

• Si se usa el método de Euler Regresivo:

$$y_{i+1} = y_i + h \ y'_{i+1} = y_i + \lambda h y_{i+1}$$

de donde

$$y_{i+1} = \left(\frac{1}{1 - \lambda h}\right)^{i+1}$$

que tiende a cero para $i \to \infty$ independientemente del valor de h.

- En forma similar puede mostrarse que también el método de Crank-Nicholson es estable independientemente del valor de h.
- El método de Euler Progresivo se dice *condicionalmente estable*, pues su estabilidad depende del tamaño del paso *h*.
- Los Métodos de Euler Regresivo y de Crank-Nicholson son incondicionalmente estables.

77 / 88

Estabilidad

• Si λ puede ser complejo y se denomina $z = \lambda h$, las regiones de estabilidad para los métodos: de Euler progresivo, de Euler regresivo, y Crank-Nicholson se muestran en estas figuras en zonas grisadas

- Hay varias definiciones de estabilidad:
 - Un método se dice **absolutamente estable** cuando genera una solución del problema $y'=\lambda y$ con y(0)=1 , que tiende a cero cuando $x\to 0$
 - Un método se dice A-estable cuando es absolutamente estable para cualquier tamaño de paso (o sea que es incondicionalment estable).
 Esto requiere que la región de estabilidad sea todo el semiplano complejo de z con parte real negativa.
 - Un método se dice **cero-estable** cuando la solucion se mantiene acotada para pequeñas perturbaciones en las condiciones iniciales

79 / 88

Estabilidad

- Para un método multipaso es sencillo analizar la condición de cero-estabilidad.
- Si todas las raices del polinomio característico p(z) se encuentran en la región $|z| \le 1$, y si cada raiz con |z| = 1 es simple, se dice que el método multipaso cumple la condición de raiz.
- Y todo método que cumple la condición de raiz, es cero-estable.

- Se ha indicado que la consistencia por si sola no garantiza la convergencia de un método multipaso.
- Se debe verificar su estabilidad frente a perturbaciones de los datos iniciales, es decir que sea cero-estable.
- Con esto, la convergencia de un metodo multipaso esta garantizada por el siguiente teorema.
- Teorema:

Para que un método multipaso sea *convergente*, es necesario y suficiente que sea *cero-estable* y *consistente*.

81 / 88

Convergencia

• Ejemplo:

Para el método de Adams-Moulton de 2 pasos:

$$a_2=1; \quad a_1=-1, \quad a_0=0; \qquad b_2=rac{5}{12}; \quad b_1=rac{8}{12}, \quad b_0=-rac{1}{12}$$

$$p(z) = z^{2} - z$$

$$q(z) = \frac{5}{12}z^{2} + \frac{8}{12}z - \frac{1}{12}$$

- Las raices de p: $z_1 = 1$; $z_2 = 0$ luego es cero-estable.
- Por ello es convergente

Resumiendo:

- Un método de un paso, si es consistente, es convergente.
- Si el método es incondicionalmente estable, el tamaño del paso h estará determinado por requisitos de precisión. El error de truncamiento global depende de h y disminuye con él.
- Si el método tiene estabilidad condicional, entonces el tamaño del paso h debe estar por debajo del tamaño crítico, para que haya estabilidad. A partir de allí, se puede disminuir por requistos de precisión.
- Un método multipaso, debe ser consistente y cero-estable, para que sea convergente.
- A partir de allí, vale lo indicado para los métodos de un paso si la estabilidad fuese condicional.

83 / 88

Sección 7

Sistemas de EDO

Sistemas de EDO

• La solución de un sistema de EDO:

$$\begin{cases} y_1' = f_1 \\ y_2' = f_2 \\ y_3' = f_3 \\ \dots \\ y_k' = f_k \end{cases}$$

si se organizan las funciones incógnitas en un vector:

$$\mathbf{Y} = \begin{bmatrix} y_1 \\ y_2 \\ y_3 \\ \vdots \\ y_k \end{bmatrix}$$

puede plantearse con las fórmulas vistas.

85 / 88

Sistemas de EDO

• Así la solución en el paso i + 1 será:

$$\mathbf{Y} = \phi(\mathbf{Y}_i, \mathbf{Y}_{i-1}, \dots)$$

donde ϕ es la función del método multipaso (o de un paso) utilizado.

EDO de orden superior

• Por ejemplo, si se tiene una EDO de segundo orden:

$$\begin{cases} y'' = f(x, y, y') \\ y(0) = \bar{y}_0 \\ y'(0) = \bar{y}'_0 \end{cases}$$

puede reducirse a un sistema de EDO de primer orden mediante definición de una nueva variable z=y':

Así el problema anterior es equivalente al sistema de ecuaciones

$$\begin{cases} z' = f(x, y, z) \\ y' = z \end{cases}$$

acompañado de las condiciones iniciales:

$$\begin{cases} z(0) = \bar{y}'_0 \\ y(0) = \bar{y}_0 \end{cases}$$

 Así pueden usarse los métodos vistos para ec. de primer orden, en la resolución de ecuaciones de orden superior.

87 / 88

Resumen

En este capítulo hemos visto:

- Qué son los PVI
- Cómo garantizar que un PVI esté bien planteado.
- Métodos numéricos para resolver PVI
 - Métodos de un paso
 - Método de Euler
 - Metodos de Taylor
 - Metodos de Runge Kuta
 - Métodos multipaso
 - Método de Adams-Bashfort
 - Metodo de Adams-Multon
 - Metodo Predictor-Corrector
- Estabilidad y convergencia
- Sistemas de EDO