### Теоретические ("малые") домашние задания

Теория типов, ИТМО, МЗЗЗ4-МЗЗЗ9, осень 2018 года

#### Домашнее задание №1: «знакомство с лямбда-исчислением»

1. Расставьте скобки:

$$\lambda f.\lambda x.f \ x \ (\lambda c.g \ f) \ x \ a \ \lambda b.\lambda a.x$$

- 2. Проведите бета-редукции и приведите выражения к нормальной форме:
  - (a)  $(\lambda f.\lambda x.f\ (f\ x))\ (\lambda f.\lambda x.f\ (f\ x))$
  - (b)  $(\lambda a.\lambda b.b)$   $((\lambda x.x \ x) \ (\lambda x.x \ x \ x))$
- 3. Выразите следующие функции в лямбда-исчислении:
  - (a) Or, Xor
  - (b) isZero (T, если аргумент равен 0, иначе F)
  - (c) isEven (T, если аргумент чётный)
  - (d) умножение на 2, умножение
  - (е) возведение в степень
  - (f) вычитание 1, вычитание

### Домашнее задание №2: «пропущенные теоремы лямбда-исчисления»

Докажите следующие леммы, упомянутые, но недоказанные на лекции:

- 1. Если отношение R обладает ромбовидным свойством, то и отношение  $R^*$  (транзитивное и рефлексивное замыкание R) также им обладает.
- 2. Отношение альфа-эквивалентности является отношением эквивалентности.
- 3. Если  $P_1 \rightrightarrows_{\beta} P_2$  и  $Q_1 \rightrightarrows_{\beta} Q_2$ , то  $P_1[x := Q_1] \rightrightarrows_{\beta} P_2[x := Q_2]$ .
- 4.  $(\Rightarrow_{\beta})$  обладает ромбовидным свойством.
- $5. \ (\Rightarrow_{\beta}) \subseteq (\rightarrow_{\beta})^*$
- 6.  $(\rightarrow_{\beta}) \subseteq (\Longrightarrow_{\beta})$

## Домашнее задание №3: «просто типизированное лямбда-исчисление»

- 1. Докажите лемму о промежуточных типах (Generation lemma, 3.1.6 из Morten Heine B. Sørensen, Pawel Urzyczyn: Lections on the Curry-Howard Isomorphism). А именно, покажите, что:
  - (a)  $\Gamma \vdash x : \tau$  влечёт  $x : \tau \in \Gamma$ .
  - (b)  $\Gamma \vdash MN : \sigma$  влечёт существование типа  $\tau$ , такого, что что  $\Gamma \vdash M : \tau \to \sigma$  и  $\Gamma \vdash N : \tau$ .
  - (c)  $\Gamma \vdash \lambda x.M : \sigma$  влечёт существование типов  $\tau$  и  $\rho$ , таких, что  $\Gamma, x : \tau \vdash M : \rho$  и  $\sigma = \tau \to \rho$
- 2. Докажите лемму о подстановке (Substitution lemma, 3.1.8):
  - (a) Обозначим за  $\sigma[\alpha := \tau]$  (за  $\Gamma[\alpha := \tau]$ ) замену всех элементарных типов  $\alpha$  на тип  $\tau$  в типе  $\sigma$  (во всех типах в  $\Gamma$ ). Тогда, если  $\Gamma \vdash M : \sigma$ , то  $\Gamma[\alpha := \tau] \vdash M : \sigma[\alpha := \tau]$ .
  - (b) Если  $\Gamma, x : \tau \vdash M : \sigma$  и  $\Gamma \vdash N : \tau$ , то  $\Gamma \vdash M[x := N] : \sigma$ .
- 3. Докажите лемму о редукции терма (Subject reduction proposition, 3.1.9): если  $\Gamma \vdash M : \sigma$  и  $M \to_{\beta} N$ , то  $\Gamma \vdash N : \sigma$ .
- 4. Пользуясь предыдущими пунктами, покажите, что Y нетипизируем в просто типизированном лямбда-исчислении.

- 5. Найдите терм M и два различных типа  $\sigma$  и  $\tau$ , что  $\vdash M : \sigma$  и  $\vdash M : \tau$ . А существует ли терм M, имеющий в точности один тип?
- 6. Покажите, что лемма о редукции терма не работает «в обратную сторону». А именно, что:
  - (a) Найдутся M, N и  $\tau$ , что  $\vdash N : \tau, M \rightarrow_{\beta} N$ , но M не имеет типа.
  - (b) Найдутся M, N,  $\sigma$  и  $\tau$ , что  $\vdash M : \sigma$ ,  $\vdash N : \tau$  и  $M \to_{\beta} N$ , но  $\nvdash M : \tau$ .

## Домашнее задание №4: «просто типизированное лямбда-исчисление; алгебраические типы»

- 1. Списки и алгебраические типы. В данном задании потребуется строить и преобразовывать довольно сложные лямбда-выражения. Для проверки рекомендуем пользоваться интерпретатором, например, можно взять LCI: https://chatziko.github.io/lci/. Возможно, для демонстрации домашнего задания вам потребуется использовать свой ноутбук и проектор.
  - (a) Определите алгебраический тип для списка целых чисел в вашем любимом языке программирования. На Окамле это будет type int\_list = Nil | Cons of (int \* int\_list). Вы можете использовать и не функциональный язык (C++, Kotlin и т.п.), но вы должны применять именно алгебраический тип или его аналог (то есть, union в C++, sealed class в Kotlin и т.п.).
  - (b) Напишите функции вычисления длины списка, подсчёта суммы списка, произведения списка.
  - (c) Определите функцию высшего порядка тар (применяющую переданную параметром функцию к каждому элементу списка), и примените её для построения списка нулей (превратить список чисел в список нулей той же длины), удвоенных значений (превратить список [1,3,5] в [2,6,10]), списка остатков от деления на 2 ([2,3,5] в [0,1,1]).
  - (d) Перепишите весь код из предыдущих пунктов в чистых лямбда-выражениях, используя рассмотренные на лекции представления в лямбда-исчислении для упорядоченных пар и алгебраических типов.
- 2. Ещё немного алгебраических типов. Аналогично предыдущему пункту, определите на языке высокого уровня алгебраический тип для корней квадратного уравнения. Варианты значений: «нет решений» без параметров, «одно решение» с одним параметром, «два решения» с двумя параметрами. Определите функции вычисления корней по коэффициентам квадратного уравнения и печати корней.
- 3. Деревья с помощью алгебраических типов. Определите на языке высокого уровня тип для дерева двоичного поиска, варианты для узла: «лист» без параметров и «ветвь» с двумя сыновьями и целочисленным значением. Определите:
  - (а) функцию печати дерева;
  - (b) функцию поиска значения в дереве;
  - (с) функцию добавления значения в дерево двоичного поиска;
  - (d) функцию удаления значения из дерева.
- 4. Доопределите бета-редукцию для просто типизированного лямбда-исчисления по Чёрчу.
- 5. Докажите теорему Чёрча-Россера для просто типизированного лямбда-исчисления по Чёрчу.
- 6. Докажите лемму о поднятии с лекции, а именно, что для всех  $M,N\in\Lambda_{\mathbf{x}}$ :
  - (а) если  $M \to_{\beta} N$ , то для любого  $M' \in \Lambda_{\mathfrak{q}}$ , такого, что |M'| = M, найдётся такой  $N' \in \Lambda_{\mathfrak{q}}$ , что |N'| = N и  $M' \to_{\beta} N'$ ;
  - (b) если  $\Gamma \vdash M : \sigma$ , то найдётся такой  $M' \in \Lambda_{\mathtt{q}}$ , что  $\Gamma \vdash_{\mathtt{q}} M' : \sigma$ .

# Домашнее задание №5: «выразительная сила просто типизированного лямбда-исчисления, алгоритм унификации»

- 1. Покажите, что чёрчевский нумерал в общем случае имеет тип  $(\alpha \to \alpha) \to (\alpha \to \alpha)$ . Имеют ли нумералы для 0, 1 и 2 какие-то более общие типы?
- 2. Обозначим тип для целых чисел  $\eta = (\alpha \to \alpha) \to (\alpha \to \alpha)$ . В данных обозначениях покажите, что операция сложения имеет тип  $\eta \to \eta \to \eta$ .
- 3. Напомним, что  $\overline{m}=\lambda f.\lambda x.f^{(m)}$  x (чёрчевский нумерал для m). Рассмотрим выражение  $Power=\lambda m.\lambda n.n\ m.$ 
  - (a) найдите тип Power;
  - (b) покажите, что  $Power \ \overline{m} \ \overline{n} = \overline{m^n}$ , найдите тип  $Power \ \overline{m} \ \overline{n}$ ;
  - (c) покажите, что  $\lambda x.Power \ x \ x$  не имеет типа;
  - (d) объясните кажущееся противоречие между предыдущими пунктами: почему  $Power\ \overline{2}\ \overline{2}$  имеет тип, а  $(\lambda x. Power\ x\ x)\ \overline{2}$  не имеет типа.
- 4. Докажите, что изложенный на лекции алгоритм унификации всегда завершается. Указание: постройте оценку сложности уравнения в алгебраических термах и покажите, что эта оценка уменьшается при каждом шаге алгоритма.

#### Домашнее задание №6: «унификация и типы, комбинаторы»

- 1. Выразите  $\lambda f.\lambda x.f$  x через S и K.
- 2. Докажите, что алгоритм устранения абстракций T с лекции, преобразующий замкнутое лямбдавыражение в выражение в комбинаторах S и K, корректен. То есть, для любого лямбдавыражения A:
  - (a) T(A) определено и вычисляется за конечное время;
  - (b)  $T(A) =_{\beta} A$ ;
  - (c) если A замкнуто, то T(A) не содержит абстракций и свободных переменных и состоит только из применений (аппликаций) и комбинаторов S и K.
- 3. Покажите, что базис B, C, K, W позволяет выразить любое лямбда-выражение.
- 4. Постройте систему аксиом для импликационного фрагмента просто типизированного лямбда-исчисления на основе базиса  $B,\,C,\,K,\,W.$
- 5. Будем говорить, что тип  $\sigma$  есть частный случай типа  $\theta$  (и записывать это как  $\sigma \sqsubseteq \theta$ ), если существует такая подстановка S, что  $\sigma = S(\theta)$ . Рассмотрим лямбда-выражение M, такое, что  $\vdash M : \sigma$  и  $\vdash M : \theta$ .
  - (a) Покажите, что найдётся тип  $\tau$ , что  $\vdash M : \tau$ ,  $\sigma \subseteq \tau$  и  $\theta \subseteq \tau$ .
  - (b) Всегда ли найдётся  $\tau$ , что  $\tau \subseteq \sigma$  и  $\tau \subseteq \theta$ ?
  - (c) Всегда ли выполнено либо  $\theta \subseteq \sigma$ , либо  $\sigma \subseteq \theta$ ?
  - (d) Можно ли определить решётку на типах для данного M с определённым выше отношением предпорядка (⊆)? Естественно, вам потребуется рассмотреть классы эквивалентности типов, чтобы «склеить» случаи типов, отличающихся только переименованием переменных. Какими свойствами эта решётка будет обладать (дистрибутивность, импликативность, существование 0 и т.п.)?