Advanced genomics analysis

 Calculate GC content, GC skew and visualize the genomic feature in a circular way

 Deduce ortholog relationship between two species and multiple species

Find the syntenic regions according to the gene order

Construct the gene families

GC content and GC skew

GC content

- Percentage of GC bases in a given stretch of DNA
- High GC more stable than low GC
- Isochore (GC biased large fragment) contain many coding genes
- Related with mutation bias, recombination, etc

GC skew

- (G C)/(G + C)
- Uneven distribution in prokaryotic genome
- Related to the leading and lagging strand in DNA replication

https://www.yourgenome.org/facts/what-is-dna-replication

GC content estimation and circular genome visualization

Orthologs and paralogs

Ortholog is not transitive

Identify ortholog relationships between two gene sets

- Commonly used methodology/software
 - Homologous search based methods
 - Reciprocal best hits (RBH), most widely used methods.
 - Inparanoid, another popular softwares Include 1-to-many and many-to-many relationships
 - TribeMCL or orthoMCL, Markov chain based clustering Include 1-to-many and many-to-many relationships

- Phylogeny based methods
 - MetaPhors
 - TreeFam
 - EnsemblCompara
 - PhylomeDB
 - •
- Never do
 - Directly blast search to nr, let alone particular function subsets

Ortholog identification based on reciprocal best hits (RBH)

Reciprocal Best BLAST Hits

- \$1, \$2 are the gene sequence sets from two organisms
- BLASTP:
 - Query=S1, Subject=S2
 - Query=S2, Subject=S1

- Optionally filter BLAST hits (e.g. on %identity and %coverage)
- Find all pairs of sequences $\{G_{S1n}, G_{S2n}\}$ in S1, S2 where G_{S1n} is the best BLAST match to G_{S2n} and G_{S2n} is the best BLAST match to G_{S1n} .

Find the syntenic regions according to gene order

Synteny

- collinear relationship between two genomic regions
- Indication of ortholog relationship for flexible genomes

Methodology

- Whole genome alignment based
 - Mummer based
- Gene cluster based

Pipeline for cluster-based synteny

Identify gene families

Hierarchical clustering based on paired wised relationships

Markov chain clustering

http://micans.org/mcl/

One parameter tuned: Inflation, the limitation of intra-cluster random walks.

Practice

- Estimate of GC content and GC skew in a genome and visualize it
- Visualize a circular genome regarding GC content, GC skew and COG functional annotation
- Use reciprocal best hit method to find ortholog relationships between gene sets from to bacterial species
- Visualize the identity between the orthologs
- Detect the synteny between two chromosomes
- Cluster gene families using Markov cluster