

Preliminary Technical Information

Trench Gate Power MOSFET

IXTH86N25T IXTQ86N25T IXTV86N25T

N-Channel Enhancement Mode Avalanche Rated

Symbol	Test Conditions	Maximum Ratings		
V _{DSS}	T _J = 25°C to 150°C	250	V	
\mathbf{V}_{DGR}	$T_{_{\rm J}}$ = 25°C to 150°C, $R_{_{\rm GS}}$ = 1M Ω	250	V	
V _{GSM}	Transient	± 30	V	
I _{D25} I _{LRMS}	$T_{\rm C} = 25^{\circ}{\rm C}$ Lead Current Limit, RMS $T_{\rm C} = 25^{\circ}{\rm C}$, pulse width limited by $T_{\rm JM}$	86 75 190	A A A	
I _{AS}	$T_c = 25$ °C $T_c = 25$ °C	10 1.5	A J	
P _D	T _C = 25°C	540	W	
T _J T _{JM} T _{stg}		-55 +150 150 -55 +150	°C °C °C	
T _L T _{SOLD}	1.6mm (0.062 in.) from case for 10s Plastic body for 10 seconds	300 260	°C	
M _d	Mounting torque (TO-247 & TO-3P)	1.13 / 10	Nm/lb.in.	
F _c	Mounting force (PLUS220)	1165 / 2.514.6	N/lb.	
Weight	TO-247 TO-3P PLUS220	6.0 5.5 4.0	g g	

Symbol Test Conditions $(T_J = 25^{\circ}\text{C unless otherwise specified})$			Characteristic Values Min. Typ. Max.		
BV _{DSS}	$V_{GS} = 0V, I_D = 250\mu A$	250			V
V _{GS(th)}	$V_{DS} = V_{GS}, I_{D} = 1 \text{mA}$	3		5	V
I _{GSS}	$V_{GS} = \pm 20V, V_{DS} = 0V$			± 200	nA
I _{DSS}	$V_{DS} = V_{DSS}$ $V_{GS} = 0V$ $T_{J} = 125^{\circ}C$			3 250	μ Α μ Α
R _{DS(on)}	V _{GS} = 10V, I _D = 0.5 • I _{D25} , Notes 1, 2			37	mΩ

 V_{DSS} = 250V I_{D25} = 86A $R_{DS(on)} \le 37m\Omega$

Features

- International standard packages
- Avalanche rated
- Low package inductance
 - easy to drive and to protect

Advantages

- Easy to mount
- Space savings
- High power density

Applications

- DC-DC converters
- Battery chargers
- Switched-mode and resonant-mode power supplies
- DC choppers
- AC motor control
- Uninterruptible power supplies

Symbol	Test Conditions	Characteristic Values		
$(T_J = 25^{\circ}C u)$	nless otherwise specified)	Min.	Тур.	Max.
g _{fs}	$V_{DS} = 10V, I_{D} = 0.5 \bullet I_{D25}, Note 1$	45	76	S
C _{iss}			5330	pF
C _{oss}	$V_{GS} = 0V$, $V_{DS} = 25V$, $f = 1MHz$		515	pF
C _{rss}			92	pF
t _{d(on)}			22	ns
t,	Resistive Switching Times		28	ns
t _{d(off)}	$V_{GS} = 10V$, $V_{DS} = 0.5 \cdot V_{DSS}$, $I_{D} = 0.5 \cdot I_{D25}$ $R_{G} = 3.3\Omega$ (External)		55	ns
t,			25	ns
$Q_{g(on)}$			105	nC
Q _{gs}	$V_{GS} = 10V, V_{DS} = 0.5 \cdot V_{DSS}, I_{D} = 25A$		32	nC
Q _{gd}			28	nC
R _{thJC}				0.23 °C/W
R _{thCS}			0.25	°C/W

Source-Drain Diode

		acteristi Typ.	c Values Max.	·	
Is	$V_{GS} = 0V$			86	Α
I _{sm}	Repetitive, pulse width limited by $\mathrm{T}_{_{\mathrm{JM}}}$			172	Α
V _{SD}	$I_F = I_S$, $V_{GS} = 0V$, Note 1			1.5	V
t _{rr}	1 40A di/dt 050A/v.c		156		ns
I _{RM}	$I_F = 43A$, -di/dt = 250A/ μ s $V_R = 100V$, $V_{GS} = 0V$		21		Α
Q _{RM}	n ' us		1.7		μС

Notes: 1. Pulse test, $t \le 300$ ms; duty cycle, $d \le 2\%$.

2. On through-hole packages, $R_{\rm DS(on)}$ Kelvin test contact location must be 5mm or less from the package body.

MYZ	INCHES		MILLIMETER		
2114	MIN	MAX	MIN	MAX	
Α	.169	.185	4.30	4.70	
A1	.028	.035	0.70	0.90	
A2	.098	.118	2.50	3.00	
О	.035	.047	0.90	1.20	
Ь1	.080	.095	2.03	2.41	
b2	.054	.064	1.37	1.63	
С	.028	.035	0.70	0.90	
D	.551	.591	14.00	15.00	
D1	.512	.539	13.00	13.70	
E	.394	.433	10.00	11.00	
E1	.331	.346	8.40	8.80	
е	100BSC		2.54 BSC		
L	.512	.551	13.00	14.00	
L1	.118	.138	3.00	3,50	
L2	.035	.051	0.90	1.30	
L3	.047	.059	1.20	1.50	

PRELIMINARY TECHNICAL INFORMATION

The product presented herein is under development. The Technical Specifications offered are derived from data gathered during objective characterizations of preliminary engineering lots; but also may yet contain some information supplied during a pre-production design evaluation. IXYS reserves the right to change limits, test conditions, and dimensions without notice.

$\ensuremath{\mathsf{IXYS}}$ reserves the right to change limits, test conditions, and dimensions.

Terminals: 1 - Gate 2 - Drain 3 - Source Tab - Drain

Dim.	Millimeter		Inches	
	Min.	Max.	Min.	Max.
Α	4.7	5.3	.185	.209
A,	2.2	2.54	.087	.102
A ₂	2.2	2.6	.059	.098
b	1.0	1.4	.040	.055
b₁	1.65	2.13	.065	.084
b ₂	2.87	3.12	.113	.123
С	.4	.8	.016	.031
D	20.80	21.46	.819	.845
E	15.75	16.26	.610	.640
е	5.20	5.72	0.205	0.225
L	19.81	20.32	.780	.800
L1		4.50		.177
ÆΡ	3.55	3.65	.140	.144
Q	5.89	6.40	0.232	0.252
R	4.32	5.49	.170	.216
S	6.15	BSC	242	BSC

TO-3P (IXTQ) Outline

Pins: 1 - Gate 2 - Drain 3 - Source 4, TAB - Drain

SYM	INCH	ICHES MILLI		METERS	
SIM	MIN	MAX	MIN	MAX	
Α	.185	.193	4.70	4.90	
A1	.051	.059	1.30	1.50	
A2	.057	.065	1.45	1.65	
ь	.035	.045	0.90	1.15	
b2	.075	.087	1.90	2.20	
b4	.114	.126	2.90	3.20	
С	.022	.031	0.55	0.80	
D	.780	.791	19.80	20.10	
D1	.665	.677	16.90	17.20	
E	.610	.622	15.50	15.80	
E1	.531	.539	13.50	13.70	
е	.215	BSC	5.45 BSC		
L	.779	.795	19.80	20.20	
L1	.134	.142	3.40	3.60	
ØΡ	.126	.134	3.20	3.40	
øP1	.272	.280	6.90	7.10	
S	.193	.201	4.90	5.10	
All metal area are tin plated.					

Fig. 1. Output Characteristics @ 25°C

Fig. 2. Extended Output Characteristics @ 25°C

Fig. 3. Output Characteristics @ 125°C

Fig. 4. $R_{DS(on)}$ Normalized to $I_D = 43A$ Value vs. Junction Temperature

Fig. 5. $R_{DS(on)}$ Normalized to $I_D = 43A$ Value vs. Drain Current

Fig. 6. Maximum Drain Current vs.

Case Temperature

Fig. 7. Input Admittance 100 90 80 70 I_D - Amperes 60 T_J = 125°C 25°C 50 40°C 40 30 20 10 0 4.2 4.4 4.6 4.8 5 5.2 5.4 5.6 5.8 6 6.2 6.4

Fig. 8. Transconductance 110 100 $T_{J} = -40^{\circ}C$ 90 80 25ºC gfs-Siemens 70 60 125°C 50 40 30 20 10 0 0 10 20 40 50 60 80 100 I_D - Amperes

Fig. 9. Forward Voltage Drop of **Intrinsic Diode**

V_{GS} - Volts

Fig. 11. Capacitance

Pulse Width - Seconds

Impedance

Fig. 12. Maximum Transient Thermal

IXYS reserves the right to change limits, test conditions, and dimensions.

Fig. 13. Resistive Turn-on Rise Time vs. Junction Temperature

Fig. 15. Resistive Turn-on Switching Times vs. Gate Resistance

Fig. 17. Resistive Turn-off Switching Times vs. Drain Current

Fig. 14. Resistive Turn-on Rise Time vs. Drain Current

Fig. 16. Resistive Turn-off Switching Times vs. Junction Temperature

Fig. 18. Resistive Turn-off Switching Times vs. Gate Resistance

