Exersise 3.7

Given $x_0 \in \mathbb{R}^n$ and any $\epsilon > 0$, let $\delta = \epsilon$. For any $x \in B(x_0, \delta)$ we have $||x - x_0|| < \delta = \epsilon$. We also have $||f(x) - f(x_0)|| = |||x|| - ||x_0|||$.

We know that we have $||x|| - ||x_0|| = ||x|| - ||x_0||$ or $-(||x|| - ||x_0||) = ||x_0|| - ||x||$. By the triangle inequality we know both $||x|| - ||x_0|| \le ||x - x_0||$ and $||x_0|| - ||x|| \le ||x_0 - x|| = ||x - x_0||$. And so $|f(x) - f(x_0)| = |||x|| - ||x_0|| \le ||x - x_0|| < \epsilon$ Thus f is continuous

Exersise 3.9

- a. If there exists some N such that $x_j = x_k$ for all j, k > N then $\delta(x_j, x_k) = 0 < \epsilon$ for all $\epsilon > 0$, and so by definition x_n converges. Conversly if x_n converges, let $\epsilon = 1/2$. We have that for some N, $\delta(x_j, x_k) < 1/2$ for all j, k > N. Since $\delta(x_j, x_k) > \epsilon$ if and only if $x_j \neq x_k$, we have that $x_j = x_k$ for all j, k > N
- b. For any $x_0 \in X$ and any $\epsilon > 0$, let $\delta = 1/2$. We have that $\delta(x, x_0) < \delta$ if and only if $x = x_0$, by definition of the discrete metric. Therefore $B(x_0, \delta) = \{x_0\}$ and as one of the properties of the metric, we have $d(f(x_0), f(x_0)) = 0 < \epsilon$. Therefore by definition f is continuous

Exersise 3.11

For a given $\epsilon > 0$, f continuous means that there exists a $\delta > 0$ such that $d(x, x_i) < \delta$ implies $\rho(f(x), f(x_i)) < \epsilon$. $x_n \to x$ means there is a N > 0 such that for k > N, $d(x_k, x) < \delta$. Therefore for k > N we have $\rho(f(x), f(x_k)) < \epsilon$. Thus $f(x_n) \to f(x)$

Exersise 3.14

For any $\theta_0 \in [0, 2\pi)$, given $\epsilon > 0$ let $\delta = \min(\epsilon, 1)$. For any $\theta \in [0, 2\pi)$ with $|\theta - \theta_0| < \delta$ we have

$$||f(\theta) - f(\theta_0)|| = \sqrt{(\cos(\theta) - \cos(\theta_0))^2 + (\sin(\theta) - \sin(\theta_0))^2}$$

$$= \sqrt{\cos^2(\theta) - 2\cos(\theta_0)\cos(\theta) + \cos^2(\theta_0) + \sin^2(\theta) - 2\sin(\theta_0)\sin(\theta) + \sin^2(\theta_0)}$$

$$= \sqrt{2(1 - (\cos(\theta_0)\cos(\theta) + \sin(\theta_0)\sin(\theta)))}$$

Using the sum formula $(\cos(a-b) = \cos a \cos b + \sin a \sin b)$ we have:

$$= \sqrt{2(1 - \cos(\theta - \theta_0))}$$

We can use the Taylor series of $\cos \theta$ to get a bound

$$= \sqrt{2\left(1 - \left(1 - \frac{(\theta - \theta_0)^2}{2} + \frac{(\theta - \theta_0)^4}{4!} - \ldots\right)\right)}$$

Since we know $|\theta - \theta_0| < 1$ (since $\delta \le 1$) we know that $(\theta - \theta_0)^2 \ge \left(\frac{(\theta - \theta_0)^4}{12} - \dots\right)$ since a convergent alternating series terms are always greater than the sum of the terms following it. Therefore we have

$$= \sqrt{\left((\theta - \theta_0)^2 - \frac{(\theta - \theta_0)^4}{12} + \ldots\right)} \le \sqrt{(\theta - \theta_0)^2} = |\theta - \theta_0| < \delta \le \epsilon$$

And so F is continous.

F is surjective since for any $p=(x,y)\in S^1$, we let θ be the angle that p makes with the origin and the point (1,0) and from the geometric definition of sin and cos we have that $\sin\theta=y$, $\cos\theta=x$ and so $F(\theta)=p$. F is injective since if $F(\theta)=F(\alpha)$, then we have $\sin\theta=\sin\alpha$, since $\theta,\alpha\in[0,2\pi)$ we know that $\theta=\pi-\alpha$ or $\theta=\alpha$, then we have that $\cos\theta=\cos\alpha$ which means that $\theta=2\pi-\alpha$ or $\theta=\alpha$. We cannot have $\pi-\alpha=\theta=2\pi-\alpha$ since then $0=\pi$ therefore $\theta=\alpha$.

Therefore F is bijective and so has an inverse mapping F^{-1} .

However we have that $F^{-1}(1,0) = 0$, but for $\epsilon = \pi$ and any $\delta > 0$, letting $a < \min\{1/2, \delta\}$ we have that for

$$p = \left(-\sqrt{1 - \frac{a^2}{4}}, \frac{a}{2}\right) \in S^1$$

with $||p-0|| < \delta$ and $F^{-1}(p) = \theta$ where

$$\theta = \sin^{-1}\left(-\sqrt{1-\frac{a^2}{4}}\right), \theta = \cos^{-1}\left(\frac{a}{2}\right)$$

We have that $\theta > \pi$ since $\left(-\sqrt{1-\frac{a^2}{4}}\right) < 0$ and $\sin^{-1}\alpha > \pi$ for any $\alpha \in (0,-1)$. Therefore $|F^{-1}(p) - F^{-1}(0)| > \epsilon$. So F^{-1} is not continous

Exersise 3.17

- a. By definition of open for metric spaces, we have that for any $a \in \emptyset$, for any $\epsilon > 0$, $B(a, \epsilon)$ is itself the empty set since a does not exist so $B(a, \epsilon) \subseteq \emptyset$. Thus the empty set is open
- b. For any $a \in X$ and $\epsilon > 0$ we have that $B(a, \epsilon) = \{x \in X : \delta(x, a) < \epsilon\}$ thus $B(a, \epsilon) \subseteq X$ and so X is open
- c. For any $a \in B(x, \epsilon)$, let $\epsilon' = \epsilon \delta(x, a)$. Thus we have for any $y \in B(a, \epsilon')$ we have $\delta(y, a) < \epsilon' = \epsilon \delta(x, a)$. Thus from the triangle inequality we have:

$$\delta(y, x) \le \delta(x, a) + \delta(a, y) < \epsilon$$

Thus $y \in B(x, \epsilon)$, so $B(a, \epsilon') \subseteq B(x, \epsilon)$. Thus $B(x, \epsilon)$ is open

d. For any $x \in U_1 \cap \cdots \cap U_k$, since each U_i is open there exists for each U_i $\epsilon_i > 0$ where $B(x, \epsilon_i) \subseteq U_i$. Let $\epsilon = \min\{\epsilon_1, \epsilon_2, \dots \epsilon_k\}$. We have that $B(x, \epsilon) \subseteq B(x, \epsilon_i)$ for all i. This is because we have for any $a \in B(x, \epsilon)$ we have that $\delta(a, x) < \epsilon \le \epsilon_i$ and thus $a \in B(x, \epsilon_i)$. Therefore $B(x, \epsilon) \subseteq U_i$ for all i, so $B(x, \epsilon) \subseteq U_1 \cap U_2 \cap \dots U_k$. Thus $U_1 \cap \dots U_k$ is open

Exersise §13, 3

In example 4 we have $X - X = \emptyset$ which is countable so $X \in \mathfrak{T}_c$, and $X - \emptyset = X$ so $\emptyset \in \mathfrak{T}_c$. For any collection of sets $A \subseteq \mathfrak{T}_c$ we have from Demorgans laws:

$$X - \left(\bigcup_{U \in A} U\right) = \bigcap_{U \in A} (X - U)$$

Intersections of countable sets are countable, therefore $(\bigcup_{U \in A} U) \in \mathfrak{T}_c$. For a finite collection $A \subset \mathfrak{T}_c$ we have from Demorgans laws:

$$X - \left(\bigcap_{U \in A} U\right) = \bigcup_{U \in A} (X - U)$$

Finite unions of countable sets are countable. Therefore $\bigcup_{U \in A} (X - U) \in \mathfrak{T}_c$. Thus all the axioms of a topology are satisfied, so \mathfrak{T}_c is a topology.

However we have \mathfrak{T}_{∞} is not necessarily a topology:

Let $X = \mathbb{Z}$. Let $U = \{x \in \mathbb{Z} : x < 0\}$ and $V = \{x \in \mathbb{Z} : x > 0\}$. We have that $X - U = \{x \in \mathbb{Z} : x \geq 0\}$ is an infinite set and $X - V = \{x \in \mathbb{Z} : x \leq 0\}$ is an infinite set, so $U, V \in \mathfrak{T}_{\infty}$. However we have

$$X - (V \cup U) = \{0\}$$

Is not infinite. Thus $U \cup V \notin \mathfrak{T}_{\infty}$. So \mathfrak{T}_{∞} does not satisfy the axioms of a topology.

Exersise §13, 4

a. We have that $X, \emptyset \in \mathfrak{T}_{\alpha}$ for all α , so $X, \emptyset \in \bigcap \mathfrak{T}_{\alpha}$ We have that for any collection of sets $A \subseteq \bigcap \mathfrak{T}_{\alpha}$, we have that for each \mathfrak{T}_{α} , $A \subseteq \mathfrak{T}_{\alpha}$, and thus since \mathfrak{T}_{α} is a topolgy

$$\bigcup_{U \in A} U \in \mathfrak{T}_{\alpha}$$

so $\bigcup_{U \in A} U \in \bigcap \mathfrak{T}_{\alpha}$.

For a finite collection $A \subseteq \bigcap \mathfrak{T}_{\alpha}$, we again have that for each \mathfrak{T}_{α} , $A \subseteq \mathfrak{T}_{\alpha}$, and thus since \mathfrak{T}_{α} is a topolgy, we have that

$$\bigcap_{U \in A} U \in \mathfrak{T}_{\alpha}$$

So $\bigcap_{U \in A} U \in \bigcap \mathfrak{T}_{\alpha}$.

 $\bigcup \mathfrak{T}_{\alpha}$ is not necessarily a topology:

Consider $X = \{a, b, c\}$. We have the topolgies

$$\mathfrak{T}_1 = \{\emptyset, X, \{a\}, \{a, c\}\}, \mathfrak{T}_2 = \{\emptyset, X, \{b\}, \{b, c\}\}$$

$$\mathfrak{T}_1 \cup \mathfrak{T}_2 = \{\emptyset, X, \{a\}, \{b\}, \{a, c\}, \{b, c\}\}\$$

However $\{a,c\} \cap \{b,c\} = \{c\} \notin \mathfrak{T}_1 \cup \mathfrak{T}_2$. So $\mathfrak{T}_1 \cup \mathfrak{T}_2$ is not a topology

b. The largest topology contained in all \mathfrak{T}_{α} is

$$\bigcap \mathfrak{T}_{\alpha}$$

This follows directly from the conditions. $\bigcap \mathfrak{T}_{\alpha}$ is contained in all \mathfrak{T}_{α} and any topology that is contained in all \mathfrak{T}_{α} must be contained in their intersection.

The smallest topology that contains each \mathfrak{T}_{α} is the Topology \mathfrak{T} that consists of all the sets of $\bigcup \mathfrak{T}_{\alpha}$ as well as the sets obtained by taking any sequence of unions and finite intersections of sets in $\bigcup \mathfrak{T}_{\alpha}$. From this construction it is clear that \mathfrak{T} contains all \mathfrak{T}_{α} . It is also clear \mathfrak{T} is a topology as well since taking any union or finite intersection of sets of \mathfrak{T} will again produce a set obtained by taking a sequence of unions and finite intersections of sets in $\bigcup \mathfrak{T}_{\alpha}$

The reasoning that \mathfrak{T} is the smallest of the desired Topologies, and is unique is as follows:

If there exists a smaller topology $G \subset \mathfrak{T}$ where $\mathfrak{T}_{\alpha} \subset G$ for each \mathfrak{T}_{α} then there must be some $A \in \mathfrak{T}$ with $A \notin G$. We know A has the form

$$A_1 \cup A_2 \cdots \cap A_i \cap \cdots \cup A_k \cdots$$

Where each $A_i \in \mathfrak{T}_{\alpha}$ for some \mathfrak{T}_a . However, this means that G is not a topology since we would have that A is union of sets in G that is not in G. This also implies that if there is a topology F that contains each \mathfrak{T}_{α} then $F \cap \mathfrak{T} = \mathfrak{T}$ since for any $A \in \mathfrak{T}$ with $A \notin F$ we have the same problem. Thus \mathfrak{T} must be unique, since for any $F \neq \mathfrak{T}$ we have $\mathfrak{T} \subset F$ so \mathfrak{T} is smaller than F.

c. The smallest topology containing $\mathfrak{T}_1, \mathfrak{T}_2$ would be

$$\mathfrak{T}_1 \cup \mathfrak{T}_2 = \{\emptyset, X, \{a\}, \{b\}, \{a, b\} \{b, c\}\}$$

The largest topology containing $\mathfrak{T}_1, \mathfrak{T}_2$ would be

$$\mathfrak{T}_1 \cap \mathfrak{T}_2 = \{\emptyset, X, \{a\}\}$$