MF1S703x

MIFARE Classic 4K - Mainstream contactless smart card IC for fast and easy solution development

Rev. 3.0 — 2 December 2010 199330

Product data sheet PUBLIC

1. General description

NXP Semiconductors has developed the MIFARE MF1S703x to be used in a contactless smart card according to ISO/IEC 14443 Type A.

The MIFARE MF1S703x IC is used in applications like public transport ticketing and can also be used for various other applications.

1.1 Anti-collision

An intelligent anti-collision function allows to operate more than one card in the field simultaneously. The anti-collision algorithm selects each card individually and ensures that the execution of a transaction with a selected card is performed correctly without interference from another card in the field.

1.2 Simple integration and user convenience

The MF1S703x is designed for simple integration and user convenience which allows complete ticketing transactions to be handled in less than 100 ms.

1.3 Security

- Manufacturer programmed 4 byte Non-Unique IDentifier (NUID) for each device
- Mutual three pass authentication (ISO/IEC DIS 9798-2)
- Individual set of two keys per sector to support multi-application with key hierarchy

1.4 Delivery options

- Die on wafer, bumped die on wafer
- MOA4 contactless module

MF1S703x **NXP Semiconductors**

MIFARE Classic 4K - Mainstream contactless smart card IC

2. **Features and benefits**

- Contactless transmission of data and supply energy
- Operating frequency of 13.56 MHz
- Data integrity of 16-bit CRC, parity, bit coding, bit counting
- Typical ticketing transaction time of less than 100 ms (including backup management)
- Operating distance up to 100 mm depending on antenna geometry and reader configuration
- Data transfer of 106 kbit/s
- Anti-collision

2.1 EEPROM

- 4 kB, organized in 32 sectors of 4 blocks User definable access conditions for and 8 sectors of 16 blocks (one block consists of 16 byte)
- Data retention time of 10 years
- each memory block
- Write endurance 100.000 cycles

Applications

- Public transportation
- Electronic toll collection
- School and campus cards
- Internet cafés

- Access management
- Car parking
- Employee cards
- Loyalty

Quick reference data 4.

Table 1. Quick reference data

Symbol	Parameter	Conditions		Min	Тур	Max	Unit
C_{i}	input capacitance		[1]	14.4	16.1	17.4	pF
f _i	input frequency			-	13.56	-	MHz
EEPROM o	characteristics						
t _{ret}	retention time	T_{amb} = 22 °C		10	-	-	year
$N_{\text{endu(W)}}$	write endurance	T _{amb} = 22 °C		100000	200000	-	cycle

^[1] LCR meter, $T_{amb} = 22 \,^{\circ}\text{C}$, $f_i = 13.56 \,\text{MHz}$, 2 V RMS.

MIFARE Classic 4K - Mainstream contactless smart card IC

5. Ordering information

Table 2. Ordering information

Type number	Package										
	Commercial Name	Name	Description	Version							
MF1S7035DUC	FFC Bump	-	8 inch wafer, $150~\mu m$ thickness, on film frame carrier, electronic fail die marking according to SECSII format), Au bumps	not applicable							
MF1S7035DUB	FFC	-	8 inch wafer, 150 μm thickness, on film frame carrier, electronic fail die marking according to SECSII format)	not applicable							
MF1S7035DA4	MOA4	PLLMC	plastic leadless module carrier package; 35 mm wide tape	SOT500-2							

6. Block diagram

MIFARE Classic 4K - Mainstream contactless smart card IC

7. Pinning information

7.1 Pinning

The pinning for the MF1S7035DA4 is shown in Figure 3.

Table 3. Pin allocation table

Pin	Symbol	Description
LA	LA	Antenna coil connection LA
LB	LB	Antenna coil connection LB

MIFARE Classic 4K - Mainstream contactless smart card IC

8. Functional description

8.1 Block description

The MF1S703x chip consists of a 4 kB EEPROM, RF interface and Digital Control Unit. Energy and data are transferred via an antenna consisting of a coil with a small number of turns which is directly connected to the MF1S703x. No further external components are necessary. Refer to the document Ref. 1 for details on antenna design.

- RF interface:
 - Modulator/demodulator
 - Rectifier
 - Clock regenerator
 - Power-On Reset (POR)
 - Voltage regulator
- Anti-collision: Multiple cards in the field may be selected and managed in sequence
- Authentication: Preceding any memory operation the authentication procedure ensures that access to a block is only possible via the two keys specified for each block
- Control and Arithmetic Logic Unit: Values are stored in a special redundant format and can be incremented and decremented
- EEPROM interface
- Crypto unit: The CRYPTO1 stream cipher of the MF1S703x is used for authentication and encryption of data exchange.
- EEPROM: 4 kB is organized in 32 sectors with 4 blocks and 8 sectors with 16 blocks each. A block contains 16 bytes. The last block of each sector is called "trailer", which contains two secret keys and programmable access conditions for each block in this sector.

8.2 Communication principle

The commands are initiated by the reader and controlled by the Digital Control Unit of the MF1S703x. The command response is depending on the state of the IC and for memory operations also on the access conditions valid for the corresponding sector.

8.2.1 Request standard/all

After Power-On Reset (POR) the card answers to a request REQA or wakeup WUPA command with the answer to request code (see <u>Section 9.4</u>, ATQA according to ISO/IEC 14443A).

8.2.2 Anti-collision loop

In the anti-collision loop the identifier of a card is read. If there are several cards in the operating field of the reader, they can be distinguished by their identifier and one can be selected (select card) for further transactions. The unselected cards return to the idle state and wait for a new request command.

Remark: The identifier retrieved from the card is not defined to be unique. For further information regarding handling of non-unique identifiers see Ref. 7.

MF1S703x

All information provided in this document is subject to legal disclaimers.

© NXP B.V. 2010. All rights reserved

MIFARE Classic 4K - Mainstream contactless smart card IC

8.2.3 Select card

With the select card command the reader selects one individual card for authentication and memory related operations. The card returns the Select Acknowledge (SAK) code which determines the type of the selected card, see <u>Section 9.4</u>. For further details refer to the document Ref. 3.

8.2.4 Three pass authentication

After selection of a card the reader specifies the memory location of the following memory access and uses the corresponding key for the three pass authentication procedure. After a successful authentication all memory operations are encrypted.

MIFARE Classic 4K - Mainstream contactless smart card IC

8.2.5 Memory operations

After authentication any of the following operations may be performed:

- Read block
- Write block
- Decrement: Decrements the contents of a block and stores the result in an internal data-register
- Increment: Increments the contents of a block and stores the result in an internal data-register
- Restore: Moves the contents of a block into an internal data-register
- Transfer: Writes the contents of the temporary internal data-register to a value block

8.3 Data integrity

Following mechanisms are implemented in the contactless communication link between reader and card to ensure very reliable data transmission:

- 16 bits CRC per block
- · Parity bits for each byte
- Bit count checking
- Bit coding to distinguish between "1", "0" and "no information"
- Channel monitoring (protocol sequence and bit stream analysis)

8.4 Three pass authentication sequence

- 1. The reader specifies the sector to be accessed and chooses key A or B.
- 2. The card reads the secret key and the access conditions from the sector trailer. Then the card sends a random number as the challenge to the reader (pass one).
- The reader calculates the response using the secret key and additional input. The response, together with a random challenge from the reader, is then transmitted to the card (pass two).
- 4. The card verifies the response of the reader by comparing it with its own challenge and then it calculates the response to the challenge and transmits it (pass three).
- 5. The reader verifies the response of the card by comparing it to its own challenge.

After transmission of the first random challenge the communication between card and reader is encrypted.

MIFARE Classic 4K - Mainstream contactless smart card IC

8.5 RF interface

The RF-interface is according to the standard for contactless smart cards ISO/IEC 14443 A.

For operation, the carrier field from the reader always needs to be present (with short pauses when transmitting), as it is used for the power supply of the card.

For both directions of data communication there is only one start bit at the beginning of each frame. Each byte is transmitted with a parity bit (odd parity) at the end. The LSB of the byte with the lowest address of the selected block is transmitted first. The maximum frame length is 163 bits (16 data bytes + 2 CRC bytes = $16 \times 9 + 2 \times 9 + 1$ start bit).

MIFARE Classic 4K - Mainstream contactless smart card IC

8.6 Memory organization

The 4096×8 bit EEPROM memory is organized in 32 sectors of 4 blocks and 8 sectors of 16 blocks. One block contains 16 bytes.

		Byte Number within a Block																
Sector	Block	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	Description
39	15			Ke	у А			A	cces	s Bi	ts			Key	В			Sector Trailer 39
	14																	Data
	13																	Data
	:																	:
	:																	:
	2																	Data
	1																	Data
	0	L																Data
	:																	:
	:																	:
	:	L																:
32	15			Ke	у А			A	cces	s Bi	ts			Key	В			Sector Trailer 32
	14																	Data
	13																	Data
	÷																	:
	÷																	:
	2																	Data
	1																	Data
	0	L	L															Data
31	3			Ke	у А			A	cces	s Bi	ts			Key	В			Sector Trailer 31
	2																	Data
	1																	Data
	0	\perp	_															Data
	:																	:
	:																	:
	:	L																:
0	3			Ke	y A I			A	cces	s Bi	ts			Key	В			Sector Trailer 0
	2																	Data
	1																	Data
	0						Λ	1anu	ıfact	urer	Data	а						Manufacturer Bloc
j 5. Με	emory or																	001aan0

MF1S703x

MIFARE Classic 4K - Mainstream contactless smart card IC

8.6.1 Manufacturer block

This is the first data block (block 0) of the first sector (sector 0). It contains the IC manufacturer data. This block is programmed and write protected in the production test.

8.6.2 Data blocks

The first 32 sectors contain 3 blocks of 16 bytes for storing data (Sector 0 contains only two data blocks and the read-only manufacturer block). The last 8 sectors contain 15 blocks of 16 bytes for storing data.

The data blocks can be configured by the access bits as

- read/write blocks
- value blocks

Value blocks can be used for e.g. electronic purse applications, where additional commands like increment and decrement for direct control of the stored value are provided.

A successful authentication has to be performed to allow any memory operation.

Remark: The default content of the data blocks at delivery is not defined.

8.6.2.1 Value blocks

The value blocks allow performing electronic purse functions (valid commands: read, write, increment, decrement, restore, transfer). Value blocks have a fixed data format which permits error detection and correction and a backup management.

A value block can only be generated through a write operation in the value block format:

- Value: Signifies a signed 4-byte value. The lowest significant byte of a value is stored
 in the lowest address byte. Negative values are stored in standard 2's complement
 format. For reasons of data integrity and security, a value is stored three times, twice
 non-inverted and once inverted.
- Adr: Signifies a 1-byte address, which can be used to save the storage address of a block, when implementing a powerful backup management. The address byte is stored four times, twice inverted and non-inverted. During increment, decrement, restore and transfer operations the address remains unchanged. It can only be altered via a write command.

MF1S703x

MIFARE Classic 4K - Mainstream contactless smart card IC

8.6.3 Sector trailer

The sector trailer is always the last block in one sector (block 3 for the first 32 sectors, block 15 for the last 8 sectors). Each sector has a sector trailer containing the

- secret keys A and B (optional), which return logical "0"s when read and
- the access conditions for the blocks of that sector, which are stored in bytes 6...9. The access bits also specify the type (data or value) of the data blocks.

If key B is not needed, the last 6 bytes of the sector trailer can be used as data bytes. The access bits for the sector trailer have to be configured accordingly, see <u>Section 8.7.2</u>.

Byte 9 of the sector trailer is available for user data. For this byte the same access rights as for byte 6, 7 and 8 apply.

When the sector trailer is read, the key bytes are blanked out by returning logical zeros. If Key B is configured to be readable, the data stored in bytes 10 to 15 is returned, see Section 8.7.2.

All keys are set to FFFFFFFFFFh at chip delivery.

001aan013

Fig 8. Sector trailer

MIFARE Classic 4K - Mainstream contactless smart card IC

8.7 Memory access

Before any memory operation can be carried out, the card has to be selected and authenticated as described in <u>Section 8.2</u>. The possible memory operations for an addressed block depend on the key used and the access conditions stored in the associated sector trailer.

Table 4. Memory operations

Operation	Description	Valid for Block Type
Read	reads one memory block	read/write, value and sector trailer
Write	writes one memory block	read/write, value and sector trailer
Increment	increments the contents of a block and stores the result in the internal data register	value
Decrement	decrements the contents of a block and stores the result in the internal data register	value
Transfer	writes the contents of the internal data register to a block	value
Restore	reads the contents of a block into the internal data register	value

8.7.1 Access conditions

The access conditions for every data block and sector trailer are defined by 3 bits, which are stored non-inverted and inverted in the sector trailer of the specified sector. For the upper 8 sectors, always 5 blocks share the same access rights (see <u>Table 5</u>).

The access bits control the rights of memory access using the secret keys A and B. The access conditions may be altered, provided one knows the relevant key and the current access condition allows this operation.

Remark: With each memory access the internal logic verifies the format of the access conditions. If it detects a format violation the whole sector is irreversibly blocked.

Remark: In the following description the access bits are mentioned in the non-inverted mode only.

The internal logic of the MF1S703x ensures that the commands are executed only after a successful authentication.

Table 5. Access conditions

Access Bits	Valid Commands		Block (sectors 0 - 31)	Block(s) (sectors 32-39)	Description
C1 ₃ C2 ₃ C3 ₃	read, write	\rightarrow	3	15	sector trailer
C1 ₂ C2 ₂ C3 ₂	read, write, increment, decrement, transfer, restore	\rightarrow	2	10-14	data block(s)
C1 ₁ C2 ₁ C3 ₁	read, write, increment, decrement, transfer, restore	\rightarrow	1	5-9	data block(s)
C1 ₀ C2 ₀ C3 ₀	read, write, increment, decrement, transfer, restore	\rightarrow	0	0-4	data block(s)

MF1S703x

MIFARE Classic 4K - Mainstream contactless smart card IC

8.7.2 Access conditions for the sector trailer

Depending on the access bits for the sector trailer the read/write access to the keys and the access bits is specified as 'never', 'key A', 'key B' or key A|B' (key A or key B).

On chip delivery the access conditions for the sector trailers and key A are predefined as transport configuration. Since key B may be read in the transport configuration, new cards must be authenticated with key A to allow memory operations. Since the access bits themselves can also be blocked, special care has to be taken during personalization of cards.

Table 6. Access conditions for the sector trailer

Acc	ess k	oits	Access	condition	for				Remark
			KEYA		Access	ccess bits			
C1	C2	C3	read	write	read	write	read	write	
0	0	0	never	key A	key A	never	key A	key A	Key B may be read[1]
0	1	0	never	never	key A	never	key A	never	Key B may be read[1]
1	0	0	never	key B	key A B	never	never	key B	
1	1	0	never	never	key A B	never	never	never	
0	0	1	never	key A	key A	key A	key A	key A	Key B may be read, transport configuration[1]
0	1	1	never	key B	key A B	key B	never	key B	
1	0	1	never	never	key A B	key B	never	never	
1	1	1	never	never	key A B	never	never	never	

^[1] for this access condition key B is readable and may be used for data

MIFARE Classic 4K - Mainstream contactless smart card IC

8.7.3 Access conditions for data blocks

Depending on the access bits for data blocks (blocks 0...2) the read/write access is specified as 'never', 'key A', 'key B' or 'key A|B' (key A or key B). The setting of the relevant access bits defines the application and the corresponding applicable commands.

- Read/write block: the operations read and write are allowed.
- Value block: Allows the additional value operations increment, decrement, transfer and restore. With access condition '001' only read and decrement are possible which reflects a non-rechargeable card. For access condition '110' recharging is possible by using key B.
- Manufacturer block: the read-only condition is not affected by the access bits setting!
- Key management: in transport configuration key A must be used for authentication to allow any memory operation

Table 7. Access conditions for data blocks

Acc	ess bi	its	Access cond	ition for			Application
C1	C2	C3	read	write	increment	decrement, transfer, restore	
0	0	0	key A B[1]	key A B1	key A B1	key A B1	transport configuration
0	1	0	key A B[1]	never	never	never	read/write block
1	0	0	key A B[1]	key B ¹	never	never	read/write block
1	1	0	key A B[1]	key B ¹	key B ¹	key A B ¹	value block
0	0	1	key A B[1]	never	never	key A B ¹	value block
0	1	1	key B[1]	key B ¹	never	never	read/write block
1	0	1	key B[1]	never	never	never	read/write block
1	1	1	never	never	never	never	read/write block

^[1] if Key B may be read in the corresponding Sector Trailer it cannot serve for authentication (all grey marked lines in previous table). As a consequences, if the reader authenticates any block of a sector which uses the grey marked access conditions and using key B, the card will refuse any subsequent memory access after authentication.

MIFARE Classic 4K - Mainstream contactless smart card IC

9. Command overview

The MIFARE Classic card activation follows the ISO/IEC 14443-3 type A. After the MIFARE Classic card has been selected, it can either be deactivated using the ISO/IEC 14443 Halt command, or the MIFARE Classic commands can be performed. For more details about the card activation refer to Ref. 5.

9.1 MIFARE Classic command overview

All MIFARE Classic commands use the MIFARE Crypto1 and require an authentication.

All available commands for the MIFARE Classic are shown in Table 8.

Table 8. Command overview

Command	ISO/IEC 14443	Command code (hexadecimal)
Request	REQA	26h (7 bit)
Wake-up	WUPA	52h (7 bit)
Anti-collision CL1	Anti-collision CL1	93h 20h
Select CL1	Select CL1	93h 70h
Halt	Halt	50h 00h
Authentication with Key A	-	60h
Authentication with Key B	-	61h
MIFARE Read	-	30h
MIFARE Write	-	A0h
MIFARE Decrement	-	C0h
MIFARE Increment	-	C1h
MIFARE Restore	-	C2h
MIFARE Transfer	-	B0h

All commands are using the coding and framing as described in Ref. 4 and Ref. 5 if not otherwise specified.

9.2 Timings

The timings shown in this document are not to scale and values are rounded to 1 μ s.

All the given times refer to the data frames including start of communication and end of communication, but do not include the encoding (like the Miller pulses).

Consequently a data frame sent by the PCD contains the start of communication (1 "start bit") and the end of communication (one logic 0 + 1 bit length of unmodulated carrier).

A data frame sent by the PICC contains the start of communication (1 "start bit") and the end of communication (1 bit length of no subcarrier).

All timing can be measured according to ISO/IEC 14443-3 frame specification as shown for the Frame Delay Time in <u>Figure 10</u>. For more details refer to <u>Ref. 4</u> and <u>Ref. 5</u>.

The frame delay time from PICC to PCD must be at least 87 μ s.

MIFARE Classic 4K - Mainstream contactless smart card IC

Remark: Due to the coding of commands, the measured timings usually exclude (a part of) the end of communication. This needs to be considered, when comparing the specified with the measured times.

9.3 MIFARE Classic ACK and NAK

The MIFARE Classic uses a 4 bit ACK/NAK as shown in Table 9.

Table 9. MIFARE ACK and NAK

Code (4-bit)	ACK/NAK
Ah	Acknowledge (ACK)
0h to 9h, Bh to Fh	NAK

9.4 ATQA and SAK responses

For details on the type identification procedure please refer to Ref. 3.

The MF1S703x answers to a REQA or WUPA command with the ATQA value shown in Table 10 and to a Select CL1 command with the SAK value shown in Table 11.

Table 10. ATQA response of the MF1S703x

		Bit Number															
Response	Hex Value	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1
ATQA	00 02h	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0

Table 11. SAK response of the MF1S703x

				В	it Nu	mber			
Response	Hex Value	8	7	6	5	4	3	2	1
SAK	18h	0	0	0	1	1	0	0	0

MF1S703x

MIFARE Classic 4K - Mainstream contactless smart card IC

10. MIFARE Classic commands

10.1 MIFARE Authentication

The MIFARE authentication is a 3-pass mutual authentication which needs two pairs of command-response. These two parts, MIFARE authentication part 1 and part 2 are shown in Figure 11, Figure 12 and Table 12.

Table 13 shows the required timing.

Fig 11. MIFARE Authentication part 1

Table 12. MIFARE authentication command

Name	Code	Description	Length
Auth (with Key A)	60h	Authentication with Key A	1 byte
Auth (with Key B)	61h	Authentication with Key B	1 byte
Addr	-	MIFARE Block address (00h to FFh)	1 byte
CRC	-	CRC according to Ref. 5	2 bytes
Token RB	-	Challenge 1 (Random Number)	4 bytes
Token AB	-	Challenge 2 (encrypted data)	8 bytes
Token BA	-	Challenge 2 (encrypted data)	4 bytes
NAK	see <u>Table 9</u>	see Section 9.3	4-bit

MF1S703x

All information provided in this document is subject to legal disclaimers.

© NXP B.V. 2010. All rights reserved.

MIFARE Classic 4K - Mainstream contactless smart card IC

Table 13. MIFARE authentication timing

These times exclude the end of communication of the PCD.

	T _{ACK} min	T _{ACK} max	T _{NAK min}	T _{NAK max}	T _{TimeOut}
Authentication part 1	71 μs	$T_{TimeOut}$	71 μs	$T_{TimeOut}$	1 ms
Authentication part 2	71 μs	$T_{TimeOut}$	71 μs	$T_{TimeOut}$	1 ms

Remark: The minimum required time between MIFARE Authentication part 1 and part 2 is the minimum required FDT according to <u>Ref. 5</u>. There is no maximum time specified.

Remark: The MIFARE authentication and encryption requires an MIFARE reader IC (e.g. the CL RC632). For more details about the authentication command refer to the corresponding data sheet (e.g. Ref. 6).

10.2 MIFARE Read

The MIFARE Read requires a block address, and returns the 16 bytes of one MIFARE Classic block. The command structure is shown in Figure 13 and Table 14.

Table 15 shows the required timing.

Table 14. MIFARE Read command

Name	Code	Description	Length
Cmd	30h	Read one block	1 byte
Addr	-	MIFARE Block address (00h to FFh)	1 byte
CRC	-	CRC according to Ref. 5	2 bytes
Data	-	Data content of the addressed block	16 bytes
NAK	see Table 9	see Section 9.3	4-bit

Table 15. MIFARE Read timing

These times exclude the end of communication of the PCD.

	T _{ACK} min	T _{ACK} max	T _{NAK min}	T _{NAK max}	T _{TimeOut}
Read	71 μs	$T_{TimeOut}$	71 μs	$T_{TimeOut}$	5 ms

MIFARE Classic 4K - Mainstream contactless smart card IC

10.3 MIFARE Write

The MIFARE Write requires a block address, and writes 16 Bytes of data into the addressed MIFARE Classic 4K block. It needs two pairs of command-response. These two parts, MIFARE Write part 1 and part 2 are shown in <u>Figure 14</u> and <u>Figure 15</u> and <u>Table 16</u>.

Table 17 shows the required timing.

Table 16. MIFARE Write command

Name	Code	Description	Length
Cmd	A0h	Read one block	1 byte
Addr	-	MIFARE Block or Page address (00h to FFh)	1 byte
CRC	-	CRC according to Ref. 5	2 bytes
Data	-	Data	16 bytes
NAK	see <u>Table 9</u>	see Section 9.3	4-bit

MIFARE Classic 4K - Mainstream contactless smart card IC

Table 17. MIFARE Write timing

These times exclude the end of communication of the PCD.

	T _{ACK} min	T _{ACK} max	T _{NAK min}	T _{NAK max}	T _{TimeOut}
Write part 1	71 μs	$T_{TimeOut}$	71 μs	$T_{TimeOut}$	5 ms
Write part 2	71 μs	$T_{TimeOut}$	71 μs	$T_{TimeOut}$	10 ms

Remark: The minimum required time between MIFARE Write part 1 and part 2 is the minimum required FDT acc. to <u>Ref. 5</u>. There is no maximum time specified.

10.4 MIFARE Increment, Decrement and Restore

The MIFARE Increment requires a source block address and an operand. It adds the operand to the value of the addressed block, and stores the result in a volatile memory.

The MIFARE Decrement requires a source block address and an operand. It subtracts the operand from the value of the addressed block, and stores the result in a volatile memory.

The MIFARE Restore requires a source block address. It copies the value of the addressed block into a volatile memory.

These two parts of each command are shown in Figure 16 and Figure 17 and Table 18.

Table 19 shows the required timing.

MF1S703x

MIFARE Classic 4K - Mainstream contactless smart card IC

Table 18. MIFARE Increment, Decrement and Restore command

Name	Code	Description	Length
Cmd	C1h	Increment	1 byte
Cmd	C0h	Decrement	1 byte
Cmd	C2h	Restore	1 byte
Addr	-	MIFARE source block address (00h to FFh)	1 byte
CRC	-	CRC according to Ref. 5	2 bytes
Data	-	Operand (4 byte signed integer)	4 bytes
NAK	see <u>Table 9</u>	see Section 9.3	4-bit

Table 19. MIFARE Increment, Decrement and Restore timing

These times exclude the end of communication of the PCD.

	T _{ACK} min	T _{ACK} max	T _{NAK min}	T _{NAK max}	T _{TimeOut}
Increment, Decrement, and Restore part 1	71 μs	T _{TimeOut}	71 μs	T _{TimeOut}	5 ms
Increment, Decrement, and Restore part 2	71 μs	$T_{TimeOut}$	71 μs	T _{TimeOut}	5 ms

Remark: The minimum required time between MIFARE Increment, Decrement, and Restore part 1 and part 2 is the minimum required FDT according too Ref. 5. There is no maximum time specified.

Remark: The MIFARE Increment, Decrement, and Restore commands require a MIFARE Transfer to store the value into a destination block.

Remark: The MIFARE Increment, Decrement, and Restore command part 2 does not provide an acknowledgement, so the regular time-out has to be used instead.

MIFARE Classic 4K - Mainstream contactless smart card IC

10.5 MIFARE Transfer

The MIFARE Transfer requires a destination block address, and writes the value stored in the volatile memory into one MIFARE Classic block. The command structure is shown in Figure 18 and Table 20.

Table 21 shows the required timing.

Table 20. MIFARE Transfer command

Name	Code	Description	Length
Cmd	B0h	Write value into destination block	1 byte
Addr	-	MIFARE destination block address (00h to FFh)	1 byte
CRC	-	CRC according to Ref. 5	2 bytes
NAK	see <u>Table 9</u>	see Section 9.3	4-bit

Table 21. MIFARE Transfer timing

These times exclude the end of communication of the PCD.

	T _{ACK} min	T _{ACK} max	T _{NAK min}	T _{NAK max}	T _{TimeOut}
Transfer	71 μs	$T_{TimeOut}$	71 μs	$T_{TimeOut}$	10 ms

MIFARE Classic 4K - Mainstream contactless smart card IC

11. Limiting values

Table 22. Limiting values [1][2]

In accordance with the Absolute Maximum Rating System (IEC 60134).

Symbol	Parameter		Min	Max	Unit
I _I	input current		-	30	mA
P _{tot} /pack	total power dissipation per package		-	200	mW
T _{stg}	storage temperature		-55	125	°C
T _{amb}	ambient temperature		-25	70	°C
V _{ESD}	electrostatic discharge voltage	[3]	2	-	kV
I _{lu}	latch-up current		±100	-	mA

^[1] Stresses above one or more of the limiting values may cause permanent damage to the device

12. Characteristics

Table 23. Characteristics

Symbol	Parameter	Conditions		Min	Тур	Max	Unit	
C_{i}	input capacitance		<u>[1]</u>	14.4	16.1	17.4	pF	
fi	input frequency			-	13.56	-	MHz	
EEPROM 0	EEPROM characteristics							
t _{ret}	retention time	T _{amb} = 22 °C		10	-	-	year	
N _{endu(W)}	write endurance	T _{amb} = 22 °C		100000	200000	-	cycle	

^[1] LCR meter, T_{amb} = 22 °C, f_i = 13.56 MHz, 2 V RMS.

^[2] Exposure to limiting values for extended periods may affect device reliability

^[3] MIL Standard 883-C method 3015; Human body model: C = 100 pF, R = 1.5 k Ω

13. Wafer specification

Table 24. Wafer specifications MF1S7035DUx

200 mm typical (8 inches)
150 μm \pm 15 μm
not applicable
15601
Si
ground and stress relieve
$R_a \max = 0.5 \mu m$
$R_t max = 5 \mu m$
x = 1420 μm
y = 1340 μm
x = 86,4 μm
y = 86,4 μm
sandwich structure
PSG / nitride
500 nm / 600 nm

MIFARE Classic 4K - Mainstream contactless smart card IC

Table 25. Bond pad specifications

Bond pads (substrate connected to	VSS)
size (metallization)	LA, LB = 118 μ m \times 118 μ m
	$VSS_{11} = 108 \mu m \times 108 \mu m$
	TESTIO[1] = 95 μm × 110 μm
size (pad opening)	LA, LB = 90 μ m \times 90 μ m
	$VSS_{11}^{11} = 80 \mu m \times 80 \mu m$
	TESTIO[$\frac{11}{2}$ = 67 μm × 82 μm
material	Al-Cu
thickness	850 nm

^[1] Pads VSS and TESTIO are disconnected when wafer is sawn.

Table 26. Bump specifications

Au bump (substrate connected to	VSS)
material	> 99.9 % pure Au
hardness	35 to 80 HV 0.005
shear strength	> 70 MPa
height	18 μm

MF1S703x

^[1] the gap between chips may vary due to changing foil expansion

MIFARE Classic 4K - Mainstream contactless smart card IC

Table 26. Bump specifications

height uniformity	within a die = $\pm 2 \mu m$
	within a wafer = $\pm 3 \mu m$
	wafer to wafer = $\pm 4 \mu m$
flatness	minimum = $\pm 1.5 \mu m$
size	LA, LB = 104 μ m \times 104 μ m
	VSS[1] = 94 μm × 94 μm
	TESTIO[$\frac{11}{2}$ = 81 µm × 96 µm
size variation	±5 μm
under bump metallization	sputtered TiW

^[1] Pads VSS and TESTIO are disconnected when wafer is sawn.

13.1 Fail die identification

All fail dies are inked according to electrical test results.

Electronic wafer mapping covers the electrical test results and additionally the results of mechanical/visual inspection.

MIFARE Classic 4K - Mainstream contactless smart card IC

14. Package outline

For more details on the contactless module MOA4 please refer to Ref. 2.

MIFARE Classic 4K - Mainstream contactless smart card IC

Fig 19. Package outline SOT500-2

MIFARE Classic 4K - Mainstream contactless smart card IC

Fig 20. Package outline SOT500-3

MIFARE Classic 4K - Mainstream contactless smart card IC

15. Bare die outline

MIFARE Classic 4K - Mainstream contactless smart card IC

16. Abbreviations

Table 27. Abbreviations and symbols

Acronym	Description
ACK	ACKnowledge
ATQA	Answer To reQuest, Type A
CRC	Cyclic Redundancy Check
EEPROM	Electrically Erasable Programmable Read-Only Memory
FDT	Frame Delay Time
FFC	Film Frame Carrier
IC	Integrated Circuit
LCR	L = inductance, Capacitance, Resistance (LCR meter)
LSB	Least Significant Bit
NAK	Not AcKnowledge
NUID	Non-Unique IDentifier
PCD	Proximity Coupling Device (Contactless Reader)
PICC	Proximity Integrated Circuit Card (Contactless Card)
POR	Power-On Reset
REQA	REQuest command, Type A
RF	Radio Frequency
RMS	Root Mean Square
SAK	Select AcKnowledge, type A
SECS-II	SEMI Equipment Communications Standard part 2
TiW	Titanium Tungsten
WUPA	Wake-Up Protocol type A

17. References

- [1] MIFARE (Card) Coil Design Guide Application note, BU-ID Document number 0117**1
- [2] Contactless smart card module specification MOA4 Product data sheet, BU-ID Document number 0823**1
- [3] MIFARE Type Identification Procedure Application note, BU-ID Document number 0184**1
- [4] ISO/IEC 14443-2 2001
- [5] ISO/IEC 14443-3 2001
- [6] MIFARE and I-CODE CL RC632 Multiple protocol contactless reader IC Product data sheet
- [7] MIFARE and handling of UIDs Application note, BU-ID Document number 1907**1

^{1. ** ...} document version number

MIFARE Classic 4K - Mainstream contactless smart card IC

18. Revision history

Table 28. Revision history

Document ID	Release date	Data sheet status	Change notice	Supersedes
MF1S703x v.3.0	20101202	Product data sheet	-	-

MIFARE Classic 4K - Mainstream contactless smart card IC

19. Legal information

19.1 Data sheet status

Document status[1][2]	Product status[3]	Definition
Objective [short] data sheet	Development	This document contains data from the objective specification for product development.
Preliminary [short] data sheet	Qualification	This document contains data from the preliminary specification.
Product [short] data sheet	Production	This document contains the product specification.

- [1] Please consult the most recently issued document before initiating or completing a design.
- [2] The term 'short data sheet' is explained in section "Definitions"
- [3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL http://www.nxp.com.

19.2 Definitions

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local NXP Semiconductors sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

Product specification — The information and data provided in a Product data sheet shall define the specification of the product as agreed between NXP Semiconductors and its customer, unless NXP Semiconductors and customer have explicitly agreed otherwise in writing. In no event however, shall an agreement be valid in which the NXP Semiconductors product is deemed to offer functions and qualities beyond those described in the Product data sheet.

19.3 Disclaimers

Limited warranty and liability — Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information.

In no event shall NXP Semiconductors be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason whatsoever, NXP Semiconductors' aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the *Terms and conditions of commercial sale* of NXP Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or

malfunction of an NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental damage. NXP Semiconductors accepts no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Customers are responsible for the design and operation of their applications and products using NXP Semiconductors products, and NXP Semiconductors accepts no liability for any assistance with applications or customer product design. It is customer's sole responsibility to determine whether the NXP Semiconductors product is suitable and fit for the customer's applications and products planned, as well as for the planned application and use of customer's third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products.

NXP Semiconductors does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer's applications or products, or the application or use by customer's third party customer(s). Customer is responsible for doing all necessary testing for the customer's applications and products using NXP Semiconductors products in order to avoid a default of the applications and the products or of the application or use by customer's third party customer(s). NXP does not accept any liability in this respect.

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) will cause permanent damage to the device. Limiting values are stress ratings only and (proper) operation of the device at these or any other conditions above those given in the Recommended operating conditions section (if present) or the Characteristics sections of this document is not warranted. Constant or repeated exposure to limiting values will permanently and irreversibly affect the quality and reliability of the device.

Quick reference data — The Quick reference data is an extract of the product data given in the Limiting values and Characteristics sections of this document, and as such is not complete, exhaustive or legally binding.

Terms and conditions of commercial sale — NXP Semiconductors products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nxp.com/profile/terms, unless otherwise agreed in a valid written individual agreement. In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. NXP Semiconductors hereby expressly objects to applying the customer's general terms and conditions with regard to the purchase of NXP Semiconductors products by customer.

No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

MF1S703x

All information provided in this document is subject to legal disclaimers.

© NXP B.V. 2010. All rights reserved.

MIFARE Classic 4K - Mainstream contactless smart card IC

Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from national authorities.

Non-automotive qualified products — Unless this data sheet expressly states that this specific NXP Semiconductors product is automotive qualified, the product is not suitable for automotive use. It is neither qualified nor tested in accordance with automotive testing or application requirements. NXP Semiconductors accepts no liability for inclusion and/or use of non-automotive qualified products in automotive equipment or applications.

In the event that customer uses the product for design-in and use in automotive applications to automotive specifications and standards, customer (a) shall use the product without NXP Semiconductors' warranty of the product for such automotive applications, use and specifications, and (b) whenever customer uses the product for automotive applications beyond NXP Semiconductors' specifications such use shall be solely at customer's own risk, and (c) customer fully indemnifies NXP Semiconductors for any liability, damages or failed product claims resulting from customer design and use of the product for automotive applications beyond NXP Semiconductors' standard warranty and NXP Semiconductors' product specifications.

Bare die — All die are tested on compliance with their related technical specifications as stated in this data sheet up to the point of wafer sawing and are handled in accordance with the NXP Semiconductors storage and transportation conditions. If there are data sheet limits not guaranteed, these will be separately indicated in the data sheet. There are no post-packing tests performed on individual die or wafers.

NXP Semiconductors has no control of third party procedures in the sawing, handling, packing or assembly of the die. Accordingly, NXP Semiconductors assumes no liability for device functionality or performance of the die or systems after third party sawing, handling, packing or assembly of the die. It is the responsibility of the customer to test and qualify their application in which the die is used.

All die sales are conditioned upon and subject to the customer entering into a written die sale agreement with NXP Semiconductors through its legal department.

19.4 Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

MIFARE — is a trademark of NXP B.V.

20. Contact information

For more information, please visit: http://www.nxp.com

For sales office addresses, please send an email to: salesaddresses@nxp.com

MIFARE Classic 4K - Mainstream contactless smart card IC

21. Tables

Table 1.	Quick reference data2	Table 16.	MIFARE Write command	. 19
Table 2.	Ordering information3	Table 17.	MIFARE Write timing	. 20
Table 3.	Pin allocation table	Table 18.	MIFARE Increment, Decrement and Restore	
Table 4.	Memory operations12		command	. 21
Table 5.	Access conditions12	Table 19.	MIFARE Increment, Decrement and Restore	
Table 6.	Access conditions for the sector trailer13		timing	. 21
Table 7.	Access conditions for data blocks	Table 20.	MIFARE Transfer command	. 22
Table 8.	Command overview		MIFARE Transfer timing	
Table 9.	MIFARE ACK and NAK16	Table 22.	Limiting values [1][2]	. 23
Table 10.	ATQA response of the MF1S703x 16	Table 23.	Characteristics	. 23
Table 11.	SAK response of the MF1S703x16	Table 24.	Wafer specifications MF1S7035DUx	. 24
Table 12.	MIFARE authentication command	Table 25.	Bond pad specifications	. 24
Table 13.	MIFARE authentication timing18	Table 26.	Bump specifications	. 24
Table 14.	MIFARE Read command	Table 27.	Abbreviations and symbols	. 30
Table 15.	MIFARE Read timing18	Table 28.	Revision history	. 31

22. Figures

Fig 1.	MIFARE card reader
Fig 2.	Block diagram of MF1S703x
Fig 3.	Pin configuration for SOT500-2 (MOA4) 4
Fig 4.	Three pass authentication 6
Fig 5.	Memory organization
Fig 6.	Manufacturer block
Fig 7.	Value blocks10
Fig 8.	Sector trailer11
Fig 9.	Access conditions
Fig 10.	Frame Delay Time (from PCD to PICC) and T _{ACK}
	and T_{NAK}
Fig 11.	MIFARE Authentication part 1
Fig 12.	MIFARE Authentication part 2
Fig 13.	MIFARE Read
Fig 14.	MIFARE Write part 1
Fig 15.	MIFARE Write part 2
Fig 16.	MIFARE Increment, Decrement, Restore part 1 .20
Fig 17.	MIFARE Increment, Decrement, Restore part 2 .20
Fig 18.	MIFARE Transfer
Fig 19.	Package outline SOT500-2
Fig 20.	Package outline SOT500-3
Fig 21.	Bare die outline and chip orientation MF1S7035.29

MIFARE Classic 4K - Mainstream contactless smart card IC

23. Contents

1	General description	1
1.1	Anti-collision	1
1.2	Simple integration and user convenience	1
1.3	Security	1
1.4	Delivery options	1
2	Features and benefits	2
2.1	EEPROM	2
3	Applications	2
4	Quick reference data	2
5	Ordering information	3
6	Block diagram	3
7	Pinning information	4
7.1	Pinning	4
8	Functional description	5
8.1	Block description	5
8.2	Communication principle	5
8.2.1	Request standard/all	5
8.2.2	Anti-collision loop	5
8.2.3	Select card	6
8.2.4	Three pass authentication	6
8.2.5	Memory operations	7
8.3	Data integrity	7
8.4	Three pass authentication sequence	7
8.5	RF interface	8
8.6	Memory organization	9
8.6.1		0
8.6.2		0
8.6.2.1		0
8.6.3		11
8.7		2
8.7.1		2
8.7.2		3
8.7.3		4
9		5
9.1		5
9.2	S .	5
9.3		6
9.4		6
10		7
10.1		7
10.2		8
10.3		9
10.4		20
10.5		22
11	Limiting values 2	23

Characteristics	23
Wafer specification	24
Fail die identification	25
Package outline	26
Bare die outline	29
Abbreviations 3	30
References	30
Revision history	31
Legal information	32
	32
Definitions	32
Disclaimers	32
Trademarks 3	33
Contact information	33
Tables	34
Figures	34
Contents	35

Please be aware that important notices concerning this document and the product(s) described herein, have been included in section 'Legal information'.

© NXP B.V. 2010.

All rights reserved.

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

NXP:

MF1S7035DUB,005 MF1S7035DUC,005