What is claimed is:

1	 A structure for providing resilient interconnections in a wafer level
2	package, comprising a conductive pad that overlays an air space, wherein at
3	least a portion of the air space extends laterally beyond the conductive pad.

 The structure as claimed in claim 1, wherein the air space comprises a geometric structure having a plurality of perimeter interconnect support structures for the conductive pad.

3. The structure as claimed in claim 2, wherein at least one perimeter interconnect support structure also supports a conductive line electrically connected to the conductive pad.

4. The structure as claimed in claim 3, wherein the conductive line is a metal wire.

5. The structure as claimed in claim 1, wherein a major axis of the air space is radial to a center of the wafer level package.

6. The structure as claimed in claim 1, wherein a major axis of the air space is not radial to a center of the wafer level package.

1	7.	The s	tructure as claimed in claim 2, wherein at least one perimeter
2	interconnect	suppo	rt structure also supports a conductive line electrically
3	connected to	the co	onductive pad.
1			
1	8.	The s	tructure as claimed in claim 7, wherein the at least one
2	perimeter int	erconr	ect support structure is positioned relative to a center of the
3	conductive p	ad les	s than or equal to about 60 degrees of the major axis.
1			
1	9.	A met	hod for making a structure for providing resilient
2	interconnect	ions in	a wafer level package, comprising the steps of:
3		A.	forming a cavity having a first area on a semiconductor
4	subs	trate;	
5		В.	filling the cavity with a removable material;
6		C.	forming a conductive layer over the removable material;
7		D.	patterning the conductive layer to form a conductive pad;
8		E.	removing the removable material to form an air space below
9	the c	conduc	tive pad; and
10		F.	forming an interconnection material on the conductive pad,
11	whereby at I	east a	portion of the air space extends laterally beyond the
12	conductive p	oad.	
1			
1	10.	The r	nethod as claimed in claim 9, wherein the removable material
2	is planarized	d befor	e forming the conductive layer.

1	11.	The method as claimed in claim 10, wherein the planarization is				
2	carried out b	by either an etch-back process or a CMP process.				
1						
1	12.	The method as claimed in claim 9, wherein the removable material				
2	is material s	elected from the group consisting of a monomeric material, a				
3	polymeric material, and an elastomeric material.					
1						
1	13.	The method as claimed in claim 9, wherein the removable material				
2	is a B-stage-able material.					
1						
1	14.	The method as claimed in claim 9, wherein the cavity is formed by				
2	depositing a	dielectric layer and thereafter patterning the dielectric layer.				
1						
1	15.	The method as claimed in claim 14, wherein the patterning of the				
2	dielectric lay	er is carried out using a photolithographic process.				
1						
1	16.	The method as claimed in claim 9, wherein after forming the				
2	conductive I	ayer, a dielectric layer is deposited over the conductive layer.				
1						
1	17.	The method as claimed in claim 9, wherein after forming the air				
2	space, a pro	otective layer is deposited on a top and bottom surface of the				
3	conductive	pad.				
1						

1	18. The method as claimed in claim 17, wherein the protective layer is
2	carried out by an electroless plating method.
1	
1	19. The method as claimed in claim 18, wherein the protective layer is
2	formed using a metal.
1	
1	20. The method as claimed in claim 19, wherein the metal is selected
0	from the group consisting of gold and nickel