$ident, x, y, y_p, y_f, -$, abbrev, r subscripts: p for pointers, f for functions

n, i, j index variables

impl_const implementation-defined constant

mem_int memory integer value

member C struct/union member name

Ott-hack, ignore (annotations)

nat OCaml arbitrary-width natural number

 mem_ptr abstract pointer value mem_val abstract memory value

Ott-hack, ignore (locations)

 mem_iv_c OCaml type for memory constraints on integer values

 UB_name undefined behaviour

string OCaml string

Ott-hack, ignore (OCaml type variable $\mathrm{TY})$

Ott-hack, ignore (OCaml Symbol.prefix)

mem_order, _ OCaml type for memory order

linux_mem_order OCaml type for Linux memory order

Ott-hack, ignore (OCaml type variable bt)

```
Sctypes_{-}t, \tau
                                                 C type
                                                    pointer to type \tau
tag
                                                 OCaml type for struct/union tag
                     ::=
                           ident
β, _
                                                 base types
                     ::=
                                                    unit
                           unit
                           bool
                                                    boolean
                                                    integer
                           integer
                                                    rational numbers?
                           real
                                                   location
                           loc
                           \operatorname{array} \beta
                                                    array
                           \mathtt{list}\, eta
                                                    list
                                                    tuple
                           \mathtt{struct}\,tag
                                                    struct
                           \operatorname{\mathfrak{set}} \beta
                                                    \operatorname{set}
                           opt(\beta)
                                                    option
                                                   parameter types
                           \beta \to \beta'
                           \beta_{\tau}
                                           Μ
                                                    of a C type
binop
                                                 binary operators
                                                    addition
                                                    subtraction
                                                    multiplication
                                                    division
                                                    modulus
                                                    remainder
                           rem_f
                                                    exponentiation
                                                    equality, defined both for integer and C types
```

		greater than less than greater than or equal to less than or equal to conjunction disjunction
$binop_{arith}$::=	
$binop_{rel}$::= = > < >= <=	relational binary operators
$binop_{bool}$::= /\ \/	boolean binary operators
$object_value$::= men men	C object values (inhabitants of object types), which can be read/stored integer value pointer value

	 	$\begin{split} & \operatorname{array} \left(\overline{loaded_value_i}^i \right) \\ & \left(\operatorname{struct} ident \right) \{ \overline{.member_i : \tau_i = mem_val_i}^i \} \\ & \left(\operatorname{union} ident \right) \{ .member = mem_val \} \end{split}$	C array value C struct value C union value
$loaded_value$::=	$\verb specified object_value $	potentially unspecified C object values specified loaded value
value	::=	$object_value \ loaded_value \ Unit \ True \ False \ eta[\overline{value_i}^i] \ (\overline{value_i}^i)$	Core values C object value loaded C object value unit boolean true boolean false list tuple
$ctor_val$::=	$\begin{array}{c} \operatorname{Nil}\beta \\ \operatorname{Cons} \\ \operatorname{Tuple} \\ \operatorname{Array} \\ \operatorname{Specified} \end{array}$	data constructors empty list list cons tuple C array non-unspecified loaded value
$ctor_expr$::= 	Ivmax Ivmin Ivsizeof Ivalignof IvCOMPL IvAND	data constructors max integer value min integer value sizeof value alignof value bitwise complement bitwise AND

		IvOR IvXOR Fvfromint Ivfromfloat	bitwise OR bitwise XOR cast integer to floating value cast floating to integer value
name	::=	$ident \\ impl_const$	Core identifier implementation-defined constant
pval	::=	$ident \\ impl_const \\ value \\ \texttt{constrained}\left(\overline{mem_iv_c_i, pval_i}^i\right) \\ \texttt{error}\left(string, pval\right) \\ ctor_val\left(\overline{pval_i}^i\right) \\ (\texttt{struct}ident)\{\overline{.member_i = pval_i}^i\} \\ (\texttt{union}ident)\{.member = pval\}$	pure values Core identifier implementation-defined constant Core values constrained value impl-defined static error data constructor application C struct expression C union expression
pexpr	::=	$\begin{array}{c} pval \\ ctor_expr(\overline{pval_i}^i) \\ \texttt{array_shift}(pval_1,\tau,pval_2) \\ \texttt{member_shift}(pval,ident,member) \\ \texttt{not}(pval) \\ pval_1 \ binop \ pval_2 \\ \texttt{memberof}(ident,member,pval) \\ name(\overline{pval_i}^i) \\ \texttt{assert_undef}(pval,\ UB_name) \\ \texttt{bool_to_integer}(pval) \end{array}$	pure expressions pure values data constructor application pointer array shift pointer struct/union member shift boolean not binary operations C struct/union member access pure function call

```
\mathtt{conv\_int}\left(	au, pval
ight)
                                  \mathtt{wrapI}\left( 	au,pval
ight)
tpval
                                                                                            top-level pure values
                           ::=
                                  undef UB\_name
                                                                                               undefined behaviour
                                  \mathtt{done}\, pval
                                                                                               pure done
ident\_opt\_\beta
                                                                                            type annotated optional identifier
                                  _:β
                                  ident:\beta
pattern
                                  ident\_opt\_\beta
                                  ctor\_val(\overline{pattern_i}^i)
ident\_or\_pattern
                                  ident
                                  pattern
                                                                                            top-level pure expressions
tpexpr
                           ::=
                                  tpval
                                                                                               top-level pure values
                                  case pval of pattern_i \Rightarrow tpexpr_i end
                                                                                               pattern matching
                                  \mathtt{let}\, ident\_or\_pattern = pexpr\, \mathtt{in}\, tpexpr
                                                                                               pure let
                                  if pval then tpexpr_1 else tpexpr_2
                                                                                               pure if
                                  [C/C']tpexpr
                                                                                       Μ
                                                                                               simul-sub all vars in \mathcal{C} for all vars in \mathcal{C}' in tpexpr
m\_kill\_kind
                                  dynamic
                                  \operatorname{static} \tau
```

```
OCaml booleans
bool, _
                            true
                            false
                                                                                                        OCaml fixed-width integer
int, -
                      ::=
                            i
                                                                                                          literal integer
                                                                                                        memory actions
mem\_action
                      ::=
                            create(pval, \tau)
                            \texttt{create\_readonly}\left(pval_1, \tau, pval_2\right)
                            alloc(pval_1, pval_2)
                            kill(m_kill_kind, pval)
                            store(bool, \tau, pval_1, pval_2, mem\_order)
                                                                                                          true means store is locking
                            load(\tau, pval, mem\_order)
                            rmw(\tau, pval_1, pval_2, pval_3, mem\_order_1, mem\_order_2)
                            fence (mem_order)
                            cmp\_exch\_strong(\tau, pval_1, pval_2, pval_3, mem\_order_1, mem\_order_2)
                            cmp\_exch\_weak(\tau, pval_1, pval_2, pval_3, mem\_order_1, mem\_order_2)
                            linux_fence (linux_mem_order)
                            linux\_load(\tau, pval, linux\_mem\_order)
                            linux\_store(\tau, pval_1, pval_2, linux\_mem\_order)
                            linux_rmw(\tau, pval_1, pval_2, linux_mem_order)
polarity
                                                                                                        polarities for memory actions
                      ::=
                            Pos
                                                                                                          sequenced by let weak and let strong
                                                                                                          only sequenced by let strong
                            Neg
pol\_mem\_action
                                                                                                        memory actions with polarity
                            polarity\ mem\_action
```

```
operations involving the memory state
mem\_op
                                                                  pointer equality comparison
                       pval_1 \equiv pval_2
                       pval_1 \neq pval_2
                                                                  pointer inequality comparison
                       pval_1 < pval_2
                                                                  pointer less-than comparison
                       pval_1 > pval_2
                                                                  pointer greater-than comparison
                       pval_1 \leq pval_2
                                                                  pointer less-than comparison
                       pval_1 \ge pval_2
                                                                  pointer greater-than comparison
                       pval_1 -_{\tau} pval_2
                                                                  pointer subtraction
                                                                  cast of pointer value to integer value
                       intFromPtr(	au_1, 	au_2, pval)
                       \mathtt{ptrFromInt}\left(\tau_{1},\tau_{2},pval\right)
                                                                  cast of integer value to pointer value
                       ptrValidForDeref(\tau, pval)
                                                                  dereferencing validity predicate
                       ptrWellAligned(\tau, pval)
                       ptrArrayShift (pval_1, \tau, pval_2)
                       memcpy(pval_1, pval_2, pval_3)
                       memcmp(pval_1, pval_2, pval_3)
                       realloc(pval_1, pval_2, pval_3)
                       va_start(pval_1, pval_2)
                       va\_copy(pval)
                       va\_arg(pval, \tau)
                       va_{end}(pval)
                                                                resource terms
res\_term
                                                                  empty heap
                       emp
                       pt
                                                                  single-cell heap
                       ident
                                                                  variable
                       \langle res\_term_1, res\_term_2 \rangle
                                                                  seperating-conjunction pair
                       pack(pval, res\_term_2)
                                                                  packing for existentials
spine\_elem
                                                               spine element
                       pval
                                                                  pure value
```

		$term \\ res_term$		logical value resource value
tval	::= 	$\begin{array}{c} \texttt{done}\overline{spine_elem}_i^{\;i} \\ \texttt{undef}\;\; UB_name \end{array}$		(effectful) top-level values end of top-level expression undefined behaviour
$res_pattern$::=	emp pt $ident \ \langle res_pattern_1, res_pattern_2 \rangle$ pack $(ident, res_pattern)$		resource terms empty heap single-cell heap variable seperating-conjunction pair packing for existentials
$ret_pattern$::= 	$egin{array}{l} {\sf comp} ident_or_pattern \ {\sf log} ident \ {\sf res} res_pattern \end{array}$		return pattern computational variable logical variable resource variable
$bool_op$::=	$ egthinspace{-7pt} term \ term_1 = term_2 \ \bigwedge(\overline{term_i}^i) \ \bigvee(\overline{term_i}^i) \ term_1 \ binop_{bool} \ term_2 \ if \ term_1 \ then \ term_2 \ else \ term_3$	М	
$arith_op$::=	$term_1 + term_2$ $term_1 - term_2$		

```
term_1 \times term_2
                          term_1/term_2
                          term_1 \, {\tt rem\_t} \, term_2
                          term_1 \, {\tt rem\_f} \, term_2
                          term_1 ^ term_2
                          term_1 binop_{arith} term_2 M
cmp\_op
                          term_1 < term_2
                                                                  less than
                          term_1 \leq term_2
                                                                  less than or equal
                          term_1 \ binop_{rel} \ term_2
                                                         Μ
list\_op
                   ::=
                          nil
                          {\tt tl}\, term
                          term^{(int)}
tuple\_op
                   ::=
                          (\overline{term_i}^i)
                          term^{(int)}
pointer\_op
                   ::=
                          mem\_ptr
                          term_1 +_{ptr} term_2
                          {\tt cast\_int\_to\_ptr}\, term
                          {\tt cast\_ptr\_to\_int}\, term
option\_op
                   ::=
                          \mathtt{none}\,\beta
                          \verb"some"\,term"
```

```
array\_op
                     term_1[term_2]
param\_op
               ::=
                    ident:\beta.\ term
                    term(term_1, ..., term_n)
struct\_op
               ::=
                     term.member \\
ct\_pred
               ::=
                     representable (\tau, term)
                     aligned(\tau, term)
                     alignedI(term_1, term_2)
term, -
                     lit
                     arith\_op
                     bool\_op
                     cmp\_op
                     tuple\_op
                     struct\_op
                     pointer\_op
                     list\_op
                     array\_op
                     ct\_pred
                     option\_op
                     param\_op
                                                 S
                                                        parentheses
                     (term)
                     [term_1/ident]term_2
                                                 Μ
                                                        substitute term_1 for ident in term_2
```

	pi	val	М	only the ones which can be embeded into the SMT value grammar, so no array literals
init,	::= 			initialisation status initialised uninitalised
$points_to$::= $ $ te	$rrm_1 \mathbb{Q} \overset{init}{\mapsto}_{\tau} term_2$		points-to separation logic predicate
resource	$\begin{vmatrix} & & & & & & & & & & & & & & & & & & &$	$\begin{array}{l} pints_to \\ esource_1 \star resource_2 \\ ident: eta. \ resource \\ erm \land resource \\ resource \end{array}$	S M	resources empty heap points-top heap pred. seperating conjunction existential logical conjuction parentheses substitute pval for ident in resource
$ret, _$	∃a re te I	_ , _ ,	M M	return types concatenation of return types
rets	$::= \overline{re}$	$\overline{t_i}^{i}$		concatenation of return types

```
sequential (effectful) expressions
seq\_expr
                                                                                                       pure expressions
                           pexpr
                           ccall(\tau, pval, \overline{spine\_elem_i}^i)
                                                                                                       C function call
                           pcall(name, \overline{spine\_elem_i}^i)
                                                                                                       procedure call
                                                                                                   sequential top-level (effectful) expressions
seq\_texpr
                                                                                                       (effectful) top-level values
                           tval
                          \operatorname{run} ident \overline{pval_i}^i
                                                                                                       run from label
                          \operatorname{let}\overline{\mathit{ret\_pattern}_i}^i = \mathit{seq\_expr}\operatorname{in}\mathit{texpr}
                                                                                                       bind return patterns
                           \mathtt{let}\,\overline{\mathit{ret\_pattern}_i}^{\,i}\, :\! \mathit{ret} = \mathit{texpr}_1\, \mathtt{in}\, \mathit{texpr}_2
                                                                                                       annotated bind return patterns
                           case pval of \overline{\mid pattern_i \Rightarrow texpr_i}^i end
                                                                                                       pattern matching
                           if pval then texpr_1 else texpr_2
                                                                                                       conditional
                           bound [int](is\_texpr)
                                                                                                       limit scope of indet seg behaviour, absent at runtime
                                                                                                   indet seq (effectful) expressions
is\_expr
                           memop(mem\_op)
                                                                                                       pointer op involving memory
                           pol\_mem\_action
                                                                                                       memory action
                           unseq (\overline{texpr_i:ret_i}^i)
                                                                                                       unsequenced expressions
                                                                                                   indet seq top-level (effectful) expressions
is\_texpr
                           \mathtt{let}\,\mathtt{weak}\,pattern = is\_expr\,\mathtt{in}\,texpr
                                                                                                       weak sequencing
                           \texttt{let strong} \, ident\_or\_pattern = is\_expr \, \texttt{in} \, texpr
                                                                                                       strong sequencing
                                                                                                    top-level (effectful) expressions
texpr
                                                                                                       sequential (effectful) expressions
                           seg\_texpr
                           is\_texpr
                                                                                                       indet seq (effectful) expressions
                           [\mathcal{C}/\mathcal{C}']texpr
                                                                                                       simul-sub all vars in \mathcal{C} for all vars in \mathcal{C}' in texpr
                                                                                             Μ
terminals
                           \lambda
```

, ← ⊢ ∈ Π --∞ Σ ∃ ⋆ $+_{\mathrm{ptr}} \\ \mapsto$

```
OCaml arbitrary-width integer
z
                                                    literal integer
                                             Μ
                   to\_int(mem\_int)
                                             Μ
                   size\_of(\tau)
                                             Μ
                                                    size of a C type
                   offset_of_{tag}(member)
                                             Μ
                                                    offset of a struct member
                   ptr\_size
                                             Μ
                                                    size of a pointer
                                             Μ
                   \max_{-int_{\tau}}
                                                    maximum value of int of type \tau
                                             Μ
                   \min_{-int_{\tau}}
                                                    minimum value of int of type \tau
                                                  OCaml type for rational numbers
\mathbb{Q},\ q,\ _{-}
lit
                   ident
                   unit
                   bool
                    z
                   \mathbb{Q}
```

```
argument/function types
arg
                       \Pi ident:\beta. arg
                       \forall ident: \beta. arg
                       resource → arg
                       term \supset arg
                       ret
                       [spine_elem/ident] arg M
                                                          pure argument/function types
pure\_arg
                       \Pi ident:\beta. pure\_arg
                       term \supset pure\_arg
                       pure\_ret
pure\_ret
                                                          pure return types
                       \Sigma ident:\beta. pure\_ret
                       term \land pure\_ret
\mathcal{C}
                                                          computational var env
                      C, ident: \beta
                       \operatorname{fresh}(\mathcal{C})
                                                             identical context except with fresh variable names
\mathcal{L}
                                                          logical var env
                                                     Μ
```

```
Φ
                                                                                                                                                                                                               constraints env
                                                                        \frac{\Phi, term}{\overline{\Phi_i}^{\;i}}
                                                                                                                                                                                                   М
\mathcal{R}
                                                           ::=
                                                                                                                                                                                                                resources env
                                                                        \mathcal{R}, ident: resource
                                                                         [\mathcal{C}/\mathcal{C}']\mathcal{R}
                                                                                                                                                                                                   Μ
formula
                                                                         judgement
                                                                         abbrev \equiv term
                                                                         \mathtt{smt}\left(\Phi\Rightarrow term\right)
                                                                         ident:\beta \in \mathcal{C}
                                                                      \begin{array}{l} \textit{ident:} \, \texttt{struct} \, tag \, \& \, \overline{member_i : \tau_i}^i \in \texttt{Globals} \\ \overline{\mathcal{C}_i; \mathcal{L}_i; \Phi_i \vdash mem\_val_i \Rightarrow mem \, \beta_i}^i \\ \overline{\mathcal{C}_i; \mathcal{L}_i; \Phi_i \vdash pval_i \Rightarrow \beta_i}^i \end{array}
                                                                                                                                                                                                                     dependent on memory object model
                                                                        \frac{name:arg \in \texttt{Globals}}{term_i \texttt{ as } pattern_i:\beta_i \leadsto \mathcal{C}_i;\Phi_i}^i
                                                                         \overline{C_i; \mathcal{L}_i; \Phi_i \vdash tpexpr_i \Leftarrow y_i: \beta_i. term_i}^i
                                                                         \overline{\mathcal{C}_i; \mathcal{L}_i; \Phi_i; \mathcal{R}_i \vdash texpr_i \Leftarrow ret_i}^i
                                                                         \mathcal{L} \vdash term:\beta
                                                                         pval:arg \in {	t Globals}
 object\_value\_jtype
                                                          ::= \\ \mid \quad \mathcal{C}; \mathcal{L}; \Phi \vdash object\_value \Rightarrow \mathtt{obj} \, \beta
```

```
\begin{array}{ccc} pval\_jtype & & ::= \\ & \mid & \mathcal{C}; \mathcal{L}; \Phi \vdash pval \Rightarrow \beta \end{array}
```

$$resource_jtype ::=$$

$$| \quad \Phi \vdash resource \equiv resource'$$

$$C; \mathcal{L}; \Phi; \mathcal{R} \vdash res_term \Leftarrow resource$$

$$spine_jtype$$
 ::=

$$| \mathcal{C}; \mathcal{L}; \Phi; \mathcal{R} \vdash \overline{spine_elem_i}^i :: arg \gg ret$$

$$pexpr_jtype ::=$$

$$C; \mathcal{L}; \Phi \vdash pexpr \Rightarrow ident: \beta. term$$

$pattern_jtype ::=$

$$term$$
 as $pattern:eta \leadsto \mathcal{C};\Phi$

term as $ident_or_pattern: eta \leadsto \mathcal{C}; \Phi$

 $\overline{ret_pattern_i}^i: ret \leadsto \mathcal{C}; \mathcal{L}; \Phi; \mathcal{R}$

 $res_pattern:resource \leadsto \mathcal{L}; \Phi; \mathcal{R}$

$$tpval_jtype ::=$$

$$C; \mathcal{L}; \Phi \vdash tpval \Leftarrow ident: \beta. term$$

$$tpexpr_jtype ::=$$

$$C; \mathcal{L}; \Phi \vdash tpexpr \Leftarrow ident: \beta. term$$

$$action_jtype$$
 ::=

$$C; \mathcal{L}; \Phi; \mathcal{R} \vdash mem_action \Rightarrow ret$$

$$tval_jtype$$
 ::=

$$C; \mathcal{L}; \Phi; \mathcal{R} \vdash tval \Leftarrow ret$$

```
texpr\_jtype
                                 C; \mathcal{L}; \Phi; \mathcal{R} \vdash seq\_expr \Rightarrow ret
                                 C; \mathcal{L}; \Phi; \mathcal{R} \vdash is\_expr \Rightarrow ret
                                 C; \mathcal{L}; \Phi; \mathcal{R} \vdash seq\_texpr \Leftarrow ret
                                 C; \mathcal{L}; \Phi; \mathcal{R} \vdash is\_texpr \Leftarrow ret
                                 C; \mathcal{L}; \Phi; \mathcal{R} \vdash texpr \Leftarrow ret
judgement
                                  object\_value\_jtype
                                  pval\_jtype
                                  resource\_jtype
                                  spine\_jtype
                                  pexpr\_jtype
                                  pattern\_jtype
                                  tpval\_jtype
                                  tpexpr\_jtype
                                  action\_jtype
                                  tval\_jtype
                                  texpr\_jtype
user\_syntax
                         ::=
                                  ident
                                  impl\_const
                                  mem\_int
                                  member
                                  nat
                                  mem\_ptr
                                  mem\_val
```

```
mem\_iv\_c
UB\_name
string
mem\_order
linux\_mem\_order
Sctypes\_t
tag
\beta
binop
binop_{arith}
binop_{rel}
binop_{bool}
ident
	au
ident
object\_value
loaded\_value
β
value
ctor\_val
ctor\_expr
	au
name
pval
pval
```

pexpr

pexpr

tpval

tpval

 $ident_opt_\beta$

pattern

pattern

 $ident_or_pattern$

tpexpr

tpexpr

 m_kill_kind

bool

int

 mem_action

 mem_action

polarity

 pol_mem_action

 mem_op

 res_term

 $spine_elem$

tval

tval

 $res_pattern$

 $ret_pattern$

 $bool_op$

 $arith_op$

 cmp_op

 $list_op$

 $tuple_op$

 $pointer_op$ $option_op$ $array_op$ $param_op$ $struct_op$ ct_pred termterminit $points_to$ resourceretrets seq_expr seq_expr seq_texpr seq_texpr is_expr is_expr is_texpr is_texpr texprterminalsz \mathbb{Q} lit arg $pure_arg$

 $ig|\mathcal{C};\mathcal{L};\Phi \vdash object_value \Rightarrow \mathtt{obj}\,etaig|$

$$\overline{\mathcal{C};\mathcal{L};\Phi \vdash mem_int} \Rightarrow \text{obj integer} \qquad \text{PVAL_OBJ_INT}$$

$$\overline{\mathcal{C};\mathcal{L};\Phi \vdash mem_ptr} \Rightarrow \text{obj loc} \qquad \text{PVAL_OBJ_PTR}$$

$$\overline{\mathcal{C};\mathcal{L};\Phi \vdash loaded_value_i \Rightarrow \beta^i}$$

$$\overline{\mathcal{C};\mathcal{L};\Phi \vdash array\left(\overline{loaded_value_i}^i\right) \Rightarrow \text{obj array}\,\beta} \qquad \text{PVAL_OBJ_ARR}$$

$$\frac{ident: \text{struct}\, tag \, \&\, \overline{member_i:\tau_i}^i \in \text{Globals}}{\overline{\mathcal{C};\mathcal{L};\Phi \vdash mem_val_i \Rightarrow mem\,\beta_i}^i}$$

$$\overline{\mathcal{C};\mathcal{L};\Phi \vdash (\text{struct}\, tag)\{\overline{.member_i:\tau_i = mem_val_i}^i\} \Rightarrow \text{obj struct}\, tag} \qquad \text{PVAL_OBJ_STRUCT}$$

 $C; \mathcal{L}; \Phi \vdash pval \Rightarrow \beta$

$$\frac{x:\beta \in \mathcal{C}}{\mathcal{C};\mathcal{L};\Phi \vdash x \Rightarrow \beta} \quad \text{PVAL_VAR}$$

$$\frac{\mathcal{C}; \mathcal{L}; \Phi \vdash object_value \Rightarrow \mathsf{obj} \beta}{\mathcal{C}; \mathcal{L}; \Phi \vdash object_value \Rightarrow \beta} \quad \text{PVAL_OBJ}$$

$$\begin{array}{ll} & \frac{\mathcal{C};\mathcal{L};\Phi\vdash object_value\Rightarrow obj\,\beta}{\mathcal{C};\mathcal{L};\Phi\vdash specified\,object_value\Rightarrow\beta} & \text{PVAL_LOADED} \\ \\ & \overline{\mathcal{C};\mathcal{L};\Phi\vdash Specified\,object_value\Rightarrow\beta} & \text{PVAL_UNIT} \\ \\ & \overline{\mathcal{C};\mathcal{L};\Phi\vdash True\Rightarrow bool} & \text{PVAL_TRUE} \\ \\ & \overline{\mathcal{C};\mathcal{L};\Phi\vdash False\Rightarrow bool} & \text{PVAL_FALSE} \\ \\ & \frac{\overline{\mathcal{C};\mathcal{L};\Phi\vdash Value_i\Rightarrow\beta^i}}{\mathcal{C};\mathcal{L};\Phi\vdash \beta[\overline{value_i}^i]\Rightarrow list\,\beta} & \text{PVAL_LIST} \\ \\ & \frac{\overline{\mathcal{C};\mathcal{L};\Phi\vdash value_i\Rightarrow\beta^i}}{\mathcal{C};\mathcal{L};\Phi\vdash (\overline{value_i}^i)\Rightarrow\overline{\beta_i}^i} & \text{PVAL_TUPLE} \\ \\ & \frac{smt\,(\Phi\Rightarrow false)}{\mathcal{C};\mathcal{L};\Phi\vdash error\,(string,pval)\Rightarrow\beta} & \text{PVAL_ERROR} \\ \\ & \overline{\mathcal{C};\mathcal{L};\Phi\vdash pval_1\Rightarrow\beta} & \text{PVAL_CTOR_NIL} \\ \\ & \mathcal{C};\mathcal{L};\Phi\vdash pval_1\Rightarrow\beta\\ \mathcal{C};\mathcal{L};\Phi\vdash pval_1\Rightarrow\beta & \text{PVAL_CTOR_CONS} \\ \hline \\ & \overline{\mathcal{C};\mathcal{L};\Phi\vdash pval_i\Rightarrow\beta_i}^i & \text{PVAL_CTOR_CONS} \\ \\ & \overline{\mathcal{C};\mathcal{L};\Phi\vdash pval_i\Rightarrow\beta_i}^i & \text{PVAL_CTOR_CONS} \\ \\ & \overline{\mathcal{C};\mathcal{L};\Phi\vdash Tuple(\overline{pval_i}^i)\Rightarrow\overline{\beta_i}^i} & \text{PVAL_CTOR_TUPLE} \\ \hline \end{array}$$

$$\frac{\overline{\mathcal{C};\mathcal{L};\Phi\vdash pval_i\Rightarrow\beta}^i}{\mathcal{C};\mathcal{L};\Phi\vdash \mathtt{Array}(\overline{pval_i}^i)\Rightarrow\mathtt{array}\,\beta}\quad \mathtt{PVAL_CTOR_ARRAY}$$

$$\frac{\mathcal{C}; \mathcal{L}; \Phi \vdash pval \Rightarrow \beta}{\mathcal{C}; \mathcal{L}; \Phi \vdash \mathtt{Specified}(pval) \Rightarrow \beta} \quad \mathtt{PVAL_CTOR_SPECIFIED}$$

$$\frac{\overline{\mathcal{C};\mathcal{L};\Phi \vdash pval_{i} \Rightarrow \beta_{i}}^{i}}{\mathcal{C};\mathcal{L};\Phi \vdash (\operatorname{struct} tag)\{\overline{.member_{i} = pval_{i}}^{i}\} \Rightarrow \operatorname{struct} tag} \quad \text{PVAL_STRUCT}$$

 $\Phi \vdash resource \equiv resource'$

$$\frac{}{\Phi \vdash \mathtt{emp} \equiv \mathtt{emp}} \quad \mathrm{RESOURCE_EQ_EMP}$$

$$\frac{\operatorname{smt}\left(\Phi\Rightarrow\left(term_{1}=term_{1}'\right)\wedge\left(term_{2}=term_{2}'\right)\right)}{\Phi\vdash term_{1}\ q\overset{init}{\mapsto}_{\tau}\ term_{2}\equiv term_{1}'\ q\overset{init}{\mapsto}_{\tau}\ term_{2}'} \quad \text{Resource_Eq_PointsTo}$$

$$\begin{array}{c} \Phi \vdash resource_1 \equiv resource_1' \\ \Phi \vdash resource_2 \equiv resource_2' \\ \hline \Phi \vdash resource_1 \star resource_2 \equiv resource_1' \star resource_2' \end{array} \quad \text{Resource_Eq_SepConj}$$

$$\frac{\Phi \vdash resource \equiv resource'}{\Phi \vdash \exists ident: \beta. \ resource \equiv \exists ident: \beta. \ resource'} \quad \text{Resource_Eq_Exists}$$

$$\begin{split} & \operatorname{smt} \left(\Phi, term \Rightarrow term' \right) \\ & \operatorname{smt} \left(\Phi, term' \Rightarrow term \right) \\ & \frac{\Phi \vdash resource \equiv resource'}{\Phi \vdash term \land resource \equiv term' \land resource'} \end{split} \quad \text{Resource_Eq_Term}$$

 $C; \mathcal{L}; \Phi; \mathcal{R} \vdash res_term \Leftarrow resource$

$$\overline{\mathcal{C};\mathcal{L};\Phi;\cdot\vdash\operatorname{emp}\Leftarrow\operatorname{emp}} \quad \operatorname{RESOURCE_EMP}$$

$$\overline{\mathcal{C};\mathcal{L};\Phi;\cdot\vdash\operatorname{pt}\Leftarrow\operatorname{points_to}} \quad \operatorname{RESOURCE_POINTsTo}$$

$$\frac{\Phi\vdash\operatorname{resource}\equiv\operatorname{resource'}}{\mathcal{C};\mathcal{L};\Phi;\cdot,r:\operatorname{resource}\vdash\operatorname{r}\Leftarrow\operatorname{resource}} \quad \operatorname{RESOURCE_VAR}$$

$$\frac{\mathcal{C};\mathcal{L};\Phi;\mathcal{R}_1\vdash\operatorname{res_term}_1\Leftarrow\operatorname{resource}_1}{\mathcal{C};\mathcal{L};\Phi;\mathcal{R}_1\vdash\operatorname{res_term}_2\Leftarrow\operatorname{resource}_2} \quad \operatorname{RESOURCE_SEPConj}$$

$$\frac{\mathcal{C};\mathcal{L};\Phi;\mathcal{R}_1,\mathcal{R}_2\vdash\langle\operatorname{res_term}_1,\operatorname{res_term}_2\rangle\Leftarrow\operatorname{resource}_1\star\operatorname{resource}_2}{\mathcal{C};\mathcal{L};\Phi;\mathcal{R}_1,\mathcal{R}_2\vdash\langle\operatorname{res_term}_2,\operatorname{res_term}_2\rangle\Leftarrow\operatorname{resource}_1\star\operatorname{resource}_2} \quad \operatorname{RESOURCE_SEPConj}$$

$$\frac{\mathcal{C};\mathcal{L};\Phi\vdash\operatorname{pval}\Rightarrow\beta}{\mathcal{C};\mathcal{L};\Phi;\mathcal{R}\vdash\operatorname{pack}(\operatorname{pval},\operatorname{res_term}_2)\Leftarrow\operatorname{pval}/\operatorname{y}\operatorname{resource}} \quad \operatorname{RESOURCe_PACK}$$

 $C; \mathcal{L}; \Phi; \mathcal{R} \vdash \overline{spine_elem_i}^i :: arg \gg ret$

$$\overline{\mathcal{C}; \mathcal{L}; \Phi; \cdot \vdash :: ret \gg ret}$$
 Spine_Empty

$$\begin{split} & \mathcal{C}; \mathcal{L}; \Phi \vdash pval \Rightarrow \beta \\ & \frac{\mathcal{C}; \mathcal{L}; \Phi; \mathcal{R} \vdash \overline{spine_elem_i}^i :: [pval/x]arg \gg ret}{\mathcal{C}; \mathcal{L}; \Phi; \mathcal{R} \vdash pval, \overline{spine_elem_i}^i :: \Pi x: \beta. \ arg \gg ret} \end{split}$$
 Spine_Computational

$$\frac{\mathcal{L} \vdash term:\beta}{\mathcal{C}; \mathcal{L}; \Phi; \mathcal{R} \vdash \overline{spine_elem_i}^i :: [term/x] arg \gg ret}{\mathcal{C}; \mathcal{L}; \Phi; \mathcal{R} \vdash term, \overline{spine_elem_i}^i :: \forall x:\beta. arg \gg ret} \quad \text{Spine_Logical}$$

$$\begin{array}{c} \mathcal{C}; \mathcal{L}; \Phi; \mathcal{R}_1 \vdash \underline{res_term} \Leftarrow \underline{resource} \\ \mathcal{C}; \mathcal{L}; \Phi; \mathcal{R}_2 \vdash \overline{spine_elem_i}^i :: arg \gg ret \\ \hline \\ \mathcal{C}; \mathcal{L}; \Phi; \mathcal{R}_1, \mathcal{R}_2 \vdash \underline{res_term}, \overline{spine_elem_i}^i :: resource \multimap arg \gg ret \\ \hline \\ \frac{\text{smt} \ (\Phi \Rightarrow term)}{\mathcal{C}; \mathcal{L}; \Phi; \mathcal{R} \vdash \overline{spine_elem_i}^i :: arg \gg ret} \\ \hline \\ \frac{\mathcal{C}; \mathcal{L}; \Phi; \mathcal{R} \vdash \overline{spine_elem_i}^i :: arg \gg ret}{\mathcal{C}; \mathcal{L}; \Phi; \mathcal{R} \vdash \overline{spine_elem_i}^i :: term \supset arg \gg ret} \end{array}$$
 Spine_Constraint

 $C; \mathcal{L}; \Phi \vdash pexpr \Rightarrow ident: \beta. term$

$$\frac{\mathcal{C}; \mathcal{L}; \Phi \vdash pval \Rightarrow \beta}{\mathcal{C}; \mathcal{L}; \Phi \vdash pval \Rightarrow y: \beta. \ y = pval} \quad \text{PEXPR_VAL}$$

$$\begin{split} \mathcal{C}; \mathcal{L}; \Phi \vdash pval_1 \Rightarrow \texttt{loc} \\ \mathcal{C}; \mathcal{L}; \Phi \vdash pval_2 \Rightarrow \texttt{integer} \\ \hline \mathcal{C}; \mathcal{L}; \Phi \vdash \texttt{array_shift} (pval_1, \tau, pval_2) \Rightarrow y : \texttt{loc}. \ y = pval_1 +_{\texttt{ptr}} (pval_2 \times \texttt{size_of}(\tau)) \end{split} \quad \text{PEXPR_ARRAY_SHIFT}$$

$$\begin{array}{c} \mathcal{C}; \mathcal{L}; \Phi \vdash pval \Rightarrow \mathtt{loc} \\ \underline{\quad \quad :} \mathtt{struct} \ tag \ \& \ \overline{member_i : \tau_i}^i \in \mathtt{Globals} \\ \overline{\mathcal{C}; \mathcal{L}; \Phi \vdash \mathtt{member_shift} \ (pval, tag, member_i) \Rightarrow y : \mathtt{loc}. \ y = pval +_{\mathtt{ptr}} \mathtt{offset_of}_{tag}(member_i)} \end{array} \quad \text{PEXPR_MEMBER_SHIFT}$$

$$\frac{\mathcal{C}; \mathcal{L}; \Phi \vdash pval \Rightarrow \texttt{bool}}{\mathcal{C}; \mathcal{L}; \Phi \vdash \texttt{not} \, (pval) \Rightarrow y \texttt{:bool}. \, y = \neg \, pval} \quad \text{PExpr_Not}$$

$$\begin{array}{c} \mathcal{C}; \mathcal{L}; \Phi \vdash pval_1 \Rightarrow \mathtt{integer} \\ \mathcal{C}; \mathcal{L}; \Phi \vdash pval_2 \Rightarrow \mathtt{integer} \\ \hline \mathcal{C}; \mathcal{L}; \Phi \vdash pval_1 \ binop_{arith} \ pval_2 \Rightarrow y \mathtt{:integer}. \ y = (pval_1 \ binop_{arith} \ pval_2) \end{array} \quad \text{PEXPR_ARITH_BINOP} \\ \end{array}$$

```
C; \mathcal{L}; \Phi \vdash pval_1 \Rightarrow \mathtt{integer}
                                                                                                   \mathcal{C}; \mathcal{L}; \Phi \vdash pval_2 \Rightarrow \mathtt{integer}
                                                                                                                                                                                                         PEXPR_REL_BINOP
                                                          \mathcal{C}; \mathcal{L}; \Phi \vdash pval_1 \ binop_{rel} \ pval_2 \Rightarrow y: bool. \ y = (pval_1 \ binop_{rel} \ pval_2)
                                                                                                     \mathcal{C}: \mathcal{L}: \Phi \vdash pval_1 \Rightarrow bool
                                                                                                     C; \mathcal{L}; \Phi \vdash pval_2 \Rightarrow bool
                                                                                                                                                                                                          PEXPR_BOOL_BINOP
                                                       \mathcal{C}; \mathcal{L}; \Phi \vdash pval_1 \ binop_{bool} \ pval_2 \Rightarrow y : bool. \ y = (pval_1 \ binop_{bool} \ pval_2)
                                                                                  name:pure\_arq \in Globals
                                                                                  \mathcal{C}; \mathcal{L}; \Phi; \cdot \vdash \overline{pval_i}^i :: pure\_arg \gg \Sigma \ y': \beta'. \ term' \land I
                                                                                                                                                                                                PEXPR CALL
                                                                                             \mathcal{C}; \mathcal{L}; \Phi \vdash name(\overline{pval_i}^i) \Rightarrow y':\beta'. term'
                                                                                                    \mathcal{C}; \mathcal{L}; \Phi \vdash pval \Rightarrow bool
                                                                                                    smt (\Phi \Rightarrow pval)
                                                           \frac{\text{Smt}(\Psi \to pvat)}{\mathcal{C}; \mathcal{L}; \Phi \vdash \text{assert\_undef}(pval, UB\_name) \Rightarrow y : \text{unit}. \ y = \text{unit}} \quad \text{PEXPR\_ASSERT\_UNDEF}
                                                                                               \mathcal{C}: \mathcal{L}: \Phi \vdash pval \Rightarrow bool
                                           \frac{\mathsf{C}; \mathcal{L}; \Psi \vdash pval \Rightarrow \mathtt{DOOI}}{\mathcal{C}; \mathcal{L}; \Phi \vdash \mathtt{bool\_to\_integer}\,(pval) \Rightarrow y \texttt{:integer}.\,\, y = \mathtt{if}\,pval\,\mathtt{then}\,1\,\mathtt{else}\,0}
                                                                                                                                                                                                       PEXPR_BOOL_TO_INTEGER
                                                                                                C; \mathcal{L}; \Phi \vdash pval \Rightarrow \mathtt{integer}
                                                                                                abbrev_1 \equiv \max_{\cdot} \inf_{\tau} - \min_{\cdot} \inf_{\tau} + 1
                                                                                                abbrev_2 \equiv pval \, rem_f \, abbrev_1
                                 \overline{\mathcal{C};\mathcal{L};\Phi \vdash \mathtt{wrapI}\left(\tau,pval\right) \Rightarrow y':\beta.\ y = \mathtt{if}\ abbrev_2 \leq \mathtt{max\_int}_{\tau}\ \mathtt{then}\ abbrev_2\ \mathtt{else}\ abbrev_2 - abbrev_1} \quad \text{PExpr\_WrapI}
term as pattern: \beta \leadsto \mathcal{C}; \Phi
                                                                                            \overline{term\,\mathtt{as}\,..:\!\beta\!:\!\beta\leadsto\cdot;\cdot}\quad \mathsf{Comp\_Pattern\_No\_Sym\_Annot}
```

 $\overline{term \text{ as } x \text{:} \beta \text{:} \beta \leadsto \cdot, x \text{:} \beta; \cdot, x = term} \quad \text{Comp_Pattern_Sym_Annot}$

 $\overline{term \, \mathtt{as} \, \mathtt{Nil} \, \beta(\,) \mathtt{:list} \, \beta \leadsto \cdot;} \quad \mathsf{Comp_Pattern_Nil}$

 $term^{(1)}$ as $pattern_1:\beta \leadsto \mathcal{C}_1$; Φ_1 $\frac{\texttt{tl}\,term\,\texttt{as}\,pattern_2\texttt{:list}\,\beta\rightsquigarrow\mathcal{C}_2;\Phi_1}{term\,\texttt{as}\,\texttt{Cons}(pattern_1,pattern_2)\texttt{:list}\,\beta\rightsquigarrow\mathcal{C}_1,\mathcal{C}_2;\Phi_1,\Phi_2}\quad\texttt{Comp_Pattern_Cons}$

 $\frac{\overline{term^{(i)}} \text{ as } \underline{pattern_i:} \beta_i \leadsto \mathcal{C}_i; \overline{\Phi_i}^i}{term \text{ as Tuple}(\overline{pattern_i}^i):} \overline{\beta_i}^i \leadsto \overline{\mathcal{C}_i}^i; \overline{\Phi_i}^i} \quad \text{Comp_Pattern_Tuple}$

 $\frac{\overline{term[i]} \text{ as } pattern_i : \beta \leadsto \mathcal{C}_i ; \overline{\Phi_i}^i}{term \text{ as } \operatorname{Array}(\overline{pattern_i}^i) : \operatorname{array} \beta \leadsto \overline{\mathcal{C}_i}^i ; \overline{\Phi_i}^i} \quad \text{Comp_Pattern_Array}$

 $\frac{term \, \text{as} \, pattern: \beta \leadsto \mathcal{C}; \Phi}{term \, \text{as} \, \text{Specified}(pattern): \beta \leadsto \mathcal{C}; \Phi} \quad \text{Comp_Pattern_Specified}$

 $term \ {\tt as} \ ident_or_pattern{:}\beta \leadsto \mathcal{C}; \Phi$

 $\overline{term \text{ as } x \mathpunct{:}\!\beta \leadsto \cdot, x \mathpunct{:}\!\beta; \cdot, x = term} \quad \text{Sym_Or_Pattern_Sym}$

 $\frac{term \text{ as } pattern: \beta \leadsto \mathcal{C}; \Phi}{term \text{ as } pattern: \beta \leadsto \mathcal{C}; \Phi}$ SYM_OR_PATTERN_PATTERN

 $\overline{ret_pattern_i}^i: ret \leadsto \mathcal{C}; \mathcal{L}; \Phi; \mathcal{R}$

$$\frac{}{: I \leadsto : ; : ; :}$$
 Ret_Pattern_Empty

y as $ident_or_pattern:\beta \leadsto \mathcal{C}_1; \Phi_1$ $\frac{\overline{ret_pattern_i}^i: ret \leadsto \mathcal{C}_2; \mathcal{L}_2; \Phi_2; \mathcal{R}_2}{\operatorname{comp} ident_or_pattern, \overline{ret_pattern_i}^i: \Sigma \ y: \beta. \ ret \leadsto \mathcal{C}_1, \mathcal{C}_2; \mathcal{L}_2; \Phi_2; \mathcal{R}_2} \quad \text{Ret_Pattern_Computational}$

 $\frac{\overline{\mathit{ret_pattern}_i}^i : \mathit{ret} \leadsto \mathcal{C}; \mathcal{L}; \Phi; \mathcal{R}}{\log y, \ \overline{\mathit{ret_pattern}_i}^i : \exists \ y : \beta. \ \mathit{ret} \leadsto \mathcal{C}; \mathcal{L}, y : \beta; \Phi; \mathcal{R}} \quad \text{Ret_Pattern_Logical}$

 $res_pattern:resource \leadsto \mathcal{L}_1; \Phi_1; \mathcal{R}_1$ $\frac{\overline{ret_pattern_i}^i : ret \leadsto \mathcal{C}_2; \mathcal{L}_2; \Phi_2; \mathcal{R}_2}{\operatorname{res} res_pattern, \overline{ret_pattern_i}^i : resource \star ret \leadsto \mathcal{C}_2; \mathcal{L}_1, \mathcal{L}_2; \Phi_1, \Phi_2; \mathcal{R}_1, \mathcal{R}_2} \quad \text{Ret_Pattern_Resource}$

 $\frac{\overline{\mathit{ret_pattern}_i}^i : \mathit{ret} \leadsto \mathcal{C}; \mathcal{L}; \Phi; \mathcal{R}}{\overline{\mathit{ret_pattern}_i}^i : \mathit{term} \land \mathit{ret} \leadsto \mathcal{C}; \mathcal{L}; \Phi, \mathit{term}; \mathcal{R}} \quad \text{Ret_Pattern_Constraint}$

 $res_pattern:resource \leadsto \mathcal{L}; \Phi; \mathcal{R}$

 $\frac{}{\texttt{emp:emp} \leadsto \cdot; \cdot; \cdot} \quad \text{Res_Pattern_Empty}$

 $\frac{}{\mathtt{pt}:points_to}\leadsto \cdot;\cdot;\cdot,r:points_to}\quad \text{Res_Pattern_PointsTo}$

 $\frac{}{r:resource} \leadsto :; \cdot; \cdot, r:resource$ RES_PATTERN_VAR

$$res.pattern; resource_{1} \sim \mathcal{L}_{1}^{1}, \Phi_{1}^{1}, \mathcal{R}_{1}}{res.pattern_{1}, res.pattern_{2}; resource_{2} \sim \mathcal{L}_{2}^{1}, \Phi_{2}^{1}, \mathcal{R}_{2}}$$

$$\overline{\langle res.pattern_{1}, res.pattern_{2} \rangle} \cdot resource_{1} + res.patter_{2} \sim \mathcal{L}_{1}, \mathcal{L}_{2}; \Phi_{1}, \Phi_{2}; \mathcal{R}_{1}, \mathcal{R}_{2}}$$

$$\frac{res.pattern: resource_{2} \sim \mathcal{L}_{1}^{1}, \Phi_{2}^{1}; \mathcal{R}_{1}, \Phi_{2}^{1}; \mathcal{R}_{1}, \Phi_{2}^{2}; \mathcal{R}_{1}, \Phi_{2}^{2}; \mathcal{R}_{1}, \mathcal{R}_{2}^{2}}$$

$$\frac{res.pattern: resource_{2} \sim \mathcal{L}_{2}^{1}, \Phi_{1}^{2}; \mathcal{R}_{1}, \Phi_{2}^{2}; \mathcal{R}_{2}, \Phi_$$

$$\frac{\mathcal{C}; \mathcal{L}; \Phi \vdash pval \Rightarrow \beta_{1}}{\underbrace{y_{1} \text{ as } pattern_{i} : \beta_{1} \leadsto \mathcal{C}_{i}; \Phi_{i}}^{i}} \\ \frac{\mathcal{C}, \text{fresh}(\mathcal{C}_{i}); \mathcal{L}, y_{1} : \beta_{1}; \Phi, y_{1} = pval, [\text{fresh}(\mathcal{C}_{i})/\mathcal{C}_{i}] \Phi_{i} \vdash [\text{fresh}(\mathcal{C}_{i})/\mathcal{C}_{i}] tpexpr_{i} \Leftarrow y_{2} : \beta_{2}. \ term_{2}}^{i}}{\mathcal{C}; \mathcal{L}; \Phi \vdash \text{case } pval \text{ of } \boxed{pattern_{i} \Rightarrow tpexpr_{i}}^{i} \text{ end } \Leftarrow y_{2} : \beta_{2}. \ term_{2}}$$

$$\text{TPEXPR_CASE}$$

 $C; \mathcal{L}; \Phi; \mathcal{R} \vdash mem_action \Rightarrow ret$

$$\frac{\mathcal{C}; \mathcal{L}; \Phi \vdash pval \Rightarrow \mathtt{integer}}{\mathcal{C}; \mathcal{L}; \Phi; \cdot \vdash \mathtt{create}\,(pval, \tau) \Rightarrow \Sigma\,y_p : \mathtt{loc.}\,\,\exists\,y : \beta_\tau.\,\, \mathtt{representable}\,(\tau *, y_p) \land \mathtt{alignedI}\,(pval, y_p) \land \langle y_p \,\, 1 \overset{\times}{\mapsto}_\tau \,\, y \rangle \star \mathtt{I}} \quad \text{ACTION_CREATE}$$

$$\begin{split} \mathcal{C}; \mathcal{L}; \Phi \vdash pval_1 \Rightarrow \texttt{loc} \\ \mathcal{C}; \mathcal{L}; \Phi \vdash pval_2 \Rightarrow \beta_{\tau} \\ & \texttt{smt} \left(\Phi \Rightarrow \texttt{representable} \left(\tau, pval_2 \right) \right) \\ & \texttt{smt} \left(\Phi \Rightarrow pval_0 = pval_1 \right) \\ \hline \mathcal{C}; \mathcal{L}; \Phi; \cdot, r: \langle pval_0 \mid 1 \mapsto_{\tau} _ \rangle \vdash \texttt{store} \left(_, \tau, pval_1, pval_2, _ \right) \Rightarrow \Sigma _: \texttt{unit}. \ pval_0 \mid 1 \xrightarrow{\checkmark} pval_2 \star \mathbb{I} \end{split} \quad \text{ACTION_STORE}$$

$$\begin{split} \mathcal{C}; \mathcal{L}; \Phi \vdash pval_1 \Rightarrow \text{loc} \\ & \text{smt} \left(\Phi \Rightarrow pval_0 = pval_1 \right) \\ & \overline{\mathcal{C}; \mathcal{L}; \Phi; \cdot, r: \langle pval_0 \mid 1 \mapsto_{\tau} _ \rangle} \vdash \text{kill} \left(\text{static} \ \tau, pval_1 \right) \Rightarrow \Sigma \text{_:unit.} \ \mathbf{I} \end{split} \quad \text{ACTION_KILL_STATIC} \end{split}$$

 $C; \mathcal{L}; \Phi; \mathcal{R} \vdash tval \Leftarrow ret$

$$\overline{\mathcal{C};\mathcal{L};\Phi;\mathcal{R} \vdash \mathtt{done} \ \Leftarrow \mathtt{I}} \quad \mathrm{TVal_I}$$

$$\begin{split} & \mathcal{C}; \mathcal{L}; \Phi \vdash pval \Rightarrow \beta \\ & \frac{\mathcal{C}; \mathcal{L}; \Phi; \mathcal{R} \vdash \mathsf{done} \, \overline{spine_elem_i}^{\,\,i} \Leftarrow [pval/y]ret}{\mathcal{C}; \mathcal{L}; \Phi; \mathcal{R} \vdash \mathsf{done} \, pval, \, \overline{spine_elem_i}^{\,\,i} \Leftarrow \Sigma \, y : \beta. \, ret} \end{split} \quad \text{TVAL_COMPUTATIONAL}$$

 $C; \mathcal{L}; \Phi; \mathcal{R} \vdash seq_expr \Rightarrow ret$

$$\begin{split} & \frac{\mathcal{C}; \mathcal{L}; \Phi \vdash pexpr \Rightarrow y : \beta. \ term}{\mathcal{C}; \mathcal{L}; \Phi; \vdash pval \Rightarrow \Sigma \ y : \beta. \ term \land \mathtt{I}} \quad \mathtt{Seq_Expr_Pure} \\ & \frac{\mathcal{C}; \mathcal{L}; \Phi \vdash pval \Rightarrow \mathtt{loc}}{pval : arg \in \mathtt{Globals}} \\ & \frac{\mathcal{C}; \mathcal{L}; \Phi; \mathcal{R} \vdash \overline{spine_elem_i}^i :: arg \gg ret}{\mathcal{C}; \mathcal{L}; \Phi; \mathcal{R} \vdash \mathtt{ccall} \left(\tau, pval, \ \overline{spine_elem_i}^i \right) \Rightarrow ret} \quad \mathtt{Seq_Expr_CCall} \end{split}$$

$$\begin{array}{l} \textit{name:arg} \in \texttt{Globals} \\ \frac{\mathcal{C}; \mathcal{L}; \Phi; \mathcal{R} \vdash \overline{\textit{spine_elem}_i}^i :: \textit{arg} \gg \textit{ret}}{\mathcal{C}; \mathcal{L}; \Phi; \mathcal{R} \vdash \texttt{pcall}\left(\textit{name}, \overline{\textit{spine_elem}_i}^i\right) \Rightarrow \textit{ret}} \quad \text{Seq_Expr_Proc} \end{array}$$

 $C; \mathcal{L}; \Phi; \mathcal{R} \vdash is_expr \Rightarrow ret$

 $C; \mathcal{L}; \Phi \vdash pval \Rightarrow loc$ $\frac{\mathcal{C}, \mathcal{L}; \Phi; \neg \text{ read } \neg \text{ read }$ $\mathcal{C}: \mathcal{L}: \Phi \vdash pval \Rightarrow \mathtt{integer}$ $\frac{\mathcal{C}; \mathcal{L}; \Phi \vdash pval \Rightarrow \mathtt{integer}}{\mathcal{C}; \mathcal{L}; \Phi; \cdot \vdash \mathtt{memop}\left(\mathtt{ptrFromInt}\left(\tau_{1}, \tau_{2}, pval\right)\right) \Rightarrow \Sigma \ y : \mathtt{integer}. \ y = \mathtt{cast_ptr_to_int} \ pval \land \mathtt{I}} \quad \mathsf{IS_EXPR_MEMOP_PTRFROMINT}$ $C; \mathcal{L}; \Phi \vdash pval_1 \Rightarrow \mathsf{loc}$ $\operatorname{smt} (\Phi \Rightarrow pval_0 = pval_1)$ $\frac{\operatorname{smc}\left(\Psi\Rightarrow pval_{0}=pval_{1}\right)}{\mathcal{C};\mathcal{L};\Phi;\cdot,r:\!\langle pval_{0}\stackrel{\checkmark}{\longrightarrow}_{\tau}_\rangle\vdash\operatorname{memop}\left(\operatorname{ptrValidForDeref}\left(\tau,pval_{1}\right)\right)\Rightarrow\Sigma\,y:\!\operatorname{bool}.\,\,y=\operatorname{aligned}\left(\tau,pval_{0}\right)\wedge\operatorname{I}\left(\operatorname{pval}_{0}\right)}$ IS_EXPR_MEMOP_PTRVALIDFORDEREF $C; \mathcal{L}; \Phi \vdash pval_1 \Rightarrow \mathsf{loc}$ $\frac{c; \mathcal{L}; \Psi \vdash pval_1 \Rightarrow \mathtt{loc}}{\mathcal{C}; \mathcal{L}; \Phi; \cdot \vdash \mathtt{memop}\left(\mathtt{ptrWellAligned}\left(\tau, pval\right)\right) \Rightarrow \Sigma \, y : \mathtt{bool}. \, \, y = \mathtt{aligned}\left(\tau, pval\right) \wedge \mathtt{I}} \quad \mathsf{IS_Expr_Memop_PtrWellAligned}$ $\mathcal{C}: \mathcal{L}: \Phi \vdash pval_1 \Rightarrow \mathsf{loc}$ \mathcal{C} ; \mathcal{L} ; $\Phi \vdash pval_2 \Rightarrow \mathtt{integer}$ $\frac{\mathsf{C}, \mathcal{L}, \forall \vdash pval_2 \to \mathtt{Integer}}{\mathcal{C}; \mathcal{L}; \Phi; \vdash \mathtt{memop}\left(\mathtt{ptrArrayShift}\left(pval_1, \tau, pval_2\right)\right) \Rightarrow \Sigma \ y : \mathtt{loc}. \ y = pval_1 +_{\mathtt{ptr}}\left(pval_2 \times \mathtt{size_of}(\tau)\right) \wedge \mathtt{I}}$ IS_EXPR_MEMOP_PTRARRAYSHIFT $\frac{\mathcal{C}; \mathcal{L}; \Phi; \mathcal{R} \vdash mem_action \Rightarrow ret}{\mathcal{C}; \mathcal{L}; \Phi; \mathcal{R} \vdash Pos\ mem_action \Rightarrow ret} \quad IS_EXPR_ACTION$ $\frac{\mathcal{C}; \mathcal{L}; \Phi; \mathcal{R} \vdash mem_action \Rightarrow ret}{\mathcal{C}; \mathcal{L}; \Phi; \mathcal{R} \vdash Neg\ mem_action \Rightarrow ret} \quad \text{IS_EXPR_NEG_ACTION}$ $\frac{\overline{\mathcal{C}; \mathcal{L}; \Phi; \mathcal{R}_i \vdash texpr_i \Leftarrow \sum y_i : \beta_i. \ ret_i}^i}{\mathcal{C}; \mathcal{L}; \Phi; \overline{\mathcal{R}_i}^i \vdash \mathsf{unseq}\left(\overline{texpr_i : \sum y_i : \beta_i. \ ret_i}^i\right) \Rightarrow \sum y : \overline{\beta_i}^i. \overline{[y^{(i)}/y_i] ret_i}^i} \quad \mathsf{IS_EXPR_UNSEQ}$

 $C; \mathcal{L}; \Phi; \mathcal{R} \vdash seq_texpr \Leftarrow ret$

$$\frac{\mathcal{C};\mathcal{L};\Phi;\mathcal{R}\vdash tval \Leftarrow ret}{\mathcal{C};\mathcal{L};\Phi;\mathcal{R}\vdash tval \Leftarrow ret} \quad \text{Seq_Texpr_TVal}$$

$$\frac{\mathcal{C};\mathcal{L};\Phi;\mathcal{R}'\vdash seq_expr \Rightarrow ret_1}{ret_pattern_i} : ret_1 \sim \mathcal{C}_1;\mathcal{L}_1;\Phi_1;\mathcal{R}_1$$

$$\mathcal{C},\text{fresh}(\mathcal{C}_1);\mathcal{L},\mathcal{L}_1;\Phi_1;\text{fresh}(\mathcal{C}_1)/\mathcal{C}_1]\Phi_1;\mathcal{R}_1 \mid \text{fresh}(\mathcal{C}_1)/\mathcal{C}_1]\mathcal{R}_1\vdash [\text{fresh}(\mathcal{C}_1)/\mathcal{C}_1]texpr \Leftarrow ret_2}$$

$$\mathcal{C};\mathcal{L};\Phi;\mathcal{R}'\vdash texpr_1 \Leftarrow ret_1$$

$$ret_pattern_i^i : ret_1 \sim \mathcal{C}_1;\mathcal{L}_1;\Phi_1;\mathcal{R}_1$$

$$\mathcal{C},\text{fresh}(\mathcal{C}_1);\mathcal{L},\mathcal{L}_1;\Phi_1;\text{fresh}(\mathcal{C}_1)/\mathcal{C}_1]\Phi_1;\mathcal{R}_1\vdash [\text{fresh}(\mathcal{C}_1)/\mathcal{C}_1]texpr_2 \Leftarrow ret_2}$$

$$\mathcal{C};\mathcal{L};\Phi;\mathcal{R}'\vdash texpr_1 \Leftarrow ret_1$$

$$\mathcal{C},\text{fresh}(\mathcal{C}_1);\mathcal{L},\mathcal{L}_1;\Phi_1[\text{fresh}(\mathcal{C}_1)/\mathcal{C}_1]\Phi_1;\mathcal{R}_1\vdash [\text{fresh}(\mathcal{C}_1)/\mathcal{C}_1]texpr_2 \Leftarrow ret_2}$$

$$\mathcal{C};\mathcal{L};\Phi_1;\mathcal{R}_1\vdash texpr_1 \Leftrightarrow ret_1 \Rightarrow ret_1 \Rightarrow ret_1 \Rightarrow ret_1 \Rightarrow ret_1 \Rightarrow ret_1 \Rightarrow ret_2 \Rightarrow ret_2$$

$$\mathcal{C};\mathcal{L};\Phi_1;\mathcal{R}_1\vdash texpr_1 \Rightarrow ret_2 \Rightarrow ret_2$$

$$\mathcal{C};\mathcal{L};\Phi_1;\mathcal{R}_1\vdash texpr_1 \Rightarrow ret_2 \Rightarrow ret_2$$

$$\mathcal{C};\mathcal{L};\Phi_1;\mathcal{R}_1\vdash ret_1 \Rightarrow ret_1 \Rightarrow ret_2 \Rightarrow ret_2$$

$$\mathcal{C};\mathcal{L};\Phi_1;\mathcal{R}_1\vdash ret_1 \Rightarrow ret_1 \Rightarrow ret_2 \Rightarrow ret_2$$

$$\mathcal{C};\mathcal{L};\Phi_1;\mathcal{R}_1\vdash ret_1 \Rightarrow ret_1 \Rightarrow ret_2 \Rightarrow ret_2$$

$$\mathcal{C};\mathcal{L};\Phi_1;\mathcal{R}_1\vdash ret_1 \Rightarrow ret_2 \Rightarrow ret_2 \Rightarrow ret_2$$

$$\mathcal{C};\mathcal{L};\Phi_1;\mathcal{R}_1\vdash ret_1 \Rightarrow ret_1 \Rightarrow ret_2 \Rightarrow ret_2 \Rightarrow ret_2$$

$$\mathcal{C};\mathcal{L};\Phi_1;\mathcal{R}_1\vdash ret_1 \Rightarrow ret_2 \Rightarrow ret_2$$

$$\frac{\mathcal{C}; \mathcal{L}; \Phi; \mathcal{R} \vdash is_texpr \Leftarrow ret}{\mathcal{C}; \mathcal{L}; \Phi; \mathcal{R} \vdash \text{bound } [int](is_texpr) \Leftarrow ret} \quad \text{Seq_Texpr_Bound}$$

 $\mathcal{C}; \mathcal{L}; \Phi; \mathcal{R} \vdash is_texpr \Leftarrow ret$

$$\begin{split} \frac{\mathcal{C}; \mathcal{L}; \Phi; \mathcal{R} \vdash is_expr \Rightarrow ret_1}{ret_pattern_i}^i : ret_1 \leadsto \mathcal{C}_1; \mathcal{L}_1; \Phi_1; \mathcal{R}_1 \\ \frac{\mathcal{C}, \operatorname{fresh}(\mathcal{C}_1); \mathcal{L}, \mathcal{L}_1; \Phi, [\operatorname{fresh}(\mathcal{C}_1)/\mathcal{C}_1] \Phi_1; \mathcal{R}, [\operatorname{fresh}(\mathcal{C}_1)/\mathcal{C}_1] \mathcal{R}_1 \vdash [\operatorname{fresh}(\mathcal{C}_1)/\mathcal{C}_1] texpr \Leftarrow ret_2}{\mathcal{C}; \mathcal{L}; \Phi; \mathcal{R} \vdash \operatorname{let weak} pattern = is_expr \operatorname{in} texpr \Leftarrow ret_2} \end{split} \quad \text{IS_TEXPR_LETWEAK}$$

$$\begin{split} & \frac{\mathcal{C}; \mathcal{L}; \Phi; \mathcal{R} \vdash is_expr \Rightarrow ret_1}{\overline{ret_pattern_i}^i : ret_1 \leadsto \mathcal{C}_1; \mathcal{L}_1; \Phi_1; \mathcal{R}_1}{\mathcal{C}, \operatorname{fresh}(\mathcal{C}_1); \mathcal{L}, \mathcal{L}_1; \Phi, [\operatorname{fresh}(\mathcal{C}_1)/\mathcal{C}_1] \Phi_1; \mathcal{R}, [\operatorname{fresh}(\mathcal{C}_1)/\mathcal{C}_1] \mathcal{R}_1 \vdash [\operatorname{fresh}(\mathcal{C}_1)/\mathcal{C}_1] texpr \Leftarrow ret_2} \\ & \frac{\mathcal{C}; \mathcal{L}; \Phi; \mathcal{R} \vdash \operatorname{let strong} ident_or_pattern = is_expr \operatorname{in} texpr \Leftarrow ret_2}{\mathcal{C}; \mathcal{L}; \Phi; \mathcal{R} \vdash \operatorname{let strong} ident_or_pattern = is_expr \operatorname{in} texpr \Leftarrow ret_2} \end{split} \quad \text{IS_TEXPR_LETSTRONG}$$

 $C; \mathcal{L}; \Phi; \mathcal{R} \vdash texpr \Leftarrow ret$

$$\frac{\mathcal{C}; \mathcal{L}; \Phi; \mathcal{R} \vdash is_texpr \Leftarrow ret}{\mathcal{C}; \mathcal{L}; \Phi; \mathcal{R} \vdash is_texpr \Leftarrow ret} \quad \text{TEXPR_IS}$$

$$\frac{\mathcal{C}; \mathcal{L}; \Phi; \mathcal{R} \vdash seq_texpr \Leftarrow ret}{\mathcal{C}; \mathcal{L}; \Phi; \mathcal{R} \vdash seq_texpr \Leftarrow ret} \quad \text{TEXPR_SEQ}$$

Definition rules: 101 good 0 bad Definition rule clauses: 240 good 0 bad