These compiled languages allow the programmer to write programs in terms that are syntactically richer, and more capable of abstracting the code, making it easy to target varying machine instruction sets via compilation declarations and heuristics. Trial-and-error/divide-and-conquer is needed: the programmer will try to remove some parts of the original test case and check if the problem still exists. Techniques like Code refactoring can enhance readability. Their jobs usually involve: Although programming has been presented in the media as a somewhat mathematical subject, some research shows that good programmers have strong skills in natural human languages, and that learning to code is similar to learning a foreign language. A study found that a few simple readability transformations made code shorter and drastically reduced the time to understand it. Trade-offs from this ideal involve finding enough programmers who know the language to build a team, the availability of compilers for that language, and the efficiency with which programs written in a given language execute. Techniques like Code refactoring can enhance readability. There are many approaches to the Software development process. Some languages are very popular for particular kinds of applications, while some languages are regularly used to write many different kinds of applications. Trade-offs from this ideal involve finding enough programmers who know the language to build a team, the availability of compilers for that language, and the efficiency with which programs written in a given language execute. High-level languages made the process of developing a program simpler and more understandable, and less bound to the underlying hardware. However, Charles Babbage had already written his first program for the Analytical Engine in 1837. Machine code was the language of early programs, written in the instruction set of the particular machine, often in binary notation. Following a consistent programming style often helps readability. Their jobs usually involve: Although programming has been presented in the media as a somewhat mathematical subject, some research shows that good programmers have strong skills in natural human languages, and that learning to code is similar to learning a foreign language. There exist a lot of different approaches for each of those tasks. It is very difficult to determine what are the most popular modern programming languages. Scripting and breakpointing is also part of this process. The academic field and the engineering practice of computer programming are both largely concerned with discovering and implementing the most efficient algorithms for a given class of problems. In 1801, the Jacquard loom could produce entirely different weaves by changing the "program" - a series of pasteboard cards with holes punched in them. Later a control panel (plug board) added to his 1906 Type I Tabulator allowed it to be programmed for different jobs, and by the late 1940s, unit record equipment such as the IBM 602 and IBM 604, were programmed by control panels in a similar way, as were the first electronic computers. Text editors were also developed that allowed changes and corrections to be made much more easily than with punched cards. Debugging is a very important task in the software development process since having defects in a program can have significant consequences for its users. Some of these factors include: The presentation aspects of this (such as indents, line breaks, color highlighting, and so on) are often handled by the source code editor, but the content aspects reflect the programmer's talent and skills. It involves designing and implementing algorithms, step-by-step specifications of procedures, by writing code in one or more programming languages.