1 Chapter 4

1.1 Section 1

4.01 Prove that if f is continuous at x_0 then f is bounded at x_0 .

Proof. Suppose that $f: A \to \mathbb{R}$ is continuous at x_0 . To show that f is bounded at x_0 , it suffices to show that f is bounded on $N_{x_0}(\delta) \cap A$ for some $\delta > 0$. Since f is continuous at x_0 , it follows by definition that there exists $\delta_1 > 0$ such that $|f(x) - f(x_0)| < 1$ whenever $|x - x_0| < \delta_1$. Using the triangle inequality we have that

$$||f(x)| - |f(x_0)|| < |f(x) - f(x_0)| < 1,$$

so that $|f(x)| - |f(x_0)| < 1$, if $|x - x_0| < \delta_1$. Thus $|f(x)| < 1 + |f(x_0)|$, if $|x - x_0| < \delta_1$. We have thus shown that f is bounded on $N_{x_0}(\delta_1)$ by $1+|f(x_0)|$, so that f is bounded at x_0 .

4.02 Find all points of discontinuity for the following functions, classify the discontinuities as removable, jump, or second kind, and determine where the function is right- and left-continuous.

(a)
$$f(x) = \begin{cases} x^2 & \text{if } x < -1, \\ 2x + 3 & \text{if } -1 \le x \le 0, \\ |x - 1| & \text{if } 0 < x < 2, \\ x^3 - 7 & \text{if } 2 \le x < 3, \\ \frac{x - 3}{x - 4} & \text{if } 3 \le x < 4, \\ 0 & \text{if } 4 \le x. \end{cases}$$

- (b) f(x) = x + [-x].
- (c) f(x) = x[x].
- (d) f(x) = sgn[|x|].

(e)
$$f(x) = \begin{cases} [x+1] \sin \frac{1}{x} & \text{if } x \in (-1,0) \cup (0,1) \\ 0 & \text{otherwise.} \end{cases}$$

(e)
$$f(x) = \begin{cases} [x+1] \sin \frac{1}{x} & \text{if } x \in (-1,0) \cup (0,1) \\ 0 & \text{otherwise.} \end{cases}$$
(f)
$$f(x) = \begin{cases} (1+x) \operatorname{sgn} x + \operatorname{sgn} |x| - 1 & \text{if } x \text{ is rational} \\ \operatorname{sgn} x & \text{if } x \text{ is irrational.} \end{cases}$$

- 4.03 Prove that $f(x) = \cos x$ is continuous on \mathbb{R} .
- 4.04 Prove that if f is continuous at x_0 and g is discontinuous at x_0 then f+g must have a discontinuity at x_0 .
- 4.05 Show that f + g can be continuous at x_0 even though both f and g have discontinuities
- 4.06 Show that $f \cdot g$ can be continuous at x_0 even though both f and g have discontinuities

- 4.07 If f is continuous at x_0 and g is discontinuous at x_0 , what can be said about continuity of the product $f \cdot g$ at x_0 ?
- 4.08 Show that the composition function $g \circ f$ can be continuous at x_0 even though f or g or both f and g are discontinuous at x_0 .
- 4.09 Prove that the function

$$f(x) = \begin{cases} x & \text{if } x \text{ is rational,} \\ 0 & \text{if } x \text{ is irrational} \end{cases}$$

has a discontinuity of the second king at each nonzero real number.

- 4.10 Prove that if f is continuous at x_0 and f is nonnegative then $h(x) = \sqrt{f(x)}$ is continuous at x_0 .
- 4.11 Find a function f which has a discontinuity of the second kind at every real number although $f \circ f$ is continuous on \mathbb{R} .
- 4.12 If f is continuous on (0,1) and f(x) = 1 x for every rational number $x \in (0,1)$, find $f(\pi/4)$. Explain your answer.
- 4.13 Prove that if f and g are each continuous on (a,b) and f(x) = g(x) for every rational $x \in (a,b)$ then f(x) = g(x) for every $x \in (a,b)$.
- 4.14 Prove: f is right-continuous at x_0 if and only if $f(x_n) \to f(x_0)$ for every sequence $\{x_n\}$ in the domain of f with $x_n \to x_0$ and $x_n \ge x_0$ for n = 1, 2, 3, ...
- 4.15 Discuss one-sided continuity for the pie function.
- 4.16 Prove that if f is defined on \mathbb{R} and continuous at $x_0 = 0$ and if $f(x_1 + x_2) = f(x_1) + f(x_2)$ for each $x_1, x_2 \in \mathbb{R}$ then f is continuous on \mathbb{R} .
- 4.17 Find all functions f which are continuous on \mathbb{R} and which satisfy the equation $f(x)^2 = x^2$ for each $x \in \mathbb{R}$. Hint: There are four possible solutions.
- 4.18 Prove that if g is continuous at $x_0 = 0$, g(0) = 0 and for some $\delta > 0$ $|f(x)| \le |g(x)|$ for each $x \in N_{\delta}(0)$ then f is continuous at $x_0 = 0$.
- 4.19 Prove that if f is continuous on [a, b] then there exists a function g continuous on \mathbb{R} such that g(x) = f(x) for each $x \in [a, b]$. The function g is called a *continuous extension* of f to \mathbb{R} .
- 4.20 The function $f(x) = \tan x$ defined on $(-\pi/2, \pi/2)$ clearly has no continuous extension to \mathbb{R} . Find a bounded continuous function on (a, b) which has no continuous extension to \mathbb{R} .
- 4.21 Assume that f is continuous on (a,b). Prove that f has a continuous extension to \mathbb{R} if and only if both limits $\lim_{x\to a^+} f(x)$ and $\lim_{x\to b^-} f(x)$ exist.
- 4.22 Prove that if f is continuous on (a, b) and both $\lim_{x\to a^+} f(x)$ and $\lim_{x\to b^-} f(x)$ exist then f is bounded on (a, b).

4.23 Suppose f is one-to-one on (a,b) and satisfies the following property: whenever $f(x_1) \neq f(x_2)$ for $x_1 < x_2, x_1, x_2 \in (a,b)$ and k is any number between $f(x_1)$ and $f(x_2)$, there exists a $c \in (x_1, x_2)$ with f(c) = k. Prove that f is continuous on (a,b).