Azure as a Big Data Platform

Tomasz Krawczyk

tkrawczyk@future-processing.com

Agenda

- > Big Data
 - > Processing (Theory)
- > First challenge
- > Azure Platform
 - > Big Data Services
- > Demo and Q&A

3Vs of Big Data

40 Zetta bytes by 2020 and 163 Zetta bytes by 2025

> Data Volume

- Byte One grain of rice

- Kilobyte Cup of rice

- Megabyte 8 bags of rice

- Gigabyte 3 semi trucks

- Terabyte 2 container ships

Petabyte Blankets Manhattan

Exabyte Blankets west coast states

- **Zettabyte** Fills the Pacific Ocean

Yottabyte As earth-sized rice ball

> Data Variety

- Structured
- Unstructured
- Semi-structured
- All the above

> Data Velocity

- Near to Real Time
- Batch

Schema-on-Read vs Schema-on-Write

SCHEMA-ON-READ (HADOOP OR ADLS):

- Copy data in its native format
- Create schema + parser
- Query Data in its native format (does ETL on the fly)

New data can start flowing any time and will appear retroactively once the schema/parser properly describes it.

SCHEMA-ON-WRITE (RDBMS):

- Create static DB schema
- Transform data into RDBMS
- Query data in RDBMS format

New columns must be added explicitly before new data can propagate into the system.

Lambda architecture

Kappa architecture

Data Lake Approach

> What is a Data Lake?

"If you think of a datamart (asubset of a data warehouse) as a store of bottled water – cleansed and packaged and structured for easy consumption – the data lake is a large body of water in a more natural state "

Pentaho CTO James Dixon

First Challange

- PoC
 - Measuring devices
 - Online monitoring
 - Daily Statistics
 - Historical Data

Azure Services

http://azureinteractives.azurewebsites.net/Azure101Cards/default.html

Azure – Lambda architecture (Cold Path)

Analyse

Azure -Kappa architecture

Store

Azure Initial Load

Data Lake Store vs Blob Storage

	Azure Data Lake Store	Azure Blob Storage
Purpose	Optimized storage for big data analytics workloads	General purpose object store for a wide variety of storage scenarios
Use Cases	Batch, interactive, streaming analytics and machine learning data such as log files, IoT data, click streams, large datasets	Any type of text or binary data, such as application back end, backup data, media storage for streaming and general purpose data
Key Concepts	Data Lake Store account contains folders, which in turn contains data stored as files	Storage account has containers, which in turn has data in the form of blobs
Structure	Hierarchical file system	Object store with flat namespace
API	REST API over HTTPS	REST API over HTTP/HTTPS
Hadoop File System Client	Yes	Yes
Data Operations - Authentication	Based on Azure Active Directory Identities	Based on shared secrets - Account Access Keys and Shared Access Signature Keys.
Data Operations - Authorization	POSIX Access Control Lists (ACLs). ACLs based on Azure Active Directory Identities can be set file and folder level.	For account-level authorization – Use Account Access Keys For account, container, or blob authorization - Use Shared Access Signature Keys

Azure Event Hub vs IoT Hub

- > Azure Event Hub is a highly scalable data streaming platform and event ingestion service, capable of receiving and processing millions of events per second
- > Azure IoT Hub is a fully managed service that enables reliable and secure bidirectional communications between millions of IoT devices and a solution back end

Area	IoT Hub	Event Hub
Device protocol support	Supports MQTT, MQTT over WebSockets, AMQP, AMQP over WebSockets, and HTTPS.	Supports AMQP, AMQP over WebSockets, and HTTPS.
Device state information	Device twins can store and query device state information.	No device state information can be stored.

Azure Stream Analytics

- > Azure Stream Analytics is a managed event-processing engine set up real-time analytic computations on streaming data.
- > Data Sources
 - Data Stream
 - Reference Data
- > SQL-like language for querying live data streams
 - Supports SELECT, FROM, WHERE, GROUP BY, and other common Data Manipulation Language (DML) statements
 - Supports COUNT, AVG, DATEDIFF, and other common functions
- > Supports temporal grouping of events via "windowing"
 - Tumbling Window, Hopping Window, Sliding Window

Azure Stream Analytics at work

Data Lake approach on Azure

Azure HDInsight vs Azure Data Lake Analytics

- > Azure HDInsight
 - Cluster as a Service
 - Hadoop, Hbase, Storm, Spark, R Server, Kafka
- > Azure Data Lake Analytics
 - Job/Query as a Service
 - USQL (.Net ,Python, R Language, Cognitive)

- A distributed analytics service built on Apache YARN that dynamically scales to your needs
 - Pay PER QUERY & Scale PER QUERY
 - FEDERATED QUERY across Azure data sources
 - Includes U-SQL, a language that unifies the benefits of SQL with the expressive power of C#
 - No limits to SCALE
 - Optimized to work with ADL STORE

U-SQL - A new language for Big Data

```
DECLARE @projectsInput string = @"Projects\{file\.csv";
DECLARE @eventDate DateTime =
System.DateTime.Parse("2017/04/01");
DECLARE @numbers int = 2;
REFERENCE ASSEMBLY USQLCSharpDemo;
USING ImageColorsProcessor =
USQLCSharpDemo.ImageColorProducer;
@projects =
    EXTRACT project string,
            startDate DateTime,
            endDate DateTime,
           file string
    FROM @projectsInput
    USING Extractors.Csv(skipFirstNRows : 1, quoting :
true);
@agg =
   SELECT project,
           COUNT( * ) AS units
    FROM @details WHERE project.StartsWith("My")
    GROUP BY project;
@myprojects =
    SELECT us.project,
           p.endDate
    FROM @details AS us
         JOTN
             @projects AS p
         ON p.project == us.project
    WHERE user.StartsWith("Me")
ORDER BY p.endDate DESC
FETCH 10 ROWS;
OUTPUT @myprojects
TO "myprojects.csv"
USING Outputters.Csv();
```


USQL (+ .Net ,Python, R Language, Cognitive)

Azure Data Factory

- Fully managed service to support orchestration of data movement and transformation
- Connect to relational or non-relational data that is onpremises or in the cloud
- > Allows monitor and manage data processing pipelines
- > Version 1 and 2 (+SSIS)

Azure Data Factory Versions

- > Azure Data Factory V1 GA Version
- > Azure Data Factory V2 Public Preview+Designer (2018-01-16)
- > What's new
 - New pipeline model
 - > Rich pipeline orchestration
 - > Triggers -ondemand, schedule, events
 - SSIS Package Execution
 - > Lift my existing packages to the cloud
 - Author & Monitor
 - > Python,.Net
 - > Visual Tools
 - Data Movement as as Service
 - > Cloud, Hybrid
 - > 64 connectors

Azure Data Factory V1 Pipelines

- > Data movement activities : Copy Activity
- > Data transformation activities :

Data transformation activity	Compute environment
Hive	HDInsight [Hadoop]
Pig	HDInsight [Hadoop]
MapReduce	HDInsight [Hadoop]
Hadoop Streaming	HDInsight [Hadoop]
Spark	HDInsight [Hadoop]
Machine Learning activities: Batch Execution and Update Resource	Azure VM
Stored Procedure	Azure SQL, Azure SQL Data Warehouse, or SQL Server
Data Lake Analytics U-SQL	Azure Data Lake Analytics
DotNet	HDInsight [Hadoop] or Azure Batch

Azure Data Factory V1 Pipelines

Azure Data Factory V2 Pipelines

Azure Serving Layer

- > Power BI
- > Time Series Insight
- > Excel
- > API

Azure as a Big Data Platform What else?

- > Azure Data Warehouse
- > Azure Cosmos DB
- > Azure Notebooks
- > Azure Databricks
- > IoT Hub (IoT Edge)
 - + Azure IoT Suite
- > Azure Data Catalog
- > Azure Cognitive Services
- Azure ML Studio
- > Azure App Functions
- Azure AD
- Azure Batches

First Challenge Solution

PoC Solution

First Challenge Solution -Hot Path

> Azure Stream Analytics Job (Hot Path)

First Challenge Solution -Hot Path

> Azure Data Factory Pipeline (Cold Path)

DEMO AND Q&A

> Resources:

https://docs.microsoft.com/en-us/azure/ https://github.com/cloud4yourdata/demos/tree/develop

> Contact:

tomasz.k.krawczyk@gmail.com tkrawczyk@future-processing.com