Linear Regression: ¶

Linear Regression Practical implementaion on Algerian Forest Fires Dataset

Life cycle of Machine learning Project

In []:

- 1.Understanding the Problem Statement
- 2.Data Collection
- 3.Exploratory data analysis
- 4.Data Cleaning
- 5.Data Pre-Processing
- 6.Model Training
- 7.Choose best model

1.Problem Statement

by using linear regression we have to predict the temperature

2.Data Collection

The Dataset is collected from UIC machine learning repository Dataset link:

<u>https://archive.ics.uci.edu/ml/datasets/Algerian+Forest+Fires+Dataset++</u>
(https://archive.ics.uci.edu/ml/datasets/Algerian+Forest+Fires+Dataset++)

Data Set Information:

The dataset includes 244 instances that regroup a data of two regions of Algeria,namely the Bejaia region located in the northwest of Algeria and the Sidi Bel-abbes region located in the northwest of Algeria.

122 instances for each region.

The period from June 2012 to September 2012. The dataset includes 11 attribues and 1 output attribue (class) The 244 instances have been classified into †fire†(138 classes) and †not fire†(106 classes) classes.

Attribute Information:

1.Date: (DD/MM/YYYY) Day, month ('june' to 'september'), year (2012) Weather data observations 2.Temp: temperature noon (temperature max) in Celsius degrees: 22 to 42 3.RH: Relative Humidity in %: 21 to 90 4.Ws: Wind speed in km/h: 6 to 29 5.Rain: total day in mm: 0 to 16.8 FWI Components 6.Fine Fuel Moisture Code (FFMC) index from the FWI system: 28.6 to 92.5 7.Duff Moisture Code (DMC) index from the FWI system: 1.1

to 65.9 8.Drought Code (DC) index from the FWI system: 7 to 220.4 9.Initial Spread Index (ISI) index from the FWI system: 0 to 18.5 10.Buildup Index (BUI) index from the FWI system: 1.1 to 68 11.Fire Weather Index (FWI) Index: 0 to 31.1 12.Classes: two classes, namely "Fire†and "not Fireâ€

2.1 importing data and required packages

In [1]:

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
import plotly.express as px
import warnings
warnings.filterwarnings("ignore")
%matplotlib inline
```

2.2 import the dataset

Since data is in form of an csv file we have to use "pandas.read_csv" to load the data and store it in data frame as df.we are setting header = 1 means row 1 ,row 0 it will ignore

In [2]:

```
{\tt df=pd.read\_csv(r"C:\backslash Users\backslash DHARAVATH\ RAMDAS\backslash Downloads\backslash Algerian\_forest\_fires\_dataset\_UPDATE.com and {\tt df=pd.read\_csv(r"C:\backslash Users)\_dataset\_UPDATE.com and {\tt df=
```

In [3]:

df

Out[3]:

	day	month	year	Temperature	RH	Ws	Rain	FFMC	DMC	DC	ISI	BUI	FWI	Class
0	01	06	2012	29	57	18	0	65.7	3.4	7.6	1.3	3.4	0.5	not f
1	02	06	2012	29	61	13	1.3	64.4	4.1	7.6	1	3.9	0.4	not f
2	03	06	2012	26	82	22	13.1	47.1	2.5	7.1	0.3	2.7	0.1	not f
3	04	06	2012	25	89	13	2.5	28.6	1.3	6.9	0	1.7	0	not f
4	05	06	2012	27	77	16	0	64.8	3	14.2	1.2	3.9	0.5	not f
241	26	09	2012	30	65	14	0	85.4	16	44.5	4.5	16.9	6.5	f
242	27	09	2012	28	87	15	4.4	41.1	6.5	8	0.1	6.2	0	not f
243	28	09	2012	27	87	29	0.5	45.9	3.5	7.9	0.4	3.4	0.2	not f
244	29	09	2012	24	54	18	0.1	79.7	4.3	15.2	1.7	5.1	0.7	not f
245	30	09	2012	24	64	15	0.2	67.3	3.8	16.5	1.2	4.8	0.5	not f

246 rows × 14 columns

2.3 first 5 rows

In [4]:

df.head()

Out[4]:

	day	month	year	Temperature	RH	Ws	Rain	FFMC	DMC	DC	ISI	BUI	FWI	Classes
0	01	06	2012	29	57	18	0	65.7	3.4	7.6	1.3	3.4	0.5	not fire
1	02	06	2012	29	61	13	1.3	64.4	4.1	7.6	1	3.9	0.4	not fire
2	03	06	2012	26	82	22	13.1	47.1	2.5	7.1	0.3	2.7	0.1	not fire
3	04	06	2012	25	89	13	2.5	28.6	1.3	6.9	0	1.7	0	not fire
4	05	06	2012	27	77	16	0	64.8	3	14.2	1.2	3.9	0.5	not fire
4														•

2.4 last 5 rows

In [5]:

df.tail()

Out[5]:

	day	month	year	Temperature	RH	Ws	Rain	FFMC	DMC	DC	ISI	BUI	FWI	Class
241	26	09	2012	30	65	14	0	85.4	16	44.5	4.5	16.9	6.5	f
242	27	09	2012	28	87	15	4.4	41.1	6.5	8	0.1	6.2	0	not f
243	28	09	2012	27	87	29	0.5	45.9	3.5	7.9	0.4	3.4	0.2	not f
244	29	09	2012	24	54	18	0.1	79.7	4.3	15.2	1.7	5.1	0.7	not f
245	30	09	2012	24	64	15	0.2	67.3	3.8	16.5	1.2	4.8	0.5	not f
4														

2.5 shape of the data

In [6]:

df.shape

Out[6]:

(246, 14)

observation: 246 rows and 14 columns

3.Data Cleaning

In [7]:

we have to remove the unnecessary rows from dataset after observation

In [8]:

df[121:126]

Out[8]:

	day	month	year	Temperature	RH	Ws	Rain	FFMC	DMC	DC	ISI	BUI	FW
121	30	09	2012	25	78	14	1.4	45	1.9	7.5	0.2	2.4	0.1
122	Sidi-Bel Abbes Region Dataset	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN
123	day	month	year	Temperature	RH	Ws	Rain	FFMC	DMC	DC	ISI	BUI	FW
124	01	06	2012	32	71	12	0.7	57.1	2.5	8.2	0.6	2.8	0.2
125	02	06	2012	30	73	13	4	55.7	2.7	7.8	0.6	2.9	0.2
4													•

observation: see the 122 row it contains the nan values see the 123 row it contains the categorical values we have to remove the 122 and 123 rows because it is different from the your data

remove unnecessary rows from dataset

In [9]:

```
df.drop(index=[122,123],inplace=True)
#it will give index gap so we reset index
df.reset_index(inplace=True)
df.drop('index',axis=1,inplace=True)
```

In [10]:

```
# check rows

df.loc[122:126]
```

Out[10]:

	day	month	year	Temperature	RH	Ws	Rain	FFMC	DMC	DC	ISI	BUI	FWI	Classe
122	01	06	2012	32	71	12	0.7	57.1	2.5	8.2	0.6	2.8	0.2	not fi
123	02	06	2012	30	73	13	4	55.7	2.7	7.8	0.6	2.9	0.2	not fi
124	03	06	2012	29	80	14	2	48.7	2.2	7.6	0.3	2.6	0.1	not fi
125	04	06	2012	30	64	14	0	79.4	5.2	15.4	2.2	5.6	1	not fi
126	05	06	2012	32	60	14	0.2	77.1	6	17.6	1.8	6.5	0.9	not fi
4														

Observation: we succesfully removed the nan values

adding new feature named Region in a dataset

```
In [11]:
```

```
# we add region new column in dataset
# 1.method
df['Region'] = 0
for i in range(len(df)):
    if i >= 122:
        df['Region'][i] = 1
```

```
In [12]:
```

```
# 2.method
# df.loc[:122,"region"] = 'bejaia'
# df.loc[122:, 'region'] = 'sidi-bel abbes'
```

In [13]:

```
df.head(3)
```

Out[13]:

	day	month	year	Temperature	RH	Ws	Rain	FFMC	DMC	DC	ISI	BUI	FWI	Classes
0	01	06	2012	29	57	18	0	65.7	3.4	7.6	1.3	3.4	0.5	not fire
1	02	06	2012	29	61	13	1.3	64.4	4.1	7.6	1	3.9	0.4	not fire
2	03	06	2012	26	82	22	13.1	47.1	2.5	7.1	0.3	2.7	0.1	not fire
4														•

observation: we added new column sucessflly

```
In [14]:
```

```
### check the balanced data or not
df['Region'].value_counts()
```

Out[14]:

0 1221 122

Name: Region, dtype: int64

observation :- see the above bejaia is 122 and sidi-bel abbes is 122 times both are same equal

```
In [15]:
```

```
df.columns
```

```
Out[15]:
```

observation: see the columns some have the extra spaces so we have to remove it

stripping the names of the columns

observation:- see the classes it contains some extra spaces so we have to remove it

stripping the classes features column

```
In [18]:

df['Classes'] = df.Classes.str.strip()
```

observation:- see we got nan value we have to identify it and set the correct

```
In [19]:
```

```
df.iloc[165]
Out[19]:
day
                      14
month
                      07
                    2012
year
Temperature
                      37
RH
                      37
                      18
Ws
                     0.2
Rain
FFMC
                    88.9
                    12.9
DMC
                 14.6 9
DC
ISI
                    12.5
                    10.4
BUI
FWI
                fire
Classes
                     NaN
Region
Name: 165, dtype: object
```

bservation :- see some miss match positions we have to reset it

In [20]:

```
df.at[165,'DC'] = 14.6
df.at[165,'ISI'] = 9
df.at[165,'BUI'] = 12.5
df.at[165,'FWI'] = 10.4
df.at[165,'Classes'] = 'fire'
```

In [21]:

```
df.loc[165]
```

Out[21]:

```
day
                  14
                  07
month
year
                2012
Temperature
                  37
                  37
RH
                  18
Ws
                 0.2
Rain
FFMC
                88.9
DMC
                12.9
DC
                14.6
ISI
                   9
                12.5
BUI
                10.4
FWI
Classes
                fire
Region
                    1
Name: 165, dtype: object
```

```
In [22]:

## chaanging the classes

df['Classes'] = df['Classes'].replace('not fire','0')

df['Classes'] = df['Classes'].replace('fire','1')
```

Check the null values

```
In [23]:

df.isnull().sum().sum()

Out[23]:
0
```

checking the datatype of each columns

```
In [24]:
df.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 244 entries, 0 to 243
Data columns (total 15 columns):
               Non-Null Count Dtype
---
                 244 non-null
 0
    day
                                object
                244 non-null object
 1
    month
 2
    year
                 244 non-null object
 3
    Temperature 244 non-null
                                object
 4
    RH
                 244 non-null object
 5
    Ws
                 244 non-null object
 6
                 244 non-null
                              object
    Rain
                              object
 7
    FFMC
                 244 non-null
 8
    DMC
                 244 non-null
                              object
 9
    DC
                 244 non-null
                                object
 10
    ISI
                 244 non-null
                                object
 11
    BUI
                 244 non-null
                                object
    FWI
 12
                 244 non-null
                                object
 13 Classes
                 244 non-null
                                object
                 244 non-null
 14
    Region
                                int64
dtypes: int64(1), object(14)
memory usage: 28.7+ KB
```

observation:- see that day is object so its wrong data type so we have change its datatypes

Changing the datatype of the columns

```
In [25]:
Rain':'float', 'FFMC':'float','DMC':'float','FWI':'float', 'DC':'float','ISI':'float','BUI':
```

In [26]:

```
df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 244 entries, 0 to 243
Data columns (total 15 columns):
```

#	Column	Non-Null Count	Dtype
0	day	244 non-null	object
1	month	244 non-null	object
2	year	244 non-null	object
3	Temperature	244 non-null	int32
4	RH	244 non-null	int32
5	Ws	244 non-null	int32
6	Rain	244 non-null	float64
7	FFMC	244 non-null	float64
8	DMC	244 non-null	float64
9	DC	244 non-null	float64
10	ISI	244 non-null	float64
11	BUI	244 non-null	float64
12	FWI	244 non-null	float64
13	Classes	244 non-null	int32
14	Region	244 non-null	int64

dtypes: float64(7), int32(4), int64(1), object(3)

memory usage: 24.9+ KB

we are adding new feature named Day by replacing unnecessary feature like 'day', 'month', 'year'

```
In [27]:
```

```
df['date'] = pd.to_datetime(df[['day','month','year']])
df.drop(['day','month','year'],axis=1, inplace= True)
```

In [28]:

df

Out[28]:

	Temperature	RH	Ws	Rain	FFMC	DMC	DC	ISI	BUI	FWI	Classes	Region	date
0	29	57	18	0.0	65.7	3.4	7.6	1.3	3.4	0.5	0	0	2012- 06-01
1	29	61	13	1.3	64.4	4.1	7.6	1.0	3.9	0.4	0	0	2012- 06-02
2	26	82	22	13.1	47.1	2.5	7.1	0.3	2.7	0.1	0	0	2012- 06-03
3	25	89	13	2.5	28.6	1.3	6.9	0.0	1.7	0.0	0	0	2012- 06-04
4	27	77	16	0.0	64.8	3.0	14.2	1.2	3.9	0.5	0	0	2012- 06-05
239	30	65	14	0.0	85.4	16.0	44.5	4.5	16.9	6.5	1	1	2012- 09-26
240	28	87	15	4.4	41.1	6.5	8.0	0.1	6.2	0.0	0	1	2012- 09-27
241	27	87	29	0.5	45.9	3.5	7.9	0.4	3.4	0.2	0	1	2012- 09-28
242	24	54	18	0.1	79.7	4.3	15.2	1.7	5.1	0.7	0	1	2012- 09-29
243	24	64	15	0.2	67.3	3.8	16.5	1.2	4.8	0.5	0	1	2012- 09-30

244 rows × 13 columns

Exploring data

Shape of the datset

In [29]:

df.shape

Out[29]:

(244, 13)

Observation: there are 13 columns and 244 rows

Columns of dataset

Checking missing values in dataset

```
In [31]:
```

```
df.isnull().sum()
```

Out[31]:

Temperature RH0 Ws Rain 0 FFMC DMC 0 0 DC 0 ISI BUI FWI 0 Classes 0 0 Region date 0 dtype: int64

Observation: don't have any null values

```
In [32]:
```

```
# uniwue value of classes feature

df['Classes'].unique()
```

```
Out[32]:
```

array([0, 1])

Describe is used for ststistics analysis

In [140]:

df.describe()

Out[140]:

	Temperature	RH	Ws	Rain	FFMC	DMC	DC	
count	244.000000	244.000000	244.000000	244.000000	244.000000	244.000000	244.000000	2
mean	32.172131	61.938525	15.504098	0.760656	77.887705	14.673361	49.288115	
std	3.633843	14.884200	2.810178	1.999406	14.337571	12.368039	47.619662	
min	22.000000	21.000000	6.000000	0.000000	28.600000	0.700000	6.900000	
25%	30.000000	52.000000	14.000000	0.000000	72.075000	5.800000	13.275000	
50%	32.000000	63.000000	15.000000	0.000000	83.500000	11.300000	33.100000	
75%	35.000000	73.250000	17.000000	0.500000	88.300000	20.750000	68.150000	
max	42.000000	90.000000	29.000000	16.800000	96.000000	65.900000	220.400000	

In [141]:

df.describe().T

Out[141]:

	count	mean	std	min	25%	50%	75%	max	
Temperature	244.0	32.172131	3.633843	22.0	30.000	32.00	35.000	42.0	
RH	244.0	61.938525	14.884200	21.0	52.000	63.00	73.250	90.0	
Ws	244.0	15.504098	2.810178	6.0	14.000	15.00	17.000	29.0	
Rain	244.0	0.760656	1.999406	0.0	0.000	0.00	0.500	16.8	
FFMC	244.0	77.887705	14.337571	28.6	72.075	83.50	88.300	96.0	
DMC	244.0	14.673361	12.368039	0.7	5.800	11.30	20.750	65.9	
DC	244.0	49.288115	47.619662	6.9	13.275	33.10	68.150	220.4	
ISI	244.0	4.759836	4.154628	0.0	1.400	3.50	7.300	19.0	
BUI	244.0	16.673361	14.201648	1.1	6.000	12.45	22.525	68.0	

7.428366

0.496700

0.501028

0.0

0.0

0.700

0.000

0.000

4.45 11.375

1.000

1.000

1.00

0.50

31.1

1.0

1.0

Analysis:

FWI

Region 244.0

Classes

244.0

244.0

Numerical and Categorical Columns

7.049180

0.565574

0.500000

Numerical features

```
In [33]:
```

```
# 1. Getting Numerical features from dataset
# 2. Creating Numerical dataframe
```

```
In [34]:
```

```
num_fea = [fea for fea in df.columns if df[fea].dtype != '0']
print("len of numerical feature is : ",len(num_fea),", num features : ",num_fea)
len of numerical feature is : 13 , num features : ['Temperature', 'RH', 'W s', 'Rain', 'FFMC', 'DMC', 'DC', 'ISI', 'BUI', 'FWI', 'Classes', 'Region', 'date']
```

Categorical Features

```
In [35]:
```

```
# we are creating the categorical column from dataset

cat_fea = [fea for fea in df.columns if df[fea].dtype == '0']

print("len of numerical feature is : ",len(cat_fea),", num features : ",cat_fea)
```

```
len of numerical feature is : 0 , num features : []
```

Univariate Analysis

==> The term univariate analysis refers to the analysis of one variable prefix "uni" means "one." The purpose of univariate analysis is to understand the distribution of values for a single variable.

```
In [36]:
```

```
df.var()
```

Out[36]:

Temperature	13.204817
RH	221.539415
Ws	7.897102
Rain	3.997623
FFMC	205.565939
DMC	152.968382
DC	2267.632245
ISI	17.260932
BUI	201.686818
FWI	55.180617
Classes	0.246711
Region	0.251029
dtype: float64	

Numerical Feature Analysis

In [37]:

```
plt.figure(figsize=(15,15))
plt.suptitle('Univariate Analysis of Numerical Features', fontsize=20, fontweight='bold', a

for i in range(0,len(num_fea)):
    plt.subplot(5,3,i+1)
    sns.kdeplot(x=df[num_fea[i]],shade=True,color='r')
    plt.xlabel(num_fea[i])
    plt.tight_layout()
```

Univariate Analysis of Numerical Features

Observation: => Rain, DMC, DC, ISI, BUI, FWI are right skewed => FFMC is a left skewed => Temperature, RH, date are normal distribution

Count plot

In [142]:

```
## we are analysing the bivariate analysis

for fea in num_fea:
    sns.countplot(data=df,x=fea,hue='Classes')
    plt.show()
```


Scatter plot to see the trends in each numeriacal columns

In [39]:

```
plt.figure(figsize=(15,20))
plt.suptitle('scatter plot ')

for i in range(0,len(num_fea)):
    plt.subplot(5,3,i+1)
    sns.scatterplot(x=df.index,y=num_fea[i],data=df)
    plt.tight_layout()
```


Linear Regression	implementation of	a Algorian forcat	fire detect	lunytar Natahaal
i ilieai Rediession	implementation of	i Aldenan idresi	me dalaser	JUDVIEL NOTEDOO

Strip plot

In [42]:

```
plt.figure(figsize =(15,20))
plt.suptitle('Strip plot', fontsize=21, fontweight='bold',alpha=1,y=1)

for i in range(0,len(num_fea)):
    plt.subplot(6,3,i+1)
    sns.stripplot(x='Temperature',y=num_fea[i],data=df)
    plt.tight_layout()
```


Box plot

In [43]:

```
# boxplot to find out outliers
```

In [44]:

```
plt.figure(figsize = (17,8))
sns.boxplot(data = df)
```

Out[44]:

<AxesSubplot:>

Observation: RH, classes, region has no outliers temperature, ws, rain, ffmc, dmc, dc, isi, bui, fwi has more outliers

Barplot

In [45]:

sns.barplot(x="Region",y='Temperature',data=df)

Out[45]:

<AxesSubplot:xlabel='Region', ylabel='Temperature'>

Observation: region 1 has more temperature region 0 has less temperature

Corr visualization

In [138]:

df.corr()

Out[138]:

	Temperature	RH	Ws	Rain	FFMC	DMC	DC	
Temperature	1.000000	-0.654443	-0.278132	-0.326786	0.677491	0.483105	0.370498	0.6
RH	-0.654443	1.000000	0.236084	0.222968	-0.645658	-0.405133	-0.220330	-0.6
Ws	-0.278132	0.236084	1.000000	0.170169	-0.163255	-0.001246	0.076245	0.0
Rain	-0.326786	0.222968	0.170169	1.000000	-0.544045	-0.288548	-0.296804	-0.3
FFMC	0.677491	-0.645658	-0.163255	-0.544045	1.000000	0.602391	0.503910	0.7
DMC	0.483105	-0.405133	-0.001246	-0.288548	0.602391	1.000000	0.875358	0.6
DC	0.370498	-0.220330	0.076245	-0.296804	0.503910	0.875358	1.000000	0.5
ISI	0.605971	-0.688268	0.012245	-0.347862	0.740751	0.678355	0.503919	1.0
BUI	0.456415	-0.349685	0.030303	-0.299409	0.590251	0.982206	0.941672	0.6
FWI	0.566839	-0.580457	0.033957	-0.324755	0.691430	0.875191	0.737041	0.9
Classes	0.518119	-0.435023	-0.066529	-0.379449	0.770114	0.584188	0.507122	0.7
Region	0.273496	-0.406424	-0.176829	-0.041080	0.224680	0.191094	-0.081489	0.2

Pairplot

In []:

corr visualization

In [46]:

sns.pairplot(df)

Out[46]:

<seaborn.axisgrid.PairGrid at 0x25f7b952730>

Heatmap

In [47]:

```
sns.set(rc={'figure.figsize':(15,10)})
sns.heatmap(df.corr(),annot=True)
```

Out[47]:

<AxesSubplot:>

Plot data in linear regression

Regplot

In [48]:

```
# shaded region in plot is redge and lasso
# we see more points is there not shaped mean gap
# other have
# point is more the shade region is less
# point is less the shade region is high
```

rh vs temperatur

In [49]:

```
sns.regplot(x='RH',y='Temperature',data=df)
```

Out[49]:

<AxesSubplot:xlabel='RH', ylabel='Temperature'>

ws vs temperature

In [50]:

sns.regplot(x='Ws',y='Temperature',data=df)

Out[50]:

<AxesSubplot:xlabel='Ws', ylabel='Temperature'>

rain vs temperature

In [51]:

```
sns.regplot(x='Rain',y='Temperature',data=df)
```

Out[51]:

<AxesSubplot:xlabel='Rain', ylabel='Temperature'>

ffmc vs temperature

In [52]:

```
sns.regplot(x='FFMC',y='Temperature',data=df)
```

Out[52]:

<AxesSubplot:xlabel='FFMC', ylabel='Temperature'>

dmc vs temperature

In [53]:

```
sns.regplot(x='DMC',y='Temperature',data=df)
```

Out[53]:

<AxesSubplot:xlabel='DMC', ylabel='Temperature'>

dc vs temperature

In [54]:

```
sns.regplot(x='DC',y='Temperature',data=df)
```

Out[54]:

<AxesSubplot:xlabel='DC', ylabel='Temperature'>

isi vs temperature

In [55]:

```
sns.regplot(x='ISI',y='Temperature',data=df)
```

Out[55]:

<AxesSubplot:xlabel='ISI', ylabel='Temperature'>

bui vs temperature

In [56]:

```
sns.regplot(x='BUI',y='Temperature',data=df)
```

Out[56]:

<AxesSubplot:xlabel='BUI', ylabel='Temperature'>

fwi vs temperature

In [57]:

```
sns.regplot(x='FWI',y='Temperature',data=df)
```

Out[57]:

<AxesSubplot:xlabel='FWI', ylabel='Temperature'>

classes vs temperature

In [58]:

```
sns.regplot(x='Classes',y='Temperature',data=df)
```

Out[58]:

<AxesSubplot:xlabel='Classes', ylabel='Temperature'>

region vs temperature

In [59]:

sns.regplot(x='Region',y='Temperature',data=df)

Out[59]:

<AxesSubplot:xlabel='Region', ylabel='Temperature'>

In [60]:

df.head()

Out[60]:

	Temperature	RH	Ws	Rain	FFMC	DMC	DC	ISI	BUI	FWI	Classes	Region	date
0	29	57	18	0.0	65.7	3.4	7.6	1.3	3.4	0.5	0	0	2012-06- 01
1	29	61	13	1.3	64.4	4.1	7.6	1.0	3.9	0.4	0	0	2012-06- 02
2	26	82	22	13.1	47.1	2.5	7.1	0.3	2.7	0.1	0	0	2012-06- 03
3	25	89	13	2.5	28.6	1.3	6.9	0.0	1.7	0.0	0	0	2012-06- 04
4	27	77	16	0.0	64.8	3.0	14.2	1.2	3.9	0.5	0	0	2012-06- 05

Independent and Dependent feature seperation

independent feature

In [61]:

X = df.iloc[:,1:-1]

dependent feature

In [62]:

y = df.iloc[:,0]

In [63]:

checing
X.head()

Out[63]:

	RH	Ws	Rain	FFMC	DMC	DC	ISI	BUI	FWI	Classes	Region
0	57	18	0.0	65.7	3.4	7.6	1.3	3.4	0.5	0	0
1	61	13	1.3	64.4	4.1	7.6	1.0	3.9	0.4	0	0
2	82	22	13.1	47.1	2.5	7.1	0.3	2.7	0.1	0	0
3	89	13	2.5	28.6	1.3	6.9	0.0	1.7	0.0	0	0
4	77	16	0.0	64.8	3.0	14.2	1.2	3.9	0.5	0	0

```
In [64]:
y.head()
Out[64]:
     29
0
1
     29
     26
2
3
     25
     27
Name: Temperature, dtype: int32
```

Spliting the data into train and test split

```
In [65]:
# spliting the data into train test split
# it will return 4 different paremeters
# output feature of x train is y train and x test is y test
# test size = 0.25 if 1000 in 25% of data
# random state
In [66]:
from sklearn.model_selection import train_test_split
X_train,X_test,y_train,y_test = train_test_split(X,y,test_size=0.33,random_state=42)
In [67]:
X_train.shape
Out[67]:
(163, 11)
In [68]:
y_train.shape
Out[68]:
(163,)
In [69]:
X_test.shape
Out[69]:
(81, 11)
```

```
In [70]:
y_test.shape
Out[70]:
(81,)
```

```
Standardizing or Feature scalling the dataset
In [71]:
from sklearn.preprocessing import StandardScaler
scaler = StandardScaler()
scaler
Out[71]:
StandardScaler()
In [72]:
# Apply data
In [73]:
X_train = scaler.fit_transform(X_train)
In [74]:
X_test = scaler.transform(X_test)
In [75]:
```

```
#data lekage we dont need to leak the data of test to train data
#avoid datalekage use transform
#example :
    is eaxm paper is x_train if you get before exam is called parer lekage
# f to f' we convert mean and std in fit and transform
```

```
In [76]:
```

```
X_train
```

Out[76]:

```
array([[-0.60257784, -1.68484146, -0.17054229, ..., -0.8196431 , -1.04390785, -0.99388373],
[ 0.14460201, -0.93856657, -0.39436188, ..., -0.08219052, 0.95793896, -0.99388373],
[-1.41768313, 2.04653297, -0.39436188, ..., 1.36540157, 0.95793896, 1.0061539 ],
...,
[ 0.89178186, 0.5539832 , 2.82864022, ..., -0.90158227, -1.04390785, -0.99388373],
[ -0.39880152, 0.18084575, -0.39436188, ..., 0.31384882, 0.95793896, 1.0061539 ],
[ 0.9597073 , 2.04653297, 0.41138865, ..., -0.87426921, -1.04390785, -0.99388373]])
```

In [77]:

```
X_test
```

```
[ 7.66765714e-02, -2.43111635e+00, 1.42805137e-01,
 -2.04288364e-01, -2.27949356e-01, -6.70454203e-01,
-8.24177428e-01, -3.54056886e-01, -8.19643095e-01,
-1.04390785e+00, 1.00615390e+00],
[-1.62145945e+00, -1.92291688e-01, -3.04834043e-01,
 8.54449178e-01, 9.58307813e-02, -2.74901779e-01,
 8.82425788e-01, -5.19755172e-02, 5.46009818e-01,
 9.57938964e-01, 1.00615390e+00],
[ 1.16348363e+00, -5.65429131e-01, 5.00916482e-01,
 -1.91876013e+00, -9.78171625e-01, -8.38817542e-01,
-1.01647075e+00, -9.58219625e-01, -9.01582270e-01,
-1.04390785e+00, 1.00615390e+00],
[ 1.09555819e+00, -1.31170402e+00, -3.94361879e-01,
 -2.45271753e-01, -4.01685039e-01, -5.37981164e-02,
-7.76104098e-01, -2.71671058e-01, -7.92330037e-01,
-1.04390785e+00, -9.93883735e-01],
[ 6.88005540e-01, -1.31170402e+00, 4.11388646e-01,
 -1.15373687e+00, -9.78171625e-01, -8.12447381e-01,
 -9.20324088e-01, -9.51354139e-01, -8.74269212e-01,
```

Model Training

In [78]:

```
from sklearn.linear_model import LinearRegression
regression = LinearRegression()
regression
```

Out[78]:

LinearRegression()

```
In [79]:
```

```
regression.fit(X_train,y_train)
```

Out[79]:

LinearRegression()

Coefficient and Intercept

```
In [80]:
```

```
print(regression.coef_)

[-1.05126674 -0.48159084  0.11938767  1.82417191  0.94467874  0.67540664
        0.17325427 -1.25422021  0.0537007  -0.23927078 -0.00511072]

In [81]:

print(regression.intercept_)
```

31.98159509202454

Prediction

```
In [82]:
```

```
reg_pred = regression.predict(X_test)
reg_pred
```

Out[82]:

```
array([33.04281582, 34.18373317, 33.94262556, 33.12802489, 36.58081437,
       32.54990698, 35.21895989, 27.32175238, 30.96985655, 29.60339718,
       29.36216075, 33.3713269 , 33.9660541 , 33.37413504, 34.21146262,
       32.16667325, 37.06595141, 25.21346832, 32.29221418, 33.54538576,
       30.91440937, 28.43873771, 35.06373488, 28.67822485, 36.46752406,
       26.81905285, 32.74394806, 33.29778191, 32.84197893, 34.66821705,
       34.54137306, 31.59706773, 32.66796918, 33.31570383, 32.69911436,
       33.29613965, 30.40105147, 34.24122196, 31.8380836, 23.73446099,
       33.60548737, 33.77838277, 32.43685622, 24.8281907, 36.1657581,
       32.45334978, 31.14713505, 30.44305813, 35.30965237, 34.62074891,
       36.93021848, 30.95822914, 30.88244254, 34.35343577, 33.86159459,
       32.12780851, 36.88091527, 32.3288728, 30.12070206, 36.49040274,
       33.13768817, 30.00109432, 33.98838284, 32.04060986, 31.81504287,
       24.80400402, 33.17469174, 30.59601544, 36.73404251, 34.58679402,
       32.78857774, 31.1503531 , 33.36867632, 34.75216207, 36.13928125,
       31.39844653, 33.53813822, 32.12231108, 35.42226323, 32.340719
       34.10019406])
```

Assumption of Linear Regression

In [83]:

```
## assumption of linear regression
# we used to check model is good or not
# 1.linear relation between y test and
# 2.residuals we get normal distribution
# 3 get uniform distribution
```

1.linear relationship between y_test and reg_prediction

In [84]:

```
plt.scatter(y_test,reg_pred)
plt.xlabel("test truth data")
plt.ylabel("test predicted data")
```

Out[84]:

Text(0, 0.5, 'test predicted data')

2.residual we get normal distributin

In [85]:

```
residuals = y_test - reg_pred
residuals
```

Out[85]:

24	-2.042816				
6	-1.183733				
153	-0.942626				
211	1.871975				
198	3.419186				
	• • •				
180	0.461862				
5	-1.122311				
56	0.577737				
125	-2.340719				
148	1.899806				
Name:	Temperature,	Length:	81,	<pre>dtype:</pre>	float64

In [86]:

```
sns.displot(residuals,kind='kde')
```

Out[86]:

<seaborn.axisgrid.FacetGrid at 0x25f05c07640>

3.uniform distributin

In [87]:

```
## scatter plot with prediction and residual
## uniform distribution called below plo
```

In [88]:

plt.scatter(reg_pred,residuals)

Out[88]:

<matplotlib.collections.PathCollection at 0x25f0595de20>

Mean_squared_error, Mean_absolute_error, Root mean square error

In [89]:

```
from sklearn.metrics import mean_squared_error
from sklearn.metrics import mean_absolute_error
print(mean_squared_error(y_test,reg_pred))
print(mean_absolute_error(y_test,reg_pred))
print(np.sqrt(mean_squared_error(y_test,reg_pred)))
```

- 5.208488116232257
- 1.8297548308020077
- 2.282211233920352

Performance Metrics

R Squared

```
In [90]:
```

```
from sklearn.metrics import r2_score
linear_score = r2_score(y_test,reg_pred)
print(linear_score)
```

0.5150717960749278

Adjusted R Squared

```
In [91]:
1 - (1-linear_score)*(len(y_test)-1)/(len(y_test)-X_test.shape[1]-1)
Out[91]:
0.437764401246293
```

Ridge Regression:

Train the Model

```
In [92]:
```

```
from sklearn.linear_model import Ridge
ridgeR = Ridge(alpha=.99)
ridgeR.fit(X_train,y_train)
```

```
Out[92]:
```

Ridge(alpha=0.99)

Coefficient and Intercept

```
In [93]:
print(ridgeR.coef_)

[-1.0603827  -0.48247028   0.103006    1.76997509   0.44896271   0.43633654
    0.2171534  -0.49095187  -0.01457222  -0.22989405   0.00997644]

In [94]:
print(ridgeR.intercept_)
```

31.98159509202454

Prediction

In [95]:

```
ridgeR_pred = ridgeR.predict(X_test)
ridgeR_pred
```

Out[95]:

```
array([33.03703532, 34.13986742, 33.9230024, 33.1465684, 36.55519553,
       32.58829202, 35.19676247, 27.38380412, 30.98064269, 29.60156146,
       29.34581086, 33.43754527, 33.91240038, 33.38918319, 34.25352319,
       32.14890454, 36.98229481, 25.29265754, 32.24261314, 33.52465167,
       30.87100591, 28.43359751, 35.03100492, 28.68653408, 36.47144325,
       26.84962548, 32.73580381, 33.30529063, 32.84489674, 34.61605839,
       34.52190817, 31.5919525, 32.64407534, 33.36089243, 32.66605215,
       33.2821847 , 30.3432505 , 34.26694779 , 31.80177943 , 23.79831953 ,
       33.61803235, 33.77992474, 32.43218673, 24.89376354, 36.10493875,
       32.41168313, 31.13448973, 30.45274196, 35.28738503, 34.61534151,
       36.8740493 , 30.92310918 , 30.89474016 , 34.41553512 , 33.84426077 ,
       32.24480798, 36.86813253, 32.32600243, 30.13700492, 36.48581499,
       33.10461989, 29.98703993, 33.93577532, 32.02760007, 31.81737762,
       24.83229543, 33.15596365, 30.57171511, 36.70933298, 34.61903868,
       32.77717507, 31.14460223, 33.36498358, 34.76465229, 36.17485522,
       31.39166017, 33.49065095, 32.09618419, 35.4327563, 32.32729069,
       34.08011462])
```

Assumptions for ridgeRegression

1.linear relationship between y_test and predicted y

In [96]:

```
plt.scatter(y_test,ridgeR_pred)
plt.xlabel("test truth data")
plt.ylabel("test predicted data")
```

Out[96]:

Text(0, 0.5, 'test predicted data')

2.residual we get normal distribution

In [97]:

```
residuals= y_test-ridgeR_pred residuals
```

Out[97]:

```
24
      -2.037035
6
      -1.139867
153
      -0.923002
       1.853432
211
198
       3.444804
180
       0.509349
5
      -1.096184
56
       0.567244
125
      -2.327291
148
       1.919885
Name: Temperature, Length: 81, dtype: float64
```

In [98]:

sns.displot(residuals,kind='kde')

Out[98]:

<seaborn.axisgrid.FacetGrid at 0x25f059955e0>

3.Uniform distribution

In [100]:

```
# scatter plot with prediction and residual
# uniform distribution called below plot
plt.scatter(ridgeR_pred,residuals)
```

Out[100]:

<matplotlib.collections.PathCollection at 0x25f066de2e0>

Performance Metrics

In [101]:

mean squared error, mean absolute error, root mean square error

```
In [102]:
```

```
from sklearn.metrics import mean_squared_error
from sklearn.metrics import mean_absolute_error
print(mean_squared_error(y_test,ridgeR_pred))
print(mean_absolute_error(y_test,ridgeR_pred))
print(np.sqrt(mean_squared_error(y_test,ridgeR_pred)))
```

- 5.1609305484880625
- 1.8204108968922816
- 2.271768154651364

R Square

```
In [104]:
```

```
from sklearn.metrics import r2_score
ridgeR_score = r2_score(y_test,ridgeR_pred)
print(ridgeR_score)
```

0.5194995696235252

Adjusted R Squared

```
In [105]:
```

```
1-(1-ridgeR_score)*(len(y_test)-1)/(len(y_test)-X_test.shape[1]-1)
```

Out[105]:

0.4428980517374205

Lasso Regression:

Train the model

```
In [107]:
```

```
from sklearn.linear_model import Lasso
lasso = Lasso(alpha = 0.05)
lasso.fit(X_train,y_train)
```

Out[107]:

Lasso(alpha=0.05)

Coefficient and Intercept

```
In [108]:
```

31.98159509202454

Prediction

```
In [110]:
```

```
lasso_pred = lasso.predict(X_test)
lasso_pred
```

Out[110]:

```
array([33.10068594, 34.16909409, 34.06572152, 33.29832552, 36.33971798,
       32.35616345, 35.274234 , 27.45932539, 30.74954827, 29.52908042,
       29.50510865, 33.19552099, 33.66318829, 33.170849 , 34.19923109,
       32.2736529 , 36.61065379 ,25.51342279 ,32.26347727 ,33.66045814 ,
       30.70453592, 28.46720366, 34.98784451, 28.90484174, 36.23620339,
       27.0366415 , 32.8662064 , 33.34916318, 33.09657046, 34.5920238 ,
       34.51750355, 31.40159905, 32.75760909, 33.38474096, 32.60458918,
       33.26775553, 30.27696818, 34.48550099, 31.32411804, 24.44832455,
       33.71986156, 33.91859271, 32.49506958, 25.20067319, 35.94108842,
       32.51738263, 31.29332202, 30.44740178, 35.45107045, 34.61058991,
       36.70605927, 31.15892409, 31.0733626, 34.22273045, 33.81325237,
       32.33364388, 36.65215752, 32.36125976, 30.25480346, 36.45631965,
       33.19007592, 30.12692971, 33.95092625, 32.1368825, 31.81374529,
       25.10459197, 33.26768874, 30.73357683, 36.54981286, 34.84529781,
       33.02908537, 31.33037755, 33.29481789, 34.77769489, 36.01641838,
       31.4525197 , 33.53238555, 32.30034485, 35.29687817, 32.14898629,
       34.109520591)
```

Assumptions of LassoRegression

```
In [ ]:
```

```
## assumption of linear regression
# we used to check model is good or not
# 1.linear relation between y test and
# 2.residuals we get normal distribution
# 3 get uniform distribution
```

1.relationship between real y and predicted y

In [111]:

```
plt.scatter(y_test,lasso_pred)
plt.xlabel("test truth data")
plt.ylabel("test predict data")
```

Out[111]:

Text(0, 0.5, 'test predict data')

2.residual

In [112]:

```
residuals = y_test - lasso_pred residuals
```

Out[112]:

-2.100686 6 -1.169094 153 -1.065722 211 1.701674 198 3.660282 180 0.467614 5 -1.300345 56 0.703122 -2.148986 125 148 1.890479 Name: Temperature, Length: 81, dtype: float64

In [113]:

```
sns.displot(residuals,kind='kde')
```

Out[113]:

<seaborn.axisgrid.FacetGrid at 0x25f063b4940>

3.get uniform distribution

In [114]:

plt.scatter(lasso_pred,residuals)

Out[114]:

<matplotlib.collections.PathCollection at 0x25f0692c1f0>

Performance Metrics

In [116]:

```
from sklearn.metrics import mean_squared_error
from sklearn.metrics import mean_absolute_error
print(mean_squared_error(y_test,lasso_pred))
print(mean_absolute_error(y_test,lasso_pred))
print(np.sqrt(mean_squared_error(y_test,lasso_pred)))
```

- 5.117291412163739
- 1.8169325664744338
- 2.2621431016104485

R Square

```
In [117]:
```

```
from sklearn.metrics import r2_score
lasso_score = r2_score(y_test,lasso_pred)
print(lasso_score)
```

0.5235625236951003

Adjusted R Square

```
In [118]:
1 - (1-lasso_score)*(len(y_test)-1)/(len(y_test)-X_test.shape[1]-1)
Out[118]:
0.44760872312475397
```

ElasticNet Regression

Train the model

```
In [121]:
```

```
from sklearn.linear_model import ElasticNet
elas_net = ElasticNet(alpha=0.2,l1_ratio=.2)
elas_net.fit(X_train,y_train)
```

Out[121]:

ElasticNet(alpha=0.2, l1_ratio=0.2)

Coefficirnt and Intercept

```
In [122]:
```

```
print(elas_net.coef_)

[-0.99021193 -0.41392435 -0.06475598  1.21240385  0.15397277  0.12933095
    0.24656233  0.07999207  0.08206581  0.01988117  0.03843941]

In [123]:

print(elas_net.intercept_)
```

31.98159509202454

Prediction

In [124]:

```
elastic_pred = elas_net.predict(X_test)
elastic_pred
```

Out[124]:

```
array([32.94452846, 33.89800806, 33.8054905, 33.06440211, 36.21155733,
      32.25235565, 35.01760209, 28.06235766, 30.76199791, 29.72842468,
      29.37429135, 32.97881163, 33.25040204, 32.93129519, 34.2691025,
      32.22059966, 36.85317988, 26.50163279, 32.18479724, 33.41277401,
      30.54995303, 28.7605909 , 34.67970073, 29.03554876, 36.36960064,
      27.58568589, 32.65807279, 33.21640402, 32.58004346, 34.56782142,
      34.25730231, 31.3070555 , 32.65626365, 33.37988341, 32.20674899,
      32.81146276, 30.12980252, 34.14902944, 31.1677371, 25.11441012,
      33.46454815, 33.62865758, 32.08360603, 26.13049032, 35.85794742,
      32.39076583, 31.36983176, 30.44281863, 35.12107191, 34.44059646,
      36.91742207, 31.00642349, 31.16840354, 34.3976827, 33.76311126,
      32.39266906, 36.97846166, 31.96453927, 30.23688726, 36.24163708,
      33.12120543, 30.04135076, 33.91855001, 32.04417237, 31.53187576,
      25.7508697 , 33.10508874, 30.74196754, 36.68216055, 34.59174287,
      32.79252885, 31.255731 , 33.35115765, 34.58237107, 36.07693106,
       31.4909129 , 33.47545565, 32.06411496, 35.15835858, 31.93499957,
      34.04358102])
```

Assumptions of ElasticNet Regression

```
In [ ]:
```

```
## assumption of linear regression
# we used to check model is good or not
# 1.linear relation between y test and predicted
# 2.residuals we get normal distribution
# 3 get uniform distribution
```

1.relationship between actual y test and y predicted

In [125]:

```
plt.scatter(y_test,elastic_pred)
plt.xlabel("test truth data")
plt.ylabel("test predicted data")
```

Out[125]:

Text(0, 0.5, 'test predicted data')

2.residual

In [126]:

```
residuals = y_test - elastic_pred
residuals
```

Out[126]:

24	-1.944528				
6	-0.898008				
153	-0.805491				
211	1.935598				
198	3.788443				
	• • •				
180	0.524544				
5	-1.064115				
56	0.841641				
125	-1.935000				
148	1.956419				
Name:	Temperature.	Length:	81.	dtvpe:	float64

In [127]:

```
sns.displot(residuals,kind='kde')
```

Out[127]:

<seaborn.axisgrid.FacetGrid at 0x25f06681610>

3.uniform distribution

In [131]:

```
plt.scatter(elastic_pred,residuals)
```

Out[131]:

<matplotlib.collections.PathCollection at 0x25f070ed850>

Performance Metrics

In [129]:

```
from sklearn.metrics import mean_squared_error
from sklearn.metrics import mean_absolute_error
print(mean_squared_error(y_test,elastic_pred))
print(mean_absolute_error(y_test,elastic_pred))
print(np.sqrt(mean_squared_error(y_test,elastic_pred)))
```

- 4.816802294980992
- 1.7704639472804067
- 2.1947214618217483

R Square

In [132]:

```
from sklearn.metrics import r2_score
elastic_score = r2_score(y_test,elastic_pred)
print(elastic_score)
```

0.5515390966741835

Adjusted R Square

In [134]:

```
1 - (1-elastic_score)*(len(y_test)-1)/(len(y_test)-X_test.shape[1]-1)
```

Out[134]:

0.48004532947731415

```
Follow me on:
```

linkedin link: https://www.linkedin.com/in/dharavath-ramdas-a283aa213/

GitHub link: https://github.com/dharavathramdas101