Queue Theory Analysis Of Banking System In Nepal Using TORA

Hritik Chaudhary Priya Jaiswal Sashuv Kafle

Under The Supervision Of Dr. Sushil Ghimire

June 17, 2024

- 1 Theoretical Background
- 2 Analysis Goals
- 3 Queueing Analysis Using TORA

Context

In Kathmandu, Nepal, a Nepal Rastra Bank branch located in a busy commercial area experiences significant customer footfall daily. The bank offers various services such as cash deposits, withdrawals, account inquiries, and loan consultations. To manage customer service efficiently, the bank wants to analyze their service system to reduce wait times and improve customer satisfaction.

- 1 Theoretical Background
- 2 Analysis Goals
- 3 Queueing Analysis Using TORA

Queue Models

M/M/1 Queue Model

- Represents a single-server queue with exponential interarrival and service times.
- Suitable for continuous server operation without queue length limits.
- Example:
 - **Service Desk:** One service desk handling all transactions.
 - **Arrival Rate** (λ): 20 customers per hour.
 - **Service Rate** (μ): 25 customers per hour.
- Assumptions:
 - Customer arrivals follow a Poisson process.
 - Service times are exponentially distributed.
 - Single server with no limit on the queue length.

M/M/1/N Queue Model

- Represents a single-server queue with limited capacity N.
- Suitable for scenarios with restricted queue length.
- Example:
 - Service Desk with Limited Space: One service desk with a queue capacity of 10 customers.
 - Arrival Rate (λ): 20 customers per hour.
 - **Service Rate** (*μ*): 25 customers per hour.
 - Queue Capacity (N): 10 customers.
- Assumptions:
 - Customer arrivals follow a Poisson process.
 - Service times are exponentially distributed.
 - Single server with a queue capacity limit.

- 1 Theoretical Background
- 2 Analysis Goals
- 3 Queueing Analysis Using TORA

Analysis Goals: M/M/1

- Determine the average number of customers in the system (L).
- Calculate the average time a customer spends in the system (W).
- Evaluate the probability of the system being idle (P0).

Analysis Goals: M/M/1/N

- Determine the average number of customers in the system (L).
- Calculate the average time a customer spends in the system (W).
- Evaluate the probability of the system being full (Pn).

Queue Models

M/M/1 Queue Model

- Arrival Rate (λ): The rate at which customers arrive at the service facility.
- Service Rate (μ): The rate at which customers are served.
- Traffic Intensity (ρ): $\rho = \frac{\lambda}{\mu}$
- Average Number of Customers in the System (L_s): $L_s = \frac{\lambda}{\mu \lambda}$
- Average Time a Customer Spends in the System (W_s): $W_s = \frac{1}{\mu \lambda}$

- Average Number of Customers in the Queue (L_q): $L_q = \frac{\lambda^2}{n(n-\lambda)}$
- Average Time a Customer Spends Waiting in the Queue (W_q): $W_q = \frac{\lambda}{\mu(\mu \lambda)}$
- Probability of Zero Customers in the System (p0): $p_0 = 1 \rho$
- Probability of *n* Customers in the System (p_n): $p_n = (1 \rho)\rho^n$

M/M/1/N Queue Model

- Similar to M/M/1 but with a finite queue capacity N.
- Average Number of Customers in the System (L_s):

$$L_s = rac{
ho(1 - (N+1)
ho^N + N
ho^{N+1})}{(1 -
ho)(1 -
ho^{N+1})}$$

Average Number of Customers in the Queue (L_q):

$$L_q = L_s - \rho$$

Average Time a Customer Spends in the System (W_s):

$$W_s = \frac{L_s}{\lambda}$$

 Average Time a Customer Spends Waiting in the Queue (W_q):

$$W_q = W_s - rac{1}{\mu}$$

Probability of Exactly n Customers in the System (p_n):

$$P_n = \frac{(1-\rho)\rho^n}{1-\rho^{N+1}}$$

Probability of Maximum Capacity (P(N)):

$$P(N) = \frac{\rho^N(1-\rho)}{1-\rho^{N+1}}$$

- 1 Theoretical Background
- 2 Analysis Goals
- 3 Queueing Analysis Using TORA

Scenario 1: M/M/1 Queue Analysis

Parameters:

- $\lambda = 22$ customers per hour
- $\mu = 27$ customers per hour

Scenario 1: M/M/1 Queue Analysis (cont'd)

	Lambda	22.00000 22.00000 4.40000 0.20000		Mu = Rho/c = Lq = Wq =	0.8 3.5	0000 1481 8519 6296	
n	Probability, pn	Cumulative, Pn	n	Probabi	lity, pn	Cumulative, Pn	_
0	0.18519	0.18519	24	0.	00136	0.99402	
1	0.15089	0.33608	25	0.	00111	0.99513	
2	0.12295	0.45903	26		00090	0.99603	
3	0.10018	0.55921	27		00073	0.99677	
4	0.08163	0.64083	28		00060	0.99737	
5	0.06651	0.70735	29		00049	0.99785	
6	0.05420	0.76154	30		00040	0.99825	
7	0.04416	0.80570	31		00032	0.99857	
8	0.03598	0.84168	32		00026	0.99884	
9	0.02932	0.87100	33		00022	0.99905	
10	0.02389	0.89489	34		00018	0.99923	
11	0.01946	0.91435	35		00014	0.99937	
12	0.01586	0.93021	36		00012	0.99949	
13	0.01292	0.94314	37		00009	0.99958	
14	0.01053	0.95367	38		80000	0.99966	
15	0.00858	0.96225	39	0.	00006	0.99972	•

Figure 1: Scenario 1: M/M/1 Queue Analysis

Scenario 1: M/M/1 Queue Analysis (cont'd)

Calculated Metrics:

- Traffic Intensity (ρ): 0.81481
- Average Number of Customers in the System (L_s): 4.40000
- Average Time a Customer Spends in the System (W_s): 0.20000 hours (12 minutes)
- Average Number of Customers in the Queue (L_q): 3.58519
- Average Time a Customer Spends Waiting in the Queue (W_q): 0.16296 hours (approximately 9.78 minutes)
- Probability of Zero Customers in the System (p0): 0.18519

Scenario 1: M/M/1 Queue Analysis (cont'd)

Probability Distribution:

- p_1: 0.15089 (15.089%)
- p_10: 0.02389 (2.389%)
- Cumulative P_10: 0.89492 (89.492%)
- p_20: 0.00604 (0.604%)
- Cumulative P_20: 0.99402 (99.402%)

Scenario 2: M/M/1/N Queue Analysis

Parameters:

- $\lambda = 22$ customers per hour
- $\mu =$ 27 customers per hour
- N = 50 (queue capacity)

Scenario 2: M/M/1/N Queue Analysis (cont'd)

	Sce	enario 2:(M/M/1)):(GD/5	D/infinity)			
	Lambda = L'da eff = Ls = Ws =	22.00000 22.00000 4.39852 0.19993		Mu = Rho/c = Lq = Wq =	0.8 3.5	00000 81481 58371 16290	
n	Probability, pn	Cumulative, Pn	n	Probat	oility, pn	Cumulative, Pn	4
0	0.18519	0.18519	24	(0.00136	0.99405	L
1	0.15090	0.33609	25		0.00111	0.99516	
2	0.12295	0.45904	26	(0.00090	0.99606	
3	0.10018	0.55922	27	(0.00073	0.99680	
4	0.08163	0.64085	28	(0.00060	0.99739	
5	0.06651	0.70737	29	(0.00049	0.99788	
6	0.05420	0.76156	30	(0.00040	0.99828	
7	0.04416	0.80572	31	(0.00032	0.99860	
8	0.03598	0.84171	32	(0.00026	0.99887	
9	0.02932	0.87103	33	(0.00022	0.99908	
10	0.02389	0.89492	34	(0.00018	0.99926	
11	0.01947	0.91438	35	(0.00014	0.99940	
12	0.01586	0.93024	36	(0.00012	0.99952	
13	0.01292	0.94317	37	(0.00009	0.99961	
14	0.01053	0.95370	38	(80000.0	0.99969	
15	0.00858	0.96228	39	(0.00006	0.99975	•

Scenario 2: M/M/1/N Queue Analysis (cont'd)

Calculated Metrics:

- Traffic Intensity (ρ): 0.81481
- Average Number of Customers in the System (L_s): 4.39852
- Average Time a Customer Spends in the System (W_s): 0.19993 hours (approximately 12 minutes)
- Average Number of Customers in the Queue (L_q): 3.58371
- Average Time a Customer Spends Waiting in the Queue (W_q): 0.16290 hours (approximately 9.77 minutes)
- Probability of Zero Customers in the System (p0): 0.18519

Scenario 2: M/M/1/N Queue Analysis (cont'd)

Probability Distribution:

- p_1: 0.15090 (15.090%)
- p_10: 0.02389 (2.389%)
- Cumulative P_10: 0.89492 (89.492%)
- p_20: 0.00604 (0.604%)
- Cumulative P_20: 0.99405 (99.405%)

Comparative Analysis

Comparative analysis											
Scenario		Lambda	Mu	L'da eff	p0	Ls	Lq	Ws	Wq		
1	1	22.00000	27.00000	22.00000	0.18519	4.40000	3.58519	0.20000	0.16296		
2	1	22.00000	27.00000	22.00000	0.18519	4.39852	3.58371	0.19993	0.16290		

Figure 3: Comparative Analysis of Scenarios

Comparative Analysis

Scenario 1:

- Traffic Intensity (ρ): 0.81481
- Average Number of Customers in the System (L_s): 4.40000
- Average Number of Customers in the Queue (L_q): 3.58519
- Average Time a Customer Spends in the System (W_s): 0.20000 hours (12 minutes)
- Average Time a Customer Spends Waiting in the Queue (W_q): 0.16296 hours (approximately 9.78 minutes)
- Probability of Zero Customers in the System (p0): 0.18519

Comparative Analysis

Scenario 2:

- Traffic Intensity (ρ): 0.81481
- Average Number of Customers in the System (L_s): 4.39852
- Average Number of Customers in the Queue (L_q): 3.58371
- Average Time a Customer Spends in the System (W_s): 0.19993 hours (approximately 12 minutes)
- Average Time a Customer Spends Waiting in the Queue (W_q): 0.16290 hours (approximately 9.77 minutes)
- Probability of Zero Customers in the System (p0): 0.18519

Conclusion

- Both the M/M/1 and M/M/1/N queue models demonstrate efficient performance for the given parameters.
- The traffic intensity (ρ) is approximately 0.81481 in both scenarios, indicating that the system is well-utilized but not overloaded.
- The average number of customers in the system (L_s) and in the queue (L_q) are very similar in both scenarios, with only minimal differences.
- The average time a customer spends in the system (W_s) and waiting in the queue (W_q) are also nearly identical, suggesting that queue capacity does not significantly impact these metrics under the given conditions.

Conclusion

- The probability of having zero customers in the system (p0) remains the same across both scenarios, reinforcing the efficiency of the service system.
- This analysis provides valuable insights for optimizing service operations and ensuring customer satisfaction with minimal wait times and system congestion.