맛의 디지털화

2017. 10 신용국

1. 아이디어 소개

2. 아이디어 구체화

목차

3. 아이디어 활용분야

4. 아이디어 로드맵

아이디어 동기

어머니가 돌아가신 후에도, 어머니가 해주시던 닭볶음탕의 맛을 간직하고 싶었다.

맛의 디지털화 아이디어

맛은 향이 지배하고 향은 뇌가 지배

출처: 최낙언. Flavor 맛이란 무엇인가. 예문당, 2013

맛은 혀가 아니라 뇌에서 맛을 구분

출처: 콜롬비아대 의대, 찰스 주커 교수

뇌가 구분한 맛을 외부로 출력하고, 미각을 디지털화하고 활용한다.

미각전달경로

미각전달경로

뇌신경 7번(안면 신경) ~ 혀의 앞부분으로 느낀 맛에 대한 정보 뇌신경 9번(혀인두 신경) ~ 혀의 뒷부분으로 느낀 맛에 대한 정보 뇌신경 10번(미주 신경) ~ 입천장과 후두개에서 감지한 맛에 대한 정보

fMRI 촬영 결과

FMR (촬영실험결과, 기본적인 5개의 맛이 1차 미각 피질의 서로 다른 부분 활성화되었다. 사람마다 특정 맛의 자극을 받았을 때 1차 미각 피질에서 활성화되는 부위가 달랐다. 개개인에 대해서 다른 환경에서 같은 자극을 주었을 때 1차 미각 피질의 활성화 패턴이 같았다. 또한, 온도자극, 기계적 자극, 통각 같은 자극들도 받아들였다.

즉, 사람마다 부위는 다르지만, 각각의 맛을 받아들이는 부위가 따로 정해져있다

fMR|촬영: 기능적 자기공명영상술으로, 살아있는 뇌의 활동을 간접적으로 측정

맛 출력 방법

BCI기술(뇌 - 컴퓨터 인터페이스)

한국타이어 뇌파 자동차

분류 기준	방식	특징	사례
뇌파 측정 부위	침습형 방식 (Invasive)	- 마이크로 칩을 두피에 시술해 뇌파 측정 - 정확한 측정이 가능하지만 시술이 필요 하고, 외과적 부작용이 있음	· 원숭이의 뇌에 뇌파 측정 마이크 로 칩을 시술, 뇌 내에서 검출된 신경신호를 이용해 기계 팔을 움직인 실험(듀크대)
	비침습형 방식 (Non-Invasive)	- 헬멧이나 헤드셋 형태의 장비로 뇌파 측정이 가능 - 간편하지만 갑신호가 섞이는 것이 필연적 - 정확한 측정은 힘듦	· 대학, 연구기관의 실험실이나 상용 제품에서 사용하는 방식 · Neuro
활용 뇌파 특징	뇌파 유도 방식	- 특정한 뇌파의 출현을 유도해 응용하는 방법 - 사용자의 실제 의도와 뇌파의 출현이 일치하지 않기 때문에 특정 뇌파를 만들어 내기 위해서는 훈련이 필요	· 뇌파를 이용한 전기 기구 On/Off 실험 가능 · 긍정, 부정의 의사 분별
	뇌파 인식 방식	- 뇌파를 분석해 간단한 의사/동작을 인식 - 사용자의 의도를 그대로 컴퓨터나 기계에 전달	· 뇌파를 분석해 사용자의 각성 수준을 분별 · 장애인을 위한 커서 제어 문자 단어 선택 컨트롤

BCI 기술 분류와 특징

4

BCI기술의 현재

비침습형 EEG의 상용화

EPOC 헤드셋 - 기존 EGG 스캐너와 달리 전극이 14개 달려있다.

몸이 불편해서 음악을 연주해 볼 수 없었던 출연자들이 생각으로 음악을 만들어 낸다.

맛의 디지털화 과제

EGG스캐너의 측정 정확도 개선

대중들에게 상용화

외부에서 뇌파를 입력

맛을 느낌

소프트웨어의 역 할

뇌파의 정규 분포를 활용해 정규화 함으로서 개개인의 뇌파 특성 차이를 줄임 정규화 된 데이터를 활용하여 특정 맛에 해당되는 뇌파에 대응되는 프로그래밍 언어를 개발 입력된 파일과 코딩된 파일들을 컴파일 할 수 있는 툴 개발

기술 적용 가능 분야

요리사

새로운 음식을 시도할 경우, 시뮬레이션을 통해 보다 빠르고 경제적으로 요리를 실험할 수 있다.

여행객

내가 좋아하는 음식 맛의 유사도를 분석하여 나에게 맞는 음식점과 메뉴를 추천해준다.

미맹

맛을 느낄 수 있다.

식욕 부진 환자

환자가 음식을 섭취하고 어떻게 느끼는 지 과정을 분석하는 데에 도움을 줄 수 있다.

로드맵

1단계

BCI 기술을 통한 1차미각피질의 활성화 부위와 정도 데이터화 뇌파의 정규 분포를 활용해 정규화 함으로서 개개인의 뇌파 특성 차이를 줄임

2단계

정규화 된 데이터를 활용하여 특정 맛에 해당되는 뇌파에 대응되는 프로그래밍 언어를 개발 언어로 표현된 재료들로 만든 음식과 실제 음식간의 맛 비교

최종 목표

맛 언어로 음식 시뮬레이션이 가능한 툴 개발 일반 사용자가 이용 가능한 소프트웨어 개발 플랫폼 개발