Set Theory

Peter Koepke

August 25, 2018

1 Preliminaries

Let x, y, z stand for sets. Let $x \in y$ denote x is an element of y. Let $x \notin y$ denote x is not an element of y.

Axiom 1 $(x \in y) \Rightarrow x - \langle -y.$

Theorem 1 $x \notin x$.

Proof by induction on x. **qed.**

Signature 1 The empty set is the set that has no elements. Let \emptyset denote the empty set.

Definition 1 x is nonempty iff x has an element.

Definition 2 A subset of y is a set x such that every element of x is an element of y. Let $x \subseteq y$ stand for x is a subset of y. Let $y \supseteq x$ stand for x is a subset of y.

Definition 3 A proper subset of y is a subset x of y such that there is an element of y that is not an element of x.

Proposition 1 $x \subseteq x$.

Proposition 2 If $x \subseteq y \subseteq x$ then x = y.

Definition 4 $x \cup y = \{u \mid u \in x \text{ or } u \in y\}.$

Definition 5 $\{x\} = \{sets \ y \mid y = x\}.$

2 Ordinal Numbers

[ordinal/-s]

Definition 6 x is transitive iff every element of x is a subset of x. Let Trans(x) stand for x is transitive.

Definition 7 An ordinal is a set x such that x is transitive and every element of x is transitive. Let Ord(x) stand for x is an ordinal. Let α, β, γ stand for ordinals.

Theorem 2 \emptyset is an ordinal.

Definition 8 $x + 1 = x \cup \{x\}.$

Theorem 3 $\alpha + 1$ is an ordinal.

Theorem 4 If $Ord(\beta)$ and $\alpha \in \beta$ then $Ord(\alpha)$.

Theorem 5 $(\alpha \in \beta) \land (\beta \in \gamma) \Rightarrow (\alpha \in \gamma)$.