A számításelmélet alapjai I. (Harmadik gyakorlat)

Dr. Lázár Katalin Anna

Eötvös Loránd Tudományegyetem, Informatikai Kar 1117 Budapest, Pázmány Péter sétány 1/C. e-mail: lazarkati@elte.hu

2024. február 27.

Tematika

- Lineáris grammatikák és nyelvek: a lineáris, a bal-lineáris, valamint a jobb-lineáris grammatika, nyelv és nyelvosztály fogalma. A bal-lineáris grammatikák által generált nyelvek osztálya megegyezik a reguláris nyelvek osztályával.
- Reguláris grammatikák normálformája.
- A reguláris kifejezések fogalma, reguláris kifejezések egyenlősége.
 Minden reguláris kifejezés reguláris nyelvet jelöl és minden reguláris nyelv leírható reguláris kifejezéssel.

Példa 1

Legyen
$$G_1 = (\{S\}, \{a, b\}, \{S \to abS, S \to a\}, S)$$
 és $G_2 = (\{S, S_1\}, \{a, b\}, \{S \to Sab, S \to aab\}, S)$.

- Bal- vagy jobb-lineárisak az előbbi grammatikák?
- Határozzuk meg $L(G_1)$ -t és $L(G_2)$ -t!

Jobb-lineáris grammatikák

Példa 2

Konstruáljunk jobb-lineáris grammatikát az $L = aab^*a$ nyelvhez!

Példa 3

Konstruáljunk jobb-lineáris és bal-lineáris grammatikát az $L = \{a^nb^m \mid n \geq 3, m \geq 2\}$ nyelvhez! Adjuk meg a^4b^3 jobb-lineáris és bal-lineáris levezetését!

Példa 4

Legyen G = (N, T, P, S) bal-lineáris grammatika, ahol $N = \{S, A, B\}$, $T = \{a, b\}$, $P = \{S \rightarrow Abb, A \rightarrow Baa, B \rightarrow Aab, A \rightarrow aa\}$. Konstruáljunk meg egy G' jobb-lineáris grammatikát, amelyre L(G) = L(G') teljesül!

Példa 4

Megjegyzés

Legyen G = (N, T, P, S) bal-lineáris grammatika és legyen $N = \{S, A_1, \ldots, A_n\}$. Az általánosság megszorítása nélkül feltehetjük, hogy S nem fordul elő egyetlen szabály jobb oldalán sem. Megkonstruálunk egy G' = (N, T, P', S) jobb-lineáris grammatikát, amelyre L(G) = L(G') teljesül.

- $S \rightarrow u \in P'$ akkor és csak akkor, ha $S \rightarrow u \in P, u \in T^*$,
- $S \to uA_k \in P'$ akkor és csak akkor, ha $A_k \to u \in P, \ u \in T^*$,
- $A_j \to u A_k \in P'$ akkor és csak akkor, ha $A_k \to A_j u \in P, \ u \in T^*$,
- $A_j \to u \in P'$ akkor és csak akkor, ha $S \to A_j u \in P$, $u \in T^*$.

Példa 5

Legyen G=(N,T,P,S) reguláris grammatika, ahol $N=\{S,A,B\}$, $T=\{a,b\},\ P_1=\{S\rightarrow aaA,A\rightarrow bbB,A\rightarrow B,A\rightarrow aa,B\rightarrow bb\}$. Konstruáljunk G-hez egy G' reguláris grammatikát, amely normálformájú és amelyre L(G')=L(G)!

Példa 5

- Normálforma alatt a 3-as típusú grammatikák normálformáját értjük.
- Legyen G = (N, T, P, S) 3-típusú grammatika. Ismeretes, hogy G szabályai vagy $A \to uB$, vagy $A \to u$ alakúak, ahol $A, B \in N$ és $u \in T^*$.
- Minden 3-típusú, azaz reguláris nyelv generálható egy olyan grammatikával, amelynek szabályai vagy $X \to aY$, ahol $X, Y \in N$ és $a \in T$, vagy $X \to \varepsilon$ alakúak, ahol $X \in N$.

Példa 5

- Először ún. hosszredukciót hajtunk végre:
 - minden egyes $A \to a_1 \dots a_n B$, $n \ge 2$, alakú szabályt egy $\{A \to a_1 Z_1, Z_1 \to a_2 Z_2, \dots, Z_{n-1} \to a_n B\}$ szabályhalmazzal helyettesítünk, ahol Z_1, \dots, Z_{n-1} új, a szabályhoz bevezetett nemterminálisok, és
 - minden egyes $A \to a_1 \dots a_m$, $m \ge 1$ alakú szabályt pedig helyettesítünk egy $\{A \to a_1 Y_1, Y_1 \to a_2 Y_2, \dots, Y_{m-1} \to a_m Y_m, Y_m \to \varepsilon\}$ szabályhalmazzal, ahol Y_1, \dots, Y_m a szabályhoz bevezetett új nemterminálisok.
- Az így kapott új P'' szabályhalmaz elemei $X \to aY, X \to Y, X \to \varepsilon$ alakúak, ahol $X, Y \in N$ és $a \in T$.

Példa 5

- Ezután elimináljuk a láncszabályokat.
- Legyen N' a P" szabályhalmazban előforduló nemterminálisok halmaza (az új nemterminálisokat is beszámítva). Legyen bármely X ∈ N' nemterminálisra U(X) = {Y | Y ⇒* X}.
- Definiáljuk a P' szabályhalmazt a következőképpen:
 - $X \to aY \in P'$ akkor és csak akkor, ha létezik olyan $Z \in N'$, amelyre $X \in U(Z)$ és $Z \to aY \in P''$, valamint
 - ▶ $X \to \varepsilon \in P'$ akkor és csak akkor, ha létezik olyan $Z \in N'$, amelyre $X \in U(Z)$ és $Z \to \varepsilon \in P''$.
 - Más szabály nincs P'-ben.

Példa 6

Legyen G=(N,T,P,S) egy 3-as típusú grammatika, ahol $N=\{S,A,B,C\},\ T=\{a,b\}$ és $P=\{S\to abB,S\to b,A\to S,A\to aC,B\to \varepsilon,B\to bA,C\to aA,C\to a\}$. Konstruáljunk egy G' 3-as típusú grammatikát, amely normálformájú és amelyre L(G)=L(G') teljesül!

Példa 7

Adjunk reguláris kifejezést a legfeljebb 3 a-t tartalmazó $\{a,b\}$ feletti szavak nyelvéhez!

Példa 8

Adjuk meg reguláris kifejezéssel azt a nyelvet a $\{0,1\}$ ábécé felett,

- amely azon szavakból áll, amelyek tartalmazzák részszóként a 010 szót!
- amely azon szavakból áll, amelyek tartalmazzák részszóként a 000 vagy az 111 szót!
- amely azon 1-esre végződő szavakból áll, amelyek nem tartalmazzák részszóként a 00 szót!
- amely azon szavakból áll, melynek 3. betűje 0!

Példa 9

Határozzuk meg, hogy a következő reguláris kifejezések közül melyek ekvivalensek!

- (a*ba*)*
- $b(a+b)(ab)^*$
- $(a+b)^*$
- (ab)*
- $\emptyset^* + a(ba)^*b$
- a(b*a)*
- a*(ba*)*
- (a*b*)*

Példa 9

- $a(b^*(a+\varepsilon))^*$
- (a*b)*a*
- a*b*a*
- $a(a+b)^*$
- b(ab)*a
- $(a + ab + b)^*$
- $(a + ab)^*$

Példa 10

Ugyanazt a nyelvet jelölik-e az $\{a,b\}\{a\}^*$ és $\{a\}\{a\}^* \cup \{b\}\{a\}^*$ reguláris kifejezések?

Példa 11

Ugyanazt a nyelvet jelölik-e az alábbi reguláris kifejezések:

•
$$a^* + (a^* + b^*) = (a^* + a^*) + b^*$$
,

•
$$(a + b^*)a^* = a \cdot a^* + b^* \cdot a^*$$
,

•
$$a^* = \varepsilon + a \cdot a^*$$
,

•
$$(a+b^*)^* = (\varepsilon + (a+b^*))^*$$
?

Példa 11

Megjegyzés

Axiómák reguláris kifejezésekre: Legyenek P, Q, R reguláris kifejezések. Akkor P, Q és R helyébe reguláris kifejezéseket írva fennállnak az alábbi egyenlőségek:

•
$$P + (Q + R) = (P + Q) + R$$

•
$$P \cdot (Q \cdot R) = (P \cdot Q) \cdot R$$

$$P + Q = Q + P$$

$$P \cdot (Q + R) = P \cdot Q + P \cdot R$$

$$\bullet (P+Q) \cdot R = P \cdot R + Q \cdot R$$

Példa 11

- $P^* = \varepsilon + P \cdot P^*$
- $\varepsilon \cdot P = P \cdot \varepsilon = P$
- $P^* = (\varepsilon + P)^*$
- ullet Ha $P=R+P\cdot Q$ és arepsilon
 otin Q, akkor $P=R\cdot Q^*$ (inferencia szabály)
- $\bullet \ \emptyset^* = \{\varepsilon\}$
- $\bullet \ \emptyset \cdot P = P \cdot \emptyset = \emptyset$

Példa 12

Adjuk meg a következő reguláris kifejezések által jelölt nyelvet generáló 3-típusú (jobb-lineáris) grammatikát!

- $(a(a + ba)^*)^*$
- $(a + (b + ab)^*)^*$
- $(ab)^* + (ba)^*$
- $a^* + (ab)^*$