COMP9311: DATABASE SYSTEMS

Term 1 2024

Week 1 – Course Introduction

By Xiaoyang Wang, CSE UNSW

Disclaimer: the course materials are sourced from previous offerings of COMP9311 and COMP3311

Who's who in COMP9311

Lecturer in Charge

Xiaoyang Wang

Office: K17 501D

Email: xiaoyang.wang1@unsw.edu.au

Course admin and Tutors

- Couse Admin: Xingyu Tan (xingyu.tan@unsw.edu.au)
- Tutors: Peiting Xie, Kaiyu Chen, Zeming Fei, Miao Ma, Qing Sima,
 Junhua Zhang, Yanping Wu, Qi Luo.
- Mostly research students from the Data and Knowledge Research
 Group
- Office: K17-201 closed area

Plan for the delivery of this course

Lectures

- describe all syllabus topics in some detail, with exercises and examples
- Start from Week 1: 4PM 6PM (Mon) and 4PM 6PM (Wed)
- In-person lecture and online streaming at the same time
- There will be admin/tutor to answer questions in the online chat panel
- In-person (O'Shane 104)

Online streaming (Moodle -> Blackboard Collaborate)

Online Lecture - BlackBoard Collaborate

Recorded and uploaded to Echo360 (Moodle -> Lecture Recordings).

Lecture Recordings - Monday

Lecture Recordings - Wednesday

Plan for the delivery of this course

Labs

- In-person, bring your own laptop, check your timetable
- Start from Week 2
- Guides you through the practical skills on the database application programming part of the course
- Not recorded.

Weekly Consultation

- Tutor present to answer any course related questions.
- 10:00 12:00 Friday via Blackboard Collaborate on Moodle

Plan for the delivery of this course

How to access Online Consultations

- Log into Moodle (https://moodle.telt.unsw.edu.au/).
- Go to course (COMP9311 Database Systems 2024 T1).
- Click Blackboard Collaborate
- Click the corresponding consultation session to join.

Online Lecture - BlackBoard Collaborate

Practices questions

- Sample answers are provided.
- To be released on course website at every interval.

Support your learning

Couse Website

- o https://webcms3.cse.unsw.edu.au/COMP9311/24T1/
- all course announcements, content and links to other tools/platforms

Online forum

- Ed forum (register yourself with https://edstem.org/au/join/mqzRT3)
- Tutors will visit the forum regularly to answer questions

Moodle

 access Echo360, submit assignment/project, MyExperience and Blackboard Collaborate

Email

 If you need any help, email me (xiaoyang.wang1@unsw.edu.au) or Xingyu (xingyu.tan@unsw.edu.au)

For Other Enrolment Issues

- The course enrolment process isn't something lecturers have direct control over.
- Matters such as the number of students that can take a course/lab, etc.
- Students always adjust their courses during prior to the census date.
- Checking daily for openings is still recommended.

Course Overview

This is an introductory level course of database systems.

We will be (mostly) learning:

- Theory behind relational database systems
- Practice of using relational database management systems

We will NOT be learning:

- How to build applications or websites over databases
- Design and implementation detail of databases

Syllabus Overview

Data modelling and database design (Week 1 to Week 3)

- ER model, ER-to-relational
- Relational model (relational algebra), mapping of ER to relational model

Database development (Week 3 to Week 5)

- SQL, views, stored procedures, triggers, aggregates
- PostgreSQL: psql (an SQL shell), PLpgSQL (procedural)
- PostgreSQL -> lab, project environment
- Functional dependencies

Syllabus Overview

Formal DB design theory and DBMS architecture (Week 7 – Week 10)

- Normalisation, functional dependencies
- DBMS architecture: client/server, file system, relational engine
- Storage and indexing, data access operations
- Query processing: translation, optimisation, evaluation
- Transaction processing: transactions, concurrency control, recovery
- Future of Databases, limitations of RDBMS's, modern/future technologies
- Course revision

Course Assessments

Two Assignments

- Ass 1: Data Modelling + Relational Algebra (week 2-4)
- Ass 2: DB Design Theory + Database Storage Structures + Transaction (week 8-10)

One Project

Proj 1: SQL PLpgSQL (week 5-7)

Assignments and project are all individual work

Some are automarked (so you must follow the specification exactly)

One Exam

Date to be decided later

Course Assessments

COMP9311 24T1 Assessment Summary

Number	Name	Full Mark
1	Assignment 1: Data Modelling + Relational Algebra	24
2	Assignment 2: DB design Theory + Transaction	26
3	Project 1	50
4	Final Exam	100

The equation for your final mark calculated by **Geometric Mean**

Final Mark = sqrt ((ass1 + ass2 + proj1) * Final Exam)

5% reduction per day for assignments and project

- 0 marks after 5 days late
- 1 second late = 1 day late
- Submit wrong files = Late
- Double check to make sure your submission is correct and on time!

Special Consideration

- We will grant no-penalty extensions due to extreme circumstances (e.g., medical emergencies)
- Apply via myUNSW as soon as possible
- Evidence is needed, application process and details in https://www.student.unsw.edu.au/special-consideration
- No other excuses are accepted (e.g., network down, too busy, forgot to submit)

Exam

Current plan is to do an online exam, comprising a mixture of week 1–10

Everyone gets exactly **one chance** to pass the Exam If you attend the Exam:

- I assume that you are fit/healthy enough to take it (Fit-to-Sit rule at UNSW)
- o no 2nd chance exams, even with a medical certificate

All Special Consideration requests

- must document how you were affected
- o must be submitted via myUNSW
- Supplementary Exams are held shortly after the exam period; so be prepared to be available (!)

Plagiarism

*

We adopt a zero-tolerance policy for plagiarism.

All submissions are checked for plagiarism. The university regards plagiarism as a form of academic misconduct and has very strict rules regarding plagiarism.

For UNSW policies, penalties, and information to help avoid plagiarism, please see: https://student.unsw.edu.au/plagiarism. Not knowing the rules is not considered a valid excuse.

All assessments must be your own original work. They are NOT group project.

DO NOT: copy from others, copy from the Internet, pay someone to do it.

Be careful using ChatGPT or other Al tools!

https://www.student.unsw.edu.au/notices/2023/02/academic-integrity-reminder-chatgp

ChatGPT is not Reliable

Example:

Hi ChatGPT, if you have 2L, 5L and 7L jugs, how to measure 2L milk?

ChatGPT is not Reliable

Hi ChatGPT, if you have 2L, 5L and 7L jugs, how to measure 2L milk?

You can measure exactly 2 liters of milk using 2-liter, 5-liter, and 7-liter jugs with the following steps, commonly known as the water jug problem:

- 1. Fill the 5-liter jug completely.
- 2. Pour the contents of the 5-liter jug into the 7-liter jug. This leaves you with 2 liters of milk in the 5-liter jug.
- 3. Empty the 7-liter jug.
- 4. Pour the 2 liters of milk from the 5-liter jug into the 7-liter jug.
- 5. Fill the 5-liter jug again.
- 6. Carefully pour the contents of the 5-liter jug into the 7-liter jug, which already has 2 liters of milk. This will leave you with 4 liters of milk in the 7-liter jug, as the 7-liter jug can hold up to 7 liters.

Now you have successfully measured out 2 liters of milk in the 7-liter jug.

Its response makes no sense at all!!

Student Learning Outcomes

Remark that: COMP9311 introduces foundations & technology of databases

- skills: how to build a database using DBMS
- theory: how do you know that what you built was good

By the end of the course, you should be able to

- o develop accurate, non-redundant data models
- o realise data models as relational database schemas
- o formulate queries via the full range of SQL constructs
- use stored procedures and triggers to extend DBMS capabilities
- o understand performance issues in relational database applications
- understand the overall architecture of relational DBMSs
- understand the concepts behind transactions and concurrency control
- o appreciate query and transaction processing techniques within RDBMSs
- appreciate the past, present and future of database technology

What we expect from you

Things that we expect you to **do**:

- Follow the lecture content (i.e., weekly topics)
- Theory exercises: exercise/example questions (try them yourself)
- Prac work: lab exercises and project

You will show us your progress/learning outcomes through:

- Assignments: theoretical exercises
- Project: extended practical exercises
- Final exam: your learning outcomes on **both** practical and theoretical topics

What we expect from you

Importantly:

- We want you to feel welcome and safe in asking questions/help online
- This can only happen if we all behave respectfully towards each other when we interact online
- No judgement. Everybody in the class is here to learn something and everybody in the class will help each other to have the best learning experience.

Course Textbook

Lecture notes will be sufficient

Reference Books:

- Elmasri & Navathe, Fundamentals of Database Systems,
 Benjamin/Cummings, 7th Edition, 2015.
- J. D. Ullman & J. Widom, A First Course in Database Systems,
 Prentice Hall, 1997.
- R. Ramakrishan, Database Management Systems, McGRAW-HILL, 1997.
- D. Maier, The Theory of Relational Databases, Computer Science Press, 1983.

Previous: Course Information

Next: Why study Databases

Why Study Databases?

Database Management System

Applications with Database management system

- Banking: transactions
- Airlines: reservations, schedules
- Universities: registration, grades
- Sales: customers, products, purchases
- Online retailers: order tracking, customized recommendations
- Manufacturing: production, inventory, orders, supply chain
- Human resources: employee records, salaries, tax deductions

Databases touch all aspects of our lives

Why Study Databases?

All significant modern computer application has a large amount of data In real-world applications, data will always have to be:

- stored (typically on a disk device)
- manipulated/accessed (efficiently, effectively)
- shared (by many users, concurrently)
- transmitted (all around the Internet)

Red points are handled by databases; blue by networks.

Database: Collection of related data that models some aspect of the real world.

Databases are the core component of most computer applications.

Database Example

Create a database that manages course enrolment for all UNSW students.

Things we need (simplified):

- Information about <u>Students</u>
- Information about <u>Courses</u>
- Information about course <u>Selections</u>

File Systems as Data Management?

File based system

- Contains various information on a storage device (hard disk)
- Files (such as TXT/CSV/EXCEL files, object files, source files)
- Stores files directly on the device and maybe in directories

STUDENT.csv (name, id, major)

```
"name","id","major"
"Smith","17","IT"
"Amy","8","IT"
```

COURSE.csv (code, name, department)

```
"code", "name", "department"
"COMP9311", "Database Systems", "CSE"
"COMP9312", "Data Analytics for Graphs", "CSE"
```

SELECTION.csv (student_id, course_code, term)

```
"student_id", "course_code", "term"
"17", "COMP9311", "2022T2"
"17", "COMP9312", "2022T2"
"8", "COMP9311", "2022T2"
```

File Systems as Data Management?

Question: Does Amy select COMP9311 in 2022T2?

File Systems as Data Management?

Question: Does Amy select COMP9311 in 2022T2?

Why Database Systems (1)

Drawbacks of using file systems to store data

- Data redundancy and inconsistency
 - Multiple file formats, duplication of information in different files
- Difficulty in accessing data
 - Would have to write a new program to carry out each new task
- Integrity problems
 - Integrity constraints (e.g., account balance >= 0) become "buried"
 in program code rather than being clearly kept and stated
 - Hard to add new constraints or change existing ones
- Data isolation multiple files and formats

Why Database Systems (2)

Drawbacks of using file systems (cont.)

Atomicity of updates

- What is computer crashes?
- Failures may leave the data in an inconsistent state.
- Example: Transfer of funds from one account to another should either complete or not happen at all.

Hard to allow concurrent access by multiple users

- Uncontrolled concurrent accesses can lead to inconsistencies
- Example: Two people reading a balance (say 100) and updating it by withdrawing money (say 50 each) at the same time

Database systems offer solutions to all the above problems.

Databases: Important Themes

The field of databases deals with:

- data ... representing application scenarios
- relationships ... amongst data items
- constraints ... on data and relationships
- redundancy ... one source for each data item
- data manipulation ... declarative, procedural
- transactions ... multiple actions, atomic effect
- concurrency ... multiple users sharing data
- scale ... massive amounts of data

What is Data?

Data (according to Elmasri/Navathe)

Known facts that can be recorded (and have implicit meaning)

Example:

Students – name, DOB, courses enrolled, etc.

... (who are also my thesis students)

Movies – title, year published, director, etc.

... (that I like)

Two Types of Data

Data that is **Unstructured**

- No need to pre-define the data
- Requires expertise to prepare the data due to its nonformatted nature
- Can be a combination of various data

Data that is **Structured**

- Stored with a rigid and strict schema
- Can be organized into databases

What is Database?

Database (Elmasri/Navathe)

- ... a collection of related data ...
- Data items alone are relatively useless
- We need the data to have some structure

Example:

a student records database

 Contains information identifying students, courses they are enrolled in, results from past courses, ...

IMDb movie database

 Contains information about the movies, actors, theatres showing the movies, other movies the director also directed in, ...

What is Database Management System

Database can be manipulated and maintained by a database management system (DBMS)

According to Elmasri/Navathe:

- DBMS: ... a collection of programs that enables users to create and maintain a database ...
- Database system (in short): ... the database and DBMS together ...

Database Users

Database Administrator (DBA)

- Design of the conceptual and physical schemas
- Security and authorization
- Data availability and recovery from failures
- Database tuning

Application Programmer

- Implement the specific requirements
- E.g., Web Developer

End User

A Little Bit of History

- Early 1960s: First general-purpose DBMS, Integrated Data Store, by Charles Bachman (Turing Award)
- Late 1960s: IBM developed Information Management System (IMS)
 DBMS, adopting the hierarchical data model
- 1970s: Edgar Codd (Turing Award), at IBM, proposed the relational model
- 1980s: SQL became the standard. James Gray (Turing Award)
 presented the concepts of transaction
- Late 1980s, 1990s: ORACLE, DB2 by IBM, and POSTGRES by Michael Stonebraker (Turing Award). Data warehouse.
- o 1998+: NoSQL
- Current: Big data & large distributed data processing

Types of DBMS

Relational

Top Database Management Systems

Feb 2023	Rank Jan 2023	Feb 2022	DBMS	Database Model
1.	1.	1.	Oracle 😷	Relational, Multi-model 🔃
2.	2.	2.	MySQL T	Relational, Multi-model 🔃
3.	3.	3.	Microsoft SQL Server ☐	Relational, Multi-model 📵
4.	4.	4.	PostgreSQL 🚹	Relational, Multi-model 📵
5.	5.	5.	MongoDB 🚹	Document, Multi-model 🛐
6.	6.	6.	Redis 😷	Key-value, Multi-model 🛐
7.	7.	7.	IBM Db2	Relational, Multi-model 👔
8.	8.	8.	Elasticsearch	Search engine, Multi-model 🛐
9.	1 0.	1 0.	SQLite [1]	Relational
10.	4 9.	4 9.	Microsoft Access	Relational

Source: http://db-engines.com/en/ranking

Data Model

Data model: concepts used to describe the allowed structure of a database. i.e. the structure of the meta-data.

Levels of Data Models:

- High-level or conceptual (e.g. ER model concerns entities, attributes and relationships)
- Implementation or record-based (e.g. Relational, Network, Hierarchical – that can be used to immediately derive a physical implementation)
- Low-level or physical (concerns record formats, access paths etc)

Data Model Concepts

Database Schema: a *formalism* of the data model, the *structural description* of what information will database holds.

Database Instance: any combination of actual information populated in the database at a particular time.

Workflow:

- We define a database by specifying its schema.
- The state is then an empty instance of the schema.
- To create the initial instance we load in data.
- After this, each change in state is an update to the instance.

Design a Database

Conceptual Design

 Requirements can be represented and manipulated using some computerized tools so that it can be easily maintained, modified, and transformed into a database implementation

Logical Design

 Translated by conceptual design that can be expressed in a data model implemented in a DBMS

Physical Design

 Further specifications are provided for storing and accessing the database

Database Languages

Data definition language (DDL): used to define the conceptual schema.

Data manipulation languages (DML): let users write requests to retrieve and manipulate data, as well as other tasks relating to data manipulation.

- Non-procedural DML (e.g., SQL, common for casual users)
 - interactive and/or embedded
 - set at a time/ set oriented.
- Procedural DML (also covered in this course)
 - embedded in a general-purpose language,
 - record at a time

Database System

Component modules of a DBMS and their interactions.

Learning Outcome

Hopefully, you now know...

- course structure,
- who to contact,
- how you're assessed and scored,
- the database applications around you,
- what goes on in databases (and is interested)

Next Lecture: Data Modelling, ER Diagram