Automatic Hyper-parameter Tuning via Bayesian Optimization

Janardhan Rao (Jana) Doppa

School of EECS, Washington State University

Motivation

- Every machine learning algorithm has hyper-parameters
 - Perceptron algorithm: learning rate, number of iterations
 - ◆ SVM algorithm: tradeoff parameter C, kernel parameter (degree for polynomial kernel, width for Gaussian kernel)
 - Random Forests: number of trees, depth of each tree
 - ◆ Deep neural networks: number of layers, weight regularization, layer size, which non-linearity, batch size, learning rate schedule, stopping conditions etc.

•

Search for Good Hyper-parameters: Standard Practice

Define an objective function

 We care about generalization performance. Use crossvalidation to measure parameter quality.

How do people currently search? Black magic.

- Grid search
- Random search
- Graduate student descent

• What is wrong?

- Painful!
- Computationally expensive many training cycles
- Possibly sub-optimal

Bayesian Optimization: Key Ideas

- Build a surrogate statistical model based on past computational experiments
 - Assumption is that surrogate model is cheap to evaluate
- Intelligently select the next experiment (candidate solution) using the statistical model
 - Trade-off exploration and exploitation
 - Exploration corresponds to selecting candidates for which the statistical model is not confident (high variance)
 - Exploitation corresponds to selecting candidates for which the statistical model is highly confident (high mean)

Bayesian Optimization Framework: Key Elements

Surrogate statistical model

- Cheap to evaluate
- Can quantify uncertainty of predictions (i.e., variance)

Acquisition function

Scores candidate solutions (via mean and variance obtained from the statistical model) in terms of their usefulness

Optimizer

- Select the candidate that maximizes the acquisition function
- Next candidate we should try

Bayesian Optimization Framework: High-level Overview

- Initialize statistical model F
- Repeat the following steps for several iterations
 - ^ Select the next candidate (say x) by optimizing the acquisition function A(x)
 - Run experiment with candidate x to compute its quality y
 - Update the statistical model F based on the new training example (x, y)
 - Update the best uncovered solution so far (say x_{best})

Bayesian Optimization Framework: Key Elements

Surrogate statistical model

- Cheap to evaluate
- Can quantify uncertainty of predictions (i.e., variance)

Acquisition function

Scores candidate solutions (via mean and variance obtained from the statistical model) in terms of their usefulness

Optimizer

- Select the candidate that maximizes the acquisition function
- Next candidate we should try

Surrogate Model: Choices

- Bayesian Regression Model
- Gaussian Process (GP) Model
 - Very popular

Random Forests

- ▲ A bunch of regression trees
- ▲ Mean = empirical mean of the predictions from all trees
- Variance = empirical variance of the predictions from all trees
- Simple implement
- Often works well. You can try Mondrian Forests (reason about uncertainty) for a better choice
- Becoming very popular lately (see SMAC software)

Acquisition Function: Choices

- Expected Improvement (EI)
- Probability of Improvement
- Upper Confidence Bound (UCB)

El and UCB are the most popular acquisition functions

Optimizer: Choices

- Gradient descent with random restarts
- LBFGS
- DIvided RECTangles (DIRECT) algorithm
- Simultaneous Optimistic Optimization (SOO) algorithm

• • •

Example Results

Papers and Software

- Jasper Snoek, <u>Hugo Larochelle</u>, <u>Ryan P. Adams</u>: Practical Bayesian Optimization of Machine Learning Algorithms. <u>NIPS 2012</u>: 2960-2968
 - https://papers.nips.cc/paper/4522-practical-bayesianoptimization-of-machine-learning-algorithms.pdf
- Spearmint Software
 - https://github.com/JasperSnoek/spearmint