函 数

School of Computer Wuhan University

School of Computer Wuhan University

本章内容

- 1 函数、复合函数
 - 函数的定义
 - 复合函数
 - 单射、满射和双射
- 2 函数的递归定义
 - 自然数集合上的递归函数
 - Euclid算法和尾递归
 - List集合上的递归函数
 - Ackermann函数
 - 高阶函数

Alonzo Church (1903 - 1995)

Outline

- ① 函数、复合函数
 - 函数的定义
 - 复合函数
 - 单射、满射和双射
- 2 函数的递归定义

Example

• 命题公式 $G(P_1, P_2, \ldots, P_n)$ 的语义解释I(G):

$$\{0,1\}^n \to \{0,1\},$$

$$\langle x_1, x_2, \dots, x_n \mapsto G(x_1, x_2, \dots, x_n)$$
 实际上是 $\{0,1\}^n \times \{0,1\}$ 上的一个特殊的关系;

设P是所有命题公式的集合,B是所有布尔函数的集合,所有命题公式的语义是上述两者的特殊关系√:

$$\mathcal{P} \to \mathcal{B}$$
$$G \mapsto I(G)$$

Example

● 程序执行过程中的状态S可以看成是存储空间M到其存储的数值 ℤ上的函数:

$$\mathcal{M} \to \mathbb{Z},$$

 $m \mapsto \mathcal{S}(s)$

• 程序的运行环境 \mathcal{E} 是名称集合Name到存储空间M的函数:

$$Name \rightarrow \mathcal{M}$$
 $x \mapsto \mathcal{E}(x)$

Example

• 程序执行过程中的状态S可以看成是存储空间M到其存储的数值 \mathbb{Z} 上的函数:

$$\mathcal{M} \to \mathbb{Z},$$

 $m \mapsto \mathcal{S}(s)$

• 程序的运行环境 \mathcal{E} 是名称集合Name到存储空间M的函数:

$$Name \to \mathcal{M},$$

 $x \mapsto \mathcal{E}(x)$

Definition (函数,function(map, mapping))

设 f 是集合X到 Y上的关系($f \subseteq X \times Y$), f 是函数, iff, f 满足下述两个条件:

- ① 完全性: $\forall x \in X, \exists y \in Y$, such that $\langle x, y \rangle \in f$,
- ② 多对一: if $\langle x, y \rangle \in f \land \langle x, z \rangle \in f$, then y = z;

集合X和Y分别称为函数 f 的定义域(domain)和陪域(codomain).与 $x \in X$ 有关系 f 的 $y \in Y$ 记为: f(x), 即y = f(x).

Remark

- ① 非完全的: $\exists x \in X \land \forall y \in Y, \langle x, y \rangle \notin f$, 表示函数在有些点没有定义. 将满足条件②不满足条件①的关系称为部分函数(partial function);
- ② 一对多: if $\exists x \in X \land y, z \in Y \land y \neq z \land \langle x, y \rangle \in f \land \langle x, z \rangle \in f$: 表示函数在有些点可能对应多值. 将满足条件①不满足条件②的关系称为多值函数(multivalued function).

Definition (函数,function(map, mapping))

设 f 是集合X到Y上的关系($f \subseteq X \times Y$), f 是函数, iff, f 满足下述两个条件:

- ① 完全性: $\forall x \in X, \exists y \in Y$, such that $\langle x, y \rangle \in f$,
- ② 多对一: if $\langle x, y \rangle \in f \land \langle x, z \rangle \in f$, then y = z;

集合X和Y分别称为函数 f 的定义域(domain)和陪域(codomain).与 $x \in X$ 有关系 f 的 $y \in Y$ 记为: f(x), 即y = f(x).

Remark

- ① 非完全的: $\exists x \in X \land \forall y \in Y, \langle x, y \rangle \notin f$, 表示函数在有些点没有定义. 将满足条件②不满足条件①的关系称为部分函数(partial function);
- ② 一对多: if $\exists x \in X \land y, z \in Y \land y \neq z \land \langle x, y \rangle \in f \land \langle x, z \rangle \in f$: 表示函数在有些点可能对应多值. 将满足条件①不满足条件②的关系称为多值函数(multivalued function).

Definition (函数,function(map, mapping))

设 f 是集合X到Y上的关系($f \subseteq X \times Y$), f 是函数, iff, f 满足下述两个条件:

- ① 完全性: $\forall x \in X, \exists y \in Y$, such that $\langle x, y \rangle \in f$,
- ② 多对一: if $\langle x, y \rangle \in f \land \langle x, z \rangle \in f$, then y = z;

集合X和Y分别称为函数 f 的定义域(domain)和陪域(codomain).与 $x \in X$ 有关系 f 的 $y \in Y$ 记为: f(x), 即y = f(x).

Remark

- ① 非完全的: $\exists x \in X \land \forall y \in Y, \langle x, y \rangle \notin f$, 表示函数在有些点没有定义. 将满足条件②不满足条件①的关系称为部分函数(partial function);
- ② 一对多: if $\exists x \in X \land y, z \in Y \land y \neq z \land \langle x, y \rangle \in f \land \langle x, z \rangle \in f$: 表示函数在有些点可能对应多值. 将满足条件①不满足条件②的关系称为多值函数(multivalued function).

Definition (函数, function(map, mapping))

设 f 是集合X到 Y上的关系(f ⊆ $X \times Y$), f 是函数, iff, f 满足下述两个条 件:

- ① 完全性: $\forall x \in X, \exists y \in Y$, such that $\langle x, y \rangle \in f$,
- ② 多对一: if $\langle x, y \rangle \in f \land \langle x, z \rangle \in f$, then y = z;

集合X和Y分别称为函数f的定义域(domain)和陪域(codomain).与 $x \in X$ 有关系 f 的 $y \in Y$ 记为: f(x), 即 y = f(x).

Remark

- **①** 非完全的: $\exists x \in X \land \forall y \in Y, \langle x, y \rangle \notin f$ 表示函数在有些点没有定义. 将满足条件②不满足条件①的关系称 为部分函数(partial function);

Definition (函数, function(map, mapping))

设 f 是集合X到 Y上的关系($f \subseteq X \times Y$), f 是函数, iff, f 满足下述两个条件:

- ① 完全性: $\forall x \in X, \exists y \in Y$, such that $\langle x, y \rangle \in f$;
- ② 多对一: if $\langle x, y \rangle \in f \land \langle x, z \rangle \in f$, then y = z;

集合X和Y分别称为函数f的定义域(domain)和陪域(codomain).与 $x \in X$ 有关系f的 $y \in Y$ 记为: f(x), 即y = f(x).

Remark

- ① 非完全的: $\exists x \in X \land \forall y \in Y, \langle x, y \rangle \notin f$, 表示函数在有些点没有定义. 将满足条件②不满足条件①的关系称为部分函数(partial function);
- ② 一对多: if $\exists x \in X \land y, z \in Y \land y \neq z \land \langle x, y \rangle \in f \land \langle x, z \rangle \in f$. 表示函数在有些点可能对应多值. 将满足条件①不满足条件②的关系称为多值函数(multivalued function).

图例

 $d \bullet$

(a)函数

(b)部分函数

(c)多值函数

Definition (函数的集合)

- 记 $Y^X \triangleq \{f \mid f: X \to Y\}$ 为所有的从X到Y的函数的集合;
- $\bullet |Y|^{|X|} < 2^{|X| \times |Y|}, :: Y^X \subsetneq \mathcal{P}(X \times Y).$

Definition (函数相等)

称两函数 $f,g:X \to Y$ 相等(记为f=g), iff, 对应的函数关系相等. 即函数f,g在任一点具有相同的函数值, $\forall x \in X, \ f(x)=g(x)$.

- $\bullet |\{0,1\}^{\{0,1\}^n}| = 2^{2^n};$
- $F \Leftrightarrow G \text{ iff } I(F) = I(G);$

Definition (函数的集合)

- 记 $Y^X \triangleq \{f | f: X \rightarrow Y\}$ 为所有的从X到Y的函数的集合;
- 若X和Y为有限集合,则 $|Y^X| = |Y|^{|X|}$;
- $\bullet |Y|^{|X|} < 2^{|X| \times |Y|}, :: Y^X \subsetneq \mathcal{P}(X \times Y).$

Definition (函数相等)

称两函数 $f,g:X\to Y$ 相等(记为f=g), iff, 对应的函数关系相等. 即函数f,g在任一点具有相同的函数值, $\forall x\in X,\ f(x)=g(x)$.

Example

 $\bullet \ |\{0,1\}^{\{0,1\}^n}| = 2^{2^n};$

Definition (函数的集合)

- 记 $Y^X \triangleq \{f | f: X \rightarrow Y\}$ 为所有的从X到Y的函数的集合;
- 若X和Y为有限集合,则 $|Y^X| = |Y|^{|X|}$;
- $\bullet |Y|^{|X|} < 2^{|X| \times |Y|}, :: Y^X \subsetneq \mathcal{P}(X \times Y).$

Definition (函数相等)

称两函数 $f,g:X\to Y$ 相等(记为f=g), iff, 对应的函数关系相等. 即函数f,g在任一点具有相同的函数值, $\forall x\in X,\ f(x)=g(x)$.

Example

• $|\{0,1\}^{\{0,1\}^n}| = 2^{2^n};$

Definition (函数的集合)

- 记 $Y^X \triangleq \{f | f: X \rightarrow Y\}$ 为所有的从X到Y的函数的集合;
- 若X和Y为有限集合,则 $|Y^X| = |Y|^{|X|}$;
- $\bullet |Y|^{|X|} < 2^{|X| \times |Y|}, :: Y^X \subsetneq \mathcal{P}(X \times Y).$

Definition (函数相等)

称两函数 $f,g:X\to Y$ 相等(记为f=g), iff, 对应的函数关系相等. 即函数f,g在任一点具有相同的函数值, $\forall x\in X,\ f(x)=g(x)$.

Example

• $|\{0,1\}^{\{0,1\}^n}| = 2^{2^n};$

Definition (函数的集合)

- 记 $Y^X \triangleq \{f | f: X \rightarrow Y\}$ 为所有的从X到Y的函数的集合;
- 若X和Y为有限集合,则 $|Y^X| = |Y|^{|X|}$;
- $|Y|^{|X|} < 2^{|X| \times |Y|}, :: Y^X \subsetneq \mathcal{P}(X \times Y).$

Definition (函数相等)

称两函数 $f,g:X\to Y$ 相等(记为f=g), iff, 对应的函数关系相等. 即函数f,g在任一点具有相同的函数值, $\forall x\in X,\ f(x)=g(x)$.

Example

• $|\{0,1\}^{\{0,1\}^n}| = 2^{2^n};$

Definition (函数的集合)

- 记 $Y^X \triangleq \{f | f: X \rightarrow Y\}$ 为所有的从X到Y的函数的集合;
- $|Y|^{|X|} < 2^{|X| \times |Y|}, :: Y^X \subseteq \mathcal{P}(X \times Y).$

Definition (函数相等)

称两函数 $f,g:X\to Y$ 相等(记为f=g), iff, 对应的函数关系相等. 即函数f,g在任一点具有相同的函数值, $\forall x\in X,\ f(x)=g(x)$.

- $|\{0,1\}^{\{0,1\}^n}| = 2^{2^n};$
- $F \Leftrightarrow G \text{ iff } I(F) = I(G);$

Definition (函数的集合)

- 记 $Y^X \triangleq \{f | f: X \rightarrow Y\}$ 为所有的从X到Y的函数的集合;
- 若X和Y为有限集合,则 $|Y^X| = |Y|^{|X|}$;
- $|Y|^{|X|} < 2^{|X| \times |Y|}, :: Y^X \subseteq \mathcal{P}(X \times Y).$

Definition (函数相等)

称两函数 $f,g:X\to Y$ 相等(记为f=g), iff, 对应的函数关系相等. 即函数f,g在任一点具有相同的函数值, $\forall x\in X,\ f(x)=g(x)$.

- $|\{0,1\}^{\{0,1\}^n}| = 2^{2^n};$
- $F \Leftrightarrow G \text{ iff } I(F) = I(G);$

Definition (像, image; 逆像, inverse image; 值域, range)

设 $f: X \to Y$ 是X到Y上的函数, $A \subseteq X$, $B \subseteq Y$:

- A 在 f 下的像:
 - $f(A) \triangleq \{ y \mid \exists x \in A \land y = f(x) \} = \{ f(x) \mid x \in A \};$
- B 在 f 下的 逆像: $f^{-1}(B) \triangleq \{ x \mid \exists y \in B \land y = f(x) \} = \{ x \mid f(x) \in B \};$
- f(X)称为函数 f 的值域(range).

Example

- $f: \mathbb{R} \to \mathbb{R}$, 若 f 是连续函数,则对任意的开区间]a, b[, 有f[]a, b[)也是开区间;
- 重言式集合 $T = \mathcal{I}^{-1}(\{T\})$.

注意

Definition (像, image; 逆像, inverse image; 值域, range)

设 $f: X \to Y$ 是X到Y上的函数, $A \subseteq X$, $B \subseteq Y$:

- $A \notin f$ 下的像: $f(A) \triangleq \{ y \mid \exists x \in A \land y = f(x) \} = \{ f(x) \mid x \in A \};$
- B 在 f 下的逆像: $f^{-1}(B) \triangleq \{ x \mid \exists y \in B \land y = f(x) \} = \{ x \mid f(x) \in B \};$
- f(X) 称为函数 f 的值域(range).

Example

- $f: \mathbb{R} \to \mathbb{R}$, 若 f 是连续函数,则对任意的开区间]a, b[, 有f(]a, b[)也是开区间;
- 重言式集合 $T = \mathcal{I}^{-1}(\{T\})$.

注意

Definition (像, image; 逆像, inverse image; 值域, range)

设 $f: X \to Y$ 是X到Y上的函数, $A \subseteq X$, $B \subseteq Y$:

- $A \notin f \cap \emptyset$: $f(A) \triangleq \{ y \mid \exists x \in A \land y = f(x) \} = \{ f(x) \mid x \in A \};$
- $B \not\in f \cap \mathcal{B}$ 下的 逆像: $f^{-1}(B) \triangleq \{ x \mid \exists y \in B \land y = f(x) \} = \{ x \mid f(x) \in B \};$
- f(X)称为函数 f 的值域(range).

Example

- $f: \mathbb{R} \to \mathbb{R}$, 若 f 是连续函数,则对任意的开区间]a, b[, 有f(]a, b[)也是开区间;
- 重言式集合 $T = \mathcal{I}^{-1}(\{T\})$.

注意

Definition (像, image; 逆像, inverse image; 值域, range)

设 $f: X \to Y$ 是X到Y上的函数, $A \subseteq X$, $B \subseteq Y$:

- $A \notin f \cap \emptyset$: $f(A) \triangleq \{ y \mid \exists x \in A \land y = f(x) \} = \{ f(x) \mid x \in A \};$
- $B \not\in f \cap \mathcal{B}$ 下的 逆像: $f^{-1}(B) \triangleq \{ x \mid \exists y \in B \land y = f(x) \} = \{ x \mid f(x) \in B \};$
- f(X)称为函数 f 的值域(range).

Example

- $f: \mathbb{R} \to \mathbb{R}$, 若 f 是连续函数,则对任意的开区间]a, b[, 有f(]a, b[)也是开区间;
- 重言式集合 $T = \mathcal{I}^{-1}(\{T\})$.

注意

Definition (像, image; 逆像, inverse image; 值域, range)

设 $f: X \to Y \not\in X$ 到 $Y \to Y \to X$ 到 $Y \to Y \to X$, $Y \to Y \to X$

- $A \times f$ 下的像: $f(A) \triangleq \{ y \mid \exists x \in A \land y = f(x) \} = \{ f(x) \mid x \in A \};$
- B 在 f 下的逆像: $f^{-1}(B) \triangleq \{ x \mid \exists y \in B \land y = f(x) \} = \{ x \mid f(x) \in B \};$
- f(X) 称为函数 f 的值域(range).

Example

- $f: \mathbb{R} \to \mathbb{R}$, 若 f 是连续函数,则对任意的开区间]a, b[, 有f(]a, b[)也是开区间;
- 重言式集合 $T = \mathcal{I}^{-1}(\{T\})$.

注意

Definition (像, image; 逆像, inverse image; 值域, range)

设 $f: X \to Y$ 是X到Y上的函数, $A \subseteq X$, $B \subseteq Y$:

- $A \notin f \cap \emptyset$: $f(A) \triangleq \{ y \mid \exists x \in A \land y = f(x) \} = \{ f(x) \mid x \in A \};$
- $B \times f$ 下的逆像: $f^{-1}(B) \triangleq \{x \mid \exists y \in B \land y = f(x)\} = \{x \mid f(x) \in B\};$
- f(X) 称为函数 f 的值域(range).

Example

- $f: \mathbb{R} \to \mathbb{R}$, 若 f 是连续函数,则对任意的开区间]a, b[, 有f(]a, b[)也是开区间;
- 重言式集合 $T = \mathcal{I}^{-1}(\{T\})$.

注意

 f^{-1} 有两重含义,求逆像和逆函数(反函数),求逆像的作用对象只能是集合: f^{-1} (α)[a是元素]; 只有当f的逆函数存在时, f^{-1} 才能作用元素.

- $f(\{a,d\}) = \{3\};$
- $f(\{d\}) = \{3\};$
- $f^{-1}(\{3\}) = \{a, d\};$
- $f^{-1}(\{2\}) = \emptyset$.

- $f(\{a,d\}) = \{3\};$
- $f(\{d\}) = \{3\};$
- $f^{-1}(\{3\}) = \{a, d\};$
- $f^{-1}(\{2\}) = \emptyset$.

- $f(\{a,d\}) = \{3\};$
- $f(\{d\}) = \{3\};$
- $f^{-1}(\{3\}) = \{a, d\};$
- $f^{-1}(\{2\}) = \emptyset$.

- $f(\{a,d\}) = \{3\};$
- $f(\{d\}) = \{3\};$
- $f^{-1}(\{3\}) = \{a, d\}$
- $f^{-1}(\{2\}) = \emptyset$

- $f(\{a,d\}) = \{3\};$
- $f(\{d\}) = \{3\};$
- $f^{-1}(\{3\}) = \{a, d\};$
- $f^{-1}(\{2\}) = \emptyset$.

- $f(\{a,d\}) = \{3\};$
- $f(\{d\}) = \{3\};$
- $f^{-1}(\{3\}) = \{a, d\};$
- $f^{-1}(\{2\}) = \emptyset$.

- $f(\{a,d\}) = \{3\};$
- $f(\{d\}) = \{3\};$
- $f^{-1}(\{3\}) = \{a, d\};$
- $f^{-1}(\{2\}) = \emptyset$.

- $f(\{a,d\}) = \{3\};$
- $f(\{d\}) = \{3\};$
- $f^{-1}(\{3\}) = \{a, d\};$
- $f^{-1}(\{2\}) = \emptyset$.

- $f(\{a,d\}) = \{3\};$
- $f(\{d\}) = \{3\};$
- $f^{-1}(\{3\}) = \{a, d\};$
- $f^{-1}(\{2\}) = \emptyset$.

Theorem

设 $f: X \to Y$ 是X到Y上的函数, $A \subseteq X$, $B \subseteq Y$,则:

- **1** $A \subseteq f^{-1}(f(A));$
- **2** $f(f^{-1}(B)) \subseteq B$.

Proof.

- ① $\forall x \in A, \ \mathbb{N} \ f(x) \in f(A),$ ∴ $x \in f^{-1}(f(A)) = \{ x' \mid f(x') \in f(A) \};$
- ② $\forall y \in f(f^{-1}(B)), \ \mathbb{N} \ \exists x \in f(B) \land y = f(x), \ \mathbb{m} : x \in f^{-1}(B), \ : \ f(x) \in B, \ \mathbb{N} \ y \in B.$

Remark

Theorem

设 $f: X \to Y$ 是X到Y上的函数, $A \subseteq X$, $B \subseteq Y$,则:

- **1** $A \subseteq f^{-1}(f(A));$
- **2** $f(f^{-1}(B)) \subseteq B$.

Proof.

- ① $\forall x \in A, \ y \mid f(x) \in f(A),$ ∴ $x \in f^{-1}(f(A)) = \{ x' \mid f(x') \in f(A) \};$
- ② $\forall y \in f(f^{-1}(B)), \ \mathbb{N} \ \exists x \in f(B) \land y = f(x), \ \mathbb{n} : x \in f^{-1}(B), \ \therefore \ f(x) \in B, \ \mathbb{P} \ y \in B.$

Remark

Theorem

设 $f: X \to Y$ 是 X 到 Y 上的函数, $A \subseteq X$, $B \subseteq Y$, 则:

- **1** $A \subseteq f^{-1}(f(A));$
- **2** $f(f^{-1}(B)) \subseteq B$.

Proof.

- **●** $\forall x \in A, \mathbb{N}$ $f(x) \in f(A),$ ∴ $x \in f^{-1}(f(A)) = \{ x' \mid f(x') \in f(A) \};$
- ② $\forall y \in f(f^{-1}(B)), \ \mathbb{M} \ \exists x \in f(B) \land y = f(x), \ \text{fig. } x \in f^{-1}(B), \ \therefore \ f(x) \in B, \ \mathbb{P} \ y \in B.$

Remark

Theorem

设 $f: X \to Y$ 是 X 到 Y 上的函数, $A \subseteq X$, $B \subseteq Y$, 则:

- **1** $A \subseteq f^{-1}(f(A));$
- **2** $f(f^{-1}(B)) \subseteq B$.

Proof.

- $\forall x \in A$, \mathbb{N} $f(x) \in f(A)$, ∴ $x \in f^{-1}(f(A)) = \{ x' \mid f(x') \in f(A) \}$;
- **②** $\forall y \in f(f^{-1}(B)), \ \mathbb{N} \ \exists x \in f(B) \land y = f(x), \ \text{for } x \in f^{-1}(B), \ \therefore \ f(x) \in B, \ \mathbb{N}^p \ y \in B.$

Remark

常用的函数

Description

- ① $\mathbb{1}_X: X \to X, x \mapsto x$. 恒等函数;
- ② $b: X \rightarrow Y, x \mapsto b$. 常数函数;
- 3 $s: \mathbb{N} \to \mathbb{N}, n \mapsto n+1$. 后继函数;
- **④** $f: X_1 \times X_2 \times \cdots \times X_n \to Y$. n元函数;
- **⑤** $p_i: X_1 \times X_2 \times \cdots \times X_n \to X_i, \langle x_1, x_2, \dots, x_n \rangle \mapsto x_i.$ 投影函数;
- **⑤** $X \to \mathcal{P}(X \times Y), x \mapsto \{x\} \times Y.$ 截痕函数.

Definition (合成函数(复合), Composite function)

设 $f\colon X\to Y$ 是 X 到 Y 的函数, $g\colon Y\to Z$ 是 Y 到 Z 的函数,关系 f 和 g 的合成关系 $f\circ g$ 也是函数,记为: $g\circ f\colon X\to Z,\ x\mapsto g(f(x))$,称 为 f 和 g 的合成函数. (注意:习惯上函数合成的写法与关系合成相反.)

函数的合成.

• 合成交换图 Proof

Definition (合成函数(复合), Composite function)

函数的合成.

• 合成交换图

- ① : f 是函数, $: \forall x \in X, \exists ! y \in Y, \langle x, y \rangle \in f, y = f(x);$
- ② :: g 是函数, : $\forall u \in Y$ $\exists ! z \in Z , \langle u, z \rangle \in g, z = g(u)$
- ③ 所以,对合成关系 $f \circ g \subseteq X \times Z$, $\forall x \in X$, $\exists! z \in Z$, z = g(y) = g(f(x)), 即合成关系 $f \circ g$ 是X 到Z 的函数. 记为 $g \circ f \colon X \to Z$, $x \mapsto g(f(x))$, 即 $z = g(y) = g(f(x)) = g \circ f(x)$.

Definition (合成函数(复合), Composite function)

函数的合成.

• 合成交换图

- ① : f 是函数, :: $\forall x \in X$, $\exists ! y \in Y, \langle x, y \rangle \in f$, y = f(x);
- ② :: g 是函数, :: $\forall y \in Y$, $\exists! z \in Z, \langle y, z \rangle \in g$, z = g(y);
- ③ 所以,对合成关系 $f \circ g \subseteq X \times Z$, $\forall x \in X$, $\exists! z \in Z$, z = g(y) = g(f(x)), 即合成关系 $f \circ g$ 是X 到 Z 的函数. 记为 $g \circ f \colon X \to Z$, $x \mapsto g(f(x))$, 即 $z = g(y) = g(f(x)) = g \circ f(x)$.

Definition (合成函数(复合), Composite function)

设 $f: X \to Y$ 是 X 到 Y 的函数, $g: Y \to Z$ 是 Y 到 Z 的函数,关系 f 和 g 的合成关系 $f \circ g$ 也是函数,记为: $g \circ f: X \to Z$, $x \mapsto g(f(x))$,称 为 f 和 g 的合成函数. (注意:习惯上函数合成的写法与关系合成相反.)

函数的合成.

• 合成交换图

- ① :: f 是函数, :: $\forall x \in X$, $\exists ! y \in Y, \langle x, y \rangle \in f$, y = f(x);
- ② :: g 是函数, :: $\forall y \in Y$, $\exists ! z \in Z, \langle y, z \rangle \in g$, z = g(y);
- **③** 所以,对合成关系 $f \circ g \subseteq X \times Z$, $\forall x \in X$, $\exists! z \in Z$, z = g(y) = g(f(x)), 即合成关系 $f \circ g$ 是X 到 Z 的函数. 记为 $g \circ f \colon X \to Z$, $x \mapsto g(f(x))$, 即 $z = g(y) = g(f(x)) = g \circ f(x)$.

Theorem

$$\mathcal{U}_f: X \to Y, g: Y \to Z, h: Z \to W$$
:

• $\mathbf{1}_Y \circ f = f \circ \mathbf{1}_X = f$;

- - $f^0 = 1_X;$
- 和关系合成一样: $\forall m, n \in \mathbb{N}, f^m \circ f^n = f^{m+n}; (f^m)^n = f^{mn}$

Theorem

i发 $f: X \rightarrow Y, g: Y \rightarrow Z, h: Z \rightarrow W$:

- $1_Y \circ f = f \circ 1_X = f$;
- $h \circ (g \circ f) = (h \circ g) \circ f$, (结合律).

- 和关系合成一样: $\forall m, n \in \mathbb{N}, f^m \circ f^n = f^{m+n}; (f^m)^n = f^{mn}$.

Theorem

 $igg(f: X \to Y, g: Y \to Z, h: Z \to W)$

- $1_Y \circ f = f \circ 1_X = f$;
- $h \circ (g \circ f) = (h \circ g) \circ f$, (结合律).

- $\ \ \ \mathcal{U} \ f \colon X \to X, \ n \in \mathbb{N},$
- 和关系合成一样: $\forall m, n \in \mathbb{N}, f^m \circ f^n = f^{m+n}; (f^m)^n = f^{mn}$

Theorem

i发 $f: X \rightarrow Y, g: Y \rightarrow Z, h: Z \rightarrow W$:

- $1_Y \circ f = f \circ 1_X = f$;
- $h \circ (g \circ f) = (h \circ g) \circ f$, (结合律).

- $\mathfrak{F}: X \to X, n \in \mathbb{N}$,
 - **1** $f^0 = \mathbb{1}_X$;
 - **2** $f^{n+1} = f \circ f^n$;
- 和关系合成一样: $\forall m, n \in \mathbb{N}, f^m \circ f^n = f^{m+n}; (f^m)^n = f^{mn}.$

Theorem

 $igg(f: X \to Y, g: Y \to Z, h: Z \to W)$

- $1_Y \circ f = f \circ 1_X = f$;
- $h \circ (g \circ f) = (h \circ g) \circ f$, (结合律).

- - **1** $f^0 = \mathbb{1}_X$;
 - **2** $f^{n+1} = f \circ f^n$;
- 和关系合成一样: $\forall m, n \in \mathbb{N}, f^m \circ f^n = f^{m+n}; (f^m)^n = f^{mn}.$

Theorem

i发 $f: X \rightarrow Y, g: Y \rightarrow Z, h: Z \rightarrow W$:

- $1_Y \circ f = f \circ 1_X = f$;
- $h \circ (g \circ f) = (h \circ g) \circ f$, (结合律).

- - $f^{0} = \mathbb{1}_{X};$
 - **2** $f^{n+1} = f \circ f^n$;
- 和关系合成一样: $\forall m, n \in \mathbb{N}, f^m \circ f^n = f^{m+n}; (f^m)^n = f^{mn}.$

Theorem

设 $f: X \to Y, g: Y \to Z, h: Z \to W$:

- $1_Y \circ f = f \circ 1_X = f$;
- $h \circ (g \circ f) = (h \circ g) \circ f$, (结合律).

- $\mathfrak{F}: X \to X, n \in \mathbb{N}$,
 - **1** $f^0 = \mathbb{1}_X$;
 - **2** $f^{n+1} = f \circ f^n$:
- 和关系合成一样: $\forall m, n \in \mathbb{N}, f^m \circ f^n = f^{m+n}; (f^m)^n = f^{mn}.$

Definition

设 $f: X \to Y$:

- 若 $\forall x, x' \in X$, $f(x) = f(x') \rightarrow x = x'$ (或者 $\forall x, x' \in X$, $x \neq x' \rightarrow f(x) \neq f(x')$), 称 f 为 单射(one to one)
- 若 既是单射又是满射,则称 为双射(bijection).

Example

设 $|X|=m, |Y|=n, m,n \in \mathbb{N}$:

- 1x是双射:
- f 是单射,则,|f(X)| = |X| = m,因此, $|X| \le |Y|$;
- f 是满射,则, $|Y| = |f(X)| \le |X|$,因此, $|Y| \le |X|$;
- f 是双射,则,|X| = |Y|.

Definition

设 $f: X \to Y$:

- 若 $\forall x, x' \in X$, $f(x) = f(x') \rightarrow x = x'$ (或者 $\forall x, x' \in X$, $x \neq x' \rightarrow f(x) \neq f(x')$), 称 f 为单射(one to one);
- 若f 既是单射又是满射,则称 f 为双射(bijection).

Example

 $\operatorname{\mathfrak{C}}|X|=m, |Y|=n, m,n\in\mathbb{N}$:

- 1x是双射:
- f 是单射,则,|f(X)| = |X| = m,因此, $|X| \le |Y|$;
- f 是满射,则,|Y| = |f(X)| < |X|,因此,|Y| < |X|;
- f 是双射、则、|X| = |Y|.

Definition

设 $f: X \to Y$:

- 若 $\forall x, x' \in X$, $f(x) = f(x') \rightarrow x = x'$ (或者 $\forall x, x' \in X$, $x \neq x' \rightarrow f(x) \neq f(x')$), 称 f 为单射(one to one);
- 若f 既是单射又是满射,则称f 为双射(bijection).

Example

 $\mathfrak{F}[X] = m, \mid Y \mid = n, m, n \in \mathbb{N}$:

- 1 x 是 双射:
- f 是单射,则,|f(X)| = |X| = m,因此, $|X| \le |Y|$;
- f 是满射,则,|Y| = |f(X)| < |X|,因此,|Y| < |X|;
- f 是双射、则、|X| = |Y|.

Definition

设 $f: X \to Y$:

- 若 $\forall x, x' \in X$, $f(x) = f(x') \rightarrow x = x'$ (或者 $\forall x, x' \in X$, $x \neq x' \rightarrow f(x) \neq f(x')$), 称 f 为单射(one to one);
- 若f 既是单射又是满射,则称f 为双射(bijection).

Example

 $\mathfrak{F}|X|=m, |Y|=n, m,n\in\mathbb{N}$:

- 1x是双射;
- f 是单射,则,|f(X)| = |X| = m,因此, $|X| \le |Y|$;
- f 是满射,则, $|Y| = |f(X)| \le |X|$,因此, $|Y| \le |X|$;
- f 是双射,则,|X| = |Y|.

Definition

设 $f: X \to Y$:

- 若 $\forall x, x' \in X$, $f(x) = f(x') \rightarrow x = x'$ (或者 $\forall x, x' \in X$, $x \neq x' \rightarrow f(x) \neq f(x')$), 称 f 为单射(one to one);
- 若f 既是单射又是满射,则称f 为双射(bijection).

Example

设 $|X|=m, |Y|=n, m,n \in \mathbb{N}$:

- 1x是双射;
- f 是单射,则,|f(X)| = |X| = m,因此, $|X| \le |Y|$;
- f 是满射,则,|Y| = |f(X)| < |X|,因此,|Y| < |X|;
- f 是双射、则、|X| = |Y|.

Definition

设 $f: X \to Y$:

- 若 f(X) = Y, 称 f 为满射(onto);
- 若 $\forall x, x' \in X$, $f(x) = f(x') \rightarrow x = x'$ (或者 $\forall x, x' \in X$, $x \neq x' \rightarrow f(x) \neq f(x')$), 称 f 为单射(one to one);
- 若f 既是单射又是满射,则称f 为双射(bijection).

Example

 $\mathfrak{F}[X] = m, \mid Y \mid = n, m, n \in \mathbb{N}$:

- 1x是双射;
- f 是单射,则, |f(X)| = |X| = m,因此, $|X| \le |Y|$;
- f 是满射,则, $|Y| = |f(X)| \le |X|$,因此, $|Y| \le |X|$;
- f 是双射、则、|X| = |Y|.

Definition

设 $f: X \to Y$:

- 若 $\forall x, x' \in X$, $f(x) = f(x') \rightarrow x = x'$ (或者 $\forall x, x' \in X$, $x \neq x' \rightarrow f(x) \neq f(x')$), 称 f 为单射(one to one);
- 若f 既是单射又是满射,则称 f 为双射(bijection).

Example

 $\mathfrak{F}[X] = m, \mid Y \mid = n, m, n \in \mathbb{N}$:

- 1x是双射;
- f 是单射,则,|f(X)| = |X| = m,因此, $|X| \le |Y|$;
- f 是满射,则, $|Y| = |f(X)| \le |X|$,因此, $|Y| \le |X|$;
- f 是双射,则,|X| = |Y|.

Definition (置换, Permutation)

有限集合上的双射称为置换. 通常表示为集合 $\{1,2,\ldots,n\}$ 上的双射.

Definition (置换, Permutation)

有限集合上的双射称为置换. 通常表示为集合 $\{1,2,\ldots,n\}$ 上的双射.

- $iP_n = \{p \mid p \notin \{1, 2, ..., n\} \perp \text{ of } \mathbb{Z}[A_n], \ \mathbb{M}|P_n| = n!;$
- - 设 $m \ge n$, 则X 到Y 上的满射个数等于 m 个元素的集合共有 多少个 n 分区的个数. (即, m 个不同的小球放入 n 个不同盒子,且不允许有空盒的放球方案数.)

Definition (置换, Permutation)

有限集合上的双射称为置换. 通常表示为集合 $\{1,2,\ldots,n\}$ 上的双射.

- $iP_n = \{p \mid p \notin \{1, 2, ..., n\} \perp \text{ of } \Xi_{k.}\}, \ m|P_n| = n!;$
- - 设 $m \le n$, 则X 到Y上的单射共有 $C_n^m m!$ 个;
 - 设 $m \ge n$, 则X 到Y 上的满射个数等于 m 个元素的集合共有 多少个 n 分区的个数. (即, m 个不同的小球放入 n 个不同盒子,且不允许有空盒的放球方案数.)

Definition (置换, Permutation)

有限集合上的双射称为置换. 通常表示为集合 $\{1,2,\ldots,n\}$ 上的双射.

- $iP_n = \{p \mid p \notin \{1, 2, ..., n\} \perp \text{ of } \Xi_{k.}\}, \ m|P_n| = n!;$
- - 设 $m \ge n$, 则X 到Y 上的满射个数等于 m 个元素的集合共有 多少个 n 分区的个数. (即, m 个不同的小球放入 n 个不同盒子,且不允许有空盒的放球方案数.)

Theorem

 $\operatorname{cg} f: X \to Y, g: Y \to Z$:

- ② 若 f, g 是满射,则 g o f 也是满射;

- ② :: g 是单射, :: f(x) = f(x')
- ③ 又f是单射, $\therefore x = x'$, 则 $g \circ f$ 也是单射.

Theorem

i发 $f: X \to Y, g: Y \to Z$:

- ② 若 f, g 是满射,则 g ∘ f 也是满射;

- ① 设 $x, x' \in X$, 若 $g \circ f(x) = g \circ f(x')$, 即 g(f(x)) = g(f(x')),
- ② :: g 是单射, :: f(x) = f(x')
- ③ 又f是单射, $\therefore x = x'$, 则 $g \circ f$ 也是单射.

Theorem

- ① 若 f, g 是单射, \mathcal{M} $g \circ f$ 也是单射;
- ② 若 f, q 是满射,则 q f 也是满射;
- ③ 若 f, q 是双射, $g \circ f$ 也是双射.

Theorem

 $\operatorname{cg} f: X \to Y, g: Y \to Z$:

- ② 若 f, g 是满射,则 g ∘ f 也是满射;

- ① 设 $x, x' \in X$, 若 $g \circ f(x) = g \circ f(x')$, 即 g(f(x)) = g(f(x')),
- ② :: g 是单射, :: f(x) = f(x')
- ③ 又 f 是单射, $\therefore x = x'$, 则 $g \circ f$ 也是单射.

Theorem

i沒 $f: X \rightarrow Y, g: Y \rightarrow Z$:

- ② 若 f, g 是满射,则 $g \circ f$ 也是满射;
- ③ 若 f, g 是双射, 则 $g \circ f$ 也是双射.

- ① 设 $x, x' \in X$, 若 $g \circ f(x) = g \circ f(x')$, 即 g(f(x)) = g(f(x')),
- ② :: g 是单射, :: f(x) = f(x'),
- ③ 又 f 是单射, $\therefore x = x'$, 则 $q \circ f$ 也是单射.

Theorem

 $ightagf: X \to Y, g: Y \to Z:$

- **①** $\overrightarrow{A} f$, g \overrightarrow{L} \overrightarrow{P} $\overrightarrow{$
- ② 若 f, g 是满射, 则 $g \circ f$ 也是满射;
- ③ 若f, g 是双射, 则 g f 也是双射.

- ① 设 $x, x' \in X$, 若 $g \circ f(x) = g \circ f(x')$, 即 g(f(x)) = g(f(x')),
- ② :: g 是单射, :: f(x) = f(x'),
- ③ 又 f 是单射, $\therefore x = x'$, 则 $g \circ f$ 也是单射.

相关性质(2/2)

Theorem

 $沒f: X \rightarrow Y, g: Y \rightarrow Z:$

- ② 若 g o f 是满射,则 g 是满射;
- ③ 若 q f 是双射,则 f 是单射且 g 是满射.

- ① $\forall x, x' \in X, \ \ \ \, \ \, \exists f(x'), \ \ \ \, : \ \ g \in \mathbb{A}$ 是函数, $\therefore \ \ g(f(x)) = g(f(x'))$, 即 $g \circ f(x) = g \circ f(x')$, 又 $\therefore \ \ g \circ f \in \mathbb{A}$ 是单射, $\therefore \ \ x = x'$, 故 $f \in \mathbb{A}$ 是单射;
- ② $\forall z \in Z$, $\therefore g \circ f$ 是满射, $\therefore \exists x \in X$, 使得 $z = g \circ f(x)$, 即 z = g(f(x)), 则存在 $y = f(x) \in Y$, 使得 z = g(y), 故 g 是满射;
- 3 由①,②可直接得出.

相关性质(2/2)

Theorem

 $gf: X \to Y, g: Y \to Z$

- ② 若 g∘f 是满射,则 g 是满射;
- ③ 若 q f 是双射,则 f 是单射且 q 是满射.

- ② $\forall z \in Z$, $\therefore g \circ f$ 是满射, $\therefore \exists x \in X$, 使得 $z = g \circ f(x)$, 即 z = g(f(x)), 则存在 $y = f(x) \in Y$, 使得 z = g(y), 故 g 是满射;
- 3 由①,②可直接得出.

相关性质(2/2)

Theorem

设 $f: X \to Y, g: Y \to Z$:

- ② 若 g∘f 是满射,则 g 是满射;
- ③ 若 g∘f 是双射,则f是单射且 g 是满射.

- ② $\forall z \in Z$, $\therefore g \circ f$ 是满射, $\therefore \exists x \in X$, 使得 $z = g \circ f(x)$, 即 z = g(f(x)), 则存在 $y = f(x) \in Y$, 使得 z = g(y), 故 g 是满射;
- 3 由①。②可直接得出.

Theorem

i发 $f: X \rightarrow Y, g: Y \rightarrow Z$:

- ② 若 gof 是满射,则 g 是满射;

- ② $\forall z \in \mathbb{Z}, : g \circ f$ 是满射, $\therefore \exists x \in X$, 使得 $z = g \circ f(x)$, 即 z = g(f(x)), 则存在 $y = f(x) \in Y$, 使得 z = g(y), 故 g 是满射.
- 3 由①。②可直接得出。

Theorem

设 $f: X \to Y, g: Y \to Z$:

- ② 若 gof 是满射,则 g 是满射;
- ③ 若 $g \circ f$ 是双射,则f 是单射且g 是满射.

- $\forall x, x' \in X$, 若f(x) = f(x'), ∵ g 是函数, ∴ g(f(x)) = g(f(x')), 即 $g \circ f(x) = g \circ f(x')$, 又∵ $g \circ f$ 是单射, ∴ x = x', 故 f 是单射;
- ② $\forall z \in Z, :: g \circ f$ 是满射, $:: \exists x \in X$, 使得 $z = g \circ f(x)$, 即 z = g(f(x)), 则存在 $y = f(x) \in Y$, 使得 z = g(y), 故 g 是满射;
- 3 由①。②可直接得出

Theorem

 $沒f: X \rightarrow Y, g: Y \rightarrow Z$

- ② 若 g∘f 是满射,则 g 是满射;
- ③ 若 $g \circ f$ 是双射,则f 是单射且g 是满射.

- $\forall x, x' \in X$, 若f(x) = f(x'), ∵ g 是函数, ∴ g(f(x)) = g(f(x')), 即 $g \circ f(x) = g \circ f(x')$, 又∵ $g \circ f$ 是单射, ∴ x = x', 故 f 是单射;
- ② $\forall z \in Z, : g \circ f$ 是满射, $\therefore \exists x \in X$, 使得 $z = g \circ f(x)$, 即 z = g(f(x)), 则存在 $y = f(x) \in Y$, 使得 z = g(y), 故 g 是满射;
- 3 由①,②可直接得出.

Theorem

沒 $f: X \rightarrow Y$:

- ① f 是单射, iff, $\exists g: Y \to X \land g \circ f = \mathbb{1}_X$, 称 $g \not \to f$ 的左逆函数;
- ② f 是满射, iff, $\exists q: Y \to X \land f \circ q = 1_V$, 称 q 为 f 的右逆函数
- ①的证明.

 - ② ⇒ 构造 $g: Y \to X$: 任取 $x_0 \in X$, 定义 $g(y) = \begin{cases} x & \text{if} \quad y \in f(X) \land f(x) = y \\ \vdots & \text{if} \end{cases}$

f 是单射,若 $y \in f(X)$, $\exists ! x \in X, \ y = f(x), \ \therefore \ g$ 是well-defined

Theorem

 $\mathcal{Z}_{f} : X \to Y :$

- ① f 是单射, iff, $\exists g: Y \to X \land g \circ f = \mathbb{1}_X$, 称 $g \to f$ 的左逆函数;
- ② f 是满射, iff, $\exists g: Y \to X \land f \circ g = \mathbb{1}_Y$, 称 g 为 f 的右逆函数.

①的证明.

- ① \iff 设f(x) = f(x'), 则 g(f(x)) = g(f(x')), \therefore $g \circ f(x) = g \circ f(x')$, 即 $\mathbb{1}_X(x) = \mathbb{1}_X(x')$, x = x', 所以 f 是单射;
- ② ⇒ 构造 $g: Y \to X$: 任取 $x_0 \in X$, 定义 $g(y) = \begin{cases} x & \text{if } y \in f(X) \land f(x) = y; \\ x_0 & \text{if } y \notin f(Y) \end{cases}$

f 是单射,若 $y \in f(X)$, $\exists ! x \in X, y = f(x)$,g 是well-defined

Theorem

沒 $f: X \rightarrow Y$:

- ① f 是单射, iff, $\exists g: Y \to X \land g \circ f = \mathbb{1}_X$, 称 $g \to f$ 的左逆函数;
- ② f 是满射, iff, $\exists g: Y \to X \land f \circ g = \mathbb{1}_Y$, 称 g 为 f 的右逆函数.

①的证明.

- ① \iff 设f(x) = f(x'), 则 g(f(x)) = g(f(x')), \therefore $g \circ f(x) = g \circ f(x')$, 即 $\mathbb{1}_X(x) = \mathbb{1}_X(x')$, x = x', 所以 f 是单射;
- ② \Longrightarrow 构造 $g: Y \to X$: 任取 $x_0 \in X$, 定义

$$g(y) = \begin{cases} x & \text{if } y \in f(X) \land f(x) = y; \\ x_0 & \text{if } y \notin f(X). \end{cases}$$

 \therefore f 是单射,若 $y \in f(X)$,引 $x \in X$,y = f(x), \therefore g 是well-defined

Theorem

 $\mathcal{Z} f: X \to Y:$

- ① f 是单射, iff, $\exists g: Y \to X \land g \circ f = \mathbb{1}_X$, 称 $g \to f$ 的左逆函数;
- ② f 是满射, iff, $\exists g: Y \to X \land f \circ g = \mathbb{1}_Y$, 称 g 为 f 的右逆函数.

①的证明.

- ② \Longrightarrow 构造 $g: Y \to X$: 任取 $x_0 \in X$, 定义

$$g(y) = \begin{cases} x & \text{if } y \in f(X) \land f(x) = y; \\ x_0 & \text{if } y \notin f(X). \end{cases}$$

 \therefore f 是单射, 若 $y \in f(X)$, $\exists ! x \in X, y = f(x), \therefore g$ 是well-defined;

Theorem

 $\mathcal{Z} f: X \to Y:$

- ① f 是单射, iff, $\exists g: Y \to X \land g \circ f = \mathbb{1}_X$, 称 $g \to f$ 的左逆函数;
- ② f 是满射, iff, $\exists g: Y \to X \land f \circ g = \mathbb{1}_Y$, 称 g 为 f 的右逆函数.

①的证明.

- ② \Longrightarrow 构造 $g: Y \to X$: 任取 $x_0 \in X$, 定义

$$g(y) = \begin{cases} x & \text{if } y \in f(X) \land f(x) = y; \\ x_0 & \text{if } y \notin f(X). \end{cases}$$

 \therefore f 是单射, 若 $y \in f(X)$, $\exists ! x \in X, y = f(x), \therefore g$ 是well-defined;

Theorem

沒 $f: X \rightarrow Y$:

- ① f 是单射, iff, $\exists g: Y \to X \land g \circ f = \mathbb{1}_X$, 称 $g \to f$ 的左逆函数;
- ② f 是满射, iff, $\exists g: Y \to X \land f \circ g = \mathbb{1}_Y$, 称 g 为 f 的右逆函数.

①的证明.

- ② \Longrightarrow 构造 $g: Y \to X$: 任取 $x_0 \in X$, 定义

$$g(y) = \begin{cases} x & \text{if } y \in f(X) \land f(x) = y; \\ x_0 & \text{if } y \notin f(X). \end{cases}$$

 \therefore f 是单射, 若 $y \in f(X)$, $\exists ! x \in X$, y = f(x), \therefore g 是well-defined; $\exists ! x \in X$, $g \circ f(x) = g(f(x)) = g(y) = x$, 故 $g \circ f = \mathbb{1}_X$.

Theorem

 $\mathcal{Z}_{f} : X \to Y :$

- ① f 是单射, iff, $\exists g: Y \to X \land g \circ f = \mathbb{1}_X$, 称 $g \to f$ 的左逆函数;
- ② f 是满射, iff, $\exists g: Y \to X \land f \circ g = \mathbb{1}_Y$, 称 g 为 f 的右逆函数.

①的证明.

- 设f(x) = f(x'),则 g(f(x)) = g(f(x')), $g \circ f(x) = g \circ f(x')$,即 $\mathbb{1}_X(x) = \mathbb{1}_X(x')$, x = x',所以 f 是单射;
- ② \Longrightarrow 构造 $g: Y \to X$: 任取 $x_0 \in X$, 定义

$$g(y) = \begin{cases} x & \text{if } y \in f(X) \land f(x) = y; \\ x_0 & \text{if } y \notin f(X). \end{cases}$$

 \therefore f 是单射, $\overline{x}y \in f(X)$, $\exists ! x \in X, y = f(x), \therefore g$ 是well-defined; 且 $\forall x \in X, g \circ f(x) = g(f(x)) = g(y) = x$, 故 $g \circ f = \mathbb{1}_X$.

双射的充要条件

Theorem

设 $f: X \to Y$, $f \in \mathbb{Z}$ 是双射, iff, $\exists ! g: Y \to X \land g \circ f = \mathbb{1}_X \land f \circ g = \mathbb{1}_Y$, 称 $g \not \to f$ 的逆函数(反函数), 记为 $g = f^{-1}$. f 为可逆的.

Proof.

 $\mathbf{0} \Longrightarrow$

$$\therefore$$
 f 是双射,由前述定理, $\exists g, g': Y \to X, g \circ f = \mathbb{1}_X \land f \circ g' = \mathbb{1}_Y$;

$$g = g \circ \mathbb{1}_{Y}$$

$$= g \circ (f \circ g')$$

$$= (g \circ f) \circ g'$$

$$= \mathbb{1}_{X} \circ g'$$

$$= g'$$

∴
$$g = g'$$
, 即 g 存在并且唯一;

由前述定理可知, 「既是单射也是满射, 故「是双射

双射的充要条件

Theorem

函数、复合函数

设 $f: X \to Y$, $f \in \mathbb{Z}$ 果朝, iff, $\exists ! g: Y \to X \land g \circ f = \mathbb{1}_X \land f \circ g = \mathbb{1}_Y$, 称 $g \to f$ 的逆函数(反函数), 记为 $g = f^{-1}$. $f \to g \to g$

Proof.

 $\mathbf{0} \Longrightarrow$

$$\therefore f$$
 是双射,由前述定理, $\exists g, g': Y \to X, g \circ f = \mathbb{1}_X \land f \circ g' = \mathbb{1}_Y;$

$$g = g \circ \mathbb{1}_{Y}$$

$$= g \circ (f \circ g')$$

$$= (g \circ f) \circ g'$$

$$= \mathbb{1}_{X} \circ g'$$

$$= g'$$

$$\therefore q = q'$$
, pq 存在并且唯一;

 $2 \leftarrow$ 由前述定理可知, f 既是单射也是满射, 故 f 是双射.

Theorem

设 $f: X \to Y, g: Y \to Z, f, g$ 是双射,则

- $(f^{-1})^{-1} = f;$
- **2** $(g \circ f)^{-1} = f^{-1} \circ g^{-1}$.

- ① 由逆函数和合成定义, $f^{-1} \circ g^{-1}: Z \to X$;
- ② 由合成的结合律,

$$(f^{-1} \circ g^{-1}) \circ (g \circ f) = f^{-1} \circ (g^{-1} \circ g) \circ f = \mathbb{1}_X,$$

$$(g \circ f) \circ (f^{-1} \circ g^{-1}) = g \circ (f \circ f^{-1}) \circ g^{-1} = \mathbb{1}_Y,$$

$$\therefore (g \circ f)^{-1} = f^{-1} \circ g^{-1}.$$

Theorem

设 $f: X \rightarrow Y, g: Y \rightarrow Z, f, g$ 是双射,则

- $(f^{-1})^{-1} = f;$
- $(g \circ f)^{-1} = f^{-1} \circ g^{-1}.$

- ① 由逆函数和合成定义, $f^{-1} \circ g^{-1}: Z \to X$;
- ② 由合成的结合律,

$$(f^{-1} \circ g^{-1}) \circ (g \circ f) = f^{-1} \circ (g^{-1} \circ g) \circ f = \mathbb{1}_X,$$

$$(g \circ f) \circ (f^{-1} \circ g^{-1}) = g \circ (f \circ f^{-1}) \circ g^{-1} = \mathbb{1}_Y,$$

$$\therefore (g \circ f)^{-1} = f^{-1} \circ g^{-1}.$$

Theorem

设 $f: X \rightarrow Y, g: Y \rightarrow Z, f, g$ 是双射,则

- $(f^{-1})^{-1} = f;$
- **2** $(g \circ f)^{-1} = f^{-1} \circ g^{-1}$.

- ① 由逆函数和合成定义, $f^{-1} \circ g^{-1}: Z \to X$;
- ② 由合成的结合律,

$$(f^{-1} \circ g^{-1}) \circ (g \circ f) = f^{-1} \circ (g^{-1} \circ g) \circ f = \mathbb{1}_X,$$

$$(g \circ f) \circ (f^{-1} \circ g^{-1}) = g \circ (f \circ f^{-1}) \circ g^{-1} = \mathbb{1}_Y,$$

$$\therefore (g \circ f)^{-1} = f^{-1} \circ g^{-1}.$$

Theorem

设 $f: X \to Y, g: Y \to Z, f, g$ 是双射,则

- $(f^{-1})^{-1} = f;$
- **2** $(g \circ f)^{-1} = f^{-1} \circ g^{-1}$.

- ① 由逆函数和合成定义, $f^{-1} \circ g^{-1} : Z \to X$;
- ② 由合成的结合律,

$$\begin{split} (f^{-1} \circ g^{-1}) \circ (g \circ f) &= f^{-1} \circ (g^{-1} \circ g) \circ f = \mathbb{1}_X, \\ (g \circ f) \circ (f^{-1} \circ g^{-1}) &= g \circ (f \circ f^{-1}) \circ g^{-1} = \mathbb{1}_Y, \\ & \therefore \ (g \circ f)^{-1} = f^{-1} \circ g^{-1}. \end{split}$$

Example

设 $f: \mathbb{R} \to \mathbb{R}^+ \cup \{0\}, \ x \mapsto x^2; \ g: \mathbb{R}^+ \cup \{0\} \to \mathbb{R}, x \mapsto \sqrt{x} \left(\sqrt{x} \not\in x \text{ 的非负平方根}\right), \ x f \circ g \Rightarrow g \circ f;$

Example

设 $f: \mathbb{R}^+ \to \mathbb{R}, \ f(x) = \ln(x), \ \text{则} \ f^{-1}: \mathbb{R} \to \mathbb{R}^+, \ f^{-1}(x) = e^x, \ \text{则}:$

Example

设 $f: \mathbb{R} \to \mathbb{R}^+ \cup \{0\}, \ x \mapsto x^2; \ g: \mathbb{R}^+ \cup \{0\} \to \mathbb{R}, x \mapsto \sqrt{x} \left(\sqrt{x} \not\in x \text{ 的非负平方根}\right), \ \text{求 } f \circ g \text{ 和 } g \circ f;$

- 函数 g 的值域和 f 的定义域为相同集合,根据合成定义, $\forall x \in \mathbb{R}^+ \cup \{0\}, (f \circ g)(x) = f(g(x)) = f(\sqrt{x}) = (\sqrt{x})^2 = x;$ ∴ $f \circ g : \mathbb{R}^+ \cup \{0\} \to \mathbb{R}^+ \cup \{0\}, x \mapsto x.$
- ② 函数 f 的值域和 g 的定义域为相同集合,根据合成定义, $\forall x \in \mathbb{R}, (g \circ f)(x) = g(f(x)) = g(x^2) = (\sqrt{x^2});$ $\therefore g \circ f \colon \mathbb{R} \to \mathbb{R}, (g \circ f)(x) = \begin{cases} x & \text{if } x \geq 0 \\ -x & \text{if } x < 0 \end{cases}$

Example

设 $f: \mathbb{R}^+ \to \mathbb{R}, \ f(x) = \ln(x), \ \text{则} \ f^{-1}: \mathbb{R} \to \mathbb{R}^+, \ f^{-1}(x) = e^x, \ \text{则}:$

 $\bullet \ (c^{\ln x})' = x' \Longrightarrow c^{\ln x} \cdot (\ln x)' = 1 \Longrightarrow x \cdot (\ln x)' = 1 \Longrightarrow (1 - x)$

Example

设 $f: \mathbb{R} \to \mathbb{R}^+ \cup \{0\}, \ x \mapsto x^2; \ g: \mathbb{R}^+ \cup \{0\} \to \mathbb{R}, x \mapsto \sqrt{x} \left(\sqrt{x} \not\in x \text{ 的非负平方根}\right), \ x f \circ g \ \pi \ g \circ f;$

- 函数 g 的值域和 f 的定义域为相同集合,根据合成定义, $\forall x \in \mathbb{R}^+ \cup \{0\}$, $(f \circ g)(x) = f(g(x)) = f(\sqrt{x}) = (\sqrt{x})^2 = x$; $\therefore f \circ g : \mathbb{R}^+ \cup \{0\} \to \mathbb{R}^+ \cup \{0\}$, $x \mapsto x$.
- ② 函数 f 的值域和 g 的定义域为相同集合,根据合成定义, $\forall x \in \mathbb{R}, \ (g \circ f)(x) = g(f(x)) = g(x^2) = (\sqrt{x^2});$ $\therefore g \circ f \colon \mathbb{R} \to \mathbb{R}, \ (g \circ f)(x) = \begin{cases} x & \text{if } x \geq 0 \\ -x & \text{if } x < 0 \end{cases}$

Example

设 $f: \mathbb{R}^+ \to \mathbb{R}, \ f(x) = \ln(x), \ M \ f^{-1}: \mathbb{R} \to \mathbb{R}^+, \ f^{-1}(x) = e^x, \ M:$

 $\bullet \ e^{\ln x} = x \wedge \ln(e^x) = x;$

• $(e^{\ln x})' = x' \Longrightarrow e^{\ln x} \cdot (\ln x)' = 1 \Longrightarrow x \cdot (1$

Example

设 $f: \mathbb{R} \to \mathbb{R}^+ \cup \{0\}, \ x \mapsto x^2; \ g: \mathbb{R}^+ \cup \{0\} \to \mathbb{R}, x \mapsto \sqrt{x} \left(\sqrt{x} \not\in x \text{ 的非负平方根}\right), \ x f \circ g \ \pi \ g \circ f;$

- 函数 g 的值域和 f 的定义域为相同集合,根据合成定义, $\forall x \in \mathbb{R}^+ \cup \{0\}$, $(f \circ g)(x) = f(g(x)) = f(\sqrt{x}) = (\sqrt{x})^2 = x$; $\therefore f \circ g : \mathbb{R}^+ \cup \{0\} \to \mathbb{R}^+ \cup \{0\}$, $x \mapsto x$.
- ② 函数 f 的值域和 g 的定义域为相同集合,根据合成定义, $\forall x \in \mathbb{R}, \ (g \circ f)(x) = g(f(x)) = g(x^2) = (\sqrt{x^2});$ $\therefore g \circ f \colon \mathbb{R} \to \mathbb{R}, \ (g \circ f)(x) = \begin{cases} x & \text{if } x \geq 0 \\ -x & \text{if } x < 0 \end{cases}$

Example

设 $f: \mathbb{R}^+ \to \mathbb{R}, \ f(x) = \ln(x), \ M \ f^{-1}: \mathbb{R} \to \mathbb{R}^+, \ f^{-1}(x) = e^x, \ M:$

 $\bullet \ e^{\ln x} = x \wedge \ln(e^x) = x;$

• $(e^{\ln x})' = x' \Longrightarrow e^{\ln x} \cdot (\ln x)' = 1 \Longrightarrow x \cdot (1$

Example

设 $f: \mathbb{R} \to \mathbb{R}^+ \cup \{0\}, \ x \mapsto x^2; \ g: \mathbb{R}^+ \cup \{0\} \to \mathbb{R}, x \mapsto \sqrt{x} \left(\sqrt{x} \not\in x \text{ 的非负平方根}\right), \ x f \circ g \ \pi \ g \circ f;$

- **①** 函数 g 的值域和 f 的定义域为相同集合,根据合成定义, $\forall x \in \mathbb{R}^+ \cup \{0\}$, $(f \circ g)(x) = f(g(x)) = f(\sqrt{x}) = (\sqrt{x})^2 = x$, ∴ $f \circ g : \mathbb{R}^+ \cup \{0\} \to \mathbb{R}^+ \cup \{0\}$, $x \mapsto x$.
- ② 函数 f 的值域和 g 的定义域为相同集合,根据合成定义, $\forall x \in \mathbb{R}, \ (g \circ f)(x) = g(f(x)) = g(x^2) = (\sqrt{x^2});$ $\therefore g \circ f \colon \mathbb{R} \to \mathbb{R}, \ (g \circ f)(x) = \left\{ \begin{array}{ll} x & \text{if} \quad x \geq 0 \\ -x & \text{if} \quad x < 0 \end{array} \right.$

Example

设 $f: \mathbb{R}^+ \to \mathbb{R}$, $f(x) = \ln(x)$, 则 $f^{-1}: \mathbb{R} \to \mathbb{R}^+$, $f^{-1}(x) = e^x$, 则:

- $e^{\ln x} = x \wedge \ln(e^x) = x$
- $e^{-(e^{\ln x})'} = x' \Longrightarrow e^{\ln x} \cdot (\ln x)' = 1 \Longrightarrow x \cdot (\ln x)' = 1 \Longrightarrow (\ln x)' = 1/x$

Example

设 $f: \mathbb{R} \to \mathbb{R}^+ \cup \{0\}, \ x \mapsto x^2; \ g: \mathbb{R}^+ \cup \{0\} \to \mathbb{R}, x \mapsto \sqrt{x} \left(\sqrt{x} \not\in x \text{ 的非负平方根}\right), \ \text{求 } f \circ g \text{ 和 } g \circ f;$

- 函数 g 的值域和 f 的定义域为相同集合,根据合成定义, $\forall x \in \mathbb{R}^+ \cup \{0\}, (f \circ g)(x) = f(g(x)) = f(\sqrt{x}) = (\sqrt{x})^2 = x$; $\therefore f \circ g : \mathbb{R}^+ \cup \{0\} \to \mathbb{R}^+ \cup \{0\}, x \mapsto x$.
- ② 函数 f 的值域和 g 的定义域为相同集合,根据合成定义, $\forall x \in \mathbb{R}, \ (g \circ f)(x) = g(f(x)) = g(x^2) = (\sqrt{x^2});$ $\therefore \ g \circ f \colon \mathbb{R} \to \mathbb{R}, \ (g \circ f)(x) = \left\{ \begin{array}{ll} x & \text{if} \quad x \geq 0 \\ -x & \text{if} \quad x < 0 \end{array} \right.$

Example

谈 $f: \mathbb{R}^+ \to \mathbb{R}, \ f(x) = \ln(x), \ M \ f^{-1}: \mathbb{R} \to \mathbb{R}^+, \ f^{-1}(x) = e^x, \ M:$

- $e^{\ln x} = x \wedge \ln(e^x) = x$;
- $\bullet (e^{\ln x})' = x' \Longrightarrow e^{\ln x} \cdot (\ln x)' = 1 \Longrightarrow x \cdot (\ln x)' = 1 \Longrightarrow (\ln x)' = 1/x.$

Theorem

设 $f: X \to Y$. f 是单射, iff, $\forall A \subseteq X$, $f^{-1}(f(A)) = A$.

- $\bullet \Longrightarrow$
 - $\bullet \quad A \subseteq f^{-1}(f(A)) \checkmark \quad \text{set } f^{-1}(f(A)) \subseteq A ?$

 - ③ 而 f 是单射, ∴ $x = x' \in A$, ∴ $f^{-1}(f(A)) \subseteq A$.
- <==
 - ① $\mathcal{G} f(x) = f(x')$, 需证 x = x';
 - ② $\Leftrightarrow A = \{x\}, \ M \ f^{-1}(f(A)) = f^{-1}(\underline{f(\{x\})}) = f^{-1}(\underline{\{f(x)\}}) = A = \{x\};$
 - **3** $f(x') = f(x) \in \{f(x)\}, \text{ M} x' \in f^{-1}(\{f(x)\}) = \{x\}\}$
 - ① $\therefore x = x'$, 故 f 是单射.

Theorem

设 $f: X \to Y$. f 是单射, iff, $\forall A \subseteq X$, $f^{-1}(f(A)) = A$.

Proof.

- $\bullet \Longrightarrow$
 - **1** $A \subseteq f^{-1}(f(A))$ ✓ 需证 $f^{-1}(f(A)) \subseteq A$?
 - $\forall x \in f^{-1}(f(A)), \ f(x) \in f(A), \ \therefore \ \exists x' \in A \land f(x) = f(x');$
 - **③** 而 f 是单射, ∴ $x = x' \in A$, ∴ $f^{-1}(f(A)) \subseteq A$.
- 💳

 - ② $\Leftrightarrow A = \{x\}, \ M \ f^{-1}(f(A)) = f^{-1}(\underline{f(\{x\})}) = f^{-1}(\underline{\{f(x)\}}) = A = \{x\};$
 - **3** $f(x') = f(x) \in \{ f(x) \}, \ \mathbb{N} x' \in f^{-1}(\{ f(x) \}) = \{ x \};$
 - ① $\therefore x = x'$, 故 f 是单射.

ト・ロト・ミト・ミ からぐ

Theorem

设 $f: X \to Y$. f 是单射, iff, $\forall A \subseteq X$, $f^{-1}(f(A)) = A$.

Proof.

- $\bullet \Longrightarrow$
 - **1** $A \subseteq f^{-1}(f(A))$ ✓ 需证 $f^{-1}(f(A)) \subseteq A$?

 - ③ 而 f 是单射,∴ $x = x' \in A$,∴ $f^{-1}(f(A)) \subseteq A$.
- <==

 - ② $\Leftrightarrow A = \{x\}, \text{ } \text{ } \text{ } \text{ } \text{ } f^{-1}(f(A)) = f^{-1}(\underline{f(\{x\})}) = f^{-1}(\underline{\{f(x)\}}) = A = \{x\};$
 - **3** $f(x') = f(x) \in \{f(x)\}, \ \mathbb{M}x' \in f^{-1}(\{f(x)\}) = \{x\};$
 - \bullet : x = x', total f defined total f and total f defined total f defined

> 4₫> 4 ≣ > 4 ≣ > 9 Q (~

Theorem

设 $f: X \to Y$. f 是单射, iff, $\forall A \subseteq X$, $f^{-1}(f(A)) = A$.

Proof.

- $\bullet \Longrightarrow$
 - $A \subseteq f^{-1}(f(A))$ \checkmark 需证 $f^{-1}(f(A)) \subseteq A$?
 - $\forall x \in f^{-1}(f(A)), \ f(x) \in f(A), \ \therefore \ \exists x' \in A \land f(x) = f(x');$
 - **③** 而 f 是单射,∴ $x = x' \in A$,∴ $f^{-1}(f(A)) \subseteq A$.
- ⇐

 - **3** $f(x') = f(x) \in \{f(x)\}, \text{ M} x' \in f^{-1}(\{f(x)\}) = \{x\};$
 - \bullet : x = x', total f and total f and

ト・ロト・ミト・ミ からぐ

Theorem

设 $f: X \to Y$. f 是单射, iff, $\forall A \subseteq X$, $f^{-1}(f(A)) = A$.

Proof.

- $\bullet \Longrightarrow$
 - **①** $A \subseteq f^{-1}(f(A))$ ✓ 需证 $f^{-1}(f(A)) \subseteq A$?
 - ② $\forall x \in f^{-1}(f(A)), f(x) \in f(A), ∴ \exists x' \in A \land f(x) = f(x');$
 - **③** 而 f 是单射,∴ $x = x' \in A$,∴ $f^{-1}(f(A)) \subseteq A$.
- ⇐

 - ② $\Rightarrow A = \{x\}, \text{ } \text{! } M \text{ } f^{-1}(f(A)) = f^{-1}(\underline{f(\{x\})}) = f^{-1}(\underline{\{f(x)\}}) = A = \{x\};$
 - **3** $f(x') = f(x) \in \{f(x)\}, \ \mathbb{M} x' \in f^{-1}(\{f(x)\}) = \{x\};$
 - \bullet : x = x', total f and total f and

→ 4回 → 4 章 → 4 章 → 9 へ (~)

Theorem

设 $f: X \to Y$. f 是单射, iff, $\forall A \subseteq X$, $f^{-1}(f(A)) = A$.

- $\bullet \Longrightarrow$
 - **1** $A \subseteq f^{-1}(f(A))$ ✓ 需证 $f^{-1}(f(A)) \subseteq A$?
 - $\forall x \in f^{-1}(f(A)), \ f(x) \in f(A), \ \therefore \ \exists x' \in A \land f(x) = f(x');$
 - **③** 而 f 是单射,∴ $x = x' \in A$,∴ $f^{-1}(f(A)) \subseteq A$.
- =

 - ② $\Leftrightarrow A = \{x\}, \text{ M} f^{-1}(f(A)) = f^{-1}(\underline{f(\{x\})}) = f^{-1}(\underline{\{f(x)\}}) = A = \{x\};$
 - **3** $f(x') = f(x) \in \{ f(x) \}, \ \mathbb{N} | x' \in f^{-1}(\{ f(x) \}) = \{ x \};$
 - ① : x = x', 故 f 是单射

Theorem

设 $f: X \to Y$. f 是单射, iff, $\forall A \subseteq X$, $f^{-1}(f(A)) = A$.

- $\bullet \Longrightarrow$
 - **①** $A \subseteq f^{-1}(f(A))$ ✓ 需证 $f^{-1}(f(A)) \subseteq A$?
 - $\forall x \in f^{-1}(f(A)), \ f(x) \in f(A), \ \therefore \ \exists x' \in A \land f(x) = f(x');$
 - **③** 而 f 是单射, ∴ $x = x' \in A$, ∴ $f^{-1}(f(A)) \subseteq A$.
- ⇐

 - ② $\Leftrightarrow A = \{x\}, \text{ M} f^{-1}(f(A)) = f^{-1}(\underline{f(\{x\})}) = f^{-1}(\underline{\{f(x)\}}) = A = \{x\};$
 - **3** $f(x') = f(x) \in \{ f(x) \}, \ \mathbb{M} x' \in f^{-1}(\{ f(x) \}) = \{ x \};$
 - ④ ∴ x = x', 故 f 是单射.

Theorem

设 $f: X \to Y$. f 是满射, iff, $\forall B \subseteq Y$, $f(f^{-1}(B)) = B$.

- $\bullet \Longrightarrow$
 - ① $f(f^{-1}(B)) \subseteq B \checkmark$ 需证 $B \subseteq f(f^{-1}(B))$?
 - ② $\forall y \in B$, ∴ $f \not\in A$, $f(x) = y \in B$;
 - **3** $\therefore x \in f^{-1}(B), \text{ pr } f(x) \in f(f^{-1}(B));$
 - $p y \in f(f^{-1}(B)), \therefore B \subseteq f(f^{-1}(B)).$
- $\bullet \iff f(X) = Y?$
 - **①** $\Leftrightarrow B = Y, \text{ } \text{ } M \text{ } Y = f(f^{-1}(Y))$
 - **2** X $f^{-1}(Y) \subseteq X$, $f(f^{-1}(Y)) \subseteq f(X)$;

 - \bullet : Y = f(X), 故 f 是满射.

Theorem

设 $f: X \to Y$. f 是满射, iff, $\forall B \subseteq Y$, $f(f^{-1}(B)) = B$.

- $\bullet \Longrightarrow$
 - **①** $f(f^{-1}(B)) \subseteq B$ ✓ 需证 $B \subseteq f(f^{-1}(B))$?
 - ② $\forall y \in B$, $\therefore f$ 是满射, $\therefore x \in X$, $f(x) = y \in B$;
 - **3** $\therefore x \in f^{-1}(B), \text{ pr } f(x) \in f(f^{-1}(B));$
 - $p \in f(f^{-1}(B)), : B \subseteq f(f^{-1}(B)).$
- $\bullet \Leftarrow f(X) = Y$?
 - ① $\diamondsuit B = Y$, $M Y = f(f^{-1}(Y))$
 - **2** X $f^{-1}(Y) \subseteq X$, $f(f^{-1}(Y)) \subseteq f(X)$;

 - \bullet : Y = f(X), 故 f 是满射.

Theorem

设 $f: X \to Y$. f 是满射, iff, $\forall B \subseteq Y$, $f(f^{-1}(B)) = B$.

- $\bullet \Longrightarrow$
 - **①** $f(f^{-1}(B)) \subseteq B$ ✓ 需证 $B \subseteq f(f^{-1}(B))$?
 - ② $\forall y \in B$, ∴ $f \neq A$, ∴ $x \in X$, $f(x) = y \in B$;
 - **3** $\therefore x \in f^{-1}(B), \text{ pr } f(x) \in f(f^{-1}(B));$
 - **4** $p \in f(f^{-1}(B)), \therefore B \subseteq f(f^{-1}(B)).$
- $\bullet \longleftarrow f(X) = Y?$

 - **2** X $f^{-1}(Y) \subseteq X$, $f(f^{-1}(Y)) \subseteq f(X)$;

 - ① :. Y = f(X), 故 f 是满射.

Theorem

设 $f: X \to Y$. f 是满射, iff, $\forall B \subseteq Y$, $f(f^{-1}(B)) = B$.

- ====
 - **①** $f(f^{-1}(B)) \subseteq B$ ✓ 需证 $B \subseteq f(f^{-1}(B))$?
 - ② $\forall y \in B$, ∴ $f \in A$, $f(x) = y \in B$;
 - **3** $\therefore x \in f^{-1}(B), \text{ pr } f(x) \in f(f^{-1}(B));$
 - **4** Pr $y \in f(f^{-1}(B)), \therefore B \subseteq f(f^{-1}(B)).$
- $\bullet \longleftarrow f(X) = Y?$
 - **1** $\Rightarrow B = Y, \text{ } y = f(f^{-1}(Y))$
 - **2** $\chi f^{-1}(Y) \subseteq X$, : $f(f^{-1}(Y)) \subseteq f(X)$;

 - ① $\therefore Y = f(X)$, 故 f 是满射.

Theorem

设 $f: X \to Y$. f 是满射, iff, $\forall B \subseteq Y$, $f(f^{-1}(B)) = B$.

- ====
 - $f(f^{-1}(B)) \subseteq B \checkmark$ 需证 $B \subseteq f(f^{-1}(B))$?
 - ② $\forall y \in B$, ∴ $f \in A$, $f(x) = y \in B$;
 - **3** $\therefore x \in f^{-1}(B), \text{ pr } f(x) \in f(f^{-1}(B));$
 - $p \in f(f^{-1}(B)), \therefore B \subseteq f(f^{-1}(B)).$
- $\bullet \Leftarrow f(X) = Y$?
 - **1** $\Leftrightarrow B = Y, \text{ M} \ Y = f(f^{-1}(Y));$
 - **2** $\chi f^{-1}(Y) \subseteq X$, : $f(f^{-1}(Y)) \subseteq f(X)$;

 - ① : Y = f(X), 故 f 是满射.

Theorem

设 $f: X \to Y$. f 是满射, iff, $\forall B \subseteq Y$, $f(f^{-1}(B)) = B$.

- $\bullet \Longrightarrow$
 - **①** $f(f^{-1}(B)) \subseteq B$ ✓ 需证 $B \subseteq f(f^{-1}(B))$?
 - ② $\forall y \in B$, ∴ $f \in A$, $f(x) = y \in B$;
 - $x \in f^{-1}(B), \text{ pr } f(x) \in f(f^{-1}(B));$
 - $p \in f(f^{-1}(B)), \therefore B \subseteq f(f^{-1}(B)).$
- $\bullet \iff f(X) = Y?$
 - **1** \Rightarrow B = Y, \emptyset $Y = f(f^{-1}(Y))$;
 - **2** X $f^{-1}(Y) \subseteq X$, $f(f^{-1}(Y)) \subseteq f(X)$;

 - ① : Y = f(X), 故 f 是满射.

Theorem

设 $f: X \to Y$. f 是满射, iff, $\forall B \subseteq Y$, $f(f^{-1}(B)) = B$.

- $\bullet \Longrightarrow$
 - **①** $f(f^{-1}(B)) \subseteq B$ ✓ 需证 $B \subseteq f(f^{-1}(B))$?
 - ② $\forall y \in B$, ∴ $f \in A$, $f(x) = y \in B$;
 - $x \in f^{-1}(B), \text{ pr } f(x) \in f(f^{-1}(B));$
 - $p \in f(f^{-1}(B)), : B \subseteq f(f^{-1}(B)).$
- $\bullet \Leftarrow f(X) = Y$?
 - **1** \Rightarrow B = Y, \emptyset $Y = f(f^{-1}(Y))$;

 - \bullet : Y = f(X), 故 f 是满射.

相关性质(2/2)

Theorem

设 $f: X \to Y$. f 是满射, iff, $\forall B \subseteq Y$, $f(f^{-1}(B)) = B$.

- ==>
 - **①** $f(f^{-1}(B)) \subseteq B$ ✓ 需证 $B \subseteq f(f^{-1}(B))$?
 - ② $\forall y \in B$, ∴ $f \in A$, $f(x) = y \in B$;
 - $x \in f^{-1}(B), \text{ pr } f(x) \in f(f^{-1}(B));$
 - **4** Pr $y \in f(f^{-1}(B)), : B \subseteq f(f^{-1}(B)).$
- $\bullet \Leftarrow f(X) = Y?$
 - **1** $\Leftrightarrow B = Y, \ M \ Y = f(f^{-1}(Y));$

 - Y = f(X), 故 f 是满射.

Outline

- 1 函数、复合函数
- 2 函数的递归定义
 - 自然数集合上的递归函数
 - Euclid算法和尾递归
 - List集合上的递归函数
 - Ackermann函数
 - 高阶函数

Example

 $f: \mathbb{N} \to \mathbb{N}$ 递归定义如下, 求 f 的解析式,

- **1** f(0) = 3;
- 2 f(n+1) = 2f(n) + 3.

$$f(n) = 2 * f(n-1) + 3$$

$$= 2 * (2 * f(n-2) + 3) + 3$$

$$= 2 * (2 * (2 * f(n-3) + 3) + 3) + 3$$

$$= 2^{3} * f(n-3) + 2^{2} * 3 + 2 * 3 + 3$$

$$\dots$$

$$= 2^{n} * f(0) + 2^{n-1} * 3 + \dots + 2^{2} * 3 + 2 * 3 + 3$$

$$= 3 * (2^{n} + 2^{n-1} + \dots + 2^{2} + 2 + 1)$$

$$= 3 * (2^{n+1} - 1)$$

Example

 $f: \mathbb{N} \to \mathbb{N}$ 递归定义如下,求 f 的解析式,

- **1** f(0) = 3;
- f(n+1) = 2f(n) + 3.

$$f(n) = 2 * f(n-1) + 3$$

$$= 2 * (2 * f(n-2) + 3) + 3$$

$$= 2 * (2 * (2 * f(n-3) + 3) + 3) + 3$$

$$= 2^{3} * f(n-3) + 2^{2} * 3 + 2 * 3 + 3$$

$$\dots$$

$$= 2^{n} * f(0) + 2^{n-1} * 3 + \dots + 2^{2} * 3 + 2 * 3 + 3$$

$$= 3 * (2^{n} + 2^{n-1} + \dots + 2^{2} + 2 + 1)$$

$$= 3 * (2^{n+1} - 1)$$

Example

 $f: \mathbb{N} \to \mathbb{N}$ 递归定义如下,求 f 的解析式,

- **1** f(0) = 3;
- f(n+1) = 2f(n) + 3.

$$f(n) = 2 * f(n-1) + 3$$

$$= 2 * (2 * f(n-2) + 3) + 3$$

$$= 2 * (2 * (2 * f(n-3) + 3) + 3) + 3$$

$$= 2^{3} * f(n-3) + 2^{2} * 3 + 2 * 3 + 3$$

$$\dots$$

$$= 2^{n} * f(0) + 2^{n-1} * 3 + \dots + 2^{2} * 3 + 2 * 3 + 3$$

$$= 3 * (2^{n} + 2^{n-1} + \dots + 2^{2} + 2 + 1)$$

$$= 3 * (2^{n+1} - 1)$$

Example

 $f: \mathbb{N} \to \mathbb{N}$ 递归定义如下,求 f 的解析式,

- **1** f(0) = 3;
- f(n+1) = 2f(n) + 3.

$$f(n) = 2 * f(n-1) + 3$$

$$= 2 * (2 * f(n-2) + 3) + 3$$

$$= 2 * (2 * (2 * f(n-3) + 3) + 3) + 3$$

$$= 2^{3} * f(n-3) + 2^{2} * 3 + 2 * 3 + 3$$

$$\dots$$

$$= 2^{n} * f(0) + 2^{n-1} * 3 + \dots + 2^{2} * 3 + 2 * 3 + 3$$

$$= 3 * (2^{n} + 2^{n-1} + \dots + 2^{2} + 2 + 1)$$

$$= 3 * (2^{n+1} - 1)$$

Example

 $f: \mathbb{N} \to \mathbb{N}$ 递归定义如下,求 f 的解析式,

- **1** f(0) = 3;
- f(n+1) = 2f(n) + 3.

$$f(n) = 2 * f(n-1) + 3$$

$$= 2 * (2 * f(n-2) + 3) + 3$$

$$= 2 * (2 * (2 * f(n-3) + 3) + 3) + 3) + 3$$

$$= 2^{3} * f(n-3) + 2^{2} * 3 + 2 * 3 + 3$$

$$\dots$$

$$= 2^{n} * f(0) + 2^{n-1} * 3 + \dots + 2^{2} * 3 + 2 * 3 + 3$$

$$= 3 * (2^{n} + 2^{n-1} + \dots + 2^{2} + 2 + 1)$$

$$= 3 * (2^{n+1} - 1)$$

Example

 $f: \mathbb{N} \to \mathbb{N}$ 递归定义如下,求 f 的解析式,

- f(n+1) = 2f(n) + 3.

$$f(n) = 2 * f(n-1) + 3$$

$$= 2 * (2 * f(n-2) + 3) + 3$$

$$= 2 * (2 * (2 * f(n-3) + 3) + 3) + 3$$

$$= 2^{3} * f(n-3) + 2^{2} * 3 + 2 * 3 + 3$$

$$\dots$$

$$= 2^{n} * f(0) + 2^{n-1} * 3 + \dots + 2^{2} * 3 + 2 * 3 + 3$$

$$= 3 * (2^{n} + 2^{n-1} + \dots + 2^{2} + 2 + 1)$$

$$= 3 * (2^{n+1} - 1)$$

Example

 $f: \mathbb{N} \to \mathbb{N}$ 递归定义如下, 求 f 的解析式,

- **1** f(0) = 3;
- f(n+1) = 2f(n) + 3.

$$f(n) = 2 * f(n-1) + 3$$

$$= 2 * (2 * f(n-2) + 3) + 3$$

$$= 2 * (2 * (2 * f(n-3) + 3) + 3) + 3$$

$$= 2^{3} * f(n-3) + 2^{2} * 3 + 2 * 3 + 3$$

$$\dots$$

$$= 2^{n} * f(0) + 2^{n-1} * 3 + \dots + 2^{2} * 3 + 2 * 3 + 3$$

$$= 3 * (2^{n} + 2^{n-1} + \dots + 2^{2} + 2 + 1)$$

$$= 3 * (2^{n+1} - 1)$$

Example

 $f: \mathbb{N} \to \mathbb{N}$ 递归定义如下,求 f 的解析式,

- **1** f(0) = 3;
- f(n+1) = 2f(n) + 3.

$$f(n) = 2 * f(n-1) + 3$$

$$= 2 * (2 * f(n-2) + 3) + 3$$

$$= 2 * (2 * f(n-3) + 3) + 3) + 3$$

$$= 2^{3} * f(n-3) + 2^{2} * 3 + 2 * 3 + 3$$

$$\dots$$

$$= 2^{n} * f(0) + 2^{n-1} * 3 + \dots + 2^{2} * 3 + 2 * 3 + 3$$

$$= 3 * (2^{n} + 2^{n-1} + \dots + 2^{2} + 2 + 1)$$

$$= 3 * (2^{n+1} - 1)$$

Example

 $f: \mathbb{N} \to \mathbb{N}$ 递归定义如下, 求 f 的解析式,

- **1** f(0) = 3;
- f(n+1) = 2f(n) + 3.

$$f(n) = 2 * f(n-1) + 3$$

$$= 2 * (2 * f(n-2) + 3) + 3$$

$$= 2 * (2 * (2 * f(n-3) + 3) + 3) + 3$$

$$= 2^{3} * f(n-3) + 2^{2} * 3 + 2 * 3 + 3$$

$$\dots$$

$$= 2^{n} * f(0) + 2^{n-1} * 3 + \dots + 2^{2} * 3 + 2 * 3 + 3$$

$$= 3 * (2^{n} + 2^{n-1} + \dots + 2^{2} + 2 + 1)$$

$$= 3 * (2^{n+1} - 1)$$

Example

 $f: \mathbb{N} \to \mathbb{N}$ 递归定义如下,求 f 的解析式,

- **1** f(0) = 3;
- f(n+1) = 2f(n) + 3.

$$f(n) = 2 * f(n-1) + 3$$

$$= 2 * (2 * f(n-2) + 3) + 3$$

$$= 2 * (2 * (2 * f(n-3) + 3) + 3) + 3$$

$$= 2^{3} * f(n-3) + 2^{2} * 3 + 2 * 3 + 3$$

$$\dots$$

$$= 2^{n} * f(0) + 2^{n-1} * 3 + \dots + 2^{2} * 3 + 2 * 3 + 3$$

$$= 3 * (2^{n} + 2^{n-1} + \dots + 2^{2} + 2 + 1)$$

$$= 3 * (2^{n+1} - 1)$$

Example

 $f: \mathbb{N} \to \mathbb{N}$ 递归定义如下,求 f 的解析式,

- **1** f(0) = 3;
- **2**f(n+1) = 2f(n) + 3.

$$f(n) = 2 * f(n-1) + 3$$

$$= 2 * (2 * f(n-2) + 3) + 3$$

$$= 2 * (2 * (2 * f(n-3) + 3) + 3) + 3$$

$$= 2^{3} * f(n-3) + 2^{2} * 3 + 2 * 3 + 3$$

$$\dots$$

$$= 2^{n} * f(0) + 2^{n-1} * 3 + \dots + 2^{2} * 3 + 2 * 3 + 3$$

$$= 3 * (2^{n} + 2^{n-1} + \dots + 2^{2} + 2 + 1)$$

$$= 3 * (2^{n+1} - 1)$$

对应的程序

```
Recursion
int f(int n)
{
   if (n < 0) error();
   if (n == 0) return 3;
   return 2 * f(n-1) + 3;
}</pre>
```

```
For-loops
int f(int n)
{
   int result = 3, i;
   if (n < 0) error();
   for (i = 1; i <= n; i++)
     result = 2 * result + 3;
   return result;
}</pre>
```

Example

Fibonacci序列递归定义如下,求其解析式:

- **1** $f(0) = 0, f_1 = 1;$
- $f_n = f_{n-1} + f_{n-2}.$

- ① 求特征方程 $r^2 r 1 = 0$ 的根 r_1, r_2 ;
- ② 序列的通项 $f_n = \alpha_1 r_1^n + \alpha_2 r_2^n$;
- ③ 根据初始条件①求出待定系数 α₁ 和 α₂;
- $\therefore f_n = \frac{1}{\sqrt{5}} \left(\frac{1+\sqrt{5}}{2} \right)^n \frac{1}{\sqrt{5}} \left(\frac{1-\sqrt{5}}{2} \right)^n$

Example

Fibonacci序列递归定义如下,求其解析式:

- **1** $f(0) = 0, f_1 = 1;$
- $f_n = f_{n-1} + f_{n-2}.$

- ① 求特征方程 $r^2 r 1 = 0$ 的根 r_1, r_2 ;
- ② 序列的通项 $f_n = \alpha_1 r_1^n + \alpha_2 r_2^n$;
- ③ 根据初始条件①求出待定系数 α₁ 和 α₂;
- $\therefore f_n = \frac{1}{\sqrt{5}} \left(\frac{1+\sqrt{5}}{2} \right)^n \frac{1}{\sqrt{5}} \left(\frac{1-\sqrt{5}}{2} \right)^n$

Example

Fibonacci序列递归定义如下,求其解析式:

- **1** $f(0) = 0, f_1 = 1;$
- $f_n = f_{n-1} + f_{n-2}.$

- **1** 求特征方程 $r^2 r 1 = 0$ 的根 r_1, r_2 ;
- ② 序列的通项 $f_n = \alpha_1 r_1^n + \alpha_2 r_2^n$;
- 根据初始条件①求出待定系数 α1 和 α2;
- $\therefore f_n = \frac{1}{\sqrt{5}} \left(\frac{1+\sqrt{5}}{2} \right)^n \frac{1}{\sqrt{5}} \left(\frac{1-\sqrt{5}}{2} \right)^n$

Example

Fibonacci序列递归定义如下,求其解析式:

- **1** $f(0) = 0, f_1 = 1;$
- $f_n = f_{n-1} + f_{n-2}.$

- ① 求特征方程 $r^2 r 1 = 0$ 的根 r_1, r_2 ;
- ② 序列的通项 $f_n = \alpha_1 r_1^n + \alpha_2 r_2^n$;
- ③ 根据初始条件①求出待定系数 α_1 和 α_2 ;
 - $\therefore f_n = \frac{1}{\sqrt{5}} \left(\frac{1+\sqrt{5}}{2} \right)^n \frac{1}{\sqrt{5}} \left(\frac{1-\sqrt{5}}{2} \right)^n$

Example

Fibonacci序列递归定义如下,求其解析式:

- **1** $f(0) = 0, f_1 = 1;$
- $f_n = f_{n-1} + f_{n-2}.$

- **1** 求特征方程 $r^2 r 1 = 0$ 的根 r_1, r_2 ;
- ② 序列的通项 $f_n = \alpha_1 r_1^n + \alpha_2 r_2^n$;
- ③ 根据初始条件①求出待定系数 α_1 和 α_2 ;

$$\therefore f_n = \frac{1}{\sqrt{5}} \left(\frac{1+\sqrt{5}}{2} \right)^n - \frac{1}{\sqrt{5}} \left(\frac{1-\sqrt{5}}{2} \right)^n$$

Example

Fibonacci序列递归定义如下,求其解析式:

- **1** $f(0) = 0, f_1 = 1;$
- $f_n = f_{n-1} + f_{n-2}.$

- **1** 求特征方程 $r^2 r 1 = 0$ 的根 r_1, r_2 ;
- ② 序列的通项 $f_n = \alpha_1 r_1^n + \alpha_2 r_2^n$;
- ③ 根据初始条件①求出待定系数 α_1 和 α_2 ;
- 4

$$\therefore f_n = \frac{1}{\sqrt{5}} \left(\frac{1 + \sqrt{5}}{2} \right)^n - \frac{1}{\sqrt{5}} \left(\frac{1 - \sqrt{5}}{2} \right)^n$$

对应的程序

```
Recursion
int f(int n)
{
   if (n == 0) return 0;
   if (n == 1) return 1;
   return f(n-2) + f(n-1);
}
```

```
For-loops
int f(int n)
   int x = 0; /* f(n-2) */
   int y = 1; /* f(n-1) */
   if (n == 0) return 0;
   if (n < 0) error();
  for (i = 1, i \le n-1; i++) {
     int z = x + y;
     x = y;
     y = z;
  return y;
```

Example (Greatest Common Divisor)

 $gcd: \mathbb{N} \times \mathbb{N} \to \mathbb{N}$ 递归定义如下:

- $2 \gcd(m, n) = \gcd((n \mod m), m).$

- ① 若 $k \not\in m$, n 的公约数, 即 $(k|m) \land (k|n)$, 则 $\exists p, q, m = kp \land n = kq$; 设 $n \mod m = t$, 则 n = rm + t, $\therefore t = n rm = k(q rp)$; 即 k|t. $\therefore \gcd(m, n) \leq \gcd(t, m) = \gcd(n \mod m, m)$;
- ② 若 $k \in L$, m 的公约数, $\therefore n = rm + t$, $\therefore k \mid n$, $\therefore \gcd(t, m) \leq \gcd(m, n)$, $p \gcd(n \mod m, m) \leq \gcd(m, n)$.

Example (Greatest Common Divisor)

 $gcd: \mathbb{N} \times \mathbb{N} \to \mathbb{N}$ 递归定义如下:

- 若 $k \not\in m$, n 的公约数, $\mathbb{P}(k|m) \land (k|n)$, $\mathbb{P}(k|m) \not= k$, $\mathbb{P}(k|m) \land (k|n)$, $\mathbb{P}(k|m) \ni \mathbb{P}(k|m) \land (k|m) \land$
- ② 若 $k \in L$, m 的公约数, $\therefore n = rm + t$, $\therefore k \mid n$, $\therefore \gcd(t, m) \leq \gcd(m, n)$, $p \gcd(n \mod m, m) \leq \gcd(m, n)$.

Example (Greatest Common Divisor)

 $gcd: \mathbb{N} \times \mathbb{N} \to \mathbb{N}$ 递归定义如下:

- 若 $k \in m$, n 的公约数, 即 $(k|m) \land (k|n)$, 则 $\exists p, q, m = kp \land n = kq$; 设 $n \mod m = t$, 则 n = rm + t, ∴ t = n rm = k(q rp); 即 k|t, ∴ $\gcd(m, n) \leq \gcd(t, m) = \gcd(n \mod m, m)$;
- ② 若 $k \in \mathcal{L}$ t, m 的公约数, $\therefore n = rm + t$, $\therefore k \mid n$, $\therefore \gcd(t, m) \leq \gcd(m, n)$, $p \gcd(n \mod m, m) \leq \gcd(m, n)$.

Example (Greatest Common Divisor)

 $gcd: \mathbb{N} \times \mathbb{N} \to \mathbb{N}$ 递归定义如下:

- **1** gcd(0, n) = n;

- 若 $k \in m$, n 的公约数, 即 $(k|m) \land (k|n)$, 则 $\exists p, q, m = kp \land n = kq$; 设 $n \mod m = t$, 则 n = rm + t, ∴ t = n rm = k(q rp); 即 k|t, ∴ $\gcd(m, n) \leq \gcd(t, m) = \gcd(n \mod m, m)$;
- ② 若 $k \in \mathcal{L}$, m 的公约数, $\therefore n = rm + t$, $\therefore k \mid n$, $\therefore \gcd(t, m) \leq \gcd(m, n)$, $p \gcd(n \mod m, m) \leq \gcd(m, n)$.

对应的程序

```
Tail Recursion
  int gcd(int m, int n)
     if (m == 0) return n;
     return gcd(n % m, m);
 Ex:
    gcd(18, 12)
       \downarrowgcd(12, 18)
         \downarrowgcd(6, 12)
           \downarrow gcd(0, 6)
              ⊾6
```

```
While-loops
  int gcd(int m, int n)
    int tmp;
    while (m != 0) {
    tmp = m;
    m = n \% m;
    m = tmp;
  return n;
```

Example (length)

length: $\Sigma^* \to \mathbb{N}$ 可递归定义如下:

- 2 length($a \cdot s$) = 1 + length(s).

Example (length尾递归定义)

- 2 $f(m, a \cdot s) = f(m+1, s)$.
- 则, length(s) = f(0,s).

Example (length)

length: $\Sigma^* \to \mathbb{N}$ 可递归定义如下:

Example (length尾递归定义)

- **2** $f(m, a \cdot s) = f(m+1, s)$.
- 则, length(s) = f(0,s).

Example (length)

length: $\Sigma^* \to \mathbb{N}$ 可递归定义如下:

Example (length尾递归定义)

- 2 $f(m, a \cdot s) = f(m+1, s)$.
- 则, length(s) = f(0,s).

Example (length)

length: $\Sigma^* \to \mathbb{N}$ 可递归定义如下:

Example (length尾递归定义)

- **2** $f(m, a \cdot s) = f(m+1, s)$.
- 则, length(s) = f(0,s).

对应的程序

```
Tail Recursion
  int f(int m, \Sigma List s)
{
   if (s == \varepsilon) return m;
   return f(m+1,tl(s));
   /* tl(a · s) = s */
}
  int length(\Sigma List s)
   return f(0, s);
```

While-loops

```
int length(\Sigma List s)
 int m = 0;
 while (s != \varepsilon) {
 m = m + 1;
 s = tl(s);
 return m;
int length(char *s)
 int tmp = 0;
 while (*s++) tmp++;
 return tmp;
```

Ackmann函数

Example

Ackermann函数递归定义如下:

$$A(m,n) = \begin{cases} n+1 & \text{if} & m=0\\ A(m-1,1) & \text{if} & m>0 \land n=0\\ A(m-1,A(m,n-1)) & \text{if} & m>0 \land n>0 \end{cases}$$

Description

- 处处有定义;
- m 足够小时,增长缓慢,当 $m \ge 4$ 时,呈指数增长. $A(4,2) \doteq 2 \times 10^{19728}$:
- 递归函数,但非原始递归函数(primitive recursive function);
- 不能够用while-loops表达;
- 由于其深度递归性(deep recursion), 该函数常用于测试编译器对递 归的优化性能.

A(4,3)的计算

```
A(4, 3) = A(3, A(4, 2))
       = A(3, A(3, A(4, 1)))
       = A(3, A(3, A(3, A(4, 0))))
       = A(3, A(3, A(3, A(3, 1))))
        = A(3, A(3, A(3, A(2, A(3, 0)))))
       = A(3, A(3, A(3, A(2, A(2, 1)))))
       = A(3, A(3, A(3, A(2, A(1, A(2, 0))))))
       = A(3, A(3, A(3, A(2, A(1, A(1, 1))))))
       = A(3, A(3, A(3, A(2, A(1, A(0, A(1, 0)))))))
       = A(3, A(3, A(3, A(2, A(1, A(0, A(0, 1))))))
       = A(3, A(3, A(3, A(2, A(1, A(0, 2))))))
        = A(3, A(3, A(3, A(2, A(1, 3)))))
       = A(3, A(3, A(3, A(2, A(0, A(1, 2))))))
       = A(3, A(3, A(3, A(2, A(0, A(0, A(1, 1))))))
        = A(3, A(3, A(3, A(2, A(0, A(0, A(0, A(1, 0)))))))
        = A(3, A(3, A(3, A(2, A(0, A(0, A(0, A(0, 1)))))))
       = A(3, A(3, A(3, A(2, A(0, A(0, A(0, 2)))))))
        = A(3, A(3, A(3, A(2, A(0, A(0, 3))))))
        = A(3, A(3, A(3, A(2, A(0, 4)))))
        = A(3, A(3, A(3, A(2, 5))))
        = A(3, A(3, A(3, 13)))
        = A(3, A(3, 65533)) /* A(3, 65533) = 2^(65533+3)-3 */
```

对应的程序

Recursion

```
int ack(int m, int n)
{
  if (m == 0) return n+1;
  if (n == 0) return ack(m-1,1);
  return ack(m-1, ack(m, n-1));
}
/* No linear recursion */
```

Partially while-loops

```
int ack(int m, int n)
 while (m != 0) {
   if (n == 0)
   n = 1;
   else
    n = ack(m, n-1);
  m = m - 1:
 return n+1;
```

Example

lacktriangle 设 $C(\mathbb{R})$ 是实数上的连续函数的集合,定义函数 g 如下:

$$g:\ \mathit{C}(\mathbb{R}) \to \mathbb{R}^{\mathbb{R}^2},\ f \mapsto \left(\langle x,y \rangle \mapsto \int_x^y \mathit{f}(t) \, dt\right),$$

- ② 定义函数 fold-left: $X^{X \times \Sigma} \to X^{X \times \Sigma^*}$, $f \mapsto (\langle x, a_1 a_2 \cdots a_n \mapsto f(\cdots f(f(x, a_1), a_2) \cdots, a_n))$; 则,设 $\Sigma = \mathbb{Z}$, $X = \mathbb{Z}$,
 - - $\operatorname{sum}(a_1 a_2 \cdots a_n) = (\operatorname{tole-left}(f))(0, a_1 a_2 \cdots a_n);$
 - $\hat{x}(x,y) = 1 + x, \ \mathbb{M} :$
 - $\operatorname{length}(a_1 a_2 \cdots a_n) = (\operatorname{fole-left}(f))(0, a_1 a_2 \cdots a_n).$

Example

① 设 $C(\mathbb{R})$ 是实数上的连续函数的集合,定义函数 g 如下:

$$g: \ C(\mathbb{R}) \to \mathbb{R}^{\mathbb{R}^2}, \ f \mapsto \left(\langle x, y \rangle \mapsto \int_x^y f(t) \, dt \right),$$

- ② 定义函数 fold-left: $X^{X \times \Sigma} \to \overline{X^{X \times \Sigma^*}}$, $f \mapsto (\langle x, a_1 a_2 \cdots a_n \mapsto f(\cdots f(f(x, a_1), a_2) \cdots, a_n))$; 则,设 $\Sigma = \mathbb{Z}$, $X = \mathbb{Z}$,
 - $\operatorname{sum}(a_1 a_2 \cdots a_n) = (\operatorname{fole-left}(f))(0, a_1 a_2 \cdots a_n);$
 - 右 f(x,y) = 1 + x, 则: length($a, a_2 \cdots a_n$) — (fole-left(f)($0, a_1 a_2 \cdots a_n$)

Example

① 设 $C(\mathbb{R})$ 是实数上的连续函数的集合,定义函数 g 如下:

$$g: \ C(\mathbb{R}) \to \mathbb{R}^{\mathbb{R}^2}, \ f \mapsto \left(\langle x, y \rangle \mapsto \int_x^y f(t) \, dt \right),$$

- ② 定义函数 fold-left: $X^{X \times \Sigma} \to X^{X \times \Sigma^*}$, $f \mapsto (\langle x, a_1 a_2 \cdots a_n \mapsto f(\cdots f(f(x, a_1), a_2) \cdots, a_n))$; 则,设 $\Sigma = \mathbb{Z}$, $X = \mathbb{Z}$,
 - 若 f(x,y) = x + y, 则: $sum(a_1 a_2 \cdots a_n) = (fole-left(f))(0, a_1 a_2 \cdots a_n);$
 - 若 f(x,y) = 1 + x, 则: length $(a_1 a_2 \cdots a_n) = (\text{fole-left}(f))(0, a_1 a_2 \cdots a_n)$

Example

① 设 $C(\mathbb{R})$ 是实数上的连续函数的集合,定义函数 g如下:

$$g:\ \mathit{C}(\mathbb{R}) \to \mathbb{R}^{\mathbb{R}^2},\ f \mapsto \left(\langle x,y \rangle \mapsto \int_x^y \mathit{f}(t) \, dt\right),$$

- ② 定义函数 fold-left: $X^{X \times \Sigma} \to X^{X \times \Sigma^*}$, $f \mapsto (\langle x, a_1 a_2 \cdots a_n \mapsto f(\cdots f(f(x, a_1), a_2) \cdots, a_n))$; 则,设 $\Sigma = \mathbb{Z}$, $X = \mathbb{Z}$,

 - 若 f(x,y)=1+x, 则: length $(a_1a_2\cdots a_n)=$ (fole-left(f)) $(0,a_1a_2\cdots a_n)$.

小结

Remark

- 函数能够递归定义的首要条件是其定义域必须有一个递归结构;
- 一般是按照定义域集合的递归定义,对该集合中的每个元素进行析构;
- recursion ≠ loops;
- tail recursion 能转换为 while-loop;
- recursion: 简单、清晰,但时间开销较大;
- loop: 较为复杂,但效率较高.

本章小节

- 1 函数、复合函数
 - 函数的定义
 - 复合函数
 - 单射、满射和双射
- 2 函数的递归定义
 - 自然数集合上的递归函数
 - Euclid算法和尾递归
 - List集合上的递归函数
 - Ackermann函数
 - 高阶函数

Reference books

Kenneth H. Rosen.《离散数学及其应用》(原书第8版).机械工业出版社.

刘玉珍 《离散数学》. 武汉大学出版社.

■ 王汉飞 《离散数学》讲义.