

CIRCUITOS DIGITAIS EXERCÍCIOS DE FIXAÇÃO – UNIDADE 6 PROF. VICTOR MIRANDA

Projeto de Decodificadores

1ª Questão

Braille é um sistema que permite pessoas com deficiência visual lerem caracteres alfanuméricos através do tato, quando passam os dedos sobre um padrão de pontos salientes. Determine as expressões lógicas simplificadas para converter o código BCD para Braille. A tabela ao lado mostra a correspondência entre BCD e Braille.

Α	В	С	D	W	X
^	В.		D	Ζ	Υ
0	0	0	0	•	•
0	0	0	1	•	
0	0	1	0	•	
0	0	1	1	•	•
0	1	0	0	•	•
0	1	0	1	•	•
0	1	1	0	•	•
0	1	1	1	•	•
1	0	0	0	•	•
1	0	0	1	•	•

Solução

Tabela da Verdade

Caso	Α	В	С	D	W	X	Ζ	Υ
0	0	0	0	0	0	1	1	1
1	0	0	0	1	1	0	0	0
2	0	0	1	0	1	0	1	0
3	0	0	1	1	1	1	0	0
4	0	1	0	0	1	1	0	1 1 0
5	0	1	0	1	1	0	0	1
6	0	1	1	0	1	1	1	0
7	0	1	1	1	1	1	1	1
8	1	0	0	0	1	0	1	1
9	1	0	0	1	0	1	1	0
10	1	0	1	0	Χ	Χ	Χ	Χ
11	1	0	1	1	Χ	Χ	Χ	Χ
12	1	1	0	1 0	Χ	Χ	Χ	Χ
13	1	1	0	1	Χ	Χ	Χ	X X X
14	1	1	1	0	Χ	Χ	Χ	
15	1	1	1	1	Χ	Χ	Χ	Χ

$$W = A.D' + B + C + A'.D$$

	X							
	C)'			_			
A'	1	0	1	0	В			
_A	1	0	1	1	В			
Α	Χ	Χ	Χ	Χ	ם			
^	0	1	X	Χ	B'			
	D')	D'				

$$X = A.D + B.C + C.D + A'.C'.D'$$

2	Z				
	C)')	_
A'	1	0	0	1	B'
^	0	0	1	1	В
۸	X	Χ	X	Χ	ь
Α	1	1	Χ	Χ	B'
	D'	[)	D'	

Z = A + B.C + B'.D'

•	′				
	C)'			
A'	1	0	0	0	В'
^	1	1	1	0	В
۸	Χ	X	X	Χ	Ь
Α	1	0	Χ	Χ	B'
	D')	D'	

Y = B.D + C'.D'

Projete o circuito lógico necessário para controlar um portão eletrônico de garagem acionado por um motor elétrico. O sensor A fica ativado (1) se o portão estiver totalmente aberto e desativado (0) caso contrário. O mesmo ocorre com o sensor B se o portão estiver totalmente fechado. Para fechar o portão é necessário ligar (1) o interruptor I, fazendo com que o motor gire no sentido anti-horário (MO), para abrir o portão é necessário desligar (0) o interruptor, fazendo com que o motor gire no sentido horário (MO).

Solução

Tabela da Verdade

	Caso	ı	Α	В	Mび Fecha	M心 Abre
	0	0	0	0	0	1
Abrir	1	0	0	1	0	1
A	2	0	1	0	0	0
	3	0	1	1	Χ	Χ
_	4	1	0	0	1	0
Fechar	5	1	0	1	0	0
Fec	6	1	1	0	1	0
	7	1	1	1	Χ	Χ

		ΜŮ						
		Α	A	4				
_	ľ	0	0	Χ	0			
	I	1	0	Χ	1			
		B'	I	3	B'			

$$MO = I.B'$$

$$MO = I'.A' = (I + A)'$$

O código morse é um sistema de representação de letras, números e sinais de pontuação através de um sinal codificado enviado de modo intermitente, desenvolvido por Samuel Morse em 1835. O código Morse representa os caracteres com pulsos (ou tons) curtos e longos (pontos e traços) correspondendo a pulsos elétricos (transmitidos em um cabo), ondas mecânicas (sons), sinais visuais (luzes piscando) ou ondas eletromagnéticas (sinais de rádio). A tabela ao lado mostra o código para os números. Determine o circuito lógico simplificado de um decodificador BCD para código morse.

	Código Morse
0	
1	•
2	• •
3	• • •
4	• • • • -
5	• • • •
6	- · · · ·
7	· · ·
8	• •
9	·

Solução

Tabela da Verdade

Caso	Α	В	С	D	S1	S2	S3	S4	S5
0	0	0	0	0	0	0	0	0	0
1	0	0	0	1	1	0	0	0	0
2	0	0	1	0	1	1	0	0	0
3	0	0	1	1	1	1	1	0	0
4	0	1	0	0	1	1	1	1	0
5	0	1	0	1	1	1	1	1	1
6	0	1	1	0	0	1	1	1	1
7	0	1	1	1	0	0	1	1	1
8	1	0	0	0	0	0	0	1	1
9	1	0	0	1	0	0	0	0	1
10	1	0	1	0	Х	X	Х	Х	Х
11	1	0	1	1	Х	Х	Х	Х	Х
12	1	1	0	0	Х	Х	Х	Х	Х
13	1	1	0	1	X	X	Х	X	Х
14	1	1	1	0	Х	Х	Х	Х	Χ
15	1	1	1	1	Χ	Χ	Χ	Χ	Χ

S	1				
	C	;)	_
A'	0	1	1	1	B'
А	1	1	0	0	В
۸	Χ	Χ	Χ	Χ	В
Α	0	0	Χ	Χ	B'
	D')	D'	•

S1 = B.C' + B'.C + A'.B'.D

S	S2							
	C))				
A'	0	0	1	1	В'			
	1	1	0	1	В			
Α	Χ	Χ	Χ	Χ	Ь			
^	0	0	Χ	Χ	B'			
	Q)	D'				

3 3						
	C)'				
A'	0	0	1	0	В'	
^	1	1	1	1	В	
Α	Χ	X	Χ	Χ	Ь	
^	0	0	Χ	Χ	B'	
	Q)	D'		

S2 = B.D' + B.C' + B'.C

		_	_	
C7	_	_		. 1

QE.

62

S	4				
	C)'	()	
Α'	0	0	0	0	B'
^	1	1	1	1	В
۸	Χ	Χ	Χ	Χ	Ь
Α	1	0	Χ	Χ	B'
	D')	D'	

	33									
		C)')					
Α	,	0	0	0	0	B'				
_	`	0	1	1	1	В				
-		Χ	X	X	Χ	ם				
-	١	1	1	X	Χ	B'				
		D')	D'					

S4 = A.D' + B

S5 = A + B.C + B.D

Determine as **expressões lógicas simplificadas** de um decodificador para controlar um *display* de 7 segmentos, que deverá receber um número de 3 bits e fornecer saídas necessárias para a visualização de letras, conforme a figura abaixo. Considere a existência de valores de entrada irrelevantes.

Solução

Tabela da Verdade

Display	Α	В	С	а	b	С	d	е	f	g
A	0	0	0	1	1	1	0	1	1	1
Ε	0	0	1	1	0	0	1	1	1	1
I	0	1	0	0	1	1	0	0	0	0
0	0	1	1	1	1	1	1	1	1	0
U	1	0	0	0	1	1	1	1	1	0
	1	0	1	Χ	Χ	Χ	Χ	Χ	Χ	Χ
	1	1	0	Χ	Χ	Χ	Χ	Χ	Χ	Χ
	1	1	1	Χ	Χ	Χ	Χ	Χ	Χ	Χ

	а								
	В	3							
A'	1	1	1	0					
Α	0	Χ	Χ	Χ					
	C'	(2	C'					

	bс							
	В' В							
A'	1	0	1	1				
Α	1	Χ	Χ	Χ				
	C'	(<u> </u>	C'				

g= A'.B'

Deseja-se construir um **Indicador de Volume**. Para isso deve-se projetar um decodificador, cuja entrada seja um número binário de 3 bits, e as saídas controlem 7 LEDs, que acenderão da esquerda para a direita, conforme o número recebido. Veja o exemplo abaixo. Determine as expressões lógicas para o **todo** o decodificador e os **circuitos lógicos simplificados** para os LEDs (saídas).

Exemplo: Se o número binário recebido for 011₂ (3₁₀), o Indicador deverá apresentar o resultado mostrado na figura ao lado.

6ª Questão

Construa o **circuito lógico mais simples possível** que faça a conversão do código BCD (*Binary Coded Decimal*) para o código de Gray dado na tabela ao lado:

BCD	Gray
0	0000
1	0001
2	0011
3	0010
4	0110
5	0111
6	0101
7	0100
8	1100
9	1101

Solução

 $S_3 = A$

 $S_2 = A + B$

S₁ = **B**⊕**C**

 $S_0 = C \oplus D$

7ª Questão

Um modo simples de detectar erros em uma informação transmitida é utilizar um bit de paridade. O bit de paridade está associado à quantidade de dígitos que assumem o valor **um** num número binário. Portanto, o bit de paridade indicará se a quantidade de ocorrências de dígitos iguais a **1**, no número binário, é ímpar. Construa um **circuito lógico simplificado** que ao receber um número de 3 bits determine o bit de paridade do mesmo.

Construa um **circuito lógico simplificado** capaz de fornecer o resultado da operação de **multiplicação** entre dois números de 2 bits, aplicados como entrada. Exemplo: 10 x 11 = 0110. A solução deve considerar todas as combinações de números de 2 bits, aplicados como entrada.

Solução

Tabela da Verdade

A	В	С	D	S3	S2	S1	SO
0	0	0	0	0	0	0	0
0	0	0	1	0	0	0	0
0	0	1	0	0	0	0	0
0	0	1 1 0	1	0	0	0	0
0	1	0	0	0	0	0	0
0	1	0	1	0	0	0	1
0	1	1	0	0	0	1	0
0	1	1 1 0	1	0	0	1	1
1	0	0	0	0	0	0	0
1	0	0	1	0	0	1	0
1	0	0 1 1 0	0	0	1	0	0
1	0 1	1	1	0	1	1	0
1	1	0	0	0	0	0	0
1	1	0	1	0	0	1	1
0 0 0 0 0 0 0 0 1 1 1 1 1 1 1	1	0 1 1	0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 1 1 0 0	0 0 0 0 0 1 1 0 1 0 1 0	0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 1
1	1	1	1	1	0	0	1

S3 = A.B.C.D											
	С	')							
A'	0	0	0	0	В						
	0	0	0	0	В						
Α	0	0	1	0	ם						
^	0	0	0	0	B'						
	D')	D'							

S1 = B.C.D' + A.C'.D + A.B'.D + A'.B.C

	C	;'	(-	
A'	0	0	0	0	B'
	0	0	1	1	В
Α	0	1	0	1	Б
A	0	1	1	0	В'
	D')	D'	-

S0 = B.D											
C' C											
Α'	0	0	0	0	В'						
	0	1	1	0	В						
٨	0	1	1	0	В						
Α	0	0	0	0	В'						
	D')	D'	-						

9ª Questão

Deseja-se projetar um comparador de 2 bits com 4 entradas (A_1 A_0 e B_1 B_0) e 3 saídas. A saída L indica se A < B, a saída I indica se A = B e a saída G indica se A > B. Por exemplo, se A = 2 e B = 3, então C = 1, C = 0 e C = 0. Em função destas informações determine:

- a) a tabela da verdade para todo o comparador;
- b) a expressão lógica simplificada somente para a saída I, utilizando o método da soma dos produtos.
- c) as expressões lógicas simplificadas para as demais saídas.

Solução

a) Tabela da Verdade

A1	A0	B1	В0	L	I	G
0	0	0	0	0	1	0
0	0	0	1	1	0	0
0	0	1	0	1	0	0
0	0	1	1	1	0	0
0	0 1	0	0	0	0	1
0	1	0	1	0	1	0
0			0	1	0	0
0	1	1 1	1	1	0	0
1	1 1 0	0	0	0	0	1
1	0	0	1	0	0	1
1	0		0	0	1	0
1	0 0 1	1 1	1	1	0	0
1	1	0	0	0	0	1
0 0 0 0 0 0 0 1 1 1 1 1 1 1	1	0	0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1	1 1 1 0 0 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0	1 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0	0 0 0 0 1 0 0 0 1 1 0 0 0 1 1 0 0
1	1	1	0	0	0	1
1	1	1	1	0	1	0

b) I = A.B.C.D + A.B'.C.D' + A'.B.C'.D + A'.B'.C'.D' = $(A_1 \odot B_1)$. $(A_0 \odot B_0)$

c)

$$L = B'.C.D + A'.C + A'.B'.D$$
 $G = A.B.D' + A.C' + B.C'.D'$

	C'		С		_
A'	0	1	1	1	В'
^	0	0	1	1	В
Α	0	0	0	0	Ь
А	0	0	1	0	В'
	D')	D'	-

$$G = A B D' + A C' + B C' D'$$

	C'		С		_
A'	0	0	0	0	В'
A	1	0	0	0	В
Α	1	1	0	1	Ь
А	1	1	0	0	В'
	D'	D		D'	<u>-</u> '

10ª Questão

Deseja-se construir um "dado eletrônico". Para isso deve-se projetar um decodificador, cuja entrada seja um número binário de 1 até 6 e as saídas controlem um display com 7 leds, veja figura abaixo. Determine a tabela da verdade e o circuito lógico simplificado para o todo o decodificador.

Questão 11

Construa o circuito lógico mais simples possível que faça a conversão do código BCD para o código 2 entre 5 dado na tabela a seguir:

Dec	2 entre 5
0	00011
1	00101
2	00110
3	01001
4	01010
5	01100
6	10001
7	10010
8	10100
9	11000

Solução

 $S_4 = A + B.C$

 $S_3 = A.D + B.C' + B'.C.D$

S₂ = A.D' + B'.C.D' + A'.C'.D S₁ = B.C.D + A'.C'.D' + A'.B'.D'

 $S_0 = B.C.D' + A'.B'.D + A'.B'.C'$