

Computer Architecture Homework 1

Parham Alvani February 19, 2015

powered by \LaTeX

Contents

1	Problem 2	2
2	Problem 3	2
3	Problem 4	3
1	Droblem 5	9

1 Problem 2

1

2 According to following diagram:

• Average Memory Access Time, the exact formula

(1)

• Average Memory Access Time, an approximate formula

$$h_1 * t_1 + (1 - h_1)[h_2 * t_2 + (1 - h_2)(...)]$$
 (2)

3

4

5

2 Problem 3

The following is the average memory access time equilation for memory with 3 level:

$$\bar{T} = h_1 * t_1 + (1 - h_1) * h_2 * t_2 + (1 - h_1) * (1 - h_2) * h_3 * t_3$$
(3)

Substituting 1ns for t_1 , 0.1 for h_1 , 10ns for t_2 , 0.5 for h_2 , 1000ns for t_3 and 1 for h_3 in (3) gives us:

$$ar{T} = 0.1 * 1 + (1 - 0.1) * 0.5 * 10 + (1 - 0.1) * (1 - 0.5) * 1000$$

$$= 0.1 + 0.9 * 0.5 * 10 + 0.9 * 0.5 * 1000$$

$$= 0.10 + 0.45 * 10 + 0.45 * 1000$$

$$= 0.10 + 4.50 + 450.00$$

$$= 454.60ns$$

3 Problem 4

The following is the avrage memory access time equlation for memory with 4 level:

$$\bar{T} = h_1 * t_1 + (1 - h_1) * h_2 * t_2 + (1 - h_1) * (1 - h_2) * h_3 * t_3 + (1 - h_1) * (1 - h_2) * (1 - h_3) * h_4 * t_4$$
(4)

Substituting 1ns for t_1 , 0.1 for h_1 , 10ns for t_2 , 0.5 for h_2 , 8s for t_3 , 0.63 for h_3 , 1000ns for t_4 , 1 for h_3 , in (4) gives us:

$$\bar{T} = 0.1 * 1 + (1 - 0.1) * 0.5 * 10 + (1 - 0.1) * (1 - 0.5) * 0.63 * 8 + (1 - 0.1) * (1 - 0.5) * (1 - 0.63) * 1000$$

$$= 0.1 * 1 + 0.9 * 0.5 * 10 + 0.9 * 0.5 * 0.63 * 8 + 0.9 * 0.5 * 0.37 * 1000$$

$$= 0.10 + 0.45 * 10 + 0.28 * 8 + 0.16 * 1000$$

$$= 0.10 + 4.50 + 2.24 + 160.00$$

$$= 166.84ns$$

4 Problem 5

1 Adrress bits = 14 bits, Length = 2 bytes, Width = 2^{14} words, The smallest unit available = 16 bits.

2 Adrress bits = 15 bits, Length = 2 bytes, Width = 2^{15} words, The smallest unit available = 16 bits.

3 Adrress bits = 15 bits, Length = 1 bytes, Width = 2^{15} words, The smallest unit available = 8 bits.

4 Adrress bits = 13 bits, Length = 4 bytes, Width = 2^{13} words, The smallest unit available = 32 bits.