2. Projekt

Quasi-Newton-Verfahren & Gauß-Newton-Verfahren

im Fach

Numerische Optimierung

Juni 2020

Maximilian Gaul

Aufgabe 1

Siehe Programmcode in Project 2.m.

 $I - \frac{s_s TA}{s^T As} + \frac{A^{-1} y y^T}{y^T s} + \frac{s^s TA - A^{-1} y s^T A + s(s^T - (A^{-1} y)^T)A}{y^T s s^T As} - \frac{s^s TA + s(s^T - (A^{-1} y)^T)A s s^T A}{y^T s s^T A s} + \frac{s^s T y y^T - A^{-1} y s^T T y y^T}{(y^T s)^2} - \frac{(s^T - (A^{-1} y)^T)y s s^T A}{(y^T s)^2 s^T A s} + \frac{(s^T - (A^{-1} y)^T)y s s^T A A}{(y^T s)^2 s^T A s} - \frac{(s^T - (A^{-1} y)^T)y s$ $\frac{1 - \frac{s(As)T}{sTAs} + \frac{A - 1yyT}{yTs} + \frac{(s - A - 1y)sTA + s(s - A - 1y)TA}{yTs} + \frac{(s - A - 1y)sTA + s(s - A - 1y)TyyT + s(s - A - 1y)TyyT + s(s - A - 1y)TyyT}{yTs} + \frac{(s - A - 1y)TysTA}{yTs} + \frac{(s - A - 1y)TysTA}{yTs} + \frac{(s - A - 1y)TysTA}{yTs} + \frac{(s - A - 1y)TysTA}{(yTs)^2} + \frac{(s - A - 1y)TysTAs}{(yTs)^2} + \frac{(s I - \frac{s_s TA}{s^T As} + \frac{A^{-1} yy^T}{y^T s} + \frac{2s_s TA - A^{-1} y_s TA - sy^T}{y^T s} - \frac{2s_s TA - A^{-1} y_s TA - sy^T}{y^T s^T As} \cdot \frac{2s_s TA - A^{-1} y_s TA - sy^T}{(y^T s)^2} \cdot \frac{s_s TA - A^{-1} y_s TA - sy^T}{(y^T s)^2} \cdot \frac{s_s TA + \frac{s_s TA - y^T (A^{-1})^T}{(y^T s)^2} \cdot \frac{s_s TA + \frac{s_s TA - y^T (A^{-1})^T}{(y^T s)^2} \cdot \frac{s_s TA - \frac{s_s TA - y^T}{(y^T s)^2} \cdot \frac{s_s TA - y$

Aufgabe 3

Wenn die Suchrichtung des BFGS Verfahrens:

$$d = -B \cdot \nabla f(x)$$

keine Abstiegsrichtung ist, d.h. die Bedingung:

$$\nabla f(x)^T \cdot d < 0$$

nicht erfüllt ist, muss das Verfahren 'resettet' werden. In diesem Fall bietet es sich an, die Suchrichtung auf den negativen Gradienten zu setzen:

$$d = -\nabla f(x)$$

Da nun die Abstiegsrichtung nicht mehr zur approximierten Inversen der Hesse-Matrix B passt, muss diese ebenfalls für den nächsten Schritt neu bestimmt werden (bzw. das nächste Update erfolgt dann mit dieser Matrix).

Hierzu bieten sich verschiedene Möglichkeiten an:

- Wie beim Start des BFGS-Verfahrens B = I setzen
 - Hierbei geht jeglicher berechnete Fortschritt verloren, es handelt sich um einen recht naiven Ansatz
- Die Hesse-Matrix einmalig aus Differenzenquotienten des Gradienten bestimmen und anschließend invertieren
 - Hoher Rechenaufwand von $\mathcal{O}(n^2)$ für die Hesse-Matrix und nochmal $\mathcal{O}(n^3)$ für das Invertieren
 - Problem wenn die Hesse-Matrix nicht invertierbar ist bzw. aufgrund von Auslöschung oder anderen numerischen Fehlern die Inverse schlecht konditioniert ist
 - Bisher berechneter Fortschritt geht ebenfalls verloren aber die Approximation der Hesse-Matrix ist sehr genau
- Man könnte, wie in den Vorlesungsfolien beschrieben, $\frac{y^Ts}{y^Ty}\cdot I_n$ als positivdefinitve Matrix verwenden

Um herauszufinden, welche dieser Methoden am besten geeignet ist (d.h. die richtig Lösung in der kürzesten Zeit findet), wird die Laufzeit des inversen BFGS-Verfahrens bestimmt. Startwerte:

- N-dim. Rosenbrock-Funktion: $\begin{bmatrix} -1 \\ \vdots \\ -1 \end{bmatrix}$
- Himmelblau-Funktion: $\begin{bmatrix} 0 \\ -1 \end{bmatrix}$

• Bazaraa-Shetty: $\begin{bmatrix} 0 \\ -1 \end{bmatrix}$

Abbildung 1: Vergleich der Rechenzeit für eine Genauigkeit von 10^{-8} gemittelt über 100 Durchläufe (Intel Core i3-7100U, 8GB RAM, Windows 10 64-Bit)

Alle drei Funktionen profitieren von $B = \frac{y^Ts}{y^Ty} \cdot I$, daher habe ich diesen Weg in meiner Implementierung gewählt.

Aufgabe 4

Die Ableitung der N-dimensionalen Rosenbrock-Funktion habe ich beispielhaft für ${\cal N}=3$ bestimmt:

$$\sum_{i=1}^{2} (1 - x_i)^2 + 100 \cdot (x_{i+1} - x_i^2)^2$$

$$= (1 - x_1)^2 + 100 \cdot (x_2 - x_1^2)^2 + (1 - x_2)^2 + 100 \cdot (x_3 - x_2^2)^2$$

$$\nabla f_3 = \begin{bmatrix} -2 \cdot (1 - x_1) + 200 \cdot (x_2 - x_1^2) \cdot (-2x_1) \\ 200 \cdot (x_2 - x_1^2) - 2 \cdot (1 - x_2) + 200 \cdot (x_3 - x_2^2) \cdot (-2x_2) \\ 200 \cdot (x_3 - x_2^2) \end{bmatrix}$$

Man erkennt eine Regel: Der Gradient besteht aus drei Teilen. Der erste Eintrag im Gradienten ist:

$$-2 \cdot (1 - x_1) + 200 \cdot (x_2 - x_1^2) \cdot (-2x_1)$$

Alle weiteren Einträge (bis auf den letzten an Position N-1) sind:

$$200 \cdot (x_i - x_{i-1}^2) - 2 \cdot (1 - x_i) + 200 \cdot (x_{i+1} - x_i^2) \cdot (-2x_i)$$

Der letzte Eintrag ist:

$$200 \cdot (x_N - x_{N-1}^2)$$

Die Ableitung ist in Projekt2.m in der Funktion f_rosen_mult_deriv_func definiert. Rechenzeit des in InverseBFGS.m implementierten Verfahrens:

Abbildung 2: Rechenzeit der N-dimensionalen Rosenbrock-Funktion mit Startwert $[-1,\ldots,-1]^T$ für eine Genauigkeit von 10^{-8} gemittelt über 100 Durchläufe (Intel Core i3-7100U, 8GB RAM, Windows 10 64-Bit)

Rechenzeit von fminunc mit Option "HessUpdate" = "bfgs":

Abbildung 3: Rechenzeit der N-dimensionalen Rosenbrock-Funktion mit Startwert $[-1,\ldots,-1]^T$ für eine Genauigkeit von 10^{-8} gemittelt über 100 Durchläufe (Intel Core i3-7100U, 8GB RAM, Windows 10 64-Bit)

Man erkennt, das mit höheren Dimensionen die Rechenzeit für beide Verfahren drastisch zunimmt.

Möglichkeiten um ein höheres N zu erreichen:

Nach den Regeln der Analysis lässt sich eine Summe aufteilen in zwei Summen:

$$\sum_{i=1}^{N-1} (1 - x_i)^2 + 100 \cdot (x_{i+1} - x_i^2)^2$$

$$\sum_{i=1}^{a} (1 - x_i)^2 + 100 \cdot (x_{i+1} - x_i^2)^2 + \sum_{i=a+1}^{N-1} (1 - x_i)^2 + 100 \cdot (x_{i+1} - x_i^2)^2$$

Die Berechnung des Minimums dieser zwei Summen kann auf z.B. zwei Threads aufgeteilt und am Ende wieder zusammengefügt werden. Bei ungeradem N muss man sich entscheiden wie die Summe aufgeteilt wird, ein Thread bearbeitet dann eine Dimension mehr als der andere. Bei besonders großem N können auch diese beiden Summen wiederum aufgeteilt und somit auf noch mehr Threads verteilt werden.

- Verwenden von sparse-Matritzen und Vektoren durch die sich die Rechenzeit unter Umständen reduzieren kann. Sparse-Datenstrukturen verwenden eine spezielle Repräsentation der Werte in denen Einträge mit 0 effizienter gespeichert werden. Aufgrundessen beschleunigt sich die Berechnung von Matrix-Vektor-Produkten (die beim BFGS-Verfahren sehr oft verwendet werden)
- Gegebenfalls genauere Untersuchungen über Kondition und Stabilität der Operationen bzw. wie diese verbessert werden können. Durch Auslöschung in der Update-Formel könnte es unter Umständen zu fehlerhaften Richtungsvektoren kommen die sich bei besonders großen Problemen potenzieren und somit die Konvergenz verlangsamen.

Aufgabe 5

Aufgabe 6

Siehe GaussNewton.m.

Aufgabe 7

Siehe Projekt2.m.

Aufgabe 8

Abbildung 4: Modellfunktion und Datensatz für $f(t,x_1,x_2) = x_1 \cdot e^{x_2 \cdot t}$

Abbildung 5: Modellfunktion und Datensatz für $g(t,x_1,x_2,x_3)=x_1\cdot e^{-(x_2^2+x_3^2)\cdot t}\cdot \frac{\sinh(x_3^2\cdot t)}{x_3^2}$

$$g(t, x_1, x_2, x_3) = x_1 \cdot e^{-(x_2^2 + x_3^2) \cdot t} \cdot \frac{\sinh(x_3^2 \cdot t)}{x_3^2}$$