719120

Diff. Eq.

1.
$$(y^2+1)dx = y \sec^2 x dy$$
 Hint: $\cos^2 x = \frac{1+\cos^2 x}{2}$

$$= > \frac{(y^2+1)}{y} dx = \sec^2 x dy$$

$$= > \frac{(y^2+1)}{y} dx = \frac{1}{\cos^2 x} dy$$

$$= \cos^2 x \, dx = \frac{5}{(y^2 + 1)} \, dy$$

=>
$$\int_{\cos^2 x} dx = \int_{-\frac{1}{2}}^{\frac{y}{2}} dy$$

=> $\frac{1}{2} \left(x + \frac{\sin 2x}{2} \right) + c = \frac{1}{2} \ln |y^2 + 1|$

$$= 3 \frac{x}{2} + \frac{\sin 2x}{4} + C = \frac{1}{2} \ln |y^2 + 1|$$

$$\Rightarrow x + \frac{\sin 2x}{2} + c = \ln |y|^2 + 1$$

$$= \begin{cases} x + \frac{y^2 + 1}{2} \\ e \end{aligned}$$

=>
$$|y^2+1| = e^{x} e^{\frac{\sin 2x}{2}} c$$

$$= \frac{\sin 2x}{2}$$

$$=> y = + \sqrt{CCCCC} - 1$$

$$y(x) = - \int ce^{x} e^{\frac{\sin 2x}{2}} - 1$$

2.
$$y(\ln x - \ln y) dx = (x \ln x - x \ln y - y) dy$$

=> $y(\ln x - \ln y) dx - (x \ln x - x \ln y - y) dy = 0$

=> $y(\ln x - \ln y) dx + (-x \ln x + x \ln y + y) dy = 0$
 $M(x_1y) = y(\ln x - \ln y)$
 $M(tx_1 by) = ty(\ln t \times - \ln ty)$

= $ty(\ln t + \ln x - (\ln t + \ln y))$

= $ty(\ln t + \ln x - (\ln t + \ln y))$

= $ty(\ln x - \ln y) = tM$
 $N(x_1y) = -x \ln x \times x \ln y + y$
 $N(tx_1, ty) = -tx \ln x \times x \ln x + tx \ln y + y$

= $t(-x \ln x + x \ln x + x \ln t + x \ln y + y)$

= $t(-x \ln x + x \ln x + x \ln t + x \ln y + y)$

=> $t(-x \ln x + x \ln x + x \ln t + x \ln y + y)$

=> $t(-x \ln x + x \ln$

 $u^2 \times d \times + du \left(x^2 \left(\ln u + u \right) \right) = 0$

 $=> \frac{x}{x^{2}(\ln u + u)} dx + \frac{1}{u^{2}} du = 0$

 $= \frac{x}{x^2} dx + \frac{\ln u + u}{u^2} du = 0$

2.
$$(con+.)$$

=> $\frac{1}{x} dx + \frac{1nu+u}{u^2} du = C$

=> $\ln|x| + \left(-\frac{1nu+u}{u} - \frac{1}{u} + \ln|u|\right) = C$

=> $\ln|x| + \left(-\frac{1n(\frac{y}{x}) + (\frac{y}{x})}{\frac{y}{x}} - \frac{x}{y} + \ln|\frac{y}{x}|\right) = C$

=> $\ln|x| + \left(-\frac{x\ln(\frac{y}{x}) - y}{\frac{y}{x}} - \frac{x}{y} + \ln|y| - \ln|x|\right) = C$

=> $-\frac{x\ln(\frac{y}{x})}{\frac{y}{x}} - \frac{x}{y} + \ln|y| = C$

=> $-\frac{x\ln(\frac{y}{x})}{\frac{y}{x}} - \frac{x}{y} + \ln|y| = C$

=> $-\frac{x\ln(\frac{y}{x}) - x}{\frac{y}{x}} + \ln|y| = C$

=> $-\frac{x\ln(\frac{y}{x}) - x}{\frac{y}{x}} + \ln|y| = C$

=> $-\frac{x\ln(\frac{y}{x}) - x}{\frac{y}{x}} + \ln|y| = C$

=> $-\frac{x\ln(\frac{y}{x}) - x}{y} + \ln|y| = C$

=> $-\frac{x\ln(\frac{y}{x}) - x}{y} + \ln|y| = C$

=> $-\frac{x\ln(\frac{y}{x}) - x}{y} + \ln|y| = C$

$$\frac{-x(\ln(Y/x)+i)}{y} + \ln|y| = C$$
 A solution since isolating y is

rather difficult.

3.
$$(6x+1)y^{2} \frac{dy}{dx} + 3x^{2} + 2y^{3} = 0$$

=> $(6x+1)y^{2} dy + (3x^{2} + 2y^{3}) dx = 0$

=> $(3x^{2} + 2y^{3}) dx + (6x+1)y^{2} dy = 0$
 $M = 3x^{2} + 2y^{3}$
 $N = 6xy^{2} + y^{2}$
 $\frac{2M}{\partial y} = 6y^{2}$
 $\frac{2N}{\partial x} = 6y^{2}$
 $N = 6xy^{2} + y^{2}$
 $\frac{2F}{2x} = 3x^{2} + 2y^{3}$

=> $F = \int 3x^{2} + 2y^{3} dx = x^{3} + 2y^{3}x + g(y)$
=> $F = \int 3x^{2} + 2y^{3} dx = x^{3} + 2y^{3}x + g(y)$
=> $F = \int 3x^{2} + 2y^{3} dx = x^{3} + 2y^{3}x + g(y)$
=> $F = \int 3x^{2} + 2y^{3} dx = x^{3} + 2y^{3}x + y^{2}$
=> $F = \int 3x^{2} + 2y^{3} dx = x^{3} + 2y^{3}x + y^{3}$
=> $F = \int 3x^{2} + 2y^{3}x + y^{3} dx = x^{3} + 2y^{3}x + y^$

$$\therefore x^3 + 2y^3x + \frac{y^3}{3} = c \qquad 4 \quad \text{solution}$$

$$3 \times y^2 + x^2 + \frac{4y^3}{3} = C + solution$$

5.
$$t \frac{da}{dt} + 0 = t^{4} \ln t$$

=> $t \frac{da}{dt} = t^{4} \ln t - Q$

=> $\frac{dQ}{dt} = t^{3} \ln t - \frac{Q}{t}$

=> $\frac{dQ}{dt} + \frac{Q}{t} = t^{3} \ln t$

=> $\frac{dQ}{dt} + \frac{1}{t} \cdot Q = t^{3} \ln t$

=> $\frac{dQ}{dt} + \frac{1}{t} \cdot Q = t^{3} \ln t$

=> $\frac{dQ}{dt} + \frac{1}{t} \cdot Q = t^{3} \ln t$

=> $\frac{dQ}{dt} + \frac{1}{t} \cdot Q = t^{3} \ln t$

=> $\frac{dQ}{dt} + \frac{1}{t} \cdot Q = t^{4} \ln t$

=> $\frac{dQ}{dt} + \frac{1}{t} \cdot Q = t^{4} \ln t$

=> $\frac{dQ}{dt} + \frac{1}{t} \cdot Q = t^{4} \ln t$

=> $\frac{dQ}{dt} + \frac{1}{t} \cdot Q = t^{4} \ln t$

=> $\frac{dQ}{dt} + \frac{1}{t} \cdot Q = t^{4} \ln t$

=> $\frac{dQ}{dt} + \frac{1}{t} \cdot Q = t^{4} \ln t$

=> $\frac{dQ}{dt} + \frac{1}{t} \cdot Q = t^{4} \ln t$

=> $\frac{dQ}{dt} + \frac{1}{t} \cdot Q = t^{4} \ln t$

=> $\frac{dQ}{dt} + \frac{1}{t} \cdot Q = t^{4} \ln t$

=> $\frac{dQ}{dt} + \frac{1}{t} \cdot Q = t^{4} \ln t$

=> $\frac{dQ}{dt} + \frac{1}{t} \cdot Q = t^{4} \ln t$

=> $\frac{dQ}{dt} + \frac{1}{t} \cdot Q = t^{4} \ln t$

=> $\frac{dQ}{dt} + \frac{1}{t} \cdot Q = t^{4} \ln t$

=> $\frac{dQ}{dt} + \frac{1}{t} \cdot Q = t^{4} \ln t$

=> $\frac{dQ}{dt} + \frac{1}{t} \cdot Q = t^{4} \ln t$

=> $\frac{dQ}{dt} + \frac{1}{t} \cdot Q = t^{4} \ln t$

=> $\frac{dQ}{dt} + \frac{1}{t} \cdot Q = t^{4} \ln t$

=> $\frac{dQ}{dt} + \frac{1}{t} \cdot Q = t^{4} \ln t$

=> $\frac{dQ}{dt} + \frac{1}{t} \cdot Q = t^{4} \ln t$

=> $\frac{dQ}{dt} + \frac{1}{t} \cdot Q = t^{4} \ln t$

=> $\frac{dQ}{dt} + \frac{1}{t} \cdot Q = t^{4} \ln t$

=> $\frac{dQ}{dt} + \frac{1}{t} \cdot Q = t^{4} \ln t$

=> $\frac{dQ}{dt} + \frac{1}{t} \cdot Q = t^{4} \ln t$

=> $\frac{dQ}{dt} + \frac{1}{t} \cdot Q = t^{4} \ln t$

=> $\frac{dQ}{dt} + \frac{1}{t} \cdot Q = t^{4} \ln t$

=> $\frac{dQ}{dt} + \frac{1}{t} \cdot Q = t^{4} \ln t$

=> $\frac{dQ}{dt} + \frac{1}{t} \cdot Q = t^{4} \ln t$

=> $\frac{dQ}{dt} + \frac{1}{t} \cdot Q = t^{4} \ln t$

=> $\frac{dQ}{dt} + \frac{1}{t} \cdot Q = t^{4} \ln t$

=> $\frac{dQ}{dt} + \frac{1}{t} \cdot Q = t^{4} \ln t$

=> $\frac{dQ}{dt} + \frac{1}{t} \cdot Q = t^{4} \ln t$

=> $\frac{dQ}{dt} + \frac{1}{t} \cdot Q = t^{4} \ln t$

=> $\frac{dQ}{dt} + \frac{1}{t} \cdot Q = t^{4} \ln t$

=> $\frac{dQ}{dt} + \frac{1}{t} \cdot Q = t^{4} \ln t$

=> $\frac{dQ}{dt} + \frac{1}{t} \cdot Q = t^{4} \ln t$

=> $\frac{dQ}{dt} + \frac{1}{t} \cdot Q = t^{4} \ln t$

=> $\frac{dQ}{dt} + \frac{1}{t} \cdot Q = t^{4} \ln t$

=> $\frac{dQ}{dt} + \frac{1}{t} \cdot Q = t^{4} \ln t$

=> $\frac{dQ}{dt} + \frac{1}{t} \cdot Q = t^{4} \ln t$

=> $\frac{dQ}{dt} + \frac{1}{t} \cdot Q = t^{4} \ln t$

=> $\frac{dQ}{dt} + \frac{1}{t} \cdot Q = t^{4} \ln t$

$$Q(t) = \frac{t^{4}(5 \ln t - 1)}{25} + \frac{C}{t}, t \neq 0$$