

SENIOR CERTIFICATE EXAMNATIONS SENIORSERTIFIKAAT-EKSAMEN

MATHEMATICS P1/WISKUNDE V1

2017

MARKING GUIDELINES/NASIENRIGLYNE

MARKS: 150 *PUNTE: 150*

These marking guidelines consist of 20 pages. *Hierdie nasienriglyne bestaan uit* 20 *bladsye*.

NOTE:

- If a candidate answers a question TWICE, only mark the FIRST attempt.
- Consistent Accuracy applies in all aspects of the marking memorandum.

LET WEL:

- Indien 'n kandidaat 'n vraag TWEE keer beantwoord, merk slegs die EERSTE poging.
- Volgehoue akkuraatheid is DEURGAANS op ALLE aspekte van die memorandum van toepassing.

111		
1.1.1	$3x^2 + 10x + 6 = 0$	
	$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$ $= \frac{-10 \pm \sqrt{(10)^2 - 4(3)(6)}}{2(3)}$ $x = -2,55 \text{ or } x = -0,78$	✓ substitution into correct formula ✓ $x = -2.55$ ✓ $x = -0.78$
	OR/OF	(3)
	$x^2 + \frac{10}{3}x + \frac{100}{36} = -2 + \frac{100}{36}$	✓ for adding $\frac{100}{36}$ on both sides
	$\left(x + \frac{5}{3}\right)^2 = \frac{7}{9}$	
	$x + \frac{5}{3} = \pm \frac{\sqrt{7}}{3}$	
	$x = \frac{-5 \pm \sqrt{7}}{3}$ $x = -0.78 \text{or} x = -2.55$	$\checkmark x = -2.55$ $\checkmark x = -0.78$ (3)
1.1.2	$\sqrt{6x^2 - 15} = x + 1$	(3)
	$6x^{2} - 15 = (x+1)^{2}$ $6x^{2} - 15 = x^{2} + 2x + 1$	✓ concept of squaring both sides
	$5x^{2} - 2x - 16 = 0$ $(5x + 8)(x - 2) = 0$	✓ standard form (accurate)
	$x = -\frac{8}{5} \text{ or } x = 2$	✓ factors ✓ both answers
	$\therefore x = 2$	✓ correct selection (5)

QUES	STION/VRAAG 2		
2.1.1	3; 2; <i>k</i> ;		
		2 /0.67	
	$r=\frac{2}{3}$	$r = \frac{2}{3} / 0.67$	
	3		(1)
2.1.2	T_{2}		
	$r = \frac{-3}{T}$		
	$r = \frac{T_3}{T_2}$ $T_3 = r \times T_2$ $= \frac{2}{3} \times 2$ $= \frac{4}{3}$		
	$I_3 = r \times I_2$	$\checkmark \frac{2}{3} \times 2$	
	$=\frac{2}{\times}2$	$\frac{1}{3}$	
	3		
	$=\frac{4}{}$		
	3		
	Thus $k = \frac{4}{3}$	$\sqrt{\frac{4}{3}} / 1,34$	
	$\frac{1}{3}$	3	(0)
2.1.2	. 1		(2)
2.1.3	$T_n = a.r^{n-1}$	∠ \ n−1	
	$\frac{128}{729} = 3 \times \left(\frac{2}{3}\right)^{n-1}$	$\checkmark \frac{128}{729} = 3 \times \left(\frac{2}{3}\right)^{n-1}$	
	$\frac{729}{729} = 3 \times \left(\frac{7}{3}\right)$	729 (3)	
		$(2)^{n-1}$ 120	
	$\left(\frac{2}{3}\right)^{n-1} = \frac{128}{2187}$	$\left \checkmark \left(\frac{2}{3} \right) \right = \frac{128}{2197}$	
	(3) 2187	(3) 218/	
	$\left(\frac{2}{3}\right)^{n-1} = \left(\frac{2}{3}\right)^7$	$\checkmark \left(\frac{2}{3}\right)^{n-1} = \frac{128}{2187}$ $\checkmark \left(\frac{2}{3}\right)^{7}$	
	$\left(\frac{1}{3}\right)^{-1}\left(\frac{1}{3}\right)$	$\left \begin{array}{c}\mathbf{v}\left(\frac{-}{3}\right)\end{array}\right $	
	n-1=7		
	n=8	✓answer	
	n-6		
	OR / OF	OR / OF	
	$T_n = a r^{n-1}$		
		∠ > n_1	
	$\frac{128}{729} = 3 \times \left(\frac{2}{3}\right)^{n-1}$	$\checkmark \frac{128}{729} = 3 \times \left(\frac{2}{3}\right)^{n-1}$	
	` '	729 (3)	
	$\left(\frac{2}{3}\right)^{n-1} = \frac{128}{2187}$	$(2)^{n-1}$ 120	
	$(\frac{1}{3})$ $-\frac{1}{2187}$	$\checkmark \left(\frac{2}{3}\right)^{n-1} = \frac{128}{2187}$	
	1 128	(3) 218/	
	$n-1 = \log_{\frac{2}{3}} \frac{128}{2189}$	128	
		$\checkmark n-1 = \log_{\frac{2}{3}} \frac{128}{2189}$	
		✓answer	
	n = 8		(4)
2.2.1	$T_n = a + (n-1)d$	\checkmark substitution of n ,	
	$T_{18} = 100 + (18 - 1)(150)$	a and d into AS	
	$= R \ 2650$	✓ 2650	
	- K 2 030		(2)

$S_n = \frac{n}{2} [2a + (n-1)d]$	
$30 500 = \frac{n}{2} [2(100) + (n-1)(150)]$ $61 000 = n(150n + 50)$ $61 000 = 150n^2 + 50n$	✓ substitute 30 500, a and d into sum formula for AS
$3n^{2} + n - 1220 = 0$ $(3n + 61)(n - 20) = 0$ $n = -\frac{61}{3} \text{ or } n = 20$	✓ simplification ✓ factors or quad formula ✓ n = 20
x = 100 + (20 - 1)(150) = R 2 950	✓ substitution T_n of AS \checkmark 2950 (6)
	[15]
	$30 500 = \frac{n}{2} [2(100) + (n-1)(150)]$ $61 000 = n(150n + 50)$ $61 000 = 150n^2 + 50n$ $3n^2 + n - 1 220 = 0$ $(3n + 61)(n - 20) = 0$ $n = -\frac{61}{3} \text{ or } n = 20$ N/A $x = 100 + (20 - 1)(150)$

3.1	First differences: 17; 15	√ 17; 15
	Second difference: -2	
	$T_n = an^2 + bn + c$	
	$a = \frac{\text{second difference}}{2} = \frac{-2}{2} = -1$	✓ value of <i>a</i>
	$u = \frac{1}{2} = \frac{1}{2} = -1$	value of a
	3a + b = 17	
	3(-1)+b=17	
	b = 20	✓ value of b
	a+b+c=0	Value of b
	-1+20+c=0	
	c = -19	✓ value of c
	$T_n = -n^2 + 20n - 19$	
	n	
	OR / OF	
	First differences: 17; 15	
	$\binom{n-1}{n-2}$	√ 17; 15
	$T_n = T_1 + (n-1)d_1 + \frac{(n-1)(n-2)}{2}d_2$	✓ value of a
		value of a
	$= (0) + (n-1)(17) + \frac{(n-1)(n-2)}{2}(-2)$	✓ value of b
	$= 17n - 17 - n^2 + 3n - 2$	(1 f -
	$=-n^2+20n-19$	✓ value of c
	n + 20n - 19	
		(4)

	SCE/SSE – Marking guidelines/Nasienriglyne	
3.2	$56 = -n^2 + 20n - 19$	$\checkmark T_n = 56$
	$n^2 - 20n + 75 = 0$	
	(n-15)(n-5)=0	✓ factors
	n = 5 or n = 15	✓ both answers
		(3)
3.3	$\sum_{n=5}^{10} T_n - \sum_{n=1}^{15} T_n$	
	$= T_5 + T_6 + T_7 + T_8 + T_9 + T_{10} - T_{11} - T_{12} - T_{13} - T_{14} - T_{15}$	
	$= (T_5 - T_{15}) + (T_6 - T_{14}) + \dots + (T_9 - T_{13}) + T_{10}$	
	$=T_{10}$	✓✓ symmetry of
	because by symmetry $T_5 = T_{15}$; $T_6 = T_{14}$	terms
	$T_{10} = -(10)^2 + 20(10) - 19$, _
	= 81	T_{10}
		✓ 81 (4)
	OR/OF	(+)
	T ₅ T ₁₀ T ₁₅ 0; 17; 32; 45; 56; 65; 72; 77; 80; 81; 80; 77; 72; 65; 56	
	0, 17, 52, 10, 50, 60, 72, 77, 60, 61, 60, 77, 72, 60, 50	✓ writing out the symmetry of
	Hence,	terms
	$\sum_{n=5}^{10} T_n - \sum_{n=1}^{15} T_n$	
		5() (5) 72) 77) 90) 91
	= (56+65+72+77+80+81)-(80+77+72+65+56)	56+65+72+77+80+81
	= 81	80+77+72+65+56
		✓ 81
		(4)
		[11]

QU.	ESTION/VRAAG 4		
4.1	A (4; 3)	√ (4; 3)	(1)
4.2	$y = \frac{6}{-4} + 3$	$\checkmark x = 0$	
	$y = \frac{6}{-4} + 3$ $= \frac{3}{2}$	$\checkmark x = 0$ $\checkmark y = \frac{3}{2}$	
	$B\left(0;\frac{3}{2}\right)$	2	(2)
4.3	$0 = \frac{6}{x - 4} + 3$	$\checkmark y = 0$	
	$-3 = \frac{6}{x - 4}$		
	-3(x-4)=6		
	-3x+12=6		
	x = 2	$\checkmark x = 2$	(2)
	C(2;0)		(2)
4.4	$0 - \frac{3}{2}$	$\sqrt{\frac{0-\frac{3}{2}}{2-0}}$ $\sqrt{-\frac{3}{4}}$	
	Average gradient = $\frac{2}{2-0}$	$\sqrt{\frac{2}{2-0}}$	
	$=-\frac{3}{4}$	$\sqrt{-\frac{3}{2}}$	
	_ 4	4	(2)
4.5	y = -x + 7	$\checkmark m = -1$	(2)
		$\checkmark y = -x + 7$	
	OR/OF	OR/OF	
	m = -1	$\checkmark m = -1$	
	$\therefore y-3=-(x-4)$	$\checkmark m = -1$ $\checkmark y = -x + 7$	
	y = -x + 7	y XII	(2)
			<u>[9]</u>

<u>Q</u> UE	STION/VRAAG 5	
5.1	(0; -14) (0; -14)	f: √ x-intercepts √y-intercept ✓ shape √TP g: ✓ x-intercept and y-intercept ✓ shape (6)
5.2	$y = -20\frac{1}{4}$ $y = -20\frac{1}{4}$	$\checkmark \checkmark y = -20\frac{1}{4} /$ $-\frac{81}{4}$ (2)
5.3	$-20\frac{1}{4} < k < -14$	$\checkmark -20\frac{1}{4} < k$ $\checkmark k < -14$ (2)
5.4	Reflecting in the <i>x</i> -axis: $y = -2x + 14$	$\checkmark y = -2x + 14$
	y = -2(x+7)+14 Shifting 7 units to the left: $= -2x-14+14$ $= -2x$	$\checkmark y = -2x$ (2) [12]

\mathbf{QU}	ESTION/VRAAG 6		
6.1	$f: y = b^x$		
	$f^{-1}: x = b^{y}$	\checkmark interchange x and	y
	$y = \log_b x$	✓ answer	(2)
6.2		✓ answer	$\frac{(2)}{(1)}$
6.3	$\frac{y = x}{P(0; 1)}$		$\frac{(1)}{(1)}$
6.4	T(1; 0)	✓ coordinates of T	(1)
0.1	1(1, 0)	coordinates of 1	
	y = mx + c		
	y = -x + 1	$\checkmark y = -x + 1 $	(2)
6.5	At point R, PT and OR intersect:		
	-x+1=x		
	2x = 1	$\checkmark -x+1=x$ $\checkmark x = \frac{1}{2}$ $\checkmark y = \frac{1}{2}$	
	$r-\frac{1}{r}$	1	
	$x = \frac{1}{2}$	$\checkmark x = \frac{1}{2}$	
	$y = \frac{1}{2}$	1	
	$y-\frac{1}{2}$	$\sqrt{y} = \frac{1}{2}$	
	Substitute $\left(\frac{1}{2}; \frac{1}{2}\right)$ into the equation of f :	_	
	$y = b^x$		
	$\frac{1}{2} = b^{\frac{1}{2}}$		
	$b = \left(\frac{1}{2}\right)^2 = \frac{1}{4}$	✓ substitution $\checkmark b = \frac{1}{4}$	
	$b = \left(\frac{1}{2}\right) = \frac{1}{4}$	$\checkmark b = \frac{1}{4}$	
	OR/OF	4	(5)
	At point R, PT and OR intersect:		
	-x+1=x		
	2x=1	$\checkmark -x+1=x$	
	_r 1	1	
	$x = \frac{1}{2}$	$\checkmark x = \frac{1}{2}$	
	$y = \frac{1}{2}$	2	
	$y = \frac{1}{2}$	$\sqrt{y} = \frac{1}{2}$	
	Substitute $\left(\frac{1}{2}; \frac{1}{2}\right)$ into the equation of g :	$\sqrt{-x+1} = x$ $\sqrt{x} = \frac{1}{2}$ $\sqrt{y} = \frac{1}{2}$	
	$y = \log_b x$		
	$\frac{1}{2} = \log_b \left(\frac{1}{2}\right)$	√ guhatituti	
		✓ substitution	
	$b^{\frac{1}{2}} = \frac{1}{2}$		
	$b = \left(\frac{1}{2}\right)^2 = \frac{1}{4}$	$\checkmark b = \frac{1}{4}$	
	$b = \left(\frac{1}{2}\right) = \frac{1}{4}$	4	(5)
	(2) 7		(5) [11]
L			

QU.	ESTION/VRAAG /	
7.1	$A = P(1-i)^n$	
	$331527 = 500000(1-i)^3$	✓ substitution of A, P &
	$(1-i)^3 = \frac{331527}{500000}$	<i>n</i> in correct formula
	$1 - i = \sqrt[3]{\frac{331527}{500000}}$	$\checkmark 1 - i = \sqrt[3]{\frac{331527}{500000}}$ or
	•	$1 - i = \sqrt[3]{0,663054}$
	i = 0.12800	$1-i = \sqrt[3]{0,003034}$ $\checkmark \text{ answer}$
	=12,8%	(3)
7.2	$P = \frac{x \left[1 - \left(1 + i \right)^{-n} \right]}{x}$	
	l	0.24
	$46\ 000 = \frac{1900 \left[1 - \left(1 + \frac{0.24}{12} \right)^{-n} \right]}{\frac{0.24}{12}}$	$\checkmark i = \frac{0.24}{12} / 0.02 / \frac{1}{50}$
	46,000 - 12)	✓ substitution of
	0.24	P, x and i in correct
	12	formula
	$\frac{46}{95} = 1 - \left(1 + \frac{0.24}{12}\right)^{-n}$	
	$\left(1 + \frac{0,24}{12}\right)^{-n} = \frac{49}{95}$	
	$n = -\log_{\left(1 + \frac{0.24}{12}\right)} \frac{49}{95}$ OR/OF $-n\log\left(1 + \frac{0.24}{12}\right) = \log\frac{49}{95}$	
	= 33,43276544 months	✓ 33,43
	It will take him 34 months to pay back the loan.	✓ answer
7.2		(4)
7.3	$F = \frac{x[(1+i)^n - 1]}{x}$	
	<i>l</i>	$\checkmark i = \frac{0,075}{4} / 0,01875$
	$3500 \left[\left(1 + \frac{0,075}{4} \right)^{4 \times 6,5} - 1 \right]$	1 · · · · · · · · · · · · · · · · · · ·
	=	$\checkmark n = 4 \times 6,5 = 26$
	$\frac{0,075}{4}$	✓ substitution into correct formula
	= R 115 902,69	✓ 115 902,69
	$A = P(1+i)^n$	
	4.05	✓ substitution into correct
	$=115 902,69 \left(1+\frac{0,075}{4}\right)^{4\times3,5}$	formula
	= R 150 328,12	✓ 150 328,12
		(6) [13]
		[13]

QUE	STION/VRAAG 8	
8.1	$f(x+h) = 3-2(x+h)^2$	
	$= 3 - 2x^2 - 4xh - 2h^2$	
	$f(x+h)-f(x)=3-2x^2-4xh-2h^2-3+2x^2$	(2 2 2 4 4 212
	$= -4xh - 2h^2$	$\checkmark 3 - 2x^2 - 4xh - 2h^2$
	c(-1)	$\checkmark -4xh-2h^2$
	$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$ $\dots -4xh - 2h^2$	$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$
	$=\lim_{h\to 0}\frac{-4xh-2h^2}{h}$	
	$=\lim_{h\to 0}\frac{h(-4x-2h)}{h}$	$ \checkmark \lim_{h \to 0} (-4x - 2h) $ $ \checkmark -4x \tag{5} $
	$=\lim_{h\to 0} \left(-4x-2h\right)$	(3)
	=-4x	
	OR/OF	$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$
	$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$	
	$= \lim_{h \to 0} \frac{3 - 2(x + h)^2 - (3 - 2x^2)}{h}$	$\checkmark 3 - 2x^2 - 4xh - 2h^2$
	$= \lim_{h \to 0} \frac{3 - 2x^2 - 4xh - 2h^2 - 3 + 2x^2}{h}$	$\checkmark -4xh-2h^2$
	$=\lim_{h\to 0}\frac{-4xh-2h^2}{h}$	$\checkmark \lim_{h\to 0} (-4x-2h)$
	$=\lim_{h\to 0}\frac{h(-4x-2h)}{h}$	$\checkmark -4x$ (5)
	$=\lim_{h\to 0} \left(-4x-2h\right)$	
	=-4x	
8.2	$y = \frac{12x^2 + 2x + 1}{6x}$	
	$=2x+\frac{1}{3}+\frac{1}{6x}$	$\checkmark \frac{12x^2}{6x} + \frac{2x}{6x} + \frac{1}{6x}$ $\checkmark \frac{1}{6}x^{-1}$ $\checkmark 2$ $\checkmark -\frac{1}{6}x^{-2}$ (4)
	$=2x+\frac{1}{3}+\frac{1}{6}x^{-1}$	6x 6x 6x
	$\frac{-2\alpha}{3}$ $\frac{1}{6}$	$\sqrt{\frac{1}{6}}x^{-1}$
	$\frac{dy}{dx} = 2 - \frac{1}{6}x^{-2}$	√ 2
	$=2-\frac{1}{6x^2}$	$\sqrt{-\frac{1}{x^{-2}}}$
	$-2 \frac{1}{6x^2}$	$\left[\begin{array}{c} -\frac{1}{6}x \\ \end{array}\right]$
		(4)

	SCE/SSE Marking Successives/11distern tgty	
8.3	$y = x^3 + bx^2 + cx - 4$	
	$y' = 3x^2 + 2bx + c$	$\checkmark y' = 3x^2 + 2bx + c$ $\checkmark y'' = 6x + 2b$
	y'' = 6x + 2b	$\checkmark y'' = 6x + 2b$
	At point of inflection:	
	y'' = 6x + 2b = 0	$\checkmark y'' = 0$
	Substitute $x = 2$:	y - 0
	6(2) + 2b = 0	\checkmark sub $x = 2$ into $y'' = 0$
	2b = -12	$\int \operatorname{sub} x - 2 \operatorname{into} y = 0$
	b = -6	✓ value of b
	$y = x^3 - 6x^2 + cx - 4$	
	Substitute (2; 4):	
	$4 = 2^3 - 6(2)^2 + c(2) - 4$	✓ substitute (2;4)
	2c = 24	
	c = 12	✓ value of c
	$y = x^3 - 6x^2 + 12x - 4$	(7)
		[16]

	IION/VKAAG 9	
9.1	(0;1)	✓ answer
		(1)
9.2	$f(x) = x^3 - x^2 - x + 1$	
	$f(x) = x^2(x-1) - (x-1)$	
		$\checkmark (x-1)$
	$f(x) = (x-1)(x^2-1)$	$\checkmark (x-1)$ $\checkmark (x^2-1)$
	f(x) = (x-1)(x-1)(x+1)	(x-1)(x-1)(x+1)
	f(x) = 0	
	(x-1)(x-1)(x+1) = 0	√ (−1; 0)
	<i>x</i> -intercepts: $(-1; 0); (1; 0)$	$\checkmark(1;0)$
		(5)
	OR	
	$f(x) = x^3 - x^2 - x + 1$	$\checkmark (x-1)$
	$f(x) = (x-1)(x^2-1)$	$\checkmark (x-1)$ $\checkmark (x^2-1)$
	f(x) = (x-1)(x-1)(x+1)	$\checkmark (x-1)(x-1)(x+1)$
		(x-1)(x-1)(x+1)
	f(x) = 0	
	(x-1)(x-1)(x+1)=0	((1 0)
	x-intercepts: $(-1; 0); (1; 0)$	√ (-1; 0)
	(1,0),(1,0)	√ (1; 0)
	OR	(5)

	SCE/SSE – Marking guidelines/Nasienriglyne	
	$f(x) = x^{3} - x^{2} - x + 1$ $f(x) = (x+1)(x^{2} - 2x + 1)$ $f(x) = (x+1)(x-1)(x-1)$ $f(x) = 0$ $(x-1)(x-1)(x+1) = 0$ x-intercepts: (-1; 0); (1; 0)	√(x+1) √(x2-2x+1) √(x-1)(x-1)(x+1) $ √(-1; 0) √(1; 0) $ (5)
9.3	$f(x) = x^{3} - x^{2} - x + 1$ $f'(x) = 3x^{2} - 2x - 1$ $f'(x) = 0$ $(3x+1)(x-1) = 0$ $x = -\frac{1}{3} \text{ or } x = 1$ $y = \frac{32}{27} \qquad y = 0$ $\left(-\frac{1}{3}; \frac{32}{27}\right) (1; 0)$	$ \checkmark f'(x) = 3x^2 - 2x - 1 $ $ \checkmark f'(x) = 0 $ $ \checkmark factorisation $ $ \checkmark x value $ $ \checkmark x value $ $ \checkmark y = \frac{32}{27} $ (6)
9.4	$\frac{\left(-\frac{1}{3},\frac{32}{27}\right)}{(-1;0)}$ 0 (1;0)	✓y- and x-intercepts ✓ shape ✓ turning points (3)
9.5	$f'(x) < 0$ $-\frac{1}{3} < x < 1$ OR/OF $(-\frac{1}{3}; 1)$	$\checkmark x > -\frac{1}{3}$ $\checkmark x < 1$ (2) $\checkmark \left(-\frac{1}{3}\right)$ $\checkmark 1)$ (2) $[17]$

10.1	$60 = 2b + 2r + \frac{1}{2}(2\pi r)$	$\checkmark 60 = 2b + 2r + \frac{1}{2}(2\pi r)$
	$2b = 60 - 2r - \pi r$	1
	$b = 30 - r - \frac{1}{2}\pi r$	$\checkmark b = 30 - r - \frac{1}{2}\pi r$
	2	(2)
10.2	Area = area of rectangle + area of semicircle	
	$A(r) = length \times breadth + \frac{1}{2} (area of circle)$	
	$=(2r)(30-r-\frac{1}{2}\pi r)+\frac{1}{2}(\pi r^2)$	$\checkmark (2r) \left(30 - r - \frac{1}{2}\pi r\right)$
	$= 60r - 2r^2 - \pi r^2 + \frac{1}{2}\pi r^2$	$\checkmark \frac{1}{2} (\pi r^2)$
	$=60r-2r^2-\frac{1}{2}\pi r^2$	$\checkmark 60r - 2r^2 - \frac{1}{2}\pi r^2$
	$=60r - \left(2 + \frac{1}{2}\pi\right)r^2$	2
	For a maximum,	
	A'(r) = 0	$\checkmark A'(r) = 0$
	$60 - 2\left(2 + \frac{1}{2}\pi\right)r = 0$	$\checkmark A'(r) = 0$ $\checkmark 60 - 2\left(2 + \frac{1}{2}\pi\right)r$
	$60 - (4+\pi)r = 0$	
	$r = \frac{60}{4 + \pi}$	
	= 8,40 m	✓answer
		(6) [8]

QUES	ITON/VRAAG 11	
11.1	$8 \times 7 \times 6 \times 5 \times 4$ or $\frac{8!}{3!}$	$\checkmark 8 \times 7 \times 6 \times 5 \times 4 / \frac{8!}{3!}$
	= 6720	✓ 6720
	0,20	(2)
11.2	$P(A \text{ and } B) = P(A) \times P(B)$	
	$=0.4\times0.35$	✓ 0,4 × 0,35
	= 0,14	✓ 0,14
	P(A or B) = P(A) + P(B) - P(A and B)	
	=0.4+0.35-0.14	✓ substitution
	= 0,61	✓ answer (4)
	0,35 pass	
	School A	
	0,65	
	/ tail	
	0,2/	
	pass	
	0,65 P P P P P P P P P P P P P P P P P P P	
	School B	
	0,35 fail	
	0,5 pass	
	0,9	
	School C <	
	0,1	
	fail	
11.3.1	100% - 20% or/of $1 - 0.2$	$\checkmark 100\% - 20\% \text{ or } 1 - 0.2$
	$= 80\% \qquad \text{or/of} \qquad = 0.8$	✓80% or 0,8
	OR/OF	
		$\checkmark 30\% + 50\%$ or $0.3 + 0.5$
11 2 2	30% + 50% = 80% or/of $0.3 + 0.5 = 0.8$	✓ 80% or 0,8 (2)
11.3.2	$0.3 \times 0.35 = 0.105$ -10.5%	✓ 0,3 ✓ 0,35
	= 10,5%	$\checkmark 0,105 = 10,5\%$
		(3)
11.3.3	$(0,2\times0,35)+(0,3\times0,65)+(0,5\times0,9)$	✓ 0,2×0,35
	= 0,715	✓ 0,3×0,65
	= 71,5%	✓ 0,5×0,9
		✓answer (4)
		[15]
L	1	1 [20]

TOTAL/TOTAAL: 150

SENIOR CERTIFICATE EXAMINATIONS/ SENIORSERTIFIKAAT-EKSAMEN

MATHEMATICS P1/WISKUNDE V1

2016

MARKING GUIDELINE (ADDENDUM)

MARKS/PUNTE: 150

NOTE:

- If a candidate answers a question TWICE, only mark the FIRST attempt.
- Consistent accuracy applies in ALL aspects of the marking memorandum.

LET WEL:

- Indien 'n kandidaat 'n vraag TWEE keer beantwoord, sien slegs die EERSTE poging na.
- Volgehoue akkuraatheid is op ALLE aspekte van die memorandum van toepassing.

Once a candidate has reached 2 errors related to marks: stop marking.

QUESTION/VRAAG 1

1.1.1	• incorrect rounding 2/3 – only rounding penalization
	• use of calculator 2/3 – this is where use of calculator for factors get used
	• answer in surd form 2/3 (at least simplified under square root)
	`
1.1.2	CA mark only if quadratic equation
	check answers
	• if $6x^2 - 15 = x + 1$ breakdown $0/3$
	 both answer must be seen before selection if no factors are shown
	• if in the context of their incorrect sum, both of the answers are NA, both need to be
	shown as NA
1.1.3	$(x+6)(x-4) \ge 0$
	• $x \ge 4$ or / and $x \ge -6$, award 1/3 marks (factors)
	• $x \le 4$ or / and $x \le -6$, award 1/3 marks (factors)
	• $-6 \le x \le 4$, award 1/3 marks (factors)
	• $x \le -6$ and $x \ge 4$, award $2/3$ marks
	• equal is left out: −1
	•
	Answer only 3/3
1.2	NB : At the second error related to a mark (two skills) – no further marking.
	If incorrect algebra leads to the equation being linear: max 2/6 These marks will be the
	changing of the formula and the substitution mark.
	onanging of the formula the baositation mark.
1.3.2	CA from 1.3.1
	• If $7^x = p$ can award 1 mark for the concept
	• If answer $x = 2$ only $2/3$
	x = 2 only 2/3

2.1.2	CA from 2.1.1
	Answer only 2/2
2.1.3	 Answer only 1/4 If n = 7 2/4 Incorrect working that leads to use of logs and an not a natural number max 2/4
2.2.1	Answer only 2/2
2.2.2	• Answer only 1/6

19

• S_n has to equal 30 500 otherwise a BD

QUESTION/VRAAG 3

3.2	n = 5 only 1/3
3.3	Answer only 1/4

QUESTION/VRAAG 4

4.1	x = 4; $y = 3$ 1/1
4.3	y = 0 can be implied
4.4	CA from 4.2 and 4.3

QUESTION/VRAAG 5

5.1	Only working out, but no sketch max 4/6 – loose shape mark per graph not sketched
5.2	CA from turning point in 5.1
5.3	CA from sketch (TP to <i>y</i> -intercept)
5.4	Answer only 2/2

QUESTION/VRAAG 6

6.1	Answer only $2/2$ If answer not in terms of $b \max 1/2$
6.3	Coordinate from not needed

QUESTION/VRAAG 7

Penalise candidates a maximum of one mark (overall) for notation error in 7.1 and 7.2

7.1	 Interchange A and P – breakdown 0/3 Wrong formula 0/3 Early rounding: answer is 12,93% – 2/3 	
7.3	• i and n incorrect – learner can still get the substitution mark $1/6$ • If quarterly is taken as monthly consistently in both parts $5/6$ $A = P(1+i)^n$ • If 10 years is used: $= 115 \ 902,69 \left(1 + \frac{0,075}{4}\right)^{4 \times 10}$ $5/6$ $= R \ 243 \ 667,94$	

Penalise candidates a maximum of one mark (overall) for notation error in 8.1 and 8.2

8.1	$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$ Notation formula Formula can be implied
8.2	 If function and derivative is mixed but splitting of fractions is evident max ³/₄ If they start with differentiation – breakdown 0/4
8.3	y'' = 0 can be implied

QUESTION/VRAAG9

9.2	No working is shown(calculator used)
	• If the cubic becomes a quadratic 2/5
	• If three brackets 5/5
9.3	j (w) o cumot de imprica
	$f'(x) = 3x^2 - 2x - 1$
	$x = -\left(\frac{-2}{2(3)}\right)$ BE CAREFUL 1/6 for derivative
	$=\frac{1}{3}$
9.4	If dots only indicated on the graph $1/3 - x$ and y-intercepts
9.5	Only CA from a cubic graph
	Each answer gets evaluated independently

QUESTION/VRAAG 10

10.2	Derivative equal to zero is an independent mark
	A'(r) = 0 can be implied if working is correct

QUESTION/VRAAG 11

If percentages are used – penalize once per question

11.1	Answer only 2/2
	2 or 0 marks
11.3.2	Do not penalize rounding
11.3.3	Do not penalize rounding