Privacy and Data Protection in Emerging Scenarios

Security, Privacy, and Data Protection Laboratory
Dipartimento di Informatica
Università degli Studi di Milano

Privacy and integrity of data storage

Privacy of users

Privacy and integrity of data storage

Contributions and advancements

The research community has been very active and produced several contributions and advancements. E.g.,:

- Solutions for protecting confidentiality of stored data [ABGGKMSTX-05, CDJJPS-09b, CDFJPS-10, HIML-02]
- Indexes supporting different types of queries [CDDJPS-05, HIML-02, WL-06]
- Inference exposure evaluation [CDDJPS-05]
- Data integrity [S-05, XWYM-07, WYPY-08]
- Selective access to outsourced data [DFJPS-10b]
- ...

Protecting data confidentiality

- Solutions for protecting data can be based on:
 - o encryption
 - encryption and fragmentation
 - fragmentation

Encryption

Encryption

- The server can be honest-but-curious and should not have access to the resource content
- Data confidentiality is provided by wrapping a layer of encryption around sensitive data [HIML-02]
 - for performance reasons, encryption is typically applied at the tuple level

Fine-grained access to data in the cloud

- For confidentiality reasons, CSPs storing data cannot decrypt them for data processing/access
- Need mechanisms to support access to the outsourced data
 - effective and efficient
 - should not open the door to inferences

Keyword-based searches directly on the encrypted data: supported by specific cryptographic techniques (e.g., [CWLRL-11])

Homomorphic encryption: supports the execution of operations directly on the encrypted data (e.g., [BV11,G-09,GSW13])

- Encryption schemas: each column can be encrypted with a different encryption schema, depending on the conditions to be evaluated on it (e.g., Google encrypted BigQuery)
- Onion encryption (CryptDB): different onion layers each of which supports the execution of a specific SQL operation (e.g., HanaDB SEEED framework) [PRZB-11]

Indexes: metadata attached to the data and used for fine-grained information retrieval and query execution (e.g., [CDDJPS-05, HIML-02, WL-06])

can also be complementary to encryption (even with encryption users want to have the ability to perform searches based on metadata)

Encryption and indexes – Example

Indexes associated with attributes are used by the server to select data to be returned in response to a query

Accounts

Account	Customer	Balance
Acc1	Alice	100
Acc2	Alice	200
Acc3	Bob	300
Acc4	Chris	200
Acc5	Donna	400
Acc6	Elvis	200

Accounts^k

Counter	Etuple	I_A	I_C	I_B
1	x4Z3tfX2ShOSM	π	α	μ
2	mNHg1oC010p8w	σ	α	к
3	WslaCvfyF1Dxw	ξ	β	η
4	JpO8eLTVgwV1E	ρ	γ	к
5	qctG6XnFNDTQc	ς	δ	θ
6	4QbqCeq3hxZHklU	ı	ε	к

Query evaluation process

Indexes for queries: Direct (1:1)

Actual value or coding

- + simple and precise for equality queries
- preserves plaintext value distinguishability (inference attacks)

Indexes for queries: Direct (1:1)

Actual value or coding

- + simple and precise for equality queries
- preserves plaintext value distinguishability (inference attacks)

_				
D:	ati	ΔI	nt	•

<u>SSN</u>	Name	Illness	Doctor
12389	Alice	Asthma	Angel
23491	Bob	Asthma	Angel
34512		Asthma	Bell
45623		Bronchitis	Clark
56734	Eva	Gastritis	Dan
23211	Eva	Stroke	Ellis

Patients^k

Tid	Etuple	I_{S}	I_{N}	I_{I}	I_{D}
1	x4Z3tfX2ShOSM	π	K	α	δ
2	mNHg1oC010p8w	$\boldsymbol{\sigma}$	ω	α	δ
3	WslaCvfyF1Dxw	ξ	λ	α	ν
4	JpO8eLTVgwV1E	ρ	υ	β	γ
5	qctG6XnFNDTQc	ı	μ	α	σ
6	kotG8XnFNDTaW	χ	0	β	Ψ

Indexes for queries: Direct (1:1)

Actual value or coding

- + simple and precise for equality queries
- preserves plaintext value distinguishability (inference attacks)

Dati	ien	to

<u>SSN</u>	Name	Illness	Doctor
12389	Alice		Angel
23491		Asthma	Angel
34512	Carol	Asthma	Bell
45623	David	Bronchitis	Clark
56734	Eva	Gastritis	Dan
23211	Eva	Stroke	Ellis

Patients^k

Tid	Etuple	I_{S}	I_{N}	I_{I}	I_{D}
1	x4Z3tfX2ShOSM	π	K	α	δ
2	mNHg1oC010p8w	$\boldsymbol{\sigma}$	ω	α	δ
3	WslaCvfyF1Dxw	ξ	λ	C	ν
4	JpO8eLTVgwV1E	ρ	υ	β	γ
5	qctG6XnFNDTQc	ı	μ	C	σ
6	kotG8XnFNDTaW	χ	0	β	Ψ

Indexes for queries: Bucket (n:1)

Partition-based or hash-based

- + supports for equality queries
- collisions remove plaintext distinguishability
- result may contain spurious tuples (postprocessing query)
- still vulnerable to inference attacks

Indexes for queries: Bucket (n:1)

Partition-based or hash-based

- + supports for equality queries
- + collisions remove plaintext distinguishability
- result may contain spurious tuples (postprocessing query)
- still vulnerable to inference attacks

⊃ລ	ti	Δ	n	te	

SSN	Name	Illness	Doctor				
12389	Alice	Asthma	Angel				
23491	Bob	Asthma	Angel				
34512	Carol	Asthma	Bell				
45623	David	Bronchitis	Clark				
56734	Eva	Gastritis	Dan				
23211	Eva	Stroke	Ellis				

Patients^k

Tid	Etuple	I_{S}	I_N	$I_{\rm I}$	$I_{\mathbb{D}}$
1	x4Z3tfX2ShOSM	π	K	α	δ
2	mNHg1oC010p8w	$\overline{\omega}$	ω	α	δ
3	WslaCvfyF1Dxw	ξ	λ	α	V
4	JpO8eLTVgwV1E	ρ	υ	β	γ
5	qctG6XnFNDTQc	1	μ	α	σ
6	kotG8XnFNDTaW	χ	0	β	Ψ

Indexes for queries: Bucket (n:1)

Partition-based or hash-based

- + supports for equality queries
- + collisions remove plaintext distinguishability
- result may contain spurious tuples (postprocessing query)
- still vulnerable to inference attacks

D	at	i۸	n	ts

SSN	Name	Illness	Doctor		
12389	Alice	Asthma	Angel		
23491	Bob	Asthma	Angel		
34512	Carol	Asthma	Bell		
45623	David	Bronchitis	Clark		
56734	Eva	Gastritis	Dan		
23211	Eva	Stroke	Ellis		

Patients^k

Tid	Etuple	I_{S}	I_N	$I_{\rm I}$	I_{D}
1	x4Z3tfX2ShOSM	π	K	α	δ
2	mNHg1oC010p8w	$\overline{\omega}$	ω	α	δ
3	WslaCvfyF1Dxw	N	λ	α	V
4	JpO8eLTVgwV1E	ρ	υ	β	γ
5	qctG6XnFNDTQc	1	μ	α	σ
6	kotG8XnFNDTaW	χ	0	β	Ψ

Indexes for queries: Flattened (1:n)

Flat indexes

- + decreases exposure to inference attacks
- remains vulnerabile to dynamic observations

Indexes for queries: Flattened (1:n)

Flat indexes

- + decreases exposure to inference attacks
- remains vulnerabile to dynamic observations

Patients

SSN	Name	Illness	Doctor
12389	Alice	Asthma	Angel
23491	Bob	Asthma	Angel
34512			Bell
45623	David	Bronchitis	Clark
56734	Eva	Gastritis	Dan
23211	Eva	Stroke	Ellis

Patients^k

Tid	Etuple	I_{S}	I_N	I_{I}	$I_{\mathbb{D}}$
1	x4Z3tfX2ShOSM	π	ĸ	Ol	δ
2	mNHg1oC010p8w	$\overline{\omega}$	ω	C	δ
3	WslaCvfyF1Dxw	ξ	λ	C	V
4	JpO8eLTVgwV1E	ρ	υ	β	γ
5	qctG6XnFNDTQc	1	μ	CC	σ
6	kotG8XnFNDTaW	χ	0	β	Ψ

Indexes for queries: Flattened (1:n)

Flat indexes

- + decreases exposure to inference attacks
- remains vulnerabile to dynamic observations

_				
u	21	116	n	te
	a		7 I I	ı

SSN	Name	Illness	Doctor
12389	Alice	Asthma	Angel
23491			Angel
34512			Bell
45623	David	Bronchitis	Clark
56734	Eva	Gastritis	Dan
23211	Eva	Stroke	Ellis

Patients^k

Tid	Etuple	I_{S}	I_N	I_{I}	$I_{\mathbb{D}}$
1	x4Z3tfX2ShOSM	π	ĸ	Ol	δ
2	mNHg1oC010p8w	$\overline{\omega}$	ω	C	δ
3	WslaCvfyF1Dxw	ξ	λ	C	V
4	JpO8eLTVgwV1E	ρ	υ	β	γ
5	qctG6XnFNDTQc	1	μ	CC	σ
6	kotG8XnFNDTaW	χ	0	β	Ψ

Partition-based index [HIML-02]

- Consider an arbitrary plaintext attribute A_i in relational schema R, with domain D_i
- *D_i* is partitioned in a number of non-overlapping subsets of values, called partitions, containing contiguous values
- Given a plaintext tuple t in r, the value of attribute A_i for t belongs to a partition
 - o function $ident_{RA_i}(p_j)$ assigns to each partition p_j of attribute A_i in R an identifier
- The corresponding index value is the unique value associated with the partition to which the plaintext value t[A_i] belongs
 - $Map_{R.A_i}(v) = ident_{R.A_i}(p_j)$, where p_j is the partition containing v
- *Map_{R,A_i}* can be order-preserving or random

Partition-based index – Example

Random mapping

- $Map_{Balance}(100) = \mu$
- $Map_{Balance}(200) = \kappa$
- $Map_{Balance}(300) = \eta$
- $Map_{Balance}(400) = \theta$

Query conditions supported by the partition-based index

- Support queries where conditions are boolean formulas over terms of the form
 - Attribute op Value
 - o Attribute op Attribute
- Allowed operations for *op* include $\{=, <, >, \le, \ge\}$

Mapping conditions $Map_{cond} - 1$

• $A_i = v$. The mapping is defined as:

$$Map_{cond}(A_i = v) \Longrightarrow I_i = Map_{A_i}(v)$$

Example

$$Map_{cond}(Balance = 100) \Longrightarrow I_{Balance} = Map_{Balance}(100) = \mu$$

- A_i < v. The mapping depends on whether or not the mapping function Map_{A_i} is order-preserving or random
 - \circ order-preserving: $Map_{cond}(A_i < v) \Longrightarrow I_i \leq Map_{A_i}(v)$
 - o random: check if attribute I_i lies in any of the partitions that may contain a value v' where v' < v: $Map_{cond}(A_i < v) \Longrightarrow I_i \in Map_{A_i}^<(v)$

Example

$$Map_{cond}(Balance < 200) \Longrightarrow I_{Balance} \in \{\mu, \kappa\}$$

• $A_i > v$. Symmetric with respect to $A_i < v$

Mapping conditions $Map_{cond} - 2$

 A_i = A_j. The translation is performed by considering all possible pairs of partitions of A_i and A_j that overlap.
 Example

$$Map_{cond}(Balance=Benefit) \Longrightarrow egin{align*} & (I_{Balance}=\mu \wedge I_{Benefit}=\gamma) \ & \lor (I_{Balance}=\kappa \wedge I_{Benefit}=\gamma) \ & \lor (I_{Balance}=\eta \wedge I_{Benefit}=\alpha) \ & \lor (I_{Balance}=\theta \wedge I_{Benefit}=\alpha) \end{aligned}$$

• $A_i < A_j$. The mapping depends on whether or not the mapping functions Map_{A_i} and Map_{A_j} are order-preserving or random

Query execution

- Each query Q on the plaintext DB is translated into:
 - a query Q_s to be executed at the server
 - a query Q_c to be executed at client on the result
- Query Q_s is defined by exploiting the definition of $Map_{cond}(C)$
- Query Q_c is executed on the decrypted result of Q_s to filter out spurious tuples
- The translation should be performed in such a way that the server is responsible for the majority of the work

Accounts

<u>Account</u>	Customer	Balance		
Acc1	Alice	100		
Acc2	Alice	200		
Acc3	Bob	300		
Acc4	Chris	200		
Acc5	Donna	400		
Acc6	Elvis	200		

Accounts₂^k

Counter	Etuple	I_A	$I_{\mathbb{C}}$	I_{B}
1	x4Z3tfX2ShOSM	π	α	μ
2	mNHg1oC010p8w	σ	α	κ
3	WslaCvfyF1Dxw	ξ	δ	θ
4	JpO8eLTVgwV1E	ρ	α	κ
5	qctG6XnFNDTQc	ς	β	к
6	4QbqC3hxZHklU	ı	β	κ

Original query on Accounts Translation over Accounts^k

Q := SELECT *
FROM Accounts
WHERE Balance=200

 $Q_s := SELECTE tuple$ FROM Accounts₂
WHERE $I_B = \kappa$

 $Q_c := SELECT^*$

<u>Account</u>	Customer	Balance
Acc1	Alice	100
Acc2	Alice	200
Acc3	Bob	300
Acc4	Chris	200
Acc5	Donna	400
Acc6	Elvis	200

Accounts₂^k

Counter	Etuple	I_A	$I_{\mathbb{C}}$	I_{B}
1	x4Z3tfX2ShOSM	π	α	μ
2	mNHg1oC010p8w	σ	α	κ
3	WslaCvfyF1Dxw	ξ	δ	θ
4	JpO8eLTVgwV1E	ρ	α	κ
5	qctG6XnFNDTQc	ς	β	к
6	4QbqC3hxZHklU	ı	β	κ

Original query on Accounts Translation over Accounts^k

Q := SELECT *

FROM Accounts
WHERE Balance=200

Q_s := SELECT Etuple

FROM Accounts^k₂ WHERE $I_B = \kappa$

 $Q_c := SELECT^*$

Α	CC	Oι	ın	ts
_	CC	v	411	

Accounts					
Account	Customer	Balance			
Acc1	Alice	100			
Acc2	Alice	200			
Acc3	Bob	300			
Acc4	Chris	200			
Acc5	Donna	400			
Acc6	Elvis	200			

Accounts₂^k

Counter	Etuple	I_A	$I_{\mathbb{C}}$	l _B
1	x4Z3tfX2ShOSM	π	α	μ
2	mNHg1oC010p8w	$\boldsymbol{\sigma}$	α	K
3	WslaCvfyF1Dxw	ξ	δ	θ
4	JpO8eLTVgwV1E	ρ	α	K
5	qctG6XnFNDTQc	ς	β	K
6	4QbqC3hxZHklU	1	β	K

Original query on Accounts Translation over Accounts^k

Q := SELECT *
FROM Accounts
WHERE Balance=200

 $Q_s := SELECTE tuple$ FROM Accounts₂
WHERE $I_B = \kappa$

 $Q_c := SELECT^*$

Accounts

<u>Account</u>	Customer	Balance			
Acc1	Alice	100			
Acc2	Alice	200			
Acc3	Bob	300			
Acc4	Chris	200			
Acc5	Donna	400			
Acc6	Elvis	200			

Accounts₂^k

Counter	Etuple	I_A	I_{C}	l _B
1	x4Z3tfX2ShOSM	π	α	μ
2	mNHg1oC010p8w	$\boldsymbol{\sigma}$	α	K
3	WslaCvfyF1Dxw	ξ	δ	θ
4	JpO8eLTVgwV1E	ρ	α	K
5	qctG6XnFNDTQc	ς	β	K
6	4QbqC3hxZHklU	1	β	K

Original query on Accounts Translation over Accounts^k

Q := SELECT *
FROM Accounts
WHERE Balance=200

 $Q_s := SELECTE tuple$ FROM Accounts^k₂
WHERE $I_B = \kappa$

 $Q_c := SELECT^*$ FROM $Parameter Decrypt(Q_s, Key)$

WHERE Balance=200

<u>Account</u>	Customer	Balance
Acc1	Alice	100
Acc2	Alice	200
Acc3	Bob	300
Acc4	Chris	200
Acc5	Donna	400
Acc6	Elvis	200

Accounts₂^k

Counter	Etuple	I_A	$I_{\mathbb{C}}$	l _B
1	x4Z3tfX2ShOSM	π	α	μ
2	mNHg1oC010p8w	$\boldsymbol{\sigma}$	α	K
3	WslaCvfyF1Dxw	ξ	δ	θ
4	JpO8eLTVgwV1E	ρ	α	κ
5	qctG6XnFNDTQc	ς	β	K
6	4QbqC3hxZHklU	1	β	K

Original query on Accounts Translation over Accounts^k

Q := SELECT *
FROM Accounts
WHERE Balance=200

 $Q_s := SELECTE tuple$ FROM Accounts₂
WHERE $I_B = \kappa$

 $Q_c := SELECT^*$

Hash-based index [CDDJPS-05]

- Based on the concept of one-way hash function
- For each attribute A_i in R with domain D_i , a secure one-way hash function $h: D_i \to B_i$ is defined, where B_i is the domain of index I_i associated with A_i
- Given a plaintext tuple t in r, the index value corresponding to t[A_i] is h(t[A_i])
- Important properties of any secure hash function h are:
 - $\lor \forall x, y \in D_i : x = y \implies h(x) = h(y)$ (determinism)
 - o given two values $x, y \in D_i$ with $x \neq y$, we may have that h(x) = h(y) (collision)
 - given two distinct but near values x,y ($|x-y| < \varepsilon$) chosen randomly in D_i , the discrete probability distribution of the difference h(x) h(y) is uniform (strong mixing)

An example of encrypted relation with hashing

Accounts				
<u>Account</u>	Customer	Balance		
Acc1	Alice	100		
Acc2	Alice	200		
Acc3	Bob	300		
Acc4	Chris	200		
Acc5	Donna	400		
Acc6	Elvis	200		

Accounts ^k			
Enc_tuple	$I_{\mathbf{A}}$	$I_{\rm C}$	Ι _Β
x4Z3tfX2ShOSM	π	α	μ
mNHg1oC010p8w	σ	α	к
WslaCvfyF1Dxw	ξ	δ	θ
JpO8eLTVgwV1E	ρ	α	κ
qctG6XnFNDTQc	ς	β	κ
4QbqC3hxZHklU	ı	β	к

- $h_c(Alice) = h_c(Chris) = \alpha$
- $h_c(Donna) = h_c(Elvis) = \beta$
- $h_c(\mathsf{Bob}) = \delta$
- $h_b(200)=h_b(400)=\kappa$
- $h_b(100) = \mu$
- $h_b(300) = \theta$

Query conditions supported by the hash-based index

- Support queries where conditions are boolean formulas over terms of the form
 - Attribute = Value
 - Attribute1 = Attribute2, if Attribute1 and Attribute2 are indexed with the same hash function
- It does not support range queries (a solution similar to the one adopted for partition-based methods is not viable)
 - colliding values in general are not contiguous in the plaintext domain
- Query translation works like in the partition-based method

Interval-based queries [CDDJPS-05]

- Order-preserving indexing techniques (e.g., [AKSX-04]): support interval-based queries but expose to inference
 - comparing the ordered sequences of plaintext and indexes would lead to reconstruct the correspondence
- Non order-preserving techniques: data are not exposed to inference but interval-based queries are not supported
- DBMSs support interval-based queries using B+-trees, but the B+-tree defined by the server on indexes is of no use

Possible solution:

- Calculate the nodes in the B+-tree at the client and encrypt each node as a whole at the server
- o B+-tree traversal must be performed at the trusted front-end

B+-tree example - 1

B+-tree Table

ID	Node	
0	(1,Donna,2,_,_)	
1	(3,Chris,4,_,_)	
2	(5,Elvis,6,_,_)	
3	(Alice,Bob,4)	
4	(Chris,_,5)	
5	(Donna,_,6)	
6	(Elvis,_,_)	

Encrypted B+-tree Table

ID	Enc_Node	
0	/WKu5y8laqK82(
1	AXYaqohgyVObU	
2	IUf7R.PK5h5fU	
3	uOtdm/HDXNSqU	
4	GLDWRnBGlvYBA	
5	a9yl36PA3LeLk	
6	H6GwdJpXiU8MY	

B+-tree example – 2

Query on the plaintext relation

SELECT * FROM Accounts WHERE Customer = 'Bob'

Interaction for query evaluation

Searchable encryption

Order preserving encryption

- Order Preserving Encryption Schema (OPES) takes as input a target distribution of index values and applies an order preserving transformation [AKS-04] so that the resulting index values follow the target distribution
 - + comparison can be directly applied on the encrypted data
 - + query evaluation does not produce spurious tuples
 - vulnerable with respect to inference attacks
- Order Preserving Encryption with Splitting and Scaling (OPESS) schema creates index values so that their frequency distribution is flat [WL-06]

Fully homomorphic encryption [G-09, GKPVZ-13]

Fully homomorphic encryption schema:

- allows performing specific computation on encrypted data
- decryption of the computation result, yields the result of operations performed on the plaintext data

Recent advancement: a functional-encryption schema that fits together several existing schemes (homomorphic encryption, garbled circuit, attribute-based encryption) [GKPVZ-13]

still too computationally intensive for practical DBMS applications

Inference exposure

A. Ceselli, E. Damiani, S. De Capitani di Vimercati, S. Jajodia, S. Paraboschi, and P. Samarati, "Modeling and Assessing Inference Exposure in Encrypted Databases," in *ACM TISSEC*, vol. 8, no. 1, February 2005.

Inference exposure

There are two conflicting requirements in indexing data:

- indexes should provide an effective query execution mechanism
- indexes should not open the door to inference and linking attacks

It is important to measure quantitatively the level of exposure due to the publication of indexes:

 ε = Exposure Coefficient

Scenarios

The computation of the exposure coefficient ε depends on two factors:

- the indexing method adopted, e.g.,
 - direct encryption
 - hashing
- the a-priori knowledge of the intruder, e.g.,
 - ∘ Freq+DB^k:
 - the frequency distribution of plaintext values in the original database (Freq)
 - the encrypted database (DB^k)
 - \circ DB+DB k :
 - the plaintext database (DB)
 - the encrypted database (DB^k)

Possible inferences

Freq+DB^k

- plaintext content: determine the existence of a certain tuple (or association of values) in the original database
- *indexing function*: determine the correspondence between plaintext values and indexes

$DB+DB^k$

 indexing function: determine the correspondence between plaintext values and indexes

Exposure coefficient computation [CDDJPS-05]

	Direct Encryption	Hashing
Freq+DB ^k	Quotient Table	Multiple subset sum problem
$DB + DB^k$	RCV graph	RCV line graph

Freq+DB k – Example

Knowledge

Account	Customer	Е
Acc1	Alice	1 [
Acc2	Alice	1
Acc3	Bob	1
Acc4	Chris	l
Acc5	Donna	1 [
Acc6	Elvis	

Customer	Balance
Alice	100
Alice	200
Bob	300
Chris	200
Donna	400
Elvis	200

Accounts^k

Counter	Etuple		I_C	\mathbf{I}_{B}
1	x4Z3tfX2ShOSM	π	α	μ
	mNHg1oC010p8w	σ	α	κ
	WslaCvfyF1Dxw	ξ	β	η
		ρ	γ	к
5	qctG6XnFNDTQc	ς	δ	θ
6	4QbqC3hxZHklU	ı	ε	к

Inference

- $I_R = Balance$
- $\kappa = 200$ (indexing inference)
- α =Alice (indexing inference)
- (Alice,200) is in the table (association inference)
- · Alice is also associated with a value different from 200 ("100,300,400", all equiprobable)

Direct encryption – Freq+DB^k

- Correspondence between an index and a plaintext value can be determined based on the number of occurrences of the index/value
 - Basic protection: values with the same number of occurrences are indistinguishable to the attacker
- Assessment of index exposure based on equivalence relation where index/plaintext values with same number of occurrences belong to the same class
 - \circ Exposure of values in equivalence class C is $1/\mid C\mid$

Freq+DB k – Example of exposure computation

A.1 =
$$\{\pi, \varpi, \xi, \rho, \zeta, \iota\} = \{\text{Acc1}, ..., \text{Acc6}\}\$$

$$C.1 = \{\beta, \gamma, \delta, \varepsilon\} = \{Bob, Chris, Donna, Elvis\}$$

$$C.2 = {\alpha} = {Alice}$$

B.1 =
$$\{\mu, \eta, \theta\}$$
 = $\{100, 300, 400\}$

B.3 =
$$\{\kappa\}$$
 = $\{200\}$

INDEX_VALUE		
$I_{\mathbf{A}}$	$I_{\mathbf{C}}$	$I_{\mathbf{B}}$
π	α	μ
σ	α	κ
ξ	β	η
ρ	γ	κ
ς	δ	θ
1	۶	K

INDEX VALUES

QUOTIENT

qt_A	qt_C	qt_B
A.1	C.2	B.1
A.1	C.2	B.3
A.1	C.1	B.1
A.1	C.1	B.3
A.1	C.1	B.1
A.1	C.1	B.3

INVERSE CARDINALITY

ic_A	ic_{C}	ic_B
1/6	1	1/3
1/6	1	1
1/6	1/4	1/3
1/6	1/4	1
1/6	1/4	1/3
1/6	1/4	1

$$\mathscr{E} = \frac{1}{n} \sum_{i=1}^{n} \prod_{j=1}^{k} \mathrm{IC}_{i,j} = 1/18$$

Direct encryption – DB+DB^k

- 3-colored undirected Row-Column-Value graph:
 - one vertex of color "column" for every attribute
 - one vertex of color "row" for every tuple
 - one vertex for every distinct value in a column
 - an arc connects every value to the column and row(s) in which it appears
- RCV on plaintext values is identical to the one on indexes
- Inference exposure can be measured by evaluating the automorphisms of the graph
- Not sufficient to count the number of automorphisms:
 - o if there are K automorphisms and in k of them the label assigned to v_i is the same, there is a probability of k/K of identifying the value

$DB+DB^k$ – Example (1)

Customer	Balance
Alice	100
Alice	200
Bob	300
Chris	200
Donna	400
Elvis	200

$I_{\mathbf{C}}$	l _B
α	μ
α	κ
β	η
γ	K
δ	θ
ε	κ

$DB+DB^k$ – Example (2)

Inference

- I_C = Customer
- I_B = Balance
- α = Alice
- μ = 100
- $\kappa = 200$
- $\{\gamma, \varepsilon\}$ = {Chris,Elvis}
- $\{\langle \beta, \eta \rangle, \langle \delta, \theta \rangle\} = \{\langle \mathsf{Bob}, \mathsf{300} \rangle, \langle \mathsf{Donna}, \mathsf{400} \rangle\}$

Computing the exposure coefficient

- The set of automorphisms constitutes a group described by the coarsest equitable partition of the vertices:
 - each subset appearing in the partition contains vertices that can be substituted one for the other in an automorphism
- Nauty algorithm: iteratively derives the partition

• Probability of identifying a vertex in partition C: 1/| C |

Exposure with equitable partition of n elements over a total number of $m \cdot n/m$

m: n/m

Example

- ullet eta indistinguishable from δ
- η indistinguishable from θ
- γ indistinguishable from ε

Computing the exposure coefficient – Example

Equitable partition: $\{(\alpha), (\beta, \delta), (\gamma, \varepsilon), (\mu), (\eta, \theta), (\kappa)\}$ $\mathscr{E} = 6/9 = 2/3$

Hashing exposure – Freq+DB^k

- The hash function is characterized by a collision factor, denoting the number of attribute values that on average collide on the same index value
- There are different possible mappings of plaintext values in index values, w.r.t. the constraints imposed by frequencies
- Need to enumerate the different mappings by using an adaptation of Pisinger's algorithm for the subset sum problem
- Compute the exposure coefficient for each mapping

Hashing exposure − DB+DB^k

- The RCV-graph built on plaintext and encrypted data are not identical
- Different vertexes of the plaintext RCV-graph may collapse to the same encrypted RCV-graph vertex
- The number of edges connecting row vertexes to value vertexes in the plaintext and encrypted RCV-graph is the same
- The problem becomes finding a correct matching between the edges of the plaintext RCV-graph and the edges of the encrypted RCV-graph

Bloom Filter

Bloom filter [B-70]

A Bloom filter is at the basis of the construction of some indexing techniques. It is an efficient method to encode set membership

- Set of *n* elements (*n* is large)
- Vector of *l* bits (*l* is small)
- h independent hash functions $H_i: \{0,1\}^* \to [1,l]$

Insert element x:

• Sets to 1 the bit values at index positions $H_1(x), H_2(x), \dots, H_h(x)$

Search element x:

• Compute $H_1(x), H_2(x), \dots, H_h(x)$ and check whether those values are set in the bit vector

Let l = 10 and h = 3

Let l = 10 and h = 3

• Insert sun: $H_1(sun)=2$; $H_2(sun)=5$; $H_3(sun)=9$

Let
$$l = 10$$
 and $h = 3$

- Insert sun: H₁(sun)=2; H₂(sun)=5; H₃(sun)=9
- Insert frog: H₁(frog)=1; H₂(frog)=5; H₃(frog)=7

Let
$$l = 10$$
 and $h = 3$

- Insert sun: $H_1(sun)=2$; $H_2(sun)=5$; $H_3(sun)=9$
- Insert frog: H₁(frog)=1; H₂(frog)=5; H₃(frog)=7
- Search dog: H₁(dog)=2; H₂(dog)=5; H₃(dog)=10

Let
$$l = 10$$
 and $h = 3$

- Insert sun: H₁(sun)=2; H₂(sun)=5; H₃(sun)=9
- Insert frog: H₁(frog)=1; H₂(frog)=5; H₃(frog)=7
- Search dog: $H_1(dog)=2$; $H_2(dog)=5$; $H_3(dog)=10$ \Longrightarrow No

Let
$$l = 10$$
 and $h = 3$

- Insert sun: $H_1(sun)=2$; $H_2(sun)=5$; $H_3(sun)=9$
- Insert frog: H₁(frog)=1; H₂(frog)=5; H₃(frog)=7
- Search dog: $H_1(dog)=2$; $H_2(dog)=5$; $H_3(dog)=10$ \Longrightarrow No
- Search car: $H_1(car)=1$; $H_2(car)=5$; $H_3(car)=9$

Let
$$l = 10$$
 and $h = 3$

- Insert sun: $H_1(sun)=2$; $H_2(sun)=5$; $H_3(sun)=9$
- Insert frog: H₁(frog)=1; H₂(frog)=5; H₃(frog)=7
- Search dog: $H_1(dog)=2$; $H_2(dog)=5$; $H_3(dog)=10$ \Longrightarrow No
- Search car: H₁(car)=1; H₂(car)=5; H₃(car)=9
 ⇒ Maybe Yes; false positive!

Bloom filter – Properties

- Generalization of hashing (Bloom filter with one hash function is equivalent to ordinary hashing)
 - + space efficient (roughly ten bit for every element in the dictionary with 1% error)
 - elements cannot be removed
- Yield a constant false positive probability
 - theoretically considered not acceptable
 - + acceptable in practical applications as fine price to pay for space efficiency

Data Integrity

Integrity of outsourced data

Two aspects:

- Integrity in storage: data must be protected against improper modifications
 - ⇒ unauthorized updates to the data must be detected
- Integrity in query computation: query results must be correct and complete
 - ⇒ server's misbehavior in query evaluation must be detected

Integrity in storage

- Data integrity in storage relies on digital signatures
- Signatures are usually computed at tuple level
 - table and attribute level signatures can be verified only after downloading the whole table/column
 - o cell level signature causes a high verification overhead
- The verification cost grows linearly with the number of tuples in the query result
 - ⇒ the signature of a set of tuples can be combined to generate the aggregated signature [MNT-06]

Selective Encryption and Over-Encryption

S. De Capitani di Vimercati, S. Foresti, S. Jajodia, S. Paraboschi, P. Samarati, "Encryption Policies for Regulating Access to Outsourced Data," in ACM TODS, vol. 35, no. 2, April 2010.

Selective information sharing

- Different users might need to enjoy different views on the outsourced data
- Enforcement of the access control policy requires the data owner to mediate access requests
 - ⇒ impractical (if not inapplicable)
- Authorization enforcement may not be delegated to the provider
 - ⇒ data owner should remain in control

Selective information sharing: Approaches – 1

 Attribute-based encryption (ABE): allow derivation of a key only by users who hold certain attributes (based on asymmetric cryptography)

Selective information sharing: Approaches – 2

 Selective encryption: the authorization policy defined by the data owner is translated into an equivalent encryption policy

Selective encryption – Scenario

Selective encryption [DFJPS-10b]

Basic idea/desiderata:

- data themselves need to directly enforce access control
- different keys should be used for encrypting data
- authorization to access a resource translated into knowledge of the key with which the resource is encrypted
- each user is communicated the keys necessary to decrypt the resources she is entailed to access

Authorization policy

- The data owner defines a discretionary access control (authorization) policy to regulate read access to the resources
- An authorization policy A, is a set of permissions of the form (user,resource).

It can be represented as:

- an access matrix
- o a directed and bipartite graph having a vertex for each user u and for each resource r, and an edge from u to r for each permission $\langle u, r \rangle$
- · Basic idea:
 - o different ACLs implies different encryption keys

Authorization policy - Example

	r_1	r_2	<i>r</i> ₃	r_4	<i>r</i> ₅
\boldsymbol{A}	1	1	1	0	0
\boldsymbol{B}	1	1	1	1	1
\boldsymbol{C}	1	1	1	1	1
D	0	0	1	1	1

Encryption policy

- The authorization policy defined by the data owner is translated into an equivalent encryption policy
- Possible solutions:
 - encrypt each resource with a different key and give users the keys for the resources they can access
 - requires each user to manage as many keys as the number of resources she is authorized to access
 - use a key derivation method for allowing users to derive from their user keys all the keys that they are entitled to access
 - + allows limiting to one the key to be released to each user

Key derivation methods

- Based on a key derivation hierarchy (ℋ, ≼)
 - \circ \mathscr{K} is the set of keys in the system
 - $\circ \leq$ partial order relation defined on \mathcal{K}
- The knowledge of the key of vertex v₁ and of a piece of information publicly available allows the computation of the key of a lower level vertex v₂ such that v₂ ≺ v₁
- (\mathcal{K}, \preceq) can be graphically represented as a graph with a vertex for each $x \in \mathcal{K}$ and a path from x to y iff $y \preceq x$
- Depending on the partial order relation defined on \mathcal{K} , the key derivation hierarchy can be:
 - a chain [S-87]
 - o a tree [G-80,S-87,S-88]
 - o a DAG [AT-83,CMW-06,DFM-04,HL-90,HY-03,LWL-89,M-85,SC-02]

Token-based key derivation methods [AFB-05]

- Keys are arbitrarily assigned to vertices
- A public label l_i is associated with each key k_i
- A piece of public information $t_{i,j}$, called token, is associated with each edge in the hierarchy
- Given an edge (k_i,k_j) , token $t_{i,j}$ is computed as $k_j \oplus h(k_i,l_j)$ where
 - $\circ \oplus$ is the *n*-ary xor operator
 - h is a secure hash function
- Advantages of tokens:
 - they are public and allow users to derive multiple encryption keys,
 while having to worry about a single one
 - they can be stored on the remote server (just like the encrypted data), so any user can access them

Key and token graph

- Relationships between keys through tokens can be represented via a key and token graph
 - o a vertex for each pair $\langle k,l \rangle$, where $k \in \mathcal{K}$ is a key and $l \in \mathcal{L}$ the corresponding label
 - o an edge from a vertex $\langle k_i, l_i \rangle$ to vertex $\langle k_j, l_j \rangle$ if there exists a token $t_{i,j} \in \mathscr{T}$ allowing the derivation of k_i from k_i

Example

Key assignment and encryption schema

Translation of the authorization policy into an encryption policy:

- Starting assumptions (desiderata):
 - each user can be released only a single key
 - each resource is encrypted only once (with a single key)
- Function $\phi: \mathscr{U} \cup \mathscr{R} \to \mathscr{L}$ describes:
 - the association between a user and (the label of) her key
 - the association between a resource and (the label of) the key used for encrypting it

Formal definition of encryption policy

- An encryption policy over users W and resources R, denoted ε, is a 6-tuple (W,R,K,L,φ,T), where:
 - $\circ~\mathcal{K}$ is the set of keys defined in the system and \mathcal{L} is the set of corresponding labels
 - $\circ \phi$ is a key assignment and encryption schema
 - \circ $\mathscr T$ is a set of tokens defined on $\mathscr K$ and $\mathscr L$
- The encryption policy can be represented via a graph by extending the key and token graph to include:
 - a vertex for each user and each resource
 - o an edge from each user vertex u to the vertex $\langle k,l \rangle$ such that $\phi(u)$ =l
 - o an edge from each vertex $\langle k,l \rangle$ to each resource vertex r such that $\phi(r)=l$

Encryption policy graph – Example

- user A can access $\{r_1, r_2\}$
- user B can access $\{r_2, r_3\}$
- user C can access {r₂}
- user D can access $\{r_1, r_2, r_3\}$
- user E can access $\{r_1, r_2, r_3\}$
- user *F* can access {*r*₃}

token ----

Policy transformation

Goal: translate an authorization policy \mathscr{A} into an equivalent encryption policy \mathscr{E} .

 \mathscr{A} and \mathscr{E} are equivalent if they allow exactly the same accesses:

- $\forall u \in \mathscr{U}, r \in \mathscr{R} : u \xrightarrow{\mathscr{E}} r \Longrightarrow u \xrightarrow{\mathscr{A}} r$
- $\forall u \in \mathcal{U}, r \in \mathcal{R} : u \xrightarrow{\mathcal{A}} r \Longrightarrow u \xrightarrow{\mathcal{E}} r$

Translating \mathscr{A} into $\mathscr{E} - 1$

Naive solution

- each user is associated with a different key
- each resource is encrypted with a different key
- \circ a token $t_{u,r}$ is generated and published for each permission $\langle u,r \rangle$
- ⇒ producing and managing a token for each single permission can be unfeasible in practice
- Exploiting acls and user groups
 - group users with the same access privileges
 - encrypt each resource with the key associated with the set of users that can access it

Translating \mathscr{A} into $\mathscr{E} - 2$

- It is possible to create an encryption policy graph by exploiting the hierarchy among sets of users induced by the partial order relationship based on set containment (⊆)
- If the system has a large number of users, the encryption policy has a large number of tokens and keys $(2^{|\mathcal{U}|}-1)$ \implies inefficient key derivation

Minimum encryption policy

- Observation: user groups that do not correspond to any acl do not need to have a key
- Goal: compute a minimum encryption policy, equivalent to a given authorization policy, that minimize the number of tokens to be maintained by the server
- Solution: heuristic algorithm based on the observation that:
 - only vertices associated with user groups corresponding to actual acls need to be associated with a key
 - the encryption policy graph may include only the vertices that are needed to enforce a given authorization policy, connecting them to ensure a correct key derivability
 - other vertices can be included if they are useful for reducing the size of the catalog

Construction of the key and token graph

Start from an authorization policy A

- Create a vertex/key for each user and for each non-singleton acl (initialization)
- 2. For each vertex *v* corresponding to a non-singleton *acl*, find a cover without redundancies (covering)
 - for each user u in v.acl, find an ancestor v' of v with $u \in v'$.acl
- 3. Factorize common ancestors (factorization)

Key and token graph – Example

	r_1	r_2	<i>r</i> ₃	r_4	<i>r</i> ₅
\boldsymbol{A}	0	1	0	1	1
A B	1	1	1	1	1
C	0	1	1	1	1
D	0	0	1	1	1

Initialization

 $(v_1[A])$ $(v_5[ABC])$

 $v_2[B]$

 $(v_3[C])$ $(v_7[ABCD])$

 $v_4[D]$ $v_6[BCD]$

Key and token graph – Example

	r_1	r_2	<i>r</i> ₃	r_4	<i>r</i> ₅
\boldsymbol{A}	0	1	0	1	1
\boldsymbol{B}	1	1	1	1	1
C	0	1	1	1	1
D	0	0	1	1	1

Key and token graph – Example

Key assignment and encryption schema ϕ and catalog

и	$\phi(u)$
\boldsymbol{A}	$v_1.l$
\boldsymbol{B}	$v_2.l$
C	$v_3.l$
D	$v_4.l$

r	$\phi(r)$
r_1	$v_2.l$
r_2	$v_5.l$
r_3	$v_6.l$
r_{4}, r_{5}	$v_7.l$

source	destination	token_value
$v_1.l$	v ₅ .l	t _{1,5}
$v_2.l$	$v_8.l$	$t_{2,8}$
$v_3.l$	$v_8.l$	$t_{3,8}$
$v_4.l$	$v_6.l$	$t_{4,6}$
$v_5.l$	$v_7.l$	$t_{5,7}$
$v_6.l$	$v_7.l$	$t_{6,7}$
$v_8.l$	$v_5.l$	$t_{8,5}$
$v_8.l$	$v_6.l$	$t_{8,6}$

Multiple owners and policy changes

- When multiple owners need to share their data, the use of a key agreement method allows two data owners to share a secret key for subsequent cryptographic use [DFJPPS-10]
- When authorizations dynamically change, the data owner needs to:
 - download the resource from the server
 - o create a new key for the resource
 - o decrypt the resource with the old key
 - o re-encrypt the resource with the new key
 - upload the resource to the server and communicate the public catalog updates
 - ⇒ inefficient
- Possible solution: over-encryption

Over-encryption [DFJPS-07]

- Resources are encrypted twice
 - by the owner, with a key shared with the users and unknown to the server (Base Encryption Layer - BEL level)
 - by the server, with a key shared with authorized users (Surface Encryption Layer - SEL level)
- To access a resource a user must know both the corresponding BEL and SEL keys
- Grant and revoke operations may require
 - the addition of new tokens at the BEL level
 - o the update of the SEL level according to the operations performed

BEL and SEL structures

- BEL. At the BEL level we distinguish two kinds of keys: access (k_a) and derivation (k) keys
 - each node in the BEL is associated with a pair of keys (k, k_a) , where $k_a = h(k)$, with h a one-way hash function, and a pair of labels (l, l_a)
 - key *k* (with label *l*) is used for derivation purpose
 - o key k_a (with label l_a) is used to encrypt the resources associated with the node
 - this distinction separates the two roles associated with keys: enabling key derivation and enabling resource access
- SEL. The SEL level is characterized by an encryption policy defined as previously illustrated

Full_SEL and Delta_SEL

- Full_SEL: starts from a SEL identical to the BEL and keeps the SEL always updated to represent the current policy
- Delta_SEL: starts from an empty SEL and adds elements to it as the policy evolves, such that the pair BEL-SEL represents the policy

Running example for over-encryption

Access matrix

	r_1	r_2	r_3	r_4	r_5	r_6	r_7	r_8	r_9
\boldsymbol{A}	0	0	0	0	0	1	1	0	1
\boldsymbol{B}	0	0	1	1	1	0	0	1	1
C	0	0	1	1	1	0	0	0	1
D	1	1	0	0	0	1	1	1	1
\boldsymbol{E}	0	0	0	0	0	1	1	1	1
F	0	0 0 0 1 0	0	0	0	1	1	1	1

Key and token graph

Initial configuration for Full_SEL – Example

BEL				Full_SEL			
и А В С D	$\begin{array}{c c} b_1.l \\ b_2.l \\ b_3.l \end{array}$		$\phi_b(r)$ $b_4.l_a$ $b_7.l_a$ $b_8.l_a$ $b_9.l_a$	и А В С D	$ \begin{array}{c c} \phi_s(u) \\ s_1.l \\ s_2.l \\ s_3.l \\ s_4.l \end{array} $		$\phi_{s}(r)$ $s_{4}.l$ $s_{7}.l$ $s_{8}.l$ $s_{9}.l$
E F	·	r ₉	$b_{10}.l_a$	E F	s ₅ . <i>l</i> s ₆ . <i>l</i>	r ₉	$s_{10}.l$
b_1 b_2 b_3	<i>b</i> ₁		(b ₈)	$\begin{array}{c c} \hline s_1[A] \\ \hline s_2[B] \\ \hline s_3[C] \\ \hline \end{array}$	(s ₇ [BC]	≥ (s ₈ [ADEF	[s ₁₀ [ABCDEF]]
(b ₄)		<i>b</i> ₁₁	(b ₉)	$\begin{array}{c} s_{4}[D] \\ \hline s_{5}[E] \\ \hline \\ s_{6}[F] \end{array}$	\$11	[DEF] s9[BDEF	D

Initial configuration for Delta_SEL – Example

		BEL		Delta_SEL			
и	$\phi_b(u)$	r	$\phi_b(r)$	и	$\phi_s(u)$	r	$\phi_s(r)$
$\frac{a}{A}$	$b_1.l$	r_1,r_2	$b_4.l_a$	$\frac{a}{A}$	$s_1.l$	r_1,\ldots,r_9	NULL
В	$b_2.l$	r_3, r_4, r_5	$b_7.l_a$	В	$s_2.l$. 1,,. 9	
\overline{C}	$b_3.l$	r_6, r_7	$b_8.l_a$	C	$s_3.l$		
D	$b_4.l$	r_8	$b_9.l_a$	D	$s_4.l$		
\boldsymbol{E}	$b_5.l$	r 9	$b_{10}.l_a$	Ε	$s_5.l$		
F	$b_6.l$	7	10 4	F	$s_6.l$		
(b ₁)			-b ₈	$s_1[A]$	1 ~		
(b ₂)	→ (b ₇)	/		$(s_2[B])$			
b ₃				$(s_3[C])$			
(b ₄)				$(s_4[D])$			
(b_3) (b_1) (b_9)				$(s_5[E])$			
(b ₆)				$(s_6[F])$			

Algorithms for the evolution of SEL and BEL

- The evolution of the BEL and SEL are managed by:
 - procedure over-encrypt that regulates the update process by over-encrypting the resources at the SEL level
 - grant and revoke procedures that are needed for granting and revoking a privilege, respectively

Procedure over-encrypt (at SEL)

Receive from BEL requests of the form over-encrypt(U,R) to make the set R of resources accessible only to users in U

- 1. for each resource in R, if currently over-encrypted \Longrightarrow decrypt it;
- 2. if U = ALL end (no need to do anything);
- 3. check if $\exists s$ s.t. s.key is derivable only by users in U; if it does not exist, create it and add it to SEL graph
- 4. encrypt each resource $r \in R$ with s.key and update $\phi_s(r)$ and the corresponding table accordingly

Procedure Grant (at BEL)

Upon request to grant user u access to resource r, currently encrypted with b_j . key_a

- 1. add u to acl(r)
- 2. if u cannot derive b_j . $key_a \Longrightarrow$ add a token from u's key to b_j . key_a in the BEL graph
- 3. if there is a set R' of resources encrypted with b_j . key_a that should not be accessible to u (need to be protected from u at SEL)
 - 3.1. partition R' in sets according to their acl (each set $S \subseteq R'$ includes all resources with acl_S)
 - 3.2. for each set S, request over-encrypt(acl_S,S) to SEL
- 4. make *r* accessible by *u* at SEL
 - o Delta_SEL: if the set of users that can derive b_j . key_a is acl(r), call over-encrypt(ALL, $\{r\}$); otherwise call over-encrypt(acl(r), $\{r\}$)
 - Full_SEL: call over-encrypt(acl(r),{r})

Procedure Revoke (at BEL)

Receive a request to revoke from user u access to resource r

- 1. remove u from acl(r)
- 2. request over-encrypt(acl(r),{r}) to SEL to make r accessible only to users in acl(r)

An example of grant operation – Full_SEL

An example of grant operation – Full_SEL

An example of grant operation - Full_SEL

Protection evaluation

- The BEL and SEL encryption policy are equivalent to the authorization policy at initialization time
- Procedure grant, revoke, and over-encryption preserve the equivalence
- · The key derivation function adopted is secure
- All the encryption functions and the tokens are robust and cannot be broken
- Each user correctly manages her keys, without the possibility for a user to steal keys from another user
- Vulnerable to collusion?

Collusion attacks

- Collusion exists every time two entities combining their knowledge can acquire knowledge that neither of them has access to
 - o collusion among users
 - collusion with the server
- Collusion attacks depend on the different views that one can have on a resource r
- We assume users to be not oblivious

Views on resource r-1

Four views:

- open: the user knows the key at the BEL level as well as the key at the SEL level
- locked: the user knows neither the key at the BEL level nor the key at the SEL level
- sel_locked: the user knows only the key at the BEL level but does not know the key at the SEL level
- bel_locked: the user knows only the key at the SEL level but does not know the one at the BEL level
- The server always has the bel_locked view

Views on resource r-2

- Each layer is depicted as a fence
 - o discontinuous, if the key is known
 - continuous, if the key is not known (protection cannot be passed)

Classification of users

- Consider a resource *r* and the history of its *acl(r)*
- Users in acl(r) can be classified into 4 categories

 Collusion risk for r iff there are users in Bel_accessible that do not belong to Past_acl

View transitions in the Full_SEL – 1

View transitions in the Full_SEL – 2

A user can have the sel_locked view on r due to:

- past acl or
- policy split: u is authorized to access r' (not r), encrypted at the BEL level with the same key as r

View transitions in the Delta_SEL - 1

View transitions in the Delta_SEL - 2

The view of a user u' on r can evolve from bel_locked to locked due to:

• policy split: u is authorized to access r' (not r), encrypted at the BEL level with the same key as r

Collusion in the Full_SEL

- Collusion among users:
 - o not a problem: users never gain in the exchange
- Collusion with the server:
 - users in Bel_accessible who have a sel_locked view and who never had the authorization to access the resource
 - exposure is limited to resources involved in a policy split to make other resources, encrypted with the same BEL key, available to the user
 - ⇒ easily identifiable; can be avoided by re-encrypting

Collusion in the Delta_SEL

- A single user by herself can hold the two different views: sel locked and bel locked
 - a user could retrieve the resources at initial time, when she is not authorized, getting and storing at her side resources' bel_locked views
 - \circ if the user acquires the sel_locked view on a resource r (the user is released $\phi(r)$ to make accessible to her another resource r') she can enjoy the open view on r
- Again, exposure is limited to resources involved in a policy split
 easily identifiable; can be avoided by re-encrypting

Mix&Slice for Policy Revocation

E. Bacis, S. De Capitani di Vimercati, S. Foresti, S. Paraboschi, M. Rosa, P. Samarati, "Mix&slice for Efficient Access Revocation on Outsourced Data," in *IEEE Transactions on Dependable and Secure Computing (TDSC)*, 2023.

E. Bacis, S. De Capitani di Vimercati, S. Foresti, S. Paraboschi, M. Rosa, P. Samarati, "Mix&Slice: Efficient Access Revocation in the Cloud," in *Proc. of the 23rd ACM Conference on Computer and Communications Security (CCS 2016)*, Vienna, Austria, October 2016

Mix&Slice

- Over-encryption requires support by the server (i.e., the server implements more than simple get/put methods)
- Alternative solution to enforce revoke operations: Mix&Slice
- Use different rounds of encryption to provide complete mixing of the resource
 - unavailability of a small portion of the encrypted resource prevents its (even partial) reconstruction
- Slice the resource into fragments and, every time a user is revoked access to the resource, re-encrypt a randomly chosen fragment
 - ⇒ lack of a fragment prevents resource decryption

Resource organization

Block: sequence of bits input to a block cipher
 AES uses block of 128 bits

block

Resource organization

- Block: sequence of bits input to a block cipher
 AES uses block of 128 bits
- Mini-block: sequence of bits in a block
 it is our atomic unit of protection
 mini-blocks of 32 bits imply a cost of
 2³² for brute-force attacks

block			
mini block			

Resource organization

- Block: sequence of bits input to a block cipher
 AES uses block of 128 bits
- Mini-block: sequence of bits in a block
 it is our atomic unit of protection
 mini-blocks of 32 bits imply a cost of
 2³² for brute-force attacks
- Macro-block: sequence of blocks
 mixing operates at the level of macro-block
 a macro-block of 1KB includes 8 blocks

Mixing - 1

- When encryption is applied to a block, all the mini-blocks are mixed
 - + absence of a mini-block in a block from the result prevents reconstruction of the block
 - does not prevent the reconstruction of other blocks in the resource

Mixing – 2

- Extend mixing to a macro-block
 - iteratively apply block encryption
 - o at iteration i, each block has a mini-block for each encrypted block obtained at iteration i-1 (at distance 4^{i-1})
 - o x rounds mix 4x mini-blocks

Slicing – 1

- To be mixed, large resources require large macro-blocks
 - many rounds of encryption
 - considerable computation and data transfer overhead
- Large resources are split in different macro-blocks for encryption
- Absence of a mini-block for each macro-block prevents the (even partial) reconstruction of the resource

Slicing – 2

- Slice resources in fragments having a mini-block for each macro-block (the ones in the same position)
 - o absence of a fragment prevents reconstruction of the resource

To revoke user *u* access to a resource *r*

- 1. randomly select a fragment F_i of r and download it
- 2. decrypt F_i
- 3. generate a new key k_l that u does not know and cannot derive (generated with key regression and seed encrypted with new ACL)
- 4. re-encrypt F_i with the new key k_l
- 5. upload the encrypted fragment

macroblock

To revoke user *u* access to a resource *r*

- 1. randomly select a fragment F_i of r and download it
- 2. decrypt F_i
- 3. generate a new key k_l that u does not know and cannot derive (generated with key regression and seed encrypted with new ACL)
- 4. re-encrypt F_i with the new key k_l
- 5. upload the encrypted fragment

To revoke user *u* access to a resource *r*

- 1. randomly select a fragment F_i of r and download it
- 2. decrypt F_i
- 3. generate a new key k_l that u does not know and cannot derive (generated with key regression and seed encrypted with new ACL)
- 4. re-encrypt F_i with the new key k_l
- 5. upload the encrypted fragment

To revoke user *u* access to a resource *r*

- 1. randomly select a fragment F_i of r and download it
- 2. decrypt F_i
- 3. generate a new key k_l that u does not know and cannot derive (generated with key regression and seed encrypted with new ACL)
- 4. re-encrypt F_i with the new key k_l
- 5. upload the encrypted fragment

Effectiveness of the approach

- A revoked user does not know the encryption key of at least one fragment
 - a brute force attack is needed to reconstruct the fragment (and the resource)
 - o 2^{msize} attempts, with msize the number of bits in a mini-block
- A user can locally store f_{loc} of the f fragments of a resource
 - o probability to be able to reconstruct the resource after f_{miss} fragments have been re-encrypted: $P = (f_{\text{loc}}/f)^{f_{\text{miss}}}$
 - proportional to the number of locally stored fragments
 - decreases exponentially with the number of policy updates

Write Authorizations

S. De Capitani di Vimercati, S. Foresti, S. Jajodia, S. Paraboschi, P. Samarati, "Support for Write Privileges on Outsourced Data," in *Proc. of SEC*, Heraklion, Crete, Greece, June 2012.

Write authorizations

Problem:

- The support of only read accesses may be limiting
 - ⇒ users may be authorized to modify resources
- Keys regulating read accesses cannot regulate write accesses
 - \implies the set w[o] of users authorized to write o may be a subset of the set r[o] of users authorized to read o

Solution: associate a write tag tag[o] with each resource o encrypted with a key

- known to the users in w[o] (derivable from the key of w[o] via secure hashing)
- known to the storage server (derivable from its key via tokens)
- \implies write authorized iff u proves knowledge of tag[o] to the server

Key derivation graph

- Key derivation graph extended with the storage server S
- The key derivation graph has
 - o a key k_u for each user u
 - \circ a key k_S for the storage server S
 - \circ a key $k_{r[o]}$ for each read access control list r[o]
 - a key $k_{w[o]}$ for each write access control list w[o]
 - a key $k_{w[o] \cup \{S\}}$ for each write access control list, extended with the server $w[o] \cup \{S\}$
 - \circ a secure hash function h to compute $k_{w[o]\cup\{S\}}$ from $k_{w[o]}$
 - o a set of tokens that permit each user u to derive $k_{r[o]}$ ($k_{w[o]}$) s.t. $u \in r[o]$ ($u \in w[o]$)
 - \circ a set of tokens that permit the storage server S to derive $k_{w[o]\cup\{S\}}$

Key derivation graph – Example

Key derivation graph – Example

Authorization enforcement

- The data owner defines the key derivation graph and
 - \circ communicates to each user u key k_u
 - \circ communicates to the storage server S key k_S
 - \circ encrypts each resource o with key $k_{r[o]}$
 - \circ encrypts the write tag tag[o] of each resource o with key $k_{w[o]\cup\{S\}}$

Read accesses

o *u* can read *o* iff she can decrypt its content (i.e., if $u \in r[o]$)

Write accesses

- \circ *u* sends a request to write o to the storage server
- o the server accepts the request only if u provides (plaintext) tag[o]
- o u can provide tag[o] only if u can decrypt it (i.e., if $u \in w[o]$)

Structure of outsourced resources

```
 \text{METADATA} \begin{bmatrix} \text{r\_label} & l_{r[o]} & \text{label of the key used for } o \\ \text{w\_label} & l_{w[o] \cup \{S\}} & \text{label of the key used for } tag[o] \\ \text{o\_id} & o\_id & \text{object identifier} \\ \text{encw\_tag} & E(tag[o], k_{w[o] \cup \{S\}}) & \text{encrypted write tag} \end{bmatrix}
```

```
RESOURCE \lceil encr_resource E(o,k_{r[o]}) encrypted resource
```


Write integrity

- The data owner needs to verify the proper behavior of users and storage server
- Write integrity control
 - allows detecting resource tampering
 - o discourages improper behaviors
 - o provides non repudiation
- Straightforward solution: signature-based approach
 - o users sign the resource with their private key
 - the data owner checks if the signature has been produced by an authorized user for the resource content
 - ⇒ it is computationally expensive

HMAC-based approach

- Each resource o has
 - o a timestamp, encw ts, of the last write operation
 - \circ a user_tag computed as the HMAC, with the key k_u of the writer, over o, the old value of the user_tag, and the timestamp of the write operation
 - o a group_tag computed as the HMAC, with key $k_{w[o]}$, over o and the timestamp of the write operation
- At each write operation, the writer updates the user_tag and group_tag
- Aggregated signature guarantees metadata integrity and that no resource is dropped

Integrity tags

- User_tag of resource o
 - write integrity and accountability of user actions
 - o checked only by the data owner
- Group tag of resource o
 - o write integrity of the resource content
 - \circ checked by all the users in w[o]
- Permit to detect
 - \circ tampering by S with $o \Longrightarrow S$ cannot produce a valid user_tag for o
 - tampering by S with tag[o] to include u in $w[o] \Longrightarrow u$ cannot produce valid integrity tags
 - \circ unauthorized write operations by $u \Longrightarrow u$ cannot produce valid integrity tags

Structure of outsourced resources

```
 \text{METADATA} \begin{bmatrix} \text{r\_label} & l_{r[o]} & \text{label of the key used for } o \\ \text{w\_label} & l_{w[o] \cup \{S\}} & \text{label of the key used for } tag[o] \\ \text{o\_id} & o\_\textit{id} & \text{object identifier} \\ \text{encw\_tag} & E(tag[o], k_{w[o] \cup \{S\}}) & \text{encrypted write tag} \\ \end{bmatrix}
```

RESOURCE [encr_resource $E(o,k_{r[o]})$ encrypted resource

```
 \begin{array}{lll} \text{WRITE INTEGRITY} & \text{encw\_ts} & E(ts, k_{w[o] \cup \{S\}}) & \text{timestamp} \\ \text{user\_tag} & \text{HMAC}(o||u\_t'||ts, k_u) & \text{tag for the owner} \\ \text{group\_tag} & \text{HMAC}(o||ts, k_{w[o]}) & \text{tag for writers} \\ \end{array}
```

Other issues

- Write integrity controlled by any reader
- Support for write privileges for data collections with multiple owners
- Selective encryption for supporting subscription-based authorization policies [DFJL-12]
 - users are authorized to access all and only the resources published during their subscribed periods
 - user authorizations remain valid also after the expiration of their subscriptions
 - ⇒ need to take into account both the subscriptions of the users and the time when resources have been published

Fragmentation and Encryption

Fragmentation and encryption

- Encryption makes query evaluation and application execution more expensive or not always possible
- Often what is sensitive is the association between values of different attributes, rather than the values themselves
 - e.g., association between employee's names and salaries
 - protect associations by breaking them, rather than encrypting
- Recent solutions for enforcing privacy requirements couple:
 - encryption
 - data fragmentation

Confidentiality constraints

- Sets of attributes such that the (joint) visibility of values of the attributes in the sets should be protected
- Sensitive attributes: the values of some attributes are considered sensitive and should not be visible
 - ⇒ singleton constraints
- Sensitive associations: the associations among values of given attributes are sensitive and should not be visible
 - ⇒ non-singleton constraints

Confidentiality constraints – Example

R = (Name, DoB, Gender, Zip, Position, Salary, Email, Telephone)

- {Telephone}, {Email}
 - attributes Telephone and Email are sensitive (cannot be stored in the clear)
- {Name,Salary}, {Name,Position}, {Name,DoB}
 - attributes Salary, Position, and DoB are private of an individual and cannot be stored in the clear in association with the name
- {DoB,Gender,Zip,Salary}, {DoB,Gender,Zip,Position}
 - attributes DoB, Gender, Zip can work as quasi-identifier
- {Position,Salary}, {Salary,DoB}
 - association rules between Position and Salary and between Salary and DoB need to be protected from an adversary

Outline

- Data fragmentation
 - Non-communicating pair of servers [ABGGKMSTX-05]
 - Multiple non-linkable fragments [CDFJPS-07,CDFJPS-10]
 - Departing from encryption: Keep a few [CDFJPS-09b]
 - Fragmentation and inferences [DFJLPS-14]
- Publishing obfuscated associations
 - Anonymizing bipartite graph [CSYZ-08]
 - Fragments and loose associations [DFJPS-10]

Non-communicating pair of servers

- Confidentiality constraints are enforced by splitting information over two independent servers that cannot communicate (need to be completely unaware of each other) [ABGGKMSTX-05]
 - Sensitive associations are protected by distributing the attributes among the two servers
 - Encryption is applied only when explicitly demanded by the confidentiality constraints or when storing an attribute in any of the two servers would expose at least a sensitive association

- $E \cup C_1 \cup C_2 = R$
- $C_1 \cup C_2 \subseteq R$

Enforcing confidentiality constraints

- Confidentiality constraints \(\mathscr{C} \) defined over a relation \(R \) are enforced by decomposing \(R \) as \(\lambda_1, R_2, E \rangle \) where:
 - \circ R_1 and R_2 include a unique tuple ID needed to ensure lossless decomposition
 - $\circ R_1 \cup R_2 = R$
 - ∘ *E* is the set of encrypted attributes and $E \subseteq R_1$, $E \subseteq R_2$
 - ∘ for each $c \in \mathscr{C}$, $c \not\subseteq (R_1 E)$ and $c \not\subseteq (R_2 E)$

Non-communicating pair of servers – Example

PATIENTS

	<u>SSN</u>	Name	YoB	Job	Disease
1	123456789	Alice	1980	Clerk	Asthma
2	234567891	Bob	1980	Doctor	Asthma
3	345678912	Carol	1970	Nurse	Asthma
4	456789123	David	1970	Lawyer	Bronchitis
5	567891234	Eva	1970	Doctor	Bronchitis
6	678912345	Frank	1960	Doctor	Gastritis
7	789123456	Gary	1960	Teacher	Gastritis
8	891234567	Hilary	1960	Nurse	Diabetes

$c_0 = \{SSN\}$
$c_1 = \{Name, Disease\}$
$c_2 = \{Name, Job\}$
$c_3 = \{ Job, Disease \}$

' 1							
<u>tid</u>	Name	YoB	SSN ^k	Disease ^k			
1	Alice	1980	jdkis	hyaf4k			
2	Bob	1980	u9hs9	j97;qx			
3	Carol	1970	j9und	9jp'md			
4	David	1970	p0vp8	p;nd92			
5	Eva	1970	8nn[0-mw-n			
6	Frank	1960	j9jMK	wqp9[i			
	Gary	1960	87I'D	L0MB2G			
8	Hilary	1960	8pm}n	@h8hwu			

F₁

F_2									
<u>tid</u>	Job	SSN ^k	Disease ^k						
1	Clerk	uwq8hd	jsd7ql						
2	Doctor	j-0.dl;	0],nid						
3	Nurse	8ojqdkf	j-0/?n						
4	Lawyer	j0i12nd	5lkdpq						
5	Doctor	mj[9;'s	j0982e						
6	Doctor	aQ14I[jnd%d						
7	Teacher	8qsdQW	OP['						
8	Nurse	0890UD	UP0D@						

Query execution

At the logical level: replace R with $R_1 \bowtie R_2$ Query plans:

- Fetch R₁ and R₂ from the servers and execute the query locally
 - o extremely expensive
- Involve servers S_1 and S_2 in the query evaluation
 - can do the usual optimizations, e.g. push down selections and projections
 - selections cannot be pushed down on encrypted attributes
 - different options for executing queries:
 - send sub-queries to both S_1 and S_2 in parallel, and join the results at the client
 - send only one of the two sub-queries, say to S_1 ; the tuple IDs of the result from S_1 are then used to perform a semi-join with the result of the sub-query of S_2 to filter R_2

Query execution – Example

- *F*₁: (tid, Name, YoB, SSN^k, Disease^k)
- F₂: (tid,Job,SSN^k,Disease^k)

Identifying the optimal decomposition – 1

Brute force approach for optimizing wrt workload *W*:

- For each possible safe decomposition of R:
 - o optimize each query in *W* for the decomposition
 - estimate the total cost for executing the queries in W using the optimized query plans
- Select the decomposition that has the lowest overall query cost

Too expensive! ⇒ Exploit affinity matrix

Identifying the optimal decomposition – 2

Adapted affinity matrix *M*:

- M_{i,j}: 'cost' of placing cleartext attributes i and j in different fragments
- $M_{i,i}$: 'cost' of placing encrypted attribute i (across both fragments)

Goal: Minimize

$$\sum_{i,j:i\in(R_1-E),j\in(R_2-E)} M_{i,j} + \sum_{i\in E} M_{i,i}$$

Identifying the optimal decomposition – 3

Optimization problem equivalent to hypergraph coloring problem Given relation R, define graph G(R):

- attributes are vertexes
- affinity value $M_{i,j} \Longrightarrow$ weight of arc (i,j)
- affinity value $M_{i,i} \Longrightarrow$ weight of vertex i
- confidentiality constraints $\mathscr C$ represent a hypergraph $H(R,\mathscr C)$ on the same vertexes

Identifying the optimal decomposition – 4

Find a 2-coloring of the vertexes such that:

- no hypergraph edge is monochromatic
- the weight of bichromatic edges is minimized
- a vertex can be deleted (i.e., encrypted) by paying the price equal to the vertex weight

Coloring a vertex is equivalent to place it in one of the two fragments. The 2-coloring problem is NP-hard.

Different heuristics, all exploiting:

- approximate min-cuts
- approximate weighted set cover

Multiple non-linkable fragments – 1

Coupling fragmentation and encryption is interesting and provides advantages, but assumption of two non-communicating servers:

- too strong and difficult to enforce in real environments
- limits the number of associations that can be solved by fragmenting data, often forcing the use of encryption
- ⇒ allow for more than two non-linkable fragments [CDFJPS-10]

- $\bullet \ E_1 \cup C_1 = \dots = E_n \cup C_n = R$
- $C_1 \cup \ldots \cup C_n \subseteq R$

Multiple non-linkable fragments – 2

- A fragmentation of R is a set of fragments $\mathscr{F} = \{F_1, \dots, F_m\}$, where $F_i \subseteq R$, for $i = 1, \dots, m$
- A fragmentation \mathscr{F} of R correctly enforces a set \mathscr{C} of confidentiality constraints iff the following conditions are satisfied:
 - ∘ $\forall F \in \mathscr{F}, \forall c \in \mathscr{C} : c \not\subseteq F$ (each individual fragment satisfies the constraints)
 - ∘ $\forall F_i, F_j \in \mathscr{F}, i \neq j : F_i \cap F_j = \emptyset$ (fragments do not have attributes in common)

Multiple non-linkable fragments – 3

- Each fragment F is mapped into a physical fragment containing:
 - o all the attributes in F in the clear
 - all the other attributes of R encrypted (a salt is applied on each encryption)
- Fragment $F_i = \{A_{i_1}, \dots, A_{i_n}\}$ of R mapped to physical fragment $F_i^e(\underline{\mathsf{salt}}, \mathsf{enc}, A_{i_1}, \dots, A_{i_n})$:
 - each *t* ∈ *r* over *R* is mapped into a tuple t^e ∈ f_i^e where f_i^e is a relation over F_i^e and:
 - $-t^e[enc] = E_k(t[R-F_i] \otimes t^e[salt])$
 - $t^{e}[A_{i_{j}}] = t[A_{i_{j}}], \text{ for } j = 1, \dots, n$

Multiple non-linkable fragments – Example

PATIENTS

	<u>SSN</u>	Name	YoB	Job	Disease
t_1	123456789	Alice	1980	Clerk	Asthma
t_2	234567891	Bob	1980	Doctor	Asthma
t_3	345678912	Carol	1970	Nurse	Asthma
t_4	456789123	David	1970	Lawyer	Bronchitis
t_5	567891234	Eva	1970	Doctor	Bronchitis
t_6	678912345	Frank	1960	Doctor	Gastritis
t_7	789123456	Gary	1960	Teacher	Gastritis
t_8	891234567	Hilary	1960	Nurse	Diabetes

_		LC.	01	ωı.
'n	=	10	0	N.

 $c_1 = \{Name, Disease\}$

 $c_2 = \{\text{Name, Job}\}\$ $c_3 = \{\text{Job, Disease}\}\$

	_	1	
sal	enc	Name	YoB
S_{11}	Bd6!l3	Alice	1980
S_{12}	Oij3X.	Bob	1980
S_{13}	9kEf6?	Carol	1970
S_{14}	ker5/2	David	1970
S_{15}	C:mE91	Eva	1970
S_{16}	4lDwqz	Frank	1960
S_{17}	me3,op	Gary	1960
S_{18}	zWf4g>	Hilary	1960

	F_2									
Sã	alt	enc	Job							
S_{2}	21	8de6TO	Clerk							
S_2	22	X'mIE3	Doctor							
S_2	23	wq.vy0	Nurse							
S_2	24	nh=l3a	Lawyer							
S_2	25	hh%kj)	Doctor							
S_{2}	26	;vf5eS	Doctor							
S_{2}	27	e4+YUp	Teacher							
S	28	pgt6eC	Nurse							

	F_3									
	<u>salt</u>	enc	Disease							
ĺ	S_{31}	ew3)V!	Asthma							
	S_{32}	LkEd69	Asthma							
	S_{33}	w8vd66	Asthma							
	S_{34}	1"qPdd	Bronchitis							
	S_{35}	(mn2eW	Bronchitis							
	S_{36}	wD}x1X	Gastritis							
	S_{37}	0opAuEI	Gastritis							
	S_{38}	Sw@Fez	Diabetes							

Executing queries on fragments

- If the query involves an encrypted attribute, an additional query may need to be executed by the client

Original query on RTranslation over fragment F_3 Q :=SELECT SSN, Name
FROM PATIENTS
WHERE (Disease='Gastritis' OR
Disease='Asthma') AND
Job='Doctor'Q3 :=SELECT salt, enc
FROM F_3
WHERE (Disease='Gastritis' OR
Disease='Asthma')Q' := SELECT SSN, Name
FROM Decrypt(Q3, Key)
WHERE Job='Doctor'

Optimization criteria

- Goal: find a fragmentation that makes query execution efficient
- The fragmentation process can then take into consideration different optimization criteria:
 - o number of fragments [CDFJPS-07]
 - o affinity among attributes [CDFJPS-10]
 - o query workload [CDFJPS-09a]
- All criteria obey maximal visibility
 - only attributes that appear in singleton constraints (sensitive attributes) are encrypted
 - all attributes that are not sensitive appear in the clear in one fragment

Minimal number of fragments

Basic principles:

determine a correct fragmentation with the minimal number of fragments

⇒ NP-hard problem (minimum hyper-graph coloring problem)

Basic idea of the heuristic:

- define a notion of minimality that can be used for efficiently computing a fragmentation
 - \circ \mathscr{F} is minimal if all the fragmentations that can be obtained from \mathscr{F} by merging any two fragments in \mathscr{F} violate at least one constraint
- iteratively select an attribute with the highest number of non-solved constraints and insert it in an existing fragment if no constraint is violated; create a new fragment otherwise

Minimal number of fragments – Example

MEDICALDATA

SSN	Name	DoB	Zip	Illness	Physician
123-45-6789	Nancy	65/12/07	94142	hypertension	M. White
987-65-4321		73/01/05			D. Warren
963-85-2741	Nell	86/03/31	94139	flu	M. White
147-85-2369	Nick	90/07/19	94139	asthma	D. Warren

Confidentiality constraints

c₀= {SSN}
 c₁= {Name, DoB}
 c₂= {Name, Zip}
 c₃= {Name, Illness}
 c₄= {Name, Physician}

 $c_5 = \{DoB, Zip, Illness\}$

 $c_6 = \{ DoB, Zip, Physician \}$

Minimal fragmentation \mathscr{F}

- $F_1 = \{Name\}$
- $F_2 = \{DoB, Zip\}$
- $F_3 = \{Illness, Physician\}$

Merging any two fragments would violate at least a constraint

Maximum affinity

Basic principles:

- preserve the associations among some attributes
 - e.g., association (Illness,DoB) should be preserved to explore the link between a specific illness and the age of patients
- affinity matrix for representing the advantage of having pairs of attributes in the same fragment

Goal:

- determine a correct fragmentation with maximum affinity (sum of fragments affinity computed as the sum of the affinity of the different pairs of attributes in the fragment)
 - ⇒ NP-hard problem (minimum hitting set problem)

Basic idea of the heuristic:

 iteratively combine fragments that have the highest affinity and do not violate any confidentiality constraint

MEDICAL DATA

Confidentiality constraints

						- (CCNI)
SSN	Name	DoB	ZIP	Illness	Physician	$c_0 = \{SSN\}$
123-45-6789	A. Hellman	81/01/03	94142	hypertension	M. White	c_1 = {Name, DoB} c_2 = {Name, ZIP}
987-65-4321	B. Dooley	53/10/07	94141	obesity	D. Warren	c_2 = {Name, ZIP} c_3 = {Name, Illness}
246-89-1357	C. McKinley	52/02/12	94139	hypertension	M. White	(Name Physician)
135-79-2468	D. Ripley	81/01/03	94139	obesity	D. Warren	c_4 = {Name, Physician} c_5 = {DoB, ZIP, Illness}
	•	•	•	•		C5= {DOB, ZIP, IIITIESS}

 c_6 = {DoB, ZIP, Physician}

	c_1	c_2	c ₃	C ₄	c ₅	c ₆
n	×	×	×	×		
d z	×				×	×
Z		×			×	×
i			×		×	
p				×		×

MEDICAL DATA

Confidentiality constraints

						- (CCNI)
<u>SSN</u>	Name	DoB	ZIP	Illness	Physician	$c_0 = \{SSN\}$
123-45-6789	A. Hellman	81/01/03	94142	hypertension	M. White	$c_1 = \{\text{Name, DoB}\}$
987-65-4321						$c_2 = \{\text{Name, ZIP}\}$
246-89-1357	C. McKinley	52/02/12	94139	hypertension	M. White	c ₃ = {Name, Illness}
135-79-2468	D. Ripley	81/01/03	94139	obesity	D. Warren	c_4 = {Name, Physician}
		L.				$c_5 = \{DoB, ZIP, Illness\}$

 c_6 = {DoB, ZIP, Physician}

MEDICAL DATA

Confidentiality constraints

						• (CCNI)
987-65-4321 B. Dooley 53/10/07 94141 obesity D. Warren 246-89-1357 C. McKinley 52/02/12 94139 hypertension M. White 246-89-1367 C. Bripley 135-79-2468 D. Bipley 141-142 hypertension M. White 246-89-1367 C. McKinley 52/02/12 94139 hypertension M. White 246-89-1367 C. Home, Physician 142 hypertension M. White 246-89-1367 C. McKinley 52/02/12 94139 hypertension M. White 246-89-1367 C. McKinley 52/02						$C_0 = \{5510\}$
2246-89-1357 C. McKinley 52/02/12 94139 hypertension D. Warren C ₃ = {Name, Illness} c ₄ = {Name, Physician}	23-45-6789 A. Hellmai	n 81/01/03	94142	hypertension		
$ 246-89-1357 C. McKinley 52/02/12 94139 nyperiension M. Write c_4 = \{Name, Physician\}$	987-65-4321 B. Dooley	53/10/07	94141	obesity		
135-79-2468 D Ripley $\frac{1}{120}$ R1/01/03/94139 phasity D Warren $\frac{1}{120}$ R2 (Name, Physician)	246-89-1357 C. McKinle	y 52/02/12	94139	hypertension	IVI VVIITA	<i>,</i> ,
I am	35-79-2468 D. Ripley	81/01/03	94139	obesity		
- C5= {DDD, ZIF, Illiess}						c_5 = {DoB, ZIP, Illness}

 c_6 = {DoB, ZIP, Physician}

	c_1	\boldsymbol{c}_2	c_3	c_4	c ₅	c ₆
n	√	√	√	√		
d z	\checkmark				×	×
Z		\checkmark			×	×
i			\checkmark		×	
p				\checkmark		×

MEDICAL DATA

Confidentiality constraints

						- (CCN)
<u> </u>						$c_0 = \{SSN\}$ $c_1 = \{Name, DoB\}$
123-45-6789	A. Hellman	81/01/03	94142	hypertension		
987-65-4321	B. Dooley	53/10/07	94141	obesity		c_2 = {Name, ZIP} c_3 = {Name, Illness}
246-89-1357	C. McKinley	52/02/12	94139	hypertension	IVI VVIIIIE	
135-79-2468	D. Ripley	81/01/03	94139	obesity		c_4 = {Name, Physician} c_5 = {DoB, ZIP, Illness}
	•			•		$C_5 = \{DOB, ZIP, IIII1eSS\}$

 $c_6 = \{DoB, ZIP, IIIIIess\}$ $c_6 = \{DoB, ZIP, Physician\}$

	\boldsymbol{c}_1	c_2	c_3	c_4	c_5	c ₆
n	\checkmark	\checkmark	\checkmark	\checkmark		
d	\checkmark				×	\checkmark
Z		\checkmark			×	\checkmark
i			\checkmark		×	
р				\checkmark		\checkmark

MEDICAL DATA

Confidentiality constraints

						- (CCNI)
<u>SSN</u>						c_0 = {SSN} c_1 = {Name, DoB}
123-45-6789	A. Hellman	81/01/03	94142	hypertension	M. White	C ₁ = {Name, DOD}
987-65-4321				obesity	D. Warren	c_2 = {Name, ZIP} c_3 = {Name, Illness}
246-89-1357	C. McKinley	52/02/12	94139			
135-79-2468	D. Ripley	81/01/03	94139	obesity	D. Warren	c_4 = {Name, Physician} c_5 = {DoB, ZIP, Illness}
						C5= {DOD, ZIF, IIII1eSS}

 $c_6 = \{DoB, ZIP, Infless\}$ $c_6 = \{DoB, ZIP, Physician\}$

	c_1	c_2	c ₃	c_4	c_5	c_6
n	√	\checkmark	√	√		
n d	✓				\checkmark	\checkmark
Z		\checkmark			\checkmark	\checkmark
i			\checkmark		\checkmark	
р				\checkmark		\checkmark

MEDICALDATA

Confidentiality constraints

						$c_0 = \{SSN\}$
123-45-6789	A. Hellman	81/01/03	94142	hypertension	M. White	$c_1 = \{\text{Name, DoB}\}$
987-65-4321	B. Dooley	53/10/07	94141	obesity	D. Warren	c_2 = {Name, ZIP} c_3 = {Name, Illness}
246-89-1357	C. McKinley	52/02/12	94139	hypertension	M. White	C ₃ = {Name, limess}
135-79-2468	D. Ripley	81/01/03	94139	obesity	D. Warren	c ₄ = {Name, Physician} c ₅ = {DoB, ZIP, Illness}
						$c_6 = \{DoB, ZIP, Infless\}$ $c_6 = \{DoB, ZIP, Physician\}$

 $F_1 = \{n\}$ F_1 F_2 F_3 F_4 F_5 $F_2 = \{d, p, i\}$ F_2 F_3 F_4 F_5 $F_3 = \{z\}$ F_3 F_4

	c_1	c_2	c_3	c_4	c_5	c ₆
n	√	√	√	√		
d	✓				\checkmark	\checkmark
Z		\checkmark			\checkmark	\checkmark
i			\checkmark		\checkmark	
р				\checkmark		\checkmark

Maximum affinity fragmentation \mathscr{F} (fragmentation affinity = 65) Merging any two fragments would violate at least a constraint

 F_5

Query workload

Basic principles:

- minimize the execution cost of queries
- representative queries (query workload) used as starting point
- query cost model: based on the selectivity of the conditions in queries and queries' frequencies

Goal:

determine a fragmentation that minimizes the query workload cost
 NP-hard problem (minimum hitting set problem)

Basic idea of the heuristic:

- exploit monotonicity of the query cost function with respect to a dominance relationship among fragmentations
- traversal (checking ps solutions at levels multiple of d) over a spanning tree of the fragmentation lattice

Fragmentation

Keep a few

Basic idea (hybrid scenarios):

- encryption makes query execution more expensive and not always possible
- encryption brings overhead of key management
- Depart from encryption by involving the owner as a trusted party to maintain a limited amount of data [CDFJPS-09b, CDFJPS-11]

Keep a few – Fragmentation

Given:

- $R(A_1, \ldots, A_n)$: relation schema
- $\mathscr{C} = \{c_1, \dots, c_m\}$: confidentiality constraints over R

Determine a fragmentation $\mathscr{F} = \langle F_o, F_s \rangle$ for R, where F_o is stored at the owner and F_s is stored at a storage server, and

- $F_o \cup F_s = R$ (completeness)
- $\forall c \in \mathscr{C}, c \not\subseteq F_s$ (confidentiality)
- $F_o \cap F_s = \emptyset$ (non-redundancy) /* can be relaxed */

At the physical level F_o and F_s have a common attribute (additional tid or non-sensitive key attribute) to guarantee lossless join

Keep a few – Example

PATIENTS

	<u>SSN</u>	Name	YoB	Job	Disease
t_1	123456789	Alice	1980	Clerk	Asthma
t ₂	234567891	Bob	1980	Doctor	Asthma
3	345678912	Carol	1970	Nurse	Asthma
4	456789123	David	1970	Lawyer	Bronchitis
5	567891234	Eva	1970	Doctor	Bronchitis
6	678912345	Frank	1960	Doctor	Gastritis
7	789123456	Gary	1960	Teacher	Gastritis
8	891234567	Hilary	1960	Nurse	Diabetes

 $c_0 = \{SSN\}$

 $c_1 = \{Name, Disease\}$

 $c_2 = \{\text{Name, Job}\}\$ $c_3 = \{\text{Job, Disease}\}\$

 F_o

+id	SSN	Job	Disease
ua			Disease
1	123456789	Clerk	Asthma
	234567891		Asthma
3	345678912	Nurse	Asthma
4	456789123	Lawyer	Bronchitis
5	567891234	Doctor	Bronchitis
6	678912345	Doctor	Gastritis
7	789123456	Teacher	Gastritis
8	891234567	Nurse	Diabetes

F

	Γ_{S}						
<u>tid</u>	Name	YoB					
1	Alice	1980					
2	Bob	1980					
3	Carol	1970					
4	David	1970					
5	Eva	1970					
6	Frank	1960					
7	Gary	1960					
8	Hilary	1960					

Query evaluation

- Queries are formulated on R, therefore need to be translated into equivalent queries on F_o and/or F_s
- Queries of the form: SELECT A FROM R WHERE C where C is a conjunction of basic conditions
 - ∘ C₀: conditions that involve only attributes stored at the client
 - o Cs: conditions that involve only attributes stored at the sever
 - C_{so}: conditions that involve attributes stored at the client and attributes stored at the server

Query evaluation – Example

```
    F<sub>o</sub>={SSN,Job,Disease}, F<sub>s</sub>={Name,YoB}
```

```
    q = SELECT SSN, YoB
        FROM Patients
        WHERE (Disease="Bronchitis")
        AND (YoB="1970")
        AND (Name=Job)
```

The conditions in the WHERE clause are split as follows

```
    C<sub>o</sub> = {Disease = "Bronchitis"}
    C<sub>s</sub> = {YoB = "1970"}
    C<sub>so</sub> = {Name = Job}
```

Query evaluation strategies

Server-Client strategy

- server: evaluate C_s and return result to client
- client: receive result from server and join it with F_o
- client: evaluate C_o and C_{so} on the joined relation

Client-Server strategy

- client: evaluate C_o and send tid of tuples in result to server
- server: join input with F_s , evaluate C_s , and return result to client
- client: join result from server with F_o and evaluate C_{so}

Server-client strategy – Example

```
a = SELECT SSN, YoB
                                          C_o = \{ \text{Disease} = \text{`Bronchitis''} \}
    FROM Patients
                                          C_s = \{ YoB = "1970" \}
    WHERE (Disease = "Bronchitis")
            AND (YOB = "1970")
                                          C_{so} = \{Name = Job\}
            AND (Name = Job)
q_s = SELECT tid, Name, YoB
     FROM F.
     WHERE \frac{1}{1} = "1970"
q_{so} = SELECT SSN, YoB
      FROM F_a JOIN r_s
            ON F_o.tid=r_s.tid
      WHERE (Disease = "Bronchitis") AND (Name = Job)
```

Client-server strategy – Example

```
a = SELECT SSN, YoB
    FROM Patients
    WHERE (Disease = "Bronchitis")
           AND (YOB = "1970")
           AND (Name = Job)
q_o = SELECT tid
    FROM Fa
    WHERE Disease = "Bronchitis"
q_s = SELECT tid, Name, YoB
    FROM F_s JOIN r_o ON F_s.tid=r_o.tid
    WHERE \frac{1}{1970}"
q_{so} = SELECT SSN, YoB
     FROM F_a JOIN r_s ON F_a.tid=r_s.tid
     WHERE Name = Joh
```

```
C_o={Disease = "Bronchitis"}

C_s={YoB = "1970"}

C_{so}={Name = Job}
```

Server-client vs client-server strategies

- If the storage server knows or can infer the query:
 - \circ Client-Server leaks information: the server infers that some tuples are associated with values that satisfy C_o
- If the storage server does not know and cannot infer the query:
 - Server-Client and Client-Server strategies can be adopted without privacy violations
 - possible strategy based on performances: evaluate most selective conditions first

Minimal fragmentation

- The goal is to minimize the owner's workload due to the management of F_o
- Weight function w takes a pair $\langle F_o, F_s \rangle$ as input and returns the owner's workload (i.e., storage and/or computational load)
- A fragmentation $\mathscr{F} = \langle F_o, F_s \rangle$ is minimal iff:
 - F is correct (i.e., it satisfies the completeness, confidentiality, and non-redundancy properties)
 - 2. $\nexists \mathscr{F}'$ such that $w(\mathscr{F}') < w(\mathscr{F})$ and \mathscr{F}' is correct

Fragmentation metrics

Different metrics could be applied splitting the attributes between F_o and F_s , such as minimizing:

- storage
 - number of attributes in *F*_o (*Min-Attr*)
 - size of attributes in F₀ (Min-Size)
- computation/traffic
 - number of queries in which the owner needs to be involved (Min-Query)
 - number of conditions within queries in which the owner needs to be involved (*Min-Cond*)

The metrics to be applied may depend on the information available

Data and workload information – Example

PATIENT(SSN,Name,DoB,Race,Job,Illness,Treatment,HDate)

Α	size(A)
SSN	9
Name	20
DoB	8
Race	5
Job	18
Illness	15
Treatment	40
HDate	8

q	freq(q)	Attr(q)	Cond(q)
q_1	5	DoB, Illness	⟨Dob⟩, ⟨Illness⟩
q_2	4	Race, Illness	⟨Race⟩, ⟨Illness⟩
q_3	10	Job, Illness	⟨Job⟩, ⟨Illness⟩
q_4	1	Illness, Treatment	(Illness), (Treatment)
q_5	7	Illness	(Illness)
q_6	7	DoB, HDate, Treatment	(DoB,HDate), (Treatment)
q_7	1	SSN, Name	⟨SSN⟩, ⟨Name⟩

Weight metrics and minimization problems – 1

- Min-Attr. Only the relation schema (set of attributes) and the confidentiality constraints are known
 - \implies minimize the number of the attributes in F_a
 - $\circ w_a(\mathscr{F}) = card(F_o)$
- Min-Size. The relation schema (set of attributes), the confidentiality constraints, and the size of each attribute are known minimize the physical size of F_o
 - $\circ w_s(\mathscr{F}) = \sum_{A \in F_o} size(A)$

Weight metrics and minimization problems – 2

 Min-Query. The relation schema (set of attributes), the confidentiality constraints, and a representative profile of the expected query workload are known

Query workload profile:

$$\mathcal{Q} = \{(q_1, freq(q_1), Attr(q_1)), \dots, (q_l, freq(q_l)Attr(q_l))\}$$

- $\circ q_1, \ldots, q_l$ queries to be executed
- o $freq(q_i)$ expected execution frequency of q_i
- \circ Attr (q_i) attributes appearing in the WHERE clause of q_i

⇒ minimize the number of query executions that require processing at the owner

$$\circ w_q(\mathscr{F}) = \sum_{q \in \mathscr{Q}} freq(q) \ s.t. \ Attr(q) \cap F_o \neq \emptyset$$

Weight metrics and minimization problems – 3

 Min-Cond. The relation schema (set of attributes), the confidentiality constraints, and a complete profile (conditions in each query of the form a_i op v or a_i op a_j) of the expected query workload are known

Query workload profile:

- $\mathcal{Q}=\{(q_1, freq(q_1), Cond(q_1)), \dots, (q_l, freq(q_l)Cond(q_l))\}$
 - $\circ q_1, \ldots, q_l$ queries to be executed
 - o $freq(q_i)$ expected execution frequency of q_i
 - \circ *Cond*(q_i) set of conditions in the WHERE clause of query q_i ; each condition is represented as a single attribute or a pair of attributes
- ⇒ minimize the number of conditions that require processing at the owner
 - $\circ w_c(\mathscr{F}) = \sum_{cnd \in Cond(\mathscr{Q})} freq(cnd) \ s.t. \ cnd \cap F_o \neq \emptyset$, where $Cond(\mathscr{Q})$ denotes the set of all conditions of queries in \mathscr{Q} , and freq(cnd) is the overall frequency of cnd

Modeling of the minimization problems – 1

- All the problems of minimizing storage or computation/traffic aim at identifying a hitting set
 - o Fo must contain at least an attribute for each constraint
- Different metrics correspond to different criteria according to which the hitting set should be minimized
- We represent all criteria with a uniform model based on:
 - target set: elements (i.e., attributes, queries, or conditions) with respect to which the minimization problem is defined
 - weight function: function that associates a weight with each target element
 - weight of a set of attributes: sum of the weights of the targets intersecting with the set
- ⇒ compute the hitting set of attributes with minimum weight

Modeling of the minimization problems – 2

Problem	Target 𝒯	$w(t) \forall t \in \mathcal{T}$
Min-Attr	{{ <i>A</i> } <i>A</i> ∈ <i>R</i> }	1
Min-Size	{{ <i>A</i> } <i>A</i> ∈ <i>R</i> }	size(A) s.t. {A}=t
Min-Query	$\{attr \exists q\in\mathcal{Q}, Attr(q)=attr\}$	$\sum_{q\in\mathscr{Q}} freq(q)$ s.t. $Attr(q)=t$
Min-Cond	$\{cnd \exists q\in\mathcal{Q}, cnd\in Cond(q)\}$	freq(cnd) s.t. cnd=t

Weighted Minimum Target Hitting Set Problem (WMTHSP). Given a finite set A, a set C of subsets of A, a set \mathscr{T} (target) of subsets of A, and a weight function $w: \mathscr{T} \to \mathbb{R}^+$, determine a subset S of A such that:

- 1. *S* is a hitting set of *A*
- 2. $\nexists S'$ such that S' is a hitting set of A and $\sum_{t \in \mathscr{T}, t \cap S' \neq \emptyset} w(t) < \sum_{t \in \mathscr{T}, t \cap S \neq \emptyset} w(t)$

Modeling of the minimization problems – 3

 The Minimum Hitting Set Problem can be reduced to the WMTHSP

- $\circ \mathscr{T} = \{A_1, \dots, A_n\}; w(\{A_i\}) = 1, i = 1, \dots, n$
- o minimizing $\sum_{t\in\mathscr{T},t\cap S\neq\emptyset}w(t)$ is equivalent to minimizing the cardinality of the hitting set S
- ⇒ WMTHSP is NP-hard
- We propose a heuristic algorithm for solving the WMTHSP that:
 - \circ ensures minimality, that is, moving any attribute from F_o to F_s violates at least a constraint
 - has polynomial time complexity in the number of attributes (efficient execution time)
 - provides solutions close to the optimum (from experiments run: optimum was returned in many cases, 14% maximum error observed)

Heuristic algorithm – Input and output

Input

- A: set of attributes not appearing in singleton constraints
- %: set of well defined constraints
- \circ \mathscr{T} : set of targets
- \circ w: weight function defined on \mathscr{T}

Output

- \circ \mathscr{H} : set of attributes composing, together with those appearing in singleton constraints, F_o
- o F_s is computed as $R \setminus F_o$, obtaining a correct fragmentation

Heuristic algorithm – Data structure

- Priority-queue PQ with an element E for each attribute:
 - E.A: attribute
 - E.C: pointers to non-satisfied constraints that contain E.A
 - o E.T: pointers to the targets non intersecting \mathscr{H} that contain E.A
 - E.n_c: number of constraints pointed by E.C
 - E.w: total weight of targets pointed by E.T

Priority dictated by $E.w/E.n_c$: elements with lower ratio have higher priority

Heuristic algorithm – Example of initialization (1)

PATIENT(SSN,Name,DoB,Race,Job,Illness,Treatment,HDate)

Confidentiality constraints

 $c_0 = \{SSN\}$

 $c_1 = \{Name, IIIness\}$

 $c_2 = \{Name, Treatment\}$

 $c_3 = \{DoB, Race, Illness\}$

 $c_4 = \{DoB, Race, Treatment\}$

C5=	[Jc	b,I	llne	ss}
-----	-----	-----	------	-----

Α	size(A)
SSN	9
Name	20
DoB	8
Race	5
Job	18
Illness	15
Treatment	40
HDate	8

q	freq(q)	Attr(q)	Cond(q)
q_1	5	DoB, Illness	⟨Dob⟩, ⟨Illness⟩
q_2	4	Race, Illness	⟨Race⟩, ⟨Illness⟩
q_3	10	Job, Illness	⟨Job⟩, ⟨Illness⟩
q_4	1	Illness, Treatment	(Illness), (Treatment)
q 5	7	Illness	(Illness)
q_6	7	DoB, HDate, Treatment	(DoB,HDate), (Treatment)
q_7	1	SSN, Name	⟨SSN⟩, ⟨Name⟩

Heuristic algorithm – Example of initialization (2)

Heuristic algorithm – Working process

- while $PQ\neq\emptyset$ and $\exists E\in PQ$, $E.n_c\neq0$
 - extract the element E with lowest E.w/E.n_c from PQ
 - ∘ insert E.A into ℋ
 - \circ $\forall c$ pointed by E.C, remove the pointers to c from any element E' in PQ and update $E'.n_c$
 - \circ $\forall t$ pointed by E.T, remove the pointers to t from any element E' in PQ and update E'.w
 - \circ readjust PQ based on the new values for E.w/E.n_c (to_be_updated)
- for each *A*∈*ℋ*
 - \circ if $\mathcal{H}\setminus\{A\}$ is a hitting set for \mathscr{C} , remove A from \mathcal{H}

Heuristic algorithm – Example of Min-Query

$$\mathcal{H} = \{\}$$

 $E.A = N$
 $E.C = \{NI, NT\}$
 $E.T = \{\}$
 $to_be_updated = \{I,T\}$

Heuristic algorithm – Example of Min-Query

Heuristic algorithm – Example of Min-Query

C

Heuristic algorithm - Example of Min-Query

С

$$\mathcal{H} = \{N, R, J\}$$

$$PQ$$

$$\boxed{I_{13}^{0} D_{12}^{0} T_{8}^{0} H_{7}^{0}}$$

$$T$$

$$\boxed{DI}$$

$$\boxed{IT}$$

$$\boxed{I}$$

$$\boxed{DHT}$$

Heuristic algorithm - Example of Min-Query

С

$$F_o = \{SSN, Name, Race, Job\}$$
 $F_s = \{Illness, DoB, Treatment, HDate\}$

Example of solutions computed by the heuristic algorithm

Fragmentation and inference

- Fragmentation assumes attributes to be independent
- In presence of data dependencies:
 - o sensitive attributes/associations may be indirectly exposed
 - o fragments may be indirectly linkable

R(SSN, Birth, ZIP, Name, Treatment, Disease, Job, Premium, Insurance)

R(SSN, Birth, ZIP, Name, Treatment, Disease, Job, Premium, Insurance)

Constraints

 $c_1 = \{SSN\}$

 c_2 = {Name, Disease}

 $c_3 = \{ZIP, Premium\}$

R(SSN, Birth, ZIP, Name, Treatment, Disease, Job, Premium, Insurance)

R(SSN, Birth, ZIP, Name, Treatment, Disease, Job, Premium, Insurance)

Constraints

 $c_1 = \{SSN\}$

 $c_2 = \{\text{Name}, \text{Disease}\}$

 $c_3 = \{ZIP, Premium\}$

Dependencies

 $d_1 = \{Birth, ZIP\} \rightarrow Name$

 $d_2 = \{\text{Treatment}\} \rightarrow \text{Disease}$

 $d_3 = \{ \text{Disease} \} \rightarrow \text{Job}$

 $d_4 = \{\text{Insurance, Premium}\} \rightsquigarrow \text{Job}$

R(SSN, Birth, ZIP, Name, Treatment, Disease, Job, Premium, Insurance)

Constraints

 $c_1 = \{SSN\}$

 $c_2 = \{\text{Name, Disease}\}$

 $c_3 = \{ZIP, Premium\}$

Dependencies

 $d_1 = \{Birth, ZIP\} \rightarrow Name$

 $d_2 = \{\text{Treatment}\} \rightarrow \text{Disease}$

 $d_3 = \{ \text{Disease} \} \rightarrow \text{Job}$

 $d_4 = \{\text{Insurance, Premium}\} \rightsquigarrow \text{Job}$

R(SSN, Birth, ZIP, Name, Treatment, Disease, Job, Premium, Insurance)

Constraints

 $c_1 = \{SSN\}$

 $c_2 = \{\text{Name, Disease}\}$

 $c_3 = \{ZIP, Premium\}$

Dependencies

 $d_1 = \{Birth, ZIP\} \rightsquigarrow Name$

 $d_2 = \{\text{Treatment}\} \rightarrow \text{Disease}$

 $d_3 = \{ Disease \} \rightarrow Job \}$

 $d_4 = \{Insurance, Premium\} \rightarrow Job$

R(SSN, Birth, ZIP, Name, Treatment, Disease, Job, Premium, Insurance)

Constraints

 $c_1 = \{SSN\}$

 $c_2 = \{\text{Name}, \text{Disease}\}$

 $c_3 = \{ZIP, Premium\}$

Dependencies

 $d_1 = \{Birth, ZIP\} \rightarrow Name$

 $d_2 = \{Treatment\} \leadsto Disease$

 $d_3 = \{Disease\} \rightsquigarrow Job$

 $d_4 = \{ \text{Insurance, Premium} \} \rightarrow \text{Job}$

R(SSN, Birth, ZIP, Name, Treatment, Disease, Job, Premium, Insurance)

Constraints

 $c_1 = \{SSN\}$

 $c_2 = \{\text{Name}, \text{Disease}\}$

 $c_3 = \{ZIP, Premium\}$

Dependencies

 $d_1 = \{Birth, ZIP\} \rightarrow Name$

 $d_2 = \{Treatment\} \leadsto Disease$

 $d_3 = \{Disease\} \rightsquigarrow Job$

 $d_4 = \{Insurance, Premium\} \rightsquigarrow Job$

Fragmenting with data dependencies

Take into account data dependencies in fragmentation

 Fragments should not contain sensitive attributes/associations neither directly nor indirectly

Fragmenting with data dependencies

Take into account data dependencies in fragmentation

 Fragments should not contain sensitive attributes/associations neither directly nor indirectly

Publishing Obfuscated Associations

Motivation

- Sensitive associations among data may need to be protected, while allowing execution of certain queries
 - e.g., the set of products available in a pharmacy and the set of customers may be of public knowledge; allow retrieving the average number of products purchased by customers while protecting the association between a particular customer and a particular product

Possible solutions:

- [CSYZ-08] exploits a graphical representation of sensitive associations and masks the mapping from entities to nodes of the graph while preserving the graph structure
- [DFJPS-10a] exploits fragmentation for enforcing confidentiality constraints and visibility requirements and publishes a sanitized form of associations

Anonymizing Bipartite Graph

G. Cormode, D. Srivastava, T. YU, Q. Zhang, "Anonymizing Bipartite Graph Data Using Safe Groupings," in *Proc. of VLDB*, Auckland, New Zealand, August 2008.

Private associations – Example [CSYZ-08]

Customer	State
c1	NJ
c2	NC
сЗ	CA
с4	NJ
c5	NC
с6	CA

Product	Avail
p1	Rx
p2	OTC
р3	OTC
p4	OTC
p5	Rx
p6	OTC

Product
p2
p6
р3
p4
p2
p4
p5
p1
p5
р3
p6

Problem statement

Publish anonymized and useful version of bipartite graph in such a way that:

- a broad class of queries can be answered accurately
 - Type 0 Graph structure only. E.g., what is the average number of products purchased by customers?
 - Type 1 Attribute predicate on one side only. E.g., what is the average number of products purchased by NJ customers?
 - Type 2 Attribute predicate on both side. E.g., what is the average number of OTC products purchased by NJ customers?
- privacy of the specific associations is preserved

(k,l) grouping

Basic idea: preserve the graph structure but permute mapping from entities to nodes

(k,l) grouping of bipartite graph G = (V, W, E)

- Partition V (W, resp.) into non-intersecting subsets of size \geq k (I, resp.)
- Publish edges E' that are isomorphic to E, where mapping from E to E' is anonymized based on partitions of V and W

(3,3) grouping – Example (1)

Customer	State
c1	NJ
c2	NC
c3	CA
с4	NJ
c5	NC
с6	CA

Product	Avail
p1	Rx
p2	OTC
p3	OTC
p4	OTC
p5	Rx
p6	OTC

Customer	Product
c1	p2
c1	p6
c2	р3
c2	р4
c3	p2
c3	p4
c4	p5
c5	р1
c5	p 5
c6	р3
c6	p6

(3,3) grouping – Example (2)

x1 y2 x1 y6 x2 y1 x3 y3 x3 y4	Customer	Group
x4 y2	c1	CG1
x4 y4	c2	CG1
x5 y3	сЗ	CG2
x5 y6	c4	CG1
x6 y1	с5	CG2
x6 y5	с6	CG2
E'	I	H_V

Product	Group	X-node
p1	PG2	Х
p2	PG1	Х
рЗ	PG1	Х
p4	PG2	X
p5	PG1	X
p6	PG2	X
H	I_W	

Y-node	Group	
y1	PG1	
y2	PG1	
у3	PG1	
y4	PG2	
у5	PG2	
y6	PG2	
R_W		

Group

CG:

Safe groupings

- There are different ways for creating a (k,l) grouping but not all the resulting groupings offer the same level of privacy (e.g., local clique)
 - \implies safe (k,l) groupings: nodes in the same group of V are not connected to a same node in W
- The computation of a safe grouping can be hard even for small values of k and l
 - the computation of a safe, strict (3,3)-grouping is NP-hard (reduction from partitioning a graph into triangles)
- The authors propose a greedy algorithm that iteratively adds a node to a group with fewer than k nodes, if it is safe (it creates a new group if such insertion is not possible)
- The algorithm works when bipartite graph is sparse enough

Fragments and Loose Associations

S. De Capitani di Vimercati, S. Foresti, S. Jajodia, S. Paraboschi, P. Samarati, "Fragments and Loose Associations: Respecting Privacy in Data Publishing," in *Proc. of the VLDB Endowment*, vol. 3, no. 1, September 2010.

Data publication

- Fragmentation can also be used to protect sensitive associations in data publishing
 - ⇒ publish/release to external parties only views (fragments) that do not expose sensitive associations
- To increase utility of published information fragments could be coupled with some associations in sanitized form
 - ⇒ loose associations: associations among groups of values (in contrast to specific values)

Confidentiality constraints

As already discussed....

- Sets of attributes such that the (joint) visibility of values of the attributes in the sets should be protected
- They permit to express different requirements
 - sensitive attributes: the values of some attributes are considered sensitive and should not be visible
 - sensitive associations: the associations among values of given attributes are sensitive and should not be visible

Confidentiality constraints – Example

SSN	Patient	Birth	City	Illness	Doctor
123-45-6789	Page	56/12/9	Rome	diabetes	David
987-65-4321	Patrick	53/3/19	Paris	gastritis	Daisy
963-85-2741	Patty	58/5/18	Oslo	flu	Damian
147-85-2369	Paul	53/12/9	Oslo	asthma	Daniel
782-90-5280	Pearl	56/12/9	Rome	gastritis	Dorothy
816-52-7272	Philip	57/6/25	Paris	obesity	Drew
872-62-5178	Phoebe	53/12/1	NY	measles	Dennis
712-81-7618	Piers	60/7/25	Rome	diabetes	Daisy

- SSN is sensitive
 - {SSN}
- Illness and Doctor are private of an individual and cannot be stored in association with the name of the patient
 - {Patient, Illness}, {Patient, Doctor}
- {Birth,City} can work as quasi-identifier
 - {Birth, City, Illness}, {Birth, City, Doctor}

Visibility requirements

- Monotonic Boolean formulas over attributes, representing views over data (negations are captured by confidentiality constraints)
- They permit to express different requirements
 - visible attributes: some attributes should be visible
 - visible associations: the association among values of given attributes should be visible
 - alternative views: at least one of the specified views should be visible

Visibility requirements – Example

SSN	Patient	Birth	City	Illness	Doctor
123-45-6789	Page	56/12/9	Rome	diabetes	David
987-65-4321	Patrick	53/3/19	Paris	gastritis	Daisy
963-85-2741	Patty	58/5/18	Oslo	flu	Damian
147-85-2369	Paul	53/12/9	Oslo	asthma	Daniel
782-90-5280	Pearl	56/12/9	Rome	gastritis	Dorothy
816-52-7272	Philip	57/6/25	Paris	obesity	Drew
872-62-5178	Phoebe	53/12/1	NY	measles	Dennis
712-81-7618	Piers	60/7/25	Rome	diabetes	Daisy

- Either names of Patients or their Cities should be released
 - Patient ∨ City
- Either Birth dates and Cities of patients in association should be released or the SSN of patients should be released
 - o (Birth ∧ City)∨ SSN
- Illnesses and Doctors, as well as their association, should be released
 - Illness ∧ Doctor

Fragmentation

Fragmentation can be applied to satisfy both confidentiality constraints and visibility requirements

- Publish/release to external parties only fragments that
 - do not include sensitive attributes and sensitive associations
 - include the requested attributes and/or associations (all the requirements should be satisfied, not necessarily by a single fragment)

Fragmentation – Example

SSN	Patient	Birth	City	Illness	Doctor
123-45-6789	Page	56/12/9	Rome	diabetes	David
987-65-4321	Patrick	53/3/19	Paris	gastritis	Daisy
963-85-2741	Patty	58/5/18	Oslo	flu	Damian
147-85-2369	Paul	53/12/9	Oslo	asthma	Daniel
782-90-5280	Pearl	56/12/9	Rome	gastritis	Dorothy
816-52-7272	Philip	57/6/25	Paris	obesity	Drew
872-62-5178	Phoebe	53/12/1	NY	measles	Dennis
712-81-7618	Piers	60/7/25	Rome	diabetes	Daisy

 $\begin{aligned} &c_0 = &\{\text{SSN}\} \\ &c_1 = &\{\text{Patient,Illness}\} \\ &c_2 = &\{\text{Patient,Doctor}\} \\ &c_3 = &\{\text{Birth,City,Illness}\} \\ &c_4 = &\{\text{Birth,City,Doctor}\} \\ &v_1 = &\text{Patient} \lor \text{City} \\ &v_2 = &(\text{Birth} \land \text{City}) \lor \text{SSN} \end{aligned}$

v₃=Illness ∧ Doctor

Fragmentation – Example

			,	Illness	
123-45-6789	Page	56/12/9	Rome	diabetes	David
987-65-4321	Patrick	53/3/19	Paris	gastritis	Daisy
963-85-2741	Patty	58/5/18	Oslo	flu	Damian
147-85-2369	Paul	53/12/9	Oslo	asthma	Daniel
782-90-5280	Pearl	56/12/9	Rome	gastritis	Dorothy
816-52-7272	Philip	57/6/25	Paris	obesity	Drew
872-62-5178	Phoebe	53/12/1	NY	measles	Dennis
712-81-7618	Piers	60/7/25	Rome	diabetes	Daisy

c_2 ={Patient, Doctor}
c ₃ ={Birth,City,Illness}
$c_4 = \{ Birth, City, Doctor \}$
v₁=Patient ∨ City
$v_2 = (Birth \land City) \lor SSN$

V₃=Illness ∧ Doctor

 c_0 ={SSN} c_1 ={Patient,|||ness}

F_l			
Birth	City		
56/12/9	Rome		
53/3/19	Paris		
58/5/18	Oslo		
53/12/9	Oslo		
56/12/9	Rome		
57/6/25	Paris		
53/12/1	NY		
60/7/25	Rome		

F_r			
Illness	Doctor		
diabetes	David		
gastritis	Daisy		
flu	Damian		
asthma	Daniel		
gastritis	Dorothy		
obesity	Drew		
measles	Dennis		
diabetes	Daisy		

Correct and minimal fragmentation

- A fragmentation is correct if
 - o each confidentiality constraint is satisfied by all fragments
 - o each visibility requirement is satisfied by at least a fragment
 - fragments do not have attributes in common (to prevent joins on fragments to retrieve associations)
- · A correct fragmentation is minimal if
 - the number of fragments is minimum (i.e., any other correct fragmentation has an equal or greater number of fragments)
- The Min-CF problem of computing a correct and minimal fragmentation is NP-hard

Computing a correct and minimal fragmentation

A SAT solver can efficiently solve the Min-CF problem

 An instance of the Min-CF problem is translated into an instance of the SAT problem

formulas

The inputs to the Min-CF problem are interpreted as boolean

- visibility requirements are already represented as boolean formulas
- each confidentiality constraint is represented via a boolean formula as a conjunction of the attributes appearing in the constraint
- Iterate the evaluation of a SAT solver, starting with one fragment and increasing fragments by one at each iteration, until a solution is found (solution is guaranteed to be minimal)

Publishing loose associations – 1

- Fragmentation breaks associations among attributes
- To increase utility of published information, fragments can be coupled with some associations in sanitized form
- A given privacy degree of the association must be guaranteed
 - ⇒ loose associations: associations among groups of values (in contrast to specific values)

Publishing loose associations – 2

Given two fragments F_l and F_r , a loose association between F_l and F_r

- partitions tuples in the fragments in groups
- · provides information on the associations at the group level
- does not permit to exactly reconstruct the original associations among the tuples in the fragments
- · provides enriched utility of the published data

Grouping

- Given fragment F_i and its instance f_i, a k-grouping over f_i partitions the tuples in f_i in groups of size greater than or equal to k
 ⇒ each tuple t in f_i is associated with a group identifier G_i(t)
- A k-grouping is minimal if it maximizes the number of groups (intuitively, it minimizes the size of the groups)
- (k_l,k_r) -grouping denotes the groupings over two instances f_l and f_r of F_l and F_r
- A (k_l,k_r)-grouping is minimal if both the k_l-grouping and the k_r-grouping are minimal

Minimal (2,2)-grouping – Example

Birth	City	Illness	Doctor
56/12/9	Rome	diabetes	David
53/3/19	Paris	gastritis	Daisy
58/5/18	Oslo	flu	Damian
53/12/9	Oslo	asthma	Daniel
56/12/9	Rome	gastritis	Dorothy
57/6/25	Paris	obesity	Drew
53/12/1	NY	measles	Dennis
60/7/25	Rome	diabetes	Daisy

c_0 ={SSN}
c_1 ={Patient,IIIness}
c_2 ={Patient, Doctor}
c ₃ ={Birth,City,Illness}
$c_4 = \{Birth, City, Doctor\}$

Birth City 56/12/9 Rome 53/3/19 Paris 58/5/18 Oslo 53/12/9 Oslo 56/12/9 Rome 57/6/25 Paris 53/12/1 NY 60/7/25 Rome Illness Doctor
diabetes David
gastritis Damian
asthma Daniel
gastritis Dorothy
obesity Drew
measles Daisy
diabetes Daisy

Minimal (2,2)-grouping – Example

r	B:	A:-		
ı	Birth	City	Illness	Doctor
ſ	56/12/9	Rome	diabetes	David
			gastritis	Daisy
	58/5/18	Oslo	flu	Damian
	53/12/9	Oslo	asthma	Daniel
١	56/12/9	Rome	gastritis	Dorothy
١	57/6/25	Paris	obesity	Drew
	53/12/1	NY	measles	Dennis
Į	60/7/25	Rome	diabetes	Daisy

c_0 ={SSN}
c_1 ={Patient,IIIness}
c_2 ={Patient, Doctor}
c ₃ ={Birth,City,Illness}
$c_4 = \{Birth, City, Doctor\}$

F_l			
Birth	City		
	Paris		
53/12/9	Oslo		
56/12/9	Rome		
57/6/25	Paris		
58/5/18	Oslo		
56/12/9	Rome		
53/12/1	NY		
60/7/25	Rome		

F_r			
Illness	Doctor		
gastritis	Daisy		
diabetes	David		
asthma	Daniel		
flu	Damian		
obesity	Drew		
measles	Dennis		
gastritis	Dorothy		
diabetes	Daisy		

Group association

- A (k_l,k_r) -grouping induces a group association A among the groups in f_l and f_r
- A group association A over f_l and f_r is a set of pairs of group identifiers such that:
 - \circ A has the same cardinality as the original relation
 - there is a bijective mapping between the original relation and A that associates each tuple in the original relation with a pair $(G_l(l), G_r(r))$ in A, with $l \in f_l$ and $r \in f_r$

r= r r r				
		Illness		
56/12/9	Rome	diabetes	David	
		gastritis	Daisy	
58/5/18	Oslo	flu	Damian	
53/12/9	Oslo	asthma	Daniel	
56/12/9	Rome	gastritis	Dorothy	
			Drew	
53/12/1	NY	measles	Dennis	
60/7/25	Rome	diabetes	Daisy	

F_l				
	City			
53/3/19				
53/12/9	Oslo			
56/12/9	Rome			
57/6/25	Paris			
58/5/18	Oslo			
56/12/9	Rome			
53/12/1	NY			
60/7/25	Rome			

F_r				
Illness	Doctor			
gastritis	Daisy			
diabetes	David			
asthma	Daniel			
flu	Damian			
obesity	Drew			
measles	Dennis			
gastritis	Dorothy			
diabetes	Daisy			

	_	Illness	
56/12/9	Rome	diabetes	David
53/3/19	Paris	gastritis	Daisy
58/5/18	Oslo	flu	Damian
			Daniel
		gastritis	Dorothy
57/6/25	Paris	obesity	Drew
53/12/1	NY	measles	Dennis
60/7/25	Rome	diabetes	Daisy

c_0 ={SSN}
c ₁ ={Patient,Illness}
c_2 ={Patient, Doctor}
$c_3 = \{Birth, City, Illness\}$
$c_4 = \{Birth, City, Doctor\}$

Fl				
	City			
53/3/19				
53/12/9				
56/12/9	Rome			
57/6/25				
58/5/18	Oslo			
56/12/9	Rome			
53/12/1	NY			
60/7/25	Rome			

	Birth	City	Illness	Doctor
\Longrightarrow	56/12/9	Rome	diabetes	David
	53/3/19	Paris	gastritis	Daisy
	58/5/18	Oslo	flu	Damian
			asthma	
	56/12/9	Rome	gastritis	Dorothy
	57/6/25	Paris	obesity	Drew
	53/12/1	NY	measles	Dennis
	60/7/25	Rome	diabetes	Daisy

c_0 ={SSN}
c_1 ={Patient,IIIness}
c_2 ={Patient, Doctor}
c_3 ={Birth,City,Illness}
$c_4 = \{Birth, City, Doctor\}$

- l				
	City			
53/3/19	Paris			
53/12/9				
56/12/9				
57/6/25				
58/5/18	Oslo			
56/12/9	Rome			
53/12/1	NY			
60/7/25	Rome			

F_r				
Illness	Doctor			
gastritis	Daisy			
diabetes	David			
asthma	Daniel			
flu	Damian			
obesity	Drew			
measles	Dennis			
gastritis	Dorothy			
diabetes	Daisy			

			Illness	
\Longrightarrow	56/12/9	Rome	diabetes	David
\Longrightarrow	53/3/19	Paris	gastritis	Daisy
	58/5/18	Oslo	flu	Damian
			asthma	
	56/12/9	Rome	gastritis	Dorothy
	57/6/25	Paris	obesity	Drew
	53/12/1	NY	measles	Dennis
	60/7/25	Rome	diabetes	Daisy

c_0 ={SSN}
c_1 ={Patient,IIIness}
c_2 ={Patient, Doctor}
c_3 ={Birth,City,Illness}
$c_4 = \{Birth, City, Doctor\}$

F_{l}	!		F	r
Birth	City		Illness	Doctor
53/3/19	Paris	-	gastritis	Daisy
53/12/9	Oslo		diabetes	David
56/12/9			asthma	Daniel
57/6/25	Paris		flu	Damian
58/5/18			obesity	Drew
56/12/9	Rome		measles	Dennis
53/12/1	NY		gastritis	Dorothy
60/7/25	Rome		diabetes	Daisy

	Birth	City	Illness	Doctor
\Longrightarrow	56/12/9	Rome	diabetes	David
\Longrightarrow	53/3/19	Paris	gastritis	Daisy
\Longrightarrow	58/5/18	Oslo	flu	Damian
			asthma	
	56/12/9	Rome	gastritis	Dorothy
	57/6/25	Paris	obesity	Drew
	53/12/1	NY	measles	Dennis
	60/7/25	Rome	diabetes	Daisy

$$\begin{split} &c_0 = \{SSN\} \\ &c_1 = \{Patient, Illness\} \\ &c_2 = \{Patient, Doctor\} \\ &c_3 = \{Birth, City, Illness\} \\ &c_4 = \{Birth, City, Doctor\} \end{split}$$

F_{l}	!	F	r
Birth	City	Illness	Doctor
53/3/19	Paris	 gastritis	Daisy
53/12/9	Oslo	diabetes	David
56/12/9	Rome	asthma	Daniel
57/6/25	Paris	flu	Damian
58/5/18	Oslo	obesity	Drew
56/12/9	Rome	measles	Dennis
53/12/1	NY	gastritis	Dorothy
60/7/25	Rome	diabetes	Daisy

		,	Illness	
\Longrightarrow	56/12/9	Rome	diabetes	David
			gastritis	Daisy
\Longrightarrow	58/5/18	Oslo	flu	Damian
			asthma	
	56/12/9	Rome	gastritis	Dorothy
	57/6/25	Paris	obesity	Drew
	53/12/1	NY	measles	Dennis
	60/7/25	Rome	diabetes	Daisy

```
 \begin{aligned} &c_0 = &\{SSN\} \\ &c_1 = &\{\text{Patient, Illness}\} \\ &c_2 = &\{\text{Patient, Doctor}\} \\ &c_3 = &\{\text{Birth, City, Illness}\} \\ &c_4 = &\{\text{Birth, City, Doctor}\} \end{aligned}
```


			Illness	
			diabetes	
\Longrightarrow	53/3/19	Paris	gastritis	Daisy
	58/5/18			Damian
\Longrightarrow	53/12/9	Oslo	asthma	Daniel
\Longrightarrow	56/12/9	Rome	gastritis	Dorothy
	57/6/25	Paris	obesity	Drew
	53/12/1	NY	measles	Dennis
	60/7/25	Rome	diabetes	Daisy

c_0 ={SSN}
c_1 ={Patient,Illness}
c_2 ={Patient, Doctor}
c ₃ ={Birth,City,Illness}
$c_4 = \{Birth, City, Doctor\}$

			Illness	
\Longrightarrow	56/12/9	Rome	diabetes	David
			gastritis	Daisy
\Longrightarrow	58/5/18	Oslo	flu	Damian
\Longrightarrow	53/12/9	Oslo	asthma	Daniel
\Longrightarrow	56/12/9	Rome	gastritis	Dorothy
\Longrightarrow				Drew
	53/12/1	NY	measles	Dennis
	60/7/25	Rome	diabetes	Daisy

c_0 ={SSN}
c_1 ={Patient,IIIness}
c_2 ={Patient, Doctor}
c_3 ={Birth,City,Illness}
$c_4 = \{Birth, City, Doctor\}$

F_{i}	!	F	r
Birth	City	Illness	Doctor
53/3/19	Paris	 gastritis	Daisy
53/12/9	Oslo	diabetes	David
56/12/9		asthma	Daniel
57/6/25	Paris	flu	Damian
58/5/18	Oslo	obesity	Drew
56/12/9	Rome	measles	Dennis
53/12/1		gastritis	
60/7/25	Rome	diabetes	Daisy

			Illness	
\Longrightarrow	56/12/9	Rome	diabetes	David
\Longrightarrow	53/3/19	Paris	gastritis	Daisy
\Longrightarrow	58/5/18	Oslo	flu	Damian
\Longrightarrow	53/12/9	Oslo	asthma	Daniel
\Longrightarrow	56/12/9	Rome	gastritis	Dorothy
			obesity	
\Longrightarrow	53/12/1	NY	measles	Dennis
	60/7/25	Rome	diabetes	Daisy

c_0 ={SSN}
c ₁ ={Patient,Illness}
c_2 ={Patient, Doctor}
$c_3 = \{Birth, City, Illness\}$
$c_4 = \{Birth, City, Doctor\}$

			Illness	
			diabetes	
			gastritis	Daisy
	58/5/18			Damian
\Longrightarrow	53/12/9	Oslo	asthma	Daniel
\Longrightarrow	56/12/9	Rome	gastritis	Dorothy
	57/6/25			Drew
\Longrightarrow	53/12/1	NY	measles	Dennis
\Longrightarrow	60/7/25	Rome	diabetes	Daisy

```
c<sub>0</sub>={SSN}
c<sub>1</sub>={Patient,Illness}
c<sub>2</sub>={Patient,Doctor}
c<sub>3</sub>={Birth,City,Illness}
c<sub>4</sub>={Birth,City,Doctor}
```

F_l			F_r	
Birth	City		Illness	Doctor
53/3/19		-	gastritis	Daisy
53/12/9	Oslo		diabetes	David
56/12/9			asthma	Daniel
57/6/25			flu	Damian
58/5/18			obesity	Drew
56/12/9	Rome		measles	
53/12/1	NY		gastritis	Dorothy
60/7/25	Rome		diabetes	Daisy

		Illness	
56/12/9	Rome	diabetes	David
53/3/19	Paris	gastritis	Daisy
58/5/18			Damian
53/12/9	Oslo	asthma	Daniel
56/12/9	Rome	gastritis	Dorothy
			Drew
53/12/1	NY	measles	Dennis
60/7/25	Rome	diabetes	Daisy

```
 \begin{aligned} &c_0 = &\{\text{SSN}\} \\ &c_1 = &\{\text{Patient,Illness}\} \\ &c_2 = &\{\text{Patient,Doctor}\} \\ &c_3 = &\{\text{Birth,City,Illness}\} \\ &c_4 = &\{\text{Birth,City,Doctor}\} \end{aligned}
```


		Illness	
56/12/9	Rome	diabetes	David
		gastritis	Daisy
58/5/18			Damian
53/12/9	Oslo	asthma	Daniel
56/12/9	Rome	gastritis	Dorothy
57/6/25	Paris	obesity	Drew
53/12/1	NY	measles	Dennis
60/7/25	Rome	diabetes	Daisy

c_0 ={SSN}
c_1 ={Patient,IIIness}
c_2 ={Patient, Doctor}
c_3 ={Birth,City,Illness}
$c_4 = \{Birth, City, Doctor\}$

F_{l}			
		G	
53/3/19		bc1	
53/12/9		bc1	
56/12/9	Rome	bc2	
57/6/25	Paris	bc2	
58/5/18		bc3	
56/12/9	Rome	bc3	
53/12/1		bc4	
60/7/25	Rome	bc4	

G_l	G_r
bc1	id1
bc1	id2
bc2	id1
bc2	id3
bc3	id2
bc3	id4
bc4	id3
bc4	id4

F_r			
G	Illness	Doctor	
id1	gastritis	Daisy	
id1	diabetes	David	
id2	asthma	Daniel	
id2		Damian	
id3	obesity	Drew	
id3	measles	Dennis	
		Dorothy	
id4	diabetes	Daisy	

Group association protection

- Duplicates in fragments are maintained (all fragments have the same cardinality as the original relation)
 - o fragments may contain tuples that are equal
- Even tuples that are different may have the same values for attributes involved in a confidentiality constraint
- The looseness protection offered by grouping can be compromised
 - ⇒ need to control occurrences of the same values

Alikeness

• Two tuples l_i , l_j in f_l (r_i , r_j in f_r) are alike w.r.t. a constraint c, denoted $l_i \simeq_c l_i$ ($r_i \simeq_c r_i$), if

```
• c \subseteq (F_l \cup F_r) (c is covered by F_l and F_r)
```

- $\circ \ l_i[c \cap F_l] = l_j[c \cap F_l] \ (r_i[c \cap F_r] = r_j[c \cap F_r])$
- Two tuples l_i , l_j in f_l $(r_i, r_j \text{ in } f_r)$ are alike $l_i \simeq l_j$ $(r_i \simeq r_j)$ if they are alike w.r.t. at least a constraint $c \subseteq (F_l \cup F_r)$
- \simeq_c is transitive for any constraint c
- \simeq is not transitive if there are at least two constraints covered by F_l and F_r

Birth	City	Illness	Doctor
56/12/9	Rome	diabetes	David
53/3/19	Paris	gastritis	Daisy
58/5/18	Oslo	flu	Damian
53/12/9	Oslo	asthma	Daniel
56/12/9	Rome	gastritis	Dorothy
57/6/25	Paris	obesity	Drew
53/12/1	NY	measles	Dennis
60/7/25	Rome	diabetes	Daisy

$$\begin{split} &c_0 = \{\text{SSN}\} \\ &c_1 = \{\text{Patient,Illness}\} \\ &c_2 = \{\text{Patient,Doctor}\} \\ &c_3 = \{\text{Birth,City,Illness}\} \\ &c_4 = \{\text{Birth,City,Doctor}\} \end{split}$$

F_l			
Birth	City		
56/12/9	Rome		
53/3/19	Paris		
58/5/18	Oslo		
53/12/9	Oslo		
56/12/9	Rome		
57/6/25	Paris		
53/12/1	NY		
60/7/25	Rome		

Illness Doctor
diabetes David
gastritis Damian
asthma Daniel
gastritis Dorothy
obesity Drew
measles Daisy
diabetes Daisy

Birth	City	Illness	Doctor
		diabetes	
		gastritis	Daisy
58/5/18	Oslo	flu	Damian
53/12/9	Oslo	asthma	Daniel
56/12/9	Rome	gastritis	Dorothy
57/6/25	Paris	obesity	Drew
53/12/1	NY	measles	Dennis
60/7/25	Rome	diabetes	Daisy

$$\begin{split} &c_0 = \{\text{SSN}\} \\ &c_1 = \{\text{Patient,Illness}\} \\ &c_2 = \{\text{Patient,Doctor}\} \\ &c_3 = \{\text{Birth,City,Illness}\} \\ &c_4 = \{\text{Birth,City,Doctor}\} \end{split}$$

F_l		
Birth	City	
56/12/9	Rome	
53/3/19	Paris	
58/5/18	Oslo	
53/12/9	Oslo	
56/12/9	Rome	
57/6/25	Paris	
53/12/1	NY	
60/7/25	Rome	

Illness Doctor
diabetes David
gastritis Daisy
flu Damian
asthma Daniel
gastritis Dorothy
obesity Drew
measles Daisy
diabetes Daisy

		Illness	
56/12/9	Rome	diabetes	David
		gastritis	Daisy
58/5/18	Oslo	flu	Damian
53/12/9	Oslo	asthma	Daniel
56/12/9	Rome	gastritis	Dorothy
57/6/25	Paris	obesity	Drew
53/12/1	NY	measles	Dennis
60/7/25	Rome	diabetes	Daisy

$$\begin{split} &c_0 = \{\text{SSN}\} \\ &c_1 = \{\text{Patient,Illness}\} \\ &c_2 = \{\text{Patient,Doctor}\} \\ &c_3 = \{\text{Birth,City,Illness}\} \\ &c_4 = \{\text{Birth,City,Doctor}\} \end{split}$$

Birth	City	Illness	Doctor
56/12/9	Rome	diabetes	David
		gastritis	Daisy
58/5/18	Oslo	flu	Damian
53/12/9	Oslo	asthma	Daniel
56/12/9	Rome	gastritis	Dorothy
57/6/25	Paris	obesity	Drew
53/12/1	NY	measles	Dennis
60/7/25	Rome	diabetes	Daisy

 c_0 ={SSN} c_1 ={Patient,Illness} c_2 ={Patient,Doctor} c_3 ={Birth,City,Illness} c_4 ={Birth,City,Doctor}

F_l			
Birth	City		
56/12/9	Rome		
53/3/19	Paris		
58/5/18	Oslo		
53/12/9	Oslo		
56/12/9	Rome		
57/6/25	Paris		
53/12/1	NY		
60/7/25	Rome		

k-loose association

- A group association is k-loose if every tuple in the group association A indistinguishably corresponds to at least k distinct associations among tuples in the fragments
- A k-loose association is also k'-loose for any $k' \le k$
- A (k_l,k_r) -grouping induces a minimal group association A if
 - A is k-loose
 - ∘ \nexists a (k'_l, k'_r) -grouping inducing a k-loose association s.t. $k'_l \cdot k'_r < k_l \cdot k_r$

4-loose association – Example

		Illness	
56/12/9	Rome	diabetes	David
		gastritis	Daisy
58/5/18			Damian
53/12/9	Oslo	asthma	Daniel
56/12/9	Rome	gastritis	Dorothy
57/6/25	Paris	obesity	Drew
53/12/1	NY	measles	Dennis
60/7/25	Rome	diabetes	Daisy

c₀={SSN}
c₁={Patient,Illness}
c₂={Patient,Doctor}
c₃={Birth,City,Illness}
c₄={Birth,City,Doctor}

4-loose association - Example

Birth	City	Illness	Doctor
56/12/9	Rome	diabetes	David
53/3/19	Paris	gastritis	Daisy
58/5/18			Damian
53/12/9	Oslo	asthma	Daniel
56/12/9	Rome	gastritis	Dorothy
57/6/25	Paris	obesity	Drew
53/12/1	NY	measles	Dennis
60/7/25	Rome	diabetes	Daisy

c_0 ={SSN}
c_1 ={Patient,IIIness}
c_2 ={Patient, Doctor}
c_3 ={Birth,City,Illness}
$c_4 = \{Birth, City, Doctor\}$

I' [
	,	G		
53/3/19		bc1		
53/12/9	Oslo	bc1		
56/12/9		bc2		
57/6/25	Paris	bc2		
58/5/18		bc3		
56/12/9	Rome	bc3		
53/12/1		bc4		
60/7/25	Rome	bc4		

F,

F_r				
G	Illness	Doctor		
id1	gastritis	Daisy		
id1	diabetes	David		
	asthma	Daniel		
id2	flu	Damian		
id3	obesity	Drew		
	measles			
id4	gastritis	Dorothy		
id4	diabetes	Daisy		

Heterogeneity properties

- There is a correspondence between k_l, k_r of the groupings and the degree of k-looseness of the induced group association
 - o a (k_l, k_r) -grouping cannot induce a k-loose association for a $k > k_l \cdot k_r$
 - the value $k \leq k_l \cdot k_r$ depends on how groups are defined
- If a (k_l,k_r)-grouping satisfies given heterogeneity properties, the induced group association is k-loose with k=k_l·k_r
 - group heterogeneity
 - association heterogeneity
 - deep heterogeneity

Group heterogeneity

No group can contain tuples that are alike with respect to the constraints covered by F_l and F_r

• it ensures diversity of tuples within groups

$$\begin{split} &c_1 = \{ \text{Patient}, \text{Illness} \} \\ &c_2 = \{ \text{Patient}, \text{Doctor} \} \\ &c_3 = \{ \text{Birth}, \text{City}, \text{Illness} \} \\ &c_4 = \{ \text{Birth}, \text{City}, \text{Doctor} \} \end{split}$$

F_l			
Birth	City		
53/3/19	Paris		
53/12/9			
56/12/9	Rome		
57/6/25			
58/5/18	Oslo		
56/12/9	Rome		
53/12/1	NY		
60/7/25	Rome		

F		
Illness	Doctor	
gastritis	Daisy	NO
gastritis	Dorothy	INO
asthma	Daniel	_
flu	Damian	
obesity	Drew	
measles	Dennis	
diabetes	David	$]_{NO}$
diabetes	Daisy	INO

Group heterogeneity

No group can contain tuples that are alike with respect to the constraints covered by F_l and F_r

• it ensures diversity of tuples within groups

 c_1 ={Patient,Illness} c_2 ={Patient,Doctor} c_3 ={Birth,City,Illness} c_4 ={Birth,City,Doctor}

F	\overline{F}_r										
Illness	Doctor										
gastritis	Daisy										
diabetes	David										
asthma	Daniel										
flu	Damian										
obesity	Drew										
measles	Dennis										
gastritis	Dorothy										
diabetes	Daisy										

Association heterogeneity

No group can be associated twice with another group (the group association cannot contain any duplicate)

 it ensures that for each real tuple in the original relation there are at least k_l·k_r pairs in the group association that may correspond to it

Association heterogeneity

No group can be associated twice with another group (the group association cannot contain any duplicate)

 it ensures that for each real tuple in the original relation there are at least k_l·k_r pairs in the group association that may correspond to it

Deep heterogeneity

No group can be associated with two groups that contain alike tuples

 it ensures that all k_l·k_r pairs in the group association to which each tuple could correspond to contain diverse values for attributes involved in constraints

Deep heterogeneity

No group can be associated with two groups that contain alike tuples

 it ensures that all k_l·k_r pairs in the group association to which each tuple could correspond to contain diverse values for attributes involved in constraints

Flat grouping vs sparse grouping

- A (k_l,k_r) -grouping is
 - o flat if either k_l or k_r is equal to 1
 - o sparse if both k_l and k_r are different from 1
- Flat grouping resembles k-anonymity and captures at the same time the ℓ-diversity property, but it works on associations and attributes' values are not generalized
- Sparse grouping guarantees larger applicability than flat grouping, with the same level of protection (there may exist a sparse grouping providing k-looseness but not a flat grouping)

Flat grouping – Example

	,	Illness	
56/12/9	Rome	diabetes	David
		gastritis	Daisy
58/5/18	Oslo	flu	Damian
53/12/9			Daniel
56/12/9	Rome	gastritis	Dorothy
57/6/25	Paris	obesity	Drew
53/12/1	NY	measles	Dennis
60/7/25	Rome	diabetes	Daisy

c_0 ={SSN}
c_1 ={Patient,Illness}
c_2 ={Patient, Doctor}
c ₃ ={Birth,City,Illness}
$c_4 = \{Birth, City, Doctor\}$

Sparse grouping – Example

Birth	City	Illness	Doctor
56/12/9	Rome	diabetes	David
53/3/19	Paris	gastritis	Daisy
58/5/18	Oslo	flu	Damian
53/12/9	Oslo	asthma	Daniel
56/12/9	Rome	gastritis	Dorothy
57/6/25	Paris	obesity	Drew
53/12/1	NY	measles	Dennis
60/7/25	Rome	diabetes	Daisy

 $\begin{aligned} &c_0 = &\{\text{SSN}\} \\ &c_1 = &\{\text{Patient, Illness}\} \\ &c_2 = &\{\text{Patient, Doctor}\} \\ &c_3 = &\{\text{Birth, City, Illness}\} \\ &c_4 = &\{\text{Birth, City, Doctor}\} \end{aligned}$

Privacy vs utility

- The publication of loose associations increases data utility
 - it makes it possible to evaluate queries more precisely than if only the fragments were published
- Increased utility corresponds to a greater exposure of information (lower privacy degree)

Association exposure

- The exposure of a sensitive association $\langle l[c \cap F_l], r[c \cap F_r] \rangle$, with c a constraint covered by F_l , F_r , can be expressed as the probability of the association to hold in the original relation (given the published information)
- The increased exposure due to the publication of loose associations can be measured as the difference between
 - the probability $P^A(l[c \cap F_l], r[c \cap F_r])$ that the sensitive association $\langle l[c \cap F_l], r[c \cap F_r] \rangle$ appears in the original relation, given f_l , f_r , and f_r
 - the probability $P(l[c \cap F_l], r[c \cap F_r])$ that the sensitive association $\langle l[c \cap F_l], r[c \cap F_r] \rangle$ appears in the original relation, given f_l and f_r

Exposure without loose association – 1

• Given $l \in f_l$ and $r \in f_r$ the probability P(l,r) that tuple $\langle l,r \rangle$ belongs to the original relation is $1/|f_l| = 1/|f_r|$

Exposure without loose association – 1

• Given $l \in f_l$ and $r \in f_r$ the probability P(l,r) that tuple $\langle l,r \rangle$ belongs to the original relation is $1/|f_l| = 1/|f_r|$

		gastritis	diabetes	asthma	flu	obesity	measles	gastritis	diabetes
		Daisy	David	Daniel	Damian	Drew	Dennis	Dorothy	Daisy
53/3/19	Paris	1/8	1/8	1/8	1/8	1/8	1/8	1/8	1/8
53/12/9	Oslo	1/8	1/8	1/8	1/8	1/8	1/8	1/8	1/8
56/12/9	Rome	1/8	1/8	1/8	1/8	1/8	1/8	1/8	1/8
57/6/25	Paris	1/8	1/8	1/8	1/8	1/8	1/8	1/8	1/8
58/5/18	Oslo	1/8	1/8	1/8	1/8	1/8	1/8	1/8	1/8
56/12/9	Rome	1/8	1/8	1/8	1/8	1/8	1/8	1/8	1/8
53/12/1	NY	1/8	1/8	1/8	1/8	1/8	1/8	1/8	1/8
60/7/25	Rome	1/8	1/8	1/8	1/8	1/8	1/8	1/8	1/8

Exposure without loose association – 2

- Exposure $(P(l[c \cap F_l], r[c \cap F_r]))$ depends on the presence of alike tuples
- Let l_i, l_j be two tuples in f_l s.t. $l_i \simeq_c l_j$, $P(l_i[c \cap F_l], r[c \cap F_r])$ is the composition of the probability that
 - \circ l_i is associated with r
 - l_i is associated with r

$$P(\underline{l_i},r) + P(\underline{l_j},r) - (P(\underline{l_i},r) \cdot P(\underline{l_j},r))$$

	ĺ	gastritis	diabetes	asthma	flu	obesity	measles	gastritis	diabetes
		Daisy	David	Daniel	Damian	Drew	Dennis	Dorothy	Daisy
53/3/19	Paris	1/8	1/8	1/8	1/8	1/8	1/8	1/8	1/8
53/12/9	Oslo	1/8	1/8	1/8	1/8	1/8	1/8	1/8	1/8
56/12/9	Rome	1/8	1/8	1/8	1/8	1/8	1/8	1/8	1/8
57/6/25	Paris	1/8	1/8	1/8	1/8	1/8	1/8	1/8	1/8
58/5/18	Oslo	1/8	1/8	1/8	1/8	1/8	1/8	1/8	1/8
56/12/9	Rome	1/8	1/8	1/8	1/8	1/8	1/8	1/8	1/8
53/12/1	NY	1/8	1/8	1/8	1/8	1/8	1/8	1/8	1/8
60/7/25	Rome	1/8	1/8	1/8	1/8	1/8	1/8	1/8	1/8

		gastritis	diabetes	asthma	flu	obesity	measles	gastritis	diabetes
		Daisy	David	Daniel	Damian	Drew	Dennis	Dorothy	Daisy
53/3/19	Paris	1/8	1/8	1/8	1/8	1/8	1/8	1/8	1/8
53/12/9	Oslo	1/8	1/8	1/8	1/8	1/8	1/8	1/8	1/8
56/12/9	Rome	1/8	1/8	1/8	1/8	1/8	1/8	1/8	1/8
57/6/25	Paris	1/8	1/8	1/8	1/8	1/8	1/8	1/8	1/8
58/5/18	Oslo	1/8	1/8	1/8	1/8	1/8	1/8	1/8	1/8
56/12/9	Rome	1/8	1/8	1/8	1/8	1/8	1/8	1/8	1/8
53/12/1	NY	1/8	1/8	1/8	1/8	1/8	1/8	1/8	1/8
60/7/25	Rome	1/8	1/8	1/8	1/8	1/8	1/8	1/8	1/8

		gastritis	diabetes	asthma	flu	obesity	measles	gastritis	diabetes
53/3/19	Paris	1/8	1/8	1/8	1/8	1/8	1/8	1/8	1/8
53/12/9	Oslo	1/8	1/8	1/8	1/8	1/8	1/8	1/8	1/8
56/12/9	Rome	1/8	1/8	1/8	1/8	1/8	1/8	1/8	1/8
57/6/25	Paris	1/8	1/8	1/8	1/8	1/8	1/8	1/8	1/8
58/5/18	Oslo	1/8	1/8	1/8	1/8	1/8	1/8	1/8	1/8
56/12/9	Rome	1/8	1/8	1/8	1/8	1/8	1/8	1/8	1/8
53/12/1	NY	1/8	1/8	1/8	1/8	1/8	1/8	1/8	1/8
60/7/25	Rome	1/8	1/8	1/8	1/8	1/8	1/8	1/8	1/8

			gastritis	diabetes	asthma	flu	obesity	measles	gastritis	diabetes
	53/3/19	Paris	1/8	1/8	1/8	1/8	1/8	1/8	1/8	1/8
	53/12/9	Oslo	1/8	1/8	1/8	1/8	1/8	1/8	1/8	1/8
Γ	56/12/9	Rome	1/8	1/8	1/8	1/8	1/8	1/8	1/8	1/8
	57/6/25	Paris	1/8	1/8	1/8	1/8	1/8	1/8	1/8	1/8
	58/5/18	Oslo	1/8	1/8	1/8	1/8	1/8	1/8	1/8	1/8
L	56/12/9	Rome	1/8	1/8	1/8	1/8	1/8	1/8	1/8	1/8
	53/12/1	NY	1/8	1/8	1/8	1/8	1/8	1/8	1/8	1/8
	60/7/25	Rome	1/8	1/8	1/8	1/8	1/8	1/8	1/8	1/8

$$P(56/12/9, \text{Rome, gastritis}) = P(56/12/9, \text{Rome, diabetes}) = \dots = P(56/12/9, \text{Rome, diabetes}) = \frac{1}{8} + \frac{1}{8} - \left(\frac{1}{8} \cdot \frac{1}{8}\right)$$

		gastritis	diabetes	asthma	flu	obesity	measles	gastritis	diabetes
53/3/19	Paris	1/8	1/8	1/8	1/8	1/8	1/8	1/8	1/8
53/12/9	Oslo	1/8	1/8	1/8	1/8	1/8	1/8	1/8	1/8
56/12/9	Rome	15/64	15/64	15/64	15/64	15/64	15/64	15/64	15/64
57/6/25	Paris	1/8	1/8	1/8	1/8	1/8	1/8	1/8	1/8
58/5/18	Oslo	1/8	1/8	1/8	1/8	1/8	1/8	1/8	1/8
53/12/1	NY	1/8	1/8	1/8	1/8	1/8	1/8	1/8	1/8
60/7/25	Rome	1/8	1/8	1/8	1/8	1/8	1/8	1/8	1/8

$$P(56/12/9, \text{Rome, gastritis}) = P(56/12/9, \text{Rome, diabetes}) = \dots = P(56/12/9, \text{Rome, diabetes}) = \frac{1}{8} + \frac{1}{8} - \left(\frac{1}{8} \cdot \frac{1}{8}\right) = \frac{15}{64}$$

		r 	\simeq_{c_3}									
		gastritis	diabetes	asthma	flu	obesity	measles	gastritis	diabetes			
53/3/19	Paris	1/8	1/8	1/8	1/8	1/8	1/8	1/8	1/8			
53/12/9	Oslo	1/8	1/8	1/8	1/8	1/8	1/8	1/8	1/8			
56/12/9	Rome	15/64	15/64	15/64	15/64	15/64	15/64	15/64	15/64			
57/6/25	Paris	1/8	1/8	1/8	1/8	1/8	1/8	1/8	1/8			
58/5/18	Oslo	1/8	1/8	1/8	1/8	1/8	1/8	1/8	1/8			
53/12/1	NY	1/8	1/8	1/8	1/8	1/8	1/8	1/8	1/8			
60/7/25	Rome	1/8	1/8	1/8	1/8	1/8	1/8	1/8	1/8			

$$P(53/3/19, \text{Paris,gastritis}) = P(53/12/9, \text{Oslo,gastritis}) = \dots = P(60/7/25, \text{Rome,gastritis}) = \frac{1}{8} + \frac{1}{8} - \left(\frac{1}{8} \cdot \frac{1}{8}\right)$$

$$P(56/12/9, \text{Rome,gastritis}) = \frac{15}{64} + \frac{15}{64} - \left(\frac{15}{64} \cdot \frac{15}{64}\right)$$

		gastritis	diabetes	asthma	flu	obesity	measles	diabetes
53/3/19	Paris	15/64	1/8	1/8	1/8	1/8	1/8	1/8
53/12/9	Oslo	15/64	1/8	1/8	1/8	1/8	1/8	1/8
56/12/9	Rome	1695/4096	15/64	15/64	15/64	15/64	15/64	15/64
57/6/25	Paris	15/64	1/8	1/8	1/8	1/8	1/8	1/8
58/5/18	Oslo	15/64	1/8	1/8	1/8	1/8	1/8	1/8
53/12/1	NY	15/64	1/8	1/8	1/8	1/8	1/8	1/8
60/7/25	Rome	15/64	1/8	1/8	1/8	1/8	1/8	1/8

$$P(53/3/19, \text{Paris,gastritis}) = P(53/12/9, \text{Oslo,gastritis}) = \dots = P(60/7/25, \text{Rome,gastritis}) = \frac{1}{8} + \frac{1}{8} - \left(\frac{1}{8} \cdot \frac{1}{8}\right) = \frac{15}{64}$$

$$P(56/12/9, \text{Rome,gastritis}) = \frac{15}{64} + \frac{15}{64} - \left(\frac{15}{64} \cdot \frac{15}{64}\right) = \frac{1695}{4096}$$

			Γ		2	\simeq_{c_3}		
		gastritis	diabetes	asthma	flu	obesity	measles	diabetes
53/3/19	Paris	15/64	1/8	1/8	1/8	1/8	1/8	1/8
53/12/9	Oslo	15/64	1/8	1/8	1/8	1/8	1/8	1/8
56/12/9	Rome	1695/4096	15/64	15/64	15/64	15/64	15/64	15/64
57/6/25	Paris	15/64	1/8	1/8	1/8	1/8	1/8	1/8
58/5/18	Oslo	15/64	1/8	1/8	1/8	1/8	1/8	1/8
53/12/1	NY	15/64	1/8	1/8	1/8	1/8	1/8	1/8
60/7/25	Rome	15/64	1/8	1/8	1/8	1/8	1/8	1/8

$$P(53/3/19, \text{Paris,diabetes}) = P(53/12/9, \text{Oslo,diabetes}) = \dots = P(60/7/25, \text{Rome,diabetes}) = \frac{1}{8} + \frac{1}{8} - \left(\frac{1}{8} \cdot \frac{1}{8}\right)$$

$$P(56/12/9, \text{Rome,diabetes}) = \frac{15}{64} + \frac{15}{64} - \left(\frac{15}{64} \cdot \frac{15}{64}\right)$$

		gastritis	diabetes	asthma	flu	obesity	measles
53/3/19	Paris	15/64	15/64	1/8	1/8	1/8	1/8
53/12/9	Oslo	15/64	15/64	1/8	1/8	1/8	1/8
56/12/9	Rome	1695/4096	1695/4096	15/64	15/64	15/64	15/64
57/6/25	Paris	15/64	15/64	1/8	1/8	1/8	1/8
58/5/18	Oslo	15/64	15/64	1/8	1/8	1/8	1/8
53/12/1	NY	15/64	15/64	1/8	1/8	1/8	1/8
60/7/25	Rome	15/64	15/64	1/8	1/8	1/8	1/8

$$P(53/3/19, \text{Paris,diabetes}) = P(53/12/9, \text{Oslo,diabetes}) = \dots = P(60/7/25, \text{Rome,diabetes}) = \frac{1}{8} + \frac{1}{8} - \left(\frac{1}{8} \cdot \frac{1}{8}\right) = \frac{15}{64}$$

$$P(56/12/9, \text{Rome,diabetes}) = \frac{15}{64} + \frac{15}{64} - \left(\frac{15}{64} \cdot \frac{15}{64}\right) = \frac{1695}{4096}$$

Exposure with loose association

- Given $l \in f_l$ and $r \in f_r$ the probability $P^A(l,r)$ that tuple $\langle l,r \rangle$ belongs to the original relation is at most 1/k
- $P^A(l[c \cap F_l], r[c \cap F_r])$ is evaluated considering the alike \simeq_c relationship
 - ∘ let l_i, l_j in f_l s.t. $l_i \simeq_c l_j$, $P^A(l_i[c \cap F_l], r[c \cap F_r])$ is the composition of the probability that
 - l_i is associated with r
 - l_i is associated with r

$$P^{A}(\underline{l_{i},r}) + P^{A}(\underline{l_{j},r}) - (P^{A}(\underline{l_{i},r}) \cdot P^{A}(\underline{l_{j},r}))$$

		gastritis	diabetes	asthma	flu	obesity	measles	gastritis	diabetes
		Daisy	David	Daniel	Damian	Drew	Dennis	Dorothy	Daisy
53/3/19	Paris	1/8	1/8	1/8	1/8	1/8	1/8	1/8	1/8
53/12/9	Oslo	1/8	1/8	1/8	1/8	1/8	1/8	1/8	1/8
56/12/9	Rome	1/8	1/8	1/8	1/8	1/8	1/8	1/8	1/8
57/6/25	Paris	1/8	1/8	1/8	1/8	1/8	1/8	1/8	1/8
58/5/18	Oslo	1/8	1/8	1/8	1/8	1/8	1/8	1/8	1/8
56/12/9	Rome	1/8	1/8	1/8	1/8	1/8	1/8	1/8	1/8
53/12/1	NY	1/8	1/8	1/8	1/8	1/8	1/8	1/8	1/8
60/7/25	Rome	1/8	1/8	1/8	1/8	1/8	1/8	1/8	1/8
		F_{i}				F_{r}			

Birth City 53/3/19 Paris 53/12/9 Oslo 56/12/9 Rome 57/6/25 Paris 58/5/18 Oslo 56/12/9 Rome 53/12/1 NY 60/7/25 Rome

	,
Illness	Doctor
gastritis	Daisy
diabetes	David
asthma	Daniel
flu	Damian
obesity	Drew
measles	Dennis
gastritis	Dorothy
diabetes	Daisy

		gastritis	diabetes	asthma	flu	obesity	measles	gastritis	diabetes
		Daisy	David	Daniel	Damian	Drew	Dennis	Dorothy	Daisy
53/3/19	Paris	1/4	1/4	1/4	1/4	-	_	_	_
53/12/9	Oslo	1/4	1/4	1/4	1/4	_	_	_	-
56/12/9	Rome	1/4	1/4	_	_	1/4	1/4	_	_
57/6/25	Paris	1/4	1/4	_	_	1/4	1/4	_	_
58/5/18	Oslo	_	_	1/4	1/4	_	_	1/4	1/4
56/12/9	Rome	_	_	1/4	1/4	_	_	1/4	1/4
53/12/1	NY	_	_	_	_	1/4	1/4	1/4	1/4
60/7/25	Rome	-	_	_	_	1/4	1/4	1/4	1/4

I'	!	I	r
	City	Illness	Doctor
53/3/19		gastritis	Daisy
53/12/9	Oslo	diabetes	David
56/12/9		asthma	Daniel
57/6/25	Paris	flu	Damian
58/5/18	Oslo	obesity	Drew
56/12/9	Rome	measles	Dennis
53/12/1		gastritis	Dorothy
60/7/25	Rome	diabetes	Daisy

		gastritis	diabetes	asthma	flu	obesity	measles	gastritis	diabetes
		Daisy	David	Daniel	Damian	Drew	Dennis	Dorothy	Daisy
53/3/19	Paris	1/4	1/4	1/4	1/4	-	_	_	_
53/12/9	Oslo	1/4	1/4	1/4	1/4	_	_	_	_
56/12/9	Rome	1/4	1/4	_	_	1/4	1/4	-	-
57/6/25	Paris	1/4	1/4	_	_	1/4	1/4	_	_
58/5/18	Oslo	_	_	1/4	1/4	-	_	1/4	1/4
56/12/9	Rome	-	_	1/4	1/4	-	_	1/4	1/4
53/12/1	NY	_	_	_	_	1/4	1/4	1/4	1/4
60/7/25	Rome	_	-	_	_	1/4	1/4	1/4	1/4

			gastritis	diabetes	asthma	flu	obesity	measles	gastritis	diabetes
	53/3/19	Paris	1/4	1/4	1/4	1/4	-	-	-	-
	53/12/9	Oslo	1/4	1/4	1/4	1/4	_	_	_	_
Γ	56/12/9	Rome	1/4	1/4	_	1	1/4	1/4	_	-
	57/6/25	Paris	1/4	1/4	_	_	1/4	1/4	_	_
	58/5/18	Oslo	_	_	1/4	1/4	-	_	1/4	1/4
L	56/12/9	Rome	_	_	1/4	1/4	-	-	1/4	1/4
	53/12/1	NY	-	-	_	_	1/4	1/4	1/4	1/4
	60/7/25	Rome	_	_	_	_	1/4	1/4	1/4	1/4

$$P(56/12/9, \text{Rome, gastritis}) = P(56/12/9, \text{Rome, diabetes}) = \dots = P(56/12/9, \text{Rome, diabetes}) = \frac{1}{4} + 0 - \left(\frac{1}{4} \cdot 0\right)$$

		gastritis	diabetes	asthma	flu	obesity	measles	gastritis	diabetes
53/3/19	Paris	1/4	1/4	1/4	1/4	-	-	_	-
53/12/9	Oslo	1/4	1/4	1/4	1/4	_	_	_	_
56/12/9	Rome	1/4	1/4	1/4	1/4	1/4	1/4	1/4	1/4
57/6/25	Paris	1/4	1/4	_	_	1/4	1/4	_	_
58/5/18	Oslo	_	_	1/4	1/4	-	_	1/4	1/4
53/12/1	NY	_	_	_	_	1/4	1/4	1/4	1/4
60/7/25	Rome	_	_	_	_	1/4	1/4	1/4	1/4

$$P(56/12/9, \text{Rome, gastritis}) = P(56/12/9, \text{Rome, diabetes}) = \dots = P(56/12/9, \text{Rome, diabetes}) = \frac{1}{4} + 0 - \left(\frac{1}{4} \cdot 0\right) = \frac{1}{4}$$

		_			\simeq_{c_3}				
		gastritis	diabetes	asthma	flu	obesity	measles	gastritis	diabetes
53/3/19	Paris	1/4	1/4	1/4	1/4	_	_	_	-
53/12/9	Oslo	1/4	1/4	1/4	1/4	-	-	-	-
56/12/9	Rome	1/4	1/4	1/4	1/4	1/4	1/4	1/4	1/4
57/6/25	Paris	1/4	1/4	_	_	1/4	1/4	-	_
58/5/18	Oslo	_	_	1/4	1/4	_	-	1/4	1/4
53/12/1	NY	_	_	_	_	1/4	1/4	1/4	1/4
60/7/25	Rome	_	_	_	_	1/4	1/4	1/4	1/4

$c_3 = \{Birth, City, Illness\}$

$$P(53/3/19, \text{Paris,gastritis}) = P(53/12/9, \text{Oslo,gastritis}) = \dots = P(60/7/25, \text{Rome,gastritis}) = \frac{1}{4} + 0 - \left(\frac{1}{4} \cdot 0\right)$$

$$P(56/12/9, \text{Rome,gastritis}) = \frac{1}{4} + \frac{1}{4} - \left(\frac{1}{4} \cdot \frac{1}{4}\right)$$

		gastritis	diabetes	asthma	flu	obesity	measles	diabetes
53/3/19	Paris	1/4	1/4	1/4	1/4	-	_	-
53/12/9	Oslo	1/4	1/4	1/4	1/4	_	_	_
56/12/9	Rome	7/16	1/4	1/4	1/4	1/4	1/4	1/4
57/6/25	Paris	1/4	1/4	-	_	1/4	1/4	_
58/5/18	Oslo	1/4	_	1/4	1/4	-	_	1/4
53/12/1	NY	1/4	_	-	_	1/4	1/4	1/4
60/7/25	Rome	1/4	_	_	_	1/4	1/4	1/4

$$\begin{split} \textit{P}(\text{53/3/19,Paris,gastritis}) &= \textit{P}(\text{53/12/9,Oslo,gastritis}) = \dots = \textit{P}(\text{60/7/25,Rome,gastritis}) = \\ & \frac{1}{4} + 0 - \left(\frac{1}{4} \cdot 0\right) = \frac{1}{4} \\ \textit{P}(\text{56/12/9,Rome,gastritis}) &= \frac{1}{4} + \frac{1}{4} - \left(\frac{1}{4} \cdot \frac{1}{4}\right) = \frac{7}{16} \end{split}$$

						$-c_3$			
	gastritis diabetes asthma flu obesity measles diabetes								
53/3/19	Paris	1/4	1/4	1/4	1/4	_	_	-	
53/12/9	Oslo	1/4	1/4	1/4	1/4	_	-	_	
56/12/9	Rome	7/16	1/4	1/4	1/4	1/4	1/4	1/4	
57/6/25	Paris	1/4	1/4	_	_	1/4	1/4	_	
58/5/18	Oslo	1/4	_	1/4	1/4	_	-	1/4	
53/12/1	NY	1/4	_	_	_	1/4	1/4	1/4	
60/7/25	Rome	1/4	_	_	_	1/4	1/4	1/4	

$c_3 = \{Birth, City, Illness\}$

$$P(53/3/19, \text{Paris,diabetes}) = P(53/12/9, \text{Oslo,diabetes}) = \dots = P(60/7/25, \text{Rome,diabetes}) = \frac{1}{4} + 0 - \left(\frac{1}{4} \cdot 0\right)$$

$$P(56/12/9, \text{Rome,diabetes}) = \frac{1}{4} + \frac{1}{4} - \left(\frac{1}{4} \cdot \frac{1}{4}\right)$$

		gastritis	diabetes	asthma	flu	obesity	measles
53/3/19	Paris	1/4	1/4	1/4	1/4	_	-
53/12/9	Oslo	1/4	1/4	1/4	1/4	_	_
56/12/9	Rome	7/16	7/16	1/4	1/4	1/4	1/4
57/6/25	Paris	1/4	1/4	_	-	1/4	1/4
58/5/18	Oslo	1/4	1/4	1/4	1/4	_	_
53/12/1	NY	1/4	1/4	_	-	1/4	1/4
60/7/25	Rome	1/4	1/4	_	_	1/4	1/4

$$\begin{split} P(53/3/19, \text{Paris,diabetes}) &= P(53/12/9, \text{Oslo,diabetes}) = \dots = P(60/7/25, \text{Rome,diabetes}) = \\ & \frac{1}{4} + 0 - \left(\frac{1}{4} \cdot 0\right) = \frac{1}{4} \\ P(56/12/9, \text{Rome,diabetes}) &= \frac{1}{4} + \frac{1}{4} - \left(\frac{1}{4} \cdot \frac{1}{4}\right) = \frac{7}{16} \end{split}$$

Measuring privacy and utility

- Utility: average over the variation of probability
 |P^A(I[c∩F_I], r[c∩F_r]) − P(I[c∩F_I], r[c∩F_r])| for each sensitive association ⟨I[c∩F_I], r[c∩F_r]⟩
 - o measured also in terms of the precision in responding to queries
- Privacy: in addition to the k-loose degree, an exposure threshold δ_{max} could be specified
 - given a threshold δ_{\max} , A can be published if $\delta_{\max} \geq (P^A(l[c \cap F_l], r[c \cap F_r]) P(l[c \cap F_l], r[c \cap F_r]))$ for all sensitive associations $\langle l[c \cap F_l], r[c \cap F_r] \rangle$

Measuring utility – Example

		P^A						
		gastritis	diabetes	asthma	flu	obesity	measles	
53/3/19	Paris	1/4	1/4	1/4	1/4	_	_	
53/12/9	Oslo	1/4	1/4	1/4	1/4	_	_	
56/12/9	Rome	7/16	7/16	1/4	1/4	1/4	1/4	
57/6/25	Paris	1/4	1/4	-	_	1/4	1/4	
58/5/18	Oslo	1/4	1/4	1/4	1/4	ı	_	
53/12/1	NY	1/4	1/4	_	_	1/4	1/4	
60/7/25	Rome	1/4	1/4	_	_	1/4	1/4	

		F						
		gastritis	diabetes	asthma	flu	obesity	measles	
53/3/19	Paris	15/64	15/64	1/8	1/8	1/8	1/8	
53/12/9	Oslo	15/64	15/64	1/8	1/8	1/8	1/8	
56/12/9	Rome	1695/4096	1695/4096	15/64	15/64	15/64	15/64	
57/6/25	Paris	15/64	15/64	1/8	1/8	1/8	1/8	
58/5/18	Oslo	15/64	15/64	1/8	1/8	1/8	1/8	
53/12/1	NY	15/64	15/64	1/8	1/8	1/8	1/8	
60/7/25	Rome	15/64	15/64	1/8	1/8	1/8	1/8	

P

 $P^{A}(I[Birth,City], r[Illness]) - P(I[Birth,City], r[Illness])$

Measuring utility – Example

 $P^{A}(I[Birth,City], r[Illness]) - P(I[Birth,City], r[Illness])$

		gastritis	diabetes	asthma	flu	obesity	measles
53/3/19	Paris	1/64	1/64	1/8	1/8	-1/8	-1/8
53/12/9	Oslo	1/64	1/64	1/8	1/8	-1/8	-1/8
56/12/9	Rome	97/4096	97/4096	1/64	1/64	1/64	1/64
57/6/25	Paris	1/64	1/64	-1/8	-1/8	1/8	1/8
58/5/18	Oslo	1/64	1/64	1/8	1/8	-1/8	-1/8
53/12/1	NY	1/64	1/64	-1/8	-1/8	1/8	1/8
60/7/25	Rome	1/64	1/64	-1/8	-1/8	1/8	1/8

Measuring utility – Example

$P^{A}(I[Birth,City], r[Illness])-$	P(I Birth, City], r[Illness])
-------------------------------------	---------------------------------

		gastritis	diabetes	asthma	flu	obesity	measles
53/3/19	Paris	1/64	1/64	1/8	1/8	-1/8	-1/8
53/12/9	Oslo	1/64	1/64	1/8	1/8	-1/8	-1/8
56/12/9	Rome	97/4096	97/4096	1/64	1/64	1/64	1/64
57/6/25	Paris	1/64	1/64	-1/8	-1/8	1/8	1/8
58/5/18	Oslo	1/64	1/64	1/8	1/8	-1/8	-1/8
53/12/1	NY	1/64	1/64	-1/8	-1/8	1/8	1/8
60/7/25	Rome	1/64	1/64	-1/8	-1/8	1/8	1/8

Experimental evaluation

- Considered Census data (IPUMS-USA, http://www.ipums.org)
- Evaluated queries of the form
 - SELECT FROM WHERE returning a COUNT aggregation function
 - WHERE condition $\bigwedge_{i=1}^{n} (\bigvee_{j=1}^{m} a_i = v_{i_j})$
- Evaluated precision of queries
- Evaluated impact of k, k_l , and k_r on query precision

Experimental evaluation – Results

- Precision in query evaluation progressively decreases as k increases
- The critical parameter in the configuration is the overall privacy degree k, rather than individual values of k_l and k_r

Summary of contributions

- Novel approach to the problem of protecting privacy when publishing data
- Generic setting of the privacy problem that explicitly takes into consideration both privacy needs and visibility requirements
- Definition of loose associations for increasing data utility while preserving a given degree of privacy

Some open issues...

- Schema vs. instance constraints and visibility requirements
- Data dependencies not captured by confidentiality constraints
- External knowledge
- · Support for different kinds of queries
- Different metrics to measure privacy and utility

Combining Indexes, Selective Encryption, and Fragmentation

Exposure of confidential information

- Indexes, fragmentation, and selective encryption are all solutions providing the required security and privacy guarantees but...
- ...What happens when such solutions are combined?

Exposure of confidential information

- Indexes, fragmentation, and selective encryption are all solutions providing the required security and privacy guarantees but...
- ...What happens when such solutions are combined?

⇒ They may open the door to inferences by users

Exposure of confidential information

- Indexes, fragmentation, and selective encryption are all solutions providing the required security and privacy guarantees but...
- ...What happens when such solutions are combined?
- ⇒ They may open the door to inferences by users
 - Indexes and selective encryption
 - Indexes and fragmentation

Indexes and Selective Access to Outsourced Data

S. De Capitani di Vimercati, S. Foresti, S. Jajodia, S. Paraboschi, P. Samarati, "Private Data Indexes for Selective Access to Outsourced Data," in *Proc. of WPES*, Chicago, IL, USA, October 2011.

The inference problem

- The storage server can be honest-but-curious
- The server cannot decrypt the data for executing queries
 - indexes can be associated with encrypted data to allow the server to execute queries on them
- The data owner may want to provide different data views to different users
 - selective encryption uses different keys for different portions of the data
- The combination of the two solutions may open the door to inferences by users

Blocking inferences [DFJPS-11]

- Characterize the exposure of confidential information due to indexes and access control enforcement
- Define a index function, depending on plaintext values and access control restrictions, that
 - o supports efficient query evaluation
 - o protects against inference exposure

Encrypted relation

- Symmetric encryption is applied at the tuple-level
- The encrypted version of relation r over schema $R(\mathbb{A}_1, \dots, \mathbb{A}_n)$ is a relation r^e over schema R^e (tid, etuple, $\mathbb{I}_1, \dots, \mathbb{I}_l$):
 - o tid: numerical attribute acting as primary key
 - o etuple: ciphertext resulting from the encryption of a tuple
 - ∘ I_i , i=1,...,l: index over attribute A_{i_i} ∈R

	SHOPS							
			Year	Sales				
	001		2010					
t_2	002	Rome	2010	700				
t_3	003	Rome	2011	600				
t_4	004	NY	2011	700				
t ₅	005	Oslo	2011	700				

	SHOPS ^e							
tid	etuple		I_y	I_s				
1			ι(2010)					
2		ι(Rome)						
3	γ	ι(Rome)	ι(2011)	ı(600)				
4	δ	ι(NY)	ι(2011)	ι(700)				
5	ε	ι(Oslo)	ι(2011)	ι(700)				

Indexing techniques

Remember ...:

- Direct index (e.g., [CDDJPS-05])
 each plaintext value is mapped to a different index value and viceversa
- Flattened index (e.g., [WL-06])
 each plaintext value is mapped to a set of index values and each index value corresponds to a unique plaintext value
- Bucket/hash-based index (e.g., [CDDJPS-05, HIML-02])
 different plaintext values are mapped to the same index value

User knowledge

Each user knows the:

- index functions used to define indexes in R^e
- plaintext tuples that she is authorized to access
- encrypted relation re in its entirety

			SHOPS				
	acl		ld	City	Year	Sales	
t_1	\overline{A}	- 1	001		2010		
t_2	A,B	t_2	002	Rome	2010	700	
t ₃	В	t_3	003	Rome	2011	600	
t_4	A,C	t_4	004	NY	2011	700	
t ₅	C	<i>t</i> ₅	005	Oslo	2011	700	

	$Shops^e$							
tid	etuple		I_y	I_s				
1			ι(2010)					
2	β	ι(Rome)	ι(2010)	ı(700)				
3	γ	ı(Rome)						
4	δ		ι(2011)					
5	ε	ι(Oslo)	ι(2011)	ι(700)				

User knowledge

Each user knows the:

- index functions used to define indexes in R^e
- plaintext tuples that she is authorized to access
- encrypted relation re in its entirety

				SHOPS			
	acl		ld	City	Year	Sales	
$\overline{t_1}$	\overline{A}	t_1					
t_2	A A,B	t_2	002	Rome	2010	700	
t_3		t_3	003	Rome	2011	600	
t_4	A,C	t_4					
t_5	A,C C	t_5					

	Shops ^e							
tid	etuple	-	I_y	I_s				
1	α		ı(2010)					
2	β	ι(Rome)	ı(2010)	$\iota(700)$				
3	γ	ι(Rome)						
4	δ		ι(2011)					
5	ε	ι(Oslo)	ι(2011)	ı(700)				

 Plaintext values are always represented by the same index value and viceversa

⇒ cells having the same plaintext values are exposed

- Plaintext values are always represented by the same index value and viceversa
 - ⇒ cells having the same plaintext values are exposed

				SHOPS				
	acl		ld	City	Year	Sales		
t_1	\overline{A} t	1						
t_2	A,B t	2	002	Rome	2010	700		
t_3	A,B the B	3	003	Rome	2011	600		
t_4	4 0	4						
t_5	C t	5						

	$Shops^e$							
tid etuple		I_c	Iy	I_s				
1			ı(2010)					
2		ι(Rome)						
3	γ	ι(Rome)						
4	δ	ι(NY)	ι(2011)	$\iota(700)$				
5	ε	ι(Oslo)	ı(2011)	$\iota(700)$				

- Plaintext values are always represented by the same index value and viceversa
 - ⇒ cells having the same plaintext values are exposed

CHARA

			SHOPS			
	acl	ld	City	Year	Sales	
$\overline{t_1}$	A = t	1				
t_2	A,B t_1	2002	Rome	2010	700	
t_3	$B = t_1$	3 003	Rome	2011	600	
t_4	A,C t_{2} C	4	,			
<i>t</i> ₅	C t_1	5				

	$Shops^e$							
tid etuple			Iy	I_s				
1	α		ι(2010)					
2	β	ι(Rome)	ι (2010)	$\iota(700)$				
3	γ	ı(Rome)						
4	δ	ι(NY)	ι(2011)	$\iota(700)$				
5	ε	ι(Oslo)	ı(2011)	$\iota(700)$				

- Plaintext values are always represented by the same index value and viceversa
 - ⇒ cells having the same plaintext values are exposed

	acl			ld	City
t_1	A A , B B	t	1		
t_2	A,B	t	2	002	Rome Rome
t_3	B	t	3	003	Rome
t_4	A,C	t	4		
t ₅	A,C C	1	5		

	SHOPS							
	ld	City	Year	Sales				
t_1			2010					
		Rome						
<i>t</i> ₃	003	Rome	2011	600				
t_4								
t_5								

CHARA

$Shops^e$					
tid etuple I		I_c	Iy	I_s	
1		ι(NY)	ι (2010)		
2	β	ı(Rome)	ι (2010)	$\iota(700)$	
3	γ	ι(Rome)			
4	δ		ι(2011)		
5	ε	ι(Oslo)	ι(2011)	ı(700)	

- Plaintext values are always represented by the same index value and viceversa
 - ⇒ cells having the same plaintext values are exposed

	acl	
t_1	\overline{A}	t :
t_2	A,B	t_{i}
t_3	\boldsymbol{B}	t_{i}
t_4	A,C	t
t ₅	A A,B B A,C C	t

	SHOPS								
	ld	City	Year	Sales					
t_1			2010						
t_2	002	Rome	2010	700					
t_3	003	Rome	2011	600					
t_4									
t_5									

$Shops^e$					
tid etuple			Iy	I_s	
1		ι(NY)	ı(2010)	ı(600)	
2	β	ι(Rome)	ı(2010)	$\iota(700)$	
3	γ	ι(Rome)	ι (2011)	$\iota(600)$	
4	δ		ι(2011)		
5	ε	ι(Oslo)	ı(2011)	$\iota(700)$	

- Plaintext values are always represented by the same index value and viceversa
 - ⇒ cells having the same plaintext values are exposed

SHORE

		3000				
acl		ld	City	Year	Sale	
\overline{A}	t_1			2010		
A,B	t_2	002	Rome	2010	700	
\boldsymbol{B}	t_3	003	Rome	2011	600	
A,C	<i>t</i> ₄			2011		
\boldsymbol{C}	<i>t</i> ₅			2011		
	A,B B A,C	$egin{array}{lll} \hline A & & t_1 \\ A,B & & t_2 \\ B & & t_3 \\ A,C & & t_4 \\ \hline \end{array}$	$egin{array}{cccc} ar{A} & & & t_1 & & & \\ A,B & & & t_2 & 002 & & \\ B & & & t_3 & 003 & & \\ A,C & & & t_4 & & & \\ \end{array}$	Acc Id City A,B t ₁ 002 Rome B t ₃ 003 Rome A,C t ₄	$egin{array}{c c c c c c c c c c c c c c c c c c c $	

$Shops^e$						
tid etuple		I_c	Iy	I_s		
1			ı(2010)			
2	β	ι(Rome)	ı(2010)	$\iota(700)$		
3	γ	ι(Rome)	ι (2011)	$\iota(600)$		
4	δ	ι(NY)	ι (2011)	$\iota(700)$		
5	ε	ι(Oslo)	ι (2011)	$\iota(700)$		

- Plaintext values are always represented by the same index value and viceversa
 - ⇒ cells having the same plaintext values are exposed

CHARA

	_			3HUPS			
	acl		ld	City	Year	Sales	
t_1	\overline{A}	t_1			2010		
t_2	A,B			Rome			
t_3	B	t_3	003	Rome	2011	600	
t_4	A,C	<i>t</i> ₄			2011		
	C	<i>t</i> ₅			2011		

$Shops^e$						
tid	etuple		Iy	I_s		
1			ι(2010)			
2	β	ι(Rome)	ı(2010)	ι (700)		
3	γ	ι(Rome)	ı(2011)	ı(600)		
4	δ		ι(2011)			
5	ε	ι(Oslo)	ι(2011)	ı(700)		

- Plaintext values are always represented by the same index value and viceversa
 - ⇒ cells having the same plaintext values are exposed

	acl		ld	Ci
t_1	A	t_1		
t_2	A,B	t_2	002	Ro
<i>t</i> ₃	B	t_3	003	Ro
t_4	A,C	t_4		
t_5	A,C C	t_5		

	SHOPS								
	ld	City	Year	Sales					
t_1			2010						
		Rome							
t_3	003	Rome	2011	600					
t_4			2011	700					
t ₅			2011	700					

Shops ^e						
tid etuple			Iy	I_s		
1			ι(2010)			
2	β	ι(Rome)	ı(2010)	ι (700)		
3	γ	ı(Rome)	ı(2011)	ı(600)		
4	δ		ι(2011)			
5	ε	ι(Oslo)	ı(2011)	ι (700)		

- Plaintext values are always represented by the same index value and viceversa
 - ⇒ cells having the same plaintext values are exposed

	acl		ld	C
t_1	Α	t_1		
t_2	A,B	t_2	002	R
t ₃	A ,B B	t_3	003	R
t_4	A,C	t_4		
t ₅	A,C C	t_5		

	SHOPS							
	ld	City	Year	Sales				
t_1			2010					
		Rome						
t_3	003	Rome	2011	600				
<i>t</i> ₄			2011	700				
t ₅			2011	700				

$Shops^e$							
tid	etuple	I_c	Iy	I_s			
1			ι(2010)				
2	β	ı(Rome)	ι(2010)	ı(700)			
3	γ	ι(Rome)	ı(2011)	ı(600)			
4	δ	ι(NY)	ι(2011)	ı(700)			
5	ε	ι(Oslo)	ι(2011)	ı(700)			

- Plaintext values are always represented by the same index value and viceversa
 - ⇒ cells having the same plaintext values are exposed

SHORE

	_	3000				
	acl		ld	City	Year	Sales
t_1	\overline{A}	t_1			2010	
t_2	A,B			Rome		
t_3	В	<i>t</i> ₃	003	Rome	2011	600
t_4	A,C	<i>t</i> ₄			2011	700
t ₅	C	<i>t</i> ₅			2011	700

$Shops^e$							
tid etuple		I_c	Iy	I_s			
1			ı(2010)				
2	β	ι(Rome)	ı(2010)	ı(700)			
3	γ	ı(Rome)					
4	δ	ι(NY)	ι(2011)	ı(700)			
5	ε	ι(Oslo)	ι(2011)	ı(700)			

- Plaintext values are always represented by the same index value and viceversa
 - ⇒ cells having the same plaintext values are exposed

Sales

700 600

SHOPS

				• • • • • • • • • • • • • • • • • • • •	0.0
	acl		ld	City	Year
t_1	A	t_1			2010
t_2	A,B	t_2	002	Rome	2010
t_3		t_3	003	Rome	2011
t_4	A,C	t_4			2011
t_5	C	t_5			2011

$Shops^e$						
tid	etuple	I_c	Iy	I_s		
1	α		ı(2010)			
2	β	ı(Rome)	ı(2010)	$\iota(700)$		
3	γ	ı(Rome)	ι(2011)	ı(600)		
4	δ		ι(2011)			
5	ε	ι(Oslo)	ι(2011)	ı(700)		

- Plaintext values are always represented by the same index value and viceversa
 - ⇒ cells having the same plaintext values are exposed

CHARA

			SHUPS			
	acl		ld	City	Year	Sales
$\overline{t_1}$		1		Rome		
t_2				Rome		
t_3	\boldsymbol{B} t	3	003	Rome	2011	600
t_4	A,C t	4		Rome	2011	700
t_5	C t	5		Rome	2011	700

$Shops^e$							
tid	etuple	I_c	Iy	I_{S}			
1	α		ı(2010)				
2	β	ı(Rome)	ı(2010)	ı(700)			
3	γ	ι(Rome)	ı(2011)	ı(600)			
4	δ		ι(2011)				
5	ε	ι(Oslo)	ι(2011)	$\iota(700)$			

- Each user knows index function i
 - all index-plaintext value correspondences are exposed to brute-force attacks
 - ⇒ the whole outsourced relation is exposed to brute-force attacks

		SHOPS			
l	ld	City	Year	Sales	
	<i>t</i> ₁	NY	2010	600	
		Rome			
	$t_3 003$	Rome	2011	600	
C	t ₄	NY	2011	700	
	<i>t</i> ₅	Oslo	2011	700	

$Shops^e$						
tid	etuple		Iy	I_{S}		
1	α	ι(NY)	$\iota(2010)$	$\iota(600)$		
2		ι(Rome)				
3	γ	ι(Rome)				
4	δ	ι(NY)	ι(2011)	$\iota(700)$		
5	ε	ι(Oslo)	ı(2011)	$\iota(700)$		

Exposure risk – Flattened and bucket/hash-based index

- Flattened index: an index value always represents the same plaintext value and users know the index function
 - ⇒ cells having the same plaintext values are exposed
 - all index-plaintext value correspondences are exposed to brute-force attacks
 - ⇒ the whole outsourced relation is exposed to brute-force attacks.
- Bucket/hash-based index: the same index value may represent different plaintext values
 - users can only infer with certainty that certain values do not correspond to given cells

Index values directly depend on ACLs

			SHOPS			
	acl					Sales
$\overline{t_1}$	\overline{A}	t_1	001	NY	2010	600
t_2	A,B			Rome		
<i>t</i> ₃	B	t_3	003	Rome	2011	600
t_4	A,C	t_4	004	NY	2011	700
t_5	C	t_5	005	Oslo	2011	700

$Shops^e$							
tid	etuple	I_c	Iy	I_s			
1	α	$\iota_A(NY)$	$\iota_{A}(2010)$	$\iota_A(600)$			
2	β	$\iota_{AB}(Rome)$	$\iota_{AB}(2010)$	$\iota_{AB}(700)$			
3	γ	$\iota_B(Rome)$	$\iota_B(2011)$	$\iota_B(600)$			
4	δ	$\iota_{AC}(NY)$	$\iota_{AC}(2011)$	$\iota_{AC}(700)$			
5	ε	$\iota_C(Oslo)$	$\iota_{C}(2011)$	$\iota_{C}(700)$			

Index values directly depend on ACLs

		SHOPS				
acl		ld			Sales	
t_1A				2010		
t_2A,B	t_2	002	Rome	2010	700	
t_3B			Rome	2011	600	
t_4A,C	t_4	004	NY	2011	700	
t_5 C	t_5	005	Oslo	2011	700	

Shops ^e							
tid	etuple	I_c	Iy	I_s			
1	α		$\iota_{A}(2010)$				
2	β	$\iota_{AB}(Rome)$	$\iota_{AB}(2010)$	$\iota_{AB}(700)$			
3	γ	$\iota_B(Rome)$	$\iota_B(2011)$	$\iota_B(600)$			
4	δ		$\iota_{AC}(2011)$				
5	ε	$\iota_C(Oslo)$	$\iota_{C}(2011)$	$\iota_{C}(700)$			

- + block inference exposure
- considerable burden at the client side for query translation

Index values directly depend on ACLs

			SHOPS			
	acl		ld	City	Year	Sales
t_1	A	t_1				
t_2	A,B	t_2	002	Rome	2010	700
t_3	B	<i>t</i> ₃	003	Rome	2011	600
t_4	A,C	t_4		,		
<i>t</i> ₅	A,C C	t_5				

	$Shops^e$							
tid	etuple	I_c	Iy	I_s				
1	α	$\iota_A(NY)$	$\iota_{A}(2010)$	$\iota_A(600)$				
2	β	$\iota_{AB}(Rome)$						
3	γ	$\iota_B(Rome)$	$\iota_B(2011)$	$\iota_B(600)$				
4	δ	$\iota_{AC}(NY)$	$\iota_{AC}(2011)$	$\iota_{AC}(700)$				
5	ε	$\iota_C(Oslo)$	$\iota_{C}(2011)$	$\iota_{C}(700)$				

- + block inference exposure
- considerable burden at the client side for query translation

Ex: query submitted by user *B* with condition

Index values directly depend on ACLs

		SHOPS					
acl		Id City Year Sales					
t_1A	t_1						
t_2A,B	t_2	002	Rome Rome	2010	700		
t_3B	t_3	003	Rome	2011	600		
t_4A,C	t_4						
$t_5 C$	t_5						

	$Shops^e$							
tid	etuple		Iy	I_s				
1				$\iota_A(600)$				
2	β	ι_{AB} (Rome)						
3			$\iota_B(2011)$	$\iota_B(600)$				
4	δ	$\iota_{AC}(NY)$	$\iota_{AC}(2011)$	$\iota_{AC}(700)$				
5	ε	$\iota_C(Oslo)$	$\iota_{C}(2011)$	$\iota_{C}(700)$				

- + block inference exposure
- considerable burden at the client side for query translation

Ex: query submitted by user B with condition

Year=2010
$$\Longrightarrow$$
 I_y IN { ι_B (2010), ι_{AB} (2010), ι_{BC} (2010), ι_{ABC} (2010)}

- Each user u has an index function \(\overline{\ell_u} \) that depends on a private piece of information shared with the data owner
- For each cell t[A] in r and user u in acl(t) there is index value $\iota_u(t[A])$ in $t^e[I_A]$

- Each user u has an index function \(\overline{\ell_u} \) that depends on a private piece of information shared with the data owner
- For each cell t[A] in r and user u in acl(t) there is index value $\iota_u(t[A])$ in $t^e[I_A]$

		SHOPS				
	acl					Sales
t_1	A				2010	
t_2	A,B	t_2	002	Rome	2010	700
<i>t</i> ₃	B	t_3	003	Rome	2011	600
t_4	A,C	t_4	004	NY	2011	700
t_5	C	t_5	005	Oslo	2011	700

30073									
tid	etuple	I_c	\mathbb{I}_y	I_s					
1	α			$\iota_A(600)$					
2	β	$\iota_A(Rome)\iota_B(Rome)$	$\iota_A(2010)\iota_B(2010)$	$\iota_A(700)\iota_B(700)$					
3				$\iota_B(600)$					
4	δ	$\iota_A(NY)\iota_C(NY)$	$\iota_A(2011)\iota_C(2011)$	$\iota_A(700)\iota_C(700)$					
5	ϵ			$\iota_{C}(700)$					

CHORCE

- Each user u has an index function \(\overline{\ell_u} \) that depends on a private piece of information shared with the data owner
- For each cell t[A] in r and user u in acl(t) there is index value $\iota_u(t[A])$ in $t^e[I_A]$

		SHOPS				
acl					Sales	
$t_1 A$	t_1	001	NY	2010	600	
t_2A,B	t_2	002	Rome	2010	700	
$t_3 B$	t_3	003	Rome	2011	600	
t_4A,C		004		2011	700	
t_5 C	t_5	005	Oslo	2011	700	

	SHOPS								
tid	etuple	I_c	\mathbb{I}_y	I_S					
1				$\iota_A(600)$					
2	β	$\iota_A(Rome)\iota_B(Rome)$	$\iota_A(2010)\iota_B(2010)$	$\iota_A(700)\iota_B(700)$					
3	γ	$\iota_B(Rome)$	$\iota_{B}(2011)$	$\iota_B(600)$					
4	δ	$\iota_A(NY)\iota_C(NY)$	$\iota_A(2011)\iota_C(2011)$	$\iota_A(700)\iota_C(700)$					
5	ε		$\iota_C(2011)$	$\iota_C(700)$					

> remains vulnerable to inference

Intuitive approach – User-based index

- Each user u has an index function iu that depends on a private piece of information shared with the data owner
- For each cell t[A] in r and user u in acl(t) there is index value $\iota_u(t[A])$ in $t^e[I_A]$

	SH	OPS				SH	$IOPS^e$	
acl	Id City	Year	Sales	tid	etuple	I_c	I_y	I_s
$t_1 A = t_1$				1	α	$\iota_A(NY)$	$\iota_{A}(2010)$	$\iota_{A}(600)$
t_2A,B t_2	002 Rome	2010	700	2	β	$\iota_A(Rome)\iota_B(Rome)$	$\iota_A(2010)\iota_B(2010)$	$\iota_{A}(700)\iota_{B}(700)$
$t_3 B t_3$	003 Rome	2011	600	3			$\iota_B(2011)$	$\iota_{B}(600)$
t_4A,C t_2				4	δ	$\iota_A(NY)\iota_C(NY)$	$\iota_A(2011)\iota_C(2011)$	$\iota_A(700)\iota_C(700$
$t_5 C t_5$	5			5	ε	$\iota_C(Oslo)$	$\iota_{C}(2011)$	$\iota_{C}(700)$

> remains vulnerable to inference

Intuitive approach – User-based index

- Each user u has an index function iu that depends on a private piece of information shared with the data owner
- For each cell t[A] in r and user u in acl(t) there is index value $\iota_u(t[A])$ in $t^e[I_A]$

				SH	OPS		
	acl		ld	City	Year	Sales	ti
t_1	\boldsymbol{A}	t_1			2010		
t_2	A,B	t_2	002	Rome	2010	700	1
t_3	B	t_3	003	Rome	2011	600	1
t_4	A,C	t_4				700	4
t_5	\boldsymbol{C}	t_5				700	

		SF	lOPS ^e			
tid	etuple	I_c	I_y	I_s		
1	α	$\iota_A(NY)$		$\iota_{A}(600)$		
2	β	$\iota_A(Rome)\iota_B(Rome)$	ι_A (2010) ι_B (2010)	$\iota_{A}(700)\iota_{B}(700)$		
3	γ	$\iota_B(Rome)$	$\iota_B(2011)$	$\iota_{B}(600)$		
4	δ	$\iota_A(NY)\iota_C(NY)$	$\iota_A(2011)\iota_C(2011)$	ι_A (700) ι_C (700)		
5	ε	$\iota_C(Oslo)$	$\iota_{C}(2011)$	ι _C (700)		

> remains vulnerable to inference

- Tuples t_i and t_j are in conflict over attribute A, $t_i \sim_A t_j$, iff
 - have the same value for the attribute
 - can be accessed by different but overlapping sets of users

- Tuples t_i and t_j are in conflict over attribute A, $t_i \sim_A t_j$, iff
 - have the same value for the attribute
 - o can be accessed by different but overlapping sets of users

		Shops								
a	cl	ld	City	Year	Sales					
t_1A			NY							
t_2A	$,B$ t_2	002	Rome	2010	700					
t_3B	t_3	003	Rome	2011	600					
t_4A	$,C$ t_4	004	NY	2011	700					
t_5C	t_5	005	Oslo	2011	700					

- Tuples t_i and t_j are in conflict over attribute A, $t_i \sim_A t_j$, iff
 - have the same value for the attribute
 - o can be accessed by different but overlapping sets of users

				SH	OPS			
	acl		ld	City	Year	Sales		$t_1 \sim_{\texttt{City}} t_4$
t_1	\overline{A}	t_1	001	NY	2010	600	7	
t_2	A,B	t_2	002	Rome	2010	700		
t_3	В	<i>t</i> ₃	003	Rome	2011	600	~City	
	A,C	<i>t</i> ₄	004	NY	2011	700		
t_5		<i>t</i> ₅	005	Oslo	2011	700	_	

- Tuples t_i and t_j are in conflict over attribute A, $t_i \sim_A t_j$, iff
 - have the same value for the attribute
 - o can be accessed by different but overlapping sets of users

				SH	OPS			
	acl		ld	City	Year	Sales		$t_1 \sim_{\texttt{City}} t_4$
t_1	A	t_1	001	NY	2010	600		$t_2 \sim_{\texttt{City}} t_3$
t_2	A, B	t_2	002	Rome	2010	700]	
t_3	B	t_3	003	Rome	2011	600	~City	
t_4	A,C	t_4	004	NY	2011	700	-	
	C	t_5	005	Oslo	2011	700		

- Tuples t_i and t_j are in conflict over attribute A, $t_i \sim_A t_j$, iff
 - have the same value for the attribute
 - o can be accessed by different but overlapping sets of users

			SH	OPS			
i	acl	ld	City	Year	Sales		$t_1 \sim_{\texttt{City}} t_4$
t_1	$\overline{4}$ t_1	001	NY	2010	600]	$t_2 \sim_{\texttt{City}} t_3$
t_2	A,B t_2	002	Rome	2010	700	~Year	$t_1 \sim_{\mathtt{Year}} t_2$
t_3		003	Rome	2011	600	-	
t_4	A,C t_4	004	NY	2011	700		
ts (C t_5	005	Oslo	2011	700		

- Tuples t_i and t_j are in conflict over attribute A, $t_i \sim_A t_j$, iff
 - have the same value for the attribute
 - can be accessed by different but overlapping sets of users

	SHOPS	
acl	Id City Year Sales	$t_1 \sim_{\texttt{City}} t_4$
$t_1 A$	t ₁ 001 NY 2010 600	$t_2 \sim_{\texttt{City}} t_3$
t_2A,B	t ₂ 002 Rome 2010 700	$t_1 \sim_{\mathtt{Year}} t_2$
t_3B	t ₃ 003 Rome 2011 600	$t_4 \sim_{\mathtt{Year}} t_5$
t_4A, C	t ₄ 004 NY 2011 700	
t_5 C	t_5 005 Oslo 2011 700 $^{\sim}$ Year	

- Tuples t_i and t_j are in conflict over attribute A, $t_i \sim_A t_j$, iff
 - have the same value for the attribute
 - o can be accessed by different but overlapping sets of users

				SH	OPS			
	acl		ld	City	Year	Sales		$t_1 \sim_{\texttt{City}} t_4$
t_1	\overline{A}	t_1	001	NY	2010	600		$t_2 \sim_{\texttt{City}} t_3$
t_2	A,B	t_2	002	Rome	2010	700	1	$t_1 \sim_{\mathtt{Year}} t_2$
t_3		t_3	003	Rome	2011	600	$\sim_{ t Sales}$	$t_4 \sim_{\mathtt{Year}} t_5$
t_4	A,C	t_4	004	NY	2011	700		$t_2 \sim_{\mathtt{Sales}} t_4$
t ₅	C	t5	005	Oslo	2011	700		

- Tuples t_i and t_j are in conflict over attribute A, $t_i \sim_A t_j$, iff
 - have the same value for the attribute
 - o can be accessed by different but overlapping sets of users

				SH	OPS			
	acl		ld	City	Year	Sales		$t_1 \sim_{\texttt{City}} t_4$
t_1	A	t_1	001	NY	2010	600		$t_2 \sim_{\texttt{City}} t_3$
t_2	A,B	t_2	002	Rome	2010	700		$t_1 \sim_{\texttt{Year}} t_2$
t_3	В	t_3	003	Rome	2011	600		$t_4 \sim_{\mathtt{Year}} t_5$
t_4	A,C	t_4	004	NY	2011	700]	$t_2 \sim_{\mathtt{Sales}} t_4$
		t_5	005	Oslo	2011	700	~Sales	$t_4 \sim_{\text{Sales}} t_5$

- Tuples t_i and t_j are in conflict over attribute A, $t_i \sim_A t_j$, iff
 - have the same value for the attribute
 - o can be accessed by different but overlapping sets of users

				SH	OPS			
	acl		ld	City	Year	Sales		$t_1 \sim_{\texttt{City}} t_4$
t_1	\overline{A}	t_1	001	NY	2010	600	1	$t_2 \sim_{\texttt{City}} t_3$
t_2	A,B	t_2	002	Rome	2010	700	$ lpha_{ t Sales} $	$t_1 \sim_{\mathtt{Year}} t_2$
	B	t_3	003	Rome	2011	600		$t_4 \sim_{\mathtt{Year}} t_5$
t_4	A,C	t_4	004	NY	2011	700	_	$t_2 \sim_{\mathtt{Sales}} t_4$
t_5	C	t_5	005	Oslo	2011	700		$t_4 \sim_{\mathtt{Sales}} t_5$

```
t_i \sim_{\mathbb{A}} \dots \sim_{\mathbb{A}} t_j \Longrightarrow t_i[\mathbb{A}] is exposed to all users in acl(t_j) \setminus acl(t_i) \Longrightarrow t_j[\mathbb{A}] is exposed to all users in acl(t_i) \setminus acl(t_j)
```

 $t_i \sim_{\mathbb{A}} \ldots \sim_{\mathbb{A}} t_j \Longrightarrow t_i[\mathbb{A}]$ is exposed to all users in $\mathit{acl}(t_j) \setminus \mathit{acl}(t_i)$ $\Longrightarrow t_j[\mathbb{A}]$ is exposed to all users in $\mathit{acl}(t_i) \setminus \mathit{acl}(t_j)$

		SH	OPS				SH	IOPS ^e	
acl	I	Id City	Year	Sales	tid	etuple	I_c	I_y	I_s
$t_1 A$	t_1				1				$\iota_{A}(600)$
t_2A,B	t_2	002 Rome	2010	700	2	β	$\iota_A(Rome)\iota_B(Rome)$	$\iota_A(2010)\iota_B(2010)$	$\iota_A(700)\iota_B(700)$
$t_3 B$	<i>t</i> ₃	003 Rome	2011	600	3	γ	$\iota_B(Rome)$	$\iota_B(2011)$	$\iota_{B}(600)$
t_4A,C	t_4				4	δ	$\iota_A(NY)\iota_C(NY)$	$\iota_A(2011)\iota_C(2011)$	$\iota_{A}(700)\iota_{C}(700)$
t_5 C	t_5				5	ε	$\iota_C(Oslo)$	$\iota_{C}(2011)$	$\iota_{C}(700)$

$$t_i \sim_{\mathbb{A}} \dots \sim_{\mathbb{A}} t_j \Longrightarrow t_i[\mathbb{A}]$$
 is exposed to all users in $acl(t_j) \setminus acl(t_i)$ $\Longrightarrow t_j[\mathbb{A}]$ is exposed to all users in $acl(t_i) \setminus acl(t_j)$

SHOPS					$Shops^e$					
acl	Γ	ld	City	Year	Sales	tid	etuple	I_c	I_y	I_s
t_1A	t_1			2010		1				$\iota_{A}(600)$
t_2A,B	t_2	002	Rome	2010	700	2	β	$\iota_A(Rome)\iota_B(Rome)$	ι_A (2010) ι_B (2010)	$\iota_A(700)\iota_B(700)$
$t_3 B$	t_3	003	Rome	2011	600	3	γ	$\iota_B(Rome)$	$\iota_B(2011)$	$\iota_{B}(600)$
t_4A,C	t_4			,		4	δ	$\iota_A(NY)\iota_C(NY)$	$\iota_A(2011)\iota_C(2011)$	$\iota_A(700)\iota_C(700)$
t_5 C	t_5					5	ε			$\iota_{C}(700)$

Exposures to B

•
$$t_1 \sim_{\texttt{Year}} t_2 \Longrightarrow t_1 [\texttt{Year}]$$

$$t_i \sim_{\mathbb{A}} \ldots \sim_{\mathbb{A}} t_j \Longrightarrow t_i[\mathbb{A}]$$
 is exposed to all users in $\mathit{acl}(t_j) \setminus \mathit{acl}(t_i) \Longrightarrow t_j[\mathbb{A}]$ is exposed to all users in $\mathit{acl}(t_i) \setminus \mathit{acl}(t_j)$

SHOPS					$Shops^e$				
acl	lc	City	Year	Sales	tid	etuple	I_c	I_y	I_s
$t_1 A$	t_1		2010		1	α	$\iota_A(NY)$	$\iota_{A}(2010)$	$\iota_{A}(600)$
t_2A,B	$t_2 = 00$	2 Rome	2010	700	2	β	$\iota_A(Rome)\iota_B(Rome)$	$\iota_A(2010)\iota_B(2010)$	$\iota_{A}(700)\iota_{B}(700)$
$t_3 B$	$t_3 = 00$	3 Rome	2011	600	3	γ	$\iota_B(Rome)$	$\iota_B(2011)$	$\iota_{B}(600)$
t_4A,C	t_4			700	4	δ	$\iota_A(NY)\iota_C(NY)$	$\iota_A(2011)\iota_C(2011)$	ι_{A} (700) ι_{C} (700)
t_5 C	t ₅				5	ε			$\iota_{C}(700)$

Exposures to B

- $ullet t_1 \sim_{ exttt{Year}} t_2 \Longrightarrow t_1 [exttt{Year}]$
- $t_2 \sim_{\mathtt{Sales}} t_4 \Longrightarrow t_4 [\mathtt{Sales}]$

$$t_i \sim_{\mathbb{A}} \ldots \sim_{\mathbb{A}} t_j \Longrightarrow t_i[\mathbb{A}]$$
 is exposed to all users in $acl(t_j) \setminus acl(t_i) \Longrightarrow t_j[\mathbb{A}]$ is exposed to all users in $acl(t_i) \setminus acl(t_j)$

SHOPS					$SHOPS^e$			
acl	Id City	Year	Sales	tid	etuple	I_c	I_y	I_s
$t_1 A = t_1$		2010		1	α	$\iota_A(NY)$	$\iota_{A}(2010)$	$\iota_{A}(600)$
t_2 A , B t_2	002 Rome	2010	700	2	β	$\iota_A(Rome)\iota_B(Rome)$	$\iota_A(2010)\iota_B(2010)$	$\iota_{A}(700)\iota_{B}(700)$
$t_3 B t_3$	003 Rome	2011	600	3	γ	$\iota_B(Rome)$	$\iota_B(2011)$	$\iota_{B}(600)$
t_4A,C t_4			700	4	δ	$\iota_A(NY)\iota_C(NY)$	$\iota_A(2011)\iota_C(2011)$	ι_{A} (700) ι_{C} (700)
t_5 C t_5			700	5	ε	$\iota_C(Oslo)$	$\iota_{C}(2011)$	ι _C (700)

Exposures to B

- $t_1 \sim_{\texttt{Year}} t_2 \Longrightarrow t_1 [\texttt{Year}]$
- $t_2 \sim_{\mathtt{Sales}} t_4 \Longrightarrow t_4 [\mathtt{Sales}]$
- $t_2 \sim_{\text{Sales}} t_4 \sim_{\text{Sales}} t_5 \Longrightarrow t_5 [\text{Sales}]$

Safe index

- An index function is safe if conflicting tuples have different index values for all the users who can access them
- The index values computed by a safe index function cannot be exploited for inference purposes
- We define a safe index for attribute A by
 - safely partitioning tuples in clusters such that tuples in conflict over
 A do not belong to the same cluster
 - adopting a different salt for each cluster in the definition of the index function for A
- To minimize the burden at the client side for query translation, the number of salts (i.e., the number of clusters) must be minimized

- Our minimization problem is equivalent to the minimum vertex coloring problem
- A conflict graph G_A(V_A, E_A) is a non-directed graph with

		SHOPS					
acl				Year	Sales		
$t_1 A$				2010			
t_2A,B			Rome				
t_3B	t_3	003	Rome	2011	600		
t_4A,C	t_4	004	NY	2011	700		
$t_5 C$	t_5	005	Oslo	2011	700		

- Our minimization problem is equivalent to the minimum vertex coloring problem
- A conflict graph G_A(V_A, E_A) is a non-directed graph with
 - \circ a vertex in V_A for each tuple in r

	acl
t_1	Α
t_{2} t_{3}	A,B
t_3	В
t_4	A,C
t5	C

	SHOPS								
				Sales					
		NY							
2	002	Rome	2010	700					
		Rome	2011	600					
4	004	NY	2011	700					
5	005	Oslo	2011	700					

 $G_{ t Citv}$

$$t_3$$
 t_4

- Our minimization problem is equivalent to the minimum vertex coloring problem
- A conflict graph G_A(V_A, E_A) is a non-directed graph with
 - \circ a vertex in V_A for each tuple in r
 - o an edge (t_i, t_i) in $E_{\mathbb{A}}$ iff $t_i \sim_{\mathbb{A}} t_i$

	acl
t_1	A
t_2	A,B
<i>t</i> ₃	\boldsymbol{B}
t_4	A,C
t_5	C

SHOPS

	011013								
			Year	Sales					
t_1	001	NY	2010	600					
t_2	002	Rome	2010	700					
		Rome	2011	600					
t_4	004	NY	2011	700					
t_5	005	Oslo	2011	700					

 $G_{ t Citv}$

- Our minimization problem is equivalent to the minimum vertex coloring problem
- A conflict graph G_A(V_A,E_A) is a non-directed graph with
 - o a vertex in V_A for each tuple in r
 - o an edge (t_i, t_i) in $E_{\mathbb{A}}$ iff $t_i \sim_{\mathbb{A}} t_i$
- A minimum coloring of G_A is a minimum safe partitioning of r that solves conflicts w.r.t. A

	acl
$\overline{t_1}$	A
t_2	A,B
t_3	B
t_4	A,C
t5	C

	SHOPS								
				Sales					
t_1	001	NY	2010	600					
t_2	002	Rome	2010	700					
		Rome	2011	600					
	004		2011						
t5	005	Oslo	2011	700					

 $G_{ t City}$

- Our minimization problem is equivalent to the minimum vertex coloring problem
- A conflict graph G_A(V_A,E_A) is a non-directed graph with
 - o a vertex in V_A for each tuple in r
 - o an edge (t_i, t_i) in $E_{\mathbb{A}}$ iff $t_i \sim_{\mathbb{A}} t_i$
- A minimum coloring of G_A is a minimum safe partitioning of r that solves conflicts w r t A

			Shops				
	acl			City			
t_1	A			NY			
t_2	A,B			Rome			
t_3	B	t_3	003	Rome	2011	600	
t_4	A,C		004		2011		
t_5	C	<i>t</i> ₅	005	Oslo	2011	700	

 $G_{ extsf{Citv}}$

Safe but not minimum coloring

- Our minimization problem is equivalent to the minimum vertex coloring problem
- A conflict graph G_A(V_A,E_A) is a non-directed graph with
 - \circ a vertex in $V_{\mathbb{A}}$ for each tuple in r
 - o an edge (t_i, t_i) in $E_{\mathbb{A}}$ iff $t_i \sim_{\mathbb{A}} t_i$
- A minimum coloring of G_A is a minimum safe partitioning of r that solves conflicts w r t A

	acl		
t_1	\overline{A}	t_1	C
t_2	A,B	t_2	C
t_3	B	t_3	C
t_4	A,C	t_4	C
ts		t5	C

		_	OPS	
				Sales
		NY		
t_2	002	Rome	2010	700
		Rome	2011	600
	004		2011	
<i>t</i> ₅	005	Oslo	2011	700

 $G_{ t City}$

Safe and minimum coloring

Index function ι_u for user u over attribute \mathbb{A} is defined applying randomly generated salts to tuples

- tuples in different clusters are assigned different salts
- tuples in the same cluster are assigned the same salt

Index function ι_u for user u over attribute \mathbb{A} is defined applying randomly generated salts to tuples

- tuples in different clusters are assigned different salts
- tuples in the same cluster are assigned the same salt

				5н	OPS	
	acl		ld	City	Year	Sales
t_1	A	t_1	001	NY	2010	600
t_2	A,B	t_2	002	Rome	2010	700
t_3	В	t_3	003	Rome	2011	600
t_4	A,C	t_4	004	NY	2011	700
t_5	C	t_5	005	Oslo	2011	700

 SHOPS^e

tid	etuple	\mathtt{I}_c	I_y	I_s
1	α			
2	β			
3	γ			
4	δ			
5	ε			

Index function ι_u for user u over attribute \mathbb{A} is defined applying randomly generated salts to tuples

- tuples in different clusters are assigned different salts
- tuples in the same cluster are assigned the same salt

tid	etuple	I_c	I_y	I_{S}
1	α			
2	β			
3	γ			
4	δ			
5	ε			

Index function ι_u for user u over attribute A is defined applying randomly generated salts to tuples

- tuples in different clusters are assigned different salts
- tuples in the same cluster are assigned the same salt

tid	etuple	I_c	I_y	I_{S}
1	α			
2	β			
3	γ			
4	δ			
5	ε			

Index function ι_u for user u over attribute \mathbb{A} is defined applying randomly generated salts to tuples

- tuples in different clusters are assigned different salts
- tuples in the same cluster are assigned the same salt

tid	etuple	I_c	I_y	I_s
1	α	$\iota_A(NY, s_A)$		
2	β	$\iota_A(Rome, s_A')$		
3	γ			
4	δ	$\iota_A(NY,s_A')$		
5	ε			

Index function ι_u for user u over attribute \mathbb{A} is defined applying randomly generated salts to tuples

- tuples in different clusters are assigned different salts
- tuples in the same cluster are assigned the same salt

$SHOPS^e$

ι	Ia	etupie	\perp_c	\perp_{y}	\perp_{s}
Ī	1	α	$\iota_A(NY, s_A)$		
	2	β	$\iota_A(Rome, s_A') \iota_B(Rome, s_B)$		
	3		$\iota_B(Rome,s_B')$		
	4	δ	$l_A(NY,s_A')$		
	5	ε			

Index function ι_u for user u over attribute A is defined applying randomly generated salts to tuples

- tuples in different clusters are assigned different salts
- tuples in the same cluster are assigned the same salt

tid	etuple	I_c	I_y	\mathbf{I}_{s}
1	α	$\iota_A(NY, s_A)$		
2	β	$\iota_A(Rome, s_A')\iota_B(Rome, s_B)$		
3	γ	$\iota_B(Rome, s_B')$		
4	δ	$\iota_A(NY,s_A')$ $\iota_C(NY,s_C)$		
5	ε	$\iota_C(Oslo, s_C)$		

Index function ι_u for user u over attribute \mathbb{A} is defined applying randomly generated salts to tuples

- tuples in different clusters are assigned different salts
- tuples in the same cluster are assigned the same salt

tid	etuple	I_c	I_y	I_{S}
1	α	$\iota_A(NY,s_A)$	$\iota_{A}(2010,s_{A})$	
2	β	$\iota_A(Rome, s_A')\iota_B(Rome, s_B)$	$\iota_A(2010,s'_A)\iota_B(2010,s_B)$	
3	γ	$\iota_B(Rome,s_B^{\prime})$	$\iota_B(2011,s_B')$	
4	δ	$\iota_A(NY,s_A')\iota_C(NY,s_C)$	$\iota_{A}(2011,s_{A})\iota_{C}(2011,s_{C})$	
5		$\iota_C(Oslo, s_C)$	$\iota_{C}(2011,s_{C}')$	

Index function ι_u for user u over attribute A is defined applying randomly generated salts to tuples

- tuples in different clusters are assigned different salts
- tuples in the same cluster are assigned the same salt

	Shops	$G_{ t Sales}$
acl	Id City Year Sales	(t_1) (t_2)
$t_1 A$	t ₁ 001 NY 2010 600	Ţ
t_2A,B	t ₂ 002 Rome 2010 700	(t_3) (t_4)
$t_3 B$	t ₃ 003 Rome 2011 600	13
t_4A,C	t ₄ 004 NY 2011 700	
t_5 C	t ₅ 005 Oslo 2011 700	(ts)

$SHOPS^e$

tid	etuple	\mathtt{I}_c	\mathbf{I}_y	\mathbf{I}_{s}
1				$\iota_A(600,s_A)$
2	β	$\iota_A(Rome, s_A') \iota_B(Rome, s_B)$	$\iota_A(2010,s'_A)\iota_B(2010,s_B)$	$\iota_A(700,s_A)\iota_B(700,s_B)$
3				$\iota_B(600,s_B)$
4	δ	$\iota_A(NY,s_A')\iota_C(NY,s_C)$	$\iota_{A}(2011,s_{A})\iota_{C}(2011,s_{C})$	$\iota_{A}(700,s'_{A})\iota_{C}(700,s_{C})$
5			$\iota_{C}(2011,s_{C}')$	$\iota_C(700,s_C')$

- The conflict graph can also be defined over the whole schema of the outsourced relation, defining a unique partitioning of r
- Each tuple t is associated with a unique salt, used to compute all the index values associated with t
- Conflict graph G_R(V_R,E_R) is a non-directed graph with

		SHOPS			
acl			City		
t_1A			NY		
t_2A,B	t_2	002	Rome	2010	700
$t_3 B$	t_3	003	Rome	2011	600
t_4A,C			NY		
$t_5 C$	<i>t</i> ₅	005	Oslo	2011	700

- The conflict graph can also be defined over the whole schema of the outsourced relation, defining a unique partitioning of r
- Each tuple t is associated with a unique salt, used to compute all the index values associated with t
- Conflict graph G_R(V_R,E_R) is a non-directed graph with
 - o a vertex in V_R for each tuple in r

	acl
t_1	A
t_1 t_2	A,B
t_3	В
t_4	A,C
ts	C

	SHOPS				
			Year	Sales	
t_1	001	NY	2010	600	
t_2	002	Rome	2010	700	
		Rome	2011	600	
t_4	004	NY	2011	700	

 G_{SHOPS}

 \widehat{t}_{5}

- The conflict graph can also be defined over the whole schema of the outsourced relation, defining a unique partitioning of r
- Each tuple t is associated with a unique salt, used to compute all the index values associated with t
- Conflict graph G_R(V_R,E_R) is a non-directed graph with
 - o a vertex in V_R for each tuple in r
 - ∘ an edge (t_i,t_j) in E_R if $\exists A \in R$ s.t. $t_i \sim_A t_i$

	acl
t_1	A
t_2	A,B
t_3	B
t_4	A,C
ts	C

	SHOPS					
			Year	Sales		
t_1	001	NY	2010	600		
t_2	002	Rome	2010	700		
		Rome	2011	600		
t_4	004	NY	2011	700		
t5	005	Oslo	2011	700		

- Conflict graph $G_R(V_R, E_R)$ can be obtained by composing the conflict graphs $G_A(V_A, E_A)$ of attributes in R
 - o a coloring for G_R is a coloring for G_A , with $A \in R$, but not viceversa
 - \circ a minimum coloring for G_R may not be minimum for G_A , with $A \in R$

Relation level approach – 2

- Conflict graph $G_R(V_R, E_R)$ can be obtained by composing the conflict graphs $G_A(V_A, E_A)$ of attributes in R
 - o a coloring for G_R is a coloring for G_A , with $A \in R$, but not viceversa
 - \circ a minimum coloring for G_R may not be minimum for G_A , with $A \in R$

Relation level approach – 2

- Conflict graph $G_R(V_R, E_R)$ can be obtained by composing the conflict graphs $G_A(V_A, E_A)$ of attributes in R
 - \circ a coloring for G_R is a coloring for G_A , with $A \in R$, but not viceversa
 - \circ a minimum coloring for G_R may not be minimum for G_A , with $A \in R$

Safe but not minimum coloring

Relation level approach – 2

- Conflict graph $G_R(V_R, E_R)$ can be obtained by composing the conflict graphs $G_A(V_A, E_A)$ of attributes in R
 - \circ a coloring for G_R is a coloring for G_A , with $A \in R$, but not viceversa
 - \circ a minimum coloring for G_R may not be minimum for G_A , with $A \in R$

Safe and minimum coloring

Query evaluation

- Each user u knows
 - \circ index function ι_u
 - \circ the maximum number of salts $n_{\mathbb{A},u}$ used to define the index for attribute \mathbb{A}
 - o the pseudo-random function used to generate salts
- Condition A=v in a query submitted by user u is translated as I_A IN V, with
 - IA: index over A
 - o $V = \{i_u(v, s_1), \dots, i_u(v, s_{n_{h,u}})\}$: values obtained applying i_u to v combined with each of the $n_{h,u}$ salts

Query evaluation – Example

			SHOPS			
	acl					Sales
t_1	A	t_1	001	NY	2010	600
t_2	A,B	t_2	002	Rome	2010	700
t_3	B	<i>t</i> ₃	003	Rome	2011	600
t_4	A,C		004		2011	700
t_5	C	t_5	005	Oslo	2011	700

SHOPS^e

tid	etuple	\mathbf{I}_{c}	\mathbf{I}_{y}	I_S
1		$\iota_A(NY, s_A)$		$\iota_A(600,s_A)$
2	β	$\iota_A(Rome, s_A')\iota_B(Rome, s_B)$	$\iota_{A}(2010,s'_{A})\iota_{B}(2010,s_{B})$	$\iota_A(700,s_A)\iota_B(700,s_B)$
3	γ	$\iota_B(Rome, s_B')$	$\iota_B(2011,s_B^7)$	$\iota_B(600,s_B)$
4	δ	$\iota_A(NY,s_A')\iota_C(NY,s_C)$	$\iota_{A}(2011,s_{A})\iota_{C}(2011,s_{C})$	$\iota_{A}(700,s'_{A})\iota_{C}(700,s_{C})$
5				$\iota_C(700,s_C^7)$

Query evaluation – Example

SHOPS^e

tid	etuple	I_c	I_y	I_s
1	α	$\iota_A(NY, s_A)$	$\iota_{A}(2010,s_{A})$	$\iota_A(600,s_A)$
2	β	$\iota_A(Rome, s_A') \iota_B(Rome, s_B)$	$\iota_A(2010,s'_A)\iota_B(2010,s_B)$	$\iota_A(700,s_A)\iota_B(700,s_B)$
3	γ	$\iota_B(Rome, s_B^r)$	$\iota_B(2011,s_B')$	$\iota_B(600,s_B)$
4	δ	$\iota_A(NY,s_A')\iota_C(NY,s_C)$	$\iota_{A}(2011,s_{A})\iota_{C}(2011,s_{C})$	$\iota_{A}(700,s'_{A})\iota_{C}(700,s_{C})$
5	ε	$\iota_C(Oslo, s_C)$	$\iota_{C}(2011,s_{C}')$	$\iota_C(700,s_C')$

Query by B, who has 2 salts for Year

SELECT City, Sales
FROM SHOPS

WHERE Year=2010

Query evaluation – Example

SHOPS^e

tid	etuple	I_c	\mathtt{I}_y	I_{S}
1				$\iota_A(600,s_A)$
2	β	$\iota_A(Rome, s_A')\iota_B(Rome, s_B)$	$\iota_{A}(2010, s'_{A})\iota_{B}(2010, s_{B})$	$\iota_{A}(700,s_{A})\iota_{B}(700,s_{B})$
3			$\iota_B(2011,s_B')$	$\iota_B(600,s_B)$
4	δ	$\iota_A(NY,s_A')\iota_C(NY,s_C)$	$\iota_A(2011,s_A)\iota_C(2011,s_C)$	$\iota_{A}(700,s'_{A})\iota_{C}(700,s_{C})$
5			$\iota_{C}(2011,s'_{C})$	$\iota_{C}(700,s'_{C})$

Query by B, who has 2 salts for Year translates to

SELECT City, Sales SELECT etuple FROM SHOPS \Longrightarrow FROM SHOPS e WHERE Year=2010 WHERE I_y IN $\{\iota_B(2010,s_B),\iota_B(2010,s_B')\}$

Experimental results – 1

- Relational table built starting from the TPC-H benchmark
 - o three attributes with 5, 25, and 11,000 distinct values
 - o from 500 to 100,000 tuples
- Access control policy obtained extracting the authorship information from the DBLP repository
 - o each paper is represented by a tuple in the table
 - o each author can access all and only her papers
- Attribute level and relation level approaches compared w.r.t.
 - the number of clusters composing a safe partitioning (i.e., upper bound of the number of salts required)
 - the average number of salts per user (i.e., user overhead in query translation)

Experimental results – 2

- Attribute level salt, three attributes:
 - cardinality 5
 - cardinality 25
 - o cardinality 11000

- Relation level salt, two relations:
 - three attributes, with cardinality 5, 25, 11000
 - two attributes, with cardinality 25, 11000

Experimental results – 3

Specifying salts at the attribute level (in contrast to relation)

- + permits to reduce the overhead of queries with condition on the most selective attributes (the difference for non-selective attributes is minimal)
- requires storing a different value for the number of salts for every attribute (in contrast to a value for the whole relation), for every user
- ⇒ If queries over selective attributes are more frequent: the attribute level approach is preferred; otherwise, the relation level approach is preferred for its simplicity and limited storage overhead

Some open issues

- Protect against the server observing multiple queries
- Protect against collusion between users and server
- Use of indexes associated with clusters of tuples in contrast to individual tuples

Indexes and Fragmentation

S. De Capitani di Vimercati, S. Foresti, S. Jajodia, S. Paraboschi, P. Samarati, "On Information Leakage by Indexes over Data Fragments," in *Proc. of PrivDB*, Brisbane, Australia, April 2013.

Information exposure

- + Provides effectiveness and efficiency in query execution
 - enables the partial server-side evaluation of selection conditions over encrypted attributes
- Indexes combined with fragmentation can cause information leakage of confidential (encrypted or fragmented) information
 - o exposure to leakage varies depending on the kind of indexes

Kinds of knowledge

A curious observer can exploit

${\sf F}_2^e$					
salt	enc	Disease			
s ₂₁	t_{21}^e	Flu			
s_{22}	t_{22}^{e}	Flu			
s ₂₃	t_{23}^e	Flu			
s ₂₄	$t_{24}^{\overline{e}}$	Diabetes			
s ₂₅	t_{25}^e	Diabetes			
s ₂₆	$t_{26}^{\bar{e}}$	Gastritis			
S 27	t_{27}^{e}	Arthritis			
s ₂₈	t_{28}^e	Arthritis			

Kinds of knowledge

A curious observer can exploit

 vertical knowledge due to values appearing in the clear in one fragment and indexed in other fragments

Kinds of knowledge

A curious observer can exploit

- vertical knowledge due to values appearing in the clear in one fragment and indexed in other fragments
- horizontal knowledge due to external knowledge of the presence of specific tuples in the table

salt enc Name State i_d Adams VA S_{11} α Brown MN α S₁₂ Cooper CA t_{13}^{e} s_{13} α β Davis VA s_{14} Eden NY s_{15} Falk CA s_{16} NY $\dot{\delta}$ Green S₁₇ δ NY Hack s_{18}

salt enc Name State i_d Adams VA α S_{11} Brown MN S₁₂ α t_{13}^{e} Cooper CA s_{13} α β VA Davis S_{14} Eden NY β s_{15} Falk CA **S**16 NY $\dot{\delta}$ Green S₁₇ NY δ Hack s_{18}

- $\iota(\mathsf{Flu}) = \alpha$
- $\iota(Gastritis) = \gamma$

- $\iota(\mathsf{Flu}) = \alpha \Longrightarrow \mathsf{Adams}$, Brown, Cooper have Flu
- $\iota(Gastritis) = \gamma \Longrightarrow Falk has Gastritis$
- the other patients have Diabetes or Arthritis with p = 50%

F_1^{ϵ}					
<u>salt</u>	enc	Name	State	i_d	
s_{11}	t_{11}^e	Adams	VA	α	
s_{12}	t_{12}^{e}	Brown	MN	α	
s ₁₃	t_{13}^e	Cooper	CA	α	
s_{14}	t_{14}^{e}	Davis	VA	β	
s_{15}	t_{15}^{e}	Eden	NY	β	
s_{16}	t_{16}^e	Falk	CA	γ	
s_{17}	t_{17}^{e}	Green	NY	δ	
s_{18}	t_{18}^e	Hack	NY	δ	

Horizontal knowledge

Horizontal knowledge

•
$$\iota(\mathsf{Flu}) = \alpha$$

Horizontal knowledge

• $\iota(\mathsf{Flu}) = \alpha \Longrightarrow \mathsf{also} \; \mathsf{Brown} \; \mathsf{and} \; \mathsf{Cooper} \; \mathsf{have} \; \mathsf{Flu}$

salt enc Name State i_d Adams VA S_{11} Brown MN S₁₂ Cooper CA t_{13}^{e} s_{13} Davis VA S_{14} Eden NY S₁₅ ζ CA Falk **S**16 NY Green **S**17 NY Hack θ s_{18}

F_1^{ϵ}					
salt	enc	Name	State	i_d	
s_{11}	t_{11}^e	Adams	VA	ζ	
s_{12}	t_{12}^{e}	Brown	MN	ζ	
s ₁₃	t_{13}^e	Cooper	CA	ζ	
s_{14}	t_{14}^{e}	Davis	VA	η	
s_{15}	t_{15}^{e}	Eden	NY	η	
s_{16}	t_{16}^e	Falk	CA	ζ	
s_{17}	t_{17}^{e}	Green	NY	θ	
s_{18}	t_{18}^e	Hack	NY	θ	

 $\Gamma \rho$

•
$$\iota(\mathsf{Flu}) = \zeta$$

•
$$\iota(\mathsf{Flu}) = \zeta \Longrightarrow \iota(\mathsf{Gastritis}) = \zeta$$

Vertical knowledge

• $\iota(\mathsf{Flu}) = \iota(\mathsf{Gastritis}) = \zeta \Longrightarrow \mathsf{Adams}, \mathsf{Brown}, \mathsf{Cooper}, \mathsf{and} \mathsf{Falk} \mathsf{ have}$ Flu with p = 75%, Gastritis with p = 25%

Horizontal knowledge

Horizontal knowledge

•
$$\iota(\mathsf{Flu}) = \zeta$$

Horizontal knowledge

• $\iota(\mathsf{Flu}) = \zeta \Longrightarrow \mathsf{no} \mathsf{ inference}$

•
$$\iota(Flu) = \iota(Gastritis) = \zeta$$

•
$$\iota(\mathsf{Flu}) = \iota(\mathsf{Gastritis}) = \zeta \Longrightarrow \mathsf{Brown}$$
, Cooper, and Falk have Flu with $p = 66\%$, Gastritis with $p = 33\%$

salt enc Name State id Adams VA S_{11} Brown MN S₁₂ Cooper CA **S**13 VA Davis η Eden NY s_{15} ζ Falk CA **S**16 NY Green **S**17 Hack NY θ s_{18}

State id salt enc Name Adams VA S_{11} Brown MN S₁₂ Cooper CA **S**13 VA **Davis** Eden NY s_{15} ζ θ Falk CA **S**16 NY Green Hack NY θ s_{18}

Vertical and Horizontal knowledge

• $\iota(Diabetes) = \eta$

Bucket index

F_1^e						
<u>salt</u>	enc	Name	State	i_d		
s_{11}	t_{11}^e	Adams	VA	ζ		
s_{12}	t_{12}^e	Brown	MN	ζ		
s ₁₃	t_{13}^{e}	Cooper	CA	ζ		
s_{14}	t_{14}^{e}	Davis	VA	η		
s_{15}	t_{15}^{e}	Eden	NY	η		
s_{16}	t_{16}^e	Falk	CA	ζ		
s_{17}	t_{17}^{e}	Green	NY	θ		
s_{18}	t_{18}^e	Hack	NY	θ		

Vertical and Horizontal knowledge

• $\iota(Diabetes) = \eta \Longrightarrow Eden has Diabetes$

salt enc Name State i_d Adams VA S_{11} Brown MN s_{12} Cooper CA t_{13}^{e} s_{13} VA Davis S_{14} ξ Eden NY S₁₅ Falk CA **S**16 π NY ρ Green S₁₇ NY Hack s_{18} σ

F_1^e						
salt	enc	Name	State	i_d		
s_{11}	t_{11}^e	Adams	VA	ĸ		
s_{12}	t_{12}^{e}	Brown	MN	λ		
s ₁₃	t_{13}^{e}	Cooper	CA	μ		
s_{14}	t_{14}^{e}	Davis	VA	ν		
s_{15}	t_{15}^{e}	Eden	NY	ξ		
s_{16}	t_{16}^{e}	Falk	CA	π		
s_{17}	t_{17}^{e}	Green	NY	ρ		
s_{18}	t_{18}^e	Hack	NY	σ		

 $\Gamma \rho$

Vertical knowledge

Vertical knowledge

 each correspondence between plaintext and index values is equally like

Horizontal knowledge

Horizontal knowledge

•
$$\iota(\mathsf{Flu}) = \kappa$$

Horizontal knowledge

• $\iota(\mathsf{Flu}) = \kappa \Longrightarrow \mathsf{no} \mathsf{inference}$

+ blocks inference exposure

F_1^e						
<u>salt</u>	enc	Name	State	i_d		
s_{11}	t_{11}^e	Adams	VA	φ		
s_{12}	t_{12}^e	Brown	MN	φ		
s_{13}	t_{13}^{e}	Cooper	CA	Ψ		
s_{14}	t_{14}^e	Davis	VA	χ		
s_{15}	t_{15}^{e}	Eden	NY	χ		
s_{16}	t_{16}^{e}	Falk	CA	Ψ		
s ₁₇	t_{17}^{e}	Green	NY	ω		
s_{18}	t_{18}^e	Hack	NY	ω		

- + blocks inference exposure
- exposed to inferences exploiting dynamic observations

- + blocks inference exposure
- exposed to inferences exploiting dynamic observations Disease='Flu' translates to i_d IN $\{\phi, \psi\} \Longrightarrow \iota(\mathsf{Flu}) = \{\phi, \psi\}$

- + blocks inference exposure
- exposed to inferences exploiting dynamic observations Disease='Flu' translates to i_d IN $\{\phi,\psi\} \Longrightarrow \iota(\mathsf{Flu}) = \{\phi,\psi\}$ $\iota(\mathsf{Flu}) = \{\phi,\psi\} \Longrightarrow \mathsf{Brown}$, Cooper, Frank have Flu with p = 66%

Still several open issues

- Protection against observation of accesses to fragments
- Protection against the release of multiple indexes
 - multiple indexes in the same fragment
 - indexes on the same attribute in multiple fragments
 - two attributes appear one in plaintext and the other indexed in one fragment and reversed in another fragment
- Protection against different types of observer's knowledge
- Development of flattened index functions that generate collisions
- Definition of metrics for assessing exposures due to indexes

- [ABGGKMSTX-05] G. Aggarwal, M. Bawa, P. Ganesan, H. Garcia-Molina, K. Kenthapadi, R. Motwani, U. Srivastava, D. Thomas, Y. Xu, "Two Can Keep a Secret: A Distributed Architecture for Secure Database Services," in *Proc. of CIDR*, Asilomar, CA, USA, January 2005.
- [AFB-05] M. Atallah, K. Frikken, M. Blanton, "Dynamic and Efficient Key Management for Access Hierarchies," in *Proc. of CCS*, Alexandria, VA, USA, November 2005.
- [AKSX-04] R. Agrawal, J. Kierman, R. Srikant, Y. Xu, "Order Preserving Encryption for Numeric Data," in *Proc. of ACM SIGMOD*, Paris, France, 2004.
- [AT-83] S. Akl, P. Taylor, "Cryptographic Solution to a Problem of Access Control in a Hierarchy," ACM TOCS, vol. 1, no. 3, August 1983.
- [B-70] B.H. Bloom, "Trade-offs in Hash Coding with Allowable Error," in Communication of the ACM, vol. 13, no. 7, July 1970.
- [BV11] Z. Brakerski, V. Vaikuntanathan, "Efficient Fully Homomorphic Encryption from (standard) LWE," in Proc. of FOCS, Palm Springs, CA, USA, October 2011.

- [CDDJPS-05] A. Ceselli, E. Damiani, S. De Capitani di Vimercati, S. Jajodia, S. Paraboschi, P. Samarati, "Modeling and Assessing Inference Exposure in Encrypted Databases," in ACM TISSEC, vol. 8, no. 1, February 2005.
- [CDFJPS-07] V. Ciriani, S. De Capitani di Vimercati, S. Foresti, S. Jajodia, S. Paraboschi, P. Samarati, "Fragmentation and Encryption to Enforce Privacy in Data Storage," in *Proc. of ESORICS*, Dresden, Germany, September 2007.
- [CDFJPS-09a] V. Ciriani, S. De Capitani di Vimercati, S. Foresti, S. Jajodia, S. Paraboschi, and P. Samarati, "Fragmentation Design for Efficient Query Execution over Sensitive Distributed Databases," in *Proc. of ICDCS*, Montreal, Quebec, Canada, June 2009.
- [CDFJPS-09b] V. Ciriani, S. De Capitani di Vimercati, S. Foresti, S. Jajodia, S. Paraboschi, P. Samarati, "Keep a Few: Outsourcing Data while Maintaining Confidentiality," in *Proc. of ESORICS*, Saint Malo, France, September 2009.
- [CDFJPS-10] V. Ciriani, S. De Capitani di Vimercati, S. Foresti, S. Jajodia, S. Paraboschi, P. Samarati, "Combining Fragmentation and Encryption to Protect Privacy in Data Storage," in *ACM TISSEC*, vol. 13, no. 3, July 2010.
- [CMW-06] J. Crampton, K. Martin, P. Wild, "On Key Assignment for Hierarchical Access Control," in *Proc. of CSFW*, Venice, Italy, July 2006.

- [CSYZ-08] G. Cormode, D. Srivastava, T. YU, Q. Zhang, "Anonymizing Bipartite Graph Data Using Safe Groupings," in *Proc. of VLDB*, Auckland, New Zealand, August 2008.
- [DFJL-12] S. De Capitani di Vimercati, S. Foresti, S. Jajodia, G. Livraga, "Enforcing Subscription-based Authorization Policies in Cloud Scenarios," in *Proc. of DBSec*, Paris, France, July 2012.
- [DFJLPS-14] S. De Capitani di Vimercati, S. Foresti, S. Jajodia, G. Livraga, S. Paraboschi, P. Samarati, "Fragmentation in Presence of Data Dependencies," in *IEEE TDSC*, 2014 (to appear).
- [DFJPPS-10] S. De Capitani di Vimercati, S. Foresti, S. Jajodia, S. Paraboschi, G. Pelosi, P. Samarati, "Encryption-based Policy Enforcement for Cloud Storage," in *Proc. of SPCC 2010*, Genova, Italy, June 2010.
- [DFJPS-07] S. De Capitani di Vimercati, S. Foresti, S. Jajodia, S. Paraboschi, P. Samarati, "Over-encryption: Management of Access Control Evolution on Outsourced Data," in *Proc. of VLDB*, Vienna, Austria, 2007.
- [DFJPS-10a] S. De Capitani di Vimercati, S. Foresti, S. Jajodia, S. Paraboschi, P. Samarati, "Fragments and Loose Associations: Respecting Privacy in Data Publishing," in *Proc. of the VLDB Endowment*, vol. 3, no. 1, September 2010.

- [DFJPS-10b] S. De Capitani di Vimercati, S. Foresti, S. Jajodia, S. Paraboschi, P. Samarati, "Encryption Policies for Regulating Access to Outsourced Data," in ACM TODS, vol. 35, no. 2, April 2010.
- [DFJPS-11] S. De Capitani di Vimercati, S. Foresti, S. Jajodia, S. Paraboschi, P. Samarati, "Private Data Indexes for Selective Access to Outsourced Data," in *Proc. of WPES*, Chicago, IL, USA, October 2011.
- [DFJPS-12] S. De Capitani di Vimercati, S. Foresti, S. Jajodia, S. Paraboschi, P. Samarati, "Support for Write Privileges on Outsourced Data," in *Proc. of SEC*, Heraklion, Crete, Greece, June 2012.
- [DFJPS-13] S. De Capitani di Vimercati, S. Foresti, S. Jajodia, S. Paraboschi, P. Samarati, "On Information Leakage by Indexes over Data Fragments," in *Proc. of PrivDB*, Brisbane, Australia, April 2013.
- [DFM-04] A. De Santis, A.L. Ferrara, B. Masucci, "Cryptographic Key Assignment Schemes for any Access Control Policy," in *Inf. Process. Lett.*, vol. 92, no. 4, 2004.
- [G-09] C. Gentry, "Fully Homomorphic Encryption using Ideal Lattices," in Proc. of STOC. Bethesda, MA, USA, 2009.

- [G-80] E. Gudes, "The Design of a Cryptography based Secure File System," in *IEEE TSE*, vol. 6, no. 5, September 1980.
- [GKPVZ-13] S. Goldwasser, Y.T. Kalai, R.A. Popa, V. Vaikuntanathan, N. Zeldovich, "Reusable Garbled Circuits and Succinct Functional Encryption," in *Proc. of STOC*, Palo Alto, CA, USA, June 2013.
- [GSW13] C. Gentry, A. Sahai, B. Waters, "Homomorphic Encryption from Learning with Errors: Conceptually-simpler, Asymptotically-faster, Attribute-based," in Proc. of CRYPTO, Santa Barbara, CA, USA, August 2013.
- [HIML-02] H. Hacigümüş, B. Iyer, S. Mehrotra, C. Li, "Executing SQL over Encrypted Data in the Database-Service-Provider Model," in *Proc. of the ACM SIGMOD*, Madison, Wisconsin, USA, June 2002.
- [HL-90] L. Harn, H. Lin, "A Cryptographic Key Generation Scheme for Multilevel Data Security," *Computers and Security*, vol. 9, no. 6, October 1990.
- [HY-03] M. Hwang, W. Yang, "Controlling Access in Large Partially Ordered Hierarchies using Cryptographic Keys," *The Journal of Systems and Software*, vol. 67, no. 2, August 2003.

- [LWL-89] H. Liaw, S. Wang, C. Lei, "On the Design of a Single-Key-Lock Mechanism Based on Newton's Interpolating Polynomial," in *IEEE TSE*, vol. 15, no. 9, September 1989.
- [M-85] S. MacKinnon et al., "An Optimal Algorithm for Assigning Cryptographic Keys to Control Access in a Hierarchy," in *IEEE TC*, vol. 34, no. 9, September 1985.
- [MNT-06] E. Mykletun, M. Narasimha, G. Tsudik, "Authentication and Integrity in Outsourced Databases," in *ACM TS*, vol. 2, no. 2, May 2006.
- [S-87] R. Sandhu, "On Some Cryptographic Solutions for Access Control in a Tree Hierarchy," in *Proc. of the 1987 Fall Joint Computer Conference on Exploring Technology: Today and Tomorrow*, Dallas, TX, USA, October 1987.
- [S-88] R. Sandhu, "Cryptographic Implementation of a Tree Hierarchy for Access Control," in *Information Processing Letters*, vol. 27, no. 2, 1988.
- [SC-02] V. Shen, T. Chen, "A Novel Key Management Scheme Based on Discrete Logarithms and Polynomial Interpolations," in *Computers and Security*, vol. 21, no. 2, March 2002.

 [WL-06] H. Wang, Laks V. S. Lakshmanan, "Efficient Secure Query Evaluation over Encrypted XML Databases," in *Proc. of VLDB*, Seoul, Korea, September 2006.