Diffusion Models (Overview)

Dr. Alireza Aghamohammadi

Overview

- ❖ A diffusion model has two parts: an *encoder* and a *decoder*.
- lacktriangle The encoder takes a data sample, x, and maps it to a series of latent variables, z_1,\ldots,z_T .
- During this process, the data is gradually mixed with noise until only noise remains. At this point, both the conditional distribution, $q(z_T \mid x)$, and the marginal distribution, $q(z_T)$, approximate the standard normal distribution.
- The decoder reverses this process, starting with z_T and working backward through z_{T-1}, \ldots, z_1 , removing noise at each step.
- After training, new data samples are generated by sampling a noise vector, z_T , and passing it through the decoder.
- ❖ The encoder is predefined; all learnable parameters are in the decoder.

- Diffusion models are probabilistic models that define a nonlinear mapping from latent variables to observed data, where both have the same dimension.
- These models are easy to train and can produce very high-quality samples. They also scale well on parallel hardware.
- However, generating new samples can be computationally expensive due to the need for multiple forward passes through the decoder network.