FREQUENCY MODULATION (FM)

Aim: To study frequency modulation and demodulation and observe the waveforms. Calculate the modulation index for FM

Apparatus: FM kit (ST2203), connecting wires, DSO, etc.

Frequency Modulation (FM):

The frequency of the carrier waveform varies with the information signal

Frequency Modulated Wave

FM Transmitter:

The block diagram is shown in figure.

Procedure:

Please check the following conditions:

- Function Generator: Frequency toggle switch at 1-10KHz
- VCO 2: Frequency toggle switch at 1500 KHz.
- PLL detector Switch at Off position.

Carry out the following presetting as under:

- VCO 2: Frequency at 455 KHz and amplitude at maximum.
- Function Generator: Frequency and amplitude both potentiometers at maximum.
- Make connections as shown in above figure.
- Connect the output of Function Generator to input of VCO 2.
- Now connect the CH I (Y) of Oscilloscope to the output of VCO 2 to observe frequency modulated waveform.
- Connect CH II (X) of Oscilloscope to Function Generator output to observe modulating signal.
- Now carry out following settings on CRO.
- Set CRO in dual channel mode.
- Keep CRO at AC coupling position.
- Keep CH I (Y) at 1 V/Div and CH II (X) at 1V/Div and Time base at 10μS.

▶ Use alternate Trigger mode

Connect the output of Function Generator to input of VCO 2.

Connect the Oscilloscope to the output of VCO 2.

Note: The frequency deviation can be calculated as follows

- From the waveform evaluate FM and fm detecting the periods of the respective sine waves.
- The frequency deviation is defined as $\Delta f = (F_M f_m) / 2$.
- You can note that if the modulator operates in a linear zone so F M and fro are over and under the central frequency by the same Δf , otherwise this does not occur.
- ▶ Modulation index me is calculated by the relation.

Observation Table:

Sr. No	Freq. (f)	Input Signal Amplitude	F _M	f _m	Freq. Deviation $\Delta f = (F_{M}-f_{m})/2$	$\begin{aligned} \mathbf{Modulation} \\ \mathbf{Index} \\ \mathbf{m_f} = \Delta \mathbf{f}/\mathbf{f} \end{aligned}$
1						
2						
3						

FM Detection Procedure:

- Please check the following conditions:
- ▶ Function Generator: Frequency toggle switch at 1-10KHz
- ▶ VCO 2: Frequency toggle switch at 1500 KHz.
- ▶ PLL detector Switch at Off position.
- Carry out the following presetting as under:
- VCO 2: Frequency at 455 KHz and amplitude at maximum.
- Function Generator: Frequency potentiometer at center and amplitude 100mV.
- Make connections as shown in above figure.
- Connect output of FG block to input of VCO.
- Output of VCO to input of PLL detector.
- Output of PLL detector to input of low pass filter.
- Switch in PLL detector block in 'On' position.
- Now connect Oscilloscope between output of low pass filter and ground and Observe the output of low pass filter circuit, with adjusting the frequency adjust potentiometer in the PLL detector.
- Note that the sine wave observed on the CRO resembles the modulating signal. Vary the modulating signal's frequency and amplitude to confirm that it is the demodulated output.

• If you get distorted output at lower	frequency,	slightly	adjust the	e amplitude	of Function
Generator to get optimum output.					

• If At higher amplitude of modulating signal you will get distorted output because of over modulation

Conclusion:

Remark **Signature**