CIS 2107 Memory Hierarchy

thank you, CMU

Memory Hierarchy

- Overview. Asymmetry.
- The details:
 - -RAM
 - Disks

Memory Hierarchy

- Overview. Asymmetry.
- The details:
 - -RAM
 - Disks

An Example Memory Hierarchy

Numbers Everyone Should Know Jeff Dean talk at Stanford

L1 cache reference	0.5 ns
Branch mispredict	5 ns
L2 cache reference	$7 \mathrm{ns}$
Mutex lock/unlock	100 ns
Main memory reference	100 ns
Compress 1K bytes with Zippy	$10,000 \mathrm{ns}$
Send 2K bytes over 1 Gbps network	$20,\!000 \; \mathrm{ns}$
Read 1 MB sequentially from memory	250,000 ns
Round trip within same datacenter	500,000 ns
Disk seek	10,000,000 ns
Read 1 MB sequentially from network	10,000,000 ns
Read 1 MB sequentially from disk	30,000,000 ns
Send packet $CA \rightarrow Netherlands \rightarrow CA$	150,000,000 ns

Fake Problem

location	access time
L1 cache	$0.5 \mathrm{ns}$
L2 cache	7 ns
RAM	100 ns
hard drive	10 ms
$\overline{\mathrm{DVD}}$	140 ms

Pretend for a minute

location	access time
L1 cache	$0.5 \mathrm{ns}$
L2 cache	7 ns
RAM	100 ns
hard drive	10 ms
DVD	140 ms

location	fake access time
L1 cache	$1 \mathrm{sec}$
L2 cache	
RAM	
hard drive	
DVD	

If we keep the ratios the same as on the LHS, what are the remaining numbers on the RHS?

Pretend for a minute

location	access time
L1 cache	$0.5 \mathrm{ns}$
L2 cache	7 ns
RAM	100 ns
hard drive	10 ms
DVD	140 ms

location	$fake\ access\ time$
L1 cache	1 sec
L2 cache	$14 \mathrm{sec}$
RAM	200 sec or
	$3 \min, 20 \sec$
hard drive	20,000,000 sec
	or $\approx 231.5 \text{ days}$
DVD	280,000,000 sec or
	$\approx 8.9 \text{ years}$

Pretend again. Let's bake a cake.

if the counter is the CPU and the L1 cache is the cabinet two feet above ...

location	$fake\ distance$
L1 cache	2 feet
L2 cache	28 feet
RAM	400 feet
hard drive	40,000,000 feet or about 7,500 miles
	about twice the distance from Philly
	to Nome, AK
DVD	560,000,000 feet or about 106,000 miles
	or about the distance around the earth 4.25 times

The moral of the story

- If you're baking a cake and you have to walk to Nome, AK to get the flour:
 - 1. get what you need for the rest of the recipe
 - 2. pick up some sugar

Locality

- Temporal locality
- Spatial locality

Memory Hierarchy

- Overview. Asymmetry.
- The details:
 - RAM
 - Disks

Random Access Memory. RAM.

- Random Access?
- SRAM static RAM
- DRAM dynamic RAM

SRAM

- Fast
- Expensive
- Used in cache memory (on and off chip)
- How much? A few MB
- More transistors/circuit
- Stable. Retain value as long as there's power
- No need for refresh

DRAM

- Used in main memory, graphics framebuffer
- "Stores each bit as a charge on a capacitor"
- Sensitive to disturbance (elec. noise, radiation)
 - Use as digital cam sensor
- Leakage:
 - Needs to be refreshed every 10-100 ms
 - How? Just read value and write it again
- Slower than SRAM
- Cheaper than SRAM

SRAM vs DRAM

	transistors	access	\mathbf{needs}	\mathbf{cost}	where?
	per bit	\mathbf{time}	${f refresh?}$		
\overline{SRAM}	6	1x	no	100x	cache memory
					(on or off chip)
DRAM	1	10x	yes	1x	main memory,
					graphics framebuffers

volatile vs. non-volatile storage

- volatile value lost on power off
- non-volatile
 - Hard disk
 - "ROMs", "PROMs", "firmware"
 - Solid state disks

Traditional Bus Structure Connecting CPU and Memory

- A bus is a collection of parallel wires that carry address, data, and control signals.
- Buses are typically shared by multiple devices.

Memory Read Transaction (1)

CPU places address A on the memory bus.

Memory Read Transaction (2)

 Main memory reads A from the memory bus, retrieves word x, and places it on the bus.

Memory Read Transaction (3)

• CPU read word x from the bus and copies it into register %eax.

Memory Write Transaction (1)

 CPU places address A on bus. Main memory reads it and waits for the corresponding data word to arrive.

Memory Write Transaction (2)

CPU places data word y on the bus.

Memory Write Transaction (3)

 Main memory reads data word y from the bus and stores it at address A.

Memory Hierarchy

- Overview. Asymmetry.
- The details:
 - -RAM
 - Disks

What's Inside A Disk Drive?

Image courtesy of Seagate Technology

Disk Geometry

- Disks consist of platters, each with two surfaces.
- Each surface consists of concentric rings called tracks.
- Each track consists of sectors separated by gaps.

Disk Geometry (Muliple-Platter View)

Aligned tracks form a cylinder.

disk terms

- Capacity #bits that can be recorded
- Density
 - recording density #bits per 1-inch seg of track.
 - track density #tracks per 1-inch radial segment.
 - areal density (bits/in²) recording density * track density
- Recording zones partition of recording space
 - Each track in a zone same number of sectors
 - Each zone different number of sectors/track

Disk Operation (Single-Platter View)

spin

Rotation rate these days: 5400, 7200 RPM

from the book ...

- equivalent of Sears Tower on its side:
 - 1 inch above the surface of the Earth
 - each orbit takes 8 seconds

- Speck of dust equivalent to a boulder
- Head crash

Disk Operation (Multi-Platter View)

Disk Structure - top view of single platter

Surface organized into tracks

Tracks divided into sectors

Disk Access

Head in position above a track

Disk Access

Rotation is counter-clockwise

Disk Access – Read

About to read blue sector

Disk Access - Read

After **BLUE** read

After reading blue sector

Disk Access - Read

After **BLUE** read

Red request scheduled next

Disk Access – Seek

Seek to red's track

Disk Access – Rotational Latency

Wait for red sector to rotate around

Disk Access – Read

Complete read of red

Disk Access – Service Time Components

Logical Disk Blocks

- Modern disks present a simpler abstract view of the complex sector geometry:
 - The set of available sectors is modeled as a sequence of b-sized logical blocks (0, 1, 2, ...)
- Mapping between logical blocks and actual (physical) sectors
 - Maintained by hardware/firmware device called disk controller.
 - Converts requests for logical blocks into (surface,track,sector) triples.
- Allows controller to set aside spare cylinders for each zone.
 - Accounts for the difference in "formatted capacity" and "maximum capacity".

I/O Bus

Reading a Disk Sector (1)

Reading a Disk Sector (2)

Reading a Disk Sector (3)

Solid State Disks (SSDs)

- Pages: 512KB to 4KB, Blocks: 32 to 128 pages
- Data read/written in units of pages.
- Page can be written only after its block has been erased
- A block wears out after 100,000 repeated writes.

SSD Performance Characteristics

Sequential read tput 250 MB/s Sequential write tput 170 MB/s
Random read tput 140 MB/s Random write tput 14 MB/s
Rand read access 30 us Random write access 300 us

- Why are random writes so slow?
 - Erasing a block is slow (around 1 ms)
 - Write to a page triggers a copy of all useful pages in the block
 - Find an used block (new block) and erase it
 - Write the page into the new block
 - Copy other pages from old block to the new block

SSD Tradeoffs vs Rotating Disks

- Advantages
 - No moving parts → faster, less power, more rugged
- Disadvantages
 - Have the potential to wear out
 - Mitigated by "wear leveling logic" in flash translation layer
 - E.g. Intel X25 guarantees 1 petabyte (1015 bytes) of random writes before they wear out
 - In 2010, about 100 times more expensive per byte
- Applications
 - MP3 players, smart phones, laptops
 - Beginning to appear in desktops and servers

The CPU-Memory Gap

The gap widens between DRAM, disk, and CPU speeds.

What to do about it

