

Simplifier sous la forme a^n les calculs suivants :

a)
$$5^3 \times 9^3$$

b)
$$5^2 \times 3^2$$

a)
$$5^3 \times 9^3$$
 b) $5^2 \times 3^2$ c) $1,2^3 \times 5^3$

d)
$$5^4 \times 3^4$$

e)
$$6^2 \times 6^3$$

d)
$$5^4 \times 3^4$$
 e) $6^2 \times 6^3$ f) $3^5 \times 8^5$

Simplifier sous la forme a^n les calculs suivants :

a)
$$12^3 \times 12^{-15} \times 12^4$$
 b) $5^{12} \times 8^{16} \times 8^{-4}$

b)
$$5^{12} \times 8^{16} \times 8^{-4}$$

c)
$$5^3 \times 5^2 \times 5^{-5}$$

EXERCICE 3

Simplifier sous la forme a^n les calculs suivants :

a)
$$2^{10} + 2^{10}$$

b)
$$2^{31} - 2^{30}$$

c)
$$3^7 + 2 \times 3^7$$

Simplifier sous la forme a^n les calculs suivants :

a)
$$10^2 \times 10^7$$

a)
$$10^2 \times 10^7$$
 b) $10^{14} \times 10^{21}$ c) $\frac{10^7}{10^4}$

c)
$$\frac{10^7}{10^4}$$

d)
$$\frac{10^{21}}{10^{14}}$$

e)
$$(10^4)^2$$

f)
$$(10^3)$$

Donner le signe de chacun des calculs suivants :

a)
$$3^{-5}$$

$$2^4$$

c)
$$-8^{-3}$$

d)
$$(-3)^2$$

a)
$$3^{-5}$$
 b) -2^4 c) -8^{-3} d) $(-3)^2$ e) $(-3)^{-2}$

Déterminer le signe de chacun des produits cidessous:

a)
$$(-2)^2 \times 2^{-3}$$

b)
$$(-3)^5 \times (-2)^4$$

c)
$$(-1)^{10} \times (-2)^{-2}$$
 d) $(-4)^7 \times 2^{-3}$

d)
$$(-4)^7 \times 2^{-3}$$

e)
$$(-1)^{-9} \times (-2)$$

f)
$$(-2)^5 \times (-3) \times (-2)^{-2}$$

Déterminer le signe de chacun des produits cidessous:

a)
$$(-2)^2 \times 2^{-3}$$

b)
$$(-3)^5 \times (-2)^4$$

c)
$$(-1)^{10} \times (-2)^{-2}$$
 d) $(-4)^7 \times 2^{-3}$

d)
$$(-4)^7 \times 2^{-3}$$

e)
$$(-1)^{-9} \times (-2)$$

Simplifier l'écriture des calculs suivants :

a)
$$\frac{(-7)^7}{7^5 \times (-7)^2}$$

$$\frac{(-2)^5 \times 6^5}{(-12)^{-3}}$$

a)
$$\frac{(-7)^7}{7^5 \times (-7)^2}$$
 b) $\frac{(-2)^5 \times 6^5}{(-12)^{-3}}$ c) $\frac{(-5)^{-7}}{-5^4 \times (-5)^{-4}}$

EXERCICE 9

Donner la forme réduite de chacune de des frac-

tions suivantes:

a)
$$\left(\frac{3}{4}\right)^2 - \frac{1}{4}$$

b)
$$\frac{9^7}{18^5}$$

a)
$$\left(\frac{3}{4}\right)^2 - \frac{1}{4}$$
 b) $\frac{9^7}{18^5}$ c) $\frac{6^{10}}{2^5 \times 3^{12}} - \frac{2^4}{3^2}$

e) $(10^4)^2$ f) $(10^3)^3$ 1) On considère les deux entiers suivants définis en fonction de l'antieur en $\frac{1}{2}$ $\frac{1}{2}$ nis en fonction de l'entier n positif par :

$$A = 2^{(2^n)}$$
; $B = (2^2)^n$

a. Déterminer la valeur des entiers A et B pour:

$$n = 1; \quad n = 2$$

b. Que peut-on dire des nombres A et B?

2) a. Déterminer la valeur de A et de B pour n = 3 et pour n = 0.

b. Que peut-on dire des entiers A et B?

EXERCICE 11

Donner les écritures scientifiques des nombres ci-dessous:

- a) 4540000
- b) 0,000054
- c) $354,1 \times 10^{11}$
- d) 79.8×10^{-8}
- e) 0.000079×10^8 f) 0.0052×10^{-4}

EXERCICE 12 $4 \times 10^{-2} \times 9 \times 10^{6}$ On donne: $B = \frac{4 \times 10^{-2} \times 9 \times 10^{6}}{6 \times 10^{7} \times 15 \times (10^{3})^{2}}$

Donner l'écriture scientifique de B

Comparer les couples de nombres suivants :

- a) $A = 32.5 \times 10^5$ et $B = 0.315 \times 10^8$
- **b)** $A = 0.005 \times 10^{-5}$ et $B = 502 \times 10^{-9}$
- c) $A = 0.0247 \times 10^4$ et $B = 2401 \times 10^{-1}$

EXERCICE 14

Déterminer la valeur de l'entier naturel n qui vé- $10^n = 100^{100}$ rifie:

EXERCICE 15

On laisse tomber une balle d'une hauteur de 1 mètre.

A chaque rebond, elle rebondit des $\frac{3}{4}$ de la hauteur d'où elle est tombée.

Quelle hauteur atteint la balle au cinquième rebond? Arrondir au cm près.

EXERCICE 16

L'algorithme ci-dessous est celui d'une fonction qui détermine la puissance *n*-ième d'un nombre *a* avec *n* un entier naturel tel que $n \ge 2$:

Calcul de *a*ⁿ

Fonction Puissance(a, n):

 $r \leftarrow a$

Pour i = 1 jusqu'à n - 1 faire :

 $r \leftarrow r * a$

Fin pour

Renvoyer r

Fin Fonction

On appelle la fonction PUISSANCE(2,3).

- 1) Quel calcul cherche-t-on a réaliser?
- 2) La boucle « Pour i = 1 jusqu'à n 1, faire » s'effectue n-1 fois. Si n=3, combien de fois se fera la boucle « *Pour* »?
- 3) Complète le tableau ci-dessous afin de décrire le fonctionnement de cet algorithme :

Variables	a	i	r
Inititalisation	2	\times	
Boucle 1	2	1	
Boucle 2	2	2	

