Variabilidade estelar na região central da Via Láctea:

Exoplanetas na área do VVV Survey

Thiago Ferreira dos Santos¹ e Roberto K. Saito¹

¹Universidade Federal de Santa Catarina (SC) - Brasil

Introdução

Existem aproximadamente 3700 exoplanetas confirmados desde o início da década de 90, quando foi publicado a detecção de um planeta orbitando um pulsar a ±40 parsecs de distância da Terra. Parte das detecções dos exoplanetas na região do bojo e do disco Galáctico foram feitas utilizando-se o método de microlente gravitacional, que consiste em detectar um acréscimo no brilho emitido por estrelas causado por um exoplaneta. De forma similar o método de trânsito planetário, detecta eclipses ocasionados pela passagem de exoplanetas na frente da estrela observada.

Fig. 1: Posição dos exoplanetas conhecidos, com destaque para a área dos planetas descobertos pelo satélite Kepler

A definição de planeta:

- ... Orbita uma estrela; e não orbita um planeta;
- ... Possui domínio sobre sua órbita;
- ... Possui uma massa superior a $\sim 10^{22}$ kg, o que distingueo de planetas añoes, asteroides e cometas;
- ... Possui uma massa inferior ao limite de aprox. 13 massas de Júpiter, o que não causa uma fusão termonuclear.

O levantamento VISTA Variables in the Via Láctea (VVV)

- Telescópio localizado no Observatório de Cerro Paranal (Chile);
- Cobre uma área de 526 deg² no Hemisfério Sul e possui 1929 horas de observações;
- Infravermelho próximo (ZYJHKs): $\lambda = 0.9$ a 2.5 μm ;
- $\sim 10^9$ fontes pontuais, no qual $\sim 10^6$ são fontes variáveis;
- \bullet Limite de observações em K
s ~ 18 mag, sendo 4x mais profundo que o 2MASS.

Discussão

A maioria dos exoplanetas encontrados possuem características similares à Júpiter, como massa e raio, orbitando estrelas de baixa massa, porém com separações orbitais menores que 5.2 AU. Enquanto que o método de trânsito planetário é sensível à distância, o método de microlente pode ser utilizado para detecções a longas distâncias inclusive em regiões com grandes concentrações de gás e poeira como o centro da Via Láctea, porém é ineficiente em determinar os raios dos exoplanetas, característica que pode ser calculada através do método de trânsito planetário. A massa das estrelas, sendo menores ou iguais a 1 $\rm M_{\odot}$ indicam que estas estrelas pertencem a classe de anãs e sub-anãs. Atualmente, há 84 exoplanetas confirmados na área do VVV sendo 17 destes com curvas de luz obtidas pelo levantamento VVV.

Bibliografia

Einstein, A., 1936, Science, New Series, 84, 506 Minniti, D., et. al. 2010, New Astronomy, 15, 433 Paczyński, B., 1996, Annual Reviews, A&A, 34 Queloz, D., et. al., 2006 Extrasolar Planets, Springer Saito, R. K., et. al. 2012, A&A, 537, A107 Struve, O, 1952 The Observatory, Vol. 72, p. 199-200 The Extrasolar Planets Encyclopaedia

Métodos de detecção

Como descrito pela Teoria da Relatividade Geral (1915), a matéria distorce o espaço-tempo ao seu redor, resultando numa atração gravitacional entre corpos massivos. De forma equivalente, um fenômeno de microlente gravitacional ocorre quando um feixe de luz emitido por uma estrela mais distante atravessa o campo gravitacional de uma estrela mais próxima do observador, sendo portanto desviada de sua trajetória originalmente retilínea. Em uma curva de luz, este evento é visto como um acréscimo no brilho da estrela e que após um tempo 'retorna' ao brilho normal.

Em contrapartida, um evento de trânsito planetário é detectado quando um exoplaneta bloqueia parte da luz vinda de uma estrela, ocorrendo periodicamente, como um eclipse. Apesar das limitações, como inclinação orbital e a pouca variação de brilho estelar, este método permite, além de calcular o raio do exoplaneta, determinar a presença de moléculas como CO₂, H₂O e N₂, essenciais para a presença de vida em um planeta.

Fig. 2: Quando a fonte luminosa e o exoplaneta, objeto que desvia a luz, encontram-se alinhados, forma-se o anel de Einstein (linhas tracejadas) (Paczyński, 1996).

Fig. 3: Representação de um trânsito planetário.

Distribuição de exoplanetas (pontos azuis) pela área observada pelo VVV

Resultados

Principais características dos exoplanetas. Colunas indicam: nome do exoplaneta, localização em coordenadas equatoriais, campo no VVV em que se encontra, massa e raio em unidades de Júpiter, separação e período orbital, distância em parsecs, massa e raio da estrela em unidades Solares, método de detecção e ano da descoberta.

Exoplaneta	RA DEC (J2000)	VVV Tile	\mathbf{M}_{Jup}	\mathbf{R}_{Jup}	UA	Orb.(dias)	Dist.(pc)	$M_*({ m M}_{\odot})$	$ m R_*(R_{\odot})$	Método	Ano
OGLE-GD-ECL-11388b	203.7079 -64.1421	d009	12.5	nan	nan	3250	nan	0.61	nan	Outro	2016
HD-169142b	276.1242 -29.7803	b238	30	nan	$22.7_{(\pm 4.7)}$	nan	117	1.65	1.6	Imagem	2014
MOA-2011-BLG-262Lb	270.0958 -30.7548	b277	0.056	nan	$0.84^{-0.35}_{0.14}$	nan	7350	0.12	nan	Microlente	2013
HD-165155b	271.4875 -29.9172	b278	2.89	nan	$1.13(\pm 0.04)$	434.5	64.98	1.02	0.95	Veloc. Radial	2016
OGLE-2012-BLG-0959Lb	272.0193 -29.7316	b279	0.11	nan	$2.7_{+0.6}^{-0.7}$	nan	3000	0.56	nan	Microlente	2016
OGLE-2014-BLG-1112b	272.1513 -28.6658	b279	31.7	nan	$9.63(\pm 1.33)$	nan	4840	1.07	nan	Microlente	2017
OGLE-2008-BLG-092Lb	266.8726 -34.7266	b288	0.18	nan	15	nan	7000	0.71	nan	Microlente	2014
OGLE-2013-BLG-0102Lb	268.0295 -31.6906	b290/b304	13.6	nan	$0.8(\pm 0.04)$	nan	3020	0.097	nan	Microlente	2014
MOA-2007-BLG-192Lb	272.0167 -27.1500	b294	0.01	nan	$0.66(\pm 0.14)$	nan	700	0.06	nan	Microlente	2008
OGLE-2006-109Lb	268.1458 -30.0878	b305	0.727	nan	$2.3_{(\pm 0.5)}$	1790	1510	0.51	nan	Microlente	2008
OGLE-2006-109Lc	268.1458 -30.0878	b305	0.271	nan	$4.5(\pm 1.0)$	4931	1510	0.51	nan	Microlente	2008
OGLE-TR-56b	269.1458 -29.5392	b306	1.3	1.2	$0.0225(\pm 0.0004)$	1.212	1500	1.17	1.32	Trânsito Prim.	2002
OGLE-2014:BLG-1760Lb	269.4083 -28.9631	b306	0.573	nan	$1.75(\pm 0.34)$	nan	6060	0.51	nan	Microlente	2016
OGLE-2015-BLG-0051b	269.6625 -28.0317	b307	0.72	nan	$0.73(\pm 0.08)$	nan	8200	0.1	nan	Microlente	2016
MOA-2010-BLG-117b	271.9570 -25.3446	b309	0.51	nan	$2.9^{-0.5}_{1.6}$	nan	3400	0.58	nan	Microlente	2017
OGLE-2017-BLG-0173b	267.9708 -29.2714	b320	9.08	nan	$3.75(\pm 1.67)$	nan	4700	0.417	nan	Microlente	2017
OGLE-2011-BLG-0251Lb	264.5591 -27.1361	b362	0.96	nan	$3.86(\pm0.64)$	nan	4090	0.47	nan	Microlente	2012

Agradecemos o uso de dados do programa público do ESO ID 179.B-2002 obtidos com o telescópio VISTA, e os dados produzidos pelo *Cambridge Astronomical Survey Unit (CASU)*. Thiago Ferreira e Roberto K. Santo agradecem o suporte do PIBIC@UFSC e CNPq-Brasil.