Итоговый конспект стр. 1 из 8

1 Определения

1.1 Ступенчатая функция

 $f:X o\mathbb{R}$ — ступенчатая, если:

$$\exists$$
 разбиение $X = \bigsqcup_{\scriptscriptstyle{ ext{ t KOH.}}} e_i : orall i \ f \Big|_{e_i} = ext{const}_i = c_i$

При этом разбиение называется допустимым для этой функции.

1.2 Разбиение, допустимое для ступенчатой функции

Дано выше. (1.1, стр. 1)

1.3 ! Измеримая функция

- (X,\mathfrak{A},μ) пространство с мерой
- $f: X \to \overline{\mathbb{R}}$
- E ∈ A

f измерима на множестве E, если $\forall a \in \mathbb{R} \;\; E(f < a)$ измеримо, т.е. $\in \mathfrak{A}$

1.4 Свойство, выполняющееся почти везде

- (X,\mathfrak{A},μ)
- $E \in \mathfrak{A}$
- W(x) высказывание $(x \in X)$

W(x) — верно при почти всех из E = почти всюду на E = почти везде на E = п.в. E, если:

$$\exists e \in E: \mu e = 0 \ \ W(x)$$
 — истинно при $x \in E \setminus e$

1.5 Сходимость почти везде

1.6 Сходимость по мере

 $f_n, f: X o \overline{\mathbb{R}}$ — почти везде конечны.

$$f_n$$
 сходится к f по мере μ , обозначается $f_n \xrightarrow[\mu]{} f: \forall \varepsilon>0 \ \mu X(|f_n-f|\geq \varepsilon) \xrightarrow[n \to +\infty]{} 0$

Итоговый конспект стр. 2 из 8

1.7 Теорема Егорова о сходиомсти почти везде и почти равномерной сходиомсти

- X, \mathfrak{A}, μ
- $\mu X < +\infty$
- f_n, f почти везде конечно, измеримо

Тогда

$$\forall \varepsilon > 0 \ \exists e \subset X : \mu e < \varepsilon \quad f_n \Longrightarrow_{X \setminus e} f$$

1.8 Интеграл ступенчатой функции

- $f = \sum \alpha_k \chi_{E_k}$
- E_k допустимое разбиение
- $\alpha_k \geq 0$

$$\int_{Y} f d_{\mu(x)} := \sum \alpha_k \mu E_k$$

И пусть $0 \cdot \infty = 0$

1.9 Интеграл неотрицательной измеримой функции

- $f \ge 0$
- f измеримо

$$\int_X f d\mu := \sup_{\substack{g - \text{ ctyn.} \\ 0 \le g \le f}} \int g d\mu$$

2 Теоремы

2.1 Лемма "о структуре компактного оператора"

- $V:\mathbb{R}^m o \mathbb{R}^m$ линейный оператор
- $\det V \neq 0$

Тогда \exists ортонормированные базисы $g_1 \dots g_m$ и $h_1 \dots h_m$, а также $\exists s_1 \dots s_m > 0$, такие что:

$$\forall x \in \mathbb{R}^m \quad V(x) = \sum_{i=1}^m s_i \langle x, g_i \rangle h_i$$

Итоговый конспект стр. 3 из 8

$$\mathsf{V} \mid \det V \mid = s_1 s_2 \dots s_m.$$

Доказательство. $W := V^*V -$ самосопряженный оператор (матрица симметрична относительно диагонали).

Из линейной алгебры мы знаем, что такой оператор имеет:

- Собственные числа: $c_1 \dots c_m$ вещественные (возможно с повторениями)
- Собственные векторы: $g_1 \dots g_m$ ортонормированные

Примечание. Пока мы в \mathbb{R}^m (а не в \mathbb{C}^m), * есть транспонирование. В комплексном случае ещё берется сопряжение.

$$c_i \langle g_i, g_i \rangle \stackrel{(1)}{=} \langle W g_i, g_i \rangle \stackrel{(2)}{=} \langle V g_i, V g_i \rangle > 0$$

- (1): т.к. g_i собственный вектор для W с собственным значением c_i .
- (2): из линейной алгебры:

$$W_{kl} = \sum_{i=1}^{m} V_{ik} V_{il}$$

$$\langle Wg_i, g_i \rangle = \sum_{k,l,j} V_{jk} V_{jl} g_k^{(i)} g_l^{(i)} = \langle Vg_i, Vg_i \rangle$$

Таким образом, $c_i > 0$.

$$s_i := \sqrt{c_i}$$

$$h_i := \frac{1}{s_i} V g_i$$

$$\langle h_i, h_j \rangle \stackrel{\text{def } h_i}{=} \frac{1}{s_i s_j} \langle V g_i, V g_j \rangle \stackrel{(3)}{=} \frac{1}{s_i s_j} \langle W g_i, g_j \rangle \stackrel{(4)}{=} \frac{c_i}{s_i s_j} \langle g_i, g_j \rangle \stackrel{(5)}{=} \delta_{ij}$$

- (3): из линейной алгебры, аналогично предыдущему.
- (4): т.к. g_i собственный вектор для W с собственным значением c_i .
- (5): при $i\neq j$ $\langle g_i,g_j\rangle=0$ в силу ортогональности, а при i=j $\langle g_i,g_j\rangle=1$ в силу ортонормированности и $\frac{c_i}{s_is_j}=\frac{c_i}{\sqrt{c_i}\sqrt{c_i}}=1$

Примечание. $\delta_{ij} = \begin{cases} 1, & i=j \\ 0, & i
eq j \end{cases}$ — символ Кронекера.

Итоговый конспект стр. 4 из 8

Таким образом, $\{h_i\}$ ортонормирован.

$$V(x) \stackrel{\text{def } x}{=} V \left(\sum_{i=1}^{m} \langle x, g_i \rangle g_i \right) \stackrel{\text{(6)}}{=} \sum_{i=1}^{m} \langle x, g_i \rangle V(g_i) \stackrel{\text{def } h_i}{=} \sum s_i \langle x, g_i \rangle h_i$$
$$(\det V)^2 \stackrel{\text{(7)}}{=} \det(V^*V) \stackrel{\text{def } W}{=} \det W \stackrel{\text{(8)}}{=} c_1 \dots c_m$$

$$|\det V| = \sqrt{c_1} \dots \sqrt{c_m} = s_1 \dots s_m$$

2.2 ! Теорема о преобразовании меры Лебега при линейном отображении

• $V: \mathbb{R}^m \to \mathbb{R}^m$ — линейное отображение

Тогда $\forall E \in \mathfrak{M}^m \ V(E) \in \mathfrak{M}^m$ и $\lambda(V(E)) = |\det V| \cdot \lambda E$

Доказательство.

- 1. Если $\det V=0$ $\mathrm{Im}(V)$ подпространство в $\mathbb{R}^m\Rightarrow\lambda(\mathrm{Im}(V))=0$ по следствию 6 лекции 15 третьего семестра. Тогда $\forall E\;V(E)\subset\mathrm{Im}(V)\Rightarrow\lambda(V(E))=0$
- 2. Если $\det V \neq 0$ $\mu E := \lambda(V(E))$ мера, инвариантная относительно сдвигов. Это было доказано в конце прошлого семестра:

$$\mu(E+a) = \lambda(V(E+a)) = \lambda(V(E)+V(a)) = \lambda(V(E)) = \mu E$$

 $\Rightarrow \exists k: \mu = k\lambda$ по недоказанной теореме из прошлого семестра.

Мы хотим найти k, для этого нужно что-нибудь померять. Померяем что-то очень простое, например $Q = \{ \sum \alpha_i g_i \mid \alpha_i \in [0,1] \}$ — единичный куб на векторах g_i .

$$V(g_i) = s_i h_i$$
. Таким образом, $V(Q) = \{\sum \alpha_i s_i h_i \mid \alpha_i \in [0,1]\}.$

$$\mu Q = \lambda(V(Q)) = s_1 \dots s_m = |\det V| = |\det V| \underbrace{\lambda Q}_{=1}$$

Таким образом, $k = |\det V|$

^{(6):} в силу линейности V

^{(7):} в силу мультипликативности det и инвариантности относительно транспонирования.

^{(8):} т.к. det инвариантен по базису и в базисе собственных векторов det $W=c_1\dots c_m$.

2.3 Теорема об измеримости пределов и супремумов

 f_n — измеримо на X. Тогда:

- 1. $\sup f_n$, $\inf f_n$ измеримо.
- 2. $\overline{\lim} f_n, \underline{\lim} f_n$ измеримо.
- 3. Если $\forall x \; \exists \lim_{n \to +\infty} f_n(x) = h(x)$, то h(x) измеримо.

Доказательство.

1. $g=\sup f_n \quad X(g>a)\stackrel{(9)}{=}\bigcup_n X(f_n>a)$ и счётное объединение измеримых множеств измеримо.

(9):

• $X(g>a)\subset\bigcup_n X(f_n>a)$, т.к. если $x\in X(g>a)$, то g(x)>a.

$$\sup_{n} f_n(x) = g(x) \neq a \Rightarrow \exists n : f_n(x) > a$$

- $X(g>a)\supset\bigcup_n X(f_n>a)$, т.к. если $x\in X(f_n>a)$, то $f_n(x)>a$, следовательно g(x)>a.
- 2. $(\overline{\lim} f_n)(x) = \inf_n(s_n = \sup(f_n(x), f_{n+1}(x), \dots))$. Т.к. sup и inf измерим, $\overline{\lim} f_n$ тоже измерим.
- 3. Очевидно, т.к. если $\exists \lim$, то $\lim = \overline{\lim} = \underline{\lim}$

2.4 Характеризация измеримых функций с помощью ступенчатых. Следствия

- $f: X \to \mathbb{R}$
- $f \ge 0$
- f измеримо

Тогда $\exists f_n$ — ступенчатые:

- 1. $0 \le f_1 \le f_2 \le f_3 \le \dots$
- 2. $\forall x \ f(x) = \lim_{n \to +\infty} f_n(x)$

$$e_k^{(n)} = X\left(\frac{k-1}{n} \le f < \frac{k}{n}\right) \quad k = 1 \dots n^2$$

$$e_{n^2+1}^{(n)} := X(n \le f)$$

Итоговый конспект стр. 6 из 8

$$\lim_{n \to +\infty} g_n(x) = f(x) : g_n(x) \le f(x)$$

Не дописано.

2.5 Измеримость функции, непрерывной на множестве полной меры

Примечание. $A\subset X$ — полной меры, если $\mu(X\setminus A)=0.$

- $f: E \to \mathbb{R}, E \subset \mathbb{R}^m$
- $e \subset E$
- $\lambda_m e = 0$
- f непрерывно на $E' = E \setminus e$

Тогда f — измеримо.

Итоговый конспект стр. 7 из 8

Доказательство. f — измеримо на E', т.к. E'(f < a) открыто в E' по топологическому определению непрерывности.

$$e(f < a) \subset e, \lambda_m$$
 — полная $\Rightarrow e(f < a)$ — измеримо в E .

$$E(f < a) = E'(f < a) \cup e(f < a)$$
, объединение измеримых множеств измеримо. \square

2.6 Теорема Лебега о сходимости почти везде и сходимости по мере

- (X,\mathfrak{A},μ)
- μX конечно
- f_n, f измеримо, п.в. конечно
- $f_n \to f$ п.в.

Тогда $f_n \xrightarrow[\mu]{} f$

Доказательство. Переопределим f_n , f на множестве меры 0, чтобы сходимость была всюду.

Рассмотрим частный случай: $\forall x$ последовательность $f_n(x)$ монотонно убывает к 0, то есть $f\equiv 0$

$$X(|f_n| \ge \varepsilon) = X(f_n \ge \varepsilon) \supset X(f_{n+1} \ge \varepsilon)$$

$$\bigcap X(f_n \ge \varepsilon)$$

Таким образом, по теореме о непрерывности меры сверху, $\mu X(f_n \geq \varepsilon) \to 0$

Рассмотрим общий случай:
$$f_n \to f$$
, $\varphi(x) := \sup_{k \ge n} |f_k(x) - f(x)|$

Тогда $\varphi_n \to 0, \varphi_n \ge 0$ и монотонно, таким образом мы попали в частный случай.

$$X(|f_n - f| \ge \varepsilon) \subset X(\varphi_n \ge \varepsilon)$$

 $\mu X(|f_n - f| \ge \varepsilon) \le \mu X(\varphi_n \ge \varepsilon) \to 0$

2.7 Теорема Рисса о сходимости по мере и сходимости почти везде

Доказательство.

$$orall k \;\; \mu X\left(|f_n-f|\geq rac{1}{k}
ight) o 0$$

$$\exists n_k: \mathrm{при}\; n\geq n_k \;\; \mu X\left(|f_n-f|\geq rac{1}{k}
ight)<rac{1}{2^k}$$

Итоговый конспект стр. 8 из 8

Можно считать, что $n_1 < n_2 < n_3$

Проверим, что $f_{n_k} o f$ почти везде.

$$E_k := \bigcup_{j=k}^{+\infty} X\left(|f_{n_j} - f| \ge \frac{1}{j}\right) \quad E = \bigcap E_k$$

$$E_k \supset E_{k+1} \quad \mu E_k \stackrel{(10)}{\le} \sum_{j=k}^{+\infty} \mu X\left(|f_{n_j} - f| \ge \frac{1}{j}\right) < \sum_{j=k}^{+\infty} \frac{1}{2^j} \le \frac{2}{2^k} \to 0$$

$$\mu E_k \to \mu E \Rightarrow \mu E = 0$$

Покажем, что при $x \not\in E \ f_{n_k} \to f.$

$$x \not\in E \;\; \exists N \;\; x \not\in E_k \; \mathrm{при} \; k > N \;\; |f_{n_k}(x) - f(x)| < rac{1}{k}$$

To есть $f_{n_k}(x) \to f(a)$.

Т.к. $\mu E = 0$, искомое выполнено.

^{(10):} по счётной полуаддитивности меры.