

<u>Course</u> > <u>Week 1</u> > <u>Proble</u>... > Proble...

Problem: Nonlinear Dynamics

Nonlinear Dynamics

0.0/20.0 points (graded)

Consider a system with the dynamics given by

$$\dot{x} = x^3 + 2x^2 - 5x - 6$$

Fill in the MATLAB code below, which is supposed to:

- Plot a phase diagram \dot{x} vs. x for this system and set the three equilibrium points. Ensure that all equilibrium points are included in the plot range.
- Set the variable "eq_points" such that $x = eq_points(i)$ is an equilibrium point.

Do not change the variable names x, xdot, and eq_points.

```
1 x =
2 xdot =
3 eq_points =
4 plot(x,xdot)
5
```

Unanswered

```
x = linspace(-10,10,1000);
xdot = x.^3 + 2*x.^2 - 5*x - 6;
eq_points = [-3;-1;2];
plot(x,xdot);
```

Run Code

Is the first equilibrium point (at the smallest value of \boldsymbol{x}) stable, unstable, or marginally stable?

- Stable
- Unstable
- Marginally stable

Is the second equilibrium point stable, unstable, or marginally stable?

- Stable
- Unstable
- Marginally stable

Is the third equilibrium point (at the largest value of /(x/)) stable, unstable, or marginally stable?

- Stable
- Unstable

Marginally stable

There is an interval, containing the origin, that is a region of attraction for one of these points. Identify this interval, using standard notation of (a,b) for open intervals and [a,b] for closed intervals. Indicate a interval extending to infinity with "-inf" or "inf."

Answer:
$$\slash s * -\slash s * 3\slash s * , \slash s * 2\slash s * 2\slash$$

The region of attraction is (-3,2)

Submit

You have used 0 of 3 attempts

• Answers are displayed within the problem

© All Rights Reserved