Data Structures and Algorithms

(ESO207)

Lecture 32

Magical application of binary trees – III

Data structure for sets

Rooted tree

Revisiting and extending

A typical rooted tree we studied

Definition we gave:

Every vertex, except **root**, has <u>exactly one **incoming** edge</u> and has a path **from** the root.

Examples:

Binary search trees,

DFS tree,

BFS tree.

A typical rooted tree we studied

Question: what data structure can be used for representing a rooted tree?

Answer:

Data structure 1:

- Each node stores a list of its children.
- To access the tree, we keep a pointer to the root node.
 (there is no way to access any node (other than root) directly in this data structure)

Data structure 2: (If nodes are labeled in a <u>contiguous</u> range [0..n-1]) rooted tree becomes an instance of a **directed graph**.

So we may use adjacency list representation.

Advantage: We can access each node directly.

Extending the definition of rooted tree

Extended Definition:

Type 1: Every vertex, except **root**, has <u>exactly one **incoming** edge</u> and has a path **from** the root.

Extending the definition of rooted tree

Extended Definition:

Type 1: Every vertex, except **root**, has <u>exactly one **incoming** edge</u> and has a path **from** the root.

OR

Type 2: Every vertex, except root, has <u>exactly one **outgoing** edge</u> and has a path **to** the root.

Data structure for rooted tree of type 2

If nodes are labeled in a <u>contiguous</u> range [0..n-1], there is even <u>simpler</u> and <u>more compact</u> data structure

Guess??

Application of rooted tree of type 2

Maintaining sets

Sets under two operations

```
Given: a collection of n singleton sets {0}, {1}, {2}, ... {n - 1}
Aim: a compact data structure to perform
Union(i, j):

Unite the two sets containing i and j.

Same_sets(i, j):

Determine if i and j belong to the same set.
```

Trivial Solution

Treat the problem as a graph problem: Connected component

- $V = \{0, ..., n 1\}$, E = empty set initially.
- A set ⇔
- Keep array Label[]

```
→
```

```
Union(i, j):

if Same\_sets(i, j) = false)

add an edge (i, i)
```

O(n) time

Sets under two operations

```
Given: a collection of n singleton sets {0}, {1}, {2}, ... {n - 1}
Aim: a compact data structure to perform
Union(i, j):

Unite the two sets containing i and j.
Same_sets(i, j):

Determine if i and j belong to the same set.
```

Efficient solution:

- A data structure which supports each operation in $O(\log n)$ time.
- An additional heuristic
 - \rightarrow time complexity of an operation : practically O(1).

Data structure for sets

Maintain each set as a rooted tree

Data structure for sets

Maintain each set as a rooted tree

Question: How to perform operation $Same_sets(i, j)$?

Answer: Determine if i and j belong to the same tree.

 \rightarrow find root of i

Question: How to perform Union(i, j)?

Answer:

- find root of j; let it be q.
- Parent $(q) \leftarrow i$.

Pseudocode for Union and SameSet()

```
Find(i) // subroutine for finding the root of the tree containing i
     If (Parent(i) = i) return i;
    else return Find(Parent(i));
SameSet(i, j)
      k \leftarrow \text{Find}(i);
      l \leftarrow Find(j);
     If (k = l)
                return true else return false
Union(i, j)
      k \leftarrow \text{Find}(i);
       Parent(k) \leftarrow i;
Observation: Time complexity of Union(i, j) as well as Same\_sets(i, j) is
governed by the time complexity of Find(i) and Find(j).
Question: What is time complexity of Find(i)?
Answer: depth of the node i in the tree containing i.
```

Time complexity of Find(*i*)

Time complexity of Find(i)

Parent	0	0	1	2	3	4	5	6	7	8	9	10
	0	1	2	3	4	5	6	7	8	9	10	11

Improving the time complexity of Find(i)

Heuristic 1: Union by size

Improving the Time complexity

Key idea: Change the union(i,j). While doing union(i,j), hook the smaller size tree to the root of the bigger size tree.

For this purpose, keep an array size[0,..,n-1]

size[i] = number of nodes in the tree containing i

(**if** *i* is a **root** and zero otherwise)

Efficient data structure for sets

Efficient data structure for sets

Parent	9	1	2	3	4	5	2	10	2	6	10	10
	0	1	2	3	4	5	6	7	8	9	10	11
size	0	1	5	1	1	1	0	0	0	0	3	0

Efficient data structure for sets

Parent	9	1	2	3	4	5	2	10	2	6	10	10
	0	1	2	3	4	5	6	7	8	9	10	11
size	0	1	5	1	1	1	0	0	0	0	3	0

Pseudocode for modified Union

```
Union(i, j)
         k \leftarrow \text{Find}(i);
         l \leftarrow Find(j);
         If(size(k) < size(l))
                l \leftarrow Parent(k);
               size(l) \leftarrow size(k) + size(l);
               size(k) \leftarrow 0;
         Else
                k \leftarrow Parent(l);
                size(k) \leftarrow size(k) + size(l);
                size(l) \leftarrow 0;
```

Question: How to show that Find(i) for any i will now take $O(\log n)$ time only? Answer: It suffices if we can show that Depth(i) is $O(\log n)$.

Can we infer <u>history</u> of a tree?

Answer: Can not be inferred with any certainty ⊗.

Can we infer <u>history</u> of a tree?

 \rightarrow (0 \rightarrow 9) was added before (9 \rightarrow 2).

Theorem: The edges on a **path** from node v to root were inserted in the order they appear on the **path**.

Let e_1 , e_2 , ..., e_t be the edges on the path from i to the **root.**

Let us visit the history. (how this tree came into being?).

Edges e_1 , e_2 , ..., e_t would have been added in the order:

 e_1

 e_2

 e_t

Let e_1 , e_2 , ..., e_t be the edges on the path from i to the **root.**

Consider the moment just before edge e_1 is inserted.

Let no. of elements in subtree T(i) at that moment be n_i .

We added edge $i \rightarrow t$ (and **not** $t \rightarrow i$).

- \rightarrow no. of elements in $T(t) \geq n_i$.
- \rightarrow After the edge $i \rightarrow t$ is inserted, no. of element in $T(t) \ge 2n_i$

Let e_1 , e_2 , ..., e_t be the edges on the path from i to the **root.**

Consider the moment just before edge e_2 is inserted.

no. of element in $T(t) \ge 2n_i$

We added edge $t \rightarrow k$ (and **not** $k \rightarrow t$).

- \rightarrow # elements in $T(k) \geq 2n_i$.
- ightharpoonup After the edge t
 ightharpoonup k is inserted, no. of element in $T(k) \geq 4n_i$

Let e_1 , e_2 , ..., e_t be the edges on the path from i to the **root.**

Arguing in a similar manner for edge e_3 , ..., $e_t \rightarrow$

elements in T(r) after insertion of $e_t \geq 2^t n_i$ Obviously $2^t n_i \leq n$

Theorem: $t \le \log_2 n$

Theorem: Given a collection of **n** singleton sets followed by a sequence of **union** and **find** operations, there is a data structure based that achieves **O**(log **n**) time per operation.

Question: Can we achieve even better bounds?

Answer: Yes.

A new heuristic for better time complexity

Heuristic 2: Path compression

This is how this heuristic got invented

- The time complexity of a Find(i) operation is proportional to the depth of the node
 i in its rooted tree.
- If the elements are stored closer to the root, faster will the Find() be and hence faster will be the overall algorithm.

The algorithm for **Union** and **Find** was used in some application of **data-bases**.

A clever programmer did the following modification to the code of Find(i).

While executing $\operatorname{Find}(i)$, we traverse the path from node i to the root. Let $v_1, v_2, ..., v_t$, be the nodes traversed with v_t being the root node. At the end of $\operatorname{Find}(i)$, if we update parent of each v_k , $1 \le k < t$, to v_t , we achieve a reduction in depth of many nodes. This modification increases the time complexity of $\operatorname{Find}(i)$ by at most a constant factor. But this little modification increased the overall speed of the application very significantly.

The heuristic is called **path compression**. It is shown pictorially on the following slide. It remained a <u>mystery for many years</u> to provide a theoretical explanation for its practical success.

Path compression during Find(i)

Pseudocode for the modified Find

```
Find(i)

If (Parent(i) = i) return i;

else

j \leftarrow \text{Find}(\text{Parent}(i));

Parent(i) \leftarrow j;

return j
```