```
8. The process of Machine Learning and using Overfitting to evaluate Linear Regression Model and Non-linear Regression . • •

    Please compare the following two Regression Models to see which one has more serious overfitting issue.
    Linear Regression Model 1

    Non-Linear Regression Model 2

    Suppose we collect a set of sample data and distribute the sample data by

                  Training phase: 50%
Validation phase: 25%
Test phase: 25%
```

	Training Phase					Validation Pha	se	Test Phase		
Real D	Data Set			Real Da	ıta Set			Real Data Set		
:	1	Model 1: Linear	Model 2: Non-	2		Model 1: Linear	Model 2: Non-	3	The better model (Model 1 or Model 2) selected from the Validation	
	of the	Regression	Linear Regression	25% o		Regression	Linear Regression	25% of the	Phase based on the analysis of overfitting will be used to calculate ŷ	
collete	ed data			colleted	l data			collcted data		
	 After calculating a1, b1, a2, b2 in Training Phase, the values are not changed with the new Real Data Sets in Validation Phase and Test Phase. Only ŷ values are changed with the new Real Data Sets. 									
x	у	ŷ=a1 + b1 * x	$\hat{y}=a2 + b2 * x^2$	x	у	ŷ=a1 + b1 * x	$\hat{y}=a2 + b2 * x^2$	x	$\hat{y}=a1+b1 * x$ or $\hat{y}=a2+b2 * x^2$	
1	1.8			1.5	1.7			1.4	J	
2	2.4			2.9	2.7			2.5		
3.3	2.3			3.7	2.5			3.6		
4.3	3.8			4.7	2.8			4.5		
5.3	5.3			5.1	5.5			5.4		
1.4	1.5			X	X	X	X	X	X	
		-								
2.5	2.2			X	X	X	X	X	X	
2.8	3.8			X	X	X	X	X	X	
4.1	4.0			X	X	X	X	X	X	

• Real Data Set 1 can be used to determine the formulas for Model 1: Linear Regression and Model 1: Linear Regression. That is, to determine the valuese of a1, b1, a2, and b2 in the following formulas:

- o After the formulas are determined, you can use the formulas to calculate the ŷ values in the following phases:
 - Training Phase
 Validation Phase
- $\circ \ \ \text{Note: The values of "x" in "$\hat{y}=a1+b1*x"$ and "$\hat{y}=a2+b2*x^2"$ are the same as the "x" list on the "$\underline{\text{Real Data Set}}".}$
- Optional: You may want to implement the following 3 programs:
 Program 1: To implement <u>Linear Regression Model 1</u>
 - Note:
 - This program is to use RealData Set 1 to determine a1 and b1 based on Model 1.
 - The program can be used to fill part of the blank spaces in above table.
 Program 2: Non-Linear Regression Model 2
 - Note:
 - This program is to use RealData Set 1 to determine a2 and b2 based on Model 2.
 - The program can be used to fill part of the blank spaces in above table.
 Program 3: Calculate <u>MSE</u>
- Adding the project to your portofolio
 a. Please use Google Slides to document the project
 - b. Please link your presentation on GitHub using this structure

- Machine Learning
 Model Selection
 + Use Overfitting To Evaluate Different Models
- Submit
 - a. The URLs of the Google Slides and GitHub web pages related to this project.
 b. A PDF file of your Google Slides
- References

 - Thangarani Prabhu TA, Summer 2018
 Use Overfitting to evaluate different Models
 - R and Linear/Non-Linear Regression Lena Lee, Fall 2015 . .

Answer:

Non-linear regression has more serious overfitting issue. Linear regression is less prone to overfitting than non-linear regression because it has a simpler model structure.

Training Phase

X and Y values are from Real **Data Set 1**, 50% of the collected data.

As shown in the table below, values for X^2 , Y^2 , X^4 , X^4 , X^4 , Y^4 , $Y^$

		T	raining Phas	e			
	X	Y	X^2	Y^2	XY	XXY	P*P
	1	1.8	1	3.24	1.8	1.8	1
	2	2.4	4	5.76	4.8	9.6	16
	3.3	2.3	10.89	5.29	7.59	25.047	118.5921
	4.3	3.8	18.49	14.44	16.34	70.262	341.8801
	5.3	5.3	28.09	28.09	28.09	148.877	789.0481
	1.4	1.5	1.96	2.25	2.1	2.94	3.8416
	2.5	2.2	6.25	4.84	5.5	13.75	39.0625
	2.8	3.8	7.84	14.44	10.64	29.792	61.4656
	4.1	4	16.81	16	16.4	67.24	282.5761
	5.1	5.4	26.01	29.16	27.54	140.454	676.5201
Sum	31.8	32.5	121.34	123.51	120.8	509.762	2329.9862

Then we will calculate Slope(b) and Intercept(a) values for both Model 1 (Linear Regression) and Model 2 (Non-Linear Regression).

Equations for Linear Regression

Slope(b1) =
$$(N\Sigma XY - (\Sigma X)(\Sigma Y)) / (N\Sigma X2 - (\Sigma X)2)$$

Intercept(a1) = $(\Sigma Y - b(\Sigma X)) / N$

Equations for Non-Linear Equation

Slope(b2) =
$$(N\Sigma PY - (\Sigma P)(\Sigma Y)) / (N\Sigma P2 - (\Sigma P)2)$$

Intercept(a2) = $(\Sigma Y - b(\Sigma P)) / N$
Where $P = X * X$

The values are as follows:

Intercept(a1) 0.505095 Slope(b) = $(N\Sigma XY - (\Sigma X)(\Sigma Y)) / (N\Sigma X)$ Intercept(a) = $(\Sigma Y - b(\Sigma X)) / N$ Slope(b2) 0.1345624 Intercept(a2) 1.617249 Slope(b) = $(N\Sigma PY - (\Sigma P)(\Sigma Y)) / (N\Sigma P)$ Intercept(a) = $(\Sigma Y - b(\Sigma P)) / N$		
Slope(b) = $(N\Sigma XY - (\Sigma X)(\Sigma Y)) / (N\Sigma X)$ ntercept(a) = $(\Sigma Y - b(\Sigma X)) / N$ Slope(b2) 0.1345624 Intercept(a2) 1.617249 Slope(b) = $(N\Sigma PY - (\Sigma P)(\Sigma Y)) / (N\Sigma P)$ ntercept(a) = $(\Sigma Y - b(\Sigma P)) / N$	Slope(b1)	0.8631777
Slope(b2) 0.1345624 Intercept(a2) 1.617249 Slope(b) = $(N\Sigma PY - (\Sigma P)(\Sigma Y)) / (N\Sigma P)$ intercept(a) = $(\Sigma Y - b(\Sigma P)) / N$	Intercept(a1)	0.505095
ntercept(a) = $(\Sigma Y - b(\Sigma X)) / N$ Slope(b2) 0.1345624 Intercept(a2) 1.617249 Slope(b) = $(N\Sigma PY - (\Sigma P)(\Sigma Y)) / (N\Sigma P)$ ntercept(a) = $(\Sigma Y - b(\Sigma P)) / N$		
ntercept(a) = $(\Sigma Y - b(\Sigma X)) / N$ Slope(b2) 0.1345624 Intercept(a2) 1.617249 Slope(b) = $(N\Sigma PY - (\Sigma P)(\Sigma Y)) / (N\Sigma P)$ ntercept(a) = $(\Sigma Y - b(\Sigma P)) / N$	Slope(b) = $(N\Sigma X)$	Υ - (ΣΧ)(ΣΥ)) /
Intercept(a2) 1.617249 Slope(b) = $(N\Sigma PY - (\Sigma P)(\Sigma Y)) / (N\Sigma P)$ intercept(a) = $(\Sigma Y - b(\Sigma P)) / N$	Intercept(a) = (Σ	Y - b(ΣX)) / N
Intercept(a2) 1.617249 Slope(b) = $(N\Sigma PY - (\Sigma P)(\Sigma Y)) / (N\Sigma P)$ intercept(a) = $(\Sigma Y - b(\Sigma P)) / N$		
Intercept(a2) 1.617249 Slope(b) = $(N\Sigma PY - (\Sigma P)(\Sigma Y)) / (N\Sigma P)$ intercept(a) = $(\Sigma Y - b(\Sigma P)) / N$		
Slope(b) = $(N\Sigma\underline{P}Y - (\Sigma\underline{P})(\Sigma Y)) / (N\Sigma\underline{P})$ ntercept(a) = $(\Sigma Y - b(\Sigma\underline{P})) / N$	Slope(b2)	0.1345624
ntercept(a) = $(\Sigma Y - b(\Sigma P)) / N$	Intercept(a2)	1.617249
ntercept(a) = $(\Sigma Y - b(\Sigma P)) / N$		
ntercept(a) = $(\Sigma Y - b(\Sigma P)) / N$	Slope(b) = $(N\Sigma F)$	Υ - (ΣΡ)(ΣΥ))
MICIE - A A	Where $\underline{P} = X * \lambda$	

^{*} The value of N is 10 for Training Phase.

By using the values calculated above, we can calculate \hat{y} values for both **Model 1** and **Model 2**.

$\hat{y}=a1+b1*x$	$\hat{y}=a2+b2*x^2$
1.36826	1.751809
2.23143	2.155489
3.353551	3.0826074
4.216721	4.1052634
5.079891	5.3970394
1.713528	1.8809866
2.663015	2.458249
2.921966	2.6721994
4.044087	3.8792026
4.907257	5.1171546

Validation Phase

X and Y values are from **Real Data Set 2**, 25% of the collected data.

As shown in the table below, values for X^2 , Y^2 , X^4 , X^4 , X^4 , Y^4 , $Y^$

		Val	idation Ph	iase			
	X	Y	X^2	Y^2	XY	XXY	P*P
	1.5	1.7	2.25	2.89	2.55	3.825	5.0625
	2.9	2.7	8.41	7.29	7.83	22.707	70.7281
	3.7	2.5	13.69	6.25	9.25	34.225	187.416
	4.7	2.8	22.09	7.84	13.16	61.852	487.968
	5.1	5.5	26.01	30.25	28.05	143.055	676.52
			0	0	0	0	0
			0	0	0	0	0
			0	0	0	0	0
			0	0	0	0	0
			0	0	0	0	0
Sum	17.9	15.2	72.45	54.52	60.84	265.664	1427.69

Then we will calculate Slope(b) and Intercept(a) values for both Model 1 (Linear Regression) and Model 2 (Non-Linear Regression).

Equations for Linear Regression

$$Slope(b1) = (N\Sigma XY - (\Sigma X)(\Sigma Y)) / (N\Sigma X2 - (\Sigma X)2)$$

Intercept(a1) =
$$(\Sigma Y - b(\Sigma X)) / N$$

Equations for Non-Linear Equation

Slope(b2) =
$$(N\Sigma PY - (\Sigma P)(\Sigma Y)) / (N\Sigma P2 - (\Sigma P)2)$$

Intercept(a2) =
$$(\Sigma Y - b(\Sigma P)) / N$$

Where
$$P = X * X$$

The values are as follows:

Slope(b1)	0.83229						
Intercept(a1)	0.0302						
Slope(b) = (NΣX	Υ - (ΣΧ)(ΣΥ)) / (NΣX ² -	$(\Sigma X)^2$				
Intercept(a) = (Σ	Y - b(ΣX)) /	N					
Slope(b2)	0.17229						
Intercept(a2)	0.54511						
Slope(b) = $(N\Sigma\underline{P}Y - (\Sigma\underline{P})(\Sigma Y)) / (N\Sigma\underline{P}^2 - (\Sigma\underline{P})^2)$							
Intercept(a) = $(\Sigma Y - b(\Sigma P)) / N$							
Where P = X * X	(

^{*} The value of N is 5 for Validation Phase.

By using the values calculated above, we can calculate \hat{y} values for both **Model 1** and **Model 2**.

$\hat{y}=a1+b1*x$	$\hat{y}=a2 + b2 * x^2$
1.799845	1.920009
3.008283	2.7488986
3.698819	3.4593754
4.561989	4.5896794
4.907257	5.1171546

Test Phase

X values are from Real **Data Set 3**, 25% of the collected data.

We will calculate mean squared error (MSE) for both **Model 1** and **Model 2** by using the following equation.

$$MSE = \frac{\sum (y_i - \hat{y}_i)^2}{n}$$

y - ŷ Model 1	y - ŷ Model 2	y - ŷ Model 1	y - ŷ Model 2
0.186399428	0.002322372	0.009969024	0.04840396
0.028415845	0.059785629	0.095038408	0.002391073
1.10996971	0.612474343	1.437166995	0.920401158
0.173656392	0.093185743	3.104605236	3.202952355
0.048447972	0.009416645		
0.045594207	0.145150789	0.351344264	0.1465706
0.21438289	0.066692546	4.998123927	4.320719146
0.770943705	1.271934193		
0.001943664	0.014592012		
0.242795664	0.08000152		
2.822549476	2.355555794		
0.282254948	0.235555579	0.999624785	0.864143829

Training Set Validation Set

Then we will decide which Model to choose by using the following equation.

max(Training_Set_MSE, Validation_Set_MSE) / min(Training_Set_MSE, Validation_Set_MSE)

Model 1

Training_Set_MSE = 0.28225

 $Validation_Set_MSE = 0.99962$

0.99962/0.28225 = 3.54

Model 2

Training_Set_MSE = 0.23555

 $Validation_Set_MSE = 0.86414$

0.86414/0.23555 = 3.668

According to the calculation, **Model 1** is the better model. So, we will use the values of b and a from **Model 1**.

Slope(b1) = 0.8631777

Intercept(a1) = 0.505095

Test Phase							
	Model 1						
X	$\hat{y} = a1 + b1 * x$						
1.4	1.71354378						
2.5	2.66303925						
3.6	3.61253472						
4.5	4.38939465						
5.4	5.16625458						

Final Answer:

y	ŷ=a1 + b1 * x	$\hat{y}=a2+b2*$ x^{2}	x	у	ŷ=a1 + b1 *	$\hat{y}=a2+b2*$ x^2	X	ŷ=a1 + b1 *
1.8	1.36826	1.751809	1.5	1.7	1.799845	1.920009	1.4	1.71354378
2.4	2.23143	2.155489	2.9	2.7	3.008283	2.7488986	2.5	2.66303925
2.3	3.353551	3.0826074	3.7	2.5	3.698819	3.4593754	3.6	3.61253472
3.8	4.216721	4.1052634	4.7	2.8	4.561989	4.5896794	4.5	4.38939465
5.3	5.079891	5.3970394	5.1	5.5	4.907257	5.1171546	5.4	5.16625458
1.5	1.713528	1.8809866	X	X	X	X	X	X
2.2	2.663015	2.458249	X	X	X	X	X	X
3.8	2.921966	2.6721994	X	X	X	X	X	X
4	4.044087	3.8792026	X	X	X	X	X	X
5.4	4.907257	5.1171546	X	X	X	X	X	X
	1.8 2.4 2.3 3.8 5.3 1.5 2.2 3.8 4	y * x 1.8 1.36826 2.4 2.23143 2.3 3.353551 3.8 4.216721 5.3 5.079891 1.5 1.713528 2.2 2.663015 3.8 2.921966 4 4.044087	1.8 1.36826 1.751809 2.4 2.23143 2.155489 2.3 3.353551 3.0826074 3.8 4.216721 4.1052634 5.3 5.079891 5.3970394 1.5 1.713528 1.8809866 2.2 2.663015 2.458249 3.8 2.921966 2.6721994 4 4.044087 3.8792026	y * x x² x² 1.8 1.36826 1.751809 1.5 2.4 2.23143 2.155489 2.9 2.3 3.353551 3.0826074 3.7 3.8 4.216721 4.1052634 4.7 5.3 5.079891 5.3970394 5.1 1.5 1.713528 1.8809866 X 2.2 2.663015 2.458249 X 3.8 2.921966 2.6721994 X 4 4.044087 3.8792026 X	y * x x² x² 1.8 1.36826 1.751809 1.5 1.7 2.4 2.23143 2.155489 2.9 2.7 2.3 3.353551 3.0826074 3.7 2.5 3.8 4.216721 4.1052634 4.7 2.8 5.3 5.079891 5.3970394 5.1 5.5 1.5 1.713528 1.8809866 X X 2.2 2.663015 2.458249 X X 3.8 2.921966 2.6721994 X X 4 4.044087 3.8792026 X X	Y * X X² Y X 1.8 1.36826 1.751809 1.5 1.7 1.799845 2.4 2.23143 2.155489 2.9 2.7 3.008283 2.3 3.353551 3.0826074 3.7 2.5 3.698819 3.8 4.216721 4.1052634 4.7 2.8 4.561989 5.3 5.079891 5.3970394 5.1 5.5 4.907257 1.5 1.713528 1.8809866 X X X 2.2 2.663015 2.458249 X X X 3.8 2.921966 2.6721994 X X X 4 4.044087 3.8792026 X X X	Y * X X² Y X X² 1.8 1.36826 1.751809 1.5 1.7 1.799845 1.920009 2.4 2.23143 2.155489 2.9 2.7 3.008283 2.7488986 2.3 3.353551 3.0826074 3.7 2.5 3.698819 3.4593754 3.8 4.216721 4.1052634 4.7 2.8 4.561989 4.5896794 5.3 5.079891 5.3970394 5.1 5.5 4.907257 5.1171546 1.5 1.713528 1.8809866 X X X X 2.2 2.663015 2.458249 X X X X 3.8 2.921966 2.6721994 X X X X 4 4.044087 3.8792026 X X X X	Y * X X² Y X X² X 1.8 1.36826 1.751809 1.5 1.7 1.799845 1.920009 1.4 2.4 2.23143 2.155489 2.9 2.7 3.008283 2.7488986 2.5 2.3 3.353551 3.0826074 3.7 2.5 3.698819 3.4593754 3.6 3.8 4.216721 4.1052634 4.7 2.8 4.561989 4.5896794 4.5 5.3 5.079891 5.3970394 5.1 5.5 4.907257 5.1171546 5.4 1.5 1.713528 1.8809866 X X X X X 2.2 2.663015 2.458249 X X X X X 3.8 2.921966 2.6721994 X X X X X 4 4.044087 3.8792026 X X X X X