PATENT ABSTRACTS OF JAPAN

(11)Publication number:

05-059309

(43)Date of publication of application: 09.03.1993

(51)Int.Cl.

CO9D 5/20 C09D133/06

(21)Application number: 03-219476

(71)Applicant: NIPPON PAINT CO LTD

(22) Date of filing:

30.08.1991

(72)Inventor: SAITO KOICHI

MINO YASUTAKE

SHIMODA EIJI

(54) FILM-FORMING MATERIAL FOR PROTECTING COATING SOLUBLE IN ALKALINE WATER (57) Abstract:

PURPOSE: To provide a film-forming material for a protective coating soluble in alkaline water, composed of a copolymer containing specific $CI_2=CF$ C N $C-CI_2$ C CH_3 structural units, exhibiting excellent dryability in coating, having high coating film strength to enable the protection of a material from dust and acid rain and removable with alkaline water.

CONSTITUTION: The objective film-forming material for a protective coating soluble in alkaline water is composed of a copolymer having a number-average molecular weight of 7,000-25,000 and produced by copolymerizing (A) preferably 65-93wt.% of an α,β-unsaturated

CH2=CHC-NCH3 11

monoethylenic monomer (preferably n-butyl acrylate or methyl

methacrylate), (B) preferably 7-20wt.% of an α,β -- monoethylenic

unsaturated carboxylic acid monomer [preferably (meth)acrylic acid] and preferably 0.2-15wt.% of an amphiphatic monomer such as

diacetone acrylamide of formula I, N,N-dimethylacrylamide of formula

II and acryloyl morpholine of formula III. The film-forming material is neutralized to pH of ≥6 with ammonia, triethylamine, etc., before use.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

Kind of final disposal of application other than the examiner's decision of rejection or application

扯

searching PAJ

converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of

rejection]

[Date of requesting appeal against examiner's

decision of rejection]

[Date of extinction of right]

(19)日本国特許庁 (JP) (12) 公開特許公報 (A)

FΙ

(11)特許出願公開番号

特開平5-59309

(43)公開日 平成5年(1993)3月9日

(51) Int.Cl.5

識別記号

庁内整理番号

技術表示箇所

C 0 9 D 5/20 133/06 PQT PFY

7211-4 J

7242-4 J

審査請求 未請求 請求項の数1(全 7 頁)

(21)出願番号 (71)出願人 000230054 特願平3-219476 日本ペイント株式会社 (22)出願日 平成3年(1991)8月30日 大阪府大阪市北区大淀北2丁目1番2号 (72)発明者 斉藤 宏一 大阪府寝屋川市池田中町19番17号 日本ペ イント株式会社内 (72)発明者 三野 保武 大阪府寝屋川市池田中町19番17号 日本ペ イント株式会社内

> (72) 発明者 下田 英二 大阪府寝屋川市池田中町19番17号 日本ペ

> > イント株式会社内

(74)代理人 弁理士 市川 恒彦 (外2名)

(54) 【発明の名称】 アルカリ水溶性保護塗料用塗膜形成体

(57)【要約】

【構成】 α, β-不飽和モノエチレン性モノマーと、 α, β-モノエチレン性不飽和カルボン酸モノマーと、 両親媒性モノマーとの構造単位を含み、分子量が700 0~25000の共重合体からなるアルカリ水溶性保護 **塗料用塗膜形成体。**

【効果】 この塗膜形成体によれば、塗布時の乾燥性 と、粉塵や酸性雨等から製品を良好に保護し得る塗膜強 度と、アルカリ水による除去性とを同時に具備したアル カリ水溶性保護塗料が実現できる。

【特許請求の範囲】

【請求項1】 α 、 β – モノエチレン性モノマーと、 α , β-モノエチレン性不飽和カルボン酸モノマーと、両親 媒性モノマーとの構造単位を含み、

数平均分子量が7000~25000の共重合体からな る、アルカリ水溶性保護塗料用塗膜形成体。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、塗膜形成体、特に、ア ルカリ水溶性保護塗料用塗膜形成体に関する。

[0002]

【従来の技術】自動車や各種機械類等の製品又は部品等 に対し、輸送時や野外放置の際に塗膜が劣化したり傷付 いたりしたりするのを防止するため、アルカリ水溶性の 保護塗料を一時的に塗装する手法が採用されている。こ の種の保護方法が実施された製品や部品は、販売又は使 用する際に、アルカリ水を用いて保護塗膜が除去され る。

【0003】特開昭62-253673号には、一般的 保護塗料は、メタクリル酸アルキルエステルと、α,β $-モノエチレン性不飽和カルポン酸と、<math>\alpha$, β -モノエチレン性単量体とを所定の割合で含む単量体混合物を乳 化重合することにより得られた水性分散体を塗膜形成体 として含んでいる。

[0004]

【発明が解決しようとする課題】理想的なアルカリ水溶 性保護塗料は、塗布時の乾燥性と、鉄や砂等の粉塵の付 着や酸性雨から製品を保護し得る強膜強度と、アルカリ 記従来のアルカリ水溶性保護塗料では、これらの特性を 同時に実現するのは困難である。例えば、良好な乾燥性 を実現するためには、酸価が小さい塗膜形成体を用いる 必要があるが、この場合はアルカリ水による除去性が低 下してしまう。また、塗膜強度を高めるためには、ガラ ス転移点が高い強膜形成体を用いる必要があるが、この 場合もアルカリ水による除去性が低下してしまう。逆 に、酸価が大きくかつガラス転移点が低い塗膜形成体を 用いると、アルカリ水による除去性は向上するが、乾燥 性と嫩膜強度が低下してしまう。

【0005】本発明の目的は、塗布時の乾燥性と、粉塵 の付着や酸性雨から製品を良好に保護し得る嫩膜強度 と、アルカリ水による除去性とを同時に具備したアルカ リ水溶性保護塗料を実現するための塗膜形成体を提供す ることにある。

[0006]

【課題を解決するための手段】本発明のアルカリ水溶性 保護強料用強膜形成体は、α、β-不飽和モノエチレン 性モノマーと、α, β-モノエチレン性不飽和カルポン 酸モノマーと、両親媒性モノマーとの構造単位を含み、 50 クロトン酸等の一塩基酸、イタコン酸,フマール酸,マ

数平均分子量が7000~25000の共重合体からな

[0007] *****

るものである。

本発明のアルカリ水溶性保護塗料用塗膜形成体は、α, β -不飽和モノエチレン性モノマーと、 α 、 β -モノエ チレン性不飽和カルボン酸モノマーと、両親媒性モノマ ーとからなる共重合体である。

2

α, β-不飽和モノエチレン性モノマー

本発明で用いられる α 、 β -不飽和モノエチレン性モノ 10 マーとしては、(メタ) アクリル酸アルキルエステル、 芳香族ビニル化合物、複素環式ビニル化合物、ビニルエ ステル化合物、ハロゲン化ビニル化合物、αーオレフィ ン化合物、その他極性基を有する単量体が例示できる。 【0008】ここで、(メタ)アクリル酸アルキルエス テルとしては、アクリル酸メチル、メタクリル酸メチ ル、アクリル酸エチル、メタクリル酸エチル、アクリル 酸n-プロピル,メタクリル酸n-プロピル,アクリル 酸主ープロピル、メタクリル酸主ープロピル、アクリル 酸nープチル、メタクリル酸nープチル、アクリル酸1 なアルカリ水溶性保護塗料組成物が示されている。この 20 -ブチル,メタクリル酸 I -ブチル,アクリル酸 t -ブ チル,メタクリル酸 t -プチル等の炭素数が1~4のア ルキル基のアクリル酸アルキルエステル又はメタクリル 酸アルキルエステル、アクリル酸2-エチルヘキシル、 メタクリル酸2-エチルヘキシル、アクリル酸ラウリ ル、メタクリル酸ラウリル等の炭素数が5以上のアルキ ル基のアクリル酸エステル又はメタクリル酸エステルが 例示できる。芳香族ピニル化合物としては、スチレン、 α-メチルスチレン等が例示できる。複素環式ピニル化 合物としては、ビニルピロリドンが例示できる。ビニル 水による除去性とを兼備したものである。ところが、前 30 エステル化合物としては、酢酸ビニル、プロピオン酸ビ ニル、バーサチック酸ビニルが例示できる。ハロゲン化 ビニル化合物としては、塩化ビニル、塩化ビニリデン、 フッ化ピニリデンが例示できる。 α-オレフィン化合物 としては、エチレン、プロピレン、プチレン等が例示で きる。その他の極性基を有する単量体としては、アクリ ルアミド、メタアクリルアミド、アクリロニトリル、メ **タアクリロニトリル、アクリル酸β-ヒドロキシエチ** ル、メタクリル酸β-ヒドロキシエチル、アクリル酸グ リシジル、メタクリル酸グリシジル、アリルグリシジル 40 エーテル等が例示できる。

> [0009]上述の α , β -不飽和モノエチレン性モノ マーは、それぞれ単独で用いられても良いし、2種以上 併用されても良い。なお、本発明では、これらのα, β不飽和モノエチレン性モノマーのうち、特にアクリル 酸nープチル及びメタクリル酸メチルを用いるのが好ま

> α, β-モノチエレン性不飽和力ルポン酸モノマー 本発明で用いられるα, β-モノエチレン性不飽和カル ポン酸モノマーとしては、アクリル酸、メタクリル酸、

--58-

レイン酸等の二塩基酸が例示できる。これらの α , β -モノエチレン性不飽和カルボン酸モノマーは、それぞれ 単独で用いられても良いし、2種以上併用されても良 43

【0010】なお、前記例示のうち、本発明において特 に好ましいのは、アクリル酸又はメタクリル酸である。

両親媒性モノマー

【0012】両親媒性モノマーとしては、その他に次の 一般式(2)及び(3)でそれぞれ示されるN. N-ジ メチルアクリルアミド及びアクリロイルモルホリンが例 示できる。これらの両親媒性モノマーは、それぞれ単独 で用いられてもよいし、2種以上併用されてもよい。

[0013]

【化2】

$$CH_2 = CHC - N CH_3 \qquad \dots (2)$$

$$CH_2 = CHC - N O \qquad ...(3)$$

【0014】本発明の塗膜形成体は、上述の両親媒性モ ノマーを構造単位として含むため、乾燥性、塗膜強度及 びアルカリ水による除去性がいずれも良好である。本発 明の塗膜形成体が、両親媒性モノマーを含むことにより 上述の効果を発揮する機構は明確ではないが、両親媒性 モノマーは適度な親水性と、高い水蒸気透過性とを有 し、さらに α , β - 不飽和モノエチレン性モノマー及び α , β -モノエチレン性不飽和力ルポン酸モノマーのい ずれとも良好に溶解するため均一な共重合物を与えるた 40 めと思われる。

共重合体

本発明の塗膜形成体は、α、β-不飽和モノエチレン性 モノマーが65~93重量% (より好ましくは73~8 8 重量%)、 α 、 β -モノエチレン性不飽和カルポン酸 モノマーが7~20重量% (より好ましくは10~18 重量%)、両親媒性モノマーが0.2~15重量%(よ り好ましくは1~10重量%) 含まれるモノマー混合物 を共重合したものが好ましい。 α , β -不飽和モノエチ レン性モノマーが93重量%を超えかつ α , β -モノエ 50 る。アルカリ水溶性保護塗料を作成するための溶剤は、

*本発明で用いられる両親媒性モノマーは、親水性媒体に も疎水性媒体にも良好な溶解性を有するモノマーであ る。両親媒性モノマーとしては、例えば次の一般式 (1) で示されるジアセトンアクリルアミドが挙げられ る。

[0011] (化1)

$$CH_3$$
 $H_2 = CH - C - N - C - CH_2 - C - CH_3 \cdots (1)$
 H_1
 CH_3
 CH_4
 CH_5
 $CH_$

チレン性不飽和カルポン酸モノマーが7重量%未満の場 合は、アルカリ水による除去性が良好な塗膜が得にく い。逆に、 α 、 β - 不飽和モノエチレン性モノマーが 6 5 重量%未満でありかつα, β-モノエチレン性不飽和 カルボン酸モノマーが20重量%を超える場合は、塗膜 の親水性が高くなり過ぎ、耐水性の良好な塗膜が得にく 20 い。両親媒性モノマーが15重量%を超える場合は、乾 燥性が良好な途膜が得にくく、また塗膜の耐酸性雨性が 低下する。逆に0.2重量%未満の場合は両親媒性モノ マーを共重合させたことによる効果が得られない。

【0015】また、本発明の塗膜形成体は、数平均分子 量が7000~25000の共重合体である。分子量が 7000未満の場合は、必要な塗膜強度が得られにく い。逆に、分子量が25000を超える場合は、塗膜の 除去性が低下する。なお、本発明でいう分子量は、ゲル パーミエーションクロマトグラフィー (GPC) により 30 測定した値である。

製造方法

本発明の塗膜形成体は、上述の各モノマー成分を上述の 割合で混合し、これから乳化重合や溶液重合等の通常の 重合方法により製造できる。

【0016】乳化重合により製造する場合は、乳化剤と して一般のアニオン性乳化剤が用いられる。また、重合 開始剤としては、過硫酸塩等の水溶性過酸化物やアゾア ミド系化合物等の水溶性アソ化合物が用いられる。一 方、溶液重合による場合は、重合開始剤としてパーオキ シカルボン酸アルキル等の油溶性過酸化物やアゾピスイ ソプチロニトリル等の油溶性アゾ化合物が用いられる。

使用方法

本発明の塗膜形成体は、必要な溶剤及び添加剤と混合す るとアルカリ水溶性保護塗料となる。

【0017】本発明の塗膜形成体は、使用に際して中和 され、pHが6以上に設定される。pHの調整では、例 えばアンモニアやトリエチルアミン等の揮発性水溶性ア ミンが用いられる。ここでは、共重合体中のカルポキシ ル基が水溶性アミンにより中和され、pHが調整され

乳化重合法により共重合体を製造した場合は強膜形成体 がラテックスとして得られるため、必ずしも必要ではな い。但し、塗膜の乾燥性を向上させたり、添加剤の溶解 性を高めるために、ラテックスに対して1~50重量% 使用するのが好ましい。溶剤は、アルカリ水溶性保護塗 料による保護が施される被保護物の塗膜等との関係を考 慮して、種々の溶剤が適宜選択されて用いられ得る。な お、溶剤として好ましいのは、イソプロピルアルコー ル、メトキシプロパノール、エトキシプロパノール、ブ チルセロソルプ等のアルコールやグリコールエーテル、 メチルセロソルプアセテート等のエステル類、メチルイ ソプチルケトン等のケトン類、キシレン等の芳香族炭化 水素である。

【0018】溶液重合法により上述の共重合体を製造し た場合には、媒体として溶剤が必要である。溶剤として は、乳化重合法による場合と同様の溶剤が用いられる。 添加剤としては、例えば界面活性剤、紫外線吸収剤、腐 食防止剤、酸化防止剤、消泡剤等が例示できる。特に、 界面活性剤及び紫外線吸収剤を添加するのが好ましい。 界面活性剤を添加すると、塗料の濡れ性が向上するた 20 め、作業性が向上し、また均一な塗膜が形成し易い。界 面活性剤としては、塗料用の一般的なものが用いられる が、特に、有機フッ素系化合物の界面活性剤を用いるの が好ましい。一方、紫外線吸収剤は、太陽光線に含まれ る紫外線を吸収するため、保護塗膜の劣化を防止して保 護塗膜の除去性が低下するのを防止できる。紫外線吸収 剤としては、2-ヒドロキシベンゾフェノン系、ベンゾ トリアゾール系、サリチル酸エステル系等の一般的なも のが用いられる。

【0019】本発明の塗膜形成体を含むアルカリ水溶性 30 保護塗料は、例えば自動車や各種機器類の塗装を保護す るために、これらの製品に塗布される。この保護塗料 は、塗膜形成体が両親媒性モノマーを構造単位として含 んでいるため、乾燥性が良好であり、作業性が良好であ る。また、この保護塗料による塗膜は、粉塵の付着や酸 性雨に対しても充分に製品を保護し得る塗膜強度を有す る。さらに、この塗膜は、製品の販売時や使用時に、ア ルカリ水により容易に除去できる。なお、アルカリ水と しては、例えば1%のモノエタノールアミン水溶液が用 いられる。

[0020]

【実施例】

<u> 実施例1, 2, 4, 6、比較例1~3, 5</u>

攪拌器、2つの滴下漏斗、温度計、窒素導入管及び還流 冷却器を備えたフラスコを用意し、そのフラスコ中に純 水134.8部とアニオン性乳化剤としてのエレミノー ルMON-2 (商品名、三洋化成工業 (株) 製) 0. 4 部とを仕込んだ。滴下漏斗には、純水40部と過硫酸ア ンモニウム 0. 3 部とからなる重合開始剤水溶液と、表 1及び表2に示す組成のモノマー組成物とラウリルメル 50 った。

カプタン1部と純水80部と0.6部のエレミノールM ON-2とからなるディスパーによるプレ乳化物とを別 々に仕込んだ。

【0021】フラスコ内の空気を窒素導入管からの窒素 ガスにより置換してフラスコ内を80℃に加熱し、重合 開始剤水溶液を140分間、プレ乳化物を120分間か けて各滴下漏斗から滴下した。滴下終了後、フラスコ内 を80℃でさらに1時間保ち、乳化重合反応を完了させ た。フラスコ中の乳化重合体を希アンモニア水を用いて 10 中和しながら冷却し、濃度が20%の樹脂水溶液を得 た。この樹脂水溶液では、樹脂の分子量、pH、酸価 (理論値) 及びガラス転移温度 (理論値) は表1及び表 2の通りであった。

【0022】次に、得られた樹脂水溶液にプチルセルソ ルプ48部と、紫外線吸収剤3部と、フッ素系界面滑性 剤0.5部とを添加し、さらにフォードカップNo.4 で20秒になるよう純水を用いて粘度調整を行なって塗 料組成物を得た。

実施例3,5、比較例4,6

攪拌機、2つの滴下漏斗、温度計、窒素導入管及び環流 冷却器を備えたフラスコを用意し、そのフラスコ内にプ チルセロソルプ36部を仕込んだ。滴下漏斗には、プチ ルセロソルブ8部とtertーブチルペルオキシー2-エチルヘキサノエート1.5部とからなる重合開始剤溶 液と、表1及び表2に示す組成のモノマー組成物とを別 々に仕込んだ。

【0023】フラスコ内の空気を窒素導入管からの空気 により置換した後、フラスコ内を115℃に加熱し、各 滴下漏斗から重合開始剤溶液とモノマー組成物とをそれ ぞれ180分かけて滴下した。フラスコ内を115℃に 30分間保った後、プチルセロソルプ4部とtert-プチルパーオキシ-2-エチルヘキサノエート0.3部 とからなる溶液を30分かけてさらに滴下した。そし て、フラスコ内の温度をさらに90分間115℃に保っ て重合反応を完了した。

【0024】重合完了後、フラスコ内を80℃まで冷却 し、これに紫外線吸収剤3部及びフッ素系界面活性剤 0. 5部を添加した。さらに、希アンモニア水を加えて 中和しながら室温まで冷却し、濃度が20%の樹脂水溶 液を得た。この樹脂水溶液では、樹脂の分子量、pH、 酸価 (理論値) 及びガラス転移温度 (理論値) は、表1 及び表2の通りであった。

【0025】得られた樹脂水溶液に純水を加えて粘度が フォードカップNo. 4で20秒となるよう粘度調整を 行い、塗料組成物を得た。

各実施例及び各比較例で得られた塗料組成物について、 乾燥性、耐酸性雨性、耐鉄粉展着性、アルカリ水除去性 を試験した。試験は、テスト板を作成して次のように行

(テスト板の作成) 冷延鋼板をりん酸亜鉛 (サーフダインSD2500) で処理し、それにパワートップU-53による電着塗装と、オルガTO-4820による中塗り塗装と、オルガTO-640プラックによる上塗り塗装とを施し、テスト板を作成した。このテスト板に、乾燥膜厚が $10\pm3\mu$ mになるよう各実施例及び各比較例で得られた塗料組成物をスプレー塗装した。

【0026】なお、上述の処理剤及び塗料は、いずれも日本ペイント(株)製である。

(乾燥性) スプレー塗装後、テスト板を60℃の無風条 10 件下で乾燥した。そして、テスト板に純水を2mlスポットし、風乾後の保護塗膜に膨れ、皺、割れ等の変化が 生じなくなるのに必要な乾燥時間を調べた。評価の基準 は次の通りである。

【0027】 〇:20分以内。

〇:30分以内。

△:40分以内。

×:40分以上。

(耐酸性雨性)スプレー塗装後、テスト板を60℃、風速1mの条件で10分間乾燥し、pH2の硫酸を0.1 20mlスポットした。そして、テスト板を80℃に加熱して乾燥した後、1%モノエタノールアミン水溶液を用いて保護塗膜を除去し、テスト板の状態を観察した。評価の基準は次の通りである。

【0028】◎:変化なし。

〇:スポットの回りに若干の汚染。

△:スポット跡が明確に残る。

×:スポット部分の全面にスポット跡が明確に残る。

(耐鉄粉展着性)スプレー塗装後耐酸性雨性試験の場合と同様に乾燥したテスト板の全面に、200メッシュの鉄粉をふりかけた。そして、テスト板を水平に保持したまま80℃で1時間静置し、刷毛を用いて鉄粉を払い落とした。そのテスト板を48時間ソルトスプレーにかけた後、保護塗膜を1%モノエタノールアミン水溶液を用いて除去し、錆の展着程度を測定した。評価の基準は次の通りである。

0 【0029】◎: 錆の発生が認められない。

〇:展着面積が1%以下。

△:展着面積が10%以下。

×:展着面積が10%以上。

(アルカリ水除去性) スプレー塗装後耐酸性雨試験の場合と同様に乾燥したテスト板を、夏期の沖縄において3か月間暴露した。そして、テスト板に1%のモノエタノールアミン水溶液を吹きつけた後、流水で洗い流したときの保護塗膜の残存量を測定した。評価の基準は次の通りである。

20 【0030】◎:残存しない。

○:僅かに点状に残存するが、再度モノエタノールアミン水溶液をかけると溶解する。

△:保護塗膜がスポット状に残存し、再度モノエタノールアミン水溶液をかけても溶解しない。

【0031】×:ほとんど溶解せずに残存する。

[0032]

【表1】

10

表1

実 施 例		1.	2	3	4	5	в
モノマー組成%	メタクリル酸メチル アクリル酸nプチル メタクリル酸 アクリル酸 ラアセトンアタリムアミド アクリルアミド メタクリル 酸2-ヒトロキシエチル	45. 7 36. 4 16. 9 - 1. 0	4 2. 8 3 7. 0 1 5. 4 5. 0	48.8 32.0 	4 0. 1 3 4. 6 1 5. 3 1 0. 0	45. 1 31. 3 - 11. 8 12. 0	4 3. 5 3 4. 8 1 6. 9 - 5. 0
重合方法		乳化重合	乳化重合	溶液重合	乳化重合	溶液重合	乳化重合
樹	数平均分子量(×10³)	1 2	1 2	1 2	1 2	1 2	1 2
脂	рH	7. 5	7. 5	7. 5	7. 5	7. 5	7. 5
特	酸価(計算値)	1 1 0	100	9 5	100	9 0	1 1 0
性	ガラス転移温度 ℃	3 3	3 0	3 0	3 3	3 0	3 5
鳌	乾燥性	0	0	0	0	0	0
料	耐酸性兩性	0	0	0	0	0	0
性	耐鉄粉展着性	0	0	0	. ©	0	0
能	アルカリ水除去性	0	0	0	0	0	©

*:重量%

[0033]

【表2】

表 2

	比 較 例	1	2	3	4	5	в
モノマー組成%	メタクリル酸メチル アクリル酸ロプチル メタクリル酸 アクリル酸 ブナトンアクリルアミド アクリルアミド ナクリル 酸2-ヒドロキンエチル	4 6. 8 3 7. 9 1 5. 3	3 1. 7 3 2. 9 1 5. 4 2 0. 0	41. 0 38. 6 15. 4 - - 5. 0	4 0. 6 3 4. 1 1 5. 3 — — 1 0. 0	53.5 31.9 4.6 - 10.0	4 0. 6 2 8. 7 2 5. 7 5. 0
重合方法		乳化重合	乳化重合	乳化重合	溶液重合	乳化重合	溶液重合
樹	数平均分子量(×10°)	1 2	1 2	1 2	1 2	1 2	1 2
脂	рН	7. 5	7. 5	7. 5	7. 5	7. 5	7. 5
特	酸価(計算値)	100	100	100	100	3 0	200
性	ガラス転移温度 ℃	3 0	3 3	3 0	3 3	3 3	3 5
塗	乾燥性	0	Δ	Δ	Δ	0	×
料	耐酸性兩性	0	Δ	Δ	Δ	0	0
性	耐鉄粉展着性	Δ	0	0	0_	0	0
能	アルカリ水除去性	0	0	×	0	×	◎塗膜 肌荒れ

*:重量%

[0034]

【発明の効果】本発明のアルカリ水溶性保護塗料用塗膜 形成体は、上述の構造単位を含む共重合体から構成され ている。このため、本発明によれば、塗布時の乾燥性 30

と、粉塵の付着や酸性雨から製品を良好に保護し得る塗 膜強度と、アルカリ水による除去性とを同時に具備した アルカリ水溶性保護塗料が実現できる。