Master Thesis:

Offer Networks: Simulation and Dynamics

Zar Goertzel

August 18, 2017

What is an Offer Network?

• In the literature: "Barter Exchange Networks".

What is an Offer Network?

In the literature: "Barter Exchange Networks".

Basic idea:

- Users exchange services and goods.
- Allow (n > 2)-user exchanges (also gifts and chains).
- Use optimization algorithms to suggest exchanges (matches).

What is an Offer Network?

In the literature: "Barter Exchange Networks".

Basic idea:

- Users exchange services and goods.
- Allow (n > 2)-user exchanges (also gifts and chains).
- Use optimization algorithms to suggest exchanges (matches).

But why? Isn't money more efficient?

Answer 1: sometimes it's unethical.

- Only one country allows organ sale.
- Organ sale is outlawed. It's a repugnant transaction.

Answer 1: sometimes it's unethical.

Only one country allows organ sale.

Organ sale is outlawed. It's a repugnant transaction.

- Result: Kidney Exchange Network boom!
 - First US kidney exchange: 2000.
 - Now: 140+ transplant center kidney exchange network with biweekly matching.

Answer 2: National Odd Shoe Exchange.

• Otherwise you would pay double.

Answer 3: Ambiguous value:

- Home exchange:
 - Market value doesn't have to match up perfectly to subjectively satisfy homeowners.

Answer 3: Ambiguous value:

- Home exchange:
 - Market value doesn't have to match up perfectly to subjectively satisfy homeowners.
- Data exchange:
 - What is value of data anyway?
 - May want framework for carefully restricted access

9/81

Answer 4: Negligible value and scale:

- Book exchange.
- Homework help.
- Proofreading (of blogs or dating profiles not just school essays).
- (Academic) book review exchange:
 - University professors would charge a high fee, unless the favor is returned.
- ++ I-YOU vs I-IT interactions

Answer 5: Nothing.

- Works pretty well as market mechanism.
- Don't need "coincidence of wants".
 - Bookmooch uses credit sytem
- Recommender systems are still useful.
- Exchange recommendation also useful?
 - Elimination/reduction of middle-men.

• Mostly kidney exchange research:

Mostly kidney exchange research:

- 4 types of kidneys.
- Only interest in optimal solutions with small exchanges (≤ 3) :
 - NP-Hard and APX-Complete.
 - Unless exchange-size unbounded with only edge-weight constraints.
- Usually Erdos-Renyi graph models

Mostly kidney exchange research:

- Usually Erdos-Renyi graph models
- Domain-specific techniques used to improve Integer Linear Programming speed.

Mostly kidney exchange research:

- Recently: PTIME approximation algorithm achieves 90 98%.
- Recently: Model incorportating rejection probability leads to 15%+ increase in transplants.
- Recently: Model keeping some kidneys for future use performs better (less *myopic*).
 - Latent potential for matches in graph is limited.
 Preserving useful parts helps.

 Decentralized Offer Network: can selfishly exchanging agents pull off MacDonald's "paper clip for house" exchange chain?

 Decentralized Offer Network: can selfishly exchanging agents pull off MacDonald's "paper clip for house" exchange chain? – Yes!

- Decentralized Offer Network: can selfishly exchanging agents pull off MacDonald's "paper clip for house" exchange chain? – Yes!
- Greedy matching is best in Erdos-Renyi model.
 - Gift chains are better.

- Abbassi test greedy cycle cover and two approximation algorithms on scale-free graph!
- Follow up with a comparison to credit-based system (works much better).
- Rappaz develop recommender system for barter exchange websites.

Extend Abbassi's experiments, and include match acceptance probability.

- Extend Abbassi's experiments, and include match acceptance probability.
- Is greedy matching frequency also best in scale-free graphs?
- 3 Is there a steady-state size of the Offer Network graph?

- Extend Abbassi's experiments, and include match acceptance probability.
- Is greedy matching frequency also best in scale-free graphs?
- Is there a steady-state size of the Offer Network graph?
 - How long do users wait?
 - How many users are matched?
- Ooes matching marginalize unpopular tasks?

- Extend Abbassi's experiments, and include match acceptance probability.
- Is greedy matching frequency also best in scale-free graphs?
- Is there a steady-state size of the Offer Network graph?
 - How long do users wait?
 - How many users are matched?
- Ooes matching marginalize unpopular tasks?
- Solution
 Alternative to rejecting whole match if one user rejects?

Alternative to rejecting whole match if some users reject?
 Very big exchange in "optimal matching" without size constraints:

ORpair: (offer, request) pair

User 1 offers task a in exchange for requested task b:

ORpair: (offer, request) pair

A match between User 1 and User 2's ORpairs:

Scale-Free Graph (RB1) with 100 ORpairs

Erdos-Renyi (p = 0.04) with 100 ORpairs

Experimental Set-up: Data

- Find distribution of offers and requests in Ratebeer and Bookmooch datasets provided.
- Generate scale-free graphs with similar popularity distributions.
- I use 3 such graphs.

Scale-Free Graph (RB1) with 10,000 ORpairs

Experimental Set-up

- Time measured by new ORpairs
- \bullet Every n_{match} ORpairs, run a match algorithm
 - Assume uniform acceptance probability p.
- Add N_{initial} ORpairs and run matching algorithm to initialize.
- Run test until N_{end} ORpairs added.

31/81

Experimental Set-up

- Time measured by new ORpairs
- Every n_{match} ORpairs, run a match algorithm
 - Assume uniform acceptance probability p.
- Add N_{initial} ORpairs and run matching algorithm to initialize.
- Run test until N_{end} ORpairs added.
- Use same series of ORpair updates for each test run in an experiment.

Matching Algorithms

- Maximum 2-way matching: $\mathcal{O}(|2\text{-cycle}|^3)$. Performs horribly.
- Maximum Edge-Weight Matching (MAX). $\mathcal{O}(|\mathsf{ORpair}|^3)$. Optimal if users always accept matches. I use Munkres algorithm implemented in Cython.
- Greedy Shortest Cycle (GSC). $\mathcal{O}((|ORpairs| + |tasks| \ln |tasks|)|ORpairs|)$. Good for p < 1?
- Dynamic Shortest Cycle (DYN). GSC only on new ORpairs.

Matching Algorithms

- Maximum 2-way matching: $\mathcal{O}(|2\text{-cycle}|^3)$. Performs horribly.
- Maximum Edge-Weight Matching (MAX). $\mathcal{O}(|\mathsf{ORpair}|^3)$. Optimal if users always accept matches. Uses $|\mathsf{ORpair}|^2$ matrix.
- Greedy Shortest Cycle (GSC). $\mathcal{O}((|ORpairs| + |tasks| \ln |tasks|)|ORpairs|)$. Good for p < 1?
 - Abbassi: use GSC many times.
 - Jia: use GSC to seed local search.
 - Jia: use product of degree (PoD) order. Bias toward unpopular tasks!

Neo4j Query Implementation of GSC

```
MATCH (o:ORnode)-[reqR:Request]->(req:Task),
p = shortestPath((req)-[link:Offer|:Request*]->(o))
WHERE NOT exists(reqR.matched) AND
ALL (r IN relationships(p) WHERE NOT exists(r.matched
FOREACH (r IN link | SET r.matched = TRUE)
SET regR.matched = TRUE
WITH FILTER(ornode IN nodes(p) WHERE ornode: ORnode)
UNWIND p as off
MATCH (off)<-[]-()<-[]-(req:ORnode)
WHERE req IN p AND off.offer = req.request
CREATE (off)-[:Match]->(req)
```

Run Time - MAX

Max run from 100 to 5000 ORpairs. Others 15,000. $n_{match} = 100$.

Run Time

Run from 100 to 15,000 ORpairs. $n_{match} = 20$.

Run Time - GSC-PoD

Run from 100 to 15,000 ORpairs. $n_{match} = 100$.

Match Frequency Experiment: p = 1

Run from 100 to 3003 ORpairs.

$N_{initial}$ Experiment: p = 1

Run for 3000 steps.

Long Run Experiment: p = 1

Run from 100 to 35,00 ORpairs. $n_{match} = 20$.

- Matching algorithms are all comparable for p = 1.
- Does MAX's performance deteriorate as expected?

Run from 400 to 3400 (as MAX is slow)

- Matching algorithms are all comparable for p = 1.
- Does MAX's performance deteriorate as expected? Yes.
- What about he other algorithms?
 - Wait time increases as p falls.
 - Accepted match size slowly falls.
 - Unpopular tasks marginalized. PoD less so.
 - Total matched ORpairs decrseases drastically.**

Run from 10,000 to 15,000

Zar Goertzel

Two Sloppy/Mistaken Assumptions

- ① During initialization, $N_{initial}$ nodes are added and then a matching algorithm is run once.
 - Problem: many more matched at p = 0.9 than p = 0.3. Thus there is more potential for matches left.
 - Measuring the number and accounting, the total matched nodes decrease with p.

Performance Test: p vs total matched

Run from 10,000 to 15,000

50/81

Two Sloppy/Mistaken Assumptions

- ① During initialization, $N_{initial}$ nodes are added and then a matching algorithm is run once.
- 2 Rematching is allowed.
 - Lazy reasoning behind assumption: there will be better things to do than rematch.
 - Big problem: small step size and shortest cycle matching.
 - However, low acceptance probability cases don't catch up.

Can we maintain performance for low p?

Hanging ORpair method:

- Assume rough parity among matched tasks.
- Only need to worry about ORpairs bordering a rejected ORpair: combine into one node and re-add to graph.

Held ORpair Example

If OR1 rejects, make new node (offer t2, request t1).

HOR: pros and cons

Pros:

- Algorithmically, ORpair acceptance rate is similar to that for 3-way-matches.
- Held ORpairs are semi-random, but resemble Dickerson's potentials approach?
 I.e., less myopic
- Hint at generalization to asymmetric Offer Network design (or wait-list use). (*Future Work*)

HOR: pros and cons

Theoretical Cons:

- Parity doesn't always hold.
- Acceptance probability becomes p²? (–Also forgot to implement.)
- Complicates additional features (e.g., task expiration, timing)

HOR: pros and cons

Practical Cons:

- User has to do more. Risks longer wait time.
- Incentive for user with held offer to stay?
 - Reputation system: negatively rate user for leaving: hard to find new matches.
 - Can be implemented like PoD or with MAX.
- Alteranitvely: add held request to waitlist queue; treat offer as gift.

56/81

HOR: Rematching

- Held ORpair (t2, t1) can immediately be rematched with rejecting (t1,2)!
 - Murphy's law scenario: identical performance to p=1 case with marginal wait time difference.
 - Curiously, potential ORpairs matched faster at lower p.
- In the long run, latent graph potential for matches results in equal performance.
 - Properly disabling rematching may lead to low-p depleting graph potential.

57/81

However, this may merely mean postponed potential.

Long Run Graph Size

Run from 100 to 35,000

Performance Test: p vs total matched

Performance Test: p vs total matched

Ran a few runs with fixed, standardized (p = 1) matching for initialization.

Performance Test: General Results

Tests with MAX: 400 to 3400

- With HOR, MAX performs best.
- Larger match size is okay.
- ORpairs held significantly longer
 - Which fits theoretical prediction. Perhaps abuses *rematching* less.
- Surprisingly: includes unpopular tasks best!

Note: using Bookmooch distribution graph

Note: using EN distribution graph.

Performance Test: General Results

Tests from 10,000 to 15,000 (where wait time stabilizes)

- DYN does poorly below p = 0.9.
 - Because rejected/held ORpairs not re-added. (*future work*)
- GSC with Product of Degree order outperforms, marginally, in all metrics.
 - Q: is there a bigger difference without the ability to rematch ORpairs?
 - PoD much better for unpopular tasks at low p!
- Match size moves toward 2 and 3 as p decreases.
- Yet significantly more ORparis are matched.
 - Postponed graph potential + shortening cycles?
 - A user's ORpair can be used in multiple conflicting cycles.

67/81

Zar Goertzel

- $oldsymbol{0}$ In the long run, roughly 1/3 of ORpairs are matched.
 - Close to inherent graph limitation.
 - Task similarity based recommendation may help.

- \bigcirc In the long run, roughly 1/3 of ORpairs are matched.
 - Close to inherent graph limitation.
 - Task similarity based recommendation may help.
- 2 Wait-time appears to stabilize around 1000 steps.
 - If this holds for much larger graphs, realistic wait time may be ok.

- \bigcirc In the long run, roughly 1/3 of ORpairs are matched.
 - Close to inherent graph limitation.
 - Task similarity based recommendation may help.
- Wait-time appears to stabilize around 1000 steps.
 - If this holds for much larger graphs, realistic wait time may be ok.
- Matching Algorithms (beyond swaps) seem to matter more for speed of depleting graph of matches.
 - Good for use in decentralized case.

- $oldsymbol{0}$ In the long run, roughly 1/3 of ORpairs are matched.
 - Close to inherent graph limitation.
 - Task similarity based recommendation may help.
- Wait-time appears to stabilize around 1000 steps.
 - If this holds for much larger graphs, realistic wait time may be ok.
- Matching Algorithms (beyond swaps) seem to matter more for speed of depleting graph of matches.
 - Good for use in decentralized case.
- 4 Hold rounds get high (for MAX) with low-p. Could be cumbersome.
- Sow-p cases work best suggesting very many matches in high frequency

Future Work

- Disallow rematching, and re-run experiments.
- ② Impose match suggestion limits (irrespective of rematches).
- Extend HOR to an asynchronous model (with gift chains allowed).
- Experiment with task similarity and less uniform acceptance probability.
- Add ORpair expiration.
- Add reputation or user preferneces to the equation.
- Conjunctions and disjunctions to allow more intricate offers and requests.
 - (Will make the size of MAX's matrix bigger.)

Conclusions

- Given the framework, offer network style exchange recommendations can supplement traditional money marketplaces, and recommendation systems.
- ② But as in this thesis, probably not replace them. (I don't have statistics on how long buyers and sellers wait on Amazon though.)
- The faster performance of low-p with HOR indicate that myopic matching isn't enough (as Dickerson found in the limited Kidney case.)
- As with combined organ exchanges (kidney and lung), linking specialized exchange markets should prove beneficial.