PYL101

(Electromagnetic Waves and Quantum Mechanics) Tutorial Sheet 3 (L5-L6)

(1) Consider the two states $|\psi\rangle = i |\phi_1\rangle + 3i |\phi_2\rangle - |\phi_3\rangle$ and $|\chi\rangle = |\phi_1\rangle - i |\phi_2\rangle$ $+5i|\phi_3>$, where $|\phi_1>$, $|\phi_2>$ and $|\phi_3>$ are orthonormal. Then calculate:

$$<\psi|\psi>$$
, $<\chi|\chi>$, $<\psi|\chi>$, $<\chi|\psi>$ and $<\psi+\chi|\psi+\chi>$.

- (2) Find the constant α so that the states $|\psi>=\alpha|\phi_1>+5|\phi_2>$ and $|\chi>=3\alpha|\phi_1>$ $-4|\phi_2>$ are orthogonal. $|\phi_1>$ and $|\phi_2>$ are orthonormal wave functions.
- (3) Consider a state which is given in terms of three orthonormal vectors $|\phi_1>$, $|\phi_2>$ and $|\phi_3>$

$$|\psi> = \frac{1}{\sqrt{15}}|\phi_1> + \frac{1}{\sqrt{3}}|\phi_2> + \frac{1}{\sqrt{5}}|\phi_3>$$

where $|\phi_n>$ are eigenstates to an operator \hat{B} which satisfies the relation $\hat{B}|\phi_n>$ $(3n^2-1)|\phi_n>$, where n=1,2,3. Then (a) Find the norm of $|\psi>$.

- (b) Find the expectation value of \hat{B} with respect to $|\psi>$
- (4) Show that the operator $|\psi\rangle\langle\psi|$ is a projection operator only when $|\psi\rangle$ is normalized.
- (5) Check whether the operators \hat{x} , d/dx and i d/dx are Hermitian operators.
- (6) Consider a system whose Hamiltonian is given by $\hat{H} = \alpha(|\phi_1| < \phi_2| + |\phi_2| < \phi_1|), \alpha$ is a real number having the dimensions of energy and $|\phi_1\rangle$, $|\phi_2\rangle$ are normalized eigenstates of a Hermitian operator \hat{A} that has no degenerate eigenvalues.
 - (a) Check whether $|\phi_1\rangle$ and $|\phi_2\rangle$ are eigenstates of \widehat{H}
 - (b) Calculate the commutators $[\widehat{H},|\phi_1><\phi_1|]$ and $[\widehat{H},|\phi_2><\phi_2|]$
- (7) Consider an operator $\widehat{D_x}$ to be $\frac{\partial}{\partial x}$ and the wave function of the system to be $\psi(x) =$ $A \sin(\frac{n\pi x}{a})$, then calculate
 - (a) $\widehat{D_x} \psi(x)$ and $\widehat{D_x^2} \psi(x)$
 - (b) Which one of these forms an eigenvalue problem and what is the corresponding eigenvalue.
- (8) If the function $e^{-\alpha x^2}$ represents an eigenfunction of the operator $\hat{A} = \left(\frac{d^2}{dx^2} Bx^2\right)$, then find the value of B.
- (9) The state of a system at t = 0 is given by $|\psi(0)\rangle = \frac{1}{\sqrt{3}}|\phi_1\rangle + A|\phi_2\rangle + \frac{1}{\sqrt{6}}|\phi_3\rangle$, where $|\phi_1\rangle$, $|\phi_2\rangle$ and $|\phi_3\rangle$ are orthonormal wave functions and A is a real constant.
 - (a) Find A so that $|\psi(0)\rangle$ is normalized.
 - (b) Write down the state of the system $|\psi(t)>$ at any later time t. Given: E_1 , E_2 and E_3

are the energies corresponding to $|\phi_1>$, $|\phi_2>$ and $|\phi_3>$, respectively.

(10) If $\psi(x) = A \exp(-x^4)$ is the eigenfunction of one-dimensional Hamiltonian with eigenvalue E = 0, then calculate the potential V(x) (in units where $\hbar = 2m = 1$).