Exámenes Parciales Topología I Quintín

Cristo Daniel Alvarado

12 de marzo de 2024

Índice general

1.	Primer Examamen Parcial	2
	1.1. Ejercicios	2
2.	Segundo Examen Parcial	4
	2.1. Ejercicios	4
3.	Tercer Examen Parcial	5
	3.1. Ejercicios	5
4.	ETS Ordinario	6
	4.1. Ejercicios	6
	4.2. Resultados Preeliminares	7

Primer Examamen Parcial

1.1. Ejercicios

Ejercicio 1.1.1

Sean $X = \mathbb{R}$ y $\tau = \{X, \emptyset\} \cup \{B_q\}_{q \in \mathbb{Q}}$, donde $B_q = (q, \infty) \cap \mathbb{Q}$. ¿Es (\mathbb{R}, τ) un espacio topológico? Demuestre su respuesta.

Solución:

Ejercicio 1.1.2

¿La familia $\{[a, b] | a, b \in \mathbb{Q}, a < b\}$ es base en (X, τ_S) ? Justifique su respuesta.

Solución:

Ejercicio 1.1.3

Sea (X, τ) un espacio topológico y R una relación de equivalencia sobre X, y $p: X \to X/R$ la función que a cada elemento $x \mapsto [x]$ lo asigna a su clase de equivalencia. Haga lo siguiente:

1. Demuestre que la colección de todos los conjuntos cerrados en $(X/R, \tau/R)$ es:

$$\left\{F\subseteq X/R\middle|p^{-1}(F)\text{ es cerrado en }X\right\}$$

2. Demuestre que la colección de todos los conjuntos cerrados en $(X/R, \tau/R)$ es igual a la familia:

$$\left\{p(F)\subseteq X/R\big|F\text{ es cerrado en }(X,\tau)\ge p^{-1}(p(F))=F\right\}$$

Solución:

Ejercicio 1.1.4

En el espacio (X, τ_{cf}) y tomando A = (0, 1), obtener:

- 1. \mathring{A} .
- $2. \overline{A}.$

3. $\operatorname{Fr}(A)$.

4. Ext $(A) = \widehat{X - A}$.

Solución:

Ejercicio 1.1.5

Sea (X, τ) un espacio topológico, para cada $A \subseteq X$ definimos $\alpha(A) = \mathring{\overline{A}}$, y $\beta(A) = \overline{\mathring{A}}$. Demuestre o refute:

1. $\alpha(\alpha(A)) = \alpha(A)$, para cada $A \subseteq X$.

2. $\beta(\beta(A)) = \overline{A}$, para cada $A \subseteq X$.

Demostración:

3

Segundo Examen Parcial

2.1. Ejercicios

Ejercicio 2.1.1

Tercer Examen Parcial

3.1. Ejercicios

Ejercicio 3.1.1

ETS Ordinario

4.1. Ejercicios

Ejercicio 4.1.1

Sea $A = \{ \sin n | n \in \mathbb{N} \}$. Pruebe que $\overline{A} = [-1, 1]$ en (\mathbb{R}, τ_u) .

Demostración:

Notemos que $A = \sin(\mathbb{N})$. Sea $C = \sin(\mathbb{Z})$.

Es claro que $C \subseteq [-1,1]$ donde [-1,1] es un cerrado en (\mathbb{R}, τ_u) , por tanto $\overline{C} \subseteq [-1,1]$, veremos que se cumple la otra contención. Sea $x \in [-1,1]$,

- Si $x \in C$, es claro que $x \in \overline{C}$ ya que $C \subseteq \overline{C}$.
- Si $x \notin C$, como la función $t \mapsto \operatorname{sen} t$ de \mathbb{R} a [-1,1] es suprayectiva, entonces existe $\theta \in \mathbb{R}$ tal que $\sin \theta = x$.

Ahora, por la proposición 4.2.2, el conjunto

$$B = \left\{ a + 2\pi b \middle| a, b \in \mathbb{Z} \right\}$$

es denso en \mathbb{R} por ser 2π irracional. Entonces, para cada $n \in \mathbb{N}$ existe $\theta_n = a_n + 2\pi b_n \in B$ tal que $|\theta - \theta_n| < \frac{1}{n}$, es decir que la sucesión $\{\theta_n\}_{n=1}^{\infty}$ converge a θ . Como $t \mapsto \sin t$ es continua, entonces:

$$\lim_{n \to \infty} \left| \sin \theta - \sin \theta_n \right| = 0$$

$$\Rightarrow \lim_{n \to \infty} \left| x - \sin \left(a_n + 2\pi b_n \right) \right| = 0$$

pero,

$$\sin(a_n + 2\pi b_n) = \sin(a_n)\cos(2\pi b_n) + \cos(a_n)\sin(2\pi b_n)$$
$$= \sin(a_n)$$

pues $\cos(2\pi k) = 1$ y $\sin(2\pi k) = 0$, para todo $k \in \mathbb{Z}$. Luego,

$$\lim_{n \to \infty} \left| x - \sin a_n \right| = 0$$

es decir que para $\varepsilon > 0$ existe $n \in \mathbb{N}$ tal que $|x - \sin a_n| < \varepsilon$, donde $a_n \in \mathbb{Z}$.

Por los dos incisos anterioes, se sigue que lo que $\overline{C} \subseteq [-1,1] \Rightarrow \overline{C} = [-1,1]$, es decir que $\sin(\mathbb{Z})$ es denso en [-1,1], pero $t \mapsto \sin t$ es continua y periódica entre [-1,1], por tanto de la proposición 4.2.3 se sigue que $A = \sin(\mathbb{N})$ es denso en [-1,1].

4.2. Resultados Preeliminares

Proposición 4.2.1

Considere al grupo aditivo $(\mathbb{R}, +)$. Entonces todo subgrupo H de éste es denso en la topología (\mathbb{R}, τ_u) ó es cíclico.

Demostración:

Se tienen que probar dos cosas:

1. Suponga que G es denso. Se probará que G no puede ser cíclico. En efecto, si G fuera cíclico, existiría $g \in G$ tal que

$$G = \langle g \rangle$$

es claro que $g \neq 0$, pues en caso contrario se tendría que $G = \{0\}$, que no puede suceder ya que G es denso en \mathbb{R} , así g > 0; además, existe $h \in G$ tal que 0 < h < g ya que el conjunto [0, g[es abierto en \mathbb{R} .

Como $G = \langle g \rangle$ existe entonces $n \in \mathbb{N}$ tal que g = hn (por ser h, g > 0), es decir que $g \leq h \#_c$, pues h < g. Por tanto, G no es cíclico.

2. Suponga que G no es denso. Probaremos que G es cíclico, sea

$$g = \inf \left\{ x \in G \middle| x > 0 \right\}$$

Se tienen dos casos. Afirmamos que g > 0. En efecto, suponga que g = 0, sea $U \subseteq \mathbb{R}$ abierto no vacío y, $x \in \mathbb{R}$ y $\varepsilon > 0$ tales que $]x - \varepsilon, x + \varepsilon[\subseteq U]$. Como g = 0, existe $g_{\varepsilon} \in G$ tal que $0 < g_{\varepsilon} < \varepsilon$, sea ahora $k \in \mathbb{Z}$ tal que:

$$kg_{\varepsilon} \le x < (k+1)g_{\varepsilon}$$

es claro que $kg_{\varepsilon} \in G$, y además:

$$0 \le x - kg_{\varepsilon}$$

$$< (k+1)g_{\varepsilon} - kg_{\varepsilon}$$

$$= g_{\varepsilon}$$

$$< \varepsilon$$

es decir, $|x - kg_{\varepsilon}| < \varepsilon$ y por ende $kg_{\varepsilon} \in U$. Por tanto, G es denso en $\mathbb{R}\#_c$. Por tanto, g > 0. Veamos ahora que $g \in G$.

Suponga que $g \notin G$, entonces existen $h_1, h_2 \in G$ positivos tales que:

$$q < h_1 < h_2 < 2q$$

(por propiedades del ínfimo), luego $h_2 - h_1 \in G$ y son tales que $0 < h_2 - h_1 < g\#_c$, pues g es el ínfimo. Luego, $g \in G$.

Sea $x \in G$, entonces existe $k \in \mathbb{Z}$ tal que

$$kq \le x < (k+1)q$$

Así, $kg \in G$ lo cual implica que $x - kg \in H$, por ende:

$$0 \le x - kg$$

$$< (k+1)g - kg$$

$$= g$$

al ser g el ínfimo, debe suceder que x - kg = 0, es decir que x = kg. Por tanto, $G = \langle g \rangle$.

por los dos incisos anteriores, se sigue que G es denso ó es cíclico.

Proposición 4.2.2

Sea $\alpha \in \mathbb{R}$. Entonces el conjunto:

$$A = \left\{ a + b\alpha \middle| a, b \in \mathbb{Z} \right\}$$

es denso en \mathbb{R} con la topología usual.

Demostración:

Afirmamos que A es un subgrupo de \mathbb{R} el cual no es cíclico, por tanto, de la proposición anterior, se sigue que A es denso en \mathbb{R} con la topología usual.

Es claro que A es subgrupo de $(\mathbb{R}, +)$, pues si $a_1 + b_1 \alpha, a_2 + b_2 \alpha \in A$, se tiene que el elemento $(a_1 - a_2) + (b_1 - b_2)\alpha \in A$ ya que $a_1 - a_2, b_1 - b_2 \in \mathbb{Z}$.

Ahora, supongamos que A es cíclico, entonces existiría $a+b\alpha\in A$ positivo (lo podemos elegir positivo y no puede ser cero ya que $\alpha\in A$) tal que $A=\langle a+b\alpha\rangle$. En particular, $\alpha\in A$, por tanto, existe $m\in\mathbb{Z}$ tal que

$$\alpha = m(a + b\alpha)$$

$$\Rightarrow (1 - mb)\alpha = ma$$

entonces, mb=1, lo cual implica que $m=b=\pm 1$ (en caso contrario, un lado de la ecuación sería irracional y el otro entero), y que a=0. Por tanto, $A=\langle\alpha\rangle=\langle-\alpha\rangle$, pero esto no puede suceder pues el elemento $1+2\alpha\notin\langle\alpha\rangle$, pero $1+2\alpha\in A\#_c$.

Por tanto, A no es cíclico. Luego, de la proposición anterior, se sigue que A es denso en \mathbb{R} con la topología usual.

Proposición 4.2.3

Sea $f : \mathbb{R} \to [-1,1]$ función continua y periódica de período T > 0. Entonces, si $f(\mathbb{Z})$ es denso en (\mathbb{R}, τ_u) , entonces $f(\mathbb{N})$ también lo es.

Demostración:

Si T es racional, entonces $f(\mathbb{Z}) = T$ el cual no es denso en [-1, 1], por tanto, T debe ser irracional. Como f es continua y acotada, entonces es uniformemente continua en \mathbb{R} .

Sea $x \in [-1, 1]$ y $\varepsilon > 0$, entonces existe $m \in \mathbb{Z}$ tal que $|f(m) - x| < \frac{\varepsilon}{2}$. Como f es uniformemente continua, existe $\delta > 0$ tal que si $|u - v| < \delta$ entones $|f(u) - f(v)| < \frac{\varepsilon}{2}$.

Si $m \in \mathbb{N}$, se tiene el resultado. Suponga que $m \leq 0$. Existen $p, q \in \mathbb{N}$ tales que

$$|p - Tq| < \delta$$

donde p>-m y $q>1/\delta$, esto pues el conjunto $]T,\infty[\cap\mathbb{Q}$ es denso en $[T,\infty[$. Entonces:

$$\begin{aligned} \left| f(m+p) - \alpha \right| &\leq \left| f(m+p) - f(m) \right| + \left| f(m) - \alpha \right| \\ &\leq \left| f(m+(p-Tq)) - f(m) \right| + \left| f(m) - \alpha \right| \\ &< \frac{\varepsilon}{2} + \frac{\varepsilon}{2} \end{aligned}$$

$$= \varepsilon$$

con $p + m \in \mathbb{N}$. Luego $f(\mathbb{N})$ es denso en [-1, 1].