ANGOLI ASSOCIAN

Angoli associati			
angoli complementari (I quadrante)	angoli che differiscono di 90° (11 quadrante)		
$sen\left(\frac{\pi}{2} - \alpha\right) = cos \alpha$	$sen\left(\frac{\pi}{2} + \alpha\right) = -cos \alpha$		
$cos\left(\frac{\pi}{2} - \alpha\right) = sen \alpha$	$cos\left(\frac{\pi}{2} + \alpha\right) = sen \alpha$		
$tg\left(\frac{\pi}{2}-\alpha\right)=cotg \ \alpha$	$tg\left(\frac{\pi}{2} + \alpha\right) = cotg \ \alpha$		
$cotg\left(\frac{\pi}{2} - \alpha\right) = tag \alpha$	$cotg\left(\frac{\pi}{2} + \alpha\right) = tg \alpha$		
angoli supplementari (II quadrante)	angoli che differiscono di 180° (III quadrante)		
$sen(\pi - \alpha) = sen \alpha$	$sen(\pi + \alpha) = -sen\alpha$		
$\cos(\pi - \alpha) = -\cos\alpha$	$\cos(\pi + \alpha) = -\cos\alpha$		
$tg(\pi - \alpha) = -tg\alpha$	tg (π+α)= - tg α		
$cotg(\pi - \alpha) = -cotg \alpha$	$cotg(\pi + \alpha) = -cotg\alpha$		
angoli la cui somma è 270° (III quadrante)	angoli che differiscono di 270° (IV quadrante)		
$sen\left(\frac{3}{2}\pi - \alpha\right) = -sen\alpha$	$sen\left(\frac{3}{2}\pi + \alpha\right) = -sen\alpha$		
$cos\left(\frac{3}{2}\pi - \alpha\right) = -cos\alpha$	$\cos\left(\frac{3}{2}\pi + \alpha\right) = \cos\alpha$		
$tg\left(\frac{3}{2}\pi - \alpha\right) = tg \alpha$	$tg\left(\frac{3}{2}\pi + \alpha\right) = -tg\alpha$		
$cotg\left(\frac{3}{2}\pi - \alpha\right) = cotg \alpha$	$cotg\left(\frac{3}{2}\pi + \alpha\right) = -cotg \alpha$		
angoli esplementari (IV quadrante)	angoli opposti (I V quadrante)		
$sen(2\pi - \alpha) = -sen \alpha$	$sen(-\alpha) = -sen\alpha$		
$cos(2\pi - \alpha) = cos \alpha$	$cos(-\alpha) = cos \alpha$		
$tg(2\pi - \alpha) = -tg \alpha$	$tg(-\alpha) = -tg\alpha$		
$cotg(2\pi - \alpha) = -cotg \alpha$	$cotg(-\alpha) = -cotg\alpha$		

ANGOLI MOTEVOLI

Angolo Radianti Gradi		Seno	Coseno	Tangente	Cotangente		
0	00	0	1	0	80		
# 6	30°	$\frac{1}{2}$	$\frac{\sqrt{3}}{2}$	-\frac{\sqrt{3}}{3}	√3		
$\frac{\pi}{4}$	45°	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{2}}{2}$	1	1		
# 3	60°	$\frac{\sqrt{3}}{2}$	$\frac{1}{2}$	√3	√ 3		
# 2	900	1	0	**	0		
π	180°	0	-1	0	60		
$\frac{3\pi}{2}$	270°	-1	0	80	0		
2 π	360°	0	1	0	60		

www.matematika.it

FORTULA FONDATION AUG >> SIM2 (XX) + COS 2 (XX) ≥ 1

SORVA 5 DIFFER. DOZSONO (PROSTAFONESSI)

$$\cos(\alpha - \beta) = \cos\alpha \cos\beta + \sin\alpha \sin\beta$$

$$\cos(\alpha + \beta) = \cos\alpha \, \cos\beta - \sin\alpha \, \sin\beta$$

$$\sin(\alpha + \beta) = \sin\alpha \cos\beta + \cos\alpha \sin\beta$$

$$\sin(\alpha - \beta) = \sin\alpha \cos\beta - \cos\alpha \sin\beta$$

FORMULS ON DUPLIATIONS

FORMULS OF DUPLIATIONS

$$\sin(2\alpha) = 2\sin\alpha\cos\alpha$$

$$\cos(2\alpha) = \cos^2 \alpha - \sin^2 \alpha$$

TANGENTA

$$\tan(\alpha + \beta) = \frac{\sin(\alpha + \beta)}{\cos(\alpha + \beta)} \qquad \Longrightarrow \qquad \tan(\alpha + \beta) = \frac{\frac{\sin \alpha}{\cos \alpha} + \frac{\sin \beta}{\cos \beta}}{1 - \frac{\sin \alpha \sin \beta}{\cos \alpha \cos \beta}}$$

$$\tan(\alpha + \beta) = \frac{\frac{\sin \alpha}{\cos \alpha} + \frac{\sin \beta}{\cos \beta}}{1 - \frac{\sin \alpha}{\cos \alpha} \frac{\sin \beta}{\cos \beta}}$$

$$\tan(\alpha - \beta) = \frac{\tan \alpha - \tan \beta}{1 + \tan \alpha \, \tan \beta} \qquad \longrightarrow \qquad \tan(\alpha - \beta) = \frac{\tan \alpha + \tan(-\beta)}{1 - \tan \alpha \, \tan(-\beta)}$$

