Homework #5

Kevin Fang

May 23, 2025

Question 3.

Solve the following sections from the Discrete Math zyBook:

(a): Exercise 4.1.3

В.

Not a function and fails for x = 2 and x = -2.

C.

Is a function for all of \mathbb{R} . The range of the function is $[0, \infty)$.

(b): Exercise 4.1.5

В.

 $\{4, 9, 16, 25\}$

D.

 $\{0, 1, 2, 3, 4, 5\}$

Η.

$$A\times A=\{(1,1),(1,2),(1,3),(2,1),(2,2),(2,3),(3,1),(3,2),(3,3)\}.$$

I.

$$A\times A=\{(1,2),(1,3),(1,4),(2,2),(2,3),(2,4),(3,2),(3,3),(3,4)\}.$$

L.

$$\{\emptyset, \{2\}, \{3\}, \{2,3\}\}.$$

Question 4.

I - Solve the following sections from the Discrete Math zyBook

(a): 4.2.2

 $\mathbf{C}.$

One to one but not onto.

For h(x) = 2, there does not exist an $x \in Z$ such that h(x) = 2.

G.

One to one but not onto.

For f(x,y) = (0,1), there does not exist a pair of $(x,y) \in Z \times Z$ such that f(x,y) = (0,1).

K.

Neither one to one or onto.

For f(1,3) = 5 and f(2,1) = 5, there exist a value in the range such that its values of the domain are different. For f(x,y) = 1 or f(x,y) = 2, there does not exist a pair of $(x,y) \in Z^+ \times Z^+$ such that f(x,y) = 1 or f(x,y) = 2.

(b): 4.2.4

В.

Neither one to one or onto.

For f(000) = 100 and f(100) = 100, there exist a value in the range such that its values of the domain are different. For f(x) = 000, there does not exist a $x \in \{0, 1\}^3$ such that f(x) = 000.

 $\mathbf{C}.$

One to one and onto.

D.

One to one but not onto.

For f(x) = 0001, there does not exist a $x \in \{0, 1\}^3$ such that f = 0001.

G.

Neither one to one or onto.

For $X_1 = \{2\}$ and $X_2 = \{1, 2\}$ where $F(X_1) = F(X_2) = \{2\}$, there exist a value in the range such that its values of the domain are different.

There does not exist a X in the domain such that the value in the range is $\{1\}$.

II - Give an example of a function from the set of integers to the set of positive integers that is:

A:

$$f(x) = 2x \text{ for } x \ge 0 \text{ and } 2|x| + 1 \text{ for } x < 0.$$

B:

$$f(x) = |x|$$
.

\mathbf{C} :

f(x) = 2x for $x \ge 0$ and 2|x| - 1 for x < 0.

D:

f(x) = 99.

Question 5.

Solve the following sections from the Discrete Math zyBook:

(a): Exercise 4.3.2

 $\mathbf{C}.$

This function is well defined. $f^{-1}(x) = \frac{x-3}{2}$.

D.

f(x) is not one to one. $f^{-1}(x)$ is not well defined.

G.

This function is well defined. Both reverse the input bits.

I.

This function is well defined. $f^{-1}(x, y) = (x - 5, y + 2).$

(b): Exercise 4.4.8

C.

$$f \circ h(x) = 2x^2 + 5$$

D.

$$h \circ f(x) = (2x+3)^2 + 1$$

 $h \circ f(x) = 4x^2 + 12x + 10$

(c): Exercise 4.4.2

В.

$$f \circ h(52) = (\lceil 52/5 \rceil)^2 = 11^2 = 121$$

C.

$$g\circ h\circ f(4)=2^{\left(\left\lceil (4^2)/5\right\rceil\right)}=2^{\left(\left\lceil (16/5)\right\rceil\right)}=2^4=16$$

D.

$$h(f(x)) = \left\lceil \frac{x^2}{5} \right\rceil$$

(d): Exercise 4.4.6

C.

$$h(f(010)) = 111$$

D.

Range is $\{101, 111\}$.

Ε.

Range is $\{001, 011, 101, 111\}$.

Figure 1: Exercise 4.4.4.D

(E): Exercise 4.4.4

C.

No. When f is not one-to-one, there exist a value in the range such that its values of the domain are different.

 $g \circ f(x_1) = g(f(x_1)) = g(y)$

 $g \circ f(x_2) = g(f(x_2)) = g(y)$

This indicate that $g \circ f$ exist a value in the range such that its values of the domain are different.

D.

Yes. See Figrue 1: Exercise 4.4.4.D.