Design and Analysis of Algorithms

IT, 3rd Semester, 2022

Syllabus (Theory)

Module	Topics
	Introduction:
	Role of Algorithm in computing
	Complexity analysis:
1	Growth of Functions (Asymptotic notations, standard notations and common functions);
	Best Case, Worst Case, Average Case;
	Recurrences, solution of recurrences: substitution, recursion tree, Master method
	Divide and Conquer algorithms:
	Merge sort, Quick sort;
	Heapsort: Heaps, building a heap, the heapsort algorithm;
	Priority Queue, Binary search, Lower bounds for sorting.
	Dynamic Programming:
2	Matrix-chain multiplication, Elements of dynamic programming, Longest common
	subsequence, Activity selection Problem
	Greedy Algorithms:
	Elements of Greedy strategy, Fractional knapsack problem, Huffman codes
	Zero-one knapsack (after completing fractional knapsack) Data Structures for disjoint sets:
	Disjoint set operations, Linked list representation, Disjoint set forests.
	Graph algorithms (revision):
	Graph and their Representations, Breadth-first and depth-first search, Minimum
	Spanning Trees, Kruskal's and Prim's algorithms, single-source shortest paths (Bellman-
	ford and Dijkstra's algorithms), All-pairs shortest paths (Floyd – Warshall Algorithm), Back
	tracking, Branch and Bound.
3	Fast Fourier Transform
	String matching: Rabin-Karp algorithm
	P-vs-NP: Completeness (Polynomial time, Polynomial time verification, NP-
	Completeness and reducibility, NP-Complete problems (without Proofs), Approximation
	algorithms (Vertex-Cover Problem, Traveling Salesman Problem).

Textbook:

Introduction to Algorithms, third edition, The MIT Press, (2009). Cormen, T H, C E Leiserson, R L Rivest, and C Stein. (CLRI)

Evaluation

- 1. Quizzes 15 marks
- 2. Mid-term 30 marks
- 3. End-term 50 marks
- 4. Internal assessment 5 marks

Lab topics

Lab Number	Topic						
1	Introduction and basics of complexity analysis; recap of data structures						
2	Recursion and related algorithms						
3	Divide and conquer approach						
4	Divide and conquer approach (contd.)						
5	Dynamic Programming						
6	Greedy Approach						
7	Disjoint set data structures						
8	Graph algorithms						
9	Graph algorithms (contd.)						
10	Backtracking						

Lab evaluation

- 1. Weekly lab marking 5x10=50 marks
- 2. Lab test 30 marks
- 3. Viva/quiz 20 marks

Tentative timetable

Day\Slot	9am – 10am	10am – 11am	11am – 12pm	12pm – 1pm	1pm – 2pm	2pm – 3pm	3pm – 4pm	4pm – 5pm
Monday	GROUP-2: LAB-2							
Tuesday	N O N			CG-07	B R			
Wednesday		CG-07			E			
Thursday	E	GROUP-1: LAB-2			A K		CG-07	
Friday		CG-07						