Machine Learning for Data Mining Linear Algebra Review

Andres Mendez-Vazquez

May 14, 2015

Outline

- Introduction
 - What is a Vector?
- Vector Spaces
 - Definition
 - Linear Independence and Basis of Vector Spaces
 - Norm of a Vector
 - Inner Product
 - Matrices
 - Trace and Determinant
 - Matrix Decomposition
 - Singular Value Decomposition

Outline

- Introduction
 - What is a Vector?
- 2 Vector Spaces
 - Definition
 - Linear Independence and Basis of Vector Spaces
 - Norm of a Vector
 - Inner Product
 - Matrices
 - Trace and Determinant
 - Matrix Decomposition
 - Singular Value Decomposition

What is a Vector?

A ordered tuple of numbers

$$m{x} = \left(egin{array}{c} x_1 \\ x_2 \\ \vdots \\ x_n \end{array}
ight)$$

4 / 50

What is a Vector?

A ordered tuple of numbers

$$m{x} = \left(egin{array}{c} x_1 \ x_2 \ dots \ x_n \end{array}
ight)$$

Expressing a magnitude and a direction

Outline

- Introduction
 - What is a Vector?
- 2 Vector Spaces
 - Definition
 - Linear Independence and Basis of Vector Spaces
 - Norm of a Vector
 - Inner Product
 - Matrices
 - Trace and Determinant
 - Matrix Decomposition
 - Singular Value Decomposition

Definition

A vector is an element of a vector space

It is a set that contains all linear combinations of its elements.

Definition

A vector is an element of a vector space

Vector Space V

It is a set that contains all linear combinations of its elements:

Definition

A vector is an element of a vector space

Vector Space V

It is a set that contains all linear combinations of its elements:

- **2** If $x \in V$ then $\alpha x \in V$ for any scalar α .

Definition

A vector is an element of a vector space

Vector Space V

It is a set that contains all linear combinations of its elements:

- **2** If $x \in V$ then $\alpha x \in V$ for any scalar α .
- **3** There exists $0 \in V$ then x + 0 = x for any $x \in V$.

Definition

A vector is an element of a vector space

Vector Space V

It is a set that contains all linear combinations of its elements:

- ② If $x \in V$ then $\alpha x \in V$ for any scalar α .
- **3** There exists $0 \in V$ then x + 0 = x for any $x \in V$.

A subspace

It is a subset of a vector space that is also a vector space

Classic Example

Span

Definition

The span of any set of vectors $\{x_1, x_2, ..., x_n\}$ is defined as:

$$\mathsf{span}\left(\boldsymbol{x}_{1},\boldsymbol{x}_{2},...,\boldsymbol{x}_{n}\right)=\alpha_{1}\boldsymbol{x}_{1}+\alpha_{2}\boldsymbol{x}_{2}+...+\alpha_{n}\boldsymbol{x}_{n}$$

Give it a shot!!!

Span

Definition

The span of any set of vectors $\{x_1, x_2, ..., x_n\}$ is defined as:

$$\operatorname{span}\left(\boldsymbol{x}_{1},\boldsymbol{x}_{2},...,\boldsymbol{x}_{n}\right)=\alpha_{1}\boldsymbol{x}_{1}+\alpha_{2}\boldsymbol{x}_{2}+...+\alpha_{n}\boldsymbol{x}_{n}$$

What Examples can you Imagine?

Give it a shot!!!

Subspaces of \mathbb{R}^n

Subspaces of \mathbb{R}^n

Outline

- Introduction
 - What is a Vector?
- 2 Vector Spaces
 - Definition
 - Linear Independence and Basis of Vector Spaces
 - Norm of a Vector
 - Inner Product
 - Matrices
 - Trace and Determinant
 - Matrix Decomposition
 - Singular Value Decomposition

Linear Independence and Basis of Vector Spaces

Fact 1

A vector x is a linearly independent of a set of vectors $\{x_1, x_2, ..., x_n\}$ if it does not lie in their span.

Fact 2

A set of vectors is linearly independent if every vector is linearly independent of the rest.

Linear Independence and Basis of Vector Spaces

Fact 1

A vector x is a linearly independent of a set of vectors $\{x_1, x_2, ..., x_n\}$ if it does not lie in their span.

Fact 2

A set of vectors is linearly independent if every vector is linearly independent of the rest.

 $\ \ \, \ \ \,$ A basis of a vector space V is a linearly independent set of vectors whose span is equal to V

Linear Independence and Basis of Vector Spaces

Fact 1

A vector x is a linearly independent of a set of vectors $\{x_1, x_2, ..., x_n\}$ if it does not lie in their span.

Fact 2

A set of vectors is linearly independent if every vector is linearly independent of the rest.

The Rest

- $\begin{tabular}{ll} \bullet & A \ basis of a \ vector \ space \ V \ is a \ linearly \ independent \ set \ of \ vectors \\ whose \ span \ is \ equal \ to \ V \end{tabular}$
- $oldsymbol{\circ}$ If the basis has d vectors then the vector space V has dimensionality d.

Outline

- Introduction
 - What is a Vector?
- 2 Vector Spaces
 - Definition
 - Linear Independence and Basis of Vector Spaces
 - Norm of a Vector
 - Inner Product
 - Matrices
 - Trace and Determinant
 - Matrix Decomposition
 - Singular Value Decomposition

Definition

A norm $\|u\|$ measures the magnitud of the vector.

Definition

A norm ||u|| measures the magnitud of the vector.

Properties

1 Homogeneity: $\|\alpha x\| = \alpha \|x\|$.

Definition

A norm $\|u\|$ measures the magnitud of the vector.

Properties

- $\bullet \quad \text{Homogeneity: } \|\alpha \boldsymbol{x}\| = \alpha \, \|x\|.$
- 2 Triangle inequality: $||x + y|| \le ||x|| + ||y||$.

Definition

A norm ||u|| measures the magnitud of the vector.

Properties

- 2 Triangle inequality: $||x + y|| \le ||x|| + ||y||$.
- **3** Point Separation ||x|| = 0 if and only if x = 0.

Definition

A norm $\|u\|$ measures the magnitud of the vector.

Properties

- 2 Triangle inequality: $||x + y|| \le ||x|| + ||y||$.
- **3** Point Separation $\|\boldsymbol{x}\| = 0$ if and only if $\boldsymbol{x} = 0$.

Examples

1 Manhattan or ℓ_1 -norm : $\|\boldsymbol{x}\|_1 = \sum_{i=1}^d |x_i|$.

Definition

A norm ||u|| measures the magnitud of the vector.

Properties

- **1** Homogeneity: $\|\alpha \boldsymbol{x}\| = \alpha \|x\|$.
- 2 Triangle inequality: $||x + y|| \le ||x|| + ||y||$.
- **3** Point Separation ||x|| = 0 if and only if x = 0.

Examples

- $\textbf{ Manhattan or } \ell_1\text{-norm}: \ \|\boldsymbol{x}\|_1 = \sum_{i=1}^d |x_i|.$
- 2 Euclidean or ℓ_2 -norm : $\|\boldsymbol{x}\|_2 = \sqrt{\sum_{i=1}^d x_i^2}$.

Examples

Outline

- Introduction
 - What is a Vector?
- 2 Vector Spaces
 - Definition
 - Linear Independence and Basis of Vector Spaces
 - Norm of a Vector
 - Inner Product
 - Matrices
 - Trace and Determinant
 - Matrix Decomposition
 - Singular Value Decomposition

Inner Product

Definition

The inner product between $\it u$ and $\it v$

$$\langle u, v \rangle = \sum_{i=1}^{n} u_i v_i.$$

It is the projection of one vector onto the other on

Remark: It is related to the Euclidean norm: $\langle u,u \rangle = \|u\|_2^2$

16/50

Inner Product

Definition

The inner product between $\it u$ and $\it v$

$$\langle u, v \rangle = \sum_{i=1}^{n} u_i v_i.$$

It is the projection of one vector onto the other one

Meaning

The inner product is a measure of correlation between two vectors, scaled by the norms of the vectors

Meaning

The inner product is a measure of correlation between two vectors, scaled by the norms of the vectors

if $\boldsymbol{u}\cdot\boldsymbol{v}>0$, \boldsymbol{u} and \boldsymbol{v} are aligned

The inner product is a measure of correlation between two vectors, scaled by the norms of the vectors $\boldsymbol{v} \cdot \boldsymbol{u} > 0$ \boldsymbol{v}

The inner product is a measure of correlation between two vectors, scaled by the norms of the vectors \boldsymbol{u}

The inner product is a measure of correlation between two vectors, scaled by the norms of the vectors $\mathbf{v} \cdot \mathbf{u} = 0$ \boldsymbol{v}

Definitions involving the norm

Orthonormal

The vectors in orthonormal basis have unit Euclidean norm and are orthonorgonal.

For example, given $x = \alpha_1 v_1 + \alpha_2 v_2$

Definitions involving the norm

Orthonormal

The vectors in orthonormal basis have unit Euclidean norm and are orthonorgonal.

To express a vector x in an orthonormal basis

For example, given ${\pmb x} = \alpha_1 {\pmb b}_1 + \alpha_2 {\pmb b}_2$

$$\langle \boldsymbol{x}, \boldsymbol{b}_1 \rangle = \langle \alpha_1 \boldsymbol{b}_1 + \alpha_2 \boldsymbol{b}_2, \boldsymbol{b}_1 \rangle$$

= $\alpha_1 \langle \boldsymbol{b}_1, \boldsymbol{b}_1 \rangle + \alpha_2 \langle \boldsymbol{b}_2, \boldsymbol{b}_1 \rangle$
= $\alpha_1 + 0$

Definitions involving the norm

Orthonormal

The vectors in orthonormal basis have unit Euclidean norm and are orthonorgonal.

To express a vector x in an orthonormal basis

For example, given $\boldsymbol{x} = \alpha_1 \boldsymbol{b}_1 + \alpha_2 \boldsymbol{b}_2$

$$\langle \boldsymbol{x}, \boldsymbol{b}_1 \rangle = \langle \alpha_1 \boldsymbol{b}_1 + \alpha_2 \boldsymbol{b}_2, \boldsymbol{b}_1 \rangle$$

= $\alpha_1 \langle \boldsymbol{b}_1, \boldsymbol{b}_1 \rangle + \alpha_2 \langle \boldsymbol{b}_2, \boldsymbol{b}_1 \rangle$
= $\alpha_1 + 0$

Likewise, $\langle \boldsymbol{x}, \boldsymbol{b}_2 \rangle = \alpha_2$

Outline

- Introduction
 - What is a Vector?
- 2 Vector Spaces
 - Definition
 - Linear Independence and Basis of Vector Spaces
 - Norm of a Vector
 - Inner Product
 - Matrices
 - Trace and Determinant
 - Matrix Decomposition
 - Singular Value Decomposition

Linear Operator

Definition

A linear operator $\mathcal{L}:U\to V$ is a map from a vector space U to another vector space V satisfies:

$$\bullet \ \mathcal{L}\left(\boldsymbol{u}_{1}+\boldsymbol{u}_{2}\right)=\mathcal{L}\left(\boldsymbol{u}_{1}\right)+\mathcal{L}\left(\boldsymbol{u}_{2}\right)$$

If the dimension n of U and m of V are finite, ${\mathcal L}$ can be represented by m imes n matrix:

$$A = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ & & & \cdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{pmatrix}$$

Linear Operator

Definition

A linear operator $\mathcal{L}:U\to V$ is a map from a vector space U to another vector space V satisfies:

$$\bullet \ \mathcal{L}\left(\boldsymbol{u}_{1}+\boldsymbol{u}_{2}\right)=\mathcal{L}\left(\boldsymbol{u}_{1}\right)+\mathcal{L}\left(\boldsymbol{u}_{2}\right)$$

Something Notable

If the dimension n of U and m of V are finite, $\mathcal L$ can be represented by $m\times n$ matrix:

$$A = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ & & & \cdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{pmatrix}$$

Thus, product of

The product of two linear operator can be seen as the multiplication of two matrices

$$AB = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ & & \cdots & \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{pmatrix} \begin{pmatrix} b_{11} & b_{12} & \cdots & b_{1p} \\ b_{21} & b_{22} & \cdots & b_{2p} \\ & & \cdots & \\ b_{n1} & b_{n2} & \cdots & b_{np} \end{pmatrix}$$

$$= \begin{pmatrix} \sum_{i=1}^{n} a_{1i}b_{i1} & \sum_{i=1}^{n} a_{1i}b_{i2} & \cdots & \sum_{i=1}^{n} a_{1i}b_{ip} \\ \sum_{i=1}^{n} a_{2i}b_{i1} & \sum_{i=1}^{n} a_{2i}b_{i2} & \cdots & \sum_{i=1}^{n} a_{2i}b_{ip} \\ & \cdots & \cdots & \\ \sum_{i=1}^{n} a_{mi}b_{i1} & \sum_{i=1}^{n} a_{mi}b_{i2} & \cdots & \sum_{i=1}^{n} a_{mi}b_{ip} \end{pmatrix}$$

Thus, product of

The product of two linear operator can be seen as the multiplication of two matrices

$$AB = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ & & \cdots & \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{pmatrix} \begin{pmatrix} b_{11} & b_{12} & \cdots & b_{1p} \\ b_{21} & b_{22} & \cdots & b_{2p} \\ & & \cdots & \\ b_{n1} & b_{n2} & \cdots & b_{np} \end{pmatrix}$$

$$= \begin{pmatrix} \sum_{i=1}^{n} a_{1i}b_{i1} & \sum_{i=1}^{n} a_{1i}b_{i2} & \cdots & \sum_{i=1}^{n} a_{1i}b_{ip} \\ \sum_{i=1}^{n} a_{2i}b_{i1} & \sum_{i=1}^{n} a_{2i}b_{i2} & \cdots & \sum_{i=1}^{n} a_{2i}b_{ip} \\ & \cdots & \\ \sum_{i=1}^{n} a_{mi}b_{i1} & \sum_{i=1}^{n} a_{mi}b_{i2} & \cdots & \sum_{i=1}^{n} a_{mi}b_{ip} \end{pmatrix}$$

Note: if A is $m \times n$ and B is $n \times p$, then AB is $m \times p$.

The transpose of a matrix is obtained by flipping the rows and columns

$$A^{T} = \begin{pmatrix} a_{11} & a_{21} & \cdots & a_{n1} \\ a_{12} & a_{22} & \cdots & a_{n2} \\ & & \cdots & \\ a_{1m} & a_{2m} & \cdots & a_{nm} \end{pmatrix}$$

The transpose of a matrix is obtained by flipping the rows and columns

$$A^{T} = \begin{pmatrix} a_{11} & a_{21} & \cdots & a_{n1} \\ a_{12} & a_{22} & \cdots & a_{n2} \\ & & \cdots & \\ a_{1m} & a_{2m} & \cdots & a_{nm} \end{pmatrix}$$

Which the following properties

The transpose of a matrix is obtained by flipping the rows and columns

$$A^{T} = \begin{pmatrix} a_{11} & a_{21} & \cdots & a_{n1} \\ a_{12} & a_{22} & \cdots & a_{n2} \\ & & \cdots & \\ a_{1m} & a_{2m} & \cdots & a_{nm} \end{pmatrix}$$

Which the following properties

The transpose of a matrix is obtained by flipping the rows and columns

$$A^{T} = \begin{pmatrix} a_{11} & a_{21} & \cdots & a_{n1} \\ a_{12} & a_{22} & \cdots & a_{n2} \\ & & \cdots & \\ a_{1m} & a_{2m} & \cdots & a_{nm} \end{pmatrix}$$

Which the following properties

The transpose of a matrix is obtained by flipping the rows and columns

$$A^{T} = \begin{pmatrix} a_{11} & a_{21} & \cdots & a_{n1} \\ a_{12} & a_{22} & \cdots & a_{n2} \\ & & \cdots & \\ a_{1m} & a_{2m} & \cdots & a_{nm} \end{pmatrix}$$

Which the following properties

- $(AB)^T = B^T A^T$

Not only that, we have the inner product

$$\langle oldsymbol{u}, oldsymbol{v}
angle = oldsymbol{u}^T oldsymbol{v}$$

As always, we have the identity operator

The identity operator in matrix multiplication is defined as

$$I = \begin{pmatrix} 1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ & & \cdots & \\ 0 & 0 & \cdots & 1 \end{pmatrix}$$

As always, we have the identity operator

The identity operator in matrix multiplication is defined as

$$I = \begin{pmatrix} 1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ & & \cdots & \\ 0 & 0 & \cdots & 1 \end{pmatrix}$$

With properties

• For any matrix A, AI = A.

As always, we have the identity operator

The identity operator in matrix multiplication is defined as

$$I = \begin{pmatrix} 1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ & & \cdots & \\ 0 & 0 & \cdots & 1 \end{pmatrix}$$

With properties

- For any matrix A, AI = A.
- *I* is the **identity operator** for the matrix product.

Let A be an $m \times n$ matrix

We have the following spaces...

Column space

ullet Span of the columns of A.

Let A be an $m \times n$ matrix

We have the following spaces...

Column space

- ullet Span of the columns of A.
- Linear subspace of \mathbb{R}^m .

Let A be an $m \times n$ matrix

We have the following spaces...

Column space

- Span of the columns of A.
- Linear subspace of \mathbb{R}^m .

Row space

ullet Span of the rows of A.

Let A be an $m \times n$ matrix

We have the following spaces...

Column space

- ullet Span of the columns of A.
- Linear subspace of \mathbb{R}^m .

Row space

- Span of the rows of A.
- Linear subspace of \mathbb{R}^n .

Important facts

Something Notable

The column and row space of any matrix have the same dimension.

The rank

The dimension is the rank of the matrix

Important facts

Something Notable

The column and row space of any matrix have the same dimension.

The rank

The dimension is the rank of the matrix.

Range

ullet Set of vectors equal to $Aoldsymbol{u}$ for some $oldsymbol{u} \in \mathbb{R}^n$.

$$\mathsf{Range}\left(A\right) = \left\{ \boldsymbol{x} | \boldsymbol{x} = A\boldsymbol{u} \text{ for some } \boldsymbol{u} \in \mathbb{R}^n \right\}$$

Range

• Set of vectors equal to Au for some $u \in \mathbb{R}^n$.

$$\mathsf{Range}\left(A\right) = \left\{ \boldsymbol{x} | \boldsymbol{x} = A\boldsymbol{u} \text{ for some } \boldsymbol{u} \in \mathbb{R}^n \right\}$$

ullet It is a linear subspace of \mathbb{R}^m and also called the column space of A.

Null Space

We have the following definition

Null Space $(A) = \{u | Au = 0\}$

• It is a linear subspace of \mathbb{R}^m .

Range

• Set of vectors equal to $A \boldsymbol{u}$ for some $\boldsymbol{u} \in \mathbb{R}^n$.

$$\mathsf{Range}\left(A\right) = \left\{ \boldsymbol{x} | \boldsymbol{x} = A\boldsymbol{u} \text{ for some } \boldsymbol{u} \in \mathbb{R}^n \right\}$$

ullet It is a linear subspace of \mathbb{R}^m and also called the column space of A.

Null Space

• We have the following definition

Null Space
$$(A) = \{ \boldsymbol{u} | A \boldsymbol{u} = \boldsymbol{0} \}$$

Range

• Set of vectors equal to Au for some $u \in \mathbb{R}^n$.

$$\mathsf{Range}\left(A\right) = \left\{ \boldsymbol{x} | \boldsymbol{x} = A\boldsymbol{u} \text{ for some } \boldsymbol{u} \in \mathbb{R}^n \right\}$$

• It is a linear subspace of \mathbb{R}^m and also called the column space of A.

Null Space

We have the following definition

Null Space
$$(A) = \{ \boldsymbol{u} | A \boldsymbol{u} = \boldsymbol{0} \}$$

• It is a linear subspace of \mathbb{R}^m .

Important fact

Something Notable

ullet Every vector in the null space is orthogonal to the rows of A.

Important fact

- \bullet Every vector in the null space is orthogonal to the rows of A.
- The null space and row space of a matrix are orthogonal.

Range and Column Space

We have another interpretation of the matrix-vector product

$$A\mathbf{u} = (\mathbf{A}_1 \ \mathbf{A}_2 \ \cdots \ \mathbf{A}_n) \begin{pmatrix} u_1 \\ u_2 \\ \vdots \\ u_n \end{pmatrix}$$
$$= u_1 \mathbf{A}_1 + u_2 \mathbf{A}_2 + \cdots + u_n \mathbf{A}_n$$

Range and Column Space

We have another interpretation of the matrix-vector product

$$A\mathbf{u} = (\mathbf{A}_1 \ \mathbf{A}_2 \ \cdots \ \mathbf{A}_n) \begin{pmatrix} u_1 \\ u_2 \\ \vdots \\ u_n \end{pmatrix}$$
$$= u_1 \mathbf{A}_1 + u_2 \mathbf{A}_2 + \cdots + u_n \mathbf{A}_n$$

Thus

ullet The result is a linear combination of the columns of A.

Range and Column Space

We have another interpretation of the matrix-vector product

$$A\mathbf{u} = (\mathbf{A}_1 \ \mathbf{A}_2 \ \cdots \ \mathbf{A}_n) \begin{pmatrix} u_1 \\ u_2 \\ \vdots \\ u_n \end{pmatrix}$$
$$= u_1 \mathbf{A}_1 + u_2 \mathbf{A}_2 + \cdots + u_n \mathbf{A}_n$$

Thus

- The result is a linear combination of the columns of A.
- Actually, the range is the column space.

Something Notable

• For an $n \times n$ matrix A: rank + dim(null space) = n.

- For an $n \times n$ matrix A: rank + dim(null space) = n.
- if dim(null space) = 0 then A is full rank.

- For an $n \times n$ matrix A: rank + dim(null space) = n.
- if dim(null space) = 0 then A is full rank.
- In this case, the action of the matrix is invertible.

- For an $n \times n$ matrix A: rank + dim(null space) = n.
- if $\dim(\text{null space}) = 0$ then A is full rank.
- In this case, the action of the matrix is invertible.
- The inversion is also linear and consequently can be represented by another matrix A^{-1} .

- For an $n \times n$ matrix A: rank + dim(null space) = n.
- if $\dim(\text{null space}) = 0$ then A is full rank.
- In this case, the action of the matrix is invertible.
- ullet The inversion is also linear and consequently can be represented by another matrix A^{-1} .
- A^{-1} is the only matrix such that $A^{-1}A = AA^{-1} = I$.

Orthogonal Matrices

Definition

An orthogonal matrix U satisfies $U^T U = I$.

Propertion

U has orthonormal columns.

In addi

Applying an orthogonal matrix to two vectors does not change their inner product: T

$$egin{aligned} \langle Uu, Uv
angle &= (Uu)^T \ Uv \ &= u^T U^T Uv \ &= u^T v \end{aligned}$$

Orthogonal Matrices

Definition

An orthogonal matrix U satisfies $U^T U = I$.

Properties

U has orthonormal columns.

Orthogonal Matrices

Definition

An orthogonal matrix U satisfies $U^T U = I$.

Properties

U has orthonormal columns.

In addition

Applying an orthogonal matrix to two vectors does not change their inner

$$\langle U\boldsymbol{u}, U\boldsymbol{v} \rangle = (U\boldsymbol{u})^T U\boldsymbol{v}$$

= $\boldsymbol{u}^T U^T U\boldsymbol{v}$

$$=\boldsymbol{u}^T\boldsymbol{v}$$

$$=\langle u, v \rangle$$

Example

A classic one

Matrices representing rotations are orthogonal.

Outline

- Introduction
 - What is a Vector?
- 2 Vector Spaces
 - Definition
 - Linear Independence and Basis of Vector Spaces
 - Norm of a Vector
 - Inner Product
 - Matrices
 - Trace and Determinant
 - Matrix Decomposition
 - Singular Value Decomposition

Trace and Determinant

Definition (Trace)

The trace is the sum of the diagonal elements of a square matrix.

Definition (Determinant)

The determinant of a square matrix A, denoted by |A|, is defined as

$$\det(A) = \sum_{i=1}^{n} (-1)^{i+j} a_{ij} M_{ij}$$

where M_{ij} is determinant of matrix A without the row i and column j.

Trace and Determinant

Definition (Trace)

The trace is the sum of the diagonal elements of a square matrix.

Definition (Determinant)

The determinant of a square matrix A, denoted by |A|, is defined as

$$\det(A) = \sum_{i=1}^{n} (-1)^{i+j} a_{ij} M_{ij}$$

where M_{ij} is determinant of matrix A without the row i and column j.

Special Case

For a
$$2 \times 2$$
 matrix $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$

$$|A| = ad - bc$$

Special Case

For a
$$2 \times 2$$
 matrix $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$

$$|A| = ad - bc$$

The absolute value of |A| is the area of the parallelogram given by the rows of A

Basic Properties

$$\bullet |A| = |A^T|$$

 $\bullet \mid A \mid \equiv 0$ if and only if A is not in

- If A := i====tible Alexa | A=1 | 1

Basic Properties

- $\bullet |A| = |A^T|$
- |AB| = |A| |B|
- ullet |A|=0 if and only if A is not invertible
- If A is invertible, then $|A^{-1}| = 1$

Basic Properties

- $\bullet |A| = |A^T|$
- |AB| = |A| |B|
- \bullet |A| = 0 if and only if A is not invertible

Basic Properties

- $\bullet |A| = |A^T|$
- |AB| = |A| |B|
- ullet |A|=0 if and only if A is not invertible
- If A is invertible, then $|A^{-1}| = \frac{1}{|A|}$.

Outline

- Introduction
 - What is a Vector?
- 2 Vector Spaces
 - Definition
 - Linear Independence and Basis of Vector Spaces
 - Norm of a Vector
 - Inner Product
 - Matrices
 - Trace and Determinant
 - Matrix Decomposition
 - Singular Value Decomposition

Eigenvalues and Eigenvectors

Eigenvalues

An eigenvalue λ of a square matrix A satisfies:

$$A\mathbf{u} = \lambda \mathbf{u}$$

for some vector, which we call an eigenvector.

Properties

Geometrically the operator A expands when $(\lambda > 1)$ or contracts $(\lambda < 1)$ eigenvectors, but does not rotate them.

Null Space relation

If u is an eigenvector of A, it is in the null space of $A-\lambda I$, which is consequently not invertible.

Eigenvalues and Eigenvectors

Eigenvalues

An eigenvalue λ of a square matrix A satisfies:

$$A\mathbf{u} = \lambda \mathbf{u}$$

for some vector, which we call an eigenvector.

Properties

Geometrically the operator A expands when $(\lambda > 1)$ or contracts $(\lambda < 1)$ eigenvectors, but does not rotate them.

If ${\boldsymbol u}$ is an eigenvector of A, it is in the null space of $A-\lambda I$, which is consequently not invertible.

Eigenvalues and Eigenvectors

Eigenvalues

An eigenvalue λ of a square matrix A satisfies:

$$A\mathbf{u} = \lambda \mathbf{u}$$

for some vector, which we call an eigenvector.

Properties

Geometrically the operator A expands when $(\lambda > 1)$ or contracts $(\lambda < 1)$ eigenvectors, but does not rotate them.

Null Space relation

If u is an eigenvector of A, it is in the null space of $A-\lambda I$, which is consequently not invertible.

More properties

Given the previous relation

The eigenvalues of A are the roots of the equation $|A - \lambda I| = 0$ Remark: We do not calculate the eigenvalues this way

More properties

Given the previous relation

The eigenvalues of A are the roots of the equation $|A - \lambda I| = 0$ Remark: We do not calculate the eigenvalues this way

Something Notable

Eigenvalues and eigenvectors can be complex valued, even if all the entries of ${\cal A}$ are real.

Eigendecomposition of a Matrix

Given

Let A be an $n \times n$ square matrix with n linearly independent eigenvectors $p_1, p_2, ..., p_n$ and eigenvalues $\lambda_1, \lambda_2, ..., \lambda_n$

$$\mathbf{P} = (\mathbf{p}_1 \ \mathbf{p}_2 \cdots \mathbf{p}_n)$$

$$\mathbf{\Lambda} = \begin{pmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \cdots & 0 \\ & & \cdots & \\ 0 & 0 & \cdots & \lambda_n \end{pmatrix}$$

Eigendecomposition of a Matrix

Given

Let A be an $n \times n$ square matrix with n linearly independent eigenvectors $p_1, p_2, ..., p_n$ and eigenvalues $\lambda_1, \lambda_2, ..., \lambda_n$

We define the matrices

$$\mathbf{P} = (\mathbf{p}_1 \ \mathbf{p}_2 \cdots \mathbf{p}_n)$$

$$\Lambda = \begin{pmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \cdots & 0 \\ & & \cdots & \\ 0 & 0 & \cdots & \lambda_n \end{pmatrix}$$

Properties

We have that A satisfies

$$AP = P\Lambda$$

P ic full rank

 $A = P\Lambda P^{-1}$

Properties

We have that A satisfies

$$AP = P\Lambda$$

In addition

 $oldsymbol{P}$ is full rank.

 $A = P \Lambda P^{-1}$

Properties

We have that A satisfies

$$AP = P\Lambda$$

In addition

P is full rank.

Thus, inverting it yields the eigendecomposition

$$A = \mathbf{P}\Lambda \mathbf{P}^{-1}$$

We have that

• Not all matrices are diagonalizable/eigendecomposition. Example

$$\left(egin{array}{cc} 1 & 1 \ 0 & 1 \end{array}
ight)$$

We have that

• Not all matrices are diagonalizable/eigendecomposition. Example

$$\left(\begin{array}{cc} 1 & 1 \\ 0 & 1 \end{array} \right)$$

• $Trace(A) = Trace(\Lambda) = \sum_{i=1}^{n} \lambda_i$

We have that

• Not all matrices are diagonalizable/eigendecomposition. Example

$$\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$$

- $Trace(A) = Trace(\Lambda) = \sum_{i=1}^{n} \lambda_i$
- $\bullet |A| = |\Lambda| = \prod_{i=1}^{n} \lambda_i$

We have that

• Not all matrices are diagonalizable/eigendecomposition. Example

$$\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$$

- $Trace(A) = Trace(\Lambda) = \sum_{i=1}^{n} \lambda_i$
- $\bullet |A| = |\Lambda| = \prod_{i=1}^{n} \lambda_i$
- The rank of A is equal to the number of nonzero eigenvalues.

We have that

Not all matrices are diagonalizable/eigendecomposition. Example

$$\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$$

- $Trace(A) = Trace(\Lambda) = \sum_{i=1}^{n} \lambda_i$
- $\bullet |A| = |\Lambda| = \prod_{i=1}^{n} \lambda_i$
- The rank of A is equal to the number of nonzero eigenvalues.
- If λ is anonzero eigenvalue of A, $\frac{1}{\lambda}$ is an eigenvalue of A^{-1} with the same eigenvector.

We have that

Not all matrices are diagonalizable/eigendecomposition. Example

$$\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$$

- $Trace(A) = Trace(\Lambda) = \sum_{i=1}^{n} \lambda_i$
- $\bullet |A| = |\Lambda| = \prod_{i=1}^{n} \lambda_i$
- ullet The rank of A is equal to the number of nonzero eigenvalues.
- If λ is anonzero eigenvalue of A, $\frac{1}{\lambda}$ is an eigenvalue of A^{-1} with the same eigenvector.
- The eigendecompositon allows to compute matrix powers efficiently:

$$A^{m} = (P\Lambda P^{-1})^{m} = P\Lambda P^{-1}P\Lambda P^{-1}P\Lambda P^{-1}\dots P\Lambda P^{-1} = P\Lambda^{m}P^{-1}$$

- If $A = A^T$ then A is symmetric.
- The eigenvalues of symmetric matrices are rea
- The eigenvectors of symmetric matrices are orthonorma
- ullet Consequently, the eigendecomposition becomes $A=U\Lambda U^T$ for Λ
- ullet The eigenvectors of A are an orthonormal basis for the column space
 - and row space.

- If $A = A^T$ then A is symmetric.
- The eigenvalues of symmetric matrices are real.

- If $A = A^T$ then A is symmetric.
- The eigenvalues of symmetric matrices are real.
- The eigenvectors of symmetric matrices are orthonormal.

- If $A = A^T$ then A is symmetric.
- The eigenvalues of symmetric matrices are real.
- The eigenvectors of symmetric matrices are orthonormal.
- Consequently, the eigendecomposition becomes $A = U\Lambda U^T$ for Λ real and U orthogonal.

- If $A = A^T$ then A is symmetric.
- The eigenvalues of symmetric matrices are real.
- The eigenvectors of symmetric matrices are orthonormal.
- Consequently, the eigendecomposition becomes $A=U\Lambda U^T$ for Λ real and U orthogonal.
- ullet The eigenvectors of A are an orthonormal basis for the column space and row space.

We can see the action of a symmetric matrix on a vector $oldsymbol{u}$ as...

We can decompose the action $A oldsymbol{u} = U \Lambda U^T oldsymbol{\mathsf{u}}$ as

ullet Projection of $oldsymbol{u}$ onto the column space of A (Multiplication by U^T).

coefficient (Multiplication by U).

We can decompose the action $A \boldsymbol{u} = U \Lambda U^T \mathbf{u}$ as

- ullet Projection of u onto the column space of A (Multiplication by U^T).
- ullet Scaling of each coefficient $\langle {m U}_i, {m u} \rangle$ by the corresponding eigenvalue (Multiplication by Λ).
- coefficient (Multiplication by U).

We can decompose the action $A \boldsymbol{u} = U \Lambda U^T \mathbf{u}$ as

- ullet Projection of $oldsymbol{u}$ onto the column space of A (Multiplication by U^T).
- Scaling of each coefficient $\langle U_i, u \rangle$ by the corresponding eigenvalue (Multiplication by Λ).
- Linear combination of the eigenvectors scaled by the resulting coefficient (Multiplication by U).

It would be great to generalize this to all matrices!!!!

We can decompose the action $A \boldsymbol{u} = U \Lambda U^T \mathbf{u}$ as

- ullet Projection of $oldsymbol{u}$ onto the column space of A (Multiplication by U^T).
- Scaling of each coefficient $\langle \boldsymbol{U}_i, \boldsymbol{u} \rangle$ by the corresponding eigenvalue (Multiplication by Λ).
- Linear combination of the eigenvectors scaled by the resulting coefficient (Multiplication by U).

Final equation

$$A\boldsymbol{u} = \sum_{i=1}^{n} \lambda_i \langle \boldsymbol{U}_i, \boldsymbol{u} \rangle \, \boldsymbol{U}_i$$

It would be great to generalize this to all matrices!!!

We can decompose the action $A \boldsymbol{u} = U \Lambda U^T \mathbf{u}$ as

- ullet Projection of $oldsymbol{u}$ onto the column space of A (Multiplication by U^T).
- Scaling of each coefficient $\langle \boldsymbol{U}_i, \boldsymbol{u} \rangle$ by the corresponding eigenvalue (Multiplication by Λ).
- Linear combination of the eigenvectors scaled by the resulting coefficient (Multiplication by U).

Final equation

$$A\boldsymbol{u} = \sum_{i=1}^{n} \lambda_i \langle \boldsymbol{U}_i, \boldsymbol{u} \rangle \, \boldsymbol{U}_i$$

It would be great to generalize this to all matrices!!!

Outline

- Introduction
 - What is a Vector?
- 2 Vector Spaces
 - Definition
 - Linear Independence and Basis of Vector Spaces
 - Norm of a Vector
 - Inner Product
 - Matrices
 - Trace and Determinant
 - Matrix Decomposition
 - Singular Value Decomposition

Every Matrix has a singular value decomposition

$$A = U\Sigma V^T$$

/Vhere

• The columns of O are an orthonormal basis for the column space.

Every Matrix has a singular value decomposition

$$A = U \Sigma V^T$$

Where

- The columns of U are an orthonormal basis for the column space.
- The columns of V are an orthonormal basis for the row space.

Every Matrix has a singular value decomposition

$$A = U \Sigma V^T$$

Where

- The columns of U are an orthonormal basis for the column space.
- The columns of V are an orthonormal basis for the row space.
- The Σ is diagonal and the entries on its diagonal $\sigma_i = \Sigma_{ii}$ are positive real numbers, called the singular values of A.

Every Matrix has a singular value decomposition

$$A = U \Sigma V^T$$

Where

- The columns of U are an orthonormal basis for the column space.
- The columns of V are an orthonormal basis for the row space.
- The Σ is diagonal and the entries on its diagonal $\sigma_i = \Sigma_{ii}$ are positive real numbers, called the singular values of A.

The action of A on a vector u can be decomposed into

$$A\mathbf{u} = \sum_{i=1}^{n} \sigma_i \langle \mathbf{V}_i, \mathbf{u} \rangle \mathbf{U}_i$$

First

The eigenvalues of the symmetric matrix A^TA are equal to the square of the singular values of A:

$$A^TA = V\Sigma U^T U^T\Sigma V^T = V\Sigma^2 V^T$$

Second

The rank of a matrix is equal to the number of nonzero singular values

The largest singular value σ_1 is the solution to the optimization problem

$$\sigma_1 = \max_{oldsymbol{x}
eq 0} rac{\left\|Aoldsymbol{x}
ight\|_2}{\left\|oldsymbol{x}
ight\|_2}$$

First

The eigenvalues of the symmetric matrix A^TA are equal to the square of the singular values of A:

$$A^T A = V \Sigma U^T U^T \Sigma V^T = V \Sigma^2 V^T$$

Second

The rank of a matrix is equal to the number of nonzero singular values.

The largest singular value σ_1 is the solution to the optimization problem

 $\sigma_1 = \max_{\boldsymbol{x} \neq 0} \frac{\|A\boldsymbol{x}\|_2}{\|\boldsymbol{x}\|_2}$

First

The eigenvalues of the symmetric matrix A^TA are equal to the square of the singular values of A:

$$A^T A = V \Sigma U^T U^T \Sigma V^T = V \Sigma^2 V^T$$

Second

The rank of a matrix is equal to the number of nonzero singular values.

Third

The largest singular value σ_1 is the solution to the optimization problem:

$$\sigma_1 = \max_{\boldsymbol{x} \neq 0} \frac{\|A\boldsymbol{x}\|_2}{\|\boldsymbol{x}\|_2}$$

Remark

It can be verified that the largest singular value satisfies the properties of a norm, it is called the spectral norm of the matrix.

In statistics analyzing data with the singular value decomposition is called **Principal Component Analysis**.

Remark

It can be verified that the largest singular value satisfies the properties of a norm, it is called the spectral norm of the matrix.

Finally

In statistics analyzing data with the singular value decomposition is called **Principal Component Analysis**.