操作系统

Operating system

孔维强 大连理工大学

内容纲要

7.2 死锁必要条件

- 一、死锁必要条件
- 二、持有并等待
- 三、循环等待

一、死锁必要条件

・形成死锁的四大必要条件

- 资源以互斥方式使用 (Mutual exclusion)
- 持有并等待 (Hold and wait)
- 已持有资源不可被剥夺 (No preemption)
- 循环等待 (Circular wait)

一、死锁必要条件

・死锁的必要条件1: 资源以互斥方式使用

多路口都做成立交桥,则东西向和南北向车流对路口形成共享 =>就不会形成上述死锁现象

一、死锁必要条件

· 死锁的必要条件3: 已持有的资源不可被剥夺

若Amy以命令姿态要求Adam交出平底锅, =>就不会上述死锁状态会消失

- · Hold-and-Wait
 - 进程已占有一部分资源,并请求更多资源

- · Hold-and-Wait (部分持有资源)
 - 示例: 过窄桥

- ・Hold-and-Wait (部分持有资源)
 - 示例: 过窄桥

左侧车占据S1,但还需要占据S2才能通过 右侧车占据S2,但还需要占据S1才能通过

- · Hold-and-Wait (部分持有资源)
 - 示例: Traffic Jam

三、循环等待

- ・死锁必要条件4: 循环等待
 - 形成一个资源等待环路,且每个进程至少占有环路中下一进程需要的1个资源

本讲小结

- 死锁必要条件

