1. For the common-source amplifier shown in Fig. 1; $R_1 = 10M\Omega$, $R_2 = 10M\Omega$, $R_D = 6K\Omega$, $R_S = 6K\Omega$, $R_L = 10K\Omega$, $R_{Sig} = 100K\Omega$, $V_{DD} = 10V$, $V_A = 50V$, $V_T = 1V$ and $K'\left(\frac{W}{L}\right) = 1\text{mA/V}^2$. Find I_D , V_{DS} , V_{GS} , g_m , input resistance R_i , output resistance R_o , A_{vo} , A_v and the overall voltage gain $G_v(v_o/v_s)$.

Fig. 1

2. The NMOS transistor in the CS amplifier circuit of Fig. 2 is biased to have $g_m = 1 \text{ mA/V}$ and $r_o = 100 \text{ k}\Omega$. Find the overall voltage gain, input resistance, and output resistance.

Fig. 2

3. In Fig. 3, a CS amplifier has I = 5 mA, $R_G = 10$ M Ω , $R_{\rm sig} = 100$ k Ω , $R_D = R_L = 10$ k Ω . Find the values of R_{in} , R_o , and the overall voltage gain ($v_o/v_{\rm sig}$). Given, $\mu_n C_{ox} = 0.1$ mA/V², W/L = 4, V_A=100V.

4. In Fig. 4, a CD amplifier has $g_m = 1$ mA/V and $r_o = 150$ K Ω . Let $R_{\text{sig}} = 1$ M Ω , $R_G = 4.7$ M Ω , and $R_L = 15$ K Ω . Find R_{in} , R_o , the voltage gain (v_o/v_i), and the overall voltage gain (v_o/v_{sig}) without and with r_o taken into account.

Fig. 4

5. In Fig. 5, a CG amplifier has I = 0.5 mA, $R_D = 15$ K Ω , $R_L = 15$ K Ω , $R_{\text{sig}} = 50$ Ω . Find the values of R_{in} , R_o , A_{VO} , A_{V} , G_{V} . Given $K'_n(\text{W/L}) = 1$ mA/V².

Fig. 5

Best Wishes		Dr.	Eman F.	- Sawires
	End		••••	