

Instituto Superior Politécnico de Tecnologias e Ciências

www.isptec.co.ao

DET – DEPARTAMENTO DE ENGENHARIAS E TECNOLOGIAS

Disciplina: Física Geral I

1º Ano/2018

EXERCÍCIOS DE APLICAÇÃO

1ª Parte: Cinemática

- 1- Um trem parte da localidade A com destino a localidade B com velocidade de 60 km/h. Ao mesmo tempo, parte da localidade B, com destino a localidade A, um segundo trem com velocidade de 40 km/h. Na frente deste e ao mesmo tempo, parte nossa heroína, a super – mosca, com a velocidade de 70 km/h. Ela vai ao encontro do trem que parte de A e, ao encontrá-lo, volta com destino a localidade B até encontrar o segundo trem, e assim sucessivamente até quando os dois trens se chocam. Admitindo que a distância de A para B seja igual a 500 km, qual a distância total percorrida pela super – mosca nesse zig-zag até morrer esmagada? R: 350 km.
- 2- O esquema ao lado representa o instante inicial (t = 0s) da perseguição entre veículos A, B e C, que se deslocam com velocidades de 50 m/s, 20 m/s e 60 m/s, respectivamente. Determine após quanto tempo o veículo A se encontrará exactamente entre os veículos B e C, a meia distância deles. R: 7 s.

- 3- Dois carros viajam ao longo de uma estrada recta. O carro A mantém uma velocidade constante de 80 km/h e o carro B mantém uma velocidade constante de 110 km/h. Em t = 0, o carro B está 45 km atrás do carro A.(a) Quanto mais viajará o carro A até ser ultrapassado pelo carro B? (b) Quanto à frente do carro A estará o carro B 30 s após tê-lo ultrapassado? R:(a) 120 km; (b) 0,25 km.
- 4- Um móvel percorreu a metade da distância com a velocidade v_1 . A primeira metade do tempo restante percorreu com a velocidade v_2 e na segunda metade com a velocidade v_3 (o tempo gasto em percorrer a 1ª e a 2ª metade, são iguais). Determinar a velocidade média em todo o percurso.

$$R: v_m = \frac{2v_1(v_2 + v_3)}{2v_1 + v_2 + v_3}$$

5- A posição de uma partícula que se move ao longo do eixo x é dada por $x = 9.75 + 1.5t^3$, onde xestá em centímetros e t em segundos. Calcule (a) a velocidade média durante o intervalo de tempo de t = 2 s a t = 3 s; (b) a velocidade instantânea em t = 2 s; (c) a aceleração média durante

- o intervalo de tempo de t = 2 s a t = 3 s (d) a aceleração instantânea em t = 2 s. R: (a) 28,5 cm/s; (b) 18 cm/s; (c) 22,5 cm/s²; (d) 18 cm/s².
- 6- A posição de uma partícula que se desloca ao longo do eixo dos xx é definida pela relação $x = A + Bt + Ct^2 + Dt^3$ (SI), de C = 0.14 m/s² e D = 0.01 m/s³. Calcular o tempo ao fim do qual a partícula terá a aceleração a = 1 m/s². Encontrar a aceleração média da partícula durante este intervalo de tempo. *R*: 12 s; 0.64 m/s².
- 7- Um veículo eléctrico parte do repouso e acelera em linha recta a uma taxa de 2 m/s² até atingir a velocidade de 20 m/s. Em seguida, o veículo desacelera a uma taxa de 1 m/s² até parar. (a) Quanto tempo transcorre entre a partida e a parada? (b) Qual é a distância percorrida pelo veículo desde a partida até a parada? *R:* (a) 30 s; (b) 300 m.
- 8- Um estudante quer apanhar um autocarro para ir à universidade. O autocarro pára no tráfego. O estudante começa a correr para o autocarro com uma velocidade de 6 m/s. Quando ele se encontra a 15 m do autocarro, este começa a acelerar com a = 1 m/s². Quantos segundos necessita para o alcançar? Explicar o resultado. **R:** 3,5 s e 8,4 s.
- 9- A distância entre duas estações de metro é de 1,5 km. Percorrendo a 1ª metade do caminho, o comboio moveu-se com movimento uniformemente acelerado e percorrendo a 2ª, com movimento uniformemente retardado, sem que varie o módulo da aceleração. A velocidade máxima do comboio é de 50 km/h. Encontrar o módulo da aceleração e o tempo gasto pelo comboio para percorrer a distância referida. *R:* 0,13 m/s² e 3,6 minutos.
- 10-Um carro partindo do repouso, mantém uma aceleração de 4 m/s² durante 4 s. Durante os 10 s seguintes ele tem um movimento uniforme. Quando os freios são aplicados, o carro passa a ter um movimento uniformemente retardado com aceleração de 8 m/s², até parar. Fazer um gráfico da velocidade em função do tempo e provar que a área limitada pela curva e pelo eixo dos tempos é igual a distância total percorrida. *R: 208 m.*
- 11- Um foguete de teste é lançdo por aceleração ao longo de uma inclinação de 200 m, a 125 m/s², partindo do repouso no ponto A (ver figura). A inclinação se ergue a 35° sobre a horizontal e, no instante em que o foguete parte dela, os motores de desligam e ele fica sujeito somente a força de gravidade (desprezar a resistência do ar). Determine (a) a altura máxima sobre o solo atingida pelo foguete e (b) o maior alcance horizontal do foguete passando-se o ponto A. R: (a) 123 m; (b) 280 m.

12-Uma pedra é lançada verticalmente para cima a partir do solo no instante t = 0. Em t = 1,5 s, a pedra ultrapassa o alto de uma torre; 1 s depois, atinge a altura máxima. Qual é a altura da torre? *R: 26 m.*

- 13-Uma pedra é lançada verticalmente para baixo a partir de uma altura de 30 m, com velocidade inicial de 12 m/s. Determinar o tempo necessário para a pedra atingir o solo e a velocidade da pedra nesse instante. *R:* 1,536 s; 27 m/s.
- 14- Uma pedra é lançada verticalmente para cima a partir da borda do terraço de um edifício. A perda atinge a altura máxima 1,6 s após ter sido lançada e, em seguida, caindo paralelamente ao edifício, chega ao solo 6 s após ter sido lançada. (a) Com que velocidade a pedra foi lançada? (b) Qual foi a altura máxima atingida em relação ao terraço? (c) Qual é a altura do edifício? *R*: (a) 15,7m/s; (b) 12,5 m; (c) 82,3 m.
- 15-Deixa-se cair dois diamantes da mesma altura, com 1 s de intervalo. Quanto tempo após o primeiro diamante começar a cair a distância entre os diamantes é 10 m? *R: 1,5 s.*
- 16-Um projéctil é disparado horizontalmente, com inicial de valor 300 m/s, de um ponto situado 500 m acima do solo. Determine: (a) o tempo em que o projéctil fica no ar; (b) o alcance; (c) a velocidade ao atingir o solo; (d) a velocidade do projéctil a 25 m do solo? (e) o ângulo que forma o vector velocidade ao chegar ao solo; (f) a equação cartesiana da trajectória do projéctil. R: (a) 10,1 s; (b) 3030 m; (c) 315,9 m/s; (d) 315 m/s; (e) 18,26°; (f) y = 500 5,44. 10⁻⁵x².
- 17-Um projéctil é disparado do solo com velocidade de valor 200 m/s segundo um ângulo de 35° com a horizontal. Determine: (a) os vectores velocidade e posição do projéctil, bem como as suas normas, decorridos 15 s após o lançamento. Nesse instante o projéctil está a subir ou a descer?; (b) o tempo de voo; (c) o alcance. R: (a) $\vec{v} = 163$, $8\vec{\iota} 32$, $3\vec{\jmath}$ m/s $e \vec{r} = 2457$, $46\vec{\iota} + 618$, $23\vec{\jmath}$ m; 166, 95 m/s e 2534 m; (b) 23, 4 s; (c) 3833, 6 m.
- 18- A ½ de sua altura máxima, a velocidade de um projéctil é ¾ da sua velocidade inicial. Qual foi o ângulo de lançamento? *R: 69,3°*.
- 19-Um peixe-arqueiro lança uma gota d'água da superfície de um pequeno lago, a um ângulo de 60° acima da horizontal. Seu alvo é uma apetitosa aranha sentada em uma folha distante 50 cm, para leste, em um ramo que está a uma altura de 25 cm acima da superfície da água. O peixe está a tentar derrubar a aranha ana água para comê-la. (a) Para que ele seja bem sucedido, qual deve ser a velocidade inicial da gota d'água? (b) Ao atingir a aranha, a gota d'água está a subir ou a descer? R: (a) 2,822 m/s; (b) ______.
- 20-Um corpo é lançado de uma altura de 50 m com velocidade de 40 m/s que faz um ângulo de 37° com a horizontal. Determine: (a) a altura máxima atingida pelo corpo; (b) o tempo necessário pra chegar ao solo; (c) o alcance; (d) a velocidade com que o corpo chega ao solo; (e) ângulo que faz o vector velocidade quando o corpo atinge o solo. R: (a) 79,6 m; (b) 6,5 s; (c) 207,6 m; (d) 50,9 m/s; (e) 51°
- 21-Um canhão dispara sucessivamente dois projécteis a partir de um mesmo ponto no solo, com velocidades iniciais iguais a v_0 porém em direcções que formam ângulos α e β com a horizontal, num local em que a gravidade vale g. Determine o intervalo de tempo que deve ocorrer entre os disparos a fim de que os projécteis colidam entre si. R: $t_2 t_1 = \frac{2v_0}{g} \cdot \frac{sen(\alpha \beta)}{cos\alpha + cos\beta}$.

- 22-Um ponto move-se por uma circunferência de raio 2 cm. A variação do percurso em função do tempo é dada pela equação $s = Ct^3$, onde C = 0.1 cm/s³. Achar as acelerações normal e tangencial no momento em que a velocidade linear do ponto é de 0.3 m/s. *R: 4.5 m/s*²; 0.06 m/s².
- 23-Um ponto material movimenta-se numa trajectória circular de raio 2 m com aceleração $\alpha(t) = 120t^2 48t + 16$ (SI). Sabendo que em t = 0 o referido ponto material se encontrava em repouso e na posição angular $\varphi_0 = 0$, determine a velocidade angular e a posição angular do ponto material em função do tempo, bem como as componentes tangencial e normal da aceleração no instante t = 1 s.R: $\omega(t) = 40t^3 24t^2 + 16t$ rad/s; $\varphi(t) = 10t^4 8t^3 + 8t^2$ rad; $a_t = 176$ m/s²; $a_n = 2048$ m/s².
- 24-Um gato pula em um carrossel que está descrevendo um M.C.U. No instante $t_1 = 2$ s, a velocidade do gato é $\vec{v}_1 = 3\vec{i} + 4\vec{j}$, medida em um sistema de coordenadas xy. No instante $t_2 = 5$ s, a velocidade é $\vec{v}_2 = -3\vec{i} 4\vec{j}$. Quais são (a) o módulo da aceleração centrípeta do gato e (b) a aceleração média do gato no intervalo de tempo $t_2 t_1$, que é menor que um período de rotação? $R: (a) 5,24 \text{ m/s}^2; (b) 3,33 \text{ m/s}^2.$
- 25-Um corpo é lançado com a velocidade inicial de 10 m/s sob um ângulo $\Theta = 45^{\circ}$ em relação ao horizonte. Encontrar a aceleração normal, a aceleração tangencial e o raio de curvatura da trajectória 1 s após o início do movimento. *R:* 9,136 m/s²; 3,55 m/s²; 6,3 m.
- 26-Girando com aceleração angular constante, uma roda atinge a frequência de 720 rpm decorrido 1 minuto após o início da rotação. Calcular a aceleração angular da roda e o número de volas da roda durante este intervalo de tempo. *R:* 1,26 rad/s² e 360 rotações.
- 27-Girando com movimento uniformemente retardado, uma roda reduziu a sua frequência de 300 rpm até 180 rpm, ao decorrer 1 minuto. Calcular a aceleração angular da roda e o número de volas da roda durante este intervalo de tempo. *R:* 1,26 rad/s² e 360 rotações.
- 28-Uma embarcação turística faz a viagem entre duas localidades A e B que distam 6 km na mesma margem de um rio cuja corrente tem a velocidade de 3 km/h, dirigida de A para B. A viagem de ida e volta entre as localidades demora 2 h 40 min, quando o motor está a funcionar em potência máxima. Quanto tempo demora a viagem de B para A? *R: 120 min*.
- 29- A figura ao lado representa a vista aérea de um trecho rectilíneo de um alinha férrea. Duas locomotivas a vapor, A e B, deslocam-se em sentidos opostos com velocidades constantes de 50,4 km/h e 72 km/h, respectivamente. Uma vez que AC corresponde ao rasto da fumaça do trem A, BC ao rasto da fumaça de B e que AC = BC, determine a velocidade do vento. Despreze a distância entre os trilhos de A e B. *R: 5 m/s*.

2ª Parte: Dinâmica (Leis de Newton)

30- Determine as tensões e as massas desconhecidas da figura ao lado. Os ângulos indicados são de 60° e a massa conhecida na figura (c) é de 6 kg. R: (a) 60 N; 52 N; 5,3 kg; (b) 46 N; 46 N; 4,7 kg; (c) 34 N; 59 N; 34 N; 3,5 kg.

- 31-Um bloco de gelo de 8 kg é libertado a partir do repouso no topo de uma rampa sem atrito de comprimento igual a 1,5 m e desliza para baixo atingindo uma velocidade de 2,5 m/s na base da rampa. (a) Qual é o ângulo entre a rampa e a horizontal? (b) Qual seria a velocidade escalar do gelo na base, se o movimento sofresse a oposição de uma força de atrito de 10 N, paralela a superfície da rampa? *R:(a)* 12,3°; (b) 1,59 m/s.
- 32- Na figura ao lado, dois corpos de massas $m_1 = 2$ kg, $m_2 = 4$ kg deslizam para baixo em um plano inclinado com ângulo $\Theta = 45^{\circ}$, ligados por uma haste de massa desprezível e paralela ao plano. Os coeficientes de atrito entre os corpos e o plano são $\mu_1 = 0.2$ e $\mu_2 = 0.1$, respectivamente. Determinar a aceleração com que os corpos se movimentam e a tensão na haste. *R*: 6 m/s²; 0.9 N.

- 33- Um caixote de 68 kg é arrastado sobre um piso, puxado por uma corda inclinada 15º acima da horizontal. (a) Se o coeficiente de atrito estático é 0,50, qual é o valor mínimo do módulo da força para que o caixote comece a se mover? (b) Se $\mu_K = 0,35$, qual é o módulo da aceleração inicial do caixote? *R*: (a) 304 N; (b) 1,3 m/s².
- 34- Na figura ao lado, o bloco de 20 kg, com uma polia presa a ele, desliza ao longo de um trilho sem atrito. Ele está conectado, por um um fio de massa desprezível, a um bloco de 5 kg. Determinar a aceleração de cada bloco e a tensão no fio. *R*: 2,45 *m/s*² e 4.9 *m/s*²: 25 *N*.

- 35- Através de uma polia, passa um fio em que nas suas extremidades estão penduradas as cargas m_1 = 1,3 kg e m_2 = 2,8 kg. A velocidade inicial das cargas é nula. Qual será o espaço percorrido pelos corpos em tempo t = 2 s? Qual será a força de tensão no fio? *R*: 7,2 *m*; 17,4 *N*.
- 36- Na figura ao lado, o bloco de 2 kg é colocado sobre um bloco de 4 kg que está sobre uma mesa sem atrito. Os coeficientes de entre os blocos são μ_s = 0,3 e μ_k = 0,2. (a) Qual é a máxima força horizontal F que pode ser aplicada ao bloco de 4 kg se o bloco de 2 kg não deve deslizar? (b) Se F tem a metade deste valor, encontre a aceleração de cada bloco e a força de atrito que actua sobre cada bloco. (c) Se F tem o dobro do valor encontrado em (a), encontre a aceleração de cada bloco. R: (a) 17,66 N; (b)1,472 m/s² e 2,9 N; c) 2 m/s² e 7,8 m/s².

37- A figura ao lado mostra duas polias fixas ao tecto e uma polia móvel, toas de massas desprezíveis. Se as massas das caixas a, b e c, são 3 kg, 2 kg e 1 kg, determinar a aceleração de cada caixa. R: - 6 m/s²; - 2 m/s²; 2 m/s².

38- Na figura ao lado, todos os fios e polias são ideais. As massas A, B, C e D são, respectivamente, m, 2m, 3m e 6m. Determine a Tensão total e a aceleração adquirida por cada bloco. R: Tensão = 48mg/33; acelerações: - 15g/33; 9g/33; g/33; g/33.

Na figura ao lado, os blocos A e B pesam 45 N e 25 N, respectivamente. Suponha que o bloco B desça com velocidade constante. (a) Determine o coeficiente de atrito entre o bloco A e o topo da mesa. (b) Suponha que um gato, também com peso de 45 N, caia no sono sobre o bloco A, Se o bloco B agora move-se livremente, qual é a sua aceleração? R: (a) 0,556; (b) - 2,13 m/s².

Na figura ao lado, uma bola de 1,34 kg é ligada por meio de dois fios de massa desprezível, cada um com comprimento L=1,7 m, a uma haste vertical giratória. Os fios estão marcados à haste a uma distância d=1,7 m um do outro e estão esticados. A tensão do fio de cima é 35 N. Determine (a) a tensão do fio de baixo; (b) o módulo da força resultante \vec{F}_R a que está sujeita a bola; (c) a velocidade escalar da bola; (d) a direcção da \vec{F}_R . R: (a) 8,74 N; (b) 37,9 N; (c) 6,45 m/s; (d) Radial, para o centro do movimento circular.

Emanuel Mango

- 41-Uma curva de 150 m de raio é inclinada de um ângulo de 10°. Um carro de 800 kg percorre a curva a 85 km/h sem derrapar. Despreze os feitos de arraste do ar e de atrito de rolamento. Encontre (a) a força normal exercida pelo pavimento sobre os pneus, (b) a força de atrito exercida pelo pavimento sobre os pneus, (c) o coeficiente de atrito estático mínimo entre o pavimento e os pneus. R: (a) 8,245 kN; (b) 1,565 kN; (c) 0,19.
- 42-Num pêndulo cónico, uma esfera de massa m = 12 kg, presa à extremidade de um fio de comprimento l=1,5 m e massa desprezável, descreve uma trajectória circular num plano horizontal com velocide angular $\omega=3$ rad/s. Calcular o valor da tensão na corda e o ângulo que ela faz com a vertical. $R:43,45^\circ$; 162 N.
- 43-Uma estrada tem 13,6 m de largura. Calcule a diferença de nível entre as bordas exterior e interior da estrada para que um carro possa, a 60 m/s (sem estar sujeito à forças laterais), percorrer uma curva com 600 m de raio. R: 7,10 m.
- 44- Uma curva de 30 m de raio é inclinada de forma que um carro de 950 kg, viajando a 40 km/h, pode percorrê-la mesmo se a estrada está tão congelada que o coeficiente de atrito estático é aproximadamente zero. Você é encarregado de informar à polícia local o intervalo de valores na qual um carro pode percorrer esta curva sem derrapar. Despreze os efeitos de arraste do ar e de atrito de rolamento. Se o coeficiente de atrito estático entre a estrada e os pneus é 0,3, qual é o intervalo de valores que você informa? $R: 5,6 \text{ m/s} \leq v \leq 16 \text{ m/s}$ ou $20 \text{ km/h} \leq v \leq 56 \text{ km/h}$.

3ª Parte: Trabalho, Potência, Energia e Lei de Conservação

- 45-(a) Que força constante deve ser exercida pelo motor de um automóvel cuja massa é de 1500 kg para que a sua velocidade aumente de 4 km/h para 40 km/h, em 8 s? (b) Determine a variação de energia cinética. (c) Determine o trabalho realizado pela força. (d) Calcule a potência média do motor. *R*: (a) 1875 N; (b) 91500 J; (c) 91500 J; (d) 11437,5 W.
- 46-Uma partícula de massa 200 g encontra-se em repouso na origem do sistema de eixos quando passa a ser actuada pela força definida pela função $\vec{F} = 3t\vec{i} + 2t\vec{j}$ (SI). Calcule: (a) a potência instantânea posta em jogo no sistema; (b) o trabalho realizado pela força em 10 s. R: (a) $32,5t^3$ W; (b) 81,25 kJ.
- 47- Um corpo com 20 kg de massa é lançado para cima sob um ângulo de 70° em relação a horizontal, com velocidade inicial de 50 m/s. Determinar (a) E_c e E_p 3 s depois, (b) E_c e E_p a 100 m de altitude e (c) a altitude do corpo quando E_c é 80% do valor inicial. *R*: (a) 6,02 kJ; (b) 19 kJ; (c) 25,6 m.

- 48-Um objecto desloca-se no plano xy submetido à acção de uma força conservativa descrita pela função energia potencial dada por $E_p(x,y) = \alpha \left(\frac{1}{x^2} + \frac{1}{y^2}\right)$, onde α é uma constante positiva. Deduza uma expressa para força em termos dos vectores unitários. $R: \vec{F} = 2\alpha \left(\frac{1}{x^3}\vec{i} + \frac{1}{v^3}\vec{j}\right)N$.
- 49-Em uma corrida, um pai tem a metade da energia cinética do filho, que tem metade da massa do pai. Aumentando a velocidade em 1 m/s, o pai passa a ter a mesma energia cinética do filho. Qual é a velocidade escalar inicial (a) do pai e (b) do filho? R: (a) 2,4 m/s; (b) 4,8 m/s.
- 50-Um pacote de 5 kg desliza para baixo de uma rampa inclinada 12° abaixo da horizontal. O coeficiente de atrito cinético entre o pacote e a rampa é $\mu_c = 0.31$. Calcule (a) o trabalho total realizado sobre o pacote. (b) Se o pacote possui uma velocidade de 2.2 m/s no topo da rampa, qual é a velocidade depois de descer 1.5 m ao longo da rampa? R: (a) 7J; (b) 1.4 m/s.
- 51- Um ponto material com 10 g de massa move-se por uma circunferência de raio igual a 6,4 cm. Calcular a aceleração tangencial do ponto, sabendo que no fim da segunda rotação, após o início do movimento, a sua energia cinética é de 0,8 mJ. *R: 0,1 m/s*².
- 52- Um bloco de 2,4 kg é largado sobre uma mola (fig) de uma altura de 5 m. Quando o bloco está momentaneamente em repouso, a mola está comprimida de 25 cm. Determine a velocidade do bloco quando a compressão da mola é de 15 cm. *R: 10 m/s*.

Uma pedra com massa de 0,12 kg está presa a uma fio de 0,8 m de comprimento, de massa desprezível, formando um pêndulo (ver figura). O pêndulo oscila até um ângulo de 45° com a vertical. Despreze a resistência do ar. (a) Qual é a velocidade da pedra quando ela passa pela posição vertical? (b) Qual é a tensão do fio nessa posição? *R:* (a) 2,14 m/s; (b) 1,86 N.

54. Um carrinho de montanha russa, de 1500 kg, parte do repouso de uma altura H = 23 m (fig) acima da base de um laço de 15 m de diâmetro. Se o atrito é desprezível, determine a força para baixo exercida pelos trilhos sobre o carrinho, quando este está no topo do laço, de cabeça para baixo *R:* 16,7 kN.

Na figura ao lado, um bloco de massa m = 12 kg é liberado a partor do repouso em um plano inclinado sem atrito de ângulo θ = 30°. Abaixo do bloco há uma mola que pode ser comprimida de 2 cm por uma força de 270 N. O bloco pára momentaneamente após comprimir a mola em 5,5 cm.

(a) que distância o bloco desce ao longo do plano da posição de repouso inicial até ao ponto em que pára momentaneamente? (b) Qual é a velocidade do bloco no momento em que entra em contacto com a mola? *R*: (a) 0.347 m; (b) 1.69 m/s.

Emanue! INan go

56- Na figura ao lado, um pequeno bloco parte do ponto A com uma velocidade de 10 m/s. O percurso é sem atrito até chegar o trecho de comprimento L, onde o coeficiente de atrito cinético é 0,75. As velocidades nos pontos B e C são 15 m/s e 13 m/s. (a) Determinar as alturas h₁ e h₂. (b) Qual a distância que ele percorre no trecho com atrito, onde pára? *R*: (a) 6,38 m e 2,86 m; (b) 11,5 m.

57- Um bloco desliza ao longo de uma pista até chegar a um trecho de comprimento L = 0,75 m, que começa a uma altura h = 2 m em uma rampa de ângulo θ = 30°. Nesse trecho, o coeficiente de atrito cinético é 0,40. O bloco passa pelo ponto A com uma velocidade de 8 m/s. Se o bloco pode chegar ao ponto B (onde termina o atrito), qual é a sua velocidade neste ponto? *R*: 3,5 m/s.

58- Na figura ao lado, um bloco de massa m = 2,5 kg desliza de encontro a uma mola de constante elástica k = 320 N/m. O bloco pára após comprimir a mola 7,5 cm. O coeficiente de atrito cinético entre o bloco e o piso é de 0,25. Enquanto o bloco está em contacto com a mola e sendo levado ao repouso, determine (a) o trabalho realizado pela mola e (b) o trabalho da força de atrito. (c) Qual é a velocidade do bloco imediatamente antes de chocar-se com a mola? *R*:

(a) 0,9 *J*; (b) 0,46 *J*; (c) 1 m/s.

59- Uma partícula pode deslizar em uma pista com extremidades elevadas e uma parte central plana, como mostra a figura ao lado. A parte plana tem um comprimento L = 40 cm. Os trechos curvos da pista não possuem atrito, mas na parte plana o coeficiente de atrito cinético é 0,20. A partícula é liberada a partir do repouso no ponto A, que está a uma altura L/2. A que distância da extremidade esquerda da parte plana a partícula finalmente para? R: 20 cm.

Emanuel Mang

60- O sistema de duas latas de tinta ligadas por uma corda leve, é libertado do estado de equilíbrio quando a lata de 12 kg está a 2 m acima do solo (figura ao lado). Use o princípio de conservação de energia para achar a velocidade dessa lata quando ela atinge o solo. Desprezar o atrito e o momento de inércia da polia. *R: 4,4 m/s.*

4ª Parte: Sistema de Partículas e Conservação do Momento Linear

- 61-A força F = (10 + 2t) N, age sobre um corpo de massa 10 kg. (a) Determine a varição da quantidade de movimento e a velocidade do corpo após 4 s, assim como o impulso transmitido ao corpo; (b) Durante quanto tempo a força deverá agir sobre o corpo para que o seu impulso seja de 200 Ns? R: (a) 56 kgm/s; 5,6 m/s; 56 Ns; (b) 10 s.
- 62- A figura representa um pêndulo balístico de massa M = 1,4 kg utilizado para medir a velocidade de projécteis. Uma bala de massa m = 10 g entra no pêndulo com uma velocidade horizontal, ficando incrustada. Ele sobe até a uma altura h = 10 cm relativamente a posição de equilíbrio. Determine a velocidade da bala. R: 197,4 m/s.

- 63- Três partículas de massas 1 kg, 5 kg e 4 kg, respectivamente, movem-se sob acção de uma força tal que as suas posições relativas a um referencial fixo são dadas pelos vectores $\vec{r}_1 = 2t\vec{\iota} 3\vec{\jmath} + t^2\vec{k}$, $\vec{r}_2 = (t+1)\vec{\iota} + 3t\vec{\jmath} 4\vec{k}$ e $\vec{r}_3 = t^2\vec{\iota} t\vec{\jmath} + (2t-1)\vec{k}$ (SI). Determine, para o instante t=1 s: (a) a velocidade do centro de massa do sistema de partículas; (b) O momento linear total do sistema de partículas. R: (a) 1, 5 $\vec{\iota}$ + 1, 1 $\vec{\jmath}$ + \vec{k} m/s; (b) 15 $\vec{\iota}$ + 11 $\vec{\jmath}$ + 10 \vec{k} .
- 64-Dois bastões finos idênticos e uniformes, de comprimento L e massa m cada um, estão unidos pelas extremidades, o ângulo de junção sendo 90°. Determine a localização do centro de massa (em termos de L) desta configuração em relação à origem colocada na junção. *R:* (¼ *L;* ¼ *L*).

- 65-Uma bola de 0,06 g é atirada directamente contra uma parede com uma velocidade de 10 m/s. Ela rebate de volta com uma velocidade de 8 m/s. (a) Qual é o impulso exercido sobre a parede? (b) Se a bola está em contacto com a parede por 3 ms, qual é a força média exercida sobre a parede pela bola? (c) A bola rebatida é pegada por uma jogadora que leva ao repouso. No processo sua mão se move 0,5 m para trás. Qual é o impulso recebido pela jogadora? (d) Qual é a força média exercida sobre a jogadora pela bola? R: (a) 1,1 Ns; (b) 0,36 kN; (c) 0,48 Ns; (d) 3,8 N.
- 66- Um menino atira com sua arma de chumbo contra um pedaço de queijo que está sobre um bloco de gelo. Para um determinado tiro, o projéctil de 1,2 g fica encravado no queijo, fazendo-o deslizar 25 cm antes de parar. Se a velocidade com que o projéctil sai da arma é de 65 m/s e o queijo tem uma massa de 120 g, qual é o coeficiente de atrito entre o queijo e o gelo. R: 0,084.
- 67-Uma partícula de massa 1 kg, inicialmente em repouso, explode dividindo-se em três pedaços. Dois pedaços, de massas 200 g e 400 g, adquirem velocidades de 300 m/s e 200 m/s, respectivamente, em direcções perpendiculares entre si. Determine o módulo, adirecção e o sentido da velocidade do terceiro estilhaço. R: 250 m/s; 53°.
- 68- Um corpo de massa 20 kg move-se no sentido positivo do eixo X com velocidade de 200 m/s, quando uma explosão interna o divide em três partes. Uma parte, de 10 kg, afasta-se com velocidade de 100 m/s no sentido positivo do eixo Y. Um sengundo fragmento, de massa 4 kg, move-se no sentido negativo do eixo X com velocidade de 500 m/s. Ignorando os efeitos da gravidade, calcule: (a) a velocidade do terceiro fragmento; (b) a energia libertada na explosão. R: (a) $1000\vec{\imath} - 166, 7\vec{\jmath} \rightarrow 1013, 8 \text{ m/s}$; (b) 3,2 MJ.
- 69- Um corpo com 2 kg de massa sofre uma colisão elástica com um corpo em repouso e continua a se mover na mesma direcção e sentido, mas com um quarto da velocidade inicial. (a) Qual é a massa do outro corpo? (b) Qual é a velocidade do centro de massa dos dois corpos se a velocidade inicial do corpo de 2 kg era 4 m/s? R: (a) 1,2 kg; (b) 2,5 m/s.
- 70-Dois carritos A e B ($m_A = 120$ g) aproximam-se um do outro com as seguintes velocidades de 0,12 m/s e 0,15 m/s. Determine a massa do carrito B, quando os dois se movem depois do choque não elástico: (a) na direcção que tinha A antes do choque com velocidade de 0,08 m/s; (b) na direcção que tinha B antes do choque com velocidade de 0,06 m/s. R: (a) 21 g; (b) 240 g.
- 71-[3] O bloco 1, de massa m₁ e velocidade 4 m/s, que desliza ao longo de um eixo X em um piso sem atrito, sofre uma colisão elástica com o bloco 2 de massa $m_2 = 0.4m_1$, inicialmente em repouso. Os dois blocos deslizam para uma região em que o coeficiente de atrito cinético é 0,5, onde acabam parando. Que distância dentro dessa região é percorrida (a) pelo bloco 1 e (b) pelo bloco 2? R: (a) 0,3 m; (b) 3,3 m.
- 72-Dois blocos de gelo deslizam sobre a superfície sem atrito de um lago congelado. O bloco A, de massa 5 kg, se move com velocidade $v_{A1} = 2$ m/s paralelamente ao eixo OX. Ele colide com o bloco B, de massa 3 kg que está inicialmente em repouso. Depois do repouso, verifica-se que a velocidade v_{A2} = 1 m/s forma um ângulo de 30° com a direcção inicial. Qual a velocidade final do bloco B? R: 2,06 m/s.

Na figura ao lado, o bloco 1 de massa m1 desliza sem 💻 Emanuel Mango velocidade inicial ao longo de uma rampa sem atrito a partir de uma altura h = 2.5 m e colide com o bloco 2 de massa $m_2 = 2m_1$, inicialmente em repouso. Após a colisão, o bloco 2 desliza em uma região onde o

5ª Parte: Dinâmica do Corpo Rígido (Dinâmica do Movimento de Rotação)

74-0,5 m

Na figura ao lado está representado um dispositivo mecânico ($m_A = 0.3 \text{ kg}, m_B =$ 0.1 kg, $m_C = 0.2 \text{ kg}$). Determine o momento de inércia em relação ao eixo que passa no ponto A e o eixo BC. Fica mais fácil girar o dispositivo através do eixo A ou pelo eixo BC? $R: I_A = 0.057$ kgm^2 ; $I_{BC} = 0.048 \ kgm^2$.

Na figura ao lado, duas partículas, ambas de massa m = 0,85 kg, estão ligadas uma a outra, e a um eixo de rotação no ponto O, por duas barras finas, ambas de comprimento d = 5.6 cm e massa M = 1.2 kg. O conjunto gira em torno do eixo de rotação com velocidade angular de $\omega = 0.3$ rad/s. Determine: (a) o momento de inércia do conjunto em relação ao ponto O; (b) a energia cinética do conjunto. R: (a) 0,023 kgm²; (b) 1,1.10⁻³ J.Sugestão: Ver tabela dos momentos de inércia.

- 76- Um disco homogénio ($I = mR^2/2$) de raio 0,2 m e massa 5 kg, gira em torno do eixo que passa pelo seu centro e perpendicular ao plano do disco. A dependência do ângulo de giro do disco com o tempo é dada pela equação $\varphi = A + Bt + Ct^2$, onde $C = 2 \text{ rad/s}^2$. Contra a rotação se impõe o momento da força de atrito $M_{fat} = 1$ Nm. Determinar o valor da força tangencial aplicada a borda do disco. *R*: 7 *N*.
- 77- Uma roda de massa 0,5 kg com momento de inércia de 0,035 kgm² roda inicialmente com frequência de 30 r.p.s. Desacelera e pára após 163 rotações. Determine o valor do momento da força (suposta constante) que contrariou o movimento. R: 0,61 Nm.
- 78-Um disco ($I = mR^2/2$) de massa 60 kg e raio 1,8 m pode girar em torno do eixo perpendicular ao plano do disco e que passa pelo seu centro de massa. Uma força de intensidade 19,6 N é aplicada

Página 12 Emanuel Mango

tangencialmente à borda do disco. Para t = 5 s, determine: (a) aceleração angular do disco; (b) momento angular; (c) energia cinética. **R:** (a) 0,36 rad/s²; (b) 175 kgm²/s; (c) 157 J.

- 79- Quando se executa um trabalho de 1000 J sobre uma roda de pás o valor da sua frequência aumenta de 60 r.p.m para 180 r.p.m. Qual é o valor do momento de inércia da roda? **R: 6,33** kgm^2 .
- 80-**Um conjunto formado por uma roda e uma haste cilíndrica, possuindo um momento de inércia total de 0,002 kgm², encontra-se suspenso de modo que a haste fique segundo a direcção horizontal. O conjunto roda devido à existência de uma massa de 0,6 kg suspensa de um fio enrolado em torno da haste. O diâmetro da haste é 4 cm e o fio não desliza sobre a periferia da haste. Se a massa partir do repouso, que distância deverá ela cair de modo a comunicar ao conjunto "roda + haste" uma frequência de 2 Hz? *R: 0,03 m.*
- 81 O corpo rígido da figura ao lado é formado por três partículas ligadas por barras de massa desprezável. O corpo gira em torno de um eixo perpendicular ao plano das três partículas que passa pelo ponto P. Se M = 0,4 kg, a = 30 cm e b = 50 cm, qual é o trabalho necessário para levar o corpo do repouso até a velocidade angular de 5rad/s? *R: 2,6 J.*

82- Determinar a velocidade de um cilindro de raio R e massa m que rola sem escorregar a patir do topo de um plano inclinado. $R: v = \sqrt{\frac{2gh}{1 + \frac{I}{mR^2}}}$

- 84- Um fio é enrolado diversas vezes em torno da periferia de um pequeno aro (I = mR²) de raio 0,08 m e massa 0,18 kg. Se a extremidade livre da corda é mantida fixa e o aro é libertado do repouso, calcule: (a) a tensão no fio enquanto o aro desce a medida que a corda se desenrola; (b) o tempo que o aro leva a descer 75 cm; (c) a velocidade angular do aro no momento que desce 75 cm. *R*: (a) 0,9 N; (b) 0,55 s; (c) 34,4 rad/s.
- 85-Dois pesos, de massas $m_1 = 2$ kg e $m_2 = 1$ kg, estão ligados por um fio imponderável que passa através de um bloco cilíndrico imóvel ($I = mR^2/2$) de massa M = 0.8 kg. Determinar a aceleração dos pesos e as forças de tensão no fio. Desprezar o atrito. *R*: 2,9 m/s²; 13,8 N e 12,7 N.

Um bloco de momento de inércia $I = 0.01 \text{ kg.m}^2$ está fixo no topo de um plano inclinado (ver figura). Corpos de massas $m_1 = 3 \text{ kg}$ e $m_2 = 4 \text{ kg}$ estão ligados por um fio que passa através do bloco. O ângulo de base do plano inclinado é 30° . O coeficiente de atrito entre o corpo de massa m_1 e o plano é de 0.25. Determinar as forças de tensão do fio T_1 e T_2 , se o corpo de massa m_2 desce com movimento acelerado. O bloco é um cilindro homogéneo de raio R = 0.1 m. R: 27.85N e 30.12 N.

- 87-Um motor elétrico exerce um torque constante de 10 Nm sobre um esmeril montado em seu eixo. O momento de inércia é de 2 kgm². Sabendo que o sistema começa a se mover a partir do repouso, calcule o trabalho realizado pelo motor em 8 s e a energia cinética no instante final. Qual é a potência média desenvolvida pelo motor? *R: 1600 J; 1600 J; 200 W*.
- 88-Uma roda de raio 30 cm e de massa 3 kg, rola desde o topo do plano inclinado de comprimento 5 m que faz um ângulo de 25° com a horizontal. Determine o momento de inércia dela, se sua velocidade na base do plano inclinado for de 4,6 m/s. *R:* 0,259 kgm².
- 89- Uma casca esférica homogénea (I = 2MR²/3) de massa M = 4,5 kg e raio R = 8,5 cm pode girar em torno de um eixo vertical sem atrito. Uma corda de massa desprezável está enrolada no equador da casca, passa por uma polia de momento de inércia I = 3.10⁻³ kgm² e raio r = 5 cm e está presa a um pequeno objecto de massa m = 0,6 kg. Não há atrito no eixo da polia. Qual é a velocidade do objecto depois de cair 82 cm após ter sido liberada a partir do repouso? Use considerações de energia. *R: 1,4 m/s.*

- 90- Em termos de vectores unitários, qual é o torque em relação a origem a que está submetida uma partícula localizada nas coordenadas (0; -4; 3) m, se esse torque se deve: (a) a uma força \vec{F}_1 de componentes $F_{1x} = 2$ N, $F_{1y} = F_{1z} = 0$; (b) a uma força \vec{F}_2 de componente $F_{2x} = 0$, $F_{2y} = 2$ N, $F_{2z} = 4$ N? \vec{R} : (a) $(6\vec{j} + 8\vec{k})$ Nm; (b) (-22 Nm) \vec{i} .
- 91-Um objecto de 2 kg, que se comporta como uma partícula, se move em um plano com componentes de velocidades $v_x = 30$ m/s e $v_y = 60$ m/s ao passar por um ponto de coordenadas (3; -4) m. Nesse instante, em termos de vectores unitários, qual é o momento angular do objecto em relação: (a) a origem; (b) ao ponto (-2; -2) m. R: (a) $(6.10^2 \text{ kgm}^2/\text{s})\vec{k}$; (b) $(7,2.10^2 \text{ kgm}^2/\text{s})\vec{k}$.
- 92- Uma barata de massa *m* está na borda de um disco homogéneo de massa *4m* que pode girar livremente em torno do centro como um carrossel. Inicialmente, a barata e o disco giram juntos com velocidade angular de 0,26 rad/s. A barata caminha até a metade da distância ao centro do disco. (a) Qual é, nesse instante, a velocidade angular do sistema barra-disco? (b) Qual é a razão

Ec/Eci entre a nova energia cinética do sistema e a energia cinética antiga? Por que a energia cinética varia? R: (a) 0,347 rad/s; (b) 1,33.

Alguns Momentos de Inércia

6ª Parte: Mecânica dos Fluidos (Pressão nos líquidos e nos gases; Lei de Arquimedes)

- 93-Uma bola de 50 g consiste em uma casca esférica plástica com o interior cheio de água ($\rho = 1$ g/cm³). A casca tem um diâmetro externo de 50 mm e um diâmetro interno de 20 mm. Qual é a massa específica do plástico? $R: 0.748 \text{ g/cm}^3$.
- 94-Os cientistas encontraram indícios de que no planeta Marte pode ter tido outrora um oceano com 0,5 km de profundidade. A aceleração da gravidade em Marte é 3,71 m/s². (a) Qual seria a pressão manométrica no fundo desse oceano, supondo que ele fosse de água doce (a densidade da água doce é 1,03.10³ kg/m³)? (b) A que profundidade você precisaria descer nos oceanos da Terra para ser submetido à mesma pressão manométrica? *R: (a)* 1,86.10⁶ *Pa; (b)* 184 *m*.
- 95-Qual seria a altura da atmosfera se a massa específica do ar (a) fosse uniforme e (b) diminuísse linearmente até zero com a altura? Suponha que ao nível do mar a pressão do ar é 1 atm e a massa específica do ar é 1,3 kg/m³. *R:* (a) 7,9 km; (b) 16 km.

- 96-O eixo de um recipiente cilindrico é vertical. O recipiente é preenchido com massas iguais de água e óleo. O óleo flutua em cima da água, e a superfície livre do óleo está a uma altura *h* aima da base do recipiente. Qual é a altura *h*, se a pressão no fundo da água é de 10 kPa maior do que a pressão na superfície do óleo? Suponha a massa específica do óleo igual a 875 kg/m³. *R: 1,1 m.*
- 97-Num recipiente fechado encontra-se um líquido de densidade 1,g g/ml não miscível com a água. Acima dele está a camada de água de altura de 1,5 m. Acima do nível da água está um vacuómetro, abaixo, à profundidade de 2 m em relação à interface dos líquidos, um manómetro. A leitura do vacuómetro é de 25 kPa. Determine a leitura do manómetro. **R: 21 kPa.**
- 98- Um tubo em U é preenchido com água, até que o nível do líquido atinja 28 cm acima da base do tubo (fig. a). O óleo ($\rho = 0.78 \text{ g/cm}^3$), é agora derramado em um dos braços do tubo em U, até que o nível da água no outro braço atinja 34 cm acima da base do tubo (fig. b). Determina os níveis das interfaces óleo-água e óleo-ar no outro tubo. $R: h_{\acute{o}elo-\acute{a}gua} = 22 \text{ cm};$ $h_{\acute{o}elo-ar} = 37 \text{ cm}$.

- 99-Num tubo em forma de U aberto nas extremidades encontra-se a água. Nos ramos do tubo deitam-se líquidos não miscíveis com aágua, num dos ramos, de densidade de 0,95 g/ml, noutro, de densidade 0,78 g/ml. A altura das colunas dos líquidos deitados nos ramos é de 25 cm. Qual a diferença dos níveis da água nos ramos? *R: 4,2 cm.*
- 100- Num tubo em forma de U de diâmetro 5 mm, encontra-se mercúrio. Num dos ramos deitamse dois líquidos não miscíveis entre si ($\rho_1 = 1.6 \text{ g/ml}$, $\rho_2 = 1 \text{ g/ml}$) e com o mercúrio, e o nível do mercúrio no outro ramo sobe de 2 cm. Determinar a massa do segundo líquido se a altura da coluna do segundo líquido for de 30 cm. **R:** 4,8 g.
- 101- Um tubo em forma de U está aberto em ambas extremidades e contém uma porção de mercúrio. Uma quantidade de água é cuidadosamente derramada numa das extremidades do tubo até que a altura da coluna de água seja igual a 15 cm. (a) Qual é a pressão manométrica na interface àgua mercúrio? (b) Calcule a distância h entre o topo da superfície do mercúrio num lado e o topo da superfície da água no outro lado. R: (a) 1470 Pa: (b) 13.9 cm
- 102- Um béquer de 1 kg, contendo 2 kg de água, está sobre uma balança de cozinha. Um bloco de 2 kg de alumínio (ρ = 2700 kg/m³), suspenso de uma balança de mola, é mergulhado na água, como mostra a figura ao lado. Determine a leitura das duas escalas. *R: 12,4 N; 36,7 N.*

Alumínio

- 103- Sua equipa é encarregue de lançar um grande balão meteorológico de hélio de forma esférica, com 2,5 m de raio e massa total de 15 kg (balão + hélio + equipamento). (a) Qual é a aceleração inicial do balão, para cima, quando liberado no nível do mar? (b) Se a força de arraste sobre o balão é dada por $F_{at} = \frac{1}{2} \pi r^2 \rho v^2$, onde r é o raio do balão, ρ é a massa específica do ar (1,29 kg/m³) e v é a velocidade de subida do balão, calcule a velocidade terminal do balão em ascenção. R: (a) 45 m/s^2 ; (b) 7,33 m/s.
- 104- Um navio navega da água do mar ($\rho = 1,025 \text{ kg/m}^3$) para água pura, e portanto, afunda levemente. Quando sua carga de 6.10^5 kg é removida, ele retorna ao nível original. Supondo que as laterais do navio sejam verticais na altura da linha d'água, determine a massa do navio antes de ser descarregado. $R: 2,5.10^7 \text{ kg}$.
- 105- Um corpo de densidade 7,8 g/cm³ pesa no ar 5,8 N. Num líquido o peso aparente é de 4,6 N. Determine a densidade do líquido.
- 106- Um corpo de massa 4,5 kg está mergulhado em água (1 g/cm³); e o seu peso aparente é de 40 N. Determine a densidade da substância de que é feito o corpo.
- 107- Uma mangueira de diâmetro interno de 1,9 cm está ligado a um borrifador (estacionário) que consiste apenas em um recipiente com 24 furos de 0,13 cm de diâmetro. Se a água circula na mangueira com uma velocidade de 0,91 m/s, com que velocidade deixa os furos do borrifador?
- Num tubo de escoamento horizontal com 3,14 cm² de secção (1ª zona), corre água ($\rho_1 = 1$ g/cm³) à taxa de 400 cm³/s (1ª zona). Na zona estrangulada a secção é de 1 cm². Atendendo a que a pressão na 1ª zona é de 2.10^5 Pa, determine a velocidade e a pressão da água na zona estrangulada.
- 109- A água se move com uma velocidade de 5 m/s em um cano com uma secção recta de 4 cm². A água desce gradualmente 10 m enquanto a secção recta aumenta para 8 cm². (a) Qual é a velocidade da água depois da descida? (b) Se a pressão antes da descida é de 1,5.10⁵ Pa, qual é a pressão depois da descida?

7ª Parte: Dilatação Térmica

- 110- Um mastro de alumínio tem 33 m de altura. De quanto o comprimento do mastro aumenta quando a temperatura aumenta de 15°? *R: 1,1 cm.*
- 111- Um frasco de vidro com volume igual a 1000 cm³ a 0 °C está completamente cheio de mercúrio a essa mesma temperatura. Quando esse sistema é aquecido até 55 °C, um volume de 8,95 cm³ de mercúrio transborda. Sabendo que $\beta_{\text{mercúrio}} = 18.10^{-5} \text{ K}^{-1}$, calcule β_{vidro} . $R: 1,7.10^{-5}$ (°C)⁻¹.
- 112- Uma barra feita de uma liga de alumínio tem um comprimento de 10 cm a 20°C e um comprimento de 10,015 cm no ponto de ebulição da água. (a) Qual é o comprimento da barra no ponto de congelamento da água? (b) Qual é a temperatura para a qual o comprimento da barra é 10,009 cm? R: (a) 9,996 cm; (b) 68°C.

- 113- Determine a variação de volume de uma esfera de alumínio com um raio inicial de 10 cm quando a esfera é aquecida de 0°C para 100°C. *R: 29 cm*³.
- 114- Uma barra de aço tem 3 cm de diâmetro a 25°C. Um anel de latão tem um diâmetro interno de 2,992 cm a 25°C. Se os dois objectos são mantidos em equilíbrio térmico, a que temperatura a barra se ajusta perfeitamente o furo? *R: 360°C*.

8ª Parte: Teoria Cinético-Molecular do Gás Ideal

- 115- Determinar a concentração de moléculas de hidrogénio (H_2) de um recipiente, sendo a pressão de 266,6 Pa, se a velocidade quadrática média das moléculas for de 2,4 km/s. R: 4,18.10²² m-3.
- 116- A velocidade quadrática média das moléculas de certo gás é de 450 m/s. A pressão do gás é de 50 kPa. Calcular a densidade do gás nestas condições. *R*: 0,74 kg/m³.
- 117- A densidade de certo gás é de 0,082 kg/m³, sendo a pressão de 100 kPa e a temperatura de 17 °C. Qual é a massa molar deste gás? *R: 2.10*⁻³ *kg/mol.*
- 118- A menor temperatura do espaço sideral é 2,7 K. Determinar as velocidades quadrátia média, média e mais provável das moléculas de hidrogénio a esta temperatura. *R:* 1,8.10² m/s, 1,7.10² m/s e 1,5.10² m/s.
- 119- Os actuais equipamentos de vácuo podem atingir pressões tão baixas quanto 7.10^{-11} Pa. Seja uma câmara contendo hélio a esta pressão e à temperatura ambiente (300 K). Estime o livre caminho médio (λ) e o tempo de colisão ($\tau = \lambda / v_{qm}$) para o hélio na câmara. Considerar o dâmetro de um átomo de hélio igual a 1.10^{-10} m. *R*: 1,3.10⁹ m; 9,7.10⁵ s≈11,227 dias.
- 120- 3 moles de um gás ideal estão em uma caixa cúbica e rígida, com 0,2 m de lado. (a) Qual é a força que o gás exerce sobre cada um dos seis lados quando a temperatura do gás é 20°C? (b) Qual é a força quando a temperatura do gás sobe para 100°C? R: (a) 3,66.10⁴ N; (b) 4,65.10⁴ N.
- 121- Uma bomba de vácuo moderna permite obter facilmente vácuo da ordem de 10⁻¹³ atm no laboratório. A uma pressão de 9.10⁻¹⁴ atm e uma temperatura comum de 300 K, quantas moléculas existem em um volume de 1 cm³? (b) Quantas moléculas haveria à mesma temperatura, mas, a uma pressão de 1 atm? *R:* (a) 2,20.10⁶ moléculas; (b) 2,44.10¹⁹ moléculas.
- 122- Uma amostra de oxigénio (32 g/mol) com um volume de 1000 cm³ a 40°C e 1,01.10⁵ Pa se expande até um volume de 1500 cm³ a uma pressão de 1,06.10⁵ Pa. Determine: (a) o número de moles de oxigénio presentes na amostra; (b) a temperatura final da amostra. *R: (a) 3,9.10⁻² mol; (b) 493 K.*
- 123- Num recipiente fechado de capacidade 20 *l*, encontra-se o hidrogénio de massa 6g e hélio de massa 12g (M₁=2.10⁻³kg/mol e M₂=4g/mol), a 300K. Determine: (a) a pressão; (b) a massa molar da mistura de gases no recipiente. *R:* (a) 747,9 kPa; (b) 3.10⁻³ kg/mol.

- 124- O melhor vácuo produzido em laboratório tem uma pressão de aproximadamente 1.10⁻¹⁸ atm, ou 1,01.10⁻¹³ Pa. Quantas moléculas do gás existem por centímetro cúbico nesse vácuo a 293 K? *R: 25 moléculas/cm³*.
- O recipiente A da figura ao lado, que contém um gás ideal à pressão de 5.10^5 Pa e a temperatura de 300 K, está ligado por um tubo fino (e uma válvula fechada) a um recipiente B cujo volume é quatro vezes maior que o de A ($V_B = 4V_A$). O recipiente B contém o mesmo gás ideal à pressão de 1.10^5 Pa e à temperatura de 400 K. A válvula é aberta para que as pressões se igualem, mas a temperatura de cada recipiente é mantida. Qual é a nova pressão nos dois recipientes? *R: 2.10⁵ Pa*.

- 126- Se um gás duplicar o seu volume, a sua pressão diminui-se de 120 kPa e a temperatura, diminui-se em 20%. Determine a pressão inicial do gás. *R: 200 kPa*.
- 127- Num cilindro fornecido de êmbolo móvel encontra-se o azoto de parâmetros p = 1 Mpa, V = 50 *l*, T = 300 K. O deslocamento do êmbolo realiza-se de maneira que a pressão do gás não varia. Para isso, no decorrer do aquecimento, uma parte do gás de massa 0,36 kg escapou-se do cilindro. Calcule o volume final do gás se a temperatura final for de 315 K. *R: 18,75 l.*
- 128- O oxigénio de parâmetros m = 64 g, V₁ = 20 l, p₁ = 0,25 MPa isobaricamente expande-se ao volume de 40 l, depois, isotermicamente comprime-se ao volume inicial, por fim, isocoricamente arrefece-se à temperatura que é de 30 K maior do que a temperatura inicial. (a) apresente as transformações no diagrama p-V; (b) calcule os parâmetros no fim de cada transformação. R: (b) (2) 0,25 MPa, 40 l, 600 K; (3) 0,5 MPa, 20 l, 600 K; (4) 0,27 MPa, 20 l, 330 K.

9ª Parte: Primeiro Princípio da Termodinâmica. Trabalho, Quantidade de calor e Energia Interna.

- 129- O ar que inicialmente ocupa 0,140 m³à pressão manométrica de 103 kPa se expande isotermicamente até atingir a pressão de 101,3 kPa e, em seguida, é resfriado à pressão constante até voltar ao volume inicial. Calcule o trabalho realizado pelo ar. *R:* 5,6.10³ *J*.
- 130- Qual é o calor necessáriopara converter 12 g de gelo a -10 °C em vapor d'água a 100 °C? R: $3.64.10^4$ J.
- 131- Num calorímetro de capacidade térmica 90 J/K encontra-se o líquido de 200g de massa a 20°C. No calorímetro coloca-se uma peça de cobre de massa 100g a 185°C. O sistema atinge a temperatura de equilíbrio igual a 26,65 °C. Determine o calor específico do líquido. *R: 4,2 kJ/kg.K.*

- 132- Um copo de vidro de 25 g contém 200 m*l* de água a 24 °C. Se dois cubos e gelo, de 15 g cada um e uma temperatura de − 3 °C são colocados no copo, qual é a temperatura final da bebida? Despreze qualquer transferência de calor entre o corpo e o ambiente. *R*: 10,6 °C.
- 133- Um bloco de cobre de 3,5 kg, a 80 °C. É colocado em um balde contendo uma mistura de gelo e água com uma massa total de 1,2 kg. Quando o equilíbrio térmico é atingido, a temperatura da água é 8 °C. Quanto de gelo estava no balde, antes de o bloco de cobre ser colocado nele? (Considerar desprezível a capacidade térmica do balde). *R: 0,17 kg*.
- 134- O álcool etílico tem um ponto de ebulição de 78°C, um ponto de congelamento de 114°C, um calor latente de vaporização de 879 kJ/kg, um calor latente de fusão de 109 kJ/kg e um calor específico de 2,43 kJ/kg.K. Quanta energia deve ser removida de 0,510 kg de álcool etílico que está inicialmente na forma de gás a 78°C para que se torne um sólido a 114°C? **R:** 742 J.
- Jum gás em uma câmara fechada passa pelo ciclo mostrado no diagrama p V da figura ao lado. A escala do eixo horizontal é definida por $V_s = 4 \text{ m}^3$. Calcule a energia adicionada ao sistema na forma de calor durante um ciclo completo. R: -30 J.

Suponha que a barra da figura ao lado seja feita de cobre, tenha 45 cm de comprimento e área da secção recta igua a 1,25 cm². Seja T_H = 100 °C e T_C = 0 °C. (a) Qual é o gradiente de temperatura estacionário final da barra? (b) Qual é a taxa de transferência de calor na barra no estado estacionário final? (c) Qual é a temperatura final do estado estacionário em um ponto da barra situado a 12 cm da extremidade esquerda da barra? *R:* (a) 22 K/m; (b) 10,7 W; (c) 73,3 °C.

- 137- Um carpinteiro constrói a parede externa de uma casa usando uma camada de madeira com 3 cm de espessura e uma camada de isopor com espessura de 2,2 cm na superfície interna da parede. A madeira possui k = 0,080 W/m.K e o isopor possui k = 0,010 W/m.K. A temperatura da superfície interna da parede é igual a 19 °C e a temperatura da superfície esterna é igual a 10 °C. (a) Qual é a temperatura na superfície da junção entre a madeira e o isopor? (b) Qual é a taxa de transferência de calor por metro quadrado através da parede? *R*: (a) 5,8 °C; (b) 11 W/m².
- 138- Quando 20,9 J foram adicionados na forma de calor a um certo gás ideal, o volume do gás variou de 50 cm³ pra 100 cm³ enquanto a pressão permaneceu em 1 atm. (a) De quanto variou a energia interna do gás? Se a quantidade de gás presente era de 2.10-3 mol, determine (b) C_p e (c) C_v. R: (a) 15,9 J; (b) 34,4 J/mol.K; (c) 26,1 J/mol.K.
- 139- O oxigénio sob pressão de 200 kPa ocupa o volume de 1 m³. O gás aquece-se isobaricamente ao volume de 3 m³ e depois isocoricamente a pressão de 500 kPa. (a) Apresente esta

- transformação no diagrama p-V; (b) calcule a variação de energia interna; (c) o trabalho realizado pelo gás; (d) a quantidade de calor fornecida ao gás. R: (b) 3,2 MJ; (c) 0,40 MJ; (d) 3,6 MJ.
- 140- O azoto de massa 56 g ocupa o volume de 10*l* sob a pressão de 500 kPa. O gás aquece-se isocoricamente a pressão de 1MPa, em seguida, expande-se isotermicamente a pressão inicial. Finalmente, comprime-se isobaricamente assim que no fim desta transformação a sua temperatura é de 20K maior do que a temperatura inicial. Fazer os mesmos cálculos das alíneas do problema anterior. *R*: (b) 0,83 kJ; (c) 2,3 kJ; (d) 3,1 kJ.
- 141- 1 mol de oxigénio de p₁ = 100 kPa, V₁ = 25 *l* aquecee-se isocoricamente até duplicar a sua pressão, depois expande-se isotermicamente até duplicar o seu volume, finalmente, comprime-se adiabaticamente a pressão p₂. (a) Apresente o gráfico desta transformação; (b) calcule a variação da energia interna; (c) a quantidade de calor fornecida; (d) o trabalho realizado. *R*: (b) 9 kJ; (c) 9,7 kJ; (d) 0,73 kJ.

10ª Parte: Segundo Princípio da Termodinâmica. Entropia.

- 142- Você decide tomar um banho quente, mas desconbre que o seu descuidado companheiro de quarto usou toda água quente. Você enche a banheira com 270 kg de água e tenta aquecê-la mais despejando 5 kg de água fervente aquecida no fogão. (a) Esse processo é reversível ou irreversível? (b) Calcule a temperatura final da água do banho. (c) Caalcule a variação total da entropia do sistema (água da banheira + água fervente), supondo que não haja troca de calor com o ar e com a própria banheira. *R:* (b) 31,27 °C = 304,42 K; (c) 470 J/K.
- 143- O oxigénio de 32 g realiza a transformação à pressão $p_2 = 4p_1$ e depois a transformação isotérmica ao volume $V_3 = 4V_2$. Apresente as transformações no diagrama T-S e calcule a variação de entropia total. **R:** 40 **J/K.**
- 144- O hélio de massa 20 g foi arrefecido isocoricamente assim que a sua temperatura baixou cinco vezes e seguidamente, foi aquecido numa transformação isobárica a temperatura inicial. Apresente as transformações nos diagramas T-S e p-V, e calcule a variação total de entropia. *R*: 67 J/K.
- 145- Um cubo de gelo de 8 g a 10 °C é colocado em uma garrafa térmica com 100 cm³ de água a 20 °C. De quanto variou a entropia do sistema cubo-água até o equilíbrio ser alcançado? O calor específico do gelo é de 2220 J/kg.K. *R: 0,64 J/K*.

11ª Parte: Processos Cíclicos. Rendimento. Ciclo de Carnot.

146- Um gás diatómico ideal segue o ciclo mostrado na figura ao lado. A temperatura do estado 1 é 200 K. Determine o rendimento do ciclo. *R: 15%*.

- 147- A substância de trabalho de um máquina é 1 mol de um gás ideal diatómico. A máquina opera em um ciclo que consite de três etapas: (1) uma expansão adiabática de um volume inicial de 10 l, à uma pressão de 1 atm, para um volume de 20 l, (2) uma compressão, à pressão constante, até seu volume inicial, e (3) aquecimento, a volume constante, até sua pressão original. Determine o rendimento do ciclo. R: 15%.
- 148- 100 mol de um gás ideal monoatómico de pressão 100kPa, ocupam o volume de 5m³. O gás realiza, sucessivamente, a compressão isobárica ao volume de 1m³, a compressão adiabática e a expansão isotérmica ao estado inicial. Apresente essas transformações no diagrama p-V e calcule o rendimento térmico. **R: 0,5**
- 149- Um gás ideal monoatómico realiza um ciclo inverso entre duas adiabáticas. As duas outras transformações são isobáricas. A pressão máxima é duas vezes maior do que a pressão mínima. Apresente o ciclo no diagrama p-V e calcule o seu rendimento térmico. **R: 0,24.**
- 150- 1 mol de um gás diatómico percorre o ciclo mostrado na figura ao lado. Dados t₁ = 0 °C e t₂ = 150 °C. Determinar (a) o rendimento do ciclo e (b) o rendimento de um ciclo de Carnot operando entre os extremos de temperatura deste ciclo. *R*: (a) 6,7%; (b) 35,5%.

Substância	Fusão		Ebulição		
	Ponto de Fusão (K)	Calor de Fusão L _F (kJ/kg)	Ponto de Ebulição (K)	Calor de Vaporização $L_V(kJ/kg)$	
Hidrogênio	14,0	58,0	20,3	455	
Oxigênio	54,8	13,9	90,2	213	
Mercúrio	234	11,4	630	296	
Água	273	333	373	2256	
Chumbo	601	23,2	2017	858	
Prata	1235	105	2323	2336	
Cobre	1356	207	2868	4730	

	Calor E	Calor Específico Molar	
Substância	g·K	$\frac{J}{kg\cdot K}$	J mol⋅K
Sólidos Elementares			
Chumbo	0,0305	128	26,5
Tungstênio	0,0321	134	24,8
Prata	0,0564	236	25,5
Cobre	0,0923	386	24,5
Alumínio	0.215	900	24,4
Outros Sólidos			
Latão	0.092	380	
Granito	0.19	790	
Vidro	0,20	840	
Gelo (-10°C)	0,530	2220	
Líquidos			
Mercúrio	0,033	140	
Etanol	0,58	2430	
Água do mar	0,93	3900	
Água doce	1,00	4187	

Substância	$\alpha(10^{-6}/C^{\circ})$	Substância	α(10 ⁻⁶ /C°)
Gelo (a 0°C)	51	Aço	11
Chumbo	29	Vidro (comum)	9
Alumínio	23	Vidro (Pyrex)	3,2
Latão	19	Diamante	1,2
Cobre	17	Invar ^a	0,7
Concreto	12	Quartzo fundido	0,5

Referências Bibliográficas:

- ✓ Valentina Volkenstein: *Problemas de Física Geral*; Editora MIR, Moscovo, 1989.
- ✓ Marcelo Alonso e Edward J. Finn: *Física*; Escolar Editora, 2012.
- ✓ I.V. MECHTCHERSKI: Problemas de Mecânica Teórica; Editora MIR, Moscovo, 1986.
- ✓ António J. Silvestre e Paulo I. C. Teixeira: *Mecânica Uma Introdução*; Edições Colibre/Instituto Politécnico de Lisboa, 2014.
- ✓ Fundamentos de Física, Halliday & Resnick, JEARL WALKER: *Mecânica*; 9^a edição, Editora LTC, 2012.
- ✓ Sear & Zemansky, **FÍSICA I** (**Mecânica**), YOUNG & FREEDMAN, 12^a edição, 2009.
- ✓ Paul A. Tripler & Gene Mosca, **FÍSICA** para cientistas e engenheiros, Volume 1 (*Mecãnica, Oscilações e Ondas, Termodinâmica*), 6ª Edição, LTC.
- ✓ Fundamentos de Física, Halliday & Resnick, JEARL WALKER: *Gravitação, Ondas e Termodinâmica*; 9ª edição, Editora LTC, 2012.
- ✓ Sear & Zemansky, *FÍSICA II (Termodinâmica e Ondas)*, YOUNG & FREEDMAN, 12^a Edição, 2009.

- ✓ Alexandre Gárbuze, *Física II*, Faculdade de Engenharia da UAN, 2008 (Fascículo)
- ✓ Outros

ISPTEC, Em Luanda, aos 30 de Julho de 2018.

Emanuel Mango