Rule-based query answering method for a knowledge base of economic crimes

PhD thesis

RuleML 2011 Doctoral Consortium

Jaroslaw Bak

Institute of Control and Information Engineering Poznan University of Technology

Outline

- 1. Problem statement
- 2. Overview of existing solutions
- 3. Rule-based query answering methods
 - with hybrid reasoning
 - with forward reasoning and extended rules
- 4. Rule-based mapping
- Knowledge base of economic crimes The Hydra case
- 6. Example queries and results
- 7. Conclusion and future work

Problem statement (1)

Research question:

How to efficiently query a relational database at the conceptual level defined in a rule-based system?

Problem statement (2)

Three main issues:

- 1. Rule-based query answering.
- 2. The combination of a rule-based system and a relational database.
- 3. The construction of the knowledge base (i.e. knowledge of economic crimes).

Overview of existing solutions (1)

- Backward chaining vs. forward chaining and OpenRuleBench initiative – Prolog wins [Bry et al]
- Magic Transformation [Ramakrishnan et al, Eiter et al) – a program P and a query Q are transformed into a new program, magic(P∪Q)
- Implementation alternatives for bottom-up evaluation – push and pull methods [Brass]

Overview of existing solutions (2)

- The combination of rules with relational databases [Motik et al., Calvanese et al, Lukácsy et al, Hustadt et al]
- The problem of applying rules and ontology in economic crimes is quite new – some works in information management exist [Biasotii et al, Casellas et al], not reasoning [Breuker]
- FFPoirot project fraudulent Internet investment pages and the Nigerian letter fraud [Zhao et al]

Rule-based query answering method Assumptions

- We use a production rule system (the Jess engine) with forward and backward chaining
- We express the conceptual knowledge with the Horn-SHIQ ontology combined with SWRL (Horn-like) rules
- We use conjunctive queries in the form of directed graphs
- We use Datalog Safety and DL-safe rules to achieve the decidability of our system
- We apply our methods with the knowledge base of economic crimes: fraudulent disbursement and money laundering
- Our approaches are implemented in the Semantic Data Library (SDL)

Rule-based query answering method Hybrid reasoning (1)

- Two Jess instances:
 - backward engine is used to gather data from a relational database
 - forward engine is used to answer a query
- Rules are expressed in the Jess language and obtained from the transformation of an OWL ontology with SWRL rules
- We developed an algorithm for grouping SQL queries
- This approach was presented at the RuleML2009 conference

Rule-based query answering method Hybrid reasoning (2)

Rule-based query answering method Forward reasoning with extended rules (1)

- Based on the modified magic transformation
- We use extended rules rules that are generated automatically from the basic ones for the evaluation purposes
- Extended rules are query-independent in contrast to the magic transformation
- Generation of the extended rules are based on the particular sip algorithm – goal- and dependencyoriented generation
- One instance of the Jess engine is used
- This method is more efficient than the hybrid one
- Accepted for the presentation at the RuleML2011@BRF conference

Rule-based query answering method Forward reasoning with extended rules (2)

$$p_1(?x,?y), p_2(?y,?w), p_3(?w),?w \neq ?x => h_1(?x,?w)$$

$$p_1(?x,?y), p_2(?y,?w), p_3(?w),?w \neq ?x, h_1(?x,?w)^c$$

=> $h_1(?x,?w)$

$$h_1(nil, nil)^c => p_1(nil, nil)^c$$

$$h_1(nil, nil)^c => p_2(nil, nil)^c$$
Etc.

Applicable to: h₁(?x, ?w)

 $h_1(?x,?)^C$, $p_1(?x,?y) => p_2(?y,nil)^C$ $h_1(?x,?)^C$, $?x \neq nil => p_1(?x,nil)^C$ Etc.

Applicable to: h₁(V, ?w) and h1(V, V)

 $h_1(?,?w)^C,?w \neq nil => p_2(nil,?w)^C$ $h_1(?,?w)^C, p_2(?y,?w) => p_1(nil,?y)^C$ Applicable to: $h_1(?x, V)$ and $h_1(V, V)$

Rule-based query answering method The architecture of the SDL library

Rule-based mapping

"Essential" concept/role:

```
Buyer is-a Company is-a Institution
```

 For every essential concept/role a SQL query of the following form is created:

```
SELECT [R] FROM [T] <WHERE> <C, AND, OR>
```

```
where R – result columns, T – tables, C – constraints, AND, OR – optional SQL commands
```

Example: AdultMan

```
SELECT id FROM persons WHERE age>18
AND gender='Male';
```

Rule-based mapping - Example

```
(defrule Def-MoneyTransferTo
 ?r<-(need-Triple
          (p "MoneyTransferTo")(s ?x)(o ?y))
=>
 (bind ?query (str-cat
      "SELECT id, receiver FROM transfers;"))
 (?*access* runQueriesFromJess
     "Def-MoneyTransferTo"
      ?query
      "s;id;o;receiver;p;MoneyTransferTo;"
      (str-cat ?x ";" ?y ";")
      "triple"
      ?*conn*
      (engine))
      (retract ?r)
```


Example queries and results

Generation of the simulated input data

- Information about employees and their position in a company
- Invoices with all obligatory elements (payer, seller, product, etc.)
- Work approval documents (or the lack of them)
- Signatures on documents
- Goods and services
- Companies and their legal form
- Money turnovers: money transfers, payments and withdrawals
- Legal articles (name, ID and content)
- Information about illicit personal gains and damages to companies (with values)
- Other facts, like who knows about what (Person knowsAbout document) these data come from testimonies.

Example queries and results

Example queries and results Results

Query and info		Database 20		Database 100		Database 200	
		2010	2011	2010	2011	2010	2011
Query 1 Results Rules fired	[ms] [number] [number]	781 54 74	219 54 251	1328 474 441	891 474 1 630	1922 1036 796	969 1036 3 001
Query 2 Results Rules fired	[ms] [number] [number]	2734 1 1076	437 1 1 506	37141 1 36260	4 125 1 13 179	163968 1 225381	19 391 1 29 593
Query 3 Results Rules fired	[ms] [number] [number]	2875 18 1367	359 18 2 005	36344 322 38457	14 938 322 41 755	183047 1004 232583	116 593 1004 359 681
Query 4 Results Rules fired	[ms] [number] [number]	5437 1 2040	1 859 1 5 467	128719 1 57091	35 656 1 58 520	Time exceeded 10 minutes	347 110 1 597 711
Query 5 Results Rules fired	[ms] [number] [number]	9312 1 2540	1 234 1 5 828	Time exceeded 10 minutes	34 500 1 61 199	Time exceeded 10 minutes	343 469 1 608 925 18

Conclusions

- We developed two approaches for rule-based query answering task: the hybrid reasoning and extended rules
- Approaches extend functionality of the Jess reasoning engine
- Approaches were tested with our knowledge base of economic crimes

- SDL library enables to query a relational database in terms of ontology concepts/roles
- Answer is always up-to-date
- Queries are in the form of directed graphs

Future work

- More optimizations in the query answering method
- Method for rule-dependent sips
- Comparison to other approaches (OpenRuleBench, OWLim, DLEJena etc.)
- Extension of rule-based knowledge base of economic crimes
- More formal description
- Graphical user interface for queries execution, rules creation and data (facts) analysis

THE END

Thanks for listening! ©