Álgebra Universal e Categorias

3. Teoria de Categorias

- 3.1. Justifique que cada uma das estruturas seguintes define uma categoria.
 - (a) $\mathbf{M} = (\{M\}, M, \operatorname{dom}, \operatorname{cod}, \circ)$, onde $\mathcal{M} = (M; \cdot, 1_M)$ é um monóide; $\operatorname{dom} : M \to \{M\}$ é a função que a cada elemento de M associa M; $\operatorname{cod} : M \to \{M\}$ é a função que a cada elemento de M associa M, \circ é a operação binária do monóide.

Da definição de M segue que:

- dom e cod são funções de M em $\{M\}$;
- \circ é uma função de $\{(s,r) \in M \times M \mid \operatorname{cod}(s) = \operatorname{dom}(r)\}$ em M, pois \cdot é uma função de $M \times M$ em M;
- a classe de morfismos de M em M é M e M é um conjunto;
- para quaisquer $r, s \in M$, tem-se $r \cdot s \in M$ (pois \cdot é uma operação binária em M), logo

$$dom(r \circ s) = dom(r \cdot s) = M = dom(s) e cod(r \circ s) = cod(r \cdot s) = M = cod(r);$$

- para o único elemento de $\{M\}$, existe $id_M=1_M\in M$ tal que $\mathrm{dom}_{\mathbf{M}}(id_M)=M=\mathrm{cod}_{\mathbf{M}}(id_M)$ e, para quaisquer $r,s\in M$,

$$id_M \circ r = 1_M \cdot r = r$$
 e $s \circ id_M = s \cdot 1_M = s$,

pois 1_M é o elemento neutro de \mathcal{M} ;

- para quaisquer $r, s, t \in M$, tem-se

$$(r \circ s) \circ t = (r \cdot s) \cdot t = r \cdot (s \cdot t) = r \circ (s \circ t),$$

pois a operação binária · é associativa.

Logo, por definição de categoria, a estrutura ${\bf M}$ é uma categoria.

(b) $\mathbf{P} = (P, \leq, \operatorname{dom}, \operatorname{cod}, \circ)$, onde (P, \leq) é um conjunto parcialmente ordenado; $\operatorname{dom} : \leq \to P$ é a função que a cada par $(a,b) \in \leq$ associa o elemento a; $\operatorname{cod} : \leq \to P$ é a função que cada par $(a,b) \in \leq$ associa o elemento b; $\circ : \{((b,c),(a,b)) \mid (a,b),(b,c) \in \leq\} \to \leq$ é a função definida por $(b,c) \circ (a,b) = (a,c)$, para quaisquer $(a,b),(b,c) \in \leq$.

Da definição de P segue que:

- dom e cod são funções de \leq em P;
- \circ é uma função de $\{((b,c),(a,b))\,|\,(a,b),(b,c)\in\leq\}$ em \leq (esta função está bem definida, pois a relação \leq é transitiva);
- para quaisquer $a,b\in P$, a classe de morfismos de a em b é $\{(a,b)\}\cap \leq$ e $\{(a,b)\}\cap \leq$ é um conjunto;
- para quaisquer $(a,b),(b,c)\in \leq$,

$$dom((b,c)\circ(a,b)) = dom((a,c)) = a = dom((a,b))$$

e

$$\operatorname{cod}((b,c)\circ(a,b)) = \operatorname{cod}((a,c)) = c = \operatorname{cod}((b,c));$$

- para qualquer $a \in P$, existe $id_a = (a,a) \in \leq$ (pois \leq é reflexiva) tal que $dom(id_a) = a = cod(id_a)$ e, para quaisquer $(a,b), (c,a) \in \leq$,

$$id_a \circ (c, a) = (a, a) \circ (c, a) = (c, a)$$
 e $(a, b) \circ id_a = (a, b) \circ (a, a) = (a, b)$;

- para quaisquer $(a,b),(b,c),(c,d)\in\leq$, tem-se

$$((c,d)\circ(b,c))\circ(a,b)=(b,d)\circ(a,b)=(a,d)=(c,d)\circ(a,c)=(c,d)\circ((b,c)\circ(a,b)).$$

Logo, por definição de categoria, a estrutura ${f P}$ é uma categoria.

(c) $\mathbf{N} = (\mathbb{N}, \bigcup_{m,n \in \mathbb{N}} \mathcal{M}_{m \times n}(\mathbb{R}), \operatorname{dom}, \operatorname{cod}, \circ)$, onde, para cada $m, n \in \mathbb{N}$, $\mathcal{M}_{m \times n}(\mathbb{R})$ é a coleção de todas as matrizes reais do tipo $n \times m$; $\operatorname{dom}: \bigcup_{m,n \in \mathbb{N}} \mathcal{M}_{m \times n}(\mathbb{R}) \to \mathbb{N}$ é a função que a cada $A \in \mathcal{M}_{m \times n}(\mathbb{R})$ associa o natural $n, \operatorname{cod}: \bigcup_{m,n \in \mathbb{N}} \mathcal{M}_{m \times n}(\mathbb{R}) \to \mathbb{N}$ é a função que a cada $A \in \mathcal{M}_{m \times n}(\mathbb{R})$ associa o natural $m; \circ: \{(A,B) \in \mathcal{M}_{p \times q}(\mathbb{R}) \times \mathcal{M}_{q \times r}(\mathbb{R}) \mid p,q,r \in \mathbb{N}\} \to \bigcup_{m,n \in \mathbb{N}} \mathcal{M}_{m \times n}(\mathbb{R})$ é a função definida por $A \circ B = A \cdot B$, onde \cdot é a multiplicação usual de matrizes.

Da definição de N segue que:

- dom e cod são funções de $\bigcup_{m,n\in\mathbb{N}}\mathcal{M}_{m\times n}(\mathbb{R})$ em \mathbb{N} ;
- \circ é uma função de $\{(A,B)\in\mathcal{M}_{p\times q}(\mathbb{R})\times\mathcal{M}_{q\times r}(\mathbb{R})\,|\,p,q,r\in\mathbb{N}\}$ em $\bigcup_{m,n\in\mathbb{N}}\mathcal{M}_{m\times n}(\mathbb{R})$ (esta função está bem definida, pois, para quaisquer $(A,B)\in\mathcal{M}_{p\times q}(\mathbb{R})\times\mathcal{M}_{q\times r}(\mathbb{R})$, a multiplicação $A\cdot B$ está definida);
- para quaisquer $m,n\in\mathbb{N}$, a classe de morfismos de n em m é $\mathcal{M}_{m\times n}(\mathbb{R})$ e $\mathcal{M}_{m,n}(\mathbb{R})$ é um conjunto;
- para quaisquer $(A,B) \in \mathcal{M}_{p \times q}(\mathbb{R}) \times \mathcal{M}_{q \times r}(\mathbb{R})$,

$$dom(A \circ B) = dom(A \cdot B) = r = dom(B), \text{ pois } A \cdot B \in \mathcal{M}_{p \times r}(\mathbb{R})$$

e

$$cod(A \circ B) = cod(A \cdot B) = p = cod(A)$$
, pois $A \cdot B \in \mathcal{M}_{p \times r}(\mathbb{R})$;

- para qualquer $n \in \mathbb{N}$, existe $id_n = I_n \in \mathcal{M}_{n \times n}(\mathbb{R})$ tal que $\operatorname{dom}(id_n) = n = \operatorname{cod}(id_n)$ e, para quaisquer $A \in \mathcal{M}_{n \times m}(\mathbb{R})$ e $B \in \mathcal{M}_{p \times n}(\mathbb{R})$,

$$id_n \circ A = I_n \cdot A = A$$
 e $B \circ id_n = B \cdot I_n = B$;

- para quaisquer $A \in \mathcal{M}_{m \times n}(\mathbb{R})$, $B \in \mathcal{M}_{n \times p}(\mathbb{R})$ e $C \in \mathcal{M}_{p \times q}(\mathbb{R})$, tem-se

$$(A \circ B) \circ C = (A \cdot B) \cdot C = A \cdot (B \cdot C) = A \circ (B \circ C),$$

pois a multiplicação usual de matrizes é comutativa.

Logo, por definição de categoria, a estrutura ${f N}$ é uma categoria.

3.2. Numa categoria C, considere o diagrama a seguir representado

Mostre que se os quatro triângulos internos do diagrama comutam, então $h\circ g\circ f=l\circ k.$

Consideremos o diagrama

e admitamos que os quatro triângulos internos do diagrama comutam. Então tem-se:

$$p = s \circ f, \quad q = h \circ r, \quad g = r \circ s, \quad l \circ k = q \circ p.$$

Logo

$$\begin{array}{rcl} h \circ g \circ f & = & h \circ (r \circ s) \circ f \\ & = & (h \circ r) \circ (s \circ f) \\ & = & q \circ p \\ & = & l \circ k. \end{array}$$

3.3. Seja C a categoria definida pelo diagrama

Construa:

(a) A subcategoria plena \mathbf{C}' de \mathbf{C} tal que $\mathrm{Obj}(\mathbf{C}') = \{A, B, C, F\}.$

A categoria $\mathbf{C}' = (\mathrm{Obj}(C'), \mathrm{Mor}(C'), \mathrm{dom}_{\mathbf{C}'}, \mathrm{cod}_{\mathbf{C}'}, \circ_{\mathbf{C}'})$ diz-se uma subcategoria plena de \mathbf{C} se:

- (1) C' é uma subcategoria de C, ou seja, se:
 - $\mathrm{Obj}(\mathbf{C}') \subseteq \mathrm{Obj}(\mathbf{C});$
 - $\operatorname{Mor}(\mathbf{C}') \subseteq \operatorname{Mor}(\mathbf{C}) \in \{id_A^C | A \in \operatorname{Obj}(\mathbf{C})'\} \subseteq \operatorname{Mor}(\mathbf{C})';$
 - para qualquer $f \in \mathrm{Mor}(\mathbf{C}')$, $\mathrm{dom}_{\mathbf{C}'}(f) = \mathrm{dom}_{\mathbf{C}}(f)$ e $\mathrm{cod}_{\mathbf{C}'}(f) = \mathrm{cod}_{\mathbf{C}}(f)$;
 - para qualquer $A \in \mathrm{Obj}(\mathbf{C}')$, o morfismo $id_A^{\mathbf{C}'}$ é o mesmo que o morfismo $id_A^{\mathbf{C}}$;
 - para quaisquer \mathbf{C}' -morfismos $f:A\to B$ e $g:B\to D$, o morfismo $g\circ_{\mathbf{C}'} f$ é o mesmo que o morfismo $g\circ_{\mathbf{C}} f$.
- (2) para quaisquer $A, B \in \text{Obj}(\mathbf{C}')$, $\text{hom}_{\mathbf{C}'}(A, B) = \text{hom}_{\mathbf{C}}(A, B)$.

Assim, a subcategoria plena \mathbf{C}' de \mathbf{C} tal que $\mathrm{Obj}(\mathbf{C}') = \{A, B, C, F\}$ é a categoria representada pelo diagrama seguinte

(b) A categoria dos objetos sobre E.

A categoria dos objetos sobre E, é a categoria

$$\mathbf{C}/\mathbf{E} = (\mathrm{Obj}(\mathbf{C}/\mathbf{E}), \mathrm{Mor}(\mathbf{C}/\mathbf{E}), \mathrm{dom}_{\mathbf{C}/\mathbf{E}}, cod^{\mathbf{C}/\mathbf{E}}, \circ_{\mathbf{C}/\mathbf{E}})$$

definida do seguinte modo:

- os objetos de \mathbf{C}/\mathbf{E} são todos os morfismos de \mathbf{C} com codomínio E;
- dados objetos f e g de \mathbf{C}/\mathbf{E} (isto é, dados \mathbf{C} -morfismos $f:X\to E$ e $g:Y\to E$), um \mathbf{C}/\mathbf{E} -morfismo de f em g é um triplo de morfismos (f,j,g), onde j é um \mathbf{C} -morfismo de X em Y tal que $g\circ_{\mathbf{C}} j=f$;
- para cada objeto $f:X\to E$ de ${\bf C}/{\bf E}$, o morfismo identidade $id_f^{{\bf C}/{\bf E}}$ é o triplo de ${\bf C}$ -morfismos $(f,id_X,f);$
- a composição $(f_2,h,f_3)\circ_{\mathbf{C}/\mathbf{E}}(f_1,g,f_2)$ dos morfismos $(f_1,g,f_2):f_1\to f_2$ e $(f_2,h,f_3):f_2\to f_3$ de \mathbf{C}/E é o morfismo $(f_1,h\circ_{\mathbf{C}}g,f_3):f_1\to f_3$.

Assim, a categoria dos objetos sobre E é a categoria representada por

3.4. (a) Sejam C e D as categorias definidas, respetivamente, pelos diagramas seguintes

Defina por meio de um diagrama a categoria produto $\mathbf{C} \times \mathbf{D}$.

Dadas categorias

$$\mathbf{C} = (\mathrm{Obj}(\mathbf{C}), \mathrm{Mor}(\mathbf{C}), \mathrm{dom}_{\mathbf{C}}, cod_{\mathbf{C}}, \circ_{\mathbf{C}}) \ \mathbf{e} \ \mathbf{D} = (\mathrm{Obj}(\mathbf{D}), \mathrm{Mor}(\mathbf{D}), \mathrm{dom}_{\mathbf{D}}, cod_{\mathbf{D}}, \circ_{\mathbf{D}}),$$

designa-se por categoria produto de ${\bf C}$ por ${\bf D}$, e representa-se por ${\bf C} \times {\bf D}$, a categoria definida do seguinte modo:

- os objetos de $\mathbf{C} \times \mathbf{D}$ são todos os pares (A,B), onde A é um objeto de \mathbf{C} e B é um objecto de \mathbf{D} :
- os morfismos de $\mathbf{C} \times \mathbf{D}$ são todos os pares (f,g), onde f é um morfismo de \mathbf{C} e g é um morfismo de \mathbf{D} ;
- para qualquer $(f,g) \in \operatorname{Mor}(\mathbf{C} \times \mathbf{D})$, $\operatorname{dom}_{\mathbf{C} \times \mathbf{D}}(f,g) = (\operatorname{dom}_{\mathbf{C}}(f), \operatorname{dom}_{\mathbf{D}}(g))$ e $\operatorname{cod}_{\mathbf{C} \times \mathbf{D}}(f,g) = (\operatorname{cod}_{\mathbf{C}}(f), \operatorname{cod}_{\mathbf{D}}(g))$
- para cada objeto (A,B) de $\mathbf{C} \times \mathbf{D}$, o morfismo identidade $id_{(A,B)}$ é o par $(id_A^{\mathbf{C}},id_B^{\mathbf{D}})$;
- a composição $(f,g) \circ (f',g')$ dos morfismos (f,g) e (f',g') de $\mathbf{C} \times \mathbf{D}$ é definida componente a componente, isto é, $(f,g) \circ_{\mathbf{C} \times \mathbf{D}} (f',g') = (f \circ_{\mathbf{C}} f',g \circ_{\mathbf{D}} g')$.

A categoria $\mathbf{C} \times \mathbf{D}$ é a categoria definida pelo diagrama

3.5. Sejam $\mathcal{R}=(R;\cdot^{\mathcal{R}},1^{\mathcal{R}})$ e $S=(S;\cdot^{\mathcal{S}},1^{\mathcal{S}})$ monóides vistos como categorias \mathbf{R} e \mathbf{S} . O que é a categoria produto $\mathbf{R}\times\mathbf{S}$?

Consideremos os monóides $\mathcal{R} = (R; \mathcal{R}, 1^{\mathcal{R}})$ e $S = (S; \mathcal{S}, 1^{\mathcal{S}})$ vistos como categorias

$$\mathbf{R} = (\mathrm{Obj}(\mathbf{R}), \mathrm{Mor}(\mathbf{R}), \mathrm{dom}_{\mathbf{R}}, \mathrm{cod}_{\mathbf{R}}, \circ_{\mathbf{R}}) \ \mathbf{e} \ \mathbf{S} = (\mathrm{Obj}(\mathbf{S}), \mathrm{Mor}(\mathbf{S}), \mathrm{dom}_{\mathbf{S}}, \mathrm{cod}_{\mathbf{S}}, \circ_{\mathbf{S}}),$$

respetivamente.

Então, considerando as categorias \mathbf{R} e \mathbf{S} definidas de acordo com o indicado em 3.1.(a), a categoria produto de \mathbf{R} e \mathbf{S} é a categoria $\mathbf{R} \times \mathbf{S} = (\mathrm{Obj}(\mathbf{R} \times \mathbf{S}), \mathrm{Mor}(\mathbf{R} \times \mathbf{S}), \mathrm{dom}_{\mathbf{R} \times \mathbf{S}}, \mathrm{cod}_{\mathbf{R} \times \mathbf{S}}, \diamond_{\mathbf{R} \times \mathbf{S}})$, onde

- $\mathrm{Obj}(\mathbf{R} \times \mathbf{S}) = \{(A, B) \mid A \in \mathrm{Obj}(\mathbf{R}) \text{ e } B \in \mathrm{Obj}(\mathbf{S})\} = \{(R, S)\};$
- $\operatorname{Mor}(\mathbf{R} \times \mathbf{S}) = \{(f, g) \mid f \in \operatorname{Mor}(\mathbf{R}) \in g \in \operatorname{Mor}(\mathbf{S})\} = R \times S;$
- para qualquer $(r,s) \in \operatorname{Mor}(\mathbf{R} \times \mathbf{S})$, $\operatorname{dom}_{\mathbf{R} \times \mathbf{S}}(r,s) = (R,S)$ e $\operatorname{cod}_{\mathbf{R} \times \mathbf{S}}(r,s) = (R,S)$;
- $id_{(R,S)}^{\mathbf{R}\times\mathbf{S}} = (id_R^{\mathbf{R}}, id_S^{\mathbf{S}}) = (1_R, 1_S);$
- $\text{ para quaisquer } (r_1, s_1), (r_2, s_2) \in R \times S, (r_1, s_2) \circ_{\mathbf{R} \times \mathbf{S}} (r_2, s_2) = (r_1 \circ_{\mathbf{R}} s_1, r_2 \circ_{\mathbf{S}} s_2) = (r_1 \cdot^{\mathcal{R}} s_1, r_2 \cdot^{\mathcal{S}} s_2).$

Logo $\mathbf{R} \times \mathbf{S}$ é a categoria correspondente ao produto direto dos monóides \mathcal{R} e \mathcal{S} .

3.6. (a) Seja (P, \leq) um conjunto parcialmente ordenado visto como uma categoria \mathbf{P} . O que é a categoria dual \mathbf{P}^{op} ?

Sejam (P, \leq) um conjunto parcialmente ordenado e $\mathbf{P} = (\mathrm{Obj}(\mathbf{P}), \mathrm{Mor}(\mathbf{P}), \mathrm{dom}_{\mathbf{P}}, \mathrm{cod}_{\mathbf{P}}, \circ_{\mathbf{P}})$ a categoria correspondente ao c.p.o. (P, \leq) .

Então, considerando a categoria \mathbf{P} definida de acordo com o indicado em 3.1.(b), a categorial dual de \mathbf{P} é a categoria $\mathbf{P}^{op} = (\mathrm{Obj}(\mathbf{P}^{op}), \mathrm{Mor}(\mathbf{P}^{op}), \mathrm{dom}_{\mathbf{P}^{op}}, \mathrm{cod}_{\mathbf{P}^{op}}, \circ_{\mathbf{P}^{op}})$, onde:

- $\operatorname{Obj}(\mathbf{P}^{op}) = \operatorname{Obj}(\mathbf{P}) = P;$
- $\operatorname{Mor}(\mathbf{P}^{op}) = \operatorname{Mor}(\mathbf{P}) = \leq;$
- $\operatorname{dom}_{\mathbf{P}^{op}}:\operatorname{Mor}(\mathbf{P}^{op})\to\operatorname{Obj}(\mathbf{P}^{op})$ e $\operatorname{cod}_{\mathbf{P}^{op}}:\operatorname{Mor}(\mathbf{P}^{op})\to\operatorname{Obj}(\mathbf{P}^{op})$ são as funções definidas por $\operatorname{dom}_{\mathbf{P}^{op}}(f)=\operatorname{cod}_{\mathbf{P}}(f)$ e $\operatorname{cod}_{\mathbf{P}^{op}}(f)=\operatorname{dom}_{\mathbf{P}}(f)$, para qualquer $f\in\operatorname{Mor}(\mathbf{P}^{op})=\operatorname{Mor}(\mathbf{P})$;
- $\circ_{\mathbf{P}}^{op}$ é a função de $\{(g, f) \in \operatorname{Mor}(\mathbf{P}^{op}) \times \operatorname{Mor}(\mathbf{P}^{op}) \mid \operatorname{cod}(f) = \operatorname{dom}(g)\}$ em $\operatorname{Mor}(\mathbf{P}^{op})$ definida por $g \circ_{\mathbf{P}^{op}} f = f \circ_{\mathbf{P}} g$, para quaisquer $f, g \in \operatorname{Mor}(\mathbf{P}^{op})$ tais que $\operatorname{cod}(f) = \operatorname{dom}(g)\}$;
- para qualquer $a\in \mathrm{Obj}(\mathbf{P}^{op})=\mathrm{Obj}(\mathbf{P})$, $id_a^{\mathbf{P}^{op}}=id_a^{\mathbf{P}}=(a,a)$.

Na sequência da definição anterior segue que, para quaisquer $a,b \in \mathrm{Obj}(\mathbf{P}^{op}) = \mathrm{Obj}(\mathbf{P})$,

$$\hom_{\mathbf{P}^{op}}(a,b) = \hom_{\mathbf{P}}(b,a) = \{(b,a)\} \cap \leq .$$

Logo, a categoria \mathbf{P}^{op} é a categoria correspondente ao c.p.o dual de (P, \leq) , ou seja, é a categoria referente ao c.p.o. (P, \leq^d) , onde \leq^d é a relação de ordem dual da relação \leq .

(b) Seja $\mathcal R$ um monóide visto como uma categoria $\mathbf R$. O que é a categoria dual $\mathbf R^{op}$?

Consideremos o monóide $\mathcal{R}=(R;\cdot^{\mathcal{R}},1^{\mathcal{R}})$ visto como uma categoria

$$\mathbf{R} = (\mathrm{Obj}(\mathbf{R}), \mathrm{Mor}(\mathbf{R}), \mathrm{dom}_{\mathbf{R}}, \mathrm{cod}_{\mathbf{R}}, \circ_{\mathbf{R}}).$$

Considerando a categoria \mathbf{R} definida de acordo com o indicado em 3.1.(a), a categorial dual de \mathbf{R} é a categoria $\mathbf{R}^{op} = (\mathrm{Obj}(\mathbf{R}^{op}), \mathrm{Mor}(\mathbf{R}^{op}), \mathrm{dom}_{\mathbf{R}^{op}}, \mathrm{cod}_{\mathbf{R}^{op}}, \circ_{\mathbf{R}^{op}})$, onde:

- $\operatorname{Obj}(\mathbf{R}^{op}) = \operatorname{Obj}(\mathbf{R}) = \{R\};$
- $\operatorname{Mor}(\mathbf{R}^{op}) = \operatorname{Mor}(\mathbf{R}) = R;$
- $\operatorname{dom}_{\mathbf{R}^{op}}:\operatorname{Mor}(\mathbf{R}^{op})\to\operatorname{Obj}(\mathbf{R}^{op})$ e $\operatorname{cod}_{\mathbf{R}^{op}}:\operatorname{Mor}(\mathbf{R}^{op})\to\operatorname{Obj}(\mathbf{R}^{op})$ são as funções definidas por $\operatorname{dom}_{\mathbf{R}^{op}}(r)=\operatorname{cod}_{\mathbf{R}}(r)$ e $\operatorname{cod}_{\mathbf{R}^{op}}(r)=\operatorname{dom}_{\mathbf{R}}(r)$, para qualquer $r\in\operatorname{Mor}(\mathbf{R}^{op})=\operatorname{Mor}(\mathbf{R})$;
- $\circ^{op}_{\mathbf{R}}$ é a função de $\{(s,r) \in \operatorname{Mor}(\mathbf{R}^{op}) \times \operatorname{Mor}(\mathbf{R}^{op}) \mid \operatorname{cod}(r) = \operatorname{dom}(s)\}$ em $\operatorname{Mor}(\mathbf{R}^{op})$ definida por $s \circ_{\mathbf{R}^{op}} r = r \circ_{\mathbf{R}} s = r \cdot^{\mathcal{R}} s$, para quaisquer $r, s \in \operatorname{Mor}(\mathbf{R}^{op})$ tais que $\operatorname{cod}(r) = \operatorname{dom}(s)$;
- $id_R^{\mathbf{R}^{op}} = id_R^{\mathbf{R}} = 1_{\mathcal{R}}.$

Por conseguinte, a categoria \mathbf{R}^{op} é a categoria correspondente ao monóide $\mathcal{R}'=(R;*;1^{\mathcal{R}'})$ onde, $1^{\mathcal{R}'}=1^{\mathcal{R}}$ e, para quaisquer $r,s\in R$, $s*r=r\cdot s$.

3.7. Considere a categoria C representada ao lado.

Indique, caso exista:

(a) Um monomorfismo de C.

Um C-morfismo $h: X \to Y$ diz-se um monomorfismo se, para quaisquer C-morfismos $s, t: Z \to X$,

$$h \circ s = h \circ t \Rightarrow s = t$$
.

O morfismo $p:A\to B$ é um monomorfismo, pois, para quaisquer C-morfismos $s,t:Z\to A$,

$$p \circ s = p \circ t \Rightarrow s = t$$
.

Note-se que o único C-morfismo com domínio A é o morfismo id_A . Logo, sendo s e t morfismos com codomínio A, tem-se $s=id_A$ e $t=id_A$.

(b) Um morfismo que não seja um epimorfismo de C.

Um C-morfismo $h: X \to Y$ diz-se um epimorfismo se, para quaisquer C-morfismos $s, t: Y \to Z$,

$$s \circ h = t \circ h \Rightarrow s = t$$
.

O morfismo q não é um epimorfismo, pois existem $f,g \in \operatorname{Mor}(\mathbf{C})$ tais que $f \neq g$ e $f \circ q = g \circ q$.

(c) Um bimorfismo de C.

O morfismo j é um bimorfismo, pois é simultaneamente um monomorfismo e um epimorfismo.

O morfismo j é um monomorfismo, uma vez que, para quaisquer morfismos $s,t:Z\to A$

$$j \circ s = j \circ t \Rightarrow s = t$$
.

De facto, se s e t são morfismos com codomínio A, tem-se $s=id_A=t$, pois id_A é o único morfismo com codomínio A.

O morfismo j também é um epimorfismo, uma vez que, para quaisquer morfismos $s,t:F\to Z$,

$$s \circ j = t \circ j \Rightarrow s = t$$
.

Com efeito, se s e t são morfismos com domínio F, então $s=id_F=t$, pois id_F é o único morfismo com domínio F.

(d) Um isomorfismo de C.

Um morfirmo $h:X\to Y$ diz-se um isomorfismo se existe um morfismo $h':Y\to X$ tal que $h\circ h'=id_Y$ e $h'\circ h=id_X$.

Para todo $X \in \mathrm{Obj}(\mathbf{C})$, id_X é um isomorfismo, uma vez que $id_X \circ id_X = id_X$.

3.8. Numa categoria C, considere o diagrama seguinte

Sabendo que os quatro trapézios deste diagrama são comutativos, mostre que:

(a) Se o quadrado mais pequeno é comutativo, então o quadrado maior também é comutativo.

Admitamos que no diagrama seguinte os quatro trapézios e o quadrado pequeno são comutativos.

Então tem-se $r \circ q = l \circ e, \ m \circ k \circ r = t, \ m \circ j \circ i = s, \ u \circ e = i \circ p, \ j \circ u = k \circ l.$

Logo

e, portanto, o quadrado maior é comutativo.

(b) Se e é um epimorfismo, m é um monomorfismo e o quadrado maior é comutativo, então o quadrado pequeno também é comutativo.

Admitamos que no diagrama seguinte os quatro trapézios e o quadrado maior são comutativos.

Então tem-se $r \circ q = l \circ e, \ m \circ k \circ r = t, \ m \circ j \circ i = s, \ u \circ e = i \circ p, \ s \circ p = t \circ q.$

Admitamos tambem que e é um epimorfismo e m é um monomorfismo.

Considerando as igualdades anteriores e atendendo a que m é um monomorfismo e e é um epimorfismo, segue que

```
\begin{array}{lll} s\circ p = t\circ q & \Rightarrow & (m\circ j\circ i)\circ p = (m\circ k\circ r)\circ q \\ & \Rightarrow & m\circ (j\circ i\circ p) = m\circ (k\circ r\circ q) \\ & \Rightarrow & j\circ i\circ p = k\circ r\circ q & (m\text{ \'e um monomorfismo}) \\ & \Rightarrow & j\circ u\circ e = k\circ l\circ e \\ & \Rightarrow & j\circ (u\circ e) = k\circ (l\circ e) \\ & \Rightarrow & j\circ u = k\circ l. & (e\text{ \'e um epimorfismo}) \end{array}
```

Logo o quadrado mais pequeno é comutativo.

- 3.9. Sejam C uma categoria e $f: A \to B$ e $g: B \to C$ morfismos em C. Mostre que:
 - (a) Se f e g são invertíveis à esquerda (respetivamente, direita), então $g \circ f$ é invertível à esquerda (respetivamente, direita).

Admitamos que f e g são invertíveis à esquerda. Então existem $i: B \to A$ e $j: C \to B$ tais que $i \circ f = id_A$ e $j \circ g = id_B$. Pretendemos mostrar que $g \circ f: A \to C$ é invertível à esquerda, ou seja, pretendemos mostrar que existe um C-morfismo $h: C \to A$ tal que $h \circ (g \circ f) = id_A$.

Seja $h = i \circ j$. Considerando que $i \circ j \in \text{hom}(C, A)$ e

$$(i \circ j) \circ (g \circ f) = i \circ (j \circ g) \circ f = i \circ id_B \circ f = i \circ f = id_A$$

concluímos que $g \circ f$ é invertível à esquerda.

Por dualidade segue que se f e g são invertíveis à direita, então $g \circ f$ também é invertível à direita.

(b) Se $g \circ f$ é invertível à esquerda (respetivamente, direita), então f é invertível à esquerda (respetivamente, g é invertivel à direita).

Admitamos que $g\circ f:A\to C$ é invertível à esquerda. Então existe um morfismo $i:C\to A$ tal que $i\circ (g\circ f)=id_A$. Então $(i\circ g)\circ f=id_A$. Logo f é invertível à esquerda, pois existe $h=i\circ g:B\to A$ tal que $h\circ f=id_A$.

Por dualidade segue que se $g\circ f$ é invertível à direita, então g é invertivel à direita.

- 3.10. Sejam ${\bf C}$ uma categoria e $f:A\to B$ um morfismo em ${\bf C}$. Mostre que:
 - (a) Se f é invertível à esquerda, então f é um monomorfismo.

Admitamos que f é invertível à esquerda. Então existe $h: B \to A$ tal que $h \circ f = id_A$. Então, para quaisquer C-morfismos $i,j: C \to A$,

```
\begin{array}{rcl} f \circ i = f \circ j & \Rightarrow & h \circ (f \circ i) = h \circ (f \circ j) \\ \Rightarrow & (h \circ f) \circ i = (h \circ f) \circ j \\ \Rightarrow & id_A \circ j = id_A \circ i \\ \Rightarrow & i = j. \end{array}
```

(b) Se f é invertível à direita, então f é um epimorfismo.

Segue por dualidade da prova anterior.

3.11. Sejam ${\bf C}$ uma categoria e $f:A\to B$ e $g:B\to C$ morfismos em ${\bf C}$. Mostre que se $g\circ f$ é um monomorfismo e f é invertível à direita, então g é um monomorfismo.

Sejam $f:A\to B$ e $g:B\to C$ morfismos em ${\bf C}$ tais que $g\circ f$ é um monomorfismo e f é invertível à direita. Uma vez que f é invertível à direita existe $f':B\to A$ tal que $f\circ f'=id_B$. Então, para quaisquer ${\bf C}$ -morfismos $i:D\to B$ e $j:D\to B$,

```
\begin{array}{lll} g \circ i = g \circ j & \Rightarrow & g \circ id_B \circ i = g \circ id_B \circ j & (id_B \circ h = h, \text{ para qualquer morfismo } h : D \to B) \\ \Rightarrow & g \circ (f \circ f') \circ i = g \circ (f \circ f') \circ j & (f' \ \'e \ o \ inverso \ direito \ de \ f) \\ \Rightarrow & (g \circ f) \circ f' \circ i = (g \circ f) \circ f' \circ j & (associatividade) \\ \Rightarrow & f' \circ i = f' \circ j & (g \circ f \ \'e \ um \ monomorfismo) \\ \Rightarrow & id_B \circ i = id_B \circ j & (f' \ \'e \ o \ inverso \ direito \ de \ f) \\ \Rightarrow & i = j & (id_B \circ h = h, \ para \ qualquer \ morfismo \ h : D \to B). \end{array}
```

3.12. Sejam ${\bf C}$ uma categoria e $f:A\to B$ e $g:B\to C$ morfismos em ${\bf C}$. Mostre que se f e g são isomorfismos, então $g\circ f$ é um isomorfismo e o seu inverso é $f^{-1}\circ g^{-1}$.

Sejam $f:A\to B$ e $g:B\to C$ morfismos em ${\bf C}$ tais que f e g são isomorfismos. Então existem $f^{-1}:B\to A$ e $g^{-1}:C\to B$ tais que $f\circ f^{-1}=id_B,\ f^{-1}\circ f=id_A,\ g\circ g^{-1}=id_C,\ g^{-1}\circ g=id_B.$ Pretendemos mostrar que $g\circ f:A\to C$ é um isomorfismo, ou seja, temos de mostrar que existe $h:C\to A$ tal que $h\circ (g\circ f)=id_A$ e $(g\circ f)\circ h=id_C.$

Seja $h = f^{-1} \circ g^{-1}$. Então $h \in \text{hom}(C, A)$ e

$$\begin{array}{l} h\circ (g\circ f) = (f^{-1}\circ g^{-1})\circ (g\circ f) = f^{-1}\circ (g^{-1}\circ g)\circ f = f^{-1}\circ id_{B}\circ f = f^{-1}\circ f = id_{A}, \\ (g\circ f)\circ h = (g\circ f)\circ (f^{-1}\circ g^{-1}) = g\circ (f\circ f^{-1})\circ g^{-1} = g\circ id_{B}\circ g^{-1} = g\circ g^{-1} = id_{C} \end{array}$$

Logo $g \circ f$ é invertível à direita e à esquerda, ou seja, $g \circ f$ é um isomorfismo.

- 3.13. Mostre que as seguintes condições sobre uma categoria ${f C}$ são equivalentes:
 - (I1) Todo o morfismo em C é invertível à direita;
 - (I2) Todo o morfismo em C é invertível à esquerda;
 - (I3) Todo o morfismo em C é invertível.
 - (I1) \Rightarrow (I2) Admitamos que todo o morfismo de ${\bf C}$ é invertível à direita. Seja $f:A\to B$ um ${\bf C}$ -morfismo. Mostremos que f é invertível à esquerda. Por hipótese, existe um ${\bf C}$ -morfismo $f':B\to A$ tal que $f\circ f'=id_B$. Considerando que f' também é invertível à direita existe um ${\bf C}$ -morfismo $f'':A\to B$ tal que $f'\circ f''=id_A$. Logo de $f\circ f'=id_B$ segue que $f'\circ f\circ f'\circ f''=f'\circ id_B\circ f''$, ou seja, $f'\circ f=id_A$. Portanto, f é invertível à esquerda.
 - $(12) \Rightarrow (13)$ Admitamos que todo o morfismo de ${\bf C}$ é invertível à esquerda. Por dualidade da prova anterior segue que todo o morfismo de ${\bf C}$ também é invertível à direita. Logo todo o morfismo é invertível.
 - (I3) ⇒ (I1) Imediato, pois todo o morfismo invertível é um morfismo invertível à direita (e à esquerda).
- 3.14. Seja $f: A \to B$ um isomorfismo numa categoria \mathbf{C} . Para cada objeto $C \in \mathrm{Obj}(\mathbf{C})$, mostre que a função $f_C: \mathrm{hom}(B,C) \to \mathrm{hom}(A,C)$ definida por $f_C(g) = g \circ f$ é uma bijeção.

Sejam ${\bf C}$ uma categoria e $f:A\to B$ um isomorfismo em ${\bf C}$. Considerando que f é um isomorfismo, existe $f^{-1}:B\to A\in {\rm Mor}({\bf C})$ tal que $f\circ f^{-1}=id_B$ e $f^{-1}\circ f=id_A$. Pretendemos mostrar que, para cada objeto $C\in {\rm Obj}({\bf C})$, a função $f_C: {\rm hom}(B,C)\to {\rm hom}(A,C)$ definida por $f_C(g)=g\circ f$ é injetiva e sobrejetiva.

- f_C injetiva

Para quaisquer C-morfismos $g_1: B \to C$ e $g_2: B \to C$,

```
f_C(g_1) = f_C(g_2) \Rightarrow g_1 \circ f = g_2 \circ f
\Rightarrow (g_1 \circ f) \circ f^{-1} = (g_2 \circ f) \circ f^{-1}
\Rightarrow g_1 \circ (f \circ f^{-1}) = g_2 \circ (f \circ f^{-1})
\Rightarrow g_1 \circ id_B = g_2 \circ id_B
\Rightarrow g_1 = g_2.
```

Logo f_C é injetiva.

- f_C sobrejetiva

Também é simples verificar que f_C é sobrejetiva. De facto, para qualquer $h \in \text{hom}(A,C)$, existe $g = h \circ f^{-1} \in \text{hom}(B,C)$ tal que

$$f_C(g) = f_C(h \circ f^{-1}) = (h \circ f^{-1}) \circ f = h \circ (f \circ f^{-1}) = h \circ id_B = h.$$

Portanto, f_C é sobrejetiva.

3.15. Mostre que se C_1 e C_2 são duas categorias com objetos terminais (iniciais), então $C_1 \times C_2$ também tem objetos terminais (iniciais).

Sejam C_1 e C_2 categorias e T_1 e T_2 são objetos terminais de C_1 e C_2 , respetivamente. Mostremos que (T_1, T_2) é um objeto terminal de $C_1 \times C_2$.

Uma vez que T_1 é um objeto terminal de \mathbf{C}_1 , então $T_1 \in \mathrm{Obj}(\mathbf{C}_1)$ e, para cada $X \in \mathrm{Obj}(\mathbf{C}_1)$, existe um e um só \mathbf{C}_1 -morfismo $f: X \to T_1$. Como T_2 é um objeto terminal de \mathbf{C}_2 , então $T_2 \in \mathrm{Obj}(\mathbf{C}_2)$, para cada $Y \in \mathrm{Obj}(\mathbf{C}_2)$, existe um e um só \mathbf{C}_2 -morfismo $g: Y \to T_2$.

Como $T_1 \in \mathrm{Obj}(\mathbf{C}_1)$ e $T_2 \in \mathrm{Obj}(\mathbf{C}_2)$, então $(T_1,T_2) \in \mathrm{Obj}(\mathbf{C}_1 \times \mathbf{C}_2)$. Mostremos que para $(X,Y) \in \mathrm{Obj}(\mathbf{C}_1 \times \mathbf{C}_2)$ existe um e um só $\mathbf{C}_1 \times \mathbf{C}_2$ -morfismo de (X,Y) em (T_1,T_2) . Então X é um objeto de \mathbf{C}_1 e Y é um objeto de \mathbf{C}_2 . Logo existe um \mathbf{C}_1 -morfismo $f: X \to T_1$ e existe um \mathbf{C}_2 -morfismo $g: Y \to T_2$. Assim, (f,g) é um $\mathbf{C}_1 \times \mathbf{C}_2$ -morfismo de (X,Y) em (T_1,T_2) . Além disso, é simples verificar que (f,g) é o único $\mathbf{C}_1 \times \mathbf{C}_2$ -morfismo de (X,Y) em (T_1,T_2) . De facto, se (f',g') é um $\mathbf{C}_1 \times \mathbf{C}_2$ -morfismo de (X,Y) em (T_1,T_2) , então f' é um \mathbf{C}_1 -morfismo de X em T_1 e g' é um \mathbf{C}_2 -morfismo de Y em T_2 . Logo, atendendo a que f é o único morfismo de X em T_1 e g é o único morfismo de Y em T_2 , segue que f'=f e g'=g. Portanto, (f',g')=(f,g). Desta forma, provámos que (T_1,T_2) é um objeto terminal de $\mathbf{C}_1 \times \mathbf{C}_2$.

3.16. Mostre que se uma categoria C tem objeto zero, então todo o objeto inicial (terminal) de C é objeto zero. Deduza que a categoria **Set** não tem objetos zero.

Seja 0 um objeto zero de ${\bf C}$. Por definição de objeto zero, 0 é um objeto inicial e terminal. Seja I um objeto inicial de ${\bf C}$. Pretendemos mostrar que I é um objeto zero, ou seja, pretendemos mostrar que é um objeto inicial e terminal. Uma vez que I é um objeto inicial, resta provar que I é um objeto terminal, ou seja, temos de provar que, para todo $X \in {\rm Obj}({\bf C})$, existe um e um só ${\bf C}$ -morfismo $X \to I$.

Seja X um objeto de ${\bf C}$. Uma vez que 0 é um objeto terminal, existe um e um só morfismo $f:X\to 0$. Considerando que 0 é um objeto inicial, existe um e um só morfismo $g:0\to I$. Logo $g\circ f:X\to I$ é um ${\bf C}$ -morfismo

$$X \xrightarrow{f} O \xrightarrow{g} I$$

e, portanto, existe um \mathbf{C} -morfismo de X em I.

Mostremos, agora, que $g\circ f$ é o único ${\bf C}$ -morfismo de X em I. Seja $h:X\to I$ um morfismo de ${\bf C}$. Pretendemos mostar que $h=g\circ f$. Uma vez que I é um objeto inicial, existe um e um só morfismo $g':I\to O$. Assim, temos o diagrama seguinte na categoria ${\bf C}$

e $g\circ g':I\to I$ é um ${\bf C}$ -morfismo. Uma vez que $g\circ g':I\to I$ e $id_I:I\to I$ são ${\bf C}$ -morfismos com domínio I, com o mesmo codomínio e I é um objeto inicial, tem-se $g\circ g'=id_I$. Por outro lado, como $f:X\to 0$ e $g'\circ h:X\to 0$ são ${\bf C}$ -morfismos com o mesmo domínio, com codomínio 0 e 0 é um objeto terminal, temos $g'\circ h=f$. Desta igualdade segue que $g\circ (g'\circ h)=g\circ f$, donde resulta $(g\circ g')\circ h=g\circ f$ e, portanto, $id_I\circ h=g\circ f$. Logo $h=g\circ f$. Desta forma, provámos que existe um único morfismo de X em I. Por conseguinte, I é também um objeto terminal. Logo I é um objeto zero.

Por dualidade conclui-se que se uma categoria ${f C}$ tem objeto zero, então todo o objeto terminal de ${f C}$ é um objeto zero.

Na categoria **Set**, o conjunto \emptyset é um objeto inicial mas não é um objeto terminal (por exemplo, não existe qualquer morfismo de $\{1\}$ em \emptyset). Logo a categoria **Set** não tem objetos zero (caso contrário, \emptyset também seria um objeto zero).

3.17. Seja ${f C}$ uma categoria com objeto inicial I e com objeto terminal T. Mostre que se $f:T\to I$ é um morfismo em ${f C}$, então f é um isomorfismo. Conclua que I e T são objetos zero.

Seja ${f C}$ uma categoria com objeto inicial I e com objeto terminal T. Seja $f:T\to I$ um ${f C}$ -morfismo. Uma vez que I é um objeto inicial, existe um e um só ${f C}$ -morfismo $f':I\to T$.

Logo $f\circ f':I\to I$ e $f'\circ f:T\to T$ são C-morfismos. Considerando que $f\circ f':I\to I$ e $id_I:I\to I$ são C-morfismos com domínio I, com o mesmo codomínio e I é um objeto inicial, segue que $f\circ f'=id_I$. Por outro lado, como $f'\circ f:T\to T$ e $id_T:T\to T$ são C-morfismos com o mesmo domínio, com codomínio T e T é um objeto terminal, temos $f'\circ f=id_T$. Logo f é um isomorfismo.

Uma vez que T é um objeto terminal e $I\cong T$, então I também é um objeto terminal. Logo I é um objeto zero. Como I é um objeto inicial e $T\cong I$, então T também é um objeto inicial e, portanto, T é um objeto zero.

3.18. Seja C a categoria definida pelo diagrama seguinte

Diga, justificando, se:

(a) A categoria C tem objetos iniciais e objetos terminais.

Nenhum dos objetos de C é um objeto inicial ou terminal.

O objeto R não é inicial, pois não existe morfismo de R em S. O objeto S não é inicial, pois não existe morfismo de S em S. O objeto S não é inicial, pois não existe morfismo de S em S. O objeto S0 não é inicial, pois existe mais do que um morfismo de S0 em S1.

O objeto R não é terminal, pois não existe morfismo de S em R. O objeto S não é terminal, pois não existe morfismo de R em S. O objeto P não é terminal, pois existe mais do que um morfismo de Q em P. O objeto Q não é inicial, pois não existe morfismo de P em Q.

(b) (P, (f, g)) é um produto de R e S.

O par (P, (f, g) é um produto de R e S se:

- i. $f \in \text{hom}_{\mathbf{C}}(P, R), g \in \text{hom}_{\mathbf{C}}(P, S);$
- ii. para cada $X \in \mathrm{Obj}(\mathbf{C})$ e para quaisquer C-morfismos $f_1: X \to R$ e $f_2: X \to S$, existe um único C-morfismo $u: X \to P$ tal que $f \circ u = f_1$ e $g \circ u = f_2$.

Por definição de ${\bf C}$, a condição i. verifica-se. Porém, a condição ii. não é satisfeita, pois $i:Q\to R$, $j:Q\to S$ são ${\bf C}$ -morfismos e existem $u:Q\to P, v:Q\to P\in {\rm Mor}({\bf C})$ tais que $u\neq v,\ f\circ u=i,\ g\circ u=j,\ f\circ v=i$ e $g\circ v=j.$

Logo o par (P, (f, g)) não é um produto de R e S.

(c) (S,(g,j)) é um coproduto de P e Q.

O par (S, (g, j) é um coproduto de P e Q se:

- i. $g \in \text{hom}_{\mathbf{C}}(P, S)$ e $j \in \text{hom}_{\mathbf{C}}(Q, S)$;
- ii. para cada $X \in \mathrm{Obj}(\mathbf{C})$ e para quaisquer C-morfismos $f_1: P \to X$ e $f_2: Q \to X$, existe um único C-morfismo $k: S \to X$ tal que $k \circ g = f_1$ e $k \circ j = f_2$.

Por definição de ${\bf C}$, a condição i. é imediata. No entanto, existem $P\in {\rm Obj}({\bf C})$ e ${\bf C}$ -morfismos $id_P:P\to P$ e $u:Q\to P$ para os quais não existe qualquer ${\bf C}$ -morfismo $k:S\to P$ tal que $k\circ g=id_P$ e $k\circ j=u$.

3.19. Dados objetos A e B da categoria **Set**, seja $A \times B = \{(a,b) \mid a \in A, b \in B\}$ e sejam p_A e p_B as funções definidas por

Mostre que $(A \times B, (p_A, p_B))$ é um produto dos objetos A e B.

O par $(A \times B, (p_A, p_B))$ é um produto de A e B se:

- (i) p_A é um **Set**-morfismo de $A \times B$ em A, p_B é um **Set**-morfismo de $A \times B$ em B;
- (ii) para qualquer $X \in \mathrm{Obj}(\mathbf{Set})$ e para quaisquer \mathbf{Set} -morfismos $f_A: X \to A$ e $f_B: X \to B$, existe um e um só morfismo $u: X \to A \times B$ tal que $p_A \circ u = f_A$ e $p_B \circ u = f_B$.

Mostremos as condições (i) e (ii).

- (i) Considerando que p_A é uma função de $A \times B$ em A e p_B é uma função de $A \times B$ em B, então, pela definição da categoria **Set**, $p_A \in \hom_{\mathbf{Set}}(A \times B, A)$ e $p_B \in \hom_{\mathbf{Set}}(A \times B, B)$.
- (ii) Admitamos que existem $X \in \mathrm{Obj}(\mathbf{Set})$ e \mathbf{Set} -morfismos f_A e f_B tais que $f_A \in \mathrm{hom}_{\mathbf{Set}}(X,A)$ e $f_B \in \mathrm{hom}_{\mathbf{Set}}(X,B)$.

Por definição da categoria **Set**, f_A e f_B são funções e, por conseguinte, a correspondência u de X em $A\times B$ definida por $u(x)=(f_A(x),f_B(x))$ é uma função de X em $A\times B$. De facto, como f_A e f_B são funções, para todo $x\in X$, temos $f_A(x)\in A$ e $f_B(x)\in B$ e, portanto, $(f_A(x),f_B(x))\in A\times B$. Além disso, para quaisquer $x,y\in X$,

$$\begin{array}{lll} x=y & \Rightarrow & f_A(x)=f_A(y) \text{ e } f_B(x)=f_B(y) & \text{ $(f_A \text{ e } f_B \text{ são funções})$} \\ & \Rightarrow & (f_A(x),f_B(x))=(f_A(y),f_B(y)) \\ & \Rightarrow & u(x)=u(y). \end{array}$$

É simples verificar que, considerando a função u definida desta forma, o diagrama anterior é comutativo. Com efeito, como $p_A \circ u$ e f_A são funções com o mesmo domínio e o mesmo conjunto de chegada e, para todo $x \in X$, $(p_A \circ u)(x) = p_A(f_A(x), f_B(x)) = f_A(x)$, temos $p_A \circ u = f_A$. De modo anólogo, prova-se que $p_B \circ u = f_B$.

O morfismo u é o único morfismo de X em $A\times B$ tal que $p_A\circ u=f_A$ e $p_B\circ u=f_B$. De facto, se admitirmos que $v:X\to A\times B$ é um morfismo tal que $p_A\circ v=f_A$ e $p_B\circ v=f_B$, segue que, para todo $x\in X$, $p_A(v(x))=f_A(x)$ e $p_B(v(x))=f_B(x)$, pelo que $v(x)=(f_A(x),f_B(x))=u(x)$. Então, considerando que u e v são funções com o mesmo domínio e conjunto de chegada, concluímos que u=v.

De (i) e (ii) conclui-se que $A \times B$ é um produto de A e B.

- 3.20. Seja $\mathbf C$ uma categoria com objeto terminal T. Para qualquer objeto A de $\mathbf C$, mostre que:
 - (a) o par $(A, (\xi^A, id_A))$, onde ξ^A é o único morfismo $A \to T$, é um produto de T e A.

O par $(A, (\xi^A, id_A))$ é um produto de T e A se:

- (i) ξ^A é um morfismo de A em T, id_A é um morfismo de A em A;
- (ii) para qualquer $X \in \mathrm{Obj}(\mathbf{C})$ e para quaisquer \mathbf{C} -morfismos $f: X \to T$ e $g: X \to A$, existe um e um só morfismo $u: X \to A$ tal que $\xi^A \circ u = f$ e $id_A \circ u = g$.

Provemos as condições (i) e (ii).

- (i) Imediato pela definição de ξ^A e de id_A .
- (ii) Considerando u=g, é imediato que $id_A\circ u=g$. Também se tem $\xi^A\circ u=f$. De facto, como $\xi^A\circ u$ e f são morfismos com o mesmo domínio, com codomínio T e T é objeto terminal, segue que $\xi^A\circ u=f$.

O morfismo u é o único morfismo tal que $id_A \circ u = g$ e $\xi^A \circ u = f$; se assumirmos que $v: X \to A$ é um morfismo tal que $id_A \circ v = g$ e $\xi^A \circ v = f$, então temos v = g = u.

De (i) e (ii) concluímos que $(A, (\xi^A, id_A))$ é um produto de T e A.

(b) o par $(A, (\mathrm{id}_A, \xi^A))$, onde ξ^A é o único morfismo $A \to T$, é um produto de A e T.

A prova é similar à da alínea anterior.

(c) Se $(T \times A, (p_1, p_2))$ é um produto de T e A e $(A \times T, ({p'}_1, {p'}_2))$ é um produto de A e T, então $T \times A \cong A \cong A \times T$.

Consideremos que $(T \times A, (p_1, p_2))$ é um produto de T e A. Então

- (1) p_1 é um morfismo de $T \times A$ em T, p_2 é um morfismo de $T \times A$ em A;
- (2) para qualquer objeto Y de ${\bf C}$ e para quaisquer ${\bf C}$ -morfismos $f:Y\to T$ e $g:Y\to A$, existe um e um só morfismo $u:Y\to T\times A$ tal que $p_1\circ u=f$ e $p_2\circ u=g$.

Da alínea (a) também sabemos que $(A, (\xi^A, id_A))$ é um produto de T e A, pelo que são satisfeitas as condições seguintes:

- (i) ξ^A é um morfismo de A em T, id_A é um morfismo de A em A;
- (ii) para qualquer objeto X de ${\bf C}$ e para quaisquer ${\bf C}$ -morfismos $f:X\to T$ e $g:X\to A$, existe um e um só morfismo $v:X\to A$ tal que $\xi^A\circ v=f$ e $id_A\circ v=g$.

De (ii), e considerando $X=T\times A$, $f=p_1$ e $g=p_2$, sabe-se que existe um e um só morfismo $v:T\times A\to A$ tal que $\xi^A\circ v=p_1$ e $id_A\circ v=p_2$. De (2), e considerando Y=A, $f=\xi^A$ e $g=id_A$, sabe-se que existe um e um só morfismo $u:A\to T\times A$ tal que $p_1\circ u=\xi^A$ e $p_2\circ u=id_A$.

Das igualdades anteriores resulta que $p_1 \circ u \circ v = p_1$ e $p_2 \circ u \circ v = p_2$.

Então, considerando que também temos $p_1\circ id_{A\times T}=p_1$ e $p_2\circ id_{A\times T}=p_2$, segue que $u\circ v=id_{A\times T}$, pois $(T\times A,(p_1,p_2))$ é um produto de T e A, .

Das igualdades $\xi^A \circ v = p_1$, $id_A \circ v = p_2$, $p_1 \circ u = \xi^A$ e $p_2 \circ u = id_A$ também resulta que $id_A \circ v \circ u = id_A$ e $\xi^A \circ v \circ u = \xi^A$.

Então, considerando que também temos $id_A \circ id_A = id_A$, $\xi^A \circ id_A = \xi^A$ e $(A, (\xi^A, \mathrm{id}_A))$ é um produto de T e A, segue que $v \circ u = id_A$.

Como $u \circ v = id_{T \times A}$ e $v \circ u = id_A$, então $u : A \to T \times A$ é um isomorfismo e, portanto, $A \cong T \times A$.

3.21. Sejam A e B dois objetos de uma categoria \mathbf{C} , admitindo coproduto $(A+B,(i_A,i_B))$ e tais que $\hom_{\mathbf{C}}(B,A) \neq \emptyset$. Mostre que i_A é invertível à esquerda e, portanto, é um monomorfismo.

Admitamos que A e B são objetos de uma categoria ${\bf C}$ tais que $(A+B,(i_A,i_B))$ é um coproduto de A e B e $\hom_{\bf C}(B,A)\neq\emptyset$.

Considerando que $\hom_{\mathbf{C}}(B,A) \neq \emptyset$, existe um **C**-morfismo $f: B \to A$. Atendendo a que $A \in \mathrm{Obj}(\mathbf{C})$ e \mathbf{C} é uma categoria, $id_A: A \to A$ também é um morfismo de \mathbf{C} . Então, atendendo a que $(A+B,(i_A,i_B))$ é um coproduto de A e B, existe um e um só morfismo $u: A+B \to A$ tal que $u \circ i_A = id_A$ e $u \circ i_B = f$.

Uma vez que $u \circ i_A = id_A$, concluímos que i_A é invertível à esquerda. Todo o morfismo invertível à esquerda é um monomorfismo e, portanto, i_A é um monomorfismo.

3.22. Sejam ${\bf C}$ uma categoria e $f:A\to B$ e $g:A\to B$ morfismos em ${\bf C}$. Mostre que se (I,i) e (I',i') são igualizadores de f e g, então $I\cong I'$.

Sejam $f:A\to B$ e $g:A\to B$ morfismos de ${\bf C}$ e (I,i), (I',i') igualizadores de f e g.

Considerando que (I, i) é um igualizador de f e g, então:

- (i) i é um C-morfismo de I em A tal que $f \circ i = g \circ i$;
- (ii) para qualquer ${f C}$ -morfismo $j:J\to A$ tal que $f\circ j=g\circ j$, existe um único ${f C}$ -morfismo $u:J\to I$ tal que $i\circ u=j$.

Atendendo a que (I', i') é um igualizador de f e g, então:

- (1) i' é um C-morfismo de I' em A tal que $f \circ i' = g \circ i'$;
- (2) para qualquer C-morfismo $k:K\to A$ tal que $f\circ k=g\circ k$, existe um único C-morfismo $v:K\to I'$ tal que $i'\circ v=k$.

De (ii), e considerando J=I' e j=i', resulta que existe um e um só C-morfismo $u:I'\to I$ tal que $i\circ u=i'$. De (2), considerando K=I e k=i, segue que existe um e um só morfismo $v:I\to I'$ tal que $i'\circ v=i$. Das igualdades $i\circ u=i'$ e $i'\circ v=i$, temos

$$i \circ u \circ v = i e i' \circ v \circ u = i'.$$

Por outro lado, de (ii), considerando J=I e j=i, sabe-se que existe um e um só morfismo $s:I\to I$ tal que $i\circ s=i$. Então, como $i\circ id_I=i$ e $i\circ u\circ v=i$, tem-se $id_I=s=u\circ v$. De (2), considerando K=I' e k=i', conclui-se que existe um e um só morfismo $t:I'\to I'$ tal que $i'\circ t=i'$. Assim, atendendo a que $i'\circ id_{I'}=i'$ e $i'\circ v\circ u=i'$, temos $v\circ u=t=id_{I'}$. Uma vez que $u\circ v=id_I$ e $v\circ u=id_{I'}$, conclui-se que $v\circ u=id_I$ e $v\circ u=id_I$.

3.23. Seja ${\bf C}$ uma categoria com objeto zero ${\bf 0}$. Mostre que se $f:A\to B$ é um monomorfismo (respetivamente, epimorfismo), então o igualizador (respetivamente, co-igualizador) de f e do morfismo nulo de A em B é o par $(0,0_{0,A})$ (respetivamente, o par $(0,0_{B,0})$).

Sejam ${\bf C}$ uma categoria com objeto zero ${\bf 0}$ e $f:A\to B$ um monomorfismo de ${\bf C}$. Pretendemos provar que $(0,0_{0,A})$ é um igualizador de f e $0_{A,B}$, ou seja, temos de mostrar que

- (i) $0_{0,A}$ é um ${\bf C}$ -morfismo de 0 em A tal que $f\circ 0_{0,A}=0_{A,B}\circ 0_{0,A}$;
- (ii) para qualquer $C \in \mathrm{Obj}(\mathbf{C})$ e para qualquer \mathbf{C} -morfismo $g: C \to A$ tal que $f \circ g = 0_{A,B} \circ g$, existe um e um só morfismo $u: C \to 0$ tal que $i \circ u = g$.

Mostremos as condições (i) e (ii).

(i) Por definição dos morfismos $0_{0,A}$ e $0_{A,B}$, temos $0_{0,A} \in \text{hom}_{\mathbf{C}}(0,A)$ e $0_{A,B} \in \text{hom}_{\mathbf{C}}(A,B)$. Logo

$$f \circ 0_{0,A} : 0 \to B$$
 e $0_{A,B} \circ 0_{0,A} : 0 \to B$

são C-morfismos. Considerando que $f\circ 0_{0,A}$ e $0_{A,B}\circ 0_{0,A}$ são morfismos com domínio 0, com o mesmo codomínio e que 0 é um objeto inicial, segue que

$$f \circ 0_{0,A} = 0_{A,B} \circ 0_{0,A}.$$

(ii) Sejam $C \in \mathrm{Obj}(\mathbf{C})$ e $g: C \to A$ um \mathbf{C} -morfismo tal que $f \circ g = 0_{A,B} \circ g$. Nestas condições prova-se que existe um e um só morfismo $u: C \to 0$ tal que $0_{0,A} \circ u = g$. De facto, como 0 é um objeto terminal, existe um e um só morfismo de C em 0; esse morfismo é o morfismo $0_{C,0}$. Além disso, tem-se $0_{0,A} \circ 0_{C,0} = g$. Com efeito, como

$$f \circ g = 0_{A,B} \circ g = 0_{C,B} = f \circ (0_{0,A} \circ 0_{C,0})$$

e f é monomorfismo, segue que

$$g = 0_{0,A} \circ 0_{C,0}$$
.

Assim, de (i) e (ii) resulta que $(0,0_{0,A})$ é um igualizador de f e $0_{A,B}$.

3.24. Sejam ${\bf C}$ uma categoria, $f,g:A\to B$ morfismos em ${\bf C}$ e (I,i) um igualizador de f e g. Mostre que se $\alpha:B\to C$ é um monomorfismo, então (I,i) é um igualizador de $\alpha\circ f$ e $\alpha\circ g$.

Sejam ${f C}$ uma categoria, $f,g:A\to B$ morfismos em ${f C}$ e (I,i) um igualizador de f e g. Admitamos que $\alpha:B\to C$ é um monomorfismo de ${f C}$.

Uma vez que (I,i) é um igualizador de f e g, sabe-se que:

- (1) i é um C-morfismo de I em A tal que $f \circ i = g \circ i$;
- (2) para qualquer $K \in \mathrm{Obj}(\mathbf{C})$ e para qualquer \mathbf{C} -morfismo $k: K \to A$ tal que $f \circ k = g \circ k$, existe um e um só morfismo $u: K \to I$ tal que $i \circ u = k$.

Pretendemos mostar que (I,i) é um igualizador de $\alpha\circ f$ e $\alpha\circ g$, ou seja, pretende-se provar que:

- (i) i é um C-morfismo de I em A tal que $(\alpha \circ f) \circ i = (\alpha \circ g) \circ i$;
- (ii) para qualquer $Z \in \mathrm{Obj}(\mathbf{C})$ e para qualquer \mathbf{C} -morfismo $z: Z \to A$ tal que $(\alpha \circ f) \circ z = (\alpha \circ g) \circ z$, existe um e um só morfismo $v: Z \to I$ tal que $i \circ v = z$.

Mostremos as condições (i) e (ii).

(i) Esta condição é imediata a partir de (1), pois i é um C-morfismo de I em A e

$$(\alpha \circ f) \circ i = \alpha \circ (f \circ i) = \alpha \circ (g \circ i) = (\alpha \circ g) \circ i.$$

- (ii) Sejam $Z\in \mathrm{Obj}(\mathbf{C})$ e $z:Z\to A$ um \mathbf{C} -morfismo tal que $(\alpha\circ f)\circ z=(\alpha\circ g)\circ z$. Então, como $\alpha\circ (f\circ z)=\alpha\circ (g\circ z)$ e α é um monomorfismo, temos $f\circ z=g\circ z$. Então, por (2), existe um e um só morfismo $v:Z\to I$ tal que $i\circ v=z$.
- De (i) e (ii) conclui-se que (I,i) é um igualizador de $\alpha \circ f$ e $\alpha \circ g$.
- 3.25. Mostre que na subcategoria plena de **Set** constituída pelos conjuntos não vazios há pares de morfismos que não têm igualizador.

Seja C a subcategoria plena de **Set** constituída pelos conjuntos não vazios.

As funções

são morfismos de ${\bf C}$ e não admitem igualizador, pois, para qualquer $X\in {\rm Obj}({\bf C})$ e para qualquer $i:X\to \{1\}$, tem-se $f\circ i\neq g\circ i$. Note-se que se $X\in {\rm Obj}({\bf C})$, então $X\neq \emptyset$, pelo que existe $x\in X$ e, para qualquer $i:X\to \{1\}$, $(f\circ i)(x)=2\neq 3=(g\circ i)(x)$, pelo que $f\circ i\neq g\circ i$.

3.26. Sejam $f,g:A\to B$ e $i:I\to A$ morfismos numa categoria ${\bf C}$. Mostre que se (I,(i,i)) é um produto fibrado de (f,g), então (I,i) é um igualizador de f e g .

Admitamos que (I,(i,i)) é um produto fibrado de (f,g). Então:

- (i) i é um C-morfismo de I em A tal que $f \circ i = g \circ i$;
- (ii) para qualquer $K \in \mathrm{Obj}(\mathbf{C})$ e para quaisquer \mathbf{C} -morfismos $f': K \to A$, $g': K \to A$ tais que $f \circ f' = g \circ g'$, existe um e um só morfismo $k: K \to I$ tal que $i \circ k = f'$ e $i \circ k = g'$.

Pretendemos mostrar que (I,i) é um igualizador de f e g, ou seja, pretendemos provar que:

- (1) i é um C-morfismo de I em A tal que $f \circ i = g \circ i$;
- (2) para qualquer $Z \in \mathrm{Obj}(\mathbf{C})$ e para qualquer \mathbf{C} -morfismo $z: Z \to A$ tal que $f \circ z = g \circ z$, existe um e um só morfismo $u: Z \to I$ tal que $i \circ u = z$.

Mostremos as condições (1) e (2).

- (1) Imediato a partir (i).
- (2) Sejam $Z\in \mathrm{Obj}(\mathbf{C})$ e $z:Z\to A$ um \mathbf{C} -morfismo tal que $f\circ z=g\circ z$. Então, a partir de (ii), considerando $K=Z,\ f'=z$ e g'=z, concluímos que existe um e um só morfismo $u:Z\to I$ tal que $i\circ u=f'=z$ e $i\circ u=g'=z$.

Portanto (I, i) é um igualizador de f e g.

- 3.27. Sejam ${f C}$ uma categoria e $f:A\to B$ um morfismo em ${f C}$. Mostre que as afirmações seguintes são equivalentes:
 - (A1) f é um monomorfismo.
 - (A2) $(A, (id_A, id_A))$ é um produto fibrado de (f, f).
 - (A1) \Rightarrow (A2) Admitamos que f é um monomorfismo. Pretendemos mostrar que $(A,(\mathrm{id}_A,\mathrm{id}_A))$ é um produto fibrado de (f,f), ou seja, temos de provar que:
 - (i) id_A é um C-morfismo de A em A tal que $f \circ id_A = f \circ id_A$;
 - (ii) para qualquer $K \in \mathrm{Obj}(\mathbf{C})$ e para quaisquer \mathbf{C} -morfismos $p: K \to A$, $q: K \to A$ tais que $f \circ p = f \circ q$, existe um e um só morfismo $k: K \to A$ tal que $id_A \circ k = p$ e $id_A \circ k = q$.

A prova das condições (i) e (ii) é simples.

- (i) Imediato.
- (ii) Sejam $K \in \mathrm{Obj}(\mathbf{C})$ e $p: K \to A$ e $q: K \to A$ morfismos de \mathbf{C} tais que $f \circ p = f \circ q$. Então, como f é monomorfismo segue que p = q. Logo existe $k = p = q \in \mathrm{hom}_{\mathbf{C}}(K, A)$ tal que $id_A \circ k = p$ e $id_A \circ k = q$.
- $(A2) \Rightarrow (A1)$ Admitamos que $(A, (id_A, id_A))$ é um produto fibrado de (f, f). Então
 - (i) id_A é um C-morfismo de A em A tal que $f \circ id_A = f \circ id_A$;
- (ii) para qualquer $K \in \mathrm{Obj}(\mathbf{C})$ e para quaisquer \mathbf{C} -morfismos $p: K \to A$, $q: K \to A$ tais que $f \circ p = f \circ q$, existe um e um só morfismo $k: K \to A$ tal que $id_A \circ k = p$ e $id_A \circ k = q$.

Pretendemos provar f é um monomorfismo. Sejam $i:X\to A$ e $j:X\to A$ C-morfismos tais que $f\circ i=f\circ j$. Então de (ii), considerando K=X, p=i e q=j, segue que existe um e um só morfismo $k:X\to A$ tal que $id_A\circ k=p=i$ e $id_A\circ k=q=j$. Logo i=k=j e, portanto, f é um monomorfismo.

3.28. Sejam ${f C}$ uma categoria com objeto terminal T e A e B objetos de ${f C}$. Mostre que

é um quadrado cartesiano se e só se $(P,(p_A,p_B))$ é um produto de A e B.

Admitamos que

é um quadrado cartesiano. Então

- (i) p_A e p_B são C-morfismos tais que $p_A \in \text{hom}_{\mathbf{C}}(P,A)$, $p_B \in \text{hom}_{\mathbf{C}}(P,B)$ e $f_A \circ p_A = f_B \circ p_B$;
- (ii) para qualquer $K \in \mathrm{Obj}(\mathbf{C})$ e para quaisquer \mathbf{C} -morfismos $q_A: K \to A$, $q_B: K \to B$ tais que $f_A \circ q_A = f_B \circ q_B$, existe um e um só \mathbf{C} -morfismo $k: K \to P$ tal que $p_A \circ k = q_A$ e $p_B \circ k = q_B$.

Pretendemos provar que $(P, (p_A, p_B))$ é um produto de A e B, ou seja, pretende-se provar que

- (1) $p_A \in \text{hom}_{\mathbf{C}}(P, A), p_B \in \text{hom}_{\mathbf{C}}(P, B);$
- (2) para qualquer $Z \in \mathrm{Obj}(\mathbf{C})$ e para quaisquer C-morfismos $g_A : Z \to A$, $g_B : Z \to B$, existe um e um só C-morfismo $u : Z \to P$ tal que $p_A \circ u = g_A$ e $p_B \circ u = g_B$.

A condição (1) é imediata pela definição de p_A e p_B .

Mostremos a condição (2). Sejam $Z\in \mathrm{Obj}(\mathbf{C})$ e $g_A:Z\to A,\,g_B:Z\to B$ morfismos de \mathbf{C} . Considerando que $f_A\circ g_A$ e $f_B\circ g_B$ são morfimos com o mesmo domínio, com codomínio T e T é um objeto terminal, temos $f_A\circ g_A=f_B\circ g_B$. Então, atendendo a (ii), existe um e um só \mathbf{C} -morfismo $u:Z\to A$ tal que $p_A\circ u=g_A$ e $p_B\circ u=g_B$.

Reciprocamente, admitindo que $(P,(p_A,p_B))$ é um produto de A e B, prova-se que $(P,(p_A,p_B))$ é um produto fibrado de (f_A,f_B) . De facto, se $(P,(p_A,p_B))$ é um produto de A e B, então:

- (c.1) $p_A \in \text{hom}_{\mathbf{C}}(P, A), p_B \in \text{hom}_{\mathbf{C}}(P, B);$
- (c.2) para qualquer $Z \in \mathrm{Obj}(\mathbf{C})$ e para quaisquer \mathbf{C} -morfismos $g_A: Z \to A$, $g_B: Z \to B$, existe um e um só \mathbf{C} -morfismo $u: Z \to P$ tal que $p_A \circ u = g_A$ e $p_B \circ u = g_B$.

Pretendemos mostrar que $(P,(p_A,p_B))$ é um produto fibrado de (f_A,f_B) , ou seja, temos de mostrar que

- (c.i) p_A e p_B são C-morfismos tais que $p_A \in \text{hom}_{\mathbf{C}}(P,A)$, $p_B \in \text{hom}_{\mathbf{C}}(P,B)$ e $f_A \circ p_A = f_B \circ p_B$;
- (c.ii) para qualquer $K \in \mathrm{Obj}(\mathbf{C})$ e para quaisquer C-morfismos $q_A: K \to A$, $q_B: K \to B$ tais que $f_A \circ q_A = f_B \circ q_B$, existe um e um só C-morfismo $k: K \to P$ tal que $p_A \circ k = q_A$ e $p_B \circ k = q_B$.

Considerando que T é um objeto terminal e $(P,(p_A,p_B))$ é um produto de A e B, as condições (c.i) e (c.ii) provam-se facilmente.

- (c.i) Por definição de p_A e de p_B , tem-se $p_A \in \hom_{\mathbf{C}}(P,A)$ e $p_B \in \hom_{\mathbf{C}}(P,B)$. Além disso, como $f_A \circ p_A$ e $f_B \circ p_B$ são C-morfismos com o mesmo domínio, com codomínio T e T é um objeto terminal, tem-se $f_A \circ p_A = f_B \circ p_B$.
- (c.ii) Sejam $K \in \mathrm{Obj}(\mathbf{C})$ e $q_A: K \to A$, $q_B: K \to B$ mofismos de \mathbf{C} tais que $f_A \circ q_A = f_B \circ q_B$. Então, por (c.2), existe um e um só \mathbf{C} -morfismo $u: K \to P$ tal que $p_A \circ u = q_A$ e $p_B \circ u = q_B$.
- De (c.i) e (c.ii) resulta que $(P,(p_A,p_B))$ é um produto fibrado de (f_A,f_B) .

é uma soma amalgamada e f é um epimorfismo (isomorfismo), mostre que f' é também um epimorfismo (isomorfismo).

Admitamos que o quadrado

Considerando que o quadrado anterior é uma soma amalgamada, então:

- (i) existem C-morfismos $g:Z\to Y$ e $f':X\to Y$ tais que $g\circ f=f'\circ g';$
- (ii) para qualquer $S \in \mathrm{Obj}(\mathbf{C})$ e para quaisquer C-morfismos $f_Z: Z \to S$, $f_X: X \to S$ tais que $f_Z \circ f = f_X \circ g'$, existe um e um só C-morfismo $s: Y \to S$ tal que $s \circ g = f_Z$ e $s \circ f' = f_X$.

Atendendo a que f é um epimorfismo, então, para quaisquer ${f C}$ -morfismos $i:Z \to A$ e $j:Z \to A$,

$$i \circ f = j \circ f \Rightarrow i = j$$
.

Das hipóteses anteriores resulta que f' é um epimorfismo. De facto, se $p:Y\to S$ e $q:Y\to S$ são ${\bf C}$ -morfismos tais que $p\circ f'=q\circ f'$, então $p\circ f'\circ g'=q\circ f'\circ g'$, donde resulta $p\circ g\circ f=q\circ g\circ f$. Desta última igualdade, e considerando que f é um epimorfismo, segue que $p\circ g=q\circ g$. Por outro lado, atendendo a que $(p\circ g)\circ f=(p\circ f')\circ g'$ e (Y,(g,f')) é uma soma amalgamada de (f,g'), sabe-se que existe um e um só ${\bf C}$ -morfismo $s:Y\to S$ tal que $s\circ g=p\circ g$ e $s\circ f'=p\circ f'$.

Então, atendendo a que

$$p \circ g = p \circ g, p \circ f' = p \circ f',$$

 $q \circ g = p \circ g, q \circ f' = p \circ f',$

temos

Desta forma, provou-se que, para quaisquer C-morfismos $p: Y \to S$ e $q: Y \to S$,

$$p \circ f' = q \circ f' \Rightarrow p = q$$

e, portanto, f' é um epimorfismo.

Mostremos, agora, que se o quadrado

é uma soma amalgamada e f é um isomorfismo, então f' também é um isomorfismo.

Considerando que o quadrado anterior é uma soma amalgamada, então:

- (i) existem C-morfismos $g:Z\to Y$ e $f':X\to Y$ tais que $g\circ f=f'\circ g'$;
- (ii) para qualquer $S \in \mathrm{Obj}(\mathbf{C})$ e para quaisquer \mathbf{C} -morfismos $f_Z: Z \to S$, $f_X: X \to S$ tais que $f_Z \circ f = f_X \circ g'$, existe um e um só \mathbf{C} -morfismo $s: Y \to S$ tal que $s \circ g = f_Z$ e $s \circ f' = f_X$.

Admitindo que f é um isomorfismo, existe um C-morfismo $i:Z\to T$ tal que $f\circ i=id_Z$ e $i\circ f=id_T$. Então

$$g' = g' \circ id_T = g' \circ (i \circ f) = (g' \circ i) \circ f,$$

donde $(g' \circ i) \circ f = id_X \circ g'$. Atendendo a que (Y, (g, f')) é uma soma amalgamada de (f, g'), existe um e um só \mathbf{C} -morfismo $u: Y \to X$ tal que $u \circ g = g' \circ i$ e $u \circ f' = id_X$.

Uma vez que $u \circ f' = id_X$, u é o inverso esquerdo de f. Para concluir que f é um isomorfismo, falta, então, verificar que u é o inverso direito de f.

Ora, considerando que

é um diagrama em \mathbf{C} e (Y,(g,f')) é uma soma amalgamada de (f,g'), existe um e um só morfismo $v:Y\to Y$ tal que $v\circ g=g$ e $v\circ f'=f'$. Então, como

$$\begin{array}{ll} id_Y\circ g=g, & id_Y\circ f'=f',\\ (f'\circ u)\circ g=f'\circ (u\circ g)=f'\circ (g'\circ i)=(f'\circ g')\circ i=(g\circ f)\circ i=g\circ (f\circ i)=g\circ id_Z=g,\\ (f'\circ u)\circ f'=f'\circ (u\circ f')=f'\circ id_X=f' \end{array}$$

conclui-se que $f' \circ u = id_Y$.

Como $u \circ f' = id_X$ e $f' \circ u = id_Y$, então f' é um isomorfismo.

3.30. Na categoria Set, sejam A, B, C conjuntos e $f: A \to C$ e $g: B \to C$ funções. Mostre que o produto fibrado de (f,g) é o par (P,(f',g')), onde

$$P = \{(a, b) \mid a \in A, b \in B, f(a) = g(b)\}\$$

e $f': P \to A$ e $g': P \to B$ são as funções definidas por

$$f'(a,b) = a \in g'(a,b) = b,$$

para todo $(a,b) \in P$.

Pretendemos mostrar que (P,(f',g')) é um produto fibrado de (f,g), ou seja, pretende-se provar que

- (i) $f' \in g'$ são **Set**-morfismos tais que $f' \in \hom_{\mathbf{Set}}(P,A)$, $g' \in \hom_{\mathbf{Set}}(P,B)$ e $f \circ f' = g \circ g'$;
- (ii) para qualquer $X \in \mathrm{Obj}(\mathbf{Set})$ e para quaisquer \mathbf{Set} -morfismos $f'': X \to A, \ g'': X \to B$ tais que $f \circ f'' = g \circ g''$, existe um e um só \mathbf{Set} -morfismo $u: X \to P$ tal que $f' \circ u = f''$ e $g' \circ u = g''$.

Mostremos as condições (i) e (ii)

(i) Considerando que $\operatorname{Mor}(\mathbf{Set})$ é a classe de todas as funções, então, pela definição de f' e de g', é imediato que $f' \in \operatorname{hom}_{\mathbf{Set}}(P,A)$ e $g' \in \operatorname{hom}_{\mathbf{Set}}(P,B)$. Além disso, as funções $f \circ f'$ e $g \circ g'$ são iguais, pois têm o mesmo domínio, o mesmo conjunto de chegada e, para todo $(x,y) \in P$,

$$(f \circ f')(x,y) = f(f'(x,y)) = f(x) = g(y) = g(g'(x,y)) = (g \circ g')(x,y).$$

- (ii) Sejam $X \in \mathrm{Obj}(\mathbf{Set})$ e $f'': X \to A$, $g'': X \to B$ morfismos de \mathbf{Set} tais que $f \circ f'' = g \circ g''$. Então existe um e um só \mathbf{Set} -morfismo $u: X \to P$ tal que $f' \circ u = f''$ e $g' \circ u = g''$. De facto, se consideraramos a correspondência $u: X \to P$ definida por u(x) = (f''(x), g''(x)), prova-se que:
 - u é uma função de X em P e, portanto, u é um $\operatorname{\mathbf{Set}}$ -morfismo de X em P;
 - $f' \circ u = f'' \in g' \circ u = g''$;
 - se $v: X \to P$ é um **Set**-morfismo tal que $f' \circ v = f''$ e $g' \circ v = g''$, então v = u.

De (i) e (ii) conclui-se que (P, (f', g')) é um produto fibrado de (f, g).

3.31. Considere o seguinte diagrama comutativo numa categoria C

Mostre que:

(a) Se [XYY'X'] e [YZZ'Y'] são quadrados cartesianos, então [XZZ'X'] é um quadrado cartesiano.

Admitamos que [XYY'X'] e [YZZ'Y'] são quadrados cartesianos e que o diagrama é comutativo.

Mostremos que $[XZZ^{\prime}X^{\prime}]$ é um quadrado cartesiano, ou seja, mostremos que:

- (i) $(g' \circ f') \circ u = w \circ (g \circ f);$
- (ii) para qualquer $K \in \mathrm{Obj}(\mathbf{C})$ e para quaisquer \mathbf{C} -morfismos $i: K \to X'$ e $j: K \to Z$ tais que $(g' \circ f') \circ i = w \circ j$, existe um e um só \mathbf{C} -morfismo $k: K \to X$ tal que $u \circ k = i$ e $(g \circ f) \circ k = j$.

A condição (i) é imediata, pois, como o diagrama é comutativo e $(f' \circ g') \circ u$ e $w \circ (g \circ f)$ são morfismos com o mesmo domínio e codomínio, tem-se $(f' \circ g') \circ u = w \circ (g \circ f)$.

A prova de (ii) também é simples. De facto, se $K \in \mathrm{Obj}(\mathbf{C})$ e $i: K \to X'$ e $j: K \to Z$ são \mathbf{C} -morfismos tais que $(g' \circ f') \circ i = w \circ j$, tem-se

$$q' \circ (f' \circ i) = w \circ i.$$

Então, como o quadrado [YZZ'Y'] é cartesiano, existe um e e um só morfismo $k':K\to Y$ tal que $v\circ k'=f'\circ i$ e $g\circ k'=j$

Agora, como $v \circ k' = f' \circ i$ e [XYY'X'] é um quadrado cartesiano, existe um e um só C-morfismo $k: K \to X$ tal que $u \circ k = i$ e $f \circ k = k'$.

De $f \circ k = k'$ vem $g \circ f \circ k = g \circ k' = j$.

Assim, $u \circ k = i$ e $(g \circ f) \circ k = j$. Desta forma, fica provada a condição (ii).

(b) Se [XZZ'X'] e [YZZ'Y'] são quadrados cartesianos, então [XYY'X'] é um quadrado cartesiano.

Admitamos que [XZZ'X'] e [YZZ'Y'] são quadrados cartesianos. Pretendemos mostrar que [XYY'X'] é um quadrado cartesiano, ou seja, queremos provar que:

- (i) $f' \circ u = v \circ f$;
- (ii) para qualquer $K \in \mathrm{Obj}(\mathbf{C})$ e para quaisquer \mathbf{C} -morfismos $i: K \to X'$ e $j: K \to Y$ tais que $f' \circ i = v \circ j$, existe um e um só \mathbf{C} -morfismo $k: K \to X$ tal que $u \circ k = i$ e $f \circ k = j$.

A condição (i) é imediata, pois $f' \circ u$ e $v \circ f$ são morfismos com o mesmo domínio e com o mesmo codomínio e o diagrama é comutativo; portanto $f' \circ u = v \circ f$.

Verifiquemos, agora, a condição (ii). Sejam $K \in \mathrm{Obj}(\mathbf{C})$ e $i: K \to X'$ e $j: K \to Y$ morfismos de \mathbf{C} tais que $f' \circ i = v \circ j$. Então

$$\begin{array}{lcl} g'\circ (f'\circ i) & = & g'\circ (v\circ j)\\ & = & (g'\circ v)\circ j\\ & = & (w\circ g)\circ j & \left([YZZ'Y']\text{ \'e um quadrado cartesiano}\right)\\ & = & w\circ (g\circ j). \end{array}$$

Considerando que o quadrado [YZZ'Y'] é cartesiano, existe um e um só morfismo $k':K\to Y$ tal que $v\circ k'=f'\circ i$ e $g\circ k'=g\circ j$.

Então, como também temos $v \circ j = f' \circ i$ e $g \circ j = g \circ j$, resulta que j = k'.

Agora, considerando que $(g' \circ f') \circ i = w \circ (g \circ j)$ e [XZZ'X'] é um quadrado cartesiano, existe um e um só ${\bf C}$ -morfismo $k:A \to X$ tal que $u \circ k = i$ e $(g \circ f) \circ k = g \circ j$.

Então, atendendo a que

$$g\circ (f\circ k)=g\circ j,\quad g\circ j=g\circ j,$$

$$v\circ j=f'\circ i,\quad v\circ (f\circ k)=(v\circ f)\circ k=(f'\circ u)\circ k=f'\circ (u\circ k)=f'\circ i,$$

segue que $f \circ k = j$.

Portanto, [XYY'X'] é um quadrado cartesiano,

3.32. Seja $\mathbf D$ a subcategoria da categoria $\mathbf {Grp}$ em que os morfismos são os isomorfismos de grupo. Sejam $F_{Ob}: \mathrm{Obj}(\mathbf D) \to \mathrm{Obj}(\mathbf D)$ a função que a cada grupo G de $\mathbf D$ associa o grupo

$$F(G) = \{ x \in G \mid (\forall y \in G) \ xy = yx \}$$

e $F_{hom}: \mathrm{Mor}(\mathbf{D}) o \mathrm{Mor}(\mathbf{D})$ a função que a cada \mathbf{D} -morfismo $f: G_1 o G_2$ associa a correspondência

$$F_{\text{hom}}(f): F(G_1) \rightarrow F(G_2)$$

 $x \mapsto f(x)$.

Mostre que o par de funções (F_{Ob}, F_{hom}) define um funtor de $\bf D$ em $\bf D$.

O par (F_{Ob}, F_{hom}) é um funtor de \mathbf{D} em \mathbf{D} se:

- (1) F_{Ob} é uma função de $\mathrm{Obj}(\mathbf{D})$ em $\mathrm{Obj}(\mathbf{D})$;
- (2) F_{hom} é uma função de $Mor(\mathbf{D})$ em $Mor(\mathbf{D})$ que a cada \mathbf{D} -morfismo $f:A\to B$ associa um \mathbf{D} -morfismo $F_{hom}(f):F_{Ob}(A)\to F_{Ob}(B);$
- (3) para cada $A \in \mathrm{Obj}(\mathbf{D})$, $F_{hom}(id_A) = id_{F_{Ob}(A)}$;
- (4) para quaisquer **D**-morfismos $f: A \to B$, $g: B \to C$, $F_{hom}(g \circ f) = F_{hom}(g) \circ F_{hom}(f)$.

De acordo com o enunciado, F_{Ob} e F_{hom} são funções nas condições indicadas em (1) e (2), pelo que resta verificar (3) e (4). Na prova de (3) e (4) as funções F_{Ob} e F_{hom} são representadas pelo mesmo símbolo F.

(3) Para cada $A \in \text{Obj}(\mathbf{D})$, as funções $F(id_A)$ e $id_{F(A)}$ são iguais. De facto, id_A é a função definida por

$$id_A: A \to A$$
$$x \mapsto x$$

pelo que, por definição de F, tem-se

$$\begin{array}{cccc} F(id_A):F(A) & \to & F(A) \\ x & \mapsto & id_A(x) = x \end{array} .$$

Por outro lado, temos

$$id_{F(A)}: F(A) \to F(A) x \mapsto x .$$

Logo as funções $F(id_A)$ e $id_{F(A)}$ são iguais, pois têm o mesmo domínio, o mesmo conjunto de chegada e, para todo $x \in F(A)$,

$$F(id_A)(x) = id_A(x) = x = id_{F(A)}(x).$$

(4) Sejam $f:A\to B,\ g:B\to C$ morfismos de ${\bf D}.$ Então $g\circ f$ é o morfismo definido por

$$g \circ f : A \rightarrow C$$

 $x \mapsto g(f(x))$

donde segue que $F(g \circ f)$ é o morfismo

$$\begin{array}{ccc} F(g\circ f):F(A) & \to & F(C) \\ x & \mapsto & (g\circ f)(x). \end{array}$$

Por outro lado, tem-se

donde, por definição, de composição de funções, segue que

$$\begin{array}{ccc} F(g)\circ F(f):F(A) & \to & F(C) \\ x & \mapsto & (F(g)\circ F(f))(x). \end{array}$$

Uma vez que as funções $F(g \circ f)$ e $F(g) \circ F(f)$ têm o mesmo domínio, o mesmo conjunto de chegada e, para cada $x \in F(A)$,

$$(F(g) \circ F(f))(x) = F(g)(F(f)(x)) = F(g)(f(x)) = g(f(x)) = (g \circ f)(x) = F(g \circ f)(x),$$

tem-se $F(g \circ f) = F(g) \circ F(f)$.

De (1), (2), (3) e (4) conclui-se que F é um funtor de \mathbf{D} em \mathbf{D} .

3.33. Considere um c.p.o. (P, \leq) visto como uma categoria \mathbf{P} . Sejam $F_{Ob}: \mathrm{Obj}(\mathbf{P}) \to \mathrm{Obj}(\mathbf{Set})$ a função que a cada objeto a de \mathbf{P} associa o conjunto $\{a\}$ e $F_{hom}: \mathrm{Mor}(\mathbf{P}) \to \mathrm{Mor}(\mathbf{Set})$ a função que a cada \mathbf{P} -morfismo $f: a \to b$ associa a função

$$\begin{array}{cccc} F_{hom}(f): & \{a\} & \rightarrow & \{b\} \\ & a & \mapsto & b \end{array}.$$

Mostre que o par de funções (F_{Ob},F_{hom}) é um funtor de ${f P}$ em ${f Set}$

Comecemos por recordar que $\mathrm{Obj}(\mathbf{Set})$ é a classe formada por todos os conjuntos e que, dados conjuntos $A, B \in \mathrm{Obj}(\mathbf{Set})$, $\mathrm{hom}_{\mathbf{Set}}(A, B)$ é o conjunto de todas as funções de A em B. Relativamente à categoria \mathbf{P} , tem-se $\mathrm{Obj}(\mathbf{P}) = P$ e, dados $a, b \in \mathrm{Obj}(\mathbf{P})$, $\mathrm{hom}_{\mathbf{P}}(a, b) = \{(a, b)\} \cap \leq$.

O par (F_{Ob}, F_{hom}) é um funtor de ${\bf P}$ em **Set** se:

- (1) F_{Ob} é uma função de $Obj(\mathbf{P})$ em $Obj(\mathbf{Set})$;
- (2) F_{hom} é uma função de $Mor(\mathbf{P})$ em $Mor(\mathbf{Set})$ que a cada \mathbf{P} -morfismo $f:a\to b$ associa um \mathbf{Set} -morfismo $F_{hom}(f):F_{Ob}(a)\to F_{Ob}(b)$;
- (3) para cada $a \in \mathrm{Obj}(\mathbf{P})$, $F_{hom}(id_a) = id_{F_{Ob}(a)}$;
- (4) para quaisquer P-morfismos $f: A \to B, g: B \to C, F_{hom}(g \circ f) = F_{hom}(g) \circ F_{hom}(f).$

De acordo com o enunciado, F_{Ob} e F_{hom} são funções nas condições indicadas em (1) e (2), pelo que resta verificar (3) e (4). Na prova de (3) e (4) as funções F_{Ob} e F_{hom} são representadas pelo mesmo símbolo F.

(3) Para cada $a \in \mathrm{Obj}(\mathbf{P})$, tem-se $id_a : a \to a \in \mathrm{Mor}(\mathbf{P})$ e, por definição de F, $F(id_a)$ é a função

$$F(id_a): \{a\} \rightarrow \{a\}$$

$$a \rightarrow a$$

Por outro lado, a função $id_F(a)$ é a função definida por

$$id_{F(a)}: F(a) \rightarrow F(a)$$

 $a \rightarrow a$.

Considerando que as funções $F(id_a)$ e $id_{F(a)}$ têm o mesmo domínio $(F(a) = \{a\})$, o mesmo conjunto de chegada $(F(a) = \{a\})$ e $F(id_a)(a) = id_{F(a)}(a)$, temos $F(id_a) = id_{F(a)}$.

(4) Sejam $f:a\to b$ e $g:b\to c$ morfismos de ${\bf P}.$ Então $g\circ f:a\to c$ é um morfismo de ${\bf P}$ e, por definição de $F,\,F(g\circ f)$ é a função

$$\begin{array}{ccc} F(g \circ f) : \{a\} & \to & \{c\} \\ a & \mapsto & c \end{array}.$$

Por outro lado, tem-se

donde, por definição de composição de funções, segue que

$$\begin{array}{ccc} F(g)\circ F(f):\{a\} & \to & \{c\} \\ a & \mapsto & (F(g)\circ F(f))(a), \end{array}$$

onde
$$(F(g) \circ F(f))(a) = F(g)(F(f)(a)) = F(g)(b) = c$$
.

Uma vez que as funções $F(g \circ f)$ e $F(g) \circ F(f)$ têm o mesmo domínio, o mesmo conjunto de chegada e

$$(F(q) \circ F(f))(a) = c = F(q \circ f)(a),$$

tem-se $F(g \circ f) = F(g) \circ F(f)$.

De (1), (2), (3) e (4) conclui-se que F é um funtor de P em **Set**.

3.34. Sejam \mathbf{C} e \mathbf{D} categorias e A um objeto de \mathbf{D} . Sejam $F_{Ob}:\mathrm{Obj}(\mathbf{C})\to\mathrm{Obj}(\mathbf{D})$ a função que a cada objeto X de \mathbf{C} associa o objeto A e $F_{hom}:\mathrm{Mor}(\mathbf{C})\to\mathrm{Mor}(\mathbf{D})$ a função que a cada C-morfismo $f:X\to Y$ associa o morfismo $F(f)=\mathrm{id}_A$. Mostre que o par de funções (F_{Ob},F_{hom}) é um funtor de \mathbf{C} em \mathbf{D} .

O par (F_{Ob},F_{hom}) é um funtor de ${f C}$ em ${f D}$ se:

- (1) F_{Ob} é uma função de $Obj(\mathbf{C})$ em $Obj(\mathbf{D})$;
- (2) F_{hom} é uma função de $Mor(\mathbf{C})$ em $Mor(\mathbf{D})$ que a cada \mathbf{C} -morfismo $f: X \to Y$ associa um \mathbf{D} -morfismo $F_{hom}(f): F_{Ob}(X) \to F_{Ob}(Y);$
- (3) para cada $X \in \mathrm{Obj}(\mathbf{C})$, $F_{hom}(id_X) = id_{F_{Ob}(X)}$;
- (4) para quaisquer C-morfismos $f: X \to Y$, $g: Y \to Z$, $F_{hom}(g \circ f) = F_{hom}(g) \circ F_{hom}(f)$.

De acordo com o enunciado, F_{Ob} e F_{hom} são funções nas condições indicadas em (1) e (2), pelo que resta verificar (3) e (4). Na prova de (3) e (4) as funções F_{Ob} e F_{hom} são representadas pelo mesmo símbolo F.

- (3) Por definição de F, tem-se $F(id_X)=id_A$, para cada $X\in \mathrm{Obj}(\mathbf{C})$. Por outro lado, considerando que, para cada $X\in \mathrm{Obj}(\mathbf{C})$, F(X)=A, temos $id_{F(X)}=id_A$. Logo $F(id_X)=id_{F(X)}$.
- (4) Sejam $f:X\to Y$ e $g:Y\to Z$ morfismos de ${\bf C}$. Então $g\circ f:X\to Z$ é um ${\bf C}$ -morfismo e, por definição de F, $F(g\circ f)=id_A$. Por outro lado, tem-se $F(f)=id_A$ e $F(g)=id_A$, donde $F(f)\circ F(g)=id_A\circ id_A=id_A$. Portanto, $F(g\circ f)=F(g)\circ F(f)$.

De (1), (2), (3) e (4) conclui-se que F é um funtor de \mathbf{C} em \mathbf{D} .

3.35. Sejam ${\bf C}$ e ${\bf D}$ categorias. Defina os funtores projeção ${\bf C} \times {\bf D} \to {\bf C}$ e ${\bf C} \times {\bf D} \to {\bf D}$.

Seja $F = (F_{Ob}, F_{hom})$ onde

- F_{Ob} é a correspondência de $\mathrm{Obj}(\mathbf{C} \times \mathbf{D})$ em $\mathrm{Obj}(\mathbf{C})$ que a cada $(X,Y) \in \mathrm{Obj}(\mathbf{C} \times \mathbf{D})$ associa o objeto X;
- F_{hom} é a correspondência de $\mathrm{Mor}(\mathbf{C} \times \mathbf{D})$ em $\mathrm{Mor}(\mathbf{C})$ que a cada $(f,g) \in \mathrm{Mor}(\mathbf{C} \times \mathbf{D})$ associa o morfismo f.

O par $F = (F_{Ob}, F_{hom})$ é um funtor de $\mathbf{C} \times \mathbf{D}$ em \mathbf{C} , ficando ao cuidado do leitor fazer esta verificação.

De forma análoga define-se o funtor projeção $\mathbf{C} \times \mathbf{D} \to \mathbf{D}$.

3.36. Dos funtores estudados nos exercícios 3.33. a 3.35., indique quais são fiéis e quais são plenos.

Consideremos o funtor F definido no exercício 3.33.

- O funtor F é fiel se, para quaisquer $f,g:a\to b$,

$$F(f) = F(g) \Rightarrow f = g.$$

Considerando que, para quaisquer $a,b\in \mathrm{Obj}(\mathbf{P})$, existe no máximo um morfismo de a em b, o funtor F é fiel.

- O funtor F é pleno se, para quaisquer $a,b\in P$ e para qualquer **Set**-morfismo $g:F(a)\to F(b)$, existe um **P**-morfismo $f:a\to b$, tal que F(f)=g.

Considerando que, para quaisquer $a, b \in P$,

$$g: \{a\} \quad \rightarrow \quad \{b\}$$

$$a \quad \rightarrow \quad b$$

é um **Set**-morfismo e $F(a) = \{a\}, F(b) = \{b\},$ então, para quaisquer $a, b \in P$,

$$\begin{array}{ccc} g: F(a) & \to & F(b) \\ a & \to & b \end{array}$$

é um **Set**-morfismo. Logo, o funtor F é pleno se e só se, para quaisquer $a,b \in P$, existe um **P**-morfismo $f:a \to b$, isto é, se e só se $(a,b) \in \leq$. Assim, F é pleno se e só se, para quaisquer $x,y \in P$, $(x,y),(y,x) \in \leq$. Considerando que \leq é uma ordem parcial, então F é pleno se e só se, para quasiquer $x,y \in P$, tem-se x=y.

Consideremos o funtor F definido no exercício 3.34.

- O funtor F é fiel se, para quaisquer \mathbf{C} -morfismos $f,g:X\to Y$,

$$F(f) = F(g) \Rightarrow f = g.$$

Considerando que, para quaisquer C-morfismos $f,g:X\to Y$, tem-se $F(f)=id_A=F(g)$, o funtor é fiel se e só se, para quaisquer $X,Y\in \mathrm{Obj}(\mathbf{C})$, existe no máximo um morfismo de X em Y.

- O funtor F é pleno se, para quaisquer $X,Y\in \mathrm{Obj}(\mathbf{C})$ e para qualquer \mathbf{D} -morfismo $g:F(X)\to F(Y)$, existe um \mathbf{C} -morfismo $f:X\to Y$, tal que F(f)=g.

Atendendo a que $A \in \mathrm{Obj}(\mathbf{D})$, então $id_A: A \to A$ é um \mathbf{D} -morfismo. Logo, considerando que, para quaisquer $X,Y \in \mathrm{Obj}(\mathbf{C})$, temos F(X) = F(Y) = A, $id_A: F(X) \to F(Y)$ é um \mathbf{D} -morfismo. Assim, F é pleno se e só se, para quaisquer $X,Y \in \mathrm{Obj}(\mathbf{C})$, existe um \mathbf{C} -morfismo de X em Y e id_A é o único \mathbf{D} -morfismo de A em A.

Consideremos o funtor projeção $F: \mathbf{C} \times \mathbf{D} \to \mathbf{C}$.

- O funtor F é fiel se, para quaisquer $\mathbf{C} \times \mathbf{D}$ -morfismos $(f,g), (f',g'): (X,Y) \to (Z,W)$,

$$F((f,g)) = F((f',g')) \Rightarrow (f,g) = (f',g').$$

Se uma das categorias \mathbf{C} ou \mathbf{D} é a categoria zero, o funtor F é fiel. Se \mathbf{C} e \mathbf{D} não são a categoria zero, o funtor F é fiel se e só se, para quaisquer $Y,W\in \mathrm{Obj}(\mathbf{D})$, existe no máximo um \mathbf{D} -mofismo de $Y\to W$.

- O funtor F é pleno se, para quaisquer $(X,Y),(Z,W)\in \mathrm{Obj}(\mathbf{C}\times\mathbf{D})$ e para qualquer \mathbf{C} -morfismo $h:F(X,Y)\to F(Z,W)$, existe um $\mathbf{C}\times\mathbf{D}$ -morfismo $(f,g):(X,Y)\to (Z,W)$, tal que F((f,g))=h. Considerando que, para quaisquer $(X,Y),(Z,W)\in \mathrm{Obj}(\mathbf{C}\times\mathbf{D}), F(X,Y)=X$ e F(Z,W)=Z, o funtor F é pleno se, para qualquer \mathbf{C} -morfismo $h:X\to Y$, existe um $\mathbf{C}\times\mathbf{D}$ -morfismo $(f,g):(X,Y)\to (Z,W)$, tal que F((f,g))=h.

Se ${\bf C}$ é a categoria zero, então o funtor F é pleno. Se ${\bf C}$ não é a categoria zero, então o funtor F é pleno se e só se a categoria ${\bf D}$ não é a categoria zero.

- 3.37. Sejam C uma categoria e $F : \mathbf{Set} \to \mathbf{C}$ um functor. Mostre que:
 - (a) Se f é um monomorfismo com domínio não vazio em **Set**, então F(f) é um monomorfismo em C.

Seja $f:X \to Y$ um morfismo de **Set** com domínio não vazio. Pretende-se mostrar que F(f) é um monomorfismo.

Como f é um morfismo de **Set** com domínio não vazio, então f é invertível à esquerda. Atendendo a que todo o funtor preserva morfismos invertíveis à esquerda, então F(f) é inverível à esquerda. Uma vez que todo o morfismo invertível à esquerda é um monomorfismo, concluimos que F(f) é um monomorfismo.

(b) Se f é um epimorfismo em **Set**, então F(f) é um epimorfismo em ${\bf C}$.

Seja f um epimorfismo de **Set**. Então, considerando que todo o epimorfismo de **Set** é invertível à direita e que todo o funtor preserva morfismos invertíveis à direita, F(f) é invertível à direita. Uma vez que todo o morfismo invertível à direita é um epimorfismo, concluímos que F(f) é um epimorfismo.

- 3.38. Sejam $C \in C'$ categorias, $F: C \to C'$ um funtor fiel e f um morfismo de C. Mostre que:
 - (a) Se F(f) é um monomorfismo (epimorfismo), então f é um monomorfismo (epimorfismo).

Seja $f:A\to B$ um ${\bf C}$ -morfismo e suponhamos que F(f) é um monomorfismo. Sejam $g,h:C\to A$ morfismos de ${\bf C}$ tais que $f\circ g=f\circ h$. Então $F(f\circ g)=F(f\circ h)$, donde $F(f)\circ F(g)=F(f)\circ F(h)$. Uma vez que F(f) é um monomorfismo, tem-se F(g)=F(h) e, atendendo a que F é fiel, resulta que g=h.

Por dualidade, é imediato que se F(f) é um epimorfismo, então f é um epimorfismo.

(b) Um diagrama

em C é comutativo se e só se o diagrama correspondente em C' é comutativo.

Admitamos que o diagrama em ${f C}$ a seguir indicado é comutativo

Pretendemos mostrar que o diagrama anterior é comutativo se e só se o diagrama seguinte é comutativo

Considerando que F é um funtor e é fiel, a prova é imediata. De facto,

$$\begin{array}{ll} g\circ f=h & \Rightarrow & F(g\circ f)=F(h) \\ & \Rightarrow & F(g)\circ F(f)=F(h) & \mbox{$(F$ \'e funtor)}. \end{array}$$

Reciprocamente, temos

$$F(g) \circ F(f) = F(h) \Rightarrow F(g \circ f) = F(h)$$
 (F é funtor)
 $\Rightarrow g \circ f = h$ (F é fiel).

- 3.39. Sejam \mathbf{C} e \mathbf{D} categorias, $F: \mathbf{C} \to \mathbf{D}$ um funtor e $f: A \to B$ e $g: B \to A$ morfismos em \mathbf{C} . Mostre que:
 - (a) Se F é fiel, então F(f) é um inverso direito (esquerdo) de F(g) se e só se f é um inverso direito (esquerdo) de g.

Admitamos que F(f) é um inverso direito de F(g). Então $F(g)\circ F(f)=id_{F(A)}$. Como F é um funtor, segue que $F(g\circ f)=F(id_A)$. Dado que F é fiel, tem-se $g\circ f=id_A$. Portanto, f é um inverso difeito de g.

(b) Se F é fiel e pleno, então f tem um inverso direito (esquerdo) se e só se F(f) tem um inverso direito (esquerdo).

Seja F um funtor fiel e pleno.

Admitamos que f tem um inverso direito. Então existe um ${\bf C}$ -morfismo $h:B\to A$ tal que $f\circ h=id_B$. Logo $F(f\circ h)=F(id_B)$ e, considerando que F é um funtor, tem-se $F(f)\circ F(h)=id_{F(B)}$. Assim, F(h) é um inverso direito de F(f).

Reciprocamente, admitamos que $F(f): F(A) \to F(B)$ tem um inverso direito. Então existe um \mathbf{C}' -morfismo $h': F(B) \to F(A)$ tal que $F(f) \circ h' = id_{F(B)}$. Como F é pleno, existe um \mathbf{C} -morfismo $h: B \to A$ tal que F(h) = h'. Logo $F(f) \circ F(h) = id_{F(B)}$ e, atendendo a que F é funtor, temos $F(f \circ h) = F(id_B)$. Como F é fiel, resulta que $f \circ h = id_B$ e, portanto, f tem um inverso direito.

3.40. Sejam $F_{Ob}: \mathrm{Obj}(\mathbf{Set}) \to \mathrm{Obj}(\mathbf{Set})$ a função que a cada conjunto A da categoria \mathbf{Set} associa o conjunto potência $\mathcal{P}(A)$ ($F_{Ob}(A) = \mathcal{P}(A) = \{X \mid X \subseteq A\}$) e $F_{hom}: \mathrm{Mor}(\mathbf{Set}) \to \mathrm{Mor}(\mathbf{Set})$ a função que a cada função $f: A \to B$ associa a função

$$\begin{array}{cccc} F_{hom}(f): & F_{Ob}(A) & \to & F_{Ob}(B) \\ & U & \mapsto & f(U) \end{array}.$$

- (a) Mostre que o par $F = (F_{Ob}, F_{hom})$ é um funtor da categoria **Set** na categoria **Set**.
 - O par (F_{Ob}, F_{hom}) é um funtor **Set** na categoria **Set** se:
 - (1) F_{Ob} é uma função de $Obj(\mathbf{Set})$ em $Obj(\mathbf{Set})$;
 - (2) F_{hom} é uma função de $Mor(\mathbf{Set})$ em $Mor(\mathbf{Set})$ que a cada \mathbf{Set} -morfismo $f:A\to B$ associa um \mathbf{Set} -morfismo $F_{hom}(f):F_{Ob}(A)\to F_{Ob}(B)$;

- (3) para cada $A \in \mathrm{Obj}(\mathbf{Set})$, $F_{hom}(id_A) = id_{F_{Ob}(A)}$;
- (4) para quaisquer **Set**-morfismos $f: A \to B$, $g: B \to C$, $F_{hom}(g \circ f) = F_{hom}(g) \circ F_{hom}(f)$.

De acordo com o enunciado, F_{Ob} e F_{hom} são funções nas condições indicadas em (1) e (2), pelo que resta verificar (3) e (4). Na prova de (3) e (4) as funções F_{Ob} e F_{hom} são representadas pelo mesmo símbolo F.

(3) Para qualquer objeto A de \mathbf{Set} , o morfismo id_A é definido por

$$id_A: A \to A$$
$$x \mapsto x$$

pelo que $F(id_A)$ é definido por

$$F(id_A): \mathcal{P}(A) \to \mathcal{P}(A) U \mapsto id_A(U) .$$

Por outro lado, por definição de função identidade associada a um conjunto, tem-se

$$id_{F(A)}: F(A) \to F(A) U \mapsto U .$$

As funções $F(id_A)$ e $id_{F(A)}$ têm o mesmo domínio, o mesmo conjunto de chegada $(F(A)=\mathcal{P}(A))$ e, para todo $U\in\mathcal{P}(A)$, $F(id_A)(U)=U=id_{F(A)}(U)$. Logo $F(id_A)=id_{F(A)}$.

(4) Para quaisquer **Set**-morfismos $f: A \to B$ e $g: B \to C$, tem-se

$$\begin{array}{ccc} g\circ f:A & \to & C \\ x & \mapsto & g(f(x)) \end{array}.$$

Então, por definição de F, tem-se

$$F(g \circ f) : \mathcal{P}(A) \rightarrow \mathcal{P}(C)$$

 $U \mapsto (g \circ f)(U)$.

Por outro lado, por definição de F, tem-se

e, por definição de composição de funções, temos

$$\begin{array}{ccc} F(g)\circ F(f): \mathcal{P}(A) & \to & \mathcal{P}(C) \\ U & \mapsto & (F(g)\circ F(f))(U) \end{array}.$$

Assim, as funções $F(g \circ f)$ e $F(g) \circ F(f)$ têm o mesmo dominio $(\mathcal{P}(A))$ e o mesmo conjunto de chegada $(\mathcal{P}(C))$. Além disso, para qualquer $U \in \mathcal{P}(A)$,

$$F(g \circ f)(U) = (g \circ f)(U) = g(f(U)) = F(g)(F(f)(U)) = (F(g) \circ F(f))(U).$$

Logo $F(g \circ f) = F(g) \circ F(f)$.

- (b) Diga, justificando, se:
 - i. F preserva objetos terminais.
 - O funtor F preserva objetos terminais se, para qualquer $X \in \text{Obj}(\mathbf{Set})$,

$$X$$
 é objeto terminal $\Rightarrow F(X)$ é objeto terminal.

Na categoria **Set**, os objetos terminais são os conjuntos singulares. Então F não preserva objetos terminais pois $X=\{a\}$ é um objeto terminal e $F(X)=\mathcal{P}(\{a\}=\{\emptyset,\{a\}\})$ não é um objeto terminal.

ii. F é um funtor fiel.

O funtor F é fiel se, para quaisquer **Set**-morfismos $f, g: A \rightarrow B$,

$$F(f) = F(g) \Rightarrow f = g.$$

Sejam $f,g:A\to B$ funções tais que F(f)=F(g). Então, como F(f) e F(g) são as funções definidas por

segue que, para todo $U\in \mathcal{P}(A)$, temos f(U)=g(U). Em particular, para todo $a\in A$, temos $f(\{a\})=g(\{a\})$, donde resulta que, para todo $a\in A$, f(a)=g(a). Logo as funções f e g são iguais. Assim, F é um funtor fiel.