Steroid hormones

László Drimba M.D.

University of Debrecen

Department of Pharmacology and Pharmacotherapy

glucocorticoids-mineralocorticoids-sexualsteroids

• zona glomerulosa

mineralocorticoids – aldosterone tr.o.synth.:RAS, hypoxia, hyponatremia

zona fasciculata

glucocorticoids – cortisol/hydrocortison trigger of synthesis: stress, CRH, ACTH

zona reticularis

sexual steroids - DHEA, DHEAS

Adrenal steroids/hormones

agonists

Glucocorticoids

- •cortizol (hydrocortizon) short duration of action
- •prednisolon intermediate duration of action
- •dexamethson, betamethason long duration of action

Mineralocorticoids

- •aldosteron physiologic
- •fludrocortison synthetic

antagonists

Synthesis inhibitors

- •aminogluthetimide sedatohypnotic drug
- •ketoconazol antimycotic drug Receptor antagonists
- •spironolactone diuretics
- •mifepristone prog.R antagonist RU-486 abortus artef.

Biosynthesis of steroid hormones

(+) ACTH Cholesterol (-) aminogluthetimide P45017α Pregnenolone → 17α-OH Pregnenolone DHEA P450arom P45017α Progesterone — 17α-OH Progesterone Androstenedione P450c21 P450c21 P45017a Testosterone Estradiol Deoxycortisol Deoxycorticosterone P450aldo P450c11 GONADS Corticosterone Cortisol (-) trilostane P450aldo 18-O-Corticosterone P450aldo Aldosterone

ADRENAL CORTEX

Glucocorticoids-Mineralocorticoids

- Patholgical states of adrenal cortex
 - Cushing's syndrome
 - cortisol ↑
 - central, peripheral, iatrogen, exogenous
 - Conn's syndrome
 - primer hyperaldosteronism
 - Addison's syndrome
 - insufficient activity of adrenal cortex
 - ↓ cortisol, ↓ aldosterone

Cushing's syndrome

Glucocorticoids/Mineralocorticoids

- mechanism of action (slow acting)
 - effect on i.c. GC receptor (GR α , GR β) associated with hsp56, hsp90
 - nuclear receptor superfamily
 - represented in every tissues
 - steroid receptor complex form heterodimers
 - GRE of DNA modulating transcription
 - cortisol and aldosterone equiactive on mineralocorticoid
 R
 - kidney, ureter, colon
 - -11-β-OH-dehidrogenase converts cortisol → cortison (inactive)

Effects of GCs

- anti-inflammatory/immunsuppressive eff.
 - inhibiting the late phase reaction of immune response
 - † lipocortin release inhibition of PLA2
 - - \(\tau\) transcription of IL-2 genes, COX-2, cytokines (TNF-α), cell adhesion molecules
 - \ \ \ histamine release
 - → activation of T-helper cells
 - → wound healing, chronic inflammatory reactions
 - ↓ fibroblast proliferation
 - \prescript{collagenase activity}
 - ↑ osteoporosis
 - ↓ activity of osteoblast, ↑ activity of osteoclasts
 - $\downarrow D_3$ vitamin mediated osteocalcin gene transcription

Effects of GC

- metabolic actions
 - hyperglycemia (diabetic effect)
 - ↓ uptake and utilisation of glucose
 - † gluconeogenesis
 - proteolytic effect
 - decrease protein synthesis
 - lypolytic effect
 - permissive effect on cAMP dep. lipase
 - lipogenetic
 - redistribution of adipose tissue
 - N.B.: Cushing's syndrome
 - (-) Ca²⁺ balance
 - ↓Ca²⁺ absorption from GIT
 - ↑ Ca²⁺ excretion in kidney
 - ↑ α-adrenerg R density

Glucocorticoids

Pharmacokinetic aspects

- transported by CBG
- cortisole $t_{1/2}$: 90 min
- metabolized in liver
- administration
 - oral, i.v., i.m., topical, aerosol, eyedrop, intranasal

Unwanted effects of GC therapy

- inc.
 - large doses, prolonged administration, sudden withdrawal
- peptic ulcer
- impaired wound healing
- hypertension
- infection (opportunistic) oral candidiasis
 - suppr. of immune response
- acute adrenal insufficiency
- hyperglycemia, insulin resistance, type II. DM
- muscle atrophia
- osteoporosis
 - (-) Ca²⁺ balance
 - decreased D₃ action
- electrolyte disturbances
 - hypernatremia, hypokalemia,
- avascular necrosis in bones (femur)
- inhibition of growth (children)
- epileptogen effect

Effects of MC

- act on i.c. receptors, modulating DNA transcription
- — ↑ Na⁺ reabsorption in distal tubules
- K⁺ and H⁺ efflux into the tubules
- forms
 - physiologic: aldosterone
 - synthetic: fludrocortisone
- applied with GCs in replacement therapy

Therapeutical indications

- Replacement therapy
 - Addison's syndrome
 - Waterhouse-Friedricksen syndr. (AAI c. by Neisseria)
 - congenital adrenal hyperplasia (loss of 21-hydroxilase, 11β-hydroxilase)
 - progressive Na+, K+ excretion,
 - virilisation (DHEA↑, DHEAS↑)
 - post adrenalectomia
 - IRDS profilaxis
 - surfactant synthesis

Therapeutical indications

- Anti.inflammatory, immun-suppressive therapy
 - in asthma
 - topically in various inflammatory conditions of skin, eye, ear, nose (ekzema, rhinitis, allerg. conjunctivitis)
 - hypersensitivity states (severe allergic reactions)
 - autoimmune disease (SLE, Sjögren's syndr., PM/DM, RA, IBD)
 - transplantation (prevent GVH reaction)

Therapeutical indications

• In neoplastic disease

 combination with cytotoxic drugs (acute leukaemia, Hodking's disease)

- reducing cerebral oedema in patients with primary or metastatic brain tumors
 - oradexon, dexomethasone

Equivalent doses of GCs

Methyl-prednisolon – 4mg

Prednisolon – 5mg

Cortisole – 20mg

Dexamethason – 0,75mg