Problem Set 4, Part I

Problem 1: Sorting practice

```
1-1)
{7, 10, 13, 27, 24, 20, 14, 33}
1-2)
{7, 13, 14, 24, 27, 20, 10, 33}
1-3)
{7, 13, 14, 20, 10, 24, 27, 33}
1-4)
{10, 7, 13, 27, 24, 20, 14, 33}
1-5)
{10, 7, 13, 27, 24, 20, 14, 33}
1-6)
{7, 13, 14, 27, 24, 20, 10, 33}
```

Problem 2: Practice with big-O

2-1)

function	big-O expression
a(n) = 5n + 1	a(n) = O(n)
$b(n) = 2n^3 + 3n^2 + nlog(n)$	$b(n) = O(n^3)$
c(n) = 10 + 5nlog(n) + 10n	c(n) = O(nlog(n))
$d(n) = 4\log(n) + 7$	$d(n) = O(\log(n))$
$e(n) = 8 + n + 3n^2$	$e(n) = O(n^2)$

2-2)

Since the outer loop runs 2n times and inter loop runs n-2 times, $2n * (n-2) = 2n^2 -4n$. Therefore $O(n^2)$.

2-3)

Multiplying the First loop 5times, second loop $(n^2-2)/2$ times, and third loop $\log(n)$ times gives $5*(n^2-2)/2*\log(n)$. Therefore $O(n^2\log(n))$.

Problem 3: Comparing two algorithms

worst-case time efficiency of algorithm A: O(nlog(n))

Explanation: After the separation in half, when the left and right numbers store alternate elements, it will cause worst time efficiency.

worst-case time efficiency of algorithm B: O(n)

Explanation: Since the loop is repeats relevant to the length of the array, the worst efficiency will be caused when the length of the array is the longest.

Problem 4: Counting unique values

4-1) The worst case of this algorithm is when there are no same numbers.

$$4-2$$
)n * n(i + 1) = n^2 + in + n

 $4-3)0(n^2)$. Because there are no same numbers, the inner loop have to run all the way through.

4-4) The best case of this algorithm is when all the numbers are same.

4-5)0(n) If all the numbers are same, the inner loop have to run 1 times each.

Problem 5: Improving the efficiency of an algorithm

```
5-1)
public static int numUnique(int[] arr) {
    int count = 1;
    for (int i = 0; i < arr.length - 1; i++) {
        if (arr[i] != arr[i+1]) {
            count ++
        }
    }
    return count
}</pre>
```

- **5-2**) Since the worst to best case for mereSort is nlogn, the big-0 notation for the new method is O(nlogn).
- 5-3)No. Since the best case for the original method was O(n), it is more efficient then the new case.

Problem 6: Practice with references

6-1)

Expression	Address	Value
n	0x128	0x800
n.ch	0x800	'e'
n.next	0x802	0x240
n.prev.next	0x182	0x800
n.next.prev	0x246	0x800
n.next.prev.prev	0x806	0x180

```
6-2)
public static void main(String[] args) {
n.next.prev = m;
m = n.next;
m.prev = n;
n.next = m;
}
6-3)
public static void addNexts(DNode last) {
     Dnode trav = last;
     trav = trav.prev;
     while (trav.prev != null) {
           trav.prev.next = trav;
           trav = trav.prev;
     }
}
```

problem 7: Printing the odd values in a list of integers

```
7-1)
public static void printOddsRecur(IntNode first) {
     if (first == null) {
           return;
     } else {
           if (first.val % 2 == 1) {
                System.out.println(first.val)
           } else {
                System.out.printlkn(first.next)
           }
     }
}
7-2)
public static void printOddsIter(IntNode first) {
     while (first != null) {
           if (first.val % 2 == 1)
                System.out.println(first.val);
                first = first.next;
     }
}
```