In [2]:	<pre>import pandas as pd import seaborn as sns import matplotlib.pyplot as plt import numpy as np haberman = pd.read csv("haberman (2).csv")</pre>
In [3]: Out[3]:	haberman age year nodes status 0 30 64 1 1
	1 30 62 3 1 2 30 65 0 1 3 31 59 2 1 4 31 65 4 1
	301 75 62 1 1 302 76 67 0 1 303 77 65 3 1
	304 78 65 1 2 305 83 58 2 2 306 rows × 4 columns
<pre>In []: In [5]: Out[5]:</pre>	<pre>#this dataset consist of total list of 306 patients that classified on basis of their age, year of operation ,no #status has numerical value of either 1 (that represents patients survive 5 years or more after operation) and haberman["status"].value_counts()</pre> 1 225
In []:	<pre>2 81 Name: status, dtype: int64 # so in dataset we have total of 225 number of patients with survival years or more and 81 no of patients with haberx = haberman["status"]=="1"</pre>
Out[6]:	haberx 0 False 1 False 2 False 3 False 4 False
	301 False 302 False 303 False 304 False 305 False Name: status, Length: 306, dtype: bool
In []: In []: In [5]:	#As status 1 represents patients surviving 5 years or more and status 2 represents patients surviving 5 years of # So out of 306 patients we can say 225 patients survived 5 years or more and 81 patients survived 5 years or sns.FacetGrid(haberman, hue="status", size=4) \
in [0].	<pre>.map(plt.scatter, "age", "year") \ .add_legend(); plt.show(); /Users/apple/opt/anaconda3/lib/python3.8/site-packages/seaborn/axisgrid.py:316: UserWarning: The `size` paramet er has been renamed to `height`; please update your code. warnings.warn(msg, UserWarning)</pre>
	status 62 - 2
In []:	58 - 30 40 50 60 70 80 age
In [7]:	<pre>sns.set_style("whitegrid"); sns.pairplot(haberman, hue="status", size=3); plt.show() /Users/apple/opt/anaconda3/lib/python3.8/site-packages/seaborn/axisgrid.py:1912: UserWarning: The `size` parame ter has been renamed to `height`; please update your code. warnings.warn(msg, UserWarning)</pre>
	80 70 80
	50 40 30
	68 66
	62 60 58 50
	40 80 80 20
	10 20 40 60 80 55 60 65 70 0 20 40 60 age year nodes
In []:	<pre># from above pairplots we find age and nodes to most suitable to analyse the data furthur as it has least over. import numpy as np haberman_1 = haberman.loc[haberman["status"] == 1]; haberman_2 = haberman.loc[haberman["status"] == 2]; plt.plot(haberman_1["nodes"], np.zeros_like(haberman_1['nodes']), 'o')</pre>
	<pre>plt.plot(haberman_2["nodes"], np.zeros_like(haberman_2['nodes']), 'o') #plt.plot(iris_virginica["petal_length"], np.zeros_like(iris_virginica['petal_length']), 'o') plt.show()</pre>
	0.02 -
	0 10 20 30 40 50
In []:	<pre>#we are not able to make any conclusions from 1-D scatter plot as most of points are overlapping each other sns.FacetGrid(haberman, hue="status", size=5) \ .map(sns.distplot, "nodes") \ .add_legend(); plt.show();</pre>
	/Users/apple/opt/anaconda3/lib/python3.8/site-packages/seaborn/axisgrid.py:316: UserWarning: The `size` paramet er has been renamed to `height`; please update your code. warnings.warn(msg, UserWarning) /Users/apple/opt/anaconda3/lib/python3.8/site-packages/seaborn/distributions.py:2551: FutureWarning: `distplot` is a deprecated function and will be removed in a future version. Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms). warnings.warn(msg, FutureWarning)
	/Users/apple/opt/anaconda3/lib/python3.8/site-packages/seaborn/distributions.py:2551: FutureWarning: `distplot` is a deprecated function and will be removed in a future version. Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms). warnings.warn(msg, FutureWarning) 0.5
	0.4 - 0.3 - status
	0.2 - 0.1 -
In []:	#from above plot we can say patients with less number of nodes tend to survive more
In [15]:	<pre># if nodes<= 0 patients survival is more sns.FacetGrid(haberman, hue="status", size=5) \ .map(sns.distplot, "age") \ .add_legend(); plt.show();</pre>
	/Users/apple/opt/anaconda3/lib/python3.8/site-packages/seaborn/axisgrid.py:316: UserWarning: The `size` paramet er has been renamed to `height`; please update your code. warnings.warn(msg, UserWarning) /Users/apple/opt/anaconda3/lib/python3.8/site-packages/seaborn/distributions.py:2551: FutureWarning: `distplot` is a deprecated function and will be removed in a future version. Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms). warnings.warn(msg, FutureWarning)
	/Users/apple/opt/anaconda3/lib/python3.8/site-packages/seaborn/distributions.py:2551: FutureWarning: `distplot` is a deprecated function and will be removed in a future version. Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms). warnings.warn(msg, FutureWarning) 0.040 0.035
	0.030 0.025 0.020 status
	0.015
In []:	# from this plot though there is no clear saturation of age still we can make a rough prediction as # if age <35 patients usually survive more than 5 years # elseif age > 75 patients usually survive less than 5 years
In [16]:	<pre>sns.FacetGrid(haberman, hue="status", size=5) \ .map(sns.distplot, "year") \ .add_legend(); plt.show(); /Users/apple/opt/anaconda3/lib/python3.8/site-packages/seaborn/axisgrid.py:316: UserWarning: The `size` paramet</pre>
	er has been renamed to `height`; please update your code. warnings.warn(msg, UserWarning) /Users/apple/opt/anaconda3/lib/python3.8/site-packages/seaborn/distributions.py:2551: FutureWarning: `distplot` is a deprecated function and will be removed in a future version. Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms). warnings.warn(msg, FutureWarning) /Users/apple/opt/anaconda3/lib/python3.8/site-packages/seaborn/distributions.py:2551: FutureWarning: `distplot` is a deprecated function and will be removed in a future version. Please adapt your code to use either `displot
	` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms). warnings.warn(msg, FutureWarning) 0.12 0.10
	0.08 0.06 status 1 2
	0.02
In [13]:	55.0 57.5 60.0 62.5 65.0 67.5 70.0 72.5 year #cannot make any conclusion from this distribution plot as it is overlapping at every point haberman_1
Out[9]:	age year nodes status 0 30 64 1 1 1 30 62 3 1 2 30 65 0 1
	3 31 59 2 1 4 31 65 4 1 298 73 68 0 1
	300 74 63 0 1 301 75 62 1 1 302 76 67 0 1 303 77 65 3 1
In [10]:	<pre>225 rows x 4 columns counts, bin_edges = np.histogram(haberman_1['age'], bins=10,</pre>
	<pre>print(pdf); print(bin_edges) #compute CDF cdf = np.cumsum(pdf) plt.plot(bin_edges[1:],pdf)</pre>
	<pre>plt.plot(bin_edges[1:], cdf) plt.show(); [0.01134752 0.02269504 0.02647754 0.01985816 0.03498818 0.03498818</pre>
	0.01985816 0.02364066 0.01323877 0.00567376] [0.05333333 0.10666667 0.12444444 0.09333333 0.16444444 0.16444444 0.093333333 0.11111111 0.06222222 0.02666667] [30. 34.7 39.4 44.1 48.8 53.5 58.2 62.9 67.6 72.3 77.]
	0.6 - 0.4 -
In []:	# we can conclude from cdf that atleast 75% of patients with age <=60 tend to live more than five years
In [29]:	<pre>print("Means:") print(np.mean(haberman_1["nodes"])) print(np.mean(haberman_2["nodes"])) print("\nStd-dev:");</pre>
	<pre>print(np.std(haberman_1["nodes"])) print(np.std(haberman_2["nodes"])) Means: 2.791111111111113 7.45679012345679</pre>
In []:	<pre>Std-dev: 5.857258449412131 9.128776076761632 print("\nMedians:")</pre>
	<pre>print(np.median(haberman_1["nodes"])) #Median with an outlier print(np.median(np.append(haberman_1["nodes"],50))); print(np.median(haberman_2["nodes"])) Medians: 0.0 0.0 4.0</pre>
In []: In [12]:	<pre># average node size of patients with survival more than 5 years is 0 . # average node size of patients with survival less than 5 years is 4. print("\nQuantiles:") print(np.percentile(haberman_1["nodes"],np.arange(0, 100, 25)))</pre>
	<pre>print(np.percentile(haberman_2["nodes"],np.arange(0, 100, 25))) print("\n90th Percentiles:") print(np.percentile(haberman_1["nodes"],90)) print(np.percentile(haberman_2["nodes"],90))</pre>
	Quantiles: [0. 0. 0. 3.] [0. 1. 4. 11.] 90th Percentiles: 8.0 20.0
In []: In [13]:	<pre># with quantiles we can say 50 % of patients having survival more than 5 years have node 0 . #atleast 75% of patients having survival more than 5 years have node less than 3 # 90 % of patients with survival more than 5 years have node <= 8. # with quantiles we can also say 50 % of patients with survival less than 5 years have node <=4 and 75% of patients with survival less than 5 years have node <= 20 sns.boxplot(x='status',y='nodes', data=haberman)</pre>
in [13]:	<pre>sns.boxplot(x='status',y='nodes', data=haberman) plt.show()</pre> 50 40
	30 - 20 - 10 -
In []:	# from box plot wecan easily identify 25-50-75 percentile of values . # 75 % of patients with survival more than 5 years have node size <= 2
In [14]:	<pre># 75 % of patients with survival more than 5 years have node size <= 2 # only 25 % of patients with survival less than 5 years have node size <=1 # and 75 % of patients with survival less than 5 years have node size <=11 # 50 % of pateints with survival less than 5 years have node size <=5 sns.violinplot(x="status", y="nodes", data=haberman, size=8) plt.show()</pre>
	60 - 50 - 40 - 8 30 -
In []:	# voilen plot are combination of histogram , pdf and boxplot . # we can say patients with survival more than 5 years have node range 0<=node <=9. # we can say patients with survival less than 5 years have node range 0<=node <=25.