FVI - Infrastructure Repurposing (Restructuring) Score

This guide uses your uploaded CSV plus recommended open datasets to compute implementable submetrics and a composite score for infrastructure repurposing.

What you provided (CSV)

- global_coal_plant_tracker_data (2).csv columns detected: plant_name, unit_name, plant_unit_name, owner, parent_company.
- \rightarrow To compute restructuring metrics, we enrich with public datasets for capacity, COD year, coordinates, status, grid, and resource quality.

External datasets to join (field mapping)

- Global Coal Plant Tracker (GEM): plant/unit attributes incl. Country/Area, status, first year (COD), capacity (MW), net generation (GWh/yr), coordinates.
- Global Power Plant Database (WRI): plant-level capacity (MW), fuel, latitude/longitude, country.
- Global Solar Atlas (World Bank/ESMAP): country/coordinate-level GHI / PVOUT (kWh/kWp), used for PV suitability.
- Global Wind Atlas (DTU/World Bank): mean wind speed/power density by location, used for wind suitability.
- Global Transmission Network / GridFinder (World Bank/ESMAP): transmission & distribution line locations; substation proximity proxy.
- Optional: Global Gas Infrastructure Tracker (GEM): pipelines/LNG proximity for coal →gas conversion feasibility.

Proposed submetrics & formulas (all normalized 0–100, higher = easier to repurpose)

IR1 — Decommissioning Readiness (Age & Status)

Inputs: COD_year, status (operating/retired/announced), Typical_Lifetime_years (e.g., 40).

Formula:

- Age = Year_ref COD_year
- Readiness_raw = (Age / Typical_Lifetime_years)
- IR1 = 100 × min(1, max(0, Readiness_raw)) (older \Rightarrow closer to retirement \Rightarrow easier to repurpose)

IR2 — Grid Interconnection Advantage

Inputs: Plant coordinates; nearest HV line distance (km); substation presence.

Formula:

- Dist_to_HV_km = distance(plant_point, nearest_transmission_line)
- IR2 = 100 \times (1 min(Dist_to_HV_km / D_max, 1)) (closer grid \Rightarrow higher score)

Parameter: D_max (e.g., 50 km).

IR3 — PV Repowering Suitability

Inputs: GHI or PVOUT at plant/country; site area proxy Area_est_km² = k_area × Capacity_GW; PV land-use k_pv (km² per GW).

Formula:

- PV_Cap_possible_GW = Area_est_km² / k_pv
- IR3 = 100 × percentile_rank(PVOUT × PV_Cap_possible_GW)

Typical parameters: k_area≈3.0 km²/GW (brownfield footprint proxy), k_pv≈3.5 km²/GW (utility PV).

IR4 — Wind Repowering Suitability

Inputs: Mean wind speed/power density at plant/country; site area proxy Area_est_km²; wind capacity density k_wind≈3 MW/km².

Formula:

- Wind_Cap_possible_GW = (Area_est_km² × k_wind) / 1000
- IR4 = 100 × percentile_rank(WindResource × Wind_Cap_possible_GW)

IR5 — Brownfield Reuse Factor

Inputs: Existing interconnection (binary=1), rail/road/water access proxies (binary weights), brownfield contamination flag (-).

Formula:

- ReuseScore = w_grid*1 + w_rail*Rail + w_water*Water w_contam*Contam
- IR5 = 100 × ReuseScore / (w_grid + w_rail + w_water)

Where Rail/Water/Contam are 0/1 from manual table if not available yet.

IR6 — Fuel■Switch Feasibility (Optional)

Inputs: Distance to nearest gas pipeline or LNG terminal; boiler retrofit class.

Formula:

- Dist_to_gas_km = distance(plant_point, nearest_gas_asset)
- IR6 = 100 × (1 min(Dist_to_gas_km / G_max, 1)) × RetrofitFlag

G_max e.g., 200 km; RetrofitFlag∈ {0,1}.

Composite assembly

Normalize IR1–IR6 to 0–100 and compute weighted average. Suggested weights: IR1 20%, IR2 20%, IR3 20%, IR4 15%, IR5 15%, IR6 10% (if used).

Country■level scores: capacity■weight plant scores within each country.

Minimal implementation steps

- 1) Join your CSV to GCPT/GPPD by plant_name (and country) to get capacity, coordinates, COD_year, status.
- 2) Build Area_est_km² = k_area × Capacity_GW per plant.
- 3) Use Global Solar/Wind Atlas to fetch PVOUT and wind speed by country (or sample at coordinates).
- 4) Compute distances to nearest grid line and gas asset using global transmission and gas infra datasets.
- 5) Calculate IR1-IR6; normalize and aggregate.