Arquitectura, Bits, Qubits y compuertas

19-10-2020

1 Qubit

$$\bullet |0\rangle = \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 1,0 \end{bmatrix}^T$$

$$\bullet |1\rangle = \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 0,1 \end{bmatrix}^T$$

•
$$|0\rangle, |1\rangle \in \mathbb{C}^2$$

$$|\psi\rangle = c_1|0\rangle + c_2|1\rangle = \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} = [c_1, c_2]^T$$

•
$$|\psi\rangle \in \mathbb{C}^2$$

•
$$c_1, c_2 \in \mathbb{C}$$

Ojo es solo una representación para facilitar entender. El espacio vectorial de \mathbb{C}^2 es más grande y complejo.

 \mathbb{C}^2

Vectores normalizados, rayos y estados

Mult. por escalar (*4)

Mult. por escalar (*4)

2 Qubits

$$|00\rangle = |0\rangle \otimes |0\rangle = \begin{vmatrix} 00 & 1 \\ 01 & 0 \\ 10 & 0 \\ 11 & 0 \end{vmatrix} = [1,0,0,0]^T$$

$$|01\rangle = |0\rangle \otimes |1\rangle = \begin{bmatrix} 0 \\ 1 \\ 0 \\ 0 \end{bmatrix} = [0,1,0,0]^T$$

• $|00\rangle$, $|01\rangle$, $|10\rangle$, $|11\rangle \in \mathbb{C}^4$

$$|\psi\rangle = c_0|00\rangle + c_1|01\rangle + c_2|10\rangle + c_3|11\rangle = \begin{bmatrix} c_0 \\ c_1 \\ c_2 \\ c_3 \end{bmatrix} = [c_0, c_1, c_2, c_3]^T$$

- $|\psi\rangle \in \mathbb{C}^4$
- $c_n \in \mathbb{C}$

Ojo es solo una representación para facilitar entender. El espacio vectorial de \mathbb{C}^4 es más grande y complejo.

n Qubits

$$|100101010\rangle = |1\rangle \otimes |0\rangle \otimes |0\rangle \otimes |1\rangle \otimes |0\rangle \otimes |1\rangle \otimes |0\rangle \otimes |1\rangle = \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 1 \\ \vdots \\ 0 \\ 0 \end{bmatrix} = [0,0,0,...,1,...,0,0]^T \in \mathbb{C}^{256}$$

n Qubits

$$|10010101\rangle = |1\rangle \otimes |0\rangle \otimes |0\rangle \otimes |1\rangle \otimes |0\rangle \otimes |1\rangle \otimes |0\rangle \otimes |1\rangle = \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 1 \\ \vdots \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 0,0,0,...,1,...,0,0 \end{bmatrix}^T \in \mathbb{C}^{256}$$

$$\begin{vmatrix} 000000000 & \begin{bmatrix} 0 \\ 000000001 & \\ 0 \\ 000000010 & \\ \vdots & \vdots \\ 00010101 & 1 \\ \vdots & \vdots \\ 10010101 & 1 \\ \vdots & \vdots \\ 111111110 & \\ 0 \\ 111111111 & 0 \end{vmatrix} = \begin{bmatrix} 0,0,0,...,1,...,1,...,0,0 \end{bmatrix}^T \in \mathbb{C}^{256}$$

Compuertas clásicas

Compuerta Not

Tabla de Verdad

Entrada	Salida
0	1
1	0

Construir la representación de matriz

	0	1
0		
1		

Compuerta Not

Tabla de Verdad

Entrada	Salida
0	1
1	0

Construir la representación de matriz

	0	1
0	0	1
1	1	0

La matriz

¿Funciona la compuerta not?

$$\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

$$\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

Compuerta And

Tabla de Verdad

Entrada	Salida
00	0
01	0
10	0
11	1

Construir la representación de matriz

	00	01	10	11
0				
1				

Compuerta And

Tabla de Verdad

Entrada	Salida
00	0
01	0
10	0
11	1

Construir la representación de matriz

	00	01	10	11
0	1	1	1	0
1	0	0	0	1

La matriz

$$\begin{bmatrix} 1 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

¿Funciona la compuerta AND?

1 and
$$0 = \begin{bmatrix} 1 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

¿Funciona la compuerta AND?

1 and
$$1 = \begin{bmatrix} 1 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

Compuerta Or

Tabla de Verdad

Entrada	Salida
00	0
01	1
10	1
11	1

Construir la representación de matriz

	00	01	10	11
0				
1				

Compuerta Or

Tabla de Verdad

Entrada	Salida
00	0
01	1
10	1
11	1

Construir la representación de matriz

	00	01	10	11
0	1	0	0	0
1	0	1	1	1

La matriz

$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 \end{bmatrix}$$

¿Funciona la compuerta Or?

$$1 \text{ or } 0 = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

Compuerta Nand

Tabla de Verdad

Entrada	Salida		
00	1		
01	1		
10	1		
11	0		

Construir la representación de matriz

	00	01	10	11
0	0	0	0	1
1	1	1	1	0

La matriz

Otra forma de encontrar And

$$\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} * \begin{bmatrix} 1 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 & 1 \\ 1 & 1 & 1 & 0 \end{bmatrix}$$

Operaciones en secuencia y Tamaño de las matrices

El tamaño de **A** es de 2^n filas por 2^m columnas

- El tamaño de **A** es de 2^n filas por 2^m columnas
- El tamaño de **B** es de 2^p filas por 2^n columnas
- El tamaño de **B** * **A** es de 2^p filas por 2^m columnas

Operaciones en paralelo

El tamaño de $A \otimes B$ es de $2^{n+n'}$ filas por $2^{m+m'}$ columnas

La identidad en las composiciones

$$= (B \otimes I_{n-p}) * A$$

Fin.