Electric Field Activity

1 Overview

This activity covers topics in Section 21.3-4 of Young and Freedman 2015, 14th Edition.

Electric Force

Coulomb's Law in compact form is

$$ec{\mathbf{F}}_{1 ext{ on }2}=kq_1q_2rac{\hat{\mathbf{r}}}{r^2}$$

where $\hat{\mathbf{r}}$ is the unit vector that points from the position of q_1 to q_2 and r is the distance between q_1 and q_2 .

Electric Field

The electric field vector, $\vec{\mathbf{E}}$, is a quantity that we assign to a point in space. Given this quantity, we can compute the force on a charge Q will experience if it is placed at that point in space using the equation $\vec{\mathbf{F}} = Q\vec{\mathbf{E}}$.

To find $\vec{\mathbf{E}}$ at any point in space, compute the force $\vec{\mathbf{F}}$ due to all other charges on a hypothetical (or "test") charge q_o at a point where you want to know $\vec{\mathbf{E}}$. To find $\vec{\mathbf{E}}$ at that point, divide $\vec{\mathbf{F}}$ by q_o .

$$ec{\mathbf{E}} = rac{ec{\mathbf{F}}}{q_o}$$

2 Example

Charge q_1 is at (x, y) = (-a, -a).

Find the electric field at (x,y)=(a,a) in the form $\vec{\mathbf{E}}=E_x\hat{\imath}+E_y\hat{\jmath}$.

Solution

To find the electric field at a point in space, we put a hypothetical "test" charge q_o at that point, compute the force on it due to all other charges, and then use

$$ec{\mathbf{E}} = rac{ec{\mathbf{F}}}{q_o}$$

The force a charge q_1 at (x, y) = (-a, -a) exerts on a charge q_2 at (x, y) = (a, a) was computed in a previous activity. We can use the answer after the replacement of q_2 with q_0 . The result is

$$ec{f F}=krac{q_1q_o}{8a^2}\left[rac{1}{\sqrt{2}}\hat{m \imath}+rac{1}{\sqrt{2}}\hat{m \jmath}
ight]$$
. The electric field is then $ec{f E}=rac{ec{f F}}{q_o}=krac{q_1}{8a^2}\left[rac{1}{\sqrt{2}}\hat{m \imath}+rac{1}{\sqrt{2}}\hat{m \jmath}
ight]$

3 Problem

In the previous example, there was only one charge responsible for creating the electric field $\vec{\mathbf{E}}$. To find the electric field when there are more charges, superposition can be used.

Charge $q_1 = +q$ is at (x, y) = (a, 0), charge $q_2 = +q$ is at (x, y) = (-a, 0), and charge $q_3 = -q$ is at (x, y) = (0, a). Assume that the quantity associated with q is positive.

- 1. Draw this charge configuration below.
- 2. Why does it not make sense to ask what the electric force is at the origin?

In the following,

- 3. Find the electric field at the origin due to q_1 . Write your answer in the form $\vec{\mathbf{E}}_1 = E_{x1}\hat{\imath} + E_{y1}\hat{\jmath}$.
- 4. Find the electric field at the origin due to q_2 . Write your answer in the form $\vec{\mathbf{E}}_2 = E_{x2}\hat{\imath} + E_{y2}\hat{\jmath}$.
- 5. Find the electric field at the origin due to q_3 . Write your answer in the form $\vec{\mathbf{E}}_3 = E_{x3}\hat{\imath} + E_{y3}\hat{\jmath}$.
- 6. Find the electric field at the origin. Write your answer in the form $\vec{\mathbf{E}} = E_x \hat{\imath} + E_y \hat{\jmath}$.
- 7. Will your answers to 3.-6. change if the problem had asked for the electric field at a different position? If so, which answers?

Q	Find the	electric	field at	the origin	if charge a	-2a	(instead of q).
ο.	Tillu ule	CICCUIC	menu ai	l uic ongn	i ii Ciiaige <i>u</i>	1 — 2 4 (ilistau oi y i.

9. Find the electric field at the origin if charge
$$q_1 = -2q$$
 (instead of q).