Analysis II - 2014.02.17

Differentialgleichungen

Gewöhnliche Differentialgleichungen (DGL) sind solche in denen nur eine Variable vorkommt. D.h. Gleichungen von Funktionen einer reellen Variablen. Beispiel: y = y(x), $F(x, y...y^{(k)}) = 0$ ist eine implizite DGL der Ordnung k. Variante: $y^{(k)} = G(x, y...y^{(k-1)})$ ist eine explizite DGL der Ordnung k.

Bsp: Eine DGL der Ordnung 1, mit $G:U\to\mathbb{R},\ U\in\mathbb{R}^2$ bildet ein Vektorfeld K. Der Graph einer Lösung ist überall tangential zu K.

Bsp: Eine DGL der Ordnung 2, mit $U \subset \mathbb{R}^3$. Die Lösung der DGL ist eine diff'bare Funktion y auf einem Intervall, die die Gleichung löst.

Anfangswertproblem: Gegeben sei eine DGL mit $G: U \to \mathbb{R}$, mit Anfangswert $(x_0, y_0...y_0^{(k-1)}) \in U$. Ein Randwertproblem andererseits wäre eine DGL mit Bedingungen der Form $y^{(l_i)}(t_i) = y_i$ für gegebene i, l_i, t_i .

Existenz und Eindeutigkeit

Def: Eine Funktion $f: X \to Y$ heisst (global) Lipschitzstetig falls

$$\exists c > 0 : \forall x, x' \in X : |f(x) - f(x')| \le c \cdot |x - x'|$$

Eine Funktion $f: X \to Y$ heisst lokal Lipschitzstetig, falls X durch offene Mengen U_i überdeckt werden kann, so dass $f|U_i$ lipschitzstetig ist. Für $X = \mathbb{R}^n$ heisst das, dass c von |x| + |x'| abhängen darf.

Fakt:

- (a) Jede differenzierbare Funktion mit stetiger Ableitung ist lokal libschitzstetig.
- (b) Die Grundrechenarten sind lokal lipschitzstetig.
- (c) Jede Komposition von lokal lipschitzstetigen Funktionen ist lokal lipschitzstetig.
- (d) Eine vektorwertige Funktion ist lokal lipschitzstetig \Leftrightarrow jede Komponenten der Funtion ist es.

 $Bsp: \mathbb{R}^n \to \mathbb{R}, x \mapsto |x| \text{ ist lipschitzstetig. (Dreiceksungleichung)}.$

 $Bsp: \mathbb{R}^2 \to \mathbb{R}, \ (x,y) \mapsto x \cdot y \text{ ist lokal ipschitzstetig aber nicht global.}$

Existenz- und Eindeutigkeitssatz

Sei $U \subset \mathbb{R}^{n+1}$ offen und $F: U \to \mathbb{R}$ lokal lipschitzstetig. Sei $(x_0, y_o...y_o^{(n-1)}) \in U$ ein Anfangswert. Dann gilt:

- (a) Die DGL $y^{(n)}=F(x,y..y^{(n-1)})$ mit dem AW $y(x_0)=y_0,..y^{(n-1)}(x_0)=y_0^{(k-1)}$ bildet eine Lösung $y:(x-\epsilon_1,x+\epsilon_2)\to\mathbb{R}$ mit $\epsilon_1,\epsilon_2>0$.
- (b) Je zwei solche Lösungen y auf $(x_0 \epsilon_1, x_0 + \epsilon_2)$ bzw \tilde{y} auf $(x_0 \tilde{\epsilon_1}, x_0 + \tilde{\epsilon_2})$ stimmen auf dem Durchschnitt der Intervalle überein.
- (c) Es existiert eine eindutige "maximale" Lösung, d.h. eine mit maximalem, offenem Definitionsintervall $]x_1, x_2[$.
- (d) Diese max. Lösung verlässt jede kompakte Teilmenge $K \subset U$, d.h. $\exists \xi < x_2 : \forall x \in]\xi, x_1[:(y,y(x)...y^{(k-1)}(x)) \notin K$. D.h. sie geht nach Unendlich oder zum Rand von U.

Orthogonaltrajektion

 $Bsp: y' = \frac{y}{x} \text{ auf } (\mathbb{R}^{>0})^2.$

Durch Raten $\rightsquigarrow \forall \lambda > 0$: $y := \lambda x$ ist Lösung. $\mathbb{R}^{>0} \to \mathbb{R}^{>0}$ ist maximal. Durch $(x_0, y_0) \in U$ geht die Lösung $y := \frac{y_0}{x_0} \cdot x$. Also sind dies *alle* max. Lösungen.

Bsp: Orthogonal dazu: $y' = -\frac{x}{y}$

Rate: $y=\sqrt{r^2-x^2},\ r>c.\]0, r[\to\mathbb{R}.\ \frac{dy}{dx}=\frac{1}{2\sqrt{r^2-x^2}}\cdot(-2x)=\frac{-x}{y}.$ Ex+Eind.Satz \Rightarrow Dies sind alle max. Lösungen.

 $Bsp: y' = y^2 \text{ auf } \mathbb{R}^{\nvDash} = U.$

 $\frac{dx}{dy} = y^2. \ y \text{ invertiert?} \longrightarrow \frac{dx}{dy} = \frac{1}{y^2} \Rightarrow x(y) = \int \frac{1}{y^2} dy = c - \frac{1}{y} = \frac{cy - 1}{y} = x \Rightarrow cy - 1 = yx \Rightarrow cy - yx = 1 \Rightarrow y = \frac{1}{c - x}. \text{ Also } setze: \ y := \frac{1}{c - x} \text{ für } c \in \mathbb{R} \text{ fest.} \longrightarrow y' = \frac{-1 \cdot (c - x)'}{(c - x)^2} = \frac{1}{(c - x)^2} = y^2$

- 1. $y:]c, \infty[\to \mathbb{R}, x \mapsto \frac{1}{c-x}]$
- 2. $y:]-\infty,\infty[\to\mathbb{R},\ x\mapsto \frac{1}{c-x}$
- 3. $y: \mathbb{R} \to \mathbb{R}, x \mapsto 0$