Extraction of signal over background from spectral data using a Markov Chain Monte Carlo with a Gibbs sampler

Advanced Statistics for Physics Analysis

Prof. Alberto Garfagnini

Academic year 2019/2020

Content

- 1. Peak by peak analysis using JAGS
- 2. Finding the **best estimates** of parameters A, B, w, x0 and **95% credible interval**.
- 3. Correlation among parameters both Qualitative (2D posterior distributions) and Quantitative (correlation matrix)
- 4. Inference → **Histograms plot**(visual understanding)
- 5. Check for convergence by re-running with different initial parameters
- **6. ACF**: Effect of **thinning** and **burn-in**
- 7. Calibration: Using best estimates of peak center and energy emission (given)
- 8. Estimating number of events under each peak.

Our goal

Determine the **number of events** under the source γ source taking into account the underlaying background

Data

- We begin by analysing peak by peak.
- The first 4 peaks are to be analysed independently.

Jags

Bugs model for Am-241

```
model{
     for (i in 1:length(x)){
              S[i] \leftarrow (A*exp((-(x[i]-x0)^2)/(2*w^2))+B)
              y[i] ~ dpois(S[i])
                                    # likelihood of the
     data}
     A \sim dunif(0.60000)
     B ~ dunif(0,5000)
     w \sim dunif(0,35)
     x0 \sim dunif(140,180)
```

Am spectra

- We assume uniform prior for parameters and arguments are considered by observing the graphs.
- The signal was modelled as a Gaussian whereas the number of observed photons follows Poisson distribution.

Unkowns

- A Signal Amplitude as counts
- B Background Amplitude as counts
- w Width of the signal peak
- **x0** | Center of the signal peak

Jags

```
# Initial parameter values
init <- NULL
init$A <- 30000
init$B <- 5000
init$w <- 8
init$x0 <- 150
#running jags
# set the seed
set.seed(12345)
# Create the model and pass the parameters
jm <- jags.model("./Am241.bug", Am.data , init)</pre>
# Update the Markov chain (Burn -in)
update (jm , 4000)
chain <- coda.samples(jm , variable.names=c("A","B","x0","w"), n.iter = 2e5, thin = 100)</pre>
Compiling model graph
   Resolving undeclared variables
   Allocating nodes
Graph information:
   Observed stochastic nodes: 101
   Unobserved stochastic nodes: 4
   Total graph size: 922
# plotting the chain, posterior distributions of the parameters
options(repr.plot.width=12, repr.plot.height=15)
plot(chain, col='navy')
```


Results from the MCMC

Correlation among parameters

Quantitatively, correlation matrix was found using

cor(chain.df)

 Signal Amplitude A and width of signal peak w are negatively correlated.

Am²⁴¹

Histograms

Co⁶⁰ (1st)

Histograms

Convergence of MCMC

- Check whether the chain has reached a steady state by rerunning the sampling several times with different starting points
- All chains should converge to the same region of parameter space

Initial values	First experiment	Second experiment	Third experiment	Fourth experiment
А	30000	50000	25000	20000
В	5000	3500	2000	4000
W	8	20	15	5
X0	150	180	140	170
Estimates for the posterior distribution	A: 35096.5 +/- 113.582 B: 2352.595 +/- 5.1048 W: 1.961533 +/- 0.004806947 X0: 157.6811 +/- 0.005723299	A : 35098.58 +/- 114.0157 B : 2352.465 +/- 5.256492 W : 1.961464 +/- 0.004956742 x0 : 157.6812 +/- 0.005701202	A : 35092.41 +/- 116.0715 B : 2352.489 +/- 5.174249 W : 1.961666 +/- 0.004920398 X0 : 157.6813 +/- 0.005606925	A : 35100.8 +/- 113.8174 B : 2352.439 +/- 4.973497 w : 1.961508 +/- 0.005030203 x0 : 157.6814 +/- 0.005631277
Estimates for the posterior distribution 95% CI	A : 34884.54 - 35325.63 B : 2342.175 - 2362.943 W : 1.951842 - 1.97039 x0 : 157.6699 - 157.6918	A: 34871.04 - 35317.44 B: 2342.518 - 2362.644 w: 1.951621 - 1.9714 x0: 157.6702 - 157.6926	A : 34866.18 - 35322.96 B : 2342.323 - 2363.038 W : 1.952452 - 1.971218 X0 : 157.6709 - 157.6922	 A : 34886.11 - 35328.36 B : 2342.896 - 2361.772 W : 1.95189 - 1.971365 x0 : 157.6705 - 157.6923

Convergence of MCMC

• Effect of **thinning** on Auto-correlation

Auto-correlation or ACF(h) measures how closely the chain is correlated with itself h steps later

Burn in = 2000

Even with **small values of burn-in** and **thin = 10**, for a given parameter (for eg, A), there *is not much correlation* h steps later for any h>1.

Convergence of MCMC Thin =

Calibration

Estimating number of events

```
N.events <- function(nuclide.name,nuclide.data, nuclide.estimates){</pre>
    #empty vector to capture signal data
    S <- vector(mode="numeric", length=length(nuclide.data$x))</pre>
    #if we plot the agussian noise without the constant background we obtained this graph:
    A <- nuclide.estimates$A
    w <- nuclide.estimates$w
    x0 <- nuclide.estimates$x0
    for (i in 1:length(nuclide.data$x)){
    S[i] \leftarrow (A*exp((-(nuclide.data$x[i]-x0)^2)/(2*w^2)))
    # plot the signal where the params were estimated using JAGS
    options(repr.plot.width=5, repr.plot.height=5)
    plot(nuclide.data$x, S, col='firebrick3', type='l',xlab="ADC Channel",ylab="Only Signal Counts",
     main=paste(nuclide.name, "spectra"))
    Signal <- function(x) { (A*exp((-(x-x0)^2)/(2*w^2)))}
    # just integrate in the range of nuclide.data$x , so that the integral value will be zero in those places
    # where the gaussian function doesn't have any values.
    val <- integrate(Signal,lower = min(nuclide.data$x), upper = max(nuclide.data$x))$value</pre>
    cat("Number of events under the", nuclide.name, "peak: ", val)
```

Estimating number of events

Results

ADC Channel

Number of events under the peak of $Cs^{137}(1st)$:

503785

Number of events under the peak of \mathbf{Co}^{60} (1st):

175961.2

Thank you for your attention