

# LOW POWER, LOW DROPOUT MIDDLE CURRENT VOLTAGE REGULATORS

#### DESCRIPTION

The SK6206 series are precise, low power consumption, high voltage; positive voltage regulators manufactured using CMOS and laser trimming technologies. The series provides large currents with a significantly small dropout voltage. The SK6206 consists of a current limiter circuit, a driver transistor, a precision reference voltage and an error correction circuit. The series is compatible with low ESR ceramic capacitors. The current limiter's foldback circuit also operates as a short protect for the output current limiter and the output pin. Output voltage can be set internally by laser trimming technologies. It is selectable in 100mV increments within a range of 1.2V to 5.0V. SOT-89-3, SOT-23-3, SOT353 and SC-59 packages are available.

#### **FEATURES**

I Output Voltage Range

I Highly Accurate

I Dropout Voltage

I Low Power Consumption

I Maximum Output Current

I Internal protector

I Small packages

#### **APPLICATIONS**

I Battery powered equipment

I Reference voltage sources

I Cameras, Video cameras

I Mobile phones

I Communication tools

#### **PACKAGE**

I SOT-89-3

I SOT-23-3, SC-59

I SOT353

I Other required

BLOCK DIAGRAM

1.2V to 5.0V (selectable in 100mV steps)

±2%

160mV @ 100mA (3.0V type)

2 μ A (TYP.)

300mA (Vin≥Vout+1V)

current limiter and short protector

SOT-89-3, SOT-23-3, SC-59, SOT353 and other required



Figure 1



### ABSOLUTE MAXIMUM RATINGS

| PARAMETER                        | SYMBOL           | MAXIMUM RAT                     | UNIT                                      |    |  |  |  |
|----------------------------------|------------------|---------------------------------|-------------------------------------------|----|--|--|--|
| Input Voltage                    | V <sub>IN</sub>  | $V_{SS}$ -0.3 $\sim$ $V_{SS}$   | V                                         |    |  |  |  |
| Output Voltage                   | V <sub>OUT</sub> | $V_{SS}$ -0.3 $\sim$ $V_{IN}$ + | V <sub>SS</sub> -0.3∼V <sub>IN</sub> +0.3 |    |  |  |  |
|                                  |                  | SOT-23-3, SC-59                 | 250                                       |    |  |  |  |
| Power Dissipation                | $P_D$            | SOT353                          | 250                                       | mW |  |  |  |
|                                  |                  | SOT-89-3                        | 500                                       |    |  |  |  |
| Operating Ambient<br>Temperature | Topr             | -40∼ <b>+</b> 85                | °C                                        |    |  |  |  |
| Storage<br>Temperature           | Tstg             | -40∼+125                        | J                                         |    |  |  |  |

**Caution**: The absolute maximum ratings are rated values exceeding which the product could suffer physical damage. These values must therefore not be exceeded under any conditions.

#### Electrical Characteristics

| Item             | Symbol                                             | Condition                                                                                        |                                   | MIN                          | TYP                 | MAX                          | UNIT  | CIRCUIT |
|------------------|----------------------------------------------------|--------------------------------------------------------------------------------------------------|-----------------------------------|------------------------------|---------------------|------------------------------|-------|---------|
| Output Voltage   | V <sub>OUT(E)1</sub>                               | V <sub>IN</sub> =V <sub>OUT(S)</sub> +1.0 V, I <sub>OUT</sub> =40 mA                             |                                   | V <sub>OUT(S)</sub><br>×0.98 | V <sub>OUT(S)</sub> | V <sub>OUT(S)</sub><br>×1.02 | V     | 1       |
| Output Current   | l <sub>OUT</sub>                                   | V <sub>IN</sub>                                                                                  | ≥V <sub>OUT(S)</sub> +1.0 V       | 300 <sup>*5</sup>            |                     | _                            | mA    | 1       |
|                  |                                                    | I <sub>OUT</sub> =100                                                                            | 1.5 V ≤V <sub>OUT(S)</sub> ≤2.5 V |                              | 0.20                | 0.28                         | V     |         |
| Dropout Voltage  | $V_{drop}$                                         | mA                                                                                               | 2.6 V ≤V <sub>OUT(S)</sub> ≤3.3 V |                              | 0.16                | 0.24                         |       |         |
|                  |                                                    | ША                                                                                               | 3.4 V ≤V <sub>OUT(S)</sub> ≤5.0 V |                              | 0.12                | 0.20                         |       |         |
| Line Regulations | $\Delta V_{\scriptscriptstyle OUT1}$               | $V_{OUT(S)} + 0.5 \text{ V} \le V_{IN} \le 5.5 \text{ V}$ $I_{OUT} = 80 \text{ mA}$              |                                   | _                            | 0.05                | 0.3                          | %/V   |         |
| Line Regulations | $\Delta V_{\mathit{IN}} \bullet V_{\mathit{OUT}}$  |                                                                                                  |                                   |                              |                     |                              |       | 1       |
| Input Voltage    | $\Delta V_{\scriptscriptstyle OUT2}$               | V <sub>IN</sub> =V <sub>OUT(S)</sub> +1.0 V                                                      |                                   | _ 20                         | 20                  | 40                           | mV    |         |
| Thiput vortage   | △ V OUT 2                                          | 1.0 mA ≤I <sub>OUT</sub> ≤80 mA                                                                  |                                   |                              | 20                  |                              |       |         |
| Output Voltage   | AV                                                 | $V_{IN}=V_{OUT(S)}+1.0 \text{ V},$ $I_{OUT}=10 \text{ mA}$                                       |                                   | _                            | ±100                | _                            | ppm/℃ |         |
| Temperature      | $\frac{\Delta V_{OUT}}{\Delta Ta \bullet V_{OUT}}$ |                                                                                                  |                                   |                              |                     |                              |       |         |
| Characteristics  | ∆1 a → OUT                                         | -40                                                                                              | °C ≤ <i>Ta</i> ≤85°C              |                              |                     |                              |       |         |
| Supply Current   | I <sub>SS1</sub>                                   | V <sub>IN</sub> =V <sub>OUT(S)</sub> +1.0 V                                                      |                                   |                              | 2                   |                              | μА    | 2       |
| Input Voltage    | V <sub>IN</sub>                                    |                                                                                                  |                                   | 1.8                          |                     | 6                            | V     | _       |
| Ripple-Rejection | IDDI                                               | V <sub>IN</sub> =V <sub>OUT(S)</sub> +1.0 V, f=1.0 kHz<br>Vrip=0.5 Vrms, I <sub>OUT</sub> =80 mA |                                   | _                            | 40                  | _                            | dB    | 1       |
|                  | RR                                                 |                                                                                                  |                                   |                              |                     |                              |       | I       |
| Short current    | I <sub>short</sub>                                 | $V_{IN}=V_{OUT(S)}+1.5 V$                                                                        |                                   | _                            | 30                  | _                            | mA    | 1       |
| Current Limiter  | I <sub>lim</sub>                                   | $V_{IN}=V_{OUT(S)}+1.5 V$                                                                        |                                   | _                            | 380                 |                              | mA    | 1       |

REV.08 2 of 7



#### ■ TEST CIRCUITS

Coronet (i





#### ■ TYPICAL APPLICATION CIRCUIT

#### 1, Basic circuit



#### 2. High output current positive voltage regulator



#### 3. Circuit for increasing output voltage



 $V_{\text{OUT}} = V_{XX} \left( 1 + \frac{R2}{R1} \right) + I_{SS} R2$ 

#### 4. Circuit for increasing output voltage



#### 5. Constant current regulator



#### 6. Dual supply



**Caution** The above connection diagram and constant will not guarantee successful operation. Perform thorough evaluation using the actual application to set the constant.

#### ■ Application Conditions

Input capacitor (CIN): 1.0µF or more

Output capacitor (CL):0.1 µF or more (tantalum capacitor)

Caution A general series regulator may oscillate, depending on the external components selected. Check that no



#### oscillation occurs with the application using the above capacitor.

- TYPICAL PERFORMANCE CHARACTERISTICS (3.0V output)
  - 1. Output Voltage vs. Output Current



3. Dropout Voltage vs. Output Current



5. Output Voltage vs. Ambient Temperature



2. Output Voltage vs. Input Voltage



4. Dropout Voltage vs. Output Voltage



6. Ripple Rejection Rate











SK6206P12345

| DESIGNATOR  | SYMBOL                 | DESCRIPTION                  |  |  |  |  |  |  |
|-------------|------------------------|------------------------------|--|--|--|--|--|--|
| (1) (2)     | Integer                | Output Voltage:              |  |  |  |  |  |  |
| 1) 2        |                        | e.g. ① =3, ② =0 ➡ 3.0V       |  |  |  |  |  |  |
| 3           | 2 Accuracy: within ±2% |                              |  |  |  |  |  |  |
|             | V                      | SOT-23                       |  |  |  |  |  |  |
| <b>(4</b> ) | Р                      | SOT-89                       |  |  |  |  |  |  |
| 4)          | K                      | S0T353                       |  |  |  |  |  |  |
|             | M                      | <b>S</b> C-59                |  |  |  |  |  |  |
|             | R                      | Embossed Tape: Standard Feed |  |  |  |  |  |  |
| 5           | L                      | Embossed Tape: Reverse Feed  |  |  |  |  |  |  |
|             |                        |                              |  |  |  |  |  |  |

#### **■ MARKING RULE**

SOT-23, SC-59 & SOT-89



① Represents product series

| SYMBOL | PRODUCT SERIES |
|--------|----------------|
| В      | SK6206Pxxxxx   |

REV.08 5 of 7



#### ② ③Represents the Output Voltage

| symbol | Output<br>voltage<br>(V) | symbol | Output<br>voltage<br>(V) | symbol | Output<br>voltage<br>(V) | symbol | Output<br>voltage<br>(V) |
|--------|--------------------------|--------|--------------------------|--------|--------------------------|--------|--------------------------|
| 01     | -                        | 16     | 1.6                      | 31     | 3.1                      | 46     | 4.6                      |
| 02     | -                        | 17     | 1.7                      | 32     | 3.2                      | 47     | 4.7                      |
| 03     | -                        | 18     | 1.8                      | 33     | 3.3                      | 48     | 4.8                      |
| 04     | -                        | 19     | 1.9                      | 34     | 3.4                      | 49     | 4.9                      |
| 05     | -                        | 20     | 2.0                      | 35     | 3.5                      | 50     | 5.0                      |
| 06     | -                        | 21     | 2.1                      | 36     | 3.6                      | -      | -                        |
| 07     | -                        | 22     | 2.2                      | 37     | 3.7                      | -      | -                        |
| 08     | -                        | 23     | 2.3                      | 38     | 3.8                      | -      | -                        |
| 09     | -                        | 24     | 2.4                      | 39     | 3.9                      | -      | -                        |
| 10     | -                        | 25     | 2.5                      | 40     | 4.0                      | -      | -                        |
| 11     | -                        | 26     | 2.6                      | 41     | 4.1                      | -      | -                        |
| 12     | 1.2                      | 27     | 2.7                      | 42     | 4.2                      | -      | -                        |
| 13     | 1.3                      | 28     | 2.8                      | 43     | 4.3                      | -      | -                        |
| 14     | 1.4                      | 29     | 2.9                      | 44     | 4.4                      | -      | -                        |
| 15     | 1.5                      | 30     | 3.0                      | 45     | 4.5                      | -      | -                        |

 $\P$  Represents the assembly lot no.

 $0\sim9$ ,  $A\sim Z$  repeated (G,I,J,0,Q,W excepted)

#### **■ PIN CONFIGURATION**



Remark Please contact the Natlinear marketing department for other packages.

REV.08 6 of 7



#### ■ PACKAGING INFORMATION

SOT-89-3



SOT23-3/SC-59



**SOT353** 







| Symbol | Dimensions | In Millimeters | Dimensions In Inches |       |  |  |  |
|--------|------------|----------------|----------------------|-------|--|--|--|
| Symbol | Min        | Max            | Min                  | Max   |  |  |  |
| Α      | 0.900      | 1.100          | 0.035                | 0.043 |  |  |  |
| A1     | 0.000      | 0.100          | 0.000                | 0.004 |  |  |  |
| A2     | 0.900      | 1.000          | 0.035                | 0.039 |  |  |  |
| ь      | 0.150      | 0.350          | 0.006                | 0.014 |  |  |  |
| С      | 0.080      | 0.150          | 0.003                | 0.006 |  |  |  |
| D      | 2.000      | 2.200          | 0.079                | 0.087 |  |  |  |
| E      | 1.150      | 1.350          | 0.045                | 0.053 |  |  |  |
| E1     | 2.150      | 2.450          | 0.085                | 0.096 |  |  |  |
| е      | 0.650      | TYP            | 0.026 TYP            |       |  |  |  |
| e1     | 1.200      | 1.400          | 0.047                | 0.055 |  |  |  |
| L      | 0.525      | REF            | 0.021 REF            |       |  |  |  |
| L1     | 0.260      | 0.460          | 0.010                | 0.018 |  |  |  |
| θ      | O°         | 8°             | O°                   | B°    |  |  |  |

REV.08 7 of 7