A "Roof" on Prices: Forecasting the Prices of Houses in San Diego

Tanisha Dighe Math 111A Prof. David Meyer

Time series analysis

- Way of analyzing a sequence of data points collected over an interval of time.
- Understands the underlying causes of trends or systemic patterns over time.
- SARIMA Seasonal Autoregressive Integrated Moving Average
- SARIMAX Seasonal Auto-Regressive Integrated Moving Average with eXogenous factors

Understanding the Model

Differencing (*d*)

- d is the number of differencing required to make the time series stationary
 - I.e the data needs to not have trends or seasonality
- Done by subtracting the previous observation from the current observation

AR model (*p*)

- The order p determines
 how many previous data
 points will be used.

MA model (q)

- An MA (Moving
 Average) model
 performs calculations
 based on noise in the
 data along with the
 data's slope
- The order q determines how many previous data points will be used.

SARIMA: (SARIMA(p,d,q)(P,D,Q,m))

$$\Phi_p(L)\phi_P(L^s)\Delta^d\Delta_s^D y_t = \Theta_q(L)\theta_Q(L^s)\epsilon_t$$

 $\Phi_p(L)$ = Non-seasonal autoregressive lag polynomial

 $\phi_P(L^s)$ = Seasonal autoregressive lag polynomial

 $\Delta^d \Delta_s^D y_t$ = times series, differenced d times and seasonally differenced D times

 $\Theta_q(L)$ = non-seasonal moving average lag polynomial

 $\theta_O(L^s)$ = seasonal moving average lag polynomial

 ϵ_t = the noise at time t

SARIMAX: (SARIMAX(p,d,q)(P,D,Q,m))

$\Phi_p(L)\phi_P(L^s)\Delta^d\Delta_s^D y_t = A(t) + \Theta_q(L)\theta_Q(L^s)\epsilon_t$

 $\Phi_p(L)$ = Non-seasonal autoregressive lag polynomial

 $\phi_P(L^s)$ = Seasonal autoregressive lag polynomial

 $\Delta^d \Delta_s^D y_t$ = times series, differenced d times and seasonally differenced D times

 $\Theta_q(L)$ = non-seasonal moving average lag polynomial

 $\theta_O(L^s)$ = seasonal moving average lag polynomial

 ϵ_t = the noise at time t

A(t) =the trend polynomial

Excerpt of data:

	Α	В	С	D
1	MonYr	MPE	мтм	PCS
2	01/01/90	180484	57	
3	02/01/90	180714	61.8	
4	03/01/90	183701	59.9	
5	04/01/90	181567	58.3	
6	05/01/90	180794	58.3	
7	06/01/90	186733	65.6	
8	07/01/90	185861	67.2	
9	08/01/90	185639	70.6	
10	09/01/90	186272	72.8	
11	10/01/90	179444	66	
12	11/01/90	176980	71.5	
13	12/01/90	181470	80.1	
14	01/01/91	182000	80.9	-0.266
15	02/01/91	178888	88.9	-0.342
16	03/01/91	183111	81.4	-0.344
17	04/01/91	183114	73.7	-0.077
18	05/01/91	188732	74.7	0.022
19	06/01/91	188509	74	0.117

Finding *d*:

d = 2

Finding *p*:

p = 2

Finding *q*:

q = 12

Seasonal Decomposition of Median Housing Prices

Finding *P*:

P = 4

Finding Q:

Q = 7

SARIMA(2,2,12)(1,0,2,12)

RMSE = 0.1599

SARIMAX(0,2,1)(2,0,1,12)

RMSE = 0.3140

Train Set RMSE of SARIMA	Train Set RMSE of SARIMAX	
0.034655	0.031277	

Evaluating the Model

- Overfitting
 - More training data
 - Removing unnecessary layers/ extraneous variables
 - Weight regularization
- Lack of computing power"Acts of God"

Thank you!

Background

How are houses priced?

- Location
- Size and usable space
- Number of other properties on sale and number of buyers in the market
- The broader economy