

University of New South Wales

SCHOOL OF MATHEMATICS AND STATISTICS

Assignment 3

Functional Analysis

Author: Edward McDonald

Student Number: 3375335

Question 1

For this question, X is a normed space and X_0 is a closed subspace.

Proposition 1. There is an isometric embedding, $X/X_0 \hookrightarrow (X_0^{\perp})^*$.

Proof. Define $\rho: X/X_0 \to (X_0^{\perp})^*$ as $\rho(x+X_0)(f) = f(x)$, for $x \in X$ and $f \in X_0^{\perp}$.

This is a well defined linear map, since if $x' + X_0 = x + X_0$ then f(x' - x) = 0 as $f \in X_0^{\perp}$.

See that ρ is linear, since $\rho(\alpha x + y + X_0) = f(\alpha x + y) = \alpha f(x) + f(y)$ for $x, y \in X$ and $\alpha \in \mathbb{C}$.

We need to show that ρ is an isometry. That is,

$$\|\rho(x+X_0)\|_{(X_0^\perp)^*} = \|x+X_0\|_{X/X_0}.$$

for any $x \in X$. This will also prove that for each $x \in X$, $\rho(x + X_0)$ is bounded, so ρ is indeed well defined.

Expanding this out into definitions, we must prove that

$$\sup_{\|f\|_{X^*} \le 1, f \in X_0^{\perp}} |f(x)| = \inf_{y \in X_0} \|x - y\|.$$
 (1)

for any $x \in X$.

Suppose that $f \in X_0^{\perp}$ with $||f||_{X^*} \leq 1$, then for any $y \in X_0$ and $x \in X$.

$$|f(x)| = |f(x - y)| \le ||x - y||.$$

Hence,

$$|f(x)| \le \inf_{y \in X_0} ||x - y||.$$

So

$$\sup_{\|f\|_{X^*} \leq 1, f \in X_0^{\perp}} |f(x)| \leq \inf_{y \in X_0} \|x - y\|$$

follows. Now we must prove the opposite inequality.

Fix $x \in X$. Then on the subspace $V := \mathbb{C}x$, define the functional

$$\omega(\lambda x) = \lambda \|x + X_0\|_{X/X_0}.$$

 ω is linear, and for any $y \in V$, $|\omega(y)| = ||y + X_0|| \le ||y||$. So $||\omega|| \le 1$.

So ω is a linear functional on a subspace V of X bounded by the seminorm $\|\cdot\|_{X/X_0}$.

So by the Hahn-Banach theorem (as in Rudin 1991, Theorem 3.2 or Wikipedia Hahn-Banach Theorem 14/5/2014), there is a functional $f \in X^*$, with $f(y) = \omega(y)$ for $y \in V$ and $|f(z)| \leq ||z + X_0||$ for any $z \in X$. Hence for $z \in X_0$, f(z) = 0, so $f \in X_0^{\perp}$ and $|f(z)| \leq ||z||$, so $||f||_{X^*} \leq 1$.

Therefore, $|f(x)| = ||x + X_0||_{X/X_0}$. Hence,

$$\sup_{\|f\|_{X^*} \le 1, f \in X_0^{\perp}} |f(x)| \ge \|x + X_0\|_{X/X_0} = \inf_{y \in X_0} \|x - y\|.$$

So the equality 1 holds. Hence ρ is an isometric embedding.

Question 2

Theorem 1. Suppose $T: X \to Y$ is a linear mapping between normed spaces X and Y. Then T is bounded if and only if T has the property if that if U is open in Y then $T^{-1}(U)$ is open in X.

Proof. Suppose that T is bounded, and let $U \subset Y$ be an open set with $T^{-1}(U) \neq \emptyset$.

Then let $x \in T^{-1}(U)$, and let ε be small enough such that $B_Y(Tx, \varepsilon) \subset U$. Then choose $\varepsilon' = \varepsilon/\|T\|$. Then if $y \in B_X(x, \varepsilon')$,

$$||Ty - Tx|| \le ||T|| ||y - x|| < \varepsilon.$$

Hence $Ty \in B_Y(Tx,\varepsilon)$, so $Ty \in U$. Therefore $B_X(x,\varepsilon') \subset T^{-1}(U)$, and so $T^{-1}(U)$ is open.

Conversely, suppose that T has the property that $T^{-1}(U)$ is open in X whenever U is open in Y.

Let $U = B_Y(0,1) \subset Y$. Then since $T^{-1}(U)$ is open, there is some $\varepsilon > 0$ such that $B_X(0,\varepsilon) \subset T^{-1}(U)$.

So $TB_X(0,\varepsilon) \subseteq B_Y(0,1)$. Hence, by linearity, $TB_X(0,1) \subseteq B_Y(0,\frac{1}{\varepsilon})$.

Hence, $||T|| \leq 1/\varepsilon$. So T is bounded.

Question 3

Let $X = \ell^1(\mathbb{N})$, and X_0 is the subspace defined by

$$X_0 = \{(\xi_k)_{k \ge 0} \in X : \sum_{k \ge 0} \xi_k = 0\}.$$

Theorem 2. There is an isometric isomorphism,

$$X/X_0 \cong \mathbb{C}$$
.

Proof. Define the function $S: X \to \mathbb{C}$ by

$$S((\xi_k)_{k\geq 0}) = \sum_{k\geq 0} \xi_k.$$

S is clearly linear and S is surjective since $S(\lambda, 0, 0, 0, \dots) = \lambda$ for any $\lambda \in \mathbb{C}$. So by the first isomorphism theorem, there is a vector space isomorphism,

$$X/\ker S = X/X_0 \cong \mathbb{C}.$$

Let Ψ be this isomorphism, that is, $\Psi(x + X_0) = S(x)$ for $x \in X$. Now we must show that this is an isometry. Let $e_0 = (1, 0, 0, ...) \in X$. Then if $x = (\xi_k)_{k \ge 0} \in X_0$,

$$||e_0 + x|| = |1 + \xi_0| + \sum_{k \ge 1} |\xi_k|$$

$$\ge |1 + \xi_0| + |\sum_{k \ge 1} \xi_k|$$

$$= |1 + \xi_0| + |\xi_0|$$

$$\ge 1.$$

Hence, $||e_0 + X_0||_{X/X_0} = 1$. Since we have shown X/X_0 is one dimensional, $X/X_0 = \mathbb{C}(e_0 + X_0)$. Hence, for all $y + X_0 \in X/X_0$, $y = \lambda(e_0 + X_0)$ for some $\lambda \in \mathbb{C}$. Then,

$$|\Psi(y)| = |S(\lambda e_0)| = |\lambda| = ||y||_{X/X_0}.$$

So Ψ is an isometry.

Theorem 3. X_0^{\perp} is the one dimensional subspace of ℓ^{∞} , $\mathbb{C}(1,1,1,\ldots)$, where $(1,1,1,\ldots)$ is a constant sequence with value 1.

Proof. We identify X^* with ℓ^{∞} . For $(\eta_k)_{k\geq 0}\in X_0^{\perp}$, we require for all $(\xi_k)_{k\geq 0}\in$ X_0

$$\sum_{k\geq 0} \overline{\xi_k} \eta_k = 0.$$

Choose the sequence $(\xi_k)_{k\geq 0}\in X_0$ as $\xi_0=1$ and $\xi_p=-1$ for some p>0, and $\xi_k = 0$ otherwise. Then,

$$\eta_0 - \eta_p = 0.$$

Hence $(\eta_k)_{k\geq 0}$ is a constant sequence. So X_0^{\perp} consists of constant sequences. Clearly any constant sequence is in X_0^{\perp} , so $X_0^{\perp} = \mathbb{C}(1,1,1,\ldots)$.

3