Lecture 23

Ciprian M Crainiceanu

Table of contents

Outline

paradox

Weighting

Mantel/Haenszel

Lecture 23

Ciprian M Crainiceanu

Department of Biostatistics Johns Hopkins Bloomberg School of Public Health Johns Hopkins University

December 13, 2013

Table of contents

Outlin

paradox

Deriverey date

Confounding

Weighting

Mantel/Haenszel

- 1 Table of contents
- 2 Outline
- 3 Simpson's paradox
- 4 Berkeley data
- **5** Confounding
- **6** Weighting
- Mantel/Haenszel estimator

paradox

Derkeley data

Confounding

Weighting

Mantel/Haenszel

- 1 Simpson's paradox
- Weighting
- 3 CMH estimate
- 4 CMH test

Lecture 23

Ciprian M Crainiceanu

content

Outlin

Simpson's paradox

. . . .

vveigning

Mantel/Haenszel estimator

Simpson's (perceived) paradox

		Death	penalty	
Victim	Defendant	yes	no	% yes
White	White	53	414	11.3
	Black	11	37	22.9
Black	White	0	16	0.0
	Black	4	139	2.8
	White	53	430	11.0
	Black	15	176	7.9
White		64	451	12.4
Black		4	155	2.5

1

¹From Agresti, Categorical Data Analysis, second edition

Outline Simpson's

paradox

Comountain

Weighting

Mantel/Haenszel

- Marginally, white defendants received the death penalty a greater percentage of time than black defendants
- Across white and black victims, black defendant's received the death penalty a greater percentage of time than white defendants
- Simpson's paradox refers to the fact that marginal and conditional associations can be opposing
- The death penalty was enacted more often for the murder of a white victim than a black victim. Whites tend to kill whites, hence the larger marginal association.

Table of

Outlin

Simpson's paradox

Derkeley data

Contounding

Weighting

Mantel/Haenszel

• Wikipedia's entry on Simpson's paradox gives an example comparing two player's batting averages

	First	Second	Whole	
	Half	Half	Season	
Player 1	4/10 (.40)	25/100 (.25)	29/110 (.26)	
Plater 2	35/100 (.35)	2/10 (.20)	37/110 (.34)	

- Player 1 has a better batting average than Player 2 in both the first and second half of the season, yet has a worse batting average overall
- Consider the number of at-bats

Weighting

vveignung

Mantel/Haenszel

Berkeley admissions data

 The Berkeley admissions data is a well known data set regarding Simpsons paradox

Berkeley data

Weighting

Mantel/Haenszel

```
Acceptance rate by department
```

)

```
Dept M F
A 0.62 0.82
B 0.63 0.68
C 0.37 0.34
D 0.33 0.35
E 0.28 0.24
F 0.06 0.07
```

Outlin

Berkeley data

Confounding

Weighting

Mantel/Haenszel

Why? The application rates by department

Gender A B C D E F Male 825 560 325 417 191 373 Female 108 25 593 375 393 341 Outline

paradox

Berkeley data

NA / - 1 - 1 - 1 - 1 - - - -

vveignting

Mantel/Haenszel

• Mathematically, Simpson's pardox is not paradoxical

$$a/b < c/d$$

$$e/f < g/h$$

$$(a+e)/(b+f) > (c+g)/(d+h)$$

 More statistically, it says that the apparent relationship between two variables can change in the light or absence of a third Confounding

Weighting

Mantel/Haenszel estimator

Confounding

- Variables that are correlated with both the explanatory and response variables can distort the estimated effect
 - Victim's race was correlated with defendant's race and death penalty
- One strategy to adjust for confounding variables is to stratify by the confounder and then combine the strata-specific estimates
 - Requires appropriately weighting the strata-specific estimates
- Unnecessary stratification reduces precision

Confounding

Weighting

Mantel/Haenszel

Aside: weighting

- Suppose that you have two unbiased scales, one with variance 1 lb and and one with variance 9 lbs
- Confronted with weights from both scales, would you give both measurements equal creedance?
- Suppose that $X_1 \sim N(\mu, \sigma_1^2)$ and $X_2 \sim N(\mu, \sigma_2^2)$ where σ_1 and σ_2 are both known
- log-likelihood for μ

$$-(x_1-\mu)^2/2\sigma_1^2-(x_2-\mu)^2/2\sigma_2^2$$

Outline

paradox

Confounding

Comountaing

Weighting

Mantel/Haenszel

• Derivative wrt μ set equal to 0

$$(x_1 - \mu)/\sigma_1^2 + (x_2 - \mu)/\sigma_2^2 = 0$$

Answer

$$\frac{x_1r_1 + x_2r_2}{r_1 + r_2} = x_1p + x_2(1-p)$$

where $r_i = 1/\sigma_i^2$ and $p = r_1/(r_1 + r_2)$

- Note, if X_1 has very low variance, its term dominates the estimate of μ
- General principle: instead of averaging over several unbiased estimates, take an average weighted according to inverse variances
- For our example $\sigma_1^2 = 1$, $\sigma_2^2 = 9$ so p = .9

Outlin

paradox

_ ------

Confounding

Weighting

Mantel/Haensze

- Let n_{ijk} be entry i, j of table k
- The k^{th} sample odds ratio is $\hat{ heta}_k = rac{n_{11k}n_{22k}}{n_{12k}n_{21k}}$
- The Mantel Haenszel estimator is of the form $\hat{\theta} = \frac{\sum_k r_k \hat{\theta}_k}{\sum_k r_k}$
- The weights are $r_k = \frac{n_{12k}n_{21k}}{n_{++k}}$
- The estimator simplifies to $\hat{\theta}_{MH} = \frac{\sum_k n_{11k} n_{22k}/n_{++k}}{\sum_k n_{12k} n_{21k}/n_{++k}}$
- SE of the log is given in Agresti (page 235) or Rosner (page 656)

Confounding

Weighting

Mantel/Haensze estimator

Center									
	1	2	3	4	5	6	7	8	
	S F	S F	S F	S F	S F	S F	S F	S F	
T	11 25	16 4	14 5	2 14	6 11	1 10	1 4	4 2	
С	10 27	22 10	7 12	1 16	0 12	0 10	1 8	6 1	
n	73	52	38	33	29	21	14	13	

S - Success, F - failure

T - Active Drug, C - $placebo^2$

$$\hat{\theta}_{MH} = \frac{(11 \times 27)/73 + (16 \times 10)/25 + \ldots + (4 \times 1)/13}{(10 \times 25)/73 + (4 \times 22)/25 + \ldots + (6 \times 2)/13)} = 2.13$$

Also
$$\log \hat{\theta}_{MH} = .758$$
 and $\hat{SE}_{\log \hat{\theta}_{MH}} = .303$

²Data from Agresti, Categorical Data Analysis, second edition

Table of

Outlin

paradox

Derkeley dat

Comound

Weighting

Mantel/Haensze

- $H_0: heta_1 = \ldots = heta_k = 1$ versus $H_a: heta_1 = \ldots = heta_k
 eq 1$
 - The CHM test applies to other alternatives, but is most powerful for the H_a given above
 - Same as testing conditional independence of the response and exposure given the stratifying variable
- CMH conditioned on the rows and columns for each of the k contingency tables resulting in k hypergeometric distributions and leaving only the n_{11k} cells free

Mantel/Haensze

CMH test cont'd

- Under the conditioning and under the null hypothesis
 - $E(n_{11k}) = n_{1+k}n_{+1k}/n_{++k}$
 - $Var(n_{11k}) = n_{1+k} n_{2+k} n_{+1k} n_{+2k} / n_{++k}^2 (n_{++k} 1)$
- The CMH test statistic is

$$\frac{\left[\sum_{k} \{n_{11k} - E(n_{11k})\}\right]^{2}}{\sum_{k} \text{Var}(n_{11k})}$$

• For large sample sizes and under H_0 , this test statistic is $\chi^2(1)$ (regardless of how many tables you are summing up)

Outlin

paradox

Deriverey date

Confounding

Weighting

Mantel/Haensze

Results: $CMH_{TS} = 6.38$

P-value: .012

Test presents evidence to suggest that the treatment and response are not conditionally independent given center

mantelhaen.test(dat, correct = FALSE)

paradox

Derkeley dat

Contounain

Weighting

Mantel/Haensze

Some final notes on CMH

- It's possible to perform an analogous test in a random effects logit model that benefits from a complete model specification
- It's also possible to test heterogeneity of the strata-specific odds ratios
- Exact tests (guarantee the type I error rate) are also possible exact = TRUE in R