

Segundo examen parcial

Fundamentos de lenguajes de programación

Duración: 2 horas Carlos Andres Delgado S, Ing * 03 de Marzo 2015

Nombre:	
Código:	

1. Paso de Parámetros por Referencia [12 pts.]

let				
x = 2				
y = 1				
z = 5				
_ *				
+(s,+(2,-(j,k)))				
+(s,+(2,-(j,k))) end				
end				
$ \begin{array}{l} n = proc(a \ b \ c \ f) \\ begin \\ set \ a = (f \ a \ b \ c); \\ set \ b = (f \ b \ c \ a); \\ set \ c = (f \ c \ b \ a); \\ +(a, \ -(b, c \)) \\ end \end{array} $				
in				
begin				
set z = (n x y z m);				
-(x , +(y, z))				
end				

Si el paso de parámetros es por referencia:

- a) (6 pts) Dibuje el ambiente en el cual se evalúa la expresión.
- b) (6 pts) Indique el valor de la expresión e indique los valores que toman $x,\,y\,y\,z$ en los llamados:
 - a = (f a b c); x: y: z:

b = (f b c a);		
x:		
<i>y</i> :		
z:		
c = (f c b a);		

- valor de la expresión:

2. Inferencia de Tipos [16 pts.]

En clase se describió el proceso formal de inferencia del tipo de una expresión y su implementación. En este ejercicio se pretende comprobar su asimilación del proceso (no de la implementación).

Para la expresión a continuación y las variables de tipo introducidas describa las ecuaciones de tipo generadas entre ellas. Acto seguido resuelva el sistema para encontrar el tipo de la expresión:

let x = 5 y = 7 z = 9
f1 = proc(a b c d) if b then (a c d) else proc(t w) *(t,w)
$f2 = proc(n m) \\ proc(g h) +(*(g,m), *(h,n))$
f3 = proc(i j) > (i,j)
$f4 = \operatorname{proc}(k p q r) \\ (k (p q r) 7)$
in $(f4 \ f3 \ (f1 \ f2 \ z \ y \ x) \ ((f2 \ x \ y) \ z \ x) \ y)$

es:

^{*}carlos.andres.delgado@correounivalle.edu.co

Expresión o	Variable
Variable ligada	de tipo
f1	t_{f_1}
f2	t_{f_2}
f3	t_{f_3}
f4	t_{f_4}
X	t_x
у	t_y
Z	t_z
a	t_a
b	t_b
С	t_c
d	t_d
t	t_t
W	t_w
n	t_n
m	t_m
g	t_g
h	t_h
i	t_i
j	t_j
k	t_k
p	t_p
q	t_q
r	t_r
(a c d)	t_1
proc(t w) *(t,w)	t_2
*(t,w)	t_3
proc(g h) + (*(g,m), *(h,n))	t_4
+(*(g,m), *(h,n))	t_5
*(g,m)	t_6
*(h,n)	t_7
>(i,j)	t_8
(k (p q r) 7)	t_9
(p q r)	t_{10}
(f1 f2 z y x)	t_{11}
((f2 x y) z x)	t_{12}
(f2 x y)	t_{13}
(f4 f3 (f1 f2 z y x) ((f2 x y) z x) y)	t_{total}

3. Claridad Operativa POO [10 pts.]

Considere el siguiente programa en nuestro lenguaje OO:

```
class c1 extends object
  field a
  field b
 method initialize()
    begin
     set a = 5;
     set b = 7;
     0
    end
 method setup (u, v)
    begin
      set a = +(u,b);
      set \ b \, = \, *(\,v\,,a\,)\,;
      +(a,b)
    end
 method m1(x,y)
    begin
      set a = +(a, x);
      set b = -(b, y);
      send self m2(+(x,b),-(y,a))
    end
 method m2(w,z)
    begin
      \text{set } a \,=\, -(w,a)\,;
      set b = *(b,z);
      +(w,+(z,a))
    end
class c2 extends c1
  field a
  field b
  field c
 method initialize() 0
 method \ setup \, (u\,,v\,)
    begin
      set a = -(u,3);
      set b = +(v,3);
      set c = +(u, v);
      super setup(+(a,b),+(b,c))
    end
 method m1(x,y)
    begin
      set a = +(a,b);
      set b = -(b, x);
      set c = -(c, y);
      super m1(x,y)
    end
let
 o1 = new c1()
 o2 = new c2()
 in
    let
      x = send ol setup(1,4)
      y = send o2 setup(3,4)
      i = send ol m1(4,5)
      j = send o1 m2(3,4)
      k = send \ o2 \ m1(1,3)
        +(+(i, j), -(k, x))
```

Complete en la siguiente tabla, los valores asociados a las variables indicadas en **después** de los momentos de evaluación señalados.

Variable	Valor	Al evaluar la expresión
x		x = send o1 setup(1,4)
y		y = send o2 setup(3,4)
a de c1		i = send o1 m1(4,5)
$b ext{ de c1}$		i = send o1 m1(4,5)
i		i = send o1 m1(4,5)
a de c1		j = send o1 m2(3,4)
$b ext{ de c1}$		j = send o1 m2(3,4)
j		j = send o1 m2(3,4)
a de c1		k = send o2 m1(1,3)
$b ext{ de c1}$		k = send o2 m1(1,3)
$a \ \mathrm{de} \ \mathrm{c2}$		k = send o2 m1(1,3)
$b ext{ de c2}$		k = send o2 m1(1,3)
$c ext{ de c2}$		k = send o2 m1(1,3)
k		k = send o2 m1(1,3)
$\boxed{+(+(i,j),-(k,x))}$		in + (+(i,j),-(k,x))