# Referenzmodelle für Netzwerkprotokolle

OSI- und TCP/IP-Referenzmodelle



#### Beweggründe für ein Referenzmodell

- Übergreifende Netzwerkkommunikation ist alles andere als trivial!
  - Verschiedenste Hardware-Hersteller
  - Verschiedenste Geräte (PC, Smartphone, Drucker, Smart Devices, ...)
  - Verschiedenste **Netzwerktypen** (kabelgebunden/drahtlos, stationär/mobil ...)
  - Verschiedenste Anforderungen an die Kommunikation (echtzeitfähig, zuverlässig, fehlertolerant, vertraulich, ...)
- Alle nutzen aber die gleiche Netzwerkinfrastruktur!
- Konsequenz: Einheitlicher Standard/Referenzrahmen für die geordnete Kommunikation erforderlich => OSI-Referenzmodell!

# Entwurfsaspekte einer einheitlichen Netzsoftware

- Zuverlässigkeit (Unsicherheiten durch Störungen, Ausfälle, ...)
  - Fehlererkennung (error detection)
  - Fehlerbehebung (error correction)

#### Weiterentwicklung

- Wachsende Netze => Adressierung / Namensgebung
- Unterschiedliche Teilnetze => Internetworking

#### Ressourcenzuteilung

- Multiplexen (dynamisches Aufteilen von Bandbreiten)
- Flusskontrolle (schneller Sender vs. langsamer Empfänger)
- Netzüberlastung (Anfragen reduzieren)
- Dienstgüte (konkurrierende Ansprüche Echtzeitdaten vs. Durchsatz ausgleichen)

#### Sicherheit

- Vertraulichkeit
- Integrität
- Verfügbarkeit
- Authentizität

## Verbindungsorientierung und Zuverlässigkeit

- Zwei Aspekte, stellvertretend:
  - Verbindungsorientierung
  - Zuverlässigkeit

## Verbindungsorientiert vs. verbindungslos

#### verbindungsorientiert

- = analog zu Telefondienst
  - Verbindungsaufbau
  - Datenaustausch
  - Verbindungsabbau
  - Dienst funktioniert wie Rohr

#### verbindungslos

- = analog zu Post
  - Jede Nachricht (Paket) enthält vollständige Adresse
  - Pakete werden unabhängig voneinander zugestellt



verbindungsorientierter Dienst



verbindungsloser Dienst (Datagrammdienst) im Internet

#### Zuverlässigkeit

- Daten und Teile davon dürfen nicht verlorengehen
- Dienst versucht immer korrekt zu übertragen
- Anwendungsbeispiel: Dateitransfer
- Einbau von **geeigneten Kontrollmechanismen** die Zuverlässigkeit bei der Übertragung gewährleisten
- Nachteile:
  - Zeitverzögerung
  - Overhead

# Einteilung und Beispiele

|               | verbindungsorientiert                                                            | verbindungslos                                                              |
|---------------|----------------------------------------------------------------------------------|-----------------------------------------------------------------------------|
| zuverlässig   | <ul><li>= Nachrichtensequenzen, Byteströme</li><li>z. B. Dateitransfer</li></ul> | <ul><li>= bestätigter Datagrammdienst</li><li>z. B. SMS</li></ul>           |
| unzuverlässig | <ul><li>= unzuverlässige Verbindung</li><li>z. B. Voice over IP (VoIP)</li></ul> | <ul><li>= unzuverlässiger Datagrammdienst</li><li>z. B. Junk-Mail</li></ul> |

### Weitere Aufgaben/Probleme

- Übertragung der Daten im lokalen Netz (Erzeugung der Signale, Zugriffskontrolle auf das Medium, ...)
- Wegfindung in großen Netzen (Internet)
- Portionsweise Übertragung großer Datenmengen (Beispiel: Videodatei mit mehreren GB)
- Ausbalancierte Übertragungsgeschwindigkeit
   ("Datenflusssteuerung": nicht zu schnell, nicht unnötig langsam)
- Zuordnung der Nachrichtenpakete zu den Diensten/Prozessen eines Rechners ("virtuelles Multiplexen")
- Und vieles, vieles mehr!





www.shutterstock.com · 175211042

#### Zusammenfassung

- Motivation:
  - Vielzahl von Systemen
  - Vielzahl von Anforderungen (Zuverlässigkeit, Sicherheit, Effizienz)
  - Vielzahl von Aufgaben und Problemen
- Enorme Komplexität der Netzsoftware!
- => Aufteilung von Aufgaben in Ebenen (= Schichten)
- Auf jeder Ebene: separate Umsetzung der Anforderungen

#### Referenzmodelle

#### Zwei relevante Modelle:

#### OSI-Referenzmodell

- der große, systematische Standard
- detaillierter als TCP/IP-Modell

#### • TCP/IP-Referenzmodell

- Grundlage für die Internetprotokollfamilie
- Vereinfachtes Modell
- Schichten 5 7 des OSI-Modells zusammengefasst zur Anwendungsschicht
- Schichten 1 2 des OSI-Modells zusammengefasst zur Netzzugangsschicht

| OSI-Schicht                                 | TCP/IP-Schicht | Beispiel                                                       |  |
|---------------------------------------------|----------------|----------------------------------------------------------------|--|
| Anwendungen (7) Darstellung (6) Sitzung (5) | Anwendungen    | HTTP, UDS, FTP,<br>SMTP, POP, Telnet,<br>DHCP, OPC UA<br>SOCKS |  |
| Transport (4)                               | Transport      | TCP, UDP, SCTP                                                 |  |
| Vermittlung (3)                             | Internet       | IP (IPv4, IPv6), ICMP<br>(über IP)                             |  |
| Sicherung (2)                               |                | Ethernet, Token                                                |  |
| Bitübertragung (1)                          | Netzzugang     | Bus, Token Ring,<br>FDDI                                       |  |

#### OSI-Referenzmodell

- Reference Model for Open System Interconnection (OSI, Referenzmodell für offene Kommunikationssysteme)
- 1983 von John Day und Hubert Zimmermann unter der ISO vorgestellt, 1995 überarbeitet
- Offener Standard (Grundgedanke bei Standardisierung):
  - Alle erforderlichen Protokolle und Informationen offengelegt (RFCs)
  - jeder Hersteller kann ein System gemäß dem Standard implementieren
- Sieben Schichten, jede erfüllt eine genau definierte Funktion
- Modell ist keine fixfertige Netzarchitektur
- Aussage: welche Aufgaben welche Schicht ausführt
- Wichtiger Grundsatz: Austauschbarkeit von Protokollen

#### **OSI-Schicht**

Anwendungen (7)

Darstellung (6)

Sitzung (5)

Transport (4)

Vermittlung (3)

Sicherung (2)

Bitübertragung (1)

#### Beziehung zwischen Diensten und Protokollen



#### Definition Dienst:

Gruppe von Basisoperationen, die eine Schicht der über ihr liegenden Schicht zur Verfügung stellt – "welche Operationen, aber nicht wie"

#### Definition Protokoll:

Menge von Regeln die Format und Bedeutung der Pakete festlegt, welche von Peers ausgetauscht werden – "das Wie: konkrete Implementierung der Dienste"

- Protokolle sind austauschbar, solange die gleichen Dienste bereitgestellt werden!
- Wichtig: Sender und Empfänger (Peers) müssen nach den selben Protokollen arbeiten!

#### Dienstbringer/Dienstbenutzer

- Im Schichtenmodell findet
   Kommunikation nur über benachbarte
   Schichten statt
- Dienstbringer:
   Schicht n bietet Schicht n+1 einen
   Dienst an: Realisation eines Protokolls
   mit bestimmtem Funktionsumfang
- Dienstbenutzer:
   Schicht n nutzt den Dienst der darunter liegenden Schicht (n-1)
- Dienst wächst von Stufe zu Stufe
- Vergleich: Fertigungskette Fabrik



### Informationsfluss und Verbindung



## Analogie I

- zwei Philosophen (Standorte A und B)
  - Philosoph A spricht Urdu und Englisch
  - Philosoph B spricht Chinesisch und Französisch
- jeder benötigt einen Dolmetscher, Festlegung auf "neutrale" Sprache:
  - A: Englisch > Holländisch
  - B: *Holländisch* > Französisch
- tatsächliche Übermittlung über Sekretariat per E-Mail



### Analogie II

- Was entspricht in dem analogen Modell einem **Dienst**?
- Was entspricht in dem analogen Modell einem **Protokoll**?
- Wie könnten die Schnittstellen definiert werden?
- Was könnte man hier austauschen?
- Welche **Informationen** fügen die Peers bei ihren Prozessen hinzu?



#### Vorteile des Schichtenkonzepts

Sehr abstraktes Modell, trotzdem etliche Vorteile:

- Unabhängigkeit der Schichten voneinander
- Flexibilität (Austauschbarkeit der Protokolle)
- Physikalische Trennung der Schichten
- Vereinfachte Standardisierung
- Einfache Wartung und Implementation

#### Nachteile

- Immenser Aufwand an Steuerinformationen (jede Schicht schreibt ihren eigenen Header)
- Übertragung der Daten dauert dadurch länger
  - Netto- vs. Brutto-Daten
  - Verarbeitungszeit

#### Die Schichten des OSI-Modells

| Nummer | Englische Bezeichnung | Deutsche Bezeichnung   |
|--------|-----------------------|------------------------|
| 7      | Application Layer     | Anwendungsschicht      |
| 6      | Presentation Layer    | Darstellungsschicht    |
| 5      | Session Layer         | Sitzungsschicht        |
| 4      | Transport Layer       | Transportschicht       |
| 3      | Network Layer         | Vermittlungsschicht    |
| 2      | Data Link Layer       | Sicherungsschicht      |
| 1      | Physical Layer        | Bitübertragungsschicht |

## 1. Schicht – Bitübertragung (*Physical Layer*)

- Physikalische Eigenschaften: (elektrisch/optisch/akustisch/elektromechanisch)
  - Beschaffenheit (Kupfer-) Kabel
  - Steckerformen
  - Pin-Belegungen
- Zugeordnete Geräte:
  - Antennen, Verstärker
  - Stecker und Buchse
  - Repeater, Hub, Transceiver
- Dienst: Austausch einzelner Bits eines Bitstroms zwischen Rechnern

### 2. Schicht – Sicherung (*Data Link Layer*)

- Kommunikation zwischen 2 phys. verbundenen Geräten vereinfachen
- Wichtigste Aufgaben:
  - Rahmen (Frames) aus Datenstrom der Vermittlungsschicht erzeugen = SEGMENTIERUNG
  - Hinzufügen von Prüfsummen im Rahmen
- Protokolle legen fest:
  - Wie groß sind die Rahmen
  - Wie werden Fehler erkannt/korrigiert (aber nicht neu angefordert!)
  - Datenflusskontrolle: Empfänger steuert Geschw. des Senders dynamisch
- Zugeordnete Hardware: Bridge, Layer-2-Switch

### 3. Schicht – Vermittlung (*Network Layer*)

- Schichten 1 und 2 regeln Kommunikation direkt verbundener Geräte
- Vernetzung mit mehreren Geräten (Endsystem, Knoten) => Schicht 3!
  - Leitungsorientiert: Schalten von Verbindungen (Telefonvermittlung)
  - Paketorientiert: Weitervermittlung von Datenpaketen (Post)
- Wichtigste Aufgaben:
  - Einführung von Benennungen (= logische Adressen)
  - Routing (Wegfindung, Verwaltung von Routingtabellen)
  - Fragmentierung von Datenpaketen
- Protokolle: IP (v4, v6)
- Zugeordnete Hardware: Router, Layer-3-Switch

### 4. Schicht – Transport (*Transport Layer*)

- Vermittlungsschicht (3) erlaubte schon Adressierung von Endsystemen
- Transportschicht (4) erlaubt nun auch Adressierung von Anwendungen
- Beispiel: Server bietet
  - Web-Server
  - Mail-Server
- Unterscheidung aufgrund der Transportadresse = Port
- Transportschicht bietet anwendungsorientierten Schichten (5–7) einheitlichen Zugriff auf Kommunikationsnetz
- Protokolle: TCP, UDP

# 5. Schicht – Sitzung/Kommunikationssteuerung (*Session Layer*)

- Bis hier: transportorientiert, ab hier: anwendungsorientiert
- Wichtigste Aufgabe:
  - Wiederherstellungspunkte setzen, um Fortsetzung der Kommunikation nach Zusammenbruch der Sitzung zu ermöglichen (= Synchronisation)
  - Aushandeln der Zugriffsberechtigungen (Token)
- Als separate Schicht: Heute keine praktische Bedeutung

### 6. Schicht – Darstellung (*Presentation Layer*)

- Verschiedenste Systeme (Prozessoren, Betriebssysteme, Programmiersprachen) => Unterschiede in Repräsentation von Daten (ganze Zahlen, Gleitkommazahlen, Text...)
- Darstellungsschicht setzt systemabhängige Darstellung von Daten (z. B. ASCII) um in unabhängige Form
- Beispiel: ASCII enthält keine Umlaute, HTML verwendet u. a. symbolische Bezeichner => ö = "ö"
- Weitere Aufgaben:
  - Datenkompression
  - Verschlüsselung

## 7. Schicht – Anwendung (*Application Layer*)

- Stellt Funktionen für die Anwendungen zur Verfügung
- Dateneingabe und –ausgabe
- Anwendungen selbst gehören aber nicht zur Schicht
- Anwendungen wären dann z. B.:
  - Webbrowser
  - E-Mail-Programm
  - Messenger

# Überblick und Zusammenfassung I



# Überblick und Zusammenfassung II

| OSI-S | Schicht                         | Einordnung                | DoD-Schicht  | Einordnung                  | Protokollbeispiele                 | Einheiten                       | Kopplungselemente                   |                            |
|-------|---------------------------------|---------------------------|--------------|-----------------------------|------------------------------------|---------------------------------|-------------------------------------|----------------------------|
| 7     | Anwendungen (Application)       |                           |              |                             | HTTP<br>FTP<br>HTTPS               |                                 |                                     |                            |
| 6     | Darstellung<br>(Presentation)   | Anwendungs-<br>orientiert | Anwendung    |                             | SMTP<br>XMPP                       | Daten                           | Gateway, Content-                   |                            |
| 5     | Sitzung<br>(Session)            |                           | Endo         | Ende zu                     | DNS<br>LDAP<br>NCP                 |                                 | Switch, Proxy, Layer-<br>4-7-Switch |                            |
| 4     | Transport<br>(Transport)        | Transport-<br>orientiert  | Transport    | Ende<br>( <u>Multihop</u> ) | TCP<br>UDP<br>SCTP<br>SPX          | TCP = Segmente UDP = Datagramme |                                     |                            |
| 3     | Vermittlung-/Paket<br>(Network) |                           | Internet     |                             | ICMP<br>IGMP<br>IP<br>IPsec<br>IPX | <u>Pakete</u>                   | Router, Layer-3-<br>Switch          |                            |
| 2     | Sicherung<br>(Data Link)        |                           |              | Netzzugriff                 | Punkt zu                           | Ethernet<br>Token Ring          | Rahmen ( <u>Frames</u> )            | Bridge, Layer-2-<br>Switch |
| 1     | Bitübertragung<br>(Physical)    |                           | 110122051111 | Punkt                       | FDDI<br>MAC<br>ARCNET              | Bits, Symbole, Pakete           | Netzwerkkabel,<br>Repeater, Hub     |                            |

#### Anno 1985



https://youtu.be/uMPpQ5tOmus

# TCP/IP-Referenzmodell

Kommunikationsregeln des Internets

## TCP/IP-Referenzmodell

- "die Sprache, wenn zwei Computer über das Internet kommunizieren"
- **Gruppe von Protokollen** (insgesamt > 500), die den **Datenaustausch** zwischen Rechnern über das **Internet** regeln
- Entstand Ende der 1960er unter dem Department of Defense (deshalb auch DoD-Referenzmodell genannt) und wurde 1983 offiziell zur Standard-Protokollfamilie im ARPANET
- ARPANET wuchs: Telefonstandleitung, Funk- sowie Satellitennetze
- Notwendigkeit für neue Netzwerk-Referenzarchitektur
  - Mehrere heterogene Netze nahtlos verbinden
  - Kommunikation (Quelle + Ziel) aufrechterhalten, auch nach Hardwareausfall
  - verschiedenste Anwendungen: Datendienste, Sprachübertragung, ...

## TCP/IP-Protokollfamilie

- Protokoll = Festlegung der Regeln einer Kommunikation
- Protokollfamilie = Zusammenfassung mehrerer Protokolle zu einem Gesamtpaket = Protokoll Stapel (protocol stack)
- Ursprünglich: Parallele Entwicklung von versch. Protokollfamilien:
  - TCP/IP
  - IPX/SPX (Novell)
  - OSI (Open System Interconnection)
  - DECnet
- TCP/IP hat sich in vielen Bereichen durchgesetzt

# Übersicht

| OSI-Schicht        | TCP/IP-           | Beispiel    |                                    |
|--------------------|-------------------|-------------|------------------------------------|
| Anwendungen (7)    |                   |             | HTTP, UDS,                         |
| Darstellung (6)    | Anwendungen       | Application | FTP, SMTP,<br>POP, Telnet,         |
| Sitzung (5)        | , iiiweiiaaiigeii |             | DHCP, OPC UA<br>SOCKS              |
| Transport (4)      | Transport         | Transport   | TCP, UDP, SCTP                     |
| Vermittlung (3)    | Internet          | Internet    | IP (IPv4, IPv6),<br>ICMP (über IP) |
| Sicherung (2)      |                   | Link        | Ethernet,                          |
| Bitübertragung (1) | Netzzugang        |             | Token Bus,<br>Token Ring,<br>FDDI  |

#### Netzzugangsschicht (link layer)

- Paketvermittlung als Antwort auf die Anforderungen (unterschiedliche Netze, Hardwareausfall)
- Netzzugangsschicht beschreibt, was die Verbindungen (serielle Leitungen, klassisches Ethernet, ...) dazu tun müssen (weil Internetschicht verbindungslos ist)
- Ist die Schnittstelle zwischen Hosts und Übertragungsleitungen

### Die Internetschicht (internet layer)

- Entspricht grob der OSI-Vermittlungsschicht
- Ziel: Hosts ermöglichen, in jedes beliebige Netz Pakete einzuspeisen, unabhängig vom Zielnetz
- Sogar Reihenfolge egal, Sortierung wird von höheren Schichten übernommen
- Analogie: Post
  - Adressen im Zielland (Zielnetz)
  - Sammelstellen (Gateways)
  - eigene Briefmarken, Umschläge ...
- definiert offizielles Paketformat (IP-Paket) und Protokoll (IP) + dazu ICMP
- Aufgabe:
  - IP-Pakete richtig zustellen (Adressierung)
  - Paket-Routing
  - Überlastungen vermeiden

#### Die Transportschicht (transport layer)

- Ziel: Peer-Einheiten auf Quell- und Zielhosts verbinden
- Anfangs (historisch): 2 Ende-zu-Ende-Übertragungsprotokolle: TCP und UDP
- **TCP** (Transmission Control Protocol):
  - Zuverlässiges, verbindungsorientiertes Protokoll mit Flusskontrolle
  - Teilt eingehenden Bytestrom auf in einzelne Nachrichten und gibt diese an die Internetschicht weiter
  - Am Ziel werden sie wieder zusammengesetzt
- **UDP** (User Datagram Protocol):
  - Unzuverlässiges, verbindungsloses Protokoll
  - Für Anwendungen (Schichten darüber!) die auf korrekte Reihenfolge, Fehlererkennung oder Flusskontrolle der Transportschicht verzichten und das lieber selbst erledigen
  - Wird vor allem für einmalige Anfragen, sowie Anwendungen in Client-Server-Umgebungen verwendet die schnell sein müssen (Sprache, Video)

## Die Anwendungsschicht (application layer)

- TCP/IP-Modell hat keine Sitzungs- oder Darstellungsschicht!
- benötigte Funktionen werden von den Anwendungen selbst eingebunden
- Erfahrung mit OSI-Modell zeigte, dass das gut so war!
- Anwendungsschicht umfasst alle Protokolle höherer Schichten, z. B.:
  - TELNET (virt. Terminal)
  - FTP
  - SMTP
  - DNS
  - HTTP
  - RTP (Real-time Transport Protocol, für Echtzeitmedien wie Sprache oder Filme)

#### Protokolle und Netzwerke im TCP/IP-Modell

