### Estimate $D \rightarrow Y$



The problem of conventional analyses by using observed data

$$\mathsf{E}\left[Y^1-Y^0\right]$$
 the average treatment effect

ex: whether going to college influences individuals' wage

Table 2.1: The Fundamental Problem of Causal Inference

| Group                   | $Y^1$             | $Y^0$             | Selection!! |
|-------------------------|-------------------|-------------------|-------------|
|                         |                   |                   |             |
| Treatment group $(D=1)$ | Observable as $Y$ | Counterfactual    |             |
| Control group $(D=0)$   | Counterfactual    | Observable as $Y$ |             |

Decomposition

Observed

$$E[\delta] = \{ \pi E[Y^1 | D = 1] + (1 - \pi) E[Y^1 | D = 0] \}$$
$$- \{ \pi E[Y^0 | D = 1] + (1 - \pi) E[Y^0 | D = 0] \}.$$

Unobserved

Decomposition

The average treatment effect

$$E[Y^{1}|D=1] - E[Y^{0}|D=0] = E[\delta]$$
 Baseline Bias = 0   
  $+ \{E[Y^{0}|D=1] - E[Y^{0}|D=0]\}$    
  $+ \{(1-\pi)\{E[\delta|D=1] - E[\delta|D=0]\}.$ 

Differential treatment effect bias = 0

Table 2.3: An Example of the Bias of the Naive Estimator

| Group                     | $E[Y^1 .]$ | $E[Y^{0} .]$ |
|---------------------------|------------|--------------|
| Treatment group $(D = 1)$ | 10         | 6            |
| Control group $(D = 0)$   | 8          | 5            |

- The estimate from the conventional model = 10-5=5
- The effect of college on the wage in treatment group = 10-6 =4
- The effect of college on the wage in control group = 8-5=3
- The average treatment effect = 0.3(10-6)+0.7(8-5)=3.3

| Table $2.3$ : | An | Example | of | the | Bias | of | the | Naive | Estimator |
|---------------|----|---------|----|-----|------|----|-----|-------|-----------|
|               |    |         |    |     |      |    |     |       |           |

| Group                     | $E[Y^1 .]$ | $E[Y^0 .]$ |
|---------------------------|------------|------------|
| Treatment group $(D = 1)$ | 10         | 6          |
| Control group $(D = 0)$   | 8          | 5          |

$$\pi = 0.3$$

30% of population obtains college degrees

• The bias of conventional models is from two assumptions

#### Differential treatment effect bias = 0

Assumption 1: 
$$E[Y^1|D=1] = E[Y^1|D=0],$$

Assumption 2: 
$$E[Y^0|D=1] = E[Y^0|D=0].$$

Baseline Bias = 0