Tutorial Sheet 7 solis an algorithm paradigm that builds solid a solution by adjoining smaller pieces trigether, aways choosing the next piece that offers the most obvious & immediate benefit. TC Oblogn)-o(n) sol 20 Name Activity Selection 0(n) 0(n2)-0(n(gn) Job sequencing 0(n) 0 (n logn) - o(n) Fractional knapsack 0 (n) O(nlogn)-Ollogn) 0 (n) Huffman Encoding sol3: a=45, d=20, b=23, e=19, c=22, f=15

Total 6ats = (4st2)+(23t2)+ (22+3)+(20+3)+ (19 x3) + (15 x3) = 364 bits $\alpha = 11$ b = 00 C =100 d=101 e=010 R=011 8014=>A 2-tole is used to implement theffman encooling algorithm. It is a birrary thee where every mode has either I-child or no child, of Huffman Encoding: -- Data compression in long files without any loss. - To implement souffic sautes with traffice magnétuale.

magnetuole.

Sol 5=> V | 10 | 5 | 15 | 7 | 6 | 18 | 3 | ω | ω | 2 | 3 | 5 | 7 | 1 | 4 | 1 | ω | ω | 5 | 1.67 | 3 | 1 | 6 | 4.5 | 3

$$k = 15 - 1 - 2 - 4 - 5 - 1 - 2 = 0$$

$$k = 15 - 1 - 2 - 4 - 5 - 1 - 2 = 0$$

$$profit = 30 + 10 + 18 + 15 + 3 + 3 + 3 + 3$$

$$= 79.34$$

	1								
V	6	10	18	15	3	5			
w	1	2	4	5	1	3			
V/w	6	5	4.5	3	3	1.67			
The state of the s	and the same of th		•		1				

Sol 6: - foactional knapsack: It is using greedy approach as we have divided our profits to approach as we have divided our profits to the mallest unit possible & then builds upon it.

fluffman Encooling: It is using the generally approach as we have divided our profits the then builds upon to the smallest unit possible & then builds upon

fulfman Encoding-It is using the generally fulfman Encoding-It is using the node with approach as it always places the node with approach as it always places ferom the facunt the lower frequency further ferom the facunt node,

	,			-		1
> Start	1	2	O	6	9	10
End	2	5	7	8	11	12
Index	0	1	2	3	4	5
					Co	7 6,7

Jobs to do = [0], [3], [4] or [5].
i.e. => Max=4.

Sol 8 => Deadline Profit [b a /d] 0 1 2 3 Profit = 20+19+3 Sol9 + Times when not to use glieby algorithm: When apperoach involves a lot of assumptions, such as pick always then". (2) When we need complex implementation. (3) When we are making performance-= critical application. eg: Dijkstra's algo is very unofitimised for graphs with negative edges. Here, we cannot find distance of pair [A, C] - it gives o, though it is - 200. $A \xrightarrow{1} B \xrightarrow{1} C$ 99 5-30 Solio ⇒T.C. of job sequencing = O(n2), but we can inprove it rising priority querie by algorithms using (Max fleap). Algorithm: -(1) soft based on deadlines (2) It exate the end & calculate the waitable Slots Gw Los consecutive deadlines put accuptains in Nax Heap.

(3) It slots available & there are jobs in Nax. Heap, include

[3] It slots available & there are jobs in Nax. Heap, include

[4] JOB IP with max profit & deadlines in the result

[5] Sort the array based on deadline.

[6] TC = O (nlog n); SC=O(n).