הערה 0.1. נושא משפט החסם העליון לשילושים של ספירות לא יהיה במבחן.

היא k מעל שדה X מעל שדה אלגברת הפיאות של (n]. אלגברת הפיאות יהיX מעל שדה X היא היא היא הבדרה (X מעל שדה X היא היא X מעל שדה X מעל שדה אלגברה (X באשר X באשר היא היא אלגברה (X באשר היא אלגברה (X

$$.I_X = \left(\left\{ \prod_{i \in lpha} x_i \;\middle|\; X \; ext{of face a isn't} \; lpha
ight\}
ight)$$

.k אלגברה סטנדרטית מעל $k\left[X\right]$.0.3 אלגברה

הילברט עבור את פונקציית הילברט A נגדיר את פונקציית הילברט עבור אלגברה סטנדרטית א

$$H(A, j) := \dim A_i$$

ונגדיר

$$.F\left(A,j\right) \coloneqq \sum_{j=0}^{\infty} H\left(A,j\right) t^{j}$$

נניח מעתה כי k שדה אינסופי.

טענה 3.0. אם או X=d-1 אז

$$.F(k[X],t) = \frac{\sum_{i=0}^{d} h_i t^i}{(1-t)^d}$$

. כאשר ה־h הם מקדמי ה־hוקטור

הוכחה. מתקיים $1=(k\left[X\right],0)=1$. נניח כי j>0. מתקיים

$$\begin{split} H\left(k\left[X\right],j\right) &= \sum_{\sigma \in X} \#\left(\sigma \text{ being support with } j \text{ degree of monomials}\right) \\ &= \sum_{\sigma \in X} \#\left\{\left(\alpha_i\right)_{i \in \sigma} \, \left| \, \sum_{i \in \sigma}^{\alpha_i \geq 1}_{\alpha_i = j} \right\} \right. \\ &= \sum_{\sigma \in X} \#\left\{\left(\beta_i\right)_{i \in \sigma} \, \left| \, \sum_{i \in \sigma}^{\beta_i \geq 0}_{\beta_i = j - |\sigma|} \right\} \right. \\ &= \sum_{\sigma \in X} \begin{pmatrix} (j - |\sigma|) + |\sigma| - 1 \\ |\sigma| - 1 \end{pmatrix} \\ &= \sum_{\sigma \in X} \begin{pmatrix} j - 1 \\ |\sigma| - 1 \end{pmatrix} \\ &= \sum_{k = 0}^{d-1} f_k \begin{pmatrix} j - 1 \\ k \end{pmatrix} \end{split}$$

לכן

$$\begin{split} F\left(k\left[X\right],t\right) &= 1 + \sum_{j\geq 1} H\left(k\left[X\right],j\right) t^{j} \\ &= 1 + \sum_{j\geq 1} \sum_{k\geq 0} f_{k} \binom{j-1}{k} t^{j} \\ &= 1 + \sum_{k\geq 0} f_{k} \sum_{j\geq 1} \binom{j-1}{k} t^{j} \\ &= 1 + \sum_{k\geq 0} f_{k} t \sum_{j\geq 1} \binom{j-1}{k} t^{j-1} \\ &= 1 + \sum_{k\geq 0} f_{k} t \sum_{j\geq 0} \binom{j}{k} t^{j} \\ &= 1 + \sum_{k\geq 0} f_{k} t \sum_{j\geq 0} \binom{j+k}{k} t^{j+k} \\ &= 1 + \sum_{k\geq 0} f_{k} t \sum_{j=0}^{\infty} \binom{j+k}{k} t^{j+k} \\ &= 1 + \sum_{k\geq 0} f_{k} t^{k+1} \sum_{j=0}^{\infty} \binom{j+k}{k} t^{j} \\ &= 1 + \sum_{k\geq 0} f_{k} \left(\frac{t}{1-t}\right) \\ &= \sum_{k\geq -1} f_{k} \left(\frac{t}{1-t}\right)^{k} \\ &= \left(\frac{t}{1-t}\right)^{d} \sum_{k=0}^{d} f_{k-1} \left(\frac{1-t}{t}\right)^{d-k} \\ &= \left(\frac{t}{1-t}\right)^{d} \sum_{k=0}^{d} h_{k} \left(t^{-1}\right)^{d-k} \\ &= \frac{\sum_{k=0}^{d} h_{k} t^{k}}{(1-t)^{d}} \end{split}$$

יכ $\dim k\left[X
ight]=d$ כי

$$.0 < f_{d-1} = \sum_{k=0}^{d} h_k \cdot 1^k$$

נחזור לאלגברה קומוטטיבית.

 $heta_1,\dots, heta_d\in A_1$ תהי A אלגברה סטנדרטית מעל A אינסופי ונסמן . $d\coloneqq \dim A$ לפי נתר, קיימים בלתי-תלויים אלגברית מעל A ואיברים הומוגניים A ואיברים הומוגניים A ואיברים הומוגניים אלגברית מעל A ואיברים הומוגניים אלגברית מעל א

$$A = \sum_{i=1}^{s} k \left[\eta_1, \dots, \theta_d \right] \cdot \eta_j$$

בלתי־תלויים (Cohen-Maccaulay חוג $heta_1,\dots, heta_d$ אם קיימים (Cohen-Maccaulay חוג R בלתי־תלויים אלגברית עבורם R מודול חופשי מדרגה סופית מעל $[heta_1,\dots, heta_d]$

הומוגניים אלגברית ו־ η_1,\dots,η_s הוא Cohen-Maccaulay אם ורק אם קיימים θ_1,\dots,θ_d בלתי־תלויים אלגברית ו־רס אורק הומוגניים ערורח

$$R = \bigoplus_{i=1}^{s} k \left[\theta_1, \dots, \theta_d\right] \cdot \eta_j$$

 $ilde{H}_i\left(\mathsf{lk}\left(X,\sigma
ight)
ight)= \alpha$ משפט 0.9 (Reisner) משפט הורק אם לכל $\sigma\in X$ אם ורק אם לכל אם $k\left[X
ight]$. (Reisner) משפט 0.9 .0

נזכיר שמתקיים

$$\mathsf{st}\left(X,\sigma\right) = \left\{\tau \in X \mid \tau \cup \sigma \in X\right\}$$
 .lk $(X,\sigma) \coloneqq \left\{\tau \in X \mid \tau \cup \sigma \in X\right\} \tau \cap \sigma = \varnothing$

 $.S^{d-\dim\sigma-2}=S^{d-|\sigma|-1}$ נניח ש־X שילוש של S^{d-1} . אזי לכל S^{d-1} אזי לכל S^{d-1} שילוש של בניח ש־ S^{d-1} הוא Cohen-Maccaulay.

 $\dim R =$ טענה 11.10. אם R חוג סטנדרטי וגם Vohen-Maccaulay כלומר, R חופשי כ־k [θ_1,\ldots,θ_d] טענה d

$$.F(R,t) = \frac{F\left(R/(\theta_1,\ldots,\theta_d),t\right)}{(1-t)^d}$$

הוכחה. קיימים $\eta_i \in R_{\ell_i}$ כאשר η_1, \dots, η_s ומתקיים

$$R = \bigoplus_{j=1}^{s} k \left[\theta_1, \dots, \theta_d\right] \cdot \eta_j$$

נסמן גם $\ell_i = \mathsf{deg}\,\eta_i$ כעת,

$$.\left(\theta_{1},\ldots,\theta_{d}\right) = \sum_{i \in [d]} R_{\theta_{i}} = \left\{ f\left(\theta_{1},\ldots,\theta_{d}\right) \middle| \begin{array}{c} f \in k[x_{1},\ldots,x_{d}] \\ f(0) = 0 \end{array} \right\}$$

נטען ראשית כי . $F\left(R\Big/(heta_1,\ldots, heta_d)\,,t
ight)$ נחשב את

$$\eta_1 + (\theta_1, \dots, \theta_d), \dots, \eta_s + (\theta_1, \dots, \eta_s)$$

 $ar{\eta}_i\coloneqq \eta_i+(heta_1,\dots, heta_s)$ בסיס של $R\Big/(heta_1,\dots, heta_d)$ מעל $R\Big/(heta_1,\dots, heta_d)$

 $.g_{j}\left(0
ight)=0$ ניתן לכתוב $c_{j}\in k$ ניתן לכתוב $r=\sum_{j=1}^{s}f_{j}\left(heta_{1},\ldots, heta_{d}
ight)\eta_{j}$ וכאשר י ריי ניתן לכתוב אז $r\in R$ ניתן לכתוב און לכתוב או

$$.\bar{r} = \sum_{j=1}^{s} \left(\overline{g_j(\theta_1, \dots, \theta_d)} + c_j \right) \bar{\eta}_j = \sum_{j=0}^{s} c_j \bar{\eta}_j$$

• ההצגה הנ"ל יחידה: אם

$$\bar{r} = \sum_{j} c_j \bar{\eta}_j = \sum_{j} c'_j \bar{\eta}_j$$

אז

$$\sum_{j=1}^{s} \left(c_j - c_j' \right) \bar{\eta}_j = 0$$

ואז

$$\sum_{j \in [s]} \left(c_j - c_j' \right) \eta_j \in (\theta_1, \dots, \theta_d)$$

$$.j$$
 לכל $c_j-c_j'\in(heta_1,\ldots, heta_d)$ ולכן

נקבל
$$\deg \eta_i > 0$$
 אם $c_i = c_i'$ נקבל $\deg \eta_i = 0$ אם

$$\sum_{\deg \eta_j > 0} \left(c_j - c_j' \right) \eta_j = g \left(\theta_1, \dots, \theta_d \right)$$

נבחר $j_0=\lambda\in k\setminus\{0\}$ כלומר, deg $\eta_{j_0}=0$ אז j_0 או

$$\sum_{\ell_j > 0} \left(c_j - c_j' \right) \eta_j = \frac{g\left(\theta_1, \dots, \theta_d \right)}{\lambda} \eta_{j_0}$$

$$.g\left(heta_{1},\ldots, heta_{d}
ight)=0$$
 מכך נובע $\ell_{j}>0$ לכל $c_{j}-c_{j}'=0$ מכך נובע

4

נקבל כעת כי

$$F\left(R/(\theta_1,\ldots,\theta_d),t\right) = \sum_{j\in[s]} t^{\ell_j}$$

•••