## 10.1 The Basics-Reading

Notebook: Discrete Mathematics [CM1020]

Author: SUKHJIT MANN

#### **Cornell Notes**

## Topic:

10.1 The Basics-Reading

### Course: BSc Computer Science

Class: Discrete Mathematics-Reading

Date: January 18, 2020

#### **Essential Question:**

What are the rules/strategies used when counting objects when they are sampled with or without replacement?

#### **Questions/Cues:**

- What is the Product Rule?
- What is the Product Rule in terms of Sets?
- What is the Addition Rule?
- What is the Addition/Sum Rule in terms of Sets?
- What is the Subtraction Rule?
- What is the Division Rule?
- What is the Pigeonhole principle?
- What is the generalized pigeonhole principle?
- What is a permutation on a set?
- What is a combination on a set?

#### Notes

THE PRODUCT RULE Suppose that a procedure can be broken down into a sequence of two tasks. If there are  $n_1$  ways to do the first task and for each of these ways of doing the first task, there are  $n_2$  ways to do the second task, then there are  $n_1n_2$  ways to do the procedure.

EXAMPLE 1 A new company with just two employees, Sanchez and Patel, rents a floor of a building with 12 offices. How many ways are there to assign different offices to these two employees?

Solution: The procedure of assigning offices to these two employees consists of assigning an office to Sanchez, which can be done in 12 ways, then assigning an office to Patel different from the office assigned to Sanchez, which can be done in 11 ways. By the product rule, there are  $12 \cdot 11 = 132$  ways to assign offices to these two employees.

EXAMPLE 2 The chairs of an auditorium are to be labeled with an uppercase English letter followed by a positive integer not exceeding 100. What is the largest number of chairs that can be labeled differently?

Solution: The procedure of labeling a chair consists of two tasks, namely, assigning to the seat one of the 26 appearase English letters, and then assigning to it one of the 100 possible integers. The product rule shows that there are 26 · 100 · 2600 different ways that a chair can be labeled. Therefore, the largest number of chairs that can be labeled differently is 2600.

**EXAMPLE 3** There are 32 microcomputers in a computer center. Each microcomputer has 24 ports. How many different ports to a microcomputer in the center are there?

> Solution: The procedure of choosing a port consists of two tasks, first picking a microcomputer and then picking a port on this interocomputer. Because there are 32 ways to choose the microcomputer and 24 ways to choose the port no matter which microcomputer has been selected, the product rule shows that there are 32 - 24 = 768 ports.

EXAMPLES

How many different license plates can be made if each plate contains a sequence of three uppercase English letters followed by three digits (and no sequences of letters are prohibited, even if they are obscene)?

Thehores 14 dictors for each for each. latter. digit

Solution: There are 26 choices for each of the three uppercase English letters and ten choices for each of the three digits. Hence, by the product rule there are a total of  $26 \cdot 26 \cdot 26 \cdot 10 \cdot 10 \cdot 10 =$ 17,576,000 possible license plates.

EXAMPLE 6 Counting Functions. How many functions are there from a set with m elements to a set with a elements?

> Solution: A function corresponds to a choice of one of the n elements in the codomain for each of the m elements in the domain. Hence, by the product rule there are  $n \cdot n \cdot \cdots \cdot n = n^m$  functions. from a set with m elements to one with n elements. For example, there are  $S^3 = 125$  different. functions from a set with three elements to a set with five elements.

#### EXAMPLE 7

Counting One-to-One Functions How many one to one functions are there from a set with m elements to one with a elements?

Countries the number of organizations is featler. World district the Chapter St. Solution. First note that when m > n there are no one-to-one functions from a set with m elements to a set with a elements.

Now let  $m \le n$ . Suppose the elements in the domain are  $a_1, a_2, \dots, a_m$ . There are n ways to choose the value of the function at  $a_1$ . Because the function is one to one, the value of the function at  $a_2$  can be picked in n-1 whys (because the value used for  $a_1$  cannot be used again): In general, the value of the function at  $a_k$  can be chosen in n - k + 1 ways. By the product rule, there are  $n(n-1)(n-2)\cdots(n-m+1)$  one to one functions from a set with m elements to one with a elements.

For example, there are  $5 \cdot 4 \cdot 3 = 60$  one-to-one functions from a set with three elements to a set with five elements.

Christ duragions as that by 2008, it will be reposare to aid preve more division both. Ammigra talcohoro rimbes.

EXAMPLE 8 The Telephone Numbering Plan The North American numbering plan (NANP) specifies the format of telephone numbers in the U.S., Canada, and many other parts of North America. A telephone number in this plan consists of 10 digits, which are split into a three-digit area code, a three-digit office onde, and a four-digit station code. Because of signaling considerations, there are certain restrictions on some of these digits. To specify the allowable format, let X denote a digit that can take any of the values 0 through 9, let N denote a digit that can take any of the values 2 through 9, and let Y denote a digit that must be a 0 or a 1. Two numbering plans, which will be called the old plan, and the new plan, will be discussed. (The old plan, in use in the 1960s, has been replaced by the new plan, but the recent rapid growth in demand for new numbers for mobile phones and devices will eventually make even this new plan obsolete. In this example, the letters used to represent digits follow the conventions of the North American Numbering Plan.) As will be shown, the new plan allows the use of more numbers.

In the old plan, the formats of the area ende, of the ende, and station code are NYX, NAX, and XXXX, respectively, so that telephone numbers had the form NYX-NXX-XXXX. In the new plan, the formulas of these codes are NXX, NXX, and XXXX, respectively, so that telephone numbers have the form NXX-NXX-XXXX. How many different North American telephone numbers are possible under the old plan and under the new plan?

Solution: By the product rule, there are  $8 \cdot 2 \cdot 10 = 160$  area godes with formut NYX and 8-10-10 = 800 tiest codes with format MXX. Similarly, by the product ritle, there are 8: 8: 10 - 540 office codes with format NNX. The product rule also shows that there are 10 10 10 10 10 — 10,000 station codes with format XXXX.

Note that we have proved monthly statement NUI station codes no stost area codes:

Consequently, applying the product rule again, it follows that under the old plan there are

 $160 \cdot 640 \cdot 10,000 = 1,024,000,000$ 

different numbers available in North America. Under the new plan, there are

 $800 \cdot 800 \cdot 10,000 = 6,400,000,000$ 

different numbers available.

THE SUM RULE If a task can be done either in one of n<sub>1</sub> ways or in one of n<sub>2</sub> ways, where none of the set of  $n_1$  ways is the same as any of the set of  $n_2$  ways, then there are  $n_1 + n_2$ ways to do the task.

#### EXAMPLE 12

Suppose that either a member of the mathematics faculty or a student who is a mathematics major is chosen as a representative to a university committee. How many different choices are there for this representative if there are 37 members of the mathematics faculty and 83 mathematics majors and no one is both a faculty member and a student?

Solution: There are 37 ways to choose a member of the mathematics faculty and there are 83 ways to choose a student who is a mathematics major. Choosing a member of the mathematics faculty is never the same as choosing a student who is a mathematics major because no one is

both a faculty member and a student. By the sum rule it follows that there are 37 + 83 = 120possible ways to pick this representative.

#### EXAMPLE 13

A student can choose a computer project from one of three lists. The three lists contain 23, 15, and 19 possible projects, respectively. No project is on more than one list. How many possible projects are there to choose from?

Solution: The student can choose a project by selecting a project from the first list, the second list, or the third list. Because no project is on more than one list, by the sum rule there are 23 + 15 + 19 = 57 ways to choose a project.

#### EXAMPLE 15



In a version of the computer language BASIC, the name of a variable is a string of one or two alphanumeric characters, where uppercase and lowercase letters are not distinguished. (An alphanumeric character is either one of the 26 English letters or one of the 10 digits.) Moreover, a variable name must begin with a letter and must be different from the five strings of two characters that are reserved for programming use. How many different variable names are there in this version of BASIC?

Solution: Let V equal the number of different variable names in this version of BASIC, Let V<sub>1</sub> be the number of these that are one character long and V2 be the number of these that are two characters long. Then by the sum rule,  $V = V_1 + V_2$ . Note that  $V_1 = 26$ , because a one-character variable name must be a letter. Furthermore, by the product rule there are 26 · 36 strings of length two that begin with a letter and end with an alphanumeric character. However, five of these are excluded, so  $V_2 = 26 \cdot 36 - 5 = 931$ . Hence, there are  $V = V_1 + V_2 = 26 + 931 = 957$ different names for variables in this version of BASIC.

EXAMPLE 16 Each user on a computer system has a password, which is six to eight characters long, where each character is an uppercase letter or a digit. Each password must contain at least one digit. How many possible passwords are there?

> Solution: Let P be the total number of possible passwords, and let  $P_6$ ,  $P_7$ , and  $P_8$  denote the number of possible passwords of length 6, 7, and 8, respectively. By the sum rule, P =  $P_b + P_7 + P_8$ . We will now find  $P_b$ ,  $P_7$ , and  $P_8$ . Finding  $P_b$  directly is difficult. To find  $P_b$  it is easier to find the number of strings of uppercase letters and digits that are six characters long, including those with no digits, and subtract from this the number of strings with no digits. By the product rule, the number of strings of six characters is 366, and the number of strings with no digits is 266. Hence,

$$P_6 = 36^6 - 26^6 = 2.176,782,336 - 308,915,776 = 1,867,866,560,$$

Similarly, we have

$$P_1 = 36^2 - 26^2 = 78,364,164,096 - 8,031,810,176 = 70,332,353,920$$

and

$$P_3 = 36^8 - 26^8 = 2.821,109,907,456 - 208,827,064,576$$
  
= 2.612,282,842,880.

Consequently,

$$P = P_6 + P_7 + P_8 = 2.684,483,063,360.$$

THE SUBTRACTION RULE If a task can be done in either  $n_1$  ways or  $n_2$  ways, then the number of ways to do the task is  $n_1 + n_2$  minus the number of ways to do the task that are common to the two different ways.

The subtraction rule is also known as the principle of inclusion—exclusion, especially when it is used to count the number of elements in the union of two sets. Suppose that  $A_1$  and  $A_2$  are sets. Then, there are  $|A_1|$  ways to select an element from  $A_1$  and  $|A_2|$  ways to select an element from  $A_2$ . The number of ways to select an element from  $A_1$  or from  $A_2$ , that is, the number of ways to select an element from their union, is the sum of the number of ways to select an element from  $A_1$  and the number of ways to select an element from  $A_2$ , minus the number of ways to select an element that is in both  $A_1$  and  $A_2$ . Because there are  $|A_1 \cup A_2|$  ways to select an element in either  $A_1$  or in  $A_2$ , and  $|A_1 \cap A_2|$  ways to select an element common to both sets, we have

$$|A_1 \cup A_2| = |A_1| + |A_2| - |A_1 \cap A_2|.$$

EXAMPLE 18 How many bit strings of length eight either start with a 1 bit or end with the two bits 00?



Solution: We can construct a bit string of length eight that either starts with a 1 bit or ends with the two bits 00, by constructing a bit string of length eight beginning with a 1 bit or by constructing a bit string of length eight that ends with the two bits 00. We can construct a bit string of length eight that begins with a 1 in  $2^7 = 128$  ways. This follows by the product rule, because the first bit can be chosen in only one way and each of the other seven bits can be chosen in two ways. Similarly, we can construct a bit string of length eight ending with the two bits 00, in  $2^6 = 64$  ways. This follows by the product rule, because each of the first six bits can be chosen in two ways and the last two bits can be chosen in only one way.



Some of the ways to construct a bit string of length eight that ends with a 1 are the same as the ways to construct a bit string of length eight that ends with the two bits 90. There are  $2^{\circ} - 32$  ways to construct such a string. This follows by the product rule, because the first bit can be chosen in only one way, each of the second through the sixth bits can be chosen in two ways, and the last two bits can be chosen in one way. Consequently, the number of bit strings of length eight that begin with a 1 or end with a 00, which equals the number of ways to construct a bit string of length eight that begins with a 1 or that ends with 00, equals 128 + 64 - 32 = 160.

#### EXAMPLE 19

A computer company receives 350 applications from computer graduates for a job planning a line of new Web servers. Suppose that 220 of these applicants majored in computer science, 147 majored in business, and 51 majored both in computer science and in business. How many of these applicants majored neither in computer science nor in business?

Solution: To find the number of these applicants who majored neither in computer science nor in business, we can subtract the number of students who majored either in computer science or in business (or both) from the total number of applicants. Let  $A_1$  be the set of students who majored in computer science and  $A_2$  the set of students who majored in business. Then  $A_1 \cup A_2$  is the set of students who majored in computer science or business (or both), and  $A_1 \cap A_2$  is the

set of students who majored both in computer science and in business. By the subtraction rule the number of students who majored either in computer science or in business (or both) equals

$$|A_1 \cup A_2| = |A_1| + |A_2| - |A_1 \cap A_2| = 220 + 147 - 51 = 316.$$

We conclude that 350 — 316 — 34 of the applicants majored neither in computer science nor in business.

THE DIVISION RULE. There are n/d ways to do a task if it can be done using a procedure that can be carried out in n ways, and for every way w, exactly d of the n ways correspond to way w.

We can restate the division rule in terms of sets: "If the finite set A is the union of n pairwise disjoint subsets each with d elements, then n = |A|/d."

We can also formulate the division rule in terms of functions: "If f is a function from A to B where A and B are finite sets, and that for every value  $y \in B$  there are exactly d values  $x \in A$  such that f(x) = y (in which case, we say that f is d-to-one), then |B| = |A|/d."

We illustrate the use of the division rule for counting with an example.

#### EXAMPLE 20

How many different ways are there to seat four people around a circular table, where two seatings are considered the same when each person has the same left neighbor and the same right neighbor?

Solution: We arbitrarily select a seat at the table and label it seat 1. We number the rest of the seats in numerical order, proceeding clockwise around the table. Note that are four ways to select the person for seat 1, three ways to select the person for seat 2, two ways to select the person for seat 3, and one way to select the person for seat 4. Thus, there are 4! = 24 ways to order the given four people for these seats. However, each of the four choices for seat 1 leads to the same arrangement, as we distinguish two arrangements only when one of the people has a different immediate left or immediate right neighbor. Because there are four ways to choose the person for seat 1, by the division rule there are 24/4 = 6 different seating arrangements of four people around the circular table.

## The Pigeonhole Principle

#### Introduction

Suppose that a flock of 20 pigeons flies into a set of 19 pigeonholes to roost. Because there are 20 pigeons but only 19 pigeonholes, a least one of these 19 pigeonholes must have at least two pigeons in it. To see why this is true, note that if each pigeonhole had at most one pigeon in it, at most 19 pigeons, one per hole, could be accommodated. This illustrates a general principle called the pigeonhole principle, which states that if there are more pigeons than pigeonholes, then there must be at least one pigeonhole with at least two pigeons in it (see Figure 1). Of course, this principle applies to other objects besides pigeons and pigeonholes.

#### THEOREM I

THE PIGEONHOLE PRINCIPLE. If k is a positive integer and k+1 or more objects are placed into k boxes, then there is at least one box containing two or more of the objects.



FIGURE 1 There Are More Pigeons Than Pigeonholes.

#### A function f from a set with k+1 or more elements to a set with k elements is not one-to-one.

EXAMPLE 1 Among any group of 367 people, there must be at least two with the same birthday, because there are only 366 possible birthdays.

EXAMPLE 2 In any group of 27 English words, there must be at least two that begin with the same letter, because there are 26 letters in the English alphabet.

## EXAMPLE 3 How many students must be in a class to guarantee that at least two students receive the same score on the final exam, if the exam is graded on a scale from 0 to 100 points?

Solution: There are 101 possible scores on the final. The pigeombole principle shows that among any 102 students there must be at least 2 students with the same score.

## The Generalized Pigeonhole Principle

The pigeonhole principle states that there must be at least two objects in the same box when there are more objects than boxes. However, even more can be said when the number of objects exceeds a multiple of the number of boxes. For instance, among any set of 21 decimal digits there must be 3 that are the same. This follows because when 21 objects are distributed into 10 boxes, one box must have more than 2 objects.

THE GENERALIZED PIGEONHOLE PRINCIPLE If N objects are placed into k boxes, then there is at least one box containing at least  $\lceil N/k \rceil$  objects.

A common type of problem asks for the minimum number of objects such that at least r of these objects must be in one of k boxes when these objects are distributed among the boxes. When we have N objects, the generalized pigeonhole principle tells us there must be at least robjects in one of the boxes as long as  $\lceil N/k \rceil \ge r$ . The smallest integer N with N/k > r - 1, namely, N = k(r-1) + 1, is the smallest integer satisfying the inequality  $\lceil N/k \rceil \ge r$ . Could a smaller value of N suffice? The answer is no, because if we had k(r-1) objects, we could put r-1 of them in each of the k boxes and no box would have at least r objects.

When thinking about problems of this type, it is useful to consider how you can avoid having at least r objects in one of the boxes as you add successive objects. To avoid adding a rth object to any box, you eventually end up with r-1 objects in each box. There is no way to add the next object without putting an rth object in that box.

EXAMPLE 5 Among 100 people there are at least [100/12] = 9 who were born in the same month.

### EXAMPLE 6



What is the minimum number of students required in a discrete mathematics class to be sure that at least six will receive the same grade, if there are five possible grades, A, B, C, D, and F?

Solution: The minimum number of students needed to ensure that at least six students receive the same grade is the smallest integer N such that  $\lceil N/5 \rceil = 6$ . The smallest such integer is  $N = 5 \cdot 5 + 1 = 26$ . If you have only 25 students, it is possible for there to be five who have received each grade so that no six students have received the same grade. Thus, 26 is the minimum number of students needed to ensure that at least six students will receive the same grade.

EXAMPLE 7 a) How many cards must be selected from a standard deck of 52 cards to guarantee that at least three eards of the same suit are chosen?

b) How many must be selected to guarantee that at least three hearts are selected?

A standard deak of \$2. contribute Chindrel conts, with four conts of each of hind, one is each of the Tour surn, bearing dignorsh apates, and

Solution: a) Suppose there are four boxes, one for each suit, and as cards are selected they are placed in the box reserved for cards of that suit. Using the generalized pigeonhole principle, we see that if N cards are selected, there is at least one box containing at least  $\lceil N/4 \rceil$  cards. Consequently, we know that at least three cards of one suit are selected if  $\lceil N/4 \rceil \ge 3$ . The smallest integer N such that  $\lceil N/4 \rceil \ge 3$  is  $N = 2 \cdot 4 + 1 = 9$ , so nine cards suffice. Note that if eight cards are selected, it is possible to have two cards of each suit, so more than eight cards are needed. Consequently, nine cards most be selected to guarantee that at least three cards of one suit are chosen. One good way to think about this is to note that after the eighth card is chosen, there is no way to avoid having a third card of some suit.

b) We do not use the generalized pigeonhole principle to answer this question, because we want to make sure that there are three hearts, not just three cards of one suit. Note that in the worst case, we can select all the clobs, diamonds, and spades, 39 cards in all, before we select a single heart. The next three cards will be all hearts; so we may need to select 42 cards to get three.

EXAMPLE 6 What is the least number of area codes needed to guarantee that the 25 million phones in a state can be assigned distinct 10-digit telephone numbers? (Assume that telephone numbers are of the form NXX-NXX-XXXX, where the first three digits form the area code, N represents a digit from 2 to 9 inclusive, and X represents any digit.)

> Solution: There are eight million different phone numbers of the form NXX-XXXX (as shown in Example 8 of Section 6.1). Hence, by the generalized pigeonhole principle, among 25 million telephones, at least [25,000,000/8,000,000] = 4 of them must have identical phone numbers. Hence, at least four area codes are required to ensure that all 10-digit numbers are different.

A permutation of a set of distinct objects is an ordered arrangement of these objects. We also are interested in ordered arrangements of some of the elements of a set. An ordered arrangement of r elements of a set is called an r-permutation.

We now use the product rule to find a formula for P(n, r) whenever n and r are positive integers with  $1 \le r \le n$ .

If n is a positive integer and r is an integer with  $1 \le r \le n$ , then there are

$$P(n,r) = n(n-1)(n-2)\cdots(n-r+1)$$

r-permutations of a set with n distinct elements.

EXAMPLE 1 In how many ways can we select three students from a group of five students to stand in line for a picture? In how many ways can we arrange all five of these students in a line for a picture?



Solution: First, note that the order in which we select the students matters. There are five ways to select the first student to stand at the start of the line. Once this student has been selected, there are four ways to select the second student in the line. After the first and second students have been selected, there are three ways to select the third student in the line. By the product rule, there are  $5 \cdot 4 \cdot 3 = 60$  ways to select three students from a group of five students to stand in line for a picture.

To arrange all five students in a line for a picture, we select the first student in five ways, the second in four ways, the third in three ways, the fourth in two ways, and the fifth in one way. Consequently, there are  $5 \cdot 4 \cdot 3 \cdot 2 \cdot 1 = 120$  ways to arrange all five students in a line for a picture.

EXAMPLE 2 Let S = {1, 2, 3}. The ordered arrangement 3, 1, 2 is a permutation of S. The ordered arrangement 3, 2 is a 2-permutation of S.

The number of r-permutations of a set with n elements is denoted by P(n,r). We can find P(n,r) using the product rule.

EXAMPLE 3 Let S = [a, b, c]. The 2 permutations of S are the ordered arrangements a, b; a, c; b, a; b, c; c, a; and c, b. Consequently, there are six 2-permutations of this set with three elements. There are always six 2-permutations of a set with three elements. There are three ways to choose the first element of the arrangement. There are two ways to choose the second element of the arrangement, because it must be different from the first element. Hence, by the product rule, we see that P(3, 2) = 3 · 2 = 6, the first element. By the product rule, it follows that P(3, 2) = 3 · 2 = 6.

If *n* and *r* are integers with  $0 \le r \le n$ , then  $P(n, r) = \frac{n!}{(n - r)!}$ .

By Theorem 1 we know that if n is a positive integer, then P(n, n) = n!. We will illustrate this result with some examples.

EXAMPLE 4 How many ways are there to select a first-prize winner, a second-prize winner, and a third-prize winner from 100 different people who have entered a contest?

Solution: Because it matters which person wins which prize, the number of ways to pick the three prize winners is the number of ordered selections of three elements from a set of 100 elements, that is, the number of 3-permutations of a set of 100 elements. Consequently, the answer is

 $P(100, 3) = 100 \cdot 99 \cdot 98 = 970,200.$ 

EXAMPLE 5 Suppose that there are eight runners in a race. The winner receives a gold modal, the secondplace finisher receives a silver modal, and the third-place finisher receives a bronze modal. How many different ways are there to award these modals, if all possible outcomes of the race can occur and there are no ries?

Solution. The number of different ways to award the medals is the number of 3-permutations of a set with eight elements. Hence, there are  $P(8,3) = 8 \cdot 7 \cdot 6 = 336$  possible ways to award the medals.

EXAMPLE 6 Suppose that a saleswoman has to visit eight different cities. She must begin her trip in a specified city, but she can visit the other seven cities in any order she wishes. How many possible orders can the saleswoman use when visiting these cities?

Solution: The number of possible paths between the cities is the number of permutations of seven elements, because the first city is determined, but the remaining seven can be ordered arbitrarily. Consequently, there are 71 = 7 · 6 · 5 · 4 · 3 · 2 · 1 = 5040 ways for the saleswoman to choose her tour. If, for instance, the saleswoman wishes to find the path between the cities with minimum distance, and she computes the total distance for each possible path, she must consider a total of 5040 paths!

Solution: Because the letters ABC must occur as a block, we can find the answer by finding the number of permutations of six objects, namely, the block ABC and the individual letters D, E, F. G. and H. Because these six objects can occur in any order, there are 6! = 720 permutations. of the letters ABCDEFGH in which ABC occurs as a block.

An r-combination of elements of a set is an unordered selection of r elements from the set. Thus, an r-combination is simply a subset of the set with r elements.

The number of r-combinations of a set with n distinct elements is denoted by C(n, r). Note that C(n,r) is also denoted by  $\binom{n}{r}$  and is called a binomial coefficient.

The number of r-combinations of a set with n elements, where n is a nonnegative integer and r is an integer with 0 < r < n, equals

$$C(n,r) = \frac{n!}{r!(n-r)!}.$$

Let n and r be nonnegative integers with r < n. Then C(n, r) = C(n, n - r).

EXAMPLE 11 How many poker hands of five cards can be dealt from a standard deck of 52 cards? Also, how many ways are there to select 47 cards from a standard deck of 52 cards?

> Solution: Because the order in which the five eards are dealt from a deck of 52 cards does not matter, there are

$$C(52, 5) = \frac{52!}{5!47!}$$

different hands of five cards that can be dealt. To compute the value of C(52, 5), first divide the numerator and denominator by 47! to obtain

$$C(52,5) = \frac{52 \cdot 51 \cdot 50 \cdot 49 \cdot 48}{5 \cdot 4 \cdot 3 \cdot 2 \cdot 1}.$$

This expression can be simplified by first dividing the factor 5 in the denominator into the factor 50 in the numerator to obtain a factor 10 in the numerator, then dividing the factor 4 in the denominator into the factor 48 in the numerator to obtain a factor of 12 in the numerator, then dividing the factor 3 in the denominator into the factor 51 in the numerator to obtain a factor of 17 in the numerator, and finally, dividing the factor 2 in the denominator into the factor 52 in the numerator to obtain a factor of 26 in the numerator. We find that

$$C(52, 5) = 26 \cdot 17 \cdot 10 \cdot 49 \cdot 12 = 2.598,960.$$

Consequently, there are 2,598,960 different poker hands of five cards that can be dealt from a standard deck of 52 cards.

Note that there are

$$C(52, 47) = \frac{52!}{47!5!}$$

different ways to select 47 cards from a standard deck of 52 cards. We do not need to compute this value because C(52, 47) = C(52, 5). (Only the order of the factors 5! and 47! is different in the denominators in the formulae for these quantities.) It follows that there are also 2,598,960 different ways to select 47 cards from a standard deck of 52 cards.

#### EXAMPLE 12

How many ways are there to select five players from a 10-member tennis team to make a trip to a match at another school?



Solution: The answer is given by the number of 5-combinations of a set with 10 elements. By Theorem 2, the number of such combinations is

$$C(10, 5) = \frac{10!}{5!5!} = 252.$$

## EXAMPLE 13 A group of 30 people have been trained as astronuuts to go on the first mission to Mars. How many ways are there to select a crew of six people to go on this mission (assuming that all crew members have the same job)?

Solution: The number of ways to select a crew of six from the pool of 30 people is the number of 6-combinations of a set with 30 elements, because the order in which these people are chosen does not matter. By Theorem 2, the number of such combinations is

$$C(30,6) = \frac{30!}{6!24!} = \frac{30 \cdot 29 \cdot 28 \cdot 27 \cdot 26 \cdot 25}{6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1} = 593,775.$$

#### EXAMPLE 14 How many bit strings of length n contain exactly r 1s?

Solution: The positions of r is in a bit string of length n form an r-combination of the set  $\{1, 2, 3, ..., n\}$ . Hence, there are C(n, r) bit strings of length n that contain exactly r is.

# EXAMPLE 15 Suppose that there are 9 faculty members in the mathematics department and 11 in the computer science department. How many ways are there to select a committee to develop a discrete mathematics course at a school if the committee is to consist of three faculty members from the mathematics department and four from the computer science department?

Solution: By the product rule, the answer is the product of the number of 3-combinations of a set with nine elements and the number of 4-combinations of a set with 11 elements. By Theorem 2, the number of ways to select the committee is

$$C(9,3) \cdot C(11,4) = \frac{9!}{3!6!} \cdot \frac{11!}{4!7!} = 84 \cdot 330 = 27,720.$$

### Summary

In this week, we learned about the Product, Addition, Subtraction & Division rules pertaining to counting. Alongside this, we explored the pigeonhole principle, combinations & permutations.