Improving Stability in Deep Reinforcement Learning with Weight Averaging

Evgenii Nikishin

10.09.2018

RL problem statement

Markov Decision Process (MDP):

- ullet Environment states $s_t \in \mathcal{S}$
- Agent actions $a_t \in \mathcal{A}$
- Reward $r(s_t, a_t) \in \mathbb{R}$

- Agent policy $a_t \sim \pi(a_t|s_t)$
- State transitions $s_{t+1} \sim p(s_{t+1}|s_t, a_t)$

RL problem statement

Interaction with an environment produces trajectory τ :

$$p_{\pi}(\tau) = p(s_0) \prod_{t=0}^{T} \pi(a_t|s_t) p(s_{t+1}|s_t, a_t)$$

Optimal policy maximizes the expected discounted return:

$$\pi^* = \arg\max_{\pi} \mathbb{E}_{\pi} \left[\sum_{t=0}^{T} \gamma^t r(s_t, a_t) \right] = \arg\max_{\pi} \mathbb{E}_{\tau \sim p_{\pi}(\tau)} \left[\sum_{t=0}^{T} \gamma^t r(s_t, a_t) \right]$$

 $0 \le \gamma \le 1$ (0.99 is common)

$$\nabla_{\theta} \mathbb{E}_{\tau \sim p_{\theta}(\tau)} \left[\sum_{t=0}^{I} \gamma^{t} r(s_{t}, a_{t}) \right]$$

$$\left[
abla_{ heta} \mathbb{E}_{ au \sim p_{ heta}(au)} \left[\sum_{t=0}^{T} \gamma^t r(s_t, a_t)
ight] = \sum_{ au}
abla_{ heta} p_{ heta}(au) \sum_{t=0}^{T} \gamma^t r(s_t, a_t) = 0$$

$$egin{aligned}
abla_{ heta} \mathbb{E}_{ au \sim p_{ heta}(au)} \left[\sum_{t=0}^{T} \gamma^t r(s_t, a_t)
ight] &= \sum_{ au}
abla_{ heta} p_{ heta}(au) \sum_{t=0}^{T} \gamma^t r(s_t, a_t) = \ &\sum_{ au} p_{ heta}(au)
abla_{ heta} \log p_{ heta}(au) \sum_{t=0}^{T} \gamma^t r(s_t, a_t) = \end{aligned}$$

$$\begin{split} &\nabla_{\theta} \mathbb{E}_{\tau \sim p_{\theta}(\tau)} \left[\sum_{t=0}^{T} \gamma^{t} r(s_{t}, a_{t}) \right] = \sum_{\tau} \nabla_{\theta} p_{\theta}(\tau) \sum_{t=0}^{T} \gamma^{t} r(s_{t}, a_{t}) = \\ &\sum_{\tau} p_{\theta}(\tau) \nabla_{\theta} \log p_{\theta}(\tau) \sum_{t=0}^{T} \gamma^{t} r(s_{t}, a_{t}) = \\ &\left\{ \log p_{\theta}(\tau) = \log p(s_{0}) + \sum_{t=0}^{T} \left(\log \pi_{\theta}(a_{t}|s_{t}) + \log p(s_{t+1}|s_{t}, a_{t}) \right) \right\} = \end{split}$$

$$\begin{split} &\nabla_{\theta} \mathbb{E}_{\tau \sim p_{\theta}(\tau)} \left[\sum_{t=0}^{T} \gamma^{t} r(s_{t}, a_{t}) \right] = \sum_{\tau} \nabla_{\theta} p_{\theta}(\tau) \sum_{t=0}^{T} \gamma^{t} r(s_{t}, a_{t}) = \\ &\sum_{\tau} p_{\theta}(\tau) \nabla_{\theta} \log p_{\theta}(\tau) \sum_{t=0}^{T} \gamma^{t} r(s_{t}, a_{t}) = \\ &\left\{ \log p_{\theta}(\tau) = \log p(s_{0}) + \sum_{t=0}^{T} (\log \pi_{\theta}(a_{t}|s_{t}) + \log p(s_{t+1}|s_{t}, a_{t})) \right\} = \\ &\mathbb{E}_{\tau \sim p_{\theta}(\tau)} \left[\left(\sum_{t=0}^{T} \nabla_{\theta} \log \pi_{\theta}(a_{t}|s_{t}) \right) \left(\sum_{t=0}^{T} \gamma^{t} r(s_{t}, a_{t}) \right) \right] \end{split}$$

$$\mathbb{E}_{\tau \sim p_{\theta}(\tau)} \left[\left(\sum_{t=0}^{T} \nabla_{\theta} \log \pi_{\theta}(a_{t}|s_{t}) \right) \left(\sum_{t=0}^{T} \gamma^{t} r(s_{t}, a_{t}) \right) \right]$$

Main problem: large variance of gradient estimates (much bigger than in supervised learning)

$$\mathbb{E}_{\tau \sim p_{\theta}(\tau)} \left[\left(\sum_{t=0}^{T} \nabla_{\theta} \log \pi_{\theta}(a_{t}|s_{t}) \right) \left(\sum_{t=0}^{T} \gamma^{t} r(s_{t}, a_{t}) \right) \right]$$

Main problem: large variance of gradient estimates (much bigger than in supervised learning) Example:

$$r(s_t, a_t) = \begin{cases} -110 \text{ prob } 0.5 \\ -100, \text{ prob } 0.5 \end{cases}$$
 Mean = -105, Var = 25
$$\nabla_\theta \log \pi_\theta(a_t|s_t) = \begin{cases} -1, \text{ prob } 0.5 \\ +1, \text{ prob } 0.5 \end{cases}$$
 Mean = 0, Var = 1
$$\nabla_\theta \log \pi_\theta(a_t|s_t) r(s_t, a_t) = \begin{cases} -110, \text{ prob } 0.25 \\ -100, \text{ prob } 0.25 \\ +100, \text{ prob } 0.25 \\ +110, \text{ prob } 0.25 \end{cases}$$
 Mean = 0, Var = 11050

Possible ways to alleviate effect of large variance:

• Introduce a baseline, that does not change the expectation, but can decrease variance (e.g. average reward)

Possible ways to alleviate effect of large variance:

- Introduce a baseline, that does not change the expectation, but can decrease variance (e.g. average reward)
- ② Introduce some bias in order to decrease the variance (Actor-Critic algorithm [Mnih et al., 2016])

Possible ways to alleviate effect of large variance:

- Introduce a baseline, that does not change the expectation, but can decrease variance (e.g. average reward)
- Introduce some bias in order to decrease the variance (Actor-Critic algorithm [Mnih et al., 2016])
- Penalise for large policy deviations (Trust Region Policy Optimization [Schulman et al., 2015])

Possible ways to alleviate effect of large variance:

- Introduce a baseline, that does not change the expectation, but can decrease variance (e.g. average reward)
- Introduce some bias in order to decrease the variance (Actor-Critic algorithm [Mnih et al., 2016])
- Penalise for large policy deviations (Trust Region Policy Optimization [Schulman et al., 2015])
- ...more?

SWA

Stochastic Weight Averaging [Izmailov et al., 2018]: average the weights collected during training with an SGD-like method.

- start after conventional pretraining
- use constant or cyclical learning rate
 (to continue exploring regions of high-performing networks)
- dynamically recalculate average:

$$w_{\text{SWA}} \leftarrow \frac{n_{\text{SWA}} \cdot w_{\text{SWA}} + w}{n_{\text{SWA}} + 1}$$

$$n_{\text{SWA}} \leftarrow n_{\text{SWA}} + 1$$

Motivation in SL

Mandt et al. [2017]: SGD with fixed learning rate samples from a Gaussian distribution centered at the minimum of the loss, i.e. SGD iterates stay at the boundary of a high-quality region:

Motivation in SL

Due to shift between train and test loss surfaces, we are looking for wider optima. SWA leads to better generalization:

Motivation in RL

Deep RL methods are notoriously unstable.

A2C cumulative reward trajectory on CartPole environment with and without weight averaging:

SWA alleviates the effect of noise during training.

SWA for A2C and DDPG

We apply SWA to

- Advantage Actor-Critic [Mnih et al., 2016] for discrete action space environments (Atari games).
- Deep Deterministic Policy Gradient [Lillicrap et al., 2015] for continuous action space environments (MuJoCo).

After pretraining with conventional training, we apply SWA by collecting weights every \boldsymbol{c} timesteps.

Atari experiments

Table: Average final cumulative reward with and without SWA.

ENV NAME	A2C	A2C + SWA
Breakout	522 ± 34	$\textbf{703} \pm \textbf{60}$
Qbert	18777 ± 778	$\textbf{21272} \pm \textbf{655}$
SpaceInvaders	7727 ± 1121	$\textbf{21676} \pm \textbf{8897}$
Seaquest	1779 ± 4	$\textbf{1795} \pm \textbf{4}$
CrazyClimber	147030 ± 10239	139752 ± 11618
BeamRider	9999 ± 402	$\textbf{11321} \pm \textbf{1065}$

MuJoCo experiments

Table: Average final cumulative reward with and without SWA.

ENV NAME	DDPG	DDPG + SWA
Hopper	613 ± 683	$\textbf{1615} \pm \textbf{1143}$
Walker2d	1803 ± 96	$\textbf{2457} \pm \textbf{241}$
Half-Cheetah	3825 ± 1187	$\textbf{4228} \pm \textbf{1117}$
Ant	865 ± 899	$\textbf{1051} \pm \textbf{696}$

Summary

RL + SWA:

- Easy to implement
- Sample-efficient way to improve stability
- Alleviates problem of forgetting good policies

References

- Pavel Izmailov, Dmitrii Podoprikhin, Timur Garipov, Dmitry Vetrov, and Andrew Gordon Wilson. Averaging weights leads to wider optima and better generalization. arXiv preprint arXiv:1803.05407, 2018.
- Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa, David Silver, and Daan Wierstra. Continuous control with deep reinforcement learning. arXiv preprint arXiv:1509.02971, 2015.
- Stephan Mandt, Matthew D Hoffman, and David M Blei. Stochastic gradient descent as approximate bayesian inference. *The Journal of Machine Learning Research*, 18(1):4873–4907, 2017.
- Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves, Timothy Lillicrap, Tim Harley, David Silver, and Koray Kavukcuoglu. Asynchronous methods for deep reinforcement learning. In *International Conference on Machine Learning*, pages 1928–1937, 2016.
- John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp Moritz. Trust region policy optimization. In *International Conference on Machine Learning*, pages 1889–1897, 2015.