We are given that the object m_1 collides with the rod with velocity v_0 , and the rod is floating in free space. Given m_1 , v_0 , m_2 , I_0 , and r, we are to figure to the final velocity of m_1 after collision v_f , the velocity of m_2 after collision v_{CM} , and of course the rotation of the rod after collision ω .

We are assuming that this collision elastic.

We have, then, for conservation of linear momentum:

$$m_1 v_0 = m_1 v_f + m_2 v_{CM} \tag{1}$$

Furthermore, we understand that kinetic energy is also conserved here; therefore:

$$\frac{1}{2}m_1v_0^2 = \left(\frac{1}{2}m_1v_f^2\right) + \left(\frac{1}{2}m_2v_{CM}^2\right) + \left(\frac{1}{2}I_0\omega^2\right)$$
 (2)

$$\Rightarrow m_1 v_0^2 = (m_1 v_f^2) + (m_2 v_{CM}^2) + (I_0 \omega^2)$$
(3)

as the point mass does not have any rotational inertia, and the rod is not rotating at the start.

Lastly, we understand that the angular momentum is conserved through a collision; letting the origin as the center of mass of the rod:

$$m_0 r^2 \left(\frac{v_0}{r}\right) = m_0 r^2 \left(\frac{v_f}{r}\right) + I_0 \omega \tag{4}$$

We now have a system of three equations that can be combined to solve for three unknowns v_f , v_{CM} , and ω .

Performing the actual solution,

var("I m1 v0 m2 r vf vcm w")