

Trabalho Roteamento Redes de Computadores

Introdução	3
Topologia de Rede Simulada no Mininet	4
Estratégia de roteamento utilizada	5
Testes de Desempenho	6
Topologia em Malha:	6
Topologia em Estrela:	9
Conclusão	12

Introdução

No trabalho realizado, foi implementado e simulado, utilizando a ferramenta Mininet, um protocolo de roteamento baseado no modelo de Link-State, com o algoritmo de Dijkstra para cálculo das rotas. O objetivo principal foi demonstrar como os roteadores constroem uma visão global da topologia da rede, trocando informações de estado de enlace, e determinam os melhores caminhos para o encaminhamento de pacotes.

Os testes realizados avaliaram a conectividade e o desempenho do protocolo implementado. Inicialmente, sem o algoritmo de roteamento, os pacotes tinham alcance limitado. Após a implementação do protocolo, a rede alcançou 100% de conectividade, evidenciando a eficácia do modelo.

Topologia de Rede Simulada no Mininet

Topologia em Malha:

Topologia em Estrela:

Estratégia de roteamento utilizada

A estratégia implementada segue os princípios de um protocolo de roteamento baseado no estado de enlace:

Descoberta de Vizinhos: Por já saber os dispositivos diretamente conectados, não precisamos utilizar mensagens de "Hello" como é feito no protocolo estado de enlace.

Troca de Informações (LSAs): Os roteadores compartilharam informações sobre seus links (endereço de rede, máscara, next hop, custo e roteador de origem) com todos os outros roteadores da rede.

Construção da LSDB: As informações recebidas foram armazenadas em uma base de dados de estado de enlace (Link-State Database) para construir a visão completa da topologia da rede.

Cálculo de Rotas: Com base na LSDB, o algoritmo de Dijkstra foi usado para calcular os melhores caminhos (com menor custo total) para cada destino.

Atualização Dinâmica: A implementação foi projetada para lidar com mudanças dinâmicas, como falhas em links e inclusão de novos roteadores, refletindo atualizações na tabela de roteamento.

Testes de Desempenho

Topologia em Malha:

Sem Algoritmo de Roteamento: Results: 81% dropped (33/182 received)

	h1	h2	h3	h4	h5	h6	h 7	h8	h9	r1	r2	r3	r4	r5
h1		X	X	X	X	X	X	X	v	V	X	X	X	X
h2	X		Х	X	X	X	X	V	X	X	Х	X	х	V
h3	X	X		V	X	X	V	X	X	X	X	v	X	X
h4	X	X	V		X	X	V	X	X	X	X	V	X	X
h 5	X	X	X	X		X	X	X	X	X	V	X	X	X
h6	X	X	X	X	X		X	X	X	X	X	X	V	X
h 7	X	X	V	V	X	X		X	X	X	X	V	X	X
h8	X	V	X	X	X	X	X		X	X	X	X	X	V
h 9	V	X	X	X	X	X	X	X		V	X	X	X	X
r1	V	X	X	X	X	X	X	X	V		V	V	X	V
r2	X	X	X	X	V	X	X	X	X	X		X	V	X
r3	X	X	V	V	X	X	V	X	X	X	X		X	X
r4	X	X	X	X	X	V	X	X	X	X	X	X		X
r5	X	V	X	X	X	X	X	V	X	V	X	X	X	

Com Algoritmo de Roteamento: Results: 0% dropped (182/182 received)

Comparação Geral de Conectividade

Topologia em Estrela:

Sem Algoritmo de Roteamento: Results: 80% dropped (35/182 received)

	h1	h2	h3	h4	h5	h6	h 7	h8	h9	r1	r2	r3	r4	r5
h1		V	X	X	X	X	X	X	X	х	V	X	X	X
h2	V		Х	X	X	X	X	X	Х	Х	V	X	х	X
h3	X	X		V	X	X	X	X	X	X	X	V	X	X
h4	X	X	V		X	X	X	X	X	X	X	V	Х	X
h5	X	X	X	X		V	X	X	X	X	X	X	V	X
h6	X	X	X	X	v		X	X	X	X	X	X	V	X
h 7	X	X	X	X	X	X		V	V	X	X	X	X	v
h8	X	X	X	X	X	X	V		V	X	X	X	X	V
h9	X	X	X	X	X	X	V	V		X	X	X	X	v
r1	X	X	X	X	X	X	X	X	X		V	V	V	V
r2	V	V	X	X	X	X	X	X	X	V		X	X	X
r3	X	X	V	V	X	X	X	X	X	X	X		X	X
r4	X	X	X	X	v	V	X	X	X	X	X	X		X
r5	X	X	X	X	X	X	V	V	V	X	X	X	X	

Com Algoritmo de Roteamento: Results: 0% dropped (182/182 received)

Comparação Geral de Conectividade

Conclusão

O presente trabalho demonstrou, por meio de uma simulação no Mininet, os impactos da ausência e presença de um protocolo de roteamento dinâmico baseado no modelo Link-State, utilizando o algoritmo de Dijkstra. A análise foi realizada com base em testes de conectividade (ping) entre os hosts e roteadores, avaliando as diferenças nos cenários "Sem Algoritmo de Roteamento" e "Com Algoritmo de Roteamento".