

Winning Space Race with Data Science

Ellei Shamaev 1 Oct, 2023

Outline

- Executive Summary
- Introduction
- Methodology
- Results
- Conclusion
- Appendix

Executive Summary

- Features analysis and Interactive analytics
 - included for better understanding
- Predictive analysis results
 - Discovered the model exhibited the highest accuracy.
 - Accuracy is dependent on the training seed, suggesting a small dataset size.
 - Notably, some important data (e.g., wind, clouds, SpaceX AI versioning) was excluded from the analysis.

Introduction

- SpaceX, a spacecraft manufacturer and launcher, is changing the world by providing access to the Internet around the world. The key to its success is a cost-effective method for placing satellites into space orbits.
- We conduct exploratory data analysis to gain insights from SpaceX launch data.

Methodology

Executive Summary

- Data collection SpaceX API, web scraping
- Data wrangling Discovery, transformation, validation
- Exploratory data analysis Visualization
 - Interactive visual analytics Folium and Plotly Dash
- Predictive analysis results Achieved > 84% accuracy

Data Collection – SpaceX API

- API SpaceX
- Available Features
 - Date, Time, Version, Launch Site,
 - Payload info, Customer,
 - Orbit, Launch outcome, Landing
- Missing values
 - Replace with the average value or ignore it?

	df.head()										
	Flight No.	Date	Time	Version Booster	Launch site	Payload	Payload mass	Orbit	Customer	Launch outcome	Booster landing
0	[4 June 2010,, 18:45]	4 June 2010	18:45	F9 v1.0B0003.1	CCAFS	Dragon Spacecraft Qualification Unit	0	LEO	SpaceX	Success\n	Failure
1	[8 December 2010,, 15:43]	8 December 2010	15:43	F9 v1.0B0004.1	CCAFS	Dragon	0	LEO	NASA	Success	Failure
2	[22 May 2012,, 07:44]	22 May 2012	07:44	F9 v1.0B0005.1	CCAFS	Dragon	525 kg	LEO	NASA	Success	No attempt\n
3	[8 October 2012,, 00:35]	8 October 2012	00:35	F9 v1.0B0006.1	CCAFS	SpaceX CRS-1	4,700 kg	LEO	NASA	Success\n	No attempt
4	[1 March 2013,, 15:10]	1 March 2013	15:10	F9 v1.0B0007.1	CCAFS	SpaceX CRS-2	4,877 kg	LEO	NASA	Success\n	No attempt\n

Data Collection – Scraping

- Web scraping
 - HTML → BeautifulSoup → JSON
 - JSON \rightarrow the algorithm \rightarrow Table
- Alternative web scraping
 - HTML → pandas.read_html → Table

- Missing values
 - Replace with the average value or ignore it?

Data Wrangling

Discovery

- Context
- Planning

Transformation

- Structuring Data
- Normalizing Data
- Cleaning Data
- Enriching Data

Validation

- Consistency
- Quality

EDA with Data Visualization

Exploration

- Different launch sites, orbits, and payload masses have different success rates.
- The success rate is increasing.
- With heavy payloads, the rate of successful or positive landings is higher for Polar, LEO, and ISS orbits.
- Additional insights are obtained by creating scatter plots that depict the relationship between two variables, with successful outcomes shown in orange and unsuccessful outcomes in blue.

EDA with SQL

- Basic Queries of SQL
 - select distinct values from the table select distinct Value from Table
 - select the sub-table from the table with the condition select * from Table where Condition
 - sum values from the sub-table queried by the condition select sum(Value) as SumOfValue from Table where Condition
 - Instead of the function sum other aggregating functions avg (average), min, max, count, count distinct can be used
 - group the table by the value 1 select Value1, sum(Value2) from Table group by Value1

EDA with SQL

- Examples of Logical Conditions in SQL
 - *Value1* = 1
 - (Value1 > 1 and Value2 < 1) or Value3 != 3
 - Value1 between 1 and 3
 - Value1 = (select Value2 from Table2)
 - Value2 = 'SpaceX 9'
 - Value2 => 'a' and Value2 <='z'
 - lower(Value2) in ("Falcon9 v1.0", "Falcon9 v2.0")

Build a Dashboard with Plotly Dash

- Explain why you added those plots and interactions
- Interactive visualizations change the graph in response to certain events (e.g., mouse over, mouse click).
- Interactive visualization is implemented using a Python feature called callbacks.
- Callbacks allow functions to be called in response to system events.
- Interactive visualization is not possible in PowerPoint.

Build an Interactive Map with Folium

- Each Launch site marked using folium.Circle folium.Marker
- Launch sites with the same Lat and Long are visualized using MarkerCluster()
- Path plotted using folium.PolyLine

	Launch Site	Lat	Long
0	CCAFS LC-40	28.562302	-80.577356
1	CCAFS SLC-40	28.563197	-80.576820
2	KSC LC-39A	28.573255	-80.646895
3	VAFB SLC-4E	34.632834	-120.610745

Predictive Analysis (Classification)

- Data transformed using the standard scaler.
- The data is split into training and testing sets in an 80% to 20% proportion.
- Models including LogisticRegression, SVC, DecisionTreeClassifier, and KNeighborsClassifier from sklearn are trained on both the training and testing data.
- Optimal hyperparameters are determined using grid search (brute force).
- The DecisionTreeClassifier model has shown the best results.

Model	Accuracy			
LogisticRegression	83.4%			
SVC with sigmoid kernel	83.3%			
DecisionTreeClassifier	87.7%			
KNeighboursClassifier	84.8%			

Predictive Analysis (Classificator example)

- The model checks for 'Legs' first, and then 'ReusedCount.'
- If a rocket has not been reused yet, the most important features for predictive analysis are 'PayloadMass,' 'Orbit,' and 'Serial.'
- If a rocket has been reused, the most important features for predictive analysis are 'LaunchSite,' 'Orbit,' 'ReusedCount,' and 'Serial.'
- This model achieves an accuracy of 94%.

```
--- Legs = True
   --- ReusedCount = 0
       --- PayloadMass <= 4983.50
           --- Orbit = ISS
               --- Serial != B1017
                   --- class: Success
               --- Serial = B1017
                   --- class: Crush
            --- Orbit = ISS
               --- FlightNumber <= 11
                   --- class: Success
               --- FlightNumber > 11
                  --- class: Crush
       --- PayloadMass > 4983.50
           --- class: Crush
       --- Serial != B1041
           |--- Flights <= 4
               |--- Serial != B1039
                   --- class: Success
               --- Serial = B1039
                    --- LaunchSite != KSC LC 39A
                       |--- class: Crush
                   --- LaunchSite KSC = LC 39A
                      |--- class: Success
           --- Flights >= 5
               --- ReusedCount <= 4
                   --- class: Crush
               --- ReusedCount >= 5
                   --- class: Success
       --- Serial = B1041
           |--- Flights <= 1
              |--- class: Success
           --- Flights >= 2
              --- class: Crash
```

Results

- Analysis of feature pairs:
 - checked the data for missing values and obvious errors
 - discovered some correlations
- Interactive analytics demo
 - included for better understanding
- Predictive analysis results
 - The decision tree model exhibited the highest accuracy.
 - Accuracy is dependent on the training seed, suggesting a small dataset size.
 - Notably, some important data (e.g., wind, clouds, SpaceX AI versioning) was excluded from the analysis.

Flight Number vs. Launch Site

- Different launch sites have different success rates.
- Launch site CCAFS SLC 40 is the most popular, with 9 successful launches.
- Launch site VAFB SLC 4E is the least popular, with 5 successful launches.
- The last 14 launches were all successful.

Payload vs. Launch Site

- The success rate at CCAFS SLC 40 Launch Site is high for launches with a high payload mass.
- VAFB SLC 4E and KSC LC 39A have varying success rates for different payload mass ranges.
- It may depend on latent factors that we do not know on this stage of research.

Flight Number vs. Orbit Type

- Launches to the GTO, SO orbits have the lowest success rate.
- Launches to the SSO, GEO, ES-L1, HEO orbit have a 100% success rate.
 - There was only one launch for each GEO, ES-L1, and HEO orbit

Success Rate vs. Orbit Type

- Launches to the GTO, SO orbits have the lowest success rate.
- Launches to the SSO, GEO, ES-L1, HEO orbits have a 100% success rate

Launch Success Yearly Trend

- The success rate is increasing.
- The reasons for the success rate drop in 2018 can be interesting.

Payload vs. Orbit Type

- With heavy payloads, the success rate for positive landings is higher for Polar, LEO, and ISS orbits.
- Payload mass was correlated with success rate before 2019.
- Payload mass did not correlate with the success rate after 2019.

All Launch Site Names

- Find the names of the unique launch sites
- Present your query result with a short explanation here

Launch Site Names Begin with 'CCA'

- Find 5 records where launch sites begin with `CCA`
- Present your query result with a short explanation here

<pre>%sql select * from SPACEXTBL where Launch_Site like "CCA%" limit 5</pre>									
* sqlite:///my_data1.db Done.									
Date	Time (UTC)	Booster_Version	Launch_Site	Payload	PAYLOAD_MASSKG_	Orbit	Customer	Mission_Outcome	Landing_Outcome
2010- 04-06	18:45:00	F9 v1.0 B0003	CCAFS LC- 40	Dragon Spacecraft Qualification Unit	0	LEO	SpaceX	Success	Failure (parachute)
2010- 08-12	15:43:00	F9 v1.0 B0004	CCAFS LC- 40	Dragon demo flight C1, two CubeSats, barrel of Brouere cheese	0	LEO (ISS)	NASA (COTS) NRO	Success	Failure (parachute)
2012- 05-22	07:44:00	F9 v1.0 B0005	CCAFS LC- 40	Dragon demo flight C2	525	LEO (ISS)	NASA (COTS)	Success	No attempt
2012- 08-10	00:35:00	F9 v1.0 B0006	CCAFS LC- 40	SpaceX CRS-1	500	LEO (ISS)	NASA (CRS)	Success	No attempt
2013- 01-03	15:10:00	F9 v1.0 B0007	CCAFS LC- 40	SpaceX CRS-2	677	LEO (ISS)	NASA (CRS)	Success	No attempt

Total Payload Mass

- Calculate the total payload carried by boosters from NASA
- Present your query result with a short explanation here

```
%sql select sum(PAYLOAD_MASS__KG_) as Total_payload_mass from SPACEXTBL where lower(Customer) in ("nasa (crs)","nasa(crs)")

* sqlite:///my_data1.db
Done.

Total_payload_mass
45596
```


Average Payload Mass by F9 v1.1

- Calculate the average payload mass carried by booster version F9 v1.1
- Present your query result with a short explanation here

```
%sql select avg(PAYLOAD_MASS__KG_) as avg_payload_mass_f9v1_1 from SPACEXTBL where lower(Landing_Outcome) in ("f9 v1.1", "f9 v1
```

First Successful Ground Landing Date

- Find the dates of the first successful landing outcome on ground pad
- Present your query result with a short explanation here

```
%%sql
select min(Date) as first_landing_ground_pad from SPACEXTBL
where Landing_Outcome = "Success (ground pad)"

* sqlite:///my_data1.db
Done.
first_landing_ground_pad

2015-12-22
```

Successful Drone Ship Landing with Payload between 4000 and 6000

- List the names of boosters which have successfully landed on drone ship and had payload mass greater than 4000 but less than 6000
- Present your query result with a short explanation here

```
%%sql
select min(Date) as first_landing_ground_pad from SPACEXTBL
where Landing_Outcome = "Success (drone ship)"
    and PAYLOAD_MASS__KG_ > 4000
    and PAYLOAD_MASS__KG_ < 6000

* sqlite:///my_data1.db
Done.
first_landing_ground_pad

2016-06-05</pre>
```

Boosters Carried Maximum Payload

- List the names of the booster which have carried the maximum payload mass
- Present your query result with a short explanation here

Total Number of Successful and Failure Mission Outcomes

- Calculate the total number of successful and failure mission outcomes
- Present your query result with a short explanation here

```
%%sql
select count(*) as total_success_fail_outcomes from SPACEXTBL
where Landing_Outcome like "Success%"
    or Landing_Outcome like "Failure%"

* sqlite:///my_data1.db
Done.

total_success_fail_outcomes

71
```

2015 Launch Records

- List the failed landing outcomes in drone ship, their booster versions, and launch site names for in year 2015
- Present your query result with a short explanation here

Rank Landing Outcomes Between 2010-06-04 and 2017-03-20

- Rank the count of landing outcomes (such as Failure (drone ship) or Success (ground pad))
 between the date 2010-06-04 and 2017-03-20, in descending order
- Present your query result with a short explanation here

```
%%sql
select Landing_Outcome, count(*) as count_
from SPACEXTBL
where Landing_Outcome in ("Failure (drone ship)", "Success (ground pad)")
    and Date>='2010-06-04'
    and Date<='2017-03-20'
    group by Landing_Outcome

* sqlite:///my_data1.db
Done.
Landing_Outcome count_
Failure (drone ship) 5

Success (ground pad) 5</pre>
```


<Folium Map Screenshot 1>

• Intentionally blank page

<Dashboard Screenshot 1>

Intentionally blank page

Classification Accuracy

Model	Accuracy			
LogisticRegression	83.4%			
SVC with sigmoid kernel	83.3%			
DecisionTreeClassifier	87.7%			
KNeighboursClassifier	84.8%			

Confusion Matrix

Appendix

• Intentionally blank page

