Duje Jerić- Miloš

8. prosinca 2024.

► Imamo fiksnu nakupinu naboja i ispitujemo silu na neki mali naboj q

- Imamo fiksnu nakupinu naboja i ispitujemo silu na neki mali naboj q
- Ako postavimo naboj q u točku p i izmjerimo silu F, **električno polje** u točki p je

$$E=\frac{F}{q}$$
.

- Imamo fiksnu nakupinu naboja i ispitujemo silu na neki mali naboj q
- Ako postavimo naboj q u točku p i izmjerimo silu F, električno polje u točki p je

$$E=\frac{F}{q}$$
.

Smjer električnog polja jednak je smjeru sile na pozitivan naboj.

- Imamo fiksnu nakupinu naboja i ispitujemo silu na neki mali naboj q
- Ako postavimo naboj q u točku p i izmjerimo silu F, električno polje u točki p je

$$E=\frac{F}{q}$$
.

- Smjer električnog polja jednak je smjeru sile na pozitivan naboj.
- Svakoj točki prostora na ovaj način pridružimo vektor električno polje je vektorsko polje.



Potencijal je skalarno polje - svakoj točki a pridruži broj (tj. skalar)  $\phi(a)$ .

- Potencijal je skalarno polje svakoj točki a pridruži broj (tj. skalar)  $\phi(a)$ .
- Možemo li rekonstruirati električno iz potencijala?

- Potencijal je skalarno polje svakoj točki a pridruži broj (tj. skalar)  $\phi(a)$ .
- ▶ Možemo li rekonstruirati električno iz potencijala? DA!

- Potencijal je skalarno polje svakoj točki a pridruži broj (tj. skalar)  $\phi(a)$ .
- Možemo li rekonstruirati električno iz potencijala? DA!
- Smjer električnog polja (tj. sile na naboj) u točki p= smjer u kojem je rad najveći ( $W=F_{\parallel}d$ )



► Električno polje u točki *p* je jače, što je razlika u potencijalu u smjeru sile veća (veći napon=veći rad=veća sila).

- ► Imamo naboje na ravnini. Potencijal definira reljef iznad te ravnine.
- Viši potencijal u p = viša planina iznad p, niži potencijal u p = niža dolina ispod p.



# Električno polje točkastih naboja



#### Dodatak: Coulombov zakon

Dva točkasta naboja  $q_1$  i  $q_2$  miruju na međusobnoj udaljenosti r. Silu među njima je eksperimentalno odredio Coulomb.

$$F=k_{\rm e}\frac{q_1q_2}{r^2},$$

#### Dodatak: Coulombov zakon

Dva točkasta naboja  $q_1$  i  $q_2$  miruju na međusobnoj udaljenosti r. Silu među njima je eksperimentalno odredio Coulomb.

$$F=k_{\rm e}\frac{q_1q_2}{r^2},$$

▶ Ovdje je  $k_e = 8.987551788 \cdot 10^9 \frac{\text{Nm}^2}{\text{C}^2}$  samo konstanta.



#### Dodatak: Coulombov zakon

Dva točkasta naboja  $q_1$  i  $q_2$  miruju na međusobnoj udaljenosti r. Silu među njima je eksperimentalno odredio Coulomb.

$$F=k_{\rm e}\frac{q_1q_2}{r^2},$$

▶ Ovdje je  $k_e = 8.987551788 \cdot 10^9 \frac{\text{Nm}^2}{\text{C}^2}$  samo konstanta.



**D** Dakle, električno polje točkastog naboja  $q_2$  je  $E = \frac{F}{q_1} = k_e \frac{q_2}{r^2}$ .



► Kada imamo više točkastih naboja, ukupno električno polje je samo vektorski zbroj polja zbog svakog pojedinačnog naboja: E = E<sub>1</sub> + E<sub>2</sub> + ...

- Kada imamo više točkastih naboja, ukupno električno polje je samo vektorski zbroj polja zbog svakog pojedinačnog naboja:
  E = E<sub>1</sub> + E<sub>2</sub> + ...
- Rad u polju koje stvara jedan točkasti naboj ne ovisi o putanji
   na rad utječe jedino pomak direktno prema ili od naboja.

- Kada imamo više točkastih naboja, ukupno električno polje je samo vektorski zbroj polja zbog svakog pojedinačnog naboja:
  E = E<sub>1</sub> + E<sub>2</sub> + ...
- Rad u polju koje stvara jedan točkasti naboj ne ovisi o putanji
   na rad utječe jedino pomak direktno prema ili od naboja.
- Dakle, rad ovisi samo o početnoj i konačnoj udaljenosti od naboja.

- Kada imamo više točkastih naboja, ukupno električno polje je samo vektorski zbroj polja zbog svakog pojedinačnog naboja: E = E<sub>1</sub> + E<sub>2</sub> + ...
- Rad u polju koje stvara jedan točkasti naboj ne ovisi o putanji
   na rad utječe jedino pomak direktno prema ili od naboja.
- Dakle, rad ovisi samo o početnoj i konačnoj udaljenosti od naboja.
- Nada ima više naboja, rad je jednak  $W=W_1+W_2...$  gdje je  $W_1$  rad zbog utjecaja prvog naboja, itd.

- Kada imamo više točkastih naboja, ukupno električno polje je samo vektorski zbroj polja zbog svakog pojedinačnog naboja: E = E<sub>1</sub> + E<sub>2</sub> + ...
- Rad u polju koje stvara jedan točkasti naboj ne ovisi o putanji
   na rad utječe jedino pomak direktno prema ili od naboja.
- Dakle, rad ovisi samo o početnoj i konačnoj udaljenosti od naboja.
- Nada ima više naboja, rad je jednak  $W = W_1 + W_2...$  gdje je  $W_1$  rad zbog utjecaja prvog naboja, itd.
- ▶ Nijedan  $W_1, W_2$ ... ne ovisi o putanji pa ne ovisi ni puni W.

# Zaključimo (prepišite)

Električno polje je sila po jedinici testnog naboja  $E = \frac{F}{q}$ . Smjer polja = smjer sile na pozitivni naboj.

# Zaključimo (prepišite)

- Električno polje je sila po jedinici testnog naboja  $E = \frac{F}{q}$ . Smjer polja = smjer sile na pozitivni naboj.
- Električno polje pozitivnog točkastog naboja gleda od njega (drugi pozitivni naboj bježi od njega). Polje negativnog naboja gleda prema njemu.



# Zaključimo (prepišite)

- Električno polje je sila po jedinici testnog naboja  $E = \frac{F}{q}$ . Smjer polja = smjer sile na pozitivni naboj.
- Električno polje pozitivnog točkastog naboja gleda od njega (drugi pozitivni naboj bježi od njega). Polje negativnog naboja gleda prema njemu.



Coulombov zakon: polje na udaljenosti r od točkastog naboja q je  $E=k_{\rm e} {q\over r^2}$