TRIBHUVAN UNIVERSITY INSTITUTE OF ENGINEERING

Examination Control Division

2080 Baishakh

Exam. Level	Back		
	BE	Full Marks	80
Programme	All (Excep BAR)	Pass Marks	32
Year / Part	I/I	Time	3 hrs.

[5]

Subject: - Engineering Mathematics I (SH 401)

- ✓ Candidates are required to give their answers in their own words as far as practicable.
- ✓ Attempt All questions.
- √ The figures in the margin indicate <u>Full Marks</u>.
- ✓ Assume suitable data if necessary.

1. If
$$y = \log(x + \sqrt{a^2 + x^2})$$
, then show that

i)
$$(a^2+x^2) y_2 + xy_1 = 0$$

ii)
$$(a^2+x^2) y_{n+2} + (2n+1) xy_{n+1} + n^2 y_n = 0$$
.

ii)
$$(a^2+x^2) y_{n+2} + (2n+1) xy_{n+1} + n^2 y_n = 0$$
.
2. Assuming the validity of expansion prove that the series by using Maclaurin's series:
$$\frac{x}{e^x - 1} = 1 - \frac{x}{2} + \frac{x^2}{12} - \frac{x^4}{720} + \dots$$

$$e^{x} - 1 \qquad 2 \qquad 12 \qquad 720$$
3. Evaluate:
$$\lim_{x \to 0} \left(\frac{\sin x}{x} \right)^{\frac{1}{x^2}}$$
[5]

5. Find the pedal equation of the curve:
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$
. [5]

6. Show that
$$\int_0^a \frac{\sqrt{\cot x}}{1 + \sqrt{\cot x}} dx = \frac{\pi}{4}.$$
 [5]

7. Evaluate:
$$\int_0^{\pi} \frac{\log(1 + a\cos x)}{\cos x} dx$$
, using the rule of differentiation under the sign of integration. [5]

8. Define Beta and Gamma function. Using Beta and Gamma function evaluate:

$$\int_{0}^{\pi} \cos^{2}\theta \sin^{4}\theta \,d\theta.$$
 [1+4]

9. Find the volume of the solid formed by revolution of cardioid $r = a (1-\cos\theta)$ about the [5]

10. Solve
$$\frac{dy}{dx} = 2y \tan x + y^2 \tan^2 x$$
. [5]

10. Solve
$$\frac{1}{dx} = 2y$$
 takes $y = y^2 + 2px$

11. Solve the differential equation: $y = yp^2 + 2px$

11. Solve the differential equation:
$$\frac{d^2y}{dx^2} - 2\frac{dy}{dx} + y = xe^x \sin x$$
. [5]

13. Solve the differential equation:
$$x^2 \frac{d^2y}{dx^2} + 4x \frac{dy}{dx} + 2y = e^x$$
. [5]

OR

14. Derive the standard equation of ellipse.

- [5]
- 15. Find the angle through which the axes may be turned so that the equation x+2y+5=0 may be reduced to x=c and also determine the value of c.
- [5]

[1+4]

16. Show that the conic $3x^2 + 10xy + 3y^2-26x - 22y + 43 = 0$ is a hyperbola. Also find the eccentricity.

Describe and sketch the conic

$$r = \frac{4\sec\theta}{2\sec\theta - 1}$$

[5]