Orange Hoops Data Science Challenge

Data Wizards

- Rushikesh Shinde
- Sagarika Shinde
- Sejal Sardal
- Srushti Shobhane

Analyzing player performance through shot success metrics is crucial for strategic decisions in basketball, especially during game-winning moments.

Goal: Predicting Player who takes winning shot

The aim of this project is to predict shot success in basketball games, facilitating recommendations for the optimal player to take game-winning shots. By analyzing data from the Boston College basketball team, the project leverages machine learning to enhance decision-making in high-pressure situations.

Data Loading and Inspection

```
#printing the first few rows of the dataset
print(data.info())
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 5991 entries, 0 to 5990
Data columns (total 35 columns):
    Column
                             Non-Null Count Dtype
                             5991 non-null
                                            int64
     game id
                             5991 non-null
                             5991 non-null
                                             object
                             5991 non-null
     play_id
                             5991 non-null
                                            int64
                             5991 non-null
                                             int64
     time remaining half
                             5991 non-null
                                             obiect
     secs remaining
                             5991 non-null
     secs_remaining_absolute 5991 non-null
                                            int64
     description
                             5990 non-null
                                             object
                             5796 non-null
    action team
                                             object
     home score
                             5991 non-null
                                            int64
    away_score
                             5991 non-null
                                            int64
                             5991 non-null
                                             int64
    play length
                             5991 non-null
                                             int64
    scoring play
                             5991 non-null
    foul
                             5991 non-null
                                             hoo1
     win prob
                             5991 non-null
                                             float64
    naive win prob
                             5991 non-null
                                            float64
     home time out remaining 5991 non-null
                                            int64
     away time out remaining 5991 non-null
                                             int64
    home favored by
                             5991 non-null
                                             float64
    total line
                             5991 non-null
                                            float64
                             5991 non-null
                                             object
                             5991 non-null
                                             object
    arena location
                             5991 non-null
                                             object
     attendance
                             5991 non-null
                                             int64
                             2920 non-null
                                             object
                             2920 non-null
    shot outcome
                                             object
                             2920 non-null
     shooter
                                             object
                             2920 non-null
    three pt
                                             object
 31 free throw
                             2920 non-null
    possession before
                             5989 non-null
                                             object
     possession after
                             5933 non-null
                                             object
    shooter encoded
                             5991 non-null
                                            int32
dtypes: bool(2), float64(4), int32(1), int64(12), object(16)
memory usage: 1.5+ MB
```

Data utilized in this analysis encompasses game statistics from the Boston College basketball team, focusing on shot outcomes and player performance metrics. The dataset, thoroughly cleaned and structured, lays the foundation for extracting valuable insights essential for determining the most effective shooter's performance.

Data Cleaning and Preprocessing

Initial cleaning involved dropping rows with missing essential data such as shooter, shot outcome, and shot team.

- Dropped rows missing essential data in shooter, shot_team, and shot_outcome to maintain data reliability.
- Converted secs_remaining to numeric, handling any non-numeric values as NaN.
- Transformed three_pt into a Boolean type (True for three-point attempts), aiding in logical filtering.

:		game_id	play_id	half	secs remaining	secs remaining absolute	home score	away_score	score_diff	play length	win_prob	 home t
-												
(count	2.920000e+03	2920.000000	2920.000000	2920.000000	2920.000000	2920.000000	2920.000000	2920.000000	2920.000000	2.920000e+03	
1	mean	4.015979e+08	158.507534	1.529452	1145.329795	1160.843493	39.030137	36.786644	2.243493	10.393151	5.931869e-01	
	std	1.136446e+04	92.962103	0.517414	697.755897	701.710556	23.474501	21.739418	10.020498	9.120875	3.237856e-01	
	min	4.015762e+08	1.000000	1.000000	1.000000	1.000000	0.000000	0.000000	-32.000000	0.000000	2.450000e-12	
	25%	4.015921e+08	77.750000	1.000000	529.000000	545.000000	18.000000	19.000000	-5.000000	1.000000	3.138073e-01	
	50%	4.016041e+08	157.000000	2.000000	1140.500000	1156.500000	38.000000	36.000000	1.000000	9.000000	5.963663e-01	
	75 %	4.016042e+08	237.250000	2.000000	1747.000000	1766.000000	58.000000	54.000000	8.000000	17.000000	9.534236e-01	
	max	4.016254e+08	361.000000	3.000000	2392.000000	2681.000000	95.000000	90.000000	33.000000	40.000000	1.000000e+00	
8	rows ×	21 columns										
4	(

[27]:	data_clea	ned.describe()							□ ↑ ↓	å ♀ i
[27]:	remaining	away_time_out_remaining	home_favored_by	total_line	attendance	shooter_encoded	shooter_made	shooter_rolling_accuracy	score_diff_lag	shot_success
)20.000000	2920.000000	2920.000000	2920.000000	2920.000000	2920.000000	2920.000000	2920.000000	2920.000000	2920.000000
	5.220548	1.766438	4.446233	144.818493	4986.690411	86.686644	0.514041	0.510103	2.238014	0.514041
	0.862997	3.114615	8.341802	7.596582	2343.762362	47.292376	0.499888	0.267182	10.017347	0.499888
	2.000000	-8.000000	-7.500000	125.500000	0.000000	0.000000	0.000000	0.000000	-32.000000	0.000000
	5.000000	0.000000	-1.500000	141.500000	3886.000000	44.000000	0.000000	0.400000	-5.000000	0.000000
	5.000000	2.000000	3.500000	148.500000	4866.000000	74.000000	1.000000	0.600000	1.000000	1.000000
	6.000000	4.000000	9.500000	149.500000	6611.000000	137.000000	1.000000	0.666667	8.000000	1.000000
	6.000000	6.000000	22.500000	154.500000	8606.000000	168.000000	1.000000	1.000000	33.000000	1.000000
	4									
									-	

Feature Engineering

To enhance predictive modeling, key features were engineered from raw data, focusing on player performance, game context, and shot characteristics.

Creation of New Features:

- •score_diff_category: Categorizes game situations as 'Losing,' 'Close,' or 'Winning' for contextual understanding.
- •clutch_time: Identifies high-pressure shots in the last 2 minutes of the game.
- •shooter_encoded: Assigns numerical IDs to players for individual analysis.
- •shooter_rolling_accuracy: Reflects recent shooting performance over the last 5 attempts.
- •score_diff_lag: Tracks recent score trends for momentum analysis.One-Hot Encoded score_diff_category: Converts game situations into machine-readable format.
- •three_pt: Distinguishes three-point attempts from other shot types.
- •shot_success: Binary target variable defining shot outcome.

```
# Final prepared dataset with only necessary features
data prepared = data cleaned[final features + ['shot success']]
print(data prepared.head())
   secs remaining score diff three pt shooter encoded clutch time
                                False
                                                             False
             2382
                                                             False
            2364
                                 True
             2308
                                False
                                                             False
             2304
                                False
                                                   148
                                                             False
                                False
                                                             False
            2285
   shooter_rolling_accuracy score_diff_lag score_diff_category_Close
                                       2.0
                                                                True
                                      -1.0
                                                                True
                                      -1.0
                                                                True
                       0.0
                                      1.0
                                                                True
  score_diff_category_Winning shot success
                        False
                        False
                        False
                        False
                        False
```

Model Training

Model Selection Based on Recall and F1 Score

Chose XGBoost Classifier for its effectiveness with imbalanced data and ability to capture complex patterns, prioritizing high Recall and F1 Score.

- Key Metrics Used:
 - Recall: Recall: Identifies successful shots, crucial for prioritizing high-confidence shots.
 - F1 Score: Balances precision and recall, ideal for evaluating prediction accuracy.
 - ROC AUC: Measures model's ability to distinguish between successful and unsuccessful shots.
- Approach Taken:
 - Compared multiple classifiers (Random Forest, SVM) before selecting Gradient Boosting.
 - Data Split: 70% training, 30% testing.
 - Feature Scaling: Used StandardScaler for consistency.
 - Cross-Validation: Applied 5-fold CV to ensure stability.
 - Model Evaluation: Achieved 89% accuracy, 0.90 F1, and 0.96 ROC AUC. Feature Importance: Analyzed top features impacting shot success prediction.

Model Evaluation

Classification Report: Provides detailed metrics, such as precision, recall, and F1-score, to assess the model's performance in predicting shot success.

- Measures the accuracy of positive predictions, indicating the proportion of correctly identified successful shots out of all predicted successful attempts. This metric helps evaluate the model's confidence in identifying high-quality shots.
- Recall focuses on the model's ability to capture all actual successful shots, ensuring that highprobability opportunities aren't missed during critical moments.
- **F1-Score** Balances precision and recall, providing an overall measure of model performance in predicting shot outcomes accurately.

Accuracy Score: Measures the overall percentage of correct predictions made by the model..

 Represents the overall percentage of correct predictions for shot success across all attempts.
 While accuracy offers a general view of performance, it is supplemented by precision and recall for a deeper understanding of model reliability under various game situations.

- The model successfully identifies high-probability shots, especially under specific game conditions, like close scores or final moments, highlighting its effectiveness in strategic decision-making.
- High accuracy reflects the model's effectiveness in correctly predicting injury occurrences based on the training data.

Model Results and Insights Focus Areas for Improvement

Feature Expansion: Incorporate additional game context (e.g., defensive pressure) to enhance prediction accuracy.

Model Tuning: Fine-tune hyperparameters further, especially for XGBoost, to maximize Recall without compromising F1 Score.

Visualization

Feature Importance for Predicting Winning Shooter

Top 10 Players with Highest Predicted Success Probability

