# Life Forms of Plant Species and Floristic Regions in Iran

| Book · Ja | anuary 2019                     |       |  |
|-----------|---------------------------------|-------|--|
| CITATIONS |                                 | READS |  |
|           |                                 |       |  |
| 3         |                                 | 2,583 |  |
|           |                                 |       |  |
| 1 author  | •                               |       |  |
| 0         | Mohammad Mousaei Sanjerehei     |       |  |
| 3         | Islamic Azad University of Yazd |       |  |
|           | 41 PUBLICATIONS 160 CITATIONS   |       |  |
|           | SEE PROFILE                     |       |  |

# Life Forms of Plant Species and Floristic Regions in Iran

# By:

Mohammad Mousaei Sanjerehei Islamic Azad University, Yazd Branch, Yazd, Iran



# Life Forms of Plant Species and Floristic Regions in Iran



■ Author: Mohammad Mousaei Sanjerehei

Publisher: Tafakkor Talaei
Publication date: 2019
ISBN: 978-622-96077- 4- 9
Dewey classification: 581.37

■ National Bibliography Number: 5871419

Copyright © 2019 Mohammad Mousaei Sanjerehei All rights are reserved by the author Printed in Iran

#### Preface

The present book provides the importance and effectiveness of studies of plant life forms. The relationships between plant life form and the attributes such as K and r- selection, plant defenses, species interactions, plant productivity as well as succession, grazing and fire are discussed with examples. In addition, this book describes the importance of various climatic, edaphic and topographic variables influencing the distribution of different plant life forms. The life zones, floristic regions and life forms of 3064 of the most abundant plant species in Iran are presented.

Mohammad Mousaei Sanjerehei

# **Contents**

# 1. Plant Life Forms

| Life form                                                   | 1  |
|-------------------------------------------------------------|----|
| Raunkiaer's classification system of life forms             | 3  |
| Phanerophytes                                               | 3  |
| Chamaephytes                                                |    |
| Hemicryptophytes                                            | 5  |
| Cryptophytes                                                | 5  |
| Therophytes                                                 | 6  |
| Phytoclimates                                               | 6  |
| 2. Importance of Life Forms                                 |    |
| Importance of studies of life forms.                        | 7  |
| Ecosystem services by plants of different life forms        |    |
| Influence of climate on plant life forms                    |    |
| Relations between soil and plant life forms                 |    |
| Influence of elevation on plant life forms                  |    |
| K and r- selected life forms                                |    |
| Defenses and apparency of plants of different life forms    | 13 |
| Interactions between plant life form and livestock grazing  |    |
| Response of life forms to fire                              | 15 |
| Shifts in life forms through succession                     | 16 |
| Relationship between plant life form and plant interactions |    |
| Productivity of plants of different life forms              | 19 |
| 3. Life Zones and Floristic Regions of Iran                 |    |
| Life ZonesLife Zones and Floristic Regions of Iran          | 23 |
| The Holdridge Life zones                                    |    |
| The life zones of Iran                                      |    |
| Climate of Iran                                             |    |
| Floristic regions of Iran                                   |    |
| Hyrcanian region                                            |    |
| Irano-Touranian region                                      |    |
| Zagross region                                              |    |
| Khalijo-Omanian region                                      |    |
| Arasbaran region                                            | 32 |

| 4. Life Forms of Plant Species and Floristic Regions in Iran |      |
|--------------------------------------------------------------|------|
| Life forms of plant species and floristic regions in Iran    | . 33 |
|                                                              |      |
| References                                                   | 139  |

# 1. Plant Life Forms

#### Life form

Life form of a plant indicates adaptation of the plant to the environment. In fact, environment is the primary driver of life form evolution. For example, a deciduous tree is a plant life form that responses to an unfavorable season by shedding its leaves, or a geophyte is a plant that survives in a form of underground root or stem in response to unfavorable environment.

Plant life form can also be defined as the structural form of a plant under the condition of its habitat indicating function of the plant in the habitat and its response to climate, soil, topography, disturbances such as grazing and fire as well as interactions between plants (Arnold, 1955). In fact, life form is a result of long term morphological adjustments to the environment that have an evolutionary basis and have become fixed in the heredity of the kind (Cain, 1950).

Sometimes, a species may belong to one life form type in one region and to another type in a region with different climatic conditions. *Ricinus communis*, for example is a perennial in tropical and subtropical climates and an annual in temperate climates.

A species may have more than one life form according to its age. All phanerophytes (e.g., trees) show gradual change of life form as they grow in size (Morey 1936).

Plant species that are phylogenetically close, may have different life forms. For example *Calendula officinalis* and *Artemisia sieberi* are from the same family, but the former is a small herbaceous plant and the latter is a woody shrub. Conversely, species of unrelated families such as *Acantholimon scorpius* and *Acanthophyllum squarrosum* may share a similar life form through convergent evolution. Similar stem-succulents evolved in the families of Cactaceae and Euphorbiaceae are good examples of this case (Cain, 1950). Thus, life forms are not entirely the results of climatic conditions alone, but are dependent on the flora available and on its history (Adamson, 1939).

Although there is a significant correlation between life form and climate, no climatic zone or large scale environmental type is characterized by a single life form. Thus, large climatic regions and principal associated soils contain plant communities composed of several life forms.

Ecological dominance is largely determined by the combinations of life form characteristics. Trees and shrubs exert dominance over all other species in forest communities due to their superiority in life span and structure. Grasses dominate in meadows and bunchgrass openings and are therefore superior life forms in these ecosystems. However, disturbances such as overgrazing, fire and heavy logging can reduce the dominance of superior life forms over inferior life forms (Arnold, 1955). Terrestrial biomes including tropical forests, temperate forests, grasslands, deserts, taiga (coniferous forests) and tundra are differentiated on the basis of dominant plant life forms.

Several studies have shown a strong correlation between life forms and various life history traits such as reproductive rate, length of life and body size. For example therophytes (annuals) have a higher reproductive rate and a smaller body size than phanerophytes (e.g., trees). In forests, trees have significantly higher seed, fruit and flower weight and ratio of fruit to flower mass than other life forms (Ramirez, 1993).

Since a plant's life form represents fundamental adaptation to the environment, community life form composition has a greater potential value than community species composition for use as an indicator of microenvironmental conditions (Cooper, 1961). The variations in community life form composition can be quantified by estimating vegetative attributes such as cover, density, biomass and frequency.

Changes in life forms may alter the structure of food web in an ecosystem. Loss of red-flowered herbs for example, can probably result in loss of hummingbirds, which in turn may lead to the loss of snakes that feed on hummingbirds (Ewel and Bigelow, 1996).

Life form of a plant can determine the ability of the plant to capture resources (Golluscio et al., 2005). Plants of the same life form have approximately similar structure and similar manner for utilization of environmental resources.

Growth form is another characteristic of vegetation which is sometimes used as a synonym for life form. However, there is a distinction between life form which is determined by the general physiognomy and growth form which can be regarded as a subdivision based on the architecture of the shoots (Du Rietz, 1931).

A simple classification of plant life forms that has been extensively used is trees, shrubs, grasses, forbs and annuals. A variety of criteria have been used by researchers for classification of plant life forms. These include physiognomy (Von Humboldt, 1807; Grisebach, 1884), height of the lignified stem and plant longevity (de Candolle 1818), power of vegetative propagation, duration of tillers, hypogeous or epigeous type of shoot, mode of wintering, degree and mode of branching of rhizomes, evergreen and deciduous habit, heterotrophic and autotrophic types (Warming, 1884, 1895, 1909), position of perennial buds

during unfavorable season (Raunkiaer, 1904, 1905,1934), form, size, duration and structure of leaves (Raunkiaer, 1916), morphology (Kerner von Marilaun, 1863; Mueller-Dombois and Ellenberg, 1974), biological-functional types (Drude, 1890) and physiological-adaptational traits (Schimper, 1898).

These life form criteria have been used individually or combined into more diverse and complex schemes for classification of life forms. There is no universal agreement on one system of life form classification and each system has its own advantages and disadvantages.

#### Raunkiaer's classification system of life forms

Among all life form classification schemes, Raunkiaer's system of life form classification has received much attention and applied to any variety of vegetation types. In addition, it can serve as an ecological classification of plant communities (Mueller-Dombois and Ellenberg, 1974). Raunkiaer's system is based on the adaptation of plants to survive unfavorable season. Raunkiaer characterized life form types based on the kind and the degree of protection afforded to the perennating buds and shoot-apices, and classified life forms based on the location of perennating buds during unfavorable season. Unfavorable season may be due to drought, cold or both, and they may be short or long. The life form types presented by Raunkiaer include phanerophytes, chamaephytes, hemicryptophytes, cryptophytes and therophytes which are arranged from least to most protection of buds.

# Phanerophytes

The surviving buds or shoot-apices in these plants are located more than 25 cm above soil surface and borne on the shoots which project into the air (Fig. 1). Phanerophytes are mainly woody perennials such as trees and large shrubs and are subdivided based on plant height:

Megaphanerophytes; with over 30 meters tall, Mesophanerophytes; between 8-30 m tall, Microphanerophytes; with 2-8 m tall, Nanophanerophytes; under 2 m and over 25 cm tall.

In addition to height-based classification, Raunkiaer presented life form subclasses based on bud covering and evergreen or deciduous attributes as;

Evergreen megaphanerophytes with bud covering,

Evergreen megaphanerophytes without bud covering,

Evergreen mesophanerophytes with bud covering,

Evergreen mesophanerophytes without bud covering,

Evergreen microphanerophytes with bud covering,

Evergreen microphanerophytes without bud covering,

Evergreen nanophanerophytes with bud covering, Evergreen nanophanerophytes without bud covering, Deciduous megaphanerophytes with bud covering, Deciduous microphanerophytes with bud covering, Deciduous nanophanerophytes with bud covering,

Phanerophytes exhibit the least amount of protection from the unfavorable conditions. These plants decrease in dominance with increasing climatic severity (e.g., extremes of temperature). Some species such as *Quercus stellata* show a mesophanerophytic life form under favorable conditions and nano-or microphanerophytic life form under less favorable environment (e.g., drier climate). The tallest trees occur in the most favorable climates in the warm and humid tropical rainforests, temperate deciduous and coniferous forests, and for any of these life forms, the plant stature is reduced when soil is less favorable and climate is worse (Cain, 1950).



**Figure 1-** Diagram of the types of life-forms: Phanerophytes (1), Chamaephytes (2-3), Hemicryptophytes (4), and Cryptophytes (5-9). The parts of the plant which die in the unfavorable season are unshaded. The persistent axes with the surviving buds are black. *Proceeding from Phanerophytes* (left) to cryptophytes (right), the plants enjoy progressively better protection during the *unfavorable* season, and the surviving buds being located lower and lower. In Chamaephytes the buds are on the surface of the ground (2 and 3), in Hemicryptophytes they are in the soil-surface (4), and in Cryptophytes (5 and 6) the buds are actually in the soil, or at the bottom of the water in Helophytes (7) and Hydrophytes (8-9). From Raunkiaer (1934), *The life forms of plants and statistical plant geography*.

#### Chamaephytes

Chamaephytes are the plants having their perennating buds or shoot-apices on the soil surface or above it not exceeding 25 cm (Fig. 1). Chamaephytes include woody plants and are often protected in the unfavorable season by fallen leaves and snow or by the dense growth of the plant itself and thus buds are better protected than in phanerophytes (Cain, 1950).

Chamaephytes are subdivided into four groups as;

- a) Suffruticose chamaephytes; the aerial shoots are erect. At the beginning of the unfavorable season, they die back to the portion, of varying length, that bears the surviving buds. In fact they are the plants in which the perennating buds remain on the soil surface after the herbaceous parts have died away on the approach of the critical season, like many Mediterranean species of Labiateae and Papilionaceae (Smith, 1913).
- b) Passive chamaephytes; the shoots are negatively geotropic but they are not furnished with sufficient strengthening tissue to keep them erect. Thus they are the plants with weak stems which often lie on the ground.
- c) Active chamaephytes: the shoots are persistent and transversely geotropic in light.
- d) Cushion plants.

Raunkiaer noted that there is a positive correlation of the percentage of plants in this class with increasingly latitude and altitude. There is sometimes difficult to draw a sharp line to distinguish between phanerophytes, chamaephytes and hemicryptophytes.

# Hemicryptophytes

In this life form class, the surviving buds or shoot-apices are located in the soil surface and are therefore more protected than the chamaephytes (Fig. 1). Hemicryptophytes are numerous in humid temperate regions and often constitute a high percentage of the total species of an area particularly in deciduous forests and grasslands (Cain, 1950). Raunkiaer recognized three main subdivisions for hemicryptophytes as follows;

- a) Protohemicryptophytes or non-rosette: the plants are without leaf rosettes,
- b) Partial rosette: these plants have both basal leaf rosette and leafy stem,
- c) Rosette plants; they have all or nearly all of their leaves in a basal rosette and, the elongated aerial shoot bears only flowers.

# Cryptophytes

Buds or shoot-apices of these plants are buried in the soil, in water or in the soil under the water at a distance from the surface. They are much more protected than the plants whose perennating buds are on the soil surface or elevated into

the air (Cain, 1950). Three main subdivisions of this life form were presented by Raunkiaer;

a) Geophytes; These plants have tuberous subterranean organs including rhizomes, bulbs and tubers which enable them to make a quick vegetative development with the return of favorable season. These include; rhizome geophytes, bulb geophytes, stem tuber geophytes and root tuber geophytes (Fig. 1).

Geophytes are common in the Mediterranean type of climate, in some steppes and in the vernal flora under deciduous temperate forests where they expand rapidly before the full leaf canopy is displayed (Cain, 1950).

- b) Helophytes; or marsh plants are mostly emergent plants. Their perennating buds are rooted in the soil beneath the water (Fig. 1).
- c) Hydrophytes; these are the plants which include free floating forms and those which may be rooted but not emergent during the unfavorable season (Fig. 1).

#### **Therophytes**

Therophytes or annuals are the plants that survive the unfavorable seasons in the form of seeds. Annuals are abundant in deserts and in weed communities and where native vegetation is disturbed (Cain, 1950).

#### **Phytoclimates**

Raunkiaer presented four major phytoclimates based on the relationship between climate and the life forms;

- a) phanerophytic climate of the warm humid tropics,
- b) hemicryptophytic climate of the midlatitudes, including both the coniferous and deciduous forests as well as the moister steppes (temperate zones),
- c) therophytic climate of tropical and subtropical deserts (arid and warm deserts) and
- d) chameophytic climate of high latitudes and altitudes (cold zones).

It should be noted that more than one life form may occur in an area with a climate type and that no single life form is limited to a climate type. Local conditions such as microclimate, edaphic conditions, plant interactions as well as disturbances such as fire and grazing may result in an appearance of a variety of life forms in a given climate. However, the dominant life form may be a good indicator of the prevailing climate type.

# 2. Importance of Life Forms

#### Importance of studies of life forms

Plant life form is closely related to a variety of vegetation attributes and ecological processes such as structure of community, succession, ecosystem services and functions, intensity of grazing, fire extent and frequency, plant interactions, life history features, fauna of herbivores and carnivores, plant species richness and adaptation of plants. The study of plant life form is important for;

- Determination of the environmental and anthropogenic variables shaping and altering the structure of plant communities,
- Comparison of vegetation among different habitats and quantifying the ecological similarity of different communities,
- Evaluating succession through shifts in plant life forms (i.e., from grass to shrub),
- Understanding the changes in ecosystem services and functions as a result of changes in life form types,
- Detecting changes in fauna of herbivores, carnivores and microorganisms according to the changes in plant life forms,
- Investigation of forage quality and quantity for livestock,
- Assessing and predicting fire frequency and extent,
- Analysis of community resilience following environmental disturbances,
- Detection and interpretation of the type and significance of interactions between plant species,
- Ecologically interpreting vegetation,
- Making an effective and efficient measure of vegetation for remote sensing studies,
- Predicting the survival of plants under fire and grazing,
- Studying soil organic matter, carbon dynamics and storage as well as patterns of other nutrient concentrations,
- Assessing and comparing life history features such as population size, ability to disperse, reproductive strategy, length of life and reproductive age among different plant species,

- Evaluating vertical patterns of ecosystem processes due to differences in root distribution pattern and aboveground plant structure among different life forms,
- Determining the compositional response of vegetation communities to climate changes and disturbances and, planning for effective management practices which will help to maintain a high level of plant productivity and richness in different terrestrial ecosystems.

#### Ecosystem services by plants of different life forms

Plants provide a variety of ecological services and functions which are environmentally, economically and socially beneficial and necessary for human (Costanza et al., 1997). Plant life forms differ in the amount and the extent of services and functions they provide. For example, importance and role of trees in climate regulation and soil formation is much more than that of herbaceous plants, whereas herbaceous plants are more important than trees in biological control and livestock grazing. Plants of similar life forms provide approximately equivalent functions. Therefore, in a community with frequent and diverse plant species of similar life forms, the loss of a species or substitution of one species for another is likely to have small consequences for ecosystem services and functions. But shifts and changes in life forms can strikingly alter ecosystem functions due to the different structure and architecture among different life forms (Ewel and Bigelow 1996). The services and functions which are provided by plants and are largely different among plants of different life forms include but not limited to:

- Regulation of atmospheric gasses: O<sub>2</sub>/CO<sub>2</sub> balance, O<sub>3</sub> for UVB protection,
- Climate regulation: regulation of temperature, precipitation and greenhouse gasses as well as vegetation cooling,
- Disturbance regulation: storm protection, flood control, drought recover,
- Water regulation: regulation of water cycle through transpiration, water absorption and infiltration by plants,
- Erosion control: prevention of soil loss by wind and water,
- Soil formation: role of decomposed litters in chemical weathering of stones and role of plant roots in physical weathering of stones,
- Nutrient cycling: role of nitrogen-fixing legumes and decomposition of plant organic materials,
- Waste treatment and pollution control: role of vegetation in removal or breakdown of xenic nutrients and compounds,
- Refugia: provision of habitat for animals,
- Food production: production of crops, nuts, fruits, etc,

- Raw materials: production of lumber, fuel and fodder,
- Forage production for livestock,
- Pharmaceutical uses: medicinal plants and medicinal compounds extracted from plants,
- Recreation: providing opportunities for recreational activities (such as forests),
- Biological control: role of companion plants in repelling and deterring pests. For example, asparagus can deter the root-knot nematode of tomato, and tomato can repel asparagus beetle, when they are planted together.

#### **Influence of climate on plant life forms**

Climatic variables such as temperature and precipitation have been long recognized as the most important drivers of life form types. In fact, the relation of physiognomy to climate has often been made the basis of the classification of life forms by many scientists (Raunkiaer, 1934; Adamson, 1939). In deserts with low precipitation and high temperature, life forms such as annuals, succulents (e.g., cacti species) and desert shrubs (e.g., Haloxylon) are adapted. Grasses are dominated in the prairie (temperate grasslands) and Savanna (tropical grasslands). Tallest trees with large, oval and waxy leaves prevail in tropical regions with annual precipitation of more than 2400 mm and annual mean temperature of more than 17° C. Epiphytes are also abundant plants in tropical climates. Temperate climates with annual precipitation of 750- 2000 mm are characterized by deciduous trees with abundant hemicryptophytes and geophytes (Cain, 1950, Stiling, 1996). In these regions, many herbaceous plants flower in spring before the expansion of tree canopies.

In Taiga (coniferous forests) with long and cold winters, most of trees are evergreens or conifers with needle-leaves such as pines and spruces. There are also some small-leaved deciduous trees like birch and alder, mostly in some parts of Taiga escaping the most extreme winter cold.

In Tundra, with an annual precipitation of less than 250 mm, often as snow, summer temperature of 5° C and winter temperature of -32° C, most plants occur in the form of lichens, mosses and grasses (Stiling, 1996).

Woody cushion is a characteristic of damp and cold climate with a short growing season (Adamson 1939). Shrubby species such as Sagebrush (*Artemisia sieberi* and *Artemisi aucheri*) and milk vetch (Astragalus sp.) are important indicators of arid and semiarid climates of Iran covering a large area of this country.

Based on the physiognomic types of Holdridge, trees dominate mainly in the areas with a precipitation of more than 500 mm. Grasses prevail where

precipitation is around 250-500 mm, and scrubs prevail in the regions with precipitation of less than 250 mm.

Although there is a significant correlation between climate and plant life forms, there is no climate zone characterized by a single life form. This is because microclimate conditions, soil attributes, plant interactions and topographic variables (e.g., slope, aspect and elevation) may result in the appearance of a verity of life forms in a plant community. However the occurrence of dominant life form in an area is likely to be highly dependent on the macroclimate of the area.

Plants of the same species (e.g., *Tribulus terrestris*) may have different life forms in accordance with different climatic conditions. The ability of a species to grow in different life forms enables the existence of the species under extreme climatic conditions. For example mat-like, stem shrub, prostrate, multistemmed and single stemmed ecomorphs have been distinguished in the Larch (*Larix sibirica* Ledeb.) along an altitudinal gradient in the polar Urals. Development of vertical stems in prostrate and stem-shrub ecomorphs of Siberian larch occurs mainly in favorable climatic periods (Mazepa and Devi, 2007).

Plants of different life forms respond differently to climatic changes. For example, evergreen dwarf-shrubs and cushion plants in Tundra communities generally respond very little to higher temperature. Deciduous dwarf-shrubs, graminoides and herbs, in contrast tend to increase their growth rate and standing crop and respond more quickly to environmental cues (Michelsen et al., 1996; Molau, 1997).

#### Relationships between soil and plant life forms

Soil chemical properties such as salinity, pH and nutrient content and soil physical properties like texture, structure, density, porosity and water content can significantly affect on life form type and vegetation structure. In the semiarid valley of Zapotitlan Mexico, nitrogen proved to be significant for columnar cacti, succulents and chamaephytes. pH, EC and nitrogen were significant for globose cacti, and pH was the important driver of therophytes distribution (Pavon et al., 2000).

In a shortgrass steppe community in northeastern Colorado, diversity of life forms has been found to be a function of the spatial partitioning of soil water resources and their differential use by trees, shrubs and grasses (Dodd et al., 1998). Two different life forms (e.g., shrubs and grasses) may occur in one habitat where their different root distributions coincide with the vertical separation of soil water resources (Walter, 1979).

In Sahelian, Burkina Faso, chamaephytes have shown a more pronounced preference of dunes over pediplain than other life forms, whereas diversity of

geophytes has been found to be higher near water courses (Schmidt et al., 2008).

Seeds of different plant life forms have different germinability, germination time and speed of germination in relation to different values of soil water potential and temperature. Shrubs for example, were shown to have higher germinability than columnar succulents and shorter germination time than arborescent semi-succulents in a Mexican inter-tropical desert. In general, different plant life forms utilize different germination strategies to persist (Flores and Briones, 2001).

Shifts in plant life forms can alter chemical and physical characteristics of the underlying soil. Plant life forms differ in belowground structure such as root depth and distribution and aboveground structure such as canopy cover, height and leaf shape and therefore in their influences on soil properties and soilrelated processes such as runoff and erosion. Different aboveground plant structures among life forms have different influences on ecosystem processes through airflow, albedo, water percolation and infiltration patterns (Reynolds et al., 1997). Shrubs have been shown to increase sustainability of soil surface more than other types of life forms (grasses, forbs) in semisteppe rangelands of Golestan Park, Iran (Ghodsi et al., 2012). This is due to the coarse roots and deeper root distribution of shrubs in compared to grasses and forbs. In the humid rangelands of Savadkooh, Iran, the most and the least volume of runoff occurred respectively in forb and grass communities, and sediment concentration was found to be more under shrubs than under grasses (Najafian et al., 2010). Soil carbon content, organic matter and chemistry as well as distribution and accumulation of nutrients may change following changes and shifts in dominant plant life form, because plant life forms differ in litter chemistry and patterns of detrital input (Gill and Burke, 1999). Studies have shown that soil carbon, nitrogen and micronutrient concentrations are generally higher under Savanna trees and shrubs than in the bare or grass-dominated interspaces. This is because shrub litter is generally higher in nutrient content and concentration than grass litter (Connin et al., 1997; Kieft et al., 1998; Burke et al., 1998).

Different abiotic conditions such as decomposition, nutrient availability and evaporation rate between under shrub canopy and grass canopy may lead to the occurrence of different fauna under canopy of the two life forms (Gill and Burke, 1999).

#### **Influence of elevation on plant life forms**

Elevation is an important topographic variable that significantly influences the climatic conditions such as temperature (e.g., decrease of temperature

by 6°C for every 1000 m increase in elevation). Elevation has been shown to have a significant effect on plant life forms.

In summer rangelands of Ramsar, Iran, life form types were found to depend on the elevation (Askarizedeh and Heshmati, 2013). Annual grasses and perennial forbs were inversely associated with elevation, whereas annual forbs, perennial grasses, shrubs and trees were positively correlated with elevation.

Along a gradient of altitude in the humid rangelands of western Iran, therophytes (annuals) were found to have a higher richness at lower elevations and decrease with increasing elevation. Geophytes, hemicryptopohytes and phanerophytes showed a positive response to elevation and increased with increasing elevation (Hatami et al., 2011).

In the semiarid valley of Zapotitlan Mexico, Rosette plants, microphanerophytes, nanophanerophytes and therophytes were well represented throughout the altitudinal gradient.

Columnar and globose cacti were more abundant at elevations between 1600 and 2000m. Geophytes distributed at 1700 -1800 m range. The life form abundance was found to be inversely correlated with elevation, and only chamaephytes and nanophanerophytes were abundant at 2200 m (Pavon et al., 2000).

In the rupestrian grasslands in south-eastern Brazil, frequency and richness of phanerophytes and chamaephytes were found to decrease with increasing elevation, while hemicryptophytes and therophytes were found to dominate at high elevations (Mota et al., 2018). Korner et al. (1986) evaluated the effects of altitudinal variation on structure and function of different plant life forms in Southern Alps of New Zealand. They concluded that with an increase in elevation, maximum leaf diffusive conductance, leaf nitrogen content and stomatal density increased whereas stomatal area and specific area of leaves decreased in trees (*Nothofagus menziesii*), ericaceous dwarf shrubs and herbaceous plants of the genus *Ranunculus*. In general, the structural and functional changes in the leaves of herbaceous plants along the altitudinal gradient were more than those of shrubs and trees.

#### K and r- selected life forms

*K* and *r*- strategies are the concepts that bring together several life history features such as reproductive strategy, population size, ability to disperse, length of life and reproductive age (Stiling, 1996). The plants living in environments imposing high density-independent mortality (*r*-selected plants) will be selectively favored to allocate a greater proportion of resources to reproductive activities and conversely, plants living in environments imposing high density-dependent regulation (*K*- selected plants) will be selectively

favored to allocate a greater fraction of resources to non-reproductive activities (Gadgil and Solbrig, 1972).

The concepts of *K* and *r*- selection are not absolute, but are meaningful only by comparison. For example, herbaceous plants tend to be *r*-strategists more than shrubs and trees. The *r*-selected plants such as therophytes (annuals) and weeds produce a large amount of seeds and therefore have high population growth rate. They spread quickly throughout a habitat, mature early, set seed and then disappear. The *r*-selected plants are more frequent in disturbed habitats, because plants from more disturbed habitats devote on the average, a greater proportion of their aboveground production to reproductive tissue than plants from less disturbed habitats (Gadgil and Solbrig, 1972).

K-selected plants such as phanerophytes (e.g., trees) reach to maturity late and tend to increase more slowly to the carrying capacity of the environment. These plants devote much energy to growth and maintenance and have relatively low values of population growth (Stiling, 1996). In general, r-selected plants have a higher reproductive rate, earlier sexual maturity, shorter life span, smaller size, higher mortality of young and stronger dispersal ability than K - selected plants. Therefore, the concepts of K and r-strategies appear to be more efficient when applied for life forms rather than for plant species.

#### Defenses and apparency of plants of different life forms

Plants use various chemical and physical defenses against herbivores. Plant chemical defenses are divided into quantitative and qualitative varieties. Quantitative defenses of plants are the compounds such as tannins that are largely digested by the herbivore and prevent further digestion of food. These compounds often constitute more than 1 percent of the fresh weight of leaves. Qualitative defenses are essentially the substances that can have a poisonous effect on herbivores (especially insects and invertebrates) even when they consume very small amount of the substances. These substances such as atropine are present in leaves of plants at low concentrations, around less than 1 percent of the fresh weight of leaves. Most qualitative defenses are rich in nitrogen and therefore are more common in nutrient- rich environments (Stiling, 1996).

In general, the nature and extent of investment in defense against herbivores has evolved in response to the apparency of the plant (Feeny, 1976; Rhoades and Cates, 1976). Thus, quantitative and qualitative chemical defenses of plants are correlated to the life form and apparency of the plants. Apparent plants such as trees have large size and are named because they are always apparent to herbivores (mainly insects) and easily found by them. The defensive chemical compounds of apparent plants are thought to be mainly quantitative. Unapparent plants (such as annuals) are small and ephemeral plants that are often

unavailable to herbivores for long periods. The defenses of unapparent plants are assumed to be largely qualitative (Stiling, 1996). Thus, nearly all phanerophytes (such as trees and large shrubs) contain digestibility reducing substances, whereas therophytes (annuals) and weeds contain toxins. In addition to plant apparency, "carbon/nutrient balance" is an important factor influencing the patterns of herbivory. According to the carbon/nutrient balance hypothesis, plants will accumulate carbon-based defenses in low-nutrient environments, whereas in low carbon environments (such as limited light conditions), plants are more likely to invest in nitrogen-based defenses (Bryant et al., 1983; Van de Waal et al., 2009). Both apparency and carbon/nutrient balance are related to plant life forms (Maclean and Jensen, 1985). In a study in Alaska arctic tundra, larvae of four generalist-feeding Lepidoptera selected for deciduous shrubs and against evergreen shrubs and graminoids, which is consistent with the carbon/nutrient hypothesis of plant defense. Deciduous shrubs growing on nutrient rich habitats had rapid growth, high leaf turnover and little investment in defense, whereas evergreen shrubs growing on nutrient poor sites had slower growth and leaf turnover and higher investment in defense (Maclean and Jensen, 1985).

#### Interactions between plant life form and livestock grazing

Influence of grazing on plant life forms mainly depends on the type of life form and the type of herbivore. In addition, life form of a plant can largely influence the pattern and intensity of grazing, because plants with different life forms differ in the quality of forage (eg., crude protein, acid-detergent fiber, digestibility of dry matter, metabolism energy) (Arzani et al., 2010).

Studies in rangelands of Arak and Bojnourd, Iran with cold semiarid climates have shown that annual grasses and forbs were more preferred by sheep than other types of life forms such as perennial grasses and shrubs (Heydarian et al., 2010; Zare et al., 2012). Thus, overgrazing by sheep may result in an increase of shrubs and a decrease of forbs (Heydarian et al., 2010). In rangelands of Golestan and Kordestan, Iran with humid climate, grazing prevention has been shown to lead to an increase in the cover, production and density of hemicryptophytes, forbs and grasses (Imani et al., 2010; Salarian et al., 2013). Some studies have shown that livestock grazing can largely prevent recruitment of trees and shrubs and thus, transform woodlands into grasslands (Gibson and Kirkpatrick, 1989; Cheal, 1993). Pettit et al. (1995) reported that grazing by domestic livestock in woodlands of Australia significantly reduced the native shrubs and perennial herbs, but increased the number of exotic annual grasses

and herbs. Cain (1950) pointed out that overgrazing which is so prevalent in

grasslands tends to increase the percentage of annuals through the introduction and spread of weedy grasses and forbs of this life form.

Type of grazing animal seems to depend more on plant life form rather than plant species. In general, sheep prefer grasses and forbs over shrubs and therefore is known as a "grass and forb feeder", whereas goats are shrub-feeder and prefer to feed more on shrubs in contrast to sheep (Schulz, 1994; Khan et al., 1999; Fayaz et al., 2015). Camels mainly graze on trees and shrubs and are known as browsers (Schwartz et al., 1983). The study of the diet of camel in rangelands of Semnan, Iran showed that this animal prefers chamaephytes such as *Alhagi psedoalhagi* and *Halocnemum strobilaceum* and the phanerophytes such as *Tamarix leptopetala* rather than other life forms (Fayaz et al., 2015). Cattle mainly prefer grasses especially tall ones (Van Rees and Hutson, 1983; Dougherty et al., 1989; Gallina, 1993). Arnold (1955) stated that overgrazing by cattle reduced tall grasses in meadows and mid grasses in pine bunchgrass openings and resulted in the replacement of tall and mid-grasses by short grasses, perennial prostrate forbs, short-lived half shrubs and annuals.

Resistance of plants to animal grazing varies according to the life form of plants. Annuals are more tolerant to grazing due to their fast growth rates and early seeding than perennial life forms which show a slow growing and need several years to reach reproductive maturity (Grime, 1974). Impact of grazing on woody plants is likely to be much less than that on grasses and shrubs, because large and long lived trees have a greater energy resources in their roots and can draw on large reserves of resources to buffer the impact of herbivory (Bigger and Marvier, 1998; Stiling, 1996). Geophytes can withstand grazing pressure by having above ground growth occurring in winter and spring, and dying back to an underground storage organ such as rhizomes and bulbs through summer when overgrazing usually occurs (Pate and Dixon, 1981; Pettit et al., 1995). Plants such as geophytes with the ability to resprout from an underground storage organ after grazing are more likely to be resistant of continuous grazing than the plants which are killed by grazing (e.g., therophytes) and rely on seed for regeneration. Plants with the ability of both resprouting after grazing and reproducing from seed are not significantly affected by grazing (Bell et al., 1984; Pettit et al., 1995).

#### Response of plant life forms to fire

Fire extent and frequency are important drivers of changes and shifts in plant life form types and vegetation attributes such as density, cover and frequency. Studies of fire-vegetation relationships in rangelands and forests of Iran with a wide range of climate from arid to humid have shown that fire can significantly change the production, density and cover of forbs, grasses and shrubs and lead to the decrease of perennial grasses and increase of annual grasses

(Siahmansour et al., 2015; Goudarzi et al., 2015; Rafiee et al., 2015; Karmi et al., 2017).

Frequent fires can reduce the abundance of shrub life forms and favor herbaceous life forms. Long-lived woody species have longer juvenile periods than short-lived herbaceous species. Thus, frequent and successive fires can prevent the long-lived woody plants to mature and set seed resulting in the reduction of the abundance of these species and increase of the abundance of life forms with short juvenile periods such as herbaceous plants (Morrison et al., 1995; Burrows and Wardell-Johnson, 2003; Pekin et al., 2012). Great fire frequency can also increase species richness through decreasing the dominant life forms in forest ecosystems where dominant woody life forms competitively suppress short-lived understory plant vegetation (Specht and Morgan, 1981; Peterson and Reich, 2008).

Life forms differ in their resistance to fires, and therefore can be used as efficient measures of predicting the survival of plants under fire. For example, fire will tend to damage the species with exposed perennating buds, whereas the plants with fully protected buds should be least affected. Chapman and Crow (1981) evaluated the response of different life forms to prescribed fire and showed that chamaephytes were most severely affected by fire. Hemicryptophytes varied in their response to fire depending on how well buds were protected and, geophytes best survived the prescribed burn.

Bell et al. (1984) recognized three types of reproductive response after fire; resprouters, obligate seeders and facultative seeder/sprouters. Resprouters are the plants which are able to resprout from an underground storage organ following fire and as a result are more tolerant of fire than obligate seeders. Obligate seeders are the plants which are killed by fire and rely on seed for regeneration. Facultative seeders/sprouters are the least affected plants by fire because they are able both to resprout after fire and to reproduce from seed.

One of the distinct biomes on the earth is chaparral, a Mediterranean scrub habitat adapted to fire. In such ecosystem, precipitation may be sufficient to support tall trees, but frequent fires prevent the trees from surviving long enough to grow tall (Stiling, 1996).

# Shifts in life forms through succession

Succession is the process of changes in species structure and life form in a community over time. The study of life form is very important in plant succession because development of a community through succession may proceed by rearrangement of the proportions of some life form types or by preponderance of one or more species in a life form type becoming increasingly abundant (Adamson, 1931).

The actual process of succession include; appearance and substitution of a verity of life forms, changes in the environment and differences in attributes of a variety of species such as establishment, growth rate, dispersal, competition, facilitation, mortality and resistance over time (Monk, 1983). The sequence of species appearance as dominants seems in part related to their rate of growth to maturity; annuals, herbaceous perennials and woody perennials. Larger and longer-lived life forms tend to replace the smaller and shorter-lived ones. For example, the stages of primary succession in a forest include pioneer plants (e.g., lichens and mosses), herbaceous plants, scrubs, shrubs and trees.

With changes of life form dominance from annuals to perennials, certain species within each group may become the dominants. This may be in part because the dominant species produce allelopathic substances (Monk, 1983).

Successional life form changes on coastal Lake Michigan sand dunes are a good example of primary succession. The geophyte, *Ammophila breviligulata* dominates the dune ridges and gradually replaced by the hemicryptophyte, *Schizachyrium scoparium*, the chamaephyte, *Arctostaphylos uva-ursi*, and the phanerophyte, *Juniperus communis* within 100 years. A mixed forest dominated by *Pinus strobus* and *Pinus resinosa* develops between 225 and 400 years and other phanerophytes such as *Quercus rubra* become important component of the forest canopy after 440 years (Lichter, 2000).

#### Relationship between plant life form and plant interactions

Not only the life form of plants significantly influences on the type of association between the plants, but also the life form of plants can be strongly affected by the type of association between plants (Pate et al. 1984; Holzapfel et al., 2006; Mousaei Sanjerehei et al., 2011; Castanho et al., 2012).

Species interactions are of central importance in the ecology of a species. Two species have some mutual attraction, repulsion, or no interaction in a community. Therefore the association may be positive, negative or absent. Two species are spatially positively associated if any individual of one of the species is found near members of the other species more frequently than random expectation. Two species are negatively associated (segregated) if any individual of one of the species is more likely to be found near members of its own species more frequently than random expectation. Pairs of species are termed "not associated" if the association between the two species is not significant at a chosen probability level (Pielou, 1961; Dixon, 1994).

Negative interactions (competition) and positive interactions (facilitation) between species are regarded as the important drivers of community dynamics, structure and composition (Callaway and Walker, 1997; Callaway et al., 2002; Tirado and Pugnaire, 2005). Facilitation is defined as the positive effects of plants on the establishment or growth of other plants (Callaway 1995;

Holmgren et al., 1997). Several hypotheses suggest that the importance of facilitation among plants may increase with increasing environmental harshness (Bertness and Callaway, 1994; Callaway and Walker, 1997; Callaway et al., 2002; Bruno et al., 2003).

Plants (e.g., nurse plants) may ameliorate harsh environment by providing shade and moisture, increasing water availability, enriching soil nutrients, protecting from desiccant winds as well as introducing in the ecosystem beneficial organisms such as nitrogen fixing bacteria and as a result, facilitate the recruitment and growth of other plants (Bertness and Callaway, 1994; Callaway and Walker, 1997).

Competitive interactions are known to depend on water, nutrients and light as well as the type and life form of plant species (Tremmel and Bazzaz, 1993). It is believed that the importance of competition between plants tends to increase in less stressful environments, e.g., high productivity conditions (Callaway et al., 2002).

In the arid and semiarid Nodushan rangelands of Yazd, Iran, interactions between the shrub species and between the grass species were found to be mainly negative. The strong competition between the shrubs and between the grasses was found to be more affected by similar life form and relatively similar root distribution of the species rather than by the climatic conditions (Mousaei Sanjerehei et al., 2011).

The grass species (Stipa barbata) was found near or in contact with the shrub species (Artemisia sieberi and Artemisia aucheri) in the Nodushan rangelands indicating the positive effects of the shrub species on the grass species. Grasses (e.g., Stipa barbata) require a more humid condition for establishment than shrubs in arid and semiarid environments. Less evaporation rates below the canopy of shrubs relative to bare ground may facilitate the establishment and survival of the grass species. A reduced evaporation from subcanopy soils is likely to result in locally lower soil salinities than from soils exposed to direct solar radiation (Mousaei Sanjerehei et al., 2011). In addition, water taken up by shrub roots is released from shallow roots into upper layers during the night via hydraulic lift and can partly be used by the grass species, although the magnitude of water transferred by this way is small (Williams et al. 1993). Due to the different root distribution of the shrub and grass species, they use resources (e.g., water) from different soil layers and, as a result, the competition between them may be less than that between two shrub species or two grass species.

According to a meta-analysis across different life forms and ecosystems, herbs had strong negative effects, especially on other herb species, whereas shrubs had large facilitative effects especially on trees (Gomez-Aparicio, 2009). Among herbaceous plants, grasses were found to be stronger competitors than

forbs (Goldberg et al., 2001; Pywell et al., 2003; Gomez-Aparicio, 2009). The stronger competitive ability of grasses may be due to the fibrous roots and a large root:shoot ratio of grasses which enable them to compete efficiently for soil resources (Caldwell and Richards, 1986).

The competitive ability of shrubs was reported to be less than early-successional grasses for belowground resources. This is due to the differences in allocation patterns (such as lower root:shoot ratio of shrubs) and in architecture (such as higher rooting depth of shrubs) between shrubs and grasses (Jackson et al., 1996; Gomez- Aparicio, 2009; Kochy and Wilson, 2000). In addition, shrubs are not as strong competitors as trees for above ground resources due to their smaller size providing a moderate shade for understory vegetation in compared to the limiting deep shade of trees in closed forests (Puerta-Pinero et al., 2007; Gomes- Aparicio, 2009).

In Mediterranean post-fire shrub communities, pioneer shrubs can act as nurse plants facilitating the establishment of late successional woody species (Siles et al., 2008). In the Mojave Desert, shrubs (*Ambrosia dumosa*) were shown to have strong positive and weak or no negative effects on survival, biomass, production and seed production of the entire annual community, whereas annuals had strong negative and week positive effects on shrub water status, growth and reproductive output (Holzapfel and Mahall, 1999). Dohn et al. (2013) reported a shift from net competitive to net facilitative effects of trees on subcanopy grass production, with decreasing annual precipitation in Savannas. The type of tree-grass interactions was different along a rainfall gradient in tropical and temperate regions, and trees facilitated grass growth in drier regions and suppressed grass growth in wetter regions.

Age and size of plants within a life form can also influence their competitive and facilitative abilities. In the Patagonian Steppe for example, when shrubs were young and small, facilitation between shrubs and tussock grasses was more than competitive interactions resulting in the formation of dense ring of grasses around a shrub. When the shrub became large and the ring of grasses completed, competition overshadowed facilitation (Aguiar and Sala, 1994).

The balance between facilitation and competition appears to vary depending on the life stages of the species, indirect interactions with other neighbors as well as the benefactor size and the intensity of abiotic stress (Bertness and Callaway, 1994; Miller, 1994; Pugnaire et al., 1996; Callaway and Walker, 1997; Tewksbury and Lloyd, 2001; Mousaei Sanjerehei et al., 2011)

# Productivity of plants of different life forms

Since one of the most important sources of carbon dioxide absorption is photosynthesis by vegetation, the study of primary production seems to be of high importance. Estimates of primary production are useful for monitoring ecosystem goods, services and structure, determining resources for herbivores, evaluating the regulation of global climate through the carbon cycles, determining variation in wood production as well as studying energy flow in ecosystems and assessing ecosystem carbon sequestration (Schlapfer and Schmid 1999; Roy and Saugier 2001; Roxburgh et al. 2004; Meyerson et al. 2005).

The amount of energy fixed by plants in photosynthesis is referred to as gross primary production (GPP). Annual GPP is defined as the total of all carbon annually fixed by plants in ecosystems (Ryan 1991).

A portion of the carbon fixed by plants is lost through construction (growth) and maintenance respirations. Construction respiration is the amount of carbon consumed in the processes such as ATP production, transport processes and nutrient uptake which lead to a net increase in plant dry matter (Chiariello et al. 1989). Maintenance respiration provides the energy for the plant processes such as maintenance of ion gradients across membranes, protein repair and replacement and translocation-related processes which do not result in a net gain in biomass, but keep existing phytomass in a healthy state (Penning de Vries 1975).

The amount of carbon allocated in plants in a certain period of time after losses due to respiration is known as net primary production (NPP). The estimates of NPP and biomass for different ecosystems, each of which are dominated by a certain plant life form, are summarized in Table 1 (Whittaker and Likens, 1975).

The most important factors influencing the primary production of plants include climatic conditions, length of growing season, nutrients such as nitrogen and phosphorus and the dominant plant life form.

The highest mean productivity (NPP) in terrestrial ecosystems is related to tropical forests with the dominance of tree life form (2200 g dry matter/ m²/year) followed by temperate forests (1200), savanna (900), boreal forests (800), woodland and shrublands (700), temperate grasslands (600) and tundra and alpine (140). The lowest productivity occurs in desert and semidesert communities with the dominance of scrub life form (90) and in extreme deserts (3).

| (Whittaker and Likens 197 | 75)           |           |       |    |  |
|---------------------------|---------------|-----------|-------|----|--|
|                           | Net primary i | roduction | Rioma | CC |  |

|                             | Net primary production (dry matter)     |                                 |                         | Biomass<br>(dry matter)               |                             |                 |                           |
|-----------------------------|-----------------------------------------|---------------------------------|-------------------------|---------------------------------------|-----------------------------|-----------------|---------------------------|
| <b>Ecosystem type</b>       | Area (10 <sup>6</sup> km <sup>2</sup> ) | Normal<br>range (g/<br>m²/year) | Mean<br>(g/m²/<br>year) | Total<br>(10 <sup>9</sup> t/<br>year) | Normal<br>range<br>(kg/ m²) | Mean<br>(kg/m²) | Total (10 <sup>9</sup> t) |
| Tropical rain forest        | 17                                      | 1000-3500                       | 2200                    | 37.4                                  | 6-80                        | 45              | 765                       |
| Tropical seasonal forest    | 7.5                                     | 1000-2500                       | 1600                    | 12                                    | 6-60                        | 35              | 260                       |
| Temperate evergreen forest  | 5                                       | 600-2500                        | 1300                    | 6.5                                   | 6-200                       | 35              | 175                       |
| Temperate deciduous forest  | 7                                       | 600-2500                        | 1200                    | 8.4                                   | 6-60                        | 30              | 210                       |
| Boreal forest               | 12                                      | 400-2000                        | 800                     | 9.6                                   | 6-40                        | 20              | 240                       |
| Woodland and shrubland      | 8.5                                     | 250-1200                        | 700                     | 6                                     | 2-20                        | 6               | 50                        |
| Savanna                     | 15                                      | 200-2000                        | 900                     | 13.5                                  | 0.2-15                      | 4               | 60                        |
| Temperate grassland         | 9                                       | 200-1500                        | 600                     | 5.4                                   | 0.2-5                       | 1.6             | 14                        |
| Tundra and alpine           | 8                                       | 10-400                          | 140                     | 1.1                                   | 0.1-3                       | 0.6             | 5                         |
| Desert and semidesert scrub | 18                                      | 10-250                          | 90                      | 1.6                                   | 0.1-4                       | 0.7             | 13                        |
| Extreme desert              | 24                                      | 0-10                            | 3                       | 0.07                                  | 0-0.2                       | 0.02            | 0.5                       |

The following presents some examples of NPP and GPP by different life forms under a wide range of climatic conditions;

The NPP (g carbon / m²/ year , carbon ~ 50% of dry matter) has been estimated to be 32 for the shrub life forms, *Artemisia sieberi* and 63 for *Artemisia aucheri* in arid and semiarid shrublands of Yazd, Iran (Mousaei Sanjerehei, 2013), 51.1 in a *Bouteloua eriopoda* grassland and 59.2 in a *Larrea tridentata* shrubland in northern chihuahuan desert, USA (Muldavin et al., 2008), 1207 and 1140 in a *Miscanthus sinensis* grassland in Japan over a two year period (Yazaki et al., 2004), 307 for *Picea mariana* in boreal forests (Ryan et al., 1997), 960 for *Pinus radiata* in temperate coniferous forests (Arneth et al., 1998) and 817 for *Betula ermanii*, *B.platyphylla* and *Quercus mongolia* in temperate deciduous forests (Saigusa et al., 2002).

The annual GPP (g carbon /  $m^2$ / year) has been obtained to be 85 for *Artemisia sieberi* and 154 for *Artemisia aucheri* shrubs in arid and semiarid rangelands of Yazd, Iran (Mousaei Sanjerehei, 2013), 584 and 1112 in a semiarid grassland in

Hungary in a dry and wet condition, respectively (Nagy et al., 2007), 3000 in tropical forests (Chambers et al., 2000), 1100 for *Picea mariana* in boreal forests (Ryan et al., 1997) and 1600 for *Pinus strobes* and *Acer rubrum* in temperate mixed forests (Curtis et al., 2005).

Precipitation, temperature and evapotranspiration have been recognized as the most important limiting factors in the "efficiency of primary production" that is the percentage of solar energy converted to production. For example desert shrubs are not expected to be very efficient at converting a large amount of solar energy into production due to scarcity of water. The efficiency of NPP in relation to annual solar radiation for the terrestrial ecosystems is 0.3% (Whittaker and Likens 1975). The highest efficiency of primary production occurs for trees in coniferous forests because their numerous needles present a large surface area for photosynthesis (Stiling 1996).

Studies have shown that the percentage of the incoming solar energy absorbed in photosynthesis as GPP (conversion efficiency of GPP) is low by shrubs in arid and semiarid climates (e.g., 0.05% by *Artemisia sieberi* and 0.08% by *Artemisia aucheri*) (Mousaei Sanjerehei, 2013) in compared to grass communities (e.g., 1.2%) (Golley, 1960), (e.g., 2.4% for C<sub>3</sub> grass and 3.7% for C<sub>4</sub> grass) (Piedade et al., 1991; Beale and Long, 1995) and forest communities (e.g., 1%) (Droste, 1979).

The causes in the energy losses at the different steps of plant photosynthetic processes from interception of radiation to the formation of stored chemical energy in biomass include reflected and transmitted radiation by canopy cover, photochemical inefficiency, photorespiration and respiration which are different among different life forms and climatic conditions (Zhu et al., 2008).

# 3. Life Zones and Floristic Regions of Iran

#### Life Zones

Life zone is defined as an ecological altitudinal or latitudinal zone characterized by specific vegetation and climatic conditions (Heyer, 1967). A life zone can be subdivided into associations based on site conditions such as edaphic and microtopographic variables (Holdridge, 1967).

Life zone classification is important in mapping ecosystem and recognizing ecophysiological responses of plants, since it is based on the climatic factors influencing ecosystem processes (Lugo et al., 1999). Depending on the physiognomy of a life zone, conversion of the life zone to a lower level may result in losses to ecosystem services. For example, the conversion of forests to rangelands may lead to losses of soil organic matter, decrease of soil fertility and increase of carbon dioxide flux to the atmosphere (Garcia-Oliva et al., 1994).

Classification and study of life zones are important for;

- Determining the vegetation-environment relationships,
- Assessing the effects of global climate change on the distribution of vegetation,
- Studying species diversity,
- Evaluating the changes in vegetation during successional stages,
- Assessing land use/land cover changes,
- Comparing the potential vegetation and actual vegetation,
- Predicting the dynamics of vegetation distribution,
- Understanding natural and human-driven environmental changes,
- Predicting the future changes in land covers,
- Sustainable management of ecosystems and biodiversity conservation.

# The Holdridge life zones

A variety of models have been developed for classification of life zones and predicting the pattern of potential vegetation using temperature (Merriam, 1898), potential evapotranspiration, temperature and precipitation (Box, 1981; Holdridge, 1967), geography techniques (Bailey, 1980), biogeographical criteria

(Smith, 1974), and biogeography, biogeochemistry and fire disturbance (Daly et al., 2000).

One of the most efficient and widely used methods for classification of life zones is the Holdridge life zone system (Holdridge, 1967). This method is objective and requires minimum data on annual precipitation and mean annual biotemperature. The Holdridge system strongly considers the driving forces of ecosystem structure and provides explicit rules for using information to classify ecosystems (Bailey and Hogg 1986). Based on this system, 39 classes of life zones are defined (Fig. 2). The Holdridge life zone classification is based on annual precipitation (P), biotemperature (BT) and potential evapotranspiration (PET). The mean annual BT varies from 0 to 30 °C and is calculated as;

$$BT = \frac{\sum T_i}{12}$$

where  $T_i$  is the mean monthly temperature (0<  $T_i$  < 30°C). Potential evapotranspiration ratio (*PETR*) is calculated as;

$$PETR = \frac{PET}{P} = \frac{BT \times 58.93}{P}$$



Figure 2- Holdridge life zone classification scheme.

#### The life zones of Iran based on Holdridge system

Classification of the life zones of Iran using the Holdridge system based on annual precipitation and annual mean temperature maps (Fig. 3) shows that Iran contains 26 life zones (Fig. 4) (Mousaei Sanjerehei, 2014). The area of each life zone based on latitudinal regions, humidity provinces and physiognomic types is presented in Table 2. The most extensive life zone is subtropical desert life zone which covers 22.1% (364581 km²) of the country followed by cool temperate steppe, warm temperate desert scrub and subtropical desert scrub which cover 13.5%, 12.7% and 11.4% of the country respectively. The life zone with the smallest coverage is subpolar moist tundra covering 0.004% of the area of Iran (66 km²).

Based on the latitudinal regions, Iran contains one polar, three subpolar, four boreal, five cool temperate, five warm temperate, five subtropical and three tropical life zones. The largest latitudinal life zone is the subtropical life zone covering 40.4% of the country followed by warm temperate life zone covering 30.4% of the country. The smallest latitudinal life zone is polar life zone (0.09%).

Based on the humidity provinces, perarid life zone is the largest humidity life zone covering 34.2 % of the country followed by arid life zone (24.8 %). The least area of the country is covered by the superhumid life zone (0.15%).

According to the physiognomic types, the largest life zone is the desert type occupying 35% of the country followed by scrub (30.4%), steppe (18.7%), forest (10.2%) and woodland (5.6%) types, and the smallest life zone is tundra type (0.14%) (Fig. 5).



**Figure 3**. A) Annual precipitation (mm) and B) mean annual temperature (°C) map of Iran.



**Figure 4**. Classification of the life zones of Iran using the Holdridge system (Mousaei Sanjerehei 2014).



Figure 5. Holdridge life zones of Iran based on physiognomic types.

**Table 2.** Percentage of the area of Iran life zones, latitudinal regions, humidity provinces and physiognomic types.

| provinces and physiognomic types. |       |  |
|-----------------------------------|-------|--|
| Life zone grouping                |       |  |
| Life zone                         | Area% |  |
| Subpolar moist tundra             | 0.004 |  |
| Boreal dry scrub                  | 0.03  |  |
| Subpolar wet tundra               | 0.03  |  |
| Boreal rain forest                | 0.04  |  |
| Polar desert                      | 0.09  |  |
| Subpolar rain tundra              | 0.11  |  |
| Subtropical moist forest          | 0.11  |  |
| Cool temperate wet forest         | 0.28  |  |
| Tropical thorn woodland           | 0.3   |  |
| Cool temperate desert             | 0.43  |  |
| Warm temperate moist forest       | 0.43  |  |
| Boreal moist forest               | 0.59  |  |
| Boreal wet forest                 | 0.85  |  |
| Subtropical dry forest            | 1.15  |  |
| Tropical desert scrub             | 2.91  |  |
| Warm temperate dry forest         | 2.96  |  |
| Tropical desert                   | 3.15  |  |
| Cool temperate desert scrub       | 3.42  |  |
| Cool temperate moist forest       | 3.82  |  |
| Warm temperate thorn steppe       | 5.15  |  |
| Subtropical thorn woodland        | 5.27  |  |
| Warm temperate desert             | 9.16  |  |
| Subtropical desert scrub          | 11.42 |  |
| Warm temperate desert scrub       | 12.66 |  |
| Cool temperate steppe             | 13.5  |  |
| Subtropical desert                | 22.12 |  |
|                                   |       |  |

| I ifo zono grouping                        |       |  |  |  |  |
|--------------------------------------------|-------|--|--|--|--|
| Life zone grouping Physiognomic type Area% |       |  |  |  |  |
| Physiognomic type                          |       |  |  |  |  |
| Tundra                                     | 0.14  |  |  |  |  |
| Woodland                                   | 5.57  |  |  |  |  |
| Forest                                     | 10.23 |  |  |  |  |
| Steppe                                     | 18.65 |  |  |  |  |
| Scrub                                      | 30.44 |  |  |  |  |
| Desert                                     | 34.97 |  |  |  |  |
| Latitudinal region                         |       |  |  |  |  |
| Polar                                      | 0.09  |  |  |  |  |
| Subpolar                                   | 0.14  |  |  |  |  |
| Boreal                                     | 1.51  |  |  |  |  |
| Tropical                                   | 6.36  |  |  |  |  |
| Cool temperate                             | 21.25 |  |  |  |  |
| Warm temperate                             | 30.38 |  |  |  |  |
| Subtropical                                | 40.38 |  |  |  |  |
| <b>Humidity province</b>                   |       |  |  |  |  |
| Superhumid                                 | 0.15  |  |  |  |  |
| Perhumid                                   | 1.16  |  |  |  |  |
| Superarid                                  | 3.15  |  |  |  |  |
| Humid                                      | 5.04  |  |  |  |  |
| Semiarid                                   | 13.84 |  |  |  |  |
| Subhumid                                   | 17.64 |  |  |  |  |
| Arid                                       | 24.83 |  |  |  |  |
| Perarid                                    | 34.19 |  |  |  |  |

#### Climate of Iran

Iran has a variety of climates ranging from arid to perhumid with different moisture contents. Climate of an area can be effectively classified using de Martonne aridity index (de Martonne, 1926). de Martonne aridity index is calculated as  $I = \frac{P}{10+T}$ , where P is annual precipitation (mm) and T is annual mean temperature (°C). The values of I < 5 indicate arid, 5-10 semi-arid, 10-20 semi-humid, 20-30 humid and P 30 perhumid climate. Based on the de Martonne aridity index, 39 % of the area of Iran was classified as arid, 27% as semiarid, 19 % as semihumid, 9% as humid and 6 % as perhumid (Fig. 6).



Figure 6- Classification of Iran climate using de Martonne aridity index

#### Floristic regions of Iran

Various climatic and geological conditions throughout Iran, Alborz and Zagros Mountains, Caspian Sea in the north and Persian Gulf and Oman Sea in the south of Iran have resulted in the appearance of different floristic regions with a variety of plant species and life forms. Iran is classified into five floristic regions including Hyrcanian, Irano- Touranian, Zagros, Khalijo-Omanian and Arasbaran regions (Tregubov and Mobayen 1970).

#### Hyrcanian region

This region is extended along the southern coasts of Caspian Sea to the northern slopes of the Alborz Mountains and includes humid and perhumid forests (Fig. 7). The flora of Hyrcanian region is related to the Euro-Siberian region. Hyrcanian region is mainly covered by the beech, *Fagus orientalis*. The other abundant species in this region are *Quercus castaneifolia*, *Buxus hyrcana*, *Carpinus betulus*, *Parrotia persica*, *Acer insigne*, *Zelkova carpinifolia*, *Albizia julibrissin*, *Acer cappadocicum*, *Alnus glutinosa*, *Gleditsia caspica*, *Populus caspica*, *Pterocarya fraxinifolia*, *Ulmus glabra* and *Vaccinium arctostaphylos* (Table 4). One of the important characteristics of this region is a low abundance of the large conifers such as Cupressus, Thuja, Juniperus and Taxus occupying small parts of this region. Hyrcanian region has a moderate climate with an annual precipitation of 1500 mm in the central and western coasts and 600-700 mm in the eastern parts and on top of the Alborz Mountains (Javanshir, 1976; Tregubov and Mobayen, 1970).

#### Irano-Touranian region

This region occupies the central parts of Iran from southern slopes of the Alborz Mountains in the north, to the Zagros Mountains in the west and south, and is extended towards the east and west of Iran (Fig. 7). Irano-Touranian region is the largest floristic region in Iran and includes mountainous xerophytic forests and plain desert vegetation. Plain parts of this region have an arid climate with annual precipitation of less than 250 mm, high rates of evapotranspiration, dry summers and cold winters. However, Juniperus forests in the mountainous parts have an annual precipitation of more than 400 mm and a lower evapotranpiration and more moderate summers than other parts of the Irano-Touranian region. The mountainous parts of Irano-Touranian region are located at the elevation of more than 1500 m and have an annual precipitation of 200- 400 mm. The vegetation in the plains is steppe and semidesert vegetation and mainly belongs to the genera; Astragalus, Acantholimon, Acanthophyllum, Cousinia, Zygophyllum, Artemisia, Haloxylon, Tamarix and Anabasis as well as *Juniperus excelsa* in the mountainous parts (Table 4). Dashte-Kavir is a

desert area in the Irano-Touranian region and is located on saline and limestone soils and almost lacks vegetation. Dashte-Lout is a vast sandy Kavir in south eastern of Dashte-Kavir and is mainly covered with psammophytic plant species (Javanshir, 1976; Tregubov and Mobayen, 1970).



Figure 7- Map of floristic regions of Iran (Javanshir, 1976)

### Zagross region

This region includes the Zagros Mountains in the west of Iran and is covered by subxerophytic forests characterized by a variety of oak species such as *Quercus persica*, *Quercus libani and Quercus infectoria* as well as Amygdalus, Pistacia, *Cercis griffithii* and *Acer cinerascens* (Table 4). The vegetation in this region resembles the Mediterranean plant species. Zagros region has a

moderately arid climate with an annual precipitation of 500-600 mm (Fig. 7) (Javanshir, 1976; Tregubov and Mobayen, 1970).

## Khalijo-Omanian region

This region consists of the southern parts of Iran between the Zagros southern slopes and coasts of Persian Gulf and Oman Sea and is divided into Khalijian zone with calcareous soils and Omanian zone with volcanic soils (Fig. 7). The Omanian zone is warmer than the Kahlidjian zone. The annual precipitation in Khalijo-Omanian region is 300 mm which decreases from west to east to 70 mm. This region has hot summers and mild winters and is covered by subtropical xerophytic vegetation. The principle vegetation in this region belongs to the subtropical Saharo-Sindian region. Ziziphus spina-christi and Prosopis stephaniana are abundant in Khalijian zone, and Avicennia officinalis, Acacia arabica, Acacia seyal and Acacia senegal are abundant species of Omanian zone. Date tree (Phoenix dactylifera) is extensively planted in Khalijo-Omanian region (Javanshir, 1976; Tregubov and Mobayen, 1970).

#### Arasbaran region

This region consists of subhygrophylic forests in the northwest of Iran (Fig. 7). It was added to the above classification as a separate region, because the plant species of this forest region is significantly different from the plant species of Hyrcanian region (Javanshir, 1976).

# 4. Life Forms of Plant Species and Floristic Regions in Iran

# Life forms of plant species and floristic regions in Iran

The data on the floristic regions and life forms of 3064 of the most abundant plant species throughout Iran were collected from various resources including Colored flora of Iran (Ghahraman 1975-2005), Flora of Yazd (Mozaffarian 2000), Flora of Khuzestan (Mozaffarian 1999) and Flora of Iran, Vol. 1-85 (Research Institute of Forests and Rangelands, 1989-2015).

18% of the number of the studied plant species are phanerophytes, 10% chamaephytes, 30% hemicryptophytes, 23% therophytes, 15% geophytes, 0.14% helophytes, 0.36% hydrophytes and 3.5% both therophytes and hemicryptophytes.

45% of the plant species occur in Irano-Touranian, 8.6% in Khalijo-Omanian, 7.7% in Hyrcanian, 1.5% in Zagros, 0.5% in Arasbaran, 16% in both Irano-Touranian and Hyrcanian, 8.5% in both Irano-Touranian and Khalijo-Omanian, 2.2% in both Irano-Touranian and Zagross regions and 2.2% are *cosmopolitan* (Table 3, 4). The plant species in Khalijo-Omanian region belong to the subtropical Saharo-Sindian region and the plant species in Hyrcanian region are related to Euro-Siberian region. The life forms of the studied plant species and the floristic regions of Iran are presented in Table 4.

**Table 3-** Percentage of the number of the plant species occurring in the floristic regions of Iran

| Floristic regions of Iran | Percentage   | Floristic regions of | Percentage   |
|---------------------------|--------------|----------------------|--------------|
|                           | of the plant | Iran                 | of the plant |
|                           | species      |                      | species      |
| Irano-Touranian (IT)      | 45           | IT, Zag and Hyr      | 0.95         |
| Khalijo-Omanian (KhO)     | 8.6          | IT, Hyr, Ara and Zag | 0.8          |
| Hyrcanian (Hyr)           | 7.7          | IT, Ara and Hyr      | 0.47         |
| Zagros (Zag)              | 1.5          | Hyr and KhO          | 0.3          |
| Arasbaran (Ara)           | 0.5          | IT and Ara           | 0.3          |
| IT and Hyr                | 16           | Hyr and Zag          | 0.27         |
| IT and KhO                | 8.5          | IT, Hyr, Zag and KhO | 0.25         |
| IT and Zag                | 2.2          | IT, Zag, KhO and Ara | 0.2          |
| Cosmopolitan              | 2.2          | IT, Ara and Zag      | 0.18         |
| IT, Hyr and KhO           | 1.6          | Ara and Zag          | 0.17         |
| Hyr and Ara               | 1.1          | Hyr, Ara and Zag     | 0.11         |
| IT, KhO and Zag           | 1            | Zag and KhO          | 0.1          |

**Table 4-** The life forms of plant species and floristic regions of Iran. Life form: **Ph**: Phanerophyte, **Ch**: Chamaephyte, **He**: Hemicryptophyte, **Ge**: Geophyte, **Th**: Therophyte, **Hyd**: Hydrophyte, **Hel**: Helophyte. Floristic region: **Hyr**: Hyrcanian region, **Ara**: Arasbaran region, **IT**: Irano-Touranian region, **IT\***: Mountainous parts of Irano-Touranian region, **Zag**: Zagross region, **KhO**: Khalijo-Omanian region, **Cosm**: Cosmopolitan, **End**: Endemic

| Family         | Plant species            | Life<br>form | Floristic<br>region |
|----------------|--------------------------|--------------|---------------------|
| Malvaceae      | Abutilon muticum         | Ch           | KhO                 |
| Malvaceae      | Abutilon theophrasti     | Th           | IT, Hyr             |
| Mimosaceae     | Acacia acuminata         | Ph           | KhO                 |
| Mimosaceae     | Acacia aucheri           | Ph           | IT, KhO             |
| Mimosaceae     | Acacia coriacea          | Ph           | KhO                 |
| Mimosaceae     | Acacia ehrenbergiana     | Ph           | KhO                 |
| Mimosaceae     | Acacia farnesiana        | Ph           | KhO                 |
| Mimosaceae     | Acacia flava             | Ph           | KhO                 |
| Mimosaceae     | Acacia georginia         | Ph           | KhO                 |
| Mimosaceae     | Acacia jacquemontii      | Ph           | KhO                 |
| Mimosaceae     | Acacia modesta           | Ph           | KhO                 |
| Mimosaceae     | Acacia nubica            | Ph           | KhO                 |
| Mimosaceae     | Acacia oligophylla       | Ph           | KhO                 |
| Mimosaceae     | Acacia rupestris         | Ph           | KhO                 |
| Mimosaceae     | Acacia saligna           | Ph           | KhO                 |
| Mimosaceae     | Acacia sclerosperma      | Ph           | KhO                 |
| Mimosaceae     | Acacia senegal           | Ph           | KhO                 |
| Mimosaceae     | Acacia seyal             | Ph           | KhO                 |
| Mimosaceae     | Acacia stenophylla       | Ph           | KhO                 |
| Euphorbiaceae  | Acalypha australis       | Th           | Hyr, IT             |
| Asteraceae     | Acantholepis orientalis  | Th           | IT                  |
| Plumbaginaceae | Acantholimon acmostegium | Ch           | IT, (End)           |
| Plumbaginaceae | Acantholimon aspadanum   | Ch           | IT, (End)           |
| Plumbaginaceae | Acantholimon avenaceum   | Ch           | IT                  |
| Plumbaginaceae | Acantholimon blakelockii | Ch           | IT                  |
| Plumbaginaceae | Acantholimon bromifolium | Ch           | IT, Zag,            |

| Family          | Plant species                | Life<br>form | Floristic region  |
|-----------------|------------------------------|--------------|-------------------|
|                 |                              | 10121        | (End)             |
| Plumbaginaceae  | Acantholimon caryophyllaceum | Ch           | IT                |
| Plumbaginaceae  | Acantholimon erinaceum       | Ch           | IT*               |
| Plumbaginaceae  | Acantholimon festucaceum     | Ch           | IT, (End)         |
| Plumbaginaceae  | Acantholimon flexuosum       | Ch           | IT, (End)         |
| Plumbaginaceae  | Acantholimon hohenackeri     | Ch           | IT*               |
| Plumbaginaceae  | Acantholimon horridum        | Ch           | IT, (End)         |
| Plumbaginaceae  | Acantholimon incomptum       | Ch           | IT                |
| Plumbaginaceae  | Acantholimon leucacanthum    | Ch           | IT                |
| Plumbaginaceae  | Acantholimon nigricans       | Ch           | IT*, (End)        |
| Plumbaginaceae  | Acantholimon oliganthum      | Ch           | IT                |
| Plumbaginaceae  | Acantholimon olivieri        | Ch           | IT, Zag,<br>(End) |
| Plumbaginaceae  | Acantholimon oymosum         | Ch           | IT                |
| Plumbaginaceae  | Acantholimon pterostegium    | Ch           | IT, (End)         |
| Plumbaginaceae  | Acantholimon rudbaricum      | Ch           | IT                |
| Plumbaginaceae  | Acantholimon scirpinum       | Ch           | IT, (End)         |
| Plumbaginaceae  | Acantholimon scorpius        | Ch           | IT, KhO,<br>(End) |
| Plumbaginaceae  | Acantholimon sp.             | Ch           |                   |
| Plumbaginaceae  | Acantholimon spinicalyx      | Ch           | IT, (End)         |
| Plumbaginaceae  | Acantholimon talagonicum     | Ch           | IT, (End)         |
| Plumbaginaceae  | Acantholimon tragacanthinum  | Ch           | IT, (End)         |
| Plumbaginaceae  | Acantholimon truncatum       | Ch           | IT                |
| Plumbaginaceae  | Acantholimon wendelboi       | Ch           | IT, (End)         |
| Caryophyllaceae | Acanthophllum glandulosum    | Ch           | IT                |
| Caryophyllaceae | Acanthophyllum adenophorum   | Ch           | IT                |
| Caryophyllaceae | Acanthophyllum bracteatum    | Ch           | IT                |
| Caryophyllaceae | Acanthophyllum caespitosum   | Ch           | IT                |
| Caryophyllaceae | Acanthophyllum chloroltegium | Ch           | IT                |
| Caryophyllaceae | Acanthophyllum crassifolium  | Ch           | IT                |

| Family          | Plant species                | Life<br>form | Floristic region |
|-----------------|------------------------------|--------------|------------------|
| Caryophyllaceae | Acanthophyllum glandulosum   | Ch           | IT               |
| Caryophyllaceae | Acanthophyllum gracile       | Ch           | IT               |
| Caryophyllaceae | Acanthophyllum heratense     | Ch           | IT               |
| Caryophyllaceae | Acanthophyllum khuzistanum   | Ch           | KhO              |
| Caryophyllaceae | Acanthophyllum kurdicum      | Ch           | IT               |
| Caryophyllaceae | Acanthophyllum laxiusculum   | Ch           | IT               |
| Caryophyllaceae | Acanthophyllum lilacinum     | Ch           | IT               |
| Caryophyllaceae | Acanthophyllum microcephalum | Ch           | IT               |
| Caryophyllaceae | Acanthophyllum microcephalus | Ch           | IT               |
| Caryophyllaceae | Acanthophyllum pachystegium  | Ch           | IT               |
| Caryophyllaceae | Acanthophyllum sordidum      | Ch           | IT               |
| Caryophyllaceae | Acanthophyllum sp.           | Ch           |                  |
| Caryophyllaceae | Acanthophyllum spinosum      | Ch           | IT               |
| Caryophyllaceae | Acanthophyllum squarrosum    | Ch           | IT               |
| Caryophyllaceae | Acanthophyllum stocksianum   | Ch           | IT               |
| Caryophyllaceae | Acanthophylum speciosum      | Ch           | IT               |
| Acanthaceae     | Acanthus dioscoridis         | Не           | IT               |
| Aceraceae       | Acer assyriacum              | Ph           | Zag              |
| Aceraceae       | Acer campestre               | Ph           | Hyr, Ara         |
| Aceraceae       | Acer cappadocicum            | Ph           | Hyr              |
| Aceraceae       | Acer cinerascens             | Ph           | IT, Zag          |
| Aceraceae       | Acer hyrcanum                | Ph           | Hyr              |
| Aceraceae       | Acer ibericum                | Ph           | Ara, Hyr,<br>IT  |
| Aceraceae       | Acer insigne                 | Ph           | Hyr              |
| Aceraceae       | Acer monspessulanum          | Ph           | IT               |
| Aceraceae       | Acer opalus                  | Ph           | Hyr              |
| Aceraceae       | Acer persicum                | Ph           | IT, Zag          |
| Aceraceae       | Acer platanoides             | Ph           | Hyr              |
| Aceraceae       | Acer pseudoplatanus          | Ph           | Hyr              |
| Aceraceae       | Acer regelii                 | Ph           | Hyr              |

| Family        | Plant species              | Life<br>form | Floristic region  |
|---------------|----------------------------|--------------|-------------------|
| Aceraceae     | Acer tataricum             | Ph           | Hyr               |
| Aceraceae     | Acer turcomanicum          | Ph           | Hyr               |
| Aceraceae     | Acer velutinum             | Ph           | Hyr               |
| Asteraceae    | Achillea biebersteinii     | Не           | IT                |
| Asteraceae    | Achillea eriophora         | Не           | IT, KhO,<br>(End) |
| Asteraceae    | Achillea filipendulina     | He           | IT                |
| Asteraceae    | Achillea micrantha         | He           | IT                |
| Asteraceae    | Achillea millefolium       | He           | IT, Hyr           |
| Asteraceae    | Achillea nobilis           | He           | IT                |
| Asteraceae    | Achillea pachycephala      | Не           | IT                |
| Asteraceae    | Achillea santolina         | Не           | IT, KhO,<br>Hyr   |
| Asteraceae    | Achillea tenuifolia        | He           | IT                |
| Asteraceae    | Achillea vermicularis      | Не           | IT, Hyr           |
| Asteraceae    | Achillea wilhelmsii        | Не           | IT, Hyr,<br>KhO   |
| Lamiaceae     | Acinos graveolens          | Th           | IT                |
| Asteraceae    | Acroptilon repens          | He           | IT                |
| Adianthaceae  | Adianthum capillus-veneris | Ge           | Cosm              |
| Ranunculaceae | Adonis aestivalis          | Th           | Hyr, IT           |
| Ranunculaceae | Adonis dentata             | Th           | IT, Hyr           |
| Ranunculaceae | Adonis flammea             | Th           | IT, Hyr           |
| Ranunculaceae | Adonis scrobiculata        | Th           | IT                |
| Poaceae       | Aegilops columnaris        | Th           | IT                |
| Poaceae       | Aegilops crassa            | Th           | IT                |
| Poaceae       | Aegilops cylindrica        | Th           | IT                |
| Poaceae       | Aegilops ovata             | Th           | IT                |
| Poaceae       | Aegilops tauschii          | Th           | IT, Hyr           |
| Poaceae       | Aegilops triuncialis       | Th           | IT                |
| Poaceae       | Aegilops umbellulata       | Th           | IT                |
| Asteraceae    | Aegopordon berardioides    | Не           | IT, KhO           |

| Family         | Plant species             | Life<br>form | Floristic region |
|----------------|---------------------------|--------------|------------------|
| Chenopodiaceae | Aellenia aurucula         | Не           | IT               |
| Chenopodiaceae | Aellenia subaphylla       | Не           | IT               |
| Poaceae        | Aeluropus lagopoides      | Ge           | IT, KhO          |
| Poaceae        | Aeluropus littoralis      | Ge           | IT, KhO          |
| Poaceae        | Aeluropus macrostachyus   | Ge           | KhO              |
| Amaranthaceae  | Aerva javanica            | Ch           | KhO              |
| Amaranthaceae  | Aerva persica             | Ch           | IT, KhO          |
| Brassicaceae   | Aethionema arabicum       | Th           | IT               |
| Brassicaceae   | Aethionema carneum        | Th           | IT               |
| Brassicaceae   | Aethionema grandiflorum   | Не           | IT               |
| Brassicaceae   | Aethionema trinervium     | Не           | IT               |
| Rosaceae       | Agrimonia eupatoria       | Не           | Hyr, IT          |
| Chenopodiaceae | Agriophyllum lateriflorum | Th           | IT               |
| Chenopodiaceae | Agriophyllum minus        | Th           | IT               |
| Poaceae        | Agropyron cristatum       | Не           | IT, Hyr          |
| Poaceae        | Agropyron desertorum      | Не           | IT               |
| Poaceae        | Agropyron elongatum       | Не           | IT               |
| Poaceae        | Agropyron imbricatum      | Ge           | IT, Ara          |
| Poaceae        | Agropyron intermedium     | Ge           | IT               |
| Poaceae        | Agropyron longe-aristatum | Ge           | IT               |
| Poaceae        | Agropyron pectiniforme    | Ge           | IT, Hyr          |
| Poaceae        | Agropyron repens          | Ge           | IT               |
| Poaceae        | Agropyron trichophorum    | Ge           | IT               |
| Poaceae        | Agrostis gigantea         | Ge           | Hyr, IT          |
| Poaceae        | Agrostis stolonifera      | Ge           | Hyr, IT          |
| Simaroubaceae  | Ailanthus altissima       | Ph           | IT               |
| Simaroubaceae  | Ailanthus glandulosa      | Ph           | IT               |
| Aizoaceae      | Aizoon hispanicum         | Th           | KhO              |
| Lamiaceae      | Ajuga chamaecistus        | Не           | IT*, Zag         |
| Lamiaceae      | Ajuga comata              | Не           | IT, Hyr          |

| Family       | Plant species            | Life<br>form | Floristic region |
|--------------|--------------------------|--------------|------------------|
| Mimosaceae   | Albizia julibrissin      | Ph           | Hyr              |
| Mimosaceae   | Albizia lebbeck          | Ph           | KhO, Hyr         |
| Malvaceae    | Alcea angulata           | Th, He       | IT               |
| Malvaceae    | Alcea aucheri            | Не           | IT               |
| Malvaceae    | Alcea crassicaulis       | Не           | IT               |
| Malvaceae    | Alcea digitata           | Не           | IT               |
| Malvaceae    | Alcea ficifolia          | Не           | IT, Hyr          |
| Malvaceae    | Alcea glabrata           | Не           | IT, (End)        |
| Malvaceae    | Alcea hyrcana            | Не           | Hyr              |
| Malvaceae    | Alcea Iaxiflora          | Не           | IT, (End)        |
| Malvaceae    | Alcea kurdica            | Не           | IT               |
| Malvaceae    | Alcea rhyticarpa         | Не           | IT               |
| Malvaceae    | Alcea rugosa             | Не           | IT               |
| Malvaceae    | Alcea sulphurea          | Не           | IT               |
| Malvaceae    | Alcea teheranica         | Не           | IT, (End)        |
| Rosaceae     | Alchemilla citrina       | Не           | Hyr, (End)       |
| Rosaceae     | Alchemilla kurdica       | Ge           | IT*              |
| Rosaceae     | Alchemilla pectiniloba   | Не           | Hyr, (End)       |
| Rosaceae     | Alchemilla persica       | Ge           | IT, Hyr          |
| Rosaceae     | Alchemilla rigida        | Не           | Hyr              |
| Fabaceae     | Alhagi cameleruns        | Ch           | IT               |
| Fabaceae     | Alhagi camelorum         | Ch           | IT               |
| Fabaceae     | Alhagi graecorum         | Ch           | IT               |
| Fabaceae     | Alhagi mannifera         | Ch           | IT, KhO          |
| Fabaceae     | Alhagi maurorum          | Ch           | IT, KhO          |
| Fabaceae     | Alhagi persarum          | Ch           | IT               |
| Fabaceae     | Alhagi pseudoalhagi      | Ch           | IT               |
| Alismaceae   | Alisma plantago-aquatica | Hel          | Cosm             |
| Boraginaceae | Alkanna orientalis       | Ge           | IT, Zag          |
| Brassicaceae | Alliaria petiolata       | Не           | Hyr, IT          |

| Family    | Plant species         | Life<br>form | Floristic region |
|-----------|-----------------------|--------------|------------------|
| Liliaceae | Allium ampeloprasum   | Ge           | IT               |
| Liliaceae | Allium atroviolaceum  | Ge           | IT               |
| Liliaceae | Allium borszczowii    | Ge           | IT               |
| Liliaceae | Allium bungei         | Ge           | IT               |
| Liliaceae | Allium caspium        | Ge           | IT               |
| Liliaceae | Allium cepa           | Ge           | IT, KhO          |
| Liliaceae | Allium chloroneurum   | Ge           | IT               |
| Liliaceae | Allium cristophii     | Ge           | IT               |
| Liliaceae | Allium eriophyllum    | Ge           | IT, KhO          |
| Liliaceae | Allium erubesces      | Ge           | Hyr, IT          |
| Liliaceae | Allium giganteum      | Ge           | IT               |
| Liliaceae | Allium haemanthoides  | Ge           | IT               |
| Liliaceae | Allium helicophyllum  | Ge           | IT               |
| Liliaceae | Allium hirtifolium    | Ge           | IT               |
| Liliaceae | Allium jesdianum      | Ge           | IT               |
| Liliaceae | Allium longicuspis    | Ge           | IT               |
| Liliaceae | Allium minutiflorum   | Ge           | IT               |
| Liliaceae | Allium monophyllum    | Ge           | IT               |
| Liliaceae | Allium paniculatum    | Ge           | IT               |
| Liliaceae | Allium paradoxum      | Ge           | Hyr              |
| Liliaceae | Allium persica        | Ge           | IT               |
| Liliaceae | Allium rotundum       | Ge           | IT               |
| Liliaceae | Allium rubellum       | Ge           | IT, Hyr          |
| Liliaceae | Allium sarawschanicum | Ge           | IT               |
| Liliaceae | Allium scabriscapum   | Ge           | IT               |
| Liliaceae | Allium scabrum        | Ge           | IT               |
| Liliaceae | Allium schoenoprasum  | Ge           | IT               |
| Liliaceae | Allium scotostemon    | Ge           | IT, Hyr          |
| Liliaceae | Allium sp.            | Ge           |                  |
| Liliaceae | Allium stamineum      | Ge           | IT               |

| Family        | Plant species           | Life<br>form | Floristic region |
|---------------|-------------------------|--------------|------------------|
| Liliaceae     | Allium umbilicatum      | Ge           | IT               |
| Liliaceae     | Allium xiphopetalum     | Ge           | IT               |
| Betulaceae    | Alnus glutinosa         | Ph           | Hyr              |
| Betulaceae    | Alnus subcordata        | Ph           | Hyr, (End)       |
| Poaceae       | Alopecurus apiatus      | Ge           | IT               |
| Poaceae       | Alopecurus arundinaceus | Ge           | IT, Hyr          |
| Poaceae       | Alopecurus myosuroides  | Th           | IT, KhO,<br>Hyr  |
| Poaceae       | Alopecurus pratensis    | Ge           | IT               |
| Poaceae       | Alopecurus textilis     | Ge           | IT, Hyr          |
| Poaceae       | Alopecurus vaginatus    | Не           | IT               |
| Amaranthaceae | Alternanthera sessilis  | Th           | IT, Hyr          |
| Malvaceae     | Althaea armeniaca       | Не           | Hyr, IT          |
| Malvaceae     | Althaea cannabina       | Не           | IT, Hyr          |
| Malvaceae     | Althaea hirsuta         | Th           | IT, Hyr          |
| Malvaceae     | Althaea ludwigii        | Th, He       | IT, KhO          |
| Malvaceae     | Althaea officinalis     | Не           | IT               |
| Brassicaceae  | Alyssum alyssoides      | Th           | IT               |
| Brassicaceae  | Alyssum bracteatum      | Не           | IT*              |
| Brassicaceae  | Alyssum dasycarpum      | Th           | IT               |
| Brassicaceae  | Alyssum desertorum      | Th           | IT, Hyr          |
| Brassicaceae  | Alyssum heterotrichum   | Th           | IT               |
| Brassicaceae  | Alyssum hirsutum        | Th           | IT               |
| Brassicaceae  | Alyssum inflatum        | Th           | IT               |
| Brassicaceae  | Alyssum lanigerum       | Не           | IT               |
| Brassicaceae  | Alyssum linifolium      | Th           | IT, Hyr          |
| Brassicaceae  | Alyssum marginatum      | Th           | IT               |
| Brassicaceae  | Alyssum maritimum       | Th           | IT               |
| Brassicaceae  | Alyssum minus           | Th           | IT               |
| Brassicaceae  | Alyssum szovitsianum    | Th           | IT               |
| Amaranthaceae | Amaranthus albus        | Th           | Cosm             |

| Family        | Plant species             | Life<br>form | Floristic region           |
|---------------|---------------------------|--------------|----------------------------|
| Amaranthaceae | Amaranthus blitoides      | Th           | Cosm                       |
| Amaranthaceae | Amaranthus cholorostachys | Th           | IT, Hyr                    |
| Amaranthaceae | Amaranthus graecizans     | Th           | KhO, IT                    |
| Amaranthaceae | Amaranthus hybridus       | Th           | IT, Hyr                    |
| Amaranthaceae | Amaranthus retroflaxus    | Th           | Cosm                       |
| Amaranthaceae | Amaranthus viridis        | Th           | Cosm                       |
| Asteraceae    | Amberboa nana             | Th           | IT                         |
| Asteraceae    | Amberboa sosnovskyi       | Th           | IT                         |
| Asteraceae    | Amberboa turanica         | Th           | IT                         |
| Lythraceae    | Ammannia multiflora       | Th           | IT                         |
| Umbelliferae  | Ammi majus                | Th           | IT, KhO                    |
| Umbelliferae  | Ammi visnaga              | Th, He       | Cosm                       |
| Fabaceae      | Ammodendron persicum      | Ph           | IT                         |
| Vitaceae      | Ampelopsis vitifolia      | Ph           | Ara, Zag,<br>Hyr           |
| Rosaceae      | Amygdalus arabica         | Ph           | IT*, KhO,<br>Zag           |
| Rosaceae      | Amygdalus carduchorum     | Ph           | Zag                        |
| Rosaceae      | Amygdalus communis        | Ph           | IT*, Zag,<br>Ara           |
| Rosaceae      | Amygdalus eburenea        | Ph           | IT*, Zag,<br>KhO,<br>(End) |
| Rosaceae      | Amygdalus elaeagnifolia   | Ph           | IT*, Zag,<br>(End)         |
| Rosaceae      | Amygdalus erioclada       | Ph           | IT*, Zag                   |
| Rosaceae      | Amygdalus fenzliana       | Ph           | IT*, Zag                   |
| Rosaceae      | Amygdalus glauca          | Ph           | Zag, (End)                 |
| Rosaceae      | Amygdalus haussknechtii   | Ph           | IT*, Zag,<br>(End)         |
| Rosaceae      | Amygdalus horrida         | Ph           | IT*, Zag,<br>Ara, KhO      |
| Rosaceae      | Amygdalus keredjensis     | Ph           | IT*, (End)                 |
| Rosaceae      | Amygdalus kotschyi        | Ph           | Ara, Zag,<br>IT*           |

| Family         | Plant species            | Life<br>form | Floristic region           |
|----------------|--------------------------|--------------|----------------------------|
| Rosaceae       | Amygdalus leiocarpa      | Ph           | IT*, Zag                   |
| Rosaceae       | Amygdalus lycioides      | Ph           | IT*, Zag                   |
| Rosaceae       | Amygdalus orientalis     | Ph           | Zag                        |
| Rosaceae       | Amygdalus podperae       | Ph           | IT*, Zag,<br>KhO,<br>(End) |
| Rosaceae       | Amygdalus salicifolia    | Ph           | Zag                        |
| Rosaceae       | Amygdalus scoparia       | Ph           | IT*, Zag,<br>KhO           |
| Rosaceae       | Amygdalus spartioides    | Ph           | IT*                        |
| Rosaceae       | Amygdalus spinosissima   | Ph           | IT*                        |
| Rosaceae       | Amygdalus trichamygdalus | Ph           | IT*                        |
| Rosaceae       | Amygdalus turcomanica    | Ph           | IT*                        |
| Rosaceae       | Amygdalus urumiensis     | Ph           | IT*, Zag                   |
| Chenopodiaceae | Anabasis annua           | Th           | IT                         |
| Chenopodiaceae | Anabasis aphylla         | Не           | IT                         |
| Chenopodiaceae | Anabasis brachiata       | Не           | IT                         |
| Chenopodiaceae | Anabasis calcarea        | Не           | IT, (End)                  |
| Chenopodiaceae | Anabasis haussknechtii   | Ch           | IT                         |
| Chenopodiaceae | Anabasis setifera        | Не           | IT, KhO                    |
| Primulaceae    | Anagallis arvensis       | Th           | Cosm                       |
| Fabaceae       | Anagyris foetida         | Ph           | Zag                        |
| Boraginaceae   | Anchusa aegyptiaca       | Th           | IT, KhO                    |
| Boraginaceae   | Anchusa italica          | Не           | IT, Hyr                    |
| Boraginaceae   | Anchusa ovata            | Th           | IT, Zag                    |
| Boraginaceae   | Anchusa strigosa         | Не           | IT                         |
| Euphorbiaceae  | Andrachne aspera         | Не           | IT, KhO,<br>Ara, Zag       |
| Euphorbiaceae  | Andrachne colchica       | Не           | Hyr                        |
| Euphorbiaceae  | Andrachne fruticulosa    | Не           | IT                         |
| Euphorbiaceae  | Andrachne rotundifolia   | He           | IT, Hyr                    |
| Euphorbiaceae  | Andrachne telephioides   | Не           | IT, KhO,<br>Zag            |

| Family         | Plant species             | Life<br>form | Floristic region  |
|----------------|---------------------------|--------------|-------------------|
| Primulaceae    | Androsace maxima          | Th           | Hyr, IT           |
| Primulaceae    | Androsace villosa         | Не           | Hyr               |
| Ranunculaceae  | Anemone biflora           | Th           | IT                |
| Ranunculaceae  | Anemone petiolulosa       | Ge           | IT                |
| Umbelliferae   | Anethum graveolens        | Th           | IT                |
| Umbelliferae   | Anisosciadium orientale   | Th           | KhO               |
| Asteraceae     | Anthemis altissima        | Th           | IT, Hyr           |
| Asteraceae     | Anthemis atropatana       | Th           | IT                |
| Asteraceae     | Anthemis austro-iranica   | Th           | IT, KhO,<br>(End) |
| Asteraceae     | Anthemis cotula           | Th           | IT, KhO,<br>Hyr   |
| Asteraceae     | Anthemis gayana           | Th           | IT, (End)         |
| Asteraceae     | Anthemis hyalina          | Th           | IT                |
| Asteraceae     | Anthemis odontostephana   | Th           | IT, KhO           |
| Asteraceae     | Anthemis pesudocotula     | Th           | IT                |
| Asteraceae     | Anthemis rhodocentra      | Th           | IT, KhO           |
| Asteraceae     | Anthemis scariosa         | Th           | KhO               |
| Asteraceae     | Anthemis schizostephana   | Th           | IT                |
| Asteraceae     | Anthemis scoparia         | Не           | KhO               |
| Asteraceae     | Anthemis susiana          | Th           | KhO               |
| Asteraceae     | Anthemis tinctoria        | Не           | IT, Hyr           |
| Asteraceae     | Anthemis triumfettii      | Не           | IT, Hyr           |
| Asteraceae     | Anthemis wettsteiniana    | Th           | IT                |
| Chenopodiaceae | Anthochlamys multinervis  | Th           | IT, (End)         |
| Chenopodiaceae | Anthochlamys polygaloides | Th           | IT                |
| Umbelliferae   | Anthriscus nemorosa       | Не           | Hyr               |
| Umbelliferae   | Anthriscus sylvestris     | Не           | Hyr               |
| Asteraceae     | Anvillea garcinia         | Ch           | KhO               |
| Umbelliferae   | Aphanopleura breviseta    | Th           | IT                |
| Umbelliferae   | Apium graveolens          | Th, He       | IT                |

| Family           | Plant species               | Life<br>form | Floristic region |
|------------------|-----------------------------|--------------|------------------|
| Ranunculaceae    | Aquilegia vulgaris          | Ge           | IT               |
| Brassicaceae     | Arabidopsis pumila          | Th           | IT               |
| Brassicaceae     | Arabidopsis sp.             | Th           |                  |
| Brassicaceae     | Arabidopsis wallichii       | Th           | IT               |
| Brassicaceae     | Arabis caucasica            | Не           | IT, Hyr,<br>Zag  |
| Brassicaceae     | Arabis graellsiiformis      | Не           | IT               |
| Brassicaceae     | Arabis nova                 | Th           | IT, Hyr          |
| Brassicaceae     | Arabis sagittata            | Th, He       | Hyr, IT          |
| Asteraceae       | Arctium lappa               | He           | IT, Hyr          |
| Asteraceae       | Arctium minus               | Не           | IT               |
| Caryophyllaceae  | Arenaria gypsophiloides     | Не           | IT               |
| Caryophyllaceae  | Arenaria persica            | Не           | IT               |
| Caryophyllaceae  | Arenaria serpyllifolia      | Th           | Hyr, IT          |
| Fabaceae         | Argyrolobium roseum         | Th, He       | KhO              |
| Fabaceae         | Argyrolobium trigonelloides | Th, He       | IT               |
| Poaceae          | Aristida adscensionis       | Th, He       | KhO              |
| Aristolochiaceae | Aristolochia bottae         | Не           | IT               |
| Rosaceae         | Armeniaca vulgaris          | Ph           | IT               |
| Boraginaceae     | Arnebia decumbens           | Th           | IT               |
| Boraginaceae     | Arnebia fimbriopetala       | Th           | KhO              |
| Boraginaceae     | Arnebia grandiflora         | Th           | IT               |
| Boraginaceae     | Arnebia hispidissima        | Th           | KhO              |
| Boraginaceae     | Arnebia linearifolia        | Th           | IT               |
| Boraginaceae     | Arnebia minima              | Th           | IT               |
| Poaceae          | Arrhenatherum kotschyi      | Не           | IT               |
| Asteraceae       | Artemisia absinthium        | Ch           | IT               |
| Asteraceae       | Artemisia annua             | Th           | Hyr, IT          |
| Asteraceae       | Artemisia aucheri           | Ch           | IT               |
| Asteraceae       | Artemisia biennis           | He, Th       | IT               |
| Asteraceae       | Artemisia chamaemelifolia   | Ch           | IT, Hyr          |

| Family       | Plant species            | Life<br>form | Floristic region |
|--------------|--------------------------|--------------|------------------|
| Asteraceae   | Artemisia deserti        | Ch           | IT               |
| Asteraceae   | Artemisia fragrans       | Ch           | IT               |
| Asteraceae   | Artemisia haussknechtii  | Ch           | IT               |
| Asteraceae   | Artemisia khorassanica   | Не           | IT, (End)        |
| Asteraceae   | Artemisia kopetdaghensis | Ch           | IT               |
| Asteraceae   | Artemisia oliveriana     | Ch           | IT               |
| Asteraceae   | Artemisia persica        | Ch           | IT               |
| Asteraceae   | Artemisia santolina      | Не           | IT               |
| Asteraceae   | Artemisia scoparia       | Ch           | IT, Hyr          |
| Asteraceae   | Artemisia sieberi        | Ch           | IT               |
| Asteraceae   | Artemisia spicigera      | Ch           | IT               |
| Asteraceae   | Artemisia turanica       | Ch           | IT               |
| Asteraceae   | Artemisia turcomanica    | Ch           | IT               |
| Asteraceae   | Artemisia vulgaris       | Ch           | IT, Hyr          |
| Araceae      | Arum albispathum         | Ge           | Hyr              |
| Araceae      | Arum conophalloides      | Ge           | IT*, Zag         |
| Araceae      | Arum elongatum           | Ge           | IT*              |
| Araceae      | Arum giganteum           | Ge           | Zag, (End)       |
| Araceae      | Arum kotschyi            | Ge           | IT*              |
| Araceae      | Arum maculatum           | Ge           | Hyr              |
| Poaceae      | Arundo donax             | Ge           | Hyr, KhO         |
| Asparagaceae | Asparagus breslerianus   | Не           | IT               |
| Asparagaceae | Asparagus officinalis    | Не           | Hyr, IT          |
| Asparagaceae | Asparagus persicus       | Не           | IT, Hyr          |
| Asparagaceae | Asparagus verticillatus  | Не           | IT, Hyr          |
| Boraginaceae | Asperago procumbens      | Th           | IT, Hyr          |
| Rubiaceae    | Asperula arvensis        | Th           | IT, Hyr          |
| Rubiaceae    | Asperula glomerata       | Не           | IT               |
| Rubiaceae    | Asperula odarata         | Не           | Hyr, Ara         |
| Rubiaceae    | Asperula setosa          | Th           | IT               |

| Family       | Plant species               | Life<br>form | Floristic region |
|--------------|-----------------------------|--------------|------------------|
| Rubiaceae    | Asperula stylosa            | Не           | Hyr, IT          |
| Rubiaceae    | Asperula taurina            | Ge           | Hyr              |
| Rubiaceae    | Asperula trichodes          | Th           | IT               |
| Liliaceae    | Asphodelus tenuifolius      | Th           | KhO              |
| Aspleniaceae | Asplenium adiantum          | Ge           | Hyr              |
| Aspleniaceae | Asplenium trichomanes       | Не           | IT, Hyr          |
| Asteraceae   | Aster alpinus               | Не           | IT               |
| Asteraceae   | Asteriscus pygmaeus         | Th           | KhO              |
| Fabaceae     | Astragalus adscendens       | Ch           | IT               |
| Fabaceae     | Astragalus ajubensis        | Не           | IT               |
| Fabaceae     | Astragalus albispinus       | Ch           | IT, (End)        |
| Fabaceae     | Astragalus alopecias        | Ch           | IT               |
| Fabaceae     | Astragalus anacamptus       | Не           | IT               |
| Fabaceae     | Astragalus anisacantus      | Ch           | IT               |
| Fabaceae     | Astragalus ankylotus        | Th           | IT               |
| Fabaceae     | Astragalus anserinifolius   | Не           | IT               |
| Fabaceae     | Astragalus arbusculinus     | Не           | IT               |
| Fabaceae     | Astragalus argyroides       | Не           | IT               |
| Fabaceae     | Astragalus asciocalyx       | Не           | IT               |
| Fabaceae     | Astragalus bakaliensis      | Th           | IT, KhO          |
| Fabaceae     | Astragalus bassineri        | Не           | IT               |
| Fabaceae     | Astragalus biovulatus       | Th           | IT               |
| Fabaceae     | Astragalus bombycinus       | Не           | IT               |
| Fabaceae     | Astragalus brachycalyx      | Ch           | IT, Zag          |
| Fabaceae     | Astragalus calliphysa       | Ch           | IT, (End)        |
| Fabaceae     | Astragalus callystachys     | Ch           | IT, (End)        |
| Fabaceae     | Astragalus campylanthus     | Ch           | IT, (End)        |
| Fabaceae     | Astragalus campylorrhynchus | Th           | IT, KhO          |
| Fabaceae     | Astragalus candolleanus     | Не           | IT               |
| Fabaceae     | Astragalus caprinus         | Не           | KhO              |

| Family   | Plant species              | Life<br>form | Floristic region  |
|----------|----------------------------|--------------|-------------------|
| Fabaceae | Astragalus carduchorum     | Ch           | IT                |
| Fabaceae | Astragalus cephalanthus    | Ch           | IT, KhO,<br>(End) |
| Fabaceae | Astragalus chartaceus      | Не           | IT                |
| Fabaceae | Astragalus chrysostachys   | Ch           | IT                |
| Fabaceae | Astragalus citrinus        | Не           | IT                |
| Fabaceae | Astragalus commixtus       | Th           | IT, KhO           |
| Fabaceae | Astragalus coronilla       | Th           | IT                |
| Fabaceae | Astragalus crenatus        | Th           | IT                |
| Fabaceae | Astragalus cruciatus       | Th           | IT                |
| Fabaceae | Astragalus curvipes        | Не           | IT                |
| Fabaceae | Astragalus dactylocarpus   | Ch           | IT                |
| Fabaceae | Astragalus denudatum       | Ch           | IT, Hyr           |
| Fabaceae | Astragalus dschuparensis   | Ch           | IT, (End)         |
| Fabaceae | Astragalus ecbatanus       | Ch           | IT, (End)         |
| Fabaceae | Astragalus effuses         | Не           | IT                |
| Fabaceae | Astragalus eremophilus     | Th, He       | KhO               |
| Fabaceae | Astragalus eriopodus       | Не           | IT                |
| Fabaceae | Astragalus fasciculifolius | Ph           | IT, KhO,<br>(End) |
| Fabaceae | Astragalus fischeri        | Не           | IT, (End)         |
| Fabaceae | Astragalus fridae          | Не           | IT                |
| Fabaceae | Astragalus glaucacanthus   | Ch           | IT, (End)         |
| Fabaceae | Astragalus glaucops        | Ch           | IT, (End)         |
| Fabaceae | Astragalus globiflorus     | Ch           | IT, Zag           |
| Fabaceae | Astragalus glycyphyllos    | Не           | Hyr               |
| Fabaceae | Astragalus gossypinus      | Ch           | IT                |
| Fabaceae | Astragalus hamosus         | Th           | IT, KhO           |
| Fabaceae | Astragalus heratensis      | Не           | IT                |
| Fabaceae | Astragalus hermannii       | Не           | IT, (End)         |
| Fabaceae | Astragalus heterodoxus     | Не           | IT                |

| Family   | Plant species                | Life<br>form | Floristic region  |
|----------|------------------------------|--------------|-------------------|
| Fabaceae | Astragalus hohenackeri       | Не           | IT                |
| Fabaceae | Astragalus hymenocalyx       | Не           | IT, (End)         |
| Fabaceae | Astragalus impexus           | Не           | IT, (End)         |
| Fabaceae | Astragalus ischredensis      | Не           | IT, (End)         |
| Fabaceae | Astragalus ispahanicus       | Не           | IT                |
| Fabaceae | Astragalus jesdianus         | Не           | IT, KhO,<br>(End) |
| Fabaceae | Astragalus kahiricus         | Не           | IT, KhO           |
| Fabaceae | Astragalus khoshjailensis    | Не           | IT, (End)         |
| Fabaceae | Astragalus kirrindicus       | Не           | IT                |
| Fabaceae | Astragalus kopetdaghi        | Не           | IT                |
| Fabaceae | Astragalus laguriformis      | Не           | IT                |
| Fabaceae | Astragalus ledinghamii       | Не           | IT                |
| Fabaceae | Astragalus macropelmatus     | Не           | IT                |
| Fabaceae | Astragalus magistratus       | Не           | IT, (End)         |
| Fabaceae | Astragalus maymanensis       | Th           | IT                |
| Fabaceae | Astragalus megalocystis      | Ch           | IT, (End)         |
| Fabaceae | Astragalus melanocalyx       | Не           | IT                |
| Fabaceae | Astragalus mercklini         | Не           | IT                |
| Fabaceae | Astragalus michauxianus      | Ch           | IT                |
| Fabaceae | Astragalus microcephalus     | Ph           | IT                |
| Fabaceae | Astragalus microphysa        | Ch           | IT, (End)         |
| Fabaceae | Astragalus mollis            | Не           | IT                |
| Fabaceae | Astragalus mucronifolius     | Не           | IT, (End)         |
| Fabaceae | Astragalus multijugus        | Не           | IT                |
| Fabaceae | Astragalus murinus           | Не           | IT, (End)         |
| Fabaceae | Astragalus myriacanthus      | Ch           | IT, (End)         |
| Fabaceae | Astragalus neo-mozaffarianii | Ch           | IT, (End)         |
| Fabaceae | Astragalus obtusifolius      | Ch           | IT                |
| Fabaceae | Astragalus ochrochlorus      | Ch           | IT, (End)         |
| Fabaceae | Astragalus odoratus          | Не           | IT                |

| Family   | Plant species              | Life<br>form | Floristic region |
|----------|----------------------------|--------------|------------------|
| Fabaceae | Astragalus ophiocarpus     | Ch           | IT               |
| Fabaceae | Astragalus ovinus          | Не           | IT               |
| Fabaceae | Astragalus ovoideus        | Ch           | IT, (End)        |
| Fabaceae | Astragalus oxyglottis      | Th           | IT               |
| Fabaceae | Astragalus parrowianus     | Ch           | IT               |
| Fabaceae | Astragalus pelitus         | Не           | IT, (End)        |
| Fabaceae | Astragalus persicus        | Ch           | IT, (End)        |
| Fabaceae | Astragalus pichleriana     | Ch           | IT               |
| Fabaceae | Astragalus pinetorum       | Не           | IT, (End)        |
| Fabaceae | Astragalus podolobus       | Ch           | IT               |
| Fabaceae | Astragalus pseudoszovitsii | Не           | IT               |
| Fabaceae | Astragalus raddei          | Не           | IT               |
| Fabaceae | Astragalus rawlinsianus    | Не           | IT               |
| Fabaceae | Astragalus saetiger        | Не           | IT, (End)        |
| Fabaceae | Astragalus schahrudensis   | Ch           | IT               |
| Fabaceae | Astragalus schistocalyx    | Ch           | IT               |
| Fabaceae | Astragalus scorpius        | Ch           | KhO              |
| Fabaceae | Astragalus senilis         | Не           | IT, Hyr          |
| Fabaceae | Astragalus shirkuhicus     | Ge           | IT               |
| Fabaceae | Astragalus sieberi         | Не           | KhO              |
| Fabaceae | Astragalus siliquosus      | Не           | IT               |
| Fabaceae | Astragalus siversianus     | Ch           | IT               |
| Fabaceae | Astragalus spachianus      | Не           | IT               |
| Fabaceae | Astragalus spinosus        | Ch           | KhO              |
| Fabaceae | Astragalus squarrosus      | Ch           | IT, KhO          |
| Fabaceae | Astragalus susianus        | Ch           | KhO,<br>(End)    |
| Fabaceae | Astragalus talemansurensis | Ch           | IT, Zag,<br>KhO  |
| Fabaceae | Astragalus tenuiscapus     | Не           | IT               |
| Fabaceae | Astragalus tragacantha     | Ch           | IT               |

| Family         | Plant species           | Life<br>form | Floristic region |
|----------------|-------------------------|--------------|------------------|
| Fabaceae       | Astragalus tribuloides  | Th           | IT, KhO          |
| Fabaceae       | Astragalus tricholobus  | Ch           | IT, (End)        |
| Fabaceae       | Astragalus vanillae     | Не           | IT, (End)        |
| Fabaceae       | Astragalus verus        | Ch           | IT               |
| Fabaceae       | Astragalus wartoensis   | Ch           | IT               |
| Umbelliferae   | Astrodaucus orientalis  | Не           | IT               |
| Campanulaceae  | Asyneuma persicum       | Не           | IT               |
| Athyriaceae    | Athyrium filix-femina   | Ge           | Cosm             |
| Asteraceae     | Atractylis cancellata   | Th           | IT               |
| Polygonaceae   | Atraphaxis spinosa      | Ph           | IT, Zag,<br>Ara  |
| Polygonaceae   | Atraphaxis suaedifolia  | Ch           | IT               |
| Polygonaceae   | Atraphaxis tournefortii | Ch           | IT, Zag          |
| Chenopodiaceae | Atriplex aucheri        | Th           | IT, Hyr          |
| Chenopodiaceae | Atriplex belangeri      | Th           | IT               |
| Chenopodiaceae | Atriplex canescens      | Ch, Ph       | IT               |
| Chenopodiaceae | Atriplex dimorphostegia | Th           | IT, KhO          |
| Chenopodiaceae | Atriplex flabellum      | Th           | IT               |
| Chenopodiaceae | Atriplex griffithii     | Ch           | IT, KhO          |
| Chenopodiaceae | Atriplex haliumus       | Ch           | IT, KhO          |
| Chenopodiaceae | Atriplex hortensis      | Th           | IT               |
| Chenopodiaceae | Atriplex lentiformis    | Ph           | IT, KhO          |
| Chenopodiaceae | Atriplex leucoclada     | He, Th       | IT, KhO          |
| Chenopodiaceae | Atriplex micrantha      | Th           | IT               |
| Chenopodiaceae | Atriplex moneta         | Th           | IT               |
| Chenopodiaceae | Atriplex persica        | Ch           | KhO, IT          |
| Chenopodiaceae | Atriplex stocksii       | Ch           | IT               |
| Chenopodiaceae | Atriplex tatarica       | Th           | IT               |
| Chenopodiaceae | Atriplex verrucifera    | Ch           | IT               |
| Solanaceae     | Atropa acuminata        | Не           | Hyr              |
| Solanaceae     | Atropa belladonna       | Не           | Hyr              |

| Family           | Plant species           | Life<br>form | Floristic region      |
|------------------|-------------------------|--------------|-----------------------|
| Solanaceae       | Atropa pallidifolia     | Не           | Hyr                   |
| Brassicaceae     | Aubrietia parviflora    | Не           | IT                    |
| Poaceae          | Avena fatua             | Th           | IT                    |
| Poaceae          | Avena ludoviciana       | Th           | IT                    |
| Poaceae          | Avena sativa            | Th           | IT                    |
| Poaceae          | Avena wiestii           | Th           | IT, KhO               |
| Avicenniaceae    | Avicennia officinalis   | Ph           | KhO                   |
| Meliaceae        | Azadirachta indica      | Ph           | KhO                   |
| Umbelliferae     | Azilia eryngioides      | Не           | IT                    |
| Scrophulariaceae | Bacopa monnifera        | Hel          | KhO                   |
| Brassicaceae     | Barbarea plantaginea    | Не           | Hyr, IT               |
| Chenopodiaceae   | Bassia eriophora        | Th           | KhO                   |
| Chenopodiaceae   | Bassia hyssopifolia     | Th           | IT                    |
| Caesalpiniaceae  | Bauhinia acuminata      | Ph           | KhO                   |
| Caesalpiniaceae  | Bauhinia purprea        | Ph           | KhO                   |
| Caesalpiniaceae  | Bauhinia veriegata      | Ph           | KhO                   |
| Liliaceae        | Bellevalia longistyla   | Ge           | IT, Zag               |
| Liliaceae        | Bellevalia saiviczii    | Ge           | IT                    |
| Asteraceae       | Bellis annua            | Th           | KhO                   |
| Berberidaceae    | Berberis integerrima    | Ph           | IT*, Zag,<br>Hyr, Ara |
| Berberidaceae    | Berberis lycium         | Ph           | IT*                   |
| Berberidaceae    | Berberis orientalis     | Ph           | Hyr                   |
| Berberidaceae    | Berberis vulgaris       | Ph           | IT*, Hyr,<br>Zag, Ara |
| Rhamnaceae       | Berchemia lineata       | Ph           | KhO                   |
| Betulaceae       | Betula pendula          | Ph           | Hyr                   |
| Geraniaceae      | Biebersteinia multifida | Ge           | Cosm                  |
| Chenopodiaceae   | Bienertia cycloptera    | Th           | IT, KhO               |
| Cupressaceae     | Biota orientalis        | Ph           | Hyr                   |
| Brassicaceae     | Biscutella didyma       | Th           | IT, KhO               |

| Family        | Plant species           | Life<br>form | Floristic region |
|---------------|-------------------------|--------------|------------------|
| Acanthaceae   | Blepharis edulis        | Не           | IT, KhO          |
| Cyperaceae    | Blysmus compressus      | Ge           | Hyr, IT          |
| Nyctaginaceae | Boerhavia diffusa       | Не           | KhO              |
| Nyctaginaceae | Boerhavia elegans       | Не           | KhO              |
| Poaceae       | Boisseria squarrosa     | Th           | IT               |
| Cyperaceae    | Bolboschoenus maritimus | Ge           | IT               |
| Malvaceae     | Bombax malabaricum      | Ph           | KhO              |
| Podophylaceae | Bongardia chrysogonum   | Ge           | IT, Zag,<br>Hyr  |
| Poaceae       | Bothriochloa ischaemum  | Не           | IT               |
| Poaceae       | Brachypodium pinnatum   | Ge           | Hyr, IT          |
| Poaceae       | Brachypodium sylvaticum | Не           | Hyr, Ara,<br>IT  |
| Brassicaceae  | Brassica deflexa        | Th           | IT, KhO          |
| Brassicaceae  | Brassica elongata       | Не           | IT               |
| Brassicaceae  | Brassica nigra          | Th           | KhO              |
| Brassicaceae  | Brassica oleracea       | Не           | IT               |
| Brassicaceae  | Brassica rapa           | Не           | IT               |
| Brassicaceae  | Brassica tournefortii   | Th           | Hyr, IT,<br>KhO  |
| Poaceae       | Briza minor             | Th           | Hyr, IT          |
| Poaceae       | Bromus briziformis      | Th           | IT, Hyr          |
| Poaceae       | Bromus danthonia        | Th           | IT               |
| Poaceae       | Bromus japonicus        | Th           | IT, Hyr          |
| Poaceae       | Bromus rechingeri       | Th           | IT               |
| Poaceae       | Bromus scoparius        | Th           | Cosm             |
| Poaceae       | Bromus sterilis         | Th           | IT, Hyr          |
| Poaceae       | Bromus tectorum         | Th           | Cosm             |
| Poaceae       | Bromus tomentellus      | Не           | IT               |
| Brassicaceae  | Brossardia papyracea    | Не           | IT               |
| Cucurbitaceae | Bryonia aspera          | Не           | IT               |
| Cucurbitaceae | Bryonia dioica          | Не           | IT, Ara          |

| Family           | Plant species                | Life<br>form | Floristic region |
|------------------|------------------------------|--------------|------------------|
| Cucurbitaceae    | Bryonia monoica              | Не           | IT               |
| Brassicaceae     | Buchingera axillaris         | Th           | IT               |
| Scrophulariaceae | Buddleja crispa              | Ph           | IT, KhO          |
| Scrophulariaceae | Buddleja paniculata          | Ph           | KhO              |
| Caryophyllaceae  | Buffomia koelzii             | Не           | IT, Hyr          |
| Caryophyllaceae  | Buffonia macrocarpa          | Не           | IT               |
| Caryophyllaceae  | Buffonia oliveriana          | Th           | IT               |
| Boraginaceae     | Buglossoides arvensis        | Th           | Hyr, IT          |
| Boraginaceae     | Buglossoides purpurocaerulea | Ge           | Hyr              |
| Boraginaceae     | Buglossoides tenuifolia      | Th           | IT               |
| Capparidaceae    | Buhsea trinervia             | Ge           | IT               |
| Scrophulariaceae | Bungea trifida               | Ge           | IT               |
| Brassicaceae     | Bunias oreintalis            | Th, He       | IT               |
| Umbelliferae     | Bunium cylindricum           | Ge           | IT, Hyr          |
| Umbelliferae     | Bunium elegans               | Ge           | IT               |
| Umbelliferae     | Bunium luristanicum          | Ge           | IT               |
| Umbelliferae     | Bunium paucifolium           | Ge           | IT               |
| Umbelliferae     | Bunium persicum              | Ge           | IT               |
| Umbelliferae     | Bupleurum exaltatum          | Не           | IT, Hyr          |
| Umbelliferae     | Bupleurum falcatum           | Не           | IT               |
| Umbelliferae     | Bupleurum gerardii           | Th           | IT               |
| Umbelliferae     | Bupleurum lancifolium        | Th           | IT               |
| Umbelliferae     | Bupleurum marschallianum     | Th           | Hyr              |
| Umbelliferae     | Bupleurum rotundifolium      | Th           | IT               |
| Buxaceae         | Buxus hyrcana                | Ph           | Hyr              |
| Boraginaceae     | Caccinia macranthera         | Не           | IT               |
| Capparaceae      | Cadaba glandulosa            | Ph           | KhO              |
| Caesalpiniaceae  | Caesalpinia bonducella       | Ph           | KhO              |
| Caesalpiniaceae  | Caesalpinia gilliesii        | Ph           | KhO, IT          |
| Fabaceae         | Cajanus indicus              | Ph           | KhO              |

| Family         | Plant species                  | Life<br>form | Floristic region |
|----------------|--------------------------------|--------------|------------------|
| Poaceae        | Calamagrostis epigejos         | Ge           | IT               |
| Poaceae        | Calamagrostis pseudophragmites | Ge           | IT               |
| Lamiaceae      | Calamintha grandiflora         | Не           | Hyr, IT          |
| Lamiaceae      | Calamintha officinalis         | He           | Hyr, IT          |
| Asteraceae     | Calendula officinalis          | Th, He       | IT               |
| Asteraceae     | Calendula persica              | Th           | IT, KhO          |
| Asteraceae     | Callicephalus nitens           | Th           | IT, Hyr          |
| Polygonaceae   | Calligonum amoenum             | Ph           | IT, KhO          |
| Polygonaceae   | Calligonum bungei              | Ph           | IT, KhO          |
| Polygonaceae   | Calligonum comosum             | Ph           | IT, KhO          |
| Polygonaceae   | Calligonum crinitum            | Ph           | IT, KhO          |
| Polygonaceae   | Calligonum denticulatum        | Ph           | IT               |
| Polygonaceae   | Calligonum intertextum         | Ph           | KhO              |
| Polygonaceae   | Calligonum junceum             | Ph           | IT               |
| Polygonaceae   | Calligonum laristanicum        | Ph           | KhO              |
| Polygonaceae   | Calligonum leucocladum         | Ph           | IT               |
| Polygonaceae   | Calligonum persicum            | Ph           | IT               |
| Polygonaceae   | Calligonum polygonoides        | Ph           | IT, KhO          |
| Polygonaceae   | Calligonum schizopterum        | Ph           | IT               |
| Polygonaceae   | Calligonum stenopterum         | Ph           | IT               |
| Polygonaceae   | Calligonum tetrapterum         | Ph           | IT               |
| Polygonaceae   | Calligonum turkestanicum       | Ph           | IT               |
| Rubiaceae      | Callipeltis cucullaria         | Th           | IT               |
| Myrtaceae      | Callistemon salignus           | Ph           | KhO              |
| Asclepiadaceae | Calotropis procera             | Ph           | KhO              |
| Convulvulaceae | Calystegia sepium              | Не           | IT, Hyr          |
| Convolvulaceae | Calystegia silvatica           | Не           | Hyr              |
| Brassicaceae   | Camelina laxa                  | Th           | IT               |
| Brassicaceae   | Camelina rumelica              | Th           | Hyr, IT          |
| Campanulaceac  | Campanula cecilii              | Th           | IT, Zag          |

| Family        | Plant species           | Life<br>form | Floristic region  |
|---------------|-------------------------|--------------|-------------------|
| Campanulaceac | Campanula flaccidula    | Th           | IT, Zag           |
| Campanulaceac | Campanula glomerata     | Не           | IT, Hyr           |
| Campanulaceac | Campanula humillima     | Не           | IT, (End)         |
| Campanulaceac | Campanula incanescens   | Не           | IT                |
| Campanulaceac | Campanula involucrata   | Не           | IT                |
| Campanulaceac | Campanula kermanica     | Не           | IT, (End)         |
| Campanulaceac | Campanula latifolia     | Не           | Hyr, IT           |
| Campanulaceac | Campanula odontosepala  | Не           | Hyr, IT           |
| Campanulaceac | Campanula perpusilla    | Не           | IT, Zag,<br>(End) |
| Campanulaceac | Campanula rapunculus    | Не           | Hyr, IT           |
| Campanulaceac | Campanula reuteriana    | Th           | IT, Zag           |
| Bignoniaceae  | Campsis radicans        | Ph           | KhO               |
| Cannaceae     | Canna indica            | Ge           | KhO               |
| Cannabinaceae | Cannabis sativa         | Th           | Cosm              |
| Capparidaceae | Capparis cartinaginea   | Ch           | KhO               |
| Capparidaceae | Capparis decidua        | Ph           | KhO               |
| Capparidaceae | Capparis parviflora     | Ch           | IT                |
| Capparidaceae | Capparis sicula         | Ch           | IT, KhO           |
| Capparidaceae | Capparis spinosa        | Ch           | IT, KhO           |
| Brassicaceae  | Capsella bursa-pastoris | Th, He       | IT, Hyr,<br>KhO   |
| Fabaceae      | Caragana ambigua        | Ch           | KhO               |
| Fabaceae      | Caragana gerardiana     | Ph           | KhO               |
| Fabaceae      | Caragana ulicina        | Ch           | KhO               |
| Brassicaceae  | Cardamine hirsuta       | Th           | Hyr, IT           |
| Brassicaceae  | Cardamine impatiens     | Th, He       | Hyr, IT           |
| Brassicaceae  | Cardamine uliginosa     | Ge           | IT, Hyr           |
| Brassicaceae  | Cardaria draba          | Ge           | IT                |
| Asteraceae    | Carduus arabicus        | Th           | IT                |
| Asteraceae    | Carduus getulus         | Th           | KhO               |

| Family     | Plant species          | Life<br>form | Floristic region |
|------------|------------------------|--------------|------------------|
| Asteraceae | Carduus pycnocephalus  | Th           | IT               |
| Asteraceae | Carduus thoermeri      | Не           | IT, Ara          |
| Asteraceae | Carduus transcaspicus  | He, Th       | IT, Hyr          |
| Cyperaceae | Carex acuta            | Ge           | IT               |
| Cyperaceae | Carex acutiformis      | Ge           | Hyr, IT          |
| Cyperaceae | Carex digitata         | Ge           | Hyr              |
| Cyperaceae | Carex distans          | Ge           | IT, Zag          |
| Cyperaceae | Carex divisa           | Ge           | IT, Hyr          |
| Cyperaceae | Carex divulsa          | Ge           | Hyr, IT          |
| Cyperaceae | Carex grioletii        | Ge           | Hyr              |
| Cyperaceae | Carex orbicularis      | Ge           | IT, Hyr          |
| Cyperaceae | Carex oreophila        | Ge           | IT, Hyr          |
| Cyperaceae | Carex pachystylis      | Ge           | IT, Hyr          |
| Cyperaceae | Carex pendula          | Ge           | Hyr              |
| Cyperaceae | Carex physodes         | Ge           | IT               |
| Cyperaceae | Carex remota           | Ge           | Hyr              |
| Cyperaceae | Carex riparia          | Ge           | Hyr, IT          |
| Cyperaceae | Carex songorica        | Ge           | IT, Hyr          |
| Cyperaceae | Carex sp.              | Ge           |                  |
| Cyperaceae | Carex stenophylla      | Ge           | IT               |
| Cyperaceae | Carex strigosa         | Ge           | Hyr              |
| Cyperaceae | Carex sylvatica        | Ge           | Hyr, IT          |
| Caricaceae | Carica papaya          | Ph           | KhO              |
| Asteraceae | Carpesium abrotanoides | Не           | Hyr              |
| Betulaceae | Carpinus betulus       | Ph           | Hyr, Ara         |
| Betulaceae | Carpinus orientalis    | Ph           | IT*, Hyr,<br>Ara |
| Betulaceae | Carpinus schuschaensis | Ph           | Hyr, Ara         |
| Aizoaceae  | Carpobratus edulis     | Не           | IT               |
| Asteraceae | Carthamus glaucus      | Th, He       | IT               |
| Asteraceae | Carthamus lanatus      | Th, He       | IT, Hyr          |

| Family         | Plant species             | Life<br>form | Floristic region      |
|----------------|---------------------------|--------------|-----------------------|
| Asteraceae     | Carthamus oxyacantha      | Th           | IT                    |
| Asteraceae     | Carthamus tinctorius      | Th           | Cosm                  |
| Caesalpinaceae | Cassia fistula            | Ph           | KhO                   |
| Caesalpinaceae | Cassia italica            | Ch           | KhO                   |
| Caesalpinaceae | Cassia obovata            | Ch           | KhO                   |
| Fagaceae       | Castanea sativa           | Ph           | Hyr                   |
| Poaceae        | Catabrosa aquatica        | Ge           | Hyr, IT               |
| Poaceae        | Catapodium rigidum        | Th           | Hyr, IT               |
| Apocynaceae    | Catharanthus rosea        | Не           | KhO                   |
| Umbelliferae   | Caucalis platycarpos      | Th           | IT, Hyr               |
| Ulmaceae       | Celtis australis          | Ph           | Hyr, Ara              |
| Ulmaceae       | Celtis caucasica          | Ph           | IT*, Hyr,<br>Ara, Zag |
| Ulmaceae       | Celtis glabrata           | Ph           | Hyr, IT*              |
| Ulmaceae       | Celtis tournefortii       | Ph           | Hyr, Zag              |
| Poaceae        | Cenchrus ciliaris         | Ge           | IT, KhO               |
| Poaceae        | Cenchrus pennisetiformis  | Th, He       | KhO                   |
| Asteraceae     | Centaurea aggregata       | Не           | IT                    |
| Asteraceae     | Centaurea aucheri         | Ge           | IT, Zag               |
| Asteraceae     | Centaurea balsamita       | Th           | IT                    |
| Asteraceae     | Centaurea behen           | Не           | IT                    |
| Asteraceae     | Centaurea bruguieriana    | Th           | IT, KhO               |
| Asteraceae     | Centaurea cheiranthifolia | Ge           | IT                    |
| Asteraceae     | Centaurea depressa        | Th           | IT                    |
| Asteraceae     | Centaurea gaubae          | Не           | IT                    |
| Asteraceae     | Centaurea hyalolepis      | Th, He       | IT                    |
| Asteraceae     | Centaurea hyrcanica       | Не           | Hyr                   |
| Asteraceae     | Centaurea iberica         | He, Th       | IT, Hyr,<br>Zag       |
| Asteraceae     | Centaurea intricate       | Не           | IT, KhO               |
| Asteraceae     | Centaurea irritans        | Th           | IT                    |

| Family          | Plant species                   | Life<br>form | Floristic region |
|-----------------|---------------------------------|--------------|------------------|
| Asteraceae      | Centaurea ispahanica            | Не           | IT               |
| Asteraceae      | Centaurea koeieana              | Не           | IT               |
| Asteraceae      | Centaurea lachnopus             | Ge           | IT               |
| Asteraceae      | Centaurea leuzeoides            | Не           | IT               |
| Asteraceae      | Centaurea luristanica           | Не           | IT               |
| Asteraceae      | Centaurea ovina                 | Не           | Hyr              |
| Asteraceae      | Centaurea pabotii               | Не           | IT               |
| Asteraceae      | Centaurea pseudosinaica         | Th           | KhO              |
| Asteraceae      | Centaurea pulchella             | Th           | IT               |
| Asteraceae      | Centaurea sintenisiana          | Не           | IT, Hyr          |
| Asteraceae      | Centaurea solstitialis          | Th           | IT, Hyr,<br>Ara  |
| Asteraceae      | Centaurea sosnovskyi            | Th           | IT, Hyr          |
| Asteraceae      | Centaurea virgata               | Ch           | IT, Hyr          |
| Asteraceae      | Centaurea zuvandica             | Ge           | IT, Hyr,<br>Ara  |
| Gentianaceae    | Centaurium minus                | Th, He       | IT, Hyr          |
| Gentianaceae    | Centaurium pulchellum           | Th           | IT, Hyr,<br>KhO  |
| Gentianaceae    | Centaurium spicatum             | Th           | Hyr, IT          |
| Orchidaceae     | Cephalanthera caucasica         | Ge           | Hyr              |
| Orchidaceae     | Cephalanthera damasonium        | Ge           | Hyr, Ara         |
| Orchidaceae     | Cephalanthera rubra             | Ge           | Hyr              |
| Orchidaceae     | Cephalanthera sp.               | Ge           |                  |
| Dipsacaceae     | Cephalaria dichaetophora        | Th           | IT, Zag          |
| Dipsacaceae     | Cephalaria kotschyi             | Не           | IT               |
| Dipsacaceae     | Cephalaria microcephala         | Не           | IT               |
| Dipsacaceae     | Cephalaria procera              | Не           | IT               |
| Dipsacaceae     | Cephalaria syriaca              | Th           | IT               |
| Asteraceae      | Cephalorrhynchus brassicifoluis | Не           | IT, Hyr          |
| Asteraceae      | Cephalorrhynchus kossinskyi     | Ge           | IT               |
| Caryophyllaceae | Cerastium dichotomum            | Th           | IT               |

| Family           | Plant species               | Life<br>form | Floristic region      |
|------------------|-----------------------------|--------------|-----------------------|
| Caryophyllaceae  | Cerastium glomeratum        | Th           | IT, Hyr               |
| Caryophyllaceae  | Cerastium inflatum          | Th           | IT                    |
| Rosaceae         | Cerasus avium               | Ph           | Hyr, IT*,<br>Zag, Ara |
| Rosaceae         | Cerasus brachypetala        | Ph           | IT                    |
| Rosaceae         | Cerasus chorassanica        | Ph           | IT, (End)             |
| Rosaceae         | Cerasus griffithii          | Ph           | Zag                   |
| Rosaceae         | Cerasus incana              | Ph           | IT                    |
| Rosaceae         | Cerasus mahaleb             | Ph           | IT                    |
| Rosaceae         | Cerasus microcarpa          | Ph           | IT                    |
| Rosaceae         | Cerasus vulgaris            | Ph           | IT*, Hyr              |
| Chenopodiaceae   | Ceratocarpus arenarius      | Th           | IT                    |
| Ranunculaceae    | Ceratocephala testiculata   | Th           | IT                    |
| Ranunculaceae    | Ceratocephalus falcatus     | Th           | IT, Hyr               |
| Caesalpinaceae   | Ceratonia siliqua           | Ph           | KhO                   |
| Ceratophyllaceae | Ceratophyllum demersum      | Hyd          | IT, Hyr               |
| Caesalpinaceae   | Cercis griffithii           | Ph           | IT, Hyr,<br>Zag       |
| Caesalpinaceae   | Cercis siliquastrum         | Ph           | Hyr                   |
| Boraginaceae     | Cerinthe minor              | He           | IT, Hyr               |
| Umbelliferae     | Chaerophyllum aureum        | He           | IT, Hyr               |
| Umbelliferae     | Chaerophyllum bulbosum      | Ge           | IT, Hyr               |
| Umbelliferae     | Chaerophyllum khorassanicum | He           | IT, Hyr               |
| Umbelliferae     | Chaerophyllum macropodum    | Не           | IT, Zag,<br>Hyr       |
| Umbelliferae     | Chaerophyllum macrospermum  | He           | IT                    |
| Brassicaceae     | Chalcanthus renifolius      | Ge           | IT, Hyr               |
| Lamiaceae        | Chamaesphacos ilicifolius   | Th           | IT                    |
| Asteraceae       | Chardinia orientalis        | Th           | IT                    |
| Papaveraceae     | Chelidonium majus           | He           | Hyr, IT               |
| Chenopodiaceae   | Chenopodium album           | Th           | Cosm                  |
| Chenopodiaceae   | Chenopodium ambrosioides    | Th           | Hyr                   |

| Family         | Plant species                 | Life<br>form | Floristic region |
|----------------|-------------------------------|--------------|------------------|
| Chenopodiaceae | Chenopodium botrys            | Th           | IT, Hyr          |
| Chenopodiaceae | Chenopodium foliosum          | Th           | IT, Hyr          |
| Chenopodiaceae | Chenopodium glaucum           | Th           | IT, Hyr          |
| Chenopodiaceae | Chenopodium murale            | Th           | IT, KhO          |
| Chenopodiaceae | Chenopodium novopokrovskyanum | Th           | IT, Hyr          |
| Chenopodiaceae | Chenopodium urbicum           | Th           | IT, Hyr          |
| Chenopodiaceae | Chenopodium vulvaira          | Th           | IT, Hyr          |
| Fabaceae       | Chesneya astragalina          | Не           | IT*              |
| Asteraceae     | Chondrilla juncea             | He, Th       | IT, Hyr,<br>Zag  |
| Brassicaceae   | Chorispora tenella            | Th           | IT               |
| Euphorbiaceae  | Chrozophora hierosolymitana   | Th           | IT               |
| Euphorbiaceae  | Chrozophora tinctoria         | Th           | IT               |
| Asteraceae     | Chrysanthemum coronarium      | Th           | Hyr, IT,<br>KhO  |
| Asteraceae     | Chrysanthemum roseum          | Не           | IT               |
| Poaceae        | Chrysopogon aucheri           | Ge           | KhO              |
| Fabaceae       | Cicer anatolicum              | He           | IT               |
| Fabaceae       | Cicer arietinum               | Th           | IT               |
| Fabaceae       | Cicer oxyodon                 | Не           | IT, Hyr,<br>KhO  |
| Fabaceae       | Cicer spiroceras              | He           | IT, (End)        |
| Asteraceae     | Cichorium intybus             | Не           | Cosm             |
| Asteraceae     | Cichorium pumilum             | Th           | KhO, Zag         |
| Onagraceae     | Circaea lutetiana             | Ge           | Hyr, IT          |
| Asteraceae     | Cirsium arvense               | Ge           | IT, Hyr          |
| Asteraceae     | Cirsium bornmulleri           | Не           | IT               |
| Asteraceae     | Cirsium bracteatum            | Th           | IT               |
| Asteraceae     | Cirsium bracteosum            | Не           | IT               |
| Asteraceae     | Cirsium congestum             | Не           | IT               |
| Asteraceae     | Cirsium echinus               | Не           | IT, Hyr          |
| Asteraceae     | Cirsium haussknechtii         | He, Th       | IT               |

| Family        | Plant species            | Life<br>form | Floristic region |
|---------------|--------------------------|--------------|------------------|
| Asteraceae    | Cirsium hygrophilum      | Не           | IT, Hyr          |
| Asteraceae    | Cirsium lappaceum        | Не           | IT               |
| Asteraceae    | Cirsium rhizocephalum    | Не           | IT               |
| Asteraceae    | Cirsium spectabile       | Ge           | IT               |
| Asteraceae    | Cirsium strigosum        | Не           | IT, Hyr          |
| Asteraceae    | Cirsium vulgare          | Не           | IT, Hyr          |
| Orbanchaceae  | Cistanche tubulosa       | Ge           | IT               |
| Cucurbitaceae | Citrullus colocynthis    | Не           | KhO, IT          |
| Cucurbitaceae | Citrullus vulgaris       | Th           | IT               |
| Rutaceae      | Citrus sp.               | Ph           |                  |
| Cyperaceae    | Cladium mariscus         | Ge           | Hyr, IT          |
| Ranunculaceae | Clematis ispahanica      | Ch           | IT               |
| Ranunculaceae | Clematis orientalis      | Ch           | IT, Zag          |
| Capparaceae   | Cleome chrysantha        | Не           | KhO              |
| Capparaceae   | Cleome coluteoides       | Не           | IT               |
| Capparaceae   | Cleome dolichostyla      | Th, He       | KhO,<br>(End)    |
| Capparaceae   | Cleome heratensis        | He,Th        | IT               |
| Capparaceae   | Cleome iberica           | He, Th       | IT, Zag          |
| Capparaceae   | Cleome Khorasanica       | Не           | IT               |
| Capparaceae   | Cleome noeana            | Th, He       | IT, KhO          |
| Capparaceae   | Cleome oxypetala         | Не           | IT, KhO          |
| Capparaceae   | Cleome quinquenervia     | Th           | IT               |
| Lamiaceae     | Clerodendron inerme      | Ph           | KhO              |
| Amaranthaceae | Climacoptera turcomanica | Th           | IT               |
| Lamiaceae     | Clinopodium umbrosum     | Не           | IT, Hyr          |
| Lamiaceae     | Clinopodium vulgare      | Не           | Hyr, IT          |
| Brassicaceae  | Clypeola aspera          | Th           | IT               |
| Brassicaceae  | Clypeola dichotoma       | Th           | IT               |
| Brassicaceae  | Clypeola jonthlaspi      | Th           | IT               |
| Cruciferae    | Clypeola microcarpa      | Th           | IT, Hyr          |

| Family          | Plant species               | Life<br>form | Floristic region |
|-----------------|-----------------------------|--------------|------------------|
| Asteraceae      | Cnicus benedictus           | Th           | IT               |
| Menispermaceae  | Cocculus pendulus           | Ch           | KhO              |
| Asteraceae      | Codonocephalum peacockianum | Не           | IT               |
| Colochicaceae   | Colchicum persicum          | Ge           | IT               |
| Colochicaceae   | Colchicum steveni           | Ge           | Hyr, IT          |
| Colochicaceae   | Colchicum szovitsii         | Ge           | IT               |
| Fabaceae        | Colutea arborescens         | Ph           | Ara, Hyr         |
| Fabaceae        | Colutea armata              | Ph           | IT*, KhO         |
| Fabaceae        | Colutea buhsei              | Ph           | IT*, Ara,<br>Hyr |
| Fabaceae        | Colutea gifana              | Ph           | IT*              |
| Fabaceae        | Colutea gracilis            | Ph           | IT               |
| Fabaceae        | Colutea persica             | Ph           | Zag, IT*         |
| Fabaceae        | Colutea porphyrogramma      | Ph           | IT*              |
| Fabaceae        | Colutea triphylla           | Ph           | IT*, Hyr         |
| Fabaceae        | Colutea uniflora            | Ph           | IT*, Hyr         |
| Caryophyllaceae | Cometes surattensis         | Th           | KhO              |
| Orchidaceae     | Comperia comperiana         | Ge           | IT               |
| Umbelliferae    | Conium maculatum            | Не           | Cosm             |
| Brassicaceae    | Conringia clavata           | Th           | IT               |
| Brassicaceae    | Conringia orientalis        | He, Th       | IT, Hyr          |
| Brassicaceae    | Conringia perfoliata        | Th           | IT, Hyr          |
| Brassicaceae    | Conringia persica           | Th           | IT               |
| Ranunculaceae   | Consolida camptocarpa       | Th           | IT               |
| Ranunculaceae   | Consolida orientalis        | Th           | IT               |
| Ranunculaceae   | Consolida rugulosa          | Th           | IT               |
| Ranunculaceae   | Consolida trigonelloides    | Th           | IT               |
| Convolvulaceae  | Convolvulus acanthocladus   | Ch           | KhO, Zag         |
| Convolvulaceae  | Convolvulus argyracanthus   | Ch           | KhO              |
| Convolvulaceae  | Convolvulus arvensis        | Не           | Cosm             |
| Convolvulaceae  | Convolvulus buschiricus     | Не           | KhO              |

| Family         | Plant species                | Life<br>form | Floristic region  |
|----------------|------------------------------|--------------|-------------------|
| Convolvulaceae | Convolvulus calvertii        | Не           | IT                |
| Convolvulaceae | Convolvulus cantabrica       | Не           | IT, Hyr           |
| Convolvulaceae | Convolvulus chondrillioides  | Ch           | IT                |
| Convolvulaceae | Convolvulus commutatus       | Не           | IT                |
| Convolvulaceae | Convolvulus dorycnium        | Не           | IT                |
| Convolvulaceae | Convolvulus eremophilus      | Не           | IT                |
| Convolvulaceae | Convolvulus erinaceus        | Ch           | IT                |
| Convolvulaceae | Convolvulus evolvuloides     | Не           | IT                |
| Convolvulaceae | Convolvulus fruticosus       | Ch           | IT                |
| Convolvulaceae | Convolvulus glomeratus       | Ch           | KhO               |
| Convolvulaceae | Convolvulus gonocladus       | Не           | IT, KhO,<br>(End) |
| Convolvulaceae | Convolvulus koeieanus        | Не           | IT, KhO,<br>(End) |
| Convolvulaceae | Convolvulus leiocalycinus    | Ch           | IT, Zag,<br>KhO   |
| Convolvulaceae | Convolvulus leptocladus      | Ch           | KhO               |
| Convolvulaceae | Convolvulus lineatus         | Не           | IT                |
| Convolvulaceae | Convolvulus oxyphyllus       | Не           | KhO               |
| Convolvulaceae | Convolvulus oxysepalus       | Не           | KhO, IT, (End)    |
| Convolvulaceae | Convolvulus pilosellifolius  | Не           | IT, KhO,<br>Zag   |
| Convolvulaceae | Convolvulus pseudocantabrica | Не           | IT                |
| Convolvulaceae | Convolvulus reticulatus      | Не           | IT                |
| Convolvulaceae | Convolvulus schirazianus     | Не           | IT, (End)         |
| Convolvulaceae | Convolvulus sericeus         | Не           | KhO               |
| Convolvulaceae | Convolvulus spinosus         | Ch           | IT, KhO           |
| Convolvulaceae | Convolvulus stachydifolius   | Не           | IT                |
| Convolvulaceae | Convolvulus turrillianus     | Ch           | IT, KhO,<br>(End) |
| Convolvulaceae | Convolvulus urosepalus       | Не           | IT, KhO           |
| Convolvulaceae | Convolvulus virgatus         | Ch           | KhO, IT           |
| Asteraceae     | Conyza bonariensis           | Th           | IT, Hyr           |

| Family         | Plant species             | Life<br>form | Floristic region |
|----------------|---------------------------|--------------|------------------|
| Asteraceae     | Conyza canadensis         | Th           | IT               |
| Asteraceae     | Conyzanthus squamatus     | Не           | Cosm             |
| Tiliaceae      | Corchorus depressus       | Ch           | KhO              |
| Tiliaceae      | Corchorus trilocularis    | He, Th       | KhO              |
| Boraginaceae   | Cordia crenata            | Ph           | KhO              |
| Boraginaceae   | Cordia myxa               | Ph           | KhO              |
| Umbelliferae   | Coriandrum sativum        | Th           | Cosm             |
| Chenopodiaceae | Corispermum lehmannianum  | Th           | IT               |
| Chenopodiaceae | Cornulaca amblyacantha    | Ch           | KhO, IT          |
| Chenopodiaceae | Cornulaca aucheri         | Th           | IT, KhO          |
| Chenopodiaceae | Cornulaca laucantha       | Th, He       | IT, KhO          |
| Chenopodiaceae | Cornulaca monacantha      | Ch           | IT, KhO          |
| Cornaceae      | Cornus australis          | Ph           | IT*, Hyr,<br>Ara |
| Cornaceae      | Cornus mas                | Ph           | Ara, Hyr         |
| Cornaceae      | Cornus sanguinea          | Ph           | Zag              |
| Fabaceae       | Coronilla scorpioides     | Th           | IT, KhO          |
| Fabaceae       | Coronilla varia           | Не           | Hyr, IT          |
| Primulaceae    | Cortusa matuioli          | Не           | Hyr, (End)       |
| Fumariaceae    | Corydalis chionophila     | Не           | IT               |
| Fumariaceae    | Corydalis rupestris       | Не           | IT               |
| Betulaceae     | Corylus avellana          | Ph           | Hyr, Ara         |
| Betulaceae     | Corylus colurna           | Ph           | Hyr              |
| Asteraceae     | Cota altissima            | Th           | Hyr              |
| Anacardiaceae  | Cotinus coggygria         | Ph           | Ara              |
| Rosaceae       | Cotoneaster atrosanguinea | Ph           | Ara, Zag         |
| Rosaceae       | Cotoneaster azarolus      | Ph           | Zag              |
| Rosaceae       | Cotoneaster discolor      | Ph           | IT*, Hyr         |
| Rosaceae       | Cotoneaster esfandiarii   | Ph           | IT*, (End)       |
| Rosaceae       | Cotoneaster heterophylla  | Ph           | Zag              |
| Rosaceae       | Cotoneaster hissarica     | Ph           | IT*, Zag,        |

| Family     | Plant species           | Life<br>form | Floristic region   |
|------------|-------------------------|--------------|--------------------|
|            |                         |              | Hyr                |
| Rosaceae   | Cotoneaster insignis    | Ph           | IT*, Hyr           |
| Rosaceae   | Cotoneaster integerrima | Ph           | Hyr                |
| Rosaceae   | Cotoneaster kotschyi    | Ph           | IT*                |
| Rosaceae   | Cotoneaster luristanica | Ph           | IT*, Zag           |
| Rosaceae   | Cotoneaster meyeri      | Ph           | Zag, Ara           |
| Rosaceae   | Cotoneaster microphylla | Ph           | Zag, Ara           |
| Rosaceae   | Cotoneaster morulus     | Ph           | Zag                |
| Rosaceae   | Cotoneaster multiflora  | Ph           | Hyr                |
| Rosaceae   | Cotoneaster nummularia  | Ph           | IT*, Hyr,<br>Ara   |
| Rosaceae   | Cotoneaster ovata       | Ph           | IT*, Hyr           |
| Rosaceae   | Cotoneaster persica     | Ph           | IT*, Zag,<br>(End) |
| Rosaceae   | Cotoneaster racemiflora | Ph           | Ara, Hyr,<br>Zag   |
| Rosaceae   | Cotoneaster sp.         | Ph           |                    |
| Rosaceae   | Cotoneaster turcomanica | Ph           | Hyr                |
| Rosaceae   | Cotoneaster tytthocarpa | Ph           | IT*, Hyr           |
| Asteraceae | Cousinia amplissima     | He           | IT                 |
| Asteraceae | Cousinia arida          | He           | IT                 |
| Asteraceae | Cousinia assyriaca      | He           | IT                 |
| Asteraceae | Cousinia behboudiana    | Не           | IT                 |
| Asteraceae | Cousinia belangeri      | He           | IT                 |
| Asteraceae | Cousinia calcitrapa     | Не           | IT                 |
| Asteraceae | Cousinia calolepis      | Ch           | IT                 |
| Asteraceae | Cousinia chrysochlora   | Ch           | IT                 |
| Asteraceae | Cousinia congesta       | Ch           | IT                 |
| Asteraceae | Cousinia cylindracea    | Не           | IT                 |
| Asteraceae | Cousinia cymbolepis     | Не           | IT                 |
| Asteraceae | Cousinia decipiens      | Ch           | IT                 |
| Asteraceae | Cousinia deserti        | Не           | IT                 |

| Family       | Plant species             | Life<br>form | Floristic region |
|--------------|---------------------------|--------------|------------------|
| Asteraceae   | Cousinia ecbatanensis     | Не           | IT               |
| Asteraceae   | Cousinia elwendensis      | Не           | IT*              |
| Asteraceae   | Cousinia eriobasis        | Не           | IT               |
| Asteraceae   | Cousinia eryngioides      | Не           | IT               |
| Asteraceae   | Cousinia hablitzii        | Не           | IT, Hyr          |
| Asteraceae   | Cousinia heliantha        | Th, He       | IT               |
| Asteraceae   | Cousinia khorramabadensis | Не           | IT               |
| Asteraceae   | Cousinia lachnosphaera    | Не           | IT               |
| Asteraceae   | Cousinia lactiflora       | Не           | IT               |
| Asteraceae   | Cousinia lasiandra        | Не           | IT               |
| Asteraceae   | Cousinia macrocarpa       | Не           | IT               |
| Asteraceae   | Cousinia meshhedensis     | Не           | IT               |
| Asteraceae   | Cousinia microcarpa       | Не           | IT               |
| Asteraceae   | Cousinia microcephala     | Не           | IT               |
| Asteraceae   | Cousinia millefontana     | Не           | IT               |
| Asteraceae   | Cousinia multiloba        | Не           | IT               |
| Asteraceae   | Cousinia neurocentra      | Не           | IT               |
| Asteraceae   | Cousinia onopordioides    | Не           | IT, Hyr          |
| Asteraceae   | Cousinia pichleriana      | Не           | IT               |
| Asteraceae   | Cousinia piptocephala     | Не           | IT               |
| Asteraceae   | Cousinia prolifera        | Th           | IT, KhO          |
| Asteraceae   | Cousinia sicigera         | Не           | IT               |
| Asteraceae   | Cousinia smirnowii        | Ch           | IT               |
| Asteraceae   | Cousinia stocksii         | Не           | IT, KhO          |
| Asteraceae   | Cousinia tenuifolia       | Не           | IT               |
| Asteraceae   | Cousinia turcomanica      | Не           | IT               |
| Asteraceae   | Cousinia turkmenorum      | Не           | IT               |
| Asteraceae   | Cousinia umbrosa          | Не           | IT               |
| Asteraceae   | Cousinia urumiensis       | Ch           | IT               |
| Brassicaceae | Crambe kotschyana         | Не           | IT               |

| Family       | Plant species                | Life<br>form | Floristic region     |
|--------------|------------------------------|--------------|----------------------|
| Brassicaceae | Crambe orientalis            | Не           | IT                   |
| Crussulaceae | Crassula alata               | Th           | IT, KhO              |
| Rosaceae     | Crataegus ambigua            | Ph           | IT, Hyr              |
| Rosaceae     | Crataegus atrosanguinea      | Ph           | IT, Hyr              |
| Rosaceae     | Crataegus azarolus           | Ph           | IT, Hyr,<br>Zag      |
| Rosaceae     | Crataegus caucasica          | Ph           | Hyr                  |
| Rosaceae     | Crataegus elbursensis        | Ph           | Hyr                  |
| Rosaceae     | Crataegus melanocarpa        | Ph           | Hyr, IT              |
| Rosaceae     | Crataegus meyeri             | Ph           | IT, Hyr              |
| Rosaceae     | Crataegus microphylla        | Ph           | Hyr, IT,<br>Zag      |
| Rosaceae     | Crataegus monogyna           | Ph           | IT, Hyr              |
| Rosaceae     | Crataegus persica            | Ph           | Zag, (End)           |
| Rosaceae     | Crataegus pinnatifida        | Ph           | IT                   |
| Rosaceae     | Crataegus pontica            | Ph           | IT, Zag,<br>Hyr      |
| Rosaceae     | Crataegus pseudoheterophylla | Ph           | IT, Hyr,<br>Zag      |
| Rosaceae     | Crataegus pseudomelanocarpa  | Ph           | Hyr                  |
| Rosaceae     | Crataegus sinaica            |              | IT, Zag              |
| Rosaceae     | Crataegus songarica          | Ph           | IT, Hyr              |
| Rosaceae     | Crataegus sp.                | Ph           |                      |
| Rosaceae     | Crataegus szovitsii          | Ph           | IT                   |
| Rosaceae     | Crataegus turcomanica        | Ph           | IT                   |
| Asteraceae   | Crepis elbursensis           | Ge           | IT                   |
| Asteraceae   | Crepis kotschyana            | Th           | IT, KhO              |
| Asteraceae   | Crepis micrantha             | Th           | IT, KhO              |
| Asteraceae   | Crepis pulchra               | Th, He       | IT, KhO              |
| Asteraceae   | Crepis quercifolia           | Th, He       | IT                   |
| Asteraceae   | Crepis sancta                | Th, He       | IT, Hyr,<br>Zag, KhO |
| Asteraceae   | Crepis turcomanica           | Не           | IT                   |

| Family         | Plant species             | Life<br>form | Floristic region |
|----------------|---------------------------|--------------|------------------|
| Convolvulaceae | Cressa cretica            | Не           | IT, KhO          |
| Iridaceae      | Crocus cancellatus        | Ge           | IT, Zag          |
| Iridaceae      | Crocus caspius            | Ge           | Hyr              |
| Iridaceae      | Crocus haussknechtii      | Ge           | IT, zag          |
| Iridaceae      | Crocus sativus            | Ge           | IT               |
| Fabaceae       | Crotalaria aegyptiaca     | Ch           | KhO              |
| Fabaceae       | Crotalaria burhia         | Ch           | KhO              |
| Fabaceae       | Crotalaria furfuracea     | Ch           | KhO              |
| Fabaceae       | Crotalaria persica        | Не           | KhO              |
| Fabaceae       | Crotalaria retusa         | Не           | KhO              |
| Rubiaceae      | Crucianella ciliata       | Th           | IT               |
| Rubiaceae      | Crucianella gilanica      | Не           | IT               |
| Rubiaceae      | Crucianella sintenisii    | Не           | IT               |
| Rubiaceae      | Cruciata laevipes         | Ge           | Hyr              |
| Asteraceae     | Crupina crupinastrum      | Th           | IT               |
| Poaceae        | Crypsis schoenoides       | Th           | IT, Hyr          |
| Cucurbitaceae  | Cucumis melo              | Th           | KhO, Hyr         |
| Umbelliferae   | Cuminum cyminum           | Th           | IT               |
| Cupressaceae   | Cupressus horizontalis    | Ph           | Hyr, Zag,<br>IT  |
| Cupressaceae   | Cupressus sempervirens    | Ph           | Hyr              |
| Convolvulaceae | Cuscuta approximata       | Th           | IT, Hyr,<br>KhO  |
| Convolvulaceae | Cuscuta campestris        | Th           | Cosm             |
| Convolvulaceae | Cuscuta epithymum         | Th           | IT, KhO          |
| Convolvulaceae | Cuscuta monogyna          | Th           | IT, Hyr          |
| Poaceae        | Cutandia memphitica       | Th           | KhO, Hyr         |
| Primulaceae    | Cyclamen coum             | Ge           | Hyr              |
| Rosaceae       | Cydonia oblonga           | Ph           | IT, Hyr          |
| Rosaceae       | Cydonia vulgaris          | Ph           | IT, Hyr          |
| Brassicaceae   | Cymatocarpus pilosissimus | Th           | IT               |

| Family         | Plant species            | Life<br>form | Floristic region     |
|----------------|--------------------------|--------------|----------------------|
| Umbelliferae   | Cymbocarpum anethoides   | Th           | IT, Hyr              |
| Asteraceae     | Cymbolaena griffithii    | Th           | IT                   |
| Poaceae        | Cymbopogon olivieri      | Не           | IT, KhO              |
| Asclepiadaceae | Cynanchum acutum         | Не           | IT, Hyr              |
| Poaceae        | Cynodon dactylon         | Ge           | Cosm                 |
| Boraginaceae   | Cynoglossum creticum     | Не           | Hyr, Zag             |
| Boraginaceae   | Cynoglossum officinale   | Не           | Hyr                  |
| Cynomoriaceae  | Cynomorium songaricum    | Th           | IT                   |
| Poaceae        | Cynosurus echinatus      | Th           | IT, Hyr              |
| Cyperaceae     | Cyperus arenarius        | Ge           | KhO                  |
| Cyperaceae     | Cyperus conglomeratus    | Ge           | KhO                  |
| Cyperaceae     | Cyperus difformis        | Th           | IT, Hyr              |
| Cyperaceae     | Cyperus distachyos       | Ge           | IT, KhO,<br>Hyr      |
| Cyperaceae     | Cyperus eremicus         | Ge           | IT, KhO              |
| Cyperaceae     | Cyperus fuscus           | Th           | IT, Hyr              |
| Cyperaceae     | Cyperus longus           | Ge           | Hyr, IT,<br>Zag      |
| Cyperaceae     | Cyperus rotundus         | Ge           | Cosm                 |
| Athyriaceae    | Cystopteris fragilis     | Ge           | IT, Hyr              |
| Poaceae        | Dactylis glomerata       | He           | IT, Hyr              |
| Poaceae        | Dactyloctenium aegyptium | Ge           | KhO                  |
| Orchidaceae    | Dactylorrhiza iberica    | Ge           | Hyr                  |
| Orchidaceae    | Dactylorrhiza umbrosa    | Ge           | IT                   |
| Fabaceae       | Dalbergia sissoo         | Ph           | KhO                  |
| Ruscaceae      | Danae racemosa           | Ph           | Hyr                  |
| Thymelaeaceae  | Daphne laureola          | Ph           | Hyr                  |
| Thymelaeaceae  | Daphne mezereum          | Ph           | Hyr                  |
| Thymelaeaceae  | Daphne mucronata         | Ph           | IT, Ara,<br>Zag, KhO |
| Thymelaeaceae  | Daphne oleoides          | Ph           | IT, Zag,<br>KhO      |
| Thymelaeaceae  | Daphne pontica           | Ph           | Hyr                  |

| Family          | Plant species            | Life<br>form | Floristic region |
|-----------------|--------------------------|--------------|------------------|
| Thymelaeaceae   | Daphne rechingeri        | Ph           | Hyr              |
| Thymelaeaceae   | Daphne stapfii           | Ph           | IT, KhO          |
| Datiscaceae     | Datisca cannabina        | Не           | IT, Hyr          |
| Solanaceae      | Datura innoxia           | Th           | KhO              |
| Solanaceae      | Datura stramonium        | Th           | Cosm             |
| Umbelliferae    | Daucus carota            | Th, He       | IT, Hyr          |
| Ranunculaceae   | Delphinium cyphoplectrum | Не           | IT               |
| Ranunculaceae   | Delphinium semibarbatum  | Не           | IT               |
| Thymelaeaceae   | Dendrostellera lessrtii  | Ch           | IT               |
| Poaceae         | Deschampsia caespitosa   | Ge           | IT, Hyr          |
| Brassicaceae    | Descurainia Sophia       | Th, He       | IT, Hyr          |
| Poaceae         | Desmostachya bipinnata   | Ge           | KhO, IT          |
| Poaceae         | Deyeuxia parsana         | Не           | Hyr              |
| Caryophyllaceae | Dianthus crinitus        | Не           | IT               |
| Caryophyllaceae | Dianthus libunotis       | Th, He       | IT, Hyr          |
| Caryophyllaceae | Dianthus macranthoides   | Не           | IT, KhO          |
| Caryophillaceae | Dianthus orientalis      | Ch           | IT               |
| Caryophyllaceae | Dianthus pachypetalus    | Не           | IT               |
| Caryophyllaceae | Dianthus szowitsianus    | Не           | IT               |
| Caryophyllaceae | Dianthus tabrisianus     | Не           | IT               |
| Thymelaeaceae   | Diarthron antoniniae     | Ch           | IT               |
| Thymelaeaceae   | Diarthron vesiculosum    | Th           | IT, Hyr          |
| Poaceae         | Dichanthium annulatum    | Ge           | IT, KhO,<br>Hyr  |
| Umbelliferae    | Dicyclophora persica     | Th           | IT, KhO          |
| Brassicaceae    | Dielsiocharis kotschyi   | Ch           | IT               |
| Plantaginaceae  | Digitalis nervosa        | Не           | IT, Hyr          |
| Poaceae         | Digitaria nodosa         | Не           | IT               |
| Poaceae         | Digitaria sanguinalis    | Th           | IT               |
| Poaceae         | Dinebra retroflexa       | Th           | KhO              |
| Primulaceae     | Dionysia aubrietioides   | Не           | IT, (End)        |

| Family           | Plant species           | Life<br>form | Floristic region |
|------------------|-------------------------|--------------|------------------|
| Primulaceae      | Dionysia curviflora     | Не           | IT, (End)        |
| Primulaceae      | Dionysia janthina       | Не           | IT, (End)        |
| Primulaceae      | Dionysia khuzistanica   | Не           | IT, (End)        |
| Primulaceae      | Dionysia rhaptodes      | Не           | IT, (End)        |
| Ebenaceae        | Diospyros lotus         | Ph           | Hyr              |
| Brassicaceae     | Diplotaxis erucoides    | Th           | KhO              |
| Brassicaceae     | Diplotaxis harra        | He, Th       | KhO, IT          |
| Dipsacaceae      | Dipsacus laciniatus     | Не           | IT               |
| Dipsacaceae      | Dipsacus pilosus        | Не           | Hyr, IT          |
| Dipsacaceae      | Dipsacus strigosus      | Не           | Hyr, Ara         |
| Asteraceae       | Dipterocome pusilla     | Th           | IT               |
| Asteraceae       | Dittrichia graveolens   | Th           | IT, KhO          |
| Scrophulariaceae | Dodartia orientalis     | Не           | IT               |
| Sapindaceae      | Dodonea viscose         | Ph           | KhO              |
| Umbelliferae     | Dorema ammoniacum       | Th, He       | IT               |
| Umbelliferae     | Dorema hyrcanum         | He, Th       | IT               |
| Brassicaceae     | Draba aucheri           | Не           | IT               |
| Brassicaceae     | Draba nemorosa          | Th           | Hyr, IT          |
| Brassicaceae     | Drabopsis verna         | Th           | IT               |
| Lamiaceae        | Dracocephalum kotschyi  | Не           | IT               |
| Lamiaceae        | Dracocephalum moldavica | Th           | IT               |
| Dryopteridaceae  | Dryopteris borreri      | Не           | Hyr              |
| Dryopteridaceae  | Dryopteris caucasica    | Ge           | Hyr              |
| Dryopteridaceae  | Dryopteris filix-mas    | Ge           | Hyr              |
| Umbelliferae     | Ducrosia anethifolia    | Не           | IT, KhO          |
| Umbelliferae     | Ducrosia flabellifolia  | Не           | IT               |
| Fabaceae         | Ebenus stellata         | Ch           | IT, KhO,<br>Zag  |
| Poaceae          | Echinochloa crus-galli  | Th           | Hyr, IT          |
| Umbelliferae     | Echinophora cinerea     | Не           | IT               |
| Umbelliferae     | Echinophora paltyloba   | Не           | IT               |

| Family       | Plant species              | Life<br>form | Floristic region  |
|--------------|----------------------------|--------------|-------------------|
| Asteraceae   | Echinops aucheri           | Не           | IT, KhO,<br>(End) |
| Asteraceae   | Echinops cephalotes        | Не           | IT, (End)         |
| Asteraceae   | Echinops ceratophorus      | Не           | IT, (End)         |
| Asteraceae   | Echinops dichorus          | Не           | KhO,<br>(End)     |
| Asteraceae   | Echinops erioceras         | Не           | IT, (End)         |
| Asteraceae   | Echinops gedrosiacus       | Не           | KhO               |
| Asteraceae   | Echinops heteromorphus     | Не           | IT, (End)         |
| Asteraceae   | Echinops ilicifolius       | Ch           | IT, (End)         |
| Asteraceae   | Echinops jezdianus         | Не           | IT, (End)         |
| Asteraceae   | Echinops lalesarensis      | Ch           | IT, (End)         |
| Asteraceae   | Echinops leiopolyceroides  | Не           | IT, (End)         |
| Asteraceae   | Echinops longipenicillatus | Не           | KhO,<br>(End)     |
| Asteraceae   | Echinops macrophyllus      | Не           | IT, KhO           |
| Asteraceae   | Echinops mosulensis        | Не           | IT                |
| Asteraceae   | Echinops orientalis        | Не           | IT                |
| Asteraceae   | Echinops polygamus         | Не           | IT                |
| Asteraceae   | Echinops pungens           | Не           | IT, Hyr           |
| Asteraceae   | Echinops ritrodes          | Не           | IT                |
| Asteraceae   | Echinops robusta           | Не           | IT, (End)         |
| Asteraceae   | Echinops tournefortii      | Не           | IT                |
| Boraginceae  | Echium amoenum             | Не           | Hyr               |
| Boraginaceae | Echium italicum            | Не           | IT                |
| Boraginaceae | Echium khuzistanicum       | Th, He       | KhO               |
| Asteraceae   | Eclipta prostrata          | Th           | Hyr               |
| Boraginaceae | Ehretia laevis             | Ph           | KhO               |
| Boraginaceae | Ehretia obtusifolia        | Ph           | KhO               |
| Elaeagnaceae | Elaeagnus angustifolia     | Ph           | IT                |
| Cyperaceae   | Eleocharis acicularis      | Ge           | IT                |
| Cyperaceae   | Eleocharis palustris       | Ge           | IT, Hyr           |

| Family         | Plant species          | Life<br>form | Floristic region     |
|----------------|------------------------|--------------|----------------------|
| Poaceae        | Eleusine indica        | Th           | Hyr                  |
| Poaceae        | Elymus hispidus        | Ge           | IT, Hyr              |
| Poaceae        | Elymus zagricus        | Ge           | IT                   |
| Polygonaceae   | Emex spinosa           | Th           | IT, KhO              |
| Poaceae        | Enneapogon persicus    | Не           | IT, KhO              |
| Ephedraceae    | Ephedra brevifoliata   | Ph, Ch       | IT, KhO              |
| Ephedraceae    | Ephedra ciliata        | Ph, Ch       | IT, KhO              |
| Ephedraceae    | Ephedra distachya      | Ph, Ch       | IT                   |
| Ephedraceae    | Ephedra foliata        | Ph, Ch       | IT, KhO              |
| Ephedraceae    | Ephedra glauca         | Ph, Ch       | IT                   |
| Ephedraceae    | Ephedra holoptera      | Ph, Ch       | IT                   |
| Ephedraceae    | Ephedra intermedia     | Ph, Ch       | IT, Zag              |
| Ephedraceae    | Ephedra major          | Ph, Ch       | IT, Hyr,<br>KhO      |
| Ephedraceae    | Ephedra microbracteata | Ph, Ch       | KhO                  |
| Ephedraceae    | Ephedra pachyclada     | Ph, Ch       | IT, KhO              |
| Ephedraceae    | Ephedra persica        | Ph, Ch       | IT, KhO,<br>Zag      |
| Ephedraceae    | Ephedra procera        | Ph, Ch       | IT, Hyr,<br>Ara, Zag |
| Ephedraceae    | Ephedra sarcocarpa     | Ph, Ch       | IT, Zag              |
| Ephedraceae    | Ephedra strobilacea    | Ph, Ch       | IT                   |
| Asteraceae     | Epilasia hemilasia     | Th           | IT                   |
| Onagraceae     | Epilobium dodonaei     | Ge           | Hyr                  |
| Onagraceae     | Epilobium hirsutum     | Ge           | IT, Hyr              |
| Onagraceae     | Epilobium minutiflorum | Ge           | IT                   |
| Onagraceae     | Epilobium palustre     | Ge           | IT, Hyr              |
| Podophyllaceae | Epimedium pinnatum     | Ge           | Hyr                  |
| Orchidaceae    | Epipactis helleborine  | Ge           | Hyr, IT              |
| Orchidaceae    | Epipactis latifolia    | Ge           | Hyr, IT              |
| Orchidaceae    | Epipactis microphylla  | Ge           | Hyr                  |
| Orchidaceae    | Epipactis palustris    | Ge           | IT                   |

| Family       | Plant species            | Life<br>form | Floristic region |
|--------------|--------------------------|--------------|------------------|
| Orchidaceae  | Epipactis rechingeri     | Ge           | Hyr              |
| Orchidaceae  | Epipactis veratrifolia   | Ge           | IT, KhO          |
| Equisetaceae | Equisetum arvense        | Ge           | IT, Hyr          |
| Equisetaceae | Equisetum maximum        | Ge           | Hyr              |
| Equisetaceae | Equisetum palustre       | Ge           | Hyr, IT          |
| Equisetaceae | Equisetum ramosissimum   | Ge           | IT, Hyr          |
| Equisetaceae | Equisetum sp.            | Ge           |                  |
| Equisetaceae | Equisetum telmateia      | Ge           | IT, Hyr          |
| Poaceae      | Eragrostis poaeoides     | Th           | IT               |
| Brassicaceae | Eremobium aegyptiacum    | Th           | KhO              |
| Umbelliferae | Eremodaucus lehmannii    | Не           | IT               |
| Poaceae      | Eremopoa persica         | Th           | IT               |
| Poaceae      | Eremopogon foveolatus    | Ge           | KhO              |
| Poaceae      | Eremopyrum bonaepartis   | Th           | IT               |
| Poaceae      | Eremopyrum confusum      | Th           | IT               |
| Poaceae      | Eremopyrum distans       | Th           | IT               |
| Lamiaceae    | Eremostachys labiosa     | Ge           | IT               |
| Lamiaceae    | Eremostachys laevigata   | Не           | IT, Zag          |
| Lamiaceae    | Eremostachys macrophylla | Не           | IT               |
| Lamiaceae    | Eremostachys pulvinaris  | Не           | IT               |
| Liliaceae    | Eremurus inderiensis     | Ge           | IT               |
| Liliaceae    | Eremurus kopetdaghensis  | Ge           | IT               |
| Liliaceae    | Eremurus olgae           | Ge           | IT               |
| Liliaceae    | Eremurus persicus        | Ge           | IT               |
| Liliaceae    | Eremurus spectabilis     | Ge           | IT               |
| Liliaceae    | Eremurus stenophyllus    | Ge           | IT               |
| Asteraceae   | Erigeron acer            | Не           | IT, Hyr          |
| Rosaceae     | Eriobotrya japonica      | Ph           | Hyr              |
| Geraniaceae  | Erodium ciconium         | Th           | IT, Hyr          |
| Geraniaceae  | Erodium cicutarium       | Th           | Cosm             |

| Family        | Plant species          | Life<br>form | Floristic region |
|---------------|------------------------|--------------|------------------|
| Geraniaceae   | Erodium glaucophyllum  | Не           | IT, KhO          |
| Geraniaceae   | Erodium gruinum        | Th, He       | IT, Zag,<br>KhO  |
| Geraniaceae   | Erodium malacoides     | Th, He       | IT, KhO          |
| Geraniaceae   | Erodium moschatum      | Th, He       | KhO, Zag,<br>IT  |
| Geraniaceae   | Erodium oxyrrhynchum   | Th, He       | IT, KhO          |
| Geraniaceae   | Erodium pulverulentum  | Th, He       | IT, KhO          |
| Brassicaceae  | Eruca sativa           | Th           | IT, Hyr,<br>KhO  |
| Brassicaceae  | Erucaria hispanica     | Th           | KhO, IT          |
| Umbelliferae  | Eryngium billardieri   | Не           | Cosm             |
| Umbelliferae  | Eryngium bungei        | Не           | IT               |
| Umbelliferae  | Eryngium caeruleum     | Не           | Hyr, IT          |
| Umbelliferae  | Eryngium caucasicum    | Не           | IT               |
| Umbelliferae  | Eryngium noeanum       | Не           | IT               |
| Umbelliferae  | Eryngium thyrsoideum   | Не           | IT               |
| Brassicaceae  | Erysimum aitchisonii   | Не           | IT               |
| Brassicaceae  | Erysimum crassicaule   | Не           | IT               |
| Brassicaceae  | Erysimum griffithianum | Th           | IT               |
| Brassicaceae  | Erysimum oleifolium    | Не           | IT, KhO          |
| Brassicaceae  | Erysimum repandum      | Th           | IT, Hyr          |
| Brassicaceae  | Euclidium syriacum     | Th           | IT               |
| Myrtaceae     | Eugenia jambolana      | Ph           | KhO              |
| Myrtaceae     | Eugenia jambos         | Ph           | KhO              |
| Asteraceae    | Eupatorium cannabinum  | Ch           | Hyr, IT          |
| Euphorbiaceae | Euphorbia aellenii     | Не           | IT               |
| Euphorbiaceae | Euphorbia aleppica     | Th, He       | IT               |
| Euphorbiaceae | Euphorbia amygdaloides | Ge           | Hyr              |
| Euphorbiaceae | Euphorbia aucheri      | Не           | IT, Hyr          |
| Euphorbiaceae | Euphorbia Boissieriana | Не           | IT, Hyr          |
| Euphorbiaceae | Euphorbia buhsei       | Не           | IT, Hyr          |

| Family           | Plant species          | Life<br>form | Floristic region |
|------------------|------------------------|--------------|------------------|
| Euphorbiaceae    | Euphorbia bungei       | Не           | IT               |
| Euphorbiaceae    | Euphorbia cheiradenia  | Не           | IT, Hyr          |
| Euphorbiaceae    | Euphorbia connata      | Не           | IT               |
| Euphorbiaceae    | Euphorbia decipiens    | Не           | IT               |
| Euphorbiaceae    | Euphorbia densa        | Th           | IT, KhO          |
| Euphorbiaceae    | Euphorbia denticolata  | Не           | IT               |
| Euphorbiaceae    | Euphorbia erythradenia | Не           | IT               |
| Euphorbiaceae    | Euphorbia falcata      | Th           | IT, Hyr,<br>KhO  |
| Euphorbiaceae    | Euphorbia gedrosiaca   | Не           | IT, KhO          |
| Euphorbiaceae    | Euphorbia granulata    | Th           | KhO              |
| Euphorbiaceae    | Euphorbia helioscopia  | Th           | Hyr, IT          |
| Euphorbiaceae    | Euphorbia heteradena   | Не           | IT, Hyr          |
| Euphorbiaceae    | Euphorbia humilis      | Не           | IT               |
| Euphorbiaceae    | Euphorbia larica       | Ch           | KhO              |
| Euphorbiaceae    | Euphorbia macroclada   | Не           | IT               |
| Euphorbiaceae    | Euphorbia macrostegia  | Не           | IT               |
| Euphorbiaceae    | Euphorbia microsciadia | Не           | IT               |
| Euphorbiaceae    | Euphorbia neriifolia   | Ph           | KhO              |
| Euphorbiaceae    | Euphorbia osyridea     | Не           | KhO              |
| Euphorbiaceae    | Euphorbia petiolata    | Th           | IT               |
| Euphorbiaceae    | Euphorbia sororia      | Th           | IT               |
| Euphorbiaceae    | Euphorbia splendida    | Не           | IT               |
| Euphorbiaceae    | Euphorbia stricta      | Th           | Hyr, IT          |
| Euphorbiaceae    | Euphorbia szovitsii    | Th           | IT, Hyr          |
| Euphorbiaceae    | Euphorbia teheranica   | Не           | IT               |
| Euphorbiaceae    | Euphorbia tirucalli    | Ph           | KhO              |
| Euphorbiaceae    | Euphorbia turcomanica  | Th           | IT, KhO          |
| Euphorbiaceae    | Euphorbia virgata      | Не           | IT, Hyr          |
| Scrophulariaceae | Euphrasia juzepczukii  | Th           | IT               |
| Chenopodiaceae   | Eurotia ceratoides     | Ch           | IT               |

| Family         | Plant species        | Life<br>form | Floristic region |
|----------------|----------------------|--------------|------------------|
| Celastraceae   | Evonymus europaeus   | Ph           | Ara, Hyr         |
| Celastraceae   | Evonymus latifolia   | Ph           | Hyr, Ara         |
| Celastraceae   | Evonymus velutina    | Ph           | Hyr              |
| Celastraceae   | Evonymus verrucosa   | Ph           | Ara              |
| Zygophyllaceae | Fagonia acerosa      | Не           | KhO              |
| Zygophyllaceae | Fagonia bruguieri    | Не           | IT, KhO          |
| Zygophyllaceae | Fagonia indica       | Не           | KhO              |
| Zygophyllaceae | Fagonia olivieri     | Не           | KhO              |
| Zygophyllaceae | Fagonia subinermis   | Не           | KhO              |
| Fagaceae       | Fagus orientalis     | Ph           | Hyr              |
| Umbelliferae   | Falcaria vulgaris    | Не           | IT, Hyr          |
| Brassicaceae   | Farsetia heliophila  | Не           | IT, KhO          |
| Umbelliferae   | Ferula assa-foetida  | Не           | IT               |
| Umbelliferae   | Ferula gabriellii    | Не           | IT               |
| Umbelliferae   | Ferula galbanifua    | Не           | Hyr              |
| Umbelliferae   | Ferula gummosa       | Не           | IT               |
| Umbelliferae   | Ferula haussknechtii | Не           | IT, Zag          |
| Umbelliferae   | Ferula hirtella      | Не           | IT               |
| Umbelliferae   | Ferula latisecta     | Не           | IT               |
| Umbelliferae   | Ferula macrocolea    | Не           | IT               |
| Umbelliferae   | Ferula oopoda        | Не           | IT               |
| Umbelliferae   | Ferula orientalis    | Не           | IT               |
| Umbelliferae   | Ferula ovina         | Не           | IT               |
| Umbelliferae   | Ferula stenocarpa    | Th           | IT, KhO          |
| Umbelliferae   | Ferula szowitsiana   | Не           | IT               |
| Umbelliferae   | Ferula tabasensis    | Не           | IT               |
| Umbelliferae   | Ferulago angulata    | Не           | IT               |
| Umbelliferae   | Ferulago contracta   | Не           | IT               |
| Umbelliferae   | Ferulago macrocarpa  | Не           | IT               |
| Umbelliferae   | Ferulago stellata    | Не           | IT               |

| Family        | Plant species           | Life<br>form | Floristic region     |
|---------------|-------------------------|--------------|----------------------|
| Poaceae       | Festuca arundinacea     | Не           | IT                   |
| Poaceae       | Festuca ovina           | Не           | IT, Hyr              |
| Poaceae       | Festuca rubra           | Ge           | IT, Hyr              |
| Brassicaceae  | Fibigia macrocarpa      | Не           | IT                   |
| Brassicaceae  | Fibigia suffruticosa    | Не           | IT                   |
| Brassicaceae  | Fibigia umbellata       | Не           | IT                   |
| Ranunculaceae | Ficaria kochii          | Ge           | IT                   |
| Moraceae      | Ficus bengalensis       | Ph           | KhO                  |
| Moraceae      | Ficus carica            | Ph           | IT, Hyr,<br>Ara, Zag |
| Moraceae      | Ficus johannis          | Ph           | IT, KhO              |
| Moraceae      | Ficus laccifera         | Ph           | KhO                  |
| Moraceae      | Ficus palmata           | Ph           | KhO                  |
| Moraceae      | Ficus religiosa         | Ph           | KhO                  |
| Moraceae      | Ficus rubunigosa        | Ph           | KhO                  |
| Moraceae      | Ficus rupestris         | Ph           | IT                   |
| Asteraceae    | Filago hurdwarica       | Th           | IT, KhO              |
| Rosaceae      | Filipendula vulgaris    | Ge           | Ara                  |
| Umbelliferae  | Foeniculum vulgare      | Не           | IT, KhO              |
| Urticaceae    | Forsskaolea tenacissima | Th, He       | KhO                  |
| Brassicaceae  | Fortuynia bungei        | Не           | IT, KhO              |
| Brassicaceae  | Fortuynia garcinii      | Не           | KhO                  |
| Rosaceae      | Fragaria sp.            | Ge           |                      |
| Rosaceae      | Fragaria vesca          | Ge           | Hyr                  |
| Asteraceae    | Francoeuria undulata    | Не           | IT, KhO              |
| Rhamnaceae    | Frangula alnus          | Ph           | Hyr                  |
| Frankeniaceae | Frankenia hirsuta       | Ch           | Hyr, IT              |
| Frankeniaceae | Frankenia pulverulenta  | Th, He       | IT, KhO              |
| Oleaceae      | Fraxinus coriariifolia  | Ph           | Ara, Hyr             |
| Oleaceae      | Fraxinus excelsior      | Ph           | Hyr                  |
| Oleaceae      | Fraxinus persica        | Ph           | Zag, (End)           |

| Family       | Plant species           | Life<br>form | Floristic region      |
|--------------|-------------------------|--------------|-----------------------|
| Oleaceae     | Fraxinus rotuidfolia    | Ph           | IT*, Hyr,<br>Zag, Ara |
| Oleaceae     | Fraxinus sp.            | Ph           |                       |
| Oleaceae     | Fraxinus syriaca        | Ph           | Zag                   |
| Liliaceae    | Fritillaria crassifolia | Ge           | IT                    |
| Liliaceae    | Fritillaria gibbosa     | Ge           | IT                    |
| Liliaceae    | Fritillaria imperialis  | Ge           | IT                    |
| Liliaceae    | Fritillaria persica     | Ge           | IT                    |
| Liliaceae    | Fritillaria raddeana    | Ge           | IT                    |
| Liliaceae    | Fritillaria sp.         | Ge           |                       |
| Liliaceae    | Fritillaria zagrica     | Ge           | IT                    |
| Umbelliferae | Froriepia subpinnata    | Th           | Hyr                   |
| Cyperaceae   | Fuirena pubescens       | Ge           | IT                    |
| Cistaceae    | Fumana procumbens       | Ch           | IT, Hyr               |
| Fumariaceae  | Fumaria asepala         | Th           | IT                    |
| Fumariaceae  | Fumaria parviflora      | Th           | Cosm                  |
| Fumariaceae  | Fumaria vaillantii      | Th           | IT, Hyr               |
| Liliaceae    | Gagea alexeenkoana      | Ge           | IT                    |
| Liliaceae    | Gagea anonyma           | Ge           | IT                    |
| Liliaceae    | Gagea chlorantha        | Ge           | Zag, IT,<br>KhO       |
| Liliaceae    | Gagea chomutowae        | Ge           | IT                    |
| Liliaceae    | Gagea gageoides         | Ge           | IT, Hyr               |
| Liliaceae    | Gagea olgae             | Ge           | IT                    |
| Liliaceae    | Gagea reticulata        | Ge           | IT                    |
| Liliaceae    | Gagea setifolia         | Ge           | IT                    |
| Liliaceae    | Gagea sp.               | Ge           | IT                    |
| Liliaceae    | Gagea stipitata         | Ge           | IT, Hyr               |
| Liliaceae    | Gagea tenera            | Ge           | IT                    |
| Liliaceae    | Gagea vegeta            | Ge           | IT                    |
| Rubiaceae    | Gaillonia aucheri       | Ch           | KhO                   |

| Family         | Plant species          | Life<br>form | Floristic region |
|----------------|------------------------|--------------|------------------|
| Rubiaceae      | Gaillonia bruguieri    | Не           | IT               |
| Asteraceae     | Galinsoga parviflora   | Th           | Cosm             |
| Rubiaceae      | Galium aparine         | Th           | Hyr, IT          |
| Rubiaceae      | Galium humifusum       | Не           | IT               |
| Rubiaceae      | Galium mite            | Ch           | IT               |
| Rubiaceae      | Galium odaratum        | Не           | Hyr              |
| Rubiaceae      | Galium setaceum        | Th           | IT               |
| Rubiaceae      | Galium spurium         | Th           | IT               |
| Rubiaceae      | Galium verum           | Не           | IT, Zag          |
| Chenopodiaceae | Gamanthus gamocarpus   | Th           | IT               |
| Asteraceae     | Garhadiolus angulosus  | Th           | Cosm             |
| Boraginaceae   | Gastrocotyle hispida   | Th           | IT               |
| Fabaceae       | Genista tinctoria      | Ch           | Ara              |
| Gentianaceae   | Gentiana olivieri      | Не           | IT, KhO          |
| Geraniaceae    | Geranium albanum       | Ge           | Hyr, IT          |
| Geraniaceae    | Geranium collinum      | Ge           | IT, Hyr,<br>Zag  |
| Geraniaceae    | Geranium columbinum    | Th, He       | Hyr              |
| Geraniaceae    | Geranium dissectum     | He, Th       | IT, Hyr          |
| Geraniaceae    | Geranium divaricatum   | Th           | Hyr, IT          |
| Geraniaceae    | Geranium kotschyi      | Ge           | IT               |
| Geraniaceae    | Geranium lucidum       | Th           | IT, Hyr          |
| Geraniaceae    | Geranium molle         | Th, He       | Hyr, IT          |
| Geraniaceae    | Geranium montanum      | Ge           | Hyr              |
| Geraniaceae    | Geranium persicum      | Ge           | IT, Hyr,<br>Zag  |
| Geraniaceae    | Geranium pyrenaicum    | Ge           | Hyr, IT          |
| Geraniaceae    | Geranium robertianum   | He, Th       | Hyr, IT          |
| Geraniaceae    | Geranium rotundifolium | Th           | Cosm             |
| Geraniaceae    | Geranium sylvaticum    | Ge           | Ara              |
| Geraniaceae    | Geranium tuberosum     | Ge           | Hyr, IT,<br>Zag  |

| Family          | Plant species              | Life<br>form | Floristic region |
|-----------------|----------------------------|--------------|------------------|
| Rosaceae        | Geum heterocarpum          | He           | IT               |
| Rosaceae        | Geum kokanicum             | He           | IT               |
| Rosaceae        | Geum rivale                | Ge           | IT, Hyr          |
| Rosaceae        | Geum urbanum               | Не           | Hyr, IT*         |
| Chenopodiaceae  | Girgensohnia imbricata     | Th           | IT               |
| Chenopodiaceae  | Girgensohnia oppositiflora | Th           | IT               |
| Iridaceae       | Gladiolus atroviolaceus    | Ge           | IT               |
| Iridaceae       | Gladiolus halophilus       | Ge           | IT               |
| Iridaceae       | Gladiolus italicus         | Ge           | IT, KhO          |
| Iridaceae       | Gladiolus segetum          | Ge           | IT, KhO          |
| Papaveaceae     | Glaucium calycinum         | Не           | IT               |
| Papaveaceae     | Glaucium elegans           | Th           | IT               |
| Papaveaceae     | Glaucium grandiflorum      | Не           | IT               |
| Papaveaceae     | Glaucium oxylobum          | Не           | IT               |
| Primulaceae     | Glaux maritima             | Ge           | IT               |
| Caesalpiniaceae | Gleditsia caspica          | Ph           | Hyr              |
| Asclepiadaceae  | Glossonema varians         | Не           | KhO              |
| Poaceae         | Glyceria plicata           | Не           | IT, Hyr          |
| Fabaceae        | Glycyrrhiza echinata       | Не           | Hyr              |
| Fabaceae        | Glycyrrhiza glabra         | Ge           | IT, KhO,<br>Hyr  |
| Asteraceae      | Gnaphalium luteo-album     | Th           | Cosm             |
| Brassicaceae    | Goldbachia laevigata       | Th           | IT               |
| Brassicaceae    | Graelsia saxifragifolia    | Не           | IT               |
| Malvaceae       | Grewia asiatica            | Ph           | KhO              |
| Malvaceae       | Grewia bicolor             | Ph           | KhO              |
| Malvaceae       | Grewia makranica           | Ph           | KhO              |
| Malvaceae       | Grewia populifolia         | Ph           | KhO              |
| Asteraceae      | Gundelia tournefortii      | Не           | IT               |
| Asteraceae      | Gymnarrhena micrantha      | Th           | IT, KhO          |
| Caryophyllaceae | Gymnocarpos decander       | Ch           | IT, KhO          |

| Family          | Plant species             | Life<br>form | Floristic region |
|-----------------|---------------------------|--------------|------------------|
| Iridaceae       | Gynandriris sisyrinchium  | Ge           | IT               |
| Caryophyllaceae | Gypsophila abconica       | Th           | KhO              |
| Caryophyllaceae | Gypsophila caricifolia    | Не           | IT               |
| Caryophyllaceae | Gypsophila elegans        | Th, He       | IT, Hyr          |
| Caryophyllaceae | Gypsophila pilosa         | Th           | IT               |
| Caryophyllaceae | Gypsophila platyphylla    | Не           | IT               |
| Chenopodiaceae  | Halanthium rarifolium     | Th           | IT               |
| Amaranthaceae   | Halimione vertucifera     | Не           | IT               |
| Chenopodiaceae  | Halimocnemis mollissima   | Th           | IT               |
| Chenopodiaceae  | Halimocnemis pilifera     | Th           | IT               |
| Fabaceae        | Halimodendron halodendron | Ph           | IT               |
| Chenopodiaceae  | Halocharis hispida        | Th           | IT               |
| Chenopodiaceae  | Halocharis sp.            | Th           |                  |
| Chenopodiaceae  | Halocharis sulphurea      | Th           | IT, KhO          |
| Chenopodiaceae  | Halocmemum strobilaceum   | Ch           | IT, KhO          |
| Chenopodiaceae  | Halostachys belangeriana  | Ph           | IT               |
| Chenopodiaceae  | Halostachys caspica       | Ch           | Hyr              |
| Chenopodiaceae  | Halothamnus acutifolius   | Ch           | IT               |
| Chenopodiaceae  | Halothamnus auriculus     | Ch           | IT               |
| Chenopodiaceae  | Halothamnus glaucus       | Ch           | IT               |
| Chenopodiaceae  | Halothamnus iranicus      | Ch           | KhO              |
| Chenopodiaceae  | Halothamnus kermanensis   | Ch           | IT, (End)        |
| Chenopodiaceae  | Halothamnus subaphyllus   | Ch           | IT               |
| Chenopodiaceae  | Haloxylon ammodendern     | Ph           | IT, KhO          |
| Chenopodiaceae  | Haloxylon aphyllum        | Ph           | IT               |
| Chenopodiaceae  | Haloxylon articulatum     | Ph           | IT               |
| Chenopodiaceae  | Haloxylon multiflorum     | Ph           | IT, KhO          |
| Chenopodiaceae  | Haloxylon persicum        | Ph           | IT               |
| Chenopodiaceae  | Haloxylon recurvum        | Ph           | IT, KhO          |
| Chenopodiaceae  | Haloxylon salicornicum    | Ph           | IT, KhO          |

| Family         | Plant species              | Life<br>form | Floristic region     |
|----------------|----------------------------|--------------|----------------------|
| Chenopodiaceae | Hammada salicornia         | Ch           | IT, KhO              |
| Rutaceae       | Haplophyllum buhsei        | Не           | IT, (End)            |
| Rutaceae       | Haplophyllum canaliculatum | Не           | IT, KhO,<br>(End)    |
| Rutaceae       | Haplophyllum glaberrimum   | Не           | IT, (End)            |
| Rutaceae       | Haplophyllum pedicellatum  | Не           | IT                   |
| Rutaceae       | Haplophyllum perforatum    | Ch           | IT*                  |
| Rutaceae       | Haplophyllum pilosum       | Не           | IT                   |
| Rutaceae       | Haplophyllum robustum      | Не           | IT                   |
| Rutaceae       | Haplophyllum tuberculatum  | Не           | IT, KhO              |
| Umbelliferae   | Haussknechtia elymaitica   | Не           | IT                   |
| Araliaceae     | Hedera colchica            | Ph           | Hyr                  |
| Araliaceae     | Hedera helix               | Ph           | Zag                  |
| Araliaceae     | Hedera pastuchovii         | Ph           | Hyr                  |
| Asteraceae     | Hedypnois rhagadioloides   | Th           | Hyr, KhO             |
| Fabaceae       | Hedysarum criniferum       | Не           | IT                   |
| Fabaceae       | Hedysarum kopetdaghi       | Не           | IT                   |
| Fabaceae       | Hedysarum wrightianum      | Не           | IT                   |
| Cistaceae      | Helianthemum chamaecistus  | Не           | IT, Hyr              |
| Cistaceae      | Helianthemum ledifolium    | Th, He       | IT, KhO,<br>Hyr, Zag |
| Cistaceae      | Helianthemum lippii        | Ch           | KhO                  |
| Cistaceae      | Helianthemum nummularium   | Не           | IT, Hyr              |
| Cistaceae      | Helianthemum salicifolium  | Th           | IT, Hyr,<br>KhO, Zag |
| Asteraceae     | Helianthus annus           | Th           | IT                   |
| Asteraceae     | Helianthus tuberosus       | Ge           | Cosm                 |
| Asteraceae     | Helichrysum armenium       | Не           | IT                   |
| Asteraceae     | Helichrysum davisianum     | Не           | IT                   |
| Asteraceae     | Helichrysum leucocephalum  | Не           | KhO, IT              |
| Asteraceae     | Helichrysum oligocephalum  | Не           | IT                   |
| Asteraceae     | Helichrysum oocephalum     | Не           | IT                   |

| Family          | Plant species              | Life<br>form | Floristic region     |
|-----------------|----------------------------|--------------|----------------------|
| Asteraceae      | Helichrysum psychrophilum  | Не           | IT, Hyr              |
| Asteraceae      | Helichrysum rubicundum     | Не           | IT                   |
| Boraginaceae    | Heliotropium agdense       | Th           | IT                   |
| Boraginaceae    | Heliotropium arguzioides   | Ge           | IT                   |
| Boraginaceae    | Heliotropium aucheri       | Не           | IT                   |
| Boraginaceae    | Heliotropium bacciferum    | Ch           | IT, KhO              |
| Boraginaceae    | Heliotropium brevilimbe    | Не           | KhO, IT              |
| Boraginaceae    | Heliotropium chorassanicum | Th           | IT                   |
| Boraginaceae    | Heliotropium crispum       | Не           | IT, KhO              |
| Boraginaceae    | Heliotropium dasycarpum    | Не           | IT                   |
| Boraginaceae    | Heliotropium digynum       | Ch           | KhO                  |
| Boraginaceae    | Heliotropium dissitiflorum | Th           | IT                   |
| Boraginaceae    | Heliotropium elipticum     | Th           | IT, Hyr              |
| Boraginaceae    | Heliotropium esfandiarii   | Th           | IT, (End)            |
| Boraginaceae    | Heliotropium europaeum     | Th           | Hyr, IT              |
| Boraginaceae    | Heliotropium lasiocarpum   | Th           | IT                   |
| Boraginaceae    | Heliotropium mesinanum     | Th           | IT                   |
| Boraginaceae    | Heliotropium noeanum       | Th           | IT                   |
| Boraginaceae    | Heliotropium ramosissimum  | Не           | IT                   |
| Boraginaceae    | Heliotropium samolifolium  | Th           | IT, (End)            |
| Boraginaceae    | Heliotropium supinum       | Th           | IT                   |
| Boraginaceae    | Heliotropium szovitsianum  | Th           | IT                   |
| Boraginaceae    | Heliotropium transoxanum   | Не           | IT                   |
| Asteraceae      | Helminthotheca echioides   | Th, He       | IT, KhO              |
| Poaceae         | Henrardia persica          | Th           | IT                   |
| Umbelliferae    | Heracleum persicum         | Не           | IT                   |
| Caryaphyllaceae | Herniaria cinerea          | Th           | KhO, Hyr,<br>Zag, IT |
| Caryaphyllaceae | Herniaria glabra           | Th, He       | IT, Hyr              |
| Caryaphyllaceae | Herniaria hirsuta          | Th           | IT, KhO,<br>Hyr, Zag |

| Family          | Plant species             | Life<br>form | Floristic region |
|-----------------|---------------------------|--------------|------------------|
| Caryaphyllaceae | Herniaria incana          | Не           | Hyr, IT          |
| Asteraceae      | Hertia angustifolia       | Ch           | IT, KhO          |
| Asteraceae      | Hertia intermedia         | Ch           | IT, KhO          |
| Brassicaceae    | Hesperis hyrcana          | Не           | Hyr              |
| Brassicaceae    | Hesperis kurdica          | Не           | IT               |
| Brassicaceae    | Hesperis leucoclada       | Не           | IT               |
| Brassicaceae    | Hesperis persica          | Не           | IT, Hyr          |
| Poaceae         | Heteranthelium piliferum  | Th           | IT               |
| Boraginaceae    | Heterocaryum laevigatum   | Th           | IT               |
| Boraginaceae    | Heterocaryum macrocarpum  | Th           | IT               |
| Boraginaceae    | Heterocaryum subsessile   | Th           | IT, Hyr          |
| Boraginaceae    | Heterocaryum szovitsianum | Th           | IT               |
| Asteraceae      | Heteroderis pusilla       | Th           | IT               |
| Asteraceae      | Heteropappus altaicus     | Не           | IT               |
| Malvaceae       | Hibiscus trionum          | Th           | IT, Hyr          |
| Asteraceae      | Hieracium procerum        | Не           | IT, Hyr          |
| Fabaceae        | Hippocrepis bicontorta    | Th           | KhO              |
| Fabaceae        | Hippocrepis bisiliqua     | Th           | IT               |
| Elaeagnaceae    | Hippophae rhamnoides      | Ph           | IT*, Hyr         |
| Hippuridaceae   | Hippuris vulgaris         | Hel          | IT               |
| Brassicaceae    | Hirschfeldia incana       | Th, He       | IT, Hyr,<br>KhO  |
| Caryaphyllaceae | Holosteum glutinosum      | Th           | IT               |
| Caryaphyllaceae | Holosteum umbellatum      | Th           | IT               |
| Chenopodiaceae  | Horaninovia anomala       | Th           | IT               |
| Chenopodiaceae  | Horaninovia ulicina       | Th           | IT, (End)        |
| Poaceae         | Hordeum bulbosum          | Ge           | IT, Hyr          |
| Poaceae         | Hordeum glaucum           | Th           | IT, Hyr,<br>KhO  |
| Poaceae         | Hordeum murinum           | Th           | IT               |
| Poaceae         | Hordeum spontaneum        | Th           | IT               |

| Family       | Plant species             | Life<br>form | Floristic region  |
|--------------|---------------------------|--------------|-------------------|
| Poaceae      | Hordeum violaceum         | Не           | IT, Hyr           |
| Poaceae      | Hordeum vulgar            | Th           | IT                |
| Rosaceae     | Hulthemia persica         | Ch           | IT                |
| Fabaceae     | Hymenocarpus circinatus   | Th           | IT, KhO           |
| Lamiaceae    | Hymenocrater argutidens   | Ch           | IT*               |
| Lamiaceae    | Hymenocrater butiminosus  | Ch           | IT*               |
| Lamiaceae    | Hymenocrater calycinus    | Ch           | IT*               |
| Lamiaceae    | Hymenocrater elegans      | Ch           | IT*               |
| Lamiaceae    | Hymenocrater yazdianus    | Не           | IT                |
| Brassicaceae | Hymenolobus procumbens    | Th           | Cosm              |
| Solanaceae   | Hyoscyamus arachnoideus   | Не           | IT                |
| Solanaceae   | Hyoscyamus insanus        | Ge           | KhO, IT           |
| Solanaceae   | Hyoscyamus kotschyanus    | Ge           | IT                |
| Solanaceae   | Hyoscyamus muticus        | Ge           | IT, KhO,<br>(End) |
| Solanaceae   | Hyoscyamus niger          | Th, He       | IT, Hyr           |
| Solanaceae   | Hyoscyamus nutans         | Ge           | IT, KhO           |
| Solanaceae   | Hyoscyamus orthocarpus    | Ge           | IT, KhO           |
| Solanaceae   | Hyoscyamus pusillus       | Th           | IT                |
| Solanaceae   | Hyoscyamus reticulatus    | Не           | IT, Hyr           |
| Solanaceae   | Hyoscyamus rosularis      | Ge           | IT, KhO           |
| Solanaceae   | Hyoscyamus senecionis     | Ge           | IT                |
| Solanaceae   | Hyoscyamus squarrosus     | Ge           | IT                |
| Solanaceae   | Hyoscyamus tenuicaulis    | Ge           | KhO, IT           |
| Poaceae      | Hyparrhenia hirta         | Не           | KhO               |
| Papaveraceae | Hypecoum pendulum         | Th           | IT                |
| Hypericaceae | Hypericum androsaemum     | Ph           | Hyr               |
| Hypericaceae | Hypericum asperulum       | Не           | Zag, IT*          |
| Hypericaceae | Hypericum helianthemoides | Не           | IT                |
| Hypericaceae | Hypericum hirsutum        | Не           | Hyr               |
| Hypericaceae | Hypericum hirtellum       | Не           | IT                |

| Family          | Plant species             | Life<br>form | Floristic region  |
|-----------------|---------------------------|--------------|-------------------|
| Hypericaceae    | Hypericum hyssopifolium   | Не           | IT*               |
| Hypericaceae    | Hypericum perforatum      | Не           | IT, Hyr           |
| Hypericaceae    | Hypericum scabrum         | Не           | IT*               |
| Hypericaceae    | Hypericum triquetrifolium | Не           | IT                |
| Lamiaceae       | Hyssopus angustifolius    | Не           | IT, Hyr           |
| Asteraceae      | Ifloga spicata            | Th           | KhO               |
| Aquilofoliaceae | Ilex spinigera            | Ph           | Hyr               |
| Poaceae         | Imperata cylindrica       | Ge           | IT, KhO           |
| Fabaceae        | Indigofera argentea       | Ch           | KhO               |
| Fabaceae        | Indigofera intricata      | Ch           | KhO               |
| Fabaceae        | Indigofera paucifolia     | Ch           | KhO               |
| Asteraceae      | Inula beritannica         | Не           | IT                |
| Asteraceae      | Inula oculus-christi      | Ge           | IT, Hyr           |
| Asteraceae      | Inula salicina            | Ge           | IT, Hyr           |
| Asteraceae      | Inula thapsoides          | Ge           | IT                |
| Iridaceae       | Iris acutiloba            | Ge           | IT                |
| Iridaceae       | Iris caucasica            | Ge           | IT                |
| Iridaceae       | Iris drepanophylla        | Ge           | IT                |
| Iridaceae       | Iris fosterana            | Ge           | IT                |
| Iridaceae       | Iris hymenospatha         | Ge           | IT, KhO,<br>(End) |
| Iridaceae       | Iris kopetdagensis        | Ge           | IT, Hyr           |
| Iridaceae       | Iris persica              | Ge           | IT, KhO,<br>(End) |
| Iridaceae       | Iris pseudacorus          | Ge           | Hyr               |
| Iridaceae       | Iris pseudocaucasica      | Ge           | Hyr, IT           |
| Iridaceae       | Iris reticulata           | Ge           | IT, Hyr           |
| Iridaceae       | Iris sisyrinchium         | Ge           | IT, KhO           |
| Iridaceae       | Iris songarica            | Ge           | IT                |
| Iridaceae       | Iris squria               | Ge           | IT, Hyr           |
| Brassicaceae    | Isatis buschiana          | Не           | IT                |

| Family         | Plant species          | Life<br>form | Floristic region     |
|----------------|------------------------|--------------|----------------------|
| Brassicaceae   | Isatis cappadocica     | Не           | IT, Hyr              |
| Brassicaceae   | Isatis minima          | Th           | KhO                  |
| Brassicaceae   | Isatis raphanifolia    | Th           | IT                   |
| Brassicaceae   | Isatis regulosa        | Th           | IT                   |
| Amaryllidaceae | Ixiolirion tataricum   | Ge           | IT                   |
| Oleaceae       | Jasminum fruticans     | Ph           | IT*, Hyr,<br>Ara     |
| Oleaceae       | Jasminum officinale    | Ph           | IT*, Hyr             |
| Juglandaceae   | Juglans fallax         | Ph           | Hyr, Ara             |
| Juglandaceae   | Juglans regia          | Ph           | Hyr, IT,<br>Ara, Zag |
| Juncaceaea     | Juneus acutus          | Ge           | Cosm                 |
| Juncaceaea     | Juneus articulatus     | Ge           | Cosm                 |
| Juncaceaea     | Juncus bufonius        | Th           | IT, Hyr,<br>KhO      |
| Juncaceaea     | Juncus effusus         | Ge           | IT, Hyr              |
| Juncaceaea     | Juncus fontanesii      | Ge           | IT                   |
| Juncaceaea     | Juncus gerardi         | Ge           | IT                   |
| Juncaceaea     | Juncus infelxus        | Ge           | IT, Hyr              |
| Juncaceaea     | Juneus Littoralis      | Ge           | Hyr                  |
| Juncaceaea     | Juncus maritimus       | Ge           | IT                   |
| Juncaceaea     | Juneus punctorius      | Ge           | IT                   |
| Juncaceaea     | Juneus rigidus         | Ge           | IT, KhO              |
| Juncaceaea     | Juncus socotranus      | Ge           | KhO                  |
| Cupressaceae   | Juniperus communis     | Ph           | Ara, Hyr             |
| Cupressaceae   | Juniperus excelsa      | Ph           | IT*, Zag,<br>Hyr     |
| Cupressaceae   | Juniperus foetidissima | Ph           | IT*, Ara             |
| Cupressaceae   | Juniperus polycarpus   | Ph           | IT*, Ara,<br>Zag     |
| Cupressaceae   | Juniperus sabina       | Ph           | Hyr                  |
| Asteraceae     | Jurinea dumolosa       | He           | IT                   |
| Asteraceae     | Jurinea leptoloba      | He           | IT                   |

| Family           | Plant species                | Life<br>form | Floristic region     |
|------------------|------------------------------|--------------|----------------------|
| Asteraceae       | Jurinea macrocephala         | Не           | IT                   |
| Asteraceae       | Jurinea radians              | Не           | IT                   |
| Asteraceae       | Jurinea ramosissima          | Не           | IT                   |
| Asteraceae       | Jurinea stenocalathia        | Не           | IT                   |
| Asteraceae       | Jurinea viciosoi             | Не           | IT                   |
| Chenopodiaceae   | Kalidium caspicum            | Ch           | IT                   |
| Scrophulariaceae | Kickxia elatine              | Th           | IT, Zag,<br>KhO, Hyr |
| Chenopodiaceae   | Kochia prostrata             | Не           | IT, Hyr              |
| Chenopodiaceae   | Kochia scoparia              | Th           | Cosm                 |
| Chenopodiaceae   | Kochia stellaris             | Th           | IT                   |
| Poaceae          | Koeleria cristata            | Не           | IT, Hyr              |
| Asteraceae       | Koelpinia linearis           | Th           | Cosm                 |
| Asteraceae       | Koelpinia macrantha          | Th           | IT                   |
| Asteraceae       | Koelpinia tenuissima         | Th           | IT, KhO              |
| Chenopodiaceae   | Krascheninnikovia ceratoides | Ch           | IT                   |
| Brassicaceae     | Lachnoloma lehmannii         | Th           | IT                   |
| Asteraceae       | Lactuca glauciifolia         | Не           | IT                   |
| Asteraceae       | Lactuca microcephala         | Ge           | IT, (End)            |
| Asteraceae       | Lactuca orientalis           | Ch           | IT, Hyr,<br>KhO      |
| Asteraceae       | Lactuca persica              | Не           | IT, KhO              |
| Asteraceae       | Lactuca scarioloides         | Th, He       | IT                   |
| Asteraceae       | Lactuca serriola             | Th, He       | Hyr, IT,<br>KhO, Zag |
| Asteraceae       | Lactuca tuberosa             | Не           | IT, Hyr,<br>KhO      |
| Asteraceae       | Lactuca undulata             | Th           | IT                   |
| Lamiaceae        | Lagochillus kotschyanus      | Ch           | IT                   |
| Lamiaceae        | Lagochilus cabulicus         | Ch           | IT                   |
| Umbelliferae     | Lagoecia cuminoides          | Th           | IT, KhO              |
| Lamiaceae        | Lallemantia iberica          | Th           | IT                   |
| Lamiaceae        | Lallemantia royleana         | Th           | IT                   |

| Family       | Plant species          | Life<br>form | Floristic region |
|--------------|------------------------|--------------|------------------|
| Poaceae      | Lamarckia aurea        | Th           | KhO              |
| Lamiaceae    | Lamium album           | Не           | Hyr, IT          |
| Lamiaceae    | Lamium amplexicaule    | Th           | Hyr, IT          |
| Lamiaceae    | Lamium galeobdelon     | Ge           | Hyr              |
| Lamiaceae    | Lamium purpureum       | Th           | Hyr              |
| Verbenaceae  | Lantana camara         | Ph           | KhO              |
| Boraginaceae | Lappula barbata        | He, Th       | IT, Hyr,<br>Zag  |
| Boraginaceae | Lappula ceratophora    | Th           | IT               |
| Boraginaceae | Lappula drabovii       | Th, He       | IT               |
| Boraginaceae | Lappula microcarpa     | Th, He       | IT, Hyr,<br>Zag  |
| Boraginaceae | Lappula myosotis       | Th           | IT               |
| Boraginaceae | Lappula patula         | Th           | IT               |
| Boraginaceae | Lappula semiglabra     | Th           | IT               |
| Boraginaceae | Lappula sessiliflora   | Th           | IT, Hyr          |
| Boraginaceae | Lappula sinaica        | Th           | IT               |
| Boraginaceae | Lappula spinocarpos    | Th           | IT, KhO          |
| Asteraceae   | Lapsana communis       | He, Th       | IT, Hyr          |
| Asteraceae   | Lapsana intermedia     | Не           | IT               |
| Umbelliferae | Laser trilobum         | Не           | Hyr              |
| Asteraceae   | Lasiopogon moscoides   | Th           | IT               |
| Fabaceae     | Lathyrus aphaca        | Th           | Hyr, IT          |
| Fabaceae     | Lathyrus cicera        | Th           | IT, Hyr,<br>KhO  |
| Fabaceae     | Lathyrus inconspicuus  | Th           | IT, Hyr          |
| Fabaceae     | Lathyrus incurvus      | Не           | IT               |
| Fabaceae     | Lathyrus laxiforus     | Не           | Hyr, IT          |
| Fabaceae     | Lathyrus pratensis     | Не           | Hyr, IT          |
| Fabaceae     | Lathyrus rotundifolius | Не           | Hyr, IT          |
| Fabaceae     | Lathyrus sativus       | Th           | IT, Hyr          |
| Fabaceae     | Lathyrus vernus        | Не           | Hyr              |

| Family           | Plant species            | Life<br>form | Floristic region |
|------------------|--------------------------|--------------|------------------|
| Fabaceae         | Lathyrus vinealis        | Th           | IT               |
| Asteraceae       | Launaea acanthodes       | Ch           | IT               |
| Asteraceae       | Launaea capitata         | Th           | KhO, IT          |
| Asteraceae       | Launaea fallax           | Не           | KhO              |
| Asteraceae       | Launaea glomerata        | Th           | IT, KhO          |
| Asteraceae       | Launaea mucronata        | Не           | IT, KhO          |
| Asteraceae       | Launaea oligocephala     | Не           | IT, KhO          |
| Asteraceae       | Launaea procumbens       | Не           | IT, KhO          |
| Asteraceae       | Launaea spinosa          | Ch           | IT               |
| Rosaceae         | Laurocerasus officinalis | Ph           | Hyr              |
| Lauraceae        | Laurus nobilis           | Ph           | IT               |
| Lythraceae       | Lawsonia intermis        | Ph           | KhO              |
| Campanulaceae    | Legousia falcata         | Th           | IT, Hyr          |
| Lemnaceae        | Lemna trisulca           | Hyd          | Hyr              |
| Fabaceae         | Lens culinaris           | Th           | IT               |
| Fabaceae         | Lens orientalis          | Th           | IT               |
| Podophyllaceae   | Leontice leontopetalum   | Ge           | IT, Zag          |
| Asteraceae       | Leontodon asperrimus     | Не           | IT, Hyr          |
| Asteraceae       | Leontodon hispidus       | Не           | Hyr, IT          |
| Lamiaceae        | Leonurus cardica         | Ge           | IT, Hyr          |
| Brassicaceae     | Lepidium draba           | Ge           | IT, Hyr          |
| Brassicaceae     | Lepidium latifolium      | Ge           | Hyr, IT          |
| Brassicaceae     | Lepidium perfoliatum     | Th, He       | IT , Hyr         |
| Brassicaceae     | Lepidium persicum        | Не           | IT               |
| Brassicaceae     | Lepidium sativum         | Th           | Cosm             |
| Brassicaceae     | Lepidium vesicarium      | Th, He       | IT               |
| Asclepiadaceae   | Leptadenia pyrotechnica  | Ph           | KhO              |
| Brassicaceae     | Leptaleum filifolium     | Th           | IT               |
| Scrophulariaceae | Leptorhabdos parviflora  | Th           | IT, Hyr          |
| Rubiaceae        | Leptunis trichoides      | Th           | IT               |

| Family           | Plant species               | Life<br>form | Floristic region |
|------------------|-----------------------------|--------------|------------------|
| Caryophyllaceae  | Lepyrodiclis holosteoides   | Th           | IT, KhO          |
| Caryophyllaceae  | Lepyrodiclis stellarioides  | Th           | IT               |
| Fabaceae         | Leucaena glauca             | Ph           | KhO              |
| Poaceae          | Leucopoa pseudosclerophylla | Ge           | IT               |
| Poaceae          | Leucopoa sclerophylla       | Не           | IT               |
| Umbelliferae     | Leutea petiolaris           | Не           | IT, Hyr          |
| Umbelliferae     | Libanotis transcaucasica    | Не           | Hyr, IT          |
| Oleaceae         | Ligustrum vulgare           | Ph           | Ara, Hyr         |
| Orchidaceae      | Limodorun abortivum         | Ge           | Hyr, IT          |
| Plumbaginaceae   | Limonium gmelini            | Не           | IT               |
| Plumbaginaceae   | Limonium iranicum           | Ch           | IT, KhO          |
| Plumbaginaceae   | Limonium meyeri             | Не           | IT               |
| Plumbaginaceae   | Limonium reniforme          | Не           | IT               |
| Scrophulariaceae | Linaria dalmatica           | Не           | IT, Hyr          |
| Scrophulariaceae | Linaria grandiflora         | Не           | IT               |
| Scrophulariaceae | Linaria kavirensis          | Th           | IT, (End)        |
| Scrophulariaceae | Linaria kopetdaghensis      | Не           | IT               |
| Scrophulariaceae | Linaria kurdica             | Не           | IT               |
| Scrophulariaceae | Linaria lineolata           | Ch           | IT, (End)        |
| Scrophulariaceae | Linaria michauxii           | Не           | IT, (End)        |
| Scrophulariaceae | Linaria pyramidata          | Не           | IT               |
| Scrophulariaceae | Linaria simplex             | Th           | IT, Hyr          |
| Boraginaceae     | Lindelofia kandavanensis    | Не           | Hyr, (End)       |
| Linderniaceae    | Lindernia procumbens        | Th           | Cosm             |
| Linaceae         | Linum album                 | Не           | IT, (End)        |
| Linaceae         | Linum austriacum            | Ch           | IT, Hyr          |
| Linaceae         | Linum bienne                | Th, He       | KhO, Hyr         |
| Linaceae         | Linum catharticum           | Th           | IT, Hyr          |
| Linaceae         | Linum corymbulosum          | Th           | IT, Hyr          |
| Linaceae         | Linum glaucum               | Не           | IT               |

| Family         | Plant species                   | Life<br>form | Floristic region     |
|----------------|---------------------------------|--------------|----------------------|
| Linaceae       | Linum strictum                  | Th           | IT                   |
| Umbelliferae   | Lisaea heterocarpa              | Th           | IT, Zag              |
| Orchidaceae    | Listera ovata                   | Ge           | Hyr                  |
| Boraginaceae   | Lithospermum arvensis           | Th           | IT, Hyr              |
| Boraginaceae   | Lithospermum officinale         | Ge           | Hyr, IT              |
| Boraginaceae   | Lithospermum purpureo-coeruleum | Ge           | Hyr                  |
| Poaceae        | Lolium perenne                  | Не           | IT, Hyr              |
| Poaceae        | Lolium persicum                 | Th           | IT, Hyr              |
| Poaceae        | Lolium rigidum                  | Th           | IT, Hyr              |
| Chenopodiaceae | Londesia eriantha               | Th           | IT                   |
| Caprifoliaceae | Lonicera bracteolaris           | Ph           | IT*, Hyr,<br>Ara     |
| Caprifoliaceae | Lonicera caprifolium            | Ph           | Hyr                  |
| Caprifoliaceae | Lonicera caucasica              | Ph           | Hyr, Ara             |
| Caprifoliaceae | Lonicera floribunda             | Ph           | IT*, Hyr             |
| Caprifoliaceae | Lonicera hypoleuca              | Ph           | Zag                  |
| Caprifoliaceae | Lonicera iberica                | Ph           | IT*, Hyr,<br>Ara     |
| Caprifoliaceae | Lonicera nummulariifolia        |              | IT*, Zag             |
| Poaceae        | Lophochloa abtusiflora          | Th           | KhO                  |
| Poaceae        | Lophochloa phleoides            | Th           | Cosm                 |
| Loranthaceae   | Loranthus europaeus             | Ph           | Zag                  |
| Loranthaceae   | Loranthus grewinkii             | Ph           | Zag, Hyr             |
| Fabaceae       | Lotus angustissimus             | Th           | Hyr, KhO             |
| Fabaceae       | Lotus corniculatus              | Не           | IT                   |
| Fabaceae       | Lotus gebelia                   | Не           | IT                   |
| Fabaceae       | Lotus halophilus                | Th           | KhO                  |
| Onagraceaea    | Ludwigia palustris              | Hyd          | Hyr                  |
| Cucurbitaceae  | Luffa cylindrica                | Th           | KhO                  |
| Juncaceae      | Luzula forsteri                 | Ge           | Hyr                  |
| Solanaceae     | Lycium depressum                | Ph           | IT, KhO,<br>Zag, Ara |

| Family        | Plant species            | Life<br>form | Floristic region      |
|---------------|--------------------------|--------------|-----------------------|
| Solanaceae    | Lycium edgewortii        | Ph           | KhO                   |
| Solanaceae    | Lycium kopetdaghi        | Ph           | IT                    |
| Solanaceae    | Lycium makranicum        | Ph           | KhO                   |
| Solanaceae    | Lycium ruthenicum        | Ph           | IT, Ara               |
| Solanaceae    | Lycium shawii            | Ph           | KhO                   |
| Solanaceae    | Lycopersiclum esculentum | Th           | Cosm                  |
| Lamiaceae     | Lycopus europaeus        | Ge           | Hyr, IT               |
| Lythraceae    | Lythrum hyssopifolia     | Th           | IT, Hyr,<br>KhO       |
| Lythraceae    | Lythrum salicaria        | Не           | Hyr, IT,<br>Zag       |
| Umbelliferae  | Malabaila secacul        | Не           | IT                    |
| Umbelliferae  | Malablia porphyrodiscus  | Ge           | IT                    |
| Brassicaceae  | Malcolmia africana       | Th           | IT                    |
| Brassicaceae  | Malcolmia behboudiana    | Th           | KhO                   |
| Brassicaceae  | Malcolmia strigosa       | Th           | IT                    |
| Brassicaceae  | Malcolmia turkestanica   | Th           | IT                    |
| Rosaceae      | Malus communis           | Ph           | IT, Hyr               |
| Rosaceae      | Malus domestica          | Ph           | IT                    |
| Rosaceae      | Malus orientalis         | Ph           | IT*, Hyr,<br>Ara, Zag |
| Malvaceae     | Malva aegyptica          | Th           | IT, KhO               |
| Malvaceae     | Malva neglecta           | He, Th       | Hyr, IT               |
| Malvaceae     | Malva nicaeensis         | Th           | KhO, Hyr              |
| Malvaceae     | Malva parviflora         | Th           | KhO, IT               |
| Malvaceae     | Malva sylvestris         | He, Th       | IT                    |
| Anacardiaceae | Mangifera indica         | Ph           | KhO                   |
| Lamiaceae     | Marrubium anisodon       | Ge           | IT, Hyr               |
| Lamiaceae     | Marrubium astracanicum   | Не           | IT, Hyr               |
| Lamiaceae     | Marrubium crassidens     | Не           | IT                    |
| Lamiaceae     | Marrubium cuneatum       | Не           | IT                    |
| Lamiaceae     | Marrubium parviflorum    | Ge           | Hyr, IT               |

| Family       | Plant species             | Life<br>form | Floristic region |
|--------------|---------------------------|--------------|------------------|
| Lamiaceae    | Marrubium vulgare         | Ge           | Hyr, IT          |
| Apocynaceae  | Marsdenia erecta          | Ph           | IT*, Zag,<br>KhO |
| Asteraceae   | Matricaria aurea          | Th           | IT, KhO          |
| Asteraceae   | Matricaria recutita       | Th           | IT, KhO          |
| Brassicaceae | Matthiola alyssifolia     | Не           | IT               |
| Brassicaceae | Matthiola chenopodiifolia | Th           | IT               |
| Brassicaceae | Matthiola flavida         | Не           | IT               |
| Brassicaceae | Matthiola longipetala     | Th           | IT, KhO          |
| Brassicaceae | Matthiola ovatifolia      | Не           | IT               |
| Fabaceae     | Medicago coronata         | Th           | IT, Hyr,<br>KhO  |
| Fabaceae     | Medicago laciniata        | Th, He       | KhO              |
| Fabaceae     | Medicago lupulina         | Не           | IT, Hyr          |
| Fabaceae     | Medicago minima           | Th           | IT, KhO,<br>Hyr  |
| Fabaceae     | Medicago orbicularis      | Th           | IT, Hyr          |
| Fabaceae     | Medicago polymorpha       | Th           | IT, Hyr,<br>KhO  |
| Fabaceae     | Medicago radiata          | Th           | IT               |
| Fabaceae     | Medicago rigidula         | Th           | IT               |
| Fabaceae     | Medicago sativa           | Не           | Cosm             |
| Fabaceae     | Medicago scutellata       | Th           | IT               |
| Meliaceae    | Melia azedarach           | Ph           | Hyr, KhO         |
| Poaceae      | Melica ciliata            | Не           | IT, Hyr          |
| Poaceae      | Melica jacquemontii       | Ge           | IT               |
| Poaceae      | Melica persica            | Ge           | IT               |
| Poaceae      | Melica uniflora           | Ge           | Hyr, IT,<br>Ara  |
| Fabaceae     | Melilotus albus           | Не           | IT, Hyr          |
| Fabaceae     | Melilotus indicus         | Th           | IT, KhO          |
| Fabaceae     | Melilotus officinalis     | Не           | IT               |
| Lamiaceae    | Mentha aquatica           | Ge           | Hyr              |

| Family           | Plant species               | Life<br>form | Floristic region      |
|------------------|-----------------------------|--------------|-----------------------|
| Lamiaceae        | Mentha longifolia           | Ge           | IT                    |
| Lamiaceae        | Mentha pulegium             | Не           | Hyr                   |
| Lamiaceae        | Mentha spicata              | Ge           | Hyr, IT               |
| Euphorbiaceae    | Mercurialis perennis        | Ge           | Hyr                   |
| Fabaceae         | Meristotropis xanthioides   | He           | IT                    |
| Aizoaceae        | Mesembryanthemum nodiflorum | Th           | KhO                   |
| Caryophyllaceae  | Mesostemma kotschyanum      | Не           | IT                    |
| Poaceae          | Mespilus germanica          | Ph           | Hyr, IT*,<br>Zag, Ara |
| Campanulaceae    | Michauxia koeiana           | Не           | IT, (End)             |
| Campanulaceae    | Michauxia laevigata         | Не           | IT, Hyr               |
| Asteraceae       | Microcephala lamellata      | Th           | IT                    |
| Boraginaceae     | Microparacaryum bungei      | Th           | IT                    |
| Boraginaceae     | Microparacaryum intermedium | Th           | IT                    |
| Boraginaceae     | Microparacaryum salsum      | Th           | IT, (End)             |
| Poaceae          | Microtegium vimienum        | Th           | Hyr                   |
| Poaceae          | Milium pedicellare          | Th           | IT                    |
| Poaceae          | Milium vernale              | Th           | Hyr, IT               |
| Mimosaceae       | Mimosa hamata               | Ph           | KhO                   |
| Mimosaceae       | Mimosa pudica               | Ph           | KhO                   |
| Caryophyllaceae  | Minuartia hamata            | Th           | IT                    |
| Caryophyllaceae  | Minuartia hybrida           | Th           | IT                    |
| Caryophyllaceae  | Minuartia lineata           | Не           | Hyr, IT               |
| Caryophyllaceae  | Minuartia meyeri            | Th           | IT                    |
| Caryophyllaceae  | Minuartia picta             | Th           | IT, KhO               |
| Caryophyllaceae  | Minuartia subtilis          | Th           | IT                    |
| Scrophulariaceae | Misopates orontium          | Th           | IT, KhO,<br>Zag       |
| Boraginaceae     | Moltkia coerulea            | Ge           | IT                    |
| Boraginaceae     | Moltkiopsis ciliata         | Не           | KhO                   |
| Brassicaceae     | Moricandia sinaica          | Th, He       | KhO                   |

| Family         | Plant species              | Life<br>form | Floristic region |
|----------------|----------------------------|--------------|------------------|
| Brassicaceae   | Moriera spinosa            | Ch           | IT               |
| Morinaceae     | Morina persica             | Не           | IT, Zag          |
| Moraceae       | Morus alba                 | Ph           | IT, Hyr,<br>Ara  |
| Moraceae       | Morus nigra                | Ph           | Hyr, Ara         |
| Umbelliferae   | Muretia amplifolia         | Ge           | KhO              |
| Liliaceae      | Muscari caucasicum         | Ge           | IT               |
| Liliaceae      | Muscari neglectum          | Ge           | IT               |
| Liliaceae      | Muscari tenuiflorum        | Ge           | IT               |
| Boraginaceae   | Myosotis asiatica          | Не           | IT, Hyr          |
| Boraginaceae   | Myosotis koelzii           | Th           | IT, (End)        |
| Boraginaceae   | Myosotis olympica          | Не           | IT*, (End)       |
| Boraginaceae   | Myosotis propinqua         | Th           | IT, Hyr          |
| Boraginaceae   | Myosotis refracta          | Th           | IT               |
| Boraginaceae   | Myosotis sparsiflora       | Th           | IT, Hyr          |
| Boraginaceae   | Myosotis stricta           | Th           | IT               |
| Boraginaceae   | Myosotis sylvatica         | Ge           | IT, Hyr          |
| Tamaricaceae   | Myricaria germanica        | Ph           | IT*, Hyr         |
| Tamaricaceae   | Myricaria squamosa         | Ph           | Zag              |
| Halogaraceae   | Myriophyllum verticillatum | Hyd          | Cosm             |
| Myrtaceae      | Myrtus communis            | Ph           | IT*, Zag,<br>KhO |
| Arecaceae      | Nannorrhops ritchiana      | Ge           | KhO              |
| Amaryllidaceae | Narcissus tazetta          | Ge           | IT, Hyr          |
| Poaceae        | Nardurus subulatus         | Th           | IT               |
| Brassicaceae   | Nasturtium officinale      | Hel          | Hyr, IT          |
| Rubiaceae      | Neogaillonia eriantha      | Ch           | IT               |
| Orchidaceae    | Neottia nidus-avis         | Ge           | Hyr              |
| Lamiaceae      | Nepeta bracteata           | Th           | IT               |
| Lamiaceae      | Nepeta cataria             | Не           | IT               |
| Lamiaceae      | Nepeta crassifolia         | Не           | IT, Hyr          |

| Family         | Plant species          | Life<br>form | Floristic region |
|----------------|------------------------|--------------|------------------|
| Lamiaceae      | Nepeta fissa           | Не           | IT               |
| Lamiaceae      | Nepeta gloeocephala    | Не           | IT               |
| Lamiaceae      | Nepeta glomerulosa     | Не           | IT               |
| Lamiaceae      | Nepeta heliotropifolia | Не           | IT               |
| Lamiaceae      | Nepeta hymenodonta     | Th           | IT               |
| Lamiaceae      | Nepeta ispahanica      | Th           | IT               |
| Lamiaceae      | Nepeta kotschyi        | Не           | IT               |
| Lamiaceae      | Nepeta oxyodonta       | Не           | IT               |
| Lamiaceae      | Nepeta persica         | Не           | IT               |
| Lamiaceae      | Nepeta pungens         | Th           | IT               |
| Lamiaceae      | Nepeta saccharata      | Th           | IT               |
| Lamiaceae      | Nepeta satureioides    | Th           | IT               |
| Lamiaceae      | Nepeta sintenisii      | Не           | IT, Hyr          |
| Apocynaceae    | Nerium indicum         | Ph           | IT, Zag,<br>KhO  |
| Apocynaceae    | Nerium oleander        | Ph           | KhO              |
| Brassicaceae   | Neslia apiculata       | Th           | IT, Hyr          |
| Rosaceae       | Neurada procumbens     | Th           | KhO              |
| Solanaceae     | Nicotina tabacum       | Th           | Cosm             |
| Ranunculaceae  | Nigella arvensis       | Th           | IT, Hyr          |
| Ranunculaceae  | Nigella integrifolia   | Th           | IT               |
| Ranunculaceae  | Nigella sativa         | Th           | IT               |
| Asteraceae     | Nikitinia leptoclada   | Ch           | IT               |
| Zygophyllaceae | Nitraria komarovii     | Ph           | IT               |
| Zygophyllaceae | Nitraria roborowskii   | Ph           | IT               |
| Zygophyllaceae | Nitraria schoberi      | Ph           | IT               |
| Zygophyllaceae | Nitraria sibirica      | Ph           | IT               |
| Chenopodiaceae | Noaea mucronata        | Ch           | IT               |
| Chenopodiaceae | Noea tournefortii      | Ch           | IT               |
| Boraginaceae   | Nonnea caspica         | Th           | Hyr, IT          |
| Boraginaceae   | Nonnea Lutea           | Th           | Hyr              |

| Family       | Plant species            | Life<br>form | Floristic region |
|--------------|--------------------------|--------------|------------------|
| Boraginaceae | Nonnea persica           | Не           | IT               |
| Boraginaceae | Nonnea pulla             | Не           | IT, Hyr          |
| Boraginaceae | Nonnea rosea             | Th           | Hyr              |
| Boraginaceae | Nonnea turcomanica       | Th           | IT               |
| Asteraceae   | Notobasis syriaca        | Th           | IT, KhO          |
| Brassicaceae | Notoceras bicorne        | Th           | KhO              |
| Resedaceae   | Ochradenus aucheri       | Ch           | KhO              |
| Resedaceae   | Ochradenus baccatus      | Ph           | KhO              |
| Resedaceae   | Ochradenus ochradeni     | Ch           | IT               |
| Lamiaceae    | Ocimum basilicum         | Th           | IT, Hyr          |
| Oleaceae     | Olea aucheri             | Ph           | IT, KhO          |
| Oleaceae     | Olea europaea            | Ph           | Hyr              |
| Oleaceae     | Olea ferruginea          | Ph           | KhO              |
| Asteraceae   | Oligochaeta divaricata   | Th           | IT, Hyr          |
| Asteraceae   | Oligochaeta minima       | Th           | IT               |
| Resedaceae   | Oligomeris linifolia     | Th           | KhO              |
| Umbelliferae | Oliveria decumbens       | Th           | IT, KhO          |
| Fabaceae     | Onobrychis altissima     | Не           | IT               |
| Fabaceae     | Onobrychis aucheri       | Th           | IT, KhO          |
| Fabaceae     | Onobrychis bungei        | Не           | IT, Hyr          |
| Fabaceae     | Onobrychis cornuta       | Ch           | IT*              |
| Fabaceae     | Onobrychis crista-galli  | Th           | IT, KhO          |
| Fabaceae     | Onobrychis gypsicola     | Не           | IT               |
| Fabaceae     | Onobrychis khorassanica  | Не           | IT               |
| Fabaceae     | Onobrychis mazanderanica | Не           | Hyr              |
| Fabaceae     | Onobrychis melanotricha  | Не           | IT               |
| Fabaceae     | Onobrychis micrantha     | Th           | IT               |
| Fabaceae     | Onobrychis plantago      | Ge           | IT               |
| Fabaceae     | Onobrychis ptolemaica    | Не           | IT               |
| Fabaceae     | Onobrychis sintenisii    | Ch           | IT               |

| Family           | Plant species             | Life<br>form | Floristic region |
|------------------|---------------------------|--------------|------------------|
| Fabaceae         | Onobrychis transcaspica   | Ch           | IT               |
| Fabaceae         | Ononis reclinata          | Th           | IT, Hyr,<br>KhO  |
| Fabaceae         | Ononis spinosa            | Ch           | IT               |
| Asteraceae       | Onopordon acanthium       | Не           | IT, Hyr          |
| Asteraceae       | Onopordon carmanicum      | Не           | IT, KhO          |
| Asteraceae       | Onopordon heteracanthum   | Не           | IT               |
| Asteraceae       | Onopordon leptolepis      | Не           | IT               |
| Boraginaceae     | Onosma bodeanum           | Не           | IT               |
| Boraginaceae     | Onosma bulbotrichum       | Не           | IT               |
| Boraginaceae     | Onosma dasytrichum        | Ch           | IT               |
| Boraginaceae     | Onosma demawendicum       | Ge           | IT, (End)        |
| Boraginaceae     | Onosma dichroanthum       | Не           | IT               |
| Boraginaceae     | Onosma elwendicum         | Не           | IT               |
| Boraginaceae     | Onosma kotschyi           | Не           | IT, (End)        |
| Boraginaceae     | Onosma longilobum         | Не           | IT               |
| Boraginaceae     | Onosma microcarpum        | Не           | IT               |
| Boraginaceae     | Onosma orientale          | Не           | IT, KhO          |
| Boraginaceae     | Onosma rostellatum        | Не           | IT, KhO          |
| Boraginaceae     | Onosma sericeum           | Не           | IT               |
| Boraginaceae     | Onosma stenosiphon        | Не           | IT               |
| Boraginaceae     | Onosma trachytrichum      | Не           | IT               |
| Cryptogrammaceae | Onychium melanolepis      | Ge           | KhO              |
| Ophioglossaceae  | Ophioglossum lusitanicum  | Ge           | Hyr              |
| Ophioglossaceae  | Ophioglossum vulgatum     | Ge           | Hyr              |
| Orchidaceae      | Ophrys apifera            | Ge           | Hyr              |
| Orchidaceae      | Ophrys sphegodes          | Ge           | Hyr, IT          |
| Poaceae          | Oplismenus undulatifolius | Не           | Hyr              |
| Orchidaceae      | Orchis caspia             | Ge           | Hyr              |
| Orchidaceae      | Orchis latifolia          | Ge           | Hyr, IT          |
| Orchidaceae      | Orchis mascula            | Ge           | Hyr, IT          |

| Family         | Plant species              | Life<br>form | Floristic region |
|----------------|----------------------------|--------------|------------------|
| Orchidaceae    | Orchis palustris           | Ge           | IT, Hyr          |
| Lamiaceae      | Origanum vulgare           | Не           | Hyr, IT          |
| Liliaceae      | Ornithogalum arcuatum      | Ge           | IT, Zag          |
| Liliaceae      | Ornithogalum brachystachys | Ge           | IT, KhO          |
| Liliaceae      | Ornithogalum cuspidatum    | Ge           | IT               |
| Liliaceae      | Ornithogalum persicum      | Ge           | IT               |
| Liliaceae      | Ornithogalum sintenisii    | Ge           | Hyr              |
| Liliaceae      | Ornithogalum tenuifolium   | Ge           | IT, Hyr          |
| Orobanchaceae  | Orobanche alba             | Th, He       | Hyr, IT          |
| Orobanchaceae  | Orobanche hirtiflora       | Не           | IT               |
| Orobanchaceae  | Orobanche vulgaris         | Не           | IT, Hyr          |
| Poaceae        | Oryzopsis holciformis      | Не           | IT               |
| Poaceae        | Oryzopsis lateralis        | Ge           | IT               |
| Poaceae        | Oryzopsis molinioides      | Не           | IT               |
| Lamiaceae      | Otostegia persica          | Ch           | IT, KhO          |
| Asteraceae     | Outreya carduiformis       | Не           | IT, Hyr          |
| Oxalidaceae    | Oxalis corniculata         | Ge           | IT, Hyr,<br>KhO  |
| Oxalidaceae    | Oxalis sp.                 | Ge           |                  |
| Fabaceae       | Oxytropis heratensis       | Не           | IT               |
| Fabaceae       | Oxytropis hirsutiuscula    | Не           | IT               |
| Brassicaceae   | Pachypterygium multicaule  | Th           | IT               |
| Rhamnaceae     | Paliurus spina-christi     | Ph           | Hyr, Zag,<br>Ara |
| Asteraceae     | Pallenis spinosa           | Th           | IT, Hyr          |
| Chenopodiaceae | Panderia turkestanica      | Th           | IT               |
| Poaceae        | Panicum antidotale         | Ge           | KhO              |
| Poaceae        | Panicum repens             | Ge           | KhO              |
| Poaceae        | Panicum turgidum           | Не           | KhO              |
| Papaveraceae   | Papaver arenarium          | Th           | IT, Hyr          |
| Papaveraceae   | Papaver argemone           | Th           | IT               |

| Family           | Plant species           | Life<br>form | Floristic region     |
|------------------|-------------------------|--------------|----------------------|
| Papaveraceae     | Papaver decaisnei       | Th           | IT, KhO              |
| Papaveraceae     | Papaver dubium          | Th           | Cosm                 |
| Papaveraceae     | Papaver fugax           | Th, He       | IT                   |
| Papaveraceae     | Papaver macrostomum     | Th           | IT                   |
| Papaveraceae     | Papaver orientale       | He           | IT                   |
| Papaveraceae     | Papaver pavoninum       | Th           | IT, Hyr              |
| Papaveraceae     | Papaver rhoeas          | Th           | IT                   |
| Boraginaceae     | Paracaryum crista-galli | Не           | IT                   |
| Boraginaceae     | Paracaryum intermedium  | Th           | IT                   |
| Boraginaceae     | Paracaryum persicum     | Не           | IT                   |
| Boraginaceae     | Paracaryum rugulosum    | Не           | IT                   |
| Boraginaceae     | Paracaryum salsum       | Th           | IT                   |
| Boraginaceae     | Paracaryum strictum     | He           | IT                   |
| Boraginaceae     | Paracaryum turcomanicum | He           | IT                   |
| Poaceae          | Parapholis incurva      | Th           | IT, KhO              |
| Urticaceae       | Parietaria alsinifolia  | Th           | IT, KhO              |
| Urticaceae       | Parietaria judaica      | Ge           | Hyr, IT,<br>Zag, KhO |
| Urticaceae       | Parietaria lusitanica   | Th           | IT                   |
| Urticaceae       | Parietaria officicalis  | Ge           | IT                   |
| Caesalpiniaceae  | Parkinsonia aculeata    | Ph           | KhO                  |
| Caryophyllaceae  | Paronychia arabica      | He, Th       | KhO                  |
| Caryophyllaceae  | Paronychia bungei       | Не           | IT, KhO,<br>(End)    |
| Caryophyllaceae  | Paronychia caespitosa   | Не           | IT, Zag,<br>(End)    |
| Caryophyllaceae  | Paronychia kurdica      | Не           | IT, Zag,<br>KhO      |
| Hamamelidaceae   | Parrotia persica        | Ph           | Hyr                  |
| Poaceae          | Paspalum dilatatum      | Ge           | Hyr                  |
| Poaceae          | paspalum paspaloides    | Ge           | KhO                  |
| Scrophulariaceae | Pedicularis pycnantha   | Не           | IT, Hyr              |
| Scrophulariaceae | Pedicularis rechingeri  | Не           | IT, (End)            |

| Family           | Plant species            | Life<br>form | Floristic region |
|------------------|--------------------------|--------------|------------------|
| Scrophulariaceae | Pedicularis sibthorpii   | Не           | Hyr, IT          |
| Scrophulariaceae | Pedicularis wilhelmsiana | Не           | IT               |
| Zygophyllaceae   | Peganum harmala          | Не           | IT, KhO          |
| Brassicaceae     | Peltaria angustifolia    | Th           | IT, Zag          |
| Poaceae          | Pennisetum divisum       | Ge           | KhO              |
| Poaceae          | Pennisetum orientale     | Ge           | IT               |
| Asteraceae       | Pentanema divaricatum    | Th           | IT, KhO          |
| Asteraceae       | Pentanema multicaule     | Не           | IT               |
| Asteraceae       | Pentanema pulicariifotme | Не           | IT               |
| Asclepiadaceae   | Pergularia tomentosa     | Ch           | KhO              |
| Asclepiadaceae   | Periploca aphylla        | Ch           | KhO              |
| Asclepiadaceae   | Periploca graeca         | Ph           | Hyr              |
| Lamiaceae        | Perovskia abrotanoides   | Ch           | Hyr, IT          |
| Lamiaceae        | Perovskia artemisioides  | Ch           | KhO, IT          |
| Lamiaceae        | Perovskia atriplicifolia | Ch           | KhO              |
| Rosaceae         | Persica vulgaris         | Ph           | IT, Hyr          |
| Asteraceae       | Petasites hybridus       | Ge           | Hyr, IT          |
| Caryophyllaceae  | Petrorhagia cretica      | Th           | IT               |
| Caryophyllaceae  | Petrorhagia saxifrage    | Не           | IT, Hyr          |
| Chenopodiaceae   | Petroselinum crispum     | Не           | IT               |
| Chenopodiaceae   | Petrosimonia brachiata   | Th           | IT               |
| Asteraceae       | Phagnalon nitidum        | Не           | IT, KhO          |
| Poaceae          | Phalaris arundinacae     | Ge           | IT, Hyr          |
| Poaceae          | Phalaris minor           | Th           | IT               |
| Poaceae          | Phalaris paradoxa        | Th           | IT               |
| Fabaceae         | Phaseolus vulgaris       | Th           | IT               |
| Poaceae          | Phleum iranicum          | Ge           | IT, Hyr          |
| Poaceae          | Phleum paniculatum       | Th           | IT, Hyr          |
| Poaceae          | Phleum phleoides         | Не           | Hyr, IT          |
| Poaceae          | Phleum pratense          | Не           | IT, Hyr          |

| Family         | Plant species                 | Life<br>form | Floristic region |
|----------------|-------------------------------|--------------|------------------|
| Lamiaceae      | Phlomis anisodonta            | Не           | IT, KhO,<br>Zag  |
| Lamiaceae      | Phlomis aucheri               | Не           | IT               |
| Lamiaceae      | Phlomis bruguieri             | Не           | IT               |
| Lamiaceae      | Phlomis cancellata            | Не           | IT               |
| Lamiaceae      | Phlomis herba-venti           | Не           | IT, Hyr          |
| Lamiaceae      | Phlomis olivieri              | Не           | IT, Hyr          |
| Lamiaceae      | Phlomis persica               | Не           | IT               |
| Lamiaceae      | Phlomis tuberosa              | Не           | IT               |
| Palmaceae      | Phoenix dactylifera           | Ph           | KhO              |
| Poaceae        | Phragmites australis          | Ge           | IT               |
| Rubiaceae      | Phuopsis stylosa              | Не           | Hyr              |
| Verbenaceae    | Phyla nodiflora               | Ge           | IT, KhO          |
| Aspleniaceae   | Phylitis scolopendrium        | Ge           | IT, Hyr          |
| Solanaceae     | Physalis alkekengi            | Ge           | Hyr              |
| Solanaceae     | Physalis divaricata           | Th           | KhO, IT          |
| Chenopodiaceae | Physogeton occultus           | Th           | IT, (End)        |
| Brassicaceae   | Physoptychis gnaphalodes      | Не           | IT               |
| Brassicaceae   | Physorhynchus chamaerapistrum | Ch           | KhO              |
| Umbelliferae   | Physospermun cornubiense      | Не           | IT               |
| Phytolaccaceae | Phytolacca americana          | Не           | Cosm             |
| Asteraceae     | Picnomon acarna               | Th, He       | IT, Hyr          |
| Asteraceae     | Picris strigosa               | Не           | Cosm             |
| Umbelliferae   | Pimpinella affinis            | Не           | Hyr, IT          |
| Umbelliferae   | Pimpinella aurea              | Не           | IT               |
| Umbelliferae   | Pimpinella barbata            | Th           | IT, KhO          |
| Umbelliferae   | Pimpinella dichotoma          | Ge           | IT               |
| Umbelliferae   | Pimpinella eriocarpa          | Th           | IT, KhO          |
| Umbelliferae   | Pimpinella tragium            | Ge           | IT, Hyr          |
| Pinaceae       | Pinus eldarica                | Ph           | IT               |
| Pinaceae       | Pinus taeda                   | Ph           | Hyr              |

| Family         | Plant species            | Life<br>form | Floristic region      |
|----------------|--------------------------|--------------|-----------------------|
| Anacardiaceae  | Pistacia atlantica       | Ph           | IT*                   |
| Anacardiaceae  | Pistacia cabulica        | Ph           | IT*, KhO,<br>Zag      |
| Anacardiaceae  | Pistacia khinjuk         | Ph           | IT*, Zag,<br>KhO      |
| Anacardiaceae  | Pistacia mutica          | Ph           | IT*, Zag,<br>KhO, Ara |
| Anacardiaceae  | Pistacia vera            | Ph           | IT*                   |
| Fabaceae       | Pisum formosum           | Не           | Hyr, IT               |
| Plantaginaceae | Plantago atrata          | Не           | Hyr, IT               |
| Plantaginaceae | Plantago bellardi        | Th           | IT, KhO               |
| Plantaginaceae | Plantago boissieri       | Th           | KhO                   |
| Plantaginaceae | Plantago cilliata        | Th, He       | KhO, IT               |
| Plantaginaceae | Plantago coronopus       | Th, He       | IT                    |
| Plantaginaceae | Plantago evacina         | Th           | IT                    |
| Plantaginaceae | Plantago gentianoides    | Не           | IT                    |
| Plantaginaceae | Plantago indica          | Th           | IT, Hyr,<br>KhO       |
| Plantaginaceae | Plantago lagopus         | He, Th       | IT, Hyr               |
| Plantaginaceae | Plantago lanceolata      | Не           | IT, Hyr,<br>KhO       |
| Plantaginaceae | Plantago major           | Не           | Hyr, IT               |
| Plantaginaceae | Plantago maritima        | Не           | IT                    |
| Plantaginaceae | Plantago ovata           | Не           | IT, KhO,<br>Hyr       |
| Plantaginaceae | Plantago psyllium        | Th           | IT, Hyr,<br>KhO       |
| Plantaginaceae | Plantago stocksii        | Не           | IT, KhO               |
| Plantaginaceae | Plantago trichophylla    | Th, He       | KhO                   |
| Orchidaceae    | Platanthera bifolia      | Ge           | Hyr                   |
| Platanaceae    | Platanus orientalis      | Ph           | IT*, Zag              |
| Asteraceae     | Platychaete aucheri      | Не           | IT, KhO               |
| Asteraceae     | Platychaete glaucescens  | Ch           | IT, KhO               |
| Asteraceae     | platychaete mucronifolia | Ch           | KhO, IT               |

| Family          | Plant species           | Life<br>form | Floristic region |
|-----------------|-------------------------|--------------|------------------|
| Cuppressaceae   | Platycladus orientalis  | Ph           | IT               |
| Plumbaginaceae  | Plumbago europaea       | Не           | IT, Hyr          |
| Poaceae         | Poa annua               | Th           | Hyr              |
| Poaceae         | Poa araratica           | Ge           | IT               |
| Poaceae         | Poa bulbosa             | Ge           | IT, Hyr          |
| Poaceae         | Poa nemoralis           | Ge           | Hyr, IT          |
| Poaceae         | Poa pratensis           | Ge           | IT, Hyr          |
| Poaceae         | Poa sinaica             | Ge           | IT               |
| Poaceae         | Poa trivialis           | Ge           | Hyr, IT          |
| Asteraceae      | Podospermum laciniatum  | Не           | IT, Hyr          |
| Caryophyllaceae | Polycarpon tetraphyllum | Th           | Hyr, KhO,<br>Zag |
| Polygalaceae    | Polygala anatolica      | Не           | IT, Hyr          |
| Polygalaceae    | Polygala erioptera      | He, Th       | KhO              |
| Polygalaceae    | Polygala platyptera     | Не           | Hyr, (End)       |
| Asparagaceae    | Polygonatum orientale   | Ge           | Hyr, IT          |
| Polygonaceae    | Polygonum afghanicum    | Не           | IT               |
| Polygonaceae    | Polygonum alpestre      | Не           | IT, Hyr          |
| Polygonaceae    | Polygonum arenastrum    | Th           | IT               |
| Polygonaceae    | Polygonum argyrocoleon  | Th           | IT               |
| Polygonaceae    | Polygonum aridum        | Не           | IT               |
| Polygonaceae    | Polygonum aviculare     | He, Th       | Cosm             |
| Polygonaceae    | Polygonum convolvulus   | Th           | IT, Hyr          |
| Polygonaceae    | Polygonum dumosum       | Ch           | IT               |
| Polygonaceae    | Polygonum hydropiper    | Th           | Hyr, IT          |
| Polygonaceae    | Polygonum hyrcanicum    | He, Th       | Hyr, IT          |
| Polygonaceae    | Polygonum lapathifolium | Th           | Hyr, IT          |
| Polygonaceae    | Polygonum luzuloides    | Не           | IT               |
| Polygonaceae    | Polygonum orientale     | Th           | IT, Hyr          |
| Polygonaceae    | Polygonum paranchioides | Не           | IT               |
| Polygonaceae    | Polygonum patulum       | Th           | IT               |

| Family           | Plant species             | Life<br>form | Floristic region |
|------------------|---------------------------|--------------|------------------|
| Polygonaceae     | Polygonum persicaria      | Th           | IT, Hyr          |
| Polygonaceae     | Polygonum polycnemoides   | Th           | IT               |
| Polygonaceae     | Polygonum rottboellioides | Th           | IT               |
| Polygonaceae     | Polygonum spinosom        | Не           | IT               |
| Polygonaceae     | Polygonum thymifolium     | Не           | IT               |
| Polypodiaceae    | Polypodium interjectum    | Ge           | Hyr              |
| Polypodiaceae    | Polypodium vulgare        | Ge           | Cosm             |
| Poaceae          | Polypogon fugax           | Th           | IT, KhO          |
| Poaceae          | Polypogon monspeliensis   | Th           | Cosm             |
| Aspisiaceae      | Polystichum aculeatum     | Ge           | Cosm             |
| Aspisiaceae      | Polystichum woronowii     | Ge           | Hyr              |
| Salicaceae       | Populus afghanica         | Ph           | Zag              |
| Salicaceae       | Populus alba              | Ph           | IT*              |
| Salicaceae       | Populus caspica           | Ph           | IT*, Hyr,<br>Ara |
| Salicaceae       | Populus deltoids          | Ph           | Hyr              |
| Salicaceae       | Populus euphratica        | Ph           | IT*, KhO,<br>Zag |
| Salicaceae       | Populus nigra             | Ph           | IT*, Hyr,<br>Ara |
| Portulacaceae    | Portulaca grandiflora     | Th           | KhO              |
| Portulacaceae    | Portulaca oleracea        | Th, He       | KhO              |
| Asteraceae       | Postia puberula           | Ch           | IT, Zag          |
| Potamogetonaceae | Potamogeton nodosus       | Hyd          | IT, Hyr          |
| Potamogetonaceae | Potamogeton pectinatus    | Hyd          | IT, Hyr          |
| Potamogetonaceae | Potamogeton perfoliatus   | Hyd          | KhO, Hyr         |
| Rosaceae         | Potentilla argentea       | Не           | IT               |
| Rosaceae         | Potentilla canescens      | Не           | IT, Hyr          |
| Rosaceae         | Potentilla crantzii       | Не           | Hyr              |
| Rosaceae         | Potentilla lignosa        | Не           | Hyr              |
| Rosaceae         | Potentilla micrantha      | Ge           | Hyr              |
| Rosaceae         | Potentilla nuda           | Не           | IT, (End)        |

| Family       | Plant species           | Life<br>form | Floristic region        |
|--------------|-------------------------|--------------|-------------------------|
| Rosaceae     | Potentilla persica      | Не           | Zag, (End)              |
| Rosaceae     | Potentilla recta        | Не           | IT, Hyr                 |
| Rosaceae     | Potentilla reptens      | Ge           | IT, Hyr                 |
| Umbelliferae | Prangos acaulis         | Не           | IT                      |
| Umbelliferae | Prangos feruiacea       | Не           | IT                      |
| Umbelliferae | Prangos latiloba        | Не           | IT                      |
| Umbelliferae | Prangos uloptera        | Не           | IT, Hyr                 |
| Asteraceae   | Prenanthes cacaliifolia | Не           | Hyr                     |
| Primulaceae  | Primula acaulis         | He           | Hyr                     |
| Primulaceae  | Primula auriculata      | He           | IT, Hyr                 |
| Primulaceae  | Primula capitellata     | He           | IT                      |
| Primulaceae  | Primula heterochroma    | He           | IT                      |
| Mimosaceae   | Prosopis cineraria      | Ph           | KhO                     |
| Mimosaceae   | Prosopis farcta         | Ph           | KhO, IT                 |
| Mimosaceae   | Prosopis juliflora      | Ph           | KhO                     |
| Mimosaceae   | Prosopis koelziana      | Ph           | KhO                     |
| Mimosaceae   | Prosopis spicigera      | Ph           | KhO                     |
| Mimosaceae   | Prosopis stephaniana    | Ph           | KhO, IT                 |
| Lamiaceae    | Prunella vulgaris       | Не           | Cosm                    |
| Rosaceae     | Prunus arminiacae       | Ph           | Cosm                    |
| Rosaceae     | Prunus avium            | Ph           | Hyr                     |
| Rosaceae     | Prunus brachypetala     | Ph           | IT*, Ara,<br>Zag        |
| Rosaceae     | Prunus caspica          | Ph           | IT*, Ara,<br>Hyr, (End) |
| Rosaceae     | Prunus chorassanica     | Ph           | IT*                     |
| Rosaceae     | Prunus diffusa          | Ph           | IT*, Hyr,<br>Zag, (End) |
| Rosaceae     | Prunus divaricata       | Ph           | IT*, Zag,<br>Hyr, Ara   |
| Rosaceae     | Prunus domestica        | Ph           | Hyr, Zag                |
| Rosaceae     | Prunus incana           | Ph           | IT*, Zag                |
| Rosaceae     | Prunus lycioides        | Ph           | IT, Zag                 |

| Family         | Plant species               | Life<br>form | Floristic region      |
|----------------|-----------------------------|--------------|-----------------------|
| Rosaceae       | Prunus mahaleb              | Ph           | IT*, Ara,<br>Zag      |
| Rosaceae       | Prunus microcarpa           | Ph           | IT*, Zag,<br>Hyr, Ara |
| Rosaceae       | Prunus pseudoprostratus     | Ph           | IT*, Hyr              |
| Rosaceae       | Prunus sp.                  | Ph           |                       |
| Rosaceae       | Prunus spinosa              | Ph           | Hyr, Ara              |
| Rosaceae       | Prunus tortuosa             | Ph           | IT*, Zag              |
| Rosaceae       | Prunus turcomanica          | Ph           | IT*, Hyr              |
| Umbelliferae   | Psammogeton canescense      | Th           | IT, KhO               |
| Poaceae        | Psathyrostachys fragilis    | Ge           | IT                    |
| Asteraceae     | Psephellus leuzeoides       | Ch           | IT                    |
| Brassicaceae   | Pseudocamelina camelinae    | Th, He       | IT                    |
| Brassicaceae   | Pseudocamelina glaucophylla | Не           | IT, Hyr               |
| Brassicaceae   | Pseudocumelina campylopoda  | Не           | IT                    |
| Asteraceae     | Pseudohandelia umbellifera  | Не           | IT                    |
| Crassulaceae   | Pseudosedum multicaule      | Не           | IT                    |
| Myrtaceae      | Psidium guajava             | Ph           | KhO                   |
| Fabaceae       | Psoralea aucheri            | Ph           | KhO                   |
| Fabaceae       | Psoralea drupacea           | Ph           | IT                    |
| Fagaceae       | Psoralea plicata            | Ch           | KhO                   |
| Asteraceae     | Psychrogeton amorphoglossus | Ge           | IT                    |
| Asteraceae     | Psychrogeton obovatus       | Не           | IT                    |
| Paronychiaceae | Pteranthus dichotomus       | Th           | IT, Hyr,<br>KhO       |
| Hypoleoidaceae | Pteridium aquilinum         | Ge           | Hyr                   |
| Pteridaceae    | Pteris cretica              | Ge           | Hyr                   |
| Juglandaceae   | Pterocarya fraxinifolia     | Ph           | Hyr                   |
| Dipsacaceae    | Pterocephalus brevis        | Th           | KhO                   |
| Dipsacaceae    | Pterocephalus canus         | Не           | IT                    |
| Dipsacaceae    | Pterocephalus gedrosiacus   | Не           | IT                    |
| Dipsacaceae    | Pterocephalus kurdicus      | Не           | IT*                   |

| Family       | Plant species             | Life<br>form | Floristic region              |
|--------------|---------------------------|--------------|-------------------------------|
| Dipsacaceae  | Pterocephalus melanobasis | Не           | IT                            |
| Dipsacaceae  | Pterocephalus persicus    | Не           | IT*, (End)                    |
| Dipsacaceae  | Pterocephalus plumosus    | Th           | IT, Hyr                       |
| Polygonaceae | Pteropyrum aucheri        | Ph           | Ara, IT                       |
| Polygonaceae | Pteropyrum noeanum        | Ph           | KhO                           |
| Polygonaceae | Pteropyrum olivieri       | Ph           | IT                            |
| Poaceae      | Puccinellia grossheimiana | Не           | Hyr, IT                       |
| Asteraceae   | Pulicaria dysenterica     | Ge           | Hyr, IT                       |
| Asteraceae   | Pulicaria gnaphalodes     | Не           | IT, KhO                       |
| Asteraceae   | Pulicaria salviifolia     | Не           | IT                            |
| Punicaceae   | Punica granatum           | Ph           | Hyr, IT*,<br>Ara, Zag,<br>KhO |
| Umbelliferae | Pycnocycla aucherana      | Ch           | IT, KhO                       |
| Umbelliferae | Pycnocycla caespitosa     | Не           | IT                            |
| Umbelliferae | Pycnocycla flabellifolia  | Не           | KhO                           |
| Umbelliferae | Pycnocycla nodiflora      | Ch           | IT, KhO                       |
| Umbelliferae | Pycnocyla spinosa         | Ch           | IT                            |
| Rosaceae     | Pyracantha coccinea       | Ph           | Hyr                           |
| Rosaceae     | Pyrus amygdaliformis      | Ph           | Zag                           |
| Rosaceae     | Pyrus boissieriana        | Ph           | IT*, Hyr,<br>Ara, Zag         |
| Rosaceae     | Pyrus communis            | Ph           | Hyr, Zag                      |
| Rosaceae     | Pyrus elaeagnifolia       | Ph           | Ara                           |
| Rosaceae     | Pyrus glabra              | Ph           | Zag, (End)                    |
| Rosaceae     | Pyrus grossheimii         | Ph           | Hyr                           |
| Rosaceae     | Pyrus hyrcana             | Ph           | Hyr                           |
| Rosaceae     | Pyrus mazanderanica       | Ph           | IT*, Hyr,<br>(End)            |
| Rosaceae     | Pyrus oxyprion            | Ph           | Ara                           |
| Rosaceae     | Pyrus salicifolia         | Ph           | IT*, Ara                      |
| Rosaceae     | Pyrus sp.                 | Ph           |                               |

| Family        | Plant species          | Life<br>form | Floristic region |
|---------------|------------------------|--------------|------------------|
| Rosaceae      | Pyrus syriaca          | Ph           | Ara, Zag         |
| Fagaceae      | Quercus apiculata      | Ph           | Zag              |
| Fagaceae      | Quercus atropatana     | Ph           | Hyr              |
| Fagaceae      | Quercus baneica        | Ph           | Zag              |
| Fagaceae      | Quercus brantii        | Ph           | IT               |
| Fagaceae      | Quercus caduchorum     | Ph           | Zag              |
| Fagaceae      | Quercus castaneifolia  | Ph           | Hyr              |
| Fagaceae      | Quercus cedrorum       | Ph           | Zag              |
| Fagaceae      | Quercus globularis     | Ph           | Zag              |
| Fagaceae      | Quercus hedjazii       | Ph           | Zag              |
| Fagaceae      | Quercus iberica        | Ph           | Hyr              |
| Fagaceae      | Quercus infectoria     | Ph           | Zag              |
| Fagaceae      | Quercus irregularis    | Ph           | Zag              |
| Fagaceae      | Quercus komarovii      | Ph           | Ara              |
| Fagaceae      | Quercus libani         | Ph           | Zag              |
| Fagaceae      | Quercus macranthera    | Ph           | Hyr, Ara         |
| Fagaceae      | Quercus magnosquamata  | Ph           | Zag              |
| Fagaceae      | Quercus ophiosquamata  | Ph           | Zag              |
| Fagaceae      | Quercus ovicarpa       | Ph           | Zag              |
| Fagaceae      | Quercus persica        | Ph           | Zag              |
| Fagaceae      | Quercus polynervata    | Ph           | Zag              |
| Fagaceae      | Quercus saii           | Ph           | Zag              |
| Fagaceae      | Quercus scalaridentata | Ph           | Zag              |
| Fagaceae      | Quercus squamulosa     | Ph           | Zag              |
| Fagaceae      | Quercus subcordata     | Ph           | Zag              |
| Fagaceae      | Quercus tregubovii     | Ph           | Zag              |
| Fagaceae      | Quercus ungeri         | Ph           | Zag              |
| Fagaceae      | Quercus vesca          | Ph           | Zag              |
| Ranunculaceae | Ranunculus arvensis    | Th           | IT, Hyr          |
| Ranunculaceae | Ranunculus asiaticus   | Ge           | IT               |

| Family        | Plant species             | Life<br>form | Floristic region     |
|---------------|---------------------------|--------------|----------------------|
| Ranunculaceae | Ranunculus aucheri        | Ge           | IT                   |
| Ranunculaceae | Ranunculus eriorrhizus    | Ge           | IT                   |
| Ranunculaceae | Ranunculus macropodioides | Ge           | IT                   |
| Ranunculaceae | Ranunculus muricatus      | Th           | IT                   |
| Ranunculaceae | Ranunculus trichophyllus  | Hyd          | IT, Hyr              |
| Brassicaceae  | Raphanus raphanistrum     | Th           | IT, Hyr              |
| Brassicaceae  | Rapistrum rugosum         | Th           | Hyr, IT              |
| Tamaricaceae  | Reaumuria alternifolia    | Ch           | IT                   |
| Tamaricaceae  | Reaumuria cistoides       | Ch           | IT, KhO              |
| Tamaricaceae  | Reaumuria floyeri         | Th, He       | KhO                  |
| Tamaricaceae  | Reaumuria fruticosa       | Ch, Ph       | IT                   |
| Tamaricaceae  | Reaumuria kermanensis     | Ch           | IT, (End)            |
| Tamaricaceae  | Reaumuria oxiana          | Ch           | IT, (End)            |
| Tamaricaceae  | Reaumuria persica         | Ch           | IT, (End)            |
| Tamaricaceae  | Reaumuria reflexa         | Ch           | IT                   |
| Tamaricaceae  | Reaumuria sogdiana        | Ch           | IT                   |
| Tamaricaceae  | Reaumuria squarrosa       | Ch           | IT                   |
| Tamaricaceae  | Reaumuria stocksii        | He, Th       | KhO, IT              |
| Tamaricaceae  | Reaumuria turcestanica    | Ch           | IT, Hyr              |
| Asteraceae    | Reichardia orientalis     | Th           | IT, KhO              |
| Resedaceae    | Reseda alba               | He, Th       | KhO                  |
| Resedaceae    | Reseda aucheri            | Th, He       | IT, KhO              |
| Resedaceae    | Reseda buhseana           | He, Th       | IT                   |
| Resedaceae    | Reseda bungei             | Не           | IT                   |
| Resedaceae    | Reseda lutea              | He, Th       | IT, Hyr,<br>KhO, Zag |
| Resedaceae    | Reseda luteola            | Не           | IT                   |
| Resedaceae    | Reseda macrobotrys        | Th, He       | IT                   |
| Asteraceae    | Rhagadiolus stellatus     | Th           | IT, Hyr              |
| Rhamnaceae    | Rhammus elbursensis       | Ph           | Hyr                  |
| Rhamnaceae    | Rhammus frangula          | Ph           | Hyr                  |

| Family           | Plant species          | Life<br>form | Floristic region      |
|------------------|------------------------|--------------|-----------------------|
| Rhamnaceae       | Rhammus spathuliifolia | Ph           | Hyr                   |
| Rhamnaceae       | Rhamnus cathartica     | Ph           | Hyr, Ara              |
| Rhamnaceae       | Rhamnus cornifolia     | Ph           | Hyr, Zag              |
| Rhamnaceae       | Rhamnus escalerae      | Ph           | Zag                   |
| Rhamnaceae       | Rhamnus grandifolia    | Ph           | Hyr                   |
| Rhamnaceae       | Rhamnus iranica        | Ph           | IT*, Zag              |
| Rhamnaceae       | Rhamnus kurdica        | Ph           | Zag                   |
| Rhamnaceae       | Rhamnus pallasii       | Ph           | IT*, Hyr,<br>Ara, Zag |
| Rhamnaceae       | Rhamnus persica        | Ph           | IT*, Zag              |
| Rhamnaceae       | Rhamnus sintenissi     | Ph           | IT*                   |
| Rhamnaceae       | Rhamnus spathuliifolia | Ph           | IT*                   |
| Apocynaceae      | Rhazya stricta         | Ch           | KhO                   |
| Polygonaceae     | Rheum ribes            | Ge           | IT                    |
| Rhizophoraceae   | Rhizophora mucronata   | Ph           | KhO                   |
| Anacardiaceae    | Rhus coriaria          | Ph           | IT*, Zag,<br>Hyr, Ara |
| Scrophulariaceae | Rhynchocorys elephas   | Th           | IT, Hyr               |
| Scrophulariaceae | Rhynchocorys maxima    | Th           | IT, Hyr               |
| Grossulariaceae  | Ribes bieberstenii     | Ph           | Ara, Hyr              |
| Grossulariaceae  | Ribes grossularia      | Ph           | Hyr                   |
| Grossulariaceae  | Ribes melananthum      | Ph           | Hyr, IT*              |
| Grossulariaceae  | Ribes orientale        | Ph           | IT*, Hyr              |
| Euphorbiaceae    | Ricinus communis       | Th, Ph       | KhO                   |
| Boraginaceae     | Rindera lanata         | Не           | IT                    |
| Brassicaceae     | Robeschia schimperi    | Th           | IT                    |
| Boraginaceae     | Rochelia bungei        | Th           | IT                    |
| Boraginaceae     | Rochelia cardiosepala  | Th           | IT                    |
| Boraginaceae     | Rochelia disperma      | Th           | IT, Hyr,<br>KhO       |
| Boraginaceae     | Rochelia macrocalyx    | Th           | IT                    |
| Boraginaceae     | Rochelia persica       | Не           | IT                    |

| Family       | Plant species        | Life<br>form | Floristic region |
|--------------|----------------------|--------------|------------------|
| Papaveraceae | Roemeria hybrida     | Th           | IT, KhO          |
| Papaveraceae | Roemeria refracta    | Th           | IT               |
| Rosaceae     | Rosa addida          | Ph           | IT*              |
| Rosaceae     | Rosa albicans        | Ph           | IT*, Zag         |
| Rosaceae     | Rosa anserinifolia   | Ph           | Zag, IT*         |
| Rosaceae     | Rosa asperrima       | Ph           | Zag, IT*         |
| Rosaceae     | Rosa aucheri         | Ph           | IT*, Hyr         |
| Rosaceae     | Rosa baggeriana      | Ph           | IT*, Zag         |
| Rosaceae     | Rosa banksiae        | Ph           | IT               |
| Rosaceae     | Rosa beggeriana      | Ph           | IT, Hyr          |
| Rosaceae     | Rosa canica          | Ph           | IT*, Zag         |
| Rosaceae     | Rosa centifolia      | Ph           | Zag              |
| Rosaceae     | Rosa damascena       | Ph           | Cosm             |
| Rosaceae     | Rosa dumetorum       | Ph           | IT*, Zag,<br>Ara |
| Rosaceae     | Rosa elymaitica      | Ph           | IT*, Zag         |
| Rosaceae     | Rosa foetida         | Ph           | IT               |
| Rosaceae     | Rosa gallica         | Ph           | IT*              |
| Rosaceae     | Rosa guzarica        | Ph           | IT*              |
| Rosaceae     | Rosa hemisphaerica   | Ph           | IT*              |
| Rosaceae     | Rosa iberica         | Ph           | IT*              |
| Rosaceae     | Rosa kotschyana      | Ph           | IT*              |
| Rosaceae     | Rosa lutea           | Ph           | IT*, Zag         |
| Rosaceae     | Rosa moschata        | Ph           | IT*, Zag         |
| Rosaceae     | Rosa orientalis      | Ph           | IT*, Zag         |
| Rosaceae     | Rosa persica         | Ge           | IT               |
| Rosaceae     | Rosa rechingeri      | Ph           | IT*              |
| Rosaceae     | Rosa spinosissima    | Ph           | IT*              |
| Crassulaceae | Rostraria cristata   | Th           | IT               |
| Crassulaceae | Rosularia elymaitica | Не           | IT               |
| Crassulaceae | Rosularia paniculata | Не           | IT               |

| Family         | Plant species         | Life<br>form | Floristic region      |
|----------------|-----------------------|--------------|-----------------------|
| Crassulaceae   | Rosularia sempervivum | Ge           | Zag, IT               |
| Rubiaceae      | Rubia albicaulis      | Ph           | IT                    |
| Rubiaceae      | Rubia florida         | Ch           | IT                    |
| Rubiaceae      | Rubia tinctorum       | Не           | IT                    |
| Rosaceae       | Rubus anatolicus      | Ph           | IT*, Hyr,<br>Zag, Ara |
| Rosaceae       | Rubus astrae          | Ph           | Hyr, (End)            |
| Rosaceae       | Rubus caesius         | Ph           | Hyr, IT*,<br>Zag      |
| Rosaceae       | Rubus fruticosus      | Ph           | Hyr                   |
| Rosaceae       | Rubus hirtus          | Ph           | Hyr                   |
| Rosaceae       | Rubus hyrcanus        | Ph           | Hyr                   |
| Rosaceae       | Rubus karakalensis    | Ph           | IT*, Zag              |
| Rosaceae       | Rubus lanuginosus     | Ph           | Hyr                   |
| Rosaceae       | Rubus ochthodes       | Ph           | Hyr                   |
| Rosaceae       | Rubus persicus        | Ph           | Hyr, (End)            |
| Rosaceae       | Rubus raddeanus       | Ph           | Hyr                   |
| Rosaceae       | Rubus sanctus         | Ph           | IT, Hyr               |
| Polygonaceae   | Rumex acetosa         | Не           | IT                    |
| Polygonaceae   | Rumex chalepensis     | Не           | IT, Hyr               |
| Polygonaceae   | Rumex conglomeratus   | Не           | IT, Hyr               |
| Polygonaceae   | Rumex crispus         | Не           | IT, Hyr,<br>Zag       |
| Polygonaceae   | Rumex dentatus        | Th           | IT                    |
| Polygonaceae   | Rumex elbursensis     | Не           | IT                    |
| Polygonaceae   | Rumex scutatus        | Ge           | Hyr, IT               |
| Polygonaceae   | Rumex vesicarius      | Th           | KhO, IT               |
| Asparagaceae   | Ruscus hyrcanus       | Ph           | Hyr                   |
| Poaceae        | Saccharum Ravennae    | Ge           | IT, KhO               |
| Rhamnaceae     | Sageretia laetevirens | Ph           | KhO                   |
| Chenopodiaceae | Salicornia europea    | Th           | IT, Hyr,<br>KhO       |
| Salicaceae     | Salix acmophylla      | Ph           | IT*, Hyr,             |

| Family         | Plant species           | Life<br>form | Floristic region      |
|----------------|-------------------------|--------------|-----------------------|
|                |                         | Torm         | Zag                   |
| Salicaceae     | Salix aegyptica         | Ph           | IT*, Hyr,<br>Zag, Ara |
| Salicaceae     | Salix alba              | Ph           | IT*, Hyr,<br>Zag      |
| Salicaceae     | Salix babylonica        | Ph           | IT*, Hyr              |
| Salicaceae     | Salix caprea            | Ph           | Hyr                   |
| Salicaceae     | Salix carmanica         | Ph           | IT*                   |
| Salicaceae     | Salix daphnoides        | Ph           | Hyr                   |
| Salicaceae     | salix elbursensis       | Ph           | IT*, Zag,<br>Hyr      |
| Salicaceae     | Salix excelsa           | Ph           | IT*, Zag,<br>Hyr, Ara |
| Salicaceae     | salix pycnostachya      | Ph           | IT*                   |
| Salicaceae     | salix songarica         | Ph           | IT*                   |
| Salicaceae     | Salix sp.               | Ph           |                       |
| Salicaceae     | Salix triandra          | Ph           | IT*, Zag,<br>Ara, Hyr |
| Salicaceae     | Salix wilhelmsiana      | Ph           | IT*, Zag,<br>Ara      |
| Salicaceae     | Salix zygostemon        | Ph           | IT*, Zag,<br>Hyr      |
| Chenopodiaceae | Salsola abarghuensis    | Ch           | IT, (End)             |
| Chenopodiaceae | Salsola aperta          | Th           | IT                    |
| Chenopodiaceae | Salsola arbuscula       | Ch           | IT                    |
| Chenopodiaceae | Salsola arbusculiformis | Ch           | IT                    |
| Chenopodiaceae | Salsola aucheri         | Ch           | IT                    |
| Chenopodiaceae | Salsola canescens       | Ch           | IT                    |
| Chenopodiaceae | Salsola crassa          | Th           | IT                    |
| Chenopodiaceae | Salsola dendroides      | Ch           | IT                    |
| Chenopodiaceae | Salsola drummondii      | Ch           | KhO                   |
| Chenopodiaceae | Salsola gemmascens      | Ch           | IT                    |
| Chenopodiaceae | Salsola gossypina       | Th           | IT                    |
| Chenopodiaceae | Salsola imbricata       | Ch           | KhO                   |

| Family         | Plant species       | Life<br>form | Floristic region |
|----------------|---------------------|--------------|------------------|
| Chenopodiaceae | Salsola incanescens | Th           | IT               |
| Chenopodiaceae | Salsola jordanicola | Th           | IT, KhO          |
| Chenopodiaceae | Salsola kali        | Th           | IT               |
| Chenopodiaceae | Salsola kerneri     | Ch           | IT               |
| Chenopodiaceae | Salsola lachnantha  | Ch           | KhO              |
| Chenopodiaceae | Salsola lanta       | Th           | IT               |
| Chenopodiaceae | Salsola nitraria    | Th           | IT, KhO          |
| Chenopodiaceae | Salsola orientalis  | Ch           | IT               |
| Chenopodiaceae | Salsola praecox     | Th           | IT               |
| Chenopodiaceae | Salsola richteri    | Ph           | IT               |
| Chenopodiaceae | salsola rigida      | Ch           | IT               |
| Chenopodiaceae | Salsola sclerantha  | Th           | IT               |
| Chenopodiaceae | Salsola tomentosa   | Ch           | IT               |
| Chenopodiaceae | Salsola turcomanica | Th           | IT               |
| Chenopodiaceae | Salsola vermiculata | Ch           | IT               |
| Chenopodiaceae | Salsola verrucosa   | Ch           | IT               |
| Chenopodiaceae | Salsola yazdiana    | Ch           | IT, (End)        |
| Salvadoraceae  | Salvadora oleoides  | Ph           | KhO              |
| Salvadoraceae  | Salvadora persica   | Ph           | KhO              |
| Lamiaceae      | Salvia aethiopis    | Не           | IT, Hyr          |
| Lamiaceae      | Salvia atropatana   | Не           | IT, Hyr          |
| Lamiaceae      | Salvia ceratophylla | Не           | IT               |
| Lamiaceae      | Salvia chloroleuca  | Не           | IT               |
| Lamiaceae      | Salvia compressa    | Не           | IT               |
| Lamiaceae      | Salvia eremophila   | Ch           | IT               |
| Lamiaceae      | Salvia glutinosa    | Не           | Hyr              |
| Lamiaceae      | Salvia hydrangea    | Не           | IT*              |
| Lamiaceae      | Salvia limbata      | Не           | IT, Hyr          |
| Lamiaceae      | Salvia macrosiphon  | Ch           | KhO              |
| Lamiaceae      | Salvia mirzayanii   | Не           | IT               |

| Family          | Plant species        | Life<br>form | Floristic region |
|-----------------|----------------------|--------------|------------------|
| Lamiaceae       | Salvia multicaulis   | Не           | IT, Hyr          |
| Lamiaceae       | Salvia nemarosa      | Ge           | IT               |
| Lamiaceae       | Salvia palaestina    | Не           | IT, KhO          |
| Lamiaceae       | Salvia reuterana     | Не           | IT               |
| Lamiaceae       | Salvia rhytidea      | Не           | IT               |
| Lamiaceae       | Salvia sclarea       | Не           | IT               |
| Lamiaceae       | Salvia spinosa       | Не           | IT               |
| Lamiaceae       | Salvia syriaca       | Ge           | IT               |
| Lamiaceae       | Salvia verticillata  | Не           | IT, Hyr          |
| Lamiaceae       | Salvia virgata       | Не           | IT               |
| Lamiaceae       | Salvia viridis       | Th           | IT, Hyr          |
| Caprifoliaceae  | Sambucus ebulus      | Ge           | Hyr, IT          |
| Caprifoliaceae  | Sambucus nigra       | Ph           | Zag              |
| Brassicaceae    | Sameraria armena     | Th           | IT               |
| Brassicaceae    | Sameraria elegans    | Th           | IT               |
| Brassicaceae    | Sameraria stylophora | Th           | IT               |
| Primulaceae     | Samolus valerandi    | Не           | Cosm             |
| Rosaceae        | Sanguisorba minor    | Не           | Hyr, IT          |
| Umbelliferae    | Sanicula europae     | Не           | IT, Hyr          |
| Caryophyllaceae | Saponaria bodeana    | Th           | IT               |
| Caryophyllaceae | Saponaria orientalis | Th           | IT, Hyr          |
| Lamiaceae       | Satuerja laxiflora   | Th           | IT               |
| Lamiaceae       | Satureja bachtiarica | Не           | IT               |
| Brassicaceae    | Savignia parviflora  | Th           | IT, KhO          |
| Dipsacaceae     | Scabiosa argentea    | Не           | IT               |
| Dipsacaceae     | Scabiosa calocephala | Th           | IT               |
| Dipsacaceae     | Scabiosa deserticola | Th           | IT               |
| Dipsacaceae     | Scabiosa flovida     | Th           | IT, (End)        |
| Dipsacaceae     | Scabiosa hyrcanica   | Не           | Ara              |
| Dipsacaceae     | Scabiosa kermanensis | Не           | IT, (End)        |

| Family          | Plant species               | Life<br>form | Floristic region |
|-----------------|-----------------------------|--------------|------------------|
| Dipsacaceae     | Scabiosa leucactis          | Th           | KhO, IT          |
| Dipsacaceae     | Scabiosa micrantha          | Th           | IT, Hyr          |
| Dipsacaceae     | Scabiosa oliveri            | Th           | IT               |
| Dipsacaceae     | Scabiosa persica            | Th           | IT               |
| Dipsacaceae     | Scabiosa rotata             | Th           | IT               |
| Umbelliferae    | Scaligeria allioides        | Не           | IT               |
| Umbelliferae    | Scaligeria nodosa           | Не           | IT               |
| Umbelliferae    | Scandix iberica             | Th           | IT               |
| Umbelliferae    | Scandix pecten-veneris      | Th           | IT, KhO          |
| Umbelliferae    | Scandix stellata            | Th           | IT, Hyr          |
| Asteraceae      | Scariola orientalis         | Ch           | IT, Hyr,<br>KhO  |
| Brassicaceae    | Schimpera arabica           | Th           | IT, KhO          |
| Asteraceae      | Schischkinia albispina      | Th           | IT               |
| Brassicaceae    | Schismus arabicus           | Th           | KhO              |
| Cyperaceae      | Schoenoplectus lacustris    | Ge           | Hyr              |
| Cyperaceae      | Schoenus nigricans          | Ge           | IT, Hyr          |
| Umbelliferae    | Schumannia karelinii        | Ge           | IT               |
| Plantaginaceae  | Schweinfurthia papilionacea | Th, He       | IT, KhO          |
| Liliaceae       | Scilla autumnalis           | Ge           | KhO              |
| Liliaceae       | Scilla bisotunensis         | Ge           | IT               |
| Liliaceae       | Scilla persica              | Ge           | IT*              |
| Liliaceae       | Scilla sibirica             | Ge           | Hyr              |
| Cyperaceae      | Scirpoides holoschoenus     | Ge           | Cosm             |
| Cypraceae       | Scirpus lacustris           | Не           | Hyr              |
| Caryophyllaceae | Scleranthus orientalis      | Th, He       | IT, Hyr          |
| Caryophyllaceae | Sclerocephalus arabicus     | Th           | KhO              |
| Asteraceae      | Scolymus hispanicus         | Th           | KhO              |
| Fabaceae        | Scorpiurus muricatus        | Th           | KhO              |
| Asteraceae      | Scorzonera calyculata       | Не           | IT, Hyr,<br>Zag  |

| Family           | Plant species              | Life<br>form | Floristic region  |
|------------------|----------------------------|--------------|-------------------|
| Asteraceae       | Scorzonera cana            | Не           | IT                |
| Asteraceae       | Scorzonera cinera          | Не           | IT, Hyr           |
| Asteraceae       | Scorzonera intricata       | Не           | IT, (End)         |
| Asteraceae       | Scorzonera laciniata       | Не           | IT, Hyr,<br>Zag   |
| Asteraceae       | Scorzonera leptophylla     | Не           | IT                |
| Asteraceae       | Scorzonera litwinowii      | Не           | IT                |
| Asteraceae       | Scorzonera microcalathia   | Не           | IT, (End)         |
| Asteraceae       | Scorzonera mucida          | Не           | IT, Zag,<br>(End) |
| Asteraceae       | Scorzonera paradoxa        | Не           | IT, KhO           |
| Asteraceae       | Scorzonera parviflora      | Не           | IT                |
| Asteraceae       | Scorzonera phaeopappa      | Не           | IT, Zag           |
| Asteraceae       | Scorzonera pusilla         | Не           | IT                |
| Asteraceae       | Scorzonera raddeana        | Не           | IT                |
| Asteraceae       | Scorzonera ramossima       | Не           | IT, Zag           |
| Asteraceae       | Scorzonera rupicola        | Не           | IT, Zag,<br>(End) |
| Asteraceae       | Scorzonera tortuosissima   | Не           | IT, Zag           |
| Cyperaceae       | Scripoides holoschoenus    | Ge           | IT                |
| Scrophulariaceae | Scrophularia azerbaijanica | Не           | IT                |
| Scrophulariaceae | Scrophularia deserti       | Не           | IT                |
| Scrophulariaceae | Scrophularia frigida       | Не           | IT, (End)         |
| Scrophulariaceae | Scrophularia leucoclada    | Ch           | IT                |
| Scrophulariaceae | Scrophularia nervosa       | Не           | IT                |
| Scrophulariaceae | Scrophularia pruinosa      | Не           | IT, Hyr           |
| Scrophulariaceae | Scrophularia striata       | Не           | IT, KhO           |
| Scrophulariaceae | Scrophularia umbrosa       | Не           | Hyr, IT           |
| Scrophulariaceae | Scrophularia variegata     | Не           | IT, Hyr           |
| Scrophulariaceae | Scrophularia vernalis      | He, Th       | Hyr, IT           |
| Lamiaceae        | Scutellaria albida         | Не           | IT                |
| Lamiaceae        | Scutellaria multicaulis    | Не           | IT                |

| Family         | Plant species            | Life<br>form | Floristic region |
|----------------|--------------------------|--------------|------------------|
| Lamiaceae      | Scutellaria nepetifolia  | Не           | IT               |
| Lamiaceae      | Scutellaria orientalis   | Не           | IT               |
| Lamiaceae      | Scutellaria pinnatifida  | Ch           | IT, Hyr          |
| Lamiaceae      | Scutellaria tournefortii | Ge           | Hyr              |
| Poaceae        | Secale cereale           | Th           | IT, Hyr          |
| Poaceae        | Secale montanum          | Не           | IT               |
| Crassulaceae   | Sedum hispanicum         | Th, He       | IT, Hyr          |
| Crassulaceae   | Sedum lenkoranicum       | Не           | Hyr              |
| Crassulaceae   | Sedum obtusifolium       | Не           | IT               |
| Crassulaceae   | Sedum pallidum           | He, Th       | Hyr              |
| Crassulaceae   | Sedum pentapetalum       | Th           | IT               |
| Crassulaceae   | Sedum pilosum            | Не           | Ara, Hyr         |
| Crassulaceae   | Sedum rubens             | Th           | IT, Hyr          |
| Crassulaceae   | Sedum spurium            | Не           | Hyr              |
| Crassulaceae   | Sedum stoloniferum       | Не           | Hyr              |
| Chenopodiaceae | Seidlitzia cinerea       | Th           | IT, KhO          |
| Chenopodiaceae | Seidlitzia florida       | Th           | IT               |
| Chenopodiaceae | Seidlitzia rosmarinus    | Ch           | IT, KhO          |
| Umbelliferae   | Semenovia suffruticose   | Не           | IT               |
| Crassulaceae   | Sempervivum iranicum     | Не           | Hyr, (End)       |
| Asteraceae     | Senecio cineraria        | Не           | IT               |
| Asteraceae     | Senecio erucifolius      | Ch           | Hyr              |
| Asteraceae     | Senecio flavus           | Th           | IT, KhO          |
| Asteraceae     | Senecio galucus          | Th           | IT, KhO          |
| Asteraceae     | Senecio molis            | Ge           | IT               |
| Asteraceae     | Senecio othonnae         | Не           | Hyr              |
| Asteraceae     | Senecio paucilobus       | Не           | IT               |
| Asteraceae     | Senecio paulsenii        | Ge           | IT               |
| Asteraceae     | Senecio vernalis         | Th           | Hyr, IT          |
| Asteraceae     | Senecio vulgaris         | Th           | IT, Hyr          |

| Family          | Plant species           | Life<br>form | Floristic region |
|-----------------|-------------------------|--------------|------------------|
| Asteraceae      | Serratula cerinthifolia | Не           | IT               |
| Asteraceae      | Serratula grandifolia   | Не           | IT               |
| Asteraceae      | Serratula haussknechtii | Ge           | IT, Hyr          |
| Asteraceae      | Serratula khuzistanica  | Не           | KhO              |
| Asteraceae      | Serratula latifolia     | Не           | IT               |
| Asteraceae      | Serratula quinquefolia  | Не           | Hyr              |
| Fabaceae        | Sesbania aculeata       | Ph           | KhO              |
| Fabaceae        | Sesbania sesban         | Ph           | KhO              |
| Poaceae         | Setaria glauca          | Th           | IT, Hyr          |
| Poaceae         | Setaria viridis         | Th           | IT, Hyr          |
| Rubiaceae       | Sherardia arvensis      | Th           | IT, Hyr          |
| Rosaceae        | Sibbaldia parviflora    | Не           | Hyr              |
| Lamiaceae       | Sideritis montana       | Th           | IT, Hyr          |
| Asteraceae      | Siebera nana            | Th           | IT               |
| Asteraceae      | Siegesbeckia orientalis | Th           | IT, Hyr          |
| Caryophyllaceae | Silene arabica          | Th           | KhO, IT          |
| Caryophyllaceae | Silene aucheriana       | Не           | IT, Hyr          |
| Caryophyllaceae | Silene bupleuroides     | Ge           | IT, Hyr          |
| Caryophyllaceae | Silene chlorifolia      | Не           | IT               |
| Caryophyllaceae | Silene commelinifolia   | Не           | IT, Hyr          |
| Caryophyllaceae | Silene coniflora        | Th           | IT               |
| Caryophyllaceae | Silene conoidea         | Th           | IT, Hyr          |
| Caryophyllaceae | Silene dichotoma        | Th, He       | IT, Hyr          |
| Caryophyllaceae | Silene goniocaula       | Не           | IT               |
| Caryophyllaceae | Silene gynodioica       | Не           | IT               |
| Caryophyllaceae | Silene latifolia        | Th, He       | IT, Hyr          |
| Caryophyllaceae | Silene linearis         | Th           | IT, KhO          |
| Caryophyllaceae | Silene marschallii      | Не           | IT               |
| Caryophyllaceae | Silene microphylla      | Не           | IT               |
| Caryophyllaceae | Silene odontopetala     | Не           | IT, Hyr          |

| Family          | Plant species           | Life<br>form | Floristic region |
|-----------------|-------------------------|--------------|------------------|
| Caryophyllaceae | Silene schafta          | Не           | Hyr              |
| Caryophyllaceae | Silene spergulifolia    | Не           | IT               |
| Caryophyllaceae | Silene stapfii          | Не           | IT               |
| Caryophyllaceae | Silene viscosa          | Не           | Hyr, IT          |
| Asteraceae      | Silybum marianum        | He, Th       | Cosm             |
| Cucurbitaceae   | Sinapis alba            | Th           | IT, Hyr          |
| Cucurbitaceae   | Sinapis arvensis        | Th           | IT, Hyr          |
| Brassicaceae    | Sisymbrium altissimum   | Th           | Hyr, IT          |
| Brassicaceae    | Sisymbrium irio         | Th           | Hyr, IT,<br>KhO  |
| Brassicaceae    | Sisymbrium loeselii     | Th, He       | Hyr, IT          |
| Brassicaceae    | Sisymbrium officinale   | Th           | IT, Hyr          |
| Liliaceae       | Smilax excelsa          | Ph           | Hyr              |
| Fabaceae        | Smirnova turkestana     | Ph           | IT               |
| Umbelliferae    | Smyrniopsis aucheri     | Не           | IT               |
| Umbelliferae    | Smyrnium cordifolium    | Не           | IT               |
| Solanaceae      | Solanum asiae-mediae    | Ge           | IT*              |
| Solanaceae      | Solanum dulcamara       | Ph           | Hyr, Zag         |
| Solanaceae      | Solanum incanum         | Ph           | KhO              |
| Solanaceae      | Solanum kieseritzkii    | Ge           | Hyr              |
| Solanaceae      | Solanum melongena       | Th           | IT               |
| Solanaceae      | Solanum nigrum          | Th           | Cosm             |
| Solanaceae      | Solanum olgae           | Th           | IT               |
| Solanaceae      | Solanum persicum        | Ph           | Hyr, IT,<br>Zag  |
| Solanaceae      | Solanum pseudocapsicum  | Ph           | Hyr              |
| Solanaceae      | Solanum surattense      | Th           | KhO              |
| Solanaceae      | Solanum tuberosum       | Ge           | Cosm             |
| Boraginaceae    | Solenanthus circinathus | Не           | IT, Hyr,<br>Zag  |
| Boraginaceae    | Solenanthus stamineus   | Не           | IT, Hyr,<br>Zag  |
| Asteraceae      | Solidago virga-aurea    | Th, He       | Hyr              |

| Family          | Plant species            | Life<br>form | Floristic region      |
|-----------------|--------------------------|--------------|-----------------------|
| Asteraceae      | Sonchus asper            | Th, He       | IT, KhO,<br>Hyr       |
| Asteraceae      | Sonchus maritimus        | Не           | IT                    |
| Asteraceae      | Sonchus oleraceus        | Th, He       | IT, KhO,<br>Hyr       |
| Fabaceae        | Sophora alopecuroides    | Ge           | IT                    |
| Fabaceae        | Sophora mollis           | Ph           | KhO, IT               |
| Fabaceae        | Sophora pachycarpa       | Не           | IT                    |
| Rosaceae        | Sorbus boissieri         | Ph           | Hyr, Ara              |
| Rosaceae        | Sorbus caucasica         | Ph           | Ara                   |
| Rosaceae        | Sorbus graeca            | Ph           | IT*, Zag,<br>Hyr, Ara |
| Rosaceae        | Sorbus luristanica       | Ph           | IT*, Zag,<br>(End)    |
| Rosaceae        | Sorbus orientalis        | Ph           | Hyr                   |
| Rosaceae        | Sorbus persica           | Ph           | IT*, Zag,<br>Hyr      |
| Rosaceae        | Sorbus torminalis        | Ph           | Hyr, Ara              |
| Poaceae         | Sorghum halepense        | Ge           | IT, Hyr               |
| Thyphaceae      | Sparganium erectum       | Hel          | IT, Hyr               |
| Caryophyllaceae | Spergularia bocconii     | Th           | Hyr, KhO              |
| Caryophyllaceae | Spergularia diandra      | Th           | IT, KhO,<br>Hyr       |
| Caryophyllaceae | Spergularia marina       | Th, He       | Hyr, IT,<br>KhO       |
| Sphenocleaceae  | Sphenoclea zeylanica     | Hel          | KhO                   |
| Chenopodiaceae  | Spinacia oleracea        | Th, He       | IT, KhO               |
| Chenopodiaceae  | Spinacia turkestanica    | Th           | IT                    |
| Rosaceae        | Spiraea anatolica        | Ph           | Hyr                   |
| Rosaceae        | Spiraea brahuica         | Ph           | KhO                   |
| Rosaceae        | Spiraea crenata          | Ph           | IT*, Hyr,<br>Ara      |
| Araceae         | Spirodela polyrhiza      | Hyd          | Hyr                   |
| Brassicaceae    | Spirorrhynchus sabulosus | Th           | IT                    |
| Lamiaceae       | Stachys acerosa          | Не           | IT                    |

| Family          | Plant species                | Life<br>form | Floristic region |
|-----------------|------------------------------|--------------|------------------|
| Lamiaceae       | Stachys benthamiana          | Не           | IT               |
| Lamiaceae       | Stachys byzanthina           | Не           | Hyr              |
| Lamiaceae       | Stachys Inflata              | Не           | IT               |
| Lamiaceae       | Stachys kurdica              | Не           | IT               |
| Lamiaceae       | Stachys lavandulifolia       | Не           | IT, Zag          |
| Lamiaceae       | Stachys obtusicrena          | Не           | IT               |
| Lamiaceae       | Stachys persica              | Не           | Hyr              |
| Lamiaceae       | Stachys pilifera             | Не           | IT               |
| Lamiaceae       | Stachys pubescens            | Не           | IT, Hyr          |
| Lamiaceae       | Stachys setifera             | Ge           | IT               |
| Lamiaceae       | Stachys spectabils           | Не           | IT               |
| Lamiaceae       | Stachys sylvatica            | Не           | Hyr, IT,<br>Ara  |
| Lamiaceae       | Stachys tomentosa            | He           | IT               |
| Lamiaceae       | Stachys turcamanica          | Ge           | IT               |
| Caryophyllaceae | Stellaria alsinoides         | Th           | IT               |
| Caryophyllaceae | Stellaria holostea           | Ge           | IT, Hyr          |
| Caryophyllaceae | Stellaria media              | Th           | Cosm             |
| Thymelaceae     | Stelleropsis antoniae        | Ch           | IT               |
| Thymelaceae     | Stelleropsis iranica         | He           | IT               |
| Asteraceae      | Steptorhamphus persicus      | He           | IT, KhO          |
| Asteraceae      | Steptorrhamphus tuberosus    | Ge           | IT, KhO          |
| Brassicaceae    | Sterigmostemum acanthocarpum | Th, He       | IT, Hyr          |
| Brassicaceae    | Sterigmostemum longistylum   | Th, He       | IT               |
| Brassicaceae    | Sterigmostemum ramosissimum  | Th, He       | IT               |
| Brassicaceae    | Sterigmostemum sulphureum    | He, Th       | IT, KhO          |
| Orchidaceae     | Steveniella satyrioides      | Ge           | Hyr              |
| Poaceae         | Stipa arabica                | Не           | IT               |
| Poaceae         | Stipa barbata                | Не           | IT               |
| Poaceae         | Stipa capensis               | Th           | IT, KhO          |
| Poaceae         | Stipa hohenackeriana         | Не           | IT               |

| Family          | Plant species          | Life<br>form | Floristic region |
|-----------------|------------------------|--------------|------------------|
| Poaceae         | Stipa parviflora       | Не           | IT               |
| Poaceae         | Stipagrostis paradisea | Не           | IT, KhO          |
| Poaceae         | Stipagrostis pennata   | Ge           | IT               |
| Poaceae         | Stipagrostis plumosa   | Не           | IT, KhO          |
| Sapindaceae     | Stocksia brahuica      | Ph           | KhO              |
| Chenopodiaceae  | Suaeda acuminata       | Th           | IT               |
| Chenopodiaceae  | Suaeda aegyptiaca      | Th, He       | KhO              |
| Chenopodiaceae  | Suaeda altissima       | Th           | IT               |
| Chenopodiaceae  | Suaeda arcuata         | Th           | IT               |
| Chenopodiaceae  | Suaeda fruticosa       | Ch           | IT, KhO          |
| Chenopodiaceae  | Suaeda microphylla     | Ch           | IT               |
| Chenopodiaceae  | Suaeda microsperma     | Th           | IT               |
| Chenopodiaceae  | Suaeda vermiculata     | Ch           | IT, KhO          |
| Boraginaceae    | Symphytum kurdicum     | Не           | IT               |
| Oleaceae        | Syringa persica        | Ph           | IT*, Ara         |
| Poaceae         | Taeniatherum crinitum  | Th           | IT, KhO          |
| Caesalpiniaceae | Tamarindus indica      | Ph           | KhO              |
| Tamaricaceae    | Tamarix altemifolia    | Ph           | IT               |
| Tamaricaceae    | Tamarix androssowii    | Ph           | IT               |
| Tamaricaceae    | Tamarix aphylla        | Ph           | IT, KhO          |
| Tamaricaceae    | Tamarix aralensis      | Ph           | IT               |
| Tamaricaceae    | Tamarix aravensis      | Ph           | IT               |
| Tamaricaceae    | Tamarix arceuthoides   | Ph           | IT               |
| Tamaricaceae    | Tamarix aucheriana     | Ph           | KhO              |
| Tamaricaceae    | Tamarix bachtiarica    | Ph           | IT               |
| Tamaricaceae    | Tamarix deserti        | Ph           | IT               |
| Tamaricaceae    | Tamarix dioica         | Ph           | IT, KhO          |
| Tamaricaceae    | Tamarix dubia          | Ph           | IT               |
| Tamaricaceae    | Tamarix florida        | Ph           | IT, KhO,<br>Zag  |
| Tamaricaceae    | Tamarix galica         | Ph           | IT, KhO,         |

| Family       | Plant species           | Life<br>form | Floristic region     |
|--------------|-------------------------|--------------|----------------------|
|              |                         | 10111        | Zag                  |
| Tamaricaceae | Tamarix hispida         | Ph           | IT                   |
| Tamaricaceae | Tamarix hohenackeri     | Ph           | IT, Zag              |
| Tamaricaceae | Tamarix indica          | Ph           | IT, KhO              |
| Tamaricaceae | Tamarix ispahanica      | Ph           | IT                   |
| Tamaricaceae | Tamarix karakalensis    | Ph           | IT, Hyr              |
| Tamaricaceae | Tamarix karelini        | Ph           | IT                   |
| Tamaricaceae | Tamarix korolkowii      | Ph           | IT                   |
| Tamaricaceae | Tamarix kotschyi        | Ph           | IT, KhO,<br>Zag      |
| Tamaricaceae | Tamarix laxa            | Ph           | IT, KhO              |
| Tamaricaceae | Tamarix leptopetala     | Ph           | IT, KhO,<br>Hyr      |
| Tamaricaceae | Tamarix macrocarpa      | Ph           | IT, KhO              |
| Tamaricaceae | Tamarix mascatensis     | Ph           | IT, KhO              |
| Tamaricaceae | Tamarix meyeri          | Ph           | IT                   |
| Tamaricaceae | Tamarix octandra        | Ph           | IT                   |
| Tamaricaceae | Tamarix passerinoides   | Ph           | IT, KhO              |
| Tamaricaceae | Tamarix ramoissima      | Ph           | IT, Hyr,<br>Zag, Ara |
| Tamaricaceae | Tamarix rosea           | Ph           | IT                   |
| Tamaricaceae | Tamarix serotina        | Ph           | IT                   |
| Tamaricaceae | Tamarix sp.             | Ph           |                      |
| Tamaricaceae | Tamarix stricta         | Ph           | IT, KhO              |
| Tamaricaceae | Tamarix szowitsiana     | Ph           | IT                   |
| Tamaricaceae | Tamarix tetragyna       | Ph           | IT, KhO              |
| Tamaricaceae | Tamarix tetrandra       | Ph           | IT                   |
| Dioscoraceae | Tamus communis          | Ge           | Hyr, IT              |
| Asteraceae   | Tanacetum canescens     | Не           | IT                   |
| Asteraceae   | Tanacetum chiliophyllum | Ge           | IT                   |
| Asteraceae   | Tanacetum coccineum     | Не           | Hyr                  |
| Asteraceae   | Tanacetum fruticolosum  | Не           | IT                   |

| Family       | Plant species                 | Life<br>form | Floristic region |
|--------------|-------------------------------|--------------|------------------|
| Asteraceae   | Tanacetum lingulatum          | Не           | IT, (End)        |
| Asteraceae   | Tanacetum paradoxum           | Не           | IT, (End)        |
| Asteraceae   | Tanacetum parthenium          | Ge           | IT, Hyr          |
| Asteraceae   | Tanacetum persicum            | Не           | IT               |
| Asteraceae   | Tanacetum Pinnatum            | Не           | IT               |
| Asteraceae   | Tanacetum polycephalum        | Не           | IT               |
| Asteraceae   | Tanacetum turcomanicum        | Не           | IT               |
| Asteraceae   | Tanacetum walteri             | Не           | IT               |
| Asteraceae   | Taraxacum azerbaijanicum      | Не           | IT, (End)        |
| Asteraceae   | Taraxacum baltistanicum       | Не           | IT, Ara          |
| Asteraceae   | Taraxacum bessarabicum        | Не           | Hyr, IT,<br>Zag  |
| Asteraceae   | Taraxacum brevirostre         | Не           | IT, Hyr          |
| Asteraceae   | Taraxacum calliops            | Не           | IT               |
| Asteraceae   | Taraxacum hydrophilum         | Не           | IT, (End)        |
| Asteraceae   | Taraxacum microcephaloides    | Не           | IT               |
| Asteraceae   | Taraxacum monochlamydeum      | Не           | IT               |
| Asteraceae   | Taraxacum montanum            | Не           | IT, Hyr          |
| Asteraceae   | Taraxacum officinale          | Не           | IT               |
| Asteraceae   | Taraxacum persicum            | Не           | IT               |
| Asteraceae   | Taraxacum pseudo calocephalum | Не           | IT, Hyr          |
| Asteraceae   | Taraxacum roseum              | Не           | IT               |
| Asteraceae   | Taraxacum syriacum            | Не           | IT, Hyr          |
| Asteraceae   | Taraxacum wallichii           | Не           | IT               |
| Brassicaceae | Tauscheria lasiocarpa         | Th           | IT               |
| Fabaceae     | Taverniera glabra             | Ch           | KhO              |
| Fabaceae     | Taverniera nummularia         | Ch           | KhO              |
| Fabaceae     | Taverniera persica            | Ch           | KhO              |
| Fabaceae     | Taverniera spartea            | Ph           | KhO              |
| Taxacaea     | Taxus baccata                 | Ph           | Hyr, Ara         |
| Bignoniaceae | Tecomella undulata            | Ph           | KhO              |

| Family          | Plant species             | Life<br>form | Floristic region |
|-----------------|---------------------------|--------------|------------------|
| Caryophyllaceae | Telephium eriglaucum      | Не           | IT, (End)        |
| Combretaceae    | Terminalia arjuna         | Ph           | KhO              |
| Combretaceae    | Terminalia catappa        | Ph           | KhO              |
| Zygophyllaceae  | Tetradiclis tenella       | Th           | IT               |
| Poaceae         | Tetrapogon villosus       | Ge           | KhO              |
| Umbelliferae    | Tetrataenium lasiopetalum | Не           | IT               |
| Lamiaceae       | Teucrium chamaedrys       | Не           | IT, Hyr          |
| Lamiaceae       | Teucrium hyrcanicum       | Ge           | Hyr              |
| Lamiaceae       | Teucrium orientale        | Ch           | IT, KhO          |
| Lamiaceae       | Teucrium polium           | Не           | Cosm             |
| Lamiaceae       | Teucrium scordium         | Ge           | IT               |
| Ranunculaceae   | Thalictrum isopyroides    | Не           | IT               |
| Ranunculaceae   | Thalictrum minus          | Ge           | IT               |
| Umbelliferae    | Thecocarpus meifolius     | Не           | IT               |
| Asteraceae      | Thevenotia persica        | Th           | IT, Hyr          |
| Apocynaceae     | Thevetia neriifolia       |              | KhO              |
| Brassicaceae    | Thlaspi arvense           | Th           | IT, Hyr          |
| Brassicaceae    | Thlaspi perfoliatum       | Th           | IT, Hyr,<br>KhO  |
| Lamiaceae       | Thuspeinantha persica     | Th           | IT               |
| Thymelaceae     | Thymelaea mesopotamica    | Th           | IT, KhO          |
| Lamiaceae       | Thymus caramanicus        | Ch           | IT               |
| Lamiaceae       | Thymus daenensis          | Ch           | IT               |
| Lamiaceae       | Thymus fallax             | Ch           | IT               |
| Lamiaceae       | Thymus kotschyanus        | Ch           | IT*              |
| Lamiaceae       | Thymus serpyllum          | Ch           | IT*              |
| Lamiaceae       | Thymus transcaspicus      | Ch           | IT               |
| Tiliaceae       | Tilia begonifolia         | Ph           | Hyr              |
| Tiliaceae       | Tilia caucasica           | Ph           | Hyr              |
| Tiliaceae       | Tilia dasystyla           | Ph           | Hyr              |
| Tiliaceae       | Tillia platyphyllos       | Ph           | Hyr, Ara         |

| Family       | Plant species              | Life<br>form | Floristic region          |
|--------------|----------------------------|--------------|---------------------------|
| Umbelliferae | Tordylium persicum         | Th           | IT                        |
| Umbelliferae | Torilis arvensis           | Th           | Hyr, IT                   |
| Umbelliferae | Torilis leptophylla        | Th           | IT, Hyr                   |
| Brassicaceae | Torularia aculeolata       | Th           | IT                        |
| Brassicaceae | Torularia torulosa         | Th           | IT, KhO                   |
| Boraginaceae | Trachelanthus cerinthoides | Не           | IT*                       |
| Apocynaceae  | Trachomitum armenum        | Ch           | IT, Hyr,<br>Ara, Zag      |
| Apocynaceae  | Trachomitum sarmatiense    | Ch           | Hyr                       |
| Apocynaceae  | Trachomitum scabrum        | Ch           | IT                        |
| Apocynaceae  | Trachomitum venetum        | Ph           | IT, Hyr                   |
| Umbelliferae | Trachydium depressum       | Не           | IT                        |
| Poaceae      | Trachynia distachya        | Th           | IT, KhO                   |
| Asteraceae   | Tragopogon bornmuelleri    | Не           | IT                        |
| Asteraceae   | Tragopogon buphthalmoides  | Не           | Cosm                      |
| Asteraceae   | Tragopogon capitatus       | Не           | IT                        |
| Asteraceae   | Tragopogon caricifolium    | Не           | IT, Hyr                   |
| Asteraceae   | Tragopogon collinus        | Не           | IT, Hyr                   |
| Asteraceae   | Tragopogon gaudanicus      | Не           | IT                        |
| Asteraceae   | Tragopogon graminifolius   | Не           | IT, Hyr,<br>Zag           |
| Asteraceae   | Tragopogon Jezdianus       | Не           | IT, Hyr,<br>KhO,<br>(End) |
| Asteraceae   | Tragopogon longirostris    | Не           | Hyr, Zag,<br>IT           |
| Asteraceae   | Tragopogon montanus        | Не           | IT, Hyr,<br>(End)         |
| Asteraceae   | Tragopogon reticulatus     | Не           | Hyr, IT                   |
| Asteraceae   | Tragopogon vaginatus       | Не           | IT                        |
| Asteraceae   | Tragopogon vvedenskyi      | Не           | IT, Hyr                   |
| Poaceae      | Tragus racemosus           | Th           | IT, Hyr,<br>KhO           |
| Onograceae   | Trapa natans               | Hyd          | Hyr                       |

| Family         | Plant species           | Life<br>form | Floristic region |
|----------------|-------------------------|--------------|------------------|
| Zygophyllaceae | Tribulus longipetalus   | Th, He       | IT, KhO          |
| Zygophyllaceae | Tribulus macropterus    | Th, He       | IT, KhO          |
| Zygophyllaceae | Tribulus ochroleucus    | Не           | IT               |
| Zygophyllaceae | Tribulus terrestris     | Th, He       | Hyr, IT,<br>KhO  |
| Boraginaceae   | Trichodesma aucheri     | Не           | IT, (End)        |
| Boraginaceae   | Trichodesma incanum     | Не           | IT*              |
| Boraginaceae   | Trichodesma stocksii    | Не           | KhO              |
| Poaceae        | Tricholaena tenerriffae | Не           | KhO              |
| Cyperaceae     | Trichophorum pumilum    | Ge           | IT, Hyr          |
| Fabaceae       | Trifolium alexandrinum  | Th           | IT               |
| Fabaceae       | Trifolium ambiguum      | Ge           | IT               |
| Fabaceae       | Trifolium angustifolium | Th           | Hyr              |
| Fabaceae       | Trifolium arvense       | Th           | IT, Hyr          |
| Fabaceae       | Trifolium campestre     | Th           | IT, Hyr          |
| Fabaceae       | Trifolium clusii        | Th           | IT, Hyr,<br>KhO  |
| Fabaceae       | Trifolium dasyurum      | Th           | IT, Zag,<br>KhO  |
| Fabaceae       | Trifolium fragiferum    | Не           | IT, Hyr          |
| Fabaceae       | Trifolium pratense      | Не           | Hyr, IT          |
| Fabaceae       | Trifolium purpureum     | Th           | IT               |
| Fabaceae       | Trifolium radicosum     | Ge           | IT               |
| Fabaceae       | Trifolium repens        | Не           | Hyr, IT          |
| Fabaceae       | Trifolium resupinatum   | He, Th       | Hyr              |
| Fabaceae       | Trifolium tumens        | Ge           | IT, Hyr          |
| Juncaginaceae  | Triglochin palustris    | Ge           | IT, Hyr          |
| Fabaceae       | Trigonella elliptica    | Не           | IT               |
| Fabaceae       | Trigonella monantha     | Th           | IT               |
| Fabaceae       | Trigonella monspeliaca  | Th           | IT               |
| Fabaceae       | Trigonella spruneriana  | Th           | IT, Hyr          |
| Fabaceae       | Trigonella stellata     | Th           | KhO, IT          |

| Family       | Plant species               | Life<br>form | Floristic region |
|--------------|-----------------------------|--------------|------------------|
| Fabaceae     | Trigonella teheranica       | Не           | IT               |
| Fabaceae     | Trigonella uncata           | Th           | IT, KhO          |
| Asteraceae   | Tripleurospermum decipiens  | He, Th       | IT               |
| Asteraceae   | Tripleurospermum disciforme | He, Th       | IT, Hyr          |
| Poaceae      | Trisetum flavescens         | Не           | IT, Hyr          |
| Liliaceae    | Tulipa biflora              | Ge           | IT, KhO          |
| Liliaceae    | Tulipa chrysantha           | Ge           | IT, Hyr          |
| Liliaceae    | Tulipa clusiana             | Ge           | IT, KhO          |
| Liliaceae    | Tulipa cuspidata            | Ge           | IT               |
| Liliaceae    | Tulipa lehmanniana          | Ge           | IT               |
| Liliaceae    | Tulipa micheliana           | Ge           | IT               |
| Liliaceae    | Tulipa montana              | Ge           | IT, Hyr          |
| Liliaceae    | Tulipa sp.                  | Ge           |                  |
| Liliaceae    | Tulipa systola              | Ge           | IT, Hyr          |
| Liliaceae    | Tulipa undulatifolia        | Ge           | IT               |
| Liliaceae    | Tulipa wilsoniana           | Ge           | IT               |
| Umbelliferae | Turgenia latifolia          | Th           | IT, Hyr          |
| Brassicaceae | Turritis glabra             | Не           | Hyr, IT          |
| Asteraceae   | Tussilago farfara           | Ge           | IT, Hyr          |
| Typhaceae    | Typha angustifolia          | Ge           | IT               |
| Thyphaceae   | Typha australis             | Ge           | Hyr, IT          |
| Thyphaceae   | Typha grossheimii           | Ge           | IT               |
| Typhaceae    | Typha latifolia             | Ge           | Hyr              |
| Ulmaceae     | Ulmus carpinifolia          | Ph           | Hyr, Ara,<br>Zag |
| Ulmaceae     | Ulmus densa                 | Ph           | IT               |
| Ulmaceae     | Ulmus elliptica             | Ph           | Hyr              |
| Ulmaceae     | Ulmus glabra                | Ph           | Hyr              |
| Ulmaceae     | Ulmus laevis                | Ph           | Hyr              |
| Ulmaceae     | Ulmus minor                 | Ph           | Hyr, IT          |
| Ulmaceae     | Ulmus umbraculifera         | Ph           | IT               |

| Family           | Plant species               | Life<br>form | Floristic region     |
|------------------|-----------------------------|--------------|----------------------|
| Crassulaceae     | Umbilicus intermedius       | Ge           | IT, KhO,<br>Hyr      |
| Crassulaceae     | Umbilicus tropaeollifolius  | Ge           | IT                   |
| Asparagaceae     | Urginea maritima            | Ge           | IT, KhO              |
| Asteraceae       | Urospermum picroides        | Th           | Cosm                 |
| Urticaceae       | Urtica dioica               | Ge           | IT, Hyr,<br>Zag, KhO |
| Urticaceae       | Urtica pilulifera           | He, Th       | IT, KhO,<br>Hyr, Zag |
| Urticaceae       | Urtica urens                | He, Th       | IT, KhO,<br>Hyr, Zag |
| Caryophyllaceae  | Vaccaria grandiflora        | Th           | IT                   |
| Caryophyllaceae  | Vaccaria oxydonta           | Th           | IT                   |
| Caryophyllaceae  | Vaccaria pyramidata         | Th           | IT, Hyr,<br>KhO      |
| Ericaceae        | Vaccinium arctostaphylos    | Ph           | Hyr                  |
| Valerianaceae    | Valeriana ficariifolia      | Не           | IT                   |
| Valerianaceae    | Valeriana sisymbrifolia     | Ge           | IT, Hyr              |
| Valerianaceae    | Valerianella amblyotis      | Th           | IT                   |
| Valerianaceae    | Valerianella cymbicarpa     | Th           | IT                   |
| Valerianaceae    | Valerianella dactylophylla  | Th           | IT                   |
| Valerianaceae    | Valerianella dufresnia      | Th           | IT, Hyr              |
| Valerianaceae    | Valerianella lasiocarpa     | Th           | IT, Hyr              |
| Valerianaceae    | Valerianella muricata       | Th           | IT, Hyr              |
| Valerianaceae    | Valerianella oxyrrhyncha    | Th           | IT                   |
| Valerianaceae    | Valerianella plagiostephana | Th           | IT                   |
| Valerianaceae    | Valerianella platycarpa     | Th           | IT                   |
| Valerianaceae    | Valerianella szovitsiana    | Th           | IT                   |
| Valerianaceae    | Valerianella triplaris      | Th           | IT                   |
| Valerianaceae    | Valerianella vesicaria      | Th           | IT                   |
| Asteraceae       | Varthemia persica           | Ch           | IT                   |
| Caryophyllaceae  | Velezia rigida              | Th           | IT                   |
| Scrophulariaceae | Verbascum agrimoniifolium   | Не           | IT, Hyr              |

| Family           | Plant species               | Life<br>form | Floristic region  |
|------------------|-----------------------------|--------------|-------------------|
| Scrophulariaceae | Verbascum alceoides         | Не           | IT                |
| Scrophulariaceae | Verbascum carduchorum       | Не           | IT                |
| Scrophulariaceae | Verbascum cheiranthifolium  | Не           | IT, Hyr           |
| Scrophulariaceae | Verbascum disjectum         | Не           | IT, (End)         |
| Scrophulariaceae | Verbascum farsistanicum     | Не           | IT, KhO,<br>(End) |
| Scrophulariaceae | Verbascum intricatum        | Не           | IT, (End)         |
| Scrophulariaceae | Verbascum kochiforme        | Не           | KhO               |
| Scrophulariaceae | Verbascum phlomoides        | Не           | IT                |
| Scrophulariaceae | Verbascum pseudo-digitalis  | Не           | IT                |
| Scrophulariaceae | Verbascum sinuatum          | Не           | IT                |
| Scrophulariaceae | Verbascum songaricum        | Не           | IT, Hyr           |
| Scrophulariaceae | Verbascum speciosum         | Не           | IT, Hyr           |
| Scrophulariaceae | Verbascum thapsus           | Не           | IT, Hyr           |
| Verbenaceae      | Verbena officinalis         | Не           | Hyr, IT           |
| Scrophulariaceae | Veronica acrotheca          | Не           | IT                |
| Scrophulariaceae | Veronica anagallis-aquatica | Ge,<br>Hel   | IT, Hyr           |
| Scrophulariaceae | Veronica anagalloides       | Th           | Hyr, IT           |
| Scrophulariaceae | Veronica argute-serrata     | Th           | IT                |
| Scrophulariaceae | Veronica arvensis           | Th           | Hyr, IT           |
| Scrophulariaceae | Veronica beccabunga         | Ge           | IT                |
| Scrophulariaceae | Veronica biloba             | Th           | IT                |
| Scrophulariaceae | Veronica campylopoda        | Th           | IT                |
| Scrophulariaceae | Veronica capillipes         | Th           | IT                |
| Scrophulariaceae | Veronica ceratocarpa        | Th, He       | Hyr               |
| Scrophulariaceae | Veronica crista-galli       | Th           | Hyr               |
| Scrophulariaceae | Veronica francispetae       | Th           | Hyr, (End)        |
| Scrophulariaceae | Veronica hederifolia        | Th           | Hyr, IT           |
| Scrophulariaceae | Veronica hispidula          | Th           | IT                |
| Scrophulariaceae | Veronica macropoda          | Th           | IT                |

| Family           | Plant species          | Life<br>form | Floristic region |
|------------------|------------------------|--------------|------------------|
| Scrophulariaceae | Veronica orientalis    | Не           | IT               |
| Scrophulariaceae | Veronica oxycarpa      | Не           | IT               |
| Scrophulariaceae | Veronica persica       | He, Th       | Cosm             |
| Scrophulariaceae | Veronica polita        | Th           | IT, Hyr          |
| Scrophulariaceae | Veronica rubrifolia    | Th           | IT*              |
| Caprifoliaceae   | Viburnum cotinifolium  | Ph           | KhO              |
| Caprifoliaceae   | Viburnum Lantana       | Ph           | Hyr, Ara         |
| Caprifoliaceae   | Viburnum opulus        | Ph           | Ara              |
| Fabaceae         | Vicia aintabensis      | Th           | IT               |
| Fabaceae         | Vicia amphicarpa       | Th           | IT, Hyr,<br>KhO  |
| Fabaceae         | Vicia angustifolia     | Th           | IT, Hyr          |
| Fabaceae         | Vicia assyriaca        | Th           | IT               |
| Fabaceae         | Vicia ciceroidea       | Не           | IT               |
| Fabaceae         | Vicia cracca           | Не           | Hyr, IT          |
| Fabaceae         | Vicia crocea           | Ch           | Hyr              |
| Fabaceae         | Vicia ervilia          | Th           | IT, Hyr          |
| Fabaceae         | Vicia hirsuta          | Th           | Hyr              |
| Fabaceae         | Vicia hybrida          | Th           | IT               |
| Fabaceae         | Vicia michauxii        | Th           | IT               |
| Fabaceae         | Vicia monantha         | Th           | IT, KhO          |
| Fabaceae         | Vicia narbonensis      | Th           | IT, Hyr          |
| Fabaceae         | Vicia peregrina        | Th           | IT, Hyr          |
| Fabaceae         | Vicia sativa           | Th           | IT, Hyr          |
| Fabaceae         | Vicia subvillosa       | Ge           | IT               |
| Fabaceae         | Vicia tetrasperma      | Th           | Hyr, IT          |
| Fabaceae         | Vicia truncatula       | Не           | IT, Hyr          |
| Fabaceae         | Vicia variabilis       | Не           | IT, Hyr          |
| Fabaceae         | Vicia villosa          | Th           | IT, Hyr          |
| Apocynaceae      | Vinca herbacea         | Не           | Hyr, IT          |
| Asclepiadaceae   | Vincetoxicum canescens | Не           | IT               |

| Family         | Plant species         | Life<br>form | Floristic region |
|----------------|-----------------------|--------------|------------------|
| Asclepiadaceae | Vincetoxicum pumilum  | Не           | IT               |
| Asclepiadaceae | Vincetoxicum scandens | Не           | Hyr              |
| Violaceae      | Viola alba            | Ge           | Hyr              |
| Violaceae      | Viola arvensis        | Th           | Hyr, Ara         |
| Violaceae      | Viola behboudiana     | Th, He       | KhO              |
| Violaceae      | Viola caspica         | Ge           | Hyr              |
| Violaceae      | Viola modesta         | Th           | IT               |
| Violaceae      | Viola occulta         | Th           | IT, Hyr          |
| Violaceae      | Viola odorata         | Ge           | Hyr, IT          |
| Violaceae      | Viola pachyrrhiza     | Ge           | Zag, IT*         |
| Violaceae      | Viola reichenbachiana | Не           | Hyr, IT          |
| Violaceae      | Viola riviniana       | Ge           | Hyr              |
| Violaceae      | Viola sieheana        | Ge           | Hyr              |
| Violaceae      | Viola sintenisii      | Ge           | Hyr              |
| Violaceae      | Viola stocksii        | Th           | KhO              |
| Violaceae      | Viola suavis          | Ge           | Hyr              |
| Violaceae      | Viola sylvestris      | Не           | Hyr, IT          |
| Violaceae      | Viola tricolor        | Th, He       | Hyr              |
| Loranthaceae   | Viscum album          | Ph           | Hyr              |
| Verbenaceae    | Vitex angus-castus    | Ph           | IT               |
| Verbenaceae    | Vitex negundo         | Ph           | KhO              |
| Verbenaceae    | Vitex pseudo-negundo  | Ph           | KhO, IT,<br>Zag  |
| Vitaceae       | Vitis sylvestris      | Ph           | Hyr, Ara,<br>Zag |
| Vitaceae       | Vitis vinifera        | Ph           | Hyr, IT          |
| Poaceae        | Vulpia myuros         | Th           | Hyr, IT          |
| Poaceae        | Vulpia persica        | Th           | IT               |
| Asteraceae     | Willemetia tuberosa   | Ge           | IT, Hyr          |
| Solanaceae     | Withania coagulans    | Ph           | KhO              |
| Solanaceae     | Withania somnifera    | Ph           | KhO              |

| Family           | Plant species             | Life<br>form | Floristic<br>region |
|------------------|---------------------------|--------------|---------------------|
| Asteraceae       | Xanthium spinosum         | Th           | IT                  |
| Asteraceae       | Xanthium stramarium       | Th           | IT                  |
| Potamogetonaceae | Zannichellia palustris    | Hyd          | Cosm                |
| Lamiaceae        | Zataria multiflora        | Ch           | IT*, KhO            |
| Ulmaceae         | Zelkova carpinifolia      | Ph           | Hyr                 |
| Ulmaceae         | Zelkova hyrcana           | Ph           | Hyr                 |
| Poaceae          | Zingeria trichopoda       | Th           | IT                  |
| Lamiaceae        | Ziziphora capitata        | Th           | IT                  |
| Lamiaceae        | Ziziphora clinopodioides  | Ch           | IT                  |
| Lamiaceae        | Ziziphora tenuior         | Th           | IT                  |
| Rhamnaceae       | Ziziphus jujuba           | Ph           | IT                  |
| Rhamnaceae       | Ziziphus lotus            | Ph           | KhO                 |
| Rhamnaceae       | Ziziphus nammularia       | Ph           | KhO, Zag            |
| Rhamnaceae       | Ziziphus officinarum      | Ph           | KhO                 |
| Rhamnaceae       | Ziziphus oxyphylla        | Ph           | KhO                 |
| Rhamnaceae       | Ziziphus spina-Christi    | Ph           | Zag, KhO            |
| Asteraceae       | Zoegea leptaurea          | Th           | IT, Zag             |
| Asteraceae       | Zoegea purpurea           | Th           | IT, KhO             |
| Umbelliferae     | Zosimia absinthifolia     | Не           | IT                  |
| Zygophyllaceae   | Zygophyllum atriplicoides | Ph           | IT, KhO             |
| Zygophyllaceae   | Zygophyllum eurypterum    | Ph           | IT, KhO             |
| Zygophyllaceae   | Zygophyllum fabago        | Ch           | IT                  |
| Zygophyllaceae   | Zygophyllum hamiense      | Ch           | KhO                 |
| Zygophyllaceae   | Zygophyllum megacarpum    | Ph           | IT                  |
| Zygophyllaceae   | Zygophyllum propinquum    | Ch           | KhO                 |
| Zygophyllaceae   | Zygophyllum simplex       | Th           | KhO                 |

## References

Adamson, R. S. (1931). The plant communities of Table Mountain: II. Lifeform dominance and succession. *The Journal of Ecology*, 304-320.

Adamson, R. S. (1939). The classification of life-forms of plants. *The Botanical Review*, *5*(10), 546-561.

Aguiar, M. R., & Sala, O. E. (1994). Competition, facilitation, seed distribution and the origin of patches in a Patagonian steppe. *Oikos*, 70, 26-34.

Arneth, A., Kelliher, F.M., McSeveny, T.M., Byers, J.N. (1998): Net ecosystem productivity, net primary productivity and ecosystem carbon sequestration in a *Pinus radiata* plantation subject to soil water deficit. *Tree Physiology*, 18, 785-793.

Arnold, J. F. (1955). Plant life-form classification and its use in evaluating range conditions and trend. *Journal of Range Management*, 8(4), 176-181.

Arzani, H., Charehsaz, N., Student, F. M., Jafari, A. A., & Azarnivand, H. (2010). Survey of the impact of the form and growth stage on forage quality of nine range species in central Alborz (case study: Taleghan). *Watershed Management Research Journal*, 23, 82-91

Askarizadeh, D., & Heshmati, G. A. (2013). An investigation of environment factors' impact on life form of plants (case study: Javaherdeh rangelands of Ramsar). *Journal of Range and Watershed Management*, 65, 529-540

Bailey, R. G. (1980). *Description of the ecoregions of the United States*. No. 1391. US Department of Agriculture, Forest Service.

Bailey, R. G., & Hogg, H. C. (1986). A world ecoregions map for resource reporting. *Environmental Conservation*, 13(3), 195-202.

Beale, C.V., & Long, S.P. (1995). Can perennial C4 grasses attain high efficiencies of radiant energy-conversion in cool climate. *Agric Forest Meteorol*, 96, 103-115.

Bell, D.T., Hopkins, A.J.M. & Pate, J.S. (1984). Fire in the Kwongan. In: Pate, J.S. & Beard, J.S. (eds.) Kwongan: Plant life of the sandplain, pp. 178-204. University of Western Australia Press, Nedlands, WA

Bertness, M. D., & Callaway, R. (1994). Positive interactions in communities. *Trends in ecology & evolution*, 9(5), 191-193.

Bigger, D. S., & Marvier, M. A. (1998). How different would a world without herbivory be? A search for generality in ecology. *Integrative Biology: Issues, News, and Reviews: Published in Association with The Society for Integrative and Comparative Biology, 1*(2), 60-67.

Box, E. O. (1981). Predicting physiognomic vegetation types with climate variables. *Vegetatio*, 45(2), 127-139.

Bruno, J. F., Stachowicz, J. J., & Bertness, M. D. (2003). Inclusion of facilitation into ecological theory. *Trends in Ecology & Evolution*, 18(3), 119-125.

- Bryant, J. P., Chapin III, F. S., & Klein, D. R. (1983). Carbon/nutrient balance of boreal plants in relation to vertebrate herbivory. *Oikos*, 40, 357-368.
- Burke, I.C., Lauenroth, W.K., Vinton, M.A., Hook, P.B., Kelly, R.H., Epstein, H.E., Aguiar, M.R., Robles, M.D., Aguilera, M.O., Murphy, K.L. and Gill, R.A., (1998). Plant-soil interactions in temperate grasslands. In *Plant-induced soil changes: Processes and feedbacks* (pp. 121-143). Springer, Dordrecht.
- Burrows, N., & Wardell-Johnson, G. (2003). Fire and plant interactions in forested ecosystems of south-west Western Australia. Fire in ecosystems of south-west Western Australia: impacts and management. Backhuys Publishers, Leiden, The Netherlands, 225-268.
- Cain, S. A. (1950). Life-forms and phytoclimate. *The Botanical Review*, *16*(1), 1-32.
- Caldwell, M.M. & Richards, H.J. (1986). Competing root systems: morphology and models of absorption. *On the Economy of Plant Form and Function* (ed. T.J. Givnish), pp. 251–273. Cambridge University Press, Cambridge.
- Callaway, R. M., & Walker, L. R. (1997). Competition and facilitation: a synthetic approach to interactions in plant communities. *Ecology*, 78(7), 1958-1965.
- Callaway, R.M., 1995. Positive interactions among plants. *Bot. Rev*, 61, 306–349.
- Callaway, R.M., Brooker, R.W., Choler, P., Kikvidze, Z., Lortie, C.J., Michalet, R., Paolini, L., Pugnaire, F.I., Newingham, B., Aschehoug, E.T. and Armas, C., (2002). Positive interactions among alpine plants increase with stress. *Nature*, 417, 844-848
- Castanho, C. T., Oliveira, A. A., & Prado, P. I. (2012). The importance of plant life form on spatial associations along a subtropical coastal dune gradient. *Journal of Vegetation Science*, 23(5), 952-961.
- Chambers, J.Q., dos Santos, J., Ribeiro, R.J. and Higuchi, N. (2001). Tree damage, allometric relationships, and above-ground net primary production in central Amazon forest. *Forest Ecology and Management*, *152*(1-3), 73-84.
- Chapman, R. R., & Crow, G. E. (1981). Application of Raunkiaer's life form system to plant species survival after fire. *Bulletin of the Torrey Botanical club*, 108,472-478.
- Cheal, D. C. (1993). Effects of stock grazing on the plants of semi-arid woodlands and grasslands. *Proceedings of the Royal Society of Victoria*, 105, 57-65.
- Chiariello, N. R., Mooney, H. A., & Williams, K. (1989). Growth, carbon allocation and cost of plant tissues. In *Plant physiological ecology* (pp. 327-365). Springer, Dordrecht.

- communities in the Sydney region: Inter-fire interval and time-since-fire. *Australian Journal of Ecology*, 20(2), 239-247.
- Connin, S. L., Virginia, R. A., & Chamberlain, C. P. (1997). Carbon isotopes reveal soil organic matter dynamics following arid land shrub expansion. *Oecologia*, 110(3), 374-386.
- Cooper, A. W. (1961). Relationships between Plant Life-forms and microclimate in Southeastern Michigan. *Ecological Monographs*, 31(1), 31-59.
- Costanza, R., d'Arge, R., De Groot, R., Farber, S., Grasso, M., Hannon, B., Limburg, K., Naeem, S., O'neill, R.V., Paruelo, J. and Raskin, R.G., (1997). The value of the world's ecosystem services and natural capital. *Nature*, *387*(6630), p.253.
- Curtis, P.S., Vogel, C.S., Gough, C.M., Schmid, H.P., Su, H.B., Bovard, B.D. (2005). Respiratory carbon losses and the carbon-use efficiency of a northern hardwood forest, 1999-2003. *New Phytologist*, 167, 437-456.
- Daly, C., Bachelet, D., Lenihan, J. M., Neilson, R. P., Parton, W., & Ojima, D. (2000). Dynamic simulation of tree–grass interactions for global change studies. *Ecological applications*, *10*(2), 449-469.
- de Candolle, A. P. (1818). Regni vegetabilis Systema naturale: Sive ordines, genera et species.... Sistens Prolegomena et Ordines quinque nempè Ranunculaceas, Dilleniaceas, Magnoliaceas, Anonaceas, et Menispermeas (Vol. 1). Treuttel et Würtz.
- de Martonne, E. 1926. "Une nouvelle function climatologique: L'indice d'aridité." *Meteorologie*, 2, 449-459.
- Dixon, P. (1994). Testing spatial segregation using a nearest-neighbor contingency table. *Ecology*, 75(7), 1940-1948.
- Dodd, M. B., Lauenroth, W. K., & Welker, J. M. (1998). Differential water resource use by herbaceous and woody plant life-forms in a shortgrass steppe community. *Oecologia*, 117(4), 504-512.
- Dohn, J., Dembélé, F., Karembé, M., Moustakas, A., Amévor, K. A., & Hanan, N. P. (2013). Tree effects on grass growth in savannas: competition, facilitation and the stress-gradient hypothesis. *Journal of Ecology*, *101*(1), 202-209.
- Dougherty, C. T., Bradley, N. W., Cornelius, P. L., & Lauriault, L. M. (1989). Short-term fasts and the ingestive behaviour of grazing cattle. *Grass and Forage Science*, 44(3), 295-302.
- Droste, B.V. (1979). Forsts biomass for energy. Keynote address. Biological and sociological basis for a rational use of forest resources for energy and organics: An International Workshop. Michigan State University East Lansing, Michigan.
- Drude, O. (1890). *Handbuch der pflanzengeographie* (Vol. 7). J. Engelhorn. Du Rietz, G. E. (1931). *Life-forms of terrestrial flowering plants*, 1. Sv.
- Du Rietz, G. E. (1931). Life-forms of terrestrial flowering plants, 1. Sv. växtgeografiska sällsk.

- Ewel, J. J., & Bigelow, S. W. (1996). Plant life-forms and tropical ecosystem functioning. In *Biodiversity and ecosystem processes in tropical forests* (pp. 101-126). Springer, Berlin, Heidelberg.
- Fayaz, M., Ameri, H., Yazdanshenas, H., & Yeganeh, H. (2015). Study of preference value of range plants for camel in winter and summer pastures of Semnan province during three consecutive years. *Journal of Plant Research* (*Iranian Journal of Biology*), 28, 794-802.
- Fayaz, M., Habibian, S. H., Yeganeh, H., & Sanaei, A. (2015). Preference value of range species for sheep and goat at Cheshme-Anjir, Fars province. *Iranian Journal of Range and Desert Research*, 22(1), 1-11
- Feeny, P. (1976). Plant apparency and chemical defense. In *Biochemical interaction between plants and insects* (pp. 1-40). Springer, Boston, MA.
- Flores, J., & Briones, O. (2001). Plant life-form and germination in a Mexican inter-tropical desert: effects of soil water potential and temperature. *Journal of arid environments*, 47(4), 485-497.
- Gadgil, M., & Solbrig, O. T. (1972). The concept of r-and K-selection: evidence from wild flowers and some theoretical considerations. *The American Naturalist*, *106*(947), 14-31.
- Gallina, S. (1993). White-tailed deer and cattle diets at La Michilia, Durango, Mexico. *Rangeland Ecology & Management/Journal of Range Management Archives*, 46(6), 487-492.
- García-Oliva, F., Casar, I., Morales, P., & Maass, J. M. (1994). Forest-to-pasture conversion influences on soil organic carbon dynamics in a tropical deciduous forest. *Oecologia*, *99*(3-4), 392-396.
- Ghahraman A. 1975–2005. Colored Flora of Iran. Tehran: Research Institute of Forests and Langelands Vol: 1–26.
- Ghodsi, M., Mesdaghi, M., & Heshmati, G. H. (2012). Effect of different growth forms on soil surface features (Case study: Semi-steppe rangeland, Golestan National Park). *Watershed Management Research*, 24 (4), 63-69
- Gibson, N., & Kirkpatrick, J. B. (1989). Effects of the cessation of grazing on the grasslands and grassy woodlands of the Central Plateau, Tasmania. *Australian Journal of Botany*, *37*(1), 55-63.
- Gill, R. A., & Burke, I. C. (1999). Ecosystem consequences of plant life form changes at three sites in the semiarid United States. *Oecologia*, *121*(4), 551-563. Goldberg, D.E., Turkington, R., Olsvig-Whittaker, L. & Dyer, A.R. (2001). Density dependence in an annual plant community: variation among life history stages. *Ecological Monographs*, 71, 423–446.
- Golley, F.B. (1960). Energy dynamics of a food chain of an old-field community. *Ecological Monographs*, 30, 187-206.

Golluscio, R. A., Oesterheld, M., & Aguiar, M. R. (2005). Relationship between phenology and life form: a test with 25 Patagonian species. *Ecography*, 28(3), 273-282.

Gomez-Aparicio, L. (2009). The role of plant interactions in the restoration of degraded ecosystems: a meta analysis across life forms and ecosystems. *Journal of Ecology*, 97(6), 1202-1214.

Goudarzi, M., Azimi, M., Esfahan, E. Z., Karimi, G., & Shahmoradi, A. (2015). Effects of fire on the canopy cover of grasses (case study: semi steppe rangelands of Kordan). *Iranian Journal of Range and Desert Research*, 22(3), 537-545.

Grime, J. P. (1974). Vegetation classification by reference to strategies. *Nature*, 250, 26-31.

Grisebach, A. (1884). Die Vegetation der Erde: nach ihrer Klimatischen Anordnung. Ein Abriss der Vergleichenden Geographie der Pflanzen (Vol. 1). W. Engelmann. Hall, N.Y.

Hatami., KH, Ataroshan S., & Heidari M. (2011). A study of species richness and plant life forms along altitudinal gradient of woodland in the west of Iran (case study: preserved region of Arghavan). *Journal of Sciences and Techniques in Natural Resources*, 5, 99-111

Heydarian Aghakhani, M., Borj, A. N., & Tavakoli, H. (2010). The effects of grazing intensity on vegetation and soil in Sisab rangelands, Bojnord, Iran. *Iranian Journal of Range and Desert Research*, 17(2), 243-255.

Heyer, W. R. (1967). A herpetofaunal study of an ecological transect through the Cordillera de Tilarán, Costa Rica. *Copeia*, 1967, 259-271.

Holdridge, L. R. (1967). Life zone ecology. Life zone ecology., (rev. ed.)).

Holmgren, M., Scheffer, M., & Huston, M. A. (1997). The interplay of facilitation and competition in plant communities. *Ecology*, 78(7), 1966-1975.

Holzapfel, C., & Mahall, B. E. (1999). Bidirectional facilitation and interference between shrubs and annuals in the Mojave Desert. *Ecology*, 80(5), 1747-1761.

Holzapfel, C., Tielbörger, K., Parag, H. A., Kigel, J., & Sternberg, M. (2006). Annual plant–shrub interactions along an aridity gradient. *Basic and Applied Ecology*, 7(3), 268-279.

Imani, J., Tavili, A., Bandak, I., & Gholinejad, B. (2010). Assessment of vegetation changes in rangelands under different grazing intensities case study: Charandow of Kurdistan province. *Iranian Journal of Range and Desert Research*, 17(3), 393-401

Jackson, R.B., Canadell, J., Ehleringer, J.R., Mooney, H.A., Sala, O.E. & Schulze, E.D. (1996) A global analysis of root distributions for terrestrial biomes. *Oecologia*, 108,389–411.

Javanshir K. (1976). *Atlas of Woody Plants of Iran*. National Society of Natural Resources and Human Environment Conservation, Tehran, Iran, 163 pp.

Karimi, S., Pourbabaei, H., & Khodakarami, Y. (2017). The effect of fire on the flora and life forms of plant species in Zagros forests, Kermanshah. *Journal of Forest and Wood Products*, 70 (3), 431-440

Kerner von Marilaun, A. (1863). Das Pflanzenleben der Donauländer. *Innbruck, Wagner*.

Khan, M. F., Anderson, D. M., Nutkani, M. I., & Butt, N. M. (1999). Preliminary results from reseeding degraded Dera Ghazi Khan rangeland to improve small ruminant production in Pakistan. *Small Ruminant Research*, *32*(1), 43-49.

Kieft, T. L., White, C. S., Loftin, S. R., Aguilar, R., Craig, J. A., & Skaar, D. A. (1998). Temporal dynamics in soil carbon and nitrogen resources at a grassland–shrubland ecotone. *Ecology*, 79(2), 671-683.

Kochy, M. & Wilson, S.D. (2000). Competitive effects of shrubs and grasses in prairie. *Oikos*, 91, 385–395.

Korner, C., Bannister, P., & Mark, A. F. (1986). Altitudinal variation in stomatal conductance, nitrogen content and leaf anatomy in different plant life forms in New Zealand. *Oecologia*, 69(4), 577-588.

Lichter, J. (2000). Colonization constraints during primary succession on coastal Lake Michigan sand dunes. *Journal of Ecology*, 88(5), 825-839.

Lugo, A. E., Brown, S. L., Dodson, R., Smith, T. S., & Shugart, H. H. (1999). The Holdridge life zones of the conterminous United States in relation to ecosystem mapping. *Journal of biogeography*, 26(5), 1025-1038.

MacLean Jr, S. F., & Jensen, T. S. (1985). Food plant selection by insect herbivores in Alaskan arctic tundra: the role of plant life form. *Oikos*,44, 211-221.

Mazepa, V. S., & Devi, N. M. (2007). Development of multistemmed life forms of Siberian larch as an indicator of climate change in the timberline ecotone of the Polar Urals. *Russian Journal of Ecology*, 38(6), 440-443.

Merriam, C. H. (1898). *Life zones and crop zones of the United States* (No. 10). US Government Printing Office.

Meyerson, L.A., Baron, J., Melillo, J.M., Naiman, R.J., O'Malley, R.I., Orians, G., Palmer, M.A., Pfaff, A.S.P., Running, S.W., Sala, O.E. (2005): Aggregate measures of ecosystem services: Can we take the pulse of nature? *Front. Ecol. Environ*, 3, 56-59.

Michelsen, A., Schmidt, I. K., Jonasson, S., Quarmby, C., & Sleep, D. (1996). Leaf 15 N abundance of subarctic plants provides field evidence that ericoid, ectomycorrhizal and non-and arbuscular mycorrhizal species access different sources of soil nitrogen. *Oecologia*, 105(1), 53-63.

Miller, T. E. (1994). Direct and indirect species interactions in an early old-field plant community. *The American Naturalist*, *143*(6), 1007-1025.

Molau, U. (1997). Responses to natural climatic variation and experimental warming in two tundra plant species with contrasting life forms: Cassiope tetragona and Ranunculus nivalis. *Global Change Biology*, *3*, 97-107.

Monk, C. D. (1983). Relationship of life forms and diversity in old-field succession. *Bulletin of the Torrey Botanical Club*, 110, 449-453.

Morey, H. F. (1936). Age-size relationships of Hearts content, A virgin forest in Northwestern Pennsylvania. *Ecology*, *17*(2), 251-257.

Morrison, D. A., Cary, G. J., Pengelly, S. M., Ross, D. G., Mullins, B. J., Thomas, C. R., & Anderson, T. S. (1995). Effects of fire frequency on plant species composition of sandstone communities in the Sydney region: Inter-fire interval and time-since-fire. *Australian Journal of Ecology*, 20(2), 239-247.

Mota, G. S., Luz, G. R., Mota, N. M., Coutinho, E. S., Veloso, M. D. D. M., Fernandes, G. W., & Nunes, Y. R. F. (2018). Changes in species composition, vegetation structure, and life forms along an altitudinal gradient of rupestrian grasslands in south-eastern Brazil. *Flora*, 238, 32-42.

Mousaei Sanjerehei, M. (2014). Conversion of life zone to ecologically less valuable land cover in Iran. *Journal of Biodiversity and Environmental Sciences* (*JBES*), 5(1), 544-554.

Mousaei Sanjerehei, M. M. (2013). Annual gross primary production and absorption of solar energy by Artemisia sp. in arid and semiarid shrublands. *Applied Ecology and Environmental Research*, 11(3), 355-370.

Mousaei Sanjerehei, M. M., Jafari, M., Mataji, A., Meybodi, N. B., & Bihamta, M. R. (2011). Facilitative and competitive interactions between plant species (an example from Nodushan rangelands, Iran). *Flora-Morphology, Distribution, Functional Ecology of Plants*, 206(7), 631-637.

Mozaffarian, V. (1999). Flora of Khuzestan. Khuzestan Province, Animal Affairs and Natural Resources Research Center Publications, Iran.

Mozaffarian, V. (2000). Flora of Yazd. Yazd Publication.

Mueller-Dombois, D., & Ellenberg, H. (1974). Aims and methods of vegetation ecology. Wiley.

Muldavin, E.H., Moore, D.I., Collins, S.L., Wetherill, K.R., Lightfoot, D.C. (2008). Aboveground net primary production dynamics in a northern Chihuahuan Desert ecosystem. *Oecologia*, 155,123-132.

Nagy, Z., Pinter, K., Czobel, Sz., Balogh, J., Horvath, L., Foti, Sz., Barcza, Z., Weidinger, T., Csintalan, Zs., Dinh, N.Q., Grosz, B., Tuba, Z. (2007). The carbon budget of semi-arid grassland in a wet and a dry year in Hungary. *Agriculture, Ecosystems and Environment*, 121, 21-29.

- Najafian, L., Kavian, A., Ghorbani, J., & Tamartash, R. (2010). Effect of life form and vegetation cover on runoff and sediment yield in rangelands of Savadkooh region, Mazandaran. *Rangeland*, 4, 334-347
- Pate, J. S., & Dixon, K. W. (1981). Plants with fleshy underground storage organs. A Western Australian survey. *The biology of Australian plants*, 181-215.
- Pate, J. S., Dixon, K. W., & Orshan, G. (1984). Growth and life form characteristics of kwongan species. *Kwongan, plant life of the sandplain: biology of a south-west Australian shrubland ecosystem/editors JS Pate and JS Bear.*
- Pavon, N. P., Hernández-Trejo, H., & Rico Gray, V. (2000). Distribution of plant life forms along an altitudinal gradient in the semi-arid valley of Zapotitlán, Mexico. *Journal of Vegetation Science*, 11(1), 39-42.
- Pekin, B. K., Wittkuhn, R. S., Boer, M. M., Macfarlane, C., & Grierson, P. F. (2012). Response of plant species and life form diversity to variable fire histories and biomass in the jarrah forest of south-west Australia. *Austral Ecology*, *37*(3), 330-338.
- Penning De Vries, F.W.T. (1975). The cost of maintenance processes in plant cells. *Ann. Bot*, 39, 77-92.
- Peterson, D. W., & Reich, P. B. (2008). Fire frequency and tree canopy structure influence plant species diversity in a forest-grassland ecotone. *Plant Ecology*, 194(1), 5-16.
- Pettit, N. E., Froend, R. H., & Ladd, P. G. (1995). Grazing in remnant woodland vegetation: changes in species composition and life form groups. *Journal of Vegetation Science*, 6(1), 121-130.
- Piedade, M.T.F, Junk, W.J., Long, S.P. (1991). The productivity of the C4 grass *Echinochloa polystachya* on the Amazon floodplain. *Ecology*, 72, 1456-1463.
- Pielou, E.C., 1961. Segregation and symmetry in two-species populations as studied by nearest-neighbour relationships. *The Journal of Ecology*, 49, 255-269.
- Puerta-Pinero, C., Gómez, J. M., & Valladares, F. (2007). Irradiance and oak seedling survival and growth in a heterogeneous environment. *Forest Ecology and Management*, 242(2-3), 462-469.
- Pugnaire, F. I., Haase, P., Puigdefábregas, J., Cueto, M., Clark, S. C., & Incoll, L. D. (1996). Facilitation and succession under the canopy of a leguminous shrub, Retama sphaerocarpa, in a semi-arid environment in south-east Spain. *Oikos*, 76, 455-464.
- Pywell, R.F., Bullock, J.M., Roy, D.B., Warman, L.I.Z., Walker, K.J. & Rothery, P. (2003). Plant traits as predictors of performance in ecological restoration. *Journal of Applied Ecology*, 40, 65–77.

Rafiee, F., Jankju, M., & Ejtehadi, H. (2015). Investigation on tolerant, adapted and sensitive plant traits to chronological wildfires in a semiarid rangeland. *Iranian Journal of Range and Desert Research*, 22(1), 73-85

Ramirez, N. (1993). Producción y costo de frutos y semillas entre formas de vida. *Biotropica*, 25, 46-60.

Raunkiær, C. (1904). Om biologiske Typer, med Hensyn til Planternes Tilpasninger til at overleve ugunstige Aarstider. *Botanisk Tidsskrift*, 26, 14.

Raunkiaer, C. (1916). Om Bladstørrelsens Anvendelse i den biologiske Plantegeografi.

Raunkiaer, C. (1934). The life forms of plants and statistical plant geography; being the collected papers of C. Raunkiaer.

Raunkiaer, C. C. (1905). Types biologiques pour la géographie botanique.

Reynolds, J., Virginia, R., & Schlesinger, W. (1997). Defining functional types for models of desertification. *Plant functional types: their relevance to ecosystem properties and global change*, 1, 195.

Rhoades, D. F., & Cates, R. G. (1976). Toward a general theory of plant antiherbivore chemistry. In *Biochemical interaction between plants and insects* (pp. 168-213). Springer, Boston, MA.

Roxburgh, S.H., Barrett, D.J., Berry, S.L., Carter, J.O., Davies, I.D., Gifford, R.M., Kirschbaum, M.U.F., McBeth, B.P., Noble, I.R., Parton, W.G., Raupach, M.R. Roderick, M.L. (2004). A critical overview of model estimates of net primary productivity for the Australian continent. *Funct. Plant Biol*, 31, 1043-1059.

Roy J, & Saugier B. (2001). Terrestrial primary production: Definitions and milestones. In: Roy J, Saugier B, Mooney HA, eds. Terrestrial global productivity. San Diego, CA, USA: Academic Press, 1–6.

Ryan, M. G. (1991). A simple method for estimating gross carbon budgets for vegetation in forest ecosystems. *Tree physiology*, 9(1-2), 255-266.

Ryan, M. G., Lavigne, M. B., & Gower, S. T. (1997). Annual carbon cost of autotrophic respiration in boreal forest ecosystems in relation to species and climate. *Journal of Geophysical Research: Atmospheres*, 102, 28871-28883.

Saigusa, N.S., Yamamoto, S., Murayama, S., Kondo, H., Nishimura, N. (2002). Gross primary production and net ecosystem exchange of a cool-temperate deciduous forest estimated by the eddy covariance method. – *Agricultural and Forest Meteorology*, 112, 203-215.

Salarian, F., Ghorbani, J., & Safaeian, N. A. (2013). Vegetation changes under exclosure and livestock grazing in Chahar Bagh rangelands in Golestan province. *Iranian Journal of Range and Desert Research*, 20(1), 115-129.

Schimper, A. F. W. (1898). *Pflanzen-geographie auf physiologischer Grundlage*. G. Fischer.

- Schlapfer, F., & Schmid, B. (1999). Ecosystem effects of biodiversity: a classification of hypotheses and exploration of empirical results. *Ecological Applications*, 9(3), 893-912.
- Schmidt, M., König, K., & Müller, J. V. (2008). Modelling species richness and life form composition in Sahelian Burkina Faso with remote sensing data. *Journal of Arid Environments*, 72(8), 1506-1517.
- Schulz, E. (1994). The southern limit of the Mediterranean vegetation in the Sahara during the Holocene. *Historical Biology*, *9*(1-2), 137-156.
- Schwartz, H. J., Dolan, R., & Wilson, A. J. (1983). Camel production in Kenya and its constraints. *Tropical Animal Health and Production*, *15*(3), 169-178.
- Siahmansour, R., Arzani, H., Jafari, M., Javadi, S. A., & Tavili, A. (2015). An investigation on the effect of fire in short time on growth form and palatability classes in Zagheh rangelands. *Journal of Range and Watershed Management (Iranian Journal of Natural Resources)*, 68, 517-531.
- Siles, G., Rey, P.J., Alcántara, J.M. & Ramírez, J.M. (2008). Assessing the long-term contribution of nurse plants to restoration of Mediterranean forests through Markovian models. *Journal of Applied Ecology*, 45, 1790–1798.
- Smith, R. L. (1974). Ecology and field biology. Harper and Row, New York. *Ecology and field biology. 2nd ed. Harper and Row, New York.*
- Smith, W. G. (1913). Raunkiaer's" life-forms" and statistical methods. *Journal of Ecology*, 1(1), 16-26.
- Specht, R. L., & Morgan, D. G. (1981). The balance between the foliage projective covers of overstorey and understorey strata in Australian vegetation. *Australian Journal of Ecology*, 6(2), 193-202.
- Stiling, P. D. (1996). *Ecology: theories and applications* (Vol. 4). Upper Saddle River: Prentice Hall.
- Tewksbury, J.J., Lloyd, J.D., 2001. Positive interactions under nurse-plants: spatial scale, stress gradients and benefactor size. *Oecologia*, 127, 425–434.
- Tirado, R., & I. Pugnaire, F. (2005). Community structure and positive interactions in constraining environments. *Oikos*, *111*(3), 437-444.
- Tregubov, V., & Mobayen, S. (1970). Guide pour la carte de la vegetation naturelle de l Iran, University de Tehran.
- Tremmel, D. C., & Bazzaz, F. A. (1993). How neighbor canopy architecture affects target plant performance. *Ecology*, 74(7), 2114-2124.
- Van de Waal, D. B., Verspagen, J. M., Lürling, M., Van Donk, E., Visser, P. M., & Huisman, J. (2009). The ecological stoichiometry of toxins produced by harmful cyanobacteria: an experimental test of the carbon-nutrient balance hypothesis. *Ecology letters*, *12*(12), 1326-1335.
- Van Rees, H., & Hutson, G. D. (1983). The behaviour of free-ranging cattle on an alpine range in Australia. *Journal of Range management*, 36, 740-743.

Von Humboldt, A. (1807). Essai sur la géographie des plantes: accompagne d'un tableau physique des régions équinoxiales, fondé sur des mesures exécutées, depuis le dixième degré la latitude boréale jusqu'au dixième degré de latitude australe, pendant les années 1799, 1800, 1801, 1802 et 1803 par Al. de Humboldt et A. Bonpland (Vol. 1). Schoell.

Walter, H. (1979) Vegetation of the earth, 2nd edn. Springer, Berlin Heidelberg New York

Warming, E. (1884). Om skudbygning, overvintring og foryngelse.

Warming, E. (1895). *Plantesamfund: grundtræk af den økologiske plantegeografi*. Philipsen.

Warming, E., (1909). *Oecology of plants*. Oxford University Press.; London.

Whittaker, R. H., & Likens, G. E. (1975). The biosphere and man. In *Primary productivity of the biosphere* (pp. 305-328). Springer, Berlin, Heidelberg.

Williams, K., Caldwell, M. M., & Richards, J. H. (1993). The influence of shade and clouds on soil water potential: the buffered behavior of hydraulic lift. *Plant and Soil*, 157(1), 83-95.

Yazaki, Y., Mariko, S., Koizumi, H. (2004). Carbon dynamics and budget in a Miscanthus sinensis grassland in Japan. *Ecological Research*, 19, 511-520.

Zare, M., Fayyaz, M., Goudarzi, G., & Farahani, A. F. (2012). Preference value comparison in range species Anjedan-Arak. *Iranian Journal of Range and Desert Research*, 19(1), 178-190.

Zhu, X. G., Long, S. P., & Ort, D. R. (2008). What is the maximum efficiency with which photosynthesis can convert solar energy into biomass?. *Current opinion in biotechnology*, 19(2), 153-159.