Application No.: 10/733,608

AMENDMENTS TO THE CLAIMS:

This listing of claims will replace all prior versions and listings of claims in the application.

LISTING OF CLAIMS:

1. (Currently Amended) A gamut mappingluminance dynamic range system, comprising:

an image processing module for transforming an input image into a luminance component L_{in} and chrominance components, C_1 and C_2 ;

a spatial low pass filter, responsive to L_{in} for outputting a filtered luminance component L_f , wherein L_f is a function only of L_{in} ; and

a luminance compression module responsive to L_f and L_{in} for <u>performing luminance compression on the input component L_{in} outputting to output a compressed luminance signal L_{out} that is within an achievable luminance range of an output device; wherein the luminance compression module combines two compression functions $L_{comp1}(L_{in})$ and $L_{comp2}(L_{in})$ via a blending function $\alpha(L_f)$:—and wherein $L_{comp1}(L_{in})$, $L_{comp2}(L_{in})$ and $\alpha(L_f)$ are all <u>1-dimensional functions only of L_{in} ; and wherein $L_{comp1}(L_{in})$ and $L_{comp2}(L_{in})$ are both designed to map the luminance dynamic range of an input image to the more limited dynamic range of an output device.</u></u>

- 2. (Canceled).
- 3. (Previously Amended) The system of claim 1, wherein L_{out} is computed according to the relationship $L_{out} = \alpha(L_f) \text{ Lcomp } 1(L_{in}) + (1 \alpha(L_f)) \text{ Lcomp } 2(L_{in})$.
- 4. (Previously Amended) The system of claim 1, wherein $\alpha(L_f)$ is a piecewise linear function, determined by two breakpoints, B_1 and B_2 .
 - 5. (Previously Amended) The system of Claim 1, wherein function L_{comp1}

Application No.: 10/733,608

is optimized for preserving overall image contrast.

- 6. (Previously Amended) The system of Claim 1, wherein function L_{comp2} is optimized for preserving shadow detail.
 - 7. (Original) The system of claim 4, wherein:
 - $\alpha(L_f) = 0$ for values of L_f between 0 and B_1 ;
 - $\alpha(L_f)$ increases linearly from 0 to 1 for values of L_f from B_1 to B_2 ; and
 - $\alpha(L_f) = 1$ for values of L_f between B_2 and L_{max} ,

where L_{max} is a maximum luminance achievable by the output device.

- 8. (Canceled).
- 9. (Original) The system of claim 1, wherein the low pass filter comprises a constant weight filter.
- 10. (Original) The system of claim 1, wherein the image is down-sampled prior to filtering and upsampled and interpolated after filtering.
- 11. (Original) The system of claim 1, further comprising a color correction module for transforming L_{out} , C_1 and C_2 to CMYK for printing.
- 12. (Currently Amended) A method for gamut luminance dynamic range mapping, comprising:

transforming an input image into a luminance component L_{in} and chrominance components, C_1 and C_2 ;

spatially low pass filtering L_{in} into a filtered luminance component L_f , wherein L_f is a function only of L_{in} ; and

processing L_f and L_{in} through a luminance compression module to obtain a

compressed luminance signal L_{out} that is within an achievable luminance range of an output device; wherein the processing step comprises combining two compression functions $L_{comp1}(L_{in})$ and $L_{comp2}(L_{in})$ via a blending function $\alpha(L_f)$;—and wherein $L_{comp1}(L_{in})$, $L_{comp2}(L_{in})$ and $\alpha(L_f)$ are all 1-dimensional functions only of L_{in} ; and wherein $L_{comp1}(L_{in})$ and $L_{comp2}(L_{in})$ are both designed to map the luminance dynamic range of an input image to the more limited dynamic range of an output device.

13. (Canceled).

- 14. (Previously Amended) The method of claim 12, wherein $L_{comp1}(L_{in})$ and $L_{comp2}(L_{in})$ are combined according to the relationship $L_{out} = \alpha(L_f)$ $L_{comp1}(L_{in}) + (1 \alpha(L_f))$ $L_{comp2}(L_{in})$.
- 15. (Previously Amended) The method of claim 12, wherein $\alpha(L_f)$ is a piecewise linear function, determined by two breakpoints, B_1 and B_2 .
- 16. (Previously Amended) The method of Claim 12, wherein function L_{comp1} is optimized for preserving overall image contrast.
- 17. (Previously Amended) The method of Claim 12, wherein function L_{comp2} is optimized for preserving shadow detail.
 - 18. (Original) The method of claim 15, wherein:
 - $\alpha(L_f) = 0$ for values of L_f between 0 and B_1 ;
 - $\alpha(L_f)$ increases linearly from 0 to 1 for values of L_f from B_1 to B_2 ; and
 - $\alpha(L_f) = 1$ for values of L_f between B_2 and L_{max} ,
 - where L_{max} is a maximum luminance achievable by the output device.

Application No.: 10/733,608

- 19. (Canceled).
- 20. (Original) The method of claim 12, wherein the spatial low pass filtering comprises applying a constant weight filter.
- 21. (Original) The method of claim 12, further comprising down-sampling the input image prior to filtering and upsampling and interpolating the input image after filtering.
- 22. (Original) The method of claim 12, further comprising applying a color correction for transforming L_{out} , C_1 and C_2 to CMYK for printing.