ЛАБОРАТОРНАТ РОБОТА №11

Рекурсія

ТЕОРЕТИЧНІ ВІДОМОСТІ

Рекурсія відноситься до одного з фундаментальних понять у математичних та комп'ютерних науках. В мовах програмування рекурсивною програмою називають програму, яка звертається сама до себе (сама себе викликає). Рекурсивна програма не може викликати себе до нескінченності, оскільки у цьому випадку вона ніколи не завершиться. Другою важливою особливістю рекурсивної програми є умова завершення,що дозволяє програмі припинити себе викликати.

Принципові властивості рекурсивного визначення:

- 1. визначення об'єкту самого через себе, але з іншими параметрами;
- 2. завершеність ланцюжка визначень на деякому значенні аргументів.

Необхідність використання рекурсії виникає при реалізації динамічних структур даних, таких як дерева, стеки, черги. Для реалізації рекурсивних алгоритмів у С++ передбачена можливість створення рекурсивних функцій. Рекурсивна функція являє собою функцію, у тілі якої здійснюється виклик цієї ж функції.

Існує спеціальний тип рекурсії, називаний «хвостовою рекурсією». Інтерпретатори і компілятори функціональних мов програмування, що підтримують оптимізацію коду (вихідного і/чи що виконується), виконують хвостову рекурсію в обмеженому обсязі пам'яті за допомогою ітерацій.

Варто уникати надлишкової глибини рекурсії, тому що це може викликати переповнення стека викликів.

Приклади

1. Використання рекурсивної функції для обчислення факторіала.

Нехай потрібно скласти програму для обчислення факторіала будь-якого додатного числа.

```
#include <iostream>
using namespace std;
int fact(int n);
void main()
```

```
{
    int m;
    cout << "\nВВедіть ціле число:";
    cin >> m;
    cout << "\n Факторіал числа " << m << " дорівнює " <<
    fact (m);
}
    int fact(int n)
{
    int a;
    if (n<0) return 0;
    if (n==0) return 1;
    a =n * fact(n-1);
    return a;
}
```

Для від'ємного аргументу факторіала не існує, тому функція в цьому випадку повертає нульове значення. Так як факторіал 0 дорівнює 1 за означенням, то в тілі функції передбачений і цей варіант. У випадку коли аргумент функції fact() відмінний від 0 та 1, то викликаємо функцію fact() із зменшеним на одиницю значенням параметра і результат множиться на значення поточного параметра. Таким чином, у результаті вбудованих викликів функцій повертається наступний результат:

```
n * (n-1) * (n-2) * ... * 2 * 1 * 1
```

Остання одиниця при формуванні результату належить виклику fact(0).

1. Задача «Ханойські вежі»

Ні один розгляд поняття рекурсії не був би повним без розгляду старовинної задачі про Ханойські вежі.

Принц Шак'я-Муні (623 - 544 р.р. до Р.Хр.), якого ще називали Буддою, що означає "просвітлений", під час однієї зі своїх подорожей заснував у Ханої (В'єтнам) монастир. У головному храмі монастиря стоїть три стержня (дерев'яні вісі). На одну з них Будда надягнув 64 дерев'яні диски, усі різного діаметру, причому найширший поклав униз, а решту впорядкував за зменшенням розміру:

Слід переставити піраміду з вісі А на вісь С у тому ж порядку, користуючись віссю В, як допоміжною, та додержуючись таких правил:

а. за один хід переставляти лише один диск з довільної осі на довільну (а не кілька);

b. забороняється класти більший диск на менший, тобто впорядкованість на кожній осі має зберігатися.

Ченці монастиря перекладають, не зупиняючись ні на мить, щосекунди по одному диску і досі. Коли піраміду буде складено на осі C, наступить кінець світу.

Рекурсивний підхід до програмування можна застосувати, якщо розуміти вежу з n дисків, як вежу з (n-1) диску, що стоїть ще на одному.

Як переставити вежу з двох дисків з А на С?

- 1. перекласти диск з А на В;
- 2. перекласти диск з А на С;
- 3. перекласти диск з В на С;

Аналогічно програмується повний алгоритм.

Щоб переставити вежу з п дисків (позначимо її В(п)) з А на С, слід:

- 1. B(n-1) переставити з A на B;
- 2. В(1) перекласти з А на С;
- 3. В(n-1) переставити з В на С;

2. Числа Фібоначчі

Перше і друге числа Фібоначчі рівні 1

Для n>2, n-i число Фібоначчі дорівнює сумі (n-1)-го і (n-2)-го чисел Фібоначчі.

ЗАВДАННЯ 11

- 1. Напишіть рекурсивну функцію знаходження суми цифр натурального числа.
 - 2. Написати рекурсивну функцію обчислення x^n , де n>0.
- 3. Написати рекурсивну функцію обчислення чисел Фібоначі, що визначаються за формулою $fib_{n+1}=fib_n+fib_{n-1}$, $fib_1=1$, $fib_0=0$.
- 4. Описати рекурсивну функцію pow(x,n), яка обчислює величину x^n , згідно з формулою

$$x^{n}=1$$
, при $n=0$;
 $x^{n}=1/x^{n}$, при $n<0$;
 $x^{n}=x^{n}x^{n-1}$, при $n>0$.

5. Обчислити декілька значень функції Аккермана для невід'ємних чисел m та n:

$$A(n,m) = \begin{cases} m+1, & n=0\\ A(n-1,1), & n\neq 0, m=0\\ A(n-1,A(n,m-1)), & n>0, m\geq 0 \end{cases}$$

Написати функцію C(m,n) для обчислення біноміальних коефіцієнтів C_n^n використовуючи наступну формулу: $C_n^0 = C_n^n = 1$, $C_n^m = C_{n-1}^m + C_{n-1}^{m-1}$, $npu\ 0 < m < n$.

$$C_n^0 = C_n^n = 1$$
, $C_n^{m} = C_{n-1}^{m} + C_{n-1}^{m-1}$, $npu\ 0 \le m \le n$.

Обчислити значення виразу, використовуючи рекурсію:

$$\sqrt{6 + 2\sqrt{7 + 3\sqrt{8 + 4\sqrt{9 + ...}}}}$$

- Обчислити значення $x = \sqrt{a}$ використовуючи рекурентну формулу $x_n = \frac{1}{2}(x_{n-1} + a/x_{n-1})$, за початкове наближення взяти значення $x_0 = 0.5(1+a)$.
 - Обчислити N!, використовуючи рекурсивний алгоритм.
 - Обчислити значення функції $y(n) = \sqrt{1 + \sqrt{2 + ... + \sqrt{n}}}$ 10.
 - Обчислити значення функції 11.

$$y(n) = \frac{1}{n + \frac{1}{(n-1) + \frac{1}{(n-2) + \frac{1}{\dots}}}}$$

$$\dots + \frac{1}{1 + \frac{1}{2}}$$

12. Обчислити значення функції

$$y = \frac{2}{1} \cdot \frac{2}{3} \cdot \frac{4}{3} \cdot \frac{4}{5} \cdot \frac{6}{5} \cdot \frac{6}{7} \cdot \dots$$

13. Обчислити $y = x^N$ використовуючи наступний алгоритм: $y = (x^{N/2})^2$, якщо N парне; $y = x \cdot y^{N-1}$, якщо N непарне.

$$S = \sum_{i=1}^{n} \left(i+1\right)^{2}/i$$

- Обчислити $S = \sum_{i=1}^{n} (i+1)^2/i$, використовуючи рекурсію. 14.
- 15. Напишіть рекурсивну функцію знаходження цифр суми натурального числа.
 - Написати рекурсивну функцію обчислення x^n , де n>0. 16.
- Написати рекурсивну функцію обчислення чисел Фібоначі, що 17. визначаються за ормулою $fib_{n+1}=fib_n+fib_{n-1}$ i $fib_1=1$, $fib_0=0$.
- Описати рекурсивну функцію pow(x,n), яка обчислює величину x^n , згідно з формулою

$$x^n=1$$
, при $n=0$;

$$x^{n}=1/x^{n}$$
, при $n<0$:

$$x^{n}=1/x^{n}$$
, при n<0;
 $x^{n}=x*x^{n-1}$, при n>0.

- Напишіть рекурсивну функцію знаходження добутку цифр натурального числа.
- Напишіть рекурсивну функцію знаходження кількості 20. цифр натурального числа.