Test

- Exercițiul 1. a) $A \setminus (B \cup C) = (A \setminus B) \cap (A \setminus C)$ $\Leftrightarrow \chi_A(1 - (\chi_B + \chi_C - \chi_B \chi_C)) = (\chi_A(1 - \chi_B))(\chi_A(1 - \chi_C))$ $\Leftrightarrow \chi_A - \chi_A \chi_B - \chi_A \chi_C + \chi_A \chi_B \chi_C = (\chi_A - \chi_A \chi_B)(\chi_A - \chi_A \chi_C)$ $\Leftrightarrow \chi_A - \chi_A \chi_B - \chi_A \chi_C + \chi_A \chi_B \chi_C = \chi_A^2 - \chi_A^2 \chi_C - \chi_A^2 \chi_B + \chi_A^2 \chi_B \chi_C$ $\Leftrightarrow \chi_A - \chi_A \chi_B - \chi_A \chi_C + \chi_A \chi_B \chi_C = \chi_A - \chi_A \chi_C - \chi_A \chi_B + \chi_A \chi_B \chi_C$.
- Exercițiul 1. b) $A \setminus (B \cap C) = (A \setminus B) \cup (A \setminus C)$ $\Leftrightarrow \chi_A(1 - \chi_B \chi_C)) = (\chi_A(1 - \chi_B)) + (\chi_A(1 - \chi_C)) - (\chi_A(1 - \chi_B))(\chi_A(1 - \chi_C))$ $\Leftrightarrow \chi_A - \chi_A \chi_B \chi_C = \chi_A - \chi_A \chi_B + \chi_A - \chi_A \chi_C - (\chi_A - \chi_A \chi_B)(\chi_A - \chi_A \chi_C)$ $\Leftrightarrow \chi_A - \chi_A \chi_B \chi_C = \chi_A - \chi_A \chi_B + \chi_A - \chi_A \chi_C - (\chi_A^2 - \chi_A^2 \chi_C - \chi_A^2 \chi_B + \chi_A^2 \chi_B \chi_C)$ $\Leftrightarrow \chi_A - \chi_A \chi_B \chi_C = \chi_A - \chi_A \chi_B - \chi_A \chi_C + \chi_A \chi_C + \chi_A \chi_B - \chi_A \chi_B \chi_C.$
- Exercițiul 2. $((A \Delta D) \cup D \cup B) \cap C = B \Leftrightarrow (D \cup B) \cap C = B$. Dar, $D = A \cup B \cup C$, așa că $(A \cup B \cup C) \cap C = B \Leftrightarrow C = B$. Înlocuindu-l pe C cu B în $((A \Delta B) \cup C) \cap B = D$, obținem $((A \Delta B) \cup B) \cap B = D \Leftrightarrow (A \cup B) \cap B = D \Leftrightarrow B = D$. Înlocuindu-l pe D cu B în ultima relație dată, $((A \Delta D) \cup B) \cap A = D$, obținem $((A \Delta B) \cup B) \cap A = B \Leftrightarrow (A \cup B) \cap A = B \Leftrightarrow A = B$. Așadar, A = B = C = D.

Am folosit de mai multe ori faptul că $(X \Delta Y) \cup Y = X \cup Y$. Această relație este echivalentă cu $(X \setminus Y) \cup (Y \setminus X) \cup Y = (X \setminus Y) \cup Y$, care este adevărată deoarece $(Y \setminus X) \cup Y = Y$.

• Exercițiul 3. Facem următoarele notații: $Z = A \cap B \cap X$, $M = (A \cap X) \setminus Z$, $N = (B \cap X) \setminus Z$, $P = (A \cap B) \setminus Z$, $A' = A \setminus (B \cup X)$, $B' = B \setminus (A \cup X)$ și $X' = X \setminus (A \cup B)$. Cum cele șapte mulțimi sunt disjuncte, putem rescrie $A \cap X = B \cap X = A \cap B$ drept $M \cup Z = N \cup Z = P \cup Z$, de unde $M = N = P = \emptyset$. De asemenea, $A \cup B \cup X = A \cup B$ devine $A' \cup B' \cup X' \cup Z = A' \cup B' \cup Z$, de unde $X' = \emptyset$. Cum $X = X' \cup M \cup N \cup Z = Z$, soluția este X = Z, adică $X = A \cap B$.

• Exercițiul 4. a) Din tabelul de mai jos, se observă că $\chi_{A \Delta B} = (\chi_A + \chi_B) \mod 2$.

χ_A	χ_B	$\chi_{A \Delta B}$	
0	0	0	
0	1	1	
1	0	1	
1	1	0	

Prin urmare, $(A \Delta B) \Delta C = A \Delta (B \Delta C)$

 $\Leftrightarrow ((\chi_A + \chi_B) \bmod 2 + \chi_C) \bmod 2 = (\chi_A + (\chi_B + \chi_C) \bmod 2) \bmod 2$

 $\Leftrightarrow (\chi_A + \chi_B + \chi_C) \operatorname{mod} 2 = (\chi_A + \chi_B + \chi_C) \operatorname{mod} 2.$

Așadar, diferența simetrică este asociativă.

• Exercițiul 4. b) La punctul anterior am văzut că $\chi_{A \Delta B \Delta C} = (\chi_A + \chi_B + \chi_C) \mod 2$. Generalizând, obținem că $\chi_{A_1 \Delta A_2 \Delta \cdots \Delta A_n} = (\chi_{A_1} + \chi_{A_2} + \cdots + \chi_{A_n}) \mod 2$. Deci, $x \notin A_1 \Delta A_2 \Delta \cdots \Delta A_n$ dacă și numai dacă suma $\chi_{A_1} + \chi_{A_2} + \cdots + \chi_{A_n}$ este pară, adică dacă x se află într-un număr par de mulțimi A_i .

- Exercițiul 5. Cum polinomul f este de gradul al doilea, acesta are forma $f = aX^2 + bX + c$.
 - 1) $f(1) = 4 \Leftrightarrow a + b + c = 4$
 - 2) $f(-1) = 12 \Leftrightarrow a b + c = 12$
 - 3) $f(2) = 7 \Leftrightarrow 4a + 2b + c = 7$

Scăzând 2) din 3) obținem 3a+3b=-5, iar scăzând 1) din 3) obținem 3a+b=3. De aici, b=-4 și $a=\frac{7}{3}$. Întorcându-ne în 1), aflăm că $c=\frac{17}{3}$. Deci, $f=\frac{7}{3}X^2-4X+\frac{17}{3}$. În continuare, folosim Schema lui Horner pentru a afla restul împărțirii lui f la X+3:

	7/3	-4	17/3
X = -3	7/3	-11	116/3

Răspunsul este $\frac{116}{3}$.

• Exercițiul 6. a) Dezvoltăm cele două binoame folosind Binomul lui Newton:

$$f = (X+i)^{2020} + (X-i)^{2020}$$

$$= \sum_{k=0}^{2020} C_{2020}^k X^{2020-k} i^k + \sum_{k=0}^{2020} C_{2020}^k X^{2020-k} (-i)^k$$

$$= \sum_{k=0}^{2020} C_{2020}^k X^{2020-k} (i^k + (-i)^k)$$

Deci, coeficientul lui X^{2020-k} din dezvoltarea lui f este $C_{2020}^k(i^k+(-i)^k)$. Cum C_{2020}^k este real, rămâne să-l analizăm pe $i^k+(-i)^k$:

$$i^{k} + (-i)^{k} = \begin{cases} +2 & \text{dacă } k \equiv 0 \pmod{4} \\ 0 & \text{dacă } k \equiv 1 \pmod{4} \\ -2 & \text{dacă } k \equiv 2 \pmod{4} \\ 0 & \text{dacă } k \equiv 3 \pmod{4} \end{cases}$$

Așadar, coeficienții lui f sunt reali.

• Exercițiul 6. b) Conform Teoremei Împărțirii cu Rest, restul împărțirii lui $f = (X+i)^{2020} + (X-i)^{2020}$ la $g = (X^2-1)^2$ are forma $r = aX^3 + bX^2 + cX + d$. Notăm câtul cu q. Avem:

$$\begin{array}{l} x = +1 \Rightarrow f(+1) = g(+1)q(+1) + r(+1) \Rightarrow (+1+i)^{2020} + (+1-i)^{2020} = +a+b+c+d \\ x = -1 \Rightarrow f(-1) = g(-1)q(-1) + r(-1) \Rightarrow (-1+i)^{2020} + (-1-i)^{2020} = -a+b-c+d \\ \xrightarrow{(-)} c = -a \end{array}$$

$$f'(x) = g'(x)q(x) + g(x)q'(x) + r'(x)$$

$$f'(x) = 4x(x^2 - 1)q(x) + g(x)q'(x) + r'(x)$$

$$f'(x) = 2020(x + i)^{2019} + 2020(x - i)^{2019}$$

$$r'(x) = 3ax^2 + 2bx + c$$

$$x = +1 \Rightarrow 2020(+1 + i)^{2019} + 2020(+1 - i)^{2019} = 3a + 2b + c$$

$$x = -1 \Rightarrow 2020(-1 + i)^{2019} + 2020(-1 - i)^{2019} = 3a - 2b + c$$

$$\xrightarrow{(+)} c = -3a$$

$$\Rightarrow a = c = 0$$

$$(1 + i)^{2020} + (1 - i)^{2020} = b + d$$

$$2020(1 + i)^{2019} + 2020(1 - i)^{2019} = 2b$$

$$\Rightarrow b = 1010(1 + i)^{2019} + 1010(1 - i)^{2019}$$

$$\Rightarrow d = (1 + i)^{2019}(i - 1009) - (1 - i)^{2019}(i + 1009)$$

• Exercițiul 7. a) Notând termenul general al seriei date cu u_n , obținem:

$$\begin{split} \ln u_n &= \ln \prod_{k=1}^n \left(\frac{km-3}{km-1}\right)^{\alpha} \\ &= \alpha \sum_{k=1}^n \ln \frac{km-3}{km-1} \\ &= \alpha \sum_{k=1}^n \left(\ln \left(1 - \frac{2}{km-1}\right) + \frac{2}{km-1}\right) - \underbrace{\sum_{k=1}^n \frac{2\alpha}{km-1}}_{\sim \sum_{k=1}^n \frac{1}{k}} \left(\mathbf{D}\right) \end{split}$$

. . .

• Exercitiul 8. a)
$$S = \sum_{n=2}^{\infty} \frac{x^n}{\ln \ln n} = \sum_{n=2}^{\infty} \frac{1}{\underline{\ln \ln n}} x^n$$

$$\lim_{n\to\infty}\left|\frac{a_{n+1}}{a_n}\right|=\lim_{n\to\infty}\frac{\ln\ln n}{\ln\ln(n+1)}=\lim_{n\to\infty}\frac{(n+1)\ln(n+1)}{n\ln n}=\lim_{n\to\infty}\frac{n+1}{n}\cdot\frac{n}{n+1}=1\Rightarrow R=1$$

S (AC) pentru $x \in (-1, 1)$.

S (D) pentru $x \in (-\infty, -1) \cup (1, \infty)$.

1)
$$x = 1 \Rightarrow S = \sum_{n=2}^{\infty} \frac{1}{\ln \ln n}$$
 (D), pentru că $\frac{1}{\ln \ln n} > \frac{1}{n}$, iar $\sum_{n=2}^{\infty} \frac{1}{n}$ (D).

2)
$$x = -1 \Rightarrow S = \sum_{n=2}^{\infty} \frac{(-1)^n}{\ln \ln n}$$
 (C), pentru că $\frac{1}{\ln \ln n}$ este descrescător și tinde la 0.

Deci, S este convergentă pentru $x \in [-1, 1)$.

• Exercitiul 8. b)
$$S = \sum_{n=1}^{\infty} \frac{3^{n-10} x^n}{\sqrt[n]{n!}} = \frac{1}{3^{10}} \sum_{n=1}^{\infty} \underbrace{\frac{1}{\sqrt[n]{n!}}}_{q_n} \underbrace{(3x)^n}_{z}$$

$$\lim_{n \to \infty} \sqrt[n]{|a_n|} = \lim_{n \to \infty} 1/n!^{1/n^2} = \lim_{n \to \infty} 1/e^{\ln n!^{1/n^2}} = \lim_{n \to \infty} 1/e^{n^{-2} \ln n!} \stackrel{(*)}{=} 1/e^0 = 1 \Rightarrow R = 1$$

(*)
$$\lim_{n\to\infty} \frac{\ln n!}{n^2} = 0$$
, deoarece $\frac{\ln n!}{n^2} < \frac{\ln n^n}{n^2}$, iar $\lim_{n\to\infty} \frac{\ln n^n}{n^2} = \lim_{n\to\infty} \frac{\ln n}{n} = 0$.

S (AC) pentru $z \in (-1,1)$.

S (D) pentru $z \in (-\infty, -1) \cup (1, \infty)$.

1)
$$z = 1 \Rightarrow S = \frac{1}{3^{10}} \sum_{n=1}^{\infty} \frac{1}{\sqrt[n]{n!}}$$
 (D), pentru că $\frac{1}{\sqrt[n]{n!}} > \frac{1}{\sqrt[n]{n^n}} = \frac{1}{n}$, iar $\sum_{n=1}^{\infty} \frac{1}{n}$ (D).

2)
$$z = -1 \Rightarrow S = \frac{1}{3^{10}} \sum_{n=1}^{\infty} \frac{(-1)^n}{\sqrt[n]{n!}}$$
 (C), pentru că $\sqrt[n]{n!}$ este descrescător și tinde la 0.

Deci, S este convergentă pentru $x \in [-\frac{1}{3}, \frac{1}{3})$.

• Exercițiul 8. c)
$$S = \sum_{n=1}^{\infty} \sin\left(\pi\sqrt{n^2+1}\right) x^n$$

$$\lim_{n\to\infty}\sin\left(\pi\sqrt{n^2+1}\right)=\lim_{n\to\infty}\sin\pi n=0$$

. . .

• Exercitive 8. d)
$$S = \sum_{n=1}^{\infty} \left(\cos \frac{1}{n}\right)^{n^3} x^n$$

$$\lim_{n \to \infty} \sqrt[n]{|a_n|} = \lim_{n \to \infty} \left(\cos\frac{1}{n}\right)^{n^2} = \lim_{n \to \infty} \left(1 + \cos\frac{1}{n} - 1\right)^{\frac{1}{\cos(1/n) - 1}(\cos(1/n) - 1)n^2} = \lim_{n \to \infty} e^{\frac{\sin(1/n)}{-2(1/n)}} = e^{-1/2} \Rightarrow R = \sqrt{e}$$

1)
$$x = \sqrt{e} \Rightarrow S = \sum_{n=1}^{\infty} \left(\cos\frac{1}{n}\right)^{n^3} \sqrt{e}^n$$
 (D), pentru că $\lim_{n \to \infty} \left(\cos\frac{1}{n}\right)^{n^3} \sqrt{e}^n = \lim_{n \to \infty} \left(\frac{\sqrt{e}}{\sqrt{e}}\right)^n \left(\cos\frac{1}{n}\right)^n = 1$.

2)
$$x = -\sqrt{e} \Rightarrow S = \sum_{n=1}^{\infty} (-1)^n \left(\cos\frac{1}{n}\right)^{n^3} \sqrt{e}^n$$
 (D), pentru că $\lim_{n \to \infty} \left| (-1)^n \left(\cos\frac{1}{n}\right)^{n^3} \sqrt{e}^n \right| = 1$

Deci, S este convergentă pentru $x \in (-\sqrt{e}, \sqrt{e})$

• Exercițiul 9. Alegem șirul $(u_n)_{n>1}$, unde $u_n=\frac{1}{n\ln^2 n}$. Seria $\sum_{n=2}^{\infty}u_n$ converge, pentru că $\int_2^{\infty}\frac{1}{x\ln^2 x}\,dx=\int_{\ln 2}^{\infty}\frac{1}{t^2}\,dt=\frac{2}{3\ln 2}\neq\infty.$ Urmează să arătăm că $\sum_{n=2}^{\infty}u_n^{\alpha}$ (D). Pentru $\alpha\in(0,1)$, $\exists\,\epsilon>0:\frac{1}{(n\ln^2 n)^{\alpha}}>\frac{1}{(n\ln^2 n)^{1-\epsilon}}.$ Dar $O((n\ln^2 n)^{1-\epsilon})\subsetneq O(n)$, așa că $\frac{1}{(n\ln^2 n)^{\alpha}}>\frac{1}{n}.$ Cum seria armonică este divergentă, rezultă că și $\sum_{n=2}^{\infty}u_n^{\alpha}$ diverge.

Șirul căutat trebuie să înceapă de la 1, așa că alegem

$$u_n = \begin{cases} \frac{1}{n \ln^2 n} & \operatorname{dacă} n > 1\\ 0 & \operatorname{dacă} n = 1 \end{cases}$$

Am folosit faptul că $O((n \ln^2 n)^{1-\epsilon}) \subsetneq O(n)$. Acesta este adevărat pentru că $O(n^{1-\epsilon}) \subsetneq O(n)$ și $O(\ln^2 n) \subsetneq O(n^{1-\epsilon})$. Totuși, pentru o demonstrație mai riguroasă, putem calcula limita raportului dintre $(n \ln^2 n)^{1-\epsilon}$ și n:

$$\lim_{n \to \infty} \frac{(n \ln^2 n)^{1-\epsilon}}{n} = \lim_{n \to \infty} \frac{\ln^2 n}{n^{\epsilon}} \cdot \frac{1}{\ln^{2\epsilon} n}$$

$$= \lim_{n \to \infty} \frac{2 \ln n}{\epsilon n^{\epsilon}} \cdot 0$$

$$= \lim_{n \to \infty} \frac{2}{\epsilon^2 n^{\epsilon}} \cdot 0$$

$$= 0$$

• Exercitiul 10. Avem trei cazuri:

1)
$$u_n = \frac{1}{O(n)}$$
. În acest caz, $\sum_{n=1}^{\infty} u_n$ (D), pentru că $u_n \ge \frac{1}{n}$ și $\sum_{n=1}^{\infty} \frac{1}{n}$ (D).

2)
$$\exists \epsilon > 1 : u_n = \frac{1}{\Omega(n^{\epsilon})}$$
 și $\frac{1}{O(n^{\epsilon+1})}$. În acest caz, $\frac{1}{n^{\epsilon+1}} \le u_n \le \frac{1}{n^{\epsilon}} \Leftrightarrow \frac{1}{n^{\epsilon}} \le nu_n \le \frac{1}{n^{\epsilon-1}}$. Cum $\epsilon - 1 > 0$, avem că $\lim_{n \to \infty} \frac{1}{n^{\epsilon}} = \lim_{n \to \infty} \frac{1}{n^{\epsilon-1}} = 0$, de unde și $\lim_{n \to \infty} nu_n = 0$.

3)
$$u_n = \frac{1}{\Omega(n^{\epsilon})}, \forall \epsilon > 1$$
. În acest caz, cum numitorul are ordinul de creștere mai mare decât orice funcție polinomială, este clar că $\lim_{n \to \infty} n u_n = \lim_{n \to \infty} \frac{n}{\Omega(n^{\epsilon})} = 0$.

4

• Exercițiul 11. Pentru a testa convergența seriei $\sum_{n=1}^{\infty} \frac{\sin \sqrt{n}}{n}$, vom verifica dacă integrala $I = \int_{1}^{\infty} \frac{\sin \sqrt{x}}{x} dx$ este finită. Făcând schimbarea de variabilă $t = \sqrt{x}$, obținem că $I = 2 \int_{1}^{\infty} \frac{\sin t}{t} dt$. Integrala din urmă este finită tocmai pentru că seria $\sum_{n=1}^{\infty} \frac{\sin x}{x}$ este convergentă, iar de aici rezultă că și $I < \infty$, de unde $\sum_{n=1}^{\infty} \frac{\sin \sqrt{n}}{n}$ converge.

Acum, rămâne de arătat că seria $\sum_{n=1}^{\infty} \frac{\sin x}{x}$ este convergentă. Aplicăm Criteriul lui Dirichlet.

Alegem $y_n = \frac{1}{n}$ (acest șir este descrescător și tinde la 0) și

$$S_n = \sum_{k=1}^n \sin x = \frac{1}{2\sin 1} \sum_{k=1}^n 2\sin k \sin 1$$

$$= \frac{1}{2\sin 1} \sum_{k=1}^n (\cos(k-1) - \cos(k+1))$$

$$= \frac{1}{2\sin 1} (\cos 0 + \cos 1 - \cos n - \cos(n+1)).$$

Deci, șirul $(S_n)_{n\geq 1}$ este mărginit, de unde rezultă că seria $\sum_{n=1}^{\infty} \frac{\sin x}{x}$ este convergentă.

- Exercițiul 12. Poate ajută faptul că, în dezvoltarea lui x_n , coeficienții fracțiilor $\frac{1}{2016^k}$ sunt cei din lista asta.
- Exercițiul 13. Am rezolvat pentru cazul în care $f(x) = x^{\alpha}$, unde $\alpha > 0$. În acest caz, $f^{-1}(x) = x^{1/\alpha}$. Seria $\sum_{n=1}^{\infty} \frac{1}{f(x)} = \sum_{n=1}^{\infty} \frac{1}{x^{\alpha}}$ converge dacă și numai dacă $\alpha > 1$. Dar, seria $\sum_{n=1}^{\infty} \frac{f^{-1}(x)}{x^2} = \sum_{n=1}^{\infty} \frac{1}{x^{2-1/\alpha}}$ converge și ea dacă și numai dacă $2 1/\alpha > 1 \Leftrightarrow \alpha > 1$. Așadar, convergența unei serii implică și convergența celeilalte.
- Exercițiul 15. Pentru a testa convergența seriei $\sum_{n=1}^{\infty} \frac{\sin n^3}{n}$, verificăm dacă integrala $I = \int_{1}^{\infty} \frac{\sin x^3}{x} \, dx$ este finită. Făcând schimbarea de variabilă $t = x^3$, obținem că $I = \frac{1}{3} \int_{1}^{\infty} \frac{\sin t}{t} \, dt$. Am văzut deja la Exercițiul 11. că $3I < \infty$. Așadar, integrala I este finită, iar seria dată e convergentă.