10 minutes of Algorithms

and making them faster

If this isn't nerdy enough

Here's a picture of me wearing 2 pairs of glasses at the same time

Algorithms?

"Any well-defined computational procedure that takes some value, or set of values, as input and produces some value, or set of values as output. An algorithm is thus a sequence of computational steps that transform the input into the output." [Cormen et al]

Translated from Math to English: a list of steps for performing a computation.

...are not very funny....

...but they are everywhere

It's not enough to be right. You also have to be fast.

New York Times, "The Blink of an Eye? Oh Please". Feb 29, 2012*

^{*}before all their graphics were in D3

Sort a list from lowest to highest

1,4,3,2,7,9,5

Algorithm:

- 1. Reorder the list in every possible order
- 2. Check them until you find one that is correct

Sort a list from lowest to highest

Algorithm:

- 1. Reorder the list in every possible order
- 2. Check them until you find one that is correct

There are 5040 ways to order the 7 numbers.

Sort a list from lowest to highest

Algorithm:

- 1. Reorder the list in every possible order
- 2. Check them until you find one that is correct

There are 5040 ways to order the 7 numbers.

Computers are fast. This won't take long.

If the list contains 1000 numbers:

different arrangements are possible

A better way to sort?

1,4,3,2,7,9,5

Algorithm:

- 1. Starting with the second number, check whether it's smaller than the number in front of it
- 2. If it is, swap them
- 3. Keep swapping until you hit a smaller number
- 4. Move on to the next number you haven't checked

Example

Start: 1,4,3,2,7,9,5

Compare 1 and 4: 1,4,3,2,7,9,5

Compare 4 and 3: 1,4,3,2,7,9,5

Switch: 1,3,4,2,7,9,5

Compare 1 and 3: 1,3,4,2,7,9,5

Compare 2 and 4: 1,3,4,2,7,9,5

Switch 2 and 4: 1,3,2,4,7,9,5

Compare 2 and 3: 1,3,2,4,7,9,5

Switch 2 and 3: 1,2,3,4,7,9,5

Compare 1 and 2: 1,2,3,4,7,9,5

etc

Worst case?

- You have to compare and move every number
- For 7 items, this requires 49 moves
- For 1000 items, it requires 1,000,000 moves

1,000,000 is a lot less than

Takeaway

- "Algorithm" refers to the method of solving, not the solution
- There are multiple algorithms for solving any problem
- Bad ones won't scale. They'll crash your website when you have enough data
- Or fail to run in your lifetime (really!)
- Clever algorithms return the same solution, they just do it faster

Implementations of bubble sort and permutation sort (and also these slides) at https://github.com/rshorey/cfp_sorting_algorithms