

	er: August 2021 – D amination: ESE Ex			
Programme code: 01 Programme: B.TECH		Class: SY	Semester: III (SVU 2020)	
Name of the Constituent College:		Name of the Department:		
K. J. Somaiya College of Engineering		COMP		
Course Code: 116U01C301	Name of the Cour Calculus	se: Integral Ti	ransform and Vector	
Duration: 1 Hour 45 Minutes(15 minutes extra for uploading)	Maximum Marks	: 50		
Instructions: 1)Draw neat diagrams 2) Assume s	suitable data if nece	ssary		

Question No.		Max Marks
Q1 (A)	Choose One correct option for the following questions (2 marks each)	10
(i)	$\int_0^\infty \frac{\sin 3t}{t} dt \text{ is}$ $(a) \frac{\pi}{\epsilon} (b) \frac{\pi}{4} (c) \frac{\pi}{2} (d) \frac{\pi}{2}$	
	$\begin{pmatrix} a \\ 6 \end{pmatrix} \begin{pmatrix} 6 \\ 4 \end{pmatrix} \begin{pmatrix} 6 \\ 3 \end{pmatrix} \begin{pmatrix} a \\ 2 \end{pmatrix}$	
(ii)	If $f(x) = sinh(px)$, p is not an integer then in the Fourier expansion of $f(x)$ in interval $(-\pi, \pi)$ value of a_0 is	
	(a) $\frac{1}{p\pi} \left[e^{p\pi} - e^{-p\pi} \right]$ (b) $\frac{\pi}{4}$ (c) 0 (d) $\frac{1}{2p\pi} \left[e^{p\pi} + e^{-p\pi} \right]$	
(iii)	If $\bar{A} = \nabla(xy + yz + zx)$ then $\nabla \cdot \bar{A}$ is	
	(a) 6 (b) 0	
	(c) $2xi + 2yj + 2zk$ (d) $(y+z)i + (x+z)j + (x+y)k$	
(iv)	convolution of sequences f(k) and g(k) is defined as	
	(a) $\sum_{n=-\infty}^{\infty} f(n)g(k-n)$ (b) $\sum_{k=-\infty}^{\infty} f(n)g(k-n)$	
	(c) $\sum_{n=-\infty}^{\infty} f(k)g(k-n)$ (d) $\sum_{k=-\infty}^{\infty} f(k)g(k-n)$	
(v)	Ctalva's the agreement states that	
	Stoke's theorem states that	
	(a) $\iint_{S} \nabla \times (\overline{N} \cdot \overline{F}) ds = \int_{C} \overline{F} \cdot d\overline{r}$ (b) $\iint_{S} \overline{N} \cdot (\nabla \times \overline{F}) ds = \int_{C} \overline{F} \cdot d\overline{r}$	
	(c) $\iint_{S} \overline{N} \cdot (\nabla \times \overline{F}) ds = \int_{C} \overline{F} \times d\overline{r}$ (d) $\iint_{S} \overline{N} \cdot (\nabla \cdot \overline{F}) ds = \int_{C} \overline{F} \times d\overline{r}$	

Q1 (B)	Attempt all the following questions. (2 marks Each)	10
(a)	Find $L\left\{\int_0^t e^u \cosh u \ du\right\}$	
	OR	
	Find $L[\{1+2t-t^2+t^3\}\{H(t-1)\}\}$	
(b)	In Complex form of Fourier Series for $f(x) = e^{ax}$ in $(-\pi, \pi)$, C_1 is	
(c)	Let $\emptyset = xy + yz + zx$ Find directional Derivatives of \emptyset at P(0,1,-1) in the	
	direction of $3i + 4j + 5k$.	
	OR	
	If $\emptyset = x^3 + y^3 + z^3 - 3xyz$ Find div(curl(grad \emptyset)).	
(d)	If a force $\vec{F} = 2x^2y\hat{\imath} + 3xy\hat{\jmath}$ displaces a particle in the xyplane from (0,0) to	
	(1,4) along a curve $y = 4x^2$. Find the work done.	
(e)	If $F(z) = Z\{f(k)\} = \frac{1}{z-2}$, $ z < 2$ then the sequence $f(k)$ is	
Q. 2	Attempt the following (6 marks Each)	12
(a)	Obtain half range sine series for $f(x) = \frac{1}{4} - x$, $0 < x < 1/2$	
	OR	
	Express the function $f(x) = \begin{cases} 1, & x < 1 \\ 0, & x > 1 \end{cases}$ as a Fourier Integral	
(b)	Find Inv Laplace Transform of $\left(\frac{1}{(s-2)^4(s+3)}\right)$	
Q. 3	Attempt any ONE question out of the following (6 marks Each)	6
(a)	Find z-transform of $k^2 4^k$, $k \ge 0$	
(b)	If $F(z) = \frac{1}{(z-3)(z-6)}$, $ z > 6$ then find inverse z-transform of $F(z)$	
Q. 4	Attempt any TWO questions out of the following (6 marks Each)	12
(a)		
	Prove that $\nabla \left[a. \nabla \frac{1}{r} \right] = -\frac{\overline{a}}{r^3} + \frac{3(\overline{a}.\overline{r})\overline{r}}{r^5}$	
(b)		
	Given $\bar{F} = (z^2 + 2x + 3y)i + (3x + 2y + z)j + (y + 2zx)k$,	
	(i) Prove that \bar{F} is irrotational	
	(ii) Find Scalar potential function \emptyset such that $\overline{F} = \nabla \emptyset$ and $\emptyset(1, 1, 0) = 4$	
	(iii) Find the work done by \overline{F} in moving a particle from $A(0,1,1)$ to $B(3,0,2)$	

(c)	Apply Greens Theorem to Evaluate $\int_c \left[(2x^2 - y^2)dx + (x^2 + y^2)dy \right]$ where c is boundary of the area enclosed by the x-axis and the upper half of the circle $x^2 + y^2 = a^2$	
	x + y = u	