DEPARTAMENTO DE MATEMÁTICA E APLICAÇÕES

Analise Matemática B

FICHA 2A MIECOM

Séries de Taylor e MacLaurin

1. Para cada uma das funções seguintes, determine o desenvolvimento em série de Taylor numa vizinhança de $c \in \mathbb{R}$ e o respectivo intervalo de convergência:

(a)
$$f(x) = x^3 + 4x^2 - x + 1$$
 para $c = 1$;

(b)
$$g(x) = \cos x \text{ para } c = \frac{\pi}{2};$$

(c)
$$h(x) = x^5$$
 para $c = -2$;

- 2. Determine o desenvolvimento em série de MacLaurin e o respectivo intervalo de convergência da função $j(x) = \frac{e^{x^2} 1}{x}$, utilizando desenvolvimentos conhecidos:
- 3. Mostre que as seguintes funções não podem ser respresentadas em série de MacLaurin:

(a)
$$m(x) = \ln x$$
;

(b)
$$n(x) = x^{\frac{3}{2}}$$
.

- 4. Utilizando desenvolvimentos em série de MacLaurin conhecidos determine o desenvolvimento em série de MacLaurin da função $f(x) = \frac{1}{2}(e^x e^{-x})$.
- **5.** Determine o polinómio de Taylor em potências de x-e até ao grau 3 da função $f(x) = \ln x$.
- 6. Use desenvolvimentos em série de Maclaurin para determinar:

(a)
$$\lim_{x\to 0} \frac{1-\cos x}{x^2}$$
;

(b)
$$\lim_{x\to 0} \frac{1}{x} (\cot x - \frac{1}{x});$$

(c)
$$\int_0^x e^{-t^2} dt$$
.

7. Escreva os 5 primeiros termos do desenvolvimento em série de Taylor de $\sin(\frac{\pi}{4} + x)$. E aplique-a para determinar uma aproximação de $\sin 43^{\circ}$.