Fragility of evidence for anti-fracture efficacy

Nick Tran

2024-05-07

Fragility of evidence for the efficacy of anti-fracture medications

Libraries needed:

```
library(tidyverse)
## -- Attaching core tidyverse packages -----
                                               ----- tidyverse 2.0.0 --
## v dplyr 1.1.4
                                   2.1.5
                       v readr
## v forcats 1.0.0 v stringr 1.5.1
## v ggplot2 3.5.1 v tibble 3.2.1
## v lubridate 1.9.3
                       v tidyr
                                   1.3.1
## v purrr
              1.0.2
## -- Conflicts ----- tidyverse_conflicts() --
## x dplyr::filter() masks stats::filter()
## x dplyr::lag() masks stats::lag()
## i Use the conflicted package (<a href="http://conflicted.r-lib.org/">http://conflicted.r-lib.org/</a>) to force all conflicts to become error
library(dplyr)
library(fragility)
## Warning: package 'fragility' was built under R version 4.4.2
## Registered S3 method overwritten by 'netmeta':
##
    subset.pairwise meta
library(expss)
## Warning: package 'expss' was built under R version 4.4.2
## Loading required package: maditr
## Warning: package 'maditr' was built under R version 4.4.2
##
## Use magrittr pipe '%>%' to chain several operations:
              mtcars %>%
                   let(mpg_hp = mpg/hp) %>%
##
```

```
take(mean(mpg_hp), by = am)
##
##
##
##
## Attaching package: 'maditr'
##
## The following objects are masked from 'package:dplyr':
##
##
       between, coalesce, first, last
##
  The following object is masked from 'package:purrr':
##
##
       transpose
##
##
  The following object is masked from 'package:readr':
##
##
       cols
##
##
## Use 'expss_output_viewer()' to display tables in the RStudio Viewer.
##
    To return to the console output, use 'expss_output_default()'.
##
##
## Attaching package: 'expss'
##
## The following objects are masked from 'package:stringr':
##
##
       fixed, regex
##
## The following objects are masked from 'package:dplyr':
##
##
       compute, contains, na_if, recode, vars, where
##
  The following objects are masked from 'package:purrr':
##
##
##
       keep, modify, modify_if, when
##
## The following objects are masked from 'package:tidyr':
##
##
       contains, nest
##
## The following object is masked from 'package:ggplot2':
##
##
       vars
library(ggplot2)
library(gridExtra)
## Warning: package 'gridExtra' was built under R version 4.4.2
## Attaching package: 'gridExtra'
##
```

```
## The following object is masked from 'package:dplyr':
##
## combine

library(grid)
library(table1)

##
## Attaching package: 'table1'
##
## The following objects are masked from 'package:base':
##
## units, units<-

#library(compareGroups)
library(ggrepel)</pre>
```

Warning: package 'ggrepel' was built under R version 4.4.2

(1) Data management

Set-up data:

```
fi = read.csv("C:\\Users\\nickt\\OneDrive\\Desktop\\fi_analysis_updated.csv")
head(fi)
```

```
##
      id study_ext study
                                    author year
                                                          st_names journal
## 1 a_1
                6b
                      NA Leder_ACTIVExtend 2020 Leder (2020)_exta1
                                                                      JCEM
## 2 a_2
                1b
                                 Body_VERO 2020
                                                    Body (2020)_a1
                                                                        ΟI
                                                    Body (2020)_a2
## 3 a_3
               1b
                     NA
                                 Body_VERO 2020
                                                                        OI
## 4 a 4
                1b
                     NA
                                 Body_VERO 2020
                                                    Body (2020)_a3
                                                                        OI
                              Kendler_VERO 2018 Kendler (2018)_a1 Lancet
## 5 a_5
                1
                      1
## 6 a 6
                1
                     NA
                              Kendler VERO 2018 Kendler (2018) a2 Lancet
##
                                                control women_per timing fi
          country blinding
                               intervention
## 1 International Double
                              Abaloparatide Alendronate
                                                                       4 4
## 2 International
                    Double Teriparatide_20 Risedronate
                                                                       2 NA
                                                                1
                    Double Teriparatide_20 Risedronate
## 3 International
                                                                1
                                                                       4 NA
## 4 International
                    Double Teriparatide_20 Risedronate
                                                                1
                                                                       2 NA
## 5 International
                     Double
                               Teriparatide Risedronate
                                                                1
                                                                       4 15
## 6 International
                    Double
                                                                       4 17
                               Teriparatide Risedronate
                                                                1
                                                   HR lower upper
##
                                fx_site outcome
            fq
                   pval
## 1 0.0035971 0.0092162
                                Vert_24m
                                               1 0.29 0.10 0.87
## 2
                                MOF_12m
                                               2 0.38 0.20
           NA
                     NA
                                                             0.72
## 3
            NA
                      NA
                                 MOF_24m
                                               2 0.20
                                                      0.05
## 4
           NA
                      NA
                              ClinFx_12m
                                               2 0.49 0.31
                                                             0.78
## 5 0.0142993 0.0002691
                                Vert 24m
                                               1 0.44 0.29 0.68
## 6 0.0162059 0.0002114 NworsenVert_24m
                                               1 0.46 0.31 0.68
##
                                             Notes e_con n_rand_con e_intv
## 1
                                                      16
                                                                581
                                                                         3
## 2
                                                      24
                                                                680
                                                                        10
## 3
                                                      40
                                                                680
                                                                        16
```

```
## 4 Did not report clinical fractures @ 24 months
                                                                   680
                                                                            18
## 5
                                                         64
                                                                   680
                                                                            28
## 6
                                                         69
                                                                   680
                                                                            31
##
    n_rand_intv
                       x95_ci p_value pri_endpoint sen_analysis extended
## 1
             558
                  0.10, 0.87 0.0270
                                                                1
             680
                  0.20, 0.72 0.0030
                                                  0
                                                                0
                                                                         0
## 2
                  0.05, 0.86
                                                  0
                                                                0
                                                                         0
## 3
             680
                              0.0310
                                                                         0
## 4
             690
                  0.31, 0.78
                               0.0030
                                                  0
                                                                0
## 5
             680 [0.29,0.68]
                               0.0001
                                                  1
                                                                0
                                                                         0
                                                  Λ
                                                                Λ
                                                                          0
## 6
             680 [0.31,0.68]
                               0.0001
##
                                notes
## 1
          post-hoc analysis/extended
                     VERO (2nd paper)
## 2
## 3
                     VERO (2nd paper)
## 4
                     VERO (2nd paper)
## 5 6 pt excluded from the analyses
## 6
##
                                                 st_cohort rep_loss rep_withdr
## 1
                        postm osteoporotic women aged 49+
                                                                   9
                                                                              62
## 2
                         Survival analysis: no loss to FU
                                                                  NA
                                                                              NA
## 3
                         Survival analysis: no loss to FU
                                                                  NA
                                                                             NA
## 4
                         Survival analysis: no loss to FU
                                                                  NA
                                                                             NA
## 5 postm women aged 45+: <=-1.5, 2+ mod/1+ sev vert fx
                                                                  12
                                                                             185
## 6 postm women aged 45+: \leq -1.5, 2+ mod/1+ sev vert fx
                                                                             185
                                                                  12
     rep_death rep_compt n_control n_interven X
## 1
            68
                     1861
                                568
                                            544 NA
## 2
            NA
                                680
                                            680 NA
                       NA
## 3
            NA
                       NA
                                680
                                            680 NA
## 4
            NA
                       NA
                                680
                                            680 NA
## 5
            20
                     1013
                                533
                                            516 NA
## 6
            20
                     1013
                                533
                                            516 NA
fi$no_rand = fi$n_rand_con + fi$n_rand_intv
fi$active_sample = fi$n_control + fi$n_interven
fi$n_event = fi$e_con + fi$e_intv
fi$loghr = log(fi$HR)
```

Data management:

(1.1) Fracture sites:

```
fx_site == "MajVert_24m" | fx_site == "MNworsenVert_12m" | fx_site == "MNw
                                                                           fx_site == "MultiVert_24m" | fx_site == "MultiVert_36m" | fx_site == "MV
                                                                           fx_site == "MVert_36m" | fx_site == "NmodVert_12m" | 
                                                                           fx_site == "NworsenVert_12m" | fx_site == "NworsenVert_24m" | fx_site =
                                                                           fx_site == "Vert_18m" | fx_site == "Vert_24m" | fx_site == "Vert_36m" |
                                                                           fx_site == "Vert_48m" | fx_site == "Vert_48w" | fx_site == "Vert_60m" | :
                                                                           fx_site == "Vert_72m" | fx_site == "Vert_72w" ~ 7,
                                                                    fx_site == "ClinVert_12m" | fx_site == "ClinVert_24m" | fx_site == "ClinVer
                                                                         fx_site == "ClinVert_48m" | fx_site == "ClinVert_72m" | fx_site == "ClinV
                                                                    fx_site == "Hip_18m" | fx_site == "Hip_24m" | fx_site == "Hip_36m" | fx_sit
                                                                    fx_site == "Forearm_60m" | fx_site == "ForearmWrist_72m" | fx_site == "Wris"
var_lab(fi_final$fx_code1) = "Fracture sites"
val_lab(fi_final$fx_code1) = num_lab("
                                                                                        1 Any_fx
                                                                                       2 Clin_fx
                                                                                       3 OFx
                                                                                       4 MOF
                                                                                       5 Dif_comb
                                                                                       6 NonVert_fx
                                                                                       7 Vert_fx
                                                                                       8 ClinVert fx
                                                                                       9 Hip
                                                                                       10 Forearm")
fi_final = fi_final %>%
    mutate(fx_code2 = case_when(fx_code1 == "1" | fx_code1 == "2" ~ 1,
                                                                         fx code1 == "3" | fx code1 == "4" | fx code1 == "5" ~ 2,
                                                                         fx code1 == "6" ~ 3,
                                                                         fx_code1 == "7" ~ 4,
                                                                         fx_{code1} == "8" \sim 5,
                                                                         fx_{code1} == "9" \sim 6,
                                                                         fx_code1 == "10" ~ 7))
var_lab(fi_final$fx_code2) = "Fracture sites"
val_lab(fi_final$fx_code2) = num_lab("
                                                                                        1 Any
                                                                                        2 Osteoporotic
                                                                                       3 Non-Vertebrae
                                                                                       4 Vertebrae
                                                                                       5 Clinical Vertebrae
                                                                                       6 Hip
                                                                                        7 Forearm")
```

(1.2) Interventions:

```
intervention == "Romosozumab" ~ 3,
                                 intervention == "Denosumab" ~ 4,
                                 intervention == "Strontium Ranelate" ~ 5,
                                 intervention == "Calcium" | intervention == "Calcium + vit D" | interv
var_lab(fi_final$interv_code1) = "Interventions"
val_lab(fi_final$interv_code1) = num_lab("
                                    1.1 Alendronate
                                    1.2 Ibandronate
                                    1.3 Risedronate
                                    1.4 Minodronate
                                    1.5 Zoledronate
                                    2.1 Teriparatide
                                    2.2 Abaloparatide
                                    3 Romosozumab
                                    4 Denosumab
                                    5 Strontium_ranelate
                                    6 Calcium_VitD")
fi_final = fi_final %>%
  mutate(interv_code2 = case_when(intervention == "Alendronate" | intervention == "Ibandronate daily" |
                                    intervention == "Ibandronate intermittent" | intervention == "Risen
                                    intervention == "Minodronate" | intervention == "Zoledronate" ~ 1,
                                 intervention == "Teriparatide" | intervention == "Teriparatide_20" |
                                   intervention == "Teriparatide_40" | intervention == "Abaloparatide"
                                 intervention == "Romosozumab" ~ 3,
                                 intervention == "Denosumab" ~ 4,
                                 intervention == "Strontium Ranelate" ~ 5,
                                 intervention == "Calcium" | intervention == "Calcium + vit D" | interv
var_lab(fi_final$interv_code2) = "Interventions"
val_lab(fi_final$interv_code2) = num_lab("
                                    1 Bisphosphonates
                                    2 PTH analog
                                    3 Romosozumab
                                    4 Denosumab
                                    5 Strontium_ranelate
                                    6 Calcium_VitD")
```

(1.3) Journals:

```
3 BMJ
                                    4 JAMA
                                    5 Ann Intern Med
                                    6 JBMR
                                    7 JCEM
                                    8 OI
                                    9 Other")
fi_final = fi_final %>%
  mutate(journal_code2 = case_when(journal == "NEJM" ~ 1,
                                    journal == "Lancet" ~ 2,
                                   journal == "BMJ" ~ 3,
                                   journal == "JAMA" ~ 4,
                                    journal == "Ann Intern Med" ~ 5,
                                    journal == "JBMR" ~ 6,
                                   journal == "JCEM" | journal == "JECM" ~ 7,
                                   journal == "OI" | journal == "Am J Clin Nutr" | journal == "Arth Rhe
var_lab(fi_final$journal_code2) = "Journal"
val_lab(fi_final$journal_code2) = num_lab("
                                    2 Lancet
                                    3 BMJ
                                    4 JAMA
                                    5 Ann Intern Med
                                    6 JBMR
                                    7 JCEM
                                    8 Other")
```

(1.4) Other variables:

```
var_lab(fi_final$outcome) = "Types of fracture outcome"
val_lab(fi_final$outcome) = num_lab("
                                     1 Binary
                                     2 Time-to-event")
var_lab(fi_final$timing) = "Timing of outcome assessed"
val_lab(fi_final$timing) = num_lab("
                                     1 0-6m
                                     2 >6-12m
                                     3 >12-18m
                                     4 >18-24m
                                     5 >24-36m
                                     6 >36-48m
                                     7 >48-60m
                                     8 >60-72m
                                     9 > 72m")
fi_final = fi_final %>%
  mutate(sex = case_when(women_per == 0 ~ "Men",
                         women_per == 1 ~ "Women",
                         women_per > 0 & women_per < 1 ~ "Both"))</pre>
var_lab(fi_final$sex) = "Sex"
```

```
fi_final = fi_final %>%
  mutate(placebo = case_when(control == "Placebo" ~ "Placebo",
                             control == "Alendronate" | control == "Risedronate" ~ "Active"))
var_lab(fi_final$placebo) = "Placebo"
```

(2) Calculate Fragility index (FI) and Fragility quotient (FQ)

```
fi_screen = frag.studies(e_con, n_control, e_intv, n_interven, data = fi_final, methods = "RR")
fi screen
## The input dataset contains 154 studies
## Significance level = 0.05
## Null hypothesis: RR = 1
## p-value (two-sided) is based on:
##
     relative risk
##
## Fragility index (FI) and fragility quotient (FQ):
## Based on relative risk,
     145 studies yield significance with
##
       median FI = 9, range 1-171, IQR 4-19 and
##
       median FQ = 0.5\%, range 0.0\%-9.7\%, IQR 0.2\%-1.0\%;
##
     9 studies yield non-significance with
       median FI = 1, range 1-16, IQR 1-4 and
##
##
       median FQ = 0.1\%, range 0.0\%-1.4\%, IQR 0.0\%-0.9\%;
     overall, among all studies,
##
##
       median FI = 8, range 1-171, IQR 3-18 and
##
       median FQ = 0.5\%, range 0.0\%-9.7\%, IQR 0.2\%-1.0\%
fi_final$Pval_screen = fi_screen$pval
```

Only analyses with statistically significant results from logistic regression/Fisher exact test (binary outcome) are included

```
fi_sig = subset(fi_final, Pval_screen<= 0.05)</pre>
fi_only_sig = frag.studies(e_con, n_control, e_intv, n_interven, data = fi_sig, methods = "RR")
fi_only_sig
## The input dataset contains 145 studies
## Significance level = 0.05
## Null hypothesis: RR = 1
## p-value (two-sided) is based on:
     relative risk
## Fragility index (FI) and fragility quotient (FQ):
## Based on relative risk,
     145 studies yield significance with
##
       median FI = 9, range 1-171, IQR 4-19 and
##
       median FQ = 0.5\%, range 0.0\%-9.7\%, IQR 0.2\%-1.0\%;
##
##
     O study yields non-significance
     overall, among all studies,
```

##

```
## median FI = 9, range 1-171, IQR 4-19 and
## median FQ = 0.5%, range 0.0%-9.7%, IQR 0.2%-1.0%

fi_sig$FI_final = fi_only_sig$FI
fi_sig$FQ_final = fi_only_sig$FQ
fi_sig$Pval_final = fi_only_sig$pval
```

(3) PRIMARY ANALYSIS: All analyses with statistically significant results from logistic regression

n=145 analyses from all 28 RCT (27 original studies [with 6 extended phase] + 1 extended phases which original study found no significant result)

(3.1) Table 1: Characteristics of the trials included in the primary analysis (n= 28)

```
fi_sig_st = subset(fi_sig, study >= 1)
table1(~ as.factor(interv_code2) + as.factor(journal_code2) + as.factor(placebo) + sex + no_rand, data
```

	Overall
	(N=28)
as.factor(interv_cod	(e2)
Bisphosphonates	12 (42.9%)
PTH analog	5 (17.9%)
Romosozumab	2 (7.1%)
Denosumab	2(7.1%)
$Strontium_ranelate$	2(7.1%)
${\rm Calcium_VitD}$	5 (17.9%)
as.factor(journal_co	de2)
NEJM	12 (42.9%)
Lancet	2(7.1%)
BMJ	1 (3.6%)
JAMA	3~(10.7%)
Ann Intern Med	1 (3.6%)
JBMR	1 (3.6%)
JCEM	2(7.1%)
Other	6(21.4%)
as.factor(placebo)	
Active	3~(10.7%)
Placebo	25~(89.3%)
Sex	
Both	6(21.4%)
Men	2 (7.1%)
Women	20 (71.4%)
no_rand	
Median [Q1, Q3]	$1780 \ [1170, \ 2830]$

(3.1) Table 1: Characteristics of the analyses included in the primary analysis (n= 145)

```
fi_sig$missing_fi[fi_sig$rep_loss > fi_sig$FI_final] = 1
fi_sig$missing_fi[fi_sig$rep_loss <= fi_sig$FI_final] = 0</pre>
is.na(fi_sig$rep_loss)
                                   [1] FALSE TRUE TRUE TRUE FALSE FALSE
##
                             [13] FALSE F
                            [25] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
                           [37] FALSE F
                         [49] FALSE TRUE
##
                           TRUE
                                                                                                                                                                                                                                                                                                                                                                                                                                                              TRUE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        TRUE FALSE
                          [73] FALSE F
##
                       [85] FALSE FALSE FALSE FALSE FALSE FALSE FALSE
                                                                                                                                                                                                                                                                                                                                                                                                                        TRUE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                   TRUE TRUE TRUE
                                                                                                                                                                                              TRUE
                  [97] TRUE TRUE TRUE
                                                                                                                                                                                                                                            TRUE
                                                                                                                                                                                                                                                                                         TRUE
                                                                                                                                                                                                                                                                                                                                  TRUE
                                                                                                                                                                                                                                                                                                                                                                              TRUE
                                                                                                                                                                                                                                                                                                                                                                                                                         TRUE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                   TRUE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             TRUE TRUE
## [109] TRUE FALSE TRUE
                                                                                                                                                                                                  TRUE
                                                                                                                                                                                                                                            TRUE
                                                                                                                                                                                                                                                                                         TRUE
                                                                                                                                                                                                                                                                                                                                    TRUE
                                                                                                                                                                                                                                                                                                                                                                               TRUE
                                                                                                                                                                                                                                                                                                                                                                                                                         TRUE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                   TRUE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               TRUE FALSE
## [121] FALSE FALSE FALSE FALSE FALSE FALSE
                                                                                                                                                                                                                                                                                                                                                                      TRUE
                                                                                                                                                                                                                                                                                                                                                                                                                     TRUE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                   TRUE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              TRUE FALSE
## [133] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                    TRUE
## [145]
                                                                    TRUE
fi_sig$missing_fi[fi_sig$rep_loss == NA] = NA
fi_sig$fi4[fi_sig$FI_final>4] = "FI > 4"
              fi_sig$fi4[fi_sig$FI_final<=4] = "FI <= 4"</pre>
table1(~ as.factor(fx_code2) + as.factor(interv_code2) + as.factor(journal_code2) + as.factor(placebo)
```

	Overall
	(N=145)
$as.factor(fx_code2)$	
Any	18 (12.4%)
Osteoporotic	$11 \ (7.6\%)$
Non-Vertebrae	$21 \ (14.5\%)$
Vertebrae	69 (47.6%)
Clinical Vertebrae	14 (9.7%)
Hip	9 (6.2%)
Forearm	3(2.1%)
as.factor(interv_cod	
Bisphosphonates	48 (33.1%)
PTH analog	30 (20.7%)
Romosozumab	28 (19.3%)
Denosumab	9 (6.2%)
Strontium_ranelate	15 (10.3%)
Calcium_VitD	15 (10.3%)
as.factor(journal_co	
NEJM	79 (54.5%)
Lancet	9 (6.2%)
BMJ	5 (3.4%)
JAMA	10 (6.9%)
Ann Intern Med	1 (0.7%)
JBMR	6 (4.1%)
JCEM	12 (8.3%)
Other	$23\ (15.9\%)$
as.factor(placebo)	
Active	29 (20.0%)
Placebo	116 (80.0%)
Sex	
Both	16 (11.0%)
Men	10~(6.9%)
Women	$119 \ (82.1\%)$
no_rand	
Mean (SD)	2900 (2300)
Median [Q1, Q3]	1960 [1220, 4090]
Median [min, max]	1960 [450, 7870]
$^{ m HR}$	
Mean (SD)	0.494 (0.188)
Median [Q1, Q3]	$0.520 \ [0.350, \ 0.640]$
Median [min, max]	$0.520 \ [0.0600, 0.850]$
loghr	-
Mean (SD)	-0.806 (0.498)
Median [Q1, Q3]	-0.654 [-1.05, -0.446]
Median [min, max]	-0.654 [-2.81, -0.163]
active_sample	
Mean (SD)	2540 (2080)
Median [Q1, Q3]	1770 [1060, 3650]
Median [min, max]	1770 [339, 7810]
n_event	[
	164 (170)
Mean (SD) Median [Q1, Q3]	164 (170) 91.0 [52.0, 223]
Median [min, max]	91.0 [32.0, 223] 91.0 [10.0, 764]
	01.0 [10.0, 101]
FI_final	16.6 (22.0)
Mean (SD)	16.6 (23.8)
Median $[Q1, Q3]$	9.00 [4.00, 19.0]

(3.2) Table 2: Fragility of evidence for anti-fracture efficacy

table1(~ no_rand + active_sample + n_event + FI_final + FQ_final + as.factor(missing_fi) | as.factor(in

(3.2.1) Table 2 - Intervention

	Bisphosphonates	PTH analog	Romosozu
	(N=48)	(N=30)	(N=28)
no_rand			
Median [Q1, Q3]	$1960 \ [1200, \ 2030]$	1100 [1090, 1360]	4090 [4090
$active_sample$			
Median [Q1, Q3]	1800 [742, 1970]	892 [841, 1240]	4040 [3640
n_event			
Median [Q1, Q3]	72.5 [58.8, 141]	44.0 [34.0, 59.0]	173 [106, 1]
FI_final			
Median [Q1, Q3]	8.50 [4.00, 14.0]	6.50 [3.00, 12.5]	19.5 [7.00,
\mathbf{FQ} _final			
Median $[Q1, Q3]$	0.00535 [0.00272, 0.00859]	$0.00741 \ [0.00325, \ 0.0137]$	0.00354 [0
$as.factor(missing_$	_fi)		
0	5 (10.4%)	2(6.7%)	2(7.1%)
1	34 (70.8%)	9 (30.0%)	26 (92.9%
Missing	9 (18.8%)	19 (63.3%)	0 (0%)

table1(~ no_rand + active_sample + n_event + FI_final + FQ_final + as.factor(missing_fi) | as.factor(fx

(3.2.2) Table 2 - Fracture sites

	Any	Osteoporotic	Non-Ver
	(N=18)	(N=11)	(N=21)
no_rand			
Median $[Q1, Q3]$	2010 [1390, 4090]	2690 [1500, 4090]	3270 [16
active_sample			
Median $[Q1, Q3]$	1890 [1140, 3690]	2690 [1360, 3910]	2790 [16
n_event			
Median $[Q1, Q3]$	210 [76.0, 401]	147 [50.0, 318]	225 [85.0
FI_final			
Median $[Q1, Q3]$	9.00 [5.00, 20.3]	9.00 [4.50, 28.0]	5.00[2.0]
FQ_final			
Median $[Q1, Q3]$	$0.00731 \ [0.00235, \ 0.0115]$	$0.00662 \ [0.00185, \ 0.00745]$	0.00255
as.factor(missing_	_fi)		
0	1 (5.6%)	2(18.2%)	1 (4.8%)
1	11 (61.1%)	7 (63.6%)	13 (61.9)
Missing	6 (33.3%)	2(18.2%)	7 (33.3%

table1(~ no_rand + active_sample + n_event + FI_final + FQ_final + as.factor(missing_fi) | as.factor(tin

(3.2.3) Table 2 - Timing of fracture assessment:

	>6-12m	>12-18m
	(N=26)	(N=18)
no_rand		
Median [Q1, Q3]	1650 [1360, 4090]	1650 [578, 3270]
$active_sample$		
Median [Q1, Q3]	1390 [1190, 3910]	$1340 \ [451, \ 1770]$
n_event		
Median [Q1, Q3]	65.5 [52.3, 137]	53.0 [34.5, 142]
FI_final		
Median [Q1, Q3]	5.00 [3.00, 9.75]	$7.50 \ [4.00, \ 11.0]$
FQ_final		
Median [Q1, Q3]	$0.00240 \ [0.00149, \ 0.00489]$	$0.00660 \ [0.00358,$
as.factor(missing_	_fi)	
0	1(3.8%)	0(0%)
1	20 (76.9%)	12 (66.7%)
Missing	5 (19.2%)	6 (33.3%)

table1(~ no_rand + active_sample + n_event + FI_final + FQ_final + as.factor(missing_fi) | as.factor(jo

(3.2.4) Table 2 - Journal:

	NEJM	Lancet	BMJ
	(N=79)	(N=9)	(N=5)
no_rand			
Median [Q1, Q3]	3270 [1560, 7180]	1360 [1360, 2030]	2300 [1770, 230
$active_sample$			
Median [Q1, Q3]	$2790 \ [1350, 6240]$	1160 [1050, 2030]	2300 [1770, 230
n_event			
Median [Q1, Q3]	117 [54.5, 248]	91.0 [63.0, 100]	315 [262, 475]
FI_final			
Median [Q1, Q3]	12.0 [4.50, 26.0]	11.0 [4.00, 15.0]	16.0 [11.0, 22.0
\mathbf{FQ} _final			
Median [Q1, Q3]	$0.00393 \ [0.00226, \ 0.00831]$	$0.00691 \ [0.00259, \ 0.0143]$	0.00695 [0.0062
$as.factor(missing_$	_fi)		
0	7 (8.9%)	2~(22.2%)	0 (0%)
1	51~(64.6%)	7 (77.8%)	1(20.0%)
Missing	$21\ (26.6\%)$	0 (0%)	4 (80.0%)

table1(~ no_rand + active_sample + n_event + FI_final + FQ_final + as.factor(missing_fi) | sex, data =

(3.2.5) Table 2 - Sex:

	Both	Men	Women
	(N=16)	(N=10)	(N=119)
no_rand			
Median [Q1, Q3]	622 [571, 731]	1200 [1200, 1470]	2000 [1630, 4090]
$active_sample$			
Median [Q1, Q3]	464 [426, 661]	1130 [1130, 1350]	1950 [1300, 4040]
n_event			
Median [Q1, Q3]	40.0 [33.3, 57.8]	26.0 [21.5, 34.3]	110 [67.0, 262]
FI_final			
Median [Q1, Q3]	4.00 [2.00, 7.00]	3.00 [1.25, 4.00]	11.0 [5.00, 23.0]
\mathbf{FQ} _final			
Median [Q1, Q3]	$0.00677 \ [0.00451, \ 0.0125]$	$0.00216 \ [0.00115, \ 0.00296]$	0.00537 [0.00237, 0.
$as.factor(missing_{_}$	_fi)		
0	0 (0%)	0 (0%)	10 (8.4%)
1	8 (50.0%)	10 (100%)	68 (57.1%)
Missing	8 (50.0%)	0 (0%)	$41 \ (34.5\%)$

table1(~ no_rand + active_sample + n_event + FI_final + FQ_final + as.factor(missing_fi) | placebo, dat

(3.2.6) Table 2 - Placebo:

	Active	Placebo	Overall
	(N=29)	(N=116)	(N=145)
no_rand			
Median $[Q1, Q3]$	4090 [1360, 4090]	1960 [1170, 3560]	1960 [1220, 40
$active_sample$			
Median $[Q1, Q3]$	3320 [1280, 3660]	1750 [890, 3000]	1770 [1060, 36
n_event			
Median $[Q1, Q3]$	107 [53.0, 255]	84.0 [50.3, 211]	91.0 [52.0, 223
FI_final			
Median $[Q1, Q3]$	10.0 [5.00, 18.0]	8.00 [3.75, 19.3]	9.00 [4.00, 19.0
\mathbf{FQ} _final			
Median $[Q1, Q3]$	$0.00440 \ [0.00221, \ 0.00908]$	$0.00510 \ [0.00234, \ 0.0105]$	0.00505 [0.002]
as.factor(missing_	_fi)		
0	4 (13.8%)	6 (5.2%)	10~(6.9%)
1	22 (75.9%)	64 (55.2%)	86~(59.3%)
Missing	3 (10.3%)	46 (39.7%)	49 (33.8%)

(3.3) Table 3: Fragility of evidence for anti-fracture efficacy in the subgroup analyses

(3.3.1) Table 3.1- Fracture as the predefined primary endpoint: Data-set

fx_prim = subset(fi_sig, pri_endpoint == 1)

```
table1(~ no_rand + active_sample + n_event + FI_final + FQ_final + as.factor(missing_fi), data = fx_printlements
```

(3.3.1.1) Table 3.1 - Overall:

	Overall
	(N=34)
no_rand	
Median [Q1, Q3]	$1980 \ [1240, 4090]$
$active_sample$	
Median [Q1, Q3]	1730 [1050, 3660]
n_{event}	
Median [Q1, Q3]	117 [63.8, 229]
FI final	
Median [Q1, Q3]	13.5 [8.75, 31.3]
FQ_final	
Median [Q1, Q3]	$0.00997 \ [0.00442, \ 0.0205]$
as.factor(missing_	_fi)
0	3 (8.8%)
1	20 (58.8%)
Missing	11 (32.4%)

Additional analyses for discussion

```
fi_sig$fx_primary[fi_sig$pri_endpoint == 1] = "Primary endpoint"
fi_sig$fx_primary[fi_sig$pri_endpoint == 0] = "Secondary endpoint"
table1(~ no_rand + active_sample + n_event + FI_final + FQ_final + as.factor(missing_fi) | fx_primary ,
```

	Primary endpoint	Secondary endpoint	Overall
	(N=34)	(N=111)	(N=145)
no_rand			
Median [Q1, Q3]	$1980 \ [1240, 4090]$	$1960 \ [1290, \ 4090]$	1960 [1220, 4090]
$active_sample$			
Median [Q1, Q3]	1730 [1050, 3660]	1770 [1110, 3630]	1770 [1060, 3650]
n_event			
Median [Q1, Q3]	117 [63.8, 229]	76.0 [49.5, 209]	91.0 [52.0, 223]
FI_final			
Median [Q1, Q3]	13.5 [8.75, 31.3]	7.00 [3.00, 17.0]	9.00 [4.00, 19.0]
\mathbf{FQ} _final			
Median [Q1, Q3]	0.00997 [0.00442, 0.0205]	$0.00393 \ [0.00208, \ 0.00751]$	$0.00505 \ [0.00230, \ 0.00955]$
$as.factor(missing_$	_fi)		
0	3~(8.8%)	7 (6.3%)	10 (6.9%)
1	20~(58.8%)	66 (59.5%)	86 (59.3%)
Missing	11 (32.4%)	38 (34.2%)	49 (33.8%)

```
# Check whether the difference between two groups was statistically significant  \#fi\_sig\$missing\_fi = factor(fi\_sig\$missing\_fi) \\ \#createTable(compareGroups(fx\_primary ~ no\_rand + active\_sample + n\_event + FI\_final + FQ\_final + missing + fi\_final + fi
```

table1(~ no_rand + active_sample + n_event + FI_final + FQ_final + as.factor(missing_fi) | as.factor(fx

(3.3.1.2) Table 3.1 - Fracture sites:

	Any	Osteoporotic	Non-Ver
	(N=2)	(N=1)	(N=1)
no_rand			
Median [Q1, Q3]	3110 [2620, 3600]	$2000 \ [2000, \ 2000]$	5090 [509
$active_sample$			
Median [Q1, Q3]	$2060\ [1270,\ 2850]$	$1950 \ [1950, \ 1950]$	4940 [494
n_{event}			
Median [Q1, Q3]	348 [289, 406]	312 [312, 312]	671 [671.
FI_final			
Median [Q1, Q3]	16.5 [11.8, 21.3]	33.0 [33.0, 33.0]	3.00 [3.0
FQ_final			
Median [Q1, Q3]	$0.0109 \ [0.00901, \ 0.0127]$	$0.0169 \ [0.0169, \ 0.0169]$	0.000608
as.factor(missing_	_fi)		
0	0 (0%)	1 (100%)	0(0%)
1	2 (100%)	0 (0%)	0 (0%)
Missing	0 (0%)	0 (0%)	1 (100%)

table1(~ no_rand + active_sample + n_event + FI_final + FQ_final + as.factor(missing_fi) | as.factor(in

(3.3.1.3) Table 3.1 - Interventions:

	Bisphosphonates	PTH analog	Romos
	(N=14)	(N=8)	(N=5)
no_rand			
Median [Q1, Q3]	$1960 \ [1200, \ 2100]$	1230 [958, 1640]	4090 [4
$active_sample$			
Median [Q1, Q3]	1660 [782, 1950]	971 [774, 1410]	4090 [3
n_event			
Median [Q1, Q3]	131 [103, 206]	54.0 [39.8, 83.8]	221 [10
FI_final			
Median [Q1, Q3]	13.0 [8.00, 18.8]	13.0 [11.0, 17.0]	40.0 [2]
\mathbf{FQ} _final			
Median [Q1, Q3]	$0.00933 \ [0.00566, \ 0.0195]$	$0.0200 \ [0.00889, \ 0.0265]$	0.0071
as.factor(missing_	_fi)		
0	1 (7.1%)	$1\ (12.5\%)$	1 (20.0
1	10 (71.4%)	3(37.5%)	4 (80.0
Missing	3~(21.4%)	4 (50.0%)	0 (0%)

table1(~ no_rand + active_sample + n_event + FI_final + FQ_final + as.factor(missing_fi) | as.factor(times)

(3.3.1.4) Table 3.1 - Timing of fracture assessment:

	>6-12m	>12-18m
	(N=1)	(N=8)
no_rand		
Median [Q1, Q3]	7180 [7180, 7180]	2090 [1370, 3
$active_sample$		
Median [Q1, Q3]	6640 [6640, 6640]	1560 [1160, 1
n _event		
Median [Q1, Q3]	$75.0 \ [75.0, \ 75.0]$	53.0 [39.8, 89
\mathbf{FI} _final		
Median [Q1, Q3]	24.0 [24.0, 24.0]	9.50 [6.00, 11
\mathbf{FQ} _final		
Median [Q1, Q3]	$0.00361 \ [0.00361, \ 0.00361]$	0.00591 [0.00
$as.factor(missing_{_}$	_fi)	
0	0 (0%)	0 (0%)
1	1 (100%)	6~(75.0%)
Missing	0 (0%)	2(25.0%)

table1(~ no_rand + active_sample + n_event + FI_final + FQ_final + as.factor(missing_fi) | as.factor(jo

(3.3.1.5) Table 3.1 - Journal:

	NEJM	Lancet	JAMA
	(N=19)	(N=2)	(N=4)
no_rand			
Median [Q1, Q3]	3270 [1650, 5640]	1690 [1530, 1860]	1640 [1640, 234
$active_sample$			
Median [Q1, Q3]	2380 [1280, 4880]	1500 [1270, 1720]	1410 [1390, 210
n_event			
Median [Q1, Q3]	190 [84.5, 341]	158 [125, 190]	78.5 [35.5, 129]
FI_final			
Median [Q1, Q3]	25.0 [7.50, 43.5]	27.5 [21.3, 33.8]	12.0 [11.0, 13.0]
\mathbf{FQ} _final			
Median [Q1, Q3]	0.0115 [0.00349, 0.0223]	$0.0174 \ [0.0159, \ 0.0190]$	$0.00785 \ [0.0065$
as.factor(missing_	_fi)		
0	2 (10.5%)	1 (50.0%)	0 (0%)
1	12~(63.2%)	1 (50.0%)	3(75.0%)
Missing	5~(26.3%)	0 (0%)	$1\ (25.0\%)$

table1(~ no_rand + active_sample + n_event + FI_final + FQ_final + as.factor(missing_fi) | sex, data =

(3.3.1.6) Table 3.1 - Sex:

	Both	Men	Women
	(N=4)	(N=2)	(N=28)
no_rand			
Median [Q1, Q3]	622 [571, 1030]	1200 [1200, 1200]	2280 [1640, 4180]
$active_sample$			
Median [Q1, Q3]	465 [445, 524]	$1090 \ [1070, \ 1110]$	1950 [1420, 4100]
n_event			
Median [Q1, Q3]	44.5 [40.5, 93.8]	33.0 [31.0, 35.0]	141 [90.5, 317]
FI_final			
Median [Q1, Q3]	9.00 [7.00, 11.5]	3.50 [2.25, 4.75]	17.5 [11.8, 40.0]
\mathbf{FQ} _final			
Median [Q1, Q3]	$0.0202 \ [0.0136, \ 0.0266]$	$0.00313 \ [0.00204, \ 0.00423]$	$0.00864 \ [0.00399,$
$as.factor(missing_{_}$	_fi)		
0	0 (0%)	0 (0%)	3~(10.7%)
1	2(50.0%)	2(100%)	16 (57.1%)
Missing	2(50.0%)	0 (0%)	9 (32.1%)

table1(~ no_rand + active_sample + n_event + FI_final + FQ_final + as.factor(missing_fi) | placebo, dat

(3.3.1.7) Table 3.1 - Placebo:

Active	Placebo	Overall
(N=6)	(N=28)	(N=34)
		I
2870 [1640, 4090]	$1980 \ [1170, \ 3560]$	1980 [1240, 4
		ļ
2540 [1410, 3660]	1730 [890, 3130]	1730 [1050, 3
157 [50.0, 333]	117 [71.3, 225]	117 [63.8, 22]
		ļ
20.5 [13.5, 38.0]	$13.0 \ [7.00, \ 27.0]$	13.5 [8.75, 31]
$0.0104 \ [0.00810, \ 0.0136]$	$0.00933 \ [0.00355, \ 0.0258]$	0.00997 [0.00
_fi)		
2(33.3%)	1 (3.6%)	3~(8.8%)
,	,	20 (58.8%)
0 (0%)	11 (39.3%)	11 (32.4%)
	(N=6) 2870 [1640, 4090] 2540 [1410, 3660] 157 [50.0, 333] 20.5 [13.5, 38.0] 0.0104 [0.00810, 0.0136] _fi)	(N=6) (N=28) 2870 [1640, 4090] 1980 [1170, 3560] 2540 [1410, 3660] 1730 [890, 3130] 157 [50.0, 333] 117 [71.3, 225] 20.5 [13.5, 38.0] 13.0 [7.00, 27.0] 0.0104 [0.00810, 0.0136] 0.00933 [0.00355, 0.0258] fi) 2 (33.3%) 1 (3.6%) 4 (66.7%) 16 (57.1%)

(3.3.2) Table 3.2 - Analyses with highly significant results (p< 0.001) $\,$ Data-set

```
p_sig = subset(fi_sig, Pval_screen<=0.001)</pre>
```

```
table1(~ no_rand + active_sample + n_event + FI_final + FQ_final + as.factor(missing_fi), data = p_sig,
```

(3.3.2.1) Table 3.2 - Overall: _____

	Overall
	(N=45)
no_rand Median [Q1, Q3]	2420 [1640, 7180]
active_sample Median [Q1, Q3]	2380 [1270, 6530]
n_event Median [Q1, Q3]	128 [82.0, 330]
FI_final Median [Q1, Q3]	26.0 [18.0, 42.0]
\mathbf{FQ} _final	
Median [Q1, Q3]	$0.0131 \ [0.00670, \ 0.0193]$
$as.factor(missing_{_}$	_fi)
0	6 (13.3%)
1	24 (53.3%)
Missing	15 (33.3%)

Additional analysis for discussion:

```
# Comparison of different P values:
fi_sig$p_sig1[fi_sig$p_value<=0.001] = "Highly significant"
  fi_sig$p_sig1[fi_sig$p_value>0.001] = "Significant"
fi_sig$p_sig2[fi_sig$Pval_screen<=0.001] = "Highly significant"
  fi_sig$p_sig2[fi_sig$Pval_screen>0.001] = "Significant"

table1(~ no_rand + active_sample + n_event + FI_final + FQ_final + as.factor(missing_fi) | p_sig2 , dat
```

	Highly significant	Significant	Overall
	(N=45)	(N=100)	(N=145)
no_rand			
Mean (SD)	3860 (2780)	2470 (1910)	2900 (2300)
Median [Q1, Q3]	2420 [1640, 7180]	1840 [1200, 3270]	1960 [1220, 4090]
Median [min, max]	2420 [549, 7870]	1840 [450, 7870]	1960 [450, 7870]
$active_sample$			
Mean (SD)	3430 (2520)	2140 (1710)	2540 (2080)
Median [Q1, Q3]	2380 [1270, 6530]	1660 [921, 2790]	1770 [1060, 3650]
Median [min, max]	2380 [426, 7810]	1660 [339, 6670]	1770 [339, 7810]
n_event			
Mean (SD)	220 (190)	139 (154)	164 (170)
Median [Q1, Q3]	128 [82.0, 330]	71.0 [42.8, 164]	91.0 [52.0, 223]
Median [min, max]	128 [34.0, 764]	71.0 [10.0, 691]	91.0 [10.0, 764]
FI_final			
Mean (SD)	37.9 (33.0)	6.95(5.91)	16.6 (23.8)
Median [Q1, Q3]	26.0 [18.0, 42.0]	5.00 [2.75, 10.0]	9.00 [4.00, 19.0]
Median [min, max]	26.0 [9.00, 171]	5.00 [1.00, 29.0]	9.00 [1.00, 171]
\mathbf{FQ} _final			
Mean (SD)	$0.0163 \; (0.0154)$	$0.00450 \ (0.00395)$	$0.00815 \; (0.0106)$
Median $[Q1, Q3]$	$0.0131 \ [0.00670, \ 0.0193]$	$0.00318 \ [0.00158, \ 0.00633]$	0.00505 [0.00230, 0.00955]
Median [min, max]	$0.0131 \ [0.00230, \ 0.0966]$	$0.00318 \ [0.000151, \ 0.0203]$	$0.00505 \ [0.000151, \ 0.0966]$
as.factor(missing_fi)		
0	6 (13.3%)	4 (4.0%)	10 (6.9%)
1	24 (53.3%)	62~(62.0%)	86 (59.3%)
Missing	15 (33.3%)	34 (34.0%)	49 (33.8%)

 $\#createTable(compareGroups(p_sig2 ~ no_rand + active_sample + n_event + FI_final + FQ_final + missing_final + formula + form$

```
table1(~ no_rand + active_sample + n_event + FI_final + FQ_final + as.factor(missing_fi) | as.factor(fx
```

(3.3.2.2) Table 3.2 - Fracture sites:

	Any	Osteoporotic	Non-
	(N=2)	(N=5)	(N=4)
no_rand			
Median [Q1, Q3]	7460 [7320, 7600]	4090 [2000, 4090]	7180
active_sample Median [Q1, Q3]	6620 [6580, 6660]	3530 [1950, 3840]	6590
n event	, ,	, ,	
Median [Q1, Q3]	505 [376, 635]	323 [312, 355]	290 [
FI_final			
Median [Q1, Q3]	62.5 [49.3, 75.8]	30.0 [26.0, 33.0]	24.0
\mathbf{FQ} _final			
Median [Q1, Q3]	$0.00949 \ [0.00743, \ 0.0115]$	0.00754 [0.00736, 0.0169]	0.005
$as.factor(missing_{_}$	_fi)		
0	0 (0%)	2(40.0%)	0 (0%
1	2(100%)	3 (60.0%)	4 (10
Missing	0 (0%)	0 (0%)	0 (0%

table1(~ no_rand + active_sample + n_event + FI_final + FQ_final + as.factor(missing_fi) | as.factor(in

(3.3.2.3) Table 3.2 - Interventions:

	Bisphosphonates	PTH analog	Romosoz
	(N=10)	(N=11)	(N=13)
no_rand			
Median [Q1, Q3]	4880 [1970, 7740]	1100 [1090, 1500]	7180 [409
$active_sample$			
Median [Q1, Q3]	3810 [1950, 6240]	892 [882, 1160]	6640 [384
n_event			
Median [Q1, Q3]	167 [101, 380]	48.0 [42.5, 84.5]	225 [106]
FI_final			
Median [Q1, Q3]	39.0 [23.3, 42.8]	15.0 [12.0, 19.5]	36.0 [26.0]
\mathbf{FQ} _final			
Median [Q1, Q3]	0.0109 [0.00694, 0.0197]	0.0193 [0.0118, 0.0258]	0.00601
$as.factor(missing_$	_fi)		
0	1 (10.0%)	2(18.2%)	2 (15.4%)
1	8 (80.0%)	3(27.3%)	11 (84.69
Missing	1 (10.0%)	6 (54.5%)	0 (0%)

table1(~ no_rand + active_sample + n_event + FI_final + FQ_final + as.factor(missing_fi) | as.factor(times)

(3.3.2.4) Table 3.2 - Timing of fracture assessment:

	>6-12m	>12-18m
	(N=5)	(N=6)
no_rand		
Median [Q1, Q3]	4090 [1650, 7180]	1640 [843, 16
$active_sample$		
Median [Q1, Q3]	3980 [1390, 6640]	1330 [655, 14
n_event		
Median [Q1, Q3]	76.0 [75.0, 128]	42.5 [37.3, 47
FI_final		
Median [Q1, Q3]	24.0 [19.0, 27.0]	12.0 [11.0, 13
FQ_final		
Median [Q1, Q3]	$0.00754 \ [0.00391, \ 0.00828]$	0.00990 [0.00
as.factor(missing_	_fi)	
0	1 (20.0%)	0 (0%)
1	3 (60.0%)	4~(66.7%)
Missing	1 (20.0%)	2(33.3%)

table1(~ no_rand + active_sample + n_event + FI_final + FQ_final + as.factor(missing_fi) | as.factor(jo

(3.3.2.5) Table 3.2 - Journal:

	NEJM	Lancet	JAMA
	(N=31)	(N=3)	(N=4)
no_rand			
Median [Q1, Q3]	4090 [1820, 7460]	1360 [1360, 1690]	1640 [1640, 165
$active_sample$			
Median $[Q1, Q3]$	4090 [1700, 6650]	$1050 \ [1050, \ 1500]$	1370 [1310, 141
n_event			
Median [Q1, Q3]	221 [94.5, 353]	100 [96.0, 162]	40.0 [35.5, 47.5]
FI_final			
Median [Q1, Q3]	36.0 [23.5, 44.0]	17.0 [16.0, 28.5]	11.0 [10.5, 11.5]
FQ _final			
Median [Q1, Q3]	$0.0115 \ [0.00594, \ 0.0187]$	$0.0162 \ [0.0153, \ 0.0184]$	0.00799 [0.0075
as.factor(missing_	_fi)		
0	3 (9.7%)	2(66.7%)	0 (0%)
1	17 (54.8%)	1 (33.3%)	4 (100%)
Missing	11 (35.5%)	0 (0%)	0 (0%)

table1(~ no_rand + active_sample + n_event + FI_final + FQ_final + as.factor(missing_fi) | sex, data =

(3.3.2.6) Table 3.2 - Sex:

	Both	Women	Overall
	(N=2)	(N=43)	(N=45)
no_rand			ļ
Median [Q1, Q3]	564 [556, 571]	$3270 \ [1650, 7180]$	$2420\ [1640,\ 7180]$
$active_sample$			
Median [Q1, Q3]	439 [432, 445]	$2420\ [1360,6540]$	$2380\ [1270,6530]$
n_{event}			
Median [Q1, Q3]	44.5 [42.8, 46.3]	168 [84.5, 331]	128 [82.0, 330]
FI_final			
Median [Q1, Q3]	12.0 [11.5, 12.5]	27.0 [19.5, 42.5]	26.0 [18.0, 42.0]
\mathbf{FQ} _final			
Median [Q1, Q3]	$0.0273 \ [0.0266, \ 0.0281]$	$0.0125 \ [0.00664, \ 0.0188]$	$0.0131 \ [0.00670, \ 0.0]$
$as.factor(missing_{_}$	_fi)		
0	0 (0%)	6 (14.0%)	6~(13.3%)
1	0 (0%)	24~(55.8%)	24~(53.3%)
Missing	2 (100%)	13 (30.2%)	15 (33.3%)

(3.3.2.7) Table 3.2 - Placebo:

```
table1(~ no_rand + active_sample + n_event + FI_final + FQ_final + as.factor(missing_fi) | placebo, data
```

	Active	Placebo	Overall
	(N=11)	(N=34)	(N=45)
no_rand			
Median [Q1, Q3]	4090 [1640, 4090]	2220 [1630, 7180]	2420 [1640, 7180]
$active_sample$			
Median [Q1, Q3]	3530 [1330, 3750]	2160 [1250, 6640]	2380 [1270, 6530]
n_event			
Median [Q1, Q3]	221 [68.0, 339]	125 [82.3, 326]	128 [82.0, 330]
FI_final			
Median [Q1, Q3]	26.0 [14.0, 45.0]	26.0 [20.3, 41.5]	26.0 [18.0, 42.0]
\mathbf{FQ} _final			
Median [Q1, Q3]	0.0115 [0.00762, 0.0153]	$0.0137 \ [0.00614, \ 0.0255]$	$0.0131 \ [0.00670, \ 0.0193]$
as.factor(missing_	_fi)		
0	4 (36.4%)	2(5.9%)	6 (13.3%)
1	7 (63.6%)	17 (50.0%)	24 (53.3%)
Missing	0 (0%)	15 (44.1%)	15 (33.3%)

(3.4) Figure 3: Correlation between sample size and FI

```
p = ggplot(data = fi_sig, aes(x = no_rand, y = FI_final))
p1 = p + geom_point() + geom_smooth() + labs(title = "A. Number of participants at randomisation", x =

p = ggplot(data = fi_sig, aes(x = n_event, y = FI_final))
p2 = p + geom_point() + geom_smooth() + labs(title = "B. Number of participants with fractures", x = "Number of
```

```
## 'geom_smooth()' using method = 'loess' and formula = 'y ~ x'
## 'geom_smooth()' using method = 'loess' and formula = 'y ~ x'
```

Relationships between Fragility index and sample size

(3.5) Figure 4: Fragility of evidence for anti-fracture efficacy by pharmacological interventions

```
p1 = ggplot(data = fi_sig, aes(y = FI_final, x = as.factor(interv_code2), fill = as.factor(interv_code2
    geom_jitter(alpha=0.2) + theme_bw() + theme(legend.position="none") +
    labs(title = "Fragility index", x = "Pharmacological interventions", y = "Fragility index") + theme(a
    p2 = ggplot(data = fi_sig, aes(y = FQ_final, x = as.factor(interv_code2), fill = as.factor(interv_code2
        geom_jitter(alpha=0.2) + theme_bw() + theme(legend.position="none") +
    labs(title = "Fragility quotient", x = "Pharmacological interventions", y = "Fragility quotine") + th
    grid.arrange(p1, p2, nrow = 1, top = textGrob("Fragility of evidence for anti-fracture efficacy by interventions")
```

gility of evidence for anti-fracture efficacy by intervent

(3.6) Figure 5: Fragility of evidence for anti-fracture efficacy by fracture sites

```
p1 = ggplot(data = fi_sig, aes(y = FI_final, x = as.factor(fx_code2), fill = as.factor(fx_code2))) + ge
    geom_jitter(alpha=0.2) + theme_bw() + theme(legend.position="none") +
    labs(title = "Fragility index", x = "Fracture sites", y = "Fragility index") + theme(axis.text.x = el
    p2 = ggplot(data = fi_sig, aes(y = FQ_final, x = as.factor(fx_code2), fill = as.factor(fx_code2))) + ge
    geom_jitter(alpha=0.2) + theme_bw() + theme(legend.position="none") +
    labs(title = "Fragility quotient", x = "Fracture sites", y = "Fragility quotient") + theme(axis.text.)
grid.arrange(p1, p2, nrow = 1, top = textGrob("Fragility of evidence for anti-fracture efficacy by fractions.")
```

jility of evidence for anti-fracture efficacy by fracture s

(3.7) Figure S1: Distribution of effect sizes for intervetion benefits

Distribution of effect sizes

(3.8) Figure S2: Correlation between effect sizes for the intervention benefits and sample size

```
p = ggplot(data = fi_sig, aes(x = no_rand, y = HR))
p.1 = p + geom_point() + geom_smooth(method = "lm", formula = y ~ x + I(x^2)) + labs(title = "A. Effect

p = ggplot(data = fi_sig, aes(x = no_rand, y = loghr))
p.2 = p + geom_point() + geom_smooth(method = "lm", formula = y ~ x + I(x^2)) + labs(title = "B. Logari
grid.arrange(p.1, p.2, nrow = 1, top = textGrob("Correlation between effect size and sample size", gp =
```

Correlation between effect size and sample size

(4) PREDEFINED SENSITIVITY ANALYSIS: including only results of the original studies

Set-up data

```
ori_st = subset(fi_sig, sen_analysis == 0)
ori_st_st = subset(ori_st, study == 1)
```

(4.1) Baseline characteristics

```
table1(~ as.factor(interv_code2) + as.factor(journal_code1) + as.factor(placebo) + sex + no_rand, data
```

(4.1.1) By studies ___

	Overall
	(N=27)
as.factor(interv_code	e 2)
Bisphosphonates	12 (44.4%)
PTH analog	5 (18.5%)
Romosozumab	2(7.4%)
Denosumab	2(7.4%)
Strontium_ranelate	2(7.4%)
$Calcium_VitD$	4 (14.8%)
as.factor(journal_cod	de1)
NEJM	12 (44.4%)
Lancet	2(7.4%)
BMJ	1(3.7%)
JAMA	3 (11.1%)
Ann Intern Med	1(3.7%)
JBMR	1(3.7%)
JCEM	2(7.4%)
OI	4 (14.8%)
Other	1(3.7%)
as.factor(placebo)	
Active	3 (11.1%)
Placebo	24 (88.9%)
Sex	
Both	6(22.2%)
Men	2(7.4%)
Women	19 (70.4%)
no_rand	
Median $[Q1, Q3]$	1910 [1140, 2980]

```
table1(~ no_rand + active_sample + n_event + FI_final + FQ_final + as.factor(missing_fi), data = ori_st
```

(4.1.2) By analyses _

	Overall
	(N=128)
no_rand	
Median $[Q1, Q3]$	1960 [1360, 4090]
$active_sample$	
Median [Q1, Q3]	1770 [1050, 3660]
n_event	
Median [Q1, Q3]	84.0 [52.8, 208]
FI_final	
Median [Q1, Q3]	9.00 [4.00, 18.3]
FQ_final	
Median [Q1, Q3]	$0.00502 \ [0.00222, 0.00892]$
as.factor(missing_	_fi)
0	8 (6.3%)
1	77 (60.2%)
Missing	43 (33.6%)

Additional analyses for discussion:

table1(~ no_rand + active_sample + n_event + FI_final + FQ_final + as.factor(missing_fi) | as.factor(set

	0	1	Overall
	(N=128)	(N=17)	(N=145)
no_rand			
Mean (SD)	3010 (2390)	2110 (1220)	2900 (2300)
Median [Q1, Q3]	1960 [1360, 4090]	1650 [1200, 3270]	1960 [1220, 4090]
Median [min, max]	1960 [450, 7870]	1650 [549, 4090]	1960 [450, 7870]
active_sample			
Mean (SD)	2630 (2160)	1880 (1140)	2540 (2080)
Median [Q1, Q3]	1770 [1050, 3660]	1440 [1110, 2420]	1770 [1060, 3650]
Median [min, max]	1770 [339, 7810]	1440 [426, 4090]	1770 [339, 7810]
n _event			
Mean (SD)	161 (174)	186 (133)	164 (170)
Median [Q1, Q3]	84.0 [52.8, 208]	190 [41.0, 330]	91.0 [52.0, 223]
Median [min, max]	84.0 [10.0, 764]	190 [19.0, 375]	91.0 [10.0, 764]
FI_final			
Mean (SD)	16.4 (24.2)	18.1 (20.5)	16.6 (23.8)
Median [Q1, Q3]	9.00 [4.00, 18.3]	11.0 [4.00, 23.0]	9.00 [4.00, 19.0]
Median [min, max]	9.00 [1.00, 171]	11.0 [1.00, 77.0]	9.00 [1.00, 171]
FQ_final			
Mean (SD)	$0.00786 \; (0.0108)$	$0.0104 \ (0.00932)$	$0.00815 \; (0.0106)$
Median [Q1, Q3]	0.00502 [0.00222, 0.00892]	0.00609 [0.00337, 0.0186]	$0.00505 \ [0.00230, \ 0.00955]$
Median [min, max]	$0.00502 \ [0.000151, \ 0.0966]$	$0.00609 \ [0.000946, \ 0.0312]$	$0.00505 \ [0.000151, 0.0966]$
as.factor(missing_fi	i)		
0	8 (6.3%)	2 (11.8%)	10 (6.9%)
1	77 (60.2%)	9~(52.9%)	86 (59.3%)
Missing	43 (33.6%)	6 (35.3%)	49 (33.8%)

```
fi_sig$sensitive[fi_sig$sen_analysis == 1] = "Sensitivity/Posthoc"
  fi_sig$sensitive[fi_sig$sen_analysis == 0] = "Original"
#createTable(compareGroups(sensitive ~ no_rand + active_sample + n_event + FI_final + FQ_final + missin
```

(4.2) Table S2: Fragility of evidence for anti-fracture efficacy - Predefined sesnitivity analyses excluding the extended phases of trials

```
table1(~ no_rand + active_sample + n_event + FI_final + FQ_final + as.factor(missing_fi) | as.factor(fx
```

(4.2.1) Table S2 - Fracture sites:

	Any	Osteoporotic	Non-V
	(N=17)	(N=11)	(N=19
no_rand			
Median [Q1, Q3]	2030 [1470, 4090]	2690 [1500, 4090]	4090 [
$active_sample$			
Median [Q1, Q3]	2010 [1280, 3700]	2690 [1360, 3910]	3560 [
n_event			
Median [Q1, Q3]	231 [76.0, 409]	147 [50.0, 318]	168 [7]
FI_final			
Median [Q1, Q3]	10.0 [5.00, 22.0]	9.00 [4.50, 28.0]	3.00[2
\mathbf{FQ} _final			
Median [Q1, Q3]	$0.00714 \ [0.00209, \ 0.0109]$	$0.00662 \ [0.00185, \ 0.00745]$	0.0023
$as.factor(missing_$	_fi)		
0	1 (5.9%)	2(18.2%)	1 (5.3%
1	11 (64.7%)	7 (63.6%)	11 (57)
Missing	5(29.4%)	2 (18.2%)	7 (36.8

```
table1(~ no_rand + active_sample + n_event + FI_final + FQ_final + as.factor(missing_fi) | as.factor(in
```

(4.2.2) Table S2 - Interventions: $_$

	Bisphosphonates	PTH analog	Romos
	(N=47)	(N=26)	(N=26
no_rand			
Median $[Q1, Q3]$	1960 [1200, 2030]	1230 [1090, 1360]	4090 [4
active_sample Median [Q1, Q3]	1860 [725, 1980]	971 [880, 1270]	3910 [3
n_event Median [Q1, Q3]	73.0 [59.5, 141]	47.0 [34.3, 72.0]	168 [10
FI_final Median [Q1, Q3]	9.00 [4.00, 14.0]	7.50 [3.00, 13.0]	18.0 [7
\mathbf{FQ} _final			
Median [Q1, Q3]	$0.00537 \ [0.00301, \ 0.00891]$	$0.00741 \ [0.00273, \ 0.0130]$	0.0033
as.factor(missing_	_fi)		
0	5 (10.6%)	2(7.7%)	1 (3.8%
1	33 (70.2%)	8 (30.8%)	25 (96.
Missing	9 (19.1%)	16~(61.5%)	0 (0%)

```
table1(~ no_rand + active_sample + n_event + FI_final + FQ_final + as.factor(missing_fi) | as.factor(times)
```

(4.2.3) Table S2 - Timing of fracture assessment: $_$

>6-12m	>12-18m
(N=25)	(N=11)
1650 [1360, 4090]	1650 [641, 2090]
1390 [1160, 3700]	1280 [517, 1560]
65.0 [52.0, 128]	$48.0 \ [35.0, 68.0]$
5.00 [3.00, 9.00]	$7.00 \ [4.00, \ 10.0]$
$0.00222 \ [0.00147, 0.00505]$	0.00711 [0.00376
_fi)	
1 (4.0%)	0 (0%)
19 (76.0%)	8 (72.7%)
5 (20.0%)	3 (27.3%)
	(N=25) 1650 [1360, 4090] 1390 [1160, 3700] 65.0 [52.0, 128] 5.00 [3.00, 9.00] 0.00222 [0.00147, 0.00505] fi) 1 (4.0%) 19 (76.0%)

```
table1(~ no_rand + active_sample + n_event + FI_final + FQ_final + as.factor(missing_fi) | as.factor(jo
```

(4.2.4) Table S2 - Journal:

	NEJM	Lancet	BMJ
	(N=69)	(N=9)	(N=5)
no_rand			
Median [Q1, Q3]	4090 [1470, 7180]	1360 [1360, 2030]	2300 [1770, 23
$active_sample$			
Median $[Q1, Q3]$	3400 [1350, 6430]	1160 [1050, 2030]	2300 [1770, 23
n_event			
Median $[Q1, Q3]$	103 [48.0, 231]	91.0 [63.0, 100]	315 [262, 475]
FI_final			
Median [Q1, Q3]	10.0 [5.00, 26.0]	$11.0 \ [4.00, \ 15.0]$	16.0 [11.0, 22
FQ _final			
Median [Q1, Q3]	$0.00391 \ [0.00222, 0.00748]$	$0.00691 \ [0.00259, \ 0.0143]$	0.00695 [0.000
$as.factor(missing_$	_fi)		
0	6 (8.7%)	2(22.2%)	0 (0%)
1	45~(65.2%)	7 (77.8%)	$1\ (20.0\%)$
Missing	18 (26.1%)	0 (0%)	4 (80.0%)

table1(~ no_rand + active_sample + n_event + FI_final + FQ_final + as.factor(missing_fi) | sex, data =

(4.2.5) Table S2 - Sex:

	Both	Men	Women
	(N=13)	(N=9)	(N=106)
no_rand			
Median [Q1, Q3]	665 [578, 930]	$1200 \ [1200, \ 1470]$	2000 [1630, 4930]
$active_sample$			
Median [Q1, Q3]	479 [451, 661]	1130 [1130, 1350]	1950 [1280, 4360]
n_event			
Median [Q1, Q3]	44.0 [35.0, 60.0]	23.0 [21.0, 36.0]	102 [64.3, 248]
FI_final			
Median [Q1, Q3]	4.00 [2.00, 7.00]	3.00 [2.00, 4.00]	11.0 [5.00, 22.8]
\mathbf{FQ} _final			
Median [Q1, Q3]	$0.00514 \ [0.00443, \ 0.0107]$	$0.00222 \ [0.00177, \ 0.00296]$	0.00532 [0.00231,
$as.factor(missing_$	_fi)		
0	0 (0%)	0 (0%)	8 (7.5%)
1	8 (61.5%)	9 (100%)	60 (56.6%)
Missing	5 (38.5%)	0 (0%)	38 (35.8%)

table1(~ no_rand + active_sample + n_event + FI_final + FQ_final + as.factor(missing_fi) | placebo, dat

(4.2.6) Table S2 - Placebo:

Active	Placebo	Overall
(N=26)	(N=102)	(N=128)
4090 [1360, 4090]	1960 [1120, 5090]	1960 [1360,
3280 [1300, 3640]	1770 [885, 4810]	1770 [1050,
104 [53.8, 247]	77.5 [52.3, 176]	84.0 [52.8, 2
9.50 [5.00, 16.5]	8.00 [4.00, 18.8]	9.00 [4.00, 1
$0.00528 \ [0.00210, \ 0.00874]$	$0.00502 \ [0.00231, \ 0.00875]$	0.00502 [0.0
_fi)		
3 (11.5%)	5 (4.9%)	8~(6.3%)
$20 \ (76.9\%)$	57 (55.9%)	77~(60.2%)
3~(11.5%)	40 (39.2%)	43 (33.6%)
	(N=26) 4090 [1360, 4090] 3280 [1300, 3640] 104 [53.8, 247] 9.50 [5.00, 16.5] 0.00528 [0.00210, 0.00874] _fi) 3 (11.5%)	(N=26) (N=102) 4090 [1360, 4090] 1960 [1120, 5090] 3280 [1300, 3640] 1770 [885, 4810] 104 [53.8, 247] 77.5 [52.3, 176] 9.50 [5.00, 16.5] 8.00 [4.00, 18.8] 0.00528 [0.00210, 0.00874] 0.00502 [0.00231, 0.00875] fi) 5 (4.9%) 20 (76.9%) 57 (55.9%)

(4.3) Table S3: Fragility of evidence for anti-fracture efficacy in subgroup analyses- Predefined sensitivity analyses excluding the extended phases of the trial

(4.3.1) Fracture as the predefined primary endpoint Data-set

```
fx_prim2 = subset(ori_st, pri_endpoint == 1)

(4.3.1.1) Table S3.1 - Overall

table1(~ no_rand + active_sample + n_event + FI_final + FQ_final + as.factor(missing_fi), data = fx_printlements.
```

	Overall
	(N=28)
no_rand	
Median [Q1, Q3]	$1980 \ [1320, 4180]$
$active_sample$	
$\overline{\text{Median}}$ [Q1, Q3]	1730 [1010, 3780]
n_{event}	
Median [Q1, Q3]	111 [71.3, 225]
FI final	
Median [Q1, Q3]	14.5 [11.0, 27.8]
FQ final	
Median [Q1, Q3]	$0.00997 \ [0.00584, \ 0.0204]$
as.factor(missing_	_fi)
0	2(7.1%)
1	17 (60.7%)
Missing	9 (32.1%)

Additional analysis for discussion

table1(~ no_rand + active_sample + n_event + FI_final + FQ_final + as.factor(missing_fi) | fx_primary ,

	Primary endpoint	Secondary endpoint	Overall
	(N=28)	(N=100)	(N=128)
no_rand			
Mean (SD)	3050 (2430)	3000 (2390)	3010 (2390)
Median [Q1, Q3]	1980 [1320, 4180]	1960 [1360, 4090]	1960 [1360, 4090]
Median [min, max]	1980 [578, 7870]	1960 [450, 7870]	1960 [450, 7870]
$active_sample$			
Mean (SD)	2600 (2190)	2640 (2160)	2630 (2160)
Median [Q1, Q3]	1730 [1010, 3780]	1770 [1090, 3660]	1770 [1050, 3660]
Median [min, max]	1730 [451, 7390]	1770 [339, 7810]	1770 [339, 7810]
n_event			
Mean (SD)	175 (156)	158 (179)	161 (174)
Median [Q1, Q3]	$111 \ [71.3, 225]$	74.5 [50.3, 181]	84.0 [52.8, 208]
Median [min, max]	111 [34.0, 671]	74.5 [10.0, 764]	84.0 [10.0, 764]
\mathbf{FI} _final			
Mean (SD)	28.4 (38.0)	$13.0\ (17.5)$	16.4 (24.2)
Median [Q1, Q3]	14.5 [11.0, 27.8]	7.00 [3.00, 16.3]	9.00 [4.00, 18.3]
Median [min, max]	14.5 [1.00, 171]	7.00 [1.00, 111]	9.00 [1.00, 171]
\mathbf{FQ} _final			
Mean (SD)	$0.0137 \; (0.0108)$	$0.00621 \ (0.0103)$	$0.00786 \; (0.0108)$
Median [Q1, Q3]	$0.00997 \ [0.00584, \ 0.0204]$	$0.00354 \ [0.00205, \ 0.00717]$	$0.00502 \ [0.00222, \ 0.00892]$
Median [min, max]	$0.00997 \ [0.000567, 0.0368]$	$0.00354 \ [0.000151, \ 0.0966]$	$0.00502 \ [0.000151, \ 0.0966]$
$as.factor(missing_fi$	i)		
0	2 (7.1%)	6 (6.0%)	8 (6.3%)
1	17 (60.7%)	60 (60.0%)	77 (60.2%)
Missing	9 (32.1%)	34 (34.0%)	43 (33.6%)

 $\#createTable(compareGroups(fx_primary ~ no_rand + active_sample + n_event + FI_final + FQ_final + missingle + n_event + FQ_final + missingle + n_event + TQ_final +$

```
table1(~ no_rand + active_sample + n_event + FI_final + FQ_final + as.factor(missing_fi) | as.factor(fx
```

(4.3.1.2) Table S3.1 - Fracture sites:

	Any	Osteoporotic	Non-Ve
	(N=2)	(N=1)	(N=1)
no_rand			
Median [Q1, Q3]	3110 [2620, 3600]	2000 [2000, 2000]	5090 [5
$active_sample$			
Median [Q1, Q3]	2060 [1270, 2850]	1950 [1950, 1950]	4940 [4
n_event			
Median [Q1, Q3]	348 [289, 406]	312 [312, 312]	671 [67
\mathbf{FI} _final			
Median [Q1, Q3]	16.5 [11.8, 21.3]	33.0 [33.0, 33.0]	3.00[3]
FQ _final			
Median [Q1, Q3]	$0.0109 \ [0.00901, \ 0.0127]$	$0.0169 \ [0.0169, \ 0.0169]$	0.00060
as.factor(missing_	_fi)		
0	0 (0%)	1 (100%)	0 (0%)
1	2 (100%)	0 (0%)	0 (0%)
Missing	0 (0%)	0 (0%)	1 (100%

table1(~ no_rand + active_sample + n_event + FI_final + FQ_final + as.factor(missing_fi) | as.factor(in

(4.3.1.3) Table S3.1 - Interventions:

	Bisphosphonates	PTH analog	Romo
	(N=13)	(N=7)	(N=4)
no_rand			
Median [Q1, Q3]	1960 [1200, 2130]	1360 [1090, 1640]	5640 [
$active_sample$			
Median [Q1, Q3]	1950 [690, 1950]	1050 [887, 1410]	5150 [
n_event			
Median [Q1, Q3]	140 [110, 223]	60.0 [42.0, 84.5]	163 [9
FI_final			
Median [Q1, Q3]	13.0 [11.0, 20.0]	13.0 [12.0, 19.0]	33.0 [2]
\mathbf{FQ} _final			
Median [Q1, Q3]	0.0107 [0.00666, 0.0203]	$0.0143 \ [0.00849, \ 0.0271]$	0.0065
as.factor(missing_	_fi)		
0	1(7.7%)	1 (14.3%)	0 (0%)
1	9~(69.2%)	3(42.9%)	4 (100
Missing	3 (23.1%)	3 (42.9%)	0 (0%)

table1(~ no_rand + active_sample + n_event + FI_final + FQ_final + as.factor(missing_fi) | as.factor(times)

(4.3.1.4) Table S3.1 - Timing of fracture assessment:

	>6-12m	>12-18 m
	(N=1)	(N=5)
no_rand		
Median [Q1, Q3]	7180 [7180, 7180]	1650 [1640,
$active_sample$		
Median [Q1, Q3]	$6640 \ [6640, 6640]$	1430 [1400,
n_event		
Median [Q1, Q3]	$75.0 \ [75.0, \ 75.0]$	48.0 [36.0, 5
FI _final		
Median [Q1, Q3]	24.0 [24.0, 24.0]	11.0 [7.00, 1
\mathbf{FQ} _final		
Median [Q1, Q3]	$0.00361 \ [0.00361, \ 0.00361]$	0.00770 [0.0]
$as.factor(missing_{_}$	_fi)	
0	0 (0%)	0 (0%)
1	1 (100%)	4 (80.0%)
Missing	0 (0%)	$1\ (20.0\%)$

table1(~ no_rand + active_sample + n_event + FI_final + FQ_final + as.factor(missing_fi) | as.factor(jo

(4.3.1.5) Table S3.1 - Journal:

	NEJM	Lancet	JAMA
	(N=14)	(N=2)	(N=4)
no_rand			
Median [Q1, Q3]	3680 [1740, 7180]	1690 [1530, 1860]	1640 [1640, 23
$active_sample$			
Median [Q1, Q3]	2800 [1210, 6250]	1500 [1270, 1720]	1410 [1390, 21
n_event			
Median [Q1, Q3]	181 [83.8, 341]	158 [125, 190]	78.5 [35.5, 129
FI_final			
Median [Q1, Q3]	25.5 [14.8, 41.5]	27.5 [21.3, 33.8]	12.0 [11.0, 13.
\mathbf{FQ} _final			
Median [Q1, Q3]	$0.0130 \ [0.00550, \ 0.0240]$	$0.0174 \ [0.0159, \ 0.0190]$	0.00785 [0.006
$as.factor(missing_$	_fi)		
0	1 (7.1%)	1 (50.0%)	0 (0%)
1	9 (64.3%)	1 (50.0%)	3(75.0%)
Missing	4 (28.6%)	0 (0%)	$1\ (25.0\%)$

table1(~ no_rand + active_sample + n_event + FI_final + FQ_final + as.factor(missing_fi) | sex, data =

(4.3.1.6) Table S3.1 - Sex:

Women
(N=24)
2010 [1640, 4600
1950 [1390, 4330
117 [85.3, 245]
17.5 [12.8, 34.8]
0532] 0.00864 [0.00554
2 (8.3%)
14 (58.3%)
8 (33.3%)
0532] 0 2 1

table1(~ no_rand + active_sample + n_event + FI_final + FQ_final + as.factor(missing_fi) | placebo, data

(4.3.1.7) Table S3.1 - Placebo:

	Active	Placebo	Overall
	(N=5)	(N=23)	(N=28)
no_rand			
Median [Q1, Q3]	1650 [1640, 4090]	2000 [1150, 4760]	1980 [1320,
$active_sample$			_
Median [Q1, Q3]	1430 [1400, 3640]	1770 [887, 4530]	1730 [1010,
n_event			
Median [Q1, Q3]	92.0 [36.0, 221]	112 [79.0, 227]	111 [71.3, 2
FI_final			
Median [Q1, Q3]	15.0 [13.0, 26.0]	14.0 [9.00, 29.0]	14.5 [11.0, 1]
\mathbf{FQ} _final			
Median [Q1, Q3]	$0.00928 \ [0.00770, \ 0.0115]$	0.0107 [0.00472, 0.0232]	0.00997 [0.0
$as.factor(missing_$	_fi)		
0	1 (20.0%)	1 (4.3%)	2(7.1%)
1	4 (80.0%)	13 (56.5%)	17 (60.7%)
Missing	0 (0%)	9 (39.1%)	9 (32.1%)

(4.3.2) Analyses with P< 0.001 Data-set

```
p_sig2 = subset(ori_st, Pval_screen<=0.001)</pre>
```

```
table1(~ no_rand + active_sample + n_event + FI_final + FQ_final + as.factor(missing_fi), data = p_sig2
```

(4.3.2.1) Table S3.2 - Overall:

	Overall
	(N=38)
no_rand	
Median [Q1, Q3]	4090 [1640, 7180]
$active_sample$	
Median [Q1, Q3]	3600 [1280, 6620]
n_event	
Median [Q1, Q3]	108 [77.5, 298]
FI_final	
Median [Q1, Q3]	26.5 [17.5, 41.5]
\mathbf{FQ} _final	
Median [Q1, Q3]	$0.0104 \ [0.00655, \ 0.0191]$
$as.factor(missing_{_}$	_fi)
0	4 (10.5%)
1	22 (57.9%)
Missing	12 (31.6%)

Additional analysis for discussion:

	Highly significant	Significant	Overall
	(N=38)	(N=90)	(N=128)
no_rand			
Mean (SD)	4180 (2870)	2510 (1970)	3010 (2390)
Median [Q1, Q3]	4090 [1640, 7180]	1840 [1200, 3890]	1960 [1360, 4090]
Median [min, max]	4090 [578, 7870]	1840 [450, 7870]	1960 [450, 7870]
$active_sample$			
Mean (SD)	3710 (2610)	2180 (1760)	2630 (2160)
Median [Q1, Q3]	3600 [1280, 6620]	1660 [902, 3100]	1770 [1050, 3660]
Median [min, max]	3600 [451, 7810]	1660 [339, 6670]	1770 [339, 7810]
n_event			
Mean (SD)	211 (201)	140 (158)	161 (174)
Median [Q1, Q3]	108 [77.5, 298]	69.5 [44.0, 153]	84.0 [52.8, 208]
Median [min, max]	108 [34.0, 764]	69.5 [10.0, 691]	84.0 [10.0, 764]
\mathbf{FI} _final			
Mean (SD)	38.5 (34.8)	7.01 (5.92)	16.4 (24.2)
Median [Q1, Q3]	26.5 [17.5, 41.5]	5.00 [3.00, 10.0]	9.00 [4.00, 18.3]
Median [min, max]	26.5 [9.00, 171]	5.00 [1.00, 29.0]	9.00 [1.00, 171]
\mathbf{FQ} _final			
Mean (SD)	$0.0157 \ (0.0165)$	$0.00456 \ (0.00404)$	$0.00786 \; (0.0108)$
Median [Q1, Q3]	$0.0104 \ [0.00655, \ 0.0191]$	$0.00314 \ [0.00163, \ 0.00665]$	$0.00502 \ [0.00222, \ 0.00892]$
Median [min, max]	0.0104 [0.00230, 0.0966]	$0.00314 \ [0.000151, \ 0.0203]$	$0.00502 \ [0.000151, \ 0.0966]$
as.factor(missing_fi	i)		
0	4 (10.5%)	4 (4.4%)	8 (6.3%)
1	22~(57.9%)	55 (61.1%)	77 (60.2%)
Missing	12 (31.6%)	31 (34.4%)	43 (33.6%)

table1(~ no_rand + active_sample + n_event + FI_final + FQ_final + as.factor(missing_fi) | as.factor(fx

(4.3.2.2) Table S3.2 - Fracture sites:

	Any	Osteoporotic	Nor
	(N=2)	(N=5)	(N=
no_rand			
Median [Q1, Q3]	7460 [7320, 7600]	4090 [2000, 4090]	718
$active_sample$			
Median [Q1, Q3]	6620 [6580, 6660]	3530 [1950, 3840]	665
n_event			
Median [Q1, Q3]	505 [376, 635]	323 [312, 355]	225
FI_final			
Median [Q1, Q3]	62.5 [49.3, 75.8]	30.0 [26.0, 33.0]	23.0
\mathbf{FQ} _final			
Median [Q1, Q3]	$0.00949 \ [0.00743, \ 0.0115]$	$0.00754 \ [0.00736, \ 0.0169]$	0.00
$as.factor(missing_{_}$	_fi)		
0	0 (0%)	2 (40.0%)	0 (0
1	2(100%)	3~(60.0%)	3 (1
Missing	0 (0%)	0 (0%)	0 (0

table1(~ no_rand + active_sample + n_event + FI_final + FQ_final + as.factor(missing_fi) | as.factor(in

(4.3.2.3) Table S3.2 - Interventions:

	Bisphosphonates	PTH analog	Romose
	(N=10)	(N=10)	(N=12)
no_rand			
Median [Q1, Q3]	4880 [1970, 7740]	1230 [1090, 1570]	7180 [4
active_sample	2010 [1050 (2040]	071 [007 1010]	CC 40 [9
Median [Q1, Q3]	3810 [1950, 6240]	971 [885, 1210]	6640 [3
n_event	1.05 [1.01 .000]	40 5 [44 5 05 0]	222 [10
Median [Q1, Q3]	167 [101, 380]	49.5 [44.5, 85.3]	223 [10
FI_final			
Median [Q1, Q3]	39.0 [23.3, 42.8]	16.0 [13.0, 20.8]	33.0 [25]
FQ_final			
Median [Q1, Q3]	$0.0109 \ [0.00694, \ 0.0197]$	$0.0177 \ [0.0105, \ 0.0255]$	0.00594
as.factor(missing_	_fi)		
0	1 (10.0%)	2(20.0%)	1 (8.3%
1	8 (80.0%)	3 (30.0%)	11 (91.
Missing	1 (10.0%)	5 (50.0%)	0 (0%)

table1(~ no_rand + active_sample + n_event + FI_final + FQ_final + as.factor(missing_fi) | as.factor(times)

(4.3.2.4) Table S3.2 - Timing of fracture assessment:

>6-12m	>12-18m
(N=5)	(N=4)
4090 [1650, 7180]	1640 [1370]
3980 [1390, 6640]	1330 [1060]
76.0 [75.0, 128]	40.0 [35.5,
24.0 [19.0, 27.0]	12.0 [10.5,
$0.00754 \ [0.00391, \ 0.00828]$	0.00849 [0.
_fi)	
1 (20.0%)	0 (0%)
3 (60.0%)	3 (75.0%)
1 (20.0%)	1(25.0%)
	(N=5) 4090 [1650, 7180] 3980 [1390, 6640] 76.0 [75.0, 128] 24.0 [19.0, 27.0] 0.00754 [0.00391, 0.00828] fi) 1 (20.0%) 3 (60.0%)

table1(~ no_rand + active_sample + n_event + FI_final + FQ_final + as.factor(missing_fi) | as.factor(jo

(4.3.2.5) Table S3.2 - Journal:

	NEJM	Lancet	JAMA
	(N=27)	(N=3)	(N=4)
no_rand			
Median [Q1, Q3]	7180 [3050, 7740]	1360 [1360, 1690]	1640 [1640, 1
$active_sample$			
Median [Q1, Q3]	5680 [2740, 6650]	1050 [1050, 1500]	1370 [1310, 1
n_event			
Median [Q1, Q3]	168 [84.5, 337]	100 [96.0, 162]	40.0 [35.5, 47]
FI_final			
Median [Q1, Q3]	36.0 [23.5, 42.5]	17.0 [16.0, 28.5]	11.0 [10.5, 11
\mathbf{FQ} _final			
Median [Q1, Q3]	$0.00754 \ [0.00562, \ 0.0177]$	0.0162 [0.0153, 0.0184]	0.00799 [0.00
$as.factor(missing_{_}$	_fi)		
0	2(7.4%)	2(66.7%)	0 (0%)
1	16 (59.3%)	1 (33.3%)	4 (100%)
Missing	9 (33.3%)	0 (0%)	0 (0%)

table1(~ no_rand + active_sample + n_event + FI_final + FQ_final + as.factor(missing_fi) | sex, data = 1

(4.3.2.6) Table S3.2 - Sex:

	Both	Women	Overall
	(N=1)	(N=37)	(N=38)
no_rand			
Median [Q1, Q3]	578 [578, 578]	4090 [1650, 7180]	4090 [1640, 7180]
$active_sample$			
Median [Q1, Q3]	451 [451, 451]	3660 [1330, 6640]	3600 [1280, 6620]
n_event			
Median [Q1, Q3]	48.0 [48.0, 48.0]	110 [82.0, 312]	108 [77.5, 298]
FI_final			
Median [Q1, Q3]	13.0 [13.0, 13.0]	27.0 [19.0, 42.0]	26.5 [17.5, 41.5]
\mathbf{FQ} _final			
Median [Q1, Q3]	$0.0288 \ [0.0288, \ 0.0288]$	$0.00928 \ [0.00653, \ 0.0185]$	$0.0104 \ [0.00655, 0]$
$as.factor(missing_{_}$	_fi)		
0	0 (0%)	4 (10.8%)	4~(10.5%)
1	0 (0%)	22~(59.5%)	22~(57.9%)
Missing	1 (100%)	$11\ (29.7\%)$	12 (31.6%)

table1(~ no_rand + active_sample + n_event + FI_final + FQ_final + as.factor(missing_fi) | placebo, dat

(4.3.2.7) Table S3.2 - Placebo:

	Active	Placebo	Overall
	(N=10)	(N=28)	(N=38)
no_rand			
Median [Q1, Q3]	$2870 \ [1640, 4090]$	$7180 \ [1640, 7740]$	4090 [1640, '
$active_sample$			
Median [Q1, Q3]	2480 [1300, 3660]	$5680 \ [1280, 6650]$	3600 [1280, 6
n_event			
Median [Q1, Q3]	161 [56.0, 306]	108 [80.5, 263]	108 [77.5, 29
FI_final			
Median [Q1, Q3]	21.5 [13.5, 39.0]	30.0 [20.8, 40.5]	26.5 [17.5, 4]
\mathbf{FQ} _final			
Median [Q1, Q3]	$0.0104 \ [0.00758, \ 0.0140]$	$0.0109 \ [0.00574, \ 0.0249]$	0.0104 [0.000
as.factor(missing_fi)			
0	3(30.0%)	1 (3.6%)	4~(10.5%)
1	7 (70.0%)	15 (53.6%)	22 (57.9%)
Missing	0 (0%)	12 (42.9%)	12 (31.6%)