Experiment No. 3

Apply Decision Tree Algorithm on Adult Census Income

Dataset and analyze the performance of the model

Date of Performance: 16/08/2023

Date of Submission: 13/09/2023

Vidyavardhini's College of Engineering & Technology

Department of Computer Engineering

Aim: Apply Decision Tree Algorithm on Adult Census Income Dataset and analyze the performance of the model.

Objective: To perform various feature engineering tasks, apply Decision Tree Algorithm on the given dataset and maximize the accuracy, Precision, Recall, F1 score. Improve the performance by performing different data engineering and feature engineering tasks.

Theory:

Decision Tree is the most powerful and popular tool for classification and prediction. A Decision tree is a flowchart-like tree structure, where each internal node denotes a test on an attribute, each branch represents an outcome of the test, and each leaf node (terminal node) holds a class label.

Dataset:

Predict whether income exceeds \$50K/yr based on census data. Also known as "Adult" dataset.

Attribute Information:

Listing of attributes:

CSL701: Machine Learning Lab

Vidyavardhini's College of Engineering & Technology

Department of Computer Engineering

>50K, <=50K.

age: continuous.

workclass: Private, Self-emp-not-inc, Self-emp-inc, Federal-gov, Local-gov, State-gov, Without-pay, Never-worked.

fnlwgt: continuous.

education: Bachelors, Some-college, 11th, HS-grad, Prof-school, Assoc-acdm, Assoc-voc, 9th, 7th-8th, 12th, Masters, 1st-4th, 10th, Doctorate, 5th-6th, Preschool.

education-num: continuous.

marital-status: Married-civ-spouse, Divorced, Never-married, Separated, Widowed, Married-spouse-absent, Married-AF-spouse.

occupation: Tech-support, Craft-repair, Other-service, Sales, Exec-managerial, Prof-specialty, Handlers-cleaners, Machine-op-inspct, Adm-clerical, Farming-fishing, Transport-moving, Priv-house-serv, Protective-serv, Armed-Forces.

relationship: Wife, Own-child, Husband, Not-in-family, Other-relative, Unmarried.

race: White, Asian-Pac-Islander, Amer-Indian-Eskimo, Other, Black.

sex: Female, Male.

capital-gain: continuous.

capital-loss: continuous.

hours-per-week: continuous.

native-country: United-States, Cambodia, England, Puerto-Rico, Canada, Germany, Outlying-US(Guam-USVI-etc), India, Japan, Greece, South, China, Cuba, Iran, Honduras,

CSL701: Machine Learning Lab

Vidyavardhini's College of Engineering & Technology

Department of Computer Engineering

Philippines, Italy, Poland, Jamaica, Vietnam, Mexico, Portugal, Ireland, France, Dominican-Republic, Laos, Ecuador, Taiwan, Haiti, Columbia, Hungary, Guatemala, Nicaragua, Scotland, Thailand, Yugoslavia, El-Salvador, Trinadad&Tobago, Peru, Hong, Holand-Netherlands.

Conclusion:

- 1. Discuss about the how categorical attributes have been dealt with during data pre-processing.
 - Categorical attributes, also known as categorical variables or features, are those that represent discrete and distinct categories or groups. These attributes are common in data across various domains, such as gender, color, city names, and more.Label encoding is a simple technique where each category is assigned a unique integer label. For example, if you have a "color" attribute with categories like "red," "blue," and "green," you can encode them as 0, 1, and 2, respectively.Here Label encoder is used to convert categorical to numerical.
- 2. Discuss the hyper-parameter tuning done based on the decision tree obtained. Hyperparameter tuning is a critical step in optimizing the performance of a decision tree model. Decision trees have several hyperparameters that control their structure and behavior, and tuning these hyperparameters can help improve the model's accuracy, generalization, and robustness.Max depth controls the maximum depth of the tree. A deeper tree can capture more complex relationships in the data but is prone to overfitting.We have used max depth as 5.
- 3. Comment on the accuracy, confusion matrix, precision, recall and F1 score obtained.

Accuracy obtained in the decision tree model is 85%. A confusion matrix is a tabular representation used in machine learning to evaluate the performance of a classification model, especially for binary classification problems. Precision Obtain is 0.98 , recall obtained is 0.27 and f1 score is 0.43.

CSL701: Machine Learning Lab

adultcensus

Adult Census Income Dataset

```
[]: import pandas as pd
import numpy as np
import seaborn as sb
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score
from sklearn.tree import DecisionTreeClassifier
import matplotlib.pyplot as plt
```

```
[]: df=pd.read_csv("/content/adult.csv",error_bad_lines=False, engine="python")
```

<ipython-input-265-8dbf926b9719>:1: FutureWarning: The error_bad_lines argument
has been deprecated and will be removed in a future version. Use on_bad_lines in
the future.

df=pd.read_csv("/content/adult.csv",error_bad_lines=False, engine="python")

[]: print(df)

		rrowlrol o a a	£1	~+	odu oo+i	on o	duantion :		marital.status	
•	_	workclass	fnlw	_	educati		ducation.r			\
0	90	?	770	53	HS-gr			9	Widowed	
1	82	Private	1328	70	HS-gr	ad		9	Widowed	
2	66	?	1860	61	Some-colle	ge		10	Widowed	
3	54	Private	1403	59	7th-8	th		4	Divorced	
4	41	Private	2646	63	Some-colle	ge		10	Separated	
					•••				•••	
32556	22	Private	3101	52	Some-colle	ge		10	Never-married	
32557	27	Private	2573	02	Assoc-ac	dm		12	Married-civ-spouse	
32558	40	Private	1543	74	HS-gr	ad		9	Married-civ-spouse	
32559	58	Private	1519	10	HS-gr	ad		9	Widowed	
32560	22	Private	2014	90	HS-gr	ad		9	Never-married	
		occupat	ion	re	lationship	race	e sex	ca	pital.gain \	
0					-in-family	White			0	
1	E	xec-manager			-in-family	White	e Female		0	
2		O	?		Unmarried	Blac	k Female			
3	Machine-op-inspct			Unmarried	White		0			
		-	-							

4	Prof-specialty	Own-child	White Fer	nale	0
	•••		•••		
32556	Protective-serv	Not-in-family	White N	Male	0
32557	Tech-support	Wife	White Fem	nale	0
32558	Machine-op-inspct	: Husband	White M	Male	0
32559	Adm-clerical	Unmarried	White Fem	nale	0
32560	Adm-clerical	Own-child	White M	Male	0
	capital.loss how	rs.per.week nat	ive.country	income	
0	4356	40 Un	ited-States	<=50K	
1	4356	18 Un	ited-States	<=50K	
2	4356	40 Un	ited-States	<=50K	
3	3900	40 Un	ited-States	<=50K	
4	3900	40 Un	ited-States	<=50K	
•••	***	•••	•••		
32556	0	40 Un	ited-States	<=50K	
32557	0	38 Un	ited-States	<=50K	
32558	0	40 Un	ited-States	>50K	
32559	0	40 Un	ited-States	<=50K	
32560	0	20 Un	ited-States	<=50K	

[32561 rows x 15 columns]

[]: df.describe

[]:	<box< td=""><td>metho</td><td>od NDFrame</td><td>.des</td><td>crib</td><td>e of</td><td>age w</td><td>orkclass</td><td>fn</td><td>lwgt educati</td><td>on</td></box<>	metho	od NDFrame	.des	crib	e of	age w	orkclass	fn	lwgt educati	on
	education.num marital.		l.st	atus \							
	0	90	?	77	053	HS-gr	ad		9	Wido	wed
	1	82	Private	132	870	HS-gr	ad		9	Wido	wed
	2	66	?	186	061	Some-colle	ge		10	Wido	wed
	3	54	Private	140	359	7th-8	th		4	Divor	ced
	4	41	Private	264	663	Some-colle	ge		10	Separa	ted
						•••	•••			•••	
	32556	22	Private	310	152	Some-colle	ge		10	Never-marr	ied
	32557	27	Private	257	302	Assoc-ac	dm		12	Married-civ-spo	use
	32558	40	Private	154	374	HS-gr	ad		9	Married-civ-spo	use
	32559	58	Private	151	910	HS-gr	ad		9	Wido	wed
	32560	22	Private	201	490	HS-gr	ad		9	Never-marr	ied
			occupat	ion	re	lationship	race	e sex	ca	pital.gain \	
	0		•	?		-in-family	White	Female		0	
	1	Exe	ec-manager	ial	Not	-in-family	White	Female		0	
	2		<u> </u>	?		Unmarried	Black	Female		0	
	3	Machi	ine-op-ins	pct		Unmarried	White	Female		0	
	4		rof-specia	-		Own-child	White	Female		0	
	•••		- 	•			•••				
	32556	Pro	otective-s	erv	Not	-in-family	White	Male		0	

32557	Tech-suppo	ort	Wife	White Fe	male	0
32558	Machine-op-insp	pct Hus	band	White	Male	0
32559	Adm-cleric	cal Unmar	ried	White Fe	male	0
32560	Adm-cleric	cal Own-cl	hild	White	Male	0
	capital.loss h	hours.per.week	nati	ve.country	income	
0	4356	40	Uni	ted-States	<=50K	
1	4356	18	Uni	ted-States	<=50K	
2	4356	40	Uni	ted-States	<=50K	
3	3900	40	Uni	ted-States	<=50K	
4	3900	40	Uni	ted-States	<=50K	
•••	•••	•••		•••		
32556	0	40	Uni	ted-States	<=50K	
32557	0	38	Uni	ted-States	<=50K	
32558	0	40	Uni	ted-States	>50K	
32559	0	40	Uni	ted-States	<=50K	
32560	0	20	Uni	ted-States	<=50K	
_						

[32561 rows x 15 columns]>

[]: df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 32561 entries, 0 to 32560
Data columns (total 15 columns):

#	Column	Non-Null Count	Dtype
0	age	32561 non-null	int64
1	workclass	32561 non-null	object
2	fnlwgt	32561 non-null	int64
3	education	32561 non-null	object
4	education.num	32561 non-null	int64
5	marital.status	32561 non-null	object
6	occupation	32561 non-null	object
7	relationship	32561 non-null	object
8	race	32561 non-null	object
9	sex	32561 non-null	object
10	capital.gain	32561 non-null	int64
11	capital.loss	32561 non-null	int64
12	hours.per.week	32561 non-null	int64
13	native.country	32561 non-null	object
14	income	32561 non-null	object

dtypes: int64(6), object(9)
memory usage: 3.7+ MB

```
[]: df[df == '?'] = np.nan
df.info()
```

int64 0 32561 non-null age 1 workclass 30725 non-null object 2 fnlwgt 32561 non-null int64 3 education 32561 non-null object 4 education.num 32561 non-null int64 5 marital.status 32561 non-null object 6 occupation 30718 non-null object 7 relationship 32561 non-null object 8 object race 32561 non-null 9 sex 32561 non-null object 10 capital.gain 32561 non-null int64 11 capital.loss 32561 non-null int64 12 hours.per.week 32561 non-null int64 13 native.country 31978 non-null object 14 income 32561 non-null object

dtypes: int64(6), object(9)

memory usage: 3.7+ MB

[]: df.isnull().sum()

```
[]: age
                            0
     workclass
                         1836
     fnlwgt
                            0
     education
                            0
     education.num
                            0
                            0
     marital.status
                         1843
     occupation
     relationship
                            0
                            0
     race
                            0
     sex
                            0
     capital.gain
     capital.loss
                            0
                            0
     hours.per.week
     native.country
                          583
     income
                            0
     dtype: int64
```

```
[]: max_category = df['workclass'].value_counts().idxmax()
    df['workclass'].fillna(max_category, inplace=True)
    max_category = df['occupation'].value_counts().idxmax()
    df['occupation'].fillna(max_category, inplace=True)
    max_category = df['native.country'].value_counts().idxmax()
```

```
df['native.country'].fillna(max_category, inplace=True)
[]: df.isnull().sum()
[]: age
                       0
     workclass
                       0
     fnlwgt
                       0
     education
                       0
     education.num
                       0
    marital.status
                       0
    occupation
                       0
    relationship
                       0
                       0
    race
                       0
     sex
     capital.gain
                       0
                       0
     capital.loss
    hours.per.week
                       0
                       0
     native.country
     income
                       0
     dtype: int64
[]: sb.histplot(df, x='age', hue='income', bins= 32)
[]: <Axes: xlabel='age', ylabel='Count'>
```



```
[]: fig=plt.figure(figsize=(10,5))
sb.countplot(data = df, x = 'workclass', hue = 'income')
```

[]: <Axes: xlabel='workclass', ylabel='count'>


```
[]: sb.countplot(data = df, x = 'education', hue = 'income') plt.tick_params(axis='x', rotation=90)
```



```
[]: df.hist(bins=10, figsize=(10, 10)) plt.show()
```



```
[]: sb.countplot(x = "race", data=df);
```


[]: Text(0.5, 1.0, 'income')

[]: corr=df.corr()
sb.heatmap(corr,annot=True)

<ipython-input-279-5b574c6aa484>:1: FutureWarning: The default value of
numeric_only in DataFrame.corr is deprecated. In a future version, it will
default to False. Select only valid columns or specify the value of numeric_only
to silence this warning.

corr=df.corr()

[]: <Axes: >


```
[]: df=df.drop(columns='race')
    df=df.drop(columns='fnlwgt')
    df=df.drop(columns='education.num')
    df=df.drop(columns='relationship')
    df=df.drop(columns='native.country')
    # df=df.drop(columns='marital.status')
[]: from sklearn.preprocessing import LabelEncoder
```

```
[]: labelencoder_x=LabelEncoder()
    df ["workclass"] = labelencoder_x.fit_transform(df ["workclass"])
    df ["education"] = labelencoder_x.fit_transform(df ["education"])

# df ["relationship"] = labelencoder_x.fit_transform(df ["relationship"])

df ["occupation"] = labelencoder_x.fit_transform(df ["occupation"])

df ["sex"] = labelencoder_x.fit_transform(df ["sex"])

# df ["native.country"] = labelencoder_x.fit_transform(df ["native.country"])

df ["income"] = labelencoder_x.fit_transform(df ["income"])

df ["marital.status"] = labelencoder_x.fit_transform(df ["marital.status"])
```

```
[ ]: x=df.drop("income",axis=1)
y=df["income"]
```

[]: df.head(20)

[]:	age	workclass	education	marital.status	occupation	sex	capital.gain	\
0	90	3	11	6	9	0	0	
1	82	3	11	6	3	0	0	
2	66	3	15	6	9	0	0	
3	54	3	5	0	6	0	0	
4	41	3	15	5	9	0	0	
5	34	3	11	0	7	0	0	
6	38	3	0	5	0	1	0	
7	74	6	10	4	9	0	0	
8	68	0	11	0	9	0	0	
9	41	3	15	4	2	1	0	
10	45	3	10	0	9	0	0	
11	38	5	14	4	9	1	0	
12	52	3	9	6	7	0	0	
13	32	3	12	5	3	1	0	
14	51	3	10	4	9	1	0	
15	46	3	14	0	9	1	0	
16	45	3	1	0	13	1	0	
17	57	3	12	0	3	1	0	
18	22	3	7	4	5	1	0	
19	34	3	9	5	11	1	0	

	capital.loss	hours.per.week	income
0	4356	40	0
1	4356	18	0
2	4356	40	0
3	3900	40	0
4	3900	40	0
5	3770	45	0
6	3770	40	0
7	3683	20	1
8	3683	40	0
9	3004	60	1
10	3004	35	1
11	2824	45	1
12	2824	20	1
13	2824	55	1
14	2824	40	1
15	2824	40	1
16	2824	76	1
17	2824	50	1
18	2824	40	1

```
[]: x_train,x_test,y_train,y_test=train_test_split(x,y,random_state=0,test_size=0.3)
[]: from sklearn import tree
     from sklearn.tree import DecisionTreeClassifier
     from sklearn.metrics import accuracy_score, precision_score, recall_score,

¬f1_score,classification_report
     from sklearn.ensemble import RandomForestClassifier
[]: dt=DecisionTreeClassifier(max_depth=5)
     dt.fit(x_train,y_train)
[ ]: DecisionTreeClassifier(max_depth=5)
[]: features = list(df.columns[1:])
     features
[]: ['workclass',
      'education',
      'marital.status',
      'occupation',
      'sex',
      'capital.gain',
      'capital.loss',
      'hours.per.week',
      'income']
[]: y_dtp=dt.predict(x_test)
[]: print(classification_report(y_test,y_dtp))
                  precision
                               recall f1-score
                                                   support
               0
                       0.81
                                 1.00
                                           0.90
                                                      7410
                       0.98
                                 0.27
                                            0.43
                                                      2359
                                            0.82
                                                      9769
        accuracy
                       0.90
                                 0.64
                                            0.66
                                                      9769
       macro avg
    weighted avg
                       0.85
                                 0.82
                                           0.78
                                                      9769
[]: rf=RandomForestClassifier(random_state=1)
     rf.fit(x_train,y_train)
     y_rfp=rf.predict(x_test)
[]: print('Random Forest : ',accuracy_score(y_test,y_rfp)*100)
```

19

2824

50

1

Random Forest: 84.58388780837342

[]: !pip install my-package

Requirement already satisfied: my-package in /usr/local/lib/python3.10/dist-packages (0.0.0)

[]: !pip install pydotplus

Requirement already satisfied: pydotplus in /usr/local/lib/python3.10/dist-packages (2.0.2)

Requirement already satisfied: pyparsing>=2.0.1 in /usr/local/lib/python3.10/dist-packages (from pydotplus) (3.1.1)

[]: from IPython.display import Image from six import StringIO from sklearn.tree import export_graphviz import pydotplus,graphviz

[]: !pip install graphviz

Requirement already satisfied: graphviz in /usr/local/lib/python3.10/dist-packages (0.20.1)

```
[]: dot_data = StringIO()
    export_graphviz(dt, out_file=dot_data,
    feature_names=features, filled=True,rounded=True)
    graph = pydotplus.graph_from_dot_data(dot_data.getvalue())
    Image(graph.create_png())
```


