UNIVERSITATEA POLITEHNICA DIN BUCUREȘTI

Facultatea	1		

Numărul legitimației de bancă	
Numele	
Prenumele tatălui	
Prenumele	

CHESTIONAR DE CONCURS

DISCIPLINA: Algebră și Elemente de Analiză Matematică A

VARIANTA **A**

- 1. Să se determine abscisele punctelor de inflexiune ale funcției $f: \mathbb{R} \longrightarrow \mathbb{R}$, $f(x) = \ln(x^2 + 1)$. (4 pct.) a) $\{-1\}$; b) $\{-1,1\}$; c) $\{0\}$; d) nu există; e) $\{0,1\}$; f) $\{1\}$.
- 2. Fie funcția $f: \mathbb{R} \longrightarrow \mathbb{R}$, $f(x) = \arccos \frac{1-x^2}{1+x^2} + 2 \operatorname{arctg} x$. Dacă A este imaginea funcției f, iar F este primitiva lui f care se anulează în x = 0, atunci: (4 pct.)
 - a) $A = [-\pi, \pi), F(1) = \pi + \ln 2$; b) $A = [-\pi, 2\pi), F(1) = \pi \ln \sqrt{2}$; c) $A = [0, \pi], F(1) = \pi + \ln 4$;
 - d) $A = [0, \pi), F(1) = \pi \ln 2$; e) $A = (-\pi, \pi), F(1) = \pi + \ln \sqrt{2}$; f) $A = [0, 2\pi), F(1) = \pi 2 \ln 2$.
- 3. Fie $f: \mathbb{R} \longrightarrow \mathbb{R}$, $f(x) = \frac{2}{x^2 + 1}$. Să se determine primitiva funcției f care se anulează în x = 0. (4 pct.)
 - a) $\frac{x}{x^2+1}$; b) $\frac{1}{x^3+x}$; c) $2 \arctan x$; d) $2 \arcsin x$; e) x^2 ; f) $\ln(x^2+1)$.
- 4. Fie legea de compoziție definită pe \mathbb{R} prin x * y = x(1-y) + y(1-x). Să se determine elementul neutru. (4 pct.)
 - a) 2; b) -2e; c) 0; d) 1; e) nu există; f) -1.
- 5. Fie funcția $f: \mathbb{C} \longrightarrow \mathbb{C}$, $f(z) = 1 + z + z^2 + z^3 + z^4$. Să se calculeze f(i). (4 pct.) a) 1+i; b) 0; c) i; d) 1-i; e) -i; f) 1.
- 6. Fie $A = \begin{pmatrix} 1 & 0 \\ 1 & 2 \end{pmatrix}$. Să se determine matricea $B = \frac{1}{2}(3I_2 A)$, unde I_2 este matricea unitate de ordinul al doilea. (4 pct.)

a)
$$\begin{pmatrix} 3 & 0 \\ 0 & 1 \end{pmatrix}$$
; b) $\begin{pmatrix} 1 & 2 \\ 1 & 0 \end{pmatrix}$; c) $\begin{pmatrix} 3 & 3 \\ 0 & -\frac{1}{2} \end{pmatrix}$; d) $\begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$; e) $\begin{pmatrix} 1 & 1 \\ 0 & 2 \end{pmatrix}$; f) $\begin{pmatrix} 1 & 0 \\ -\frac{1}{2} & \frac{1}{2} \end{pmatrix}$.

- 7. Fie funcția $f: \mathbb{R} \longrightarrow \mathbb{R}$, $f(x) = \begin{cases} \min\{\ln|x|, e^{x+1} 1\}, & x \neq 0 \\ 0, & x = 0 \end{cases}$. Dacă n este numărul punctelor de maxim local ale lui f și k numărul asimptotelor graficului lui f, atunci: (4 pct.)
 - a) n+k=2; b) k-n=2; c) n+k=4; d) toate celelalte afirmații sunt false; e) n+k=3; f) k-n=1.

- 8. Să se rezolve ecuația $3^{x^2} = 9^x$. (4 pct.)
 - a) $\{2\}$; b) $\{1\}$; c) $\{0\}$; d) \emptyset ; e) $\{0,1\}$; f) $\{0,2\}$.
- 9. Să se rezolve inecuația $\frac{x+1}{2} \le \frac{2x}{3}$. (4 pct.)
 - a) \emptyset ; b) \mathbb{R} ; c) $(-\infty,3]$; d) $(-\infty,3)$; e) $[3, \infty)$; f) $(3,\infty)$.
- 10. Să se determine mulțimea valorilor parametrului real λ pentru care sistemul $\begin{cases} x+y=1\\ x+\lambda y=2 \end{cases}$ este compatibil determinat. (4 pct.)
 - a) $(-\infty,1)$; b) $(1,\infty)$; c) $\mathbb{R}\setminus\{1\}$; d) $\{1\}$; e) \mathbb{R} ; f) \emptyset .
- 11. Fie şirul $a_n = \sum_{k=3}^n \frac{k}{2^{k-3}}$, $n \ge 3$. Să se determine $\lim_{n \to \infty} a_n$. (4 pct.)
 - a) 9; b) 10; c) $8\sqrt{2}$; d) $\frac{15}{2}$; e) 7; f) 8.
- 12. Să se determine mulțimea soluțiilor ecuației $\begin{vmatrix} 3 & 3 & x \\ 1 & x & 1 \\ 1 & 0 & x \end{vmatrix} = 2$. (4 pct.)
 - a) $\left\{1, \frac{1}{2}\right\}$; b) $\left\{1, -1\right\}$; c) $\left\{3\right\}$; d) $\left\{1, 2\right\}$; e) \emptyset ; f) $\left\{1, 3\right\}$.
- 13. Să se calculeze $\lim_{x\to 1} \frac{x^2-1}{x^4-1}$. (6 pct.)
 - a) ∞ ; b) $\frac{1}{4}$; c) 1; d) 0; e) 2; f) $\frac{1}{2}$.
- 14. Să se determine numărul real m pentru care polinomul $f = X^2 4X + m$ are rădăcină dublă. (6 pct.)
 - a) -4; b) 0; c) 2; d) 1; e) -2; f) 4.
- 15. Să se determine $m \in \mathbb{R}$ astfel încât funcția $f : \mathbb{R} \longrightarrow \mathbb{R}$, $f(x) = \begin{cases} x^3 + x, & \text{dacă } x \leq 1 \\ mxe^{x-1}, & \text{dacă } x > 1 \end{cases}$ să fie continuă pe \mathbb{R} . (6 pct.)
 - a) e⁻¹; b) 4; c) 2; d) 1; e) e; f) nu există.
- **16.** Să se calculeze $\int_{0}^{1} (x^3 + x^2) dx$. **(8 pct.)**

a)
$$\frac{5}{6}$$
; b) 5; c) $\frac{7}{12}$; d) 2; e) 6; f) $\frac{1}{5}$.

- 17. Fie $f: \mathbb{R} \longrightarrow \mathbb{R}$, $f(x) = xe^x$. Să se calculeze f'(0). (8 pct.)
 - a) nu există; b) 0; c) 2; d) 3; e) 1; f) e.
- **18.** Să se rezolve ecuația $x^2 5x + 4 = 0$. **(8 pct.)**
 - $a)\ \left\{ 1\right\} ;\ b)\ \left\{ -1,-4\right\} ;\ c)\ \left\{ 4,5\right\} ;\ d)\ \varnothing \ ;\ e)\ \left\{ 0\right\} ;\ f)\ \left\{ 1,4\right\} .$