COA 690/790 GIS in Marine Science

Lecture 8 Raster Analysis

Wei Wu March 27, 2017

Add xy data as a way to add sampling data In the lab, we will talk about viewing spatial information using ArcCatalog, or "define projection"

Raster Analysis

Raster cells store data (nominal, ordinal, interval/ratio)
Complex constructs built from raster data
Connected cells can be formed in to networks
Related cells can be grouped into neighborhoods or regions

Examples:

Predict fate of pollutants in the atmosphere
The spread of disease
Animal migrations
Crop yields
EPA - hazard analysis of urban superfund sites
Local to global scale forest growth analysis

Map algebra

Cell by Cell combination of raster data layers

Each number represents a value at a raster cell location

Simple operations can be applied to each number

Raster layers may be combined through operations

Addition, subtraction and multiplication Entails operations applied to one or more raster data layers.

	Function	Description
Local Functions	Add, subtract, multiply, and divide	cell-by-cell combination with the arithmetic operation
	ABS	Absolute value of each cell
	EXP, EXP10, LN, LN10	Applies base e and base 10 exponentiation and logarithms
	SIN, COS, TAN, ASIN, ACOS, ATAN	Apply trigonometric functions on a cell-by- cell basis
	INT, TRUNC	Truncate cell values, output integer portion
	MODULUS	Assigns the decimal portion of each cell
	ROUND	Rounds a cell value up or down to nearest inte- ger value
	SQRT, ROOT	Calculates the square root or specifies other root of each cell value
	POWER	Raises each cell to a defined power

Logical Operations AND

Non-zero values are "true", zero values are "false" N = null values

Output Input -1 Ν Ν AND Ν Ν -3 Ν Ν Ν Ν

Logical Operations OR

Non-zero values are "true", zero values are "false" N = null values

1	3	1	1
0	2	2	-1
1	2	5	0
0	1	2	2

OR

0	1	0	9
0	5	2	5
0	2	N	2
0	-3	4	8

=

Logical Operations NOT

=

NOT

1	3	1	1
0	2	2	-1
1	2	5	0
0	1	2	2

0	0	0	0
1	2	0	0
0	0	0	1
1	0	2	2

Overlay in Raster

Union and Clip

Cell by Cell Addition or Multiplication

Attribute combinations corresponding to unique cell combinations

A Problem with Raster Analysis

- Too many cells
- Typically, one-to-one relationship between spatial object and attribute table
- · Rasters have multiple cells per feature
- Attribute tables grow to be unwieldy

Raster Analysis

Moving windows and kernels can be used with a mean kernel to reduce the difference between a cell and surrounding cells. (done by average across a group of cells)

Raster data may also contain "noise"; values that are large or small relative to their spatial context.

(Noise often requiring correction or smooth(ing))

Know as "high-pass" filters

The identified spikes or pits can then be corrected or removed by editing

Raster Analysis

High pass filters

Return:

- •Small values when smoothly changing values.
- Large positive values when centered on a spike
- •Large negative values when centered on a pit

Cost Surface

The minimum cost of reaching cells in a layer <u>from</u> one or more sources cells

"travel costs"

Time to school; hospital;

Chance of noxious foreign weed spreading out from an introduction point

- •Units can be money, time, etc.
- •Distance measure is combined with a fixed cost per unit distance to calculate travel cost
- •If multiple source cells, the lowest cost is typically placed in the output cell

Figure 11-13: A cost surface based on a fixed cost per unit distance. Minimum distance from a set of source cells is multiplied by a fixed cost factor to yield a cost surface.

Friction Surface (version of a Cost Surface)

The cell values of a friction surface represent the cost per unit travel distance for crossing each cell – <u>varies from cell to cell</u>

Used to represent areas with variable travel cost.

Notes:

- ·Barriers can be added.
- •Multiple paths are often not allowed
- •Cost surfaces are always related to a source cell(s); "from something"
- •The center of a cell is always used the distance calculations

Figure 11-14: A cost surface based on spatially-variable travel costs. A friction surface specifies the spatially varying cost of travelling through raster cells. The distance traversed through each cell is multiplied by the cost in the friction surface. The values are summed for each path to yield a total cost.