NTDS Project: Bike Sharing Demand

Vincent Hardy 18/01/2017

Acquisition of Row data

On Kaggle, Dataset from 13/10/2014 to 31/08/2016 (689 days):

- Station.csv (58 ,8)
- Trip.csv (236065, 14)
- Weather.csv (689, 20)

How to predict the bikes demand at each station of Seattle?

Exploration: Users Behaviors

Daily and Hourly Analysis

Age Analysis

• Type of user: Annual Member or Short-Term Pass Holder (24H or 3D pass)

PCA Analysis on daily trends

25 dimensions and 4 labels

hour	0	1	2	3	4	5	6	7	8	9	 19	20	21	22	23	Mean_Temperature_F	Precipitation_In	day_of_week	Events	total_trips
date																				
2014-10-13	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	 12.0	12.0	10.0	4.0	3.0	62.0	0.00	week	2	406.0
2014-10-14	0.0	0.0	0.0	0.0	0.0	1.0	5.0	22.0	35.0	25.0	 28.0	17.0	13.0	6.0	2.0	59.0	0.11	week	2	489.0
2014-10-15	3.0	2.0	1.0	0.0	0.0	0.0	7.0	10.0	12.0	21.0	 21.0	12.0	12.0	8.0	1.0	58.0	0.45	week	2	312.0
2014-10-16	4.0	1.0	0.0	0.0	0.0	2.0	7.0	14.0	35.0	25.0	 22.0	21.0	8.0	6.0	6.0	61.0	0.00	week	2	389.0
2014-10-17	2.0	1.0	1.0	0.0	0.0	1.0	5.0	16.0	28.0	26.0	 15.0	10.0	20.0	9.0	2.0	60.0	0.14	week	2	292.0

• Aim: reduce to 2 dimensions & identify similar patterns

FÉDÉRALE DE LAUSANNE

Applying PCA & Visualization

Bikes Variation Analysis Per Station

Which are the most popular start/stop stations?

Analysis at station SLU-01

Is it possible to infer the bike availability?

... No but daily bikes variation YES!

But regression purpose requires a resampling of this daily variation:

- Computation of daily variation at large scale:
- 45 stations
- From 14/10/2014 to 17/03/2016
- Number of data computed: 2 246 400

Regression on the Daily Bikes Variation

- Knowing a dataset X, we would like to predict the daily variation y such that f(X) = y
- Which features choose to compose X? How to represent them? x

	Events	Mean_Temperature_F	Precipitation_In	daily_variation	station_id	month	weekday	hour
2014-10-14 00:00:00	Rain	59.0	0.11	0.0	SLU-07	10	1	0.00
2014-10-14 00:15:00	Rain	59.0	0.11	0.0	SLU-07	10	1	0.25
2014-10-14 00:30:00	Rain	59.0	0.11	0.0	SLU-07	10	1	0.50
2014-10-14 00:45:00	Rain	59.0	0.11	0.0	SLU-07	10	1	0.75
2014-10-14 01:00:00	Rain	59.0	0.11	0.0	SLU-07	10	1	1.00

Size of X: 2 242 080 x 7

- Size of **y**: 2 242 080 x 1

Evaluation criteria: MSE & MAE

One model for all the stations

Which regressor to use?

Model (default HPs)	MSE	MAE		
Linear regression	10,73	1,90		
Ridge regression	10,72	1,89		
SGD regression	15,36	2,74		
Bayesian Ridge	10,75	1,90		
Logistic regression	/// too computationally	Consuming /////		
Random Forest (RF) regression	0,51	0,30		

Choice of hyperparameters: which number of trees to use?

One model per station

Practical application for Pronto

We are the weekend and given the weather forecast, what are the predictions of demand for next week at a given station?

Split: 32928 testing and 32928 training samples

station_id = SLU-01

 Partially trained during the week predicted

Split: 32592 testing and 32592 training samples

mse: 6.1937 mae: 1.5991

 Not trained during the week predicted

Conclusion

- Exploration of users trends allowed an efficient exploitation of data with PCA
- RF regressions on the daily bikes variation provided encouraging and quite precise predictions
- However this prediction tool does not seem perfectly optimized for online applications

