

Insights and Trends: Exploratory Data Analysis of the Electric Vehicle Population

Submitted by: Arpan Biswas, Ashutosh Saha, Avik Sarkhel, Mayukh Dutta, Sudipta Biswas

Under the Guidance of: Prof. Kaustuv Bhattacharjee Institute: University of Engineering and Management, Kolkata

Electric Vehicles (EVs) are rapidly transforming the automotive landscape. This presentation will delve into the **trends** and **insights** derived from exploratory data analysis of the EV population, highlighting their **growth**, **challenges**, and **opportunities**. Join us as we explore the future of sustainable transportation.

Introduction to Electric Vehicles

Abstract

Objective: To analyze EV adoption patterns, preferences, and trends in Washington State.

Dataset: Initially 200,049 records and 17 parameters, cleaned to 182,137 records and 11 parameters (includes 2 parameters which were created) for analysis.

											B. Control		111		
VIN (1-10)	County	- City	* State	 Postal Code 💌	Model Year	Make		Model	* Electric Yehicle Typ *	Clean Alternative Fuel Vehicle (CAFV) Eligibility	Electric Range 💌	Base MSRP	 Legislative Distric 	DOL Vehicle ID	 Yehicle Location
5YJ3E1EB0J	Thurston	Olympia	WA	98512	2018	TESLA		MODEL 3	lattery Electric Vehicle (BE\	Clean Alternative Fuel Vehicle Eligible	215	0	35	104823078	JINT (-122.957046 46.9913 U
WAIAAAGE9M	Kitsap	Port Orchard	WA	98367	2021	AUDI		E-TRON	lattery Electric Vehicle (BE\	Clean Alternative Fuel Vehicle Eligible	222	0	35	156660507	VT (-122.6530052 47.4739iU
5YJ3E1EA2J	Yakima	Yakima	WA	98902	2018	TESLA		MODEL 3	lattery Electric Vehicle (BE\	Clean Alternative Fuel Vehicle Eligible	215	0	14	269374108	DINT (-120.530331 46.5953
5YJ3E1EA4N	Yakima	Yakima	WA	98902	2022	TESLA		MODEL 3	lattery Electric Vehicle (BE\	Eligibility unknown as battery range has not been researched	0	.0	15	213383894	DINT (-120.530331 46.5953
7SAYGAEE2P	Snohomish	Bothell	WA	98012	2023	TESLA		MODEL Y	lattery Electric Vehicle (BE\	Eligibility unknown as battery range has not been researched	0	0	1 1	229496046	INT (-122.206146 47.8399 U
WBY1Z4C51E	Yakima	Yakima	WA	98908	2014	BMW		13	in Hybrid Electric Vehicle (P	Clean Alternative Fuel Vehicle Eligible	72	0	14	8045817	HNT (-120.611068 46.5966-
5YJSA1DPXC	Thurston	Olympia	WA	98502	2012	TESLA		MODEL S	lattery Electric Vehicle (BEV	Clean Alternative Fuel Vehicle Eligible	265	59900	22	188634442	INT (-122.943445 47.0592 U
5YJSA1H27F	Yakima	Yakima	WA	98908	2015	TESLA		MODEL S	lattery Electric Vehicle (BE\	Clean Alternative Fuel Vehicle Eligible	208	0	14	109175566	HNT (-120.611068 46.5966-
7FCTGBAA7P	Kitsap	Poulsbo	WA	98370	2023	RIVIAN		BIT	lattery Electric Vehicle (BE\	Eligibility unknown as battery range has not been researched	0	0	23	262803131	VT (-122.6368884 47.7469U
3C3CFFGE7H	King	Seattle	WA	98103	2017	FIAT		500	lattery Electric Vehicle (BE\	Clean Alternative Fuel Vehicle Eligible	84	0	43	9411349	NT (-122.3499053 47.6736/T
1FMCU0LZ4M	Kitsap	Silverdale	WA	98383	2021	FORD		ESCAPE	in Hybrid Electric Vehicle (P	Clean Alternative Fuel Vehicle Eligible	38	0	23	260383966	NT (-122.7035285 47.6602U
5YJSA1H14E	Snohomish	Snohomish	WA	98296	2014	TESLA		MODEL S	lattery Electric Vehicle (BE\	Clean Alternative Fuel Vehicle Eligible	208	69900	1	225773271	DINT (-122.121841 47.84103 U
5YJYGDEEXL	Snohomish	Everett	WA	98208	2020	TESLA		MODEL Y	lattery Electric Vehicle (BE\	Clean Alternative Fuel Vehicle Eligible	291	0	44	121781950	VT (-122.2032349 47.8956 U
1G1RD6E42C	Yakima	Yakima	WA	98901	2012	CHEVROLET	•	VOLT	in Hybrid Electric Vehicle (P	Clean Alternative Fuel Vehicle Eligible	35	0	14	222080204	NT (-120.4688751 46.6046
1FADP5CU9G	Thurston	Olympia	WA	98502	2016	FORD		C-MAX	in Hybrid Electric Vehicle (P	Not eligible due to low battery range	19	0	22	201044532	INT (-122.943445 47.0592 U
1N4AZ1CP3J	Island	Coupeville	WA	98239	2018	NISSAN		LEAF	sattery Electric Vehicle (BE)	Clean Alternative Fuel Vehicle Eligible	151	0	10	290902181	NT (-122.6591616 48.19821U
5YJ3E1EB3N	Yakima	Yakima	WA	98902	2022	TESLA		MODEL 3	lattery Electric Vehicle (BE\	Eligibility unknown as battery range has not been researched	0	0	15	207337504	DINT (-120.530331 46.5953
WA1LAAGE2P	Thurston	Yelm	WA	98597	2023	AUDI		E-TRON	Fattery Electric Vehicle (BE\	Eligibility unknown as battery range has not been researched	0	0	2	227506191	INT (-122.5715761 46.90957U
1FADP3R44D	Kitsap	Poulsbo	WA	98370	2013	FORD		FOCUS	lattery Electric Vehicle (BE\	Clean Alternative Fuel Vehicle Eligible	76	0	23	121439048	VT (-122.6368884 47.7469U
5YJ3E1EB3J	Island	Greenbank	WA	98253	2018	TESLA		MODEL 3	Fattery Electric Vehicle (BE\	Clean Alternative Fuel Vehicle Eligible	215	0	10	127230512	INT (-122.566915 48.08961U
1N4AZ0CP7F	Thurston	Olympia	WA	98506	2015	NISSAN		LEAF	Fattery Electric Vehicle (BEV	Clean Alternative Fuel Vehicle Eligible	84	0	22	103818438	OINT (-122.8649147.0750:U
5YJ3E1EBXJ	King	lesaquah	WA	98029	2018	TESLA		MODEL 3	lattery Electric Vehicle (BE\	Clean Alternative Fuel Vehicle Eligible	215	0	5	475802505	VT (-122.0209893 47.5632) [
5YJ3E1EAXJ	King	Renton	WA	98055	2018	TESLA		MODEL 3	lattery Electric Vehicle (BE\	Clean Alternative Fuel Vehicle Eligible	215	0	11	261038984	VT (-122,2003346 47,4487) (
1G1FW6S03L	Kitsap	Port Orchard	WA	98367	2020	CHEVROLET		BOLT EV	lattery Electric Vehicle (BE\	Clean Alternative Fuel Vehicle Eligible	259	0	26	264657851	VT (-122.6530052 47.4739/U
EV IDE4E & OI	V:	Balakaida, Ialaad	1.71	9040	2020	TEMA		MODEL 2	tana di Pianta Vallata Port	Olive Alexandric Foot Outlide Filliate.	266	^	22	0054540	KET / 400 E00E024 42 E 400H I

	County	Model Year	Make	Base MSRP	Model	Electric Vehicle Type	Clean Alternative Fuel Vehicle (CAFV) Eligibility	Electric Range (MILE)	Electric Utility	Electric Utility Type	Urban/Rural
0	Thurston	2018	TESLA	47200	MODEL 3	Battery Electric Vehicle (BEV)	Clean Alternative Fuel Vehicle Eligible	215	PUGET SOUND ENERGY INC	Investor Owned	Urban
1	Kitsap	2021	AUDI	65900	E-TRON	Battery Electric Vehicle (BEV)	Clean Alternative Fuel Vehicle Eligible	222	PUGET SOUND ENERGY INC	Investor Owned	Urban
2	Yakima	2018	TESLA	47200	MODEL 3	Battery Electric Vehicle (BEV)	Clean Alternative Fuel Vehicle Eligible	215	PACIFICORP	Investor Owned	Rural
3	Yakima	2022	TESLA	48190	MODEL 3	Battery Electric Vehicle (BEV)	Clean Alternative Fuel Vehicle Eligible (Manua	363	PACIFICORP	Investor Owned	Rural
4 5	nohomish	2023	TESLA	46630	MODELY	Battery Electric Vehicle (BEV)	Clean Alternative Fuel Vehicle Eligible (Manua	326	PUGET SOUND ENERGY INC	Investor Owned	Urban

Tools: Google Colab, Python (Pandas, NumPy, Matplotlib)

Outcome: Insights into EV sales, battery range, utility contributions, and manufacturer trends.

Introduction

Background: Electric vehicles (EVs) are vital for sustainable, environmentally-friendly transportation.

Growing climate change awareness and advancements in technology drive EV adoption.

Objective: Analyze a dataset of Battery Electric Vehicles (BEVs) and Plug-in Hybrid Electric Vehicles (PHEVs) from Washington State. Provide insights into EV sales, consumer behavior, and manufacturer performance.

Scope: Focuses on 182,137 records and 11 parameters after data cleaning. Includes both whole dataset and company-wise analyses to identify adoption patterns and manufacturer trends.

Significance: Offers critical insights into market trends and consumer preferences.

Guides EV manufacturers and policymakers in improving EV offerings and infrastructure.

Impact: Supports informed decision-making for a greener, more sustainable future.

Problem Faced During Analysis

Challenge: Analyze a large dataset of BEVs and PHEVs registered in Washington State, addressing missing data, misclassifications, and complex attributes like electric utility types.

Goal: Clean and analyze data to provide actionable insights for organizations and EV makers.

_			
Rel	eva	nc	Θ.

- Vital for understanding EV adoption and performance in the transition to clean energy.
- Supports informed decisions for manufacturers, government bodies, and consumers.

Scope:

- Focus on parameters like electric range, MSRP, make, and county.
- Includes company-wise and county-wise analysis of top EV makers.
- Excludes global EV trends and focuses solely on Washington State data.

Challenges:

- Data Integrity: Significant missing values, requiring manual corrections.
- Misclassification: Errors in vehicle types (e.g., BEVs marked as PHEVs).
- Complex Attributes: Handling single and multiple utility names in the 'Electric Utility' column.
- Model Variants: Ensuring correct analysis of PHEV/BEV variants.
- Limited Data: Insufficient information for newer models (2024-2025).

Electric Range	-
215	
222	
215	
0	
0	
72	
265	
208	

Model Year	JY.	Make	Y	Model	Electric Vehicle Type
2010		WHEEGO ELECTRIC CA	ARS	WHEEGO	Plug-in Hybrid Electric Vehicle (PHEV)
2010		WHEEGO ELECTRIC CA	ARS	WHEEGO	Plug-in Hybrid Electric Vehicle (PHEV)
2010		WHEEGO ELECTRIC CA	ARS	WHEEGO	Plug-in Hybrid Electric Vehicle (PHEV)

Cl	ean Alternative Fuel Vehicle (CAFV) Eligibility
	Clean Alternative Fuel Vehicle Eligible
	Clean Alternative Fuel Vehicle Eligible
	Clean Alternative Fuel Vehicle Eligible
Eligibility	unknown as battery range has not been researched
Eligibility	unknown as battery range has not been researched
	Clean Alternative Fuel Vehicle Eligible
	Clean Alternative Fuel Vehicle Eligible
	Clean Alternative Fuel Vehicle Eligible
Eligibility	unknown as battery range has not been researched

Approach:

- Preprocessed the dataset to handle null values and inconsistencies.
- Conducted whole-dataset and manufacturer-wise analyses to extract insights.

Design & Architecture:

- Added new columns, "Urban/Rural" and "Electric Utility Type," to simplify analysis.
- Corrected missing and inaccurate values in columns like "Base MSRP" and "Electric Range (MILE)" through web research.
- Manually updated the CAFV eligibility column based on researched electric ranges.

Tools & Technologies:

- Microsoft Excel: Removal of parameters and Initial Data cleaning and manipulation (Data Insertion in 2 parameters "Base MSRP" and "Electric Range (MILE)")
- Google Colab: Collaborative environment for data analysis.
- Python: Core programming for analysis and visualization.
- Pandas: Data manipulation and cleaning.
- Matplotlib: Visualizations like bar and pie charts.

Workflow:

- Cleaned data using Excel and Python.
- Performed question-based analysis at both dataset and manufacturer levels.
- Visualized findings with pie charts and bar graphs to simplify insights.

Problem solving methods

```
Electric Range (MILE)
                                                                                Base MSRP -
               215
                                                                                    47200
                222
                                                                                    65900
               215
                                                                                    47200
                363
    get_utility_type(utility_entry):
    types = []
    utilities = utility entry.replace('||', '|').split('|')
    for utility in utilities:
        utility = utility.strip()
        types.append(utility_type_mapping.get(utility, 'Unknown'))
    return ', '.join(types)
ev_filtered.loc[:, 'Electric Utility Type'] = ev_filtered['Electric Utility'].apply(get_utility_type)
ev filtered.head(5)
     urban_counties = ['Thurston', 'Kitsap', 'Snohomish', 'King', 'Whatcom', 'Clark', 'Pierce', 'Spokame', 'Benton']
     rural_counties = ['Yakima', 'Grant', 'Whitman', 'Skagit', 'Stevens', 'Cowlitz', 'Jefferson', 'Klickitat', 'Clallam', 'Chelan
                    , 'Pacific', 'Franklin', 'San Juan', 'Mason', 'Walla Walla', 'Lewis', 'Grays Harbor', 'Okanogan',
                    'Kittitas', 'Douglas', 'Skamania', 'Lincoln', 'Adams', 'Pend Oreille', 'Wahkiakum', 'Asotin', 'Columbia',
        elif county in rural counties:
     ev_filtered['Urban/Rural'] = ev_filtered['County'].apply(classify_county)
```


2010 WHEEGO ELECTRIC CARS

Electric Utility Type Urban/Rural
Investor Owned Urban

32995 WHEEGO Battery Electric Vehicle (BEV)

Investor Owned

Summary of Work: This project analyzed the electric vehicle (EV) population in Washington State, focusing on adoption patterns, preferences, and trends. The analysis involved cleaning and preprocessing the dataset, correcting missing values, categorizing electric utilities, and exploring key metrics such as county-level EV sales, manufacturer dominance, CAFV eligibility, vehicle types, and electric ranges. Relationships between electric range, MSRP, and model years were also explored.

Key Findings

1. EV Adoption Patterns:

- King County led with 56% of EV sales, followed by Snohomish (13%) and Pierce (8%).
- Tesla accounted for 44% of EVs.

2. Vehicle Types and Preferences:

- BEVs made up 79%, while PHEVs were 21%.
- Snohomish County had the highest mean electric range at 240 miles.

3. CAFV Eligibility:

• 90% of EVs were CAFV-eligible after manual corrections.

4. Utility Analysis:

• Puget Sound Energy Inc. and the City of Tacoma served 40% of EVs, emphasizing the role of infrastructure.

5. Trend Analysis:

- BEVs showed increased electric range due to battery advancements, while PHEVs remained stable.
- BEVs had higher MSRPs, reflecting better technology and range.

Limitations:

- Data Quality: Missing or inaccurate values required manual corrections.
- Geographical Scope: The analysis focused only on Washington State.
- **Unexplored Parameters:** Factors like charging infrastructure and consumer income were not analyzed.
- Temporal Data: The dataset did not account for future trends.

Key findings and Limitations of Analysis

Future Scope

1. Possible Enhancements:

- Include additional parameters like recharge time, safety ratings, and vehicle types (e.g., sedan, SUV) for deeper insights.
- Complete missing values in critical columns like "Base MSRP" for more accurate analysis.

2. Interactive Dashboards:

• Develop dynamic dashboards for real-time exploration and visualization.

3. Machine Learning Applications:

 Use predictive models to analyze trends and forecast future EV adoption patterns.

4. Real-World Applications:

- Insights can guide EV manufacturers in improving product performance and safety.
- Policymakers can leverage findings to promote EV infrastructure and adoption strategies.

5. Research Challenges:

- Address missing or zero values in key columns like "Base MSRP" and "Electric Range."
- Handle larger datasets requiring advanced tools and algorithms for analysis.

References

- Washington State Office of Financial Management. (2017). Based on Washington State Office of Financial Management, April 2017.

 https://dob.wa.gov/sites/dofault/files/logacy/Document.
 - https://doh.wa.gov/sites/default/files/legacy/Documents/Pubs/609003.pdf
- Wikipedia contributors. (2024, October22). Wheego LiFe. Wikipedia.
 - https://en.wikipedia.org/wiki/Wheego_LiFe\
- https://www.edmunds.com/
- https://www.caranddriver.com/
- https://www.kbb.com/
- https://www.solarwa.org/utilities_washington_state
- https://d3n8a8pro7vhmx.cloudfront.net/solarwa/pa ges/54/attachments/original/1513141161/Washington _Electric_Utilities-large_map.pdf?1513141161

