

	Features	STM32F103	ATMEGA328
	Clock Frequency	72 Mhz	16 Mhz
	I2C Buses	2	1
	SPI Buses	2	1
A Comparison	CAN Bus	Yes	No
	Analog Channel	10	8
between STM32	PWM Channel	15	6
between 511vi52	USART Buses	3	1
and AVR IC	GPIO's	32	24
and AVINIC	On Board RTC	Yes	No
	Architecture	ARM Cortex M3 32 bit	AVR RISC 8 bit
	ADC Resolution	12 bit	10 bit
	Quantization Level	4096	1024
	Flash Memory	64KB	32KB
	SRAM	20KB	2KB
	Debugging	Serial, JTAG	Serial
	PWM Resolution	16 bit	10bit
	Price	110	115

STM32 ARM®-Based Microcontrollers

- The STM32 series of microcontrollers are one of the most popular ICs among the 32-Bit microcontrollers.
- STMicroelectronics provides multiple of product lines for the STM32 parts. There are low-power, mainstream, and high-performance product lines.
- And a more application-specific wide variety of parts that enables you to pick the right part for your project.
- There are low-cost FullSpeed USB solutions, CAN, LIN, Ethernet, DCMI (Digital Camera Memory Interface), and CryptoEngine for cryptographic applications, and much more powerful peripherals.
- Both digital and analog such as ADCs, DAC, OPamp, Comparators, etc.

The board that will be used

- The primary development board we've selected for this course is Blue Pill.
- The blue pill uses STM32F103C8 microcontroller
- The STM32F103C8 microcontroller has a Cortex-M3 core.
- But, it lacks the FPU and DSP operations which can be a huge miss in certain applications.
- However, it's much cheaper target MCU at the end of the day.
- We can set the desired SYSCLK speed up to 72MHz for F103C8 microcontroller.

Features of the Different Components

- Features of the different components are as follows:
 - It contains the main MCU the STM32F103C8T6 in a Quad Flat Package.
 - A Reset Switch to reset the Microcontroller.
 - microUSB port for serial communication and power.
 - BOOT Selector Jumpers BOOT0 and BOOT1 jumpers for selecting the booting memory.
 - Two LEDs User LED (with PC13) and Power LED.
 - 8 MHz Crystal Main Clock for MCU.
 - 32.768KHz Oscillator RTC Clock.
 - SWD Interface for programming and debugging using ST-Link.
 - 3.3V regulator (on the bottom) converts 5V to 3.3V for powering the MCU.
- On either long edge of the board, there are pins for connecting various Analog and Digital IO and Power related stuff.

The Features of STM32F103xx microcontrollers

- The STM32F103xx medium-density performance line family incorporates
 - the high-performance ARM®Cortex®-M3 32-bit RISC core
 - operating at a 72 MHz frequency,
 - Flash memory up to 128 Kbytes and SRAM up to 20 Kbytes.
 - Two 12-bit ADCs,
 - Three general purpose 16-bit timers plus
 - One PWM timer,
 - Two I²Cs and SPIs, three USARTs, an USB and a CAN.
- The devices operate from a 2.0 to 3.6 V power supply.
- They are available in wide temperature range.
- A comprehensive set of power-saving mode.
- Six different package types: from 36 pins to 100 pins.

All features ARM®32-bit Cortex®-M3 CPU Core Up to 80 fast I/O ports 26/37/51/80 I/Os, all mappable on 16 external interrupt 72 MHz maximum frequency, 1.25 DMIPS/MHz (Dhrystone 2.1) performance at 0 wait state memory access vectors and almost all 5 V-tolerant Single-cycle multiplication and hardware division Debug mode Memories · Serial wire debug (SWD) & JTAG interfaces 64 or 128 Kbytes of Flash memory 7 timers 20 Kbytes of SRAM . Three 16-bit timers, each with up to 4 IC/OC/PWM or pulse Clock, reset and supply management counter and guadrature (incremental) encoder input 2.0 to 3.6 V application supply and I/Os 16-bit, motor control PWM timer with dead-time generation POR, PDR, and programmable voltage detector (PVD) and emergency stop 4-to-16 MHz crystal oscillator · 2 watchdog timers (Independent and Window) Internal 8 MHz factory-trimmed RC SysTick timer 24-bit downcounter Internal 40 kHz RC Up to 9 communication interfaces PLL for CPU clock Up to 2 x I²C interfaces (SMBus/PMBus) 32 kHz oscillator for RTC with calibration Up to 3 USARTs (ISO 7816 interface, LIN, IrDA capability, · Sleep, Stop and Standby modes Up to 2 SPIs (18 Mbit/s) VBAT supply for RTC and backup registers CAN interface (2.0B Active) See the 2 x 12-bit, 1 µs A/D converters (up to 16 channels) USB 2.0 full-speed interface Conversion range: 0 to 3.6 V o CRC calculation unit, 96-bit unique ID datasheet Packages are ECOPACK[®] · Dual-sample and hold capability for more Temperature sensor https://www.st.com/resource/en/datasheet/stm32f103c8.pdf elaborate description Peripherals supported: timers, ADC, SPIs, I²Cs and USARTs

Applications of STM32F103xx microcontrollers

These features mentioned in the previous slide make the STM32F103xx medium-density performance line microcontroller family suitable for a wide range of applications such as

 PLCs,

motor drives,
application control,
printers,

medical and handheld equipment,
 PC and gaming peripherals,
 alarm systems,

GPS platforms,
 video intercoms, and

industrial applications,HVACs.

Reference manual for detail use of the features

https://www.st.com/resource/en/reference_manual/rm0008-stm32f101xx-stm32f102xx-stm32f103xx-stm32f105xx-and-stm32f107xx-advanced-armbased-32bit-mcus-stmicroelectronics.pdf

ARM Cortex-M4+FPU

- The Arm® Cortex®-M4 with FPU processor is the latest generation of Arm® processors for embedded systems.
- It was developed to provide a low-cost platform that meets the needs of MCU implementation, with
 - a reduced pin count,
 - low-power consumption,
 - delivering outstanding computational performance,
 - an advanced response to interrupts.
- The Arm® Cortex®-M4 with FPU 32-bit RISC processor features exceptional code efficiency, delivering the high-performance expected from an Arm® core.
- The processor supports a set of DSP instructions that allow efficient signal processing and complex algorithm execution.

Discussion on the GPIOs

- · Each of the general-purpose I/O ports has
 - two 32-bit configuration registers (GPIOx_CRL, GPIOx_CRH),
 - two 32-bit data registers (GPIOx_IDR, GPIOx_ODR),
 - a 32-bit set/reset register (GPIOx_BSRR),
 - a 16-bit reset register (GPIOx_BRR) and
 - a 32-bit locking register (GPIOx LCKR).
- To understand the use of the above registers, read the reference manual

Discussion on the Ports

(continued)

- Subject to the specific hardware characteristics of each I/O port listed in the datasheet, each port bit of the General Purpose IO (GPIO) Ports, can be individually configured by software in several modes:
 - Input floating
 - Input pull-up
 - Input-pull-down
 - Analog
 - Output open-drain
 - Output push-pull
 - Alternate function open-drain
 - Alternate function push-pull

Discussion on the Ports

(continued)

- Each I/O port bit is freely programmable, however the I/O port registers have to be accessed as 32-bit words (half-word or byte accesses are not allowed).
- The purpose of the GPIOx_BSRR and GPIOx_BRR registers is to allow atomic read/modify accesses to any of the GPIO registers.
- This way, there is no risk that an IRQ occurs between the read and the modify access.

Discussion on the Ports

(continued)

- During and just after reset, the alternate functions are not active and the I/O ports are configured in Input Floating mode
- When configured as output, the value written to the Output Data register (GPIOx_ODR) is output on the I/O pin.
- It is possible to use the output driver in Push-Pull mode or Open-Drain mode (only the N-MOS is activated when outputting 0).
- The Input Data register (GPIOx_IDR) captures the data present on the I/O pin at every APB2 clock cycle.
- All GPIO pins have an internal weak pull-up and weak pull-down that can be activated or not when configured as input.

HAL_Init() function

- HAL_Init(): this function must be called at application startup to
 - initialize data/instruction cache and pre-fetch queue
 - set SysTick timer to generate an interrupt each 1ms (based on HSI clock) with the lowest priority
 - call HAL_MspInit() user callback function to perform system level initializations (Clock, GPIOs, DMA, interrupts). HAL_MspInit() is defined as "weak" empty function in the HAL drivers.
- And most importantly it initializes the SysTick timer, whose ticks are used by the HAL_Delay().
- The SysTick timer is set to tick @ 1000Hz or every 1mSec. So the HAL_Delay function will give you multiples of milliseconds delay.
- HAL_Delay(). this function implements a delay (expressed in milliseconds) using the SysTick timer.

explanation of all

For

Care must be taken when using HAL_Delay() since this function provides an accurate delay (expressed in milliseconds) based on a variable incremented in SysTick ISR.

https://www.st.com/resource/en/user_manual/um1725-description-of-stm32f4-hal-and-lowlayer-drivers-stmicroelectronics.pdf

HAL functions (continued)

- Besides the delay function, we also need to know the HAL APIs for controlling the GPIO pins.
- To do basic stuff like pin read or write or port read/write, and so on.
- So we'll head over again to the HAL documentation and search for the GPIO chapter, where we'll find this listing for the available APIs.
- The APIs are hyperlinked in the documentation file, so you can click the name of the function to go directly to its detailed description.
- So, let's take a closer look at the GPIO_WritePin() function as we'll be using it as well.

IO operation functions

This section contains the following APIs:

- HAL_GPIO_ReadPin()
- HAL_GPIO_WritePin()
- HAL_GPIO_TogglePin()
- HAL_GPIO_LockPin()
- HAL_GPIO_EXTI_IRQHandler()

HAL_GPIO_WritePin

Function name

void HAL_GPIO_WritePin (GPIO_TypeDef * GPIOx, uint16_t GPIO_Pin, GPIO_PinState PinState)

Function description Parameters Set or clear the selected data port bit.

- GPIOx: where x can be (A..H) to select the GPIO peripheral for STM32L4 family
- GPIO_Pin: specifies the port bit to be written. This parameter can be one of GPIO_PIN_x where x can be (0..15).

```
int main(void)
                     {
                       HAL_Init();
After reading the
                       SystemClock_Config();
documentation and
getting familiar with
                       MX_GPIO_Init();
the available APIs,
you are ready to go.
                       while (1)
In our toggling LED
example, we won't
need more than the
                            // LED ON
GPIO WritePin and
                            HAL_GPIO_WritePin(GPIOA, GPIO_PIN_8, GPIO_PIN_SET);
HAL Delay
                            HAL_Delay(100);
functions.
                            // LED OFF
And here is the full
                            HAL_GPIO_WritePin(GPIOA, GPIO_PIN_8, GPIO_PIN_RESET);
application code.
                            HAL_Delay(100);
                       }
```


Single 7-Segment Display

- Lit the digits "0" to "9" in a single 7-segment display at an interval of 1 second.
- There are two types of 7-segment display.
 - Common Cathode
 - Common anode
- Assume that the module is a common-cathode one.

Home Assignment-1

- Display a 4-digit number in a multi digit 7-segment display.
- Date of submission: Before the next class.

Thanks