PATENT ABSTRACTS OF JAPAN

(11)Publication number:

2002-271104

(43)Date of publication of application: 20.09.2002

(51)Int.CI.

H01P 1/15 H04B 1/50

(21)Application number: 2001-068643

(71)Applicant: TDK CORP

(22)Date of filing:

12.03.2001

(72)Inventor: HAYASHI KATSUHIKO

(54) HIGH-FREQUENCY SIGNAL SWITCHING DEVICE AND ANTENNA MULTICOUPLER USING THE SAME

(57)Abstract:

PROBLEM TO BE SOLVED: To provide a high-frequency signal switching device which can more effectively remove higher harmonic components generated by a switching element.

SOLUTION: This high-frequency signal switching device is provided with a transmission input terminal TX, a reception output terminal RX, and an antenna terminal ANT. The switching device is also provided with a switching means, which switches the connecting destination of the antenna terminal ANT between the transmission input terminal TX and reception output terminal RX, a transmission-side matching circuit MT, which is provided between the input terminal TX and antenna terminal ANT and matches the impedance between the terminals TX and ANT, and a reception-side matching circuit MR, which is provided between the output terminal RX and antenna terminal ANT and matches the impedance between the terminals RX and ANT.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's

decision of rejection]
[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

(19) 日本国特許庁 (JP)

(12) 公開特許公報(A)

(II)特許出願公開番号 特開2002-271104 (P2002-271104A)

(43)公開日 平成14年9月20日(2002.9.20)

(51) Int.Cl.7	識別記号	ΡI		テーマコード(参考)
H01P	1/15	H01P	1/15	5 J O 1 2
H04B	1/50	H04B	1/50	5 K O 1 1

審査請求 未請求 請求項の数11 OL (全 10 頁)

(21)出願番号	特願2001-68643(P2001-68643)	(71)出願人 000003067
		ティーディーケイ株式会社
(22)出廣日	平成13年3月12日(2001.3.12)	東京都中央区日本橋1丁目13番1号
		(72)発明者 林 克彦
		東京都中央区日本橋一丁目13番1号 ティ
		ーディーケイ株式会社内
		(74)代理人 100078031
		弁理士 大石 皓一 (外1名)
		Fターム(参考) 5J012 BA02
		•
		5K011 BA03 DA02 DA22 FA01 JA01
•		KAO4

(54) 【発明の名称】 高周波信号切り替え装置及びこれを用いたアンテナ共用器

(57)【要約】

【課題】 スイッチ素子が生成する高調波成分をより効果的に除去することができる高周波信号切り替え装置を提供する。

【解決手段】 送信入力端子TXと、受信出力端子RXと、アンテナ端子ANTと、アンテナ端子ANTを送信入力端子TXと接続するか受信出力端子RXと接続するかを切り替える切替手段と、送信入力端子TXとアンテナ端子ANTとの間に設けられ、これらの間のインピーダンスを整合する送信側マッチング回路MTと、受信出力端子RXとアンテナ端子ANTとの間に設けられ、これらの間のインピーダンスを整合する受信側マッチング回路MRとを備えている。

【特許請求の範囲】

【請求項1】 入力端子と、出力端子と、入出力端子 と、前記入出力端子を前記入力端子と接続するか前記出 力端子と接続するかを切り替える切替手段と、前記入力 端子と前記入出力端子との間に設けられ、これらの間の インピーダンスを整合する第1のマッチング回路と、前 記出力端子と前記入出力端子との間に設けられ、これら の間のインピーダンスを整合する第2のマッチング回路 とを備える高周波信号切り替え装置。

子と前記第1のマッチング回路との間に設けられた第1 のスイッチ素子を含むととを特徴とする請求項1に記載 の髙周波信号切り替え装置。

【請求項3】 前記切替手段が、前記出力端子と前記第 2のマッチング回路との接点と基準電位間との間に設け られた第2のスイッチ素子をさらに含むことを特徴とす る請求項2 に記載の高周波信号切り替え装置。

【請求項4】 前記第1及び第2のスイッチ素子がいず れもPINダイオードであることを特徴とする請求項3 に記載の高周波信号切り替え装置。

【請求項5】 前記第1のマッチング回路が、前記入出 力端子より供給される受信信号に関し、前記入出力端子 と前記入力端子との間をインピーダンス不整合とするも のであることを特徴とする請求項1乃至4に記載の高周 波信号切り替え装置。

【請求項6】 前記第2のマッチング回路が、高調波成 分を除去するフィルタとしての機能を有することを特徴 とする請求項1乃至5に記載の高周波信号切り替え装 置。

【請求項7】 前記第2のマッチング回路が、コンデン 30 サとコイルからなる並列回路部分を有していることを特 徴とする請求項1乃至6に記載の髙周波信号切り替え装 置。

【請求項8】 前記第1のマッチング回路が、コンデン サとコイルからなる並列回路部分を有していることを特 徴とする請求項1乃至7に記載の高周波信号切り替え装 置.

【請求項9】 前記第1及び第2のマッチング回路が多 層基板内に内蔵されており、前記第1及び第2のスイッ チ素子が前記多層基板上に搭載されていることを特徴と 40 する請求項3乃至8に記載の高周波信号切り替え装置。 【請求項10】 アンテナにより送受信される信号を周 波数に応じて分波する分波器と、前記分波器の一方の入 出力端に接続された第1の高周波切り替え装置と、分波 器の他方の入出力端に接続された第2の高周波切り替え 装置とを有するアンテナ共用器であって、前記第1の高 周波切り替え装置が、送信入力端子と、受信出力端子 と、前記分波器の前記一方の入出力端に接続されたアン テナ端子と、前記送信入出力端子を前記アンテナ端子と

切替手段と、前記送信入力端子と前記アンテナ端子との 間に設けられ、これらの間のインピーダンスを整合する

第1のマッチング回路と、前記受信出力端子と前記アン テナ端子との間に設けられ、これらの間のインビーダン スを整合する第2のマッチング回路とを備えることを特

徴とするアンテナ共用器。

【請求項11】 前記第2の高周波切り替え装置が、送 信入力端子と、受信出力端子と、前記分波器の前記他方 の入出力端に接続されたアンテナ端子と、前記送信入出 【請求項2】 前記切替手段が、少なくとも前記入力端 10 力端子を前記アンテナ端子と接続するか前記受信出力端 子と接続するかを切り替える切替手段と、前記送信入力 端子と前記アンテナ端子との間に設けられ、これらの間 のインピーダンスを整合する第1のマッチング回路と、 前記受信出力端子と前記アンテナ端子との間に設けら れ、これらの間のインピーダンスを整合する第2のマッ チング回路とを備えることを特徴とする請求項10に記 載のアンテナ共用器。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、高周波信号切り替 20 え装置及びこれを用いたアンテナ共用器に関し、さらに 詳細には、スイッチ素子により生成される高調波成分を より効果的に除去することができる高周波信号切り替え 装置及びこれを用いたアンテナ共用器に関する。

[0002]

【従来の技術】携帯電話機に代表される通信機器におい ては、従来より、アンテナを送信回路に接続するか受信 回路に接続するかを切り替えるために高周波信号切り替 え装置が用いられることが多い。

【0003】図12は、従来の高周波信号切り替え装置 の国路図である。

【0004】図12に示されるように、従来の髙周波信 号切り替え装置は、コンデンサC50~C53と、コイ ルレ50と、PINダイオードD1及びD2と、ストリ ップラインSLとを備えており、制御端子Vcontに バイアス電流を印加するか否かによって、アンテナ端子 (ANT)を送信入力端子(TX)に接続するか受信出 力端子(RX)に接続するかが切り替えられる。

【0005】すなわち、制御端子Vcontにバイアス 電流を印加した場合には、かかるバイアス電流は、コイ ルL50、PINダイオードD1、ストリップラインS L及びPINダイオードD2を経由してグランド電極に 流れ、PINダイオードD1及びD2の両端間のインビ ーダンスは非常に小さくなる。これにより、ストリップ ラインSLの受信出力端子(RX)側の端部は、実質的 に接地電位となるので、アンテナ端子 (ANT) 側から 見たストリップラインSLのインビーダンスは理想的に は無限大となる。したがって、送信入力端子 (TX) よ り供給される送信信号は、受信出力端子(RX)側に伝 接続するか前記受信出力端子と接続するかを切り替える 50 送されることなくアンテナ端子(ANT)側に伝送され

3

ることになる。

【0006】一方、制御端子Vcontにバイアス電流を印加していない場合には、PINダイオードD1及びD2の両端間のインビーダンスは非常に高くなるため、アンテナ端子(ANT)より供給される受信信号は、送信入力端子(TX)側に伝送されることなく受信出力端子(RX)側に伝送されることになる。

【0007】このように、図12に示される従来の高周波信号切り替え装置においては、制御端子Vcontにバイアス電流を与えるか否かによって、アンテナ端子(ANT)を送信入力端子(TX)に接続するか受信出力端子(RX)に接続するかを切り替えることができるが、一般に、PINダイオードはその導通時において高調波成分を発生させるため、送信入力端子(TX)より供給された送信信号にPINダイオードD1による高調波成分が重畳され、これがアンテナ端子(ANT)へ伝送されてしまうという問題が生じていた。このような高調波成分は、発生源であるPINダイオードD1とアンテナ端子(ANT)との間にローバスフィルタを挿入することによって除去することが可能である。

【0008】高調波成分の発生源であるPINダイオードD1とアンテナ端子(ANT)との間にローパスフィルタを挿入した例としては、特開平11-298364号公報に記載されている。

[0009]

【発明が解決しようとする課題】同公報に記載されているように、高調波成分の発生源であるPINダイオードD1とアンテナ端子(ANT)との間にローバスフィルタを挿入すれば、PINダイオードD1によって生成される高調波成分を除去することが可能であるものの、受 30 信出力端子(RX)側に設けられたPINダイオードD2によって生成される高調波成分を除去することはできない。

【0010】すなわち、制御端子Vcontにバイアス 電流が印加されている場合、送信入力端子(TX)より 供給される送信信号は、インピーダンスが理想的に無限 大となっているストリップラインSLによって受信出力 端子(RX)側への到達が妨げられているが、実際に は、受信出力端子 (RX) 側への到達を完全に遮断する ことは困難であり、約20dB程度の減衰量となること 40 が一般的である。このことは、約20dB程度減衰され た送信信号がPINダイオードD2を介してグランド電 極に流れることを意味し、これによってPINダイオー ドD2からは高調波成分が生成されてしまう。かかる高 調波成分は、ほとんど減衰することなくストリップライ ンSLを経由してアンテナ端子(ANT)に達すること から、アンテナより高調波が放射されることになり、他 の電子機器に対する妨害電波となるおそれがあった。 【0011】したがって、本発明の目的は、PINダイ

をより効果的に除去することができる高周波信号切り替え装置及びこれを用いたアンテナ共用器を提供することである。

[0012]

【課題を解決するための手段】本発明のかかる目的は、 入力端子と、出力端子と、入出力端子と、前記入出力端 子を前記入力端子と接続するか前記出力端子と接続する かを切り替える切替手段と、前記入力端子と前記入出力 端子との間に設けられ、これらの間のインビーダンスを 整合する第1のマッチング回路と、前記出力端子と前記 入出力端子との間に設けられ、これらの間のインビーダ ンスを整合する第2のマッチング回路とを備える高周波 信号切り替え装置によって達成される。

【0013】本発明の好ましい実施態様においては、前記切替手段が、少なくとも前記入力端子と前記第1のマッチング回路との間に設けられた第1のスイッチ素子を含む。

【0014】本発明のさらに好ましい実施態様においては、前記切替手段が、前記出力端子と前記第2のマッチング回路との接点と基準電位間との間に設けられた第2のスイッチ素子をさらに含む。

【0015】本発明のさらに好ましい実施態様においては、前記第1及び第2のスイッチ素子がいずれもPIN ダイオードである。

【0016】本発明のさらに好ましい実施態様においては、前記第1のマッチング回路が、前記入出力端子より供給される受信信号に関し、前記入出力端子と前記入力端子との間をインピーダンス不整合とするものである。【0017】本発明のさらに好ましい実施態様においては、前記第2のマッチング回路が、高調波成分を除去するフィルタとしての機能を有する。

【0018】本発明のさらに好ましい実施態様においては、前記第2のマッチング回路が、コンデンサとコイルからなる並列回路部分を有している。

【0019】本発明のさらに好ましい実施態様においては、前記第1のマッチング回路が、コンデンサとコイルからなる並列回路部分を有している。

【0020】本発明のさらに好ましい実施態様においては、前記第1及び第2のマッチング回路が多層基板内に内蔵されており、前記第1及び第2のスイッチ素子が前記多層基板上に搭載されている。

た送信信号がPINダイオードD2を介してグランド電極に流れることを意味し、これによってPINダイオードD2からは高調波成分が生成されてしまう。かかる高調波成分は、ほとんど減衰することなくストリップラインSLを経由してアンテナ端子(ANT)に達することがある。アンテナより高調波が放射されることになり、他の電子機器に対する妨害電波となるおそれがあった。
【0011】したがって、本発明の目的は、PINダイオードに代表されるスイッチ素子が生成する高調波成分 50 に対してアンテナ端子と接続するか前記受信出力端子を接続

するかを切り替える切替手段と、前記送信入力端子と前 記アンテナ端子との間に設けられ、これらの間のインビ ーダンスを整合する第1のマッチング回路と、前記受信 出力端子と前記アンテナ端子との間に設けられ、とれら の間のインビーダンスを整合する第2のマッチング回路 とを備えることを特徴とするアンテナ共用器によって達 成される。

【0022】本発明の好ましい実施態様においては、前 記第2の高周波切り替え装置が、送信入力端子と、受信 れたアンテナ端子と、前記送信入出力端子を前記アンテ ナ端子と接続するか前記受信出力端子と接続するかを切 り替える切替手段と、前記送信入力端子と前記アンテナ 端子との間に設けられ、これらの間のインピーダンスを 整合する第1のマッチング回路と、前記受信出力端子と 前記アンテナ端子との間に設けられ、これらの間のイン ピーダンスを整合する第2のマッチング回路とを備え る。

[0023]

【発明の実施の形態】本発明の実施態様について詳細に 説明する前に、まず本発明の基本的な原理について説明

【0024】図1は、本発明による高周波信号切り替え 装置の原理を説明するための略回路図である。

【0025】図1に示されるように、本発明において は、送信入力端子(TX)側に設けられたPINダイオ ードD1とアンテナ端子(ANT)との間に送信側マッ チング回路MTが挿入され、受信出力端子(RX)側に 設けられたPINダイオードD2とアンテナ端子(AN る。以下、送信側マッチング回路MT及び受信側マッチ ング回路MRからなる部分の全体をインビーダンス整合 部Mと呼ぶ。

【0026】送信側マッチング回路MTは、PINダイ オードD1及びD2がオンしている状態において、送信 入力端子(TX)より供給される送信信号に関し、送信 入力端子(TX)とアンテナ端子(ANT)とのインビ ーダンスを整合させるインピーダンスマッチング回路と しての役割を果たすとともに、PINダイオードD1に より生成される高調波成分を除去するローパスフィルタ 40 としての役割を果たし、さらに、PINダイオードD1 及びD2がオフしている状態において、アンテナ端子 (ANT)より供給される受信信号を遮断する回路とし ての役割を果たす。これにより、PINダイオードD1 及びD2がオンしている場合、インピーダンスマッチン グされた送信信号をアンテナ端子 (ANT) へ供給する ことが可能になるとともに、PINダイオードD1によ り生成される高調波成分が効果的に除去される。さら に、PINダイオードD1及びD2がオフしている場合 に、オフ状態であるPINダイオードD1とともに受信 50 り、制御端子Vcontにバイアス電流を印加するか否

信号が送信入力端子(TX)に達するのを防止すること ができる。

【0027】受信側マッチング回路MRは、PINダイ オードD1及びD2がオンしている状態において、送信 入力端子(TX)より供給される送信信号を遮断する回 路としての役割を果たすとともに、PINダイオードD 2により生成される高調波成分を除去するフィルタとし ての役割を果たし、さらに、PINダイオードD1及び D2がオフしている状態において、アンテナ端子(AN 出力端子と、前記分波器の前記他方の入出力端に接続さ 10 T)より供給される受信信号に関し、アンテナ端子(A NT) と受信出力端子(RX) とのインピーダンスを整 合させるインビーダンスマッチング回路としての役割を 果たす。これにより、PINダイオードD1及びD2が オフしている場合、インビーダンスマッチングされた受 信信号を受信出力端子 (RX) へ供給することが可能と なるとともに、PINダイオードD1及びD2がオンし ている場合にPINダイオードD2により生成される高 調波成分が効果的に除去される。すなわち、PINダイ オードD1及びD2がオンしている場合、送信入力端子 **. (TX)より供給される送信信号は、受信側マッチング** 回路MRによってそのほとんどがアンテナ端子(AN T) 側へ供給されるものの、その一部は受信出力端子 (RX)側に達し、PINダイオードD2に高調波を発 生させる。しかし、この高調波は、受信側マッチング回 路MRによって除去されるため、結果的にアンテナ端子 まで達することがない。

【0028】また、送信側マッチング回路MT及び受信 側マッチング回路MRは、それぞれ送信入力端子(T X) とアンテナ端子(ANT) とのインピーダンス整合 T)との間に受信側マッチング回路MRが挿入されてい 30 及びアンテナ端子(ANT)と受信出力端子(RX)と のインピーダンス整合を図るとともに、送信入力端子 (TX) と受信出力端子(RX) との間においてはイン ビーダンス不整合となるように設計される。これによ り、送信入力端子(TX)と受信出力端子(RX)との 間におけるアイソレーション特性が向上する。

【0029】次に、本発明の好ましい実施態様について 具体的に説明する。

【0030】図2は、本発明の好ましい実施態様にかか る高周波信号切り替え装置1の回路図である。

【0031】本実施態様にかかる高周波信号切り替え装 置しは、欧州にて広く採用されているGSM方式による 携帯電話機用の高周波信号切り替え装置であり、その送 信周波数 (F1) は880~915MHzであり、受信 周波数(F2)は925~960MH2である。

【0032】図2に示されるように、本実施態様にかか る高周波信号切り替え装置1は、コンデンサC10~C 12、C20、C30、C31、C32、C34及びC 35と、コイルL11、L12、L21、L31及びL 32と、PINダイオードD1及びD2とを備えてお

10

かによって、アンテナ端子 (ANT) を送信入力端子 (TX) に接続するか受信出力端子(RX) に接続する かが切り替えられる。ここで、コンデンサC10、C1 1、C20及びC30の容量はいずれも50pFであ り、コンデンサC12、C31、C32、C34及びC 35の容量はそれぞれ50pF、0.10pF、4.0 7pF、26、2pF及び15、1pFである。また、 コイルL11、L12、L21、L31及びL32のイ ンダクタンスは、それぞれ40nH、40nH、8.3 9nH、2、86nH及び40nHである。

【0033】本実施態様にかかる高周波信号切り替え装 置1において、コンデンサC31、C32、C34及び C35、コイルL31及びL32は、インピーダンス整 合部Mを構成する。とのうち、コンデンサC31及びC 34、コイルL31からなる部分は送信側マッチング回 路MTを構成し、コンデンサC32及びC35、コイル L32からなる部分は受信側マッチング回路MRを構成 する。インピーダンス整合部Mを構成するこれらコンデ ンサ及びコイルの定数を上記のように設定することによ り、GSM方式にて用いられる送信周波数(F1:88 20 る一方、アンテナ端子(ANT)と受信出力端子(R 0~915MHz)及び受信周波数 (F2:925~9 60MHz)において、送信側マッチング回路MT及び 受信側マッチング回路MRに上述した機能を持たせると とが可能となっている。

【0034】図3は、制御端子Vcontにバイアス電 流を印加した状態における高周波信号切り替え装置1の 等価回路図である。

【0035】図3に示されるように、制御端子Vcon゚ t にバイアス電流を印加した場合には、PINダイオー くなり、実質的に短絡されているものと考えることがで きる。これにより、送信側マッチング回路MTと送信入 力端子(TX)との間は、コンデンサC10を介して高 周波的に直接接続される一方、受信側マッチング回路M Rは接地されることになる。このため、送信信号の周波 数(F1)に関して、送信入力端子(TX)側から見た アンテナ端子(ANT)のインビーダンスは送信側マッ チング回路MTにより整合されるので、送信信号は低損 失にて通過する一方、アンテナ端子 (ANT) 側から見 た受信出力端子(RX)のインビーダンスは受信側マッ チング回路MRにより不整合とされるので、送信信号は 実質的に遮断される。したがって、送信入力端子 (T X)より供給される送信信号は、受信出力端子(RX) 側にほとんど伝送されることなくアンテナ端子 (AN T) 側に伝送されることになる。

【0036】但し、受信側マッチング回路MRにおいて 送信信号を完全に遮断することは困難であり、減衰され た送信信号がある程度受信出力端子 (RX) 側に伝送さ れることは避けられない。このとき、受信出力端子(R

を流れ、これに伴ってPINダイオードD2は高調波2 ×F1、3×F1・・・)を発生させる。しかしなが ら、かかる高調波は受信側マッチング回路MRによって 実質的に遮断されるので、アンテナ端子(ANT)に達 することはほとんどない。

【0037】同様に、PINダイオードD1は、送信信 号の通過に伴って高調波 (2×F1、3×F1・・・) を発生させるが、かかる高調波は送信側マッチング回路 MTによって実質的に遮断されるので、アンテナ端子 (ANT)に達することはほとんどない。

【0038】図4は、制御端子Vcontにバイアス電 流を印加していない状態における高周波信号切り替え装 置1の等価回路図である。

【0039】図4に示されるように、制御端子Vcon t にバイアス電流を印加していない場合には、PINダ イオードD1及びD2の両端間のインピーダンスは非常 に高くなり、実質的に低容量のコンデンサであると考え ることができる。これにより、アンテナ端子(ANT) と送信入力端子(TX)との間は、高周波的に遮断され X)との間は、受信側マッチング回路MRにより整合さ れ、受信信号は低損失にて通過することになる。したが って、アンテナ端子(ANT)より供給される受信信号 は、送信入力端子(TX)側にほとんど伝送されること なく受信出力端子(RX)側に伝送されることになる。 【0040】但し、オフ状態にあるPINダイオードD 1は、上述のとおり低容量のコンデンサとみなすことが できるので、受信信号を完全に遮断することはできな い。しかしながら、アンテナ端子(ANT)と送信入力 ドD1及びD2の両端間のインピーダンスは非常に小さ 30 端子(TX)との間には送信側マッチング回路MTが存 在し、これにより受信信号の周波数(F2)に関し両者 間におけるインピーダンスが不整合とされているので、 受信信号が送信入力端子(TX)に達することはほとん どない。

> 【0041】図5は、本実施態様にかかる高周波信号切 り替え装置1において、PINダイオードD1及びD2 がオンしている状態での送信入力端子(TX)とアンテ ナ端子(ANT)との間の挿入損失特性(実線: TX-ANT) 及びPINダイオードD1及びD2がオフして 40 いる状態でのアンテナ端子(ANT)と受信出力端子 (RX) との間の挿入損失特性(破線:ANT-RX) を示すグラフである。

【0042】送信入力端子(TX)とアンテナ端子(A NT)との間の挿入損失については、送信信号の周波数 帯域(F1:880~915MHz)において十分に低 損失である必要があり、アンテナ端子 (ANT) と受信 出力端子(RX)との間の挿入損失については、受信信 号の周波数帯域 (F2:925~960MHz) におい て十分に低損失である必要があるが、図5に示されるよ X)側に伝送された送信信号は、PINダイオードD2 50 うに、いずれの挿入損失についても対象周波数帯域にお いて極めて低損失(約0.5dB)となっていることが 確認できる。

【0043】図6は、本実施態様にかかる高周波信号切り替え装置1において、PINダイオードD1及びD2がオンしている状態での送信入力端子(TX)と受信出力端子(RX)との間のアイソレーション特性(実線:TX-RX)及びPINダイオードD1及びD2がオフしている状態での送信入力端子(TX)とアンテナ端子(ANT)との間のアイソレーション特性(破線:TX-ANT)を示すグラフである。

【0045】図7は、本実施態様にかかる高周波信号切り替え装置1において、各PINダイオードがオンしている状態(送信時)における、PINダイオードD1からみたアンテナ端子(ANT)側の通過帯域特性を示すグラフである。

【0046】PINダイオードD1からみたアンテナ端子(ANT)側の通過帯域特性は、送信信号の周波数帯域(F1:880~915MHz)において低損失であり、かかる信号の高調液帯域において高損失であることが望まれるが、図7に示されるように、送信信号の高調波帯域(2×F1、3×F1・・・)において十分な減速帯域(2×F1、3×F1・・・)において十分な減速帯域(2×F1、3×F1・・・)において十分な減速帯域(2×F1、3×F1・・・)において十分な減速帯域(2×F1、3×F1・・・)において十分な減速帯域(2×F1、3×F1・・・)において十分な減速量(20dB以上)となっていることが確認できる。「0047】図8は、本実施態様にかかる高周波信号切り替え装置1において、各PINダイオードがオンしている状態(送信時)における、PINダイオードD2かる。らみたアンテナ端子(ANT)側の通過帯域特性を示す

【0048】PINダイオードD2からみたアンテナ端子(ANT)側の通過帯域特性は、送信信号の高調波帯域において高損失であることが望まれるが、図8に示されるように、送信信号の高調波帯域(2×F1、3×F1・・・)において十分な減衰量(20dB程度)となっていることが確認できる。

グラフである。

【0049】以上より、本実施態様にかかる高周波信号 切り替え装置1に備えられたインビーダンス整合部M が、上述した各効果を十分に発揮していることが分かる。

【0050】図9は、本実施態様にかかる高周波信号切り替え装置1を概略的に示す図であり、(a)は斜視図、(b)は断面図である。

【0051】図9(a)及び(b)に示されるように、本実施態様にかかる高周波信号切り替え装置1は多層基板2及びその上面に搭載されたダイオード部品3からなり、多層基板2の側面部には複数の外部端子4が設けられている。このような構成からなる高周波信号切り替え装置1において、コンデンサC10、C11、C20、C30、C31、C32、C34、C35及びコイル上11、L21、L31、L32は、多層基板2の下層部には一端が接地されるコンデンサ(C11、C34及びC35)が設けられ、上層部にはそれ以外のコンデンサ(C10、C20、C30、C31及びC32)及びコイル(L11、L21、L31、L32)が設けられており、これら下層部と上層部との間の中層部はこれらのスペーサとして用いられる。

【0052】また、PINダイオードD1及びD2とし ては、図10に示されるように2つのP1Nダイオード が集積されたダイオード部品3を用いることができる。 【0053】このように、本実施態様による高周波信号 **切り替え装置1においては、送信入力端子(TX)側に** 設けられたPINダイオードD1とアンテナ端子(AN T)との間に送信側マッチング回路MTが挿入され、受 信出力端子(RX)側に設けられたPINダイオードD 2とアンテナ端子(ANT)との間に受信側マッチング 30 回路MRが挿入されていることから、PINダイオード D1及びD2がオンしている状態においては、送信入力 端子(TX)より供給される送信信号が低損失にてアン テナ端子(ANT)に供給されるとともに高調波成分が 効果的に遮断され、さらに、受信出力端子(RX)側へ の送信信号の漏れがほとんどなくなり、PINダイオー FD1及びD2がオフしている状態においては、アンテ ナ端子(ANT)より供給される受信信号が低損失にて 受信出力端子(RX)に供給されるとともに、送信入力 端子(TX)側への受信信号の漏れがほとんどなくな

【0054】次に、本発明の好ましい他の実施態様について説明する。

【0055】図11は、2つの高周波切り替え装置を用いたアンテナ共用器5を概略的に示す回路図である。

【0056】図11に示されるように、本実施態様にかかるアンテナ共用器5おいては、アンテナにより送受信される信号を周波数に応じて分波する分波器6と、分波器6の一方の入出力端に接続された第1の高周波切り替え装置7と、分波器6の他方の入出力端に接続された第502の高周波切り替え装置8とを備える。とのようなアン

テナ共用器5は、2つの方式による通話が可能ないわゆるデュアルバンド携帯電話機に組み込まれて使用される。とこで2つの方式とは、例えば、GSM方式とDCS方式が挙げられる。DCS方式においては、受信周波数が1805~1880MHz、送信周波数が1710~1785MHzである。

【0057】本実施態様においても、第1の高周波切り替え装置7及び第2の高周波切り替え装置8にはいずれもインビーダンス整合部Mが備えられており、これによって、第1の高周波切り替え装置7及び第2の高周波切り替え装置8のそれぞれについて上記実施態様において説明した効果を得ることができる。さらに、本実施態様においては、第1の高周波切り替え装置7及び第2の高周波切り替え装置8にインビーダンス整合部Mが備えられていることから、第1の高周波切り替え装置7と第2の高周波切り替え装置8との間のアイソレーション特性をも高められる。

【0058】本発明は、以上の実施態様に限定されるととなく、特許請求の範囲に記載された発明の範囲内で種々の変更が可能であり、それらも本発明の範囲内に包含 20されるものであることはいうまでもない。

【0059】例えば、上記実施態様において特定した回路構成は本発明の一具体例であり、本発明がかかる回路構成に限定されるものではない。例えば、上記実施態様においては、制御端子Vcontとグランド電極間にバイアス電流を流すか否かによって、送信と受信とを切り替える構成を採用しているが、制御端子Vcontを20つ設け、これらの間にバイアス電流を流すか否かによって、送信と受信とを切り替える構成を採用しても構わない。

【0060】また、上記実施態様において特定した回路 定数は一例であり、本発明による上記効果が得られる限 りにおいてどのような回路定数をもったコンデンサやコ イルを用いても構わない。また、各コンデンサや各コイ ルとしては、多層基板2の内部にそれぞれ独立したパタ ーンを設けることによって実現することは必須ではな く、特に回路定数の小さいものについては他の回路素子 が有する寄生成分(寄生容量等)を用いて実現しても構 わない。

【0061】さらに、上記実施態様にかかるアンテナ共 40 用器5においては、第1の高周波切り替え装置7及び第 2の高周波切り替え装置8の両方にインビーダンス整合 部Mを設けているが、一方の高周波切り替え装置にのみ インビーダンス整合部Mを設けても構わない。

[0062]

【発明の効果】以上説明したように、本発明では送信側マッチング回路MT及び受信側マッチング回路MRからなるインピーダンス整合部Mを備えていることから、スイッチ素子により生成される高調波成分が効果的に除去される。

【図面の簡単な説明】

【図1】本発明による高周波信号切り替え装置の原理を 説明するための略回路図である。

12

【図2】本発明の好ましい実施態様にかかる高周波信号 切り替え装置1の回路図である。

【図3】制御端子Vcontにバイアス電流を印加した 状態における高周波信号切り替え装置1の等価回路図で ある。

もインピーダンス整合部Mが備えられており、これによ 【図4】制御端子Vcontにバイアス電流を印加してって、第1の高周波切り替え装置7及び第2の高周波切 10 いない状態における高周波信号切り替え装置1の等価回り替え装置8のそれぞれについて上記実施態様において 路図である。

【図5】PINダイオードDI及びD2がオンしている 状態での送信入力端子(TX)とアンテナ端子(AN T)との間の挿入損失特性(実線:TX-ANT)及び PINダイオードDI及びD2がオフしている状態での アンテナ端子(ANT)と受信出力端子(RX)との間 の挿入損失特性(破線:ANT-RX)を示すグラフで ある。

【図6】PINダイオードD1及びD2がオンしている 状態での送信入力端子(TX)と受信出力端子(RX) との間のアイソレーション特性(実線:TX-RX)及 びPINダイオードD1及びD2がオフしている状態で の送信入力端子(TX)とアンテナ端子(ANT)との 間のアイソレーション特性(破線:TX-ANT)を示 すグラフである。

【図7】各PINダイオードがオンしている状態(送信時)における、PINダイオードD1からみたアンテナ端子(ANT)側の通過帯域特性を示すグラフである。【図8】各PINダイオードがオンしている状態(送信30時)における、PINダイオードD2からみたアンテナ端子(ANT)側の通過帯域特性を示すグラフである。【図9】本発明の好ましい実施態様にかかる高周波信号切り替え装置1を概略的に示す図であり、(a)は斜視図、(b)は断面図である。

【図10】ダイオード部品3を示す概略図である。

【図11】本発明の好ましい他の実施態様にかかるアンテナ共用器5を概略的に示す回路図である。

【図12】従来の高周波信号切り替え装置の回路図である。

40 【符号の説明】

- I 高周波信号切り替え装置
- 2 多層基板
- 3 ダイオード部品
- 4 外部端子
- 5 アンテナ共用器
- 6 分波器
- 7 第1の高周波信号切り替え装置
- 8 第2の高周波信号切り替え装置
- D1, D2, D11, D12, D21, D22 PIN 50 ダイオード

(8)

13

C10, C11, C20, C30, C31, C32, C34, C35, C50~C53 コンデンサ L11, L21, L31, L32, L50 コイル SL ストリップライン ANT アンテナ端子

*RX, RX1, RX2 受信出力端子
 Vcont, Vcont1, Vcont2 制御端子
 M インビーダンス整合部
 MT 送信側マッチング回路
 MR 受信側マッチング回路

TX, TX1, TX2 送信入力端子

[図1]

【図5】

[図6]

[図7]

[図10]

RX

Voont

【図11】

