Deep Learning lecture 8 Sequence Modeling (1)

Yi Wu, IIIS

Spring 2024

Apr-19

Logistics

- Special Arrangement: Two Lectures next week
 - Apr. 22 (Monday) 19:20, 舜德楼301, Lec.9
 - Apr. 26 (Friday) 13:30, 舜德楼301, Lec.10

- Coding Project 3 is due on Apr. 28 (Sunday)
 - No format/submission/evaluation error allowed!

- Final Project Proposal to be announced on next Monday
 - 2~3 students per team
 - Only specific topics allowed
 - A final poster session ©

Today's Topic

- Basic models for sequence data
 - Recurrent neural networks
 - LSTM

Basic techniques for modeling natural language

Story So Far

- Supervised Learning (Lec. 2~3)
 - Discriminative Models
 - Network architectures and learning algorithms

- Generative Models (Lec. 4~7)
 - Energy-based models (contrastive divergence + MCMC)
 - Flow model (bijections)
 - VAE (variational inference)
 - GAN (neural loss function)
 - Trade-offs between expressiveness, inference and training

- Most existing discussions assume fixed dimensions
 - E.g.: Image classification and generation
 - Input image has fixed width and height
 - Fixed output dimension
 - Fixed amount of network layers and parameters
- What if the dimension of input varies a lot?
 - Finding the "welcome" (lecture 2)

- Most existing discussions assume
 - E.g.: Image classification and genera
 - Input image has fixed width and height
 - Fixed output dimension
 - Fixed amount of network layers and
- What if the dimension of input var
 - Finding the "welcome" (lecture 2)
 - Generating poet

- Most existing discussions assume fixed dimensions
 - E.g.: Image classification and generation
 - Input image has fixed width and height
 - Fixed output dimension
 - Fixed amount of network layers and parameters
- What if the dimension of input varies a lot?
 - Finding the "welcome" (lecture 2)
 - Generating poet
 - Machine translation

- Finding the "Welcome"
 - Input data $X_1 ... X_L$, L may vary
 - Whether the voice contains "Welcome"
- Possible Solution: Time-Delayed Network (Lec. 2, Temporal Conv-Net)
 - Suppose kernel size is d, how may layers we need?
 - K layers can at most classify a "Welcome" of length $O(k \cdot d)$

- Finding the "Welcome"
 - Input data $X_1 ... X_L$, L may vary
 - Whether the voice contains "Welcome"
- Improved Solution: Dilated ConvNet (Lec 6, WaveNet)
 - How may layers do we need?
 - $O(\log N)$
 - we still need a network of varying depth for arbitrarily long sequence

- Finding the "Welcome"
 - Input data $X_1 ... X_L$, L may vary
 - Whether the voice contains "Welcome"
- Goal: a fixed-size model for arbitrarily long sequences
 - Idea: reuse the same "layer" repeatedly
- State-Space Model
 - h_t : (hidden) state
 - *X_t*: input
 - Y_t : output
 - $Y_t, h_t = f(h_{t-1}, X_t; \theta)$
 - h_{-1} : initial state

- State-Space Model
 - h_t : (hidden) state
 - X_t : input; Y_t : output
 - $h_t = f_1(h_{t-1}, X_t; \theta)$
 - $Y_t = f_2(h_t; \theta)$
 - h_{-1} : initial state

- Same neural network across all the columns!
 - Simplified drawing (loops implies recurrence)
 - h_t : a vector that summarizes all past inputs (also called "memory")
 - h_{-1} affects the whole network (typically set to zero)
 - Y_t is computed over X_0, \dots, X_t
 - X_t affect all the outputs and states after t

- State-Space Model
 - h_t : (hidden) state
 - X_t : input; Y_t : output
 - $h_t = f_1(h_{t-1}, X_t; \theta)$
 - $Y_t = f_2(h_t; \theta)$
 - h_{-1} : initial state

- Same neural network across all the columns!
 - MLP v.s. RNN
 - RNN can be viewed as repeatedly applying MLPs
 - $h_t = f_1 (W^{(1)} \cdot X_t + W^{(11)} \cdot h_{t-1} + b^{(1)})$
 - $Y_t = f_2(W^{(2)}h_t + b^{(2)})$
 - f_1 , f_2 are activations (e.g., Sigmoid, tanh, ReLU, Softmax)

- State-Space Model
 - h_t : (hidden) state
 - X_t : input; Y_t : output
 - $h_t = f_1(h_{t-1}, X_t; \theta)$
 - $Y_t = f_2(h_t; \theta)$
 - h_{-1} : initial state

- Same neural network across all the columns!
 - MLP v.s. RNN
 - RNN can be viewed as repeatedly applying MLPs
 - $h_t = f_1(W^{(1)} \cdot X_t + W^{(11)} \cdot h_{t-1} + b^{(1)})$
 - $Y_t = f_2(W^{(2)}h_t + b^{(2)})$

Recurrent weights!

• f_1 , f_2 are activations (e.g., Sigmoid, tanh, ReLU, Softmax)

- Stack K layers of RNNs!
 - Multi-layer RNN
- State-Space Model
 - $h_t^{(k)}$: (hidden) states
 - X_t : input; Y_t : output

•
$$h_t^{(1)} = f_1^{(1)} \left(h_{t-1}^{(1)}, X_t; \theta \right)$$

- $h_t^{(k)} = f_1^{(k)} \left(h_{t-1}^{(k)}, h_t^{(k-1)}; \theta \right)$
- $Y_t = f_2\left(h_t^{(K)}; \theta\right)$
- $h_{-1}^{(k)}$: initial states

- State-Space Model
 - h_t : (hidden) state
 - X_t : input; Y_t : output
 - $h_t = f_1(h_{t-1}, X_t; \theta)$
 - $Y_t = f_2(h_t; \theta)$
 - h_{-1} : initial state

How to train an RNN?

- Assume we have paired input and target sequence $\{(X_t, D_t)\}_t$
 - Remark
 - RNN can handle much more flexible data format than fully paired data
 - But let's simply keep this assumption for now

- State-Space Model
 - h_t : (hidden) state
 - X_t : input; Y_t : output
 - $h_t = f_1(h_{t-1}, X_t; \theta)$
 - $Y_t = f_2(h_t; \theta)$
 - h_{-1} : initial state

- How to train an RNN?
 - Assume we have paired input and target sequence $\{(X_t, D_t)\}_t$
 - We can define the loss function $L(\theta) = \sum_t Div(Y_t, D_t)$
 - Goal: learn the best parameter θ^* via gradient descent
 - Let's do backpropagation for RNN!

- Backpropagation for RNN
 - Let's focus on 1 training instance
 - $Z_t^{(2)}$: pre-activation of output $(Y_t = f_2(Z_t^{(2)}; \theta))$
 - $Z_t^{(1)}$: pre-activation of hidden ($h_t = f_1\left(Z_t^{(1)}; \theta\right)$)

- Backpropagation for RNN
 - We start from the final timestep *T*
 - We first compute $\frac{\partial Div}{\partial Y_T}$

- Backpropagation for RNN
 - We start from the final timestep *T*
 - We first compute $\frac{\partial Div}{\partial Y_T}$
 - Then $\frac{\partial Div}{\partial Z_T^{(2)}}$

$$Y_t = f_2\left(Z_t^{(2)}; \theta\right)$$

Vector output activation

$$\frac{dDIV}{dZ_i^{(2)}(T)} = \frac{dDIV}{dY_i(T)} \frac{dY_i(T)}{dZ_i^{(2)}(T)}$$

- Backpropagation for RNN
 - We start from the final timestep T
 - We first compute $\frac{\partial Div}{\partial Y_T}$
 - Then $\frac{\partial Div}{\partial Z_T^{(2)}}$ and $\frac{\partial Div}{\partial h_T}$

$$Y_t = f_2(W^{(2)}h_t + b^{(2)})$$

$$\frac{dDIV}{dh_i(T)} = \sum_{j} \frac{dDIV}{dZ_j^{(2)}(T)} \frac{dZ_j^{(2)}(T)}{dh_i(T)} = \sum_{j} w_{ij}^{(2)} \frac{dDIV}{dZ_j^{(2)}(T)}$$

- Backpropagation for RNN
 - We start from the final timestep T
 - We first compute $\frac{\partial \mathcal{U}}{\partial Y_T}$
 - Then $\frac{\partial Div}{\partial Z_T^{(2)}}$ and $\frac{\partial Div}{\partial h_T}$ Gradient of $W^{(2)}$

$$Y_t = f_2(W^{(2)}h_t + b^{(2)})$$

$$\frac{dDIV}{dw_{ij}^{(2)}} = \frac{dDIV}{dZ_j^{(2)}(T)} h_i(T)$$

- Backpropagation for RNN
 - We start from the final timestep T
 - We first compute $\frac{\partial Div}{\partial Y_T}$
 - Then $\frac{\partial Div}{\partial Z_T^{(2)}}$ and $\frac{\partial Div}{\partial h_T}$
 - Gradient of $W^{(2)}$
 - Then $\frac{\partial Div}{\partial Z_T^{(1)}}$ (vector activation)

$$h_t = f_1\left(Z_t^{(1)}; \theta\right)$$

$$\frac{dDIV}{dZ_i^{(1)}(T)} = \frac{dDIV}{dh_i(T)} \frac{dh_i(T)}{dZ_i^{(1)}(T)}$$

 $Y(0) \qquad Y(1) \qquad Y(2) \qquad Y(T-2) \qquad Y(T-1) \qquad Y(T)$ $X(0) \qquad X(1) \qquad X(2) \qquad X(T-2) \qquad X(T-1) \qquad X(T)$

- Backpropagation for RNN
 - We start from the final timestep T
 - We first compute $\frac{\partial Div}{\partial Y_T}$
 - Then $\frac{\partial Div}{\partial Z_T^{(2)}}$ and $\frac{\partial Div}{\partial h_T}$
 - Gradient of $W^{(2)}$
 - Then $\frac{\partial Div}{\partial Z_T^{(1)}}$
 - $\frac{\partial Div}{\partial W^{(1)}}$

$$h_t = f_1 \big(W^{(1)} \cdot X_t + W^{(11)} \cdot h_{t-1} + b^{(1)} \big)$$

$$\frac{dDIV}{dw_{ij}^{(1)}} = \frac{dDIV}{dZ_j^{(1)}(T)} X_i(T)$$

Y(0) Y(1) Y(2) Y(T-2) Y(T-1) Y(T) Y(T)

- Backpropagation for RNN
 - We start from the final timestep T
 - We first compute $\frac{\partial Div}{\partial Y_T}$
 - Then $\frac{\partial Div}{\partial Z_T^{(2)}}$ and $\frac{\partial Div}{\partial h_T}$
 - Gradient of $W^{(2)}$
 - Then $\frac{\partial Div}{\partial Z_T^{(1)}}$
 - $\frac{\partial Div}{\partial W^{(1)}}$ and $\frac{\partial Div}{\partial W^{(11)}}$

$$h_t = f_1 (W^{(1)} \cdot X_t + W^{(11)} \cdot h_{t-1} + b^{(1)})$$

$$\frac{dDIV}{dw_{ij}^{(11)}} = \frac{dDIV}{dZ_j^{(1)}(T)} h_i(T-1)$$

 h_{-1} X(0) X(1) X(2) X(T-2) X(T-1) X(T)

- Backpropagation for RNN
 - We continue to timestep T-1
 - Compute $\frac{\partial Div}{\partial Y_{T-1}}$ and $\frac{\partial Div}{\partial Z_{T-1}^{(2)}}$

$$Y_{t} = f_{2}\left(Z_{t}^{(2)}\right)$$

$$\frac{dDIV}{dDIV} \frac{dV_{i}(T-1)}{dV_{i}(T-1)}$$

$$\frac{dDIV}{dZ_i^{(2)}(T-1)} = \frac{dDIV}{dY_i(T-1)} \frac{dY_i(T-1)}{dZ_i^{(2)}(T-1)}$$

- Backpropagation for RNN
 - We continue to timestep T-1
 - Compute $\frac{\partial Div}{\partial Y_{T-1}}$ and $\frac{\partial Div}{\partial Z_{T-1}^{(2)}}$
 - Then $\frac{\partial Div}{\partial h_{T-1}}$
 - Note the addition!

$$h_t = f_1 (W^{(1)} \cdot X_t + W^{(11)} \cdot h_{t-1} + b^{(1)})$$
$$Y_t = f_2 (W^{(2)} h_t + b^{(2)})$$

$$\frac{dDIV}{dh_i(T-1)} = \sum_j w_{ij}^{(2)} \frac{dDIV}{dZ_j^{(2)}(T-1)} + \sum_j w_{ij}^{(11)} \frac{dDIV}{dZ_j^{(1)}(T)}$$

P(T) P(T)

- Backpropagation for RNN
 - We continue to timestep T-1
 - Compute $\frac{\partial Div}{\partial Y_{T-1}}$ and $\frac{\partial Div}{\partial Z_{T-1}^{(2)}}$
 - Then $\frac{\partial Div}{\partial h_{T-1}}$ and $\frac{\partial Div}{\partial W^{(2)}}$
 - Note the addition!

$$h_t = f_1 (W^{(1)} \cdot X_t + W^{(11)} \cdot h_{t-1} + b^{(1)})$$
$$Y_t = f_2 (W^{(2)} h_t + b^{(2)})$$

X(T-2)

X(T-1)

X(T)

$$\frac{dDIV}{dh_i(T-1)} = \sum_j w_{ij}^{(2)} \frac{dDIV}{dZ_j^{(2)}(T-1)} + \sum_j w_{ij}^{(11)} \frac{dDIV}{dZ_j^{(1)}(T)}$$

 $\frac{dDIV}{dw_{ij}^{(2)}} + = \frac{dDIV}{dZ_{j}^{(2)}(T-1)} h_{i}(T-1)$ h_{-1}

X(1)

X(2)

X(0)

- Backpropagation for RNN
 - We continue to timestep T-1
 - Compute $\frac{\partial Div}{\partial Y_{T-1}}$ and $\frac{\partial Div}{\partial Z_{T-1}^{(2)}}$
 - Then $\frac{\partial Div}{\partial h_{T-1}}$ and $\frac{\partial Div}{\partial W^{(2)}}$
 - Compute $\frac{\partial Div}{\partial Z_{T-1}^{(1)}}$

$$h_t = f_1(Z_t^{(1)})$$

$$\frac{dDIV}{dZ_i^{(1)}(T-1)} = \frac{dDIV}{dh_i(T-1)} \frac{dh_i(T-1)}{dZ_i^{(1)}(T-1)}$$

- Backpropagation for RNN
 - We continue to timestep T-1
 - Compute $\frac{\partial Div}{\partial Y_{T-1}}$ and $\frac{\partial Div}{\partial Z_{T-1}^{(2)}}$
 - Then $\frac{\partial Div}{\partial h_{T-1}}$ and $\frac{\partial Div}{\partial W^{(2)}}$
 - Compute $\frac{\partial Div}{\partial Z_{T-1}^{(1)}}$
 - Then $\frac{\partial Div}{\partial W^{(1)}}$
 - Note the addition!

$$h_t = f_1 (W^{(1)} \cdot X_t + W^{(11)} \cdot h_{t-1} + b^{(1)})$$

$$\frac{dDIV}{dw_{ij}^{(1)}} + = \frac{dDIV}{dZ_j^{(1)}(T-1)} X_i(T-1)$$

 $Y(0) \qquad Y(1) \qquad Y(2) \qquad Y(T-2) \qquad Y(T-1) \qquad Y(T)$

- Backpropagation for RNN
 - We continue to timestep T-1
 - Compute $\frac{\partial Div}{\partial Y_{T-1}}$ and $\frac{\partial Div}{\partial Z_{T-1}^{(2)}}$
 - Then $\frac{\partial Div}{\partial h_{T-1}}$ and $\frac{\partial Div}{\partial W^{(2)}}$
 - Compute $\frac{\partial Div}{\partial Z_{T-1}^{(1)}}$
 - Then $\frac{\partial Div}{\partial W^{(1)}}$ and $\frac{\partial Div}{\partial W^{(11)}}$
 - Note the addition!

$$h_t = f_1 (W^{(1)} \cdot X_t + W^{(11)} \cdot h_{t-1} + b^{(1)})$$

$$\frac{dDIV}{dw_{ij}^{(11)}} += \frac{dDIV}{dZ_{j}^{(1)}(T-1)} h_{i}(T-2)$$

 $Y(0) \qquad Y(1) \qquad Y(2) \qquad Y(T-2) \qquad Y(T-1) \qquad Y(T)$ $X(0) \qquad X(1) \qquad X(2) \qquad X(T-2) \qquad X(T-1) \qquad X(T)$

- Backpropagation for RNN
 - We continue to timestep T-1
 - Compute $\frac{\partial Div}{\partial Y_{T-1}}$ and $\frac{\partial Div}{\partial Z_{T-1}^{(2)}}$
 - Then $\frac{\partial Div}{\partial h_{T-1}}$ and $\frac{\partial Div}{\partial W^{(2)}}$
 - Compute $\frac{\partial Div}{\partial Z_{T-1}^{(1)}}$
 - Then $\frac{\partial Div}{\partial W^{(1)}}$ and $\frac{\partial Div}{\partial W^{(11)}}$
 - Until $\frac{\partial Div}{\partial h_{-1}}$
 - Short for BPTT

$$h_t = f_1 (W^{(1)} \cdot X_t + W^{(11)} \cdot h_{t-1} + b^{(1)})$$
$$Y_t = f_2 (W^{(2)} h_t + b^{(2)})$$

Extension

- In a standard RNN, Y_t only captures previous inputs
 - What if we want Y_t to handle the entire inputs?
- Bidirectional RNN
 - An RNN for forward dependencies

•
$$t = 0 ... T$$

- An RNN for backward dependencies
 - $t = T \dots 0$
- $Y_t = f_2\left(h_t^f, h_t^b; \theta\right)$
- BPTT for bidirectional RNN?
 - $\partial Div/\partial Y_t$ for all t
 - $t = T ... 0 \text{ for } h_f$
 - $t = 0 \dots T$ for h_h

Extension

- Finding the "Welcome"
 - Input data $X_1 ... X_L$, L may vary
 - Whether the voice contains "Welcome"
- RNN for sequence classification
 - $Y = \max_{t} Y_{t}$
 - $L(\theta) = cross_entropy(Y, Y_{desired})$

A 1-layer RNN can handle arbitrarily long sequence data

Extension

- Finding the "Welcome"
 - Input data $X_1 ... X_L$, L may vary
 - Whether the voice contains "Welcome"
- RNN for sequence classification
 - $Y = \max_{t} Y_{t}$
 - $L(\theta) = cross_entropy(Y, Y_{desired})$

A 1-layer RNN can handle arbitrarily long sequence data

..... in theory!

Practice Issues of RNN

- We start with a linear RNN
 - $z_t = W_h \cdot h_{t-1} + W_x \cdot X_t$
 - $h_t = z_t$
 - All activations are identity functions
 - We will add activations back later

Practice Issues of RNN

- We start with a linear RNN
 - $z_t = W_h \cdot h_{t-1} + W_x \cdot X_t$
 - $h_t = z_t$
- Let's expand the recursions

•
$$h_k = W_h \cdot h_{k-1} + W_{\mathcal{X}} \cdot X_k$$

•
$$= W_h^2 h_{k-2} + W_h W_x \cdot X_{k-1} + W_x \cdot X_k$$

•
$$= W_h^3 h_{k-3} + W_h^2 W_{x} \cdot X_{k-2} + W_h W_{x} \cdot X_{k-1} + W_{x} \cdot X_{k}$$

•
$$= W_h^{k+1} h_{-1} + \sum_{i=0}^k W_h^{k-i} W_{x} \cdot X_i$$

- We start with a linear RNN
 - $z_t = W_h \cdot h_{t-1} + W_x \cdot X_t$
 - $h_t = z_t$

•
$$h_k = W_h \cdot h_{k-1} + W_{\mathcal{X}} \cdot X_k$$

•
$$= W_h^2 h_{k-2} + W_h W_x \cdot X_{k-1} + W_x \cdot X_k$$

•
$$= W_h^3 h_{k-3} + W_h^2 W_{\chi} \cdot X_{k-2} + W_h W_{\chi} \cdot X_{k-1} + W_{\chi} \cdot X_k$$

•
$$= W_h^{k+1} h_{-1} + \sum_{i=0}^k W_h^{k-i} W_{x} \cdot X_i$$

- The coefficient of signal at position i is exponential over W_h
 - The dynamics of the system is highly depending on the maximum eigenvalue of W_h

- We start with a linear RNN
 - $z_t = W_h \cdot h_{t-1} + W_x \cdot X_t$
 - $h_t = z_t$

- Let's expand the recursions
 - $h_k = W_h^{k+1} h_{-1} + \sum_{i=0}^k W_h^{k-i} W_{x} \cdot X_i$
 - The coefficient of signal at position i is exponential over W_h
 - If $|\lambda_{\text{max}}| > 1$, the system explodes
 - If $|\lambda_{\rm max}| < 1$, the system cannot capture long-term dependencies
 - If $|\lambda_{\text{max}}| = 1$, the second largest eigenvalue matters

- We start with a linear RNN
 - $z_t = W_h \cdot h_{t-1} + W_x \cdot X_t$
 - $h_t = z_t$

- Let's expand the recursions
 - $h_k = W_h^{k+1} h_{-1} + \sum_{i=0}^k W_h^{k-i} W_{x} \cdot X_i$
 - Let's consider the response to $h_{-1} = [1,1,1,1]$ at time t
 - We simulate $|W_h^{k+1}h_{-1}|$ with various eigenvalues

- RNN with non-linearity
 - $z_t = W_h \cdot h_{t-1} + W_x \cdot X_t$
 - $h_t = f(z_t)$

- Simulation results with activations
 - A uniform start $h_{-1} = [1,1,1,1,\dots]/\sqrt{N}$
 - We simulate $|W_h^{k+1}h_{-1}|$ with various eigenvalues in W_h
 - Remark:
 - Tanh is preferred
 - ... but still saturates
 - What about backward pass?

- RNN with non-linearity
 - $z_t = W_h \cdot h_{t-1} + W_x \cdot X_t$
 - $h_t = f(z_t)$
- BPTT for RNN
 - Consider $J_k(\theta) = Div(Y_k, D_k)$
 - $\frac{\partial J_k}{\partial h_0} = \frac{\partial J_k}{\partial h_k} \prod_t \frac{\partial h_t}{\partial h_{t-1}}$
 - $\propto \prod_t W_h f'(Z_t) = W_h^k \prod_t f'(Z_t)$

- RNN with non-linearity
 - $z_t = W_h \cdot h_{t-1} + W_x \cdot X_t$
 - $h_t = f(z_t)$
- BPTT for RNN
 - Consider $J_k(\theta) = Div(Y_k, D_k)$
 - $\frac{\partial J_k}{\partial h_0} = \frac{\partial J_k}{\partial h_k} \prod_t \frac{\partial h_t}{\partial h_{t-1}}$
 - $\propto \prod_t W_h f'(Z_t) = W_h^k \prod_t f'(Z_t)$
 - Possible gradient explosion!

- RNN with non-linearity
 - $z_t = W_h \cdot h_{t-1} + W_x \cdot X_t$
 - $h_t = f(z_t)$

•
$$\frac{\partial J_k}{\partial h_0} = \frac{\partial J_k}{\partial h_k} \prod_t \frac{\partial h_t}{\partial h_{t-1}}$$

- $\propto \prod_t W_h f'(Z_t) = W_h^k \prod_t f'(Z_t)$
- *f* is activation (e.g., tanh)
 - $|f|_L \le 1$
- Gradient vanishing!
 - RNN "forgets" long-term past!

tanh derivative

$$\frac{\partial J^{(4)}}{\partial \boldsymbol{h}^{(1)}} = \frac{\partial \boldsymbol{h}^{(2)}}{\partial \boldsymbol{h}^{(1)}} \times \qquad \qquad \frac{\partial \boldsymbol{h}^{(3)}}{\partial \boldsymbol{h}^{(2)}} \times \qquad \qquad \frac{\partial \boldsymbol{h}^{(4)}}{\partial \boldsymbol{h}^{(3)}} \times \qquad \frac{\partial J^{(4)}}{\partial \boldsymbol{h}^{(4)}}$$

- RNN with non-linearity
 - $z_t = W_h \cdot h_{t-1} + W_x \cdot X_t$
 - $h_t = f(z_t)$

- Gradient Explosion & Vanishing!
 - Training instability and long-term dependency
- Tricks for explosion
 - Gradient clipping
 - Take a smaller step when gradient is too large
 - Gradient clipping is an important trick in practice

Algorithm 1 Pseudo-code for norm clipping

$$\hat{\mathbf{g}} \leftarrow rac{\partial \mathcal{E}}{\partial heta} \ ext{if} \ \|\hat{\mathbf{g}}\| \geq threshold \ ext{then} \ \hat{\mathbf{g}} \leftarrow rac{threshold}{\|\hat{\mathbf{g}}\|} \hat{\mathbf{g}} \ ext{end if}$$

- RNN with non-linearity
 - $z_t = W_h \cdot h_{t-1} + W_x \cdot X_t$
 - $h_t = f(z_t)$

- Gradient Explosion & Vanishing!
 - Training instability and long-term dependency
- Tricks for explosion
 - Gradient clipping
 - Identity initialization
 - Make sure the weight matrix is initialized to have $\lambda_{\max}=1$

- RNN with non-linearity
 - $z_t = W_h \cdot h_{t-1} + W_x \cdot X_t$
 - $h_t = f(z_t)$

- Gradient Explosion & Vanishing!
 - Training instability and long-term dependency
- Tricks for explosion
 - Gradient clipping
 - Identity initialization
 - Truncated Backprop Through Time
 - Only backpropagate for a few timesteps

- RNN with non-linearity
 - $z_t = W_h \cdot h_{t-1} + W_x \cdot X_t$
 - $h_t = f(z_t)$

- Gradient Explosion & Vanishing!
 - Training instability and long-term dependency
- Tricks for explosion
 - Gradient clipping
 - Identity initialization
 - Truncated Backprop Through Time
 - Only backpropagate for a few timesteps
 - Gradient explosion is easy to solve

- RNN with non-linearity
 - $z_t = W_h \cdot h_{t-1} + W_{x} \cdot X_t$
 - $h_t = f(z_t)$

- Gradient Explosion & Vanishing!
 - Training instability and long-term dependency
- Tricks for explosion
 - Gradient clipping
 - Identity initialization
 - Truncated Backprop Through Time
- What about memory?
 - RNN forgets past due to activation

Preserve Long-Term Memory

- RNN with non-linearity
 - $z_t = W_h \cdot h_{t-1} + W_x \cdot X_t$
 - $h_t = f(z_t)$

- It is difficult for RNN to preserve long-term memory
 - The hidden state h_t is constantly being written (short-term memory)
 - Let's keep a separate cell for maintaining long-term memory

- LSTM (Hochreiter & Schmidhuber, 1997)
 - A special RNN architecture for learning long-term dependencies
 - σ : layer with sigmoid activation
 - Let's walk through the architecture
 - Diagrams from https://colah.github.io/posts/2015-08-Understanding-LSTMs/

- LSTM (Hochreiter & Schmidhuber, 1997)
 - Core idea: maintain separate state h_t and cell c_t (memory)
 - h_t : full update every iteration

Operation

Layer

Transfer

- c_t : only partially updated through gates
 - A σ layer outputs "importance" (0~1) for each entry and only modify those entries in c_t

- LSTM (Hochreiter & Schmidhuber, 1997)
 - Forget gate f_t
 - f_t outputs whether we want to "forget" things from c_t or carry it
 - Compute $c_{t-1} \odot f_t$ (element-wise)
 - $f_t(i) \rightarrow 0$: we want to forget $c_t(i)$
 - $f_t(i) \rightarrow 1$: we want to keep the information in $c_t(i)$

- LSTM (Hochreiter & Schmidhuber, 1997)
 - Input gate i_t
 - i_t extracts useful information from X_t to update memory
 - \tilde{c}_t : information from X_t to update memory (dimension projection)
 - i_t : which dimensions in the memory should be updated by X_t
 - $i_t(j) \rightarrow 1$: we want to keep the information in $\tilde{c}_t(j)$ to update memory
 - $i_t(j) \rightarrow 0$: $\tilde{c}_t(j)$ should not contribute to memory

$$i_t = \sigma \left(W_i \cdot [h_{t-1}, x_t] + b_i \right)$$

$$\tilde{C}_t = \tanh(W_C \cdot [h_{t-1}, x_t] + b_C)$$

- LSTM (Hochreiter & Schmidhuber, 1997)
 - Memory update
 - $c_t = f_t \odot c_{t-1} + i_t \odot \tilde{c}_t$
 - f_t forget gate; i_t input gate
 - $f_t \odot c_{t-1}$: drop useless information in old memory
 - $i_t \odot \tilde{c}_t$: add selected new information from current input

$$C_t = f_t * C_{t-1} + i_t * \tilde{C}_t$$

- LSTM (Hochreiter & Schmidhuber, 1997)
 - Output gate o_t
 - Compute next hidden state $h_t = o_t \odot \tanh(c_t)$
 - $tanh(c_t)$: non-linear transformation over all past information
 - o_t : choose important dimensions for next state
 - $o_t(j) \rightarrow 1$: tanh $(c_t(j))$ is critical for next state
 - $o_t(j) \rightarrow 0$: $tanh(c_t(j))$ does not worth reporting

$$o_t = \sigma (W_o [h_{t-1}, x_t] + b_o)$$
$$h_t = o_t * \tanh (C_t)$$

- LSTM (Hochreiter & Schmidhuber, 1997)
 - $h_t = o_t \odot \tanh(c_t)$
 - $c_t = f_t \odot c_{t-1} + i_t \odot \tilde{c}_t$
 - $Y_t = g(h_t)$
 - Uninterrupted gradient flow!
 - No more matrix multiplication for c_t
 - In practice: ~100 timesteps of memory instead of ~7

Remark

- LSTM does not have guarantees for gradient explosion/vanishing
- An architecture that makes learning long-term dependency easier
- LSTMs is the dominant approach for sequence modeling from 2013~2016

LSTM Variants

- Peephole Connections (Gers & Schmidhuber 2000)
 - Also allow gates to take in c_t information

$$f_t = \sigma \left(W_f \cdot [C_{t-1}, h_{t-1}, x_t] + b_f \right)$$

$$i_t = \sigma \left(W_i \cdot [C_{t-1}, h_{t-1}, x_t] + b_i \right)$$

$$o_t = \sigma \left(W_o \cdot [C_t, h_{t-1}, x_t] + b_o \right)$$

LSTM Variants

- Peephole Connections (Gers & Schmidhuber 2000)
- Simplified LSTM
 - Assume $i_t = 1 f_t$
 - So only two gates are needed
 - Fewer parameters

$$C_t = f_t * C_{t-1} + (1 - f_t) * \tilde{C}_t$$

LSTM Variants

- Peephole Connections (Gers & Schmidhuber 2000)
- Simplified LSTM
- Gated Recurrent Unit (GRU, Cho et al, 2014)
 - Typically we only use h_t to produce outputs in LSTM
 - GRU: Merge h_t and c_t

- Finding the "Welcome"
 - Input data $X_1 ... X_L$, L may vary
 - Whether the voice contains "Welcome"
- Solution
 - Multi-layer LSTM and max-pooling over Y_t
 - Sometimes also just use h_T to compute output for simplicity

- Finding the "Welcome"
 - Input data $X_1 ... X_L$, L may vary
 - Whether the voice contains "Welcome"
- Solution
 - Multi-layer LSTM and max-pooling over Y_t
 - Skip-connections for deeper LSTMS!

- Finding the "Welcome"
 - Input data $X_1 ... X_L$, L may vary
 - Whether the voice contains "Welcome"
- Solution
 - Multi-layer LSTM and max-pooling over Y_t
 - Skip-connections for deeper LSTMS!
 - Bidirectional LSTMs!
 - Sometimes use $h_f(T) \& h_b(T)$ for output
 - Remember gradient clipping!

- What about text generation?
 - A generative model over texts
 - $p(X; \theta)$: the probability for X
 - Training data:
 - A collection of texts
 - E.g.: 唐诗宋词合集

Deep learning is a popular area in Al.

• Even conditional generation!

G X

Next lecture

检测语言

- Language Model p(X)
 - A generative model over natural language X
- Autoregressive Language Model

$$P(X;\theta) = \prod_{t=1}^{L} P(X_t|X_{i < t};\theta)$$

- The most popular model assumption
 - Sequential generation & tractable likelihood P(W | "The")
- LSTM language model
 - X_t : word at position t
 - $Y_t: P(X_t|X_{i < t})$, softmax over all words
- MLE Training!
 - MLE over a training corpus D

- LSTM language model
 - $Y_t = \operatorname{softmax}(h_t) = P(X_t | X_{i < t})$
 - $h_t, c_t = LSTM(X_{t-1}, h_{t-1}, c_{t-1})$
- Language generation
 - Draw $X \sim P(X; \theta)$
 - Sample $X_1 \sim Y_1(h_0, c_0, \#; \theta)$

- LSTM language model
 - $Y_t = \operatorname{softmax}(h_t) = P(X_t | X_{i < t})$
 - $h_t, c_t = LSTM(X_{t-1}, h_{t-1}, c_{t-1})$
- Language generation
 - Draw $X \sim P(X; \theta)$
 - Sample $X_1 \sim Y_1(h_0, c_0, \#; \theta)$
 - Generate X_2
 - Feed X_1 into LSTM
 - Compute Y_2

- LSTM language model
 - $Y_t = \operatorname{softmax}(h_t) = P(X_t | X_{i < t})$
 - $h_t, c_t = LSTM(X_{t-1}, h_{t-1}, c_{t-1})$
- Language generation
 - Draw $X \sim P(X; \theta)$
 - Sample $X_1 \sim Y_1(h_0, c_0, \#; \theta)$
 - Generate X_2
 - Feed X_1 into LSTM
 - Compute Y_2
 - Sample $X_2 \sim Y_2(h_1, c_1, X_1; \theta)$

- LSTM language model
 - $Y_t = \operatorname{softmax}(h_t) = P(X_t | X_{i < t})$
 - $h_t, c_t = LSTM(X_{t-1}, h_{t-1}, c_{t-1})$
- Language generation
 - Draw $X \sim P(X; \theta)$
 - Sample $X_1 \sim Y_1(h_0, c_0, \#; \theta)$
 - Generate X_2
 - Generate X_3
 - LSTM forward step

- LSTM language model
 - $Y_t = \operatorname{softmax}(h_t) = P(X_t | X_{i < t})$
 - $h_t, c_t = LSTM(X_{t-1}, h_{t-1}, c_{t-1})$
- Language generation
 - Draw $X \sim P(X; \theta)$
 - Sample $X_1 \sim Y_1(h_0, c_0, \#; \theta)$
 - Generate X_2
 - Generate X_3
 - LSTM forward step
 - Sample $X_3 \sim Y_3(c_2, h_2, X_2; \theta)$

- LSTM language model
 - $Y_t = \operatorname{softmax}(h_t) = P(X_t | X_{i < t})$
 - $h_t, c_t = LSTM(X_{t-1}, h_{t-1}, c_{t-1})$
- Language generation
 - Draw $X \sim P(X; \theta)$
 - Sample $X_1 \sim Y_1(h_0, c_0, \#; \theta)$
 - Generate X₂
 - Generate X_3
 - Repeat
- Remark
 - Ensure 1 position shift at training time!

- We can also generate a language with any given prefix
 - Given $w_{1\sim3}$, we can sample $P(W|w_{1\sim3};\theta)$
 - E.g.: question answering

- LSTM language model
 - $Y_t = \operatorname{softmax}(h_t) = P(X_t | X_{i < t})$
 - $h_t, c_t = LSTM(X_{t-1}, h_{t-1}, c_{t-1})$
- MLE Training and Autoregressive generation
- Input projection
 - "to be or not to be ..."
 - w_t are discrete tokens
 - LSTM requires vector input
 - Trivial solution:
 - One-hot vector
 - $X_t = [0,0,...,1,...,0]$
 - Issue?

Language Model

- LSTM language model
 - $Y_t = \operatorname{softmax}(h_t) = P(X_t | X_{i < t})$
 - $h_t, c_t = LSTM(X_{t-1}, h_{t-1}, c_{t-1})$
- Trivial input projection: one-hot encoding
 - Change a word to an ID
 - "To be or not to be ..."
 - [123, 444, 8, 91, 123, 444, ...]
 - No semantic meaning
 - P(I live in Beijing) = 0.3
 - P(I live in Shanghai) = ?
 - What if D has no "Shanghai"?

Language Model

- LSTM language model
 - $Y_t = \operatorname{softmax}(h_t) = P(X_t | X_{i < t})$
 - $h_t, c_t = LSTM(X_{t-1}, h_{t-1}, c_{t-1})$
- Goal: learn meaningful continuous representation for words
 - E.g., "Beijing"
 - It is a city in China
 - It is a noun
 - It is a capital
 - Close to "Shanghai"
 - Different from "deep"
 - Word embeddings

- A semantic vector representation for words
 - Proposed in the book, "The Measurement of Meaning" 1957
 - Manually propose a few features and scores
 - Let's learn word embeddings!

- Distributional Hypothesis
 - A word's meaning is given by the words that frequently appear close-by
 - "You shall know a word by the company it keeps" (J. R. Firth 1957: 11)
- How to measure the "similarity" of two words?
 - Given word vector w_1 and w_2
 - We use cosine distance

$$D(w_1, w_2) = \cos \langle w_1, w_2 \rangle = \frac{w_1^T w_2}{|w_1| |w_2|}$$

- Learning objective
 - If two words are close to each other, their word embeddings have small distance
 - Otherwise, the distance should be large

- Word2Vec (Mikolov, et al, Google, 2013)
 - An efficient toolbox for learning word embeddings
 - Formulation
 - Given 2k context (上下文) vectors $c_{-k}c_{-k+1}...c_{-1}?c_1c_2...c_k$
 - $P(w|c_{-k}...c_k)$: Predict which word should appear in the position of "?"
 - Independence assumption $P(w|c) = \prod_i P(w|c_i)$
 - $P(w|c_i)$: a softmax distribution over all words
 - There are a lot of words!!
 - We can convert multi-class classification to binary-class classification

- Word2Vec (Mikolov, et al, Google, 2013)
 - An efficient toolbox for learning word embeddings
 - Simplified formulation
 - Given 2k context (上下文) vectors and a word w: $c_{-k}c_{-k+1}\ldots c_{-1}wc_1c_2\ldots c_k$
 - $P(+|c_{-k} \dots w \dots c_k)$: the probability of w should appear with c
 - Independence assumption $P(+|w,c) = \prod_i P(+|w,c_i)$
 - $P(+|w,c_i)$: a value between 0 and 1
 - Sigmoid function over $D(w, c_i)$
 - Assume all the vectors have unit norm

$$P(+|w,c_{i}) = \sigma(w,c_{i}) = \frac{1}{1 + \exp(-w^{T}c_{i})}$$

$$P(-|w,c_{i}) = 1 - P(+|w,c_{i})$$

$$\log P(+|w,c) = \sum_{i} \log P(+|w,c_{i})$$

- Word2Vec (Mikolov, et al, Google, 2013, NeurIPS 2023 test-of-time)
 - An efficient toolbox for learning word embeddings
 - Simplified formulation (CBOW, continuous bag-of-word model)
 - Given 2k context (上下文) vectors and a word $w: c_{-k}c_{-k+1} \dots c_{-1}wc_1c_2 \dots c_k$
 - $P(+|c_{-k}...w...c_k)$: the probability of w should appear with c

$$P(+|w,c_{i}) = \sigma(w,c_{i}) = \frac{1}{1 + \exp(-w^{T}c_{i})}$$

$$P(-|w,c_{i}) = 1 - P(+|w,c_{i})$$

$$\log P(+|w,c) = \sum_{i} \log P(+|w,c_{i})$$

- MLE Training!
 - Positive (w,c) pairs: all the text chunks of length 2k+1 from training corpus D
 - All set?
 - Identical vectors maximize the learning objective!

- Word2Vec (Mikolov, et al, Google, 2013)
 - An efficient toolbox for learning word embeddings
 - Simplified formulation (CBOW, continuous bag-of-word model)
 - Given 2k context (上下文) vectors and a word w: $c_{-k}c_{-k+1}\ldots c_{-1}wc_1c_2\ldots c_k$
 - $P(+|c_{-k}...w...c_k)$: the probability of w should appear with c

$$P(+|w,c_{i}) = \sigma(w,c_{i}) = \frac{1}{1 + \exp(-w^{T}c_{i})}$$

$$P(-|w,c_{i}) = 1 - P(+|w,c_{i})$$

$$\log P(+|w,c) = \sum_{i} \log P(+|w,c_{i})$$

- MLE Training!
 - Positive (w,c) pairs: all the text chunks of length 2k+1 from training corpus D
 - We need negative pairs!
 - Choose a context c, and select random negative words w'
 - This training method is called negative sampling

Word2Vec (Mikolov, et al, Google, 2013)

$$P(+|w,c_i) = \sigma(w,c_i) = \frac{1}{1 + \exp(-w^T c_i)}$$
$$\log P(+|w,c) = \sum_{i} \log P(+|w,c_i)$$

- CBOW Training corpus D
 - For every text chunks $(c_{-k}, ..., w, ..., c_k)$ in D
 - Collect positive data pair (c, w), add to D^+
 - Random choose a word w', add (c, w') to D^-
- MLE Training

$$L(W,C) = \sum_{(c,w)\in D^+} \log P(+|w,c) + \sum_{(c,w')\in D^-} \log P(-|w',c)$$

- Use w_i as the word embedding for the i-th word
 - We can also use $[c_i, w_i]$, or simply ignore c_i

CBOW

- Word2Vec (Mikolov, et al, Google, 2013)
 - Continuous Bag-of-Words (CBOW)
 - Objective $\log P(w|c_i)$
 - Use contexts c to predict center word w
 - Alternative: use w to predict surrounding words c

CBOW

- Word2Vec (Mikolov, et al, Google, 2013)
 - Continuous Bag-of-Words (CBOW)
 - Objective $\log P(w|c_i)$
 - Use contexts c to predict center word w
 - Skip-Gram Model
 - Use a single center word c to predict w_{-k} , ... w_{-1} , *, w_1 ... w_k
 - Objective $\log P(w_i|c)$
 - Skip-Grams
 - Randomly choose sample 2R positions from $-k \dots -1,1,\dots k$
 - Training Corpus D
 - For every text chunks $(w_{-k}, ..., c, ..., w_k)$ in D
 - select a subset of 2R words from $\widetilde{w} \subseteq w_{-k} \dots w_k$
 - Collect positive data pair (c, \widetilde{w}) , add to D^+
 - Random choose 2R words \widetilde{w}' , add (c, \widetilde{w}') to D^-

PROJECTION

OUTPUT

INPUT

Skip-gram

- Word2Vec (Mikolov, et al, Google, 2013)
 - Continuous Bag-of-Words (CBOW)
 - Use contexts c to predict center word w
 - Skip-Gram Model
 - Use a single center word c to predict w_{-k} , ... w_{-1} , *, w_1 ... w_k
- Remark
 - CBOW trains faster than Skip-Gram
 - Skip-Gram is a harder problem
 - Harder to overfit
 - Skip-Gram performs better
 - Particularly for rare words

- Word2Vec Visualization
 - t-SNE projection in 2D
 - Similar topics cluster together

- Word2Vec Vector Arithmetic
 - Emergent analogies
 - king man + woman ≈ queen
 - Beijing China + France ≈ Paris

Male-Female Verb tense Country-Capital

- Pre-processing
 - Collect a large corpus and learn word embeddings (word2vec)
- Text classification
 - Bi-directional LSTM and then run Softmax on final hidden states

- Pre-processing
 - Collect a large corpus and learn word embeddings (word2vec)
- Text classification
 - Bi-directional LSTM and then run Softmax on final hidden states
- Text generation
 - For the specific training domain, learn an autoregressive model P(X)

- Pre-processing
 - Collect a large corpus and learn word embeddings (word2vec)
- Text classification
 - Bi-directional LSTM and then run Softmax on final hidden states
- Text generation
 - For the specific training domain, learn an autoregressive model P(X)
- Text correction (文本改错)
 - MCMC over P(X) to improve X
 - -log P(文学是一种医术形式) = 1484.5
 - $-\log P($ 文学是一种艺术形式) = 234.5

- English v.s. 中文
 - Word v.s. character
 - We typically use word models for English & character model for Chinese
 - A huge number of words in English! ("pneumonoultramicroscopicsilicovolcanoconiosi")
 - Many practical tricks
 - Efficient Softmax operator
 - Use <unk> for very rare words
 - Dictionary is much smaller in Chinese (your homework ©)
 - 分词 word segmentation
 - An issue in Chinese if you want to use word model: 中关村北大街
 - 词条化 word tokenization
 - A 11-year-old boy; 12345*54321=670592745 (still critical in modern LMs)
 - 词干化 stemming
 - Has → have; running → run
 - Apples → apple

- Language Model Learning
 - MLE learning: $P(X_t|X_{i < t})$
 - The expensive Softmax operator
 - Objective $P_{\theta}(w|h) = \operatorname{softmax}(w^T h) \propto \exp(w^T h)$ for $w \in V$
 - *h* is the hidden state of LSTM language model output
 - Equivalent: $P_{\theta}(w|h) \propto u_{\theta}(w,h)$, $u_{\theta}(w,h)$ is exponential logit for w given h
 - Loss
 - $L(w;\theta) = \log P_{\theta}(w) = \log u_{\theta}(w) \log Z = \log u_{\theta}(w) \log \left(\sum_{w'} u_{\theta}(w')\right)$
 - Partition function Z
 - Monte Carlo Estimate!
 - $\nabla L(w; \theta) = \nabla \log u_{\theta}(w) \mathbb{E}_{w' \sim P_{\theta}} [\nabla \log u_{\theta}(w')]$
 - How to sample?
 - Note: this is a categorical distribution over words...

- Language Model Learning
 - Softmax Objective for word w and context h
 - $P_{\theta}(w|h) \propto u_{\theta}(w,h)$, $u_{\theta}(w,h)$ the exponential logit for w given h
 - $L_{MLE}(w|h;\theta) = \log P_{\theta}(w,h) = \log u_{\theta}(w,h) \log(\sum_{w'} u_{\theta}(w',h))$
 - Overall MLE loss over the entire corpus
 - $\tilde{P}(w|h)$: data distribution over the courpus

•
$$\nabla L_{MLE}(\theta|h) = \sum_{w} \tilde{P}(w|h) \nabla \log u_{\theta}(w,h) - \frac{1}{Z_{\theta}} \sum_{w'} \nabla u_{\theta}(w',h)$$

$$= \sum_{w} \tilde{P}(w|h) \nabla \log u_{\theta}(w,h) - \mathcal{E}_{w' \sim P_{\theta}} [\nabla \log u_{\theta}(w',h)]$$

$$= \sum_{w} \left(\tilde{P}(w|h) - P_{\theta}(w|h;\theta) \right) \nabla \log u_{\theta}(w,h)$$

- Evaluating $P_{\theta}(w|h;\theta)$ is expensive
 - Same formulation as a multi-class classification problem
 - Can we convert it to binary classification (like negative sampling) with desired gradients?

- Noise-Contrastive Estimation (Gutmann & Hyvarinen, AISTATS 2010)
 - A binary-classification simplification loss with mathematical guarantees
 - Gradient of NCE loss can be shown to be equivalent to MLE loss
 - Objective P(+|w,h): whether w should follow context h
 - 1 positive samples (w, h) and k random negative samples (\overline{w}, h) with $\overline{w} \sim q$
 - q can be uniform (similar to negative sampling) or other prior (e.g., word frequency)
 - Positive data: $P(+, w|h) = \frac{1}{k+1} \tilde{P}(w|h)$
 - Negative data: $P(-, \overline{w}|h) = \frac{k}{k+1}q(\overline{w})$
 - $P(+|w,h) = \frac{\tilde{P}(w|h)}{k \cdot q(w) + \tilde{P}(w|h)}$
 - $P(-|\overline{w},h) = \frac{k \cdot q(\overline{w})}{k \cdot q(\overline{w}) + \tilde{P}(\overline{w}|h)}$

- Noise-Contrastive Estimation (Gutmann & Hyvarinen, AISTATS 2010)
 - A binary-classification simplification loss with mathematical guarantees
 - Gradient of NCE loss can be shown to be equivalent to MLE loss
 - Objective P(+|w,h): whether w should follow context h
 - 1 positive samples (w, h) and k random negative samples (\overline{w}, h) with $\overline{w} \sim q$
 - q can be uniform (similar to negative sampling) or other prior (e.g., word frequency)
 - Positive data: $P(+, w|h) = \frac{1}{k+1} \tilde{P}(w|h)$
 - Negative data: $P(-, \overline{w}|h) = \frac{k}{k+1}q(\overline{w})$
 - $P(+|w,h) = \frac{\tilde{P}(w|h)}{k \cdot q(w) + \tilde{P}(w|h)}$ NCE objective (will be further explained)
 - $P(-|\overline{w},h) = \frac{k \cdot q(\overline{w})}{k \cdot q(\overline{w}) + \tilde{P}(\overline{w}|h)}$
 - Remark: we will prove that NCE gradient is the same as MLE gradient,
 - ... and this is just smart Math. ©

- Noise-Contrastive Estimation (Gutmann & Hyvarinen, AISTATS 2010)
 - ullet Binary classification with k negative samples
 - Positive data: $P(+, w|h) = \frac{1}{k+1} \tilde{P}(w|h)$
 - Negative data: $P(-, \overline{w}|h) = \frac{k}{k+1}q(\overline{w})$
 - $P(+|w,h) = \frac{\tilde{P}(w|h)}{k \cdot q(w) + \tilde{P}(w|h)}$
 - Trick#1: replace \tilde{P} with learning model P_{θ}
 - $L(h; \theta) = \sum_{w} \tilde{P}(w|h) \log(P_{\theta}(+|w,h)) + k \cdot E_{\overline{w} \sim q}[\log P_{\theta}(-|\overline{w},h)]$
 - The binary classification loss to optimize the NCE objective

- Noise-Contrastive Estimation (Gutmann & Hyvarinen, AISTATS 2010)
 - ullet Binary classification with k negative samples
 - Positive data: $P(+, w|h) = \frac{1}{k+1} \tilde{P}(w|h)$
 - Negative data: $P(-, \overline{w}|h) = \frac{k}{k+1}q(\overline{w})$
 - $P(+|w,h) = \frac{\tilde{P}(w|h)}{k \cdot q(w) + \tilde{P}(w|h)}$
 - Trick#1: replace \tilde{P} with learning model P_{θ}
 - $L(h; \theta) = \sum_{w} \tilde{P}(w|h) \log(P_{\theta}(+|w,h)) + k \cdot E_{\overline{w} \sim q}[\log P_{\theta}(-|\overline{w},h)]$
 - $= \sum_{w} \tilde{P}(w|h) \log(P_{\theta}(+|w,h)) + \sum_{1 \le i \le k, \overline{w}_{i}} q(\overline{w}_{i}) \log P_{\theta}(-|\overline{w}_{i},h)$

- Noise-Contrastive Estimation (Gutmann & Hyvarinen, AISTATS 2010)
 - \bullet Binary classification with k negative samples
 - Positive data: $P(+, w|h) = \frac{1}{k+1} \tilde{P}(w|h)$
 - Negative data: $P(-, \overline{w}|h) = \frac{k}{k+1}q(\overline{w})$
 - $P(+|w,h) = \frac{\tilde{P}(w|h)}{k \cdot q(w) + \tilde{P}(w|h)}$
 - Trick#1: replace \tilde{P} with learning model P_{θ}
 - $L(h;\theta) = \sum_{w} \tilde{P}(w|h) \log(P_{\theta}(+|w,h)) + k \cdot E_{\overline{w} \sim q}[\log P_{\theta}(-|\overline{w},h)]$
 - $= \sum_{w} \tilde{P}(w|h) \log(P_{\theta}(+|w,h)) + \sum_{1 \le i \le k, \overline{w}_{i}} q(\overline{w}_{i}) \log P_{\theta}(-|\overline{w}_{i},h)$
 - $= \sum_{w} \tilde{P}(w|h) \log \left(\frac{P_{\theta}(w|h)}{k \cdot q(w) + P_{\theta}(w|h)} \right) + \sum_{1 \le i \le k, \overline{w}_{i}} q(\overline{w}_{i}) \log \left(\frac{k \cdot q(\overline{w}_{i})}{k \cdot q(\overline{w}_{i}) + P_{\theta}(\overline{w}_{i}|h)} \right)$

- Noise-Contrastive Estimation (Gutmann & Hyvarinen, AISTATS 2010)
 - Binary classification with k negative samples

•
$$P(+|w,h) = \frac{\tilde{P}(w|h)}{k \cdot q(w) + \tilde{P}(w|h)}$$

• Trick#1: replace \tilde{P} with learning model P_{θ}

•
$$L(h;\theta) = \sum_{w} \tilde{P}(w|h) \log \left(\frac{P_{\theta}(w|h)}{k \cdot q(w) + P_{\theta}(w|h)} \right) + \sum_{1 \le i \le k, \overline{w}_{i}} q(\overline{w}_{i}) \log \left(\frac{k \cdot q(\overline{w}_{i})}{k \cdot q(\overline{w}_{i}) + P_{\theta}(\overline{w}_{i}|h)} \right)$$

- Noise-Contrastive Estimation (Gutmann & Hyvarinen, AISTATS 2010)
 - ullet Binary classification with k negative samples

•
$$P(+|w,h) = \frac{\tilde{p}(w|h)}{k \cdot q(w) + \tilde{p}(w|h)}$$

• Trick#1: replace \tilde{P} with learning model P_{θ}

•
$$L(h;\theta) = \sum_{w} \tilde{P}(w|h) \log \left(\frac{P_{\theta}(w|h)}{k \cdot q(w) + P_{\theta}(w|h)} \right) + \sum_{1 \le i \le k, \overline{w}_{i}} q(\overline{w}_{i}) \log \left(\frac{k \cdot q(\overline{w}_{i})}{k \cdot q(\overline{w}_{i}) + P_{\theta}(\overline{w}_{i}|h)} \right)$$

- Trick#2: assume $\hat{Z}(h) = 1$ for any h, which also encourages $Z_h \approx 1$ (self-normalized)
 - Further read: https://arxiv.org/abs/1206.6426 (Mnih and Teh, ICML 2012) & https://arxiv.org/abs/1206.6426

•
$$L_{NCE}^{k}(h;\theta) = \sum_{w} \tilde{P}(w|h) \log \left(\frac{u_{\theta}(w,h)}{k \cdot q(w) + u_{\theta}(w,h)} \right) + \sum_{1 \leq i \leq k, \overline{w}_{i}} q(\overline{w}_{i}) \log \left(\frac{k \cdot q(\overline{w}_{i})}{k \cdot q(\overline{w}_{i}) + u_{\theta}(\overline{w}_{i},h)} \right)$$

- Noise-Contrastive Estimation (Gutmann & Hyvarinen, AISTATS 2010)
 - ullet Binary classification with k negative samples

•
$$P(+|w,h) = \frac{\tilde{P}(w|h)}{k \cdot q(w) + \tilde{P}(w|h)}$$

• Trick#1: replace \tilde{P} with learning model P_{θ}

•
$$L(h;\theta) = \sum_{w} \tilde{P}(w|h) \log \left(\frac{P_{\theta}(w|h)}{k \cdot q(w) + P_{\theta}(w|h)} \right) + \sum_{1 \le i \le k, \overline{w}_{i}} q(\overline{w}_{i}) \log \left(\frac{k \cdot q(\overline{w}_{i})}{k \cdot q(\overline{w}_{i}) + P_{\theta}(\overline{w}_{i}|h)} \right)$$

• Trick#2: assume $\hat{Z}(h)=1$ for any h, which also encourages $Z_h\approx 1$ (self-normalized)

•
$$L_{NCE}^{k}(h;\theta) = \sum_{w} \tilde{P}(w|h) \log \left(\frac{u_{\theta}(w,h)}{k \cdot q(w) + u_{\theta}(w,h)} \right) + \sum_{1 \leq i \leq k, \overline{w}_{i}} q(\overline{w}_{i}) \log \left(\frac{k \cdot q(\overline{w}_{i})}{k \cdot q(\overline{w}_{i}) + u_{\theta}(\overline{w}_{i},h)} \right)$$

• Remark: when k = |V| and q is uniform, NCE becomes Negative Sampling

•
$$L_{NS} = \sum_{(c,w)\in D} \log \frac{1}{\exp(-w^T c) + 1} + \sum_{c\in D,\widetilde{w}\sim V} \log \frac{\exp(-\widetilde{w}^T c)}{\exp(-\widetilde{w}^T c) + 1}$$

- Claim: as $k \to \infty$, $\nabla L_{NCE}^k(h; \theta) = \nabla L_{MLE}(h; \theta)$
 - Your homework \odot (assume $Z_h = 1$)

- Language Model Learning
 - NCE loss for efficient softmax operator with mathematical guarantees

•
$$L_{NCE}^{k}(h;\theta) = \sum_{w} \tilde{P}(w|h) \log \left(\frac{u_{\theta}(w,h)}{k \cdot q(w) + u_{\theta}(w,h)} \right) + \sum_{1 \le i \le k, \overline{w}_{i}} q(\overline{w}_{i}) \log \left(\frac{k \cdot q(\overline{w}_{i})}{k \cdot q(\overline{w}_{i}) + u_{\theta}(\overline{w}_{i},h)} \right)$$

• Special case: q is uniform

•
$$L_{NCE}^{k}(h;\theta) = \sum_{w} \tilde{P}(w|h) \log\left(\frac{u_{\theta}(w,h)}{k/|V| + u_{\theta}(w,h)}\right) + \sum_{1 \le i \le k, \overline{w} \sim V} \log\left(\frac{k/|V|}{k/|V| + u_{\theta}(\overline{w},h)}\right)$$

- Note: NCE is **different from** negative sampling (except uniform q and k = |V|)
- Remark
 - In practice, $k\sim30$ works reasonably well for small corpus
 - Trade-off between performance and efficiency
 - At test time we still need to run full Softmax
 - Some further readings
 - https://ruder.io/word-embeddings-softmax/

- Language Model Learning
 - NCE loss for efficient softmax operator with mathematical guarantees
 - Monte-Carlo estimates of MLE gradients
 - Non-sampling methods?
 - Hierarchical Softmax
 - Build a binary tree: $O(V) \rightarrow O(\log V)$
 - For node j, $P(\operatorname{left}|n_j, h) = \sigma(n_j^T h)$
 - $P(w) = \prod_{j} \sigma(h^T n_j)$
 - #Params = 2V
 - 2*V* operators to calculate all probabilities
 - Remark:
 - Each word has different frequency
 - Optimal tree structure?

- Language Model Learning
 - NCE loss for efficient softmax operator with mathematical guarantees
 - Monte-Carlo estimates of MLE gradients
 - Non-sampling methods?
 - Hierarchical Softmax
 - Computation cost $H = \sum_{w} P(w)I(w)$
 - *H* is also referred to as entropy
 - P(w): the frequency of word w
 - I(w): the tree depth (or information content)
 - In a complete binary tree, $I(w) = \log_2 V$
 - The optimal tree structure is Huffman tree!
 - We can also utilize semantic information
 - E.g., A Scalable Hierarchical Distributed Language Model. Mnih & Hinton, NIPS2008
 - https://papers.nips.cc/paper/2008/file/1e056d2b0ebd5c878c550da6ac5d3724-Paper.pdf

- Language Model Learning
 - NCE loss: noise contrastive loss
 - Sampling-based gradient approximation
 - Hierarchical Softmax
 - Non-sampling, tree-based probability computation
 - Remark
 - Use full softmax when possible for the best performance (GPU memory allowed)
- Q: what if we want the best output?
 - $X = \arg \max_{X} P(X)$
 - Greedy solution: for each $P(X_t|X_{i< t})$, select the optimal X_t
 - Optimal?

- Language Model Inference
 - Goal: find $X^* = \arg \max_{X} P(X) = \prod_{t} P(X_t | X_{i < t})$
 - Greedy Solution:
 - For each t, $X_t^{\star} = \arg \max_{X_t} P(X_t | X_{i < t}^{\star})$ (i.e., keep the best partial candidate)
 - Better Solution: Beam Search
 - Idea: keep top *K* candidates for each *t*
 - *K* is called the beam size (in practice $k = 5 \sim 10$)
 - At each time step t, compute K^2 expansions and keep the top K for t+1
 - For each candidate $\tilde{X}_{i < t}$, find the top- $K X_t$ based on $P(X_t | \tilde{X}_{i < t})$
 - Rank K^2 candidates by their partial probability $P(\tilde{X}_{i \le t})$
 - No guarantee to find the optimal solution
 - Trade-off between accuracy (exhaustive search) and efficiency (greedy)

- Beam Search
 - Example: K = 2, score = $\log P(X) = \sum_t \log P(X_t | X_{i < t})$

<START>

- Beam Search
 - Example: K = 2, score = $\log P(X) = \sum_{t} \log P(X_t | X_{i < t})$

- Beam Search
 - Example: K = 2, score = $\log P(X) = \sum_t \log P(X_t | X_{i < t})$

- Beam Search
 - Example: K = 2, score = $\log P(X) = \sum_{t} \log P(X_t | X_{i < t})$

Of these k^2 hypotheses, just keep k with highest scores

- Beam Search
 - Example: K = 2, score = $\log P(X) = \sum_t \log P(X_t | X_{i < t})$

- Beam Search
 - Example: K = 2, score = $\log P(X) = \sum_{t} \log P(X_t | X_{i < t})$

- Beam Search
 - Example: K = 2, score = $\log P(X) = \sum_t \log P(X_t | X_{i < t})$

For each of the *k* hypotheses, find top *k* next words and calculate scores

- Beam Search
 - Example: K = 2, score = $\log P(X) = \sum_{t} \log P(X_t | X_{i < t})$

Of these k^2 hypotheses, just keep k with highest scores

- Beam Search
 - Example: K = 2, score = $\log P(X) = \sum_t \log P(X_t | X_{i < t})$

Of these k^2 hypotheses, just keep k with highest scores

- Beam Search
 - Example: K = 2, score = $\log P(X) = \sum_t \log P(X_t | X_{i < t})$

- Language Model Inference
 - Goal: find $X^* = \arg \max_X P(X) = \prod_t P(X_t | X_{i < t})$
 - Greedy Solution:
 - For each t, $X_t^* = \arg \max_{X_t} P(X_t | X_{i < t}^*)$ (i.e., keep the best partial candidate)
 - Better Solution: Beam Search
 - Idea: keep top *K* candidates for each *t*
 - When to terminate (sequences may have varying lengths)?
 - We typically include a <end> token to indicate a text sequence is ended
 - $L_{
 m max}$ words reached or n completed sequences obtained (<end> token produced)
 - Which sequence to choose?
 - Issue: longer sequences tend to have lower scores!
 - Adjusted metric: $X^* = \arg\max_{X} \frac{1}{L_X} \sum_{t} \log P(X_t | X_{i < t})$ (normalized by its length)

Summary

- Recurrent neural network (RNN)
 - A neural network for sequence data
 - Vanishing/exploding gradients/value
 - Gradient clipping!
- Long Short-Term Memory networks (LSTM)
 - An RNN architecture for long-term dependency
- Language Model
 - Auto-regressive model over texts & LSTM applications
 - Computation Techniques: NCE & Hierarchical Softmax
 - Beam search for the best output
- Next lecture: more advanced sequence modeling techniques

Thanks!