?s pn=ip 2000354244 1 PN=JP 2000354244 S1 ?t/9

1/9/1 DIALOG(R) File 347: JAPIO (c) 2003 JPO & JAPIO. All rts. reserv.

06768371 **Image available** IMAGE PROCESSING UNIT, ITS METHOD AND COMPUTER-READABLE STORAGE MEDIUM

2000-354244 [JP 2000354244 A] December 19, 2000 (20001219) PUB. NO. : PUBLISHED:

INVENTOR(s): MIYAKE NOBUTAKA

APPLICANT(s): CANON INC

APPL. NO.: 11-165941 [JP 99165941] FILED:

June 11, 1999 (19990611) HO4N-007/30; G06T-003/40; G06T-001/00; H03M-007/30; INTL CLASS:

H03M-007/36

ABSTRACT

₽:

PROBLEM TO BE SOLVED: To generate a high resolution picture with high picture quality by synthesizing a plurality of still pictures.

SOLUTION: A motion vector arithmetic section 102 obtains a motion vector from two pictures [m-th, (m+1)th frames] received continuously and a layout section A 103 lays out the 2nd picture to a memory. A data processing section 104 processes pixel values of the 1st picture so that the 1st picture is well adaptive to the 2nd picture. A layout section B 105 lays out the picture that is processed in the memory in response to a vector quantity. A synthesis section 106 synthesizes the two pictures arranged in the same memory to generate one high resolution picture. The data processing section 104 generates a block A consisting of N× N pixels from the 1st picture and p-sets (page:1) blocks in the unit of Natimes; N pixels from the 2nd picture, applies orthogonal transform to the blocks and generates a block FK consisting of new N× N components by using the orthogonal transform coefficient. Inverse orthogonal transform is applied to the block FK and the result of transform is laid out with an offset from sampling points of the 2nd picture. The picture laid out with the offset and the 2nd picture are synthesized.

COPYRIGHT: (C) 2000, JPO

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出屬公開番号 特開2000-354244 (P2000-354244A)

(43)公開日 平成12年12月19日(2000.12.19)

					1 WITH T-10/11	a 🗅 (5000. 12. 18)
(51) Int.CL' · H 0 4 N	7/30	識別記号	ΡI			デーマコート*(参考)
GOGT	3/40		H04N	7/133	Z 5B057	
	1/00		H03M	7/30 7/36	Α	5C059
H03M	7/30	•	G06F	•	355A	5 J O 6 4
	7/36			, 00	470J	
			審查請	京 未輸水 富		L (全 18 頁)
(21)出剧番号	特	第平 11-165941	(71) 出頭 /	000001007		

1000, -- 100034.

平成11年6月11日(1999.6.11)

(71)出顧人 000001007

キヤノン株式会社

東京都大田区下丸子3丁目30番2号

(72)発明者 三宅 倡孝

東京都大田区下丸子3丁目30番2号 キヤ

ノン株式会社内

(74)代理人 100090273

弁理士 國分 孝悦

最終頁に絞く

(54) 【発明の名称】 画像処理装置、方法及びコンピュータ読み取り可能な配憶媒体

(57) 【要約】

(22)出廣日

【課題】 複数の静止画を合成して一枚の高解像度画像 を高画質に作成する。

【解决手段】 動きベクトル演算部102は、連続し て入力される2枚の画像[m、(m+1)フレーム]か ら動きベクトルを求め、配置部A103は2枚目の画像 をメモリ内に配置する。データ加工部104は、1枚目 の画像を2枚目の画像にうまく適合するように画素値を 加工する。配置部B105は、データ加工された画像 を、上記動きベクトル量に応じて上記メモリ内に配置す る。合成部106は同一メモリ内に配置した2枚の画像 を合成して一枚の高解像度画像を作成する。データ加工 部102においては、1枚目の画像からN×N画素のブ ロックAを作成し、2枚目の画像からN×N画秦単位の p個(p≧ 1)のブロックを作成し、これらのブロック をそれぞれ直交変換し、その直交変換係数を用いて新規 なN×N個の成分からなるブロックFK を作成する。こ のブロックFK を逆直交変換し、その変換結果を上記2 枚目の画像の標本点とずらせて配置する。このずらせて 配置した画像と上記2枚目の画像とが合成される。

【特許請求の範囲】

【請求項1】 入力される1枚目の画像からN×N画素単位のブロックAを作成する第1のブロック化手段と、入力される2枚目の画像からN×N画素単位のp個(p≥1)のブロックを作成する第2のブロック化手段と、上記ブロックA及びp個のブロックをそれぞれ直交変換する変換手段と、

上記ブロックA及びp個のブロックの直交変換係数を用いて新規にN×N個の成分より構成される変換係数のブ

ロックFK を作成する変換係数作成手段と、

上記ブロックFK を逆直交変換する逆直交変換手段と、 上記逆直交変換結果を上記2枚目の画像の標本点とずらせて配置する配置手段と、

上記ずらせて配置した画像と上記2枚目の画像とを合成する合成手段とを設けたことを特徴とする画像処理装置。

【請求項2】 上記変換係数作成手段は、

【数1】

$$F_{\alpha}[i][j] = \sum_{i=1}^{p} \alpha_{\alpha}[i][j] \cdot F_{\alpha}[i][j] + \beta[i][j] \cdot F_{\alpha}[i][j]$$

(但し、FK $\{i\}$ $\{j\}$ はブロックFK の成分 $\{i\}$ $\{j\}$ における直交変換係数、Fq は 2 枚目の画像で作成したブロック番号 $\{g\}$ $\{i\}$ $\{j\}$ における直交変換係数、 $\{g\}$ $\{i\}$ $\{j\}$ はブロック番号 $\{g\}$ の成分

[i] [j] における係数、β [i] [j] は成分

[i] [j] における係数、FA [i] [j] はブロッ

クAの成分 [i] [j] における直交変換係数を示す) により算出することを特徴とする請求項 1 記載の画像処 理装置。

【請求項3】 上記変換係数作成手段は、 【数2】

$$F_{\kappa}[i][j] = \sum_{q=1}^{p} h(x', y') \cdot \alpha_{q}[i][j] \cdot F_{q}[i][j] + \beta_{q}[i][j] \cdot F_{\lambda}[i][j]$$

(但し、FK [i] [j] はブロック FK の成分 [i] [j] における直交変換係数、 F_q は 2枚目の画像で作成したブロック番号 q の成分 [i] [j] における直交変換係数、 α_q [i] [j] はブロック番号 q の成分 [i] [j] はガロック番号 q の成分 [i] [j] はボガロック番号 q の成分 [i] [j] における係数、 β [i] [j] はボガロック Aの成分 [i] [j] における直交変換係数、 α x', y' は 2枚目の画像で作成したブロック中の 1 つのブロックの原点から配置するブロック Kの原点までの距離、 α y' の値に依存した補間演算の関数を示す)により算出することを特徴とする請求項1 記載の画像処理装置。

【請求項4】 上記 β [i] [j] の係数値の設定は、 上記成分 [i] [j] が低周波領域よりも高周波領域の 値が大きくなるように設定することを特徴とする請求項 2又は3記載の画像処理装置。

【鯖求項5】 入力される1枚目の画像からN×N画素 単位のブロックAを作成する手頃と、

入力される2枚目の画像からN×N画素単位のp個(p ≧1)のブロックを作成する手頭と、

上記ブロックA及びp個のブロックをそれぞれ直交変換する手順と、

上記プロックA及びp倒のプロックの直交変換係数を用いて新規にN×N個の成分より構成される変換係数のプロックFKを作成する手頭と、

上記ブロックFK を逆直交変換する手頭と、

上記逆直交変換結果を上記2枚目の画像の標本点とずらせて配置する手順と、

上記ずらせて配置した画像と上記2枚目の画像とを合成

する手順とを設けたことを特徴とする画像処理方法。

【請求項6】 入力される1枚目の画像からN×N画素 単位のプロックAを作成する処理と、

入力される2枚目の画像からN×N画素単位のp個(p ≧1)のブロックを作成する処理と、

上記ブロックA及びp個のブロックをそれぞれ直交変換する処理と、

上記プロックA及びp個のプロックの直交変換係数を用いて新規にN×N個の成分より構成される変換係数のプロックFKを作成する処理と、

上記ブロックFK を逆直交変換する処理と、

上記逆直交変換結果を上記2枚目の画像の標本点とずらせて配置する処理と、

上記ずらせて配置した画像と上記2枚目の画像とを合成する処理とを実行するためのプログラムを記憶したコンピュータ読み取り可能な記憶媒体。

【発明の詳細な説明】

[0001]

【発明の風する技術分野】本発明は、入力した画像情報を拡大変倍して出力するプリンタ等の画像出力装置や、解像度の異なる機種間通信で低解像情報から高解像情報に解像度変換する場合に用いて好適な画像処理装置、方法及びそれらに用いられるコンピュータ銃み取り可能な配憶媒体に関するものである。

[0002]

【従来の技術】従来より、入力した低解像情報を高解像情報に解像度変換する方法として、様々な方法が提案されている。これらの提案されている従来方法は、対象となる画像の種類(例えば、各画案ごとに階調情報を持つ

多値画像、疑似中間間により2値化された2値画像、固 定関値により2値化された2値画像、文字画像等)によ って、その変換処理方法が異なっている。

【0003】従来の内挿方法としては、図22に示すように内挿点に最も近い同じ画案値を配列する最近接内挿

$$E = (1-i) \cdot (1-j) \cdot A + i \cdot (1-j) \cdot B + (1-i) \cdot j \cdot C + i \cdot j \cdot D \cdot \cdot \cdot \cdot (1)$$

【0004】また、古くからサンプリング定理で表されているように、サンプリングされた離散信号を連続信号に変換する手段として、SINC関数で表現できる理想低域ろ波器を通過させることによって再現することができる。SINC関数を演算するのは処理時間がかかることなどから、SINC関数で表現される補間関数を近似して、簡単な積和演算のみで補間値を算出する方法がある。

【0005】「画像解析ハンドブック:高木幹雄、下田陽久監修 東京大学出版会」によると、3次畳み込み内博法(Cubic Covolution interpolation)において、補間関数の近似が実現できる。内挿したい点の周囲の観測点16点の画像データを用いて、求める画像データを次の式で示される3次畳み込み関数を用いて内挿する。尚、P11~P44は周

辺画素値を示し、図24にその配償を示す。

方法、図23に示すように内挿点を囲む4点(4点の画

素値をA、B、C、Dとする)の距離により、以下の演

算によって画素値 Eを決定する共 1 次内積法等が一般的

【0006】 【数3】

に用いられている。

$$f(t) = \sin(\pi t) / (\pi t)$$

$$= \begin{cases} 1 - 2|t|^2 + |t|^3 & (0 \le |t| < 1) \\ 4 - 8|t| + 5|t|^2 - |t|^3 & (1 \le |t| < 2) \end{cases}$$

$$0 \qquad (2 \le |t|)$$

$$x1=1+(u-[u])$$
 $y1=1+(v-[v])$
 $x2=(u-[u])$ $y2=(v-[v])$
 $x3=1-(u-[u])$ $y3=1-(v-[v])$ … 式4
 $x4=2-(u-[u])$ $y4=2-(v-[v])$
([]はガウス配号で整数部分をとる)

【0007】しかしながら、上述した3種類の従来例では、何れも補間時に補間によるぼけ及び入力低解像度に依存したブロック状のジャギーが生じ、高画質の高解像度画像を作成することができなかった。

【0008】そこで本出願人は、低解像情報から高解像情報を作成する場合に、補間処理による補間ぼけもなく、またジャギーが発生することもない解像度変換方法を特別平7-93531号公報、特別平7-10726

8号公報、特開平7-105359号公報により提案した。これらの提案の基本的な考え方は、入力した原情報から解像度依存成分を除去し、除去した状態で画素数を出力解像度相当まで増加させ、増加させた状態の中で新たな解像度に見合う情報を推測し作成する方法である。入力解像度の依存性を取り除く手段はLPFによる平滑化、画素数の増加は線形補間により実現可能である。高解像情報の推測は補間後の情報を単純2値化して、

"1"に分類された画案と"O"に分類された画案に対してそれぞれ異なる処理を行うことにより、出力する画案値を算出する。

【0009】また、特別平9-252400号公報で提案したように、画素値の連続性が保たれた良好なエッジを作成する方法もある。上記公報では、低解像度注目画素の周辺画素よりm点(m≥1)の画素 (ただし、m点

中の観測点 n における國素値をP (n) とする)を検出し、注目画素を複数画素分に補間した各補間点 k における補間値C(k)を基に、出力値 h (k)を以下の式により演算している。

【0010】 【数4】

 $h(k) = \sum_{n=0}^{\infty} \alpha(n)P(n) + \beta C(k) \qquad \cdots \neq 5$

 $(\alpha(n), \beta$ は任意の係数、ただし $\beta \neq 0$)

[0011]

【発明が解決しようとする課題】しかしながら、上記従来例では、以下に述べるような欠点があった。即ち、いくら高解像度情報の作成を行っても、高画質化には限界があるという点である。サンプリング定理より明らかなように、当然、入力解像度のナイキスト限界以上の情報は入力画像には依存しないため、ナイキスト周波数以上の情報作成は全て推測によるものになる。そのため、余り複雑ではないCG画像、イラスト画像、アニメーショ像ではないCG画像、イラスト画像、アニメーショ像をのような、平坦な人工画像をのナイキスト限界以することは容易である高画質化は難しい。即ち、いかなる方法を用いたとしても、低解像度である画像を入力した場合と比較すると明らかに画質は低くなる。

【0012】一方、近年になりデジタルビデオカメラの 普及により、操像した画像を連続した1フレーム単位に コンピュータに入力できる手段が増えてきている。た だ、プリンタの出力解像度は年々増加しているが、 操像 系の入力解像度は増加傾向にあるとはいっても、プリン タ解像度に比べればまだまだ低いのが現状である。

【0013】そこで、従来の技術で述べたような、一枚の低解像度静止画から一枚の高解像度静止画を作成するのではなく、動画から取り込んだ連続した複数の低解像度静止画から一枚の高解像度静止画を作成する技術を後述する本発明により提案する。複数の静止画からより提案する本発明により提案の合成:吉沢、花村、富永、倡学春季全大予稿集7ー51(1990)」及び「分割操像によるパノラマ画像の生成法:中村、金子、林、倡学春季全大予稿集7ー165(1991)」等の提案がある。しかし、一枚の静止画より操像範囲を拡大したパノラマ画像の作成技術ではなく、撮像範囲は同じて、複数の静止画情報を合成して内挿により解像度を向上させる技術の提案は数少ない。

【0014】このような低解像度の動画から高解像度の 静止画を作成する技術に特開平5-260264号公報 による提案がある。この提案は、連続した複数の画像同 士を比較して2種画像の差異から、アファイン変換及び 平行移動のパラメータを検出して2種画像を合成するも のである。上記提案の第2の実施例には、合成を補間に 利用する例について記載されている。しかし、この提案 では以下の問題点がある。

【0015】即ち、上記第2の実施例に記載された方法は、前述した図22~図24に示した補間方法により拡大した連続画像同士を比較することにより、前述したパラメータを算出して補間位置を決定し、合成していくものである。補間演算自体が新たな高解像情報を作成するものではないために、合成する座標の正確な決定も困難である。補間するということは、画素間を内挿するということである。上記方法では、連続画像同士を比較すると、2種の画像を画像A、画像Bと仮定すると、画像Aの画素間のどの位置に画像Bの画素を内挿するかという決定が、単なる拡大画像間の比較では困難である。

【0016】これは、動きベクトルのベクトル量の最小単位が画楽単位であり、画素間距離よりも細かい分解能がないという点が起因している。即ち、ベクトルの分解能が画案間以下の精度を持たなければ、複数の静止画を用いて補間する効果は薄れ、従来例で述べた一枚の低解像静止画から一枚の高解像静止画を作成する場合と、画質的にほとんど変わりなくなる。

【0017】また、「国際標準画像符号化の基礎技術:小野文学、渡辺裕 コロナ社」には、各種動き検出法について幾つかの方法の説明がある。しかし、何れの記載の方法も動き補償を目的とした検出方法であり、複数の画像から一枚の画像を作成するという本発明の目的とは異なるため、細かい検出精度が不必要であり、これらの技術を利用しても良好な複数画像の合成は困難であった。

【0018】そこで本出願人は、直交変換を利用して画 素間距離よりも細かい分解能を持つベクトルの算出方法 を提案した。この方法により、複数の静止画が各々独立 したものではなく、画像間の空間的座標の関連付けが可 能になった。しかし、動きベクトルの分解能が画案問距 離よりも細かく算出されたとしても、画像間の相対位置 が正しく把握できるのみで、まだ問題点は数多く残っている。その一つが複数画像間のデータの合成方法である。

【0019】即ち、画像間の空間的座標を補正した後の同一場所の画素値同士を比較すると、画素値が大きく異なっていることが多い。そのため、位置補正を施した後に、ただ単純に複数画像の画素を配置させて内挿しただけでは、内挿した画素値が使用した画像毎に異なっているために、その不均一性がノイズのように視認され画質が劣化していた。即ち、従来では相対位置検出後の複数フレームの画像同士を合成して一枚の高精細静止画に仕上げる良好な合成方法が提案されていなかった。

【0020】本発明は、上記の問題を解決するために成されたもので、複数の画像を合成して高画質の高解像度画像を得ることを目的としている。

[0021]

【課題を解決するための手段】上記の目的を達成するために、本発明による画像処理装置においては、入力される1枚目の画像からN×N画素単位のブロックAを作成する第1のブロック化手段と、入力される2枚目の画像からN×N画素単位のp個(p≥1)のブロックを作成する第2のプロック化手段と、上記ブロックA及びp個のブロックの直交変換係数を用いつのブロックをそれぞれ直交変換係数を用いっりのがである変換係数でプロックを作成する変換係数を用いっく下、を作成する変換係数作成手段と、上記プロック下、を逆直交変換する逆直交変換手段と、上記逆直交変換結果を上記2枚目の画像の標本点と場と上記2枚目の画像を合成する合成手段とを設けている。

【0022】また、本発明による画像処理方法においては、入力される 1 枚目の画像から N× N画素単位のプロック A を作成する手順と、入力される 2 枚目の画像から N× N画素単位の p 個のプロックを作成する手順と、上記プロック A 及び p 個のプロックをそれぞれ直交変換する手順と、上記プロック A 及び p 個のプロックをそれぞれ直交変換係数を用いて新規に N× N 個の成分より構成される変換係数のプロック p 所、を作成する手順と、上記逆直交変換する手順と、上記逆直交変換する手順と、上記逆直交変換替果を上記 2 枚目の画像と手間と、上記ずらせて配置した画像と上記 2 枚目の画像とを合成する手順とを設けている。

【0023】また、本発明による記憶媒体においては、 入力される1枚目の画像からN×N画素単位のブロック Aを作成する処理と、入力される2枚目の画像からN× N画素単位のp個 (p \geq 1) のブロックを作成する処理 と、上記ブロックA及びp個のブロックをそれぞれ直交 変換する手暇と、上記ブロックA及びp個のブロックの 直交変換係数を用いて新規にN×N個の成分より構成さ れる変換係数のブロックFKを作成する処理と、上記ブ ロックFK を逆直交変換する処理と、上記逆直交変換結果を上記2枚目の画像の標本点とずらせて配置する処理と、上記ずらせて配置した画像と上記2枚目の画像とを合成する処理とを実行するためのプログラムを記憶している。

[0024]

【発明の実施の形態】以下、本発明の実施の形態を図面と共に説明する。本実施の形態による画像処理装置は、主として動画像を操像するアナログピデオカメラやデジタルピデオカメラの内部、もしくはピデオカメラと直接あるいはコンピュータを介して接続されるブリンタやビデオブリンタ等の画像出力装置内部に具備することが効率的であるが、ピデオカメラとプリンタとの接続で中間アダプタとなる画像処理装置、又はホストコンピュータ内のアブリケーションソフト、また、プリンタに出力するためのプリンタドライバソフトとして内蔵することも可能である。

【0025】図1は本発明の実施の形態による画像処理 装置を示すプロック図である。本実施の形態では、デジ タルビデオカメラで操像した画像をコンピュータに送信 して、コンピュータ内のアプリケーションソフトにより プリンタ相当の解像度まで変換する例について説明する。

【0026】図1において、ユーザは、デジタルビデオで撮影した動画像を記録した記録媒体を再生し、自分の飲するシーンで画像の取り込み命令を送る。この取り込み命令に同期して、入力端子100より格納部101に取り込み命令直後の連続した複数フレームの画像情報を格納する。動きベクトル演算部102は、連続した2枚の画像【mフレーム画像と(m+1)フレーム画像】の 差異を基に、部分的に移動した移動量をベクトルとして計測する。

【0027】配置部A103は、撮像した2枚目の画像をメモリ内に配置させる。このメモリは、(入力したフレーム画素数)×(垂直方向拡大率)×(水平方向拡大率)以上のアドレス空間を有している。配置部A103は、所定の拡大率に見合った画素の配置を実行していく。例えば、拡大率が水平方向、垂直方向ともに2倍の場合は、垂直方向、水平方向ともに1画素おきに(m+1)フレーム目の画条を配置していくことになる。

【0028】データ加工部104は、mフレーム目の画像情報を、(m+1)フレーム目の画像情報にうまく適合するように、画素値に加工を施すものである。このデータ加工部104が本実施の形態の大きな特徴になる。【0029】配置部B105は、動きベクトル演算部102で算出したmフレームと(m+1)フレームとの相対的なベクトル量に応じて、データ加工された画像情報を配置部A103と同一メモリ内に配置させるものである。合成部106は、上配同一メモリ内に配置した両者の画像を合成して一枚の画像情報を作成する。補間部1

07は、合成した画像がまだ所望の解像度まで内挿点の情報が埋まっていない場合に、埋まっていない内挿点の情報を補間演算により算出するものである。出力端子108は、高解像度化した画像情報をプリンタ等に送信する。

【0030】次に、動きベクトル演算部102について 説明する。動きベクトルを算出する方法は古くから様々 な方法が提案されているが、従来方法では画素間距離以 下のベクトルの分解能がないために、合成、補間を施し て低解像度の動画を高解像度の静止画に変換する用途に は適さない。

【0031】本実施の形態による動きベクトル演算部102の詳細な構成を図2に示す。図1の格納部101から動きベクトル演算部102に送信される2種の画像は、1種は、ユーザが取り込み命令をかけた直後の画像(時刻mフレームとする)、また、他の1種は時刻mフ

レーム目から1フレーム後の画像 [(m+1) フレームとする] とする。

【0032】図2において、N×Nブロック化部201は、mフレーム目の画像をN×N画楽単位にブロック化する。Nの値は種々考えられるが、例としてN=8を想定する。いま、この作成した8×8画素の注目ブロックを仮にブロックAと称する。次に、直交変換部202において、ブロックAの直交変換を演算する。直交変換の種類は限定しないが、容易に高速で演算できるアダマール変換、及びJPEG(Joint Photografic Expert Group)で採用されているDCT(離散コサイン変換)等が一般的である。

【0033】いま、DCTを例にすると、N×N画素の 2次元DCTの変換係数は、

[0034]

【数5】

$$F(u,v) = (2/N)C(u)C(v)\sum_{m=0}^{N-1}\sum_{n=0}^{N-1}f(m,n)\cos((2m+1)u\pi/2N)\cos((2n+1)v\pi/2N)$$

…式6

C (p) =
$$1/\sqrt{2}$$
 (p=0),
C (p) = 1 (p \neq 0)

【0035】で求められる。

【0036】一方、(m+1)フレーム目の画像はM×M'ブロック化部203において、M×M' 画素単位にブロック化される。この時、M×M' 画素単位のブロックは、(m+1)フレーム目内の、上記ブロックAと同一座標のN×N画来のブロックを包括し、大小関係は、M≧N、かつM'≧N(但し、M=M'=Nの場合を除く)になる。いま、M=M'=20と仮定する。即ち、ブロックAと同一座標を含む20×20画素のブロックを(m+1)フレーム目内に用意することになる。

【0037】次に、N×Nブロック化部204において、20×20 國素のブロック内で、mフレーム目と同サイズのN×N 国素のブロックを作成する。ブロックの作成は、ブロックAの同一座標からスタートしてもよいし、M×M'ブロックの鑑から顕に初めてもよい。いま、(m+1)フレーム目内で作成したN×N 画素のブロックを仮にブロックBと称する。

【0038】次に直交変換部205は、作成したブロックBをブロックAと同様に直交変換する。当然、直交変換部202、205の直交変換は、同一の変換手段でなくてはならない。次に変換係数評価部206では、ブロックA、ブロックBの直交変換係数を基に、その変換係数の類似性を評価する。類似性の評価は、ブロックのDC(直流)成分と、AC(交流)成分の主に低周波域の成分を基に、それぞれの係数の差分に、成分に応じた重み付け係数を乗じた値の和で評価する。

【0039】いま、説明を容易にするために、ブロックの座標をブロックを形成する左上の画素の座標で管理することにする(以下、この画素の座標をブロックの原点と称する)。即ち、図3に示したように、ブロック日の原点(斜線部の画素に相当する)を(a. b)とすると、ブロックAとブロックBとの類似性の評価関数は、

[0040]

【数6】

$$R(a,b) = \sum_{a=0}^{N-1} \sum_{v=0}^{N-1} (W(u,v) \times |F_{a}(u,v) - F_{b}(a,b)(u,v)|) \qquad \dots \le 7$$

W(u,v) は成分(u,v)の重み付け係数

Pa(u,v) はプロックAの直交変換係数

 $F_{m{s}}(a,b)(u,v)$ は原点(a、b)の時のプロックBの直交変換係数

【0041】で算出する。

【0042】高周波域になるほど隣接ブロック間の変換係数の相関が低くなるため、高周波域ほど重み付け係数w(u、v)の値を小さく設定する。座標が空間的に近いブロック同士の低周波域の変換係数は非常に相関が高いため、式7ではブロック同士の空間的な位置関係を変換係数の類似性に置き換えて評価している。また、式7では絶対値を用いているが、差分の2乗でも同様の評価は可能である。

【0043】ブロック制御部207は、ブロックBの原点(a, b)を1 国案移動して、新たにブロックを作成し、同様の処理を繰り返す。即ち、N=8、M=M'=20を例にすると、8×8 国案のブロックは20×20 国案のプロック中に13×13 個作成できるので、そのプロック数分に対して繰り返し類似性を演算することになる。

【0044】(m+1) フレーム目内において、全てのブロックBの走査を終了すると、上述の評価関数であるR(a,b)が最小になる座標(a',b')を判定する。即ち、類似性R(a,b)はブロックAB間の誤差成分と見なせるため、R(a,b)が最小値をとる時のブロックB(この時のブロックをブロックB'と称する)が空間的にもブロックAと最も近いブロックと見なし、ブロックAの移動した先と判断する。ただ、これだけでは従来例と同様に、動きベクトルの分解能は1画素単位であり、画素間距離以下のベクトルが判定できない。

【0045】そこで、本実施の形態では、画素間距離よりも短い分解能で動きベクトルを推測する。以下にベクトルの推測方法を説明する。上述の方法において、mつしーム目の注目プロックであるプロックAの原点を(a 0.60)とし、上配R(a,b)が最小値をとる(m+1)フレーム目のプロックB'の原点を(a',b')とする。変換係数評価部206におけるプロックB'の検索であったが、今度はプロックB'周辺に絞った細かい距離の推測をする。即ち、変換係数評価部206では、まず、空間的に最も近いと思われるプロックB'の検索を第1段階としてい、次に、第2段階として、求めたプロックB'からの機小なずれ量の推測を行うという、構成の異なる2段階

の評価を実施することになる。

【0046】 図4に上記2段階目の推測の動作手頭を示すフローチャートを示す。ステップS401 (以下、ステップB) は、ブロックB'の水平方向に1回素左に作成したブロックと1回素右に作成したブロックとの前記式7による評価関数結果を比較する。即ち、ブロックB'の原点は(a',b')であるため、R(a'+1,b')とR(a'-1,b')の大小を評価する。このR(a'+1,b')、R(a'-1,b')については、既に上記第1段階の類似性評価の際に算出しているので、演算結果を記憶、保持しておくのが好ましい。

【0047】 \$401において、もし、R(a'+1,b')が小さいと評価されると\$402に、また否と評価されると\$403に移動する。次に、\$402では原原点R(a'+1,b')より構成されるブロックをブロックCと設定し、また、\$403では原点R(a'-1,b')より構成されるブロックをブロックCと設定する。それと同時に、\$402では変数。をc=1と設定し、また、\$403ではc=-1と設定する。

【0048】次にS404において、今度はブロックB'の垂直方向に1 國素上に作成したブロックと1 國素下に作成したブロックとの式7による評価関数結果を比較する。即ち、ブロックB'の原点は(a',b')であるため、R(a',b'+1)とR(a',b'-1)の大小を評価する。この類似性の評価関数に関しても、第1段階の類似性評価の際に算出しているので、演算結果を記憶、保持しておくのが好ましい。

【0049】S404において、もし、R(a', b'+1)が小さいと評価されるとS405に、また否と評価されるとS405では原価されるとS405では原原R(a', b'+1)より構成されるブロックをブロックDと設定し、また、S406では原原R(a', b-1)より構成されるブロックをブロックDと設定する。それと同時に、S405では変数dをd=1と設定し、また、S406ではd=-1と設定する。

【0050】次にS407では、ブロックAの窗交変換係数中の水平方向のAC基本波成分であるFA(1.0)とブロックB'及びブロックCの直交変換係数中の水平方向のAC基本波成分であるFB'(1.0)、F

C (1,0)の3種の値の大小関係を評価する。 【0051】即ち、FA (1, 0) の値が、FB' (1, 0) の値とFC (1, 0) の値との間に存在する

また、S409では、変数×は×=0と設定される。 【0052】同様にS410では、ブロックAの直交変 換係数中の垂直方向のAC基本波成分であるFA (O. 1)と、ブロックB'及びブロックDの直交変換係数中 の水平方向のAC基本波成分であるFB′(O, 1)、 FD (0.1)の3種の大小関係を評価する。即ち、F

また、S412では、変数yはy=0と設定される。 【0054】 S413では式8、式9により算出した x、yを基に、プロックAから真に移動したと判断され

$$\rightarrow AB'' = (a' + c \times x - a0,$$

【0055】即ち、ブロックAからフロックB′への動 $\rightarrow AB'' = (a' - a0, b' - b0) \cdot \cdot \cdot \cdot 式11$

となるので、式10のc×x、及びd×yの項が画素間 距離よりも分解能の高いベクトル成分となっている。

【0056】以上のフローについて、図5~図10を基 にしてさらに詳細に説明する。図5はブロックAとブロ ックB' との相対関係を示した図である。ブロックAの 原点が(a O, b O) 、プロックB'の原点が(a'、 b') であることは前述した通りである。いま、第1段 階の類似性評価によりプロックAからプロックB'への 大まかなベクトルが算出されている。

【0057】図6はブロックB′とブロックB′の周辺 に作成したブロックとの相対関係を示した図である。図 6 (a) は水平方向の周辺ブロックを示し、原点が (a', b')であるブロックB'を中心に1 画素ずつ 左右に原点をずらした2つのブロックを示している。但 し、図6(a)では、各ブロックを若干級方向にずらし ているが、これはブロックの相対関係を分かりやすく表 現するためのものであり、実際には超方向にはずれては いない。図中、斜線で示した画素が各々の原点の画素に なる。

【0058】前述したように、このどちらかのブロック が、プロックCと設定される。同様に、図6(b)で は、垂直方向の周辺ブロックを示し、原点が (a', 点をずらした2つのプロックを示している。但し、図6 (b) では、各ブロックを若干横方向にずらしている が、これはブロックの相対関係を分かりやすく表現する ためのものであり、実際には横方向にはずれてはいな い。同様に、このどちらかのブロックが、ブロックロと 設定される。ブロック C及びブロック Dの設定は前述し たように、どちらのブロックがブロックAとの直交変換 係数の類似性が高いかという判断によって行う。

か否かを判断する。もし、存在していれば、S408 へ、否ならS409へ移動する。S408では、変数× が以下の式で算出される。

$$x = \{FA (1, 0) - FB' (1, 0)\} / \{FC (1, 0) - FB' (1, 0)\}$$

A (0, 1) の値が、FB' (0, 1) の値とF D (0.1)の値との間に存在するか否かを判断する。 もし、存在していれば、S411へ、否ならS412へ 移動する。

【0053】S411では、変数ッが以下の式で算出さ れる。

$$\{1\}$$
 $\}$ $\}$ $\{FD (0, 1) - FB' (0, 1) \}$

るブロック(ブロックB"と称する)への動きベクトル →AB"を以下のように設定して終了する。

b' +d×y-b0) · · · · 式10 きペクトル→AB"は、

【0059】図7、図8、図9は、それぞれ実際の自然 画像中のプロックA、プロックB'、ブロックCの画素 値、及び式6で算出したDCT変換係数の様子を示した ものである。図7の701はmフレーム中の注目プロッ クであるプロックAの画素データである。ブロックサイ ズは8×8 画素とする。702はブロックAのDCT変 換係数を示す。この変換係数702を基に、 (m+1) フレーム中のブロックB'の検索を行う。

【0060】図8の801は、検索した結果、最も類似 性が高いと評価されたブロックB'の国素値を示す。B 02は、検索に使用されたブロックB'のDCT変換係 数である。702、802から明らかなように、類似性 が高いことが分かる。

【0061】図9の901はブロックB'の原点が1画 素右方向に移動したブロックCを示す。これは、原点が 1 画素を方向に移動したブロックよりも類似性が高いと 評価されて選択されたものである。902はブロックC のDCT変換係数を示している。当然、ブロックC (9 O2)とブロックA(7O2)との類似性は、ブロック B' (802) とブロックA (702) との類似性より も低い(誤差が大きい)。

【0062】ここで、ブロックB'と1画素ずれたブロ ックCとの画素間空間にブロックAを合成させるため に、画素間距離以内での配置位置を決定しなくてはなら ない。そこで、図4のフローで説明したように、70 2、802、902のDCT変換係数の水平方向AC基 本波成分に着目する。いま、702の水平方向AC基本 波成分は"36.37"、802では"35.50"、 902では"41.46"であるので、これらの相互比 較によって位置を推測する。即ち、空間的な距離に比例 して基本波成分が線形に推移するものと仮定するわけで

ある。

ロックB'からの水平方向の距離を算出すると、...

【0063】ここで、実際の値を式8に当てはめて、ブ

x = (36.37 - 35.50) / (41.46 - 35.50) = 0.15

···式12.

となる。即ち、プロック B'の原点よりもプロック B"の原点は、O. 15 画素分右方向に位置するものと判断する。

【0064】ただ、図4でのフローにおいて説明したように、ブロックB'、ブロックA、ブロックCの水平方向基本波成分が単調増加、もしくは単調減少になっていない場合には、水平方向に関してはブロックB'の座標と同位置であると判断する。同様に垂直方向に関しても、垂直方向AC基本波成分の変化比率に線形的に配置されるものとしてブロックB'からの垂直方向の距離yを演算する。

【0065】図10にブロックB'の原点からの×、yの位置関係の例を示す。×、yともに1 画素以内の距離になる。図10はブロックB'よりも右方向及び下方向に位置している例である。●印は(m+1)フレームの画素位置を示している。上述したフローによって、×、yの値が算出されると、(a'、b')の位置から水平方向に×、垂直方向にyだけ移動した×印の位置がブロックAの合成する原点の位置になる。ブロックAから真の移動位置であるブロックB"への動きベクトルは式10で示した通りになる。

【0066】次に、データ加工部104について説明する。図11はデータ加工部104の詳細な構成を示すブロック図である。図11において、座標管理部1101は、動きベクトル演算部102から算出されたベクトルに従って、mフレームのブロックが(m+1)フレームのどの位置に移るかを管理するものである。この座標管理部1101からは、式7の評価関数が最小であったアドレスが出力される。N×Nブロック化部1102は、mフレーム目の画像をN×N画素単位でブロック化する。直交変換部1103は、ブロック化した画像情報を直交変換する。これらの各部は、前段の動きベクトル演算部102内部で使用したブロック(注目ブロック)の直交変換情報を保持していれば、改めてデータ加工部104内部で行う必要はない。

【0067】同様に、N×Nブロック化部1104、直交変換部1105は、座標管理部1101から受けたアドレスに基づいて、(m+1)フレーム目のN×N画素単位のブロック化、直交変換処理を実行する。これらの各部も前段の動きベクトル演算部102内部で作成、評

価したブロック (対象ブロック) のうち、評価関数が最小になったブロック、及びその周辺の直交変換情報を保持していれば、改めてデータ加工部 1 0 4 内部で行う必要はない。

【0068】次に、直交変換係数作成部1106は、mフレーム目の注目ブロック、及び(m+1)フレーム目の複数の対象ブロックの直交変換係数から、新たな変換係数を作成するもであり。この直交変換係数作成部1106が、本実施の形態の特徴でもある。逆直交変換部1107は、新たに作成した変換係数を逆変換して、実空間の画素値に変換するものである。以上が、注目ブロックのデータ加工の一連の流れである。

【0069】図12は直交変換係数作成部1106の動作手頭の第1の実施の形態を示したフローチャートである。いま、mフレーム目の注目画素ブロックをブロック A、(m+1)フレーム目の評価関数の最小になったブロックをブロックB'、またブロックB'を基準にしてフロックをブロックC、同様に、ブロックB'を基準にしてのブロックのうち、評価関数が小さいと評価されたブロックをブロック C、同様にずらしてブロック化した2つのブロックのうち、評価関数が小さいと評価されたプロックをブロック Dとする。また、ブロック Cの原点の y 座標を原点とするプロックをブロック Dとする。プロック Eはブロック B'とは水平、垂直ともに1画素ずつずれていることになる。

【0070】また、各ブロックの直交変換係数をFA、FB、、FC、FDとして、変換係数の各成分を2次元配列の形式で垂直、水平の順に表現する。例えば、FA[3][5]は、ブロックAの垂直(y軸)方向に3成分目、水平(x軸)方向に5成分目の直交変換係数を示し、座標形式で表現したFA(5、3)と同じである。また、直交変換は8×8回索のDCTを例にする。

【0071】図12において、S1201、S1202 は変数の初期化を示し、垂直方向の変数i、水平方向の 変数jを"0"に初期化する。続いて、S1203にお いて、変数i.jの値がともに4未満か否かを判定す る。YESの場合には、S1204で以下の演算が行わ れる。

FK [i] [j] = $(1-x') \cdot (1-y') \cdot FB'$ [i] [j] + x' $\cdot (1-y') \cdot FC$ [i] [j] + $(1-x') \cdot y' \cdot FD$ [i] [j] + x' $\cdot y' \cdot FE$ [i] [j] $\cdot \cdot \cdot \cdot$ 式13

【0072】FK [i] [j] は、新規に作成するブロックKの成分[i] [j] の直交変換係数を示している。また、x', y'は、ブロックB'の原点からの内

揮点までの距離を示している。即ち、前述した式8、式9により算出した×, yの座標が、所望の内挿点上に完全に合致する場合は極めて少ない。実際には、算出した

【0073】上記式13は、(m+1)フレーム目の4つのブロック(FB'、FC、FD、FE)の同一成分の直交変換係数値を座標×、yに応じた配分比率により算出する線形補間になっている。即ち、実空間での距離と線形に直交変換軸上でも変換係数を補間することになる。

【0074】次に、S1205では、変数jをカウントアップし、S1206でブロックの水平成分が終了したか否かを判定する。YESであれば、S1203に戻り、NOであればS1207で、今度は変数iをカウントアップする。S1208でブロックの垂直成分が終了したか否かを判定し、YESの場合には、S1202に戻り、NOの場合には64成分全て処理が実行されたとして終了する。

【0075】一方、S1203で、N0と判定された場合は、高周波域を処理していると判定されるので、S1209で以下の演算が実行される。

 FK [i] [j] = FA [i] [j] ・・・・式14

 即ち、高周波域には、mフレーム目の直交変換係数が代入されることになる。

【0076】この一連の処理を簡単に図解したのが図13である。図13において、、1301、1302、1303、1304は、それぞれブロックB'、ブロックC、ブロックD、ブロックEの各ブロックの直交変後後(FB'、FC、FO、FE)を示している。斜線部がDC成分で、ブロック中の右に行くほど、あるいは下に行くほど、AC成分高周波域になる。いま、この4ブロックの同成分の変換係数を基に、DC成分、及びAC低周波の15成分の変換係数を補間により作成する(図中、太線部)。この作成した16成分の変換係数を1305で示す。

【0077】一方、高周波域48成分は1306で示したブロックAの直交変換後(FA)の高周波域(太線部)を用いる。用いた高周波域の変換係数を1307で示す。そして低周波域1305、及び高周波域1307を合体させて、新たなブロックK(FK)1308を作成する。

【0078】次に、図14~図19に示す実際の画像データを基に説明する。図14はmフレーム目の注目プロックであるブロックAの画像情報(a)とその直交変換(DCT)の変換係数情報(b)である。また、図15は(m+1)フレーム目のブロックB'の画像情報

(a) とその直交変換 (DCT) の変換係数情報

(b)、図16はブロックCの画像情報(a)とその直交変換(DCT)の変換係数情報(b)、図17はブロックDの画像情報(a)とその直交変換(DCT)の変換係数情報(b)、図18はブロックEの画像情報

(a)とその直交変換(DCT)の変換係数情報(b) を示す。

【0079】いま、拡大率を4倍×4倍と仮定した場合、各ブロックの直交変換係数の比率により、内挿点は図20の×印の位置になる。即ち、x′=y′=1/4となり、×印の位置をブロックKの原点としてブロック内の64回素を配置させていくことになる。

【0080】図19はブロックKの変換係数作成の結果(a)と、その逆直交変換情報(b)である。(a)から明らかなように、DC成分、及びAC低間波域の成分は図15(b)、図16(b)、図17(b)、図18(b)の低間波域の補間結果が代入されている。また、図19(a)の高間波域は図14(b)の高間波域の変換係数値が代入されている。

【0081】また、逆直交変換情報である図19 (b) 及び図15 (a) から明らかなように、mフレーム目の情報を(m+1) フレーム目と合成しても、違和感なく適合されることが分かる。

【0082】以上、直交変換の係数作成による複数画像の合成について述べてきたが、本発明の思想は、複数の異なる静止画のブロックを基に、全く新規なブロックを直交変換軸上で作成する点にある。即ち、複数画像を合成する際に最も役に立つ情報は、高周波域の情報である。DC成分とAC低周波域の成分は、複数枚を用いてもあまり必要な情報とはならない。どれも非常に相関が高いからである。それに比べて、操像時や入力時の微少なずれにより、使用するフレーム毎に高周波域の情報が異なる。この異なる情報をいかにうまく活用していくのかが画質向上のポイントになる。

【0083】本実施の形態では、高周波域の成分を、他の静止画の低周波域と合成させているために、必要な情報を無駄にすることなく効率的に画像の高画質化に活かすことが可能である。

【0084】また、以上の説明では、2つのフレームの画像の合成を例にしてきたが、連続したフレーム毎に一連の処理を繰り返すことにより、合成するフレーム数が増加して、より高解像の静止画像を作成できる。その際に所望の内挿点に合成情報が位置しないときには、補間手段により内挿点の画素値を補間する。この際の補間手段としては、図22~図24に示した方法で十分である。

【0085】図21は本発明の第2の実施の形態を示すフローチャートである。本実施の形態は、前述した第1の実施の形態の直交変換係数作成部1106における処理が異なるのみで、他の部分は共通である。図21において、S2101、S2202は変数の初期化を示し、垂直方向の変数 i、水平方向の変数 jを"0"に初期化する。

【0086】続いて、S2103において、以下の演算が行われる。

 $FK'[i][j] = (1-x') \cdot (1-y') \cdot FB'[i][j] +$ $x' \cdot (1-y') \cdot FC[i][j] + (1-x') \cdot y' \cdot FD[i][i]$] +x' ·y' ·FE [i] [j] ····式15 行われる。

【0087】続いてS2104において、以下の演算が

 $FK [i] [j] = \alpha [i] [j] \cdot FK' [i] [j] + \beta [i] [j] \cdot$

FA [i] [i] ····式16

[0088] == τ. α [i] [j] , β [i] [j] は係数であり、直交変換後の成分であるi、jに依存し た重み付けによって予め設定されている。FK [i] [j] は図12の第1の実施の形態と同様に、新規に作 成するブロックKの直交変換係数を示している。また、 x'. y'も第1の実施の形態と同様、内挿点の位置を 示している。

【0089】次にS2105では、変数」をカウントア ップし、S2106でブロックの水平成分が終了したか 否かを判定する。YESであれば、S2103に戻り、 NOであれば、S2107で今度は変数iをカウントア

$$\alpha$$
 [i] [j] = 1、 β [i] [j] = 0 (i < 4かつ j < 4の時) α [i] [j] = 0、 β [i] [j] = 1 (上記以外の時) ・・・式 1 7

と設定しておけば、図12の場合と全く等価にすること

【0091】 含い換えれば、図12の実施の形態は図2 1の実施の形態を含んでいることになる。図21の実施 **の形態では、低周波域ではα [i] [j] の値を大き** く、髙周波域ではβ [i] [j] の値を大きく設定する ことが好ましい。

【0092】また、一般的には、

 α [i] [j] + β [i] [j] = 1 · · · · 式18 が成り立つが、これに限ることではない。即ち、高周波 域の変換係数を減少させたい場合などでは、

 α [i] [j] + β [i] [j] <1····式19 という設定も十分あり得る。この係数設定は実験的に算 出するのが好ましい。

FK [i] [j] =
$$\alpha$$
 [i] [j] \cdot FB' [i] [j] $+\beta$ [i] [j] \cdot

い。

【0095】即ち、以上述べてきたデータ加工の式をま とめると、一般的に以下のように記述できる。

FA [i] [j] · · · · 式20

【数7】 $F_{\kappa}[i][j] = \sum_{\alpha} \alpha_{\alpha}[i][j] \cdot F_{\alpha}[i][j] + \beta[i][j] \cdot F_{\lambda}[i][j]$ … 式21

【0097】上式において、qは(m+1)フレーム目 上に形成したブロック番号、pは(m+1)フレーム目・ 上でデータ加工に用いたブロック数、αα はブロック番 号 q における係数を示している。図21の例では(m+ 1) フレームの4 ブロックを使用しているので、p=4

【0098】即ち、mフレーム目の注目ブロックAの直 交変換成分i, jにおける変換係数FA [i] [j] と、(m+1)フレーム目のデータ加工に必要な幾つか

になる。

のブロック Fa における変換係数 Fa [i][j]との 積和演算において、新規なブロックKの直交変換係数F K [i] [j] を算出していることになる。

【0099】また、図12、図21に示したように、F K [i] [j] の値が内挿点の距離を示す x', y'の 値に依存する場合には、以下のように記述することがで きる。

[0100] 【数8】

[0096]

ップする。S1208でブロックの垂直成分が終了した か否かを判定し、YESの場合は、S2102に関り、 NOの場合は、64成分全て処理が実行したとして終了 する。

【0090】本実施の形態では、図12の第1の実施の 形態とは異なり、i,」の値によって処理を切り換えは しない。その代わりにi,jの値に依存した重み付け係 数で(m+1)フレーム目の情報 F K ' [i] [j]と mフレーム目の情報FA [i] [j] との積和演算を施 している。即ち、α [i] [j]、β [i] [j] の値 の設定を、

【0093】以上、直交変換の係数作成による複数画像 の合成について述べてきたが、本発明は直交変換を利用 したデータの加工に特徴があるので、その他の部分、例 えば、動きベクトル演算部や、合成部等の構成、動作に ついては限定しない。動きベクトル演算部では、本出願 人が先に提案した配載の直交変換を利用したベクトル算 出を基に説明したが、これに限るものではなく、実空間 上の国素値の差分の2乗和が最小になる位置を検出する 方法などの、従来から用いられている方法を用いてもよ

【0094】また、データ加工においても、以下の式の ように簡易的にmフレーム目の注目ブロックAと(m+ 1) フレーム目の最も誤差の小さいブロックであるブロ ックB'同士の直交変換係数の演算にしてもよい。

$F_{\kappa}[i][j] = \sum_{q=1}^{p} h(x', y') \cdot \alpha_{q}[i][j] \cdot F_{q}[i][j] + \beta[i][j] \cdot F_{\Lambda}[i][j] \qquad \cdots \Rightarrow 2.2$

【0101】ここで、h(x'、y')は内挿点と観測点との距離に依存した補間演算の関数である。この関数は、線形補間、3次畳み込み内挿法等が考えられる。この式21、及び式22を用いることによって、複数フレームのプロック情報から新規なプロックの直交変換係数を自由度が高く作成することができる。

【0102】また、以上の説明では、直交変換で8×8 画素のプロックのDCTを基に説明したが、これ以外の 画素数でもよいのは勿論である。また、各実施の形態で は、全てmフレームと (m+1) フレームの連続画像に ついて説明してきたが、本発明においては連続、非連続 は限定しない。当然、mフレームと (m+n) フレーム (但し、n≥1)間の動きベクトルを本発明の技術を用 いて合成することも可能である。さらに、複数の機器から構成されるシステムに適用しても1つの機器から成る 装置に適用してもよく、また、システムあるいは装置に プログラムを供給することによって達成される場合に も、本発明を適用できることはいうまでもない。

【0103】次に本発明の他の実施の形態としての記憶 媒体について説明する。本発明は、ハードウェア構成に より実現することもできるが、CPUとメモリからなる コンピュータシステムによる構成で実現することもでき る。コンピュータシステムに構成する場合、上記メモリ は本発明による記憶媒体を構成する。即ち、各実施の形 態で説明した各フローチャートによる動作を実行するた めのソフトウェアのプログラムコードを記憶した記憶媒 体をシステムや装置で用い、そのシステムや装置のCP Uが上記記憶媒体に格納されたプログラムコードを読み 出し、実行することにより、本発明の目的を達成するこ とができる。

【0104】また、この記憶媒体としては、ROM、RAM等の半導体メモリ、光ディスク、光磁気ディスク、磁気媒体等を用いてよく、これらをCD-ROM、フロッピィディスク、磁気媒体、磁気カード、不揮発性メモリカード等に構成して用いてよい。

【0105】従って、この記憶媒体を図1に示したシステムや装置以外の他のシステムや装置で用い、そのシステムあるいはコンピュータがこの記憶媒体に格納されたプログラムコードを読み出し、実行することによっても、上記各実施の形態と同等の機能を実現できると共に、同等の効果を得ることができ、本発明の目的を達成することができる。

【0106】また、コンピュータ上で稼働しているOS 等が処理の一部又は全部を行う場合、あるいは配憶媒体 から読み出されたプログラムコードが、コンピュータに 挿入された拡張機能ポードやコンピュータに接続された 拡張機能ユニットに備わるメモリに書き込まれた後、そ のプログラムコードの指示に基づいて、上記拡張機能ボードや拡張機能ユニットに備わる GP U等が処理の一部 又は全部を行う場合にも、上記各実施の形態と同等の機 能を実現できると共に、同等の効果を得ることができ、 本発明の目的を違成することができる。

[0107]

【発明の効果】以上説明したように、本発明によれば、 複数フレーム分の直交変換情報を基に新規なブロックの 直交変換係数を作成し、その逆直交変換情報を原情報の 標本点からずらして配置することにより、違和感の無い 複数画像の合成が可能になる。また、DC成分やAC成 分の各成分毎に重み付けした積和係数を用いて、複数フ レームの直交変換情報の積和演算を施すことにより、高 周波域の情報の付加が容易に、かつ高画質に実現でき る。

【0108】また、従来提案されていた1枚の低解像静止画からの高解像静止画作成の内挿、補間技術に比べ、格段に高画質化した画像情報を作成することができる。さらに、ビデオカメラで撮影した低解像静止画情報から1枚の高解像静止画情報を容易に作成できるため、入出力の解像度の異なる機種間通信や、拡大変倍して高画質な画像を出力するビデオカメラ、プリンタ等を実現することができる。

【図面の簡単な説明】

【図1】本発明の実施の形態による画像処理装置のブロック図である。

【図2】動きベクトル演算部の構成を示すブロック図である。

【図3】動きベクトルを説明するための構成図である。

【図4】変換係数評価部の動作手頭を示すフローチャー トである。

【図5】動きベクトルを説明するための構成図である。

【図6】動きペクトルを説明するための構成図である。

【図7】ブロック化された画素値とDCT変換係数の例 を示す構成図である。

【図8】ブロック化された画素値とDCT変換係数の例 を示す構成図である。

【図9】ブロック化された画素値とDCT変換係数の例を示す構成図である。

【図10】動きベクトルを説明するための構成図であ

【図11】データ加工部の構成を示すブロック図であ ス

【図12】本発明の第1の実施の形態による直交変換係数作成部の動作手順を示すフローチャートである。

【図13】直交変換係数作成を説明するための構成図である。

【図14】ブロック化された画素値とDCT変換係数の 例を示す構成図である。

【図15】ブロック化された画素値とDCT変換係数の 例を示す構成図である。

【図16】ブロック化された画素値とDCT変換係数の例を示す構成図である。

【図17】ブロック化された画素値とDCT変換係数の例を示す構成図である。

【図18】ブロック化された画条値とDCT変換係数の 例を示す構成図である。

【図19】直交変換係数作成後のブロック情報と逆直交 変換の例を示す構成図である。

【図20】作成ブロックの内挿点の配置位置を説明する ための構成図である。

【図21】本発明第2の実施の形態による直交変換係数 作成部の動作手順を示すフローチャートである。

【図22】従来の最近接内挿法を説明するための構成図である。

【図23】従来の共1次内挿法を説明するための構成図

である。

【図24】従来の3次量み込み内挿法を説明するための 構成図である。

【符号の説明】

102 動きベクトル演算部

103 配置部A

104 データ加工部

105 配置部B

106 合成部

201、204 N×Nブロック化部

203 M×M' ブロック化部

202、205 直交変換部

206 变換係数評価部

207 ブロック制御部

1101 座標管理部

1102、1104 N×Nプロック化部

1106 变换係数作成部

1107 逆変換係数作成部

【図1】

フロントページの続き

Fターム(参考) 58057 AA01 BA28 CD06 CE03 CE08 CG02 CG05

5C059 KK03 LB02 LB13 LB18 LC01

LC06 MA05 MA12 MA19 MA23

MC32 MC36 ME01 NN03 NN11

NN16 NN21 NN28 NN37 PP01

PP26 SS12 SS20 SS26 SS28

TA06 TA08 TA12 TA29 TA48

TA62 TB07 TC04 TC06 TC12

TD05 TD16 UA25 UA33

5J064 AA01 BA16 BB04 BC01 BC29

BD04