

By updating the put method to increment the inverse counter by (1 + size(h.right)), we are able to use left leaning red black trees to count the number of inverses in a set. This works because as we add node x to the tree, we only recurse left if x < h (the comparison node). From this, we see that x comes after h in the set, but x < h. Also, x < h.right. Due to this, we add to the counter: 1 (as x < h) + size(h.right) (as x < h.right).

$\frac{3a}{a}$ $\frac{b}{c}$ $\frac{g}{e}$ $\frac{h}{e}$
beauty
b) 3 from a tog 3 from 8 to h
: 3x3 = 9 paths from a to the
(c) a b gh 7
CS Scand gith f h CamScanner
W 1 3 3 3 4 4 1
4) Consider n=1, 1 verter, no edges
True for n=1
& Assume true for n=k
". 2m ≤ k²-k
Given true for $n=k$, prove true for $n=k+1$ $RHS=(k+1)^2-(k+1)$ $=k^2+2k+1-k-1$
$=k^2+k$
Gren 2m 5 k2 - k 2m + 2k 5 k2 = k + 2k
For a simple graph, A m (man man) msn-1
: 2m € 2k ≤ k² + k
as needed. A die to the die to
: For $G = (V,E)$, $n = V $ and $m = E $, $2m \le N^2 - n$ for $n \ge 1$

ja) he	require	all verti	ies.	And the control of th	
The	re are	edges.			
	29 = 5	12 span	ning subg	aphs	
6)3		Spanning		s, since the	ve is a
		_			
	29-3	76 - ((1	, ,	that contain
	2 =	2 = 6.	spanning	suppraphs	mar contain
	0 as a	isolated	l vertex.		
. 3	anned with				
Ca	amScanner				