

The BRST extension of gauge non-invariant Lagrangians

D.BASHKIROV¹ AND G.SARDANASHVILY²

Department of Theoretical Physics, Moscow State University, 117234 Moscow, Russia

Abstract. We show that, in gauge theory of principal connections, any gauge non-invariant Lagrangian can be completed to the BRST-invariant one. The BRST extension of the global Chern–Simons Lagrangian is present.

In perturbative quantum gauge theory, the BRST symmetry has been found as a symmetry of the gauge fixed Lagrangian [1]. The ghost-free summand L_1 of this Lagrangian is gauge non-invariant, but it is completed to the BRST-invariant Lagrangian $L = L_1 + L_2$ by means of the term L_2 depending on ghosts and anti-ghosts. We aim to show that any gauge non-invariant Lagrangian can be extended to the BRST-invariant one, though the anti-ghost sector of this BRST symmetry differs from that in [1].

In a general setting, let us consider a Lagrangian BRST model with a nilpotent odd BRST operator \mathbf{s} of ghost number 1. Let L be a Lagrangian of zero ghost number which need not be BRST-invariant, i.e., $\mathbf{s}L \neq 0$. Let us complete the physical basis of this BRST model with an odd anti-ghost field σ of ghost number -1 . Then we introduce the modified BRST operator

$$\mathbf{s}' = \frac{\partial}{\partial\sigma} + \mathbf{s} \quad (1)$$

which is also a nilpotent odd operator of ghost number 1. Let us consider the Lagrangian

$$L' = \mathbf{s}'(\sigma L) = L - \sigma\mathbf{s}L. \quad (2)$$

Since \mathbf{s} is nilpotent, this Lagrangian is \mathbf{s}' -invariant, i.e., $\mathbf{s}'L' = 0$. Moreover, it is readily observed that any \mathbf{s}' -invariant Lagrangian takes the form (2). It follows that the cohomology of the BRST operator (1) is trivial.

Turn now to the gauge theory of principal connections on a principal bundle $P \rightarrow X$ with a structure Lie group G . Let VP and J^1P denote the vertical tangent bundle and the first order jet manifold of $P \rightarrow X$, respectively. Principal connections on $P \rightarrow X$ are represented by sections of the affine bundle

$$C = J^1P/G \rightarrow X, \quad (3)$$

¹E-mail address: bashkird@rol.ru

²E-mail address: sard@grav.phys.msu.su; Web: <http://webcenter.ru/~sardan/>

modelled over the vector bundle $T^*X \otimes V_G P$ [2]. Here, $V_G P = VP/G$ is the fibre bundle in Lie algebras \mathfrak{g} of the group G . Given the basis $\{\varepsilon_r\}$ for \mathfrak{g} , we obtain the local fibre bases $\{e_r\}$ for $V_G P$. There is one-to-one correspondence between the sections $\xi = \xi^r e_r$ of $V_G P \rightarrow X$ and the vector fields on P which are infinitesimal generators of one-parameter groups of vertical automorphisms (i.e., gauge transformations) of P . The connection bundle C (3) is coordinated by (x^μ, a_μ^r) such that, written relative to these coordinates, sections $A = A_\mu^r dx^\mu \otimes e_r$ of $C \rightarrow X$ are the familiar local connection one-forms, regarded as gauge potentials. The configuration space of these gauge potentials is the infinite order jet manifold $J^\infty C$ coordinated by $(x^\mu, a_\mu^r, a_{\Lambda\mu}^r)$, $0 < |\Lambda|$, where $\Lambda = (\lambda_1 \cdots \lambda_k)$, $|\Lambda| = k$, denotes a symmetric multi-index. A k -order Lagrangian of gauge potentials is given by a horizontal density

$$L = \mathcal{L}(x^\mu, a_\mu^r, a_{\Lambda\mu}^r) d^n x, \quad 0 < |\Lambda| \leq k, \quad n = \dim X, \quad (4)$$

of jet order k on $J^\infty C$.

Any section $\xi = \xi^r e_r$ of the Lie algebra bundle $V_G P \rightarrow X$ yields the vector field

$$u_\xi = u_\mu^r \frac{\partial}{\partial a_\mu^r} = (\partial_\mu \xi^r + c_{pq}^r a_\mu^p \xi^q) \frac{\partial}{\partial a_\mu^r} \quad (5)$$

on C where c_{pq}^r are the structure constants of the Lie algebra \mathfrak{g} . This vector field is the infinitesimal generator of a one-parameter group of gauge transformations of C . Its prolongation onto the configuration space $J^\infty C$ reads

$$J^\infty u_\xi = u_\xi + \sum_{0 < |\Lambda|} d_\Lambda u_\mu^r \frac{\partial}{\partial a_{\Lambda\mu}^r}, \quad (6)$$

$$d_\Lambda = d_{\lambda_1} \cdots d_{\lambda_k}, \quad d_\lambda = \partial_\lambda + a_{\lambda\mu}^r \frac{\partial}{\partial a_\mu^r} + a_{\lambda\lambda_1\mu}^r \frac{\partial}{\partial a_{\lambda_1\mu}^r} + a_{\lambda\lambda_1\lambda_2\mu}^r \frac{\partial}{\partial a_{\lambda_1\lambda_2\mu}^r} + \dots \quad (7)$$

A Lagrangian L (4) is called gauge-invariant iff its Lie derivative

$$\mathbf{L}_{J^\infty u_\xi} L = J^\infty u_\xi \rfloor d\mathcal{L} d^n x = (u_\xi + \sum_{0 < |\Lambda|} d_\Lambda u_\mu^r \frac{\partial}{\partial a_{\Lambda\mu}^r}) \mathcal{L} d^n x \quad (8)$$

along the vector field (6) vanishes for all infinitesimal gauge transformations ξ .

Let us extend gauge theory on a principal bundle P to a BRST model, similar to that in [3, 4]. Its physical basis consists of polynomials in fibre coordinates $a_{\Lambda\mu}^r$, $|0 \leq \Lambda|$, on $J^\infty C$ and the odd elements C_Λ^r , $|0 \leq \Lambda|$, of ghost number 1 which make up the local basis for the graded manifold determined by the infinite order jet bundle $J^\infty V_G P$ [5, 6]. The BRST operator in this model is defined as the Lie derivative

$$\mathbf{s} = \mathbf{L}_\vartheta \quad (9)$$

along the graded vector field

$$\begin{aligned}\vartheta &= v_\mu^r \frac{\partial}{\partial a_\mu^r} + \sum_{0<|\Lambda|} d_\Lambda v_\mu^r \frac{\partial}{\partial a_{\Lambda\mu}^r} + v^r \frac{\partial}{\partial C^r} + \sum_{0<|\Lambda|} d_\Lambda v^r \frac{\partial}{\partial C_\Lambda^r}, \\ v_\mu^r &= C_\mu^r + c_{pq}^r a_\mu^p C^q, \quad v^r = -\frac{1}{2} c_{pq}^r C^p C^q,\end{aligned}\tag{10}$$

where d_Λ is the generalization of the total derivative (7) such that

$$d_\lambda = \partial_\lambda + [a_{\lambda\mu}^r \frac{\partial}{\partial a_\mu^r} + a_{\lambda\lambda_1\mu}^r \frac{\partial}{\partial a_{\lambda_1\mu}^r} + \dots] + [C_\lambda^r \frac{\partial}{\partial C^r} + C_{\lambda\lambda_1}^r \frac{\partial}{\partial C_{\lambda_1}^r} + \dots].\tag{11}$$

A direct computation shows that the operator \mathbf{s} (9) acting on horizontal (local in the terminology of [3]) forms

$$\phi = \frac{1}{k!} \phi_{\alpha_1 \dots \alpha_k} dx^{\alpha_1} \wedge \dots \wedge dx^{\alpha_k}$$

is nilpotent, i.e.,

$$\mathbf{L}_\vartheta \mathbf{L}_\vartheta \phi = \vartheta \rfloor d(\vartheta \rfloor d\phi) = [\sum_{0 \leq |\Lambda|} \vartheta(d_\Lambda v_\mu^r) \frac{\partial}{\partial a_{\Lambda\mu}^r} + \sum_{0 \leq |\Lambda|} \vartheta(d_\Lambda v^r) \frac{\partial}{\partial C_\Lambda^r}] \phi = 0.$$

Let L (4) be a (higher-order) Lagrangian of gauge theory. The BRST operator \mathbf{s} (9) acts on L as follows:

$$\mathbf{s}L = (v_\mu^r \frac{\partial}{\partial a_\mu^r} + \sum_{0<|\Lambda|} d_\Lambda v_\mu^r \frac{\partial}{\partial a_{\Lambda\mu}^r}) \mathcal{L} d^n x, \quad v_\mu^r = C_\mu^r + c_{pq}^r a_\mu^p C^q,$$

Comparing this expression with the expressions (5) and (8) shows that a Lagrangian L is gauge-invariant iff it is BRST-invariant. If L need not be gauge-invariant, one can follow the above mentioned procedure of its BRST extension. Let us introduce the anti-ghost field σ and the modified BRST operator \mathbf{s}' (1). Then the Lagrangian

$$L' = L - \sigma \mathbf{s}L = L - \sigma(v_\mu^r \frac{\partial}{\partial a_\mu^r} + \sum_{0<|\Lambda|} d_\Lambda v_\mu^r \frac{\partial}{\partial a_{\Lambda\mu}^r}) \mathcal{L} d^n x\tag{12}$$

is \mathbf{s}' -invariant. If L is gauge-invariant, then $L' = L$. In particular, let L be a first order Lagrangian. Then its BRST extension (12) reads

$$L' = L - \sigma[(C_\mu^r + c_{pq}^r a_\mu^p C^q) \frac{\partial}{\partial a_\mu^r} + (C_{\lambda\mu}^r + c_{pq}^r a_{\lambda\mu}^p C^q + c_{pq}^r a_\mu^p C_\lambda^q) \frac{\partial}{\partial a_{\lambda\mu}^r}] \mathcal{L} d^n x.\tag{13}$$

For example, let us obtain the BRST-invariant extension of the global Chern–Simons Lagrangian. Let the structure group G of a principal bundle P be semi-simple, and let a^G be the Killing form on \mathfrak{g} . The connection bundle $C \rightarrow X$ (3) admits the canonical $V_G P$ -valued 2-form

$$\mathfrak{F} = (da_\mu^r \wedge dx^\mu + \frac{1}{2}c_{pq}^r a_\lambda^p a_\mu^q dx^\lambda \wedge dx^\mu) \otimes e_r.$$

Given a section A of $C \rightarrow X$, the pull-back

$$F_A = A^* \mathfrak{F} = \frac{1}{2} F(A)_{\lambda\mu}^r dx^\lambda \wedge dx^\mu \otimes e_r, \quad F(A)_{\lambda\mu}^r = \partial_\lambda A_\mu^r - \partial_\mu A_\lambda^r + c_{pq}^r A_\lambda^p A_\mu^q,$$

of \mathfrak{F} onto X is the strength form of a gauge potential A . Let

$$P(\mathfrak{F}) = \frac{h}{2} a_{mn}^G \mathfrak{F}^m \wedge \mathfrak{F}^n$$

be the second Chern characteristic form up to a constant multiple. Given a section B of $C \rightarrow X$, the corresponding global Chern–Simons three-form $\mathfrak{S}_3(B)$ on C is defined by the transgression formula

$$P(\mathfrak{F}) - P(F_B) = d\mathfrak{S}_3(B)$$

[7]. Let us consider the gauge model on a three-dimensional base manifold X with the global Chern–Simons Lagrangian

$$\begin{aligned} L_{\text{CS}} = h_0(\mathfrak{S}_3(B)) &= [\frac{1}{2}ha_{mn}^G \varepsilon^{\alpha\beta\gamma} a_\alpha^m (\mathcal{F}_{\beta\gamma}^n - \frac{1}{3}c_{pq}^n a_\beta^p a_\gamma^q) \\ &\quad - \frac{1}{2}ha_{mn}^G \varepsilon^{\alpha\beta\gamma} B_\alpha^m (F(B)_{\beta\gamma}^n - \frac{1}{3}c_{pq}^n B_\beta^p B_\gamma^q) - d_\alpha(ha_{mn}^G \varepsilon^{\alpha\beta\gamma} a_\beta^m B_\gamma^n)] d^3x, \end{aligned}$$

where $h_0(da_\mu^r) = a_{\lambda\mu}^r dx^\lambda$ and

$$\mathcal{F} = h_0 \mathfrak{F} = \frac{1}{2} \mathcal{F}_{\lambda\mu}^r dx^\lambda \wedge dx^\mu \otimes e_r, \quad \mathcal{F}_{\lambda\mu}^r = a_{\lambda\mu}^r - a_{\mu\lambda}^r + c_{pq}^r a_\lambda^p a_\mu^q.$$

This Lagrangian is globally defined, but it is not gauge-invariant because of a background gauge potential B . Its BRST-invariant extension (13) reads

$$L'_{\text{CS}} = L_{\text{CS}} + ha_{mn}^G \sigma d_\alpha (\varepsilon^{\alpha\beta\gamma} (C_\beta^m a_\gamma^n + (C_\beta^m + c_{pq}^m a_\beta^p C^q) B_\gamma^n)) d^3x,$$

where d_α is the total derivative (11).

References

- [1] L.Faddeev and A.Slavnov, *Gauge Fields. Introduction to Quantum Theory* (Addison-Wesley, Redwood City, CA, 1991).
- [2] L.Mangiarotti and G.Sardanashvily, *Connections in Classical and Quantum Field Theory* (World Scientific, Singapore, 2000).
- [3] G.Barnich, F.Brandt and M.Henneaux, Local BRST cohomology in gauge theories, *Phys. Rep.* **338** (2000) 439.
- [4] F.Brandt, Jet coordinates for local BRST cohomology, *Lett. Math. Phys.* **55** (2001) 149.
- [5] G.Sardanashvily, Cohomology of the variational complex in field-antifield BRST theory, *Mod. Phys. Lett. A* **16** (2001) 1531.
- [6] G.Giachetta, L.Mangiarotti and G.Sardanashvily, Lagrangian symmetries and supersymmetries depending on derivatives. Global analysis, *E-print arXiv: math.AG/0305303*.
- [7] G.Giachetta, L.Mangiarotti and G.Sardanashvily, Noether conservation laws in higher-dimensional Chern–Simons theory, *Mod. Phys. Lett. A* **18** (2003) 2645.