Transformações geométricas

1. A figura 1.a apresenta uma imagem original contendo algumas figuras geométricas.

A imagem original da figura 1.a foi transformada geometricamente usando uma transformação linear afim T para dar origem à imagem da figura 1.b. São conhecidas as coordenadas de 3 pares de pontos correspondentes nas duas imagens que se mostram no quadro a seguir. Determine os valores dos parâmetros (a, b, c, d, e, f) da transformação T.

Imagem original	(44,86)	(144,34)	(62,162)	$T = \begin{cases} x' = ax + by + c \end{cases}$
Imagem transformada	(40,57)	(175,64)	(12,147)	y' = dx + ey + f

2. A imagem original foi transformada geometricamente usando a transformação $T = \begin{cases} x' = 0.8x - 0.8y + 170 \\ y' = 0.8x + 0.8y - 110 \end{cases}$

que relaciona as coordenadas (x, y) de um ponto da imagem original (à esquerda) com as coordenadas (x', y') de um ponto da imagem transformada (à direita).

No quadro a seguir representa-se um fragmento da imagem original, com origem no ponto de coordenadas (x,y) = (110,125). Tomando como base os valores de intensidade apresentados, determine a intensidade do ponto da imagem transformada com coordenadas (x',y') = (155, 85) usando:

i. Interpolação para o vizinho mais próximo; ii. Interpolação bilinear:

183	191	191	195	195	197	192	201	196	198
189	185	188	188	192	191	195	193	198	196
181	187	181	186	186	190	187	192	193	202
159	162	176	172	177	170	184	185	191	188
46	59	101	154	164	171	175	183	184	187
47	44	49	79	138	165	173	175	180	179
50	47	49	51	52	101	149	168	171	176
75	72	103	71	40	50	64	116	170	166
69	78	139	93	30	51	42	51	71	126
82	84	88	55	39	42	40	42	44	42

MATLAB

- 3. Escrever rotinas em Matlab para realizar as seguintes sequências de operações.
 - a. Sequência 1
 - Ler a imagem "Lena";
 - Rodar a imagem de 30º no sentido dos ponteiros do relógio; (imrotate...)
 - Reduzir a resolução espacial da imagem para 256x256, mantendo a resolução de brilho; (imresize...)
 - Visualizar a imagem que resultou desta sequência de operações.
 - b. Sequência 2 repetir a sequência anterior, alterando a ordem das operações de rotação e alteração de resolução espacial.
 - c. Compare e comente os resultados obtidos nas duas alíneas anteriores.
 - d. Repita as duas sequências anteriores usando os diferentes métodos de interpolação de brilhos disponíveis (vizinho mais próximo, bilinear e bicúbica).
- 4. A imagem 2 foi obtida por transformação geométrica da imagem 1. A partir das imagens foram determinados 3 pares de pontos correspondentes, A e A', B e B', C e C', com as coordenadas que se indicam de seguida: A = (48,124); B = (113, 207); C = (217, 170) e A' = (55, 43); B' = (77, 199); C' = (239, 231).

Imagem 1 ("cameraman")

Imagem 2 ("cameraman_transf")

Utilize as funções de MATLAB para:

- a. Determinar a expressão da transformação linear afim que permitiu obter a imagem 2 por transformação da imagem 1;
- b. Compensar a deformação geométrica a que foi submetida a segunda imagem, dando origem a uma nova imagem espacialmente alinhada com a imagem original;
- c. Na alínea anterior, testar os diferentes métodos de interpolação de brilhos disponíveis ('nearest', 'bilinear' e 'bicubic').

Sugestão: analisar as funções da IPT maketform, cp2tform, cpselect, imtransform, fitgeotrans, affine2D, imwarp, ...

Transformações geométricas

1. Translação - (tx, ty)

$$\begin{cases} x' = x + t_x \\ y' = y + t_y \end{cases} \begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & t_x \\ 0 & 1 & t_y \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

2. Rotação – de ângulo θ (sentido directo) em torno do ponto (x_c, y_c)

$$\begin{cases} x' = (x - x_c)\cos\theta + (y - y_c)\sin\theta + x_c \\ y' = -(x - x_c)\sin\theta + (y - y_c)\cos\theta + y_c \end{cases} \begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} \cos\theta & \sin\theta & -x_c\cos\theta - y_c\sin\theta + x_c \\ -\sin\theta & \cos\theta & x_c\sin\theta - y_c\cos\theta + y_c \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

3. Escala – fatores r_x e r_y , respetivamente nas direções x e y, considerando como ponto invariante (x_f , y_f)

$$\begin{cases} x' = (x - x_f) r_x + x_f \\ y' = (y - y_f) r_y + y_f \end{cases} \begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} r_x & 0 & x_f (1 - r_x) \\ 0 & r_y & y_f (1 - r_y) \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

Equação da transformação combinada (transformação linear afim)

$$\begin{cases} x' = ax + by + c \\ y' = dx + ey + f \end{cases} \begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} a & b & c \\ d & e & f \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

equações para os parâmetros da transformação linear afim considerando a seguinte sequência de operações: translação \rightarrow rotação \rightarrow escala

$$\begin{aligned} &a = r_x \cos \theta \\ &b = r_x \sin \theta \\ &c = r_x \left(t_x \cos \theta + t_y \sin \theta - x_c \cos \theta - y_c \sin \theta + x_c - x_f \right) + x_f \\ &d = -r_y \sin \theta \\ &e = r_y \cos \theta \\ &f = r_y \left(-t_x \sin \theta + t_y \cos \theta + x_c \sin \theta - y_c \cos \theta + y_c - y_f \right) + y_f \end{aligned}$$