Two comments about the last proof

1: We don't need to make h=1 on $\mathbb{R}^2\setminus (-\alpha,\alpha)^2$, we can simply
extend h to $[-\alpha,\alpha]^2\setminus \mathbb{E}$ and then make h lonstant on $\{t \geq : t > 13\}$ for each $z \in \mathcal{I}([\alpha,\alpha]^2)$.

2. Union of 3 or fewer edges is contractible.

Semu:

Let $a \in C$, let $\varepsilon > 0$. let $f: D(a, 3\varepsilon) \setminus \{a\} \longrightarrow C^{\times}$ be as. Then $\exists l \in \mathbb{Z}$ and $g: D(a, 3\varepsilon) \setminus \{a\} \xrightarrow{cts} C^{\times}$ s.t. g = f on $D(a, 3\varepsilon) \setminus D(a, 2\varepsilon)$ and $g(\varepsilon) = (\varepsilon - a)^{l} \forall \varepsilon \in D(a, \varepsilon) \setminus \{a\}$.

Pf Define $\gamma: 5' \longrightarrow C''$ by $\gamma(\omega) = f(\alpha + 2\epsilon \omega)$.

Then Y is a loop in \mathbb{C}^{\times} . Let $l = \operatorname{ind}(Y)$. Define $\beta \colon 5' \longrightarrow \mathbb{C}^{\times}$ by $\beta(\omega) = (\epsilon \omega)^{\ell}$. Ind $(\beta) = \ell$ as well so $\beta \simeq Y$ in \mathbb{C}^{\times} . Let $H \circ \beta \simeq Y$ in \mathbb{C}^{\times} .

Define g: D(a,3:) (a) ets (" by

$$g(z) = \begin{cases} f(z) & \text{if } z \in D(\alpha, 3\epsilon) \setminus D(\alpha, 2\epsilon) \\ H\left(\frac{z-\alpha}{|z-\alpha|-1} | \frac{|z-\alpha|-\epsilon}{\epsilon}\right) & \text{if } z \in D(\alpha, 2\epsilon) \setminus D(\alpha, \epsilon) \\ (z-\alpha)^{\ell} & \text{if } z \in D(\alpha, 2\epsilon) \setminus \Delta \end{cases}$$

 \square

Notation Let $K \subseteq C^*$ be upt. $R(K,C^*)$ is the Sugroup of $C(K,C^*)$ generated by $\{id_K-\alpha: \alpha\in C\setminus K\}$. This is variously functions on K (poles & Zeroes in compensant of K).

Page 1

Corollary: Set $K \subseteq C$ be cpt. Let $f \in C(K, C^*)$.

Then $\exists h \in R(K, C^*)$ S.L. $\frac{f}{h}$ can be extended to \land continuous map from C into C^* .

Pf We know that 3 a finite set $E \subseteq C \setminus K$ s.t. f can be extended to a continuous map $g: C \setminus E \longrightarrow C^{\times}$.

For each $a \in E$ time is $E_a > 0$ s.t. $D(a, 3E_a) \subseteq C \setminus K \cup E$.

Now $Va \in E$, g is continuous on $D(a, 3E_a) \setminus \{a\}$. Hence there is a family $[la]_{a \in E}$ and a cts f. $\tilde{g}: C \setminus E \longrightarrow C^{\times}$ s.t. $\tilde{g} = \tilde{g}$ on K and $Va \in E$, $Ve \in D(a, E_a) \setminus \{a\}$, $\tilde{g}(z) = (z-a)^{E_a}$.

Petine \tilde{h} on $C \setminus E$ by $\tilde{h}(z) = T$ $(z-a)^{E_a}$.

Then \tilde{h} is a c+s runp from C|E into C* and \forall a \in E, \forall z \in D(a, \in a), $\tilde{g}(z) = \frac{(2-a)^{l_a}}{\prod_{b \in E} (2-b)^{l_b}} = \prod_{b \in E \setminus \{a\}} (Z-b)^{-l_b}$

So \widetilde{gh} can be extended to a ds map from C into C', say u. now let $h = \widetilde{h}|_{K}$. Then $h \in R(K, C^*)$ and also $\forall z \in K$,

 \Box

 $\frac{f(z)}{h(z)} = \frac{\tilde{g}(z)}{\tilde{k}(z)} = u(z), \text{ and so } u \text{ is an extrasion of } \tilde{h} \text{ to}$

a cts map from d'into d'.

Corollary let $K \subseteq C$ be compact. Let $f: K \longrightarrow C^{\times}$ be cts. Then $\exists h \in R(K,C^{\times})$ S.4. $f \simeq h$ in C^{\times}

Pf by prev. corollary, $\exists h \in R(k, C^*)$, $\frac{f}{h}$ can be extended to a cts surp from C' into C' and so since C' is contractible, $\frac{f}{h} \simeq 1$ so $f \simeq h$ in C^* .

Notation Let $K \subseteq C'$ be cot. Then $P(K, C^{\times}) \stackrel{\text{def}}{=} \{Eh] : h \in R(k, C^{\times}) \}$ where EhJ is the homotopy class of h in $C(K, C^{\times})$.

Corollary Let $K \subseteq \mathbb{C}'$ be upt. Then $\pi(K, \mathbb{C}^*) = p(K, \mathbb{C}^*)$. Pf Let $f \in \mathbb{C}(K, \mathbb{C}^*)$. by previous corollary, $\exists h \in \mathbb{R}(K, \mathbb{C}^*)$ s.t $f \simeq h$. Thus $[f] \simeq [h]$

Thus $\pi(k, \ell^*)$ is generated by $\{[id_k-a]: a \in \mathbb{C} \setminus k\}$.

Prop let $K \subseteq C'$ be cpt. Let V be a bounded component of $C \setminus K$. Let $a \in V$, let $l \in \mathbb{Z}$, and let $f = (i l_K - a)^l$. Duprose f can be extended to a cts fing from $K \cup V$ into C^* . Then l = 0.

Pf First let us show that in fact f and be extended to a cts map h from C to C'.

Note that KuV is closed since its complement is the union of the other compenents of Cik.