SN	SPO-441	Course Name: Introduction to Quantum Computing	L	Т	Р	S	С	СН	Course Type
1		Course Coordinator: Dr. Amit Sharma	3	0	0	0	3	3	Open elective
PRE-REQUISITE		Quantum mechanics-I							
CO-REQUISITE		Nil							
ANTI-F	REQUISITE	Nil							

A. COURSE DESCRIPTION

This course explores how quantum mechanics unlocks incredible processing power. Students will learn about qubits, superposition, entanglement, and how they revolutionize problem-solving in various field.

B. COURSE OBJECTIVES:

The objective of the course is to develop a basic understanding of the principles of quantum mechanics relevant to quantum computing, difference between classical and quantum computing, quantum gates and quantum algorithms.

C. COURSE OUTCOMES

CO No.	Statement	Performance Indicator	Student Outcome Indicator (ABET)	Level of Learning (Highest BT Level)	Target Attainment
CO1	Develop a solid understanding of the fundamental principles of quantum mechanics, including bra-ket algebra, superposition, entanglement, and quantum states.	PO1.1, 1.4	Nil	BT2	2.1
CO2	Explore the concept of qubits, quantum gates, and quantum circuits, essential building blocks for quantum computation.	P1-1.1, 1.4, P2- 2.1	Nil	BT2	2.1
CO3	Describe the key quantum algorithms and understand how they provide exponential speedup over classical counterpart.	P1-1.1,1.4, P2- 2.1, P3-3.1, P4- 4.1,4.2, P5-5.3	Nil	BT3	2.1
CO4	Apply quantum error correction techniques to identify and mitigate errors in quantum computation.	P6-6.3, P8-8.1, 8.3, P13-13.5	Nil	BT4	2.1
CO5	Evaluate the challenges and solutions in quantum error correction and fault-tolerant quantum computing.	P6-6.1, 6-2, 6.3, P7-7.5	Nil	BT5	2.1
CO6	Discuss the potential applications of quantum computing in various fields, including potential solutions to problems in simulation, optimization, and cryptography.	P7-7.1, 7.2, 7.3, 7.4, 7.7	Nil	ВТ6	2.1

D. SYLLABUS

Unit-1	Introduction to Quantum Mechanics	Contact Hours:15											
Chapter 1.1	Mathematical foundations of Quantum Mechanics, Linear Algebra, Dirac's bra-ket												
	algebra, Operators: Unitary and Hermitian operators, State of a quantum mechanical												
	system, and its time evolution, Quantum Superposition and E	ntanglement, Concept of											
	Qubits, Measurement and Probability in Quantum Mechanics												
Unit-2	Quantum gate and Quantum Algorithms	Contact Hours:15											
Chapter 2.1	Quantum Gates and Circuits: Introduction to Quantum Gates,	Basic Quantum Circuits,											
	Quantum Gates for Qubit Manipulation, Multi-Qubit Systems and Entanglement Gates,												
	Quantum Circuits and Computational Basis												
Chapter 2.2	Quantum Parallelism and Quantum Speedup, Deutsch's and S	Simon's Algorithm, Shor's											
	Algorithm for Integer Factorization, Grover's Search Algo	rithm, Quantum Phase											

	Estimation	
Unit-3	Quantum Error Correction	Contact Hours:15
Chapter 3.1	Quantum Error Correction: Basics of Quantum Error Correction Code, Fault-Tolerant Quantum Computing, Quantum Error Gates, Topological Quantum Error Correction,	

Self-study topics for Advance learners: Universal set of Quantum gates, Super dense coding.

E. PROJECT BASED LEARNING COMPONENTS

- 1. Simulate a quantum coin flip using single qubits to demonstrate the principle of superposition.
- 2. Illustrate the concept of entanglement using a simple quantum circuit.
- 3. Implement a random number generator using quantum bits and observe the quantum nature of randomness.
- 3. Create a visual representation of entangled qubits and explore their correlated states.
- 5. Develop a tool for building and visualizing simple quantum circuits using gates.

F. TEXT BOOKS/REFERENCE BOOKS

TEXT BOOKS

- **1**M.A. Nielsen, and I.L. Chuang, Quantum Computing and Quantum Information, Cambridge University press (2000).
- 2J. Preskill, Quantum Information and Computation, Cambridge University Press (2018).
- 3 A. Ekert, and R. Jozsa, Qauntum Computation and Information, Oxford University Press (2004).

G. ASSESSMENT PATTERN

The performance of students is evaluated as follows:

	The	eory
Components	Continuous Internal Assessment (CAE)	Semester End Examination (SEE)
Marks	40	60
Total Marks	1	00

Internal Evaluation Component

S.	Direct Evaluation	Weightage of actual	Frequenc	Final Weighta ge in	BT Leve	CO Mappi	Mappi ng with	Mappi ng	Remark s (Graded/
No	Instruments	conduct	y of Task	Internal Assess ment	ls	ng	SIS (ABET)	with Pls	Non- Graded)
1	Assignment	10 marks for each assignment	One per unit	10	ВТ3	CO5			Graded
2	Exam	20 marks for one MST	2 per semester	20	ВТ3	CO1-4			Graded
3	Quiz/Test	4 marks for each quiz	2 per unit	4	BT1- 2	CO1, CO2			Graded
4	Surprise test	12 marks for each test	One per unit	4	BT3- 4	CO1-3			Graded
5	Homework	NA	One per lecture topic (of 2 questions)	NA	BT1- 4	CO4			Non- Graded
6	Case study	NA	NA	NA					Non- Graded
7	Discussion Forum	NA	One per unit	NA		CO5			Non- Graded
8	Presentation	NA	NA	NA					Non- Graded
9	Attendance	NA	NA	2					Graded

H. CO-PO Mapping

Cou rse Out com e	P 0 1	P O 2	P O 3	P O 4	P O 5	P O 6	P O 7	P O 8	P O 9	P O 10	P O 11	P O 12	P O 13	P O 14	P O 15	P O 16	P O 17	PS 01	PS O2	PS O3
CO1	3	3	3	2	3	1	1		1	1	1	2	1					1	1	1
CO2	3	3	3	2	3	1	1		1	1	1	2	1					1	1	1
CO3	3	3	3	2	3	1	1		1	1	1	2	1					1	1	1
CO4	3	3	3	2	3	1	1		1	1	1	2	1					1	1	1
CO5	3	3	3	2	3	1	1		1	1	1	2	1					1	1	1
CO6	3	3	3	2	3	1	1		1	1	1	2	1					1	1	1

CO PO correlation matrix of each subject to be mapped with High correlation (3); Medium correlation (2); Low correlation (1)