MA2001 LINEAR ALGEBRA

MATRICES

Goh Jun Le / Wang Fei

gohjunle@nus.edu.sg / matwf@nus.edu.sg

Department of Mathematics Office: S17-06-25 / S17-06-16 Tel: 6601-1355 / 6516-2937

Introduction to Matrices	2
Definition of Matrix	
Special Matrices	
Matrix Operations	20
Identical Matrices	
Addition, Subtraction & Scalar Multiplication	
Properties	
Matrix Multiplication	
Properties	
Powers of Square Matrices	
Matrix Representation	
Representation of Linear System	
Transpose	
Inverses of Square Matrices	55
Definition	
Properties	61
Elementary Matrices	67
Elementary Operations	
Elementary Matrices	
Connection to Matrix Multiplication	
Invertibility	
Main Theorem for Invertible Matrices	
Find Inverse	
Column Operations	99
Determinant	107
Determinant of 2×2 Matrix	
Determinant of 3×3 Matrix	111

Elementary Row Operation	120
Determinant	126
Properties	128
Cofactor Expansion	136
Finding Determinant	140
Adjoint Matrix	144
Cramer's Rule	148

Definition of Matrix

• **Definition.** A matrix (plural matrices) is a rectangular array of numbers.

$$\circ \begin{pmatrix}
a_{11} & a_{12} & \cdots & a_{1n} \\
a_{21} & a_{22} & \cdots & a_{2n} \\
\vdots & \vdots & & \vdots \\
a_{m1} & a_{m2} & \cdots & a_{mn}
\end{pmatrix}$$

- *m* is the number of rows in the matrix.
- *n* is the number of **columns** in the matrix.
- The size of the matrix is given by $m \times n$.
- The (i, j)-entry is the entry in ith row & jth column.
- In the given matrix, the (i, j)-entry is a_{ij} .
- **Remark.** Some books use $[\cdots]$ instead of (\cdots) .
 - \circ $\;$ Notations $|\cdots|$ and $\|\cdots\|$ are reserved to use later.

3 / 150

Examples

- 1. $\begin{pmatrix} 1 & 2 \\ 3 & 4 \\ \hline 0 & -1 \end{pmatrix}$ is a 3×2 matrix.
 - \circ The (1,2)-entry is 2 and the (3,1)-entry is 0.
- $2. \quad \begin{pmatrix} \sqrt{2} & 3.1 & -2 \\ 3 & \frac{1}{2} & 0 \\ 0 & \pi & 0 \end{pmatrix} \text{ is a } 3 \times 3 \text{ matrix}.$
- 3. $(2 \quad 1 \quad 0)$ is a 1×3 matrix.
- 4. $\begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix}$ is a 3×1 matrix
- 5. (4) is a 1×1 matrix.
 - $\circ \quad \text{A } 1 \times 1 \text{ matrix is usually treated as a real number in computation. For instance, } (4) = 4.$

Notation of Matrices

- ullet A matrix is usually denoted by capital letters $oldsymbol{A}, oldsymbol{B}, oldsymbol{C}, \ldots$
 - $\circ \quad m \times n \text{ matrix } \pmb{A} = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{pmatrix}.$
 - a_{ij} is the (i, j)-entry of \boldsymbol{A} .
 - ullet It is denoted by $oxed{A=(a_{ij})_{m imes n}}$

Sometimes, if the size of A is known (or not important)

• simple notation: $oldsymbol{A}=(a_{ij})$

5 / 150

Examples

- Write down the following matrices explicitly.
 - 1. $A = (a_{ij})_{2\times 3}$, where $a_{ij} = i + j$.

$$\mathbf{A} = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \end{pmatrix} = \begin{pmatrix} 1+1 & 1+2 & 1+3 \\ 2+1 & 2+2 & 2+3 \end{pmatrix}$$
$$= \begin{pmatrix} 2 & 3 & 4 \\ 3 & 4 & 5 \end{pmatrix}$$

2.
$$m{B}=(b_{ij})_{3 imes 2},$$
 where $b_{ij}=\left\{egin{array}{cc} 1 & \mbox{if } i+j \mbox{ is even} \\ -1 & \mbox{if } i+j \mbox{ is odd} \end{array}
ight.$

$$\boldsymbol{B} = \begin{pmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \\ b_{31} & b_{32} \end{pmatrix} = \begin{pmatrix} 1 & -1 \\ -1 & 1 \\ 1 & -1 \end{pmatrix}$$

- A row matrix (row vector) is a matrix with only one row.
 - \circ $(2 \ 1 \ 0)$ is a row matrix (row vector).
- A column matrix (column vector) is a matrix with only one column.
 - $\circ \quad \begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix} \text{ is a column matrix (column vector)}.$
- A square matrix is a matrix with the same number of rows and columns.
 - \circ An $n \times n$ matrix is called a square matrix of order n.
 - $\circ \begin{pmatrix} 8 & 1 & 6 \\ 3 & 5 & 7 \\ 4 & 9 & 2 \end{pmatrix}$ is a square matrix of order 3.

7 / 150

Special Matrices

- Let $A = (a_{ij})$ be a square matrix of order n.
 - \circ The **diagonal** of A is the sequence of entries

•
$$a_{11}, a_{22}, \ldots, a_{nn}$$

$$\circ \quad A = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{pmatrix}$$

- \circ $a_{ii}, i = 1, \dots, n$, are the diagonal entries.
- $\circ \quad a_{ij}, i \neq j$, are called the **non-diagonal entries**.
 - $\bullet \quad a_{ij} \text{ is } \left\{ \begin{array}{ll} \text{a diagonal entry} & \text{if } i=j, \\ \text{a non-diagonal entry} & \text{if } i\neq j. \end{array} \right.$

- Let $A = (a_{ij})$ be a square matrix of order n.
 - \circ The diagonal of A is the sequence of entries
 - $\bullet \quad \boxed{a_{11}, a_{22}, \dots, a_{nn}}$

$$\circ \quad \boldsymbol{A} = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{pmatrix}.$$

- Remark. In some textbook,
 - The diagonal is also called the principle diagonal or major diagonal.
 - o The anti-diagonal or minor diagonal refers to the diagonal from the right top to the left bottom.
 - $a_{1n}, a_{2,n-1}, \ldots, a_{n1}$.

9 / 150

Special Matrices

• A square matrix is called a diagonal matrix if all its non-diagonal entries are zero.

 \circ $\mathbf{A} = (a_{ij})_{n \times n}$ is diagonal $\Leftrightarrow a_{ij} = 0$ for all $i \neq j$.

Example.

 $\circ \quad \begin{pmatrix} \mathbf{0} & 0 \\ 0 & \mathbf{1} \end{pmatrix}$ is a diagonal matrix.

$$\circ \quad \begin{pmatrix} a & 0 & 0 \\ 0 & b & 0 \\ 0 & 0 & c \end{pmatrix}, a, b, c \text{ are (possibly zero) numbers.}$$

• A diagonal matrix is called a scalar matrix if all its diagonal entries are the same.

$$\circ \quad \boldsymbol{A} = \begin{pmatrix} \boldsymbol{c} & 0 & \cdots & 0 \\ 0 & \boldsymbol{c} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \boldsymbol{c} \end{pmatrix}, \text{ where } \boldsymbol{c} \text{ is a constant.}$$

$$\circ \quad \boldsymbol{A} = (a_{ij})_{n \times n} \text{ is scalar} \Leftrightarrow a_{ij} = \left\{ \begin{array}{ll} c & \text{if } i = j, \\ 0 & \text{if } i \neq j. \end{array} \right.$$

Example.

$$\circ \quad \left(\begin{array}{c|c} 2001 & 0 \\ \hline 0 & 2001 \end{array}\right) \text{ is a scalar matrix.}$$

$$\circ \quad \begin{pmatrix} c & 0 & 0 \\ 0 & c & 0 \\ 0 & 0 & c \end{pmatrix}, \text{ where } c \text{ is a (possibly zero) number.}$$

11 / 150

Special Matrices

• A scalar matrix is called an identity matrix if all its diagonal entries are 1.

7

- Denote the identity matrix of order n (size $n \times n$) by I_n .
 - If no confusion in order, write I instead of I_n .

$$\circ \quad \mathbf{A} = \begin{pmatrix} \mathbf{1} & 0 & \cdots & 0 \\ 0 & \mathbf{1} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \mathbf{1} \end{pmatrix}.$$

$$\circ \quad \mathbf{A} = (a_{ij})_{n \times n} \text{ is identity } \Leftrightarrow a_{ij} = \begin{cases} 1 & \text{if } i = j, \\ 0 & \text{if } i \neq j. \end{cases}$$

• Note: There is exactly one identity matrix in order n.

$$\circ \quad \boldsymbol{I}_1 = (1) = 1; \quad \boldsymbol{I}_2 = \left(\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array} \right).$$

- A matrix with all entries equal to zero is a zero matrix.
 - Denote the zero matrix of size $m \times n$ by $\mathbf{0}_{m \times n}$.
 - If no confusion in size, write $\mathbf{0}$ instead of $\mathbf{0}_{m \times n}$.

$$\circ \quad \mathbf{A} = \left(\begin{array}{ccccc} 0 & 0 & 0 & 0 & \cdots & 0 \\ 0 & 0 & 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & & \vdots \\ 0 & 0 & 0 & 0 & \cdots & 0 \end{array} \right).$$

 \circ $\mathbf{A} = (a_{ij})_{m \times n}$ is zero $\Leftrightarrow a_{ij} = 0$ for all i, j.

Note: There is exactly one zero matrix in size $m \times n$.

$$\circ$$
 $\mathbf{0}_{1\times 1} = (0) = 0; \quad \mathbf{0}_{1\times 3} = (0 \quad 0 \quad 0).$

13 / 150

Special Matrices

• A square matrix is called symmetric if it is symmetric with respect to the diagonal.

- \circ $A = (a_{ij})_{n \times n}$ is symmetric $\Leftrightarrow a_{ij} = a_{ji}$ for all i, j.
 - (There is no restriction to the diagonal entries.)
- Examples.

$$\circ (2); \begin{pmatrix} a & b & c \\ b & d & e \\ c & e & f \end{pmatrix}; \begin{pmatrix} a & b & c & d \\ b & e & f & g \\ c & f & h & i \\ d & g & i & j \end{pmatrix}$$

• A square matrix is called upper triangular if all the entries below the diagonal are zero.

$$\circ \quad \boldsymbol{A} = \begin{pmatrix} a_{11} & a_{12} & a_{13} & a_{14} & \cdots & a_{1n} \\ 0 & a_{22} & a_{23} & a_{24} & \cdots & a_{2n} \\ 0 & 0 & a_{33} & a_{34} & \cdots & a_{3n} \\ 0 & 0 & 0 & a_{44} & \cdots & a_{4n} \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & 0 & \cdots & a_{nn} \end{pmatrix}$$

- \circ $A = (a_{ij})_{n \times n}$ is upper triangular $\Leftrightarrow a_{ij} = 0$ if i > j.
 - (There is no restriction to the diagonal entries.)
- Examples.

$$\circ (2); \begin{pmatrix} a & b & c \\ 0 & d & e \\ 0 & 0 & f \end{pmatrix}; \begin{pmatrix} a & b & c & d \\ 0 & e & f & g \\ 0 & 0 & h & i \\ 0 & 0 & 0 & j \end{pmatrix}$$

15 / 150

Special Matrices

• A square matrix is called lower triangular if all the entries above the diagonal are zero.

$$\circ \quad \mathbf{A} = \begin{pmatrix} a_{11} & 0 & 0 & 0 & \cdots & 0 \\ a_{21} & a_{22} & 0 & 0 & \cdots & 0 \\ a_{31} & a_{32} & a_{33} & 0 & \cdots & 0 \\ a_{41} & a_{42} & a_{43} & a_{44} & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & a_{n3} & a_{n4} & \cdots & a_{nn} \end{pmatrix}.$$

- \circ $\mathbf{A} = (a_{ij})_{n \times n}$ is lower triangular $\Leftrightarrow a_{ij} = 0$ if i < j.
 - (There is no restriction to the diagonal entries.)
- Examples.

$$\circ (2); \begin{pmatrix} a & 0 & 0 \\ b & d & 0 \\ c & e & f \end{pmatrix}; \begin{pmatrix} a & 0 & 0 & 0 \\ b & e & 0 & 0 \\ c & f & h & 0 \\ d & g & i & j \end{pmatrix}$$

- Both upper triangular matrices and lower triangular matrices are called triangular matrices.
 - (A matrix is both upper and lower triangular
 - ⇔ it is diagonal.)
- More Examples.
 - o Square matrices:

$$\bullet \quad (4) \begin{pmatrix} 0 & 4 \\ 1 & 2 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 \\ -1 & 3 & 2 \\ 0 & 0 & 2 \end{pmatrix} \begin{pmatrix} 2 & 1 & 6 & 2 \\ 0 & 3 & 9 & -1 \\ 1 & 0 & 0 & 0 \\ -2 & 3 & 0 & 1 \end{pmatrix}$$

- o Diagonal matrices:
 - $\bullet \quad \left(\begin{array}{ccc} 4 \end{array}\right) \left(\begin{array}{cccc} 1 & 0 & 0 \\ 0 & 2 \end{array}\right) \left(\begin{array}{cccc} 1 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 2 \end{array}\right) \left(\begin{array}{ccccc} 2 & 0 & 0 & 0 \\ 0 & 3 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{array}\right)$

17 / 150

Special Matrices

- More Examples.
 - Scalar matrices:

$$\bullet \quad \left(\begin{array}{ccc} 4 \end{array}\right) \left(\begin{array}{cccc} 2 & 0 \\ 0 & 2 \end{array}\right) \left(\begin{array}{ccccc} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array}\right) \left(\begin{array}{ccccc} 3 & 0 & 0 & 0 \\ 0 & 3 & 0 & 0 \\ 0 & 0 & 3 & 0 \\ 0 & 0 & 0 & 3 \end{array}\right)$$

- o Identity matrices:
- o Zero matrices:

- More Examples.
 - o Symmetric matrices:

$$\bullet \quad \left(\begin{array}{cccc} 4 \end{array}\right) \left(\begin{array}{cccc} 0 & 4 \\ 4 & 2 \end{array}\right) \left(\begin{array}{ccccc} 1 & -1 & 0 \\ -1 & 3 & 2 \\ 0 & 2 & 2 \end{array}\right) \left(\begin{array}{ccccc} 2 & 1 & 6 & -2 \\ 1 & 3 & 0 & -1 \\ 6 & 0 & 0 & 0 \\ -2 & -1 & 0 & 1 \end{array}\right)$$

- o Upper triangular matrices:
 - $\bullet \quad \ \ \, \left(\begin{array}{ccc} \mathbf{4} \\ \end{array}\right) \left(\begin{array}{ccc} \mathbf{0} & \mathbf{4} \\ \mathbf{0} & \mathbf{2} \\ \end{array}\right) \left(\begin{array}{cccc} \mathbf{1} & -1 & 0 \\ \mathbf{0} & \mathbf{3} & 2 \\ \mathbf{0} & \mathbf{0} & \mathbf{2} \\ \end{array}\right)$
- Lower triangular matrix:
 - $\bullet \quad \begin{pmatrix}
 2 & 0 & 0 & 0 \\
 1 & 3 & 0 & 0 \\
 6 & 0 & 0 & 0 \\
 -2 & -1 & 0 & 1
 \end{pmatrix}$

19 / 150

Matrix Operations

20 / 150

Identical Matrices

- A matrix is completely determined by its size and entries.
- Definition. Two matrices are equal if
 - o they have the same size (same number of rows, same number of columns), and
 - o all the corresponding entries are the same.

Let
$$A = (a_{ij})_{m \times n}$$
 and $B = (b_{ij})_{p \times q}$. Then

$$\circ \quad \pmb{A} = \pmb{B} \Leftrightarrow \boxed{m = p \And n = q \And a_{ij} = b_{ij} \text{ for all } i,j}$$

• Examples.

$$\circ \quad \mathbf{0}_{2\times 2} = \left(\begin{array}{cc} 0 & 0 \\ 0 & 0 \end{array}\right); \quad \mathbf{0}_{2\times 3} = \left(\begin{array}{cc} 0 & 0 & 0 \\ 0 & 0 & 0 \end{array}\right).$$

• $\mathbf{0}_{2\times 2}$ and $\mathbf{0}_{2\times 3}$ have different size $\Rightarrow \mathbf{0}_{2\times 2} \neq \mathbf{0}_{2\times 3}$.

Identical Matrices

- A matrix is completely determined by its size and entries.
- Definition. Two matrices are equal if
 - o they have the same size (same number of rows, same number of columns), and
 - o all the corresponding entries are the same.

Let
$$\boldsymbol{A}=(a_{ij})_{m\times n}$$
 and $\boldsymbol{B}=(b_{ij})_{p\times q}.$ Then

$$\circ \quad \pmb{A} = \pmb{B} \Leftrightarrow \boxed{m = p \And n = q \And a_{ij} = b_{ij} \text{ for all } i,j}$$

Examples.

$$\circ \quad \boldsymbol{A} = \left(\begin{array}{cc} x & y \\ z & w \end{array} \right); \quad \boldsymbol{B} = \left(\begin{array}{cc} 1 & -1 \\ 2 & 4 \end{array} \right).$$

•
$$\mathbf{A} = \mathbf{B} \Leftrightarrow \begin{cases} x = 1 \\ y = -1 \\ z = 2 \\ w = 4 \end{cases}$$

22 / 150

Addition, Subtraction & Scalar Multiplication

- Let $A = (a_{ij})_{m \times n}$ and $B = (b_{ij})_{m \times n}$ be matrices.
 - \circ Addition: $A + B = (a_{ij} + b_{ij})_{m \times n}$.
 - Subtraction: $A B = (a_{ij} b_{ij})_{m \times n}$.
- Example.

$$\bullet \quad \mathsf{Let}\,\pmb{A} = \left(\begin{array}{ccc} 2 & 3 & 4 \\ 4 & 5 & 6 \end{array}\right), \pmb{B} = \left(\begin{array}{ccc} 1 & 2 & 3 \\ -1 & -1 & -1 \end{array}\right).$$

$$\pmb{A} + \pmb{B} = \left(\begin{array}{ccc} 2+1 & 3+2 & 4+3 \\ 4+(-1) & 5+(-1) & 6+(-1) \end{array}\right)$$

$$= \left(\begin{array}{ccc} 3 & 5 & 7 \\ 3 & 4 & 5 \end{array}\right)$$

$$\pmb{A} - \pmb{B} = \left(\begin{array}{ccc} 2-1 & 3-2 & 4-3 \\ 4-(-1) & 5-(-1) & 6-(-1) \end{array}\right)$$

$$= \left(\begin{array}{cccc} 1 & 1 & 1 \\ 5 & 6 & 7 \end{array}\right)$$

Addition, Subtraction & Scalar Multiplication

- Let $A = (a_{ij})_{m \times n}$ be a matrix, and c a constant.
 - Scalar multiplication: $cA = (ca_{ij})_{m \times n}$.
- Example.

$$\circ$$
 Let $oldsymbol{A}=\left(egin{array}{ccc} 2 & 3 & 4 \\ 4 & 5 & 6 \end{array}
ight)$. Then

$$4\mathbf{A} = \begin{pmatrix} 4 \cdot 2 & 4 \cdot 3 & 4 \cdot 4 \\ 4 \cdot 4 & 4 \cdot 5 & 4 \cdot 6 \end{pmatrix} = \begin{pmatrix} 8 & 12 & 16 \\ 16 & 20 & 24 \end{pmatrix}$$

- Remarks.
 - \circ (-1)A is usually denoted by -A.
 - It can be proved that A B = A + (-B).
 - In the discussion we usually only consider addition and scalar multiplication.

24 / 150

Properties

- Theorem. Let A, B, C be matrices of the same size.
 - o A B = A + (-B).
 - o Commutative Law for Matrix Addition:
 - A + B = B + A.
 - o Associative Law for Matrix Addition:
 - (A+B)+C=A+(B+C).
 - \circ Let 0 be the zero matrix of the same size as A.
 - 0 + A = A; A A = 0; 0A = 0; c0 = 0.
 - o Distributive Law for Scalar Multiplication over Addition:
 - $c(\mathbf{A} + \mathbf{B}) = c\mathbf{A} + c\mathbf{B}$.
 - $\bullet \quad (c+d)\mathbf{A} = c\mathbf{A} + d\mathbf{A}.$
 - $\circ \quad c(d\mathbf{A}) = (cd)\mathbf{A}, \quad 1\mathbf{A} = \mathbf{A}.$

- ullet Let A and B be matrices of the same size.
 - \circ Prove that A B = A + (-B).

Proof. Suppose that $A = (a_{ij})_{m \times n}$ and $B = (b_{ij})_{m \times n}$.

- 1. Verify that LHS and RHS have the same size.
 - \circ **A** is $m \times n \& \mathbf{B}$ is $m \times n \Rightarrow \mathbf{A} \mathbf{B}$ is $m \times n$.
 - $\circ \quad \boldsymbol{B} \text{ is } m \times n \Rightarrow -\boldsymbol{B} \text{ is } m \times n.$
 - A, -B are $m \times n \Rightarrow A + (-B)$ is $m \times n$.
- 2. Verify: "(i, j)-entry of LHS" = "(i, j)-entry of RHS".

$$\begin{split} (i,j)\text{-entry of }(\boldsymbol{A}-\boldsymbol{B}) &= a_{ij} - b_{ij} \\ &= a_{ij} + (-b_{ij}) \\ &= a_{ij} + (i,j)\text{-entry of }(-\boldsymbol{B}) \\ &= (i,j)\text{-entry of }[\boldsymbol{A} + (-\boldsymbol{B})] \end{split}$$

26 / 150

Properties

- Let A, B, C be matrices of the same size.
 - $\circ \quad \text{Prove that } \boldsymbol{A} + (\boldsymbol{B} + \boldsymbol{C}) = (\boldsymbol{A} + \boldsymbol{B}) + \boldsymbol{C}.$

Proof. Let
$$A = (a_{ij})_{m \times n}$$
, $B = (b_{ij})_{m \times n}$, $C = (c_{ij})_{m \times n}$.

- 1. It is clear that LHS & RHS are both $m \times n$. (Why?)
- 2. Verify: "(i, j)-entry of LHS" = "(i, j)-entry of RHS".

$$\begin{split} (i,j)\text{-entry of } \boldsymbol{A} + (\boldsymbol{B} + \boldsymbol{C}) &= a_{ij} + [(i,j)\text{-entry of } \boldsymbol{B} + \boldsymbol{C}] \\ &= a_{ij} + (b_{ij} + c_{ij}) \\ &= (a_{ij} + b_{ij}) + c_{ij} \\ &= [(i,j)\text{-entry of } \boldsymbol{A} + \boldsymbol{B}] + c_{ij} \\ &= (i,j)\text{-entry of } (\boldsymbol{A} + \boldsymbol{B}) + \boldsymbol{C}. \end{split}$$

- A + (B + C) = (A + B) + C.
- Exercise: Prove the remaining properties. (Question 2.18)

Matrix Multiplication

• Consider the following linear systems:

```
 \begin{cases} a_{11}y_1 + a_{12}y_2 = z_1 \\ a_{21}y_1 + a_{22}y_2 = z_2 \\ a_{31}y_1 + a_{32}y_2 = z_3 \end{cases} \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \\ a_{31} & a_{32} \end{pmatrix} 
 \circ \begin{cases} b_{11}x_1 + b_{12}x_2 + b_{13}x_3 = y_1 \\ b_{21}x_1 + b_{22}x_2 + b_{23}x_3 = y_2 \end{cases} \begin{pmatrix} b_{11} & b_{12} & b_{13} \\ b_{21} & b_{22} & b_{23} \end{pmatrix} 
 \begin{cases} (a_{11}b_{11} + a_{12}b_{21})x_1 + (a_{11}b_{12} + a_{12}b_{22})x_2 + (a_{11}b_{13} + a_{12}b_{23})x_3 = z_1 \\ (a_{21}b_{11} + a_{22}b_{21})x_1 + (a_{21}b_{12} + a_{22}b_{22})x_2 + (a_{21}b_{13} + a_{22}b_{23})x_3 = z_2 \\ (a_{31}b_{11} + a_{32}b_{21})x_1 + (a_{31}b_{12} + a_{32}b_{22})x_2 + (a_{31}b_{13} + a_{32}b_{23})x_3 = z_3 \end{cases}
```

Can we use the coefficient matrices of the first two linear systems to obtain the coefficient matrix of their composite?

```
\circ \begin{pmatrix} a_{11}b_{11} + a_{12}b_{21} & a_{11}b_{12} + a_{12}b_{22} & a_{11}b_{13} + a_{12}b_{23} \\ a_{21}b_{11} + a_{22}b_{21} & a_{21}b_{12} + a_{12}b_{22} & a_{21}b_{13} + a_{22}b_{23} \\ a_{31}b_{11} + a_{32}b_{21} & a_{31}b_{12} + a_{32}b_{22} & a_{31}b_{13} + a_{32}b_{23} \end{pmatrix}
```

28 / 150

Matrix Multiplication

• Define matrix multiplication so that the product of

```
 \circ \quad \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \\ \hline {\color{red} a_{31}} & {\color{red} a_{32}} \end{pmatrix} \text{ and } \begin{pmatrix} b_{11} & b_{12} & b_{13} \\ b_{21} & b_{22} & b_{23} \end{pmatrix} \text{ is given by }   \circ \quad \begin{pmatrix} a_{11}b_{11} + a_{12}b_{21} & a_{11}b_{12} + a_{12}b_{22} & a_{11}b_{13} + a_{12}b_{23} \\ a_{21}b_{11} + a_{22}b_{21} & a_{21}b_{12} + a_{12}b_{22} & a_{21}b_{13} + a_{22}b_{23} \\ a_{31}b_{11} + a_{32}b_{21} & a_{31}b_{12} + a_{32}b_{22} & a_{31}b_{13} + a_{32}b_{23} \end{pmatrix}
```

The (3, 2)-entry of the product is $a_{31}b_{12} + a_{32}b_{22}$.

- \circ a_{31} and a_{32} are from the 3rd row of the first matrix.
- \circ b_{12} and b_{22} are from the **2nd column** of the second.

In order to get the (i, j)-entry of the product matrix:

- 1. Find the *i*th row of the first matrix;
- 2. Find the *j*th column of the second matrix;
- 3. Multiply the corresponding entries.
- 4. Add the products together.

Matrix Multiplication

- **Definition.** Let $A = (a_{ij})_{m \times p}$ and $B = (b_{ij})_{p \times n}$.
 - AB is the $m \times n$ matrix such that its (i, j)-entry is

•
$$a_{i1}b_{1j} + a_{i2}b_{2j} + \dots + a_{ip}b_{pj} = \sum_{k=1}^{p} a_{ik}b_{kj}$$

Note: No. of columns of A = the no. of rows of B.

- 2. jth column of B: $\left(\begin{array}{c} b_{1j} \\ b_{2j} \\ \vdots \\ b_{pj} \end{array}\right)$
- 3. Multiply componentwise and add the products.

30 / 150

Examples

$$\bullet \quad \left(\begin{array}{ccc} 1 & 2 & 3 \\ 4 & 5 & 6 \end{array}\right) \left(\begin{array}{ccc} 1 & 1 \\ 2 & 3 \\ -1 & -2 \end{array}\right) = \left(\begin{array}{ccc} 2 & 1 \\ 8 & 7 \end{array}\right)$$

$$\circ \quad \left(\begin{array}{cc} 1 \cdot 1 + 2 \cdot 2 + 3 \cdot (-1) & 1 \cdot 1 + 2 \cdot 3 + 3 \cdot (-2) \\ 4 \cdot 1 + 5 \cdot 2 + 6 \cdot (-1) & 4 \cdot 1 + 5 \cdot 3 + 6 \cdot (-2) \end{array} \right)$$

$$\bullet \quad \begin{pmatrix} 1 & 1 \\ 2 & 3 \\ -1 & -2 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{pmatrix} = \begin{pmatrix} 5 & 7 & 9 \\ 14 & 19 & 24 \\ -9 & -12 & -15 \end{pmatrix}$$

$$\circ \quad \left(\begin{array}{cccc} 1 \cdot 1 + 1 \cdot 4 & 1 \cdot 2 + 1 \cdot 5 & 1 \cdot 3 + 1 \cdot 6 \\ 2 \cdot 1 + 3 \cdot 4 & 2 \cdot 2 + 3 \cdot 5 & 2 \cdot 3 + 3 \cdot 6 \\ (-1) \cdot 1 + (-2) \cdot 4 & (-1) \cdot 2 + (-2) \cdot 5 & (-1) \cdot 3 + (-2) \cdot 6 \end{array} \right)$$

- Remark. Matrix multiplication is NOT commutative.
 - \circ AB is the pre-multiplication of A to B (to B by A).
 - $\circ \ BA$ is the **post-multiplication** of A to B (to B by A).

- Theorem.
 - \circ Let A, B, C be $m \times p, p \times q, q \times n$ matrices, respectively.
 - Associative Law: A(BC) = (AB)C.
 - Let \boldsymbol{A} be $m \times p$ matrix, $\boldsymbol{B}_1, \boldsymbol{B}_2$ be $p \times n$ matrices.
 - Distributive Law: $A(B_1 + B_2) = AB_1 + AB_2$.
 - Let A_1, A_2 be $m \times p$ matrices, B be $p \times n$ matrix.
 - Distributive Law: $(A_1 + A_2)B = A_1B + A_2B$.
 - Let \boldsymbol{A} be $m \times p$ and \boldsymbol{B} be $p \times n$. For constant c,
 - c(AB) = (cA)B = A(cB).
 - $\circ \quad \text{Let \pmb{A} be an $m \times n$ matrix.}$
 - $\bullet \quad A\mathbf{0}_{n\times p} = \mathbf{0}_{m\times p}; \quad \mathbf{0}_{p\times m}A = \mathbf{0}_{p\times n}.$
 - $AI_n = A$; $I_m A = A$.

32 / 150

Properties

- Let ${m A}$ be an $m \times p$ matrix and ${m B}_1, {m B}_2$ be $p \times n$ matrices.
 - \circ Prove that $A(B_1+B_2)=AB_1+AB_2$.

Proof. Verify that LHS and RHS have the same size.

 $\circ \quad {m B}_1 \ {
m and} \ {m B}_2 \ {
m are} \ p imes n \Rightarrow {m B}_1 + {m B}_2 \ {
m is} \ p imes n.$

$$\Rightarrow A(B_1 + B_2)$$
 is $m \times n$.

 $\circ \quad {m A}{m B}_1 \ {
m is} \ m imes n, \ {
m and} \ {m A}{m B}_2 \ {
m is} \ m imes n$

$$\Rightarrow AB_1 + AB_2$$
 is $m \times n$.

Let
$$A = (a_{ij})_{m \times p}$$
, $B_1 = (b_{ij})_{p \times n}$ and $B_2 = (b'_{ij})_{p \times n}$.

- We shall verify that the following are equal:
 - "the (i,j)-entry of $oldsymbol{A}(oldsymbol{B}_1+oldsymbol{B}_2)$ " and
 - "the (i, j)-entry of $AB_1 + AB_2$ ",

for all i = 1, ..., m, j = 1, ..., n.

• Let ${m A}$ be an m imes p matrix and ${m B}_1, {m B}_2$ be p imes n matrices.

$$\begin{array}{ll} \circ & \text{Prove that } \pmb{A}(\pmb{B}_1 + \pmb{B}_2) = \pmb{A}\pmb{B}_1 + \pmb{A}\pmb{B}_2. \\ \\ \textbf{Proof.} & \text{Let } \pmb{A} = (a_{ij}), \pmb{B}_1 = (b_{ij}), \pmb{B}_2 = (b'_{ij}). \\ \circ & \pmb{B}_1 + \pmb{B}_2 = (b_{ij} + b'_{ij}). & \text{Let } b''_{ij} = b_{ij} + b'_{ij}. \\ & (i,j)\text{-entry of } \pmb{A}(\pmb{B}_1 + \pmb{B}_2) \\ & = a_{i1}b''_{1j} + a_{i2}b''_{2j} + \cdots + a_{ip}b''_{pj} \\ & = a_{i1}(b_{1j} + b'_{1j}) + a_{i2}(b_{2j} + b'_{2j}) + \cdots + a_{ip}(b_{pj} + b'_{pj}) \\ & = (a_{i1}b_{1j} + a_{i1}b'_{1j}) + (a_{i2}b_{2j} + a_{i2}b'_{2j}) + \cdots + (a_{ip}b_{pj} + a_{ip}b'_{pj}) \\ & = (a_{i1}b_{1j} + a_{i2}b_{2j} + \cdots + a_{ip}b_{pj}) + (a_{i1}b'_{1j} + a_{i2}b'_{2j} + \cdots + a_{ip}b'_{pj}) \end{array}$$

=(i,j)-entry of $oldsymbol{A}oldsymbol{B}_1+(i,j)$ -entry of $oldsymbol{A}oldsymbol{B}_2$

=(i,j)-entry of $(\boldsymbol{A}\boldsymbol{B}_1+\boldsymbol{A}\boldsymbol{B}_2)$.

 $A(B_1 + B_2) = AB_1 + AB_2.$

34 / 150

Powers of Square Matrices

- Let A be an $m \times n$ matrix.
 - \circ AA is well-defined $\Leftrightarrow m = n \Leftrightarrow A$ is square.

Definition. Let A be a square matrix of order n. For nonnegative integers k, the powers of A are defined as

$$\circ \quad \pmb{A}^k = \left\{ \begin{array}{ll} \pmb{I}_n & \text{if } k = 0, \\ \pmb{\underbrace{AA \cdots A}}_{k \text{ times}} & \text{if } k \geq 1. \end{array} \right.$$

• **Example.** Let $A = \begin{pmatrix} 1 & 2 \\ 1 & 3 \end{pmatrix}$. Then

$$\circ \quad \mathbf{A}^2 = \mathbf{A}\mathbf{A} = \begin{pmatrix} 1 & 2 \\ 1 & 3 \end{pmatrix} \begin{pmatrix} 1 & 2 \\ 1 & 3 \end{pmatrix} = \begin{pmatrix} 3 & 8 \\ 4 & 11 \end{pmatrix}.$$

$$A^{2} = AA = \begin{pmatrix} 1 & 2 \\ 1 & 3 \end{pmatrix} \begin{pmatrix} 1 & 2 \\ 1 & 3 \end{pmatrix} = \begin{pmatrix} 3 & 8 \\ 4 & 11 \end{pmatrix}.$$

$$A^{3} = AAA = \begin{pmatrix} 1 & 2 \\ 1 & 3 \end{pmatrix} \begin{pmatrix} 1 & 2 \\ 1 & 3 \end{pmatrix} \begin{pmatrix} 1 & 2 \\ 1 & 3 \end{pmatrix} = \begin{pmatrix} 11 & 30 \\ 15 & 41 \end{pmatrix}.$$

Let A be a square matrix, and m, n nonnegative integers.

$$\circ A^m A^n = A^{m+n}, (A^m)^n = A^{mn}.$$

- Recall that matrix multiplication is NOT commutative.
 - \circ In general, $(\boldsymbol{A}\boldsymbol{B})^n \neq \boldsymbol{A}^n\boldsymbol{B}^n$ for $n=2,3,\ldots$
 - $\circ \quad \text{For example, let } \boldsymbol{A} = \begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix} \text{ and } \boldsymbol{B} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}.$
 - $(AB)^2 = (AB)(AB) = ABAB = \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix}$. $A^2B^2 = (AA)(BB) = AABB = \begin{pmatrix} 1 & 0 \\ 0 & 4 \end{pmatrix}$.
- ullet Exercise. Let A,B be square matrices of the same size.
 - \circ Suppose that AB = BA. Prove that
 - $(AB)^n = A^nB^n$ for all nonnegative integers n.

36 / 150

Matrix Representation

• Let
$$A = (a_{ij})_{m \times n} = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{pmatrix}$$
.

- \circ Let a_i denote the *i*th row of A, $i = 1, \ldots, m$.

 - $a_1 = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \end{pmatrix}$ $a_2 = \begin{pmatrix} a_{21} & a_{22} & \cdots & a_{2n} \end{pmatrix}$

 - $\bullet \quad \boldsymbol{a}_m = \begin{pmatrix} a_{m1} & a_{m2} & \cdots & a_{mn} \end{pmatrix}$

Then each a_i is a $1 \times n$ matrix (row vector).

$$ullet \quad oldsymbol{A} = egin{pmatrix} oldsymbol{a}_1 \ oldsymbol{a}_2 \ dots \ oldsymbol{a}_m \end{pmatrix}$$

Matrix Representation

$$\bullet \quad \text{Let } \pmb{A} = (a_{ij})_{m \times n} = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{pmatrix}.$$

 \circ Let \boldsymbol{b}_j denote the jth column of $\boldsymbol{A}, j=1,\ldots,n$.

•
$$\boldsymbol{b}_1 = \begin{pmatrix} a_{11} \\ a_{21} \\ \vdots \\ a_{m1} \end{pmatrix}$$
, $\boldsymbol{b}_2 = \begin{pmatrix} a_{12} \\ a_{22} \\ \vdots \\ a_{m2} \end{pmatrix}$, ..., $\boldsymbol{b}_n = \begin{pmatrix} a_{1n} \\ a_{2n} \\ \vdots \\ a_{mn} \end{pmatrix}$

Then each \boldsymbol{b}_i is an $m \times 1$ matrix (column vector).

$$\bullet \quad \boldsymbol{A} = (\boldsymbol{b}_1 \quad \boldsymbol{b}_2 \quad \cdots \quad \boldsymbol{b}_n).$$

38 / 150

Matrix Representation

• Let
$$m{a}=egin{pmatrix} a_1 & a_2 & \cdots & a_n \end{pmatrix}$$
 and $m{b}=egin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{pmatrix}$.

- \circ Then ab is a 1×1 matrix, i.e., a real number.
 - $ab = a_1b_1 + a_2b_2 + \cdots + a_nb_n$.

Note: \boldsymbol{ba} is an $n \times n$ matrix.

o (i, j)-entry is the *i*th entry of b times the *j*th entry of a.

•
$$ba = \begin{pmatrix} b_1a_1 & b_1a_2 & \cdots & b_1a_n \\ b_2a_1 & b_2a_2 & \cdots & b_2a_n \\ \vdots & \vdots & \ddots & \vdots \\ b_na_1 & b_na_2 & \cdots & b_na_n \end{pmatrix}$$
.

Matrix Representation

- Suppose $A = (a_{ij})_{m \times p}$.
 - \circ Let $oldsymbol{a}_i = egin{pmatrix} a_{i1} & a_{i2} & \cdots & a_{ip} \end{pmatrix}$ be the ith row of $oldsymbol{A}$.

Suppose $\boldsymbol{B}=(b_{ij})_{p\times n}$.

$$\circ$$
 Let $m{b}_j = egin{pmatrix} b_{1j} \\ b_{2j} \\ dots \\ b_{nj} \end{pmatrix}$ be the j th column of $m{B}$.

$$egin{aligned} m{a}_im{b}_j &= a_{i1}b_{1j} + a_{i2}b_{2j} + \cdots + a_{ip}b_{pj} \ &= (i,j) ext{-entry of } m{AB}. \end{aligned}$$

$$egin{aligned} \circ & AB = egin{pmatrix} a_1b_1 & a_1b_2 & \cdots & a_1b_n \ a_2b_1 & a_2b_2 & \cdots & a_2b_n \ dots & dots & dots \ a_mb_1 & a_mb_2 & \cdots & a_mb_n \end{pmatrix}. \end{aligned}$$

40 / 150

Matrix Representation

- The (i,j)-entry of ${m A}{m B}$ is
 - \circ The *i*th row of A times the *j*th column of B.

$$egin{aligned} m{a}_im{B} &= m{a}_i egin{pmatrix} m{b}_1 & m{b}_2 & \cdots & m{b}_n \end{pmatrix} \ &= egin{pmatrix} m{a}_im{b}_1 & m{a}_im{b}_2 & \cdots & m{a}_im{b}_n \end{pmatrix} \ &= i ext{th row of }m{AB} \end{aligned}$$

$$egin{aligned} oldsymbol{AB} &= egin{pmatrix} oldsymbol{a}_1 \ oldsymbol{a}_2 \ dots \ oldsymbol{a}_m \end{pmatrix} oldsymbol{B} &= egin{pmatrix} oldsymbol{a}_1 oldsymbol{B} \ oldsymbol{a}_2 oldsymbol{B} \ dots \ oldsymbol{a}_m oldsymbol{B} \end{pmatrix}. \end{aligned}$$

Matrix Representation

- The (i,j)-entry of ${m A}{m B}$ is
 - \circ The *i*th row of A times the *j*th column of B.

$$egin{aligned} m{A}m{b}_j &= egin{pmatrix} m{a}_1 \ m{a}_2 \ dots \ m{a}_m \end{pmatrix} m{b}_j &= egin{pmatrix} m{a}_1m{b}_j \ m{a}_2m{b}_j \ dots \ m{a}_mm{b}_j \end{pmatrix} = j ext{th column of } m{A}m{B}. \ m{A}m{B} &= m{A} egin{pmatrix} m{b}_1 & m{b}_2 & \cdots & m{b}_n \end{pmatrix} \ &= egin{pmatrix} m{A}m{b}_1 & m{A}m{b}_2 & \cdots & m{A}m{b}_n \end{pmatrix} \end{aligned}$$

- Remark. Matrices can be multiplied in blocks (provided that the sizes are matched).
 - o Reference: Question 2.23.

42 / 150

Example

$$\bullet \quad \text{Let } \boldsymbol{A} = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{pmatrix} \text{ and } \boldsymbol{B} = \begin{pmatrix} 1 & 1 \\ 2 & 3 \\ -1 & -2 \end{pmatrix}.$$

 \circ Let $a_1 = \begin{pmatrix} 1 & 2 & 3 \end{pmatrix}$, $a_2 = \begin{pmatrix} 4 & 5 & 6 \end{pmatrix}$. Then

$$AB = \begin{pmatrix} a_1 \\ a_2 \end{pmatrix} B = \begin{pmatrix} a_1 B \\ a_2 B \end{pmatrix}$$

$$= \begin{pmatrix} (1 & 2 & 3) \begin{pmatrix} 1 & 1 \\ 2 & 3 \\ -1 & -2 \\ 1 & 1 \\ 2 & 3 \\ -1 & -2 \end{pmatrix} \end{pmatrix}$$

$$= \begin{pmatrix} (2 & 1) \\ (8 & 7) \end{pmatrix} = \begin{pmatrix} 2 & 1 \\ 8 & 7 \end{pmatrix}$$

Example

$$\bullet \quad \operatorname{Let} \boldsymbol{A} = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{pmatrix} \text{ and } \boldsymbol{B} = \begin{pmatrix} 1 & 1 \\ 2 & 3 \\ -1 & -2 \end{pmatrix}.$$

$$\circ$$
 Let $m{b}_1=egin{pmatrix}1\2\-1\end{pmatrix}$ and $m{b}_2=egin{pmatrix}1\3\-2\end{pmatrix}$. Then

$$AB = A \begin{pmatrix} b_1 & b_2 \end{pmatrix} = \begin{pmatrix} Ab_1 & Ab_2 \end{pmatrix}$$

$$= \begin{pmatrix} \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{pmatrix} \begin{pmatrix} 1 \\ 2 \\ -1 \end{pmatrix} & \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{pmatrix} \begin{pmatrix} 1 \\ 3 \\ -2 \end{pmatrix} \end{pmatrix}$$

$$= \begin{pmatrix} \begin{pmatrix} 2 \\ 8 \end{pmatrix} & \begin{pmatrix} 1 \\ 7 \end{pmatrix} \end{pmatrix} = \begin{pmatrix} 2 & 1 \\ 8 & 7 \end{pmatrix}$$

44 / 150

Example

• Let
$$\mathbf{A} = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{pmatrix}$$
 and $\mathbf{B} = \begin{pmatrix} 1 & 1 \\ 2 & 3 \\ -1 & -2 \end{pmatrix}$.

$$AB = \begin{pmatrix} a_1b_1 & a_1b_2 \\ a_2b_1 & a_2b_2 \end{pmatrix}$$

$$= \begin{pmatrix} (1 & 2 & 3) \begin{pmatrix} 1 \\ 2 \\ -1 \end{pmatrix} & (1 & 2 & 3) \begin{pmatrix} 1 \\ 3 \\ -2 \end{pmatrix} \\ (4 & 5 & 6) \begin{pmatrix} 1 \\ 2 \\ -1 \end{pmatrix} & (4 & 5 & 7) \begin{pmatrix} 1 \\ 3 \\ -2 \end{pmatrix} \end{pmatrix}$$

$$= \begin{pmatrix} 2 & 1 \\ 8 & 7 \end{pmatrix}$$

Representation of Linear System

• Linear System of m equations in n variables x_1, \ldots, x_n :

46 / 150

Representation of Linear System

• Linear System of m equations in n variables x_1, \ldots, x_n .

$$\circ \begin{cases}
a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1 \\
a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2 \\
\vdots & \vdots \\
a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m
\end{cases}$$

$$\left(\begin{array}{cccc} a_{m1}x_1 + a_{m2}x_2 + \cdots + a_{mn}x_n = b_m \\ & \\ \circ & A = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \\ \end{array}\right), \text{ coefficient matrix}.$$

•
$$\boldsymbol{x} = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$$
, variable matrix.

•
$$b = \begin{pmatrix} v_1 \\ \vdots \\ v_m \end{pmatrix}$$
, constant matrix. Then $Ax = b$

Representation of Linear System

- Let $m{A}=(a_{ij})_{m imes n}, \, m{x}=egin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}, \, m{b}=egin{pmatrix} b_1 \\ \vdots \\ b_m \end{pmatrix}$
 - Then Ax = b is the linear system of
 - m linear equations in n variables x_1, \ldots, x_n ,
 - a_{ij} are the coefficients, and b_i are the constants.
 - $\circ \quad \text{Let } \boldsymbol{u} = \begin{pmatrix} u_1 \\ \vdots \\ u_n \end{pmatrix}.$
 - $x_1 = u_1, \dots, x_n = u_n$ is a solution to the system
 - $\Leftrightarrow Au = b$
 - $\Leftrightarrow u$ is a solution to Ax = b.

48 / 150

Representation of Linear System

- ullet Problem. Suppose that a linear system has more than one solutions. Then it has infinitely many solutions. Proof. Let the system be represented by Ax=b.
 - \circ Suppose that it has two solutions $u_1 \neq u_2$.
 - $Au_1 = b$ and $Au_2 = b$.

Consider $c_1 \mathbf{u}_1 + c_2 \mathbf{u}_2$, where c_1, c_2 are constants.

• $A(c_1u_1 + c_2u_2) = c_1Au_1 + c_2Au_2 = c_1b + c_2b = (c_1 + c_2)b$.

In particular,

• If $c_1 + c_2 = 1$, then $A(c_1u_1 + c_2u_2) = 1b = b$.

Therefore, Ax = b has infinitely many solutions:

• $x = c_1 u + c_2 u_2$, where $c_1 + c_2 = 1$.

Representation of Linear System

$$\bullet \quad \text{Consider} \left\{ \begin{array}{ll} 4x+5y+6z=5 \\ x-y=2 \\ y-z=3. \end{array} \right.$$

$$\begin{pmatrix}
5 \\
2 \\
3
\end{pmatrix} = \begin{pmatrix}
4 & 5 & 6 \\
1 & -1 & 0 \\
0 & 1 & -1
\end{pmatrix} \begin{pmatrix}
x \\
y \\
z
\end{pmatrix}$$

$$= \begin{pmatrix}
4x + 5y + 6z \\
x - y \\
y - z
\end{pmatrix}$$

$$= \begin{pmatrix}
4x \\
x \\
0
\end{pmatrix} + \begin{pmatrix}
5y \\
-y \\
y
\end{pmatrix} + \begin{pmatrix}
6z \\
0 \\
-z
\end{pmatrix}$$

$$= x \begin{pmatrix}
4 \\
1 \\
0
\end{pmatrix} + y \begin{pmatrix}
5 \\
-1 \\
1
\end{pmatrix} + z \begin{pmatrix}
6 \\
0 \\
-1
\end{pmatrix}$$

50 / 150

Representation of Linear System

•
$$A = \begin{pmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & & \vdots \\ a_{m1} & \cdots & a_{mn} \end{pmatrix}, x = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}, b = \begin{pmatrix} b_1 \\ \vdots \\ b_m \end{pmatrix}.$$

$$\begin{pmatrix} b_1 \\ \vdots \\ b_n \end{pmatrix} = \begin{pmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & & \vdots \\ a_{m1} & \cdots & a_{mn} \end{pmatrix} \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} = \begin{pmatrix} a_{11}x_1 + \cdots + a_{1n}x_n \\ \vdots \\ a_{m1}x_1 + \cdots + a_{mn}x_n \end{pmatrix}$$

$$= x_1 \begin{pmatrix} a_{11} \\ \vdots \\ a_{m1} \end{pmatrix} + \cdots + x_n \begin{pmatrix} a_{1n} \\ \vdots \\ a_{mn} \end{pmatrix}$$

 \circ Let a_j denote the jth column of A. Then

•
$$b = Ax = x_1a_1 + \cdots + x_na_n = \sum_{j=1}^n x_ja_j$$
.

Transpose

- $\bullet \quad \text{Let } {\pmb A} = (a_{ij})_{m \times n} \text{ be a matrix.}$
 - \circ The **transpose** of $m{A}$ is the n imes m matrix $m{A}^{
 m T}$ (or $m{A}^{
 m t}$)
 - whose (i, j)-entry is a_{ji} .
- **Example.** Let $A = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 5 & 6 & 7 & 8 \end{pmatrix}$.

$$\circ \quad \pmb{A}^{\rm T} = \begin{pmatrix} 1 & 5 \\ 2 & 6 \\ 3 & 7 \\ 4 & 8 \end{pmatrix} \text{ and } (\pmb{A}^{\rm T})^{\rm T} = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 5 & 6 & 7 & 8 \end{pmatrix}.$$

- · Remarks.
 - \circ The ith row of $oldsymbol{A}^{\mathrm{T}}$ is the ith column of $oldsymbol{A}.$
 - $\circ \quad \text{The } j \text{th column of } \boldsymbol{A}^T \text{ is the } j \text{th row of } \boldsymbol{A}.$

52 / 150

Properties

- Theorem. Let \boldsymbol{A} be an $m \times n$ matrix.
 - $\circ \quad (\boldsymbol{A}^{\mathrm{T}})^{\mathrm{T}} = \boldsymbol{A}.$
 - \circ A is symmetric $\Leftrightarrow A = A^{\mathrm{T}}$.
 - \circ Let c be a scalar. Then $(c \boldsymbol{A})^{\mathrm{T}} = c \boldsymbol{A}^{\mathrm{T}}$.
 - \circ Let $m{B}$ be m imes n. Then $(m{A} + m{B})^{\mathrm{T}} = m{A}^{\mathrm{T}} + m{B}^{\mathrm{T}}$.
 - $\circ \quad \text{Let } \boldsymbol{B} \text{ be } n \times p. \text{ Then } (\boldsymbol{A}\boldsymbol{B})^{\mathrm{T}} = \boldsymbol{B}^{\mathrm{T}}\boldsymbol{A}^{\mathrm{T}}.$
- Proof. We only prove the last statement.
 - Left-hand side:
 - AB is $m \times p \Rightarrow (AB)^{\mathrm{T}}$ is $p \times m$.
 - o Right-hand side:
 - $\boldsymbol{B}^{\mathrm{T}}$ is $p \times n$ & $\boldsymbol{A}^{\mathrm{T}}$ is $n \times m \Rightarrow \boldsymbol{B}^{\mathrm{T}} \boldsymbol{A}^{\mathrm{T}}$ is $p \times m$.

So $({m A}{m B})^{
m T}$ and ${m B}^{
m T}{m A}^{
m T}$ have the same size.

• **Proof.** (Continued) Let $A = (a_{ij})_{m \times n}$ and $B = (b_{ij})_{n \times p}$.

$$(i,j)$$
-entry of $({m A}{m B})^{
m T}=(j,i)$ -entry of ${m A}{m B}$
$$=a_{j1}b_{1i}+a_{j2}b_{2i}+\cdots+a_{jn}b_{ni}.$$

- $\circ \quad \text{Let } \boldsymbol{A}^{\mathrm{T}} = (a'_{ij})_{n \times m} \text{ and } \boldsymbol{B}^{\mathrm{T}} = (b'_{ij})_{p \times n}.$
 - $a'_{ij} = a_{ji}$ and $b'_{ij} = b_{ji}$.

$$(i,j)$$
-entry of $m{B}^{
m T}m{A}^{
m T} = b'_{i1}a'_{1j} + b'_{i2}a'_{2j} + \cdots + b'_{in}a'_{nj}$
$$= b_{1i}a_{j1} + b_{2i}a_{j2} + \cdots + b_{ni}a_{jn}$$

$$= a_{j1}b_{1i} + a_{j2}b_{2i} + \cdots + a_{jn}b_{ni}.$$

$$\therefore (AB)^{\mathrm{T}} = B^{\mathrm{T}}A^{\mathrm{T}}.$$

Note: In general, $(\boldsymbol{A}\boldsymbol{B})^{\mathrm{T}} \neq \boldsymbol{A}^{\mathrm{T}}\boldsymbol{B}^{\mathrm{T}}.$

54 / 150

Inverses of Square Matrices

55 / 150

Inverses of Numbers

• Let a and b be real numbers.

$$a + x = b \Rightarrow x = b - a = b + (-a).$$

The number -a is the additive inverse of a.

$$ax = b \Rightarrow x = b/a = a^{-1}b$$
, provided that $a \neq 0$.

The number a^{-1} is the multiplicative inverse of $a \neq 0$.

• Let A and B be matrices of the same size.

$$\circ A + X = B \Rightarrow X = B - A = B + (-A).$$

So -A is the additive inverse of A.

• Let \boldsymbol{A} be an $m \times n$ matrix and \boldsymbol{B} be an $m \times p$ matrix.

$$\circ$$
 $AX = B \Rightarrow X = \cdots$

It is expected to have a matrix A^{-1} so that $X = A^{-1}B$.

Inverses of Square Matrices

- **Definition.** Let **A** be a square matrix of order n.
 - \circ If there exists a square matrix $oldsymbol{B}$ of order n so that
 - $oxed{AB=I_n}$ and $oxed{BA=I_n}$

then A is called **invertible**, and B is an **inverse** of A.

 \circ If A is not invertible, A is called singular.

Note: Non-square matrix is neither invertible nor singular.

Example. Suppose that A is invertible with inverse B.

$$AX = C \Rightarrow B(AX) = BC$$

 $\Rightarrow (BA)X = BC$
 $\Rightarrow IX = BC$
 $\Rightarrow X = BC$.

(A and C must have the same number of rows.)

57 / 150

Examples

• Let
$$A = \begin{pmatrix} 2 & -5 \\ -1 & 3 \end{pmatrix}$$
 and $B = \begin{pmatrix} 3 & 5 \\ 1 & 2 \end{pmatrix}$.

$$\circ \quad \boldsymbol{B}\boldsymbol{A} = \begin{pmatrix} 3 & 5 \\ 1 & 2 \end{pmatrix} \begin{pmatrix} 2 & -5 \\ -1 & 3 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = \boldsymbol{I}.$$

Therefore, A is invertible and B is an inverse of A.

- Solve the equation $\begin{pmatrix} 2 & -5 \\ -1 & 3 \end{pmatrix} X = \begin{pmatrix} 4 \\ 0 \end{pmatrix}$.
 - Pre-multiply the equation by $\begin{pmatrix} 3 & 5 \\ 1 & 2 \end{pmatrix}$.

$$\begin{pmatrix} 12\\4 \end{pmatrix} = \begin{pmatrix} 3 & 5\\1 & 2 \end{pmatrix} \begin{pmatrix} 4\\0 \end{pmatrix} = \begin{pmatrix} 3 & 5\\1 & 2 \end{pmatrix} \begin{pmatrix} 2 & -5\\-1 & 3 \end{pmatrix} \boldsymbol{X} = \boldsymbol{I}\boldsymbol{X} = \boldsymbol{X}.$$

Examples

- Prove that ${m A}=\begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$ is invertible, and find its inverse.
 - \circ Let $m{B} = egin{pmatrix} a & b \\ c & d \end{pmatrix}$ such that $m{A}m{B} = m{B}m{A} = m{I}.$

$$\bullet \quad \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = \mathbf{A}\mathbf{B} = \begin{pmatrix} a+2c & b+2d \\ 3a+4c & 3b+4d \end{pmatrix}.$$

Solve a linear system in a, b, c, d:

•
$$\begin{cases} 1 = a + 2c \\ 0 = b + 2d \\ 0 = 3a + 4c \\ 1 = 3b + 4d \end{cases} \dots \Rightarrow \dots \begin{cases} a = -2 \\ b = 1 \\ c = 3/2 \\ d = -1/2. \end{cases}$$

Moreover, one must verify that $BA = \cdots = I$.

 $\circ \quad \textbf{$A$ is invertible with an inverse } \begin{pmatrix} -2 & 1 \\ 3/2 & -1/2 \end{pmatrix}\!.$

59 / 150

Examples

- Prove that ${m A}=\begin{pmatrix} 1 & 0 \\ 1 & 0 \end{pmatrix}$ is a singular matrix.
 - \circ Assume that $oldsymbol{A}$ is invertible (prove by contradiction).
 - Then A has an inverse B: AB = BA = I.

Let
$$oldsymbol{B} = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$
. Then

$$\bullet \quad \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} a & b \\ a & b \end{pmatrix}.$$

$$a_1 = a, 0 = b, 0 = a, 1 = b,$$
 a contradiction!

So such $oldsymbol{B}$ does not exist.

 \circ Therefore, A is not invertible, i.e., it is singular.

Remark: One also gets a contradiction by checking BA = I.

- Theorem. Let A be a square matrix.
 - \circ If A is invertible, then its inverse is unique.
- **Proof.** Suppose that B_1 and B_2 are both inverses of A.

$$\circ \quad AB_1=B_1A=I \text{ and } AB_2=B_2A=I.$$

We need to verify that $\boldsymbol{B}_1 = \boldsymbol{B}_2$:

$$\circ \ \ B_1 = B_1 I = B_1 (AB_2) = (B_1 A) B_2 = I B_2 = B_2.$$

- **Notation.** The unique inverse of A, if exists, is denoted by A^{-1} .
 - $\circ AA^{-1} = A^{-1}A = I.$
- ullet Suppose that A is an invertible matrix. Then
 - \circ If AX = B (A and B have the same number of rows),
 - then $A^{-1}B = A^{-1}(AX) = (A^{-1}A)X = IX = X$.

61 / 150

Properties

• Cancellation Law. Let A be an invertible matrix.

$$\circ \quad \boldsymbol{A}\boldsymbol{B}_1 = \boldsymbol{A}\boldsymbol{B}_2 \Rightarrow \boldsymbol{B}_1 = \boldsymbol{B}_2.$$

$$\circ \quad C_1 A = C_2 A \Rightarrow C_1 = C_2.$$

- ullet **Proof.** Suppose that $AB_1=AB_2$. Then
 - $\circ \ \ B_1$ is the solution to $AX=AB_2.$

•
$$B_1 = A^{-1}(AB_2) = (A^{-1}A)B_2 = IB_2 = B_2$$
.

The other statement is left as an exercise.

- ullet Remark. The cancellation law fails if A is singular.
 - \circ Recall that $oldsymbol{A} = egin{pmatrix} 1 & 0 \\ 1 & 0 \end{pmatrix}$ is singular.

•
$$A \begin{pmatrix} 2 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 2 & 0 \\ 2 & 0 \end{pmatrix} & A \begin{pmatrix} 2 & 0 \\ 1 & 3 \end{pmatrix} = \begin{pmatrix} 2 & 0 \\ 2 & 0 \end{pmatrix}$$

Example

• Let $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$. Find the condition when A is invertible.

Let
$$m{B} = egin{pmatrix} x & y \\ z & w \end{pmatrix}$$
 . Suppose that $m{A} m{B} = m{B} m{A} = m{I}$.

$$\circ \quad \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = \mathbf{AB} = \begin{pmatrix} ax + bz & ay + bw \\ cx + dz & cy + dw \end{pmatrix}.$$

Solve a linear system in x, y, z, w:

$$\circ \left\{ \begin{array}{ll} ax & +bz & =1 \\ ay & +bw =0 \\ cx & +dz & =0 \\ cy & +dw =1 \end{array} \right. \Rightarrow \left\{ \begin{array}{ll} ax +bz =1 \\ cx +dz =0 \\ \end{array} \right.$$

- They are inconsistent $\Leftrightarrow a:c=b:d\Leftrightarrow ad=bc$
- They are consistent $\Leftrightarrow ad \neq bc$.

63 / 150

Example

- Let $m{A} = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$. Find the condition when $m{A}$ is invertible.
 - If ad = bc, then A is singular. Suppose that $ad \neq bc$.

$$\bullet \quad \left\{ \begin{array}{l} ax + bz = 1 \\ cx + dz = 0 \end{array} \right. \Rightarrow x = \frac{d}{ad - bc}, z = \frac{-c}{ad - bc}. \\ \bullet \quad \left\{ \begin{array}{l} ay + bw = 0 \\ cy + dw = 1 \end{array} \right. \Rightarrow y = \frac{-b}{ad - bc}, w = \frac{a}{ad - bc}. \end{array}$$

•
$$\begin{cases} ay + bw = 0 \\ cy + dw = 1 \end{cases} \Rightarrow y = \frac{-b}{ad - bc}, w = \frac{a}{ad - bc}.$$

Let
$$\mathbf{B} = \begin{pmatrix} x & y \\ z & w \end{pmatrix} = \frac{1}{ad - bc} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$$
.

ullet One verifies that AB=I and BA=I.

Conclusion: **A** is invertible $\Leftrightarrow ad - bc \neq 0$.

• If A is invertible, then $A^{-1} = \frac{1}{ad - bc} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$.

- ullet Theorem. Let A,B be invertible matrices of same size.
 - Let $c \neq 0$. cA is invertible, and $(cA)^{-1} = \frac{1}{c}A^{-1}$.
 - \circ \mathbf{A}^{T} is invertible, and $(\mathbf{A}^{\mathrm{T}})^{-1} = (\mathbf{A}^{-1})^{\mathrm{T}}$.
 - $\circ \quad A^{-1}$ is invertible, and $(A^{-1})^{-1} = A$.
 - \circ AB is invertible, and $(AB)^{-1} = B^{-1}A^{-1}$.
- **Proof.** To prove that A is invertible with $A^{-1} = M$,
 - \circ Verify that AM = MA = I.

To prove that $\boldsymbol{A}^{\mathrm{T}}$ is invertible with inverse $(\boldsymbol{A}^{-1})^{\mathrm{T}}$.

- $\circ \quad \text{We shall verify that } \boldsymbol{A}^{\mathrm{T}}(\boldsymbol{A}^{-1})^{\mathrm{T}} = (\boldsymbol{A}^{-1})^{\mathrm{T}}\boldsymbol{A}^{\mathrm{T}} = \boldsymbol{I}.$
 - $A^{T}(A^{-1})^{T} = (A^{-1}A)^{T} = I^{T} = I$.
 - $(A^{-1})^{\mathrm{T}} A^{\mathrm{T}} = (AA^{-1})^{\mathrm{T}} = I^{\mathrm{T}} = I.$

Other properties are left as exercises.

65 / 150

Properties

- Let A_1, A_2, \ldots, A_k be invertible matrices of same size.
 - $\circ (A_1 A_2 \cdots A_k)^{-1} = A_k^{-1} \cdots A_2^{-1} A_1^{-1}.$

In particular, $(\underbrace{AA\cdots A}_{k \text{ times}})^{-1} = \underbrace{A^{-1}\cdots A^{-1}A^{-1}}_{k \text{ times}}.$

- $(\mathbf{A}^k)^{-1} = (\mathbf{A}^{-1})^k.$
- ullet **Definition.** Let A be an invertible matrix.
 - \circ For any positive integer k, $\mathbf{A}^{-k} = (\mathbf{A}^{-1})^k$
- Exercise. Let *A* be an invertible matrix.
 - $\circ \quad \text{For any integers } m \text{ and } n,$
 - $A^{m+n} = A^m A^n$ and $(A^m)^n = A^{mn}$.
- **Note.** If A is singular, then A^{-1} is undefined.

Elementary Operations

- Recall the elementary row operations of matrices.
 - o Multiply a row by a nonzero constant.
 - o Interchange two rows.
 - o Add a constant multiple of a row to another row.
- What is the resulting matrix by applying an elementary row operation to the identity matrix *I*?

$$\circ \quad \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \xrightarrow{cR_3} \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & c & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

- \circ cR_i , where $c \neq 0$:
 - Replace the ith diagonal entry by c:
 - $a_{ii} = 1 \mapsto c$.

68 / 150

Elementary Operations

- Recall the elementary row operations of matrices.
 - o Multiply a row by a nonzero constant.
 - o Interchange two rows.
 - o Add a constant multiple of a row to another row.
- What is the resulting matrix by applying an elementary row operation to the identity matrix *I*?

$$\circ \quad \begin{pmatrix} \mathbf{1} & 0 & 0 & 0 \\ 0 & \mathbf{1} & 0 & 0 \\ 0 & 0 & \mathbf{1} & 0 \\ 0 & 0 & 0 & \mathbf{1} \end{pmatrix} \xrightarrow{R_2 \leftrightarrow R_4} \begin{pmatrix} \mathbf{1} & 0 & 0 & 0 \\ 0 & 0 & 0 & \mathbf{1} \\ 0 & 0 & \mathbf{1} & 0 \\ 0 & \mathbf{1} & 0 & 0 \end{pmatrix}$$

- \circ $R_i \leftrightarrow R_j$, where $i \neq j$:
 - The ith and jth diagonal entries become 0.
 - The (i, j) and (j, i)-entries become 1.
 - $a_{ii} = a_{jj} = 1 \mapsto 0, a_{ij} = a_{ji} = 0 \mapsto 1.$

Elementary Operations

- Recall the **elementary row operations** of matrices.
 - Multiply a row by a nonzero constant.
 - o Interchange two rows.
 - o Add a constant multiple of a row to another row.
- What is the resulting matrix by applying an elementary row operation to the identity matrix I?

$$\circ \quad \begin{pmatrix} \mathbf{1} & 0 & 0 & 0 \\ 0 & \mathbf{1} & 0 & 0 \\ 0 & 0 & \mathbf{1} & 0 \\ 0 & 0 & 0 & \mathbf{1} \end{pmatrix} \xrightarrow{R_2 + cR_4} \begin{pmatrix} \mathbf{1} & 0 & 0 & 0 \\ 0 & \mathbf{1} & 0 & \mathbf{c} \\ 0 & 0 & \mathbf{1} & 0 \\ 0 & 0 & 0 & \mathbf{1} \end{pmatrix}$$

- \circ $R_i + cR_j$, where $i \neq j$:
 - The (i, j)-entry becomes c.
 - $a_{ij} = 0 \mapsto c$.

70 / 150

Elementary Matrices

Definition. A square matrix is called an **elementary matrix** if it can be obtained from the identity matrix by performing a single elementary row operation.

$$\circ \quad cR_i \text{, where } c \neq 0 \text{:} \quad \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & c & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

$$cR_i, \text{ where } c \neq 0 \colon \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & c & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

$$R_i \leftrightarrow R_j, \text{ where } i \neq j, \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \end{pmatrix}$$

$$R_i + cR_j, \text{ where } i \neq j, \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & c \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

$$\circ \quad R_i + cR_j$$
, where $i \neq j$, $egin{pmatrix} 1 & 0 & 0 & 0 \ 0 & 1 & 0 & c \ 0 & 0 & 1 & 0 \ 0 & 0 & 0 & 1 \end{pmatrix}$

Connection to Matrix Multiplication

- Let *E* be an elementary matrix.
 - \circ Suppose that it is obtained from I by
 - Multiplying the ith row by a nonzero number c.

Let
$$m{E} = egin{pmatrix} m{1} & 0 & 0 & 0 \\ 0 & m{1} & 0 & 0 \\ 0 & 0 & m{c} & 0 \\ 0 & 0 & 0 & m{1} \end{pmatrix}, \, m{A} = egin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \\ a_{41} & a_{42} & a_{43} \end{pmatrix}.$$

$$\circ \quad \boldsymbol{E}\boldsymbol{A} = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ \hline ca_{31} & ca_{32} & ca_{33} \\ a_{41} & a_{42} & a_{43} \end{pmatrix}.$$

Pre-multiplication by $oldsymbol{E}$ to $oldsymbol{A}$

 \Leftrightarrow Multiplying the ith row of \boldsymbol{A} by number c.

72 / 150

Connection to Matrix Multiplication

• Let $E=(e_{ij})_{m \times m}$ be obtained from I_m by multiplying kth row by c.

$$\circ \quad e_{ij} = \left\{ \begin{array}{ll} 0 & \text{if } i \neq j, \\ 1 & \text{if } i = j \neq k, \\ c & \text{if } i = j = k. \end{array} \right.$$

Let $\mathbf{A} = (a_{ij})_{m \times n}$. Then $\mathbf{E}\mathbf{A}$ is well-defined.

• Let $i \neq k$. Then (i, j)-entry of EA is

$$e_{i1}a_{1j} + \dots + e_{ii}a_{ij} + \dots + e_{im}a_{mj}$$
$$= 0 + \dots + 1 \cdot a_{ij} + \dots + 0 = a_{ij}.$$

• Let i = k. Then (i, j)-entry of EA is

$$e_{i1}a_{1j} + \dots + e_{ii}a_{ij} + \dots + e_{im}a_{mj}$$

= 0 + \dots + c \cdot a_{ij} + \dots + 0 = ca_{ij}.

Therefore, $\boldsymbol{E}\boldsymbol{A}$ is the matrix obtained from \boldsymbol{A} by multiplying the kth row by c.

Connection to Matrix Multiplication

- Let *E* be an elementary matrix.
 - \circ Suppose that it is obtained from $m{I}$ by
 - Interchanging the ith row and the jth row.

Let
$$m{E} = egin{pmatrix} m{1} & 0 & 0 & 0 \\ 0 & 0 & 0 & m{1} \\ 0 & 0 & m{1} & 0 \\ 0 & m{1} & 0 & 0 \end{pmatrix}$$
, $m{A} = egin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \\ a_{41} & a_{42} & a_{43} \end{pmatrix}$

$$\circ \quad \boldsymbol{E}\boldsymbol{A} = \left(\begin{array}{cccc} a_{11} & a_{12} & a_{13} \\ a_{41} & a_{42} & a_{43} \\ a_{31} & a_{32} & a_{33} \\ a_{21} & a_{22} & a_{23} \end{array} \right)$$

Pre-multiplication by $oldsymbol{E}$ to $oldsymbol{A}$

 \Leftrightarrow Interchanging the *i*th row and *j*th row of A.

74 / 150

Connection to Matrix Multiplication

• Let ${m E} = (e_{ij})$ be obtained from ${m I}_m$ by interchanging ℓ th and kth rows $(\ell < k)$.

$$\circ \quad e_{ij} = \left\{ \begin{array}{ll} 1 & \text{if } i=j \neq \ell, k \text{ or } (i,j) = (\ell,k), \ (k,\ell), \\ 0 & \text{otherwise}. \end{array} \right.$$

Let $\mathbf{A} = (a_{ij})_{m \times n}$. Then $\mathbf{E}\mathbf{A}$ is well-defined.

• Let $i \neq \ell, k$. Then (i, j)-entry of $\boldsymbol{E}\boldsymbol{A}$ is

$$e_{i1}a_{1j} + \dots + e_{ii}a_{ij} + \dots + e_{im}a_{mj}$$
$$= 0 + \dots + 1 \cdot a_{ij} + \dots + 0 = a_{ij}.$$

 \circ Let $i = \ell$ (the case i = k is similar). Then (i, j)-entry of EA

$$e_{i1}a_{1j} + \dots + e_{ii}a_{ij} + \dots + e_{ik}a_{kj} + \dots + e_{im}a_{mj}$$

= $0 + \dots + 0 \cdot a_{ij} + \dots + 1 \cdot a_{kj} + \dots + 0 = a_{kj}$.

Therefore, EA is the matrix obtained from A by interchanging ℓ th and kth rows.

Connection to Matrix Multiplication

- Let E be an elementary matrix.
 - \circ Suppose that it is obtained from I by
 - Adding c times of the jth row to the ith row.

$$\circ \quad \boldsymbol{E}\boldsymbol{A} = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} + ca_{41} & a_{22} + ca_{42} & a_{23} + ca_{43} \\ a_{31} & a_{32} & a_{33} \\ a_{41} & a_{42} & a_{33} \end{pmatrix}$$

Pre-multiplication by $oldsymbol{E}$ to $oldsymbol{A}$

 \Leftrightarrow Adding c times the jth row to the ith row of A.

76 / 150

Connection to Matrix Multiplication

• Let ${m E}=(e_{ij})$ be obtained from ${m I}_m$ by adding c times of ℓ th row to kth row.

$$\circ \quad e_{ij} = \left\{ \begin{array}{ll} 1 & \text{if } i=j, \\ c & \text{if } (i,j)=(k,\ell), \\ 0 & \text{otherwise}. \end{array} \right.$$

Let $\mathbf{A} = (a_{ij})_{m \times n}$. Then $\mathbf{E}\mathbf{A}$ is well-defined.

• Let $i \neq k$. Then (i, j)-entry of EA is

$$e_{i1}a_{1j} + \dots + e_{ii}a_{ij} + \dots + e_{im}a_{mj}$$
$$= 0 + \dots + 1 \cdot a_{ij} + \dots + 0 = a_{ij}.$$

 \circ Let i=k. Then (i,j)-entry of $\boldsymbol{E}\boldsymbol{A}$ is (w.l.o.g., assume $k<\ell$)

$$e_{i1}a_{1j} + \dots + e_{ii}a_{ij} + \dots + e_{i\ell}a_{\ell j} + \dots + e_{im}a_{mj}$$

= 0 + \dots + 1 \cdot a_{ij} + \dots + c \cdot a_{\ell j} + \dots + 0 = a_{ij} + ca_{\ell j}.

Therefore, EA is obtained from A by adding c times of ℓ th row to the kth row.

Connection to Multiplication

- Theorem.
 - \circ Let E be the elementary matrix obtained
 - by performing an elementary row operation to ${m I}_m.$

Then for any $m \times n$ matrix \boldsymbol{A} , $\boldsymbol{E}\boldsymbol{A}$ can be obtained

- by performing same elementary row operation to A.
- Let \boldsymbol{A} be an $m \times n$ matrix.

$$\circ \quad \boldsymbol{I}_m \xrightarrow{cR_i} \boldsymbol{E} \Rightarrow \boldsymbol{A} \xrightarrow{cR_i} \boldsymbol{E} \boldsymbol{A}.$$

$$\circ$$
 $I_m \xrightarrow{R_i \leftrightarrow R_j} E \Rightarrow A \xrightarrow{R_i \leftrightarrow R_j} EA.$

$$\circ$$
 $I_m \xrightarrow{R_i + cR_j} E \Rightarrow A \xrightarrow{R_i + cR_j} EA$.

78 / 150

Example

$$\bullet \quad \text{Let } \mathbf{A} = \begin{pmatrix} 0 & 4 & 2 \\ -2 & 1 & -3 \\ 1 & 0 & 2 \end{pmatrix}.$$

$$\circ \quad \boldsymbol{A} = \begin{pmatrix} 0 & 4 & 2 \\ -2 & 1 & -3 \\ 1 & 0 & 2 \end{pmatrix} \xrightarrow{R_1 \leftrightarrow R_3} \begin{pmatrix} 1 & 0 & 2 \\ -2 & 1 & -3 \\ 0 & 4 & 2 \end{pmatrix} = \boldsymbol{A}_1.$$

•
$$I = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \xrightarrow{R_1 \leftrightarrow R_3} \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix} = E_1.$$

$$\mathbf{E}_1 \mathbf{A} = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & 4 & 2 \\ -2 & 1 & -3 \\ 1 & 0 & 2 \end{pmatrix} \\
= \begin{pmatrix} 1 & 0 & 2 \\ -2 & 1 & -3 \\ 0 & 4 & 2 \end{pmatrix} = \mathbf{A}_1.$$

• Let
$$A = \begin{pmatrix} 0 & 4 & 2 \\ -2 & 1 & -3 \\ 1 & 0 & 2 \end{pmatrix}$$
.

$$\circ \quad \boldsymbol{A}_1 = \begin{pmatrix} 1 & 0 & 2 \\ -2 & 1 & -3 \\ 0 & 4 & 2 \end{pmatrix} \xrightarrow{R_2 + 2R_1} \begin{pmatrix} 1 & 0 & 2 \\ 0 & 1 & 1 \\ 0 & 4 & 2 \end{pmatrix} = \boldsymbol{A}_2.$$

•
$$I = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \xrightarrow{R_2 + 2R_1} \begin{pmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} = E_2.$$

$$\mathbf{E}_{2}\mathbf{A}_{1} = \begin{pmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 2 \\ -2 & 1 & -3 \\ 0 & 4 & 2 \end{pmatrix} \\
= \begin{pmatrix} 1 & 0 & 2 \\ 0 & 1 & 1 \\ 0 & 4 & 2 \end{pmatrix} = \mathbf{A}_{2}.$$

80 / 150

Example

• Let
$$A = \begin{pmatrix} 0 & 4 & 2 \\ -2 & 1 & -3 \\ 1 & 0 & 2 \end{pmatrix}$$
.

$$\circ \quad \boldsymbol{A}_2 = \begin{pmatrix} 1 & 0 & 2 \\ 0 & 1 & 1 \\ 0 & 4 & 2 \end{pmatrix} \xrightarrow{R_3 + (-4)R_2} \begin{pmatrix} 1 & 0 & 2 \\ 0 & 1 & 1 \\ 0 & 0 & -2 \end{pmatrix} = \boldsymbol{A}_3.$$

•
$$I = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \xrightarrow{R_3 + (-4)R_2} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & -4 & 1 \end{pmatrix} = E_3.$$

$$\mathbf{E}_{3}\mathbf{A}_{2} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & -4 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 2 \\ 0 & 1 & 1 \\ 0 & 4 & 2 \end{pmatrix} \\
= \begin{pmatrix} 1 & 0 & 2 \\ 0 & 1 & 1 \\ 0 & 0 & -2 \end{pmatrix} = \mathbf{A}_{3}.$$

$$\bullet \quad \text{Let } A = \begin{pmatrix} 0 & 4 & 2 \\ -2 & 1 & -3 \\ 1 & 0 & 2 \end{pmatrix}.$$

$$\circ \quad \boldsymbol{A}_3 = \begin{pmatrix} 1 & 0 & 2 \\ 0 & 1 & 1 \\ 0 & 0 & -2 \end{pmatrix} \xrightarrow{-\frac{1}{2}R_3} \begin{pmatrix} 1 & 0 & 2 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix} = \boldsymbol{A}_4.$$

•
$$I = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \xrightarrow{-\frac{1}{2}R_3} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -\frac{1}{2} \end{pmatrix} = E_4.$$

$$\mathbf{E}_4 \mathbf{A}_3 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -\frac{1}{2} \end{pmatrix} \begin{pmatrix} 1 & 0 & 2 \\ 0 & 1 & 1 \\ 0 & 0 & -2 \end{pmatrix} \\
= \begin{pmatrix} 1 & 0 & 2 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix} = \mathbf{A}_4.$$

82 / 150

Example

• Let
$$A = \begin{pmatrix} 0 & 4 & 2 \\ -2 & 1 & -3 \\ 1 & 0 & 2 \end{pmatrix}$$
.

$$\circ \quad \boldsymbol{A}_4 = \begin{pmatrix} 1 & 0 & 2 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix} \xrightarrow{R_1 + (-2)R_3} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix} = \boldsymbol{A}_5.$$

•
$$I = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \xrightarrow{R_1 + (-2)R_3} \begin{pmatrix} 1 & 0 & -2 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} = E_5.$$

$$\mathbf{E}_{5}\mathbf{A}_{4} = \begin{pmatrix} 1 & 0 & -2 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 2 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix} \\
= \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix} = \mathbf{A}_{5}.$$

$$\bullet \quad \text{Let } \boldsymbol{A} = \begin{pmatrix} 0 & 4 & 2 \\ -2 & 1 & -3 \\ 1 & 0 & 2 \end{pmatrix}.$$

$$\circ \quad \boldsymbol{A}_5 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix} \xrightarrow{R_2 + (-1)R_3} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} = \boldsymbol{A}_6 = \boldsymbol{I}.$$

•
$$I = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \xrightarrow{R_2 + (-1)R_3} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{pmatrix} = E_6.$$

$$\mathbf{E}_{6}\mathbf{A}_{5} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix} \\
= \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} = \mathbf{A}_{6} = \mathbf{I}.$$

84 / 150

Invertibility

- Theorem. Every elementary matrix is invertible.
 - o The inverse of an elementary matrix is elementary.

Proof. There are three types of elementary matrices.

- Suppose that $\boldsymbol{I} \xrightarrow{cR_i} \boldsymbol{E}$, where $c \neq 0$.
 - Then $oldsymbol{E} \xrightarrow{rac{1}{c}R_i} oldsymbol{I}.$

Let $oldsymbol{D}$ denote the elementary matrix $oldsymbol{I} \stackrel{rac{1}{c}R_i}{\longrightarrow} oldsymbol{D}$.

•
$$I \xrightarrow{cR_i} E \xrightarrow{rac{1}{c}R_i} I$$
. So $DE = I$.

•
$$I \xrightarrow{\frac{1}{c}R_i} D \xrightarrow{cR_i} I$$
. So $ED = I$.

It follows that $m{E}$ is invertible and $m{E}^{-1} = m{D}$.

The other two cases are similar and left as exercises.

Invertibility

• Let *E* be an elementary matrix.

$$\circ \quad \boldsymbol{I} \xrightarrow{cR_i} \boldsymbol{E} \Rightarrow \boldsymbol{I} \xrightarrow{\frac{1}{c}R_i} \boldsymbol{E}^{-1}.$$

$$\circ$$
 $I \xrightarrow{R_i \leftrightarrow R_j} E \Rightarrow I \xrightarrow{R_i \leftrightarrow R_j} E^{-1}$. (So $E = E^{-1}$)

$$\circ \quad \boldsymbol{I} \xrightarrow{R_i + cR_j} \boldsymbol{E} \Rightarrow \boldsymbol{I} \xrightarrow{R_i + (-c)R_j} \boldsymbol{E}^{-1}.$$

• Suppose that matrices *A* and *B* are row equivalent.

$$\circ \quad \pmb{A} = \pmb{A}_0 \xrightarrow{\mathsf{ero1}} \pmb{A}_1 \xrightarrow{\mathsf{ero2}} \pmb{A}_2 \cdots o \pmb{A}_{k-1} \xrightarrow{\mathsf{ero}k} \pmb{A}_k = \pmb{B}.$$

Let E_i be the elementary matrix corresponding to the ith elementary row operation: $I \stackrel{\mathsf{ero}i}{\longrightarrow} E_i$.

$$\circ \quad oldsymbol{A} = oldsymbol{A}_0 \xrightarrow[oldsymbol{E}_1]{ ext{ero} 2} oldsymbol{A}_1 \xrightarrow[oldsymbol{E}_2]{ ext{ero} 2} oldsymbol{A}_2 \cdots
ightarrow oldsymbol{A}_{k-1} \xrightarrow[oldsymbol{E}_k]{ ext{ero} k} oldsymbol{A}_k = oldsymbol{B}.$$

Then
$$oldsymbol{B} = oldsymbol{E}_k oldsymbol{E}_{k-1} \cdots oldsymbol{E}_2 oldsymbol{E}_1 oldsymbol{A}.$$

86 / 150

Invertibility

- ullet Theorem. Two matrices A and B are row equivalent
 - \Leftrightarrow there exist elementary matrices E_1, E_2, \ldots, E_k

such that
$$oldsymbol{B} = oldsymbol{E}_k oldsymbol{E}_{k-1} \cdots oldsymbol{E}_2 oldsymbol{E}_1 oldsymbol{A}.$$

ullet Remarks. Suppose for elementary matrices $oldsymbol{E}_i,$

$$\circ \quad \boldsymbol{B} = \boldsymbol{E}_k \boldsymbol{E}_{k-1} \cdots \boldsymbol{E}_2 \boldsymbol{E}_1 \boldsymbol{A}.$$

$$ullet \quad A \stackrel{E_1}{\longrightarrow} ullet \stackrel{E_2}{\longrightarrow} ullet
ightarrow \cdots
ightarrow ullet \stackrel{E_{k-1}}{\longrightarrow} ullet \stackrel{E_k}{\longrightarrow} B.$$

$$\bullet \quad A \xleftarrow{E_1^{-1}} \bullet \xleftarrow{E_2^{-1}} \bullet \leftarrow \cdots \leftarrow \bullet \xleftarrow{E_{k-1}^{-1}} \bullet \xleftarrow{E_k^{-1}} B.$$

$$A = E_1^{-1} E_2^{-1} \cdots E_{k-1}^{-1} E_k^{-1} B.$$

We can now prove the theorem stated in Chapter 1:

- Theorem. Suppose that the augmented matrices of two linear systems are row equivalent.
 - $\circ\quad$ Then the two systems have the same solution set.

Invertibility

- Proof. Let the two linear systems be
 - $\circ \quad Ax = b \text{ and } Cx = d.$

Then the associated augmented matrices are

 $\circ (A \mid b)$ and $(C \mid d)$.

There exist elementary matrices $m{E}_1, m{E}_2, \dots, m{E}_k$ so that

- $\circ \quad \boldsymbol{E}_k \cdots \boldsymbol{E}_1 \left(\boldsymbol{A} \mid \boldsymbol{b} \right) = \left(\boldsymbol{C} \mid \boldsymbol{d} \right).$
 - ullet $E_k\cdots E_1A=C$ and $E_k\cdots E_1b=d$.

Let u be a solution to Ax=b, i.e., Au=b.

 $\circ \quad E_k \cdots E_1 A u = E_k \cdots E_1 b \Rightarrow C u = d.$

So u is also a solution to Cx = d.

88 / 150

Invertibility

- Proof. Let the two linear systems be
 - $\circ \quad Ax = b \text{ and } Cx = d.$

Then the associated augmented matrices are

 \circ $(A \mid b)$ and $(C \mid d)$.

There exist elementary matrices E_1, E_2, \ldots, E_k so that

- $\circ \quad \boldsymbol{E}_k \cdots \boldsymbol{E}_1 \left(\boldsymbol{A} \mid \boldsymbol{b} \right) = (\boldsymbol{C} \mid \boldsymbol{d}).$
 - $oldsymbol{\epsilon} oldsymbol{E}_k \cdots oldsymbol{E}_1 oldsymbol{A} = oldsymbol{C} ext{ and } oldsymbol{E}_k \cdots oldsymbol{E}_1 oldsymbol{b} = oldsymbol{d}.$
 - $\bullet \quad \pmb{A} = \pmb{E}_1^{-1} \cdots \pmb{E}_k^{-1} \pmb{C} \text{ and } \pmb{b} = \pmb{E}_1^{-1} \cdots \pmb{E}_k^{-1} \pmb{d}.$

Let $oldsymbol{v}$ be a solution to $oldsymbol{C} oldsymbol{x} = oldsymbol{d}$, i.e., $oldsymbol{C} oldsymbol{v} = oldsymbol{d}$.

 $\circ \quad E_1^{-1}\cdots E_k^{-1}Cv=E_1^{-1}\cdots E_k^{-1}d\Rightarrow Av=b.$

So v is also a solution to Ax = b.

Main Theorem for Invertible Matrices

- ullet Theorem. Let A be a square matrix. Then the followings are equivalent:
 - 1. A is an invertible matrix.
 - 2. Linear system $\boldsymbol{A}\boldsymbol{x}=\boldsymbol{b}$ has a unique solution.
 - 3. Linear system Ax = 0 has only the trivial solution.
 - 4. The reduced row-echelon form of A is I.
 - 5. A is the product of elementary matrices.

90 / 150

Main Theorem for Invertible Matrices

- **Proof.** We prove $1 \Rightarrow 2 \Rightarrow 3 \Rightarrow 4 \Rightarrow 5 \Rightarrow 1$:
- \Rightarrow 2: Suppose A is invertible.
 - $Ax = b \Rightarrow x = Ix = A^{-1}Ax = A^{-1}b$.
- $2\Rightarrow$ 3: Suppose Ax=b has a unique solution u.
 - If Ax = 0 has a solution v, then Av = 0.
 - A(u-v) = Au Av = b 0 = b.
 - $\circ \ \ u-v$ is also a solution to Ax=b.
 - ullet By uniqueness, u=u-v; so v=0.
- $3\Rightarrow$ 4: Suppose Ax=0 has only the trivial solution.
 - ullet Let R be the reduced row-echelon form of A.
 - \circ Except the last column, all other columns of $(R \mid \mathbf{0})$ are pivot columns.
 - ullet Note that $oldsymbol{R}$ is a square matrix. So $oldsymbol{R}=oldsymbol{I}.$

Main Theorem for Invertible Matrices

- **Proof.** We prove $1 \Rightarrow 2 \Rightarrow 3 \Rightarrow 4 \Rightarrow 5 \Rightarrow 1$:
- \Rightarrow 5: Suppose that the reduced row-echelon form of A is I.
 - ullet I can be obtained from A by elementary row operations.

$$\circ \quad \boldsymbol{A} \xrightarrow{\operatorname{ero1}} \bullet \cdots \to \cdots \bullet \xrightarrow{\operatorname{ero}k} \boldsymbol{I}.$$

• Let E_i be the elementary matrix corresponding to the ith elementary row operation.

$$\circ \quad \boldsymbol{I} = \boldsymbol{E}_{k} \boldsymbol{E}_{k-1} \cdots \boldsymbol{E}_{2} \boldsymbol{E}_{1} \boldsymbol{A}.$$

- ullet Then $m{A} = m{E}_1^{-1} m{E}_2^{-1} \cdots m{E}_{k-1}^{-1} m{E}_k^{-1}.$
 - \circ (Recall: each $oldsymbol{E}_i^{-1}$ is also an elementary matrix.)
- $oldsymbol{5}\Rightarrow$ 1: Suppose that $oldsymbol{A}=oldsymbol{E}_1oldsymbol{E}_2\cdotsoldsymbol{E}_k,$
 - where E_1, \ldots, E_k are elementary matrices.

Each E_i is invertible \Rightarrow A is invertible.

92 / 150

Find Inverse

- Let A be an invertible matrix of order n. Its reduced row-echelon form is I_n .
 - \circ There exist elementary matrices $oldsymbol{E}_i$ such that

•
$$E_k \cdots E_2 E_1 A = I_n$$
.

Then
$$\boldsymbol{E}_k\cdots \boldsymbol{E}_2\boldsymbol{E}_1=\boldsymbol{A}^{-1}.$$

Consider the $n \times 2n$ matrix $(\boldsymbol{A} \mid \boldsymbol{I})$.

 \circ Apply the ele. row oper. corresponding to $m{E}_1,\ldots,m{E}_k$:

$$egin{aligned} (m{A} \mid m{I}_n) & \xrightarrow{m{E}_1} (m{E}_1 m{A} \mid m{E}_1) \ & \xrightarrow{m{E}_2} (m{E}_2 m{E}_1 m{A} \mid m{E}_2 m{E}_1) \ & o \cdots o \cdots \ & \xrightarrow{m{E}_k} (m{E}_k \cdots m{E}_2 m{E}_1 m{A} \mid m{E}_k \cdots m{E}_2 m{E}_1) \ & = (m{I}_n \mid m{A}^{-1}). \end{aligned}$$

Find Inverse

- **Theorem.** Let *A* be an invertible matrix.
 - \circ The reduced row-echelon form of $(m{A} \mid m{I})$ is $(m{I} \mid m{A}^{-1})$
- **Example.** Let $A = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 5 & 3 \\ 1 & 0 & 8 \end{pmatrix}$. Find A^{-1} .

$$\begin{pmatrix}
1 & 2 & 3 & 1 & 0 & 0 \\
2 & 5 & 3 & 0 & 1 & 0 \\
1 & 0 & 8 & 0 & 0 & 1
\end{pmatrix}
\xrightarrow{R_2 + (-2)R_1}
\begin{pmatrix}
1 & 2 & 3 & 1 & 0 & 0 \\
0 & 1 & -3 & -2 & 1 & 0 \\
0 & -2 & 5 & -1 & 0 & 1
\end{pmatrix}$$

$$\xrightarrow{R_3 + 2R_2}
\begin{pmatrix}
1 & 2 & 3 & 1 & 0 & 0 \\
0 & 1 & -3 & -2 & 1 & 0 \\
0 & 0 & -1 & -5 & 2 & 1
\end{pmatrix}$$

$$\xrightarrow{(-1)R_2}
\begin{pmatrix}
1 & 2 & 3 & 1 & 0 & 0 \\
0 & 1 & -3 & -2 & 1 & 0 \\
0 & 0 & 1 & -3 & -2 & 1 & 0 \\
0 & 0 & 1 & 5 & -2 & -1
\end{pmatrix}$$

94 / 150

Find Inverse

- **Theorem.** Let A be an invertible matrix.
 - \circ The reduced row-echelon form of $(m{A} \mid m{I})$ is $(m{I} \mid m{A}^{-1})$
- **Example.** Let $A = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 5 & 3 \\ 1 & 0 & 8 \end{pmatrix}$. Find A^{-1} .

$$\begin{pmatrix} 1 & 2 & 3 & 1 & 0 & 0 \\ 0 & 1 & -3 & -2 & 1 & 0 \\ 0 & 0 & 1 & 5 & -2 & -1 \end{pmatrix} \xrightarrow{R_1 + (-3)R_3} \begin{pmatrix} 1 & 2 & 0 & -14 & 6 & 3 \\ 0 & 1 & 0 & 13 & -5 & -3 \\ 0 & 0 & 1 & 5 & -2 & -1 \end{pmatrix}$$

$$\xrightarrow{R_1 + (-2)R_2} \begin{pmatrix} 1 & 0 & 0 & -40 & 16 & 9 \\ 0 & 1 & 0 & 13 & -5 & -3 \\ 0 & 0 & 1 & 5 & -2 & -1 \end{pmatrix}$$

Therefore,
$$\mathbf{A}^{-1} = \begin{pmatrix} -40 & 16 & 9\\ 13 & -5 & -3\\ 5 & -2 & -1 \end{pmatrix}$$
.

Find Inverse

- A square matrix is invertible
 - \Leftrightarrow Its reduced row-echelon form is I
 - ⇔ All the columns in its row-echelon form are pivot.
 - ⇔ All the rows in its row-echelon form are nonzero.

A square matrix is singular

- \Leftrightarrow Its reduced row-echelon form is not I
- ⇔ Some columns in its row-echelon form are non-pivot.
- ⇔ Some rows in its row-echelon form are zero.

Example. Let
$$A = \begin{pmatrix} 1 & 2 & 0 \\ 2 & 4 & 4 \\ 3 & 6 & 3 \end{pmatrix}$$
. Then A is singular.

$$\begin{pmatrix} 1 & 2 & 0 \\ 2 & 4 & 4 \\ 3 & 6 & 3 \end{pmatrix} \xrightarrow{R_2 + (-2)R_1} \begin{pmatrix} 1 & 2 & 0 \\ 0 & 0 & 4 \\ 0 & 0 & 3 \end{pmatrix} \xrightarrow{R_3 + (-\frac{3}{4})R_2} \begin{pmatrix} 1 & 2 & 0 \\ 0 & 0 & 4 \\ \hline \mathbf{0} & \mathbf{0} & \mathbf{0} \end{pmatrix}$$

96 / 150

Find Inverse

- ullet Theorem. Let A and B be square matrices of the same size. If AB=I, then
 - \circ A and B are invertible, and $A^{-1} = B$, $B^{-1} = A$.

Proof. Consider the linear system Bx=0.

- $\circ \quad Bx = 0 \Rightarrow ABx = A0 \Rightarrow x = 0.$
- $\circ \;\; Bx=0$ has only the trivial solution \Rightarrow B is invertible.

 $oldsymbol{B}^{-1}$ exists such that $oldsymbol{B}oldsymbol{B}^{-1}=oldsymbol{B}^{-1}oldsymbol{B}=oldsymbol{I}.$

$$\circ \quad AB = I \Rightarrow ABB^{-1} = IB^{-1} \Rightarrow A = B^{-1}.$$

Therefore, ${m A}$ is invertible, and ${m A}^{-1}=({m B}^{-1})^{-1}={m B}.$

- ullet Corollary and Exercise. Let A_1,A_2,\ldots,A_k be square matrices of the same size.
 - $\circ \ \ A_1A_2\cdots A_k$ is invertible \Leftrightarrow all A_i are invertible.
 - $\circ \ \ A_1A_2\cdots A_k$ is singular \Leftrightarrow some A_i are singular.

Find Inverse

- $\bullet \quad \text{Let } \pmb{A} = \begin{pmatrix} a & b \\ c & d \end{pmatrix}, \, \pmb{B} = \frac{1}{ad-bc} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}, \, ad \neq bc.$
 - \circ One verifies that AB = I.
 - Using the theorem, $A^{-1} = B$.
 - ullet The verification that BA=I is not necessary.
- Let \boldsymbol{A} be a square matrix such that $\boldsymbol{A}^2 3\boldsymbol{A} 4\boldsymbol{I} = \boldsymbol{0}$.
 - \circ Prove that A is invertible, and find A^{-1} .

Wrong Proof. $\mathbf{0} = (\mathbf{A} - 4\mathbf{I})(\mathbf{A} + \mathbf{I}).$

$$\circ \quad A - 4I = 0 \text{ or } A + I = 0 \Rightarrow A = 4I \text{ or } A = -I.$$

Proof. $4I = A^2 - 3A = A(A - 3I)$.

- $\circ \quad \boldsymbol{I} = \frac{1}{4}\boldsymbol{A}(\boldsymbol{A} 3\boldsymbol{I}) = \boldsymbol{A} \left[\frac{1}{4}(\boldsymbol{A} 3\boldsymbol{I}) \right].$
- $\circ \quad \text{So \pmb{A} is invertible with $\pmb{A}^{-1}=\frac{1}{4}(\pmb{A}-3\pmb{I})$.}$

98 / 150

Column Operations

• Recall that the pre-multiplication of an elementary matrix \Leftrightarrow corresponding elementary row operation.

Question. What is the effect of post-multiplication of an elementary matrix?

- o Answer: Corresponding elementary column operation.
- Elementary column operations:
 - kC_i : multiply *i*th column by a nonzero constant k.
 - \circ $C_i \leftrightarrow C_j$: interchange ith and jth columns.
 - \circ $C_i + kC_j$: add k times jth column to ith column.

Let E be the matrix obtained from I by a single elementary column operation.

- \circ Then E is an elementary matrix.
 - ullet (i.e., E can be obtained from I by a single elementary row operation.)

Column Operations

- If E is obtained from I_n by a single elementary column operation, then E is an elementary matrix.
 - $\circ \quad \boldsymbol{I} \xrightarrow{kC_i} \boldsymbol{E} \Leftrightarrow \boldsymbol{I} \xrightarrow{kR_i} \boldsymbol{E}.$
 - $\circ \quad \boldsymbol{I} \xrightarrow{C_i \leftrightarrow C_j} \boldsymbol{E} \Leftrightarrow \boldsymbol{I} \xrightarrow{R_i \leftrightarrow R_j} \boldsymbol{E}.$
 - $\circ \quad \boldsymbol{I} \xrightarrow{C_i + kC_j} \boldsymbol{E} \Leftrightarrow \boldsymbol{I} \xrightarrow{R_j + kR_i} \boldsymbol{E}.$
- $\bullet \quad \text{Let \pmb{A} be an $m\times n$ matrix. Then $\pmb{A}^{\rm T}$ is $n\times m$.}$
 - \circ Suppose that $I_n \xrightarrow{kC_i} E$. Note that $E = E^{\mathrm{T}}$.
 - $I_n \xrightarrow{kR_i} E^{\mathrm{T}} \Rightarrow A^{\mathrm{T}} \xrightarrow{kR_i} E^{\mathrm{T}} A^{\mathrm{T}} = (AE)^{\mathrm{T}}.$

Then $A \xrightarrow{kC_i} AE$.

100 / 150

Column Operations

- If E is obtained from I_n by a single elementary column operation, then E is an elementary matrix.
 - $\circ \quad \boldsymbol{I} \xrightarrow{kC_i} \boldsymbol{E} \Leftrightarrow \boldsymbol{I} \xrightarrow{kR_i} \boldsymbol{E}.$
 - $\circ \quad \boldsymbol{I} \xrightarrow{C_i \leftrightarrow C_j} \boldsymbol{E} \Leftrightarrow \boldsymbol{I} \xrightarrow{R_i \leftrightarrow R_j} \boldsymbol{E}.$
 - $\circ \quad \boldsymbol{I} \xrightarrow{C_i + kC_j} \boldsymbol{E} \Leftrightarrow \boldsymbol{I} \xrightarrow{R_j + kR_i} \boldsymbol{E}.$
- Let ${m A}$ be an m imes n matrix. Then ${m A}^{\rm T}$ is n imes m.
 - \circ Suppose that $m{I}_n \xrightarrow{C_i \leftrightarrow C_j} m{E}$. Note that $m{E} = m{E}^{\mathrm{T}}$.
 - $I \xrightarrow{R_i \leftrightarrow R_j} E^{\mathrm{T}} \Rightarrow A^{\mathrm{T}} \xrightarrow{R_i \leftrightarrow R_j} E^{\mathrm{T}} A^{\mathrm{T}} = (AE)^{\mathrm{T}}.$

Then $A \xrightarrow{C_i \leftrightarrow C_j} AE$.

Column Operations

- If E is obtained from I_n by a single elementary column operation, then E is an elementary matrix.
 - $\circ \quad \boldsymbol{I} \xrightarrow{kC_i} \boldsymbol{E} \Leftrightarrow \boldsymbol{I} \xrightarrow{kR_i} \boldsymbol{E}.$
 - $\circ \quad \boldsymbol{I} \xrightarrow{C_i \leftrightarrow C_j} \boldsymbol{E} \Leftrightarrow \boldsymbol{I} \xrightarrow{R_i \leftrightarrow R_j} \boldsymbol{E}.$
 - $\circ \quad \boldsymbol{I} \xrightarrow{C_i + kC_j} \boldsymbol{E} \Leftrightarrow \boldsymbol{I} \xrightarrow{R_j + kR_i} \boldsymbol{E}.$
- Let ${m A}$ be an $m \times n$ matrix. Then ${m A}^{\rm T}$ is $n \times m$.
 - \circ Suppose that $I \xrightarrow{C_i + kC_j} E$.
 - ullet Then $m{I} \xrightarrow{R_i + kR_j} m{E}^{\mathrm{T}}.$
 - $A^{\mathrm{T}} \xrightarrow{R_i + kR_j} E^{\mathrm{T}}A^{\mathrm{T}} = (AE)^{\mathrm{T}}$.

Then $A \xrightarrow{C_i + kC_j} AE$.

102 / 150

Column Operations

- ullet If E is obtained from I_n by a single elementary column operation, then E is an elementary matrix.
 - $\circ \quad \boldsymbol{I} \xrightarrow{kC_i} \boldsymbol{E} \Leftrightarrow \boldsymbol{I} \xrightarrow{kR_i} \boldsymbol{E}.$
 - $\circ \quad \boldsymbol{I} \xrightarrow{C_i \leftrightarrow C_j} \boldsymbol{E} \Leftrightarrow \boldsymbol{I} \xrightarrow{R_i \leftrightarrow R_j} \boldsymbol{E}.$
 - $\circ \quad \boldsymbol{I} \xrightarrow{C_i + kC_j} \boldsymbol{E} \Leftrightarrow \boldsymbol{I} \xrightarrow{R_j + kR_i} \boldsymbol{E}.$
- ullet Let $oldsymbol{A}$ be an m imes n matrix, and $oldsymbol{E}$ an n imes n elementary matrix. Then
 - \circ The post-multiplication of $m{E}$ to $m{A}$
 - \Leftrightarrow Corresponding elementary column operation to A.
 - $\circ \quad \boldsymbol{I} \xrightarrow{kC_i} \boldsymbol{E} \Rightarrow \boldsymbol{A} \xrightarrow{kC_i} \boldsymbol{A}\boldsymbol{E}.$
 - $\circ \quad I \xrightarrow{C_i \leftrightarrow C_j} E \Rightarrow A \xrightarrow{C_i \leftrightarrow C_j} AE.$
 - $\circ I \xrightarrow{C_i + kC_j} E \Rightarrow A \xrightarrow{C_i + kC_j} AE.$

• Let
$$A = \begin{pmatrix} 1 & 0 & 2 & 3 \\ 2 & -1 & 3 & 6 \\ 1 & 4 & 4 & 0 \end{pmatrix}$$
.

o $I = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \xrightarrow{2C_3} \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} = E_1$.

o $AE_1 = \cdots = \begin{pmatrix} 1 & 0 & 4 & 3 \\ 2 & -1 & 6 & 6 \\ 1 & 4 & 8 & 0 \end{pmatrix}$

• $A \xrightarrow{2C_3} AE_1$.

104 / 150

Examples

• Let
$$A = \begin{pmatrix} 1 & 0 & 2 & 3 \\ 2 & -1 & 3 & 6 \\ 1 & 4 & 4 & 0 \end{pmatrix}$$
.

o $I = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \xrightarrow{C_2 \leftrightarrow C_4} \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \end{pmatrix} = E_2$.

o $AE_2 = \cdots = \begin{pmatrix} 1 & 3 & 2 & 0 \\ 2 & 6 & 3 & -1 \\ 1 & 0 & 4 & 4 \end{pmatrix}$

• $A \xrightarrow{C_2 \leftrightarrow C_4} AE_2$.

• Let
$$\mathbf{A} = \begin{pmatrix} 1 & 0 & 2 & 3 \\ 2 & -1 & 3 & 6 \\ 1 & 4 & 4 & 0 \end{pmatrix}$$
.

$$\circ \quad \mathbf{I} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \xrightarrow{C_1 + 2C_3} \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 2 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} = \mathbf{E}_3.$$

$$\circ \quad \mathbf{A}\mathbf{E}_3 = \cdots = \begin{pmatrix} 5 & 0 & 2 & 3 \\ 8 & -1 & 3 & 6 \\ 9 & 4 & 4 & 0 \end{pmatrix}.$$

$$\bullet \quad \mathbf{AE}_3 = \cdots = \begin{pmatrix} 5 & 0 & 2 & 3 \\ 8 & -1 & 3 & 6 \\ 9 & 4 & 4 & 0 \end{pmatrix}.$$

• $A \xrightarrow{C_1+2C_3} AE_3$.

106 / 150

Determinant 107 / 150

Determinant of 2×2 Matrix

- Recall that $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$ is invertible $\Leftrightarrow ad bc \neq 0$.
- **Definition.** Let $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$.
 - \circ The determinant of $oldsymbol{A}$ is $\overline{\det(oldsymbol{A}) = |oldsymbol{A}| = ad bc}$

Therefore, \mathbf{A} is invertible $\Leftrightarrow \det(\mathbf{A}) \neq 0$.

- **Definition.** If A = (a), it is natural to set $\det(A) = a$.
- Properties & Exercises. Let A, B be 2×2 matrices.
 - \circ det(\mathbf{I}_2) = 1.
 - $\circ \quad \boldsymbol{A} \xrightarrow{cR_i} \boldsymbol{B} \Rightarrow \det(\boldsymbol{B}) = c \det(\boldsymbol{A}).$
 - $\circ \quad \boldsymbol{A} \xrightarrow{R_i \leftrightarrow R_j} \boldsymbol{B} \Rightarrow \det(\boldsymbol{B}) = -\det(\boldsymbol{A}).$
 - $\circ A \xrightarrow{R_i + cR_j} B \Rightarrow \det(B) = \det(A).$

Determinant of 2×2 Matrix

- $\bullet \quad \text{Consider linear system} \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} b_1 \\ b_2 \end{pmatrix}.$
 - $\circ \quad \text{Suppose } \pmb{A} = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} \text{ is invertible}.$

•
$$A^{-1} = \frac{1}{\det(A)} \begin{pmatrix} a_{22} & -a_{12} \\ -a_{21} & a_{11} \end{pmatrix}$$
.

$$\begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \mathbf{A}^{-1} \begin{pmatrix} b_1 \\ b_2 \end{pmatrix} = \dots = \frac{1}{\det(\mathbf{A})} \begin{pmatrix} a_{22}b_1 - a_{12}b_2 \\ -a_{21}b_1 + a_{11}b_2 \end{pmatrix}$$

$$\bullet \quad x_1 = \frac{\begin{vmatrix} b_1 & a_{12} \\ b_2 & a_{22} \end{vmatrix}}{\begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix}} \text{ and } x_2 = \frac{\begin{vmatrix} a_{11} & b_1 \\ a_{21} & b_2 \end{vmatrix}}{\begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix}}$$

109 / 150

Determinant of 2×2 Matrix

• One can verify that

$$\begin{vmatrix} a_{11} + a'_{11} & a_{12} + a'_{12} \\ a_{21} & a_{22} \end{vmatrix} = (a_{11} + a'_{11})a_{22} - (a_{12} + a'_{12})a_{21}$$
$$= (a_{11}a_{22} - a_{12}a_{21}) + (a'_{11}a_{22} - a'_{12}a_{21})$$
$$= \begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} + \begin{vmatrix} a'_{11} & a'_{12} \\ a_{21} & a_{22} \end{vmatrix}$$

In particular,

$$\begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} = \begin{vmatrix} a_{11} & 0 \\ a_{21} & a_{22} \end{vmatrix} + \begin{vmatrix} 0 & a_{12} \\ a_{21} & a_{22} \end{vmatrix}$$
$$= a_{11} \begin{vmatrix} 1 & 0 \\ a_{21} & a_{22} \end{vmatrix} + a_{12} \begin{vmatrix} 0 & 1 \\ a_{21} & a_{22} \end{vmatrix}$$
$$= a_{11} \cdot a_{22} - a_{12} \cdot a_{21}$$
$$= a_{11} \cdot \det(a_{22}) - a_{12} \cdot \det(a_{21}).$$

Determinant of 3×3 Matrix

- Let A be a square matrix. It is expected that
 - $\circ \det(\boldsymbol{I}) = 1.$
 - \bullet **A** is invertible $\Leftrightarrow \det(\mathbf{A}) \neq 0$.
 - Equivalently, A is singular $\Leftrightarrow \det(A) = 0$.

 - $\begin{array}{ccc} \circ & \boldsymbol{A} \xrightarrow{cR_i} \boldsymbol{B} \Rightarrow \det(\boldsymbol{B}) = c \det(\boldsymbol{A}). \\ \circ & \boldsymbol{A} \xrightarrow{R_i \leftrightarrow R_j} \boldsymbol{B} \Rightarrow \det(\boldsymbol{B}) = -\det(\boldsymbol{A}). \end{array}$
 - $\circ A \xrightarrow{R_i + cR_j} B \Rightarrow \det(B) = \det(A).$
- ullet Suppose A is invertible. Then there exist elementary row operations
 - $\circ \quad oldsymbol{A} \xrightarrow{\mathsf{ero1}} oldsymbol{A}_1 \xrightarrow{\mathsf{ero2}} oldsymbol{A}_2 o \cdots o oldsymbol{A}_{k-1} \xrightarrow{\mathsf{ero}k} oldsymbol{A}_k = oldsymbol{I}.$

Then det(A) can be evaluated backwards.

 $\bullet \quad \text{Example.} \quad \boldsymbol{A} \xrightarrow{R_1 \leftrightarrow R_3} \bullet \xrightarrow{3R_2} \bullet \xrightarrow{R_2 + 2R_4} \boldsymbol{I} \Rightarrow \det(\boldsymbol{A}) = -\tfrac{1}{3}.$

111 / 150

Determinant of 3×3 Matrix

• It is also expected that

$$\circ \det \begin{pmatrix} R_1 \\ R_2 \\ \vdots \\ R_n \end{pmatrix} + \det \begin{pmatrix} R'_1 \\ R_2 \\ \vdots \\ R_n \end{pmatrix} = \det \begin{pmatrix} R_1 + R'_1 \\ R_2 \\ \vdots \\ R_n \end{pmatrix}$$

- $\bullet \quad \text{Consider } 3 \times 3 \text{ matrix } \boldsymbol{A} = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}$
 - It is expected to have det(A):

$$\bullet \quad \begin{vmatrix} a_{11} & 0 & 0 \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} + \begin{vmatrix} 0 & a_{12} & 0 \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} + \begin{vmatrix} 0 & 0 & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix}$$

Determinant of 3×3 Matrix

If $a_{11} = 0$, the determinant is supposed to be 0. Suppose $a_{11} \neq 0$.

$$\begin{vmatrix} a_{11} & 0 & 0 \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} = a_{11} \begin{vmatrix} 1 & 0 & 0 \\ 0 & a_{22} & a_{23} \\ 0 & a_{32} & a_{33} \end{vmatrix} = a_{11} \begin{vmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{vmatrix}$$

$$\begin{pmatrix} a_{11} & 0 & 0 \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} \xrightarrow{\frac{1}{a_{11}} R_1} \begin{pmatrix} 1 & 0 & 0 \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}$$
$$\xrightarrow{\frac{R_2 + (-a_{21})R_1}{R_3 + (-a_{31})R_1}} \begin{pmatrix} 1 & 0 & 0 \\ 0 & a_{22} & a_{23} \\ 0 & a_{32} & a_{33} \end{pmatrix}.$$

We use the same elementary row operations:

$$\circ \quad \begin{pmatrix} 1 & 0 & 0 \\ 0 & a_{22} & a_{23} \\ 0 & a_{32} & a_{33} \end{pmatrix} \rightarrow \text{RREF and} \begin{pmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{pmatrix} \rightarrow \text{RREF}.$$

113 / 150

Determinant of 3×3 Matrix

• If
$$a_{12}=0$$
, the determinant is supposed to be 0 . Suppose $a_{12}\neq 0$.
$$\begin{vmatrix} 0 & a_{12} & 0 \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} = -a_{12} \begin{vmatrix} 1 & 0 & 0 \\ 0 & a_{21} & a_{23} \\ 0 & a_{31} & a_{33} \end{vmatrix} = -a_{12} \begin{vmatrix} a_{21} & a_{23} \\ a_{31} & a_{33} \end{vmatrix}$$

$$\begin{pmatrix} 0 & a_{12} & 0 \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} \xrightarrow{\frac{1}{a_{12}}R_1} \begin{pmatrix} 0 & 1 & 0 \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}$$

$$\xrightarrow{\frac{R_2 + (-a_{22})R_1}{R_3 + (-a_{32})R_1}} \begin{pmatrix} 0 & 1 & 0 \\ a_{21} & 0 & a_{23} \\ a_{31} & 0 & a_{33} \end{pmatrix} \xrightarrow{C_1 \leftrightarrow C_2} \begin{pmatrix} 1 & 0 & 0 \\ 0 & a_{21} & a_{23} \\ 0 & a_{31} & a_{33} \end{pmatrix}$$

We use the same elementary row operations:

$$\circ \quad \begin{pmatrix} 1 & 0 & 0 \\ 0 & a_{21} & a_{23} \\ 0 & a_{31} & a_{33} \end{pmatrix} \rightarrow \text{RREF and } \begin{pmatrix} a_{21} & a_{23} \\ a_{31} & a_{33} \end{pmatrix} \rightarrow \text{RREF.}$$

Determinant of 3×3 Matrix

• If $a_{13}=0$, the determinant is supposed to be 0. Suppose $a_{13}\neq 0$.

$$\begin{vmatrix} 0 & 0 & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} = a_{13} \begin{vmatrix} 1 & 0 & 0 \\ 0 & a_{21} & a_{22} \\ 0 & a_{31} & a_{32} \end{vmatrix} = a_{13} \begin{vmatrix} a_{21} & a_{22} \\ a_{31} & a_{33} \end{vmatrix}$$

$$\begin{pmatrix} 0 & 0 & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} \xrightarrow{\frac{1}{a_{13}}R_1} \begin{pmatrix} 0 & 0 & 1 \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}$$

$$\frac{R_2 + (-a_{23})R_1}{R_3 + (-a_{33})R_1} \xrightarrow{\begin{pmatrix} 0 & 0 & 1 \\ a_{21} & a_{22} & 0 \\ a_{31} & a_{32} & 0 \end{pmatrix}} \xrightarrow{C_1 \leftrightarrow C_3} \xrightarrow{C_2 \leftrightarrow C_3} \begin{pmatrix} 1 & 0 & 0 \\ 0 & a_{21} & a_{22} \\ 0 & a_{31} & a_{32} \end{pmatrix}$$

We use the same elementary row operations:

$$\circ \quad \begin{pmatrix} 1 & 0 & 0 \\ 0 & a_{21} & a_{22} \\ 0 & a_{31} & a_{32} \end{pmatrix} \rightarrow \mathsf{RREF} \text{ and } \begin{pmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{pmatrix} \rightarrow \mathsf{RREF}.$$

115 / 150

Determinant of 3×3 Matrix

 $\bullet \quad \text{Definition.} \quad \text{Let } \boldsymbol{A} = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}$

o
$$\det(\mathbf{A}) = a_{11} \begin{vmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{vmatrix} - a_{12} \begin{vmatrix} a_{21} & a_{23} \\ a_{31} & a_{33} \end{vmatrix} + a_{13} \begin{vmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{vmatrix}$$

- Notation. Let $A = (a_{ij})_{n \times n}$.
 - Let M_{ij} be the submatrix obtained from A by deleting the ith row and jth column.
 - If $\mathbf{A} = (a_{ij})_{3\times 3}$, then $\det(\mathbf{A})$ is given by
 - $a_{11} \det(\mathbf{M}_{11}) a_{12} \det(\mathbf{M}_{12}) + a_{13} \det(\mathbf{M}_{13})$
 - Let $A_{ij} = (-1)^{i+j} \det(\mathbf{M}_{ij})$, the (i,j)-cofactor of \mathbf{A} .
 - \circ If $\mathbf{A} = (a_{ij})_{3\times 3}$, then
 - $\det(\mathbf{A}) = a_{11}A_{11} + a_{12}A_{12} + a_{13}A_{13}$

• Let
$$\mathbf{B} = (b_{ij})_{3\times 3} = \begin{pmatrix} -3 & -2 & 4 \\ 4 & 3 & 1 \\ 0 & 2 & 4 \end{pmatrix}$$
.

$$\circ \quad (1,1)\text{-cofactor: } (-1)^{1+1} \begin{vmatrix} 3 & 1 \\ 2 & 4 \end{vmatrix} = 3 \cdot 4 - 1 \cdot 2 = 10.$$

 \circ (1, 2)-cofactor:

•
$$(-1)^{1+2} \begin{vmatrix} 4 & 1 \\ 0 & 4 \end{vmatrix} = -(4 \cdot 4 - 1 \cdot 0) = -16.$$

$$\circ \quad (1,3)\text{-cofactor: } (-1)^{1+3} \begin{vmatrix} 4 & 3 \\ 0 & 2 \end{vmatrix} = 4 \cdot 2 - 3 \cdot 0 = 8.$$

$$det(\mathbf{B}) = (-3) \cdot 10 + (-2) \cdot (-16) + 4 \cdot 8$$

= 34.

117 / 150

An Alternative Formula

$$\bullet \quad \mathsf{Let} \ \pmb{A} = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}.$$

$$\begin{aligned} \det(\boldsymbol{A}) &= a_{11} \begin{vmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{vmatrix} - a_{12} \begin{vmatrix} a_{21} & a_{23} \\ a_{31} & a_{33} \end{vmatrix} + a_{13} \begin{vmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{vmatrix} \\ &= a_{11} (a_{22}a_{33} - a_{23}a_{32}) - a_{12} (a_{21}a_{33} - a_{23}a_{31}) \\ &+ a_{13} (a_{21}a_{32} - a_{22}a_{31}) \\ &= (a_{11}a_{22}a_{33} + a_{12}a_{23}a_{31} + a_{13}a_{21}a_{32}) \\ &- (a_{11}a_{23}a_{32} + a_{12}a_{21}a_{33} + a_{13}a_{22}a_{31}). \end{aligned}$$

- o The positive terms come from the
 - 3 (broken) diagonals from the top left to bottom right.

The negative terms come from the

• 3 (broken) diagonals from the top right to bottom left.

• Let
$$\mathbf{B} = (b_{ij})_{3\times 3} = \begin{pmatrix} -3 & -2 & 4 \\ 4 & 3 & 1 \\ 0 & 2 & 4 \end{pmatrix}$$
.
$$\det(\mathbf{B}) = [(-3) \cdot 3 \cdot 4 + (-2) \cdot 1 \cdot 0 + 4 \cdot 4 \cdot 2] - [(-3) \cdot 1 \cdot 2 + (-2) \cdot 4 \cdot 4 + 4 \cdot 3 \cdot 0] = (-36 + 0 + 32) - (-6 - 32 + 0) = 34.$$

• Find the determinant of $I_3=\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$.

$$\det(\mathbf{I}_3) = (1 \cdot 1 \cdot 1 + 0 \cdot 0 \cdot 0 + 0 \cdot 0 \cdot 0) - (1 \cdot 0 \cdot 0 + 0 \cdot 0 \cdot 1 + 0 \cdot 1 \cdot 0) = 1 - 0 = 1.$$

119 / 150

Elementary Row Operation

$$\bullet \quad \text{Let } \pmb{A} = (a_{ij})_{3 \times 3} = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}.$$

$$\circ \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} \xrightarrow{cR_2} \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ ca_{21} & ca_{21} & ca_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} = \mathbf{B}.$$

$$\det(\mathbf{B}) = (a_{11}ca_{22}a_{33} + a_{12}ca_{23}a_{31} + a_{13}ca_{21}a_{31}) \\
- (a_{11}ca_{23}a_{32} + a_{12}ca_{21}a_{33} + a_{13}ca_{22}a_{31})$$

$$- (a_{11}ca_{23}a_{32} + a_{12}ca_{21}a_{33} + a_{13}ca_{22}a_{31})$$

$$= c \cdot [(a_{11}a_{22}a_{33} + a_{12}a_{23}a_{31} + a_{13}a_{21}a_{31})$$

$$- (a_{11}a_{23}a_{32} + a_{12}a_{21}a_{33} + a_{13}a_{22}a_{31})]$$

$$= c \det(\mathbf{A}).$$

In particular, $\boldsymbol{I} \xrightarrow{cR_i} \boldsymbol{E} \Rightarrow \det(\boldsymbol{E}) = c \cdot \det(\boldsymbol{I}) = c.$

$$\circ \quad \mathbf{A} \xrightarrow{cR_i} \mathbf{E} \mathbf{A} \Rightarrow \det(\mathbf{E} \mathbf{A}) = c \det(\mathbf{A}) = \det(\mathbf{E}) \det(\mathbf{A}).$$

Elementary Row Operation

$$\begin{array}{l} \bullet \quad \operatorname{Let} \boldsymbol{A} = (a_{ij})_{3 \times 3} = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}. \\ \circ \quad \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} \xrightarrow{\boldsymbol{R}_1 \leftrightarrow \boldsymbol{R}_3} \begin{pmatrix} a_{31} & a_{32} & a_{33} \\ a_{21} & a_{22} & a_{23} \\ a_{11} & a_{12} & a_{13} \end{pmatrix} = \boldsymbol{B}. \\ \\ \det(\boldsymbol{B}) = (a_{31}a_{22}a_{13} + a_{32}a_{23}a_{11} + a_{33}a_{21}a_{11}) \\ \quad - (a_{31}a_{23}a_{12} + a_{32}a_{21}a_{13} + a_{33}a_{22}a_{11}) \\ \quad = (-1) \cdot \left[(a_{11}a_{22}a_{33} + a_{12}a_{23}a_{31} + a_{13}a_{21}a_{32}) \\ \quad - (a_{11}a_{23}a_{32} + a_{12}a_{21}a_{33} + a_{13}a_{22}a_{31}) \right] \\ \quad = -\det(\boldsymbol{A}). \\ \\ \operatorname{In particular}, \boldsymbol{I} \xrightarrow{\boldsymbol{R}_i \leftrightarrow \boldsymbol{R}_j} \boldsymbol{E} \Rightarrow \det(\boldsymbol{E}) = -\det(\boldsymbol{I}) = -1. \\ \circ \quad \boldsymbol{A} \xrightarrow{\boldsymbol{R}_i \leftrightarrow \boldsymbol{R}_j} \boldsymbol{E} \boldsymbol{A} \Rightarrow \det(\boldsymbol{E}\boldsymbol{A}) = \det(\boldsymbol{E}) \det(\boldsymbol{A}). \end{array}$$

121 / 150

Elementary Row Operation

• Let
$$A = (a_{ij})_{3 \times 3} = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}$$
.

• $A \xrightarrow{R_2 + cR_1} \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} + ca_{11} & a_{22} + ca_{12} & a_{23} + ca_{13} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} = B$.

$$\det(B) = [a_{11}(a_{22} + ca_{12})a_{33} + a_{12}(a_{23} + ca_{13})a_{31} + a_{13}(a_{21} + ca_{11})a_{32}] - [a_{11}(a_{23} + ca_{13})a_{32} + a_{12}(a_{21} + ca_{11})a_{33} + a_{13}(a_{22} + ca_{12})a_{31}]$$

$$= \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot = \det(A).$$
In particular, $I \xrightarrow{R_i + cR_j} E \Rightarrow \det(E) = \det(I) = 1$.

• $A \xrightarrow{R_i + cR_j} EA \Rightarrow \det(EA) = \det(E) \det(A)$.

Elementary Row Operation

- Let A be a square matrix of order 3.
 - \circ For any elementary matrix E of order 3,
 - $\det(\mathbf{E}\mathbf{A}) = \det(\mathbf{E})\det(\mathbf{A})$.

This property can be used to find det(A).

- Let R be the reduced row-echelon form of A.
 - \circ Then $oldsymbol{R} = oldsymbol{E}_k oldsymbol{E}_{k-1} \cdots oldsymbol{E}_2 oldsymbol{E}_1 oldsymbol{A}, oldsymbol{E}_i$ elementary.

If A is invertible, R = I, and det(R) = 1.

123 / 150

Elementary Row Operation

- Let \boldsymbol{A} be a square matrix of order 3.
 - \circ For any elementary matrix E of order 3,
 - $\det(\mathbf{E}\mathbf{A}) = \det(\mathbf{E}) \det(\mathbf{A})$.

This property can be used to find det(A).

- ullet Let R be the reduced row-echelon form of A.
 - \circ Then $oldsymbol{R} = oldsymbol{E}_k oldsymbol{E}_{k-1} \cdots oldsymbol{E}_2 oldsymbol{E}_1 oldsymbol{A}, \, oldsymbol{E}_i$ elementary.

$$\det(\mathbf{R}) = \det(\mathbf{E}_k) \det(\mathbf{E}_{k-1}) \cdots \det(\mathbf{E}_2) \det(\mathbf{E}_1) \det(\mathbf{A}).$$

If A is singular, then the last row of R is zero.

$$\circ \quad \mathbf{R} \xrightarrow{2R_3} \mathbf{R} \Rightarrow 2\det(\mathbf{R}) = \det(\mathbf{R}) \Rightarrow \det(\mathbf{R}) = 0.$$

Note that $det(E) \neq 0$ for any elementary matrix E.

• We must have $\det(\mathbf{A}) = 0$.

• Let
$$A = \begin{pmatrix} -3 & -2 & 4 \\ 4 & 3 & 1 \\ 0 & 2 & 4 \end{pmatrix}$$
.

$$A \xrightarrow{R_2 + \frac{4}{3}R_1} \bullet \xrightarrow{R_3 + (-6)R_2} \bullet \xrightarrow{-\frac{1}{3}R_1} \bullet \xrightarrow{3R_2} \bullet$$

$$\xrightarrow{-\frac{1}{34}R_3} \bullet \xrightarrow{E_5} \bullet \xrightarrow{R_1 + \frac{4}{3}R_3} \bullet \xrightarrow{R_2 + (-19)R_3} \bullet \xrightarrow{R_1 + (-\frac{2}{3}R_2)} I.$$

- $o \det(\mathbf{E}_i) = 1 \text{ if } i = 1, 2, 6, 7, 8.$
- $\circ \det(\mathbf{E}_3) = -\frac{1}{3}, \det(\mathbf{E}_4) = 3, \det(\mathbf{E}_5) = -\frac{1}{34}.$

$$\det(\mathbf{A}) = [\det(\mathbf{E}_1) \cdots \det(\mathbf{E}_8)]^{-1} = (\frac{1}{34})^{-1} = 34.$$

• We will show that in order to find $\det(\mathbf{A})$ it suffices to use the Gaussian elimination to get a row-echelon form of \mathbf{A} .

125 / 150

Determinant

- **Definition.** Let $A = (a_{ij})_{n \times n}$. Its determinant is:
 - \circ If n=1, define $\det(\mathbf{A})=a_{11}$.
 - $\circ \quad \text{If } n>1 \text{, let } A_{ij} \text{ be its } (i,j) \text{-cofactor, define} \\$
 - $\det(\mathbf{A}) = a_{11}A_{11} + a_{12}A_{12} + \dots + a_{1n}A_{1n}$.

$$\bullet \quad \textbf{Example.} \quad \text{Let } \boldsymbol{A} = (a_{ij})_{4\times 4} = \begin{pmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{33} & a_{34} \\ a_{41} & a_{42} & a_{43} & a_{44} \end{pmatrix}$$

$$\det(\mathbf{A}) = a_{11} \begin{vmatrix} a_{22} & a_{23} & a_{24} \\ a_{32} & a_{33} & a_{34} \\ a_{42} & a_{43} & a_{44} \end{vmatrix} - a_{12} \begin{vmatrix} a_{21} & a_{23} & a_{24} \\ a_{31} & a_{33} & a_{34} \\ a_{41} & a_{43} & a_{44} \end{vmatrix} + a_{13} \begin{vmatrix} a_{21} & a_{22} & a_{24} \\ a_{31} & a_{32} & a_{34} \\ a_{41} & a_{42} & a_{44} \end{vmatrix} - a_{14} \begin{vmatrix} a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \\ a_{41} & a_{42} & a_{43} \end{vmatrix}.$$

Determinant

 $\bullet \quad \textbf{Example.} \quad \text{Find } \det(\boldsymbol{C}) \text{ if } \boldsymbol{C} = \begin{pmatrix} 0 & -1 & 2 & 0 \\ 2 & -3 & 3 & -2 \\ 0 & 2 & 4 & 0 \\ 0 & 0 & 2 & -1 \end{pmatrix}.$

$$\det(C) = 0 \cdot \begin{vmatrix} -3 & 3 & -2 \\ 2 & 4 & 0 \\ 0 & 2 & -1 \end{vmatrix} - (-1) \cdot \begin{vmatrix} 2 & 3 & -2 \\ 0 & 4 & 0 \\ 0 & 2 & -1 \end{vmatrix} + 2 \cdot \begin{vmatrix} 2 & -3 & -2 \\ 0 & 2 & 0 \\ 0 & 0 & -1 \end{vmatrix} - 0 \cdot \begin{vmatrix} 2 & -3 & 3 \\ 0 & 2 & 4 \\ 0 & 0 & 2 \end{vmatrix} = 0 \cdot 10 - (-1) \cdot (-8) + 2 \cdot (-4) - 0 \cdot 8 = -16.$$

• Warning: The "diagonal expansion" of det(A) for 2×2 or 3×3 matrices is no longer valid if the order ≥ 4 .

127 / 150

Properties

- **Theorem.** det(I) = 1. For any square matrices,
 - $\circ \quad \text{If } {\pmb{A}} \xrightarrow{cR_i} {\pmb{B}} \text{, then } \det({\pmb{B}}) = c\det({\pmb{A}}).$
 - In particular, If $I \xrightarrow{cR_i} E$, then $\det(E) = c$.
 - $\circ \quad \text{If } \boldsymbol{A} \xrightarrow{R_i \leftrightarrow R_j} \boldsymbol{B} \text{, then } \det(\boldsymbol{B}) = -\det(\boldsymbol{A}).$
 - ullet In particular, if $m{I} \xrightarrow{R_i \leftrightarrow R_j} m{E}$, then $\det(m{E}) = -1$.
 - $\circ \quad \text{If } \boldsymbol{A} \xrightarrow{R_i + cR_j} \boldsymbol{B} \text{, then } \det(\boldsymbol{B}) = \det(\boldsymbol{A}).$
 - In particular, if $m{I} \xrightarrow{R_i + cR_j} m{E}$, then $\det(m{E}) = 1$.
- ullet Theorem. Let A be a square matrix.
 - \circ For any elementary matrix E of the same order,
 - $\det(\mathbf{E}\mathbf{A}) = \det(\mathbf{E})\det(\mathbf{A})$.

- Theorem. Suppose a square matrix A has a zero row.
 - \circ Then $\det(\mathbf{A}) = 0$.

Proof. Suppose the ith row of square matrix A is 0.

$$\circ \quad \mathbf{A} \xrightarrow{2R_i} \mathbf{A} \Rightarrow \det(\mathbf{A}) = 2\det(\mathbf{A}) \Rightarrow \det(\mathbf{A}) = 0.$$

- Suppose square matrices A and B are row equivalent.
 - \circ There exist elementary matrices $m{E}_1, m{E}_2, \ldots, m{E}_k$ s.t.
 - $B = E_k \cdots E_2 E_1 A$.

$$\det(\boldsymbol{B}) = \det(\boldsymbol{E}_k) \cdots \det(\boldsymbol{E}_2) \det(\boldsymbol{E}_1) \det(\boldsymbol{A}).$$

Note that $\det(\boldsymbol{E}) \neq 0$ for every elementary matrix \boldsymbol{E} .

- $\circ \det(\mathbf{A}) = 0 \Leftrightarrow \det(\mathbf{B}) = 0.$
- Equivalently, $det(\mathbf{A}) \neq 0 \Leftrightarrow det(\mathbf{B}) \neq 0$.

129 / 150

Properties

- Theorem. Suppose a square matrix A has a zero row.
 - \circ Then $\det(\mathbf{A}) = 0$.

Proof. Suppose the *i*th row of square matrix A is 0.

$$\circ \quad \mathbf{A} \xrightarrow{2R_i} \mathbf{A} \Rightarrow \det(\mathbf{A}) = 2\det(\mathbf{A}) \Rightarrow \det(\mathbf{A}) = 0.$$

- Theorem. $det(A) = 0 \Leftrightarrow A$ is singular.
 - Equivalently, $\det(\mathbf{A}) \neq 0 \Leftrightarrow \mathbf{A}$ is invertible.

Proof. Suppose A is invertible. Then

- \circ \boldsymbol{A} is row equivalent to \boldsymbol{I} .
 - $\det(\mathbf{I}) = 1 \neq 0 \Rightarrow \det(\mathbf{A}) \neq 0$.

Suppose A is singular. Then the RREF of A is not I.

• The RREF of \boldsymbol{A} has a zero row $\Rightarrow \det(\boldsymbol{A}) = 0$.

- Theorem. Let A, B be square matrices of the same size.
 - $\circ \quad \mathsf{Then} \ \det(\mathbf{AB}) = \det(\mathbf{A}) \det(\mathbf{B}).$

Proof. Suppose that A is invertible. Then

 $\circ \quad A = E_1 E_2 \cdots E_k$ for elementary matrices E_i .

$$\det(\mathbf{A}\mathbf{B}) = \det(\mathbf{E}_1\mathbf{E}_2 \cdots \mathbf{E}_k\mathbf{B})$$

$$= \det(\mathbf{E}_1) \det(\mathbf{E}_2) \cdots \det(\mathbf{E}_k) \det(\mathbf{B})$$

$$= \det(\mathbf{E}_1\mathbf{E}_2 \cdots \mathbf{E}_k) \det(\mathbf{B})$$

$$= \det(\mathbf{A}) \det(\mathbf{B}).$$

Suppose that A is singular. Then AB is singular.

 $\circ \quad \det(\mathbf{A}) = 0 \text{ and } \det(\mathbf{A}\mathbf{B}) = 0.$

Then $det(\mathbf{AB}) = 0 = det(\mathbf{A}) det(\mathbf{B})$.

131 / 150

Properties

• Theorem. For any square A, $det(A) = det(A^T)$.

Proof. Suppose A is singular.

- \circ Then $oldsymbol{A}^{\mathrm{T}}$ is also singular, because
 - $oldsymbol{A}^{\mathrm{T}}$ is invertible $\Rightarrow oldsymbol{A} = (oldsymbol{A}^{\mathrm{T}})^{\mathrm{T}}$ is invertible.

For this case, $\det(\mathbf{A}) = 0 = \det(\mathbf{A}^{\mathrm{T}})$.

Suppose A is invertible. Then

 $\circ \quad A = E_1 E_2 \cdots E_k$ for elementary matrices E_i .

Note that $\det(\boldsymbol{E}) = \det(\boldsymbol{E}^{\mathrm{T}})$ for elementary matrix \boldsymbol{E} .

$$\begin{aligned} \det(\boldsymbol{A}^{\mathrm{T}}) &= \det(\boldsymbol{E}_{k}^{\mathrm{T}} \cdots \boldsymbol{E}_{2}^{\mathrm{T}} \boldsymbol{E}_{1}^{\mathrm{T}}) \\ &= \det(\boldsymbol{E}_{k}^{\mathrm{T}}) \cdots \det(\boldsymbol{E}_{2}^{\mathrm{T}}) \det(\boldsymbol{E}_{1}^{\mathrm{T}}) \\ &= \det(\boldsymbol{E}_{k}) \cdots \det(\boldsymbol{E}_{2}) \det(\boldsymbol{E}_{1}) \\ &= \det(\boldsymbol{E}_{1}) \det(\boldsymbol{E}_{2}) \cdots \det(\boldsymbol{E}_{k}) \\ &= \det(\boldsymbol{E}_{1} \boldsymbol{E}_{2} \cdots \boldsymbol{E}_{k}) = \det(\boldsymbol{A}). \end{aligned}$$

- Theorem. Suppose $A = (a_{ij})_{n \times n}$ is upper triangular.
 - $\circ \quad \mathsf{Then} \ \det(\boldsymbol{A}) = a_{11} a_{22} \cdots a_{nn}.$
- Example.

$$\begin{vmatrix} 1 & 2 & 3 & 4 & 5 \\ 0 & 6 & 7 & 8 & 9 \\ 0 & 0 & 10 & 11 & 12 \\ 0 & 0 & 0 & 13 & 14 \\ 0 & 0 & 0 & 0 & 15 \end{vmatrix} = 1 \cdot 6 \cdot 10 \cdot 13 \cdot 15 = 11700.$$

- Remarks.
 - The result is also true for lower triangular matrices.
 - Note that a row-echelon form of a square matrix is always upper triangular.
 - To find the determinant using elementary row operation, it suffices to use Gaussian elimination to get a row-echelon form.

133 / 150

Properties

- Theorem. Suppose $A = (a_{ij})_{n \times n}$ is upper triangular.
 - $\circ \quad \mathsf{Then} \ \det(\boldsymbol{A}) = a_{11} a_{22} \cdots a_{nn}.$

Idea of Proof. Suppose that $a_{ii} \neq 0$ for all i = 1, ..., n.

o Illustration:

$$\boldsymbol{A} = \begin{pmatrix} a_{11} & * & * & * \\ 0 & a_{22} & * & * \\ 0 & 0 & a_{33} & * \\ 0 & 0 & 0 & a_{44} \end{pmatrix} \xrightarrow{\text{multiply } a_{ii}^{-1} \text{ to } R_i} \begin{pmatrix} 1 & * & * & * \\ 0 & 1 & * & * \\ 0 & 0 & 1 & * \\ 0 & 0 & 0 & 1 \end{pmatrix} = \boldsymbol{B}$$

$$\xrightarrow{\text{convert to RREF}} \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} = \boldsymbol{I}.$$

Therefore, $\det(\mathbf{A}) = a_{11} \cdots a_{nn} \det(\mathbf{I}) = a_{11} \cdots a_{nn}$.

- Theorem. Suppose $A = (a_{ij})_{n \times n}$ is upper triangular.
 - $\circ \quad \mathsf{Then} \; \det(\boldsymbol{A}) = a_{11} a_{22} \cdots a_{nn}.$

Idea of Proof. Suppose that $a_{ii} = 0$ for some i.

• Illustration: Assume that $a_{22}=0$ but $a_{33}\neq 0,\,a_{44}\neq 0.$

 \boldsymbol{A} is row equivalent to a singular matrix; $\det(\boldsymbol{A}) = 0 = a_{11} \cdots a_{nn}$.

135 / 150

Cofactor Expansion

- **Theorem.** Let A be a square matrix of order n.
 - \circ Let A_{ij} denote the (i,j)-cofactor of \boldsymbol{A} .

Then for any i and j,

$$\circ$$
 det(\mathbf{A}) = $a_{i1}A_{i1} + a_{i2}A_{i2} + \cdots + a_{in}A_{in}$.

$$\circ \det(\mathbf{A}) = a_{1j}A_{1j} + a_{2j}A_{2j} + \dots + a_{nj}A_{nj}.$$

Idea of Proof. Suppose A is 4×4 . Let $B = (b_{ij})$ be obtained from A by

 $\circ \quad \text{Moving the 4th row to the top. Then $b_{1j}=a_{4j}$.}$

$$\bullet \quad \boldsymbol{A} = \begin{pmatrix} R_1 \\ R_2 \\ R_3 \\ R_4 \end{pmatrix} \xrightarrow{R_3 \leftrightarrow R_4, R_2 \leftrightarrow R_3, R_2 \leftrightarrow R_1} \begin{pmatrix} R_4 \\ R_1 \\ R_2 \\ R_3 \end{pmatrix} = \boldsymbol{B}.$$

So $\det(\mathbf{B}) = (-1)^{4-1} \det(\mathbf{A})$.

Cofactor Expansion

- Idea of Proof. Suppose A is 4×4 . Let $B = (b_{ij})$ be obtained from A by
 - Moving the 4th row to the top. Then $b_{1j} = a_{4j}$.

$$\bullet \quad \boldsymbol{A} = \begin{pmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{33} & a_{34} \\ a_{41} & a_{42} & a_{43} & a_{44} \end{pmatrix} \dashrightarrow \begin{pmatrix} a_{41} & a_{42} & a_{43} & a_{44} \\ a_{11} & a_{12} & a_{13} & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{33} & a_{34} \end{pmatrix} = \boldsymbol{B}.$$

So
$$\det(\mathbf{B}) = (-1)^{4-1} \det(\mathbf{A})$$
.

The submatrix obtained from B by deleting its 1st row and jth column is the same as that obtained from A by deleting its 4th row and jth column, say M_{ij} .

- \circ Let B_{ij} be the (i,j)-cofactor of \boldsymbol{B} .
 - $B_{1j} = (-1)^{1+j} \det(\mathbf{M}_{ij}), A_{4j} = (-1)^{4+j} \det(\mathbf{M}_{ij}).$

So
$$B_{1j}=(-1)^{4-1}A_{4j}, j=1,\ldots,n.$$

137 / 150

Cofactor Expansion

- **Proof.** Fix i. Let $B = (b_{ij})$ be obtained from A by
 - Moving the *i*th row to the top.

Then $b_{1j} = a_{ij}$, $B_{1j} = (-1)^{i-1} A_{ij}$ for any j.

$$\det(\mathbf{A}) = (-1)^{i-1} \det(\mathbf{B})$$

$$= (-1)^{i-1} \cdot (b_{11}B_{11} + b_{12}B_{12} + \dots + b_{1n}B_{1n})$$

$$= (-1)^{i-1} \cdot [a_{i1}(-1)^{i-1}A_{i1} + a_{i2}(-1)^{i-1}A_{i2} + \dots + a_{in}(-1)^{i-1}A_{in}]$$

$$= (-1)^{2i-2}(a_{i1}A_{i1} + a_{i2}A_{i2} + \dots + a_{in}A_{in})$$

$$= a_{i1}A_{i1} + a_{i2}A_{i2} + \dots + a_{in}A_{in}.$$

The is called the **cofactor expansion along the** *i***th row**.

• The proof for the cofactor expansion along the jth column is left as exercises. (Hint: Consider A^{T} .)

Cofactor Expansion

- In evaluating the determinant using cofactor expansion,
 - o expand along the row or column with the most zeros.
- $\bullet \quad \textbf{Example.} \quad \pmb{A} = \left(\begin{array}{cccc} \pmb{0} & -1 & 2 & 0 \\ \pmb{2} & -3 & 3 & -2 \\ \pmb{0} & 2 & 4 & 0 \\ \pmb{0} & 0 & 2 & -1 \end{array} \right).$

$$\det(\mathbf{A}) = a_{11}A_{11} + a_{21}A_{21} + a_{31}A_{31} + a_{41}A_{41}$$

$$= 2 \cdot (-1)^{2+1} \begin{vmatrix} -1 & 2 & 0 \\ 2 & 4 & 0 \\ 0 & 2 & -1 \end{vmatrix}$$

$$= -2 \cdot (-1) \cdot (-1)^{3+3} \begin{vmatrix} -1 & 2 \\ 2 & 4 \end{vmatrix}$$

$$= -16.$$

139 / 150

Finding Determinant

- Find det(A) if A is a square matrix of order n.
 - If A has a zero row/column, then det(A) = 0.
 - If \mathbf{A} is triangular, $\det(\mathbf{A}) = a_{11} \cdots a_{nn}$.
 - \circ Suppose that A is not triangular.
 - If n = 2, use formula $\det(\mathbf{A}) = a_{11}a_{22} a_{12}a_{21}$.
 - If a row/coln has many 0, use cofactor expansion.
 - Otherwise, use ele. row operations to get REF:
 - $\circ \det(\mathbf{E}\mathbf{A}) = \det(\mathbf{E})\det(\mathbf{A}).$
- Note the following formulas (exercises for the last two):
 - $\circ \det(\mathbf{A}) = \det(\mathbf{A}^{\mathrm{T}}).$
 - $\circ \det(\mathbf{A}\mathbf{B}) = \det(\mathbf{A})\det(\mathbf{B}).$
 - $\circ \det(c\mathbf{A}) = c^n \det(\mathbf{A})$, where \mathbf{A} is $n \times n$.
 - $\circ \det(\mathbf{A}^{-1}) = \det(\mathbf{A})^{-1}$ if \mathbf{A} is invertible.

 $\bullet \quad \mathsf{Find} \ \det({\boldsymbol A}), \, \mathsf{where} \ {\boldsymbol A} = \begin{pmatrix} 3 & -1 & 1 & 1 \\ 3 & -1 & 2 & 1 \\ 0 & 2 & 4 & 0 \\ 0 & 0 & 2 & -1 \end{pmatrix}.$

$$\begin{pmatrix} 3 & -1 & 1 & 1 \\ 3 & -1 & 2 & 1 \\ 0 & 2 & 4 & 0 \\ 0 & 0 & 2 & -1 \end{pmatrix} \xrightarrow{R_2 + (-1)R_1} \begin{pmatrix} 3 & -1 & 1 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 2 & 4 & 0 \\ 0 & 0 & 2 & -1 \end{pmatrix}$$

$$\xrightarrow{R_2 \leftrightarrow R_3} \begin{pmatrix} 3 & -1 & 1 & 1 \\ 0 & 2 & 4 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 2 & -1 \end{pmatrix} \xrightarrow{R_4 + (-2)R_3} \begin{pmatrix} 3 & -1 & 1 & 1 \\ 0 & 2 & 4 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & -1 \end{pmatrix} = \boldsymbol{B}.$$

- $\circ \det(\mathbf{B}) = 3 \cdot 2 \cdot 1 \cdot (-1) = -6.$
 - $\det(\mathbf{A}) = [\det(\mathbf{E}_1) \det(\mathbf{E}_2) \det(\mathbf{E}_3)]^{-1} \det(\mathbf{B}) = 6.$

141 / 150

Examples

- Find $\det(\boldsymbol{A})$, where $\boldsymbol{A} = \begin{pmatrix} 3 & -1 & 1 & 1 \\ 3 & -1 & 2 & 1 \\ 0 & 2 & 4 & 0 \\ \hline 0 & 0 & 2 & -1 \end{pmatrix}$.
 - $\quad \text{expand along the 4th row: } \det(\boldsymbol{A}) = (-1)(-6) = 6.$
 - $\bullet \quad 2 \cdot (-1)^{4+3} \begin{vmatrix} 3 & -1 & 1 \\ 3 & -1 & 1 \\ 0 & 2 & 0 \end{vmatrix} + (-1) \cdot (-1)^{4+4} \begin{vmatrix} 3 & -1 & 1 \\ 3 & -1 & 2 \\ 0 & 2 & 4 \end{vmatrix}$
 - $\begin{vmatrix} 3 & -1 & 1 \\ 3 & -1 & 1 \\ 0 & 2 & 0 \end{vmatrix} \xrightarrow{R_2 + (-1)R_1} \begin{vmatrix} 3 & -1 & 1 \\ 0 & 0 & 0 \\ 0 & 2 & 0 \end{vmatrix} = 0$ $\begin{vmatrix} 3 & -1 & 1 \\ 3 & -1 & 1 \\ 3 & -1 & 2 \\ 0 & 2 & 4 \end{vmatrix} = 3 \cdot \begin{vmatrix} -1 & 2 \\ 2 & 4 \end{vmatrix} 3 \begin{vmatrix} -1 & 1 \\ 2 & 4 \end{vmatrix} = -6.$

$$\bullet \quad \text{Let } \pmb{A} = \begin{pmatrix} -3 & -2 & 4 \\ 4 & 3 & 1 \\ 0 & 2 & 4 \end{pmatrix} \text{ and } \pmb{B} = \begin{pmatrix} 1 & 0 & 1 \\ 0 & -1 & 0 \\ 1 & 0 & 2 \end{pmatrix}.$$

- It is given that $\det(\mathbf{A}) = 34$ and $\det(\mathbf{B}) = -1$.
- 1. $\det(\mathbf{A}^{T}) = \det(\mathbf{A}) = 34$.
- 2. $det(2\mathbf{A}) = 2^3 det(\mathbf{A}) = 8 \cdot 34 = 272.$
- 3. $\det(\mathbf{A}^{-1}) = [\det(\mathbf{A})]^{-1} = \frac{1}{34}$.
- 4. $\det(AB) = \det(A) \det(B) = 34 \cdot (-1) = -34$.
- 5. $\det(\mathbf{B}\mathbf{A}) = \det(\mathbf{B}) \det(\mathbf{A}) = (-1) \cdot 34 = -34.$

143 / 150

Adjoint Matrix

- **Definition.** Let A be a square matrix of order n. The (classical) adjoint (or adjugate, or adjunct) of A is
 - $\circ \quad \boxed{\mathbf{adj}(A) = (A_{ji})_{n \times n}}$

where A_{ij} is the (i,j)-cofactor of ${m A}$.

- Example. Let $A=egin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}$. Then

 - $\begin{array}{ll} \circ & A_{11}=a_{22}, A_{12}=-a_{21}, A_{21}=-a_{12}, A_{22}=a_{11}. \\ \\ \circ & \mathbf{adj}(\mathbf{A})=\begin{pmatrix} A_{11} & A_{21} \\ A_{12} & A_{22} \end{pmatrix}=\begin{pmatrix} a_{22} & -a_{12} \\ -a_{21} & a_{11} \end{pmatrix}. \end{array}$

Recall that if A is invertible, then

$$\circ \quad \boldsymbol{A}^{-1} = \frac{1}{a_{11}a_{22} - a_{12}a_{21}} \begin{pmatrix} a_{22} & -a_{12} \\ -a_{21} & a_{11} \end{pmatrix}.$$

It is conjectured that $A^{-1} = [\det(A)]^{-1} \operatorname{adj}(A)$.

Adjoint Matrix

- Theorem. Let A be a square matrix. Then
 - $\circ \quad \mathbf{A}[\mathbf{adj}(\mathbf{A})] = \det(\mathbf{A})\mathbf{I}.$

Proof. Let $A[adj(A)] = (c_{ij})$. Then

$$\circ$$
 $c_{ij} = a_{i1}A_{j1} + a_{i2}A_{j2} + \dots + a_{in}A_{jn}.$

Let
$$i = j$$
. Then $c_{ii} = a_{i1}A_{i1} + \cdots + a_{in}A_{in} = \det(\mathbf{A})$.

Suppose that $i \neq j$. Let B be the matrix obtained from A by replacing jth row by the ith row.

$$\circ \quad \boldsymbol{B} \xrightarrow{R_i \leftrightarrow R_j} \boldsymbol{B} \Rightarrow \det(\boldsymbol{B}) = -\det(\boldsymbol{B}) \Rightarrow \det(\boldsymbol{B}) = 0.$$

$$c_{ij} = a_{i1}A_{j1} + a_{i2}A_{j2} + \dots + a_{in}A_{jn}$$

= $b_{j1}B_{j1} + b_{j2}B_{j2} + \dots + b_{jn}B_{jn}$
= $\det(\mathbf{B}) = 0$.

Therefore, A[adj(A)] = det(A)I.

145 / 150

Adjoint Matrix

- ullet Theorem. Let A be a square matrix. Then
 - $\circ \quad \boldsymbol{A}[\mathbf{adj}(\boldsymbol{A})] = \det(\boldsymbol{A})\boldsymbol{I}.$
 - $\circ \ [\mathbf{adj}(A)]A = \det(A)I$. (Exercise!)

If A is invertible, then $A^{-1} = \frac{1}{\det(A)} \operatorname{adj}(A)$.

- **Exercises.** Let A, B be invertible matrices of order n.
 - $\circ \quad \mathsf{Find} \ [\mathbf{adj}(\mathbf{A})]^{-1} \ \mathsf{and} \ \mathbf{adj}(\mathbf{A}^{-1}).$
 - \circ Find det(adj(A)) and adj(adj(A)).
 - Prove that adj(AB) = adj(B) adj(A).
- ullet Challenging Problems. Suppose A and B are not necessarily invertible.
 - \circ Find det(adj(A)) and adj(adj(A)).
 - Is it true that adj(AB) = adj(B) adj(A)?

• Let
$$A = \begin{pmatrix} 1 & -1 & 1 \\ 0 & -1 & 0 \\ 1 & 0 & 3 \end{pmatrix}$$
. $\det(A) = (-1) \begin{vmatrix} 1 & 1 \\ 1 & 3 \end{vmatrix} = -2$.

$$\mathbf{adj}(A) = \begin{pmatrix} A_{11} & A_{21} & A_{31} \\ A_{12} & A_{22} & A_{32} \\ A_{13} & A_{23} & A_{33} \end{pmatrix}$$

$$= \begin{pmatrix} \begin{vmatrix} -1 & 0 \\ 0 & 3 \end{vmatrix} & -\begin{vmatrix} -1 & 1 \\ 0 & 3 \end{vmatrix} & -\begin{vmatrix} -1 & 1 \\ 0 & 3 \end{vmatrix} & -\begin{vmatrix} 1 & 1 \\ -1 & 0 \end{vmatrix}$$

$$= \begin{pmatrix} \begin{vmatrix} -1 & 0 \\ 0 & 3 \end{vmatrix} & \begin{vmatrix} 1 & 1 \\ 0 & 3 \end{vmatrix} & -\begin{vmatrix} 1 & 1 \\ 0 & 0 \end{vmatrix} \\ \begin{vmatrix} 1 & 3 \end{vmatrix} & \begin{vmatrix} 1 & 1 \\ 0 & 0 \end{vmatrix} \\ \begin{vmatrix} 0 & -1 \\ 1 & 0 \end{vmatrix} & -\begin{vmatrix} 1 & -1 \\ 1 & 0 \end{vmatrix} & \begin{vmatrix} 1 & -1 \\ 0 & -1 \end{vmatrix} \end{pmatrix} = \begin{pmatrix} -3 & 3 & 1 \\ 0 & 2 & 0 \\ 1 & -1 & -1 \end{pmatrix}$$

$$A^{-1} = \frac{1}{\det(A)} \operatorname{adj}(A) = \begin{pmatrix} \frac{3}{2} & -\frac{3}{2} & -\frac{1}{2} \\ 0 & -1 & 0 \\ -\frac{1}{2} & \frac{1}{2} & \frac{1}{2} \end{pmatrix}$$

147 / 150

Cramer's Rule

- Let $A = (a_{ij})_{n \times n}$ be an invertible matrix.
 - \circ The linear system Ax=b has a unique solution
 - $x = A^{-1}b$.

Recall that
$${m A}^{-1}=rac{1}{\det({m A})}[{f adj}({m A})].$$
 Let ${m b}=(b_i)_{n imes 1}.$

$$\circ \ x_j = \frac{1}{\det(\mathbf{A})} (A_{1j}b_1 + A_{2j}b_2 + \dots + A_{nj}b_n).$$

Fix j, and let A_j be the matrix obtained by replacing the jth column of A by b. Then

- o b_i is the (i, j)-entry of A_j .
- \circ A_{ij} is the (i,j)-cofactor of ${m A}_j$.

Therefore,
$$x_j = \frac{\det(\boldsymbol{A}_j)}{\det(\boldsymbol{A})}, j = 1, \dots, n.$$

Cramer's Rule

- **Cramer's Rule.** Let A be an invertible matrix of order n.
 - o For every column matrix b of size $n \times 1$, the linear system Ax = b has a unique solution

•
$$x = \frac{1}{\det(A)} \begin{pmatrix} \det(A_1) \\ \vdots \\ \det(A_n) \end{pmatrix}$$
,

 $m{A}_j$ is obtained from $m{A}$ by replacing its jth coln by $m{b}$.

- Example. Let $A=\begin{pmatrix} a_{11}&a_{12}\\a_{21}&a_{22}\end{pmatrix}$ and $b=\begin{pmatrix} b_1\\b_2\end{pmatrix}$.
 - \circ Suppose that A is invertible. Ax=b implies

•
$$x = \frac{1}{\begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix}} \begin{pmatrix} \begin{vmatrix} b_1 & a_{12} \\ b_2 & a_{22} \end{vmatrix} \\ \begin{vmatrix} a_{11} & b_1 \\ a_{21} & b_2 \end{vmatrix} \end{pmatrix}$$

149 / 150

Example

•
$$\begin{pmatrix} 1 & 1 & 3 \\ 2 & -2 & 2 \\ 3 & 9 & 0 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ 4 \\ 3 \end{pmatrix} . \begin{vmatrix} 1 & 1 & 3 \\ 2 & -2 & 2 \\ 3 & 9 & 0 \end{vmatrix} = 60.$$

$$x = \frac{\begin{vmatrix} 0 & 1 & 3 \\ 4 & -2 & 2 \\ 3 & 9 & 0 \end{vmatrix}}{60} = \frac{132}{60} = 2.2$$

$$y = \frac{\begin{vmatrix} 1 & 0 & 3 \\ 2 & 4 & 2 \\ 3 & 3 & 0 \end{vmatrix}}{60} = \frac{-24}{60} = -0.4$$

$$z = \frac{\begin{vmatrix} 1 & 1 & 0 \\ 2 & -2 & 4 \\ 3 & 9 & 3 \end{vmatrix}}{60} = \frac{-36}{60} = -0.6$$