Análisis de Coincidencia y Adherencia de Trayectorias a Plan de Vuelo utilizando Inteligencia Artificial

AdherNet

Autor - Rubén González Velasco

Tutor académico - Antonio Jiménez Martín

Tutor interno CRIDA - Sergi Mas Pujol

¿Qué es CRIDA A.I.E?

CRIDA A.I.E. es una agrupación de interés económico sin ánimo de lucro establecida por **ENAIRE**, la Universidad Politécnica de Madrid (**UPM**) e Ingeniería y Economía del Transporte, S.A. (**INECO**).

CRIDA tiene por misión **mejorar** la eficiencia y prestaciones del sistema de **gestión de tráfico aéreo** español por medio del desarrollo de ideas y proyectos de I+D+i.

Acuerdos de Colaboración:

Introducción

¿Por qué necesitamos medidas de similitud de trayectorias?

(del 1 de febrero al 31 de marzo de 2024)

Introducción

¿Por qué necesitamos medidas de similitud de trayectorias?

Estado del arte

¿Qué medidas de similitud de trayectorias existen?

¿Automáticamente? → ♀ ✓ ✓ Existen algoritmos bastante exactos, pero son lentos

Medidas Tradicionales Para trayectorias generales

Muchas:

- Fréchet (1994)
- **DTW** (2005)
- EDwP (2015)
- CDDS (2021)

Inteligencia Artificial → <a> ?
Existen métodos para comparar trayectorias, pero ninguno encaja

Medidas
Aprendidas
con
Inteligencia
Artificial

Para trayectorias terrestres (Coches)

Muchas:

- t2vec (2018)
- T3S (2021)
- TMN (2022)
- TrajCL (2023)
- RSTS (2023)

Para trayectorias aéreas Solo una:

• **TSAN** (Enero 2025)

Datos: Trayectorias

Trayectoria continua

Trayectoria discreta

donde cada punto tiene 4 dimensiones:

p = [tiempo, latitud, longitud, altitud]

Definición del Problema

Trayectorias similares

Trayectorias distintas

Planes de Vuelo y Trazas

Plan de vuelo → Intención operativa de un vuelo, parcial (arriba) o completa (abajo).

Ruta prevista, puntos de paso, tiempos estimados

- Inicial → Intención original
- Modificado → Modificaciones aprobadas por el control de tráfico antes del vuelo

Traza radar → ejecución efectiva del vuelo

Registra modificaciones por tráfico, decisiones del controlador o condiciones meteorológicas adversas

Métodos tradicionales: Emparejar puntos

Trayectorias similares

Trayectorias distintas

Métodos tradicionales: Sumar distancias

¿Unidades

de medida?

Trayectorias similares

Suma de distancias: 0.2 + 0.3 + 0.1 + 0.2 + 0.15 + 0.2 = 1.15 km

Distancias (km)

Trayectorias distintas

Suma de distancias:

$$0.5 + 2 + 1.5 + 2 + 3 + 2.5 + 3 + 3 = 17.5 \text{ km}$$

De distancia a similitud

Componente temporal

¿Qué hay que tener en cuenta al medir el tiempo?

Retraso Inicial

Un avión sale antes que el otro

Retraso en trayecto

Un avión hace el trayecto más rápido que el otro

Componente temporal

¿Qué hay que tener en cuenta al medir el tiempo?

DILATACIÓN TEMPORAL

Compresión o expansión del eje temporal

Etiquetas espacio-temporales

¿Qué hay que tener en cuenta al medir el tiempo?

Más interpretabilidad Menos interpretabilidad

Motivación

Caso de uso:

Emparejar 1000+ trayectorias de 2 listas

Miles de comparaciones

Problema:

Emparejar puntos es muy lento (varias horas)

$$\rightarrow O(n^2)$$

Propuesta:

Utilizar Redes de Neuronas para aproximar las distancias

$$\rightarrow \mathbf{0}(n)$$

Trayectoria discreta $\ T$

Embedding **e**

Entrenamiento

Evaluación del modelo

Datos de entrenamiento:

40.000 Pares de trayectorias:

- planes iniciales (tipo 1)
- planes finales (tipo 3)

Resultados de evaluación en 10.000 pares:

• Final test *MSE* : 11,4397

• Final test R^2 : 0,9796

AdherNet: Búsqueda en listas

Caso de uso: Emparejar 1000 planes con 1000 trazas

AdherNet: Búsqueda en listas

Caso de uso: Emparejar 1000 planes con 1000 trazas

	Emparejando puntos (DTW)	AdherNet
PAREJAS CORRECTAS	98.8 %	95.8 %
Pareja correcta en el top 5 del ranking	100 %	99.8 %
Ranking medio de la pareja correcta	1,092	1,106
Tiempo total	7,06 h	0x !! 11,40 s
	$O(1000^2)$	O (1000)

AdherNet: Búsqueda en listas

Caso de uso: Usar AdherNet para reducir espacio de búsqueda

Conclusiones

• Hay múltiples formas de medir la similitud de 2 trayectorias

 Es posible aproximar medidas de similitud de trayectorias con métodos de Inteligencia Artificial con bastante precisión, ahorrando mucho tiempo de computación.

• Las medidas de similitud sirven para **emparejar trayectorias automáticamente**. Otros posibles casos de uso:

- Combinar datos: ver que aerolíneas modifican mas los planes de vuelo
- Evaluación de datos sintéticos: validar modelos de predicción

Gracias por su atención

Análisis de Coincidencia y Adherencia de Trayectorias a Plan de Vuelo utilizando Inteligencia Artificial

UNIVERSIDAD POLITÉCNICA DE MADRID

