# **Problem Description**

Leaping Larry decided to make a laborious launcher for his luxury luge using a pulley and ramp system (see diagram). His method was to attach one end of a massless stretch-less rope to a barrel of rocks and to hold the other end of the rope he placed the rope over a massless frictionless pulley, and then walked down the ramp as far down as possible to point A (where L = h). When he sat in the luge, he accelerated up the ramp to point B and then launched off the top at the same angle as the ramp (all while releasing the rope and avoiding the pulley). He flew through the air as a projectile to point C, transitioning all of his speed into the horizontal direction, and eventually slid to a stop at point D.

#### Diagram



#### Givens

| Total mass of Larry and luge             | 27 (kg)           |
|------------------------------------------|-------------------|
| Total mass of barrel and rocks           | 42 (kg)           |
| Ramp angle above the horizontal          | 35 (deg)          |
| Coefficient of friction between luge and |                   |
| ramp                                     | .24               |
| Height of the ramp                       | 7.7 (m)           |
| Total horizontal distance from vertical  |                   |
| base of ramp to final location           | 45 (m)            |
| Coefficient of friction between luge and |                   |
| ground                                   | ???               |
|                                          | $a_2 = -(a_1)$    |
| Assumptions                              | $F_{TL} = F_{TB}$ |
|                                          |                   |

### Step 1:

Solve for the normal force of the luge in the perpendicular (j) direction.

$$\Sigma F_{j:}$$
  $F_N - F_g(\cos\Theta) = m_L a_1$   $F_N - 27(9.8)(\cos 35) = m_L(0)$   $F_N = 216.75 \text{ N}$ 

### Step 2:

Find the tension of the luge in the parallel (i) direction.

## Step 3:

Find the tension in the pulley.

$$\Sigma F_y$$
:  $F_{TB} - F_g = m_B a_2$ 

$$F_{TB} - m_B g = m_B a_2$$

$$F_{TB} = m_B g + m_B a_2$$

#### Step 4:

Solve for the acceleration of the luge at point B.

$$F_{TL} = F_{TB}$$

$$m_L g(\sin\Theta) - \mu F_N + m_L a_1 = m_B g + m_B a_2$$

$$m_L a_1 - m_B(-a_1) = m_B g - m_L g(\sin\Theta) - \mu F_N$$

$$a_1(27+42) = 42(9.8) - 27(9.8)(\sin35) - 216.748(.24)$$

$$69a_1 = 207.81$$

$$a_1 = 3.0118 \text{ m/s}^2$$

#### Step 5:

Find the velocity of the luge at point B.

$$\underline{V_{B:}} \quad v_{B^2} = v_{i^2} + 2(a_1)(\Delta y)$$

$$v_{B^2} = 0^2 + 2(3.0118)(7.7)$$

$$v_{B^2} = 46.3814$$

$$v_{B} = 6.8104 \text{ m/s}$$

### Step 6:

Find the time it takes for the luge to get from point B to point C.

$$\Delta y_{BC}$$
:  $\Delta y_{BC} = \frac{1}{2} at^2 + v_{yB}t + y_i$   
 $0 = \frac{1}{2} (-9.8)t^2 + 6.8104(\sin\Theta)t + 7.7$   
 $0 = -4.9t^2 + 3.90628t + 7.7$   
 $t = 1.714s$   $t = -0.9168s$ 

## Step 7:

Use the time to find the horizontal distance between point B and C.

$$\Delta x_{BC}$$
:  $\Delta x_{BC} = \frac{1}{2} at^2 + v_{xB}t + x_i$   
 $\Delta x = \frac{1}{2}(0)(1.714)^2 + 6.8104(\cos\Theta)(1.714) + 0$   
 $\Delta x_{BC} = 5.5787(1.714)$   
 $\Delta x_{BC} = 9.562m$ 

#### Step 8:

Find the horizontal distance between point C and point D.

$$\Delta x_{CD}$$
:  $\Delta x_{BD} - \Delta x_{BC} = \Delta x_{CD}$ 

$$45m - 9.562m = \Delta x_{CD}$$

$$\Delta x_{CD} = 35.438m$$

### Step 9:

Find the velocity at point C in the x direction.

VCx: 
$$v_{Cx}^2 = v_{Bx}^2 + 2(a_x)(\Delta x)$$
  
 $v_{Cx}^2 = 5.5787^2 + 2(0)(9.5621)$   
 $v_{Cx}^2 = 5.5787^2$   
 $v_{Cx} = 5.5787 \text{ m/s}$ 

#### Step 10:

Find the velocity at point C in the y direction.

VCy: 
$$v_{Cy}^2 = v_{By}^2 + 2(a_y)(\Delta y)$$
  
 $v_{Cy}^2 = 3.9063^2 + 2(9.8)(7.7)$   
 $v_{Cy}^2 = 166.18$   
 $v_{Cy} = 12.891 \text{ m/s}$ 

#### Step 11:

Find the overall velocity at point C.

Vc: 
$$v_{C^2} = v_{Cx}^2 + v_{Cy}^2$$
  
 $v_{C^2} = (5.5787^2 + 12.891^2)$   
 $v_{C^2} = 197.301$   
 $v_{C} = 14.046 \text{ m/s}$ 

# Step 12:

Find the acceleration at point C.

VC: 
$$v_D^2 = v_C^2 + 2(a_C)(\Delta x_{CD})$$
  
 $0^2 = 14.046^2 + 2(a_C)(35.438)$   
 $-197.301 = 70.876 a_C$   
 $a_C = -2.7838 \text{ m/s}$ 

# Step 13:

Find the normal force when the luge is at point C.

$$\begin{array}{ll} \underline{\sum F_y:} & F_N - F_g = m_L a_y \\ & F_N - m_L g = m_L(0) \\ & \underline{F_N = m_L g} \end{array}$$

# Step 14:

Find the coefficient of friction between the luge and the ground.

$$\begin{split} \underline{\Sigma} F_x &: \quad F_f = m_L a_C \\ \mu_G F_N &= m_L a_C \\ \mu_G m_L g &= m_L a_C \\ \mu_G g &= a_C \\ \mu_G &= \frac{a_C}{g} \\ \mu_G &= \frac{-2.7838}{-9.8} \\ \mu_G &= 0.2841 \end{split}$$

$$\mu_G = 0.2841$$

The coefficient of friction between the luge and the ground is 0.2841.