

IN THE CLAIMS

Please amend the claims as follows.

1. (Currently Amended) An electrochemical cell comprising a curable protonic polymer based electrolyte composition, wherein the electrolyte composition comprises:
 - a. between 10 wt% and 50 wt% of the protonic polymer comprising acidic groups for transporting protons;
 - b. between 10 wt% and 89 wt% of a monomer for dissolving the protonic polymer;
 - c. between 1 wt% and 60 wt% of a cross linking agent having at least two functionalities; and
 - d. wherein upon combining the protonic polymer, monomer and cross linking agent, a curable electrolyte solution is formed with at least 50 wt% of the above components based on the total weight percent of the formed solution; and
a plurality of electrodes that at least partially define and disposed within one or more interior walls of one or more channels of the electrochemical cell, in which wherein the electrolyte solution is disposed within the one or more channels one or more electrodes are in contact with the one or more channels.
2. (Previously Presented) The electrochemical cell of claim 1, further comprising a quantity of initiator sufficient to cure the composition when using a procedure comprising of photo-curing, thermal curing and combinations thereof.

3. (Previously Presented) The electrochemical cell of claim 1, wherein the acidic groups comprise sulfonic acid groups, phosphonic acid groups, carboxylic acid groups, or combinations thereof.
4. (Previously Presented) The electrochemical cell of claim 1, wherein the monomer is a vinyl monomer bearing an acidic group.
5. (Canceled).
6. (Previously Presented) The electrochemical cell of claim 1, wherein the crosslinking agent vinyl functionalities are divinyl derivatives of an organic compound.
7. (Previously Presented) The electrochemical cell of claim 6, wherein the organic compound is selected from the group consisting of an aliphatic, an aromatic, a heteroaromatic and combinations thereof.
8. (Previously Presented) The electrochemical cell of claim 6, wherein the organic compound is selected from the group consisting of sulfonic acid, sulfones, phosphates, phosphones, phosphonic acid, carboxylates, carboxylic acid, acrylates, methylacrylates, acrylamides, methacrylamides, and combinations thereof.
9. (Previously Presented) The electrochemical cell of claim 1, wherein the cross linking agent vinyl functionality is a trivinyl derivative of an organic compound.
10. (Previously Presented) The electrochemical cell of claim 9, wherein the organic compound is selected from the group consisting of sulfonic acid, sulfones, phosphates, phosphones, phosphonic acid, carboxylates, carboxylic acid, acrylates, methylacrylates, acrylamides, methacrylamides, and combinations thereof.

11. (Previously Presented) The electrochemical cell of claim 1, wherein the curable liquid electrolyte solution further comprises an elasticizing agent.
12. (Previously Presented) The electrochemical cell of claim 11, wherein the elasticizing agent is a polymerizable vinyl monomer to enhance the toughness of structure of the cured electrolyte.
13. (Previously Presented) The electrochemical cell of claim 1, consisting of:
 - a. between 20 wt% and 40 wt% of a protonic polymer comprising acidic groups for transporting protons;
 - b. between 20 wt% and 70 wt% of a monomer for dissolving the protonic polymer; and
 - c. between 5 wt% and 50 wt% of a cross linking agent having at least two vinyl functionalities.
14. (Withdrawn) A fuel cell with a curable electrolyte, wherein the curable electrolyte comprises:
 - a. between 10 wt% and 50 wt% of a protonic polymer comprising acidic groups for transporting protons;
 - b. between 10 wt% and 89 wt% of a polar monomer;
 - c. a polar solvent for dissolving the polar monomer;

- d. between 1 wt% and 60 wt% of a cross linking agent having at least two vinyl functionalities; and
 - e. wherein upon wherein upon combining the protonic polymer, polar vinyl monomer, polar solvent, and cross linking agent, a curable electrolyte solution is formed with at least 50 wt% of the above components based on the total weight percent of the formed solution.
15. (Withdrawn) The fuel cell of claim 14, wherein the polar solvent is water.
16. (Withdrawn) The fuel cell of claim 14, wherein the polar solvent is organic.
17. (Withdrawn) The fuel cell of claim 14, wherein the polar solvent comprises dimethylformamide, dimethylacetamide, n-methylpyrrolidinone and combinations thereof.
18. (Withdrawn) The fuel cell of claim 14, wherein the polar monomer is a vinyl monomer bearing an acidic group.
19. (Withdrawn) The fuel cell of claim 18, wherein the acidic group comprises a sulfonic acid group, a phosphonic acid group, a carboxylic acid group and combinations thereof.
20. (Withdrawn) The fuel cell of claim 14, wherein the cross linking agent is a divinyl derivative of an organic compound.
21. (Withdrawn) The fuel cell of claim 20, wherein the organic compound comprises an aliphatic, an aromatic, a heteroaromatic, and combinations thereof.
22. (Withdrawn) The fuel cell of claim 20, wherein the organic compound comprises a sulfonic acid, a sulfone, a phosphate, a phosphine, a phosphonic acid, a carboxylate, a

carboxylic acid, an acrylate, a methylacrylate, an acrylamide, a methacrylamide, and combinations thereof.

23. (Withdrawn) The fuel cell of claim 14, wherein the cross linking agent is a trivinyl derivative of an organic compound.
24. (Withdrawn) The fuel cell of claim 23, wherein the organic compound comprises sulfonic acid, phosphates, phosphonate acid, carboxylates, carboxylic acid, acrylates, methylacrylates, acrylamides, methacrylamides, and combinations thereof.
25. (Withdrawn) The fuel cell of claim 14, wherein the protonic polymer comprises sulfonic acid, carboxylic acid, and combinations thereof.
26. (Withdrawn) The fuel cell of claim 14, further comprising an elasticizing agent.
27. (Withdrawn) The fuel cell of claim 26, wherein the elasticizing agent is a polymerizable vinyl monomer to enhance the toughness of structure of the cured electrolyte.
28. (Withdrawn) The fuel cell of claim 14, further comprising an initiator usable when the electrolyte is cured by photo-curing, thermal curing, and combinations of thereof.
- 29.-35. (Canceled).
36. (Previously Presented) The electrochemical cell of claim 1, wherein the electrolyte composition further comprises a solvent.
37. (Previously Presented) The electrochemical cell of claim 36, wherein the solvent comprises water.

38. (Previously Presented) The electrochemical cell of claim 36, wherein the solvent comprises a high boiling point solvent.
39. (Previously Presented) The electrochemical cell of claim 38, wherein the high boiling point organic solvent comprises N, N-dimethylacetamide, (DMA).
40. (Canceled).
41. (Previously Presented) The electrochemical cell of claim 1, wherein the electrolyte composition is ionically bonded to the one or more electrodes.