泛函分析作业

1 第4周

问题 1.1. 设 X 是完备的度量空间, T 是 X 到 X 中的映射, 如果存在正整数 $m \in \mathbb{N}_+$ 以及常数 $\alpha \in [0,1)$ 使得对所有的 $x,y \in X$, 都有

$$d(T^m x, T^m y) \le \alpha \, d(x, y),$$

其中 T^m 表示映射T作用m次,则T在X中有且只有一个不动点 x^* ,特别地,迭代点列

$$x_0, x_1 = Tx_0, \cdots, x_n = Tx_{n-1}, \cdots,$$

在 (X,d) 中收敛于不动点 x^* .

证明 由条件可知映射 $T^m: X \to X$ 是压缩映射, 由于 X 完备, 根据压缩映射原理, T^m 在 X 上存在唯一的不动点 x^* , 即

$$x^* = T^m x^*. (1.1)$$

下证 x^* 也是映射 T 在 X 上的唯一的不动点.

由(1.1)式可得

$$Tx^* = T(T^m x^*) = T^{m+1} x^* = T^m(Tx^*),$$

所以 Tx^* 也是 T^m 的不动点. 根据 T^m 的不动点的唯一性, 就有 $Tx^* = x^*$, 所以 x^* 也是映射 T 的不动点. 若 $x \in X$ 也是映射 T 的不动点, 则

$$x = Tx, \ x = Tx = T(Tx) = T^{2}x, \cdots, x = T^{m}x,$$

即 x 也是 T^m 的不动点. 根据 T^m 的不动点的唯一性, 就有 $x^* = x$. 所以 x^* 是映射 T 在 X 上的唯一的不动点.

任取 $x_0 \in X$. 通过映射 T 构造迭代点列

$$x_0, x_1 = Tx_0, x_2 = Tx_1, \cdots, x_n = Tx_{n-1}, \cdots$$

任取

$$s \in \{0, 1, 2, \cdots, m-1\},\$$

令

$$y_0 = T^s x_0 = x_s,$$

 $y_1 = T^m y_0 = x_{m+2},$
 $y_2 = T^m y_1 = x_{2m+s},$
...,
 $y_n = T^m y_{n-1} = x_{nm+s},$

根据由于 T^m 是压缩映射, X 完备, 则迭代点列 y_n 收敛于 T^m 的不动点 x^* , 即

$$\lim_{n \to \infty} x_{nm+s} = x^*, \quad \forall s \in \{0, 1, 2, \cdots, m-1\}.$$

于是对任意 $\epsilon > 0$,以及任意 $s \in \{0,1,2,\cdots,m-1\}$,邻域 $U(x^*,\epsilon)$ 之外只含有点列 $\{x_{nm+s}\}_{n=0}^{\infty}$ 中的有限多项,将这些项的集合记为 A_s . 由于

$$\bigcup_{s=0}^{m-1} \bigcup_{n=0}^{\infty} \{x_{nm+s}\} = \bigcup_{n=0}^{\infty} \bigcup_{s=0}^{m-1} \{x_{nm+s}\} = \bigcup_{n=0}^{\infty} \{x_n\},$$

于是点列 $\{x_n\}$ 在邻域 $U(x^*,\epsilon)$ 之外的项的全体为有限集

$$\bigcup_{s=0}^{m-1} A_s,$$

所以

$$\lim_{n \to \infty} x_n = x^*.$$

任给 $\epsilon > 0$, 若点列 $\{x_n\}$ 在邻域 $U(x,\epsilon)$ 之外至多只有有限多项, 则称点列 $\{x_n\}$ 收敛于 x.

点列极限与其子列极限的转化思路, 可参考华东师大《数学分析(第四版·上册)》P27例8和P35-P36习题7(2)的证明.

问题 1.2 (Volterra 型线性积分方程解的存在唯一性问题). 设 $f \in C[a,b]$, 二元函数 k(t,s) 在 $[a,b] \times [a,b]$ 上连续. 利用上题的结论证明, 对任意 $\lambda \in \mathbb{R}$, 积分方程

$$\phi(t) - \lambda \int_0^t k(t, s)\phi(s) \, \mathrm{d}s = f(t), \quad t \in [a, b]$$
(1.2)

总存在唯一的连续函数解 $\phi \in C[a,b]$.

证明 任取 $\phi \in C[a,b]$, 定义 [a,b] 上的函数 $T\phi$:

$$(T\phi)(t) = f(t) + \lambda \int_a^t k(t,s)\phi(s) \,\mathrm{d}s, \quad t \in [a,b]. \tag{1.3}$$

由于 $\phi, f \in C[a, b], k(t, s)$ 在 $[a, b] \times [a, b]$ 上连续, 由上式可知 $T\phi \in C[a, b]$. 由此得到映射

$$T: C[a,b] \rightarrow C[a,b],$$

 $\phi \mapsto T\phi.$

显然, 积分方程(1.2)在 [a,b] 上的连续函数解等价于映射 T 在空间 C[a,b] 中的不动点. (下面验证 T 是否是压缩映射, 若不是, 继续验证 T^m 是否是压缩映射) 对任意 $\phi_1,\phi_2\in C[a,b]$ 以及任意 $t\in [a,b]$, 由(1.3)可得

$$|(T\phi_1)(t) - (T\phi_2)(t)|$$

$$= |\lambda| \cdot \left| \int_{a}^{t} k(t,s) \left[\phi_{1}(s) - \phi_{2}(s) \right] ds \right|$$

$$\leq |\lambda| \cdot \int_{a}^{t} \max_{\substack{a \le t \le b \\ a \le s \le b}} |k(t,s)| \cdot \max_{t \in [a,b]} |\phi_{1}(s) - \phi_{2}(s)| ds$$

$$= M|\lambda|(t-a) \cdot d(\phi_{1}, \phi_{2}),$$

其中

$$M = \max_{\substack{a \le t \le b \\ a \le s \le b}} |k(t, s)| \ge 0.$$

(这样看 T 不一定是压缩映射) 利用上述结果,继续计算可得

$$\begin{aligned} & \left| (T^2 \phi_1)(t) - (T^2 \phi_2)(t) \right| \\ &= \left| \lambda \right| \cdot \left| \int_a^t k(t,s) \left[(T\phi_1)(s) - (T\phi_2)(s) \right] \mathrm{d}s \right| \\ &\leq \left| \lambda \right| \cdot \int_a^t M \cdot \left| (T\phi_1)(s) - (T\phi_2)(s) \right| \mathrm{d}s \\ &\leq M^2 |\lambda|^2 \int_a^t (s-a) \cdot d(\phi_1, \phi_2) \, \mathrm{d}s \\ &= \frac{\left[M |\lambda| (t-a) \right]^2}{2} d(\phi_1, \phi_2). \end{aligned}$$

一直做下去, 对任意 $m \in \mathbb{N}_+$ 就有

$$|(T^m \phi_1)(t) - (T^m \phi_2)(t)| \le \frac{[M|\lambda|(t-a)]^m}{m!} d(\phi_1, \phi_2), \quad \forall t \in [a, b],$$

上式两端对 $t \in [a,b]$ 取最大值可得

$$d\left(T^{m}\phi_{1}, T^{m}\phi_{2}\right) \leq \frac{\left[M|\lambda|(b-a)\right]^{m}}{m!}d(\phi_{1}, \phi_{2}).$$

对任意 $a \in \mathbb{R}$, 都有 $\lim_{m \to \infty} \frac{a^m}{m!} = 0$, 由该事实可知, 存在充分大的一个正整数 m 使得

$$\alpha = \frac{\left[M|\lambda|(b-a)\right]^m}{m!} \in [0,1),$$

此时 T^m 就是完备度量空间 C[a,b] 上的压缩映射. 根据上一个问题的结论, 映射 T 在 C[a,b] 中存在唯一的不动点, 所以积分方程(1.2)在 [a,b] 上存在唯一的连续函数解.