the Idea & something like Morse theory	
let's consider a manifold, ohise on it, a dynamical system (First) = a	Some theorems on actions of algo- groups Annals, 1973
and the space front. We get	
1× 3/1 = 1R ² , 2× = R ¹ 2× Remarks. Strata are => fixed points	== IR° → stratification!
Remark . Points have some sort of signature	- Tape +- Ray +- Ray ++ Ray ++
Aim make everything algebrace. From Gm acome will draw consequences for losse field = C	tion - stratification but this is true anyways.
Notation X smooth X Scheme, G=Gm acting on it. X G subscheme of fixed points (closure of set of focation) aeX G Doved point -> Gm acts on TaX TX-TX+DTX DTaX	f closed fixed points) X° smooth Remind Gm Vector space V= D Vai Gm Vai
$T_{o}X = T_{o}X^{\dagger} \oplus T_{o}X^{\circ} \oplus T_{o}X^{\circ}$ $T_{o}X = T_{o}X^{\circ}$	V=V=DVai GmoVai t(x)=t°ix V=V+DVODV airo oico

We can say something more:	
Prop 1 X complete, X° isolated points => offine shotification is symmetrical (#{Ak} = #{Adink-k})	
Prop. 2 X complete, X° voloted points = > X = WAMi HOEKEdink	, Jmi=k.
Con. X complete => 1x #{X6}>dimX. Al. isolated pts Prop.2 Not -> >1 dimensional.	
Examples Projective, snace - plenty of dillowent actions!	
Example 1 Gm, t > 1p2 as the fitting fixed pts [1	[0.6]
Better, Gm, t ~ 1p2 (tht	1. Tx+Tx0
Better, Gm, t p2 [th ta] In general Aller the that fixed ptx [010-0] X. [001]	olim Tax Tax Ta 0 0 m 1 0 m
Evan pla? Conscion 1p2 pp5	Alm Alm
· Learning - Butts !!) - !!	Ao
$\begin{bmatrix} t^2 \\ t_1 \end{bmatrix}$ acts on this too $\times y^2$ $\times^2 \mapsto t^2 \times^2$	
$\begin{array}{cccc} & \times & & & & \\ & \times & & & & \\ & \times & & & \\ & & & & \\ & & & & \\ & & & & $	

Future I'm working on a new compositification of comple tristed cubics and I booker would like to apply this. ... still don't have smoothness (maybe I'll nevery have it)