```
In [1]: import numpy as np
    import pandas as pd
    import matplotlib.pyplot as plt
    import seaborn as sns
    import plotly
    import plotly.graph_objs as go
    from plotly.offline import init_notebook_mode, iplot
    import plotly.offline as py
    import plotly.figure_factory as ff

    import seaborn as sb
    import pandas_profiling

In [2]: init_notebook_mode(connected=True)
```

Lectura de la fuente de información

```
In [4]: df = pd.read_csv('./data_COVID19Mx/Confirmados/COVID19Mx_confirmados27-03-20.cs
v',index_col=0)
```

Los metadatos de la fuente de información

		index	NumCaso	Estado	Sexo	Edad	Fecha_Diagnóstico	Identificación	Procedencia	Llegada_México
_	0	302	303	MÉXICO	М	44	2020-02-19	confirmado	Italia	22/02/2020
	1	5	6	MÉXICO	М	71	2020-02-21	confirmado	Italia	21/02/2020
	2	0	1	CDMX	М	35	2020-02-22	confirmado	Italia	22/02/2020
	3	1	2	SINALOA	М	41	2020-02-22	confirmado	Italia	21/02/2020
	4	2	3	CDMX	М	59	2020-02-23	confirmado	Italia	22/02/2020

```
In [7]: df.info()
        <class 'pandas.core.frame.DataFrame'>
        Int64Index: 717 entries, 0 to 716
        Data columns (total 9 columns):
                            717 non-null int64
        index
        NumCaso
                            717 non-null int64
        Estado
                            717 non-null object
        Sexo
                            717 non-null object
        Edad
                            717 non-null int64
        Fecha_Diagnóstico
                            717 non-null object
        Identificación
                            717 non-null object
        Procedencia
                            717 non-null object
       Llegada_México
                            498 non-null object
        dtypes: int64(3), object(6)
        memory usage: 56.0+ KB
In [8]: DataFrameAnalisisEstadistico=df.describe()
```

In [9]: DataFrameAnalisisEstadistico

Out[9]:

	index	NumCaso	Edad
count	717.000000	717.000000	717.000000
mean	358.000000	359.000000	42.541144
std	207.124359	207.124359	15.866589
min	0.000000	1.000000	0.000000
25%	179.000000	180.000000	30.000000
50%	358.000000	359.000000	41.000000
75%	537.000000	538.000000	54.000000
max	716.000000	717.000000	88.000000

In [10]: d=ff.create_table(DataFrameAnalisisEstadistico)

In [11]: iplot(d)

index	NumCaso	E
717.0	717.0	7
358.0	359.0	4
207.12435877993684	207.12435877993684	1
0.0	1.0	0
179.0	180.0	3

In [12]: pandas_profiling.ProfileReport(df)

/home/saxsa/anaconda3/lib/python3.7/site-packages/pandas_profiling/describe.py:
392: FutureWarning:

The join_axes-keyword is deprecated. Use .reindex or .reindex_like on the result to achieve the same functionality.

Out[12]:

Overview

Dataset info

Number of variables
Number of observations
Total Missing (%)
Total size in memory
Variables types

9
3.4%
56.0 KiB
80.0 B

 Numeric
 2

 Categorical
 5

 Boolean
 0

 Date
 0

 Text (Unique)
 0

 Rejected
 2

 Unsupported
 0

Warnings

- NumCaso is highly correlated with index $(\rho = 1)$ Rejected
- Identificación has constant value confirmado Rejected
- <u>Llegada_México</u> has 219 / 30.5% missing values Missing

Variables

index

Numeric

 Mean
 358

 Minimum
 0

 Maximum
 716

 Zeros (%)
 0.1%

Tc

NumCaso

Highly correlated

This variable is highly correlated with <u>index</u> and should be ignored for analysis Correlation 1

```
In [13]: | AnalisisEstadisticoPromedioXGenero=df.groupby('Sexo').mean()
In [14]:
                                                AnalisisEstadisticoPromedioXGenero
Out[14]:
                                                                                               index
                                                                                                                            NumCaso
                                                                                                                                                                                        Edad
                                                  Sexo
                                                                F 388.702265 389.702265 41.449838
                                                              M 334.747549 335.747549 43.367647
                                               ColoresComponentesTabla=[[0,'#4d004c'],[.5,'#f2e5ff'],[1,'#ffffff']]
In [15]:
                                            ColoresLetra=['#000000']
In [16]:
In [17]:
                                               dz = ff.create\_table(AnalisisEstadisticoPromedioXGenero,index = \textbf{True},colorscale = Colorscale = Colorscal
                                                 oresComponentesTabla, font colors=ColoresLetra)
                                                 iplot(dz)
                                                                                                                                                                                                             index
                                                                                                                                                                                                                                                                                                                                                                 NumCaso
                                                                                                                                                                                                            388.7022653721683
                                                                                                                                                                                                                                                                                                                                                                 389.7022653721683
```

Despliegue gráfico de resultados

```
In [18]:
         col="Sexo"
          AnalisisFrecuenciaXGenero=df[col].value counts().reset index()
         AnalisisFrecuenciaXGenero
In [19]:
Out[19]:
            index Sexo
          0
                   408
               F
                   309
In [20]:
         AnalisisFrecuenciaXGenero=AnalisisFrecuenciaXGenero.rename(columns={col:"coun
          t","index":col})
In [21]:
         AnalisisFrecuenciaXGenero
Out[21]:
            Sexo count
               Μ
                   408
               F
                   309
```

Gráfica distribución registros X género

Género(Hombre, Mujer)


```
In [23]: plt.figure(figsize=(90,15))
    plt.subplot(1,3,1)
    sns.distplot(df["Edad"])
    plt.title('Distribución Edad')

plt.show()
```


In [24]: x=df

In [25]: | d1=x[x['Sexo']=='M']

In [26]: d1

Out[26]:

	index	NumCaso	Estado	Sexo	Edad	Fecha_Diagnóstico	Identificación	Procedencia	l
0	302	303	MÉXICO	М	44	2020-02-19	confirmado	Italia	_
1	5	6	MÉXICO	М	71	2020-02-21	confirmado	Italia	
2	0	1	CDMX	М	35	2020-02-22	confirmado	Italia	
3	1	2	SINALOA	М	41	2020-02-22	confirmado	Italia	
4	2	3	CDMX	М	59	2020-02-23	confirmado	Italia	
708	640	641	MÉXICO	М	41	2020-03-24	confirmado	Contacto	
710	537	538	NAYARIT	М	53	2020-03-24	confirmado	Contacto	
711	707	708	BAJA_CALIFORNIA_SUR	М	73	2020-03-24	confirmado	Contacto	
713	688	689	JALISCO	М	64	2020-03-24	confirmado	Contacto	
716	548	549	QUINTANA_ROO	М	75	2020-03-25	confirmado	Contacto	

408 rows × 9 columns

In [27]: d2=x[x['Sexo']=='F']
In [28]: d2

Out[28]:

	index	NumCaso	Estado	Sexo	Edad	Fecha_Diagnóstico	Identificación	Procedencia	Llegac
5	4	5	CHIAPAS	F	18	2020-02-25	confirmado	Italia	2
6	3	4	COAHUILA	F	20	2020-02-27	confirmado	Italia	2
8	25	26	QUINTANA_ROO	F	71	2020-03-01	confirmado	Italia	(
9	659	660	CDMX	F	50	2020-03-01	confirmado	EUA	(
10	32	33	JALISCO	F	64	2020-03-01	confirmado	Alemania	(
707	443	444	GUERRERO	F	82	2020-03-23	confirmado	España	1
709	601	602	TABASCO	F	29	2020-03-24	confirmado	España	1
712	617	618	MÉXICO	F	22	2020-03-24	confirmado	Contacto	
714	695	696	AGUASCALIENTES	F	37	2020-03-25	confirmado	Contacto	
715	693	694	AGUASCALIENTES	F	5	2020-03-25	confirmado	Contacto	2

309 rows × 9 columns

```
In [29]: x=df
    col='Edad'
    v1=x[col].value_counts().reset_index()
    v1=v1.rename(columns={col:'count','index':col})
    v1['percent']=v1['count'].apply(lambda x: 100 *x/sum(v1['count']))
    v1=v1.sort_values(col)
    trace1=go.Bar(x=v1[col],y=v1["count"],name="0",marker=dict(color="rgb(63, 72, 2 04)"))
    y=[trace1]
    layout={'title':"Distribución X Edad ",'xaxis':{'title':"Edad"},'yaxis':{'title ':"Frecuencia"}}
    fig=go.Figure(data=y,layout=layout)
    fig.layout.template='presentation'
    iplot(fig)
```

Distribución X Edad


```
In [30]: col='Edad'
         v1=d1[col].value_counts().reset_index()
         v1=v1.rename(columns={col:'count','index':col})
         v1['percent']=v1['count'].apply(lambda x:100*x/sum(v1['count']))
         v1=v1.sort_values(col)
         v2=d2[col].value_counts().reset_index()
         v2=v2.rename(columns={col:'count','index':col})
         v2['percent']=v2['count'].apply(lambda x:100*x/sum(v2['count']))
         v2=v2.sort values(col)
         tracel=go.\overline{S}catter(x = v1[col], y = v1["count"], name="Hombre", marker=dict(colo
         r="#ff7f0e"))
         trace2= go.Scatter(x = v2[col],y = v2["count"], name = "Mujer", marker = dict(c
         olor='#a678de'))
         y = [trace1, trace2]
         layout={'title':"Comparación X Edad [[ Hombre vs Mujer ]] ",'xaxis':{'title':"E
         dad"},'yaxis':{'title':"Frecuencia"}}
         fig=go.Figure(data = y, layout = layout)
         fig.layout.template='presentation'
         iplot(fig)
```

Comparación X Edad [[Hombre vs Mu


```
In [31]:
    x=df
    col='Estado'
    v1=x[col].value_counts().reset_index()
    v1=v1.rename(columns={col:'count','index':col})
    v1['percent']=v1['count'].apply(lambda x: 100 *x/sum(v1['count']))
    v1=v1.sort_values(col)
    trace1=go.Bar(x=v1[col],y=v1["count"],name="0",marker=dict(color="#e377c2"))
    y=[trace1]
    layout={'title':"Distribución X Estado ",'xaxis':{'title':""},'yaxis':{'title ':"Frecuencia"}}
    fig=go.Figure(data=y,layout=layout)
    fig.layout.template='presentation'
    iplot(fig)
```

Distribución X Estado


```
In [32]: col='Estado'
         v1=d1[col].value_counts().reset_index()
         v1=v1.rename(columns={col:'count','index':col})
         v1['percent']=v1['count'].apply(lambda x:100*x/sum(v1['count']))
         v1=v1.sort_values(col)
         v2=d2[col].value_counts().reset_index()
         v2=v2.rename(columns={col:'count','index':col})
         v2['percent']=v2['count'].apply(lambda x:100*x/sum(v2['count']))
         v2=v2.sort values(col)
         tracel=go.\overline{S}catter(x = v1[col], y = v1["count"], name="Hombre", marker=dict(colo
         r="#d62728"))
         trace2= go.Scatter(x = v2[col],y = v2["count"], name = "Mujer", marker = dict(c
         olor='rgb(63, 72, 204)'))
         y = [trace1, trace2]
         layout={'title':"Comparación X Estado [[ Hombre vs Mujer ]] ",'xaxis':{'title
          ':"Estado"},'yaxis':{'title':"Frecuencia"}}
         fig=go.Figure(data = y, layout = layout)
         fig.layout.template='presentation'
         iplot(fig)
```

Comparación X Estado [[Hombre vs M

Procedencia de la infección


```
In [34]: col='Procedencia'
         v1=d1[col].value_counts().reset_index()
         v1=v1.rename(columns={col:'count','index':col})
         v1['percent']=v1['count'].apply(lambda x:100*x/sum(v1['count']))
         v1=v1.sort values(col)
         v2=d2[col].value_counts().reset_index()
         v2=v2.rename(columns={col:'count','index':col})
         v2['percent']=v2['count'].apply(lambda x:100*x/sum(v2['count']))
         v2=v2.sort values(col)
         tracel=go.\overline{S}catter(x = v1[col], y = v1["count"], name="Hombre", marker=dict(colo
         r="#17becf"))
         trace2= go.Scatter(x = v2[col],y = v2["count"], name = "Mujer", marker = dict(c
         olor='#a678de'))
         y = [trace1, trace2]
         layout={'title':"Comparación X Procedencia [[ Hombre vs Mujer ]] ",'xaxis':{'ti
         tle':"Procedencia"},'yaxis':{'title':"Frecuencia"}}
         fig=go.Figure(data = y, layout = layout)
         fig.layout.template='presentation'
         iplot(fig)
```

Comparación X Procedencia [[Hombre vs

Serie de tiempo: Casos por fecha

```
In [35]: casos_fecha = pd.DataFrame(df['Identificación'].groupby(df['Fecha_Diagnóstico
         ']).count())
         fig = plt.figure(figsize=(14,6),dpi=150)
         ax=plt.gca()
         ax.plot(casos_fecha,
                 marker='.',
                 ms=12,
                 label='Casos Nuevos')
         ax.plot(sc.cumsum(casos_fecha),
                 marker='.',
                 ms=12,label='Casos Totales')
         plt.legend()
         plt.xticks(casos_fecha.index)
         plt.xticks(fontsize=8,rotation=90)
         plt.ylabel('Número de casos')
         plt.xlabel('Fecha')
         plt.title('Casos de COVID19 en México por día')
         plt.tight_layout()
```

