Terminale ST₂S: DS numéro 2

20 Décembre 2018

Exercice 1 Questions à choix multiple (5 points)

Cet exercice se présente sous la forme d'un questionnaire à choix multiple (QCM). Les cinq questions sont indépendantes. Pour chaque question, une seule réponse est exacte, on demande d'indiquer cette réponse sans la justifier. Chaque bonne réponse rapporte 1 point, chaque réponse incorrecte retire 0,25 point, une question sans réponse n'apporte ni ne retire aucun point.

1.		On considère la suite arithmétique (u_n) , telle que $u_0 = 16$ et $u_4 = -4$. La raison e (u_n) est :
	\bigcirc 3,5;	$\bigcirc 3; \bigcirc -3; \sqrt{-5}.$
2.	(1 point)	On considère la suite (u_n) telle que $u_n = 3n - 2$. La suite (u_n) est :
	\bigcirc	une suite arithmétique de raison -2 ;
	\bigcirc	une suite géométrique de raison 3;
		une suite arithmétique de raison 3;
	\bigcirc	une suite géométrique de raison 2.
3.	médicame	On injecte u_0 cm ³ d'un médicament dans le sang d'un patient. La quantité de ce ent présente dans le sang du patient n heures après l'injection est u_n . La quantité ament présente dans le sang baisse de 20 % chaque heure. La suite (u_n) est :
	\bigcirc	une suite arithmétique de raison -20 ;
	\bigcirc	une suite géométrique de raison 1,20;
	\bigcirc	une suite arithmétique de raison -0.2 ;
		une suite géométrique de raison 0,8.
4.	il reste da	On reprend la situation décrite dans la question 3. Cinq heures après l'injection, ans le sang du patient environ : 67 % de la quantité injectée;
	\bigcirc	20~% de la quantité injectée;
	\bigcirc	rien;
		33 % de la quantité injectée.
5.	(1 point)	La feuille de calcul ci-dessous est

5.	(1 point) La feuille de calcul ci-dessous est
	utilisée pour calculer les premiers termes de
	la suite géométrique (u_n) de premier terme
	5000 et de raison 1,02. La formule à entrer
	dans la cellule B3 et à recopier vers le bas
	est:

0 3000 * 1,02,
$\bigcirc = \$B\$2*1,02;$
$\sqrt{B2*1,02}$;
$\bigcirc = 1.02^{}A3;$

 \bigcirc 5000 * 1.02 ·

	A	В
1	n	u(n)
2	0	5 000
3	1	
4	2	
5	3	
6	4	
7	5	
8	6	
9	7	
10	8	
11	9	
12	10	

Exercice 2 Des normes antipollution (7 points)

Un grand groupe industriel fait le bilan de sa quantité de rejets polluants. En 2001, sa quantité de rejets était de 49 000 tonnes. Elle est passée à 68 000 tonnes en 2004.

De nouvelles normes antipollution ont été mises en place à partir de 2001. Le groupe, pour être aux normes ne doit pas dépasser $42\,000$ tonnes de rejets par an.

Partie A

Chaque année, si ses rejets dépassent la quantité autorisée, le groupe doit payer une amende. Tant que le groupe ne prend pas de mesure pour faire baisser sa quantité de rejets, l'amende augmente de 6000 € tous les ans. En 2001, le groupe a payé une amende de 83 000 €.

Dans toute cette partie, on fait l'hypothèse que le groupe ne prend aucune mesure pour diminuer sa quantité de rejets.

On appelle C_1 l'amende payée en 2001 et C_n l'amende payée l'année 2000 + n. On a alors $C_1 = 83\,000$ €.

1. (1 point) Calculer la valeur de l'amende payée par l'entreprise en 2002 et en 2003.

Solution:

L'amende payée en en 2002 est C_2 et celle payée en 2003 est C_3 .

$$-C_2 = C_1 + 6000 = 83\,000 + 6000 = 89\,000;$$

$$- C_3 = C_2 + 6000 = 89\,000 + 6000 = 95\,000.$$

L'entreprise a payé $89\,000$ € en 2002 et $95\,000$ en 2003.

2. (1 point) Quelle est la nature de la suite (C_n) ?

Solution:

Tous les ans, l'amende augmente de 6000 €, donc pour passer d'un terme à l'autre, on ajoute 6000. C'est donc une suite arithmétique de raison 6000.

3. (1 point) Calculer l'amende que le groupe devra payer en 2015.

Solution:

2015 = 2000 + 15, on calcule la valeur de C_{15} .

$$C_n = C_1 + (n-1) \times 6000$$

 $C_{15} = 83\,000 + 14 \times 6000$

 $C_{15} = 83\,000 + 84\,000$

 $C_{15} = 167\,000$

En 2015, le groupe devra payer $167000 \in$.

Partie B

Au vu des résultats précédents, le groupe a décidé en 2004 de mettre en place un dispositif lui permettant de se mettre aux normes progressivement, l'objectif étant de ramener sa quantité de déchets à une valeur inférieure ou égale à 42 000 tonnes en 2014.

Le groupe s'est engagé à réduire chaque année sa production de déchets de 4 % à partir de 2004.

1. (1 point) Si le groupe a rejeté 66 000 tonnes en 2005, a-t-il respecté son engagement?

Solution:

L'entreprise s'est engagée à diminuer ses rejets de 4% chaque année. Le coefficient multiplicateur correspondant à cette baisse est 0.96. Je calcule les rejets prévu pour 2005:

$$68\,000 \times 0.96 = 65\,280$$

Non le groupe n'a pas respecté son engagement, il aurait du rejeter 65 280 tonnes de déchets.

- 2. On appelle Q_n la quantité de rejets prévue pour l'année 2004+n. Ainsi, $Q_0=68\,000$.
 - (a) (1 point) Quelle est la nature de la suite (Q_n) ?

Solution:

Les rejets doivent baisser chaque année de 4 %, donc chaque terme de la suite est obtenu en multipliant le précédent par 0,96. J'en déduis que la suite (Q_n) est une suite géométrique de raison 0,96.

(b) (1 point) Exprimer Q_n en fonction de n.

Solution:

$$Q_n = Q_0 \times q^n = 68\,000 \times 0.96^n.$$

(c) (1 point) Calculer à la tonne près, la quantité de rejets prévue pour l'année 2014. L'entreprise aura-t-elle atteint son objectif?

Solution:

2014 = 2004 + 10. Je calcule Q_{10} :

$$Q_{10} = 68\,000 \times 0.96^{10} = 45\,209.$$

La quantité de rejets prévue pour l'année 2014 est de 45 209 tonnes, donc l'entreprise n'aura pas atteint son objectif.

Exercice 3 Entrainement à vélo (8 points)

Aline et Blandine décident de reprendre l'entrainement à vélo, chaque samedi pendant 15 semaines.

Chacune a établi son programme d'entrainement. Elles parcourent 20 km la première semaine et souhaitent effectuer une sortie ensemble la quinzième semaine.

1. Programme d'entrainement d'Aline

Après la première semaine, Aline décide d'augmenter chaque semaine la distance parcourue de 7 km.

On note u_n la distance parcourue la n-ième semaine. Ainsi $u_1 = 20$ et $u_{15} = 118$.

(a) (1 point) Montrer que la suite (u_n) correspondante est une suite arithmétique de terme initial $u_1 = 20$ dont on précisera la raison.

Solution:

La distance parcourue augmente chaque semaine de 7 km, c'est donc une suite arithmétique de terme initial $u_1 = 20$ et de raison r = 7.

(b) (1 point) Exprimer u_n en fonction de n.

Solution:

On a:

$$u_n = u_1 + n \times r$$

$$u_n = 20 + n \times 7$$

(c) (1 point) Calculer la distance parcourue par Aline le samedi de la dixième semaine.

Solution:

La distance parcourue la dixième semaine correspond à u_{10} .

$$u_{10} = 20 + 10 \times 7$$

 $u_{10} = 90$.

Aline parcourt 80 km la dixième semaine.

(d) (1 point) Calculer la distance totale parcourue par Aline au cours de ses entrainements, quinzième semaine inclue.

Solution:

$$S_{15} = \frac{15 \times (u_1 + u_1 5)}{2}$$

$$S_{15} = \frac{15 \times (20 + 118)}{2}$$

$$S_{15} = 1035$$

Au total, Aline a parcouru 1035 km au cours de ses entrainements.

2. Programme d'entrainement de Blandine

Chaque semaine, Blandine augmente de 13.5 % la distance parcourue, de telle sorte que la distance parcourue la quinzième semaine soit aussi de 118 km, à l'unité près.

On note v_n la distance parcourue la n-ième semaine. Ainsi $v_1=20$ et $v_{15}=118$.

(a) (1 point) Montrer que la suite (v_n) correspondante est une suite géométrique et déterminer sa raison.

Solution:

La distance parcourue augmente chaque semaine de 13,5 %, elle est donc multipliée par 1,135 $(1+\frac{13,5}{100})$. J'en déduis que c'est une suite géométrique de premier terme $v_1=20$, et de raison q=1,135.

(b) (1 point) Exprimer v_n en fonction de n.

Solution:

On a:

$$\mathbf{v}_n = \mathbf{v}_1 \times q^{(n-1)}$$

(2)
$$v_n = 20 \times 1{,}135(n-1).$$

(4)

(c) (1 point) Calculer la distance parcourue par Blandine le samedi de la dixième semaine.

Solution:

La distance parcourue la dixième semaine correspond à v_{10} .

$$v_{10} = 20 \times 1{,}135^9$$

(6)

 $v_{10} \approx 62,52$

Blandine parcourt 63 km la dixième semaine.

(d) (1 point) Calculer la distance totale parcourue par Blandine au cours de ses entrainements, quinzième semaine inclue.

Solution:

$$S_{15} = u_1 \times \frac{1 - 1,135^15}{1 - 1,135}$$

$$S_{15} = 20 \times \frac{1 - 1{,}135^{1}5}{1 - 1{,}135}$$

$$S_{15} \approx 841,82$$

Au total, Blandine a parcouru $842~\mathrm{km}$ au cours de ses entrainements.

Formulaire:

Somme des n premiers termes d'une suite arithmétique :

$$S_n = \frac{n \times (u_1 + u_n)}{2}$$

Somme des n premiers termes d'une suite géométrique :

$$S_n = u_1 \times \frac{1 - q^n}{1 - q}$$