

Faculty of Engineering and Technology Electrical and Computer Engineering Department

Operating Systems ENCS33990

Homework 2 Scheduling

Prepared by:

Abdel Rahman Shahen 1211753

Partners:

no partners

Instructor: Dr. Abdel Salam Sayyad

Section: 2

Date: 12/6/2023

Processes:

Process	Arrival Time	Burst Time	Priority
P1	0	10	3
P2	1	8	2
P3	3	14	3
P4	4	7	1
P5	6	5	0
P6	7	4	1
P7	8	6	2

For each of the following scheduling algorithms, show the Gantt chart, average waiting time, and average turnaround time.

S: time unite (not second)

All these calculations were simulated by drawing a ready queue and work done on the given table.

1- First come first served:

For p1 it will arrive @ t = 0s and executes for 10s but it will wait for 0s

P1 0 10

For p2 it will arrive @ t = 1s and executes for 8s but it will wait for 10s

P1 P2 18

For p3 it will arrive @ t = 3s and executes for 14s but it will wait for 18s

 P1
 P2
 P3

 0
 10
 18
 32

For p4 it will arrive @ t = 4s and executes for 7s but it will wait for 32s

 P1
 P2
 P3
 P4

 0
 10
 18
 32
 39

For p5 it will arrive @ t = 6s and executes for 5s but it will wait for 39s

For p6 it will arrive @ t = 7s and executes for 4s but it will wait for 44s

 P1
 P2
 P3
 P4
 P5
 P6

 0
 10
 18
 32
 39
 44
 48

For p7 it will arrive @ t = 8s and executes for 6s but it will wait for 48s

 P1
 P2
 P3
 P4
 P5
 P6
 P7

 0
 10
 18
 32
 39
 44
 48
 54

Turn around time = completion time – arrival time

P1: 10 - 0 = 10

P2: 18 - 1 = 17

P3: 32 - 3 = 29

P4: 39 - 4 = 35

P5: 44 - 6 = 38

P6: 48 - 7 = 41

P7: 54 - 8 = 46

Average turnaround time:

(10 + 17 + 29 + 35 + 38 + 41 + 46) / 7 = 216/7 = 30.857s

Waiting time = Turnaround time – burst time

P1: 10 - 10 = 0

P2: 17 - 8 = 9

P3: 29 – 14 = 15

P4: 35 - 7 = 28

P5: 38 – 5 = 33

P6: 41 – 4 = 37

P7: 46 - 6 = 40

Average Waiting time = (0 + 9 + 15 + 28 + 33 + 37 + 40)/7 = 162/7 = 23.143s

2- Shortest Job First:

Gantt chart will not remain as it is.

Assuming non-preemptive scheduling:

P1 will arrive first so the processer will begin with it.

Since non-preemptive the processer will not leave p1 when p2 arrives

And so on.

Turnaround time = completion time – arrival time

$$P1: 10 - 0 = 10$$

P6:
$$14 - 7 = 7$$

$$P7: 25 - 8 = 17$$

$$P4: 32 - 4 = 28$$

$$P2: 40 - 1 = 39$$

Average Turnaround time = (10 + 7 + 13 + 17 + 28 + 39 + 51) / 7 = 165 / 7 = 23.571s

Waiting time = Turnaround time – burst time

P1:
$$10 - 10 = 0$$

$$P6: 7 - 4 = 3$$

$$P5: 13 - 5 = 8$$

$$P7: 17 - 6 = 11$$

$$P4: 28 - 7 = 21$$

$$P2: 39 - 8 = 31$$

$$P3: 51 - 14 = 37$$

Average Waiting time = (0 + 3 + 8 + 11 + 21 + 31 + 37)/7 = 111/7 = 15.857s

3- Shortest Remaining Time First.

Gantt chart will not remain as it is.

Assuming preemptive scheduling:

P1 will arrive first so the processer will begin with it.

Since preemptive the processer will leave p1 when p2 arrives

And so on.

Turnaround time = completion time – arrival time

P1:
$$40 - 0 = 40$$

$$P2: 9 - 1 = 8$$

P6:
$$13 - 7 = 6$$

$$P5: 18 - 6 = 12$$

$$P7: 24 - 8 = 16$$

$$P4: 31 - 4 = 27$$

$$P3: 54 - 3 = 51$$

Average Turnaround time = (40 + 8 + 6 + 12 + 16 + 27 + 51)/7 = 160/7 = 22.857s

Waiting time = Turnaround time - burst time

$$P1: 40 - 10 = 30$$

$$P2: 8 - 8 = 0$$

$$P5: 12 - 5 = 7$$

$$P7: 16 - 6 = 10$$

$$P4: 27 - 7 = 20$$

$$P3: 51 - 14 = 37$$

Average Waiting time = (30 + 0 + 2 + 7 + 10 + 20 + 37)/7 = 106 / 7 = 15.143s

4- Round Robin, with q = 5

Gantt chart will not remain as it is.

P1 will arrive first so the processer will begin with it.

After Q the processer will leave p1 when serve the first in queue

And so on. If a process is finished then it goes out of queue else it goes back to the tail of the queue

P1	P2	Р3	P4	P1	P5	P6	P7	P2	Р3	P4	P7	P3	
0													

Turnaround time = completion time – arrival time

$$P1:25 - 0 = 25$$

$$P2: 42 - 1 = 41$$

$$P3: 54 - 3 = 51$$

$$P4: 49 - 4 = 45$$

$$P5: 30 - 6 = 24$$

P6:
$$34 - 7 = 27$$

Average Turnaround time = (25 + 41 + 51 + 45 + 24 + 27 + 42)/7 = 255/7 = 36.429s

Waiting time = Turnaround time – burst time

$$P2: 41 - 8 = 33$$

P3:
$$51 - 14 = 37$$
 P4: $45 - 7 = 38$

$$P4: 45 - 7 = 38$$

P6:
$$27 - 4 = 23$$

Average Waiting time = (15 + 33 + 37 + 38 + 19 + 23 + 36) / 7 = 201/7 = 28.714s

5- Priority Scheduling, with aging; where priority is decremented by 1 if the process remains in the ready queue for 5 units (s).

Since the priority is not decided if higher priority is higher value or Higher priority is lower value, I will decide this by myself.

By looking at the aging we can notice that the process is decremented 1 priority unite each 5s waiting in the ready queue. Hence, the style will be followed is higher priority lower value.

I decided this as my understanding of the aging approach. The first place that the aging approach came is to solve a problem which is that some processes may stay at the ready queue for a long time which may be forever (starved processes or blocked processes).

So, if the style was high value for high priority the problem is still not solved. As a result, the high value high for low priority is chosen.

As always, the first arriving process comes to the CPU first.

P1		P4		P2		Р3		P5		P6	Р7		
0	1	.0	1	7	2	5	3	39	4	4	 18	į	- 54

Turnaround time = completion time – arrival time

$$P1: 10 - 0 = 10$$

$$P2: 25 - 1 = 24$$

$$P3: 39 - 3 = 36$$

P4:
$$17 - 4 = 13$$

$$P5: 44 - 6 = 38$$

$$P6: 48 - 7 = 41$$

$$P7: 54 - 8 = 46$$

Average Turnaround time = (10 + 24 + 36 + 13 + 38 + 41 + 46)/7 = 208/7 = 29.714s

Waiting time = Turnaround time – burst time

$$P1: 10 - 10 = 0$$

$$P2: 24 - 8 = 16$$

$$P4: 13 - 7 = 6$$

$$P5: 38 - 5 = 33$$

P6:
$$41 - 4 = 37$$

$$P7: 46 - 6 = 40$$

I am really happy to do these home works because through these home works and tasks I am for the first time being able to apply all my knowledge on something practical and interesting.

I appreciate your hard work for marking these tasks and home works. Thank you.

I would like to share my work on solving the last problem

Process	Arrival Time	Burst Time	Priority
P1	0	10	3
P2	1	8	21.0
P3	3	14	8210
P4	4	7	10
P5	6	5	0
P6	7	4	10
P7	8	6	210

P1	P4	P2	Р3	P5	P6	P7	
0 1	.0 1	17 2	25	39	44	48	_ 54

Ready Queue