GEOMETRÍA I (Doble Grado en Ingeniería Informática y Matemáticas)

Examen final (primera y segunda parte) 22/01/2018

- 1. Determinar si son verdaderos o falsos los siguientes asertos:
 - a) Sea una matriz $A \in M_4(K)$ cuyas cuatro columnas, consideradas como un subconjunto C del e.v. $K^4(K)$, verifican: cualquier subconjunto de tres elementos de C es linealmente independiente. Entonces, C es linealmente independiente.
 - b) Sean $S = \{u, v\}, S' = \{u', v'\}$ dos subconjuntos de un espacio vectorial V(K) tales que:
 - lacktriangle Cada subconjunto S y S' es linealmente independiente.
 - Ningún vector de S se puede escribir como combinación lineal de vectores de S', ni ninguno de S' como combinación lineal de los de S.

Entonces, $S \cup S'$ es linealmente independiente.

2. Se considera, en el espacio de las matrices simétricas $S_2(\mathbb{R})$, los subespacios vectoriales:

$$U_{\lambda} = L\left\{ \left(\begin{array}{cc} \lambda & \lambda \\ \lambda & -1 \end{array} \right), \left(\begin{array}{cc} 0 & -\lambda \\ -\lambda & 2 \end{array} \right) \right\}, \qquad W_{\lambda} = L\left\{ \left(\begin{array}{cc} 2 & -2 \\ -2 & \lambda \end{array} \right), \left(\begin{array}{cc} 3 & 1 \\ 1 & -3 \end{array} \right) \right\}.$$

Calcular, para cada $\lambda \in \mathbb{R}$, la dimensión de $U_{\lambda} \cap W_{\lambda}$.

3. Se considera, en el espacio vectorial de matrices cuadradas $M_2(\mathbb{R})$, la aplicación lineal:

$$F: M_2(\mathbb{R}) \to M_2(\mathbb{R}), \qquad F(A) = A - \frac{1}{2}A^t, \quad \forall A \in M_2(\mathbb{R}).$$

Determinar, en el caso de que sea posible (o, en caso contrario, justificar la imposibilidad):

- a) Dos bases, B y B', de $M_2(\mathbb{R})$ tales que la matriz de F en esas bases sea diagonal y con todos sus elementos pertenecientes a $\{0,1\}$.
- b) Una base B de $M_2(\mathbb{R})$ tal que la matriz de F en esa base sea diagonal con todos sus elementos pertenecientes a $\{0,1\}$.
- 4. Se considera, en el espacio de polinomios $\mathbb{R}_3[x]$:
 - Las formas lineales: $\phi(p(x)) = p(1), \psi(p(x)) = p'(1) p(0)$.
 - El subespacio vectorial $U = \{a_0 + a_1x + a_2x^2 + a_3x^3 : a_1 = 0, a_3 = -2a_2\}$

Determinar, calculando su matriz en la base usual de $\mathbb{R}_3[x]$, un endomorfismo f de $\mathbb{R}_3[x]$ cuyo traspuesto verifique: Nuc $f^t = L\{\phi, \psi\}$, Im $f^t = \text{an } U$.

Todos los ejercicios tienen la misma puntuación.

Duración: 3 horas.