Definition 3.11. For any $T \in \mathcal{L}(V, W)$, set null $T = \{v \mid Tv = 0\}$ is called the $null\ space\ of\ T$.

This is also called the **kernal** of T in algebra.

Theorem 3.13. For any $T \in \mathcal{L}(V, W)$, null T is a subspace of V.

Proof.

- We have $0 \in \text{null } T \text{ since } T0 = 0$, which is the property of linear transformation.
- For any $a, b \in \text{null } T$, we have 0 = Ta + Tb = T(a + b), so $a + b \in \text{null } T$.
- For any $Ta \in \text{null } T$ and $\lambda \in F$, we have $\lambda Ta = T(\lambda a)$, so $\lambda a \in \text{null } T$.

Definition 3.15. For any $T \in \mathcal{L}(V, W)$, set range $T = T(V) = \{ Tv \mid v \in V \}$ is called the **range** of T.

This is also called the **image** of T in math.

Theorem 3.18. For any $T \in \mathcal{L}(V, W)$, range T is a subsapce of W.

Proof.

- We have $T(0) = 0 \in \operatorname{range} T$.
- For any $Ta, Tb \in \operatorname{range} T$, $Ta + Tb = T(a + b) \in \operatorname{range} T$.
- For any $Ta \in \operatorname{range} T$ and $\lambda \in F$, $\lambda Ta = T(\lambda a) \in \operatorname{range} T$.

Theorem 3.21. Suppose V is finite and $T \in \mathcal{L}(V, W)$, then range T is finite, and

$$\dim V = \dim \operatorname{null} T + \dim \operatorname{range} T$$

Proof. Consider the basis v_0, \dots, v_k of null T, and the basis v_0, \dots, v_n of V that expand from v_0, \dots, v_k . We will show that $T(v_{k+1}), \dots, T(v_n)$ is the basis of range T.

We first show that $T(v_{k+1}), \dots, T(v_n)$ is linear irrelavent. If it is linear irrelayent, then

$$\lambda_1 T(v_{k+1}) + \dots + \lambda_i T(v_{k+i})$$

$$= T(\lambda_1 v_{k+1} + \dots + \lambda_i T(v_{k+i}))$$

$$= 0$$

That means a linear combation of v_{k+i} is in null T, which is span (v_0, \dots, v_k) , therefore the basis v_0, \dots, v_n is linear relavent.

Then we show that $T(v_{k+1}), \dots, T(v_n)$ spans range T. For any $Tv \in \operatorname{range} T$, there must be $v \in V$ such that Tv = Tv, then v can be written in form of the linear combination of v_0, \dots, v_n , and then $Tv = T(\lambda_0 v_0 + \dots + \lambda_n v_n)$. We can drop all terms with v_i where $i \leq k$, since they are in null T, so Tv is now represent by a linear combination of $T(v_{k+i})$ for all $0 < i \leq n - k$, therefore, it is a basis of range T and dim range T is finite.

Finally,
$$\dim V = \dim \operatorname{null} T + \dim \operatorname{range} T$$
.