1 Flugtechnik

1.1 Atmosphäre

1.1.1 Allgemeine Eigenschaften

Zusammensetzung: $\sim 78\% N_2$, $\sim 21\% O_2$, $\sim 1\% He$, H, He

Troposphäre (0-7/17 km): $\frac{dT}{dH} = -6.5 \cdot 10^{-3} \frac{K}{m}$ In ihr findet das Wetter statt

Tropopause (abhängig von Breitengrad und Jahr):

Äquator (17 km): T = 191KPole (7km): T = 221K

Standardatmosphäre (11 km): $T_{11000}=216.65K$, $p_{11000}=226.32HPa$, $\rho_{11000}=0.3639km/m^3$

Stratosphäre (bis \sim 50 km): T=217K (direkt über Tropopause, max. bei 50 km)

Stratopause (\sim 50 km): T=273K

Mesosphäre (bis \sim 80 km): T=173K (negativer Temp. gradient)

Thermosphäre und Ionosphäre (bis $\sim 800km$): T=1270K bei 480km

Exosphäre (ab 800km): Führt gleitend in den Weltall

Physikalischen Eigenschaften:

- $p = \rho RT$ mit R = 287.3J/(kgK)
- Bernoulli: $p + \frac{\rho}{2}V^2 = const$
- Schallgeschwindigkeit: $a=\sqrt{\gamma RT}$ mit $\gamma=c_p/c_v$
- Luft: $\gamma = 1.405$
- $\frac{\Delta \rho}{a} \approx \frac{1}{2} M^2$, Machzahl M = V/a

1.2 Standardatmosphäre

• H = 0m

- $T_0 = 288.15K$, p = 1013HPa, $\rho = 1.225kg/m^3$, $q = 9.806m/s^2$
- H < 11000m
- $\frac{T}{T_0} = \Theta(H) = 1 + \frac{a}{T_0}H = 1 22.558 \cdot 10^{-6} \cdot H$
- $\frac{p}{p_0} = \delta = \Theta^{5.2561}$
- $\frac{\rho}{\rho_0} = \sigma = \Theta^{4.2561}$
- H = 11000m:
- $\frac{T_{11000}}{T_0} = 0.7519$, $\frac{p_{11000}}{p_0} = 0.2234$, $\frac{\rho_{11000}}{\rho_0} = 0.2971$
- 11000m < H < 25000m:
- $\frac{T}{T_0} = 0.7519$, $\frac{p}{p_0} = 0.2234 \cdot e^{-\frac{H-11000}{6341.9}}$, $\frac{\rho}{\rho_0} = 0.2971 \cdot e^{-\frac{H-11000}{6341.9}}$
- Dynamische Zähigkeit der Luft:
- $\mu = (1.458 \cdot 10^{-6} \cdot T^{1.5})/(T + 110.4)Ns/m^2$
- $\mu_0 = 17.894 \cdot 10^{-6} Ns/m^2$
- Kinematische Viskosität: $\nu = \mu/\rho \ [m^2/s]$

1.3 Auftrieb

1.3.1 Flügelgeometrie

- Zuspitzung: $\lambda = \frac{c_t}{c_0}$
- Flügelfläche: $F = \int_{-b/2}^{b/2} c(y) dy$
- Streckung: $\Lambda = b^2/F$
- Mittl. geome. Flügeltiefe: $\bar{c} = \frac{1}{b} \int_{-b/2}^{b/2} c(y) dy = F/b$
- Mittl. aero. Flügeltiefe: $l_{\mu} = \frac{1}{F} \int_{-b/2}^{b/2} c^2(y) dy$
- Geometrischer Neutralpunkt = Ort wo die Änderung des Anstellwinkels keine Auswirkung auf Kraft und Moment hat
- $x_{N25} = \frac{1}{F} \int_{-b/2}^{b/2} c^2(y) x_{25}(y) dy \approx x_{c_0/4}, y_{N25} = 0$

Achtung: $b_{qes} = 2 \cdot b_{fluqel}!$

	1			
	Recht	Trapez	Dreieck	Ellipse
F	bc	$\frac{c_0+c_t}{2}b$	$\frac{c_0}{2}b$	$\frac{\pi}{4}bc_0$
Λ	b/c	$2b/(c_0+c_t)$	$2b/c_0$	$4b/(\pi c_0)$
λ	1	c_t/c_0	0	-
\overline{c}	с	$(c_0 + c_t)/2$	$c_0/2$	$\pi/4$
l_{μ}	c	$\frac{2}{3} \frac{c_0^2 + c_0 c_t + c_t^2}{c_0 + c_t}$	$2c_0/3$	$\frac{8}{3\pi}c_0$
x_{25}	c/4	$\frac{c_0}{4} + \frac{c_0 b}{6(c_0 + c_t)} (1 + \frac{2c_t}{c_0}) tg(\phi_{25})$	$\frac{c_0}{4} \frac{b}{6} t g(\phi_{25})$	$\frac{c_0}{4}\frac{b}{6}tg(\phi_{25})$

1.3.2 Flügelprofile

	Flügel (3D)	Profil (2D)
Auftrieb	$c_A = \frac{A}{\frac{1}{2}\rho V^2 F}$	$c_a = \frac{A'}{\frac{1}{2}\rho V^2 c}$
Widerstand	$c_W = \frac{W}{\frac{1}{2}\rho V^2 F}$	$c_w = \frac{W'}{\frac{1}{2}\rho V^2 c}$
Nickmoment	$c_M = \frac{M}{\frac{1}{2}\rho V^2 F l_\mu}$	$c_m = \frac{M'}{\frac{1}{2}\rho V^2 c^2}$

Hierbei sind Grössen mit Apostroph pro Spannbreite berechnet (Kraft/Moment pro b)

- Auftriebspolaren: Nullauftriebswinkel α_0 (Winkel wo aerodyn. Auftrieb verschwindet)
- $\alpha_0 = 0$ für symmetrische Profile
- $\alpha_0 < 0$ für gewölbte Profile
- Linearbereich
- $c_a = \frac{dc_a}{d\alpha}(\alpha \alpha_0)$ mit Auftriebsgradient
- $\frac{dc_a}{d\alpha}$: Konstant im Linearbereich
- Maximaler Auftriebsbeiwert: $c_{a,max}$ bestimmt die Abrissgeschwindigkeit
- • Minimaler Auftriebsbeiwert: $c_{a,min}$ analog wie $c_{a,max}$ im Rückenflug
- Minimaler Widerstandsbeiwert: $c_{w,min}$
- $c_{w,min} = 0$ für symmetrische Profile
- c_{w,min} > 0 für gewölbte Profile ungefähr beim stossfreien Eintritt (tangentialle Umströmung)
- Sturzflug-Momentenbeiwert $c_{m_0} = c_m(c_a = 0)$
- Bester Gleitwinkel: $\tan(p) = \frac{1}{(\frac{c_a}{c_w})_{max}}$
- Grössmögliche Reichweite: $(\frac{c_a}{c_w})_{max}$
- Beste Steigzahl / Profilsinkzahl:
- $(\frac{c_a^3}{c_w^2})_{max}$ resp. $\sqrt{\frac{c_a^3}{c_w^2}}$ längste Flugdauer

- · Druckpunkt / Neutralpunkt
- Druckbeiwert: $c_p = \frac{p p_{\infty}}{1/2\rho V^2}$
- Moment um beliebigen Punkt am Profil:
- $c_{m_x} = \frac{x x_{DP}}{c} (c_a \cos \alpha + c_w \sin \alpha) \approx \frac{x x_{DP}}{c} c_a$
- x_{DP} : Lage des Druckpunktes
- Am **Druckpunkt**: $c_{m,DP} = 0$
- Neutralpunkt: $\frac{dc_{m_x}}{d\alpha}|_{NP}=0$ und $\frac{dc_{m_x}}{dc_x}|_{NP}=0$
- $\frac{x_{NP}-x_R}{c}=-\frac{c_{mR}-c_{m0}}{c_a}$ mit R als Referenzpunkt

1.3.3 Profileigenschaften

- Auftrieb [N/m]: $A = \rho V \Gamma$
- Zirkulation $[m^2/s]$: $\Gamma = \int_0^c \gamma dx \ [m^2/s]$
- Einwirbel-Modell
- $A = \rho V^2 \pi c \alpha$, $\frac{dc_a}{d\alpha} = 2\pi$, $c_a = 2\pi \alpha$

1.3.4 Profilsystematik siehe p. 3.34

1.3.5 Tragflügel endlicher Spannweite

Aerodynamische Kraft auf Flügel

•
$$A = \int_{-b/2}^{b/2} \rho V \Gamma(y) dy$$

Induzierter Widerstand

•
$$W_i = \frac{A^2}{2\rho V^2 F^*} = \frac{2}{\rho V^2 \pi} \left(\frac{A}{b}\right)^2$$

• mit Prandtl'schem Ansatz $F^* = \frac{\pi}{4}b^2$

•
$$c_{w_i} = \frac{c_a^2}{\pi \Lambda}$$
 und $\alpha_i = \frac{c_a}{\pi \Lambda}$

Einfaches Wirbelmodell (Hufeisenwirbel)

- Abwind im Hufeisenwirbel mit $-x \gg y$
- $w = w_{re} + w_{li} = \frac{\Gamma}{2\pi} \left(\frac{1}{b/2 y} + \frac{1}{b/2 + y} \right)$
- · Abwind im Hufeinsenwirbel auf Flügellinie
- $w = w_{re} + w_{li} = \frac{\Gamma}{4\pi} \left(\frac{1}{b/2 y} + \frac{1}{b/2 + y} \right)$
- Auftrieb über ganze Spannweite
- $A = \rho V \Gamma b$

Allgemeine induzierte Geschwindigkeit

- Halbunendlicher Wirbelfaden: $w_i = \frac{\Gamma}{4\pi a}$
- Unendlicher Wirbelfaden: $w_i = \frac{\Gamma}{2\pi a}$

1.3.6 Prandtl'sche Traglinientheorie

Zirkulationsverteilung für elliptische Auftriebsverteilung

•
$$\Gamma(y) = \Gamma_0 \sqrt{1-\left(\frac{2y}{b}\right)^2}$$
, ind. Anstellwinkel: $\alpha_i = \frac{\Gamma_0}{2bV}$

- Elliptische Flügel erzeugen ... eine elliptische Auftriebsverteilung
- · ... einen in Spannweitenrichtung kontanten Abwind
- ... in Spannweitenrichtung konstanten lokalen Auftriebsbeiwert
- $\alpha_i = \frac{c_A}{\pi\Lambda}$ Abwindwinkel des Ellipsenflügels am Flügel selbst
- $c_A = c_{a_\alpha} \frac{\Lambda}{\Lambda + 2} \alpha$ Auftriebsbeiwert des Ellipsenflügels
- $\frac{dc_A}{d\alpha}=c_{a_\alpha}\left[\frac{1}{1+\frac{c_{a_\alpha}}{\pi\Lambda}}\right]$ Auftriebsderivativ des Ellipsenflügels
- $\frac{dc_A}{d\alpha}=c_{a_\alpha}\frac{\Lambda}{\Lambda+2}$ Auftriebsderivativ des Ellipsenflügels (potentialtheoretisch)
- $c_{W_i} = rac{c_A^2}{\pi \Lambda}$ Induzierter Widerstand des Ellipsenflügels

Beliebige Auftriebsverteilung

- Methode von Schrenk: Aufteilung von Auftriebsverteilung auf Basisauftrieb und Zusatzauftrieb (A/2 elliptische Form, A/2 proportional zu Flügelgrundriss)
- $\frac{dc_A}{d\alpha} = c_{a_\alpha} \left[\frac{\Lambda}{\Lambda + \frac{2(\Lambda + 4)}{\Lambda + 1}} \right]$ (McCormick Näherung)

•
$$\frac{dc_A}{d\alpha}=c_{a_{lpha}}\left[\frac{\Lambda}{\frac{c_{a_{lpha}}}{\pi}+\sqrt{\left(\frac{c_{a_{lpha}}}{\pi}
ight)^2+\Lambda^2}}\right]$$
, falls $c_{a_{lpha}}=2\pi$:

• $\frac{dc_A}{d\alpha} = c_{a_\alpha} \frac{\Lambda}{2+\sqrt{4+\Lambda^2}}$ (Lowry+Polhermus Näherung)

Prandtl-Glauert Faktoren

- Prandtl-Glauert Faktoren τ und δ geben Abweichungen zum idealen Ellipsenflügel an
- $\alpha_i = \frac{c_A}{\pi A}(1+\tau)$
- $c_{W_i} = \frac{c_A^2}{\pi A}(1+\delta)$

1.3.7 Strömungsabriss am Flügel

- Abbrissverhalten kritischer je ausgeprägter der Auftriebsabfall nach erreichen von c_{A.max}
- Abriss bemerkbar durch Schütteln (Buffeting)
- Abriss erkennbar wenn Innenflügel im abgerissenen Zustand und Aussenflügel gesund umströmt
- Bei Trapezflügel: Abrissverhalten aussen kritischer
- Bei gepfeilter Flügelform: Zusätzlich kan ein Längsmoment (Pitch Up) eintreten, was zu einer Verstärkung des Abriss führt
- Flügelverwindung: Aeroelastische Antwort wobei Flügel nach aussen unten verwunden werden (-3°) damit Pilot länger Kontrolle auf Steuerruder hat
- Stall Control Devices:
- Absenkung der Profilnase im Ausenflügel (Drop Nose)
- Nasenklappen im Aussenflügel
- Sägezahn (bei Pfeilflügeln) zwecks Aufbau einer Grenzschicht
- Grenzschichtzaun, verhindert Strömungsabfluss gegen Flügelspitze
- · Vortex-Generatoren, verzögern Ablösung im Querruder
- Abrisskanten (Stall Strips) am Innenflügel, lösen früher ab, Pilot wird durch Buffeting gewarnt ohne das Querruderwirksamkeit verloren geht

1.3.8 Auftriebserhöhende Klappen

- Schnellflug: $c_{W,min}$ möglichst klein
- Reiseflug: c_a/c_w resp. c_a^3/c_w^2 möglichst gross
- Langsamflug $c_{A,max}$ möglichst gross
- Um alle Anforderungen zu erfüllen, werden Klappen gebraucht
- Die Profilwölbung führt zu einem grösseren $c_{A,max}$
- $\frac{dc_a}{d\alpha}$ bleibt ungefähr gleich
- ca verschiebt sich zu grösseren Auftriebsbeiwerten

1.4 Widerstand

1.4.1 Widerstandsarten

Gesamtwiderstand = Induzierter Widerstand + Restwiderstand

Restwiderstand

- Reibungswiderstand: Reibungswiderstand auf benetzter Oberfläche
- Formwiderstand: Druckwiderstand auf Oberfläche parallel zur Strömung
- Interferenzwiderstand: Widerstand durch zwei Körper nahe beieinander

- Trimmwiderstand: Zusatzwiderstand durch Komponenten welche zum Momentengleichgewicht benötigt sind
- Profilwiderstand: Reibungs- und Formwiderstand eines 2-D Profils
- Kühlungswiderstand: Widerstand durch Impulsverlust beim Durchströmen von Kühleinrichtungen
- Heckwiderstand: Druckwiderstand eines stumpfen Hecks
- Wellenwiderstand: Bei Überschallströmungen, durch Schockwellen

Induzierter Widerstand

- $c_W = c_{W_0} + c_{W_i}$ wobei $c_{W_i} = kc_A^2$ (elliptisch: $k = \frac{1}{\pi\Lambda}$)
- $W = \frac{\rho}{2}V^2Fc_{W_0} + \frac{\rho}{2}V^2Fkc_A^2$ (dimensionsbehafte Form)
- Stationärer Horizontalflug (A=mg und $c_A=\frac{2mg}{\rho V^2 F}$)
- $W = \frac{\rho}{2} V^2 F c_{W_0} + \frac{k(mg)^2}{\frac{\rho}{2} V^2 F}$

1.4.2 Restwiderstand des Flügels

Profilwiderstand (Widerstand des Flügels) - p. 4.47 ff

- $W_{Fl\ddot{u}gel} = W_{Rest,Fl} + W_{induziert}$
- $W_{Rest,Fl} = 2\frac{\rho}{2}V^2 \int_{b_B/2}^{b/2} c_{W_{\infty}}(y)c(y)dy$
- $c_{W_{\infty}}$ Profilwiderstand 2D

Unverwundener Ellipsenflügel:

- $W_{Fl\ddot{u}gel} = c_{W_{\infty}} \frac{F^*}{F} + c_{W_i}$
- F* benetzter Anteil Flügelfläche

Oswald-Faktor

- $c_W = c_{W_0} + \frac{c_A^2}{\pi \Lambda e}$ mit
- $e = \frac{1}{1 + \delta + \pi \Lambda k}$ Oswald-Wirkungsfaktor
- Gilt nur im Linearbereich der Auftriebspolaren!
- Flügel mit elliptischer Auftriebsverteilung: e=1
- Flügel 0.85 < e < 0.95
- Flugzeug 0.6 < e < 0.9

Bester Gleitwinkel $(c_A/c_W)_{max}$

•
$$c_W = 2c_{W_0}$$
, $c_A = \sqrt{\pi \Lambda e c_{W_0}}$, $c_{W_0} = c_W(c_A = 0)$

1.4.3 Restwiderstand des Flugzeugs

Reibungswiderstand W_R

- $c_f = \frac{W_R}{\frac{\rho}{2}V^2F_W}$ mit F_W : benetzte (überstr.) Oberfläche
- Lokale Reynoldszahl: $Re_x = \frac{Vx}{\nu}$

Umschlag von laminar-turbulent

- $Re_{krit} = (Vx/\nu)_{krit} \approx 3 \cdot 10^5 3 \cdot 10^6$
- laminar $Re < Re_{krit}$
- turbulent $Re > Re_{krit}$

Ebene Platte mit glatter Oberfläche

- $Re = (Vl/\nu)$ mit l Plattenlänge
- laminar: $c_f = 1.328 \frac{1}{\sqrt{Re}}$
- turbulent: $c_f = 0.074 Re^{-1/5}$

Ebene Platte mit rauher Oberfläche Rauhigkeit k_s

- $k_s = 0mm$ Aerodynamisch/hydraulisch glatt
- $k_s = 0.5 \cdot 10^{-3} 2 \cdot 10^{-3} mm$ Metall/Holz poliert
- $k_s = 6 \cdot 10^{-3} mm$ Farboberfläche, glänzend
- $k_s = 0.01 0.03mm$ Tarnfarbe, unpoliert
- $k_s = 0.15mm$ Metalloberfläche, galvanisierend

Rauhigkeitsbereiche:

- $\frac{u_{\tau}k_s}{\nu} < 5$ hydraulisch glatt
- $5 < \frac{u_\tau k_s}{\nu} < 70$ Übergangsbereich
- $\frac{u_{\tau}k_s}{\nu} > 70$ rauh

Zulässige Rauhigkeitshöhe $k_{s,zul}$ für Grenzschichten

- laminare GS: $k_{s,zul} \le 15 \frac{u_{\tau}}{\nu} = k_{s,krit} = 26.03 \frac{\nu \sqrt[4]{Re_x}}{V}$
- turbulente GS: $k_{s,zul} < 100 \frac{\nu}{V} = 100 \frac{l}{Re}$
- $c_f = (1.89 + 1.62 \log(\frac{1}{k_s}))^{-2.5}$ für $10^2 < \frac{1}{k_s} < 10^6$

Plattenförmige Körper ohne grosse Ablösungssgebiete

•
$$c_W^* = c_f \frac{F_W}{F_F}$$

• Benetzte Oberfläche F_W , Frontfläche F_F

Reibungswiderstand für profilierte Flächen (empirische Beziehung)

•
$$c_{W_0} = c_f \frac{F_F}{F} \left[1 + L\left(\frac{d}{c}\right) + 100\left(\frac{d}{c}\right)^4 \right]$$

- mit L=1.2: Falls Profil max. Dicke x/c>0.3
- mit L=2.0: Falls Profil max. Dicke x/c<0.3
- F: Referenzfläche, F_W : Benetzte Oberfläche
- c: Profiltiefe, d: Profildicke

Formwiderstand

- $c_{W,Ru}(\alpha) = c_{W_{0,Ru}} + c_{W_{\alpha,Ru}} + c_{W_{H,Ru}}$
- $c_{W,Ru} = 0.05 0.15$ 0.15 für kleine, gedrungene Flugzeuge
- $c_{W,Ru} = \left(1 + \frac{D}{2l}\right) c_{f,pl} \frac{F_W}{F}$ $c_{f,pl}$ Reibungsbeiwert Platte
- $c_{\alpha,Ru} \approx k_R \left(\frac{\alpha}{10}\right)^3 c_{W_{0,Ru}}$ $k_R \approx 0.3$ (gedrungen), $k_R \approx 0.9$ (schlank)
- $c_{W_{H,Ru}} = 0.029 \left(\frac{D_H}{D}\right)^3 \frac{1}{\sqrt{c_{W_{0,Ru}}}} \frac{\pi D^2}{4} \frac{1}{F}$ D: max. Rumpfdurchmesser, D_H : Heckdurchmesser

Interferenzwiderstand

• $\approx 5\%$ des Rumpfwiderstands bei kleinen Anstellwinkeln, durch Messungen zu bestimmen

Trimmwiderstand

• $\approx max.1 - 2\%$ des Gesamtwiderstands im stationären Reiseflug

Abschätzung des Restwiderstands

- 1. Einzelteile auflisten
- 2. Geometrie der Einzelteile bestimmen
- 3. Referenzfläche F_N bestimmen und Widerstandsbeiwert c_{W_n} abschätzen
- 4. Widerstandsfläche der Einzelteile berechnen: $f_n = c_{W_n} F_n$
- 5. Widerstandsfläche des Flugzeugs bestimmen: $f = \sum_{i=1}^{n} f_i$
- 6. Abschätzen von allfälligen Zusatzwiderständen (Interferenzen, Kühlung)
- 7. Gesamtwiderstand: $W_{Rest} = \frac{1}{2}\rho V^2 f + W_{zusatz}$

1.4.4 Gesamtwiderstand des Flugzeugs

- $W = \frac{1}{2}\rho V^2 \left(f + F \frac{c_A^2}{\pi \Lambda e} \right)$
- Im stationären Horizontalflug: A = mg
- $W = \frac{1}{2}\rho V^2 f + \frac{2}{\rho\pi e} \left(\frac{mg}{b}\right)^2 \frac{1}{V^2}$

Minimaler Widerstand

- $W_{min} = \frac{2mg}{b} \sqrt{\frac{f}{\pi e}}$
- $V(W_{min}) = \left[\frac{4}{\pi e f} \left(\frac{mg}{\rho b}\right)^2\right]^{0.25}$

1.4.5 Widerstandsverminderung

Reduktion des induzierten Widerstands

- $c_{W_i} = \frac{c_A^2}{\pi \Lambda e} o ext{m\"oglichst grosse Streckung } \Lambda$
- Möglichst elliptischer Auftrieb e=1
- Durch Beeinflussung der Ausgleichsströmung (Flügelend-Tanks, Winglets etc.)

Reduktion des Restwiderstand (p. 4.36)

- Reduktion der Oberflächenreibung durch Laminarhaltung der Strömung
- Reduktion der Oberflächenreibung durch Reduktion der Rauheit
- Grenzschichtbeeinflussung durch passive oder aktive Mittel (Grenzschichtabsaugung, Zusatzinstallation etc.)
- · Beeinflussung der Grenzschicht durch Riblets
- Verringerung des Kleinteilewiderstands (Drag clean up), Beschränkung von störenden Teilen auf der Oberfläche auf ein Minimum

1.5 Schub

1.5.1 Antriebsysteme, Übersicht

Impulssatz

- $F_x = \int_{Oberfl} \rho V_x \left(\vec{V} d\vec{F} \right)$
- $S = \dot{m}(V_a V_\infty) + (p_a p_\infty)F_a$
- F_a meistens klein, also gilt meistens
- $S \approx \dot{m}(V_a V_\infty)$ (immer diese Formel nehmen)

1.5.2 Wirkungsgrad von Flugantrieben

- $\eta_{tot} = \eta_t \eta_p$
- η_t = thermischer Wirkungsgrad (im System produzierte mechanische Energie / Wärmeenergie Treibstoff)
- $\eta_p = \text{Vortriebswirkungsgrad}$ (am Flugzeug nutzbare Arbeit / mechanische Energie)

1.5.3 Kolbenmotoren

- $\tilde{p}=$ Mittlerer effektiver Druck, $F_K=$ Kolbenfläche, H= Hub, n= Drehzahl, N= Anzahl Kolben, V= Hubvolumen

- Bremsleistung = $P_{BP} = \eta_{mech} P_{IP}$
- Thermische Leistung = $P_{th} = \dot{w}H_{Br}$
- $\dot{w} = \text{Brennstoffdurchlass} \left[\frac{kg}{s}\right], H_{Br} = \text{Heizwert} \left[J/kg\right]$

•
$$\eta_{th} = \frac{P_{BP}}{P_{th}} = \frac{P_{BP}}{\dot{w}H_{Br}} = \frac{1}{BSFC \cdot H_{Br}}$$

Die Leistung (Vollgasleistung) hängt hauptsächlich auch von der Flughöhe ab, daher muss diese noch angepasst werden:

•
$$P = P_0 \sqrt{\frac{T_{ISA}}{T}} [(1+c)\Theta^{4.256} - c]$$

- P_0 = Vollgasleistung in H = 0, ISA
- $T_{ISA} =$ Temperatur in [K] der ISA-Atmosphäre bei Höhe H
- $0.1 \le c \le 0.3 = \text{empirischer Faktor}$

•
$$\Theta(H) = \left[\frac{T}{T_0}\right]_{ISA} = 1 - 22.558 \cdot 10^{-6} \cdot H \ (H = [m])$$

Weitere Faktoren für die Motorleistung:

- · Luft-Treibstoff-Gemisch
- Führung der Zylinder, Druck im Ansaugteil (Turbolader)
- Maximal zulässige Drehzahl

1.5.4 Propeller (5.20f)

Aus Impuls und Massenerhaltungsgleichungen folgt:

•
$$S = \frac{\rho}{2} F_p(V_3^2 - V_0^2) = \rho F_p V_1(V_3 - V_0)$$

• $S = \rho F_p(V_0 + \nu) 2\nu$ ($\nu = \text{induzierte Geschwindigkeit})$

•
$$\nu = -\frac{V_0}{2} + \sqrt{\left(\frac{V_0}{2}\right)^2 + \frac{S}{2\rho F_p}}$$

• S/F_p = Propellerbelastung, Schub S pro Propellerfläche F_p

Die Leistung P = [W] lässt sich dann wie folgt berechnen:

•
$$P = S \cdot V_1 = S \cdot (V_0 + \nu) = \frac{\rho}{2} F_p V_1 (V_3^2 - V_0^2) = 2\rho F_p \nu (V_0 + \nu)^2$$

•
$$P_{Nutz} = S \cdot V_0$$

Wirkungsgrad eines idealen Propellers:

•
$$\eta_i = \frac{P_{Nutz}}{P} = \frac{1}{1 + \frac{\nu}{V_0}} = \frac{2}{1 + \sqrt{1 + c_s}}$$

• Schubbeiwert
$$c_s = \frac{S}{\frac{\rho}{2}V_0^2 F_P}$$

Resultate der Impulstheorie

- Bei gegebenem Schubbeiwert c_s kann der Wirkungsgrad direkt berechnet werden
- Die Schubgrenze (für gegebene Motorleistung) folgt aus der Beziehung für die Leistung und kann in einem Schub-Leistungsdiagramm mit Fluggeschwindigkeit als Parameter dargestellt werden

Berechnung des Standschubes S_0

•
$$\nu_0 = \sqrt{\frac{S_0}{2\rho F_p}}$$
, falls da $V_0 = 0$

•
$$P_0 = S_0 \nu = \frac{S_0^{2/3}}{\sqrt{2\rho F_p}}$$

•
$$S_0 = (2\rho F_p)^{1/3} P_0^{2/3}$$

Abhängigkeit des Schubes von der Geschwindigkeit

Hier ist die Annahme, dass die Leistung unabhängig von der Geschwindigkeit ist, daher $P(V)=P(V_0)=P_0$

•
$$P = \frac{S}{2} \left(V_0 + \sqrt{V_0^2 + \frac{S}{\frac{\rho}{2} F_p}} \right) = \frac{S_0^{3/2}}{\sqrt{2\rho F_p}}$$

• Aus Umformungen folgt folgende Gleichung:

•
$$\left(\frac{S}{S_0}\right)^3 + \left(\frac{S}{S_0}\right)\frac{V_0}{\nu_0} - 1 = 0$$
 (Polynom 3. Grades)

• Das Polynom kann numerisch ermittelt oder aus Tabellen herausgelesen werden. Die Gleichung gilt universell. Falls S_0 und V_0 gegeben sind, kann die Abhängigkeit des Schubes S von V berechnet werden

1.5.5 Blattelementtheorie

Wichtige Grössen (5.32f)

•
$$c_P = \frac{P}{\rho n^3 D^5} = \text{Leistungsbeiwert}$$

•
$$c_T = \frac{S}{\rho n^2 D^4} =$$
Schubbeiwert

•
$$J = \frac{V_0}{nD}$$
 = Fortschrittsgrad

•
$$\eta = \frac{SV_0}{P} = \frac{c_T}{c_P}J = \text{Propellerwirkungsgrad}$$

Mit den gegebenen Grössen lässt sich im Propellerdiagramm (entweder fixer oder verstellbarer Propellersteigwinkel β) ablesen, was der Propellerwirkungsgrad ist als Funktion vom Fortschrittgrad $\eta=f(J)$

- 1. V_0 gegeben für Flugzeug (Fluggeschwindigkeit), n ebenfalls gegeben sowie Propellerdurchmesser D
- 2. Daraus lässt sich $J = \frac{V_0}{nD}$ bestimmen
- 3. Aus dem Propellerdiagramm mit η bei gegebenem J und β bestimmen
- 4. Aus n (P=P(n) aus Motor-Leistungskennlinie) und η lässt sich nun $S=\frac{\eta P}{V_0}$ bestimmen

1.5.6 Einbauverhältnisse

Für Verluste durch Versperrwirkung, beispielsweise am Rumpf, sind unberücksichtigt und analytisch schwer vorherbestimmbar. Daher kann als Richtlinie gelten:

•
$$\eta_{eff} = 0.9 \eta_{Propeller}$$

Versuche in Windkanälen können hier mehr Informationen liefern, z.B. durch einen erzeugten Drall vom Propeller.

Disclaimer

Diese Zusammenfassung basiert auf den persönlichen Notizen und Zusammenfassungen früherer Jahre. Fehler sind unvermeidbar und es besteht keine Garantie dass diese Zusammenfassung vollständig komplett ist.