## IBM Data Science Professional Certificate

Course 9: Capstone
Final report

# Predicting property prices of Lisbon's boroughs using Foursquare data

Prepared by:

Luis Domingues

## **Table of Contents**

| T | abl | e of | Con    | tents                                                     | 2  |
|---|-----|------|--------|-----------------------------------------------------------|----|
| A | bst | ract |        |                                                           | 3  |
| 1 |     | Intr | oduc   | tion                                                      | 4  |
| 2 |     | Dat  | a col  | lection                                                   | 5  |
| 3 |     | Met  | hodo   | ology                                                     | 6  |
|   | 3.  | 1    | Met    | hods and algorithms                                       | 6  |
|   |     | 3.1. | 1      | Understanding the data                                    | 6  |
|   |     | 3.1. | 2      | Determine factors to be used to predict property prices   | 6  |
|   |     | 3.1. | 3      | Predict property prices of Lisbon's boroughs              | 7  |
|   | 3.2 | 2    | Assı   | ımptions                                                  | 7  |
| 4 |     | Res  | ults a | and discussion                                            | 8  |
|   | 4.  | 1    | Und    | erstanding the data                                       | 8  |
|   | 4.2 | 2    | Dete   | ermine factors to be used to predict property prices      | 2  |
|   | 4.3 | 3    | Pred   | lict property prices of Lisbon's boroughs                 | 4  |
| 5 |     | Con  | clus   | ion 1                                                     | 6  |
| 6 |     | Ref  | eren   | ces                                                       | 7  |
| A | pp  | endi | ces    |                                                           | 8  |
|   | Aj  | ppen | dix A  | A. Lisbon data used in this work.                         | 8  |
|   | Aj  | ppen | dix 1  | 3. Mapping of Foursquare categories to reduced categories | 9  |
|   | Αį  | ppen | dix (  | C. Table of Lisbon boroughs and their respective cluster  | 23 |

#### **Abstract**

Property prices have been rising in Portugal and particularly in Lisbon. Property is not only an essential asset for life but is also an investment instrument. For these reasons, being able to predict property prices is extremely useful.

In order to predict property prices in Lisbon's boroughs, Foursquare data was combined with other data on area and population of each of Lisbon's boroughs. Due to the high number of different venue categories returned by Foursquare, these were combined into a smaller set of more significant categories.

The features used to predict property prices of Lisbon's boroughs were chosen to maximize the correlation between features and the predicted variable (property price). The features used were 'Food and drink', 'Hotels and accomodation', 'Arts, entertainment and nightlife', 'Shopping', 'Population', 'Public buildings', 'Area', 'Outdoors', and 'Athletics and sports'. The property prices of Lisbon's boroughs were then predicted using multiple linear regression. The fit obtained was reasonably good. The R² was 0.732, and the residuals were randomly distributed.

#### 1 Introduction

Property prices have been steadily rising in Portugal since 2014, after a significant decrease in the period 2011-14, following the international crisis of '08 [1]. The main reasons for this increase are: increase in tourism activities, lower prices when compared with other European cities with similar touristic potential, legislation changes, which sparked an increase in urban rehabilitation, low interest rates environment, not enough properties to let, which stimulates buying for letting [1], [2]. Property prices rose by 6.09% y-o-y in 2018, to an average price of 1,220 €/sqm, with the highest increase in Lisbon metropolitan area, where prices rose by 7.9% [1]. The highest property prices are also in Lisbon, where the median is currently 2877 €/sqm [3].

Even though the improvement in economic conditions has been pointed out as one of the reasons for the increase in property prices [1], it has also been argued that it is mainly due to foreign investment. The reasons for this argument are that currently, it takes an average of 45.9 years to pay out an apartment in the centre of Lisbon with an average salary, and also because any non-EU citizen is granted Portuguese citizenship for 5 years if they invest >500 000 € in real-estate, with an option to renew permanently after that period. This means that property prices are expected to keep rising, provided foreign investors remain interested. Property in Portugal is still viewed as relatively inexpensive to investors and the number of transactions has been steadily increasing since 2014 [1], so it seems that indeed prices are expected to keep rising for the next couple of years.

Since property is, not only a place of residence but can also be an investment instrument, being able to predict property prices is extremely useful. Ideally, property prices would be predicted by readily available information.

The goal of this work is thus to use amenities' data, *e.g.* the number of restaurants in a borough, in conjunction with demography and geographical data of Lisbon's boroughs to predict the property prices in each of Lisbon's boroughs. Amenities' data will be retrieved by Foursquare with the remaining data on demography and geography being taken from Wikipedia.

#### 2 Data collection

Different types of data were collected for this work. The data collected is described below with their respective sources:

- Lisbon boroughs' info:
  - o Names [4]
  - o Location (lat., long.) [4]
  - o Property prices [5]
  - o Population [4]
  - o Area [4]
- Lisbon venues' info
  - o Name [6]
  - o Location [6]
  - o Category [6]

The data on Lisbon's boroughs' info is presented in Appendix A. Since there are 182 venue categories returned by Foursquare, with a very high sparsity (many zeros), these categories were grouped in a set of 11 more meaningful reduced categories. The mapping between Foursquare categories and the reduced categories is presented in Appendix B. The reduced categories considered are presented below:

- Arts, entertainment and nightlife
- Food and drink
- Supermarkets and groceries
- Shopping
- Historic sites and museums
- Hotels and accomodation
- Athletics and sports
- Transport
- Public buildings
- Health and education buildings
- Outdoors

In total 1007 venues were retrieved from Foursquare. The data was then encoded and grouped by borough. The encoding was done on the venue categories to convert the data from categorical to binary, with the venues categories as the columns. This facilitated the grouping per borough, which consisted in summing all the venues in the same borough. This means that for each borough there is information on the number of venues for 'Shopping', 'Food and drink', 'Transport', etc.

### 3 Methodology

The methodology used in this work, as well as the algorithms used, and the assumptions made are presented in this section.

#### 3.1 Methods and algorithms

The main goal of the work is to predict property prices  $( \in /m^2 )$  from a set of features. The full set of features is the following:

- Population
- Area (km<sup>2</sup>)
- Population density (inhabitants/km<sup>2</sup>)
- Number of venues in category 'Arts, entertainment and nightlife'
- Number of venues in category 'Food and drink'
- Number of venues in category 'Supermarkets and groceries'
- Number of venues in category 'Shopping'
- Number of venues in category 'Historic sites and museums'
- Number of venues in category 'Hotels and accomodation'
- Number of venues in category 'Athletics and sports'
- Number of venues in category 'Transport'
- Number of venues in category 'Public buildings'
- Number of venues in category 'Health and education buildings'
- Number of venues in category 'Outdoors'

As the goal is to be able to predict a continuous variable, multiple linear regression was used. The main question is which features to use in the correlation. The methodology used is explained in detail in the following sections.

#### 3.1.1 Understanding the data

After analysing the data using descriptive statistics, an unsupervised clustering algorithm was used in order to try to better understand it.

- Section methods: Descriptive statistics and k-means clustering
- Section goal: To better understand the data

#### 3.1.2 Determine factors to be used to predict property prices

In order to determine which factors to use in the multiple linear regression, the correlation factor of each feature with the property price was determined. Then the data was split into two sets (75% train; 25% test) and different multiple linear regression models were fitted to the train set each by adding the remaining factor with highest correlation factor. The optimal number of features corresponded to the maximum of  $\mathbb{R}^2$ .

- Section methods: Correlation factors and multiple linear regression
- Section goal: Determine which factors to use to predict borough's property prices

#### 3.1.3 Predict property prices of Lisbon's boroughs

Using the number of factors determined in section 3.1.2, the multiple linear regression model was fitted to the train dataset, which contained 75% of the data. The model was then validated, by predicting the remaining 25% of data, and plotting the residuals.

Multiple linear regression was used because the goal was to predict a continuous variable using a set of multiple features.

• Section methods: Multiple linear regression

• Section goal: Predict boroughs' property prices

#### 3.2 Assumptions

- Foursquare data is correct and complete.
   This is a central assumption to this work as the majority of features are provided by this service.
- The radius of search was adequate.

When querying the Foursquare database, a radius of search must be provided. In order to avoid overlap between boroughs, the radius used corresponded to the radius of the circumference with the lowest borough area. Even though there is a risk that some venues may not have been included in some boroughs, using the minimum radius was considered the fairest approach. Since all boroughs were queried with the same radius, the number of venues returned can be seen as a number of venues per area, with the area being the same for all.

## 4 Results and discussion

There is a total of 24 boroughs in Lisbon. The location of the centre of the boroughs can be seen in Figure 1. The complete borough data is presented in Appendix A.



Figure 1 – Map of Lisbon including borough centres.

#### 4.1 Understanding the data

In order to better understand the data prior to any further usage, both descriptive statistics and k-means clustering were used. Table 1 presents some descriptive statistics on price, population and area.

|            | Tubic 1      | Descriptive statistics e |                               |            |
|------------|--------------|--------------------------|-------------------------------|------------|
| Statistics | Price (€/m²) | Population               | Population dens. (inhab./km²) | Area (km²) |
| mean       | 2771.75      | 23029                    | 6608                          | 4.17       |
| std        | 667.60       | 9519                     | 3193                          | 2.40       |
| min        | 1543.00      | 11836                    | 1584                          | 1.49       |
| 25%        | 2381.00      | 15430                    | 4548                          | 2.39       |
| 50%        | 2741.00      | 20578                    | 5769                          | 3.19       |
| 75%        | 3155.75      | 31693                    | 7704                          | 5.37       |
| max        | 4105.00      | 45605                    | 14860                         | 10.43      |

Table 1 – Descriptive statistics on Lisbon boroughs data

Histograms for price, population and area are presented in Figure 2. As can be observed in Figure 2, none of the variables seems to follow a normal distribution. Nonetheless, for price the mean (2771.75 €/n²) corresponds to the bin with more observations, which is not the case for population and area. For both these features, the first three bins (with lowest values) have the highest number of observations. This indicates that price is differently distributed than population and area.



 $Figure\ 2-Histograms\ for\ different\ features\ (number\ of\ bins=10)$ 

The number of observations for each (reduced) category is presented in Table 2. As can be seen in Table 2, the category with highest number of venues is 'Food and drink', with ca. 60% of retrieved venues. This is followed by distantly by 'Arts, entertainment and nightlife' and 'Hotels and accomodation'. These three categories combined account for ca. 80% of total venues retrieved by Foursquare. The number of venues in other categories seems suspiciously low, especially 'Transport', which including bus stops has only 13 occurrences, 'Health and education buildings' and 'Supermarkets and groceries'. Foursquare seems biased towards venues in the 'Food and drink', which includes all sorts of restaurants and bars (see Appendix B).

*Table 2 – Number of venues for each category.* 

| Category                          | Number of venues |
|-----------------------------------|------------------|
| Shopping                          | 80               |
| Food and drink                    | 604              |
| Arts, entertainment and nightlife | 113              |
| Athletics and sports              | 30               |
| Transport                         | 13               |
| Outdoors                          | 22               |
| Hotels and accomodation           | 90               |
| Public buildings                  | 19               |
| Historic sites and museums        | 11               |
| Health and education buildings    | 4                |
| Supermarkets and groceries        | 21               |
| Shopping                          | 80               |
| TOTAL                             | 1007             |

In order to better understand the data an unsupervised clustering algorithm was also used. The algorithm chosen was k-means.

One of the main problems when using k-means is choosing how many clusters to use. In this work, the number of clusters to be used was determined by the "elbow" method. Using this strategy, the optimal number of clusters corresponds to the cluster number after which the sum of intracluster distances squared starts to decrease at a lower rate. The variation of the sum of intracluster distances squared with the number of clusters is presented in Figure 3. As can be observed in Figure 3 the optimal number of clusters is either 3 or 4. In order to simplify the analysis, the optimal number of clusters chosen in this work was 3.



Figure 3 – Variation of the sum of intracluster distances squared with the number of clusters.

The algorithm was fitted again to all data, using the 3 clusters, which corresponds to the optimal number of clusters. The clustered boroughs can be seen in Figure 4 and the full list of boroughs and their respective clusters can be found in Appendix C.



Figure 4 – Clustered boroughs obtained using k-means (k=3).

Cluster 1 (red); cluster 2 (purple); Cluster 3 (orange).

In order to better understand how the boroughs were clustered, the cluster centres can be analysed. These are presented in Table 3. Analysing Table 3 it can be seen that the cluster with highest property price is cluster 3. Geographically, this cluster corresponds to boroughs closer to the river, which is usually a prime location, as can be seen in Figure 4. It is also interesting to notice that cluster 3 has the lowest population and population density, which might indicate, that boroughs in this cluster might have bigger and more luxurious properties.

As can be observed in Table 3, cluster 2 has the lowest property price, while clusters 1 and 3 have similar prices. Table 3 shows that the differences when comparing categories 'Food and drink', 'Arts, entertainment and nightlife' and 'Hotels and accomodation' follow the same trend as the price. Cluster 3 has the highest price and also the higher value for 'Food and drink' (29.56), followed closely by cluster 1, which has a value of 28. Cluster 3 comes very far with only 16.29. The same trend is observed for 'Arts, entertainment and nightlife' and 'Hotels and accomodation', with cluster 3 having the highest value, followed closely by cluster 1 with cluster 2 a distant third. These three categories seem to be the most significant, as the combined sum of venues accounts for ca. 80% of the total venues retrieved from Foursquare. For this reason, the other categories were not analysed in the cluster analysis.

In summary, clustering reveals a set of boroughs (belonging to cluster 2), which have significantly lower property prices, less venues in 'Food and drink', 'Arts, entertainment and nightlife' and 'Hotels and accomodation' categories, when compared to boroughs in other clusters. It is harder to distinguish between boroughs in clusters 1 and 3 as comparing these categories they are fairly similar. Cluster 1 has nonetheless both a higher population and population density.

Table 3 – Cluster centres for k-means with 3 clusters.

| Feature                           | Cluster 1 | Cluster 2 | Cluster 3 |
|-----------------------------------|-----------|-----------|-----------|
| Price (€/m²)                      | 2864.0    | 2384.8    | 2990.7    |
| Population (inhab.)               | 21837     | 35811     | 14147     |
| Population dens. (inhab./km²)     | 7833      | 7078      | 5153      |
| Area (km²)                        | 3.273     | 5.939     | 3.588     |
| Shopping                          | 4.88      | 2.00      | 3.00      |
| Food and drink                    | 28.00     | 16.29     | 29.56     |
| Arts, entertainment and nightlife | 3.63      | 2.29      | 7.56      |
| Athletics and sports              | 1.75      | 1.57      | 0.56      |
| Transport                         | 0.63      | 0.57      | 0.44      |
| Outdoors                          | 1.38      | 0.71      | 0.67      |
| Hotels and accomodation           | 3.13      | 1.29      | 6.22      |
| Public buildings                  | 0.63      | 0.43      | 1.22      |
| Historic sites and museums        | 0.13      | 0         | 1.11      |
| Health and education buildings    | 0         | 0.43      | 0.11      |
| Supermarkets and groceries        | 1.38      | 1.00      | 0.33      |

#### 4.2 Determine factors to be used to predict property prices

With a better understanding of the data gathered, the next issue is which features to use to predict the property prices of Lisbon's boroughs. This issue was addressed firstly by determining the correlation factors of each feature with the property price. These features were then ranked and used to fit different multiple linear regressions, by adding every feature one at a time by the order in which they were ranked. The features which maximised the  $R^2$  of the linear regression were chosen as the best.

Figure 5 presents the correlation factors of each feature with the property price. The features which have the highest correlation are 'Food and drink', 'Arts, entertainment and nightlife' and 'Hotels and accomodation'. As discussed in section 4.1, these are the categories with the highest number of venues and were shown by k-means to correlate well with price, so this result was expected.



Figure 5 – Correlation factors with property price.

All the features were then ranked by highest absolute value of correlation factor and added one by one to multiple regressions. The variation of the  $R^2$  with the number of features is presented in Figure 6. As can be seen in Figure 6, the optimum number of features to use in 9. The nine features used are presented in Table 4.



Figure 6 – Variation of  $R^2$  with the number of features.

Table 4 – Features used to predict property price and their respective correlation factors with the predicted variable.

| Feature                           | Absolute correlation factor |
|-----------------------------------|-----------------------------|
| Food and drink                    | 0.767761                    |
| Hotels and accomodation           | 0.644956                    |
| Arts, entertainment and nightlife | 0.605600                    |
| Shopping                          | 0.534702                    |
| Population                        | 0.465174                    |
| Public buildings                  | 0.457006                    |
| Area                              | 0.356242                    |
| Outdoors                          | 0.204509                    |
| Athletics and sports              | 0.194633                    |

#### 4.3 Predict property prices of Lisbon's boroughs

Using the optimal number of features, presented in Table 4, the desired multiple linear regression used to predict property prices of Lisbon's boroughs was determined. The coefficients obtained are presented in Table 5.

Table 5 – Coefficients of multiple linear regression used to predict property prices using the 9 optimal features.

| Variable                          | Coefficient |
|-----------------------------------|-------------|
| Intercept                         | 2559.86     |
| Food and drink                    | -4.0805     |
| Hotels and accomodation           | 44.4691     |
| Arts, entertainment and nightlife | 34.5041     |
| Shopping                          | 28.4188     |
| Population                        | -0.0141     |
| Public buildings                  | 110.1465    |
| Area                              | -23.3758    |
| Outdoors                          | 148.1406    |
| Athletics and sports              | 84.5804     |

Multiple linear regression was used because the goal was to predict a continuous variable using a set of features. The data was divided in train and test datasets using a split of 75% and 25%, respectively. The R<sup>2</sup> of the multiple linear regression was found to be 0.732. The parity diagram showing the comparison between predicted and observed values for both train and test datasets is shown in Figure 7. It can be concluded from Figure 7 that the fit is reasonably good and the test dataset is predicted reasonably well. The residuals are presented in Figure 8 and seem to be randomly distributed.



Figure 7 – Parity diagram for predicted property price using multiple linear regression with features in Table 4. Train and test datasets were 75% and 25% of the full dataset, respectively.  $R^2=0.732$ 



Figure~8-Residuals~of~price~predicted~by~multiple~linear~regression~with~features~in~Table~4.

#### 5 Conclusion

In this work, Foursquare data was combined with other data on area and population of each of Lisbon's boroughs to try and predict their property prices.

Due to the high number of different venue categories returned by Foursquare, these were combined into a smaller set of more significant categories. It was found that Foursquare is somewhat biased towards returning venues in categories 'Food and drink', 'Arts, entertainment and nightlife' and 'Hotels and accomodation', as they contain ca. 80% of the total venues returned.

In order to better understand the data, k-means clustering was used, with 3 clusters. This number was obtained by the "elbow" method, and corresponds to the number of clusters after which only small improvements in sum of intracluster distance square are obtained. It was concluded that cluster 3, which had the highest property prices also had more venues in the categories 'Food and drink', 'Arts, entertainment and nightlife' and 'Hotels and accommodation'. This showed that these categories correlate well with property price.

The features used to predict property prices of Lisbon's boroughs were chosen to maximize the correlation between features and the predicted variable (property price). The features used were 'Food and drink', 'Hotels and accomodation', 'Arts, entertainment and nightlife', 'Shopping', 'Population', 'Public buildings', 'Area', 'Outdoors', and 'Athletics and sports'.

Finally, the property prices of Lisbon's boroughs were predicted using multiple linear regression. The fit obtained was reasonably good. The  $R^2$  was 0.732, and the residuals were randomly distributed.

The obtained correlation can hopefully become a useful tool to predict the evolution of property prices in Lisbon's boroughs, by continuously monitoring the evolution of each of the features.

#### 6 References

- [1] C. D. Lalaine, "Investment Analysis of Portuguese Real Estate Market," *GlobalPropertyGuide*, 06-Feb-2019. [Online]. Available: https://www.globalpropertyguide.com/Europe/Portugal/Price-History. [Accessed: 21-May-2019].
- [2] N. Capital, "Existe uma bolha imobiliária em Lisboa? Sim, existe, e o Porto está a caminho.," *Nomera Capital*, 24-Aug-2018. [Online]. Available: https://www.nomeracapital.pt/pt-pt/2018/08/24/existe-uma-bolha-imobiliaria-em-lisboa-sim-existe-e-o-porto-esta-a-caminho/. [Accessed: 21-May-2019].
- [3] R. Godinho, "Casas em Lisboa são 20 vezes mais caras do que na Pampilhosa da Serra," *Negócios*, 31-Jan-2019. [Online]. Available: https://www.jornaldenegocios.pt/empresas/imobiliario/detalhe/casas-em-lisboa-sao-20-vezes-mais-caras-do-que-na-pampilhosa-da-serra. [Accessed: 21-May-2019].
- [4] Wikipédia, "Lista de freguesias de Lisboa," 2019. [Online]. Available: https://pt.wikipedia.org/wiki/Lista\_de\_freguesias\_de\_Lisboa. [Accessed: 10-Apr-2019].
- [5] N. Carregueiro, "Mapa: Só numa freguesia de Lisboa e Porto os preços das casas não sobem mais de 10%," *Negócios*, 30-Oct-2018.
- [6] "Foursquare API," *Foursquare*, 2019. [Online]. Available: https://developer.foursquare.com/. [Accessed: 22-May-2019].

# Appendices

Appendix A. Lisbon data used in this work.

| Borough name               | Price (Eur/m2) | Latitude  | Longitude | Population |
|----------------------------|----------------|-----------|-----------|------------|
| Ajuda                      | 2564           | 38.707500 | -9.198333 | 15617      |
| Alcantara                  | 2413           | 38.706389 | -9.174167 | 13943      |
| Alvalade                   | 3087           | 38.746944 | -9.136111 | 31813      |
| Areeiro                    | 2701           | 38.740278 | -9.128056 | 20131      |
| Arroios                    | 2793           | 38.728889 | -9.138889 | 31653      |
| Avenidas Novas             | 3338           | 38.738889 | -9.145833 | 21625      |
| Beato                      | 1913           | 38.734722 | -9.105833 | 12737      |
| Belem                      | 2877           | 38.700000 | -9.200000 | 16528      |
| Benfica                    | 2205           | 38.751111 | -9.202222 | 36985      |
| Campo de<br>Ourique        | 3095           | 38.715278 | -9.166944 | 22120      |
| Campolide                  | 2633           | 38.726389 | -9.163333 | 15460      |
| Carnide                    | 2745           | 38.760833 | -9.183611 | 19218      |
| Estrela                    | 3472           | 38.713333 | -9.160000 | 20128      |
| Lumiar                     | 2469           | 38.765278 | -9.158611 | 45605      |
| Marvila                    | 1543           | 38.745278 | -9.104167 | 37793      |
| Misericordia               | 3894           | 38.711389 | -9.148056 | 13044      |
| Olivais                    | 1860           | 38.773611 | -9.117500 | 33788      |
| Parque das<br>Nacoes       | 3496           | 38.768056 | -9.093889 | 21025      |
| Penha de Franca            | 2285           | 38.730000 | -9.131667 | 27967      |
| Santa Clara                | 1780           | 38.785278 | -9.145000 | 22480      |
| Santa Maria<br>Maior       | 3632           | 38.712778 | -9.135556 | 12822      |
| Santo Antonio              | 4105           | 38.724167 | -9.145000 | 11836      |
| Sao Domingos de<br>Benfica | 2737           | 38.743611 | -9.170000 | 33043      |
| Sao Vicente                | 2885           | 38.719444 | -9.126389 | 15339      |

# Appendix B. Mapping of Foursquare categories to reduced categories.

| Foursquare category       | Reduced category                  |  |  |
|---------------------------|-----------------------------------|--|--|
| Accessories Store         | Shopping                          |  |  |
| African Restaurant        | Food and drink                    |  |  |
| Aquarium                  | Arts, entertainment and nightlife |  |  |
| Argentinian Restaurant    | Food and drink                    |  |  |
| Art Gallery               | Arts, entertainment and nightlife |  |  |
| Arts & Crafts Store       | Shopping                          |  |  |
| Asian Restaurant          | Food and drink                    |  |  |
| Athletics & Sports        | Athletics and sports              |  |  |
| Auto Garage               | Transport                         |  |  |
| BBQ Joint                 | Food and drink                    |  |  |
| Bagel Shop                | Food and drink                    |  |  |
| Bakery                    | Food and drink                    |  |  |
| Bar                       | Arts, entertainment and nightlife |  |  |
| Beach                     | Outdoors                          |  |  |
| Bed & Breakfast           | Hotels and accomodation           |  |  |
| Beer Bar                  | Arts, entertainment and nightlife |  |  |
| Beer Garden               | Food and drink                    |  |  |
| Bistro                    | Food and drink                    |  |  |
| Bookstore                 | Shopping                          |  |  |
| Botanical Garden          | Outdoors                          |  |  |
| Boutique                  | Shopping                          |  |  |
| Brazilian Restaurant      | Food and drink                    |  |  |
| Breakfast Spot            | Food and drink                    |  |  |
| Brewery                   | Food and drink                    |  |  |
| Bubble Tea Shop           | Shopping                          |  |  |
| Buffet                    | Food and drink                    |  |  |
| Burger Joint              | Food and drink                    |  |  |
| Bus Station               | Transport                         |  |  |
| Cable Car                 | Transport                         |  |  |
| Café                      | Food and drink                    |  |  |
| Candy Store               | Shopping                          |  |  |
| Cantonese Restaurant      | Food and drink                    |  |  |
| Capitol Building          | Public buildings                  |  |  |
| Casino                    | Arts, entertainment and nightlife |  |  |
| Castle                    | Historic sites and museums        |  |  |
| Cheese Shop               | Food and drink                    |  |  |
| Chinese Restaurant        | Food and drink                    |  |  |
| Chocolate Shop            | Food and drink                    |  |  |
| Church                    | Historic sites and museums        |  |  |
| Clothing Store            | Shopping                          |  |  |
| Cocktail Bar              | Arts, entertainment and nightlife |  |  |
| Coffee Shop               | Food and drink                    |  |  |
| College Academic Building | Health and education buildings    |  |  |
| Concert Hall              | Arts, entertainment and nightlife |  |  |
| Convenience Store         | Food and drink                    |  |  |
| Cosmetics Shop            | Shopping                          |  |  |

| Creperie                    | Food and drink                    |
|-----------------------------|-----------------------------------|
| Cultural Center             | Arts, entertainment and nightlife |
| Dance Studio                | Athletics and sports              |
| Dessert Shop                | Food and drink                    |
| Dim Sum Restaurant          | Food and drink                    |
| Eastern European Restaurant | Food and drink                    |
| Electronics Store           | Shopping                          |
| Empanada Restaurant         | Food and drink                    |
| Event Space                 | Arts, entertainment and nightlife |
| Exhibit                     | Arts, entertainment and nightlife |
| Falafel Restaurant          | Food and drink                    |
| Farmers Market              | Supermarkets and groceries        |
| Fast Food Restaurant        | Food and drink                    |
| Fish & Chips Shop           | Food and drink                    |
| Flea Market                 | Shopping                          |
| Flower Shop                 | Shopping                          |
| Food                        | Food and drink                    |
| Food Service                | Food and drink                    |
| Food Stand                  | Food and drink                    |
| Food Truck                  | Food and drink                    |
| Fountain                    | Public buildings                  |
| French Restaurant           | Food and drink                    |
| Frozen Yogurt Shop          | Food and drink                    |
| Fruit & Vegetable Store     | Supermarkets and groceries        |
| Furniture / Home Store      | Shopping                          |
| Garden                      | Outdoors                          |
| Gas Station                 | Transport                         |
| Gastropub                   | Food and drink                    |
| Gay Bar                     | Arts, entertainment and nightlife |
| General Entertainment       | Arts, entertainment and nightlife |
| Gift Shop                   | Shopping                          |
| Gourmet Shop                | Shopping                          |
| Grocery Store               | Shopping                          |
| Gym                         | Athletics and sports              |
| Gym / Fitness Center        | Athletics and sports              |
| Gym Pool                    | Athletics and sports              |
| Health Food Store           | Shopping                          |
| Hobby Shop                  | Shopping                          |
| Himalayan Restaurant        | Food and drink                    |
| Historic Site               | Historic sites and museums        |
| History Museum              | Historic sites and museums        |
| Hostel                      | Hotels and accomodation           |
| Hot Dog Joint               | Food and drink                    |
| Hotel                       | Hotels and accomodation           |
| Hotel Bar                   | Arts, entertainment and nightlife |
| Ice Cream Shop              | Food and drink                    |
| Indian Restaurant           | Food and drink                    |
| Indie Movie Theater         | Arts, entertainment and nightlife |
| Italian Restaurant          | Food and drink                    |
| Japanese Restaurant         | Food and drink                    |
|                             |                                   |

| Jewelry Store                                                                                                   | Shopping                                                                                                                                                                    |  |
|-----------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Juice Bar                                                                                                       | Arts, entertainment and nightlife                                                                                                                                           |  |
| Karaoke Bar                                                                                                     | Arts, entertainment and nightlife                                                                                                                                           |  |
| Kitchen Supply Store                                                                                            | Shopping                                                                                                                                                                    |  |
| Lounge                                                                                                          | Arts, entertainment and nightlife                                                                                                                                           |  |
| Market                                                                                                          | Supermarkets and groceries                                                                                                                                                  |  |
| Medical Center                                                                                                  | Health and education buildings                                                                                                                                              |  |
| Mediterranean Restaurant                                                                                        | Food and drink                                                                                                                                                              |  |
| Metro Station                                                                                                   | Transport                                                                                                                                                                   |  |
| Mexican Restaurant                                                                                              | Food and drink                                                                                                                                                              |  |
| Middle Eastern Restaurant                                                                                       | Food and drink                                                                                                                                                              |  |
| Miscellaneous Shop                                                                                              | Shopping                                                                                                                                                                    |  |
| Mobile Phone Shop                                                                                               | Shopping                                                                                                                                                                    |  |
| Motel                                                                                                           | Hotels and accomodation                                                                                                                                                     |  |
| Motorcycle Shop                                                                                                 | Shopping                                                                                                                                                                    |  |
| Movie Theater                                                                                                   | Arts, entertainment and nightlife                                                                                                                                           |  |
| Museum                                                                                                          | Historic sites and museums                                                                                                                                                  |  |
| Neighborhood                                                                                                    | Public buildings                                                                                                                                                            |  |
| Nightclub                                                                                                       | Arts, entertainment and nightlife                                                                                                                                           |  |
| Noodle House                                                                                                    | Food and drink                                                                                                                                                              |  |
| Office                                                                                                          | Public buildings                                                                                                                                                            |  |
| Organic Grocery                                                                                                 | Supermarkets and groceries                                                                                                                                                  |  |
| Other Great Outdoors                                                                                            | Outdoors                                                                                                                                                                    |  |
| Other Nightlife                                                                                                 | Arts, entertainment and nightlife                                                                                                                                           |  |
| Paper / Office Supplies Store                                                                                   | Shopping                                                                                                                                                                    |  |
| Park                                                                                                            | Outdoors                                                                                                                                                                    |  |
| Pastry Shop                                                                                                     | Food and drink                                                                                                                                                              |  |
| Performing Arts Venue                                                                                           | Arts, entertainment and nightlife                                                                                                                                           |  |
| Persian Restaurant                                                                                              | Food and drink                                                                                                                                                              |  |
| Pet Store                                                                                                       | Shopping                                                                                                                                                                    |  |
| Pharmacy                                                                                                        | Health and education buildings                                                                                                                                              |  |
| Pie Shop                                                                                                        | Food and drink                                                                                                                                                              |  |
| Pizza Place                                                                                                     | Food and drink  Food and drink                                                                                                                                              |  |
| Playground                                                                                                      | Outdoors                                                                                                                                                                    |  |
| Plaza                                                                                                           | Public buildings                                                                                                                                                            |  |
| Pool                                                                                                            | Athletics and sports                                                                                                                                                        |  |
| Pool Hall                                                                                                       | Athletics and sports                                                                                                                                                        |  |
| Portuguese Restaurant                                                                                           | Food and drink                                                                                                                                                              |  |
| Resort                                                                                                          | Hotels and accomodation                                                                                                                                                     |  |
| Restaurant                                                                                                      |                                                                                                                                                                             |  |
|                                                                                                                 | Food and drink                                                                                                                                                              |  |
|                                                                                                                 | Food and drink                                                                                                                                                              |  |
| Road                                                                                                            | Transport                                                                                                                                                                   |  |
| Road<br>Roof Deck                                                                                               | Transport Arts, entertainment and nightlife                                                                                                                                 |  |
| Road<br>Roof Deck<br>Russian Restaurant                                                                         | Transport Arts, entertainment and nightlife Food and drink                                                                                                                  |  |
| Road Roof Deck Russian Restaurant Salad Place                                                                   | Transport Arts, entertainment and nightlife Food and drink Food and drink                                                                                                   |  |
| Road Roof Deck Russian Restaurant Salad Place Sandwich Place                                                    | Transport Arts, entertainment and nightlife Food and drink Food and drink Food and drink                                                                                    |  |
| Road Roof Deck Russian Restaurant Salad Place Sandwich Place Scenic Lookout                                     | Transport Arts, entertainment and nightlife Food and drink Food and drink Food and drink Arts, entertainment and nightlife                                                  |  |
| Road Roof Deck Russian Restaurant Salad Place Sandwich Place Scenic Lookout Sculpture Garden                    | Transport Arts, entertainment and nightlife Food and drink Food and drink Food and drink Arts, entertainment and nightlife Arts, entertainment and nightlife                |  |
| Road Roof Deck Russian Restaurant Salad Place Sandwich Place Scenic Lookout Sculpture Garden Seafood Restaurant | Transport Arts, entertainment and nightlife Food and drink Food and drink Food and drink Arts, entertainment and nightlife Arts, entertainment and nightlife Food and drink |  |
| Road Roof Deck Russian Restaurant Salad Place Sandwich Place Scenic Lookout Sculpture Garden                    | Transport Arts, entertainment and nightlife Food and drink Food and drink Food and drink Arts, entertainment and nightlife Arts, entertainment and nightlife                |  |

| Snack Place                   | Food and drink                    |  |
|-------------------------------|-----------------------------------|--|
| Soccer Field                  | Athletics and sports              |  |
| Soccer Stadium                | Athletics and sports              |  |
| Soup Place                    | Food and drink                    |  |
| South American Restaurant     | Food and drink                    |  |
| Spanish Restaurant            | Food and drink                    |  |
| Speakeasy                     | Arts, entertainment and nightlife |  |
| Sporting Goods Shop           | Shopping                          |  |
| Sports Club                   | Athletics and sports              |  |
| Stadium                       | Athletics and sports              |  |
| Steakhouse                    | Food and drink                    |  |
| Supermarket                   | Supermarkets and groceries        |  |
| Sushi Restaurant              | Food and drink                    |  |
| Swiss Restaurant              | Food and drink                    |  |
| Tapas Restaurant              | Food and drink                    |  |
| Tea Room                      | Food and drink                    |  |
| Tennis Court                  | Athletics and sports              |  |
| Thai Restaurant               | Food and drink                    |  |
| Theater                       | Arts, entertainment and nightlife |  |
| Theme Park                    | Arts, entertainment and nightlife |  |
| Thrift / Vintage Store        | Shopping                          |  |
| Toy / Game Store              | Shopping                          |  |
| Train Station                 | Transport                         |  |
| Tram Station                  | Transport                         |  |
| Vegetarian / Vegan Restaurant | Food and drink                    |  |
| Wine Bar                      | Arts, entertainment and nightlife |  |
| Wine Shop                     | Shopping                          |  |
| Wings Joint                   | Food and drink                    |  |
| Women's Store                 | Shopping                          |  |
| Yoga Studio                   | Athletics and sports              |  |
| Zoo                           | Arts, entertainment and nightlife |  |

Appendix C. Table of Lisbon boroughs and their respective cluster.

| Borough name            | Cluster |
|-------------------------|---------|
| Ajuda                   | 3       |
| Alcantara               | 3       |
| Alvalade                | 2       |
| Areeiro                 | 1       |
| Arroios                 | 2       |
| Avenidas Novas          | 1       |
| Beato                   | 3       |
| Belem                   | 3       |
| Benfica                 | 2       |
| Campo de Ourique        | 1       |
| Campolide               | 3       |
| Carnide                 | 1       |
| Estrela                 | 1       |
| Lumiar                  | 2       |
| Marvila                 | 2       |
| Misericordia            | 3       |
| Olivais                 | 2       |
| Parque das Nacoes       | 1       |
| Penha de Franca         | 1       |
| Santa Clara             | 1       |
| Santa Maria Maior       | 3       |
| Santo Antonio           | 3       |
| Sao Domingos de Benfica | 2       |
| Sao Vicente             | 3       |