

This Page Is Inserted by IFW Operations
and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents *will not* correct images,
please do not report the images to the
Image Problem Mailbox.

cggatcttct ~~cgcgtttcc~~ agttccagtc acagtgaggg cgcacatctcac cgggtggctg
480
atgacactga agaaaacctt cgtcccttgc cccagctctg tgctgcggat catcgctc
540
atcgccagcc tcgtggctct accctacctg ggggtgcacg gtgcgaccct gggcgtggc
600
tccctcctgg cgggctttgt gggagaatcc accatggtcg ccatcgctgc gtgctatgtc
660
taccggaaagc agaaaaagaa gatggagaat gagtcggcca cggagggggaa agactctgcc
720
atgacagaca tgcctccgac agaggaggtg acagacatcg tggaaatgag agaggagaat
780
gaataaggca cgggacgcca tgggcactgc agggacagtc agtcaggatg acacttcggc
840
atcatctctt ccctctccca tcgtatTTTt ttcccttttt tttgttttgt tttggtaatg
900
aaagaggcct tgatttaaag gtttcgtgtc aattctctag catactgggt atgtcacac
960
tgacgggggg accttagtcaa tggtctttac tggtgcata gaaaaacaaa cggaaacaact
1020
gacttcatac ccctgcctca cggaaaccca aaagacacag ctgcctcacg gttgacggt
1080
tgtcctccctc ccctggacaa tctcccttgc gaaccaaagg actgcagctg tgccatcg
1140
cctcggtcac cctgcacacg aggccacaga ctctcctgtc ccccttcatac gctcttaaga
1200
atcaacaggt taaaactcgg cttectttga ttgtctccc agtcacatgg ccgtacaaag
1260
agatggagcc cgggtggcct cttaaatttc cttccgcac cggagttcga aaccatctac
1320
tccacacatg caggaggcgg gtggcacgct gcagccccga gtccccgttc acactgagga
1380
acggagacct gtgaccacag caggctgaca gatggacaga atctcccgta gaaaggttt
1440
gtttgaaatg ccccgggggc agcaaactga catggttgaa tgatagcatt tcactctgc
1500
ttctcctaga tctgagcaag ctgtcagttc tcaccccccac cgtgtatata catgagctaa
1560
ctttttaaa ttgtcacaacaa agcgcatctc cagattccag accctgccgc atgactttc
1620
ctgaaggctt gctttccct cgcctttctt gaaggtcgca ttagagcggag tcacatggag
1680
catcctaact ttgcattta gttttacag tgaactgaag cttaagtaa gtctcatcca
1740
gcattctaat gccaggtgc tgtaggtaa ctttgaagt agatataatta cctgggtctg
1800
ctatccttag tcataactct ggggtacagg taattgagaa tgtactacgg tactccctc
1860
ccacaccata cgataaaagca agacattta taacgatacc agagtcacta tgtggtcctc
1920
cctgaaataa cgcattcgaa atccatgcag tgcagttat tttctaaatg tttggaaagc
1980
aggtttttc cttaaaaaaa attatagaca cggttcacta aattgattta gtcagaattc
2040

ctagactgaa agaacctaaa caaaaaata ttttaagat ataaatatat gctgtatatg
 2100
 ttatgttaatt tattttaggc tataatacat ttccatattt cgcatatca ataaaatgtc
 2160
 tctaatacaa tacgggtatt gcttgtgtgc tcaacatacc tgcagttgaa acgtattgt
 2220
 tcaatgaaca ttgtacccca ttggcagcag tttataaag tccgtcattt gcatttgaat
 2280
 gtaaggctca gtaaatgaca gaactatccc tcattatggg taactgggaa ataaatgggt
 2340
 cactggagta ggaatagaag tgcaagctgg aaaggcaaaa atgagaaaga aaaaggcagg
 2400
 ccctttgtgt ctaccgtttt cagtgtgtg tgatcatatt gttcctcaca gaaaaaaaaa
 2460
 atgcaagggc ataatgttag ctgtgaacat gccagggttg cattcacatt cctgggtacc
 2520
 cagtgtgtat ggggtgtgcc cacgtgggaa catgtccttgc gcgtgttcc tcagagtggc
 2580
 ttttcctcca ttaatacata tatgagtact gaagaattaa tttgcatacg tgcttgcag
 2640
 tggtttcaga ggcagatctg agaagattaa aaaaaaatct caatgtatca gctttttta
 2700
 aaggacatta ctagaaaatt aaacagtatt ttttaacaaa aaaaaaaaaa
 2748

<210> 5896
 <211> 261
 <212> PRT
 <213> Homo sapiens

<400> 5896
 Ala Thr Ile Arg Lys Met Leu Ser Phe Trp Trp Pro Leu Xaa Leu Ile
 1 5 10 15
 Leu Ala Thr Gln Arg Ile Ser Arg Pro Ile Val Asn Leu Phe Val Ser
 20 25 30
 Arg Asp Leu Gly Gly Ser Ser Ala Ala Thr Glu Ala Val Ala Ile Leu
 35 40 45
 Thr Ala Thr Tyr Pro Val Gly His Met Pro Tyr Gly Trp Leu Thr Glu
 50 55 60
 Ile Arg Ala Val Tyr Pro Ala Phe Asp Lys Asn Asn Pro Ser Asn Lys
 65 70 75 80
 Leu Val Ser Thr Ser Asn Thr Val Thr Ala Ala His Ile Lys Lys Phe
 85 90 95
 Thr Phe Val Cys Met Ala Leu Ser Leu Thr Leu Cys Phe Val Met Phe
 100 105 110
 Trp Thr Pro Asn Val Ser Glu Lys Ile Leu Ile Asp Ile Ile Gly Val
 115 120 125
 Asp Phe Ala Phe Ala Glu Leu Cys Val Val Pro Leu Arg Ile Phe Ser
 130 135 140
 Phe Phe Pro Val Pro Val Thr Val Arg Ala His Leu Thr Gly Trp Leu
 145 150 155 160
 Met Thr Leu Lys Lys Thr Phe Val Leu Ala Pro Ser Ser Val Leu Arg
 165 170 175
 Ile Ile Val Leu Ile Ala Ser Leu Val Val Leu Pro Tyr Leu Gly Val

180	185	190
His Gly Ala Thr Leu Gly Val Gly Ser	Leu Ala Gly Phe Val Gly	
195	200	205
Glu Ser Thr Met Val Ala Ile Ala Ala Cys Tyr Val	Tyr Arg Lys Gln	
210	215	220
Lys Lys Lys Met Glu Asn Glu Ser Ala Thr	Glu Gly Glu Asp Ser Ala	
225	230	235
Met Thr Asp Met Pro Pro Thr Glu Glu Val	Thr Asp Ile Val Glu Met	240
245	250	255
Arg Glu Glu Asn Glu		
260		

<210> 5897

<211> 1930

<212> DNA

<213> Homo sapiens

<400> 5897

ngcgcgata agagggcagca gttcggaaagc cggttcctga gagatccggc gcgcgttcc
 60
 caccacaatg cctggtaatac actctgtcccc ttcgcggc ctgtcgctga ccctctgtcc
 120
 cggccgctcg gagcattccg aaaagccctt gaccgcggc cacgagtcaa gctgcctac
 180
 cccggccacga gtcaagctgc cctacccgag gcactctcca aggggagaga aactcctagg
 240
 ccagcgactc accctgcccc cagccaggac gtgaagcccc taagctgcc gtttgatttt
 300
 ctcagggaca atgtggagtg gtcggaagag caagccgcgg cggcggagag aaaagtccag
 360
 gagaacagta tccagcggtt gtgccaggag aaacaagttt attatgagat caatcccac
 420
 aaatactgga atgacttcta caaaatccac gaaaatgggt ttttcaagga tagacattgg
 480
 cttttacctg aattccctga gctggcacct agccaaaatc aaaatcattt gaaggactgg
 540
 ttcttgaga acaagagtga agtatgtgaa tgtagaaaca atgaggatgg acctgggtta
 600
 ataatggaa aacagcacaa gtgttctcg aagagcctt aacataaaac acagacaccc
 660
 cctgtggagg agaatgtaac tcagaaaatt agtgacctgg aaatttgc tgatgagttt
 720
 cctggatect cagccaccta ccgaatactg gaggttggct gtgggtggg aaacacagtc
 780
 tttccaaattt tacaaacgaa caatgaccca ggactctttg tttattgctg tgattttct
 840
 tccacagcta tagaactggt ccagacaaat tcagaatatg atccttctcg gtgtttgcc
 900
 ttgttcacg acctgtgtga tgaagagaag agttacccag tgcccaaggg cagtcttgat
 960
 attatcattc tcataattgt tcttcagca attgttccag acaagatgca gaaggctatc
 1020
 aacaggctga gcaggcttct gaaacctggg gggatggtac ttctgcgaga ttacggccgc
 1080

tatgacatgg ctcagcttcg gttaaaaaaaaa ggtcagtgtc tatctggaaa tttctacgtg
 1140
 agaggtgtatc gaaccagagt ttacttcttc acacaagagg aactggacac gcttttcacc
 1200
 actgctggac tgaaaaaaatc cagaacctg gtggatcgcc gactgcaggt gaaccgagga
 1260
 aagcaactga caatgtaccg gggttggatt cagtgcataat actgcaagcc ctttctgtcc
 1320
 agcaccagct gagaggcacc tgctgccaac acgatgcaag cccattgtgt ttccgggctt
 1380
 tttaaaaaaaaaaattgttag cactgggcgt ggtgcattgc tgtaatccca gccactcagg
 1440
 aggctgaggc ggggaggate cattgagccc agcagtccaa cctgggcaaa atagtgagag
 1500
 accctgtatc tgaaagtaat aataaaaata aaagaatata aatgaggtct cgttgatgtt
 1560
 ggacaattca agaattcaga cttgaacattt aaaccttagga aaagttactt tgtatcagga
 1620
 ttcaacaat tatgcttcat atttgtaag tcctttaaaa cataatttc tcaagtttctt
 1680
 tctttgagat ctcaatctgt cttagcattt tgtaactaat aactgaaatt ttattcaaag
 1740
 gaatttgaaa cttaaacca ccaatttattt tccatgtgaa aaagtgttat atatgacaag
 1800
 tgtttttga ttgtaattgc gttaaatctt ttgagagtgt aaatgccgcaaa aagtttcgc
 1860
 tcttgcacc taggctggag tgcaatgggtt cgatctcgcc tcactgcaac ctctgcctcc
 1920
 agggntcaag
 1930

<210> 5898
 <211> 242
 <212> PRT
 <213> Homo sapiens

<400> 5898
 Met Glu Glu Gln His Lys Cys Ser Ser Lys Ser Leu Glu His Lys Thr
 1 5 10 15
 Gin Thr Pro Pro Val Glu Glu Asn Val Thr Gln Lys Ile Ser Asp Leu
 20 25 30
 Glu Ile Cys Ala Asp Glu Phe Pro Gly Ser Ser Ala Thr Tyr Arg Ile
 35 40 45
 Leu Glu Val Gly Cys Gly Val Gly Asn Thr Val Phe Pro Ile Leu Gln
 50 55 60
 Thr Asn Asn Asp Pro Gly Leu Phe Val Tyr Cys Cys Asp Phe Ser Ser
 65 70 75 80
 Thr Ala Ile Glu Leu Val Gln Thr Asn Ser Glu Tyr Asp Pro Ser Arg
 85 90 95
 Cys Phe Ala Phe Val His Asp Leu Cys Asp Glu Glu Lys Ser Tyr Pro
 100 105 110
 Val Pro Lys Gly Ser Leu Asp Ile Ile Leu Ile Phe Val Leu Ser
 115 120 125
 Ala Ile Val Pro Asp Lys Met Gln Lys Ala Ile Asn Arg Leu Ser Arg

130	135	140		
Leu	Leu	Lys Pro Gly Gly Met Val Leu Leu Arg Asp Tyr Gly Arg Tyr		
145	150	155	160	
Asp	Met Ala Gln Leu Arg Phe Lys Lys Gly Gln Cys Leu Ser Gly Asn			
	165	170	175	
Phe	Tyr Val Arg Gly Asp Gly Thr Arg Val Tyr Phe Phe Thr Gln Glu			
	180	185	190	
Glu	Leu Asp Thr Leu Phe Thr Thr Ala Gly Leu Glu Lys Val Gln Asn			
	195	200	205	
Leu	Val Asp Arg Arg Leu Gln Val Asn Arg Gly Lys Gln Leu Thr Met			
	210	215	220	
Tyr	Arg Val Trp Ile Gln Cys Lys Tyr Cys Lys Pro Leu Leu Ser Ser			
	225	230	235	240
Thr	Ser			

<210> 5899
<211> 1589
<212> DNA
<213> Homo sapiens

<400> 5899
nncttagcag cccgcatgt ggacacaccc tgcaatgaga tgaacaccga caccttcctc
60
gaggagatta acaaagtgg aaaggaactg gggatcatcc caaccatcat ccggatgag
120
gaactgaaga cgagaggatt tggaggaatc tatgggttg gcaaagccgc cctgcatccc
180
ccagccctgg ccgtcctcag ccacacccca gatggagcca cgcagaccat cgcctgggtg
240
ggcaaaggca tcgtctatga cactggggc ctcagcatca aaggaaagac taccatgcc
300
gggatgaagc gagactgccc gggtgctgcg gccgtcctgg gggcattcag agccgcaatc
360
aagcagggtt tcaaagacaa cctccacgct gtgttctgct tggctgagaa ctgggtgggg
420
cccaatgcga caaggccaga tgacatccac ctgtgtact cagggaaagac ggtggaaatc
480
aacaacacgg atgccgaggg caggctggtg ctggcagatg gctgttccta tgcgtcaag
540
gacctggggc ccgacatcat cctggacatg gccacccctga ccggggctca gggcattgcc
600
acagggaaagt accacgccc ggtgctcacc aacagcgctg agtggggaggc cgcctgttg
660
aaggcgggc ggaagtgtgg ggacctggtg caccggctgg tctactgccc cgagctgcac
720
ttcagcgagt tCACCTCAGC tgtggccggac atgaagaact cagtggccga ccgagacaac
780
agccccagct cctgtgctgg cctcttcatac gcctcacaca tcggcttcga ctggcccgga
840
gtctgggtcc acctggacat tgctgcaccc gtgcacatgt gtgagcgagc cacaggcttc
900
ggtgtggccc tctgtgtggc gctcttcggc cgtgcctctg aggaccctct gctgaacctg
960

gtgtccccac tgggctgtga ggtggatgtc gaggaggggg acctggggag ggactccaag
 1020
 agacgcagggc ttgtgtgagc ctccctgcctc ggccctgaca aacggggatc ttttacctca
 1080
 ctttgcactg attaattta agcaattgaa agattgcct tcataatgggt tttggtttgt
 1140
 ctttctggtc gtcagcgtgg tggtgaaac agctgaagtt ttaggagaca gcttagggt
 1200
 tggtgccggc cacggggagg ggaccgggaa gcgcgtggc ttgtttctgt ttgttactta
 1260
 caggactgag acatcttctg taaactgcta cccctggggc cttctgcacc ccgggggtgag
 1320
 gcctcctgccc tgccctggc cctgtcccag ccccaagggtcc tgcgcaggc acctgcgtgg
 1380
 ctgacagcca ggctcttact ccagccgggg ctgccagcgc atccagccag cccagccctg
 1440
 tgaaagatgg agctgacttg ctgcagggga cctgatttat agggcaagag aagtacacact
 1500
 cccgcctctc agaattcact tgaggttcaa taaatacag tcacacccgcc ccctcaaaaa
 1560
 aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa
 1589

<210> 5900
 <211> 345
 <212> PRT
 <213> Homo sapiens

<400> 5900
 Xaa Leu Ala Ala Arg Ile Val Asp Thr Pro Cys Asn Glu Met Asn Thr
 1 5 10 15
 Asp Thr Phe Leu Glu Glu Ile Asn Lys Val Gly Lys Glu Leu Gly Ile
 20 25 30
 Ile Pro Thr Ile Ile Arg Asp Glu Glu Leu Lys Thr Arg Gly Phe Gly
 35 40 45
 Gly Ile Tyr Gly Val Gly Lys Ala Ala Leu His Pro Pro Ala Leu Ala
 50 55 60
 Val Leu Ser His Thr Pro Asp Gly Ala Thr Gln Thr Ile Ala Trp Val
 65 70 75 80
 Gly Lys Gly Ile Val Tyr Asp Thr Gly Gly Leu Ser Ile Lys Gly Lys
 85 90 95
 Thr Thr Met Pro Gly Met Lys Arg Asp Cys Gly Ala Ala Ala Val
 100 105 110
 Leu Gly Ala Phe Arg Ala Ala Ile Lys Gln Gly Phe Lys Asp Asn Leu
 115 120 125
 His Ala Val Phe Cys Leu Ala Glu Asn Ser Val Gly Pro Asn Ala Thr
 130 135 140
 Arg Pro Asp Asp Ile His Leu Leu Tyr Ser Gly Lys Thr Val Glu Ile
 145 150 155 160
 Asn Asn Thr Asp Ala Glu Gly Arg Leu Val Leu Ala Asp Gly Val Ser
 165 170 175
 Tyr Ala Cys Lys Asp Leu Gly Ala Asp Ile Ile Leu Asp Met Ala Thr
 180 185 190
 Leu Thr Gly Ala Gln Gly Ile Ala Thr Gly Lys Tyr His Ala Ala Val

195	200	205
Leu Thr Asn Ser Ala Glu Trp	Glu Ala Ala Cys Val Lys Ala Gly Arg	
210	215	220
Lys Cys Gly Asp Leu Val His Pro Leu Val Tyr Cys Pro Glu Leu His		
225	230	235
Phe Ser Glu Phe Thr Ser Ala Val Ala Asp Met Lys Asn Ser Val Ala		240
245	250	255
Asp Arg Asp Asn Ser Pro Ser Ser Cys Ala Gly Leu Phe Ile Ala Ser		
260	265	270
His Ile Gly Phe Asp Trp Pro Gly Val Trp Val His Leu Asp Ile Ala		
275	280	285
Ala Pro Val His Ala Gly Glu Arg Ala Thr Gly Phe Gly Val Ala Leu		
290	295	300
Leu Leu Ala Leu Phe Gly Arg Ala Ser Glu Asp Pro Leu Leu Asn Leu		
305	310	315
Val Ser Pro Leu Gly Cys Glu Val Asp Val Glu Glu Gly Asp Leu Gly		320
325	330	335
Arg Asp Ser Lys Arg Arg Arg Leu Val		
340	345	

<210> 5901

<211> 984

<212> DNA

<213> Homo sapiens

<400> 5901

```

ncggccgccc cagccatgac cgtggagttc gaggagtgcg tcaaggactc cccgcgttcc
60
aggggcgacca ttgacgaggt ggagacggac gtgggtggaa ttgaggccaa actggacaag
120
ctgggtgaagg tgtgcagtgg catggtgaa gccggtaagg cctacgtcag caccagcagg
180
cttttcgtga gcggcggtcc cgacctgtcc cagcagtgcc agggcgacac cgtcatctcg
240
aatgtctgc agaggttcgc tgacagccta caggaggtgg tgaactacca catgatcctg
300
tttgaccagg cccagaggtc cgtgcggcag cagctccaga gctttgtcaa agaggatgtg
360
cgaaagttca aggagacaaa gaagcagttt gacaagggtgc gggaggacct ggagctgtcc
420
ctgggtgagga acgcccaggc cccgaggcac cggccccacg aggtggagga agccaccggg
480
gcccttcaccc tcaccaggaa gtgcttccgc cacctggcac tggactatgt gctccagatc
540
aatgttctgc aggccaagaa gaagtttgag atcctggact ctatgtgtc ctcatgcac
600
gcccagtcca gtttttcca gcagggtcac agccttcgtc accagctgga cccctacatg
660
aagaagctgg cagccgagct ggaccagctg gtgatcgact ctgcgggtgga aaagcgtgag
720
atggagcggaa agcacgcgc catccagcag cggaccctta gggacttctc ctacgatgag
780
tcgaaagtgg agtttgacgt ggacgcgccc agtgggggtgg tcatggaggg ctaccttcc
840

```

aagaggggcca gcaacnctt caagacatgg aaccggcgct gggtctccat tcagaacagc
 900
 cagctggtct accagaagaa gctcaaggat gccctcacgg tggtggtgga tgacctccgc
 960
 ctgtgctctg tgaagccgtg tgag
 984

<210> 5902
<211> 328
<212> PRT
<213> Homo sapiens

<400> 5902

Xaa	Ala	Ala	Ala	Ala	Met	Thr	Val	Glu	Phe	Glu	Glu	Cys	Val	Lys	Asp
1					5		10					15			
Ser	Pro	Arg	Phe	Arg	Ala	Thr	Ile	Asp	Glu	Val	Glu	Thr	Asp	Val	Val
	20					25						30			
Glu	Ile	Glu	Ala	Lys	Leu	Asp	Lys	Leu	Val	Lys	Leu	Cys	Ser	Gly	Met
	35					40						45			
Val	Glu	Ala	Gly	Lys	Ala	Tyr	Val	Ser	Thr	Ser	Arg	Leu	Phe	Val	Ser
	50					55					60				
Gly	Val	Arg	Asp	Leu	Ser	Gln	Gln	Cys	Gln	Gly	Asp	Thr	Val	Ile	Ser
	65					70					75			80	
Glu	Cys	Leu	Gln	Arg	Phe	Ala	Asp	Ser	Leu	Gln	Glu	Val	Val	Asn	Tyr
						85					90			95	
His	Met	Ile	Leu	Phe	Asp	Gln	Ala	Gln	Arg	Ser	Val	Arg	Gln	Gln	Leu
						100					105			110	
Gln	Ser	Phe	Val	Lys	Glu	Asp	Val	Arg	Lys	Phe	Lys	Glu	Thr	Lys	Lys
	115					120					125				
Gln	Phe	Asp	Lys	Val	Arg	Glu	Asp	Leu	Glu	Leu	Ser	Leu	Val	Arg	Asn
	130					135					140				
Ala	Gln	Ala	Pro	Arg	His	Arg	Pro	His	Glu	Val	Glu	Glu	Ala	Thr	Gly
	145					150					155			160	
Ala	Leu	Thr	Leu	Thr	Arg	Lys	Cys	Phe	Arg	His	Leu	Ala	Leu	Asp	Tyr
						165					170			175	
Val	Leu	Gln	Ile	Asn	Val	Leu	Gln	Ala	Lys	Lys	Phe	Glu	Ile	Leu	
						180					185			190	
Asp	Ser	Met	Leu	Ser	Phe	Met	His	Ala	Gln	Ser	Ser	Phe	Phe	Gln	Gln
	195					200					205				
Gly	Tyr	Ser	Leu	Leu	His	Gln	Leu	Asp	Pro	Tyr	Met	Lys	Lys	Leu	Ala
	210					215					220				
Ala	Glu	Leu	Asp	Gln	Leu	Val	Ile	Asp	Ser	Ala	Val	Glu	Lys	Arg	Glu
	225					230					235			240	
Met	Glu	Arg	Lys	His	Ala	Ala	Ile	Gln	Gln	Arg	Thr	Leu	Arg	Asp	Phe
							245				250			255	
Ser	Tyr	Asp	Glu	Ser	Lys	Val	Glu	Phe	Asp	Val	Asp	Ala	Pro	Ser	Gly
						260					265			270	
Val	Val	Met	Glu	Gly	Tyr	Leu	Phe	Lys	Arg	Ala	Ser	Asn	Xaa	Phe	Lys
						275					280			285	
Thr	Trp	Asn	Arg	Arg	Trp	Phe	Ser	Ile	Gln	Asn	Ser	Gln	Leu	Val	Tyr
	290					295					300				
Gln	Lys	Lys	Leu	Lys	Asp	Ala	Leu	Thr	Val	Val	Asp	Asp	Leu	Arg	
	305					310					315			320	
Leu	Cys	Ser	Val	Lys	Pro	Cys	Glu								

325

<210> 5903
<211> 3734
<212> DNA
<213> Homo sapiens

<400> 5903
ctctgggctc caaggtaacg ggagggccage ctccccttct cccagctgcc tcctctggc
60
aggggacetc tggcacacgc tccatgcccc cctgcccctc cagatctgtc cccaagccaa
120
gcaggggacc tcacttaatc ccaattatgt aatctgcaat taaaacagtt ggcccatgag
180
gaggcgcttg gagccacgcc caggagtggg ggcaaaagga cccagctggg tcagggctga
240
caaacttaggc ttggccttgc cccatagtg gccaccactc ctcagcccc agccagcacg
300
atgagcggca gagtcggcga tctgagcccc aggcagaagg aggcatggc caagttcgg
360
gagaatgtcc aggatgtgtc gcccggccctg cccaaatccag atgactatcc tctctgcgt
420
tggctcccgag ccagaagctt cgacctgcag aagtcggagg ccatgctccg gaagcatgt
480
gagttccgaa agcaaaagga cattgacaac atcattagct ggcagccctcc agaggtgate
540
caacagtatac tgtcaggggg tatgtgtggc tatgacctgg atggctgccc agtctggta
600
gacataattg gacctctgga tgccaaagggt ctccctgtgt cagcctccaa gcaggatatg
660
atccggaaag gcatcaaagt ctgtgagctg ctgttgcatt agtgtgagct gcagactc
720
aagctggcga ggaagatcga gatggcgctg atgggtttt acatggaggg gctgaggctg
780
aaacacctgt ggaagccagc tgtggaggtc taccagcgt ttttagcat cctggaaagca
840
aattatcctg agaccctgaa gaatttaatt gtattcgag ccccaaaact gttcccatg
900
gccttcaact tggtaagtc gttcatgagt gaggacactc gtaagaagat catggctctg
960
ggagcaaatt ggaaggaggt tttactgaaa catatcagcc ctgaccaggt gcctgtggag
1020
tatggggcga ccatgactga ccctgatggaa aaccccaagt gcaaatccaa gatcaactac
1080
gggggtgaca tccccagaa gtattatgtc cgagaccagg taaaacagca gtatgaacac
1140
agegtgcaga ttccccgtgg ctccctccaa caagtggagt atgagatcct cttccctggc
1200
tgtgtcctca ggtggcagtt tctgtgagat ggagcggatg ttgggtttgg gatttcctg
1260
aagaccaaga tgggagagag gcagcggcga ggggagatga cagaggtgtc gccaaccag
1320
aggtacaact cccacctggt ccctgaagat gggaccctca cctgcagtga tctggcatt
1380

5075

tatgtcctgc ggtttgacaa cacctacagc ttcatccatg ccaagaaggtaaatttact
1440
gtggagggtcc tgcttcaga caaaggctca gaagagaaga tgaaacagct gggggcaggc
1500
accccgaaat aacacccctt cctatagcag gcctggcccc ctcaatgtct ccctgtcaat
1560
ttcttaccctt tgcgtcgtc attttcgcac aaccctgaag cccaaagaaa ctgggctgga
1620
ggacagaccc tggagacctt catttcagtt aggcagagga agagcgtactg cagtgggtct
1680
ccgtgtctat caaataccca aggagtcccc aggagctggc tggccatcgat gataggatct
1740
gtctgtcctg taaactgtgc caacttcacc tgcgtccaggga cagegaagct ggggggtggcg
1800
gggggcattgt accacagggt ggcagcaggaa aaaaaaaatta gaaaagggtg aaagattggg
1860
acttaaacact tcagggaaagt cagctgccgg ggagaaaactt gctcctaaat gaacacataa
1920
gttttagatcg caatgaggag tagcagggtt gctgggttgc agatgttacgg tggggatcag
1980
aaactttccaaacattttta gcaactggc tgggttagct tttggctttt cccaggtctc
2040
aggaggtggc ctgagtcaac acacatcttc ccactcggtt gacaggctgg cctctccctc
2100
actttgagac ttggcaact cctggccac acggcctgcc tctttgatttta ctaatgattt
2160
tcagtgactc agagcttcctt gggacttcgg gtacccaccc gctgttctcc atgcaaacaa
2220
agcgccaggaaatgacca cagggatcgc agctgcaggagggccaggaggatgggggg
2280
tgggagtgaa tgctaaaagc agatcgcca gtgcctttt cagtgctacc ggcctctcac
2340
caagcgtcc tccatgtgag caaccccgag aaaaaatgc taagtggat caagagagca
2400
gcactcgaggagggttccagtgatcgtccgg tgcccgccgg tgcccgccaa cccgcttcc
2460
gactgacccgtc agcaaggctt tactaaggcag tcccatctct gtgggaggca tgcaacgcgt
2520
gcaggaggatc caggtgccgg tcggcgtagc caggccgtgg gggcccccag gcaggaggcc
2580
gccccaaaggc gggggccggcg tctcgccagac taggggctgg gggggccac agacggccctc
2640
gaaaccacag cccttacccc aatccacga gccccggccaa cgaaccacag gtgctgggt
2700
tttagagaaca tgggaaggcg gccccagacc tggcgggaaac gcctttccct cagagccagg
2760
ccccggggcccttgcgtccatgtc gaagctggagg gagctcaggccaaaggccag
2820
gctagcgccgg accggaaaggccgc ggcgaggctg cacggccctc tgccagaacg ctcaagacat
2880
cccgccctgg gtttacaacg ctgttaggaa aatccacca aatggaaacgc aacgttccat
2940
gcgcaggaggag tggaaattcaa tgcccaccgc taggctccctc gctgcctctc actcaagagg
3000

cccaaactca gacggcgtca gggacccgga cccagcagcc gtttcacgcc aatagatagg
 3060
 gcgcatgcgc agaaatccctc ctcggctctc tagcgtgagc tttcccaagg ggccacgccc
 3120
 agcttgcctt ctgattggtc cagctggtgg gttgtcttcc gccatcttg atcagggcac
 3180
 taaggatgct cccgacggcc ttcacagtga cggcggagac cctgccccgc cagctgctca
 3240
 gtacgtgccc cgtagccgt gcgagccaag tgtgagtccg ggcgagcgc tgccggagcta
 3300
 gcactgggcc cagaatgaga gggagggcggaa ggagcagcga tcacgtggtt ttagggactg
 3360
 tctaataatt ccacgcccgc attggcggtg tttcaggggg tgggaaaccgc tgcttcccc
 3420
 atcaactttt ctccccaccca ccaccctccc caacctacaa gcccagctca gcttgaggt
 3480
 actgctgacc ggactgtcct atacagccct acaagacaga ggcgccttagg gctgaaagcg
 3540
 ggggcctccg tagggagcca gcgccgcct caatagttac tcattttctc tacctttgat
 3600
 gaaaataaga gctaattttt aataaggcct accgggtatc acgcaaaaac cctgtgctta
 3660
 ctattataact ttgggttgtt gcaaagatta aaggaaataa gccgtgcaaa gcgcttaaaa
 3720
 aaaaaaaaaa aaaa
 3734

<210> 5904
 <211> 308
 <212> PRT
 <213> Homo sapiens

<400> 5904
 Met Ser Gly Arg Val Gly Asp Leu Ser Pro Arg Gln Lys Glu Ala Leu
 1 5 10 15
 Ala Lys Phe Arg Glu Asn Val Gln Asp Val Leu Pro Ala Leu Pro Asn
 20 25 30
 Pro Asp Asp Tyr Phe Leu Leu Arg Trp Leu Arg Ala Arg Ser Phe Asp
 35 40 45
 Leu Gln Lys Ser Glu Ala Met Leu Arg Lys His Val Glu Phe Arg Lys
 50 55 60
 Gln Lys Asp Ile Asp Asn Ile Ile Ser Trp Gln Pro Pro Glu Val Ile
 65 70 75 80
 Gln Gln Tyr Leu Ser Gly Gly Met Cys Gly Tyr Asp Leu Asp Gly Cys
 85 90 95
 Pro Val Trp Tyr Asp Ile Ile Gly Pro Leu Asp Ala Lys Gly Leu Leu
 100 105 110
 Leu Ser Ala Ser Lys Gln Asp Met Ile Arg Lys Gly Ile Lys Val Cys
 115 120 125
 Glu Leu Leu Leu His Glu Cys Glu Leu Gln Thr Gln Lys Leu Gly Arg
 130 135 140
 Lys Ile Glu Met Ala Leu Met Val Phe Asp Met Glu Gly Leu Ser Leu
 145 150 155 160
 Lys His Leu Trp Lys Pro Ala Val Glu Val Tyr Gln Gln Phe Phe Ser

165	170	175
Ile Leu Glu Ala Asn Tyr Pro Glu Thr	Leu Lys Asn Leu Ile Val Ile	
180	185	190
Arg Ala Pro Lys Leu Phe Pro Met Ala Phe Asn Leu Val Lys Ser Phe		
195	200	205
Met Ser Glu Asp Thr Arg Lys Lys Ile Met Val Leu Gly Ala Asn Trp		
210	215	220
Lys Glu Val Leu Leu Lys His Ile Ser Pro Asp Gln Val Pro Val Glu		
225	230	235
Tyr Gly Gly Thr Met Thr Asp Pro Asp Gly Asn Pro Lys Cys Lys Ser		240
245	250	255
Lys Ile Asn Tyr Gly Asp Ile Pro Arg Lys Tyr Tyr Val Arg Asp		
260	265	270
Gln Val Lys Gln Gln Tyr Glu His Ser Val Gln Ile Ser Arg Gly Ser		
275	280	285
Ser Gln Gln Val Glu Tyr Glu Ile Leu Phe Pro Gly Cys Val Leu Arg		
290	295	300
Trp Gln Phe Leu		
305		

<210> 5905
<211> 2280
<212> DNA
<213> Homo sapiens

<400> 5905					
nngttacttt	aaactttgtta	tgttgttcaa	gaacagagta	tatcctgggt	aggatgtgtt
60					
catagctgat	gcatctccaa	aaatttttc	atgaaggcgg	ccagcttctg	aacgtcttca
120					
attgtacag	cattatacag	agaggccccg	atgcctccca	cagacacgtta	aatccttga
180					
gaattatcaa	taatctcata	aattgtttga	gatttgatgg	agctaagctt	ctccatggcc
240					
gcggcacctc	cattgtttt	aatccactcc	agaaccaagc	ccatgacgta	gatgctgaaa
300					
catggaggcg	tgttgtacaa	ggagctgttt	ccagcctgca	ccttgtattc	caggaccgag
360					
gggcactctc	ggagggcaaa	ccccagcagg	tcatcacgga	caatcaccac	ggtgacccca
420					
gcagagccaa	cattctctg	ggcaccagca	aaaatcacac	caaacttggaa	aacatccact
480					
ggcttggaca	ggaagtttga	ggacatgtca	caaaccagta	ctgctccctt	gacatgggt
540					
ataaaagtcaa	actccacacc	atgcaccgtc	tcatttgcgc	aataatacac	gtaggaggca
600					
tctgggttga	ggtttgactt	tataccgat	gtcaaggggag	cagtacttgtt	ttgtgacatg
660					
tcctcaaact	tcctgtccaa	gccagtggat	gtttccaagt	ttagggtgat	ttttgctgg
720					
gcccagaaga	atgttggctc	tgctgggtc	accgtggta	ttgtccgtga	tgacctgctg
780					
gggtttgcc	tccgagagtg	cccctcggtc	ctggaataca	aggtgcaggc	tggaaacagc
840					

tccttgatac acacgcctcc atgtttcagc atctacgtca tgggcttgggt tctggagtgg
900
attaaaaaca atggagggtgc cgccggccatg gagaagctta gctccatcaa atctctaaca
960
atttatgaga ttattgataa ttctcaagga ttctacgttt gtccagtggaa gccccaaaat
1020
agaagcaaga tgaatattcc attccgcatt ggcaatgcc aaggagatga tgcttagaa
1080
aaaagatttc ttgataaaagc tcttgaactc aatatgttgt ccttggaaagg gcataaggct
1140
gtgggaggca tccgggectc tctgtataat gctgtcacaa ttgaagacgt tcagaagctg
1200
gccgccttca tgaaaaaaatt tttggagatg catcagctat gaacacatec taaccaggat
1260
atactctgtt cttgaacaac atacaaagtt taaagtaact tggggatggc tacaaaaaagt
1320
taacacagta ttttctcaa atgaacatgt ttattgcaga ttcttcttt ttgaaagaac
1380
aacagcaaaa catccacaac tctgtaaagc tgggggacc taatgtcacc ttaattctga
1440
cttgaactgg aagcatttta agaaatcttgc ttgtttctt aacaaattcc cgcgtatccc
1500
gcctttgctg ctacttttc tagtttagatt tcaaacttgc ctgtggactt aataatgcaa
1560
gttgcgatta attatttctg gagtcatggg aacacacagc acagagggtt gggggggccct
1620
ctaggtgctg aatctacaca tctgtgggtt ctccctgggtt cagcggctgt tgattcaagg
1680
tcaacattga ccattggagg agtggttaa gagtgccagg cgaaggccaa actgttagatc
1740
gatctttatg ctgttattac aggagaagtgc acataacttta tatatgttta tattagcaag
1800
gtctgtttt aataccatat actttatatt tctatacatt tatatttcttataatacagt
1860
tatcaactgat atatgttagac acttttagaa ttattaaat ccttgacctt gtgcattata
1920
gcattccatt agcaagagtt gtaccccttc cccagtttc gccttcctt ttttaagctg
1980
ttttatgaaa aagacctaga agttcttgat tcattttac cattttcc ataggttagaa
2040
gagaaaatgg attgggttgtt tgttttcaa ttatgccatt aaactaaaca tttctgtttaa
2100
attacccat cctttgttctt ctactgtttt ctttgcattatg tatgactacg agagtgatac
2160
tttgcgtaaa agtctttccc ctattgttta tctattgtca gtattttatg ttgaatatgt
2220
aaagaacatt aaagtcctaa aacatctaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa
2280

<210> 5906
<211> 215
<212> PRT
<213> Homo sapiens

```

<400> 5906
Glu Ala Ser Gly Leu Arg Phe Asp Phe Ile Pro Asp Val Lys Gly Ala
      5           10          15
Val Leu Val Cys Asp Met Ser Ser Asn Phe Leu Ser Lys Pro Val Asp
      20          25          30
Val Ser Lys Phe Arg Val Ile Phe Ala Gly Ala Gln Lys Asn Val Gly
      35          40          45
Ser Ala Gly Val Thr Val Val Ile Val Arg Asp Asp Leu Leu Gly Phe
      50          55          60
Ala Leu Arg Glu Cys Pro Ser Val Leu Glu Tyr Lys Val Gln Ala Gly
      65          70          75          80
Asn Ser Ser Leu Tyr Asn Thr Pro Pro Cys Phe Ser Ile Tyr Val Met
      85          90          95
Gly Leu Val Leu Glu Trp Ile Lys Asn Asn Gly Gly Ala Ala Ala Met
      100         105         110
Glu Lys Leu Ser Ser Ile Lys Ser Leu Thr Ile Tyr Glu Ile Ile Asp
      115         120         125
Asn Ser Gln Gly Phe Tyr Val Cys Pro Val Glu Pro Gln Asn Arg Ser
      130         135         140
Lys Met Asn Ile Pro Phe Arg Ile Gly Asn Ala Lys Gly Asp Asp Ala
      145         150         155          160
Leu Glu Lys Arg Phe Leu Asp Lys Ala Leu Glu Leu Asn Met Leu Ser
      165         170         175
Leu Lys Gly His Arg Ser Val Gly Gly Ile Arg Ala Ser Leu Tyr Asn
      180         185         190
Ala Val Thr Ile Glu Asp Val Gln Lys Leu Ala Ala Phe Met Lys Lys
      195         200         205
Phe Leu Glu Met His Gln Leu
      210         215

```

<210> 5907
<211> 1989
<212> DNA
<213>. *Homo sapiens*

<400> 5907
nnattggctta aataaggtgt tatcagctgc ttgatataaga gctgataaaa tcttcagctaa
60
ggcatacttg aggccctgatt acagaagtga ccgtagtcac cccacacacc tgaaatttat
120
ttaagagacc aagctaggct ctccctggcc ttttaggaaga ggactggcat ggagaaatat
180
gttcctcaact agttctccca agccatggca cgtccccaca aattcctcct ttgggtttgc
240
tgctttgcct ggctgtgttt tcctattagc ctgggttctc aggcttctgg gggagaagct
300
cagattgctg ctagtgctga gttggaatct ggggctatgc ctgggtcctt gctgcagcat
360
atagatgaga gagacagagc tggcctcctt cccgcgtttt tcaaagttct atctgttggg
420
cgaggtgggt cacctaggct gcagccagac tccagagctt tgcaactacat gaagaagctc
480
tataagacat atgctaccaa ggaagggatt cctaaatcca atagaagtca cctctacaac
540

actgttcggc tttcacccc ctgtacccgg cacaaggcagg ctccctggaga ccaggttaaca
600
ggaatcccttc catcagtggaa actgttatTTT aacctggatC gcattactac cgTTgaacac
660
ttactcaagt cagtcTTGtGt gtacaatATC aacaactcag tttcttttc ctctgtgtc
720
aatatgtgtgt gcaatctaata gataaaggag ccaaagtctt ctAGcaggac tctcggcaga
780
gctccataact catTTacCTT taactcacAG tttGAATTG gaaAGAAACA caaaATGGATT
840
cagattgatG tgaccAGGCT cCTTCaacCT ttAGTGGCCT ccaacaAGAG aAGTATTcAC
900
atgtctataa atTTTactTG catgaaaAGAC cAGCTGGAGC atCCttCAGC acagaatGGT
960
ttgtttaaca tgactctggT gtccccCTCA ctgatCTTat atttGAATGA cacaAGTGT
1020
caggcTTatc acagETGGta ttccCTTCAC tataAAAGGA ggcTTCCCA gggTCCTGAC
1080
caggagagaa gtctgtctGC ctatCCTGTG ggagaAGAGG ctgctgagGA tggagatCT
1140
tcccattcacc gtcacccGcAG aggtcAGGAA acTGTcAGTT ctGAATTGAA gaAGCCCTG
1200
ggcccAGCTT cCTTCaaCTC gagtGAATAc ttCAgACAAt ttCTTCTTCC cAAAATGAG
1260
tgtgagCTCC atgactTTAG acTTAGCTT AGTCAGCTGA AGTGGGACAA CTGGATTGT
1320
gctccGcaca ggtacaACCC tcgataCTGT aaAGGGGACT gtccaAGGGC agttggACAT
1380
cggtatGGCT cTCCAGTTCa caccatGGTA cagaACATCA tCTATGAGAA gctggACTCC
1440
tcagtgccaa gaccgtcatG tgtacCTGCC aaatacAGCC cCTTGAGTGT tttgaccatt
1500
gagcccGATG gctcaATTGc ctataAAAGAG tacGAAGATA tgatAGCTAC aaAGTGCACC
1560
tgtcgttaac aaatggTCCT cttaAAACCT tgAGCCTATT tggCAAAGTA actACTGTG
1620
gcctatGTGT gcCTTCAGA gaaAGCTTCa tatattaAGT ctCTAAATGT AGCATATGTT
1680
atataAAAGAG gagCCTGTGT aggttagtAC ctTCTATGGC atCTATCAGG atAAAGGGAT
1740
aacatcaattt gttgctacAG agcCTTTTT tatttCCAAA tttAAATGAA atataattat
1800
tgtggagaac tttacatTTT tttcCTTGAG tgATTTTTT tCTTTTCATA ggAGTCTTAT
1860
tcttgatagg gaaaaAAACCT taattAGCAT caatCCTGGa tggactTGCA gCTATAAATA
1920
ggcaattcAG attGCTGTAG tCTTAATAGA agaATAAAATT tactGTCAAT ggcaAAAAAA
1980
aaaaaaaaaa
1989

<210> 5908
<211> 454
<212> PRT

<213> Homo sapiens

<400> 5908

Met Ala Arg Pro Asn Lys Phe Leu Leu Trp Phe Cys Cys Phe Ala Trp
 1 5 10 15
 Leu Cys Phe Pro Ile Ser Leu Gly Ser Gln Ala Ser Gly Gly Glu Ala
 20 25 30
 Gln Ile Ala Ala Ser Ala Glu Leu Glu Ser Gly Ala Met Pro Trp Ser
 35 40 45
 Leu Leu Gln His Ile Asp Glu Arg Asp Arg Ala Gly Leu Leu Pro Ala
 50 55 60
 Leu Phe Lys Val Leu Ser Val Gly Arg Gly Ser Pro Arg Leu Gln
 65 70 75 80
 Pro Asp Ser Arg Ala Leu His Tyr Met Lys Lys Leu Tyr Lys Thr Tyr
 85 90 95
 Ala Thr Lys Glu Gly Ile Pro Lys Ser Asn Arg Ser His Leu Tyr Asn
 100 105 110
 Thr Val Arg Leu Phe Thr Pro Cys Thr Arg His Lys Gln Ala Pro Gly
 115 120 125
 Asp Gln Val Thr Gly Ile Leu Pro Ser Val Glu Leu Leu Phe Asn Leu
 130 135 140
 Asp Arg Ile Thr Thr Val Glu His Leu Leu Lys Ser Val Leu Leu Tyr
 145 150 155 160
 Asn Ile Asn Asn Ser Val Ser Phe Ser Ser Ala Val Lys Cys Val Cys
 165 170 175
 Asn Leu Met Ile Lys Glu Pro Lys Ser Ser Ser Arg Thr Leu Gly Arg
 180 185 190
 Ala Pro Tyr Ser Phe Thr Phe Asn Ser Gln Phe Glu Phe Gly Lys Lys
 195 200 205
 His Lys Trp Ile Gln Ile Asp Val Thr Ser Leu Leu Gln Pro Leu Val
 210 215 220
 Ala Ser Asn Lys Arg Ser Ile His Met Ser Ile Asn Phe Thr Cys Met
 225 230 235 240
 Lys Asp Gln Leu Glu His Pro Ser Ala Gln Asn Gly Leu Phe Asn Met
 245 250 255
 Thr Leu Val Ser Pro Ser Leu Ile Leu Tyr Leu Asn Asp Thr Ser Ala
 260 265 270
 Gln Ala Tyr His Ser Trp Tyr Ser Leu His Tyr Lys Arg Arg Pro Ser
 275 280 285
 Gln Gly Pro Asp Gln Glu Arg Ser Leu Ser Ala Tyr Pro Val Gly Glu
 290 295 300
 Glu Ala Ala Glu Asp Gly Arg Ser Ser His His Arg His Arg Arg Gly
 305 310 315 320
 Gln Glu Thr Val Ser Ser Glu Leu Lys Lys Pro Leu Gly Pro Ala Ser
 325 330 335
 Phe Asn Leu Ser Glu Tyr Phe Arg Gln Phe Leu Leu Pro Gln Asn Glu
 340 345 350
 Cys Glu Leu His Asp Phe Arg Leu Ser Phe Ser Gln Leu Lys Trp Asp
 355 360 365
 Asn Trp Ile Val Ala Pro His Arg Tyr Asn Pro Arg Tyr Cys Lys Gly
 370 375 380
 Asp Cys Pro Arg Ala Val Gly His Arg Tyr Gly Ser Pro Val His Thr
 385 390 395 400
 Met Val Gln Asn Ile Ile Tyr Glu Lys Leu Asp Ser Ser Val Pro Arg

405 410 415
Pro Ser Cys Val Pro Ala Lys Tyr Ser Pro Leu Ser Val Leu Thr Ile
420 425 430
Glu Pro Asp Gly Ser Ile Ala Tyr Lys Glu Tyr Glu Asp Met Ile Ala
435 440 445
Thr Lys Cys Thr Cys Arg
450

<210> 5909

<211> 4343

<212> DNA

<213> Homo sapiens

<400> 5909

nncggccgcg ggagggtcct tgtggcgccg ggccggcgaaaa tcctgcgtgg agagtggac
60
gcaacgcgcga gaccgcgagc agaggctgcg cacagccgga tccggcactc agcgaccgga
120
ccccaggatc cggccggggaa caagccacag gagagcgaact caggaacaag tgtggagag
180
gaagcggcgg cgccggcgcc gggcccgaaaa gtggtgacag caggctctgag gttgcatacat
240
aaatacacaag gactgaagtt ataaaagaga aaagagaagt ttgctgctaa aatgaatctg
300
agcaatatgg aatattttgt gccacacaca aaaaggtact gaagatttac ccccaaaaaa
360
aaattgtcaa tgagaaataa agctaactga tatcaaaaaag cagagcctgc tctactggcc
420
atcatgcgtta aagggtgtc gaaggaccca gagattgccg atctattctta caaagatgat
480
cctgaggaac tttttattgg tttgcatgaa attggacatg gaagttttgg agcagtttat
540
tttgctacaa atgctcacac cagttaggtg gtggcaatta agaagatgtc ctatagttgg
600
aagcagaccc atgagaaatg gcaagatatt cttaaggaag taaaattttt acgacaattt
660
aagcatccta atactattga gtacaaaggc ttttacttga aagaacacac tgcttggttg
720
gtgatgaaat attgcttgg ctcagcctct gatttattag aagttcataa aaaaccactt
780
caggaagtgg agatcgctgc cattactcat ggagccttgc atggacttagc ctacccat
840
tctcatgcat tgattcatag ggttattaaa gcaggaaata ttcttcttaac agagccaggt
900
caggtaaaac tagctgattt tggatctgtc tcaatggctt ctccctgcca ctccttcgt
960
ggcacacacctt actggatggc tccagagggtg atcttagcta tggatgaagg acagttatgat
1020
gggaaagttt atattggtc acttggcatc acttgtattt aattggcgaa acggaagccg
1080
ccccctttca acatgaatgc aatgagtgcc ttatatcaca ttgcccagaa tgactcccc
1140
acgttacagt ctaatgaatg gacagactcc ttttaggagat ttgttgattt ctgcttgcag
1200

aaaatacctc aggaaaggcc aacatcagca gaactattaa ggcatgactt tgttcgacga
1260
gaccggccac tacgtgtcct cattgacctc atacagagga caaaagatgc agttcgtag
1320
ctagataacc tacagtacccg aaaaatgaaa aaaatacttt tccaagagac acggaatgga
1380
cccttgaatg agtcacagga ggatgaggaa gacagtgaac atggaaccag cctgaacagg
1440
gaaatggaca gcctggcag caaccattcc attccaagca tgtccgttag cacaggcagc
1500
cagagcagca gtgtgaacag catgcaggaa gtcatggacg agagcagttc cgaacttgtc
1560
atgatgcacg atgacgaaag cacaatcaat tccagctct ccgtcgtgca taagaaagat
1620
catgtattca taagggatga ggccccac ggcgatccc ggcctgagcc gggcctacc
1680
cagtcagttc agagccaggg cctccactac cgaaacagag agcgctttgc cacgatcaaa
1740
tcagcatctt tggcacacg acagatccat gagcatgagc aggagaacga gttgcggaa
1800
cagatgtcag gttataagcg gatgcggcgc cagcaccaga agcagctgat cgccctggag
1860
aacaagctga aggctgagat ggacgagcac cgccctaagc tacagaagga ggtggagacg
1920
catgccaaca actcgccat cgagctggag aagctggca agaagcaagt ggctatcata
1980
gaaaaggagg caaaggtgc tgcagcagat gagaagaagt tccagcaaca gatcttggcc
2040
cagcagaaga aagatttgac aactttctta gaaagtcaga agaagcagta taagatttgt
2100
aaggaaaaaa taaaagagga aatgaatgag gaccatagca cacccaaagaa agagaagcaa
2160
gagcggatct tcaaacataa agagaacttg caacacacac aggctgaaga ggaagccac
2220
cttctactt caacaggaga ctggactacg accaaaaatt gtcgtttctt caagcggaaa
2280
ataatgatca agcggcacga ggtggagcag cagaacattc gggaggaact aaataaaaag
2340
aggaccatga aggagatgga gcatgccatg ctaatccggc acgacgagtc cacccgagag
2400
ctagagtaca ggcagctgca cacgttacag aagctacgga tggatctgat ccgtttacag
2460
caccagacgg aactggaaaa ccagctggag tacaataaga ggcgagaaag agaactgcac
2520
agaaagcatg tcatggaact tcggcaacag ccaaaaaact taaaggccat ggaaatgcaa
2580
ataaaaaac agtttcagga cacttgcaaa gtacagacca aacagtataa agcactcaag
2640
aatcaccagt tggaagttac tccaaagaat gggcacaaaa caatctaaa gacactgaaa
2700
gatgagcaga caagaaaact tgccattttgcagcagcgt atgaacagag tataaatgaa
2760
atgatggcct ctcaagcggtt acggcttagat gaggctcaag aagcagaatg ccaggccttg
2820

aggctacagc tccagcagga aatggagctg ctcaacgcct accagagcaa aatcaagatg
2880
caaacagagg cacaacatga acgtgagctc cagaagctag agcagagagt gtctctgcgc
2940
agagcacacc tttagcagaa gattgaagag gagctggctg cccttcagaa ggaacgcagc
3000
gagagaataa agaacctatt ggaaaggcaa gagcgagaga ttgaaaacttt tgacatggag
3060
agcctcagaa tgggatttgg gaatttggtt acatttagatt ttcctaagga ggactacaga
3120
tgagattaaa tttttgcca ttacaaaaaa aaaaaaaaaa aaagaaaaca aaaaaaaaaatt
3180
cagaccctgc aaaaccacat tccccatccc aacgggcgtt gctctcactc tctctctc
3240
ttactcttac tgacatcgta tcggactagt gcctgtttat tcttacttcca tcagggccc
3300
ccttcctccc cccgtgtcaa ctttcagtgc tggccaaaac ctggccgtct cttctattca
3360
cagtagacgt cacagtattt atgtgattca aaatgtttca gtgaaaactt tggagacagt
3420
tttaacaaaa ccaataaaacc aacaacaaaa aaagtggatg tatattgctt taagcaatca
3480
ctcattacca ccaatctgtg aaagtaaagc aaaaaataat aataataaaat gccaaagggg
3540
agagagacac aatatccgca gccttacacc ttaacttagct gctgcattat tttattttat
3600
tttatTTTT tggtatTTT tcatcaggaa taaaaaaaaa aagttttat taaagattga
3660
aaatttgata catTTTACAG aaACTAATTG tgatgtacat atcagtggtg acatattatt
3720
actTTTTGG ggacgggggg tgggtggggt gaagagatct tgtatTTT aagaacctgc
3780
tggcaagagt ttaacttgc ttcagcatat tctgattgtt tcataatcat tttctgtgt
3840
tgcagaggat gtgaatacac ttaaggagct cacagaatcc cagtagcaca aattgggctt
3900
tggcaaATCG tgtatTTGT gtatAGAAGG aattTAAGGA gaggtattac ttatTTCAT
3960
atgtatTTT aactgtttct ctgatcaaAT tttttactt cctcctcctg ttccctcccc
4020
cctccctctt ttccagttc agtatttgg aTTCAACACT gTCTCTCAAT cAGTCATCT
4080
tgatTTTTT ctttatctcc cttcccttc ctaagtccc tttcttggc ataAAatattg
4140
cattattcac actttcaaac tgtgtatTTT cttacaataa AAAATGATGA aaaaaaaaaa
4200
ggctttactt ctttgcattt cactttaaaa acaaaaacaaa acatTTTCA ggttccaagg
4260
aagagcatga taactgtcag agcttttaat tatattgtt aataaaaagtg ttcatcacaa
4320
aaaaaaaaaaa aaaaaaaaaaaa aaa
4343

<210> 5910

<211> 899
<212> PRT
<213> Homo sapiens

<400> 5910
Met Arg Lys Gly Val Leu Lys Asp Pro Glu Ile Ala Asp Leu Phe Tyr
1 5 10 15
Lys Asp Asp Pro Glu Glu Leu Phe Ile Gly Leu His Glu Ile Gly His
20 25 30
Gly Ser Phe Gly Ala Val Tyr Phe Ala Thr Asn Ala His Thr Ser Glu
35 40 45
Val Val Ala Ile Lys Lys Met Ser Tyr Ser Gly Lys Gln Thr His Glu
50 55 60
Lys Trp Gln Asp Ile Leu Lys Glu Val Phe Leu Arg Gln Leu Lys
65 70 75 80
His Pro Asn Thr Ile Glu Tyr Lys Gly Cys Tyr Leu Lys Glu His Thr
85 90 95
Ala Trp Leu Val Met Glu Tyr Cys Leu Gly Ser Ala Ser Asp Leu Leu
100 105 110
Glu Val His Lys Pro Leu Gln Glu Val Glu Ile Ala Ala Ile Thr
115 120 125
His Gly Ala Leu His Gly Leu Ala Tyr Leu His Ser His Ala Leu Ile
130 135 140
His Arg Asp Ile Lys Ala Gly Asn Ile Leu Leu Thr Glu Pro Gly Gln
145 150 155 160
Val Lys Leu Ala Asp Phe Gly Ser Ala Ser Met Ala Ser Pro Ala Asn
165 170 175
Ser Phe Val Gly Thr Pro Tyr Trp Met Ala Pro Glu Val Ile Leu Ala
180 185 190
Met Asp Glu Gly Gln Tyr Asp Gly Lys Val Asp Ile Trp Ser Leu Gly
195 200 205
Ile Thr Cys Ile Glu Leu Ala Glu Arg Lys Pro Pro Leu Phe Asn Met
210 215 220
Asn Ala Met Ser Ala Leu Tyr His Ile Ala Gln Asn Asp Ser Pro Thr
225 230 235 240
Leu Gln Ser Asn Glu Trp Thr Asp Ser Phe Arg Arg Phe Val Asp Tyr
245 250 255
Cys Leu Gln Lys Ile Pro Gln Glu Arg Pro Thr Ser Ala Glu Leu Leu
260 265 270
Arg His Asp Phe Val Arg Arg Asp Arg Pro Leu Arg Val Leu Ile Asp
275 280 285
Leu Ile Gln Arg Thr Lys Asp Ala Val Arg Glu Leu Asp Asn Leu Gln
290 295 300
Tyr Arg Lys Met Lys Lys Ile Leu Phe Gln Glu Thr Arg Asn Gly Pro
305 310 315 320
Leu Asn Glu Ser Gln Glu Asp Glu Asp Ser Glu His Gly Thr Ser
325 330 335
Leu Asn Arg Glu Met Asp Ser Leu Gly Ser Asn His Ser Ile Pro Ser
340 345 350
Met Ser Val Ser Thr Gly Ser Gln Ser Ser Ser Val Asn Ser Met Gln
355 360 365
Glu Val Met Asp Glu Ser Ser Ser Glu Leu Val Met Met His Asp Asp
370 375 380
Glu Ser Thr Ile Asn Ser Ser Ser Val Val His Lys Lys Asp His

385	390	395	400
Val Phe Ile Arg Asp Glu Ala Gly His Gly Asp Pro Arg Pro Glu Pro			
405	410	415	
Arg Pro Thr Gln Ser Val Gln Ser Gln Ala Leu His Tyr Arg Asn Arg			
420	425	430	
Glu Arg Phe Ala Thr Ile Lys Ser Ala Ser Leu Val Thr Arg Gln Ile			
435	440	445	
His Glu His Glu Gln Glu Asn Glu Leu Arg Glu Gln Met Ser Gly Tyr			
450	455	460	
Lys Arg Met Arg Arg Gln His Gln Lys Gln Leu Ala Leu Glu Asn			
465	470	475	480
Lys Leu Lys Ala Glu Met Asp Glu His Arg Leu Lys Leu Gln Lys Glu			
485	490	495	
Val Glu Thr His Ala Asn Asn Ser Ser Ile Glu Leu Glu Lys Leu Ala			
500	505	510	
Lys Lys Gln Val Ala Ile Ile Glu Lys Glu Ala Lys Val Ala Ala Ala			
515	520	525	
Asp Glu Lys Lys Phe Gln Gln Gln Ile Leu Ala Gln Gln Lys Lys Asp			
530	535	540	
Leu Thr Thr Phe Leu Glu Ser Gln Lys Lys Gln Tyr Lys Ile Cys Lys			
545	550	555	560
Glu Lys Ile Lys Glu Glu Met Asn Glu Asp His Ser Thr Pro Lys Lys			
565	570	575	
Glu Lys Gln Glu Arg Ile Phe Lys His Lys Glu Asn Leu Gln His Thr			
580	585	590	
Gln Ala Glu Glu Ala His Leu Leu Thr Ser Thr Gly Asp Trp Thr			
595	600	605	
Thr Thr Lys Asn Cys Arg Phe Phe Lys Arg Lys Ile Met Ile Lys Arg			
610	615	620	
His Glu Val Glu Gln Gln Asn Ile Arg Glu Glu Leu Asn Lys Lys Arg			
625	630	635	640
Thr Met Lys Glu Met Glu His Ala Met Leu Ile Arg His Asp Glu Ser			
645	650	655	
Thr Arg Glu Leu Glu Tyr Arg Gln Leu His Thr Leu Gln Lys Leu Arg			
660	665	670	
Met Asp Leu Ile Arg Leu Gln His Gln Thr Glu Leu Glu Asn Gln Leu			
675	680	685	
Glu Tyr Asn Lys Arg Arg Glu Arg Glu Leu His Arg Lys His Val Met			
690	695	700	
Glu Leu Arg Gln Gln Pro Lys Asn Leu Lys Ala Met Glu Met Gln Ile			
705	710	715	720
Lys Lys Gln Phe Gln Asp Thr Cys Lys Val Gln Thr Lys Gln Tyr Lys			
725	730	735	
Ala Leu Lys Asn His Gln Leu Glu Val Thr Pro Lys Asn Glu His Lys			
740	745	750	
Thr Ile Leu Lys Thr Leu Lys Asp Glu Gln Thr Arg Lys Leu Ala Ile			
755	760	765	
Leu Ala Glu Gln Tyr Glu Gln Ser Ile Asn Glu Met Met Ala Ser Gln			
770	775	780	
Ala Leu Arg Leu Asp Glu Ala Gln Glu Ala Glu Cys Gln Ala Leu Arg			
785	790	795	800
Leu Gln Leu Gln Gln Glu Met Glu Leu Leu Asn Ala Tyr Gln Ser Lys			
805	810	815	
Ile Lys Met Gln Thr Glu Ala Gln His Glu Arg Glu Leu Gln Lys Leu			

820	825	830
Glu Gln Arg Val Ser Leu Arg Arg Ala His Leu Glu Gln Lys Ile Glu		
835	840	845
Glu Glu Leu Ala Ala Leu Gln Lys Glu Arg Ser Glu Arg Ile Lys Asn		
850	855	860
Leu Leu Glu Arg Gln Glu Arg Glu Ile Glu Thr Phe Asp Met Glu Ser		
865	870	875
Leu Arg Met Gly Phe Gly Asn Leu Val Thr Leu Asp Phe Pro Lys Glu		880
885	890	895
Asp Tyr Arg		

<210> 5911
<211> 645
<212> DNA
<213> Homo sapiens

<400> 5911
nnaagtactt aagatggaaa gccagaaaatc ccggctttgt gtttcgctca cgctgggagc
60
tgttagccgg agctgttcct attcggcaat ctggctttt ccgcagagga ttcattttg
120
cccgacggtg gtactccagc aggtacttca agtccagctt cttcatcttc cttctcaac
180
agacttcagc ttgatgtatga tattgtatggt gagactagag atctttcgat tatagtcgat
240
gatccaaaga agcatgtgtg tacaatggag acttacatca cctataggat caccaccaa
300
agtaactcggg tggagtttga cctgccagaa tattctgttc gtcgaagata ccaggatttt
360
gactgggtga ggagcaaact ggaagaatcc cagcccactc atctcattcc cctcttcccc
420
gagaagtttg tggtaaaagg tggtgtggat cgtttttcag aagagtttgt ggagaccaga
480
agaaaaagctt tggataaatt tctaaaaaga attacggacc atcctgtgt gtctttcaat
540
gaacacttta atatttcct tactgctaag gacctgaacg cctacaagaa gcaaggata
600
gcattgctga ccagaatggg cgagtcagtc aagcacgtca cgcgt
645

<210> 5912
<211> 211
<212> PRT
<213> Homo sapiens

<400> 5912
Asp Gly Lys Pro Glu Ile Pro Val Leu Cys Phe Ala His Ala Gly Ser
1 5 10 15
Cys Arg Pro Glu Leu Phe Leu Phe Gly Asn Leu Gly Ser Ser Ala Glu
20 25 30
Asp Leu Ile Leu Pro Asp Gly Gly Thr Pro Ala Gly Thr Ser Ser Pro
35 40 45
Ala Ser Ser Ser Ser Leu Leu Asn Arg Leu Gln Leu Asp Asp Asp Ile

50	55	60
Asp	Gly	Glu Thr Arg Asp Leu Phe Val Ile Val Asp Asp Pro Lys Lys
65	70	75 80
His	Val Cys Thr Met Glu Thr Tyr Ile Thr Tyr Arg Ile Thr Thr Lys	
	85	90 95
Ser	Thr Arg Val Glu Phe Asp Leu Pro Glu Tyr Ser Val Arg Arg Arg	
	100	105 110
Tyr	Gln Asp Phe Asp Trp Leu Arg Ser Lys Leu Glu Ser Gln Pro	
	115	120 125
Thr	His Leu Ile Pro Pro Leu Pro Glu Lys Phe Val Val Lys Gly Val	
	130	135 140
Val	Asp Arg Phe Ser Glu Glu Phe Val Glu Thr Arg Arg Lys Ala Leu	
145	150	155 160
Asp	Lys Phe Leu Lys Arg Ile Thr Asp His Pro Val Leu Ser Phe Asn	
	165	170 175
Glu	His Phe Asn Ile Phe Leu Thr Ala Lys Asp Leu Asn Ala Tyr Lys	
	180	185 190
Lys	Gln Gly Ile Ala Leu Leu Thr Arg Met Gly Glu Ser Val Lys His	
	195	200 205
Val	Thr Arg	
	210	

<210> 5913
<211> 2495
<212> DNA
<213> Homo sapiens

<400> 5913
attttttttt tttttttttt tttttttttt tttttttttt ttttttaatct tctcttcctc
60
cattttatag ggagaaaaacc aagccactgg ccccgttaca cagcaagtta gtagtaagac
120
tgagattcga accctggtca aacagacttt ccattttgtt ccactgactc agtcttcct
180
tttacacttg aatcagactt ttagtttat ttagttttt gagtccatag ctgtcttcct
240
gtactgtctt gactcttga ctaaactgat ttcacatctt taaaattatg ctttccttt
300
aggctcattt ttagctcagc tggtagacgc tattttaaa tgtaacatga cataatatat
360
ttccctaaata atttaaaata atctagttt agctgctctg aaggtagtc agttggtggt
420
gtgcatacagag gtagagcctt cccccactct caaggatgct gtgaggggta ttcctaccat
480
gtggtaggtt gggaggtttt cctgaggtcc tttccatcc tgagactctg gtttccatt
540
ttgttctca caggccaggg ctttgaccga cacttgggg ctctgcggca tctggcagca
600
gcanaaggga tcatacttgc tgagctctac ctggaccctg catacgggca gataaaccac
660
aatgtcctgt ccacgagcac actgagcagc ccagcagtga acntttagt gtttgcct
720
gtggtaggtt atgctttgg tggtaggtat gctgttcatg acaactggat aggctgaat
780

gtctttccct acccaggccg caatgcccg gagtttctcc aatgtgtgga gaaggctnta
840
gaagacatgt ttgatgcctt agaaggcaaa tccatcaaaa gtttaacttct gggcagatga
900
aaagctacca tcacttcctc atcatgaaaa ctgggaggcc gggcatggtg gctcatgcct
960
gtaatcccag catttgaga ggctgaggcg ggtggatcac ttgaggttag gagttttaga
1020
ccaacctggc caacatggtg aaaccttgc tctactaaaa atacaaaaat tagctgggtg
1080
tggtggcatg tgccataat cccagctact tgggagggtt aagcagaatt gcttgaaccc
1140
aggaggtgga gtttgcagt agctgagatc acaccactgc actccggcct gggcgacaga
1200
gctgactgt ctcaaaaaaaaaa caaaaaagaa aaaaaaaactg gggctgtgt agccagtggg
1260
tgctattctg tgaaactaat cataagctgc ctaggcagcc agctacaggg ttgagctta
1320
aattcatggt tttaaagcta aacgtaattt ccacttggga cttagatcaca actgaagata
1380
acaagagatt taagttttaa gggcatttaa tcaggaggaa aggtttggaa aactaactca
1440
ggtgtttaa ttgtttaagc agaaataaaag tttaaattttt gcttgaagat ggttccataat
1500
ttcttttaac ctaattccta atcctcaca aagatcttcc aacagcaagt tcagtaagtt
1560
caggtaacag tacgtcacca ttggcttctg gtcatttag ttaggtggg atcgcggtt
1620
catctctgtt aacttgcctt tgactgggg aataccatct cttttttttt actcttcatt
1680
ttcctaagga gtgaactgt gtcacgaa ttcttatttg tggagggagt agctgcctcc
1740
ttacttcacc ttcatgcacc agtgcagcgt gaacaggggc tttattgtat gggcttggga
1800
agctgtataa aagtccagca tgcagattgt gaaggttcg tatagccacc aggagacaag
1860
ggtcaaagga acgagcctct gtggcttctg ctgcatttagat tactttgtcc ttctcagtt
1920
cttaaggggca actgggaagg aagaggatc agcacttcac aaactgggg gtgacccat
1980
agattccccac agactccctgg gcctttcat catagtcagt ccagtccttc tctgcagat
2040
taatgtcaact gaaggctgtc cttgactcca cacccctcage agcaaaacca gctgcggct
2100
ggaaatcaac tggttcaagg cccggcact caaactccac tattgtcttg aagttctcat
2160
tgtcttcaggc attgttaaggc ttgatgggtgc tgcttttttctcgatggaa ttttcttgc
2220
cacacagctt gcacttcgg accatggaaag cactgccacg gcccccttc agtgcacac
2280
tgtccatcg ccggatgtac tgccacttgc ccgaaatctc accacagttt ccacattca
2340
tcttcaggta ccaccggaaag tcctcgccca cggggccggag gttgggtatg ttctccagcg
2400

tggcttgag ttgcagcgat atttccccatggtagccct ctccgcccgg tgctggctgc
 2460
 gccccttgcgttgcgttccggcgcgtcgtaaaag

2495

<210> 5914
 <211> 158
 <212> PRT
 <213> Homo sapiens

<400> 5914
 Ser Val Gly Gly Val His Arg Gly Arg Ala Phe Pro His Ser Gln Gly
 1 5 10 15
 Cys Cys Glu Gly Tyr Ser Tyr His Val Val Ser Trp Glu Val Phe Leu
 20 25 30
 Arg Ser Phe Ser Ile Leu Arg Leu Trp Phe Ser Ile Leu Phe Leu Thr
 35 40 45
 Gly Gln Gly Phe Asp Arg His Leu Phe Ala Leu Arg His Leu Ala Ala
 50 55 60
 Ala Xaa Gly Ile Ile Leu Pro Glu Leu Tyr Leu Asp Pro Ala Tyr Gly
 65 70 75 80
 Gln Ile Asn His Asn Val Leu Ser Thr Ser Thr Leu Ser Ser Pro Ala
 85 90 95
 Val Asn Xaa Cys Arg Phe Ala Pro Val Val Ser Asp Ala Phe Gly Val
 100 105 110
 Gly Tyr Ala Val His Asp Asn Trp Ile Gly Cys Asn Val Ser Ser Tyr
 115 120 125
 Pro Gly Arg Asn Ala Arg Glu Phe Leu Gln Cys Val Glu Lys Ala Xaa
 130 135 140
 Glu Asp Met Phe Asp Ala Leu Glu Gly Lys Ser Ile Lys Ser
 145 150 155

<210> 5915
 <211> 457
 <212> DNA
 <213> Homo sapiens

<400> 5915
 taccgaagac tcagcaactc cagcctctgt agcattgaag aagagcacccg aatgggttat
 60
 gaaatggtagc agcggattct cttgtcaaca cgagggtatg tcaacttcgt gaatgaagta
 120
 tttcaccagg catttttgtt gccttcctgt gagatagctg taacaagaaa agtagttcaa
 180
 gtgtacagaa agtggattct ccaggacaaa cctgtgttca tggaggagcc agatagaaaa
 240
 gatgttgcggcc aagaagatgc tgaaaaatttggatcccg agactgatac caaggaggcc
 300
 tcatactgaaa gttctggtca taaacgatct tccagttggg gacgcacata ctccttcaca
 360
 agtgcaatga gcagagggtg tgtgacagag gagaaaaata caaatgtgaa agccggcg
 420
 caggctttgt tgcaggtatt tttggcgaac tctgcag
 457

<210> 5916
<211> 152
<212> PRT
<213> Homo sapiens

<400> 5916
Tyr Arg Arg Leu Ser Asn Ser Ser Leu Cys Ser Ile Glu Glu Glu His
1 5 10 15
Arg Met Val Tyr Glu Met Val Gln Arg Ile Leu Leu Ser Thr Arg Gly
20 25 30
Tyr Val Asn Phe Val Asn Glu Val Phe His Gln Ala Phe Leu Leu Pro
35 40 45
Ser Cys Glu Ile Ala Val Thr Arg Lys Val Val Gln Val Tyr Arg Lys
50 55 60
Trp Ile Leu Gln Asp Pro Val Phe Met Glu Glu Pro Asp Arg Lys
65 70 75 80
Asp Val Ala Gln Glu Asp Ala Glu Lys Leu Gly Phe Ser Glu Thr Asp
85 90 95
Ser Lys Glu Ala Ser Ser Glu Ser Ser Gly His Lys Arg Ser Ser Ser
100 105 110
Trp Gly Arg Thr Tyr Ser Phe Thr Ser Ala Met Ser Arg Gly Cys Val
115 120 125
Thr Glu Glu Glu Asn Thr Asn Val Lys Ala Gly Val Gln Ala Leu Leu
130 135 140
Gln Val Phe Leu Ala Asn Ser Ala
145 150

<210> 5917
<211> 3727
<212> DNA
<213> Homo sapiens

<400> 5917
gcttgcggcc gcgtgacggt ggccacaag aaggctccgc cggccctgat cgacgagtgc
60
atcgagaagt tcaatcacgt cagcggcagc cgggggtccg agagcccccg ccccaacccg
120
ccccatgcgc cgcgccacacag ggagccagga cctgtgcgca ggcccatgcg caagtccctc
180
tcccagcccg gctgcgcgc gctggccttt aggaaggagc tgcaggatgg gggcctccga
240
agcagcggct tcttcagctc ctgcaggag agcgacattg agaaccacct cattagcgga
300
cacaatattg tgcagccac agatatcgag gaaaatcgaa ctatgcttt cacgattggc
360
cagtctgaag tttacctcat cagtcctgac accaaaaaaaa tagcattgga gaaaaatttt
420
aaggagatat cttttgcgc tcagggcatc agacacgtgg accactttgg gtttatctgt
480
cgggagtcctt ccggaggtgg cggcttcat tttgtctgtt acgtgtttca gtgcacaaat
540
gaggctctgg ttgatgaaat tatgatgacc ctgaaacagg cttcacggg ggccgcagtg
600

cagcagacag ctaaggcgcc agcccagctg tgtgagggt gccccctgca aagcctgcac
660
aagctctgtg agaggataga ggaaatgaat tcttccaaaa caaaactaga actgcaaaag
720
cacctgacga cattaacca tcaggagcag gcgactattt ttgaagaggt tcagaaattg
780
agaccggagaa atgagcagcg agagaatgaa ttgattattt ctttctgag atgtttat
840
gaagagaaaac agaaagaaca catccatatt ggggagatga agcagacatc gcagatggca
900
gcagagaata ttggaagtga attaccaccc agtgcactc gattnaggt agatatgctg
960
aaaaacaaaag caaagagatc tttaacagag tcttttagaaa gtatTTGTC ccggggtaat
1020
aaagccagag gcctgcagga acactccatc agtgtggatc tggatagctc cctgtcttagt
1080
acattaagta acaccagcaa agagccatct gtgtgtgaaa aggaggcctt gcccacatct
1140
gagagctcct ttaagctcct cggtccctcg gaggacctgt ccagtgactc ggagagtc
1200
ctccccagaag agccagtcg cgtgtcgccc cagcaggcct tcaggaggcg agcaaacc
1260
ctgagtcact tccccatcga atgccaggaa cctccacaac ctgccccggg gtccccgggg
1320
gtttcgcaaa ggaaacttat gaggtatcac tcagtgagca cagagacgcc tcatgaacga
1380
aaggactttg aatccaaagc aaaccatctt ggtgattctg gtggactcc tgtgaagacc
1440
cgaggaggatt cctggaggca gcagatattc ctccgagtag ccaccccgca gaaggcgtgc
1500
gattttcca gcagatatga agattattca gagctggag agctcccc acgatctc
1560
ttagaaccag tttgtgaaga tggcccttt ggccccacc agaggaaaag aaaaggacat
1620
ctcgtgagct ccgagagctg tggcaaaggg ctattttca acagatactg cttgtttaga
1680
atggagaagg aaaatcagaa gctccaagcc tctgaaaatg atttgctgaa caagcgc
1740
aagctcgatt atgaagaat tactccctgt cttaaagaag taactacagt gtggaaaag
1800
atgcttagca ctccaggaag atcaaaaatt aagtttgcaca tggaaaaat gcactcg
1860
gttggcaag gtgtgccacg tcatcaccga ggtgaaatct ggaaatttct agctgagcaa
1920
ttccacccctt aacaccagtt tcccagcaaa cagcagccaa aggatgtgcc atacaagaa
1980
ctctaaagc agctgacttc ccagcagcat gcgattctt ttgaccttgg gcgaacctt
2040
cctacacacc catacttctc tgcccagctt ggagcaggac agctatcgct ttacaacatt
2100
ttgaaggcctt actcacttct agaccaggaa gtggatatt gccaaggct cagcttgc
2160
gcagggcattt tgcttcttca tatgagttagt gaagaggcgt taaaatgct caagttctg
2220

atgtttgaca tggggctgcg gaaacagtat cggccagaca tgattatttt acagatccag
2280
atgtaccaggc tcctcgagggtt gcttcatgat taccacagag acctctacaa tcacctggag
2340
gagcacgaga tcggccccag cctctacgct gccccctggc tcctcacccat gtttgcctca
2400
cagttcccgcc tgggattcgt agccagagtc tttgatatga tttttcttca gggAACAGAG
2460
gtcatattta aagtggcttt aagtctgtt ggaagccata agcccttgat tctgcagcat
2520
gaaaacctag aaaccatagt tgactttata aaaagcacgc tacccaacct tggcttggta
2580
cagatggaaa agaccatcaa tcaggtatTTT gaaatggaca tcgctaaaca gttacaagct
2640
tatgaagtgtt agtaccacgt cttcaagaa gaacttatcg attcctctcc tctcagtgac
2700
aaccaaagaa tggataaaatt agagaaaaacc aacagcagct tacgcaaaca gaaccttgac
2760
ctcccttgaac agttgcagggt ggccaaatgggt aggatccaaa gccttgaggc caccatttag
2820
aagtcctcga gcagtggagag caagctgaag caggccatgc ttacctttaga actggagcgg
2880
tcgcctctgc cagacgggtgg aggagctgcg gcggcggagc gcagagccca gcgaccggga
2940
gccttagtgc acgcagcccg agcccacggg cgactgacag cttgcaggag agattgcaac
3000
accatcacac tgccaggcc ttaactgaga gggacagaag acgctggaag gagagaagga
3060
agcgggaagt gtgcctctca gggaggaaac cggcttgcca gcaagtagat tcttacgaac
3120
tccaaacttgc aattcagggg gcatgtccca gtgtttttt tggtgtttt agatactaaa
3180
tcgtcccttc tccagtcctg attactgtac acagtagctt tagatggcgt ggacgtgaat
3240
aaatgcaact tatgtttct tgggtttcc tttttgagtg tcactgtgtt tgtaaagagc
3300
attcacaata cggtgaaatt tcaaaagctg gaagagctcg agatcatgcc tcaggcaaag
3360
gcgtgggtcc atcgttcttc cgagagggtt tgggtggcga ctacaccctc agcgccctg
3420
gcaagggtgca gttggcttc gccattctt gttatggaaa cctaagatga tcattggaa
3480
gatcgtat cttgggtcat tgcatttc ctcagaggat agcggttcc atcataaacc
3540
aagatgatga gttcagcctt tatccctcggtt ccattggaaa cctaagatga tcattggaa
3600
acatttgagg actttgttct acatcagatt ttactatTTT aatgtttaag atcactttat
3660
tgaatttgaa gatcatcaaa ttaaataaaa tgattttattt aatTTGATA tcctgaaaaaa
3720
aaaaaaaa
3727

<210> 5918

<211> 981
<212> PRT
<213> Homo sapiens

<400> 5918
Ala Cys Gly Arg Val Thr Val Ala His Lys Lys Ala Pro Pro Ala Leu
1 5 10 15
Ile Asp Glu Cys Ile Glu Lys Phe Asn His Val Ser Gly Ser Arg Gly
20 25 30
Ser Glu Ser Pro Arg Pro Asn Pro Pro His Ala Ala Arg His Arg Glu
35 40 45
Pro Gly Pro Val Arg Arg Pro Met Arg Lys Ser Phe Ser Gln Pro Gly
50 55 60
Leu Arg Ser Leu Ala Phe Arg Lys Glu Leu Gln Asp Gly Gly Leu Arg
65 70 75 80
Ser Ser Gly Phe Ser Ser Phe Glu Glu Ser Asp Ile Glu Asn His
85 90 95
Leu Ile Ser Gly His Asn Ile Val Gln Pro Thr Asp Ile Glu Glu Asn
100 105 110
Arg Thr Met Leu Phe Thr Ile Gly Gln Ser Glu Val Tyr Leu Ile Ser
115 120 125
Pro Asp Thr Lys Lys Ile Ala Leu Glu Lys Asn Phe Lys Glu Ile Ser
130 135 140
Phe Cys Ser Gln Gly Ile Arg His Val Asp His Phe Gly Phe Ile Cys
145 150 155 160
Arg Glu Ser Ser Gly Gly Gly Phe His Phe Val Cys Tyr Val Phe
165 170 175
Gln Cys Thr Asn Glu Ala Leu Val Asp Glu Ile Met Met Thr Leu Lys
180 185 190
Gln Ala Phe Thr Val Ala Ala Val Gln Gln Thr Ala Lys Ala Pro Ala
195 200 205
Gln Leu Cys Glu Gly Cys Pro Leu Gln Ser Leu His Lys Leu Cys Glu
210 215 220
Arg Ile Glu Gly Met Asn Ser Ser Lys Thr Lys Leu Glu Leu Gln Lys
225 230 235 240
His Leu Thr Thr Leu Thr Asn Gln Glu Gln Ala Thr Ile Phe Glu Glu
245 250 255
Val Gln Lys Leu Arg Pro Arg Asn Glu Gln Arg Glu Asn Glu Leu Ile
260 265 270
Ile Ser Phe Leu Arg Cys Leu Tyr Glu Glu Lys Gln Lys Glu His Ile
275 280 285
His Ile Gly Glu Met Lys Gln Thr Ser Gln Met Ala Ala Glu Asn Ile
290 295 300
Gly Ser Glu Leu Pro Pro Ser Ala Thr Arg Phe Arg Leu Asp Met Leu
305 310 315 320
Lys Asn Lys Ala Lys Arg Ser Leu Thr Glu Ser Leu Glu Ser Ile Leu
325 330 335
Ser Arg Gly Asn Lys Ala Arg Gly Leu Gln Glu His Ser Ile Ser Val
340 345 350
Asp Leu Asp Ser Ser Leu Ser Ser Thr Leu Ser Asn Thr Ser Lys Glu
355 360 365
Pro Ser Val Cys Glu Lys Glu Ala Leu Pro Ile Ser Glu Ser Ser Phe
370 375 380
Lys Leu Leu Gly Ser Ser Glu Asp Leu Ser Ser Asp Ser Glu Ser His

385	390	395	400
Leu Pro Glu Glu Pro Ala Pro Leu Ser Pro Gln Gln Ala Phe Arg Arg			
405	410	415	
Arg Ala Asn Thr Leu Ser His Phe Pro Ile Glu Cys Gln Glu Pro Pro			
420	425	430	
Gln Pro Ala Arg Gly Ser Pro Gly Val Ser Gln Arg Lys Leu Met Arg			
435	440	445	
Tyr His Ser Val Ser Thr Glu Thr Pro His Glu Arg Lys Asp Phe Glu			
450	455	460	
Ser Lys Ala Asn His Leu Gly Asp Ser Gly Gly Thr Pro Val Lys Thr			
465	470	475	480
Arg Arg His Ser Trp Arg Gln Gln Ile Phe Leu Arg Val Ala Thr Pro			
485	490	495	
Gln Lys Ala Cys Asp Ser Ser Ser Arg Tyr Glu Asp Tyr Ser Glu Leu			
500	505	510	
Gly Glu Leu Pro Pro Arg Ser Pro Leu Glu Pro Val Cys Glu Asp Gly			
515	520	525	
Pro Phe Gly Pro His Gln Arg Lys Arg Lys Gly His Leu Val Ser Ser			
530	535	540	
Glu Ser Cys Gly Lys Gly Leu Phe Phe Asn Arg Tyr Cys Xaa Leu Arg			
545	550	555	560
Met Glu Lys Glu Asn Gln Lys Leu Gln Ala Ser Glu Asn Asp Leu Leu			
565	570	575	
Asn Lys Arg Leu Lys Leu Asp Tyr Glu Glu Ile Thr Pro Cys Leu Lys			
580	585	590	
Glu Val Thr Thr Val Trp Glu Lys Met Leu Ser Thr Pro Gly Arg Ser			
595	600	605	
Lys Ile Lys Phe Asp Met Glu Lys Met His Ser Ala Val Gly Gln Gly			
610	615	620	
Val Pro Arg His His Arg Gly Glu Ile Trp Lys Phe Leu Ala Glu Gln			
625	630	635	640
Phe His Leu Lys His Gln Phe Pro Ser Lys Gln Gln Pro Lys Asp Val			
645	650	655	
Pro Tyr Lys Glu Leu Leu Lys Gln Leu Thr Ser Gln Gln His Ala Ile			
660	665	670	
Leu Ile Asp Leu Gly Arg Thr Phe Pro Thr His Pro Tyr Phe Ser Ala			
675	680	685	
Gln Leu Gly Ala Gly Gln Leu Ser Leu Tyr Asn Ile Leu Lys Ala Tyr			
690	695	700	
Ser Leu Leu Asp Gln Glu Val Gly Tyr Cys Gln Gly Leu Ser Phe Val			
705	710	715	720
Ala Gly Ile Leu Leu Leu His Met Ser Glu Glu Ala Phe Lys Met			
725	730	735	
Leu Lys Phe Leu Met Phe Asp Met Gly Leu Arg Lys Gln Tyr Arg Pro			
740	745	750	
Asp Met Ile Ile Leu Gln Ile Gln Met Tyr Gln Leu Ser Arg Leu Leu			
755	760	765	
His Asp Tyr His Arg Asp Leu Tyr Asn His Leu Glu Glu His Glu Ile			
770	775	780	
Gly Pro Ser Leu Tyr Ala Ala Pro Trp Phe Leu Thr Met Phe Ala Ser			
785	790	795	800
Gln Phe Pro Leu Gly Phe Val Ala Arg Val Phe Asp Met Ile Phe Leu			
805	810	815	
Gln Gly Thr Glu Val Ile Phe Lys Val Ala Leu Ser Leu Leu Gly Ser			

820	825	830
His Lys Pro Leu Ile Leu Gln His	Glu Asn Leu Glu Thr Ile Val Asp	
835	840	845
Phe Ile Lys Ser Thr Leu Pro Asn Leu Gly Leu Val Gln Met Glu Lys		
850	855	860
Thr Ile Asn Gln Val Phe Glu Met Asp Ile Ala Lys Gln Leu Gln Ala		
865	870	880
Tyr Glu Val Glu Tyr His Val Leu Gln Glu Glu Leu Ile Asp Ser Ser		
885	890	895
Pro Leu Ser Asp Asn Gln Arg Met Asp Lys Leu Glu Lys Thr Asn Ser		
900	905	910
Ser Leu Arg Lys Gln Asn Leu Asp Leu Leu Glu Gln Leu Gln Val Ala		
915	920	925
Asn Gly Arg Ile Gln Ser Leu Glu Ala Thr Ile Glu Lys Leu Leu Ser		
930	935	940
Ser Glu Ser Lys Leu Lys Gln Ala Met Leu Thr Leu Glu Leu Glu Arg		
945	950	955
Ser Pro Ala Ala Asp Gly Gly Ala Ala Ala Ala Glu Arg Arg Ala		
965	970	975
Gln Arg Pro Gly Ala		
980		

<210> 5919
<211> 1320
<212> DNA
<213> Homo sapiens

<400> 5919
ggctgctgca tcttctccgc gctatggctg cgttcggccg tcagggaaatt aaagagggtg
60
cttactgtt gccctgaaat ttccaccatg cgccagcagg acattaacga cactgtcagg
120
cttctcaagg agaagtgcct ttccacggta cagcaagtca ccaagattt gcacagttgc
180
ccctctgttc ttccgagagga cctgggtcaa ctggaaataca agtttcagca gcctcgctt
240
acagcgtgac tgcaaagaaaa aagacttttg ttttgcaaaa gaaaagcgc tcggtgactc
300
cgccacatc gcccacatc agtcagatgg cagtgccagt cctttgccag tggaaggagt
360
tcctgctaag gggaggtgca ggaggactaa ttttatttttgcactgccc agtcctgcgc
420
atcccagcta cgctaaaggcgc cctggccagg caegtaacaa aacatagacc tgtttgaag
480
tggcttgtta cccaaagggttgcactcat ctgcggccacc aggaagatga actgtgaggg
540
ctcctataag gggcaggaag agcaaagctg tccttaggcca accagagatt catcttcat
600
gcagtgacat gttgataaaaa aatgtatggtc agtatgaaac tggtaacagg ttgttagatgg
660
ctttctatgg tatatccccag tctcttgcaaa acgattgtga agaatgccag tggttttaa
720
gattcggcag ttgtgtggg gaggtgggg caggatgggg ttggttgcc aaaagagttt
780

gggaaatgct ggcttaaaca aaggcgagag gaagttcctt tcacgtcagg atttatgaat
 840
 gcctatgagc ccagtgtcag tgacgacttt cttagccgg tcttcaacac tttctaaata
 900
 ttaagcgatc aaggcccctg cccccacttt agttccaaca gaatgccgtt cacaagatct
 960
 gggaggcact ctctcagccc ttcctggag cccccggaat ttctcagcag cccaggccct
 1020
 cccgcgtcccc gtggccctc ctcccagggtg ccaggtggtc ttccagcctc tccaaggccc
 1080
 caccccccctg cctcttcctc ccactgcagc tgatctaggg gtttcttggc cacattccc
 1140
 ttgagagaga gtgggatttg ccctatccac agagagcctc atttccacct gaaggtgtat
 1200
 ttgtcagtgg ctagaccagg ttcatgtctg tttcccttg gggacttctg aaccttcctg
 1260
 cccggggagtc tgtaaacagc agcacaggac cgccgttccct ttagcagtgc tgagtaagca
 1320

<210> 5920

<211> 93

<212> PRT

<213> Homo sapiens

<400> 5920
 Met Arg Leu Ser Val Asp Arg Ala Asn Pro Thr Leu Ser Gln Gly Lys
 1 5 10 15
 Cys Gly Gln Glu Thr Pro Arg Ser Ala Ala Val Gly Gly Arg Gly Arg
 20 25 30
 Gly Val Gly Pro Trp Arg Gly Trp Lys Thr Thr Trp His Leu Gly Gly
 35 40 45
 Gly Ala Thr Gly Ser Gly Arg Ala Trp Ala Ala Glu Lys Phe Arg Gly
 50 55 60
 Leu Gln Glu Arg Ala Glu Arg Val Pro Pro Arg Ser Cys Glu Arg His
 65 70 75 80
 Ser Val Gly Thr Lys Ser Gly Ala Gly Ala Leu Ile Ala
 85 90

<210> 5921

<211> 4130

<212> DNA

<213> Homo sapiens

<400> 5921
 nncacttac ttcaagccct caagggacac aaagacactg tgtactgtgt ggcatatgcg
 60
 aaggatggca agcgcttgc ttctggatca gctgacaaaa gcgttattat ctggacatca
 120
 aaactgaaag gcattctgaa gtacacgcac aatgtatcta tacaatgtgt ctcctacaat
 180
 cctattactc atcaactggc atcttggtcc tccagtactt ttgggttgtg gtctcctgaa
 240
 cagaagtctg tctccaaaca caaatcaagc agcaagatca tctgctgcag ctggacaaat
 300

gatggtcagt acctggcgct ggggatgttc aatgggatca tcagcatacg gaacaaaaat
360
ggcgaggaga aagtaaagat cgagccggccg gggggctccc tctcgccaat atggtccatc
420
tgcttggacc cttcaagccg atggagagt ttcttggatga acagagagaa tgaggatgcc
480
gaggatgtca ttgtcaacag atatattcag gaaatccctt ccactctgaa gtcagcagtg
540
540 tacagtagtc agggtagtga ggcagaggag gaagaaccag aggaagagga cgacagtccc
600
600 agggacgaca acttagagga acgtaatgac atcctggctg tggctgactg gggacagaaa
660
660 gtttccttctt accagctgag tggaaaacag attggaaagg atcgggcaact gaactttgac
720
720 ccctgctgca tcagctactt tactaaaggc gagtacattt tgctgggggg ttcagacaag
780
780 caagtttctc tttcaccaa ggatggagtg cgcttggga ctgttgggg gcagaactcc
840
840 tgggtgtgga cgtgtcaagc gaaaccggat tccaactatg tgggtgtcg ctgccaggac
900
900 ggcaccattt cttctacca gcttatttc agcacagtcc atgggcttta caaggaccgc
960
960 tatgcctaca gggatagcat gactgacgtc attgtgcagc acctgatcac tgagcagaaa
1020
1020 gttcggatta aatgcaaaga gcttgtcaag aagattgcca tctacagaaa tcgattggct
1080
1080 atccaaactgc cagagaaaat cctcatctat gagttgtatt cagaggactt atcagacatg
1140
1140 cattaccggg taaaggagaa gattatcaag aagtttgagt gcaacccctt ggtgggtgt
1200
1200 gccaatcaca tcatcctgtg ccaggagaaa cgctgcagt gctgtccctt cagcggagtg
1260
1260 aaggagcggg agtggcagat ggagtctctc attcgatcaca tcaagggtat cggtggccct
1320
1320 cctggaaagag aaggccttctt agtggggctg aagaatggac agatcctgaa gatcttcgt
1380
1380 gacaatctctt ttgttatcgt cctgtgaag caggccacag ctgtgcgcgtg cttggacatg
1440
1440 agtgcctccc gtaagaagct ggccgtggta gatgaaaatg acacttgctt ggtgtatgac
1500
1500 atcgacacca aggagctgtt tttcaggaa ccaaacgcca acagtgttagc ttggAACACC
1560
1560 cagtgtgagg acatgctctg cttctggga ggaggctacc tcaacatcaa agccagcacc
1620
1620 ttccctgtgc accggcagaa gctgcagggc ttgtggctg gctacaatgg ctccaagatc
1680
1680 ttctgcctcc atgtcttctc catttctgac gtggaggtgc cgctgcgcgc tccccatgtac
1740
1740 cagtagctgg ataggaaact gttcaaggaa gcctaccaga ttgtttgtt ggggtgtcaca
1800
1800 gacactgatt ggcgtgaact ggccatggaa ggcgttagaag gtttagattt tgaaacagca
1860
1860 aagaaggcccttcatcagagt acaagaccccgatatttag agctcatcag cagcatttag
1920

gagaggaaga agcggggaga gaccaacaat gacctgttcc tggcagatgt gtttctac
1980
caggggaaatg tccatgaggc cgccaaactg tacaagagga gtgggcacga gaacctcg
2040
cttggaaatgt acaccgaccc ctgcattgtt gaggatgcc aaggattccct tggatctgg
2100
gaccggaaatg aaacaaagat gctaattacc aacaggctg actggccag aaatatcaag
2160
gagccaaatg ccggcggtt gatgtacatc tcagcaggag agcacgtcaa ggccatcg
2220
atctgtggtg accatggctg ggttgacatg ttgatcgaca tcgcccgc aaatggacaag
2280
gctgagcgcg agccccctgt gctgtgcgtt accttacccca agaagctgg cagccctgg
2340
tatgtctgtg agacccatctt gaagatgggt gacccatgtt ccctgggtgca gctgcacgt
2400
gagacccatc gctgggatgtt ggcctttgtt ttgggtgaga agcatccgtt gtttaaggat
2460
gacatctaca tgccgtatgc tcagtggcta gcagagaacg atcgctttgtt ggaaggcc
2520
aaaggcgttcc acaaggctgg ggcacagaga gaagcggtcc aggtgctgg gcaagtcaca
2580
aacaatgccc tggcggagag caggttaat gatgtgcctt attattactg gatgtgtcc
2640
atgcagtgtcc tcgatatacg tcaaggcagat cctgcccaga aggacacaat gcttggcaag
2700
ttcttaccact tccagcggtt ggcagagctg taccatgggtt accatgccat ccattggcc
2760
acggaaatgtt ctttcgttcc gaaactcttt tcaacatctc caggttcc
2820
ctgcacagcc tgcccaagga cacccctcg ggcattctta aagtggaaaat actcttacc
2880
ttggccaagc agagcaagcc cttcggtgccc tacaggctgg cccggcacgc ctatgacaag
2940
ctgcgtggcc tgcgtatccc tgccagattc caaaaatccca ttgagctggg taccctgacc
3000
atccggccca agcccttcca cgacagttag gagttggtgc cttgtgcta ccgtgtcc
3060
accaacaacc cgctgtctaa caacctggc aacgtctgca tcaactgccc ccagcccttc
3120
atcttctccg cttttcttca cgacgtgcta cacctgggtt agttcttaccc ggaggaagg
3180
atcaactgtatg aagaagccat ctccctcata gacccatgggg tgctgagacc caagcgggat
3240
gacagacagc tagagattgc aaacaacagc tcccatgttcc tgccgttagt ggagaccaag
3300
gactccatcg gagatgagga cccgttcaca gctaaatgtt gctttgagca aggtggctca
3360
gagttcggtgc cttcggtgtt gagccggctg gtgtgtcc ccatgagccg ccggatgt
3420
ctcatcaagc gatggccccc aaccctgagg tggcaataact tccgtctact gctgcctgac
3480
gcctccattt ccatgtgccc cttctgttcc caggttaggtt gccaccctgg tagctcacat
3540

gtgcttctct tggccacttt tcccttgccc aaatgtccct ctggggaggcg gggccctgg
 3600
 gagggagggg cacatccatg gtcacaagtt gggacagagg cttgtctgtc ctctccccctg
 3660
 cttgcattcc atgtgcactt aaagtggact tcactggccc ctgcgtgtc cacatccctcc
 3720
 ccaaatccctg gggggccacgc aagcgtgatg tgcccttgac cttaacttagaa aaaacaagaa
 3780
 accccacacgc cccctccat ctccccctcc agccctcaaa caaagggtgt gcagggttgt
 3840
 gtccagccct gaccactgcc aagccccctc cccttgagag gcagtgcgtc ctggcccccag
 3900
 gcgttagggct gatgagactt agggcttcag cctggtctta cagctgtctt cccttagatg
 3960
 ttccattctg aggactatga gttgctggtg cttcagcatg gctgctgccc ctactgccgc
 4020
 aggtgcaagg atgaccctgg cccatgacca gcatcctggg gacggcctgc accctctgcc
 4080
 cgccttgggg tctgctgggc tgtgaaggag aataaaagagt taaaactgtca
 4130

<210> 5922
 <211> 1252
 <212> PRT
 <213> Homo sapiens

<400> 5922
 Xaa Thr Leu Leu Gln Pro Leu Lys Gly His Lys Asp Thr Val Tyr Cys
 1 5 10 15
 Val Ala Tyr Ala Lys Asp Gly Lys Arg Phe Ala Ser Gly Ser Ala Asp
 20 25 30
 Lys Ser Val Ile Ile Trp Thr Ser Lys Leu Glu Gly Ile Leu Lys Tyr
 35 40 45
 Thr His Asn Asp Ala Ile Gln Cys Val Ser Tyr Asn Pro Ile Thr His
 50 55 60
 Gln Leu Ala Ser Cys Ser Ser Ser Asp Phe Gly Leu Trp Ser Pro Glu
 65 70 75 80
 Gln Lys Ser Val Ser Lys His Lys Ser Ser Ser Lys Ile Ile Cys Cys
 85 90 95
 Ser Trp Thr Asn Asp Gly Gln Tyr Leu Ala Leu Gly Met Phe Asn Gly
 100 105 110
 Ile Ile Ser Ile Arg Asn Lys Asn Gly Glu Glu Lys Val Lys Ile Glu
 115 120 125
 Arg Pro Gly Gly Ser Leu Ser Pro Ile Trp Ser Ile Cys Trp Asn Pro
 130 135 140
 Ser Ser Arg Trp Glu Ser Phe Trp Met Asn Arg Glu Asn Glu Asp Ala
 145 150 155 160
 Glu Asp Val Ile Val Asn Arg Tyr Ile Gln Glu Ile Pro Ser Thr Leu
 165 170 175
 Lys Ser Ala Val Tyr Ser Ser Gln Gly Ser Glu Ala Glu Glu Glu Glu
 180 185 190
 Pro Glu Glu Asp Asp Ser Pro Arg Asp Asp Asn Leu Glu Glu Arg
 195 200 205
 Asn Asp Ile Leu Ala Val Ala Asp Trp Gly Gln Lys Val Ser Phe Tyr

210	215	220													
Gln	Leu	Ser	Gly	Lys	Gln	Ile	Gly	Lys	Asp	Arg	Ala	Leu	Asn	Phe	Asp
225			230			235									240
Pro	Cys	Cys	Ile	Ser	Tyr	Phe	Thr	Lys	Gly	Glu	Tyr	Ile	Leu	Leu	Gly
															245
Gly	Ser	Asp	Lys	Gln	Val	Ser	Leu	Phe	Thr	Lys	Asp	Gly	Val	Arg	Leu
															250
Gly	Thr	Val	Gly	Glu	Gln	Asn	Ser	Trp	Val	Trp	Thr	Cys	Gln	Ala	Lys
															255
Pro	Asp	Ser	Asn	Tyr	Val	Val	Val	Gly	Cys	Gln	Asp	Gly	Thr	Ile	Ser
															260
Phe	Tyr	Gln	Leu	Ile	Phe	Ser	Thr	Val	His	Gly	Leu	Tyr	Lys	Asp	Arg
															265
Tyr	Ala	Tyr	Arg	Asp	Ser	Met	Thr	Asp	Val	Ile	Val	Gln	His	Leu	Ile
															270
Thr	Glu	Gln	Lys	Val	Arg	Ile	Lys	Cys	Lys	Glu	Leu	Val	Lys	Lys	Ile
															275
Ala	Ile	Tyr	Arg	Asn	Arg	Leu	Ala	Ile	Gln	Leu	Pro	Glu	Lys	Ile	Leu
															280
Ile	Tyr	Glu	Leu	Tyr	Ser	Glu	Asp	Leu	Ser	Asp	Met	His	Tyr	Arg	Val
															285
Lys	Glu	Lys	Ile	Ile	Lys	Lys	Phe	Glu	Cys	Asn	Leu	Leu	Val	Val	Cys
															290
Ala	Asn	His	Ile	Ile	Leu	Cys	Gln	Glu	Lys	Arg	Leu	Gln	Cys	Leu	Ser
															295
Phe	Ser	Gly	Val	Lys	Glu	Arg	Glu	Trp	Gln	Met	Glu	Ser	Leu	Ile	Arg
															300
Tyr	Ile	Lys	Val	Ile	Gly	Gly	Pro	Pro	Gly	Arg	Glu	Gly	Leu	Leu	Val
															305
Gly	Leu	Lys	Asn	Gly	Gln	Ile	Leu	Lys	Ile	Phe	Val	Asp	Asn	Leu	Phe
															310
Ala	Ile	Val	Leu	Leu	Lys	Gln	Ala	Thr	Ala	Val	Arg	Cys	Leu	Asp	Met
															315
Ser	Ala	Ser	Arg	Lys	Lys	Leu	Ala	Val	Val	Asp	Glu	Asn	Asp	Thr	Cys
															320
Leu	Val	Tyr	Asp	Ile	Asp	Thr	Lys	Glu	Leu	Leu	Phe	Gln	Glu	Pro	Asn
															325
Ala	Asn	Ser	Val	Ala	Trp	Asn	Thr	Gln	Cys	Glu	Asp	Met	Leu	Cys	Phe
															330
Ser	Gly	Gly	Gly	Tyr	Leu	Asn	Ile	Lys	Ala	Ser	Thr	Phe	Pro	Val	His
															335
Arg	Gln	Lys	Leu	Gln	Gly	Phe	Val	Val	Gly	Tyr	Asn	Gly	Ser	Lys	Ile
															340
Phe	Cys	Leu	His	Val	Phe	Ser	Ile	Ser	Ala	Val	Glu	Val	Pro	Gln	Ser
															345
Ala	Pro	Met	Tyr	Gln	Tyr	Leu	Asp	Arg	Lys	Leu	Phe	Lys	Glu	Ala	Tyr
															350
Gln	Ile	Ala	Cys	Leu	Gly	Val	Thr	Asp	Thr	Asp	Trp	Arg	Glu	Leu	Ala
															355
Met	Glu	Ala	Leu	Glu	Gly	Leu	Asp	Phe	Glu	Thr	Ala	Lys	Lys	Ala	Phe
															360
Ile	Arg	Val	Gln	Asp	Leu	Arg	Tyr	Leu	Glu	Leu	Ile	Ser	Ser	Ile	Glu
															365
Glu	Arg	Lys	Lys	Arg	Gly	Glu	Thr	Asn	Asp	Leu	Phe	Leu	Ala	Asp	

645	650	655
Val Phe Ser Tyr Gln Gly Lys Phe His Glu Ala Ala Lys Leu Tyr Lys		
660	665	670
Arg Ser Gly His Glu Asn Leu Ala Leu Glu Met Tyr Thr Asp Leu Cys		
675	680	685
Met Phe Glu Tyr Ala Lys Asp Phe Leu Gly Ser Gly Asp Pro Lys Glu		
690	695	700
Thr Lys Met Leu Ile Thr Lys Gln Ala Asp Trp Ala Arg Asn Ile Lys		
705	710	715
Glu Pro Lys Ala Ala Val Glu Met Tyr Ile Ser Ala Gly Glu His Val		
725	730	735
Lys Ala Ile Glu Ile Cys Gly Asp His Gly Trp Val Asp Met Leu Ile		
740	745	750
Asp Ile Ala Arg Lys Leu Asp Lys Ala Glu Arg Glu Pro Leu Leu Leu		
755	760	765
Cys Ala Thr Tyr Leu Lys Lys Leu Asp Ser Pro Gly Tyr Ala Ala Glu		
770	775	780
Thr Tyr Leu Lys Met Gly Asp Leu Lys Ser Leu Val Gln Leu His Val		
785	790	795
Glu Thr Gln Arg Trp Asp Glu Ala Phe Ala Leu Gly Glu Lys His Pro		
805	810	815
Glu Phe Lys Asp Asp Ile Tyr Met Pro Tyr Ala Gln Trp Leu Ala Glu		
820	825	830
Asn Asp Arg Phe Glu Glu Ala Gln Lys Ala Phe His Lys Ala Gly Arg		
835	840	845
Gln Arg Glu Ala Val Gln Val Leu Glu Gln Leu Thr Asn Asn Ala Val		
850	855	860
Ala Glu Ser Arg Phe Asn Asp Ala Ala Tyr Tyr Trp Met Leu Ser		
865	870	875
Met Gln Cys Leu Asp Ile Ala Gln Ala Asp Pro Ala Gln Lys Asp Thr		
885	890	895
Met Leu Gly Lys Phe Tyr His Phe Gln Arg Leu Ala Glu Leu Tyr His		
900	905	910
Gly Tyr His Ala Ile His Arg His Thr Glu Asp Pro Phe Ser Val His		
915	920	925
Arg Pro Glu Thr Leu Phe Asn Ile Ser Arg Phe Leu Leu His Ser Leu		
930	935	940
Pro Lys Asp Thr Pro Ser Gly Ile Ser Lys Val Lys Ile Leu Phe Thr		
945	950	955
Leu Ala Lys Gln Ser Lys Ala Leu Gly Ala Tyr Arg Leu Ala Arg His		
965	970	975
Ala Tyr Asp Lys Leu Arg Gly Leu Tyr Ile Pro Ala Arg Phe Gln Lys		
980	985	990
Ser Ile Glu Leu Gly Thr Leu Thr Ile Arg Ala Lys Pro Phe His Asp		
995	1000	1005
Ser Glu Glu Leu Val Pro Leu Cys Tyr Arg Cys Ser Thr Asn Asn Pro		
1010	1015	1020
Leu Leu Asn Asn Leu Gly Asn Val Cys Ile Asn Cys Arg Gln Pro Phe		
1025	1030	1035
Ile Phe Ser Ala Ser Ser Tyr Asp Val Leu His Leu Val Glu Phe Tyr		
1045	1050	1055
Leu Glu Glu Gly Ile Thr Asp Glu Glu Ala Ile Ser Leu Ile Asp Leu		
1060	1065	1070
Glu Val Leu Arg Pro Lys Arg Asp Asp Arg Gln Leu Glu Ile Ala Asn		

1075	1080	1085
Asn Ser Ser Gln Ile Leu Arg	Leu Val Glu Thr Lys Asp Ser Ile Gly	
1090	1095	1100
Asp Glu Asp Pro Phe Thr Ala Lys Leu Ser Phe Glu Gln Gly Ser		
1105	1110	1115
Glu Phe Val Pro Val Val Val Ser Arg	Leu Val Leu Arg Ser Met Ser	1120
1125	1130	1135
Arg Arg Asp Val Leu Ile Lys Arg Trp Pro Pro Pro Leu Arg Trp Gln		
1140	1145	1150
Tyr Phe Arg Ser Leu Leu Pro Asp Ala Ser Ile Thr Met Cys Pro Ser		
1155	1160	1165
Cys Phe Gln Val Gly Gly His Pro Gly Ser Ser His Val Leu Leu Leu		
1170	1175	1180
Ala Thr Phe Pro Leu Pro Lys Cys Pro Ser Gly Arg Arg Gly Pro Trp		
1185	1190	1195
Glu Gly Gly Ala His Pro Trp Leu Gln Val Gly Thr Glu Ala Cys Leu		1200
1205	1210	1215
Ser Ser Pro Leu Leu Ala Phe His Val His Leu Lys Trp Thr Ser Leu		
1220	1225	1230
Ala Pro Ala Leu Ser Thr Ser Ser Pro Asn Pro Gly Gly Pro Ala Ser		
1235	1240	1245
Val Met Cys Pro		
1250		

<210> 5923

<211> 1989

<212> DNA

<213> Homo sapiens

<400> 5923

```

gggccccccgc aaggcccccg gccgtgcgcg aggcagcatg atgaggcgca ccctggaaaa
60
ccggAACGCT cAAACGAAAC aACTGCAAAC agCTGTCTCA aATGTGGAGA AGCATTGG
120
agaACTGTGC cAAATCTCG CTGCCTATGT GCGAAAact GCCAGGCTGA gagacAAAGC
180
agacCTCTG GTGAATGAAA TTAACGCGTA TGCTGCTACA gagACCCCGC ATTTAAAGCT
240
gggcCTGATG aACTTGCAg ATGAGTTGC CAAACTTCAG GATTATCGAC aAGCAGAGGT
300
TgAAAGACTT GAAAGCCCaaa AAGGTTGAAA GACTTGAAGC CAAAGTAGTT GAAACCTTGA
360
aaACTTATGG GACCATTGTG AAAATGAAAC GGGATGACCT CAAAGCAACA CTCACAGCAA
420
GGAATCGAGA AGCTAAGCAA TTAACTCAGT TAGAAAGAAC ACGTCAcGCA AACCCATCTG
480
ATCGACATGT TATTGTATCC TTTGAATTG GGTCTTAAAA AAAATGTTA AGGCAGAAAC
540
GGAATTACAG AGAGCTGCAA TGGATGCTAG CGGAACAAGT CGTCATCTGG AGGAAACTAT
600
TAACAACCTT GAAAGGCAGA AAATGAAGGA TATAAAGACT ATATTTCTG AATTTATCAC
660
aatcGAAATG TTATTCACG GCAAAGCTT AGAGGTCTAC ACTGCTGCCT ACCAGAAATAT
720

```

acaaaaacatt gatgaagatg aagatttaga gggtttccga aattctctgt atgcaccaga
 780
 ttattcatct cgtttagata ttgttaagac aaattcaaag tcaccccttc agagatcact
 840
 gtcagctaag tggtatctg gaacaggaca ggtatccact tgtcgactaa gaaaggatca
 900
 acaaggcagaa gatgatgagg atgacgagtt agatgttaca gaagaagaaa attttcttaa
 960
 gttaaactaca catttccatt ttcatcataa atgacttgaa atccacaatg actaaattgt
 1020
 agaactttat actcaacttg ctatgttaag cctcaaagtg aagtccaaact gggaaacagaa
 1080
 aaataattaa aggaaactta tgctgaccaa aaatgaaggc tttaaaaaat attgcataacc
 1140
 agtcatttca acatccttacc tagtgttaca tgatTTTGT gtaagtgcct ttttttttaa
 1200
 agatggtgta ttccaaagta ttccatatta atgtactata tctacttgaa gttccaaatag
 1260
 tacattatga cagaaaccaa aagatctaac aattctgctt agcttttgg ttaagactcc
 1320
 atgccttcattt taccagaaaa gggcttacg tagtattat gattcatggg attctattcc
 1380
 atgaaggcctt aagaaaaaaa actttttta actttccctg aaactttatc atttgataag
 1440
 taaatttact ttcaagaag agtataacca aagagtaaag ataatgtgac actaagttat
 1500
 caatgtttta tgaatacacaca taaggcataa atttcagctg taaaaagct acattcaatc
 1560
 tgactctggt tttaaaacaa aactgctgtc ataattatac atgatactgc aacttttgg
 1620
 aggcttattt ggtggatgt tgcctcatca tagaacacca tagatcatta aaaattctat
 1680
 aaaaatttttta ccaagctacc atatagttaa taaaaggta tacagtcact tttatttctg
 1740
 aaaaatataaa acattgagcc ttccagtgtt tctgtatgctt ctctttgg aaggaataact
 1800
 ttatattcat ggatcccagg caggcatata aaagttacgg aatttataaa atcatttgg
 1860
 ataatttagaa aatgcaatta ttccataacag aaaaataaaag actttctaga aagcttctga
 1920
 ctttgcataat catggctctg ttcttaacaa agcactccctt cctgagaata gtcctaagt
 1980
 acaaaggttg
 1989

<210> 5924
 <211> 146
 <212> PRT
 <213> Homo sapiens

<400> 5924
 Met Phe Lys Ala Glu Thr Glu Leu Gln Arg Ala Ala Met Asp Ala Ser
 1 5 10 15
 Arg Thr Ser Arg His Leu Glu Glu Thr Ile Asn Asn Phe Glu Arg Gln

20	25	30
Lys Met Lys Asp Ile Lys Thr Ile Phe Ser Glu Phe Ile Thr Ile Glu		
35	40	45
Met Leu Phe His Gly Lys Ala Leu Glu Val Tyr Thr Ala Ala Tyr Gln		
50	55	60
Asn Ile Gln Asn Ile Asp Glu Asp Glu Asp Leu Glu Val Phe Arg Asn		
65	70	75
Ser Leu Tyr Ala Pro Asp Tyr Ser Ser Arg Leu Asp Ile Val Arg Ala		
85	90	95
Asn Ser Lys Ser Pro Leu Gln Arg Ser Leu Ser Ala Lys Cys Val Ser		
100	105	110
Gly Thr Gly Gln Val Ser Thr Cys Arg Leu Arg Lys Asp Gln Gln Ala		
115	120	125
Glu Asp Asp Glu Asp Asp Glu Leu Asp Val Thr Glu Glu Glu Asn Phe		
130	135	140
Leu Lys		
145		

<210> 5925

<211> 4538

<212> DNA

<213> Homo sapiens

<400> 5925	
gttagccagc tgtgtgaggg ccgttgcctt atctgagctc tgagttatcc agtttttaat	
60	
ggaaacaaga ccccccgcaga cacgcaggaa aacacaaaatc cctatcagat cagcagccat	
120	
ggacgtggag acgtggcctt tgtccctctg tcccagcgcc cggcctgtgt agttggactt	
180	
ggcagtgtgc agcgctagaa aggaattgtc tgacccccagc attgcttcct ggctcccttc	
240	
tccctttttc aggagagcat cctggccgacc acagccctcc ccactgtgag ctttcctgac	
300	
agectcatcg cgccccatcc cgccccatcc ctggctcaca tggatgagca gggctgtgaa	
360	
cacacccccc ggactgagga cccgttatac cagcccacgg acttcggtcc ctcagagccg	
420	
ccactgagtg tcccgagcc cttcccttgc gtcttcacca tgccctgtct gtctccca	
480	
cccgccccac cgccccatcc ccccggttta ccattagttc ctcctctgc cactgccctg	
540	
aaccccccgg ctccacccac cttccatcag ccacagaat ttgtggagt caacaaagcg	
600	
ccgtctgtca tcacccacac ggcctctgcc accctcaccc acgatgcccc cgccaccacc	
660	
tttagccaga gtcagggctc tgtgatcacc acccatcacc ctggccctgc agcggccct	
720	
tgtgggctgg cactgtctcc tgtcacccgg cctccccagc cacggtaac ttttgtgcac	
780	
cccaaacctg tatccttgac tgggggcagg cctaagcagc cccacaaaat agtgcctgtct	
840	
cccaaaccag agcccgtgtc cttgggtttg aagaatgccc gtatcgcccc agctgccttt	
900	

tcaggccaac cacaagcggt gatcatgacg tcagggcctc tgaagagaga agggatgttg
960
gcctccaccc tgcccacgtc caacgtggtc attgegcctg ctgccatcg cagggctct
1020
ggggccccgg agttccacag cagcatcctg gtgacagatc tggccatgg caegagcage
1080
ccgcctgccc ccgtctcccg gctttccca agcacagcgc aagacccctt gggaaaggc
1140
gagcagggtcc cgctgcattgg gggcagcccc caggtcaactg tcacaggcc cagtcggac
1200
tgcccaaact cagggcaggc ctctccgtgt gcatcgagc agagccctag tcctaatct
1260
ccccagaaca actgctcagg gaaatccgac cccaaaaatg tggctgact aaagaaccgg
1320
cagatgaagc acatctcagc tgagcagaaa aggcccttca acatcaagat gtgttcgac
1380
atgctcaaca gcctcatctc caacaattcc aagctgacca gtcacgcat cacactgcag
1440
aagactgtgg agtacatcac caagctgcag caggagagag gccagatgca ggaggaggcc
1500
ccggccgtgc gggaggagat cgaggagctc aatgccacca tcattccctg ccagcagctg
1560
ctccctgcca cgggagtccc cggttacccgg cgccagtttg atcacatgaa agacatgttt
1620
gacgaatacg tgaaaacccg gaccttgcag aatttggaaatg tctggatttt cagcatcatc
1680
atcaagccgc tgttttagtc gttcaagggc atgggtgttca ccagcagcct ggaggagctg
1740
caccggacgg cgctctccctg gctggaccag cactgctccc tgcccatcct caggccatg
1800
gtattgagca cgctgcggca gctgacccacc tcaccccttca tcctcacaga cccggcacag
1860
ctgccagacg aggcgtccaa ggctgtcacc aggattggca agagattggg agagtccctag
1920
ctgcttagct ggcattgtggc cgcatgagat gccaggagac cttccctgc ccatggagag
1980
taggctgcgc cccccagccc ttcttgacgc tcagccctgg ggcctcttc caactctgcc
2040
ggcccccgtt ggcattggga ggccatgctc aggtctgaag caggtttggg gctgtgtgac
2100
agcaatagcc cgcccttggg aacccttgc tgtgaactct ctcactcagt gacccatgac
2160
accaacctcc tctggccctcg gggcagcccc cacaaaaagg aagtgtggc cgtgtggc
2220
ctgcctctgt ggtggccctgc cggccctggc gccgggtgac ggaatcgatg ggatgggggt
2280
gacaggccct gctccctgtcc tgaggccccag ctttgcctt cctgccacgt cctgtccaca
2340
tgcatgcctc tgcctgtatgc cctgctccac tctctggctc gcccgtgggg cagttggaaag
2400
gcgtctttcc ttctcccttc aactctgaca gcacccagcc cttgtggatg gacttgggct
2460
tctattcagg cttatgcattg gcaggctgcc agggggaaatg gccttcttca gaggtccctcc
2520

aggacacatg tgcagaaaa cggatgtt ggaacacaca ggaccagaat ggaagcgtgt
2580
gatgcacggt ggctgctctg gctgagaggc cctgctggc atgtttcatc tgccccctt
2640
tagctccacc tgacattgca ggatccatgg ggactcagcc cagggccttc tcggatgtca
2700
cctcacccgt gtggcccttc tgccgttctt ctccacttgg ctccagctgc agctgttgc
2760
agatcaagea tgcctgtgg gagcttagaa ccctgaagtt ctatgtctg aaagatcaga
2820
ctccacgtcc tgctgtcagc cttgtcatct tgtctgtatgt ctttcagctg ggagcccaa
2880
accaggacag ttctcgacc aagatgccc ccacactcaa aagtctgtcc cgtcttgtt
2940
ttggagaagg aaacaatgtt ggcaggcagc actctgtggt ggtcagccct cagagctgtt
3000
tctaggcata tctcagatca gacagcaaag aatctaccca gatctggctt gggtgaggt
3060
gtggctgggc tggggccat tctgagcctg cagttagatgt ttggcccagc ctcaagtcc
3120
gtctttctt ggttacatct gcagggagct gcaggggcaa gcactcttc cagcaactcag
3180
gaagcccgcc cgagggtacc tcctcggtt aagaatgcac tttaaagctc tgctgaggag
3240
ttcggagccc aggcttcag ggcacccctg ccctccctgc ctctcctcac ccctcccttc
3300
ttcctgcagg gcctggaaag ggcttgagg gagcctggaa gccatgtgaa gaggggcacg
3360
cctgggtgtt cccacatgtt agatccagtt ggagggtctc cctggctct gcaggcctgc
3420
ggggatctct cccacttca ggcctccggc cagctgcctg ccctttgtc tgcgtttcag
3480
ccctgcacaa aagcagcttgc tgacaccac tcagccaccc agagtaatgtt tttacaggct
3540
ttccagatca ctttcctgtt gggtaacgt aatgaggcgg ggctggctt tgaaattcc
3600
cctggaaaat ggttaacagac tccatcttgc acccgggat gagcatgaag gcattgtccc
3660
aaaggcagag gccaccgtgg taggaattcc accaaggcca gaagggaaaa aggaagaacc
3720
caccgtgtct ggctgtgcgg gcccggggaa gggtcgtgag tgcagccct ctctacttcc
3780
gtgcctttgtt aaaacgtgtt gataaccgca gtgggtggct gagccaagaa ctctcctaaa
3840
tcagtggtttt tctccccacc ctttgcgttgg ggttcatttt taaaaaaatc tgcgtttat
3900
aaaattggcc tcttgcgttgc tcagccatcc tctccctctg ctgacttaat gtcgtgttcc
3960
tggttttttca gatatttaag gttttttttt tttttttttt tttttttttt tttttttttt
4020
ccagcgactg tccactgtcc aggagatgca tttttttttt tttttttttt tttttttttt
4080
cattctttttt gttttttttt tttttttttt tttttttttt tttttttttt tttttttttt
4140

acatgattgt ttcttgcctc agaggttttc ttgtttcga atcttgccctg atgaatccag
 4200
 ccagaccaag gggcctagat ttgacctctg tcctggcgc ctggggcagg tgcaggaaca
 4260
 tctgaggcca ctctgctggc cacccctcact gggtgctgac cacaggatgg gctttgttta
 4320
 cactcatttt caccctgatt cttgccccca ctttcataaaa agaaacttca aaatgctgac
 4380
 gctttggaga gtaagaaaat caatcttggc tgggcacggg ggctcctgcc tgtgatccta
 4440
 gcaactttggg aggctgaagc tgaaggatca cttgagctca ggagttggag accaaccctg
 4500
 gcaacataaac aagaccctgt ctctacaaaaa aaaaaaaaa
 4538

<210> 5926

<211> 526

<212> PRT

<213> Homo sapiens

<400> 5926
 Met Asp Glu Gln Gly Cys Glu His Thr Ser Arg Thr Glu Asp Pro Phe
 1 5 10 15
 Ile Gln Pro Thr Asp Phe Gly Pro Ser Glu Pro Pro Leu Ser Val Pro
 20 25 30
 Gln Pro Phe Leu Pro Val Phe Thr Met Pro Leu Leu Ser Pro Ser Pro
 35 40 45
 Ala Pro Pro Pro Ile Ser Pro Val Leu Pro Leu Val Pro Pro Pro Ala
 50 55 60
 Thr Ala Leu Asn Pro Pro Ala Pro Pro Thr Phe His Gln Pro Gln Lys
 65 70 75 80
 Phe Ala Gly Val Asn Lys Ala Pro Ser Val Ile Thr His Thr Ala Ser
 85 90 95
 Ala Thr Leu Thr His Asp Ala Pro Ala Thr Thr Phe Ser Gln Ser Gln
 100 105 110
 Gly Leu Val Ile Thr Thr His His Pro Ala Pro Ser Ala Ala Pro Cys
 115 120 125
 Gly Leu Ala Leu Ser Pro Val Thr Arg Pro Pro Gln Pro Arg Leu Thr
 130 135 140
 Phe Val His Pro Lys Pro Val Ser Leu Thr Gly Gly Arg Pro Lys Gln
 145 150 155 160
 Pro His Lys Ile Val Pro Ala Pro Lys Pro Glu Pro Val Ser Leu Val
 165 170 175
 Leu Lys Asn Ala Arg Ile Ala Pro Ala Ala Phe Ser Gly Gln Pro Gln
 180 185 190
 Ala Val Ile Met Thr Ser Gly Pro Leu Lys Arg Glu Gly Met Leu Ala
 195 200 205
 Ser Thr Val Ser Gln Ser Asn Val Val Ile Ala Pro Ala Ala Ile Ala
 210 215 220
 Arg Ala Pro Gly Val Pro Glu Phe His Ser Ser Ile Leu Val Thr Asp
 225 230 235 240
 Leu Gly His Gly Thr Ser Ser Pro Pro Ala Pro Val Ser Arg Leu Phe
 245 250 255
 Pro Ser Thr Ala Gln Asp Pro Leu Gly Lys Gly Glu Gln Val Pro Leu

260	265	270
His Gly Gly Ser Pro Gln Val Thr Val Thr Gly Pro Ser Arg Asp Cys		
275	280	285
Pro Asn Ser Gly Gln Ala Ser Pro Cys Ala Ser Glu Gln Ser Pro Ser		
290	295	300
Pro Gln Ser Pro Gln Asn Asn Cys Ser Gly Lys Ser Asp Pro Lys Asn		
305	310	315
Val Ala Ala Leu Lys Asn Arg Gln Met Lys His Ile Ser Ala Glu Gln		
325	330	335
Lys Arg Arg Phe Asn Ile Lys Met Cys Phe Asp Met Leu Asn Ser Leu		
340	345	350
Ile Ser Asn Asn Ser Lys Leu Thr Ser His Ala Ile Thr Leu Gln Lys		
355	360	365
Thr Val Glu Tyr Ile Thr Lys Leu Gln Gln Glu Arg Gly Gln Met Gln		
370	375	380
Glu Glu Ala Arg Arg Leu Arg Glu Glu Ile Glu Glu Leu Asn Ala Thr		
385	390	395
Ile Ile Ser Cys Gln Gln Leu Leu Pro Ala Thr Gly Val Pro Val Thr		
405	410	415
Arg Arg Gln Phe Asp His Met Lys Asp Met Phe Asp Glu Tyr Val Lys		
420	425	430
Thr Arg Thr Leu Gln Asn Trp Lys Phe Trp Ile Phe Ser Ile Ile Ile		
435	440	445
Lys Pro Leu Phe Glu Ser Phe Lys Gly Met Val Ser Thr Ser Ser Leu		
450	455	460
Glu Glu Leu His Arg Thr Ala Leu Ser Trp Leu Asp Gln His Cys Ser		
465	470	475
Leu Pro Ile Leu Arg Pro Met Val Leu Ser Thr Leu Arg Gln Leu Ser		
485	490	495
Thr Ser Thr Ser Ile Leu Thr Asp Pro Ala Gln Leu Pro Glu Gln Ala		
500	505	510
Ser Lys Ala Val Thr Arg Ile Gly Lys Arg Leu Gly Glu Ser		
515	520	525

<210> 5927
<211> 1786
<212> DNA
<213> Homo sapiens

<400> 5927
ctccacactt tattttgct ggctggattt gtcattttgc tgcagaaca ggcataaac
60
atacctcaga tggtttcct ttaccttgtc attctgagca aaagcatgac tccatcacct
120
gtctggcac ataccgagtc tttgtctgga tgggtcagc acatcctgca cactcagcg
180
caaccctgaa aataacatct accacctgcc aggcaattgg ctgactgcct ccgtatctt
240
caggggcatc gagggacaat gtatttagtc atgcacctct gtaagtgcag ggaaatgtac
300
tgggacacctt ttcgattccc aaggaaataa aaggaaaatg acaaacacat agtcacgctg
360
tggatccctg ttattccca tctctggca ggcctgtaaa gagcatcgac ccaggtctca
420

accccactgc tggtaactga gccacagaaa ctgtaagcaa gtgacactca tccagggaga
 480
 actactcccc taaaccggtt ctttagccagc aagagaggcc cacaggaagg tctctgataa
 540
 cctgaagttt tgaaaagctt agaactgtgt gatcaggcca tatgccctc agttccctgaa
 600
 tgttcactac cctgtggtgt cccttgcca tggaaagagac tccaaccaca cacatcagtt
 660
 aagctgccaa cactgtttcc tccccattct gctctgcgaa caacgcacag tccagccagg
 720
 agctcaacag ggagggtttt cttgtgtgt catggctgag atcaaagtca ttgtacacca
 780
 aggacatagt ggacagaagg gagccaacaa catttatgcc aaatcccatt cccaagatga
 840
 ctatatttta tagtttatta tgaggttaact gcctccagac agataagccc ctgcatgatg
 900
 ctgaaaagtca gagcctgggg gtgaatgcca ccttatctt gtcctcctca gctggctgc
 960
 gtgtctctgc tcagaacgct gtgttagtagt gctccattgt gctgacaatg tcactctggt
 1020
 cctccaggag ctccagaact tgctgcagca cagcctcgct caggccccggg cgatgctca
 1080
 ggccgacaca ggccaagatg tgcaggaagt gacagccctt ctccatgtga tttggtttct
 1140
 ggcagtcctg ctgaatgatc cggtgatct ttctgtgcag gtcttgcag tctctggta
 1200
 catagtatag gttatcaaaa ccatcatctt tctggaaaac aagtcctttt tcctgcagca
 1260
 gttgtatgc attcttaaat atactatgaa ttgccttggaa agtgggtgtcc ttcttaaat
 1320
 tcacttggtc ggagcaggca ctgtgaatca caggctgatt ggcaaggac agcaaagact
 1380
 cgaccatttc cagtcctgc tggtaaaagc tctgcactct tttctccatg aggaattctt
 1440
 tggcttttc actcagcaaa ctcgtgagac tggggaggtc cagggcgct ggattgttta
 1500
 gtgcctcttc tttctctagg gctgagctgt gaaaaggctg gtcataaaact ttctgtaga
 1560
 tagtggcag ctcaagcattc cttgcaattt gaatgttcca cactgggtcg tccactttat
 1620
 agtaagcggt ggcatttgc tctcgcttct ctctgtatgt gcgataactg cctctgactc
 1680
 ggatcgtgtc cccgatctt atctttgttt tctgctcaat ggtctttgt agcttcttaa
 1740
 gttgtgaggt taagctgagc tctcttgctg cacttggagc agccct
 1786

<210> 5928
 <211> 202
 <212> PRT
 <213> Homo sapiens

<400> 5928
 Met Leu Glu Leu Pro Thr Ile Tyr Arg Lys Val Tyr Asp Gln Pro Phe

1	5	10	15
His Ser Ser Ala Leu Glu Lys Glu Glu Ala			
20	25	30	
Leu Asp Leu Pro Ser Leu Thr Ser Leu Leu Ser	Glu Lys Ala Lys Glu		
35	40	45	
Phe Leu Met Glu Asn Arg Val Gln Ser Phe Tyr	Gln Gln Glu Leu Glu		
50	55	60	
Met Val Glu Ser Leu Leu Ser Leu Ala Asn Gln	Pro Val Ile His Ser		
65	70	75	80
Ala Cys Ser Asp Gln Val Asn Phe Lys Lys Asp	Thr Thr Ser Lys Ala		
85	90	95	
Ile His Ser Ile Phe Lys Asn Ala Ile Gln Leu	Leu Gln Glu Lys Gly		
100	105	110	
Leu Val Phe Gln Lys Asp Asp Gly Phe Asp Asn	Leu Tyr Tyr Val Thr		
115	120	125	
Arg Glu Asp Lys Asp Leu His Arg Lys Ile His	Arg Ile Ile Gln Gln		
130	135	140	
Asp Cys Gln Lys Pro Asn His Met Glu Lys Gly	Cys His Phe Leu His		
145	150	155	160
Ile Leu Ala Cys Ala Arg Leu Ser Ile Arg Pro	Gly Leu Ser Glu Ala		
165	170	175	
Val Leu Gln Gln Val Leu Glu Leu Asp Gln Ser	Asp Ile Val		
180	185	190	
Ser Thr Met Glu His Tyr Tyr Thr Ala Phe			
195	200		

<210> 5929

<211> 606

<212> DNA

<213> Homo sapiens

<400> 5929
nngcgcgccc ccgcgtcccc agacaaaggc ttggccggcg gccccggccc gctgcgcct
60
cgcgtccccgc ctccccagct cttctccgct cctccccccc gcgcttggct cggcgcgctc
120
cggccggccc caaaagttcc cgggcggcag cggcggctgc gcctcgcttc agcgatggcc
180
gccccggctga gcatggggcc agagctgccc accagccccgc tggccatgga gtatgtcaac
240
gacttcgacc tgctcaagtt cgacgtgaag aaggagccac tggggcgcgc ggagcgctcg
300
ggcaggcccct gcacacgcct gcagccagcc ggctcggtgt cctccacacc gctcagcaact
360
ccgtgttagct ccgtgccctc gtcgcccagc ttcagcccga ccgaacagaa gacacacctc
420
gaggatctgt actggatggc gagcaactac cagcagatga accccgaggc gctcaacctg
480
acgcccggagg acgcgggtgga agcgctcattc ggctcgacc cagtgccaca gccgctgcaa
540
agcttcgaca gctttcgccgg cgctcaccac caccaccatc accaccaccc tcacccgcac
600
cacgcg
606

<210> 5930
<211> 144
<212> PRT
<213> Homo sapiens

<400> 5930
Met Ala Ala Glu Leu Ser Met Gly Pro Glu Leu Pro Thr Ser Pro Leu
1 5 10 15
Ala Met Glu Tyr Val Asn Asp Phe Asp Leu Leu Lys Phe Asp Val Lys
20 25 30
Lys Glu Pro Leu Gly Arg Ala Glu Arg Pro Gly Arg Pro Cys Thr Arg
35 40 45
Leu Gln Pro Ala Gly Ser Val Ser Ser Thr Pro Leu Ser Thr Pro Cys
50 55 60
Ser Ser Val Pro Ser Ser Pro Ser Phe Ser Pro Thr Glu Gln Lys Thr
65 70 75 80
His Leu Glu Asp Leu Tyr Trp Met Ala Ser Asn Tyr Gln Gln Met Asn
85 90 95
Pro Glu Ala Leu Asn Leu Thr Pro Glu Asp Ala Val Glu Ala Leu Ile
100 105 110
Gly Ser His Pro Val Pro Gln Pro Leu Gln Ser Phe Asp Ser Phe Arg
115 120 125
Gly Ala His Ala
130 135 140

<210> 5931
<211> 478
<212> DNA
<213> Homo sapiens

<400> 5931
nggagatggc ggagtcgcctt gaggtctccg cgccgcgtccc tgtacaaact ggtggggctcg
60
ccgccttgg aaggaggcttt ccggcagaga tgcctggaga gaatgagaaa cagccggac
120
aggctcctaa acaggtaccg ccaggctgg agcagtgggc caggaaattc tcagaacagc
180
tttcttagttc aagaggtgat ggaagaagag tggaatgctt tgcagtcagt ggagaattgt
240
ccagaagact tggctcaact ggaggagctg atagacatgg ctgtgctgg acaaatttca
300
caggagctga tcaaccaagg tacaacctga gaatcacaag cggtgtggtg gtgtgtcagt
360
gtggcctgtc catcccatct cattcttctg agttgacaga gcagaagctt cgtgcctgtt
420
tagagggttag tataaatgag cacagtgcac attgtcccc cacacccct tcacgcgt
478

<210> 5932
<211> 109
<212> PRT
<213> Homo sapiens

<400> 5932

Xaa Arg Trp Arg Ser Arg Leu Arg Ser Pro Arg Arg Ser Leu Tyr Lys
 1 5 10 15
 Leu Val Gly Ser Pro Pro Trp Lys Glu Ala Phe Arg Gln Arg Cys Leu
 20 25 30
 Glu Arg Met Arg Asn Ser Arg Asp Arg Leu Leu Asn Arg Tyr Arg Gln
 35 40 45
 Ala Gly Ser Ser Gly Pro Gly Asn Ser Gln Asn Ser Phe Leu Val Gln
 50 55 60
 Glu Val Met Glu Glu Glu Trp Asn Ala Leu Gln Ser Val Glu Asn Cys
 65 70 75 80
 Pro Glu Asp Leu Ala Gln Leu Glu Glu Leu Ile Asp Met Ala Val Leu
 85 90 95
 Glu Glu Ile Gln Gln Glu Leu Ile Asn Gln Gly Thr Thr
 100 105

<210> 5933

<211> 1953

<212>-DNA

<213> Homo sapiens

<400> 5933

atggagatcc gagagaaggg ctccgagttc ctgaaggagg agctgcacag agcgcagaag
 60
 gagctgaagc taaaggacga ggaatgtgag cggctgtcca aggtgcggga gcagctagaa
 120
 caggagctgg aagagctgac ggccagcctg tttgaggaag ctcacaagat ggttcgagaa
 180
 gccaacatga agcaggcggc atcagaaaag cagctgaagg aggctcgggg caagatcgac
 240
 atgctgcagg cagaggtgac agcctgaaag acactggta tcacgtccac accagctct
 300
 cccaaccgcg agttcaccc ccagctgctg agccccacca aggccgggcc ccgaaaggc
 360
 cactctcgcc acaagagcac cagcagcacc ctctgccccg ccgtgtgtcc cgctgcggga
 420
 cacaccctca ccccagacag agagggcaag gaggtggaca caatcctgtt tgcatgttc
 480
 caggccttgg gggaatcccc caccctggac aagacctgcc cttccttgg aagggtgtac
 540
 cgagaggacg tgggccccctg cctggacttc acaatgcagg agctctcggt gctggtaacgg
 600
 gccgcgcgtgg aggacaacac gtcaccatt gagccggtgg cttcgacac gtcgcacaca
 660
 gtgaagggtgg ccgaggttga ctgttagcagc accaacacat gtgcctgag cggcgttacc
 720
 cgcacacctgac gccacccaaat ccggctcgaa gactccaaaa gccattacta catctcgcca
 780
 tcttccccggg ccaggatcac cgcagtgtgc aacttcttca cctacatccg ctacatccag
 840
 caaggcctgg tggggcagga cgcagagccc atgttctggg agatcatgag gttgcggaaag
 900
 gagatgtcac tggccaaagct cggcttcttc ccccaaggagg cttagggcgc ggcccaggcc
 960

tgaaggggag ctctgagaca gagcaaacac ccacccaga acaagccgac acacagggag
 1020
 acgggggcct ggagccagcc ctgagccaga ggcagaatgg atggacagac aggccatgga
 1080
 ggcagcactg agccagcacc acacgtccat cctgggacag acgggcctgg acttcacggc
 1140
 aagacccccc tctttcccc actgggttct gccaccacca ggaggatttc aagaaagcac
 1200
 caaagaccag ggagctcgga tccatactcg gggggcctca gcccttggga ggggacacct
 1260
 gagggcagcca ggcgcgcctc cccagtcggc agaactgcct gcaggtgcct tggtgcgtgc
 1320
 ttgttttag aaagggactg ttctgggtgg ctggatctcc agggtaacctt ccacccagc
 1380
 tgccaagccc tggccagca gcacccctt gtggccatcc tgtgccttgt tcccggtggc
 1440
 ctcccttattt gactactagg aggggctggc agggcctcca tagcacagaa ttgccccaaa
 1500
 gccttgttaa gatgagtcaa gacccctccc ccgttccctc cttcccttc ccccttcc
 1560
 cttcccttccctt cataaaggcc tcccttgtaa cttcccttcc caccggctct cagccctgtg
 1620
 ctccctggagg ccctgctccc aaaaccgctg gaaggactgg ggcactttctt gccacagtag
 1680
 aacacagaca gggcttcaga tcacccacgc ctgtttttag ctgtgggtgg ccatgcagac
 1740
 acgcgcctg gcatgtgggg cctgggtggg caggcaggac ctggggccctc ccacccatca
 1800
 gagcccaactc aggaccagcg ttccggagctc ccacctggac gcatccctca ccacgtccgg
 1860
 atttccttctt ttggatggaa tgtaacgcga tctctatTTA ataaaggcag gctttgttgg
 1920
 tacaggcaaa aaaaaaaaaaaaaaaa aaaaaaaaaaaa aaa
 1953

<210> 5934
 <211> 314
 <212> PRT
 <213> Homo sapiens

<400> 5934
 Met Glu Ile Arg Glu Lys Gly Ser Glu Phe Leu Lys Glu Glu Leu His
 1 5 10 15
 Arg Ala Gln Lys Glu Leu Lys Leu Lys Asp Glu Glu Cys Glu Arg Leu
 20 25 30
 Ser Lys Val Arg Glu Gln Leu Glu Gln Glu Leu Glu Leu Thr Ala
 35 40 45
 Ser Leu Phe Glu Glu Ala His Lys Met Val Arg Glu Ala Asn Met Lys
 50 55 60
 Gln Ala Ala Ser Glu Lys Gln Leu Lys Glu Ala Arg Gly Lys Ile Asp
 65 70 75 80
 Met Leu Gln Ala Glu Val Thr Ala Leu Lys Thr Leu Val Ile Thr Ser
 85 90 95
 Thr Pro Ala Ser Pro Asn Arg Glu Leu His Pro Gln Leu Leu Ser Pro

100	105	110
Thr Lys Ala Gly Pro Arg Lys Gly His Ser Arg His Lys Ser Thr Ser		
115	120	125
Ser Thr Leu Cys Pro Ala Val Cys Pro Ala Ala Gly His Thr Leu Thr		
130	135	140
Pro Asp Arg Glu Gly Lys Glu Val Asp Thr Ile Leu Phe Ala Glu Phe		
145	150	155
Gln Ala Trp Arg Glu Ser Pro Thr Leu Asp Lys Thr Cys Pro Phe Leu		
165	170	175
Glu Arg Val Tyr Arg Glu Asp Val Gly Pro Cys Leu Asp Phe Thr Met		
180	185	190
Gln Glu Leu Ser Val Leu Val Arg Ala Ala Val Glu Asp Asn Thr Leu		
195	200	205
Thr Ile Glu Pro Val Ala Ser Gln Thr Leu Pro Thr Val Lys Val Ala		
210	215	220
Glu Val Asp Cys Ser Ser Thr Asn Thr Cys Ala Leu Ser Gly Leu Thr		
225	230	235
Arg Thr Cys Arg His Arg Ile Arg Leu Gly Asp Ser Lys Ser His Tyr		
245	250	255
Tyr Ile Ser Pro Ser Ser Arg Ala Arg Ile Thr Ala Val Cys Asn Phe		
260	265	270
Phe Thr Tyr Ile Arg Tyr Ile Gln Gln Gly Leu Val Arg Gln Asp Ala		
275	280	285
Glu Pro Met Phe Trp Glu Ile Met Arg Leu Arg Lys Glu Met Ser Leu		
290	295	300
Ala Lys Leu Gly Phe Phe Pro Gln Glu Ala		
305	310	

<210> 5935

<211> 2727

<212> DNA

<213> Homo sapiens

<400> 5935

```

nnngtcgcctc cgcctgatcc ccggcctgtc ggccgacccc acctcgccaa ccgaggcgga
60
ccgcggagtg tgcgaacgac cccaccgctg ctttctcctc cccccagatca cgcaccccg
120
ctccggata tggggactg cctcaaattcc cccacacctgg atgacatctc cctgcttcac
180
gagtctcagt ccgaccgggc tagctttggc gaggggacgg agccggatca ggagccgccc
240
ccgccccatcc aggaacaatgt tccagttcca gtctaccacc caaacaccttag ccagactcgg
300
ctagcaactc agctgactga agaggaacaa attaggatag ctcaaagaat aggtcttata
360
caacatctgc cttaaaggagt ttatgaccct ggaagagatg gatcagaaaa aaagatccgg
420
gagtgtgtga tctgtatgtat ggactttgtt tatggggacc caattcgatt tctgccgtgc
480
atgcacatct atcacctgga ctgtatagat gactgggtga tgagatccctt cacgtgcccc
540
tcctgcatgg agccagttga tgcagcactg ctttcatcctt atgagactaa ttgagccagg
600

```

gtctcttatac tgacttcaag tgaaccacca ttttgggtgt tttgatcttt tgtcactgag
660
cccaaagagc cagggattag gaattaagat cgtgcacaaa agtttcctta aaattcctgg
720
atggctgcag atgttggggg aaaaagtacg tgatattttaa gaaaacttagt gggaaaagta
780
gatggtatttttgc tccagttacat aggaattgtg taaagtgtta acagcagctg tattttttta
840
900
aattgtgtgtt attgaagatt aggaaaaaga tagtagttat ttttccttaaa tgaaataact
960
ttcttccttttcccccc acccgaaattc ttttctgaag ttgctggcat ttgggtcaag
1020
gtttttttaaa aagctacatt ttataacact ggcacacacaca aaaaagtagt tttaagcttg
1080
tttgcacagt tctttttttc cattggaaat ggaatttattt gccttaggtc ttttttaata
1140
gtgttattttt atcggttgggg ctggctctat gcttggaaac cagtttattt ataacctgtt
1200
ataagtgtcta tattctgtttt gcagtttagga aatgcagaat tcaaagtgtat ctcttagctt
1260
gtaagcaaac tgagatgcac tatccctttt ctataaaaaaa taagttaatg tgtcaagaaaa
1320
ccaactctat taaggtgggg tttaatatta cccttccta tgtgttttat ctaatttattt
1380
tgggtgttaa tatggtgata atggaaagtc aagttaaattt ttaaatatta agaattctga
1440
tttatttgaga ttgaattatg ccaccacgtt tatgtaaaaaa tgaagggtggc accgtggtga
1500
gacctaataatgaa gaaatagttt ctcagttgtt aaaaattttga tttattctct ttcttcgtac
1560
ctccttcgtt cttgtcttga accatagcaa aaggataactg catctctcat tactgttagtg
1620
ctgagggttat tgaagttata caaaacacat ctcagttctt gtttcttgaa aaggatctta
1680
ttacatcctg ctagctgact gacaaaacta agcagggaga ataaagataaa ttgttatttt
1740
tggtttgcac acaaacgcag aattttgtata accatatgac ttcatagtg tgatctcaa
1800
aaagaaggaa ttcttcctttt gtttcttgca gttaatgtaa gaatactttta aatctctaag
1860
cttctgttgtt gtttagaggtt gagatggctt agttaaagatg tagtagtaat gttttatcca
1920
tttagcatgt gtttattttt tcataatgtac tcaaagggtga cttattgggtt cacctcagtg
1980
atattacagc taaaaaaaaatc attcatttgc aaaaggaaaaa gtggtctcaa cctaacatca
2040
gaaagtgtttc ttatttattt tttatattgtt gttgaatattt gaaactctaaac agttttctac
2100
atacaaaaaca cagtgtcatg aaggttatttca ataatttgcata tataaggaa ttttttttt
2160
cataaagtact ttgttaaagat ttgacattca actgttagtat ccataatgttgc ctttttttt
2220

cttatgagcc ccatgatgga aagactaaa gatgaattt agaaaaattt aaagaaatta
 2280
 gattatcagg ttctgttaaa ttgttacatg tatcttgcctt aaatttctgt ttattaattt
 2340
 atatccaccc aagtacataa agcaaattt gaggaaacaa ctgaagttt gcaatattt
 2400
 ctgataattt cttttttat tcttggttt tctacttaaa cataatgtct gtgtcatcaa
 2460
 gtattatagt cagacttttca ttttttcta gattgttaaa attggcaaat gaacttttt
 2520
 aaaaatcatc ttccatgttg cagtttgtt tcctttcat tacaagtctt tcacagaagt
 2580
 ttgggtgttaa tattgaaaga actagcattt ggccaaatgt gtctttttt ggcactttat
 2640
 attctcaaca tacaatgtta agaaccatca attttgactt ttactaagg tttaaataaaa
 2700
 gttataatac agctgtgaaa aaaaaaaaa
 2727

<210> 5936
 <211> 154
 <212> PRT
 <213> Homo sapiens

<400> 5936
 Met Gly Asn Cys Leu Lys Ser Pro Thr Ser Asp Asp Ile Ser Leu Leu
 1 5 10 15
 His Glu Ser Gln Ser Asp Arg Ala Ser Phe Gly Glu Gly Thr Glu Pro
 20 25 30
 Asp Gln Glu Pro Pro Pro Tyr Gln Glu Gln Val Pro Val Pro Val
 35 40 45
 Tyr His Pro Thr Pro Ser Gln Thr Arg Leu Ala Thr Gln Leu Thr Glu
 50 55 60
 Glu Glu Gln Ile Arg Ile Ala Gln Arg Ile Gly Leu Ile Gln His Leu
 65 70 75 80
 Pro Lys Gly Val Tyr Asp Pro Gly Arg Asp Gly Ser Glu Lys Lys Ile
 85 90 95
 Arg Glu Cys Val Ile Cys Met Met Asp Phe Val Tyr Gly Asp Pro Ile
 100 105 110
 Arg Phe Leu Pro Cys Met His Ile Tyr His Leu Asp Cys Ile Asp Asp
 115 120 125
 Trp Leu Met Arg Ser Phe Thr Cys Pro Ser Cys Met Glu Pro Val Asp
 130 135 140
 Ala Ala Leu Leu Ser Ser Tyr Glu Thr Asn
 145 150

<210> 5937
 <211> 1536
 <212> DNA
 <213> Homo sapiens

<400> 5937
 naagcttag tgattgtggc ttattcacag ctatttttgc ctgcaacctg attgaaaatg
 60

ttcagagatt aggcttgaca cccaccactg tcattagatt aaataaacat cttttgagtc
120
tttgcacatcg ttatctcaag gtctgagacc tgggttgcga aaccccagt ggacttttagt
180
agtactcaga tcctccttgcgt agtatattaa caagtaaacc tgccctgtatg
240
ctcaccagaa aggaaacaga gcatgtcagt gctttgatc ttagagcctt tttgcttaca
300
attccagaaa atgctgaagg ccacatcatt ttagaaaga gtttaattgt accttttaaa
360
gggtcaagag ttatagatcc cactgttatta cctggatac tcattgaaat gtcagaagtt
420
caattaatga ggcttattacc tatcaaaaaa tcaactgccc tcaagggtggc actctttgt
480
acaactttat ccggagacac ttctgacact ggagaaggaa ctgtggtggc cagttatggg
540
gtttctcttg aaaatgcagt ctggaccag ctgcttaacc taggaaggca gctaattcagt
600
gaccacgttag atcttgcct gtgcacaaaaa gtatacatac catctttgaa gcagtttctc
660
aatatgcacat gtattattgc catagacaga attggagtga ctctgatggaa acccctgact
720
aaaatgacag gaacacagcc tattggatcc cttaggctcaa tatgtccctaa tagttatggaa
780
agtgtgaaag atgtgtgcac tgcaaaattt ggctccaaac attttttca tcttattcct
840
aatgaagcaa caatctgcag ctggcttctc tgcaacagaa atgacactgc ctgggatgag
900
ctgaagctca cgtgtcagac ggcactgcat gtcctgcagt taacactcaa ggaaccatgg
960
gttttgggg gaggtggctg tactgaaact cattggctg catatatcag acacaagact
1020
cacaacgacc cagaaagcat tctcaaaagat gatgaatgta ctcaaacaga acttcaatta
1080
attgctgaag cattttgcag tgcccttagaa tctgttttg gctctttaga acatgatggaa
1140
gttgaaattt tcactgacat gaagtatgga caccttggc cagttcaggc agattctccc
1200
tgtgttgcta actggccaga tttgccttca cagtgtggct gtggattata caatggccag
1260
gaagaactca actggctttt cttaagaagc acacgtcgcc cattttgtgcc acaaagctgc
1320
cttccacatg aagctgtggg ctcagccagc aacctgaccc tggactgttt gactgcaaag
1380
cttagtggcc tacaggtggc tgttagagaca gccaaatttga ttttggatct ttcataatgtt
1440
attgaagata aaaactaaga gaatagcatg ttctgttattac aagagaaaaca aataaactag
1500
tctgttggca attgaaaaaaaaaaaaaaaaaaaaaaa
1536

<210> 5938
<211> 406
<212> PRT

<213> Homo sapiens

<400> 5938

Met Leu Thr Arg Lys Glu Thr Glu His Val Ser Ala Leu Ile Leu Arg
 1 5 10 15
 Ala Phe Leu Leu Thr Ile Pro Glu Asn Ala Glu Gly His Ile Ile Leu
 20 25 30
 Gly Lys Ser Leu Ile Val Pro Phe Lys Gly Ser Arg Val Ile Asp Ser
 35 40 45
 Thr Val Leu Pro Gly Ile Leu Ile Glu Met Ser Glu Val Gln Leu Met
 50 55 60
 Arg Leu Leu Pro Ile Lys Ser Thr Ala Leu Lys Val Ala Leu Phe
 65 70 75 80
 Cys Thr Thr Leu Ser Gly Asp Thr Ser Asp Thr Gly Glu Gly Thr Val
 85 90 95
 Val Val Ser Tyr Gly Val Ser Leu Glu Asn Ala Val Leu Asp Gln Leu
 100 105 110
 Leu Asn Leu Gly Arg Gln Leu Ile Ser Asp His Val Asp Leu Val Leu
 115 120 125
 Cys Gln Lys Val Ile His Pro Ser Leu Lys Gln Phe Leu Asn Met His
 130 135 140
 Arg Ile Ile Ala Ile Asp Arg Ile Gly Val Thr Leu Met Glu Pro Leu
 145 150 155 160
 Thr Lys Met Thr Gly Thr Gln Pro Ile Gly Ser Leu Gly Ser Ile Cys
 165 170 175
 Pro Asn Ser Tyr Gly Ser Val Lys Asp Val Cys Thr Ala Lys Phe Gly
 180 185 190
 Ser Lys His Phe Phe His Leu Ile Pro Asn Glu Ala Thr Ile Cys Ser
 195 200 205
 Leu Leu Leu Cys Asn Arg Asn Asp Thr Ala Trp Asp Glu Leu Lys Leu
 210 215 220
 Thr Cys Gln Thr Ala Leu His Val Leu Gln Leu Thr Leu Lys Glu Pro
 225 230 235 240
 Trp Ala Leu Leu Gly Gly Cys Thr Glu Thr His Leu Ala Ala Tyr
 245 250 255
 Ile Arg His Lys Thr His Asn Asp Pro Glu Ser Ile Leu Lys Asp Asp
 260 265 270
 Glu Cys Thr Gln Thr Glu Leu Gln Leu Ile Ala Glu Ala Phe Cys Ser
 275 280 285
 Ala Leu Glu Ser Val Val Gly Ser Leu Glu His Asp Gly Gly Glu Ile
 290 295 300
 Leu Thr Asp Met Lys Tyr Gly His Leu Trp Ser Val Gln Ala Asp Ser
 305 310 315 320
 Pro Cys Val Ala Asn Trp Pro Asp Leu Leu Ser Gln Cys Gly Cys Gly
 325 330 335
 Leu Tyr Asn Ser Gln Glu Glu Leu Asn Trp Ser Phe Leu Arg Ser Thr
 340 345 350
 Arg Arg Pro Phe Val Pro Gln Ser Cys Leu Pro His Glu Ala Val Gly
 355 360 365
 Ser Ala Ser Asn Leu Thr Leu Asp Cys Leu Thr Ala Lys Leu Ser Gly
 370 375 380
 Leu Gln Val Ala Val Glu Thr Ala Asn Leu Ile Leu Asp Leu Ser Tyr
 385 390 395 400
 Val Ile Glu Asp Lys Asn

405

<210> 5939
 <211> 795
 <212> DNA
 <213> Homo sapiens

<400> 5939
 nnctgtctcc ccctccgcct ctccctgcat tcttggttct tctgggctct ccctgggacc
 60
 ttatgtgcat tcgcctttcc ccaacgtgtc ccttcctcccc tccctctcat cctccggcg
 120
 gcgtgcgcct cctgcctctc cccggccggc cacacgggtgg cgctgtgtcc cgctgcggcg
 180
 cccggccgc gctcgccgc agcctgcaag cgcaaggaac aggagcagca gaaggagcgc
 240
 gcccgtcagc ccaagaagca ggcgcgtgtt ttcacccgacc tgcaagcagc acgcgtgate
 300
 gccatcttca aggagaacaa gcggccgtcc aaggagatgc aggtcaccat ctcgcagcag
 360
 ctccggcttg agtcacacac cgtcaccaac ttcttcatga acgcgcggcg ccgctgcatt
 420
 aaccgcgtgg ctgaggagcc cagcacggcc cccggggggcc cgcggccgc caccggccact
 480
 ttctccaagg cctgaggcgcc cccggccccc cgcgcgtccct gcctccacgg cctggggcgct
 540
 gtgcacccac gtcacccccc cacatctgc cggccggag acccgccccc agggggcacc
 600
 tggaggggggt gctatccggg ccccccacac cggggggaggg ggaagcagca caccggccag
 660
 cccaaagtgc caaaaaggc ccccttcct ccctccatgc ccactccctc caggccaaag
 720
 gaagccctcc accccccccc ggagggggagg gagtgcacaga aaggggtttc ccagccccc
 780
 ctccattcag gacgc
 795

<210> 5940
 <211> 96
 <212> PRT
 <213> Homo sapiens

<400> 5940
 Cys Lys Arg Lys Glu Gln Gln Lys Glu Arg Ala Leu Gln Pro
 1 5 10 15
 Lys Lys Gln Arg Leu Val Phe Thr Asp Leu Gln Arg Arg Thr Leu Ile
 20 25 30
 Ala Ile Phe Lys Glu Asn Lys Arg Pro Ser Lys Glu Met Gln Val Thr
 35 40 45
 Ile Ser Gln Gln Leu Gly Leu Glu Leu Asn Thr Val Ser Asn Phe Phe
 50 55 60
 Met Asn Ala Arg Arg Arg Cys Met Asn Arg Trp Ala Glu Glu Pro Ser
 65 70 75 80
 Thr Ala Pro Gly Gly Pro Ala Gly Ala Thr Ala Thr Phe Ser Lys Ala

85

90

95

<210> 5941
<211> 2590
<212> DNA
<213> Homo sapiens

<400> 5941
ttttttttt ttaatcttct aagtcccttt aattgttctt ataaaactagc
60
ataagatata aacttaagta gtacacatga gtttataat ttactaatct ctgacagata
120
gctaaggata gcacatcaga gcataacaca gtgtgagggaa aataaaagtgt acaatgacat
180
cttctattct ggacctaata attcaataga gaaagaacta cttgttagtca ctgtggttac
240
agaaggtttc atggacagcg aacataaaagc tctactagct aacaaatagg tcttaatgtat
300
aaaaacgtgg gccttcagag aactaaaggt accaatgtgt ggcagtc当地 aattacgagg
360
aaaatgagtt cccttcatgg gtcacatcag caattttttt ttccccctttt gagacagagt
420
cttgctctgc tgncccaggt tggagtgcag tggcatgatc caggctcaact gcaacctccg
480
cctcccccgggt tcaagcaatt ctcatgcctc agcctccca gtagctggaa ttacaggtgc
540
ctgtcatcac ggctggctac tttttgtatt ttttagtagag acagggtttc accatgtgg
600
ccaggctgggt ctcaaactcc tgacctcaag tgatctgctt gcttcagcct cccaaagtgc
660
tagggttaca gacatgagcc actgtgccc gctacctcat caattctaa tctataaacc
720
atggataggc ttctggagaa cccaagaacc aatgaaatct gttggtaagt tttatgtgtg
780
cggttttcta cagaggggtt caacagcatg tatattttca aagaagtctg tggc当地aaaa
840
gagagtttat tggtaagt ctttggcaaa tcaacttggaa aaagggtggaa ttgagaatgg
900
gggctgtcta gatcaggata atgttgaatt tgaccctcac ttgaggctt tgtacagagg
960
atgagaagac ggttaattca agggtaatc agaaattaac accaacatga cttgggtatg
1020
agttagatgt gaaacgtgag aaaaacatca atgatgaaat caagcttctg acttgc当地aca
1080
gtgagatatac caagagctac aggcttggaa gatgataaaa gttggagaca ttctgtttt
1140
tcatgagtgc ccatggaca gacagggaga aatggacagt tgaaagtaca agtctagaca
1200
ggcacagtgg ctcatgtctg taacccttagc actttggag gctgagatag gagaattact
1260
agggttctagg agtttggagac gaacctgggtt gacatagtga gagctcatct ctacaaaaa
1320
taaaattagc tcggcatgtt gctgcaagat tatagccct cagcctctga gtagctggaa
1380

ttacagatgc tcaccaccat gccttaggtaa ttttgtatt ttttagtagag atggggtttc
 1440
 accatattgg ccaggcaggt cttgaactcc tgacctccag agatctgccc acttcagcct
 1500
 cccaaagtgc tgggattaca ggcgttatcc actgtgccc gcctgagttt ctgttttagaa
 1560
 acaacagtct atgatagttat aatccctctt ttttgtaca cagagtaaag aggacaaaata
 1620
 ggtgaaagaa taaatgaaag gctggaatcc cactcccccc gctgtcccaag ggcattggat
 1680
 attgacggat aggaggcagc aaaccactca cagagccagg aagaaatgaa tgcgttgta
 1740
 ttggcaggag gggaaagccgg cccggctgaa atatgctatg accatagcca ggagatactg
 1800
 atggagagaa aggaacacag agagggagag gtcacatctt ggaagaggaa gattgtggag
 1860
 aggggaaatg agggcttggg gaggggctgc ccatcagaga agggacctca gtgttgggt
 1920
 gactactcat ttggaaattt cggtatggag gggatattga aggtcgatg caaatccgag
 1980
 aagccagagg aagggttttg ggtgatgctc ccaggatggt gggctctgat gggatcttg
 2040
 gaggggggtgt gtcttaggtcg gctgggtgtca ggaggggttttgc ggcagagaac
 2100
 tgtccccaaag agctgagagt agagggccca ggagcttcag ggctgcggcc agactgtggc
 2160
 ccagagctca gatcccaaag gacccatagg agaggcaggg gccactcatt cactctgcaa
 2220
 gagaccagca gaatcctgag ggagatgctg acaaattata aaaagaccaa gaatagccgg
 2280
 gagttggccgc tcaaggctgt gatcccaatgtt ggtggagaca ggaggatcat
 2340
 gtgagcccaag cggttcgaga acaacctggg caacatggtg agaccctgtt tctacaaaca
 2400
 tttccaaaaat tagttggca tggtgccatg tgccctagtc cagctccatca ggaggctgag
 2460
 gaaagaagat tgcttgagcc caggaattag aggctgcaat gagctatgat catgccactg
 2520
 cactccatcc tgggtggctt gagaccctgt tggtagattc tagtcttgc cattgtttt
 2580
 gagctttta
 2590

<210> 5942
 <211> 89
 <212> PRT
 <213> Homo sapiens

<400> 5942
 Met Ser Ser Leu His Gly Ser His Gln Gln Phe Phe Pro Leu Leu
 1 5 10 15
 Arg Gln Ser Leu Ala Leu Leu Xaa Gln Val Gly Val Gln Trp His Asp
 20 25 30
 Pro Gly Ser Leu Gln Pro Pro Pro Gly Phe Lys Gln Phe Ser Cys

35	40	45
Leu Ser Leu Pro Ser Ser Trp Asp Tyr Arg Cys	Leu Ser Ser Arg	Leu
50	55	60
Ala Thr Phe Cys Ile Phe Ser Arg Asp Arg Val	Ser Pro Cys	Trp Pro
65	70	75
Gly Trp Ser Gln Thr Pro Asp Leu Lys		80
	85	

<210> 5943

<211> 781

<212> DNA

<213> Homo sapiens

<400> 5943

nacgcgttgg cagcggcagg agtaaccaga gggagcatat acgccagttg ggtaaaagac
60
tgcttggatt gaattgttgg aaatgatctc gactccgcgca aactaaacc aactctggat
120
ggacaacttg ttgttaattgg taaggatgaa tcttatagca agacttctgg ggtttccagc
180
atcaccaagc ttcaaagaca accatttgg a ttgagacca agcctggaat ctttgcgt
240
tttcaaaaacg agtttgagaa cccttgcctt ccaaagtctc attttctgt cacccaagct
300
ggagagcaat ggccgcgatct cagtcacca caacccgcgctcccgatggt caagcaattc
360
tcctgtctca gcctcccgag tagctggac cacaggcacc cgccaccacg cccggctaac
420
ttttgtatTT ttagtagaga cgaggtttca ccgcggcttc gatctcctga cctcatgnna
480
tcggccccacc tcggcctccc aaagtgttgg gattacaggc gtgagccact ggcggccagcc
540
cagatcagcc ttttatttag caagtcacca tcacaagaca tacaggctaa ggcttaaaag
600
aagcccttgg gtttaaaaca aatgttttagg aggagatgag aagtttctca tctttatgg
660
ctacaaaaat catcaaaaaca aattcaggtt cagagtctag aaaagatgtt actatttgca
720
gcatgggtct gatacagcag ttcttaacgg gtaaactgct ttgttttaat ttatattaca
780
g
781

<210> 5944

<211> 174

<212> PRT

<213> Homo sapiens

<400> 5944

Ile Val Gly Asn Asp Leu Asp Ser Ala Gln Thr Lys Pro Thr	Leu Asp		
1	5	10	15
Gly Gln Leu Val Val Ile Gly Lys Asp Glu Ser Tyr Ser	Lys Thr Ser		
20	25	30	
Gly Val Ser Ser Ile Thr Lys Leu Gln Arg Gln Pro Phe	Gly Val Glu		

35	40	45
Thr Lys Pro Gly Ile Leu Cys Cys Phe Gln Asn Glu Phe Glu Asn Pro		
50	55	60
Cys Phe Pro Lys Ser His Phe Ser Val Thr Gln Ala Gly Glu Gln Trp		
65	70	75
Arg Asp Leu Ser Ser Pro Gln Pro Pro Pro Arg Phe Lys Gln Phe		80
85	90	95
Ser Cys Leu Ser Leu Pro Ser Ser Trp Asp His Arg His Pro Pro Pro		
100	105	110
Arg Pro Ala Asn Phe Cys Ile Phe Ser Arg Asp Glu Val Ser Pro Arg		
115	120	125
Ser Arg Ser Pro Asp Leu Met Xaa Ser Ala His Leu Gly Leu Pro Lys		
130	135	140
Cys Trp Asp Tyr Arg Arg Glu Pro Leu Arg Pro Ala Gln Ile Ser Leu		
145	150	155
Leu Phe Ser Lys Ser Pro Ser Gln Asp Ile Gln Ala Lys Ala		160
165	170	

<210> 5945

<211> 869

<212> DNA

<213> Homo sapiens

<400> 5945
 nnttcggcct gagagcgggc cgaggagatt ggcgacggtg tccgggttt tcgttggcgg
 60
 gtgcctggc tggtggaaac accgccccaa gaagcaccat gatttcggcc gcgcagttgt
 120
 tggatgagtt aatgggccgg gaccgaaacc tagccccgga cgagaagcgc agcaacgtgc
 180
 ggtgggacca cgagagcgtt tgtaaatatt atctctgtgg tttttgtcct gcggaattgt
 240
 tcacaaaatac acgttctgat cttgatgtat ttggaagagg agataaacatt agagatgtca
 300
 gcaaattttt ggaagatgac aagtggatgg aggagtagca gcaaacgcaa cagagcagag
 360
 caacctgtac cctaaaagcc tgcagaaggg gatactaaac agaagcgagt gtttgatcag
 420
 cagaaccctg gacaggctca ggatttggag gcaccaggca gaagaaaaga ggattttct
 480
 ctagagaaaag tgaacagttc ctgagaagtg atctctgcag gtccgtgtga aaaaattcat
 540
 gataaaaatc tacaaaaaca gatatgagaag agctctcggt tcatgaaagt tggctatgag
 600
 agagattttt tgcgataactt acagagctta cttgcagaag tagaacgttag gatcagacga
 660
 ggccatgctc gtttggcatt atctaaaaac cagcagtctt ctggggccgc tggcccaaca
 720
 ggcaaaaaatg gagaaaaaat tcaggttcta acagacaaaa ttgatgtact tctgcaacag
 780
 attgaagaat tagggctcga aggaaaagta gaagaagccc aggggatgat gaaatttagtt
 840
 gagcaattaa aagaagagag agaactgt
 869

<210> 5946
<211> 121
<212> PRT
<213> Homo sapiens

<400> 5946
Glu Val Ile Ser Ala Gly Pro Cys Glu Lys Ile His Asp Glu Asn Leu
1 5 10 15
Arg Lys Gln Tyr Glu Lys Ser Ser Arg Phe Met Lys Val Gly Tyr Glu
20 25 30
Arg Asp Phe Leu Arg Tyr Leu Gln Ser Leu Leu Ala Glu Val Glu Arg
35 40 45
Arg Ile Arg Arg Gly His Ala Arg Leu Ala Leu Ser Gln Asn Gln Gln
50 55 60
Ser Ser Gly Ala Ala Gly Pro Thr Gly Lys Asn Gly Glu Lys Ile Gln
65 70 75 80
Val Leu Thr Asp Lys Ile Asp Val Leu Leu Gln Ile Glu Glu Leu
85 90 95
Gly Ser Glu Gly Lys Val Glu Glu Ala Gin Gly Met Met Lys Leu Val
100 105 110
Glu Gln Leu Lys Glu Glu Arg Glu Leu
115 120

<210> 5947
<211> 2283
<212> DNA
<213> Homo sapiens

<400> 5947
gacaagtggaa ggcgccgctc tagcgccgga ctctgaacta tggccggctag tgatacagag
60
cgagatggac tagccccaga aaagacatca ccagatagag ataagaaaaa agagcagtca
120
gaagtatctg ttctccctag agcttcaaaa catcattatt caagatcacg atcaaggta
180
agagaaagaa aacgaaagtc agataatgaa ggaagaaaac acaggagccg gagcagaagc
240
aaagagcgtg cttatgcgcg aagagactga actgaagacg ctgcagactc agatagcaa
300
ataataagcc tacttcatga tnnaagaacc aacttcttct taaaacaggg aagaagacat
360
gaatccaaag ataaatcctc taagaaaacat aagtctgagg aacataatga caaagaacat
420
tcttctgata aaggaagaga gcgactaaat tcatctgaaa atggtgagga caggcacaaa
480
cgcaaaagaaa gaaaagtcattc aagaggcaga agtcactcaa gatcttaggtc tcgtgaaaga
540
cgccatcgta gtagaagcag ggagcggaaag aagtctcgat ccaggagtag ggagcggaaag
600
aaatcgagat ccagaagcag agagaggaag aaatcgagat ccagaagcag gaaaaaaaaa
660
cggccggatca ggtctcgatcccgatcaaga tcaagacaca ggcataggac tagaagcagg
720

agttaggacaa ggagtaggag tcgagataga aagaagagaa ttgaaaagcc gagaagattt
780
agcagaagtt taagccggac tccaagtcca cctcccttca gaggcagaaa cacagcaatg
840
gatgcacagg aagctttagc tagaaggttg gaaagggcaa agaaattaca agaacagcga
900
gaaaaggaaaa tggttgaaaa acaaaaacaa caagaaatag ctgcagcagc tgcagctact
960
ggaggttctg ttctcaatgt tgctgccctg ttggcatcag gaacacaagt aacacctcag
1020
atagccatgg cagctcagat ggcagccctg caagctaaag ctttggcaga gacaggaata
1080
gtcttccta gctactataa cccagccgct gttaatccaa tggaaatttc tgaacaagag
1140
aaaaaaaaagga aaatgcttg gcagggcaag aaagaagggg acaaaatccc atctgctgaa
1200
atatggaaaa aattgaattt tggaaacaag gacccaaatg tcaaatttag gaaattgtatg
1260
ggtattaaga gtgaagatga agctggatgt agctcagttt atgaagaaag ttacaagact
1320
ctgaagcagc aggaagaagt atttcgaaat ttagatgctc agtatgaaat ggcaagatca
1380
caaaccacaca cacaagagg aatgggtttg gtttcacat cttcaatgctg aggaatggat
1440
gcagtttgaa aatgatcaca cttgtaaagt ttggactta tagacttctt gttctgtatg
1500
cacgtcccttgc ttccaccaaac agcttagcact cttagcttgc tgggtgttgc attgacttta
1560
atttattgaa aaatacaaat tttgtaaat atcagatcag tgataactggt gtttagtgg
1620
taatcaggtt aaacccactt ccattaaact tgacaggact atagaaggat aatattttt
1680
agttcatgaa ttctactttt caaatatata aaagctgcag gtggggataa aatctcatac
1740
atggattttt tcgtgtccgc tgtcttgtt acttttgc ttaaccttgc acagttttt
1800
tcatctcttgc aaacatgaaa gaaatgttat gttagatgttcc tttagaagat ctggccattt
1860
ggtacataat ccagcacaga taagctgggt ggtaatgata ataaaaatgg ttttctcaaa
1920
actgggttta atttaagtta cctgggtatgt ttctttgaat ttgtttata gtttctgttag
1980
catttggcaa ttgtgttag aaaacactag cttagaaatcc cctccccacc accctttta
2040
aggccagtttta actataactac agtcaataacc gtgggtgagca aaaatgtaaa aggtgaaagg
2100
agaaaaacttta cttaaatagt atgtttccctt attataaggg acagacttgg tattcagtat
2160
ttgtcaataata ttacatgtgt tattcaggag atagattaat gcattaaagg gatgtaaagca
2220
cttttattttt aataaagtgc cttataacaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa
2280
aaa
2283

<210> 5948
<211> 76
<212> PRT
<213> Homo sapiens

<400> 5948
Met Ala Ala Ser Asp Thr Glu Arg Asp Gly Leu Ala Pro Glu Lys Thr
1 5 10 15
Ser Pro Asp Arg Asp Lys Lys Glu Gln Ser Glu Val Ser Val Ser
20 25 30
Pro Arg Ala Ser Lys His His Tyr Ser Arg Ser Arg Ser Arg Ser Arg
35 40 45
Glu Arg Lys Arg Lys Ser Asp Asn Glu Gly Arg Lys His Arg Ser Arg
50 55 60
Ser Arg Ser Lys Glu Arg Ala Tyr Ala Arg Arg Asp
65 70 75

<210> 5949
<211> 4706
<212> DNA
<213> Homo sapiens

<400> 5949
nggcggtagt gcgtcggtcg ctgccccgggt ctggcagaac tcgggtgttt tgggctgaga
60
cagtggcagc tgccggccccc accccaagtg cggggacctc cggcgaataa aggtcgccct
120
gcgggttaggc cggttagggcc tgccgtccgg cctgcgggag aactgggtcg tcagtcctcc
180
gagtgggtgg gctggggact ttgaggggagt tggctctagg gcacagtcggcc
240
ggtcggagga acaagtgctg ggatctggcg tgggtgtcc aggggtcttt tccgcggccc
300
tttccacctc ttttcaactt gggacggta ggccttata aacggactaa tgctgggtga
360
tttgttctcg tgggtgttga tgccgaggaa agactctggg ccccaggact cacctaaact
420
ggagttcgaa tactgttcgc tcgctgtgtg accttggaaa aaataacaag cttttctgaa
480
gtgagaagct gttctcagcc acgagtcctg tgcaagatca ctaatgatta cctggcattt
540
ctgcgacaca ggcagggtcct cagggttgc gcaagttgc aaacatgttc accctgtctc
600
agacacctcgag agcatggttc atcgatagag cccgtcaggc acgagaagaa aggcttgtgc
660
agaaggaacg ggagcggca gctgtgtga tccaggccca tgtccggagt tttctctgtc
720
ggagtcgact gcagagagat atcaggagag agattgatga cttttttaaa gcagatgacc
780
ctgagtcac taaaagaagt gcactttgttga tttcaagat tgccaggaaa ctgctgttcc
840
tattcagaat caaagaggat aatgagagat ttgagaagtt gtgtcgccgc atcctgagca
900

gcatggatgc tgagaatgag cctaagggtgt ggtatgtgtc cctggcttgc tctaaggacc
960
tcaccctccct ttggattcaa cagatcaaga acatttgtg gtactgctgt gatttctca
1020
agcagctcaa gcctgaaatc ctgcaggact cccgactcat caccctgtac ctcacgatgc
1080
ttgtcacctt cacagacact tcaacgtgga aaattcttcg gggaaaagggt gaaagtcttc
1140
gaccagcgat gaaccacatt tgtgcaaata taatggaca tctcaaccag catggatttt
1200
attctgtgct gcagatattt ttaaccgtg gcctggcaag accccgtcct tgtctatcca
1260
aaggcacttt aacagcagct ttttctctag cgttacgccc tgtgattgtc gcacagttct
1320
cagacaatct gattcggccg ttccatcc acatcatgtc tgtgcctgtc ctggtgactc
1380
atctcagcac agtgaccctt gaggcctca ctgttttaga atccccatgac atgcttcgtt
1440
aattcatcat attttaaga gaccaagatc gatgccgtga tgtatgtgaa agtttagaag
1500
gatgccatac gctttgtcta atgggcaacc tcctacactt gggctccctc agccccagag
1560
tgttagagga ggagacagat gggttcgtga gtttgcac ccagacgctg tgctactgtc
1620
ggaaagtatgt gtctcagaag aagtccaaacc tgacccactg gcacccgtc cttggctgg
1680
tctcccaatc tgtggattat ggccttaacg agtcaatgca cttgatcacc aaacagctgc
1740
agttcttgcgt ggggggtgcct ctgatccgga tcttcttgc tgacatcctg agcaagaagc
1800
tactggagag ccaggagcca gcccacgcac agccagcata ccctcagaat gtgtcccaag
1860
tgaagagtct cctaaagcgt gctttcaaa agtccggcata agtccggaaat attctcaggc
1920
ctgtcgggggg taaacgggtc gactctgcag aagtccagaa ggttgcaac atctgtgtcc
1980
tctaccagac ctcgctgaca actctcacac agattcggct gcagatactc acaggctca
2040
cttaccttga tgacctgtt cccaaactgt gggcatttat ctgtgagctc gggccccacg
2100
gagggttaaa gctcttcttgc gaatgcctga acaatgacac tgaagagtcc aagcaactct
2160
tggccatgtc gatgtgttc tgtgactgtt cgccggcacct catcacaatc cttgatgaca
2220
ttgaagttta tgaagaacag atttcattca aactggaaga gctggtaact atctcccttt
2280
tccgtatcc ttttgcgttt aagatgatct gggatgaaat tgttagagaac gccaaagggtg
2340
agaccttggaa gctgtccag tctgtccacg ggtggcttat ggtgctgtac gagcgggact
2400
gccggccggcg cttcacccccc gaggaccact ggctgcgaaa ggatctcaaa cctagcgtgc
2460
tcttccaaga actcgacagg gacagaaaaac gggcacagtt gatcctgcag tacatccac
2520

atgtcatccc tcacaaaaac agagttctac tgtttgcAAC catggttacc aaggagaagg
2580
agaaaactggg gctggtgaa accagctctg cctcccccga tgcactcac atcaccatcc
2640
ggccggccAG gatgctggag agcttgggg agtgcctcg gccactgggt atcaatgcc
2700
agagctgcta ggaaggcagt gtgtgtgaa cagtgatgt ttctgacatt cttcaaggac
2760
ggctacgagc agcttaggca gctctccAG cacGCCatGA agggggtcAT ccgtgtGAAG
2820
tttgcatacg acctcgGGGT ggacgaagca gggattgatc aagacgggtgt ttttaaggag
2880
tttttggaaAG agatcatcaa gagagTTTTT gaccCAGCAC tcaatctgtt caagacaacc
2940
agtggggatg agaggctgtA cccctcacCC acatcctaca tccatgagaa ttacctgcAG
3000
ctcttcgagt ttgtggggAA gatgctgggg aaggctgtgt atgagggat tgtgggtggAC
3060
gtgcatttG catccttctt cctgagccAA ctgtttggc accaccacAG cgtcttctat
3120
agtcgggtgg atgaactGCC ttctctggAC tccgagttct ataaaaacCC cacctccatC
3180
aagcgcataG atggggacat cactgacctG ggcctgacGC tgccttacGA cgaggacgTC
3240
atgggtcAGC ttgtttGCC tgaactgatt cctggaggGA agaccattCC tggtaaaaaat
3300
gaaaataaaaa tttagctacat ccattgtatG gcacatttC gaatgcacac tcaaataaaaa
3360
aaccAAacAG ctgcctcat tagcggattC cgttccatta tcaaACCCGA gtggatCCGA
3420
atgttctcaa ctccgtAAACT gcagcgTCtC atctctggCG acaatgtGA gattgatCTG
3480
gaagatttaa agaagcacAC agtctactAC ggtggTTCC atggaagtCA cagagtcatC
3540
atctggctCT gggatattCT ggccttCGAC ttacacACGG atgagagAGC tatgtttCTG
3600
aagttcgtGA ccagctgTCc cagACCCCCG ctctggat tgccttacCC caagcctCCA
3660
ttctccatCC gctgcgtGGA ggtgtcggAC gatcaggACA ccggggacAC tctggcAGC
3720
gtcctccGGG gcttcttCAC catCCGAAG cgggagCCAG gcccggcCT gcccacCC
3780
tccacactGCT tcaacactGCT caagctGCC AACTACAGCA agaagAGCGt CCTCCGCGAG
3840
aagctgcgtCT acggccatCAG catgaacACG ggcttGAAC tctcttagCT cctgtcccAG
3900
ccctgcetCC agggctCCtG ggctGCCAGG gaccttCAGC tcccAGAGGC agtgtggTCC
3960
tggaaatgtG accAACATGC caggtgacat tggccccTAG acccttCtTA tagccatGAG
4020
actcttGtG gcctcaAGAA atttagACGC ccacgacAGC actacacAGC atctccAGGT
4080
gatgcccAAG gcacaggGCT gcagAAAATA aacctCCAGA ttccaccaAC acgggtCCAT
4140

tcttcctgggt gatggcagag gggcttcttt tagctagttt gatctttgg gagtctgtct
 4200
 ttccttagcc gtctgagtga gctgtgtatg aacaagtccc aggagttcca agagtctaga
 4260
 gtggtttttg cagcatgggt tgagtgata aagcctactg tgcgtgagat cctctcctc
 4320
 cggttctgaa atctcttact caggttaaggc ctgcctaage ctctatgcac cccacaaaagt
 4380
 ttctgcctcc atgcgttcca cagcgctct tcccaagacag ccaggccccat ctgctgcctc
 4440
 gggaaagcgcga ggcgcctgtc agggacgcta tggacaccgt gagtccaaagg cgctgctcct
 4500
 gccttgaagc cacgcgttcc acgcgcggc cctcccaattt tctgcgttcc cagcgggctg
 4560
 agctgccaga gagtcttccc ggacctattt ccgtcctatg cattcacatt ggcacatccctgg
 4620
 tttgggggaa gaaaaacaac ggcgccttagc agcagccccg tttccagaat gtgctgcctg
 4680
 ttccccaaag cctgcttgcc ccgcgg
 4706

<210> 5950
 <211> 397
 <212> PRT
 <213> Homo sapiens

<400> 5950
 Met Pro Arg Ala Ala Arg Lys Ala Val Cys Ala Glu Gln Trp Met Phe
 1 5 10 15
 Leu Thr Phe Phe Lys Asp Gly Tyr Glu Gln Leu Arg Gln Leu Ser Gln
 20 25 30
 His Ala Met Lys Gly Val Ile Arg Val Lys Phe Val Asn Asp Leu Gly
 35 40 45
 Val Asp Glu Ala Gly Ile Asp Gln Asp Gly Val Phe Lys Glu Phe Leu
 50 55 60
 Glu Glu Ile Ile Lys Arg Val Phe Asp Pro Ala Leu Asn Leu Phe Lys
 65 70 75 80
 Thr Thr Ser Gly Asp Glu Arg Leu Tyr Pro Ser Pro Thr Ser Tyr Ile
 85 90 95
 His Glu Asn Tyr Leu Gln Leu Phe Glu Phe Val Gly Lys Met Leu Gly
 100 105 110
 Lys Ala Val Tyr Glu Gly Ile Val Val Asp Val Pro Phe Ala Ser Phe
 115 120 125
 Phe Leu Ser Gln Leu Leu Gly His His Ser Val Phe Tyr Ser Ser
 130 135 140
 Val Asp Glu Leu Pro Ser Leu Asp Ser Glu Phe Tyr Lys Asn Leu Thr
 145 150 155 160
 Ser Ile Lys Arg Tyr Asp Gly Asp Ile Thr Asp Leu Gly Leu Thr Leu
 165 170 175
 Ser Tyr Asp Glu Asp Val Met Gly Gln Leu Val Cys His Glu Leu Ile
 180 185 190
 Pro Gly Gly Lys Thr Ile Pro Val Thr Asn Glu Asn Lys Ile Ser Tyr
 195 200 205
 Ile His Leu Met Ala His Phe Arg Met His Thr Gln Ile Lys Asn Gln

210	215	220
Thr Ala Ala Leu Ile Ser Gly Phe Arg Ser Ile Ile Lys Pro Glu Trp		
225	230	235
Ile Arg Met Phe Ser Thr Pro Glu Leu Gln Arg Leu Ile Ser Gly Asp		240
245	250	255
Asn Ala Glu Ile Asp Leu Glu Asp Leu Lys Lys His Thr Val Tyr Tyr		
260	265	270
Gly Gly Phe His Gly Ser His Arg Val Ile Trp Leu Trp Asp Ile		
275	280	285
Leu Ala Ser Asp Phe Thr Pro Asp Glu Arg Ala Met Phe Leu Lys Phe		
290	295	300
Val Thr Ser Cys Ser Arg Pro Pro Leu Leu Gly Phe Ala Tyr Leu Lys		
305	310	315
Pro Pro Phe Ser Ile Arg Cys Val Glu Val Ser Asp Asp Gln Asp Thr		320
325	330	335
Gly Asp Thr Leu Gly Ser Val Leu Arg Gly Phe Phe Thr Ile Arg Lys		
340	345	350
Arg Glu Pro Gly Gly Arg Leu Pro Thr Ser Ser Thr Cys Phe Asn Leu		
355	360	365
Leu Lys Leu Pro Asn Tyr Ser Lys Lys Ser Val Leu Arg Glu Lys Leu		
370	375	380
Arg Tyr Ala Ile Ser Met Asn Thr Gly Phe Glu Leu Ser		
385	390	395

<210> 5951

<211> 1724

<212> DNA

<213> Homo sapiens

<400> 5951

ngaaatcttg tataaccggccc gcgagaagaa gccgatcgag cttttgtctg gaaagtca
 60
 atctccggct ccggctgcaa tgtgttcctg gtgacattag catcgggcag acccgccagg
 120
 agaggagggg tcgccaggtt cccgtctgtt ttcggaggcg gatcgagcgg gtgactttg
 180
 tgcatcggtt ttaatttttg gaaatctctc ttttttcctc cctcgctcgc tgccgggcat
 240
 gtcctgtatctt ggccggccgt cctaccaccc tgggcagccg agcagagttgg tccccagcgg
 300
 tctccctccc tgccctccctg acttgcaac accgcgttcc gggaggaccc gcctcggcga
 360
 gggaggaggc gggggagctg cgaacaccca gacccaaacc ctgacatgtt ctggggcgg
 420
 gaggaggaag ccaggagctg agcgccgcgc gtgggctgtt tgcgcctccg gctccgagcg
 480
 ccgggctccg ggccgcctgc cctgcgcctg ggcagcagcc ttgctggctt tggggcgg
 540
 cccccgttcc cgccccgggg gttcgccggcc ggcaggacca tgctgctgaa agagtaccgg
 600
 atctgcattgc cgctcaccgt agacgagttt acaatggac agctgtacat gatcagcaaa
 660
 cacagccatg aacagagttga ccggggagaa ggggtggagg tgcgtccagaa tgagccctt
 720

gaggaccctc accatggcaa tgggcagttc accgagaagc gggtgtatct caacagcaaa
 780
 ctgcctagtt gggctagagc tgggtcccc aaaatattt atgtgacaga gaaggcttg
 840
 aactattatc cctacacaat tacagaatac acatgttcct ttctgccaa attctccatt
 900
 catatagaaa ccaagtatga ggacaacaaa ggaagcaatg acaccattt cgacaatgaa
 960
 gccaaagacg tggagagaga agtttgcattt attgatattt cctgcgatga aattccagag
 1020
 cgctactaca aagaatctga ggatcctaag cacttcaagt cagagaagac aggacgggaa
 1080
 cagttgaggg aaggctggag agatagtcat cagcctatca tgtgctccta caagctggtg
 1140
 actgtgaagt ttgaggtctg ggggcttcag accagagtgg aacaatttg acacaaggtg
 1200
 gtccgagaca ttctgctgat tggacataga caggttttg catgggttga tgagtggat
 1260
 gacatgacaa tggatgaagt ccgagaattt gaacgagcca ctcaggaagc caccaacaag
 1320
 aaaatcgca ttttcccacc tgcaatttct atctccagca tccccctget gccttcttcc
 1380
 gtccgcagtg cgccttctag tgctccatcc acccctctct ccacagacgc acccgaaattt
 1440
 ctgtccgttc ccaaagatcg gccccggaaa aagtctgccc cagaaactct cacacttcca
 1500
 gaccctgaga aaaaagccac cctgaattta cccggcatgc actcttcaga taagccatgt
 1560
 cggcccaaat ctgagtaact ttatataaat atctcatggg gtttatatt ttcatttgg
 1620
 gtgtttgttt tttttaaga atcttctgat agagaaaaag actgctttgt cactcaaaca
 1680
 tgttccttcg accttaaaaa aaaaaaaaaa aaaaaaaaaa aaaa
 1724

<210> 5952
 <211> 378
 <212> PRT
 <213> Homo sapiens

<400> 5952
 Ala Arg Arg Val Gly Cys Phe Ala Leu Arg Leu Arg Ala Pro Gly Ser
 1 5 10 15
 Gly Arg Pro Ala Leu Arg Leu Gly Ser Ser Leu Ala Gly Leu Gly Gly
 20 25 30
 Ala Pro Arg Phe Pro Pro Gly Gly Phe Ala Ala Gly Arg Thr Met Leu
 35 40 45
 Leu Lys Glu Tyr Arg Ile Cys Met Pro Leu Thr Val Asp Glu Tyr Lys
 50 55 60
 Ile Gly Gln Leu Tyr Met Ile Ser Lys His Ser His Glu Gln Ser Asp
 65 70 75 80
 Arg Gly Glu Gly Val Glu Val Val Gln Asn Glu Pro Phe Glu Asp Pro
 85 90 95
 His His Gly Asn Gly Gln Phe Thr Glu Lys Arg Val Tyr Leu Asn Ser

100	105	110
Lys Leu Pro Ser Trp Ala Arg Ala Val Val Pro Lys Ile Phe Tyr Val		
115	120	125
Thr Glu Lys Ala Trp Asn Tyr Tyr Pro Tyr Thr Ile Thr Glu Tyr Thr		
130	135	140
Cys Ser Phe Leu Pro Lys Phe Ser Ile His Ile Glu Thr Lys Tyr Glu		
145	150	155
Asp Asn Lys Gly Ser Asn Asp Thr Ile Phe Asp Asn Glu Ala Lys Asp		
165	170	175
Val Glu Arg Glu Val Cys Phe Ile Asp Ile Ala Cys Asp Glu Ile Pro		
180	185	190
Glu Arg Tyr Tyr Lys Glu Ser Glu Asp Pro Lys His Phe Lys Ser Glu		
195	200	205
Lys Thr Gly Arg Gly Gln Leu Arg Glu Gly Trp Arg Asp Ser His Gln		
210	215	220
Pro Ile Met Cys Ser Tyr Lys Leu Val Thr Val Lys Phe Glu Val Trp		
225	230	235
Gly Leu Gln Thr Arg Val Glu Gln Phe Val His Lys Val Val Arg Asp		
245	250	255
Ile Leu Leu Ile Gly His Arg Gln Ala Phe Ala Trp Val Asp Glu Trp		
260	265	270
Tyr Asp Met Thr Met Asp Glu Val Arg Glu Phe Glu Arg Ala Thr Gln		
275	280	285
Glu Ala Thr Asn Lys Lys Ile Gly Ile Phe Pro Pro Ala Ile Ser Ile		
290	295	300
Ser Ser Ile Pro Leu Leu Pro Ser Ser Val Arg Ser Ala Pro Ser Ser		
305	310	315
Ala Pro Ser Thr Pro Leu Ser Thr Asp Ala Pro Glu Phe Leu Ser Val		
325	330	335
Pro Lys Asp Arg Pro Arg Lys Ser Ala Pro Glu Thr Leu Thr Leu		
340	345	350
Pro Asp Pro Glu Lys Lys Ala Thr Leu Asn Leu Pro Gly Met His Ser		
355	360	365
Ser Asp Lys Pro Cys Arg Pro Lys Ser Glu		
370	375	

<210> 5953
<211> 777
<212> DNA
<213> Homo sapiens

<400> 5953
ttcggcacg aggccggag tcgtaagagg tctccgcgcc gtcctgtt caaaactggtg
60
ggctcgccgc cttggaaaga ggctttccgg cagagatgcc tggagagaat gagaaacagc
120
cgggacagggc tcctaaacag gtaccgccag ctngaaagca gtggggcagg gaatttctcag
180
aacagctttc tagttcaaga ggtgatggaa gaagagtggaa atgctttgca gtcagtggag
240
aattgtccag aagacttggc tcagctggag gagctgtatg acatggctgt gctggaggaa
300
attcaacagg agctgatcaa ccaagagcag tccatcatca gcgagtatga gaagagcttg
360

cagtttgatg aaaagtgtct cagcatcatg ctggctgagt gggaggcaaa cccactcatc
 420
 tgtcctgtat gtacaaagcc tgtgatactt gggctgtat cctctagagc cagcttggac
 480
 tcacatcatt ctaggggtt gaagacaact catccctct gaggagcctt gtacatacaa
 540
 gcctttatt tataacttat tttgtattga aactttaaa caatactgaa gaaaaaaaaa
 600
 ctttccgac atctgttctt ggtctttgt gacgcagggtt gaagggggag gaatagaaaa
 660
 agacaaactg cttggagga gataaaccua tttatgtct atcatgttat acaaaaatct
 720
 agaataata gattgtaca gaaaaaaaaatg ataataaatg agaacacaaa acatata
 777

<210> 5954

<211> 152

<212> PRT

<213> Homo sapiens

<400> 5954
 Phe Arg His Glu Ala Arg Ser Arg Lys Arg Ser Pro Arg Arg Ser Leu
 1 5 10 15
 Tyr Lys Leu Val Gly Ser Pro Pro Trp Lys Glu Ala Phe Arg Gln Arg
 20 25 30
 Cys Leu Glu Arg Met Arg Asn Ser Arg Asp Arg Leu Leu Asn Arg Tyr
 35 40 45
 Arg Gln Leu Xaa Ser Ser Gly Pro Gly Asn Ser Gln Asn Ser Phe Leu
 50 55 60
 Val Gln Glu Val Met Glu Glu Glu Trp Asn Ala Leu Gln Ser Val Glu
 65 70 75 80
 Asn Cys Pro Glu Asp Leu Ala Gln Leu Glu Leu Ile Asp Met Ala
 85 90 95
 Val Leu Glu Glu Ile Gln Gln Glu Leu Ile Asn Gln Glu Gln Ser Ile
 100 105 110
 Ile Ser Glu Tyr Glu Lys Ser Leu Gln Phe Asp Glu Lys Cys Leu Ser
 115 120 125
 Ile Met Leu Ala Glu Trp Glu Ala Asn Pro Leu Ile Cys Pro Val Cys
 130 135 140
 Thr Lys Pro Val Ile Leu Gly Leu
 145 150

<210> 5955

<211> 1459

<212> DNA

<213> Homo sapiens

<400> 5955
 nncaatttggaa ctgcattatac aaacacatgt gctatgtaca tcctcagtgc acctgccagc
 60
 agatatccctg gagggctcat gagtgaattt agtccaagat ttaaagccct gcccccaggt
 120
 gctcagccctg tgatctgtat ccactcagca tgcaacttggg cagatgattt gtctgtgtgc
 180

tacccttccc cccatattac catacatatg cacggcggga ccagcagcga cgtagcagc
240
agcatggccg cgatctatgg gggtagag ggggaggca cacgatccga ggtccttta
300
gtctcagagg atggaaatg cctggcagaa gcagatggac tgagcacaaa ccactggctg
360
atcgccacag acaagtgtgt ggagaggatc aatgagatgg tgaacagggc caaacggaaa
420
gcagggggtgg atccctgtgt accgcgtgega agcttgggcc tatctctgag cggtggggac
480
caggaggacg cggggaggat cctgatcgag gagctgaggg accgatttcc ctacctgagt
540
gaaaagctact taatcaccac cgatgccgcc ggctccatcg ccacagctac accggatgg
600
ggagttgtgc tcatatctgg aacaggctcc aactgcaggg tcatcaaccc tcatggctcc
660
gagagtggtgc gggcggtcg gggccatatg atgggtgatg agggttcage cctctctgt
720
ccctcagcct actggatcgc acaccaagca gtgaaaatag ttttgactc cattgacaac
780
ctagaggcgg ctccctcatga tatcgctac gtcaaacagg ccatgttcca ctatcccag
840
gtgcgcagtc ggcttagggat actcactcac ctgtataggg actttgataa atgcaggtt
900
gctgggtttt gccggaaaat tgcagaaggt gctcagcagg gagacccct ttcccgctat
960
atcttcagga aggctggggaa gatgctgggc agacacatcg tagcagtgtt gcccggatt
1020
gaccgggtct tggccaggg caagattgga ctccccatcc tggcggtgg ctctgtgtgg
1080
aagagctggg agctgtgaa ggaaggttt ctttggcgc tgaccgggg cagagagatc
1140
caggctcaga acttcttc cagttcacc ctgatgaagc tgaggcactc ctccgccttg
1200
ggtggggcca gccttagggc caggcacatc gggcacctcc tccccatgga ctatagcgc
1260
aatgcatttgc ctttctattt ctacacctt tccttagggg ctggtcccggtt ccacccccc
1320
tccaagctca gtggacactg ggtctgaaag gaaggagtct ttgtttctt ttctcccttt
1380
tacaaaaaaca aacatagaag aaaataatg cactttatcc actccccaaa aaaaaaaaaa
1440
aaaaaaaaaa aagtgcacg
1459

<210> 5956
<211> 431
<212> PRT
<213> Homo sapiens

<400> 5956
Xaa Asn Trp Thr Ala Leu Ser Asn Thr Cys Ala Met Tyr Ile Leu Ser
1 5 10 15
Ala Pro Ala Ser Arg Tyr Pro Gly Gly Leu Met Ser Glu Phe Ser Pro

20	25	30
Arg Phe Lys Ala Leu Pro Pro Gly	Ala Gln Pro Val Ile Cys Ile His	
35	40	45
Ser Ala Cys Thr Trp Ala Asp Asp	Leu Ser Val Cys Tyr Pro Ser Pro	
50	55	60
His Ile Thr Ile His Met His Gly	Gly Thr Ser Ser Asp Gly Ser Ser	
65	70	75
Ser Met Ala Ala Ile Tyr Gly	Gly Val Glu Gly Gly Thr Arg Ser	
85	90	95
Glu Val Leu Leu Val Ser Glu Asp	Gly Lys Ile Leu Ala Glu Ala Asp	
100	105	110
Gly Leu Ser Thr Asn His Trp	Leu Ile Gly Thr Asp Lys Cys Val Glu	
115	120	125
Arg Ile Asn Glu Met Val Asn	Arg Ala Lys Arg Lys Ala Gly Val Asp	
130	135	140
Pro Leu Val Pro Leu Arg Ser	Leu Gly Leu Ser Leu Ser Gly Gly Asp	
145	150	155
Gln Glu Asp Ala Gly Arg Ile	Leu Ile Glu Glu Leu Arg Asp Arg Phe	
165	170	175
Pro Tyr Leu Ser Glu Ser Tyr	Leu Ile Thr Thr Asp Ala Ala Gly Ser	
180	185	190
Ile Ala Thr Ala Thr Pro Asp	Gly Gly Val Val Leu Ile Ser Gly Thr	
195	200	205
Gly Ser Asn Cys Arg Leu Ile Asn	Pro Asp Gly Ser Glu Ser Gly Cys	
210	215	220
Gly Gly Trp Gly His Met Met	Gly Asp Glu Gly Ser Ala Leu Ser Ala	
225	230	235
Pro Ser Ala Tyr Trp Ile Ala His	Gln Ala Val Lys Ile Val Phe Asp	
245	250	255
Ser Ile Asp Asn Leu Glu Ala	Ala Pro His Asp Ile Gly Tyr Val Lys	
260	265	270
Gln Ala Met Phe His Tyr Phe	Gln Val Pro Asp Arg Leu Gly Ile Leu	
275	280	285
Thr His Leu Tyr Arg Asp Phe	Asp Lys Cys Arg Phe Ala Gly Phe Cys	
290	295	300
Arg Lys Ile Ala Glu Ala Gln	Gln Gly Asp Pro Leu Ser Arg Tyr	
305	310	315
Ile Phe Arg Lys Ala Gly Glu	Met Leu Gly Arg His Ile Val Ala Val	
325	330	335
Leu Pro Glu Ile Asp Pro Val	Leu Phe Gln Gly Lys Ile Gly Leu Pro	
340	345	350
Ile Leu Cys Val Gly Ser Val	Trp Lys Ser Trp Glu Leu Leu Lys Glu	
355	360	365
Gly Phe Leu Leu Ala Leu	Thr Gln Gly Arg Glu Ile Gln Ala Gln Asn	
370	375	380
Phe Phe Ser Ser Phe Thr	Leu Met Lys Leu Arg His Ser Ser Ala Leu	
385	390	395
Gly Gly Ala Ser Leu Gly Ala Arg	His Ile Gly His Leu Leu Pro Met	
405	410	415
Asp Tyr Ser Ala Asn Ala Ile	Ala Phe Tyr Ser Tyr Thr Phe Ser	
420	425	430

<210> 5957
<211> 855

<212> DNA
<213> Homo sapiens

<400> 5957
atggcggagt cgttgaggtc tccgcgcgc tccctgtaca aactggtggg ctcgcgcct
60
tggaaagagg ctttccggca gagatgcctg gagagaatga gaaacagccg ggacaggctc
120
ctaaacaggt accgccaggc tggaagcagt gggccaggga attctcagaa cagtttcta
180
gttcaagagg tcatggaaaga agagtggaat gctttgcagt cagtggagaa ttgtccagaa
240
gacttggctc agctggagga gctgatagac atggctgtc tggagggaaat tcaacaggag
300
360
ctgatcaacc aaggcctgtg atacttggc tttgtatccc tagagccagc ttggactcac
420
atcattctat ggggttgaag acaactcatt ccctctgagg agccttgtac atacaaggct
480
tttattata acttattttt tattgaaact tttaaacaat actgaagaaa aaaaaacttt
540
tccgacatct gttttggc ttttgaca caggttgaag ggggaggaat agaaaaagac
600
aaactgcctt ggaggagata aaccaatttt atgtctatca tgttatacaa aaatctagaa
660
ataatagatt tgtacagaaa aaaatgataa taaatgagag cacaaaacat ataattaaa
720
tctggatattt tttccccat gatatttaga tgataatcat ttcaaagcac atgtctagct
780
tcagagtagg atttgttcac tggccaaagc ctgccatgaa actatggctt tcagcatctg
840
tctgctctac tggctcttga caaaactctt gaggtcttca agaaaagtaa tgtactcctg
855
gtgctccagg gctgt

<210> 5958
<211> 106
<212> PRT
<213> Homo sapiens

<400> 5958
Met Ala Glu Ser Leu Arg Ser Pro Arg Arg Ser Leu Tyr Lys Leu Val
1 5 10 15
Gly Ser Pro Pro Trp Lys Glu Ala Phe Arg Gln Arg Cys Leu Glu Arg
20 25 30
Met Arg Asn Ser Arg Asp Arg Leu Leu Asn Arg Tyr Arg Gln Ala Gly
35 40 45
Ser Ser Gly Pro Gly Asn Ser Gln Asn Ser Phe Leu Val Gln Glu Val
50 55 60
Met Glu Glu Glu Trp Asn Ala Leu Gln Ser Val Glu Asn Cys Pro Glu
65 70 75 80
Asp Leu Ala Gln Leu Glu Leu Ile Asp Met Ala Val Leu Glu Glu
85 90 95
Ile Gln Gln Glu Leu Ile Asn Gln Gly Leu

100

105

<210> 5959
<211> 830
<212> DNA
<213> Homo sapiens

<400> 5959
gtgagaaga ttcagccat attagacaaa gtaggcttggtaaacgc aaggctgaa
60
tttctcggg gccttatgtat gctggttttt gagaagtttag ccactgatat tccttgctg
120
ctatatgtatg acaatctttt ctgtcattttt gtggatgaag tactcttggtt tgaaaggag
180
ctcacagtgttcatggcta tcctggcaact ttgtctaatt gtatgcataat tctatcagag
240
gaaacctgttttcaaaagatgttggacggggg gagagaaaaat ttgtcttca aaaaatggac
300
tcaatgtttt cctcagaagc tgcctgggta tcgcaatata aggatatac acgttgttgc
360
gaaatgaaag ttccagatgttgcagaaaact ttatgactc tactcttgggt tataactgac
420
agtataaaaa atcttccccac agcttcccgaaagttcagt tcctggagtt acagaaggac
480
tttagtagatg atttttagat acgattaaca caagtgtatgaaagaagagac tagagcttcc
540
cttggcttgcatactgtgc aatttttaat gctgtgaact acatctcaac agtactagca
600
gattgggctg acaatgtttt ctttctacaa ctcaacagg ctgcactggaa ggtgtttgca
660
gagaataata ctctgagtaa attgcagcttggacagcttag cctctatggaa gagctctgtc
720
tttgatgaca tgattnaacctttagaacgtttaaagcatgtatgttgcacccgtcaagta
780
gaccacgtttttagagaagt taaagatgtgttgcacccgtcaagtaaaaaaaaga
830

<210> 5960
<211> 251
<212> PRT
<213> Homo sapiens

<400> 5960
Met Met Leu Val Leu Glu Lys Leu Ala Thr Asp Ile Pro Cys Leu Leu
1 5 10 15
Tyr Asp Asp Asn Leu Phe Cys His Leu Val Asp Glu Val Leu Leu Phe
20 25 30
Glu Arg Glu Leu His Ser Val His Gly Tyr Pro Gly Thr Phe Ala Asn
35 40 45
Cys Met His Ile Leu Ser Glu Glu Thr Cys Phe Gln Arg Trp Val Thr
50 55 60
Gly Glu Arg Lys Phe Ala Leu Gln Lys Met Asp Ser Met Leu Ser Ser
65 70 75 80
Glu Ala Ala Trp Val Ser Gln Tyr Lys Asp Ile Thr Asp Val Asp Glu

85	90	95
Met Lys Val Pro Asp Cys Ala Glu Thr Phe Met Thr Leu Leu Leu Val		
100	105	110
Ile Thr Asp Arg Tyr Lys Asn Leu Pro Thr Ala Ser Arg Lys Leu Gln		
115	120	125
Phe Leu Glu Leu Gln Lys Asp Leu Val Asp Asp Phe Arg Ile Arg Leu		
130	135	140
Thr Gln Val Met Lys Glu Glu Thr Arg Ala Ser Leu Gly Phe Arg Tyr		
145	150	155
Cys Ala Ile Leu Asn Ala Val Asn Tyr Ile Ser Thr Val Leu Ala Asp		
165	170	175
Trp Ala Asp Asn Val Phe Phe Leu Gln Leu Gln Ala Ala Leu Glu		
180	185	190
Val Phe Ala Glu Asn Asn Thr Leu Ser Lys Leu Gln Leu Gly Gln Leu		
195	200	205
Ala Ser Met Glu Ser Ser Val Phe Asp Asp Met Ile Asn Leu Leu Glu		
210	215	220
Arg Leu Lys His Asp Met Leu Thr Arg Gln Val Asp His Val Phe Arg		
225	230	235
Glu Val Lys Asp Ala Ala Lys Leu Tyr Lys Lys		
245	250	

<210> 5961

<211> 585

<212> DNA

<213> Homo sapiens

<400> 5961

```

gctcggggct gcagtgcgt ctaatgggtgc ctgtgaataa ccactgcatt cagccctgggc
60
aatgaaggcga gaccccgctc ctaaaaaaaaaa aattgaggggg tcaaagagga tgccaaactt
120
aatttagagac tgagacaggg cagggtgccg aggtgtctgc atgcgtttca tgtggatgcc
180
cgtgtctatt ctggcctgtc cttggggcccc ctccccactc agccctggct gatgagaatg
240
ggacagggac tcccttcctcg tgcctctgtc cagcgtcggc ccaggaggta gcagagcagt
300
atatgcacat ctgggtgtgc cttccctgtcat gtccccacac atctgtcatc cctgtctttg
360
cacacccatcg tgcactccgc atgtttgtgt ctttatgtgt cccatgcatg ctccccatct
420
gaccttgcgt gttctcgcgt gtctgtgtgc ggccagtcct gccttcactc tctcatgggt
480
ggccctggca gcatgtctgg ctccccagca ggtgagctca ggagataaga tggaaagatgc
540
aacagccaat ggtcaagaag actccaaggc cccagatggg tccac
585

```

<210> 5962

<211> 114

<212> PRT

<213> Homo sapiens

<400> 5962
 Met Cys Gly Asp Met Gln Glu Gly Thr Pro Arg Cys Ala Tyr Thr Ala
 1 5 10 15
 Leu Leu Pro Pro Gly Pro Thr Leu His Arg Asp Thr Arg Arg Glu Ser
 20 25 30
 Leu Ser His Ser His Gln Pro Gly Leu Ser Gly Glu Gly Ala Gln Glu
 35 40 45
 Gln Ala Arg Ile Asp Thr Gly Ile His Met Lys Arg Met Gln Thr Pro
 50 55 60
 Arg His Pro Ala Leu Ser Gln Ser Leu Ile Lys Phe Gly Ile Leu Phe
 65 70 75 80
 Asp Pro Ser Ile Phe Phe Leu Glu Thr Gly Ser Arg Phe Ile Ala Gln
 85 90 95
 Ala Glu Cys Ser Gly Tyr Ser Gln Ala Pro Leu Glu Arg Thr Ala Ala
 100 105 110
 Pro Ser

<210> 5963
<211> 1288
<212> DNA
<213> Homo sapiens

<400> 5963
 atggggctgt ttggaaagac ccaggagaag ccgcggaaag aactggtcaa tgagtggta
 60
 ttgaagataa gaaaggaaat gagagtgtt gacaggcaaa taagggatat ccaaagagaa
 120
 gaagaaaaag tgaaacgatc tgtgaaagat gctgccaaga agggccagaa ggatgtctgc
 180
 atagttctgg ccaaggagat gatcaggatca aggaaggctg tgagcaagct gtatgcattcc
 240
 aaagcacaca tgaactcagt gtcatgggg atgaagaacc agctcgccgt cttgcgagtg
 300
 360
 gctggttccc tgcagaagag cacagaagtg atgaaggcca tgcaaagtct tgtgaagatt
 420
 ccagagattc aggccaccat gagggagttg tccaaagaaa tcatgaaggc tgggatcata
 480
 gaggagatgt tagaggacac ttttggaaagc atggacgatc aggaagaaat ggaggaagaa
 540
 gcagaaatgg aaattgacag aattctcttt gaaattacag cagggccctt gggcaaagca
 600
 cccagtaaag tgactgatgc ctttcagag ccagaacctc caggagcgat ggctgcctca
 660
 gaggatgagg aggaggagga agaggtctg gaggccatgc agtccccgtt ggccacactc
 720
 cgtagctagg ggctgcctac cccgctgggt gtgcacacac tcctctcaag agctgcatt
 780
 ttatgtgtct cttgcactac acctctgttg tgaggactac cattttggag aaggttctgt
 840
 ttgtctcttt tcattctctg cccaggtttt gggatcgcaa agggattttt ctataaaag
 900
 tggcataaat aaatgcata tttttaggag tatagacaga tatatcttat tgtggggagg

gaaaaagaaat ccatctgctc atgaagcaact tctgaaaata taggtgattt cctgaatgtc
 960
 gaagactcta cttttgtcta taaaacacta tataaatgaa ttttaataaa tttttgcttc
 1020
 agcacttggc cccattgttag attgcctgt gcagtaaact ttcaagggtgt cagctcccc
 1080
 agattgcttc atttgcgtgg tggaaaga gttgctatgg ccaggcatat gggatttgg
 1140
 agctcagcag aagtgacttc tgctctgtgg ttgtgttcc cggcttca cagacatgg
 1200
 atggcagcca ttctttatc tatttaacca agaggatgtt gggaaattgtt gctgttgc
 1260
 ctgttggctg gtggctgcat tatgtccg
 1288

<210> 5964

<211> 222

<212> PRT

<213> Homo sapiens

<400> 5964
 Met Gly Leu Phe Gly Lys Thr Gln Glu Lys Pro Pro Lys Glu Leu Val
 1 5 10 15
 Asn Glu Trp Ser Leu Lys Ile Arg Lys Glu Met Arg Val Val Asp Arg
 20 25 30
 Gln Ile Arg Asp Ile Gln Arg Glu Glu Glu Lys Val Lys Arg Ser Val
 35 40 45
 Lys Asp Ala Ala Lys Lys Gly Gln Lys Asp Val Cys Ile Val Leu Ala
 50 55 60
 Lys Glu Met Ile Arg Ser Arg Lys Ala Val Ser Lys Leu Tyr Ala Ser
 65 70 75 80
 Lys Ala His Met Asn Ser Val Leu Met Gly Met Lys Asn Gln Leu Ala
 85 90 95
 Val Leu Arg Val Ala Gly Ser Leu Gln Lys Ser Thr Glu Val Met Lys
 100 105 110
 Ala Met Gln Ser Leu Val Lys Ile Pro Glu Ile Gln Ala Thr Met Arg
 115 120 125
 Glu Leu Ser Lys Glu Met Met Lys Ala Gly Ile Ile Glu Glu Met Leu
 130 135 140
 Glu Asp Thr Phe Glu Ser Met Asp Asp Gln Glu Glu Met Glu Glu
 145 150 155 160
 Ala Glu Met Glu Ile Asp Arg Ile Leu Phe Glu Ile Thr Ala Gly Ala
 165 170 175
 Leu Gly Lys Ala Pro Ser Lys Val Thr Asp Ala Leu Pro Glu Pro Glu
 180 185 190
 Pro Pro Gly Ala Met Ala Ala Ser Glu Asp Glu Glu Glu Glu Glu
 195 200 205
 Ala Leu Glu Ala Met Gln Ser Arg Leu Ala Thr Leu Arg Ser
 210 215 220

<210> 5965

<211> 1011

<212> DNA

<213> Homo sapiens

<400> 5965
 gggAACGGGT cttgtggctt tgtctccgc gaagaggaga tggcggagtc gttgaggct
 60
 ccgcggcgct ccctgtacaa actgggtggc tcgccgcctt ggaaagaggc ttcccgccag
 120
 agatgcctgg agagaatgag aaacagccgg gacaggctcc taaacaggta ccgcaggct
 180
 ggaagcagtg ggccaggaa ttctcagaac agctttctag ttcaagagggt gatgaaagaa
 240
 gagtggaatg ctttcagnn tcagtggnn aattgtccag aagacttggc tcagttggag
 300
 gagctgatag acatggctgt gctggaggaa attcaacagg agctgatcaa ccaagagcag
 360
 tccatcatca gcgagtgatga gaagagcttg cagtttgcgt aaaagtgtct cagcatcatg
 420
 ctggctgagt gggaggcaaa cccactcatc tgccctgtat gtacaaagta caacctgaga
 480
 atcacaagcg gtgtgggtgt gtgtcagtgt ggccctgtcca tcccatactca ttcttctgag
 540
 ttgacagagc agaagctcg tgccctgtta gaggtagta taaatgagca cagtgcacat
 600
 tgcctccaca cacctgaatt ttcagtcact ggaggaacag aagaaaagtc cagtcttc
 660
 atgagctgtc tggcctgtga tacttggct gtgatcctct agagccagct tggactcaca
 720
 tcattctatg ggggtgaaga caactcattc cctctgagga gccttgtaca tacaagcctt
 780
 ttatattataa cttatttgtt attgaaaactt ttaaacaata ctgaagaaaa aaaaactttt
 840
 ccgacatctg ttcttggct tttgtacgc aggttgaagg gggaggaata gaaaaagaca
 900
 aactgccttg gaggagataa accaattttt tgccttatcat gttatacaaaa aatctagaaaa
 960
 taatagattt gtacagaaaa aatgataat aatgagaac acaaaacata t
 1011

<210> 5965
 <211> 233
 <212> PRT
 <213> Homo sapiens

<400> 5966
 Gly Asn Gly Ser Cys Gly Phe Val Ser Arg Glu Glu Glu Met Ala Glu
 1 5 10 15
 Ser Leu Arg Ser Pro Arg Arg Ser Leu Tyr Lys Leu Val Gly Ser Pro
 20 25 30
 Pro Trp Lys Glu Ala Phe Arg Gln Arg Cys Leu Glu Arg Met Arg Asn
 35 40 45
 Ser Arg Asp Arg Leu Leu Asn Arg Tyr Arg Gln Ala Gly Ser Ser Gly
 50 55 60
 Pro Gly Asn Ser Gln Asn Ser Phe Leu Val Gln Glu Val Met Glu Glu
 65 70 75 80
 Glu Trp Asn Ala Leu Gln Xaa Gln Trp Xaa Asn Cys Pro Glu Asp Leu

85	90	95
Ala Gln Leu Glu Glu Leu Ile Asp Met Ala Val Leu Glu Glu Ile Gln		
100	105	110
Gln Glu Leu Ile Asn Gln Glu Gln Ser Ile Ile Ser Glu Tyr Glu Lys		
115	120	125
Ser Leu Gln Phe Asp Glu Lys Cys Leu Ser Ile Met Leu Ala Glu Trp		
130	135	140
Glu Ala Asn Pro Leu Ile Cys Pro Val Cys Thr Lys Tyr Asn Leu Arg		
145	150	155
Ile Thr Ser Gly Val Val Val Cys Gln Cys Gly Leu Ser Ile Pro Ser		
165	170	175
His Ser Ser Glu Leu Thr Glu Gln Lys Leu Arg Ala Cys Leu Glu Gly		
180	185	190
Ser Ile Asn Glu His Ser Ala His Cys Pro His Thr Pro Glu Phe Ser		
195	200	205
Val Thr Gly Gly Thr Glu Glu Lys Ser Ser Leu Leu Met Ser Cys Leu		
210	215	220
Ala Cys Asp Thr Trp Ala Val Ile Leu		
225	230	

<210> 5967

<211> 1806

<212> DNA

<213> Homo sapiens

<400> 5967

natttttaat ctctttaaa aaaactcaat ttttttttc acttactgat taaatcttga
 60
 gtctttgcc tccagtggat cagtgatccc tcagcagaaa atcttcctc tccattgctt
 120
 tgtgcttttg ttgctaggca gtcaacagca gggctactaa agcacttcta atttagacaa
 180
 atctttcct ctatttaga aatggatttc aatgggtttc agtttggatc cagaaaccta
 240
 ctgaaagtga gcatgtttt gaacacatta acaccgaagt tctacgtggc cctaacaggc
 300
 acttccctcac taatatcagg gcttattttt atatggat ggtggatc tcgcaaatac
 360
 ggaacttcat tcattgaaca agtctcagta agccacttgc gcccccttct gggaggggtt
 420
 gacaacaact cttccaacaa ttcttaattcc agtaacgggg actcagattc caataggcaa
 480
 aqgtgtctcag aatgcaaagt atggcggaaat ccactaaatt tatttagggg tgctgaatac
 540
 aatcggtata cttgggtgac aggacgagag cctcttactt actatgacat gaatctctc
 600
 gcccacacc accagacatt cttaacttgt gactcggacc atctgcgtcc cgccatgc
 660
 ataatgcaga aagcctggag agagagaaac ccccaagcta ggatttctgc agctcatgaa
 720
 gccttggaga taaatgagac gagacaccaa tgtcttggtg tacatcaaaa gaaggctagc
 780
 aatgtgtgcc agaagactcg ggaggaccag ggaagcaaag cccttctgga actacaagca
 840

tatgctgatg ttcaaggcagt cttagcaaag tatgatgata taagcttacc aaagtcagca
 900
 acaaatatgct acacagctgc tttgctcaaa gcaagagctg tctctgacaa attctctcct
 960
 gaggctgcat ctcggcgaaa gctgagcaca gcagagatga atgcagtaga ggccattcat
 1020
 agagctgtgg aattcaatcc tcattgtgccaa aaatacctac tagaaatgaa aagcttaatc
 1080
 ctaccccccag aacatatctt gaagagagga gacagtgaag caatagcata tgcattttt
 1140
 catcttgacactggaagag agtggaaagggg gctttgaatc ttttgcattt tacgtggaa
 1200
 ggcacttttc ggatgatccc ttatccctt gaaaaggggc acctatTTTA tccttaccca
 1260
 atctgtacag aaacagcaga ccgagagctg ctccatctt tccatgaagt ctcagttac
 1320
 ccaaagaagg agttccctt ctttattctc tttactgctg gattatgttc ctacacagcc
 1380
 atgctggccc tcctgacaca tcagttcccg gaacttatgg gggcttcgc aaaagctgtg
 1440
 agtgtttgcc tagagggagg ctttggggaa tggatggggaa aagccaaagg cataaaagca
 1500
 gcgtgagaga aatgggttg ctttacagaa atgggtacga gcctgcaaag atcattgctc
 1560
 accatTTTAAAT tttcatgatc gtcaatggaa tcaaaggcatt aagggtcaaa tgagaaagt
 1620
 caggttggta ctgcatgcct tgcctcattt cacaacaaat tcttagcagt ttccaaaaaa
 1680
 tgcaggaggt ccaaaggat ggaatgattt agggaaatctt agcaaatgaa aatgtgtgg
 1740
 aagttaatcg gtttctgta aattgaatga cattatttcc aatcggttggaa tattgtgggt
 1800
 ctttcc
 1806

<210> 5968
 <211> 434
 <212> PRT
 <213> Homo sapiens

<400> 5968
 Met Asp Phe Asn Gly Val Gln Phe Val Cys Arg Asn Leu Leu Lys Val
 1 5 10 15
 Ser Met Phe Leu Asn Thr Leu Thr Pro Lys Phe Tyr Val Ala Leu Thr
 20 25 30
 Gly Thr Ser Ser Leu Ile Ser Gly Leu Ile Leu Ile Phe Glu Trp Trp
 35 40 45
 Tyr Phe Arg Lys Tyr Gly Thr Ser Phe Ile Glu Gln Val Ser Val Ser
 50 55 60
 His Leu Arg Pro Leu Leu Gly Gly Val Asp Asn Asn Ser Ser Asn Asn
 65 70 75 80
 Ser Asn Ser Ser Asn Gly Asp Ser Asp Ser Asn Arg Gln Ser Val Ser
 85 90 95
 Glu Cys Lys Val Trp Arg Asn Pro Leu Asn Leu Phe Arg Gly Ala Glu

100	105	110
Tyr Asn Arg Tyr Thr Trp Val Thr Gly Arg Glu Pro Leu Thr Tyr Tyr		
115	120	125
Asp Met Asn Leu Ser Ala Gln Asp His Gln Thr Phe Phe Thr Cys Asp		
130	135	140
Ser Asp His Leu Arg Pro Ala Asp Ala Ile Met Gln Lys Ala Trp Arg		
145	150	155
Glu Arg Asn Pro Gln Ala Arg Ile Ser Ala Ala His Glu Ala Leu Glu		
165	170	175
Ile Asn Glu Thr Arg His Gln Cys Leu Gly Val His Gln Lys Lys Ala		
180	185	190
Ser Asn Val Cys Gln Lys Thr Arg Glu Asp Gln Gly Ser Lys Ala Leu		
195	200	205
Leu Glu Leu Gln Ala Tyr Ala Asp Val Gln Ala Val Leu Ala Lys Tyr		
210	215	220
Asp Asp Ile Ser Leu Pro Lys Ser Ala Thr Ile Cys Tyr Thr Ala Ala		
225	230	235
Leu Leu Lys Ala Arg Ala Val Ser Asp Lys Phe Ser Pro Glu Ala Ala		
245	250	255
Ser Arg Arg Gly Leu Ser Thr Ala Glu Met Asn Ala Val Glu Ala Ile		
260	265	270
His Arg Ala Val Glu Phe Asn Pro His Val Pro Lys Tyr Leu Leu Glu		
275	280	285
Met Lys Ser Leu Ile Leu Pro Pro Glu His Ile Leu Lys Arg Gly Asp		
290	295	300
Ser Glu Ala Ile Ala Tyr Ala Phe Phe His Leu Ala His Trp Lys Arg		
305	310	315
Val Glu Gly Ala Leu Asn Leu Leu His Cys Thr Trp Glu Gly Thr Phe		
325	330	335
Arg Met Ile Pro Tyr Pro Leu Glu Lys Gly His Leu Phe Tyr Pro Tyr		
340	345	350
Pro Ile Cys Thr Glu Thr Ala Asp Arg Glu Leu Leu Pro Ser Phe His		
355	360	365
Glu Val Ser Val Tyr Pro Lys Lys Glu Leu Pro Phe Phe Ile Leu Phe		
370	375	380
Thr Ala Gly Leu Cys Ser Phe Thr Ala Met Leu Ala Leu Leu Thr His		
385	390	395
Gln Phe Pro Glu Leu Met Gly Val Phe Ala Lys Ala Val Ser Val Cys		
405	410	415
Leu Glu Gly Leu Gly Glu Trp Met Gly Lys Ala Lys Gly Ile Lys		
420	425	430
Ala Ala		

<210> 5969
<211> 429
<212> DNA
<213> Homo sapiens

<400> 5969
cggccgccccgttgtgtgacgt cagggagctg caggcccagg aagccttgca gaacggccag
60 ctggggcgccgg gggaaagggtt cccggatctg cagcctgggg tcttggccag ccaggccatg
120

attgagaaga tcctgagcga ggaccccccgg tggcaagatg ccaacttcgt gctgggcagc
 180
 tacaagacgg agcagtcccc gaagccgcca cgcctgtgcc gccagggtca tgctgtcccc
 240
 cactaccaca atagccggga caggccgcgc aaccccccgc gttccagta caggtccacg
 300
 ccctgccccca gcgtgaagca cggggatgag tggggggaaac cctcacgctg cgatggcgcc
 360
 gacggctgcc agtattgccca ctccgcacg gagcagcagt tccatccccga gatctacaaa
 420
 tctacaaaa
 429

<210> 5970
 <211> 143
 <212> PRT
 <213> Homo sapiens

<400> 5970
 Arg Pro Pro Val Cys Asp Val Arg Glu Leu Gln Ala Gln Glu Ala Leu
 1 5 10 15
 Gln Asn Gly Gln Leu Gly Gly Glu Gly Val Pro Asp Leu Gln Pro
 20 25 30
 Gly Val Leu Ala Ser Gln Ala Met Ile Glu Lys Ile Leu Ser Glu Asp
 35 40 45
 Pro Arg Trp Gln Asp Ala Asn Phe Val Leu Gly Ser Tyr Lys Thr Glu
 50 55 60
 Gln Cys Pro Lys Pro Pro Arg Leu Cys Arg Gln Gly Tyr Ala Cys Pro
 65 70 75 80
 His Tyr His Asn Ser Arg Asp Arg Arg Asn Pro Arg Arg Phe Gln
 85 90 95
 Tyr Arg Ser Thr Pro Cys Pro Ser Val Lys His Gly Asp Glu Trp Gly
 100 105 110
 Glu Pro Ser Arg Cys Asp Gly Gly Asp Gly Cys Gln Tyr Cys His Ser
 115 120 125
 Arg Thr Glu Gln Gln Phe His Pro Glu Ile Tyr Lys Ser Thr Lys
 130 135 140

<210> 5971
 <211> 565
 <212> DNA
 <213> Homo sapiens

<400> 5971
 gcgcccccatttcggagagt tccctcagcc ccaggactct ggatgttagcc gttttcatgc
 60
 tgtgaatagc acagtcttcc ctttcatgtg gcactgaagt taaaatgcat agagctttt
 120
 catgtccctt aggtcagcta agcccacatc agtgtccaaa taggcaacat ccctattta
 180
 tagatggta tccccatttt agagatactt ccctttata tccccatttt acaggtgaag
 240
 gaattgaggc acagaaggtt aggtcacttc tgcaagatga ccagctgaac caaaattca
 300

gggcttcaaa caccaaatgt gttcccttgc ctccgtttc ccacttgctt cccagaggct
 360
 cagaagtag cctctggcca ctgagcatcc tcccgcccac tttgctccct gcctcctgat
 420
 cccaggactg tggccgtgga tgccagagcg aggatgtgaa tcctgttggg ttctgaagcc
 480
 cacacctacc ctcagecctt aagctgcagc aatggctgct tccagatgag cacaccctcg
 540
 gggtgtcangc gtccagtgtc acgat
 565

<210> 5972

<211> 104

<212> PRT

<213> Homo sapiens

<400> 5972
 Met His Arg Ala Leu Ser Cys Pro Leu Gly Gln Leu Ser Pro His Gln
 1 5 10 15
 Cys Pro Asn Arg Gln His Pro Tyr Phe Ile Asp Gly His Pro His Phe
 20 25 30
 Arg Asp Ser Ser Leu Leu Tyr Pro His Phe Thr Gly Glu Gly Ile Glu
 35 40 45
 Ala Gln Lys Val Arg Ser Leu Leu Gln Asp Asp Gln Leu Asn Gln Asn
 50 55 60
 Phe Arg Ala Ser Asn Thr Lys Cys Val Pro Leu Ser Ser Val Ser His
 65 70 75 80
 Leu Leu Pro Arg Gly Ser Ala Ser Ser Leu Trp Pro Leu Ser Ile Leu
 85 90 95
 Pro Pro Thr Leu Leu Pro Ala Ser
 100

<210> 5973

<211> 797

<212> DNA

<213> Homo sapiens

<400> 5973
 gggcccaagg ggccgcttcc caacactggc cgcagtcatt gttggataaa cggctagaga
 60
 cgccccagtga gtttagcatgg agggcagtgg gaccggaaaa agacgtggaa aagctgcgaa
 120
 aacgagccctt cgaatcatgg acgcgcgggc ccagtcctc ctccgagttc ctatccgg
 180
 gcccgtactc acatccgggg ccctcactca catccggac cctcatccgg ggctctcacc
 240
 cacatccggg accctcatgc ctggcggag gagggggggc ctttcattcg ggacctctgc
 300
 actccgtcgcc cgaaagtgcc accgagaagc gccggctcg gggctgtcta cagcggcccg
 360
 ggagaggctg tggtaggtca gagegcgagt gtgttaggtga caggacagcg gccagggcccg
 420
 cccctccctt cggtgagta cccggaaagccg ttttgggtc gcagcgggggt ggcagttgt
 480

tttgccttca cgggagtaga aggaggcggc gtccgcccgcg gccgacggta gttcgcttcc
 540
 ccgagagtgc gcggaggccc gggtgcgagg agggcctgtt tctcttcagc cctggttcat
 600
 tcacacctcgcg gaccgaggcgc ccgcgcgtcag gagccggcga ccgtgccctg gtgcgagctg
 660
 gtctgtatgt cctcactggt cctttggga ctttgccttg gcctcggtgc tctcaggatt
 720
 ccggaaaag gcccgtctag ctggtctgag tttagcgaagg gcctgacccc aaaagtggat
 780
 ttccctcggtt ccgaatt
 797

<210> 5974
 <211> 107
 <212> PRT
 <213> Homo sapiens

<400> 5974
 Met Glu Gly Ser Gly Thr Gly Lys Arg Arg Gly Lys Ala Ala Lys Thr
 1 5 10 15
 Ser Leu Arg Ile Met Asp Ala Arg Ala Gln Leu Leu Arg Val Pro
 20 25 30
 His Pro Gly Pro Ser Leu Thr Ser Gly Ala Leu Thr His Ile Arg Asp
 35 40 45
 Pro His Pro Gly Leu Ser Pro Thr Ser Gly Thr Leu Met Pro Gly Arg
 50 55 60
 Arg Arg Gly Gly Pro Ser Phe Gly Thr Pro Ala Leu Arg Arg Arg Lys
 65 70 75 80
 Cys His Arg Glu Ala Pro Ala Ser Gly Leu Ser Thr Ala Ala Arg Glu
 85 90 95
 Arg Leu Trp Trp Pro Arg Ala Arg Val Cys Arg
 100 105

<210> 5975
 <211> 2175
 <212> DNA
 <213> Homo sapiens

<400> 5975
 nntcaggtca ccacatacta ttatgttggg tttgcataatt tgatgatgct tcgttaccag
 60
 gatgccatcc gggtcttcgc caacatccctc ctctacatcc agaggaccaa gagcatgttc
 120
 cagagggcca cgtacaagta tgagatgatt aacaaggcaga atgagcagat gcatgcgtg
 180
 ctggccattg ccctcacatg gtacccatg cgtatcgatg agagcattca cctccagctg
 240
 cgggagaaat atggggacaa gatgttgcgc atgtcttatac ccgctgtatga ttatgagtct
 300
 gaggcggctt atgaccctta cgcttateccc agegactatg atatgcacac aggagatcca
 360
 aagcaggacc ttgtttatga acgtcaagtat gaacagcaaa cctatcaggt gatccctgag
 420

gtgatcaaaa acttcatcca gtattccac aaaactgtct cagatttgat tgaccagaaaa
480
gtgtatgagc tacaggccag tcgtgtctcc agtcatgtca ttgaccagaa ggtgtatgag
540
atccaggaca tctatgagaa cagctggacc aagctgactg aaagattctt caagaataca
600
ccttggcccg aggctgaagc cattgtcca caggttggca atgatgctgt ctccctgatt
660
ttatacaag aattatacta caggcacata tatgccaaag tcagtgggg accttccttg
720
gagcagaggt ttgaatccta ttacaactac tgcaatctct tcaactacat tcttaatgcc
780
gatggctctg ctccccctga actacccaaac cagtggtctt gggatattat cgatgagttc
840
atctaccagt ttcaagtatt cagtcagttac cgctgttaaga ctgccaagaa gtcagaggag
900
gagattgact ttcttcgttc caatccaaa atctggaatg ttcatagtgt cctcaatgtc
960
cttcattccc tggtagacaa atccaacatc aaccgacagt tggaggtata cacaagcgaa
1020
ggtgaccctg agagtgtggc tggggagttat gggcgccact ccctctacaa aatgcttggt
1080
tacttcagcc tggtcgggt tctccgcctg cactccctgt taggagatta ctaccaggcc
1140
atcaagggtgc tggagaacat cgaactgaac aagaagagta tgtatccccg tgtgccagag
1200
tgccaggta ccacatacta ttatgttggg tttgcatttt tgatgtgcg tcgttaccag
1260
gatgccatcc gggcttcgc caacatcctc ctctacatcc agaggaccaa gagcatgttc
1320
cagaggacca cgtacaagta tgagatgatt aacaagcaga atgagcagat gcatgcgt
1380
ctggccattt ccctcacatgtt gttttttttt cgtatcgatg agagcattca cctccagctg
1440
cgggagaaat atggggacaa gatgttgcgc atgcagaaag gtgacccaca agtctatgaa
1500
gaactttca gttactcctg ccccaagtcc ctgtcgccctg tagtgcccaa ctatgataat
1560
gtgcacccca actaccacaa agagcccttc ctgcagcagc tgaagggttt ttctgtatgaa
1620
gtacagcagc agggccagct ttcaaccatc cgcagttcc tgaagctcta caccaccatg
1680
cctgtggcca agctggctgg ttccctggac ctacacagac agggatccg gatccagctt
1740
cttgcttca aacacaagat gaagaacctc gtgtggacca gcggtatctc agccctggat
1800
ggtaatttc agtcagcctc agaggttgc ttctacattt ataaggacat gatccacatc
1860
gcggacacca aggtcgccag gcgttatggg gatttcttca tccgtcagat ccacaaattt
1920
gaggagcttta atcgaaccctt gaagaagatg ggacagagac cttgtatgata ttccacacaca
1980
ttcaggaacc ttttttgcg tattataggc aggaagtgtt tttgttcccg tgaaaccttt
2040

accttagatca gccatcagcc tgtcaactca gtaacaagt taaggaccga agtgttcaa
 2100
 gtggatctca gtaaaggatc tttggagcca gaaaaaaaaaaa aaaaaaaaaaaa aaaaaaaaaaaa
 2160
 aaaaaaaaaaaa aaaaa
 2175

<210> 5976
 <211> 564
 <212> PRT
 <213> Homo sapiens

<400> 5976
 Met Ser Tyr Pro Ala Asp Asp Tyr Glu Ser Glu Ala Ala Tyr Asp Pro
 1 5 10 15
 Tyr Ala Tyr Pro Ser Asp Tyr Asp Met His Thr Gly Asp Pro Lys Gln
 20 25 30
 Asp Leu Ala Tyr Glu Arg Gln Tyr Glu Gln Gln Thr Tyr Gln Val Ile
 35 40 45
 Pro Glu Val Ile Lys Asn Phe Ile Gln Tyr Phe His Lys Thr Val Ser
 50 55 60
 Asp Leu Ile Asp Gln Lys Val Tyr Glu Leu Gln Ala Ser Arg Val Ser
 65 70 75 80
 Ser Asp Val Ile Asp Gln Lys Val Tyr Glu Ile Gln Asp Ile Tyr Glu
 85 90 95
 Asn Ser Trp Thr Lys Leu Thr Glu Arg Phe Phe Lys Asn Thr Pro Trp
 100 105 110
 Pro Glu Ala Glu Ala Ile Ala Pro Gln Val Gly Asn Asp Ala Val Phe
 115 120 125
 Leu Ile Leu Tyr Lys Glu Leu Tyr Tyr Arg His Ile Tyr Ala Lys Val
 130 135 140
 Ser Gly Gly Pro Ser Leu Glu Gln Arg Phe Glu Ser Tyr Tyr Asn Tyr
 145 150 155 160
 Cys Asn Leu Phe Asn Tyr Ile Leu Asn Ala Asp Gly Pro Ala Pro Leu
 165 170 175
 Glu Leu Pro Asn Gln Trp Leu Trp Asp Ile Ile Asp Glu Phe Ile Tyr
 180 185 190
 Gln Phe Gln Ser Phe Ser Gln Tyr Arg Cys Lys Thr Ala Lys Lys Ser
 195 200 205
 Glu Glu Glu Ile Asp Phe Leu Arg Ser Asn Pro Lys Ile Trp Asn Val
 210 215 220
 His Ser Val Leu Asn Val Leu His Ser Leu Val Asp Lys Ser Asn Ile
 225 230 235 240
 Asn Arg Gln Leu Glu Val Tyr Thr Ser Gly Gly Asp Pro Glu Ser Val
 245 250 255
 Ala Gly Glu Tyr Gly Arg His Ser Leu Tyr Lys Met Leu Gly Tyr Phe
 260 265 270
 Ser Leu Val Gly Leu Leu Arg Leu His Ser Leu Leu Gly Asp Tyr Tyr
 275 280 285
 Gln Ala Ile Lys Val Leu Glu Asn Ile Glu Leu Asn Lys Lys Ser Met
 290 295 300
 Tyr Ser Arg Val Pro Glu Cys Gln Val Thr Thr Tyr Tyr Tyr Val Gly
 305 310 315 320
 Phe Ala Tyr Leu Met Met Arg Arg Tyr Gln Asp Ala Ile Arg Val Phe

325	330	335
Ala Asn Ile Leu Leu Tyr Ile Gln Arg Thr Lys Ser Met Phe Gln Arg		
340	345	350
Thr Thr Tyr Lys Tyr Glu Met Ile Asn Lys Gln Asn Glu Gln Met His		
355	360	365
Ala Leu Leu Ala Ile Ala Leu Thr Met Tyr Pro Met Arg Ile Asp Glu		
370	375	380
Ser Ile His Leu Gln Leu Arg Glu Lys Tyr Gly Asp Lys Met Leu Arg		
385	390	395
Met Gln Lys Gly Asp Pro Gln Val Tyr Glu Glu Leu Phe Ser Tyr Ser		
405	410	415
Cys Pro Lys Phe Leu Ser Pro Val Val Pro Asn Tyr Asp Asn Val His		
420	425	430
Pro Asn Tyr His Lys Glu Pro Phe Leu Gln Gln Leu Lys Val Phe Ser		
435	440	445
Asp Glu Val Gln Gln Gln Ala Gln Leu Ser Thr Ile Arg Ser Phe Leu		
450	455	460
Lys Leu Tyr Thr Thr Met Pro Val Ala Lys Leu Ala Gly Phe Leu Asp		
465	470	475
Leu Thr Glu Gln Glu Phe Arg Ile Gln Leu Leu Val Phe Lys His Lys		
485	490	495
Met Lys Asn Leu Val Trp Thr Ser Gly Ile Ser Ala Leu Asp Gly Glu		
500	505	510
Phe Gln Ser Ala Ser Glu Val Asp Phe Tyr Ile Asp Lys Asp Met Ile		
515	520	525
His Ile Ala Asp Thr Lys Val Ala Arg Arg Tyr Gly Asp Phe Phe Ile		
530	535	540
Arg Gln Ile His Lys Phe Glu Glu Leu Asn Arg Thr Leu Lys Lys Met		
545	550	555
Gly Gln Arg Pro		

<210> 5977

<211> 2320

<212> DNA

<213> Homo sapiens

<400> 5977

```

naactttctt tagatttgtc tttgctttt ccaacttcct ttatccatata tataacttata
60
attttgcttt ttgcctatc tttcattaga aactttcgca aatgtctgt taaatgtac
120
cccaagtgact ttgggcttgg tcatgtact tgctttggc aatgaaatgt gagtagacat
180
caagtataacc accatcacac agaaatttta ttttttattt tatttttat agagacaggg
240
tctcaactaca ttgccttagat tggctcaaa ctccctgggtt caagcaatct tcctcttctt
300
ggcctcccaa agtgttggga ttgcagggtgt gcccactac gcccagttt aaaaatttt
360
taatgcatgt ggtaatccac aggagatcac atttagtata tgaccaagtt aattaagaag
420
tcaaaaaaaca cgtaaatttt aagcagaata aggctgggtt cggtggctca tgcctgtat
480

```

cccagcac ttggaggcag aggtggcag atcatnagg ccaggagtc gagaccagcc
540
tggacaacat ggcganaagt ctttactaaa aatcacaaaaa tcagctggc gtggtgtac
600
acacccgtga tcccagctac tcaggaggt taggcacatg atncgcttga acctggaga
660
tggaagctgc agtaagctag atcctgccac tgtactccag cctgggtgac agatcaagac
720
tctaactaaa aaaccccca aaaaacaat agttaacttgg aaaacttccg acatttattt
780
acttctggac aaacaaatga gtgggaagaa tcaagtatac acctcttaat tgtatTTTT
840
ttttttttt agacagagtc ttgctctgtc gcccaggctg gagtacagtg gacgatctca
900
gctcaactgca acctttgcct cccgggttca ggtgattctc ctgcctcagec ctcccgagta
960
gccgggattta taggcatgga gaaccacacc tgcttagttt ttgtatTTT agtagagatg
1020
aagtttcacc atgttgcct ggctggctc aaactcttga cctcaagtga tctgcccccc
1080
tggtctcccta aagtgttggg attacaggcg tgaccaccc tgccctggcca atgttagttt
1140
ttatccttaa aattgcctga gttcttagaa cacagaaaaa acaaatttga atgcatttt
1200
aacagcttaa taatttatat gtcccattat gatTTAGCG gaatgtttt aagcaaagca
1260
taatttcaactg caaagataaa cctgaaaaag caaacaaact tacaaatggt atgttatgac
1320
ctagacaaaa ctgatttatca actagtaata ctcataatta gcacatgcaa cagattgaga
1380
aattaaatcc tgtgctatat actcttaagt atttgtcag atatatctt aaatgttcta
1440
tcaatttgcacat tcccttccac acatattttt aacaagaaaa caattgttca tccctccagat
1500
tctcatgttt atcagtgcac aacgttgca tctcgtttaa aatggtttat tacaatgtta
1560
tttttagaaag gcttagtcct caaactgttg aaaaatgtact taaaagatgt ccaaatcatg
1620
agaatgtca acttcaatgg ctccctctgc ctccaaacttg gcttctgcacat gtccttcctg
1680
tgactcatca agagaggcca aggcccttattt cgtgtcactt gcaaaagttt ctctgtatgt
1740
atcatecatct tcttgaaaat ttagactttt aatagcttgc ttcatcttt tccccaaacac
1800
ttgtgttctc ctcttccttag cagctttttt atttcataat tcccttttgtt tttcaatgtta
1860
gaaaatgtcc ttaatttgcacttgcgtat actaggagtg tttttcaaga gattcagaaaa
1920
aactccaccc ggtgttcttc ttgcactacc attcattata aagagaccac catTTTGTTC
1980
aacttcagcg gtttccatca gaagtcaat tgcccttttg ttaccaataa tcctcactac
2040
tcgggctatc aggtctttctt ttgggttcctg taacctgaat gaaatttcat cagccactt
2100

ctcttgagaa tcttccgctg tgatctcgta tcgaccttta tagttcattt ctggtcgtt
 2160
 cccttgcctg tctttgacag gtcgtttcct tttgagatga ccttgccttca tttcctcttc
 2220
 ctttgatccc attttttgc caccatgcat atattcatct agttccctgtt ctagatcctt
 2280
 tgtatgtctc tgagattcct tcctaagttt ctggcaagc
 2320

<210> 5978
 <211> 77
 <212> PRT
 <213> Homo sapiens

<400> 5978
 Met Thr Lys Leu Ile Lys Lys Ser Lys Asn Thr Leu Asn Leu Ser Arg
 1 5 10 15
 Ile Arg Leu Gly Ser Val Ala His Ala Cys Asp Pro Ser Thr Leu Gly
 20 25 30
 Gly Arg Gly Gly Gln Ile Ile Xaa Ala Arg Ser Ser Arg Pro Ala Trp
 35 40 45
 Thr Thr Trp Arg Xaa Val Phe Thr Lys Asn Thr Lys Ile Ser Trp Ala
 50 55 60
 Trp Trp Tyr Thr Pro Val Ile Pro Ala Thr Gln Glu Ala
 65 70 75

<210> 5979
 <211> 1095
 <212> DNA
 <213> Homo sapiens

<400> 5979
 nntttctttt ttgagacgac gtcttgcctc gtcacccagg ctagagtgc aatggcacat
 60
 ctcggctcac tggtagcctt acctcctggg ctcaaggcat ctccgcctca gcctcccgag
 120
 tagctgcac cacaggcctg tgcagcactc ctggcttgc gcccattgtt tagatgagga
 180
 aatggggcc taaggcaggg tcacttgct ggccccttcc ctttcacccg tcagagtcca
 240
 gacaggggagg ggacgtcccc tgaccccccgc tgctctgtgc tttcaggggca agaagactat
 300
 gaccggctgc ggccccctgtc ctaccagaac acccacctcg tgctcatctg ctatgacgtc
 360
 atgaatccca ccagctacga caacgtcctc atcaagtggc tccctgaggt cacgcatttc
 420
 tgccgcggga tccccatggt gctcatcgcc tgcaagacag acctgaggaa ggacaaggag
 480
 cagctgcgga agctccgggc cgccccagctg gagcccatca cctacatgca gggcctgagc
 540
 gcctgcgaac agatccgagc tgctctctac ctggaatgtt ccgccaagtt tcgggagaat
 600
 gtggaggacg tcttccggga ggccgccaag gtggctctca gcgctctgaa gaaggcgcaa
 660

cggcagaaga agcgccggct ctgcctgctg ctctgaccca gggcagacag acctcacgac
 720
 agcaactgaca gggcccgggg gcccgagggtgc cgattgcacc agggaggctg ccccatcccg
 780
 accctccagc tcatggtgc tggggcctgc ggcttagactc ttggAACATT ctggAACTCT
 840
 ctccTTTcct ggctggggct ctgaccacaa actccccctcc aggctgcccc tgggacatgg
 900
 tggtgatgtg ggtgcaggag ccagtgtctg ttgttggac tcgcaagtgc cctcatcaca
 960
 gcccACCCCCA ccacgagtgt ctccccagtg cagactcaag ttatgcttga aatgaaaaag
 1020
 tctatctggt agtgggtaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa
 1080
 aaaaaaaaaa aaaaa
 1095

<210> 5980
 <211> 169
 <212> PRT
 <213> Homo sapiens

<400> 5980
 Gly Leu Arg Gln Gly His Leu Pro Gly Pro Phe Pro Phe Thr Arg Gln
 1 5 10 15
 Ser Pro Asp Arg Glu Gly Thr Ser Pro Asp Pro Arg Cys Ser Val Leu
 20 25 30
 Ser Gly Gln Glu Asp Tyr Asp Arg Leu Arg Pro Leu Ser Tyr Gln Asn
 35 40 45
 Thr His Leu Val Leu Ile Cys Tyr Asp Val Met Asn Pro Thr Ser Tyr
 50 55 60
 Asp Asn Val Leu Ile Lys Trp Phe Pro Glu Val Thr His Phe Cys Arg
 65 70 75 80
 Gly Ile Pro Met Val Leu Ile Gly Cys Lys Thr Asp Leu Arg Lys Asp
 85 90 95
 Lys Glu Gln Leu Arg Lys Leu Arg Ala Ala Gln Leu Glu Pro Ile Thr
 100 105 110
 Tyr Met Gln Gly Leu Ser Ala Cys Glu Gln Ile Arg Ala Ala Leu Tyr
 115 120 125
 Leu Glu Cys Ser Ala Lys Phe Arg Glu Asn Val Glu Asp Val Phe Arg
 130 135 140
 Glu Ala Ala Lys Val Ala Leu Ser Ala Leu Lys Lys Ala Gln Arg Gln
 145 150 155 160
 Lys Lys Arg Arg Leu Cys Leu Leu Leu
 165

<210> 5981
 <211> 677
 <212> DNA
 <213> Homo sapiens

<400> 5981
 cgtttccccc agccccctgcg cccggccccga acgagagggtc cggagccccg gcgcgggcg
 60

acccacagag aacgtggggt ccaggttctt tctgcacett cccagcacat gcagaatgac
 1200
 tccagtggtt ccatcgccc ctcctgcct gtgtacctgc ttgccttct cagctgcccc
 1260
 acctccccctg ggctggccca ctcaccaca gtgaaagtgc ccgggatctg cacttcctcc
 1320
 cctttcacct acctgtacac ctaacctggc ctttagactga gctttattta agaataaaat
 1380
 cgtgggttg gtcctttgt ctcaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa
 1440
 aaaa
 1444

<210> 5988
 <211> 216
 <212> PRT
 <213> Homo sapiens

<400> 5988
 Gly Gly Asp His Arg Val Glu Leu Tyr Lys Val Leu Ser Ser Leu Gly
 1 5 10 15
 Tyr His Val Val Thr Phe Asp Tyr Arg Gly Trp Gly Asp Ser Val Gly
 20 25 30
 Thr Pro Ser Glu Arg Gly Met Thr Tyr Asp Ala Leu His Val Phe Asp
 35 40 45
 Trp Ile Lys Ala Arg Ser Gly Asp Asn Pro Val Tyr Ile Trp Gly His
 50 55 60
 Ser Leu Gly Thr Gly Val Ala Thr Ile Trp Cys Gly Ala Ser Val Ser
 65 70 75 80
 Glu Thr Pro Pro Asp Ala Leu Ile Leu Glu Ser Pro Phe Thr Asn Ile
 85 90 95
 Arg Glu Glu Ala Lys Ser His Pro Phe Ser Val Ile Tyr Arg Tyr Phe
 100 105 110
 Pro Gly Phe Asp Trp Phe Phe Leu Asp Pro Ile Thr Ser Ser Gly Ile
 115 120 125
 Lys Phe Ala Asn Asp Glu Asn Val Lys His Ile Ser Cys Pro Leu Leu
 130 135 140
 Ile Leu His Ala Glu Asp Asp Pro Val Val Pro Phe Gln Leu Gly Arg
 145 150 155 160
 Lys Leu Tyr Ser Ile Ala Ala Pro Ala Arg Ser Phe Arg Asp Phe Lys
 165 170 175
 Val Gln Phe Val Pro Phe His Ser Asp Leu Gly Tyr Arg His Lys Tyr
 180 185 190
 Ile Tyr Lys Ser Pro Glu Leu Pro Arg Ile Leu Arg Glu Phe Leu Gly
 195 200 205
 Lys Ser Glu Pro Glu His Gln His
 210 215

<210> 5989
 <211> 1583
 <212> DNA
 <213> Homo sapiens

<400> 5989

gccccctgat cagttcttgc gggtgcttt taaagttcc caggatccc 60
60 acactccgaa catggccctt ttctcggtcc aacgatcaac cactttgggg ggcggggagag
120
120 tgagccttat accgatcaat ctaggcacac ctctttctt gggggtgact gaatgccc 180
180 ccagggacgc gacgtctctg gccagcagaa atacggcctc ctccccgccc actgggcaaa
240
240 gggggacagc aagtgtccca tcaccaccc atctcctgct tctactgtga gtgcgaggag
300
300 aagagactgt gegtcaacac tcatgtatgg accaaaagca agttcatggg catgtccgtg
360
360 ggggtctcta tcatagggga aggtgtgtt aggtctctgg aacacggggaa ggagtaacgta
420
420 ttcacccctgc ctatgtccca cgcccggtcc atttcacca tccctgtggg ggagctcgga
480
480 ggaaaagtca gcatcaactg tgccaagact gggtaactcg cgacagtgtatccac 540
540 aagcctttct atggagggaa agtccacagg gttaccgcag aagtgaagca caacccaacc
600
600 aacaccattt tttgtaaagc ccatggggaa tggaaatggta ctttagagtt cacctacaac
660
660 aatggagaaaa ccaaagtcat cgacacaacc acactgccag tgtatccaa gaagatcaga
720
720 cctcttgaga agcagggacc catggagtcc aggaacctct ggcggggaggt gacccgatac
780
780 ctgcggctgg gggacattga cgccggacc gggcagaagc ggcacctggaa ggagaagcaa
840
840 cgggtggagg aacggaaagcg cgagaaccccg cgacacaccat ggaagccaa atatttatc
900
900 caggagggcg atggctgggt atactcaat cccctctggaa aagcacactg atgggggtgg
960
960 ggtgcagagc tttccagtat agccctgttt ttgttagaat attaaagtag tagagtatca
1020
1020 gggttttgtt ggcattcaact gagacctgtt attagcatcc aagaaatgtat gagagagaga
1080
1080 gaaattatat actatgaaaa gtgcacccccc acactctgct agaggaatgtat atttattcaa
1140
1140 gagccattcg gggcacgtgt gtgtacacac cgtatacggtt cacacacatg cactatgtaa
1200
1200 acatctgagt atgattacac atttaataac tgcactcacc aaggttaaag tgggtatca
1260
1260 taagctcctt ttatcaatg aagtttgaag ttttcttatt tttcacttttgc caaaaaaaaatgt
1320
1320 ttacactca caaagatatt ctcacttagt caactcctgtt caaaatgtatgtatgtatgt
1380
1380 atggcccgat cactgtccat aaggagaaaa gtggctcatt cctggtagaa gtatgggtgg
1440
1440 ttatcatttc aaaattatgt tgatttcac ctccctcccc acctcagtgtt tttgtctgtc
1500
1500 cgccggccaaag aaagataagc aagtatttcc tgcgtggatgg ggggtggcag gaagctgtt
1560
1560 aagattttatgt cccagagcct tgc
1583

<210> 5990
<211> 260
<212> PRT
<213> Homo sapiens

<400> 5990
Leu Asn Ala Gln Pro Gly Thr Arg Arg Leu Trp Pro Ala Glu Ile Arg
1 5 10 15
Pro Pro Pro Arg Arg Leu Gly Lys Gly Gly Gln Gln Val Ser His His
20 25 30
Pro Pro Ile Ser Cys Phe Tyr Cys Glu Cys Glu Glu Lys Arg Leu Cys
35 40 45
Val Asn Thr His Val Trp Thr Lys Ser Lys Phe Met Gly Met Ser Val
50 55 60
Gly Val Ser Met Ile Gly Glu Gly Val Leu Arg Leu Leu Glu His Gly
65 70 75 80
Glu Glu Tyr Val Phe Thr Leu Pro Ser Ala Tyr Ala Arg Ser Ile Leu
85 90 95
Thr Ile Pro Trp Val Glu Leu Gly Gly Lys Val Ser Ile Asn Cys Ala
100 105 110
Lys Thr Gly Tyr Ser Ala Thr Val Ile Phe His Thr Lys Pro Phe Tyr
115 120 125
Gly Gly Lys Val His Arg Val Thr Ala Glu Val Lys His Asn Pro Thr
130 135 140
Asn Thr Ile Val Cys Lys Ala His Gly Glu Trp Asn Gly Thr Leu Glu
145 150 155 160
Phe Thr Tyr Asn Asn Gly Glu Thr Lys Val Ile Asp Thr Thr Leu
165 170 175
Pro Val Tyr Pro Lys Lys Ile Arg Pro Leu Glu Lys Gln Gly Pro Met
180 185 190
Glu Ser Arg Asn Leu Trp Arg Glu Val Thr Arg Tyr Leu Arg Leu Gly
195 200 205
Asp Ile Asp Ala Ala Thr Glu Gln Lys Arg His Leu Glu Glu Lys Gln
210 215 220
Arg Val Glu Glu Arg Lys Arg Glu Asn Leu Arg Thr Pro Trp Lys Pro
225 230 235 240
Lys Tyr Phe Ile Gln Glu Gly Asp Gly Trp Val Tyr Phe Asn Pro Leu
245 250 255
Trp Lys Ala His
260

<210> 5991
<211> 2440
<212> DNA
<213> Homo sapiens

<400> 5991
gccctgcacg aaaaatccoga cataattatt gcccacgcccc gacggttgggt gcatgtggct
60
gtggaaatga gcctgaagct gcagagtggt gaatacgtgg tgttcgatga agctgaccgg
120
ctttttgaaa tgggtttcgc agagcagctg caggagatca tcgccccct ccccgaaaa
180

caccagacgg tgctgttctc cgccacgctg cccaaactgc tggtggaatt tgcccggct
240
ggcctcacgg agcccggtct catccggctt gacgtggata ccaagctcaa cgagcagctg
300
aagacctctt tcttccttgt gcgggaggac accaaggctg ccgtgttgtct ccacctgctg
360
cacaacgtgg tgcggccccca ggaccagacc gtgggttttgg tggccacgaa gcaccacgccc
420
gagtacctca ctgagctgtct gacgacccag ncggtgagct ggcgcacat ctatagtgcc
480
ctagacccga cagcccgaa gatcaatctc gccaaattca cgcttggcaa gtgctccact
540
ctcattgtga ctgacctggc cgcccgaggc ctggacatcc cgctgtgttgc caatgtcatc
600
aactacagct tccccggccaa gggcaaaactc ttccctgcacc gcgtggcccg tgtggctcg
660
gctggccgaa gtggcacage ctactcccttgc gtggcccttg atgaaaatccc ctacctgtctg
720
gatctgcacc tggccctggc ccgctccctc naccctcgcc cgacccctca aggagccctc
780
aggtgtggcc ggtgtggatg gcatgtgggg tcgggtgcca cagagtgtgg tggacgagga
840
ggacagtggc ctgcagagca ccctggaggc atcgctggag ctacggggcc tggcccgctg
900
tgctgataac gcccagcagc agtatgtgcg ctacacggcc ggcgcctcg ctgagttccat
960
caagagggcc aaggagatgg accttgggg gctggccctg caccctcttca tcaagctcg
1020
ttttgaggag gaggagctgc agcggctgag gctgggtggac agcataaaga actaccgctc
1080
ccggggcact atctttgaga tcaacgcctc cagccgagac ctgtgcagcc aggtgatgc
1140
cgcccaagcgg cagaaggacc gcaagccatc gcccgcctcc agcagggaca gcagggccgg
1200
caggagcagc aggagggccc agtggggccca gccccgagcc gcccagcact gcaggagaag
1260
cagcctgaga aggaggagga ggaggaggcg ggagagagtg tggaggacat tttctcagag
1320
gtcgtggcc ggaagcggca gcggtcagga cccaaacaggg gagccaagag gcgaggggag
1380
gaggcccgcc agcgggacca ggaattctac atccccctacc ggcggcaagga ctttgacagc
1440
gagcggggcc tgagcatcag cggggaaagggg ggagcccttg agcagcaggc agctggcgct
1500
gtcctggact tggatggggaa tggatggggaa aacctgacga gggggccggca gcagctcaag
1560
tgggaccgta agaagaagcg gtttggggaa cagtcaggac aggaagacaa gaagaagatt
1620
aagacagaga gcccggcccta catcagcagc tcctacaagc gagacctcta tcagaagtgg
1680
aaacagaaac agaaaattga tgatcgtgac tcggacgaaag aaggggcattc tgaccggcga
1740
ggcccaagcgcgaa gaagaggtgg gaagcagac cgtggccaaag caggtgcattc cccggcccccac
1800

gccccaggca cccctgcagg ccgagtcgc cccgaactca agaccaagca gcagatcctg
 1860
 aagcagcggc gcccggccca gaagctgcac ttccctgcagc gtgggtggcct caagcagctc
 1920
 tctgcccga accgccggc cggtccaggag ctgcagcagg ggcgccttcgg cccgggtgcc
 1980
 cgctccaaga agggcaagat gcgaaagagg atgtgaggac caggaccag ccccggtggct
 2040
 cctttagggtg ggcateagca gacgttcccg tgccaccactg tgtgcctggc
 2100
 cctgtgtgg gcactggggg cactccctgc aggagccatc atctgtgaaa aggagcactg
 2160
 tatggccaca gaagggcagc agctgcgtca gcctaagaca gagacatttg aacaggcct
 2220
 tgaagggtgt gcaggagttc gccagcaaag ccaggcagc caagacttga gttggcaact
 2280
 cagctgctgc tgcttccatg tggtctgggt tcagaggtaa tggctgcacc ggtcagagcc
 2340
 ctgagtgcct cagggtttgg caatggaatt tttaatgtaa taaatcttta ttgagcactg
 2400
 aaaaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa
 2440

<210> 5992
 <211> 301
 <212> PRT
 <213> Homo sapiens

<400> 5992
 Ala Leu His Glu Asn Pro Asp Ile Ile Ala Thr Pro Gly Arg Leu
 1 5 10 15
 Val His Val Ala Val Glu Met Ser Leu Lys Leu Gln Ser Val Glu Tyr
 20 25 30
 Val Val Phe Asp Glu Ala Asp Arg Leu Phe Glu Met Gly Phe Ala Glu
 35 40 45
 Gln Leu Gln Glu Ile Ile Ala Arg Leu Pro Gly Gly His Gln Thr Val
 50 55 60
 Leu Phe Ser Ala Thr Leu Pro Lys Leu Leu Val Glu Phe Ala Arg Ala
 65 70 75 80
 Gly Leu Thr Glu Pro Val Leu Ile Arg Leu Asp Val Asp Thr Lys Leu
 85 90 95
 Asn Glu Gln Leu Lys Thr Ser Phe Phe Leu Val Arg Glu Asp Thr Lys
 100 105 110
 Ala Ala Val Leu Leu His Leu Leu His Asn Val Val Arg Pro Gln Asp
 115 120 125
 Gln Thr Val Val Phe Val Ala Thr Lys His His Ala Glu Tyr Leu Thr
 130 135 140
 Glu Leu Leu Thr Thr Gln Xaa Val Ser Cys Ala His Ile Tyr Ser Ala
 145 150 155 160
 Leu Asp Pro Thr Ala Arg Lys Ile Asn Leu Ala Lys Phe Thr Leu Gly
 165 170 175
 Lys Cys Ser Thr Leu Ile Val Thr Asp Leu Ala Ala Arg Gly Leu Asp
 180 185 190
 Ile Pro Leu Leu Asp Asn Val Ile Asn Tyr Ser Phe Pro Ala Lys Gly

195	200	205
Lys Leu Phe Leu His Arg Val Gly Arg Val Ala Arg Ala Gly Arg Ser		
210	215	220
Gly Thr Ala Tyr Ser Leu Val Ala Pro Asp Glu Ile Pro Tyr Leu Leu		
225	230	235
Asp Leu His Leu Phe Leu Gly Arg Ser Leu Xaa Pro Arg Pro Thr Pro		240
245	250	255
Gln Gly Ala Leu Arg Cys Gly Arg Cys Gly Trp His Ala Gly Ser Gly		
260	265	270
Ala Thr Glu Cys Gly Gly Arg Gly Gln Trp Ser Ala Glu His Pro		
275	280	285
Gly Gly Ile Ala Gly Ala Thr Gly Pro Gly Pro Arg Cys		
290	295	300

<210> 5993

<211> 7858

<212> DNA

<213> Homo sapiens

<400> 5993

```

nccatggagg gcaaagattt caactatgag tacgtacaga gagaagctct cagggttccc
60
ctgatatttc gagaaaagga tggactggga attaagatgc ctgaccctga tttcacagtc
120
cgagacgtca aactcctagt ggggagccgg cggtttgtgg acgtgatgga tgtgaacacc
180
cagaaaggca cggagatgag catgtccca agtgcgtt actacgagac gcccggggcc
240
cagcgggaca agctgtacaa cgtcatcagc ctagagttca gccacaccaa gctggagcac
300
ttggtcaagc gtccgactgt ggttagacctg gtggactggg tggacaacat gtggccccag
360
catctgaagg agaaggcagc agaagccacg aacgccattt cagagatgaa gtacccgaaa
420
gtggaaaaagt actgtctgat gagcgtgaaa gtttgcgttca ccgacttcca catgacttt
480
ggaggcactt ccgtttggta ccatgttttc cgggtggga agattttttgcgttgcgtt
540
ccaaacgtgc acaatttggc gctgtacgag gagtggtgc tgcaggccaa acagagtgc
600
atctttctgg gagaccgtgt ggaacgtgc caaagaattt agctgaagca gggctacaca
660
ttttcatcc cttccgggtt gatccatgcc gtctacaccc ctgttagactc ttgggttgc
720
ggcggaaaca tcctgcacag cttaacgtg cccatgcagc tgccgttca cgagatcgag
780
gacaggacgc ggggtgcagcc caaattccgt tacccttctt actatgagat gtgctggat
840
gtcctggaga gatacgtgttta ctgtgtgacc cagcgctccc acctcactca ggaataccag
900
agggagtcga tgcttattgtt gccccggagg aagcccagca tagacggctt ctcttcggat
960
tcctggctgg agatggagga ggaggccgtgt gatcagcagc ctcaggagga ggaggagaag
1020

```

gacgaggagg gcgagggcag ggacagggca cccaaaccgc ccaccgatgg ctccacttca
1080
ccccaccagca cgccctctga ggaccaggag gcctcgaaa agaagccaa agcacctgcc
1140
ctgcgattcc tcaaaaaggac ttgtctaat gagtcggagg aaagtgtgaa gtccaccaca
1200
ttggccgttag actacccaa gaccccccacc ggctctcccg ccacggaggt ctctgccaaa
1260
tgacccatc tcactgagtt tgaactgaag ggctgaaaag ctctggtgaa gaaaactggaa
1320
tcacctcccg agaacaagaa gtgtgtcccc gagggcatcg aggacccca ggcactcctg
1380
gaggggtgtga agaacgtcct gaaggagcac gcagatgtg accctagtct ggcacatcact
1440
gggggtccctg tggtaacttg gccaaagaag actccaaaga accgggctgt gggtcggccc
1500
aaggggaaagc tggcccggc ctccgcggtg aagttggccg ccaacccggac aacggcagga
1560
gctcggcgcc gceggacgcg atgcccgaag tgcgaggcct gcctgcggac cgagtgcgg
1620
gagtgcact tctgcaagga catgaagaag ttcggggggcc cggggcgcata gaagcagagc
1680
tgcattatgc ggcagtgcata cgccgcaggatg ctgcggccaca ccggccgtgtg ctttgtgt
1740
ggcgaggccgg ggaaggaaga cacggtgaa gaggaggaag gcaagttaa cctcatgctc
1800
atggagtgtt ccatctgcaa tgaaatcatc caccctggat gccttaaggt gatggccca
1860
gtggggacag gtggtgctga cgctctgggg caggttaggt tgctggagat gctggtgaga
1920
tggggatg caggctgtgc agtgaattcc tggaggaccc ctgagtcgtt gtatcctgt
1980
gtgtcaaggg ataagccgg ggcaaggagg gcctggagta cctcagagac ccagtgtcat
2040
caaaggaaata aacacaccc caccccccag gatgtcagaa ccagagaggg tttccagagc
2100
ctcagccggat ggcaaaacaca ggctgtttgt ttgtagctgg gccagaggaa gggcctccag
2160
gtggctccag gcttctggga gaacaaggcc ccacaccaca cttttcccc cagcaccagg
2220
tagagtcctc tgcagagtcc ttctgcata ccagggcgtg agctggtggc tttacctgg
2280
tcataacccca ccagttagat gggcacacta acttttatgg ccgagggcac cagccacag
2340
agacggagtg tcttgcggcag ggtcccgag aagcaaagg gctcagcctc tgaaccctgg
2400
cctggatcca cagctgcccc tctctgcagc cctctgcagc tgtgtttct tttggctgga
2460
aacgggatag atgtgacgtt ggggagggggg tgctgtgtt tctggaaagac gtggcgatc
2520
agagccttgtt gcccgtgggc catcttcctcc gccegtccct cttctgagtc ctgggttcc
2580
ccgcagatata aggagtcaaga gggtggtggtc aacgacgagc ttccaaactg ctgggagtg
2640

ccgaagtgt aaccacgcccgg caagaccggg aaacaaaagc gtggccctgg cttaagtac
2700
gcctccaacc tgcccggtc cctgtcaag gagcagaaga tgaaccggga caacaaggaa
2760
gggcaggAAC ctgccaageg gaggagttag tgtgaggagg cgccccggcg caggttggat
2820
gagcaactga agaagggtgcc gccggacggc cttctgcgc aaaaagtctga cgacgtgcac
2880
ctgagGAAGA agcgAAATA tgagaAGCCC caggagctga gtggacgcaa gcgggcctca
2940
tcgttcaaa cgtccccgg ttccctctc caccctctcg cagggcccc tctaggcagc
3000
gcctcagcc cctgggtggag atccagtctc acttacttcc agcagcaggt gctccccacga
3060
cgcacgccct cctgaggccc cggggactgg cagtcctgg gctgtcccc accccacccc
3120
gctggtcctc cacccactg ctgcctctcc tgaggcttcc caggtctcg cccagatct
3180
ctggctcgtg gttctggctt ggggcctggg aagctgtctg tgccctagagc ctctgttgt
3240
tgggatggaa gctgtgagtc cagggAACCT ctgaggagcc tgggtggccct gctccaccca
3300
cgggccgtgc tgcaccaggc cacaagggtgg cggcaggagt ctctccagc tctagccatt
3360
cctgctggc cggggattcc cacagggtcg tgctccagaa ctggctccca gagccgagga
3420
tgatttgaat gggcggctgc acatctccag gtctgtgggg tgggagggtca gttgggtggg
3480
aacagttcaa ctgtactctt acttccagct tttcccttga aagctgcagg cagggctcg
3540
ccgtctgtcg gtcagacgtg gagatggcat ttgtgggaa ggccctccctc cagccctcc
3600
tctggagact gtggactcgt ggtggggtgg ggtgtcgagg agaccaaattc ccacgagccc
3660
ggggagcaag ctctgegtcc ttttttttc gtgacagctc aaacctggca aagaagataa
3720
gctttcagg aaaaaggtaa catctcccccc tccctctgt gccccaggcc tgagcgggta
3780
gagctgcacc gcagctccct gggccacagt cccgtggcag gggggcggga ggccttggc
3840
gggcgcagcc ctgagccca gaggctgacg cgtctccgt ctgccttc a gggcgggtcc
3900
tggaaagaacg ccgaggaccc catggcgctg gccaacaaggcc cctccggcg cttcaagcag
3960
gaacccgagg acgaactgcc cgaggcgccc cccaagacca gggagagcga tcactccgc
4020
tccagctccc ccacccggg acccagcacc gaagggcccg agggcccgga ggagaagaag
4080
aagggtgaaga tgcgcggaa gggcggctt cccacaagg agctgagcag ggagctgagc
4140
aaggagctca accacgagat ccagaggacg gagaacagcc tggccaaacga gaaccagcag
4200
cccatcaagt cggagcctga gagcgagggc gaggagccca agcggcccccc gggcatctgc
4260

gagcgtcccc accgcttcag caaggggctc aacggcaccc cccgggagct gcggcacccag
4320
ctggggccca gcctgcgcag cccgccccgt gtcatctccc ggccccccacc ctccgtgtcc
4380
cggcccaagt gtatccagat ggagcgcacat gtgatccggc caccggccat cagcccccg
4440
cctgactcgc tacccttggc cgatggggca gcccacgtca tgcacaggga ggtgtggatg
4500
gccgtttca gctacccatcg ccaccaagac ctgtgtgtgt gcatgcgggt ctgcaggacc
4560
tggaaaccgct ggtgctgcga taagcggttg tggaccggca ttgacctgaa ccactgcaag
4620
tctatcacac ccctgatgtct gagtggcata atccggcgcac agcccgcttc cctcgaccc
4680
agctggacca atatctccaa gaagcagctg agctggctca tcaaccggct gcctgggctc
4740
cgggacttgg tgctgtcagg ctgctcatgg atcgcggctc cggccctttg cagctccagt
4800
tgtcccgctgc tccggaccct ggatgtccag tgggtggagg gactaaagga tgcccaaatg
4860
cgggatctcc tgcggccggcc cacagacaac agggcagggtg agttgccagg ctgggggtt
4920
ctgtgggggtt ggggtgagcg agcttagactg ttggatctgc ttttacccttc agaccccagc
4980
tggcccccggaa aggacatagg gatgagtcgc tgctgccatg ttctcagttt gcttcaggca
5040
cagagggggat ctggggaggag gcaggggctc ctgtgcacac gtgagactcg ctccctggggc
5100
tccgcgtgcg tctctctgtct ttcctgttga ctgcgtcatg gggctctgcg tgtgtctcac
5160
tgctttctta ttgactcgct catggggctc tgctgcate tcacttcttt tctgttgact
5220
tgcccccgt tggttcaag cctccactgc catcggttgc agtgtggttt tgcaaaggct
5280
tcaggatgg cacccccc tggactggc tggactgcct aggtccgtgc ttctcgccaa
5340
gccatgggaa tcggagatgc tgctgcggct ctgcactggc tggctgatga ctactgggt
5400
aatgtgggc atagtgtttc taggtttttt agttttcaa gagaatctga aaatctaagt
5460
ttttagatgtgg agtctgattt ttcaactgttgc gaattatgtat tttggggagga agcagtttat
5520
aactaaatga aatctgagtg ttctgtctgg ctgggtggcc ttttagatgtc tcatgtcagc
5580
atgaccaggc ctccctggc agattgacgg gttggccctt ctttctgc ccaccaggc
5640
agatggacaa tcggagcaag ctccggaaaca tcgtggagct ggcctggca ggcctggaca
5700
tcacagatgc ctccctggc ctcatcatcc gccacatgcc cctgccttc aagctccacc
5760
tcagttactg taaccacgtc accgaccagt ctatcaacct gtcactgtct gttggccacca
5820
ccacccggaga ctcccttaacc gagatcaacc tgcactgtct gtcactgtct gttggccacca
5880

gcctgtcctt cttcaaacgc tggaaaaca tctgtcatat tgacctgagg tactgcaagc
5940
aagtccacaa ggaaggctgt gagcagttca tagccgagat gtctgtgagt gtccagtttgc
6000
ggcaagtaga agaaaaactc ctgaaaaac ttagtttagtc caaggataag tatgtaaata
6060
cggggcgggc tctgggaggg gagagacttt aaaaaatga gggcttttat tttccatttg
6120
gaacgtggga caacagacca caacgcaatt ccattttgca agtcttcca agggagaagc
6180
tgttcaacca cccgtttggg ggatgagtga gccgacactt tcctttggc tttctgaatc
6240tgccttcgg accatttcta aggccgcctt tacaagaaga cattctgtc 6300
ggagaggagg gtggacttcg gagaattct catactgaag catgagctta ggagttctg
6360
ttatgttag tgggttttgc acacattcat tccttgcac accgagggtt tgggtgttga
6420
cataaaagtgg accacacacc acatctgctg ccgtcttgac actttttttt gtttgggttgg
6480
ttttgttaca tcttacatta tgcagaacta tttttgtaca aattgtttaa aagttattna
6540
tgcaagggtt gaatgcatac cagtttttt attgttttga gattgccaat tttcctgatt
6600
tccttaaggt aggagagaat ttaacgtgta ctcatcgac acaacccatc tacaatgtg
6660
cccagatcta acaaagttagg ctaagacctt ccactaaaaa gcatgtttaa ctgaaagttg
6720
agagtctgctt ttttgcatac agagttacat gagcatgttg tggataaatg taaattatag
6780
tcaaagtaag atactctgcc aagtttccctc ttttttttgcatacttcaaaattna
6840
aatttcgact tcagcccttgc cactcaggag gttctgtcc agcatgagct cttgtactta
6900
catagatcta atttatacag ttttttttgcatacttcaaaattna atgctccac atagcccttc
6960
ttttgtttt gtttttttgcatacttcaaaattna gtttttttgcatacttcaaaattna
7020
ggctatttcc tagttgtaaa gtttttttgcatacttcaaaattna gtttttttgcatacttcaaaattna
7080
cctagacctt ccctgtatgcg atttttttgcatacttcaaaattna gtttttttgcatacttcaaaattna
7140
aaaaaaacaga ccacaacgcgca atttttttgcatacttcaaaattna gtttttttgcatacttcaaaattna
7200
ccacccgtttt gggggatgag tgagccgaca ctttttttgcatacttcaaaattna atcgtaactg
7260
cactgttttgcatacttcaaaattna gtttttttgcatacttcaaaattna gtttttttgcatacttcaaaattna
7320
agggtggact tcggagaaat ttttttttgcatacttcaaaattna gtttttttgcatacttcaaaattna
7380
tagtgggtttt gtttttttgcatacttcaaaattna gtttttttgcatacttcaaaattna
7440
tggaccacac accacatctg ctggccgtt gacacttttgcatacttcaaaattna gtttttttgcatacttcaaaattna
7500
acatcttaca ttatgcagaa ctatgttttgcatacttcaaaattna gtttttttgcatacttcaaaattna
7560

tttgaatgca taccagtgtt tttattgttt tgagattgcc aatttccttg attccttaa
 7620
 gtagggag aatthaacgt gtacttcatc gacacaaccc atctacaat gtccccagat
 7680
 ctaacaaagt aggctaagac cttccactta aaagcatgtt taactggaaag ttgagagtct
 7740
 gctttgtacc tcaagaggta catgagcatg ttgtggataa atgtaaattn tagtcaaagt
 7800
 aagatactct gccaagttc ctctgttagag aattcacttt tctcaaattt taaaattt
 7858

<210> 5994
 <211> 402
 <212> PRT
 <213> Homo sapiens

<400> 5994
 Met Ala Leu Ala Asn Lys Pro Leu Arg Arg Phe Lys Gln Glu Pro Glu
 1 5 10 15
 Asp Glu Leu Pro Glu Ala Pro Pro Lys Thr Arg Glu Ser Asp His Ser
 20 25 30
 Arg Ser Ser Ser Pro Thr Ala Gly Pro Ser Thr Glu Gly Ala Glu Gly
 35 40 45
 Pro Glu Glu Lys Lys Val Lys Met Arg Arg Lys Arg Arg Leu Pro
 50 55 60
 Asn Lys Glu Leu Ser Arg Glu Leu Ser Lys Glu Leu Asn His Glu Ile
 65 70 75 80
 Gln Arg Thr Glu Asn Ser Leu Ala Asn Glu Asn Gln Pro Ile Lys
 85 90 95
 Ser Glu Pro Glu Ser Glu Gly Glu Glu Pro Lys Arg Pro Pro Gly Ile
 100 105 110
 Cys Glu Arg Pro His Arg Phe Ser Lys Gly Leu Asn Gly Thr Pro Arg
 115 120 125
 Glu Leu Arg His Gln Leu Gly Pro Ser Leu Arg Ser Pro Pro Arg Val
 130 135 140
 Ile Ser Arg Pro Pro Pro Ser Val Ser Pro Pro Lys Cys Ile Gln Met
 145 150 155 160
 Glu Arg His Val Ile Arg Pro Pro Pro Ile Ser Pro Pro Pro Asp Ser
 165 170 175
 Leu Pro Leu Asp Asp Gly Ala Ala His Val Met His Arg Glu Val Trp
 180 185 190
 Met Ala Val Phe Ser Tyr Leu Ser His Gln Asp Leu Cys Val Cys Met
 195 200 205
 Arg Val Cys Arg Thr Trp Asn Arg Trp Cys Cys Asp Lys Arg Leu Trp
 210 215 220
 Thr Arg Ile Asp Leu Asn His Cys Lys Ser Ile Thr Pro Leu Met Leu
 225 230 235 240
 Ser Gly Ile Ile Arg Arg Gln Pro Val Ser Leu Asp Leu Ser Trp Thr
 245 250 255
 Asn Ile Ser Lys Lys Gln Leu Ser Trp Leu Ile Asn Arg Leu Pro Gly
 260 265 270
 Leu Arg Asp Leu Val Leu Ser Gly Cys Ser Trp Ile Ala Val Ser Ala
 275 280 285
 Leu Cys Ser Ser Ser Cys Pro Leu Leu Arg Thr Leu Asp Val Gln Trp

290	295	300													
Val	Glu	Gly	Leu	Lys	Asp	Ala	Gln	Met	Arg	Asp	Leu	Leu	Ser	Pro	Pro
305															320
Thr	Asp	Asn	Arg	Pro	Gly	Glu	Leu	Pro	Gly	Trp	Gly	Phe	Leu	Trp	Gly
															335
325															
Trp	Gly	Glu	Arg	Ala	Arg	Leu	Leu	Asp	Leu	Leu	Leu	Pro	Ser	Asp	Pro
															350
340															
Ser	Cys	Ser	Pro	Lys	Asp	Ile	Gly	Met	Ser	Leu	Cys	Cys	His	Val	Leu
															365
355															
Ser	Leu	Leu	Gln	Ala	Gln	Arg	Gly	Ser	Gly	Arg	Arg	Gln	Gly	Leu	Leu
															380
370															
Cys	Thr	Arg	Glu	Thr	Arg	Ser	Trp	Gly	Ser	Ala	Cys	Val	Ser	Leu	Leu
															400
385															
Ser	Cys														

<210> 5995
<211> 1528
<212> DNA
<213> Homo sapiens

<400> 5995
ntccggacga gtctaggcga gcaggtcatc gtccccccct cagaaatgga gaggtgtcct
60
ggtgtgcgttt cagtctgtga cattcagttt aaccagggtt cgcctgctga cttaactgtc
120
cttcagtgatg tgcgtccaat gttcagcggt gacttcagca agcaagtcag cagctcgca
180
gcgtgcccata gcaggcagtt tgtacctttt gcgctggcc aagcacaggt gtttctctcg
240
tggtgggaca ttgaaatgga ccctgagggc aagatcaagt gcaccatggc ccccttctgg
300
gcacactcag acccagagga gatgcgttgg cgggaccact ggnatgcagt gtgtgtactt
360
cctgccacaa gaggagccgt tggtgcaggg ctcagcgctc tatctggtag cccaccacga
420
tgactactgc gtatggtaca gcctgcagag gaccagccct gaaaagaatg agagagtccg
480
ccagatgcgc cccgtgtgtg actgcacggc tcacctgctc tggaccggc ctcggtttg
540
agagatcaat gaccaggaca gaactgatcg atacgtccag gctctgagga ccgtgctgaa
600
gcacacacgc gtgtgcctgt gtgtcagcga tggcagccgt ctctccgtgc tggcccatca
660
cctgggggtg gagcaggtgt ttacagtcga gagttcagca gcttctcaca aactgttgag
720
aaaaatctt aaggctaacc acttggaaaga taaaattcac atcatagaga aacggccgga
780
attattaaca aatggggacc tacaggccag aaaggctct ctcctctgg gcgagccgtt
840
cttcactacc agcctgctgc cgtggcgcaa cctctacttc tggtacgtgc ggaccgctgt
900
ggaccagcac ctggggccag gtgcctatggt gatgccccag gcagcctcgc tgcacgctgt
960

ggttggag ttcaggacc tgtggcgat ccggagcccc tgtggtgact gcgaaggctt
 1020
 cgacgtgcac atcatggacg acatgattaa gcgtgcctg gacttcagg agagcaggaa
 1080
 agctgagccc cacccgctgt gggagtaccc atgcccgcage ctctccgagc cctggcagat
 1140
 cctgacccctt gactccagc agccggtgcc cctgcagccc ctgtgtgccg agggcaccgt
 1200
 ggagctcaga aggcccggc agagccacgc agccgtgcta tggatggagt accacctgac
 1260
 cccggagtgc acgctcagca ctggcctctt ggagcctgca gaccccgagg ggggctgctg
 1320
 ctggAACCCC cactgcaagc aggccgtcta ctctttcagc cctgCCCCCAG atcccagagc
 1380
 actgctgggt ggcccacgga ctgtcagcta tgcaGTTGGAG tttcacCCCG acacaggcga
 1440
 catcatcatg gagttcaggg atgcagatac cccagactga ccactcttga gcaataaaagt
 1500
 ggccctgaggg ctggaaaaaa aaaaaaaaa
 1528

<210> 5996
 <211> 140
 <212> PRT
 <213> Homo sapiens

<400> 5996
 Xaa Arg Thr Ser Leu Gly Glu Gln Val Ile Val Pro Pro Ser Glu Met
 1 5 10 15
 Glu Arg Cys Pro Gly Ala Pro Ser Val Cys Asp Ile Gln Leu Asn Gln
 20 25 30
 Val Ser Pro Ala Asp Phe Thr Val Leu Ser Asp Val Leu Pro Met Phe
 35 40 45
 Ser Val Asp Phe Ser Lys Gln Val Ser Ser Ala Ala Cys His Ser
 50 55 60
 Arg Gln Phe Val Pro Leu Ala Ser Gly Gln Ala Gln Val Val Leu Ser
 65 70 75 80
 Trp Trp Asp Ile Glu Met Asp Pro Glu Gly Lys Ile Lys Cys Thr Met
 85 90 95
 Ala Pro Phe Trp Ala His Ser Asp Pro Glu Glu Met Gln Trp Arg Asp
 100 105 110
 His Trp Xaa Ala Val Cys Val Leu Pro Ala Thr Arg Gly Ala Cys Gly
 115 120 125
 Ala Gly Leu Ser Ala Leu Ser Gly Ser Pro Pro Arg
 130 135 140

<210> 5997
 <211> 1759
 <212> DNA
 <213> Homo sapiens

<400> 5997
 tttttttttt tttttgtttt aacaaacatg tttttagaa aagtaaaaaa tattgcata
 60

gtcttaatac ttgaacatca agtgttattca tgaacagtga gtatcttatac ttcatgtaaa
120
cagttctaga tggaagaccc agatggact cctcccgcccc aggggttcca gcccccaccc
180
tctcagcccc tccccctgcca gctcaactct gcagtacacg atggggaaag gcttaaacgc
240
agctgccagg tgtaattttt caagtgtcaa agatcccaag tgatccctga cacccacccc
300
ttccctactct tacattcatg cgtctgttaag atagctgcct acaacaggtc agtagtgatg
360
ctcccgatcag aaaaacaaga tacaaaacaa acaacaaaca cacttggtcc ctteagacca
420
gtaagataca caaaccacct ccacgaccc tcgacccctccc cctccctccg gctgctctga
480
ggagcacgtg cctcttcctt caccctgggc cgggctgggg cgggagcagc ccagctgctc
540
tctggatgtc acaccactgt taactgtcag taacaaaaat aataaggtagc atgctacaca
600
cacatccagc tggaagcctt gttggccctt aagcctttgtt ttcatgtcac agtactgagg
660
ggtatgtgtc cccaatgcac agccacccgc acacaactca atgagcttcc tgggaaacac
720
tattccccc cctccaccc aggtggctgc ctcagtttc caaccactgg aatcagttccc
780
tcagctcctg cctctagttctt ccacccaaa agttcagtcg tctctgtctt ggagggact
840
gtcgcccccc tcaggttgaa gttcaacact cctcaatgag cagctgtcc gagctgtaca
900
gcttcttctt gatgactcgg aagccagtgc tcagcgtcag ggactggctg aagccaggga
960
ggaaggggaga gttggcggag ctaaacagcc cctggatctt gggccagagt cgtgagtc
1020
ggcgcagcac gagggtcagc tggaaggtgg gcaccaggct ggggtcgagt gccagctggc
1080
ccacgctgtg gcagctcttgc ccctgctcca cgcacgcgc cagcagcgcc ccccgccaggc
1140
cgacacggctc gctgttaggc aggccgcagta gttctttgc caccctggctt accaactggc
1200
taggcacatcag cagggcgccgca gggcgtcgag agcccagccg cgcctggcc aggctctt
1260
gcagcagctg catcaggttg gcacacaaat gttcatcctc agggtcactg agcagctcga
1320
agtccggccaa cgacacccca tccaggtaaag ccgtgtcttc ctccggcccc aagccactgt
1380
tgctgctgtc cagggactcg cagtcgcgc tctccaggct cgtggagcgg tcaaaccctt
1440
cctcccggtt cgcgcacccca cagggctgcgc gcggccggccg atctggggtg ggagttccgg
1500
gcaaggacga gggcgaagag gaggtggacg acgacgagaa ggggtcccaa aggctaggca
1560
tggtgaggac agacgcaggc gcgtttgtcg atgaactcag agtgcggag cgtagaagcc
1620
gcagtagcgc ggtcagcgcag aactgctaag acaagtgcgt cctgcggctt gaatgggtgt
1680

gegaaccgt gccaaaccacc gagagccgcc cagaccgtc ccaggtccac gctcgacact
 1740
 cccccccctt gcccgaattc
 1759

<210> 5998
 <211> 72
 <212> PRT
 <213> Homo sapiens

<400> 5998
 Thr Ala Pro Gly Ser Trp Ala Arg Val Val Ser Pro Gly Ala Ala Arg
 1 5 10 15
 Gly Ser Ala Gly Arg Trp Ala Pro Gly Trp Gly Arg Val Pro Ala Gly
 20 25 30
 Pro Arg Cys Gly Ser Ser Cys Pro Ala Pro Arg Arg Arg Pro Ala Ala
 35 40 45
 Pro Pro Ala Gly Arg Thr Ala Arg Cys Arg Pro Gly Ala Val Val Leu
 50 55 60
 Cys Pro Pro Gly Leu Pro Thr Gly
 65 70

<210> 5999
 <211> 2759
 <212> DNA
 <213> Homo sapiens

<400> 5999
 ncggccggaa gtggcggcgg cggcgtcgcc ggcggcgttag ccgttagaggt gcacagagaa
 60
 caccccttagc atgaacagtg tgaggattcc accagtttt tcaccatgaa ggagacagac
 120
 cgggaggccg ttgcgacagc agtgcaaagg gttgctggga tgctccagcg cccggaccag
 180
 ctggacaagg tggagcagta tcgcaggaga gaagcgcggaa agaaggcctc cgtggaggcc
 240
 agattgaagg cgcgcattca gtcacagttg gacgggggtgc gcacagggct cagccagctc
 300
 cacaacgcggcc tgaatgaagt caaagacatc cagcagtcgc tggcagacgt cagcaaggac
 360
 tggaggcaga gcatcaacac cattgagagc ctcaaggacg tcaaagacgc cgtgggtcag
 420
 cacagccgcg tgcggcgcgc cgtggagaac ctcaagaaca tcttctcagt gcctgagatt
 480
 gtgagggaga cccaggacct aattgaacaa ggggcactcc tgcaagccca ccggaagctg
 540
 atggacacctgg agtgctcccg ggacgggctg atgtacgagc agtaccgcat ggacagtgg
 600
 aacacgcgtg acatgaccct catccatggc tactttggca gcacgcagg gctctctgat
 660
 gagctggcta agcagctgtg gatggtgctg cagaggtcac tggtcactgt ccggcgtgac
 720
 cccacccctgc tggtctcagt tgtcaggatc attgaaaggg aagagaaaat tgacaggcgc
 780

atacttgacc ggaaaaagca aactggctt gttcctcctg ggaggccaa gaattggaag
840
gagaaaatgt tcaccatctt ggagaggact gtgaccacca gaattgaggg cacacaggca
900
gataccagag agtctgacaa gatgtggctt gtccgccacc tggaaattat aaggaagtac
960
gtctggatg acctcattgt cgccaaaaac ctgatggttc agtgccttcc tccccactat
1020
gagatcttta agaacatctt gaacatgtac caccaagccc tgagcacgcg gatgcaggac
1080
ctcgcatcg aagacctgga agccaatgag atcgtgagcc tcttgacgtg ggtcttaaac
1140
acctacacaa gtactgagat gatgaggaac gtggagctgg ccccgaaagt ggtatgtcggc
1200
accctgggc cattgcttc tccacacgtg gtctctgagc tgcttgacac gtacatgtcc
1260
acgctcaett caaacatcat cgccctggctg cgaaaaagcgc tggagacaga caagaaagac
1320
tgggtcaaaag agacagagcc agaagccgac caggacgggt actaccagac cacactccct
1380
gcccattgtct tccagatgtt tgaacagaat cttcaagttt ctgctcagat aagtgaagat
1440
ttgaaaacaa aggtactagt tttatgtctt cagcagatga attctttccct aagcagatata
1500
aaagatgaag cgccatgtta taaaagaagag cacctgagga atccggcagca ccctcaactgc
1560
tacgttcagt acatgatcgc catcatcaac aactgccaga cttcaagga atccatagtc
1620
agtttaaaaa gaaagtattt aaagaatgaa gtggaagagg gtgtgtctcc gagccagccc
1680
agcatggacg ggattttaga cgccatcgcg aaggagggt gcagcggtt gctggaggag
1740
gtcttcctgg acctggagca acatctgaat gaattgatga cgaagaagtg gctattaggg
1800
tcaaaccgtg tagacattat ctgtgtcacc gtggaagact atttcaacga ttttgc当地
1860
ataaaaaaagc cgtataagaa gaggatgacg gccgaggcgc accggcgcgt ggtgggtggag
1920
tacctgcggg cggatcatgca gaagcgcatt tccttccgga gcccggagga ggc当地
1980
ggtgccgaga agatggtag ggaggcagag cagccgcgt tctgttccg gaagctggcg
2040
tccgggttcg gggaaagacgt ggacggatac tgcgcacca tctggctgt ggccgaagt
2100
atcaagctga cagacccttc tctgctctac ctggaggctt ccactctggc cagcaagtt
2160
ccagacatca gggatgacca catcggtgcg ctgctggctg tgcgtggggc cggccagccgt
2220
gacatgaagc agaccatcat ggagaccctg gaggcaggcc cagcacaggc cagccccagc
2280
tacgtgc当地 cttcaagga cattgtggtg cccagctga acgtggccaa gctgctcaag
2340
tagcctccgc cggccctgc当地 tgcgc当地 cccacagctt cggccctgc ctttagaaac
2400

gcgggacagc tgattgtct ccttggccac acgtgtctt ttttagctgca cggcctgtct
 2460
 ttaggtgccca gtgtgtatgca ccgggtgtgc gtcgagttag cgtccccagg ccacgtcg
 2520
 aggccccctca ctgtgtgtc aaaggccgtt gggtgcaggg ctctgccgca cagcctct
 2580
 tgggtgttttgg tttgttgcaag tggttgaaag tgtgtggggc acagaggacg tgcacccccc
 2640
 tgccctccctc ctccctgggc ctccacccgca ccccatctgc ttaagtgtctc ggaaccccg
 2700
 cacctaatta aagtttctcg gtttcctcaag agaaaaaaaaaaaaaaa aaaaaaaaaaaaa
 2759

<210> 6000

<211> 757

<212> PRT

<213> Homo sapiens

<400> 6000
 His Glu Gln Cys Glu Asp Ser Thr Ser Phe Phe Thr Met Lys Glu Thr
 1 5 10 15
 Asp Arg Glu Ala Val Ala Thr Ala Val Gln Arg Val Ala Gly Met Leu
 20 25 30
 Gln Arg Pro Asp Gln Leu Asp Lys Val Glu Gln Tyr Arg Arg Arg Glu
 35 40 45
 Ala Arg Lys Lys Ala Ser Val Glu Ala Arg Leu Lys Ala Ala Ile Gln
 50 55 60
 Ser Gln Leu Asp Gly Val Arg Thr Gly Leu Ser Gln Leu His Asn Ala
 65 70 75 80
 Leu Asn Asp Val Lys Asp Ile Gln Gln Ser Leu Ala Asp Val Ser Lys
 85 90 95
 Asp Trp Arg Gln Ser Ile Asn Thr Ile Glu Ser Leu Lys Asp Val Lys
 100 105 110
 Asp Ala Val Val Gln His Ser Gln Leu Ala Ala Val Glu Asn Leu
 115 120 125
 Lys Asn Ile Phe Ser Val Pro Glu Ile Val Arg Glu Thr Gln Asp Leu
 130 135 140
 Ile Glu Gln Gly Ala Leu Leu Gln Ala His Arg Lys Leu Met Asp Leu
 145 150 155 160
 Glu Cys Ser Arg Asp Gly Leu Met Tyr Glu Gln Tyr Arg Met Asp Ser
 165 170 175
 Gly Asn Thr Arg Asp Met Thr Leu Ile His Gly Tyr Phe Gly Ser Thr
 180 185 190
 Gln Gly Leu Ser Asp Glu Leu Ala Lys Gln Leu Trp Met Val Leu Gln
 195 200 205
 Arg Ser Leu Val Thr Val Arg Arg Asp Pro Thr Leu Leu Val Ser Val
 210 215 220
 Val Arg Ile Ile Glu Arg Glu Glu Lys Ile Asp Arg Arg Ile Leu Asp
 225 230 235 240
 Arg Lys Lys Gln Thr Gly Phe Val Pro Pro Gly Arg Pro Lys Asn Trp
 245 250 255
 Lys Glu Lys Met Phe Thr Ile Leu Glu Arg Thr Val Thr Arg Ile
 260 265 270
 Glu Gly Thr Gln Ala Asp Thr Arg Glu Ser Asp Lys Met Trp Leu Val

275	280	285
Arg His Leu Glu Ile Ile Arg Lys Tyr Val Leu Asp Asp Leu Ile Val		
290	295	300
Ala Lys Asn Leu Met Val Gln Cys Phe Pro Pro His Tyr Glu Ile Phe		
305	310	315
Lys Asn Leu Leu Asn Met Tyr His Gln Ala Leu Ser Thr Arg Met Gln		
325	330	335
Asp Leu Ala Ser Glu Asp Leu Glu Ala Asn Glu Ile Val Ser Leu Leu		
340	345	350
Thr Trp Val Leu Asn Thr Tyr Thr Ser Thr Glu Met Met Arg Asn Val		
355	360	365
Glu Leu Ala Pro Glu Val Asp Val Gly Thr Leu Glu Pro Leu Leu Ser		
370	375	380
Pro His Val Val Ser Glu Leu Leu Asp Thr Tyr Met Ser Thr Leu Thr		
385	390	395
Ser Asn Ile Ile Ala Trp Leu Arg Lys Ala Leu Glu Thr Asp Lys Lys		
405	410	415
Asp Trp Val Lys Glu Thr Glu Pro Glu Ala Asp Gln Asp Gly Tyr Tyr		
420	425	430
Gln Thr Thr Leu Pro Ala Ile Val Phe Gln Met Phe Glu Gln Asn Leu		
435	440	445
Gln Val Ala Ala Gln Ile Ser Glu Asp Leu Lys Thr Lys Val Leu Val		
450	455	460
Leu Cys Leu Gln Gln Met Asn Ser Phe Leu Ser Arg Tyr Lys Asp Glu		
465	470	475
Ala Gln Leu Tyr Lys Glu Glu His Leu Arg Asn Arg Gln His Pro His		
485	490	495
Cys Tyr Val Gln Tyr Met Ile Ala Ile Ile Asn Asn Cys Gln Thr Phe		
500	505	510
Lys Glu Ser Ile Val Ser Leu Lys Arg Lys Tyr Leu Lys Asn Glu Val		
515	520	525
Glu Glu Gly Val Ser Pro Ser Gln Pro Ser Met Asp Gly Ile Leu Asp		
530	535	540
Ala Ile Ala Lys Glu Gly Cys Ser Gly Leu Leu Glu Val Phe Leu		
545	550	555
Asp Leu Glu Gln His Leu Asn Glu Leu Met Thr Lys Lys Trp Leu Leu		
565	570	575
Gly Ser Asn Ala Val Asp Ile Ile Cys Val Thr Val Glu Asp Tyr Phe		
580	585	590
Asn Asp Phe Ala Lys Ile Lys Lys Pro Tyr Lys Arg Met Thr Ala		
595	600	605
Glu Ala His Arg Arg Val Val Val Glu Tyr Leu Arg Ala Val Met Gln		
610	615	620
Lys Arg Ile Ser Phe Arg Ser Pro Glu Glu Arg Lys Glu Gly Ala Glu		
625	630	635
Lys Met Val Arg Glu Ala Glu Gln Arg Arg Phe Leu Phe Arg Lys Leu		
645	650	655
Ala Ser Gly Phe Gly Glu Asp Val Asp Gly Tyr Cys Asp Thr Ile Val		
660	665	670
Ala Val Ala Glu Val Ile Lys Leu Thr Asp Pro Ser Leu Leu Tyr Leu		
675	680	685
Glu Val Ser Thr Leu Val Ser Lys Tyr Pro Asp Ile Arg Asp Asp His		
690	695	700
Ile Gly Ala Leu Leu Ala Val Arg Gly Asp Ala Ser Arg Asp Met Lys		

705	710	715	720
Gln Thr Ile Met Glu	Thr Leu Glu Gln Gly	Pro Ala Gln Ala Ser Pro	
725	730	735	
Ser Tyr Val Pro Leu Phe Lys Asp	Ile Val Val Pro Ser Leu Asn Val		
740	745	750	
Ala Lys Leu Leu Lys			
755			

<210> 6001
<211> 2490
<212> DNA
<213> Homo sapiens

<400> 6001
nggcgccttt cagctgaaaa acagctcgcg ctgcagcaag ctagctggga agctcccagt
60 tctaaagaga ggctgtttac cagaacagca taacaaggc aggtctgact gcaaggctgg
120 gactgggagg cagagccgcc gc当地aggggg cctcggttaa acactggctg ttcaatcacc
180 tgcaagacga aggaggcaag gatgctgttg gc当地gggtac aagcattctt cgtcagcaac
240 atgctcttag cagaagccta tggatctgga ggctgtttctt gggacaacgg ccacctgtac
300 cgggaggacc agacccccc cgccgcgggc ctccgcgtgcc tcaactggct ggacgcgcag
360 agcgggctgg cctcgcccc cgtgtgggg gcccggcaatc acagttaactg cc当地aacccg
420 gacgaggacc cc当地ggggcc ctgggtctac gtcaagtggcg aggccggcgt cc当地gagaaa
480 cggccttgcg aggacctgcg ctgtccagag accacccccc aggccctgcc agccttcacg
540 acagaaatcc aggaagcgtc tgaaggggcca ggtgcagatg aggtgcaggt gttcgctct
600 gccaacgccc tgcccgctcg gagtgaggcg gc当地gtgc agccagtatg tgggatcagc
660 cagcgggtgc ggatgaactc caaggagaaa aaggacctgg gaactctgg ctacgtgctg
720 ggcatcattacca tgatggtgat catcattgcc atcggagctg gcatcatctt gggctactcc
780 tacaagaggg ggaaggattt gaaagaacag catgatcaga aagtatgtga gagggagatg
840 cagcgaatca ctctgcctt gtctgccttc accaaccctt cctgtgagat tgtggatgag
900 aagactgtcg tggtccacac cagccagact ccagttgacc ctcaggaggg caccaccccc
960 ctatgggcc aggccggac tc当地ggggcc tgagcccccc cagtgccag gageccatgc
1020 agacacttgtt gc当地ggcacc ccacccttcc acagcttagga ggaactacca ctttgtgttc
1080 tggttaaaac cctaccactc ccccgctttt ttggcgaatc ctagtaagag tgacagaagc
1140 aggtggccct gtgggctgag ggttaaggctg ggtagggtcc taacagtgtct cttgtccat
1200

cccttggagc agattttgtc tgtggatgga gacagtggca gctcccacag tcatgcgt
 1260
 gctaaggcgt cccaaacatt gcctgcaccc ctggaaactga accagggata gacggggagc
 1320
 tccccccagtc tcctctgtgc tttaactaaga tggcctcagt ctccactgtg ggcttgagtg
 1380
 gcatacactg ttattcatgg ttaaggtaaa gcaggtcaag ggtatggcatt gaaaaaatat
 1440
 attttagttt taaaatattt gggatggaac tccctactga cctctgagaa ctggaaacga
 1500
 gtttgtacag aagtcaaaac tttgggttgg gaatgagatc taggttgtgg ctgctggat
 1560
 gcttcagtt gctggcaatg atgtgccttg acaaccgtgg gccaggcctg gggccaggga
 1620
 ctcttcgtt ttcataagga aaggaagaat tgcaactgagc attccactta ggaagaggat
 1680
 agagaaggat ctgctccgcc tttggccaca ggagcagagg cagacctggg atgccccagt
 1740
 ttctcttcag ggatggatag tgacctgtct tcattttgca caggtaaagag agtagttac
 1800
 taacctatgg gaattatact gtggggcctt gtgagctgct tctaagaggc taacctggaa
 1860
 actaagctca gaggcaaggt aataaaagcac ttcaaggcctt gctccccaaag tgggcctgat
 1920
 ttagcaggtg gtcctgcggg cgtccaggtc agcaccttcc tgttagggcac tggggctagg
 1980
 gtcacagccc ctaactcata aagcaatcaa agaaccatta gaaaggcgtc attaagcctt
 2040
 ttggacacag gaccccgag agaaaaaaagt gacttgccca aggtcgtaag caagctactg
 2100
 gcatggcaag agcccagctt cctgacggag cgcaacattt ctccactgca ctgtgtcgtc
 2160
 agctcagcag ggcctctaacc ctgtgtatgtc acactcaaga ggccttggca gtccttagcc
 2220
 atagagcttc ctttccagaa cccttccact gccaaatgtg gagacagggg ttagtggggc
 2280
 tttctatggc gccatctgtct ttggggaccc agacacctgg tggtctcttg gtgttagtga
 2340
 tgctggagaa gagaatatta ctggttctta cttttctata aaggcatttc tctatataca
 2400
 tgtttatat acctcattct gacacctgca tatagtgtgg gaaattgctc tgcatttgac
 2460
 ttaattaaaa aaaaaaaaaa gactccaaaa
 2490

<210> 6002
 <211> 263
 <212> PRT
 <213> Homo sapiens

<400> 6002
 Met Leu Leu Ala Trp Val Gln Ala Phe Leu Val Ser Asn Met Leu Leu
 1 5 10 15
 Ala Glu Ala Tyr Gly Ser Gly Cys Phe Trp Asp Asn Gly His Leu

20	25	30
Tyr Arg Glu Asp Gln Thr Ser Pro Ala Pro Gly Leu Arg Cys Leu Asn		
35	40	45
Trp Leu Asp Ala Gln Ser Gly Leu Ala Ser Ala Pro Val Ser Gly Ala		
50	55	60
Gly Asn His Ser Tyr Cys Arg Asn Pro Asp Glu Asp Pro Ala Gly Pro		
65	70	75
80		
Trp Cys Tyr Val Ser Gly Glu Ala Gly Val Pro Glu Lys Arg Pro Cys		
85	90	95
Glu Asp Leu Arg Cys Pro Glu Thr Thr Ser Gln Ala Leu Pro Ala Phe		
100	105	110
Thr Thr Glu Ile Gln Glu Ala Ser Glu Gly Pro Gly Ala Asp Glu Val		
115	120	125
Gln Val Phe Ala Pro Ala Asn Ala Leu Pro Ala Arg Ser Glu Ala Ala		
130	135	140
Ala Val Gln Pro Val Ile Gly Ile Ser Gln Arg Val Arg Met Asn Ser		
145	150	155
160		
Lys Glu Lys Lys Asp Leu Gly Thr Leu Gly Tyr Val Leu Gly Ile Thr		
165	170	175
Met Met Val Ile Ile Ile Ala Ile Gly Ala Gly Ile Ile Leu Gly Tyr		
180	185	190
Ser Tyr Lys Arg Gly Lys Asp Leu Lys Glu Gln His Asp Gln Lys Val		
195	200	205
Cys Glu Arg Glu Met Gln Arg Ile Thr Leu Pro Leu Ser Ala Phe Thr		
210	215	220
Asn Pro Thr Cys Glu Ile Val Asp Glu Lys Thr Val Val Val His Thr		
225	230	235
240		
Ser Gln Thr Pro Val Asp Pro Gln Glu Gly Thr Thr Pro Leu Met Gly		
245	250	255
Gln Ala Gly Thr Pro Gly Ala		
260		

<210> 6003
<211> 3107
<212> DNA
<213> Homo sapiens

<400> 6003
tttttttttt ttttttttca tttttttttt ttttttttca ctatagaaaa
60
ttgacttggt ttattaccgt cactatagaa acaggcgacc tgcttccta ggtggctccc
120
agcagcgtgg cccacgcttg gacacccac tccccagaaa tctggactga gacccaggc
180
ctctgtctgg cttctcacga acagctgtct ggagagcttc acgtgctgga gagctgtgc
240
tccgtcatcg ctcacagagg catggcccg aatttcagcc ccctctgctt ctccgtccag
300
tggccagcaa tgggctgtcc agcgaagggc ctcgcacaac ctgtcagggta ctggctggc
360
acgcagccag cgtgaaatcc tcaggttgtt tctcttcaga tgtgggaggt gaccgcagcc
420
ctgctcacag agagggtgga aactggcgca ggtgtgggag cagcctccct tcggggctc
480

ctcgaagtac ccagggctct ccccagcgct gcccgcggcc agccttctga acacctgcca
540
cgtggatcac aaccttgcg ctcttcgt ctcaactaga agcaactgca gcatggccct
600
tccccgatttc cagggtcatg tcgaaaagcg tgcaactggcc ttgtgacgtg gcccggccct
660
tggcaaggaa gtccctggccg gtatcagccct ctgcactgca ccctgggtgg actgagtcgg
720
ggccaggatt gtgtcagggg agggtggagga gacgcggggaa cagccggttc acagcggccct
780
gacacggagca ctccggggcc agagctgttc tgagacttgg tgcagattca aagatttaa
840
aatgcctggg gctacataag gggcagcaact tctcagacga gggcttctga aaggggcatt
900
ccttggcaact gagatggaga cggcagtgcc ttttcaccct ctccgtgagg ctttgtctg
960
tgctcagccct tggtgtgcag agatgggcag aggggaggca gagectctgc cagacgggta
1020
tgtggggagc agggttgtgg ccagggccccc cgctctgccc tctcgggatt gcagagctgg
1080
agcttctccc agtttctcat gtgagttctga gtctgtccaca gaagccactg aggccaccag
1140
gaatgagccc ctggtgccccc gctgccacccct gcagggtgtc ccgtgagctg ggcctgggct
1200
cagtgtgcaa gaggcatctc ctctcacgtg accgtgggtc cagatctgcc aacactccgg
1260
agaacagggt agggggcagg ggctgcacga aggagatccct acccctccag aggagggtggg
1320
gccccgaggcc cgggcctgca accctggcca cctgcccacc accgtgcag ttgtgagcac
1380
gcccacctgca gtgacacaca cagcccatgg gtcctactca ggcctccgtg gcctgacttg
1440
ggggctaagg ggagctcagg agaaacccaa agtccagcca gcagggccccc cccacagaca
1500
ccccctgcac acacaggcag ggggcctac tttttctcat gcatcatcac accggagggc
1560
aaactctgcg tggtgagccct ggcccccagcc ggcctcccat gaatggtgac cacaccaggc
1620
tgggtggccgg tggcccttg gttttctggt gggccacgg gatgcacaga gctgggttct
1680
tgggagacgg tgccaaggcc agctgtcccg aaggtggccct ctggcacaat gcccaccaga
1740
cctgagggag ggactgagac cacctcaatg ctgncaatgc ctggggtcac gcagagtc
1800
cgtggggaaa ggggcagtgcc accccatgcg gtgcagggtg tggcttgcg angcagaggg
1860
agcccgctgtg gcccctggcc cagggctccg gcccgtggca gagactgccc tggaaatggc
1920
cctgcagagg ccccaagccccc cttgtcccttgcatccatcacgac cacctgcctt gggccca
1980
ccaaaggaaag gggggcccaag ctctctgaat aaaaggtgca catgaggacc aaggaggcc
2040
gacactggga ggggacagct ccaccccttc tccccggaca ccccaaaaagg cggagacgtt
2100

cacaagctgt cctgtcggcg gctgctgttt gtggaggagt aaagcatctt agcgagactg
2160
caggctcggt gtacatctga tttaactgaat tttaaagtctt gggatgttag tggggaaagag
2220
gcgagggtgag cattgcgtga cgccgaggac taggcggggc gggactgca cctggctagg
2280
cacccccacc ctgggcaact tgcccacgga ccccaggggca gtgagtagtg acaggaggta
2340
gccccgggtg agacctctca cagcaagaag atggtgtggt tgctggggcc tccctggaga
2400
gtgtcgcccc tgcggccctt gggaaagtgtct ccctcacgac ggaaggtttc ctgtcagtgc
2460
ggtccccggg cctgatagtg gcgggtggcg ggtgggtca cgtgtccctca aggtcctgaa
2520
tgcccccagtc tgccccatcc ctctgattcc cagtggtgc tagctggacc cagctggtgt
2580
cctggggcatg aaggcagggc caccgtcccc agcaggtgtctt gcccctctgg ccagctgagc
2640
atccctggcca ccatcagegtt ccaggtgccc ctactcgccc ttccctttct tcagaaggct
2700
ttgccccggactt gacccggggcc agcttcccgcc gattccctt ccgttcccta tcaacgtcca
2760
ggacccaaaggc tgccccggccc aggccagcccc ttgccacttg gggcccggtc ttcacacgtg
2820
ggagttctgac cggggctctt ccctgaacag tccctgggtctt gacgctctca attatcaccc
2880
acggacccac acgacgccccg gctctggcg gggatggggc cggggctgtctt gccccgggtccc
2940
gccaggcgag gccccagcaa ccacccatc ttcttgctgt gagaggtctc accccgggtctt
3000
acccctgttc actactcagt gccgtggggt ccgtgggcaaa gttgcccagg gtgggggtgc
3060
ctagccaggtt gcaagttcccg ccccgcttag tccctggcgat cacgcgt
3107

<210> 6004
<211> 140
<212> PRT
<213> Homo sapiens

```

<400> 6004
Met Val Thr Thr Pro Ser Trp Trp Ala Val Trp Pro Trp Val Ser Gly
      1           5           10          15
Gly Ala Thr Gly Cys Thr Glu Leu Gly Ser Trp Glu Thr Val Pro Arg
      20          25          30
Pro Ala Val Pro Lys Val Ala Pro Gly Thr Met Pro Thr Arg Pro Glu
      35          40          45
Gly Gly Thr Glu Thr Thr Ser Met Leu Xaa Val Pro Gly Val Thr Gln
      50          55          60
Ser Pro Arg Gly Glu Arg Gly Ser Gly Pro His Ala Val Gln Gly Val
      65          70          75          80
Ala Leu Pro Xaa Arg Gly Ser Pro Arg Gly Pro Gly Pro Arg Ala Pro
      85          90          95
Gly Arg Gly Arg Asp Cys Gly Gly Asn Gly Pro Ala Glu Ala Pro Ala

```

100	105	110													
Pro	Leu	Ser	Ser	Ala	Phe	Gln	Pro	Pro	Ala	Leu	Gly	Pro	Ala	Pro	Lys
115							120					125			
Glu	Gly	Gly	Pro	Ser	Ser	Leu	Asn	Lys	Arg	Cys	Thr				
130							135				140				

<210> 6005
<211> 1735
<212> DNA
<213> Homo sapiens

<400> 6005
gagcttggat tgcccggtgc cccaggaatc gatggagaga agggccccaa aggacagaaa
60
ggagacccag gagagcctgg gccagcagga ctcaaagggg aagcaggcga gatgggcttg
120
tccggcctcc cgggcgtcga cggcctcaag ggggagaagg gggagtcggc atctcagcct
180
acaggagacg ctggctcagc tcatagtgag ccagggcccc ctggccccc tggccccc
240
gcggcgatgg gcctccaggg aatccagggt cccaagggtc tggatggagc aaagggagag
300
aagggtgcgt cgggtgagag aggctccagc ggctgcctg ggccagttgg cccaccggc
360
cttattgggc tgccaggaac caaaggagag aagggcagac ccggggagcc aggactagat
420
gtttccctg gaccccgagg agagaaaggt gatcgagcg agcgtggaga gaagggagaa
480
cgaggggtcc cggccggaa aggagtgaag ggccagaagg gcgagccgg accaccaggc
540
ctggaccagc cgtgtccctg gggcccccac gggctgcctg tgcctggctg ctggcataag
600
tgacccacag gcccagctca cacctgtaca gatccgtgtg gacatttta attttgtaa
660
aaacaaaaca gtaatatatt gatcttttt catggaatgc gctacctgtg gcctttaac
720
attcaagagt atgcccaccc agcccaaag ccacccgcat gtgaagctgc cgaaaagtgg
780
acaggccaga ccagggagat gtgtacctga gggcacccct tgggcctggg cttccagg
840
aaggagatga aggtagaagc acctggctcg gcaaggcta gaaagatgtc acgttgggcc
900
ttcagtcacc tgatcagcag agagacttc agctgtggta ctgcctgtt agaacctgcc
960
cccgaaaaac tctggagtc ctggacaca ccctatccaa gaagacccag gggtggaaaca
1020
gcggctgtc ttgtccctgg cctcatcagc ctccaaactc aaccacaacc agctgcctct
1080
gcagttggac aagacttggc ccccgacaa gactcgccca gcacttgcgg ctggccccc
1140
ggagcagtga gtggaaatcc cccacggagg tctagctcta ccacattcag gaggccctcag
1200
gaggccagcc tgccatgaga gcacatgtcc tctggccagg agtagtggct gagctctgt
1260

atcgctgtga tgtggaccca gtcgcaggga gcagagtgtc ggggatggag gggcccagcc
 1320
 tggactgact gctacttctt gtctctgttt ccattatcac ccagagaggg acaagatagg
 1380
 acatggcctg gaccagggag gcagggctcc cactcagagt ctgggtctca ctggcccaa
 1440
 gtctcccacc cagaactctg gccaaaaatg gctctctagg tgggctgtgc aggcaaagca
 1500
 aagctcaggg ctggttccca gctggcctga gcagggggcc tgccaccaga cccaccacg
 1560
 ctctgacgag aggctttcc acctccagca agtgttccca gcaaccagct ccatcctggc
 1620
 tgcttgccctt ccatttccgt gtagatggag atcactgtgt gtaataaaacc acaagtgcgt
 1680
 gaaaaaaaaaaa aaaaaaaaaaaa aaaaaaaaaaaa aaaaaaaaaaaa aaaag
 1735

<210> 6006

<211> 200

<212> PRT

<213> Homo sapiens

<400> 6006
 Glu Leu Gly Leu Pro Gly Ala Pro Gly Ile Asp Gly Glu Lys Gly Pro
 1 5 10 15
 Lys Gly Gln Lys Gly Asp Pro Gly Glu Pro Gly Pro Ala Gly Leu Lys
 20 25 30
 Gly Glu Ala Gly Glu Met Gly Leu Ser Gly Leu Pro Gly Ala Asp Gly
 35 40 45
 Leu Lys Gly Glu Lys Gly Glu Ser Ala Ser Gln Pro Thr Gly Glu Pro
 50 55 60
 Gly Ser Ala His Ser Glu Pro Gly Pro Pro Gly Pro Pro Gly Pro Pro
 65 70 75 80
 Gly Pro Met Gly Leu Gln Gly Ile Gln Gly Pro Lys Gly Leu Asp Gly
 85 90 95
 Ala Lys Gly Glu Lys Gly Ala Ser Gly Glu Arg Gly Ser Ser Gly Leu
 100 105 110
 Pro Gly Pro Val Gly Pro Pro Gly Leu Ile Gly Leu Pro Gly Thr Lys
 115 120 125
 Gly Glu Lys Gly Arg Pro Gly Glu Pro Gly Leu Asp Gly Phe Pro Gly
 130 135 140
 Pro Arg Gly Glu Lys Gly Asp Arg Ser Glu Arg Gly Glu Lys Gly Glu
 145 150 155 160
 Arg Gly Val Pro Gly Arg Lys Gly Val Lys Gly Gln Lys Gly Glu Pro
 165 170 175
 Gly Pro Pro Gly Leu Asp Gln Pro Cys Pro Val Gly Pro Asp Gly Leu
 180 185 190
 Pro Val Pro Gly Cys Trp His Lys
 195 200

<210> 6007

<211> 693

<212> DNA

<213> Homo sapiens

<400> 6007
cagccctta agccatctcc ctccagtac aacctctatt cagccttcac cagtgatggt
60
gccatttcag taccaggct ttctgtcca ggtcaaggaa agatggtaa aaaagtctgt
120
ccttgcaacc agctctgttag aaccagcagc acaaacactg ttggggcaac agtgaacagc
180
caagccgcc aagctcagcc tcctgcccatt acgtccagca ggaagggcac attcacagat
240
gacttgcaca agttggtaga caattggcc cgagatgcca tgaatctctc aggccaggaga
300
ggaagcaaag ggcacatgaa ttatgagggc ccttggaatgg caaggaagtt ctctgcaccc
360
ggcactgt gcatctccat gacctcgaac ctgggtggct ctgccccat ctctgcagca
420
tcagctacct ctcttaggtca ctccaccaag tctatgtgcc ccccacagca gtatggctt
480
ccagctaccc catttggcgc tcaatggagt gggacgggtg gcccagcacc acagccactt
540
ggccagttcc aacctgtggg aactgcctcc ttgcagaatt tcaacatcag caatttgcag
600
aaatccatca gcaacccccc aggctccaac ctgcggacca cttagaccta gagacattaa
660
ctgaatagat ctggggcag gagatggaaat gct
693

<210> 6008
<211> 214
<212> PRT
<213> Homo sapiens

<400> 6008
Gln Pro Leu Lys Pro Ser Pro Ser Asp Asn Leu Tyr Ser Ala Phe
1 5 10 15
Thr Ser Asp Gly Ala Ile Ser Val Pro Ser Leu Ser Ala Pro Gly Gln
20 25 30
Gly Lys Met Val Lys Lys Val Cys Pro Cys Asn Gln Leu Cys Arg Thr
35 40 45
Ser Ser Thr Asn Thr Val Gly Ala Thr Val Asn Ser Gln Ala Ala Gln
50 55 60
Ala Gln Pro Pro Ala Met Thr Ser Ser Arg Lys Gly Thr Phe Thr Asp
65 70 75 80
Asp Leu His Lys Leu Val Asp Asn Trp Ala Arg Asp Ala Met Asn Leu
85 90 95
Ser Gly Arg Arg Gly Ser Lys Gly His Met Asn Tyr Glu Gly Pro Gly
100 105 110
Met Ala Arg Lys Phe Ser Ala Pro Gly Gln Leu Cys Ile Ser Met Thr
115 120 125
Ser Asn Leu Gly Gly Ser Ala Pro Ile Ser Ala Ala Ser Ala Thr Ser
130 135 140
Leu Gly His Phe Thr Lys Ser Met Cys Pro Pro Gln Gln Tyr Gly Phe
145 150 155 160
Pro Ala Thr Pro Phe Gly Ala Gln Trp Ser Gly Thr Gly Gly Pro Ala

165	170	175
Pro Gln Pro Leu Gly Gln Phe Gln Pro Val Gly Thr Ala Ser Leu Gln		
180	185	190
Asn Phe Asn Ile Ser Asn Leu Gln Lys Ser Ile Ser Asn Pro Pro Gly		
195	200	205
Ser Asn Leu Arg Thr Thr		
210		

```
<210> 6009  
<211> 1570  
<212> DNA  
<213> Homo sapiens
```

<400> 6009
nnctgcacca tggcgccccg gcttgtcagc cgatgcgggg ctgtgcgtgc agctcccccac
60
agcgccccgc tggctgtcct ggccgcaggta gtccggcgct caacagacac cgtgtatgac
120
gtggtggtgt cgggtggagg cctgggggc gtcgcattgg cctgtgcctt gggatatgat
180
attcactttc atgacaagaa aatccctgttgc tcgaagcag gtccaaagaa agtactggag
240
aaattgtcag aaacttacag caacagggtc agtcattt cccctggctc tgcaacgctt
300
ctcagtagtt ttggtgccctg ggaccatatac tgcaacatga gatacagagc ctttcggcga
360
atgcagggtgt gggacgcctg ctcagaggcc ctgataatgt ttgataagga taatttagat
420
gacatgggct atatcgatgaa gaatgtatgtc atcatgcatg ctctcaactaa gcagttggag
480
gctgtgtctg accgagtgtac ggttctctac aggagcaaa ccattcgtta tacctggct
540
tgtccatttc ctatggccga ctccagccct tgggttcata ttacccttagg tgatggcagc
600
accccccaga ccaaattgtt gataggtgca gatggtcaca actccggagt acggcaggct
660
gttggaatcc agaatgtgag ctggaaactat gaccagtctg ctgttgccgc tactctgcatt
720
ttatcagagg ccacagaaaa caacgttagcc tggcagagat ttcttcctc tggccattt
780
gctctgtcc cgctctcaga caccttgagt tccttggtt ggtccacgtc ccatgaacat
840
gcagcagagc tagtttagcat ggatgaggaa aaatttgtgg atgccgttaa ctctgcctt
900
tggagtgtatg ctgaccacac ggacttcatac gacacagctg gtgcctatgtc gcagttatcc
960
gtcagcccttc tgaagccac taaggtctcg gtcgcaggc tgcccccaag cgtaccatgg
1020
gtggatgcca aaagccgagt tctgtttcctt cttgggttgg gacatgtgc tgagttacgtc
1080
aggccctcggtt tggcgctcat tggggatgca gcccacagag tccatccgct tgcaggacag
1140
ggtgtcaaca tgggccttgg ggatatctcc agcttggccc atcacctcag tacggcagcc
1200

ttcaatggga aggacttagg ttccgtgagc cacctcacag gttatgaaac agaaagacag
 1260
 cgtcacaaca ctgccttct ggctgtaca gacttactaa aaaggctcta ttctaccagt
 1320
 gcctccccgc ttgtgttct caggacgtgg ggcttcagg ccacaaatgc agtgtctcca
 1380
 ctcaaagaac agattatggc ctttgcaagc aaatgagttac tccttcctta aagaaagatt
 1440
 acgttcatga aaaagaacat cctgcccagg acccatcata catatttca agatcttatt
 1500
 taatttaata aacttacttt acattaaaaaaa aaaaaaaaaaaa aaaaaaaaaaaa
 1560
 aaaaaaaaaaaa
 1570

<210> 6010
 <211> 468
 <212> PRT
 <213> Homo sapiens

<400> 6010
 Met Ala Ala Arg Leu Val Ser Arg Cys Gly Ala Val Arg Ala Ala Pro
 1 5 10 15
 His Ser Gly Pro Leu Ala Val Leu Ala Gln Val Val Arg Arg Ser Thr
 20 25 30
 Asp Thr Val Tyr Asp Val Val Ser Gly Gly Gly Leu Val Gly Ala
 35 40 45
 Ala Met Ala Cys Ala Leu Gly Tyr Asp Ile His Phe His Asp Lys Lys
 50 55 60
 Ile Leu Leu Leu Glu Ala Gly Pro Lys Lys Val Leu Glu Lys Leu Ser
 65 70 75 80
 Glu Thr Tyr Ser Asn Arg Val Ser Ser Ile Ser Pro Gly Ser Ala Thr
 85 90 95
 Leu Leu Ser Ser Phe Gly Ala Trp Asp His Ile Cys Asn Met Arg Tyr
 100 105 110
 Arg Ala Phe Arg Arg Met Gln Val Trp Asp Ala Cys Ser Glu Ala Leu
 115 120 125
 Ile Met Phe Asp Lys Asp Asn Leu Asp Asp Met Gly Tyr Ile Val Glu
 130 135 140
 Asn Asp Val Ile Met His Ala Leu Thr Lys Gln Leu Glu Ala Val Ser
 145 150 155 160
 Asp Arg Val Thr Val Leu Tyr Arg Ser Lys Ala Ile Arg Tyr Thr Trp
 165 170 175
 Pro Cys Pro Phe Pro Met Ala Asp Ser Ser Pro Trp Val His Ile Thr
 180 185 190
 Leu Gly Asp Gly Ser Thr Phe Gln Thr Lys Leu Leu Ile Gly Ala Asp
 195 200 205
 Gly His Asn Ser Gly Val Arg Gln Ala Val Gly Ile Gln Asn Val Ser
 210 215 220
 Trp Asn Tyr Asp Gln Ser Ala Val Val Ala Thr Leu His Leu Ser Glu
 225 230 235 240
 Ala Thr Glu Asn Asn Val Ala Trp Gln Arg Phe Leu Pro Ser Gly Pro
 245 250 255
 Ile Ala Leu Leu Pro Leu Ser Asp Thr Leu Ser Ser Leu Val Trp Ser

260	265	270
Thr Ser His Glu His Ala Ala Glu Leu Val Ser Met Asp	Glu Glu Lys	
275	280	285
Phe Val Asp Ala Val Asn Ser Ala Phe Trp Ser Asp Ala Asp His Thr		
290	295	300
Asp Phe Ile Asp Thr Ala Gly Ala Met Leu Gln Tyr Pro Val Ser Leu		
305	310	315
Leu Lys Pro Thr Lys Val Ser Ala Arg Gln Leu Pro Pro Ser Val Pro		320
325	330	335
Trp Val Asp Ala Lys Ser Arg Val Leu Phe Pro Leu Gly Leu Gly His		
340	345	350
Ala Ala Glu Tyr Val Arg Pro Arg Val Ala Leu Ile Gly Asp Ala Ala		
355	360	365
His Arg Val His Pro Leu Ala Gly Gln Gly Val Asn Met Gly Phe Gly		
370	375	380
Asp Ile Ser Ser Leu Ala His His Leu Ser Thr Ala Ala Phe Asn Gly		
385	390	395
Lys Asp Leu Gly Ser Val Ser His Leu Thr Gly Tyr Glu Thr Glu Arg		400
405	410	415
Gln Arg His Asn Thr Ala Leu Leu Ala Ala Thr Asp Leu Leu Lys Arg		
420	425	430
Leu Tyr Ser Thr Ser Ala Ser Pro Leu Val Leu Leu Arg Thr Trp Gly		
435	440	445
Leu Gln Ala Thr Asn Ala Val Ser Pro Leu Lys Glu Gln Ile Met Ala		
450	455	460
Phe Ala Ser Lys		
465		

<210> 6011
<211> 1331
<212> DNA
<213> Homo sapiens

<400> 6011
ngcaggcccg cctaagccaa gggcaaccta ggcatgcage ttggtttgc tgacttcatg
60
ggtgtgttca gcaaagggt tcgggaagtg gagcgggttc tacagctgcc caaggaaccg
120
ggtgattctg cacagttcac caaaggcatt gccatcatct tcccctttct gtatctgctg
180
gagaagggtgg agtgcacccc cagecaggag cacctgaagc accagaccgt ctaccgcctg
240
ctcaagtgcg cgccccagggg caagaacggc ttcacccctc tgcacatggc tgtggacaag
300
gacaccacaa acgtggcccg ctatccctg ggcagattcc cctccctgca cgtggtaaaa
360
gtgctgctcg actgcggggc cgaccggac agcaggatt ttgacaacaa caccggctca
420
cacatagcag cccagaacaa ctgccccggcc atcatgaatg ccctgatcga agcaggggcc
480
cacatggacg ccaccaatgc cttcaagaag acggcctacg agctgctggc cgagaagctg
540
ctggccaggg gtaccatgca gcccctcaac tacgtgaccc tgcagtgcct tgccggccgg
600

gcccggata agaacaagat cccttacaag ggcttcattcc cgaaagatct agaggcattc
 660
 atcgaaactgc actgacacctgc ccagaacatc tgccaccctca cctctccccct ctccctgctga
 720
 gatgggggaa atccggctgg ggtatagcag atgctcggttc ttgcctcctt cagggcacaa
 780
 tcaggagaag gtttctgcct cccatccccct ctacctgcag acagggtcgg aggtgttagc
 840
 gagccttgg tgctagaagc ctgcgggtc atgtctaag aggacagtct ttctccggga
 900
 gcccgcac tcattcttag ttagaaaaag acacaagacc ttccccacat cctgtctgcc
 960
 tgggttaggg aggccttgc ttgttacct agaggcggag ggactgaagc cattgcgttc
 1020
 ctccctgtct agaaacacag gaagaagttt aggacggctc gcctccctc gtccctttac
 1080
 ctggccagat aactccagcc gctgaataca gtgttaggac tggggctcc tgagatgaga
 1140
 gtttgagatt cagggaatga gaccacctct catttcttcc agcatgatec cgccctttcc
 1200
 cgtgccacccg tagtccctgg caggcaggca gggctctgcc cagggcagcc tgccacttgc
 1260
 atagcttcg gttggtttgg tttctgttt attaataag tgggcaggtt gcaagcgttg
 1320
 cacagaaatt t
 1331

<210> 6012
 <211> 219
 <212> PRT
 <213> Homo sapiens

<400> 6012
 Ala Lys Gly Asn Leu Gly Met Gln Leu Gly Phe Ala Asp Phe Met Gly
 1 5 10 15
 Val Phe Ser Lys Gly Val Arg Glu Val Glu Arg Val Leu Gln Leu Pro
 20 25 30
 Lys Glu Pro Gly Asp Ser Ala Gln Phe Thr Lys Ala Ile Ala Ile Ile
 35 40 45
 Phe Pro Phe Leu Tyr Leu Leu Glu Lys Val Glu Cys Thr Pro Ser Gln
 50 55 60
 Glu His Leu Lys His Gln Thr Val Tyr Arg Leu Leu Lys Cys Ala Pro
 65 70 75 80
 Arg Gly Lys Asn Gly Phe Thr Pro Leu His Met Ala Val Asp Lys Asp
 85 90 95
 Thr Thr Asn Val Gly Arg Tyr Pro Val Gly Arg Phe Pro Ser Leu His
 100 105 110
 Val Val Lys Val Leu Leu Asp Cys Gly Ala Asp Pro Asp Ser Arg Asp
 115 120 125
 Phe Asp Asn Asn Thr Pro Leu His Ile Ala Ala Gln Asn Asn Cys Pro
 130 135 140
 Ala Ile Met Asn Ala Leu Ile Glu Ala Gly Ala His Met Asp Ala Thr
 145 150 155 160
 Asn Ala Phe Lys Lys Thr Ala Tyr Glu Leu Leu Asp Glu Lys Leu Leu

165 170 175
Ala Arg Gly Thr Met Gln Pro Phe Asn Tyr Val Thr Leu Gln Cys Leu
180 185 190
Ala Ala Arg Ala Leu Asp Lys Asn Lys Ile Pro Tyr Lys Gly Phe Ile
195 200 205
Pro Glu Asp Leu Glu Ala Phe Ile Glu Leu His
210 215

<210> 6013
<211> 2204
<212> DNA
<213> Homo sapiens

<400> 6013
acgcgtgaag gggcgagg tgggtgga ggtggcagtg tggctctaa gccaccacgg
60
ggccggaaga agaagcgat gctggaatca gggctgccc agatgaatga cccttatgtc
120
ctctccccctg aggatgtga tgaccatcg aaagacggcg agacctacag gtccggatg
180
tgctcaactga cattctactc caagtcggag atgcagatcc actccaagat gcacacggag
240
accatcaagc cccacaagtg cccacactgc tc当地agacct tc当地caacag ct当地tacactg
300
gcccagcaca tccgtatcca ctcagggcc aagccctaca actgttaactt ttgtgagaaa
360
tc当地tccgtc agctctcaca cctccagcag cacacacgaa tccacactgg tgatagacca
420
tacaaatgtc cacacccagg ctgtgagaaa gc当地cacac aactctccaa tctgcagtc
480
cacagacggc aacacaacaa agataaaccc tt当地agtgcc acaactgtca tc当地ggctac
540
acggatgcag cctcaactaga ggtgcacactg tctacgcaca cagtgaagca tgccaaagg
600
tacacctgca ct当地tgcag tc当地ggcatac acatcagaaa cataccttata
660
cgccaaacaca acccgctga tcttcagcaa caggtgcagg cagcagcagc agcggcagca
720
gtggcccagg cccaggctca agctcaagcc caggctcagg ct当地aggctca agcccagg
780
caggcccagg cctccaggc atcacagcag cagcagcagc agcagcagca gcagcagcag
840
cagcaacagc caccaccaca cttccactt cctggggcag ccccccagg tgggggtgg
900
ggggacagca atcccaaccc tccacccag tggctctttg acctgacccc gtataagacg
960
gcccggcatac ataaggacat ctgcctact gtcaccacca gcaccatcca ggtggagcac
1020
ctggccagct ctttagagatc cgtgctgcca cccactggaa agaggaagaa gtagtctgg
1080
tgtcttctt ctccaaactt tggggaaa agtcccttgc tcccttgaca ggccttggct
1140
ccatctccctt gggccctctgt cacggcttgc ct当地cacagga taccatccctt tttctgaact
1200

cttcttcaa aggaacatca gccctcctga ttgcaaagga atactgagct gatggtgtca
 1260
 tccagcagcc tccccctcca agcaaagctt ctaaaaactgg gggtcgggtgc tcaaggaaag
 1320
 gatttgctat gacccatag aaccttgcac agtgtggcca cttaccctat ccttaccctc
 1380
 cttatcctca aagtttgggc tgatgttaga ctagaggctg gccctcccag ataacagaga
 1440
 aaaggagcc ccaaattgca ccagcccttt gtttatttct tgcctgcaaa agaacagagg
 1500
 tttctcaaat gcctcagtcc ctgagagcca ttcttcccc tacatcgctc cactttgctt
 1560
 cctattgact gctggtagaa ggagatttgg ggttagggctt agacccctt ttatggaaag
 1620
 ggggcaaggg ctgagatgtg gtcccaagg ggccagaaat tcccaagttt gtcacaggtg
 1680
 gcttagaaatgtt gtttacgga ttcccttgaa gcctctctcc ttctctgcct
 1740
 acaaagaccc tatactctca gtctcccaa cccacccca aggagctgtg ggaggcttt
 1800
 tgttatctgt gaaactccaa aacaggggtg ttgcggagaa gggagagttc aaggcaaacg
 1860
 caaggactgg acttagctcc ctaggtgccca cagtcagatg ccggacacgg atttatatat
 1920
 aaatatatat atataatcca ctcatcacgg ccatctttgt tgtaaccatt
 1980
 tctgtttta taaatgcatt atctctgaga attttcatat ttgtatgttt gtttatttt
 2040
 gtcctttttt tccctctctc caccctgtc ctctagccac agcattttc tttttgtctt
 2100
 tttttttttt ttttaatca tggcagattt cagaggaaag gaaattaaaa aaaaaatcag
 2160
 gaaaccagtt gttataaagt aattttaaaa tgaagaaaaa aaaa
 2204

<210> 6014
 <211> 182
 <212> PRT
 <213> Homo sapiens

<400> 6014
 Arg Gln His Asn Lys Asp Lys Pro Phe Lys Cys His Asn Cys His Arg
 1 5 10 15
 Ala Tyr Thr Asp Ala Ala Ser Leu Glu Val His Leu Ser Thr His Thr
 20 25 30
 Val Lys His Ala Lys Val Tyr Thr Cys Thr Ile Cys Ser Arg Ala Tyr
 35 40 45
 Thr Ser Glu Thr Tyr Leu Met Lys His Met Arg Lys His Asn Pro Pro
 50 55 60
 Asp Leu Gln Gln Gln Val Gln Ala Ala Ala Ala Ala Val Ala
 65 70 75 80
 Gln Ala
 85 90 95
 Gln Ala Gln Ala Gln Ala Ser Gln Ala Ser Gln Gln Gln Gln

100	105	110
Gln Gln Gln Gln Gln Gln Gln Pro Pro Pro His Phe Gln Ser		
115	120	125
Pro Gly Ala Ala Pro Gln Gly Gly Gly Asp Ser Asn Pro Asn		
130	135	140
Pro Pro Pro Gln Cys Ser Phe Asp Leu Thr Pro Tyr Lys Thr Ala Glu		
145	150	155
His His Lys Asp Ile Cys Leu Thr Val Thr Thr Ser Thr Ile Gln Val		
165	170	175
Glu His Leu Ala Ser Ser		
180		

<210> 6015

<211> 612

<212> DNA

<213> Homo sapiens

<400> 6015

```

gccgagttag aacaagagta cagggacttt acaattttta ttgattttta ctatataac
60
tgcagtaatg attgaaatga atgacttttt ttttagaaaaa tgttgtaaaaa ggcaggcttc
120
tgagaatcct gattgaatgg aagtgaagag ccatgagaag ctcgcccagg agagtcta
180
ttattctgtat tacagctcat ggagagtgtt gggcatgtt ggcactcca gctattgtt
240
ttcaacttgc atctgccccct gctgatecccc tgagaggctg gcagccctctc agggctc
300
gggcggtgag ccctcctccg cagcctgcaa gccttttac ctcttccat cacctgagcc
360
tgaaaagtgtg cctgcccac cttgtcttg gccttatttc tcttcctatc ttatctccat
420
tccgcagggtg cctcagccat tgcctaccct tttgcacaaa attaaaaaga aaagaaaaaa
480
gccagttaga gaacagtcac acgataaaagg cacagcacag cagttggttt gtccttttta
540
aacaggaagt agcagtcatt ctatatggat gttcagctag acccacgggg cttaacctt
600
acctggcatg gc
612

```

<210> 6016

<211> 99

<212> PRT

<213> Homo sapiens

<400> 6016

Met	Glu	Arg	Gly	Lys	Lys	Ala	Cys	Arg	Leu	Arg	Arg	Arg	Ala	His	Arg
1	5						10					15			
Pro	Arg	Ser	Pro	Glu	Arg	Leu	Pro	Ala	Ser	Gln	Gly	Ile	Ser	Arg	Gly
	20			25								30			
Arg	Cys	Lys	Leu	Asn	Asn	Asn	Ser	Trp	Ser	Gly	Leu	Thr	Cys	Pro	Thr
	35			40								45			
Leu	Ser	Met	Ser	Cys	Asn	Gln	Asn	Lys	Leu	Asp	Ser	Pro	Gly	Arg	Ala

50 55 60
Ser His Gly Ser Ser Leu Pro Phe Asn Gln Asp Ser Gln Lys Pro Ala
65 70 75 80
Phe Tyr Asn Ile Phe Leu Lys Lys Ser His Ser Phe Gln Ser Leu Leu
 85 90 95
Gln Tyr Ile

<210> 6017
<211> 2091
<212> DNA
<213> Homo sapiens

<400> 6017
ccggccaagt ttaactttgc tagtgatgtg ttggatcaact gggctgacat ggagaaggct
60
ggcaagcgcac tcccaagccc agccctgtgg tgggtgaatg ggaaggggaa ggaatttaatg
120
tggaaattca gagaactgag tgaaaacagc cagcaggcag ccaacgtcct ctggggagcc
180
tgtggcctgc agcgtgggaa tcgtgtggca gtgatgtgc cccgagtgcc tgagtggtgg
240
ctgggtatcc tgggctgcat tcgagcaggc ttcatttttgc tgcctggAAC catccagatg
300
aaatccactg acatactgta taggttgcag atgtctaagg ccaaggctat tgttgtgg
360
gatgaagtca tccaaagaagt ggacacagtgc gcatctgaat gtccttctct gagaattaa
420
ctactgggtt ctgagaaaaag ctgcgtggc tggctgaact tcaagaaaact actaaatgag
480
gcatccacca ctcattactg tgtggagact ggaagccagg aagcatctgc catctacttc
540
actagtggga ccagtggct tcccaagatg gcagaacatt cctactcgag cctgggcctc
600
aaggccaaga tggatgtgg ttggacaggc ctgcaaggct ctgatataat gtggaccata
660
tcagacacag gttggatact gaacatcttgc ggctcaactt tggaatcttg gacatttagga
720
gcatgcacat ttgttcatct ctggccaaag ttggaccac tggttattct aaagacactc
780
tccagttatc caatcaagag tatgtatgggt gcccttatttgc tttaccggat gttgctacag
840
caggatctttt ccagttacaa gttccccat ctacagaact gcctcgctgg aggggagtcc
900
cttcttccag aaactcttggaa gaactggagg gcccttccat gactggacat ccgagaattc
960
tatggccaga cagaaacggg attaacttgc atggtttcca agacaatgaa aatcaaacca
1020
ggatcatgg gaacggctgc ttccctgttat gatgtacagg ttatagatga taagggcaac
1080
gtcctgcggcc cccggcacaga aggagacatt ggcacatgggg tcaaaccat caggcctata
1140
ggcatcttctt ctggctatgt ggaaaatccc gacaagacag cagccaaacat tcgaggagac
1200

ttttggctcc ttggagaccg gggaatcaaa gatgaagatg ggtattcca gtttatggaa
 1260
 cgggcagatg atatcattaa ctccagcggg taccggattg gaccctcgga ggttagagaat
 1320
 gcactgatga agcacccctgc tgtggtttag acggctgtga tcagcagccc agaccccgcc
 1380
 cgaggagagg tggtaaggc atttgtggtc ctggcctcgc agttcctgtc ccatgaccca
 1440
 gaacagctca ccaaggagct gcagcagcat gtgaagttag tgacagcccc atacaagtac
 1500
 ccaagaaaga tagagtttgt cttgaacctg cccaagactg tcacaggaa aattcaacga
 1560
 gccaagcttc gagacaagga gtggaaagatg tccggaaaag cccgtgcgcgtgagacatc
 1620
 taagagacat tcatttgat tcccctcttc ttctctttt tttccctttt gggcccttgg
 1680
 ccttactatg atgatatgag attctttatg aaagaacatg aatgtaaaggtt ttgtcttgc
 1740
 ctggtttatta gccttggta ttagcacaaa actttaccat gtttagatgtt gaaagaagaa
 1800
 agggaaaggaa tgagagagag tgaaaaggag agggtaacag aaaaaaagga aagaaaaagta
 1860
 agtcaggaa atattaaac tgcaaggaa agcaattgaa aaagaaataa agtagggaaa
 1920
 gaaggagaga ggaagcaagg gaaggaggaa gaaaggaaag aggagatgaa agggggagaa
 1980
 aagatagaag aaaaataattt gaaggagagaa tcagaaaaat aaagagaaga aaggaaagaa
 2040
 ataaagagagaaag aagaaagagc aaaagaacac aagaaagaaa g
 2091

<210> 6018
 <211> 537
 <212> PRT
 <213> Homo sapiens

<400> 6018
 Pro Ala Lys Phe Ala Ser Asp Val Leu Asp His Trp Ala Asp
 1 5 10 15
 Met Glu Lys Ala Gly Lys Arg Leu Pro Ser Pro Ala Leu Trp Trp Val
 20 25 30
 Asn Gly Lys Gly Lys Glu Leu Met Trp Asn Phe Arg Glu Leu Ser Glu
 35 40 45
 Asn Ser Gln Gln Ala Ala Asn Val Leu Ser Gly Ala Cys Gly Leu Gln
 50 55 60
 Arg Gly Asp Arg Val Ala Val Met Leu Pro Arg Val Pro Glu Trp Trp
 65 70 75 80
 Leu Val Ile Leu Gly Cys Ile Arg Ala Gly Leu Ile Phe Met Pro Gly
 85 90 95
 Thr Ile Gln Met Lys Ser Thr Asp Ile Leu Tyr Arg Leu Gln Met Ser
 100 105 110
 Lys Ala Lys Ala Ile Val Ala Gly Asp Glu Val Ile Gln Glu Val Asp
 115 120 125
 Thr Val Ala Ser Glu Cys Pro Ser Leu Arg Ile Lys Leu Leu Val Ser

130	135	140
Glu	Ser	Cys
Asp	Gly	Trp
Leu	Asn	Phe
Lys		Lys
		Leu
		Asn
		Glu
145	150	155
Ala	Ser	Thr
Thr	His	His
Cys	Val	Glu
		Thr
		Gly
		Ser
		Gln
		Glu
		Ala
		Ser
165	170	175
Ala	Ile	Tyr
Phe	Thr	Ser
Gly	Thr	Ser
		Gly
		Leu
		Pro
		Lys
		Met
		Ala
		Glu
180	185	190
His	Ser	Tyr
Ser	Ser	Leu
Gly		Gly
		Leu
		Lys
		Ala
		Lys
		Met
		Asp
		Ala
		Gly
		Trp
195	200	205
Thr	Gly	Leu
Gln	Ala	Ser
Asp	Ile	Met
Trp	Thr	Thr
		Ile
		Ser
		Asp
		Thr
		Gly
210	215	220
Trp	Ile	Leu
Asn	Ile	Leu
Gly	Ser	Leu
		Gly
		Ser
		Trp
		Thr
		Leu
		Gly
225	230	235
Ala	Cys	Thr
Phe	Val	His
		Leu
		Leu
		Pro
		Lys
		Phe
		Asp
		Pro
		Leu
		Val
		Ile
		Ser
		Ser
		Tyr
		Pro
		Ile
		Lys
		Ser
		Met
		Met
		Gly
		Ala
		Pro
260	265	270
Ile	Val	Tyr
Arg	Met	Leu
Leu	Gln	Gln
Asp	Leu	Ser
		Ser
		Tyr
		Lys
		Phe
275	280	285
Pro	His	Leu
Gln	Asn	Cys
		Leu
		Ala
		Gly
		Glu
		Ser
		Leu
		Leu
		Pro
290	295	300
Thr	Leu	Glu
Asn	Trp	Arg
		Ala
		Gln
		Thr
		Gly
		Leu
		Asp
		Ile
		Arg
		Glu
305	310	315
Tyr	Gly	Gln
		Thr
		Gly
		Leu
		Thr
		Cys
		Met
		Val
		Ser
		Lys
		Thr
		Met
325	330	335
Lys	Ile	Lys
Pro	Gly	Tyr
		Met
		Gly
		Thr
		Ala
		Ala
		Ser
		Cys
		Tyr
340	345	350
Gln	Val	Ile
Asp	Asp	Asp
		Lys
		Gly
		Asn
		Val
		Leu
		Pro
		Pro
355	360	365
Asp	Ile	Gly
Ile	Arg	Val
Lys	Pro	Ile
		Arg
		Pro
		Ile
		Gly
370	375	380
Gly	Tyr	Val
Val	Glu	Asn
		Pro
		Asp
		Lys
		Thr
		Ala
		Ala
		Asn
		Ile
		Arg
		Gly
385	390	395
Phe	Trp	Leu
		Leu
		Gly
		Asp
		Arg
		Gly
		Ile
		Lys
		Asp
		Glu
		Asp
		Gly
405	410	415
Gln	Phe	Met
		Gly
		Arg
		Ala
		Asp
		Asp
420	425	430
Ile	Gly	Pro
Pro	Ser	Glu
		Val
		Glu
		Asn
		Ala
		Leu
		Met
		Lys
		His
		Pro
435	440	445
Val	Glu	Thr
Ala	Val	Ile
		Ser
		Ser
		Pro
		Asp
		Pro
450	455	460
Val	Lys	Ala
Ala	Phe	Val
		Val
		Leu
		Ala
		Ser
		Gln
465	470	475
Glu	Gln	Leu
		Thr
		Gly
		Leu
		Gln
		Gln
		His
		Val
		Lys
		Ser
		Val
485	490	495
Pro	Tyr	Lys
Tyr	Pro	Arg
		Lys
		Ile
		Glu
		Phe
		Val
		Leu
		Asn
		Leu
		Pro
500	505	510
Thr	Val	Thr
		Gly
		Lys
		Ile
		Gln
515	520	525
Lys	Met	Ser
		Gly
		Lys
		Ala
		Arg
		Ala
		Gln
530	535	

<210> 6019
<211> 3002

<212> DNA
<213> Homo sapiens

<400> 6019
atccccctcc ttcatggctg catatctggc tagcgtgaag agatagtac tgagtctgtt
60 taagaacttg gccacgttcg catcggtctc tcccatctgg acaagaggca ccacacgtct
120 ctgcggcccccgg cggcacacgg cccggcagaa atgcagcgcc gagctgatct tgccctccga
180 cgggcacgct gctccagagt gggcagggct gggagggacc ggtgaggacc tggagggact
240 tggggactg gaggacagcg tctgtcaagg caggatgaag gccgtgagtg gtggagactg
300 gctgggtgtac ttgtcgatcc actgctccag ctccaggatg ggcccccgcct tgaacgtggt
360 atacttaag tgagecctccc gggccgagga gcatggtgtc gccagggccg agccgacgtc
420 ctgcaatgtg cactggattt tctgaagctc ttccggcaa at gtagcccttttctgtgac
480 taattccaga gcaaacccaa tagctgaact taattcatct gtagttccca cagcccttct
540 cgaagacacc caggatcccc aagatttaca cccaaaacggg agacaaaggg ttttcttagta
600 cttcacagg agaaaggaga cccaaagatg accaagtgtt tgaagccgtg ggaactacag
660 atgaatthaag ttcaagcttatt gggtttgc tc tgaaattagt cacagaaaag ggccatacat
720 ttgcgcgaaga gcttcagaaa atccagtgca cattgcagga cgtcggtcg gcccctggcga
780 caccatgctc ctggcccg gaggctcaact taaagtatac cacgttcaag gcggggccca
840 tcctggagct ggagcagtgg atcgacaagt acaccagcca gctccaccca ctcacggct
900 tcatccctgcc ttccggaggc aagatcgat cggcgctgca ttctgcgg gccgtgtgcc
960 gcccggccga gagacgtgtg gtgccttttgc tccagatggg agagaccgat gcaaacgtgg
1020 ccaagttctt aaacagactc agtacttac tcttcacgct agccagat at gcaaggatga
1080 aggaggggaa tcaagagaaa atatacaaga aaaatgaccc atcgcccgag tctgagggac
1140 tctgaaatca cagaaagtgg gagcttggag gatccctcca tggcgatggc cgtggagaga
1200 ggagcttgcc cttctgggtt cctgggttctt gaagagctca cccagagagg ctc当地
1260 cttttgtcc cagctcgat tttatctaca cctttggcc ctttccctcaa gggactgtga
1320 ccctttgggg attctgtcccc tgaccctgtc tccccaagct ctcctgggtc ttggagggat
1380 gtggaaatga attggcatttgc cagggaaagac aggtaaatgtt attgtgc当地 tgagaaggag
1440 ctgtgcggaa aaggaataaa agtttggaaagc cccggaccac tggAACCTTG AACCCACCA
1500

ctggctgtac ccggagccgt ggcagcagcc ctcatccccca tggcgccat cccagccctg
1560
gaccaggagg ccgagccca agtggacgtg attttggtgg gatccagtga gctctcaagc
1620
tccgtttac ccgggacagg cagagatctt attgcatatg aagtcaaggc taaccagcg
1680
aatatagaag acatctgcat ctgctgcgg agtctccagg ttcacacaca gcaccctctg
1740
tttgaggggag ggatctgcgc cccatgttaag gacaagtcc tggatcccttcttctgtac
1800
gacgatgacg ggtaccaatc ctactgtcc atctgctgtcc ccggagagac gctgtcatc
1860
tgccggaaacc ctgattgcac ccgatgtac tgcttcgagt gtgtggatag cctggctggc
1920
cccgccacct cgggaaaggt gcacgcccattt agcaactggg tgtgctacct gtgcctgccc
1980
tcctcccgaa gcgggctgtc gcagcgtcgg aggaagtggc gcagccagct caaggccctc
2040
tacgaccgag agtcggagaa tcccctttagt atgttcgaaa ccgtgcctgt gtggaggaga
2100
cagccagtcg ggggtgtc cttttttgaa gacatcaaga aagagctgac gagttttggc
2160
tttttggaaa gtggttctga cccgggacaa ctgaagcatg tggttgatgt cacagacaca
2220
gtgaggaagg atgtggagga gtggggaccc ttcatgttgc tgcacggcgc cacagctccc
2280
ctgggccaca cctgtgaccc tcctcccaage tggtacctgt tccagttcca ccggttctg
2340
cagtagcgcac ggcccaagcc aggccagcccc aggcccttct tctggatgtt cgtggacaat
2400
ctgggtgtga acaaggaaga cctggacgtc gcatctcgct tcctggagat ggagccagtc
2460
accatcccaagtttccatgg cggatcccttg cagaatgtc tccgcgtgtc gagcaacatc
2520
ccagccataa ggagcagcag gcactgggct ctggtttcgg aagaagaatt gtccctgt
2580
gcccagaaca agcagagctc gaagctcgcg gcaagtggc ccaccaagct ggtgaagaac
2640
tgcttttccatgg ccctaagaga atatttcaag tatttttcaa cagaactcac ttctcttta
2700
taaatgatgtc actataactgt gaagaaaaag acttttccta gaacaaaggc aactttccctc
2760
acgttgtctc ttcccttccatgg ggattttgtt ttttttgcgt ctccgtgtc actgcagacc
2820
cacgttccgt tgggttctgg agactcagggt tctctccccc atcacgtgg ctcatgggac
2880
ggggcggaggc ccacgcccgt gcacacagga ccacacgtgg tggtgcgcga tgtacttcc
2940
gaaaggcattt ctgtgttcta gttgagaagt tcgagtatat ttattataag atagttattt
3000
gt
3002

<210> 6020

<211> 387
<212> PRT
<213> Homo sapiens

<400> 6020
Met Ala Ala Ile Pro Ala Leu Asp Pro Glu Ala Glu Pro Ser Met Asp
1 5 10 15
Val Ile Leu Val Gly Ser Ser Glu Leu Ser Ser Ser Val Ser Pro Gly
20 25 30
Thr Gly Arg Asp Leu Ile Ala Tyr Glu Val Lys Ala Asn Gln Arg Asn
35 40 45
Ile Glu Asp Ile Cys Ile Cys Gly Ser Leu Gln Val His Thr Gln
50 55 60
His Pro Leu Phe Glu Gly Gly Ile Cys Ala Pro Cys Lys Asp Lys Phe
65 70 75 80
Leu Asp Ala Leu Phe Leu Tyr Asp Asp Asp Gly Tyr Gln Ser Tyr Cys
85 90 95
Ser Ile Cys Cys Ser Gly Glu Thr Leu Leu Ile Cys Gly Asn Pro Asp
100 105 110
Cys Thr Arg Cys Tyr Cys Phe Glu Cys Val Asp Ser Leu Val Gly Pro
115 120 125
Gly Thr Ser Gly Lys Val His Ala Met Ser Asn Trp Val Cys Tyr Leu
130 135 140
Cys Leu Pro Ser Ser Arg Ser Gly Leu Leu Gln Arg Arg Arg Lys Trp
145 150 155 160
Arg Ser Gln Leu Lys Ala Phe Tyr Asp Arg Glu Ser Glu Asn Pro Leu
165 170 175
Glu Met Phe Glu Thr Val Pro Val Trp Arg Arg Gln Pro Val Arg Val
180 185 190
Leu Ser Leu Phe Glu Asp Ile Lys Lys Glu Leu Thr Ser Leu Gly Phe
195 200 205
Leu Glu Ser Gly Ser Asp Pro Gly Gln Leu Lys His Val Val Asp Val
210 215 220
Thr Asp Thr Val Arg Lys Asp Val Glu Glu Trp Gly Pro Phe Asp Leu
225 230 235 240
Val Tyr Gly Ala Thr Ala Pro Leu Gly His Thr Cys Asp Arg Pro Pro
245 250 255
Ser Trp Tyr Leu Phe Gln Phe His Arg Phe Leu Gln Tyr Ala Arg Pro
260 265 270
Lys Pro Gly Ser Pro Arg Pro Phe Phe Trp Met Phe Val Asp Asn Leu
275 280 285
Val Leu Asn Lys Glu Asp Leu Asp Val Ala Ser Arg Phe Leu Glu Met
290 295 300
Glu Pro Val Thr Ile Pro Asp Val His Gly Gly Ser Leu Gln Asn Ala
305 310 315 320
Val Arg Val Trp Ser Asn Ile Pro Ala Ile Arg Ser Ser Arg His Trp
325 330 335
Ala Leu Val Ser Glu Glu Leu Ser Leu Leu Ala Gln Asn Lys Gln
340 345 350
Ser Ser Lys Leu Ala Ala Lys Trp Pro Thr Lys Leu Val Lys Asn Cys
355 360 365
Phe Leu Pro Leu Arg Glu Tyr Phe Lys Tyr Phe Ser Thr Glu Leu Thr
370 375 380
Ser Ser Leu

385

<210> 6021
<211> 3145
<212> DNA
<213> Homo sapiens

<400> 6021
nactctttag gacaaggacc ttctctggac acagatatgc ctcagagtaa ctgttgata
60
gcattcagac actgctggtt gaattgtcca tttacttggc atgcaacaca tggcaaagta
120
aagggggaag gagatttct gctgcatgtg gctttaacca agagagcaga tccagctgag
180
cttagaacaa tattttgaa gtatgcaagc attgagaaaa acggtaatt tttcatgtcc
240
cccaatgact ttgtcactcg atacttgaac atttttggag aaagccagcc taatccaaag
300
actgtggAAC ttttaagtgg agtgggtggat cagaccaaaat atggattaat atctttcaa
360
gaattttgttgc ctttgaatc tgcctgtgt gccctgtatg ctttgttat ggtgccttt
420
cagctgttttgc acaaagctgg caaaggagaa gtaacttttgc aggatgttaa gcaagtttt
480
ggacagacca caattcatca acatattcca tttaacttggg attcagaatt tgtgcaacta
540
cattttggaa aagaaagaaa aagacacctg acatatgcgg aatttactca gtttttatttgc
600
gaaatacaac tggagcacgc aaagcaagcc ttgtgcaac gggacaatgc taggacttgg
660
agagtcacag ccattcgactt ccgagacatc atggtcacca tccggccccca tgtcttgc
720
ccttttgcgtt aagaatgtct agtagctgtc gctggaggta ccacatccccca tcaagttgt
780
ttctccattttaatggatt taattcgctc cttaacaaca tggactcat tagaaagatc
840
tatagcactc tggctggcac cagggaaatgtt gttgaagtga ctaaggaggaa gtttgc
900
gcagctcaga aatttggtca gtttacaccc atggaaatgtt acatcttgc tcagttgc
960
gattttatgtt agccaaggggg acgtatgacc tttagcagaca ttgaacggat tgctccctgc
1020
gaagagggaa ctctgccctt taacttggctt gaggcccaga ggcagcagaa ggcctcagg
1080
gattcagctc gaccaggatct tctacaagttt gcagagtcgg cctacagggtt tggctgggt
1140
tctgttgcgtt gagctgttgg agccactgtc gtgtatccta tcgtatctgtt aaaaactcga
1200
atgcagaacc aacgatcaac tggctttttt gtgggagaac tcatgtataa aaacagcttt
1260
gactgtttta agaaagtgtc acgctatgaa ggcttcttgc gactgtatag aggtctgttgc
1320
ccacagttat tgggagttgc cccagagaag gccataaaac ttacagtgaa cgattttgt
1380

agggataaaat ttatgcacaa agatggttcg gtcccaacttg cagcagaaaat tcttgctgga
1440
ggctgcgctg gaggctccca ggtgatttc acaaatcctt tagaaatcgt caagatccgt
1500
ttgcaagtgg caggagaaat caccactggt cctcgagtc gtgcctgtc tgctgtgcgg
1560
gacctggggt ttttggat ctacaagggt gccaaagcat gctttctgcg ggacattcct
1620
ttctcgccca tctacttcc gtgcctatgct catgtgaagg cttccttgc aaatgaagat
1680
gggcaggta gcccaggaag cctgcctta gctgggccca tagctggtat gcctgcagca
1740
tcttagtga cccctgctga tgttatcaag acgagattac aggtggctgc cggggctggc
1800
caaaccactt acagcggagt gatagactgc ttttagaaaga tactgcgtga agaaggacca
1860
aaagctctgt ggaaggggagc tggtgctcgat gtatttcgat ctcacccca gtttggtgta
1920
actttgctga cttacgaatt gctacagcga tggttctaca ttgattttgg aggagtaaaa
1980
cccatgggat cagagccagt tcctaaatcc aggtcaacc tgcctgcccc gaatcctgat
2040
cacgttgggg gctacaaact ggcagttgct acatttgcag ggattgaaaa caaatttgg
2100
ctttacctac ctctttcaa gccatcagta tctacctaaggctattgg tggaggcccc
2160
taggaagatc agccctggga tagtgctgct ttttgggg tactgcagta aagaacatcc
2220
ctcctggaa tgaagcaatg cttcatccct tttacgtcca tctttgttt aaattcaagt
2280
ccaggcttt ttatcatgtg aaatcattca ttttctgggt gtttcttaa ccagatcatt
2340
gtgaaattat tcataattat tatttggccc tctgcccaga aacctttgtt tgcattgtaa
2400
aattgatggg atttggtcaa cactaacatg atttggggaa aggagcaagt cagaatagaa
2460
atttagtactc ccctccttga actaggattg tagtcccaaa gaggctactg taaggcaatc
2520
atgggtctca gagcagtgtt tcgtgtgtt tttaaactgg taggaaacta ggtgcattt
2580
tataaaaata aaaaacactg ggagaaaatga aaaaatatata atcaaataata ttcagcctgg
2640
cttcaattt taagcatgca caaattctgt ctctggatta tattatgaag tttttatgtg
2700
aaacatgttt ctttgtaatg aaaaccacat tggagatgtt tagtaatcat attgttactg
2760
gtaccaagac tactaggaa atgcctttgtt acttttagggaa agtacttttg qcattttact
2820
gtacagacag aaaaaactga gatgtagccc ctctcctggaa agtgctaatt ttgaaaaact
2880
gctcatatga tgtacatgtt ctgattactg cctatttaa taaacactct tgaaaaatgc
2940
atgttgcctt gttgtgcctt gcccatttctt cctcatctcc ccatcattgg tacccacttg
3000

ctttttaaaat ccactttatc ttgaataatg taagacaaaat atgttctgac ataagtattt
 3060
 attcatgtt gccttgata atggtcagag ggcgtgaat ttgtgaagg ggaaataaac
 3120
 tatttgtaaa gtgaaaaaaaaaaaa
 3145

<210> 6022
<211> 708
<212> PRT
<213> Homo sapiens

<400> 6022
Met Pro Gln Ser Asn Cys Cys Ile Ala Phe Arg His Cys Trp Leu Asn
 1 5 10 15
Cys Pro Phe Thr Trp His Ala Thr His Gly Lys Val Lys Gly Glu Gly
 20 25 30
Asp Phe Leu Leu His Val Ala Leu Thr Lys Arg Ala Asp Pro Ala Glu
 35 40 45
Leu Arg Thr Ile Phe Leu Lys Tyr Ala Ser Ile Glu Lys Asn Gly Glu
 50 55 60
Phe Phe Met Ser Pro Asn Asp Phe Val Thr Arg Tyr Leu Asn Ile Phe
 65 70 75 80
Gly Glu Ser Gln Pro Asn Pro Lys Thr Val Glu Leu Leu Ser Gly Val
 85 90 95
Val Asp Gln Thr Lys Asp Gly Leu Ile Ser Phe Gln Glu Phe Val Ala
 100 105 110
Phe Glu Ser Val Leu Cys Ala Pro Asp Ala Leu Phe Met Val Ala Phe
 115 120 125
Gln Leu Phe Asp Lys Ala Gly Lys Gly Glu Val Thr Phe Glu Asp Val
 130 135 140
Lys Gln Val Phe Gly Gln Thr Thr Ile His Gln His Ile Pro Phe Asn
 145 150 155 160
Trp Asp Ser Glu Phe Val Gln Leu His Phe Gly Lys Glu Arg Lys Arg
 165 170 175
His Leu Thr Tyr Ala Glu Phe Thr Gln Phe Leu Leu Glu Ile Gln Leu
 180 185 190
Glu His Ala Lys Gln Ala Phe Val Gln Arg Asp Asn Ala Arg Thr Gly
 195 200 205
Arg Val Thr Ala Ile Asp Phe Arg Asp Ile Met Val Thr Ile Arg Pro
 210 215 220
His Val Leu Thr Pro Phe Val Glu Glu Cys Leu Val Ala Ala Ala Gly
 225 230 235 240
Gly Thr Thr Ser His Gln Val Ser Phe Ser Tyr Phe Asn Gly Phe Asn
 245 250 255
Ser Leu Leu Asn Asn Met Glu Leu Ile Arg Lys Ile Tyr Ser Thr Leu
 260 265 270
Ala Gly Thr Arg Lys Asp Val Glu Val Thr Lys Glu Glu Phe Val Leu
 275 280 285
Ala Ala Gln Lys Phe Gly Gln Val Thr Pro Met Glu Val Asp Ile Leu
 290 295 300
Phe Gln Leu Ala Asp Leu Tyr Glu Pro Arg Gly Arg Met Thr Leu Ala
 305 310 315 320
Asp Ile Glu Arg Ile Ala Pro Leu Glu Glu Gly Thr Leu Pro Phe Asn

325	330	335
Leu Ala Glu Ala Gln Arg Gln Gln Lys Ala Ser Gly Asp Ser Ala Arg		
340	345	350
Pro Val Leu Leu Gln Val Ala Glu Ser Ala Tyr Arg Phe Gly Leu Gly		
355	360	365
Ser Val Ala Gly Ala Val Gly Ala Thr Ala Val Tyr Pro Ile Asp Leu		
370	375	380
Val Lys Thr Arg Met Gln Asn Gln Arg Ser Thr Gly Ser Phe Val Gly		
385	390	395
Glu Leu Met Tyr Lys Asn Ser Phe Asp Cys Phe Lys Lys Val Leu Arg		400
405	410	415
Tyr Glu Gly Phe Gly Leu Tyr Arg Gly Leu Leu Pro Gln Leu Leu		
420	425	430
Gly Val Ala Pro Glu Lys Ala Ile Lys Leu Thr Val Asn Asp Phe Val		
435	440	445
Arg Asp Lys Phe Met His Lys Asp Gly Ser Val Pro Leu Ala Ala Glu		
450	455	460
Ile Leu Ala Gly Gly Cys Ala Gly Gly Ser Gln Val Ile Phe Thr Asn		
465	470	475
480		
Pro Leu Glu Ile Val Lys Ile Arg Leu Gln Val Ala Gly Glu Ile Thr		
485	490	495
Thr Gly Pro Arg Val Ser Ala Leu Ser Val Val Arg Asp Leu Gly Phe		
500	505	510
Phe Gly Ile Tyr Lys Gly Ala Lys Ala Cys Phe Leu Arg Asp Ile Pro		
515	520	525
Phe Ser Ala Ile Tyr Phe Pro Cys Tyr Ala His Val Lys Ala Ser Phe		
530	535	540
Ala Asn Glu Asp Gly Gln Val Ser Pro Gly Ser Leu Leu Leu Ala Gly		
545	550	555
560		
Ala Ile Ala Gly Met Pro Ala Ala Ser Leu Val Thr Pro Ala Asp Val		
565	570	575
Ile Lys Thr Arg Leu Gln Val Ala Ala Arg Ala Gly Gln Thr Thr Tyr		
580	585	590
Ser Gly Val Ile Asp Cys Phe Arg Lys Ile Leu Arg Glu Glu Gly Pro		
595	600	605
Lys Ala Leu Trp Lys Gly Ala Gly Ala Arg Val Phe Arg Ser Ser Pro		
610	615	620
Gln Phe Gly Val Thr Leu Leu Thr Tyr Glu Leu Gln Arg Trp Phe		
625	630	635
640		
Tyr Ile Asp Phe Gly Gly Val Lys Pro Met Gly Ser Glu Pro Val Pro		
645	650	655
Lys Ser Arg Ile Asn Leu Pro Ala Pro Asn Pro Asp His Val Gly Gly		
660	665	670
Tyr Lys Leu Ala Val Ala Thr Phe Ala Gly Ile Glu Asn Lys Phe Gly		
675	680	685
Leu Tyr Leu Pro Leu Phe Lys Pro Ser Val Ser Thr Ser Lys Ala Ile		
690	695	700
Gly Gly Gly Pro		
705		
<210> 6023		
<211> 1014		
<212> DNA		
<213> Homo sapiens		

<400> 6023
tttttaaaaa agaatgacat agagcctta ttaaactggt tctgaggtat gtgggactag
60 cctggctggc tgaccaggct tcttaagccc cacaggcctc tttcacagaa agggagtttgc
120 gatcaacaag accatgtaca aaagggggat aatataccta cgtgaggagc caagttcca
180 tggatgggtt aaatggaaaa acttttgagt cagagctgag ctctgggaca aaaaggaaaa
240 agaagagggga tgaagggaaag gggcccaatt cctcttgact gattctaaag ctcataagggg
300 gattccaact cacagctagc cctctgtact aaggaaccag acgaatctg acctcccagg
360 gAACCTAGAC CTGGGAAGGC TGAACTTGCT ATTTGAGGGT CAAGTCTACT CCCTGAAGGT
420 ggagtgtgg atatTTGAT ggggacaagg agggacaata gatcaacctc agcaaaggct
480 ggtaaggctg ggcaagggttc cacagggatg gatcttccta aggggtgggg gggcttccca
540 gttccatgaa aatggcggtg cgccgagact gcctccctcc ttttcattgt agcttgatcc
600 tgcgcagtga ccgttacacgg aaagagtcag gcctgggagg ggccggaccg gggcacaaat
660 gctggagggtt tcagagatgg ctggcgctgg cgaaggcagg tctgccagt acgtatttgt
720 cctgtgggtc ctgggctctt tcgtggcactg cagggcactc ttcttcctgg gatggagaa
780 tggaaattttt cttaggcgagg acgggcagca gcggccctgg gaaggcttcc gtggaaactt
840 ccaaaaccac ttgcgcaggta aagtggaaatg gogctccgtt ctctagccac atcctaggcc
900 aagtaagttc ttcttcatttcc ttccagcgtt cctgatcttc ttggggagca cccctaaatc
960 agcctgtcaa gaaggaaggc aggctacggg tatcttctca ggaacagatg aagg
1014

<210> 6024
<211> 100
<212> PRT
<213> Homo sapiens

<400> 6024
Met Lys Arg Arg Glu Ala Val Cys Ala His Arg His Phe Leu Gly Thr
1 5 10 15
Gly Lys Pro Pro His Pro Leu Gly Arg Ser Ile Pro Val Glu Pro Cys
20 25 30
Pro Gly Leu Pro Ala Phe Ala Glu Val Asp Leu Leu Ser Leu Leu Val
35 40 45
Pro Ile Lys Ile Ser Ser Thr Pro Pro Ser Gly Ser Arg Leu Asp Pro
50 55 60
Gln Ile Ala Ser Ser Ala Phe Pro Gly Leu Gly Ser Leu Gly Gly Gln
65 70 75 80
Asp Ser Ser Gly Ser Leu Val Gln Arg Ala Ser Cys Glu Leu Glu Ser

85

90

95

Pro Tyr Glu Leu
100

<210> 6025

<211> 5905

<212> DNA

<213> Homo sapiens

<400> 6025

nacagggtgt ggatatacag gctgggaggg tctgtggca gcagccgagg cccaggttgg
 60
 gggagcctca cttaggatga ggctagggtct ggcagaagat ccccacagag gagccaggag
 120
 gaccccacag tcactctagc tcccaggccc tggaggtgca ggcgagcccc gtggtctccg
 180
 ggcagccggc cctgccccac tcacccctcc tgccttccc gctgcaggtct aacccgtccg
 240
 cggggccgagc cctgcctcgcatggaccag gactatgagc ggccctgtct tcgcccagatc
 300
 gtcatccaga atgagaacac gatgccacgc gtcacagaga tgcggcggac cctgacgcct
 360
 gccagctccc cagtgtcctc gcccagcaag cacggagacc gttcatccc ctccagagcc
 420
 ggagccaact ggagcgtgaa ttccacagg attaacgaga atgagaagtc tcccagtcag
 480
 aaccggaaaag ccaaggacgc cacccagac aacggcaaag acggcctggc ctactctgcc
 540
 ctgctcaaga atgagctgt gggtgccggc atcgagaagg tgcaggaccc gcagactgag
 600
 gacccgagggc tgcagccctc cacccctgag aagaagggtc tggtcacgtt ttcccttagc
 660
 accaagcgtt ccagccccga tgacggcaac gatgtgtctc cctactccct gtctcccgtc
 720
 agcaacaaga gccagaagct gtcgggtcc cccggaaac ccacccgca gatctccaag
 780
 atccccctca aggtgctgga cgcccccggag ctgcaggacg acttctacct caatctggtg
 840
 gactggtcgt ccctcaatgt gtcagegtg gggctaggca cctgcgtgtt cctgtggagt
 900
 gcctgtacca gccaggtgac gcccgtctgt gacccctcag tggaaaggaaa ctcagtgacc
 960
 tccgtgggtt ggtctgagcg gggaaacctg tggcggtgg gcacacacaa gggcttcgtg
 1020
 cagatctggg acgcagccgc aggaaagaag ctgtccatgt tggaggggca cacggcacgc
 1080
 gtccggggcgc tggccctggaa tgctgagcg ctgtcggtccg ggagccgcga ccgcattatc
 1140
 ctgcagaggg acatccgcac cccggccactg cagtcggagc ggccgtgtca gggccaccgg
 1200
 caggaggtgt gccccctaa gtggtccaca gaccaccagc tccctgcctc gggggcaac
 1260
 gacaacaagc tgctggtctg gaatcactcg agcctgagcc ccgtgcagca gtacacggag
 1320

cacctggccgg cccgtgaaggc catcgccctgg tccccacatc agcacgggct gctggccctcg
1380
ggggggggca cagctgaccc ctgtatccgc ttctggaaaca cgctgacagg acaaccactg
1440
cagtgatcg acacgggctc ccaagtgtgc aatctggcct ggtccaagca cgccaaacgag
1500
ctggtgagca cgcacggcta ctcacagaac cagatccttg tctggaaagta cccctccctg
1560
acccaggtgg ccaagctgac cgggcaactcc taccgcgtgc tgtacctggc aatgtccct
1620
gatggggagg ccatcgtcac tggtgctgga gacgagaccc tgaggttctg gaacgtctt
1680
ageaaaaaccc gttegacaaa ggtaaagtgg gagtctgtgt ctgtgctcaa cctttcacc
1740
aggatccggt aaacctgcca ggcaggaccg tgccacacca gctgtccaga gtcggaggac
1800
cccagctct cagcttgcatt ggactctgcc ttcccagcgc ttgtcccccg aggaaggcgg
1860
ctggggggc ggggagctgg gcctggagga tcctggagtc tcattaaatg cctgatgtg
1920
aaccatgtcc accagtatct ggggtggca cgtggtcggg gaccctcagc agcaggggct
1980
ctgtctccct tcccaaaggg cgagaaccac attggacggt cccggctcag accgtctgt
2040
ctcagagcga cggatcccc ctgggaccct cactgcctcc gtctgttcat cacctgccc
2100
ccggagccgc atgctttcc tggaaactgcc cacgtctgca cagaacagac caccagacgc
2160
cagggctgat tggtggggc ctgagacccc cggttgccc ttcatggctg caccacca
2220
tgtcaaaccc aagaccagcc ccaaggccag accaaggcat gtaggcctgg gcaggtggct
2280
cgggggccact ggcggagcca gcttgtggat ccaagagaca gtccccacct gggcttcacg
2340
gcataccttcg acccacccct gctgtcaactg ctcgaagcag cagtctctt gcaagcatct
2400
gtgtcatggc catcgccctgg cggtcagtgg gttcagatg ggcctgtgca tcctggccaa
2460
gcgtcacccct cacactggag gaggatgtct gctctggact tatcacccca ggagaactga
2520
acccggaccc gctcaactgcc ctggctggag aggagcacaa cagatgccac gtcttcgtgc
2580
attcgccaaac acgtgccctc acaggggccag cgtccctcctt ccctgcgcaaa gacttgcgtc
2640
ccccatgcct gctgggtggc tgggtcctgt ggaggccagc agcggtgtgg ccccccgggg
2700
cagggtgcct gtgtcttcac ctgtctgtc caccagcgcc aacagccgtg gggaaaggccaa
2760
ggagacccaa ggggtccagg aggtggcgc cctccatct tcgagaagct tcccaaggctc
2820
ctctgtttct ctgtctcatg ctcccaggct gcacagcagg cagggaggggaa ggcaaggcag
2880
gggagtgggg cctgagctga gcaactgcccc ctcacccccc caccacccct tcccatattca
2940

tcgggtgggaa cgtggagagg gtggggcgaa ctggggttgg agggtcccac ccaccaccc
3000
gctgtgcgtt ggaacccca cttccactc cccacatccc aacatctgg tgtctgtccc
3060
cagtgggtt ggcgtgcattgt ttttgcatttttgg atttgcatttttgc
3120
tgtttttgtt gactagtctt ggaaatgttt gaggcttagac ggggaggggc caggacccac
3180
ccactgctcc tggggatga ggtctggtt ttaaagcccc gtcatttcaa gcgggtcgat
3240
cttccacatt cactggagag actctccca cctctgtctg ggtggggcgc ggaccctca
3300
ctgtgcgcct gtgcaggggg tgctggtgca cgtggcagtg tggatttcca gtggtcacgg
3360
tcttactgtt tcaagggttt taaaataagaa aaccaacccct gccttcgccc atgcccggcc
3420
ctgcccgcag ttgcacaaga gccgcctgt cgctgtggc gtcagggcctt ggctggctca
3480
gtgcacaacc cacagtggcc ttcagaggct ctcctggaa ctgggaacccg cccgaggccc
3540
aggcggacgg cgtgagggtt gtgttttttttgc tggttctgcc catgcttaggg ggtggggag
3600
ctcccaggac agaccaggct ttttctcat gtaatgcagt gacgctgtca taaaacacgt
3660
ggattcatgt gtggccggga ctggctggct cttaggtcccc ggctcggtt ggtcacaccc
3720
gtcctgcctt agagcccca tctggccctg gagctgcaga agcagcttct gaggggcttc
3780
ccaggcctgc atttcacaga tggggagctc agccctcgaa ggccgcagag acgcctccca
3840
ggcccgctcg ccaggccgc ggccacaatc ctgcaggggcc aaggactgga ctccaggcaa
3900
gtccctgcgc tccagctgga cggccctgtt ccaggagga ggtgctcggt tgacaccatc
3960
aggaggaggag ggtgggcaact gctggctga gttcacccccc agggctggcc agatggggcc
4020
aggaggggaca gagcaagggg ggtgaaggcc gtgggtggag ggtcccatga tggatggggca
4080
gggctcgtgt agaaatgggg gaattgggtt cccatggccc aggacagctg agaggagggt
4140
gagggcccccc aggggaggtt acgtcaggct ttgcggggca cggggggccac tcagcagcgc
4200
tggggcagggt gcctctgttgc tcaagctccac ccgacaggca gacgaaggcc agtggggcc
4260
tcgcttccttggccgacccctt ggcagtggtt gggagacgccc cagatggagg gggaggctga
4320
ccaaggggccc cgcaggccgg gctgcaactt ttctgttgat cctggaaatgt agctggtgca
4380
gtgagaggga aagagaattt aaaaactcag gctgccatag gttctgcgtt gagagggttgc
4440
ggaggcagga gcctggccca ggggtgtgtt gtcctccca ggggtctggg cggagagaac
4500
aggaggaatg gctggaaatg ggctgaggga gccaggaggc cggggggccg ggggtgtcag
4560

gggaggctgt gggggcctg gcagccagga ggccccaggt gttttgagg ctgcgttgc
4620
cgccgtgcct gagaagaggg tgaaggagct gggcaggcc ccatcctggg cattggagat
4680
gatgaaaccg agcagacccg gcccattgtgg agctggcatg ggggacacag cccagagaca
4740
gagaagctta tgaggaagtg aggaggtggc gtcaacaaggg tggggagggg gccttggga
4800
agggcgcct tggatcagag gtcaccaca agcctggcat ttcagccagg gctggagaag
4860
gcagggacgc ctgggtgaga ggcaaaggc acagccatgc aaaggccctg gggcaggacg
4920
gcacacctgta tgccggagga acagagttag gagaggaggg cagggcgtgc agggccttgt
4980
gggcctcagg gaggacttgg gcacccatccc cgagggagtg gagctcctgg gtgcgtgtcc
5040
agatggaaa ggcagggtcg tatctgtgg gacctgacaa gggcagggga agcggagacc
5100
aggggtcagg ctccgcggcc acccaaggc gggcccgcc agaggaggg cagggcagg
5160
caggaggttt ctggatgttt gttgggtttt gtttgggtttt gtttattgtg
5220
gtaaaataca aaatctaccg ttttacatgtt aggtggcggtt cagttaccc accacggcgt
5280
gcagccatcc catctgatcc cagaacatcc tcattcaccca gaaggcagcc ctgtccccat
5340
tatgtcaccc agtcacccccc aggtccccc ccccaagtccc ggcacccacg aatcccttcc
5400
ctgattctgt ggattggctt gtccctggaca ttcatagaa gtgggatcac agegtaccct
5460
tctgtgtctg stgtctctca ctgagcgtga catcctcaag gtgcattccgc actgtggct
5520
gggtcagacg ttgcacccctc ttgtggctg agtctcatcc cagcgcgtgg gtgcgtgggt
5580
ggcggcgcgg tgctgatccc ctcacccctca ctgggtgttc ggtgttctcc gcctcgccgt
5640
gtcacaatac gtgctgtgtt gagccactgc gtgcaggctt catcctgggt gtatttaca
5700
aacggactgg atgtgatgg gtgaggagtg aggagctggg gtgacaggtg cctgcgaccc
5760
cggccaggca ctgcctcctg cgatcgaagg ggcaggggga gacagaagcc cctcaagggg
5820
gtgtggagat ggagaagcca gacccaggt ggggggtgca tagagctggg gtcaggcca
5880
cgaccccccacc tggcagtgcc ctgcc
5905

<210> 6026
<211> 496
<212> PRT
<213> Homo sapiens

<400> 6026
Met Asp Gln Asp Tyr Glu Arg Arg Leu Leu Arg Gln Ile Val Ile Gln

1	5	10	15												
Asn	Glu	Asn	Thr	Met	Pro	Arg	Val	Thr	Glu	Met	Arg	Arg	Thr	Leu	Thr
20				25						30					
Pro	Ala	Ser	Ser	Pro	Val	Ser	Ser	Pro	Ser	Lys	His	Gly	Asp	Arg	Phe
35					40					45					
Ile	Pro	Ser	Arg	Ala	Gly	Ala	Asn	Trp	Ser	Val	Asn	Phe	His	Arg	Ile
50					55					60					
Asn	Glu	Asn	Glu	Lys	Ser	Pro	Ser	Gln	Asn	Arg	Lys	Ala	Lys	Asp	Ala
65					70				75			80			
Thr	Ser	Asp	Asn	Gly	Lys	Asp	Gly	Leu	Ala	Tyr	Ser	Ala	Leu	Leu	Lys
85						90				95					
Asn	Glu	Leu	Leu	Gly	Ala	Gly	Ile	Glu	Lys	Val	Gln	Asp	Pro	Gln	Thr
100						105				110					
Glu	Asp	Arg	Arg	Leu	Gln	Pro	Ser	Thr	Pro	Glu	Lys	Lys	Gly	Leu	Phe
115						120				125					
Thr	Tyr	Ser	Leu	Ser	Thr	Lys	Arg	Ser	Ser	Pro	Asp	Asp	Gly	Asn	Asp
130						135				140					
Val	Ser	Pro	Tyr	Ser	Leu	Ser	Pro	Val	Ser	Asn	Lys	Ser	Gln	Lys	Leu
145						150				155			160		
Leu	Arg	Ser	Pro	Arg	Lys	Pro	Thr	Arg	Lys	Ile	Ser	Lys	Ile	Pro	Phe
165						170				175					
Lys	Val	Leu	Asp	Ala	Pro	Glu	Leu	Gln	Asp	Asp	Phe	Tyr	Leu	Asn	Leu
180						185				190					
Val	Asp	Trp	Ser	Ser	Leu	Asn	Val	Leu	Ser	Val	Gly	Leu	Gly	Thr	Cys
195						200				205					
Val	Tyr	Leu	Trp	Ser	Ala	Cys	Thr	Ser	Gln	Val	Thr	Arg	Leu	Cys	Asp
210						215				220					
Leu	Ser	Val	Glu	Gly	Asp	Ser	Val	Thr	Ser	Val	Gly	Trp	Ser	Glu	Arg
225						230				235			240		
Gly	Asn	Leu	Val	Ala	Val	Gly	Thr	His	Lys	Gly	Phe	Val	Gln	Ile	Trp
245						250				255					
Asp	Ala	Ala	Ala	Gly	Lys	Leu	Ser	Met	Leu	Glu	Gly	His	Thr	Ala	
260						265				270					
Arg	Val	Gly	Ala	Leu	Ala	Trp	Asn	Ala	Glu	Gln	Leu	Ser	Ser	Gly	Ser
275						280				285					
Arg	Asp	Arg	Met	Ile	Leu	Gln	Arg	Asp	Ile	Arg	Thr	Pro	Pro	Leu	Gln
290						295				300					
Ser	Glu	Arg	Arg	Leu	Gln	Gly	His	Arg	Gln	Glu	Val	Cys	Gly	Leu	Lys
305						310				315			320		
Trp	Ser	Thr	Asp	His	Gln	Leu	Leu	Ala	Ser	Gly	Gly	Asn	Asp	Asn	Lys
325						330				335					
Leu	Leu	Val	Trp	Asn	His	Ser	Ser	Leu	Ser	Pro	Val	Gln	Gln	Tyr	Thr
340						345				350					
Glu	His	Leu	Ala	Ala	Val	Lys	Ala	Ile	Ala	Trp	Ser	Pro	His	Gln	His
355						360				365					
Gly	Leu	Leu	Ala	Ser	Gly	Gly	Gly	Thr	Ala	Asp	Arg	Cys	Ile	Arg	Phe
370						375				380					
Trp	Asn	Thr	Leu	Thr	Gly	Gln	Pro	Leu	Gln	Cys	Ile	Asp	Thr	Gly	Ser
385						390				395			400		
Gln	Val	Cys	Asn	Leu	Ala	Trp	Ser	Lys	His	Ala	Asn	Glu	Leu	Val	Ser
405						410				415					
Thr	His	Gly	Tyr	Ser	Gln	Asn	Gln	Ile	Leu	Val	Trp	Lys	Tyr	Pro	Ser
420						425				430					
Leu	Thr	Gln	Val	Ala	Lys	Leu	Thr	Gly	His	Ser	Tyr	Arg	Val	Leu	Tyr

435	440	445
Leu Ala Met Ser Pro Asp Gly Glu Ala Ile Val Thr Gly Ala Gly Asp		
450	455	460
Glu Thr Leu Arg Phe Trp Asn Val Phe Ser Lys Thr Arg Ser Thr Lys		
465	470	475
Val Lys Trp Glu Ser Val Ser Val Leu Asn Leu Phe Thr Arg Ile Arg		
485	490	495

<210> 6027
<211> 305
<212> DNA
<213> *Homo sapiens*

```
<400> 6027
nnccggggc tgggaaagac caccctggca cacgtgatcg cgcgtaacgc ggggtactct
60
gtggtggaga tgaatgccag tgacgaccgt agccccggagg tcttccgcac acgcatacgag
120
gcggccaccc aaatggagtc ggggcttggg gctgccggga agcccaactg cctggtcata
180
gatgagatcg acggggcccc cgtggtgccc tccttgatgc ctggtaggt gggggggcg
240
gcaggcaggc gggcagcagg gcctggactc accgtgtcct ctgacacctcc ccaaggccgc
300
catca
305
```

<210> 6028
<211> 75
<212> PRT
<213> *Homo sapiens*

```

<400> 6028
Xaa Pro Gly Leu Gly Lys Thr Thr Leu Ala His Val Ile Ala Arg His
      1           5           10          15
Ala Gly Tyr Ser Val Val Glu Met Asn Ala Ser Asp Asp Arg Ser Pro
      20          25          30
Glu Val Phe Arg Thr Arg Ile Glu Ala Ala Thr Gln Met Glu Ser Gly
      35          40          45
Leu Gly Ala Ala Gly Lys Pro Asn Cys Leu Val Ile Asp Glu Ile Asp
      50          55          60
Gly Ala Pro Val Val Gly Ser Leu Met Pro Gly
      65          70          75

```

<210> 6029
<211> 1350
<212> DNA
<213> *Homo sapiens*

```
<400> 6029
ttttttttt ttttttttga tgaaaaatag gatttattgg gggAACCGTA caAGCAGAGG
60
agaAGCAGGG gtGCCCAAGGC tgcACAGGCC ttgcAGTgca tggTgggttc cgtggccaaC
120
```

ttgccagggg acaggcctgt tgctggcaact ccccccacaa ttacagggtg ggagtgaagg
 180
 acctcgccgc tgccggacagg tccttggtag taaggaggag gctctgcagt cccgggtgggg
 240
 tcatcttgcc tctccggact gtcctctgt actggtaag ccacactctg tgaagctgtc
 300
 tgacagaagg ggacacgcct ttgctgcccggatggacccct gggccacccca ggatgcgcgt
 360
 ggcctcagcc agggcacgtg tgcccagcgc tggctcctgc tgaccctgg actggctccc
 420
 atctcgggaa tgacgcctgc cgtggaaatc gtggagaggg ggttttaattt aacttggaaag
 480
 gagecagaaaa aggaaagtgt ggagtgcgga gcgaggcctc tggtttggcc ggctccgggt
 540
 gctggggatg gccacacccct ggcagcaggc ggcagagac caggaaggcc tacccagcac
 600
 ctgtccagaa aagattggtg tgggttgacc tggcttatgc gggcagctc agtttgaagc
 660
 aggaacttcc ccaaacgtgc ccaggctcca agacagcagc attcaacttgc acccgctgctg
 720
 agcagagcgg ggcctcgccca ggtggaaagc cctaggaagg ctgcgtgctc tgcaaacccca
 780
 ggggtgcgt ggcgtacag caggggcgtc cgtgtccagg cagctttgtc atgtcttcca
 840
 aaggtcagga aggcgccacc gcctgcccc acgacagctg cgtctgcaag cgccagctct
 900
 gagcaactgtt ctccgcccac atgaggacac catccaagaa ttccctctgg gagacctcct
 960
 gaggagacgc gaagaccatc gatgctttgg aagaatgaaa agaagtttct gctaagccaa
 1020
 accttaggtgg atggaaagtg cctgtgtggta tggtaagcca cttgggtgg gggctcgga
 1080
 gtcctctgc ccacatcgcc tcaactggac tcgccatcca gtcgtacgtc tttgtatgtcc
 1140
 ccataaatct gtcggcttc aggagaacac gtcttgaagc acagctgaac ttgaatctt
 1200
 tctgggtcct ctcgtgggc cgtgggtgggg agccgctccc gttgcctcaa ggcctccaaag
 1260
 cctgccaggt caggctgtatc gcagtggtcgc cgcgtacca tgcgtgggtg gcccctgggt
 1320
 atgcgcggct tcggcagcccc agccgagcct
 1350

<210> 6030
 <211> 99
 <212> PRT
 <213> Homo sapiens

<400> 6030
 Met Gly Thr Ser Lys Thr Ser Asp Trp Met Ala Ser Pro Ser Glu Ala
 1 5 10 15
 Met Trp Ala Glu Glu Leu Arg Ala Ala His Pro Arg Trp Leu His Ile
 20 25 30
 His Thr Gly Thr Ser His Pro Pro Arg Phe Gly Leu Ala Glu Thr Ser

35	40	45
Phe His Ser Ser Lys Ala Ser Met Val Phe Ala Ser Pro Gln Glu Val		
50	55	60
Ser Gln Glu Glu Phe Leu Asp Gly Val Leu Met Ser Ala Glu Asn Ser		
65	70	75
Ala Gln Ser Trp Arg Leu Gln Thr Gln Leu Ser Trp Gly Arg Ala Val		80
85	90	95
Ala Pro Ser		

<210> 6031
<211> 1316
<212> DNA
<213> *Homo sapiens*

<400> 6031
nntcttagacc agtatgcccc agatgtggcc gaactcatcc ggaccctat ggaaatcgct
60
tacatccctt taaaagtggc cctgttctat ctcttaaatc cttacacat tttgtcttgt
120
gttgcctaaatcgttacactgtgc catcaacaac accctcatttgccttcat tttgactacg
180
ataaaaggca gtgccttcctt cagtgctatt ttcttcgcct tagcgacata ccagtcctcg
240
tacccactca cttgtttgttcccaggactc ctctatctcc tccagcggca gtacataacct
300
gtgaaaatga agagcaaagc cttctggatc ttttcttgggg agtatgccat gatgtatgtg
360
ggaaggcttag tggtaatcat ttgcctctcc ttcttccttc tcagcttttgcggatttcatc
420
cccgccatct atggctttat actttctgtt ccagatctca ctccaaacat tggcttttc
480
tggtaatcat ttgcagagat gtttgagcac ttccgcctct tctttgtatg tggctttcag
540
atcaacgtct tcttctacac catcccccta gccataaagc taaaggagca ccccatcttc
600
ttcatgttta tccagatcgc tgcgtatcgcc atctttaaatg cctaccgcac agtgggggac
660
gtggcgctct acatggctt cttccccgtt tgaaaccatc tctacagatt cctgagaaac
720
atctttgtcc tcacctgtcat catcatcgcc tggccctgc tcttcctgtt cctgtggcac
780
ctctggattt atgcaggaag tgccaactct aatttctttt atgcacatcac actgaccc
840
aacgttgggc agatccgtt catctctgtat tcttcctatg cttccctgcg gggggagttac
900
tacccacac atggccctcta cttgaccgc aaggatggca cagaggccat gtcgtgtc
960
aaggtaggcctt ggctggcaca gggctgcattt gacccatcagggg ggctgtgggg ccagaagctg
1020
ggccaaatcc tccagccaga gttgccagca ggcgagtgct tgggcagaag aggttcgagt
1080
ccagggttac aagtctctgg tacaaaagg gacccatggc tgactgacag caaggccat
1140

gggaaagaac tggagctcc ccaacttgg a cccccacctt gtggctctgc acaccaagga
 1200
 gccccctccc agacaggaag gagaagaggc aggtgagcag ggcttggtag attgtggcta
 1260
 cttataaaat gtttttgtt atgaagtcta aaaaaaaaaa aaaaaaaaaa aaaaaaa
 1316

<210> 6032
 <211> 321
 <212> PRT
 <213> Homo sapiens

<400> 6032
 Xaa Leu Asp Gln Tyr Ala Pro Asp Val Ala Glu Leu Ile Arg Thr Pro
 1 5 10 15
 Met Glu Met Arg Tyr Ile Pro Leu Lys Val Ala Leu Phe Tyr Leu Leu
 20 25 30
 Asn Pro Tyr Thr Ile Leu Ser Cys Val Ala Lys Ser Thr Cys Ala Ile
 35 40 45
 Asn Asn Thr Leu Ile Ala Phe Phe Ile Leu Thr Thr Ile Lys Gly Ser
 50 55 60
 Ala Phe Leu Ser Ala Ile Phe Leu Ala Leu Ala Thr Tyr Gln Ser Leu
 65 70 75 80
 Tyr Pro Leu Thr Leu Phe Val Pro Gly Leu Leu Tyr Leu Leu Gln Arg
 85 90 95
 Gln Tyr Ile Pro Val Lys Met Lys Ser Lys Ala Phe Trp Ile Phe Ser
 100 105 110
 Trp Glu Tyr Ala Met Met Tyr Val Gly Ser Leu Val Val Ile Ile Cys
 115 120 125
 Leu Ser Phe Phe Leu Leu Ser Ser Trp Asp Phe Ile Pro Ala Val Tyr
 130 135 140
 Gly Phe Ile Leu Ser Val Pro Asp Leu Thr Pro Asn Ile Gly Leu Phe
 145 150 155 160
 Trp Tyr Phe Phe Ala Glu Met Phe Glu His Phe Ser Leu Phe Phe Val
 165 170 175
 Cys Val Phe Gln Ile Asn Val Phe Phe Tyr Thr Ile Pro Leu Ala Ile
 180 185 190
 Lys Leu Lys Glu His Pro Ile Phe Phe Met Phe Ile Gln Ile Ala Val
 195 200 205
 Ile Ala Ile Phe Lys Ser Tyr Pro Thr Val Gly Asp Val Ala Leu Tyr
 210 215 220
 Met Ala Phe Phe Pro Val Trp Asn His Leu Tyr Arg Phe Leu Arg Asn
 225 230 235 240
 Ile Phe Val Leu Thr Cys Ile Ile Val Cys Ser Leu Leu Phe Pro
 245 250 255
 Val Leu Trp His Leu Trp Ile Tyr Ala Gly Ser Ala Asn Ser Asn Phe
 260 265 270
 Phe Tyr Ala Ile Thr Leu Thr Phe Asn Val Gly Gln Ile Leu Leu Ile
 275 280 285
 Ser Asp Tyr Phe Tyr Ala Phe Leu Arg Arg Glu Tyr Tyr Leu Thr His
 290 295 300
 Gly Leu Tyr Leu Thr Ala Lys Asp Gly Thr Glu Ala Met Leu Val Leu
 305 310 315 320
 Lys

<210> 6033
<211> 5157
<212> DNA
<213> Homo sapiens

<400> 6033
caattgctct atgttagtgcc ctttggcc aaagtcttag aatcttagcat tcgttagtgt
60
gttttttaggc caccaaacc cttggacaatg gcaattatga atgtatttagc tgagctacat
120
caggaggcatg acttaaagtt aaacctgaag tttgaaatcg aggttctctg caagaacctt
180
gcatttagaca tcaatgagct aaaacctgga aacctcctaa aggataaaga tcgcctgaag
240
aatttagatg agcaactctc tgctccaagg aaagatgtca agcagccaga agaactccct
300
cccatcacaa ccacaacaac ttctactaca ccagctacca acaccacttg tacagccacg
360
gttccaccac agccacagta cagctaccac gacatcaatg tctattccct tgcgggcttg
420
gcaccacaca ttactctaaa tccaacaatt cccttggttc aggcccattcc acagttgaag
480
cagtgtgtgc gtcaggcaat tgaacgggct gtccaggagc tggtccatcc tgtgggtggat
540
cgatcaatta agattgcacat gactacttgt gagcaaatacg tcaggaaggaa ttttgcctg
600
gattcggagg aatctcaat gcgaatacgca gctcatcaca tgatgcgtaa cttgacagct
660
ggaatggcta tgattacatg cagggAACCT ttgctcatga gcatatctac caactaaaa
720
aacagttttg cctcagccct tcgtactgct tccccacaac aaagagaaat gatggatcag
780
gcagctgctc aattagctca ggacaattgt gagttggctt gctgttttat tcagaagact
840
gcagtagaaa aagcaggccc tgagatggac aagagattag caactgaatt tgagctgaga
900
aaacatgcta ggcaagaagg acgcagatac tggatcctg ttgttttaac atatcaagct
960
gaacggatgc cagagcaaat caggctgaaa gttgggtggt tggacccaaa gcagttggct
1020
gtttacgaag agtttgcacg caatgttccct ggcttcttac ctacaaatga cttaaatcag
1080
cccacggat ttttagccca gcccattgaag caagcttgggg caacagatga tggatctcag
1140
atttatgata agtgttattac agaactggag caacatctac atgccatccc accaactttg
1200
gccatgaacc ctcaagctca ggcttccgaa agtcttgg aggtttagt tttatctcga
1260
aactctcggg atgccatagc tgcttggaa ttgctccaaa aggctgtaga gggcttacta
1320
gatgccacaa gtggtgctga tgctgacctt ctgctgegct acaggaaatg ccaccccttg
1380

gtcctaaaag ctctgcagga tggccggca tatgggtctc catggtgcaa caaacagatc
1440
acaagggtgcc taattgaatg tcgagatgaa tataaatata atgtggaggc tgtggagctg
1500
ctaattcgca atcatttgtt taatatgcag cagtagatgc ttcacctagc gcagtcaatg
1560
gagaatggct taaactacat ggctgtggca tttgctatgc agtttagtaaa aatcctgctg
1620
gtggatgaaa ggagtgttgc tcatgttact gaggcagatc tggtccacac cattgaaacc
1680
ctcatgagga ttaatgctca ttccagaggc aatgctccag aaggattgcc ccagctgatg
1740
gaagtagtgc gatccaacta tgaagcaatg attgatcgtg ctcatggagg cccaaacttt
1800
atgatgcatt ctgggatctc tcaaggctca gagtatgatg accctccagg cctgagggag
1860
aaggcagagt atcttctgag ggaatgggtg aatctctacc attcagcagc agctggccgc
1920
gacagtacca aagctttctc tgcattttgtt ggacaggttag agcttttggaa aagaaagatg
1980
caccagcaag gaatactgaa gaccgatgat ctcataacaa ggttctttcg tctgtgtact
2040
gaaatgtgtg ttgaaatcag ttaccgtgtc caggetgagc agcagcacaa tcctgctgcc
2100
aatcccacca tgatccgagc caagtgtat cacaacctgg atgcctttgt tgcactcatt
2160
gcactgctcg tgaaacactc aggggaggcc accaacactg tcacaaaagat taatctgctg
2220
aacaagggtcc ttggatatagt agtggaggtt ctcccttcagg atcatgatgt tcgtcagagt
2280
gaatttcagc aacttcccta ccatcgaatt tttatcatgc ttctcttggaa actcaatgca
2340
cctgagcatg tggtaaaac cattaatttc cagacactta cagctttctg caatacattc
2400
cacatcttga ggcctaccaa agctcctggc tttgtatatg cctggcttga actgattcc
2460
catcgatata ttattgcaag aatgctggca catacgccac agcagaaggg gtggcctatg
2520
tatgcacago tactgatttga tttatcaaa tatttagcgc ctttccttag aaatgtggaa
2580
ctcaccaaaac ctatgcaaattt cctctacaag ggcactttaa gagtgctgtc ggttcttttg
2640
catgatttcc cagagtccct ttgtgattac cattatgggt tctgtgatgt gatcccaccc
2700
aattgtatcc agttaagaaaa tttgatcctg agtgccttcc caagaaacat gaggcccc
2760
gacccttca ctccataatct aaagggtggac atggtttagtgc aaattaacat tgctccccgg
2820
attctcacca atttcactgg agtaatgcca cctcagttca aaaaggattt ggattcctat
2880
cttaaaactc gatcaccagt cacttccctg tctgtatgtc gcagcaaccc acaggtatcc
2940
aatgaacctg ggaatcgcta caacctccag ctcataatg cactgggtgc ctatgtcggt
3000

actcaggcca ttgcgcacat ccacaacaag ggcagcacac cttcaatgag caccatca
3060
cactcagcac acatggatat cttccagaat ttggctgtgg acttggacac tgagggtcgc
3120
tatctcttt tgaatgcaat tgcaaatacg ctccggtacc caaatagcca cactcactac
3180
ttcagttgca ccatgctgta ccttttgca gaggccaata cggaagccat ccaagaacag
3240
atcacaagag ttctcttgg a cgggttggatt gtaaaataggc cacatccttg gggtcttctt
3300
attaccttca ttgagctgat taaaaaccca gcgttaagt tctggAACCA tgaatttgta
3360
cactgtgccc cagaaatcga aaagttattc cagtcggtcg cacagtgcg catggacac
3420
aagcaggccc agcaagtaat ggaagggaca ggtgccagtt agacgaaact gcatctctgt
3480
tgtacgtgtc agtctagagg tctcaactgca ccgagttcat aaactgactg aagaatcett
3540
tcagctcttc ctgactttcc cagccctttg gtttggggat atctgccccca actactgttg
3600
ggatcagcct cctgtcttat gtgggcacgt tccaaagttt aaatgcattt ttttactct
3660
tggccaaaat ttagaagatg ctgtgaatat cattttgaac ttgtgtaaat acatgaaaga
3720
aaaaacccctt gtctggact tcttggcttt gtgcaagctg tgtccaaggc aagtacataa
3780
actggtaacct tgtaatgaaag aggcaagctga tgccatgcac ttgtctgagg gcatagctcc
3840
atgtcttctg acattccctgg tgccccaaag aatagcaaaa agccagttt aatattatgt
3900
aacttatttt ttaatgtgg acaggggacc ttgaaaatca ctaagttatt aaaaatgtgg
3960
atgtgctaga attggatatg tccaggaaca tggaaaggc tcactattgg aatcccatga
4020
gtttccattt tgtctctacc caaacgtatt cccaaagctga ctgcatttgt accatcttat
4080
ttctttggg gattatacac ctcagccgccc tgagatgggg gtcagcttt tatataaagg
4140
gaaaccagac caggcctaaa gccccacccccc taccctcacc cccacaatcc tctctgaaa
4200
cttaaaaaca gtggaaatat aggaaaaggga accaaatctc attaattaat ttttctcccc
4260
cattacccca ctgaatgaaat ggccatatacg gctaagctga ataatgacaa agttgaaagg
4320
accaatacag ccccttttat aaggattttg aatgtttgc aaatgtattt gtcctgtgt
4380
tgtatTTGT agcctttcc tgggttccag ctccccctact tttgtatgt gtatgcatac
4440
tgttagctaac cattaaagtc atgacacaca catgagtcca ctgtgccttt ctcagtagca
4500
gcaggcagtg ctgggtgtga ggaggaaaag tggacaatcc agccctgttag accttggggc
4560
catggggAAC caacaactaa cttcttgctg aatgattgat ttgattgatt gattgatagg
4620

tcatttcctac tactaagctg gcatgtttaa ggaatttta tttttttcc tatttatttc
 4680
 aacactggac aaatgctgga gcagggttat ctgggttaage tgagtttaaa ataccagg
 4740
 ttaatatacct tttccccag gtatTTTT ttTTTTTaa agaaaatgag tagatacgta
 4800
 ttaaaaact taacccactt aaaatttgc ttaccttca tgactgtcaa gtttatggc
 4860
 cagagaggac aaaacagtcc aaaatTTAAAT aattgaagtc ctcccttgagt gatgtcttag
 4920
 ggTTTATTCC ctgagaggtg gTTTGTGCC tctagactga acTTTGGGTA actatcgagt
 4980
 accagttaca cagtttata aatccagagt ctTTCAATA aaggTTAAGT gacttccTCA
 5040
 aactagactt agatTTAAAC caggggtcta cctccaaagt ctattattaa atgctgaaac
 5100
 acaacaagac ttacttata ctaccgtatg tccactggct ttggTTTTAACTTCTGAGAA
 5157

<210> 6034
 <211> 1096
 <212> PRT
 <213> Homo sapiens

<400> 6034
 Lys Asn Leu Ala Leu Asp Ile Asn Glu Leu Lys Pro Gly Asn Leu Leu
 1 5 10 15
 Lys Asp Lys Asp Arg Leu Lys Asn Leu Asp Glu Gln Leu Ser Ala Pro
 20 25 30
 Arg Lys Asp Val Lys Gln Pro Glu Glu Leu Pro Pro Ile Thr Thr Thr
 35 40 45
 Thr Thr Ser Thr Thr Pro Ala Thr Asn Thr Thr Cys Thr Ala Thr Val
 50 55 60
 Pro Pro Gln Pro Gln Tyr Ser Tyr His Asp Ile Asn Val Tyr Ser Leu
 65 70 75 80
 Ala Gly Leu Ala Pro His Ile Thr Leu Asn Pro Thr Ile Pro Leu Phe
 85 90 95
 Gln Ala His Pro Gln Leu Lys Gln Cys Val Arg Gln Ala Ile Glu Arg
 100 105 110
 Ala Val Gln Glu Leu Val His Pro Val Val Asp Arg Ser Ile Lys Ile
 115 120 125
 Ala Met Thr Thr Cys Glu Gln Ile Val Arg Lys Asp Phe Ala Leu Asp
 130 135 140
 Ser Glu Glu Ser Arg Met Arg Ile Ala Ala His His Met Met Arg Asn
 145 150 155 160
 Leu Thr Ala Gly Met Ala Met Ile Thr Cys Arg Glu Pro Leu Leu Met
 165 170 175
 Ser Ile Ser Thr Asn Leu Lys Asn Ser Phe Ala Ser Ala Leu Arg Thr
 180 185 190
 Ala Ser Pro Gln Gln Arg Glu Met Met Asp Gln Ala Ala Ala Gln Leu
 195 200 205
 Ala Gln Asp Asn Cys Glu Leu Ala Cys Cys Phe Ile Gln Lys Thr Ala
 210 215 220
 Val Glu Lys Ala Gly Pro Glu Met Asp Lys Arg Leu Ala Thr Glu Phe

225	230	235	240																																																																																																																																																																																																																																																		
Glu	Leu	Arg	Lys																																																																																																																																																																																																																																																		
His	Ala	Arg	Gln																																																																																																																																																																																																																																																		
Glu	Gly	Arg	Arg																																																																																																																																																																																																																																																		
Tyr	Cys	Tyr	Cys																																																																																																																																																																																																																																																		
Asp	Pro																																																																																																																																																																																																																																																				
245	250	255																																																																																																																																																																																																																																																			
Val	Val	Leu	Thr																																																																																																																																																																																																																																																		
Tyr	Gln	Ala	Glu																																																																																																																																																																																																																																																		
Arg	Met	Pro	Glu																																																																																																																																																																																																																																																		
Gln	Ile	Arg	Leu																																																																																																																																																																																																																																																		
260	265	270																																																																																																																																																																																																																																																			
Lys	Val	Gly	Gly																																																																																																																																																																																																																																																		
Val	Asp	Pro	Pro																																																																																																																																																																																																																																																		
Lys	Gln	Leu	Ala																																																																																																																																																																																																																																																		
Leu	Tyr																																																																																																																																																																																																																																																				
275	280	285																																																																																																																																																																																																																																																			
Ala	Arg	Asn	Val																																																																																																																																																																																																																																																		
Pro	Gly	Phe	Leu																																																																																																																																																																																																																																																		
Leu	Pro	Thr	Asn																																																																																																																																																																																																																																																		
Asp	Leu	Ser	Gln																																																																																																																																																																																																																																																		
290	295	300	Pro																																																																																																																																																																																																																																																		
Thr	Gly	Phe	Leu																																																																																																																																																																																																																																																		
Ala	Gln	Pro	Met																																																																																																																																																																																																																																																		
Gln	Ala	Tyr	Lys																																																																																																																																																																																																																																																		
305	310	315	Asp																																																																																																																																																																																																																																																		
Asp	Asn	Val	Asp																																																																																																																																																																																																																																																		
320																																																																																																																																																																																																																																																					
Val	Ala	Gln	Ile																																																																																																																																																																																																																																																		
Tyr	Asp	Lys	Cys																																																																																																																																																																																																																																																		
Ile	Thr	Glu	Leu																																																																																																																																																																																																																																																		
Glu	Gln	His	Leu																																																																																																																																																																																																																																																		
325	330	335																																																																																																																																																																																																																																																			
His	Ala	Ile	Pro																																																																																																																																																																																																																																																		
Pro	Pro	Thr	Leu																																																																																																																																																																																																																																																		
Ala	Met	Asn	Pro																																																																																																																																																																																																																																																		
Gln	Ala	Gln	Ala																																																																																																																																																																																																																																																		
Leu	340	345	Leu																																																																																																																																																																																																																																																		
Arg	Ser	Leu	Glu																																																																																																																																																																																																																																																		
Leu	Glu	Val	Val																																																																																																																																																																																																																																																		
Val	Leu	Ser	Arg																																																																																																																																																																																																																																																		
Asn	Ser	Arg	Asp																																																																																																																																																																																																																																																		
355	360	365	Ala																																																																																																																																																																																																																																																		
Ile	Ala	Ala	Leu																																																																																																																																																																																																																																																		
Gly	Leu	Leu	Gln																																																																																																																																																																																																																																																		
Leu	Lys	Ala	Val																																																																																																																																																																																																																																																		
370	375	380	Gly																																																																																																																																																																																																																																																		
Leu	Leu	Gly	Leu																																																																																																																																																																																																																																																		
Asp	Ala	Asp	Ala																																																																																																																																																																																																																																																		
Ala	Asp	Leu	Leu																																																																																																																																																																																																																																																		
Leu	Arg	Tyr	Arg																																																																																																																																																																																																																																																		
Glu	Cys																																																																																																																																																																																																																																																				
385	390	395	400																																																																																																																																																																																																																																																		
His	Leu	Leu	Val																																																																																																																																																																																																																																																		
Leu	Lys	Ala	Leu																																																																																																																																																																																																																																																		
Gln	Asp	Gly	Arg																																																																																																																																																																																																																																																		
405	410	415	Ala																																																																																																																																																																																																																																																		
Tyr	Gly	Arg	Tyr																																																																																																																																																																																																																																																		
420	425	430	Asp			Glu	Tyr	Lys	Tyr	Tyr	Asn	Val	Glu	Ala	Val	Glu	Leu	Ile	Arg	Asn	His	435	440	445		Leu	Val	Asn	Met	Gln	Gln	Tyr	Asp	Leu	His	Leu	Ala	Gln	Ser	Met	Glu	450	455	460		Asn	Gly	Leu	Asn	Tyr	Leu	Tyr	Met	Met	Ala	Val	Ala	Phe	Ala	Met	Gln	465	470	475	Leu	Asp	Glu	Gly	Val	Ile	Leu	Asn	Lys	Leu	Val	Asp		Glu	Arg	Ser		485	490	495		Ile	Phe	His	Thr	Leu	Thr	Leu	Met	Arg	Ile	Asn	Ala	500	505	510	His	Gly	Asn	Ala	Pro	Pro	Glu	Gly	Leu	515	520	525	Pro	Asn	Tyr	Glu	Ala	Ala	Met	Ile	Asp	530	535	540	Arg	Asp	Arg	Ala	His	545	550	555	Gly	Met	His	Ser	Gly	Ile	Ser	Gln	Ala	560			Ser	Leu	Arg	Glu	Leu	565	570	575	Tyr	His	Ser	Ala	Ala	Ala	Ala	Gly	Arg	580	585	590	Asp	Val	Gly	Gln	Val	595	600	605	Glu	Leu	Lys	Thr	Asp	610	615	620	Asp	Met	Cys	Val	Glu	Ile	Ser	Tyr	Arg	625	630	635	Ala	Pro	Ala	Ala	Asn	640			Pro	Asn	Pro	Thr	Met	645	650	655	Ile	Arg	Ile	Arg	Leu	Asp	Ala	Phe	Val	655			Leu	Asp	Ala	Phe	Arg	660			Leu	Asn	Leu	Leu	Val	665			Lys	His	Leu	Ser	Gly	670			Ile
Asp																																																																																																																																																																																																																																																					
Glu	Tyr	Lys	Tyr																																																																																																																																																																																																																																																		
Tyr	Asn	Val	Glu																																																																																																																																																																																																																																																		
Ala	Val	Glu	Leu																																																																																																																																																																																																																																																		
Ile	Arg	Asn	His																																																																																																																																																																																																																																																		
435	440	445																																																																																																																																																																																																																																																			
Leu	Val	Asn	Met																																																																																																																																																																																																																																																		
Gln	Gln	Tyr	Asp																																																																																																																																																																																																																																																		
Leu	His	Leu	Ala																																																																																																																																																																																																																																																		
Gln	Ser	Met	Glu																																																																																																																																																																																																																																																		
450	455	460																																																																																																																																																																																																																																																			
Asn	Gly	Leu	Asn																																																																																																																																																																																																																																																		
Tyr	Leu	Tyr	Met																																																																																																																																																																																																																																																		
Met	Ala	Val	Ala																																																																																																																																																																																																																																																		
Phe	Ala	Met	Gln																																																																																																																																																																																																																																																		
465	470	475	Leu																																																																																																																																																																																																																																																		
Asp	Glu	Gly	Val																																																																																																																																																																																																																																																		
Ile	Leu	Asn	Lys																																																																																																																																																																																																																																																		
Leu	Val	Asp																																																																																																																																																																																																																																																			
Glu	Arg	Ser																																																																																																																																																																																																																																																			
485	490	495																																																																																																																																																																																																																																																			
Ile	Phe	His	Thr																																																																																																																																																																																																																																																		
Leu	Thr	Leu	Met																																																																																																																																																																																																																																																		
Arg	Ile	Asn	Ala																																																																																																																																																																																																																																																		
500	505	510	His																																																																																																																																																																																																																																																		
Gly	Asn	Ala	Pro																																																																																																																																																																																																																																																		
Pro	Glu	Gly	Leu																																																																																																																																																																																																																																																		
515	520	525	Pro																																																																																																																																																																																																																																																		
Asn	Tyr	Glu	Ala																																																																																																																																																																																																																																																		
Ala	Met	Ile	Asp																																																																																																																																																																																																																																																		
530	535	540	Arg																																																																																																																																																																																																																																																		
Asp	Arg	Ala	His																																																																																																																																																																																																																																																		
545	550	555	Gly																																																																																																																																																																																																																																																		
Met	His	Ser	Gly																																																																																																																																																																																																																																																		
Ile	Ser	Gln	Ala																																																																																																																																																																																																																																																		
560			Ser																																																																																																																																																																																																																																																		
Leu	Arg	Glu	Leu																																																																																																																																																																																																																																																		
565	570	575	Tyr																																																																																																																																																																																																																																																		
His	Ser	Ala	Ala																																																																																																																																																																																																																																																		
Ala	Ala	Gly	Arg																																																																																																																																																																																																																																																		
580	585	590	Asp																																																																																																																																																																																																																																																		
Val	Gly	Gln	Val																																																																																																																																																																																																																																																		
595	600	605	Glu																																																																																																																																																																																																																																																		
Leu	Lys	Thr	Asp																																																																																																																																																																																																																																																		
610	615	620	Asp																																																																																																																																																																																																																																																		
Met	Cys	Val	Glu																																																																																																																																																																																																																																																		
Ile	Ser	Tyr	Arg																																																																																																																																																																																																																																																		
625	630	635	Ala																																																																																																																																																																																																																																																		
Pro	Ala	Ala	Asn																																																																																																																																																																																																																																																		
640			Pro																																																																																																																																																																																																																																																		
Asn	Pro	Thr	Met																																																																																																																																																																																																																																																		
645	650	655	Ile																																																																																																																																																																																																																																																		
Arg	Ile	Arg	Leu																																																																																																																																																																																																																																																		
Asp	Ala	Phe	Val																																																																																																																																																																																																																																																		
655			Leu																																																																																																																																																																																																																																																		
Asp	Ala	Phe	Arg																																																																																																																																																																																																																																																		
660			Leu																																																																																																																																																																																																																																																		
Asn	Leu	Leu	Val																																																																																																																																																																																																																																																		
665			Lys																																																																																																																																																																																																																																																		
His	Leu	Ser	Gly																																																																																																																																																																																																																																																		
670			Ile																																																																																																																																																																																																																																																		

660	665	670
Ala Thr Asn Thr Val Thr Lys Ile Asn Leu Leu Asn Lys Val Leu Gly		
675	680	685
Ile Val Val Gly Val Leu Leu Gln Asp His Asp Val Arg Gln Ser Glu		
690	695	700
Phe Gln Gln Leu Pro Tyr His Arg Ile Phe Ile Met Leu Leu Leu Glu		
705	710	715
Leu Asn Ala Pro Glu His Val Leu Glu Thr Ile Asn Phe Gln Thr Leu		
725	730	735
Thr Ala Phe Cys Asn Thr Phe His Ile Leu Arg Pro Thr Lys Ala Pro		
740	745	750
Gly Phe Val Tyr Ala Trp Leu Glu Leu Ile Ser His Arg Ile Phe Ile		
755	760	765
Ala Arg Met Leu Ala His Thr Pro Gln Gln Lys Gly Trp Pro Met Tyr		
770	775	780
Ala Gln Leu Leu Ile Asp Leu Phe Lys Tyr Leu Ala Pro Phe Leu Arg		
785	790	795
Asn Val Glu Leu Thr Lys Pro Met Gln Ile Leu Tyr Lys Gly Thr Leu		
805	810	815
Arg Val Leu Leu Val Leu Leu His Asp Phe Pro Glu Phe Leu Cys Asp		
820	825	830
Tyr His Tyr Gly Phe Cys Asp Val Ile Pro Pro Asn Cys Ile Gln Leu		
835	840	845
Arg Asn Leu Ile Leu Ser Ala Phe Pro Arg Asn Met Arg Leu Pro Asp		
850	855	860
Pro Phe Thr Pro Asn Leu Lys Val Asp Met Leu Ser Glu Ile Asn Ile		
865	870	875
Ala Pro Arg Ile Leu Thr Asn Phe Thr Gly Val Met Pro Pro Gln Phe		
885	890	895
Lys Lys Asp Leu Asp Ser Tyr Leu Lys Thr Arg Ser Pro Val Thr Phe		
900	905	910
Leu Ser Asp Leu Arg Ser Asn Leu Gln Val Ser Asn Glu Pro Gly Asn		
915	920	925
Arg Tyr Asn Leu Gln Leu Ile Asn Ala Leu Val Leu Tyr Val Gly Thr		
930	935	940
Gln Ala Ile Ala His Ile His Asn Lys Gly Ser Thr Pro Ser Met Ser		
945	950	955
Thr Ile Thr His Ser Ala His Met Asp Ile Phe Gln Asn Leu Ala Val		
965	970	975
Asp Leu Asp Thr Glu Gly Arg Tyr Leu Phe Leu Asn Ala Ile Ala Asn		
980	985	990
Gln Leu Arg Tyr Pro Asn Ser His Thr His Tyr Phe Ser Cys Thr Met		
995	1000	1005
Leu Tyr Leu Phe Ala Glu Ala Asn Thr Glu Ala Ile Gln Glu Gln Ile		
1010	1015	1020
Thr Arg Val Leu Leu Glu Arg Leu Ile Val Asn Arg Pro His Pro Trp		
1025	1030	1035
Gly Leu Leu Ile Thr Phe Ile Glu Leu Ile Lys Asn Pro Ala Phe Lys		
1045	1050	1055
Phe Trp Asn His Glu Phe Val His Cys Ala Pro Glu Ile Glu Lys Leu		
1060	1065	1070
Phe Gln Ser Val Ala Gln Cys Cys Met Gly Gln Lys Gln Ala Gln Gln		
1075	1080	1085
Val Met Glu Gly Thr Gly Ala Ser		

1090

1095

<210> 6035
<211> 320
<212> DNA
<213> Homo sapiens

<400> 6035
tgatcacaaa gtcctgctg agtctggggg ataggaaggg tctcaatcat ggtccatggg
60 taatctcttt gccatgtga atgtgccaa tgtatcaaag gtcattctt aaatggcatg
120 gtggggcagt ggtgggcatt gtggctctgt gatctggcc aggctccag ccaccctggg
180 gttccctgc tggctctg gaggacctgc ctcaaccctt ggatatgggg ttccacctga
240 cagcaggaaa agagattta ggcctggagt ccaggcagga cagatggtag aaaccaatgg
300 agatgcattgg ccctggcgcc
320

<210> 6036
<211> 102
<212> PRT
<213> Homo sapiens

<400> 6036
Met His Leu His Trp Phe Leu Pro Ser Val Leu Pro Gly Leu Gln Ala
1 5 10 15
Ser Asn Leu Phe Ser Cys Cys Gln Val Glu Pro His Ile Gln Gly Leu
20 25 30
Arg Gln Val Leu Gln Glu Pro Ser Arg Glu Pro Pro Gly Trp Leu Gly
35 40 45
Ala Trp Pro Arg Ser Gln Ser His Asn Ala His His Cys Pro Thr Met
50 55 60
Pro Phe Arg Met Glu Pro Leu Ile His Trp Ala His Ser His Gly Gln
65 70 75 80
Arg Asp Tyr Pro Trp Thr Met Ile Glu Thr Leu Pro Ile Pro Gln Thr
85 90 95
Gln Gln Gly Leu Cys Asp
100

<210> 6037
<211> 3910
<212> DNA
<213> Homo sapiens

<400> 6037
aagcagccgn agcgttagctt ggctccggcc ctgcctggcg ccctgtctat cacggcgctg
60
tgcaactgccc tcgcccagcc cgccctgggtt cacatccacg gaggcacctg ttgcgcggcag
120
gagctggggg tctccgacgt gttgggctat gtgcacccgg acctgctgaa agatttctgc
180

atgaatcccc agacagtgtc gtcctgcgg gtcatcgccg ccttctgttt cctgggcatt
240
ctgtgttagtc tctccgcttt ccttctggat gtctttgggc cgaagcatcc tgctctgaag
300
atcaactcgtc gctatgcctt cgcccatatac ctaacggttc tgcagtgtgc caccgtcatt
360
ggcttttctt attgggcttc tgaactcatc ttggcccagc agcagcagca taagaagtac
420
catggatccc aggtctatgt caccttcgccc gttagttct acctgggtggc aggagctggt
480
ggagecctcaa tcctggccac ggcaagccaac ctccctgcgcc actaccccac agaggaagag
540
gagcaggcgc tggagctgtc ctcagagatg gaagagaacg agccctaccc ggccgaaatat
600
gagggtcatca accagttcca gccacccctt gcttacacac cctaattgcca gccctgggct
660
cttttcctcg gcagccccc cctcaactct gcagcttcgc tgcacccag aggagctcct
720
ttccccagca ggcctcaactg gtaggatcctt gaccatcttc tccaaacctt ccccaggaga
780
gactctgcct ttagggtcat ccaagtatcc ctgctctcag aaccggaggt ccactggtt
840
tctataatgt actctttccc tcctgccaca tcctgcccccc ttcacattca cgagtattta
900
ccagccaggg aaggtcatcc aagtttccctc cagcatgggc gatatcttg ggaccgagac
960
tttccttggaa gagctgctga gagcggacag tccaaaaaac aagtgtcaaa gggcccaagg
1020
gaaaggggac tgtgccttgg aggctcaattt cacagggatc agtgtttgtt ccacagctgt
1080
agctctgggc tgacgcccc cagacccctt ctttcctggaa gtgacccggcc cccaggccac
1140
ctgttcgggg gagttctgtc cactttactc tttggacttc tcctcacgtg tgccctggtt
1200
ttatggggag agggaatcgc tggtggaaag gcagagcagt tgcaacccctc tctgccttgc
1260
cttcatgtgg ctggagccca ggcaaggaga gcaggagcca gcgtgagact gagggccct
1320
ggtccttatac aaggaccaga gtgaagggga ctacatctcc cagcccttca cttttaaat
1380
atgagtgggtt ttaaaaggaa aaaaatgaaa ccaggcaaca gcaacaatat tctgtttta
1440
aaataggggac aagactgttgc tcactttta gacatgtatc ccattccctt tggctctgca
1500
atatttgggg ctgtagctcc ttccaaagccc atggtagtcc ctccccgagt ctctcccaagt
1560
agaatgcagc ctcccttccc tggcccttcc cctctcagtg acggtgactc cctggggcct
1620
tctcgtggaa cccagagggg ctgaggactg tggctggctt ggcgggcccag cgtgggtgtc
1680
ctcaggactg cagcactgag atgaaacctg gcctcagttt aggaacaggg gccacaacag
1740
ggcaggaacc caccacccctc cacataggaa tacaaccagt gggccacat catgtgaggc
1800

atcagaccca cactgtcagc ccagcaggcc gggctgtgtc cttcagaccc agtgctgcc
1860
tagactctga ctccggactc cagcttgcac cgtccctct ccccttttga atgtactctg
1920
gtcttgcagt gtgtgtctgg gacttttttgc ctcagccatc actctggtca ctttgtttgc
1980
tctgggtctg gctgaattttt ctgccttgat atctggcat aaagtggatg aaacttggaaa
2040
gaccttcagt gtagatccag atggccaacc tgccttggta aagttacttg cttttttggaa
2100
atcagtgtcc cctgctgagc tgaaaaggaa atggattcca atcttttcca acctttaagg
2160
tgatagatag tttagcaag actggagaat ggacaacact atgaagctgt ggctagaaag
2220
ggactgtcat gtccccatctt tggtccagat tgactggggta tgtccggaca gatgcctgca
2280
tgggtggta gggccacatc tgcacacgag ccagtggctg cttgcagttc actgctgtga
2340
tgccagatgt tgttcaaagg tgactctctt gcttttttggactctt caggcaagaa
2400
aggctgcagg ctgcctgcta tgtgtatgcct gagcacaaag ccaaggaact gaactaagtc
2460
ttttctttaa gtcctgagtt tgtcattggc aggtttactt gtggccagct ctctctgccc
2520
ttgggtgtct gagcaggcag accagaagac caggcactgg acctgcattgc caaaggact
2580
ggtcataatcc tgaggaccc tacatgaccc tggactgt tccgcacatc ccggaaaccca
2640
ctttttatcc actccccatc tctttggctt tccttttttctt tcttttttttcc tctgcacatcc
2700
tgacactgat agtttgtcat ataaattcccc cgggttggat ttttttttttctt agaaaaaaaat
2760
taaaaaggaa aacaaaacca aaaaaaccag aaaccacgaa taagaatggaa aatgacaatg
2820
gtcgctgtt attttttgtt cacgattttc ctgatgggtt tggttccctt tgtctcagag
2880
aagcaggaga tggtgtatggat gctgtatttt tttttttttt tttttttttt gagacaagag
2940
tctcgctctg tcacccgggc tggagtgtaa cgtggcatga tctcagctca ctgcacaccc
3000
tgcctcctgg gttcaagcga ttatcctgcc tcagccctt gatgtatgg gattacaggc
3060
atgcgcact atgcccagat aattttttttgc ttttttttttgc agagacaggg tttcaccatg
3120
ttggccagggc tggctggaa ctcctaacctt caggttatcc accccaccccttgcctccaaaa
3180
gtgctggat tataggcatg aaccaccgtg cctggccaaa gatgtatggaaaataggta
3240
gaagggactt ggcattggcc agctccgtgc atggcattttt caccggcaga gcttcctaat
3300
cctgttttca cacaggaagt ttcttaggtct ttctagaaca gctagaaata gtagctgact
3360
cccgcccaag gcccaacccctt caaaccctgac gctttcagg ctgcatttc tggtgagcta
3420

tagaggagaa cgtggctcct aaactcttagc catcctgtgg gaggaaatag acttctttgg
 3480
 gctgtggctt gcagaacaaa ctacactttt ttccctcta ttgtttaaat tttatttaat
 3540
 aatttgtgtg tttttctgtc tttatttct gtatccacg tgcccttcata ctccctagaa
 3600
 actgcacttt ctttgaaacc ataggtaatg aatcttacta ggagaggcat ggggatagag
 3660
 acagttctgg gagtgtgacc tgtaagcctc ctgtagggca gtgccaggcc ttgattgcc
 3720
 acgttctctc cgttccttct tccttcatac atttgatcac acagcctaca cccagccccg
 3780
 agtgtgcata acggtaaaag agctgaggc tctttcagg gagcagccca ttttaggtctc
 3840
 ttttgttgtt gttagggaga atacacatct ttcttgaaa aaaaaaaaaa aaaaaaaaaa
 3900
 aaaaaaaaaagg
 3910

<210> 6038
 <211> 214
 <212> PRT
 <213> Homo sapiens

<400> 6038
 Lys Gln Pro Xaa Arg Ser Leu Ala Pro Ala Leu Pro Gly Ala Leu Ser
 1 5 10 15
 Ile Thr Ala Leu Cys Thr Ala Leu Ala Glu Pro Ala Trp Leu His Ile
 20 25 30
 His Gly Gly Thr Cys Ser Arg Gln Glu Leu Gly Val Ser Asp Val Leu
 35 40 45
 Gly Tyr Val His Pro Asp Leu Leu Lys Asp Phe Cys Met Asn Pro Gln
 50 55 60
 Thr Val Leu Leu Leu Arg Val Ile Ala Ala Phe Cys Phe Leu Gly Ile
 65 70 75 80
 Leu Cys Ser Leu Ser Ala Phe Leu Leu Asp Val Phe Gly Pro Lys His
 85 90 95
 Pro Ala Leu Lys Ile Thr Arg Arg Tyr Ala Phe Ala His Ile Leu Thr
 100 105 110
 Val Leu Gln Cys Ala Thr Val Ile Gly Phe Ser Tyr Trp Ala Ser Glu
 115 120 125
 Leu Ile Leu Ala Gln Gln Gln His Lys Lys Tyr His Gly Ser Gln
 130 135 140
 Val Tyr Val Thr Phe Ala Val Ser Phe Tyr Leu Val Ala Gly Ala Gly
 145 150 155 160
 Gly Ala Ser Ile Leu Ala Thr Ala Ala Asn Leu Leu Arg His Tyr Pro
 165 170 175
 Thr Glu Glu Glu Glu Gln Ala Leu Glu Leu Leu Ser Glu Met Glu Glu
 180 185 190
 Asn Glu Pro Tyr Pro Ala Glu Tyr Glu Val Ile Asn Gln Phe Gln Pro
 195 200 205
 Pro Pro Ala Tyr Thr Pro
 210

<210> 6039
<211> 1130
<212> DNA
<213> Homo sapiens

<400> 6039
nncggnttag ctatttgtt tatccatgca gccgcgtggg cctcgagggg gtcctcgcg
60
gtgctgcgcg ccggcccccggg gcggaggcg ttactgcagg tctggccgc cgaatcgccg
120
ctgcgtgggg agccattgtg ggccagaat gtggtgcccg aggccgaagg ggaagacgat
180
ccggccgggtg aggccccaggc tggaggcta cccctgctgc cctgcgcggc tgcc tacgtg
240
agccccgggg cgcccttcta cggcctctg gtcgggagc tgccggcacg ccagctggag
300
ctggccgcgg agcacgcgtt gtcgtggac gtcgtggcc aggtgttctc ctggggccggg
360
ggcaggcatg gacagctggg ccatggacc ctggaggcag agctggagcc acggctgttg
420
gaggcgttgc agggcctagt catggctgag gtggccgcgg ggggctggca ttctgtgt
480
gtgagtgaga ctggggatat ttatatctgg ggctggaatg aatcaggcca gtcggccctg
540
cccacccagga acctggcaga ggatggagag actgtcgcaa gggaaagccac agaactgaat
600
gaagatgggtt ctcaggtgaa gagaacgggt ggggctgagg atggagcccc tgcccccttc
660
atagctgtcc agcccttccc ggcattactg gatctcccc tgggctcaga tgcagtcag
720
gccagctgtg gateccggca cacagctgtg gtgacacgaa cagggagct ctacacctgg
780
ggctgggtta aatatggaca gctggccac gaggacacca ccagcttggta tcggccctcg
840
cgtgtggaat actttgtaga taagcaactc caagtaaagg ctgtcacctg tggccgtgg
900
aacacacctg tgtatgtgt ggagaaaagg aagagctgac atgtgtacgt atatgtatat
960
gcaacacactg tgagaccccc atttaggtca aggaaaaacca ttgcctgcac cccaaggggcc
1020
ccatatttgc`ccctccccat cacagtccctg cccttcaccc tcaagcacgg tcctaaactt
1080
gtctgcactt tagaaacacc tggagagcat tgaaaactct gtcgttcaag
1130

<210> 6040
<211> 312
<212> PRT
<213> Homo sapiens

<400> 6040
Xaa Gly Leu Ala Ile Leu Phe Ile His Ala Ala Ala Trp Ala Ser Glu
1 5 10 15
Gly Leu Leu Ala Val Leu Arg Ala Gly Pro Gly Pro Glu Ala Leu Leu

20	25	30
Gln Val Trp Ala Ala Glu Ser Ala Leu Arg Gly Glu Pro Leu Trp Ala		
35	40	45
Gln Asn Val Val Pro Glu Ala Glu Gly Glu Asp Asp Pro Ala Gly Glu		
50	55	60
Ala Gln Ala Gly Arg Leu Pro Leu Leu Pro Cys Ala Arg Ala Tyr Val		
65	70	75
Ser Pro Arg Ala Pro Phe Tyr Arg Pro Leu Ala Pro Glu Leu Arg Ala		
85	90	95
Arg Gln Leu Glu Leu Gly Ala Glu His Ala Leu Leu Asp Ala Ala		
100	105	110
Gly Gln Val Phe Ser Trp Gly Gly Arg His Gly Gln Leu Gly His		
115	120	125
Gly Thr Leu Glu Ala Glu Leu Glu Pro Arg Leu Leu Glu Ala Leu Gln		
130	135	140
Gly Leu Val Met Ala Glu Val Ala Ala Gly Gly Trp His Ser Val Cys		
145	150	155
Val Ser Glu Thr Gly Asp Ile Tyr Ile Trp Gly Trp Asn Glu Ser Gly		
165	170	175
Gln Leu Ala Leu Pro Thr Arg Asn Leu Ala Glu Asp Gly Glu Thr Val		
180	185	190
Ala Arg Glu Ala Thr Glu Leu Asn Glu Asp Gly Ser Gln Val Lys Arg		
195	200	205
Thr Gly Gly Ala Glu Asp Gly Ala Pro Ala Pro Phe Ile Ala Val Gln		
210	215	220
Pro Phe Pro Ala Leu Leu Asp Leu Pro Met Gly Ser Asp Ala Val Lys		
225	230	235
Ala Ser Cys Gly Ser Arg His Thr Ala Val Val Thr Arg Thr Gly Glu		
245	250	255
Leu Tyr Thr Trp Gly Trp Gly Lys Tyr Gly Gln Leu Gly His Glu Asp		
260	265	270
Thr Thr Ser Leu Asp Arg Pro Arg Arg Val Glu Tyr Phe Val Asp Lys		
275	280	285
Gln Leu Gln Val Lys Ala Val Thr Cys Gly Pro Trp Asn Thr Tyr Val		
290	295	300
Tyr Ala Val Glu Lys Gly Lys Ser		
305	310	

<210> 6041
<211> 291
<212> DNA
<213> Homo sapiens

<400> 6041
acgcgtgaag gggaaagaaag agaacgtctg caaaaggagg aagagaaaacg taggagagaa
60
gaagaggaaa ggcttcgacg ggaggaagag gaaaggagac ggatagaaga agaaaggctt
120
cggttgagc agcaaaagca gcagataatg gcagcttaa actcccgacac tgccgtcag
180
ttcccagcgt atgcagccca acagtatcca gggactacg aacagcagca aattctcatc
240
cgcccagttgc aggagcaaca ctatcagcag tacatgcagc agttgtatca c
291

<210> 6042
<211> 97
<212> PRT
<213> Homo sapiens

<400> 6042
Thr Arg Glu Gly Glu Glu Arg Glu Arg Leu Gln Lys Glu Glu Glu Lys
1 5 10 15
Arg Arg Arg Glu Glu Glu Glu Arg Leu Arg Arg Glu Glu Glu Arg
20 25 30
Arg Arg Ile Glu Glu Glu Arg Leu Arg Leu Glu Gln Gln Lys Gln Gln
35 40 45
Ile Met Ala Ala Leu Asn Ser Gln Thr Ala Val Gln Phe Gln Gln Tyr
50 55 60
Ala Ala Gln Gln Tyr Pro Gly Asn Tyr Glu Gln Gln Gln Ile Leu Ile
65 70 75 80
Arg Gln Leu Gln Glu Gln His Tyr Gln Gln Tyr Met Gln Gln Leu Tyr
85 90 95
His

<210> 6043
<211> 558
<212> DNA
<213> Homo sapiens

<400> 6043
tttttttttt tttttttttt tttgacattc aaacacaaggc tttaatagga gatatcaagg
60
cacagggtgg agggagggggg ttgctccagg gaattctgaa tgtcccagt catgcagaag
120
ttcaagggtgt cttgtacaac ccactgggaa aacaggatct gggaccggtg cgggcacatt
180
ctcctggccc agcacagggg cggtgccacc cacattcggc cccgggtcttgc cctaatacat
240
gttttggtaa acactcggtc agagcacccct ctgttttttc cagttccgaa gctccccca
300
gaaatccaca ccccccgcacc accctctcg ggacacggat tcaatgtccc tggtgggtca
360
tctggccttt tcggcctgtg atgtgattcg agcggtgcta tcttttaacct cgggcagggg
420
tgttctcccc cgtcgacgtt gtcagataa cagtcctgca attccatggg ggtggcggca
480
cccggggtct ggcaaagcat aggggcctgc ttgtgtcccc tgctgctgcc ccaagtagtc
540
agaggaggat gtgaattc
558

<210> 6044
<211> 152
<212> PRT
<213> Homo sapiens

<400> 6044

Met Leu Cys Gln Thr Pro Gly Ala Ala Thr Pro Met Glu Leu Gln Asp
 1 5 10 15
 Cys Tyr Leu Ser Asn Val Asp Gly Gly Glu His Pro Cys Pro Arg Leu
 20 25 30
 Lys Ile Ala Pro Leu Glu Ser His His Arg Pro Lys Arg Pro Asp Asp
 35 40 45
 Pro Pro Gly Thr Leu Asn Pro Cys Pro Glu Arg Gly Gly Ala Gly Val
 50 55 60
 Trp Ile Pro Ala Gly Ser Phe Gly Thr Gly Lys Asn Arg Gly Cys Ser
 65 70 75 80
 Asp Arg Val Phe Thr Lys Thr Cys Ile Arg Gln Asp Pro Gly Arg Met
 85 90 95
 Trp Val Ala Pro Pro Leu Cys Trp Ala Arg Arg Met Cys Pro His Arg
 100 105 110
 Ser Gln Ile Leu Phe Pro Gln Trp Val Val Gln Asp Thr Leu Asn Phe
 115 120 125
 Cys Met Asn Trp Asp Ile Gln Asn Ser Leu Glu Gln Pro Pro Pro Ser
 130 135 140
 Thr Leu Cys Leu Asp Ile Ser Tyr
 145 150

<210> 6045

<211> 1916
 <212> DNA
 <213> Homo sapiens

<400> 6045

acgcgtgtcg agacgcactt ccagccccgc ggccgtggcg aagggtggccc ctacggctgc
 60
 aaggacgctc tgccgccagca gctccgctcg gcgcgagagg tgattgcagt ggtcatggac
 120
 gtgttcacag acatcgacat cttcagagac ctgcaagaaa tatgcaggaa acagggagtt
 180
 gctgtgtata tccttctgga ccaggtctc ctctctcaat ttctggatat gtgcattggat
 240
 ctgaaaagttc atccctgaaca ggaaaagtta atgacagttc ggactatcac aggaaatatc
 300
 tactatgcaa ggtcaggaac taagattact gggaaaggttc acgaaaagtt cacgttgatt
 360
 gatggcatcc gcgtggcaac aggctctac agttttacat ggacggatgg caaattaaac
 420
 acgactaact tggtaattct gtctggccaa gtgggtgaac actttgatct ggagttccga
 480
 atcctgtatg cccagtc当地 gccc当地 cccaaactcc tgtctcaactt ccagagc当地
 540
 aacaagttt当地 atcacctcac caaccgaaaa ccacagtc当地 aggagctcac cctgggcaac
 600
 ctgctgccc当地 tgccggctggc taggctgtca agtactccca ggaaggccga cctggacccca
 660
 gagatgccc当地 cagagggcaaa ggcagagc当地 aagccccatg actgtgagtc ctctactgtt
 720
 agtgaggaag actacttc当地 cagccacagg gacgagctcc agagcagaaa ggccattgac
 780

gctgccactc aaacagagcc aggagaggag atgccaggc tgagtgtgag tgaggtggga
 840
 acacaaacca gcatcaccac agcatgtgc ggtacccaga ctgcagtcat caccaggata
 900
 gcaagctctc aaaccacat ttggccaga tcgaccacta ctcagactga catggatgag
 960
 aacattctct ttcctcgagg aactcaatct acagaagggt caccagtctc aaaaatgtct
 1020
 gtatcgagat cttccagttt gaagtcttcc tccctgtgt cttcccaagg ctctgtggca
 1080
 agctccactg gtttccccgc ttccatcaga accactgact tccacaatcc tggctatccc
 1140
 aagtacctgg gcaccccca cctggactg tacttgagtg actcacttag aaacttgaac
 1200
 aaagagcggc aattccactt cgctggtatac aggtcccgcc tcaaccacat gctggctatg
 1260
 ctgtcaagga gaacactctt tactgaaaac cacctggcc ttcattctgg caatttcage
 1320
 agagtttaatt tgcttgctgt tagagatgta gcactttatc cttcctatca gtaactgctc
 1380
 cgtgttcaga ctcctggttt cttccaggct tacagtggac atcatcagct tccctgttta
 1440
 aaaaatatct tatgtcccta attgccttcc ttttacctga ctttgcacc tttgttgtct
 1500
 ttgaattctt taggctgcat attatttac atgcttggtt ttgtcatgta tataccaggt
 1560
 attggttta tggtttaaac actatggata caggggtttg ttttgcacaa ttttaatagt
 1620
 catgcactac ataatgatgt tttggtcaat gacagaccac gtatatgtg gcagtctcat
 1680
 aagattataa tactgtatcc ttactatacc ttttctgtgt ttagatacaa ataccattat
 1740
 gttacagttg cctacagtat tcagtgcaat aacatgatgt acaggtttgt agcctgttt
 1800
 gcattttct taggttgat gctctctgt tttaaagggt tgaatcacca gcattttgt
 1860
 gatcaaaaatc ctattnagaa aaaataaaac tactttctgt ttaaaaaaaaa aacaaa
 1916

<210> 6046
 <211> 457
 <212> PRT
 <213> Homo sapiens

<400> 6046
 Thr Arg Val Glu Thr His Phe Gln Pro Arg Gly Ala Gly Glu Gly
 1 5 10 15
 Pro Tyr Gly Cys Lys Asp Ala Leu Arg Gln Gln Leu Arg Ser Ala Arg
 20 25 30
 Glu Val Ile Ala Val Val Met Asp Val Phe Thr Asp Ile Asp Ile Phe
 35 40 45
 Arg Asp Leu Gln Glu Ile Cys Arg Lys Gln Gly Val Ala Val Tyr Ile
 50 55 60
 Leu Leu Asp Gln Ala Leu Leu Ser Gln Phe Leu Asp Met Cys Met Asp

65	70	75	80
Leu Lys Val His Pro Glu Gln Glu Lys Leu Met Thr Val Arg Thr Ile			
85	90	95	
Thr Gly Asn Ile Tyr Tyr Ala Arg Ser Gly Thr Lys Ile Ile Gly Lys			
100	105	110	
Val His Glu Lys Phe Thr Leu Ile Asp Gly Ile Arg Val Ala Thr Gly			
115	120	125	
Ser Tyr Ser Phe Thr Trp Thr Asp Gly Lys Leu Asn Ser Ser Asn Leu			
130	135	140	
Val Ile Leu Ser Gly Gln Val Val Glu His Phe Asp Leu Glu Phe Arg			
145	150	155	160
Ile Leu Tyr Ala Gln Ser Lys Pro Ile Ser Pro Lys Leu Leu Ser His			
165	170	175	
Phe Gln Ser Ser Asn Lys Phe Asp His Leu Thr Asn Arg Lys Pro Gln			
180	185	190	
Ser Lys Glu Leu Thr Leu Gly Asn Leu Leu Arg Met Arg Leu Ala Arg			
195	200	205	
Leu Ser Ser Thr Pro Arg Lys Ala Asp Leu Asp Pro Glu Met Pro Ala			
210	215	220	
Glu Gly Lys Ala Glu Arg Lys Pro His Asp Cys Glu Ser Ser Thr Val			
225	230	235	240
Ser Glu Glu Asp Tyr Phe Ser Ser His Arg Asp Glu Leu Gln Ser Arg			
245	250	255	
Lys Ala Ile Asp Ala Ala Thr Gln Thr Glu Pro Gly Glu Glu Met Pro			
260	265	270	
Gly Leu Ser Val Ser Glu Val Gly Thr Gln Thr Ser Ile Thr Thr Ala			
275	280	285	
Cys Ala Gly Thr Gln Thr Ala Val Ile Thr Arg Ile Ala Ser Ser Gln			
290	295	300	
Thr Thr Ile Trp Ser Arg Ser Thr Thr Thr Gln Thr Asp Met Asp Glu			
305	310	315	320
Asn Ile Leu Phe Pro Arg Gly Thr Gln Ser Thr Glu Gly Ser Pro Val			
325	330	335	
Ser Lys Met Ser Val Ser Arg Ser Ser Leu Lys Ser Ser Ser Ser			
340	345	350	
Val Ser Ser Gln Gly Ser Val Ala Ser Ser Thr Gly Ser Pro Ala Ser			
355	360	365	
Ile Arg Thr Thr Asp Phe His Asn Pro Gly Tyr Pro Lys Tyr Leu Gly			
370	375	380	
Thr Pro His Leu Glu Leu Tyr Leu Ser Asp Ser Leu Arg Asn Leu Asn			
385	390	395	400
Lys Glu Arg Gln Phe His Ala Gly Ile Arg Ser Arg Leu Asn His			
405	410	415	
Met Leu Ala Met Leu Ser Arg Arg Thr Leu Phe Thr Glu Asn His Leu			
420	425	430	
Gly Leu His Ser Gly Asn Phe Ser Arg Val Asn Leu Leu Ala Val Arg			
435	440	445	
Asp Val Ala Leu Tyr Pro Ser Tyr Gln			
450	455		

<210> 6047

<211> 773

<212> DNA

<213> Homo sapiens

<400> 6047
 ggatcctgac ccccgagctt gcgcacctcg ggcctccat tcagtcccg gccgacagcg
 60
 ccaccgtgtg gccacagcgt ctccatcgcc cctccttacc taggggtcgg gtgagctct
 120
 gatgggaaat gggggatctc atcgcttgcg agtagaggag actttgggg gaaagtgtatg
 180
 gaggatgggg caagggatcc ggtgtccaa tctgtgtgtc cctgcagctc ccgtagecca
 240
 gcagggaaga tgaccttcg gcccctaagc aggccgaagg caggtggccg ccgccccggc
 300
 aatggtgcaa acagcttcc tccagtgtgg tccccgtgtc gctgggggac ccagaggagg
 360
 agccgggtgg gcggcagctc ctggacctca attgctttt gtccgacatc tcggacactc
 420
 tcttacccat gactcagttc ggccttcgc ccctgcagct gcccctgag gatgcctacg
 480
 tcggcaatgc tgacatgatc cagccggacc tgacgcaact gcagccaagc ctggatgact
 540
 tcatggacat ctcagatttc ttaccaact cccgcctccc acagccgccc atgcctcaa
 600
 acttcccaga gcccccaac ttcagccccg tggttgactc cctttcage agtgggaccc
 660
 tggggccaga ggtgcccccg gtttctcg ccatgaccca cctctctgga cacagccgtc
 720
 tgcaggctcg gaacagctgc cctgcccctg tgcctgctac taaatgaatt gcg
 773

<210> 6048
 <211> 129
 <212> PRT
 <213> Homo sapiens

<400> 6048
 Met Val Lys Arg Val Ser Glu Met Ser Asp Lys Lys Gln Leu Arg Ser
 1 5 10 15
 Arg Ser Cys Arg Pro Pro Gly Ser Ser Ser Gly Ser Pro Ser Ser Thr
 20 25 30
 Gly Thr Thr Leu Glu Lys Ser Cys Leu His His Cys Ser Gly Gly Gly
 35 40 45
 His Leu Pro Ser Ala Cys Leu Gly Ala Arg Arg Ser Ser Ser Leu Leu
 50 55 60
 Gly Tyr Gly Ser Cys Arg Asp Thr Gln Ser Trp Thr Pro Asp Pro Leu
 65 70 75 80
 Pro His Pro Pro Ser Leu Ser Pro Gln Ser Leu Leu Tyr Ser Gln Ala
 85 90 95
 Met Arg Ser Pro Ile Ser His Gln Glu Leu Thr Arg Pro Leu Gly Lys
 100 105 110
 Glu Ala Ala Arg Arg Arg Cys Gly His Thr Val Ala Leu Ser Ala Arg
 115 120 125
 Asp

>
<210> 6049
<211> 479
<212> DNA
<213> Homo sapiens

<400> 6049
accggttttt cttcccccag tccctcagct gctgctgctg ctcaggaggt cagatctgcc
60
actgatggta ataccagcac caactccgccc acctctgcac agaagagaaa gttaaacagc
120
agcagcagta gcagcagtaa cagtagtaac gagagagaag actttgattc cacctcttcc
180
tcctcttcca ctcccttcc ttacaacccagg gattcggcat ccccttcaac ctcttc
240
tgcctggggg tttcagtggc tgcttccagc cacgtaccga tacagaagaa gctgcgttt
300
gaagacaccc tggagtttgtt aggggttgat gcgaaagatgg ctgaggaatc ctcccttcc
360
tcctccat cttcaccaac tgctgcaaca tctcaggagc agcaacttaa aaataagagt
420
atattaatct cttctgtggg ttccgggtcat catgcagacg ggctagccga atcttctac
479

<210> 6050
<211> 159
<212> PRT
<213> Homo sapiens

<400> 6050
Thr Gly Phe Ser Ser Pro Ser Pro Ser Ala Ala Ala Ala Ala Gln Glu
1 5 10 15
Val Arg Ser Ala Thr Asp Gly Asn Thr Ser Thr Thr Pro Pro Thr Ser
20 25 30
Ala Lys Lys Arg Lys Leu Asn Ser Ser Ser Ser Ser Asn Ser
35 40 45
Ser Asn Glu Arg Glu Asp Phe Asp Ser Thr Ser Ser Ser Ser Thr
50 55 60
Pro Pro Leu Gln Pro Arg Asp Ser Ala Ser Pro Ser Thr Ser Ser Phe
65 70 75 80
Cys Leu Gly Val Ser Val Ala Ala Ser Ser His Val Pro Ile Gln Lys
85 90 95
Lys Leu Arg Phe Glu Asp Thr Leu Glu Phe Val Gly Phe Asp Ala Lys
100 105 110
Met Ala Glu Glu Ser Ser Ser Ser Ser Ser Ser Pro Thr Ala
115 120 125
Ala Thr Ser Gln Glu Gln Gln Leu Lys Asn Lys Ser Ile Leu Ile Ser
130 135 140
Ser Val Gly Ser Val His His Ala Asp Gly Leu Ala Glu Ser Ser
145 150 155

<210> 6051
<211> 2404
<212> DNA
<213> Homo sapiens

<400> 6051
attaacaatg gaagtgataa agaaaatcag caagagaaag aaaggcttgt ggatttaaac
60
tttcttccat cggttgatcc taaaaacagtt ctccagacag ggcataatt gttgtccgaa
120
ttacagcagc gtcgatttaa tggctcagac ggaggggtt catggctcc tatggatgat
180
gaacttcttgc acagccaca gtttatgaaa ttatttagatt cactccgaga gcaatatacc
240
cgctaccagg aagttttag gcaacgtgc aagcgcacac agttagaaga gattcaacag
300
aaggtaatgc aggtggtaa ctggctgaa gggcctggat cagaacaact aagagcccag
360
tggggcattt gagactccat tagggctcc caggccctac agcagaaaca cgaagagatt
420
gagagccagc acagtgaatg gtttgcgtg tatgtggAAC ttaatcagca aattgcagca
480
ctcttgaatg ctggcgatga ggaagatctt gtggactaa agtcactgca gcaacaactt
540
agtgtatgtt gttatcgaca ggccagtcag ctggatTTT ggcaaaatct cttacaagca
600
gctcttgaat ttcatgggt tgcccaagat ttgtctcagc agttggatgg cttatttaggg
660
atgttgcgc tagatgtgc accagctgat ggagcatgca ttcagcaaAC tttaaaactg
720
cttgaagaga agctgaaaAG tggatgtg ggattgcaAG gtttgcgtGA aaaaggtaAA
780
gtctccctgg atcagatctc caatcaggca tcnnntggc ctagggaaAG gatgnTAACC
840
attggAAAATA aagAAAATGT ggaccacata caaggagtGA tggaaagatAT gcagcttGA
900
aaacaaAGAT gtgaagacat ggttagatgtG cgaaggTTA AGATGTTCA gatggTgcAG
960
ttgtttaat gtgaagaAGA tgctgccaAG gcagttagat ggctaaGTGA acttctggat
1020
gtctgcTTA agactcacat cagattggc gatgtgctc aagaaACGAA agtttgcTG
1080
gaaaAGCATA gaaaATTGT tgatgttgcA cagagcactt atgactatgg caggcagtTG
1140
ctacaggCCA cagttgtGTT atgcAGTCT ttgcgtGCA cttctcggtc atctggggat
1200
acacttcctc gactgaacAG agtATGGAAA caatttacAA tagcatctGA agagAGAGTA
1260
catagattgg aaatggctat tgcatTCAC tcaaATGCTG AAAAGATTt gcaggACTGT
1320
ccagaAGAGC ctgaagctat taatgtgag gagcaatttG atgaaATTGA agcagTTGGG
1380
aaatcacttt tggatagatt aactgttccA gtagtttATC ctgatggAAC cgaacaATAT
1440
tttggggAGTC caagtgcACAT ggcttctact gcagAAAACA tcaagAGACAG gatgAAactA
1500
gttaatctca aaaggcagca gctgagacat cctgaaatgg tgaccacaga gagctaataG
1560

ctaccagcta cctacagatt tgcagttcat aatcccgcat gttgtcaaca tactacagca
 1620
 tttagccacca caccttaaga tgcatttcac agccaaaata agtctcattt cttttcatga
 1680
 cacatttctc tttacatgtt aacacettgc tactaccaag gcataattac ttaacatgct
 1740
 tcgaggctgt agattccaag tatctaaaaa gaaggaacta taaacattgc actgaaaact
 1800
 tgctttaaag ctttacctga cctgtcagtt tgtagacaaa caactgataa taagcttga
 1860
 atggtgctaa taagagttagg aattctctct attaaaaaga aaaaaaaaaag ttgcccttcc
 1920
 tccacagggtg atttagtaaa tttagacagt agttaaactc ttgttagtag acagtggtgt
 1980
 cctcaaaatt ttactttgta attcttcaga attgattatt ttattgtgt caatacagag
 2040
 aaagccttc agatcttga tatatcatag tcattaaaag acctttcct atttgtattg
 2100
 ataatgtatt aaaagttgtt tgtgcttaat aaaagacttc tttaaacatc ttatattaatt
 2160
 tagtagttac atcctatttc caaacatgag tgccttattt aaaagggcat tcttaggact
 2220
 gtgaggatgg tttaatattt gtttttcat ggtggttgca tgtattttag acagggaaata
 2280
 catatgtaaag catgtgtata taataaataa gcatgtttta tcatgaaaaa ttattgtgaa
 2340
 caattttagat cttaagaac ttattaataa tggaaatacta tttctaattg ttctctttt
 2400
 caac
 2404

<210> 6052
 <211> 518
 <212> PRT
 <213> Homo sapiens

<400> 6052

Ile	Asn	Asn	Gly	Ser	Asp	Lys	Gly	Asn	Gln	Gln	Glu	Lys	Glu	Arg	Ser
1								5			10			15	
Val	Asp	Leu	Asn	Phe	Leu	Pro	Ser	Val	Asp	Pro	Glu	Thr	Val	Leu	Gln
								20			25			30	
Thr	Gly	His	Glu	Leu	Leu	Ser	Glu	Leu	Gln	Gln	Arg	Arg	Phe	Asn	Gly
								35			40			45	
Ser	Asp	Gly	Gly	Val	Ser	Trp	Ser	Pro	Met	Asp	Asp	Glu	Leu	Leu	Ala
								50			55			60	
Gln	Pro	Gln	Val	Met	Lys	Leu	Leu	Asp	Ser	Leu	Arg	Glu	Gln	Tyr	Thr
								65			70			75	
Arg	Tyr	Gln	Glu	Val	Cys	Arg	Gln	Arg	Ser	Lys	Arg	Thr	Gln	Leu	Glu
								85			90			95	
Glu	Ile	Gln	Gln	Lys	Val	Met	Gln	Val	Val	Asn	Trp	Leu	Glu	Gly	Pro
								100			105			110	
Gly	Ser	Glu	Gln	Leu	Arg	Ala	Gln	Trp	Gly	Ile	Gly	Asp	Ser	Ile	Arg
								115			120			125	
Ala	Ser	Gln	Ala	Leu	Gln	Gln	Lys	His	Glu	Glu	Ser	Gln	His		

130	135	140													
Ser	Glu	Trp	Phe	Ala	Val	Tyr	Val	Glu	Leu	Asn	Gln	Gln	Ile	Ala	Ala
145			150				155							160	
Leu	Leu	Asn	Ala	Gly	Asp	Glu	Glu	Asp	Leu	Val	Glu	Leu	Lys	Ser	Leu
			165				170							175	
Gln	Gln	Gln	Leu	Ser	Asp	Val	Cys	Tyr	Arg	Gln	Ala	Ser	Gln	Leu	Glu
			180				185							190	
Phe	Arg	Gln	Asn	Leu	Leu	Gln	Ala	Ala	Leu	Glu	Phe	His	Gly	Val	Ala
	195				200						205				
Gln	Asp	Leu	Ser	Gln	Gln	Leu	Asp	Gly	Leu	Leu	Gly	Met	Leu	Cys	Val
	210				215						220				
Asp	Val	Ala	Pro	Ala	Asp	Gly	Ala	Ser	Ile	Gln	Gln	Thr	Leu	Lys	Leu
	225				230				235				240		
Leu	Glu	Glu	Lys	Leu	Lys	Ser	Val	Asp	Val	Gly	Leu	Gln	Gly	Leu	Arg
	245				250				255					255	
Glu	Lys	Gly	Gln	Gly	Leu	Leu	Asp	Gln	Ile	Ser	Asn	Gln	Ala	Ser	Xaa
	260				265				270						
Gly	Pro	Met	Glu	Arg	Met	Xaa	Thr	Ile	Glu	Asn	Lys	Glu	Asn	Val	Asp
	275				280				285						
His	Ile	Gln	Gly	Val	Met	Glu	Asp	Met	Gln	Leu	Arg	Lys	Gln	Arg	Cys
	290				295				300						
Glu	Asp	Met	Val	Asp	Val	Arg	Arg	Leu	Lys	Met	Leu	Gln	Met	Val	Gln
	305				310				315				320		
Leu	Phe	Lys	Cys	Glu	Glu	Asp	Ala	Ala	Lys	Ala	Val	Glu	Trp	Leu	Ser
	325				330				335					335	
Glu	Leu	Leu	Asp	Ala	Leu	Leu	Lys	Thr	His	Ile	Arg	Leu	Gly	Asp	Asp
	340				345				350						
Ala	Gln	Glu	Thr	Lys	Val	Leu	Leu	Glu	Lys	His	Arg	Lys	Phe	Val	Asp
	355				360				365						
Val	Ala	Gln	Ser	Thr	Tyr	Asp	Tyr	Gly	Arg	Gln	Leu	Leu	Gln	Ala	Thr
	370				375				380						
Val	Val	Leu	Cys	Gln	Ser	Leu	Arg	Cys	Thr	Ser	Arg	Ser	Ser	Gly	Asp
	385				390				395				400		
Thr	Leu	Pro	Arg	Leu	Asn	Arg	Val	Trp	Lys	Gln	Phe	Thr	Ile	Ala	Ser
	405				410				415						
Glu	Glu	Arg	Val	His	Arg	Leu	Glu	Met	Ala	Ile	Ala	Phe	His	Ser	Asn
	420				425				430						
Ala	Glu	Lys	Ile	Leu	Gln	Asp	Cys	Pro	Glu	Glu	Pro	Glu	Ala	Ile	Asn
	435				440				445						
Asp	Glu	Glu	Gln	Phe	Asp	Glu	Ile	Glu	Ala	Val	Gly	Lys	Ser	Leu	Leu
	450				455				460						
Asp	Arg	Leu	Thr	Val	Pro	Val	Val	Tyr	Pro	Asp	Gly	Thr	Glu	Gln	Tyr
	465				470				475				480		
Phe	Gly	Ser	Pro	Ser	Asp	Met	Ala	Ser	Thr	Ala	Glu	Asn	Ile	Arg	Asp
	485				490				495						
Arg	Met	Lys	Leu	Val	Asn	Leu	Lys	Arg	Gln	Gln	Leu	Arg	His	Pro	Glu
	500				505				510						
Met	Val	Thr	Thr	Gl	u	Ser									
	515														

<210> 6053
<211> 3257
<212> DNA
<213> Homo sapiens

<400> 6053
nngggccct tgcaggagg agacagcctc ccggcccgaa gaggacaagt cgctgccacc
60
tttggctgcc gacgtgattc cctggacgg tccgttcctt gccgtcagct gcccggccgag
120
ttgggtctcc gtgggtcagg ccggctcccc ctccctggtc tcccttctcc cgctggccg
180
gtttatcgaa aggagattgt cttccagggc tagcaattgg acttttgcgt atgtttgcacc
240
cagcggcagg aatagcaggc aacgtgattt caaagctggg ctcagectct gtttcttctc
300
tcgtgtataatc gaaaaaccca ttttgagca ggaattccaa tcatgtctgt gatgggttg
360
agaaaagaagg tgacacggaa atgggagaaa ctcccaggca ggaacacctt ttgctgtat
420
ggccgcgtca tcatggcccg gaaaaaggcc attttctacc tgaccctttt cctcatctg
480
gggacatgtta cactttttt cgccttttag tgccgctacc tggctgttca gctgtctct
540
cccatccctg tatttgctgc catgtcttc ctttctcca tggctacact gttgaggacc
600
agcttcagtg accctggagt gattcctcg ggcgtaccag atgaagcagc tttcatagaa
660
atggagatag aagctaccaa tggtgccgtg ccccaaggcc agagaccacc gcctcgatc
720
aagaatttcc agataaacaa ccagattgtg aaactgaaat actgttacac atgcaagatc
780
ttccggccctc cccggccctc ccattgcagc atctgtgaca actgtgtgga ggcgttcgac
840
catcaactgc cctgggtggg gaatttgtt gggaaagagga actaccgcta cttctacctc
900
ttcatccctt ctctctccct cctcacaatc tatgtcttcg cttcaacat cgtctatgt
960
ggccctcaaat ctttgaaaat tggcttctt gggacattga aagaaactcc tggaaactgtt
1020
ctagaagtcc tcatttgctt ctttacactc tggccgtcg tggactgac tggatttcat
1080
actttctcg tggctctcaa ccagacaacc aatgaagaca tcaaaggatc atggacaggg
1140
aagaatcgcg tccagaatcc ctacagccat ggcataattt tgaagaactg ctgtgaagt
1200
ctgtgtggcc cttggccccc cagtgctg gatcgaagggtt gatggggactt actggaggaa
1260
agtggaaatgc gaccccccag tactcaagag accagtagca ggcctttgcc acagagccca
1320
gccccccacag aacacctgaa ctcaaatgag atgcccggagg acagcagcac tcccgaagag
1380
atgccacccctc cagagccccc agagccacca caggaggcag ctgaagctga gaagtagcct
1440
atctatggaa gagacttttgc tttgtgttta attagggtca tgagagattt caggtgagaa
1500
gttaaacctg agacagagag caagtaagct gtcctttta actgtttttc tttggcttt
1560

agtccccagg ttgcacactg gcattttctt gctgcaagct ttttaaatt tctgaactca
1620
aggcagtggc agaagatgtc agtcacctct gataactgga aaaatgggtc tcttggccc
1680
tggcactggc tctccatggc ctcagccaca gggtccccctt ggacccccc tcttccctcc
1740
agatcccagc ctcctcgctt ggggtcaact gtctcattct ggggctaaaa gttttgaga
1800
ctggctcaaa tcctcccaag ctgctgcacg tgctgagtcc agaggcagtc acagagacct
1860
ctggccaggg gatcctaact gggttcttgg ggtttcagg actgaagagg agggagagtg
1920
gggtcagaag attctctgg ccaccaagtg ccagcattgc ccacaaatcc ttttaggaat
1980
gggacaggtt cttccactt gtttatTTA ttatgttagc ttctccTTG tctccatcc
2040
actctgacac ctaagccccca ctctttccc attagatata tgtaagtagt tgtagtagag
2100
ataataattt acatttctcg tagactaccc agaaaactttt ttaatacctg tgccatttcc
2160
ataagaatt tatgagatgc cagccgcata gcccttcaca ctctctgtct catctctct
2220
cctttctcat tagccccctt taatttgttt ttccctttga ctccctgctcc cattaggagc
2280
aggaatggca gtaataaaag tctgcaactt ggtcatttct ttccctcaga ggaaggctga
2340
gtgctcaactt aaacactatc ccctcagact ccctgtgtga ggccctgcaga ggccctgaat
2400
gcacaaaatgg gaaaccaagg cacagagagg ctctcccttc ctctcccttc ccccgatgta
2460
ccctcaaaaa aaaaaaaaaat gctaaccagt tcttccatta agcctcggt gagtgaggga
2520
aagccccagca ctgctgccct ctgggttaac tcaccctaag gcctcgccc acctctggct
2580
atggtaacca cactggggc ttcctccaag ccccgcttt ccagcacttc caccggcaga
2640
gtcccagagc cacttcaccc tgggggtggg ctgtggcccc cagtcagctc tgctcaggac
2700
ctgctctatt tcagggaaaga agatttatgt attatatgtg gctataatttc ctagagcacc
2760
tgtgtttcc tctttctaag ccagggctt gtcggatga cttatgcggt gggggagtgt
2820
aaacccggAAC ttttcatcta tttgaaggcg attaaactgt gtctaatgca aacttccctgc
2880
ctcctcccttc cccctccat ttcaagaata tgtttgcgtg taggggtgggg gtgggggttg
2940
gaaggggttg cttgttactc cccaaacttc cattaaccag ggcaccctt ggttggagag
3000
gtagttccaa actctccatt gatctatact acattctggg ctgaagggtt tcttattctg
3060
gactatgaag aaaggacttt caaggagata tagtgtgaac aggatcagga aggttagaggg
3120
attatattta cttaagagaa caagctctat attaggatat tgtttgaag cagatggatg
3180

ccgttaattg ctaataagtc ttagttatta acgcaggctc atcagggccc ccccttgggg
 3240
 aaatatttga tcagtgg
 3257

<210> 6054
 <211> 382
 <212> PRT
 <213> Homo sapiens

<400> 6054
 Leu Phe Leu Leu Ser Cys Asn Arg Lys Thr His Phe Gly Ala Gly Ile
 1 5 10 15
 Pro Ile Met Ser Val Met Val Val Arg Lys Lys Val Thr Arg Lys Trp
 20 25 30
 Glu Lys Leu Pro Gly Arg Asn Thr Phe Cys Cys Asp Gly Arg Val Met
 35 40 45
 Met Ala Arg Gln Lys Gly Ile Phe Tyr Leu Thr Leu Phe Leu Ile Leu
 50 55 60
 Gly Thr Cys Thr Leu Phe Phe Ala Phe Glu Cys Arg Tyr Leu Ala Val
 65 70 75 80
 Gln Leu Ser Pro Ala Ile Pro Val Phe Ala Ala Met Leu Phe Leu Phe
 85 90 95
 Ser Met Ala Thr Leu Leu Arg Thr Ser Phe Ser Asp Pro Gly Val Ile
 100 105 110
 Pro Arg Ala Leu Pro Asp Glu Ala Ala Phe Ile Glu Met Glu Ile Glu
 115 120 125
 Ala Thr Asn Gly Ala Val Pro Gln Gly Gln Arg Pro Pro Pro Arg Ile
 130 135 140
 Lys Asn Phe Gln Ile Asn Asn Gln Ile Val Lys Leu Lys Tyr Cys Tyr
 145 150 155 160
 Thr Cys Lys Ile Phe Arg Pro Pro Arg Ala Ser His Cys Ser Ile Cys
 165 170 175
 Asp Asn Cys Val Glu Arg Phe Asp His His Cys Pro Trp Val Gly Asn
 180 185 190
 Cys Val Gly Lys Arg Asn Tyr Arg Tyr Phe Tyr Leu Phe Ile Leu Ser
 195 200 205
 Leu Ser Leu Leu Thr Ile Tyr Val Phe Ala Phe Asn Ile Val Tyr Val
 210 215 220
 Ala Leu Lys Ser Leu Lys Ile Gly Phe Leu Glu Thr Leu Lys Glu Thr
 225 230 235 240
 Pro Gly Thr Val Leu Glu Val Leu Ile Cys Phe Phe Thr Leu Trp Ser
 245 250 255
 Val Val Gly Leu Thr Gly Phe His Thr Phe Leu Val Ala Leu Asn Gln
 260 265 270
 Thr Thr Asn Glu Asp Ile Lys Gly Ser Trp Thr Gly Lys Asn Arg Val
 275 280 285
 Gln Asn Pro Tyr Ser His Gly Asn Ile Val Lys Asn Cys Cys Glu Val
 290 295 300
 Leu Cys Gly Pro Leu Pro Pro Ser Val Leu Asp Arg Arg Gly Ile Leu
 305 310 315 320
 Pro Leu Glu Glu Ser Gly Ser Arg Pro Pro Ser Thr Gln Glu Thr Ser
 325 330 335
 Ser Ser Leu Leu Pro Gln Ser Pro Ala Pro Thr Glu His Leu Asn Ser

340	345	350
Asn Glu Met Pro Glu Asp Ser Ser Thr Pro Glu Glu Met Pro Pro Pro		
355	360	365
Glu Pro Pro Glu Pro Pro Gln Glu Ala Ala Glu Ala Glu Lys		
370	375	380

<210> 6055
<211> 2089
<212> DNA
<213> Homo sapiens

<400> 6055
nnngccgggg cggagagagg cgagcaccgg gaaggggagc gtggggccgc tggaaatgggt
60
gaatttaagg cccatcgagt acgtttcttt aattatgttc catcaggaat ccgctgtgtg
120
gcttacaata accagtcaaa cagattggct gttcacgaa cagatggcac tgtggaaatt
180
tataacttgt cagcaaacta ctttcaggag aaattttcc caggtcatga gtctcgggct
240
acagaagctt tgtgctgggc agaaggacag cgactctta gtgctgggct caatggcgag
300
attatggagt atgattaca ggcgttaaac atcaagtatg ctatggatgc ctttggagga
360
cctatttgga gcatggctgc cagccccagt ggctctcaac ttttggttgg ttgtgaagat
420
ggatctgtga aactattca aattacccca gacaaaatcc agtttggaaag aaattttgat
480
ccgcagaaaa gtcgcacccct gagtctcagc tggcatccct ctggtaaccca cattgcagct
540
ggttccatag actacattag tgtgtttgat gtcaaattcag gcagcgctgt tcataagatg
600
attgtggaca ggcagtatat gggcgtgtct aagcggaaatg ccatcgatgt ggggtgcgc
660
ttcttgcgg atggcactat cataagtgtg gactctgtc ggaagggtgca gttctggac
720
tcagccactg ggacgcttgt gaagagccat ctcacgtcta atgctgacgt gcagtccatt
780
gctgttagctg accaagaaga cagtttcgtg gtggccacag cgagggaaaca .gtcttcatt
840
ttcagcttgtt ccctgtgaca tctaacagca gtgagaagca gtgggtgcgg acaaaaccgt
900
tccagcatca cactcatgac gtgcgcactg tggcccacag cccaaacagcg ctgatatctg
960
gaggcactga cacccactta gtcttcgtc ctctcatgga gaaggtggaa gtaaagaatt
1020
acgtgccgc tctccgaaaa atcaccttc cccacccatg tctcatctcc tttttctaaaa
1080
agaggcagct tctcccttc cagtttcgtc atcacttaga actttggcga ctggatcca
1140
cagttgcaac aggcaagaat ggggataactc ttccactctc taaaaatgca gatcattac
1200
tgcacctaaa gacaaagggt cctgagaaca ttatctgttag ctgtatctcc ccatgtggaa
1260

gttggatagc ctattctaca gtttctcggt tttttctcta tcggctgaat tatgaacatg
 1320
 acaaataaagg cctcaaaaagg gtttccaaaa tgccagcatt ccttcgtct gcccttcaga
 1380
 ttttgtttc tgaaggattca acaaagctct ttgttagcatc aaatcaagga gctctgcata
 1440
 ttgttcagct gtcaggagga agcttcaagc acctgcattc tttccagcct cagtcaggaa
 1500
 cagtggaggg catgtgtctt ttggcagtcgatc gtcagatgg gaattggcta gctgcattcag
 1560
 gtaccagtgc tggagtccat gtctacaacg taaaacagct aaagcttcac tgcacggcgc
 1620
 ctgcttacaa tttcccagtg actgttatgg ctattcccc caataccaac aaccttgc
 1680
 tcgctcatc ggaccagcag gtatttgagt acagcatccc agacaaacag tatacagatt
 1740
 ggagccggac tgtccagaag caggcatttc accaccttg gctccaaagg gataactccata
 1800
 tcacacacat cagtttcat cccaaagagac cgatgcacat ctttcctcat gatgcctaca
 1860
 ttttctgcattt cattgacaag tcattgcccc ttccaaatga caaaacctta ctctacaatc
 1920
 catttcctcc cacgaatgac atcattgctc agctcccacc acccattaaa aagaagaat
 1980
 ttggAACCTA aaacagggca ctgtctgtgt ctttcatttga actgtctacc ctgttgc
 2040
 tcacaaatca tggtaataaa acaagttatt cttgaaaaaaaaaaaaaaaa
 2089

<210> 6056
 <211> 285
 <212> PRT
 <213> Homo sapiens

<400> 6056
 Xaa Ala Gly Ala Glu Arg Gly Glu His Arg Glu Gly Glu Arg Gly Ala
 1 5 10 15
 Ala Gly Met Gly Glu Phe Lys Ala His Arg Val Arg Phe Phe Asn Tyr
 20 25 30
 Val Pro Ser Gly Ile Arg Cys Val Ala Tyr Asn Asn Gln Ser Asn Arg
 35 40 45
 Leu Ala Val Ser Arg Thr Asp Gly Thr Val Glu Ile Tyr Asn Leu Ser
 50 55 60
 Ala Asn Tyr Phe Gln Glu Lys Phe Phe Pro Gly His Glu Ser Arg Ala
 65 70 75 80
 Thr Glu Ala Leu Cys Trp Ala Glu Gly Gln Arg Leu Phe Ser Ala Gly
 85 90 95
 Leu Asn Gly Glu Ile Met Glu Tyr Asp Leu Gln Ala Leu Asn Ile Lys
 100 105 110
 Tyr Ala Met Asp Ala Phe Gly Gly Pro Ile Trp Ser Met Ala Ala Ser
 115 120 125
 Pro Ser Gly Ser Gln Leu Leu Val Gly Cys Glu Asp Gly Ser Val Lys
 130 135 140
 Leu Phe Gln Ile Thr Pro Asp Lys Ile Gln Phe Glu Arg Asn Phe Asp

145	150	155	160
Arg Gln Lys Ser Arg Ile Leu Ser Leu Ser Trp His Pro Ser Gly Thr			
165	170	175	
His Ile Ala Ala Gly Ser Ile Asp Tyr Ile Ser Val Phe Asp Val Lys			
180	185	190	
Ser Gly Ser Ala Val His Lys Met Ile Val Asp Arg Gln Tyr Met Gly			
195	200	205	
Val Ser Lys Arg Lys Cys Ile Val Trp Gly Val Ala Phe Leu Ser Asp			
210	215	220	
Gly Thr Ile Ile Ser Val Asp Ser Ala Gly Lys Val Gln Phe Trp Asp			
225	230	235	240
Ser Ala Thr Gly Thr Leu Val Lys Ser His Leu Ile Ala Asn Ala Asp			
245	250	255	
Val Gln Ser Ile Ala Val Ala Asp Gln Glu Asp Ser Phe Val Val Gly			
260	265	270	
Thr Ala Arg Glu Gln Ser Ser Ile Phe Ser Trp Ser Leu			
275	280	285	

<210> 6057

<211> 3924

<212> DNA

<213> Homo sapiens

<400> 6057

tgacataaac atcaagtatt tttgctctaa gattataatc tttacataag tttagaatata
 60
 tttaaacata agggggagct aaaagcaaat ggggttaaac aaaccagaaa aatcaaataa
 120
 caaatataca cagagccaaa atagtatttc cgtcagcgc aaaacagaaa caattccaaa
 180
 attaatgtgc aaatgaaaat aaagtagtta acagtcattc attaataag cttgtgtatt
 240
 tgataatgaa aacgcttagc tttcctttc tgacctcgga aaagtaatca ccatttttag
 300
 taaggtatta cttttaaaag tatgacttta acaagtgaat aaagcatgtt tagagtatgt
 360
 ttatgttttag aaacaatacc ttgaacacta cagaaaacaa caatattctg aaaaccagg
 420
 ttatccca tgcgtggac agatccagtc agtgtgatca ggtttctgc atgtgtata
 480
 atttatcaaa ataagtttc tcacaagact ctttccatc aactctgaaa accctgatct
 540
 gacaacatac cccaataaaag ctctggacaa gcacccctca aagcttggaa gaaaatgtgc
 600
 caagtctttt cctgtAACAT ttactgcact acaaatggct aaagagcaat ttatggttt
 660
 aaaggtgaat agtacaacag gtgagttcag gaaattgttt tagtgcactt tgctccagtt
 720
 ttagccaaca tgctacattt tccttttgg tttttgtttt gttgttggg tttttgggg
 780
 gaaggagagg gagaccgcac aaagtggact tgaggatttc cattgtacga aaaagatatg
 840
 actctgcaag caaaacagtg taagctgcct ttttcttaa gacctggaca ttttaagaca
 900

cttccaaagt tacctccatt aggacgtcca atagcagaat caaagccatc tgaagagttg
2580
tgtcgtcgac ggttcacatc ataacgattc tctgtccatg caaagtttc agaatgttc
2640
tcaaaaattca atgacgattt caaactgctg gtcaggacct ttgttgatga tggtgagta
2700
gggaaattaa gccaggctgg agcaaagtca tgctgcgcca ttaggtcca gtctctcaa
2760
ctcagtgaaa caaggcttca acacctcatg gcaagtccca taatagtact tacaaaattcc
2820
aacaggactg cacaggaagg tgggtttt ttctctgtaa tctttatttt ccagtttgta
2880
tttttatattt gtatcctctg aaataatatc gaagttcttt gaagatactt aacctaagac
2940
tatttgacat agagttactt caagtcagct acccataactt ctgtttaaa gtttcatat
3000
gcgtatctcc cgaattagcc aagttctta gatthaagat caaagtcttc tttattattc
3060
catgtacttg ccactgttgt acttgtccac tccagatgaa atatccaatt tacgagccaa
3120
aaagcaaaaaa caaaaagaaa atttcacatc tgaagagcat tcctaaacat cagcatatac
3180
agagacacac atagctatct caatactacc atgctgccgg aaaactgcaa catcttaat
3240
ttccacgtaa ataaaagata aaaggaaaaa aactctgtat tcttcaatc tcttcattca
3300
gaaaaagtgt cccattgtga catgaaagag ctgaagtcaa aaattcctaa aactttcaat
3360
aaaggtaaaa ataaaactgcc atgaaacttc agcaataactc agtcatttga aactgctgaa
3420
actactcagt acacaaatca acgtctctca gttcggctg aagaacccc acaacgggt
3480
gggggaaggg gaggcaaaaa ttaccaccag ctgaaaactt gtaaccagtt atataatccg
3540
tttgaaccaa aatactgaag aaatgctgcc tgggtcttt ttaagttagc ttgctgaatt
3600
gttcaactact atcaattcac ttcacagacg attcttgcca attttaataa acttctgggg
3660
caaaatttac caaaaacact gtaaatccaa aatggccact taaaatatcc agggccttt
3720
acacaaaacc tagatgatga tcttcataatc tgagtaattc aatcaccttc tgccccacca
3780
gaggtgcccc tggctgggg gtgcgcgcgc gctgatccc gggagaaggt ttgcgtact
3840
ttgaataatc ccctttgcc gctttccct cccccacaac cagtcctcagt cccaaaatgg
3900
cgccgaccgg atccgcaatg ttct
3924

<210> 6058
<211> 500
<212> PRT
<213> Homo sapiens

<400> 6058
 Met Ala Gln His Asp Phe Ala Pro Ala Trp Leu Asn Phe Pro Thr Pro
 1 5 10 15
 Pro Ser Ser Thr Lys Val Leu Thr Ser Ser Leu Lys Ser Ser Leu Asn
 20 25 30
 Phe Glu Lys His Ser Glu Asn Phe Ala Trp Thr Glu Asn Arg Tyr Asp
 35 40 45
 Val Asn Arg Arg Arg His Asn Ser Ser Asp Gly Phe Asp Ser Ala Ile
 50 55 60
 Gly Arg Pro Asn Gly Gly Asn Phe Gly Arg Lys Glu Lys Asn Gly Trp
 65 70 75 80
 Arg Thr His Gly Arg Asn Gly Thr Glu Asn Ile Asn His Arg Gly Gly
 85 90 95
 Tyr His Gly Gly Ser Ser Arg Ser Arg Ser Ser Ile Phe His Ala Gly
 100 105 110
 Lys Ser Gln Gly Leu His Glu Asn Asn Ile Pro Asp Asn Glu Thr Gly
 115 120 125
 Arg Lys Glu Asp Lys Arg Glu Arg Lys Gln Phe Glu Ala Glu Asp Phe
 130 135 140
 Pro Ser Leu Asn Pro Glu Tyr Glu Arg Glu Pro Asn His Asn Lys Ser
 145 150 155 160
 Leu Ala Ala Gly Val Trp Gly Leu His Ala Gln Thr His Thr Tyr Pro
 165 170 175
 Thr Lys Lys Ile Ser Gln Ala Pro Leu Leu Glu Tyr Pro Pro Asn Pro
 180 185 190
 Lys Ser Arg Ala Pro Arg Met Leu Val Ile Lys Lys Gly Asn Thr Lys
 195 200 205
 Asp Leu Gln Leu Ser Gly Phe Pro Val Val Gly Asn Leu Pro Ser Gln
 210 215 220
 Pro Val Lys Asn Gly Thr Gly Pro Ser Val Tyr Lys Gly Leu Val Pro
 225 230 235 240
 Lys Pro Ala Ala Pro Pro Thr Lys Pro Thr Gln Trp Lys Ser Gln Thr
 245 250 255
 Lys Glu Asn Lys Val Gly Thr Ser Phe Pro His Glu Ser Thr Phe Gly
 260 265 270
 Val Gly Asn Phe Asn Ala Phe Lys Ser Thr Ala Lys Asn Phe Ser Pro
 275 280 285
 Ser Thr Asn Ser Val Lys Glu Cys Asn Arg Ser Asn Ser Ser Ser Pro
 290 295 300
 Val Asp Lys Leu Asn Gln Gln Pro Arg Leu Thr Lys Leu Thr Arg Met
 305 310 315 320
 Arg Thr Asp Lys Lys Ser Glu Phe Leu Lys Ala Leu Lys Arg Asp Arg
 325 330 335
 Val Glu Glu Glu His Glu Asp Glu Ser Arg Ala Gly Ser Glu Lys Asp
 340 345 350
 Asp Asp Ser Phe Asn Leu His Asn Ser Asn Ser Thr His Gln Glu Arg
 355 360 365
 Asp Ile Asn Arg Asn Phe Asp Glu Asn Glu Ile Pro Gln Glu Asn Gly
 370 375 380
 Asn Ala Ser Val Ile Ser Gln Gln Ile Ile Arg Ser Ser Thr Phe Pro
 385 390 395 400
 Gln Thr Asp Val Leu Ser Ser Ser Leu Glu Ala Glu His Arg Leu Leu
 405 410 415
 Lys Glu Met Gly Trp Gln Glu Asp Ser Glu Asn Asp Glu Thr Cys Ala

420	425	430
Pro Leu Thr Glu Asp Glu Met Arg Glu Phe Gln Val Ile Ser Glu Gln		
435	440	445
Leu Gln Lys Asn Gly Leu Arg Lys Asn Gly Ile Leu Lys Asn Gly Leu		
450	455	460
Ile Cys Asp Phe Lys Phe Gly Pro Trp Lys Asn Ser Thr Phe Lys Pro		
465	470	475
Thr Thr Glu Asn Asp Asp Thr Glu Thr Ser Ser Ser Asp Thr Ser Asp		
485	490	495
Asp Asp Asp Val		
500		

<210> 6059

<211> 1442

<212> DNA

<213> Homo sapiens

<400> 6059

aatgcattga gaactcacaa tttccatgt gttatgcata tgtaacatac tttatgtcat
 60
 ttaaatgtaa tgattttctt taaagtaatt taaacactac tgaaaacaca ggaactactt
 120
 ttaagcttaa acataaccat attatacttt acaaggcctt tatccacttg actgtaaatt
 180
 gtatttgatg ctgagctatt cattaaattt aattcagctc cagtaagagt attcaataaa
 240
 caaacattga ttgccttcct atcttacatt ttttaggag tgcgaaataa gtgagtcatc
 300
 atgaattggg aaaatgagag ctccccaaaa gagtttatac tacttggctt ctcagatagg
 360
 gcttggctac aaatgcccct ttttgggtc ctgttaatat catacacaat caccatattt
 420
 ggcaatgtgt cc当地atgtat ggtgtgcatt ctggatccca aacttcatac tcccatgtat
 480
 ttcttcctca ctaatcttc catcttagat ctctgctata ccacaactac agtccctcat
 540
 atgttggtaa atattggttg caacaaaaag accatcagct atgctggctg tgtggccac
 600
 ctccatcatct tcctggccct aggtgctaca gagtgcctcc ttctggctgt tatgtcctt
 660
 gacagatatg tggctgttg cagacccttc cactatgttag tc当地atgaa ttattggttc
 720
 tgcctaagga tggcagcctt ctcatggctc attggttcg gcaactcagt gctgcagtct
 780
 tccttgactc ttaacatgcc acgttgtggt caccaggaag tggaccactt ttctgtgag
 840
 gtgcctgcac ttctcaagtt gtc当地atgtctc gacacaaagc ctattgaggc tgagctttc
 900
 ttcttttagtg tactaattccatc tgacattga tcctcatctc ctatggcttc
 960
 atagctcaag cagtataaa aatcaggtaa gcaaggac ggcaaaaagc atttgggaca
 1020
 tgtgggtccc acatgattgt ggtgtccctc ttttatggaa cagccattta tatgtatctt
 1080

caaccacccatccacccctt taaggactgg ggaaaagatgg tttcccttctt ctatggaaatc
 1140
 atcacatcca tggtgaactc cctcatctac agccttagaa ataaagatata gaaggaggcc
 1200
 ttcgaaggc tgatgccaag aatcttttc tgtaagaaat aagaagtact ccattgtat
 1260
 gagaatcttc tttagtctttc cttatcttca atgatggtaa tgacctttga actcatttc
 1320
 ctatcccggctctggtg atttactaa attctgtcaa caatttagaaa atccttcctc
 1380
 tggtggctgg gcgcgggttgt tcacgcctgt aatcccagta ctttgtgggg gccaaagggtgg
 1440
 GC
 1442

<210> 6060
 <211> 313
 <212> PRT
 <213> Homo sapiens

<400> 6060
 Met Asn Trp Glu Asn Glu Ser Ser Pro Lys Glu Phe Ile Leu Leu Gly
 1 5 10 15
 Phe Ser Asp Arg Ala Trp Leu Gln Met Pro Leu Phe Val Val Leu Leu
 20 25 30
 Ile Ser Tyr Thr Ile Thr Ile Phe Gly Asn Val Ser Ile Met Met Val
 35 40 45
 Cys Ile Leu Asp Pro Lys Leu His Thr Pro Met Tyr Phe Phe Leu Thr
 50 55 60
 Asn Leu Ser Ile Leu Asp Leu Cys Tyr Thr Thr Thr Val Pro His
 65 70 75 80
 Met Leu Val Asn Ile Gly Cys Asn Lys Lys Thr Ile Ser Tyr Ala Gly
 85 90 95
 Cys Val Ala His Leu Ile Ile Phe Leu Ala Leu Gly Ala Thr Glu Cys
 100 105 110
 Leu Leu Ala Val Met Ser Phe Asp Arg Tyr Val Ala Val Cys Arg
 115 120 125
 Pro Leu His Tyr Val Val Ile Met Asn Tyr Trp Phe Cys Leu Arg Met
 130 135 140
 Ala Ala Phe Ser Trp Leu Ile Gly Phe Gly Asn Ser Val Leu Gln Ser
 145 150 155 160
 Ser Leu Thr Leu Asn Met Pro Arg Cys Gly His Gln Glu Val Asp His
 165 170 175
 Phe Phe Cys Glu Val Pro Ala Leu Leu Lys Leu Ser Cys Ala Asp Thr
 180 185 190
 Lys Pro Ile Glu Ala Glu Leu Phe Phe Ser Val Leu Ile Leu Leu
 195 200 205
 Ile Pro Val Thr Leu Ile Leu Ile Ser Tyr Gly Phe Ile Ala Gln Ala
 210 215 220
 Val Leu Lys Ile Arg Ser Ala Glu Gly Arg Gln Lys Ala Phe Gly Thr
 225 230 235 240
 Cys Gly Ser His Met Ile Val Val Ser Leu Phe Tyr Gly Thr Ala Ile
 245 250 255
 Tyr Met Tyr Leu Gln Pro Pro Ser Ser Thr Ser Lys Asp Trp Gly Lys

260	265	270
Met Val Ser Leu Phe Tyr Gly Ile Ile Thr Ser Met	Leu Asn Ser Leu	
275	280	285
Ile Tyr Ser Leu Arg Asn Lys Asp Met Lys Glu Ala Phe Lys Arg Leu		
290	295	300
Met Pro Arg Ile Phe Phe Cys Lys Lys		
305	310	

<210> 6061

<211> 1582

<212> DNA

<213> Homo sapiens

<400> 6061

nggcaggccc ggcggccgcg cccggactttg ccacccgggg ggcagtcgcg ggatgcgc
 60
 gggagccaca gcctgaggcc ctcaggcttc tgcaagggtgtc gtggaggaac ctgcaccc
 120
 ccatccctttt ccccaatttg ccacttccag cagcttttagc ccatgaggag gatgtgacc
 180
 ggactgagtc aggagccctc tggaaagcatg gagactgtgg tgattgttc cataggtgt
 240
 ctggccacca tctttctggc ttcggttgc gccttgggtc tggtttgcag gcagcgctac
 300
 tgccggccgc gagacctgtc gcagcgctat gattctaagc ccattgtgga cctcatgtt
 360
 gccatggaga cccagtctga gcccctctgag ttagaactgg acgatgtcgt tatcaccaac
 420
 cccccacatttggc aggcatttgc ggagaatgaa gactggatcg aagatgcctc gggtctcatg
 480
 tccccactgca ttggccatctt gaagatttgt cacactctga cagagaagct tggccat
 540
 acaaatggctt ctggggccaa gatgaagact tcagccagtg tcagcgacat cattgtgg
 600
 gccaaggcga tcagccccag ggtggatgtat gtgtgaagt cgatgtaccc tccgttggac
 660
 cccaaactcc tggacgcacg gacgactgcc ctgtctctgt ctgtcagtc cctgggtctg
 720
 gtgacaagga atgcctgcca tctgacggga ggcctggact ggattgacca gtctctgtcg
 780
 gctgctgagg agcatttggc agtccttcga gaagcagccc tagctctga gccagataaa
 840
 ggcctcccaag gcccgttgcagg cttccctgcag gagcagtctg caattttagtg cctacaggcc
 900
 agcagcttagc catgaaggccc cctggccca tccctggatg gctcagctta gccttctact
 960
 ttttccata gagtttagttt ttctccacgg ctggagagtt cagctgtgtc tgcatagtaa
 1020
 agcaggagat ccccgctcgt ttatgcctct tttgcagttt ccaaactgtgg ctgggtgagtg
 1080
 gcagtctaat actacagtttta ggggagatgc cattcactct ctgcaagagg agtattgaaa
 1140
 actgggtggac tgcagctttt atttagctca ccttagtgttt tcaagaaaaat tgagccaccc
 1200

tctaagaaaat caagagggtt cacattaaaa ttagaatttc tggcctctcgatcggtca
 1260
 gaatgtgtgg caattctgat ctgcattttc agaagaggac aatcaattga aactaagtag
 1320
 gggtttcttc ttttggcaag acttgactc ttcacactgg cctgtttcat ttatttgat
 1380
 tatctgcctg gtccctgagg cgtctggtc ttcctctcc cttgcagggt tgggtttgaa
 1440
 gctgagggaaac tacaaagttg atgatttttt ttttatcttt atgcctgcaa ttttacctag
 1500
 ctaccactag gtggatagta aatttatact tatgtttcaa aaaaaaatca tcaactttgt
 1560
 agttcctcag cttcagtcga cg
 1582

<210> 6062
<211> 226
<212> PRT
<213> Homo sapiens

<400> 6062
 Met Glu Thr Val Val Ile Val Ala Ile Gly Val Leu Ala Thr Ile Phe
 1 5 10 15
 Leu Ala Ser Phe Ala Ala Leu Val Leu Val Cys Arg Gln Arg Tyr Cys
 20 25 30
 Arg Pro Arg Asp Leu Leu Gln Arg Tyr Asp Ser Lys Pro Ile Val Asp
 35 40 45
 Leu Ile Gly Ala Met Glu Thr Gln Ser Glu Pro Ser Glu Leu Glu Leu
 50 55 60
 Asp Asp Val Val Ile Thr Asn Pro His Ile Glu Ala Ile Leu Glu Asn
 65 70 75 80
 Glu Asp Trp Ile Glu Asp Ala Ser Gly Leu Met Ser His Cys Ile Ala
 85 90 95
 Ile Leu Lys Ile Cys His Thr Leu Thr Glu Lys Leu Val Ala Met Thr
 100 105 110
 Met Gly Ser Gly Ala Lys Met Lys Thr Ser Ala Ser Val Ser Asp Ile
 115 120 125
 Ile Val Val Ala Lys Arg Ile Ser Pro Arg Val Asp Asp Val Val Lys
 130 135 140
 Ser Met Tyr Pro Pro Leu Asp Pro Lys Leu Leu Asp Ala Arg Thr Thr
 145 150 155 160
 Ala Leu Leu Leu Ser Val Ser His Leu Val Leu Val Thr Arg Asn Ala
 165 170 175
 Cys His Leu Thr Gly Gly Leu Asp Trp Ile Asp Gln Ser Leu Ser Ala
 180 185 190
 Ala Glu Glu His Leu Glu Val Leu Arg Glu Ala Ala Leu Ala Ser Glu
 195 200 205
 Pro Asp Lys Gly Leu Pro Gly Pro Glu Gly Phe Leu Gln Glu Gln Ser
 210 215 220
 Ala Ile
 225

<210> 6063
<211> 2286

<212> DNA
<213> Homo sapiens

<400> 6063

nnacgcgtga agggtgcggg gtgcagtgc ggctccaggg ccatggcgga ggagcaggc
60
cgggaacggg actcggttcc caagccgtcg gtgcgttcc tccacccaga cctggcgctg
120
ggcggcgctg agcggcttgtt gttggacgca ggcgtggcgc tgccaggcg cggtgttagc
180
gtgaagatct ggacagcgca ctacgacccg ggccactgtt tcgcccagag ccgcgagcta
240
ccgggtgcgtc gtgccgggaa ctggctgcg cgaggcctgg gctggggcgg ccgcggcgcc
300
gcccgtctgcg cctacgtgcg catggtttc ctggcgctct acgtgcgttt cctcgccgac
360
gaggagttcg acgtggtagt gtgcgaccag gtgtctgcct gtatcccagt gttcaggctg
420
gctagacggc ggaagaagat cctattttac tgtcaattcc cagatctgct tctcaccaag
480
agagattctt ttcttaaacg actatacagg gccccaattt acgtggataga ggaatacacc
540
acaggcatgg cagactgcat ctttagtcaac agccagttca cagctgctgt ttttaaggaa
600
acattcaagt ccctgtctca catagaccct gatgtccctct atccatctct aaatgtcacc
660
agctttgact cagttgttcc tgaannaagc tggatgacct agtccccaaag gggaaaaaaa
720
ttccctgctgc tctccatcaa cagatacgaa aggaagaaaa atctgacttt ggcactggaa
780
gcccttagtac agctgcgtgg aagattgaca tcccaagatt gggagagagt tcatctgatc
840
gtggcaggtg gttatgacga gagagtcctg gagaatgtgg aacattatca ggaattgaag
900
aaaatggtcc aacagtccga ctttggccag tatgtgacct tcttgaggc ttttcagac
960
aaacagaaaaa tctccctctt ccacagctgc acgtgtgtgc tttacacacc aagcaatgag
1020
cactttggca ttgtccctctt ggaagccatg tacatgcagt gcccagtcat tgctgttaat
1080
tcgggtggac ctttggagtc cattgaccac agtgcacag gtttctgtg tgagccgtac
1140
ccgggtgcact tctcagaagc aatagaaaaag ttcatccgtg aaccttcctt aaaagccacc
1200
atgggcctgg ctggaagagc cagagtgaag gaaaaattttt cccctgaagc atttacagaa
1260
cagctctacc gatatgttac caaactgctg gtataatcag attgtttta agatctccat
1320
taatgtcatt tttatggatt gtagacccag ttttggaaacc aaaaaagaaaa cctagaatct
1380
aatgcagaag agatctttta aaaaataaaac ttgagtcttg aatgtgagcc actttcttat
1440
ataccacacc tccctgtcca cttttcagaa aaaccatgtc ttttatgcta taatcattcc
1500

aaatttgcc agtgttaagt tacaaatgtg gtgtcattcc atgttcagca gagtattta
 1560
 attatatttt ctgggatta ttgccttct gtctataaat tttgaatgtactgtgcctt
 1620
 aattggtttt catagttaa gtgttatca ttatcaaagt tgattaattt ggcttcata
 1680
 tataatgaga gcagggttat ttagttccc agattcaatc caccgaagtg ttcaactgtca
 1740
 tctgttaggg aattttgtt tgtcctgtct ttgcctggat ccatacgag agtgctctgt
 1800
 atttttttta agataatttgc aactgagata taataaaagg tgtttatcat
 1860
 aaaaagaaaa cagtattaga ttttggctc cataatctat ttggatattt tacgaacat
 1920
 ggatatgaca accaaactgg aaatcagaac actaggtaa agtggatatt gaaatgaagc
 1980
 aagaatatttgc acacacatgt gttgtgcatt ttgttaggg tatatttctt aatgtcatct
 2040
 aggtcatttag ttttggtaat atttgtgttgc ttctgaccaa gctcctacta agtataaggac
 2100
 acaaatgtttt tttatcttcc aaggcctggc tcaaatgcca ctgctgcaaa gcttttttg
 2160
 accctctggc cacctccaa gccagaagtt atttcccccc tccatgtact ctgcctttt
 2220
 catgacactg gatatttcg tgacactgac ttatagttca ctgttacct ggttggctca
 2280
 acagca
 2286

<210> 6064
 <211> 233
 <212> PRT
 <213> Homo sapiens

<400> 6064
 Xaa Arg Val Lys Gly Ala Gly Cys Ser Cys Gly Ser Arg Ala Met Ala
 1 5 10 15
 Glu Glu Gln Gly Arg Glu Arg Asp Ser Val Pro Lys Pro Ser Val Leu
 20 25 30
 Phe Leu His Pro Asp Leu Gly Val Gly Gly Ala Glu Arg Leu Val Leu
 35 40 45
 Asp Ala Ala Leu Ala Leu Gln Ala Arg Gly Cys Ser Val Lys Ile Trp
 50 55 60
 Thr Ala His Tyr Asp Pro Gly His Cys Phe Ala Glu Ser Arg Glu Leu
 65 70 75 80
 Pro Val Arg Cys Ala Gly Asp Trp Leu Pro Arg Gly Leu Gly Trp Gly
 85 90 95
 Gly Arg Gly Ala Ala Val Cys Ala Tyr Val Arg Met Val Phe Leu Ala
 100 105 110
 Leu Tyr Val Leu Phe Leu Ala Asp Glu Glu Phe Asp Val Val Val Cys
 115 120 125
 Asp Gln Val Ser Ala Cys Ile Pro Val Phe Arg Leu Ala Arg Arg Arg
 130 135 140
 Lys Lys Ile Leu Phe Tyr Cys His Phe Pro Asp Leu Leu Leu Thr Lys

145	150	155	160												
Arg	Asp	Ser	Phe	Leu	Lys	Arg	Leu	Tyr	Arg	Ala	Pro	Ile	Asp	Trp	Ile
			165		170					175					
Glu	Glu	Tyr	Thr	Thr	Gly	Met	Ala	Asp	Cys	Ile	Leu	Val	Asn	Ser	Gln
			180		185					190					
Phe	Thr	Ala	Ala	Val	Phe	Lys	Glu	Thr	Phe	Lys	Ser	Leu	Ser	His	Ile
			195		200					205					
Asp	Pro	Asp	Val	Leu	Tyr	Pro	Ser	Leu	Asn	Val	Thr	Ser	Phe	Asp	Ser
			210		215					220					
Val	Val	Pro	Glu	Xaa	Ser	Trp	Met	Thr							
			225		230										

<210> 6065

<211> 2084

<212> DNA

<213> Homo sapiens

<400> 6065

tgatcattta aatagatatg gatagtgata gaaatctgtg tgggtgtttt ttaaggatt
60
gccatcagag agtcagcaaa ggttagttgac caagctcaaa ggagagtgtt gaggggagtt
120
gatgacccctg actttttcat aggagatgaa gccatcgata aacctacata tgctacaaaag
180
tggcccgattc gacatggaat cattgaagac tgggatctta tggaaaggtt catggagcaa
240
gtggttttta aatatcttcg agctgaacct gaggaccatt attttttaat gggtaacta
300
tctccttcct gctgtaatca gtggccacca gaacctcccc ctccaacccc cgaaaacaga
360
gagtatcttg cagaaattat gtttgaatca tttaacgtac caggactcta cattgcagtt
420
caggcagtgc tggccttggc ggcattttgg acatctcgac aagtgggtga acgtacgtta
480
acggggatag tcattgacag cggagatgga gtcacccatg ttatcccagt ggcagaaggt
540
tatgttatttgaagctgcat caaacacatc ccgattgcag gttagagatat tacgtatttc
600
attcaacagc tgctaaggga gagggaggtg ggaatccctc ctgagcagtc actggagacc
660
gaaaaagcca ttaaggagaa atactgttac atttgcctcg atatagtcaa ggaatttgcc
720
aagtatgtatggatcccg gaagtggatc aaacagtaca cgggtatcaa tgcgatcaac
780
cagaagaagt ttgttataga cgttggttac gaaagattcc tgggacctga aatattcttt
840
cacccggagt ttgccaacccc agactttatg gaggccatct cagatgttgt tcatgttgc
900
atacagaact gccccatcga tgtgcggcgc ccgctgtata agaatgtcgt actctcagga
960
ggctccacca tggcaggaga tttcgacgc cgactgcaga gggatttcaa gagagtggtg
1020
gatgcttaggc tgaggctcag cgaggagctc agcggcggga ggtcaagcc gaagcctgtg
1080

gaggtccagg tggcacgca tcacatgcag cgctacgccc tgggttcgg aggctccatg
 1140
 ctggcctcgta ctcggagtt ctttcaggta tgccacacca agaaggacta tgaagagtag
 1200
 gggccccagca tctggccca caaccccgta ttggagtgta tgtcctagtgc tctgcctgaa
 1260
 cgcgtcgttgc gatggtgtca cgtggggaa caagtgtcct tcagaaccca gagaaggccg
 1320
 ccgttctgtta aatagcagc tcgggttgc tgcccgacag cgtgtttgca ttggccgtgc
 1380
 atgaggcgcg ggcggggccc ttcagtaaaa gccatttatac cgtgtgccga cgcgtgtcgt
 1440
 ccagcctccct ctttctcccg ccctccctcac cctcgctctc cctccctccctc ctttcccgag
 1500
 ctgttagctg acaaatacaa ttctgaagga atccaaatgt gactttgaaa attgttagag
 1560
 aaaacaacat tagaaaatgg cgaaaaatcg ttaggtccca ggagagaatg tggggcgca
 1620
 aacccttttc ctccccagect atttttgtaa ataaaatgtt taaaacttggaa atacaaatcg
 1680
 atgttttatat ttccatatcat tttgtatccc atggtagtttgc gtacaactgg ctgataactaa
 1740
 gcacgaatag atattgatgt tatggagtgc tgtaatccaa agtttttaat tgtgaggcat
 1800
 gttctgatat gttttaggc aaacaaataa aacagcaaac tttttgcca catgtttgct
 1860
 agaaaaatgat tatactttat tggagtgaca tgaagtttga acactaaaca gtaatgtatg
 1920
 agaattacta cagatacatg tatcttttag tttttttgt ttgaacttgc tggagctgtt
 1980
 ttatagaaga tggatggtttgc ttgtcggtga gtgttggatg aaatacttcc ttgcaccatt
 2040
 gtaataaaag ctgttagaat atttgtaaat atcaaaaaaaaaaaaa
 2084

<210> 6066

<211> 80

<212> PRT

<213> Homo sapiens

<400> 6066
 Gly Ile Ala Ile Arg Glu Ser Ala Lys Val Val Asp Gln Ala Gln Arg
 1 5 10 15
 Arg Val Leu Arg Gly Val Asp Asp Leu Asp Phe Phe Ile Gly Asp Glu
 20 25 30
 Ala Ile Asp Lys Pro Thr Tyr Ala Thr Lys Trp Pro Ile Arg His Gly
 35 40 45
 Ile Ile Glu Asp Trp Asp Leu Met Glu Arg Phe Met Glu Gln Val Val
 50 55 60
 Phe Lys Tyr Leu Arg Ala Glu Pro Glu Asp His Tyr Phe Leu Met Gly
 65 70 75 80

<210> 6067

<211> 406

<212> DNA
<213> Homo sapiens

<400> 6067
aggcctggca aggtcctcat cttccacc acattgcacc ggtgcctctt ctgtggagtc
60
tccctgagct gactgcaccc ctcttcctgg gtgcggtgg cctccccaca gcactgtgtg
120
aatatgctgg gcatggggcg gctcgggcca ctgctccctg gccaaacgga agccctggag
180
ggcatggcca gtgcctggga catgcagggg gctcaactgga acgactagcg gtcctcatec
240
tcctagaact tacattccca gagagaaaaga gactcctggg aattataaga gtggagaaaag
300
gactataata atcgcaacag ctaacactct tccagctaac actgcatgct gggcactgtc
360
ccgagtagat gaccaccctc acaatactcc tgcaagcgc acgcgt
406

<210> 6068
<211> 117
<212> PRT
<213> Homo sapiens

<400> 6068
Met Tyr Ser Gly Gln Cys Pro Ala Cys Ser Val Trp Lys Ser Val
1 5 10 15
Ser Cys Cys Asp Tyr Tyr Ser Pro Phe Ser Thr Leu Ile Ile Pro Arg
20 25 30
Ser Leu Phe Leu Ser Gly Asn Val Ser Ser Arg Arg Met Arg Thr Ala
35 40 45
Ser Arg Ser Ser Glu Pro Pro Ala Cys Pro Arg His Trp Pro Cys Pro
50 55 60
Pro Gly Leu Pro Phe Gly Gln Gly Ala Val Ala Arg Ala Ala Pro Cys
65 70 75 80
Pro Ala Tyr Ser His Ser Ala Val Gly Arg Pro Pro Leu Pro Arg Lys
85 90 95
Arg Gly Ala Val Ser Ser Gly Arg Leu His Arg Arg Gly Thr Gly Ala
100 105 110
Met Trp Trp Glu Gly
115

<210> 6069
<211> 456
<212> DNA
<213> Homo sapiens

<400> 6069
ngggaaaggcc taaaaaatgt catttttacc aactgtgtaa aggatgaaaa tgtcaagcag
60
atcatcccgta tggtcactga actgattggg agaagccacc gctaccaccc aaaagagaac
120
ctggagtagtact gtatcatggc cattggggtc cccaacgtgg gcaagtcctc cctcatcaac
180

tccctccgga ggcagcacct caggaaaggg aaagccacca gggtggttgg cgagcctggg
 240
 atcaccagag ctgtatgtc caaaatttcag gtggatgtt cagggccag gcccagact
 300
 ctgtcaagag ctctgcaggc gtctggcacc tgccgaccc tttgtggctt ccggctgtcg
 360
 accacgcttc cctccccctcc actcagtgtc cccgctgagc acccccgggg caggcactgc
 420
 cctggccctta ttccacagtc gtcatagtct ttgcgc
 456

<210> 6070
 <211> 148
 <212> PRT
 <213> Homo sapiens

<400> 6070
 Xaa Glu Gly Leu Lys Asn Val Ile Phe Thr Asn Cys Val Lys Asp Glu
 1 5 10 15
 Asn Val Lys Gln Ile Ile Pro Met Val Thr Glu Leu Ile Gly Arg Ser
 20 25 30
 His Arg Tyr His Arg Lys Glu Asn Leu Glu Tyr Cys Ile Met Val Ile
 35 40 45
 Gly Val Pro Asn Val Gly Lys Ser Ser Leu Ile Asn Ser Leu Arg Arg
 50 55 60
 Gln His Leu Arg Lys Gly Lys Ala Thr Arg Val Gly Gly Glu Pro Gly
 65 70 75 80
 Ile Thr Arg Ala Val Met Ser Lys Ile Gln Val Glu Ser Ser Gly Ala
 85 90 95
 Arg Pro Ser Thr Leu Ser Arg Ala Leu Gln Ala Ser Gly Thr Cys Arg
 100 105 110
 Pro Leu Cys Gly Phe Arg Leu Leu Thr Thr Leu Pro Ser Pro Pro Leu
 115 120 125
 Ser Val Pro Ala Glu His Pro Arg Gly Arg His Cys Pro Ala Leu Ile
 130 135 140
 Pro Gln Ser Ser
 145

<210> 6071
 <211> 2633
 <212> DNA
 <213> Homo sapiens

<400> 6071
 nctgaggcgg gtggcatggc ggagaaggat gacaccggag tttgacgaag aggtggtttt
 60
 tgagaattct ccactttacc aatacttaca ggatctggga cacacagact ttgaaatatg
 120
 ttcttcttg tcacaaaaaa cagaaaaatg cacaacagag ggacaacaaa agcctcctac
 180
 aagagtcccta cccaaatacc tggatatacg taatcactca atgaatataa actgcactta
 240
 ctggcatgct caaggaatgg gctattaagc aaggtatcct gttaaaagtg gctgaaacca
 300

tcaaaagttg gatTTTTT ttcagtgcA ataagaAAGA tgacttACtt cacaAGttgg
360
atattggatt ccgactcgac tcattacata ccattctgcA acaggaAGtc ctgttacaag
420
aggatgtgga gctgattgag ctacttgatc ccagtatccC gtctgcaggG caatctcaac
480
aacaggaaaa tggacacCttt ccaacacttt gctccctggc aaccCctaAt atttgggatC
540
tctcaatgtC atttgccttc attagttgc tctttatgtC tcccacttgg tggattgtgt
600
cttcctggct ggtatgggga gtgattctat ttgtgtatct ggtcataaga gctttgagat
660
tatggaggac agccaaacta caagtgcACCC taaaaaaata cagcgttcat ttggaaagata
720
tggccacaaa cagccgagct tttaactaacc tcgtgagaaa agctttacgt ctcatTCAG
780
aaaccgaagt gattccaga ggatttacac tggcagtgc tgcttgccca tttataaaag
840
ctggacagca tccaagtcag catctcatcg gtcttcggaa agctgtctac cgaactctaa
900
gagccaaCTt ccaagcagca aggctagcta ccctatatat gctgaaaaac tacccctga
960
actctgagag tgacaatgtA accaactaca tctgtgtggt gccttttaaa gagctgggCc
1020
ttggacttag tgaagagcag atttcagaag aggaagcaca taactttaca gatggcttca
1080
gcctgcctgc attgaaggtt ttgttccaaC tctgggtggc acagagttca gagttttca
1140
gacggtagc cctattactt tctacagccA attcacctcc tggggccctta cttaactccag
1200
cacttctgcC tcatacgatc ttatctgtatC tgactcaagg tctacacctat gctcatttgc
1260
cctgtttggA agagcttaag cgcaGctatC agttctatcg gtactttgaa actcagcacc
1320
agtcaGtgtacc gcagtgttA tccaaaactc aacagaAGtc aagagaactg aataatgttc
1380
acacagcagt gcgttagcttC cagctccatc tggaaagcatt actgaatgag gtaataattc
1440
ttgaagatga acttgaaaag cttgtttgtA ctaaagaaac acaagaacta gtgtcagagg
1500
cttataccat cctagaacag aaattaaagt tgattcagcc ccacgttcaa gcaagcaaca
1560
attgctgggA agaggccatt tctcaggatcg acaaactgt acgaagaaat acagataaaa
1620
aaggcaagcc tggaaatagca tgtgaaaacc cacattgtac agtagtaccc ttgaagcagC
1680
ctactctaca cattgcagac aaagatccaa tcccagagga gcaggaattta gaagctttag
1740
tagatgatat agatattgtat agtgattca gaaaggatga tttttattac ttgtctcaag
1800
aagacaaaga gagacagaag cgtgagcatg aagaatccaa gagggtgctc caagaattaa
1860
aatctgtgct gggatttaaa gcttcagagg cagaaaggca gaagtggaaag caacttctat
1920

ttagtgatca tggtaagcac tgacttaaa gtaacagggtt atttcaatgt aggggattct
 1980
 ttctttcttgc aaccatgaat gttatTTTtag ctgaagaatt cttggggttt tataagggtc
 2040
 caccagtatg catagtactt tttttcttag atgctaaatc aatttgatta ataaaagagt
 2100
 aggaatgtaa tcacatttga aatatgaagt catactttt tatgagttat ttaattttt
 2160
 agtaaatttg ttttagaatg ggcagtgagt tgaataattt gggatattt aaatgttatt
 2220
 ttc当地tta gtgaatttga gatttcaac tctgtgtcc atatgttaaa atatgttaaa
 2280
 atacctcagt gaagcacaat attaataact gtgctcacat tgaaaaaaat ggcccaggcg
 2340
 cggcggcaca tgcttgaat atcagcacgt tggaaagctg aggcgggtgg atcatttgag
 2400
 gtcaggagtt caagaccacg ctggccaaca tggcgaacc ccattcttac taaaaataca
 2460
 aaaattaaca aggcatggtg gcgcgtgcct gtatcccag ctactcgaga ggctgaggca
 2520
 ggagaatcac ttgaacccgg gagggggagg tttcagttag ccaagatcac gccactgcac
 2580
 tccagcctgg gcaacagang ggagactcca tctcaaaaaa aaaaaaaaaaaa aaa
 2633

<210> 6072

<211> 76

<212> PRT

<213> Homo sapiens

<400> 6072
 Met Ala Gln Ala Arg Arg His Met Leu Val Ile Ser Ala Arg Trp Glu
 1 5 10 15
 Ala Glu Ala Gly Gly Ser Phe Glu Val Arg Ser Ser Arg Pro Ala Trp
 20 25 30
 Pro Thr Trp Arg Asn Pro Ile Ser Thr Lys Asn Thr Lys Ile Asn Lys
 35 40 45
 Ala Trp Trp Arg Val Pro Val Val Pro Ala Thr Arg Glu Ala Glu Ala
 50 55 60
 Gly Glu Ser Leu Glu Pro Gly Arg Arg Arg Phe Gln
 65 70 75

<210> 6073

<211> 387

<212> DNA

<213> Homo sapiens

<400> 6073
 ntgtcaactt a gttgccacc tctgcataag agctctctga tcagaaagca gtttcttgc
 60
 tgaccccagc c agccttgc tctcggttg g gaaatacag tcacggatc catggagacc
 120
 tcttgagggtg gagacggcg ttaaacccctt ctcaggcagt ctgaggtggc cagagtctga
 180

agcaaggcgc ctctatggag cgaggggagc aggtggggcc agcctgagcg gggcctctgc
240
acagccagct ttccccaca cctgtctcca gccagggcac ccacaggccc tttctctccc
300
aggatgaagc ctgctggag cgtgaatgac atggccctgg atgccttgc cttggaccgg
360
atgaagcagg agatcctaga ggaggtg
387

<210> 6074
<211> 69
<212> PRT
<213> Homo sapiens

<400> 6074
Ser Lys Gln Pro Leu Trp Ser Glu Gly Ser Arg Trp Ala Gln Pro Glu
1 5 10 15
Arg Gly Leu Cys Thr Ala Ser Phe Pro Pro His Leu Ser Pro Ala Arg
20 25 30
Ala Pro Thr Gly Pro Phe Ser Pro Arg Met Lys Pro Ala Gly Ser Val
35 40 45
Asn Asp Met Ala Leu Asp Ala Phe Asp Leu Asp Arg Met Lys Gln Glu
50 55 60
Ile Leu Glu Glu Val
65

<210> 6075
<211> 4668
<212> DNA
<213> Homo sapiens

<400> 6075
nncttaggacg cctcgctgag gctggcgccc tgctcaactgc tccggcctgg ctcacctcta
60
gacggcaaga tgagtgagcc ataaaactct atccaaattaa agtcaactgtc tttttgaagt
120
ctcattacag catctggctg tactctaaca tatacaaata tgtttctgg tcaacatctc
180
ctgtgcacgg agaaagcaca ggcatgttc tcacaagtca caaactacta agttaaaatc
240
cttaaacttctt gggaatgttt tttaaaagga ggtgaaaatt ggttacaact ttactttct
300
taccttgtaa agataactcat aagcctctac atcatttcca ctgtgatagt ttccggatccc
360
ttgaagtaag tagagtctta gaaacagtac cttcttttc ccacaatttc cttttatgtg
420
gaccagtctc tgatgatttt ctccgtaaca atttttaaag catttctgg ccaagttaa
480
ttttttttctt gcatcatcaa ggcattccag ctgttccagg cggaagtaac accacactat
540
atccagctgg aggacggcat agttatccac tggatccagc agtctctgc aacactcaca
600
gaaatatttg tcagcgtcca acagacatgg caaggctatt ccattttctt ttctttcag
660

gaaagctctg cccttctcat gatatcccat agctaacata agggctttc tttctgatgg
720
gggaattctg attgatctgc ctgtctgggt agctatgtct aagtacgggt tcatttctgg
780
atccaccact gtctctgtcg ctctctttgc cagtatttct agtcctctct tggtcctctg
840
aatttgaaaa ttcttgagtt tggccctcatt ttgctcctct tcctctaact ggaagtttt
900
cctcgctcc tcttcagatt gtttagttc aagcaccatc gctttcacat tgtgagccac
960
gccttgttct tcaagggttt tcccttagttg tagttgttc ttatttatga caattttgat
1020
ataatttct tgaagtccaa aggttcagc tattttggac ctcagttctc tgccagtgt
1080
gtgcaatcgg gtctccaaca agttttccct atctttttt agtcttggtg gtaaaaacac
1140
ctcgattgtta gcaattcccc ttgttctata attgtcattt cctgttccac gctcaattgc
1200
cttgcaacgt atttcttcta ttaccttttc tacttcattt tcacagcatt ctatgtgtc
1260
agagtaactgc ttagcaaggt cttttttag tcttggtggt aaaaacacct cgattgtac
1320
aattcccggtt gttctataat tgcatttcc tggccacgc tcaattgcct tgcaacgtat
1380
ttcttctatt accttttcta cttcattttc acagcattct agtctgtcag agtactgtt
1440
agcaagggtcc tttaatgcca aaccaacttt ttattttca tctgtatatg gaggtttcca
1500
aagttgaatc ctgtcttccc ttaaaaactg ggtcaatttt gcttgaagat atttctttg
1560
tgccatccct gcgccacgcc actccccccg cgaccagcag agatggcaca aaagaatat
1620
cttcaagcaa aattgaccca gtttttaagg gaagacagga ttcaactttg gaaacctcca
1680
tatactgaag aaaataaaaga agttggtttg gccttaaagg accttgcata gcagtaactct
1740
gacagacttag aatgctgtga aaatgaagta gaaaaggtaa tagaagaaat acgttgcag
1800
gcaattgagc gtggAACAGG aaatgacaat tatagaacaa cggaaattgc tacaatcgag
1860
gtgttttac caccaagact aaaaaaaagat aggaaaaact tggggagac ccgattgcac
1920
atcactggca gagaactgag gtccaaaata gctgaaacct ttggacttca agaaaattat
1980
atcaaaatttgc tcataaataa gaagcaacta caacttaggga aaacccttgc agaacaaggc
2040
gtggctcaca atgtgaaagc gatggtgctt gaactaaaac aatctgaaga ggacgcgagg
2100
aaaaacttcc agtttagagga agaggagcaa aatgaggccaa aactcaaaga aaaacaaatt
2160
cagaggacca agagaggact agaaatactg gcaaagagag cagcagagac agtggtgat
2220
ccagaaatga caccgtactt agacatagct aaccagacag gcagatcaat cagaattccc
2280

ccatcagaaa gaaaaggccc tatgttagct atgggataatc atgagaaggg cagagcttcc
2340
ctgaaaagaa aagaatatgg aatagccttg ccatgtctgt tggacgctga caaatatttc
2400
tgtgagtttgcagagact gctggacaca gtggataact atgccgttct ccagctggat
2460
atagtgttgtt gttacttccg ccttggAACAG ctggAAATGCC ttgtatgtgc agaaaaaaaa
2520
ttaaaccttgg cccagaaaatg cttaaaaaat tggttacggag aaaatcatca gagactggtc
2580
cacataaaaag gaaattgtgg gaaagagaag gtactgtttc taagactcta cttacttcaa
2640
gggatccgaa actatcacag tggAAATGAT gttagggctt atgagtatct taacaggcac
2700
gtcagcttctt taaagagcta tatattgatc catcaaaaatgg gacaatttg ttgcagttgg
2760
ggtttactgc ccaggaagncccggttgc ctgagggcgt gtgtatggaa cgtggatcat
2820
gcggccactc atattaccaa ccgcagagag gaactggccc aaataaggaa ggaggaaaaa
2880
gagaagaaaa gacgcccctt cgagaacatc aggtttctga aagggtatggg ctactccacg
2940
cacgcggccc agcagattct gtcagcaat cctcagatgt ggtggttaaa tgattccat
3000
cctgaaaccgc acaccgtca agaaagtctt tcccaggaaa acattgaccg attgggttac
3060
atgggttttg atgcactcggtt ggcggaaatgtt ggcgttgcgtt tgttcagagg caacgtccag
3120
ctggccgccc agacccttgc tcacaacggg ggaaggctgc ctcccgagct gccgctgtcg
3180
ccagaagact ctgttgcggcc gccagccacg tcccccttctg actccgcagg aacctcttagt
3240
gcctcaacag acgaagacat ggagacagag gccgtcaatg agataactggg agacattcca
3300
gagcatgagg aagactatct tgactcaact ctggaaatgtt aagaaatttat tattgcagag
3360
tacctatccat atgtaaaaaa taggaagtca gcaacaaaga aaaactaaat aatgaacaga
3420
aatagcgcta attttctgtct tataaatgtt atcattatgtt aaaggctaat gcagctttt
3480
ctgttcttac ttttatctg aattacaatgtt cctctttggg tgtagggagg ggtgggcagg
3540
ggacaagtcc aggaggggttc ccaggccctt catgcattgtt ctggggaaag aagcttctt
3600
tggcctggcg caagccgttc catctggctc ccaagtctgc gtccctaaacc cttccccag
3660
cttgggtttt taccccgaaa caggaaggaa caggggttctt gttagaacagg ggtccctgggg
3720
aagggtgtcca gggcagggttc ctggaaagggtt tgcccgtact gcttcccttc cagctgtggc
3780
tccatctgcc cagcttgcctt gcctcctgca cccactgccc tgaccttctt gttcccaacg
3840
ctgcccatttc tgccagggtt ccacatgggtt tccctgtgtccaa ccctttcccc gcccctcaaa
3900

tcgtcctta agtcttcctt ccaagtgcgt tggtggataa cgatgaggcg ctggcccttg
 3960
 gggcacacca ggtcgacgca aatggcttca gcctgggacg ccagtgttt atgctcttag
 4020
 ttcaaaaa taaccccccg aaattcaaga tttagtgtca ggctttatat atattcagca
 4080
 ttcctcatta cagaaatctt ctattgaatg ggaaaggttt aaatgctaac caaagcaatt
 4140
 tatttttaat taatattttt agactctgtg ctgtcatact gaactcactg ctagctaaga
 4200
 gagctatcg agattttagat atatttctc caggtttttt gtgggttttc ttgttgttg
 4260
 ttgttgtct agccatgtga cagaggctct ttctaaaagt atgtagttcg ctgtgtgtcg
 4320
 gctccagcag taaccgtcct cactgcgcca cgcactcctc tgttagatgtg tgcccagtgg
 4380
 gagttccctc cagccccagg accgcagcag cagccaggtg ccgagtggat tgagtgccag
 4440
 gtgcacatcaa gactttccct cccttccaga aggcaactgac tgaagacagg atggatcatg
 4500
 cggagccggc tgaaatgctc caacttttc aaagtgtggg tggccagtt tggactgtatg
 4560
 ggaatcttct tgcattctt tttaaacgga tgataccgat gaaaataaaa ggtggaaat
 4620
 atattcaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa
 4668

<210> 6076
 <211> 601
 <212> PRT
 <213> Homo sapiens

<400> 6076
 Met Ala Gln Lys Lys Tyr Leu Gln Ala Lys Leu Thr Gln Phe Leu Arg
 1 5 10 15
 Glu Asp Arg Ile Gln Leu Trp Lys Pro Pro Tyr Thr Glu Glu Asn Lys
 20 25 30
 Glu Val Gly Leu Ala Leu Lys Asp Leu Ala Lys Gln Tyr Ser Asp Arg
 35 40 45
 Leu Glu Cys Cys Glu Asn Glu Val Glu Lys Val Ile Glu Glu Ile Arg
 50 55 60
 Cys Lys Ala Ile Glu Arg Gly Thr Gly Asn Asp Asn Tyr Arg Thr Thr
 65 70 75 80
 Gly Ile Ala Thr Ile Glu Val Phe Leu Pro Pro Arg Leu Lys Lys Asp
 85 90 95
 Arg Lys Asn Leu Leu Glu Thr Arg Leu His Ile Thr Gly Arg Glu Leu
 100 105 110
 Arg Ser Lys Ile Ala Glu Thr Phe Gly Leu Gln Glu Asn Tyr Ile Lys
 115 120 125
 Ile Val Ile Asn Lys Lys Gln Leu Gln Leu Gly Lys Thr Leu Glu Glu
 130 135 140
 Gln Gly Val Ala His Asn Val Lys Ala Met Val Leu Glu Leu Lys Gln
 145 150 155 160
 Ser Glu Glu Asp Ala Arg Lys Asn Phe Gln Leu Glu Glu Glu Gln

	165	170	175												
Asn	Glu	Ala	Lys	Leu	Lys	Glu	Lys	Gln	Ile	Gln	Arg	Thr	Lys	Arg	Gly
		180			185						190				
Leu	Glu	Ile	Leu	Ala	Lys	Arg	Ala	Ala	Glu	Thr	Val	Val	Asp	Pro	Glu
		195			200						205				
Met	Thr	Pro	Tyr	Leu	Asp	Ile	Ala	Asn	Gln	Thr	Gly	Arg	Ser	Ile	Arg
		210			215						220				
Ile	Pro	Pro	Ser	Glu	Arg	Lys	Ala	Leu	Met	Leu	Ala	Met	Gly	Tyr	His
		225			230						235			240	
Glu	Lys	Gly	Arg	Ala	Phe	Leu	Lys	Arg	Lys	Glu	Tyr	Gly	Ile	Ala	Leu
		245				250					255				
Pro	Cys	Leu	Leu	Asp	Ala	Asp	Lys	Tyr	Phe	Cys	Glu	Cys	Cys	Arg	Glu
		260			265						270				
Leu	Leu	Asp	Thr	Val	Asp	Asn	Tyr	Ala	Val	Leu	Gln	Leu	Asp	Ile	Val
		275			280						285				
Trp	Cys	Tyr	Phe	Arg	Leu	Glu	Gln	Leu	Glu	Cys	Leu	Asp	Asp	Ala	Glu
		290			295						300				
Lys	Lys	Leu	Asn	Leu	Ala	Gln	Lys	Cys	Phe	Lys	Asn	Cys	Tyr	Gly	Glu
		305			310						315			320	
Asn	His	Gln	Arg	Leu	Val	His	Ile	Lys	Gly	Asn	Cys	Gly	Lys	Glu	Lys
		325				330					335				
Val	Leu	Phe	Leu	Arg	Leu	Tyr	Leu	Leu	Gln	Gly	Ile	Arg	Asn	Tyr	His
		340				345					350				
Ser	Gly	Asn	Asp	Val	Glu	Ala	Tyr	Glu	Tyr	Leu	Asn	Arg	His	Val	Ser
		355			360						365				
Ser	Leu	Lys	Ser	Tyr	Ile	Leu	Ile	His	Gln	Lys	Trp	Thr	Ile	Cys	Cys
		370			375						380				
Ser	Trp	Gly	Leu	Leu	Pro	Arg	Lys	Xaa	Arg	Leu	Gly	Leu	Arg	Ala	Cys
		385			390						395			400	
Asp	Gly	Asn	Val	Asp	His	Ala	Ala	Thr	His	Ile	Thr	Asn	Arg	Arg	Glu
		405				410					415				
Glu	Leu	Ala	Gln	Ile	Arg	Lys	Glu	Glu	Lys	Glu	Lys	Arg	Arg	Arg	
		420			425						430				
Leu	Glu	Asn	Ile	Arg	Phe	Leu	Lys	Gly	Met	Gly	Tyr	Ser	Thr	His	Ala
		435			440						445				
Ala	Gln	Gln	Ile	Leu	Leu	Ser	Asn	Pro	Gln	Met	Trp	Trp	Leu	Asn	Asp
		450			455						460				
Ser	Asn	Pro	Glu	Thr	Asp	Asn	Arg	Gln	Glu	Ser	Pro	Ser	Gln	Glu	Asn
		465			470						475			480	
Ile	Asp	Arg	Leu	Val	Tyr	Met	Gly	Phe	Asp	Ala	Leu	Val	Ala	Glu	Ala
		485				490					495				
Ala	Leu	Arg	Val	Phe	Arg	Gly	Asn	Val	Gln	Leu	Ala	Ala	Gln	Thr	Leu
		500			505						510				
Ala	His	Asn	Gly	Gly	Ser	Leu	Pro	Pro	Glu	Leu	Pro	Leu	Ser	Pro	Glu
		515			520						525				
Asp	Ser	Leu	Ser	Pro	Pro	Ala	Thr	Ser	Pro	Asp	Ser	Ala	Gly	Thr	
		530			535						540				
Ser	Ser	Ala	Ser	Thr	Asp	Glu	Asp	Met	Glu	Thr	Glu	Ala	Val	Asn	Glu
		545			550						555			560	
Ile	Leu	Glu	Asp	Ile	Pro	Glu	His	Glu	Glu	Asp	Tyr	Leu	Asp	Ser	Thr
		565				570					575				
Leu	Glu	Asp	Glu	Glu	Ile	Ile	Ala	Glu	Tyr	Leu	Ser	Tyr	Val	Glu	
		580			585						590				
Asn	Arg	Lys	Ser	Ala	Thr	Lys	Lys	Asn							

595

600

<210> 6077
<211> 2093
<212> DNA
<213> Homo sapiens

<400> 6077
cgcccccggca ggtctccgg aagtggccgg tccagagctg tggggtgctt ccgcgcggc
60
tctggcgat cggggaaatcg gatcaaggcg agaggatccg gcagggaaagg agtttcgggg
120
ccgggggttg ggccgcacat ttacgtgcgc gaagcggagg accgggagct ggtgacgatg
180
gcggggccgc agccccctggc gctgcaactg gaacagttgt tgaacccgcg accaagcgg
240
gcggaccctg aagcggaccc cgaggaagcc actgctgcc aggtgattga caggtttgat
300
gaaggggaaag atggggaaagg tgatttcta gtatggta gcattagaaa actggcatca
360
gcctccctct tggacacgga caaaaggtat tgccggcaaaa ccaccccttag aaaagcatgg
420
aatgaagacc attgggagca gactctgcc aatatcgatctg atgagggaaat atctgatgag
480
gaagggtctg gagatgaaga ttcagaggga ctgggtctgg aggaatatga tgaggacgac
540
ctgggtgctg ctgaggaaca ggagtgttgt gatcaggagg agcaagaaga cgagaagcca
600
ctctgcggcaaaa acaccgggct tcagtgtcca gagtatcgt gactttgaga aatttaccaa
660
ggaaatggat gacctggag cagtgaggag gaggaagacg aagagatgtt catggaaagaa
720
ggggatgacg cggaaagactc ccaaggcgag agtgaggaag acagggtctgg agatagaaac
780
agtgaggatg atggtgttgtt gatgacccctc tctagtgta aagtttctga ggaagtggag
840
aaaggaagag ccgtgaagaa ccagatagca ctgtgggacc agcttttggaa aggaaggatc
900
aaactacaaa aagctctgtt gaccaccaac cagtttccctc aaccagatgt ttccatttg
960
ttcaaggaca aaggtggccc agaattttcc agtgccctga aaaatagtca caaggcactt
1020
aaagcattgt tgaggtcatt ggttaggtctt caggaagagt tgctttcca gtacccagac
1080
actagatatc tagtagatgg gacaaagccc aatgcgggaa gtgaggagat ttctagtgaa
1140
gatgatgagc tggtagaaga gaagaagcag caacgaagaa gggtccctgc aaagagggaaag
1200
ctggagatgg aggactatcc cagttcatg gcaaagcgct ttgcggactt tacagtctac
1260
aggaaccgcacacttcagaa atggcacgt aagaccaaac tggcttctgg aaaactgggg
1320
aagggttttg gtgccttga acgctcaatc ttgactcaga tcgaccatat tctgatggac
1380

aaagagagat tacttcgaag gacacagacc aagcgctctg tctatcgagt tcttggcaaa
 1440
 cctgagccag cagtcagcc tgtccccagag agtttgccag gggAACCGGA gatccttcct
 1500
 caagccccctg ctaatgcctca tctgaaggac ttggatgaag aaatcttga tgatgtgac
 1560
 ttttaccacc agtccttcg agaactcata gaacggaaga ccagtcctt ggatcccaac
 1620
 gatcagggtgg ccatggaaag gcagtggctt gcaatccaga agttacgaag caaaatccac
 1680
 aaaaaaagtag atagggaaagc cagcaaaggc aggaaaacttc ggtttcatgt ccttagcaag
 1740
 ctactgagtt tcatggcacc tattgaccat actacaatga atgatgtgc caggacagaa
 1800
 ctgtaccgct ctcttttgg ccagctccac cctcccgacg aaggccacgg ggattgacat
 1860
 cgccccaccc tcgacacccag tggcgccctt ggctggtgcg gctgctggtc cagatggagg
 1920
 aaaccagtga ctttatgggg ctgagctagt aggaaagccc ctggaaagat gctgcgttcc
 1980
 gaacctgtgc ctaatacacg caagggcgct gtcccgccca accccgcctt taaacgccac
 2040
 aaataaaagag cattgttacc gccaaaaaaaaaaaaaaaaaaa aaa
 2093

<210> 6078
 <211> 213
 <212> PRT
 <213> Homo sapiens

<400> 6078
 Arg Pro Gly Arg Ser Pro Gly Ser Gly Arg Ser Arg Ala Val Gly Cys
 1 5 10 15
 Leu Arg Ala Val Ser Gly Gly Ser Gly Asn Arg Ile Lys Ala Arg Gly
 20 25 30
 Ser Gly Arg Glu Gly Ala Ser Gly Pro Gly Val Gly Pro His Ile Tyr
 35 40 45
 Val Arg Glu Ala Glu Asp Arg Glu Leu Val Thr Met Ala Gly Pro Gln
 50 55 60
 Pro Leu Ala Leu Gln Leu Glu Gln Leu Leu Asn Pro Arg Pro Ser Glu
 65 70 75 80
 Ala Asp Pro Glu Ala Asp Pro Glu Glu Ala Thr Ala Ala Arg Val Ile
 85 90 95
 Asp Arg Phe Asp Glu Gly Glu Asp Gly Glu Gly Asp Phe Leu Val Val
 100 105 110
 Gly Ser Ile Arg Lys Leu Ala Ser Ala Ser Leu Leu Asp Thr Asp Lys
 115 120 125
 Arg Tyr Cys Gly Lys Thr Thr Ser Arg Lys Ala Trp Asn Glu Asp His
 130 135 140
 Trp Glu Gln Thr Leu Pro Gly Ser Ser Asp Glu Glu Ile Ser Asp Glu
 145 150 155 160
 Glu Gly Ser Gly Asp Glu Asp Ser Glu Gly Leu Gly Leu Glu Glu Tyr
 165 170 175
 Asp Glu Asp Asp Leu Gly Ala Ala Glu Gln Glu Cys Gly Asp Gln

180	185	190
Gly Glu Gln Glu Asp Glu Lys Pro Leu Cys Lys Asn Thr Gly Leu Gln		
195	200	205
Cys Pro Glu Tyr Gln		
210		

<210> 6079
<211> 651
<212> DNA
<213> Homo sapiens

<400> 6079
ggccagtcct ccgcctcgct cctgtcgttt ccccctgctg aactactggg tgccggagcgg
60
gtgcgtgcgc agcctgcgca ttttgcattttt ggtcgactgc cgctgcgggtt catgaggcgg
120
catgcgcagc gggggccgtgg gtgtacgcgg cgccagcgcgg cagtccctgtat ggcccccgt
180
gggttaccgc tgctgccccct gctgtcgctc ctgggtcgccg cgtggctcaa gcttagaaat
240
ggacaggcttta ctagcatggt ccaactgcag ggtgggagat ttctgtatggg aacaaattct
300
ccagacagca gagatggtga agggcctgtg cgggaggcga cagtgaaacc ctttgcacatc
360
gacatatttc ctgtcaccaa caaagatttc agggattttt tcagggagaa aaagtatcg
420
acagaagctg agatgtttgg atggagctt gtctttgagg actttgtctc tgatgagctg
480
agaaaacaaag ccacccagcc aatgaagtct gtactctggc ggcttccagt ggaaaaggca
540
ttttggaggc agcctgcagg ttctggctct ggcatccgag agagactgga gcacccagtg
600
ttacacgtga gctggaatga cggccgtgcc tactgtgttt ggccggggaaa a
651

<210> 6080
<211> 162
<212> PRT
<213> Homo sapiens

<400> 6080
Leu Met Ala Arg His Gly Leu Pro Leu Leu Pro Leu Leu Ser Leu Leu
1 5 10 15
Val Gly Ala Trp Leu Lys Leu Gly Asn Gly Gln Ala Thr Ser Met Val
20 25 30
Gln Leu Gln Gly Gly Arg Phe Leu Met Gly Thr Asn Ser Pro Asp Ser
35 40 45
Arg Asp Gly Glu Gly Pro Val Arg Glu Ala Thr Val Lys Pro Phe Ala
50 55 60
Ile Asp Ile Phe Pro Val Thr Asn Lys Asp Phe Arg Asp Phe Val Arg
65 70 75 80
Glu Lys Lys Tyr Arg Thr Glu Ala Glu Met Phe Gly Trp Ser Phe Val
85 90 95
Phe Glu Asp Phe Val Ser Asp Glu Leu Arg Asn Lys Ala Thr Gln Pro

100	105	110
Met Lys Ser Val Leu Trp Trp	Leu Pro Val Glu Lys Ala Phe	Trp Arg
115	120	125
Gln Pro Ala Gly Pro Gly Ser	Gly Ile Arg Glu Arg Leu Glu His Pro	
130	135	140
Val Leu His Val Ser Trp Asn Asp Ala Arg Ala Tyr Cys Ala Trp Arg		
145	150	155
Gly Lys		160

<210> 6081
<211> 655
<212> DNA
<213> Homo sapiens

<400> 6081
gataatgatc aggaacctcc ctattcaatg ataacattac acgaaatggc agaaaacagat
60
gaaggatggt tggatgttgtt ccagtctta attagagttt ttccactgga agatccactg
120
ggaccagctg ttataacatt gttacttagat gaatgtccat tgcccactaa agatgcactc
180
cagaaattga ctgaaattct caatttaaat ggagaagtag cttgccaggaa ctcaagccat
240
cctgccaaac acaggaacac atctgcagtc cttaggctgct tggccgagaa actagcaggt
300
cctgcaagta taggtttact tagccaggaa atactggaa acttgctaca gtgtctgaag
360
ttacagtccc accccacagt catgctttt gcacttatcg cactggaaaa gtttgcacag
420
acaagtgaaa ataaattgac tatttctgaa tccagtatta gtgaccggct tgtcacattg
480
gagtccctggg ctaatgatcc tgattatctg aaacgtcaag ttggttctg tgcccactgg
540
agcttagaca atctctttt aaaagaaggt agacagctga cctatgagaa agtgaacttg
600
agttagcatta gggccatgct gaatagcaat gatgtcagcg agtacctgaa gatct
655

<210> 6082
<211> 218
<212> PRT
<213> Homo sapiens

<400> 6082
Asp Asn Asp Gln Glu Pro Pro Tyr Ser Met Ile Thr Leu His Glu Met
1 5 10 15
Ala Glu Thr Asp Glu Gly Trp Leu Asp Val Val Gln Ser Leu Ile Arg
20 25 30
Val Ile Pro Leu Glu Asp Pro Leu Gly Pro Ala Val Ile Thr Leu Leu
35 40 45
Leu Asp Glu Cys Pro Leu Pro Thr Lys Asp Ala Leu Gln Lys Leu Thr
50 55 60
Glu Ile Leu Asn Leu Asn Gly Glu Val Ala Cys Gln Asp Ser Ser His

	70		75		80
Pro Ala Lys His Arg Asn Thr Ser Ala Val Leu Gly Cys Leu Ala Glu					
85		90			95
Lys Leu Ala Gly Pro Ala Ser Ile Gly Leu Leu Ser Pro Gly Ile Leu					
100		105			110
Glu Tyr Leu Leu Gln Cys Leu Lys Leu Gln Ser His Pro Thr Val Met					
115		120			125
Leu Phe Ala Leu Ile Ala Leu Glu Lys Phe Ala Gln Thr Ser Glu Asn					
130		135			140
Lys Leu Thr Ile Ser Glu Ser Ser Ile Ser Asp Arg Leu Val Thr Leu					
145		150			160
Glu Ser Trp Ala Asn Asp Pro Asp Tyr Leu Lys Arg Gln Val Gly Phe					
165		170			175
Cys Ala Gln Trp Ser Leu Asp Asn Leu Phe Leu Lys Glu Gly Arg Gln					
180		185			190
Leu Thr Tyr Glu Lys Val Asn Leu Ser Ser Ile Arg Ala Met Leu Asn					
195		200			205
Ser Asn Asp Val Ser Glu Tyr Leu Lys Ile					
210		215			

<210> 6083
<211> 358
<212> DNA
<213> *Homo sapiens*

```
<400> 6083  
nnacgcgtga ggggacagggc tgagaaaaaaaaaa gaattacgac ataaaaataga taaaatggaa  
60  
aaaaaaaaaac aggagctcca ggcaaaaata gaagctttgc aagctgataaa tgatttcacc  
120  
aatgaaaggc taacagcttt acaagagaag ctgatcgatcg aagggcatct aacccaaagcg  
180  
gtagaagaaa caaagcttcc aaaagaaaaat cagacaagag caaaaagaatc tgatTTTCA  
240  
gatactctga gtccaaagcaa ggaaaaaaagc agtgacgaca ctacagacgc ccaaattggat  
300  
gagcaagacc taaatgagcc tcttgccaaa gtgtccccttt taaaagatga cttgcagg  
358
```

<210> 6084
<211> 101
<212> PRT
<213> *Homo sapiens*

```

<400> 6084
Met Glu Glu Lys Glu Gln Glu Leu Gln Ala Lys Ile Glu Ala Leu Gln
    1           5           10          15
Ala Asp Asn Asp Phe Thr Asn Glu Arg Leu Thr Ala Leu Gln Glu Lys
    20          25          30
Leu Ile Val Glu Gly His Leu Thr Lys Ala Val Glu Glu Thr Lys Leu
    35          40          45
Ser Lys Glu Asn Gln Thr Arg Ala Lys Glu Ser Asp Phe Ser Asp Thr
    50          55          60
Leu Ser Pro Ser Lys Glu Lys Ser Ser Asp Asp Thr Thr Asp Ala Gln

```

65 70 75 80
Met Asp Glu Gln Asp Leu Asn Glu Pro Leu Ala Lys Val Ser Leu Leu
 85 90 95
Lys Asp Asp Leu Gln
 100

<210> 6085
<211> 2307
<212> DNA
<213> Homo sapiens

<400> 6085
nnntccggatc agttcgagtg cctctaccca taccctgttc atcacccatg tgacagacag
60
agccaggtgg actttgacaa tcccgactac gagaggttcc ctaatttcca aaatgtggtt
120
gttacgaaa cagtgggttg ccctggtgat gtttttaca tcccaatgta ctggtgccat
180
cacatagagt cattactaaa tggggggatt accatcaactg tgaacttctg gtataagggg
240
gctccccaccc ctaagagaat tgaatatcct ctcaaagctc atcagaaaatg ggccataatg
300
agaaacattg agaagatgct tggagaggcc ttggggaaacc cacaagaggt ggggccttg
360
ttgaacacaa tcatcaaggg ccgataacaac tagcctgcca ggggtcaagg cctcctgcca
420
ggtgactgct atcccgatca caccgcttca ttgtatgagga caggagactc caagccttag
480
tattgcacgc tgcacttaat ggactggact cttgccatgg cccaggagtc aggtgtttgg
540
agcggaggcag ggcagttggc actccactcc tatttggagg gacttcatac cttgcctct
600
tgtgcctctg cacccctctt ctctgcctcc cgccctaaatg cctgcattca gtgtgtggag
660
ccccagcttt tggttgtcat catgtctgtg ttttatgttag tctgtcaact tcggaaatgtg
720
tgcgtgttg tgcattgcaca cgcatgtatg tatctgttcc ctgttccttc tgggtcaggc
780
tgtcaattcc ggctctcagc cctatctcct gcaacctcag tgcctcagcc tgagagagag
840
atgagatgct cttggactcc ccactgcata tgggctgcag ggccagagct agtctgacca
900
tttaggtcagt ctgcctcctg acagtttttgc cgtatgtcaag ctctaggcgg tatggaaatg
960
gttacggga ctctaattggg gtgaaagaga ggggaggctt gcctttgaga gcctatata
1020
ccttcctgtg agagaggatt agatagggtt ccaactgggc ctacaagctc aagccatata
1080
taaaaaggacc ttgggacata agaaccaatg attgtgcata agttctaaat tagagacaca
1140
tatagttctt ctctttcagc accagctttt gcccctatgc tgggtaccaa gggagttctc
1200
ctagctgtgg ctctcttagg ttcttaggggt gcaaggctct gtgtgtttgt ttgtgtgt
1260

ctgtgtgtgc gtatcacact aggggtgcaa gcctctgggt gtgtgtgtgt gtgtgcgtgc
 1320
 gtgtgtgtgt gtgtgtccgt gtgtgtgtgt gtgtgtgtcc acactggcca gcctccctac
 1380
 ttaccaaggt tctccactgc ttacctttc cagtggaca gtacagtgtg agccccggg
 1440
 aagtactgcc tgaccttatcc taagcttttta cacttgattt ttagccatca tatgtggcc
 1500
 aggtctcaact gcagcctgcc cgaggctaaac tggctagagc ctccageccct atgatgtcc
 1560
 ctgcccaggc catatcctttt attcctgtcg agcttcctgg ctgaatagat gaaatgggg
 1620
 caagccccagg cagctcatcc actacctgtg atccacctca gggcacgggc aaacacatag
 1680
 gcttgcgtct taaagccagc tcctctgcca gaccccggtt gtaatgtgcca caacaccctc
 1740
 aatagtcagg gcaactggtg gagcatggaa gtcgaatttc ctttctgtt aggagctact
 1800
 cctgggaacc cctctcaggg ctgcagctta caggtggca gctgtgattt cacaacttga
 1860
 agggccatca ttcacatcta ttcagtgaaa gtggggtccc tgggattttgg cagtgtggtg
 1920
 gcccgtgtc tcctcaccc tcgtcctgtc ttcatcacct tctctctggg agggaaagagg
 1980
 agtttggagg tctctggttt ttt
 2040
 gcatctgagc tctggcttc accccctgaag ctcagttata gtgcactgat gaactgagag
 2100
 gatgcgtgtg gatgtgtgtg catgcctgag tgcgtttttt ggggaggggt gtttattttt
 2160
 agtaccccat tctggggttc tctgatgcag tggatgtg aagatatggt acttctcaa
 2220
 gtgttagctct ttcaaatata gtcaatgctg ggaaaaaaaaaaaaaaa aaaaaaaaaaaa
 2280
 aaaaaaaaaaaa aaaaaaaaaaaa aaaaaaaaaaaa
 2307

<210> 6086
 <211> 84
 <212> PRT
 <213> Homo sapiens

<400> 6086
 Met Leu Gly Thr Lys Gly Val Leu Leu Ala Val Ala Ser Leu Gly Ser
 1 5 10 15
 Arg Gly Ala Ser Leu Cys Val Phe Val Cys Val Cys Leu Cys Val Arg
 20 25 30
 Ile Thr Leu Gly Val Gln Ala Ser Gly Cys Val Cys Val Cys Ala Cys
 35 40 45
 Val Cys Val Cys Val Ser Val Cys Val Cys Val Cys Val His Thr Gly
 50 55 60
 Gln Pro Pro Tyr Leu Pro Arg Phe Ser Thr Ala Tyr Leu Phe Gln Trp
 65 70 75 80
 Asp Ser Thr Val

<210> 6087
<211> 1506
<212> DNA
<213> Homo sapiens

<400> 6087
ncggcccccgg gagctgtgc tctatggagc tattgccccgc gtgggtggtc gcggggcgatg
60
cggggctgcc agctcctcg gcttcgttagc tcttggcccg gggacctaact aagtgtcg
120
ctcttgcctcc aagagaagcg ggcagcggaa acgcactttg ggtttgagac tgtgtcgaa
180
gaggagaagg ggggcaaaagt ctatcagggtg tttgaaagtg tggctaagaa gtatgtatgt
240
atgaatgata tgatgagtct cggcatccat cgtgtttgga aggatttgc gctctggaaag
300
atgcacccgc tgccccggac ccagctgctc gacatggctg gaggcacagg tgacattgc
360
ttcccggttcc ttaatttatgt tcagtcctcg catcagagaa aacagaagag gcagttaaagg
420
gccccaaacaaa atttatectg ggaagaaatt gccaaagagt accagaatga agaagattcc
480
ttgggcgggt ctcgtgtcg ggtgtgtgac atcaacaagg agatgctaaa ggttggaaag
540
cagaaaagct tggctcaagg atacagagct ggacttgcatt gggtattagg agatgtgaa
600
gaactgcct ttgatgatga caagtttgcatttacacca ttgccttgg gatccggaaat
660
gtcacacacaca ttgatcaggc actccaggaa gtcatcggt tgctgaaacc aggaggacgg
720
tttctctgtc tggaaatttag ccaagtgaac aatccctca tatccaggct ttatgtatcta
780
tatacgcttcc aggtcatccc tgcctggga gaggtcatcg ctggagactg gaagtcctat
840
cagttaccccg tagagagtat ccgaagggtt ccgtctcagg aagagttcaa ggacatgata
900
gaagatgcag gcttcacaa ggtgacttac gaaagtctaa catcaggcat tggccatt
960
cattctggct tcaaacttta attccttcc tatcatggag catgaaccag tcatatcctg
1020
ttgaaagctt ggaactgaag gataatctgg caaatgagac agcagcagag catctcctct
1080
taaggatacg tgcctggac tcattttga atcgaacagt ctcaagttgg aagaacaaat
1140
tcttgcact ttttacagc ttttttggc gctgcctcag tccatctccc agaggcattt
1200
ggctgtatc tttgtcaac tgctaatttc tcttggctgt aggggtgtg gtttaggtac
1260
aaccacccct aaagctcagt ttgaaagtga gtgtatattt agcttctctg ctgggtctgc
1320
cttcttagagg gatgatagat cattgaacc caatgacaat tttaaccag aaaatttaat
1380

tgtacctgaa tcaaccttc agcctaggac gaagtctagg cccaaatcg agtattaaatg
 1440
 atcatgagaa ttgtgtgctg aaccagtaaa cgagtttacc tttaaaaaaaaaaaaaaa
 1500
 aaaaaaa
 1506

<210> 6088
<211> 326
<212> PRT
<213> Homo sapiens

<400> 6088

Xaa	Ala	Pro	Gly	Ser	Cys	Ala	Leu	Trp	Ser	Tyr	Cys	Gly	Arg	Gly	Trp
1						5			10				15		
Ser	Arg	Ala	Met	Arg	Gly	Cys	Gln	Leu	Leu	Gly	Leu	Arg	Ser	Ser	Trp
							20		25				30		
Pro	Gly	Asp	Leu	Leu	Ser	Ala	Arg	Leu	Leu	Ser	Gln	Glu	Lys	Arg	Ala
						35		40				45			
Ala	Glu	Thr	His	Phe	Gly	Phe	Glu	Thr	Val	Ser	Glu	Glu	Lys	Gly	
						50		55				60			
Gly	Lys	Val	Tyr	Gln	Val	Phe	Glu	Ser	Val	Ala	Lys	Lys	Tyr	Asp	Val
						65		70		75		80			
Met	Asn	Asp	Met	Met	Ser	Leu	Gly	Ile	His	Arg	Val	Trp	Lys	Asp	Leu
						85		90				95			
Leu	Leu	Trp	Lys	Met	His	Pro	Leu	Pro	Gly	Thr	Gln	Leu	Leu	Asp	Met
						100		105				110			
Ala	Gly	Gly	Thr	Gly	Asp	Ile	Ala	Phe	Arg	Phe	Leu	Asn	Tyr	Val	Gln
						115		120				125			
Ser	Gln	His	Gln	Arg	Lys	Gln	Lys	Arg	Gln	Leu	Arg	Ala	Gln	Gln	Asn
						130		135				140			
Leu	Ser	Trp	Glu	Glu	Ile	Ala	Lys	Glu	Tyr	Gln	Asn	Glu	Asp	Ser	
						145		150		155			160		
Leu	Gly	Gly	Ser	Arg	Val	Val	Val	Cys	Asp	Ile	Asn	Lys	Glu	Met	Leu
						165		170				175			
Lys	Val	Gly	Lys	Gln	Lys	Ala	Leu	Ala	Gln	Gly	Tyr	Arg	Ala	Gly	Leu
						180		185				190			
Ala	Trp	Val	Leu	Gly	Asp	Ala	Glu	Glu	Leu	Pro	Phe	Asp	Asp	Asp	Lys
						195		200				205			
Phe	Asp	Ile	Tyr	Thr	Ile	Ala	Phe	Gly	Ile	Arg	Asn	Val	Thr	His	Ile
						210		215				220			
Asp	Gln	Ala	Leu	Gln	Glu	Ala	His	Arg	Val	Leu	Lys	Pro	Gly	Gly	Arg
						225		230		235			240		
Phe	Leu	Cys	Leu	Glu	Phe	Ser	Gln	Val	Asn	Asn	Pro	Leu	Ile	Ser	Arg
						245		250				255			
Leu	Tyr	Asp	Leu	Tyr	Ser	Phe	Gln	Val	Ile	Pro	Val	Leu	Gly	Glu	Val
						260		265				270			
Ile	Ala	Gly	Asp	Trp	Lys	Ser	Tyr	Gln	Tyr	Leu	Val	Glu	Ser	Ile	Arg
						275		280				285			
Arg	Phe	Pro	Ser	Gln	Glu	Glu	Phe	Lys	Asp	Met	Ile	Glu	Asp	Ala	Gly
						290		295				300			
Phe	His	Lys	Val	Thr	Tyr	Glu	Ser	Leu	Thr	Ser	Gly	Ile	Val	Ala	Ile
						305		310		315			320		
His	Ser	Gly	Phe	Lys	Leu										

325

<210> 6089
<211> 4211
<212> DNA
<213> Homo sapiens

<400> 6089
ncggcgcact cgccgggtgtg acgttgaaga tgcggccctt ctgagccgac tgccgtggtc
60
aagagtgtaa cacagccagc ctcgaagact tccctctgag ttgaaatgtat aatgaccgaa
120
tcccggagaag ttatagactt agaccccca gctgagactt cccaggagca ggaagacatt
180
ttcatatgtaa aggttggaaaga agaagactgc acctggatgc aggagtacaa cccgccaacg
240
tttgagactt ttaccagcg cttcaggcac ttccagttacc atgaggcttc aggaccccg
300
gaggctctca gccaactccg ggtgctctgc tgtgagttggc tgaggccccga gctgcacacg
360
aaggaggcaga tcctggagct gctggtgctg gagcagttcc tgaccatctt gcctgaagag
420
ttccagccct gggtgaggaa acatcacctt gaaagtggag aagaggcggt ggccgtgata
480
gaaaatatac agcgagaact tgaggaacgc agacagcaga ttgttgcctt ccctgtatgt
540
cttccttcgga agatggcaac acctggagca gtgcaggagt cctgcagccc ccattccctg
600
accgtggaca cccagcctga gcaagcgcca cagaaggctc gtctcctgga ggaaaatgcc
660
cttcctgttc tccaagttcc ttcccttccc ctgaaggaca gccaggagct gacagttca
720
cttctctcaa ctgggtccca gaagttggtg aaaattgaag aggtggctga tgtggctgt
780
tccttcatcc tggaggaatg gggcatttg gaccagtccc agaagtcctt ttatagggat
840
gacaggaagg agaactatgg gtagtattact tccatgggtt atgagtccag ggacaatatg
900
gagctcatag tgaaggcagat ttctgtatgac tctgaatcac actgggtggc gccagaacac
960
accgaaagga gcgttcctca ggatccagac tttgcagaag tcagtgaccc taaaggcatg
1020
gtacaaaagggt ggcagggtcaa ccccactgtg gggaaatcaa ggcagaatcc ttcccagaaa
1080
agggatctgg atgcaatcac agacatcage cctaagcaaa gcacacatgg cgagagaggg
1140
cacagatgca gcgattgtgg caaatttttc ctccaagccct caaaactttat tcagcatcg
1200
cgcatccaca ctggagaaaa accgttaag tgcggagaat gtgggaagag ctacaatcag
1260
cggtgcacc tcacccagca ccagcgcgtc cacacagggg agaaacccta caaatgtcag
1320
tgtgtcgaa aggcttccg ggtgagttcc cacctgggtt agcaccacag tgtccacagc
1380

5269

ggagagaggc cctatggctg caatgagtgt gggagaact tcggtcgcga ttgcacatcg
1440
atcgAACACC taaaacGCCA ctTCAGGGAG aaATCCCGAGA gATGCAgTGA caaaAGAAgT
1500
aagaACACAA aAttaAGTGT taAGAAGAAA AtTCAGAAT AtTCAGAAGC agACATGGAA
1560
ctatCTGGAA aaACCCAAAG aaATGTTCT caAGTTCAAG AtTTTGGAGA aggCTGTGAG
1620
tttcaaggca agCTGGATAG aaAGCAGGGa AtTCATGTA aAGAGATACT aggACAACCA
1680
tcttcaaAGA gGATGAACTA cAGTGAAGTC ccATATGTCC acAAAAAAATC ctccACTGGA
1740
gagAGACCAC atAAATGTAa CGAGTGTGGG AAAAGCTTCa ttcAGAGTGC acATCTTATT
1800
caACATCAAa gaataCACAC tGGGGAGAAA ccATTCAAGT GTGAGGAATG tGGGAAAAGC
1860
tacaACCAAC gcGTGcacCT aACTCAGCAT cAGCGCGTCC acACAGGTGA gaAGCCCTAC
1920
acCTGTCCCT tatGTGGGAA AGCCTTCAGA GTGAGGTCCC acCTTGTCA GcatcAGAGC
1980
gtGcACAGTG gGGAGAGACC CTTCAAGTGT AACGAATGTG ggAAAGGCTT tGGGAGGCGT
2040
tcccACCTGG ctggACATCT tcGACTCCAC tcccAGAGA AATCCCATCA gtGTCGTGAA
2100
tgtGGGGAAA tctttttca gtAcGTTAGC ctaATTGAAC AtCAGGTGCT ccACATGGGT
2160
cagaaaaATGg aaaaaATGG catCTGTGAG gaAGCATATA gttGGAACtt gACAGTgAtt
2220
gaAGACAAGA agATTGAGTT ACAAGAGCAG CCTTATCAGT gtGATATCTG tggAAAAGCC
2280
tttGTTATA gCTCAGACCT cATTCAAGCAT tacAGAACTC AtACAGCAGA gaAGCCCTAT
2340
caATGTGATA tatGTAGAGA AAATGTTGGC cAGTGTCCC acACCAAACA acATCAAAGA
2400
atCTACTCCA gcACAAAATC CCATCAATGT catGAATGTG gcAGAGGCTT cACTCTGAAG
2460
tcACATCTTA AtCAACATCA gAGAATCCAT ACTGGTGAGA AACCTTTCA AtGTAAGAA
2520
tgtGGAATGA AtTCAGCTG gagTTTAGC ctCTTTAAAC acCTGAGAAAG cCATGAGAGG
2580
acAGATCCCA taaATACCTT aAGTGTAGAG gggTCTCTGT tgtAGAATAG ctCTTAATT
2640
tagAGAAACC ttCCCTGGAGG gAAACCATAc tcCTATAATG agCAAAGTAA caACTCAAG
2700
catTTTCCA gcGTTACCAT cAAACTCACA aATAGGTTGA aATCCTTtAG ttATAACTCA
2760
gcCTTTAGGA acACCGGAGA ACCCACAATA AtAGAAATCT ttTCGTGTTc CCCATTGAGA
2820
aatGCTTtAG ttagCATCTT catGCTTGA aATCTAGACA agAAGAGAAAt cCATGGATGG
2880
acATGGTcGA ggaATTcGGA aAGCCTGcAG ttGACATTCA gtCTTCACtT gAAACTCAA
2940
actGACACTA ggaACAGCTT catGAGTTCA gtAGAAGTAA gCTTtATtG tagCTTCTGC
3000

ctgtttgac ggcgtatcta ttcagggaaag cgcacagtaa aagaattccct tagcatgatg
 3060
 tctgtttgg tacctcagca atgaaccttt tctagaaatt attattccaa ccactagaat
 3120
 accctagtca ctattccac tttgagcatt aacccttttgg aaaagaaaatg gacttaaagt
 3180
 atctctgttt tggcaaaatt caggttcagg ggctggatgg tatgtgtttc tgctgcctta
 3240
 ttcaatccac cacttctctg tgaaacactc tacctgtttt ttggtttgat tctactgatg
 3300
 tcagggttta gccggtagaa ggagtagttc agtttgtcaa ttccaggagaa actgtactgg
 3360
 tcagtcacat cttacggcga agggagaggg accttagggg agcagagaag acaggcaaag
 3420
 ttgtggactg tttgatcttg tattacccac aggaatgagg gcagctaaac ccatagaagg
 3480
 agttggacca aggcaatta cgagtctgg tcccagcagt atgtgtgctg acttctgggt
 3540
 gccccagaaa tagacctctc ctgttagagtg gtgatataca gaatgagttt cagtttgcatt
 3600
 tgcaagctggg attgaaagta atcagtcatg agcaggcagg caggaggctt tgtagccct
 3660
 gccttccagg aaggttgggg tggagtttt gagtggaaaa gaggatgaca tgtgtgagag
 3720
 agttctgagc ctgtttgcta gggagagtga gtgagtgctc ttgggcactg ctcagggcgt
 3780
 ttctgtgac ttgcctggct tacaataat gccaataaa tatttgtga ccataatgtt
 3840
 tgtacactgt ggtgcctgt ccagtcctt ctaccaagct gagaccccca tccccagctg
 3900
 ctctgagttt gggctgcaag tgctcacagc tctgttctc cagaaactgg agaattgccc
 3960
 tcaggagatg agagccatct cacccaccc aggagtcact tcctctctac accccaacac
 4020
 ctggttcatt tgattaaagc ggagaaaact ccaggggtgt atgactgctc tggcacccctt
 4080
 ggatcaggcc aagctagact ttttctgagc cttcatccgt gctaagctct ctcccttctc
 4140
 tatectgttt cattccctcc ctcaaaggcg tttcccaaatt aaatcacact gtcaatcaca
 4200
 tggttctgaa a
 4211

<210> 6090
 <211> 839
 <212> PRT
 <213> Homo sapiens

<400> 6090
 Met Ile Met Thr Glu Ser Arg Glu Val Ile Asp Leu Asp Pro Pro Ala
 1 5 10 15
 Glu Thr Ser Gln Glu Glu Gln Glu Asp Leu Phe Ile Val Lys Val Glu Glu
 20 25 30
 Glu Asp Cys Thr Trp Met Gln Glu Tyr Asn Pro Pro Thr Phe Glu Thr

35	40	45													
Phe	Tyr	Gln	Arg	Phe	Arg	His	Phe	Gln	Tyr	His	Glu	Ala	Ser	Gly	Pro
50				55						60					
Arg	Glu	Ala	Leu	Ser	Gln	Leu	Arg	Val	Leu	Cys	Cys	Glu	Trp	Leu	Arg
65				70				75						80	
Pro	Glu	Leu	His	Thr	Lys	Glu	Gln	Ile	Leu	Glu	Leu	Leu	Val	Leu	Glu
								85		90				95	
Gln	Phe	Leu	Thr	Ile	Leu	Pro	Glu	Glu	Phe	Gln	Pro	Trp	Val	Arg	Glu
								100		105			110		
His	His	Pro	Glu	Ser	Gly	Glu	Glu	Ala	Val	Ala	Val	Ile	Glu	Asn	Ile
								115		120			125		
Gln	Arg	Glu	Leu	Glu	Glu	Arg	Arg	Gln	Gln	Ile	Val	Ala	Cys	Pro	Asp
								130		135			140		
Val	Leu	Pro	Arg	Lys	Met	Ala	Thr	Pro	Gly	Ala	Val	Gln	Glu	Ser	Cys
145					150				155				160		
Ser	Pro	His	Pro	Leu	Thr	Val	Asp	Thr	Gln	Pro	Glu	Gln	Ala	Pro	Gln
								165		170			175		
Lys	Pro	Arg	Leu	Leu	Glu	Glu	Asn	Ala	Leu	Pro	Val	Leu	Gln	Val	Pro
								180		185			190		
Ser	Leu	Pro	Leu	Lys	Asp	Ser	Gln	Glu	Leu	Thr	Ala	Ser	Leu	Leu	Ser
								195		200			205		
Thr	Gly	Ser	Gln	Lys	Leu	Val	Lys	Ile	Glu	Glu	Val	Ala	Asp	Val	Ala
								210		215			220		
Val	Ser	Phe	Ile	Leu	Glu	Glu	Trp	Gly	His	Leu	Asp	Gln	Ser	Gln	Lys
225					230				235				240		
Ser	Leu	Tyr	Arg	Asp	Asp	Arg	Lys	Glu	Asn	Tyr	Gly	Ser	Ile	Thr	Ser
								245		250			255		
Met	Gly	Tyr	Glu	Ser	Arg	Asp	Asn	Met	Glu	Leu	Ile	Val	Lys	Gln	Ile
								260		265			270		
Ser	Asp	Asp	Ser	Glu	Ser	His	Trp	Val	Ala	Pro	Glu	His	Thr	Glu	Arg
								275		280			285		
Ser	Val	Pro	Gln	Asp	Pro	Asp	Phe	Ala	Glu	Val	Ser	Asp	Leu	Lys	Gly
								290		295			300		
Met	Val	Gln	Arg	Trp	Gln	Val	Asn	Pro	Thr	Val	Gly	Lys	Ser	Arg	Gln
305					310				315				320		
Asn	Pro	Ser	Gln	Lys	Arg	Asp	Leu	Asp	Ala	Ile	Thr	Asp	Ile	Ser	Pro
								325		330			335		
Lys	Gln	Ser	Thr	His	Gly	Glu	Arg	Gly	His	Arg	Cys	Ser	Asp	Cys	Gly
								340		345			350		
Lys	Phe	Phe	Leu	Gln	Ala	Ser	Asn	Phe	Ile	Gln	His	Arg	Arg	Ile	His
								355		360			365		
Thr	Gly	Glu	Lys	Pro	Phe	Lys	Cys	Gly	Glu	Cys	Gly	Lys	Ser	Tyr	Asn
								370		375			380		
Gln	Arg	Val	His	Leu	Thr	Gln	His	Gln	Arg	Val	His	Thr	Gly	Glu	Lys
385								390		395			400		
Pro	Tyr	Lys	Cys	Gln	Val	Cys	Gly	Lys	Ala	Phe	Arg	Val	Ser	Ser	His
								405		410			415		
Leu	Val	Gln	His	His	Ser	Val	His	Ser	Gly	Glu	Arg	Pro	Tyr	Gly	Cys
								420		425			430		
Asn	Glu	Cys	Gly	Lys	Asn	Phe	Gly	Arg	His	Ser	His	Leu	Ile	Glu	His
								435		440			445		
Leu	Lys	Arg	His	Phe	Arg	Glu	Lys	Ser	Gln	Arg	Cys	Ser	Asp	Lys	Arg
								450		455			460		
Ser	Lys	Asn	Thr	Lys	Leu	Ser	Val	Lys	Lys	Ile	Ser	Glu	Tyr	Ser	

465	470	475	480
Glu Ala Asp Met Glu Leu Ser Gly Lys Thr Gln Arg Asn Val Ser Gln			
485	490	495	
Val Gln Asp Phe Gly Glu Gly Cys Glu Phe Gln Gly Lys Leu Asp Arg			
500	505	510	
Lys Gln Gly Ile Pro Met Lys Glu Ile Leu Gly Gln Pro Ser Ser Lys			
515	520	525	
Arg Met Asn Tyr Ser Glu Val Pro Tyr Val His Lys Lys Ser Ser Thr			
530	535	540	
Gly Glu Arg Pro His Lys Cys Asn Glu Cys Gly Lys Ser Phe Ile Gln			
545	550	555	560
Ser Ala His Leu Ile Gln His Gln Arg Ile His Thr Gly Glu Lys Pro			
565	570	575	
Phe Arg Cys Glu Glu Cys Gly Lys Ser Tyr Asn Gln Arg Val His Leu			
580	585	590	
Thr Gln His Gln Arg Val His Thr Gly Glu Lys Pro Tyr Thr Cys Pro			
595	600	605	
Leu Cys Gly Lys Ala Phe Arg Val Arg Ser His Leu Val Gln His Gln			
610	615	620	
Ser Val His Ser Gly Glu Arg Pro Phe Lys Cys Asn Glu Cys Gly Lys			
625	630	635	640
Gly Phe Gly Arg Arg Ser His Leu Ala Gly His Leu Arg Leu His Ser			
645	650	655	
Arg Glu Lys Ser His Gln Cys Arg Glu Cys Gly Glu Ile Phe Phe Gln			
660	665	670	
Tyr Val Ser Leu Ile Glu His Gln Val Leu His Met Gly Gln Lys Asn			
675	680	685	
Glu Lys Asn Gly Ile Cys Glu Glu Ala Tyr Ser Trp Asn Leu Thr Val			
690	695	700	
Ile Glu Asp Lys Ile Glu Leu Gln Glu Gln Pro Tyr Gln Cys Asp			
705	710	715	720
Ile Cys Gly Lys Ala Phe Gly Tyr Ser Ser Asp Leu Ile Gln His Tyr			
725	730	735	
Arg Thr His Thr Ala Glu Lys Pro Tyr Gln Cys Asp Ile Cys Arg Glu			
740	745	750	
Asn Val Gly Gln Cys Ser His Thr Lys Gln His Gln Lys Ile Tyr Ser			
755	760	765	
Ser Thr Lys Ser His Gln Cys His Glu Cys Gly Arg Gly Phe Thr Leu			
770	775	780	
Lys Ser His Leu Asn Gln His Gln Arg Ile His Thr Gly Glu Lys Pro			
785	790	795	800
Phe Gln Cys Lys Glu Cys Gly Met Asn Phe Ser Trp Ser Cys Ser Leu			
805	810	815	
Phe Lys His Leu Arg Ser His Glu Arg Thr Asp Pro Ile Asn Thr Leu			
820	825	830	
Ser Val Glu Gly Ser Leu Leu			
835			

<210> 6091
<211> 1336
<212> DNA
<213> Homo sapiens

<400> 6091

ttttttcttt ttttttttccataaaaa gcaactttgtt taattttatc aaatcgatct
60
gtacaaaagt tagcgttgct tggtcagaaa ggagtgaagg cagcagggga gtgaggggtgc
120
gtcctccgaa cgccgtgcca agggagacgc tgcatgaaac gggtctgcga cggctccgg
180
ccccccaccc cacccccaga gaaatagaag cagaggcatt atctttttt tctacaaaaa
240
agttagaaaa gtagaaaaag tacaaaagaag caacttctcg gctgtgtta agtttacaaa
300
gtttaaggc acaagttcc gtgaagtagg cgctattgtt tgctctatgc tcagcacaca
360
ggggaaagcag tgcaggtgaa tcaggtatga ctcgtctaga actgaggccc taacgacggt
420
tagtggagaa ggttttagttt cacagcttgg taggtggcac tggtgccctgc gagccaagat
480
caacttctgaa gccaccactt tccaggaatt cctgtgtcct gtgtcctacc acatggcaca
540
gtcatggca aggacccagg aatttctgtg tcctatgtgt cctaccacgt ggcacagtcg
600
gggacagggg cggagtcctg cttcccaaac cccaaactgg tactgggtgc tggggcaccc
660
caacctgatc agagatgtca caagggcaggt cccttctctt ccctcgggtt ttccggttgcc
720
aagctcgagg catgaggggc ccagtcctcc cagggacett gggacctccg ggccctccag
780
ggccgcctcc cataagccga gcaacgagca acgtgatgcc ggccaacagc tgcaactcca
840
cctcctgcctt gcccctaagg gaagttcccc agttcccggtt ttgtcttaaa ttctactctt
900
tgccccgaatt acctcattaa ttaaagataa aataacacag aacataaaata catctttaac
960
agctttcaga agaaacacat ttaagctca aaaataaaaa ttatcaaaaa cataaaaata
1020
aaagagagat gtgttcatca cagccageccc tcgcgtgagc gcactctgcc agcaaggaga
1080
cacctcagat ctgacaggca ggtcccgag atgctcgagt agactcatcc cagtctgcgg
1140
acagacaccc cggatcccg acagcccggt cagccgttgt cgagggaatg tggccttgag
1200
tgcaggggctt ctccggccca agaccggcct ggacctcaca ggcgcctgca aggccctgc
1260
cacccttcc tttgggtcctt gggctgtgtt ggcgtttctc ctctaccgag atgcaaagcg
1320
aagggtgctgg tgccgc
1336

<210> 6092
<211> 118
<212> PRT
<213> Homo sapiens

<400> 6092
Met Ala Gln Ser Trp Ala Arg Thr Gln Glu Phe Leu Cys Pro Met Cys

1	5	10	15
Pro	Thr	Thr	Trp
His	Ser	Arg	Gly
Gln	Gly	Arg	Ser
Pro	Ala	Ser	Gln
20	25	30	
Thr	Pro	Asn	Trp
Tyr	Trp	Val	Leu
Gly	His	Pro	Asn
Leu	Ile	Arg	Asp
35	40	45	
Val	Thr	Arg	Gln
Val	Pro	Ser	Pro
Pro	Pro	Ser	Gly
Phe	Arg	Leu	Pro
50	55	60	
Ser	Arg	His	Glu
Gly	Pro	Ser	Pro
Pro	Pro	Arg	Asp
Leu	Gly	Thr	Ser
65	70	75	80
Pro	Ser	Arg	Ala
Ala	Ala	Ser	His
Lys	Pro	Ser	Asn
Glu	Gln	Arg	Asp
85	90	95	
Gly	Gln	Leu	Gln
Leu	Leu	His	Leu
Leu	Pro	Ala	Leu
Lys	Gly	Ser	Phe
100	105	110	
Pro	Ala	Ser	Val
Val	Leu	Ser	
115			

<210> 6093

<211> 1998

<212> DNA

<213> Homo sapiens

<400> 6093

ttttttttt tttttttttt tttttttttt ttttttttcc ataaaaatgg atttattgcc
60
aaacttaag aaaggcgctt cataaggaga agacacagaa tgccaccctc ctcaaggagg
120
caagcacgga atgccacctt cctcaagcac gcaagctagg cagggccctgc acgttctcac
180
tcctctccca gaagccagct tcctgcctag ggcccagcct gctaaaggat ggaaattaat
240
agcatttgtt cacttgaggt ggccccagag ctacttgctt acccaccagg ccccagggag
300
agtggctggg cctcaacctg tgacctacat gcagggtctc tgcacccaca gactctgcc
360
tcagtcacgc tgctgcagtt agctacttga cacaggaggg aactgaggtt ccaattctg
420
gcagtaggtg gcttggctaa agccccagcc agccatggct gctgggtgggg gaaggctgtt
480
cctaaggcaa qatggcaggg gatcacatga ctgggcaact gatgtccctc ttgctttgt
540
cctggggcag atggagggaa agccagactg tggcatgggg gcccagttt cacaaggagg
600
ctgatggggg ctcccgaacc agtgcattgc tgctcacctc tgctccggcc ccacgcagcc
660
cagagaagac atctgcccct cctgatcctt gactactacc tcaagaacaa agtgcacagta
720
caataacgat aacgaaggca ttgacctgtg cagcaggctt cagtggggtt gggaaacaga
780
gcagaaaaggc cagggcatgt tgctgtgacc cccccccttc tctctttcag taaacaaaag
840
tgcacatgca gaaatctggg caggtcttat cgaaagctgc tctcacccca gagggcccccag
900
ggagagtgcc tggacacctcg gaggcaggc ctctgcaccc acaggctctg ccctcagtc
960

agctgctgca gcacgatgga gactggatgt gcccccagag tcagggacaa tgtggggag
 1020
 aggctggag aggaccaggg tgcagggatg gaccaggaaa gggaaagaag aaaatgtctc
 1080
 ttctccataga aagttacagg agagcagccc atctgggct tgaaggcggg gaagtggctt
 1140
 cggattccaa catacccta tcagcatgg aagaaatgac tggatactg gacctgtttc
 1200
 ggctgagaag gaaccacaga gatccagata aatccccatc tgaggaggca cagaagttgg
 1260
 tggggattct cttctgaagg ctgacatgtat cattacaagt aagttttctt aatgtggaca
 1320
 tcagagccac tctggatcc acctcttcag aaatacacaa ggctggacac tatccagggg
 1380
 cagagactag actagggac cccttaatt cctcttccac tcttgaatcc tccagaccta
 1440
 agccctccaa tcatacgctca ctgagaggaa gggctgcag aaaatgtctt tgtttgcaa
 1500
 aaaaaggaaa cagggccaaa gagagagagg ccacacagct aatgtcctcc tcacaaagag
 1560
 gcctctcatc tccctcaaga ggctccagct gggtcctacg ttccccccaa ctgaggatg
 1620
 aaccttaggc ctggacccaa ggcctctgca gctactcaga ataggtggaa ggaggggctg
 1680
 gctttgagggc tgccttagcc atgaggtctt ttgccttagga atagctggag atgggagctg
 1740
 cagggggctc agctgtgctg tattcagaag tcaggaatgt aaactactgg ggatggggaa
 1800
 cagagatgtat gtcattccaa gatacccaa ctgccggccc caaagccctg gggcagtttg
 1860
 gaacgaccac acaaacacat aggtcccage gtgtgtgctc ccagcccccag ccccaagccca
 1920
 gagcccgaggc cagatagcca gcagtagccc tgggtggcac ctggcaccac tggccagagc
 1980
 agagtaggaa ggacgccc
 1998

<210> 6094
 <211> 136
 <212> PRT
 <213> Homo sapiens

<400> 6094
 Met Ile Met Ser Ala Phe Arg Arg Glu Ser Pro Pro Thr Ser Val Pro
 1 5 10 15
 Pro Gln Met Gly Ile Tyr Leu Asp Leu Cys Gly Ser Phe Ser Ala Glu
 20 25 30
 Thr Gly Pro Val Ser Gln Ser Phe Leu Gln Met Leu Ile Gly Val Cys
 35 40 45
 Trp Asn Pro Lys Pro Leu Pro Arg Leu Gln Ala Pro Asp Gly Leu Leu
 50 55 60
 Ser Cys Asn Phe Leu Gly Glu Glu Thr Phe Ser Ser Phe Pro Phe Leu
 65 70 75 80
 Val His Pro Cys Thr Leu Val Leu Ser Gln Pro Leu Pro His Ile Val

	85	90	95													
Pro	Asp	Ser	Arg	Gly	Thr	Ser	Ser	Leu	His	Arg	Ala	Ala	Ala	Ala	Gly	
			100			105					110					
Leu	Arg	Ala	Glu	Pro	Val	Gly	Ala	Glu	Ala	Leu	Ala	Pro	Glu	Val	Gln	
			115			120					125					
Pro	Leu	Ser	Leu	Gly	Pro	Leu	Gly									
			130			135										

<210> 6095

<211> 441

<212> DNA

<213> Homo sapiens

<400> 6095

```

naacgtctcc gcccgtcgct ccgcggcgcc gccatggccg acgtggaaga cggagaggaa
60
acctgcggcc tggcctctca ctccgggagc tcaggctcca agtcgggagg cgacaagatg
120
ttctccctca agaagtggaa cgcgggtggcc atgtggagct gggacgtgga gtgcgatacg
180
tgcgcacatct gcagggttcca ggtgatggtg gtctggggag aatgtaatca ttcccttccac
240
aactgctgtta tgtccctgtg ggtgaaacag aacaatcgct gccctctctg ccagcaggac
300
tgggtggtcc aaagaatcggt caaatgagag tggtagaaag gcttctttagc gcagttgttc
360
agagccctgg tggatcttgt aatccagtgc cctacaaagg cttagaacact acagggatg
420
aattcttcaa atagggaccg t
441

```

<210> 6096

<211> 97

<212> PRT

<213> Homo sapiens

<400> 6096

```

Met Ala Asp Val Glu Asp Gly Glu Glu Thr Cys Ala Leu Ala Ser His
1 5 10 15
Ser Gly Ser Ser Gly Ser Lys Ser Gly Gly Asp Lys Met Phe Ser Leu
20 25 30
Lys Lys Trp Asn Ala Val Ala Met Trp Ser Trp Asp Val Glu Cys Asp
35 40 45
Thr Cys Ala Ile Cys Arg Val Gln Val Met Val Val Trp Gly Glu Cys
50 55 60
Asn His Ser Phe His Asn Cys Cys Met Ser Leu Trp Val Lys Gln Asn
65 70 75 80
Asn Arg Cys Pro Leu Cys Gln Gln Asp Trp Val Val Gln Arg Ile Gly
85 90 95
Lys

```

<210> 6097

<211> 2404

<212> DNA
<213> Homo sapiens

<400> 6097
cggtttgtgg cccggaaaa gataatgtct gtgctgagtg aatggggcct gttccggggc
60
ctccagaacc accccattgtt actgcccattc tgcaagccgtt ctggggatgt gatagaatac
120
ctgctgaaga accagtggtt tgtccgtgc caggaaatgg gggccccgagc tgccaaggct
180
gtggagtcgg gggccctgga gctcagtccc tccttccacc agaagaactg gcaacactgg
240
ttttccata ttggggactg gtgtgtctcc cggcagctgt ggtggggcca tcagattcca
300
gcctacctgg ttntantagg accatgcgca nngggagaag agnngacctg ttgggtggc
360
ggccgggtcag gggctgaggc cagagagttt gcagcggAAC tgcacaggAG gcaaggggca
420
gagccgaccc tggagaggga tcctgtatgtc cttagacacat ggTTTCTTC tgccctgttc
480
cccttttctg ccctgggtcgg gccccaaAGAG accccagacc ttgctcgTTT ctacccctg
540
tcacttttgg aaacgggcag cgaccTTCTG ctgttctggg tggggccat ggtcatgttg
600
gggaccccAGC tcacaggGCAG gctgccCTTC agcaaggGTc ttcttcATCC catgggtcgg
660
gacaggcagg gcccggaaAGAT gagcaagtcc ctggggaaATg tgctggaccc aagagacatc
720
atcagtgggg tggagatgca gttgtgtcag gaaaagctga gaagcggaaa tttggaccc
780
gcagagctgg ccattgtggc tgcagcacAG aaaaaggACT ttccTcacGG gatccctgag
840
tgtgggacAG atgcCTGTAG attcacACTC tgctcccATG gagttcAGGC gggcGACTTG
900
cacctgtcAG tctctgaggT ccagagCTGc CGACATTCT GCAACAAGAT ctggAAATGCT
960
cttcgcttta tcctcaatgc tttaggggAG aaatttGTc cacAGCCTGc tgaggAGCTG
1020
tctccctcCT ccccgatggA tgcctggATC ctgagccGCC ttgcccTggc tgcccaggAG
1080
tgtgagcGGG gcttcctCAC ccgagAGCTC tgcgtcgTA ctcatGCCt GCACCACTTC
1140
tggcttcaca acctctgtGA cgtctacCTG gaggctgtGA agcccgtGCT gtggcactCG
1200
ccccggcccccc tggggcccccc tcaggTcCTG ttctccTgcG ctgacccTgg cctccgcCTC
1260
ctggccccac tcatgcCTT CCTGGCTGAA gagctctGGC agaggctGCC ccccaggCC
1320
ggttggcccccc ctgcccccaG catctcggtt gccccctacc ccagcgcctG cagcttggAG
1380
cactggcGCC AGCCAGAGCT ggagcggcgc ttctccGGG tccaAGAGGT cgtgcaggTG
1440
ctaaggGCTC tccgagccac gtaccAGCTC accaaAGCCC ggccccGAGt gctgtgcAG
1500

agctcagagc ctggggacca gggcctttc gaggccttct tggagccctt gggcacccctg
 1560
 ggctactgtg gggctgtggg cctgttaccc ccaggcacag cagctccctc cggctggcc
 1620
 caggctccac tcagtacac ggctcaagtc tacatggagc tgcagggctt ggtggaccgc
 1680
 cagatccagc tacctctgtt agccgcccga aggtacaagt tgcagaagca gcttgacagc
 1740
 ctcacagcca ggaccccatc agaaggggag gcagggactc agaggcaaca aaagctttct
 1800
 tccctccagc tggaattgtc aaaactggac aaggcagcct ctcacccctcg gcagctgtatg
 1860
 gatgagcctc cagccccagg gagccggag ctcttaactca tcataccat cagtttccct
 1920
 ccctctcaga cctgtcttg aggacaaaca gatttgtcag ctgtcagggt gcagtggac
 1980
 gtcagagact atgtggtcca tcgccttcat tgtgtaaatg aggacacaga ctggcttggt
 2040
 cgcaagtgact gtgggtgtct tgagatgctc acattactgc ccggcctgcc tcccacctgg
 2100
 aagtctggga atgaggagat tgagataaac ttttgaatc ccaaacatgt ctgttatgg
 2160
 ctctttggtc cccttgctc ccagtggta cttttgtgt tctgagttgt cccctgagag
 2220
 ctgggtctgg gaaaagagga ggaggggtcc tcactggagg aagaggaacc tttcagtcac
 2280
 ggggttaggta atgggacagt ggttccggtt ctacccctt tcttggactg acaggtgcct
 2340
 ggcttttgc agggcccttc tcctccaatt ctcactaaat ggaaggttcc ccgctccctg
 2400
 gctt
 2404

<210> 6098
 <211> 631
 <212> PRT
 <213> Homo sapiens

<400> 6098
 Arg Phe Val Ala Arg Glu Lys Ile Met Ser Val Leu Ser Glu Trp Gly
 1 5 10 15
 Leu Phe Arg Gly Leu Gln Asn His Pro Met Val Leu Pro Ile Cys Ser
 20 25 30
 Arg Ser Gly Asp Val Ile Glu Tyr Leu Leu Lys Asn Gln Trp Phe Val
 35 40 45
 Arg Cys Gln Glu Met Gly Ala Arg Ala Ala Lys Ala Val Glu Ser Gly
 50 55 60
 Ala Leu Glu Leu Ser Pro Ser Phe His Gln Lys Asn Trp Gln His Trp
 65 70 75 80
 Phe Ser His Ile Gly Asp Trp Cys Val Ser Arg Gln Leu Trp Trp Gly
 85 90 95
 His Gln Ile Pro Ala Tyr Leu Val Xaa Xaa Gly Pro Cys Ala Xaa Gly
 100 105 110
 Glu Glu Xaa Thr Cys Trp Val Val Gly Arg Ser Gly Ala Glu Ala Arg

465	470	475	480																																																																																																																																																																																																																																																																																																														
Leu	Leu	Asn	Gly																																																																																																																																																																																																																																																																																																														
Met	Gly	Pro	Leu																																																																																																																																																																																																																																																																																																														
Gly	Arg	Arg	Ala																																																																																																																																																																																																																																																																																																														
Arg	Ala	Ser	Asp																																																																																																																																																																																																																																																																																																														
Ala	Gly	Gly																																																																																																																																																																																																																																																																																																															
485	490	495																																																																																																																																																																																																																																																																																																															
Ala	Asn	Ile	Gln																																																																																																																																																																																																																																																																																																														
Ile	His	Ala	Gln																																																																																																																																																																																																																																																																																																														
Gln	Leu	Leu	Lys																																																																																																																																																																																																																																																																																																														
Leu	Arg	Pro	Arg																																																																																																																																																																																																																																																																																																														
500	505	510	Gly																																																																																																																																																																																																																																																																																																														
Pro	Ser	Pro	Leu																																																																																																																																																																																																																																																																																																														
Leu	Val	Thr	Met																																																																																																																																																																																																																																																																																																														
Thr	Pro	Ala	Val																																																																																																																																																																																																																																																																																																														
Pro	Ala	Val	Thr																																																																																																																																																																																																																																																																																																														
515	520	525	Pro																																																																																																																																																																																																																																																																																																														
Val	Asp	Glu	Ser																																																																																																																																																																																																																																																																																																														
Glu	Ser	Ser	Asp																																																																																																																																																																																																																																																																																																														
Asp	Gly	Glu	Pro																																																																																																																																																																																																																																																																																																														
Glu	Pro	Asp	Gln																																																																																																																																																																																																																																																																																																														
530	535	540	Glu																																																																																																																																																																																																																																																																																																														
Ser	Ser	Thr	Tyr																																																																																																																																																																																																																																																																																																														
Tyr	Lys	Asp	Ser																																																																																																																																																																																																																																																																																																														
Ser	Asn	Thr	Leu																																																																																																																																																																																																																																																																																																														
His	Leu	Pro	Thr																																																																																																																																																																																																																																																																																																														
545	550	555	Glu																																																																																																																																																																																																																																																																																																														
Arg	Arg	Asp	Arg																																																																																																																																																																																																																																																																																																														
Phe	Ser	Pro	Val																																																																																																																																																																																																																																																																																																														
Arg	Arg	Arg	Phe																																																																																																																																																																																																																																																																																																														
Phe	Ser	Asp	Gly																																																																																																																																																																																																																																																																																																														
Gly	Ala	Ala	Ser																																																																																																																																																																																																																																																																																																														
Ala	Ile	Gln	Ile																																																																																																																																																																																																																																																																																																														
565	570	575	Gln																																																																																																																																																																																																																																																																																																														
Phe	Lys	Ala	His																																																																																																																																																																																																																																																																																																														
Leu	Glu	Leu	Glu																																																																																																																																																																																																																																																																																																														
Lys	Met	Gly	Asn																																																																																																																																																																																																																																																																																																														
Gly	Asn	Ser	Ser																																																																																																																																																																																																																																																																																																														
Ile	Lys	Gln	Ile																																																																																																																																																																																																																																																																																																														
580	585	590																																																																																																																																																																																																																																																																																																															
Leu	Gln	Gln	Glu																																																																																																																																																																																																																																																																																																														
Cys	Glu	Gln	Leu																																																																																																																																																																																																																																																																																																														
Gln	Lys	Met	Tyr																																																																																																																																																																																																																																																																																																														
Leu	Gly	Gly	Gln																																																																																																																																																																																																																																																																																																														
595	600	605	Ile																																																																																																																																																																																																																																																																																																														
Asp	Glu	Arg	Thr																																																																																																																																																																																																																																																																																																														
Leu	Glu	Lys	Thr																																																																																																																																																																																																																																																																																																														
Gln	Gln	Gln	Gln																																																																																																																																																																																																																																																																																																														
His	His	Ile	Leu																																																																																																																																																																																																																																																																																																														
Gln	Gln	Gln	Gln																																																																																																																																																																																																																																																																																																														
Ile	Gln	Ile	Gln																																																																																																																																																																																																																																																																																																														
610	615	620	Asp																																																																																																																																																																																																																																																																																																														
Gln	Glu	Gln	Asp																																																																																																																																																																																																																																																																																																														
Gln	Gln	His	Ser																																																																																																																																																																																																																																																																																																														
His	His	Gln	Ile																																																																																																																																																																																																																																																																																																														
Ile	Leu	Gln	Gln																																																																																																																																																																																																																																																																																																														
630	635	640	Ile																																																																																																																																																																																																																																																																																																														
Cys	Pro	Pro	Gln																																																																																																																																																																																																																																																																																																														
Pro	Pro	Pro	Pro																																																																																																																																																																																																																																																																																																														
Ser	Pro	Pro	Leu																																																																																																																																																																																																																																																																																																														
Pro	Pro	Pro	Gln																																																																																																																																																																																																																																																																																																														
645	650	655	Ala																																																																																																																																																																																																																																																																																																														
Pro	Ala	Leu	Ala																																																																																																																																																																																																																																																																																																														
Leu	Thr	Thr	His																																																																																																																																																																																																																																																																																																														
Gln	Leu	Gln	Arg																																																																																																																																																																																																																																																																																																														
Arg	Leu	Arg	Ile																																																																																																																																																																																																																																																																																																														
Ile	Gln	Pro	Ser																																																																																																																																																																																																																																																																																																														
660	665	670																																																																																																																																																																																																																																																																																																															
Ser	Pro	Pro	Asn																																																																																																																																																																																																																																																																																																														
Pro	Asn	Asn	Asn																																																																																																																																																																																																																																																																																																														
Asn	His	Leu	Phe																																																																																																																																																																																																																																																																																																														
675	680	685	Arg	Arg	Arg	Gly	Asn	Ser	Pro	Gln	Ser	Pro	Pro	Pro	Pro	Met	Ser	Ser	Ser	Ser	Ala	Met	Ala	Ile	Gln	Ile	690	695	700	Gly	Ser	Ser	Gln	705	710	715	Phe	Ala	Ser	Ser	Gly	720			Leu	Gln	Gln	Pro	Pro	Glu	Asn	Cys	Ser	Ser	Pro	Pro	Asn	725	730	735	Val	Cys	Leu	Gly	Gln	Gly	Met	Gln	Gln	Gln	Pro	Ala	Gln	740	745	750	Ser	Val	Gln	Gln	Val	Glu	Pro	Val	Thr	Asp	Met	Leu	Ile	Met	Ser	Asn	Ser	755	760	765	Asp	Gly	Ser	Ser	Gly	Arg	Arg	Arg	Ile	Ile	Ser	Ile	Ser	770	775	780	Pro	Gln	Met	Gln	Pro	785	790	795	Ser	His	Arg	Thr	Asn	Arg	Asn	Leu	Met	Ile	Leu	Met	Ala	795			Thr	Gly	Ser	Ser	Tyr	His	Gly	Arg	Gly	780			His	Arg	Ser	Ser	Gly	Pro	Pro	Pro	Gly	Leu	Leu	Leu	Ile	785			Ser	795			Asp	Arg	Arg	Arg	Asp	805			Ser	Leu	Asn	Asn	Arg	820			Phe	His	Pro	Pro	Ser	His	Leu	Leu	Ser	835			Asp	840			Gln	Ser	Pro	Pro	Ser	Pro	Ser	Thr	Thr	850			Gly	855			Phe	860			Ser	Pro	Pro	Leu	Asp	865			Gln	870			Phe	875			Pro	880			Pro	Pro	Pro	His	Tyr	His	Tyr	Thr	Thr	885			Ser	890			Ala	895			Leu	Thr	Pro	Pro	Asp	Pro	Asp	Pro	Tyr	895			Arg	Thr	Arg	His	Gln	900			Gln	905			Val	910			Pro	915			His	920			Ile	925			Leu	930			Gln
Arg	Arg	Arg	Gly																																																																																																																																																																																																																																																																																																														
Asn	Ser	Pro	Gln																																																																																																																																																																																																																																																																																																														
Ser	Pro	Pro	Pro																																																																																																																																																																																																																																																																																																														
Pro	Met	Ser	Ser																																																																																																																																																																																																																																																																																																														
Ser	Ser	Ala	Met																																																																																																																																																																																																																																																																																																														
Ala	Ile	Gln	Ile																																																																																																																																																																																																																																																																																																														
690	695	700	Gly	Ser	Ser	Gln	705	710	715	Phe	Ala	Ser	Ser	Gly	720			Leu	Gln	Gln	Pro	Pro	Glu	Asn	Cys	Ser	Ser	Pro	Pro	Asn	725	730	735	Val	Cys	Leu	Gly	Gln	Gly	Met	Gln	Gln	Gln	Pro	Ala	Gln	740	745	750	Ser	Val	Gln	Gln	Val	Glu	Pro	Val	Thr	Asp	Met	Leu	Ile	Met	Ser	Asn	Ser	755	760	765	Asp	Gly	Ser	Ser	Gly	Arg	Arg	Arg	Ile	Ile	Ser	Ile	Ser	770	775	780	Pro	Gln	Met	Gln	Pro	785	790	795	Ser	His	Arg	Thr	Asn	Arg	Asn	Leu	Met	Ile	Leu	Met	Ala	795			Thr	Gly	Ser	Ser	Tyr	His	Gly	Arg	Gly	780			His	Arg	Ser	Ser	Gly	Pro	Pro	Pro	Gly	Leu	Leu	Leu	Ile	785			Ser	795			Asp	Arg	Arg	Arg	Asp	805			Ser	Leu	Asn	Asn	Arg	820			Phe	His	Pro	Pro	Ser	His	Leu	Leu	Ser	835			Asp	840			Gln	Ser	Pro	Pro	Ser	Pro	Ser	Thr	Thr	850			Gly	855			Phe	860			Ser	Pro	Pro	Leu	Asp	865			Gln	870			Phe	875			Pro	880			Pro	Pro	Pro	His	Tyr	His	Tyr	Thr	Thr	885			Ser	890			Ala	895			Leu	Thr	Pro	Pro	Asp	Pro	Asp	Pro	Tyr	895			Arg	Thr	Arg	His	Gln	900			Gln	905			Val	910			Pro	915			His	920			Ile	925			Leu	930			Gln																											
Gly	Ser	Ser	Gln																																																																																																																																																																																																																																																																																																														
705	710	715	Phe																																																																																																																																																																																																																																																																																																														
Ala	Ser	Ser	Gly																																																																																																																																																																																																																																																																																																														
720			Leu																																																																																																																																																																																																																																																																																																														
Gln	Gln	Pro	Pro																																																																																																																																																																																																																																																																																																														
Glu	Asn	Cys	Ser																																																																																																																																																																																																																																																																																																														
Ser	Pro	Pro	Asn																																																																																																																																																																																																																																																																																																														
725	730	735	Val																																																																																																																																																																																																																																																																																																														
Cys	Leu	Gly	Gln																																																																																																																																																																																																																																																																																																														
Gly	Met	Gln	Gln																																																																																																																																																																																																																																																																																																														
Gln	Pro	Ala	Gln																																																																																																																																																																																																																																																																																																														
740	745	750	Ser																																																																																																																																																																																																																																																																																																														
Val	Gln	Gln	Val																																																																																																																																																																																																																																																																																																														
Glu	Pro	Val	Thr																																																																																																																																																																																																																																																																																																														
Asp	Met	Leu	Ile																																																																																																																																																																																																																																																																																																														
Met	Ser	Asn	Ser																																																																																																																																																																																																																																																																																																														
755	760	765	Asp																																																																																																																																																																																																																																																																																																														
Gly	Ser	Ser	Gly																																																																																																																																																																																																																																																																																																														
Arg	Arg	Arg	Ile																																																																																																																																																																																																																																																																																																														
Ile	Ser	Ile	Ser																																																																																																																																																																																																																																																																																																														
770	775	780	Pro																																																																																																																																																																																																																																																																																																														
Gln	Met	Gln	Pro																																																																																																																																																																																																																																																																																																														
785	790	795	Ser																																																																																																																																																																																																																																																																																																														
His	Arg	Thr	Asn																																																																																																																																																																																																																																																																																																														
Arg	Asn	Leu	Met																																																																																																																																																																																																																																																																																																														
Ile	Leu	Met	Ala																																																																																																																																																																																																																																																																																																														
795			Thr																																																																																																																																																																																																																																																																																																														
Gly	Ser	Ser	Tyr																																																																																																																																																																																																																																																																																																														
His	Gly	Arg	Gly																																																																																																																																																																																																																																																																																																														
780			His																																																																																																																																																																																																																																																																																																														
Arg	Ser	Ser	Gly																																																																																																																																																																																																																																																																																																														
Pro	Pro	Pro	Gly																																																																																																																																																																																																																																																																																																														
Leu	Leu	Leu	Ile																																																																																																																																																																																																																																																																																																														
785			Ser																																																																																																																																																																																																																																																																																																														
795			Asp																																																																																																																																																																																																																																																																																																														
Arg	Arg	Arg	Asp																																																																																																																																																																																																																																																																																																														
805			Ser																																																																																																																																																																																																																																																																																																														
Leu	Asn	Asn	Arg																																																																																																																																																																																																																																																																																																														
820			Phe																																																																																																																																																																																																																																																																																																														
His	Pro	Pro	Ser																																																																																																																																																																																																																																																																																																														
His	Leu	Leu	Ser																																																																																																																																																																																																																																																																																																														
835			Asp																																																																																																																																																																																																																																																																																																														
840			Gln																																																																																																																																																																																																																																																																																																														
Ser	Pro	Pro	Ser																																																																																																																																																																																																																																																																																																														
Pro	Ser	Thr	Thr																																																																																																																																																																																																																																																																																																														
850			Gly																																																																																																																																																																																																																																																																																																														
855			Phe																																																																																																																																																																																																																																																																																																														
860			Ser																																																																																																																																																																																																																																																																																																														
Pro	Pro	Leu	Asp																																																																																																																																																																																																																																																																																																														
865			Gln																																																																																																																																																																																																																																																																																																														
870			Phe																																																																																																																																																																																																																																																																																																														
875			Pro																																																																																																																																																																																																																																																																																																														
880			Pro																																																																																																																																																																																																																																																																																																														
Pro	Pro	His	Tyr																																																																																																																																																																																																																																																																																																														
His	Tyr	Thr	Thr																																																																																																																																																																																																																																																																																																														
885			Ser																																																																																																																																																																																																																																																																																																														
890			Ala																																																																																																																																																																																																																																																																																																														
895			Leu																																																																																																																																																																																																																																																																																																														
Thr	Pro	Pro	Asp																																																																																																																																																																																																																																																																																																														
Pro	Asp	Pro	Tyr																																																																																																																																																																																																																																																																																																														
895			Arg																																																																																																																																																																																																																																																																																																														
Thr	Arg	His	Gln																																																																																																																																																																																																																																																																																																														
900			Gln																																																																																																																																																																																																																																																																																																														
905			Val																																																																																																																																																																																																																																																																																																														
910			Pro																																																																																																																																																																																																																																																																																																														
915			His																																																																																																																																																																																																																																																																																																														
920			Ile																																																																																																																																																																																																																																																																																																														
925			Leu																																																																																																																																																																																																																																																																																																														
930			Gln																																																																																																																																																																																																																																																																																																														

900	905	910
Gly Leu Leu Ser Pro Arg His Ser Leu Thr Gly	HIS	SE
915	920	925
Leu Pro Pro Thr Glu Phe Ala Gln Leu Ile Lys Arg Gln Gln Gln		
930	935	940
Arg Gln Gln Gln Gln Gln Gln Gln Glu Tyr Gln Glu Leu		
945	950	955
Phe Arg His Met Asn Gln Gly Asp Ala Gly Ser Leu Ala Pro Ser Leu		
965	970	975
Gly Gly Gln Ser Met Thr Glu Arg Gln Ala Leu Ser Tyr Gln Asn Ala		
980	985	990
Asp Ser Tyr His His Thr Ile Gln Asn Ser Asp Asp Ala Tyr Val Gln		
995	1000	1005
Leu Asp Asn Leu Pro Gly Met Ser Leu Val Ala Gly Lys Ala Leu Ser		
1010	1015	1020
Ser Ala Arg Met Ser Asp Ala Val Leu Ser Gln Ser Ser Leu Met Gly		
1025	1030	1035
Ser Gln Gln Phe Gln Asp Gly Glu Asn Glu Glu Cys Gly Ala Ser Leu		
1045	1050	1055
Gly Gly His Glu His Pro Asp Leu Ser Asp Gly Ser Gln His Leu Asn		
1060	1065	1070
Ser Ser Cys Tyr Pro Ser Thr Cys Ile Thr Asp Ile Leu Leu Ser Tyr		
1075	1080	1085
Lys His Pro Glu Val Ser Phe Ser Met Glu Gln Ala Gly Val		
1090	1095	1100

<210> 6101

<211> 1447

<212> DNA

<213> Homo sapiens

<400> 6101
tttttttttt tttttttttt tttttttttc actgcaacca gtacttatgt
60
ttttaactgt acctaataaaa cagcccagcg tggtgattcc tattcaactt gtagcctccc
120
catctagaaa tatactccgt gatctttctt gatggccaga ctgtgtaaaa ttcatacagt
180
gtttactaca gggatccccaa aatattgtta gttgaatgaa caaacacaca tttcaaggag
240
ggcactacag tgagtagatg aacagtttcc tgataggaga ttgtacaagt aatgtttca
300
ccagtgttatt ttaggacacgc agattcagat taatgcgttg ggactgaatg caaatagtaa
360
aattacaaat ataaagtaaa aatttggAAC ctggccaca gagaggaata ataaattgtat
420
ttaataatTTT gaaagaactg taaggTTT tagtttttttct tattttttttgt gcgactgaga
480
ttggagtcgt tttgttagaca tatctgaaaa aagtgaaggg ggagatggaa gatggtaat
540
gcccaaggaaa agatggaaagg ataaatcagt gtaataaaaa ggagcaccc ttggccca
600
acagaagtaa aggttaaaggta aggtgtctg agttaacgaa tggattgttg acctctgggg
660

agggtgctcc catcagctca gctttgtgac gacctaaagaa tatcccttcc acacctttcc
 720
 tgatccaatc gttctggctg cataaaaacca cctaaatcaa tcaactgtta cacttcctt
 780
 agtgcgttagga catattcata taactccccac gtattaaatg aaaatacatc catctaaaaa
 840
 taaaacaaca agattgctgc tacaccaaga aaggattta aaaaggcctg ttcacaagct
 900
 960
 aagtggggc cagaggaaag gtgttcgtt aaactgaaat tcgagctgctg ataacacctc
 960
 ctaatgcaat caaacgctgt tgcagcacac ttcttaggag atcgggttca acggcaggga
 1020
 ttgggttaagg tgagaatctg gcttggcgcc tccggccccc gccatcttgtt tcccttggc
 1080
 1140
 tccggccgcc accatccact cgacggctct cggcccgaaac gcttggtcgc accgcctgccc
 1140
 gaggtccttag atgaatcgct tcaggcctgg aaacgaggaa gccgtctccg gagaccatcg
 1200
 ccaacgctga cgcccgccgt ctgaggtcgc catggaaaga gcggtaggcc accctgctcc
 1260
 tctgatcacc ggaggacagg gacacattgt tcagggccat attcaaacac tgcccgca
 1320
 1380
 acttgcgtta cgtccctttg tgaaggcagg cccttcgcgg ctccccagat cagtcaccc
 1440
 tggcggac ccgatgacta agcacacagg aacccataac tgagctgcgg aagagccaga
 1440
 agccggcc
 1447

<210> 6102
 <211> 123
 <212> PRT
 <213> Homo sapiens

<400> 6102
 Met Ala Leu Asn Asn Val Ser Leu Ser Ser Gly Asp Gln Arg Ser Arg
 1 5 10 15
 Val Ala Tyr Arg Ser Ser His Gly Asp Leu Arg Pro Arg Ala Ser Ala
 20 25 30
 Leu Ala Met Val Ser Gly Asp Gly Phe Leu Val Ser Arg Pro Glu Ala
 35 40 45
 Ile His Leu Gly Pro Arg Gln Ala Val Arg Pro Ser Val Arg Ala Glu
 50 55 60
 Ser Arg Arg Val Asp Gly Gly Arg Ser Pro Arg Glu Pro Asp Gly
 65 70 75 80
 Arg Gly Arg Ser Arg Gln Ala Arg Phe Ser Pro Tyr Pro Ile Pro Ala
 85 90 95
 Val Glu Pro Asp Leu Leu Arg Ser Val Leu Gln Gln Arg Leu Ile Ala
 100 105 110
 Leu Gly Gly Val Ile Ala Ala Arg Ile Ser Val
 115 120

<210> 6103
 <211> 309

<212> DNA
<213> Homo sapiens

<400> 6103
agatcttctt tttgaggttc aggtttctctg gaacacactc ctgaatgtgc acagcgccct
60
ctactgcttc ggccaggttg ccacagccac tgatgagaga cagctccagc cacaatggac
120
agaacacctatg cctttagatgaa gaagattggg cagtccccag tgagagtctt gaaggagatt
180
gacggcttcg tcctgaacccg cctgcagttac gccgtcatca gtgaggcctg gagactggtg
240
gaggaagaaa tagtatctcc tagcgtaccta gacctggtca tgcagacgg gctgggcatg
300
cggtacgctg
309

<210> 6104
<211> 71
<212> PRT
<213> Homo sapiens

<400> 6104
Glu Thr Ala Pro Ala Thr Met Asp Arg Thr Tyr Ala Leu Met Lys Lys
1 5 10 15
Ile Gly Gln Ser Pro Val Arg Val Leu Lys Glu Ile Asp Gly Phe Val
20 25 30
Leu Asn Arg Leu Gln Tyr Ala Val Ile Ser Glu Ala Trp Arg Leu Val
35 40 45
Glu Glu Glu Ile Val Ser Pro Ser Asp Leu Asp Leu Val Met Ser Asp
50 55 60
Gly Leu Gly Met Arg Tyr Ala
65 70

<210> 6105
<211> 1846
<212> DNA
<213> Homo sapiens

<400> 6105
ncaccaggcag cagcaggcag cttactcca cggggagggc gcctcacagc agccgcggca
60
cagggggccag aaccggggat gcccccaac cctatgaact caacacagcc atcaactgca
120
ggatgaagt ggtgtctccc cttccatctg ctctgcaggg gtcctcagg ctccctatca
180
gccccctccag ctgcctcagt tatctctgca ccccccattt ctcctcccg acatcgaaaa
240
cgtcgccagga ctccagcaa gtcggaggca ggggctaggg gtggaggcca gggttccaag
300
gaaaaggggcc gagggagttg gggaggccgc caccaccacc accacccact gcctgcagca
360
ggcttcaaaa agcaacagcg caagttccag tatggaaatt attgcaaata ctatgggtac
420

cgcaatcctt cctgtgagga tggggccctt cgggtgttga agcctgagtg gtttcggggc
480
cgggacgtcc tagatctggg ctgcaatgtg ggccatctga ccctgagcat tgccctgcaag
540
tggggccctt cccgcattgtt gggccctggat atcgattccc ggctcatcca ttctgcccc
600
caaaaacatcc gacactacctt ttcggaggag ctgcgtctcc caccccaagac tttggaaggg
660
gaccgggggg cagagggtga ggaagggacc accaccgttc gaaagaggag ctgcttcca
720
gcctcgctga ctgccagccg gggcccccate ctgcgtccctt aagtgcctt ggatggagcg
780
gacacatcg tcttcccaa caatgttgc ttcgtcacgg gtaattatgt gctggatcga
840
gatgacctgg tggaggccca aacacctgag tatgatgtgg tgctctgcct cagcctcacc
900
aagtgggtgc atctgaactg gggagacgag ggccctgaagc gcatgtttcg ccggatctac
960
cggcacccatc gcccctgggg catcctggtc cttagagcccc aaccctggtc gtcgtatggc
1020
aagagaaaga ctcttacaga aacgatctac aagaactact accgaatcca attgaagcca
1080
gagcagttca gttcctacact gacatccccaa gacgtggct tctccagcta tgagcttgt
1140
gccacaccccc acaacacccctc taaagggcttc cagcgtctg tgtacctgtt ccacaaggcc
1200
cgatccccca gccactaagt ggccccctaa acagaaaatg tgaagaggtt gcccctcg
1260
ctcataagga cctgggggaa gagaaaatgtc tcccaagggtc ttccctttct gactccaaaa
1320
atagtttctt ttcttggatc tgcaaaagaaa gctttcttc cgtcgtgtcc tcagccct
1380
ccctatgcct ctggcacctg cgcagcaagg ctggctgtgc tggagtcacc atcatctcc
1440
tctcccccaag cctcccaaggc tggatggcat ggactgtttg ctgacccctg ttctttagg
1500
gcatggggagg tggaggata tcaaattctc tagccctttc ctcttattct ctggcccttc
1560
tattctccca aggagagaga ttcccatatc tccctggcca ttgtacctag ctcttgc
1620
tagctgcatt tcagtgacc atggatagag ggactgaggg tttagacgggg aagactggca
1680
gggaggccacg caggtactgt gaaaatcctt cccttgcctt cccttccatg ggagaggggg
1740
ttgggttttc aatgtgagaa cagcacaata aacttgatgt cttagggcagt ggccccaaaa
1800
aaaaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaa
1846

<210> 6106
<211> 405
<212> PRT
<213> Homo sapiens

<400> 6106

Xaa	Pro	Ala	Ala	Ala	Gly	Ser	Leu	Thr	Pro	Arg	Gly	Gly	Arg	Leu	Thr
1															15
Ala	Ala	Ala	Ala	Gln	Gly	Pro	Glu	Pro	Gly	Met	Pro	Pro	Asn	Pro	Met
															20
															25
Asn	Ser	Thr	Gln	Pro	Ser	Thr	Ala	Gly	Met	Lys	Trp	Cys	Leu	Pro	Phe
															35
															40
His	Leu	Leu	Cys	Arg	Gly	Pro	Ser	Gly	Ser	Leu	Ser	Ala	Pro	Pro	Ala
															50
															55
Ala	Ser	Val	Ile	Ser	Ala	Pro	Pro	Ser	Ser	Ser	Arg	His	Arg	Lys	
															65
															70
Arg	Arg	Arg	Thr	Ser	Ser	Lys	Ser	Glu	Ala	Gly	Ala	Arg	Gly	Gly	
															85
Gln	Gly	Ser	Lys	Glu	Lys	Gly	Arg	Gly	Ser	Trp	Gly	Gly	Arg	His	His
															100
															105
His	His	His	Pro	Leu	Pro	Ala	Ala	Gly	Phe	Lys	Lys	Gln	Gln	Arg	Lys
															115
															120
Phe	Gln	Tyr	Gly	Asn	Tyr	Cys	Lys	Tyr	Tyr	Gly	Arg	Asn	Pro	Ser	
															130
															135
Cys	Glu	Asp	Gly	Arg	Leu	Arg	Val	Leu	Lys	Pro	Glu	Trp	Phe	Gly	
															145
															150
Arg	Asp	Val	Leu	Asp	Leu	Gly	Cys	Asn	Val	Gly	His	Leu	Thr	Leu	Ser
															165
															170
Ile	Ala	Cys	Lys	Trp	Gly	Pro	Ser	Arg	Met	Val	Gly	Leu	Asp	Ile	Asp
															180
															185
Ser	Arg	Leu	Ile	His	Ser	Ala	Arg	Gln	Asn	Ile	Arg	His	Tyr	Leu	Ser
															195
															200
Glu	Glu	Leu	Arg	Leu	Pro	Pro	Gln	Thr	Leu	Glu	Gly	Asp	Pro	Gly	Ala
															210
															215
Glu	Gly	Glu	Gly	Thr	Thr	Thr	Val	Arg	Lys	Arg	Ser	Cys	Phe	Pro	
															225
															230
Ala	Ser	Leu	Thr	Ala	Ser	Arg	Gly	Pro	Ile	Ala	Ala	Pro	Gln	Val	Pro
															245
															250
Leu	Asp	Gly	Ala	Asp	Thr	Ser	Val	Phe	Pro	Asn	Asn	Val	Val	Phe	Val
															260
															265
Thr	Gly	Asn	Tyr	Val	Leu	Asp	Arg	Asp	Asp	Leu	Val	Glu	Ala	Gln	Thr
															275
															280
Pro	Glu	Tyr	Asp	Val	Val	Leu	Cys	Leu	Ser	Leu	Thr	Lys	Trp	Val	His
															290
															295
Leu	Asn	Trp	Gly	Asp	Glu	Gly	Leu	Lys	Arg	Met	Phe	Arg	Arg	Ile	Tyr
															305
															310
Arg	His	Leu	Arg	Pro	Gly	Gly	Ile	Leu	Val	Leu	Glu	Pro	Gln	Pro	Trp
															325
															330
Ser	Ser	Tyr	Gly	Lys	Arg	Lys	Thr	Leu	Thr	Glu	Thr	Ile	Tyr	Lys	Asn
															340
															345
Tyr	Tyr	Arg	Ile	Gln	Leu	Lys	Pro	Glu	Gln	Phe	Ser	Ser	Tyr	Leu	Thr
															355
															360
Ser	Pro	Asp	Val	Gly	Phe	Ser	Ser	Tyr	Glu	Leu	Val	Ala	Thr	Pro	His
															370
															375
Asn	Thr	Ser	Lys	Gly	Phe	Gln	Arg	Pro	Val	Tyr	Leu	Phe	His	Lys	Ala
															385
															390
Arg	Ser	Pro	Ser	His											405

<210> 6107
<211> 896
<212> DNA
<213> Homo sapiens

<400> 6107
nnaaatttga cccgcacagt gatgaggcca gggctggag ggaggcaggg tctatcctca
60
gatctcaggg gggctctgg actgcgtctg cctgcacctg ctgtctttt gggcaggcct
120
tggatgtcaa ggagatgctc aaggctggc tcaacaccac ccccagctcc agcctcccc
180
gtggagtctc cccgacacctc acccgccctt tcagccttct catcattacc ctctgatgga
240
tgggggagtt cagttggctc ggggtgcct tggcctgcca ccaggtggc cacatgcccc
300
aggtgtggaga cggatgtgtc gcgtgtgac acaatagcgc ccaggagctg gttgttaccg
360
ctgtctgtcta cgttagtgata gagccaagct aggaccaagg ctgttatcag caccaccaca
420
cctgccacca ccatcacccctc attacccaca ccctcaatga gggtgacatc agtgacccccc
480
ttagccgacc ctactcctca ctggccggga caactggct tatcacggag gctggggcca
540
ggcagccctt cggttcgggt gggcccgac cccagtccaa cggcgaggga ataggaccat
600
ccaaaagcgg aaccttcgccc tcagaaaaag ggtgcgggac ccctcctcac cgtgcggta
660
cggtacggac agggtagatc acaggctgag ggacagagca aagacccctg aggcccggaca
720
cctggggtcc tgccggggccc ctccccacga gagttccctg tgtctgtgcc aatcgtttc
780
gtctttcttt gccgcagttt cttttctgt aaatcatggt taatgacatt aaccttctta
840
ccatcagggg ttagttgtgg ttgtgataaa taattactac cgttattaag caattg
896

<210> 6108
<211> 124
<212> PRT
<213> Homo sapiens

<400> 6108
Xaa Asn Leu Thr Arg Thr Val Met Arg Pro Gly Leu Gly Gly Arg Gln
1 5 10 15
Gly Leu Ser Ser Asp Leu Arg Gly Ala Ser Gly Leu Leu Leu Pro Ala
20 25 30
Pro Ala Cys Leu Leu Gly Arg Pro Trp Met Ser Arg Arg Cys Ser Arg
35 40 45
Leu Gly Ser Thr Pro Pro Pro Ala Pro Ala Ser Pro Val Glu Ser Pro
50 55 60
Arg Pro Ser Pro Ala Ser Ser Ala Phe Ser Ser Leu Pro Ser Asp Gly
65 70 75 80
Trp Gly Ser Ser Val Gly Ser Gly Leu Pro Trp Pro Ala Thr Arg Trp

85	90	95
Ser Thr Cys Pro Arg Trp Arg Thr Asp Val Ser Pro Ala Asp Thr Ile		
100	105	110
Ala Pro Arg Ser Trp Leu Leu Pro Leu Ser Ala Thr		
115	120	

<210> 6109
<211> 2087
<212> DNA
<213> *Homo sapiens*

<400> 6109
aggccggaag cgcgccggaga ccatgttagtg agaccctcgc gaggctctgag agtcaactggaa
60
gctaccagaa gcatcatggg gccctgggga gagccagac tcctgggttg ggcggccggag
120
ggtagcttca gagcctccag tgccctgtggg gctggaggtg aagttggggg ccctgggtgt
180
gtgtgtggtc tcaccctct ctgcagcctg gtgcggatct gtgtgtgtcgccggccagga
240
gctaaccatg aaggctcagc ttccccccag aaagccctga gcctagtaag ctgtttcgcg
300
ggggggcgctct ttttggccac ttgtctctg gacctgtgtc ctgactacct ggctgccata
360
gatgaggccc tggcagccctt gcacgtgacg ctccagttcc cactgcaaga gttcatcttg
420
gcccattggct tcttccttggt cctgggtatg gaggcgtatca cactggctta caaggagcag
480
tcagggccgt cacctcttggaa gaaacaagg gctctgtgtt gaacagtggaa tggtggggccg
540
cagcattggc atgatgggcc aggggtccca caggcgagtg gagccccccgc aacccttc
600
gccttgcgtg cctgtgtact ggtgttctcc ctggccctcc actccgtgtt cgagggggctg
660
gcggtagggc tgcagcgaga ccgggctcgg gccatggagc tgtgccttggc tttgtgtct
720
cacaaaggcca tccctggctgtt cagcctgtcc ctggggctgt tgcagagcca ccttagggca
780
cagggtggtgg ctggctgtgg gatccttcc tcatgtatgtt cacctcttgg catccggctg
840
ggtcgcgttc tggcagatgc ggcaggaccc tgcaccaggc tggcccgatc tggctgtatgt
900
ggcatggcag ctggcacctt tctctatatac acctttctgg aaatcctggcc ccaggagctg
960
gccagttctg agcaaaggat cctcaaggatc attctgttcc tagcaggatc tgcctgtct
1020
actggccctgc tcttcatcca aatcttagggg gcttcaagag aggggcaggag gagattgtat
1080
atcagggtgcc cctgttctcc ctcccttcc ccagttgtgg ggaataggaa ggaaaggggaa
1140
aggaaaatac tgaggaccaaa aaagttctct gggagctaaa gatagagctt ttggggcttat
1200
ctgactaatg agagggaaatg gggcagacaa gaggctggcc ccagtcccaa ggaacaagag
1260

atggtaagt cgctagagac atatcagggg acattaggat tggggaaagac acttgactgc
 1320
 tagaatcaga gggtggacac tatacataag gacaggctca catgggaggg tggaggtgg
 1380
 taccctagtc ctgttggaaac ggtatggaga ggtcataaac ctagagtca tgccctgttg
 1440
 gtcctagccc atttcagcac cctgccactt ggagtggacc ctcctactc ttcttagcgc
 1500
 ctaccctcat accttatctcc ctccctccat ctccctagggg actggcgcca aatggctct
 1560
 ccctgccaat ttttgtatct tctctggcct ctccagtcct gcttactcct ctattttaa
 1620
 agtgcacaaac aaatccccctt cctctttctc aaagcacagt aatgtggcac tgagccctac
 1680
 ccagcaccc tc agtgaagggg gcctgcttc tctttatttt ggtcccgat cctggggtgg
 1740
 ggcagaaata ttttctgggc tggggtagga ggaagggtgt tgcagccatc tactgctgt
 1800
 gtaccctagg aatatggga catggacatg gtgtcccatg cccagatgt aaacactgag
 1860
 ctgcacaaac attttttaa atacacccga ggagccaaag gggaaaggc aatgcctacc
 1920
 cccagcgtta ttttggga gggagggctg tgcataggga catattctt agaatctatt
 1980
 ttatcaaactg acctgttttggacactgtta cccaaataaa agatgtttct agacatctgt
 2040
 aaaaaaaaaaaa aaaaaaaaaaaa aaaaaaaaaaaa aaaaaaaaaaaa aaaaaaaaaaaa
 2087

<210> 6110
 <211> 323
 <212> PRT
 <213> Homo sapiens

Met	Gly	Pro	Trp	Gly	Glu	Pro	Glu	Leu	Leu	Val	Trp	Arg	Pro	Glu	Gly
1					5			10				15			
Ser	Phe	Arg	Ala	Ser	Ser	Ala	Cys	Gly	Ala	Gly	Gly	Glu	Val	Gly	Gly
								20				25			30
Pro	Gly	Ala	Ala	Ala	Gly	Leu	Thr	Leu	Leu	Cys	Ser	Leu	Val	Pro	Ile
								35				40			45
Cys	Val	Leu	Arg	Arg	Pro	Gly	Ala	Asn	His	Glu	Gly	Ser	Ala	Ser	Arg
								50				55			60
Gln	Lys	Ala	Leu	Ser	Leu	Val	Ser	Cys	Phe	Ala	Gly	Gly	Val	Phe	Leu
								65				70			75
Ala	Thr	Cys	Leu	Leu	Asp	Leu	Leu	Pro	Asp	Tyr	Leu	Ala	Ile	Asp	
								85				90			95
Glu	Ala	Leu	Ala	Ala	Leu	His	Val	Thr	Leu	Gln	Phe	Pro	Leu	Gln	Glu
								100				105			110
Phe	Ile	Leu	Ala	Met	Gly	Phe	Phe	Leu	Val	Leu	Val	Met	Glu	Gln	Ile
								115				120			125
Thr	Leu	Ala	Tyr	Lys	Glu	Gln	Ser	Gly	Pro	Ser	Pro	Leu	Glu	Glu	Thr
								130				135			140
Arg	Ala	Leu	Leu	Gly	Thr	Val	Asn	Gly	Pro	Gln	His	Trp	His	Asp	

145	150	155	160
Gly Pro Gly Val Pro Gln Ala Ser Gly Ala Pro Ala Thr Pro Ser Ala			
165	170	175	
Leu Arg Ala Cys Val Leu Val Phe Ser Leu Ala Leu His Ser Val Phe			
180	185	190	
Glu Gly Leu Ala Val Gly Leu Gln Arg Asp Arg Ala Arg Ala Met Glu			
195	200	205	
Leu Cys Leu Ala Leu Leu Leu His Lys Gly Ile Leu Ala Val Ser Leu			
210	215	220	
Ser Leu Arg Leu Leu Gln Ser His Leu Arg Ala Gln Val Val Ala Gly			
225	230	235	240
Cys Gly Ile Leu Phe Ser Cys Met Thr Pro Leu Gly Ile Gly Leu Gly			
245	250	255	
Ala Ala Leu Ala Glu Ser Ala Gly Pro Leu His Gln Leu Ala Gln Ser			
260	265	270	
Val Leu Glu Gly Met Ala Ala Gly Thr Phe Leu Tyr Ile Thr Phe Leu			
275	280	285	
Glu Ile Leu Pro Gln Glu Leu Ala Ser Ser Glu Gln Arg Ile Leu Lys			
290	295	300	
Val Ile Leu Leu Leu Ala Gly Phe Ala Leu Leu Thr Gly Leu Leu Phe			
305	310	315	320
Ile Gln Ile			

<210> 6111
<211> 1706
<212> DNA
<213> Homo sapiens

<400> 6111
nnagatctgc ctgcctctct gccccaaag tggggatt acagggtgtga gccactgctc
60
ccagccaaga aattctttat atgtagatac tattttcttg tcaagttcag atgttggaaa
120
taacttgcca ttgttcatt ctgtcttg ttgtttca tataatagaat atccccaa
180
tgttttatat ctttatgtc tttttttgt ttgtttgt ttttgagatg gagtttcct
240
cttggccc aggctggagt gnagtggcac agtctcggt cactgcaacc tccacttct
300
gggttcaagc agttctcggt ccgcagcctc ccaagtagct gggactacag gcatgcgcca
360
ccacgcccagg ctaattttt tatttttagt agagatgggg ttccaccatg ttggccgggc
420
tggtctcaaa ctccgtacct caggcgatcc acccacctca gcgtcccaa gtgctggat
480
tataggcggt agccacccgca cctggcttat gaggatgtt ttaatttagga acaaatctaa
540
tggaaaggag agttgactga agttggccca caggattgtg agctgggcag tgccttcatg
600
aaggcttgcc accttgggac gccccagttt actggggtgtt cttgcggagt gcagaaggct
660
ttctggcagc tgcctgggtt tggccagacc ctgcctcccc tcccgccggc caacccttag
720

tcccccttct gtctccactt gcattcaggg gtggctgctg ttctgagaac attagaactg
 780
 ggaagagaga tggagtaca tggatttttgcgtggcatta ttctgaactt tcgtatccaa
 840
 gtttagtcccc cttattccac tgtggcatttgcgtttcaag cagttacctg atgcctgctg
 900
 ctgaagagct gtcacacagga ggccggcgccg gcccctggcac tgccccctgc attaggctt
 960
 gtgtttgatg tttttttgtt aatttacttt gtcagaacaa aatatttacg cgttgggttc
 1020
 aggaatttctt ttttagctccc catctggctg taaaattcag gaaacctccc gttgcctagt
 1080
 aatcaccacca tgttaggtgta cattgtgaca aagtgcacatc gaccactaag gggccccctt
 1140
 ggtgacccca gcacattcac agcagtgtta aaatggcctg cattttggag atgctggctg
 1200
 gcctttcagt gcctccagg aagacacatg gcctttccctt cttcagatgc ctgaagggag
 1260
 tgctttgagg caggtgtatgt gctggagtg tggcggccct ccctctggcc ccggggccct
 1320
 ctgtggaccc tggctccctc cgtggacctg ggcttcgtgg tgagcactgc agcctccctg
 1380
 ggcattccctt ccagcgcac caccactgca acatataagac ctgagtgtca ttgtatTTT
 1440
 gcttgggtgt tatgcttttcc atttgttaaa attgctgttc ttttgcataat ttaagtgtt
 1500
 gttttgtta ctgttaagttt gaaaataaaaa atgaagaaaaaaa aaaattccaa tgactgtgt
 1560
 gtgggtggag actttatTTT ccaagatgtt tacttttctt ttccccctcc attttggagga
 1620
 gctgtgtcac tccctccccc ccccaagtgtctt ttgtgtctc tccatgtca taataaagct
 1680
 acattttctc tgaaaaaaaaaaaa
 1706

<210> 6112
 <211> 110
 <212> PRT
 <213> Homo sapiens

<400> 6112
 Met Ser Leu Phe Cys Phe Val Leu Phe Leu Arg Trp Ser Phe Pro Leu
 1 5 10 15
 Val Ala Gln Ala Gly Val Xaa Trp His Ser Leu Gly Ser Leu Gln Pro
 20 25 30
 Pro Leu Pro Gly Phe Lys Gln Phe Ser Cys Arg Ser Leu Pro Ser Ser
 35 40 45
 Trp Asp Tyr Arg His Ala Pro Pro Arg Gln Ala Asn Phe Cys Ile Phe
 50 55 60
 Ser Arg Asp Gly Val Ser Pro Cys Trp Pro Gly Trp Ser Gln Thr Pro
 65 70 75 80
 Asp Leu Arg Arg Ser Thr His Leu Ser Val Pro Lys Cys Trp Asp Tyr
 85 90 95
 Arg Arg Glu Pro Pro His Leu Ala Tyr Glu Trp Ser Phe Asn

100

105

110

<210> 6113
<211> 1095
<212> DNA
<213> Homo sapiens

<400> 6113
nnccggccgc aacgcateccc tgcgtccgcgac gacactgcgt gccccgcgcac gcagagaggc
60
ggtgacgcac tttacggcg cagcgtaagt gcgtgacgct cgtcagtggc ttca gttcac
120
acgtggcgcc agcggaggca ggttgatgtg tttgtgcttc cttctacagc caatatgaaa
180
aggccttagta agtggggtcg ggaggcgccg gtggaggac ccacgtctgg aagttgctgc
240
agccaccacg acgctcttc acggctacgg ctgggtctct gctggatgg ggggtggagc
300
atacgcgtag gccttggccc tatttcctgg tagaaccgag agttgaaagt ccctacggcg
360
atcatgttaa ccgcgcgggc tcattctgcg gaacgaagcc gggcagaggg tggggaaagac
420
taggcttagat tttcgtaagg aagcagegtc tgagccaggt ttgaggccca atattttctt
480
tccgtggcca cgtcagact ggcgcagggtg agagctgaga atcgctccc agactcagtg
540
ttcctctcct gccttatgtat tcgtgtgtt tgacacgaag tgggtgtcg tttgtgtc
600
atacgctgtt gtgtatgatc ccattctaat attgtgaggg taagtgcagg gaattttgac
660
tccattctgg atctactgaa ttaattctc tggatttga aagtagcactg tatgtttgca
720
ttaggcattt cgcatagac ttaacgttag gtttggtagc caataacaca agaaaaggat
780
ataactccat agtgcgttaa cccagaacta atcatttggg ttaacagatt tgtgatgtgt
840
ttctttgttag agttaaagaa agcaagtaaa cgcatgacct gccataagcg gtataaaatc
900
caaaaaaagg ttcgagaaca tcatcgaaaa ttaagaaagg aggctaaaaa gcggggtcac
960
aagaaggccta gaaaaagaccc aggagttcca aacagtgtc cctttaagga ggctcttctt
1020
gaggaagctg agctaaggaa acagaggctt gaagaactaa aacagcagca gaaacttgac
1080
aggcagaagg aacta
1095

<210> 6114
<211> 87
<212> PRT
<213> Homo sapiens

<400> 6114
Met Cys Phe Phe Val Glu Leu Lys Lys Ala Ser Lys Arg Met Thr Cys

1	5	10	15
His Lys Arg Tyr Lys Ile Gln Lys Lys Val Arg Glu His His Arg Lys			
20	25	30	
Leu Arg Lys Glu Ala Lys Lys Arg Gly His Lys Lys Pro Arg Lys Asp			
35	40	45	
Pro Gly Val Pro Asn Ser Ala Pro Phe Lys Glu Ala Leu Leu Glu Glu			
50	55	60	
Ala Glu Leu Arg Lys Gln Arg Leu Glu Glu Leu Lys Gln Gln Gln Lys			
65	70	75	80
Leu Asp Arg Gln Lys Glu Leu			
85			

<210> 6115

<211> 411

<212> DNA

<213> Homo sapiens

<400> 6115

gcgcgcctgg cccgcagg gcctaagttc cctgcactcg cttccccgcc tgtcgccgccc
60
gccgcgcgcc gcagccctcc ttctcggtgg cgctggggaa gaaaactcgtc ggcgggtcta
120
actgtggcgt cccaggcgg tggagggagc aacttcgggg gcacgtcctc gttaatcccg
180
tggaggacac tgaccctgta ccccacccctc gagggcagaa gtcggttctt ttgggggaac
240
tgagggcga gagcactcgc cccctgact tgcaaagttg gcgtctttac ttggcctccg
300
ggattctgca catggcgtgt ctccaggctg ctgatggca agacagatgt gccaggtcca
360
gaatgaacctt gagaagagtt ttagccatt cctgaatcac cttatactag t
411

<210> 6116

<211> 129

<212> PRT

<213> Homo sapiens

<400> 6116

Met Ala Thr Asn Ser Ser Gln Val His Ser Gly Pro Gly Thr Ser Val			
1	5	10	15
Leu Pro Ile Ser Ser Leu Glu Thr Arg His Ala Gln Asn Pro Gly Gly			
20	25	30	
Gln Val Lys Thr Pro Thr Leu Gln Val Arg Gly Ala Ser Ala Leu Ala			
35	40	45	
Pro Gln Phe Pro Gln Arg Asn Arg Leu Leu Ala Ser Arg Val Gly Tyr			
50	55	60	
Arg Val Ser Val Leu His Gly Ile Tyr Glu Asp Val Pro Pro Lys Leu			
65	70	75	80
Leu Pro Pro Pro Trp Asp Ala Thr Val Arg Pro Ala Asp Glu Phe			
85	90	95	
Leu Pro Gln Arg Pro Arg Glu Gly Leu Arg Ala Ala Ala Ala Ala			
100	105	110	
Thr Gly Gly Glu Ala Ser Ala Gly Asn Leu Gly Pro Gly Gly Ala Arg			

115 120 125
Arg

```

<210> 6117
<211> 962
<212> DNA
<213> Homo sapiens

<400> 6117
cttccgcctt ccccaagcca acgtctccgc cgtcggtcgc gggcgccgc catggccgac
60
gtggaagacg gagagggaaac ctgcgcctg gcctctact ccgggagctc aggctccaag
120
tcggaggcg acaagatgtt ctccctcaag aagtggAACG cggtggccat gtggagctgg
180
gacgtggagt gcgatacgtg cgccatctgc agggtccagg tcatggatgc ctgtcttaga
240
tgtcaagctg aaaacaaaca agaggactgt gttgtggctt ggggagaatg taatcattcc
300
ttccacaact gctgcattgtc cctgtgggtg aaacagaaca atcgctgcc tctctgccag
360
caggactggg tggtccaaag aatccggaaa tgagagtgg tagaaggctt ctttagcgcag
420
ttgttcagag ccctgggtga tctttaatc cagtgcctta caaaggctag aacactacag
480
gggatgaatt ctcaaatag gagccgatgg atctgtggc ctttggact catcaaagcc
540
ttggtttagc attttgtcag ttttatcttc agaaattctc tgcgattaag aagataattt
600
attnaagggtg gtccctccta cctctgtggt gtgtgtcgac cacacagctt agaagtgtca
660
taaaaaagga aagagctcca aattgaatca cctttataat ttacccatctt ctataacaaca
720
ggcagtggaa gcagtttcag agaactttt gcatgctt ggttgatcag ttaaaaaaaga
780
atgttacagt aacaaataaa gtgcagttt aaccccaact ctactctt atttgttcct
840
aatacgtatt ttggcaggg agagggaaacg gtccatgaaa tctttatgtg atataaggat
900
tttaagtttg ggccagtgaa caggtaaat aaaatttaac ttttgagcat aaaaaaaaaaa
960
aa
962

<210> 6118
<211> 113
<212> PRT
<213> Homo sapiens

<400> 6118
Met Ala Asp Val Glu Asp Gly Glu Glu Thr Cys Ala Leu Ala Ser His
1                    5                    10                    15
Ser Gly Ser Ser Gly Ser Lys Ser Gly Gly Asp Lys Met Phe Ser Leu

```

20	25	30
Lys Lys Trp Asn Ala Val Ala Met	Trp Ser Trp Asp Val Glu Cys Asp	
35	40	45
Thr Cys Ala Ile Cys Arg Val Gln	Val Met Asp Ala Cys Leu Arg Cys	
50	55	60
Gln Ala Glu Asn Lys Gln Glu Asp Cys	Val Val Val Trp Gly Glu Cys	
65	70	75
Asn His Ser Phe His Asn Cys Cys Met	Ser Leu Trp Val Lys Gln Asn	
85	90	95
Asn Arg Cys Pro Leu Cys Gln Gln Asp	Trp Val Val Gln Arg Ile Gly	
100	105	110

Lys

<210> 6119
<211> 375
<212> DNA
<213> Homo sapiens

<400> 6119
accggttgac aacctcccta tggggaaagct agatacagcc ccatggacat gccccactga
60
cccccacacc ccacacggac tgcacggaaa tatcacagta accatctctc agtcacagcg
120
tggccccaca gaactcatgc ctgcttgctt taaacccacc aatgaaaact ccccatggga
180
aacctgcttg gataatactt tggaccccaa taaatgcttt aatcccacaa gtccctgtc
240
tctgcctctc tcttgccctt acccactggt tgagcatgtg tgtcccaaac ggccctgcaa
300
ggtgtgctgc cctgttcttt ctgggctctg tcaaggaatc aaactgcttc tgttatgtga
360
tgtgtcatgt tgtgc
375

<210> 6120
<211> 118
<212> PRT
<213> Homo sapiens

<400> 6120
Met Gly Lys Leu Asp Thr Ala Pro Trp Thr Cys Pro Thr Asp Pro His
1 5 10 15
Thr Pro His Gly Leu His Gly Asn Ile Thr Val Thr Ile Ser Gln Ser
20 25 30
Gln Arg Gly Pro Thr Glu Leu Met Pro Ala Cys Phe Lys Pro Thr Asn
35 40 45
Glu Asn Ser Pro Trp Glu Thr Cys Leu Asp Asn Thr Leu Asp Pro Asn
50 55 60
Lys Cys Phe Asn Pro Thr Ser Pro Leu Ser Leu Pro Leu Ser Cys Pro
65 70 75 80
Tyr Pro Leu Val Glu His Val Cys Pro Lys Arg Pro Cys Lys Val Cys
85 90 95
Cys Pro Val Leu Ser Gly Leu Cys Gln Gly Ile Lys Leu Leu Leu

100	105	110
Cys Asp Val Ser Cys Cys		
115		

<210> 6121
<211> 1039
<212> DNA
<213> Homo sapiens

<400> 6121
gacggAACGG cggtggTggc ccgcggaccg gacggggcac tatgaacgaa gaggagcagt
60
ttgttaaacat tgatttgaat gatgacaaca tttgcagtgt ttgttaactg ggaacagaca
120
aagaaacact ctccctctgc cacatttgtt ttgagctaaa tattgagggg gtaccaaagt
180
ctgatctctt gcacaccaaa tcattaaggg gccataaaaga ctgctttgaa aaataccatt
240
taatttgc当地 ccagggttgt cctcgatcta agctttcaaa aagtacttat gaagaagtta
300
aaaccatccc gagtaagaag ataaactgga ttgtgcagta tgcacaaaat aaggatctgg
360
attcagatTC tgaatgttct aaaaagcccc agcatcatct gtttaatttc aggataaggc
420
cagaagaaaa attactccca cagtttgagt cccaaatgtacc aaaatattct gcaaaatgga
480
tagatggaaag tgcagggtggc atctctaact gtacacaaaag aattttggag cagagggaaa
540
atacagactt tggactttct atgttacaag attcagggtgc cactttatgt cgtaacagt
600
tatttggcc tcatagtcac aaccaggcac agaaaaaaaga agagacaatc tctagtc
660
aggctaatgt ccagaccag catccacatt acagcagaga ggaataagtt tttgaagagt
720
taactcacca agtgc当地 aaagattttt tggcctcaca gctccatgtc cgccacgtt
780
ccatcgaca a gcttctgaag aactgttctta agttaccatg tctgcaagta gggcgaacag
840
gaatgaagtc gcacctaccc ataaacaact gacctaaaca gacttacttc gtatgccctg
900
ccctttatgt gtctccaga catgcaaact ttgaagaagt ttgaagaaaat ttgtggcc
960
ttttttatgt gtcattaaat ttgc当地 aca taaggcagta tttaacatct ttgtcaaata
1020
aagcagatca ttatactct
1039

<210> 6122
<211> 221
<212> PRT
<213> Homo sapiens

<400> 6122
Met Asn Glu Glu Glu Gln Phe Val Asn Ile Asp Leu Asn Asp Asp Asn

1	5	10	15
Ile Cys Ser Val Cys Lys Leu Gly Thr Asp Lys Glu Thr Leu Ser Phe			
20	25	30	
Cys His Ile Cys Phe Glu Leu Asn Ile Glu Gly Val Pro Lys Ser Asp			
35	40	45	
Leu Leu His Thr Lys Ser Leu Arg Gly His Lys Asp Cys Phe Glu Lys			
50	55	60	
Tyr His Leu Ile Ala Asn Gln Gly Cys Pro Arg Ser Lys Leu Ser Lys			
65	70	75	80
Ser Thr Tyr Glu Glu Val Lys Thr Ile Leu Ser Lys Lys Ile Asn Trp			
85	90	95	
Ile Val Gln Tyr Ala Gln Asn Lys Asp Leu Asp Ser Asp Ser Glu Cys			
100	105	110	
Ser Lys Lys Pro Gln His His Leu Phe Asn Phe Arg His Lys Pro Glu			
115	120	125	
Glu Lys Leu Leu Pro Gln Phe Glu Ser Gln Val Pro Lys Tyr Ser Ala			
130	135	140	
Lys Trp Ile Asp Gly Ser Ala Gly Gly Ile Ser Asn Cys Thr Gln Arg			
145	150	155	160
Ile Leu Glu Gln Arg Glu Asn Thr Asp Phe Gly Leu Ser Met Leu Gln			
165	170	175	
Asp Ser Gly Ala Thr Leu Cys Arg Asn Ser Val Leu Trp Pro His Ser			
180	185	190	
His Asn Gln Ala Gln Lys Lys Glu Glu Thr Ile Ser Ser Pro Glu Ala			
195	200	205	
Asn Val Gln Thr Gln His Pro His Tyr Ser Arg Glu Glu			
210	215	220	

<210> 6123

<211> 900

<212> DNA

<213> Homo sapiens

<400> 6123

ntgcatgcct gtataccaca gctactcgaa aggctgaggc gggagaatcg cttgaaccca
 60
 ggaggcggag gttgcggta gctgagatcg caccattgca ctccagcctg ggcaacaaga
 120
 gcgaaacaac aagagaaaaaa aaaggaagct gccctctgcc caaaacccac gtcgaggtcc
 180
 ccaaacctgg gacccttagg tctttctca cttagcgtgc ccaaccttct cctggcagga
 240
 aacaaggctc caggtctgct tcccccaaaa ggactataca tggcaaatga cttaaagctc
 300
 ctgagacacc atctccagat tcccatccac ttcccaagg atttcttgc tgtgatgctt
 360
 gaaaaaggaa gtttgtctgc catgcgtttc ctcaccgccc tgaacttggaa gcatccagag
 420
 atgctggaga aagcgtcccg ggagctgtgg atgcgctct ggtcaagggt gagtgtgggg
 480
 ctctggaaat cctctggag gaccttggat gactttctga cttccccag gcacgtttc
 540
 agggtcatga tcctgcccccc gccccggggga tctactgtcc tcccagtcaac acccctctcc
 600

ccgcacccgc ttcctgttgt cttctttct tcccagaatg aagacatcac cgagccgcag
 660
 agcattcctgg cggctgcaga gaaggctggt atgtctgcag aacaagccca gggacttctg
 720
 gaaaagatcg caacgccaa ggtgaagaac cagctcaagg agaccactga ggcagcctgc
 780
 agatacggag cttttggct gcccatcacc gtggcccatg tggatggcca aacccacatg
 840
 ttatggct ctgaccggat ggagctgctg gcgcacctgc tggagagaaa gtggatggc
 900

<210> 6124

<211> 300

<212> PRT

<213> Homo sapiens

<400> 6124

Xaa	His	Ala	Cys	Ile	Pro	Gln	Leu	Leu	Gly	Arg	Leu	Arg	Arg	Glu	Asn	
1																
														15		
Arg	Leu	Asn	Pro	Gly	Gly	Gly	Cys	Gly	Glu	Leu	Arg	Ser	His	His		
														20	30	
Cys	Thr	Pro	Ala	Trp	Ala	Thr	Arg	Ala	Lys	Gln	Gln	Glu	Lys	Lys		
														35	45	
Glu	Ala	Ala	Leu	Cys	Pro	Lys	Pro	Thr	Ser	Arg	Ser	Pro	Asn	Leu	Gly	
														50	60	
Pro	Leu	Gly	Leu	Phe	Ser	Leu	Ser	Val	Pro	Asn	Leu	Leu	Leu	Ala	Gly	
														65	80	
Asn	Lys	Pro	Pro	Gly	Leu	Leu	Pro	Arg	Lys	Gly	Leu	Tyr	Met	Ala	Asn	
														85	95	
Asp	Leu	Lys	Leu	Leu	Arg	His	His	Leu	Gln	Ile	Pro	Ile	His	Phe	Pro	
														100	110	
Lys	Asp	Phe	Leu	Ser	Val	Met	Leu	Glu	Lys	Gly	Ser	Leu	Ser	Ala	Met	
														115	125	
Arg	Phe	Leu	Thr	Ala	Val	Asn	Leu	Glu	His	Pro	Glu	Met	Leu	Glu	Lys	
														130	140	
Ala	Ser	Arg	Glu	Leu	Trp	Met	Arg	Val	Trp	Ser	Arg	Val	Ser	Val	Gly	
														145	160	
Leu	Trp	Glu	Ser	Ser	Gly	Arg	Thr	Leu	Asp	Asp	Phe	Leu	Thr	Phe	Pro	
														165	175	
Arg	His	Val	Phe	Arg	Val	Met	Ile	Leu	Pro	Pro	Gly	Gly	Ser	Thr		
														180	190	
Val	Leu	Pro	Val	Thr	Pro	Leu	Ser	Pro	His	Arg	Leu	Pro	Ala	Val	Phe	
														195	205	
Ser	Ser	Ser	Gln	Asn	Glu	Asp	Ile	Thr	Glu	Pro	Gln	Ser	Ile	Leu	Ala	
														210	220	
Ala	Ala	Glu	Ala	Gly	Met	Ser	Ala	Glu	Gln	Ala	Gln	Gly	Leu	Leu		
														225	240	
Glu	Lys	Ile	Ala	Thr	Pro	Lys	Val	Lys	Asn	Gln	Leu	Lys	Glu	Thr	Thr	
														245	255	
Glu	Ala	Ala	Cys	Arg	Tyr	Gly	Ala	Phe	Gly	Leu	Pro	Ile	Thr	Val	Ala	
														260	270	
His	Val	Asp	Gly	Gln	Thr	His	Met	Leu	Phe	Gly	Ser	Asp	Arg	Met	Glu	
														275	285	
Leu	Leu	Ala	His	Leu	Leu	Gly	Glu	Lys	Trp	Met	Gly					

290

295

300

<210> 6125
<211> 468
<212> DNA
<213> Homo sapiens

<400> 6125
nctacagtca ctcaggagaa gtcccgcatg gaggcttctt acttggctga caagaaaaag
60
atgaaacagg acttagagga tgccagtaac aaggcggagg aggagagggc ccgcctggag
120
ggagaattga aggggctgca ggagcaaata gcagaaacca aagccccgt tatcacgcag
180
cagcatgatc gggccaaga gcagagtac catgccttga tgctgcgtga gctccagaag
240
ctgctgcagg aggagaggac ccagcgcag gacttggagc ttaggttaga agagacccga
300
gaagccttgg caggacgagc atatgcagct gaacagatgg aaggatttga actgcagacc
360
aagcagctga cccgtgaggt ggaggagctg aaaagtgaac tgcaggccat tcgagatgag
420
aagaatcagc cagaccccg gctgcaagaa cttaggaag aggcccgc
468

<210> 6126
<211> 156
<212> PRT
<213> Homo sapiens

<400> 6126
Xaa Thr Val Thr Gln Glu Lys Ser Arg Met Glu Ala Ser Tyr Leu Ala
1 5 10 15
Asp Lys Lys Lys Met Lys Gln Asp Leu Glu Asp Ala Ser Asn Lys Ala
20 25 30
Glu Glu Glu Arg Ala Arg Leu Glu Gly Glu Leu Lys Gly Leu Gln Glu
35 40 45
Gln Ile Ala Glu Thr Lys Ala Arg Leu Ile Thr Gln Gln His Asp Arg
50 55 60
Ala Gln Glu Gln Ser Asp His Ala Leu Met Leu Arg Glu Leu Gln Lys
65 70 75 80
Leu Leu Gln Glu Glu Arg Thr Gln Arg Gln Asp Leu Glu Leu Arg Leu
85 90 95
Glu Glu Thr Arg Glu Ala Leu Ala Gly Arg Ala Tyr Ala Ala Glu Gln
100 105 110
Met Glu Gly Phe Glu Leu Gln Thr Lys Gln Leu Thr Arg Glu Val Glu
115 120 125
Glu Leu Lys Ser Glu Leu Gln Ala Ile Arg Asp Glu Lys Asn Gln Pro
130 135 140
Asp Pro Arg Leu Gln Glu Leu Gln Glu Glu Ala Ala
145 150 155

<210> 6127
<211> 1900

<212> DNA

<213> Homo sapiens

<400> 6127

gttccctgga ttacaggcca ggcantggag ataggcagcn ncagcctgac tatectggta
60
gaatgctggg atgggcacct gacaccccct gaggttgcat ccctggctga cagggcatca
120
cgggcaagag actccaatat ggtgagggcg gcagcagagc tggccctgag ctgcctgcct
180
cacgccccatg cattgaaccc taatgagatc cagcgggccc tggtgcatg caaggaacag
240
gacaacctga tgttggagaa ggcctgcatg gcagtggaaag aggtagctaa gggtggggc
300
gtgtaccctg aagtgttgtt tgaggttgc caccagtgt tctggctata tgagcaaact
360
gcaggtggct catccacacgc ccgtgaaggg gctacaagct gtatgtccag tgggatcagg
420
gcaggtgggg aagctggcg gggtatgcct gaggttagag ggggccagg gactgagccg
480
gttacagtgg cagcggcagc agtgacagca gcagccacag tggtgccctg catatcggtg
540
gggtctagtt tatacccccggg tccaggactg gggcatggcc actccctgg cctgcacccc
600
tacactgctc tacagccccca cctgcctgt agccctcagt atctcactca cccagctcac
660
cctgcccacc ccatgcctca catgccccgg cctgcccgtct tccctgtgcc cagctctgca
720
tacccacagg gtgtgcattc tgcatttcata gggctcagt acccttattc agtgactct
780
ccctcacttg ctgccactgc tgtgttttc cccgttcctt ccatggcacc catcacagta
840
catccctacc acacagagcc agggcttcca ctgcccacca gtgtggctg tgagttgtgg
900
ggccaggggaa cagtgagcag tgtccatcca gcatccacgt ttccagccat ccaagggtgcc
960
tcactgcctg ccctgaccac acagcccage cctctggta gcggagggtt tccaccggcc
1020
gaggaggaga cacacagtca gccagtcaat ccccacagcc tgcaccacact gcatgctgcc
1080
taccgtgtcg gaatgctggc actggagatg ctgggtcgcc gggcacacaa cgatcacccc
1140
aacaacttct cccgctcccc cccctacact gatgatgtca aatggttgtt ggggctggca
1200
gcaaagctgg gagtgaacta cgtgcaccag ttctgtgtgg gggcagccaa ggggggtgctg
1260
agcccgtttg tgctgcagga gatcgcatg gagacgctgc agcggctgag tcccgctcat
1320
gcccacaacc acctgcgtgc cccggcccttc caccaactgg tgcagcgtcg ccagcaggca
1380
tacatgcagt acatccacca ccgcttgatt cacctgactc ctgcggacta cgacgacttt
1440
gtgaatgcga tccggagtgc ccgcagcgcc ttctgcctga cgcccatggg catgatgcag
1500

ttcaacgaca tcctacagaa cctcaagcgc agcaaacaga ccaaggagct gtggcagcg
 1560
 gtctcaactcg agatggccac cttctccccc tgagtcttcc acccttaggg tcctatacag
 1620
 ggacccaggc ctgtggctat gggggccct cacacagggg gagtgaaact tggctggaca
 1680
 gatcatcctc actcagttcc ctggtagcac agactgacag ctgctttgg gctatacgctt
 1740
 ggggccaaga tgtctcacac cctagaagcc tagggctggg ggagacagcc ctgtctggga
 1800
 gggggcgttg ggtggctct ggtattttt tggcatttat aaatatataa actcctttt
 1860
 tactctagtc gacctggcc tttcccttct ttccaaattt
 1900

<210> 6128

<211> 530

<212> PRT

<213> Homo sapiens

<400> 6128
 Val Ser Trp Ile Thr Gly Gln Ala Xaa Glu Ile Gly Ser Xaa Ser Leu
 1 5 10 15
 Thr Ile Leu Val Glu Cys Trp Asp Gly His Leu Thr Pro Pro Glu Val
 20 25 30
 Ala Ser Leu Ala Asp Arg Ala Ser Arg Ala Arg Asp Ser Asn Met Val
 35 40 45
 Arg Ala Ala Ala Glu Leu Ala Leu Ser Cys Leu Pro His Ala His Ala
 50 55 60
 Leu Asn Pro Asn Glu Ile Gln Arg Ala Leu Val Gln Cys Lys Glu Gln
 65 70 75 80
 Asp Asn Leu Met Leu Glu Lys Ala Cys Met Ala Val Glu Glu Ala Ala
 85 90 95
 Lys Gly Gly Gly Val Tyr Pro Glu Val Leu Phe Glu Val Ala His Gln
 100 105 110
 Trp Phe Trp Leu Tyr Glu Gln Thr Ala Gly Gly Ser Ser Thr Ala Arg
 115 120 125
 Glu Gly Ala Thr Ser Cys Ser Ala Ser Gly Ile Arg Ala Gly Gly Glu
 130 135 140
 Ala Gly Arg Gly Met Pro Glu Gly Arg Gly Gly Pro Gly Thr Glu Pro
 145 150 155 160
 Val Thr Val Ala Ala Ala Ala Val Thr Ala Ala Ala Thr Val Val Pro
 165 170 175
 Val Ile Ser Val Gly Ser Ser Leu Tyr Pro Gly Pro Gly Leu Gly His
 180 185 190
 Gly His Ser Pro Gly Leu His Pro Tyr Thr Ala Leu Gln Pro His Leu
 195 200 205
 Pro Cys Ser Pro Gln Tyr Leu Thr His Pro Ala His Pro Ala His Pro
 210 215 220
 Met Pro His Met Pro Arg Pro Ala Val Phe Pro Val Pro Ser Ser Ala
 225 230 235 240
 Tyr Pro Gln Gly Val His Pro Ala Phe Leu Gly Ala Gln Tyr Pro Tyr
 245 250 255
 Ser Val Thr Pro Pro Ser Leu Ala Ala Val Ser Phe Pro Val

260	265	270
Pro Ser Met Ala Pro Ile Thr Val His Pro Tyr His Thr Glu Pro Gly		
275	280	285
Leu Pro Leu Pro Thr Ser Val Ala Cys Glu Leu Trp Gly Gln Gly Thr		
290	295	300
Val Ser Ser Val His Pro Ala Ser Thr Phe Pro Ala Ile Gln Gly Ala		
305	310	315
Ser Leu Pro Ala Leu Thr Thr Gln Pro Ser Pro Leu Val Ser Gly Gly		
325	330	335
Phe Pro Pro Pro Glu Glu Glu Thr His Ser Gln Pro Val Asn Pro His		
340	345	350
Ser Leu His His Leu His Ala Ala Tyr Arg Val Gly Met Leu Ala Leu		
355	360	365
Glu Met Leu Gly Arg Arg Ala His Asn Asp His Pro Asn Asn Phe Ser		
370	375	380
Arg Ser Pro Pro Tyr Thr Asp Asp Val Lys Trp Leu Leu Gly Leu Ala		
385	390	395
Ala Lys Leu Gly Val Asn Tyr Val His Gln Phe Cys Val Gly Ala Ala		
405	410	415
Lys Gly Val Leu Ser Pro Phe Val Leu Gln Glu Ile Val Met Glu Thr		
420	425	430
Leu Gln Arg Leu Ser Pro Ala His Ala His Asn His Leu Arg Ala Pro		
435	440	445
Ala Phe His Gln Leu Val Gln Arg Cys Gln Gln Ala Tyr Met Gln Tyr		
450	455	460
Ile His His Arg Leu Ile His Leu Thr Pro Ala Asp Tyr Asp Asp Phe		
465	470	475
Val Asn Ala Ile Arg Ser Ala Arg Ser Ala Phe Cys Leu Thr Pro Met		
485	490	495
Gly Met Met Gln Phe Asn Asp Ile Leu Gln Asn Leu Lys Arg Ser Lys		
500	505	510
Gln Thr Lys Glu Leu Trp Gln Arg Val Ser Leu Glu Met Ala Thr Phe		
515	520	525
Ser Pro		
530		

<210> 6129
<211> 2012
<212> DNA
<213> Homo sapiens

<400> 6129
ataggagcag tttcagtacc agcccgagta ggatggaatc aaacacgggtg ctggAACATT
60
cctaccggaa agtggccccg accccccctcc ccccggtcccg gcctcccacg cacgggggggg
120
gggggggggggg gggctgatcg ggcgtaccgg attggacaac ttggcatggg gcggggcctc
180
tgggaggcgt ggcctccggt cggtccctct gctgttgcca agggaaactg ccgcgaggag
240
gcggaaaggag cagaggacccg gcagccggcg tcgaggcggg gcgcgggaac gacggcggcc
300
atggcggccct cggggcccggt gtgtcgcaagc tggtgcttgt gtcccgaggt gccatccgccc
360

accttttca ctgcgttgt ctgcgtgctg gttccggc ctcgcctgtt cctgcgtcag
420
cagccccctgg cgccctcggg ctcacgctg aagtccgagg cccttcgcaa ctggcaagtt
480
tacaggctgg taacctacat ctttgtctac gagaatccca ttccttgtt ctgcggcgct
540
atcatcatct ggcgtttgc tggcaatttc gagagaaccg tgggcaccgt ccgccactgc
600
ttttcacccg tgatcttcgc catcttcctcc gctatcatct tcctgtcatt cgaggctgtg
660
tcatcactgt caaagctggg ggaagtggag gatgccagag gtttcacccc agtggccctt
720
gcccattgtgg gagtcaccac cgtccgttct cggatgaggc gggccctggt gtttggcatg
780
gttgcgtccct cagtcctggt tccgtggctc ctgctgggtg ctcgtggct cattccccag
840
accttttcc tcagtaatgt ctgcggctg tccatcgcc tggcctatgg ctcacccat
900
tgctattcca tcgaccccttc agagcgagtg gcgcgtgaagc tgcgtcagac cttcccttc
960
agcctgtatgc ggaggatatc cgtgtcaag tacgtctcag ggttttcagc cgagaggagg
1020
gcagccccaga gccggaaact gaaccgggtg cctggcttcc acccacaca gagctgccac
1080
cctcacctgt ccccaagcca ccctgtgtcc cagacgcagc acgccagtgg tcagaagctg
1140
gccttcgtgc ccttcgtcac ccccgccac atgcccaccc tgcctccgtt ccagcctggc
1200
tccggccctgt gctatgtca gaaccacttt ggtccaaacc ccaccccttc cagtgtctac
1260
ccagccctcg cgggcaccc cctggcatac cagccccccca cgcctgtgaa cagccccggc
1320
acgggtgtatt ctggggccctt gggcacacca ggggctgcag gctccaaggaa gtcctccagg
1380
gtccccatgc cctgagagaa ttcttagggaa agtcatctca cttggccttc tgaaggctt
1440
ccctaagagt ctccctgacaa aagttaactta ttgaacaccc ctatgtgccaa ggctctgtgt
1500
tgggtacttt gatcaatgcc cctgtttcag ttcatctgt actcacggca gcccgtgg
1560
gtacgggtgtt ctggcccagc ttacagatgc agaaaagcgag acgttctgcc atcagataaa
1620
gtcacgtggc ttcttagtaa cacggacaag gtcctcgcc aaggaactcg tggcagaaga
1680
gggcagcagt tggcagtagc tgccgatgtc tgcctccagg tccaccatcc ctccctgtgg
1740
ctgtggcgtg ctctgtggttt cagtgtccgt gtgtccatgt gtctggccctt caggagctcg
1800
cagctgggtgt gcttggcggt cccaggcctg tgcgttgtt ctccctgtt gccccccccc
1860
ccaccccgat tccctccccc agaagcggtg ggatggggccc ccatgaactg cagcagcatg
1920
ctgaggtgtc catgttgtt gctttgtat aaagaaaacag ctcctgaccc gaaaaaaaaaaaa
1980

aaaaaaaaaa aaaaaaaaaaa aaaaaaaaaaa aa
2012

<210> 6130
<211> 364
<212> PRT
<213> Homo sapiens

<400> 6130
Met Ala Ala Ser Gly Pro Gly Cys Arg Ser Trp Cys Leu Cys Pro Glu
1 5 10 15
Val Pro Ser Ala Thr Phe Phe Thr Ala Leu Leu Ser Leu Leu Val Ser
20 25 30
Gly Pro Arg Leu Phe Leu Leu Gln Gln Pro Leu Ala Pro Ser Gly Leu
35 40 45
Thr Leu Lys Ser Glu Ala Leu Arg Asn Trp Gln Val Tyr Arg Leu Val
50 55 60
Thr Tyr Ile Phe Val Tyr Glu Asn Pro Ile Ser Leu Leu Cys Gly Ala
65 70 75 80
Ile Ile Ile Trp Arg Phe Ala Gly Asn Phe Glu Arg Thr Val Gly Thr
85 90 95
Val Arg His Cys Phe Phe Thr Val Ile Phe Ala Ile Phe Ser Ala Ile
100 105 110
Ile Phe Leu Ser Phe Glu Ala Val Ser Ser Leu Ser Lys Leu Gly Glu
115 120 125
Val Glu Asp Ala Arg Gly Phe Thr Pro Val Ala Phe Ala Met Leu Gly
130 135 140
Val Thr Thr Val Arg Ser Arg Met Arg Arg Ala Leu Val Phe Gly Met
145 150 155 160
Val Val Pro Ser Val Leu Val Pro Trp Leu Leu Leu Gly Ala Ser Trp
165 170 175
Leu Ile Pro Gln Thr Ser Phe Leu Ser Asn Val Cys Gly Leu Ser Ile
180 185 190
Gly Leu Ala Tyr Gly Leu Thr Tyr Cys Tyr Ser Ile Asp Leu Ser Glu
195 200 205
Arg Val Ala Leu Lys Leu Asp Gln Thr Phe Pro Phe Ser Leu Met Arg
210 215 220
Arg Ile Ser Val Phe Lys Tyr Val Ser Gly Ser Ser Ala Glu Arg Arg
225 230 235 240
Ala Ala Gln Ser Arg Lys Leu Asn Pro Val Pro Gly Ser Tyr Pro Thr
245 250 255
Gln Ser Cys His Pro His Leu Ser Pro Ser His Pro Val Ser Gln Thr
260 265 270
Gln His Ala Ser Gly Gln Lys Leu Ala Ser Trp Pro Ser Cys Thr Pro
275 280 285
Gly His Met Pro Thr Leu Pro Pro Tyr Gln Pro Ala Ser Gly Leu Cys
290 295 300
Tyr Val Gln Asn His Phe Gly Pro Asn Pro Thr Ser Ser Ser Val Tyr
305 310 315 320
Pro Ala Ser Ala Gly Thr Ser Leu Gly Ile Gln Pro Pro Thr Pro Val
325 330 335
Asn Ser Pro Gly Thr Val Tyr Ser Gly Ala Leu Gly Thr Pro Gly Ala
340 345 350
Ala Gly Ser Lys Glu Ser Ser Arg Val Pro Met Pro

355

360

<210> 6131
<211> 3526
<212> DNA
<213> Homo sapiens

<400> 6131
nngggagcgg cgagtaagat ggaagatgag gaggtcgctg agagctggga agaggccgca
60
gacagcgggg aaatagacag acggttggaa aaaaaactga agatcacaca aaaagagagc
120
aggaaaatcca aatctccccc caaagtgccc attgtgattc aggacgatag cttcccccg
180
ggccccccctc cacagatccg catcctcaag aggcccacca gcaacggtgt ggtcagcagc
240
cccaactcca ccagcaggcc cacccttcca gtcaagtccc tagcacagcg agaggccgag
300
tacgcccagg cccggaagcg gatcctggc agcgccagcc ccgaggagga gcaggagaaa
360
cccatcctcg acaggtcttc ctctgatctt ctcccttca ggccaaccag gatctcccaa
420
cccgaaagaca gcagggcagcc caataatgtg atcagacagc ctttgggtcc ttaggggtca
480
cacggcttca aacagcgcag ataaatgcag gcaagaaaag atgccgcgt tgctgccgtc
540
accgccttcg gggtcgtccg ccacgggttg cactgcgtg gcagacagct ggacttgagc
600
agagggaaacg acctgactta cttgcactgt gatccccctt gctccgcacca ctgtgacctt
660
gaacccccatg cactgtgacc tcccccttc tcccccttc cactgtgatt ggcacatcga
720
caagggctgt cccaaagtcaa tggaaaggga aagggtgggg gtttagggaa gtttgggggg
780
acccagcaag gactcagaga gtcagacagt gccacttggc cacttgggt aaagccagt
840
ccagcaataa cagtttatca tgctcattaa ttgggattt caaaacacaa atgaaaactc
900
acacccaccc accccaagt gcatgtctcc atcacttaaa aagtaagttc catttggaaa
960
tatcctttct ttttttttc ttccattttt tgtttgtta tacaaatatac tgatttgcaa
1020
aaaaaaagtgc atgggagggg ttttagtggt ttaatgaatt tttaattaag aaaggtagt
1080
ttggtagtct actaaaaat gttctggga aattcactag aaacattaac caataggatt
1140
ttggtagct tagttctgt attcctactg ccgcggcagaa aaggggcagg gctctgcagc
1200
cgccaggaca gacgagcacc ccatgcctat acctccctcc ccgagctaag tcccaggcga
1260
tctggccctt gcctggagac tgggttagtct ctgtaggctc ggagagcctg gggaggggtgc
1320
caacccccacc tctagtatcc tgggagatag gaaaagtgaa ccgacttccc cttccatac
1380

ccctcagggt gttccctac cagccaggct tactacttct agaagaaaagc agagtgccag
1440
ggagttagat tgcattccctg ggcttagaaag tgacggagag aagacttgtt tagtattttg
1500
ccatcagcac aaggaaaacc aggagagagt ctgcctccag gactctgagc cttctgcctc
1560
gtatgttcag aagggtggata ggtcttccca ctccagcatg gcttgaactc ttaggggtct
1620
gcagtgtcc atctccattg gtggccccag ctcagtaact atacctggta catttcctgt
1680
gtgcaatcg taccttgaag gcagaacatt ctgaataaag ttggaaaaag aacagctttg
1740
cttgcaaag attgatgaca gactggttcc tcagaggcct aggctacccg tcaccccttt
1800
ttccagagcg agggcctgga atgaaggcag ttatcctct gtcctggag cctggggttt
1860
gctttggctc cttgaggtgg aagagactaa gagggcagct gcccagagca gctgtgtgt
1920
cctggctct ctcaggcttc ctgatccctt ccattgcact gcgccttate cctcagccag
1980
ccagacagcc tccctgtcc tgaccagcag atacgttcg gagtgggtgg tgtggtttt
2040
gtgatgaggg cagcacgtgg tggccaaggta gacaagctga gtctcacagg ctcactccct
2100
cgttgggtcc ctgtggaaat ggttaggccag gcccagtaag ccatgccccca acacgtcctc
2160
tcctccggag gaagggccag ctgccagctg agtcagcagc tagtccatag cacagcctta
2220
taactgtaaa gccaggcatt gcccattgagc agagctggaa ccagagcttc agtcagtaag
2280
agggaggatt accttcagga gaaggcaagg aagaaaactg gctgctatct ttatagttcc
2340
actgcctaa ccaagtgtcc acattctaaa tgtgtatgtt ccattccctta tgtaatagt
2400
gtttcccgcc caaagtgaga ctttcctttt aattggagaa gggtagatagag gtatccagg
2460
tgggaacgcc agaagtgtcg attgcccagc cattgggacc acctgttctt gccccactac
2520
cctctagtggtt gaggccaaag taaaggctgg ctgggggtt tctgtggatt gaggatgtgg
2580
caggactgg tcctccacc tccctctggc caaagatggg ctttgcggc tgcgtgcctg
2640
tcaccaccca ccagcagtca tgccctggc ttcccaaatg gagaggtgc aggcaacgtt
2700
tttaaaaaga aagaaaacag gaaactgtat tgtgtcgaaa gggcgaaaagg ggagatgagg
2760
aaacggttt gatgggtgtt gttgggggtt atttttggg ggttagttgtc tgtaactttc
2820
ctaagtgtttt ttttccctt tctttttaa agtaagttgc aggctttggc ttggaaaacc
2880
ccagggggat gggggccagg aacctgaggc tgctgccccct ttatctgcct tcacggtaact
2940
gtcccccttcc cccagcttcc ccctgacccc atggggcagg cctcagaccc tccagctaac
3000

cgcttccat gagccactac tctgatgtca gcctataacc aaaggagctg gggggtccag
 3060
 gcctggtgac caacctttct cagcccaactc aatcagggtg ctccccacct gcaggcagga
 3120
 ggcaacacccc tatctgctac catcagcccc ttccagagcc catctgcccc gcccagccct
 3180
 gcccgtccca gccataccct gctctgcccc atctgggggt gcccgtctca gggatgggct
 3240
 ggcagggctg tacccagcct ccctggtaag cagagactca agaaacctct ggggtcctgt
 3300
 ttctggtcg tgtatccca ggggtgcaca tgggcccctt gggtgtctga acagaaggc
 3360
 atgggagggg gggctgcacc cctgcagtct tactctgctg gtgtagcggg cagctgccca
 3420
 ctccccacccc accctgcacc gcgggctcct gagtcggcag attaaggcatt ttataaattg
 3480
 tattttaaat acatgttta aacttgtaaa aaaaaaaaaa aaaaaa
 3526

<210> 6132
 <211> 167
 <212> PRT
 <213> Homo sapiens

<400> 6132
 Xaa Gly Ala Ala Ser Lys Met Glu Asp Glu Glu Val Ala Glu Ser Trp
 1 5 10 15
 Glu Glu Ala Ala Asp Ser Gly Glu Ile Asp Arg Arg Leu Glu Lys Lys
 20 25 30
 Leu Lys Ile Thr Gln Lys Glu Ser Arg Lys Ser Lys Ser Pro Pro Lys
 35 40 45
 Val Pro Ile Val Ile Gln Asp Asp Ser Leu Pro Ala Gly Pro Pro Pro
 50 55 60
 Gln Ile Arg Ile Leu Lys Arg Pro Thr Ser Asn Gly Val Val Ser Ser
 65 70 75 80
 Pro Asn Ser Thr Ser Arg Pro Thr Leu Pro Val Lys Ser Leu Ala Gln
 85 90 95
 Arg Glu Ala Glu Tyr Ala Glu Ala Arg Lys Arg Ile Leu Gly Ser Ala
 100 105 110
 Ser Pro Glu Glu Gln Glu Lys Pro Ile Leu Asp Arg Ser Ser Ser
 115 120 125
 Asp Leu Leu Pro Phe Arg Pro Thr Arg Ile Ser Gln Pro Glu Asp Ser
 130 135 140
 Arg Gln Pro Asn Asn Val Ile Arg Gln Pro Leu Gly Pro Asp Gly Ser
 145 150 155 160
 His Gly Phe Lys Gln Arg Arg
 165

<210> 6133
 <211> 4156
 <212> DNA
 <213> Homo sapiens

<400> 6133

nngcggccgc cgccggggg cccagccgga gcccggccc tcgccttgc ctttgctgc
60
gcggctcaga atcaccatcc gcggccggg agacgagccg gccgtcccg gccgggggac
120
ccggccgcca tggccaccaa ggctcgggtt atgtatgatt ttgctgctga acctggaaat
180
aatgaactga cggttaatga aggagaatac attacaatca caaatccgga tgtagggtgga
240
ggatggctgg aaggaagaaa catcaaagga gaacgaggc tggttcccac agactacgtt
300
gaaattttac ccagtgtatgg aaaagatcaa tttcttgtg gaaattcagt ggctgaccaa
360
gccttccttg attctctctc agccagcaca gctcaggcca gttcgtcggc tgccagcaac
420
aatcaccagg ttggcagtgg caatgacccc tggtcagcct ggagtgcctc caaatctggg
480
aactggaaa gctcagaagg ctggggggcc cagccagagg gggctggagc ccaaagaaac
540
acaaacactc ccaacaactg ggacactgcc ttcggccacc cccaggccca ccaaggacca
600
gcaactggtg atgatgtatca ctggatgaa gactggatg ggcccaaatac ctttcttac
660
ttaaggatt cagagttagc tgatgcaggc ggcgctcage gaggaaacag tcgtgtactg
720
tcctcatcca tgaaaattcc ccttaacaaa tttcctggat ttgcgaaacc tggcaeggaa
780
cagtatttgt tggccaaaca actagaaaa cccaaagaga aaattccat cattgttgaa
840
gattatggcc caatgtgggt ttatcctacc tctacttttgc actgtgtggt agcagatccc
900
agaaaaaggct caaaaatgtt tggctaaag agctacatcg aatatcagct aacacctact
960
aacactaatac gatctgtaaa ccacaggtt aagcactttg actggttata tgagcgtctc
1020
ctgggttaagt ttgggtcagc cattccaatac ctttctcttc cagacaaaca agtcacaggc
1080
cgctttgaag aggaatttat caaaatgcgc atggagagac ttcaggccctg gatgaccagg
1140
atgtgtcgcc atccagtaat ctcagaaagt gaagtttcc agcagttcct aaattccga
1200
gatgagaagg aatggaaaac tggaaagagg aaggccgaga gagatgagct ggccggagtc
1260
atgatatttt ccaccatgga accagaggca cctgacttgg acttagttaga aatagagcag
1320
aagtgcgagg ctgtgggaa gttcaccaag gccatggatg acggcgtgaa ggagctgctg
1380
acgggtggggc aggagcactg gaagcgtgc acgggccccat tacccaagga atatcagaag
1440
ataggaaagg ctttgcagag tttggccaca gtgttcagtt ccagtggcta tcaagggtgaa
1500
acagatctca atgatgcaat aacagaagca gggaaagactt atgaagaaat tgccagtc
1560
gtggcagaac agccaaagaa agatctccat ttccctgtatgg aatgtatca cgagtataaa
1620

ggtttttttg gctgcttccc tgacatcatt ggcactcaca agggagcaat agaaaaaagt
1680
aaagaaaagtg acaaaactgt tgcaacaagt aaaatcaccc tacaagacaa acagaacatg
1740
gtgaagagag tcagcatcat gtcttacgcg ttgcaagctg agatgaatca ctttcacagt
1800
aaccggatct atgattacaa cagtgtcattc cgccctgtacc tggagcagca agtgcaattt
1860
tacgaaacga ttgcagaaaa gctgaggcag gccctcagcc gcttccagt gatgttaggac
1920
agaacgggcc ttgaagagaa tgccgcgtgc tttctcctga cttggggcaa tgcaattcaa
1980
aactttttt cccctattat tcagaaaaaa aaggaaacaa aaccaaaaag aaagagttgc
2040
aaaaaaactgc atttatttttta ttagccaccc taaatgcgtc agttatttttag ggatggctt
2100
ttgttcattt ccgcattccat tatttaaacc agtggaaatt gtctctattt ttggaaagta
2160
cttaaaagtt accagaattt tcaatggaaa atgaggggtt tctccccact gatattttac
2220
atagagtcat aatttatatg tcttataaat tataagtctt atataattta taagtctccc
2280
acaatcttcc agttcttacc cagtgtcaga taattaatta ctaattactt tcttaaaaac
2340
atgaactatg ccagaataaaa aaatatctat gtttgtatat ttttataact ctttcagtc
2400
ctctggggct cctgtcattt agggaaagtgc ttacgcctt cactgccaca gttacagctc
2460
aagtgttac acttcaagag ggaggacgct gggggccctt ggggctgcta gtgccatcg
2520
ggtgtgtggc aggtggggca tcccatgtcc ctccaggggg acccccacagc ctggcagatg
2580
agcagataacc cctggccacc catgtcctca gcgcacatttgc tgcgtgtgc ctcttatgtg
2640
aggaccagtg ctttctctt ttgcacttcc ttccataatct tggtaaggc atgtttatg
2700
ccatgaagaa tacattagaa gaattgaggg actttgtaga gaattttgtg gctttggtcc
2760
aacgggtgag tggctgtgcg gaggcctgtg ttccggaggg cctgggagaa ggagggcacc
2820
cagcaccccg gcgtctctgg ccctttctta ttctttggct cctcatccac cgtgtatgaga
2880
agcgctgtgc tggccacggc acactgtttgc gcttgggtgg cgggttcatg gccagttgg
2940
gtcatcagca aagagaaaaa gcacaggta gctccccatt agatggaaaa gtgttagggac
3000
tgagaagggc tgcagcctca gcagtgtaca gagtccccgg cgctctgagg ttggagagaa
3060
agaacagacc agcgcccttc ctgactacat ccgaaacttc acacagggtg tttctgagca
3120
ccagcacttc cagcgcttca cttaacggca taaagcaaaa caggaccttgc gcacaccgtc
3180
agctcgaact caacactggc agccacccgtc tcacccctgc ggaggagcgc tcccgctcc
3240

cacaggtgcc ttaccgcgtt ccctcccgct gctttcattt ttctgaccta ataattacgg
 3300
 gaaatggaaa gtctggcca gcatcaataa aatgacacca aaaataagta gatgaaatca
 3360
 aatgaatatg agaacatctt gttctcaat atcacgggtt tttgttaatg tttcataagt
 3420
 aattctcccc acttgatTTT tcttcataa aatcccatag aacaatgtt atgctatagc
 3480
 catttaatat atgtacaaat tgtaaagaat atgtataat gtttacacg aatgtaagag
 3540
 catgtagaag ccaacatata aataaattgt ttaaaaaaac tgtacagtaa attctcaaag
 3600
 cacttttca aaacactttt tggactttgt gtgtgatTTT tggatTTT gttaaagtact
 3660
 ttttatcca gctgctgaaa atggccagg taatgaattc ttccccaaat cctatttctt
 3720
 ctgacatgaa ttcatcattt cagttccgta ggtagtgtt gcggccggg aagcgtatca
 3780
 taaccacctg ggagttgcca agaagcagac agtctccag tgtctgactc tggatattt
 3840
 ggatttgact ggtgtgaggc aaagtaaaaa agggatgggg gaaatggaga tggcacggc
 3900
 tcctcagagc gtggtagccg actgtgagga aaagcagagg gaatgtgaaa gaaaataaga
 3960
 gaatccacgg gatttgatgc ctggaaagatt ctccctcaag tggcaacatg gcatatatat
 4020
 ccttctccgg ggagtcacat gcaccattt gttcttagat acgttgatgt tttgatTTT
 4080
 aatgatttgt atcaacctgt aggtaccaca gaagagctgt agtcataacaa tcacataact
 4140
 ttacaaata tagtgg
 4156

<210> 6134
 <211> 595
 <212> PRT
 <213> Homo sapiens

<400> 6134
 Met Ala Thr Lys Ala Arg Val Met Tyr Asp Phe Ala Ala Glu Pro Gly
 1 5 10 15
 Asn Asn Glu Leu Thr Val Asn Glu Gly Glu Ile Ile Thr Ile Thr Asn
 20 25 30
 Pro Asp Val Gly Gly Gly Trp Leu Glu Gly Arg Asn Ile Lys Gly Glu
 35 40 45
 Arg Gly Leu Val Pro Thr Asp Tyr Val Glu Ile Leu Pro Ser Asp Gly
 50 55 60
 Lys Asp Gln Phe Ser Cys Gly Asn Ser Val Ala Asp Gln Ala Phe Leu
 65 70 75 80
 Asp Ser Leu Ser Ala Ser Thr Ala Gln Ala Ser Ser Ser Ala Ala Ser
 85 90 95
 Asn Asn His Gln Val Gly Ser Gly Asn Asp Pro Trp Ser Ala Trp Ser
 100 105 110
 Ala Ser Lys Ser Gly Asn Trp Glu Ser Ser Glu Gly Trp Gly Ala Gln

115	120	125
Pro Glu Gly Ala Gly Ala Gln Arg Asn Thr Asn Thr Pro Asn Asn Trp		
130	135	140
Asp Thr Ala Phe Gly His Pro Gln Ala Tyr Gln Gly Pro Ala Thr Gly		
145	150	155
Asp Asp Asp Asp Trp Asp Glu Asp Trp Asp Gly Pro Lys Ser Ser Ser		160
165	170	175
Tyr Phe Lys Asp Ser Glu Ser Ala Asp Ala Gly Gly Ala Gln Arg Gly		
180	185	190
Asn Ser Arg Ala Ser Ser Ser Met Lys Ile Pro Leu Asn Lys Phe		
195	200	205
Pro Gly Phe Ala Lys Pro Gly Thr Glu Gln Tyr Leu Leu Ala Lys Gln		
210	215	220
Leu Ala Lys Pro Lys Glu Lys Ile Pro Ile Ile Val Gly Asp Tyr Gly		
225	230	235
Pro Met Trp Val Tyr Pro Thr Ser Thr Phe Asp Cys Val Val Ala Asp		240
245	250	255
Pro Arg Lys Gly Ser Lys Met Tyr Gly Leu Lys Ser Tyr Ile Glu Tyr		
260	265	270
Gln Leu Thr Pro Thr Asn Thr Asn Arg Ser Val Asn His Arg Tyr Lys		
275	280	285
His Phe Asp Trp Leu Tyr Glu Arg Leu Leu Val Lys Phe Gly Ser Ala		
290	295	300
Ile Pro Ile Pro Ser Leu Pro Asp Lys Gln Val Thr Gly Arg Phe Glu		
305	310	315
Glu Glu Phe Ile Lys Met Arg Met Glu Arg Leu Gln Ala Trp Met Thr		320
325	330	335
Arg Met Cys Arg His Pro Val Ile Ser Glu Ser Glu Val Phe Gln Gln		
340	345	350
Phe Leu Asn Phe Arg Asp Glu Lys Glu Trp Lys Thr Gly Lys Arg Lys		
355	360	365
Ala Glu Arg Asp Glu Leu Ala Gly Val Met Ile Phe Ser Thr Met Glu		
370	375	380
Pro Glu Ala Pro Asp Leu Asp Leu Val Glu Ile Glu Gln Lys Cys Glu		
385	390	395
Ala Val Gly Lys Phe Thr Lys Ala Met Asp Asp Gly Val Lys Glu Leu		400
405	410	415
Leu Thr Val Gly Gln Glu His Trp Lys Arg Cys Thr Gly Pro Leu Pro		
420	425	430
Lys Glu Tyr Gln Lys Ile Gly Lys Ala Leu Gln Ser Leu Ala Thr Val		
435	440	445
Phe Ser Ser Ser Gly Tyr Gln Gly Glu Thr Asp Leu Asn Asp Ala Ile		
450	455	460
Thr Glu Ala Gly Lys Thr Tyr Glu Glu Ile Ala Ser Leu Val Ala Glu		
465	470	475
Gln Pro Lys Lys Asp Leu His Phe Leu Met Glu Cys Asn His Glu Tyr		480
485	490	495
Lys Gly Phe Leu Gly Cys Phe Pro Asp Ile Ile Gly Thr His Lys Gly		
500	505	510
Ala Ile Glu Lys Val Lys Glu Ser Asp Lys Leu Val Ala Thr Ser Lys		
515	520	525
Ile Thr Leu Gln Asp Lys Gln Asn Met Val Lys Arg Val Ser Ile Met		
530	535	540
Ser Tyr Ala Leu Gln Ala Glu Met Asn His Phe His Ser Asn Arg Ile		

545	550	555	560
Tyr Asp Tyr Asn Ser Val Ile Arg Leu Tyr Leu Glu Gln Gln			
565	570	575	
Phe Tyr Glu Thr Ile Ala Glu Lys Leu Arg Gln Ala Leu Ser Arg Phe			
580	585	590	
Pro Val Met			
595			

<210> 6135
<211> 526
<212> DNA
<213> Homo sapiens

<400> 6135
tgcacgtccc tccttctgag ccatcagcaa cttaggcact acaggaaact tactccaaat
60
tgctactaga aaagacccgg cttgaagagc catctcatca acatgttacg cagggaaacac
120
aggccaaacc agggtatcag ccatctggag aatctgacaa agaaaacaaa gtacagggAAC
180
gtcccccaag tgcgtcttcc agtagtgaca tgtctcttc agaacctcca cagcctcttgc
240
caagaaaaga cttgatggaa tctacatggta tgccgcctga aagattgagc ccacaagtTC
300
accattctca accacagccct tttgctggaa cagctggaaat tttactcttc catctttga
360
gttagagca tgttaggaatt ttgcataagg attttgaatc tatTTTACCA accagggAAGA
420
atcataatat ggcttcaagg ccatTAactt ttacacctca accatATG acctcaccAG
480
ctgcttatac agatgccttg gtaaaaccta gtgccagCCA atataa
526

<210> 6136
<211> 105
<212> PRT
<213> Homo sapiens

<400> 6136
Met Ser Leu Ser Glu Pro Pro Gln Pro Leu Ala Arg Lys Asp Leu Met
1 5 10 15
Glu Ser Thr Trp Met Gln Pro Glu Arg Leu Ser Pro Gln Val His His
20 25 30
Ser Gln Pro Gln Pro Phe Ala Gly Thr Ala Gly Ser Leu Leu Ser His
35 40 45
Leu Leu Ser Leu Glu His Val Gly Ile Leu His Lys Asp Phe Glu Ser
50 55 60
Ile Leu Pro Thr Arg Lys Asn His Asn Met Ala Ser Arg Pro Leu Thr
65 70 75 80
Phe Thr Pro Gln Pro Tyr Val Thr Ser Pro Ala Ala Tyr Thr Asp Ala
85 90 95
Leu Val Lys Pro Ser Ala Ser Gln Tyr
100 105

<210> 6137
<211> 2073
<212> DNA
<213> Homo sapiens

<400> 6137
ngccggccgc aagcgatccc tgctccgcgc gacactgcgt gcccgcac gcagagaggc
60
ggtgacgcac tttacggcg cagcgtaagt gcgtgacgct cgtcagtggc ttcagttcac
120
acgtggcgcc agcggaggca ggttgctgtg tttgtcttc cttctacagc caatatgaaa
180
aggcctaagt taaagaaagc aagtaaacgc atgacctgcc ataagcggtt taaaatccaa
240
aaaaagggttc gagaacatca tcgaaaattt agaaaggagg ctaaaaagca gggtcacaag
300
aagcctagga aagacccagg agttccaaac agtgctccct ttaaggaggc ttttcttagg
360
gaagctgagc taaggaaaca gaggcttcaa gaactaaaac agcagcagaa acttgacagg
420
cagaaggaac tagaaaagaa aagaaaactt gaaactaattc ctgatattaa gnccatcaaa
480
tgtggAACN ntatggaaaa ggagtttggg ctttgcaaaa ctgagaacaa agccaagtcg
540
ggcaaacaga attcaaagaa gctgtactgc caagaactta aaaaggttat tgaaggctcc
600
gatgttgc tagaggttttggatgccccaga gatcctcttgc ttgcagatg tcctcaggta
660
gaagaggcca ttgtccagag tggacagaaa aagctggatc ttatattttaa taaatcagat
720
ctggtagccaa aggagaattt ggagagctgg ctaaattttt tgaagaaaga attgccaaca
780
gtgggttca gagcctcaac aaaaccaaaag gataaaggaa agataaccaa gcgtgtgaag
840
gcaaaaaga atgctgtcc attcagaagt gaagtctgtc ttggaaaga gggccttgg
900
aaaccttgc gagggtttca ggaaacttgc agcaaagcca ttccgggttgg agtaattgg
960
ttccccaaatg tggggaaaaag cagcattatc aatagcttaa aacaagaaca gatgtgtat
1020
gttgggttat ccattgggttca tacaaggagc atgcaagtttgc tccccttggaa caaacagatc
1080
acaatcatag atagtcggag cttcatcgta tctccactta attcctccctc tgccgttgc
1140
ctgcgaagtc cagcaagtat tgaagtagta aaaccgatgg aggtgtccag tgccatccctt
1200
tcccaggctg atgctcgaca ggttagtactg aaatatactg tcccaggcttca caggaattct
1260
ctggaaatttt ttactgtgtc tgctcagaga agaggtatgc accaaaaagg tggaaatcccc
1320
aatgttgaag gtgtgtccaa actgtgtgg tctgtgtgg caggtgcctc attagcttac
1380
tattgtccatc cccctacatc ttggactcct cctccatatt ttaatgagag tattgtggta
1440

gacatgaaaa gcggcttcaa tctgaaagaa ctggaaaaga acaatgcaca gagcataaga
 1500
 gccatcaagg gccctcattt ggccaatagc atcctttcc agtcttcgg tctgacaaat
 1560
 ggaataatag aagaaaagga catacatgaa gaattgccaa aacggaaaga aaggaagcag
 1620
 gaggagaggg aggatgacaa agacagtgc cagggaaactg ttgatgaaga agttgatgaa
 1680
 aacagctcg gcatgttgc tgcaagag acaggggagg cactgtctga ggagactaca
 1740
 gcaggtgaac agtctacaag gtctttatc ttggataaaa tcattgaaga ggatgatgct
 1800
 tatgacttca gtacagatta tgtgtaacag aacaatggct ttttatgatt tttttttta
 1860
 acatTTtaag cagactgcta aactgttctc tgtataagtt atggatgca tgagctgtgt
 1920
 aaatTTgtg aatatgtatt atattaaac caggcaactt ggaatcccta aattctgtaa
 1980
 aaagacaatt catctcattt tgagtggaaag tagttatctg gaataaaaaaa agaagatacc
 2040
 tattgaaaaa aaaaaaaaaa aaaaaaaaaa aaa
 2073

<210> 6138
 <211> 550
 <212> PRT
 <213> Homo sapiens

<400> 6138
 Met Lys Arg Pro Lys Leu Lys Lys Ala Ser Lys Arg Met Thr Cys His
 1 5 10 15
 Lys Arg Tyr Lys Ile Gln Lys Lys Val Arg Glu His His Arg Lys Leu
 20 25 30
 Arg Lys Glu Ala Lys Lys Gln Gly His Lys Lys Pro Arg Lys Asp Pro
 35 40 45
 Gly Val Pro Asn Ser Ala Pro Phe Lys Glu Ala Leu Leu Arg Glu Ala
 50 55 60
 Glu Leu Arg Lys Gln Arg Leu Glu Glu Leu Lys Gln Gln Gln Lys Leu
 65 70 75 80
 Asp Arg Gln Lys Glu Leu Glu Lys Lys Arg Lys Leu Glu Thr Asn Pro
 85 90 95
 Asp Ile Lys Xaa Ile Lys Cys Gly Thr Xaa Met Glu Lys Glu Phe Gly
 100 105 110
 Leu Cys Lys Thr Glu Asn Lys Ala Lys Ser Gly Lys Gln Asn Ser Lys
 115 120 125
 Lys Leu Tyr Cys Gln Glu Leu Lys Lys Val Ile Glu Ala Ser Asp Val
 130 135 140
 Val Leu Glu Val Leu Asp Ala Arg Asp Pro Leu Gly Cys Arg Cys Pro
 145 150 155 160
 Gin Val Glu Glu Ala Ile Val Gln Ser Gly Gln Lys Lys Leu Val Leu
 165 170 175
 Ile Leu Asn Lys Ser Asp Leu Val Pro Lys Glu Asn Leu Glu Ser Trp
 180 185 190
 Leu Asn Tyr Leu Lys Glu Leu Pro Thr Val Val Phe Arg Ala Ser

195	200	205
Thr Lys Pro Lys Asp Lys Gly	Ile Thr Lys Arg Val	Lys Ala Lys
210	215	220
Lys Asn Ala Ala Pro Phe Arg Ser Glu Val Cys	Phe Gly Lys	Glu Gly
225	230	235
Leu Trp Lys Leu Leu Gly Gly Phe Gln Glu	Thr Cys Ser Lys	Ala Ile
245	250	255
Arg Val Gly Val Ile Gly Phe Pro Asn Val	Gly Lys Ser Ser	Ile Ile
260	265	270
Asn Ser Leu Lys Gln Glu Gln Met Cys Asn Val	Gly Val Ser Met	Gly
275	280	285
Leu Thr Arg Ser Met Gln Val Val Pro Leu Asp	Lys Gln Ile Thr	Ile
290	295	300
Ile Asp Ser Pro Ser Phe Ile Val Ser Pro Leu	Asn Ser Ser Ser	Ala
305	310	315
Leu Ala Leu Arg Ser Pro Ala Ser Ile Glu Val	Val Lys Pro Met	Glu
325	330	335
Ala Ala Ser Ala Ile Leu Ser Gln Ala Asp Ala	Arg Gln Val Val	Leu
340	345	350
Lys Tyr Thr Val Pro Gly Tyr Arg Asn Ser Leu	Glu Phe Phe Thr	Val
355	360	365
Leu Ala Gln Arg Arg Gly Met His Gln Lys Gly	Gly Ile Pro Asn Val	
370	375	380
Glu Gly Ala Ala Lys Leu Leu Trp Ser Glu Trp	Thr Gly Ala Ser	Leu
385	390	395
Ala Tyr Tyr Cys His Pro Pro Thr Ser Trp Thr	Pro Pro Pro Tyr Phe	
405	410	415
Asn Glu Ser Ile Val Val Asp Met Lys Ser Gly	Phe Asn Leu Glu Glu	
420	425	430
Leu Glu Lys Asn Asn Ala Gln Ser Ile Arg Ala	Ile Lys Gly Pro His	
435	440	445
Leu Ala Asn Ser Ile Leu Phe Gln Ser Ser	Gly Leu Thr Asn Gly	Ile
450	455	460
Ile Glu Glu Lys Asp Ile His Glu Glu Leu Pro	Lys Arg Lys Glu Arg	
465	470	475
Lys Gln Glu Glu Arg Glu Asp Asp Lys Asp Ser	Asp Gln Glu Thr Val	
485	490	495
Asp Glu Glu Val Asp Glu Asn Ser Ser	Gly Met Phe Ala Ala Glu Glu	
500	505	510
Thr Gly Glu Ala Leu Ser Glu Glu Thr Thr	Ala Gly Glu Gln Ser	Thr
515	520	525
Arg Ser Phe Ile Leu Asp Lys Ile Ile Glu Glu	Asp Asp Ala Tyr Asp	
530	535	540
Phe Ser Thr Asp Tyr Val		
545	550	

<210> 6139

<211> 2249

<212> DNA

<213> Homo sapiens

<400> 6139

nnccggccgca gggggccggcg ctgtcgcagc ccgtccgcct cgctcatggt acggggcgcca

60

gcctcaccgg cagaaaccac ctcacactga gcggcgccgg ctcagactcc acaggcgtc
120 acagacgatg atggccaggg cccggaggct aaggacggca gtccttttag cgccagagtt
180 ttccgagtga ctttcttgat gtcggctgtt tcttcaccc ttcccctgtc tggagccatg
240 atgctctgg aatctccat agatccacag cctctcagct tcaaagaacc cccgtcttg
300 ctgggtgttc tgcatccaaa tacgaagctg cgacaggcag aaaggctgtt tgaaaatcaa
360 cttgttggac cggagtcac agcacatatt ggggatgtga tgtttactgg gacagcagat
420 ggccgggtcg taaaacttga aaatggtgaa atagagacca ttgcccgggtt tnggttcggg
480 cccnnttgc aAACCCGAGA tgcgtggat gtgtgtggg gacccctggg tatccgtca
540 gggcccaatg ggactcttt tgtggccat gcatacaagg gactatttga agtaaatccc
600 tggaaacgtg aagtgaaact gtcgtgtcc tccgagacac ccattgaggga gaagaacatg
660 tcctttgtga atgatcttac agtcaactcag gatgggagga agatttattt caccgattct
720 agcagcaaat ggcaaagacg agactacctg cttctggta tggagggcac agatgacggg
780 cgcctgctgg agtatgatac tgtgaccagg gaagttttttt ccagctgcgg
840 ttcccgaatg gagtccagct gtctctgca gaagacttttgc agaaacaacc
900 atggccagga tacgaagagt ctacgttttgc ggcctgtatga agggcgcccc tgcgtgttt
960 gtggagaaca tgcctggatt tccagacaac atccggccca gcagctctgg ggggtactgg
1020 gtgggcgtgt cgaccatccg ccctaaccctt gggttttcca tgcgtggattt cttatctgag
1080 agaccctggta ttAAAAGGAT gatttttaag ggaagctgcg ctgggtgtga tctgccttt
1140 agtcaagaga cgggtatgaa gtttgtcccg cggtagcagcc tgcgtctaga actcagcgac
1200 agcgggtgcct tccggagaag cctgcgtatgc cccgtggcc tggggccac ctacatcagc
1260 gaggtgcacg aacacgtatgg gcacctgtac ctgggctctt tcaggcccc cttccctgtc
1320 agactcagcc tccaggctgt ttagccctcc cagatagctg cccctgcac gcaggccagg
1380 agtcttcaca ctcaggcacc aggctggtc caggaggagc tgcgtggatc
1440 aagtgtccac atgcacccgt tagtccctga gaggtggatgg gaatggctgc ttcatccctc
1500 gaggatgccc gggccccacc tgggtttgtc tttctgttta gagggaaatgt taacatatct
1560 gccatgagga acataaaattt atgtaaagcc attttctttt aaacaaaaca aaactttcta
1620 agtacagtca ttctcttagga tttggaaagc tccttgact tggAACAGGG ctcagggtggg
1680

tggaggcagta aggcaactacc cagagagctt gctgctgcgg ccctgtccctg cggcctcaaa
 1740
 gttttttttt actatatata acgtgcggtc atacctttct tcgttgtggt ggggatggaa
 1800
 gagcagaggg agcatggccc aggggtgttg aggccagcgg tgagagccgt gttagccaag
 1860
 acatggaaact gtgttctcaa gggttatgtg gggcggtggc tctccatagt gtgttatgaaa
 1920
 agcttggta ctctagccgc tcagagagga ctttgctggg tttctttctg tgaatatctc
 1980
 cgtgctgacc atgctggaat tggatgattc tgcaattcgg gacctactgc aggggtccgt
 2040
 ttagtaacgt cttgtctgtg atctttgttc ttgacctcta gaccccaaga tgtgaacagt
 2100
 gcacgtgtta atgtcatctt tgctcatgtg ttataagccc caagttgctg tatatttca
 2160
 caagtatgtc tacacactgg tcatgattt gataataaat aacgataaaat cgacttctgc
 2220
 tgattaacct taaaaaaaaaaaaaaa
 2249

<210> 6140
<211> 381
<212> PRT
<213> Homo sapiens

<400> 6140
 Met Leu Ala Val Ser Leu Thr Val Pro Leu Leu Gly Ala Met Met Leu
 1 5 10 15
 Leu Glu Ser Pro Ile Asp Pro Gln Pro Leu Ser Phe Lys Glu Pro Pro
 20 25 30
 Leu Leu Leu Gly Val Leu His Pro Asn Thr Lys Leu Arg Gln Ala Glu
 35 40 45
 Arg Leu Phe Glu Asn Gln Leu Val Gly Pro Glu Ser Ile Ala His Ile
 50 55 60
 Gly Asp Val Met Phe Thr Gly Thr Ala Asp Gly Arg Val Val Lys Leu
 65 70 75 80
 Glu Asn Gly Glu Ile Glu Thr Ile Ala Arg Phe Xaa Phe Gly Pro Xaa
 85 90 95
 Cys Lys Thr Arg Asp Asp Glu Pro Val Cys Gly Arg Pro Leu Gly Ile
 100 105 110
 Arg Ala Gly Pro Asn Gly Thr Leu Phe Val Ala Asp Ala Tyr Lys Gly
 115 120 125
 Leu Phe Glu Val Asn Pro Trp Lys Arg Glu Val Lys Leu Leu Ser
 130 135 140
 Ser Glu Thr Pro Ile Glu Gly Lys Asn Met Ser Phe Val Asn Asp Leu
 145 150 155 160
 Thr Val Thr Gln Asp Gly Arg Lys Ile Tyr Phe Thr Asp Ser Ser Ser
 165 170 175
 Lys Trp Gln Arg Arg Asp Tyr Leu Leu Val Met Glu Gly Thr Asp
 180 185 190
 Asp Gly Arg Leu Leu Glu Tyr Asp Thr Val Thr Arg Glu Val Lys Val
 195 200 205
 Leu Leu Asp Gln Leu Arg Phe Pro Asn Gly Val Gln Leu Ser Pro Ala

210	215	220													
Glu	Asp	Phe	Val	Leu	Val	Ala	Glu	Thr	Thr	Met	Ala	Arg	Ile	Arg	Arg
225				230			235				240				
Val	Tyr	Val	Ser	Gly	Leu	Met	Lys	Gly	Gly	Ala	Asp	Leu	Phe	Val	Glu
				245			250			255					
Asn	Met	Pro	Gly	Phe	Pro	Asp	Asn	Ile	Arg	Pro	Ser	Ser	Ser	Gly	Gly
				260			265			270					
Tyr	Trp	Val	Gly	Met	Ser	Thr	Ile	Arg	Pro	Asn	Pro	Gly	Phe	Ser	Met
				275			280			285					
Leu	Asp	Phe	Leu	Ser	Glu	Arg	Pro	Trp	Ile	Lys	Arg	Met	Ile	Phe	Lys
				290			295			300					
Gly	Ser	Cys	Ala	Gly	Cys	Asp	Leu	Leu	Phe	Ser	Gln	Glu	Thr	Val	Met
305				310			315				320				
Lys	Phe	Val	Pro	Arg	Tyr	Ser	Leu	Val	Leu	Glu	Leu	Ser	Asp	Ser	Gly
				325			330			335					
Ala	Phe	Arg	Arg	Ser	Leu	His	Asp	Pro	Asp	Gly	Leu	Val	Ala	Thr	Tyr
				340			345			350					
Ile	Ser	Glu	Val	His	Glu	His	Asp	Gly	His	Leu	Tyr	Leu	Gly	Ser	Phe
				355			360			365					
Arg	Ser	Pro	Phe	Leu	Cys	Arg	Leu	Ser	Leu	Gln	Ala	Val			
				370			375			380					

<210> 6141

<211> 5651

<212> DNA

<213> Homo sapiens

<400> 6141

cttegccacc tctctagcct gggcaactgg gggcgccccg gacgaccatg agagataagg
 60
 actgagggcc aggaagggga agcgagcccg ccgagaggtg gcggggactg ctcacgcca
 120
 gggccacacgc ggccgcgcgc cggccctcgct ccgcccgcctcc acgcctcgcg ggatccgcgg
 180
 gggcagcccg gcccggcgccc gatgcggggg ctggggcgga gggcgcagtg gctgtgctgg
 240
 tggtgggggc tgctgtgcag ctgctgcggg ccccccgcgc tgcggccgccttgcggccgc
 300
 gcccgcggcccg ccgcgcgcgg ggggcagctg ctgggggacg gcggggagccccc cggccgcacg
 360
 gagcagccgc cgccgcgcgc gcagtcctcc tcgggtttcc tgtaccggcg gtcagaacacg
 420
 caggagaagc gggagatgca gaaggagatc ttgtcggtgc tggggctcccc gcaccggccc
 480
 cggccctgc acggccctcca acagccgcag ccccccgcgc tccggcagca ggaggagcag
 540
 cagcagcagc agcagctgcc tcgccccggag ccccccggcc ggcgactgaa gtccgcgc
 600
 ctcttcatgc tggatctgta caacgcctg tccggccaca acgacgagga cggggcgctcg
 660
 gagggggaga ggcagcagtc ctggcccccac gaaggcagcca gtcgtcccc gcgtcgcc
 720
 ccgcggcccg gcgccgcgc cccgcctcaac cgcaagagcc ttctggccccc cggatctggc
 780

agcggcgccgc cgccccact gaccagcgcg caggacagcg ctttcctcaa cgacgcggac
840
atggtcatga gctttgtaa cctggtgag tacgacaagg agttctccc tcgtcagcga
900
caccacaaag agtcaagtt caacttatcc cagattcctg agggtggggg ggtgacggct
960
gcagaattcc gcatactaca ggactgtgtt atggggagtt taaaaaacca aacttttctt
1020
atcagcattt atcaagtctt acaggagcat cagcacagag actctgacct gttttgttg
1080
gacacccgtg tagtatggc ctcagaagaa ggctggctgg aatttgacat cacggccact
1140
agaatctgt gggtgtgac tccacagcat aacatggggc tttagctgag cgtggtgaca
1200
agggatggag tccacgtcca ccccgagcc gcaggcctgg tggcagaga cggcccttac
1260
gatacgacgc cttcatggt ggctttcttc aaagttagtgg aggtccacgt ggcacaccacc
1320
aggtcagcct ccagccggcg ccgacaacag agtcgttaatc gctctaccca gtccaggac
1380
gtggcgccgg tctccagtgc tttagattac aacagcgtt aattgaaaac agcctgcagg
1440
aagcatgagc tgtatgtgag ttccaagac ctggatggc aggactggat cattgcaccc
1500
aagggtctatg ctgccaatta ctgtgtggaa gaatgtcttcc tccactcaa cgcacacatg
1560
aatgcaacca accacgcgtat tgtcagacc ttggttcacc ttatgaaccc cgagtatgtc
1620
cccaaacgt gctgtcgcc aactaagcta aatgccatct cggttttta cttcaatgac
1680
aattccaaaa tcaccttgaa aaaatacaga aatatggttt taagagcttgg tggatattgc
1740
taacttgaaa ccagatgtg gggacacaca ttctgccttg gattccttgg tcatagtgtc
1800
cttaaaaaac atacagaagc acagttggag gtgggacgtat gagactttga aactatctca
1860
tgctgtgcc ttactgcccc agaaaaattt taacggaccc ttgctataat ttgctcactt
1920
ggtaagtaac atgagtagtt gttggctgtt actaagctga gtttggatgt ctgtacata
1980
aggctggta actgcagaaa cataaccgtg aagctttcc taccctctc cccaaaaaac
2040
ccacaaaaat tagttttagc tgtagatcaa gctatttggg gtgtttgttta gtaaatagg
2100
aaaataatct caaaggagtt aaatgtattc ttggctaaag gatcagctgg ttcagttact
2160
ttatcaaaag gtagattta cagagaacag aaatcgggga agtggggggg acgcctctgt
2220
tcagttcatt cccagaagtc cacaggacgc acagccagg ccacagccag ggctccacgg
2280
ggcgcccttg ttcagtcat tgctgtgtt gtttgtgttgg gtagtttgg tgggtgaaaa
2340
atacacttat ttcaagccaaa acataccatt ttcacacccat aatcctccat ttgctgtact
2400

ctttgctagt accaaaagta gactgattac actgaggtga ggctacaagg ggtgtgtaac
2460
cgtgtaacac gtgaaggca tgcacccctc ttctttacca gaacggttct ttgaccagca
2520
cattaacttc tggactgccc gctctagtag ctttcagta aagtggttct ctgcctttt
2580
actatacagc ataccacgcc acagggttag aaccaacgaa gaaaataaaaa tgaggggtgcc
2640
cagcttataa gaatggtgtt agggggatga gcatgctgtt tatgaacgga aatcatgatt
2700
tccctttagt aaagtggagc tcagattaa ttttagata tttctaaat gtcttttca
2760
caatcatgtt ctgggaaggc aatttcatac taaactgatt aaataataca tttataatct
2820
acaactgttt gcacttacag cttttttgtt aaatataaac tataattttat tgtctatttt
2880
atatctgttt tgctgttaaca ttgaaggaaa gaccagactt taaaaaaaaa agagtttatt
2940
tagaaagtat catagtgtaa acaaacaat ttttaccatt tgatttctt ggaataacaag
3000
actcggtatg caaagctgaa gttgtgtgtt caagactctt gacagttgtt cttctctagg
3060
aggttgggtt tttttaaaaa aagaatttac tttttaatcc acgtgattaa taaagatttc
3120
ctttaaggca gaggctggc gagatgctgc ttttatcttc tgcctcagac agacagtata
3180
agtggctttt ttttaatcc acgtgattaa taaagatttc
3240
ttgcgtatgg gaggtgggtt aagagtgtt gatgcaaagt gtttattatg ggaagtagct
3300
cgatggtaaa aggacaaaca cctatcttac tttagagctt agcctgtatg tgcttattcc
3360
caagggagat agaggtgttt aatcacaagg acagcatgag tttagaggaca ctggcatcaa
3420
cagctgccac agccgtgcac accagggcca gaggccca ctgacatctg tttttgtct
3480
tgagatcaaa tgcattccat ttttccatca tttagaaggc gaccccttg aagcagacca
3540
agtatagcaa gcctctaaaa ggactactga gaaacagaat cagaaactct agaactctag
3600
ttagggccct tcagcagggc tgcagagccct ccctggatac ccaggcctgg gaaaggctgt
3660
ctggctttgtt cccccaggt gacaaataca actggaatct ttcaatgagt taatgagata
3720
ctgagaatga gcctcggtt atttccatg cctacccttt ctaaggaaga catccaacag
3780
ttcatgtggg ctctggcttc gtgttaacat gaggaactaa agacatgtt cccccgtga
3840
gaaacagaag gatcccctga acagtaactg atttacaag tatcgacaca taaagttatg
3900
gcacatcgat tcttttactc aggacggc agaagtaacg ctgctttcat cacggctaac
3960
ctctcacact gagagaagta ttccacagcaa cagaagctcc agcagcggcc gtgaaggat
4020

cttccagagg tgtgggttt tgcattcaa tctgtccat gctacggacc aacacagtat
4080
tgagtcaact gtgaccta a gatcagagga acgtcaatac tgccacaagg ccaccttcc
4140
agaactcgta ggcaggtaaa ctatgcttg gatgtgcttt cttcaccaa aatcactcaa
4200
ctcaggagcc acaaata gtc cagcaatttc atttccctca acgctattt agtctcaaag
4260
gaaaccatgt aaatttc aatc aagagaaggt caaaggggat atatcgccac tgaaaatgtt
4320
tacacagtga ccatgagttt cacatttact tagagaaact taacttaata aagaatctgt
4380
agagtgtgtt ggcttgaaa acacacacac aaagaagata cctcacfctt agtatgtct
4440
gcttctgaa cagccaccac tggaaaccca gtggcctctg tggactgaa ctcctaaacg
4500
cagggtgcgg gagctggca ggagaggta cctccaactg tggactttaaa gttcgcttt
4560
cgcttggctc aggacaaagc ggtgtacga gtcaggctct ctcctccac tgcgtact
4620
gactttcttc ctcctcgaa aaagcaataa cgtgggttag ctcgtaccg aataacttgc
4680
gcagatattt cgttcagcag tgcagtttac ttccggcgate ttgaccccg ccagaccagg
4740
gaattccctt ttagagagtt cctccaa gtttccactt aggagccaga gtcttacaat gaccacacca
4800
tggagcataa aacttgcataa aggttattcc ttctgcattt gtttgcataat agttattttc
4860
agtggatgcc aacacagtgc ctttgcaggc ctcggctca gtcggccagca ccggggccctc
4920
tgagggtcg acgggtctccg tgcgtccactt ctctgtgcgc tgcagctgcg actccacgta
4980
ctccctcagt gactccaaat cccgcttcc ctgtactga tccacccctt tcccatctcg
5040
gaaccagaga agagtggat agccacgaac ctgggttccg gagcagagtt catagtgc
5100
tgtacaatca accttgcataa tcttgcactt ttcggatgt tcaaggccca gagccagctg
5160
ctcccaggtt ggagccaggg ctggcactg accacaccac ggagcgaaga acttgataaa
5220
gtggcgcct tgcgtcaactt gtcaggcttgc tgcgtccactt acagcccttgc
5280
cttgagctcg ggggcaactgg gcggttccac ttccggctct ggtgtcactg gtcctcg
5340
cagtgtctgc agcattccactt ttcaggctgt ctggaaatgc cgaggaccctt ggtacttcc
5400
agcttcttgc cttggcatttga aaagctttaa ggtgggtat ctcgcaccc ctcggcg
5460
gcacacgtcg ggtggcccg tgcaggccac tttagccaca tagactttgg catcttcc
5520
gtgtgttat ttgtctccca ggtcatttca agtcggctgc agccgctggc agtgc
5580
ccaggggcgccg aagaacatga cgaaggcgc ggcgtctgg atcccgatgc tgaacatgc
5640

ggccgtgtac a
5651

<210> 6142
<211> 513
<212> PRT
<213> Homo sapiens

<400> 6142
Met Pro Gly Leu Gly Arg Arg Ala Gln Trp Leu Cys Trp Trp Trp Gly
1 5 10 15
Leu Leu Cys Ser Cys Cys Gly Pro Pro Pro Leu Arg Pro Pro Leu Pro
20 25 30
Ala Ala Ala Ala Ala Ala Gly Gly Gln Leu Leu Gly Asp Gly Gly
35 40 45
Ser Pro Gly Arg Thr Glu Gln Pro Pro Pro Ser Pro Gln Ser Ser Ser
50 55 60
Gly Phe Leu Tyr Arg Arg Leu Lys Thr Gln Glu Lys Arg Glu Met Gln
65 70 75 80
Lys Glu Ile Leu Ser Val Leu Gly Leu Pro His Arg Pro Arg Pro Leu
85 90 95
His Gly Leu Gln Gln Pro Gln Pro Pro Ala Leu Arg Gln Gln Glu Glu
100 105 110
Gln Gln Gln Gln Gln Leu Pro Arg Gly Glu Pro Pro Pro Gly Arg
115 120 125
Leu Lys Ser Ala Pro Leu Phe Met Leu Asp Leu Tyr Asn Ala Leu Ser
130 135 140
Ala Asp Asn Asp Glu Asp Gly Ala Ser Glu Gly Glu Arg Gln Gln Ser
145 150 155 160
Trp Pro His Glu Ala Ala Ser Ser Ser Gln Arg Arg Gln Pro Pro Pro
165 170 175
Gly Ala Ala His Pro Leu Asn Arg Lys Ser Leu Leu Ala Pro Gly Ser
180 185 190
Gly Ser Gly Gly Ala Ser Pro Leu Thr Ser Ala Gln Asp Ser Ala Phe
195 200 205
Leu Asn Asp Ala Asp Met Val Met Ser Phe Val Asn Leu Val Glu Tyr
210 215 220
Asp Lys Glu Phe Ser Pro Arg Gln Arg His His Lys Glu Phe Lys Phe
225 230 235 240
Asn Leu Ser Gln Ile Pro Glu Gly Val Val Thr Ala Ala Glu Phe
245 250 255
Arg Ile Tyr Lys Asp Cys Val Met Gly Ser Phe Lys Asn Gln Thr Phe
260 265 270
Leu Ile Ser Ile Tyr Gln Val Leu Gln Glu His Gln His Arg Asp Ser
275 280 285
Asp Leu Phe Leu Leu Asp Thr Arg Val Val Trp Ala Ser Glu Glu Gly
290 295 300
Trp Leu Glu Phe Asp Ile Thr Ala Thr Ser Asn Leu Trp Val Val Thr
305 310 315 320
Pro Gln His Asn Met Gly Leu Gln Leu Ser Val Val Thr Arg Asp Gly
325 330 335
Val His Val His Pro Arg Ala Ala Gly Leu Val Gly Arg Asp Gly Pro
340 345 350
Tyr Asp Lys Gln Pro Phe Met Val Ala Phe Phe Lys Val Ser Glu Val

355	360	365
His Val Arg Thr Thr Arg Ser Ala Ser Ser Arg	Arg Arg Gln Gln Ser	
370	375	380
Arg Asn Arg Ser Thr Gln Ser Gln Asp Val Ala	Arg Val Ser Ser Ala	
385	390	395
Ser Asp Tyr Asn Ser Ser Glu Leu Lys Thr Ala	Cys Arg Lys His Glu	
405	410	415
Leu Tyr Val Ser Phe Gln Asp Leu Gly Trp Gln Asp Trp	Ile Ile Ala	
420	425	430
Pro Lys Gly Tyr Ala Ala Asn Tyr Cys Asp Gly	Glu Cys Ser Phe Pro	
435	440	445
Leu Asn Ala His Met Asn Ala Thr Asn His Ala	Ile Val Gln Thr Leu	
450	455	460
Val His Leu Met Asn Pro Glu Tyr Val Pro Lys	Pro Cys Cys Ala Pro	
465	470	475
Thr Lys Leu Asn Ala Ile Ser Val Leu Tyr Phe	Asn Asp Asn Ser Lys	
485	490	495
Ile Thr Leu Lys Tyr Arg Asn Met Val Val Arg Ala	Cys Gly Tyr	
500	505	510
Cys		

<210> 6143
<211> 1137
<212> DNA
<213> Homo sapiens

<400> 6143
ttttttttt ttttgagct gcagagcaact gagctttatt tacaaaacttc cacagaatcc
60
ctcaccctcc accccaggg cctccctctc tggaactcag gcagcagaca agctgggtc
120
cacccacctg cccaaccttag gacagctggg cctgagctgg gcgggcaggg gattccatct
180
cctgggtcg cctgccagag gggagaggct ggaggcggcg ggaatgctgt tctccccag
240
gagtcaagtcc tcagggcttc tgccgtggga cgtggggcccg agggacctgg ggcactgacc
300
aggtcggggt cgggggcagc atctgcattg gtgaggccgg gtgaaaaggg ctgctgggtc
360
cgacacagtt ctggtgctgg gcctagcgga gacagaggac cagaggtcca gttccctgg
420
ggctgagctt ttctcagact tcggaggaaa aatgtcccag cccagcaggc agtgccgggg
480
cagggccagt gtgtcagagg cgtcaaagct ctttcgggtg gatgtggta cggtgccgggg
540
gctccaggat cgacagcggg atgctcaccc tgcgcagggg ggctgacgtg cgctgtcg
600
ccagggtccc agggccctgc tggtctcgcg atgtcctgca cagggggcag ggggtaccgg
660
gatccacagg caccggaaac aggccgggt tgacacggta acagttacacg cattcatggt
720
cttcctccac gccgctgcca ctgctctcac gcaggcctgg caactgggt tcaggatggc
780

tgcagataca ctcctcctg ttgggttccc gaaactcctg cagcttggag aagaaggcct
 840
 caggctggct ggtgatggaa gagctggtgt ccagagaccc tgcaateccag tcatagccca
 900
 ggtatggcct gaggcgccag ctcctctcag gaactgcaga ctcctcagag aaggtcaccc
 960
 tgggcttggaa cagcttgcctc tggtagccca ggatggacct cgggtctgt gcctccctgg
 1020
 gtctggatc acccagccctc cttggggct ctgggtccct caggctttag gtgcccagcg
 1080
 agggtgctga gtgggggtctc ggtcgccccca gggactcctg gtgctggcat ttggcag
 1137

<210> 6144
 <211> 141
 <212> PRT
 <213> Homo sapiens

<400> 6144
 Phe Phe Phe Phe Glu Leu Gln Ser Thr Glu Leu Tyr Leu Gln Thr
 1 5 10 15
 Ser Thr Glu Ser Leu Thr Leu His Pro Arg Val Leu Pro Leu Trp Asn
 20 25 30
 Ser Gly Ser Arg Gln Ala Trp Val His Pro Pro Ala Gln Pro Arg Thr
 35 40 45
 Ala Gly Pro Glu Leu Gly Gly Ile Pro Ser Pro Gly Cys Ala
 50 55 60
 Cys Gln Arg Gly Glu Ala Gly Gly Gly Asn Ala Val Leu Pro Gln
 65 70 75 80
 Glu Ser Val Leu Arg Ala Ser Ala Val Gly Arg Gly Ala Glu Gly Pro
 85 90 95
 Gly Ala Leu Thr Arg Ser Gly Ser Gly Ala Ala Ser Ala Leu Val Arg
 100 105 110
 Pro Gly Glu Lys Gly Cys Trp Cys Arg Thr Ala Ser Gly Ala Gly Pro
 115 120 125
 Ser Gly Asp Arg Gly Pro Glu Val Gln Val Pro Gly Gly
 130 135 140

<210> 6145
 <211> 766
 <212> DNA
 <213> Homo sapiens

<400> 6145
 nacaagggtc cagccttcctc tcctgggttc cagcttgcctc cctctggctc acctgttcc
 60
 agagcaatgt ctccccagca gcagcagcgg caggcagcag tgcccacccc agaggccca
 120
 cagcagcaag tgaagcagcc ttgtcagcca cccccctgtta aatgtcaaga gacatgtca
 180
 cccaaaacca aggtccatg tgctccccag gtcaagaagc aatgcccacc gaaagacacc
 240
 atcattccag cccagcagaa gtgtccctca gcccagcaag cctccaagag caaacagaag
 300

taaggatgga ctggatatta ccatcatcca ccatacctggc taccagatgg aacccctctct
 360
 tcttccttct cctcttcctt ccagctcttg agcctaccct cctctcacat ctccctcctgc
 420
 ccaagatgta aggaaggcatt gtaaggattt ctccccatcg tacccttccc cacacatacc
 480
 accttggctt cttctataatc ccaccccgat gctctccag gtgggtgtga gagagaccc
 540
 attctctgca ggctccagcg tggccacagc taaggccat ccatttccca aagtgaggaa
 600
 agtgtctggg cttcttctgg ggttccaccc tgacaagtag ggtcacagag gctggtgac
 660
 agtttctgcc tcattcctct ccatgatgcc ccctgtctcg ggcttctctc ctgtttccc
 720
 caataaaatat gtgcctcatg taataaatgt gtctgcttcc tgggct
 766

<210> 6146
 <211> 100
 <212> PRT
 <213> Homo sapiens

<400> 6146
 Xaa Lys Gly Ser Ala Ser Ser Pro Gly Val Gln Leu Val Ala Ser Gly
 1 5 10 15
 Ser Pro Val Pro Arg Ala Met Ser Ser Gln Gln Gln Arg Gln Ala
 20 25 30
 Ala Val Pro Thr Pro Glu Ala Gln Gln Gln Val Lys Gln Pro Cys
 35 40 45
 Gln Pro Pro Pro Val Lys Cys Gln Glu Thr Cys Ala Pro Lys Thr Lys
 50 55 60
 Asp Pro Cys Ala Pro Gln Val Lys Lys Gln Cys Pro Pro Lys Asp Thr
 65 70 75 80
 Ile Ile Pro Ala Gln Gln Lys Cys Pro Ser Ala Gln Gln Ala Ser Lys
 85 90 95
 Ser Lys Gln Lys
 100

<210> 6147
 <211> 1852
 <212> DNA
 <213> Homo sapiens

<400> 6147
 ntgctaactc aaggagctac tgtactaaaa aacatgcaaa atatgttgc tttgtggcat
 60
 agttcatatt tacactatca taaaattatg gccgagaagt taaatattct aaatgtgtca
 120
 acatagttct ctgtaaaact gacttacttt ccaaataataat tttgaaataa aacaataaa
 180
 aaatgttttc tgtttttagg aatggtgaa agcagcagac ataattggag tgggttggat
 240
 aagcaaagtg atattcaaaa tttaaatgaa gagagaatct tagctttaca gctttgtgg
 300

tggataaaga aaggaacgga tgttagacgtg gggccat^{ttt} tgaactccct tgtacaagaa
360
ggggatggg aaagagctgc tgctgtggca ttgttcaact tggatattcg ccgagcaatc
420
caaatcctga atgaaggggc atcttctgaa aaaggagatc tgaatctcaa tgtggtagca
480
atggctttat cgggttatac ggatgagaag aactccctt ggagagaaaat gtgttagcaca
540
ctgcgattac agctaaataa cccgtat^{ttt} tgcatttc gacaagtgaa
600
acaggatctt acgatggagt tttgtatgaa aacaaagttg cagtgatcga cagagtggca
660
tttgcttgta aattccttag tgatactcag ttaaatagat acatcgaaaa gttgaccaat
720
gaaatgaaag aggctggaaa ttggaaagga attttgttta caggccttac taaagatgga
780
gtggacttaa tggagagttt tggtataga actggagatg ttcaaacagc aagttactgt
840
atgttacagg gttcac^{ttt} agatgttctt aaagatgaaa gggttcagta ctggatttag
900
aattatagaa atttattaga tgcctggagg tttggcata aacgagctga atttgatatt
960
cacaggagta agttggatcc cagttccaag ccttagcac aagttttgt gagttcaat
1020
ttctgtggca agtcaatctc ctacagctgt tcagctgtgc ctcatcaggg cagaggttt
1080
agtcaatcgtatg gtgtgagtgg ctcaccaacg aaatctaaag tcacaagttg tccctggctgt
1140
cgaaaaccac ttccctcgatg tgccgttgc ttcattaata tgggaacacc agtttctagc
1200
tgtcctggag gaaccaaatac agataaaaaa gtggacttga gcaaggacaa aaaatttagcc
1260
caatttaaca actggtttac atgggtcat aattgcaggc acgggtggaca tgctggacat
1320
atgcttagtt ggttcaggga ccatgcagag tgccctgtgt ctgcacatgcac gtgtaaatgt
1380
atgcagttgg atacaacggg gaatctggta cctgcagaga ctgtccagcc ataaaatgtt
1440
accacccctaa gagaaccctt caagtgtgga gctttctagt aggtgtccctt catagctcag
1500
aaacataacct cagaacaacgc cattcatgac ttacctgtaa tggaaaata aatcattcta
1560
tcagatcagc agttttgtatg tttgagtgtatgc ttcacagaga caaatgtgc
1620
caaaataaaac atcgaagtat agacatgagt tctgttcagc aggttgaaaa gtctgat^{ttt}
1680
gaaaaacttt ctaagtttg gttgaaatta tgaacactct agaagcagaa tttctggaaag
1740
agccaagaac agactttgag cctatatctt caaagctgaa actggatatc tttcaataaaa
1800
atatgtgcac tttaaaata aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aa
1852

<210> 6148

<211> 410
<212> PRT
<213> Homo sapiens

<400> 6148

Met	Val	Glu	Ser	Ser	Arg	His	Asn	Trp	Ser	Gly	Leu	Asp	Lys	Gln	Ser
1									10						15
Asp	Ile	Gln	Asn	Leu	Asn	Glu	Glu	Arg	Ile	Leu	Ala	Leu	Gln	Leu	Cys
									20	25					30
Gly	Trp	Ile	Lys	Lys	Gly	Thr	Asp	Val	Asp	Val	Gly	Pro	Phe	Leu	Asn
									35	40					45
Ser	Leu	Val	Gln	Glu	Gly	Glu	Trp	Glu	Arg	Ala	Ala	Ala	Val	Ala	Leu
									50	55					60
Phe	Asn	Leu	Asp	Ile	Arg	Arg	Ala	Ile	Gln	Ile	Leu	Asn	Glu	Gly	Ala
									65	70	75				80
Ser	Ser	Glu	Lys	Gly	Asp	Leu	Asn	Leu	Asn	Val	Val	Ala	Met	Ala	Leu
									85	90					95
Ser	Gly	Tyr	Thr	Asp	Glu	Lys	Asn	Ser	Leu	Trp	Arg	Glu	Met	Cys	Ser
									100	105					110
Thr	Leu	Arg	Leu	Gln	Leu	Asn	Asn	Pro	Tyr	Leu	Cys	Val	Met	Phe	Ala
									115	120					125
Phe	Leu	Thr	Ser	Glu	Thr	Gly	Ser	Tyr	Asp	Gly	Val	Leu	Tyr	Glu	Asn
									130	135					140
Lys	Val	Ala	Val	Arg	Asp	Arg	Val	Ala	Phe	Ala	Cys	Lys	Phe	Leu	Ser
									145	150	155				160
Asp	Thr	Gln	Leu	Asn	Arg	Tyr	Ile	Glu	Lys	Leu	Thr	Asn	Glu	Met	Lys
									165	170					175
Glu	Ala	Gly	Asn	Leu	Glu	Gly	Ile	Leu	Leu	Thr	Gly	Leu	Thr	Lys	Asp
									180	185					190
Gly	Val	Asp	Leu	Met	Glu	Ser	Tyr	Val	Asp	Arg	Thr	Gly	Asp	Val	Gln
									195	200					205
Thr	Ala	Ser	Tyr	Cys	Met	Leu	Gln	Gly	Ser	Pro	Leu	Asp	Val	Leu	Lys
									210	215					220
Asp	Glu	Arg	Val	Gln	Tyr	Trp	Ile	Glu	Asn	Tyr	Arg	Asn	Leu	Leu	Asp
									225	230	235				240
Ala	Trp	Arg	Phe	Trp	His	Lys	Arg	Ala	Glu	Phe	Asp	Ile	His	Arg	Ser
									245	250					255
Lys	Leu	Asp	Pro	Ser	Ser	Lys	Pro	Leu	Ala	Gln	Val	Phe	Val	Ser	Cys
									260	265					270
Asn	Phe	Cys	Gly	Lys	Ser	Ile	Ser	Tyr	Ser	Cys	Ser	Ala	Val	Pro	His
									275	280					285
Gln	Gly	Arg	Gly	Phe	Ser	Gln	Tyr	Gly	Val	Ser	Gly	Ser	Pro	Thr	Lys
									290	295	300				
Ser	Lys	Val	Thr	Ser	Cys	Pro	Gly	Cys	Arg	Lys	Pro	Leu	Pro	Arg	Cys
									305	310	315				320
Ala	Leu	Cys	Leu	Ile	Asn	Met	Gly	Thr	Pro	Val	Ser	Ser	Cys	Pro	Gly
									325	330					335
Gly	Thr	Lys	Ser	Asp	Glu	Lys	Val	Asp	Leu	Ser	Lys	Asp	Lys	Leu	
									340	345					350
Ala	Gln	Phe	Asn	Asn	Trp	Phe	Thr	Trp	Cys	His	Asn	Cys	Arg	His	Gly
									355	360					365
Gly	His	Ala	Gly	His	Met	Leu	Ser	Trp	Phe	Arg	Asp	His	Ala	Glu	Cys
									370	375	380				
Pro	Val	Ser	Ala	Cys	Thr	Cys	Lys	Cys	Met	Gln	Leu	Asp	Thr	Thr	Gly

385 390 395 400
Asn Leu Val Pro Ala Glu Thr Val Gln Pro
 405 410

<210> 6149
<211> 1949
<212> DNA
<213> Homo sapiens

<400> 6149
ggccgcggg ctgcattggc agcgccccgg ccccgccgt gaggccgtcg ggagccgcgc
60
agccctcgga gcacgaatat atacagccct gctctggac acacccat tggattaaa
120
agacagtccct cgtagcact gactttcage tatggaatcg cagacggttt atgatgaagc
180
gccggccgtg taaatgaaga tcgggtgagg agcaggacga tgcccaaggg tgggtgcct
240
aaagcaccac agcaggaaga gctccccc agcagcgaca tggtgagaa gcagactgg
300
aaaaaggata aagataaagt ttctctaacc aagaccccaa aactggagcg tggcgatggc
360
gggaaggagg tgagggagcg agccagcaag cgaaagctgc ctttcaccgc gggcgccaat
420
ggggagcaga aggactegga cacagagaag cagggccctg agcggaaagag gattaagaag
480
gagccgtgtca cccggaaaggc cgggctgctg tttggcatgg ggctgtctgg aatccgagcc
540
ggctacccccc tctccgagcg ccagcaggtg gcccttcata tgcagatgac ggccgaggag
600
tctgccaaca gcccagtgg acaaacacca aagcacccct cccagtctac agtgtgtcag
660
aagggAACGC ccaactctgc ctaaaaacc aaagataaac tgaacaagag aaacgagcgt
720
ggagagaccc gcctgcaccc agccgcattc cgccggggacg cccggcgcat caaagagctc
780
atcagcgagg gggcagacgt caacgtcaag gacttcgcag gctggacggc gctgcacgag
840
gcctgttaacc ggggctacta cgacgtcgcg aagcagctgc tggctgcagg tgccggagg
900
aacaccaagg gccttagatga cgacacgcct ttgcacgcg ctgccaacaa cgggcactac
960
aagggtgtga agctgctgct gcggtacgga gggAACCCGC agcagagcaa caggaaaggc
1020
gagacgcgcg tgaaagtggc caactccccc acgatggtga acctcctgtt aggcaaaggc
1080
acttacactt ccagcgagga gagctcgacg gagagctcg aagaggaaga cgcaccatcc
1140
ttcgcacctt ccagttcagt cgacggcaac aacacggact ccgagttcga aaaaggcctc
1200
aagcacaagg ccaagaaccc agagccacag aaggccacgg ccccgtaa ggacgagtat
1260
gagtttgatg aggacgacga gcaggacagg gttcctccgg tggacgacaa gcacctattg
1320

aaaaaggact acagaaaaga aacgaaatcc aatagttta tctctatacc caaaatggag
 1380
 gttaaaagggtt acactaaaaaa taacacgatt gcaccaaaga aagcgtccca tcgtatcctg
 1440
 tcagacacgt cggacgagga ggacgcgagt gtcacccgtgg ggacaggaga gaagctgaga
 1500
 ctctcgac atacgatatt gcctggtagt aagacacgag agccttctaa tgccaagcag
 1560
 cagaaggaaa aaaataaagt gaaaaagaag cgaaagaaag aaacaaaagg cagagaggtt
 1620
 cgcttcggaa agcggagcna tagttctgct cctcggagtc ggagagcag tcctcagaga
 1680
 gtggggagga tgacagggac tctctgggaa gctctggctg cctcaagggg tccccgctgg
 1740
 tgctgaagga cccctccctg ttcaagtc tctctgcctc ctccacctcg tctcacggga
 1800
 gctctgccgc ccagaagcag aaccccaagcc acacagacca gcacaccaag cactggcggaa
 1860
 cagacaattt gaaaaccatt tcttccccgg ctggtcaga ggtcagttct ttatcagact
 1920
 ccacaaggac gagactgaca agcgagtct
 1949

<210> 6150
 <211> 508
 <212> PRT
 <213> Homo sapiens

<400> 6150
 Met Pro Lys Gly Gly Cys Pro Lys Ala Pro Gln Gln Glu Glu Leu Pro
 1 5 10 15
 Leu Ser Ser Asp Met Val Glu Lys Gln Thr Gly Lys Lys Asp Lys Asp
 20 25 30
 Lys Val Ser Leu Thr Lys Thr Pro Lys Leu Glu Arg Gly Asp Gly Gly
 35 40 45
 Lys Glu Val Arg Glu Arg Ala Ser Lys Arg Lys Leu Pro Phe Thr Ala
 50 55 60
 Gly Ala Asn Gly Glu Gln Lys Asp Ser Asp Thr Glu Lys Gln Gly Pro
 65 70 75 80
 Glu Arg Lys Arg Ile Lys Lys Glu Pro Val Thr Arg Lys Ala Gly Leu
 85 90 95
 Leu Phe Gly Met Gly Leu Ser Gly Ile Arg Ala Gly Tyr Pro Leu Ser
 100 105 110
 Glu Arg Gln Gln Val Ala Leu Leu Met Gln Met Thr Ala Glu Glu Ser
 115 120 125
 Ala Asn Ser Pro Val Asp Thr Thr Pro Lys His Pro Ser Gln Ser Thr
 130 135 140
 Val Cys Gln Lys Gly Thr Pro Asn Ser Ala Ser Lys Thr Lys Asp Lys
 145 150 155 160
 Leu Asn Lys Arg Asn Glu Arg Gly Glu Thr Arg Leu His Arg Ala Ala
 165 170 175
 Ile Arg Gly Asp Ala Arg Arg Ile Lys Glu Leu Ile Ser Glu Gly Ala
 180 185 190
 Asp Val Asn Val Lys Asp Phe Ala Gly Trp Thr Ala Leu His Glu Ala

195	200	205
Cys Asn Arg Gly Tyr Tyr Asp Val Ala Lys Gln Leu	Leu Ala Ala Gly	
210	215	220
Ala Glu Val Asn Thr Lys Gly Leu Asp Asp Asp	Thr Pro Leu His Asp	
225	230	235
Ala Ala Asn Asn Gly His Tyr Lys Val Val Lys	Leu Leu Arg Tyr	
245	250	255
Gly Gly Asn Pro Gln Gln Ser Asn Arg Lys Gly	Glu Thr Pro Leu Lys	
260	265	270
Val Ala Asn Ser Pro Thr Met Val Asn Leu Leu	Gly Lys Gly Thr	
275	280	285
Tyr Thr Ser Ser Glu Glu Ser Ser Thr Glu Ser	Ser Glu Glu Glu Asp	
290	295	300
Ala Pro Ser Phe Ala Pro Ser Ser Val Asp Gly	Asn Asn Thr Asp	
305	310	315
Ser Glu Phe Glu Lys Gly Leu Lys His Lys Ala	Lys Asn Pro Glu Pro	
325	330	335
Gln Lys Ala Thr Ala Pro Val Lys Asp Glu Tyr	Phe Asp Glu Asp	
340	345	350
Asp Glu Gln Asp Arg Val Pro Pro Val Asp Asp	Lys His Leu Leu Lys	
355	360	365
Lys Asp Tyr Arg Lys Glu Thr Lys Ser Asn Ser	Phe Ile Ser Ile Pro	
370	375	380
Lys Met Glu Val Lys Ser Tyr Thr Lys Asn Asn	Thr Ile Ala Pro Lys	
385	390	395
400		
Lys Ala Ser His Arg Ile Leu Ser Asp Thr Ser	Asp Glu Ala	
405	410	415
Ser Val Thr Val Gly Thr Gly Glu Lys Leu Arg	Leu Ser Ala His Thr	
420	425	430
Ile Leu Pro Gly Ser Lys Thr Arg Glu Pro Ser	Asn Ala Lys Gln Gln	
435	440	445
Lys Glu Lys Asn Lys Val Lys Lys Lys Arg Lys	Glu Thr Lys Gly	
450	455	460
Arg Glu Val Arg Phe Gly Lys Arg Ser Xaa	Ser Ala Pro Arg Ser	
465	470	475
480		
Arg Arg Ala Ser Pro Gln Arg Val Gly Arg Met	Thr Gly Thr Leu Trp	
485	490	495
Gly Ala Leu Ala Ala Ser Arg Gly Pro Arg Trp Cys		
500	505	

<210> 6151

<211> 648

<212> DNA

<213> Homo sapiens

<400> 6151

```

tttttttttt ttttttttga agggtgagaa atttattcag atttcttcat aattccccc
60
aaaagctcca accacgttgc cagtccttgg gtgctgcagt tggtcgggga gaggggctgt
120
gtggaggta ctttctggta gacggagacc cgctttcag actctgtggc gcagcaggcg
180
ggccaggaac atttgggca ctattgtct tagccctgcc gcgcctgact ttctctccctc
240

```

tactttcctt ccgaccgttag ggacaagtgt ggggatccgc tttgggctcc aaggccctgc
 300
 ccgcactggc agcaccaagc gggtgttagaa tgactggaag gagcaggaa ggaagatggg
 360
 tgcactgt cccggccagt ggctgcgtgc atgtgtgtgt gaacaggaa aaggccaccc
 420
 tctcccatgt ttctcccgtc tcctcggttc tcctcggaga cccgcaggc tgcccggagt
 480
 agctccgagt tgccctgggt cgctggggct tggtccgcat cctccctccgc tagtccgctc
 540
 ccgcgttcca cagcgccccg cgcgtcggtg tgcaacgcaact gcggcttaac ccagccgaca
 600
 aggcacgctt gccaaagagg cgcggtgtg tgcgtgcggg gtccgcgg
 648

<210> 6152
<211> 130
<212> PRT
<213> Homo sapiens

<400> 6152
Met Arg Thr Lys Pro Gln Arg Pro Arg Ala Thr Arg Ser Tyr Leu Gly
 1 5 10 15
 Gln Pro Cys Gly Ser Pro Arg Arg Thr Glu Glu Thr Gly Glu Thr Trp
 20 25 30
 Glu Arg Val Ala Phe Ser Leu Phe Thr His Thr Cys Thr Gln Pro Leu
 35 40 45
 Ala Gly Thr Val Asp Thr His Leu Pro Ser Leu Leu Leu Pro Val Ile
 50 55 60
 Leu His Pro Leu Gly Ala Ala Ser Ala Gly Arg Ala Leu Glu Pro Lys
 65 70 75 80
 Ala Asp Pro His Thr Cys Pro Tyr Gly Arg Lys Glu Ser Arg Gly Glu
 85 90 95
 Lys Val Arg Arg Gly Arg Ala Lys Ser Asn Ser Gly Pro Asn Val Pro
 100 105 110
 Gly Pro Pro Ala Ala Pro Gln Ser Leu Lys Ser Gly Ser Pro Ser Thr
 115 120 125
 Arg Arg
 130

<210> 6153
<211> 1810
<212> DNA
<213> Homo sapiens

<400> 6153
gatgcagtta cctgtgtgga cttcagtata aacacaaagc agctggccag tggtnccatg
 60
 gactcatgcc tcattggctcg gcacatgaag ctgcagtac acgcctaccg cttcaactggc
 120
 cacaaggatg ccgtcacctg tgtgaacttc tcctccttcgg gacacctgt tgcgtccggc
 180
 tccccgagaca agactgtccg catctggta cccaatgtca aaggtgagtc cactgtgttt
 240

cgtgcacaca cagccacagt gaggagtgtc cacttctgca gtgatggcca gtccttcgtg
300 acagcctctg acgacaagac agtcaaagtg tggcaactc atcgccagaa attcctgttc
360 tccctgagcc agcatatcaa ctgggtccgc tggccaagt tctccccca cggggggctc
420 atcgtgtctg ccagtgtatga caagactgtt aagctgtggg acaagagcag cggggaaatgt
480 gtccactcgtt attgtgagca tggcggttt gtcacccatg tggacttcca ccccaagtggg
540 acgtgcattt ccgctgcgg catggacaac acagtgaagg tgtggacgt gcggactcac
600 cggctgctgc agcattatca gttgcacagt gcagcagtga acgggctctc tttccacccg
660 tcgggaaact acctgatcac agcctccagt gactcaaccc tgaagatcct ggacctgtatg
720 gagggccggc tgctctacac actccacggg catcagggac cagccaccac tggcccttt
780 tcaagaacgg gggagtttt tgcttctgga ggctctgtatg aacaagtgtat ggtttggaaag
840 agtaactttt atattgtatca tcatggagaa gtcacgaaag tgccgaggcc cccagccaca
900 ctggccagct ccatggggaa tctgccagaa gtggacttcc ctgtcccccc aggcagaggc
960 tggagtgtgg agtctgtgca gagccagccc caggagcccg tgagtgtgcc ccagacactg
1020 actagcacgc tggagcacat tgtggccag ctggatgtcc tcactcagac agtctccatt
1080 ctggaggcgc ggttgacact gacagaagac aagctgaagc agtgtctgga gaaccagcag
1140 ctaatcatgc agagagcaac accatgatca ggggagcagg aatcaggagc tcgggtggatt
1200 tgcaggtggc aggccagggaa ttttaccat gggacttggg taaaataaagg ggactgaact
1260 ctgtggaaat cacatccata ctggagccct ggattttgc agttctgccc tccacccctgc
1320 tatctgcacc aggaggctct ccacccggca gccagaggc cccagtgggc cgggctcaca
1380 cacaatgtatgatgatc cgaatgagag gaccacattt tgcttaatgt aaaggagcca
1440 ctggaaaatg tctgctcctt cggggcctg agattgtggc tccccctctg gaggaggtgg
1500 ctccacgatg ctttgatttt cactcatcat ttggacatgt gactggcttt tcctacccct
1560 gccatgggtgt agaaattgtatg tgcacattga ttggatgagc cgggggtttt ctctaaatct
1620 gactaaaggc ccaaagtggg cccatctgag tcaggtttgt tgagaacaag ccctctcaag
1680 tgggtgggtgg ctttcagtg gcccgtatgg ctgttccaca cgtgttcact ggagccaggt
1740 gacttcctcc ttgcgtgagt gagggcacag gaatctcaaa attaaacctg acttcattgc
1800 aaaaaaaaaaaaa
1810

<210> 6154
<211> 388
<212> PRT
<213> Homo sapiens

<400> 6154
Asp Ala Val Thr Cys Val Asp Phe Ser Ile Asn Thr Lys Gln Leu Ala
1 5 10 15
Ser Gly Xaa Met Asp Ser Cys Leu Met Val Trp His Met Lys Leu Gln
20 25 30
Ser Arg Ala Tyr Arg Phe Thr Gly His Lys Asp Ala Val Thr Cys Val
35 40 45
Asn Phe Ser Pro Ser Gly His Leu Leu Ala Ser Gly Ser Arg Asp Lys
50 55 60
Thr Val Arg Ile Trp Val Pro Asn Val Lys Gly Glu Ser Thr Val Phe
65 70 75 80
Arg Ala His Thr Ala Thr Val Arg Ser Val His Phe Cys Ser Asp Gly
85 90 95
Gln Ser Phe Val Thr Ala Ser Asp Asp Lys Thr Val Lys Val Trp Ala
100 105 110
Thr His Arg Gln Lys Phe Leu Phe Ser Leu Ser Gln His Ile Asn Trp
115 120 125
Val Arg Cys Ala Lys Phe Ser Pro Asp Gly Arg Leu Ile Val Ser Ala
130 135 140
Ser Asp Asp Lys Thr Val Lys Leu Trp Asp Lys Ser Ser Arg Glu Cys
145 150 155 160
Val His Ser Tyr Cys Glu His Gly Gly Phe Val Thr Tyr Val Asp Phe
165 170 175
His Pro Ser Gly Thr Cys Ile Ala Ala Gly Met Asp Asn Thr Val
180 185 190
Lys Val Trp Asp Val Arg Thr His Arg Leu Leu Gln His Tyr Gln Leu
195 200 205
His Ser Ala Ala Val Asn Gly Leu Ser Phe His Pro Ser Gly Asn Tyr
210 215 220
Leu Ile Thr Ala Ser Ser Asp Ser Thr Leu Lys Ile Leu Asp Leu Met
225 230 235 240
Glu Gly Arg Leu Leu Tyr Thr Leu His Gly His Gln Gly Pro Ala Thr
245 250 255
Thr Val Ala Phe Ser Arg Thr Gly Glu Tyr Phe Ala Ser Gly Gly Ser
260 265 270
Asp Glu Gln Val Met Val Trp Lys Ser Asn Phe Asp Ile Val Asp His
275 280 285
Gly Glu Val Thr Lys Val Pro Arg Pro Pro Ala Thr Leu Ala Ser Ser
290 295 300
Met Gly Asn Leu Pro Glu Val Asp Phe Pro Val Pro Pro Gly Arg Gly
305 310 315 320
Trp Ser Val Glu Ser Val Gln Ser Gln Pro Gln Glu Pro Val Ser Val
325 330 335
Pro Gln Thr Leu Thr Ser Thr Leu Glu His Ile Val Gly Gln Leu Asp
340 345 350
Val Leu Thr Gln Thr Val Ser Ile Leu Glu Gln Arg Leu Thr Leu Thr
355 360 365
Glu Asp Lys Leu Lys Gln Cys Leu Glu Asn Gln Gln Leu Ile Met Gln

370 Arg Ala Thr Pro
385

375

380

<210> 6155
<211> 995
<212> DNA
<213> Homo sapiens

<400> 6155
aacagccaca gaeqtatgtg taatatgtat ggcttttagaa tgtacctgca aagcagttt
60 tttttttttt ccatttggag gaaaaaaat gaacaaaaaa agactgaatt gggatgctaa
120 aataaacagcg atttattatt aaggaaatga tacgttttg tcccattcaa ataatgttt
180 tattccccctt ttctttatcc ttgggaggtt cctattgttg tgccaggtcg ttttcactga
240 acgattttta aaggtattca ccagccccac gtgtgaccgg ttgcattttt actgtgcagg
300 accatcgtga agcctgtggc caaagagttt gatccagaca tggtcttagt atctgctgga
360 ttgtatgcatt tggaaaggcca cacccctcctt ctaggagggtt acaaagtgc acggaaaatgt
420 ttgggtcatt tgacgaagca attgtatgaca ttggctgtat gacgtgtggt gttggctcta
480 gaaggaggac atgatctcac agccatctgt gatgcattcag aagcctgtgt aaatgcctt
540 ctaggaaatg agctggagcc acttgcagaa gatattctcc accaaagccc gaatatgaat
600 gctgttattt ctttacagaa gatcattgaa attcaaaaac tgctggtagt cctatgaaag
660 aggagccagc cttgtgaagt gccaagtccc cctctgatat ttccctgtgt tgacatcatt
720 gtgtatcccc ccaccccaagt accctcagac atgtcttgc tgctgcctgg gtggcacaga
780 ttcaatggaa cataaaacact gggcacaaaa ttctgaacag cagtttact tgttcttgg
840 atggacttga aagggcatta aagattcctt aaacgttaacc gctgtgattt tagagttaca
900 gtaaaccacg atttggaaagaa actgcttcca gcatgtttt aatatgtgg gtgaccac
960 ccttagacacc aagtttgaac tagaaacatt cagta
995

<210> 6156
<211> 164
<212> PRT
<213> Homo sapiens

<400> 6156
Thr Ile Val Lys Pro Val Ala Lys Glu Phe Asp Pro Asp Met Val Leu
1 5 10 15
Val Ser Ala Gly Phe Asp Ala Leu Glu Gly His Thr Pro Pro Leu Gly

	20	25	30												
Gly	Tyr	Lys	Val	Thr	Ala	Lys	Cys	Phe	Gly	His	Leu	Thr	Lys	Gln	Leu
		35		40							45				
Met	Thr	Leu	Ala	Asp	Gly	Arg	Val	Val	Leu	Ala	Leu	Glu	Gly	Gly	His
		50			55					60					
Asp	Leu	Thr	Ala	Ile	Cys	Asp	Ala	Ser	Glu	Ala	Cys	Val	Asn	Ala	Leu
		65			70			75				80			
Leu	Gly	Asn	Glu	Leu	Glu	Pro	Leu	Ala	Glu	Asp	Ile	Leu	His	Gln	Ser
		85				90					95				
Pro	Asn	Met	Asn	Ala	Val	Ile	Ser	Leu	Gln	Lys	Ile	Ile	Glu	Ile	Gln
												100	105		110
Lys	Leu	Leu	Val	Ser	Leu	Trp	Lys	Arg	Ser	Gln	Pro	Cys	Glu	Val	Pro
												115	120		125
Ser	Pro	Pro	Leu	Ile	Phe	Pro	Val	Cys	Asp	Ile	Ile	Val	Tyr	Pro	Pro
												130	135		140
Thr	Pro	Val	Pro	Ser	Asp	Met	Ser	Cys	Leu	Leu	Pro	Gly	Trp	His	Arg
												145	150		155
Phe	Asn	Gly	Thr												160

<210> 6157
<211> 2135
<212> DNA
<213> Homo sapiens

<400> 6157
natttcattt tatccccact acttttgagg taggttattat cctgttttac aaacgaagaa
60
actaaggctc agtgagatata atgatccaaag gtcataataat ctaagtggta gagctggat
120
ttgaacttca gtttgactaa ctatgaaaact tttactgtgtt attttttctc aactttcctt
180
ttttctgcag gatctggcga catggccaga aaggctctca agcttgcttc gtggaccagc
240
atggctcttg ctgcctctgg catctacttc tacagtaaca agtacttggc ccctaattgac
300
360
tttggcgctg tcaggggtggc cagagcagtt gctacgacgg ctgtcatcag ttacgactac
420
ctcaacttccc tgaagagtgtt cccttatggc tcagaggagt acttgcaagtt gagatctaag
480
atccatgatt tttccagag ctgcgttgc accccctctgg ggacggccctc cctggcccag
540
gtccacaagg cagtgcgtca tggatggccgg acgggtggccgg tgaagggtcca gcacccaaag
540
gtgcgggctc agagctcgaa ggacattctc ctgtatggagg tgctcggttct ggctgtgaag
600
cagctgttcc cagagtttga gtttatgtgg ctgtggatg aagccaagaa gaacctgcct
660
720
ttggagctgg atttcctcaa tgaagggagg aatgcgtgaga aggtgtccca gatgcgtcagg
780
cattttgact tcttgaaggt cccccaatc cactgggacc tgccacggc gcgggtccctc
840
ctgatggagt ttgtggatgg cgggcaggctc aatgcacagag actacatggc gaggaacaag

atcgacgtca atgagatctc acgccacctg ggcaagatgt atagttagat gatcttcgtc
900
aatggcttcg tgcactgcga tccccacccc ggcaacgtac tggtgccgaa gcaccccgcc
960
acgggaaagg cggagattgt cctgttggac catgggcttt accagatgtc cacggaagaa
1020
ttccgcctga attactgcca cctctggcag tctctgatct ggactgacat gaagagatg
1080
aaggaggatac gccagcgact gggagccggg gatctctacc ccttgggtgc ctgcattgt
1140
acggcgcat cgtgggactc ggtcaacaga ggcattcagcc aagctccgt cactgccact
1200
gaggacttag agattcgaa caacgcggcc aactacctcc cccagatcag ccattcttc
1260
aaccacgtgc cgcccgagat gctgctcata ttgaagacca acgacctgtc gctggcatt
1320
gaggccgccc tgggcaccccg cgccagcgcc agtcctttc tcaacatgtc acgttgt
1380
atcagagcgc tagctgagca caagaagaag aatacctgtt catttttcag aaggacccag
1440
atctctttca gcgaggcctt caacttatgg cagatcaacc tccatgagct cattctgcgt
1500
gtgaaggggt tgaagctggc tgaccgggtc ttggccctaa tatgctggct gtccctgt
1560
ccactctgag tggaaattgtc ctccctgccc cattctggtg tttttccact cctcagcccc
1620
tcattttgcc tccacccagc tgctccattt ttgccacatc gtggcccgca gccccagagt
1680
cactgtccat gtcaccatcc ttctccctt ttggaaatctt ctccgcacac tgtggccctt
1740
gtctcaggcc ccacaagctg aactgtggca tagctcttc tttttccca agaagactca
1800
gcagcctaca ttcccatcc tggtatgtgc cattgggttg gatgtccccca ctacttccgt
1860
taacccttcc cattgtcaag atgtgccacg ggtgccactg ggggcacact gaactttag
1920
ggagtgtgat tttgttgag gtgcacatgg tctctgaatt tgacagagaa caccttccct
1980
ttccttgcca tgcaccctc cagaggaagt cacacccatc cgaggtgggt tggcatctgg
2040
ggccaaactcc attacagcta tgagctact gctgtcagtg acgtttgggt ttttctgtac
2100
tgtgttcaa taaaaactcc ttcaaggatgg aaaaa
2135

<210> 6158
<211> 455
<212> PRT
<213> Homo sapiens

<400> 6158
Met Ala Arg Lys Ala Leu Lys Leu Ala Ser Trp Thr Ser Met Ala Leu
1 5 10 15
Ala Ala Ser Gly Ile Tyr Phe Tyr Ser Asn Lys Tyr Leu Asp Pro Asn

20	25	30
Asp Phe Gly Ala Val Arg Val Gly Arg Ala Val Ala Thr	Thr Thr Ala Val	
35	40	45
Ile Ser Tyr Asp Tyr Leu Thr Ser Leu Lys Ser Val Pro	Tyr Gly Ser	
50	55	60
Glu Glu Tyr Leu Gln Leu Arg Ser Lys Ile His Asp Leu	Phe Gln Ser	
65	70	75
Phe Asp Asp Thr Pro Leu Gly Thr Ala Ser Leu Ala Gln	Val His Lys	
85	90	95
Ala Val Leu His Asp Gly Arg Thr Val Ala Val Lys Val	Gln His Pro	
100	105	110
Lys Val Arg Ala Gln Ser Ser Lys Asp Ile Leu Leu Met	Glu Val Leu	
115	120	125
Val Leu Ala Val Lys Gln Leu Phe Pro Glu Phe Met Trp	Leu	
130	135	140
Val Asp Glu Ala Lys Lys Asn Leu Pro Leu Glu Leu Asp	Phe Leu Asn	
145	150	155
Glu Gly Arg Asn Ala Glu Lys Val Ser Gln Met Leu Arg	His Phe Asp	
165	170	175
Phe Leu Lys Val Pro Arg Ile His Trp Asp Leu Ser Thr	Glu Arg Val	
180	185	190
Leu Leu Met Glu Phe Val Asp Gly Gly Gln Val Asn Asp	Arg Asp Tyr	
195	200	205
Met Glu Arg Asn Lys Ile Asp Val Asn Glu Ile Ser Arg	His Leu Gly	
210	215	220
Lys Met Tyr Ser Glu Met Ile Phe Val Asn Gly Phe Val	His Cys Asp	
225	230	235
Pro His Pro Gly Asn Val Leu Val Arg Lys His Pro Gly	Thr Gly Lys	
245	250	255
Ala Glu Ile Val Leu Leu Asp His Gly Leu Tyr Gln Met	Leu Thr Glu	
260	265	270
Glu Phe Arg Leu Asn Tyr Cys His Leu Trp Gln Ser Leu	Ile Trp Thr	
275	280	285
Asp Met Lys Arg Val Lys Glu Tyr Ser Gln Arg Leu Gly	Ala Asp	
290	295	300
Leu Tyr Pro Leu Phe Ala Cys Met Leu Thr Ala Arg Ser	Trp Asp Ser	
305	310	315
Val Asn Arg Gly Ile Ser Gln Ala Pro Val Thr Ala Thr	Glu Asp Leu	
325	330	335
Glu Ile Arg Asn Asn Ala Ala Asn Tyr Leu Pro Gln Ile	Ser His Leu	
340	345	350
Leu Asn His Val Pro Arg Gln Met Leu Leu Ile Leu Lys	Thr Asn Asp	
355	360	365
Leu Leu Arg Gly Ile Glu Ala Ala Leu Gly Thr Arg Ala	Ser Ala Ser	
370	375	380
Ser Phe Leu Asn Met Ser Arg Cys Cys Ile Arg Ala Leu	Ala Glu His	
385	390	395
Lys Lys Lys Asn Thr Cys Ser Phe Phe Arg Arg Thr Gln	Ile Ser Phe	
405	410	415
Ser Glu Ala Phe Asn Leu Trp Gln Ile Asn Leu His Glu	Leu Ile Leu	
420	425	430
Arg Val Lys Gly Leu Lys Leu Ala Asp Arg Val Leu Ala	Leu Ile Cys	
435	440	445
Trp Leu Phe Pro Ala Pro Leu		

450

455

<210> 6159
<211> 4310
<212> DNA
<213> Homo sapiens

<400> 6159
ctcgagggtgc ggcggggccc ggactcggcg ggcategccc tctacagcca tgaagatgtg
60
tgtgtcttta agtgctcagt gtcccgagag acagagtgc a cccgtgtggg caagcagtcc
120
ttcatcatca ccctgggctg caacagcgtc ctcatccagt tcgccacacc caacgatttc
180
tgcgccttct acaacatcct gaaaacctgc cggggccaca ccctggagcg gtctgtgttc
240
agcgagcggaa cggaggagtc ttctgcccgtg cagtacttcc agtttatgg ctacctgtcc
300
cagcagcaga acatgatgca ggactacgtg cggacaggca cctaccaggcg cgccatctg
360
caaaaccaca ccgacttcaa ggacaagatc gtttttgcgttgc ttggctgtgg ctctggatc
420
ctgtcgcccc ttgcccggcca agctggagca cggaaaaatct acgcgggtgg a gccagcacc
480
atggcccagc acgctgaggt ctgggtgaag agtaacaacc tgacggaccg catcggtgc
540
atccccggca aggtggagga ggtgtcaactc cccgagcagg tggacatcat catctcgag
600
cccatgggct acatgcttta caacgagcgc atgctggaga gtcacccatca cgccaaag
660
tacctgaagc ccagcggaaa catgttccct accattgggt acgtccaccc tgcacccttc
720
acggatgaac agctctacat ggagcagtcc accaaggcca acttctggta ccagccatct
780
ttccatggag tggacctgtc ggccctccga ggtgccggg tggatgagta tttccggcag
840
cctgtggtgg acacatttga catccggatc ctgatggcca agtctgtcaa gtacacggtg
900
aacttcttag aagccaaaga aggagatttgc cacaggatag aaatcccatt caaatccac
960
atgctgcatt cagggctggt ccacggcctg gctttctggt ttgacgttgc tttcatcgcc
1020
tccataatga ccgtgtggct gtccacagcc cccacaggagc ccctgaccctc ctggtaccag
1080
gtgcgggtcc tggccatggc accactgttc gccaaggcag gggacacgct ctcaggac
1140
tgtctgctta ttgccaacaa aagacagagc tacgacatca gtattgtggc ccaggtggac
1200
cagacccggct ccaagtcacag taacccctcg gatctgaaaa acccccttctt tagatacacg
1260
ggcacaacgc cctcacccttcc accccggctcc cactacacat ctccctcgaa aaacatgtgg
1320
aacacgggca gcacccatcaa cctcagcagc gggatggccg tggcaggat gcccggcc
1380

tatgacttga gcagtgttat tgccagtggc tccagcgtgg gccacaacaa cctgatct
1440
ttagccaaca cggggattgt caatcacacc cactcccgga tgggctccat aatgagcacg
1500
gggattgtcc aagggtcctc cggcgcccag ggcagtggtg gtggcagcac gagtccccac
1560
tatgcagtca acagccagtt caccatgggc ggccccgcca tctccatggc gtcgccccatg
1620
tccatccccga ccaacaccaat gcactacggg agctagggc cggccccgcg gactgacagc
1680
accaggaaac caaatgtatgt ccctgcccgc cgccccccgc gggcggcttt cccccctgtta
1740
ctggagaagc tcgaacacccc ggtcacagct ctctttgtca tgggaactgg gacactttt
1800
tacacgatgt tgccgcccgc cccaccccaa cccccacccgc cggccctgtga gctgtgtcg
1860
ctgccccatatt ttacacaaaaa tcatgttgtg ggagccctcg tccccccctcc tgcccgctct
1920
accctgacctt gggcttgcata tctgctggaa cagggcgcatt ggggcctgcc agccctgcct
1980
gccaggccc tttagcacctg tccccctgcc tgcctccagt gggaaaggtag cctggccagg
2040
cggggcctcc ctttcgacga ccaggcctcg gtcacaacgg acgtgacatg ctgtttttt
2100
taattttatt tttttatgaa aagaaccagt gtcacatccgc agaccctctg tgaagccagg
2160
ccggccgggc cgagccagca gccccctccctt ctagactcg aggccgcgc gggaggggtg
2220
gccccggccga ggcttcaggg gccccctccc caccaaaggg ttcacccctac acttgaatgt
2280
acaacccacc ccactgtcgga aaggccctcc gtcctcgccc cctgcctttt gctgtgtcc
2340
tgtcccccgag cccctgcagg tccccccctcg cccccccactt caagagtttag agcaggtggc
2400
tgcaggcctt gggcccgag ggaaggccac tgccggccac ttggggcaga cacagacacc
2460
tcaaggatct gtcacggaaag gcgccctttt tccttgttagc taacgttagg cctgagtagc
2520
tccccctccat ctttgttagac gtcacccatcc ctactactgt gacggcattt ccacccctcc
2580
cctgcccggg aagggacccctt gcaaggacccctt ctcctccaa aaaaagaaaa aaagaaaaag
2640
aaagaaaaaaa taaatgagga aacgtgttgc agcacaggca gttttcttctt cttctgtctc
2700
ccctgtttctt cataacccca aactcagatg ctggagctca gcccccccggt gtgtgcaccc
2760
aggcaggaggc gggcgctgtc caggctgggc cggcccccttg gctctccctc ctgttccagg
2820
ggagccatag gagggaaagc aggtggcccg gggggatat gggggccca gcccgtcccc
2880
aaagctccct gtcgggtgc ccctcgccccg cctttatata aattctctgtca atcaccttg
2940
catagaaaat aaaagtgttt gcttgtaaag aaaagtctgg aaagttagcag aatcatctca
3000

aggtgtcaaa ggagccttca gtcatcgct ggggggcagg acaggcagag gggttggtcc
 3060
 acttaggtgt tgcctgaaag aaagaattgt ctgtggacc cgggccttcc taggaggggg
 3120
 ccagggactg cggcaaggt a gggacagcg cgatgttga gggcagagat gtgatgggg
 3180
 gtggaggagc cacgttctcc ggaggcagcg actggaagaa gtacaactta cagcccatgg
 3240
 ccaggagggc gtggagcagc acgaccacgg acagcagcac tggccacc accctgggt
 3300
 cctcacggac cacgggcccag agggtaata ccagccccgc ggctgacagg cccaggcca
 3360
 gcgc cccaaa gagccactgc agccaaggca cagggatgag ccacaggacc accatgggg
 3420
 tgaagacaaa gagggatgag ccgtatgc acacagtctc caggaaggtag tagggccca
 3480
 tgccgtccctg gacacccttg cgccaccgc ggaagccccca cagggccagg ggcaccagcc
 3540
 acgcatagca gtagatgtg atgcctgcca cggcacctt gtggactgg gggctgttagt
 3600
 gatggaggg gtcctccctc tggccagca ccagcgtcag gttgccatgt acggccagga
 3660
 caaaggccaa cgtggcacag atccagaagg gccatacag atccggccga ttccgcagat
 3720
 ggtgccgcac aaagttgtgg ccaggccggg gcagcgtga gcctttgatc cggccagga
 3780
 cctgtgaggt gtccacgtca aagaagctct gatagtagct gaaggccag aatccggct
 3840
 gctgctgctg ctgctgctcc tgcaggagcg cggccttgc actctccctcc tccacccat
 3900
 cctcggctcc atagctgcca cctgagccca cggccacagc cacgtccct tgtgggtca
 3960
 gctgatcgct tctgctggtg gtggctgcat ctgggggtgtc agccagaaga ttagtggct
 4020
 cctcgaattc atggaagggtc agtcgtcgg ccgtatccat ggtcggtcag gggcgctcc
 4080
 gcatccctcg ctggcgcacca actgcacccca cggaggcttg aactcgatcg cccgtccccca
 4140
 caggtgcgcct ccgc cccccc tcacctgagg ccacctggc cggcgtggct gggcgtcata
 4200
 cctgtgcctt ggctgcagtg gctcttggg ggcgtggcc tggccctgtc agccggccgg
 4260
 ctggattca ccctctggcc cgtggccgt gaggacacca ggctgggtggc
 4310

<210> 6160
 <211> 551
 <212> PRT
 <213> Homo sapiens

<400> 6160
 Leu Glu Val Arg Ala Gly Pro Asp Ser Ala Gly Ile Ala Leu Tyr Ser
 1 5 10 15
 His Glu Asp Val Cys Val Phe Lys Cys Ser Val Ser Arg Glu Thr Glu

Cys	Ser	Arg	Val	Gly	Lys	Gln	Ser	Phe	Ile	Ile	Thr	Leu	Gly	Cys	Asn
20							25					30			
35							40					45			
Ser	Val	Leu	Ile	Gln	Phe	Ala	Thr	Pro	Asn	Asp	Phe	Cys	Ser	Phe	Tyr
50							55					60			
Asn	Ile	Leu	Lys	Thr	Cys	Arg	Gly	His	Thr	Leu	Glu	Arg	Ser	Val	Phe
65							70					75			80
Ser	Glu	Arg	Thr	Glu	Glu	Ser	Ser	Ala	Val	Gln	Tyr	Phe	Gln	Phe	Tyr
85							90					95			
Gly	Tyr	Leu	Ser	Gln	Gln	Gln	Asn	Met	Met	Gln	Asp	Tyr	Val	Arg	Thr
100							105					110			
Gly	Thr	Tyr	Gln	Arg	Ala	Ile	Leu	Gln	Asn	His	Thr	Asp	Phe	Lys	Asp
115							120					125			
Lys	Ile	Val	Leu	Asp	Val	Gly	Cys	Gly	Ile	Leu	Ser	Phe	Phe		
130							135					140			
Ala	Ala	Gln	Ala	Gly	Ala	Arg	Lys	Ile	Tyr	Ala	Val	Glu	Ala	Ser	Thr
145							150					155			160
Met	Ala	Gln	His	Ala	Glu	Val	Leu	Val	Lys	Ser	Asn	Asn	Leu	Thr	Asp
165							170					175			
Arg	Ile	Val	Val	Ile	Pro	Gly	Lys	Val	Glu	Glu	Val	Ser	Leu	Pro	Glu
180							185					190			
Gln	Val	Asp	Ile	Ile	Ile	Ser	Glu	Pro	Met	Gly	Tyr	Met	Leu	Phe	Asn
195							200					205			
Glu	Arg	Met	Leu	Glu	Ser	Tyr	Leu	His	Ala	Lys	Lys	Tyr	Leu	Lys	Pro
210							215					220			
Ser	Gly	Asn	Met	Phe	Pro	Thr	Ile	Gly	Asp	Val	His	Leu	Ala	Pro	Phe
225							230					235			240
Thr	Asp	Glu	Gln	Leu	Tyr	Met	Glu	Gln	Phe	Thr	Lys	Ala	Asn	Phe	Trp
245							250					255			
Tyr	Gln	Pro	Ser	Phe	His	Gly	Val	Asp	Leu	Ser	Ala	Leu	Arg	Gly	Ala
260							265					270			
Ala	Val	Asp	Glu	Tyr	Phe	Arg	Gln	Pro	Val	Val	Asp	Thr	Phe	Asp	Ile
275							280					285			
Arg	Ile	Leu	Met	Ala	Lys	Ser	Val	Lys	Tyr	Thr	Val	Asn	Phe	Leu	Glu
290							295					300			
Ala	Lys	Glu	Gly	Asp	Leu	His	Arg	Ile	Glu	Ile	Pro	Phe	Lys	Phe	His
305							310					315			320
Met	Leu	His	Ser	Gly	Leu	Val	His	Gly	Leu	Ala	Phe	Trp	Phe	Asp	Val
325							330					335			
Ala	Phe	Ile	Gly	Ser	Ile	Met	Thr	Val	Trp	Leu	Ser	Thr	Ala	Pro	Thr
340							345					350			
Glu	Pro	Leu	Thr	His	Trp	Tyr	Gln	Val	Arg	Cys	Leu	Phe	Gln	Ser	Pro
355							360					365			
Leu	Phe	Ala	Lys	Ala	Gly	Asp	Thr	Leu	Ser	Gly	Thr	Cys	Leu	Leu	Ile
370							375					380			
Ala	Asn	Lys	Arg	Gln	Ser	Tyr	Asp	Ile	Ser	Ile	Val	Ala	Gln	Val	Asp
385							390					395			400
Gln	Thr	Gly	Ser	Lys	Ser	Ser	Asn	Leu	Leu	Asp	Leu	Lys	Asn	Pro	Phe
405							410					415			
Phe	Arg	Tyr	Thr	Gly	Thr	Thr	Pro	Ser	Pro	Pro	Pro	Gly	Ser	His	Tyr
420							425					430			
Thr	Ser	Pro	Ser	Glu	Asn	Met	Trp	Asn	Thr	Gly	Ser	Thr	Tyr	Asn	Leu
435							440					445			
Ser	Ser	Gly	Met	Ala	Val	Ala	Gly	Met	Pro	Thr	Ala	Tyr	Asp	Leu	Ser

450 455 460
Ser Val Ile Ala Ser Gly Ser Ser Val Gly His Asn Asn Leu Ile Pro
465 470 475 480
Leu Ala Asn Thr Gly Ile Val Asn His Thr His Ser Arg Met Gly Ser
485 490 495
Ile Met Ser Thr Gly Ile Val Gln Gly Ser Ser Gly Ala Gln Gly Ser
500 505 510
Gly Gly Gly Ser Thr Ser Ala His Tyr Ala Val Asn Ser Gln Phe Thr
515 520 525
Met Gly Gly Pro Ala Ile Ser Met Ala Ser Pro Met Ser Ile Pro Thr
530 535 540
Asn Thr Met His Tyr Gly Ser
545 550

<210> 6161
<211> 1489
<212> DNA
<213> Homo sapiens

<400> 6161
ggctgcatga ttttcagcag attcagtaca gagggaaatg agctgtggga gaggaaggag
60
gatggggaa atggcaagaa aaggagcacc ctgcttagaa agggAACGGA gcccgggttg
120
gtggctcact cctgcaatcc anacaccttggaggccgaa gcaaggagat cacctgagcc
180
caagagtttgc agaccaccca catagcaaga ccccatcttcttggaa aaaaaaaaaaaaa
240
aaaagcagca accagcagga tgggtggaaa aaagttgtcg aaggcttttc aagatccct
300
ctgcctgctc ttctctcac agagggacag gggaggggtga tgagtcaatg gactgaatgt
360
ccccatgggg atgaaggatg gttgggtca gggcctaga gggagggctg gaaggaggga
420
aggagatggc cagagaagga tgttaggacac agaggtgccg ccgtggatca ccaagagg
480
caggactggc cagaggaagg agaggagatc aaggcaagca tgaggcactt gggagatgca
540
tctgtgcctg cacacagctg aaatccccag gaaataagac gggagcaggg tgggtttctg
600
cagccgaggt gagaccaaag tgccagctca ctgccacccct cagtaaagac taactgc
660
tccccacaa ctcccccccccc agaagtagct tgctctccct tgccctgccac acatcg
720
gctcaggaa agctccccctt ccctggacag ctgtgttcc ctggccaaag gccagtc
780
gcagagatga ggagctggaa aatccccctcc tcccatccccg cacgtccacg cgtgcc
840
cctgtgtgc gggctttca cacacagctt ctttagacgct tagcctgtga ggcgggtgc
900
gttgtcccttc cttccccattt tgcaactgag caaacagcct gaaagagaca aaaacc
960
atgttagcatg accccaaagc cactccctgg tctacgctgt tctgcagcct gagectgggg
1020

tggccagggtg gggttgtgca gtgagggggg gaaggagaat agccccaaa aatgctgccg
 1080
 gaatggtaaa gggcctggac tgcaaagcta gtgacttgag ctttattttg tggcaactgga
 1140
 ggtttccca gtcattgtaa tgataacaatc agatttgcgt tgtcttcaag ttaccatgg
 1200
 aaccgtactt ccacccacca agagtggatt ggagaaggca aaacttagggc agagaagcca
 1260
 gggagtgttg agaaggctcg aaccagaca gtgggcagct gggccccaag acggatgggg
 1320
 gactccagaa gcgtggagct ggcagagaga aacctgccc gggcatcaga gaaaagggcg
 1380
 actgtgcagg aacagagtag atgaggtggg gaaccttgg gtaagaagag ctgaatcagg
 1440
 agcattgagg cagcggttt caaacctcg aagcaacagc agggccggc
 1489

<210> 6162

<211> 58

<212> PRT

<213> Homo sapiens

<400> 6162
 Gly Cys Met Ile Phe Ser Arg Phe Ser Thr Glu Gly Ser Glu Leu Trp
 1 5 10 15
 Glu Arg Lys Glu Asp Gly Gly Asn Gly Lys Lys Arg Ser Thr Leu Leu
 20 25 30
 Arg Lys Gly Thr Glu Pro Gly Val Val Ala His Ala Cys Asn Pro Xaa
 35 40 45
 Thr Leu Gly Gly Arg Ser Lys Glu Ile Thr
 50 55

<210> 6163

<211> 713

<212> DNA

<213> Homo sapiens

<400> 6163
 gtggaaatga gcctctcatt aaaacacgtg ctttctggga gccgtgatga acgtgagtgt
 60
 gagatgagtc cagctgcggc cagagccatg ggatgtgggt cactgtgacc cagtgggtca
 120
 caggtgctga gcaaggaagg gctgggaggc tcaagcaaaa tctacaagaa aaatctaaag
 180
 gggcccgcc tctgccagga aaagcaggcc tggctctgct gaaaccccaa tcacgctctg
 240
 atggataaccg gtacctgggc aaggataccg tggatggact tgattttct ctctgaaat
 300
 gtacgagaag gtgcatgcgg ggatttcggc tgcctaaaa gcaaccctct aaaacccgag
 360
 tgcattttt agaatcaaaa aggaaggaag gcagtggctg gctgcactgg tcagtaacga
 420
 gatctggagc ttttcgcctt aaggtcactg tttaaaactc tgccctgggt cagttgtAAC
 480

aqaaagtac aactccctca caggcatcag ggtgcaactt tgaatgccaa gaggggctgt
 540
 gtctgttgtt taccacgcgg cgagctccccg ggacacctcc tgacacctcc tgacagtgtc
 600
 tctttctcta ggagtctctt ctcttcccac ccaccatggc ggcctggctt ggaggggagg
 660
 cattggggac tgagtccttc cccgacaggg agtctctctc cccccctggcg cgc
 713

<210> 6164
 <211> 120
 <212> PRT
 <213> Homo sapiens

<400> 6164
 Met Trp Val Thr Val Thr Gln Trp Val Thr Gly Ala Glu Gln Gly Arg
 1 5 10 15
 Ala Gly Arg Leu Lys Gln Asn Leu Gln Glu Lys Ser Lys Gly Ala Gln
 20 25 30
 Pro Leu Pro Gly Lys Ala Gly Leu Ala Leu Leu Lys Pro Gln Ser Arg
 35 40 45
 Ser Asp Gly Tyr Arg Tyr Leu Gly Lys Asp Thr Val Asp Gly Leu Asp
 50 55 60
 Ser Ser Leu Leu Lys Cys Thr Arg Arg Cys Met Arg Gly Phe Arg Leu
 65 70 75 80
 Pro Glu Lys Gln Pro Ser Lys Thr Arg Val Ser Phe Leu Glu Ser Lys
 85 90 95
 Arg Lys Glu Gly Ser Gly Trp Leu His Trp Ser Val Thr Arg Ser Gly
 100 105 110
 Ala Phe Arg Leu Lys Val Thr Val
 115 120

<210> 6165
 <211> 1004
 <212> DNA
 <213> Homo sapiens

<400> 6165
 cccagccgga tcgggcggcg aaggccggcg cggcgagcag caaccatgtc ggtgttcggg
 60
 aagctgttcg gggctggagg gggtaaggcc ggcaaggcg gcccgacccc ccaggaggcc
 120
 atccagcggc tgcgggacac ggaagagatg ttaagcaaga aacaggagtt cctggagaag
 180
 aaaatcgagc aggagctgac ggccgccaag aagcacggca ccaaaaacaa gcgcgcggcc
 240
 ctccaggcac tgaagcgtaa gaagaggtat gagaagcagc tggcgcatat cgacggcac
 300
 ttatcaacca tcgagttcca gggggaggcc ctggagaatg ccaacaccaa caccgaggtg
 360
 ctcaagaaca tgggctatgc cgccaaggcc atgaaggcg cccatgacaa catggacatc
 420
 gataaagttg atgagttat gcaggacatt gctgaccagc aagaacttgc agaggagatt
 480

tcaacagcaa tttcgaaacc tgttagggttt ggagaagagt ttgacgagga tgagctcatg
 540
 gcggaaattag aagaactaga acaggaggaa ctagacaaga atttgctgga aatcagtggaa
 600
 cccgaaacag tccctctacc aaatgttccc tctatagccc taccatcaaa acccgccaag
 660
 aagaaaagaag aggaggacga cgacatgaag gaattggaga actgggctgg atccatgtaa
 720
 tggggtccag cgctggctgg gcccagacag actgtggtgg cctgcgcagc gagcaggcgt
 780
 gtgcgtgtgt gggcaggca ggtatgtggc caggcaggtt ccatcgctt cgactctcac
 840
 tccaaagcag tagggccgcg ttgctgctca ctctctgcat agcatggct gcacctggga
 900
 gttggccggg gggaggggggg cgagcgggct ggcacgtgcc tgctgttat aatgttgaat
 960
 ttctgtaaaa taaactgtat ttgcaaatcc aaaaaaaaaaaa aaaa
 1004

<210> 6166
<211> 239
<212> PRT
<213> Homo sapiens

<400> 6166
 pro Ser Arg Ile Gly Arg Arg Pro Ala Arg Arg Ala Ala Thr Met
 1 5 10 15
 Ser Val Phe Gly Lys Leu Phe Gly Ala Gly Gly Lys Ala Gly Lys
 20 25 30
 Gly Gly Pro Thr Pro Gln Glu Ala Ile Gln Arg Leu Arg Asp Thr Glu
 35 40 45
 Glu Met Leu Ser Lys Lys Gln Glu Phe Leu Glu Lys Ile Glu Gln
 50 55 60
 Glu Leu Thr Ala Ala Lys Lys His Gly Thr Lys Asn Lys Arg Ala Ala
 65 70 75 80
 Leu Gln Ala Leu Lys Arg Lys Arg Tyr Glu Lys Gln Leu Ala Gln
 85 90 95
 Ile Asp Gly Thr Leu Ser Thr Ile Glu Phe Gln Arg Glu Ala Leu Glu
 100 105 110
 Asn Ala Asn Thr Asn Thr Glu Val Leu Lys Asn Met Gly Tyr Ala Ala
 115 120 125
 Lys Ala Met Lys Ala Ala His Asp Asn Met Asp Ile Asp Lys Val Asp
 130 135 140
 Glu Leu Met Gln Asp Ile Ala Asp Gln Gln Glu Leu Ala Glu Glu Ile
 145 150 155 160
 Ser Thr Ala Ile Ser Lys Pro Val Gly Phe Gly Glu Glu Phe Asp Glu
 165 170 175
 Asp Glu Leu Met Ala Glu Leu Glu Leu Glu Gln Glu Leu Asp
 180 185 190
 Lys Asn Leu Leu Glu Ile Ser Gly Pro Glu Thr Val Pro Leu Pro Asn
 195 200 205
 Val Pro Ser Ile Ala Leu Pro Ser Lys Pro Ala Lys Lys Lys Glu Glu
 210 215 220
 Glu Asp Asp Asp Met Lys Glu Leu Glu Asn Trp Ala Gly Ser Met

225

230

235

<210> 6167
<211> 1220
<212> DNA
<213> Homo sapiens

<400> 6167
ngccatacag cattttagtt ttgttcttc cattaactga agtcacgagg tatgcctcct
60
tgaaaactcc aacagttaag agattctcat gtattccatg aaataaaaag caaagaaaaa
120
tcaaaacttgt cttaatgaga tggaagtgtt ggatcaaaca ctgattgagc ttttatgt
180
cctccacttc cccagtgcct tctctctcc cgggtctgcg cggacgeggc ctcttacct
240
catttgccct cgcgcctccc cgtccctcta cgcgtttgg tccctgtttg tgcgttctg
300
tttgtagctc cggcagttag tatgtatgtg acggaccccg agtcacccgc ggcctggac
360
ccctgcctac ctcccgctc gccagccgag ctgtggaact agcgcgtgcc ccctcgccga
420
cttcggcgtc tccggccgc ccctcaacttg tggtggggcg cagctctgg tccctcagct
480
gcgcgcgcgc ccacgcggcc gggctgcggg tctagggggc cgcacatctcc ctggcttcc
540
aagggtcaag gtcgtgattc tagggcggct gggcgccag ggcctcggt ggggtggcgt
600
gtctgcctt tttatctccc cgcaaggcccc ccagtcttct agggaaagcca gtcagtgaag
660
cgccggaggc cgggcgcgc gagagagagt ccagtcttg aggaccgagt agtcctggc
720
caccccccgc ctctgctgc agaagcagca gtcgcgcgc tggaatccaa aatttcggga
780
gctgtgaccc ttccatcg taaaacgagt agtctggac gatctggca taggaaccaa
840
tcagaaacaa tcgcttcagc aatcaagacc attgttcatc atggaggaac ccatggatac
900
ctctgagcct ctatctgcat taccattcac tggcagcag tctttgagc caagtggcaa
960
atttggacag tatccatcga tgcagatgaa ccacatccag gcactgggg agtggaggac
1020
atagaacagc tcaatcgtg tttgatccaa cacttccatc tcattaagac aagtttgatt
1080
tttctttgtt ttttatttca tggaatacat gagaatctt taactgttgg agtttccaag
1140
gaggcatacc tcatgacttc agttaatgga aagaacaaaa ctaaaatgt gtatggccaa
1200
agccacaaag ggaaggatcc
1220

<210> 6168
<211> 90
<212> PRT

<213> Homo sapiens

<400> 6168

Ala	Lys	Trp	Gln	Ile	Trp	Thr	Val	Ser	Ile	Asp	Ala	Asp	Glu	Pro	His
1				5			10			15					
Pro	Gly	Thr	Gly	Glu	Val	Glu	Asp	Ile	Glu	Gln	Leu	Asn	Gln	Cys	Leu
					20		25			30					
Ile	Gln	His	Phe	His	Leu	Ile	Lys	Thr	Ser	Leu	Ile	Phe	Leu	Cys	Phe
						35		40			45				
Leu	Phe	His	Gly	Ile	His	Glu	Asn	Leu	Leu	Thr	Val	Gly	Val	Ser	Lys
						50		55			60				
Glu	Ala	Tyr	Leu	Met	Thr	Ser	Val	Asn	Gly	Lys	Asn	Lys	Thr	Lys	Met
	65				70			75			80				
Leu	Tyr	Gly	Gln	Ser	His	Lys	Gly	Lys	Asp						
					85			90							

<210> 6169

<211> 720

<212> DNA

<213> Homo sapiens

<400> 6169

tgagggcttc	gatcccttct	ctgatttgct	gtcagccatg	aacggatgga	tgtgatgcct
60					
gctagccaaa	aggcttcctt	ctgtgtgttg	cagtccctgtg	gcattatgca	tgccccctcc
120					
cagtgacccc	aggctttta	tggctgtgaa	acacgttaaa	atttcagggt	aagacgtgac
180					
cttttgaggt	gactataact	gaagattgct	ttacagaagc	ccaaaaaggt	tttttgagtc
240					
atgatgcaag	aatctggac	tgagacaaaa	agtaacggtt	cagccatcca	aatgggtcg
300					
ggcggcagca	accacttact	agagtgcggc	ggtcttcggg	agggggcggtc	caacggagag
360					
acgccccccg	tggacatcg	ggcagctgac	ctcgccccacg	cccagcagca	gcagcaacag
420					
tggcatctca	taaaccatca	gccctctagg	agtcccagca	gttggcttaa	gagactaatt
480					
tcaagccctt	gggagttgga	agtccctgcag	gtcccttgc	gggagcagtt	gctgagacga
540					
agatgagtgg	acctgtgtgt	cagcctaacc	cttccccatt	ttgaataaaa	ttattctttg
600					
gagaaatggt	tcccactgct	ttcatgcaaa	aataaaaatt	aaacgaaaaaa	cagcttaagc
660					
ctgtgaagaa	ggaaaatactg	agctagccag	caaaagagag	aaagaagagg	aggggagagg
720					

<210> 6170

<211> 101

<212> PRT

<213> Homo sapiens

<400> 6170

Met	Met	Gln	Glu	Ser	Gly	Thr	Glu	Thr	Lys	Ser	Asn	Gly	Ser	Ala	Ile
-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----

1 5 10 15
Gln Asn Gly Ser Gly Gly Ser Asn His Leu Leu Glu Cys Gly Gly Leu
20 25 30
Arg Glu Gly Arg Ser Asn Gly Glu Thr Pro Ala Val Asp Ile Gly Ala
35 40 45
Ala Asp Leu Ala His Ala Gln Gln Gln Gln Gln Trp His Leu Ile
50 55 60
Asn His Gln Pro Ser Arg Ser Pro Ser Ser Trp Leu Lys Arg Leu Ile
65 70 75 80
Ser Ser Pro Trp Glu Leu Glu Val Leu Gln Val Pro Cys Gly Glu Gln
85 90 95
Leu Leu Arg Arg Arg
100

<210> 6171
<211> 1130
<212> DNA
<213> Homo sapiens

<400> 6171
nncccgctag gagttcctag taaagtggcg ggagccgcag ctatggagcc gcaggaggag
60
agagaaacgc aggttgctgc gtggtaaaaa aaaatatttg gagatcatcc tattccacag
120
tatgaggtga acccacggac cacagagatt ttacatcacc tttcagaacg caacagggtc
180
cgggacacaggg atgtctacct ggtaatagag gacttgaagc agaaagcaag tgaatacgg
240
tcagaagcca agtatcttca agaccttctc atggagagtg tgaatttttc ccccgccaat
300
ctctcttagca ctggttccag gtatctgaat gctttggttt acagtgcgtt ggcccttgaa
360
acaaggata cctcgctagc tagtttatac cctgcagtga atgatttgac ctctgatctc
420
tttcgtacca aatccaaaag tgaagaaaatc aagattgaac tggaaaaact tgaaaaaaat
480
ttaactgcaa cttagtatt agaaaaatgt ctacaagagg atgtcaagaa agcagagttg
540
catctgtcta cagaaaggc caaagttgat aatcgctgatc agaacatgga ctttctaaaa
600
gcaaaatgcag aggaatttcag atttggaaatc aaggctgcag aggagcaact ttcagccaga
660
ggcatggatg cttctctgtc tcatacgtcc ttagtagcac tatcagagaa actggcaaga
720
ttaaagcaac agactataacc tttgaagaaa aaattggagt cctatggat cttaatgcgg
780
aatccgtctc ttgctcaagt gaaaattgaa gaagcaaagc gagaactaga tagcattgaa
840
gctgaactta caagaagagt agacatgtgaa gaactgtgac aaaagccaaa taaacatcct
900
tttccctaaac aaagtaaattt gaataggact ttacagagtt ctttttcctc ttggcatttc
960
ctaataacaa aactttctgt gttcttagat tacagaatat cataattgat agaatatgg
1020

ttcttactgt gtgttcatt ttttgtccca aatacatagt tttcatatta aaaaggcttt
1080
tctcttaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa
1130

<210> 6172
<211> 292
<212> PRT
<213> Homo sapiens

<400> 6172
Xaa Pro Leu Gly Val Pro Ser Lys Val Ala Gly Ala Ala Ala Met Glu
1 5 10 15
Pro Gln Glu Glu Arg Glu Thr Gln Val Ala Ala Trp Leu Lys Lys Ile
20 25 30
Phe Gly Asp His Pro Ile Pro Gln Tyr Glu Val Asn Pro Arg Thr Thr
35 40 45
Glu Ile Leu His His Leu Ser Glu Arg Asn Arg Val Arg Asp Arg Asp
50 55 60
Val Tyr Leu Val Ile Glu Asp Leu Lys Gln Lys Ala Ser Glu Tyr Glu
65 70 75 80
Ser Glu Ala Lys Tyr Leu Gln Asp Leu Leu Met Glu Ser Val Asn Phe
85 90 95
Ser Pro Ala Asn Leu Ser Ser Thr Gly Ser Arg Tyr Leu Asn Ala Leu
100 105 110
Val Asp Ser Ala Val Ala Leu Glu Thr Lys Asp Thr Ser Leu Ala Ser
115 120 125
Phe Ile Pro Ala Val Asn Asp Leu Thr Ser Asp Leu Phe Arg Thr Lys
130 135 140
Ser Lys Ser Glu Glu Ile Lys Ile Glu Leu Glu Lys Leu Glu Lys Asn
145 150 155 160
Leu Thr Ala Thr Leu Val Leu Glu Lys Cys Leu Gln Glu Asp Val Lys
165 170 175
Lys Ala Glu Leu His Leu Ser Thr Glu Arg Ala Lys Val Asp Asn Arg
180 185 190
Arg Gln Asn Met Asp Phe Leu Lys Ala Lys Ser Glu Glu Phe Arg Phe
195 200 205
Gly Ile Lys Ala Ala Glu Glu Gln Leu Ser Ala Arg Gly Met Asp Ala
210 215 220
Ser Leu Ser His Gln Ser Leu Val Ala Leu Ser Glu Lys Leu Ala Arg
225 230 235 240
Leu Lys Gln Gln Thr Ile Pro Leu Lys Lys Lys Leu Glu Ser Tyr Leu
245 250 255
Asp Leu Met Pro Asn Pro Ser Leu Ala Gln Val Lys Ile Glu Glu Ala
260 265 270
Lys Arg Glu Leu Asp Ser Ile Glu Ala Glu Leu Thr Arg Arg Val Asp
275 280 285
Met Met Glu Leu
290

<210> 6173
<211> 1483
<212> DNA
<213> Homo sapiens

<400> 6173
agagagagag actagttctc tcttactcta ggcccttcgg tttgcgcgac ggggcaggaa
60
agcgtgcgtg cggctaagag agtgggcgct ctcgcggcgc tgacgatgga agaactggag
120
caaggcctgt tgatgcagcc atgggcgtgg ctacagcttg cagagaactc cctcttggcc
180
aagggtttta tcaccaagca gggctatgcc ttgttggttt cagatctca acaggtgtgg
240
catgaacagg tggacactag tgtggtcagc cagcgagcca aggagctgaa caagcggctc
300
actgctcctc ctgcagctt cctctgtcat ttggataatc tccctcgccc attgttgaag
360
gacgctgctc accctagcga agctacccctc tcctgtgatt gtgtggcaga tgcactgatt
420
ctacgggtgc gaagttagct ctctggcctc cccttctatt ggaatttcca ctgcatgcta
480
gctagtcctt ccctggctc ccaacatttg attcgtcctc tgatggcat gagtctggca
540
ttacagtgcc aagttagggg gctagcaacg ttacttcata tgaaagacct agagatccaa
600
gactaccagg agagtggggc tacgctgatt cgagatcgat tgaagacaga accatttcaa
660
gaaaattcct tcttggaaaca atttatgata gagaaactgc cagaggcatg cagcattgg
720
gatggaaagc ccttgcatttgc gatctgtata tggcagtcac cacacaagag
780
gtccaagtgg gacagaagca tcaaggcgtc ggagatcctc atacctaaa cagtgcctcc
840
ctgcaaggaa tcgatagcca atgtgtaaac cagccagaac aactggctc ctcagcccc
900
accctctcag cacctgagaa agagtccacg ggtacttcag gccctctgca gagacctcag
960
ctgtcaaagg tcaagaggaa gaatccaagg ggtctttca gttaatctgt tgtggcctca
1020
gctgctgagg atggacttgg agaatacgctt ccaagcttca ctttggaaaga agcttacatg
1080
gcagcaatat ttctaaaata gtgatacagt cagaggcctc ctgttaaggc gagagaactg
1140
aagttgatgt tgacagggcc acagggaaatt ggccttcct gttcaagtgg aagccagtct
1200
ctgagaatcc cgtgctctcc tctctttgg tggaggttct gtaggttca gtttctacca
1260
tggactttag gtatataggg caagtcagca agaaagcacc acacactcag gaagccttgt
1320
ctaccttcc ctgcgtctc tagccagcca gccccagata ctcctcagag acccacttct
1380
ctctttgca tggaaaaaaa agcactcaca gtcctgttt ttgggattaa aaaacaaaaaa
1440
aaaaaaaaaaaa aaaaaaaaaaaa aaaaaaaaaat cctcatgccc aat
1483

<210> 6174

<211> 299

<212> PRT

<213> Homo sapiens

<400> 6174

Met Glu Glu Leu Glu Gln Gly Leu Leu Met Gln Pro Trp Ala Trp Leu
 1 5 10 15
 Gln Leu Ala Glu Asn Ser Leu Leu Ala Lys Val Phe Ile Thr Lys Gln
 20 25 30
 Gly Tyr Ala Leu Leu Val Ser Asp Leu Gln Gln Val Trp His Glu Gln
 35 40 45
 Val Asp Thr Ser Val Val Ser Gln Arg Ala Lys Glu Leu Asn Lys Arg
 50 55 60
 Leu Thr Ala Pro Pro Ala Ala Phe Leu Cys His Leu Asp Asn Leu Leu
 65 70 75 80
 Arg Pro Leu Leu Lys Asp Ala Ala His Pro Ser Glu Ala Thr Phe Ser
 85 90 95
 Cys Asp Cys Val Ala Asp Ala Leu Ile Leu Arg Val Arg Ser Glu Leu
 100 105 110
 Ser Gly Leu Pro Phe Tyr Trp Asn Phe His Cys Met Leu Ala Ser Pro
 115 120 125
 Ser Leu Val Ser Gln His Leu Ile Arg Pro Leu Met Gly Met Ser Leu
 130 135 140
 Ala Leu Gln Cys Gln Val Arg Glu Leu Ala Thr Leu Leu His Met Lys
 145 150 155 160
 Asp Leu Glu Ile Gln Asp Tyr Gln Glu Ser Gly Ala Thr Leu Ile Arg
 165 170 175
 Asp Arg Leu Lys Thr Glu Pro Phe Glu Asn Ser Phe Leu Glu Gln
 180 185 190
 Phe Met Ile Glu Lys Leu Pro Glu Ala Cys Ser Ile Gly Asp Gly Lys
 195 200 205
 Pro Phe Val Met Asn Leu Gln Asp Leu Tyr Met Ala Val Thr Thr Gln
 210 215 220
 Glu Val Gln Val Gly Gln Lys His Gln Gly Ala Gly Asp Pro His Thr
 225 230 235 240
 Ser Asn Ser Ala Ser Leu Gln Gly Ile Asp Ser Gln Cys Val Asn Gln
 245 250 255
 Pro Glu Gln Leu Val Ser Ser Ala Pro Thr Leu Ser Ala Pro Glu Lys
 260 265 270
 Glu Ser Thr Gly Thr Ser Gly Pro Leu Gln Arg Pro Gln Leu Ser Lys
 275 280 285
 Val Lys Arg Lys Asn Pro Arg Gly Leu Phe Ser
 290 295

<210> 6175

<211> 349

<212> DNA

<213> Homo sapiens

<400> 6175

acgcgtttgc cgggagatgc ggccgcttcg tcctctgcag ttaagaagct gggcgcgctcg
 60
 aggactggga ttcaaataat gcgtgcattt gagaatgact tttcaattc tcccccaaga
 120

aaaactgttc agtttggtgg aactgtgaca gaagtcttgc tgaagtacaa aaagggtgaa
 180
 acaaatgact ttgagttgtt gaagaaccag ctgttagatc cagacataaa gagattgcct
 240
 tggttgaata gaagtcaaac agtagtgaa gagtatttg cttttcttgg taatcttga
 300
 tcagcacaga ctgtttcct cagacgtgt ctcatgtga ttgtttccc
 349

<210> 6176
<211> 90
<212> PRT
<213> Homo sapiens

<400> 6176
 Met Arg Ala Leu Glu Asn Asp Phe Phe Asn Ser Pro Pro Arg Lys Thr
 1 5 10 15
 Val Gln Phe Gly Gly Thr Val Thr Glu Val Leu Leu Lys Tyr Lys Lys
 20 25 30
 Gly Glu Thr Asn Asp Phe Glu Leu Leu Lys Asn Gln Leu Leu Asp Pro
 35 40 45
 Asp Ile Lys Arg Leu Pro Trp Leu Asn Arg Ser Gln Thr Val Val Glu
 50 55 60
 Glu Tyr Leu Ala Phe Leu Gly Asn Leu Val Ser Ala Gln Thr Val Phe
 65 70 75 80
 Leu Arg Pro Cys Leu Ser Met Ile Ala Ser
 85 90

<210> 6177
<211> 1536
<212> DNA
<213> Homo sapiens

<400> 6177
 cggcccaacc atggcgctct ccggggccgg ctgcgtggtg atcggtggca gaattaaaaac
 60
 tctgtaccca ttgaacaaca gctgctcatt tccccccagecc ccagccccctg gcatccaccc
 120
 ttctagcttt ctgtctctat gggtaacctca gtggagtcat tgggcgaatg ggccatgctg
 180
 ttggccagtg gaggcttcca ggtgaaaactc tatgacattt agcaacagca gataaggaac
 240
 gcccctggaaa acatcagaaa ggagatgaag ttgctggagc aggccaggatc tctgaaaggc
 300
 tccctgagtg tggaagagca gctgtcactc atcagtggtt gtcccaatat ccaagaagca
 360
 gtagagggtg ccatgcacat tcaggaatgt gttccagaag atctagaact gaagaagaag
 420
 atttttgctc agtttagatcc catcattgtat gatcgagtga tcttaagcag ttccacttct
 480
 tgcgtctcatgc cttccaagtt gtttgctggc ttggccatg tgaagcaatg catcggtggct
 540
 catcctgtga atccggccata ctacatccccg ctgggttgagc tggccccca cccggagacg
 600

gccccctacga cagtggacag aaccacgccc ctgatgaaga agattgganc agtgccccat
660
gcccgcctcag aaggaggtgg ccggcttcgt tctgaaccgc ctgcaatatg caatcatcag
720
cgaggcctgg cggctagtgg aggaaggaat ncgtgtctcc tagtgcaccc gnnacccgtc
780
atgtcagaag gggtggcat gcggtatgca ttcatggac ccctggaaac catgcacatc
840
aatgcagaag gtatgttaag ctactgcgac agatacagcg aaggcataaa acatgtctca
900
cagacttttg gacccattcc agagtttcc agggccactg ctgagaaggt taaccaggac
960
atgtgcatga aggtccctga tgacccggag cacttagctg ccaggaggca gtggagggac
1020
gagtgcctca tgagactcgc caagttgaag agtcaagtgc agcccccagtg aatttcttgt
1080
aatgcagctt ccactccctt cattggaggc cctatttggg aacactgcaa gcccctaattc
1140
agccctctgt gacataggtt gcagccccacg gagatcctaa gctggctgtc ttgtgtgcag
1200
cctgagtgccc gtgggtgcagg ccggtagtct gcccgtact ttggatcata gcccctggcc
1260
tggccggcaca gcagcaccc cggttcggg gctgtcgatt tccgtccacc tggcagata
1320
acctggagat ttccacccctt tctttcagc ttgattgcatt ttgactatat tttacagcca
1380
gtgattgttag tttcatgtta atatgtggca aaatattttt gtaatttattt tctaattccct
1440
ttctgagtagtac tctggggccc tgcatttatg aggcacccatc cttcattttg ctaacgctta
1500
ttctgaataaa aagtttttga ttccttaaaaa aaaaaaa
1536

<210> 6178
<211> 310
<212> PRT
<213> Homo sapiens

<400> 6178
Met Gly Thr Ser Val Glu Ser Leu Gly Glu Trp Ala Met Leu Phe Ala
1 5 10 15
Ser Gly Gly Phe Gln Val Lys Leu Tyr Asp Ile Glu Gln Gln Ile
20 25 30
Arg Asn Ala Leu Glu Asn Ile Arg Lys Glu Met Lys Leu Leu Glu Gln
35 40 45
Ala Gly Ser Leu Lys Gly Ser Leu Ser Val Glu Glu Gln Leu Ser Leu
50 55 60
Ile Ser Gly Cys Pro Asn Ile Gln Glu Ala Val Glu Gly Ala Met His
65 70 75 80
Ile Gln Glu Cys Val Pro Glu Asp Leu Glu Leu Lys Lys Ile Phe
85 90 95
Ala Gln Leu Asp Ser Ile Ile Asp Asp Arg Val Ile Leu Ser Ser Ser
100 105 110
Thr Ser Cys Leu Met Pro Ser Lys Leu Phe Ala Gly Leu Val His Val

115	120	125
Lys Gln Cys Ile Val Ala His Pro Val Asn Pro Pro Tyr Tyr Ile Pro		
130	135	140
Leu Val Glu Leu Val Pro His Pro Glu Thr Ala Pro Thr Thr Val Asp		
145	150	155
Arg Thr His Ala Leu Met Lys Lys Ile Gly Xaa Val Pro His Ala Ser		
165	170	175
Pro Glu Gly Gly Arg Leu Arg Ser Glu Pro Pro Ala Ile Cys Asn		
180	185	190
His Gln Arg Gly Leu Ala Ala Ser Gly Gly Arg Asn Xaa Cys Leu Leu		
195	200	205
Val Thr Trp Xaa Leu Val Met Ser Glu Gly Leu Gly Met Arg Tyr Ala		
210	215	220
Phe Ile Gly Pro Leu Glu Thr Met His Leu Asn Ala Glu Gly Met Leu		
225	230	235
Ser Tyr Cys Asp Arg Tyr Ser Glu Gly Ile Lys His Val Leu Gln Thr		
245	250	255
Phe Gly Pro Ile Pro Glu Phe Ser Arg Ala Thr Ala Glu Lys Val Asn		
260	265	270
Gln Asp Met Cys Met Lys Val Pro Asp Asp Pro Glu His Leu Ala Ala		
275	280	285
Arg Arg Gln Trp Arg Asp Glu Cys Leu Met Arg Leu Ala Lys Leu Lys		
290	295	300
Ser Gln Val Gln Pro Gln		
305	310	

<210> 6179

<211> 2940

<212> DNA

<213> Homo sapiens

<400> 6179

```

nnctgcaggt ggccggggag gctacgcgcg gggcggtgc tgcttgcgtc aggctctggg
60
gagtgcatt gcctacaaca cagcagtccc ctcaggatga gcaggaaaag ctcttggatg
120
aagccataca ggctgtgaag gtccagtcat tccaaatgaa gagatgcctg gacaaaaaca
180
agcttatgga tgctctaaaa catgcttcta atatgcttgg tgaactccgg acttctatgt
240
tatcacaaaa gagttactat gaactttata tggccatttc tcatgaaactg cactacttgg
300
aggntctacc tgacagatga gtttgctaaa ggaaggaaag tggcagatct ctacgaactt
360
300
gtacagtatg ctggaaacat tatcccaagg ctttaccttt tgatcacagt tggagttgta
420
tatgtcaagt catttcctca gtccaggaag gatattttga aagatttggt agaaatgtgc
480
cgtgggtgtc aacatccctt gaggggtctg tttcttcgaa attaccttct tcagtgtacc
540
540
agaaatatct tacctgatga aggagagcca acagatgaag aaacaactgg tgacatcagt
600
gattccatgg attttgact gctcaacttt gcagaaatga acaagctcg ggtgcgaatg
660

```

cagcatcagg gacatagccg agatagagaa aaaagagaac gagaaagaca agaactgaga
720
attttagtgg gaacaaattt ggtgcgcctc agtnncagtt ggaggtgtaa atgtggAACG
780
ttacaacaga ttgtttgac tggcatattt gagaAGTTG taaACTGTAG ggATGCTTG
840
gctcaagaat atctcatgga gtgtattatt caggTTTCC ctgtGAATT tcACCTCCAG
900
actttGAATC CTTTCTCG GGCCTGTGCT gagttacacc agaatgtaaa TGTGAAGAAC
960
ataatcatttG CTTTAATTGA tagattAGCT ttATTTGCTC accgtGAAGA TGGACCTGGA
1020
atcccAGCGG atattAAACT TTTGATAATA TTTcacAGC aggtggctac agtGatacAG
1080
tctagacaag acatgccttc agaggatGTT gtatcttac aagtctctt gattaatctt
1140
gccccatGAAAT gttaccctGA tcgtgtggac tatgttgata aagttctaga aacaacAGT
1200
gagatattca ataagctcaa ctttGAACAT attgtacca gtagtgcAGT ttCAAAGGAA
1260
ctcaccAGAC ttttGAAAAT accAGTTGAC acttacaaca atatttaac agtcttGAAA
1320
ttaaaacatt ttcacccact ctttgagtac ttgtactacg agtccAGAAA gagcatgagt
1380
tgTTatgtgc ttagtaatgt tctggattat aacacagaaa ttgtctctca agaccaggTG
1440
gattccataa tgaatttGt atccacGTTG attcaagatc agccagatca acctgtAGAA
1500
gaccctgtatc cagaagatTT tgctgtatgag cagacGCTTG tggcccgctt cattcatctG
1560
ctcgctctG aggacccGTA ccAGCAGTAC ttgatTTGA acacAGCACG AAAACATTT
1620
ggagctggTG gaaatcAGCG gattcGCTTC acactGCCAC ctttggTatt tgCAGCTTAC
1680
cagctggctt ttGatataa agagaatttG aagtggatGA caaatGGAA aagaatGCC
1740
agaagatTTT ttcatTTGCC cnaccAGACT atcAGTGTCT tgatCAAAGC agagctGGCA
1800
gaattGccCT taagactTTT tcttcaAGGA GCACTAGCTG ctggggAAAT tggTTTGA
1860
aatcatgaga cagtcgcata tgaattcatG tcccaggcat ttctctGta tgaagatGAA
1920
atcAGCGATT ccaaAGCACA GCTAGCTGCC atcaccttGA tcattGGCAC ttttGAAAGG
1980
atGAAGTGTCT tcAGTGAAGA GAATCATGAA CCTCTGAGGA CTCAGTGTGC CTTGCTGCA
2040
tccaaACTTC taaAGAAACC tgatcAGGGC CGAGCTGAGC acctGTGCAc ATCTCTTGG
2100
tctggcAGAA acacGGACAA aaatGGGGAG gagttcACG gaggcaAGAG ggtaatGGAG
2160
tgcctaaaaa aagctctaaa aatAGCAAAT cagtGcatGG acccctctt ACAAGTGCAG
2220
cttttatAG aaattctGAA cagatatac tattttatG aaaAGGAAAGA tgatGCGGT
2280

acaattcagg ttttaaacca gcttatccaa aagattcgag aagacacctccc gaatcttgaa
 2340
 tccagtgaag aaacagagca gattaacaaa cattttcata acacactgga gcatttgcgc
 2400
 ttgcggcggg aatcaccaga atccgagggg ccaatttatg aaggctcat cctttaaaaa
 2460
 gaaaatagct caccatactc ctttccatgt acatccagtg agggtttat tacgttagt
 2520
 ttcccttcca tagattgtgc ctttcagaaa tgctgaggta ggtttccat ttcttacctg
 2580
 tgatgtgtt tacccagcac ctccggacac tcacccatcg gacctaata aaattattca
 2640
 cttggtaagt gttcaagtct ttctgatcac cccaaatgtc atgactgtc tgcaatttt
 2700
 agagctttt ttaggcactc cattaccctc ttgcctccgt gaagctccctc cccattttg
 2760
 tccgtgttgc tgccagacca gaagagatgt gcacaggtgc tcacagctcg gccctgatca
 2820
 gtttcttta gaagtttggg tgcagcaagg gcacactgag tcctcagagg ttcatgattc
 2880
 tcttcactga agcacttcat cctttcaaaa gtgccaatga tcaaggatgt ggcagctagc
 2940

<210> 6180
 <211> 751
 <212> PRT
 <213> Homo sapiens

<400> 6180
 Met Leu Leu Ile Cys Leu Val Asn Ser Gly Leu Leu Cys Tyr His Gln
 1 5 10 15
 Arg Val Thr Met Asn Phe Ile Trp Pro Phe Leu Met Asn Cys Thr Thr
 20 25 30
 Trp Arg Xaa Tyr Leu Thr Asp Glu Phe Ala Lys Gly Arg Lys Val Ala
 35 40 45
 Asp Leu Tyr Glu Leu Val Gln Tyr Ala Gly Asn Ile Ile Pro Arg Leu
 50 55 60
 Tyr Leu Leu Ile Thr Val Gly Val Val Tyr Val Lys Ser Phe Pro Gln
 65 70 75 80
 Ser Arg Lys Asp Ile Leu Lys Asp Leu Val Glu Met Cys Arg Gly Val
 85 90 95
 Gln His Pro Leu Arg Gly Leu Phe Leu Arg Asn Tyr Leu Leu Gln Cys
 100 105 110
 Thr Arg Asn Ile Leu Pro Asp Glu Gly Glu Pro Thr Asp Glu Glu Thr
 115 120 125
 Thr Gly Asp Ile Ser Asp Ser Met Asp Phe Val Leu Leu Asn Phe Ala
 130 135 140
 Glu Met Asn Lys Leu Trp Val Arg Met Gln His Gln Gly His Ser Arg
 145 150 155 160
 Asp Arg Glu Lys Arg Glu Arg Glu Arg Gln Glu Leu Arg Ile Leu Val
 165 170 175
 Gly Thr Asn Leu Val Arg Leu Ser Xaa Ser Trp Arg Cys Lys Cys Gly
 180 185 190
 Thr Leu Gln Gln Ile Val Leu Thr Gly Ile Leu Glu Gln Val Val Asn

195	200	205
Cys Arg Asp Ala Leu Ala Gln Glu Tyr Leu Met Glu Cys Ile Ile Gln		
210	215	220
Val Phe Pro Asp Glu Phe His Leu Gln Thr Leu Asn Pro Phe Leu Arg		
225	230	235
Ala Cys Ala Glu Leu His Gln Asn Val Asn Val Lys Asn Ile Ile Ile		240
245	250	255
Ala Leu Ile Asp Arg Leu Ala Leu Phe Ala His Arg Glu Asp Gly Pro		
260	265	270
Gly Ile Pro Ala Asp Ile Lys Leu Phe Asp Ile Phe Ser Gln Gln Val		
275	280	285
Ala Thr Val Ile Gln Ser Arg Gln Asp Met Pro Ser Glu Asp Val Val		
290	295	300
Ser Leu Gln Val Ser Leu Ile Asn Leu Ala Met Lys Cys Tyr Pro Asp		
305	310	315
Arg Val Asp Tyr Val Asp Lys Val Leu Glu Thr Thr Val Glu Ile Phe		320
325	330	335
Asn Lys Leu Asn Leu Glu His Ile Ala Thr Ser Ser Ala Val Ser Lys		
340	345	350
Glu Leu Thr Arg Leu Leu Lys Ile Pro Val Asp Thr Tyr Asn Asn Ile		
355	360	365
Leu Thr Val Leu Lys Leu Lys His Phe His Pro Leu Phe Glu Tyr Phe		
370	375	380
Asp Tyr Glu Ser Arg Lys Ser Met Ser Cys Tyr Val Leu Ser Asn Val		
385	390	395
Leu Asp Tyr Asn Thr Glu Ile Val Ser Gln Asp Gln Val Asp Ser Ile		400
405	410	415
Met Asn Leu Val Ser Thr Leu Ile Gln Asp Gln Pro Asp Gln Pro Val		
420	425	430
Glu Asp Pro Asp Pro Glu Asp Phe Ala Asp Glu Gln Ser Leu Val Gly		
435	440	445
Arg Phe Ile His Leu Leu Arg Ser Glu Asp Pro Asp Gln Gln Tyr Leu		
450	455	460
Ile Leu Asn Thr Ala Arg Lys His Phe Gly Ala Gly Gly Asn Gln Arg		
465	470	475
Ile Arg Phe Thr Leu Pro Pro Leu Val Phe Ala Ala Tyr Gln Leu Ala		480
485	490	495
Phe Arg Tyr Lys Glu Asn Ser Lys Trp Met Thr Asn Gly Lys Arg Asn		
500	505	510
Ala Arg Arg Phe Phe His Leu Pro Xaa Gln Thr Ile Ser Ala Leu Ile		
515	520	525
Lys Ala Glu Leu Ala Glu Leu Pro Leu Arg Leu Phe Leu Gln Gly Ala		
530	535	540
Leu Ala Ala Gly Glu Ile Gly Phe Glu Asn His Glu Thr Val Ala Tyr		
545	550	555
Glu Phe Met Ser Gln Ala Phe Ser Leu Tyr Glu Asp Glu Ile Ser Asp		560
565	570	575
Ser Lys Ala Gln Leu Ala Ala Ile Thr Leu Ile Ile Gly Thr Phe Glu		
580	585	590
Arg Met Lys Cys Phe Ser Glu Glu Asn His Glu Pro Leu Arg Thr Gln		
595	600	605
Cys Ala Leu Ala Ala Ser Lys Leu Leu Lys Lys Pro Asp Gln Gly Arg		
610	615	620
Ala Glu His Leu Cys Thr Ser Leu Trp Ser Gly Arg Asn Thr Asp Lys		

625	630	635	640
Asn	Gly	Glu	Glu
Glu	Glu	Leu	His
Lys	Gly	Gly	Lys
Arg	Val	Met	Glu
Cys	Leu	Lys	
645		650	655
Lys	Ala	Leu	Lys
Ile	Ala	Asn	Gln
Cys	Met	Asp	Pro
660	665	670	
Gln	Leu	Phe	Ile
Leu	Asn	Ile	Ile
Arg	Tyr	Ile	Tyr
675	680	685	
Glu	Asn	Asp	Ala
Asp	Ala	Val	Thr
Ile	Gln	Val	Leu
Asn	Leu	Asn	Ile
Gln	Ile	Gln	Lys
690	695	700	
Ile	Arg	Glu	Asp
Arg	Glu	Asp	Leu
Asp	Leu	Pro	Asn
705	710	715	720
Ile	Asn	Lys	His
His	Asn	Thr	Leu
Phe	Ile	Glu	His
725	730	735	
Glu	Ser	Pro	Glu
740	745	750	
Ser	Glu	Gly	Pro
			Ile
			Leu

<210> 6181

<211> 1135

<212> DNA

<213> Homo sapiens

<400> 6181

gccaagcgct actcctggtc cggcatgggc cgcatccaca agggcatccg cgagcaggc
60
cggtacctca acagccggcc ctccatccag aagccccagg tcttcttcct gcccacactg
120
cccaccacgc cctatttctc ccgggacgc aagaaacatg atgtgaaagt gctggAACGG
180
aacttccaga ccattctgtg tgagtttgag accctctaca aagctttctc aaactgcagc
240
ctccccgcaag gatggaaaat gaacagcacc cccagccccgg agtggttcac cttttacttg
300
gtcaatcagg gggtttgtgt tcccaggaac tgttaggaagt gcccacggac gtaccgcttg
360
ctcggaaagcc ttccggacactg tattgggaac aatgtttttg ggaacgcgtg catctctgtg
420
ctgagccctg ggactgtgat aacggagcac tatggaccca ccaacatccg catccgatgc
480
cattttaggtc tgaaaactcc aaatggctgt gagctggtgg tggggggaga gccccagtgc
540
tgggcagaag ggcgctgcct tctctttgat gactcttcc tgcattgtgc gttccatgaa
600
gtttcagcag aggatggccc acgggtggtt ttcatggtgg atttgtggca tccaaacgtc
660
gcagcggcccg aacggcaggc tcttgatttc atctttgctc cgggacgatg agagtatttc
720
ccatgctggaa gtcggcgaga agggccgagg cggggcctgg gcagactgtg gtccggtcca
780
gtcccttaccg gtgttggat catgctcaga aacctgcctc agcggaaagc tcttatttgg
840
gattttatat catgtcggtt cccttttcc cttgggttatt gtaaatggaa acttttcggc
900
ttgttatttcc ttagattttt tttttttctt tccaaatcatt tgcttcagag actcctttct
960

ggcctaacaag cgcatccctt tgattggtcc ttgagtgacc agagacttag tgcccttgta
 1020
 agtctgtctt ctgttgcac ttgtttttt cagtgcctcg aaatagagta actaaatggt
 1080
 tatttgcctg aataataataa tgtaaaaactt cttgtggtca tcttaaaaaa aaaaa
 1135

<210> 6182
 <211> 236
 <212> PRT
 <213> Homo sapiens

<400> 6182
 Ala Lys Arg Tyr Ser Trp Ser Gly Met Gly Arg Ile His Lys Gly Ile
 1 5 10 15
 Arg Glu Gln Gly Arg Tyr Leu Asn Ser Arg Pro Ser Ile Gln Lys Pro
 20 25 30
 Glu Val Phe Phe Leu Pro Asp Leu Pro Thr Thr Pro Tyr Phe Ser Arg
 35 40 45
 Asp Ala Gln Lys His Asp Val Glu Val Leu Glu Arg Asn Phe Gln Thr
 50 55 60
 Ile Leu Cys Glu Phe Glu Thr Leu Tyr Lys Ala Phe Ser Asn Cys Ser
 65 70 75 80
 Leu Pro Gln Gly Trp Lys Met Asn Ser Thr Pro Ser Gly Glu Trp Phe
 85 90 95
 Thr Phe Tyr Leu Val Asn Gln Gly Val Cys Val Pro Arg Asn Cys Arg
 100 105 110
 Lys Cys Pro Arg Thr Tyr Arg Leu Leu Gly Ser Leu Arg Thr Cys Ile
 115 120 125
 Gly Asn Asn Val Phe Gly Asn Ala Cys Ile Ser Val Leu Ser Pro Gly
 130 135 140
 Thr Val Ile Thr Glu His Tyr Gly Pro Thr Asn Ile Arg Ile Arg Cys
 145 150 155 160
 His Leu Gly Leu Lys Thr Pro Asn Gly Cys Glu Leu Val Val Gly Gly
 165 170 175
 Glu Pro Gln Cys Trp Ala Glu Gly Arg Cys Leu Leu Phe Asp Asp Ser
 180 185 190
 Phe Leu His Ala Ala Phe His Glu Gly Ser Ala Glu Asp Gly Pro Arg
 195 200 205
 Val Val Phe Met Val Asp Leu Trp His Pro Asn Val Ala Ala Ala Glu
 210 215 220
 Arg Gln Ala Leu Asp Phe Ile Phe Ala Pro Gly Arg
 225 230 235

<210> 6183
 <211> 2530
 <212> DNA
 <213> Homo sapiens

<400> 6183
 acgcgtcggt cgttggggcg ttgagcaagt gcgaccccg agtcattttgg gctggggttg
 60
 gaggattagc atctgccatt gactcgatt aaaggccccca gcgtctcgcg tgagaggttg
 120

aggttgtgtt gccccgggtcg ggttagctgtta ggtcttttagaa atggcatcaa aggtggcett
180
ggcgaaggttg cccagggtgg cagtgcagcc ccggggctgag gtgttagcagt catcgataacc
240
agccatcatg agcagctct taggcacagg tgccggagacg atgccagtgc ccctgggtgc
300
agggatgagg cgtaccagca cagagccgca gcggcctgtc acctggtgag ggaaggagtc
360
aggagacggg ggcccggagg agcctgcccc acggcaggcc catcacctgc caccagccta
420
ccttgcaagg gacagtgtgg ggcttgcgta tcttggttccc ccagtagcct ctgcgcacgg
480
gjacgatgga gagcttgccg aggatgtatgg ccccacggat ggccggtgcc acctccttgg
540
agcacttaac acccagaccc acgtggccat tggtagtcccc gatagcaaca aatgccttga
600
acctgggtgcg ctggccggca cgggtctgtc tctgcactgg cataatcttc aaaacctcat
660
ccttgagaga ggcccccagg aaaaagtcaa tgatctctga ttcccttaatg ggcagagaga
720
agagatagat ctcttcagg gacttgatct tcatgtcctt gaccaagcgg cccaacttgg
780
tgacgggcat ccactcccta tctccggccat tgcctccgcg agctccgggg cctcggcccc
840
ggccccgtcc acggccgcga ccccgccctt ggtggccctg ggatggggaa ccgcgggtggc
900
tcccgccgag gtttccggcag tggcatccgg ggccggggtc gcggccgtgg acggggccgg
960
ggcccgaggcc gcggagctcg cggaggeaag gccgaggata aggagtggat gcccgtcacc
1020
aagttgggccc gcttggtcaa ggacatgaag atcaagtccc tggaggagat ctatcttc
1080
tccctggccca ttaaggaatc agagatcatt gattttttcc tggggggctc tctcaaggat
1140
gaggaaaaatgaa agattatgcc agtgcagaag cagacccgtg cccggccagcg caccagggttc
1200
aaggcatttg ttgttatcg ggactacaat ggccacgtcg gtctgggtgt taagtgtcc
1260
aaggaggtgg ccaccggccat ccgtggggcc atcatccctgg ccaagctctc catcgcccc
1320
gtgcgcagag gctactgggg gaacaagatc ggcaagcccc acactgtccc ttgcaagggtg
1380
acaggccgct gcggctctgt gctggtaacgc ctcatccctg cacccagggg cactggcattc
1440
gtctccgcac ctgtgcctaa gaagctgttc atgatggctg gtatcgatga ctgtacacc
1500
tcagccccggg gctgcactgc caccctgggc aacttcgcca aggccaccc ttgatgccatt
1560
tctaaagacct acagctaccc gaccccccac ctctggaaagg agactgtatt caccaagtct
1620
ccctatcagg agttcactga ccacccgtc aagacccaca ccagagtctc cgtgcagcgg
1680
actcaggctc cagctgtggc tacaacatag gtttttata caagaaaaat aaagtgaatt
1740

aagctgtcac cccaccatgg agaaaagagt cttttggc ttttaacat aagtgattag
 1800
 tttaagagta tgctgaggag ccactggct taaaagaagga tgtaaataag acccaaatac
 1860
 atagggacca ggcgctgctt tctcatgttc acaaaaagcag tcctccacca ctgaactcca
 1920
 ttctctcagg gggctcaatg aaggctaacc aatccatgc atgtgttagt aacagtc
 1980
 tggactggca cttgtaaaca gc当地atgcca aacccatcag gttcccaatg agatagacca
 2040
 aaccctgaag aaacttctgg cttgaacttt ctaacatctt gaaagtggct gaaatggcca
 2100
 taagtgcctg aatgggtcgc caggccatca tacacaccat catagttaggg aagatggaga
 2160
 tagtattgcc tgccatgtac atgatgaaga gattcatggg aatctgtttg aggggaccca
 2220
 aggcgatgtc ccagcagcgc ttctccacca ggatccggc tgctcttgc acgctggtat
 2280
 caggcacttg cttgtccaag taaccgactg ggttagagcga gtctccctgg ccactgcccc
 2340
 ggtcacttcg acccctgtc ctcctccag gc当地egcttag ct当地atggcc cacttgaagc
 2400
 gccggcctcg gtagccacc aggccccctt ggccgtcat ggcaacagct gggtccctata
 2460
 gcctcgatgc ttctcagtcc aaagcgtact ccacaacagg cccaccagcg ttctccgctt
 2520
 tgtctcaccc
 2580

<210> 6184
 <211> 308
 <212> PRT
 <213> Homo sapiens

<400> 6184
 Arg Ala Ser Thr Pro Tyr Leu Arg Pro Cys Leu Arg Glu Leu Arg Gly
 1 5 10 15
 Leu Gly Pro Gly Pro Val His Gly Arg Asp Pro Gly Pro Gly Pro
 20 25 30
 Gly Met Gly Asn Arg Gly Gly Phe Arg Gly Gly Phe Gly Ser Gly Ile
 35 40 45
 Arg Gly
 50 55 60
 Ala Arg Gly Gly Lys Ala Glu Asp Lys Glu Trp Met Pro Val Thr Lys
 65 70 75 80
 Leu Gly Arg Leu Val Lys Asp Met Lys Ile Lys Ser Leu Glu Glu Ile
 85 90 95
 Tyr Leu Phe Ser Leu Pro Ile Lys Glu Ser Glu Ile Ile Asp Phe Phe
 100 105 110
 Leu Gly Ala Ser Leu Lys Asp Glu Val Leu Lys Ile Met Pro Val Gln
 115 120 125
 Lys Gln Thr Arg Ala Gly Gln Arg Thr Arg Phe Lys Ala Phe Val Ala
 130 135 140
 Ile Gly Asp Tyr Asn Gly His Val Gly Leu Gly Val Lys Cys Ser Lys

145	150	155	160
Glu Val Ala Thr Ala Ile Arg Gly Ala Ile Ile Leu Ala Lys Leu Ser			
165	170	175	
Ile Val Pro Val Arg Arg Gly Tyr Trp Gly Asn Lys Ile Gly Lys Pro			
180	185	190	
His Thr Val Pro Cys Lys Val Thr Gly Arg Cys Gly Ser Val Leu Val			
195	200	205	
Arg Leu Ile Pro Ala Pro Arg Gly Thr Gly Ile Val Ser Ala Pro Val			
210	215	220	
Pro Lys Lys Leu Leu Met Met Ala Gly Ile Asp Asp Cys Tyr Thr Ser			
225	230	235	240
Ala Arg Gly Cys Thr Ala Thr Leu Gly Asn Phe Ala Lys Ala Thr Phe			
245	250	255	
Asp Ala ile Ser Lys Thr Tyr Ser Tyr Leu Thr Pro Asp Leu Trp Lys			
260	265	270	
Glu Thr Val Phe Thr Lys Ser Pro Tyr Gln Glu Phe Thr Asp His Leu			
275	280	285	
Val Lys Thr His Thr Arg Val Ser Val Gln Arg Thr Gln Ala Pro Ala			
290	295	300	
Val Ala Thr Thr			
305			

<210> 6185
<211> 1231
<212> DNA
<213> Homo sapiens

<400> 6185	
cacagcttgt tccttaggaag ggcttagcaa acgggggtgg ttgtccttct tggaaaggcac	
60	
atttgtttgc ctggtgagtg gtggagggca ctgctaggcc tgctagggt gacacggcca	
120	
gagtcagatg acctcatctc acatccagca ggtgaaatgc agtctttgtat cccttggaaac	
180	
ccaccctcta ggaccaaggt cactgcgta ttggatagga cctcaggggat ttagcagggg	
240	
gctcatggtt aagagtgtga actacagctt agacctacag ggttccctgc ccagctctc	
300	
cacaaccagg ctgtgcaacc ctagacaagt gagttaatgt ccctgggcct cagtttctc	
360	
ttagtaaat gtgtgttagcc atagagggt gtatgagga ttcagtcaaa tgacacatga	
420	
tgtcttgggc acacctggcg tggattatgg cgcctgtagg agcaggagggt cttectggag	
480	
gagggggctaa gttgaacaga gtctagaaag tatagattgg gaagagcact ctgggaggca	
540	
ggatcaccat gtgcaaaggc tcagagaatg ccaccacta cctcctggaa atcaaggggaa	
600	
ttctgtgtgt ccaaggcat tggtggtctc taggcccccg acctgtgtct gggagggtgc	
660	
aaggggaaaggc cagatccgag gcccacactt gcatgtttc aggtgagggtc cagagatata	
720	
tccagaaggagg agtggaaaggc ctcggagacc tacagccccca atactgcata tggtggtggac	
780	

ttccctggtgc ccgtgatggg ctatatctgc cgcatctgcc acaagttcta tcacagcaac
 840
 tcaggggac agctctcca ctgcaagtcc ctggggccact ttgagaacct gcagaatac
 900
 aaggcgccca agaaccaggcccc accaccacc cggacctgtga gcccgggtg cgcaatcaac
 960
 gcccggaaacg ctttgacagc cctgttcacc tccagcggcc gcccacccctc ccagcccaac
 1020
 acccaggaca aaacaccagg caaggtgacg gctcgaccct cccagcccc actacctcg
 1080
 cgctcaaccc gcctcaaaaac ctgatagagg gacccctcg tccctggccct gcctgggtcc
 1140
 agatctgcta atgctttta ggagtctgcc tgaaaaacttt gacatggttc atgctttac
 1200
 tcaaaatcca ataaaacaag gtaagttgg c
 1231

<210> 6186
 <211> 133
 <212> PRT
 <213> Homo sapiens

<400> 6186
 Val Arg Ser Arg Asp Ile Ser Arg Glu Glu Trp Lys Gly Ser Glu Thr
 1 5 10 15
 Tyr Ser Pro Asn Thr Ala Tyr Gly Val Asp Phe Leu Val Pro Val Met
 20 25 30
 Gly Tyr Ile Cys Arg Ile Cys His Lys Phe Tyr His Ser Asn Ser Gly
 35 40 45
 Ala Gln Leu Ser His Cys Lys Ser Leu Gly His Phe Glu Asn Leu Gln
 50 55 60
 Lys Tyr Lys Ala Ala Lys Asn Pro Ser Pro Thr Thr Arg Pro Val Ser
 65 70 75 80
 Arg Arg Cys Ala Ile Asn Ala Arg Asn Ala Leu Thr Ala Leu Phe Thr
 85 90 95
 Ser Ser Gly Arg Pro Pro Ser Gln Pro Asn Thr Gln Asp Lys Thr Pro
 100 105 110
 Ser Lys Val Thr Ala Arg Pro Ser Gln Pro Pro Leu Pro Arg Arg Ser
 115 120 125
 Thr Arg Leu Lys Thr
 130

<210> 6187
 <211> 909
 <212> DNA
 <213> Homo sapiens

<400> 6187
 nagtccccc aaagtacttg tgcgggtgt gtggactgga ttgcgtgcgg agccctggaa
 60
 gctgccttc cttctccctg tgcttaacca gaggtgcccc tgggtggac aatgaggctg
 120
 gtcacagcag cactgttact gggtctcatg atgggtggca ctggagacga ggatgagaac
 180

agccccgtgtg cccatgaggc cctctggac gaggacaccc tcttttgcga gggccttgaa
 240
 gttttctacc cagagttggg gaacattggc tgcaagggtt ttcctgattt taacaactac
 300
 agacagaaga tcacccctcg gatggagccg atagtcaagt tccccggggc cgtgtacggc
 360
 gcaacctata tcctggtgat ggtggatcca gatgccccta gcagagcaga acccagacag
 420
 agattctgga gacattggct ggtaacagat atcaagggcg ccgacctgaa gaaaggaaag
 480
 attcagggcc aggagttatc agcctaccag gctccctccc caccggcaca cagtggctc
 540
 catcgctacc agttctttgt ctatcttcag gaaggaaaag tcatctctt cttcccaag
 600
 gaaaacaaaaa ctcgaggctc ttggaaaatg gacagattt tgaaccgtt ccacctggc
 660
 gaacctgaag caagcaccca gttcatgacc cagaactacc aggactcacc aaccctccag
 720
 gctcccagag aaagggccag cgagcccaag cacaaaaaacc aggccggagat agctgcctgc
 780
 tagatagccg gctttgcctt ccggccatgt ggccacactg cccaccaccc acgatgtggg
 840
 tatggAACCC cctctggata cagaacccct tctttccaa attaaaaaaaaaaa aaaaatcatcc
 900
 agggcaaaa
 909

<210> 6188
 <211> 227
 <212> PRT
 <213> Homo sapiens

<400> 6188
 Met Gly Trp Thr Met Arg Leu Val Thr Ala Ala Leu Leu Gly Leu
 1 5 10 15
 Met Met Val Val Thr Gly Asp Glu Asp Glu Asn Ser Pro Cys Ala His
 20 25 30
 Glu Ala Leu Leu Asp Glu Asp Thr Leu Phe Cys Gln Gly Leu Glu Val
 35 40 45
 Phe Tyr Pro Glu Leu Gly Asn Ile Gly Cys Lys Val Val Pro Asp Cys
 50 55 60
 Asn Asn Tyr Arg Gln Ile Thr Ser Trp Met Glu Pro Ile Val Lys
 65 70 75 80
 Phe Pro Gly Ala Val Tyr Gly Ala Thr Tyr Ile Leu Val Met Val Asp
 85 90 95
 Pro Asp Ala Pro Ser Arg Ala Glu Pro Arg Gln Arg Phe Trp Arg His
 100 105 110
 Trp Leu Val Thr Asp Ile Lys Gly Ala Asp Leu Lys Lys Gly Lys Ile
 115 120 125
 Gln Gly Gln Glu Leu Ser Ala Tyr Gln Ala Pro Ser Pro Pro Ala His
 130 135 140
 Ser Gly Phe His Arg Tyr Gln Phe Phe Val Tyr Leu Gln Glu Gly Lys
 145 150 155 160
 Val Ile Ser Leu Leu Pro Lys Glu Asn Lys Thr Arg Gly Ser Trp Lys

165 170 175
Met Asp Arg Phe Leu Asn Arg Phe His Leu Gly Glu Pro Glu Ala Ser
180 185 190
Thr Gln Phe Met Thr Gln Asn Tyr Gln Asp Ser Pro Thr Leu Gln Ala
195 200 205
Pro Arg Glu Arg Ala Ser Glu Pro Lys His Lys Asn Gln Ala Glu Ile
210 215 220
Ala Ala Cys
225

<210> 6189
<211> 2761
<212> DNA
<213> Homo sapiens

<400> 6189
ngccgcgctg gcattttctc ctggacaagg agagagtgcg gctgctgaga gccgagccca
60
gcaatcccga tcctctgagt cgtgaagaag ggaggcagcg agggggttgg gttggggcc
120
tgagggcaagc ccccagggttc cgctcttgcc agagggacag gagccatggc tcagaaaatg
180
gactgtggtg cgggccttccct cggcttccag gctgaggcct ccgtagaaga cagcccttg
240
cttatgcaga ctttgcataa ggccatccag atctcagagg ctccacctac taaccaggcc
300
accgcagctg ctagtccccaa gagttcacag cccccaactg ccaatgagat ggctgacatt
360
caggtttcag cagctgccgc taggcctaag tcagcctta aagtccagaa tgccaccaca
420
aaggccccaa atggtgtcta tgattttctc caggctcata atgccaaggaa tggccaaac
480
acgcagccca aggcagcctt taagtccccaa aatgcctaccc caaagggtcc aaatgtgcc
540
tatgatfffft cccaggcagc aaccactggt gagtttagctg ctaacaagtc tgagatggcc
600
ttcaaggccc agaatgccac tactaaagtggt ggcccaaatttgc ccacctacaa ttctctcag
660
tctctcaatg ccaatgacct ggccaaacagc aggcctaaga ccccttcaa ggcttggaaat
720
gataccacta aggccccaaac agctgatacc cagacccaga atgtaaatca ggccaaaatg
780
gccacttccc aggctgacat agagaccgac ccaggtatct ctgaacctga cggtgcaact
840
gcacagacat cagcagatgg ttcccaggct cagaatctgg agtcccggac aataattcgg
900
ggcaagagga cccgcaagat taataacttg aatgttgaag agaacagcag tggggatcag
960
aggccccccc cactggctgc agggacctgg aggtctgcac cagttccagt gaccactcag
1020
aaccCACCTG ggcacccccc caatgtgctc tggcagacgc cattggcttg gcagaacccc
1080
tcaggctggc aaaaccagac agccaggcag accccaccag cacgtcagag ccctccagct
1140

aggcagaccc caccagccctg gcagacccag aaccaggatcg cttggcagaa cccagtgatt
1200
tggccaaacc cagtaatctg gcagaaccca gtgatctggc caaaccccat tgtctggccc
1260
ggccctgttg tctggccgaa tccactggcc tggcagaatc cacctggatg gcagactcca
1320
cctggatggc agacccacc gggctggcag ggtcctccag actggcaagg tccctctgac
1380
tggccgctac cacccgactg gccactgcca cctgattggc cacttcccac tgactggcca
1440
ctaccacctg actggatccc cgctgattgg ccaattccac ctgactggca gaacctgcgc
1500
ccctcgccata acctgcccggc ttctccaaac tcgcgtgcct cacagaaccc aggtgctgca
1560
cagccccgag atgtggccct tcttcagggaa agagcaaata agttggtcaa gtacttgatg
1620
cttaaggact acacaaaggt gcccattcaag cgctcagaaa tgctgagaga tatcatccgt
1680
gaatacactg atgtttatcc agaaatcatt gaacgtgcatt gctttgtcct agagaagaaa
1740
tttgggattc aactgaaaga aattgacaaa gaagaacacc ttttatattct catcagtacc
1800
cccgagttcc tggctggcat actgggaacg accaaagaca cacccaaagct cggctctc
1860
ttgggtgattc tgggtgtcat ttcatgaat ggcaaccgtg ccagtggc tgcctctgg
1920
gaggcactac gcaagatggg actgcgtcct ggggtgagac atccccctt tggagatcta
1980
aggaaacttc tcacctatga gtttgaaag cagaaatacc tggactacag acgagtgc
2040
aacagcaacc ccccgagta ttagttccctc tggggcctcc gttccatcca tgagactagc
2100
aagatgaaag tgctgagatt cattgcagag gttcagaaaa gagaccctcg tgactggact
2160
gcacagttca tggaggctgc agatgaggcc ttggatgctc tggatgctgc tgcagctgag
2220
gccgaagggcc gggctgaagc aagaacccgc atggaaattt gagatgaggc tggatgggg
2280
ccctggagct gggatgacat tggatggatc ctgcgtaccc gggatgagga aggagatccc
2340
ggagatccct ggtccagaat tccatttacc ttctggccca gataccacca gaatgcccgc
2400
tccagattcc ctcagaccc ttctggatcc attattggtc ctggatggatc agccagtgc
2460
aacttcgctg ccaactttgg tgccattgggt ttcttctggg ttggatggatc tggtggatat
2520
tgctatcaat cgcagtagtc ttccctgtgt gtcggatgtga agcctcagat tccctctaaa
2580
cacagctatc tagagagcca catcctgttg actgaaatgt gcatgcaaga taaatttatt
2640
tgtgttccct tgtctactgc ttttttcccc cttgtgtgct gtcaagttt ggtatcagaa
2700
ataaacattt' aaatttgcataa gtgaa
2760

a
2761

<210> 6190
<211> 576
<212> PRT
<213> Homo sapiens

<400> 6190
Met Ala Thr Ser Gln Ala Asp Ile Glu Thr Asp Pro Gly Ile Ser Glu
1 5 10 15
Pro Asp Gly Ala Thr Ala Gln Thr Ser Ala Asp Gly Ser Gln Ala Gln
20 25 30
Asn Leu Glu Ser Arg Thr Ile Ile Arg Gly Lys Arg Thr Arg Lys Ile
35 40 45
Asn Asn Leu Asn Val Glu Glu Asn Ser Ser Gly Asp Gln Arg Arg Ala
50 55 60
Pro Leu Ala Ala Gly Thr Trp Arg Ser Ala Pro Val Pro Val Thr Thr
65 70 75 80
Gln Asn Pro Pro Gly Ala Pro Pro Asn Val Leu Trp Gln Thr Pro Leu
85 90 95
Ala Trp Gln Asn Pro Ser Gly Trp Gln Asn Gln Thr Ala Arg Gln Thr
100 105 110
Pro Pro Ala Arg Gln Ser Pro Pro Ala Arg Gln Thr Pro Pro Ala Trp
115 120 125
Gln Thr Gln Asn Pro Val Ala Trp Gln Asn Pro Val Ile Trp Pro Asn
130 135 140
Pro Val Ile Trp Gln Asn Pro Val Ile Trp Pro Asn Pro Ile Val Trp
145 150 155 160
Pro Gly Pro Val Val Trp Pro Asn Pro Leu Ala Trp Gln Asn Pro Pro
165 170 175
Gly Trp Gln Thr Pro Pro Gly Trp Gln Thr Pro Pro Gly Trp Gln Gly
180 185 190
Pro Pro Asp Trp Gln Gly Pro Pro Asp Trp Pro Leu Pro Pro Asp Trp
195 200 205
Pro Leu Pro Pro Asp Trp Pro Leu Pro Thr Asp Trp Pro Leu Pro Pro
210 215 220
Asp Trp Ile Pro Ala Asp Trp Pro Ile Pro Pro Asp Trp Gln Asn Leu
225 230 235 240
Arg Pro Ser Pro Asn Leu Arg Pro Ser Pro Asn Ser Arg Ala Ser Gln
245 250 255
Asn Pro Gly Ala Ala Gln Pro Arg Asp Val Ala Leu Leu Gln Glu Arg
260 265 270
Ala Asn Lys Leu Val Lys Tyr Leu Met Leu Lys Asp Tyr Thr Lys Val
275 280 285
Pro Ile Lys Arg Ser Glu Met Leu Arg Asp Ile Ile Arg Glu Tyr Thr
290 295 300
Asp Val Tyr Pro Glu Ile Ile Glu Arg Ala Cys Phe Val Leu Glu Lys
305 310 315 320
Lys Phe Gly Ile Gln Leu Lys Glu Ile Asp Lys Glu Glu His Leu Tyr
325 330 335
Ile Leu Ile Ser Thr Pro Glu Ser Leu Ala Gly Ile Leu Gly Thr Thr
340 345 350
Lys Asp Thr Pro Lys Leu Gly Leu Leu Val Ile Leu Gly Val Ile

355	360	365
Phe Met Asn Gly Asn Arg Ala Ser Glu Ala Val Leu Trp Glu Ala Leu		
370	375	380
Arg Lys Met Gly Leu Arg Pro Gly Val Arg His Pro Leu Leu Gly Asp		
385	390	395
Leu Arg Lys Leu Leu Thr Tyr Glu Phe Val Lys Gln Lys Tyr Leu Asp		
405	410	415
Tyr Arg Arg Val Pro Asn Ser Asn Pro Pro Glu Tyr Glu Phe Leu Trp		
420	425	430
Gly Leu Arg Ser Tyr His Glu Thr Ser Lys Met Lys Val Leu Arg Phe		
435	440	445
Ile Ala Glu Val Gln Lys Arg Asp Pro Arg Asp Trp Thr Ala Gln Phe		
450	455	460
Met Glu Ala Ala Asp Glu Ala Leu Asp Ala Leu Asp Ala Ala Ala		
465	470	475
Glu Ala Glu Ala Arg Ala Glu Ala Arg Thr Arg Met Gly Ile Gly Asp		
485	490	495
Glu Ala Val Ser Gly Pro Trp Ser Trp Asp Asp Ile Glu Phe Glu Leu		
500	505	510
Leu Thr Trp Asp Glu Glu Gly Asp Phe Gly Asp Pro Trp Ser Arg Ile		
515	520	525
Pro Phe Thr Phe Trp Ala Arg Tyr His Gln Asn Ala Arg Ser Arg Phe		
530	535	540
Pro Gln Thr Phe Ala Gly Pro Ile Ile Gly Pro Gly Gly Thr Ala Ser		
545	550	555
Ala Asn Phe Ala Ala Asn Phe Gly Ala Ile Gly Phe Phe Trp Val Glu		
565	570	575

<210> 6191
<211> 3021
<212> DNA
<213> Homo sapiens

<400> 6191
ctttgagaag gAACCTGTCC CCTCAGGGAT taAGCAAGCA cAGCCCTAGT tgATCACCCA
60
.gcatgaaaag tcctggaaTC tctcagAGAT gaACCTGTGT atgggAGTTT tgcttaAGTG
120
gtacttcaag aaggTgcTc tgTTTACTTT ggTTTGCAC tgccatGCGA ccaggTggTG
180
caggTCTCCC aaATGCCACC CCCCTCCAAG ctTCCCTCTT tgctctaAGT cCTCAGGCCT
240
cCTGGGCTG ggacAGATGG ttGTTTGTGT catcAGGACT cgtggggTTC tatgcgtGGA
300
gcactCACCG cAGCCTAAAGC tgggatCCCA gCTCAGAGGT caggCCATGT tgggATGTT
360
aggGAAGGTG atgcattATC aggAGACATA tCTACTGTCC CCTGCCCTGT acccccAGGC
420
atTgatCTGG agAACATTGT gtACTACAAG gACGACACCC ACTACTTTGT gatGACAGCC
480
aAGAAGCAGT gcCTGCTGCG gCTGGGGGTG CTGCGCCAGG ACTGGCCAGA caccaATCGG
540
ctgCTGGGCA gtGCCAATGT ggtGACCGAG gCTCTGCAGC gCTTACCCG ggcAGCTGCT
600

gactttgcca cccatggcaa gctcggaaa ctagagtttgc cccaggatgc ccatgggcag
660
cctgatgtct ctgccttga cttcacgagc atgatgcggg cagagagttc tgctcggtg
720
caagagaagc atggcgcccc cctgtgtctg ggactgggtgg gggactgcct ggtggagccc
780
ttctggcccc tgggcactgg agtggcacgg ggcttcctgg cagccttga tgcagcctgg
840
atggtaagc ggtgggcaga gggcgctgag tcccttagagg tggtggctga gcgtgagagc
900
ctgtaccaggc ttctgtcaca gacatccccaa gaaaacatgc atcgcaatgt ggcccagtat
960
gggctggacc cagccaccccg ctacccaaac ctgaacctcc gggcagtgcac ccccaatcag
1020
gtacgagacc tgtatgtatgt gctagccaag gagcctgtgc agaggaacaa cgacaagaca
1080
gatacaggga tgccagccac cgggtcggca ggcacccagg aggagctgct acgctggtgc
1140
caggaggcaga cagctggta cccgggagtc cacgtctccg atttgcttc ctccctggct
1200
gatggcttag ctctgtgtgc cctgggtgtac cggctgcagc ctggcctgtct ggaaccctca
1260
gagctgcagg ggctgggagc tctggaagca actgcttggg cactaaaggt ggcagagaat
1320
gagctggcata tcacacccgt ggtgtctgca caggccgtgg tagcagggag tgaccactg
1380
ggcctcatttgc cctacccatcg ccacttccac agtgccttca agagcatggc ccacagccca
1440
ggccctgtca gccaggcctc cccagggacc tccagtgtctg tattattcct tagtaaactt
1500
cagaggaccc tgcagcgatc cggggccaag gacttattgc aggaaaaatgc agaggatgct
1560
ggtggcaaga agctgcgttt ggagatggag gcccggaccc caagtactga ggtgccacct
1620
gacccagagc ctgggtgtacc cctgacaccc ccacccaaac accaggaggg cgggtgtgg
1680
gacctgtgtg cactttgtgg ggaacacccctc tatgtcctgg aacgcctctg tgtcaacggc
1740
catttcttcc accggagctg cttccgtgtc catacctgtg aggccacact gtggccaggt
1800
ggctatgagc agcacccagg agatggacat ttctactgcc tccagcacct gccccagaca
1860
gaccacaaag cggaaaggcag cgatagaggc cctgagagtc cggagctccc cacaccaagt
1920
gagaatagca tgccaccagg cctctcaact cccacagect cgcaggaggg gggccggct
1980
gttccagatc ccagccagcc caccctgtgg cagatccgcc tctccagccccc ggagcgccag
2040
cggttgtccct cccttaacct taccctgtac cggaaaatgg agectccacc caagcctccc
2100
cgccagctgtct cccgccttggc cccgcacgccttggagagca gctttgtggg ctggggccctg
2160
ccagttccaga gcccctcaaggc tcttggcc atggagaagg agaaaaaaga gagtccttc
2220

tccagtgaag aggaagaaga agatgtgcct ttggactcag atgtgaaaca ggcctgcag
 2280
 acctttgcca agacctcagg caccatgaat aactacccaa catggcgctg gactctgctg
 2340
 cgccgtgcga aggaggagga gatgaagagg ttctgcaagg cccagaccat ccaacggcga
 2400
 ctaaatgaga ttgaggctgc cttgaggagg ctagaggccg agggcgtgaa gctggagctg
 2460
 2520
 gccttggcgc gccagaggcag ttccccagaa cagcaaaaga aactatgggt aggacagctg
 2580
 ctacagctcg ttgacaagaa aaacagcctg gtggctgagg aggccgagct catgatcacg
 2640
 gtgcaggaat tgaatctgga ggagaaacag tggcagctgg accaggagct acgaggctac
 2700
 atgaaccggg aagaaaacct aaagacagct gctgateggc aggctgagga ccaggtcctg
 2760
 aggaagctgg tggatttggt caaccagaga gatgccctca tccgcttcca ggaggagcgc
 2820
 ctttcgttcc cacaaagaaa gcacccacc ccagcacagt gccacccctg ttcatctggg
 2880
 ctgcctggca gagagccttg ctgttacaa taaaaatgtt tctgccacaa aaaaaaaaaa
 2940
 aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa
 3000
 aaaaaaaaaa aaaaaaaaaa a
 3021

<210> 6192
 <211> 815
 <212> PRT
 <213> Homo sapiens

<400> 6192
 Met Phe Arg Glu Gly Asp Ala Leu Ser Gly Asp Ile Ser Thr Val Pro
 1 5 10 15
 Cys Pro Val Pro Pro Gly Ile Asp Leu Glu Asn Ile Val Tyr Tyr Lys
 20 25 30
 Asp Asp Thr His Tyr Phe Val Met Thr Ala Lys Lys Gln Cys Leu Leu
 35 40 45
 Arg Leu Gly Val Leu Arg Gln Asp Trp Pro Asp Thr Asn Arg Leu Leu
 50 55 60
 Gly Ser Ala Asn Val Val Thr Glu Ala Leu Gln Arg Phe Thr Arg Ala
 65 70 75 80
 Ala Ala Asp Phe Ala Thr His Gly Lys Leu Gly Lys Leu Glu Phe Ala
 85 90 95
 Gln Asp Ala His Gly Gln Pro Asp Val Ser Ala Phe Asp Phe Thr Ser
 100 105 110
 Met Met Arg Ala Glu Ser Ser Ala Arg Val Gln Glu Lys His Gly Ala
 115 120 125
 Arg Leu Leu Leu Gly Leu Val Gly Asp Cys Leu Val Glu Pro Phe Trp
 130 135 140
 Pro Leu Gly Thr Gly Val Ala Arg Gly Phe Leu Ala Ala Phe Asp Ala

145 150 155 160
 Ala Trp Met Val Lys Arg Trp Ala Glu Gly Ala Glu Ser Leu Glu Val
 165 170 175
 Leu Ala Glu Arg Glu Ser Leu Tyr Gln Leu Leu Ser Gln Thr Ser Pro
 180 185 190
 Glu Asn Met His Arg Asn Val Ala Gln Tyr Gly Leu Asp Pro Ala Thr
 195 200 205
 Arg Tyr Pro Asn Leu Asn Leu Arg Ala Val Thr Pro Asn Gln Val Arg
 210 215 220
 Asp Leu Tyr Asp Val Leu Ala Lys Glu Pro Val Gln Arg Asn Asn Asp
 225 230 235 240
 Lys Thr Asp Thr Gly Met Pro Ala Thr Gly Ser Ala Gly Thr Gln Glu
 245 250 255
 Glu Leu Leu Arg Trp Cys Gln Glu Gln Thr Ala Gly Tyr Pro Gly Val
 260 265 270
 His Val Ser Asp Leu Ser Ser Trp Ala Asp Gly Leu Ala Leu Cys
 275 280 285
 Ala Leu Val Tyr Arg Leu Gln Pro Gly Leu Leu Glu Pro Ser Glu Leu
 290 295 300
 Gln Gly Leu Gly Ala Leu Glu Ala Thr Ala Trp Ala Leu Lys Val Ala
 305 310 315 320
 Glu Asn Glu Leu Gly Ile Thr Pro Val Val Ser Ala Gln Ala Val Val
 325 330 335
 Ala Gly Ser Asp Pro Leu Gly Leu Ile Ala Tyr Leu Ser His Phe His
 340 345 350
 Ser Ala Phe Lys Ser Met Ala His Ser Pro Gly Pro Val Ser Gln Ala
 355 360 365
 Ser Pro Gly Thr Ser Ser Ala Val Leu Phe Leu Ser Lys Leu Gln Arg
 370 375 380
 Thr Leu Gln Arg Ser Arg Ala Lys Asp Leu Leu Gln Glu Asn Ala Glu
 385 390 395 400
 Asp Ala Gly Gly Lys Leu Arg Leu Glu Met Glu Ala Glu Thr Pro
 405 410 415
 Ser Thr Glu Val Pro Pro Asp Pro Glu Pro Gly Val Pro Leu Thr Pro
 420 425 430
 Pro Ser Gln His Gln Glu Ala Gly Ala Gly Asp Leu Cys Ala Leu Cys
 435 440 445
 Gly Glu His Leu Tyr Val Leu Glu Arg Leu Cys Val Asn Gly His Phe
 450 455 460
 Phe His Arg Ser Cys Phe Arg Cys His Thr Cys Glu Ala Thr Leu Trp
 465 470 475 480
 Pro Gly Gly Tyr Glu Gln His Pro Gly Asp Gly His Phe Tyr Cys Leu
 485 490 495
 Gln His Leu Pro Gln Thr Asp His Lys Ala Glu Gly Ser Asp Arg Gly
 500 505 510
 Pro Glu Ser Pro Glu Leu Pro Thr Pro Ser Glu Asn Ser Met Pro Pro
 515 520 525
 Gly Leu Ser Thr Pro Thr Ala Ser Gln Glu Gly Ala Gly Pro Val Pro
 530 535 540
 Asp Pro Ser Gln Pro Thr Arg Arg Gln Ile Arg Leu Ser Ser Pro Glu
 545 550 555 560
 Arg Gln Arg Leu Ser Ser Leu Asn Leu Thr Pro Asp Pro Glu Met Glu
 565 570 575
 Pro Pro Pro Lys Pro Pro Arg Ser Cys Ser Ala Leu Ala Arg His Ala

580	585	590
Leu Glu Ser Ser Phe Val Gly Trp Gly	Leu Pro Val Gln Ser Pro Gln	
595	600	605
Ala Leu Val Ala Met Glu Lys Glu	Glu Lys Ser Pro Phe Ser Ser	
610	615	620
Glu Glu Glu Glu Asp Val Pro Leu Asp	Ser Asp Val Glu Gln Ala	
625	630	635
Leu Gln Thr Phe Ala Lys Thr Ser Gly	Thr Met Asn Asn Tyr Pro Thr	
645	650	655
Trp Arg Arg Thr Leu Leu Arg Arg Ala	Lys Glu Glu Met Lys Arg	
660	665	670
Phe Cys Lys Ala Gln Thr Ile Gln Arg	Arg Leu Asn Glu Ile Glu Ala	
675	680	685
Ala Leu Arg Glu Leu Glu Ala Glu	Gly Val Lys Leu Glu Leu Ala Leu	
690	695	700
Arg Arg Gln Ser Ser Pro Glu Gln Gln	Lys Lys Leu Trp Val Gly	
705	710	715
Gln Leu Leu Gln Leu Val Asp Lys	Lys Asn Ser Leu Val Ala Glu Glu	
725	730	735
Ala Glu Leu Met Ile Thr Val Gln Glu	Leu Asn Leu Glu Glu Lys Gln	
740	745	750
Trp Gln Leu Asp Gln Glu Leu Arg	Gly Tyr Met Asn Arg Glu Glu Asn	
755	760	765
Leu Lys Thr Ala Ala Asp Arg Gln Ala	Glu Asp Gln Val Leu Arg Lys	
770	775	780
Leu Val Asp Leu Val Asn Gln Arg	Asp Ala Leu Ile Arg Phe Gln Glu	
785	790	795
Glu Arg Arg Leu Ser Glu Leu Ala Leu	Gly Thr Gly Ala Gln Gly	
805	810	815

<210> 6193
<211> 2893
<212> DNA
<213> Homo sapiens

<400> 6193
nntgtatttt aaaacttgtt ttttagttt cattctgaga aattacattt agggtagagc
60
ctgttcatta ccttatccat gcattttctt gcttatttaa attatttac ttccaccaagc
120
cattcatttt tttagaacat cttcaaaga gttcatgcat cttaactgagg acacctgacc
180
ttttgaagct tcataattca catctagatg tcaccggctt ttcccatgtt aacagttctg
240
accatgtttt attatatatg cttcgccgc cgagccagga cagctacaag aggagaaaatg
300
atgaacaccc atagagctat agaatcaaac agccagactt cccctctcaa tgcagaggtt
360
360
gtcccagtatg ccaaagaagt agtggatttc agttcccatt atggaagtga gaatagtatg
420
420
tccttatacta tgtggattt ggctggtgta ccaaatgtat tcccaagttc tggtgacttt
480
actcagacag ctgtgttcg aacttatggg acatggtggg atcagtgtcc tagtgctcc
540

ttgccattca agaggacgcc acctaatttt cagagccagg actatgtgga acttacttt
600
gaacaacagg tgtatcctac agctgtacat gttctagaaa cctatcatcc cggagcagtc
660
attagaattc tgcgttgttc tgcaaatcct tattccccaa atccaccagc tgaagtaaga
720
tggagatc tttggtcaga gagacctacg aaggtgaatg cttcccaagc tcgcccagt
780
aacaccttgc ttaagcagat aaattcccc acaaataccta tacgactgga agtaaatagt
840
tctcttctgg aatattacac tgaatttagat gcagttgtgc tacatgggtg gaaggacaag
900
ccagtgcctt ctctcaagac ttcaattttt gacatgaatg atatagaaga tgatgcctat
960
gcagaaaaagg atgggtgtgg aatggacagt cttAACAAAA agtttagcag tgctgtcc
1020
ggggaaaggc caaataatgg gtatTTTGTAA aactacctt atgagcttat tcagctgatt
1080
ctgaatcatc ttacactacc agacctgtgt agattagcac agacttgcaa actactgagc
1140
cagcattgtct gtgatccctt gcaatacatc cacctcaatc tgcaaccata ctggca
1200
ctagatgaca cttctctgg aTTTCTACAG tctcgctgca ctcttgc
1260
ttatcttgc
1320
gtttgtggat ccgaatttagt acgccttgc
1380
tgcttagaag ttatTTCTGA gatgtgtcca aatctacagg cttAAATCT ctcctc
1440
gataagctac cacctcaagc tttcaaccac attgccaatg tatgcagc
1500
gttctctatc gaacaaaagt agagcaaaca gcactgctca
1560
gagcttcage acctcagtt aggcaattgt
1620
aggatgatag gagccaatgt taaaaaactc
1680
attactgaga atggaaatgc agaactggct
1740
cttggcttgtt gcccactct
1800
ctcccaact tgcaaaaact
1860
gatgaattgg catgtatgg taccaggta cagcagctgg
1920
gtaaggccgg catccttaag
1980
gtgtccttct
2040
aaagtgttca taaaaaagag
2100
atgtgc
2160

atggtaagaa ttaagacatt tgtagatTTT aaagaaaaat atgaaattgt ccattaaatc
 2220
 aagtaaaaat gtgcacaaat gtttcataa aatactgcaa gcacttctct tcaagaatat
 2280
 gagtgatAT tattttacc ttatgttaat cagtgatATg cttagtcaa taatatgatt
 2340
 gataaaagaa taacatggaa tcATgctaAC ttatTTCAA aggaacactg agcaataaag
 2400
 tatcgTggca ttatgcaaa aaaaaaAGTT aatTTTAC acTTcatGT aaggatgtCT
 2460
 tattaAGCCT gtgacCTggc aagtGTTTG tttGGTatGT acaAAatGGT cagAGCTAGT
 2520
 tggagaatGA gacATgCTT tccAGCTGTT tggTTatTC tCTGGattAA CTGTTCAACT
 2580
 ggAAAATTT tagTTTCT agCCAGGTGT ggtGGCACAC actTGTAGTC CTAGCGACAC
 2640
 gggaggGTgGA ggcaggAGGA ttACTTGAGA tggGATTTG agACTCTAGT GTACTTATGA
 2700
 ttGCACCTGT gAGCAGCCAC tGCACtCCAA CCTGGGCAAT ATAGCGAGTC CCTTCTCTT
 2760
 aaaaaaaATT gtagtGTTc CACTTTCTT CTGATATTT TGTCTATTc ACTACTGGAT
 2820
 aatGCCAATA taaaaaATTG ggtataatCA agaATAAGAG gtAAACTACT aaATAAAAAAA
 2880
 agCTTCCAA CTG
 2893

<210> 6194
 <211> 621
 <212> PRT
 <213> Homo sapiens

<400> 6194
 Met Ser Pro Val Phe Pro Met Leu Thr Val Leu Thr Met Phe Tyr Tyr
 1 5 10 15
 Ile Cys Leu Arg Arg Arg Ala Arg Thr Ala Thr Arg Gly Glu Met Met
 20 25 30
 Asn Thr His Arg Ala Ile Glu Ser Asn Ser Gln Thr Ser Pro Leu Asn
 35 40 45
 Ala Glu Val Val Gln Tyr Ala Lys Glu Val Val Asp Phe Ser Ser His
 50 55 60
 Tyr Gly Ser Glu Asn Ser Met Ser Tyr Thr Met Trp Asn Leu Ala Gly
 65 70 75 80
 Val Pro Asn Val Phe Pro Ser Ser Gly Asp Phe Thr Gln Thr Ala Val
 85 90 95
 Phe Arg Thr Tyr Gly Thr Trp Trp Asp Gln Cys Pro Ser Ala Ser Leu
 100 105 110
 Pro Phe Lys Arg Thr Pro Pro Asn Phe Gln Ser Gln Asp Tyr Val Glu
 115 120 125
 Leu Thr Phe Glu Gln Gln Val Tyr Pro Thr Ala Val His Val Leu Glu
 130 135 140
 Thr Tyr His Pro Gly Ala Val Ile Arg Ile Leu Ala Cys Ser Ala Asn
 145 150 155 160
 Pro Tyr Ser Pro Asn Pro Ala Glu Val Arg Trp Glu Ile Leu Trp

	165	170	175
Ser	Glu Arg Pro Thr Lys Val Asn Ala Ser Gln Ala Arg Gln Phe Lys		
	180	185	190
Pro	Cys Ile Lys Gln Ile Asn Phe Pro Thr Asn Leu Ile Arg Leu Glu		
	195	200	205
Val	Asn Ser Ser Leu Leu Glu Tyr Tyr Glu Leu Asp Ala Val Val		
	210	215	220
Leu	His Gly Val Lys Asp Lys Pro Val Leu Ser Leu Lys Thr Ser Leu		
	225	230	235
Ile	Asp Met Asn Asp Ile Glu Asp Asp Ala Tyr Ala Glu Lys Asp Gly		
	245	250	255
Cys	Gly Met Asp Ser Leu Asn Lys Lys Phe Ser Ser Ala Val Leu Gly		
	260	265	270
Glu	Gly Pro Asn Asn Gly Tyr Phe Asp Lys Leu Pro Tyr Glu Leu Ile		
	275	280	285
Gln	Leu Ile Leu Asn His Leu Thr Leu Pro Asp Leu Cys Arg Leu Ala		
	290	295	300
Gln	Thr Cys Lys Leu Leu Ser Gln His Cys Cys Asp Pro Leu Gln Tyr		
	305	310	315
Ile	His Leu Asn Leu Gln Pro Tyr Trp Ala Lys Leu Asp Asp Thr Ser		
	325	330	335
Leu	Glu Phe Leu Gln Ser Arg Cys Thr Leu Val Gln Trp Leu Asn Leu		
	340	345	350
Ser	Trp Thr Gly Asn Arg Gly Phe Ile Ser Val Ala Gly Phe Ser Arg		
	355	360	365
Phe	Lys Val Cys Gly Ser Glu Leu Val Arg Leu Glu Leu Ser Cys		
	370	375	380
Ser	His Phe Leu Asn Glu Thr Cys Leu Glu Val Ile Ser Glu Met Cys		
	385	390	395
Pro	Asn Leu Gln Ala Leu Asn Leu Ser Ser Cys Asp Lys Leu Pro Pro		
	405	410	415
Gln	Ala Phe Asn His Ile Ala Lys Leu Cys Ser Leu Lys Arg Leu Val		
	420	425	430
Leu	Tyr Arg Thr Lys Val Glu Gln Thr Ala Leu Leu Ser Ile Leu Asn		
	435	440	445
Phe	Cys Ser Glu Leu Gln His Leu Ser Leu Gly Ser Cys Val Met Ile		
	450	455	460
Glu	Asp Tyr Asp Val Ile Ala Ser Met Ile Gly Ala Lys Cys Lys Lys		
	465	470	475
Leu	Arg Thr Leu Asp Leu Trp Arg Cys Lys Asn Ile Thr Glu Asn Gly		
	485	490	495
Ile	Ala Glu Leu Ala Ser Gly Cys Pro Leu Leu Glu Glu Leu Asp Leu		
	500	505	510
Gly	Trp Cys Pro Thr Leu Gln Ser Ser Thr Gly Cys Phe Thr Arg Leu		
	515	520	525
Ala	His Gln Leu Pro Asn Leu Gln Lys Leu Phe Leu Thr Ala Asn Arg		
	530	535	540
Ser	Val Cys Asp Thr Asp Ile Asp Glu Leu Ala Cys Asn Cys Thr Arg		
	545	550	555
Leu	Gln Gln Leu Asp Ile Leu Gly Thr Arg Met Val Ser Pro Ala Ser		
	565	570	575
Leu	Arg Lys Leu Leu Glu Ser Cys Lys Asp Leu Ser Leu Leu Asp Val		
	580	585	590
Ser	Phe Cys Ser Gln Ile Asp Asn Arg Ala Val Leu Glu Leu Asn Ala		

595	600	605
Ser Phe Pro Lys Val Phe Ile Lys Lys Ser Phe Thr Gln		
610	615	620

<210> 6195
<211> 518
<212> DNA
<213> Homo sapiens

<400> 6195
ggatcccaag agatatttc tgagctgaac tatgtggtca cagaaggcca gctcccgca
60
gcacgggact atgagggttc gccctgttct gtgttagcccc agctggttcc ctggggaaaa
120
gtttccactt ctgctgtcaa gaaccacaag ggtcaagccc catccctaca aataccaagt
180
acatccaaat ttttcaactgg cacagaaatg gtgttacatc cactgggaac aaacctgcat
240
ccccacccca aggcatgtga caacaggac tgctaatgag ctttgtccgg gtaactcatt
300
cacgccccatca ttttgctttt tccatagtc cttattaagc acaaactatg ccaaaaacta
360
tgtccagcac cgacacaggat ggtaaaatgc cctgaggggc caccccccac tgactccgt
420
tgagcggagt gggcagccct gcctgggagc tccagcctcc tgccacccacg tgcccccttg
480
ttatctctgc ctggatgcct cacaggcata tcacgcgt
518

<210> 6196
<211> 117
<212> PRT
<213> Homo sapiens

<400> 6196
Met Trp Ser Gln Lys Ala Ser Ser Gln Gln His Gly Thr Met Arg Val
1 5 10 15
Arg Pro Val Leu Cys Ser Pro Ser Trp Phe Pro Gly Glu Lys Phe Pro
20 25 30
Leu Leu Leu Ser Arg Thr Thr Arg Val Lys Pro His Pro Tyr Lys Tyr
35 40 45
Gln Val His Pro Asn Ser Ser Leu Ala Gln Lys Trp Cys Tyr Ile His
50 55 60
Trp Glu Gln Thr Cys Ile Pro Thr Pro Arg His Val Thr Thr Gly Thr
65 70 75 80
Ala Asn Glu Leu Cys Pro Gly Asn Ser Phe Thr Pro Ser Ser Cys Ser
85 90 95
Phe His Ser His Leu Leu Ser Thr Asn Tyr Ala Lys Asn Tyr Val Gln
100 105 110
His Arg Thr Gly Trp
115

<210> 6197
<211> 2841

<212> DNA
<213> Homo sapiens

<400> 6197
nagcattctt ccatctgttag atgtttcagc tgctgtacaa gggagtccca tttcagggtgt
60
ggggctgggc atggtaactc ctgctggatg tctggaaaggt gaaaaccaag gacctaggga
120
aataccaggt acagccttc cccgctcatac cagagcagga caaacaggcc aggtggatc
180
aggagccag gtctccagct ggagggaatg tcaaccctgc agtggagca ggggcccata
240
acgcacatccta ggcacagatg ctaatgcagg cactgcaggt aagctggct tggtatcctt
300
ccctggcttc agaaagaagc caacaaggag cgaaaaatgc aatgaaacct ttgtttccag
360
aagcactgct gactgttaagt ggttgccgtt tgtggcagtg agcattttgt ccattctgag
420
gttggattgg tttctccctt tggccttgcc ctgcccatac gaccataaag gagaacagca
480
agaagcccc agcaaacatc cacagatggc cctggacatc agccacatc tgaggaacat
540
gtcatgttct gggagggcta aggcatcaag taaggcctgt ggggctggag gatcacagg
600
cagggtgggc aatccagagc catgggggtc tcccatggga attgggaggt cccaaggcag
660
agtctcagaggt tccacaggag gagtcagaga gtcaccaagg gtcctctgg cccagggagc
720
agtcaacacc atggactgaa caccactgg gtcaccaaccc ttgggccagg ctggggcatg
780
tggggccagg aggcagctca gagtgggagg cagagagaga agtgtgttca gagggcaccc
840
atatctggat gtaatgtggt cctgagactc tggctggaa gtgcctccag gtttcataat
900
gtgttatgca gctacttcct ctcccccaacc ttaccgtgca ggaatcccag tgaatatgtt
960
gccaccatct tggagactcg tgccctcata gtgtAACAGC accagcagat ctgcctgtc
1020
acagacttcc tgtactaccc cactcctgag gggagatgct tctgcaggc ctgcgacact
1080
gtgcacaaact ttnnagacac catcatcctg gagcggcact gcaccctcac tagccagggt
1140
gttgcgtact tcctcaatgc caaggccacg ttcaagatt tcgacttcag tgcgtgtt
1200
gtgcgtgacgca aggtggctt ctccggatt ttagttcagg aggtagaatg cagcttgaga
1260
tcaagtgtct gatcaaataa cttgaacttg atctggagag ctctggggag ccatagaagt
1320
tgttggataa aggaggacg gtcgtatatg ttttagagat gactgtggaa ggctgcctgg
1380
aaggagtgaa caagagccag gagaccaggg agggagctt tggggcaggt ctggagatga
1440
caagggaggg atcctgctt gatgaaaggt cttcaggaa tgcgtcaggat tacactcagg
1500

tgtcctcaga gctagtgtgt tcaggggtct tgcctccagg atgaaaatga gaaggagtt
1560
tcagacaaga acatataaaat gaaggctggc atcttcgtga gtgccaatcg ttgtcctggt
1620
gtggactact gtggaaatag gggctctcc atccaggac atggtgatg gaccctacat
1680
caactccatc tgccttcct ttccctccca ttctgagggc ctcagtgcaa gggcgctgtc
1740
caacacctgg tgctgaagca gccgagagac ccaagcctgc cactcaggat atgacagcac
1800
agccagtgcc ctctactgga tcctgtacaa cctcagaaga cacctagaca ctgggagtgc
1860
tgccaccacg tggtgcaaga gttctgaggg accgcaattc tgaagacatt gaatgctget
1920
tcctgctccc tccatggacc tgcacagaat tgtcccatgt ttctgtttgt ttgggcacca
1980
ctgaggaagg aagcatgaag gacgcagagg tcaggccatt ctattgcctt cctgctgctg
2040
ggtcttaat cctgagatgg cttcaggggc tggccttct ccatggcccc ctccacatat
2100
ctcagccatt ttgcaaacc cttcagaat gaaacattcc ttgggaactc gggccatgag
2160
aagcatcattt cctgaccacc tgactgcgga aacatcattt tcgcatttc cggggcgaag
2220
gcccacacgc ctgactgcag gaacatcattt gccatatacct gccgggcagc aagctctacc
2280
gcccagaccc ctccctccca gtcccatgat cgccccagcc tgtgagcggc agttggtgat
2340
ggcactaaggc tgatttcctc ctctgcaggg ttttgctagt aataaagggtg ttgctgttga
2400
agccgtcaac tgtctttcta tgtctttctt taacccttgc ctgcatttca aaatctaaca
2460
atagctctac ctctccattt taccaaggag gatatgagac tcaaggagag caagagactt
2520
acccagaatt acacagccag tgagtcacag aacttgaact tgagctcagt tcagctaat
2580
ccagaactca tgtcttcctg agagtccagg gaaggaaagg tggactgca gccagtgggt
2640
cccacaggct tgtccttagga gaccacatgc agactcctgg gaattgtgtc ctcttggca
2700
aaaaagaaga actgttcacc tgtgctgcat cagctaagt tccccattgt cccaaattgt
2760
tatattttt caaagtttca ttttagtaac tagatttctc acagctcagt gttgaaaaca
2820
aagcacagag gcatatagaa a
2841

<210> 6198
<211> 124
<212> PRT
<213> Homo sapiens

<400> 6198
Met Gly Ala Ser His Gly Asn Trp Glu Val Pro Arg Gln Ser Gln Arg

1 5 10 15
Phe His Arg Arg Ser Gln Arg Val Thr Lys Gly Ser Pro Gly Pro Gly
20 25 30
Ser Ser Gln His His Gly Leu Asn Thr His Trp Ala Pro Thr Leu Gly
35 40 45
Pro Gly Trp Gly Met Trp Gly Gln Glu Ala Ala Gln Ser Gly Arg Gln
50 55 60
Arg Glu Lys Cys Val Gln Arg Ala Pro Ile Ser Gly Cys Asn Val Val
65 70 75 80
Leu Arg Leu Trp Leu Gly Ser Ala Ser Arg Val Ser Tyr Val Leu Cys
85 90 95
Ser Tyr Phe Leu Ser Pro Thr Leu Pro Cys Arg Asn Pro Ser Glu Tyr
100 105 110
Val Ala Thr Ile Leu Glu Leu Ser Ala Leu Ile Val
115 120

<210> 6199

<211> 1777

<212> DNA

<213> Homo sapiens

<400> 6199

ctgctttcc cagcagtatt agtgtccccc aggcaaggga cctttccac attacatcac
60
tgccccatcc caccttacaa cactctggcc cctctgttg gtccccccttt tccccaggca
120
ggaggaatac ccaggggcct gcctgataga ggcatttcct gtccctgtct cttcctgcat
180
ctccctttatc ctgcactgcc accctctatt ccccaattctg tggggactt tgaaggcccc
240
aagcccgacc aaagcactga gttcccccatt aagacacccctc cacaccctcc ccacaagcaa
300
agcacaattt ttggggtcca ttagcatgg gccacgtagg aggctcctga cttgccaggg
360
gcccagcctc agcataacca ccgaggcagc tgccagcctg ggctgagggt gggcatgagg
420
caggagtcag cacttggacc tagggatgtg aggtttctg tgcccaagt ttgtggaaag
480
gtggggacta ctgctgggcc cacagacaca gccagctggc aaaagggagg tctagcccg
540
cagagagatg aggacattt gtttctccatt catgcccaca gcatgagctg agttctgt
600
ttgtggaaa taaaataaac ttggatgaa ttgtgccaag gctcccccag ttgtcatct
660
gctcttgtt gcccctccctg tccttgcctt ccacccaca cccatgcccc tgtttcccta
720
cagatttga tattgttcta atgtgtaata gaaccagccg agtcccctt tatcagaagg
780
gtctgaaaag cagcagcaca gagtaggtga acacaggctt gcaagtgcga ccacccatcaga
840
cccagtacgt gtgcccacag tggacacact cacaccccca acacaccac ggcgaggcat
900
gtgtacacgc atgtacacac gcatgcatgc acagccagat ggccactcag cacagatgtg
960

gcagagggaa tggctgtate ctgctgaaag ccattaagga gaaacgaatt tcccagtgc
 1020
 cgggctgcaa gagagccta tagggccct gtttctggg catgcgttc ctctgccagc
 1080
 caacccccac ttgccaagt cactggtca ataactttc tgcccttc agagcagaga
 1140
 aattggaaat tgtgttaggt ggggtgggc agctctgctg agccaagcag acacggatgt
 1200
 ccccttttgc gggaggaggg tagtgctccc aggcctcagg agtccagaca gagacccca
 1260
 aagcctgact gccaacagaa accctctcct agtgagggc aggtgggtgt gccnnncagg
 1320
 tccccacacc cacagggagg ctacacacac tgccctgtac cggggatgcc aggaggcagg
 1380
 cccctctgtct gctgccactg ctgccaacac tgccctgtt gtgaggccag gaggagcccc
 1440
 tgtcccaactc ggtgctgtg ctcttctgac ccctgctgtg aggaatggga ttcttggtc
 1500
 aaaaaattgg ttttctttt ttgtataaat gaaaagaatc caggagaagc tgccaccctc
 1560
 ccctcccagc gtgatgcgtt accttgcctt ggcgtctgt cgccctttcc gccttggtc
 1620
 cagggacagc ccagcagatc ctcttggtc tgacctgggg ggtgtttgca tcacccctt
 1680
 ttacttgtat taaaaaaaaa tgatgggttg aaaatgtact gaggattaaa aatgtacttt
 1740
 ttatataata aagtgttaa aacaaaaaaaaa aaaaaaaaaa
 1777

<210> 6200
 <211> 164
 <212> PRT
 <213> Homo sapiens

<400> 6200
 Val Gly Val Gly Ser Ser Ala Glu Pro Ser Arg His Gly Cys Pro Leu
 1 5 10 15
 Phe Trp Glu Glu Gly Ser Ala Pro Arg Pro Gln Glu Ser Arg Gln Arg
 20 25 30
 Pro Pro Lys Pro Asp Cys Gln Gln Lys Pro Ser Pro Ser Glu Gly Gln
 35 40 45
 Val Gly Val Pro Xaa Arg Ser Pro His Pro Gln Gly Gly Phe Thr His
 50 55 60
 Cys Pro Val Pro Gly Met Pro Gly Gly Arg Pro Leu Cys Cys Cys His
 65 70 75 80
 Cys Cys Gln His Cys Pro Ala Cys Glu Ala Arg Arg Ser Pro Cys Pro
 85 90 95
 Thr Arg Cys Cys Cys Ser Ser Asp Pro Cys Cys Glu Glu Trp Asp Ser
 100 105 110
 Trp Ser Lys Lys Leu Val Phe Leu Phe Cys Ile Asn Glu Lys Asn Pro
 115 120 125
 Gly Glu Ala Ala Thr Leu Pro Ser Gln Arg Asp Ala Leu Pro Cys Phe
 130 135 140
 Gly Val Leu Ser Pro Phe Pro Pro Leu Val Gln Gly Gln Pro Ser Arg

145	150	155	160
Ser	Ser	Trp	Phe

<210> 6201
<211> 604
<212> DNA
<213> Homo sapiens

<400> 6201
acgcgtggc atgtgcacgt gtgtccctgt gcatgcgtga atatgcgtgt gtgtgcgtgc
60
tgtgcgtgagg acagcgtgag tttcacaga agcaggtaaa aagttccaca ggaacagaga
120
ccaggacaag accagccctg atgggagaag ccagaggacc cagaggaact tccaggaggc
180
ccttagctcc ctcagacaga atgcgggatc gcaatgccca gcaaaggcattcaaggac
240
agtggacgct ggggagagga gcagagtggtt cagctctcag gagggcaggatcgaggct
300
gcagggagga gttcggtggg aagggacagc ctcagagcct aagctgcgttccctggaaa
360
ggggtatgac tggcaggcac acaaattgtct ctcaaggaag gtgggcctgg ggccacagag
420
ctccccagagg agggagtgga gagggagagc ccgcagagga gagaccaggc agggctggcg
480
atcacgcagg tgcacaggtt gaacgtcagg actgaaacgg aagacaatgt ccccatgcaa
540
gactggctga aacgaactca cacagaattt ttaagaggct cctgtgttgg gtgaaaaccg
600
gcgg
604

<210> 6202
<211> 124
<212> PRT
<213> Homo sapiens

<400> 6202
Met Gly Glu Ala Arg Gly Pro Arg Gly Thr Ser Arg Arg Pro Leu Ala
1 5 10 15
Pro Ser Asp Arg Met Arg Asp Arg Asn Ala Gln Gln Arg Ala Ile Gln
20 25 30
Gly Gln Trp Thr Leu Gly Arg Gly Ala Glu Trp Ala Ala Leu Arg Arg
35 40 45
Ala Gly Leu Arg Gly Cys Arg Glu Glu Phe Gly Gly Lys Gly Gln Pro
50 55 60
Gln Ser Leu Ser Cys Ala Ser Trp Glu Arg Gly Met Thr Gly Arg His
65 70 75 80
Thr Asn Val Ser Gln Gly Arg Trp Ala Trp Gly His Arg Ala Pro Arg
85 90 95
Gly Gly Ser Gly Glu Gly Glu Pro Ala Glu Glu Arg Pro Gly Arg Ala
100 105 110
Gly Asp His Ala Gly Ala Gln Gly Glu Arg Gln Asp

115

120

<210> 6203
<211> 3462
<212> DNA
<213> Homo sapiens

<400> 6203
nnaccgttgc ggccgcaggg gtctgggcag ggctgggcag tgctgccgga gcaaaaagcgg
60 tagcgggagc ccggccggag ctgggtctgg agacgcgtg gcagcctgaa cggagtgtgc
120 gacggattgg gaggtttgtc tacagatttt gagcgttcga agttgacccc tgactaagta
180 tactttgctg ctccccctcagc ctttgaaaaa atgtctgtca catatgtga ttccgttggaa
240 gtagaagtgt ccagcgacag cttctggag gtcgggaaact acaagcggac tgtgaagcgg
300 atcgacgatg gccaccgcct gtgcagcgac ctcatgaact gcctgcata gccccggcgc
360 atcgagaagg cgtatgcgca gcagctcaact gagtgggccc ggcgcgtggag gcagctcgta
420 gagaaggc cccagttacgg gaccgtggag aaggccttggaa tggccttcat gtccgaggca
480 gagagggtga gcgagctgca cctcgaggtg aaggcctcac tcatgtaacgt tgacttcgag
540 aagatcaaga actggcagaa ggaagccttt cacaaggcaga tcatgggcgg cttcaaggag
600 accaaggaag ctgaggacgg ctttcggaag gcacagaagc cctgggcca gaagctgaaa
660 gaggttagaaag cagcaaagaa agccacccat gcagcgtgca aagaggagaa gctggatc
720 tcacgagaag ccaacagcaa ggcagaccca tccctcaacc ctgaacagct caagaaattg
780 caagacaaaa tagaaaagtg caagcaagat gttcttaaga ccaaagagaa gtatgagaag
840 tccctgaagg aactcgacca gggcacacccc cagttacatgg agaacatgga gcagggttt
900 gaggcgtgcc agcagttcga ggagaaacgc cttcgcttct tccggaggt tctgcgtggag
960 gttcagaagc accttagaccc tcccaatgtg gctggctaca aagccatttta ccatgacctg
1020 gagcagagca tcagagcagc tcatgcgttg gaggacctga ggtggttccg agccaatcac
1080 gggccggca tggccatgaa ctggccgcag tttgaggagt ggtccgcaga cctgaatcga
1140 accctcagcc ggagagagaa gaagaaggcc actgacggcg tcaccctgac gggcatcaac
1200 cagacaggcg accagtctct gccgagtaag cccagcagca cccttaatgt cccgagcaac
1260 cccgcccagt ctgcgcgttc acagtccagc tacaacccct tcgaggatga ggacgacacg
1320 ggcagcaccg tcagtgagaa ggacgacact aaggccaaaa atgtgagcag ctacgagaag
1380

acccagagct atcccacca ctggtcagac gatgagtcta acaacccctt ctcctccacg
1440
gatgccaatg gggactcgaa tccattcgac gacgacgcca cctcggggac ggaagtgcga
1500
gtccggggcc tgatatgacta tgagggggcag gacatgatg agctgagctt caaggctggg
1560
gatgagctga ccaagatgga ggacgaggat gacgaggct ggtgcaaggg acgcttggac
1620
aacgggcaag ttggcctata cccggcaaata tatgtggagg cgatccagtg atgagtcggg
1680
gacaggccag cggggggacg gaggcggcgg gcccaggagc ctcagccagc cacgtggca
1740
tccactcctt ttccctgcaag agatgatggt tccattgctc ttggcttcat ggtgttcctg
1800
gaaggcagat gagctggtca ttccctgctgg gactcggcac ctttccgagt gcagctggag
1860
ggatctgagc gcaggaagac gcagaacaac agaaatagcc gccctccccccc gcccactgtg
1920
cctgttggcc tatcatagat ctctatgttc ttgactttgt ctctccttcc cgagtcaatg
1980
gtgggttaca ctgatcttgt tccactgatt actctctctg acgagtcac cacctgcaac
2040
ttaaatgaac aagtttacat cccatggta gtgaagattt tgaggttttt aattttaaagg
2100
ctgtgtacag ttatactttt ttatacacct gttcattttt actttaaatta tggcacagat
2160
tgatgcgcac cagtttgag gaaacgatct ccctattccc ttaccctgtt actcagccac
2220
gccgtgtgta ggcttagct caggtggcag atgtttgagg aaaggaattt tgccaggaag
2280
gtgggacccgg gttatggtcg gttttctatt gggaatgctc tttgtgctt tggcatctg
2340
aatggagct ttacatagaa ccttaggtag aactccccca aatcgccata tttaaaaattt
2400
attttcaactt tattttgtt taaaactgta ctcttttgc aattaacaat ttatcaactg
2460
attcagagtt aaaaagaaga ctaacttttc aagcaaatgc atctgtaaag atgcttttaga
2520
ttagactgtc atgtctcagt gtctatctgt atatattttt tgatatttag agaatctaaa
2580
gcactcgtct actgttttaa tgagatttaa cagttttaa cagtgagttt cgtttgtaaa
2640
ctgcttgaag tctgtggcat tcaggcacac atctggctgg cggctgggt ctctcccg
2700
gtcagtgccc cctggggct ctctgacgtg gtgcctgctg gagggaggct cgtcgtaacc
2760
agctgactgc tggccggct tctgaccggc ctgttgcctg gtcggtagc agaacactgt
2820
aaaagtgcggcc gctgtttgc agtagttgca gatttcagtc gtctgttac ttgtgcacaa
2880
acagaagctg ggttttaccc gcagcacgag tgcgtcgcc tggccggagt cggccggag
2940
caggtgctgc agccagagtt acgcgggggc caccgcggggc ggcgggggtg gggggAACGT
3000

gggggAACCT gtgtttcactg tgactcagca gtggccgcgg ccgtcaccag ctatgcattc
 3060
 actccgtttc cagttagcag atgtcttgct tggaaagtgg acctgtgtct gtgtctgtcc
 3120
 tgagaactta ccagcagaaa tcctcatttc tggctacgg atttacaaa aattgtcaag
 3180
 tctttttcag tttaacagtt cctttacatg tggtagtattt gaggaaaaaa atcaataaac
 3240
 agttgatctc gtgcataatgg aagtcccttc gccatcatct gtcttcatgc ccacttcact
 3300
 tggcggggggt ggcccccctg gggttacta gctttggagc tgggcaagat ccagggcaca
 3360
 ggaccctgc ccaaaaggcc acggcccaact gccctgcca aactggaggt tggggatttg
 3420
 aggcacctga gccccttggg gttcccttct ccccgagacc tg
 3462

<210> 6204

<211> 486

<212> PRT

<213> Homo sapiens

<400> 6204
 Met Ser Val Thr Tyr Asp Asp Ser Val Gly Val Glu Val Ser Ser Asp
 1 5 10 15
 Ser Phe Trp Glu Val Gly Asn Tyr Lys Arg Thr Val Lys Arg Ile Asp
 20 25 30
 Asp Gly His Arg Leu Cys Ser Asp Leu Met Asn Cys Leu His Glu Arg
 35 40 45
 Ala Arg Ile Glu Lys Ala Tyr Ala Gln Gln Leu Thr Glu Trp Ala Arg
 50 55 60
 Arg Trp Arg Gln Leu Val Glu Lys Gly Pro Gln Tyr Gly Thr Val Glu
 65 70 75 80
 Lys Ala Trp Met Ala Phe Met Ser Glu Ala Glu Arg Val Ser Glu Leu
 85 90 95
 His Leu Glu Val Lys Ala Ser Leu Met Asn Asp Asp Phe Glu Lys Ile
 100 105 110
 Lys Asn Trp Gln Lys Glu Ala Phe His Lys Gln Met Met Gly Gly Phe
 115 120 125
 Lys Glu Thr Lys Glu Ala Glu Asp Gly Phe Arg Lys Ala Gln Lys Pro
 130 135 140
 Trp Ala Lys Lys Leu Lys Glu Val Glu Ala Ala Lys Lys Ala His His
 145 150 155 160
 Ala Ala Cys Lys Glu Lys Leu Ala Ile Ser Arg Glu Ala Asn Ser
 165 170 175
 Lys Ala Asp Pro Ser Leu Asn Pro Glu Gln Leu Lys Lys Leu Gln Asp
 180 185 190
 Lys Ile Glu Lys Cys Lys Gln Asp Val Leu Lys Thr Lys Glu Lys Tyr
 195 200 205
 Glu Lys Ser Leu Lys Glu Leu Asp Gln Gly Thr Pro Gln Tyr Met Glu
 210 215 220
 Asn Met Glu Gln Val Phe Glu Gln Cys Gln Gln Phe Glu Glu Lys Arg
 225 230 235 240
 Leu Arg Phe Phe Arg Glu Val Leu Leu Glu Val Gln Lys His Leu Asp

	245	250	255
Leu Ser Asn Val Ala Gly Tyr Lys Ala Ile Tyr His Asp Leu Glu Gln			
260	265	270	
Ser Ile Arg Ala Ala Asp Ala Val Glu Asp Leu Arg Trp Phe Arg Ala			
275	280	285	
Asn His Gly Pro Gly Met Ala Met Asn Trp Pro Gln Phe Glu Glu Trp			
290	295	300	
Ser Ala Asp Leu Asn Arg Thr Leu Ser Arg Arg Glu Lys Lys Lys Ala			
305	310	315	320
Thr Asp Gly Val Thr Leu Thr Gly Ile Asn Gln Thr Gly Asp Gln Ser			
325	330	335	
Leu Pro Ser Lys Pro Ser Ser Thr Leu Asn Val Pro Ser Asn Pro Ala			
340	345	350	
Gln Ser Ala Gln Ser Gln Ser Ser Tyr Asn Pro Phe Glu Asp Glu Asp			
355	360	365	
Asp Thr Gly Ser Thr Val Ser Glu Lys Asp Asp Thr Lys Ala Lys Asn			
370	375	380	
Val Ser Ser Tyr Glu Lys Thr Gln Ser Tyr Pro Thr Asp Trp Ser Asp			
385	390	395	400
Asp Glu Ser Asn Asn Pro Phe Ser Ser Thr Asp Ala Asn Gly Asp Ser			
405	410	415	
Asn Pro Phe Asp Asp Asp Ala Thr Ser Gly Thr Glu Val Arg Val Arg			
420	425	430	
Ala Leu Tyr Asp Tyr Glu Gly Gln Glu His Asp Glu Leu Ser Phe Lys			
435	440	445	
Ala Gly Asp Glu Leu Thr Lys Met Glu Asp Glu Asp Glu Gln Gly Trp			
450	455	460	
Cys Lys Gly Arg Leu Asp Asn Gly Gln Val Gly Leu Tyr Pro Ala Asn			
465	470	475	480
Tyr Val Glu Ala Ile Gln			
	485		

<210> 6205
<211> 926
<212> DNA
<213> Homo sapiens

<400> 6205
nnccgcctcc canagagaat aggccccagg ttcaatggag gctgtggaga gatggagaag
60
tggggtaag attttgaga atctcgaaaa agagcaagg aagggaaagg gtttgcac
120
agccagaagt tgctgttcat ggaaacttcg gccaaactga accaccagg gtccggaggt
180
ttcaatacag tggcccaaga gctactgcag agaagcgacg aggagggcca ggctctacng
240
ggggaaagaca cccccctgcct gggccatggc cagctctagg tggattctga ttcactgtca
300
atgctgggtt gctcccgagc cctagatgtt cctgaaagtt ggcccccttt atgaaaacca
360
cttccccacag ccagtggaa ctgccagagg aagatctggc gtcacatggc tcccaggaaa
420
gtgctgtgcc ctatccccac tgataccatc tgattccccg atgcctgtgc ctgttccacc
480

tggacgggtgg cccccctcagc ctggcagcct ctggacagag aggaaggaag gattggaaaa
 540
 gtcccccgcag cacagcgacg gtgggaagat gccttacgtc tcatcttgat gggggcactg
 600
 gcctggagcc tggggccacc tgcttctggg gggttgggggaa gcaggccaga tggaggtgg
 660
 ggtgccagga agaaatggag cgatgactga ctgtggggtg ggcccaggat ttccgcacatct
 720
 tggtaagtt gcccctggga agggcagctg ggggcagtgg cgccagttcc ctteccatgg
 780
 ctcccggtcg gcaatgtggt gaagctgagt ttctgtccaa tgagcaggaa gattctgaga
 840
 catttcgcct gagatataag ttgtactgcg tatgcagttt ttccctccaaa aattaaattg
 900
 cttttgacaa tctgaaaaaaaaaaaa
 926

<210> 6206
 <211> 92
 <212> PRT
 <213> Homo sapiens

<400> 6206
 Xaa Arg Leu Pro Xaa Arg Ile Gly Pro Ser Phe Asn Gly Gly Cys Gly
 1 5 10 15
 Glu Met Glu Lys Trp Gly Glu Asp Phe Gly Glu Ser Arg Gly Arg Ala
 20 25 30
 Arg Glu Gly Lys Glu Phe Ala Asp Ser Gln Lys Leu Leu Phe Met Glu
 35 40 45
 Thr Ser Ala Lys Leu Asn His Gln Val Ser Glu Val Phe Asn Thr Val
 50 55 60
 Ala Gln Glu Leu Leu Gln Arg Ser Asp Glu Glu Gly Gln Ala Leu Xaa
 65 70 75 80
 Gly Glu Asp Thr Pro Cys Leu Gly His Gly Gln Leu
 85 90

<210> 6207
 <211> 1384
 <212> DNA
 <213> Homo sapiens

<400> 6207
 nntgatcaga ggtcctgggt gtctggggaa gctgggtgt gcgtgtatgc gtctaccatg
 60
 tgggggtgcc tgtgagtgtg ctggggcgcc tgcagtgaag gcctcctgag accactccac
 120
 gaaaaacacccg ggaatccctg cagctgagcc tgtctctcac gggaccggga agctggagag
 180
 agcccccaacc ctgccccctg gggccgagct ccctgtctgc gcagcagttcc cgtccccac
 240
 actctgagtc tgccctatcc acagctgctg ggctctctg tggccaccat ggtgacttt
 300
 acctaacttcg gggcccaactt tgctgtcatac cgccgagcgt ccctggagaa gaaccctgtac
 360

caggctgtgc accaatgggc cttctctgctg gggttgagcc tggtgggcct cctgactctg
 420
 ggagccgtgc tgagcgctgc agccaccgtg agggaggccc agggcctcat ggcagggggc
 480
 ttccctgtct ttcctctggc gttctgygca caggtgcagg tggtgttctg gagactccac
 540
 agccccaccc aggtggagga cgccatgctg gacacctacg acctggata tgagcagggc
 600
 atgaaaaggta cgtcccaegt cggccggcag gagctggcgg ccattccagga cgtgtttctg
 660
 tgctgtggga agaagtctcc tttcagccgt ctggggagca cagaggctga cctgtgtcag
 720
 ggagagggagg cggcgagaga ggactgcctt cagggcattcc ggagcttcct gaggacacac
 780
 cagcaggtcg cctccagccct gaccagcattt ggcctggccc tcacggtgctc cgccttgc
 840
 ttcagctcctt tcctgtggtt tgccatccgc tgggtgtca gcttggaccg caagggcaaa
 900
 tacaccctga ccccacgagc atgtggccgc cagccccagg agcccagccctt cttgagatgc
 960
 tcccagggtg gaccacacaca ttgtctccac tccgaagcag ttgttatgg tccaagagga
 1020
 tgctcgggta gtcttcggtg gctgcaggag agcgatgctg cgcctctgcc cctctccctgc
 1080
 cacctggctg cccacagagc ttcacaggc agaagtcgcg gtgggctcag tgggtgc
 1140
 gagcggggtc ttcagactg acgtcaggcc ttgggtggct gcactctcac ctggaggctc
 1200
 cggggaaagca tctgcctcca ggaccattca ggctgttgac aagtcaactc ctcatggctg
 1260
 taggactgag gttcccaagt cttgtccctt ggtcctgtgg tccctccacc ttcaaaccag
 1320
 caatggtgca ttgagcaaat tgggtcaaaa tatacatcac atcaaattta ccattttaaa
 1380
 aaaa
 1384

<210> 6208
 <211> 290
 <212> PRT
 <213> Homo sapiens

<400> 6208
 Met Val Thr Leu Thr Tyr Phe Gly Ala His Phe Ala Val Ile Arg Arg
 1 5 10 15
 Ala Ser Leu Glu Lys Asn Pro Tyr Gln Ala Val His Gln Trp Ala Phe
 20 25 30
 Ser Ala Gly Leu Ser Leu Val Gly Leu Leu Thr Leu Gly Ala Val Leu
 35 40 45
 Ser Ala Ala Ala Thr Val Arg Glu Ala Gln Gly Leu Met Ala Gly Gly
 50 55 60
 Phe Leu Cys Phe Ser Leu Ala Phe Xaa Ala Gln Val Gln Val Val Phe
 65 70 75 80
 Trp Arg Leu His Ser Pro Thr Gln Val Glu Asp Ala Met Leu Asp Thr

85	90	95
Tyr Asp Leu Val Tyr Glu Gln Ala Met Lys Gly Thr Ser His Val Arg		
100	105	110
Arg Gln Glu Leu Ala Ala Ile Gln Asp Val Phe Leu Cys Cys Gly Lys		
115	120	125
Lys Ser Pro Phe Ser Arg Leu Gly Ser Thr Glu Ala Asp Leu Cys Gln		
130	135	140
Gly Glu Glu Ala Ala Arg Glu Asp Cys Leu Gln Gly Ile Arg Ser Phe		
145	150	155
Leu Arg Thr His Gln Gln Val Ala Ser Ser Leu Thr Ser Ile Gly Leu		
165	170	175
Ala Leu Thr Val Ser Ala Leu Leu Phe Ser Ser Phe Leu Trp Phe Ala		
180	185	190
Ile Arg Cys Gly Cys Ser Leu Asp Arg Lys Gly Lys Tyr Thr Leu Thr		
195	200	205
Pro Arg Ala Cys Gly Arg Gln Pro Gln Glu Pro Ser Leu Leu Arg Cys		
210	215	220
Ser Gln Gly Gly Pro Thr His Cys Leu His Ser Glu Ala Val Ala Ile		
225	230	235
Gly Pro Arg Gly Cys Ser Gly Ser Leu Arg Trp Leu Gln Glu Ser Asp		
245	250	255
Ala Ala Pro Leu Pro Leu Ser Cys His Leu Ala Ala His Arg Ala Leu		
260	265	270
Gln Gly Arg Ser Arg Gly Gly Leu Ser Gly Cys Pro Glu Arg Gly Leu		
275	280	285
Ser Asp		
290		

<210> 6209

<211> 2269

<212> DNA

<213> Homo sapiens

<400> 6209

```

ggcaggctgg gaatttagcca gcaaagatgc cgatgagggtc atcaagcaga aggaaatctc
60
accccacacca ggtggactta caaggctgtg tggccctgg gcagggtgga catgtccagg
120
gcggggaaac cctggatatt tcactctgaa gtggtttctt gaaaagaaaaac tcaactgact
180
caggccatga gcatcttta cactgaagca agcatctcct cacaagtgcc tcctacaagt
240
cactagagtc atattcaaca ttacaaaatg cagtgtact taaattttaa agcactgagg
300
gaccaagaaa tgggctgatc aagtccctgg ccactcactg ttaagagcca ggatttacag
360
atcaatgact gttccatttg tccaagaaat aattttctag caaagcatac acactttatt
420
aaatttcaca gccagcagcg ct当地cagtc acaacagatt tctcagagga aacatggata
480
tttgcgttag gcagaaacag tgaggagtac aaagcaaagc tataaatacc accaatggtt
540
ctgctatgtg catccgatat ttttgc当地ccg atctgaaata ctgcaagggc ttaaccattc
600

```

aaacaccgca tgacaacgaa cccagtggac tgtgaaactc aggctgcagg agggtggtt
660
gtcagctggt gaagccactt ggcttggac tccatcggtc atctttacgc aagagcagag
720
atgaacggtg ggtcacggct atgacgtgaa ggagaaaagag aagacacact cacagaacag
780
gatggagagc ttcaataatt ttttaaaage ttggaaccac cacctgtttt cccaatctt
840
ggctgggtt ttgacttttc ttgatcatca atctgacttg aagcttttt ccagttacaa
900
960
tacagacatg gccagatgac ctgcttgtt ggaaggctgt ggccatctt gtttctgaaa
1020
cagtcttatac tcatactgtcc actgctgctc tggaaagggtc aggaccagca ctgcagacac
1080
tcggccatgc tgtgagttag cccagacata cgctgttgaat ctgaacaccc aacgctggcg
1140
ttccccgtgcc agtctgaggg ctgctgtcc agcgcttgc cacacacacg cctgcctctc
1200
tcttagttccct ccactgcctg gcttcctcgc ttgcaaaacc cagcatgtga aatgaggaca
1260
cctccacgga gacccttccg agcagggagg tttcatcaca ccttcgttc ttgccaagga
1320
gtctatcgcc tcataccacaa catctgtttt cgggagaaaac agcaaattgtg tccctctgag
1380
ggaaggactg aggagggtt tggtagtcac agattgagac acatttctgc gaaaactggt
1440
attatgtttc tgcacaggaa aacaaagtgt taaaaatatt cccatcctcc ctccaactcc
1500
cttctgtcac acagtcacaa gtgaacttga aaaaggtcca gaagtgaaca cttagggtgc
1560
atttacctt ctccctgaaga tggaaagaca cacggatgtc tgcctaaaat atctgcccag
1620
aggtgagcag ctgtggcctg ggaagggcgt tgctttcct ccacatcagc cagaaggcag
1680
atcacaccc tacagaaccc agatggcgaa tcaaagtgca gaaaaagaac
1740
acccgcttcc tcattagtca ttttaggaaga taagatagca tgggacaggg agaacaacca
1800
tggtctgaat ggagactttt tcaggttccc aaacttggga cagtgagtgt gacccacat
1860
cctgtggttt ctgcctgacc cttctaagcc agaggtgaga aaacaactcc cagagaccac
1920
gactctcacc ctggaggta cctgttcccc tgcaggtgt gctctctgac aacctttagg
1980
caggggtggg ctccagcttt tggaagcaac cctaccttagc tggcccccac agcattaaga
2040
agcttccctg atggggccat gttttggctt ccttttaagc cctcagtcac aatgtacatt
2100
ctgagcttgtt cctactatcc agatgatttt ctctctgagt tgcaataactg ctcaatttag
2160
gtggctaccc gtgttcatcc aagctctgga agtgtgaaag ggaacttaat cattgagtt
2220
ctgtgaagta ttttgccatcc ctaaaatcccc tgagagtgaa actgttgaat catgctcact

ttcttcacat acatactctt ggactatggg gaccaagtct gttgaattc
2269

<210> 6210
<211> 165
<212> PRT
<213> Homo sapiens

<400> 6210
Met Gly Ile Phe Leu Thr Leu Cys Phe Pro Val Gln Lys His Asn Thr
1 5 10 15
Ser Phe Arg Arg Asn Val Ser Gln Ser Val Thr Thr Lys Ala Leu Leu
20 25 30
Ser Pro Ser Leu Arg Gly Thr His Leu Leu Phe Leu Pro Gln Ala Asp
35 40 45
Val Val Asp Glu Ala Ile Asp Ser Leu Ala Arg Thr Lys Gly Val Met
50 55 60
Lys Pro Pro Cys Ser Glu Gly Ser Pro Trp Arg Cys Pro His Phe Thr
65 70 75 80
Cys Trp Val Leu Gln Ala Arg Lys Pro Gly Ser Gly Gly Thr Arg Glu
85 90 95
Arg Gln Ala Cys Val Trp Thr Ser Ala Gly Ala Ala Leu Arg Leu
100 105 110
Ala Arg Glu Arg Gln Arg Trp Val Phe Arg Phe His Ala Tyr Val Trp
115 120 125
Ala His Ser Gln His Gly Arg Val Ser Ala Val Leu Val Leu Thr Leu
130 135 140
Pro Glu Gln Gln Trp Thr Asp Glu Ile Arg Leu Phe Gln Lys Gln Arg
145 150 155 160
Trp Pro Gln Pro Ser
165

<210> 6211
<211> 2163
<212> DNA
<213> Homo sapiens

<400> 6211
ngccggccgc ctcagcccaa catggcgatg cacaacaagg cggcgccgcc gcagatcccc
60
gacacccggc gggagctggc ggagctcgta aaggggaagc aggagctggc ggaaacattg
120
gcaaatttgg agcgacagat ctatgtttt gagggaaagct accttggaaaga cactcagatg
180
tatggcaata ttattcgtgg ctggngatcg gtatctgacc aaccannaaa aaactccaat
240
agaaaaatg atcgaaggaa ccggaagttt aaggaagctg agcggcttt cagtaaatcc
300
tcgggttacct cagcagctgc agtaagtgc ttggcaggag ttcaggacca gtcattgaa
360
aagagggagc caggaagtgg gacggaaagt gacacttctc cagacttcca caatcaggaa
420
aatgagccca gccaggagga ccctgaggat ctggatggat ctgtgcaggg agtgaaacct
480

cagaaggctg cttcttctac ttccctcaggg agtcaccaca gcagccataa aaagcgaaag
540
aataaaaacc ggcacagccc gtctggcatg tttgattatg actttgagat tgatctgaag
600
ttaaacaaaa aaccacgagc tgactattag aagacacatt agtgcagaag ctccaggct
660
gttagagccct gcttcccttc tctgaccta caaagataaa catccttcaac ctgagttcgt
720
ggccatccac ctctgtctc ccagacccag tgctgtgac tttgagtagt ttgttctaaa
780
tgtggtgaca aacaagtcat ttctgtaaa cattgggtct tactttatgt gattttttagt
840
aacagaactg caggaagatc aagacaatgt tgtaatcccg gcaagttgct aactgtgcgt
900
ttctcccttc ttagaatgaa tgtctccccc aaaactggct ggcaccagct tcatactgtga
960
tacccttcaa gaaatgttct ctggtttgt tttatgctga aagtagaaaca caagtccat
1020
ttcagatgga ggctgtaaat atctggcatt ttcttatatt gttttatgtt ttcttgggtt
1080
tctcttggtg tttttatctt attttcttg gggttttttt gtaatgcctt tgtacagetc
1140
atactttctt gctgacatat ctgatcatct cttcatgca gttgccaata ttcatataactg
1200
aaaataatct ggtttatcat aagtaaaatg ggaaacttgc ctctgtttt tgcaagggga
1260
ggtaaagagt gtttagtaat tacctatctt aaatcttctt gagttggtag tagatttcatg
1320
ttcaaggaac agaaaaatg gaaaacata agtttaaattc agttttttt aaataacttt
1380
ttattctttt gtataaataa aatttcacag gcttcaaattt ctcatgctttt acttttaaac
1440
ccgagattgt ttttttcaact tatttattca tatcatgctt tatggaaattt tcttttctg
1500
tatttctctt ctttgcgtt attcacctga ttaaatattt ctctaaaaat caccatggca
1560
tatggaaagt ctcaaaatta taccaaaagt gataacttat gtcgttctta agtggagtg
1620
aaggatagca tcagtgtatc ccagtgttgc ccaccaggc tccctttctt ggagggctt
1680
ttggggctga ggaatctgct agtaatcggtt acctgcctt agtgcgtgtgg tgaacttgc
1740
acagggtctg gctgcacattt ggaatcacctt gagaagctttt aaaatactca tgcctggatc
1800
ccatcccttag agactgggtt acagcctagt tattggaaat ttctttaaaaa gagttccctgg
1860
gattctgata agaagccagg ttgagaacca ctacatttgc agactgaatg gtttaattt
1920
catcctatgt tatgattggt ccaaggata agatttgggg tctaaccctt ccttcactc
1980
tagtttagtca tagtccttga cttatgccta tatctttgtt agaaatagta tgtttcat
2040
gtgatagtagtat tggtagggctt gaatatggat ggcacatctact gtaaaacaag tctacccctt
2100

cagatgtgca aaagcttca ctcttggctt ccaaataaaact tttgtgggtt tttttaaaaa
 2160
 aaa
 2163

<210> 6212
 <211> 209
 <212> PRT
 <213> Homo sapiens

<400> 6212
 Xaa Arg Pro Pro Gln Pro Asn Met Ala Met His Asn Lys Ala Ala Pro
 1 5 10 15
 Pro Gln Ile Pro Asp Thr Arg Arg Glu Leu Ala Glu Leu Val Lys Gly
 20 25 30
 Lys Gln Glu Leu Ala Glu Thr Leu Ala Asn Leu Glu Arg Gln Ile Tyr
 35 40 45
 Ala Phe Glu Gly Ser Tyr Leu Glu Asp Thr Gln Met Tyr Gly Asn Ile
 50 55 60
 Ile Arg Gly Trp Xaa Ser Val Ser Asp Gln Pro Xaa Lys Asn Ser Asn
 65 70 75 80
 Ser Lys Asn Asp Arg Arg Asn Arg Lys Phe Lys Glu Ala Glu Arg Leu
 85 90 95
 Phe Ser Lys Ser Ser Val Thr Ser Ala Ala Ala Val Ser Ala Leu Ala
 100 105 110
 Gly Val Gln Asp Gln Leu Ile Glu Lys Arg Glu Pro Gly Ser Gly Thr
 115 120 125
 Glu Ser Asp Thr Ser Pro Asp Phe His Asn Gln Glu Asn Glu Pro Ser
 130 135 140
 Gln Glu Asp Pro Glu Asp Leu Asp Gly Ser Val Gln Gly Val Lys Pro
 145 150 155 160
 Gln Lys Ala Ala Ser Ser Thr Ser Ser Gly Ser His His Ser Ser His
 165 170 175
 Lys Lys Arg Lys Asn Lys Asn Arg His Ser Pro Ser Gly Met Phe Asp
 180 185 190
 Tyr Asp Phe Glu Ile Asp Leu Lys Leu Asn Lys Lys Pro Arg Ala Asp
 195 200 205
 Tyr

<210> 6213
 <211> 1160
 <212> DNA
 <213> Homo sapiens

<400> 6213
 acgcgtgaag ggaaggggaa agaggtcacc aagggcagag gtgtccaggc cggagccagg
 60
 ggccccactg ttgggatgtt ggctgcagtggggccccca agcccaggcc ccctctgtct
 120
 tctctttcgatcttgcagct gtacttgttt tgctcctcta cccgcaggag ctgacatgg
 180
 cccaaatcct cggccgcccc tggagcgcaca gcagctccgc cttcgggagc ggcaaaaatt
 240

cttcgaggac attttacagc cagagacaga gtttgtctt cctctgtccc atctgcatct
 300
 cgagtcgcag agaccccca tagtagtat ctcatccatg gaagtgaatg tggacacact
 360
 ggagcaagta gaacttattg accttggga cccggatgca gcagatgtgt tcttgcttg
 420
 cgaagatcct ccaccaaccc cccagtcgtc tggggtgac aaccatttg aggagctgag
 480
 cctgccnggt gcctacatca gacaggacca catctaggac ctccctccctcc tcctccctcg
 540
 actccctccac caacctgcac agcccaaatac caagtgtatga tggagcagat acgcccctgg
 600
 cacagtcgga tgaagaggag gaaaggggtg atggaggggc agagcctgga gcctgcagct
 660
 agcagtgggc ccctgcctac agactgacca cgctggctat tctccacatg agaccacagg
 720
 cccagccaga gcctgtcggg agaagaccag actctttact tgcagtaggc accagaggtg
 780
 ggaaggatgg tgggatttgta tacctttcta agaattaacc ctctcctgct ttactgctaa
 840
 tttttcctg ctgcaaccct cccaccagtt ttggcttac tcctgagata tgatttgc当地
 900
 atgaggagag agaagatgag gttggacaag atgccactgc ttttcttagc actctccct
 960
 cccctaaacc atcccgtagt ctctataac agtctctcag acaagtgtct ctatggat
 1020
 gtgaactct taactcatca agtaaggtgg tactcaagcc atgctgcctc ctatcatcct
 1080
 ttttggaca gagcacggta taaaataata actaataata atatgccaac aaaaaaaaaa
 1140
 aaaaaaaaaa aaaaaaaaaa
 1160

<210> 6214
 <211> 101
 <212> PRT
 <213> Homo sapiens

<400> 6214
 Pro Trp Gly Pro Gly Cys Ser Arg Cys Val Leu Ala Leu Arg Arg Ser
 1 5 10 15
 Ser Thr Asn Pro Pro Val Val Trp Gly Gly Gln Pro Phe Gly Gly Ala
 20 25 30
 Glu Pro Ala Xaa Cys Leu His Gln Thr Gly Pro His Leu Gly Pro Pro
 35 40 45
 Pro Pro Pro Pro Pro Thr Pro Pro Pro Thr Cys Ile Ala Gln Ile Gln
 50 55 60
 Val Met Met Glu Gln Ile Arg Pro Trp His Ser Arg Met Lys Arg Arg
 65 70 75 80
 Lys Gly Val Met Glu Gln Ser Leu Glu Pro Ala Ala Ser Ser Gly
 85 90 95
 Pro Leu Pro Thr Asp
 100

<210> 6215
<211> 651
<212> DNA
<213> Homo sapiens

<400> 6215
ncagctccat aatccccctcc agaacattct gcaacagccc catgatcccc tctagaacat
60
tccacaatag cctcacaggt cccctgtaga acattccacc acagcccat gatcccccttg
120
ctcctcagag catgtggccg ccagccccag gagcccagcc tcttgagatg ctcccagggt
180
ggacccacac attgtctcca ctccgaagca gttgctattg gtccaaagagg atgctcggt
240
agtcttcgggt ggctgcagga gagcgatgct gcgcctctgc ccctctcctg ccacctggct
300
360
gccccacagag ctctccaggg cagaagtcgc ggtgggctca gtgggtgcc tgagcggggt
420
ctctcagact gacgtcaggc cttgggggc tgcactctca cctggaggct ccggggaaagc
480
atctgcctcc aggaccatcc aggctgttga caagtcaact cctcatggct gttaggactga
540
ggttcccaag tccttgtccc tggtcctgtg gtccctccac cttcaaaccg gcaatggtgc
600
attgagcaaa ttgtggtcaa atatacatca catcaaattt accatcttaa ccattgttaa
660
gtgtatggtt tggcatta aatacattca cattgttgtg caaccatcac c
651

<210> 6216
<211> 87
<212> PRT
<213> Homo sapiens

<400> 6216
Met Ile Pro Leu Leu Leu Arg Ala Cys Gly Arg Gln Pro Gln Glu Pro
1 5 10 15
Ser Leu Leu Arg Cys Ser Gln Gly Gly Pro Thr His Cys Leu His Ser
20 25 30
Glu Ala Val Ala Ile Gly Pro Arg Gly Cys Ser Gly Ser Leu Arg Trp
35 40 45
Leu Gln Glu Ser Asp Ala Ala Pro Leu Pro Leu Ser Cys His Leu Ala
50 55 60
Ala His Arg Ala Leu Gln Gly Arg Ser Arg Gly Gly Leu Ser Gly Cys
65 70 75 80
Pro Glu Arg Gly Leu Ser Asp
85

<210> 6217
<211> 2955
<212> DNA
<213> Homo sapiens

<400> 6217

ngcagcgggg aggccggagc cgcggcgga gccgcccggc gaggcgtggg ggctgggggg
60
ccggccccatc cgtggggcg acttgagcgt tgagggcgcg cggggaggcg agccaccatg
120
ttcagccage agcagcagca gcagctccag caacagcagc agcagctcca gcagttacag
180
cagcagcagc tccagcagca gcaattgcag cagcagcagt tactgcagct ccagcagctg
240
ctccagcagt cccccaccaca ggccccgttg cccatggctg tcagccggg gctcccccg
300
cagcagccac agcagccgct tctgaatctc cagggcacca actcagccctc ctcctcaac
360
ggctccatgc tgcagagac tttgctttt cagcagttgc aaggactgga ccagttgca
420
atgccaccag ccacgtatga cactgccgt ctacccatgc ccacagcaac actggtaac
480
ctccgaggct atggcatggc atccccaggc ctgcagccc ccagcctcac acccccacaa
540
ctggccactc caaatttgc acagttctt ccccaggcca ctgcgcagtc ttgctggga
600
cttcctccctg ttgggttccc catgaaccct tcccaagtca acctttcagg acgaaacccc
660
cagaaacagg cccggaccc ctcctctacc acccccaatc gaaaggattc ttcttctcag
720
acaatgcctg tggaaagacaa gtcagacccc ccagaggggt ctgaggaagc cgtagagccc
780
cgatggaca caccagaaga ccaagattna ctgcctgcc cagaggacat cgccaaaggaa
840
aaacgcactc cagcacctga gcctgagcct tgtgaggcgt ccgagctgcc agcaaagaga
900
ttgaggagct cagaagagcc cacagagaag gaacctccag ggcagttaca ggtgaaggcc
960
cagccgcagg cccggatgac agtaccgaaa cagacacaga caccagacct gctgcctgag
1020
gcccttggaaag cccaaatgtctt gccacgatcc cagccacggg tcctgcaggt ccaggccag
1080
gtgcagtcac agactcagcc gcggatacca tccacagaca cccaggtgca gccaaagctg
1140
cagaagcagg cgccaaacaca gacctctcca gaggcacttag tgctgcaaca gaagcaggtg
1200
cagccacagc tgcagcagga ggcagagcca cagaagcagg tgccagccaca ggtacagcca
1260
cagggcacatt cacagggccc aaggcaggtg cagctgcagc aggaggcaga gccgctgaag
1320
caggtgcagc cacaggtgca gccccaggca cattcacagc ccccaaggca ggtgcagctg
1380
cagctgcaga agcaggtcca gacacagaca tatccacagg tccacacaca ggcacagcca
1440
agcgtccagc cacaggagca tcctccagcg caggtgtcag tacagccacc agagcagacc
1500
catgagcagc ctcacaccca gcccgcaggc tgcttgctgg ctccagagca aacaccagtt
1560
gtgggttcatg tctgcgggct ggagatgcca cctgtatgcag tagaagctgg tggaggcatg
1620

gaaaagacct tgccagagcc tggggcacc caagtcagca tggaaagagat tcagaatgag
1680
tcggcctgtg gcttagatgt gggagaatgt gaaaacagag cgagagagat gccagggta
1740
tggggcgccg ggggctccct gaaggteacc attctgcaga gcagtgacag cggggccctt
1800
agcaactgtac ccctgacacc tgtccccgc cccagtgact ccgtctcctt caccctgctg
1860
gttaccagca ctccctctaa gcagggccctc cagttttctt gtcatacatctg caaggccagc
1920
tgctccagcc agcaggagtt ccaggaccac atgtcgagc ctcagcacca gcagcggcta
1980
ggggagatcc agcacatgag ccaagcctgc ctctgtccc tgctgcccgt gccccgggac
2040
gtcttggaga cagaggatga ggagccctca ccaaggcgct ggtgcaacac ctgccagctc
2100
tactacatgg gggacctgtat ccaacaccgc aggacacagg accacaagat tgccaaacaa
2160
tccttgcgac cttctgcac cgtttgcac cgctacttca aaaccctcg caagtttg
2220
gagcacgtga agtcccaggc gcataaggac aaagccaagg agtgaagtc gcttgagaaa
2280
gaaattgtcg gccaagatga ggaccacttc attacagtgg acgtgtggg ttgtttcgag
2340
gggtatgaag aagaggaaga ggatgtatgag gatgaagaag agatcgaggt tgaggaggaa
2400
ctctgcaagc aggtgaggc cagagatata tccagagagg agtggaaagg ctggagacc
2460
tacagccccca atactgcata tggtgtggac ttcttggtgc ccgtgatggg ctatatctgc
2520
cgcatctgcc acaagttcta tcacagcaac tcagggcac agctctccca ctgcaagttcc
2580
ctggggccact ttgagaacct gcagaataac aaggccgcca agaaccctcag cccaccacc
2640
cgacccgtga gcccgggtg cgcaatcaac gcccggaaacg ctttgacagc cctgttccacc
2700
tccagccggcc gcccaccctc ccagccaaac acccaggaca aaacaccctcag caaggtgacg
2760
gctcgaccct cccagcccc actacccgtt cgctcaaccc gcctcaaaac ctgatagagg
2820
gacccctcg tccctggcct gcctgggtcc agatctgcta atgtttttta ggagtctgcc
2880
tgaaaaactt gacatggttc atgtttttac tcaaaatcca ataaaacaag gtagtttggc
2940
aaaaaaaaaaaaaaa
2955

<210> 6218
<211> 133
<212> PRT
<213> Homo sapiens

<400> 6218
Val Arg Ser Arg Asp Ile Ser Arg Glu Glu Trp Lys Gly Ser Glu Thr

1	5	10	15
Tyr Ser Pro Asn Thr Ala Tyr Gly Val Asp Phe Leu Val Pro Val Met			
20	25	30	
Gly Tyr Ile Cys Arg Ile Cys His Lys Phe Tyr His Ser Asn Ser Gly			
35	40	45	
Ala Gln Leu Ser His Cys Lys Ser Leu Gly His Phe Glu Asn Leu Gln			
50	55	60	
Lys Tyr Lys Ala Ala Lys Asn Pro Ser Pro Thr Thr Arg Pro Val Ser			
65	70	75	80
Arg Arg Cys Ala Ile Asn Ala Arg Asn Ala Leu Thr Ala Leu Phe Thr			
85	90	95	
Ser Ser Gly Arg Pro Pro Ser Gln Pro Asn Thr Gln Asp Lys Thr Pro			
100	105	110	
Ser Lys Val Thr Ala Arg Pro Ser Gln Pro Pro Leu Pro Arg Arg Ser			
115	120	125	
Thr Arg Leu Lys Thr			
130			

<210> 6219
<211> 2495
<212> DNA
<213> Homo sapiens

<400> 6219
ttttttttt ttttttcgct gtggaggatc aggttaatg gtcactatga gggtatcgta
60
catcgttcca agccggccc cgcgcgcgc cctccctcag ctggaaacac agccaggtgc
120
cctcagaccc ctggctctgc acaagggggg cctgccccct cgcccccagnn ctatacacac
180
gacagcccat cctgctggcc gtggacaaaa gctggagct ccntgtgccc agtcaggagc
240
ccctacagtc caccagctgc gcggccgggt ccagggngcc cactgtggtg ccagcgagtt
300
tctcaaaacc cagggccag ccccaagcnnt gggccctgc caagccccag gctgtgtgc
360
tggatggag cctccacact gaggctggta aaagctgaac tcaacagcag caatgagagt
420
gctgggtggg cttgggggta tgggagcag gccccaccca gagectcctc tgaaggaggg
480
gacgctgcgc cttccctcc tgctgccag actgccccta cgggtccgg cgccggctga
540
gttctaagta agcaggatg ggggtggca agaggagtgt aagtgaaagc acagacagtc
600
ggagactcgg ccagttaga cagaccaga gactcggcca gtgtagacag agccaggctg
660
ggcagccgg cgacgctggc cccacgcaca cggccaccc tggtgctggt gatcgatacg
720
gcagggaggg ggtggcagg gagggtcctg aacacatgtg ggctgtggg ctgctggcc
780
gggggtgccta cactgtaact agcagcatag tgcttaacta gttacaaga aatgctgctt
840
ccctttaaat tgttcgggg gtgttagaaat tgcaatttatt tctatgaacc ccatggaggg
900

atgcccacag ctgagccctcc aggcgaggca tggcaggtca gtgcctggcc gctgagcatc
960
cacgggccac agggcgggat cctccggcc cccagggact gcagcctctg cgccacggg
1020
tgcagcgagg accggaaacct acagggggaa cctgagcaac gtctgaggtg ccctgaagtg
1080
gctccaggcg agaccggagc cacacagtcc cggggagcac gagggggccc agccccaggt
1140
cccggtgcag agggagtgcc ctgatggtga ctggggcggag gcctctgccc ctcacaggac
1200
gtcgtcaaag tccagcagct tcgagtgctg gcggctcttc cacaggcat acaaccggaa
1260
gtcaaagtac gtctcgatca tctgttccc ttgggctgag agctccaggg gtgactcgaa
1320
gttgacccta taaggagtca tgagggtcct gaggttctgg aacagttct ctccattggg
1380
gttccccaga atgttagcagc ccatgatgtg gatgacgttc ggctctgggt tcactttgt
1440
catcaggccg ctcagccgct tccagaagtg aatcatgtcc ttttccttct ccactttggc
1500
aaagggtggcc accttgttct tgaggagata gaggtgtcca ggacccctt ggcagaaaat
1560
cagcattttc cagatcttgg ctcccttgtg gttagacgttc agtttcttct ctatcttct
1620
aaggatgtcc tcgaagggttgc cgtgctcatg gtcgttagagg atggggatga tggaggggtc
1680
atcccgccgg atgatagtg ggtgtactc agccttggc accttggagg aaatgagcat
1740
gaccctttgtt ggcacgaagc ctccgggtgc gcaggccaca gcctccaggg ctttctcagt
1800
gtccccagtc aggtcctcga aggctcgtc cagcgtgcag tggagctct gcaggtaact
1860
gctgtctcggt gagtcgtggg aagtgtggc tttcatgggg gtgggggtcgc tccaggaccg
1920
gctgaagtc cgcctcgccg ctcagcgaac gtctggccct tacacccttc ggctggccgac
1980
catgcccggg ttttgcggg agtttctctg gattacagac gccaatcat tctcccttt
2040
ccggcgcttc ctctcccgctt agccctgaa caccgagatg gcttgcata gttgtgggtc
2100
tgtctggaaat ctgaaaat tttcccttggg gaaccaggta cgaataggaa tgtcgtcaga
2160
cacacggtaa acgctgtaca tcctctccag ctcttgcgg cgaccggagg tctcaggcag
2220
agggtggctgg tccagccaa aggcccggagg ggtggggcca ggagccagct gggcacatac
2280
cggggcactc ctttggagcc cctggcgnnc tggccggccca gtttctggc agggcctgt
2340
gacgtccctcc cggctgcac cagggctggc ggcggggc tggctgtat ggtgaggggt
2400
ccgctgcgcgc cggcccttc ccacccggcag ctcaatggcc tccggctcag ggctggccag
2460
cagggcagggc tccccagaga tgaagttacac tcgag
2495

<210> 6220
<211> 179
<212> PRT
<213> Homo sapiens

<400> 6220
Phe Phe Phe Phe Ser Arg Trp Arg Ile Arg Phe Asn Gly His Tyr
1 5 10 15
Glu Gly Ile Val His Arg Ser Lys Pro Gly Pro Arg Pro Ser Pro Pro
20 25 30
Ser Ala Gly Asn Thr Ala Arg Cys Pro Gln Thr Pro Gly Ser Ala Gln
35 40 45
Gly Gly Pro Ala Pro Ser Pro Gln Xaa Tyr Ile His Asp Ser Pro Ser
50 55 60
Cys Trp Pro Trp Thr Lys Ala Gly Ser Ser Xaa Cys Pro Val Arg Ser
65 70 75 80
Pro Tyr Ser Pro Pro Ala Ala Arg Pro Gly Pro Gly Xaa Pro Leu Trp
85 90 95
Cys Gln Arg Val Ser Gln Asn Pro Gly Pro Ser Pro Ser Xaa Gly Pro
100 105 110
Leu Pro Ser Pro Arg Pro Val Cys Trp Asp Gly Ala Ser Thr Leu Arg
115 120 125
Leu Val Lys Ala Glu Leu Asn Ser Ser Asn Glu Ser Ala Gly Trp Ala
130 135 140
Trp Gly Asp Gly Glu Gln Ala Pro Pro Arg Ala Ser Ser Glu Gly Gly
145 150 155 160
Asp Ala Ala Pro Phe Leu Pro Ala Ala Gln Thr Ala Pro Thr Gly Ser
165 170 175
Gly Ala Gly

<210> 6221
<211> 1487
<212> DNA
<213> Homo sapiens

<400> 6221
nnctgcagga aaaagtgtg ctctgacgca gatgctctag tggtttctaa gtgacagctc
60
ttaggccacc ctggatgcc cttgattcca ccctcattac ttgttcctctc tcggtgctgc
120
ctcttgttcc cttgtttgtt tttgtttca tattactccc gtatccctg acatatctgc
180
atttttctac ttactgtgtc ccgatgcagc tgctccctgtt tttcacatcc aaggtttctc
240
ctcccatggca ctactgacgt tttgggctga cgaattcttt ggggacagga tggggcatgt
300
cctgtgcatt ttaggatgtt gagtagcagc cctggcctgc atccactaga tgccagttga
360
acctccccag gttctgaagc cagacacaag ataaaaaagc taactccaaa acagaaaattt
420
tctgaagatt tagagtata taagatataca gtggtaatgc aggaatcagc tgagaaaactt
480

tcagaaaagt tacataagtg taaagaattt gtggacagtt gcaggcttac tttccctact
 540
 agtggatgtg aatacagcag gggcttcctt caaaacctta accttattca agatcagaat
 600
 gcgaaaaaca ggtggaagca gggcagatat gatgaggatg gcaaaccctt caatcaaaga
 660
 tctttgcctt tggggcatga gcgaattctc acaagagcaa agtcttatga atgcagtgaa
 720
 tgtggaaaag tcattaggcg taaggcatgg tttgatcaac atcaaagaat tcactttta
 780
 gagaatcctt ttgagtgtaa ggtctgtgg caagccttca gacagcggtc agctcttacg
 840
 gtccataaac agtgtcacct gcaaaacaag ccatacagat gtcatactg tggaaagtgt
 900
 ttccggcagc tcgcgtatct tggtaacat aagaggattc acaccaaaga aaaaccttat
 960
 aaatgttagca aatgtgaaaa aacgtttagt cagaattcaa cccttattcg acatcaggtg
 1020
 atccatagtg gaaaaaacg ccataaatgc cttgagtgtg gaaaagcctt tggccggcat
 1080
 tcaacccttc tatgtcatca acagattcac agtaaaccga acacccataa atgcagtgaa
 1140
 tgtggacagt ccttggtag gaatgtggat ctcatcagc atcaaagaat ccatacaaag
 1200
 gaggaaattct ttcaatgtgg agaatgtggg aaaacgttta gtttaagag gaatctttt
 1260
 cgacatcagg tcattcacac tggaaagccaa ctctaccaat gtgtcatatg tggaaaatct
 1320
 ttcaagtggc acacaagctt tattaagcac cagggcactc acaaaggaca gatatccaca
 1380
 tgatgttaat tggaaagcag tcattggaga actagaactt ataaacctct acttcaagtg
 1440
 tgtatcacgt aattgtttcc atgaaaagca ataaatgtaa caaaggg
 1487

<210> 6222
 <211> 330
 <212> PRT
 <213> Homo sapiens

<400> 6222
 Met Lys Leu Thr Pro Lys Gln Lys Phe Ser Glu Asp Leu Glu Ser
 1 5 10 15
 Tyr Lys Ile Ser Val Val Met Gln Glu Ser Ala Glu Lys Leu Ser Glu
 20 25 30
 Lys Leu His Lys Cys Lys Glu Phe Val Asp Ser Cys Arg Leu Thr Phe
 35 40 45
 Pro Thr Ser Gly Asp Glu Tyr Ser Arg Gly Phe Leu Gln Asn Leu Asn
 50 55 60
 Leu Ile Gln Asp Gln Asn Ala Gln Thr Arg Trp Lys Gln Gly Arg Tyr
 65 70 75 80
 Asp Glu Asp Gly Lys Pro Phe Asn Gln Arg Ser Leu Leu Leu Gly His
 85 90 95
 Glu Arg Ile Leu Thr Arg Ala Lys Ser Tyr Glu Cys Ser Glu Cys Gly

100	105	110
Lys Val Ile Arg Arg Lys Ala Trp Phe Asp Gln His Gln Arg Ile His		
115	120	125
Phe Leu Glu Asn Pro Phe Glu Cys Lys Val Cys Gly Gln Ala Phe Arg		
130	135	140
Gln Arg Ser Ala Leu Thr Val His Lys Gln Cys His Leu Gln Asn Lys		
145	150	155
Pro Tyr Arg Cys His Asp Cys Gly Lys Cys Phe Arg Gln Leu Ala Tyr		
165	170	175
Leu Val Glu His Lys Arg Ile His Thr Lys Glu Lys Pro Tyr Lys Cys		
180	185	190
Ser Lys Cys Glu Lys Thr Phe Ser Gln Asn Ser Thr Leu Ile Arg His		
195	200	205
Gln Val Ile His Ser Gly Glu Lys Arg His Lys Cys Leu Glu Cys Gly		
210	215	220
Lys Ala Phe Gly Arg His Ser Thr Leu Leu Cys His Gln Gln Ile His		
225	230	235
Ser Lys Pro Asn Thr His Lys Cys Ser Glu Cys Gly Gln Ser Phe Gly		
245	250	255
Arg Asn Val Asp Leu Ile Gln His Gln Arg Ile His Thr Lys Glu Glu		
260	265	270
Phe Phe Gln Cys Gly Glu Cys Gly Lys Thr Phe Ser Phe Lys Arg Asn		
275	280	285
Leu Phe Arg His Gln Val Ile His Thr Gly Ser Gln Leu Tyr Gln Cys		
290	295	300
Val Ile Cys Gly Lys Ser Phe Lys Trp His Thr Ser Phe Ile Lys His		
305	310	315
Gln Gly Thr His Lys Gly Gln Ile Ser Thr		
325	330	

<210> 6223

<211> 944

<212> DNA

<213> Homo sapiens

<400> 6223

```

accccccaccc tcactgtgca ccccccaccc tccaccccaca ccccccaccc cacctgcacc
60
ccaccccaaca ctcacaaccc cccactccca cctgcaacac ccccaactccc cacccgcacc
120
cccccaacttc ccatcccccc actcctctcc attccctctc ttgcttgc gcataagcaa
180
gtcccaactca ttgcaactgt aaccaatacc aagcatgaga acaggaacta gctccaccc
240
ctaacccttca ctccagctgc agacgccacg gagtttgtc agggcgccag cgctccagcc
300
atggcgctt cgctcgatca cgacaccgtg ttctactgcc tgagtgtata ccaggtaaaa
360
ataagccccca cacctcagct gggggcagca tcaagcgac aaggccatgt tggccaagga
420
gctccaggcc tcatggtaa tatgaaccct gagggcggtg tgaaccacga gaacggcatg
480
aaccgcgatg gccccatgtat ccccgaggcc ggcgggtggaa accaggagcc tcggcagcag
540

```

ccgcagcccc cgccggagga gccggcccag gcggccatgg agggtccgca gcccgagaac
 600
 atgcagccac gaactcggcg cacgaagtgc acgctgtgc aggtggagga gctggaaagt
 660
 gtttccgac acactcaata ccctgatgtg cccacaagaa gggacttgc cgaaaactta
 720
 ggtgtgactg aagacaagt gcgggtcagt acactgaaa aagcaatttg agaggacagc
 780
 cattctaaaa cctgcttcag ggcattgaag gcttgaagg ctttgcctg aacgttctaa
 840
 agttgttgtt tttattatg tctttttat gttgacaaat aagttttgaa gtttgggttc
 900
 cttgtcggta gaaaaggaag taagctccag cttatggttc ttcc
 944

<210> 6224
 <211> 156
 <212> PRT
 <213> Homo sapiens

<400> 6224
 Met Ala Arg Ser Leu Val His Asp Thr Val Phe Tyr Cys Leu Ser Val
 1 5 10 15
 Tyr Gln Val Lys Ile Ser Pro Thr Pro Gln Leu Gly Ala Ala Ser Ser
 20 25 30
 Ala Glu Gly His Val Gly Gln Gly Ala Pro Gly Leu Met Gly Asn Met
 35 40 45
 Asn Pro Glu Gly Val Asn His Glu Asn Gly Met Asn Arg Asp Gly
 50 55 60
 Gly Met Ile Pro Glu Gly Gly Gly Asn Gln Glu Pro Arg Gln Gln
 65 70 75 80
 Pro Gln Pro Pro Pro Glu Glu Pro Ala Gln Ala Ala Met Glu Gly Pro
 85 90 95
 Gln Pro Glu Asn Met Gln Pro Arg Thr Arg Arg Thr Lys Phe Thr Leu
 100 105 110
 Leu Gln Val Glu Glu Leu Glu Ser Val Phe Arg His Thr Gln Tyr Pro
 115 120 125
 Asp Val Pro Thr Arg Arg Glu Leu Ala Glu Asn Leu Gly Val Thr Glu
 130 135 140
 Asp Lys Val Arg Val Ser Thr Leu Glu Lys Ala Ile
 145 150 155

<210> 6225
 <211> 3851
 <212> DNA
 <213> Homo sapiens

<400> 6225
 nggatccagc tgctgcgcag gtcagaccca gctgctttg agtcccgct ggagaaacgc
 60
 agtgaatttc ggaaggcagcc agtggggcat tccaggcaag gtgattttat caaatgttg
 120
 gaacagaaga cagatgcctt gggaaacag tctgtgaaca gaggattcac taaggacaag
 180

actctcagtt caatctttaa cattgagatg gtaaaagaaa aaactgcaga agaaataaaa
240
cagattggc agcaatattt tgcagcaaaa gatacagtct acgcagttat tcctgcagaa
300
aagtttgatt tgatctgaa ccgggctcg tcctgtccaa catttctatg tgctctgcca
360
agaagggaaag gttatgagtt tttttagga caatggacag gtactgaact ccacttcact
420
gcacttataa atattcagac ccgagggaa gctgcagcca gccagctgat tttatatcac
480
tatcctgaac ttaaggaaga aaaggcata gtgctgatga ctgcagaaat ggattccaca
540
tttctgaatg ttgctgaggc acagtgcate gccaaccaag ttcaagcttt ctacgctact
600
gatcgaaag agacctacgg gttagtgag acctttaacc tcagaccaa tgagttcaaa
660
tatatgtctg tcatcgctga attggagcaa agcggacttg gagcagaact gaaatgtgcc
720
cagaaccaaataaagactta gaactgtaca ggttggccct tcacctagg gactcagccc
780
tcgatagtct agagcccacc ccctcctcg gaactcaaga gtcagcatt tataatgagc
840
agttgtaat gagttgcct atgtgttgt cgcaagcagt cacagagatg agccctatta
900
cttgatattc aggaacaaag gtacctgaac attctgataa ttatctcagc atacttgagg
960
ttccctttt taagtgtcg aggttataac aagagacagc caaggaccta caagacagtt
1020
gacttgattt tgcacagtgt aacagcgcag ttgcattctg gccactttga ctttatagct
1080
cccaaatgtat gagtttgta tctttatgaa ctcatgacag gataataagc ttgaagacct
1140
gctgtagttt gatatggct ttaatccttc ccatgcacca gtcagctgaa caaaagcata
1200
agccaaacat cctgtttaaa ctgtagaata accagatatt cccatcaggt taaagacttc
1260
atcttagatga tgccccccag agatgcctt agtgtaagta gctggcttgg ggtatcagca
1320
aatttcaggt atagtttagat aaacaggtac agggcctgca tactattaaa ccatagtttgc
1380
tggcacccgc ttttctaact ccacctgtta gaagctatgt gtttgaagga atgaatcagt
1440
gcagtataaa taaaattctt ttgttaaggag aagattaatc ctggtttgca tgatTTTTT
1500
aaaaacaact ctaaacatga tacaaaaaag tggatgaaag caaatgttcc cagattggat
1560
gtggggaaaa tatagcaata atttttttt aagtctggct tacaatgttt gttatacaaa
1620
ataatgaaat ctgagttatg tactgtccat tggatcaggg ctatggctg attttatcaa
1680
aactcatctt gggactgaaa aattgtttgg aatgccagaa ataagaaagt tgttctccag
1740
agctggaaac ccatcttcg tttgttagtgcactgttgc gctccaagct cagtgatagg
1800

aaaggacggt ggttacacac cagccttctg aacccaaggc ccccagtatt gttgtcagct
1860
gcctttacca tggcatttct ttctctttct tttttcctg agatgaagtc ttgtctgtc
1920
ttggccaggc tggagtagac tagcgtgatc tcagctcgct gcaacctcta cctccctgg
1980
tcaagtgatt ctgtcgctc agcctcctga ggagcttagga ttacaggcgc atgccaccat
2040
acctggctta tttttgtatt gttgttagaga cagggttca ctttgttgc caggctggct
2100
ggtctcgaac tcctggcctc aagtgatcca ccacccgtac ctcccaaagt gctgggatta
2160
caggtgtgag ccaccgtgcc tggcctgaca ttttttatt gatctaacat gctccactct
2220
gctgctcctg cctaagatct gtttatatga cactgaatgt ggtgagtggg aatttaagca
2280
gtattcgcag tttgtgtgt tttgtttct tccttccaga agaattttta taggttggc
2340
ctgtccctaa gctcttaaaa tagggtggac atcccactat tctctgagcc gtgtctat
2400
tgttgcacct ttgagtcata gtattgagag agacagatag tttttttta aactggggaa
2460
gctgctatcc tttcaactatt tctctaaagg ttgagctgtt aactaatgtt aattctggac
2520
ctgcttctgg tcctggcagt ttatcttttga agaaaacttga gtcttatctg ccctgccatt
2580
ttcattaaat gccttctgac cttctgaatg tttgggtcc caagaatttt tgacatcaga
2640
tgggggttggta tccagttatg tttgtttgtc tttccagatg ggcggcgtta
2700
ttagccatac atagtacatt gatacacctc caccagcggg tgaggaaatg atggaaaaag
2760
gagtaagaag tggccattcg ttttaatcat tcctcctgga tttgtctca gtccccaaact
2820
gccaaggtagg atgtgtccat gtataaatgt gtggggcatg actaaagtac cacgttagctg
2880
ttctttatata ttatattacat agaaagatct ggcaaaagaac tcaaagaaaa ttgtaccatt
2940
taatcagtaa atttgcctt tggtgctagc atgggtttat agaaagtggc caggcttag
3000
agtttaagtga atctgggttc atatgttagt gttgttattc attagctcta tactgttga
3060
caaattgtttt aaactatcta attttgggtt tttttttcc atctaaaata gggataataa
3120
tatctacctc ataggattat tgtgagaatt aaattaactt cactatagta gaaaatatca
3180
actaccatcc ttttctctac ttcccttgcc cctcattaaa gactaataca agtttagcatt
3240
tcagatgtgt agatcattct ttatccagt taaaagaaca aactttatct catcagttct
3300
gaaactttaa gatgcagtag catcacctaa agtgctttta aaatgcagat tctcaggcct
3360
caaccgtaca ccacccccc acacacgtac taaatcaaga atatgtgcag aaggtactgg
3420

gaatctactt gttaatatgt gctccaaatg attctgatgt aggttaattag ccagccacac
 3480
 tttgagaacc actgccttat ctattctta caaaaatgta cattgccagg tccttc
 3540
 ctgtggatgc taactatagg atatttaggt tcctctgttc tttgtctccc atagtggccc
 3600
 ccttgcaaa ctccaaatac attatattta tttattcttg tgcctttttt cccccactag
 3660
 actgtgagct ctttgaggc caggacttat ctctgttcgc agtgc当地 aatggcctg
 3720
 gaccatagaa gatactcagt tttttgttga ataaataggt aatatggatt tcaacccaaaa
 3780
 aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa
 3840
 aaaaaaaaaa a
 3851

<210> 6226
 <211> 246
 <212> PRT
 <213> Homo sapiens

<400> 6226
 Xaa Ile Gln Leu Leu Arg Arg Ser Asp Pro Ala Ala Phe Glu Ser Arg
 1 5 10 15
 Leu Glu Lys Arg Ser Glu Phe Arg Lys Gln Pro Val Gly His Ser Arg
 20 25 30
 Gln Gly Asp Phe Ile Lys Cys Val Glu Gln Lys Thr Asp Ala Leu Gly
 35 40 45
 Lys Gln Ser Val Asn Arg Gly Phe Thr Lys Asp Lys Thr Leu Ser Ser
 50 55 60
 Ile Phe Asn Ile Glu Met Val Lys Glu Lys Thr Ala Glu Glu Ile Lys
 65 70 75 80
 Gln Ile Trp Gln Gln Tyr Phe Ala Ala Lys Asp Thr Val Tyr Ala Val
 85 90 95
 Ile Pro Ala Glu Lys Phe Asp Leu Ile Trp Asn Arg Ala Gln Ser Cys
 100 105 110
 Pro Thr Phe Leu Cys Ala Leu Pro Arg Arg Glu Gly Tyr Glu Phe Phe
 115 120 125
 Val Gly Gln Trp Thr Gly Thr Glu Leu His Phe Thr Ala Leu Ile Asn
 130 135 140
 Ile Gln Thr Arg Gly Glu Ala Ala Ser Gln Leu Ile Leu Tyr His
 145 150 155 160
 Tyr Pro Glu Leu Lys Glu Glu Lys Gly Ile Val Leu Met Thr Ala Glu
 165 170 175
 Met Asp Ser Thr Phe Leu Asn Val Ala Glu Ala Gln Cys Ile Ala Asn
 180 185 190
 Gln Val Gln Leu Phe Tyr Ala Thr Asp Arg Lys Glu Thr Tyr Gly Leu
 195 200 205
 Val Glu Thr Phe Asn Leu Arg Pro Asn Glu Phe Lys Tyr Met Ser Val
 210 215 220
 Ile Ala Glu Leu Glu Gln Ser Gly Leu Gly Ala Glu Leu Lys Cys Ala
 225 230 235 240
 Gln Asn Gln Asn Lys Thr

245

<210> 6227
<211> 830
<212> DNA
<213> Homo sapiens

<400> 6227
nnacagcctt cctgaaaaca cacccagcgc aggcaccagg ggtcccaccc atggacacac
60
cttggaggca gcacctacag agcggtgatt ttgcacatgg gcggagttct cattccttct
120
ccagggagag tcgctgcaga atggaggtta cagaatcgta tcccttctgg aactatatta
180
aaggccttga tggaagggtgg tgaaaatggg ccctggatga gattatgag agcagaata
240
acagcagagg gtttttacg agaatttggg agactttgct ctgaaatgtt aaagacctcc
300
gtgcctgtgg actcattttt ctctctgttg accagtgagc gagtggcaaa gcagttccca
360
gtgatgactg aggcataac tcaaattcgg gcaaaaggtc ttcaagactgc agtcttgagc
420
aataattttt atcttcccaa ccagaaaagc ttttgcccc tggaccggaa acagtttgat
480
gtgattgtgg agtcctgcat ggaagggatc tgtaagccag accctaggat ctacaagctg
540
tgcttggagc agctcgccct gcagccctct gagtccatct ttcttgatga ccttggaaaca
600
aatctaaaag aagctgccag acttggattt cacaccatta aggttaatga cccagagact
660
gcagtaaagg aattagaagc tctcttgggt tttacattga gagtaggtgt tccaaacact
720
cggcctgtga aaaagacat ggaaattccg aaagattcct tgcagaagta cctcaaagac
780
ttactggta tccagaccac aggeccatttga gaactacttc agtttgatca
830

<210> 6228
<211> 271
<212> PRT
<213> Homo sapiens

<400> 6228
Lys His Thr Gln Arg Arg His Gln Gly Ser His Arg Trp Thr His Leu
1 5 10 15
Gly Gly Ser Thr Tyr Arg Ala Val Ile Phe Asp Met Gly Gly Val Leu
20 25 30
Ile Pro Ser Pro Gly Arg Val Ala Ala Glu Trp Glu Val Gln Asn Arg
35 40 45
Ile Pro Ser Gly Thr Ile Leu Lys Ala Leu Met Glu Gly Gly Glu Asn
50 55 60
Gly Pro Trp Met Arg Phe Met Arg Ala Glu Ile Thr Ala Glu Gly Phe
65 70 75 80
Leu Arg Glu Phe Gly Arg Leu Cys Ser Glu Met Leu Lys Thr Ser Val

85	90	95
Pro Val Asp Ser Phe Phe Ser Leu Leu Thr Ser Glu Arg Val Ala Lys		
100	105	110
Gln Phe Pro Val Met Thr Glu Ala Ile Thr Gln Ile Arg Ala Lys Gly		
115	120	125
Leu Gln Thr Ala Val Leu Ser Asn Asn Phe Tyr Leu Pro Asn Gln Lys		
130	135	140
Ser Phe Leu Pro Leu Asp Arg Lys Gln Phe Asp Val Ile Val Glu Ser		
145	150	155
Cys Met Glu Gly Ile Cys Lys Pro Asp Pro Arg Ile Tyr Lys Leu Cys		
165	170	175
Leu Glu Gln Leu Gly Leu Gln Pro Ser Glu Ser Ile Phe Leu Asp Asp		
180	185	190
Leu Gly Thr Asn Leu Lys Glu Ala Ala Arg Leu Gly Ile His Thr Ile		
195	200	205
Lys Val Asn Asp Pro Glu Thr Ala Val Lys Glu Leu Glu Ala Leu Leu		
210	215	220
Gly Phe Thr Leu Arg Val Gly Val Pro Asn Thr Arg Pro Val Lys Lys		
225	230	235
Thr Met Glu Ile Pro Lys Asp Ser Leu Gln Lys Tyr Leu Lys Asp Leu		
245	250	255
Leu Gly Ile Gln Thr Thr Gly Pro Leu Glu Leu Leu Gln Phe Asp		
260	265	270

<210> 6229

<211> 3105

<212> DNA

<213> Homo sapiens

<400> 6229

nngagcggcc gcccgggcag gtaggaggct gagtcctggc cgcgccccgg ggccggggcg
60 ccgcgtggcag gagcgcttgg ggatcccca agggcgacca tggccttgct gggtaagcgc
120 tgtgacgtcc ccaccaacgg ctgccccacc gaccgcttggaa actccgcgtt cacccgcaaa
180 gacgagatca tcaccagcct cgtgtctgcc tttagactcca tgtgctcagc gctgtccaaa
240 ctgaacgccc aggtggcctg tgtcgccgtg cacgatgaga gcgcctttgt ggtggcaca
300 360 gagaagggga gaatgttccct gaatgcccgg aaggagctac agtcagactt cctcaggttc
420 tgccgaggc ccccggtgaa ggatccggag gcagagcacc ccaagaaggt gcagcggggc
480 gaggggtggag gccgttagctt ccctcggtcc tccctggAAC atggctcaga tgtgtacctt
540 ctgcggaga tggttagagga ggtgtttgtat gttttata gcgaggccct gggaaaggccc
540 agtgtggtgc cactgcccta tgagaggctg ctcaaggagc cagggctgtct ggccgtgcag
600 gggctgccc aaggcctggc cttccgaagg ccagccgagt atgaccccaa ggccctcatg
660 gccatcctgg aacacagcca ccgcateccgc ttcaagctca agaggccact tgaggatggc
720

gggcgggact cgaaggccct ggtggagctg aacgggtgtt ccctgatttc caaggggtca
780
cgggactgtg gcctgcatgg ccaggcccc aaggtgccac cccaggacct gcccccaacc
840
gccacccctt cctccatggc cagttcctg tacagcacgg cgctcccaa ccacgcac
900
cgagagctca agcaggaage accttctgc cccctgccc ccagcgacct gggctgagt
960
cggcccatgc cagagccaa ggccaccggt gcccaagact tctccgactg ttgtggacag
1020
aagcccaactg ggcctggtgg gcctctcatc cagaacgtcc atgcctccaa ggcatttc
1080
ttctccatcg tccatgacaa gtcagagaag tggacgccc tcataaagga aaccgaggac
1140
atcaacacgc tccgggagtg tgtgcagatc ctgttaaca gcagatatgc ggaagccctg
1200
ggcctggca acatggtccc cgtgcctac cgaaagattt cctgtgaccc ggaggctgt
1260
gagatcggtgg gcatcccgga caagatcccc ttcaagcgcc cctgcactta cggagtcccc
1320
aagctgaagc ggatcctgga ggagcgccat agtatccact tcatcattaa gaggatgtt
1380
gatgagcgaa ttttacacagg gaacaagttt accaaagaca ccacgaagct ggagccagcc
1440
agcccccccgagg aggacaccc tcgcagaggtc tctagggcca cctgccttga cttgtctgg
1500
aatgctcggt cagacaaggg cagcatgtt gaagactgtg ggccaggaac ctccggggag
1560
ctggggggc tgaggccat caaaatttag gcaaggatc tggacatcat tcaaggtaacc
1620
gtccccagacc cctcgccaaac ctctgaggaa atgacagact cgatgcctgg geacctgcca
1680
tcggaggatt ctggttatgg gatggagatg ctgacagaca aaggcttgag tgaggacgct
1740
cgccccgggg agaggccctg ggaggacagc cacggtgacg tgatccggcc cctgcggaaag
1800
caggtggagc tgctttcaa cacacgatac gccaaggcca ttggcatctc ggagcccgct
1860
aagggtccgt actccaagtt tctgtatgcac ccggaggagc tttttgttgtt gggactgcct
1920
gaaggcatct ccctccgcag gccaactgc ttggatcg ccaagctccg gaagattctg
1980
gaggcccgca acagcatcca gtttgtatc aagaggcccg agctgctcac tgaggagtc
2040
aaagagccca tcgtggatag tcaagagagg gattccgggg accctctggt ggacgagagc
2100
ctgaagagac agggcttca agaaaattat gacgcgaggc tctcacggat cgacatcgcc
2160
aacacactaa gggagcaggc ccaggacctt ttcaataaga aatacggggaa agccttgggc
2220
atcaagtacc cggccaggat cccctacaag cggatcaaga gtaacccccc ctccgtgatc
2280
atcgagggggc tgccccagg aatcccgatc cggaaaggccct gtacccggg ctccccagaac
2340

ctggagagga ttcttgcgtg ggctgacaag atcaagttca cagtcaccag gcctttccaa
 2400
 ggactcatcc caaaggctga tgaagatgac gccaacagac tcggggagaa ggtgatcctg
 2460
 cgggagcagg tgaaggaact cttcaacgag aaatacggtg agggcctgg cctgaaccgg
 2520
 ccgggtctgg tcccttataa actaatccgg gacagcccag acgcccgtgga ggtcacgggt
 2580
 ctgcctgtatg acatcccctt ccggaaacccc aacacgtacg acatccaccc gctggagaag
 2640
 atcctgaagg cccgagagca tgtccgcattt gtcatttcattt accagctcca accctttgca
 2700
 gaaatctgca atgatgccaa ggtgccagcc aaagacagca gcattcccaa gcgcaagaga
 2760
 aagegggtctt cggaaggaaa ttccgtctcc tcttcctctt cgttcttcctt ttctctgtcc
 2820
 tctaaccggg attcagtggc atcggccaaac cagatctcac tcgtgcaatg gccaatgtac
 2880
 atgggtggact atgcccgcctt gaacgtgcag ctcccggttac ctcttaattttt ctagacccatca
 2940
 gtactgaatc aggacctcac tcagaaagac taaaggaaat gtaatttatg tacaaaatgt
 3000
 atattcggat atgtatcgat gccttttagt ttttccaatg attttacac tatattcctg
 3060
 ccaccaaggc ctttttaat aagaaaaaaaaaaaaaaa aaaaa
 3105

<210> 6230
 <211> 944
 <212> PRT
 <213> Homo sapiens

<400> 6230
 Met Ala Leu Leu Gly Lys Arg Cys Asp Val Pro Thr Asn Gly Cys Gly
 1 5 10 15
 Pro Asp Arg Trp Asn Ser Ala Phe Thr Arg Lys Asp Glu Ile Ile Thr
 20 25 30
 Ser Leu Val Ser Ala Leu Asp Ser Met Cys Ser Ala Leu Ser Lys Leu
 35 40 45
 Asn Ala Glu Val Ala Cys Val Ala Val His Asp Glu Ser Ala Phe Val
 50 55 60
 Val Gly Thr Glu Lys Gly Arg Met Phe Leu Asn Ala Arg Lys Glu Leu
 65 70 75 80
 Gln Ser Asp Phe Leu Arg Phe Cys Arg Gly Pro Pro Trp Lys Asp Pro
 85 90 95
 Glu Ala Glu His Pro Lys Lys Val Gln Arg Gly Glu Gly Gly Arg
 100 105 110
 Ser Leu Pro Arg Ser Ser Leu Glu His Gly Ser Asp Val Tyr Leu Leu
 115 120 125
 Arg Lys Met Val Glu Glu Val Phe Asp Val Leu Tyr Ser Glu Ala Leu
 130 135 140
 Gly Arg Ala Ser Val Val Pro Leu Pro Tyr Glu Arg Leu Leu Arg Glu
 145 150 155 160
 Pro Gly Leu Leu Ala Val Gln Gly Leu Pro Glu Gly Leu Ala Phe Arg

	165	170	175
Arg Pro Ala Glu Tyr Asp Pro Lys Ala Leu Met Ala Ile Leu Glu His			
180	185	190	
Ser His Arg Ile Arg Phe Lys Leu Lys Arg Pro Leu Glu Asp Gly Gly			
195	200	205	
Arg Asp Ser Lys Ala Leu Val Glu Leu Asn Gly Val Ser Leu Ile Pro			
210	215	220	
Lys Gly Ser Arg Asp Cys Gly Leu His Gly Gln Ala Pro Lys Val Pro			
225	230	235	240
Pro Gln Asp Leu Pro Pro Thr Ala Thr Ser Ser Ser Met Ala Ser Phe			
245	250	255	
Leu Tyr Ser Thr Ala Leu Pro Asn His Ala Ile Arg Glu Leu Lys Gln			
260	265	270	
Glu Ala Pro Ser Cys Pro Leu Ala Pro Ser Asp Leu Gly Leu Ser Arg			
275	280	285	
Pro Met Pro Glu Pro Lys Ala Thr Gly Ala Gln Asp Phe Ser Asp Cys			
290	295	300	
Cys Gly Gln Lys Pro Thr Gly Pro Gly Gly Pro Leu Ile Gln Asn Val			
305	310	315	320
His Ala Ser Lys Arg Ile Leu Phe Ser Ile Val His Asp Lys Ser Glu			
325	330	335	
Lys Trp Asp Ala Phe Ile Lys Glu Thr Glu Asp Ile Asn Thr Leu Arg			
340	345	350	
Glu Cys Val Gln Ile Leu Phe Asn Ser Arg Tyr Ala Glu Ala Leu Gly			
355	360	365	
Leu Gly Asn Met Val Pro Val Pro Tyr Arg Lys Ile Ala Cys Asp Pro			
370	375	380	
Glu Ala Val Glu Ile Val Gly Ile Pro Asp Lys Ile Pro Phe Lys Arg			
385	390	395	400
Pro Cys Thr Tyr Gly Val Pro Lys Leu Lys Arg Ile Leu Glu Glu Arg			
405	410	415	
His Ser Ile His Phe Ile Ile Lys Arg Met Phe Asp Glu Arg Ile Phe			
420	425	430	
Thr Gly Asn Lys Phe Thr Lys Asp Thr Thr Lys Leu Glu Pro Ala Ser			
435	440	445	
Pro Pro Glu Asp Thr Ser Ala Glu Val Ser Arg Ala Thr Val Leu Asp			
450	455	460	
Leu Ala Gly Asn Ala Arg Ser Asp Lys Gly Ser Met Ser Glu Asp Cys			
465	470	475	480
Gly Pro Gly Thr Ser Gly Glu Leu Gly Gly Leu Arg Pro Ile Lys Ile			
485	490	495	
Glu Pro Glu Asp Leu Asp Ile Ile Gln Val Thr Val Pro Asp Pro Ser			
500	505	510	
Pro Thr Ser Glu Glu Met Thr Asp Ser Met Pro Gly His Leu Pro Ser			
515	520	525	
Glu Asp Ser Gly Tyr Gly Met Glu Met Leu Thr Asp Lys Gly Leu Ser			
530	535	540	
Glu Asp Ala Arg Pro Glu Glu Arg Pro Val Glu Asp Ser His Gly Asp			
545	550	555	560
Val Ile Arg Pro Leu Arg Lys Gln Val Glu Leu Leu Phe Asn Thr Arg			
565	570	575	
Tyr Ala Lys Ala Ile Gly Ile Ser Glu Pro Val Lys Val Pro Tyr Ser			
580	585	590	
Lys Phe Leu Met His Pro Glu Glu Leu Phe Val Val Gly Leu Pro Glu			

595	600	605
Gly Ile Ser Leu Arg Arg Pro Asn Cys Phe Gly Ile Ala Lys Leu Arg		
610	615	620
Lys Ile Leu Glu Ala Ser Asn Ser Ile Gln Phe Val Ile Lys Arg Pro		
625	630	635
Glu Leu Leu Thr Glu Gly Val Lys Glu Pro Ile Val Asp Ser Gln Glu		
645	650	655
Arg Asp Ser Gly Asp Pro Leu Val Asp Glu Ser Leu Lys Arg Gln Gly		
660	665	670
Phe Gln Glu Asn Tyr Asp Ala Arg Leu Ser Arg Ile Asp Ile Ala Asn		
675	680	685
Thr Leu Arg Glu Gln Val Gln Asp Leu Phe Asn Lys Lys Tyr Gly Glu		
690	695	700
Ala Leu Gly Ile Lys Tyr Pro Val Gln Val Pro Tyr Lys Arg Ile Lys		
705	710	715
Ser Asn Pro Gly Ser Val Ile Ile Glu Gly Leu Pro Pro Gly Ile Pro		
725	730	735
Phe Arg Lys Pro Cys Thr Phe Gly Ser Gln Asn Leu Glu Arg Ile Leu		
740	745	750
Ala Val Ala Asp Lys Ile Lys Phe Thr Val Thr Arg Pro Phe Gln Gly		
755	760	765
Leu Ile Pro Lys Pro Asp Glu Asp Asp Ala Asn Arg Leu Gly Glu Lys		
770	775	780
Val Ile Leu Arg Glu Gln Val Lys Glu Leu Phe Asn Glu Lys Tyr Gly		
785	790	795
Glu Ala Leu Gly Leu Asn Arg Pro Val Leu Val Pro Tyr Lys Leu Ile		
805	810	815
Arg Asp Ser Pro Asp Ala Val Glu Val Thr Gly Leu Pro Asp Asp Ile		
820	825	830
Pro Phe Arg Asn Pro Asn Thr Tyr Asp Ile His Arg Leu Glu Lys Ile		
835	840	845
Leu Lys Ala Arg Glu His Val Arg Met Val Ile Ile Asn Gln Leu Gln		
850	855	860
Pro Phe Ala Glu Ile Cys Asn Asp Ala Lys Val Pro Ala Lys Asp Ser		
865	870	875
Ser Ile Pro Lys Arg Lys Arg Lys Arg Val Ser Glu Gly Asn Ser Val		
885	890	895
Ser Asn Pro Asp Ser		
900	905	910
Val Ala Ser Ala Asn Gln Ile Ser Leu Val Gln Trp Pro Met Tyr Met		
915	920	925
Val Asp Tyr Ala Gly Leu Asn Val Gln Leu Pro Gly Pro Leu Asn Tyr		
930	935	940

<210> 6231

<211> 471

<212> DNA

<213> Homo sapiens

<400> 6231

tgatcattgg gatcacttgt tggaatggcc gggttcctgt gcagggcacct agcaaatgtc
 60
 taccaatgac aggcctact cacagccact gcactccagc ttgggcgaca gaacgaggcc
 120

ttgcctttt aaaaaaaaaaa aaaaggctca aaaaaagagt atgctggcc aaaaatctgg
 180
 cccctcaggc ctccctgaccc ggaggagaaa aagggggccc aagccccccg ttgccccat
 240
 ctccatatgg aatggcacaa cccctcgagg ggaacccccc cctaaccata gttctaaaaa
 300
 ggggacaaaaa aaatgggcgc tggattttc aacgccggaa acccaattcc cacccctgg
 360
 ccggccgttc ttagggattc caacttggga cccaacctgg gcgtattctg ggccttactt
 420
 gtttcttgtg ggaattggta ttccgttccc atttcccca ctttccaacc c
 471

<210> 6232
 <211> 138
 <212> PRT
 <213> Homo sapiens

<400> 6232
 Met Ser Thr Asn Asp Arg Pro Tyr Ser Gln Pro Leu His Ser Ser Leu
 1 5 10 15
 Gly Asp Arg Thr Arg Pro Cys Leu Phe Lys Lys Lys Lys Ala Gln
 20 25 30
 Lys Lys Ser Met Leu Gly Gln Lys Ser Gly Pro Ser Gly Leu Leu Thr
 35 40 45
 Trp Arg Arg Lys Arg Gly Pro Lys Pro Pro Val Ala Pro Ile Ser Ile
 50 55 60
 Trp Asn Gly Thr Thr Pro Arg Gly Glu Pro Pro Pro Asn His Ser Ser
 65 70 75 80
 Lys Lys Gly Thr Lys Lys Trp Ala Leu Asp Phe Ser Thr Pro Glu Thr
 85 90 95
 Gln Phe Pro Pro Pro Gly Arg Pro Phe Leu Gly Ile Pro Thr Trp Asp
 100 105 110
 Pro Thr Trp Ala Tyr Ser Gly Pro Tyr Leu Phe Leu Val Gly Ile Gly
 115 120 125
 Ile Pro Phe Pro Phe Pro Pro Pro Ser Asn
 130 135

<210> 6233
 <211> 894
 <212> DNA
 <213> Homo sapiens

<400> 6233
 acgcgtgaag ggaaaaagag aaggcgctgt cccgctttg ctacgggtggc ctggaggagt
 60
 ggcgaaaccg gaacagagaaa tttatcaatt ctgggactca cagtcgtat gtctttcaag
 120
 agggaggag acgattggag tcaactcaat gtgctaaaaa aaagaagagt cggggacctc
 180
 ctatccagtt acattccaga ggtatggcg ctatgccttc gggatggacg ctttgcgt
 240
 gccatctgcc cccatcgacc ggtactggac accctggca tgctgactgc ccaccgtgca
 300

ggcaagaaac atctgtccag cttgcagctt ttctatggca agaaggcagcc gggaaaggaa
 360
 agaaaggaga atccaaaaca tcagaatgaa ttgagaaggg aagaaaccaa agctgaggct
 420
 cctctgctaa ctcagacacg acttatcacc cagagtgc tgcacagagc tccccactat
 480
 aacagttgt gcccggaa gtacagacca gaagccctg gtccctctgt ctcccttcc
 540
 cctatgccac ctcagaggt caaactccaa agtgggaaga tcagtaggga acctgaacct
 600
 gcggctggcc cacaggccga ggagtgcacta actgtctcag cccctgcacc catgagcccc
 660
 acaagaagac gagccctgga ccattatctc acccttcgaa gctctggatg gatcccgat
 720
 ggacgaggtc gatggtaaa agatgaaaat gttgagtttg actctgtatga ggaggaacca
 780
 cctgatctcc cttggactg ataccctttt cccattcatt cacaataaaa ttacaatggg
 840
 tgctgagaac taaaaaaaaaaaaaaa aaaaaaaaaaaaaaaa aaaaaaaaaaaaaaaa aaaa
 894

<210> 6234

<211> 230

<212> PRT

<213> Homo sapiens

<400> 6234			
Met Ser Phe Lys Arg Glu Gly Asp Asp Trp Ser Gln Leu Asn Val Leu			
1	5	10	15
Lys Lys Arg Arg Val Gly Asp Leu Leu Ala Ser Tyr Ile Pro Glu Asp			
20	25	30	
Glu Ala Leu Met Leu Arg Asp Gly Arg Phe Ala Cys Ala Ile Cys Pro			
35	40	45	
His Arg Pro Val Leu Asp Thr Leu Ala Met Leu Thr Ala His Arg Ala			
50	55	60	
Gly Lys Lys His Leu Ser Ser Leu Gln Leu Phe Tyr Gly Lys Lys Gln			
65	70	75	80
Pro Gly Lys Glu Arg Lys Gln Asn Pro Lys His Gln Asn Glu Leu Arg			
85	90	95	
Arg Glu Glu Thr Lys Ala Glu Ala Pro Leu Leu Thr Gln Thr Arg Leu			
100	105	110	
Ile Thr Gln Ser Ala Leu His Arg Ala Pro His Tyr Asn Ser Cys Cys			
115	120	125	
Arg Arg Lys Tyr Arg Pro Glu Ala Pro Gly Pro Ser Val Ser Leu Ser			
130	135	140	
Pro Met Pro Pro Ser Glu Val Lys Leu Gln Ser Gly Lys Ile Ser Arg			
145	150	155	160
Glu Pro Glu Pro Ala Ala Gly Pro Gln Ala Glu Glu Ser Ala Thr Val			
165	170	175	
Ser Ala Pro Ala Pro Met Ser Pro Thr Arg Arg Arg Ala Leu Asp His			
180	185	190	
Tyr Leu Thr Leu Arg Ser Ser Gly Trp Ile Pro Asp Gly Arg Gly Arg			
195	200	205	
Trp Val Lys Asp Glu Asn Val Glu Phe Asp Ser Asp Glu Glu Glu Pro			

<p>210 Pro Asp Leu Pro Leu Asp 225</p> <p><210> 6235 <211> 3427 <212> DNA <213> Homo sapiens</p> <p><400> 6235 cctaggggcgc ccgaacccgc ggccggcggtg gggacaatgt ggttcttgc cccggaccccg 60 gtccgggact ttccgttca gctcatcccc gagcccccaag agggcggtct gcggggggccc 120 tggccctgc accgcggccg caagaaggcc acaggcagcc ccgtgtccat cttcgcttat 180 gatgtgaagc ctggcgccga agagcagacc caggtggcca aagctgcctt caagcgcttc 240 aaaactctac ggcacccaa catcctggct tacatcgatg gactggagac agaaaaatgc 300 ctccacgtcg tgacagaggc tggaccccg ttggaaatat acctaaggc gagagtggag 360 gctgggtggcc tgaaggagct ggagatctcc tgggggtcac accagatcgt gaaagccctc 420 agcttcctgg tcaacgactg cagcctcate cacaacaatg tctgcattgc cgccgtgttc 480 gtggacccgag ctggcgagtg gaagcttggg ggcctggact acatgtattc ggcccgaggc 540 aacggtgtggg gaccccccgg caaggggatc cccgagcttg agcagtatga ccccccggag 600 ttggctgaca gcagtggcag agtggtcaga gagaagtgg cagcagacat gtggcgcttg 660 ggctgcctca ttggaaagt cttcaatggg cccctacctc gggcagcagc cttacgcaac 720 cctggaaaga tccccaaaac gctggtgccc cattactgtg agctggtggg agcaaacc 780 aaagtacgta ccaacccagc ccgttcttg cagaactgtc gggcacctgg tggcttcatt 840 agcaaccgct ttgtggagac caacctgttc ctggaggaga ttcagatcaa agagccagcc 900 gagaagcaaa aattttcca agagctgagc aagagcctgg acgcattccc tgaggatttc 960 tgtcgccaca aggtgtgcc ccagctgtc accgccttcg agttcgaa tgctggggcc 1020 gttgtccctca cggccctctt caaggtggc aagttcctga ggcgtgagga gtatcagcag 1080 aagatcatec ctgtgggtt caagatgttc tcattccactg accggggccat ggcgcattccgc 1140 ctccgtcagc agatggagca gttcatccag taccttgacg agccaacagt caacacccag 1200 atcttcccccc acgtcgata tggcttcctg gacaccaacc ctgcacccatggagc 1260 gtcaagtcca tgctgtctt ggccccaag ctgaacgagg ccaacctcaa tggagatgt 1320</p>	<p>215</p> <p>220</p>
---	-----------------------

atgaagcact ttgcacggct acaggccaag gatgaacagg gccccatccg ctgcaacacc
1380
acagtctgcc tggcaaaat cggctctac ctcagtgtca gcaccagaca cagggtcctt
1440
acctctgcct tcagccgagc cactagggac ccgtttgcac cgtcccgggt tgcgggtgtc
1500
ctggctttg ctgccaccca caacctctac tcaatgaacg actgtgccca gaagatctg
1560
cctgtgtcttcac tgtagatcct gagaaatccg tgcgagacca ggcattcaag
1620
gccatccgga gtttcctgtc caaatggag tctgtgtcg aggacccgac ccagctggag
1680
gaagtggaga agatgtcca tgcagctcc accctggca tgggaggagc cgcagctagc
1740
tgggcaggct gggccgtgac cggggctcc tcactcacct ccaagctgat ccgttcgcac
1800
ccaaccactg ccccaacaga aaccaacatt ccccaaagac ccacgcctga aggagttct
1860
gccccagccc ccacccctgt tctgccacc cctacaacct cagggcactg ggagacgcag
1920
gaggaggaca aggacacagc agaggacagc agcactgctg acagatggga cgacgaagac
1980
tggggcagcc tggagcagga ggccgagtct gtgtggccc agcaggacga ctggagcacc
2040
gggggccaag tgagccgtgc tagtcaggtc agcaactccg accacaaatc ctccaaatcc
2100
ccagagtccg actggagcag ctggaaagct gagggtccct gggAACAGGG ctggcaggag
2160
ccaagctccc aggagccacc tctgacggt acacggctgg ccagcgagta taactgggg
2220
ggcccagagt ccagcgacaa gggcgacccc ttcgttaccc tgcgtgcacg tcccagcacc
2280
cagccgagggc cagactttg gggtgaggac aactgggagg gcctcgagac tgacagtcga
2340
caggtcaagg ctgagctggc ccggaaagaag cgcgaggagc ggccggccgg gatggaggcc
2400
aaacgcgcgg agaggaaggt ggccaagggc cccatgaagc tgggagcccg gaagctggac
2460
tgaaccgtgg cgggtggccct tcccgctgc ggagagcccg cccacagat gtatatttg
2520
tacaaaccat gtgagccgg ccggcccagc caggccatct cacgtgtaca taatcagagc
2580
cacaataaat tctatccac acccccttgtc cccggctcag tctagccct gggaggcggc
2640
tggggctgg cggccgtgc gcagcccgcg cccacgtcag acgtgaacat caatttgcct
2700
cgaaagccaa gggtaaagag gcacgatctg atttatcagt ttcttagaaaa caccctctgg
2760
gaggaaggca ggcagcgccc gccggagacc ttacaaccgc ccgctaaccg gggaggggggg
2820
ccggtagggg cgcctcggtt ctcaaggcgc cgggagggtc tgcggccct gaaggtccct
2880
gggtccgagc cacaagtcgg ggcagaagtg aggccgagct cgccggaaatc cctcagtgtat
2940

caccgaggtc tggcccgagg gcggcgtcgg cggcgtcagc ggcggcgctg gggAACGcag
 3000
 gccccgtcg ggccggctcg cgcaagccg gctttgcaga cgacggaa ggagccgctg
 3060
 gtgttacgc agcgctcgct ctgcacagc agcccgctg gttcagctc tcggactcg
 3120
 tcgatatacca cgcagcggc gcgggaggcg tcgagctgga aecgcggg acactcgac
 3180
 acggcgcgc cggccgccc cacgcagcgg ccactcacgc agcgacactc gtctgaatcc
 3240
 tcctctgaac tgtcctcatc tttgaggc ttcaactccca cccaggacca gcacggttgt
 3300
 gagggagggtgg agcagccca ccacaagaag gagtgctacc tgaacttcga tgacacagt
 3360
 ttctgcgaca gcgtattggc caccaacgtg acccagcagg agtgctgctg ctctctgggg
 3420
 gccggcc
 3427
<210> 6236
<211> 820
<212> PRT
<213> Homo sapiens

<400> 6236
 Pro Arg Ala Pro Glu Pro Ala Ala Val Gly Thr Met Trp Phe Phe
 1 5 10 15
 Ala Arg Asp Pro Val Arg Asp Phe Pro Phe Glu Leu Ile Pro Glu Pro
 20 25 30
 Pro Glu Gly Gly Leu Pro Gly Pro Trp Ala Leu His Arg Gly Arg Lys
 35 40 45
 Lys Ala Thr Gly Ser Pro Val Ser Ile Phe Val Tyr Asp Val Lys Pro
 50 55 60
 Gly Ala Glu Glu Gln Thr Gln Val Ala Lys Ala Ala Phe Lys Arg Phe
 65 70 75 80
 Lys Thr Leu Arg His Pro Asn Ile Leu Ala Tyr Ile Asp Gly Leu Glu
 85 90 95
 Thr Glu Lys Cys Leu His Val Val Thr Glu Ala Val Thr Pro Leu Gly
 100 105 110
 Ile Tyr Leu Lys Ala Arg Val Glu Ala Gly Gly Leu Lys Glu Leu Glu
 115 120 125
 Ile Ser Trp Gly Leu His Gln Ile Val Lys Ala Leu Ser Phe Leu Val
 130 135 140
 Asn Asp Cys Ser Leu Ile His Asn Asn Val Cys Met Ala Ala Val Phe
 145 150 155 160
 Val Asp Arg Ala Gly Glu Trp Lys Leu Gly Leu Asp Tyr Met Tyr
 165 170 175
 Ser Ala Gln Gly Asn Gly Gly Pro Pro Arg Lys Gly Ile Pro Glu
 180 185 190
 Leu Glu Gln Tyr Asp Pro Pro Glu Leu Ala Asp Ser Ser Gly Arg Val
 195 200 205
 Val Arg Glu Lys Trp Ser Ala Asp Met Trp Arg Leu Gly Cys Leu Ile
 210 215 220
 Trp Glu Val Phe Asn Gly Pro Leu Pro Arg Ala Ala Leu Arg Asn

225	230	235	240
Pro Gly Lys Ile Pro Lys Thr Leu Val Pro His Tyr Cys Glu Leu Val			
245	250	255	
Gly Ala Asn Pro Lys Val Arg Pro Asn Pro Ala Arg Phe Leu Gln Asn			
260	265	270	
Cys Arg Ala Pro Gly Gly Phe Met Ser Asn Arg Phe Val Glu Thr Asn			
275	280	285	
Leu Phe Leu Glu Glu Ile Gln Ile Lys Glu Pro Ala Glu Lys Gln Lys			
290	295	300	
Phe Phe Gln Glu Leu Ser Lys Ser Leu Asp Ala Phe Pro Glu Asp Phe			
305	310	315	320
Cys Arg His Lys Val Leu Pro Gln Leu Leu Thr Ala Phe Glu Phe Gly			
325	330	335	
Asn Ala Gly Ala Val Val Leu Thr Pro Leu Phe Lys Val Gly Lys Phe			
340	345	350	
Leu Ser Ala Glu Glu Tyr Gln Gln Lys Ile Ile Pro Val Val Val Lys			
355	360	365	
Met Phe Ser Ser Thr Asp Arg Ala Met Arg Ile Arg Leu Leu Gln Gln			
370	375	380	
Met Glu Gln Phe Ile Gln Tyr Leu Asp Glu Pro Thr Val Asn Thr Gln			
385	390	395	400
Ile Phe Pro His Val Val His Gly Phe Leu Asp Thr Asn Pro Ala Ile			
405	410	415	
Arg Glu Gln Thr Val Lys Ser Met Leu Leu Ala Pro Lys Leu Asn			
420	425	430	
Glu Ala Asn Leu Asn Val Glu Leu Met Lys His Phe Ala Arg Leu Gln			
435	440	445	
Ala Lys Asp Glu Gln Gly Pro Ile Arg Cys Asn Thr Thr Val Cys Leu			
450	455	460	
Gly Lys Ile Gly Ser Tyr Leu Ser Ala Ser Thr Arg His Arg Val Leu			
465	470	475	480
Thr Ser Ala Phe Ser Arg Ala Thr Arg Asp Pro Phe Ala Pro Ser Arg			
485	490	495	
Val Ala Gly Val Leu Gly Phe Ala Ala Thr His Asn Leu Tyr Ser Met			
500	505	510	
Asn Asp Cys Ala Gln Lys Ile Leu Pro Val Leu Cys Gly Leu Thr Val			
515	520	525	
Asp Pro Glu Lys Ser Val Arg Asp Gln Ala Phe Lys Ala Ile Arg Ser			
530	535	540	
Phe Leu Ser Lys Leu Glu Ser Val Ser Glu Asp Pro Thr Gln Leu Glu			
545	550	555	560
Glu Val Glu Lys Asp Val His Ala Ala Ser Ser Pro Gly Met Gly Gly			
565	570	575	
Ala Ala Ala Ser Trp Ala Gly Trp Ala Val Thr Gly Val Ser Ser Leu			
580	585	590	
Thr Ser Lys Leu Ile Arg Ser His Pro Thr Thr Ala Pro Thr Glu Thr			
595	600	605	
Asn Ile Pro Gln Arg Pro Thr Pro Glu Gly Val Pro Ala Pro Ala Pro			
610	615	620	
Thr Pro Val Pro Ala Thr Pro Thr Thr Ser Gly His Trp Glu Thr Gln			
625	630	635	640
Glu Glu Asp Lys Asp Thr Ala Glu Asp Ser Ser Thr Ala Asp Arg Trp			
645	650	655	
Asp Asp Glu Asp Trp Gly Ser Leu Glu Gln Glu Ala Glu Ser Val Leu			

660	665	670
Ala Gln Gln Asp Asp Trp Ser Thr Gly Gly Gln Val Ser Arg Ala Ser		
675	680	685
Gln Val Ser Asn Ser Asp His Lys Ser Ser Lys Ser Pro Glu Ser Asp		
690	695	700
Trp Ser Ser Trp Glu Ala Glu Gly Ser Trp Glu Gln Gly Trp Gln Glu		
705	710	715
Pro Ser Ser Gln Glu Pro Pro Pro Asp Gly Thr Arg Leu Ala Ser Glu		
725	730	735
Tyr Asn Trp Gly Gly Pro Glu Ser Ser Asp Lys Gly Asp Pro Phe Ala		
740	745	750
Thr Leu Ser Ala Arg Pro Ser Thr Gln Pro Arg Pro Asp Ser Trp Gly		
755	760	765
Glu Asp Asn Trp Glu Gly Leu Glu Thr Asp Ser Arg Gln Val Lys Ala		
770	775	780
Glu Leu Ala Arg Lys Lys Arg Glu Glu Arg Arg Arg Glu Met Glu Ala		
785	790	795
Lys Arg Ala Glu Arg Lys Val Ala Lys Gly Pro Met Lys Leu Gly Ala		
805	810	815
Arg Lys Leu Asp		
820		

<210> 6237

<211> 494

<212> DNA

<213> Homo sapiens

<400> 6237

cggcctggga ccatgggcgg acatgttccc gatttgaggt gaaacatgaa gagaaaatag
 60
 aatacttaat aatgcttttc cgcaaccgct tcttgctgct gctggccctg gctgcgctgc
 120
 tggcctttgt gaggctcagc ctgcagttct tccacctgat cccgggtgtcg actcctaaga
 180
 atggaatgag tagcaagagt cgaaagagaa tcatgccccga ccctgtgacg gagccccctg
 240
 tgacagaccc cgtttatgaa gctctttgt actgcaacat ccccagcggt gccgagcgca
 300
 gcatggaagg tcatgccccg catcattta agctggtctc agtgcattgt ttcattcgcc
 360
 acggagacag gtacccactg tatgtcattc ccaaaacaaa gcgaccagaa attgactgca
 420
 ctctgggtggc taacaggaaa ccgtatcacc caaaactgga agctttcatt agtcacatgt
 480
 tgagaggatc cgga
 494

<210> 6238

<211> 141

<212> PRT

<213> Homo sapiens

<400> 6238

Met Leu Phe Arg Asn Arg Phe Leu Leu Leu Ala Leu Ala Ala Leu

1	5	10	15												
Leu	Ala	Phe	Val	Ser	Leu	Ser	Leu	Gln	Phe	Phe	His	Leu	Ile	Pro	Val
		20			25						30				
Ser	Thr	Pro	Lys	Asn	Gly	Met	Ser	Ser	Lys	Ser	Arg	Lys	Arg	Ile	Met
		35			40						45				
Pro	Asp	Pro	Val	Thr	Glu	Pro	Pro	Val	Thr	Asp	Pro	Val	Tyr	Glu	Ala
		50			55						60				
Leu	Leu	Tyr	Cys	Asn	Ile	Pro	Ser	Val	Ala	Glu	Arg	Ser	Met	Glu	Gly
		65			70					75				80	
His	Ala	Pro	His	His	Phe	Lys	Leu	Val	Ser	Val	His	Val	Phe	Ile	Arg
		85								90				95	
His	Gly	Asp	Arg	Tyr	Pro	Leu	Tyr	Val	Ile	Pro	Lys	Thr	Lys	Arg	Pro
		100								105				110	
Glu	Ile	Asp	Cys	Thr	Leu	Val	Ala	Asn	Arg	Lys	Pro	Tyr	His	Pro	Lys
		115			120					125					
Leu	Glu	Ala	Phe	Ile	Ser	His	Met	Leu	Arg	Gly	Ser	Gly			
		130			135					140					

<210> 6239

<211> 911
<212> DNA
<213> Homo sapiens

<400> 6239

nnggggggtt aaagagcgcg ttgctggctg ggcacgcgtg cttgagaagg ttcaatggcg
60
tggcagggac tagcggccga gttcctgcag gtgccggcg tgacgcgggc ttacaccgca
120
gcctgtgtcc tcaccaccgc cgccgtgcag ctggagctcc tcagccccct tcaactctac
180
ttcaacccgc accttgcgtt ccggaagttc caggtctgga ggctcgtaac caacttcc
240
ttcttcgggc ccctgggatt cagcttcttc ttcaacatgc tcttcgtgtt ccgctactgc
300
cgcatgctgg aagagggttc cttccgggc cgacacggccg acttcgttctt catgttctc
360
ttcggggcg tccttatgac cctgtggga ctccctggca gcctgttctt cctggggcag
420
ggccctcatgg ccatgcttgtt gtacgtgtgg agccggccga gcccctgggt gagggtaac
480
ttcttcggcc tgctcacttt ccaggcacgg ttccctgcctt gggcgctcat gggcttctcg
540
ctgctgctgg gcaactccat cctcgtggac ctgctggggta ttgcgggtggg ccatactac
600
tacttcctgg aggacgttctt ccccaaccag cctggaggca agaggctctt gcagacccct
660
ggcttcctaa agctgctctt ggatccccct gcagaagacc ccaattacct gcccctcc
720
gaggaacagc caggacccca tctgccaccc cccgagcagt gaccccccacc cagggccagg
780
cctaagaggc ttctggcagc ttccatccta cccatgaccc ctacttgggg cagaaaaaac
840
ccatcctaaa ggctggggcc atgcaagggc ccacctgaat aaacagaatg agctgcaaaa
900

aaaaaaaaaa a
911

<210> 6240
<211> 235
<212> PRT
<213> Homo sapiens

<400> 6240
Met Ala Trp Gln Gly Leu Ala Ala Glu Phe Leu Gln Val Pro Ala Val
1 5 10 15
Thr Arg Ala Tyr Thr Ala Ala Cys Val Leu Thr Thr Ala Ala Val Gln
20 25 30
Leu Glu Leu Leu Ser Pro Phe Gln Leu Tyr Phe Asn Pro His Leu Val
35 40 45
Phe Arg Lys Phe Gln Val Trp Arg Leu Val Thr Asn Phe Leu Phe Phe
50 55 60
Gly Pro Leu Gly Phe Ser Phe Phe Asn Met Leu Phe Val Phe Arg
65 70 75 80
Tyr Cys Arg Met Leu Glu Glu Gly Ser Phe Arg Gly Arg Thr Ala Asp
85 90 95
Phe Val Phe Met Phe Leu Phe Gly Gly Val Leu Met Thr Leu Leu Gly
100 105 110
Leu Leu Gly Ser Leu Phe Phe Leu Gly Gln Ala Leu Met Ala Met Leu
115 120 125
Val Tyr Val Trp Ser Arg Arg Ser Pro Arg Val Arg Val Asn Phe Phe
130 135 140
Gly Leu Leu Thr Phe Gln Ala Pro Phe Leu Pro Trp Ala Leu Met Gly
145 150 155 160
Phe Ser Leu Leu Leu Gly Asn Ser Ile Leu Val Asp Leu Leu Gly Ile
165 170 175
Ala Val Gly His Ile Tyr Tyr Phe Leu Glu Asp Val Phe Pro Asn Gln
180 185 190
Pro Gly Gly Lys Arg Leu Leu Gln Thr Pro Gly Phe Leu Lys Leu Leu
195 200 205
Leu Asp Ala Pro Ala Glu Asp Pro Asn Tyr Leu Pro Leu Pro Glu Glu
210 215 220
Gln Pro Gly Pro His Leu Pro Pro Pro Gln Gln
225 230 235

<210> 6241
<211> 1515
<212> DNA
<213> Homo sapiens

<400> 6241
tgcggccgct gccttgacc cagcgccacc cgcacacggc gctccgctag ccaggccggg
60
agcaagagcc aggcgggtgga gaagccgccc tcggagaagc cgccggctgag gcgctcg
120
cgccggggcc caggaggagg gccgggggag ccgccgccc ctgagctggc gttgctccc
180
ccaccgcccgc cgccgcccgc gactcccccg accccgacgt cctccggcgtc caacctggac
240

ctgggcgagc agcgggacgc ctgggagacg ttccagaagc ggcagaagct tacctccgag
 300
 ggtgccgcca agctcctgct agacacccttt gaataccagg gcctggtgaa gcacacagga
 360
 ggctgccact gtggagcagt tcgtttgaa gtttggcct cagcagactt gcataatattt
 420
 gactgcaatt gcagcatttg caagaagaag cagaatagac acttcattgt tccagcttct
 480
 cgcttcaaggc tcctgaaggg agctgagcac ataacgactt acacgttcaa tactcacaaa
 540
 gcccagcata ccttctgttaa gagatgtggc gttcagagct tctatactcc acgatcaaac
 600
 cccggagget tcggaattgc cccccactgc ctggatgagg gcactgtgcg gagtatggc
 660
 actgaggaat tcaatggcag cgattgggag aaggccatga aagagcacaa gaccatcaag
 720
 aacatgtcta aagagtgagc ttctgcctct cctgcccgtga aaaggaggaa tgattgggc
 780
 cagcaacttt gctctccctg ccgtgcctcg gtgggtgcctcc tgaatgtggc tgacctggc
 840
 tgctgggtcc gttgactagg gtcatcttga tctctgcagt ttgctccagc taccagttc
 900
 tttaggcagc tctttgtcct ccctctgccc agattttgat gtagtctaatt tgacatcctt
 960
 ctcttcccaa cttttgtgtg atccagcaga gcatgtgaga ctcttgata tgcacccatca
 1020
 tgtattatct tgttcagttc tctgaggatgg ggttcattat tatttccat tttgcagatg
 1080
 agagaattga ggcagagaaa ggttcagcac ctgcctttg gttacacage tggtcattct
 1140
 ggcttcaatc gcaggactac cagcctgtgc tcttcaccac ttagcttccc tgactcaggc
 1200
 cacttccctg gagcgtagc tggattctga gagtagtttc caagccagag ctttcagaga
 1260
 gctttgttc gtaggacaat ttaagacat caggttcttg aatgttttgc gttttttaa
 1320
 gtctcagatt tatcttccta cttcctactt ctccaaaaag actgagagct gacatatttgc
 1380
 attgtaaatgc ctggaggca gagttcttg aatcgctctt gtataaaaca gtgcccaccc
 1440
 cagtgacctg tacttggatg cttcaatcag agctgtcctg ttaaatagag caagttttc
 1500
 etagacccac attct
 1515

<210> 6242
 <211> 245
 <212> PRT
 <213> Homo sapiens

<400> 6242
 Cys Gly Arg Cys Leu Gly Pro Ser Ala Thr Arg Thr Arg Arg Ser Ala
 1 5 10 15
 Ser Gln Ala Gly Ser Lys Ser Gln Ala Val Glu Lys Pro Pro Ser Glu

20	25	30
Lys Pro Arg Leu Arg Arg Ser Ser Arg Arg Ala Pro Gly Gly Gly Pro		
35	40	45
Gly Glu Pro Pro Pro Glu Leu Ala Leu Leu Pro Pro Pro Pro Pro		
50	55	60
Pro Pro Pro Thr Pro Ala Thr Pro Thr Ser Ser Ala Ser Asn Leu Asp		
65	70	75
Leu Gly Glu Gln Arg Asp Ala Trp Glu Thr Phe Gln Lys Arg Gln Lys		
85	90	95
Leu Thr Ser Glu Gly Ala Ala Lys Leu Leu Leu Asp Thr Phe Glu Tyr		
100	105	110
Gln Gly Leu Val Lys His Thr Gly Gly Cys His Cys Gly Ala Val Arg		
115	120	125
Phe Glu Val Trp Ala Ser Ala Asp Leu His Ile Phe Asp Cys Asn Cys		
130	135	140
Ser Ile Cys Lys Lys Lys Gln Asn Arg His Phe Ile Val Pro Ala Ser		
145	150	155
Arg Phe Lys Leu Leu Lys Gly Ala Glu His Ile Thr Thr Tyr Thr Phe		
165	170	175
Asn Thr His Lys Ala Gln His Thr Phe Cys Lys Arg Cys Gly Val Gln		
180	185	190
Ser Phe Tyr Thr Pro Arg Ser Asn Pro Gly Gly Phe Gly Ile Ala Pro		
195	200	205
His Cys Leu Asp Glu Gly Thr Val Arg Ser Met Val Thr Glu Glu Phe		
210	215	220
Asn Gly Ser Asp Trp Glu Lys Ala Met Lys Glu His Lys Thr Ile Lys		
225	230	235
Asn Met Ser Lys Glu		
245		

<210> 6243

<211> 326

<212> DNA

<213> Homo sapiens

<400> 6243

```

gcgcgcagg gagagaagga gaggaactga tggacaaaag tcaaagagga agtggataa
60
gataggacat aaggacacgt ggagcattca gatccagaga ggtatgtatcg cacctttcc
120
tctgagatcca gagggacaaa ccataatgag tgaagagatg aggacattct taaagtggag
180
ctagcaaagc tggaatggc cttccacaag aggaaaccta agactggacc cagaatagta
240
aagggtggtt tggggacttg aggcaagtga gaaagctctg gaaatgccgc tggataaatt
300
ctgttagggat gcattcctgg agagtg
326

```

<210> 6244

<211> 104

<212> PRT

<213> Homo sapiens

<400> 6244
Met His Pro Tyr Arg Ile Tyr Pro Ala Ala Phe Pro Glu Leu Ser His
1 5 10 15
Leu Pro Gln Val Pro Lys Pro Thr Phe Thr Ile Leu Gly Pro Val Leu
20 25 30
Gly Phe Leu Leu Trp Lys Ala Ile Pro Ser Phe Ala Ser Ser Thr Leu
35 40 45
Arg Met Ser Ser Ser Leu His Ser Leu Trp Phe Val Pro Leu Val Ser
50 55 60
Glu Glu Glu Val Leu Ile Ile Leu Ser Gly Ser Glu Cys Ser Thr Cys
65 70 75 80
Pro Tyr Val Leu Ser Tyr Pro Thr Ser Ser Leu Thr Leu Phe His Gln
85 90 95
Phe Leu Ser Phe Ser Pro Trp Arg
100

<210> 6245
<211> 6609
<212> DNA
<213> Homo sapiens

<400> 6245
tctggagtct gcctcatttt gaatataatct ctctggtctt tgggctgctg attttaaaat
60
aagttcttgg ttcaagtcaa cctgttactt gccattggat ggtaatattt gactttcaa
120
tcttatcctg attgataagc ggactcccg tttttgcctt ctcttgccc cagaatttgg
180
agacctcggg cctctccctt gctttctcc tctttcttag attttctcaa gtgtccccgt
240
ttagtcttcc ctccctcagct tggctcctga gaacatttgc tgctgctttt gttttttag
300
gtgttggaca atcagataaaa gaaagacctg gctgacaagg agacactgga gaacatgatg
360
cagagacacg aggaggaggc ccatgagaag ggcaaaaattc tcagcgaaca gaaggcgt
420
atcaatgcta tggattccaa gatcagatcc ctggaacaga ggattgtgga actgtctgaa
480
gccaataaac ttgcagcaaa tagcagtctt tttacccaaa ggaacatgaa ggcccaagaa
540
gagatgattt ctgaactcag gcaacagaaa ttttacctgg agacacaggc tggaaagtt
600
gaggccccaga accgaaaact ggaggagcag ctggagaaga tcagccacca agaccacagt
660
gacaagaatc ggctgctgga actggagaca agattgcggg aggtcagtct agagcacgag
720
gaggcagaaac tggagctcaa gcgccagctc acagagctac agctctccct gcaggagcgc
780
gagtcacagt tgacagccct gcaggctgca cgggcggccc tggagagcca gcttgcgcag
840
gcgaagacag agctggaaga gaccacagca gaagctgaag aggagatcca ggcactcag
900
gcacatagag atgaaatcca gcgcattt gatgtcttc gtaacagctg tactgtaatc
960

acagacacctgg aggagcagct aaaccagctg accgaggaca acgctgaact caacaaccaa
1020
aacttctact tgtccaaaca actcgatgag gtttcggcg ccaacgacga gattgtacaa
1080
ctgcgaagtg aagtggacca tctccgcgg gagatcacgg aacgagagat gcagcttacc
1140
agccagaagc aaacgatgga ggctctgaag accacgtgca ccatgctgga ggaacaggc
1200
atggatttgg agggcctaaa cgatgagctg ctagaaaaag agcggcagtg ggaggcctgg
1260
aggagcgtcc tgggtgatga gaaatcccag tttgagtgtc gggttcgaga gctgcagaga
1320
atgctggaca ccgagaaaca gagcagggcg agagccgatc agcggatcac cgagtctcgc
1380
caggtggtgg agctggcagt gaaggagcac aaggctgaga ttctcgctc gcagcaggct
1440
ctcaaagagc agaagctgaa ggccgagagc ctctctgaca agctcaatga cctggagaag
1500
aagcatgcta tgcttgaat gaatgcccga agcttacagc agaagctgga gactgaacga
1560
gagctcaaac agaggcttct ggaagagcaa gccaaattac agcagcagat ggacctgcag
1620
aaaaatcaca tttccgtct gactcaagga ctgcaagaag ctctagatcg ggctgatcta
1680
ctgaagacag aaagaagtga cttggagtat cagctggaaa acattcaggat tctctattct
1740
catgaaaagg tgaaaaatgga aggcactatt tctcaacaaa ccaaactcat tgattttctg
1800
caagccaaaa tggaccaacc tgctaaaaag aaaaaggttc ctctgcagta caatgagctg
1860
aagctggccc tggagaagga gaaagctcgc tgtgcagagc tagaggaagc cttcagaag
1920
acccgcacatcg agctccggcgc cgccccggag gaagctgccc accgcaaagc aacggaccac
1980
ccacacccat ccacgcccgc caccgcgagg cagcagatcg ccatgtctgc catgtgcgg
2040
tcgcccagagc accagccag tgccatgagc ctgctggccc cgccatccag cgcagaaag
2100
gagtcttcaa ctccagagga atttagtcgg cgtcttaagg aacgcatgca ccacaatatt
2160
cctcaccgat tcaacgtagg actgaacatg cgagccacaa agtgtgtctgt gtgtctggat
2220
accgtgcact ttggacgcca ggcacccaaa tgtctcaat gtcaggtgat gtgtcaccc
2280
aagtgtcca cgtgcttgcg agccacccgc ggcttcgtctg ctgaatatgc cacacacttc
2340
accgagggct tctgcccgtga caaaatgaac tccccaggtc tccagacccaa ggagcccgac
2400
agcagcttcgc accttggagg gtggatgaaatgtcccagga ataacaaacg aggacagcaa
2460
ggcttggaca ggaagtacat tgccttggag ggatcaaaatgc tccatgttgcataatgaa
2520
gccagagaag ctggacagag gccgggtggaa gaatttgagc tgccttcc cgacggggat
2580

gtatcttattc atggtgccgt tggtgcttcc gaactcgcaa atacagccaa agcagatgtc
2640
ccatacatac tgaagatgga atctcacccg cacaccacct gctggcccg gagaaccctc
2700
tacctgcttag ctccccagtt ccctgacaaa cagcgctggg tcaccgcctt agaatcagtt
2760
gtcgcagggtg ggagagtttc tagggaaaaaa gcagaagctg atgctaaact gcttggaaac
2820
tccctgctga aactggaaagg tcatgaccgt ctagacatga actgcacgct gcccttcagt
2880
gaccaggtgg tgggggtggg caccgaggaa gggctctacg ccctgaatgt cttggaaaaac
2940
tccctaacc accgtccagg aattggagca gtcttccaaa ttatattat caaggacctg
3000
gagaagctac tcatgatagc aggagaagag cgggcactgt gtcttggaa cgtgaagaaa
3060
gtgaaacagt ccctggccca gtcccacctg cctgcccagc ccgacatctc acccaacatt
3120
tttgaagctg tcaagggtcg ccacttgttt gggcaggca agattgagaa cgggctctgc
3180
atctgtgcag ccatgcccg acaaagtgc attctccgt acaacgaaaa cctcagcaaa
3240
tactgcattcc gggaaagat agagacatca gagccctgca gctgtatcca cttcaccaat
3300
tacagtatcc tcattggAAC caataaattc tacgaaatcg acatgaagca gtacacgctc
3360
gaggaattcc tggataagaa tgaccattcc ttggcacctg ctgtgtttgc cgccctttcc
3420
aacagcttcc ctgtctcaat cgtcagggtg aacagcgcag ggcagcgaga ggagtacttg
3480
ctgtgtttcc acgaatttgg agtggcgtg gattcttacg gaagacgtag ccgcacagac
3540
gatctcaagt ggagtcgctt acctttggcc tttgcctaca gagaacccta tctgtttgtg
3600
acccacttca actcactcga agtaatttggat atccaggcac gctcctcagc agggaccct
3660
gccccgacat acctggacat cccgaaccccg cgctacccgt gcccctccat ttcctcagga
3720
gcgatTTact tggcgctc ataccaggat aaattaaggg tcatttgcgt caaggaaac
3780
ctcgtaagg agtccggcac tgaacaccac cggggcccg ccacccctccg cagcagcccc
3840
aacaagcggag gcccacccac gtacaacgag cacatcacca agcgcgtggc ctccagccca
3900
gcgcggcccg aaggccccag ccacccgcga gagccaagca cacccacccg ctaccgcgag
3960
gggcggaccc agctgcgcag ggacaagtct cctggccgccc ccctggagcg agagaagtcc
4020
cccgccggga tgctcagcac gcggagagag cgggtcccccg ggaggctgtt tgaagacagc
4080
agcagggggcc ggctgcctgc gggagccgtg aggaccccg tgcctcaggta gaacaagggtc
4140
tgggaccagt cttcagttata aatctcagcc agaaaaacca actcctcatc ttgatctgca
4200

ggaaaacacc aaacacacta tggaactctg ctgatgggaa cccaagcgcc cacgtgtca
4260
gccaccctct ggctcagcg ggcccgagacc cacctcgca cgacaccccc tgtctccagg
4320
agggcagggt ggctgaggt ctccggagct gtcagcgccc ggtgcctgcc ctgggcaccc
4380
ccctgcagtc atctctttgc actttgttac tcttcaaag cattcacaaa cttttgtacc
4440
tagctctagc ctgttaccagt tagttcatca aaggaaacca accgggatgc taactacaac
4500
atggtttagaa tcctaattag ctacttaag atcctaggat tggttggtt ttctttttt
4560
tttctcttg tttctttct tttttttt ttttttaag acaacagaat tcttaataga
4620
tttgaatagc gacgtatttc ctgttgttagt cattttagc tcgaccacat catcaggct
4680
ttgccaccga ggcatagtgt agaacagtcg cggtcagttg gccaacctcc cgcaagccaag
4740
taggttcatc ctgttccctg ttcattctca tagatggccc tgcttcccc agggtgacat
4800
cgtagccaaa tgtttactgt tttcattgcc ttttatggcc ttgacgactt cccctccccac
4860
cagctgagaa tggatggagg tcateggggc ctcaagtcgg aggcaagtgc ttggggccaa
4920
gggacctcga gacgcttcc ttccccaccc cccagcgtca tctccccagc ctgctgtcc
4980
cgcttccat atagcttgg ccaggaaagc atgcaataga ctgtctcgaa gcccagca
5040
cctgggtctc ggggtcgaaaa aggggacggg ggcacccact tccctgtctg tgacggcg
5100
ttgttccca ctctggatg gggaaagaggc ccgtcgggag ttctgcattgg cagtttactg
5160
catgtgctgc cccctgggt tgctctgcc atgtattaaat accatcccat agctcctgcc
5220
aaatcgagac cctctgacga ctggcact aactggccac cacaagctgc agtctgttagc
5280
actgaacaaa caaaaaacaa aacgctcaag ctttacgacc agagaaggat ttcagcaa
5340
caccacactcc cactcagtgt cccctccaaa cttcacactt ccctgcctgc agaggatgac
5400
tctgttcaca cccaatccag cgccgttcta ccccacgaaa ctgtgacttt ccaaattgac
5460
ctttccctag ggctagacct aagaccagga agtttgagag agcagccgca gctcaactct
5520
tccagctccg ccagggttgg gaagtcctta ggtgcagtgc ggctccact gggtcttgc
5580
gaccctccta ttagagtacg aaattcctgg caactggat agaaccaacc tagaggctt
5640
gcagttggca agctaactcg cggccttatt tctgcctta atctccacaca aggcatctgt
5700
tgcttgggt cctccacgac tcttaggccc gcctcaacaa cccaggcacc tccttaggt
5760
gctcaaaggat agacccgtt ccaccgcage aggtgaacat gaccgtgttt tcaactgtgt
5820

ccacagttca gatcccttc cagattgcaa cctggcctgc atcccagctc cttcctgctc
 5880
 gtgtcttaac ctaagtgtt tcttgtttga aacgcctaca aacctccatg tgtagctcc
 5940
 ttggcaaat gcctgtgtt ggcgtttat gtgttgcgg gactctgtgg ggtcgactc
 6000
 ctcctccagg gcagatttga ttgaatgtt gctgaagttt tgtctttgg
 6060
 tccacagtttca cactgaaaat gggctttca gtcttggcat ttcattttagg
 6120
 atctccatga gaaatggct tcttgagccc tgaaaatgtt tattgtgtgt ctcatctgt
 6180
 aactgctttc tgctatata aactagctca aaagactgtt catatttaca agaaacctt
 6240
 tattcgtaaa aaaaaaaaaga ggaaattgaa ttggtttcta ctttttattt gtaaaagg
 6300
 cattttcaa cacttacttt tggttcaat ggtggtagtt gtggacagcc attttactg
 6360
 gaggggtgggg agctccgtgt gaccaccaag atgccagcag gatataccgt aacacgaaat
 6420
 tgctgtcaaa agcttattt tagcaatcaa gattcttagt ctccaaaagt acaggcttt
 6480
 tcttcattac ctttttattt cagaacgagg aagagaacac aaggaatgtt tcaagatcca
 6540
 ccttgagagg aatgaacttt gttgttgaac aatttagtcaa ataaagcaat gatctaaact
 6600
 aaaaaaaaaa
 6609

<210> 6246
 <211> 1286
 <212> PRT
 <213> Homo sapiens

<400> 6246
 Val Leu Asp Asn Gln Ile Lys Asp Leu Ala Asp Lys Glu Thr Leu
 1 5 10 15
 Glu Asn Met Met Gln Arg His Glu Glu Glu Ala His Glu Lys Gly Lys
 20 25 30
 Ile Leu Ser Glu Gln Lys Ala Met Ile Asn Ala Met Asp Ser Lys Ile
 35 40 45
 Arg Ser Leu Glu Gln Arg Ile Val Glu Leu Ser Glu Ala Asn Lys Leu
 50 55 60
 Ala Ala Asn Ser Ser Leu Phe Thr Gln Arg Asn Met Lys Ala Gln Glu
 65 70 75 80
 Glu Met Ile Ser Glu Leu Arg Gln Gln Lys Phe Tyr Leu Glu Thr Gln
 85 90 95
 Ala Gly Lys Leu Glu Ala Gln Asn Arg Lys Leu Glu Glu Gln Leu Glu
 100 105 110
 Lys Ile Ser His Gln Asp His Ser Asp Lys Asn Arg Leu Leu Glu Leu
 115 120 125
 Glu Thr Arg Leu Arg Glu Val Ser Leu Glu His Glu Glu Gln Lys Leu
 130 135 140
 Glu Leu Lys Arg Gln Leu Thr Glu Leu Gln Leu Ser Leu Gln Glu Arg

145	150	155	160
Glu Ser Gln Leu Thr Ala Leu Gln Ala Ala Arg Ala Ala Leu Glu Ser			
165	170	175	
Gln Leu Arg Gln Ala Lys Thr Glu Leu Glu Glu Thr Thr Ala Glu Ala			
180	185	190	
Glu Glu Glu Ile Gln Ala Leu Thr Ala His Arg Asp Glu Ile Gln Arg			
195	200	205	
Lys Phe Asp Ala Leu Arg Asn Ser Cys Thr Val Ile Thr Asp Leu Glu			
210	215	220	
Glu Gln Leu Asn Gln Leu Thr Glu Asp Asn Ala Glu Leu Asn Asn Gln			
225	230	235	240
Asn Phe Tyr Leu Ser Lys Gln Leu Asp Glu Ala Ser Gly Ala Asn Asp			
245	250	255	
Glu Ile Val Gln Leu Arg Ser Glu Val Asp His Leu Arg Arg Glu Ile			
260	265	270	
Thr Glu Arg Glu Met Gln Leu Thr Ser Gln Lys Gln Thr Met Glu Ala			
275	280	285	
Leu Lys Thr Thr Cys Thr Met Leu Glu Glu Gln Val Met Asp Leu Glu			
290	295	300	
Ala Leu Asn Asp Glu Leu Leu Glu Lys Glu Arg Gln Trp Glu Ala Trp			
305	310	315	320
Arg Ser Val Leu Gly Asp Glu Lys Ser Gln Phe Glu Cys Arg Val Arg			
325	330	335	
Glu Leu Gln Arg Met Leu Asp Thr Glu Lys Gln Ser Arg Ala Arg Ala			
340	345	350	
Asp Gln Arg Ile Thr Glu Ser Arg Gln Val Val Glu Leu Ala Val Lys			
355	360	365	
Glu His Lys Ala Glu Ile Leu Ala Leu Gln Gln Ala Leu Lys Glu Gln			
370	375	380	
Lys Leu Lys Ala Glu Ser Leu Ser Asp Lys Leu Asn Asp Leu Glu Lys			
385	390	395	400
Lys His Ala Met Leu Glu Met Asn Ala Arg Ser Leu Gln Gln Lys Leu			
405	410	415	
Glu Thr Glu Arg Glu Leu Lys Gln Arg Leu Leu Glu Glu Gln Ala Lys			
420	425	430	
Leu Gln Gln Gln Met Asp Leu Gln Lys Asn His Ile Phe Arg Leu Thr			
435	440	445	
Gln Gly Leu Gln Glu Ala Leu Asp Arg Ala Asp Leu Leu Lys Thr Glu			
450	455	460	
Arg Ser Asp Leu Glu Tyr Gln Leu Glu Asn Ile Gln Val Leu Tyr Ser			
465	470	475	480
His Glu Lys Val Lys Met Glu Gly Thr Ile Ser Gln Gln Thr Lys Leu			
485	490	495	
Ile Asp Phe Leu Gln Ala Lys Met Asp Gln Pro Ala Lys Lys Lys			
500	505	510	
Val Pro Leu Gln Tyr Asn Glu Leu Lys Leu Ala Leu Glu Lys Glu Lys			
515	520	525	
Ala Arg Cys Ala Glu Leu Glu Ala Leu Gln Lys Thr Arg Ile Glu			
530	535	540	
Leu Arg Ser Ala Arg Glu Glu Ala Ala His Arg Lys Ala Thr Asp His			
545	550	555	560
Pro His Pro Ser Thr Pro Ala Thr Ala Arg Gln Gln Ile Ala Met Ser			
565	570	575	
Ala Ile Val Arg Ser Pro Glu His Gln Pro Ser Ala Met Ser Leu Leu			

580	585	590
Ala Pro Pro Ser Ser Arg Arg Lys Glu Ser Ser Thr Pro Glu Glu Phe		
595	600	605
Ser Arg Arg Leu Lys Glu Arg Met His His Asn Ile Pro His Arg Phe		
610	615	620
Asn Val Gly Leu Asn Met Arg Ala Thr Lys Cys Ala Val Cys Leu Asp		
625	630	635
640		
Thr Val His Phe Gly Arg Gln Ala Ser Lys Cys Leu Glu Cys Gln Val		
645	650	655
Met Cys His Pro Lys Cys Ser Thr Cys Leu Pro Ala Thr Cys Gly Leu		
660	665	670
Pro Ala Glu Tyr Ala Thr His Phe Thr Glu Ala Phe Cys Arg Asp Lys		
675	680	685
Met Asn Ser Pro Gly Leu Gln Thr Lys Glu Pro Ser Ser Ser Leu His		
690	695	700
Leu Glu Gly Trp Met Lys Val Pro Arg Asn Asn Lys Arg Gly Gln Gln		
705	710	715
720		
Gly Trp Asp Arg Lys Tyr Ile Val Leu Glu Gly Ser Lys Val Leu Ile		
725	730	735
Tyr Asp Asn Glu Ala Arg Glu Ala Gly Gln Arg Pro Val Glu Glu Phe		
740	745	750
Glu Leu Cys Leu Pro Asp Gly Asp Val Ser Ile His Gly Ala Val Gly		
755	760	765
Ala Ser Glu Leu Ala Asn Thr Ala Lys Ala Asp Val Pro Tyr Ile Leu		
770	775	780
Lys Met Glu Ser His Pro His Thr Thr Cys Trp Pro Gly Arg Thr Leu		
785	790	795
800		
Tyr Leu Leu Ala Pro Ser Phe Pro Asp Lys Gln Arg Trp Val Thr Ala		
805	810	815
Leu Glu Ser Val Val Ala Gly Gly Arg Val Ser Arg Glu Lys Ala Glu		
820	825	830
Ala Asp Ala Lys Leu Leu Gly Asn Ser Leu Leu Lys Leu Glu Gly Asp		
835	840	845
Asp Arg Leu Asp Met Asn Cys Thr Leu Pro Phe Ser Asp Gln Val Val		
850	855	860
Leu Val Gly Thr Glu Glu Gly Leu Tyr Ala Leu Asn Val Leu Lys Asn		
865	870	875
880		
Ser Leu Thr His Val Pro Gly Ile Gly Ala Val Phe Gln Ile Tyr Ile		
885	890	895
Ile Lys Asp Leu Glu Lys Leu Leu Met Ile Ala Gly Glu Glu Arg Ala		
900	905	910
Leu Cys Leu Val Asp Val Lys Lys Val Lys Gln Ser Leu Ala Gln Ser		
915	920	925
His Leu Pro Ala Gln Pro Asp Ile Ser Pro Asn Ile Phe Glu Ala Val		
930	935	940
Lys Gly Cys His Leu Phe Gly Ala Gly Lys Ile Glu Asn Gly Leu Cys		
945	950	955
960		
Ile Cys Ala Ala Met Pro Ser Lys Val Val Ile Leu Arg Tyr Asn Glu		
965	970	975
Asn Leu Ser Lys Tyr Cys Ile Arg Lys Glu Ile Glu Thr Ser Glu Pro		
980	985	990
Cys Ser Cys Ile His Phe Thr Asn Tyr Ser Ile Leu Ile Gly Thr Asn		
995	1000	1005
Lys Phe Tyr Glu Ile Asp Met Lys Gln Tyr Thr Leu Glu Glu Phe Leu		

1010	1015	1020
Asp Lys Asn Asp His Ser Leu Ala Pro Ala Val Phe Ala Ala Ser Ser		
1025	1030	1035
Asn Ser Phe Pro Val Ser Ile Val Gln Val Asn Ser Ala Gly Gln Arg		1040
1045	1050	1055
Glu Glu Tyr Leu Leu Cys Phe His Glu Phe Gly Val Phe Val Asp Ser		
1060	1065	1070
Tyr Gly Arg Arg Ser Arg Thr Asp Asp Leu Lys Trp Ser Arg Leu Pro		
1075	1080	1085
Leu Ala Phe Ala Tyr Arg Glu Pro Tyr Leu Phe Val Thr His Phe Asn		
1090	1095	1100
Ser Leu Glu Val Ile Glu Ile Gln Ala Arg Ser Ser Ala Gly Thr Pro		
1105	1110	1115
Ala Arg Ala Tyr Leu Asp Ile Pro Asn Pro Arg Tyr Leu Gly Pro Ala		1120
1125	1130	1135
Ile Ser Ser Gly Ala Ile Tyr Leu Ala Ser Ser Tyr Gln Asp Lys Leu		
1140	1145	1150
Arg Val Ile Cys Cys Lys Gly Asn Leu Val Lys Glu Ser Gly Thr Glu		
1155	1160	1165
His His Arg Gly Pro Ser Thr Ser Arg Ser Ser Pro Asn Lys Arg Gly		
1170	1175	1180
Pro Pro Thr Tyr Asn Glu His Ile Thr Lys Arg Val Ala Ser Ser Pro		
1185	1190	1195
Ala Pro Pro Glu Gly Pro Ser His Pro Arg Glu Pro Ser Thr Pro His		1200
1205	1210	1215
Arg Tyr Arg Glu Arg Thr Glu Leu Arg Arg Asp Lys Ser Pro Gly		
1220	1225	1230
Arg Pro Leu Glu Arg Glu Lys Ser Pro Gly Arg Met Leu Ser Thr Arg		
1235	1240	1245
Arg Glu Arg Ser Pro Gly Arg Leu Phe Glu Asp Ser Ser Arg Gly Arg		
1250	1255	1260
Leu Pro Ala Gly Ala Val Arg Thr Pro Leu Ser Gln Val Asn Lys Val		
1265	1270	1275
Trp Asp Gln Ser Ser Val		1280
	1285	

<210> 6247
<211> 497
<212> DNA
<213> Homo sapiens

<400> 6247
gcggccgcag cgctgaatgg ggtggaccga cgttccctgc agcgttcaca aggctggctc
60 tagaagtgct ggagagggcc aagaggaggg cggtgactg gcatgccctg gagcgtcccc
120 aaggctgcat ggggtcctt gcccgagg cgcacccacct agagaaacag ccggcagccg
180 gccccgcagcg cgttctcccg ggagagaaaattattcatc tggccagag gaaggaggg
240 caacccatgt ctatcgatat cacagaggcg agtcaagct gcacatgtgc ttggacatag
300 ggaatggtca gagaaaagac agaaaaaaga catcccttgg tcctggaggc agctatcaa
360

tatcagagca tgctccagag gcatcccagc ctgtgagttac ggaactgctt acgcactggg
420
tttcaccacc gttgcaactc catgaaccag ttgacatggc tcttagaggg ctatggaaat
480
tgagtctata gtatggaa
497

<210> 6248
<211> 142
<212> PRT
<213> Homo sapiens

<400> 6248
Met Gly Trp Thr Asp Val Pro Cys Ser Val His Lys Ala Gly Ser Arg
1 5 10 15
Ser Ala Gly Glu Gly Gln Glu Glu Gly Gly Leu Ala Cys Pro Gly
20 25 30
Ala Ser Gln Arg Leu His Gly Gly Pro Cys Pro Gly Gly Ala Pro Pro
35 40 45
Arg Glu Thr Ala Gly Ser Arg Pro Ala Ala Arg Ser Pro Gly Arg Glu
50 55 60
Ile Leu Phe Ile Cys Ala Arg Gly Arg Arg Gly Asn Pro Cys Leu Ser
65 70 75 80
Leu Ser Gln Arg Arg Val Glu Ala Ala His Val Leu Gly His Arg Glu
85 90 95
Trp Ser Glu Lys Arg Gln Lys Lys Asp Ile Pro Trp Ser Trp Arg Gln
100 105 110
Leu Ser Asn Ile Arg Ala Cys Ser Arg Gly Ile Pro Ala Cys Glu Tyr
115 120 125
Gly Thr Ala Tyr Ala Leu Gly Phe Thr Thr Val Ala Thr Pro
130 135 140

<210> 6249
<211> 1217
<212> DNA
<213> Homo sapiens

<400> 6249
nntgagcaac aaaccgagtt ctggagaacg ccatcagctc gctgcttaaa ctggaaacaa
60
aagtctcaac ttccaaccc tcgtcgact ggaggccca agtagcatag atctggtaa
120
tgaactgcag gtggaaattt ctgagaaggt ttcccttctta aatagaaaga ttaaaccaca
180
gtttccatta tgggtcgact tggaaa gtcatcatcc tgacggccgc tgctcagggg
240
atggccaaag cagctgcctt agctttgca agagaaggta ccaaagtcat agccacagac
300
attaatgagt ccaaacttca ggaactggaa aagtacccgg gtattcaaac tcgtgtcctt
360
gatgtcacaa agaagaaaca aattgtatcg ttgcataatg aagttgagag acttgatgtt
420
ctctttatg ttgctggttt tgtccatcat ggaactgtcc tggattgtga ggagaaagac
480

tgggacttct ccatgaatct caatgtgcgc agcatgtacc tgatgtcaa ggcatttcctt
 540
 cctaaaatgc ttgctcagaa atctggcaat attatcaaca tgtcttcgt ggcttcagc
 600
 gtc当地aggag ttgtgaacag atgtgtgtac agcacaacca aggccggcgt gattggcctc
 660
 aaaaaatctg tggctgcaga tttcatccag cagggcatca ggtgcaactg tgtgtgccca
 720
 ggaacagttg atacgcccatac tctacaagaa agaataacaag ccagaggaaa tcctgaagag
 780
 gcacggaatg atttcctgaa gagacaaaag acggaaagat tcgcaactgc agaagaaaata
 840
 gccatgctct gcgtgtatgg ggcttcgtat gaatctgctt atgttaactgg taaccctgtc
 900
 atcattgatg gaggctggag cttgtgatgg taggatctcc atgggtggaa ggaaggcagg
 960
 cccttccttat ccacagtgaa cctgggttacg aagaaaactc accaatcatac tccttcgt
 1020
 taatcacatg ttaatgaaaaa taagctcttt ttaatgatgt cactgtttgc aagagtctga
 1080
 ttcttaagt atattaatct ctttctaatac tcttcgtaaa tcattgtaaa gaaataaaaaa
 1140
 tattgaactc atagcaggag aatagttttt aaaataatac tcgatttgg agcaaaaaaaaa
 1200
 aaaaaaaaaa aaaaaaaaa
 1217

<210> 6250
 <211> 245
 <212> PRT
 <213> Homo sapiens

<400> 6250
 Met Gly Arg Leu Asp Gly Lys Val Ile Ile Leu Thr Ala Ala Ala Gln
 1 5 10 15
 Gly Ile Gly Gln Ala Ala Ala Leu Ala Phe Ala Arg Glu Gly Ala Lys
 20 25 30
 Val Ile Ala Thr Asp Ile Asn Glu Ser Lys Leu Gln Glu Leu Glu Lys
 35 40 45
 Tyr Pro Gly Ile Gln Thr Arg Val Leu Asp Val Thr Lys Lys Lys Gln
 50 55 60
 Ile Asp Gln Phe Ala Asn Glu Val Glu Arg Leu Asp Val Leu Phe Asn
 65 70 75 80
 Val Ala Gly Phe Val His His Gly Thr Val Leu Asp Cys Glu Glu Lys
 85 90 95
 Asp Trp Asp Phe Ser Met Asn Leu Asn Val Arg Ser Met Tyr Leu Met
 100 105 110
 Ile Lys Ala Phe Leu Pro Lys Met Leu Ala Gln Lys Ser Gly Asn Ile
 115 120 125
 Ile Asn Met Ser Ser Val Ala Ser Ser Val Lys Gly Val Val Asn Arg
 130 135 140
 Cys Val Tyr Ser Thr Thr Lys Ala Ala Val Ile Gly Leu Thr Lys Ser
 145 150 155 160
 Val Ala Ala Asp Phe Ile Gln Gln Gly Ile Arg Cys Asn Cys Val Cys

165	170	175
Pro Gly Thr Val Asp Thr Pro Ser Leu Gln Glu Arg Ile Gln Ala Arg		
180	185	190
Gly Asn Pro Glu Glu Ala Arg Asn Asp Phe Leu Lys Arg Gln Lys Thr		
195	200	205
Gly Arg Phe Ala Thr Ala Glu Glu Ile Ala Met Leu Cys Val Tyr Leu		
210	215	220
Ala Ser Asp Glu Ser Ala Tyr Val Thr Gly Asn Pro Val Ile Ile Asp		
225	230	235
Gly Gly Trp Ser Leu		
245		

<210> 6251
<211> 1611
<212> DNA
<213> Homo sapiens

<400> 6251
tttttttttt tttttttttt tttttttttt tttttccagat caggaagttt
60 tattgctgac atgcaggaag agtccccatg tagtacaaaa atatgtcttt atacaaaactt
120 ttttgtgact ttttccgttt cttaataata ggacttctct cagtggtgtga cacccagtga
180 gggctgaccc atcctccctt cctttgcttc accaggaatg tcatacgaca catggcttga
240 ctttggagg gcccagtctg tctgacaggg ctggcagac cccggcgcta ttgctttgaa
300 300
aaggaggaga aagaccacgc acgggcagca gcctggaggg acccggtggg ctgctgagag
360 360
ggggctccgc tgcgacgggc cttggcccaag ctcaaggccc tcacaggagg acagtcagg
420 420
gctgggagcc ctaggccgga ctgcatttcc gctcccgcaag gagactttct atgaaataaa
480 480
tatagaaaag agggcatecc ccagccccac agcacaagac cctggccctc agcgctggac
540 540
agctgagaca gacgcaggtt cgctgttcag ggggagtaag tgctgggctc cagtaggctc
600 600
ccacaggccc actgaggcag aggcatttgcgtt cggatgggg catggggaga
660 660
aaggggcggtg ggcagccctg ctactgctgg caagagggtgg ccccatttt tccagatggg
720 720
gaaactgagg cacaaggagg tttggaaact tgcccaaggt cactcacagt gagtcagctt
780 780
tttaggggaa ggagagcggtc tcacactctg gaaaacacag tcacccccc actggggagc
840 840
agggccaggc aggaggggcc tcaggccca tgactgcctg gaggggacac tcagcccttc
900 900
tgaggacata tggggggtag gcctctgggg aagggtcttt gcttggcattc aggcaggccc
960 960
aagtccagta agggcaaggg gagggggcat tctggtgaga acagcatttc tggcaagacg
1020 1020
ggcatccact tcaaaatctc ggctcaaaag ggcagcaggg ctgttctcaa gccaggcagg
1080 1080

cagggtcccc caatccctac aattccctcg agtcctcac caccatggag gacccttgct
 1140
 agggtctacc gggagagtca ccacatctat tatgaggcaa gggactggg atatgtccc
 1200
 accatcccc aaacacaaga gtaggctagg ggagcgtgca ggcagccccc gtcacggcc
 1260
 aggctgcag cccaaaccat gggcccttc gcactggag tccacgtgag ctcagtacca
 1320
 cgggaaagga tagagaaggg aacaggttaa cgccgtgta cagcacctca gagaagccac
 1380
 tgagacggga gagaaagagc caggtctaga aaggctccc atcacggca gcagagaggg
 1440
 actgggtgggc tgaaagggg cagggactgg caggagggc tccctgcct ggggggtgagg
 1500
 agggagctca cgtgtggct gtggattcct tgctgtccag ccaggctggg ggcagggagt
 1560
 gccatggac tgagccacct agagatggg gagaagttgg tatggtaan a
 1611

<210> 6252
<211> 100
<212> PRT
<213> Homo sapiens

<400> 6252
Met Gly Gly Arg Pro Leu Gly Lys Gly Leu Cys Leu Ala Ser Gly Arg
 1 5 10 15
Ala Lys Ser Ser Lys Gly Lys Gly Arg Gly His Ser Gly Glu Asn Ser
 20 25 30
Ile Ser Gly Lys Thr Gly Ile His Phe Lys Ile Ser Ala Gln Lys Gly
 35 40 45
Ser Arg Ala Val Leu Lys Pro Gly Arg Gln Gly Pro Pro Ile Pro Thr
 50 55 60
Ile Leu Leu Ser Pro Ser Pro Trp Arg Thr Leu Ala Arg Val Tyr
 65 70 75 80
Arg Glu Ser His His Ile Tyr Tyr Glu Ala Arg Ala Leu Gly Tyr Val
 85 90 95
Pro Thr Ile Pro
 100

<210> 6253
<211> 1953
<212> DNA
<213> Homo sapiens

<400> 6253
nntgtgggta gcgggcaagg cggggccgag gtttgcggc gtcgcagcg gccagaaacc
 60
cggctccgag cggccggccgc cggcttccg ctggccgtga gctaaggacg gtccgtccc
 120
tctagccagc tccgaatctt gatccaggcg gggccaggg gcccctcgcc tccccctctga
 180
ggaccgaaaga tgagcttcctt ctccagcgcg cgctttcta aaacattcaa accaaagaag
 240

aatatccctg aaggatctca tcagtatgaa ctcttaaaac atgcagaagc aactcttagga
300
agtggaaatc tgagacaagc ttttatgttg cctgagggag agatctcaa tgaatggatt
360
gtgtgaaca ctgtggattt cttaaccag atcaacatgt tataatggAAC tattacagaa
420
ttctgcactg aagcaagctg tccagtcatg tctgcaggc cgagatatga atatcactgg
480
cgagatggta ctaatattaa aaagccaatc aaatgttctg cacaaaata cattgactat
540
ttgatgactt gggtaaaga tcagcttgcat gatgaaactc ttttcccttc taagattgg
600
gtccccatttc ccaaaaactt tatgtctgtg gcaaagacta ttctaaagcg tctgttcagg
660
gtttatgccc atatttatca ccagcacttt gattctgtga tgcagctgca agaggaggcc
720
cacctcaaca ctcctttaa gcactttatt ttctttgttc aggagttaa tctgattgt
780
aggcgtgagc tggcacctct tcaagaatta atagagaaac ttggatcaaa agacagataa
840
atgtttcttc tagaacacag ttacccctt gttcatcta ttgctagaac tatctcattg
900
ctatctgtta tagacttagt atacaaactt taagaaaaca ggataaaaag atacccattg
960
cctgtgtcta ctgataaaat tatccaaag gttagtttgt gtgatagttt ccgagtaaga
1020
ccttaaggac acagccaaat cttaagtact gtgtgaccac tcttgttgc atcacatgt
1080
catacttggc tgtaatatgt gatggtaac ctgtagctt taaaatttact tattatttt
1140
ttactcattt actcagtcat ttcttacaa gaaaatgatt gaatctgttt taggtgacag
1200
cacaatggac attaagaatt tccatcaata atttatgaat aagtttccag aacaaatttc
1260
ctaataacac aatcagattt gtttattct tttatttac gaataaaaaa tgtattttc
1320
agtaccccttg agattttagaa catctgtgtc acttcagata acattttagt ttcaagtttgc
1380
tatggtagtg ttttataga taagatacgt ctattttc aaaattcattt attgcagttt
1440
aaatcatcat atgacgtgtg ggtgggagca accaaagtta ttttacagg gactttattt
1500
tttgatcttt atttgagatt gtttcatat ctatctaaat tattaggagt gtgtgtatca
1560
gaagtaattt tttaatgtct tctaaggatg gtctccagg cttaaaactt gaaaagctt
1620
atccagatag tagctttgg ctgagaaaag gaatccaaaa tattaataaa ttttagatctc
1680
aaaaccacta ttttattat ttcatatttt ttcaaggccc ttaaaattct gggtaagaga
1740
atggaggaaa atactcagag tacttgatta ttttatttcc ttttattaaa aaattacttc
1800
tatgtttta ttgtctcttg agccttagtt aagagtagtg tagaaatgca tgaacttcatt
1860

cctaataagg ataaaactta aggaaaacca caataaacca tgaaggtgta cacatcttaa

1920

aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaa

1953

<210> 6254

<211> 216

<212> PRT

<213> Homo sapiens

<400> 6254

Met	Ser	Phe	Leu	Phe	Ser	Ser	Arg	Ser	Ser	Lys	Thr	Phe	Lys	Pro	Lys
1															
														15	
Lys	Asn	Ile	Pro	Glu	Gly	Ser	His	Gln	Tyr	Glu	Leu	Leu	Lys	His	Ala
														30	
20															
Glu	Ala	Thr	Leu	Gly	Ser	Gly	Asn	Leu	Arg	Gln	Ala	Val	Met	Leu	Pro
35														45	
Glu	Gly	Glu	Asp	Leu	Asn	Glu	Trp	Ile	Ala	Val	Asn	Thr	Val	Asp	Phe
50														60	
Phe	Asn	Gln	Ile	Asn	Met	Leu	Tyr	Gly	Thr	Ile	Thr	Glu	Phe	Cys	Thr
65														80	
Glu	Ala	Ser	Cys	Pro	Val	Met	Ser	Ala	Gly	Pro	Arg	Tyr	Glu	Tyr	His
85														95	
Trp	Ala	Asp	Gly	Thr	Asn	Ile	Lys	Lys	Pro	Ile	Lys	Cys	Ser	Ala	Pro
100														110	
Lys	Tyr	Ile	Asp	Tyr	Leu	Met	Thr	Trp	Val	Gln	Asp	Gln	Leu	Asp	Asp
115														125	
Glu	Thr	Leu	Phe	Pro	Ser	Lys	Ile	Gly	Val	Pro	Phe	Pro	Lys	Asn	Phe
130														140	
Met	Ser	Val	Ala	Lys	Thr	Ile	Leu	Lys	Arg	Leu	Phe	Arg	Val	Tyr	Ala
145														160	
His	Ile	Tyr	His	Gln	His	Phe	Asp	Ser	Val	Met	Gln	Leu	Gln	Glu	Glu
165														175	
Ala	His	Leu	Asn	Thr	Ser	Phe	Lys	His	Phe	Ile	Phe	Phe	Val	Gln	Glu
180														190	
Phe	Asn	Leu	Ile	Asp	Arg	Arg	Glu	Leu	Ala	Pro	Leu	Gln	Glu	Leu	Ile
195														205	
Glu	Lys	Leu	Gly	Ser	Lys	Asp	Arg								
210														215	

<210> 6255

<211> 622

<212> DNA

<213> Homo sapiens

<400> 6255

nntccggagg	ctgagacagg	agaatcgctt	gaacccagga	ggcccgagggtt	gcagtggacc
60					
gagatcatgc	cattgcactc	cagcctgggc	aacagagtga	gacttcatct	aaaaaaaaaa
120					
aaagccacag	tggctgcctt	cacagccagc	gagggccacg	cacatcccag	ggttagtgag
180					
ctacccaaga	cggatgaggg	cctaggcttc	aacatcatgg	gtggcaaaga	gcaaaaactcg
240					

cccatctaca tctccccgtt catcccaggg ggtgtggctg accgcctatgg aggcctcaag
 300
 cgtggggatc aactgttgtc ggtgaacggt gtgagcggtt agggtgagca gcatgagaag
 360
 gcggtggagc tgctgaaggc ggcccagggc tcgggtgaagc tgggtgtccg ttacacaccc
 420
 cgagtgtgg aggagatgga ggcccggttc gagaagatgc gctctgccccg ccggcgccaa
 480
 cagcatcaga gctactcgta cttggagtttctt ctaggttcaa accacagatc tggacgttca
 540
 cgtgcactctt cttectgtac agtattttttt gttcctggca ctttattttaa agatttttta
 600
 ccctcaaaaa aaaaaaaaaaa aa
 622

<210> 6256
 <211> 150
 <212> PRT
 <213> Homo sapiens

<400> 6256
 Met Pro Leu His Ser Ser Leu Gly Asn Arg Val Arg Leu His Leu Lys
 1 5 10 15
 Lys Lys Lys Ala Thr Val Ala Ala Phe Thr Ala Ser Glu Gly His Ala
 20 25 30
 His Pro Arg Val Val Glu Leu Pro Lys Thr Asp Glu Gly Leu Gly Phe
 35 40 45
 Asn Ile Met Gly Gly Lys Glu Gln Asn Ser Pro Ile Tyr Ile Ser Arg
 50 55 60
 Val Ile Pro Gly Gly Val Ala Asp Arg His Gly Gly Leu Lys Arg Gly
 65 70 75 80
 Asp Gln Leu Leu Ser Val Asn Gly Val Ser Val Glu Gly Glu Gln His
 85 90 95
 Glu Lys Ala Val Glu Leu Leu Lys Ala Ala Gln Gly Ser Val Lys Leu
 100 105 110
 Val Val Arg Tyr Thr Pro Arg Val Leu Glu Glu Met Glu Ala Arg Phe
 115 120 125
 Glu Lys Met Arg Ser Ala Arg Arg Arg Gln Gln His Gln Ser Tyr Ser
 130 135 140
 Ser Leu Glu Ser Arg Gly
 145 150

<210> 6257
 <211> 2216
 <212> DNA
 <213> Homo sapiens

<400> 6257
 nttttttttt tttttttttt ttttttgctc agcaatcttt attcagttct tcttgggggt
 60
 gggatgcctc cttcccatg ctcccacccc tcccatccca gaactccgtt gggctcagt
 120
 tcctctgttg agggaaaggta ttgggtgccca gatgcctact ctgcaggaga gggaggaaacc
 180

ttgtccccctt gcggggagtcg ctggctcttt ctgttgtggg gaagaaggaa ggtgggaggg
240
gcactgtcca ccagcactca gagctccatt atgtccccag ctggggttgc agggtagggg
300
ggactggggg tgcgtccccag cctcagcaga cgaggggcct cagggatgag gctgccagga
360
tagcgccaga gaagcagcgc agagcaaggg ctccctgagtg ggggcagggc tggggagaag
420
gtcatggggg ggctgcagta ggggtggtca ttgtgcaggc tgagttgaga gaagtgggtg
480
gcccattttct cctcagacag aaactgcttg cgccagggct cctgtcttc ctcaggcgc
540
cgcttggtgc tcataggcac agctccctgg agaggggagc tggcgtccag gccccaaagtc
600
acccccaagg cggcccgccgg gaggcgctgg gcccctccct gggggcctcg ctgcaaggc
660
tgctgcagga tcattgggtt ttggggctt ggggtggga tctgggcac aggggaggag
720
tctctgaggg cgtggccaag agaggatggg cgtggctta ggcgggcaca gccgcgaggt
780
tctgcgcggg cgccggaaagc gggccgcgcg tggcggaaagg caggcttgc ctcggggcg
840
ggggagggta tccggctaa ggggctgcg gtggacacca ctcttaatg tcgggggtct
900
tcgcggcgct cacctcggtt cctagggttc gggacggtac gcaccagcca cttcgcgc
960
gaaggcggta gggccacg gagaggaacc gctctaggca cgtaaggcct cgtgaggttg
1020
cgtcgcgcgc ggagcactct gggacttgc gttctggaga tggagcgagc tgtgccgc
1080
gcgggtgcctc tgggtcagac agaggtgttc caggcctgc agcggctcca tatgaccatc
1140
ttctcccaga gctgttcacc atgtggaaag ttctggcgg ctggcaacaa ttacgggc
1200
attgcacatct tcagcttgc ctctgcattt agtcagaag ccaaagagga aagtaagaag
1260
ccgggtgtga ctttccaagc ccatgatggg cccgtctata gcatggttc caccgatcga
1320
catctgtta gtgtgggaa tggggaggtg aaggcctggc tttgggcgg gatgctcaag
1380
aagggtgtta aggagctgtg gcgtcgctag cttccataaca ggaccagcct ggaagtgc
1440
gagatcaacg ctttgcgtct ggtccccaaag gagaattccc tcatacgttgc tggggagac
1500
tgtcagggtgc acactatgga cttgaaaact gggactttca cgagggctct ccggggccac
1560
acagactaca tccactgcct ggcactgcgg gaaaggagcc cagaggtgtc gtcagggtggc
1620
gaggatggag ctgttcgact ttgggacctg cgacacagcca aggaggtcca gacgatcgag
1680
tctataagca cgaggagtgcc tcgaggcccc acaatggcgc ctggatttggaa tgtttggact
1740
gattccgact ggatggtctg tggagggggc ccagccctca ccctctggca cttccgatcc
1800

tccacaccca ccaccatctt ccccatccgg gcgccacaga agcacgtcac cttctaccag
 1860
 gacctgattc tgtcagctgg ccagggccgc tgcgtcaacc agtggcagct gagcggggag
 1920
 ctgaaggccc aggtgcctgg ctctccccca gggctgctca gcctcagcct caaccagcag
 1980
 cctgccgcgc ctgagtgcaa ggtcctgaca gctgcaggca acagctgccg ggtggatgtc
 2040
 ttcaccaacc tgggttaccc agcctctcc ctgtccttct gatctctgac gacacccca
 2100
 gccagcttag ggttttagag tgttttcat ttctttttt tttttttt tacaataaaag
 2160
 ttcaggctt tttaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaa
 2216

<210> 6258
<211> 340
<212> PRT
<213> Homo sapiens

<400> 6258
 Met Glu Arg Ala Val Pro Leu Ala Val Pro Leu Gly Gln Thr Glu Val
 1 5 10 15
 Phe Gln Ala Leu Gln Arg Leu His Met Thr Ile Phe Ser Gln Ser Val
 20 25 30
 Ser Pro Cys Gly Lys Phe Leu Ala Ala Gly Asn Asn Tyr Gly Gln Ile
 35 40 45
 Ala Ile Phe Ser Leu Ser Ser Ala Leu Ser Ser Glu Ala Lys Glu Glu
 50 55 60
 Ser Lys Lys Pro Val Val Thr Phe Gln Ala His Asp Gly Pro Val Tyr
 65 70 75 80
 Ser Met Val Ser Thr Asp Arg His Leu Leu Ser Ala Gly Asp Gly Glu
 85 90 95
 Val Lys Ala Trp Leu Trp Ala Glu Met Leu Lys Lys Gly Cys Lys Glu
 100 105 110
 Leu Trp Arg Arg Gln Pro Pro Tyr Arg Thr Ser Leu Glu Val Pro Glu
 115 120 125
 Ile Asn Ala Leu Leu Leu Val Pro Lys Glu Asn Ser Leu Ile Leu Ala
 130 135 140
 Gly Gly Asp Cys Gln Leu His Thr Met Asp Leu Glu Thr Gly Thr Phe
 145 150 155 160
 Thr Arg Val Leu Arg Gly His Thr Asp Tyr Ile His Cys Leu Ala Leu
 165 170 175
 Arg Glu Arg Ser Pro Glu Val Leu Ser Gly Gly Glu Asp Gly Ala Val
 180 185 190
 Arg Leu Trp Asp Leu Arg Thr Ala Lys Glu Val Gln Thr Ile Glu Ser
 195 200 205
 Ile Ser Thr Arg Ser Ala Arg Gly Pro Thr Met Gly Ala Gly Leu Asp
 210 215 220
 Val Trp Thr Asp Ser Asp Trp Met Val Cys Gly Gly Gly Pro Ala Leu
 225 230 235 240
 Thr Leu Trp His Leu Arg Ser Ser Thr Pro Thr Thr Ile Phe Pro Ile
 245 250 255
 Arg Ala Pro Gln Lys His Val Thr Phe Tyr Gln Asp Leu Ile Leu Ser

260	265	270
Ala Gly Gln Gly Arg Cys Val Asn Gln Trp Gln Leu Ser Gly Glu Leu		
275	280	285
Lys Ala Gln Val Pro Gly Ser Ser Pro Gly Leu Leu Ser Leu Ser Leu		
290	295	300
Asn Gln Gln Pro Ala Ala Pro Glu Cys Lys Val Leu Thr Ala Ala Gly		
305	310	315
Asn Ser Cys Arg Val Asp Val Phe Thr Asn Leu Gly Tyr Arg Ala Phe		
325	330	335
Ser Leu Ser Phe		
340		

<210> 6259

<211> 384

<212> DNA

<213> Homo sapiens

<400> 6259

```

ccatgcagcg atccccataga acacagctca gagtctgata acagtgtcct taaaattcca
60
gatgctttcg atagaacaga gaacatgtta tctatgcaga aaaatgaaaa gataaagtat
120
tcttaggttg ctgccacaaa cactaggta aaagcaaaac agaagcctct cattagtaac
180
tcacatacag accacttaat gggttgtact aagagtgcag agcctggAAC cgagacgtct
240
caggtaatt cttctctga tctgaaggca tctacttttgc ttcacaaaacc ccagtcagat
300
tttacaaaatg atgctctctc tccaaaatttca aacctgtcat caagcatatc cagtgagaac
360
tcgtaataaa agggtggggc agca
384

```

<210> 6260

<211> 128

<212> PRT

<213> Homo sapiens

<400> 6260

```

Pro Cys Ser Asp Pro Ile Glu His Ser Ser Glu Ser Asp Asn Ser Val
1           5          10          15
Leu Glu Ile Pro Asp Ala Phe Asp Arg Thr Glu Asn Met Leu Ser Met
20          25          30
Gln Lys Asn Glu Lys Ile Lys Tyr Ser Arg Phe Ala Ala Thr Asn Thr
35          40          45
Arg Val Lys Ala Lys Gln Lys Pro Leu Ile Ser Asn Ser His Thr Asp
50          55          60
His Leu Met Gly Cys Thr Lys Ser Ala Glu Pro Gly Thr Glu Thr Ser
65          70          75          80
Gln Val Asn Ser Phe Ser Asp Leu Lys Ala Ser Thr Leu Val His Lys
85          90          95
Pro Gln Ser Asp Phe Thr Asn Asp Ala Leu Ser Pro Lys Phe Asn Leu
100         105         110
Ser Ser Ser Ile Ser Ser Glu Asn Ser Leu Ile Lys Gly Gly Ala Ala

```

115

120

125

<210> 6261
<211> 3619
<212> DNA
<213> Homo sapiens

<400> 6261
ntccctgcag gctctgcgtc gggaaagccg ctcattctcg cttcccccttc cctttccccc
60
ctcaagtccct tcctctctct ttcctttctt tccgcctatc tttttctgc tgccgcctcc
120
ggtccggggcc attttccggg ccggggcgac taagggtgcgc ggcccccggg cccagtatat
180
gacccggccgt cctgctatcc ttgcgttccc cgcgcgcatacg tggctgcggg gccgcggccg
240
cgctgcccac tatggcccg aaagtagtta gcaggaagcg gaaagcgccc gcctcgccgg
300
gagctgggag cgacgctcat gggccgcag tttggctggg atcactcgct tcacaaaagg
360
aaaagacttc ctccctgtcaa gagatccta gtatactact tgaagaaccg ggaagtcagg
420
ctacagaatg aaaccagcta ctctcgatgt ttgcattgtt atgcagcaca gcaacttccc
480
agtctcctga aggagagaga gttcacctt gggaccctta ataaagtgtt tgcattctcag
540
tggttgaatc ataggcaatg ggtgtgtggc aaaaaatgca acacgctatt tgcgttagat
600
gtccagacaa gccagatcac caagatcccc attctgaaag accgggagcc tggaggtgt
660
acccagcagg gctgtggtat ccatgccatc gagctgaatc cttctagaac actgctagecc
720
actggaggag acaaccccaa cagtcttgcc atctatcgac tacctacgct ggatcctgt
780
tgtgttaggag atgatggaca caaggactgg atctttcca tcgcattggat cagcgacact
840
atggcagtgt ctggctcacg tcatgggtct atgggactct gggaggtgac agatgatgtt
900
ttgaccaaaa gtgatgctgac acacaatgtg tcacgggtcc ctgtgtatgc acacatcact
960
cacaaggcct taaaggacat cccaaagaa gacacaaacc ctgacaaactg caaggttcgg
1020
gctctggcct tcaacaacaa gaacaaggaa ctgggagcag tgtctctgga tggctacttt
1080
catctctgga aggctgaaaa tacactatct aagctctct ccaccaaact gccatattgc
1140
cgtgagaatg tgtgtctggc ttatggtagt gaatggtcag tttatgcagt gggctcccaa
1200
gctcatgtct cttcttgga tccacggcag ccatcataca acgtcaagtc tgtctgttcc
1260
agggagcgag gcagtggaat ccggtcagtg agtttctacg agcacatcat cactgtggga
1320
acagggcagg gctccctgct gttctatgac atccgagctc agagatttct ggaagagagg
1380

ctctcagctt gttatgggtc caagcccaga ctgcgggg agaatctgaa actaaccact
1440
ggcaaaggct ggctgaatca tcatgaaacc tgaggatt actttcaga cattgacttc
1500
ttccccaaatg ctgttacac ccactgtcac gactcgctg gaacgaaact ctttgtggca
1560
ggaggtcccc tcccttcagg gctccatgga aactatgctg ggctctggag ttaatgacaa
1620
ctccccaaat gcagagattt acactaactt ccattcttag tttccttgtt tctttgatt
1680
tttttttcc taattgtgtg aggctttgt gttttagtgg gaacaccaaa gtttgcctat
1740
agttaggca cttaatagga agaagctctg tacagaaatc tgaaagttt tttgctttt
1800
gttttccctt ttggtaatca aaattttact atcttttatt atttctggct tttcaaccaa
1860
acattgttgc taatccctat ttttctttaa gtgacacaca ttctcctgtc tctggcttct
1920
tcaggctgaa atgacatagt ctttctcacc cttacttcac tcttgagagg tagggctct
1980
ttataattac atggttgctc tcagactttc tgtgaaagtt tggagctgt gtgtgtctgt
2040
gtgtgtgtga gagagagatc ttgtctcggt gtgtgtgt gatcttgcgt gcctgttaggt
2100
actgtgtgtc actgaaatta cctggagtga ggattacttg taattaaaaat atttataaaa
2160
gaaacaactt tattcacaga gtcagctt gggactagtc tgcattttgt ttttaagtc
2220
taacaacact gataatagga agtaaaaaca gaaaggaaaa gaaattacca ctggggaaat
2280
cttttttagtt agattgttagg cttctgggg cttccatgc caggactgca aagtgtatcca
2340
gccttacctg tcttccacc tttgtgtccc ccgtgtggga agttgggtgc acttccctt
2400
ccaccctca catctgttta gccagtagcc acaccctaa aacatcagac tcaccatcca
2460
ggtgcagctc cagaggctac aaaaggcttc atgggacttg aatccccatc ctagcttc
2520
tctctttccc ctcaagacct gatctggttt taagggccct ggagctggga gtctcaagtc
2580
tgctaaagatt cacatccata gccccatgg ctttggaggag aatccctctc gccattttc
2640
caatctcccc agtgggtttt gctattattt tctaaattgg gttaaatctt agaagggtgg
2700
ggtgagcagg gggtttatct gtgtgttagt agtgcttcat gtgtggata ttcattttct
2760
tactgcagtg ggacttgggg ttgaagccac ccctctact ctgtggctt agccctgaga
2820
tggtgacagg ctggcctgca gtcagcatca ttgtgcattt gacagcatca atgtgattag
2880
taatttgc tttccctt tgaactgtct gtttagtctg aggtttttaa acttgcaggc
2940
agctgactgt gatgtccact tgttccctga tttttacaca tcatgtcaaa gataacagct
3000

gttccccaccc accagttcct ctaagcacat actctgcttt tctgtcaaca tcccattttg
 3060
 gggaaaggaa aagtcatatt tattcctgca ccccagttt ttaacttgtt ctcccagttg
 3120
 tccccctctt ctctgggtgt aagaaggaa attggaaaaa aaatttatata tatattctcc
 3180
 ttttaatggt gggggctac tggagaggag agacagcaag tccaccctaa cttgttacac
 3240
 agcacatacc acaggttctg gaattctcat ctgcgaacct agagaaatag gtgctataaa
 3300
 cagggattt a gcaaaatgc tggatgctat agatcttttta attgtcttaa tttttttct
 3360
 attattaaac tacaggttgtt agatttctta gttctcacag aacttctatc attttaact
 3420
 gacttgata tttaaaaaaaaaa aaatcttcag taggatgttt tgtactattt ctagaccctc
 3480
 ttctgtaatg ggtaatgcgt ttgattgttt gagattttct gttttaaaaa atgttagcact
 3540
 tgactttttt ccaaggaaaaa aaataaaaat tattccagtg caaaaaaaaaaaaaaaa
 3600
 aaaaaaaaaaaaaaaa
 3619

<210> 6262
 <211> 431
 <212> PRT
 <213> Homo sapiens

<400> 6262
 Met Gly Pro Gln Phe Gly Trp Asp His Ser Leu His Lys Arg Lys Arg
 1 5 10 15
 Leu Pro Pro Val Lys Arg Ser Leu Val Tyr Tyr Leu Lys Asn Arg Glu
 20 25 30
 Val Arg Leu Gln Asn Glu Thr Ser Tyr Ser Arg Val Leu His Gly Tyr
 35 40 45
 Ala Ala Gln Gln Leu Pro Ser Leu Leu Lys Glu Arg Glu Phe His Leu
 50 55 60
 Gly Thr Leu Asn Lys Val Phe Ala Ser Gln Trp Leu Asn His Arg Gln
 65 70 75 80
 Val Val Cys Gly Thr Lys Cys Asn Thr Leu Phe Val Val Asp Val Gln
 85 90 95
 Thr Ser Gln Ile Thr Lys Ile Pro Ile Leu Lys Asp Arg Glu Pro Gly
 100 105 110
 Gly Val Thr Gln Gln Gly Cys Gly Ile His Ala Ile Glu Leu Asn Pro
 115 120 125
 Ser Arg Thr Leu Leu Ala Thr Gly Gly Asp Asn Pro Asn Ser Leu Ala
 130 135 140
 Ile Tyr Arg Leu Pro Thr Leu Asp Pro Val Cys Val Gly Asp Asp Gly
 145 150 155 160
 His Lys Asp Trp Ile Phe Ser Ile Ala Trp Ile Ser Asp Thr Met Ala
 165 170 175
 Val Ser Gly Ser Arg Asp Gly Ser Met Gly Leu Trp Glu Val Thr Asp
 180 185 190
 Asp Val Leu Thr Lys Ser Asp Ala Arg His Asn Val Ser Arg Val Pro

195	200	205
Val Tyr Ala His Ile Thr His Lys Ala Leu Lys Asp Ile Pro Lys Glu		
210	215	220
Asp Thr Asn Pro Asp Asn Cys Lys Val Arg Ala Leu Ala Phe Asn Asn		
225	230	235
Lys Asn Lys Glu Leu Gly Ala Val Ser Leu Asp Gly Tyr Phe His Leu		
245	250	255
Trp Lys Ala Glu Asn Thr Leu Ser Lys Leu Leu Ser Thr Lys Leu Pro		
260	265	270
Tyr Cys Arg Glu Asn Val Cys Leu Ala Tyr Gly Ser Glu Trp Ser Val		
275	280	285
Tyr Ala Val Gly Ser Gln Ala His Val Ser Phe Leu Asp Pro Arg Gln		
290	295	300
Pro Ser Tyr Asn Val Lys Ser Val Cys Ser Arg Glu Arg Gly Ser Gly		
305	310	315
Ile Arg Ser Val Ser Phe Tyr Glu His Ile Ile Thr Val Gly Thr Gly		
325	330	335
Gln Gly Ser Leu Leu Phe Tyr Asp Ile Arg Ala Gln Arg Phe Leu Glu		
340	345	350
Glu Arg Leu Ser Ala Cys Tyr Gly Ser Lys Pro Arg Leu Ala Gly Glu		
355	360	365
Asn Leu Lys Leu Thr Thr Gly Lys Gly Trp Leu Asn His Asp Glu Thr		
370	375	380
Trp Arg Asn Tyr Phe Ser Asp Ile Asp Phe Phe Pro Asn Ala Val Tyr		
385	390	395
Thr His Cys Tyr Asp Ser Ser Gly Thr Lys Leu Phe Val Ala Gly Gly		
405	410	415
Pro Leu Pro Ser Gly Leu His Gly Asn Tyr Ala Gly Leu Trp Ser		
420	425	430

<210> 6263

<211> 2508

<212> DNA

<213> Homo sapiens

<400> 6263

nnggcacgag gcaacctgcc ctcatcctgg cccgcgactg taagaccgga cccacatcca
60
gaccaatctt cctgtccggg ctgctgcac gcgggctccg caggttgcag gcgggcggcc
120
ggggcgcctg aaggttaccg agtgcattgag cgccctagcgc ttcccccgct gccccggcc
180
ctggcccgcc gacccggcccg ccggctcgcc cgccagcccc tcggcgcccg gggcgccgg
240
cgccgggtggc ggccacggtc gcaggagggtg ccgtctgcct cccaggtgcg cgcttcgcctc
300
ccggagccgc ggaactcggc ggccgccatg gcgtccaaca tggaccggga gatgatcctg
360
gcgggatttc aggcatgtac tggcattgaa aacattgacg aagctattac attgcttgaa
420
caaaaataatt gggacttagt ggcagctatc aatggtgtaa taccacagga aatggcatt
480
ctacaaaatgt aatatggagg tgagaccata ccaggacctg catttaatcc agcaagtcat
540

ccagcttcag ctcttacttc ctctttttct tcagcgtttc gacctgtaat gccatccagg
600
cagattgttag aaaggcaacc tcggatgctg gacttcaggg ttgaatacag agacagaaat
660
gttcatgtgg tacttgaaga cacctgtact gttggagaga ttaaacagat tctagaaaat
720
gaacttcaga tacctgtgtc caaaatgctg ttaaaaaggct ggaagacggg agatgtggaa
780
gacagtacgg tcctaaaaatc tctacacttg ccaaaaaaca acagtcttta tgcccttaca
840
ccagatttgc caccacccctc atcatctagt catgctggtg ccctgcagga gtcattaaat
900
caaaacttca tgctgatcat caccacccga gaagtccagc gggagtacaa cctgaacttc
960
tcaggaagca gtactattca agaggtaaag agaaatgtgt atgaccttac aagtatcccc
1020
gttcgccacc aattatggga gggctggcca acttctgcta cagacgactc aatgtgtctt
1080
gctgaatcag ggctcttta tccctgccat cgacttacag tgggaagaag atcttaccc
1140
gcacagaccc gggAACAGTC ggaagaacaa atcaccgatg ttcatatgtt tagttagatgc
1200
gatggagatg actttgaaga tgctacagaa tttgggggtt atgatggaga agtatttggc
1260
atggcgcat ctgccttgag aaaatctcca atgatttgtt ttttagtgcc agaaaacgca
1320
aaaaatgaag gagatgcctt attacaattt acagcagagt tttcttcaag atatggat
1380
tgccatcctg tatttttat tggctcatta gaagctgtttt ttcaagaggc cttctatgtg
1440
aaagccccag atagaaagct tcttgcatac tacctccacc atgatgaaag tgtgttaacc
1500
aacgtttct gctcacaaat gctttgtgtt gaatccattt tttttatct gagtcaaaat
1560
tttataaccc gggcttggga tctgacaaaag gactccaaca gagcaagatt tctcaactatg
1620
tgcaatagac actttggcag tggatggca caaaccattt ggactcaaaa aacggatcag
1680
tttccgcctt tcctgattat tatggaaag cgatcatcta atgaagtgtt gaatgtgata
1740
caagggaaaca caacagtata tgagttaatg atgagactca tggctgcaat ggagatctc
1800
acagccccac aacaggaaga tataaaggac gaggatgaac gtgaagccag agaaaatgtg
1860
aagagagagc aagatgaggc ctatcgctt tcacttgagg ctgacagagc aaagagggaa
1920
gctcacgaga gagagatggc agaacagttt cgtttggagc agattcgcaa agaacaagaa
1980
gaggaacgtg aggccatccg gctgtcctt gagcaagccc tgcctctga gccaaaggaa
2040
aaaaatgtcg agcctgtgag caaactgcggg atccggaccc ccagtggcga gttttggag
2100
cggcggttcc tggccagcaa caagctccag attgtctttt attttgtac ttccaaaggaa
2160

tttccatggg atgagtacaa gttactgagc acctttccta ggagagacgt aactcaactg
 2220
 gacccaaata aatcattatt ggaggtaaag ttgttccctc aagaaaccct tttccttcaa
 2280
 gaaaaagagt aaacacggcc cagcggtgga accagccatt ccttgacaag ccagcagcct
 2340
 gcgtcaggag aagggctcct cgccaaaccca cccacacgct cgtctcactc aattcaatgt
 2400
 cacacttctg cctcttgcaa aattgctgga aaaagtaata ataaatatag ctacttaaga
 2460
 tttcccaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaa
 2508

<210> 6264
 <211> 654
 <212> PRT
 <213> Homo sapiens

<400> 6264
 Met Ala Ser Asn Met Asp Arg Glu Met Ile Leu Ala Asp Phe Gln Ala
 1 5 10 15
 Cys Thr Gly Ile Glu Asn Ile Asp Glu Ala Ile Thr Leu Leu Glu Gln
 20 25 30
 Asn Asn Trp Asp Leu Val Ala Ala Ile Asn Gly Val Ile Pro Gln Glu
 35 40 45
 Asn Gly Ile Leu Gln Ser Glu Tyr Gly Gly Glu Thr Ile Pro Gly Pro
 50 55 60
 Ala Phe Asn Pro Ala Ser His Pro Ala Ser Ala Pro Thr Ser Ser Ser
 65 70 75 80
 Ser Ser Ala Phe Arg Pro Val Met Pro Ser Arg Gln Ile Val Glu Arg
 85 90 95
 Gln Pro Arg Met Leu Asp Phe Arg Val Glu Tyr Arg Asp Arg Asn Val
 100 105 110
 Asp Val Val Leu Glu Asp Thr Cys Thr Val Gly Glu Ile Lys Gln Ile
 115 120 125
 Leu Glu Asn Glu Leu Gln Ile Pro Val Ser Lys Met Leu Leu Lys Gly
 130 135 140
 Trp Lys Thr Gly Asp Val Glu Asp Ser Thr Val Leu Lys Ser Leu His
 145 150 155 160
 Leu Pro Lys Asn Asn Ser Leu Tyr Val Leu Thr Pro Asp Leu Pro Pro
 165 170 175
 Pro Ser Ser Ser His Ala Gly Ala Leu Gln Glu Ser Leu Asn Gln
 180 185 190
 Asn Phe Met Leu Ile Ile Thr His Arg Glu Val Gln Arg Glu Tyr Asn
 195 200 205
 Leu Asn Phe Ser Gly Ser Ser Thr Ile Gln Glu Val Lys Arg Asn Val
 210 215 220
 Tyr Asp Leu Thr Ser Ile Pro Val Arg His Gln Leu Trp Glu Gly Trp
 225 230 235 240
 Pro Thr Ser Ala Thr Asp Asp Ser Met Cys Leu Ala Glu Ser Gly Leu
 245 250 255
 Ser Tyr Pro Cys His Arg Leu Thr Val Gly Arg Arg Ser Ser Pro Ala
 260 265 270
 Gln Thr Arg Glu Gln Ser Glu Glu Gln Ile Thr Asp Val His Met Val

275	280	285
Ser Asp Ser Asp Gly Asp Asp Phe Glu Asp Ala Thr	Glu Phe Gly Val	
290	295	300
Asp Asp Gly Glu Val Phe Gly Met Ala Ser Ser Ala	Leu Arg Lys Ser	
305	310	315
320		
Pro Met Ile Cys Phe Leu Val Pro Glu Asn Ala Glu	Asn Glu Gly Asp	
325	330	335
Ala Leu Leu Gln Phe Thr Ala Glu Phe Ser Ser Arg	Tyr Gly Asp Cys	
340	345	350
His Pro Val Phe Phe Ile Gly Ser Leu Glu Ala Ala	Phe Gln Glu Ala	
355	360	365
Phe Tyr Val Lys Ala Arg Asp Arg Lys Leu Leu Ala	Ile Tyr Leu His	
370	375	380
His Asp Glu Ser Val Leu Thr Asn Val Phe Cys Ser	Gln Met Leu Cys	
385	390	395
400		
Ala Glu Ser Ile Val Ser Tyr Leu Ser Gln Asn Phe	Ile Thr Trp Ala	
405	410	415
Trp Asp Leu Thr Lys Asp Ser Asn Arg Ala Arg Phe	Leu Thr Met Cys	
420	425	430
Asn Arg His Phe Gly Ser Val Val Ala Gln Thr Ile	Arg Thr Gln Lys	
435	440	445
Thr Asp Gln Phe Pro Leu Phe Leu Ile Ile Met Gly	Lys Arg Ser Ser	
450	455	460
Asn Glu Val Leu Asn Val Ile Gln Gly Asn Thr Thr	Val Asp Glu Leu	
465	470	475
480		
Met Met Arg Leu Met Ala Ala Met Glu Ile Phe Thr	Ala Gln Gln Gln	
485	490	495
Glu Asp Ile Lys Asp Glu Asp Glu Arg Glu Ala Arg	Glu Asn Val Lys	
500	505	510
Arg Glu Gln Asp Glu Ala Tyr Arg Leu Ser Leu Glu	Ala Asp Arg Ala	
515	520	525
Lys Arg Glu Ala His Glu Arg Glu Met Ala Glu Gln	Phe Arg Leu Glu	
530	535	540
Gln Ile Arg Lys Glu Gln Glu Glu Arg Glu Ala Ile	Arg Leu Ser	
545	550	555
560		
Leu Glu Gln Ala Leu Pro Pro Glu Pro Lys Glu Glu	Asn Ala Glu Pro	
565	570	575
Val Ser Lys Leu Arg Ile Arg Thr Pro Ser Gly Glu	Phe Leu Glu Arg	
580	585	590
Arg Phe Leu Ala Ser Asn Lys Leu Gln Ile Val Phe	Asp Phe Val Ala	
595	600	605
Ser Lys Gly Phe Pro Trp Asp Glu Tyr Lys Leu Leu	Ser Thr Phe Pro	
610	615	620
Arg Arg Asp Val Thr Gln Leu Asp Pro Asn Lys Ser	Leu Leu Glu Val	
625	630	635
640		
Lys Leu Phe Pro Gln Glu Thr Leu Phe Leu Glu Ala	Lys Glu	
645	650	

<210> 6265

<211> 1344

<212> DNA

<213> Homo sapiens

<400> 6265

nnagcacttc cagcctctca ccgacccgga caacaaggc ttaaccata tttaactttg
60
aacacctctg gtagtggaaac aattttata gatctgtctc ctgtatgataa agagtttcag
120
tctgtggagg aagagatgca aagtacagtt cgagagcaca gagatggagg tcgtgcagg
180
ggaatcttca acagatacaa tattctcaag attcagaagg tttgtAACAA gaaactatgg
240
gaaagataca ctcaccggag aaaagaagtt tctgaagaaa accacaacca tgccaatgaa
300
cgaatgctat ttcatgggc tcctttgtg aatgcaatta tccacaaagg ctttgatgaa
360
aggcatgcgt acatagggtgg tatgtttggc gctggcattt atttgctga aaactcttcc
420
aaaAGCAATC aatatgtata tggaaattggc ggaggtactg ggtgtccagt tcacaaagac
480
agatcttgtt acatttgcac caggcagctg ctctttgcc gggtaacctt gggaaagtct
540
ttcctgcagt tcagtgcac gaaaatggca cattctccctc caggtcatca ctcagtcact
600
ggtagggcca gtgtaaatgg cctagcatta gctgaatatg ttatttacag aggagaacag
660
gtttatcctg agtatttaat tacttaccag attatgaggc ctgaaggat ggtcgatgg
720
taaatagttt ttttaagaaa ctaattccac tgaacctaaa atcatcaaag cagcagtggc
780
ctctacgttt tactcctttg ctgaaaaaaaaa atcatcttgc ccacaggcct gtggcaaaag
840
gataaaaaatg tgaacgaagt ttaacattct gacttgataa agcttaata atgtacagt
900
ttttctaaat atttcctgtt ttttcagcac ttttaacagat gccattccag gttaaactgg
960
gttgtctgtt ctaaattata aacagagttt acttgaacct tttatgtt atgcattgt
1020
tctaacaacatc tgtaatgccc tcaacagaac taatttact aatacaatac tgtgttctt
1080
aaaacacacgc atttacactg aatacaattt catttgtaaa actgtaaata agagctttg
1140
taactagggca gtatttattt acattgcttt gtaatataaa tctgttttag aactgcagcg
1200
gtttacaaaaa tttttcata tgtattgttc atctataactt catcttacat cgtcatgatt
1260
gagtgtatctt tacatttgat tccagaggct atgttcagtt gttagttggg aaagattgag
1320
ttatcagatt taatttgcgg atgg
1344

<210> 6266
<211> 240
<212> PRT
<213> Homo sapiens

<400> 6266
Xaa Ala Leu Pro Ala Ser His Arg Pro Gly Gln Gln Gly Leu Asn Pro

1	5	10	15												
Tyr	Leu	Thr	Leu	Asn	Thr	Ser	Gly	Ser	Gly	Thr	Ile	Leu	Ile	Asp	Leu
20					25									30	
Ser	Pro	Asp	Asp	Lys	Glu	Phe	Gln	Ser	Val	Glu	Glu	Glu	Met	Gln	Ser
35					40								45		
Thr	Val	Arg	Glu	His	Arg	Asp	Gly	Gly	His	Ala	Gly	Gly	Ile	Phe	Asn
50					55								60		
Arg	Tyr	Asn	Ile	Leu	Lys	Ile	Gln	Lys	Val	Cys	Asn	Lys	Lys	Leu	Trp
65					70						75			80	
Glu	Arg	Tyr	Thr	His	Arg	Arg	Lys	Glu	Val	Ser	Glu	Glu	Asn	His	Asn
85					90						95				
His	Ala	Asn	Glu	Arg	Met	Leu	Phe	His	Gly	Ser	Pro	Phe	Val	Asn	Ala
100					105								110		
Ile	Ile	His	Lys	Gly	Phe	Asp	Glu	Arg	His	Ala	Tyr	Ile	Gly	Gly	Met
115					120								125		
Phe	Gly	Ala	Gly	Ile	Tyr	Phe	Ala	Glu	Asn	Ser	Ser	Lys	Ser	Asn	Gln
130					135							140			
Tyr	Val	Tyr	Gly	Ile	Gly	Gly	Gly	Thr	Gly	Cys	Pro	Val	His	Lys	Asp
145					150					155			160		
Arg	Ser	Cys	Tyr	Ile	Cys	His	Arg	Gln	Leu	Leu	Phe	Cys	Arg	Val	Thr
165					170							175			
Leu	Gly	Lys	Ser	Phe	Leu	Gln	Phe	Ser	Ala	Met	Lys	Met	Ala	His	Ser
180					185							190			
Pro	Pro	Gly	His	His	Ser	Val	Thr	Gly	Arg	Pro	Ser	Val	Asn	Gly	Leu
195					200							205			
Ala	Leu	Ala	Glu	Tyr	Val	Ile	Tyr	Arg	Gly	Glu	Gln	Ala	Tyr	Pro	Glu
210					215							220			
Tyr	Leu	Ile	Thr	Tyr	Gln	Ile	Met	Arg	Pro	Glu	Gly	Met	Val	Asp	Gly
225					230					235			240		

<210> 6267

<211> 328

<212> DNA

<213> Homo sapiens

<400> 6267

```

ggccctccg gtttctcag ccctgggggg tgagggttgtt ggccaggggcc tggggccaatc
60
gggagaggggg agggctaaagc agagtggggta tgccccggcag tgaccacgccc tctctcccc
120
gatgagcctt tcctgcagtt ccgaaggaac gtgttcttcc caaagcggcg ggagctccag
180
atccatgacg aggaggcttc gcccgtgc tatgaggagg ccaaggccaa cgtgctggct
240
gcacggtacc cgtgcgacgt ggaggactgc gaggctctgg gcgccttgtt gtgcgcgtg
300
cagcttgggc cctaccagcc cggccggc
328

```

<210> 6268

<211> 83

<212> PRT

<213> Homo sapiens

<400> 6268
Ala Glu Trp Gly Cys Pro Ala Val Thr Gln Pro Leu Ser Pro Asp Glu
1 5 10 15
Pro Phe Leu Gln Phe Arg Arg Asn Val Phe Phe Pro Lys Arg Arg Glu
20 25 30
Leu Gln Ile His Asp Glu Glu Val Leu Arg Leu Leu Tyr Glu Glu Ala
35 40 45
Lys Gly Asn Val Leu Ala Ala Arg Tyr Pro Cys Asp Val Glu Asp Cys
50 55 60
Glu Ala Leu Gly Ala Leu Val Cys Arg Val Gln Leu Gly Pro Tyr Gln
65 70 75 80
Pro Gly Arg

<210> 6269
<211> 923
<212> DNA
<213> Homo sapiens

<400> 6269
nggcgagaaga tggcgacgcc cctcgggtgg tcgaaggcgg ggtcaggatc tgtgtgtctc
60
gcttttagatc aactgcggga cgtgatttag tctcaggagg aactaatcca ccagctgagg
120
aacgtgatgg ttctccagga cgaaaatttt gtcagtaaag aagagttcca ggcagtggag
180
aagaagctgg tggaaagagaa agctgccat gccaaaacca aggtcctcct ggccaaggaa
240
gaggagaagt tacagttgc cctcggagag gtagaggtgc tatccaagca gctggagaaa
300
gagaagctgg cctttgaaaa agcgcctcctc agtgtcaaga gcaaagtctt tcaggagtcc
360
agcaagaagg accagctcat caccaagtgc aatgagattg agtctcacat tataaagcaa
420
gaagatatac ttaatggcaa agagaatgag attaaagagt tgcaagcaat tatacggccag
480
cagaaacaga tcttcagcccc accaccagcc ggctccgttg caggaatcac atgtctgact
540
tccggatcca gaagcagcag gaaagctaca tggcccaggt gctggaccag aagcataaga
600
aagcctcagg gacacgtcag gcccgcagcc accagcatcc cagggaaaaaaa taaaatggcc
660
ggcgcttcc tggctctgg ctgtaatccc cagcctctgc cttctctgct ctggggagtcc
720
ccagcctcta gcccctgcta ctcccctccc tcttggatag tggtaggggt ccacaagggt
780
ggggcttgta gccttagggga ggagctgggt ctttggatc tggtaggcac caccgcttcc
840
tttgggtatt taatcccttc ctatataaac agccctggtt acccagtaat attccacccc
900
actccccagtg tccctggtaaa ttt
923

<210> 6270

<211> 307
<212> PRT
<213> Homo sapiens

<400> 6270
Xaa Arg Lys Met Ala Thr Pro Leu Gly Trp Ser Lys Ala Gly Ser Gly
1 5 10 15
Ser Val Cys Leu Ala Leu Asp Gln Leu Arg Asp Val Ile Glu Ser Gln
20 25 30
Glu Glu Leu Ile His Gln Leu Arg Asn Val Met Val Leu Gln Asp Glu
35 40 45
Asn Phe Val Ser Lys Glu Glu Phe Gln Ala Val Glu Lys Lys Leu Val
50 55 60
Glu Glu Lys Ala Ala His Ala Lys Thr Lys Val Leu Leu Ala Lys Glu
65 70 75 80
Glu Glu Lys Leu Gln Phe Ala Leu Gly Glu Val Glu Val Leu Ser Lys
85 90 95
Gln Leu Glu Lys Glu Lys Leu Ala Phe Glu Lys Ala Leu Ser Ser Val
100 105 110
Lys Ser Lys Val Leu Gln Glu Ser Ser Lys Lys Asp Gln Leu Ile Thr
115 120 125
Lys Cys Asn Glu Ile Glu Ser His Ile Ile Lys Gln Glu Asp Ile Leu
130 135 140
Asn Gly Lys Glu Asn Glu Ile Lys Glu Leu Gln Gln Val Ile Ser Gln
145 150 155 160
Gln Lys Gln Ile Phe Ser Pro Pro Pro Ala Gly Ser Val Ala Gly Ile
165 170 175
Thr Cys Leu Thr Ser Gly Ser Arg Ser Ser Arg Lys Ala Thr Trp Pro
180 185 190
Arg Cys Trp Thr Arg Ser Ile Arg Lys Pro Gln Gly His Val Arg Pro
195 200 205
Ala Ala Thr Ser Ile Pro Gly Lys Asn Lys Met Ala Ala Ala Phe Leu
210 215 220
Phe Ser Gly Cys Asn Pro Gln Pro Leu Pro Ser Leu Leu Trp Glu Ser
225 230 235 240
Pro Ala Ser Ser Pro Cys Tyr Phe Pro Pro Ser Trp Ile Val Val Gly
245 250 255
Val His Lys Val Gly Ala Cys Ser Leu Gly Glu Glu Leu Gly Leu Cys
260 265 270
Cys Leu Val Gly Thr Thr Ala Ser Phe Gly Tyr Leu Ile Pro Ser Tyr
275 280 285
Ile Asn Ser Pro Gly Tyr Pro Val Ile Phe His Pro Thr Pro Ser Val
290 295 300
Leu Val Asn
305

<210> 6271
<211> 1437
<212> DNA
<213> Homo sapiens

<400> 6271
nccatggcga cgggcggcca gcagaaggag aacacgctgc ttcaccttt cgccggcgaa
60

tgtggaggca cagttggtgc tatttcact tgtccactag aagtcattaa gacacggttg
120
cagtctcaa gattagctct ccggacagtc tactatcctc agttcatct ggggaccatt
180
agtggagctg gaatggtag accaacatcc gtgacacctg gactttca gttctgaag
240
gctgtatact ttgcatttta ctccaaagcc aaagagcaat ttaatggcat ttctgtcct
300
aacagcaata ttgtgcacatct tttctcagct ggctctgcag ctttatcac aaattccta
360
atgaatccta tatggatggt taaaacccga atgcagctag aacagaaagt gaggggctct
420
aagcagatga atacactcca gtgtgctcgta cagtttacc agaccgaagg cattcggtgc
480
ttctatagag gattaactgc ctcgtatgct ggaatttccg aaactataat ctgctttgct
540
atttatgaaa gtttaaagaa gatatgaaa gaagctccat tagccttttc tgcaaattgg
600
actgagaaaa attccacaag ttttttggta cttatggcag ctgctgctct ttctaaggc
660
tgtgcctcct gcattgccta tccacacgaa gtcataagga cgaggctccg ggaagaggc
720
accaagtaca agtctttgtt ccagacggcg cgctgggtt tccggaaaga aggctacett
780
gcctttata gaggactgtt tgccagctt atccggcaga tcccaaatac tgccatttg
840
ttgtctactt atgagttat tgtgtacctg tttagaagacc gtactcagta acaggccgga
900
aaatttgctt ctagaagaat aaaactgaaa aactctagag aattttttt cccattgtat
960
gttttagaaa tttagactg aaacagggaaa ggccataaaaa tatctggttc atatcacctg
1020
ttggacattt cttttggat tcatgctttc tggagggtt aaattcatta acgttaatag
1080
ttaattataa cttttttt aacttaagag gattcagggt taagcaccaa ctaaattaaa
1140
tcatgctatt taatttaagt atacatttg cttgtgtcct cttttatgct cactatacta
1200
tgaaggactt aagtaattca gataaacctg ccctagaact gcagagaaaa atgataaaat
1260
gagaatacaa cttgtttat aatctgactt taagatctt cactgctaga cagggaaagaa
1320
gtgtgcattt ttggctggc actgtggctc acgcctgtaa tcccagcaact ttggggaggcc
1380
gaggtgggtg gatcacaagg tcaggagatc gagaccatcc tggctaacca cctgcag
1437

<210> 6272
<211> 296
<212> PRT
<213> Homo sapiens

<400> 6272
Xaa Met Ala Thr Gly Gly Gln Gln Lys Glu Asn Thr Leu Leu His Leu

1	5	10	15
Phe Ala Gly Gly Cys Gly Gly Thr Val Gly Ala Ile Phe Thr Cys Pro			
20	25	30	
Leu Glu Val Ile Lys Thr Arg Leu Gln Ser Ser Arg Leu Ala Leu Arg			
35	40	45	
Thr Val Tyr Tyr Pro Gln Val His Leu Gly Thr Ile Ser Gly Ala Gly			
50	55	60	
Met Val Arg Pro Thr Ser Val Thr Pro Gly Leu Phe Gln Val Leu Lys			
65	70	75	80
Ala Val Tyr Phe Ala Cys Tyr Ser Lys Ala Lys Glu Gln Phe Asn Gly			
85	90	95	
Ile Phe Val Pro Asn Ser Asn Ile Val His Leu Phe Ser Ala Gly Ser			
100	105	110	
Ala Ala Phe Ile Thr Asn Ser Leu Met Asn Pro Ile Trp Met Val Lys			
115	120	125	
Thr Arg Met Gln Leu Glu Gln Lys Val Arg Gly Ser Lys Gln Met Asn			
130	135	140	
Thr Leu Gln Cys Ala Arg Tyr Val Tyr Gln Thr Glu Gly Ile Arg Gly			
145	150	155	160
Phe Tyr Arg Gly Leu Thr Ala Ser Tyr Ala Gly Ile Ser Glu Thr Ile			
165	170	175	
Ile Cys Phe Ala Ile Tyr Glu Ser Leu Lys Lys Tyr Leu Lys Glu Ala			
180	185	190	
Pro Leu Ala Ser Ser Ala Asn Gly Thr Glu Lys Asn Ser Thr Ser Phe			
195	200	205	
Phe Gly Leu Met Ala Ala Ala Leu Ser Lys Gly Cys Ala Ser Cys			
210	215	220	
Ile Ala Tyr Pro His Glu Val Ile Arg Thr Arg Leu Arg Glu Glu Gly			
225	230	235	240
Thr Lys Tyr Lys Ser Phe Val Gln Thr Ala Arg Leu Val Phe Arg Glu			
245	250	255	
Glu Gly Tyr Leu Ala Phe Tyr Arg Gly Leu Phe Ala Gln Leu Ile Arg			
260	265	270	
Gln Ile Pro Asn Thr Ala Ile Val Leu Ser Thr Tyr Glu Leu Ile Val			
275	280	285	
Tyr Leu Leu Glu Asp Arg Thr Gln			
290	295		

<210> 6273

<211> 2355

<212> DNA

<213> Homo sapiens

<400> 6273

ncgaggatca ttgcagaggc cctgactcga gtcatctaca acctgacaga gaaggggaca
 60
 ccccagacat gccgggttcc acagagcaga tgateccagca ggagcagctg gactcggtga
 120
 tggactggct caccaaccag ccggggccgg cagctggtgg acaaggacag caccttcctc
 180
 agcacgctgg agcaccacct gagccgctac ctgaaggacg tgaaggcagca ccacgtcaag
 240
 gctgacaagc gggaccacaga gtttgttcc tacgaccagc tgaagcaagt gatgaatgcg
 300

tacagagtca agccggccgt ctttgacctg ctccctggctg ttggcattgc tgcctaccc
360
ggcatggcct acgtggctgt ccaggtgagc agtgcggcagg ctcagcacct cagcctcetc
420
tacaagaccc tccagaggct gctcgtgaag gccaagacac agtgacacag ccaccccccac
480
agccggagcc cccgccccctc cacagtcctt gggggccgagc acgagtgagt ggacactgcc
540
ccgcccgggg cgccctcgca gggacaggggg ccctctccct ccccgccggt ggtttggaaaca
600
ctgaattaca gagcttttt ctgttgcctt ccgagactgg ggggggattt tttttttttt
660
tccttgcctt tgaacttcct tggaggagag cttggggagac gtcccgccgc caggtacgg
720
acttgcggac gagccccccca gtcctggag ccggccggcc tcggctctgg ttaagcacac
780
atgcaccatt aaagaggaga cgcgggacc ccctgeccga tcgcgcgcgg cctccgeccca
840
ccgcctcctg ccgcaagggg cctggactgc aggccctgacc tgctccctgc tccgtgtctg
900
tccttaggacg tccccctcccg ctcccccgatg gtggcgtggg catggttatt tatctctgt
960
ccttcttgcc tggaggaggg cagtgccagc cctggggttc tgggattcca gccctccctgg
1020
agccttttgt tccccatgtg gtctcagtga cccgtcccccc tgacagtggg ctcggggagc
1080
tgcatcaccc agcctccccc ttctccgact gcagggtctg atgtcatgt tgacagcctt
1140
tgcttgcgtgg gggcctggca ggcctgncc tccccgaccc ccgaccact gcaaacccccc
1200
gttccccctgc actcctcttc tcccaaaaaa tccctccggc ccctgtgcct ctgcggccccc
1260
agcccgagtc ccagggccgt cacctgccttgc ccctggccca gtcctgcctt ctgagtcctg
1320
agccagtgcc tgggtttcc tgggctcggt actggggcccc caggcnatcc agggctttgc
1380
acggccagtt ggtccctccct gggaaactgg gtgcgggtgg agtactggg ggcaggaggt
1440
ggccggggga ggcctgtgg ctccctccct cgctccctgc cctggccctc aagttccatca
1500
tcaatagaaa ggatgtgttc ggggtggggg cgtcaggtga gaacgtttgc tgggaaggag
1560
aggacttggg gcatggcttcc gggcaccct tccctggact cagagaggaa ggtccggggcc
1620
ctcggaagc cttggacaga accctccacc ccgcagacca ggcgtcggtgt gtgtgtggga
1680
gagaaggagg cccgtgttga gtcagggag accccgggtgt gtccgtttttt tagcaatata
1740
acctaccacag tgcgtgccga gcaggcttgg tggggaaagggg acttgagctg ggcaagtcct
1800
ggcctggcac ccgcagccgt ctcccttccg tggcccgaggg aggtgtttgc tgtccgaagg
1860
acctggggccg gcccattggga gcctggggtt ctgtccagat aggaccaggg ggtctcaactt
1920

tggccaccag ttcttcggcc ageacactcg ccctccagaa cctgcagcct ggaggggtga
 1980
 ggggacaacc acccctctt cctccaggtt ggcaggggac cctcttctcc cgtctgcct
 2040
 gcgggttgcc cgccctctcc agagacttgc ccaaggggccc atcaccactg gcctctggc
 2100
 acttgtctg agactctggg acccaggcag ctgccacctt gtcaccatga gagaatttgg
 2160
 ggagtgtctg catgctagcc agcaggetcc tgtctgggtg ccacggggcc agcattttgg
 2220
 agggagcttc ctcccttcct tcctggacag gtcgtcagga tggatgcact gactgaccgt
 2280
 ctggggctca ggctgggttg gnatgcagcc ggccgatgag aaaataaagc catattgaat
 2340
 gatcaaaaaa aaaaa
 2355

<210> 6274
<211> 70
<212> PRT
<213> Homo sapiens

<400> 6274
Asp Pro Glu Phe Val Phe Tyr Asp Gln Leu Lys Gln Val Met Asn Ala
 1 5 10 15
Tyr Arg Val Lys Pro Ala Val Phe Asp Leu Leu Leu Ala Val Gly Ile
 20 25 30
Ala Ala Tyr Leu Gly Met Ala Tyr Val Ala Val Gln Val Ser Ser Ala
 35 40 45
Gln Ala Gln His Phe Ser Leu Leu Tyr Lys Thr Val Gln Arg Leu Leu
 50 55 60
Val Lys Ala Lys Thr Gln
 65 70

<210> 6275
<211> 1534
<212> DNA
<213> Homo sapiens

<400> 6275
gggcggtagc gacaggccag agctgcggcc tgagcagcca gctccggca tgaaggctcg
 60
gggtctggct gctgcctgct tcttgcctca gcaccatgga atgcctgcgc agtttaccct
 120
gcctccctgcc cccgcgcgtg agacttcccc ggcggacgct gtgtgcctcg gccttggacg
 180
tgacctctgt gggtectccc gttgcctgcct gcggccgccc agccaaacctg attggaagga
 240
gccgagcggc gcagcttgc gggcccgacc ggctccgcgt ggcaggtgaa gtgcaccgg
 300
ttagaacctc tgacgtctct caagccactt tagccagtgt agccccagta tttactgtga
 360
aaaaatttga caaacagggaa aacgttactt ctttgaaag gaagaaaact gaattataacc
 420

aagagttagg tcttcaagcc agagatttga gatttcagca tgtaatgagt atcacagtca
 480
 gaaacaatacg gattatcatg agaatggagt atttcaaagc tgtgataact ccagagtgc
 540
 ttctgatatt agattatcgta aattttaact tagagcaatg gctgtccgg gaactccctt
 600
 cacagttgtc tggagaggggt caactcgta catacccttt accttttgag ttttagagcta
 660
 tagaaggact cctgcaatat tggatcatgt tgttatctag atcaacaccc ttcagggaa
 720
 accttagcatt ttgcagccac tgatccttga gaccttggat gctttggat accccaaaca
 780
 ttcttctgtt gacagaagca aactgcacat tttactacag aatggaaaaa gtctatcaga
 840
 gtttagaaaaca gatattaaaaa ttttcaaaga gtcaattttg gagatcttgg atgaggaaga
 900
 gttgcttagaa gagctctgtg tatcaaaatg ggagtgaccc acaagtcttt gnaaaagagc
 960
 agtgctggaa ttgaccatgc agaagaaaatg gagttgctgt tgaaaacta ctaccgattt
 1020
 gctgacgatc tctccaatgc agctcgtagt cttagggtgc tgattgtatg ttcacaaaatg
 1080
 attattttca ttaatcttggaa cagccaccga aacgtgtatg ttaggttggaa tctacagctg
 1140
 accatggaaatcccttcttctt ttcgtctttt ggactaatgg gagttgtttt tggaatgaat
 1200
 ttggaatctt cccttgaaga ggaccataga atttttggc tgattacagg aattatgtt
 1260
 atgggaagtggc gcctcatctg gaggcgctt ctttcattcc ttggacgaca gctagaagct
 1320
 ccattgcctc ctatgttgc ttcttacactt aaaaagactc ttctggcaga tagaagcatg
 1380
 gaattgaaaa atagccttag actggatggaa cttggatcag gaaggagcat cctaacaac
 1440
 cgtaggaac agccccgtgg atactgaagt tttttttatg qtagttacag gaaacttctg
 1500
 atactttttt tattattttc ttgtatagag tcag
 1534

<210> 6276

<211> 172

<212> PRT

<213> Homo sapiens

<400> 6276

Met	Gly	Val	Thr	His	Lys	Ser	Leu	Xaa	Lys	Ser	Ser	Ala	Gly	Ile	Asp
1				5				10				15			
His	Ala	Glu	Glu	Met	Glu	Leu	Leu	Glu	Asn	Tyr	Tyr	Arg	Leu	Ala	
				20				25				30			
Asp	Asp	Leu	Ser	Asn	Ala	Ala	Arg	Glu	Leu	Arg	Val	Leu	Ile	Asp	Asp
				35				40				45			
Ser	Gln	Ser	Ile	Ile	Phe	Ile	Asn	Leu	Asp	Ser	His	Arg	Asn	Val	Met
				50				55				60			
Ile	Arg	Leu	Asn	Leu	Gln	Leu	Thr	Met	Gly	Thr	Phe	Ser	Leu	Leu	

65	70	75	80
Phe	Gly	Leu	Met
		Met	Gly
		Val	Ala
		Phe	Gly
		Met	Asn
		Leu	Glu
		Ser	Ser
		Leu	
85		90	95
Glu	Glu	Asp	His
			Arg
		Ile	Phe
		Trp	Leu
		Ile	Thr
		Gly	Ile
		Met	Phe
100		105	110
Gly	Ser	Gly	Leu
			Ile
		Trp	Arg
		Arg	Leu
		Leu	Ser
		Phe	Leu
		Gly	Arg
115		120	125
Leu	Glu	Ala	Pro
			Leu
		Pro	Pro
		Met	Met
		Ala	Ser
		Ser	Leu
		Pro	Lys
		Lys	Lys
130		135	140
Leu	Leu	Ala	Asp
		Asp	Arg
		Ser	Met
		Glu	Leu
		Lys	Asn
		Ser	Leu
		Arg	Leu
145		150	155
Gly	Leu	Gly	Ser
			Gly
		Arg	Arg
		Ser	Ile
		Ile	Leu
		Thr	Asn
165		170	

<210> 6277

<211> 1206

<212> DNA

<213> Homo sapiens

<400> 6277

gctagcatgg cgggtatgg aaggagacttg gtgaagaagg aaagctttgg tgtgaagctt
 60
 atggacttcc aggcccacccg gcgggggtggc actctaaata gaaagcacat atcccccgct
 120
 ttccagccgc cacttccgcc cacagatggc agcacccgtgg tgcccgctgg cccagagccc
 180
 cctcccccaga gctctagggc taaaaagcagc tctgggggtg ggactgtccc ctttcccg
 240
 ggcatactgg agcaggggcc gagcccaaggc gacggcagtc ctcccaaacc gaaggacct
 300
 360
 gtatctgcag ctgtgccagc accangggag aaacaacagt cagatagcat ctggccaaaa
 tcagccccag gcagctgctg gctccacca gctctccatg ggccacctca caatgtc
 420
 gggcccgcc cgccataact ggcggcagct gttaaaaaac ccgctccagc acggccggaaa
 480
 cccggcaacc cacctccctgg ccaccccggg gcccagagtt cttaggaac atctc
 540
 ccaccccgatc tgcacccaaa gccacccacc cgaagccccct ctccctccacc cagcacacgg
 600
 660
 gccagccctcc aggccagccc tccgccccct cccagctctc agcaccgggg aggtactcca
 720
 ncagcttgt ctccaatcca agctccaaat caccacccgc cgcagccccc tacgcaggcc
 acgccactga tgcacccaaa acccaatagc cagggccctc ccaacccat ggcattgcc
 780
 agtgagcatg gacttgagca gccatctcac accccctcccc agactccaaac gccccccagt
 840
 actccggccc tagaaaaaca gaaccccaagt ctgcgcagctc ctcagaccct ggcagggggt
 900
 aaccctgaaa ctgcacagcc acatgctgga accttaccga gaccgagacc agtacccaaag
 960
 ccaaggaacc ggcccagcgt gccccacccc ccccaacctc ctgggtgtcca ctcagctgg
 1020

gacagcagcc tcaccaaac acgacccaaca gtttccaaga tagtaacaga ctccaattcc
 1080
 agggtttcag aaccgcacatcg cagcatctt cctgaaatgc actcagactc agccagcaaa
 1140
 gacgtgcctg gccgcacatct gctggatata gacaatgata ccgagagcac tgccctgtga
 1200
 agaaaag
 1206

<210> 6278
 <211> 399
 <212> PRT
 <213> Homo sapiens

<400> 6278
 Ala Ser Met Ala Val Met Glu Gly Asp Leu Val Lys Lys Glu Ser Phe
 1 5 10 15
 Gly Val Lys Leu Met Asp Phe Gln Ala His Arg Arg Gly Gly Thr Leu
 20 25 30
 Asn Arg Lys His Ile Ser Pro Ala Phe Gln Pro Pro Leu Pro Pro Thr
 35 40 45
 Asp Gly Ser Thr Val Val Pro Ala Gly Pro Glu Pro Pro Gln Ser
 50 55 60
 Ser Arg Ala Glu Ser Ser Ser Gly Gly Thr Val Pro Ser Ser Ala
 65 70 75 80
 Gly Ile Leu Glu Gln Gly Pro Ser Pro Gly Asp Gly Ser Pro Pro Lys
 85 90 95
 Pro Lys Asp Pro Val Ser Ala Ala Val Pro Ala Pro Xaa Glu Lys Gln
 100 105 110
 Gln Ser Asp Ser Ile Trp Pro Lys Ser Ala Pro Gly Ser Cys Trp Leu
 115 120 125
 Pro Pro Ala Leu His Gly Pro Pro His Asn Ala Ala Gly Pro Ser Pro
 130 135 140
 His Thr Leu Arg Arg Ala Val Lys Lys Pro Ala Pro Ala Pro Pro Lys
 145 150 155 160
 Pro Gly Asn Pro Pro Pro Gly His Pro Gly Gly Gln Ser Ser Ser Gly
 165 170 175
 Thr Ser Gln His Pro Pro Ser Leu Ser Pro Lys Pro Pro Thr Arg Ser
 180 185 190
 Pro Ser Pro Pro Pro Ser Thr Arg Ala Ser Leu Gln Ala Ser Pro Pro
 195 200 205
 Pro Pro Pro Ser Ser Gln His Pro Gly Gly Thr Pro Xaa Ser Leu Ser
 210 215 220
 Pro Ile Gln Ala Pro Asn His Pro Pro Pro Gln Pro Pro Thr Gln Ala
 225 230 235 240
 Thr Pro Leu Met His Thr Lys Pro Asn Ser Gln Gly Pro Pro Asn Pro
 245 250 255
 Met Ala Leu Pro Ser Glu His Gly Leu Glu Gln Pro Ser His Thr Pro
 260 265 270
 Pro Gln Thr Pro Thr Pro Pro Ser Thr Pro Pro Leu Gly Lys Gln Asn
 275 280 285
 Pro Ser Leu Pro Ala Pro Gln Thr Leu Ala Gly Gly Asn Pro Glu Thr
 290 295 300
 Ala Gln Pro His Ala Gly Thr Leu Pro Arg Pro Arg Pro Val Pro Lys

305 310 315 320
Pro Arg Asn Arg Pro Ser Val Pro Pro Pro Gln Pro Pro Gly Val
325 330 335
His Ser Ala Gly Asp Ser Ser Leu Thr Asn Thr Ala Pro Thr Ala Ser
340 345 350
Lys Ile Val Thr Asp Ser Asn Ser Arg Val Ser Glu Pro His Arg Ser
355 360 365
Ile Phe Pro Glu Met His Ser Asp Ser Ala Ser Lys Asp Val Pro Gly
370 375 380
Arg Ile Leu Leu Asp Ile Asp Asn Asp Thr Glu Ser Thr Ala Leu
385 390 395

<210> 6279

<211> 2795

<212> DNA

<213> Homo sapiens

<400> 6279

atggctgctg agaaggcagg tccaggcgcc ggcggcggcg gcggcggcag tggcggcggc
60
gttggacgtg gtgccggagg ggaagaaaat aaagaaaaacg aacgccttc ggccggatcg
120
aaggcaaaca aagaatttgg ggatagcctg agtttgaga ttcttcagat tattaaggaa
180
tcccagcagc agcatggttt acggcatgga gattttcaga ggtacagggg ctactgttcc
240
cgttagacaaa gacgtctcg aaaaacactc aacttcaaga tggtaacag acacaattc
300
acagggaaga aagtgactga agagcttctg accgataata gatacttgc tctggctctg
360
atggatgctg aaagagcctg gagctacgcc atgcagctga aacaggaagc caacactgaa
420
ccccgaaaac ggtttcaattt gttatctcg ctaacgaaag ccgtgaagca tgcagaggaa
480
ttggAACGCT tttgttaagag caatcgctg gatgccaaga ccaaatttgc ggctcaggct
540
tacacagctt acctctcagg aatgtacgt tttgaacatc aagaatggaa agctgccatt
600
gaggctttta acaaatgca aactatctat gagaagctag ccagtgcatt cacagaggag
660
caggctgtgc tgtataacca acgtgtggaa gagatttcac ccaacatccg ctattgtca
720
tataatatttggggaccagtc agccatcaat gaactcatgc agatgagatt gaggtctggg
780
ggcactgaag gtctcttggc tgaaaaatttgg gaggcttgc tcactcagac tcgagccaaa
840
caggcagcta ccatgagtga agtggagtgg agagggagaa cggttccagt gaagattgac
900
aaagtgcgca ttttcttattt aggactggct gataacgaa cagctattgt ccaggctgaa
960
agcgaagaaa ctaaggagcg cctgtttgaa tcaatgctca gcgagtgtcg ggacgcccatt
1020
cagggtggttc gggaggagct caagccagat cagaaacaga gagatttat ctttgaagga
1080

gagccaggga aggtgtctaa tcttcaatac ttgcatacg acctgactta catcaagcta
1140
tcaacggcaa tcaaggctaa tgagaacatg gccaaaggtc tgcacagggc tcfcgctgcag
1200
cagcagccag aggtgcacag caagcgctca ccccgccccc aggacctgat ccgactctat
1260
gacatcatct tacagaatct ggtgaaattt ctccagcttc ctggtttaga ggaagacaaa
1320
gccttccaga aagagatagg cctcaagact ctgggtttca aagcttacag gtgtttttc
1380
attgctcagt cctatgtgct ggtgaagaag tggagcgaag cccttgcct gtatgacaga
1440
gtcctgaaat atgcaaataa agtaaattct gatgctggcg ccttcaagaa cagcctaaag
1500
gacctgcctg atgtgcaaga gctcatcaact caagtgcggc cagagaagtg ctccctgcag
1560
gccgcagcca tccttgatgc aaacgacgct catcaaacag agaccccttc ctcccaagtc
1620
aaggacaata agcctcttgt tgaacggttt gagacattct gcctggaccc ttcccttgcc
1680
accaagcaag ccaaccttgt gcacttccca ccaggcttcc agcccattcc ctgcaagcct
1740
ttgttcttttgc acctggccct caaccatgtg gctttccac cccttgagga caagttggaa
1800
cagaagacca agagtggct cactggatac atcaagggca tctttggatt caggagctaa
1860
ccaggctctt cctcgggggc gggggagatt ctgactctta atctgtatgg tgagaaaatc
1920
ccagcaagtt ccatgatatt aaatccaggt ctgcattggc ccggggcaag agtttaacat
1980
cttcggccct gcattectac atcttgttgc tgtacacgtt cttaagcagc gtgtcaggag
2040
agcaccctgt tgcgttgttgc taaatgtgtc cagggtcata ctgtctccctg tacccctgg
2100
gaaaggggcc gctgtgtct ggtgcctgt gagctgtgat tgattgcctt tggtcagtaa
2160
tgcgttcagg agtcccacacc aggcacagat ggggccttga aacgctttgt catgcttctt
2220
cagtaccatg gatttgaat gaactcatcc ttgctgtgag catccaggag cccttggagaa
2280
gtttatctat gactatgaaa ctggcaacgt cacccagaa ttacggtcag ccttattccc
2340
cttcacccctcc cagtgaacgc taagaagttt cagacaagca gagagctcta tttttagaag
2400
aaatatgtta cactcagaaa tgatgaaacc aaatcttata ttaaaaaggca aagatgacgg
2460
agactgtgcc catttcttat atgcctccca teatgtccag tccccgttct ctccctggga
2520
gccttagttgc gtgaagccgg tgaggtcaag tgtaacctga cttaccggca actagggtgag
2580
gctgatgcca gatacacatg ttagaggcac tattttcag gacttcccaa tgtgttaattt
2640
ttagatgcca ttatattta atccccccttcg ttaccccccgg tttttcctta gtcatccctt
2700

ttcacttcta ttataacatc aataatagaa gtcacaaaaa caatgtaaa aagcaaggaa
2760
taaaagtat ttaaacatgt aaaaaaaaaa aaaaa
2795

<210> 6280
<211> 619
<212> PRT
<213> Homo sapiens

<400> 6280
Met Ala Ala Glu Lys Gln Val Pro Gly Gly Gly Gly Gly Gly Gly
1 5 10 15
Ser Gly Gly Gly Gly Arg Gly Ala Gly Gly Glu Asn Lys Glu
20 25 30
Asn Glu Arg Pro Ser Ala Gly Ser Lys Ala Asn Lys Glu Phe Gly Asp
35 40 45
Ser Leu Ser Leu Glu Ile Leu Gln Ile Ile Lys Glu Ser Gln Gln
50 55 60
His Gly Leu Arg His Gly Asp Phe Gln Arg Tyr Arg Gly Tyr Cys Ser
65 70 75 80
Arg Arg Gln Arg Arg Leu Arg Lys Thr Leu Asn Phe Lys Met Gly Asn
85 90 95
Arg His Lys Phe Thr Gly Lys Lys Val Thr Glu Glu Leu Leu Thr Asp
100 105 110
Asn Arg Tyr Leu Leu Val Leu Met Asp Ala Glu Arg Ala Trp Ser
115 120 125
Tyr Ala Met Gln Leu Lys Gln Glu Ala Asn Thr Glu Pro Arg Lys Arg
130 135 140
Phe His Leu Leu Ser Arg Leu Arg Lys Ala Val Lys His Ala Glu Glu
145 150 155 160
Leu Glu Arg Leu Cys Lys Ser Asn Arg Val Asp Ala Lys Thr Lys Leu
165 170 175
Glu Ala Gln Ala Tyr Thr Ala Tyr Leu Ser Gly Met Leu Arg Phe Glu
180 185 190
His Gln Glu Trp Lys Ala Ala Ile Glu Ala Phe Asn Lys Cys Lys Thr
195 200 205
Ile Tyr Glu Lys Leu Ala Ser Ala Phe Thr Glu Glu Gln Ala Val Leu
210 215 220
Tyr Asn Gln Arg Val Glu Glu Ile Ser Pro Asn Ile Arg Tyr Cys Ala
225 230 235 240
Tyr Asn Ile Gly Asp Gln Ser Ala Ile Asn Glu Leu Met Gln Met Arg
245 250 255
Leu Arg Ser Gly Gly Thr Glu Gly Leu Ala Glu Lys Leu Glu Ala
260 265 270
Leu Ile Thr Gln Thr Arg Ala Lys Gln Ala Ala Thr Met Ser Glu Val
275 280 285
Glu Trp Arg Gly Arg Thr Val Pro Val Lys Ile Asp Lys Val Arg Ile
290 295 300
Phe Leu Leu Gly Leu Ala Asp Asn Glu Ala Ala Ile Val Gln Ala Glu
305 310 315 320
Ser Glu Glu Thr Lys Glu Arg Leu Phe Glu Ser Met Leu Ser Glu Cys
325 330 335
Arg Asp Ala Ile Gln Val Val Arg Glu Glu Leu Lys Pro Asp Gln Lys

340	345	350
Gln Arg Asp Tyr Ile Leu Glu Gly Glu Pro Gly Lys Val Ser Asn Leu		
355	360	365
Gln Tyr Leu His Ser Tyr Leu Thr Tyr Ile Lys Leu Ser Thr Ala Ile		
370	375	380
Lys Arg Asn Glu Asn Met Ala Lys Gly Leu His Arg Ala Leu Leu Gln		
385	390	395
400		
Gln Gln Pro Glu Asp Asp Ser Lys Arg Ser Pro Arg Pro Gln Asp Leu		
405	410	415
Ile Arg Leu Tyr Asp Ile Ile Leu Gln Asn Leu Val Glu Leu Leu Gln		
420	425	430
Leu Pro Gly Leu Glu Glu Asp Lys Ala Phe Gln Lys Glu Ile Gly Leu		
435	440	445
Lys Thr Leu Val Phe Lys Ala Tyr Arg Cys Phe Phe Ile Ala Gln Ser		
450	455	460
Tyr Val Leu Val Lys Lys Trp Ser Glu Ala Leu Val Leu Tyr Asp Arg		
465	470	475
480		
Val Leu Lys Tyr Ala Asn Glu Val Asn Ser Asp Ala Gly Ala Phe Lys		
485	490	495
Asn Ser Leu Lys Asp Leu Pro Asp Val Gln Glu Leu Ile Thr Gln Val		
500	505	510
Arg Ser Glu Lys Cys Ser Leu Gln Ala Ala Ile Leu Asp Ala Asn		
515	520	525
Asp Ala His Gln Thr Glu Thr Ser Ser Gln Val Lys Asp Asn Lys		
530	535	540
Pro Leu Val Glu Arg Phe Glu Thr Phe Cys Leu Asp Pro Ser Leu Val		
545	550	555
560		
Thr Lys Gln Ala Asn Leu Val His Phe Pro Pro Gly Phe Gln Pro Ile		
565	570	575
Pro Cys Lys Pro Leu Phe Phe Asp Leu Ala Leu Asn His Val Ala Phe		
580	585	590
Pro Pro Leu Glu Asp Lys Leu Glu Gln Lys Thr Lys Ser Gly Leu Thr		
595	600	605
Gly Tyr Ile Lys Gly Ile Phe Gly Phe Arg Ser		
610	615	

<210> 6281
<211> 741
<212> DNA
<213> Homo sapiens

<400> 6281
nnctgggttg agagctgtcc ccggttctcc gttctgtctt cggggggcacc ttccgggtt
60
cctaagccgc ggggcccctc gtcgccttc gagggcccttt ccctgaccta ggctttggcc
120
tgggctactc gttccggagc cgccatgtcg tccgacttcg aaggttacga gcaggacttc
180
gcgggtctca ctgcagagat caccagcaag attgcagggg tccccacgact cccgcctgat
240
aaaaagaaac agatggttgc aaatgtggag aaacagcttg aagaagcgaa agaactgctt
300
gaacagatgg atttggaaagt ccgagagata ccaccccaa gtcgaggat gtacagcaac
360

agaatgagaa gctacaaaaca agaaatggga aaactcgaaa cagattttaa aaggcacgg
 420
 atcgcctaca gtgacgaagt acggaatgag ctccctgggg atgatggaa ttcctcagag
 480
 aaccagaggg cacatctgct cgataacaca gagaggctgg aaaggtcata tcggagacta
 540
 gagggctggat accaaatagc agtggaaacc ggtgagaatt ctgagagtga gcaaattgtc
 600
 ttgcttatgc acagcagtct tcacaacaca tgacattca gggaaacttc aaaggagtag
 660
 cagagacagc agcccagat gtggttaca tattggggag acaattggga gcttatctgc
 720
 gcttatctt ttgcaagttt g
 741

<210> 6282
 <211> 162
 <212> PRT
 <213> Homo sapiens

<400> 6282
 Met Ser Ser Asp Phe Glu Gly Tyr Glu Gln Asp Phe Ala Val Leu Thr
 1 5 10 15
 Ala Glu Ile Thr Ser Lys Ile Ala Arg Val Pro Arg Leu Pro Pro Asp
 20 25 30
 Glu Lys Lys Gln Met Val Ala Asn Val Glu Lys Gln Leu Glu Glu Ala
 35 40 45
 Lys Glu Leu Leu Glu Gln Met Asp Leu Glu Val Arg Glu Ile Pro Pro
 50 55 60
 Gln Ser Arg Gly Met Tyr Ser Asn Arg Met Arg Ser Tyr Lys Gln Glu
 65 70 75 80
 Met Gly Lys Leu Glu Thr Asp Phe Lys Arg Ser Arg Ile Ala Tyr Ser
 85 90 95
 Asp Glu Val Arg Asn Glu Leu Leu Gly Asp Asp Gly Asn Ser Ser Glu
 100 105 110
 Asn Gln Arg Ala His Leu Leu Asp Asn Thr Glu Arg Leu Glu Arg Ser
 115 120 125
 Ser Arg Arg Leu Glu Ala Gly Tyr Gln Ile Ala Val Glu Thr Gly Glu
 130 135 140
 Asn Ser Glu Ser Glu Gln Ile Val Leu Leu Met His Ser Ser Leu His
 145 150 155 160
 Asn Thr

<210> 6283
 <211> 2312
 <212> DNA
 <213> Homo sapiens

<400> 6283
 nnatttttgc agtggtttcc atattctgat ctccaggcttg tgcgagtgaa gagttttatg
 60
 agcaaggact ggaaggaacc agagacaaac aaggtggttg ggtttgcgg gagtggatg
 120

gtagctaaggc atgtcattta ctgttcttgt tgcttggta ataggccaca atgaggaagc
180
tagcacggta gtgggcatacg ccaggtggga aggtttgagt tgtgaaagaa gagccaggaa
240
gcagagatgg ggaggaggca ctgatggggt gggatgtgt ttggtcacac atagcacagt
300
cgggtgtgtc ctcccccttg tccacagtgg ttccctgggt ttgctgtctt cctccctgccc
360
tgggcgtcca tgtggctgca cagcctcataaa acgtttttt tggagccgccc
420
atccctcttc tgcgtccatcgatccatcatt tcgggcatta atgagaagct tttcttcagt
480
ttgaaaaaca ccaccaggcc ataccacagc ctgcccagtg aggccgtctt tgccaaacagc
540
acccggatgc tgggtgtggc ctttggctg ctgggtgtctt acatccttctt ggcttcatct
600
tggaaagcgcc cagagccggg gatcctgacc gacagacagc ccctgctgca tggatggggag
660
tgaaggcagca ggaaggggct cccaaagagct cctgggtggc cagcctgtgc tcccctcaga
720
agctctgttc ttccccaggc tcccgctgg tttcagcagg cgactttctt ccaatgtgg
780
gccccagactt cttgcctggg tgcgtggctg ccctctccgg ccgttgcgtg cctgtctgt
840
ttcccttggc gctttgcctg ggtgctgggc ctgccttc cggccgcgttgc ctgcctgtct
900
gttttccttg gtggcttgc ctgggtgtc ggctgcctt ctctggctgc ttgctgcctg
960
tctgctttcc ttgggtggctt tggctctgc actccttggc gtcagcctct caggtctcc
1020
atccacacga ggtccttcctc gctctggccg ctcttgcgtc tccctgtcga agaaatcaga
1080
ctgatttcctt cttaaagactc ctagggatgt ggtgaagagc tgggactcaa gtgcagtcc
1140
cgggtgtgaaa catgagggag gtgaggtgtc cgtccacttc ccccataaaag gtgtgcattt
1200
cagttaggct gccccccac agagcaggct tcatctgctc tgccatccag ccccatctgg
1260
atgtgaggtg ggggtggagac atcatggggat gattgcagaa agggggagtg gggccac
1320
cagcttctgc tgaggagctg accgcctctga gctgttctgt ttctgtattgc tgctctgt
1380
ctgcatttat tggacccgtg cggccatccacc tcttccagct gctgtacag ctgaggcctg
1440
gatccccggcc ttccctgtg acttacgtgt ctgtcaccgg caggcagccc tacaaatcc
1500
ggtgcacctgc tctcccaaga acagagcctg tcccccagatg tcccccagtagc gatgagtaac
1560
agaggtggct gtggacttcc tctacttctc cttgtggat caggcccttc ctgcctcccg
1620
ctggccagggt ctggcccttgc tctcttggca gggccccagc ccctctgacc actctgcage
1680
tcaccatgca gctgatgcca aagttgtggt gtccagggtgtc cagcagccct gggagccact
1740

gcccccttca gaggggttcc ttgctgagac ccacattgtc tcacccggcc ccaccatggc
1800
tgcttgcctg gcccaccta gcgttctgtc ccatgctaga gctttagactt ttgcttctt
1860
tcaggggagg aaatagggtg gagagcggga agggtcttgc tcctaaatgt tgcgtctgt
1920
gctttttgc cttctccaaa gacgcactgc caggtcccaa gcttcagact gctgtgtta
1980
gtaaggcaagt gagaagcctg gggttggag cccacctact ctctggcagc atcagcatcc
2040
tactcctggc aacatcaggc caacgtccac cccagcctca cattgccaga tgttggcaga
2100
agggctaata ttgaccgtct tgactggctg gagecattcaa agccactggg atgttctcca
2160
ggcacctggg tccccatgacc agctccccgt ctccataggg gttaggcattt cactggttta
2220
tgaagctcgat gtttcatata atatgttaag aatcaaagct gtctttgttc aggctgttat
2280
aacaaaaata taatagcctg ggtggcttaa ac
2312

```

<210> 6284
<211> 122
<212> PRT
<213> Homo sapiens

<400> 6284
His Ser Arg Val Cys Pro Pro Phe Cys Pro Gln Trp Phe Leu Gly Phe
      1           5           10          15
Ala Val Phe Leu Leu Pro Trp Ala Ser Met Trp Leu Arg Ser Leu Leu
      20          25          30
Lys Pro Ile His Val Phe Phe Gly Ala Ala Ile Leu Ser Leu Ser Ile
      35          40          45
Ala Ser Val Ile Ser Gly Ile Asn Glu Lys Leu Phe Phe Ser Leu Lys
      50          55          60
Asn Thr Thr Arg Pro Tyr His Ser Leu Pro Ser Glu Ala Val Phe Ala
      65          70          75          80
Asn Ser Thr Gly Met Leu Val Val Ala Phe Gly Leu Leu Val Leu Tyr
      85          90          95
Ile Leu Leu Ala Ser Ser Trp Lys Arg Pro Glu Pro Gly Ile Leu Thr
      100         105         110
Asp Arg Gln Pro Leu Leu His Asp Gly Glu
      115         120

```

```
<210> 6285
<211> 2542
<212> DNA
<213> Homo sapiens

<400> 6285
nttttttttt ttttttctgt ttatgacact ttattgtatgc tgggggggtg gggaggagac
60
ctggagaata atgtgggggc aagagtcccc aggtggggac agggaaagtg ttgaagcctg
120
```

gccactactg ggcagggaaag acagagttgc cactgtatgc acaggggatg agcagctgcc
180
ggtactccag gggcagggtgc cgctccacta gcacgtgcag tgagacttgg tcagtgacca
240
ggccctgccc ccgcatacgc agctccaggt cctctggctt cacagtcttg cggccagcat
300
gagcagcaaa tacctccaga tcatcacaaa gatgctggaa atatttatct aggcacttct
360
ccaccatctc aagagccctc ctctccatgg gcatcttggc atagaagcta aagagttca
420
catatgtctc agtccagect tgtggggatc ttgcggggc ctggggccgg tggccgggc
480
ctagggggat gcctgaccaa cagaggctct gcaggctctg aagataagac tgcagcacca
540
ggcgctgggg ctggctcaag aaactgtatga tgctgcctgg cctggagaga ctcagggtg
600
ctggaggccg actctggact tgctgcctg ccagaggcat cctcatcccc tgaagatgct
660
cctggcccg cagccctcagc agtcccctgg gatccccttg cttctgtcac ctctgtgtgt
720
ccctcagccct cttctacccct gctgggtcct tgcgtcctg ttgcctccat ttcactcaca
780
ctcacacccct cttttccat cttttctct gcctttcaa ctccatcgta taaggctct
840
atttcatctt ctccagagac accactgctg gtgtcagga agccagagc aaaggcattg
900
acccctctctg cctctctgc cagaaactgg gctggttcc cagggcctga gtgaagggga
960
gagaatacag gccggagacg cagcaggcca aggctgcata gctcagagaa gggtaaagat
1020
ggactctgct cttggatgaa ggaggcagcc acagccaggg tgctctaggg gcacagaggg
1080
gcttgaggaa ggaaaactac cattgtcaac ttcacccaa gctaaatttg gctccaggcc
1140
accagtgcac cacactact attttctgc agccaggcc cactgctctg tgcgtcga
1200
ccggcagccct gctcagcgtc ttcagccca gttgtgaggcg tgcaggccag ggagtgatac
1260
acgttggggg agccaaacctt gggctgagag aacggctggg tgcctccaa cacaatgttg
1320
gagggagcca gggaaagtata tcgcagatcc cgaaaaagg caccacgac tacagctcg
1380
cgggctggag gtctgcgggc caagccagcc ctctgcactg actgtggctg aagaggtgt
1440
gcaaaggta ggttgaggaa tctggtgagg gaagaggcat cagcattccc ttgaggctct
1500
tgggagagag acagccctg gtccactccc tgctgaaaca ctgacagttt cagccctgt
1560
ttcctctgc cagggccag cagacctgga gccagggttg tggggggctc gagctcagga
1620
agttgcagct ccaggctgc gcaactgctc tcttgcgttgg agggttggac cgcctgcgg
1680
gctggcactg gtttcaactac cgactcagcc atcaggatgg aagattctgg ggcagttgt
1740

aggatgttct tcagcagcgt ccgaggtgtc tggccctcca agtgcccact ggcctgaata
 1800
 tggcccgatc tgccaaacaga cctggctcca tggaaacgcc ctctggctat cgcccttgtt
 1860
 tggccactca acttccctggg ggaagccgtt tcaaggcaggg ctctccgggc tccagccccga
 1920
 gcactccggg gtcgcccggg ggtgcgcggg tccgctgtat ccagcacgcg tcgcagcage
 1980
 gtgcgeggcg tggagtcgtcgtcgttgc tggtagccca tggctctggc cccggggccct
 2040
 cctaaccgcc cagccagctg caggctccgc cttcccgccg ccacagttaa tgtaactctc
 2100
 gcgatgctcc cgacagcccc cacggaaatt gtagttctcg cactatcgca gtcgcgggg
 2160
 tggacagtga tggttgcaaa ctccggatgc tttggaggca gctcgctgc gggtaaacct
 2220
 cggtaatgt aatgcaagca gcccagaatct tggcttcttc atcatattct gtttagtgttt
 2280
 tcctccgtat ttttcaactgg ttgacaatcc tctcacctta agttttcatg gcaactgaat
 2340
 tagaacttgg tttctgagtc ttccgtggag ttcagttcc cagaatctat aattccatct
 2400
 attcgggaaa gtgaggcagg agcattgtt gatccttggg aggcagaggt tgcatatctg
 2460
 agatcgagcc acaaatactcc atcttggcg gttaaagaggg ccccgttccc agcctatgcc
 2520
 ttcccacttc cctgttcaaa ta
 2542

<210> 6286

<211> 57

<212> PRT

<213> Homo sapiens

<400> 6286

Pro	Gly	Pro	Ala	Ala	Ala	Ser	Ala	Ala	Pro	Gly	Pro	Leu	Ala	Ser	Gln
1															15
Ser	Cys	Gly	Gln	His	Glu	Gln	Gln	Ile	Pro	Pro	Asp	His	His	Lys	Asp
															30
20															
Ala	Gly	Asn	Ile	Tyr	Leu	Gly	Thr	Ser	Pro	Pro	Ser	Gln	Glu	Pro	Ser
35															45
Ser	Pro	Trp	Ala	Ser	Trp	His	Arg	Ser							
50															
55															

<210> 6287

<211> 1674

<212> DNA

<213> Homo sapiens

<400> 6287

ntcgcgattc	gcgcgcggcg	ggagcgggag	gaggaggcat	cgtccccggg	gctgggctgc
60					
agcaagccgc	acctggagaa	gctgaccctg	ggcatcacgc	gcatcctaga	atcttccccca
120					

ggtgtgactg aggtgaccat catagaaaag cctcctgctg aacgtcatat gattttcc
180
tgggaacaaa agaataactg tgtgatgcct gaagatgtga agaactttta cctgatgacc
240
aatggttcc acatgacatg gagtgtaaag ctggatgagc acatcattcc actggaaagc
300
atggcaatta acagcatctc aaaactgact cagtcaccc agtcttccat gtattcatt
360
cctaattgcac ccactctggc agacctggag gacgatacac atgaagccag tgatgatcag
420
480
ccagagaagc ctcactttaa ctctcgagt gtgatatttgc agtggattc atgcaatggc
540
agtggaaag tttgccttgt ctacaaaatg gggaaaccag cattagcaga agacactgag
600
atctggttcc tggacagagc gttatactgg cattttctca cagacaccc tactgcctat
660
taccgcctgc tcataccca cctggcctg ccccagtggc aatatgcctt caccagctat
720
ggcattagcc cacaggccaa gcaatggttc agcatgtata aacctatcac ctacaacaca
780
aacctgctca cagaagagac cgactcctt gtgaataagc tagatcccag caaagtgtt
840
aagagcaaga acaagatcgt aatccaaaaa aagaaaggc ctgtgcagcc tgcaggtggc
900
cagaaaggc ctcaggacc ctccggtccc tccacttccctt ccacttctaa atcctccct
960
ggctctggaa accccacccg gaagttagca cccctccctc caactccctt ccagctccag
1020
agtggggtt tccatgcaca gatggcccta ggggtgaccc ctgtttgc gtgtggaccg
1080
taggccttctt tctagttgaa tgacaaaaat tgtaaggc tttagtccccac cgacattagc
1140
caggctcgta gtgaggcctc cagagcagggt tgcgtgtcc cctgcctctg gaagcaatgg
1200
gaaatttgaa atcttgta agtgcacaaa taagtctgag tgcttcctc ttcttcaaca
1260
ctcaaccctc aatcccttag cactgattga tttagagaggt cccccaaga aaccactgg
1320
tttgacccat gaagcattag aactgcatttgc ttcatcagg agccactagt cacatgac
1380
tatattaaatt taaagtaaat tgtatgaaaa attcatttct tcaattgcat tagccacatt
1440
ttgagtattt atgtggctgg tagattctgtt attagcacaa agatatggaa catttcattc
1500
accacagaaa gttctgttgg acagcactgc attagaatat tttcatactg ctcttcctca
1560
attaattttt gttgttaatg ttgatgtctt cattggatgg gtcataatgt tccatgaaac
1620
ctctcaagta cacaattttaa tgtttttgtt atcccttacc acaaataatct cgctctgctc
1674
atttcttttgc cagcttcata taaagttgtt cttcctcatac aaaaaaaaaaaaaaaa
<210> 6288

<211> 269
<212> PRT
<213> Homo sapiens

<400> 6288
Pro Gly Val Thr Glu Val Thr Ile Ile Glu Lys Pro Pro Ala Glu Arg
1 5 10 15
His Met Ile Ser Ser Trp Glu Gln Lys Asn Asn Cys Val Met Pro Glu
20 25 30
Asp Val Lys Asn Phe Tyr Leu Met Thr Asn Gly Phe His Met Thr Trp
35 40 45
Ser Val Lys Leu Asp Glu His Ile Ile Pro Leu Gly Ser Met Ala Ile
50 55 60
Asn Ser Ile Ser Lys Leu Thr Gln Leu Thr Gln Ser Ser Met Tyr Ser
65 70 75 80
Leu Pro Asn Ala Pro Thr Leu Ala Asp Leu Glu Asp Asp Thr His Glu
85 90 95
Ala Ser Asp Asp Gln Pro Glu Lys Pro His Phe Asp Ser Arg Ser Val
100 105 110
Ile Phe Glu Leu Asp Ser Cys Asn Gly Ser Gly Lys Val Cys Leu Val
115 120 125
Tyr Lys Ser Gly Lys Pro Ala Leu Ala Glu Asp Thr Glu Ile Trp Phe
130 135 140
Leu Asp Arg Ala Leu Tyr Trp His Phe Leu Thr Asp Thr Phe Thr Ala
145 150 155 160
Tyr Tyr Arg Leu Leu Ile Thr His Leu Gly Leu Pro Gln Trp Gln Tyr
165 170 175
Ala Phe Thr Ser Tyr Gly Ile Ser Pro Gln Ala Lys Gln Trp Phe Ser
180 185 190
Met Tyr Lys Pro Ile Thr Tyr Asn Thr Asn Leu Leu Thr Glu Glu Thr
195 200 205
Asp Ser Phe Val Asn Lys Leu Asp Pro Ser Lys Val Phe Lys Ser Lys
210 215 220
Asn Lys Ile Val Ile Pro Lys Lys Gly Pro Val Gln Pro Ala Gly
225 230 235 240
Gly Gln Lys Gly Pro Ser Gly Pro Ser Gly Pro Ser Thr Ser Ser Thr
245 250 255
Ser Lys Ser Ser Ser Gly Ser Gly Asn Pro Thr Arg Lys
260 265

<210> 6289
<211> 1321
<212> DNA
<213> Homo sapiens

<400> 6289
acactgcgtc cggggccaga cgacgatatac agcgcggtt cccccacaacg ccatggggca
60
gagccaactc tcgagcgctt gatcgaaagcc cgcaggtttt tcgcggccgt cacttccggg
120
tgcgacaatc tcttctgtcc ggccagccgc tggagtcgtt aggtgccgcc ttgcttctga
180
cgagccacac gtttgcttct tccctgtgtt cccagctgga gggacatgag tgtccctggg
240

ccgtcgcttc cggacggggc cctgacacgg ccaccctact gcctggaggc cggggagccg
 300
 acgcctggtt taagtgacac ttctccagat gaagggttaa tagaggactt gactatagaa
 360
 gacaaagcag tggagcaact ggcagaagga ttgcttctc attatttgc agatctgcag
 420
 agatcaaacc aagccctcca ggaactcaca cagaaccaag ttgtattgtt agacacactg
 480
 480
 gaacaagaga tttcaaaatt taaaatgtt cattctatgt tggatattaa tgctttgtt
 540
 540
 gctgaggcta aacactatca tgccaagttt gtgaatataa gaaaagagat gctgatgctt
 600
 600
 catgaaaaaa catcaaagtt aaaaaaaaaga gcacttaaac tgcagcagaa gaggcaaaaa
 660
 660
 gaagagttgg aaagggagca gcaacgagag aaggggtttt aagagaaaaa gcagtttaact
 720
 720
 gccagaccag ccaaaaggat gtgaaaagtt gtgtttgtt gtttcttct cctgtcccat
 780
 atttgggtta tgatgactca agttagact gaagttgagg tagtgccctt tgccattatg
 840
 840
 tcataatgtt aaatccttat tccggattttt ctgtgtctcc atgcctttt tccaagtagc
 900
 900
 agacgtcatg ttgcatgtt tttgatattt atatgtt aatgtt ttttcaaattt ttgtttaatt
 960
 960
 taaaattta ttatttttagt cttgaattttt ttataaaactg gaaagtgggtt tgattatgtt
 1020
 1020
 gagtc当地tctttaactg taaaatttag tatgaattttt ttagcttctt aatgaatatg
 1080
 1080
 gattttaaac tctccagttt ttatttatg aatgacttgc ctttctgggt aatacaatgc
 1140
 1140
 tgatttttta gtaattgcct ttccattact ttgttaagaa gaaatgccag ctgttttaatc
 1200
 1200
 acacccatccc ctggaaaaga ggttaacctt ttgaacagtt gaatttcattt agaagcttca
 1260
 1260
 tagctttttt gtgagaggaa gtgatactct ttattacaag aaacaaggaa ttaacaaaaaa
 1320
 1320
 t
 1321

<210> 6290
 <211> 172
 <212> PRT
 <213> Homo sapiens

<400> 6290
 Met Ser Val Pro Gly Pro Ser Ser Pro Asp Gly Ala Leu Thr Arg Pro
 1 5 10 15
 Pro Tyr Cys Leu Glu Ala Gly Glu Pro Thr Pro Gly Leu Ser Asp Thr
 20 25 30
 Ser Pro Asp Glu Gly Leu Ile Glu Asp Leu Thr Ile Glu Asp Lys Ala
 35 40 45
 Val Glu Gln Leu Ala Glu Gly Leu Leu Ser His Tyr Leu Pro Asp Leu
 50 55 60
 Gln Arg Ser Lys Gln Ala Leu Gln Glu Leu Thr Gln Asn Gln Val Val

65	70	75	80												
Leu	Leu	Asp	Thr	Leu	Glu	Gln	Glu	Ile	Ser	Lys	Phe	Lys	Glu	Cys	His
				85	90									95	
Ser	Met	Leu	Asp	Ile	Asn	Ala	Leu	Phe	Ala	Glu	Ala	Lys	His	Tyr	His
				100	105									110	
Ala	Lys	Leu	Val	Asn	Ile	Arg	Lys	Glu	Met	Leu	Met	Leu	His	Glu	Lys
				115	120									125	
Thr	Ser	Lys	Leu	Lys	Lys	Arg	Ala	Leu	Lys	Leu	Gln	Gln	Lys	Arg	Gln
				130	135									140	
Lys	Glu	Glu	Leu	Glu	Arg	Glu	Gln	Gln	Arg	Glu	Lys	Gly	Phe	Glu	Arg
				145	150					155				160	
Glu	Lys	Gln	Leu	Thr	Ala	Arg	Pro	Ala	Lys	Arg	Met				
				165		170									

<210> 6291

<211> 2718

<212> DNA

<213> Homo sapiens

<400> 6291

naggttgtct tggcgggggg cgtggcacct gcactgttcc gggggatgcc agtcacattc
 60
 tcggacagcg cccagactga ggcctgtac cacatgtga gcccggccca gcccaccc
 120
 gacccctcc tgctccagcg tctgccacgg cccagctccc tgtcagacaa gacccagctc
 180
 cacagcaggt ggctggactc gtgcgggtgt ctcatgcagc agggcatcaa ggctggggac
 240
 gcactctggc tgcgcttcaa gtactacagc ttcttcgatt tggatcccaa gacagacccc
 300
 gtgcggctga cacagctgta tgaggcaggcc cggtgggacc tgctgctgga ggagattgac
 360
 tgccacggagg aggagatgtat ggtgtttgcc gccctgcagt accacatcaa caagctgtcc
 420
 cagagcgggg aggtggggga gcccggctggc acagacccag ggctggacga cctggatgtq
 480
 gcccctgagca acctggaggt gaagctggag gggtcgccgc ccacagatgt gctggacagc
 540
 ctcaccacca tccccagact caaggactat ctccgaatct ttccggccccc gaagctgacc
 600
 ctgaagggtctt accgccaaca ctgggtggtg ttcaaggaga ccacactgtc ctactacaag
 660
 agccaggacg agggccctgg ggacccatt cagcagctca acctcaagggg ctgtgaggtg
 720
 gttcccgatg ttaacgtctc cggccagaag ttctgcatta aactcttagt gcccctccct
 780
 gagggcatga gtgagatcta cctgcgggtgc caggatgagc agcagtatgc cccgtggatg
 840
 gctggctgcc gcctggccctc caaaggccgc accatggccg acagcagcta caccagcgg
 900
 gtgcaggcca tcctggccctt cctcagcctg cagcacgggc agtgggggccc caggcaacca
 960
 ccccccacggc ctgatgcctc tgccgagggc ctcaaccctt acggcccttgt tgccccccgt
 1020

tcccagcgaa agtcaaggc caagcagctc accccacgga tcctggaagc ccaccagaat
1080
gtggcccaagt tgtcgctggc agaggcccag ctgcgcctca tccaggccctg gcagtcctg
1140
cccgacttcg gcatctcta tgtcatggtc aggttcaagg gcagcaggaa agacgagatc
1200
ctgggcattcg ccaacaacg actgatccgc atcgacttgg ccgtgggtga cgtggtaag
1260
acctggcggtt tcagcaacat ggcgcaggatgg aatgtcaact gggacatccg gcaggtggcc
1320
atcgagtttg atgaacacat caatgtggcc tttagctgtg tgtctgcacag ctggcgaaatt
1380
gtacacgagt atatcgaaaa ctacattttc ctgtcgacgc gggagcgggc ccgtggggag
1440
gagctggatg aagaccttt cctgcagctc accggggggcc atgaggccctt ctgaggggctg
1500
tctgattgcc cctgcctgc tcaccaccct gtcacagcca ctcccaagcc cacacccaca
1560
ggggctcaact gccccacacc cgctccaggc aggcacccag ctgggcattt cacctgctgt
1620
caactgactt gtgcaggcca aggacctggc agggccagac gctgtaccat cacccaggcc
1680
agggatgggg gtgggggtcc ctgagctcat gtggtgcccc ctttccttgt ctgagtggt
1740
gaggctgata cccctgaccc atctgcagtc ccccaageaca caaggaagac cagatgtac
1800
tacaggatga tgaaacatgg ttcaaaccga gttctttttt gttactttttt aaaatttttt
1860
ttttataaaat taatattttt ttgttgatc ctccctttt ctctggagct gtgtttgggg
1920
ctactctgac actctgtctc ttcatcacca gccaaggaaa ggggctttcg ggttagggcgt
1980
agctgcaggg cctcctgaa gtacttggga aggaggaagc catcagtatt ccctggagtc
2040
agaatcaccc cattggcaga gcgaaagaag ggtattccat ctgcccagac caggggtcca
2100
tcgatgaaca cagctatttc acaatggac cgcatgccac tgatgatacc ggggtctcca
2160
ggcagtcctg gggccagggtg aatgtgcgtc ctccctggc aggacaggcc tttgagtagg
2220
atggatggcc agtgcttcca gaatgtacca tggacttagca tcggggcag ggctgcggtg
2280
tctccagggg catcagctcc aacttaggtt cctgcaggga atggccctgg ttggcccgga
2340
tgagaaggcc agtgctggga tccccagct gcagggcgaa ccgctgcttc ctattgggt
2400
ccaccacgcg ctgcacatct tcagcagaga agccgcggaa ctggggcaac tgcaggaggg
2460
tgccccagggg cacgaagcca tctgtggca ggcagggtgc tcaggagctt accttgc
2520
ggactggggcc agggtaaca gggagccaca ggcaaccgaa acaaagtctg ggcttggaga
2580
tcgcttgggc atccctgttggc ggacccatgg aaagtctccc ctttctggc cgcagtttc
2640

aacttacata aaaagaggat ctgcctcaca gaggggcagg gaggtgagtg cccagcatag
2700
cgctggcccg gagtgcac
2718

<210> 6292
<211> 497
<212> PRT
<213> Homo sapiens

<400> 6292
Xaa Val Val Leu Ala Gly Gly Val Ala Pro Ala Leu Phe Arg Gly Met
1 5 10 15
Pro Ala His Phe Ser Asp Ser Ala Gln Thr Glu Ala Cys Tyr His Met
20 25 30
Leu Ser Arg Pro Gln Pro Pro Asp Pro Leu Leu Leu Gln Arg Leu
35 40 45
Pro Arg Pro Ser Ser Leu Ser Asp Lys Thr Gln Leu His Ser Arg Trp
50 55 60
Leu Asp Ser Ser Arg Cys Leu Met Gln Gln Gly Ile Lys Ala Gly Asp
65 70 75 80
Ala Leu Trp Leu Arg Phe Lys Tyr Tyr Ser Phe Phe Asp Leu Asp Pro
85 90 95
Lys Thr Asp Pro Val Arg Leu Thr Gln Leu Tyr Glu Gln Ala Arg Trp
100 105 110
Asp Leu Leu Leu Glu Glu Ile Asp Cys Thr Glu Glu Met Met Val
115 120 125
Phe Ala Ala Leu Gln Tyr His Ile Asn Lys Leu Ser Gln Ser Gly Glu
130 135 140
Val Gly Glu Pro Ala Gly Thr Asp Pro Gly Leu Asp Asp Leu Asp Val
145 150 155 160
Ala Leu Ser Asn Leu Glu Val Lys Leu Glu Gly Ser Ala Pro Thr Asp
165 170 175
Val Leu Asp Ser Leu Thr Thr Ile Pro Glu Leu Lys Asp Tyr Leu Arg
180 185 190
Ile Phe Arg Pro Arg Lys Leu Thr Leu Lys Gly Tyr Arg Gln His Trp
195 200 205
Val Val Phe Lys Glu Thr Thr Leu Ser Tyr Tyr Lys Ser Gln Asp Glu
210 215 220
Ala Pro Gly Asp Pro Ile Gln Gln Leu Asn Leu Lys Gly Cys Glu Val
225 230 235 240
Val Pro Asp Val Asn Val Ser Gly Gln Lys Phe Cys Ile Lys Leu Leu
245 250 255
Val Pro Ser Pro Glu Gly Met Ser Glu Ile Tyr Leu Arg Cys Gln Asp
260 265 270
Glu Gln Gln Tyr Ala Arg Trp Met Ala Gly Cys Arg Leu Ala Ser Lys
275 280 285
Gly Arg Thr Met Ala Asp Ser Ser Tyr Thr Ser Glu Val Gln Ala Ile
290 295 300
Leu Ala Phe Leu Ser Leu Gln His Gly Gln Trp Gly Pro Arg Gln Pro
305 310 315 320
Pro Pro Arg Pro Asp Ala Ser Ala Glu Gly Leu Asn Pro Tyr Gly Leu
325 330 335
Val Ala Pro Arg Phe Gln Arg Lys Phe Lys Ala Lys Gln Leu Thr Pro

340	345	350
Arg Ile Leu Glu Ala His Gln Asn Val Ala Gln	Leu Ser Leu Ala Glu	
355	360	365
Ala Gln Leu Arg Phe Ile Gln Ala Trp Gln Ser	Leu Pro Asp Phe Gly	
370	375	380
Ile Ser Tyr Val Met Val Arg Phe Lys Gly Ser	Arg Lys Asp Glu Ile	
385	390	395
Leu Gly Ile Ala Asn Asn Arg Leu Ile Arg	Ile Asp Leu Ala Val Gly	
405	410	415
Asp Val Val Lys Thr Trp Arg Phe Ser Asn Met	Arg Gln Trp Asn Val	
420	425	430
Asn Trp Asp Ile Arg Gln Val Ala Ile Glu Phe	Asp Glu His Ile Asn	
435	440	445
Val Ala Phe Ser Cys Val Ser Ala Ser Cys Arg	Ile Val His Glu Tyr	
450	455	460
Ile Gly Gly Tyr Ile Phe Leu Ser Thr Arg	Glu Arg Ala Arg Gly Glu	
465	470	475
Glu Leu Asp Glu Asp Leu Phe Leu Gln Leu Thr	Gly Gly His Glu Ala	
485	490	495
Phe		

<210> 6293

<211> 750

<212> DNA

<213> Homo sapiens

<400> 6293	
nggcggggcg ccatggcacc gtggggcaag cggctggctg gcgtgcgcgg ggtgcgtgctt	
60	
gacatctcg gggtgcgtta cgacagcggc gggtgcggcg gcacggccat cgccggctcg	
120	
gtggaggcgg tggccagact gaagcgttcc cggctgaagg tgaggttctg caccaacgag	
180	
tccgcagaagt cccgggcaga gctgggtgggg cagttcaga ggctggatt tgacatctct	
240	
gaggcaggagg taaccgcgcc ggcaccagct gcctgccaga tcctgaagga gcgaggcctg	
300	
cgaccataacc tgctcatcca tgacggagtc cgctcagaat ttgatcagat cgacacatcc	
360	
aacctcaaact gtgtggtaat tgcagacgca ggagaaagct ttcttatca aaacatgaat	
420	
aacgccttcc aggtgctcat ggagctggaa aaacctgtgc tcataatcact gggaaaagg	
480	
cgttactaca aggagacctc tggcctgatg ctggacgttg gtccctacat gaaggcgctt	
540	
gagtatgcct gtggcatcaa agccgaggtg gtggggaaagc ctttcctga gttttcaag	
600	
tctgcctgc aagcgatagg agtggaaagcc caccagcccg tcattgattgg ggacgatatc	
660	
gtggggcgacg tcggcggtgc ccagcggtgt ggaatgagag cgctgcaggt ggcacccggg	
720	
aagttcaggc ccagtgacga gcaccatccg	
750	

<210> 6294
<211> 250
<212> PRT
<213> Homo sapiens

<400> 6294
Xaa Pro Gly Ala Met Ala Pro Trp Gly Lys Arg Leu Ala Gly Val Arg
1 5 10 15
Gly Val Leu Leu Asp Ile Ser Gly Val Leu Tyr Asp Ser Gly Ala Cys
20 25 30
Gly Gly Thr Ala Ile Ala Gly Ser Val Glu Ala Val Ala Arg Leu Lys
35 40 45
Arg Ser Arg Leu Lys Val Arg Phe Cys Thr Asn Glu Ser Gln Lys Ser
50 55 60
Arg Ala Glu Leu Val Gly Gln Leu Gln Arg Leu Gly Phe Asp Ile Ser
65 70 75 80
Glu Gln Glu Val Thr Ala Pro Ala Pro Ala Ala Cys Gln Ile Leu Lys
85 90 95
Glu Arg Gly Leu Arg Pro Tyr Leu Leu Ile His Asp Gly Val Arg Ser
100 105 110
Glu Phe Asp Gln Ile Asp Thr Ser Asn Pro Asn Cys Val Val Ile Ala
115 120 125
Asp Ala Gly Glu Ser Phe Ser Tyr Gln Asn Met Asn Asn Ala Phe Gln
130 135 140
Val Leu Met Glu Leu Glu Lys Pro Val Leu Ile Ser Leu Gly Lys Gly
145 150 155 160
Arg Tyr Tyr Lys Glu Thr Ser Gly Leu Met Leu Asp Val Gly Pro Tyr
165 170 175
Met Lys Ala Leu Glu Tyr Ala Cys Gly Ile Lys Ala Glu Val Val Gly
180 185 190
Lys Pro Ser Pro Glu Phe Phe Lys Ser Ala Leu Gln Ala Ile Gly Val
195 200 205
Glu Ala His Gln Ala Val Met Ile Gly Asp Asp Ile Val Gly Asp Val
210 215 220
Gly Gly Ala Gln Arg Cys Gly Met Arg Ala Leu Gln Val Arg Thr Gly
225 230 235 240
Lys Phe Arg Pro Ser Asp Glu His His Pro
245 250

<210> 6295
<211> 2091
<212> DNA
<213> Homo sapiens

<400> 6295
ggcgccgggg gcgggggtgg gagggcggagg cggggccggg ggcggcgccgg cggggcgccg
60
ggggcgccgggc gagtcggag gactccctcggt actgcgcggaa acatggcggtt ctgggggttgg
120
cgcgccgcgg cagccctccgg gctgtggggc cgggttagttt aacgggtcga ggccggggga
180
ggcggtggggc cgtttcaggc ctgcggctgt cggctgggtgc ttggcggcag ggacgtatgt
240

agtgcggggc tgagaggcag ccatggggcc cgccgtgagc ccttggaccc ggcgcgeccc
300 ttgcagaggc ctcccagacc cgaggtgccc agggcattcc ggaggcagcc gagggcagca
360 gctccca gtttttttc gaggataaa ggttggaaagaa ggtccataatc tttttctgtg
420 ggtgtttcaa gtgttgttgg aagtggaggc agcagtgaca aggggaagct ttccccgtcag
480 gatgttagctg agctgattcg ggccagagcc tgccagaggg tggtgttcat ggtggggcc
540 gcatcagca cacccagtgg cattccagac ttccatgc cggggagtg cctgtacagc
600 aacctccagc agtacgatct ccgttacccc gaggttccat ttgaactccc attttttt
660 cacaacccca agccctttt cactttggcc aaggagctgt accctggaaa ctacaagccc
720 aacgtcaactc actactttct ccggctgttt catgacaagg ggctgtttct gcggctctac
780 acgcagaaca tcgtatggct tgagagatg tcgggcatcc ctgcctaaaa gctgggtgaa
840 gctcatggaa ctttgcttc tgccacctgc acagtctgcc aaagaccctt cccagggag
900 gacattcggg ctgacgtgat ggcagacagg gttcccccgt gccccgtctg caccggcggt
960 gtgaagcccg acattgtgtt ctttggggag ccgtgtcccc agaggttctt gctgcatgtg
1020 gttgatttcc ccatggcaga tctgtgttc atccttggga cttccctgga ggtggagcc
1080 ttggccagct tgaccggagc cgtggggagc tcagttcccc gactgtcat caaccgggac
1140 ttggggggc ctttggcttg gcatccctgc agcagggacg tggcccagct gggggacgtg
1200 gttcacggcg tggaaaggct agtggagctt ctgggcttggaa cagaagagat gcgggacctt
1260 gtgcagcggg aaactggaa gcttgcgttcc ccagacaaat aggatgttgg ctggaccgag
1320 gccgtgcggga cgtcagttcc ccgtactgttc atcaaccggg acttgggtggg gcccctggct
1380 tggcatcctc gcagcaggga cgtggcccgat ctggggggacg tggttcacgg cgtggaaagc
1440 ctatgtggagc ttctgggttg gacagaagag atgcgggacc ttgtgcagcg ggaaactggg
1500 aagttgtatg gaccagacaa ataggatgttgg ggtgtcccc acacaataaa tggttaacata
1560 ggagacatcc acatccaaat tctgacaaga cctcatgtcc gaagacagct tggcaggtg
1620 aaaccagaat atgtgaactg agtggacacc cgaggctgcc actggaaatgt cttctcaggc
1680 catgagctgc agtgcgtgtt agggcgtgtt ttacagttagt ggccaccccg tcacatatac
1740 aaaggagctg cctgcctgtt tgctgtgttgg aactcttcac tctgtgttgg ctccataatgg
1800 aaaaagctt cttctgactg tgacccttcc gaactgtatc agaccaactg gaatcccaga
1860

305	310	315	320
Ser Leu Glu Val Glu Pro Phe Ala Ser	Leu Thr Glu Ala Val Arg Ser		
325	330	335	
Ser Val Pro Arg Leu Leu Ile Asn Arg Asp Leu Val Gly Pro Leu Ala			
340	345	350	
Trp His Pro Arg Ser Arg Asp Val Ala Gln Leu Gly Asp Val Val His			
355	360	365	
Gly Val Glu Ser Leu Val Glu Leu Leu Gly Trp Thr Glu Glu Met Arg			
370	375	380	
Asp Leu Val Gln Arg Glu Thr Gly Lys Leu Asp Gly Pro Asp Lys			
385	390	395	

<210> 6297

<211> 472

<212> DNA

<213> Homo sapiens

<400> 6297

```

ngggccgcgt ggccgagagg ctgagggcgcc gtcatgtcct ccgagggtgc cgcgccgc
60
gacgccaaga agctggtgcg ctccccgagc gcctgcgca tggtgcggca acaccgcgc
120
ttcggaaagcc cgttcggcct ggaggagccg cagtgggtcc cggacaagga gtgtcggaga
180
tgtatgcagt gtgacgcca aa gtttacttt ctcaccagaa agcaccactg tcgcccgtc
240
ggaaagtgcgt tctgcacacag gtgctgcagc cagaagggtgc cgctgcggcg catgtgc
300
300
gtggaccccg tgcggcagtg cgcggagtgc gccctgggtgt ccctcaagga ggcggagttc
360
tacgacaagc agctcaaagt gctcctgagc ggttaaggacg ggtgtcctgc acagtcctgc
420
420
gctccgcgc agccggctcc tcgtgtctgt ggcgatgctg tgggctgtgc ac
472

```

<210> 6298

<211> 146

<212> PRT

<213> Homo sapiens

<400> 6298

Met Ser Ser Glu Val Ser Ala Arg Arg Asp Ala Lys Lys Leu Val Arg			
1	5	10	15
Ser Pro Ser Gly Leu Arg Met Val Pro Glu His Arg Ala Phe Gly Ser			
20	25	30	
Pro Phe Gly Leu Glu Glu Pro Gln Trp Val Pro Asp Lys Glu Cys Arg			
35	40	45	
Arg Cys Met Gln Cys Asp Ala Lys Phe Asp Phe Leu Thr Arg Lys His			
50	55	60	
His Cys Arg Arg Cys Gly Lys Cys Phe Cys Asp Arg Cys Cys Ser Gln			
65	70	75	80
Lys Val Pro Leu Arg Arg Met Cys Phe Val Asp Pro Val Arg Gln Cys			
85	90	95	
Ala Glu Cys Ala Leu Val Ser Leu Lys Glu Ala Glu Phe Tyr Asp Lys			

100 105 110
Gln Leu Lys Val Leu Leu Ser Gly Lys Asp Gly Cys Pro Ala Gln Ser
115 120 125
Cys Ala Leu Arg Gln Pro Ala Pro Arg Val Cys Gly Asp Ala Val Gly
130 135 140
Cys Ala
145

<210> 6299
<211> 1466
<212> DNA
<213> Homo sapiens

<400> 6299
ctgattccgg gctgtcatgg cgaccccaa caatctgacc cccaccaact gcagctggtg
60
gccccatctcc gcgctggaga gcgatgcggc caagccagcg gaggccccc acgctcccgaa
120
ggcggccagc ccgcccattg gcccaaggag agcctggttc tgtaccactg gacccagtcc
180
ttcagctcgc agaagggtgcg gctggtgatc gccgagaagg gcttggtgtg cgaggagcgg
240
gacgtgagcc tgccacagag cgagcacaaag gagccctggt tcatgcggct caacctgggc
300
gaggaggtgc ccgtcatcat ccaccgcgac aacatcatca gtgactatga ccagatcatt
360
gactatgtgg agcgcaccc cacaggagag cacgtggtgcc ccctgatgcc cgaggtggc
420
agcctgcagc acgcacgggt gctgcagtcg cgggagctgc tggacgcact gccccatggat
480
gcctcacacgc atggctgcat cctgcattcc gagctcacca ccgactccat gatccccaaag
540
tacgcccacgg ccgagatccg cagacattta gccaatgcca ccacggacct catgaaactg
600
gaccatgaag aggagcccca gctctccgag ccctaccttt ctaaaacaaaa gaagctcatg
660
gccaagatct tggagcatga ttagtgcggc tacctgaaga agatcctcg ggaactggcc
720
atggtgctgg accagattga ggcggagctg gagaagagga agctggagaa cgagggcag
780
aatgcgcgac tgtggctctg tggctgtgcc ttccacccctcg ctgatgtccct cctgggagcc
840
accctgcacc gcctcaagtt cctgggactg tccaagaaat actgggaaga tggcagccgg
900
cccaacccctgc agtccttctt tgagagggtc cagagacgct ttgccttccg gaaagtccctg
960
ggtgacatcc acaccacccct gctgtcgcc gtcattccca atgctttccg gctggtcaag
1020
aggaaacccc catccttctt cggggcgccc ttccatgg gctccctggg tgggatggc
1080
tactttgcctt actggtaccc caagaaaaaa tacatctagg gccaggcctg gggcttggtg
1140
tctgactgtc ggtgtctctg tgctgtgtga ttcccccgtga gctctcagta actcactgtc
1200

tcatgaacac ttggacagcc ctccccgccc ttcgttctga gtaataatac cgtcagtgtg
 1260
 aaaacattcc gtagttaga agtagacgtt gcaaatgctg tgactcaagg ccacggctct
 1320
 gctaaaaagag agagaaggaa cgagagagag agagaaaaaa caaaaaacca gaaaaccacg
 1380
 atgccttt tctatcgatt tcaaggtctc aagatggaa ctgtgggaga ctgggttagg
 1440
 atctgagggg aactttca caggga
 1466

<210> 6300
 <211> 372
 <212> PRT
 <213> Homo sapiens

<400> 6300
 Leu Ile Pro Gly Cys His Gly Asp Pro Gln Gln Ser Asp Pro His Gln
 1 5 10 15
 Leu Gln Leu Val Ala His Leu Arg Ala Gly Glu Arg Cys Gly Gln Ala
 20 25 30
 Ser Gly Gly Pro Arg Arg Ser Arg Gly Gly Gln Pro Ala His Trp Pro
 35 40 45
 Arg Glu Ser Leu Val Leu Tyr His Trp Thr Gln Ser Phe Ser Ser Gln
 50 55 60
 Lys Val Arg Leu Val Ile Ala Glu Lys Gly Leu Val Cys Glu Glu Arg
 65 70 75 80
 Asp Val Ser Leu Pro Gln Ser Glu His Lys Glu Pro Trp Phe Met Arg
 85 90 95
 Leu Asn Leu Gly Glu Glu Val Pro Val Ile Ile His Arg Asp Asn Ile
 100 105 110
 Ile Ser Asp Tyr Asp Gln Ile Ile Asp Tyr Val Glu Arg Thr Phe Thr
 115 120 125
 Gly Glu His Val Val Ala Leu Met Pro Glu Val Gly Ser Leu Gln His
 130 135 140
 Ala Arg Val Leu Gln Tyr Arg Glu Leu Leu Asp Ala Leu Pro Met Asp
 145 150 155 160
 Ala Tyr Thr His Gly Cys Ile Leu His Pro Glu Leu Thr Thr Asp Ser
 165 170 175
 Met Ile Pro Lys Tyr Ala Thr Ala Glu Ile Arg Arg His Leu Ala Asn
 180 185 190
 Ala Thr Thr Asp Leu Met Lys Leu Asp His Glu Glu Glu Pro Gln Leu
 195 200 205
 Ser Glu Pro Tyr Leu Ser Lys Gln Lys Lys Leu Met Ala Lys Ile Leu
 210 215 220
 Glu His Asp Asp Val Ser Tyr Leu Lys Lys Ile Leu Gly Glu Leu Ala
 225 230 235 240
 Met Val Leu Asp Gln Ile Glu Ala Glu Leu Glu Lys Arg Lys Leu Glu
 245 250 255
 Asn Glu Gly Gln Lys Cys Glu Leu Trp Leu Cys Gly Cys Ala Phe Thr
 260 265 270
 Leu Ala Asp Val Leu Leu Gly Ala Thr Leu His Arg Leu Lys Phe Leu
 275 280 285
 Gly Leu Ser Lys Lys Tyr Trp Glu Asp Gly Ser Arg Pro Asn Leu Gln

290	295	300
Ser Phe Phe Glu Arg Val Gln Arg Arg Phe Ala Phe Arg Lys Val Leu		
305	310	315
Gly Asp Ile His Thr Thr Leu Leu Ser Ala Val Ile Pro Asn Ala Phe		320
325	330	335
Arg Leu Val Lys Arg Lys Pro Pro Ser Phe Phe Gly Ala Ser Phe Leu		
340	345	350
Met Gly Ser Leu Gly Gly Met Gly Tyr Phe Ala Tyr Trp Tyr Leu Lys		
355	360	365
Lys Lys Tyr Ile		
370		

<210> 6301

<211> 911

<212> DNA

<213> Homo sapiens

<400> 6301
 nnacgggttt tagaaaaaca agaattacag cagccaacct atgttgcct gagttacata
 60
 aatagattca tgacagatgc tgcccgccga gaggcaggagt ccctaaagaa gaagattcag
 120
 ccgaagctct cgctgactct gtccagctca gtgtctcgag ggaatgtgtc cactccccca
 180
 cgccacagca gtggaagcct tactcccccc gtgaccccac ccattaccaccc ctctcttca
 240
 ttcccgagca gcactccgac aggacgcgag tatgacgagg aggaggtgga ctatgaggag
 300
 tcggacagcg atgagtcttg gaccacagag agtgccatca gctccgaagc catcctcagc
 360
 tccatgtgca tgaatggagg ggaagagaag cctttgcct gcccagttcc tggatgtaaa
 420
 aagagataca agaatgtgaa tggcataaaag tatcacgcta agaatggtca cagaacacag
 480
 attcgtgtcc gcaaaccatt caagtgtcgc tgtggaaaga gttacaagac agctcaggc
 540
 ctgcggcacc acacaatcaa tttccatccc ccggtgtcgg ctgagattat caggaagatg
 600
 cagcaataac atgctggtca taactgtgcc aagaaatcct caccagcagt tgctgatTTT
 660
 gaaaacagcc acctttttc agggaaagca tttagcaacc ctttaaagaa aaagaattaa
 720
 atgcatgctt taaatTTTT ctgtatTTT ggaatgtatgt atctttgtat agttaatgtat
 780
 ttgtacatt tgcacatgta atcatcatac ccattttcat tactttgata taagggtgcta
 840
 aaaaaaaaaa gctcttagtt cttagcaca ttcccccaa aacaaaataa aattgaggc
 900
 atgttgcaaa a
 911

<210> 6302

<211> 202

<212> PRT

<213> Homo sapiens

<400> 6302

Xaa	Arg	Val	Leu	Glu	Lys	Gln	Glu	Leu	Gln	Gln	Pro	Thr	Tyr	Val	Ala
1			5			10					15				
Leu	Ser	Tyr	Ile	Asn	Arg	Phe	Met	Thr	Asp	Ala	Ala	Arg	Arg	Glu	Gln
			20				25					30			
Glu	Ser	Leu	Lys	Lys	Lys	Ile	Gln	Pro	Lys	Leu	Ser	Leu	Thr	Leu	Ser
			35				40					45			
Ser	Ser	Val	Ser	Arg	Gly	Asn	Val	Ser	Thr	Pro	Pro	Arg	His	Ser	Ser
			50			55					60				
Gly	Ser	Leu	Thr	Pro	Pro	Val	Thr	Pro	Pro	Ile	Thr	Pro	Ser	Ser	Ser
			65			70				75			80		
Phe	Arg	Ser	Ser	Thr	Pro	Thr	Gly	Ser	Glu	Tyr	Asp	Glu	Glu	Glu	Val
				85				90				95			
Asp	Tyr	Glu	Glu	Ser	Asp	Ser	Asp	Glu	Ser	Trp	Thr	Thr	Glu	Ser	Ala
				100			105				110				
Ile	Ser	Ser	Glu	Ala	Ile	Leu	Ser	Ser	Met	Cys	Met	Asn	Gly	Gly	Glu
			115			120				125					
Glu	Lys	Pro	Phe	Ala	Cys	Pro	Val	Pro	Gly	Cys	Lys	Lys	Arg	Tyr	Lys
			130			135				140					
Asn	Val	Asn	Gly	Ile	Lys	Tyr	His	Ala	Lys	Asn	Gly	His	Arg	Thr	Gln
			145			150			155			160			
Ile	Arg	Val	Arg	Lys	Pro	Phe	Lys	Cys	Arg	Cys	Gly	Lys	Ser	Tyr	Lys
				165			170			175					
Thr	Ala	Gln	Gly	Leu	Arg	His	His	Thr	Ile	Asn	Phe	His	Pro	Pro	Val
			180			185					190				
Ser	Ala	Glu	Ile	Ile	Arg	Lys	Met	Gln	Gln						
			195			200									

<210> 6303

<211> 676

<212> DNA

<213> Homo sapiens

<400> 6303

aaagttcatg	ttgttgatct	aaaggcagaa	tctgttagctg	ctcctataac	tgttcgtgct
60.					
tacttaaatc	agacagttac	agaattcaaa	caactgattt	caaaggccat	ccattttacct
120					
gctgaaacaa	tgagaatagt	gctggAACgc	tgctacaatg	atttgcgtct	tctcagtgtc
180					
tccagtaaaa	ccctgaaagc	tgaaggattt	tttagaagta	acaagggttt	tgttgaagc
240					
tcccgagactt	tggattacca	gatggccttt	gcagactctc	atttatggaa	actcctggat
300					
cggcatgcaa	atacaatcag	attatttgtt	ttgtcacctg	aacaatcccc	agtatcttat
360					
tccaaaaggaa	cagcatacca	gaaagctgga	ggcgattctg	gtaatgtgga	tgatgactgt
420					
gaaagagtca	aaggacctgt	aggaagccta	aagtctgtgg	aagctattct	agaagaaagc
480					
actaaaaaac	tcaaaagctt	gtcactgcag	caacagcagg	atggagataa	tggggacagc
540					

agcaaaaagta ctgagacaag tgacttgaa aacatcgaat cacctctcaa tgagagggac
 600
 tcttcagcat cagttggataa tagagaacctt gaacagcata ttcagacttc tgatccagaa
 660
 aaattttcag tctgaa
 676

<210> 6304
 <211> 181
 <212> PRT
 <213> Homo sapiens

<400> 6304
 Met Arg Ile Val Leu Glu Arg Cys Tyr Asn Asp Leu Arg Leu Leu Ser
 1 5 10 15
 Val Ser Ser Lys Thr Leu Lys Ala Glu Gly Phe Phe Arg Ser Asn Lys
 20 25 30
 Val Phe Val Glu Ser Ser Glu Thr Leu Asp Tyr Gln Met Ala Phe Ala
 35 40 45
 Asp Ser His Leu Trp Lys Leu Leu Asp Arg His Ala Asn Thr Ile Arg
 50 55 60
 Leu Phe Val Leu Leu Pro Glu Gln Ser Pro Val Ser Tyr Ser Lys Arg
 65 70 75 80
 Thr Ala Tyr Gln Lys Ala Gly Gly Asp Ser Gly Asn Val Asp Asp Asp
 85 90 95
 Cys Glu Arg Val Lys Gly Pro Val Gly Ser Leu Lys Ser Val Glu Ala
 100 105 110
 Ile Leu Glu Glu Ser Thr Glu Lys Leu Lys Ser Leu Ser Leu Gln Gln
 115 120 125
 Gln Gln Asp Gly Asp Asn Gly Asp Ser Ser Lys Ser Thr Glu Thr Ser
 130 135 140
 Asp Phe Glu Asn Ile Glu Ser Pro Leu Asn Glu Arg Asp Ser Ser Ala
 145 150 155 160
 Ser Val Asp Asn Arg Glu Leu Glu Gln His Ile Gln Thr Ser Asp Pro
 165 170 175
 Glu Lys Phe Ser Val
 180

<210> 6305
 <211> 3853
 <212> DNA
 <213> Homo sapiens

<400> 6305
 cagtgccagg ctggaggcggt cagcggttgg aggcttcgcc cggtttgca gcggggactt
 60
 cggcgccggc gcctcaggca cctcgccccg gacacgatga ggcgagtggc ccggcagagc
 120
 aaattccggc atgtgttcgg gcagccggtc aagaacgacc agtgctatga ggacattcgc
 180
 gtgtcccggtt ttacctggga cagcaccttc tgccgcgtca accccaagtt cctggcggtg
 240
 attgtggagg ccagtggagg ggggccttt ctgggtgtcc ccctaagcaa gacggggccgc
 300

attgacaagg cctaccctac agtatgtggg cacacaggac cagtgcgttga catcgactgg
360
tgccccacata acgatcagg tattgccagc ggttcagagg actgcacgtt catggatgg
420
cagatcccag aaaatggact caccccccgtt ctgacagagc cgggtgttgtt actggagggg
480
cacaccaagc gagtgggcat catgcctgg cacccacgg cccgaaacgt gctgcgtt
540
gcaggctcg acaacgttgtt actcatctgg aatgtgggca cagcggagga gctgttaccgc
600
ctggacagcc tgcaccctga cctcatctac aatgtcagctt ggaaccacaa tggcagcctg
660
ttttgcttagt catgcaagga caagagcgtt cgcatttcattt accccctgtt gggcaccctg
720
gtggcagagc gggagaaggc tcatgagggg gcccgccca tgcggccat ttctctggca
780
gatggcaagg tgttcaccac aggcttcagc cgaatgagcg agcggcagctt ggccgtctgg
840
aatccgaaaa atatgcagga accaattgtt cttcatgaga tggacacttagt caatgggtg
900
ttgctgcctt tctatgaccc tgcacaccagc atcattttact tatgtggaaa gggtgacagc
960
agtattcgctt atttttagat cacggatgaa tccccgttacg tccactacctt caacacattt
1020
agcagcaagg agcctcagag agggatgggtt tacatgcccagc agaggggactt tgatgttaac
1080
aaatgtgaga ttgccagattt cttcaaactt catgagagaa agtgtgaacc tattttatg
1140
actgttccca ggaagtctga cttttccaa gatgacctgtt atcctgacac agcggggcca
1200
gaggccgcgc tggaggcaga agagtggttc gaaggcaaga atgcagaccc aatcttcattt
1260
tccttgaagc acgggtacat tccaggcaaa aacagggatc tcaagggttgtt caagaagaac
1320
attctggata gcaagccac tgcaaacaag aagtgcgacc tgatcagcat ccccaagaaa
1380
accacagaca cggccagtgtt gcaaaatgaa gccaagttgg atgagatttt aaaagagatc
1440
aaatctataa aagacacaat ctgcaatcaa gatgagcgtt tttccaagttt agaacagcag
1500
atggcaaaaga tagcagcctg aaggcccac ccccaaccctt acagaaaaaaa tgggagcaag
1560
aacttgtgtt tggagctgg ttattgggtt ggtcttaggg agggcggaaa gggaggcact
1620
gccatggaa gacattccat ttcagatttgc tcaaccagcg ataggccaca ttccagtaag
1680
aactcaattt gtctccaaa tttgcagaaa caaaacgtga tttaaaagctt gagcttttt
1740
tcagaaagct tttttgtt ttttaagtgtt atgtgacttg ttgaactttt taaaaagtc
1800
tactttttaa atccccagata ctctgaattt tagaaaacaa actaattctg attgtgtcgt
1860
gccccaaatgttccat ttaatgaata gggaccaatg ccacattgtt ttttatattt
1920

ctttttttt taatgttgcc aaaaccaaaaa gtagctttgt tttcctttgt attttgcac
1980 ttgcagtat ttgtgtgtgt ggttttttt ccttaatttggaaaggacag cactgtgtat
2040 gtttataaac taaaatgaaga taagatatta ttttgtataa acattcatct gagaacaatc
2100 aaagcagtag ccacatggtg ctggctcctt tgacgacaa acctggtcat tttgatgact
2160 gtacaacagg aagacttggaa aaatcacgtg gattcatatt accaccgctc tcatttcatg
2220 gagtccttcgt atcaaaaaaag ctcacgtcgt atttcttcctt ttccttcctc ttttctagaa
2280 attgggtgtt tgtaccagaa tggaatttttgcgtt atccctgtgt tcagatgatt
2340 ataatctaacc ccaaacttagc atgtgtttct gcagtttggtt acacacctag gatcatattg
2400 cattcatcac tttaaacatc atgtttcagg ttttggtcaa tacttgacaa ggggtccccag
2460 gacaggaaga cgtgtactgc tgagtgttcc ttcttgcctt ttccagcage ttgcccagct
2520 cttgagttaca gtgggtgggaa ctaaaaatgtt gggcatgtgg agaggggtat ttgccctggg
2580 tgatcctgtt tccctgtgttgcgtt gtccttccttgcgtt gggcatgtgg agaggggtat ttgccctggg
2640 accaaacaaag ctccctgtctt accctttcc tcacatgtgc tgccaccccttcc
2700 ccccaagccat tccttccttc ctccctgcct tttagctcta accacattaa gctaaagacaa
2760 ggcacagggg tgccgattgaa tgagtattga gactgaggag aatgatagag agtgaagcag
2820 aaacaggaggc gcagacccctt gctgttagctt taatgcatac aaacatgtcc ctccgcacaa
2880 ctaacccctgccc ctgccttccttgcgtt gggcatgtgg agaggggtat ttgccctggg
2940 gactcgaggagg gggccagaga ctgagctctg gtcaccccttgcgtt cattccctgg tttagctggaa
3000 ctttggcccg tttccagttt cttatagtgc atgcttgggaa aacaagattt aaggagccctc
3060 tggtttggaa gggctgtctg tgattgaacg tgaaatgtgt agtgcatttggggacacgaa
3120 gggaaatttttgcacatgtcgtt gggcatgtgggaa ctggctggaa acgtctgtat
3180 gcagggagcc agggtgaggg cagagtgtgg tgacagccga acttggagta atgtccgtgt
3240 agaaaaaaggccaatgttccatccacaa tactgggagt gctgtctcca caatttcagg
3300 gcatctgaat gtttgcgtt gttttgtgtg tggttatgtatgtttaat attgaagtgg
3360 atcatgagat gtaaaagaaaa caataatggc aatgacttat attcaaatct gtatttgcgtt
3420 ctttatcaat gtaatctgttgcgtt gggacccctt tgctcaagat tcagtagtgcgtt tttaaagggttc
3480 tgatatcgaa ttaatgaagt aaagggttttgcgtt gggcatgtgg
3540

tcaaagagaa gcaggagggc aaggaaaagt taccctgatc ttagtttta gcttatgact
 3600
 tatttaatga atggatgcc agccaagctc agagtaggcg cccaaagcat tgtggattat
 3660
 ttcctgttt tgtctttttt ttttttttt ttaagccatg acatcccaga agaggacagt
 3720
 gaattactcc taggtcggtct cttatagagt ggccatagtg ttctgtcaaa acacttgctt
 3780
 ccattttcag agataaaaaat cattgattac aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa
 3840
 aaaaaaaaaa aaa
 3853

<210> 6306
<211> 474
<212> PRT
<213> Homo sapiens

<400> 6306
Met Arg Arg Val Val Arg Gln Ser Lys Phe Arg His Val Phe Gly Gln
 1 5 10 15
Pro Val Lys Asn Asp Gln Cys Tyr Glu Asp Ile Arg Val Ser Arg Val
 20 25 30
Thr Trp Asp Ser Thr Phe Cys Ala Val Asn Pro Lys Phe Leu Ala Val
 35 40 45
Ile Val Glu Ala Ser Gly Gly Ala Phe Leu Val Leu Pro Leu Ser
 50 55 60
Lys Thr Gly Arg Ile Asp Lys Ala Tyr Pro Thr Val Cys Gly His Thr
 65 70 75 80
Gly Pro Val Leu Asp Ile Asp Trp Cys Pro His Asn Asp Gln Val Ile
 85 90 95
Ala Ser Gly Ser Glu Asp Cys Thr Val Met Val Trp Gln Ile Pro Glu
 100 105 110
Asn Gly Leu Thr Ser Pro Leu Thr Glu Pro Val Val Val Leu Glu Gly
 115 120 125
His Thr Lys Arg Val Gly Ile Ile Ala Trp His Pro Thr Ala Arg Asn
 130 135 140
Val Leu Leu Ser Ala Gly Cys Asp Asn Val Val Leu Ile Trp Asn Val
 145 150 155 160
Gly Thr Ala Glu Glu Leu Tyr Arg Leu Asp Ser Leu His Pro Asp Leu
 165 170 175
Ile Tyr Asn Val Ser Trp Asn His Asn Gly Ser Leu Phe Cys Ser Ala
 180 185 190
Cys Lys Asp Lys Ser Val Arg Ile Ile Asp Pro Arg Arg Gly Thr Leu
 195 200 205
Val Ala Glu Arg Glu Lys Ala His Glu Gly Ala Arg Pro Met Arg Ala
 210 215 220
Ile Phe Leu Ala Asp Gly Lys Val Phe Thr Thr Gly Phe Ser Arg Met
 225 230 235 240
Ser Glu Arg Gln Leu Ala Leu Trp Asn Pro Lys Asn Met Gln Glu Pro
 245 250 255
Ile Ala Leu His Glu Met Asp Thr Ser Asn Gly Val Leu Leu Pro Phe
 260 265 270
Tyr Asp Pro Asp Thr Ser Ile Ile Tyr Leu Cys Gly Lys Gly Asp Ser

275	280	285
Ser Ile Arg Tyr Phe Glu Ile Thr Asp Glu Ser Pro Tyr Val His Tyr		
290	295	300
Leu Asn Thr Phe Ser Ser Lys Glu Pro Gln Arg Gly Met Gly Tyr Met		
305	310	315
Pro Lys Arg Gly Leu Asp Val Asn Lys Cys Glu Ile Ala Arg Phe Phe		
325	330	335
Lys Leu His Glu Arg Lys Cys Glu Pro Ile Ile Met Thr Val Pro Arg		
340	345	350
Lys Ser Asp Leu Phe Gln Asp Asp Leu Tyr Pro Asp Thr Ala Gly Pro		
355	360	365
Glu Ala Ala Leu Glu Ala Glu Trp Phe Glu Gly Lys Asn Ala Asp		
370	375	380
Pro Ile Leu Ile Ser Leu Lys His Gly Tyr Ile Pro Gly Lys Asn Arg		
385	390	395
Asp Leu Lys Val Val Lys Lys Asn Ile Leu Asp Ser Lys Pro Thr Ala		
405	410	415
Asn Lys Lys Cys Asp Leu Ile Ser Ile Pro Lys Lys Thr Thr Asp Thr		
420	425	430
Ala Ser Val Gln Asn Glu Ala Lys Leu Asp Glu Ile Leu Lys Glu Ile		
435	440	445
Lys Ser Ile Lys Asp Thr Ile Cys Asn Gln Asp Glu Arg Ile Ser Lys		
450	455	460
Leu Glu Gln Gln Met Ala Lys Ile Ala Ala		
465	470	

<210> 6307

<211> 2119

<212> DNA

<213> Homo sapiens

<400> 6307

nncctggctt ctttctacct gtgcggccct caacgtctcc ttgggtgcggg acccgcttca
60
ctttcggctc ccggagatctc ctttcactgc tcagacctct ggacacctaca ggagacgcct
120
acttggctct gacgcggcgc cccagccccc ctgtgtcccc ggccgcggcc accaccctcc
180
ctgccggctt tgggtgcgtt gtgggtcccc gaggattcgc gagattttttt gaaagacatt
240
caagattacg aagtttagat gaccaaaatg gatatccgag gtgctgtgga tgctgctgta
300
cccaccaata ttattgctgc caaggctgca gaagttcgtg caaacaaagt caactggcaa
360
tccttatcttc agggacagat gattctgct gaagatttg agtttattca gaggtttgaa
420
atgaaacgaa gccctgaaga gaagcaagag atgcttcaaa ctgaaggcag ccagtgtgct
480
aaaacattta taaatctgat gactcatatc tgcaaagaac agaccgttca gtatatacta
540
actatggtgat atgatatgct gcaggaaaat catcagcgtg ttagcatttt ctttgcattat
600
gcaagatgta gcaagaacac tgcgtggccc tactttctgc caatgttcaa tcgcccaggat
660

cccttcaactg ttcatatggc agcaagaatt attgccaagt tagcagcttg gggaaaagaa
720
ctgatggaaag gcagtgactt aaattactat ttcaattgga taaaaactca gctgaggta
780
cagaaaactgc gtggtagcgg tggtgctgtt gaaacaggaa cagtctcttc aagtgtatgt
840
tcgcagtatg tgcagtgcgt ggccgggtgt ttgcagctga tgctccgggt caatgagttac
900
cgctttgttggtaaggatggtaaattgcataatggggatgtt gatgtac
960
tgtggcttc agctccagta tcaaattgtt tttcaatatggcttgcattcattc
1020
caaattgtgtg aacacctgcg ggcgtataat atcattccag ttctgtctga tatccttc
1080
gagtctgtca aagagaaagt aacaagaatc attcttgcag catttcgtaa cttttagaa
1140
aaatcaactg aaagagaaac tcgccaagaa tatgccctgg ctatgattca gtgcaaagtt
1200
ctgaaacagt tggagaactt ggaacagcag aagtacgatg atgaagatat cagcgaagat
1260
atcaaatttc ttttggaaaa acttggagag agtgcgttgcagg accttagttc atttgcatt
1320
tacagttcag aacttaatc tggaaaggatg gaatggatgc ctgtgcacaa atctgagaaa
1380
ttttggagag agaatgtgtt gaggtaat gagaagaatt atgaactttt gaaaatctt
1440
acaaaacttt tggaaaggatgc agatgatccc caagtcttag ctgttgcgc tcacgtt
1500
ggagaatatg tgcggcatta tccacgaggc aaacgggtca tcgagcagct cggggaaag
1560
cagctggta tgaaccacat gcatcatgaa gaccagcagg tccgtataa tgctctgc
1620
gccgtgcaga agctcatgtt gcacaactgg gaataacctt gcaagcagct ccagtccgag
1680
cagccccaga ccgctgcgcgc ccaagctaa gcctgcctt ggccttcccc tccgcctcaa
1740
tgcagaacca gtagtggag cactgtgttt agatgttaga gtaacactg tttgatttt
1800
cttggaaattt cctctgttat atagcttttccaaatgtttaa tttccaaaca acaacaacaa
1860
aataacatgt ttgcctgtta agttgtataa aagtaggtga ttctgtattt aaagaaaata
1920
ttactgttac atataactgttgc tgcatttttgc ttctctggaa ataaatata
1980
ttattaaagg attctcaactc caaacatggc ctctctttt acttggactt tgaacaaaag
2040
tcaactgttg tcttttca aaccaaatttgg gagaattgt tgcaagtag tgaatggca
2100
ataaaatgttt taaaatcta
2119

<210> 6308
<211> 483
<212> PRT

<213> Homo sapiens

<400> 6308

Met Thr Lys Met Asp Ile Arg Gly Ala Val Asp Ala Ala Val Pro Thr
 1 5 10 15
 Asn Ile Ile Ala Ala Lys Ala Ala Glu Val Arg Ala Asn Lys Val Asn
 20 25 30
 Trp Gln Ser Tyr Leu Gln Gly Gln Met Ile Ser Ala Glu Asp Cys Glu
 35 40 45
 Phe Ile Gln Arg Phe Glu Met Lys Arg Ser Pro Glu Glu Lys Gln Glu
 50 55 60
 Met Leu Gln Thr Glu Gly Ser Gln Cys Ala Lys Thr Phe Ile Asn Leu
 65 70 75 80
 Met Thr His Ile Cys Lys Glu Gln Thr Val Gln Tyr Ile Leu Thr Met
 85 90 95
 Val Asp Asp Met Leu Gln Glu Asn His Gln Arg Val Ser Ile Phe Phe
 100 105 110
 Asp Tyr Ala Arg Cys Ser Lys Asn Thr Ala Trp Pro Tyr Phe Leu Pro
 115 120 125
 Met Leu Asn Arg Gln Asp Pro Phe Thr Val His Met Ala Ala Arg Ile
 130 135 140
 Ile Ala Lys Leu Ala Ala Trp Gly Lys Glu Leu Met Glu Gly Ser Asp
 145 150 155 160
 Leu Asn Tyr Tyr Phe Asn Trp Ile Lys Thr Gln Leu Ser Ser Gln Lys
 165 170 175
 Leu Arg Gly Ser Gly Val Ala Val Glu Thr Gly Thr Val Ser Ser Ser
 180 185 190
 Asp Ser Ser Gln Tyr Val Gln Cys Val Ala Gly Cys Leu Gln Leu Met
 195 200 205
 Leu Arg Val Asn Glu Tyr Arg Phe Ala Trp Val Glu Ala Asp Gly Val
 210 215 220
 Asn Cys Ile Met Gly Val Leu Ser Asn Lys Cys Gly Phe Gln Leu Gln
 225 230 235 240
 Tyr Gln Met Ile Phe Ser Ile Trp Leu Leu Ala Phe Ser Pro Gln Met
 245 250 255
 Cys Glu His Leu Arg Arg Tyr Asn Ile Ile Pro Val Leu Ser Asp Ile
 260 265 270
 Leu Gln Glu Ser Val Lys Glu Lys Val Thr Arg Ile Ile Leu Ala Ala
 275 280 285
 Phe Arg Asn Phe Leu Glu Lys Ser Thr Glu Arg Glu Thr Arg Gln Glu
 290 295 300
 Tyr Ala Leu Ala Met Ile Gln Cys Lys Val Leu Lys Gln Leu Glu Asn
 305 310 315 320
 Leu Glu Gln Gln Lys Tyr Asp Asp Glu Asp Ile Ser Glu Asp Ile Lys
 325 330 335
 Phe Leu Leu Glu Lys Leu Gly Glu Ser Val Gln Asp Leu Ser Ser Phe
 340 345 350
 Asp Glu Tyr Ser Ser Glu Leu Lys Ser Gly Arg Leu Glu Trp Ser Pro
 355 360 365
 Val His Lys Ser Glu Lys Phe Trp Arg Glu Asn Ala Val Arg Leu Asn
 370 375 380
 Glu Lys Asn Tyr Glu Leu Leu Lys Ile Leu Thr Lys Leu Leu Glu Val
 385 390 395 400
 Ser Asp Asp Pro Gln Val Leu Ala Val Ala His Asp Val Gly Glu

405	410	415
Tyr Val Arg His Tyr Pro Arg Gly Lys Arg Val Ile Glu Gln Leu Gly		
420	425	430
Gly Lys Gln Leu Val Met Asn His Met His His Glu Asp Gln Gln Val		
435	440	445
Arg Tyr Asn Ala Leu Leu Ala Val Gln Lys Leu Met Val His Asn Trp		
450	455	460
Glu Tyr Leu Gly Lys Gln Leu Gln Ser Glu Gln Pro Gln Thr Ala Ala		
465	470	475
Ala Arg Ser		480

<210> 6309
<211> 564
<212> DNA
<213> Homo sapiens

<400> 6309
cgccgcgcagc gttcacggtg acatcgcaaa aggcgagggg gagacgcgcc cgccgggaccc
60
cttcccggtg tgctcccacg tggcgtcgac cggagaagaag gggccggtag ggagcccttc
120
ccaggcgcct cccacgggtg tccccgcag ccgcgcacacc accaacagtc gccgcaaccg
180
ccgcgtggaa cagacgaccc gggtctcaaa gaggcgccgc gggcgggacg cagccctgg
240
tccatctcg ggcgcgcctg atgcactcct actgcgcggc ggtcctcccg gcctgtctca
300
ctttgggggg ctcagggtcc tcacggggga cgcctgcacg taagccagga cggcggtctg
360
caggaagctc gccctctggg cctctcgtc cggatgcgg gcatctcgg cctccggag
420
ccgcagcttc tcccgagag acgcgttctc gctctccctg tccagcagcg ccatctgagc
480
tcactgaaac ctccacacctc caggttcgag tgattctct gcctcagcct cctgagtagc
540
tggtattaca gggtgccacc acta
564

<210> 6310
<211> 83
<212> PRT
<213> Homo sapiens

<400> 6310
Cys Thr Pro Thr Ala Pro Gly Ser Ser Arg Pro Val Ser Leu Trp Gly
1 5 10 15
Ala Gln Gly Pro His Gly Gly Arg Leu His Val Ser Gln Asp Gly Val
20 25 30
Leu Gln Glu Ala Arg Pro Leu Gly Leu Leu Val Pro Asp Ala Gly Asp
35 40 45
Leu Arg Leu Pro Glu Pro Gln Leu Leu Pro Glu Arg Arg Val Leu Ala
50 55 60
Leu Pro Val Gln Gln Arg Asp Leu Ser Ser Leu Glu Pro Pro Pro Pro

65

70

75

80

Arg Phe Glu

<210> 6311

<211> 1548

<212> DNA

<213> Homo sapiens

<400> 6311

nggtttggca agagaccaac ctcagctcag actttccatc tgagcacagc cgtttggcta
60
tgagctttttt actgaatttt atagcaactc tgatttcttc ctttaaatga ttggaggcctt
120
tttaaagatc ttatgggct caaatactaa ctgcataaaat ggccctttga ataacacgcag
180
caaataatct ctcagctgat atttcaattt actaaggaag cacaattaa aacattcctg
240
ctacacagtc atgggctggc acatgtctgg ttggatgaat acaaggagca gtattttcc
300
ttaagacctg acctgaagac gaaaagctat ggcaatatca gtgagcgtgt ggaactgaga
360
aagaagttgg gctgtaaatc atttaaatgg tattttggata atgtatacccg agagatgcag
420
atatctgggt cccacgcca acccccaacaa cccattttttgc tcaatagagg gccaaaacga
480
cccaaagtcc ttcaacgtgg aaggctctat cacctccaga ccaacaaatg cctggggcc
540
cagggccgccc caagtcagaa gggaggtctc gtggatgttta aggccgtgtga ctacagtgc
600
ccaaatcaga tctggatcta taatgaagag catgaattgg ttttaatag tctcccttgt
660
ctagatatgt cagagactcg ctcatcagac ccgccacggc tcatgaaatg ccacgggtca
720
ggaggatccc agcagtgac ctttggaaaa aacaatggc tataccaggt gtcgggttgg
780
cagtgcctga gagcagtggc tccccctgggt cagaagggtctg ctgtcgccat ggcgatctgc
840
gatggctccctt cttcacagca gtggcatttgc gaagggttaag gtggatgttgc tggcgggaac
900
gttgcattcat caggcggttgc ctccgggtgtg gagtttgggg ctttagggaaa gcctgggttgc
960
ggtggagcag aaccatcttgc gagaagatga cagttccctg tcctccggc gatgcctgg
1020
tgtgttagca gaggtgacac gtgtctgaca gagacggggag ctctgagtgtt ccacgggtga
1080
agaagtgagt gtccacgggtt gaagaagtga gtatgttca cctggacatt aaggtgatgt
1140
ttgagctgtt gttttaggaat ttcttgcattt tagaggcaaa ccacagtatc attttactc
1200
tagaaatttggg cttgtacaga aggataaaac ccagggaaaat ggatatttctt attcagattt
1260
atttatgcctt ctttttaatc cccttaatgc atgcagtggc ttttatctga tcagggactt
1320

gtcatgattt cctttcttag acttcatagg agatagtgc ttaaaaaaaaaaa aaaaacttct
 1380
 attatttgtt tagtatgttg taagtagatc attttaaaaaa actgaatcta tattatgttt
 1440
 aacttcagaa ggcatcattt ataagacagt atggcagttt attataaaaat tattttgatg
 1500
 aattatgata caatctacat aataaagaat ccttttgatt aaaaaaaaa
 1548

<210> 6312
 <211> 234
 <212> PRT
 <213> Homo sapiens

<400> 6312
 Gln Gln Gln Ile Ile Ser Gln Leu Ile Phe Gln Phe Thr Lys Glu Ala
 1 5 10 15
 Gln Ile Lys Thr Phe Leu Leu His Ser His Gly Leu Ala His Val Trp
 20 25 30
 Leu Asp Glu Tyr Lys Glu Gln Tyr Phe Ser Leu Arg Pro Asp Leu Lys
 35 40 45
 Thr Lys Ser Tyr Gly Asn Ile Ser Glu Arg Val Glu Leu Arg Lys Lys
 50 55 60
 Leu Gly Cys Lys Ser Phe Lys Trp Tyr Leu Asp Asn Val Tyr Pro Glu
 65 70 75 80
 Met Gln Ile Ser Gly Ser His Ala Lys Pro Gln Gln Pro Ile Phe Val
 85 90 95
 Asn Arg Gly Pro Lys Arg Pro Lys Val Leu Gln Arg Gly Arg Leu Tyr
 100 105 110
 His Leu Gln Thr Asn Lys Cys Leu Val Ala Gln Gly Arg Pro Ser Gln
 115 120 125
 Lys Gly Gly Leu Val Val Leu Lys Ala Cys Asp Tyr Ser Asp Pro Asn
 130 135 140
 Gln Ile Trp Ile Tyr Asn Glu Glu His Glu Leu Val Leu Asn Ser Leu
 145 150 155 160
 Leu Cys Leu Asp Met Ser Glu Thr Arg Ser Ser Asp Pro Pro Arg Leu
 165 170 175
 Met Lys Cys His Gly Ser Gly Ser Gln Gln Trp Thr Phe Gly Lys
 180 185 190
 Asn Asn Arg Leu Tyr Gln Val Ser Val Gly Gln Cys Leu Arg Ala Val
 195 200 205
 Asp Pro Leu Gly Gln Lys Gly Ser Val Ala Met Ala Ile Cys Asp Gly
 210 215 220
 Ser Ser Ser Gln Gln Trp His Leu Glu Gly
 225 230

<210> 6313
 <211> 725
 <212> DNA
 <213> Homo sapiens

<400> 6313
 tttttttttt tttttttttt tttttttttt gtaattaaca taatttatta cgcaaaaaat
 60

gagaaaaatat acagcaggag ggatgaggag tacacatagg aaatttctgt gattttcttc
 120
 attttgatcg tattgcttc ttgtcttcag gagggaagat ttgcacttca aaagtaacaa
 180
 aatatttaag aagagaattc acatcttct gttcttagctg gtattcttgc attatttct
 240
 cagcagtcca ggtttctggg aaaagcttat gattattgag aagtgtcaat gcttctacaa
 300
 tggaaatttt gccttggga atgctcttaa tatttatcat atcaaaatga tggctttcg
 360
 gcaatctgaa ttcccttcggc tcttgacatg tttcagcagc ttttacctgc aaggaagaca
 420
 caggatctt ggaatcaaca tacacatctt ttagaaacga cagcagctt tcacatttac
 480
 gagcaatctc tcctttaact tctggataga gactaatctg ctctcgagg aggctgttgg
 540
 tagaggggtg tctggagcg acagaggct tcacatctgct gatttcccgt tccgctcggt
 600
 tctctaggtt gaaattcctg ataccgcgaa tcactagtgc tcccatctcc tcataacatt
 660
 atgcgctcg gttcaggccg cacgtggaa caccggcgca ggacaactct cgggacaccc
 720
 ggagc
 725

<210> 6314

<211> 175

<212> PRT

<213> Homo sapiens

<400> 6314

Met	Gly	Ala	Leu	Val	Ile	Arg	Gly	Ile	Arg	Asn	Phe	Asn	Leu	Glu	Asn
1								5		10			15		
Arg	Ala	Glu	Arg	Glu	Ile	Ser	Lys	Met	Lys	Pro	Ser	Val	Ala	Pro	Arg
								20		25			30		
His	Pro	Ser	Thr	Asn	Ser	Leu	Leu	Arg	Glu	Gln	Ile	Ser	Leu	Tyr	Pro
								35		40			45		
Glu	Val	Lys	Gly	Glu	Ile	Ala	Arg	Lys	Asp	Glu	Lys	Leu	Leu	Ser	Phe
								50		55			60		
Leu	Lys	Asp	Val	Tyr	Val	Asp	Ser	Lys	Asp	Pro	Val	Ser	Ser	Leu	Gln
								65		70			75		80
Val	Lys	Ala	Ala	Glu	Thr	Cys	Gln	Glu	Pro	Lys	Glu	Phe	Arg	Leu	Pro
								85		90			95		
Lys	Asp	His	His	Phe	Asp	Met	Ile	Asn	Ile	Lys	Ser	Ile	Pro	Lys	Gly
								100		105			110		
Lys	Ile	Ser	Ile	Val	Glu	Ala	Leu	Thr	Leu	Leu	Asn	Asn	His	Lys	Leu
								115		120			125		
Phe	Pro	Glu	Thr	Trp	Thr	Ala	Glu	Lys	Ile	Met	Gln	Glu	Tyr	Gln	Leu
								130		135			140		
Glu	Gln	Lys	Asp	Val	Asn	Ser	Leu	Leu	Lys	Tyr	Phe	Val	Thr	Phe	Glu
								145		150			155		160
Val	Glu	Ile	Phe	Pro	Pro	Glu	Asp	Lys	Lys	Ala	Ile	Arg	Ser	Lys	
								165		170			175		

<210> 6315
<211> 378
<212> DNA
<213> Homo sapiens

<400> 6315
caagaatcca ttgaagccag caagactgca ctttgtcctg aaagatttgt accctaagt
60
gctcaaaaca gaaaacttgt ggaggccata aaacaaggtc acattcctga gctccaggag
120
tatgtaaaat ataaatatgc aatggatgaa gctgatgaaa aaggatggtt tccattgcat
180
gaagctgttg ttcaacccat tcaacaaata cttgagattt tgctggatgc atcctataag
240
acactctggg aattcaagac ctgtgatgga gaaacaccct tgactttggc agtcaaagct
300
ggtctggtgg aaaatgtaa aactttatta gaaaaggag tggcccaa cacaaaaaat
360
gataaaggag agaccccc
378

<210> 6316
<211> 126
<212> PRT
<213> Homo sapiens

<400> 6316
Gln Glu Ser Ile Glu Ala Ser Lys Thr Ala Leu Cys Pro Glu Arg Phe
1 5 10 15
Val Pro Leu Ser Ala Gln Asn Arg Lys Leu Val Glu Ala Ile Lys Gln
20 25 30
Gly His Ile Pro Glu Leu Gln Glu Tyr Val Lys Tyr Lys Tyr Ala Met
35 40 45
Asp Glu Ala Asp Glu Lys Gly Trp Phe Pro Leu His Glu Ala Val Val
50 55 60
Gln Pro Ile Gln Gln Ile Leu Glu Ile Val Leu Asp Ala Ser Tyr Lys
65 70 75 80
Thr Leu Trp Glu Phe Lys Thr Cys Asp Gly Glu Thr Pro Leu Thr Leu
85 90 95
Ala Val Lys Ala Gly Leu Val Glu Asn Val Arg Thr Leu Leu Glu Lys
100 105 110
Gly Val Trp Pro Asn Thr Lys Asn Asp Lys Gly Glu Thr Pro
115 120 125

<210> 6317
<211> 1201
<212> DNA
<213> Homo sapiens

<400> 6317
nnngggccag aactacaact ctgcagcgaa agatagagat gcccttgaaa atgtgtcaca
60
ttcttaagat gtcttgcga agtagcaaga gcggagggtg actgtgtgag caggagcgag
120

agggcgccag ctccctgcggg ggagggttct actgcgcgcc ccaccctgtg caagaatgtc
 180
 aggctttagg gcagctgcca taggccccag gggcatcagg actctgcctc tgaaccagag
 240
 ctgcttccc gactaacttc aatctggaga gatggtaagt tatctaaccg gctttctt
 300
 tggcgagact gctcttctc cttaatcaga gccccccatg ccctttgcag ctcagagtcg
 360
 tcttcctcag cgccaggcac cctgtatcc actttcttcg tatttttc tttggcttg
 420
 ggtgcagttc ctaggcgagt ccataaatta cctgatttct tctcccgagt atcggcgtag
 480
 aggcctttac tatectgcct gggAACACCT agcctactat gcacatcaga agagggtct
 540
 ctccgaacga cggggtaact actaaaagcc tttccggag aatgtggct tttccta
 600
 cgctggcgta tatctgattt agtactgctg actggggcc gtggacggga gtgctgacgt
 660
 ttctcatcta atagatgtcg gacatctgca aatttctcag gtggtaattt gttaccaatt
 720
 cggaaaaatga tattgcttga agatacacta tctgcctca tggagttct aatattttc
 780
 aactgagatt ccacttcgtc agcatacata gtcattttca tgctttctt tggtaaggc
 840
 gtggaaatca tttcagttc tagatcatag tccatttcat ctgagttctga gctgctggca
 900
 ctggatcggt tagacgcgtt ccgcctccgg ggctgtttga gagccggag ctccctcg
 960
 tactctacca ccacttcgtc atctgcattcc atgtccttgtt ctcttttttctt ctcttc
 1020
 tccttccttccttcccttcata atgggttctt cgggaacatt cactagccca
 1080
 gaatgtcgat gtttatacga cgtcaagccca acgtcatccc caatcaggc tcttttttgc
 1140
 atcacgtccc gctgaataacg acggaaatga tatcttcgtt tccatgaatt gctaaaggatt
 1200
 C
 1201

<210> 6318
 <211> 94
 <212> PRT
 <213> Homo sapiens

<400> 6318
 Ser Ile Ser Ser Glu Ser Glu Leu Leu Ala Leu Asp Arg Leu Asp Ala
 1 5 10 15
 Leu Arg Ser Arg Gly Cys Leu Arg Ala Gly Ser Ser Ser Trp Tyr Ser
 20 25 30
 Thr Thr Thr Leu Ser Ser Ala Ser Met Ser Trp Ser Ser Ser Ser Ser
 35 40 45
 Ser Ser Ser Ser Ser Ser Ser Ser Ser Met Gly Ser Ser
 50 55 60
 Gly Thr Phe Thr Ser Pro Glu Cys Arg Cys Leu Tyr Asp Val Lys Pro

65 70 75 80
Thr Ser Ser Pro Ile Arg Ala Leu Phe Leu Ile Thr Ser Arg
 85 90

<210> 6319
<211> 345
<212> DNA
<213> Homo sapiens

<400> 6319
gccccgcgc tggggccgc ctccgcagcc ggccacctgg acgtggtgcg gagcctgctg
60
cgccgcgggg cctcggtgaa ccgcaccacg cgaccaact ccacgcctct ccgcgcggcc
120
tgcttcgacg gccacctgga ggtggtgcg tacctggtcg gcgagcacca ggccgacctg
180
gaggtggcca accggcacgg ccacacgtgc ctcatgatct cgtgctacaa gggccaccgt
240
gagatcgccc gctacctgtt ggagcaggc gcccaggtga accggcgca gccaaaggc
300
aacacggccc tgcatgactg cgccgagtcc ggcagcctgg agatc
345

<210> 6320
<211> 115
<212> PRT
<213> Homo sapiens

<400> 6320
Ala Pro Pro Leu Trp Ala Ala Ser Ala Ala Gly His Leu Asp Val Val
1 5 10 15
Arg Ser Leu Leu Arg Arg Gly Ala Ser Val Asn Arg Thr Thr Arg Thr
20 25 30
Asn Ser Thr Pro Leu Arg Ala Ala Cys Phe Asp Gly His Leu Glu Val
35 40 45
Val Arg Tyr Leu Val Gly Glu His Gln Ala Asp Leu Glu Val Ala Asn
50 55 60
Arg His Gly His Thr Cys Leu Met Ile Ser Cys Tyr Lys Gly His Arg
65 70 75 80
Glu Ile Ala Arg Tyr Leu Leu Glu Gln Gly Ala Gln Val Asn Arg Arg
85 90 95
Ser Ala Lys Gly Asn Thr Ala Leu His Asp Cys Ala Glu Ser Gly Ser
100 105 110
Leu Glu Ile
115

<210> 6321
<211> 1442
<212> DNA
<213> Homo sapiens

<400> 6321
aagctttgcc agagtggttt ggctacagtc agctttcta caggaagtgg cattttccac
60

ttgtgaaacg gtaggtcatt ccctgcctca tgcagaactc agccctgtgg agctccacca
120
cctggcccag gccctgccca catgcaacct cccggggtgg ccctcaatga cctgcacgtc
180
ccttcactct aaggaacctt gagttacagt ggccttaagg acatgtgtat tttagaaggct
240
ttgtgtacaa actagctctg tgcgctctca gtttaccgtc ctcacacttt attgttagct
300
gttctttaag ttctcacac attattggca attatgtaaa aatcaagaac ctctataaaa
360
caacctggct ttccagggtgg aattccgcat acagccaaaa ctggattcca gtgtggccag
420
acaacgccc a tgcctcaatt taagagtcgc tgcctcacc accatccgga gtggcctctc
480
tgtcagtgtg tgcgtggcc agggcagtgt ccacctgaac tccctctca tcggactgaa
540
caacggggca ctccccaccc tcactgtatgt cccgggtggc cgagtcggtg caggtggagg
600
aagaagaagg tggcttgct cttattctg agggatttg aacctggagg gtaatctcar
660
tctgacaggta actggattca ggcctaagg cgggggacag cacagtgttc tcttcctc
720
cagagttcag gaagacgtcc agggcctctt ggtccgatata tccatcagg tccatctgt
780
ccagcatgtc cacgttcaact tccatggatg acatgctgcc tatggctct cggccgtctg
840
caatctgcag gtggccatgt gacaggtact gtcgtccat tccctgtgg aaggcttct
900
caaaaaactt ctggccgtcc ttcaatttca ttgtgtgggt gtgctccatt tccaggacct
960
tctggcggtg ctctgcattt agttcaggagg gatccctctg actatttcg gtgagtctg
1020
gagatgacat ggatgtgaga cctgaatgag tgaacagaag ctcaagtgt gtcaagtgaa
1080
gcctccagtt accaggcagc tgcctcact tgcattttctt gggatgtaga acaaaggaag
1140
tgaggctgaa gccagaagca ggttttcca aagaaattgt agtaaggctt ttagttttt
1200
gctgatggct taagcagata tacattggaa tctactgcct ctataaaagc aaaatgcaag
1260
ctctcagggg ctcttagtgtg caaagatgta tgcaccggc tgggaccata ccaaattgcag
1320
ctcaaaatgg aggggaggga aggctgaaaa taactaaatc caacagaatt tgcattctag
1380
gtacaaagat gcttagtaa cacagcaaaa gagagatgaa atcttgcgtt ttgaaagtag
1440
ta
1442

<210> 6322
<211> 196
<212> PRT
<213> Homo sapiens

<400> 6322

Met Ser Ser Pro Gly Leu Thr Glu Asn Ser Gln Arg Asp Pro Ser Glu
1 5 10 15
Leu Asp Ala Glu His Ala Gln Lys Val Leu Glu Met Glu His Thr Gln
20 25 30
Gln Met Lys Leu Lys Glu Arg Gln Lys Phe Phe Glu Glu Ala Phe Gln
35 40 45
Gln Asp Met Glu Gln Gln Tyr Leu Ser Thr Gly Tyr Leu Gln Ile Ala
50 55 60
Glu Arg Arg Glu Pro Ile Gly Ser Met Ser Ser Met Glu Val Asn Val
65 70 75 80
Asp Met Leu Glu Gln Met Asp Leu Met Asp Ile Ser Asp Gln Glu Ala
85 90 95
Leu Asp Val Phe Leu Asn Ser Gly Gly Glu Asn Thr Val Leu Ser
100 105 110
Pro Ala Leu Gly Pro Glu Ser Ser Thr Cys Gln Asn Glu Ile Thr Leu
115 120 125
Gln Val Pro Asn Pro Ser Glu Leu Arg Ala Lys Pro Pro Ser Ser Ser
130 135 140
Ser Thr Cys Thr Asp Ser Ala Thr Arg Asp Ile Ser Glu Gly Gly Glu
145 150 155 160
Ser Pro Val Val Gln Ser Asp Glu Glu Val Gln Val Asp Thr Ala
165 170 175
Leu Ala Thr Ser His Thr Asp Arg Glu Ala Thr Pro Asp Gly Gly Glu
180 185 190
Asp Ser Asp Ser
195

What is claimed is:

1. An isolated nucleic acid molecule encoding a polypeptide comprising an amino acid sequence that is at least 85% identical to a polypeptide including an amino acid sequence selected from the group consisting of SEQ ID NO:2 n , wherein n is any integer 1-3161, or the complement thereof.
2. The isolated nucleic acid molecule of claim 1, said molecule hybridizing under stringent conditions to a nucleic acid sequence complementary to a nucleic acid molecule comprising the sequence of nucleotides selected from the group consisting of SEQ ID NO:2 n , wherein n is any integer 1-3161, or the complement thereof.
3. The isolated nucleic acid molecule of claim 1, said molecule encoding a polypeptide comprising the amino acid sequence selected from the group consisting of SEQ II NO: 2 n , wherein n is any integer 1-3161, or an amino acid sequence comprising one or more conservative substitutions in the amino acid sequence selected from the group consisting of SEQ ID NO: 2 n .
4. The isolated nucleic acid molecule of claim 1, wherein said molecule encodes a polypeptide comprising the amino acid sequence selected from the group consisting of SEQ II NO: 2 n , wherein n is any integer 1-3161.
5. The isolated nucleic acid molecule of claim 1, wherein said molecule comprise the sequence of nucleotides selected from the group consisting of SEQ ID NO:2 n -1, wherein n is any integer 1-3161, or the complement thereof.
6. An oligonucleotide less than 100 nucleotides in length and comprising at least contiguous nucleotides selected from the group consisting of SEQ ID NO:2 n -1, wherein n is a integer 1-3161, or the complement thereof.
7. A vector comprising the nucleic acid molecule of claim 1.

8. The vector of claim 7, wherein said vector is an expression vector.

9 A host cell comprising the isolated nucleic acid molecule of claim 1.

10. A substantially purified polypeptide comprising an amino acid sequence at least 80% identical to a polypeptide comprising the amino acid sequence selected from the group consisting of SEQ ID NO: 2n, wherein n is any integer 1-3161.

11. The polypeptide of claim 10, wherein said polypeptide comprises the amino acid sequence selected from the group consisting of SEQ ID NO: 2n, wherein n is any integer 1-3161.

12. An antibody that selectively binds to the polypeptide of claim 10.

13. A pharmaceutical composition comprising a therapeutically or prophylactically effective amount of a therapeutic selected from the group consisting of:

- a) the nucleic acid of claim 1;
- b) the polypeptide of claim 10; and
- c) the antibody of claim 12;

and a pharmaceutically acceptable carrier.

14. A kit comprising in one or more containers, a therapeutically or prophylactically effective amount of the pharmaceutical composition of claim 13.

15. A method of producing the polypeptide of claim 10, said method comprising culturing the host cell of claim 9 under conditions in which the nucleic acid molecule is expressed.

16. A method of detecting the presence of the polypeptide of claim 10 in a sample, comprising contacting the sample with a compound that selectively binds to said polypeptide under conditions allowing the formation of a complex between said polypeptide and said

compound, and detecting said complex, if present, thereby identifying said polypeptide in said sample.

17. A method of detecting the presence of a nucleic acid molecule of claim 1 in a sample, the method comprising contacting the sample with a nucleic acid probe or primer that selectively binds to the nucleic acid molecule and determining whether the nucleic acid probe or primer bound to the nucleic acid molecule of claim 1 is present in the sample.

18. A method for modulating the activity of the polypeptide of claim 10, the method comprising contacting a cell sample comprising the polypeptide of claim 10 with a compound that binds to said polypeptide in an amount sufficient to modulate the activity of the polypeptide.

19. The use of a therapeutic in the manufacture of a medicament for treating a syndrome associated with a ORFX-associated disorder, wherein said therapeutic is selected from the group consisting of:

- a) the nucleic acid of claim 1;
- b) the polypeptide of claim 10; and
- c) the antibody of claim 12.

20. A method for screening for a modulator of activity or of latency or predisposition to an ORFX-associated disorder, said method comprising:

- a) contacting a test compound with the polypeptide of claim 10; and
- b) determining if said test compound binds to said polypeptide,

wherein binding of said test compound to said polypeptide indicates the test compound is a modulator of activity or of latency or predisposition to an ORFX-associated disorder.

21. A method for screening for a modulator of activity or of latency or predisposition to an ORFX-associated disorder, said method comprising:

- a) administering a test compound to a test subject at an increased risk ORFX-associated disorder, wherein said test subject recombinantly expresses a polypeptide encoded by the nucleotide of claim 1;

- b) measuring expression the activity of said protein in said test subject;
- c) measuring the activity of said protein in a control subject that recombinantly expresses said protein and is not at increased risk for an ORFX-associated disorder; and
- d) comparing expression of said protein in said test subject and said control subject, wherein a change in the activity of said protein in said test subject relative to said control subject indicates the test compound is a modulator or of latency of predisposition to an ORFX-associated disorder.

22. The method of claim 20, wherein said test animal is a recombinant test animal that expresses a test protein transgene or expresses said transgene under the control of a promoter at an increased level relative to a wild-type test animal, and wherein said promoter is not the native gene promoter of said transgene.

23. A method for determining the presence of or predisposition to a disease associated with altered levels of a polypeptide of claim 11 in a subject, the method comprising:

- a) measuring the amount of the polypeptide in a sample from said subject; and
- b) comparing the amount of said polypeptide in step (a) to the amount of the polypeptide present in a control sample,

wherein an alteration in the level of the polypeptide in step (a) as compared to the control sample indicates the presence of or predisposition to a disease in said subject.

24. The method of claim 23, wherein said subject is a human.

25. A method for determining the presence of or predisposition to a disease associated with altered levels the nucleic acid molecule of claim 1 in a subject, the method comprising:

- a) measuring the amount of the nucleic acid in a sample from the mammalian subject; and
- b) comparing the amount of said nucleic acid in step (a) to the amount of the nucleic acid present in a control sample,

wherein an alteration in the level of the nucleic acid in step (a) as compared to the control sample indicates the presence of or predisposition to said disease in said subject.

26. The method of claim 25, wherein said subject is a human.
27. A method of treating or preventing a pathological condition associated with an ORFX-associated disorder in a subject, the method comprising administering to said subject a polypeptide of claim 10 in an amount sufficient to alleviate or prevent said pathological condition.
28. The method of claim 27, wherein said subject is a human.
29. A method of treating or preventing a pathological condition associated with an ORFX-associated disorder in a subject, the method comprising administering to said subject a nucleic acid molecule of claim 1 in an amount sufficient to alleviate or prevent said pathological condition.
30. The method of claim 29, wherein said subject is a human.
31. A method of treating or preventing a pathological condition associated with an ORFX-associated disorder in a subject, the method comprising administering to said subject an antibody of claim 12 in an amount sufficient to alleviate or prevent said pathological condition.
32. The method of claim 31, wherein said subject is a human.