Problem 3.2 (HW05-2020). (a) Find the equilibrium point of the following system and calculate the stable an unstable curves of the equilibrium point. Sketch these curves and corresponding eigenspaces (E^s, E^u) .

$$\dot{x} = -x$$

$$\dot{y} = y + x^2$$

(b) Solve the following nonlinear system and show that $z = -y^2/3 - x^2y/6 - x^4/30$ and x = y = 0 are the stable surface and unstable curve of its equilibrium point, respectively.

$$\dot{x} = -x$$

$$\dot{y} = -y + x^2$$

$$\dot{z} = z + y^2$$

The only equilibrium point is the aisin. To find E^s and E^h , we find the Jacobian:

$$J(x,y) = \begin{bmatrix} -1 & 0 \\ 2x & 1 \end{bmatrix}$$

$$= \int J(0,0) = \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix}$$

$$= \int E^{S} = span \left\{ \begin{bmatrix} 1 \\ 0 \end{bmatrix} \right\}, \quad E^{u} = span \left\{ \begin{bmatrix} 0 \\ 1 \end{bmatrix} \right\}$$

To calculate the stable/unstable curves, we use a power series approximation. E^{S} is tangent to the x-axis, so we assure our curve takes the form $y = ax + bx^{2} + Cx^{3} + h.o.t.$

Then
$$\dot{y} = a\dot{x} + 2bx\dot{x} + 3cx^2\dot{x} + h.o.t.$$

= -ax - 2bx^2 - 3cx^3 + h.o.t.

$$\Rightarrow x + bx^{2} + cx^{3} + x^{2} = -ax - 2bx^{2} - 3cx^{3}$$
$$\Rightarrow x + (b+1)x^{2} + cx^{3} = -ax - 2bx^{2} - 3cx^{3}$$

equating coefficients,

$$a = -a$$
 $b+1 = -2b$ $c = -3c$
= $7 = -1/3$ = $7 = -0$

so our stable curve is $\gamma = -\frac{1}{3}x^2 + h.o.t.$

Let's do it all again for E^{N} . This fine assume the curve is jiven by $x = ay + by^{2} + cy^{3} + h.o.t.$ Then

$$\dot{x} = \alpha \dot{\gamma} + 2b \gamma \dot{\gamma} + 3c \gamma^{2} \dot{\gamma} + h.o.t.$$

$$= \alpha (\gamma + x^{2}) + 2b \gamma (\gamma + x^{2}) + 3c \gamma^{2} (\gamma + x^{2}) + h.o.t.$$

$$= \alpha \gamma + \alpha x^{2} + 2b \gamma^{2} + 2b x^{2} \gamma + 3c \gamma^{3} + 3c x^{2} \gamma^{2} + h.o.t.$$

$$= \alpha \gamma + 2b \gamma^{2} + 3c \gamma^{3} + h.o.t.$$

=>
$$-ay - by^2 - cy^3 + h.o.t. = ay + 2by^2 + 3cy^3 + h.o.t.$$

matching coefficients,

$$-a=a$$
 $-b=2b$ $-c=3c$
=7 $a=0$ =7 $b=0$ =7 $c=0$

the unstable cure is thus x=0 + h.o.f.

