Homologia	al Algobra.
[940]	languege.
(I) [a CT-1 lorg's last & concerns all comprehensel
[1928]	Cerlen & Eilenberg's book (concerns the comprised to compression of contents,
	special seq.
1957	derived timeters ? Gradhandie de's paper.
(9)	sheeres
	e sis Verdier 1963
(II) The	2 51)
Periods	D& TI: Objects and Weir Cohomology.
period	s (II): "Think in terms of complexes.
by	celegories and mangulated eastegories.
Jenver	Cerción de la Maria
Ref: Oh	Techods of blomstogical Algebra by Gelland Manin.
3	Note of rieso chapital
	Caregories & Sheeres by Schapina & Kashirrara.
3)	Interoduction to H.A. WEI ber.
N N	eno sees. f: X-1 Y a mep. We'll say morphism.
XIY	Y I river on We'll say "isomorphism", and write X= Y.
9; X	Set (X, Y) := {morphisms X -> Y].
Flom	Set (X, Y) go-> Homset (X, Z)
X	See (1)
-	Hom ser (Y,Z) -of) Homser (X,Z)

Given am set.]! morphism X -> {x}. The produce of a family (Xi] i EI of sets is the set The Xi= { (xi) iet | xi e Xi, yi]. If $X_i = X$, $\forall i \in I$, then $T_i \times i = X^I \cong Hom(I, X)$ I nocurel iso. Hom (Y, T[Xi) ≈ T[Hom (Y, Xi) I normal iso. Hom (IXX,Y) = Hom (I, Hom (X,Y)) = Hom(X,Y). Given a family {XilieI of sets, their disjoint union celled the coproduct of the family. If I= { | 2}, then | X; = X, UX2. If Xi=X, Viel, then $\bigcup_{i \in I} X_i = X^{(I)} \cong X \times I$ Liven X Their equalizer Ker (fig) is Ker(tig) = {x e X | f(x) = g(x)}. Hom (Z) Ker (f,g)) ≈ Ker (Hom (Z,X) 5 Hom (Z,Y)) A relation R on a set X is a subset of XXX xRy means (x,y) ER EXXX. The opposite relation: x Ropy iff y RX. If x Rx, Y x E X, we say used R is a reflexive relacion If xRy => yRx, even ne say ever R is a symmetric If xRy and y Rx => x=y we say wel R is anti-symmetric.

If xRy and yRZ => xRZ, we say that R is transitive.

A relation that is reflexive, symmetric, and cransitive is called an equivalence relation. e.g. "=" in IR @ R="11" on "scraight lines in IR3" A relation is a pre-order if it is reflexive and cransitive. A preorder is & often dended "=". A relation is an order if it is reflexive, transitive, and A poset is directed if I + \$ and \tij CI, \(\frac{1}{2} \) KCI S-t. i\(\kappa \), j\(\kappa \) X: ropo. sp. peX, I := { all open sets in X conceining p} UEV meens UZV hiven a subset I of a directed set (I, E). we say med J is cotined to I if ViEI, JEJS.t. iEj. J = set of all open balls centered at P.