题号	_	=	===	四	五	六	七	八	九	十	总分
得分											
		_									

()1、函数z = f(x,y) 在点(x,y) 处对x 和对y 的偏导数存在是f(x,y) 在该点处可微

(A) 充分条件; (B) 必要条件; (C) 充分必要条件(D) 既不充分也不必要条件。

()2、设
$$I_1 = \iint\limits_D (x+y) \mathrm{d}\sigma$$
、 $I_2 = \iint\limits_D (x+y)^2 \mathrm{d}\sigma$ 和 $I_3 = \iint\limits_D (x+y)^3 \mathrm{d}\sigma$ 的大小,

其中 $D:(x-2)^2+(y-1)^2\leq 1$,则

(A)
$$I_1 \le I_2 \le I_3$$
; (B) $I_2 \le I_1 \le I_3$; (C) $I_3 \le I_2 \le I_1$; (D) $I_3 \le I_1 \le I_2$.

()3、曲面 $x^2 + 4y^2 + z^2 = 4$ 与平面x + z = a的交线在yOz平面上的投影方程是

$$(A) \left\{ egin{aligned} (z-a)^2 + 4y^2 + z^2 &= 4 \ x &= 0 \end{aligned}
ight. ; \qquad (B) \left\{ egin{aligned} x^2 + 4y^2 + (x-a)^2 &= 4 \ z &= 0 \end{aligned}
ight. ;$$

$$(C) \begin{cases} x^2 + 4y^2 + (x-a)^2 = 4 \\ x = 0 \end{cases}$$
; $(D) \begin{cases} (z-a)^2 + 4y^2 + z^2 = 4 \\ z = 0 \end{cases}$.

()4、下列无穷级数属于条件收敛的是

$$(A) \sum_{n=1}^{\infty} \frac{sin3n}{n^2} \; ; \quad (B) \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{\sqrt{n}} \; ; \quad (C) \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n^2} \; ; \quad (D) \sum_{n=1}^{\infty} \frac{(-2)^n}{n!} \; .$$

 (\qquad) 5、设 Ω 为半球域 $x^2+y^2+z^2$ \leq 1, z \geq 0 ,则 $\iint\limits_{\Omega}z\,\mathrm{d}v$ =

$$(A) \int_0^{2\pi} d\theta \int_0^{\frac{\pi}{2}} d\varphi \int_0^1 r^3 \sin\varphi \cos\theta dr; \qquad (B) \int_0^{2\pi} d\theta \int_0^{\pi} d\varphi \int_0^1 r^2 \sin\varphi dr;$$

$$(C) \int_0^{2\pi} d\theta \int_0^{\pi} d\varphi \int_0^1 r^3 \sin\theta \cos\varphi dr; \qquad (D) \int_0^{2\pi} d\theta \int_0^{\frac{\pi}{2}} d\varphi \int_0^1 r^3 \sin\varphi dr.$$

$$()$$
 6 、直线 L : $\frac{x-2}{3}=\frac{y+2}{1}=\frac{z-3}{-4}$ 与平面 Π : $x+y+z=1$ 的位置关系是

(A) 直线L 与平面 Π 垂直;

(B) 直线L 与平面 Π 相交但不垂直;

(C) 直线L 与平面 Π 平行;

(D)直线L在平面 Π 内

得分 二 二 二 二 、填空题 (每小题 3 分, 共 18 分)

$$1, \lim_{(x,y)\to(0,0)} \frac{2xy}{\sqrt{xy+1}-1} = \underline{\qquad};$$

2、交换积分次序:
$$\int_{0}^{4} dx \int_{x}^{2\sqrt{x}} f(x,y) dy = ______;$$

3、将xOy 面上的抛物线 $x^2 = 2y$ 绕y 轴旋转一周,则所形成的旋转曲面的方程为______;

$$4$$
、幂级数 $\sum_{n=1}^{\infty} \frac{3^n}{n^2+1} x^n$ 的收敛半径 R 为______;

5、设函数
$$f(x,y,z) = xyz^2$$
,则 $\mathbf{grad} f(1,1,-1) = \underline{\hspace{1cm}};$

得分 三、计算题 | (每小题 7 分, 共 7 分)

1、求过点(2,0,-3)且与直线 $\begin{cases} x-2y+4z-7=0\\ 3x+5y-2z+1=0 \end{cases}$ 垂直的平面方程。

扩

户

菜

专业班级

^{得分} 四、计算题Ⅱ(每小题 7 分, 共 28 分)

_

1、求曲面 $e^z - z + xy = 3x$ 在点(2,1,0)处的切平面和法线方程。

3、计算二重积分 $\iint_D xy\,\mathrm{d}\sigma$, 其中D是由直线y=-x+3及抛物线 $y=\frac{1}{2}x^2-1$ 所围成的区域。

2、求二元函数 $f(x,y) = x^2(2+y^2) + y \ln y$ 的极值。

4、计算曲面积分 $\iint_{\Sigma} (x^2+y^2) dS$, 其中 Σ 是锥面 $z = \sqrt{x^2+y^2}$ 与平面z = 1所围成闭区

域的整个边界曲面。

得分

五、计算题Ⅲ(第1题7分,第2题8分,共15分)

得分 六、证明题(每小题 7 分, 共 14 分)

1、计算曲线积分 $\int_L (\mathrm{e}^x \sin y - 2y) \mathrm{d}x + (\mathrm{e}^x \cos y - 2) \mathrm{d}y$,其中L为上半圆周

1、证明:数项级数 $\sum_{n=1}^{\infty} n \left(\frac{1}{2}\right)^{n-1} = 4$ 。

 $(x-1)^2 + y^2 = 1, y \ge 0$, 沿逆时针方向。

级

姓名

2、利用**高斯公式**计算曲面积分 $\iint_{\Sigma} 4xz \, dy \, dz - y^2 \, dz \, dx + yz \, dx \, dy$,其中 Σ 是平面x = 0,

y = 0, z = 0, x = 1, y = 1, z = 1所围成的立方体的全表面的外侧.

2、证明: 表达式 $2xy dx + x^2 dy$ 在整个xOy 平面内是某个函数u(x,y) 的全微分,并求这样的一个u(x,y)。

装

院(%)

专业班级

一、单项选择题(每小题3分,共18分)

- 1. B 2. A 3. A 4. B 5. A 6. C
- 二、填空题(每小题 3 分, 共 18 分)

1.4;
$$2 \cdot \int_0^4 dy \int_{\frac{1}{4}y^2}^y f(x,y) dy$$
; 3. $x^2 + z^2 = 2y$; 4.3; 5. $(1,1,-2)$; 6. $2a^2$

三、计算题 I (每小题 7 分, 共 14 分)

1.

$$\mathbf{s} = \mathbf{n}_1 \times \mathbf{n}_2 = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 1 & -2 & 4 \\ 3 & 5 & -2 \end{vmatrix} = -16\mathbf{i} + 14\mathbf{j} + 11\mathbf{k} \dots 4$$

四、计算题 II(每小题 7分, 共 28分)

$$1. \diamondsuit F(x,y,z) = 3x - xy + z + e^z$$
,则

$$F_x(x,y,z) = 3 - y, F_y(x,y,z) = -x, F_z(x,y,z) = 1 - e^z$$

可得, 曲面在点(2,1,0)处的法向量 $\mathbf{n}=(2,-2,0)$ ………3 分

所求切平面方程为
$$2(x-2)-2(y-1)=0$$
, ……2 分

2.
$$f'_x(x,y) = 2x(2+y^2) = 0$$
, $f'_y(x,y) = 2x^2 + \ln y + 1 = 0$, $\exists x = 0, y = \frac{1}{e}$

$$f_{xx}''(x,y) = 2(\,2+y^{\,2}), f_{xy}''(x,y) = 4xy, f_{yy}''(x,y) = 2x^{\,2} + rac{1}{y}$$
 ,

$$A = f_{xx}''(0, \frac{1}{e}) = 2(2 + \frac{1}{e^2}), B = f_{xy}''(0, \frac{1}{e}) = 0, C = f_{yy}''(0, \frac{1}{e}) = e \cdots 3$$

由于A > 0且 $B^2 - AC < 0$,所以函数f(x,y)存在极小值 $f(0.\frac{1}{e}) = -\frac{1}{e}$ ……2 分

3.
$$D = \{(x,y) \mid -4 \le x \le 2, \frac{1}{2}x^2 - 1 \le y \le -x + 3\}$$
 $3 \not \exists$

$$\iint_{D} x y \, d\sigma = \int_{-4}^{2} dx \int_{\frac{1}{2}x^{2}-1}^{-x+3} x y \, dy$$

$$= \frac{1}{2} \int_{-4}^{2} (-\frac{1}{4}x^{5} + 2x^{3} - 6x^{2} - 8x) dx$$

$$= -72$$

4.
$$\Sigma = \Sigma_1 + \Sigma_2$$
, Σ_1 : $z = 1$, Σ_2 : $z = \sqrt{x^2 + y^2}$,投影区域和面积元素为
$$D_1 = \{(x,y) | x^2 + y^2 \le 1\}. dS = dx dy$$

五、计算题Ⅲ(第1题7分,第2题8分,共15分)

$$\frac{\partial P}{\partial y} = e^x \cos y - 2, \frac{\partial Q}{\partial x} = e^x \cos y.$$

补充有向线段OA:y=0, x从0变到2。则有格林公式可得

所以,

户

XX.

(※)

$$\begin{split} &\int_L (\mathrm{e}^x \sin y - 2y) \mathrm{d}x + (\mathrm{e}^x \cos y - 2) \mathrm{d}y \\ &= \pi - \int_{OA} (\mathrm{e}^x \sin y - 2y) \mathrm{d}x + (\mathrm{e}^x \cos y - 2) \mathrm{d}y \\ &= \pi - \int_0^2 (\mathrm{e}^x \sin 0 - 2 \cdot 0) \mathrm{d}x = \pi \end{split}$$

2. 由高斯公式得

原式 =
$$\iint_{\Omega} \left(\frac{\partial P}{\partial x} + \frac{\partial Q}{\partial y} + \frac{\partial R}{\partial z} \right) dv$$

$$= \iint_{\Omega} \left(4z - 2y - y \right) dv \dots 4$$

$$= \int_{0}^{1} dx \int_{0}^{1} dy \int_{0}^{1} (4z - y) dz$$

$$= \int_{0}^{1} dx \int_{0}^{1} (2 - y) dy = \frac{3}{2} \dots 4$$

六、证明题(每小题7分,共14分)

1. 设
$$s(x) = \sum_{n=1}^{\infty} n x^{n-1}$$
. 则

$$\int_0^x s(x) dx = \int_0^x \sum_{n=1}^\infty n x^{n-1} dx = \sum_{n=1}^\infty \int_0^x n x^{n-1} dx = \sum_{n=1}^\infty x^n = \frac{x}{1-x}, (-1 < x < 1)$$

于是,

$$s(x) = \left(\int_0^x s(x) dx\right)' = \left(\frac{x}{1-x}\right)' = \frac{1}{(1-x)^2}, (-1 < x < 1) \dots 3$$

3. 设
$$P(x,y) = 2xy$$
, $Q(x,y) = x^2$ 。则

$$\frac{\partial P}{\partial y} = 2x = \frac{\partial Q}{\partial x}$$

$$u(x,y) = \int_0^x 2x \cdot 0 \, dx + \int_0^y x^2 \, dy = x^2 y \cdot \dots 4 \,$$