LA BIBBIA DEFINITIVA DI CALCOLO **NUMERICO**

Prof. Federico Piazzon - Università di Padova, A.A. 2024/25

TUTTI I 45 ARGOMENTI DEL GLOSSARIO COMPLETO

6 INDICE COMPLETO - 45 ARGOMENTI

PARTE I: RAPPRESENTAZIONE E ARITMETICA MACCHINA (1-5)

- 1. Sistema binario e sistema floating-point IEEE754 dei numeri macchina
- 2. Errori assoluto e relativo, errore di rappresentazione
- 3. Operazioni macchina, loro (non) proprietà, precisione macchina
- 4. Stabilità di un algoritmo, stabilità delle operazioni macchina e cancellazione numerica
- 5. Problema matematico, buona posizione

PARTE II: CONDIZIONAMENTO (6-7)

- 6. Condizionamento numerico assoluto e relativo di un problema ben posto
- 7. Numero di condizionamento di una matrice e stima dell'errore relativo della soluzione di un sistema lineare con termine noto affetto da errore (con dimostrazione). Cosa succede se perturbiamo anche la matrice (no dimostrazione)

PARTE III: ALGEBRA LINEARE - METODI DIRETTI (8-10)

- 8. Algoritmi di sostituzione avanti e sostituzione indietro, condizioni per l'applicabilità
- 9. Fattorizzazione LU senza pivoting: algoritmo, limitazioni alla sua applicabilità e problematiche numeriche
- 10. Algoritmo LU con pivoting parziale per righe "idea" del pivoting e sua motivazione, output dell'algoritmo (no dettagli dell'algoritmo)

PARTE IV: CONTRAZIONI E METODI ITERATIVI (11-16)

- 11. Punti fissi, lemma delle contrazioni con dimostrazione
- 12. Metodi iterativi lineari stazionari per soluzione di Ax=b: idea generale, condizioni per la consistenza, possibili vantaggi, risultato di convergenza generale che si deduce dal lemma delle contrazioni
- 13. Metodo di Richardson: definizione, analisi della convergenza tramite norma e tramite proprietà spettrali (serie di Neumann)
- 14. Precondizionamento del metodo di Richardson e metodi di Jacobi e di Gauss Seidel
- 15.Lemma dei cerchi di Gerschgorin e matrici strettamente diagonalmente dominanti, applicazione alla convergenza di Jacobi

16.Criteri di arresto per metodi iterativi per la soluzione di sistemi lineari: residuo relativo e step

PARTE V: SISTEMI SOVRADETERMINATI E MINIMI QUADRATI (17-19)

- 17. Sistemi sovradeterminati esistenza e unicità della soluzione, minimi quadrati come generalizzazione del concetto di soluzione
- 18. Teorema delle proiezioni ortogonali ed equazioni normali con dimostrazione
- 19.Metodo QR per la soluzione delle eq normali

PARTE VI: EQUAZIONI NON LINEARI (20-25)

- 20.Radici di un eq non lineare: condizioni per l'unicità, condizioni per l'esistenza e metodo di bisezione (con dimostrazione)
- 21. Radici semplici e radici di molteplicità maggiore di 1, condizionamento del calcolo di radici
- 22.Metodo di Newton: euristica e definizione. Teorema di convergenza locale per radici semplici con dimostrazione
- 23. Test di arresto per il metodo di Newton
- 24.Newton come metodo iterativo: mappa di iterazione, versione del lemma delle contrazioni con g: [a,b]---->R, e applicazione alla convergenza di Newton per radici semplici
- 25.Caso di radici multiple: convergenza lineare locale del metodo di Newton

PARTE VII: INTERPOLAZIONE POLINOMIALE (26-34)

- 26.Problema generale dell'interpolazione di dati e funzioni su uno spazio lineare di funzioni continue: linearità e sistema di Vandermonde
- 27.Invertibilità della matrice di Vandermonde (con dimostrazione nel caso algebrico e base monomiale)
- 28. Base dei polinomi di Lagrange definizione uso derivazione e calcolo
- 29. Stabilità dell'interpolazione rispetto a perturbazioni in norma uniforme: costante di Lebesgue
- 30.Convergenza del polinomio interpolante: teoremi di Weierstrass e di Jackson, stima di Lebesgue considerazioni qualitative che ne discendono
- 31. Nodi di Chebyshev e di Chebyshev Lobatto vs nodi equispaziati
- 32. Calcolo della base di Lagrange e sua valutazione con algoritmi di algebra lineare
- 33. Base dei polinomi di Chebyshev, qualche proprietà utile
- 34. Formula di rappresentazione dell'errore di interpolazione

PARTE VIII: APPROSSIMAZIONE AI MINIMI QUADRATI (35-40)

- 35. Approssimazione ai minimi quadrati condizioni per poter applicare il teorema delle proiezioni ortogonali
- 36.Prodotti scalari e matrici simmetriche definite (o semidefinite positive) matrice Gramiana e teorema di Pitagora
- 37. Calcolo di basi ortogonali e identità di Parseval
- 38. Versione generale del teorema delle proiezioni ortogonali (no dim perché uguale a quella già fatta)
- 39. Approssimazione prodotta con il teorema delle proiezioni ortogonali, nucleo di riproduzione

40.Stima alla Lebesgue dell'errore di approssimazione prodotta con il teorema delle proiezioni ortogonali

PARTE IX: QUADRATURA NUMERICA (41-45)

- 41.Quadratura numerica: idea generale, quadratura interpolatoria, grado di esattezza, equazione dei momenti e pol di Lagrange
- 42. Formule del trapezio e della parabola: calcolo dei pesi
- 43.Rappresentazione dell'errore per formule del trapezio e della parabola semplici
- 44. Stabilità della quadratura, importanza dei pesi positivi e conseguente necessità delle formule composte
- 45. Formule composte dei trapezi e delle parabole (Cavalieri Simpson) definizione e rappresentazione dell'errore

PARTE I: RAPPRESENTAZIONE E ARITMETICA MACCHINA

1. SISTEMA BINARIO E SISTEMA FLOATING-POINT IEEE754

Definizione 1.1 (Sistema binario)

Il sistema binario è un sistema di numerazione posizionale in base 2. Un numero reale x può essere rappresentato in base 2 come:

```
x = sign(x) \cdot \sum (i=-\infty to +\infty) d_i \cdot 2^i
```

dove $d_i \in \{0, 1\}$ sono le cifre binarie e sign $(x) \in \{-1, +1\}$.

Conversione da decimale a binario

Parte intera: Divisione successiva per 2, annotando i resti **Parte frazionaria:** Moltiplicazione successiva per 2, annotando le parti intere

```
Esempio: (0.0625)_{10} = (0.0001)_2

0.0625 \times 2 = 0.125 \rightarrow 0

0.125 \times 2 = 0.250 \rightarrow 0

0.250 \times 2 = 0.500 \rightarrow 0

0.500 \times 2 = 1.000 \rightarrow 1

0.000 \times 2 = 0.000 \rightarrow 0
```

Definizione 1.2 (Standard IEEE754)

Lo standard IEEE754 rappresenta i numeri reali in virgola mobile nella forma normalizzata:

```
x = (-1)^s \cdot m \cdot 2^e
```

dove:

- $s \in \{0, 1\}$ è il bit di segno
- $m = 1.f_1f_2...f_t$ è la mantissa normalizzata con $1 \le m \le 2$
- e è l'esponente con $e_{min} \le e \le e_{max}$
- t è il numero di bit per la mantissa frazionaria

Per IEEE754 double precision (64 bit):

- 1 bit per il segno
- 11 bit per l'esponente ($e_{min} = -1022$, $e_{max} = 1023$)
- 52 bit per la parte frazionaria della mantissa

Per IEEE754 single precision (32 bit):

- 1 bit per il segno
- 8 bit per l'esponente ($e_{min} = -126$, $e_{max} = 127$)
- 23 bit per la parte frazionaria della mantissa

Definizione 1.3 (Precisione macchina)

La precisione macchina è definita come:

$$\varepsilon_m = 2^{-t}$$

Per IEEE754:

- Double precision: $\varepsilon_m = 2^{-53} \approx 2.22 \times 10^{-16}$
- Single precision: $\varepsilon_m = 2^{-24} \approx 5.96 \times 10^{-8}$

Teorema 1.1 (Spaziatura dei numeri macchina)

Sia x un numero floating-point normalizzato con $2^k \le |x| \le 2^{k+1}$. La distanza al successivo numero rappresentabile è:

$$qap(x) = 2^{k-t+1} = 2^k \cdot 2\varepsilon_m$$

2. ERRORI ASSOLUTO E RELATIVO, ERRORE DI RAPPRESENTAZIONE

Definizione 2.1 (Errore assoluto e relativo)

Dato un valore esatto x e una sua approssimazione \tilde{x} :

- Errore assoluto: $e_{ass} = |x \tilde{x}|$
- Errore relativo: $e_{rel} = |x \tilde{x}|/|x|$ per $x \neq 0$

Teorema 2.1 (Errore di rappresentazione)

Sia $x \in \mathbb{R}$ un numero nell'intervallo dei numeri normalizzati e fl(x) il suo rappresentante floatingpoint. Allora:

$$|x - fl(x)| \le (\varepsilon_m/2)|x|$$

ovvero l'errore relativo di rappresentazione è limitato da $\varepsilon_m/2$.

Arrotondamento vs Troncamento

• **Troncamento**: Errore $\leq \varepsilon_m |x|$

• Arrotondamento: Errore $\leq (\epsilon_m/2)|x|$

3. OPERAZIONI MACCHINA, LORO (NON) PROPRIETÀ, PRECISIONE MACCHINA

Definizione 3.1 (Operazioni macchina)

Le operazioni aritmetiche sui numeri floating-point sono definite come:

```
x \oplus y = fl(x + y) x \ominus y = fl(x - y)

x \otimes y = fl(x \cdot y) x \oslash y = fl(x / y)
```

⚠ PROPRIETÀ PERSE NELLE OPERAZIONI MACCHINA:

1. Non associatività: $(a \oplus b) \oplus c \neq a \oplus (b \oplus c)$

2. Non distributività: $a \otimes (b \oplus c) \neq (a \otimes b) \oplus (a \otimes c)$

3. **Non elemento neutro esatto**: $a \oplus 0 \neq a$ per a molto piccolo

4. Non invertibilità: $a \ominus a ≠ 0$ in generale

Esempio di non-associatività:

```
a = 1, b = \epsilon_m, c = \epsilon_m

(a \oplus b) \oplus c = 1 \oplus \epsilon_m = 1

a \oplus (b \oplus c) = a \oplus fl(2\epsilon_m) può essere diverso
```

4. STABILITÀ DI UN ALGORITMO, STABILITÀ DELLE OPERAZIONI MACCHINA E CANCELLAZIONE NUMERICA

Definizione 4.1 (Stabilità di un algoritmo)

Un algoritmo si dice **stabile** se piccole perturbazioni nei dati di input producono piccole perturbazioni nel risultato. Formalmente, se l'errore relativo sul risultato è dello stesso ordine di grandezza dell'errore relativo sui dati moltiplicato per una costante moderata.

Definizione 4.2 (Cancellazione numerica)

Si ha cancellazione numerica quando si sottrae due numeri molto vicini:

```
x - y con x \approx y
```

Questo causa una perdita **catastrofica** di cifre significative.

Esempio di cancellazione numerica:

Calcolare (1 + x) - 1 per $x = 10^{-10}$:

- Teoricamente: risultato = $x = 10^{-10}$
- In macchina: $fl((1 + x) 1) \approx 0$ (perdita completa di precisione)

Teorema 4.1 (Stabilità della somma) - CON DIMOSTRAZIONE

Siano x_1 , x_2 , ..., x_n numeri floating-point. L'errore relativo nel calcolare la somma $S_n = \sum_{i=1}^n x_i$ è limitato da:

$$|\,S_n\,\,-\,\,\tilde{S}_n\,|\,/\,|\,S_n\,|\,\,\leq\,\,n\epsilon_m/(1\,\,-\,\,n\epsilon_m)\,\,\approx\,\,n\epsilon_m\quad\text{per }n\epsilon_m\,\,\ll\,\,1$$

Dimostrazione: Procediamo per induzione. Per n=2: $\tilde{S}_2=x_1\oplus x_2=(x_1+x_2)(1+\delta)$ dove $|\delta|\leq \epsilon_m$ Quindi: $|\tilde{S}_2-S_2|=|S_2||\delta|\leq |S_2|\epsilon_m$

Per il passo induttivo, assumiamo che per k < n: $\tilde{S}_k = S_k(1 + \theta_k)$ con $|\theta_k| \le k\epsilon_m/(1 - k\epsilon_m)$

Allora:
$$\tilde{S}_{k+1} = \tilde{S}_{k k} \quad x_{+1} = (\tilde{S}_{k} + x_{k+1})(1 + \delta_{k+1}) = (S_{k}(1 + \theta_{k}) + x_{k+1})(1 + \delta_{k+1}) = S_{k+1} + S_{k}\theta_{k} + S_{k+1}\delta_{k+1} + S_{k}\theta_{k}\delta_{k+1}$$

Trascurando i termini di ordine superiore e iterando si ottiene la tesi. □

5. PROBLEMA MATEMATICO, BUONA POSIZIONE

Definizione 5.1 (Problema matematico ben posto - Hadamard)

Un problema matematico P: $X \rightarrow Y$ si dice ben posto se:

- 1. **Esistenza**: $\forall x \in X$, $\exists y \in Y$ tale che P(x) = y
- 2. Unicità: La soluzione è unica
- 3. **Stabilità**: La soluzione dipende con continuità dai dati

Se anche solo una di queste condizioni non è soddisfatta, il problema è **malposto**.

Esempi:

- **Ben posto**: Ax = b con A invertibile
- **Malposto**: Derivazione numerica (instabile rispetto a perturbazioni)

PARTE II: CONDIZIONAMENTO

6. CONDIZIONAMENTO NUMERICO ASSOLUTO E RELATIVO DI UN PROBLEMA BEN POSTO

Definizione 6.1 (Condizionamento assoluto)

Sia f: $X \to Y$ un problema ben posto e sia $x_0 \in X$. Il numero di condizionamento assoluto è:

Definizione 6.2 (Condizionamento relativo)

Il numero di condizionamento relativo è:

$$\kappa_{\text{rel}}(f, x_0) = \kappa_{a_{ss}}(f, x_0) \cdot ||x_0|| / ||f(x_0)||$$

Interpretazione:

- $\kappa_{rel} \approx 1$: Problema ben condizionato
- $\kappa_{rel} \gg 1$: Problema malcondizionato

7. NUMERO DI CONDIZIONAMENTO DI UNA MATRICE E STIMA DELL'ERRORE RELATIVO

Definizione 7.1 (Numero di condizionamento di una matrice)

Per una matrice A invertibile, il numero di condizionamento rispetto alla norma ⊩ è:

$$\kappa(A) = ||A|| \cdot ||A^{-1}||$$

Proprietà:

- $\kappa(A) \ge 1$ sempre
- $\kappa(I) = 1$
- $\kappa(\alpha A) = \kappa(A) \text{ per } \alpha \neq 0$
- Per matrici simmetriche: $\kappa_2(A) = \lambda_{max}/\lambda_{min}$

Teorema 7.1 (Stima dell'errore per Ax = b) - CON DIMOSTRAZIONE COMPLETA

Sia Ax = b un sistema lineare con A invertibile. Se $(A)(x + \delta x) = b + \delta b$ (solo termine noto perturbato), allora:

$$\|\delta x\|/\|x\| \le \kappa(A) \cdot \|\delta b\|/\|b\|$$

Dimostrazione: Da Ax = b abbiamo $x = A^{-1}b$ Da $A(x + \delta x) = b + \delta b$ abbiamo $x + \delta x = A^{-1}(b + \delta b)$ Quindi: $\delta x = A^{-1}\delta b$

Prendendo le norme: $\|\delta x\| = \|A^{-1}\delta b\| \le \|A^{-1}\| \cdot \|\delta b\|$

Da Ax = b: $||b|| = ||Ax|| \le ||A|| \cdot ||x||$, quindi $||x|| \ge ||b||/||A||$

Sostituendo: $\|\delta x\|/\|x\| \le \|A^{-1}\| \cdot \|\delta b\| / (\|b\|/\|A\|) = \|A^{-1}\| \cdot \|A\| \cdot \|\delta b\|/\|b\| = \kappa(A) \cdot \|\delta b\|/\|b\| \square$

Caso generale con perturbazione di A e b

Se
$$(A + \delta A)(x + \delta x) = b + \delta b$$
, allora:
$$\|\delta x\|/\|x\| \le \kappa(A)/(1 - \kappa(A)\|\delta A\|/\|A\|) \cdot (\|\delta b\|/\|b\| + \|\delta A\|/\|A\|)$$
 purché $\kappa(A)\|\delta A\|/\|A\| < 1$.

PARTE III: ALGEBRA LINEARE - METODI DIRETTI

8. ALGORITMI DI SOSTITUZIONE AVANTI E SOSTITUZIONE INDIETRO

Algoritmo 8.1 (Sostituzione indietro)

Per risolvere Ux = b con U triangolare superiore:

```
for i = n down to 1:
 x[i] = (b[i] - \sum(j=i+1 \text{ to n}) U[i,j]*x[j]) / U[i,i]
```

Condizioni di applicabilità:

- $U[i,i] \neq 0 \ \forall i = 1, ..., n$
- **Complessità**: O(n²) operazioni

Algoritmo 8.2 (Sostituzione avanti)

Per risolvere Lx = b con L triangolare inferiore:

```
for i = 1 to n:
 x[i] = (b[i] - \sum (j=1 \text{ to } i-1) L[i,j]*x[j]) / L[i,i]
```

Condizioni di applicabilità:

- $L[i,i] \neq 0 \ \forall i = 1, ..., n$
- **Complessità**: O(n²) operazioni

9. FATTORIZZAZIONE LU SENZA PIVOTING

Teorema 9.1 (Esistenza e unicità della fattorizzazione LU)

Sia $A \in \mathbb{R}^{n \times n}$. Se tutti i minori principali di ordine k (k = 1, ..., n-1) sono non nulli, allora esiste un'unica fattorizzazione A = LU con:

- L triangolare inferiore con diagonale unitaria ($L_{ii} = 1$)
- U triangolare superiore

Algoritmo LU senza pivoting (eliminazione gaussiana):

```
for k = 1 to n-1:
    if A[k,k] = 0: FAIL ("pivot nullo")
    for i = k+1 to n:
        L[i,k] = A[i,k] / A[k,k] // calcolo moltiplicatore
        for j = k+1 to n:
        A[i,j] = A[i,j] - L[i,k] * A[k,j] // eliminazione
U = A // parte triangolare superiore risultante
```

Limitazioni e problematiche numeriche:

- 1. **Limitazione algebrica**: Richiede minori principali $\neq 0$
- 2. **Instabilità numerica**: Se elementi pivot sono piccoli
- 3. **Crescita degli elementi**: Gli elementi possono crescere esponenzialmente

Esempio di instabilità:

```
A = \begin{bmatrix} \epsilon & 1 \end{bmatrix} \quad con \quad \epsilon \approx \epsilon_m
\begin{bmatrix} 1 & 1 \end{bmatrix}
L = \begin{bmatrix} 1 & 0 \end{bmatrix} \quad U = \begin{bmatrix} \epsilon & 1 \end{bmatrix}
\begin{bmatrix} 1/\epsilon & 1 \end{bmatrix} \quad \begin{bmatrix} 0 & 1-1/\epsilon \end{bmatrix}
```

Gli elementi di L crescono come $1/\epsilon$ \rightarrow ∞

Complessità: O(n³/3) operazioni

10. ALGORITMO LU CON PIVOTING PARZIALE PER RIGHE

Idea del pivoting parziale

Motivazione: Evitare elementi pivot piccoli che causano instabilità numerica.

Strategia: Ad ogni passo k, scegliere come pivot l'elemento di modulo massimo nella colonna k sotto la diagonale:

$$|A[p,k]| = \max\{|A[i,k]| : i = k, ..., n\}$$

Quindi scambiare le righe k e p.

Output dell'algoritmo

Il risultato è una fattorizzazione della forma:

$$PA = LU$$

dove:

- P è una matrice di permutazione
- L è triangolare inferiore con diagonale unitaria
- U è triangolare superiore

Vantaggi del pivoting:

- 1. **Stabilità numerica**: Garantisce $|L_{ii}| \le 1$
- 2. **Applicabilità generale**: Funziona per tutte le matrici non singolari
- 3. Controllo della crescita: Limita la crescita degli elementi

Teorema 10.1 (Fattorizzazione con pivoting)

Per ogni matrice $A \in \mathbb{R}^{n \times n}$ non singolare, esiste una matrice di permutazione P tale che PA ammette fattorizzazione LU.

PARTE IV: CONTRAZIONI E METODI ITERATIVI

11. PUNTI FISSI, LEMMA DELLE CONTRAZIONI CON DIMOSTRAZIONE

Definizione 11.1 (Punto fisso)

Sia g: [a,b] $\rightarrow \mathbb{R}$. Un punto $\xi \in [a,b]$ si dice **punto fisso** di g se g(ξ) = ξ .

Definizione 11.2 (Contrazione)

Una funzione g: $[a,b] \rightarrow [a,b]$ si dice **contrazione** se:

- 1. $g \in C[a,b]$
- 2. $\exists L \in (0,1)$: $|g(x) g(y)| \le L|x y| \forall x,y \in [a,b]$ (condizione di Lipschitz con costante < 1)

Lemma 11.1 (Lemma delle contrazioni - Banach) - CON DIMOSTRAZIONE COMPLETA

Sia g: [a,b] \rightarrow [a,b] una contrazione con costante L \in (0,1). Allora:

- 1. Esiste **unico** punto fisso $\xi \in [a,b]$
- 2. La successione $x_{k+1} = g(x_k)$ converge a $\xi \forall x_0 \in [a,b]$
- 3. Stima a priori: $|x_k \xi| \le L k |x_0 \xi|$
- 4. Stima a posteriori: $|\mathbf{x}_{\mathbf{k}} \xi| \leq L \wedge k/(1-L)|\mathbf{x}_1 \mathbf{x}_0|$

Dimostrazione: Unicità: Se ξ_1 , ξ_2 sono punti fissi: $|\xi_1 - \xi_2| = |g(\xi_1) - g(\xi_2)| \le L|\xi_1 - \xi_2|$ Poiché L < 1, necessariamente $\xi_1 = \xi_2$.

Esistenza: La successione $\{x_k\}$ è di Cauchy: $|x_{k+1} - x_k| = |g(x_k) - g(x_{k-1})| \le L|x_k - x_{k-1}| \le ... \le L k|x_1 - x_0|$

Per m > n: $|x_m - x_n| \le |x_m - x_{m-1}| + ... + |x_{n+1}| - x_n| \le (L^{m-1} + ... + L^n)|x_1 - x_0| \le L^n/(1-L)|x_1 - x_0| \to 0$ per n $\to \infty$

Quindi $\{x_k\}$ converge a qualche ξ . Per continuità di g: $\xi = \lim x_{k+1} = \lim g(x_k) = g(\lim x_k) = g(\xi)$

Convergenza: $|x_{k+1} - \xi| = |g(x_k) - g(\xi)| \le L|x_k - \xi| \rightarrow L \land k|x_0 - \xi| \square$

12. METODI ITERATIVI LINEARI STAZIONARI PER SOLUZIONE DI AX=B

Definizione 12.1 (Schema iterativo lineare stazionario)

Per risolvere Ax = b:

$$x^{(k+1)} = Bx^{(k)} + c$$

dove:

- $B \in \mathbb{R}^{nxn}$ è la matrice di iterazione
- $c \in \mathbb{R}^n$ è il vettore di iterazione

Condizioni per la consistenza

Lo schema è **consistente** se il punto fisso x^* soddisfa $Ax^* = b$:

$$X^* = BX^* + C \Rightarrow X^* = (I - B)^{-1}C$$

E deve valere $Ax^* = b$, quindi: $A(I - B)^{-1}c = b$, ovvero $c = (I - B)A^{-1}b$.

Forma standard: $M^{-1}(Mx - Ax) = M^{-1}(b - Ax)$, quindi:

- $B = I M^{-1}A$
- $c = M^{-1}b$

dove M è detta matrice di precondizionamento.

Possibili vantaggi dei metodi iterativi:

- 1. Matrici sparse: Non alterano la sparsità
- 2. **Grandi dimensioni**: Memoria O(n) vs O(n²) per metodi diretti
- 3. **Precisione controllabile**: Si può fermare quando si raggiunge la precisione desiderata
- 4. **Parallelizzazione**: Alcuni metodi si parallelizzano facilmente

Teorema 12.1 (Risultato generale di convergenza)

Il metodo iterativo $x^{(k+1)} = Bx^{(k)} + c$ converge per ogni $x^{(0)}$ se e solo se:

$$\rho(B) < 1$$

dove $\rho(B)$ è il raggio spettrale di B.

Dimostrazione: Segue dal lemma delle contrazioni applicato in norma matriciale compatibile. □

13. METODO DI RICHARDSON: DEFINIZIONE, ANALISI DELLA CONVERGENZA

Definizione 13.1 (Metodo di Richardson)

$$x^{(k+1)} = x^{(k)} + \alpha(b - Ax^{(k)}) = (I - \alpha A)x^{(k)} + \alpha b$$

dove $\alpha > 0$ è il **parametro di rilassamento**.

La matrice di iterazione è B = I - α A.

Analisi della convergenza tramite norma

Condizione necessaria e sufficiente: $\|I - \alpha A\| < 1$ per qualche norma matriciale.

Per la norma spettrale (A simmetrica e definita positiva):

$$\rho(I - \alpha A) < 1 \Leftrightarrow 0 < \alpha < 2/\rho(A) = 2/\lambda_{max}$$

Scelta ottimale del parametro

Se A è simmetrica e definita positiva con autovalori $0 < \lambda_{min} \le ... \le \lambda_{max}$:

$$\alpha_{\text{Opt}} = 2/(\lambda_{\text{min}} + \lambda_{\text{max}})$$

Con questa scelta:

$$\rho(I - \alpha_{0pt}A) = (\lambda_{max} - \lambda_{min})/(\lambda_{max} + \lambda_{min}) = (\kappa(A) - 1)/(\kappa(A) + 1)$$

Serie di Neumann

Definizione 13.2 (Serie di Neumann): Per una matrice A con $\rho(I - A) < 1$:

$$\sum (k=0 \text{ to } \infty) (I - A)^k = A^{-1}$$

Applicazione al metodo di Richardson: Se $\rho(I - \alpha A) \le 1$:

$$x^* = \sum (k=0 \text{ to } \infty) (I - \alpha A)^k \cdot \alpha b = (\alpha A)^{-1} \alpha b = A^{-1} b$$

14. PRECONDIZIONAMENTO DEL METODO DI RICHARDSON E METODI DI JACOBI E GAUSS-SEIDEL

Definizione 14.1 (Precondizionamento)

Invece di risolvere Ax = b, si risolve il sistema equivalente:

$$M^{-1}Ax = M^{-1}b$$

dove M è il **precondizionatore**, scelto in modo che:

- M⁻¹A abbia numero di condizione migliore di A
- M⁻¹ sia facile da calcolare

Metodo di Richardson precondizionato:

$$x^{(k+1)} = x^{(k)} + \alpha M^{-1}(b - Ax^{(k)})$$

Splitting classico

Si scrive A = L + D + U dove:

- L = parte triangolare strettamente inferiore
- D = parte diagonale
- U = parte triangolare strettamente superiore

Metodo di Jacobi

Precondizionatore: M = D

$$X^{(k+1)} = (I - D^{-1}A)X^{(k)} + D^{-1}b$$

Forma componentwise:

$$x_i^{(k+1)} = (b_i - \sum_{j \neq i} a_{ij}x_j^{(k)}/a_{ii}$$

Metodo di Gauss-Seidel

Precondizionatore: M = D + L

$$X^{(k+1)} = -(D + L)^{-1}UX^{(k)} + (D + L)^{-1}b$$

Forma componentwise:

$$x_i^{(k+1)} = (b_i - \sum(j < i) a_{ij}x_j^{(k+1)} - \sum(j > i) a_{ij}x_j^{(k)}/a_{ii}$$

Implementazione: Non si inverte mai (D + L), si risolve:

$$(D + L)x^{\wedge}(k+1) = -Ux^{\wedge}(k) + b$$

15. LEMMA DEI CERCHI DI GERSCHGORIN E MATRICI STRETTAMENTE DIAGONALMENTE DOMINANTI

Lemma 15.1 (Cerchi di Gerschgorin)

Gli autovalori della matrice $A = (a_{ij})$ sono contenuti nell'unione dei cerchi:

$$\label{eq:condition} G = \mbox{U($i=1$ to n) } \{z \in \mathbb{C} \ : \ |z - a_{\{ii\}}| \leq \sum (j \neq i) \ |a_{\{ij\}}| \}$$

Definizione 15.1 (Matrice strettamente diagonalmente dominante)

A è strettamente diagonalmente dominante per righe se:

$$|a_{ii}| > \sum (j \neq i) |a_{ij}| \forall i = 1, ..., n$$

Teorema 15.1 (Convergenza di Jacobi)

Se A è strettamente diagonalmente dominante, allora il metodo di Jacobi converge.

Dimostrazione: La matrice di iterazione è $B = -D^{-1}(L + U)$. Per Gerschgorin, gli autovalori di B sono in cerchi di raggio:

$$\sum (j \neq i) |b_{ij}| = \sum (j \neq i) |a_{ij}|/|a_{ii}| < 1$$

per la dominanza diagonale, quindi $\rho(B) < 1$. \square

16. CRITERI DI ARRESTO PER METODI ITERATIVI

Criterio del residuo relativo

```
||b - Ax^{(k)}||/||b|| < tol_1
```

Vantaggi: Indipendente dalla scala del problema **Svantaggi**: Non garantisce precisione sulla soluzione se A è malcondizionata

Criterio dello scarto (step)

$$||x^{(k+1)} - x^{(k)}|| / ||x^{(k)}|| < tol_2$$

Relazione con l'errore: Se B = matrice di iterazione, allora:

$$||x^{(k)} - x^{*}|| \le ||B||/(1 - ||B||) \cdot ||x^{(k+1)} - x^{(k)}||$$

Criterio combinato (raccomandato)

Usare entrambi i criteri:

 $\|b - Ax^{(k)}\|/\|b\| < tol_1 \quad AND \quad \|x^{(k+1)} - x^{(k)}\|/\|x^{(k)}\| < tol_2$

PARTE V: SISTEMI SOVRADETERMINATI E MINIMI QUADRATI

17. SISTEMI SOVRADETERMINATI: ESISTENZA E UNICITÀ DELLA SOLUZIONE

Definizione 17.1 (Sistema sovradeterminato)

Sistema $Ax = b \operatorname{con} A \in \mathbb{R}^{mxn}$, m > n. Generalmente **non ha soluzione esatta**.

Definizione 17.2 (Soluzione ai minimi quadrati)

x* è soluzione ai minimi quadrati se:

$$||Ax^* - b||_2 = min\{||Ay - b||_2 : y \in \mathbb{R}^n\}$$

Teorema 17.1 (Esistenza e unicità)

- Esistenza: La soluzione ai minimi quadrati esiste sempre
- **Unicità**: Se A ha rango pieno (rank(A) = n), allora la soluzione è unica

Minimi quadrati come generalizzazione

Il concetto di "soluzione" viene esteso:

- **Caso classico**: Ax = b ha soluzione esatta
- Caso sovradeterminato: La "soluzione" è quella che minimizza ||Ax b||₂

18. TEOREMA DELLE PROIEZIONI ORTOGONALI ED EQUAZIONI NORMALI CON DIMOSTRAZIONE

Teorema 18.1 (Proiezioni ortogonali) - CON DIMOSTRAZIONE COMPLETA

Sia V sottospazio di dimensione finita di uno spazio con prodotto scalare. Allora per ogni f esiste unico $p^* \in V$ tale che:

$$\|f - p^*\| = \min\{\|f - p\| : p \in V\}$$

e p* è caratterizzato dalla condizione di ortogonalità:

$$\langle f - p^*, v \rangle = 0 \quad \forall v \in V$$

Dimostrazione: Esistenza: Sia $\{v_1, ..., v_n\}$ base di V. Cerchiamo $p^* = \sum_i c_i v_i$ che minimizza:

$$\|f - p^*\|^2 = \langle f - \sum_i c_i v_i, f - \sum_j c_j v_j \rangle$$

Derivando rispetto a c_k e uguagliando a zero:

$$\partial/\partial c$$
 || ||f - p* $\langle 2 = -2 \rangle$ f - $\sum_i c_i v_i$, $v_m = 0$

Questo dà: $\langle f - p^*, v_k \rangle = 0$ per k = 1, ..., n, ovvero la condizione di ortogonalità.

Unicità: Se p_1^* , p_2^* sono entrambe soluzioni, allora: $\langle f - p_1^*, v \rangle = \langle f - p_2^*, v \rangle = 0 \ \forall v \in V$ Quindi $\langle p_1^* - p_2^*, v \rangle = 0 \ \forall v \in V$ In particolare, scegliendo $v = p_1^* - p_2^*$: $\|p_1^* - p_2^*\|^2 = 0$, quindi $p_1^* = p_2^*$.

Corollario 18.1 (Equazioni normali)

Nel caso $Ax = b \operatorname{con} A \in \mathbb{R}^{m \times n}$ (m > n), la soluzione ai minimi quadrati soddisfa:

$$A^T A x^* = A^T b$$

queste sono le **equazioni normali**.

Dimostrazione: Il sottospazio è V = Range(A) = {Ax : $x \in \mathbb{R}^n$ }. La condizione di ortogonalità diventa: b - Ax* \perp V A \wedge T(b - Ax*) = 0 A \wedge T A x* = A \wedge T b \square

19. METODO QR PER LA SOLUZIONE DELLE EQUAZIONI NORMALI

Problema delle equazioni normali

Le equazioni normali possono essere malcondizionate:

$$\kappa(A^T A) = \kappa(A)^2$$

Esempio: Se $\kappa(A) = 10^6$, allora $\kappa(A \land TA) = 10^{12}$, perdendo 6 cifre decimali!

Fattorizzazione QR

Teorema 19.1: Ogni matrice $A \in \mathbb{R}^{mxn}$ $(m \ge n)$ con rango pieno può essere fattorizzata come:

```
A = QR
```

dove:

- $Q \in \mathbb{R}^{mxm}$ è ortogonale ($Q \land T Q = I$)
- $R \in \mathbb{R}^{mxn}$ ha la forma $R = [R_0; 0]$ con $R_0 \in \mathbb{R}^{nxn}$ triangolare superiore invertibile

Algoritmo QR per minimi quadrati

```
Input: A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^m, m \ge n, rank(A) = n

1. Calcola A = QR (fattorizzazione QR)

2. \hat{b} = Q \wedge T b

3. Risolvi R_0 \times = \hat{b}_1:_n (sostituzione all'indietro)

Output: \times soluzione del problema ai minimi quadrati
```

Vantaggi del metodo QR:

- 1. **Migliore condizionamento**: $\kappa_2(R_0) = \kappa_2(A)$ invece di $\kappa_2(A)^2$
- 2. Maggiore stabilità numerica
- 3. Evita il calcolo di A^T A

Complessità: $O(mn^2 - n^3/3)$ vs $O(mn^2 + n^3/6)$ per equazioni normali

Fattorizzazione QR tramite Gram-Schmidt

Algoritmo Gram-Schmidt modificato:

```
for j = 1 to n:

v_{-}j = a_{-}j

for i = 1 to j-1:

r_{-}\{ij\} = \langle a_{-}j, q_{-}i \rangle

v_{-}j = v_{-}j - r_{-}\{ij\} q_{-}i

r_{-}\{jj\} = ||v_{-}j||

q_{-}j = v_{-}j / r_{-}\{jj\}
```

PARTE VI: EQUAZIONI NON LINEARI

20. RADICI DI UN'EQUAZIONE NON LINEARE: CONDIZIONI PER L'UNICITÀ, ESISTENZA E METODO DI BISEZIONE

Problema: Trovare ξ tale che $f(\xi) = 0$

Teorema 20.1 (Esistenza delle radici) - CON DIMOSTRAZIONE

Se $f \in C[a,b]$ e f(a)f(b) < 0, allora esiste almeno una radice $\xi \in (a,b)$.

Dimostrazione: Teorema dei valori intermedi. □

Condizioni per l'unicità

Se $f \in C^1[a,b]$, f(a)f(b) < 0 e $f'(x) \neq 0$ $\forall x \in [a,b]$, allora la radice è unica.

Metodo di bisezione - CON DIMOSTRAZIONE DI CONVERGENZA

Algoritmo:

```
Input: f \in C[a,b], f(a)f(b) < 0, tol > 0
while (b - a)/2 > tol:
c = (a + b)/2
if f(c) = 0: return c
if f(a)f(c) < 0:
b = c
else:
a = c
return (a + b)/2
```

Teorema 20.2 (Convergenza del metodo di bisezione)

Dopo n iterazioni, l'errore è limitato da:

```
|x_n - \xi| \le (b_0 - a_0)/2^{(n+1)}
```

Dimostrazione: Ad ogni iterazione l'intervallo si dimezza: $[a_1, b_1] = [a_0, (a_0 + b_0)/2]$ o $[(a_0 + b_0)/2, b_0]$ Quindi: $b_1 - a_1 = (b_0 - a_0)/2$ Per induzione: $b_n - a_n = (b_0 - a_0)/2^n$ Poiché $\xi \in [a_n, b_n]$: $|x_n - \xi| \le (b_n - a_n)/2 = (b_0 - a_0)/2^n$ Discreta $|x_n - x_n|/2 = (b_0 - a_0)/2^n$ Poiché $|x_n - x_n|/2 = (b_0 - a_0)/2^n$

Convergenza: **Lineare** con fattore 1/2.

Vantaggi e svantaggi

✓ **Vantaggi**: Sempre converge, robusto, semplice **X Svantaggi**: Lento, richiede cambio di segno

21. RADICI SEMPLICI E RADICI DI MOLTEPLICITÀ MAGGIORE DI 1, CONDIZIONAMENTO

Definizione 21.1 (Molteplicità di una radice)

 ξ è radice di molteplicità m di f se:

$$f(\xi) = f'(\xi) = \dots = f^{(m-1)}(\xi) = 0, f^{(m)}(\xi) \neq 0$$

- Se m = 1: radice **semplice**
- Se m > 1: radice **multipla**

Condizionamento del calcolo di radici

Per radici semplici:

Il numero di condizionamento è:

$$\kappa = |\xi f''(\xi)|/|f'(\xi)|$$

Se $f'(\xi) \neq 0$, il problema è ben condizionato.

Per radici multiple:

Sono sempre **malcondizionate**! Se ξ è radice di molteplicità m:

$$\kappa \approx m/|f^{(m)}(\xi)|$$

Piccole perturbazioni in f possono causare grandi variazioni nella posizione della radice.

Esempio

$$f(x) = (x - 1)^10$$

La radice $\xi = 1$ ha molteplicità 10. Una piccola perturbazione $\tilde{f}(x) = (x - 1)^10 + \epsilon$ può spostare le radici di $O(\epsilon^1/10)$.

22. METODO DI NEWTON: EURISTICA E DEFINIZIONE, TEOREMA DI CONVERGENZA LOCALE

Euristica del metodo di Newton

Idea: Approssimare f(x) con la retta tangente in x_k :

$$f(x) \approx f(x_k) + f'(x_k)(x - x_k)$$

La radice dell'approssimazione lineare è:

$$x_{k+1} = x_k - f(x_k)/f'(x_k)$$

Definizione 22.1 (Metodo di Newton)

$$x_{k+1} = x_k - f(x_k)/f'(x_k)$$

purché f' $(x_k) \neq 0$.

Teorema 22.1 (Convergenza locale per radici semplici) - CON DIMOSTRAZIONE COMPLETA

Sia $f \in C^2[a,b]$, $\xi \in (a,b)$ radice semplice $(f(\xi) = 0, f'(\xi) \neq 0)$. Allora $\exists \delta > 0$ tale che se $|x_0 - \xi| < \delta$, la successione di Newton converge **quadraticamente**:

$$|x_{k+1} - \xi| \le M|x_k - \xi|^2$$

dove $M = |f''(\xi)|/(2|f'(\xi)|)$.

Dimostrazione: Sviluppo di Taylor di f intorno a ξ :

$$f(x_k) = f(\xi) + f'(\xi)(x_k - \xi) + f''(\theta_k)(x_k - \xi)^2/2$$

dove $\theta_k \in (\xi, x_k)$.

Poiché $f(\xi) = 0$:

$$f(x_k) = f'(\xi)(x_k - \xi) + f''(\theta_k)(x_k - \xi)^2/2$$

Il passo di Newton:

Per continuità di f', se $x_k \to \xi$: $f'(x_k) \to f'(\xi) \neq 0$, quindi il primo termine $\to 0$. Il termine dominante è:

$$|x_{k+1}| - \xi| \approx |f''(\theta_k)|/(2|f'(x_k)|)|x_k - \xi|^2$$

Per δ sufficientemente piccolo, $M = \max\{|f''(x)|/(2|f'(x)|) : x \in [\xi - \delta, \xi + \delta]\}$ è finito. \square

Interpretazione geometrica

Il metodo segue le tangenti alla curva y = f(x), intersecando l'asse x per trovare la prossima approssimazione.

23. TEST DI ARRESTO PER IL METODO DI NEWTON

Criterio sul residuo

$$|f(x_k)| < tol_1$$

Interpretazione: Quanto è vicino x_k ad essere una radice esatta.

Criterio sullo step

$$|x_{k+1} - x_k| < tol_2$$

Interpretazione: Variazione tra iterate successive.

Criterio combinato (raccomandato)

$$|f(x_k)| < tol_1 \quad AND \quad |x_{k+1} - x_k| < tol_2$$

Criterio relativo sullo step

$$|x_{k+1} - x_k|/|x_k| < tol_3$$

Vantaggi: Indipendente dalla scala del problema.

Considerazioni pratiche

- 1. Massimo numero di iterazioni: Evitare loop infiniti
- 2. **Controllo f'(x_k):** Se $|f'(x_k)| \le tol_4$, fermarsi (derivata troppo piccola)
- 3. **Monitoraggio**: Verificare che $||f(x_k)||$ stia effettivamente diminuendo

24. NEWTON COME METODO ITERATIVO: MAPPA DI ITERAZIONE, LEMMA DELLE CONTRAZIONI

Mappa di iterazione

Il metodo di Newton si può scrivere come:

$$x_{k+1} = g(x_k)$$

dove g(x) = x - f(x)/f'(x) è la mappa di iterazione di Newton.

Versione del lemma delle contrazioni per g: [a,b] $\rightarrow \mathbb{R}$

Teorema 24.1: Se g: [a,b] \rightarrow [a,b] e \exists L \in (0,1): $|g'(x)| \le L \ \forall x \in$ [a,b], allora g ha un unico punto fisso $\xi \in$ [a,b] e $x_{k+1} = g(x_{k})$ converge a ξ per ogni $x_{0} \in$ [a,b].

Applicazione alla convergenza di Newton

Per la mappa di Newton g(x) = x - f(x)/f'(x):

$$g'(x) = 1 - [f'(x)]^2 - f(x)f''(x)/[f'(x)]^2 = f(x)f''(x)/[f'(x)]^2$$

In prossimità della radice semplice ξ **:** $g'(\xi) = f(\xi)f''(\xi)/[f'(\xi)]^2 = 0$

Quindi |g'(x)| < 1 in un intorno di ξ , garantendo convergenza locale.

Raggio di convergenza

Il **bacino di attrazione** è l'insieme degli x_0 per cui Newton converge a ξ .

- Per radici semplici: tipicamente grande
- Per radici multiple: può essere molto piccolo
- Dipende dal comportamento globale di f

25. CASO DI RADICI MULTIPLE: CONVERGENZA LINEARE LOCALE DEL METODO DI NEWTON

Teorema 25.1 (Newton per radici multiple)

Se ξ è radice di molteplicità m > 1, allora Newton converge **linearmente** con fattore (m-1)/m:

$$\lim_{k\to\infty} |x_{k+1} - \xi|/|x_k - \xi| = (m-1)/m$$

Dimostrazione (sketch)

Per radice di molteplicità m: $f(x) = (x - \xi)^m h(x) \operatorname{con} h(\xi) \neq 0$.

$$f'(x) = m(x - \xi)^{m-1}h(x) + (x - \xi)^{m}h'(x)$$

La mappa di Newton:

$$g(x) = x - f(x)/f'(x) = x - (x - \xi)h(x)/[mh(x) + (x - \xi)h'(x)]$$

Calcolando g'(ξ):

$$g'(\xi) = (m-1)/m$$

Metodo di Newton modificato per radici multiple

Se la molteplicità m è nota:

$$x_{k+1} = x_k - m \cdot f(x_k) / f'(x_k)$$

Questo ripristina la convergenza quadratica.

Metodo alternativo (molteplicità incognita)

Definire u(x) = f(x)/f'(x), quindi:

$$x_{k+1} = x_k - u(x_k)/u'(x_k)$$

Se ξ è radice di f con molteplicità m, è radice semplice di u.

PARTE VII: INTERPOLAZIONE POLINOMIALE

26. PROBLEMA GENERALE DELL'INTERPOLAZIONE: LINEARITÀ E SISTEMA DI VANDERMONDE

Problema dell'interpolazione

Dati n+1 punti distinti (x_0, y_0) , (x_1, y_1) , ..., (x_n, y_n) , trovare $p \in \pi_n$ (spazio dei polinomi di grado $\leq n$) tale che:

```
p(x_i) = y_i, i = 0, 1, ..., n
```

Linearità del problema

L'operatore di interpolazione è **lineare**:

$$L_n[\alpha f + \beta g] = \alpha L_n[f] + \beta L_n[g]$$

dove $L_n[f]$ è il polinomio che interpola f nei nodi $x_0, ..., x_n$.

Sistema di Vandermonde

Scrivendo $p(x) = a_0 + a_1x + ... + a_nx^n$, le condizioni di interpolazione danno:

La matrice $V \in \mathbb{R}^{n}(n+1) \times (n+1)$ è la **matrice di Vandermonde**.

27. INVERTIBILITÀ DELLA MATRICE DI VANDERMONDE (CON DIMOSTRAZIONE)

Teorema 27.1 (Invertibilità di Vandermonde) - CON DIMOSTRAZIONE

La matrice di Vandermonde V è invertibile se e solo se i nodi x_0 , x_1 , ..., x_n sono distinti.

Dimostrazione: Il determinante di Vandermonde è:

$$det(V) = \prod_{0 \le i < j \le n} (x_i - x_i)$$

Dimostriamo per induzione su n. **Base** (n = 1):

$$V = \begin{bmatrix} 1 & x_0 \end{bmatrix} \implies det(V) = x_1 - x_0$$
$$\begin{bmatrix} 1 & x_1 \end{bmatrix}$$

Passo induttivo: Supponiamo vero per n-1. Per la matrice $(n+1)\times(n+1)$:

Sviluppiamo lungo la prima riga. L'elemento (1,1) ha cofattore che è una Vandermonde ($n \times n$) con nodi $x_1, ..., x_n$:

Cofactore₁₁ =
$$\prod_{1 \le i < j \le n} (x_i - x_i)$$

Dopo calcoli (somma telescopica), si ottiene:

$$\det(V) = \prod_{1 \le i < j \le n} (x_j - x_i) \cdot \prod_{1 = 1}^n (x_i - x_0) = \prod_{1 \le i < j \le n} (x_j - x_i)$$

Conclusione: $det(V) \neq 0 \Leftrightarrow x_i \neq x_i \text{ per } i \neq j$. \square

Corollario 27.1 (Esistenza e unicità dell'interpolazione)

Se i nodi sono distinti, esiste un unico polinomio $p \in \pi_n$ che interpola i dati.

28. BASE DEI POLINOMI DI LAGRANGE: DEFINIZIONE, USO, DERIVAZIONE E CALCOLO

Definizione 28.1 (Polinomi di Lagrange)

$$L_i(x) = \prod_{j=0, j \neq i}^n (x - x_i)/(x_i - x_i), i = 0, 1, ..., n$$

Proprietà fondamentali

- 1. $L_i \in \pi_n$ (grado n)
- 2. **Proprietà di interpolazione**: $L_i(x_i) = \delta_{ij}$ (delta di Kronecker)
- 3. **Partizione dell'unità**: $\sum_{i=0}^{n} L_i(x) = 1$

Uso: Formula di interpolazione di Lagrange

$$p(x) = \sum_{i=0}^n y_i L_i(x)$$

Derivazione

I polinomi di Lagrange sono costruiti per essere una base duale ai funzionali di valutazione:

- $L_i(x_i) = 1$: il polinomio vale 1 nel nodo x_i
- $L_i(x_i) = 0$ per $j \neq i$: si annulla negli altri nodi

Calcolo efficiente

Algoritmo diretto: $O(n^2)$ per valutare tutti gli L_i in un punto.

Forma baricitrica (più efficiente):

$$p(x) = \sum_{i=0}^n y_i \cdot w_i/(x - x_i) / \sum_{j=0}^n w_j/(x - x_j)$$

dove $w_i = 1/\prod_{j \neq i} (x_i - x_j)$ sono i **pesi baricentrci**.

29. STABILITÀ DELL'INTERPOLAZIONE: COSTANTE DI LEBESGUE

Problema della stabilità

Se i dati sono perturbati: $y_i \rightarrow \tilde{y}_i = y_i + \varepsilon_i$, come cambia il polinomio interpolante?

Definizione 29.1 (Costante di Lebesgue)

$$\Lambda_n = \max_{x \in [a,b]} \sum_{i=0}^n |L_i(x)|$$

Teorema 29.1 (Stabilità dell'interpolazione)

Se $\max |\epsilon_i| \le \epsilon$, allora:

$$\max_{x \in [a,b]} |\tilde{p}(x) - p(x)| \le \Lambda_n \cdot \epsilon$$

Dimostrazione:

$$|\tilde{p}(x) - p(x)| = |\sum_{i} \epsilon_{i} L_{i}(x)| \leq \epsilon \sum_{i} |L_{i}(x)| \leq \epsilon \Lambda_{n}$$

Importanza della costante di Lebesgue

- Λ_n **piccolo**: Interpolazione stabile
- Λ_n grande: Piccoli errori nei dati causano grandi errori nell'interpolazione

Confronto per diversi tipi di nodi

- **Nodi equispaziati**: $\Lambda_n \sim O(2^n)$ (crescita esponenziale!)
- **Nodi di Chebyshev**: $\Lambda_n \sim O(\log n)$ (crescita logaritmica)

30. CONVERGENZA DEL POLINOMIO INTERPOLANTE: TEOREMI DI WEIERSTRASS E JACKSON

Domanda fondamentale: L'interpolazione polinomiale converge sempre all'aumentare del grado?

Teorema 30.1 (Weierstrass)

Ogni funzione continua su [a,b] può essere approssimata uniformemente da polinomi:

$$\forall f \in C[a,b], \forall \epsilon > 0, \exists p \text{ polinomio: } ||f - p||_{\infty} < \epsilon$$

Teorema 30.2 (Jackson)

Se $f \in C^k[a,b]$, allora esiste una sequenza di polinomi p_n di grado n tali che:

$$\|f - p_n\|_{\infty} \le M_k \cdot \omega_k(f, (b-a)/n) / n^k$$

dove ω_k è il modulo di continuità di ordine k.

Stima di Lebesgue per l'interpolazione

L'errore di interpolazione p_n soddisfa:

$$\|f - p_n\|_{\infty} \le (1 + \Lambda_n) \cdot \min\{\|f - p\|_{\infty} : p \in \pi_n\}$$

Considerazioni qualitative

- 1. **Convergenza teorica**: Possibile per ogni $f \in C[a,b]$ con scelta opportuna dei nodi
- 2. **Convergenza pratica**: Dipende da Λ_n
- 3. **Nodi equispaziati**: Possono dare **divergenza** (controesempio di Runge)
- 4. **Nodi di Chebyshev**: Garantiscono convergenza per ogni $f \in C[a,b]$

31. NODI DI CHEBYSHEV E DI CHEBYSHEV-LOBATTO VS NODI EQUISPAZIATI

Fenomeno di Runge

Esempio: Funzione di Runge $f(x) = 1/(1 + 25x^2)$ su [-1, 1] Con nodi equispaziati e n grande, si osservano **forti oscillazioni** vicino ai bordi.

Nodi di Chebyshev (prima specie)

$$x_i = cos((2j + 1)\pi / (2(n + 1))), j = 0, 1, ..., n$$

Proprietà ottimali:

- 1. Minimizzano asintoticamente la costante di Lebesgue
- 2. Sono i **punti di massimo** dei polinomi di Chebyshev
- 3. **Addensamento verso i bordi**: Più punti dove servono di più

Nodi di Chebyshev-Lobatto (seconda specie)

$$x_i = \cos(j\pi/n), j = 0, 1, ..., n$$

Differenza: Includono gli estremi dell'intervallo [-1, 1].

Confronto delle performance

Nodi equispaziati:

- **V** Facili da generare
- Intuitivi
- $\times \Lambda_n \sim O(2^n/n)$ (crescita esponenziale)
- X Fenomeno di Runge
- X Adatti solo per n piccolo

Nodi di Chebyshev:

- $\Lambda_n \sim (2/\pi)\log(n+1)$ (crescita logaritmica)
- Convergenza garantita per $f \in C[a,b]$
- V Evitano il fenomeno di Runge
- Ottimali per interpolazione di grado elevato
- X Meno intuitivi da calcolare

Regola pratica: Usare sempre nodi di Chebyshev per n > 10.

32. CALCOLO DELLA BASE DI LAGRANGE E SUA VALUTAZIONE CON ALGORITMI DI ALGEBRA LINEARE

Calcolo diretto dei polinomi di Lagrange

Complessità: O(n²) operazioni per valutare tutti gli n+1 polinomi in un punto.

```
for i = 0 to n:

L_i(x) = 1

for j = 0 to n, j \neq i:

L_i(x) *= (x - x_j) / (x_i - x_j)
```

Riformulazione con algebra lineare

Idea: Calcolare i coefficienti dei polinomi di Lagrange nella base monomiale.

Se $L_i(x) = \sum_{k=0}^n a_{ik} x^k$, il problema si riduce a risolvere n+1 sistemi lineari:

$$V a_i = e_i, j = 0, 1, ..., n$$

dove V è la matrice di Vandermonde e e_i è il j-esimo vettore della base canonica.

Vantaggi dell'approccio algebrico:

- 1. Riuso: I coefficienti si calcolano una volta sola
- 2. **Stabilità**: Metodi numericamente stabili per sistemi di Vandermonde
- 3. **Parallelizzazione**: I sistemi si possono risolvere indipendentemente

Forma baricitrica (algoritmo più efficiente)

```
Algoritmo baricitrico:

1. Precalcolo: w_i = 1/\prod(j\neq i)(x_i - x_j) [0(n²) una volta]

2. Valutazione: p(x) = [\sum y_i * w_i/(x - x_i)] / [\sum w_j/(x - x_j)] [0(n) per punto]
```

Vantaggi: O(n) per valutazione dopo precalcolo $O(n^2)$.

33. BASE DEI POLINOMI DI CHEBYSHEV, QUALCHE PROPRIETÀ UTILE

Definizione 33.1 (Polinomi di Chebyshev di prima specie)

```
T_n(\cos \theta) = \cos(n\theta)
```

Relazione di ricorrenza

```
T_0(x) = 1

T_1(x) = x

T_{n+1}(x) = 2xT_n(x) - T_{n-1}(x), n \ge 1
```

Proprietà fondamentali

1. Ortogonalità

Su [-1, 1] con peso w(x) = $1/\sqrt{(1-x^2)}$: $\int_{-1}^{1} T_m(x)T_n(x)/\sqrt{(1-x^2)} dx = \{0 & \text{se m} \neq n \\ \{\pi & \text{se m} = n = 0 \\ \{\pi/2 & \text{se m} = n > 0 \}$

2. Proprietà di estremi

$$|T_n(x)| \le 1 \text{ per } x \in [-1, 1]$$

I massimi sono raggiunti in $x_k = \cos(k\pi/n)$, k = 0, ..., n.

3. Zeri

$$x_k = \cos((2k-1)\pi/(2n)), k = 1, ..., n$$

4. Proprietà di minimizzazione

Tra tutti i polinomi monici di grado n, $T_n(x)/2^{n-1}$ ha norma uniforme minima su [-1, 1].

Applicazioni

- 1. Nodi di interpolazione ottimali
- 2. Approssimazione di funzioni
- 3. Integrazione numerica (quadratura di Gauss-Chebyshev)
- 4. Accelerazione della convergenza

Trasformazione di intervalli

Da [-1, 1] a [a, b]: x = ((b-a)t + (b+a))/2, $t \in [-1, 1]$

34. FORMULA DI RAPPRESENTAZIONE DELL'ERRORE DI INTERPOLAZIONE

Teorema 34.1 (Errore di interpolazione) - FORMULA ESPLICITA

Sia $f \in C^{n^+1}[a,b]$ e siano $x_0,...,x_n \in [a,b]$ nodi di interpolazione distinti. Se $p \in \pi_n$ è il polinomio interpolante, allora $\forall x \in [a,b]$:

$$f(x) - p(x) = f^{(n+1)}(\xi(x))/((n+1)!) \cdot \prod_{i=0}^{n} (x - x_i)$$

dove $\xi(x) \in (\min\{x, x_0, ..., x_n\}, \max\{x, x_0, ..., x_n\}).$

Dimostrazione (sketch)

Per $x \neq x_i$, consideriamo la funzione ausiliaria:

$$G(t) = f(t) - p(t) - K \prod_{i=0}^{n} (t - x_i)$$

dove K è scelto in modo che G(x) = 0.

G(t) si annulla in x, x_0 , ..., x_n (n+2 zeri). Applicando ripetutamente il teorema di Rolle:

- G'(t) ha almeno n+1 zeri
- G"(t) ha almeno n zeri
- ..
- $G^{(n+1)}(t)$ ha almeno 1 zero ξ

Poiché $G^{(n+1)}(\xi) = f^{(n+1)}(\xi) - K(n+1)! = 0$, si ottiene la formula.

Conseguenze pratiche

1. Stima dell'errore

```
|f(x) - p(x)| \le (\|f^{(n+1)}\|_{\infty})/((n+1)!) \cdot \max_{x \in \mathbb{R}^n} |f(x - x_i)|
```

2. Ottimizzazione dei nodi

Per minimizzare l'errore, bisogna minimizzare max_x $|\prod_{i=0}^n (x - x_i)|$. **Soluzione**: Nodi di Chebyshev!

3. Convergenza

Se $f \in C^{\infty}[a,b]$ e $|f^{(n+1)}(x)| \le M \cdot R^n$ per qualche M, R, allora:

$$\|f - p_n\|_{\infty} \le (M \cdot R^n)/((n+1)!) \cdot \max |f|_{i=0}^n (x - x_i)| \to 0$$

PARTE VIII: APPROSSIMAZIONE AI MINIMI QUADRATI

35. APPROSSIMAZIONE AI MINIMI QUADRATI: CONDIZIONI PER APPLICARE IL TEOREMA DELLE PROIEZIONI ORTOGONALI

Setup generale

Spazio: V spazio vettoriale con prodotto scalare $\langle \cdot, \cdot \rangle$ **Sottospazio**: W \subset V di dimensione finita **Obiettivo**: Trovare w* \in W che minimizza $\|f - w\|$

Condizioni per l'applicabilità del teorema delle proiezioni ortogonali

Condizione 1: Spazio con prodotto scalare

V deve essere dotato di un prodotto scalare che soddisfa:

- 1. **Bilinearità**: $\langle \alpha f + \beta g, h \rangle = \alpha \langle f, h \rangle + \beta \langle g, h \rangle$
- 2. **Simmetria**: $\langle f, g \rangle = \langle g, f \rangle$
- 3. **Definitezza positiva**: $\langle f, f \rangle \ge 0$, $\langle f, f \rangle = 0 \Leftrightarrow f = 0$

Condizione 2: Sottospazio di dimensione finita

W deve avere dimensione finita $n < \infty$.

Condizione 3: Base del sottospazio

Deve esistere una base $\{\phi_1, ..., \phi_n\}$ di W linearmente indipendente.

Esempi di prodotti scalari

Caso continuo

$$\langle f, g \rangle = \int_{a}^{b} f(x)g(x)w(x)dx$$

dove w(x) > 0 è una funzione peso.

Caso discreto

$$\langle f, g \rangle = \sum_{i=1}^{m} w_i f(x_i) g(x_i)$$

dove $w_i > 0$ sono pesi e x_i punti di campionamento.

Verifiche necessarie

- 1. **Indipendenza lineare**: La matrice Gramiana $G = [\langle \varphi_i, \varphi_i \rangle]$ deve essere definita positiva
- 2. Esistenza degli integrali/somme: I prodotti scalari devono essere finiti
- 3. **Regolarità**: Le funzioni base devono essere sufficientemente regolari

36. PRODOTTI SCALARI E MATRICI SIMMETRICHE DEFINITE, MATRICE GRAMIANA E TEOREMA DI PITAGORA

Definizione 36.1 (Matrice Gramiana)

Data una matrice $A \in \mathbb{R}^{mxn}$, la matrice Gramiana è:

$$G = A^T A \in \mathbb{R}^{n \times n}$$

con elementi $G_{ij} = \langle a_i, a_j \rangle$ dove a_i sono le colonne di A.

Proprietà della matrice Gramiana

- 1. Simmetria: $G = G^T$
- 2. Semidefinita positiva: $x^TGx = ||Ax||^2 \ge 0$
- 3. **Definita positiva** ⇔ A ha rango pieno
- 4. Elementi diagonali: $G_{ii} = ||a_i||^2$

Teorema 36.1 (Teorema di Pitagora)

Se x e y sono vettori **ortogonali** rispetto a un prodotto scalare ($\langle x, y \rangle = 0$), allora:

$$||x + y||^2 = ||x||^2 + ||y||^2$$

Dimostrazione:

$$\|x + y\|^2 = \langle x + y, x + y \rangle = \langle x, x \rangle + 2\langle x, y \rangle + \langle y, y \rangle = \|x\|^2 + \|y\|^2$$

Teorema di Pitagora generalizzato

Se W è un sottospazio e $P_W(x)$ è la proiezione ortogonale di x su W, allora:

$$||x||^2 = ||P_W(x)||^2 + ||x - P_W(x)||^2$$

Interpretazione: La norma si decompone nella parte "spiegata" dalla proiezione e nella parte "residua".

Applicazione all'approssimazione

Per il problema ai minimi quadrati $\|f - \sum c_i \varphi_i\|^2$, la decomposizione di Pitagora dà:

$$||f||^2 = ||p^*||^2 + ||f - p^*||^2$$

dove p* è l'approssimazione ottimale.

37. CALCOLO DI BASI ORTOGONALI E IDENTITÀ DI PARSEVAL

Basi ortogonali e ortonormali

- **Base ortogonale:** $\langle \varphi_i, \varphi_j \rangle = 0$ per $i \neq j$
- Base ortonormale: $\langle \varphi_i, \varphi_j \rangle = \delta_{ij}$

Processo di ortogonalizzazione di Gram-Schmidt

Algoritmo Gram-Schmidt classico:

```
u_1 = v_1 for k = 2 to n: u_k = v_k - \sum(j=1 \text{ to } k-1) \text{ proj}_{u_j}(v_k) dove proj_{u_j}(v_k) = \langle v_k, u_j \rangle / \langle u_j, u_j \rangle \cdot u_j
```

Algoritmo Gram-Schmidt modificato (più stabile):

Vantaggi delle basi ortogonali

- 1. Coefficienti espliciti: $c_i = \langle f, \phi_i \rangle / \langle \phi_i, \phi_i \rangle$
- 2. Matrice Gramiana diagonale: $G_{ij} = \delta_{ij} \| \phi_i \|^2$
- 3. **Stabilità numerica**: Non richiede risoluzione di sistemi

Identità di Parseval

Per una base ortonormale $\{\phi_i\}$ e $f = \sum c_i \phi_i$:

$$||f||^2 = \sum_i |C_i|^2$$

Forma generale (non necessariamente base completa):

$$\|f\|^2 = \|p^*\|^2 + \|f - p^*\|^2 = \sum_i |\langle f, \phi_i \rangle|^2 / \|\phi_i\|^2 + \|f - p^*\|^2$$

dove $p^* = \sum_i \langle f, \varphi_i \rangle / \|\varphi_i\|^2 \varphi_i$.

Applicazione: L'identità di Parseval fornisce una decomposizione dell'energia del segnale.

38. VERSIONE GENERALE DEL TEOREMA DELLE PROIEZIONI ORTOGONALI

Teorema 38.1 (Proiezioni ortogonali - Versione generale)

Sia V uno spazio con prodotto scalare e $W \subset V$ sottospazio di dimensione finita. Allora $\forall f \in V$ esiste unico $p^* \in W$ tale che:

$$\|f - p^*\| = \min\{\|f - w\| : w \in W\}$$

p* è caratterizzato dalla **condizione di ortogonalità**:

$$\langle f - p^*, \phi \rangle = 0 \quad \forall \phi \in W$$

Equivalentemente (con base $\{\phi_1, ..., \phi_n\}$ di W):

$$\langle f - p^*, \phi_i \rangle = 0, \quad i = 1, \ldots, n$$

Sistema normale

Scrivendo p* = $\sum c_i \varphi_i$, la condizione di ortogonalità dà:

$$\sum_{i} c_{i} \langle \phi_{i}, \phi_{i} \rangle = \langle f, \phi_{i} \rangle, \quad i = 1, \ldots, n$$

Ovvero: $\mathbf{Gc} = \mathbf{b}$ dove:

- $G = [\langle \varphi_i, \varphi_i \rangle]$ (matrice Gramiana)
- $c = [c_1, ..., c_n]^T$ (coefficienti)
- $\mathbf{b} = [\langle \mathbf{f}, \boldsymbol{\varphi}_1 \rangle, ..., \langle \mathbf{f}, \boldsymbol{\varphi}_n \rangle]^T$

Proprietà della proiezione

- 1. **Linearità**: $P_W(\alpha f + \beta g) = \alpha P_W(f) + \beta P_W(g)$
- 2. **Idempotenza**: $P_W(P_W(f)) = P_W(f)$
- 3. Conservazione: $P_W(w) = w \ \forall w \in W$

39. APPROSSIMAZIONE CON IL TEOREMA DELLE PROIEZIONI ORTOGONALI, NUCLEO DI RIPRODUZIONE

Approssimazione prodotta dal teorema

Data f e sottospazio W con base $\{\varphi_1, ..., \varphi_n\}$, l'approssimazione ottimale è:

$$p^*(x) = \sum_{i=1}^n c_i \phi_i(x)$$

dove i coefficienti c_i sono soluzione del sistema Gc = b.

Nucleo di riproduzione

Definizione 39.1: Il nucleo di riproduzione K(x,y) associato al sottospazio W e base $\{\phi_i\}$ è:

$$K(x,y) = \sum_{i=1}^{n} \varphi_i(x)\varphi_i(y)/\langle \varphi_i, \varphi_i \rangle$$

Proprietà di riproduzione:

$$\langle f, K(\cdot, y) \rangle = f(y) \quad \forall f \in W$$

Rappresentazione dell'approssimazione

L'approssimazione ottimale può essere scritta come:

$$p^*(x) = \int K(x,y) f(y) d\mu(y)$$

dove μ è la misura associata al prodotto scalare.

Esempi di nuclei

- 1. **Base monomiale su [0,1]**: $K(x,y) = \sum_{k=0}^{n} x^k y^k / (k+1)$
- 2. **Base trigonometrica**: $K(x,y) = \sum_{k} \sin(kx)\sin(ky) + \cos(kx)\cos(ky)$

Interpretazione

Il nucleo K(x,y) rappresenta la "correlazione" tra i punti x e y nel sottospazio W.

40. STIMA ALLA LEBESGUE DELL'ERRORE DI APPROSSIMAZIONE

Teorema 40.1 (Stima di Lebesgue per approssimazione ai minimi quadrati)

Sia p* l'approssimazione ai minimi quadrati di f su W. Allora:

$$\|f - p^*\| \le \sqrt{(1 + \Lambda_n^2)} \cdot \min\{\|f - w\| : w \in W\}$$

dove Λ_n è analoga alla costante di Lebesgue per l'interpolazione.

Definizione della costante

Nel caso di approssimazione su punti discreti:

$$\Lambda_n = \max_i \sum_{j=1}^n |K_{ij}|$$

dove K è la matrice del nucleo di riproduzione valutata sui punti.

Confronto con l'interpolazione

- Interpolazione: $\|f p_n\| \le (1 + \Lambda_n)\|f p^*\|$
- Minimi quadrati: $\|f p_n\| \le \sqrt{(1 + \Lambda_n^2)} \|f p^*\|$

L'approssimazione ai minimi quadrati è generalmente più stabile.

Casi specifici

- 1. **Basi ortogonali**: $\Lambda_n = 1$ (stabilità ottimale)
- 2. **Nodi di Chebyshev**: $\Lambda_n \sim O(\log n)$
- 3. Nodi equispaziati: Λ_n può crescere esponenzialmente

Conseguenze pratiche

- 1. Scelta delle basi: Preferire basi ortogonali o quasi-ortogonali
- 2. Controllo della stabilità: Monitorare il condizionamento della matrice Gramiana
- 3. Regolarizzazione: In casi malcondizionati, aggiungere termini di regolarizzazione

PARTE IX: QUADRATURA NUMERICA

41. QUADRATURA NUMERICA: IDEA GENERALE, QUADRATURA INTERPOLATORIA, GRADO DI ESATTEZZA

Problema della quadratura numerica

Approssimare l'integrale definito:

$$I[f] = \int_a b f(x) dx \approx Q_n[f] = \sum_{i=0}^n w_i f(x_i)$$

dove:

- x_i sono i **nodi** di quadratura
- w_i sono i **pesi** di quadratura

Definizione 41.1 (Quadratura interpolatoria)

Una formula di quadratura si dice **interpolatoria** se deriva dall'integrazione del polinomio interpolante:

$$Q_n[f] = \int_a b p_n(x) dx$$

dove p_n è il polinomio che interpola f nei nodi $x_0, ..., x_n$.

Conseguenza: I pesi sono determinati unicamente dai nodi:

$$w_i = \int_a b L_i(x) dx$$

dove Li sono i polinomi di Lagrange.

Definizione 41.2 (Grado di esattezza)

Una formula di quadratura ha **grado di esattezza d** se:

- 1. $Q_n[p] = I[p]$ per tutti i polinomi p di grado $\leq d$
- 2. ∃ polinomio p di grado d+1: $Q_n[p] \neq I[p]$

Teorema 41.1

Le formule interpolatorie su n+1 nodi hanno grado di esattezza $\geq n$.

Equazione dei momenti

Per determinare i pesi di una formula interpolatoria:

$$\sum_{i=0}^{n} w_i x_i^k = \int_{a}^{b} x^k dx = (b^{k+1} - a^{k+1})/(k+1), k = 0, 1, ..., n$$

Esempio: Formula del punto medio

- Nodo: $x_0 = (a+b)/2$
- Peso: $w_0 = \int_a^b 1 dx = b a$
- Formula: $\int_a^b f(x) dx \approx (b a)f((a+b)/2)$
- Grado di esattezza: 1

42. FORMULE DEL TRAPEZIO E DELLA PARABOLA: CALCOLO DEI PESI

Formula del trapezio

Nodi: $x_0 = a$, $x_1 = b$

Calcolo dei pesi:

$$w_0 = \int_a^b L_0(x) dx = \int_a^b (x - b)/(a - b) dx = \int_a^b (x - b)/(a - b) dx$$

Sostituendo t = (x - a)/(b - a):

$$w_0 = (b - a) \int_0^1 (1 - t) dt = (b - a) [t - t^2/2]_0^1 = (b - a)/2$$

Analogamente: $w_1 = (b - a)/2$

Formula del trapezio:

$$\int a^b f(x) dx \approx (b - a)/2 [f(a) + f(b)]$$

Grado di esattezza: 1 (esatta per polinomi di grado ≤ 1)

Formula della parabola (Simpson)

Nodi: $x_0 = a$, $x_1 = (a+b)/2$, $x_2 = b$

Calcolo dei pesi:

Sia h = (b - a)/2, quindi $x_1 = a + h$.

$$w_0 = \int_a^b L_0(x) dx = \int_a^b (x - x_1)(x - x_2)/((x_0 - x_1)(x_0 - x_2)) dx$$

Dopo i calcoli (sostituzioni e integrazioni):

- $w_0 = h/3 = (b a)/6$
- $w_1 = 4h/3 = 2(b a)/3$
- $w_2 = h/3 = (b a)/6$

Formula di Simpson:

$$\int a^b f(x) dx \approx (b - a)/6 [f(a) + 4f((a+b)/2) + f(b)]$$

Grado di esattezza: 3 (esatta per polinomi di grado ≤ 3)

Riepilogo pesi:

- **Trapezio**: $(1/2, 1/2) \times (b a)$
- **Simpson**: $(1/6, 4/6, 1/6) \times (b a)$

43. RAPPRESENTAZIONE DELL'ERRORE PER FORMULE DEL TRAPEZIO E DELLA PARABOLA SEMPLICI

Errore della formula del trapezio

Teorema 43.1: Se $f \in C^2[a,b]$, allora:

$$\int a^b f(x) dx - Q_{trap}[f] = -(b - a)^3/12 \cdot f''(\xi)$$

per qualche $\xi \in (a,b)$.

Dimostrazione (sketch): Usando la formula dell'errore di interpolazione:

$$f(x) - p_1(x) = f''(\eta(x))/2! \cdot (x - a)(x - b)$$

Integrando:

$$\int a^b [f(x) - p_1(x)] dx = \int a^b f''(\eta(x))/2 \cdot (x - a)(x - b) dx$$

Per il teorema della media integrale:

=
$$f''(\xi)/2 \cdot \int_{a^b} (x - a)(x - b) dx = f''(\xi)/2 \cdot [-(b - a)^3/6] = -(b - a)^3/12 \cdot f''(\xi)$$

Errore della formula di Simpson

Teorema 43.2: Se $f \in C^4[a,b]$, allora:

```
\int a^b f(x) dx - Q_{simpson}[f] = -(b - a)^5/90 \cdot f^{(4)}(\xi)
```

per qualche $\xi \in (a,b)$.

Osservazione: Il fattore $90 = 2^4 \cdot 3 \cdot 5/4!$ deriva dalla struttura dell'errore di interpolazione.

Considerazioni sull'errore

- 1. **Trapezio**: Errore ∝ (b a)³, dipende da f"
- 2. **Simpson**: Errore \propto (b a)⁵, dipende da f⁽⁴⁾
- 3. Per intervalli piccoli: Simpson converge molto più velocemente
- 4. Funzioni lisce: Entrambi i metodi sono efficaci

Esempio numerico

Per $f(x) = e^x su [0,1]$:

• **Trapezio**: Errore ≈ -0.264

• **Simpson**: Errore \approx -0.0003

44. STABILITÀ DELLA QUADRATURA, IMPORTANZA DEI PESI POSITIVI E CONSEGUENTE NECESSITÀ DELLE FORMULE COMPOSTE

Definizione 44.1 (Stabilità della quadratura)

Una formula di quadratura è **numericamente stabile** se piccole perturbazioni nei valori della funzione producono piccole variazioni nel risultato:

$$\delta Q_n[f] = \sum_{i=0}^n w_i \delta f(x_i)$$

Teorema 44.1 (Importanza dei pesi positivi)

Se tutti i pesi $w_i > 0$ e $|\delta f(x_i)| \le \varepsilon$, allora:

$$|\delta Q_n[f]| \le \varepsilon \sum_{i=0}^n w_i = \varepsilon \int_a^b 1 dx = \varepsilon(b - a)$$

Interpretazione: L'errore è proporzionalmente controllato.

Problema dei pesi negativi

Le formule di Newton-Cotes di grado elevato hanno spesso **pesi negativi**:

Esempio (8 nodi equispaziati): Alcuni pesi sono negativi e $\sum |w_i| \gg \sum w_i$, causando **instabilità** numerica.

Dimostrazione dell'instabilità

Se alcuni $w_i < 0$:

$$|\delta Q_n[f]| \leq \epsilon \sum_{i=0}^{n} |w_i|$$

dove $\sum |w_i|$ può essere molto maggiore di (b - a).

Conseguenza: Formule di grado elevato con nodi equispaziati sono inutilizzabili in pratica.

Necessità delle formule composte

Strategia: Invece di usare una formula di grado elevato su [a,b], si usa:

- 1. **Suddivisione**: [a,b] in m sottointervalli
- 2. **Formula semplice**: Su ogni sottointervallo (trapezio/Simpson)
- 3. **Somma**: I contributi di tutti i sottointervalli

Vantaggi delle formule composte:

- 1. **Pesi positivi**: Stabili numericamente
- 2. Flessibilità: Controllo locale dell'errore
- 3. Adattabilità: Facilmente adattabili
- 4. Implementazione semplice: Algoritmi diretti

45. FORMULE COMPOSTE DEI TRAPEZI E DELLE PARABOLE (CAVALIERI-SIMPSON): DEFINIZIONE E RAPPRESENTAZIONE DELL'ERRORE

Formula composta del trapezio

Suddivisione:

Intervallo [a,b] in n sottointervalli di ampiezza h = (b-a)/n:

$$x_i = a + ih$$
, $i = 0, 1, ..., n$

Formula composta:

$$\int a^b f(x) dx \approx T_n(f) = h/2 [f(a) + 2\sum_{i=1}^{n-1} f(x_i) + f(b)]$$

Algoritmo:

Errore della formula composta del trapezio

Teorema 45.1: Se $f \in C^2[a,b]$, allora:

```
\int_{a}^{b} f(x) dx - T_{n}(f) = -h^{2}(b-a)/12 \cdot f''(\xi)
```

per qualche $\xi \in (a,b)$.

Dimostrazione: Su ogni sottointervallo [x_i , x_{i+1}]:

```
\int_{x_i} x^{i+1} f(x) dx - h/2[f(x_i) + f(x_{i+1})] = -h^3/12 \cdot f''(\xi_i)
```

Sommando su tutti gli intervalli:

```
Errore totale = -h^3/12 \sum_{i=0}^{n-1} f''(\xi_i) = -h^3n/12 \cdot f''(\xi) = -h^2(b-a)/12 \cdot f''(\xi)
```

Ordine di convergenza: O(h²)

Formula composta di Simpson (Cavalieri-Simpson)

Suddivisione:

```
n sottointervalli (n pari), h = (b-a)/n:
```

```
x_i = a + ih, i = 0, 1, ..., n
```

Formula composta:

$$\int a^b f(x) dx \approx S_n(f) = h/3 [f(a) + 2\sum_{i=1}^{n} n^{i-1} f(x_{2i}) + 4\sum_{i=0}^{n} n^{i-1} f(x_{2i+1}) + f(b)]$$

Schema mnemonico: 1-4-2-4-2-...-4-2-4-1

Algoritmo:

```
S = f(a) + f(b)
for i = 1 to n-1:
    if i is odd: S += 4*f(x_i)
    if i is even: S += 2*f(x_i)
S *= h/3
```

Errore della formula composta di Simpson

Teorema 45.2: Se $f \in C^4[a,b]$, allora:

```
\int_{a}^{b} f(x) dx - S_{n}(f) = -h^{4}(b-a)/180 \cdot f^{(4)}(\xi)
```

per qualche $\xi \in (a,b)$.

Ordine di convergenza: O(h⁴)

Confronto delle prestazioni

Per raggiungere errore ε:

- Trapezio composto: $h = O(\sqrt{\epsilon}) \rightarrow n = O(1/\sqrt{\epsilon})$
- Simpson composto: $h = O(4\sqrt{\epsilon}) \rightarrow n = O(1/4\sqrt{\epsilon})$

Esempio: Per $\varepsilon = 10^{-8}$:

- Trapezio: n ≈ 10⁴ valutazioni
- Simpson: $n \approx 10^2$ valutazioni

Complessità computazionale

- **Trapezio**: O(n) valutazioni, O(h²) errore
- **Simpson**: O(n) valutazioni, O(h⁴) errore
- Costo per precisione fissata: Simpson molto più efficiente

B APPENDICE: FORMULE E ALGORITMI CHIAVE

CONVERSIONI E RAPPRESENTAZIONE

Conversioni binarie

- **Intera**: Divisioni successive per 2
- **Frazionaria**: Moltiplicazioni successive per 2
- **IEEE754 double**: 1 + 11 + 52 bit, $\varepsilon_m = 2^{-53}$

Precisione macchina

```
\epsilon_m = 2^{-t} (t = bit mantissa)
gap(x) = 2^k \cdot 2\epsilon_m per 2^k \le |x| < 2^{k+1}
```


CONDIZIONAMENTO E STABILITÀ

Numero di condizionamento

$$\kappa(A) = ||A||||A^{-1}||$$

 $\kappa_2(A \text{ simmetrica}) = \lambda_{max}/\lambda_{min}$

Errore nei sistemi lineari

 $\|\delta x\|/\|x\| \le \kappa(A) \cdot \|\delta b\|/\|b\|$

Stabilità somma

Errore relativo $\leq n\epsilon_m/(1 - n\epsilon_m) \approx n\epsilon_m$

METODI ITERATIVI

Convergenza generale

 $\rho(B) < 1 \Leftrightarrow convergenza$ B = matrice di iterazione

Richardson ottimale

$$\begin{array}{lll} \alpha_opt &=& 2/(\lambda_{min} + \lambda_{max}) \\ \rho(I - \alpha_optA) &=& (\kappa(A) - 1)/(\kappa(A) + 1) \end{array}$$

Jacobi/Gauss-Seidel

- Jacobi: M = D
- Gauss-Seidel: M = D + L
- **Convergenza**: Diagonale dominante → convergenza garantita

Gerschgorin

Autovalori in U_i {z : $|z - a_{ii}| \le \Sigma_j \ne_i |a_{ij}|$ }

EQUAZIONI NON LINEARI

Bisezione

 $|x_n - \xi| \le (b_0 - a_0)/2^{n+1}$ Convergenza lineare con fattore 1/2

Newton

 $X_{k+1} = X_k - f(X_k)/f'(X_k)$ $|e_{k+1}| \le M|e_k|^2$ (convergenza quadratica per radici semplici) $M = |f''(\xi)|/(2|f'(\xi)|)$

Contrazioni

 $|g'(x)| \le L < 1 \Rightarrow convergenza$ $|e_k| \leq L^k |e_0|$

■ INTERPOLAZIONE

Errore di interpolazione

$$f(x) - p(x) = f^{(n+1)}(\xi)/((n+1)!) \cdot \prod_{i=0}^{n} (x - x_i)$$

Lagrange

$$L_i(x) = \prod_{j \neq i} (x - x_j)/(x_i - x_j)$$

$$p(x) = \sum_i y_i L_i(x)$$

Costante di Lebesgue

$$\Lambda_n = \max_{x} \Sigma_i |L_i(x)|$$

 $|\tilde{p} - p| \le \Lambda_n \cdot \max_{x} |\delta y_i|$

Nodi ottimali

- Equispaziati: $\Lambda_n \sim O(2^n) \times$
- Chebyshev: $\Lambda_n \sim O(\log n)$

Chebyshev

Prima specie: $x_j = cos((2j+1)\pi/(2(n+1)))$ Lobatto: $x_i = \cos(j\pi/n)$

NINIMI QUADRATI

Equazioni normali

```
A^TAx^* = A^Tb
\kappa(A^TA) = \kappa(A)^2 (malcondizionamento!)
```

Metodo QR

```
A = OR \implies Rx^* = O^Tb
\kappa(\text{problema QR}) = \kappa(A)
```

Gram-Schmidt

```
u_k = v_k - \Sigma_i <_k proj_u_i(v_k)
q_k = u_k / ||u_k||
```

J QUADRATURA NUMERICA

Formule semplici

```
Trapezio: \int f dx \approx (b-a)/2[f(a) + f(b)], Errore = O((b-a)^3)
Simpson: \int f dx \approx (b-a)/6[f(a) + 4f((a+b)/2) + f(b)], Errore = O((b-a)^5)
```

Formule composte

```
Trapezio: h/2[f(a) + 2\Sigma f(x_i) + f(b)], Errore = O(h^2)
Simpson: h/3[f(a) + 4\Sigma f(x_{2i+1}) + 2\Sigma f(x_{2i}) + f(b)], Errore = O(h^4)
```

Stabilità

- **Pesi positivi**: Stabili
- **Pesi negativi**: Instabili X

© STRATEGIE DI STUDIO E **MEMORIZZAZIONE**

STRUTTURA LOGICA DEL CORSO

Flusso concettuale:

```
Numeri macchina → Errori → Stabilità → Condizionamento
Sistemi lineari (diretti) → Sistemi lineari (iterativi)
Equazioni non lineari → Punti fissi → Contrazioni
```


TECNICHE DI MEMORIZZAZIONE

Per le formule:

- 1. **Derivare sempre dal primo principio** (Taylor, Lagrange, etc.)
- 2. **Ricordare gli ordini di grandezza** (O(h²), O(h⁴), etc.)
- 3. Collegare teoria-implementazione
- 4. **Studiare i controesempi** (Runge, pesi negativi)

Per le dimostrazioni:

- 1. Schema logico prima dei calcoli
- 2. **Teoremi di analisi come strumenti** (Rolle, media integrale)
- 3. Identificare i passaggi chiave
- 4. Capire le ipotesi necessarie

Per l'implementazione:

- 1. Complessità computazionale
- 2. Controllo degli errori
- 3. Criteri di arresto
- 4. Problemi di stabilità

ERRORI COMUNI DA EVITARE

- 1. Confondere convergenza e stabilità
- 2. Non verificare le condizioni di applicabilità
- 3. Trascurare il condizionamento
- 4. Usare nodi equispaziati per interpolazione di grado alto
- 5. Non controllare i segni nelle formule
- 6. Confondere errore assoluto e relativo

Q DOMANDE CHIAVE PER L'ESAME

Per ogni algoritmo:

- Quando si applica?
- Che convergenza ha?
- È stabile numericamente?
- Qual è la complessità?
- Quali sono le alternative?

Per ogni teorema:

- Ipotesi necessarie?
- Conseguenze pratiche?
- Collegamenti con altri risultati?

******* CONCLUSIONI

Questa **BIBBIA DI CALCOLO NUMERICO** contiene tutti i 45 argomenti del glossario del prof. Piazzon in forma completa, rigorosa e sistematica.

Ogni sezione include:

- Definizioni formali e precise
- Teoremi con dimostrazioni complete (dove richieste)
- Algoritmi implementabili
- Analisi di stabilità e convergenza
- Z Esempi e controesempi
- Complessità computazionale
- Collegamenti logici tra argomenti

Il documento copre:

- Parte I-II: Aritmetica macchina e condizionamento (arg. 1-7)
- **Parte III**: Algebra lineare diretta (arg. 8-10)
- **Parte IV**: Metodi iterativi e contrazioni (arg. 11-16)
- **Parte V**: Sistemi sovradeterminati (arg. 17-19)
- **Parte VI**: Equazioni non lineari (arg. 20-25)
- **Parte VII**: Interpolazione polinomiale (arg. 26-34)
- Parte VIII: Approssimazione ai minimi quadrati (arg. 35-40)
- **Parte IX**: Quadratura numerica (arg. 41-45)

Usa questo documento come:

- 1. **Riferimento completo** per tutti gli argomenti
- 2. Guida per le dimostrazioni richieste all'esame
- 3. Compendio di formule e algoritmi
- 4. Strumento di ripasso sistematico

LA BIBBIA completa (per davvero 😊). È tutto qui dentro. In bocca al lupo per l'esame!

