NEKA, 2020/21 6. DN/ 6th HW : 15.1.2021

- (1) Poišči vse notranje automorfizme Weylove algebra $\mathcal{A}_1(=k\langle x,y\mid [y,x]=1\rangle)$. Poišči kakšen zunanji automorfizem \mathcal{A}_1 . (Zunanji automorfizem je automorfizem, ki ni notranji.)
- (2) Določi ali so grupne algebra polenostavna (za vsako posebej). Če je algebra polenostavna, določi dekompozicijo na enostavne algebre. Če ni, določi kakšno bazo Jacobsonovega radikala.
 - (a) $\mathbb{Z}_3[C_4]$
 - (b) $\mathbb{Z}_3[C_6]$
 - (c) $\mathbb{Z}_3[S_3]$
 - (d) $\mathbb{Q}[S_3]$
 - (e) $\mathbb{C}[S_4]$
 - $(C_n$ ciklična grupa reda n, \mathbb{Z}_p polje s p elementi, S_n simetrična grupa na n elementih.)
- (3) Naj bo A k-algebra. Pokaži, da je A (končno dimenzionalna) centralno enostavna k-algebra natanko, tedaj ko obstaja k-algebra B, da je $A \otimes_k B$ kot k-algebra izomorfna $M_n(k)$ za nek $n \in \mathbb{N}$.
- (4) Naj bosta D_1 in D_2 končno dimenzionalni k-algebri z deljenjem (ne nunjo centralni). Pokaži, da je $D_1 \otimes_k D_2$ obseg, če sta $\dim_k(D_1)$ in $\dim_k(D_2)$ tuji si števili.
- (5) Naj bo R lokalen kolobar in $A = (a_{ij})_{i,j=1}^n \in M_n(R)$. Naj bo a_{ij} obrnljiv natanko tedaj, ko je i = j. Pokaži, da je A obrnljiva matrika.
- (6) Naj bo k polje s char(k)=0, A k-algebra in $e,e',e'' \in A$ idempotenti. Naj velja $e+e'+e''=\lambda 1$ za $\lambda \in k$. Pokaži, da je $\lambda \in \{0,1,2,3,\frac{3}{2}\}$. Pokaži, da e,e',e'' komutirajo, če je $\lambda \in \{0,1,2,3\}$
- (7) Naj bo A k-algebra in M A-bimodul (imamo levo in desno skalarno množenje). Množico $A \times M$ opremimo z vsoto in k-skalarnim množenjem po komponetah in množenjem definirano z (a, m)(b, n) = (ab, an + mb).

Pokaži, da je dobljeni objekt k-algebra. Označimo jo z A_M .

Pokaži, da je A PI-algebra natanko tedaj, ko je A_M PI algebra.

(8) Poišči polinomsko ideniteto $M_n(\mathbb{Q})$ za n=2,3 z najmanj monomi. Kaj pa za poljuben n?

Ali

Poišči polinomsko ideniteto v dveh spremenljivkah $M_n(\mathbb{Q})$ za n=2,3 z najmanjšo stopnjo. Kaj pa za poljuben n?

- (9) Opiši zakaj je nekomutativna algebra pomembna (s poudarkom na temah pri predmetu).
- (1) Find all inner automorphisms of Weyl algebra $\mathcal{A}_1(=k\langle x,y\mid [y,x]=1\rangle)$. Find an outer automorphism of \mathcal{A}_1 . (An outer automorphism is an automorphism that is no inner.)
- (2) Decide whether a group algebra is semisimple (for each one separately). If the algebra is semisimple, find a dekompozicijo into simple algebras. If it is not, find a basis of Jacobson radical.
 - (a) $\mathbb{Z}_3[C_4]$
 - (b) $\mathbb{Z}_3[C_6]$
 - (c) $\mathbb{Z}_3[S_3]$
 - (d) $\mathbb{Q}[S_3]$
 - (e) $\mathbb{C}[S_4]$
 - $(C_n$ cyclic group of order n, \mathbb{Z}_p field with p elements, S_n symmetric group on n elements.)
- (3) Let A be a k-algebra. Show that A is a (finitely dimensional) central simple k-algebra if and only if there exists a k-algebra B, such that $A \otimes_k B$ is isomorphic as k-algebra to $M_n(k)$ for some $n \in \mathbb{N}$.
- (4) Let D_1 and D_2 be finitely dimensional division k-algebras (not necessarily central). Show that $D_1 \otimes_k D_2$ is a division ring, if $\dim_k(D_1)$ and $\dim_k(D_2)$ are coprime (relatively prime).
- (5) Let R be a local ring and $A = (a_{ij})_{i,j=1}^n \in M_n(R)$. Assume a_{ij} is invertible if and only if i = j. Show that A is invertible.
- (6) Let A be a k-algebra and M A-bimodule (we have left and right scalar multiplication). We equip the set $A \times M$ with pointwise addition and scalar multiplication and multiplication defined by (a, m)(b, n) = (ab, an + mb).
 - Show that $A \times M$ with given operations is a k-algebra. We denote it by A_M . Show that A is PI-algebra if and only if A_M is PI-algebra.
- (7) Let char(k)=0, A be a k-algebra and $e, e', e'' \in A$ idempotents. Assume $e+e'+e''=\lambda 1$ for $\lambda \in k$. Show that $\lambda \in \{0, 1, 2, 3, \frac{3}{2}\}$. Show that e, e', e'' commute if $\lambda \in \{0, 1, 2, 3\}$.
- (8) Find a polynomial identity of $M_n(\mathbb{Q})$ for n=2,3 with the least monomials. What about for general n?

Or

- Find a polynomial identity in two variables of $M_n(\mathbb{Q})$ for n = 2, 3 with the minimal degree. What about for general n?
- (9) Describe why is noncommutative algebra important (with an emphasis the topics from the course).