Práctica 3. Algoritmos voraces - Salas de conferencias

Noelia Escalera Mejías — Alejandro Menor Molinero Javier Núñez Suárez — Adra Sánchez Ruiz Jesús Torres Sánchez

3 de abril de 2019

1. Demostración 1 (Seguramente mal hecha)

- \bullet Sean: $t_1, t_2, ..., t_n$ los tiempos de inicio de las conferencias.
- Sea: $t_1 \le t_2 \le ... \le t_n$.
- Sean $a_1, a_2, ..., a_n$ las aulas.
- Sean $c_1, c_2, ..., c_n$ las conferencias.
- Sea $a_i c_{t_j} ... c_{t_x}, ... a_n c_{t_k} ... c_{t_z}$ una solución cualquiera que consiste en la asignación de aulas a las conferencias.
- \blacksquare Sea m el número de aulas que se ocupan.

Vamos a demostrar que existe una solución óptima con una asignación $a_1-c_{t_1}.$

- Sea A una solución óptima que contiene la asignación $a_1 c_{t_1}$. Entonces para el dominio que no contiene la conferencia c_{t_1} , existe una solución óptima A_1 contendrá la asignación $a_1 c_{t_2}$.
- Vamos a hacer reducción al absurdo, suponemos que para el dominio del probelma que excluye la conferencia c_{t_1} , la solución óptima no es A_1 . Entonces existe una solución óptima B para el dominio anterior tal que $m_B < m_{A_1}$
- Entonces llegamos a que $BU\{a_1 c_{t_1}\}$ es solución óptima del problema con el primer dominio que definimos.
- De esto deducimos que $m_{BU\{a_1-c_{t_1}\}} < m_A$ y esto es absurdo ya que A ya era una solución óptima del problema.
- Luego A es una solución óptima al problema.

2. Demostración 2 (Me convence más, pero falta pulirla)

En esta demostración debemos tener presente que la solución óptima tiene que abrir tantas aulas como conferencias se solapen a la vez (preguntar si esto hay que demostrarlo también por favor).

- \blacksquare Sea c_1 una conferencia
- \blacksquare Sea c_2 la conferencia inmediatamente posterior y compatible con c_1
- Con nuesro algoritmo $aula(c_1) = aula(c_2)$. Llamemos A a la solución que logra esto.
- Supongamos que en la solución óptima $aula(c_1) \neq aula(c_2)$
- Entonces $n_{aulas} = n_{conferencias\ solapadas\ a\ la\ vez} + 1$. Esto es absurdo ya que contradecimos la condición para que sea solución óptima.
- Luego la solución A es la óptima.