SOBRE LAS ECUACIONES

RESOLUCIÓN Y APLICACIONES

GRADO 10

CONTENIDOS

- 1 Sección 1: introducción
- 2 Sección 2: aplicaciones de las ecuaciones
- 3 Sección 3: Metas
- 4 Sección 4: Partes y clases
- 5 Sección 5: solución de una ecuación
- 6 Sección 6: Propiedades de las igualdades en ecuaciones y consecuencias
- 7 Sección 7: Resolución de una ecuación de grado uno
- 8 Sección 8: Simplificación de una ecuación de grado superior a una de grado uno
- 9 Sección 8: Actividades
 - Actividad 3

SECCIÓN 1: INTRODUCCIÓN

PARA PENSAR!

¿Cuál es el peso de un cubo azul para mantener la balanza en equilibrio?

PARA PENSAR!

¿Cuál es el peso de un cubo azul para mantener la balanza en equilibrio?

Una forma de resolver: pues ... El lado izquierdo numéricamente <u>debe ser</u> igual al lado derecho.

DEFINICIÓN: QUÉ ES UNA ECUACIÓN?

x =Peso de un cubo azul

Figura: Por costumbre se usa "x" para representar la incógnita.

- Una <u>ecuación</u> es una expresión que representa <u>una igualdad</u> entre valores conocidos y desconocidos.
- Las ecuaciones son de uso (muy) frecuente en ciencias y matemáticas.
- Los valores desconocidos se denomina incógnitas, usualmente representado por letras.

SECCIÓN 2: APLICACIONES DE LAS ECUACIONES

¿...Donde aparecen las ecuaciones?

¿...Donde aparecen las ecuaciones?

Figura: El propósito de una ecuación es encontrar los valores que satisfacen la igualdad.

■ Un simple problema de astronomía

Figura: Las oscilaciones en la distancia de nuestro planeta con respecto el Sol presentan un mínimo y un máximo ¿Es posible observarlas o determinarlas?

Imagen tomada de https://www.tutiempo.net/astronomia/afelio-perihelio/2023.html.

■ Un simple problema de astronomía

Figura: Observaciones del Sol desde el satélite científico SDO.

■ Un simple problema de astronomía

Figura: La atracción entre cuerpos celestes.

Figura: En su movimiento, áreas iguales se "barren" en tiempos iguales.

Las causas del afelio y perihelio para determinar las distancias.

■ Un simple problema de astronomía

La ecuación para determinar las distancias,

$$r^2 - 2r + 0.999721 = 0$$
$$(r - 1.0167)(r - 0.9833) = 0$$

Perihelio: 0.9833 UA Afelio: 1.0167 UA

SECCIÓN 3: METAS

METAS

Propósito

Entender el manejo de los diferentes métodos de solución de ecuaciones y sistemas de ecuaciones lineales, desarrollando apropiadamente sus algoritmos en la resolución de problemas.

Desempeños

Resuelve algebraicamente ecuaciones de primer y segundo grado.

SECCIÓN 4: PARTES Y CLASES

PARTES Y CLASES

Ecuación numérica

$$\underbrace{2X+3}_{\text{1er miembro}} = \underbrace{8+5X}_{\text{2do miembro}}$$

Partes

- Miembros: expresiones algebraicas a la izquierda o derecha del "=".
- Términos: cantidades conectadas por un signo.

Ecuación literal

$$E = \frac{L^2}{2mr^2} - \frac{GMm}{r}$$

Clases

Según su forma y grado:

- Numérica: aparecen una(s) letra(s) cuyo resultado es numérico.
- Literal: aparecen de forma mixta (letras y números) cuyo resultado es una expresión.

El grado es determinado por el grado mayor de la incógnita.

Ejemplo 1

$$5x^3 - 8x^2 + 2x - 2 = 0$$

grado 3, numérica

Ejemplo 2

$$x = \frac{1}{2}at^2 + vt + s$$

respecto a t: grado 2, literal

Ejemplo 3

$$3q^{2} - 4q - 5q^{2} + 7q + 2q^{2} = 3q^{3} - 5 - 2q^{3} + 12 - q^{3}$$
$$3q^{2} - 4q - 5q^{2} + 7q + 2q^{2} = 3q^{3} - 5 - 2q^{3} + 12 - q^{3}$$
$$3q = 7$$

grado 1, numérica

SECCIÓN 5: SOLUCIÓN DE UNA ECUA-CIÓN

SOLUCIÓN DE UNA ECUACIÓN

La solución de una(s) ecuación(es) consiste en hallar el(los) valor(es) numérico(s) de la(s) incógnita(s) que verifican y hacen verdadera la igualdad. En resumen, los miembros de la ecuación deben ser idénticamente iguales.

Ejemplo inicial: la balanza

$$3x = 4$$
, solución: $x = \frac{4}{3}$ porque $3 \times \frac{4}{3} = 4$

La solución de una ecuación también es llamada raíz[1].

2 | 1

SECCIÓN 6: PROPIEDADES DE LAS IGUALDADES EN ECUACIONES Y CON-SECUENCIAS

PROPIEDADES

I. Si a los dos miembros de una ecuación se suma o se resta una cantidad positiva o negativa, la igualdad se mantiene.

Ejemplo

$$X + 8 = 10$$
, $X + 8 - 8 = 10 - 8$, $X = 10 - 8 = 2$

II. Si a los dos miembros de una ecuación se multiplica o se divide una cantidad positiva o negativa, la igualdad se mantiene.

Ejemplo

$$3x = 4$$
, $\frac{3x}{3} = \frac{4}{3}$, $x = \frac{4}{3}$

CONSECUENCIAS: TRANSPOSICIÓN DE TÉRMINOS

De lo anterior se obtiene como consecuencia:

 Cualquier término puede cambiar de miembro, cambiando el signo.

$$X+8=10 \Rightarrow X=10-8$$

II. Cualquier término que multiplique (divida) la incógnita, cambia de miembro a dividir (a multiplicar).

$$3X = 4$$
 \Rightarrow $X = \frac{4}{3}$; $\frac{y}{8} = 5$ \Rightarrow $y = 5 \cdot 8 = 40$

Estas consecuencias sencillas permiten resolver una ecuación.

SECCIÓN 7: RESOLUCIÓN DE UNA ECUACIÓN DE GRADO UNO

RESOLUCIÓN DE UNA ECUACIÓN GRADO 1

Procedimiento para resolver una ec. de grado 1 y una incógnita:

- Realizar operaciones, si las hay (productos, eliminar paréntesis, etc.).
- Realizar transposición de términos reuniendo en un miembro las cantidades incógnitas y en el otro las cantidades conocidas.
- III) Reducir términos semejantes.
- iv) Aislar la incógnita mediante división o multiplicación (consecuencia II).
- v) Verificar la solución reemplazando el valor hallado en la ecuación.

Resolver la ecuación

$$10X - 90 - 45 + 54X = 8X - 2 + 5 + 10X$$

Resolver la ecuación

$$10X - 90 - 45 + 54X = 8X - 2 + 5 + 10X$$

paso ii)
$$10x - 10x - 8x + 54x = -2 + 5 + 90 + 45$$

Resolver la ecuación

$$10x - 90 - 45 + 54x = 8x - 2 + 5 + 10x$$

paso ii) $10x - 10x - 8x + 54x = -2 + 5 + 90 + 45$

paso iii) $46x = 138$

Resolver la ecuación

10
$$x - 90 - 45 + 54x = 8x - 2 + 5 + 10x$$

paso ii) 10 $x - 10x - 8x + 54x = -2 + 5 + 90 + 45$

paso iii) 46 $x = 138$

paso iv) $x = \frac{138}{46} = 3$

Resolver la ecuación

10x - 90 - 45 + 54x = 8x - 2 + 5 + 10x

paso ii) 10x-10x-8x + 54x = -2 + 5+90 + 45

paso iii) 46x = 138

paso iv)
$$x = \frac{138}{46} = 3$$

paso v)
$$10(3) - 90 - 45 + 54(3) = 8(3) - 2 + 5 + 10(3)$$

SECCIÓN 8: SIMPLIFICACIÓN DE UNA ECUACIÓN DE GRADO SUPERIOR A UNA DE GRADO UNO

SIMPLIFICANDO UNA ECUACIÓN A UNA DE GRADO UNO

Algunas ecuaciones de grado superior pueden convertirse a una ecuación de grado uno mediante

Ejemplos

SECCIÓN 8: ACTIVIDADES

ACTIVIDAD 3

De acuerdo a la exposición, redactar cada pregunta con su respuesta.

- ¿Qué es una ecuación? ¿Qué son las incógnitas? ¿Cuál es su próposito?
- 2. ¿Cuál es el valor de x del problema 4 = 3x?
- 3. ¿Qué es el perihelio y el afelio?
- 4. Redacte brevemente con sus palabras (NO chat GPT o motores IA) las causas del perihelio y el afelio.
- 5. ¿Cuál es el valor de una (1) unidad astronómica (UA) en km?
- 6. Use el resultado anterior para obtener las distancias de Perihelio (0.9833 UA) y Afelio (1.0167 UA) en km. Resultados con dos cifras decimales por redondeo.
- 7. Redactar las metas del periodo (ver diapositiva 9).

REFERENCIAS

J.A. BALDOR.

ALGEBRA.

Grupo Editorial Patria, 1983.

BACKUP FRAME

This is a backup frame, useful to include additional material for questions from the audience.