AD-A007 803

DECISION RISK ANALYSIS OF PICATINNY AND MILAN DEVELOPMENTAL MELT-FOUR PROCESSES

Donald Eckman, et al

Army Armament Command Rock Island, Illinois

January 1975

DISTRIBUTED BY:

U. S. DEPARTMENT OF COMMERCE

DISPOSITION

Destroy this report when it is no longer needed. Do not return it to the originator.

DISCLAIMER

The findings in this report are not to be construed as an official Department of the Army position.

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

	REPORT DOCUMENTATION PAGE	
1. REPORT NUMBER	2. JOYT ACCESSION NO.	BEFORE COMPLETING FORM 3. RECIPIENT'S CATALOG NUMBER
SAO NOTE 16		AD. A007 803
4. TITLE (and Subtitle)		S. TYPE OF REPORT & PERIOD COVERED
Decision Risk Analysis of Picatinn Developmental Melt-Pour Processes	y and Milan	Technical Note
Developmental near total and and		6. PERFORMING ORG. REPORT NUMBER
7. AUTHOR(a)		B. CONTRACT OR GRANT NUMBER(+)
Donald Eckman		
Roger Powell		
9. PERFORMING ORGANIZATION NAME AND ADDRESS		10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS
US Army Armament Command		AREA & WORK DRIT NUMBERS
Systems Analysis Office	1	
Rock Island, Illinois 61201		
11. CONTROLLING OFFICE NAME AND ADDRESS		12. REPORT DATE
US Army Armament Command		January 1975
Systems Analysis Office		13. NUMBER OF PAGES
Rock Island, Illinois 61201		7.2
14. MONITORING AGENCY NAME & ADDRESS(II different	t from Controlling Office)	18. SECURITY CLASS. (of this report)
		UNCLASSIFIED
		UNCLASSIFIED 15a. DECLASSIFICATION/DOWNGRADING SCHEDULE
_		SCHEDULE
16. DISTRIBUTION STATEMENT (of this Report)		
Approved for public release; distri	ibution unlimited	i.
17. DISTRIBUTION STATEMENT (of the abstract entered in	in Block 20, il different from	m Report)
		55-5
		·
18. SUPPLEMENTARY NOTES		
Reproduced by		
NATIONAL T	ECHNICAL	
INFORMATION US Department of	N SERVICE	
Springfield, V		
19. KEY WORDS (Continue on reverse side if necessary and		
Developmental, Melt-Pour Process, C	ast-Loading Expi	osive Fills, Safety Potential
Safety Parameter.		
Mean-Time-Between-Explosives, Load,		ck (LAP), Milan "Minute
Melter" Process, Picatinny "porcupi	ne" Process.	
20. ABSTRACT (Continue on reverse side if necessary and	t dende by black comback	

The Picatinny and Milan developmental melt-pour processes were analyzed to determine their suitability as alternatives to the current melt-kettle method of cast-loading explosive fills. Estimated comparisons were made pertaining to safety potential of each type of process.

Conclusion: There was only a minimal chance of reducing potential fatalities, disabling injuries, and property damage by replacing the current melt-pour facilities with either the Picatinny or Milan processes.

DD 1 JAN 73 1473 EDITION OF 1 NOV 65 IS OBSOLETE

UNCLASSIFIED

PRICES SUBJECT TO CHANGE

SUMMARY

The Picatinny and Milan developmental melt-pour processes were analyzed (as requested by DF from AMSAR-MT, Appendix A) to determine their suitability as alternatives to the current melt-kettle method of cast-loading explosive fills. This analysis assumed replacement of the current process with these proposed processes and compared estimates of the fatalities, disabling injuries, and property damage that might occur in the event of an explosion in the melt-pour building. The safety potential of each type of process was the only factor that could be evaluated because no significant differences between proposed and current processes could be determined for production capabilities and operational costs.

The safety parameter was taken as a function of the Mean-Time-Between-Explosions (MTBE) individually for each process at each location. There was only a minimal chance of reducing potential fatalities, disabling injuries, and property damage by replacing the current melt-pour facilities with either the Picatinny or Milan processes. The chance of achieving this reduction was directly contingent upon the probability of an explosion occurring in the melt-pour process and the expectation of this happening was highly improbable for the wide range of Mean-Time-Between-Explosions (MTBE's of 10, 50 and 100 years) used in this evaluation.

There was statistically no chance of achieving a favorable savings investment ratio unless a current process with a very low MTBE was replaced by the Milan system. The Milan developmental process has a lower replacement cost potential than the larger and more expensive Picatinny process.

CONTENTS

	P	AGE
STATEMENT OF	F PROBLEM	7
BACKGROUND .		7
ALTERNATIVES	5	8
ASSUMPTIONS		1 2
METHOD OLOGY		12
RESULTS		14
CONCLUSIONS		24
APPENDIX A -	- AUTHORITY	2 7
APPENDIX B -	DESCRIPTION OF MODEL	29
APPENDIX C -	· ANALYSIS INPUTS	3 7
APPENDIX D -	COMPARATIVE RESULTS OF PROCESS COMBINATIONS	57
APPENDIX E -	CASUALTY-DAMAGE ZONES	75

STATEMENT OF PROBLEM

The proposed Picatinny continuous and Milan "Minute Melter" melt-pour processes were examined to determine their suitability as alternatives to the current method of cast-loading explosive fills.

Consideration was given to the following:

- Current state of development of the new processes.
- Potential of the new processes for melt-loading various types of explosive fills (Composition B, TNT, and AMATEX).
- Identification of the Load, Assemble, and Pack (LAP) facilities and the munitions for which the new processes would be most beneficial.
- Probable operating costs for the new processes.
- Potential safety advantages of the new melt-pour processes.

BACKGROUND

Y .

The cast-loading of explosive fills in ammunition items is now accomplished by basically manual operations involving large numbers of personnel and large amounts of in-process explosive. The present facilities were designed and built in the early 1940's, and it is planned to modernize them with a new generation of material handling equipment and automatic, remotely-controlled melt-pour units.

Currently, the melt-pouring of the explosive fills is done in large three-story melt-towers whose melt kettles may be batch-processing 15,000 or more pounds of explosive. This operation may employ, depending on the item being loaded, as many as two to three dozen workers within the melt-tower and attached cooling bays.

Two developmental melt-pour processes have been proposed as potential replacements for the current melt-kettle technique: (1) a continuous "porcupine" type melt system developed by Picatinny Arsenal, and (2) a rapid batch-type "Minute Melter" system developed at the Milan Army Ammunition Plant (AAP). Both systems are designed to be operated with significantly lower quantities of in-process explosive and will be automatically operated from a remote control center in order to eliminate personnel from the most dangerous part of the melt-pour operation.

ALTERNATIVES

The present melt-pour process uses large steam-heated grids and 150- or 300-gallon Dopp kettles to melt large batches of explosives. It is basically a manual operation, using 10 to 20 or more personnel. In the melt-towers explosive allowances range, depending on the production rate and the item being loaded, from 3000 to 30,000 or more pounds. Large quantities of in-process explosive are necessary in this system because the Dopp kettles are highly inefficient melters - having a very small heat transfer surface with respect to their volume.

The Picatinny Arsenal process will use indirect steam to melt and pour explosive in a continuous, rather than batch-type, manner. This system will be completely automated and remotely controlled in order to eliminate workers and decrease the safety hazards. As designed for use in the new 105mm LAP complex proposed for line E at the Lone Star AAP, this process will have a production capability of 9000 pounds of explosive per hour and an in-process limit of 2500 pounds for the melting unit. The distinguishing characteristics of this system are: (1) a continuous-type melting unit whose steam-heated "porcupine" agitator has a greater surface area than the vessel's steam-heated jacket, (2) a heated piping system which pumps the melted explosive from the bottom of the melter to the separately located volumetric pouring unit, and (3) a separate melter for the riser scrap.

The Milan "Minute Melter" system will be an automated, remotely-controlled, batch-type process using direct saturated steam to rapidly melt small amounts of explosive. Developed to handle the smaller items loaded at the Milan AAP, this process was initially designed to have a production rate of 60 pounds of explosive per minute or 3600 pounds per hour. A complete "Minute Melter" module consists of one melting drum and two separate conditioning drums. The function of the conditioners is to remove the condensate and prepare the explosive for pouring; two of these units are needed because their cycle time is twice as long as the melting cycle. Because this system handles small batches very rapidly, the amount of in-process explosive (about 200 pounds or less) and the associated quantity-distances are very small. This process is now being installed in line C at Milan. A separate melter is not required for the riser scrap.

Figures 1 through 3 are flow diagrams showing the relationship of these alternative processes within a typical melt-pour LAP line.

Figure 1. Lap Line With Current Melt-Pour Process

la,

Figure 2. Lap Line With Picatinny Melt-Pour Process

Figure 3. Lap Line With Minute Melter Melt-Pour Process

ASSUMPTIONS

Both of the new processes are at the same level of development with a like probability of success.

Both of the new processes can handle TNT and Composition B explosive fills, but the Industrial Management Division, AMSAR-PPI (formerly Manufacturing Technology Directorate, AMSAR-MT), indicated that further research is required by Picatinny Arsenal before a decision can be made about Amatex, an ammonium nitrate type of explosive being considered as an alternative for Composition B.

Penalty costs for lost production due to an explosion would probably be insignificant according to AMSAR-PPI. If possible, the balance of the production would be shifted to another active line at the same plant. The startup and layaway costs for an inactive line are fairly standard and may be minimal if prorated over a normal one year production period.

The evaluation of the safety potential of each process was based on ARMCOM Safety Office estimates of the damage and casualties that might result from an explosion in the melt-pour building.

METHODOLOGY

Safety was the only criteria used to evaluate the current and proposed melt-pour processes. AMSAR-PPI indicated that the differences in the production capabilities and operational costs would not be significant; therefore, they were not considered in this analysis. The safety potential of each process was parametrically and stochastically analyzed in terms of the fatalities, disabling injuries, and property damage replacement costs that might occur if there was an explosion in the melt-pour building. The proposed processes were compared with the current melt-kettle technique at six LAP lines using a computer model to simulate each facility combination and provide comparative results.

A lack of information about the explosive accidents at the melt-pour plants made it necessary to estimate the damage and casualties and to parameterize the mean-time to next explosion. The results obtained with both models were based on 1000 iterations for each process combination.

Appendix B contains a detailed description and flow diagram of the computer model. The model is divided into two parts as follows:

Part 1

This part simulated the activity of the current and the two

proposed processes at each of six LAP lines (two each at Iowa, Joliet, and Milan AAP's) using parametric values to stochastically derive the cost comparison inputs required for the second part of the model.

Inputs - (Detailed in Appendix C)

- Cost per fatality (\$75,000) and disabling injury (\$3,200).
- Cost per building and its IPE.
- Triangular distribution of fatalities, injuries, and property damage resulting from an explosion in the melt-pour process.
- Population (manning level) for each LAP line.
- MTBE's of 10, 50, and 100 years.
- 10 percent discount factor.

Constraints -

- Only explosions randonly occurring within a 10-year period of operation (the assumed economic life of the equipment) were used in this analysis.*
- 1000 "Monte Carlo" iterations per case.
- Casualty-damage zones based on quantity-distances for maximum explosive limits in the melt-pour building of 15,000 pounds for current process, 2,000 pounds for Picatinny process, and 200 pounds for Milan process.

Outputs -

• Expected value, variance and histogram of the fatalities, injuries and replacement costs for each process comparison.

Part 2

This part used "Monte Carlo" techniques to compare the variates obtained in Part 1 for the current process with those obtained for the proposed processes. The like variates were randomly selected for each process (proposed and current) and the difference between the two was calculated. In order to calculate a savings investment

^{*} This assumption was based on guidance furnished by AMSAR-PPI.

ratio (SIR) for each process comparison, this portion of the model also considered investment costs in addition to the other inputs.

Inputs -

- Histograms of the fatalities, disabling injuries, and costs for current and proposed process being compared by each combination.
- Distribution parameters of investment costs for proposed processes.

Constraints -

• 1000 Monte Carlo iterations per case (current-proposed process comparison at various combinations of MTBE's).

Output -

Expected value, variance and histogram of the reduction in fatalities, injuries, and costs and the savings investment ratio (SIR) for the proposed processes compared with the current process at each location.

RESULTS

This analysis evaluated the safety potential of the new processes by assuming replacement of the current melt-pour techniques with the proposed Picatinny and Milan processes and compared estimates of the casualties and damage that might occur at specified quantity-distances in the event of an explosion in the melt-pour building. AMSAR-PPI has indicated that replacement of the current melt-pour facilities with either of the new processes should increase the safety potential of the cast-loading process, by significantly reducing the amount of in-process explosive and removing personnel from the melt-pour building. Since the differences in the production capabilities and operational costs could not be shown to be significantly different, safety was the only factor that could be analyzed. The safety potential was considered to be dependent on the probability of explosion expressed as the Mean-Time-Between-Explosions (MTBE). Results were determined for three levels of MTBE (10, 50, and 100 years) at six LAP lines for both the current and each replacement process. A condensation of the results is presented in Tables 1, 2, 3, and 4. The detailed results for all of the process combinations are in Appendix D.

Fatalities

The expected decrease in fatalities - while always positive - was not exceptional at any combination or reliabilities. It was only

TABLE 1. CONDENSATION OF RESULTS -

OBSERVATION		,	OBSERVATION NOT
,	JOI.IE	T AAP	
	GROUP 2	GROUP 3	LINE 2
Expected Reduction in Fatalities > 0	*	* =	*
Probability of Reduction in Fatalities > 0	*	*	*
Risk of Increase in Fatalities > 0	** MTBE _p ≥ MTBE _c	MTBE ≥ MTBE c	MTBE = 100 3 MTBE _c = 10 3
Probability of a Reduction in Fatalities Risk of Increase in Fatalities	MTBE _p ≥ MTBE c	MTBE ≥ MTBE c	мтве ≥ мтвес

^{*} Observation occurred at all conditions examined.

^{**} $MTBE_p$ - Mean-Time-Between-Explosion, proposed process

MTBE_c - Mean-Time-Between-Explosion, current process (values, when given, are in years)

ENSATION OF PESULTS - FATALITIES

OBSERVATION NOTED WHEN

$\neg \tau$	IOWA AAP		MILAN	AAP
\dashv	LINE 2	LINE 3	LINE C	LINE D
	*	*	*	*
	*	*	*	# *
c	$\begin{array}{ll} \text{MTBE} &=& 100 \text{ yrs} \\ \text{MTBE}_{\mathbf{c}}^{\mathbf{p}} &=& 10 \text{ yrs} \end{array}$	MTBE → MTBE c	мтве _р > мтве _с	MTBE = 100 yrs MTBE ^p = 10 yrs
c	мтве ≥ мтве с	MTBE > MTBE	MTBE _p ➤ MTBE _c and MTBE _c < 100 yrs	MTBEp ➤ MTBEc and MTBE _c < 100 yrs

n given, are in years)

TABLE 2. CONDENSATION OF RESULTS - INJURI

			OBSERVATION NOTED
OBSERVATION	JOLIET	AAP	TOWA A
	GROUP 2	GROUP 3	LINE 2
Expected Reduction in Injuries > 0	MTBE _p \geq MTBE _c & all MTBE \geq 50 yrs	MTBE _p ≥ MTBE _c & all MTBE ≥ 50 yrs	MTBE _p ≥ MTBE _c
Probabilities of Reduction in Injuries > 0	*	*	*
Risk of Increase in Injuries > 0	*	*	*
Probability of Reduction > Risk of Increase in Injuries	MTBE _p ≥ MTBE _c	мтве _р ≥ мтве _с	MTBE _p ≥ MTBE _c

^{*} Observation occurred at all conditions examined.

ENSATION OF RESULTS - INJURIES

OBSERVATION NOTED WHEN

	TOWA AAP		MILAN AAP	
	LINE 2	LINE 3	LINE C	LINE D
& yrs	мтве _р ≥ мтве _с	мтве _р ≥ мтве с		
	*	*	*	*
	*	*	*	*
	MTBE ≥ MTBE c	MTBE _p ≥ MTBE _c	MTBE _p ≥ MTBE _c	MTBE ≥ MTBE c

OBSERVATION	CORRESPONDING CONDI				
	JOLIE	Г ААР	IOWA		
	GROUP 2	GROUP 3	LINE 2		
Expected Cost Saving for Minute Melter > 0	MTBE _p ≥ 50 years or MTBE _c ≤ 10 years	MTBE _p ≥ 50 years or MTBE _c ≤ 10 years	MTBE _p ≥ 50 years or MTBE _c ≤ 10 years		
Expected Cost Savings for Picatinny Process > 0	MTBE _p ≥ 50 years MTBE _c ≤ 10 years	MTBE _p ≥ 50 years MTBF _c ≤ 10 years	мтве _р ≱ мтве _с		
Probability of Savings for Minute Melter ➤ 0	*	*	*		
Probability of Savings for Picatinny Process > 0	* *		*		
Risk of Increase in Cost Using Minute Melter > 0	*	*	*		
Risk of Increase in Cost Using Picatinny Process > 0	*	*	*		
Probability of Savings ➤ Risk of Cost Increase - Minute Melter	мтве ≥ мтве с	мтве _р ≥ мтве _с	MTBE _c < 100 years & MTBE _p ≥ MTBE _c		
Probability of Savings ➤ Risk of Cost Increase - Picatinny Process	мтве _р ≥ мтве _с	MTBE _C ८ 100 years & MTBE _p ≥ MTBEc	MTBE _c < 100 years & MTBE _p ≥ MTBE _c		
Expected Savings - Milan Process > Expected Savings - Picatinny Process	*	*	*		

^{*} Observation occurred at all conditions examined.

CORRESPONDING CONDITION AT EACH LOCATION

Ť	IOWA A		MILAN AAP	
+		LINE 3	LINE C	LINE D
rs	LINE 2 MTBE, ≥ 50 years or MTBE _c ≤ 10 years	MTBE _p ≥ 50 years MTBE _c ≤ 10 years	MTBE _c > 50 years MTBE _c 10 years	MTBE _p ≥ 50 years MTBE _c ≤ 10 years
	MTBE _p ≥ MTBE _c	мтве _р ≥ мтве _с	MTBF _p ≥ MTBE _c	мтве _р ≥ мтве _с
	*	*	*	*
	*	**	*	*
100000000000000000000000000000000000000	*	*	*	*
	*	*	*	*
	MTBE _c < 100 years & MTBE _p ≥ MTBE _c	MTBE _C 4 100 years & MTBE _p ≥ MTBE _C	MTBE _c ≤ 100 years MTBE _p ≥ MTBE _c	MTBEc 4 100 years MTBEp 2 MTBE _c
ars le	MTBE _c < 100 years & MTBE _p ≥ MTBE _c	MTBEc < 100 years & MTBEp ≥ MTBEc	MTBE _c < 100 years & MTBE _p ≥ MTBEc	MTBE _C ← 100 years & MTBE _p ≥ MTBE _C
	*	* Next page i	*	*

TABLE 4. CONDENSATION OF RESULT

OBSERVATION		со	RRES POND IN
	JOLIE	T AAP	
	GROUP 2	GROUP 3	LI
Expected SIR 1.0 (Minute Melter)	MIBE _c ≰ 100 years	MTBE _c ≤ 10 years	мтве _с
Expected SIR 1.0 (Picatinny Process)	*	*	
Probability of Achieving an SIR 1.0 with (Minuce Melter) 0	siesie	**	
Probability of Achieving an SIR 1.0 with Picatinny Process	MTBE _p ≤ 10 years	MTBE _p ≤ 10 years	мгвер

^{*} Observation did not occur at any conditions examined.
** Observation occurred at all conditions examined.

CONDENSATION OF RESULTS - SAVINGS INVESTMENT RATIO

CORRESPONDING CONDITION AT EACH LOCATION

	IOWA AAP		MILAN AAP	
OUP 3	LINE 2	LINE 3	LINE C	LINE D
10 years	MTBE _c ≤ 10 years	MTBE _c ≤ 10 years	MTBE _c ≤ 10 years	MTBE _c ≤ 10 years & MTBE _p ≥ 10 years
*	*	*	*	*
* *	**	**	**	**
10 years	MTBE _p ≤ 10 years	MTBE _p ≤ 10 years	MTBE _p < 10 years	MTBE _p < 10 years

A STATE OF THE PARTY OF THE PAR

B

when the current process had a low reliability (MTBE = 10 years) that the potential reduction in fatalities reached higher levels, 10 percent or more of the work force. A review of all combinations indicated that the expected reductions in fatalities were primarily dependent upon the MTBE of the current process, and secondly, upon the location - the factor which determined the work force levels and replacement costs for each site.

Although the probability of a reduction in fatalities existed for all combinations of MTBE, there was also a risk that the replacement of the current process might increase casualties. This analysis showed that the probability of a reduction in fatalities is greater than the risk of an increase in fatalities if the current process is replaced with one having an equal or greater MTBE.

Under the MTBE's assumed for this study, replacement of the current processes with either one of the proposed new processes would not result in a significant chance of reducing fatalities.

Disabling Injuries

The potential effect of the process replacements on the number of disabling injuries followed the same pattern indicated for the fatalities. A decrease in injuries was indicated only when the safety potential of the current process was low (MTBE = 10 years); other wise, the probability of a reduction in injuries was minimal. The potential risk of an increase in injuries was also significant.

Property Damage Replacement Costs

Replacement costs results exhibited the same general correlation observed in the fatality and injury analysis. The probability of achieving a cost reduction generally exceeded the attendant risk of a cost increase when the MTBE of the new process was equal to or greater than that of the current facility. Like those observed for the fatalities and injuries, the probability of a reduction in replacement costs was generally minimal except when the MTBE of the present facility was low (e.g., 10 years).

The expected cost reduction potential for the Milan process was greater than that of the Picatinny system because the "Minute Melter" is smaller and has less in-process explosive.

Savings Investment Ratio (SIR)

The savings investment ratio obtained with the Picatinny process indicated that one could not expect to get a return on the investment in the form of cost savings. It was only when the MTBE of the current process was very low that there was even a probability of achieving a SIR = 1.

A favorable ratio was obtained with the smaller, less expensive Milan process when the current facility had a very low MTBE (10 years). Otherwise, there is a high risk that a ratio equal to/or exceeding unity cannot be attained even with the Milan process.

Probability of Explosion

The probability of achieving a change in the casualties and property damage costs is keyed to the probability of an explosion occurring in the current and new processes. Figure 4 shows the expectation of an explosion occurring during the range of MTBE's utilized in this study. At an MTBE of 100 years, the expectation of an explosion occurring during the assumed 10-year economic life of the process is only .10. Conversely, the probability of nothing happening is a significant .90. Since the expectation of an explosion occurring is a double exponential decaying function of reliability (MTBE), the chance of an explosion is highly improbable for the range of reliabilities (MTBE of 10 through 100 years) used in this study. The expected effects on the casualties and property damage tend to zero and the purported safety advantages of the new processes are significantly diminished.

CONCLUSIONS

Replacement of the current melt-pour process with either the Picatinny or Milan systems would not result in a significant chance of reducing potential fatalities, disabling injuries and property damage.

The chance of achieving this reduction is directly contingent upon the probability of an explosion occurring in the melt-pour process. The chances of in explosion are highly improbable for the range of reliabilities (M BE's of 10, 50 and 100 years) assumed for this study.

The probability of achieving a reduction in the casualties and property damage is greater than the attendant risk of an increase if the reliability of the replacement process is equal to or greater than that of the current process.

There would be no significant probability of achieving a savings investment ratio of unity or greater unless a current facility with a very low reliability was replaced by the Milan process.

PROBABILITY
OF AN
EXPLOSION
IN THE
10-YEAR
PERIOD

Figure 4. Expectation of an explosion occurring as a function of reliability.

DISPOSITION		Office.
REFERENCE OR OFFICE SYMBOL	SUBJECT	
AMSAR-NT	Melt-Pour Facilities	
TO AMSAR-SA	FROM AMSAR-MT	DATE 5 UU 13/3 CMT
		COL Benefiel/dw/4224
in the neighborhood of \$400,0	0000 Picatinny Arsenal i	or the load assembly and pack plant is working on a continuous melt- elter for low volume operations.
2. I request a AMSAR-SA eval sible application for adaptin	uation of these systems g the mini-melter to var	with a recommendation as to pos- cious types of loading operations.
		Directorate
CF: Cdr, PA, Dover, NJ Cdr, MAAP, TN AMCPM-PBM, Dover, NJ		
_		

APPENDIX B

DESCRIPTION OF MODEL

The safety potential proved to be the only criterion that could be used to evaluate each process. It was simulated in terms of the fatalities, disabling injuries, and property damage that might occur at specified quantity-distances if there was an explosion in the melt-pour building. Reliability was assumed to be a function of the Mean-Time-Between Explosions (MTBE) in years, and the proposed processes were compared with the current process at six LAP lines, using a two part model to simulate each facility-reliability (MTBE) combination and to provide comparative results. The casualties and damage that occurred in the "assumed" explosion in each type of process were expressed as a function of the quantity-distances specified for the amount of explosion in the melt-tower building. A lack of information about the explosive accidents that have occurred at the melt-pour plants made it necessary to simulate the problem by parametrically assuming a range of MTBE's for the current process and the proposed processes. Each of the proposed processes was compared to the current process at nine conditions (all combonations of 10, 50, and 100 years MTBE for all processes). The results obtained with both models were based on 1000 iterations for each facility-process combination.

Part 1 of Model - The first part of the model simulated the activity of the current and the two proposed processes at each of six LAP lines (two each at Iowa, Joliet, and Milan AAP's) using MTBE values of 10, 50 and 100 years for each combination. The time to the next explosion was randomly selected from an exponential distribution described by the MTBE parameter, and only explosions occurring within a 10-year period of operation - the assumed economic life of the equipment - were used in this analysis.*

^{*} For example, with sequentially random selection of three years: one year, five years, and two years, only the first three selections - a total duration of nine years - would be processed. This would result in assuming that explosions occurred in years three, five and nine for this trial. The later random selection of an MTBE of two years would not be considered since the total elapsed time of 11 years exceeds the imposed 10-year limit. Likewise, if the first random selection was 10 or 11 years, then no explosions would be assumed for this trial since the elapsed time equaled or exceeded the 10-year limit.

The triangular distributions of the fatalities, injuries, and property damage replacement cost were indirectly provided as inputs to the model by means of weighted factors applied to the location of the population (work force) and property at each of the 12 facility-process combinations. Each LAP line was divided into four casualty-damage zones whose limits were established, as shown in Appendix E, by the unbarricaded quantity-distances required for the maximum explosive limits assumed for the melt-pour building of each process.

When the Milan process is used, the monitor personnel will be in a blast-proof protective cell either within or very near the melt-pour building. For computation purposes, these operators were considered to be located within a less sensitive zone.

For each facility-process combination, distributions of the fatalities, injuries, and damage incurred were sampled for each explosion using the probabilities in Table B-l which were based on estimates obtained from the ARMCOM Safety Office. The fact that these three distributions were related to each other through the magnitude of the explosion was considered by using the same random number to sample each of the distributions under the following rationale: Given a variable under consideration and an associated variable with a known (or assumed) degree of correlation, both expressed as statistical distributions, then

$$K = pm + (1 - p) n$$
 (B.1)

where:

- K = the value of the resultant random number to be used to sample the distribution under consideration,
- m = Value of random number which was selected in sampling the distribution of the associated variable,
- n = Value of the new random number selected, and
- p = Correlation coefficient expressing degree of correlation between the variable under consideration and an associated variable.

TABLE B-1
Distribution Parameters Used for Estimating
Casualties and Property Damage

DISTRIBUTION	PER CENT OF WORK FORCE AND PROPERTY DAMAGE REPLACEMENT COSTS ASSUMED TO BE EFFECTED IN CASUALTY-DAMAGE ZONES					
	Zone X	Zone A	Zone B	Zone C		
		Fata	lities			
Maximum Most Likely Minimum	100 100 0	50 10 0	10 0 0	1 0 0		
	Disabling Injuries*					
Maximum Most Likely Minimum	100 100 50	50 50 10	25 10 0	10 0 0		
			eplacement Cost			
Maximum Most Likely Minimum	100 100 100	100 100 0	50 10 0	10 0 0		

^{*} Per cent of population remaining after deduction of fatalities.

For a weak correlation $(p \rightarrow 0)$, the random number K used to sample the distribution under consideration would approach n, i.e., the value of the new random number selected. However, in this analysis the correlation is assumed to be very strong $(p \rightarrow 1)$ and, therefore, the random number K used to sample this distribution would approach m, i.e., the same random number would be used to sample both the distribution under consideration and the associated distributions. Triangular distributions were assumed for the conditional probabilities for the fatalities, injuries, and property damage replacement costs.

The costs for the fatalities and the disabling injuries were computed by multiplying the number of victims by the statutory planning costs used for Army contractor personnel in DA Circular 385-29 (\$3,200 for a disabling injury and \$75,000 for a fatality). Replacement costs for the property damage were derived from prorated adjustments of the line, support, and equipment (IPE) values obtained from the Master Layaway Plan maintained by AMSAR-PPI-W. The total cost for each facility-process combination is the summation of the costs for fatalities, injuries, and property damage. Discounted costs were also computed using a 10 percent annual discount factor and the accumulated time within each trial as shown:

$$f_d = \frac{1}{(1+i)^t} \tag{B.2}$$

where:

f_d = discount factor,

i = fractional interest, and

t = accumulated time in years.

The output results (expected value, the variance, and a histogram for each variable) are used as inputs for the second part of the model.

Part 2 of Model - This part used "Monte Carlo" techniques to compare the Part 1 results obtained for the proposed processes with those obtained for the proposed processes with those obtained for the current process. Distribution of the differences in fatalities, differences in injuries, and the differences discounted total replacement costs between the current and proposed processes were compared with the associated expected values in order to compute the variance. These differences were obtained by subtracting the randomly selected values for each of the proposed processes from their randomly selected equivalent for the current process. With this model, the variance is assumed to be independent so a random number can be selected for each sample drawn from each distribution.

This part also considered investment costs in addition to the inputs from Part 1. Independent and random samples were drawn from these triangularly distributed investment costs and divided into the difference of the discounted operating costs to obtain a savings investment ratio (SIR) for each facility-process combination. A distribution was also constructed for these ratios:

The results of Part 2 were handled in a manner similar to those from Part 1 with an expected value, the variance, and a histogram computed for each of these variates:

- Reduction in fatalities
- Reduction in disabling injuries
- Reduction in cost
- Savings investment ratio (SIR)

The expected event and the probability of a specific event occurring for each of these variates were obtained from these outputs.

Flow Diagrams of Model

Flow diagrams of the model (Figures B-1, B-2, and B-3) have been included to illustrate the two-step approach used in simulating and comparing the current and proposed melt-pour processes. Figures B-1 and B-2 show Part 1, the portion of the model used to similate each location-process combination. Figure B-3 compared the Part 1 cost outputs from the current process with those from the new processes at each location. This part of the model also considered investment costs in order to calculate a savings investment ratio for each process comparison.

Figure B-1. Flow Diagram Model - Part 1

Figure B-2. Flow Diagram Model - Part 1 (10 Year Life Calculations)

Figure B-3. Flow Diagram Model - Part 2

APPENDIX C

ANALYSIS INPUTS

This appendix lists the inputs used in the model to generate the distributions of the fatalities, disabling injuries, and property damage replacement costs for the respective process combinations.

The population (manning level) and replacement costs are listed in Tables C-1 through C-6 for the current processes and in Tables C-7 through C-18 for the proposed Picatinny and Milan processes, respectively.

TABLE C-1

Analysis Inputs for Part 1 of Model

Facility: Joliet AAP Group II

Process: Current

•		REPLACIMENT COSTS (\$1000)		
ZONE	POPULATION	BUILDINGS	EQUIPMENT	TOTAL
x	26	3606	580	4186
Α .	5	3175	132	449
В	13	8717	234	8951
С	28	4255	399	4654
TOTAL:	72	16895	1344	18239

TABLE C-2
Analysis Inputs for Part 1 of Model

Facility: Joliet AAP Group III

Process: Current

ZCNE	POPULATION		ACEMENT COST (\$1000) EQUIPMENT	TCTAL
x	46	3115	1971	5086
A	. 0	574	919	1493
В	5	9013	Q	9013
С	79	8284	1010	9294
TOTAL:	130	20986	3900	24887

Analysis Inputs for Part 1 of Model

Facility: Iowa AAP Line 2

		REPLACEMENT COSTS (\$1000)		
ZONE	POPULATION	BUILDINGS	EQUIPMENT	TOTAL
x	18	2838	527	3364
Α .	. 0	3290	527	3817
В	0	9435	233	9669
С	53	14179	151	14330
				
TOTAL:	71	29743	1438	31180

TABLE C-4

Analysis Inputs for Part 1 of Model

Facility: Iowa AAP Line 3

		REPLACEMENT COSTS (\$1000)		
ZONE	POPULATION	BUILDINGS	EQUIPMENT	TOTAL
x	9	2930	1689	4618
A .	14 ¹ 5	2290	114	2405
В	11½	6430	634	7064
С	21	11933	46	11978
TOTAL:	46	23582	2483	26065

TABLE C-5

Analysis Inputs for Part 1 of Model

Facility: Milan AAP Line C

ZONE	POPULATION	REPI BUILDINGS	ACEMENT COSTS (\$1000) EQUIPMENT	TOTAL
	11.		. 868	142
X	14	552	000	142
A	165	1950	688	2638
_		1/55	rlo	0107
В	151	1657	540 .	2197
C	5	777	5	782
			· .	
TOTAL:	335	4439	1320	5760

TABLE C-6
Analysis Inputs for Part 1 of Model

Facility: Milan AAP Line D

		REPI	ACEMENT COSTS (\$1000)	5
ZONE	POPULATION	BUILDINGS	EQUIPMENT	TOTAL
x	17	730	83	813
A	. 56	2140	248	2388
В	120	2912	812	3725
c	62	2138	1317	3 ¹ 456
TOTAL:	255	7920	2460	10380

TABLE C-7

Analysis Inputs for Part 1 of Model

Facility: Joliet AAP Group II

ZONE	POPULATION		ACEMENT COST (\$1000) EQUIPMENT	s TOTAL
x	. 0	637	983	1621
A .	0	14	630	644
В	. 0	1366	909 	2275
С	72	17249	2½ 61	19710
TOTAL:	72	19267	4983	24250

TABLE C-8

Analysis Inputs for Part 1 of Model

Facility: Joliet AAP Group III

ZONE	POPULATION		CEMENT COSTS \$1000) EQUIPMENT	TOTAL
x	0	637	983 983	1621
Α .	0	14	630	644
В	0 ·	1383	9090	2292
С	130	20172	5028	25200
TOTAL:	130	22206	7551	29833

TABLE C-9

Analysis Inputs for Part 1 of Model

Facility: Iowa AAP Line 2

•		REPLACEMENT COSTS (\$1000)		
ZONE	POPULATION	BUILDIEGS	EQUIPMENT	TOTAL
x	0	637	983	1621
Α .	0	14	630	644
В	0 _	1366	909	2275
С	71	30103	2556	32659
TOTAL:	71	32121	5078	37199

TABLE C-10

Analysis Inputs for Part 1 of Model

Facility: Iowa AAP Line 3

		REPLACIMENT COSTS (\$1000)		
ZONE	POPULATION	BUILDINGS	EUNISWEM	TOTAL
x	о .	637	983	1621
A	. 0	14	چ 630	644
В	0	1366	909	2275
С	46	23942	3601	27543
TOTAL:	46	23960	6123	38083

TABLE C-11

Analysis Inputs for Part 1 of Model

Facility: Milan AAP Line C

			ACENENT COSTS (\$1000)	
ZONE	POPULATION:	SUILDINGS `	EQUIPMENT	TOTAL
x	0	637	983	1621
Α .	0	14	630	644
В	0	1366	909	2275
С	335 ———	4840	2438	7279
TOTAL:	335	6857	14960	11819

TABLE C-12

Analysis Inputs for Part 1 of Model

Facility: Milan AAP Line D

		REPLACEMENT COSTS (\$1000)		
ZONE	POPULATION	EUILDINGS (EGAILMENE	TOTAL
x	0	637	983 983	1621
Α .	0	14	630	644
В	4-1/4	1798	937	2735
С	250-3/4	7488	21433	9921
TOTAL:	255	9937	4983	14920

TABLE C-13

Analysis Inputs for Part 1 of Model

Facility: Joliet AAP Group II

			REPLACEMENT COSTS (\$1000)		
ZONE		POPULATION	BUILDINGS	EQUIPMENT	TOTAL
x	•	0	542	375	917
A	·	0	0	0	0
В		0	65	332	397
С		72	16895	131414	18239
TOTAL	1	72	17502	2051	19553

TABLE C-14

Analysis Inputs for Part 1 of Model

Facility: Joliet AAP Group III

		REPLACEMENT COSTS (\$1000)		
ZONE	POPULATION	EUILDINGS	EQUIPMENT	TOTAL
x	0	542	375	917
A	. 0	0	0	0
В	0	65	332	397
С	130	20986	3900	24887
TOTAL:	130	21593	4607	26201

TABLE C-15

Analysis Inputs for Part 1 of Model

Facility: Iowa AAP Line 2

			CEMENT COSTS \$1000)	3
ZONE	POPULATION	BUILDINGS	EQUIPMENT	TOTAL
x	0	542	375	917
A .	. 0	0	0	0
В	0 .	65	332	397
C	71	29743	1438	31180
TOTAL:	71	30350	2145	32494

TABLE C-16

Analysis Inputs for Part 1 of Model

Facility: Iowa AAP Line 3

ZONE	POPULATION		CENENT COSTS (\$1000) EQUIPMENT	TOTAL
x	0	542	375	917
Α .	o	0	0	0
В	0	65	332	397
С	46	23582	2483	26065
TOTAL:	46	24189	3190	27379

TABLE C-17

Analysis Inputs for Part 1 of Model

Facility: Milan AAP Line C

			CENEMT COSTS \$1000)	3
ZONE	POPULATION	EUILDINGS	EQUIPMENT	TOTAL
x	0	542	374	916
Α .	0	0	0	0
В	0	65	332	3 97
С	335	<u>1</u> 439	1320	5760
TOTAL:	335	5046	2026	7073

TABLE C-18

Analysis Inputs for Part 1 of Model

Facility: Milan AAP Line D

		REPL/	ACEMENT COSTS (\$1000)	3
ZONE	POPULATION	BUILDINGS	EQUIPMENT	TOTAL
x	0	542	374	917
Α .	0	0	0	0
В	0	65	332	397
С	255	7920	21.61	10380
TOTAL:	255	8527	3166	11694

APPENDIX D

COMPARATIVE RESULTS OF

PROCESS COMBINATIONS

Results were obtained at three levels of reliability (MTBE's of 10, 50 and 100 years) for 12 proposed combinations to determine the potential effect of the proposed replacements on the reliability of six current melt-pour operations.

Each comparison of a current and a replacement process produced nine possible combinations of expected results as follows:

Tables D-1 - D-3 Fatalities: Expected decrease, probability of decrease, risk of increase

Tables D-4 - D-6 Disabling Injuries: Expected decrease, probability of decrease, risk

of increase

Tables D-7 - D-12 Replacement Cost: Expected decrease, proba-

bility of decrease, risk

of increase

Tables D-13 - D-16 Savings Investment, Ratio: Expected value,

probability of

achieving SIR ≥ 1.0

TABLE D-1

EXPECTED DECREASE IN FATALITIES DURING A 10-YEAR PERIOD IF CURRENT PROCESS IS REPLACED BY PICATINNY OR MILAN PROCESS (% OF MANNING LEVEL)

		!ŒAII-T]	ime-betwee		IONS FOR	CURRENT PR	ROCESS	
) FSS		100	50	10	100	50	. 10	
PROC	100	1.6	3.3	16.5	3.0	6.1	30.3	
IE:NT	50	1.6	3.3	16.5	2.9	6.0	30.1	
GAAN-TIME-BETWHEN-EXPLOSIONS FOR REPLACEMENT PROCESS (Years)	10	1.2	2.9	16.1	2.2	5.3	29.4	
REPI	·		Group 2	JOLI	ET	Group 3		
AO (,		,				· · · · · · · · · · · · · · · · · · ·	
SIONS F	100	1.2	2.4	11.3	0.5	1.0	5.3	
SIO)	50	1.1	2.3	11.7	0.4	1.0	5.3	
XPIX	10	0.7	1.9	11.3	0.2	0.7	5.0	
EN-1	·		Line 2	IOW	7A	Line 3		
MI'S	ľ					·		
E-Bi	100	14.3	9.0	44.5	1.7	4.0	20.1	
TTW.	50	4.0	8.7	44.2	1.5	3.7	19.9	
NV:E:	10	2.2	6.3	42.3	0	2.1	18.2	
			Line C	MII	Aii	Line D		

PROPABILITY OF DECREASE IN FATALITIES DURING A 10-YEAR PERIOD IF CURRENT PROCESS IS REPLACED BY PICATINNY OR MILAN PROCESS

		MEAN-TIME-BETWEEN-EXPLOSIONS FOR CURRENT PROCESS (Years)									
CESS		100	50	10	100	50	. 10				
PRO(100	. 094	.183	.638	.094	.187	.653				
CERT	50	• 091+	.186	.646	.094	.183	.659				
ACE	10	.0914	.172	.653	. 094	.183	.660				
REPI			Group 2	JOLI	TET	Group 3					
S FOR	100	.094	.186	.6512	.094	.189	.656				
SIONS (Years	50	.094	.183	.660	.094	.183	.662				
XPLO	10	.094	.187	. 664	.0914	.182	.641				
en-reg	ľ		Line 2	IO	VA.	Line 3					
NEAN-TIME-BETWEEN-EXPLOSIONS FOR REPLACEMENT PROCESS (Years)	100	.094	.189	.647	.094	.188	.663				
TIME	50	.094	.168	. 659	.094	.138	.659				
-NV:0	10	.092	.136	.632	.089	.188	.640				
ڊ' <u>،</u>			Line C	MII	IAN	Line D					

RISK OF INCREASE IN FATALITIES DURING

DURING A 10-YEAR PERIOD IF CURRENT PROCESS IS REPLACED BY PICATINNY OR MILAN PROCESS

		MEAN-TIME-BETWEEN-EXPLOSIONS FOR CURRENT PROCESS (Years)									
CFSS		100	50	10		100	<u>50</u> .	10			
PRO	100	.000	.000	.000		.000	.000	.000			
ARIT	50	.160	.000	.000		.151	.000	.000			
'ACF	10	.100	.517	.000		.085	.425	.000			
R REF		G	roup 2	JCI	ΙΞ	r (Group 3				
S F0]	100	.030	.000	.000	i	.089	.000	.000			
GIOES F (Years)	50	.041	.159	.000		.154	.074	.000			
C/LLDXI	10	.358	.128	.000		.512	.145	.067			
CONSTINE-BESTERS EXPLOSIONS FOR REPLACEMENT PROCESS (Years)	'		Line 2	IC	WA		Line 3				
3-BE	100	.100	.000	.000		.100	.079	.000	•		
TIM	50	.065	.080	.000		.151	.120	.027			
VEAN.	1 0	.610	.485	.197		.609	.266	. 203			
			Line C	MI			Line D				

EXPECTED DECREASE IN DISABLING INJURIES

DURING A 10-YEAR PERIOD IF CURRENT

PROCESS IS REPLACED BY PICATINNY OR MILAN PROCESS

(%)

5.

		MEAN-T	INE-B erw ee	N-EMPLOSI (Yes		CURREIT PR	OCESS
CESSO		100	50	10	100	50	10
PKO	100	1.0	2.9	17.3	1.3	4.4	30.3
4F.N.P	50	0.5	2,4	16.3	0.5	3.5	26.1
ACE	10	-3.2	-1.3	13.3	-6.2	-3.2	19.4
RFIT			Group 2	JOLI	er	Group 3	
FOR	100	0.4	1.5	10.1	0.3	1.0	7.5
CYCALE)	50	0.0	1.1	2.7	0.0	0.7	7.2
O.T.TX	10	0.7	1.9	ć. o	-2.4	-1.6	.4.8
TEHIN-F			Line 2	IOW	'A	Line 3	
MINE-THEF-BEIMERN-EXPLOCIONS FOR REPLACEMENT PROCESS (Years)	100	4.3	9.1	61.6	1.1	4.4	30.9
₩L.E.	50	1.2	7.0	59 .5	-0.5	2.8	29.3
	10	-16.1	-10.3	-2.2	-13.5	-10.3	16.3
•.`			Line C	MIL	AN	Line D	

TABLE D-5

PROBABILITY OF DECREASE IN DISABLING INJURIES DURING A 10-YEAR PERIOD IF CURRENT PROCESS IS REPLACED BY PICATINNY OR MILAN PROCESS

	MEAN-TIME-BETWEEN-EXPLOSIONS FOR CURRENT PROCESS (Years)										
CESS		100	50	10	100	50	10_				
PRO	100	.088	.175	.640	.089	.173	.652				
THE	50	.087	.175	.647	.088	.173	.616				
ACE	10	.079	.157	.591	.062	.153	.545				
REPI	Group 2 JOLIET Group 3										
OR							·				
TOUS F	100	.c88	.173	.630	.088	.171	.652				
CIO! (Yes	50	.086	.172	.609	.086	.168	.642				
XTPLC	10	.063	.143	.548	.072	.147	.579				
H-125			Line 2	IOI	γA	Line 3					
E.M.											
1- BE	100	.058	.170	.627	.038	.172	.631				
PIT-	50	.087	.172	.631	.033	.170	.616				
GANI-TIG-BENWEEN-EXPLOGIOUS FOR REPLACEMENT PROCESS (Years)	10	.072	.152	.632	.062	.136	.558				
• .			Line C	MII	Aii	Line D					

TABLE D-6

RISK OF INCREASE IN DISABLING INJURIES
DURING A 10-YEAR PERIOD IF CURRENT
PROCESS IS REPLACED WITH PICATINGY OR MILAN PROCESS

		MEAN-T	IMF-BETWEEN		IONS FOR	CURRENT PR	OCESS
HELLY-TEHE-DETWINS-EXPLOSIONS FOR REPLACEMENT PROCESS (Years)		100	50	10	160	50	10
PRO	100	.081	.079	.033	.082	.080	.030
HERVI	50	.154	.133	.045	.155	.134	.073
LACE	10	.547	.527	.230	.556	.526	.288
RFF			Group 2	JOL	ET	Group 3	
FOR							
TOMS F	100	.083	.079	•070	.083	.079	.036
(Ye	50	.156	.146	.076	.086	.151	.066
XPL	10	.582	.536	.272	.570	.516	.257
			Line 2	IO	VA.	Line 3	
T.M.							,
F- PI	100	.081	.079	.038	.082	.076	-077
	50	.147	.133	.061	.093	.139	.077
	10	.570	.501	.197	. 588	.522	.263
	,		Line C	NII		Line D	·

EXPECTED DECREASE IN REPLACEMENT COSTS

(DISCOUNTED 10% PER ANNUM) DURING A 10-YEAR PERIOD IF CURRENT PROCESS IS REPLACED BY PICATIMAY PROCESS (\$1000)

	MEAU-T	ime-betwei	ii-EXPLOSI (Yea		CURRENT PR	ROCESS
	100	50	10_	100	50	10
100	198	657	4114	290	874	5311
50	8	467	3924	80	664	5100
10	-1553	-1094	2363	-1941	-1357	3080
		Group 2	JOLI	ET	Group 3	
100	168	647	4650	146	575	1,001
50	-10.2	377	4380	- 65	301	3720
10	-2323	-1844	2159	-2144	-1716	1713
	<u></u>	Line 2	IOW	'A	Line 3	
100	112	465	3160	16	265	2377
50	-79	275	2972	-17!:	74	2187
10	-1576	-1222	1475	-1723	-1475	638
		Line C	MIL	Ali	Line D	

EXPECTED DECREASE IN REPLACEMENT COSTS (DISCOUNTED

EXPECTED DECREASE IN REPLACEMENT COSTS (DISCOUNTED 10% PER ANNUM) DURING A 10-YEAR PERIOD IF CURRENT PROCESS IS FEPLACED BY MILAN PROCESS (\$1000)

		MEAN-T	INE-BETWEE		SIONS FOR	CURRENT PR	ROCESS
CESS		100	50	10_	100	50	10
PRO	100	249	708	4166	335	920	5358
IENT	50	96	5 53	4013	118	702	5141
ACEN	10	-1164	-705	2752	-1582	-998	3440
REPL		L <u> </u>	Group 2	J0I	IET	Group 3	
FOR	200	0.20	73.0	1.77.5	015	644	4074
CIONS E	100	232	712	4715	21.5	044	4014
(Ye	50	12	492	4495	17	446	3876
EXPLO	10	-1718	-1239	2765	-1517	-1088	2343
NOW-TIME-PERMENT-EXPLOSIONS FOR REFLACEMENT PROCESS (Years)			Line 2	Jine 3			
T-1957	100	199	553	3251	102	350	2464
11.3	50	73	1-27	3124	1,5	204	2305
27.	10	-795	`- 1	£256	-1192	-à-,:	1170
• .			Line C	MI	LAX	Line D	ا <u>ــــــــ</u>

PROPABILITY OF DECREASE IN REPLACEMENT COSTS
DURING A 10-YEAR PERIOD IF CURRENT PROCESS
IS REPLACED BY FICATIONY PROCESS

		YEAH-T	IME- BETW EE		SIC ear		CURRENT P	ROCESS		
CECS		100	50	10		100	50	10		
PRO	100	.093	.175	.616		.093	.174	.628		
f:	50	.031	.171	.602		.091	.172	.617		
ACE	10	.067	.125	.480		.078	.129	.552		
REF	Group 2 JOLIET Group 3									
FOR)					1					
SIONS F (Years)	100	.032	• 27 ·-	.61114		.092	.174	.624		
(Ye	50	.089	.171	.625		.091	.171	.624		
KPLO	10	.073	.124	.516		.066	.112	.1.84		
E6.4-F	•		Line 2	I	AWC		Line 3	·		
HANN-TONE-PERWEEK-ENFLOCIONS FOR REFLACEFOLD PROCESS (Years)	100	.05%	.177	.627		.087	.173	.634		
i c	50	.088	.167	.583		.034	.163	.612		
FA.:-	10	.067	.115	.533		.054	.106	.437		
•			Line C	N.	i Liá	11	Line D			

TABLE D-10

PROBABILITY OF DECREASE IN REPLACEMENT COSTS DURING A 10-YEAR PERIOD IF CURRENT PROCESS IS REPLACED BY MILAN PROCESS

		MEAN-TI	::E-Beiween		IONS FOR	CURRENT PR	OCESS
CESS		100	50	10	100	50	10
FRO	100	.023	.175	.627	.093	.17-	.608
THE S	50	.092	.177	.625	.093	.173	.613
ACE	10	.085	.156	•5314	.083	.139	.895
RHPI			Group 2	J01.	IET	Group 3	
NO N		, . 		,			
GIONG F	100	. 1.)3	1 1 1 1 1 1	.652	.092	.173	.638
(7e:	50	.087	.174	.6314	.092	.173	.640
MIN	10	.074	1.345	.573	.080	36	.1478
H-177	1		Line 2	IO	√A	Line 3	
I'4E							
	100	. 190	.171	.65!	.093	.1/2	.E1.9
	50	.092	.167	.600	.036	.170	.632
HOVE-TIES-BENTATEN-EXENDSIONS FOR REPLACEMENT FROCESS (Years)	10	.074	.153	• 591	.050	.1.33	.514
•	1		Line C	MI	- 4	Line D	

RISK OF INCREASE IN REPLACEMENT COSTS DURING A 10-YEAR PERIOD IF CURRENT PROCESS IS REPLACED BY PICATINNY PROCESS

	MEAN-TIME-BETWEEN-EXPLOSIONS FOR CURRENT PROCESS (Years)								
GHD		200	50	1.0	100	50	10		
PRO(100	.092	.078	.01.3	.095	.090	.040		
E	50	.168	.151	.079	.163	.141	.072		
ACE	10	.616	.576	.315	.570	.573	.239		
IGUN			Group 2	JOLI	ET	Group 3			
#									
3 F(100	.096	.033	.042	1.007	.086	.041		
Clond (Years	50	.173	.154	.090	.159	.152	.077		
-EEUOTIONS FOR EUPLACESHED PROCESS (Years)	10	.571	.583	. 304	.619	.592	.313		
# -			Line 2	IOW	i	Line 3	 		
	100	. 098	. 97)	.07.0	.100	.090	.01:1:		
	50	.173	.11.6	. 230	.175	.1.51	.087		
Mary 12 Ton-Burnal	10	• 55%	.402	.224	.590	.973	.348		
• `			Line C		\	Time D			

TABLE D-12

RISK OF INCREASE IN REPLACEMENT COSTS DURING A 10-YEAR PERIOD IF CURRENT PROCESS IS REPLACED BY MILAN PROCESS

		MEAN-TI	ME -BETWEEN	-EXPLOSI (Yea		CURRENT PRO	CESS
25.50		100	50	10	100	50	10
PI	100	.091	.088	.0141	.092	.085	.042
AEE'F	50	.170	.146	.073	.151	.147	.076
HUV	10	.51-9	.467	.294	.569	.569	.105
SEAN-CLES-BYTWEST-EXTLOCIOUS FOR RETLACEMENT PROCESS (Years)			Group 2	JOLI	EI,	Group 3	
YO.						-2-	
15. 1	100	.026	.085	.035	.095	.089	.033
(Years	50	.164	.138	.059	.158	.148	.050
тыл	10	.605	.51-1	.236	.555	.573	.320
*	1		Line 2	IOW	A	Line 3	
[.w.]							
12.	160	.096	.03.	.019	.03€	.000	.531
2.1.5	50	.167	.156	.076	.173	.153	.074
-17/25	10	.567	.430	.158	.625	.533	.304
		 	Line C	MIL		Line D	•

TABLE D-13

EXPECTED SAVINGS INVESTMENT RATIO (SIR)

DURING A 10-YEAR PERIOD IF CURRENT

PROCESS IS REPLACED BY PICATINHY PROCESS

(COSTS DISCOUNTED 10% PER ANNUM)

			(169	rs)		
	100	. 50	10	100	50	10
100	0.01	0.04	0.27	0.02	0.06	0.3
50	0.00	0.03	0.26	0.01	0.04	0.3
10	-	-	-	-	-	0.2
		Group 2	JOLI	ET	Group 3	•
100	0.01	0.04	0.30	0.01	0.04	0.2
50	-	0.02	0.29	0.00	0.02	0.2
10	-	1 -	0.14	-	-	0.1
		Line 2	IOW	A	Line 3	
100	0.01	0.03	0.20	0.00	0.02	0.1
50	0.00	0.02	0.19	-	0.00	0.1
10	-	-	0.10	1 -	-	0.0

TABLE D-14

EXPECTED SAVINGS INVESTMENT RATIO (SIR) DURING A 10-YEAR PERIOD IF CURRENT PROCESS IS REPLACED BY MILAN PROCESS (COSTS DISCOUNTED 10% PER ANNUM)

		MEAN-TI	CEWIEE-ENI	:-EXPLOSI (Yea		CURRENT PRO	OCESS
SE45		100	50	10	100	50	10
PRO	100	0.18	0.52	3.03	0.24	0.67	3.90
SETTE.	50	0.07	0.40	2.92	0.09	0.51	3.74
ACE	10	-	-	2.00	_	-	2.51
RETT		<u> </u>	Group 2	JOLI	ET	Group 3	*
ĕ	ł						
Hous F (Years)	100	0.17	0.52	3.43	0.16	0.46	2.97
33167 (Yea	50	0.01	0.36	3.27	0.01	0.33	2.82
SKP1 K	10	-	-	2.01	-	-	1.71
EM-P		L 	Line 2	IOW	A	Line 3	
48-	100	0.15	ე.≒ი	2.37	0.07	0.26	1.79
	50	0.05	0.31	2.28	-	0.15	1.69
SEGM-1 DESTRUCTION DATIONS FOR REPLACEMENT FROCESS (Years)	10	_	-	1.64	-	1 -	0.85
• .			Line C	1111	. L Au	Line D	نــــــن

TABLE D-15

PROBABILITY OF ACHIEVING OR SURPASSING A SAVINGS
INVESTMENT RATIO OF 1 DURING A 10-YEAR PERIOD
IF CURRENT PROCESS IS REPLACED BY PICATINNY PROCESS
(COSTS DISCOUNTED 10% PER ANNUM)

		Mean-t	IME-BETWEEN	-EXPLOSI (Yea		URRELT PR	OCESS
CECE		100	50	10	100	50	10
PRO	100	0	.001	.0140	.001	.004	.038
	50	0	.001	. 232	.001	.002	.084
'VCF	10	0	.001	.033	.001	.002	.066
HEP		·	Group 2	JOLI	ET	Group 3	<u> </u>
řö.			,	 1		,	 ;
in F	100	0	.001	.042	0	.001	.033
(Years	50	Ü	.001	.037	0	.001	•030
3.P1.0	10	0	.001	.028	0	.001	.026
Mant-Ting-Porelli-Bablohlond For Replacement Process (Years)	1		Line 2	IOW	A	Line 3	
	100	0	0	.018	0	9	.001
	50	0	0	.013	0	o	.01
	10	О	0	.011	0	0	.00.1
•	1		Line C	11.2	. L	Line D	<u> </u>

TABLE D-16

PROBABILITY OF ACHIEVING OR SUPPASSING A SAVINGS INVESTMENT BATTO OF 1 DURING A 10-YEAR PERIOD IF CUPRENT PROCESS IS REPLACED WITH MILAN PROCESS (COSTS DISCOUNTED 10% PER ANNUM)

		MEAN-T	IME-BETWEE	N-EXPLOSI (Yea		OURGENT PR	OCESS
SCHO		100	50	10	100	50	10
PRO	100	.063	.169	.627	.090	.174	.608
HILL	50	.084	•171	.625	.089	.173	.613
ACH.	10	. 276	.136	.534	.083	.139	.568
KEN 1			Group 2	JOLI	er	Group 3	
f FOi	100	.093	.143	.652	.093	.173	.638
(Years	50	.057	.169	.634	.030	.173	.640
OTAE:	20	.074	.140	.578	.068	.136	.522
SHAH-TIMEBEWEELEFFIORFORS FOR REFLACERETY PROCESS (Years)	·	 	Line 2	ICW	Å	Line 3	
	200	.078	.160	.604	.082	.147	.627
HIM.	50	.078	-155	.609	.081	.121	- 585
HAMI	-5	.062	.135	.591	.046	.109	.452
			Line C).A.	nui .	Line D	

APPENDIX E

CASUALTY-DAMAGE ZONES

The safety potential of each melt-pour process was defined by estimates of the casualties and property damage that might occur if there was an explosion in the melt-pour building. Obtained from the ARMCOM Safety Office, these estimates were based on the following Class 7 explosive limits and unbarricaded quantity-distances*:

		UN	IBARRI CADED
		QUANTIT	Y-DISTANCE FROM
	MAXIMUM EXPLOSIVE	MELT-	POUR BUILDING
MELT-POUR	LIMITS (N MELT-POUR		(Feet)
PROCESS	BUILDING (1bs)	Intraline	Inhabited Building
Current	15,000	450	990
Picatinny	2,000	230	505
Milan	200	100	235

The quantity-distances represent the quantity of explosive material and distance-separation relationships which provide defined types of protection. These relationships are based on levels of risk considered acceptable for the stipulated exposures. Intraline refers to those processes accomplished within one operating line; the inhabited buildings are those buildings occupied in whole or in part by workers.

The quantity-distance relationships were used to divide each of the six LAP lines into the following zones for segrating the casualties and property damage:

^{*} AMCR 385-100. <u>Safety Manual</u>. Change 1, 14 October 1971. Class 7 is bulk high explosives, general purpose bombs and high explosive warheads.

<u>XONE</u>	AREA
X	Melt-pour building
A	Unbarricaded intraline distance excluding melt-pour building
В	Unbarricaded inhabited building distance outside of Zone A
С	Remainder of LAP line

These zones were established for each LAP line by plotting the unbarricaded intraline and inhabited building quantity-distance arcs on a "plot plan" furnished by the AAP. Manning levels also supplied by the plant showed the number and location of the personnel on each line. The site of the proposed process was considered to be remotely located from the rest of the line in accordance with the safety concepts for the LAP modernization program. Figure E-1 is an illustrative example of how one of the LAP lines was divided into the casualty-damage zones for the current process.

How Casualty-Damage Zones were established for Current Process on Line C at Milan AAP. Figure E-1.