Module 2 - Day 27

Querying Data Using Built-in Functions and T-SQL (Part 1)

1. Introduction to T-SQL (Transact-SQL)

- T-SQL (Transact Structured Query Language) is an extension of SQL developed by Microsoft for SQL Server.
- It **enhances standard SQL** by adding **procedural programming features**, such as variables, loops, conditions, and error handling.
- Main Uses of T-SQL:
 - Writing full **procedural programs** within SQL Server.
 - Defining transactions and business logic in stored procedures and functions.
 - Running complex queries and aggregations efficiently.
 - Managing database interactions without requiring frequent application-level processing.

2. Built-in Functions in T-SQL

SQL Server provides **many built-in functions** that help manipulate and analyze data. These functions can be grouped into several categories:

a) Scalar Functions

Return a single value for each row.

Examples:

- UPPER() \rightarrow Converts text to uppercase.
- LOWER () \rightarrow Converts text to lowercase.
- LEN () \rightarrow Returns the length of a string.
- GETDATE () \rightarrow Returns the current system date/time.

Example Query:

```
SELECT UPPER('hello world') AS UpperCaseText;
```

Output: HELLO WORLD

b) Aggregate Functions

Aggregate functions perform calculations on a set of rows and return a single value. They are used with GROUP BY to summarize data.

Common Aggregate Functions:

Function	Description
AVG(column)	Returns the average value of the column.
MAX(column)	Returns the maximum value of the column.
MIN(column)	Returns the minimum value of the column.
SUM(column)	Returns the sum of all values in the column.
COUNT(column)	Returns the number of rows (excluding NULLs).
COUNT BIG(column)	Same as COUNT, but returns BIGINT (useful for large datasets).

Note: Aggregate functions ignore NULL values automatically.

Example Query (Using Aggregate Functions)

```
SELECT

AVG(Salary) AS AverageSalary,
MAX(Age) AS OldestEmployee,
MIN(Age) AS YoungestEmployee,
SUM(Salary) AS TotalSalaryPaid,
COUNT(*) AS TotalEmployees
FROM PermanentEmployee;
```

c) Statistical Aggregate Functions

These functions perform **statistical calculations** on a group of values.

Function	Description
VAR(column)	Returns the sample variance of values.
VARP(column)	Returns the population variance of values.
STDEV(column)	Returns the sample standard deviation of values.
STDEVP(column)	Returns the population standard deviation of values.

Example Query:

```
SELECT
    VAR(Salary) AS SalaryVariance,
    STDEV(Salary) AS SalaryStandardDeviation
FROM PermanentEmployee;
```

d) Ranking Functions

These functions assign ranks to rows within a partition.

Function	Description
ROW_NUMBER()	Assigns a unique row number to each row.
RANK()	Assigns a ranking, allowing ties (same rank for duplicate values).
DENSE_RANK()	Similar to RANK (), but without gaps in ranking.
NTILE(n)	Divides the result set into n buckets.

Example Query (Using Ranking Functions):

e) Rowset Functions

These functions **return a table-like dataset** instead of a single value. Examples:

- OPENQUERY () \rightarrow Executes a pass-through query on a linked server.
- OPENDATASOURCE () \rightarrow Queries data from a remote data source.
- OPENROWSET () \rightarrow Accesses data from an external provider.

Example Query (Using OPENROWSET):

f) Logical Functions

These functions return Boolean values (TRUE, FALSE, or NULL). Examples:

- ISNULL (column, default value) \rightarrow Replaces NULL with a specified value.
- COALESCE (value1, value2, ...) \rightarrow Returns the first non-null value.
- CASE → Evaluates conditions and returns different values.

Example Query (Using CASE and ISNULL):

3. User-Defined Aggregate Functions in SQL Server

SQL Server allows developers to create their own aggregate functions using .NET.

Steps to Create a User-Defined Aggregate Function

- 1 Define the aggregate function as a class in a .NET-supported language (C# or VB.NET).
- 2 Register the assembly in SQL Server using CREATE ASSEMBLY.
- 3 Create the aggregate function referencing the assembly using CREATE AGGREGATE.

4. Summary of Key Concepts

- **♥T-SQL** extends SQL with procedural programming features.
- **ঔBuilt-in functions** include scalar, aggregate, statistical, ranking, rowset, and logical functions.
- **⊘Aggregate functions** summarize data (e.g., SUM(), AVG(), COUNT()).
- **♦ Statistical functions** compute variance and standard deviation.
- **⊘** Ranking functions help order and rank data.
- **∜User-defined aggregates** allow custom calculations in SQL Server.

Example Assignment

Try the following queries on a sample Employee database:

- 1. Retrieve the average salary of employees.
- 2. Find the **total number of employees** in the company.
- 3. Retrieve the **highest and lowest salary** of employees.
- 4. Rank employees based on their salaries.
- 5. Use CASE to categorize employees based on their age groups.