3. Algebrai és gyökös kifejezések II.

3.1. Kiegészítés az elmélethez

Abszolút érték és tulajdonságai, háromszög egyenlőtlenségek

Idézzük fel az abszolút érték definícióját: legyen $x \in \mathbb{R}$ tetszőlegesen rögzített valós szám, ekkor:

$$|x| := \begin{cases} -x , \text{ ha } x < 0; \\ x , \text{ ha } x \ge 0 \end{cases}$$

az x valós szám abszolút értéke. Világos, hogy |x| jelenti egyben a számegyenesen az x valós szám távolságát az origótól.

Ha $x,y\in\mathbb{R}$ tetszőleges valós számok, akkor |x-y| nemnegatív valós szám méri az x és y geometriai távolságát.

Könnyű a definíció alapján meggondolni, hogy:

$$\forall x, y \in \mathbb{R} : |x \cdot y| = |x| \cdot |y|,$$

illetve

$$\forall x, y \in \mathbb{R}, y \neq 0: \quad \left| \frac{x}{y} \right| = \frac{|x|}{|y|}.$$

Mindez azonban nem mondható el az összeg és különbség esetén, de érvényesek az alábbi nevezetes egyenlőtlenségek:

Tétel: (Háromszög egyenlőtlenségek) Tetszőleges $x,y\in\mathbb{R}$ valós számok esetén:

- 1. |x+y| < |x| + |y|;
- 2. $|x y| \ge ||x| |y||$.

3.1.1. Ellenőrző kérdések az elmélethez

- 1. Definiálja egy valós x szám abszolút értékét.
- 2. Az $x \in \mathbb{R}$ értékeitől függően "bontsa fel" $|x^2 1|$ -et.
- 3. Írja le a valós számokra vonatkozó háromszög egyenlőtlenségeket.
- 4. Hol vannak a síkon azok az (x; y) pontpárok, melyekre: |y |x|| < 1?
- 5. Oldja meg az |x+2| = x 1 egyenletet.
- 6. Mely valós számok elégítik ki az ||x-1|-2|>1 egyenlőtlenséget?

3.2. Feladatok 29

7. Egyszerűsítse az alábbi racionális törtet:

$$\frac{x^3-1}{x^4-1}$$

8. Oldja meg az alábbi egyenletet a valós számok halmazán:

$$\frac{1}{\sqrt{x} - 1} - \frac{1}{\sqrt{x} + 1} = \frac{3}{x}.$$

9. Oldja meg a valós számok halmazán az alábbi egyenlőtlenséget:

$$\sqrt{x-4} + \sqrt{3-x} < x + \sqrt{x} - 1.$$

10. Milyen x valós számokra igaz, hogy:

$$|2 - \sqrt{1 - x}| < 1$$
?

11. Milyen x valós számokra igaz, hogy:

$$\sqrt{x^2} = x + 1?$$

12. Adjon meg olyan különböző x, t valós számokat (ha léteznek), amelyekre:

$$(x-2)^2 + |x-1| = (t-2)^2 + |t-1|.$$

- 13. Az x valós számról tudjuk, hogy |x+1| < 1/2. Milyen határok közt változhat |x-1|?
- 14. Határozzuk meg azokat az x valós számokat, melyekre:

$$|x| < 2 \land |1 - x| > 1$$
.

15. Az x valós számról tudjuk, hogy |x-3| < 2. Adjunk egy felső becslést $|x^2-9|$ – re.

3.2. Feladatok

Valamennyi feladatban alapértelmezés, hogy a formulákban szereplő betűk olyan számokat jelentenek, amelyekre a kifejezések értelmesek (kifejezés értelmezési tartománya). Természetesen ez a halmaz tovább szűkülhet, ha a feladatban feltételeket adunk meg ezekre a betűkre.

3.2.1. Órai feladatok

Algebrai átalakítások, egyszerűsítések

1. Egyszerűsítsük a következő algebrai törtkifejezéseket:

(a)
$$\frac{3x^2+5x-2}{x^2+3x+2}$$
;

(b)
$$\frac{x^4 + 5x^2 + 4}{x^4 - 16}$$
;

(c)
$$\frac{2x^2-13x-7}{8x^3+1}$$
;

(d)
$$\frac{(x^2-1)^2-(x^2+1)^2}{x^5+x^3};$$

(e)
$$\frac{2}{x^2-1}-\frac{3}{x^3-1}$$
;

2. Gyöktelenítsünk, majd egyszerűsítsük a kapott törteket:

(a)
$$\frac{\sqrt{x^2+1}-\sqrt{2}}{x^3-1}$$
;

(b)
$$\frac{x^2 + x - 6}{\sqrt{\sqrt{x} - \sqrt{2} + 1} - 1}$$
;

(c)
$$\frac{x^2-64}{\sqrt[3]{x}-2}$$
;

(d)
$$\frac{x^2 - 3x - 4}{\sqrt{\sqrt{x} - 1} - 1}$$
 $(x > 4)$.

Abszolútértékes egyenletek, egyenlőtlenségek

3. Milyen $x \in \mathbb{R}$ esetén teljesülnek a következő egyenlőségek ill. egyenlőtlenségek?

(a)
$$|2x - 7| + |2x + 7| = 14$$
;

(b)
$$|2x-7|+|2x+7|=x+15$$
;

(c)
$$|x^2 - 4x - 5| + |x - 2| = 7$$
;

(d)
$$|x^2 + 3x| = |2x - 6|$$
;

(e)
$$|x^2 - 9| + |x^2 - 4| = 5$$
;

(f)
$$|x-2| < 3$$
;

(g)
$$|2x-1| < |x-1|$$
;

3.2. Feladatok 31

(h)
$$|x(1-x)| < \frac{1}{4}$$
;

(i)
$$\frac{1+|x-2|}{|x-3|} \le \frac{1}{2}$$
;

4. Az x valós számról tudjuk, hogy |x+2| < 1. Milyen határok közt változhat |x+1|?

5. Az x valós számról tudjuk, hogy |x-2| < 2. Adjunk egy felső becslést $|x^2-4|$ —re

Gyökös egyenletek, egyenlőtlenségek

6. Oldjuk meg az alábbi egyenleteket és egyenlőtlenségeket a valós számok halmazán:

(a)
$$\sqrt{x+1} - \sqrt{9-x} = \sqrt{2x-12}$$
;

(b)
$$\sqrt{x^2 + 5x + 1} = 2x - 1$$
;

(c)
$$x-1=\sqrt{1-x\sqrt{16+x^2}}$$
;

(d)
$$\sqrt{6x^2 + 8x - 8} - \sqrt{3x - 2} = 0$$
;

(e)
$$\sqrt{x^2 - p} + 2 \cdot \sqrt{x^2 - 1} = x \ (p \in \mathbb{R});$$

(f)
$$\sqrt{x+\sqrt{x}} - \sqrt{x-\sqrt{x}} = \frac{3}{2} \cdot \sqrt{\frac{x}{x+\sqrt{x}}};$$

(g)
$$\frac{x\sqrt[3]{x}-1}{\sqrt[3]{x^2}-1} - \frac{\sqrt[3]{x^2}-1}{\sqrt[3]{x}-1} = 12;$$

(h)
$$\sqrt{|1-x^2|} = \frac{x}{2} + 1$$
;

(i)
$$\sqrt[3]{4x-1} + \sqrt[3]{4-x} = -\sqrt[3]{3}$$
;

(j)
$$\sqrt{3x+13} \le x+1$$
;

(k)
$$\sqrt{x^2 + 4x} > 2 - x$$
;

(1)
$$\sqrt{x^2-1} < 5-x$$
;

(m)
$$\frac{4x^2}{(1-\sqrt{1+2x})^2} < 2x+9;$$

(n)
$$\sqrt{3-x} - \sqrt{x+1} > \frac{1}{2}$$
;

(o)
$$\sqrt{2x+1} - \sqrt{x-8} > 3$$
;

(p)
$$\frac{1+\sqrt{x}}{1-\sqrt{x}} > \frac{1-\sqrt{x}}{1+\sqrt{x}}$$
.

Függvények, sorozatok, nagyságrendi átalakítások

7. Határozza meg az alábbi függvény legnagyobb és legkisebb értékét:

$$f(x) = \sqrt{x+3-4\sqrt{x-1}} + \sqrt{x+8-6\sqrt{x-1}} \quad (x \in [2;17]).$$

8. A domináns taggal való leosztás után írjuk fel az alábbi törteket $\frac{1}{n}$ függvényeként, azaz $f\left(\frac{1}{n}\right)$ alakban:

(a)
$$\frac{5n^3-3n^2+2n+7}{8n^3+7n-3}$$
;

(b)
$$\frac{\sqrt{n+1}+3\cdot\sqrt{n}}{\sqrt{2n-1}}$$
;

(c)
$$\frac{\sqrt[3]{(n+1)^2+2}}{\sqrt[3]{n^2}-1}$$
.

9. Gyöktelenítsünk, majd a domináns taggal való leosztás után írjuk fel az alábbi törteket $\frac{1}{n}$ függvényeként, azaz $f\left(\frac{1}{n}\right)$ alakban:

(a)
$$\sqrt{n^2+n+1} - \sqrt{n^2+1}$$
;

(b)
$$\frac{1}{\sqrt{n^2+n}-\sqrt{n^2-n-1}}$$
;

(c)
$$\sqrt[3]{n} \cdot (\sqrt[3]{n^2 + n + 2} - \sqrt[3]{n^2 + 1})$$
.

10. Adottak az alábbi (x_n) sorozatok. Írjuk fel, és hozzuk a legegyszerűbb alakra az $\left(\left|\frac{x_{n+1}}{x_n}\right|\right)$ hányados—sorozatot:

(a)
$$x_n = \frac{n!}{2^{n+1}}$$
 $(n \in \mathbb{N}^+)$;

(b)
$$x_n = \frac{(2n)!}{(n!)^2}$$
 $(n \in \mathbb{N}^+)$;

(c)
$$x_n = \frac{3^n \cdot n^2}{(n+1)!}$$
 $(n \in \mathbb{N}^+)$;

(d)
$$x_n = \frac{n^n \cdot (-1)^{n+1}}{(2n+1)!}$$
 $(n \in \mathbb{N}^+)$;

(e)
$$x_n = \frac{\sqrt{3n+2}}{(1+\sqrt{1})\cdot(1+\sqrt{2})\cdot\ldots\cdot(1+\sqrt{n})}$$
 $(n \in \mathbb{N}^+)$.

11. Adottak az alábbi (x_n) sorozatok. Írjuk fel, és hozzuk a legegyszerűbb alakra az $(\sqrt[n]{|x_n|})$ gyök—sorozatot:

(a)
$$x_n = \frac{2^{n+1}}{(n^2+1)^{2n}}$$
 $(n \in \mathbb{N}^+)$;

(b)
$$x_n = \frac{(-1)^n}{2^{1-n} + 2^n}$$
 $(n \in \mathbb{N}^+)$;

(c)
$$x_n = \left(1 + \frac{1}{n}\right)^{n^2 + n + 1}$$
 $(n \in \mathbb{N}^+)$.

3.2.2. További feladatok

Algebrai átalakítások, egyszerűsítések

1. Egyszerűsítsük a következő algebrai törtkifejezéseket:

(a)
$$\frac{x^2 + 2x - 3}{5x^2 + 16x + 3}$$
;

(b)
$$\frac{x^4 + 8x^2 + 15}{x^4 + 6x^2 + 9}$$
;

(c)
$$\frac{27x^3 - 1}{6x^2 + x - 1}$$
;

(d)
$$\frac{x^4 + x^2 + 1}{x^3 + 1}$$
.

2. Gyöktelenítsünk, majd egyszerűsítsük a kapott törteket, ha lehet:

(a)
$$\frac{x^2-1}{\sqrt{x^3+5}-2}$$
;

(b)
$$\frac{x^2-9}{\sqrt{\sqrt{x}-\sqrt{3}+4}-2}$$
;

(c)
$$\frac{x^2 - 26x - 27}{\sqrt[3]{x} - 3}$$
;

Abszolútértékes egyenletek, egyenlőtlenségek

3. Milyen $x \in \mathbb{R}$ esetén teljesülnek a következő egyenlőségek, egyenlőtlenségek?

(a)
$$\left| \frac{3|x| - 2}{|x| - 1} \right| = 2;$$

(b)
$$||x+1|-2| = ||x-2|+1|$$
;

(c)
$$|x+3| + |x-1| = 3x - 5$$
;

(d)
$$|x+1| - |x| + 3|x-1| - 2|x-2| = x+2$$
;

(e)
$$|x+3| + \sqrt{x^2 - 2x + 1} = 8$$
.

(f)
$$\left| \frac{x}{1+x} - \frac{2}{3} \right| \le \frac{|x-2|}{1+|x-2|};$$

(g)
$$x^2 - 6|x| - 7 < 0$$
;

(h)
$$\left| \frac{x+1}{x-1} \right| + \left| \frac{x-1}{x+1} \right| \le 2;$$

(i)
$$|x+1| - |x-1| < 1$$

(j)
$$|x| > |x - 1|$$
;

(k)
$$|x+2| - |x| \ge 1$$
.

4. Bizonyítsuk be, hogy teljesülnek az alábbi egyenlőtlenségek:

(a)
$$0 < a + b - ab < 1$$
 $(a, b \in (0, 1))$;

(b)
$$a^2 + b^2 \ge 2|ab|$$
 $(a, b \in \mathbb{R});$

(c)
$$2x^4 - 2x^3 - x^2 + 1 \ge 0$$
 $(x \in \mathbb{R})$;

(d)
$$ab - 5a^2 - 3b^2 \le 0$$
 $(a, b \in \mathbb{R});$

(e)
$$|a+b| < |1+ab|$$
 $(a, b \in \mathbb{R}, |a|, |b| < 1)$;

(f)
$$|a+b| + |a-b| \ge |a| + |b|$$
 $(a, b \in \mathbb{R})$;

(g)
$$|a| + |b| + |c| + |a + b + c| \ge |a + b| + |b + c| + |c + a|$$
 $(a, b, c \in \mathbb{R})$;

(h)
$$\left(\frac{a+2b}{a+b}\right)^2 - 2 < 2 - \left(\frac{a}{b}\right)^2$$
 $(a, b \in (0, +\infty), a^2 < 2b^2)$.

- **5.** Az x valós számról tudjuk, hogy |x+5| < 3. Milyen határok közt változhat 1/|x-2|?
- 6. Az x valós számról tudjuk, hogy |x+1| < 1/2. Adjunk egy felső becslést $|1/x^2 1|$ re.

 $Gy\"{o}k\"{o}s\ egyenletek,\ egyenl\"{o}tlens\'{e}gek$

7. Oldjuk meg az alábbi egyenleteket, egyenlőtlenségeket a valós számok halmazán:

(a)
$$\sqrt{5+\sqrt{x+1}}+\sqrt{3-\sqrt{x+1}}=\sqrt{7}+1$$
;

(b)
$$\sqrt{3 + \sqrt{5 - x}} = \sqrt{x}$$
.

(c)
$$\sqrt{2x+3} + \sqrt{3x+3} = 1$$
;

(d)
$$\sqrt{4x^2 + 4x + 1} - \sqrt{4x^2 - 12x + 9} = 4$$
;

(e)
$$\sqrt{\frac{x-3}{2}} + \sqrt{2x} = \sqrt{x+3}$$
;

3.2. Feladatok 35

(f)
$$\sqrt{x+2+2\sqrt{x+1}} + \sqrt{x+2-2\sqrt{x+1}} = 2;$$

(g)
$$\sqrt{3x^2 - |x| - 1} = 3 - 2x$$
;

(h)
$$\sqrt{3x+10} < x+4$$
;

(i)
$$\sqrt{3x+7} < x-1$$
;

(j)
$$\sqrt{5x+16} > x+2$$
;

(k)
$$\sqrt{x-5} - \sqrt{x} < 5$$
;

(1)
$$\sqrt{x-5} - \sqrt{x} < 5$$
.

8. Van-e olyan x racionális szám, amelyre

(a)
$$\frac{\sqrt{x-1}}{\sqrt{x-10}} = \frac{\sqrt{3x+22}}{\sqrt{3x-14}}$$
;

(b)
$$\sqrt{4-2\sqrt{x^2-1}} = 2x$$
?

9. Mutassuk meg, hogy minden $1 \leq n \in \mathbb{N}$ esetén teljesül az

$$\frac{1}{\sqrt{n}} < \sqrt{n+1} - \sqrt{n-1}$$

egyenlőtlenség!

10. Lássuk be, hogy minden $1 \leq n \in \mathbb{N}$ esetén teljesül a

$$2\sqrt{n+1} - 2\sqrt{n} < \frac{1}{\sqrt{n}} < 2\sqrt{n} - 2\sqrt{n-1}$$

egyenlőtlenségpár!

Függvények, sorozatok, nagyságrendi átalakítások

11. A domináns taggal való leosztás után írjuk fel az alábbi törteket $\frac{1}{n}$ függvényeként, azaz $f\left(\frac{1}{n}\right)$ alakban:

(a)
$$\frac{3n^4 + 5n^3 - 7n + 4}{5n^4 - 10n^2 + 2};$$

(b)
$$\frac{\sqrt{2n^2+5n}}{\sqrt{n^2+6}+3n+1}$$
;

(c)
$$\frac{\sqrt[3]{n^2+n+1}+\sqrt[3]{n^2+6}}{\sqrt[3]{n^2+1}+\sqrt[3]{n^2-1}};$$

12. Gyöktelenítsünk, majd a domináns taggal való leosztás után írjuk fel az alábbi törteket $\frac{1}{n}$ függvényeként, azaz $f\left(\frac{1}{n}\right)$ alakban:

(a)
$$\sqrt{n^4 + n^2 + 5} - \sqrt{n^4 - 2n^2 - 7}$$
;

(b)
$$\frac{\sqrt{n}}{\sqrt{n^3 + n^2 + 2} - \sqrt{n^3 - n^2 + 3}}$$
;

(c)
$$\sqrt[3]{n^3 + n^2 + 3} - n$$
;

13. Adottak az alábbi (x_n) sorozatok. Írjuk fel, és hozzuk a legegyszerűbb alakra az $\left(\left|\frac{x_{n+1}}{x_n}\right|\right)$ hányados—sorozatot:

(a)
$$x_n = \frac{5^{n+2}}{(n+1)!}$$
 $(n \in \mathbb{N}^+)$;

(b)
$$x_n = \frac{(3n)!}{(n!)^3}$$
 $(n \in \mathbb{N}^+)$;

(c)
$$x_n = \frac{(n+2)!}{4^n \cdot (n^2+3)}$$
 $(n \in \mathbb{N}^+)$;

(d)
$$x_n = \frac{(-n-2)^n}{(2n+2)!}$$
 $(n \in \mathbb{N}^+)$;

14. Adottak az alábbi (x_n) sorozatok. Írjuk fel, és hozzuk a legegyszerűbb alakra az $(\sqrt[n]{|x_n|})$ gyök—sorozatot:

(a)
$$x_n = \frac{3^{2n-1}}{(n^3+1)^{5n}}$$
 $(n \in \mathbb{N}^+)$;

(b)
$$x_n = \frac{(-1)^{n+1}}{3^{2-n} + 3^n}$$
 $(n \in \mathbb{N}^+)$;

(c)
$$x_n = \left(1 - \frac{1}{n}\right)^{3n^2 - n}$$
 $(n \in \mathbb{N}^+)$.