TD de MTH101 N° 3: Déterminatnts - systèmes linéaires

1. Calculer les déterminants suivants:

(a)
$$\begin{vmatrix} t+3 & -1 & 1 \\ 5 & t-3 & 1 \\ 6 & -6 & t+4 \end{vmatrix}$$
 pour tout $t \in \mathbb{R}$

(b)
$$\begin{vmatrix} 1 & 1 & 1 \\ 1 & w & w^2 \\ 1 & w^2 & w \end{vmatrix}$$
 où $w = e^{\frac{2\pi}{3}i}, w^3 = 1 \text{ et } 1 + w + w^2 = 0,$

(b)
$$\begin{vmatrix} 1 & 1 & 1 \\ 1 & w & w^2 \\ 1 & w^2 & w \end{vmatrix}$$
 où $w = e^{\frac{2\pi}{3}i}$, $w^3 = 1$ et $1 + w + w^2 = 0$,
(c) $\begin{vmatrix} a - b - c & 2a & 2a \\ 2b & b - c - a & 2b \\ 2c & 2c & c - a - b \end{vmatrix}$ et $\begin{vmatrix} 1 & a & a^2 & a^3 \\ 1 & b & b^2 & b^3 \\ 1 & c & c^2 & c^3 \\ 1 & d & d^2 & d^3 \end{vmatrix}$ avec a, b, c et d des réels.

- 2. Etudier le rang de la matrice $A = \begin{pmatrix} 1 & -1 & -t \\ t & 2 & 1 \\ 1 & 1 & -1 \end{pmatrix}$ pour tout $t \in \mathbb{R}$.
- 3. Considérons la matrice $A = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 4 \\ 1 & 5 & 7 \end{pmatrix}$. (a) Calculer det A. (b) Trouver cof A la matrice des cofacteurs de A. (c) Vérifier que $A(cof A)^t = (det A) \cdot I_3$ où I_3 est la matrice unité d'ordre 3. (d) Trouver A^{-1} .
- 4. On considère la matrice suivante de $\mathcal{M}_3(\mathbb{R})$, $A = \begin{pmatrix} 13 & -8 & -12 \\ 12 & -7 & -12 \\ 6 & -4 & -5 \end{pmatrix}$.
 - (a) Montrer que cette matrice est inversible et calculer A^{-1}
 - (b) En déduire l'expression de A^n en fonction de A, pour tout entier naturel n.
- 5. Résoudre les systèmes d'équations suivants: (s_1) $\begin{cases} 2x + 3y z = -1 \\ x + 2y + 3z = 2 \\ 3x + 4y 5z = -4 \end{cases}$ et (S_2) $\begin{cases} ax + y + z + t = 1 \\ x + ay + z + t = b \\ x + y + az + t = b \end{cases}$ avec a et b des réels.
- 6. Résoudre dans \mathbb{R}^3 , et discuter suivant les valeurs des paramètres réels a, b, c et d le système suivant

$$(S) \begin{cases} x + & y + & z = 1 \\ ax + & by + & cz = d \\ a^2x + & b^2y + & c^2z = d^2 \end{cases}$$

7. Résoudre le système suivant (inconnue $(x_1, x_2, ..., x_n) \in \mathbb{R}^n$, paramètres $(a_1, ..., a_n) \in \mathbb{R}^n$):

$$\begin{cases} x_1 + x_2 = 2a_1 \\ x_2 + x_3 = 2a_2 \\ \vdots \\ x_{n-1} + x_n = 2a_{n-1} \\ x_n + x_1 = 2a_n \end{cases}$$

8. Soit a un réel différent de 1. Pour $n \in \mathbb{N}, \, n \geqslant 2$, on note

$$D_n = \begin{vmatrix} 1+a^2 & a & 0 & \cdots & 0 \\ a & 1+a^2 & a & \ddots & \vdots \\ 0 & a & \ddots & \ddots & 0 \\ \vdots & \ddots & \ddots & 1+a^2 & a \\ \vdots & \ddots & 0 & a & 1+a^2 \end{vmatrix}$$

Calculer D_n en fonction de D_{n-1} et D_{n-2} . Montrer que $D_n = \frac{1-a^{2n+2}}{1-a^2}$. Combien vaut D_n si a=1?