Пусть \mathcal{T} обозначает множество всех возможных траекторий частицы в ускорителе. $\mathcal{T} = \mathcal{S} \bigcup \mathcal{F}$, где \mathcal{S} это все стабильные траектории, \mathcal{F} это такие траектории, при попадании на одну из которых частица улетает из пучка.

Первое, что мы делаем, после смены полярности поля — это подстраиваем его величину так, чтобы частицы инжектированного пучка попадали на траектории $t \in \mathcal{S}$. Это то же самое, что сказать, что выполняется условие $E + vB = \frac{mv^2}{R}$, и то же самое, что и $\langle F_L \rangle = 0$. ($\forall t[t \in \mathcal{S} \leftrightarrow \langle F_L \rangle = 0]$.)

Наше второе условие, $\Omega_y=0$, выбирает из $\mathcal S$ подмножество $\mathcal S|_{\Omega_y=0}$ траекторий, для которых спин заморожен в горизонтальной плоскости.

Предположение. Предположим, что $\Omega_y = \Omega_y(\gamma_{eff})$ — инъективная функция, и значит $\Omega_y(\gamma_{eff}^1) = \Omega_f(\gamma_{eff}^2) \to \gamma_{eff}^1 = \gamma_{eff}^2$. Пространство траекторий делится на классы эквивалентности по величине эффективного Лоренц-фактора: траектории с одинаковым γ_{eff} эквивалентны с точки зрения спин-динамики, и принадлежат одному классу. Поскольку Ω_y инъективная, значит существует одна гамма эффективное, один класс эквивалентности, при котором $\Omega_y = 0$: $[\Omega_y = 0] \equiv [\gamma_{eff}^0] = \mathcal{S}|_{\Omega_y = 0}$.

Если бы мы не использовали секступоли, $\mathcal{S}|_{\Omega_y=0}$ было бы синглетоном (множество с единственным элементом). Поскольку мы их используем, $\mathcal{S}|_{\Omega_y=0}$ содержит несколько траекторий.

Ранее, мы уже показали, что при использовании секступолей, $\forall t_1, t_2 \in \mathcal{S}|_{\Omega_y=0}$: $\nu_s(t_1) = \nu_s(t_2)$, $\bar{n}(t_1) = \bar{n}(t_2)$. Тогда, чтобы подвтердить валидность калибровочной процедуры, нам нужно показать следующее:

- 1. $\mathcal{S}|_{\Omega_y=0}^{CCW}=\mathcal{S}|_{\Omega_y=0}^{CW}$ то есть, что и я прямом, и в обратном случае циркуляции пучка, $\Omega_y=0$ для одних и тех же траекторий (эквивалентно, $\Omega_y=0$ при одном и том же γ_{eff} и в CW, и в CCW случаях);
- 2. $\forall t_1, t_2 \in \mathcal{S}|_{\Omega_y=0}^{CCW}: \nu_s(t_1) = \nu_s(t_2), \ \bar{n}(t_1) = \bar{n}(t_2)$ то есть, те же самые секступольные поля подавляют декогеренцию обратного пучка.

Симуляция. Для этого нужно всего лишь:

- 1. построить график $\nu_s(z), z \in \{x, y, d\}$ для CW пучка;
- 2. построить такой же график для ССW пучка;
- 3. построить их невязку $\epsilon(z)$.

Если невязка мала в широком диапазоне z, значит 1) секступольная когеренция работает без изменений для обоих пучков, и 2) спин-тюн/ γ_{eff} одинаков для обоих пучков, и значит их Спин-Колёса вращаются с одинаковой скоростью.

Проверять наклоны \bar{n}^{CW} и \bar{n}^{CCW} не обязательно, потому что мы и так знаем что в идеале они $\pm \hat{x}$, а на самом деле угол наклона определяется точностью, с которой мы выставили $\Omega_y=0$.

Замечание. Единственное что не очень схвачено в методе симуляции выше: в COSY INFINITY система координат связана с замкнутой орбитой, и на сколько я понимаю, если $\mathrm{CO}^{CW} \neq \mathrm{CO}^{CCW}$, то начала отсчёта графиков в физическом пространстве будут смещены друг относительно друга. То есть, если $\nu_s(x_0)^{CW} = \nu_s(x_0)^{CCW}$ в данных, то если отсчёт ведётся относительно разных CO, на самом деле будет $\nu_s(x_0)^{CW} = \nu_s(x_0 + \Delta x)^{CCW}$.

В принципе, если Δx не очень велико, нам это не слишком мешает, потому что $x_0 \equiv_{\gamma_{eff}} x_0 + \Delta x_0$ пока $x_0, x_0 + \Delta x \in \mathcal{S}|_{\Omega_y=0}$. В этом вся суть секступольной когеренции: разные орбиты эквивалентны, и это касается замкнутых орбит, пока они не выходят за рамки некоторого диапазона. Но было бы неплохо понять на сколько различаются СО СW и ССW пучков. Вроде это можно сделать; со слов Артёма, приблуда Розенталя рисует замкнутые орбиты пучков, и можно видеть если они отличаются для двух пучков.