Capstone Project

Weigang Wei

1 Introduction

1.1 Business problem

It is aimed to build a model to predict the severity of an accident based on a database which contains a set of accident severity data. This model is prepared for the local transportation department and this model may be used to set up diverted routes, and temporary speed limits etc.

2 Data

2.1 General description of the dataset

The dataset contains The general information of the dataset is shown below.

# Column Non-Null Count Dtype				
0	SEVERITYCODE	194673 non-null	int64	
1	Χ	189339 non-null	float64	
2	Υ	189339 non-null	float64	
3	OBJECTID	194673 non-null	int64	
4	INCKEY	194673 non-null	int64	
5	COLDETKEY	194673 non-null	int64	
6	REPORTNO	194673 non-null	object	
7	STATUS	194673 non-null	object	
8	ADDRTYPE	192747 non-null	object	
9	INTKEY	65070 non-null	float64	
16		191996 non-null	object	
11		84811 non-null	object	
12		5638 non-null	object	
13		194673 non-null	int64	
14		194673 non-null	object	
15		189769 non-null	object	
16		194673 non-null	int64	
17		194673 non-null	int64	
18		194673 non-null	int64	
19		194673 non-null	int64	
26		194673 non-null	object	
21		194673 non-null	object	
22		188344 non-null	object	
23	_	194673 non-null	int64	
24	SDOT_COLDESC	194673 non-null	object	

25	INATTENTIONIND	29805 non-null	object
26	UNDERINFL	189789 non-null	object
27	WEATHER	189592 non-null	object
28	ROADCOND	189661 non-null	object
29	LIGHTCOND	189503 non-null	object
30	PEDROWNOTGRNT	4667 non-null	object
31	SDOTCOLNUM	114936 non-null	float64
32	SPEEDING	9333 non-null	object
33	ST_COLCODE	194655 non-null	object
34	ST_COLDESC	189769 non-null	object
35	SEGLANEKEY	194673 non-null	int64
36	CROSSWALKKEY	194673 non-null	int64
37	HITPARKEDCAR	194673 non-null	object

The aim of this project is to predict the severity which is described by the severity code. The description of the codes are:

- Code 1: Property Damage Only Collision, and
- Code 2: Injury Collision.

The number of different severity is shown in Figure 1.

Column is: SEVERITYCODE

1 136485 2 58188

Name: SEVERITYCODE, dtype: int64

Figure 1: Number of different severity in the data set

19 number columns contains NaN value, and the percentage of NaN in 7 columns exceeds 30%, as shown in Figure 2.

Figure 2: Columns having NaN values and the percentage of NaN

3 Methodology

3.1 Data cleaning

Columns containing coordinates, id and unexplainable information

Columns which are clearly not related to the severity of an accident are X, Y, OBJECTID, INCKEY, INTKEY, STATUS, LOCATION, EXCEPTRSNCODE, EXCEPTRSNDESC, UNDERINFL, ST_COLDESC, SEGLANEKEY, UNDERINFLL.

Column PERSONCOUNT, PEDCOUNT, and PEDCYLCOUNT

The involved persons column "PERSONCOUNT" includes the persons within the vehicle. This is not strongly related to an accident severity. This column will be removed from any further analysis.

Figure 3: Attributes and distributions of PERSONCOUNT, PEDCOUNT AND PEDCLYCOUNT

The involved pedestrians and cyclists "PEDCYLCOUNT" includes the pedestrian count "PEDCOUNT". Therefore the "PEDCOUNT" column is redundant data, and it will be removed from any further analysis.

Column WEATHER and ROADCOND

The attributes in the column WEATHER are "Raining", "Clear", "Unknown" etc. The attributes in column ROADCOND are "Wet", "Dry", "Unknown" etc. These two columns have redundant information. Therefore, only the ROADCOND column is considered for further analysis.

Figure 4: Attributes and distribution of column WEATHER and ROADCOND

Column SDOT_COLDESC, and SDOT_COLCODE

Columen SDOT_COLDESC is the description of the column SDOT_COLCODE, which is the indication of the collision type. This is likely related to the accident severity.

Therefore, column SDOT_COLCODE will be used for further analysis. Column SDOT_COLDESC will be removed as redundant information.

Summary of the columns to be removed

As discussed above, some columns will not be considered in further analysis and modelling. They are summarised in Table 1.

Table 1: Columns not considered in further analysis and modelling to predict accident severity

Column name	Reasons not included in further analysis				
$\frac{X}{Y}$	They are the coordinates which are not related to the accident severity				
SEVERITYDESC and SEVERITYCODE.1	SEVERITYCODE.1 is the same as SEVERITYCODE. SEVERITYDESC is the description of SEVERITYCODE. Therefore, these two columns are redundant information.				
OBJECTID	An identification number which is not related to the accident severity				
INCKEY, INTKEY					
INATTENTIONIND, INATTENTIONIND	Meaningless column, removed				
STATUS	This contains binary information "Match" and "Unmatch" however what status are they are not clear. Therefore, this column is not used for further analysis				
LOCATION	Accurate address of an accident, which is not related to the severity				
EXCEPTRSNC0DE	More than 50% data is NaN				
EXCEPTRSNDESC	More than 90% data is NaN				
UNDERINFL	This contains binary data "N", "Y", 0 and 1. However the meaning of these data is unknown. Therefore this column is not considered in further analysis				
ST_COLDESC	This is the description of ST_COLCODE.				
SEGLANEKEY					
CROSSWALKKEY	An identification number and not related to the accident sereviry				
PERSONCOUNT	Redundant information of PEDCOUNT				
PEDCYLCOUNT	1				
WEATHER	Redundant information of ROADCOND				
SDOT_COLDESC	Redundant information of SDOT_COLCODE				
JUNCTIONTYPE	Redundant information of ADDTYPE				

3.2 Data organisation for modelling

Collision type

The collision type does not have a clear patten related to the accident severity as shown in Figure 5.

For example, "Angles" is recorded more than 35000, however, this can be severe and not severe. Therefore, this column is removed for any further analysis.

Figure 5: Collision type

Speeding

In the original data only 9333 over 194673 cases are recorded as speeding. The majority is remaining NaN. It is assumed that the remaining data is not on the condition of over speed.

["Y", "N"] are replaced by [1, 0]. The distribution plot is shown in Figure 6.

Figure 6: Speeding distribution plot

Address type

The address type in the dataset includes "Intersection", "Block" and "Alley", as shown in Figure 7. As the attribute "Alley" only have 751 samples, the attribute of these rows are replaced by "Block".

Figure 7: Address type

Road condition

There are 9 different road conditions in this column. These road conditions can be grouped to wet and dry surface road. The "Unknown" samples will be grouped into dry surface road group.

Light condition

Light condition will be included in the predicting model. The values of the light condition are also grouped to "Bright" and "Dark". Where "Daylight", "Unknown", "Dusk", "Dawn", "Other" are categorised as "Bright" and "Dark - Street Lights On", "Dark - No Street Lights", "Dark - Street Lights Off", "Dark - Unknown Lighting" are categorised as "Dark".

Figure 8: Light condition

Overall view of the data for modelling

The overall view of the data after data cleaning is shown below.

#	Column	Non-Null Count	Dtype	
0	SEVERITYCODE	194673 non-nul	l int64	
1	PEDCOUNT	194673 non-nul	l int64	
2	VEHCOUNT	194673 non-nul	l int64	
3	SDOT_COLCODE	194673 non-nul	l int64	
4	SPEEDING_YES_NO	194673 non-nul	l int64	
5	Block	194673 non-nul	l uint8	
6	Intersection	194673 non-nul	l uint8	
7	Dry	194673 non-nul	l uint8	
8	Wet	194673 non-nul	l uint8	
9	Bright	194673 non-nul	l uint8	
10	Dark	194673 non-nul	l uint8	
dtypes: int64(5), uint8(6)				

As the address type "Block and Intersection", road condition "Dry and Wet", and light condition "Bright ad Dark" are binary value pairs, the features "Intersection", "Dry" and "Bright" are also dropped.

The features used in modelling are shown below.

#	Column Non-Null Count Dtype					
0	SEVERITY	CODE		194673	non-null	int64
1	PEDCOUNT			194673	non-null	int64
2	VEHCOUNT			194673	non-null	int64
3	SDOT_COLO	CODE		194673	non-null	int64
4	SPEEDING_	YES_N	10	194673	non-null	int64
5	Block			194673	non-null	uint8
6	Wet			194673	non-null	uint8
7	Dark			194673	non-null	uint8
<pre>dtypes: int64(5), uint8(3)</pre>						

Relation between the features and the severity

From data visualisation, it is found that the most significant features could affect the severity is the involved pedestrians and speeding as shown in Figure 9 and Figure 10. Relation between severity and other features are not possible to directly identified therefore, they are not illustrated in this report.

Figure 9: Relation between involved number of pedestrians

Figure 10: Relation between the severity and the speeding

3.3 Split data to training set and testing set

80% of the dataset will be used for training and 20% of the data will be used for testing. All the data will be standardised before splitting, training and testing.

3.4 Machine learning models

To predict the accident severity either 1 (not severe) or 2 (severe) is a classification problem. Therefore the following machine learning models are used.

K-nearest neighbour

This algorithm will classify the input information to belong to a certain group based on the similarity of this input information and its neighbours.

K is the number of neighbours used in the similarity comparison. The sklearn from "sklearn.neighbors" module "KneighborsClassifier" will be used.

K will affect the predicting accuracy. Therefore, the best K is determined based on the predicting error. To avoid over fit, the greatest K in the testing is 10.

Based on the training data, the best K is 8 as shown in Figure 11.

Figure 11: Find the best K

Decision tree

Decision trees are built by splitting the training set into distinct nodes, where one node contains all of or most of one category of the data. This is also used in data classifying.

The sklearn.tree module DecisionTreeClassifier is used in this report.

Logistic regression

The goal of logistic regression is to build a model to predict the class of each accident and also the probability of each sample belonging to a class.

The sklearn.linear_model module LogisticRegression is used in this report.

Support vector machine

A Support Vector Machine is a supervised algorithm that can classify cases by finding a separator. SVM works by first mapping data to a high dimensional feature space so that data points can be categorized, even when the data are not otherwise linearly separable. Then, a separator is estimated for the data. This can also be used for this project.

The sklearn module svm is used in this report.

Evaluation methods

f1_score, jaccard_score and log_loss are used to evaluate the predicting machine learning models.

4 Results

The predicting results of an accident severity with different machine learning algorithms are shown in Table 2.

Algorithm	f1_score	jaccard_score	log_loss
KNN	0.70	0.73	
Decision tree	0.68	0.73	
SVM	0.70	0.74	
Logistic regression	0.72	0.67	0.55

The above table indicates that the SVM method gives the best predicting output. The accuracy of other machine learning methods is slightly lower than the SVM however not significant. The confusion matrix is shown in Figure 12.

Figure 12: Confusion matrix of the SVM predicting model

5 Discussion

The data samples with severity code 1 (not severe) is 2.3 times more than that of severity code 2 (severe). Therefore the machine learning algorithm is not evenly fitted. It could tend to predict more code 1 cases.

The road conditions, and light conditions are simplified to binary values to make the model simple and possible to fit on a low performance laptop. The predicting precision may be increased if all these parameters are included.

6 Conclusion

The accident severity dataset was used and the project is aiming to find a model to predict the accident severity for local transportation department.

The dataset was analysed and the unrelated or redundant features are dropped. The directly related features are modified so that make it suitable for machine learning.

Classify machine learning models, such as K-Nearest Neighbout, Decision Tree, Support Vector Machine and Logistic Regression have been used in this project. The prediction accuracy was evaluated with F1 score, Jaccard score and log loss.

It is found that the Support Vector Machine is the best algorithm to predict the accident severity with F1 score of 0.70 and Jaccard score of 0.74.

The accident severity may be predicted with relative high confidence.