IT301: Data Communication & Computer Network(DCCN)

Class: B. Tech (CS) Sec A Semester: V

Teacher: Dr. Amritanjali

Week 4

Syllabus

Module I

Data Communications and Networking: Overview A
 Communications Model, Data Communications, Data
 Communication Networking, The Need for Protocol Architecture, A
 Simple Protocol Architecture, OSI, The TCP/IP Protocol Architecture,
 Data TransmissionConcepts and Terminology, Analog and Digital
 Data Transmission, Transmission Impairments, Channel Capacity.
 (8L)

Module II

 Transmission Media and Signal Encoding Techniques: Guided Transmission Media, Wireless Transmission, Wireless Propagation, Line-of-Sight Transmission. Digital Data Digital Signals, Digital Data Analog Signals, Analog Data Digital Signals, Analog Data Analog Signals. (8L)

Module III

• **Digital Data Communication Techniques and Data Link Control:**Asynchronous and Synchronous Transmission, Types of Errors, Error Detection, Error Correction, Line Configurations, Interfacing, Flow Control, Error Control, High-Level Data Link Control (HDLC). (8L)

Module IV

 Multiplexing, Circuit Switching and Packet Switching Multiplexing Frequency Division Multiplexing, Synchronous Time Division Multiplexing, Statistical Time Division Multiplexing, Switching Networks, Circuit-Switching Networks, Circuit-Switching Concepts, Control Signaling, Soft switch Architecture, Packet-Switching Principles, X.25, and Frame Relay. (8L)

Module V

 Asynchronous Transfer Model Protocol Architecture, ATM Logical Connections, ATM Cells, Transmission of ATM Cells, ATM Service Categories, ATM Adaptation Layer. Routing in Switched Networks Routing in Circuit-Switching Networks, Routing in Packet-Switching Networks, Least-Cost Algorithms. (8L)

Text Book: Stallings W., Data and Computer Communications, 10th Edn., Pearson Education, PHI, New Delhi, 2014.(T1)

Reference Book: Forouzan B. A., Data Communications and Networking, 5thEdn. TMH, New Delhi, 2017.(R1)

Signal Encoding Techniques

Digital Signaling

- A digital or analog data source is encoded into a digital signal
- Encoding technique decides the form of output digital signal
- It is chosen to optimize the use of the transmission medium

(a) Encoding onto a digital signal

Analog Signaling

- A carrier signal is used
- Frequency of the carrier signal should be compatible with the transmission medium being used
- Modulator is required to encode the data onto the carrier signal

Signal Encoding

- Digital Data Digital Signal
- Analog Data Digital signal
- Digital Data Analog Signal
- Analog Data Analog Signal

Digital Data Digital Signals

Digital Signal

- A sequence of discrete, discontinuous voltage pulses
- Each pulse is a signal element
- Bits are encoded into signal elements

Unipolar Signaling

All signal elements have same sign

Bipolar signaling

Both positive and negative voltage levels are used

Digital Data Digital Signals

Data Rate

Rate at which binary data is transmitted in bits per second

Bit Duration

• Time taken to transmit a single bit

Modulation Rate

Rate of change of signal level

Signal Interpretation

- Receiver samples at the middle of bit duration and compares with a threshold value
- Receiver needs to know timing of each bit
- And, the binary value denoted by each signal level

Factors affecting error rate

Bandwidth and Data Rate

Signal to Noise Ratio

Encoding Technique

Desirable Features

- Lack of high frequency components
- Lack of DC Component
- Synchronization mechanism based on the transmitted signal
- Error detection Capability built into encoding scheme
- Signal interference and noise immunity
- Lower signaling rate for a given data rate

Non Return to Zero (NRZ)

NRZ-L (Non Return to Zero-Level)

- Negative voltage level represents binary value 1
- Positive voltage level represents binary value 0

NRZI (Non Return to Zero, Invert on ones)

- Maintains a constant level for the duration of bit
- Transition at the beginning of bit interval indicates 1
- Absence of transition at the beginning of bit interval indicates
 0
- A type of differential encoding technique, more reliable in the presence of noise as compared to multi-level signaling

NRZ Encoding

NRZ Performance

- Easy to implement
- Bandwidth efficient
- Presence of DC component
- Lack of synchronization capability

Multilevel Binary

Use more than two signal levels

Bipolar AMI (Alternate Mark inversion)

- Binary 0 is represented by no line signal
- Binary 1 is represented by alternate positive and negative pulse

Pseudoternary- Inverse logic is used

Advantages

- No DC component
- No loss of synchronization for long sequences of 1's
- Error detection capability

Disadvantage

Not as BW efficient as NRZ

Multilevel Binary Encoding

Biphase

Signal level is checked twice in each bit duration

Manchester

- Transition at the middle of bit duration
- Low to high represents 1
- High to low represents 0

Differential Manchester

- Mid-bit transition for clocking
- Transition at the beginning represents 0
- Absence of transition at the beginning represents 1

Performance

- Self clocking codes
- No DC component
- Absence of expected transition can be used for error detection
- Maximum modulation rate is twice that of NRZ

Scrambling Techniques

- Biphase techniques are widely used in LAN applications
- Not suitable for long distance communications
- Scrambling technique are used for modifying the sequence of bits to avoid those sequences that would result in a constant voltage level on the line
- Such sequences are replaced by filling sequences that will provide sufficient transitions
- Ex- B8ZS and HDB3

B8ZS

Bipolar with 8 Zeroes Substitution

- Overcomes the problem of bipolar AMI
 - If an octet of all zeroes occur and if the last voltage pulse preceding this octet was positive pulse, then the octet is encoded as 000+-0-+
 - If an octet of all zeroes occur and if the last voltage pulse preceding this octet was negative pulse, then the octet is encoded as 000-+0+-
- It forces two code violations of the AMI code, which is unlikely to be caused by noise or other impairments

HDB3

High Density Bipolar 3 Zeroes

- It is also based on AMI encoding
- Replaces strings of four zeroes with sequences containing one or two pulses
- Fourth zero is replaced with a code violation
- Successive violations are of opposite polarity to avoid DC component

Previous Mark	Number of marks since the last	
Polarity	substitution	
-	Odd	Even
-	000-	+00+
+	000+	- 0 0 -

B = Valid bipolar signal

V = Bipolar violation

Performance

- No DC Component
- No long sequence of zero level signals
- No reduction in data rate
- Error detection capability

Digital Data Analog Signals

- Carrier signal is modulated using the input digital data
- It involves variation of one or more of the three characteristics of the carrier signal,
- Amplitude, frequency and phase
- Basic encoding or modulation techniques
- Amplitude shift keying (ASK), Frequency shift keying (FSK) and Phase shift keying (PSK)

ASK

- Two different amplitudes of the carrier signal is used to represent the binary values
- Used for transmitting data over optical fibers

$$s(t) = \begin{cases} A\cos(2\pi f_c t) & \text{binary 1} \\ 0 & \text{binary 0} \end{cases}$$

FSK

- Most common form is Binary FSK (BFSK)
- Carrier signals of two different frequencies are used to represent the two binary values

$$s(t) = \begin{cases} A\cos(2\pi f_1 t) & \text{binary 1} \\ A\cos(2\pi f_2 t) & \text{binary 0} \end{cases}$$

 f1 and f2 are offset from the carrier frequency by equal and opposite amounts

FSK

FSK

- Less susceptible to noise than ASK
- Used for high frequency radio transmission and in LANs using coaxial cable

MFSK

- More than two frequencies are used
- Bandwidth efficient but more susceptible to error

$$s_i(t) = A \cos 2\pi f_i t$$
 $1 \le i \le M$

- $f_i = f_c + (2i 1 M)f_d$
- f_c = the carrier frequency
- f_d = the difference frequency
- M = number of different signal elements = 2^L
- L = number of bits per signal element
- Minimum frequency separation is 2f_d and required BW is 2Mf_d

PSK

- Phase of the carrier signal is shifted to represent data
- BPSK

$$s(t) = \begin{cases} A\cos(2\pi f_c t) & \text{binary 1} \\ A\cos(2\pi f_c t + \pi) & \text{binary 0} \end{cases}$$
$$= \begin{cases} A\cos(2\pi f_c t) & \text{binary 1} \\ -A\cos(2\pi f_c t) & \text{binary 1} \\ -A\cos(2\pi f_c t) & \text{binary 0} \end{cases}$$

PSK

QPSK

- Quadrature Phase Shift Keying (4-level PSK)
- Uses phase shifts in multiple of $\pi/2$

$$S(t) = \begin{cases} A\cos\left(2\pi f_c t + \frac{\pi}{4}\right) & 11\\ A\cos\left(2\pi f_c t + \frac{3\pi}{4}\right) & 01\\ A\cos\left(2\pi f_c t - \frac{3\pi}{4}\right) & 00\\ A\cos\left(2\pi f_c t - \frac{\pi}{4}\right) & 10 \end{cases}$$

Transmission Bandwidth for Modulated Analog Signals

For ASK and PSK the bandwidth is given as $\mathbf{B}_{\mathsf{T}} = (\mathbf{1} + \mathbf{r}) \mathbf{R}$, where

R is the bit rate and r is a constant between 0 and 1.

For multilevel FSK, the bandwidth is given as

$$\mathbf{B}_{\mathsf{T}} = ((1 + r)\mathsf{M}/\log_2 \mathsf{M})\mathsf{R}_{\mathsf{L}}$$
, where

For multilevel PSK, bandwidth can be given as

$$B_{T} = ((1 + r)/\log_{2} M)R.$$