1 Definições elementares

Ao longo do texto $f^n(x)$ representará a n-ésima iterada de f no ponto x e os conjuntos I e J representarão intervalos fechados de \mathbb{R} .

Definição 1.1. Sejam $f: I \to J$ uma função, $p \in I$ e $n \ge 1$. Dizemos que p é um ponto periódico de f com período n se $f^n(p) = x$. Se $f^k(p) \ne x$ para todo $1 \le k < n$, então n é chamado de período principal. Em particular, se n = 1, dizemos que p é um ponto fixo de f.

Definição 1.2. Sejam $f: I \to J$ uma função, $p \in I$ e $n \ge 1$. Dizemos que p é um ponto eventualmente periódico de f, com período n, se existe m > 1 tal que $f^k(p) = f^{k+n}(p)$ para todo $k \ge m$. Em particular, se n = 1, dizemos que p é um ponto eventualmente fixo de f.

Definição 1.3. Sejam $f: I \to J$ uma função e $x \in I$. A órbita de x é o conjunto $O(x) = \{x, f(x), f^2(x), \dots\}.$

Definição 1.4. Sejam $f: I \to J$ uma função, p um ponto periódico de período n e $x \in I$. Dizemos que x tende assintoticamente para p se $\lim_{k\to\infty} f^{kn}(x) = p$. O conjunto $W^s(p)$ dos pontos que tendem assintoticamente para p é chamado chamado de conjunto estável de p.

Proposição 1.5. Os conjuntos estáveis de dois pontos periódicos distintos possuem intersecção vazia.

Demonstração. Suponha que existam pontos periódicos distintos p e q de uma função f, de períodos m e n respectivamente, tais que $W^s(p) \cap W^s(q) \neq \emptyset$. Seja $x \in W^s(p) \cap W^s(q)$. Temos que $|f^{km}(x) - p| \to 0$ e $|f^{kn}(x) - q| \to 0$ quando $k \to \infty$.

Desse modo, dado $\varepsilon > 0$ existe $N \in \mathbb{N}$ tal que $|f^{km}(x) - p| < \frac{\varepsilon}{2}$ e $|f^{kn}(x) - q| < \frac{\varepsilon}{2}$ para todo k > N. Portanto, $|p - q| = |p - f^{kmn}(x) + f^{kmn}(x) - q| \le |f^{(kn)m}(x) - p| + |f^{(km)n}(x) - q| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$. Temos então que p = q, pois ε é arbitrário. Absurdo. \square

O objetivo do estudo de Sistemas Dinâmicos é entender a natureza das órbitas, identificando pontos periódicos, eventualmente periódicos, que tendem assintoticamente, etc.

2 Implicações da diferenciabilidade

Proposição 2.1. Seja $f: I \to I$ uma função contínua. Então f possui ponto fixo.

Demonstração. Seja I = [a, b] e considere a função contínua g(x) = f(x) - x definida em I. Como $f(a), f(b) \in I$, temos que $g(a) = f(a) - a \ge 0$ e $g(b) = f(b) - b \le 0$. Pelo Teorema do Valor Intermediário, existe $p \in I$ tal que g(p) = f(p) - p = 0. Desse modo, p é ponto fixo de f.

Teorema 2.2. Seja $f: I \to I$ uma função diferenciável. Suponha que |f'(x)| < 1 para todo $x \in I$. Então |f(x) - f(y)| < |x - y| para todo $x, y \in I$, $x \neq y$. Além disso, f admite um único ponto fixo.

Demonstração. Sejam $x, y \in I$, x < y. Pelo Teorema do Valor Médio, existe $c \in [x, y]$ tal que f(x) - f(y) = f'(c)(x - y). Portanto, |f(x) - f(y)| = |f'(c)||x - y| < |x - y|.

Pela Proposição 2.1, f admite um ponto fixo p. Suponha que exista um ponto fixo q diferente de p. Então, pela primeira parte da demonstração, |p-q|=|f(p)-f(q)|<|p-q|. Absurdo.

Definição 2.3. Sejam $f: I \to J$ uma função diferenciável e p um ponto periódico de f com período principal n. Dizemos que p é um ponto hiperbólico se $|(f^n)'(p)| \neq 1$. Se $|(f^n)'(p)| > 1$ dizemos que p é um ponto hiperbólico atrator e se $|(f^n)'(p)| < 1$ dizemos que p é um ponto hiperbólico repulsor. Dizemos que p é um ponto não-hiperbólico se $|(f^n)'(p)| = 1$.

Teorema 2.4. Sejam $f: I \to I$ uma função C^1 e p um ponto periódico de f com período principal n. Se p é um ponto hiperbólico atrator, existe uma vizinhança U de p tal que $\lim_{k\to\infty} f^{kn}(x) = p$ para todo $x \in U$. Se p é um ponto hiperbólico repulsor, existe uma vizinhança V de p tal que, se $x \in V$ e $x \neq p$, $f^{kn}(x) \notin V$ para algum $k \geq 1$.

Demonstração. Suponha que p é um ponto hiperbólico atrator. Como f' é contínua, existe uma vizinhança U de p tal que $|(f^n)'(x)| \leq \lambda$ para todo $x \in U$ e para algum $\lambda < 1$. Pelo Teorema do Valor Médio, se $x \in U$ então $|f^n(x) - p| = |f^n(x) - f^n(p)| < \lambda |x - p|$. Por indução, $|f^{kn}(x) - p| < \lambda^k |x - p|$. Desse modo, $f^{kn}(x) \to p$ quando $k \to \infty$.

Suponha que p é ponto hiperbólico repulsor. Como f' é contínua, existe uma vizinhança V de p tal que $|(f^n)'(x)| \ge \lambda$ para todo $x \in V$ e para algum $\lambda > 1$. Pelo Teorema do Valor Médio, se $x \in V$ e $x \ne p$ então $|f^n(x) - p| = |f^n(x) - f^n(p)| > \lambda |x - p|$. Por indução, $|f^{kn}(x) - p| > \lambda^k |x - p|$. Como $\lambda^k |x - p| \to \infty$ quando $k \to \infty$, temos que $f^{kn}(x) \notin V$ para algum $k \ge 1$.