Tools & Models for Data Science Support Vector Machines

Chris Jermaine & Risa Myers

Rice University

ML Roadmap

- Linear Regression
- Generalized Linear Models

Alternatives to Logistic Regression

- The "Big Three" for classification
 - Logistic regression
 - Support Vector Machines
 - kNN

Recall: Logistic Regression

- Specialized case of GLM
- Where the error can come from a family of distributions
- If we use the Bernoulli distribution
 - We get Logistic Regression
 - There is a different, but mathematically equivalent representation of Logistic Regression using the sigmoid function

The Sigmoid Function

$$S(x) = \frac{1}{1+e^{-x}} = \frac{e^x}{e^x+1}$$

- There are others (Hyperbolic tangent, Arctangent, ...)
- Key properties
 - Monotonic
 - "S" shape
 - Horizontal asymptotes

Training and Inference

During training

- During training we have a set of $n \{x_i, y_i\}$ pairs
- We use a method (MLE, gradient ascent, etc.) to learn the vector of regression coefficients, r
- To maximize the log likelihood function

$$\sum_{i} y_i(x_i \cdot r) - \log(1 + e^{x_i \cdot r})$$

- During inference
 - We use r and the new x_i s to choose the label, y_i , to maximize the LLH
 - y_i in $\{0,1\}$
 - Basically, if $x_i \cdot r < 0$, pick $y_i = 0$

Human Logistic Regression

- When the data are "linearly separable"
 - Recall

$$LLH = \sum_{i} y_i(x_i \cdot r) - \log(1 + e^{x_i \cdot r})$$

- Where x_i are the training data
- r is the vector of regression coefficients
- $y_i = sign(x_i \cdot r)$ Where $sign(x_i \cdot r) = \begin{cases} 1 & \text{if } x_i \cdot r > 0 \\ 0 & \text{if } x_i \cdot r < 0 \end{cases}$
- Assigns a class based on which side of the "cutting" line the point is on
- ? Where does the cutting line go?

Humans vs. Machine Logistic Regression

Humans vs. Machine Logistic Regression

Problem With Un-Regularized Logistic Regression

- Possible to choose infinite models that get infinite LLH
- Just choose ANY cutting plane between classes
- That is, choose any r that perfectly classifies data, so $y_i = sign(x_i \cdot r)$
- Then use $r' = BIG \times r$
- And $\sum_{i} y_i(x_i \cdot r') \log(1 + e^{x_i \cdot r'})$ will be really big
- Infinitely many models give infinite LLH
- Bad: Not clear which plane is preferred

SVMs: Geometric, Not Probabilistic

- What should a classifier do in this super-easy case?
 - Just put the widest strip possible between two classes
 - Future points above center of strip are "yes"
 - Below center of strip are "no"
 - Points that keep strip from expanding are "support vectors"

1 Choose an arbitrary, infinitely thin cutting plane

- 1 Choose an arbitrary, infinitely thin cutting plane
- 2 Make it wider

- 1 Choose an arbitrary, infinitely thin cutting plane
- 2 Make it wider
- 3 Keep widening until you hit a data point

- 1 Choose an arbitrary, infinitely thin cutting plane
- 2 Make it wider
- 3 Keep widening until you hit a data point, rotating if needed

- 1 Choose an arbitrary, infinitely thin cutting plane
- 2 Make it wider
- Keep widening until you hit a data point, rotating if needed
- 4 Expand in the other direction

- 1 Choose an arbitrary, infinitely thin cutting plane
- 2 Make it wider
- Keep widening until you hit a data point, rotating if needed
- 4 Expand in the other direction

SVMs Steps 5 & 6

- Choose an arbitrary, infinitely thin cutting plane
- 2 Make it wider
- Keep widening until you hit a data point, rotating if needed
- 4 Expand in the other direction
- 5 Stop when strip is wedged in by three points
- 6 Choose the line in the center of the strip

- Idea: We want to describe this geometric algorithm mathematically
- Any line/plane/hyperplane can be described by a normal vector w and a distance b
 - The line/plane/hyperplane is all points x where $w \cdot x b = 0$
 - d is the number of dimensions of our data
 - w is a d dimensional vector
 - b is an intercept term

■ SVM chooses two parallel planes

$$w \cdot x - b = 1$$

$$w \cdot x - b = -1$$

- NOTE: Notation change from $\{0,1\}$ to $\{-1,1\}$ for mathematical convenience
- \blacksquare We need to learn w and b

SVM chooses two parallel planes

$$w \cdot x - b = 1$$

$$w \cdot x - b = -1$$

- We need to learn w and b
- This is a constrained maximization problem
 - Use ||w|| to denote the l_2 norm of the vector w
 - Can prove distance between them is $\frac{2}{||w||}$
- Where $w \cdot x_i b \ge 1$ when x_i is "yes"
- Where $w \cdot x_i b \le -1$ when x_i is "no"
 - in general, where $y_i(w \cdot x_i b) \ge 1$

SVM chooses two parallel planes

$$w \cdot x - b = 1$$

$$w \cdot x - b = -1$$

- We need to learn w and b
- This is a constrained maximization problem
- Where $w \cdot x_i b \ge 1$ when x_i is "yes"
- Where $w \cdot x_i b \le -1$ when x_i is "no"
 - in general, where $y_i(w \cdot x_i b) \ge 1$
- We want to maximize $\frac{2}{||w||}$ subject to the constraint above
 - One class is above the plane
 - The other class is below the plane

- In the end we have...
- Choose w to maximize $\frac{2}{||w||}$ (alt., to minimize ||w||)
- Subject to $y_i(w \cdot x_i b) \ge 1$
- That's all a SVM is!
- Easily written as a quadratic program (objective function quadratic)
 - However, quadratic programs are NP-Hard
 - There are solvers out there
 - But, SVMs are a limited version of the quadratic program, so it's not that hard

What does NP-Hard Mean?

- Computational complexity
- COMP 182/382/482 material
- Has to do with how much time it takes to solve the problem
- Non-deterministic polynomial time hardness

One Issue: What If the Data Are Not Linearly Separable?

- Then no solution to above problem!
- In other words, our "Subject to" clause may result in ZERO solutions
- Subject to $y_i(w \cdot x_i b) \ge 1$
- ? How do we handle this?

One Issue: What If the Data Are Not Linearly Separable?

- Then no solution to above problem!
- In other words, our "Subject to" clause may result in ZERO solutions
- Subject to $y_i(w \cdot x_i b) \ge 1$
 - Solution: don't require a "hard margin"
 - Allow some error
 - Training points on wrong side of cutting plane get a penalty

"Soft Margin" Formulation

- Go back to the optimization function and add in a "slack" variable
 - Choose w to minimize $||w||^2 + c\sum_i \varepsilon_i$
 - Subject to $y_i(w \cdot x_i b) \ge 1 \varepsilon_i$
 - Add a cost, ϵ , so the learner doesn't put everything on the wrong side
 - Ideally, ε is 0
 - c is a user supplied variable it tells the learner how significant a misclassification is
- The "slack" needs to appear in both the objective function and in the constraint
- That's all a soft-margin SVM is!
- This is a classic approach to handling non-linearly separable data

How To Solve?

■ How do we determine *w* and *b*?

$$w \cdot x - b = 1$$

$$w \cdot x - b = -1$$

- Choose w to minimize $||w||^2 + c\sum_i \varepsilon_i$
- Subject to $y_i(w \cdot x_i b) \ge 1 \varepsilon_i$
- This is a constrained optimization problem

Rewrite as an Unconstrained Problem

 \blacksquare How do we determine w and b?

$$w \cdot x - b = 1$$
$$w \cdot x - b = -1$$

- Choose w to minimize $||w||^2 + c\sum_i \varepsilon_i$
- Subject to $y_i(w \cdot x_i b) \ge 1 \varepsilon_i$
- Minimize

$$\frac{\lambda}{2}||w||^2 + \frac{1}{n}\sum_i \max(0, 1 - y_i(w \cdot x_i))$$

- where $\lambda = \frac{1}{n \times c}$
- \blacksquare *n* is the number of points
- lacksquare c is the cost from the previous slide
- Amenable to gradient descent (one issue: non-smooth max function)

Non-smooth Max Function

- Can't take the derivative at the max
- In practice it doesn't matter
- Ignore those cases

The Kernel Trick

Motivation:

- SVMs (and logistic regression) are linear
- But many classification problems are not...
- Kernel trick idea: map into higher-D, use linear classifier there
- Not just for SVMs, but closely linked with them

The Kernel Trick

- Biggest motivation for SVMs
- If the number of dimensions ≫ number of data points, SVM can build a good classifier
- Consider the case of periodic data, perhaps a photovoltaic sensor

- Clearly, the data are not linearly separable
- So, map to 2D space by adding a sine value
- Now, the data are linearly separable

Kernels

- Projections that maps the data into a higher dimension space where they are linearly separable
- This approach can be used with any sort of classifier
- SVMs are synonymous with kernel methods

What is a Kernel?

- Math tells us:
 - ANY mapping from vector pairs to matrix entries...
 - ...Is equivalent to embedding vectors in SOME high-D space
 - Where $x'_i \cdot x'_i$ is the matrix entry at i,j
 - As long as we get a positive semi-definite matrix
- This mapping is called a "kernel"
- Given n points, the pairwise dot products \rightarrow a Positive Semi-definite Matrix
- Given n points, the pairwise dot products ← a Positive Semi-definite Matrix in some space

The Actual "Trick"

- It's possible to learn an SVM without explicitly performing the mapping
- Have

$$\frac{\lambda}{2}||w||^2 + \frac{1}{n}\sum_i \max(0, 1 - y_i(w \cdot x_i))$$

- where $\lambda = \frac{1}{n \times c}$
- To do this, start with the "dual" formulation of the problem:
 - Maximize

$$\sum_{i} \alpha_{i} \frac{1}{2} \sum_{i,j} \alpha_{i} \alpha_{j} (x_{i} \cdot x_{j})$$

Subject to

$$0 \le \alpha_i \le \frac{1}{\lambda}$$

- where $\lambda = \frac{1}{n \times c}$
- We want to choose the α s

The Actual "Trick"

■ Learn an SVM without explicitly performing the mapping

Maximize

$$\sum_{i} \alpha_{i} \frac{1}{2} \sum_{i,j} \alpha_{i} \alpha_{j} (x_{i} \cdot x_{j})$$

Subject to

$$0 \le \alpha_i \le \frac{1}{\lambda}$$

- where $\lambda = \frac{1}{n \times c}$
- We want to choose the α s
- Key observation: each x_i is **only** used as input to dot product
- So no need to explicitly map to high-D
 - \blacksquare As long as have the n by n matrix
 - Where each entry is pairwise dot product in high-D, we're good!
 - We know that the mapping to the high-D space exists

Standard Kernels

- "Polynomial kernel"
 - Replace $(x_i \cdot x_j)$ with $(1 + (x_i \cdot x_j))^d$ for d > 0
- "Gaussian kernel"
 - Replace $(x_i \cdot x_j)$ with $\exp(-||x_i x_j||^2/(2\sigma^2))$

Kernel Trick Plus/Minus

- Good: can give better classification accuracy
 - Often used in practice for this reason!!
- Bad: often sensitive to kernel parameter(s) (σ in Gaussian kernel, for example)
- Bad: computationally more complex...
 - Dual formulation not easily amenable to gradient descent
 - Means kernels useful mostly for smaller problems

Which Kernel?

■ Try different ones and compare

Finally: Log Regression, SVM, or Deep Learning?

- Have small data, well featurized
 - SVM is one of the top options
 - $O(n^2)$ calculations to compute the matrix for the kernel trick
 - Gets unwieldy after about 50K points
- Have "big data", well featurized
 - Regularized Logistic Regression
 - Works well
 - Inexpensive to train
- Regularized Logistic Regression is comparable to SVM without the kernel trick
- Have "big data" and/or no features
 - e.g. text, images
 - Deep Learning

Questions?

■ What do we know now that we didn't know before?

■ How can we use what we learned today?

Questions?

- What do we know now that we didn't know before?
 - SVM is an ML model for classification
 - It can handle non-linearly separable data
 - There's a kernel trick that helps us do this
- How can we use what we learned today?
 - We can use SVM instead of another classification method