Probabilità Appunti

Giovanni Palma e Alex Basta

Contents

Chapter 1	Introduzione	Page
Chapter 2	Spazi di probabilità	Page
2.1	Concetti introduttivi	
2.2	Regole del calcolo probabilistico Assiomi della probabilita' — • Conseguenze degli assiomi —	
2.3	Probabilita' discreta Probabilita' uniforme —	
Chapter 3	Probabilita' Condizionata	Page
3.1	Definizione e motivazioni	
3.2	Regola della catena	
3.3	Indipendenza di eventi Generalizzazione su n eventi — • Esercizi —	

Esercizio 4 (Foglio 2) — • Esercizio 7 — • Esercizio 5 — • Esercizio Porco Rosso —

3.4 Bayes

3.5 Esercitazionei3.6 Esercitazione

Chapter 1

Introduzione

Appunti di Probabilità presi in base alle lezioni di Elly Shlein, qui si è piddini

Chapter 2

Spazi di probabilità

2.1 Concetti introduttivi

Innanzi tutto andiamo a definire che cosa intendiamo per esperimento aleatorio, esito, probabilità Con la dicitura esperimento aleatorio indicheremo qualunque fenomeno (fisico, economico, sociale, ...) il cui esito non sia determinabile con certezza a priori. Il nostro obiettivo è di fornire una descrizione matematica di un esperimento aleatorio, definendo un modello probabilistico, un esito invece è un ipotetico risultato di un'esperimento aleatorio sulla base di un cosiddetto spazio campionario un insieme che contiene tutti gli esiti possibili dell'esperimento

Example 2.1.1

- Esperimento aleatorio: Lancio di un dado.
- Spazio campionario: $\Omega = \{1, 2, 3, 4, 5, 6\}.$
- Esito: 4.

Note:

In casi piu' complessi ci saranno vari sotto-esperimenti aleatori, come 10 lanci di un dato.

Adesso forniamo vere e priorie definizioni

Definition 2.1.1: evento

Si definisce **evento** un'affermazione riguardante l'ipotetico esito univoco dell'esperimento, di cui si può affermare con certezza se è vero o falso una volta noto l'esito

Example 2.1.2

Esper. aleatorio: Lancio del dado A = "esce un numero pari"

Definition 2.1.2: Spazio camipionario

Lo spazio campionario è l'insieme di tutti i possibili esiti di un esperimento casuale e viene denotato con Ω

Notare che non si afferma "tutti e solo tutti", quindi **qualsiasi** insieme che contiene gli esiti possibili può essere considerato uno spazio campionario

Example 2.1.3 (Lancio dado)

Possiamo porre come spazio campionario:

$$\Omega = \{1, 2, 3, 4, 5, 6\}$$

ma anche

$$\Omega = \mathbb{R}$$

Definition 2.1.3: Esiti favorevoli

Esiti per cui un evento è vero sono detti esiti favorevoli.

Definition 2.1.4: Evento in termine di insiemi

Un evento si puo' definire anche come il sottoinsieme dello spazio campionario Ω formato da tutti gli esiti favorevoli dell'evento.

Example 2.1.4

 $\Omega = \{1, 2, 3, 4, 5, 6\} \implies A = \text{"esce un numero pari"} \implies \{2, 4, 6\}$ sono gli esiti favorevoli dell'evento A.

Note:

La definizione insiemistica di un evento dipende dallo spazio campionario Ω definito, poiché l'evento è un sottoinsieme di Ω . Tuttavia, l'insieme degli esiti favorevoli di un evento è fisso, e rappresenta l'insieme evento di cardinalità massima possibile, ovvero l'insieme degli esiti favorevoli $A \subseteq \Omega$.

Definition 2.1.5

- \bullet Ω e' l'evento certo
- ullet \emptyset e' l'evento impossibile
- $\omega \in \Omega$ e' un evento elementare $(A = \{\omega\})$

Example 2.1.5

Lancio un dado.

A = "esce un numero tra 1 e 6"

B = "esce un numero maggiore di 6"

C = "esce il numero 3"

- Se $\Omega = \{1, 2, 3, 4, 5, 6\}$, allora:
 - $-A = \Omega$ (evento certo),
 - $-B = \emptyset$ (evento impossibile),
 - $-C = \{3\}$ (evento con un solo esito favorevole).
- $\bullet \ \mbox{Se} \ \Omega = \mathbb{R}, \mbox{ allora:}$
 - $-A = \{1, 2, 3, 4, 5, 6\} \subset \Omega$ (evento quasi certo),
 - $-B = (6, +\infty)$ (evento quasi impossibile),
 - $-C = \{3\}$ (evento con un solo esito favorevole).

2.2 Regole del calcolo probabilistico

Ad ogni relazione logica possiamo associare un'operazione insiemistica:

Connettivi Logici	Connettvi Insiemistici
$A \vee B$	$A \cup B$
$A \wedge B$	$A \cap B$
$\neg A$	A^c
$A \implies B$	$A \subseteq B$
$A \iff B$	A = B

Note:

Nella prima colonna, A e B sono eventi come affermazioni, mentre nella colonna di destra sono degli insiemi.

2.2.1 Assiomi della probabilita'

Poniamo tre assiomi fondamentali da cui possiamo partire per derivare tutte le operazioni e proprieta' che ci servono:

Note:

Per noi tutti i sottoinsiemi di Ω sono eventi (anche se non sara' sempre cosi)

Definition 2.2.1: Assiomi fondamentali della probabilità

Assioma 1. A ciascun sottoinsieme (o evento) A di Ω è assegnato un numero $\mathbb{P}(A)$ che verifica:

$$0 \leq \mathbb{P}(A) \leq 1$$
.

Tale numero $\mathbb{P}(A)$ si chiama **probabilità** dell'evento A.

Assioma 2. $\mathbb{P}(\Omega) = 1$.

Assioma 3. Vale la proprietà di additività numerabile^a: sia $A_1, A_2, \ldots, A_n, \ldots$ una successione di sottoinsiemi di Ω tra loro disgiunti^b e sia

$$A = \bigcup_{n=1}^{\infty} A_n.$$

Allora

$$\mathbb{P}(A) = \sum_{n=1}^{\infty} \mathbb{P}(A_n).$$

Note:

Quindi, per il primo assioma, esiste una funzione probabilita' $\mathbb{P}(A): \mathcal{P}(\Omega) \to [0,1]$.

Definition 2.2.2: Spazio di probabilità

La coppia (Ω, \mathbb{P}) si dice **spazio di probabilità** o modello matematico dell'esperimento aleatorio

2.2.2 Conseguenze degli assiomi

Theorem 2.2.1

Sia Ω spazio campionario e \mathbb{P} probabilità su Ω ((Ω , \mathbb{P}) è uno spazio di probabilità con \mathbb{P} : $\mathcal{P}(A) \to [0,1]$). Dagli assiomi 1, 2, 3 deduciamo le cose seguenti:

1.
$$\mathbb{P}(\emptyset) = 0$$

^aAnche detta σ -additività.

^bIn formule: $A_i \cap A_j = \emptyset$, per ogni $i \neq j$. In altri termini, non hanno elementi in comune.

2. Additività finita: $(A_i)_{i=1,\dots,n}$. $\forall i \neq j$. $A_i \cap A_j = \emptyset \implies \mathbb{P}\left(\bigcup_{i=1}^n A_i\right) = \sum_{i=1}^n \mathbb{P}(A_i)$

3. $\mathbb{P}(A^c) = 1 - \mathbb{P}(A)$

4. Monotonia: $A \subseteq B \implies \mathbb{P}(A) \leqslant \mathbb{P}(B)$

Dimostrazione: 1. Devo mostrare che $\mathbb{P}(\emptyset) = 0$. Per semplicità definiamo $p := \mathbb{P}(\emptyset)$. Uso l'assioma 3 con la successione $(A_n)_{n \in \mathbb{N}}$ dove $\forall i \in \mathbb{N}$. $A_i = \emptyset$, che sono tutti eventi disgiunti. Quindi:

$$\mathbb{P}\left(\bigcup_{i=1}^{\infty} A_i\right) = \sum_{i=1}^{\infty} \mathbb{P}(A_i) = \sum_{i=1}^{\infty} p.$$

Inoltre:

$$\bigcup_{i=1}^{\infty} A_i = \emptyset \implies p = \sum_{i=1}^{\infty} p.$$

L'equazione è soddisfatta solo per p = 0.

2. Supponiamo di avere una sequenza finita disgiunta A_1, \ldots, A_n . Definisco $(B_i)_{i \in \mathbb{N}}$ tale che $B_i = A_i$ per $i = 1, \ldots, n$ e $B_i = \emptyset$ per i > n. Usando l'assioma 3:

$$\mathbb{P}\left(\bigcup_{i=1}^{\infty} B_i\right) = \sum_{i=1}^{\infty} \mathbb{P}(B_i) = \sum_{i=1}^{n} \mathbb{P}(A_i).$$

3. Per definizione di complemento, $A^c \cup A = \Omega$ e $A^c \cap A = \emptyset$. Per additività:

$$\mathbb{P}(A^c) + \mathbb{P}(A) = \mathbb{P}(\Omega) = 1$$
 (per l'assioma 2).

4. Se $A \subseteq B$, allora $B = A \cup (B \setminus A)$, con $A \in B \setminus A$ disgiunti. Per additività:

$$\mathbb{P}(B) = \mathbb{P}(A) + \mathbb{P}(B \setminus A) \geqslant \mathbb{P}(A).$$

Theorem 2.2.2 Probabilità unione non disgiunta

Siano A e B eventi:

$$\mathbb{P}(A \cup B) = \mathbb{P}(A) + \mathbb{P}(B) - \mathbb{P}(A \cap B) \tag{2.1}$$

 \odot

Dimostrazione: $A \cup B = (A \setminus B) \cup (B \setminus A) \cup (A \cap B)$. Per additività:

$$\mathbb{P}(A \cup B) = \mathbb{P}(A \setminus B) + \mathbb{P}(B \setminus A) + \mathbb{P}(A \cap B).$$

Osservando che:

$$\mathbb{P}(A \setminus B) + \mathbb{P}(A \cap B) = \mathbb{P}(A), \quad \mathbb{P}(B \setminus A) + \mathbb{P}(A \cap B) = \mathbb{P}(B),$$

si ottiene la formula.

Note:

La formula si complica con un numero di eventi maggiore di 2. Per n=3:

$$\mathbb{P}(A \cup B \cup C) = \mathbb{P}(A) + \mathbb{P}(B) + \mathbb{P}(C) - \mathbb{P}(A \cap B) - \mathbb{P}(B \cap C) - \mathbb{P}(A \cap C) + \mathbb{P}(A \cap B \cap C).$$

2.3 Probabilita' discreta

Finora sappiamo solo le "regole" che deve seguire una funzione per essere una probabilita'. Passiamo ora a vedere come calcolare il valore di un certo tipo di probabilita', la probabilita' discreta:

Definition 2.3.1: Probabilità discreta

Chiamo probabilità discreta una funzione probabilità \mathbb{P} su Ω , tale che:

$$\exists \overline{\Omega} \subseteq \Omega, \ \overline{\Omega}$$
 e' finito o numerabile. $\mathbb{P}(\overline{\Omega}) = 1$

Ovvero, una probabilita' e' discreta se il suo spazio campionario minimo e' finito o numerabile. Questa condizione e' necessaria per poter poi definire un modo per effettivamente calcolare il valore della probabilita' (discreta) di un qualunque evento.

Diamo prima una definizione di una tale probabilità:

Definition 2.3.2: Delta di Dirac

Sia $\Omega = \mathbb{R}$, $x_0 \in \mathbb{R}$, allora si chiama delta di Dirac centrato in x_0 la funzione:

$$\delta_{x_0} : \mathcal{P}(\mathbb{R}) \to [0, 1]$$

$$A \mapsto \delta_{x_0}(A) = \begin{cases} 1 & x_0 \in A \\ 0 & x_0 \notin A \end{cases}$$

Notare che per definizione, la funzione di Dirac è una probabilità discreta, dato che soddisfa tutti gli assiomi per essere una probabilità' e il suo spazio campionario minimo e' formato da un solo elemento di Ω , quindi e' discreta (ma non molto utile dato che puo' assumere solo due valori). Però, tramite le delta di Dirac, siamo in grado di costruire qualunque altra probabilità discreta:

Sia $\Omega = \mathbb{R}$. Prendiamo un numero contabile n di eventi singoletto $x_1, x_2, \dots, x_n \in \mathbb{R}$ a cui corrispondono $p_1, p_2, \dots, p_n \in \mathbb{R}$ tale che:

$$\forall i = 1, ..., n. \ p_i \in [0, 1], \qquad \sum_{i=1}^n p_i = 1$$

Definiamo la funzione:

$$\mathbb{P}: \mathcal{P}(\Omega) \to [0,1]$$

$$A \mapsto \sum_{i=1}^{n} p_i \delta_{x_i}(A)$$

 \mathbb{P} è una combinazione lineare di delta di Dirac. Essendo una combinazione convessa, $\mathbb{P} \in [0, 1]$ e si può dimostrare che soddisfa gli altri due assiomi (2 e 3), quindi è una probabilità discreta! Variando le x e le p è possibile generare qualsiasi funzione \mathbb{P} discreta.

Example 2.3.1

 $\Omega = \{1, 2, 3, 4, 5, 6\}, \ \forall i = 1, \dots, 6. \ x_i = i, \ p_i = \frac{1}{6}, \ \text{la funzione } \mathbb{P} \ \text{associata è:}$

$$P(A) = \sum_{i=1}^{6} \frac{1}{6} d_{x_i}(A)$$

$$A = \{1, 2, 3, 4, 5, 6\} \implies P(A) = 1$$

$$B = (6, +\infty) \implies P(B) = 0$$

$$C = \{1, 2, 3, 4, 5, 6, 7, 8, 9\} \implies P(C) = 1$$

Definition 2.3.3

Si chiama evento quasi certo un evento A tale che $\mathbb{P}(A) = 1$.

Definition 2.3.4

Si chiama evento quasi impossibile un evento A tale che $\mathbb{P}(A)=0.$

Posso allargare Ω quanto voglio perché tanto fuori dall'insieme minimo che comprende tutti gli eventi possibili le probabilità che aggiungo sono quasi impossibili e quindi hanno probabilità 0 e non cambiano il valore totale della somma.

2.3.1 Probabilita' uniforme

TODO: dare un esempio di prob. uniforme e definirla per benino

Chapter 3

Probabilita' Condizionata

3.1 Definizione e motivazioni

Supponiamo di sapere che un evento di un'esperimento aleatorio si e' avverato. Finora abbiamo visto solo casi in cui gli eventi non si influenzavano (*indipendenti*), ma succede spesso nella realta' che se si sa che un certo evento e' avvenuto, allora questo ci da' informazioni aggiuntive che possono cambiare la probabilita' di altri eventi di cui ancora non sappiamo gli esiti.

Chiamiamo B l'evento che e' avvenuto e A un altro evento di cui vogliamo sapere la probabilita'. Prima di avere informazioni su B, la probabilita' di A era semplicemente $\mathbb{P}(A)$, ma ora ci poniamo la domanda: "se so che si e' verificato B, come cambia $\mathbb{P}(A)$?". Denotiamo questa nuova probabilita' con:

chiamata la probabilita' condizionata di A dato B .

Definition 3.1.1: Probabilita' Condizionata

Prendo due eventi A, B su uno spazio di probabilita' (Ω, \mathbb{P}) . Definisco probabilita' condizionata a B di A la funzione:

$$\begin{split} \mathbb{P}(A|B): \mathcal{P}(\Omega) &\to [0,1] \\ A &\mapsto \frac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)} \end{split}$$

E' possibile dimostrare che una certa funzione e' anch'essa una probabilita' (sempre discreta), verifichiamo gli assiomi (fissiamo $B \subseteq \Omega$ con $\mathbb{P}(B) > 0$):

- 1. $\mathbb{P}(A|B) \in [0,1], \forall A \subseteq \Omega$
- 2. $\mathbb{P}(\Omega|B) = 1$
- 3. σ addittivita': $(A_i)_{i\in\mathbb{N}}$ disgiunti:

$$\mathbb{P}(\bigcup_{i=1}^{\infty} A_i | B) = \sum_{i=1}^{\infty} \mathbb{P}(A_i | B)$$

Lasciate al lettore in quanto davvero molto facili, quasi banali. Se non riesci a farle fai schifo. Vediamo ora, con un esempio, come mai e' proprio questa la definizione utilizzata:

Example 3.1.1

• Lancio del dado: $\Omega = \{1, 2, 3, 4, 5, 6\}$, \mathbb{P} probabilita' uniforme:

$$\mathbb{P}(\{\omega\}) = \frac{1}{|\Omega|}, \forall \omega \in \Omega, \text{ ovvero:}$$

$$\mathbb{P}(A) = \frac{\text{casi favorevoli in } A}{\text{casi possibili}}$$

A= "esce un numero maggiore di 3" = $\{3,4,5,6\}$ e B= {"esce un numero pari"} = $\{2,4,6\}$, domanda: quanto vale $\mathbb{P}(A|B)$?

 $P(A) = \frac{4}{6}$ come abbiamo gia visto.

Ora abbiamo un'informazione in piu': sappiamo che B si e' avverato. Questo significa che si restringe l'insieme di valori che possono essere usciti al lancio del dado. ATTENZIONE! cio' non vuol dire che cambia lo spazio campionario perche' l'esperimento e' lo stesso, ma cambiano i *veri* casi favorevoli e i *veri* casi possibili:

$$P(A|B) = \frac{\text{"veri casi favorevoli di A"}}{\text{veri casi possibili}} = \frac{|A \cap B|}{|B|} = \frac{2}{3}$$

• Vediamo anche cosa accade quando la probabilita' non e' uniforme, come con un dado a 4 facce truccato:

$$\Omega = \{1, 2, 3, 4\}, \ \mathbb{P}(4) = \frac{1}{15}, \mathbb{P}(3) = \frac{2}{15}, \mathbb{P}(2) = \frac{4}{15}, \mathbb{P}(1) = \frac{8}{15}$$

 $A = \{3, 4\}, B = \{2, 4\}$

$$\mathbb{P}(A|B) = \frac{\text{"probabilita' dei veri casi favorevoli di A"}}{\text{probabilita' dei veri casi possibili}} = \frac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)}$$

Note:

Se \mathbb{P} e' la probabilita' uniforme allora:

$$\mathbb{P}(A|B) = \frac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)} = \frac{\frac{|A \cap B|}{|\Omega|}}{\frac{|B|}{|\Omega|}} = \frac{|A \cap B|}{|B|}$$

Note:

B e' fissato nella definizione di propbabilita' condizionata, ovvero:

$$\mathbb{P}(A|B) \neq \mathbb{P}(B|A)$$

Quindi il ruolo di A e B e' completamente diverso

Note:

Se $B = \Omega$, allora $\mathbb{P}(A|B) = \mathbb{P}(A)$ dato che la conoscenza del fatto che si e' avverato Ω e' ovvio e non ci cambia. Se $A = \Omega$, allora $\mathbb{P}(\Omega|B) = 1$ (per proprieta', dato che e' sempre una probabilita')

3.2 Regola della catena

La probabilita' condizionata in genere e' nota e si usa per calcolare la probabilita' dell'intersezione:

$$\mathbb{P}(A \cap B) = \mathbb{P}(A|B) \cdot \mathbb{P}(B)$$

Questa formula e' detta regola della catena e vale in generale con n eventi:

Proposition 3.2.1 Regola della catena (generalizzata)

$$(A_i)_{i=1,...,n}$$
, $\mathbb{P}(A_1 \cap ... \cap A_{n-1}) > 0$, allora:

$$\mathbb{P}(A_1 \cap ... \cap A_n) = \mathbb{P}(A_1)\mathbb{P}(A_2|A_1)\mathbb{P}(A_3|A_1 \cap A_2)...\mathbb{P}(A_n|A_1 \cap ... A_{n-1})$$

Note:

La condizione funziona grazie alla monotonia, dato che $0 < \mathbb{P}(A_1 \cap ... \cap A_{n-1}) \leq \mathbb{P}(A_1 \cap ... \cap A_j), 1 \leq j \leq n-1$ quindi siamo certi che l'intersezione degli eventi che sono avvenuti e' maggiore di 0.

:
$$P(A_1) \frac{P(A_1 \cap A_2)}{P(A_1)} \dots \frac{P(A_1 \cap \dots \cap A_n)}{P(A_1 \cap \dots \cap A_{n-1})} = P(A_1 \cap \dots \cap A_n)$$

TODO: migliora un po

Example 3.2.1

Un'urna contiene tre palline bianche, due palline nere e una pallina rossa. Si eseguono tre estrazioni senza reimmissione. Qual 'e la probabilit'a di estrarre nell'ordine una bianca, una rossa e una nera? Sono interessato solo ad alcuni eventi, quindi non c'e' bisogno di descrivere l'intero esperimento aleatorio. Per prima cosa definisco l'evento:

A = "estrarre in ordine una bianca, una rossa e una nera"

Voglio trovare P(A). Notiamo che dobbiamo determinare tre sottoesperimenti in relazione (dato che non c'e' reimissione). Quindi dopo ogni sottoesperimento cambia la composizione dell'urna, e sappiamo come calcolare la probabilita' condizionata:

 B_i = "estraggo una pallina bianca all' i-esimo turno"

 R_i = "estraggo una pallina rossa all' i-esimo turno"

 N_i = "estraggo una pallina nera all' i-esimo turno"

Esistono tre famiglie di eventi: $(B_i)_{i=1,\dots,k}$, $(R_i)_{i=1,\dots,k}$, $(N_i)_{i=1,\dots,k}$ dove i indica il turno al quale viene estratta la pallina. Quindi possiamo scrivere A come relazione fra sottoeventi:

$$A = B_1 \cap R_2 N_3$$

Quindi:

$$P(A) = P(B_1 \cap R_2 \cap N_3) = P(B_1)P(R_2|B_1)P(N_3|B_1 \cap R_2)$$

Solo ora possiamo passare ai valori numerici. Dato che gli esiti sono equiprobabili e lo spazio campionario e' finito, la probabilita' e' uniforme:

$$P(B_1) = \frac{1}{2}, P(R_2) = \frac{1}{5}, P(N_3) = \frac{1}{2}$$

$$P(A) = \frac{1}{20}$$

Per esperimenti da sottoesperimenti di cui conosco le probabilita' condizionate, e' possible rappresentare ogni evento come un nodo:

$$\Omega = \text{primo nodo}$$

e ogni probabilita' come un ramo che partiziona il nodo (tanti rami quanti gli insiemi della partizione) che rappresenta poi un altro evento (condizionato dalla seconda in poi).

La regola della catena la leggo sul diagramma ad albero:

percorso: $\Omega \to B_1 \to R_2 \to N_3$ ha probabilita' $P(B_1 \cap R_2 \cap N_3)$ che si calcola facendo il prodotto delle probabilita' dei relativi rami che si usano nel percorso.

E' uno strumento utile per convincerci che stiamo usando le formule guiste, ma non le sostituisce e puo' diventare laborioso per problemi complessi.

Example 3.2.2

Ci sono due urne: la prima contiene due palline rosse e una bianca; la seconda contiene tre palline rosse e due bianche. Si lancia una moneta: se esce testa si estrae una pallina dalla prima urna, se esce croce si estrae una pallina dalla seconda urna. Qual 'e la probabilit'a che l'esito del lancio della moneta sia testa e la pallina estratta sia bianca?

2 sottoesperimenti:

- lancio della moneta
- estrazione da un'urna

Nota che i sottoesperimenti sono indipendenti dall'esito di altri esperimenti. Sono gli esiti, ovvero i risultati, che possono dipendere dagli esiti di altri esperimenti.

A = "esce testa ed estraggo una pallina bianca"

Devo esprimere A con eventi che

$$T =$$
 "esce testa"

U = estraggo una pallina bianca

Disegna lo zio pera di diagramma che non mi metto a fare, se @GiovanniPalma vuole puo' farlo

$$A = T \cap U$$
, $P(A) = P(T)P(U|T)$

3.3 Indipendenza di eventi

E' possibile che sapere che un evento B e' avvenuto non altera la probabilita' di un altro evento A. Possiamo esprimere questa relazione in modo matematico cosi':

$$\mathbb{P}(A|B) = \mathbb{P}(A)$$

Utilizzando la definizione di probabilita' condizionata, possiamo usare un'identita' equivalente che useremo come definizione:

Definition 3.3.1: Eventi indipendenti

Due eventi A, B si dicono indipendenti se:

$$\mathbb{P}(A \cap B) = \mathbb{P}(A) \cdot \mathbb{P}(B) \tag{3.1}$$

E viene denatato $A \perp \!\!\! \perp B$

Usiamo questa definizione dato che e' esplicitamente simmetrica, ovvero se A e indipendente a B allora vale anche il contrario:

$$A \perp\!\!\!\perp B \iff B \perp\!\!\!\!\perp A$$

ed e' definita (e banalmente vera) anche quando $\mathbb{P}(A) = 0$ o $\mathbb{P}(B) = 0$. In particolare si noti il seguente teorema:

Theorem 3.3.1 Teorema della simmetria tra eventi indipendenti

Sia $\mathbb{P}(B) > 0$ allora:

$$A \perp \!\!\!\perp B \iff \mathbb{P}(A|B) = \mathbb{P}(A)$$

Dall'altro lato, sia $\mathbb{P}(A) > 0$ allora:

$$A \perp \!\!\!\perp B \iff \mathbb{P}(B|A) = \mathbb{P}(B)$$

Dimostrazione: Verrà fornita solo la dimostrazione del primo punto, la seconda parte è analoga. Assumo $\mathbb{P}(B) > 0$, si ha:

• $A \perp \!\!\!\perp B \implies \mathbb{P}(A|B) = \mathbb{P}(A)$:

$$\mathbb{P}(A|B) = \frac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)} = \frac{\mathbb{P}(A) \cdot \mathbb{P}(B)}{\mathbb{P}(B)} = \mathbb{P}(A)$$

• $\mathbb{P}(A|B) = \mathbb{P}(A) \implies A \perp \!\!\!\perp B$:

$$\mathbb{P}(A \cap B) = \mathbb{P}(A|B) \cdot \mathbb{P}(B) = \mathbb{P}(A) \cdot \mathbb{P}(B)$$

 \odot

Note:

Si noti che se $\mathbb{P}(A) > 0$ e $\mathbb{P}(B) > 0$ allora, le tre uguaglianze seguenti sono equivalenti:

$$\mathbb{P}(A \cap B) = \mathbb{P}(A) \cdot \mathbb{P}(B) \iff \mathbb{P}(A|B) = \mathbb{P}(A) \iff \mathbb{P}(B|A) = \mathbb{P}(B)$$

Note:

• L'indipendenza e' diversa dalla disgiunzione:

$$A \perp \!\!\!\perp B \neq A \cap B = \emptyset$$

infatti sono relazioni ortogonali:

$$A \perp \!\!\!\perp B \wedge A \cap B = \emptyset \iff \mathbb{P}(A)\mathbb{P}(B) = 0 \iff \mathbb{P}(A) = 0 \vee \mathbb{P}(B) = 0$$

• L'indipendenza e' diverso dall'essere sottoinsieme non-vuoto:

$$A \perp\!\!\!\perp B \neq A \subseteq B \vee B \subseteq A$$

infatti:

$$A \perp\!\!\!\perp B \land A \subseteq B \iff \mathbb{P}(A)\mathbb{P}(B) = \mathbb{P}(A) \iff \mathbb{P}(B) = 1$$

Quindi in generale due eventi sono indipendent quando la loro intersezione ha "le giuste proporzioni".

Adesso fornirò un altro teorema piuttosto importante:

Proposition 3.3.1 Sull'indipendenza di eventi complomentari

Siano A, B due eventi indipendenti, allora:

$$A \perp \!\!\!\perp B \iff A^c \perp \!\!\!\perp B, A \perp \!\!\!\perp B^c, A^c \perp \!\!\!\perp B^c$$

 ${\it Dimostrazione:}\ \ {\it Dimostro}$ solo la prima parte, le altre sono analoghe.

Assumo A, B due eventi indipendenti, debbo dimostrare la seguente uguaglianza:

$$\mathbb{P}(A^c \cap B) = \mathbb{P}(A^c) \cdot \mathbb{P}(B)$$

Dato che

$$B = \Omega \cap B = (A \cup A^c) \cap B = (A \cap B) \cup (A^c \cap B)$$

E dato che $(A \cap B)$ e $(A^c \cap B)$ sono disgiunti, per 2 (additività finita) si ha:

$$\mathbb{P}(B) = \mathbb{P}(A \cap B) + \mathbb{P}(A^c \cap B)$$

E dato che $A \perp \!\!\!\perp B$ si ha:

$$\mathbb{P}(B) = \mathbb{P}(A \cap B) + \mathbb{P}(A^c \cap B) = \mathbb{P}(A \cap B) = \mathbb{P}(A) \cdot \mathbb{P}(B) + \mathbb{P}(A^c \cap B)$$

Quindi:

$$\mathbb{P}(A^c \cap B) = \mathbb{P}(B) - \mathbb{P}(A \cap B) = \mathbb{P}(B) - \mathbb{P}(A) \cdot \mathbb{P}(B) = \mathbb{P}(B) \cdot (1 - \mathbb{P}(A)) = \mathbb{P}(A^c) \cdot \mathbb{P}(B)$$

 \odot

3.3.1 Generalizzazione su n eventi

Come nel caso con solo due eventi, n > 2 eventi si dicono indipendenti quando, sapendo che qualsiasi numero degli altri eventi si e' avverato, la probabilita' dell'evento non cambia. Questo deve valere per tutti gli n eventi, ovvero:

$$\mathbb{P}\left(A_i \middle| \bigcup_{j=1, j \neq i}^n A_j\right) = P(A_i) \quad \forall i = 1, ..., n$$

Si puo' dimostrare, usando la definizione di probabilita' condizionata, che questa identita' equivale a dire:

Definition 3.3.2: Eventi indipendenti (per n eventi)

Sia $(A_i)_{i\in I}$ una famiglia di eventi in uno spazio di probabilita'. Si dice che questi eventi sono indipendenti quando **per ogni sottoinsieme** finito $J\subseteq I$. |J|>2:

$$\mathbb{P}\left(\bigcap_{j\in J}A_j\right) = \prod_{j\in J}\mathbb{P}(A_j)$$

3.3.2 Esercizi

Example 3.3.1 (Calcolo di eventi indipendenti con probabilita condizionata)

TESTO:

Si lancia un dado a 6 facce

A = "Esce un numero > 4"

B = "Esce un numero pari"

Determinare P(A) e P(A|B)

DETTAGLIO SVOLGIMENTO:

$$\Omega = \{1, 2, 3, 4, 5, 6\}$$

$$A = \{5, 6\}$$

$$B = \{2, 4, 6\}$$

$$P(A) = \frac{3}{6} = \frac{1}{3}$$

$$P(A|B) = \frac{P(A \cap B)}{P(B)} = \frac{\frac{1}{6}}{\frac{3}{6}} = \frac{1}{3}$$

Dato che P(A) = P(A|B), per il teorema 3.3 si ha che $A \perp \!\!\! \perp B$

Ecco un altro eserzio:

Example 3.3.2

TESTO

Lanciamo una moneta e un dado a 4 facce.

Determinare uno spazio di prob. che descriva l'esperimento aleatorio

SOLUZIONE

$$\Omega = \{(T,1), (T,2), (T,3), (T,4), (C,1), (C,2), (C,3), (C,4)\}$$

$$P(T,1) = \frac{1}{8} = P(C,4) = \frac{1}{8}$$

T = "esito del lancio moneta e testa"

C = "esito del lancio moneta è croce"

 D_i = "è uscito il numero i"

$$P(C) = \frac{1}{2}, \quad P(T) = \frac{1}{2}$$

$$P(D_i|C) = \frac{1}{4}$$

$$P(D_i|T) = \frac{1}{4}$$

A="è uscito testa e il numero i"

$$P(A) = P(T) \cdot P(D_i|T) = \frac{1}{2} \cdot \frac{1}{4} = \frac{1}{8}$$

Analogamente per $C \cap D_i$

3.4 Bayes

Ci sono delle situazioni nelle quali puo' esserci richiesto di calcolare la probabilita' condizionata "inversa" conoscendo quella diretta. Possiamo vare cio' usando la definizione di probabilita' condizionate

Theorem 3.4.1

Siano A, B due eventi t.c. P(A), P(B) > 0:

$$P(A|B) = \frac{P(B|A)P(A)}{P(B)}$$

Example 3.4.1

Ci sono due urne: la prima urna contiene una pallina bianca e due palline rosse, mentre la seconda contiene due palline bianche e cinque palline rosse. Si lancia una moneta: se esce testa si estrae una pallina dalla prima urna, se esce croce si estrae una pallina dalla seconda. Sapendo che 'e stata estratta una pallina bianca, calcolare la probabilit'a che l'esito del lancio della moneta sia stato testa.

EVENTI

 $T=\mathrm{esce}\ \mathrm{testa}$

 $B={
m estrazione}$ pallina bianca

$$\Omega = \{t, c\} \times \{b, r\}$$

$$\begin{split} &\Omega = \{t,c\} \times \{b,r\} \\ &\mathbb{P}(T|B) = \frac{P(B|T)P(T)}{P(B)} = \frac{P(B|T)P(T)}{P(B|T)P(T) + P(B|T^c)P(T^c)} = \frac{1/3 \cdot 1/2}{1/3 \cdot 1/2 + 2/7 \cdot 1/2} \text{ probabilita' totali e bayes} \end{split}$$

3.5 Esercitazionei

3.6 Esercitazione

3.6.1 Esercizio 4 (Foglio 2)

Testo

Un'urna contiene r palline rosse e b palline bianche. Si eseguono due estrazioni senza reimmissione.

- (a) Determinare uno spazio di probabilità che descriva l'esperimento aleatorio.
- (b) Calcolare la probabilità che la prima pallina estratta sia rossa.
- (c) Calcolare la probabilità che la prima pallina sia rossa e la seconda bianca.
- (d) Calcolare la probabilità che le due palline abbiano colori diversi.
- (e) Calcolare la probabilità che la seconda pallina estratta sia rossa.

Soluzione

Siano:

 R_i = "ho estratto una pallina rossa all'i-esima iterazione" B_i = "ho estratto una pallina rossa all'i-esima iterazione" Definiamo lo spazio degli esiti. Poiché le estrazioni avvengono senza reimmissione, ogni esito è una coppia ordinata di palline diverse. Denotiamo:

$$\Omega = \{(p_1, p_2) : p_1, p_2 \text{ sono palline dell'urna e } p_1 \neq p_2\}$$

La cardinalità totale è:

$$|\Omega| = (r+b)(r+b-1)$$

Infatti appena estraiamo una pallina l'urna conterrà (r+b-1) palline, la totalità di palline -1 Sfruttiamo il principio di probabilità uniforme, secondo cui ogni esito ha probabilità $1/|\Omega|$

(a) Spazio di probabilità:

Lo spazio di probabilità è (Ω, P) con

$$P(\{\omega\}) = \frac{1}{(r+b)(r+b-1)} \quad \forall \omega \in \Omega.$$

(b) Probabilità che la prima pallina sia rossa:

Poiché ci sono r palline rosse su un totale di r + b, si ha:

$$P(R_1) = \frac{r}{r+b}.$$

(c) Probabilità che la prima pallina sia rossa e la seconda bianca:

Dato che la prima è rossa, nell'urna rimangono r + b - 1 palline, di cui b sono bianche:

$$P(R_1 \cap B_2) = P(B_2|R_1)P(R_1) = \frac{r}{r+b} \cdot \frac{b}{r+b-1}.$$

(d) Probabilità che le due palline abbiano colori diversi:

Questa condizione si verifica in due modi: rossa poi bianca oppure bianca poi rossa. Quindi:

$$\begin{split} P((R_1 \cap B_2) \cup (B_1 \cap R_2)) &= P(B_2 | R_1) P(R_1) + P(R_2 | B_1) P(B_1) \\ &= \frac{r}{r+b} \cdot \frac{b}{r+b-1} + \frac{b}{r+b} \cdot \frac{r}{r+b-1} \\ &= \frac{2rb}{(r+b)(r+b-1)}. \end{split}$$

(e) Probabilità che la seconda pallina sia rossa:

Usiamo la formula della probabilità totale, considerando le possibili estrazioni del primo turno:

$$P(R_2) = P(B_2 \mid R_1) \cdot P(R_1) + P(B_2 \mid B_1) \cdot P(B_1)$$
$$= \frac{r-1}{r+b-1} \cdot \frac{r}{r+b} + \frac{r}{r+b-1} \cdot \frac{b}{r+b}$$

Semplificando:

$$P(R_2) = \frac{r(r-1) + rb}{(r+b)(r+b-1)} = \frac{r^2 - r + rb}{(r+b)(r+b-1)} = \frac{r(r+b-1)}{(r+b)(r+b-1)} = \frac{r}{r+b}$$

Esercizio 6

Testo

Supponiamo che un'urna contenga 1 pallina rossa e 1 pallina bianca. Una pallina viene estratta e se ne osserva il colore. La pallina estratta viene poi rimessa nell'urna insieme a un'altra pallina dello stesso colore (estrazione con rinforzo). Siano

 R_i = evento che all'*i*-esima estrazione venga estratta una pallina rossa,

 B_i = evento che all'*i*-esima estrazione venga estratta una pallina bianca.

Si calcolino:

- (1) $P(R_2)$
- (2) Sapendo che la seconda pallina estratta è rossa, quale è l'evento più probabile per la prima estrazione: che la pallina estratta sia stata rossa oppure bianca?

Soluzione

(1) Calcolo di $P(R_2)$:

Caso 1: Se alla prima estrazione esce una pallina rossa (evento R_1):

- La probabilità di estrarre una rossa al primo turno è $P(R_1) = \frac{1}{2}$.
- Dopo l'estrazione, la pallina rossa viene rimessa insieme a un'altra rossa, dunque l'urna contiene 2 rosse e 1 bianca. Quindi:

$$P(R_2 \mid R_1) = \frac{2}{3}.$$

Caso 2: Se alla prima estrazione esce una pallina bianca (evento B_1):

- $P(B_1) = \frac{1}{2}$.
- Dopo il rinforzo, l'urna contiene 1 rossa e 2 bianche, dunque:

$$P(R_2 \mid B_1) = \frac{1}{3}.$$

Applicando la formula della probabilità totale:

$$P(R_2) = P(R_2 \mid R_1) \cdot P(R_1) + P(R_2 \mid B_1) \cdot P(B_1)$$

$$= \frac{2}{3} \cdot \frac{1}{2} + \frac{1}{3} \cdot \frac{1}{2}$$

$$= \frac{1}{3} + \frac{1}{6} = \frac{1}{2}.$$

(2) Confronto tra $P(R_1 \mid R_2)$ e $P(B_1 \mid R_2)$:

Innanzi tutto si tenga conto il teorema di Bayes:

Siano A,B due eventi, t.c. P(A),P(B)>0, allora $P(A\mid B)=\frac{P(B\mid A)P(A)}{P(B)}$

Dimostrazione: Abbiamo $P(A \cap B) = P(B \cap A)$, quindi $P(A \mid B) = \frac{P(A \cap B)}{P(B)} = \frac{P(B \mid A)P(A)}{P(B)}$

Usiamo il teorema di Bayes per calcolare $P(R_1 \mid R_2)$:

$$P(R_1 \mid R_2) = \frac{P(R_2 \mid R_1) P(R_1)}{P(R_2)} = \frac{\frac{2}{3} \cdot \frac{1}{2}}{\frac{1}{2}} = \frac{2}{3}.$$

Poiché $P(B_1 \mid R_2) = 1 - P(B_1^c \mid R_2) = 1 - P(R_1 \mid R_2) = 1 - \frac{2}{3} = \frac{1}{3}$, risulta che,

$$P(R_1 \mid R_2) > P(B_1 \mid R_2).$$

Quindi, sapendo che la seconda pallina è rossa, è più probabile che la prima pallina estratta fosse rossa.

3.6.2 Esercizio 7

Testo

Si consideri una popolazione in cui una persona su 100 abbia una certa malattia. Un test è disponibile per diagnosticare tale malattia. Si supponga che il test non sia perfetto, in quanto esso risulta positivo (ovvero indica la presenza della malattia) nel 5% dei casi quando è effettuato su persone sane, mentre risulta negativo (indicando l'assenza della malattia) nel 2% dei casi quando è effettuato su persone malate. Si calcolino le probabilità che:

- (a) il test risulti positivo quando effettuato su una persona malata,
- (b) il test risulti positivo,
- (c) una persona sia malata se il test risulta positivo.

Soluzione

I dati del problema sono:

- P(M) = 0.01: probabilità che una persona sia malata.
- P(S) = 0.99: probabilità che una persona sia sana.
- $P(T^+ \mid M) = 0.98$: probabilità che il test risulti positivo se la persona è malata.
- $P(T^- \mid M) = 0.02$: probabilità che il test risulti negativo se la persona è malata.
- $P(T^+ \mid S) = 0.05$: probabilità che il test risulti positivo se la persona è sana.
- $P(T^- \mid S) = 0.95$: probabilità che il test risulti negativo se la persona è sana.

Costruiamo un diagramma di verità:

	Malato	Sano
Positivo	0.98	0.05
Negativo	0.02	0.95

1. **Probabilità che il test risulti positivo su una persona malata**: Questa probabilità è data direttamente dai dati:

$$P(T^+ \mid M) = 0.98.$$

2. Probabilità che il test risulti positivo: Utilizziamo la formula della probabilità totale:

$$P(T^{+}) = P(T^{+} \mid M) P(M) + P(T^{+} \mid S) P(S)$$

$$= 0.98 \cdot 0.01 + 0.05 \cdot 0.99$$

$$= 0.0098 + 0.0495$$

$$\approx 0.0593.$$

3. Probabilità che una persona sia malata, dato un test positivo:

Applichiamo il teorema di Bayes:

$$P(M \mid T^{+}) = \frac{P(T^{+} \mid M) P(M)}{P(T^{+})}$$
$$= \frac{0.98 \cdot 0.01}{0.0593}$$
$$\approx \frac{0.0098}{0.0593}$$
$$\approx 0.165.$$

Quindi, circa il 16,5% delle persone con test positivo sono effettivamente malate.

3.6.3 Esercizio 5

Testo

Si consideri il seguente esperimento:

ci sono quattro dadi: due non truccati e due truccati. I dadi truccati hanno tre facce con il numero 6 e tre facce con il numero 5. Si lancia una moneta (non truccata). Se viene *testa* si lanciano i due dadi non truccati, mentre se viene *croce* si lanciano i due dadi truccati.

Si richiede di calcolare:

- (a) La probabilità che la somma dei due dadi sia 11.
- (b) Sapendo di aver ottenuto 11 dalla somma dei due dadi, calcolare la probabilità che il lancio della moneta sia stato *croce*.

Soluzione

Sia:

$$T = \{\text{moneta: testa}\}, \quad C = \{\text{moneta: croce}\},$$

 $\operatorname{con}\, P(T) = P(C) = \tfrac{1}{2}.$

Caso 1: Dadi non truccati (se esce testa)

I dadi non truccati hanno facce 1, 2, 3, 4, 5, 6 con probabilità uniforme. La somma 11 si ottiene con le coppie (5, 6) e (6, 5). Quindi:

$$P(11 \mid T) = \frac{2}{36} = \frac{1}{18}.$$

Caso 2: Dadi truccati (se esce croce)

I dadi truccati assumono solo i valori 5 e 6 con probabilità $\frac{3}{6} = \frac{1}{2}$ ciascuno. La somma 11 si ottiene con le coppie (5,6) e (6,5), dunque:

$$P(11 \mid C) = 2 \cdot \left(\frac{1}{2} \cdot \frac{1}{2}\right) = \frac{1}{2}.$$

Calcolo della probabilità totale di ottenere 11:

$$P(11) = P(11 \mid T) P(T) + P(11 \mid C) P(C)$$

$$= \frac{1}{18} \cdot \frac{1}{2} + \frac{1}{2} \cdot \frac{1}{2}$$

$$= \frac{1}{36} + \frac{1}{4} = \frac{1}{36} + \frac{9}{36} = \frac{10}{36} = \frac{5}{18}.$$

Calcolo della probabilità condizionata $P(C \mid 11)$: Utilizzando il teorema di Bayes:

$$P(C \mid 11) = \frac{P(11 \mid C)P(C)}{P(11)} = \frac{\frac{1}{2} \cdot \frac{1}{2}}{\frac{5}{19}} = \frac{\frac{1}{4}}{\frac{5}{19}} = \frac{1}{4} \cdot \frac{18}{5} = \frac{9}{10}.$$

Quindi, se la somma è 11, la probabilità che la moneta abbia dato *croce* è $\frac{9}{10}$.

3.6.4 Esercizio Porco Rosso

Testo

L'aereo dei pirati del cielo, appena riparato, è stato dato alle fiamme. Porco Rosso vuole scoprire chi è stato. Durante le indagini si è scoperto che la settimana prima del delitto i pirati del cielo hanno detto al meccanico della ditta Piccolo che non gli avrebbero pagato la riparazione dell'idrovolante. Interrogato da Porco Rosso, Piccolo cerca di scagionarsi dicendo che a seguito di insolvenza solo 1 meccanico su 1000 si vendica. Porco Rosso però si accorge che questa stima non è più significativa: bisogna valutare la probabilità di vendetta sapendo che l'aereo è stato effettivamente dato alle fiamme. Porco Rosso allora considera questi eventi:

- A: dei clienti risultano insolventi contro il proprio meccanico,
- B: l'aereo di un cliente viene distrutto dal meccanico,
- C: l'aereo di un cliente viene distrutto ma non dal proprio meccanico.

A questo punto è necessario il vostro aiuto!

- (a) Esprimere in funzione di A, B e C la probabilità fornita da Piccolo e calcolarla.
- (b) Quali eventi tra A, B e C possono essere ritenuti disgiunti?
- (c) Quali eventi tra A, B e C possono essere ritenuti indipendenti?
- (d) Esprimere in funzione di A, B e C l'evento D: l'aereo di un cliente viene distrutto.
- (e) Esprimere la probabilità condizionata $P(B|A \cap D)$ in funzione solo di P(B|A) e P(C). Porco Rosso non riesce a trovare P(C), tuttavia trova che 1 aereo ogni 10000 viene distrutto.
- (f) Limitare (dal basso o dall'alto) il valore di $P(B|A \cap D)$.
- (g) È il caso che Porco Rosso continui ad indagare su Piccolo?

Soluzione

- $P(B|A) = \frac{1}{1000} = \frac{P(A \cap B)}{P(A)}$,
- $B \cap C = \emptyset$
- Quali tra A,B,C sono indipendenti? $P(A \cap B) = P(A) \cdot P(B), P(A \cap C) = P(A) \cdot P(C)$
- D = "Areo distrutto" = $B \cup C$
- $P(B|A\cap D)$ sono in funzione di P(B|A) e P(C), quindi = $\frac{B\cap A\cap D}{P(A\cap D)} = \frac{B\cap A\cap (B\sqcup C)}{P(A\cap (B\sqcup C))} = ((B\cap A)\frac{P(A\cap (B\cup C))}{P(A\cap (B\cup C))}$