Chapitre II: Structures Algébriques

I- Groupes

1- Lois de composition interne

Définition:

Soit E un ensemble, On appelle loi de composition interne une application de E×E dans E.

$$\varphi: \begin{cases} E \times E \longrightarrow E \\ (a,b) \longrightarrow a * b \end{cases}$$

Exemple:

- Sur N la multiplication ou l'addition des entiers forme une loi de composition interne.
- Si E est un ensemble, la composition des applications est une loi de composition interne sur l'ensemble des fonctions de E dans E : $\mathcal{F}(E, E)$
- Si E est un ensemble, l'intersection ou la réunion sont des lois de composition interne sur l'ensemble des parties de $E : \mathcal{P}(E)$

Définition:

Soit * une loi de composition interne sur un ensemble E. On dit que * est :

- commutative si et seulement si $\forall (a, b) \in E^2$; a * b = b * a
- associative si et seulement si $\forall (a, b, c) \in E^3$; a * (b * c) = (a * b) * c
- admet un élément neutre si et seulement si $\forall x \in E; e * x = x * e = x$

Proposition (Unicité de l'élément neutre)

Si (E, *) possède un élément neutre, il est unique.

Exemple

- (N, +), + est commutative et associative. 0 est l'unique élément neutre.
- (N, x),x est commutative et associative. 1 est l'unique élément neutre.
- Soit E un ensemble. On considère l'ensemble des applications de E dans E muni de la composition : $(\mathcal{F}(E,E), \circ)$. La loi de composition interne \circ est associative mais pas commutative. Id_E est l'élément neutre de cette loi.

Définition : symétrique

On suppose que (E, *) possède un élément neutre e. Soit un élément $x \in E$. On dit qu'un élément $y \in E$ est un symétrique (ou un inverse) de l'élément x si et seulement si : x * y = y * x = e Si tel est le cas, y est unique et est appelé symétrique de x.

Remarque : L'élément neutre est toujours son propre symétrique : $e^{-1} = e$.

Notation : Si un élément x de (E, *) admet un symétrique :

- On l'appelle inverse de x et on le note x^{-1} lorsque la loi est notée multiplicativement
- On l'appelle opposé de x et on le note x lorsque la loi est notée additivement.

Exemple

- Le seul élément de (N, +) qui admet un opposé est 0.
- Tout élément n ∈ Z muni de l'addition admet un opposé.
- Les deux seuls éléments de Z. muni de la multiplication qui admettent un inverse sont 1 et −1.
- Tout élément p/q de Q. admet un inverse donné par q/p.
- Si $f \in F(E,E)$ muni de la loi de composition, f est inversible si et seulement si elle est bijective.

Proposition : Règles de calcul avec les inverses

– Si x est symétrisable alors x^{-1} est aussi symétrisable et : $(x^{-1})^{-1} = x$

– Si x et y sont symétrisables, x * y est aussi symétrisable et : $(x * y)^{-1} = y^{-1} * x^{-1}$

Définition:

Soit * une loi de composition interne dans un ensemble E. On dit qu'un élément $r \in E$ est régulier à droite (respectivement à gauche) de * si :

 \forall b, c \in E, b * r = c * r \Rightarrow b = c, (respectivement \forall b, c \in E, r * b = r * c \Rightarrow b = c)

Si r est un élément régulier à droite et à gauche de *, on dit que r est un élément régulier de * dans E.

2- Groupe

Définition:

On appelle groupe, tout ensemble non vide G muni d'une loi de composition interne * tel que :

- 1. * est associative;
- 2. * possède un élément neutre e ;
- 3. Tout élément de E est symetrisable.

Si de plus * est commutative, on dit que (G, *) est un groupe commutatif, ou groupe Abélien

Exemple:

- Un exemple illustratif de groupe abélien est (Z, +).
- Soit E un ensemble. On note S(E) l'ensemble des bijections de E dans E. Alors (S(E), ∘}) est un groupe (en général non abélien).

Théorème : Règles de calcul dans un groupe

Soit (G, *) un groupe.

- 1) L'élément neutre est unique ;
- 2) Tout élément possède un unique symétrique ;
- 3) Pour tout élément x d'un groupe, on a $(x^{-1})^{-1} = x$ 4) On pour simplifier : $\forall (x, y) \in C^2$: $(a * x = a * y \Rightarrow x = y)$
- 4) On peut simplifier : $\forall (x, y) \in G^2$; $\begin{cases} a * x = a * y \Rightarrow x = y \\ x * a = y * a \Rightarrow x = y \end{cases}$
- 5) Soit (a, b) \in G². L'équation a*x = b possède une unique solution : x = (a^{-1}) *b
- 6) $\forall (x, y) \in G^2 : (x * y)^{-1} = y^{-1} * x^{-1}$

Définition

Soit G un groupe dont la loi est noté multiplicativement. On dit qu'un élément x de G est d'ordre fini s'il existe un entier naturel non nul k tel que $x^k = e$. Si tel est le cas on appelle ordre de x le plus petit entier $k \in N^*$ tel que $x^k = e$.

Proposition

Avec les mêmes hypothèses que précédemment, on définit, pour tout x de G, l'ensemble $E(x) = \{k \in Z \ tel \ que \ x^k = e\}$. Alors E(x) est un sous-groupe de Z, qui est différent de $\{0\}$ si et seulement si x est d'ordre fini, auquel cas l'ordre de x est le générateur positif de E(x).

Corollaire

Soit x un élément d'ordre n de G. Alors on a, pour tout m \in Z, l'équivalence $x^m=e \Leftrightarrow$ n divise m.

Proposition: Groupe produit

On considère deux groupes (G, \blacksquare) et (H, \bullet) et sur l'ensemble $G \times H$, on définit la loi * par : $\forall ((x, y), (x', y')) \in (G \times H)^2, (x, y) * (x', y') = (x \blacksquare x', y \bullet y')$ Alors $(G \times H, *)$ est un groupe appelé groupe produit.

Définition: Sous-groupe

Soit (G, ∗) un groupe. On dit qu'une partie H⊂G est un sous-groupe de G si et seulement si :

- 1. $e \in H$;
- 2. la partie H est stable par la loi : $\forall (x, y) \in H^2$, $x * y \in H$.
- 3. $\forall x \in H : x^{-1} \in H$

Proposition : Caractérisation des sous groupe

Soient (G, *) un groupe et H une partie non vide de G. H est un sous groupe de G si et seulement si

- 1. $e \in H$;
- 2. $\forall (x, y) \in H^2$; $x * y^{-1} \in H$

Exemple:

- Z est un sous-groupe de R pour l'addition.
- n.Z est un sous-groupe de Z.
- L'ensemble des bijections croissantes est un sous-groupe du groupe des bijections de R dans R.
- L'ensemble des isométries du plan est un sous-groupe du groupe des bijections du plan. (Rappelons qu'une isométrie est une bijection conservant les distances).

Théorème : Un sous-groupe a une structure de groupe

Si la partie H est un sous-groupe de (G, *), alors puisque cette partie est stable pour la loi de composition interne, on peut définir la restriction de la loi * à H qui est une loi de composition interne sur H. Muni de cette loi restreinte, (H, *) est un groupe.

Exemple:

Montrons que (U, \times) est un groupe avec : $U = \{z \in C \mid |z| = 1\}$. Il suffit de prouver que c'est un sous-groupe de (C_{\cdot}, \times) .

- ✓ Comme |1| = 1, il est clair que $1 \in U$.
- ✓ Soient x, y ∈ U, On a $|xy^{-1}| = |x||y^{-1}| = 1$ donc x $y^{-1} ∈ U$.
- ✓ Donc U est un sous-groupe de (C., ×) et (U, ×) admet par conséquent une structure de groupe.

Théorème : L'intersection de sous-groupes est un sous-groupe

Si H_1 et H_2 sont deux sous-groupes d'un groupe G, alors $H_1 \cap H_2$ est un sous-groupe de G, ou plus généralement l'intersection d'une famille de sous-groupes, d'un groupe G est un sous-groupe de G.

Remarque:

La réunion de deux sous-groupes n'est en revanche pas un sous-groupe en général.

Définition : Sous-groupe engendré par une partie

Soit S une partie d'un groupe G. On appelle sous-groupe engendré par S, et on note $\langle S \rangle$ le plus petit sous-groupe contenant S. C'est l'intersection de tous les sous-groupes de G qui contiennent S.

3- Morphisme de groupe

Définition: Morphisme

Soient deux groupes $(G_1, *)$ et (G_2, \cdot) . Une application $f: G_1 \to G_2$ est un morphisme de groupes si et seulement si : $\forall (x,y) \in {G_1}^2$; $f(x*y) = f(x) \cdot f(y)$ On dit de plus que f est un :

- endomorphisme lorsque $G_1 = G_2$

- isomorphisme lorsque f est bijective
- automorphisme lorsque f est un endomorphisme et un isomorphisme

PROPOSITION : Propriétés des morphismes de groupes

Si e_1 est l'élément neutre de G_1 et e_2 l'élément neutre de G_2 , alors

- 1. $f(e_1) = e_2$;
- 2. $\forall x \in G_1 ; (f(x))^{-1} = f(x^{-1})$

Théorème : Image directe et réciproque de sous-groupes par un morphisme

Soient deux groupes $(G_1, *)$ et (G_2, \cdot) . Et soit $f: G_1 \to G_2$ un morphisme de groupes

- 1) Si H_1 est un sous-groupe de G_1 , alors $f(H_1)$ est un sous-groupe de G_2 ;
- 2) Si H_2 est un sous-groupe de G_2 , alors $f^{-1}(H_2)$ est un sous-groupe de G_1

Définition : Noyau, image d'un morphisme de groupes

On considère un morphisme de groupes $f: G_1 \to G_2$. On note e_1 l'élément neutre du groupe G_1 et e_2 l'élément neutre du groupe G_2 On définit

- le noyau du morphisme f : $Ker f = \{x \in G_1 \text{ tel que } f(x) = e_2\} = f^{-1}(e_2)$
- l'image du morphisme f : $Im f = f(G_1) = \{x \in G_2 \ tel \ que \ \exists \ x \in G_1 \ f(x) = y\}$

Ker f est un sous-groupe de G_1 et lmf est un sous-groupe de G_2 .

Théorème : Caractérisation des morphismes injectifs

Un morphisme f: $G_1 \rightarrow G_2$ est injectif si et seulement si $Ker f = \{e_1\}$

4- Groupe symétrique

Définition: Groupe symétrique d'un ensemble

Soit E un ensemble. Une permutation de E est une bijection de E dans E. On note S_E l'ensemble des permutations de E. Si $E=\{1,2,\ldots,n\}$ on le note simplement S_n . L'ensemble S_E muni de la loi de composition des applications est un groupe de neutre $e=I_d$ appelé groupe symétrique sur l'ensemble E.

Une permutation se note $\sigma = \begin{pmatrix} 1 & 2 & \dots & n \\ \sigma(1) & \sigma(2) & \dots & \sigma(n) \end{pmatrix}$, on écrit souvent $\sigma\sigma'pour\ \sigma o\sigma'$

Exemple:

Soit
$$E = \{1, 2, 3, 4, 5\}$$
 et $\sigma, \tau \in S_n$ telles que $\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 5 & 2 & 1 & 4 \end{pmatrix}$ et $\tau = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 5 & 2 & 1 & 4 \end{pmatrix}$

le calcul de
$$\sigma\tau$$
 donne $\sigma\tau = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 5 & 2 & 1 & 4 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 5 & 2 & 1 & 4 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 5 & 2 & 3 & 4 & 1 \end{pmatrix}$

Définition: Support

Soit $\sigma \in S_n$, l'ensemble $Supp(\sigma) = \{i, \ \sigma(i) \neq i\}$ est appelé le support de σ

Définition: Cycle

Une permutation σ de S_E est un cycle de longueur $l \geq 2$, s'il existe l éléments distincts $a_1, a_2 \dots a_l$ de E tel que $\sigma(a_1) = a_2 \dots \sigma(a_l) = a_1$ et $a_1(x) \neq x \ \forall \ x \in E \setminus \{a_1, a_2 \dots a_l\}$ On utilise alors la notation cyclique $\sigma = (a_1, a_2 \dots a_l)$ Un cycle de longueur 2 est appelé une transposition.

Théorème:

Soit $\sigma \in S_n$ tel que $\sigma \neq I_d$ il existe $k \geq 1$ et $c_1, c_2 \dots c_k$ des cycles à support deux à deux disjoints, tels que $\sigma = c_1. c_2 \dots c_k$. Cette décomposition est unique à l'ordre près des facteurs et est appelée décomposition canonique de σ .

Exemple:

- 1) Soit $E = \{1, 2, 3, 4, 5\}$ et $\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 2 & 5 & 1 & 4 \end{pmatrix}$, On remarque que $\sigma = (1\ 3\ 5\ 4) = (3\ 5\ 4\ 1) = (5\ 4\ 1\ 3) = (4\ 1\ 3\ 5)$:
- 2) $\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 5 & 1 & 4 & 3 & 6 & 4 \end{pmatrix}$, vérifier que $\sigma = (1,5,6,2)(3,4)$
- 3) Explicitez la décomposition de la permutation $s = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 3 & 2 & 8 & 6 & 7 & 5 & 4 & 1 \end{pmatrix}$
- 4) Donner l'ordre de $\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 4 & 6 & 1 & 3 & 2 & 5 \end{pmatrix}$

Définition: Conjugaison

Soient σ et σ' deux permutations de S_n . On dit que σ est conjuguée à σ' s'il existe une permutation τ de Sn telle que $\sigma = \tau \ o \ \sigma' \ o \ \tau^{-1}$