Siddharth Mishra-Sharma (MIT/IAIFI) | IAIFI Summer School

KL-divergence

A measure of similarity between two probability distributions

 $\int_{-\infty}^{\infty} dx \, q(x) \, \log \left(\frac{q(x)}{p(x)} \right)$

 $D_{\mathrm{KL}}(Q||P) = |$

Not symmetric!

 $D_{\mathrm{KL}}(Q||P) \neq D_{\mathrm{KL}}(P||Q)$

Maximum-likelihood inference is equivalent to minimizing the forward KL

Forward KL

$$D_{\mathrm{KL}}(P_{\mathcal{D}}||Q_{\varphi}) = -\left\langle \log q_{\varphi}(z) \right\rangle_{z \sim p_{\mathcal{D}}(z)} + \mathrm{const}.$$

"Forward" $KL D_{KL}(P||Q)$

"Reverse" $\mathsf{KL}\,D_{\mathsf{KL}}(Q\|P)$

"True" distribution

Non-negative! $D_{\mathrm{KL}}(Q||P) \geq 0$

KL-divergence

$D_{\mathrm{KL}}(Q||P) = \int_{-\infty}^{\infty} \mathrm{d}x \, q(x) \, \log\left(\frac{q(x)}{p(x)}\right)$

A measure of similarity between two probability distributions

Not symmetric! $D_{KL}(Q||P) \neq D_{KL}(P||Q)$

Forward KL

$$D_{\mathrm{KL}}(P_{\mathcal{D}}||Q_{\varphi}) = -\left\langle \log q_{\varphi}(z) \right\rangle_{z \sim p_{\mathcal{D}}(z)} + \mathrm{const}.$$

Maximum-likelihood inference is equivalent to minimizing the *forward* KL

Non-negative! $D_{
m K}$

$$D_{\mathrm{KL}}(Q||P) \ge 0$$

Variational inference

Infer the posterior over the latent parameters