Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

ТОМСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ СИСТЕМ УПРАВЛЕНИЯ И РАДИОЭЛЕКТРОННИКИ (ТУСУР)

Кафедра компьютерных систем в управлении и проектировании (КСУП)

РАЗРАБОТКА ПЛАГИНА «ПОРИСТАЯ СТРУКТУРА» ДЛЯ САПР «AUTOCAD»

Пояснительная записка по дисциплине «Основы разработки САПР»

Выполнил:	
Студент гр. 580-2	
А.А. Иванов	
2023 г.	 «
Проверил:	
доцент каф. КСУП	
А.А. Калентьев	
2022 5	 ,,

Оглавление

Введение	3
1 ПОСТАНОВКА И АНАЛИЗ ЗАДАЧИ	4
2 ОПИСАНИЕ ПРЕДМЕТА ПРОЕКТИРОВАНИЯ	5
3 ВЫБОР ИНСТРУМЕНТОВ И СРЕДСТВ РЕАЛИЗАЦИИ	6
4 НАЗНАЧЕНИЕ ПЛАГИНА	7
5 ОБЗОР АНАЛОГОВ	8
6 ОПИСАНИЕ РЕАЛИЗАЦИИ	9
7 ОПИСАНИЕ ПРОГРАММЫ ДЛЯ ПОЛЬЗОВАТЕЛЯ	11
8 ТЕСТИРОВАНИЕ ПЛАГИНА	13
8.1 Функциональное тестирование	13
8.2 Модульное тестирование	15
8.3 Нагрузочное тестирование	17
Заключение	20
Список использованных источников	21

Введение

Автоматизация моделирования имеет огромное значение для развития науки, техники и производства в современном обществе. В настоящее время автоматизация — основной способ повышения производительности и эффективности труда инженерно-технических работников, занимающихся моделированием сложных устройств. Использование автоматизации в проектировании позволяет создавать все более сложные технические объекты и гибко реагировать на появление новых решений и технологий в той или иной области техники.

Производство пористых структур, как и другие производства, нуждается в моделировании и оценке физических свойств модели перед её производством. В современном мире стандартом является компьютерное моделирование при помощи систем автоматизированного проектирования (САПР)

Плагин для автоматизации создания модели пористых структур ускорит процесс моделирования, что позволит быстрее запустить производство.

1 ПОСТАНОВКА И АНАЛИЗ ЗАДАЧИ

Основной целью является разработка плагина «Пористая структура» для системы автоматизированного проектирования (САПР) AutoCAD. Система должна быть выполнена в качестве встроенного плагина AutoCAD, который запускается непосредственно из САПР. У плагина должны быть изменяемые параметры: длина, ширина, высота, пористость и размер пор. В плагине значений, должны проходить проверки вводимых пользователем. Реализуемый плагин должен обеспечивать обработку ошибочных ситуаций, возникающих в процессе работы. При нажатии на кнопку «Построить» должна проходить проверка правильности ввода данных. Если данные некорректные, то должно отобразиться окно с ошибкой построения и введённые параметры не будут применены.

В рамках проекта были поставлены задачи:

- 1. Создание технического задания (07.10.2023);
- 2. Создание проекта системы (21.10.2023);
- 3. Реализация плагина (15.11.2023);
- 4. Доработка плагина, создание пояснительной записки (29.12.2023).
- В процессе анализа задач были найдены следующие возможные проблемы, которые могут возникнуть при разработке плагина:
 - Одновременная обработка нескольких исключений;
 - Синхронизация данным между формой и Model.

2 ОПИСАНИЕ ПРЕДМЕТА ПРОЕКТИРОВАНИЯ

Предметом проектирования является пористая структура.

Параметры структуры:

- длина моделируемой среды L (0,001 35мм; 1 35мм, если ширина или высота меньше 1мм);
- ширина моделируемой среды W (0,001 35мм; 1 35мм, если длина или высота меньше 1мм);
- высота моделируемой среды H (0,001 35мм; 1 35мм, если длина или ширина меньше 1мм);
- пористость I (0 50% от общего объёма моделируемой среды. Доля объёма порового пространства в общем объёме пористой среды);
 - размер пор D (1 5мм. Диаметр отверстия).

На рисунке 2.1 показаны геометрические параметры пористой структуры

Рисунок 2.1 – Геометрические параметры пористой структуры

Дополнительным функционированием было случайное изменение размера пор. Изменение размера пор вычисляется по нормальному распределению, вычтенному из равномерного распределения. Диапазон изменения от -1 до 1 мм.

3 ВЫБОР ИНСТРУМЕНТОВ И СРЕДСТВ РЕАЛИЗАЦИИ

В процессе разработки плагина использовались такие технологии как:

- WinForms;
- Object ARX;
- ReSharper;
- StyleCop.

Windows Forms — это платформа пользовательского интерфейса для создания классических приложений Windows. Она обеспечивает один из самых эффективных способов создания классических приложений с помощью визуального конструктора в Visual Studio. Такие функции, как размещение визуальных элементов управления путем перетаскивания, упрощают создание классических приложений.

В Windows Forms можно разрабатывать графически сложные приложения, которые просто развертывать, обновлять, и с которыми удобно работать в автономном режиме. Приложения Windows Forms могут получать доступ к локальному оборудованию и файловой системе компьютера, на котором работает приложение. В качестве платформы был использован .NET Framework. Платформа .NET Framework — это технология, которая поддерживает создание и выполнение веб-служб и приложений Windows [1].

Object ARX – это официальный API для системы автоматизированного проектирования AutoCAD. Написан на C++, но совместим с C#. Предоставляет классы и методы для построения моделей в приложении [2].

ReSharper – это дополнение, разработанное компанией JetBrains для повышения продуктивности работы с Microsoft Visual Studio [3].

StyleCop — это инструмент статического анализа кода с открытым исходным кодом от Microsoft. Проверяет код на соответствие рекомендуемым стилям кодирования и подмножеству руководящих указаний Microsoft по проектированию .NET Framework. Не позволяет скомпилировать приложение до тех пор, пока не будут соблюдены правила оформления кода [4].

4 НАЗНАЧЕНИЕ ПЛАГИНА

Назначение разрабатываемого плагина обусловлено быстрым моделированием пористых структур разных размеров и конфигураций. Благодаря моделированию пористой структуры, можно смоделировать её звукоизоляционные и теплоизоляционные свойства.

5 ОБЗОР АНАЛОГОВ

Прямых аналогов для данного плагина нет. Косвенные плагины реализовывают только часть требуемой функциональности.

Плагин GeoMESH предоставляет инструменты для создания и редактирования цифровых моделей рельефа и триангулированных нерегулярных сетей.

GeoMESH предоставляет команды для:

- Чтение точек местности из LAS и текстовых файлов;
- Генерация сетки для неравномерно распределённых точек местности;
- Генерация контурных линий;
- Создание шаблонов контурных линий;
- Строительство секций;
- Расчёт разницы объёмов между различными моделями местности [5]. На рисунке 5.1 представлен пользовательский интерфейс плагина.

Рисунок 5.1 – Пользовательский интерфейс плагина GeoMESH

6 ОПИСАНИЕ РЕАЛИЗАЦИИ

ParameterUserControl ParameterTextBox: TextBox ParameterTextBox_TextChanged(object, EventArgs): void OpenMainForm(): void «property» OpenPorousStructureBuilderForm(): voic Text(): string BackColor(): Color Transaction(): Transaction ParameterType(): ParameterType Λ ParameterUserControlChanged(object) «use» «use» minValue: int _maxValue: int parameterUserControls: List<ParameterUserControl> value: int BuildPorousStructure(PorousParameter, Wrapper): void Parameter(double, double, double) UpdateParameters(): void Validate(): void OnParameterUserControlChanged(object) «property» MinValue(): double Parameters(): PorousParameter MaxValue(): double Value(): double «enumeration» ParameterType Length PorousBuilder Height BuildPorousStructure(PorousParameter, Wrapper): void CombinePointsToPolylines(List<ObjectID>): List<ObjectID Porosity «use» PoreSize CombinePolyLinesToFaces(List<ObjectID>): List<ObjectID> CombineFacesToSolid(List<ObjectID>): void NoiseGenerator noise: object parameters: Dictionary<ParameterType, Parameter GenerateNoise(): void «use» GetPoints(): List<Point3D> Generate(PorousParameter): List<Point3D> «property» Parameters(): Dictionary<ParameterType, Parameter>

На рисунке 6.1 показана UML диаграмма классов после проектирования.

Рисунок 6.1 – UML диаграмма классов до реализации программы

На диаграмме представлены следующие классы:

- MainForm связывает параметры и элементы управления;
- ParameterUserControl шаблонный элемент управления для ввода значений;
 - PorousBuilder построитель структуры;
 - Wrapper класс, связывающий AutoCAD и плагин;
 - Parameter хранит и валидирует значения одного параметра;
 - ParameterType перечисление типов параметра;
 - PorousParameter хранит и валидирует все параметры вместе;

• NoiseGenerator – генерирует значения для отверстий.

В итоговом проекте созданы следующие сущности и методы, которые отображены на итоговой диаграмме классов (рисунок 6.2).

Рисунок 6.2 – UML диаграмма классов после реализации программы

При реализации системы были сделаны следующие архитектурные изменения:

- 1. Connector заменён Wrapper;
- 2. В MainForm добавлены словари с переводом параметров и сообщениями об ошибках.
 - 3. Метод кроссвалидации разделён на несколько отдельных методов;
 - 4. Добавлены методы обращения к словарю.
- 5. Добавлен интерфейс и класс для тестирования методов, использующий случайные числа;
 - 6. Изменён делегат события обновления значения в форме;
 - 7. Генератор шума был заменён на выдачу псевдослучайных чисел;
- 8. Заменено построение структуры с mesh на твердотельное моделирование.

7 ОПИСАНИЕ ПРОГРАММЫ ДЛЯ ПОЛЬЗОВАТЕЛЯ

Для начала работы с плагином пользователь должен загрузить файл библиотеки коннектора. После загрузки файла пользователю станет доступна команда POROUS, которая запускает плагин.

При открытии формы пользователю становится доступен ввод данных в элементы управления. Пользовательский интерфейс представлен на рисунке 7.1.

Рисунок 7.1 – Пользовательский интерфейс

Пользовательский интерфейс состоит из окна, в котором вводятся данные для построения пористой структуры.

Плагин не позволяет вводить в текстовые поля символы, которые не являются числами, разделителем целой части от вещественной, управляющими символами. Кроме того, плагин проверяет введенные числа на вхождение в допустимый диапазон значений и соответствие условиям зависимых параметров.

При вводе значений, не прошедших валидацию, соответствующее текстовое поле окрашивается красным и при попытке построить модель плагин не позволит этого сделать и покажет окно с текстом ошибок.

Если все данные были введены корректно, то при нажатии кнопки «Построить» происходит построение модели в файле, из которого была загружена библиотека с плагином. Пользовательский интерфейс с неверно введёнными параметрами представлен на рисунке 7.2.

Рисунок 7.2 – Интерфейс с неверно введёнными параметрами

8 ТЕСТИРОВАНИЕ ПЛАГИНА

8.1 Функциональное тестирование

Вывод различных сообщений об ошибке показан на рисунках 8.1-8.2.

Рисунок 8.1 – Вывод сообщения при значениях, не входящих в допустимый диапазон

Рисунок 8.2 – Вывод сообщения при значениях, не подходящих условиям в созависимых полях

Минимальные значения

- 1. Длина = 0.001 мм;
- 2. Ширина = 0,001 мм;
- 3. Высота = 0.001 мм;
- 4. Пористость = 0 мм;

Максимальные значения:

- 1. Длина = 35 мм;
- 2. Ширина = 35 мм;
- 3. Высота = 35 мм;
- 4. Пористость = 50 мм;

При запуске программы значения параметров устанавливаются максимально допустимыми. На рисунке 8.3 представлены модели с максимальными введёнными параметрами.

Рисунок 8.3 – Пористая структура с максимальными параметрами

На рисунке 8.4 представлены модели с минимальными введёнными параметрами.

Рисунок 8.4 – Пористая структура с минимальными параметрами

8.2 Модульное тестирование

В целях проверки корректности работы методов и свойств классов при помощи тестового фреймворка NUnit версии 3.13 проведено модульное тестирование, проверялись открытые поля, свойства и методы. Были протестированы классы модели: Parameter, PorousParameter и NoiseGenerator.

В таблице 8.1 приведены модульные тесты класса Parameter и их описание.

Таблица 8.1 тесты класса Parameter

Название метода	Описание теста
или свойства	
Parameter(double,	Проверяется корректность создания объекта
double)	
MinValue	Проверяется выбрасывание и невыбрасывание исключения при
	изменении нижней границы параметра
Value	Проверяется выбрасывание и невыбрасывание исключение при
	изменении значения параметра

В таблице 8.2 приведены модульные тесты класса PorousParameter и их описание.

Таблица 8.2 тесты класса Parameter

Название метода или	Описание теста
свойства	
PorousParameter()	Проверяется корректность создания объекта
this[ParameterType]	Проверяется индексирование словаря по перечислению
SetValue(ParameterType,	Проверяется выбрасывание и невыбрасывание исключения при
double)	присвоении значения
GetSizes()	Проверяет совпадение возвращаемых значений

В таблице 8.3 приведены модульные тесты класса PorousParameter и их описание.

Таблица 8.3 тесты класса NoiseGenerator

Название метода или	Описание теста		
свойства			
Generate(PorousParameter)	ег) Проверяется наличие точек, их количество и координаты		
InverseNormalDistribution()	Проверяется функция обратного нормального		
	распределения		

Покрытие модели тестами составило сто процентов, что показано на рисунке 8.5.

Рисунок 8.5 – Покрытие кода тестами

8.3 Нагрузочное тестирование

В целях проверки производительности работы плагина, было проведено нагрузочное тестирование. Тестирование производилось на ЭВМ со следующей конфигурацией:

- Процессор Intel Core i7-9750H CPU @ 2.60GHz;
- Видеокарта NVIDIA GeForce RTX 2060 с объёмом памяти 6 ГБ;
- 16 ГБ ОЗУ;
- Операционная система Windows 10 домашняя x64.

Для нагрузочного тестирования был задан цикл построения детали. Для измерения времени был использован класс Stopwatch. Тестирование

заключалось в построении пористой структуры со средними значениями параметров. На рисунке 8.6 и 8.7 показан результат данного тестирования.

Рисунок 8.6 – График зависимости времени построения от количества построенных моделей

Рисунок 8.7 – График зависимости загруженности памяти от количества построенных моделей

Тестирование длилось 3 часа, были построены десять тысяч моделей со средними значениями параметров. Исходя из графика, представленного на рисунке 8.6, можно увидеть линейное влияние каждой построенной модели на последующее моделирование. Увеличение потребляемой памяти и времени, требуемой для построения одной модели, может быть вызвано накоплением объектов в файле и базе данных файла со всеми объектами.

Заключение

В процессе разработки приложения был создан плагин, позволяющий создавать пористые структуры с различными конфигурациями пор в САПР Autodesk AutoCAD.

Для разработки были изучены использованы вспомогательные инструменты: Resharper, StyleCop, GuideLines.

При написании плагина был получен опыт использования новых библиотек, проведения нагрузочного тестирования и разработки дополнительной функциональности по требованию заказчика.

Список использованных источников

- 1. Microsoft Learn [электронный ресурс]. URL: https://learn.microsoft.com/ru-ru/dotnet/desktop/winforms/overview/?view=netdesktop-8.0
- Приложения ObjectARX. [Электронный ресурс]: официальный сайт Autodesk AutoCAD 2024. URL: https://help.autodesk.com/view/OARX/2024/RUS/?guid=GUID-3FF72BD0-9863-4739-8A45-B14AF1B67B06
- 3. ReSharper: расширение Visual Studio для .NET-разработчиков от JetBrains. [Электронный ресурс]: официальный сайт JetBrains. URL: https://www.jetbrains.com/ru-ru/resharper/
- 4. StyleCop. [Электронный ресурс]: официальный маркетплейс Visual Studio. URL:
 - https://marketplace.visualstudio.com/items?itemName=ChrisDahlberg.StyleCop
- 5. GeoMESH | AutoCAD | Autodesk App Store. [Электронный ресурс]. Режим доступа: свободный (дата обращения: 09.10.2023), https://apps.autodesk.com/ACD/ru/Detail/Index?id=1842816844021215808&appL ang=en&os=Win64