ARREGLOS

Es un conjunto de variables que tienen algo en común, y que son del mismo tipo de dato.

Tipo de Dato Etiqueta [Valor Entero]

Ejemplo:

int *X* [6]

Los elementos son:

X [0], X [1], X [2], X [3], X [4], X [5]

float Y [5]

Y [0], *Y* [1], *Y* [2], *Y* [3], *Y* [4]

ARREGLOS UNIDIMENSIONALES

Los arreglos deben considerarse que se encuentran ordenados en la memoria.

int X [6]

X [0] X	[1] X[2]	X[3]	A [4]	X[5]

float Y [5]

Y[0]	Y [1]	Y[2]	Y[3]	Y[4]

ARREGLOS UNIDIMENSIONALES

Los valores se asignan a cada elemento:

$$X[0] = 12;$$
 $X[1] = 18;$ $X[2] = 34;$ $X[3] = 15$ $X[4] = 16;$ $X[5] = 2;$

X[0]	<i>X</i> [1]	<i>X</i> [2]	<i>X</i> [3]	<i>X</i> [4]	<i>X</i> [5]
12	18	34	15	16	2

$$Y[0] = 12.34 \ Y[1] = 111.3 \ Y[2] = 1,2 \ Y[3] = 0,34 \ Y[4] = 124.87$$

<i>Y</i> [0]	<i>Y</i> [1]	<i>Y</i> [2]	<i>Y</i> [3]	<i>Y</i> [4]
12.34	111.3	1.2	0.34	124.87

ARREGLOS BIDIMENSIONALES

Ejemplo:

int X [4][6]

Los elementos son:

	0	1	2	3	4	5
0	12	18	34	15	16	2
1	12	18	34	15	16	2
2	12	18	34	15	16	2
3	12	18	34	15	16	2

ARREGLOS BIDIMENSIONALES

Los elementos son:

$$X[3][0] = 12$$
 $X[3][1] = 18$ $X[3][5] = 2$

ARREGLOS GENERALIZADOS

UNIDIMENSIONAL: X[n]

Arreglo X de n elementos del elemento 0 hasta el n-1 Elemento j-ésimo del arreglo X, donde $j \in [0,n$ -1], y pX el puntero.

$$X[j] \equiv *(pX + j)$$

ARREGLOS GENERALIZADOS

BIDIMENSIONAL: X[m][n]

Arreglo X de m*n elementos del elemento [0][0]hasta el [m-1][n-1] X [i][j] Elemento de la fila i-ésima y la columna j-ésima del arreglo X, donde $i \in [0,m-1]$ y $j \in [0,n-1]$], y pX el puntero.

$$X [i][j] \equiv *(pX + i*n + j)$$

ARREGLOS GENERALIZADOS

TRIDIMENSIONALL:X[p][q][r]

Arreglo X de p*q*r elementos del elemento [0][0][0] hasta el [p-1][q-1] [r-1]

X[i][j][k]

Elemento de la fila i-ésima y la columna j-ésima y la profundidad k-ésima del arreglo X, donde $i \in [0,p-1]$ y $j \in [0,q-1]$ y $j \in [0,r-1]$

DEFINICION DE VARIABLE PUNTERO

Los punteros de una variable, se guardan en variables denominadas "variables puntero"; las variables puntero se definen de la misma manera que las variables pero se le coloca el prefijo "*". Ejemplo:

```
int *pSueldo;
char *pNombre;
float *pX;
double *pXerox;
```

Los punteros deben ser del mismo tipo de dato que la variable a la que apunta, es decir, si una variables es entera, el puntero que guarde su dirección debe ser entero.

EJEMPLO DE USO DE PUNTEROS

Deseamos guardar el número 123 en una variable entera, entonces se define:

int Gunsandrouses;

Y luego asignamos el valor a la variable:

Gunsandrouses=123;

Ahora deseamos guardar la dirección de la variable, para lo cual debemos definir una variable puntero del mismo tipo:

int *pGunsandrouses;

Luego asignamos la dirección de la variable a la variable puntero:

pGunsandrouses=&Gunsandrouses;

UNIDIMENSIONAL: X[n]

Arreglo X de n elementos del elemento θ hasta el n-1

X[j]

int *pX; pX=&X[0]

El puntero de: X[j]

El contenido de la variable a la que apunta: X[j]

Son equivalentes:

$$X[j] \equiv *(pX + j)$$

BIDIMENSIONAL: X[m][n]

Arreglo X de m*n elementos del elemento [0][0]hasta el [m-1][n-1]

El puntero de: X[i][j]

$$pX+i*n+j$$

El contenido de la variable a la que apunta: X[j]

*(pX+
$$i*n+j$$
)

Son equivalentes:

$$X[j] \equiv *(pX + i*n + j)$$

TRIDIMENSIONAL: X[p][q][r]

Arreglo X de p*q*r elementos del elemento $[\theta][\theta][\theta]$ hasta el [p-1][q-1][r-1]

El puntero de:X[i][j][k]

El contenido de la variable a la que apunta: X[j]

Son equivalentes:

$$X[j] \equiv *(pX +)$$