

Skripta k matematickému semináři

Adam Klepáč Gymnázium Evolution Jižní Město adam.klepac@gevo.cz

15. října 2025

Tato skripta jsou určena studentům nepovinného předmaturitního semináře z matematiky. Ve **stručné** podobě pokrývají probrané učivo a mají sloužit jako zdroj příkladů, obrázků a (většinou formální) shrnutí základních ideí.

1 Lineární systémy

Lineární systémy modelují skutečnosti (ve fyzice, ekonomie, informatice, ...), kdy veličiny na sobě závisejí *přímo úměrně*. Běžným příkladem z fyziky je závislost dráhy na čase při konstantní rychlosti: jedeme-li rychlostí 50 km/h, pak ujetá vzdálenost (v km) je vždy přesně 50x větší, než uplynuvší čas (v hodinách).

Jednoduše řečeno jsou lineární systémy množiny *lineárních rovnic* (tedy rovnic vyjadřujících ony vztahy přímé úměrnosti mezi veličinami). *Řešením* lineárního systému pak myslíme množinu všech čísel, která lze (v daném pořadí) dosadit za proměnné, aby byly všechny rovnice splněny.

1.1 Pár aplikací lineárních systémů

V této úvodní sekci si ukážeme různé aplikace lineárních systémů a nadneseme několik otázek o povaze jejich množin řešení, jež budeme chtít umět zodpovědět.

1.1.1 Vstupy a výstupy průmyslů

Ekonomie je složitý systém vzájemně provázaných průmyslů. Vstupy (řekněme "materiál nutný na výrobu") jednotlivých průmyslů jsou většinou svázány lineárně (přímo úměrně) s výstupy (řekněme "výrobky") jiných průmyslů. Je tomu tak pro to, že daný výrobek má konstantní výrobní náklady – k výrobě tužky je potřeba tolik a tolik tuhy, tolik a tolik dřeva atd. Neboli, výroba t tužek vyžaduje (řekněme) 5t gramů tuhy. Dokud by výroba plynula pouze jedním směrem (tedy od tuhy a dřeva k tužkám), nebyla by teorie lineárních systémů v ekonomii mnoho užitečná. Situace je však málokdy tak jednoduchá. Ona vzájemná provázanost vzniká v moment, kdy například dřevní průmysl potřebuje vést různé záznamy o nákupu a prodeji a tyto bude psát tužkou na papír. Nyní je výstup dřevního průmyslu vstupem tužkového a tužky jsou zase vstupem dřevního průmyslu. Spočítat, jak přirozené fluktuace v nabídce a poptávce ovlivní takový systém není triviální. Podívejme se blíže na jiný (leč zjednodušený) příklad z praxe.

Omezíme se na dva konkrétní hráče na volném trhu – automobilový průmysl a průmysl ocelový. Pochopitelně, automobilový průmysl vyžaduje ocel k výrobě vozidel, a naopak, ocelový průmysl vyžaduje nákladní auta k převozu oceli z továren ke kupcům. Zároveň, automobilový průmysl používá svá vlastní nákladní auta například k převozu osobních automobilů a ocelový průmysl též svou vlastní ocel k výstavbě továren. Konečně, výše výstupu obou průmyslů musí uspokojit poptávku všech ostatních průmyslů i fyzických osob na trhu.

Situaci shrňme následující tabulkou, kde jsou u obou průmyslů uvedeny hodnoty výstupů (v milionech dolarů za rok 1958 v USA) využívaných automobilovým průmyslem, ocelovým průmyslem a pak všemi ostatními.

	užívá ocel	užívá auto	užívá zbytek	celkem
hodnota oceli	5395	2664	17389	25448
hodnota auta	48	9030	21268	30346

Celkem přirozeně, hodnoty v prvních dvou sloupcích zůstanou konstantní, dokud se nezmění hodnoty ve sloupci třetím. Ani jeden z průmyslů nemá důvod upravovat nabídku, nezmění-li se poptávka. Ovšem, hodnota v třetím sloupci kolísá s poptávkou *fyzických osob*, jež je notoricky obtížně předpovídatelná. Chtěli bychom umět určit hodnotu obou průmyslů v příštím roce na základě dané fluktuace hodnoty ve třetím sloupci tabulky.

Tomu poslouží lineární systém o těchto dvou rovnicích:

hodnota oceli v příštím roce = užitá ocel ocelí v příštím roce + užitá ocel autem v příštím roce + užitá ocel ostatními v příštím roce hodnota auta v příštím roce = užité auto ocelí v příštím roce + užité auto autem v příštím roce + užité auto ostatními v příštím roce

Pro jednoduchost vyjádření označíme písmenem o hodnotu oceli v příštím roce a písmenem a hodnotu auta v příštím roce.

Předpokládejme, že hodnota užité oceli ostatními v příštím roce vzroste na 17589 milionu dolarů a hodnota užitého auta ostatními v příštím roce klesne na 21243. Budeme též předpokládat, že podíl celkové hodnoty ocelového i automobilového průmyslu využitý ocelovým průmyslem zůstane nezměněn a stejně tak i pro průmysl automobilový. Čili, ocelový průmysl použil v tomto roce přesně 5395/25448 hodnoty svého vlastního výstupu a 2664/30346 hodnoty výstupu automobilového průmyslu. Dále, automobilový průmysl použil 9030/30346 své vlastní hodnoty a 48/25448 hodnoty oceli.

Dosazením všech hodnot do systému (1.1) dostaneme

$$o = \frac{5395}{25448}o + \frac{2664}{30346}a + 17589$$

$$a = \frac{48}{25448}o + \frac{9030}{30346}a + 21243$$
(1.2)

Řešením tohoto systému jsou očekávané hodnoty výstupů obou průmyslů při dané fluktuaci vnější poptávky.

1.1.2 Elektrické sítě

Inženýři často potřebují zodpovědět otázky o elektrických sítích (v mobilu, v autě ...) typu: "Jak silný proud prochází každým obvodem?", "Jak vysoké napětí nepřetíží připojená zařízení" apod.

Lineární systémy mohou sloužit jako dobrý způsob studia elektrických sítí. Než se podíváme na konkrétní příklady, shrneme víceméně intuitivním způsobem základní vlastnosti elektrických sítí.

Jednoduchá elektrická síť sestává ze dvou typů zařízení: *baterií* a *resistorů*. Jejich vztah si lze představovat tak, že baterie pumpuje napětí, dokud existuje v síti aspoň jeden uzavřený obvod a průchod elektrického proudu resistorem napětí ve zbytku obvodu sníží. Proud jako takový lze považovat za jakousi "rychlost" pohybu napětí po síti. Když se síť rozdělí do dvou obvodů, proud se rozdělí též, neboť napětí zůstane v obou obvodech stejné ("vést" stejné napětí dvěma cestami je "těžší" než jednou).

Proud, napětí a odpor jsou svázány tzv. Ohmovým zákonem, který říká, že v každém bodě obvodu platí

$$napěti = proud \cdot odpor.$$

Další ingrediencí ke studiu elektrických obvodů se nám stanou dva Kirchhoffovy zákony: zákon napětí a zákon proudění. Zákon napětí říká, že celkový pokles napětí v každém obvodu je roven celkovému vzrůstu. Jinak řečeno, po průchodu všemi resistory v obvodu musí být napětí nulové, neboť jeho vzrůst zařizuje baterie. Kirchhoffův zákon proudění říká, že v každém bodě, kde se síť

dělí na více obvodů, je součet velikostí proudů konstantní. Rozdělí-li se tedy jeden obvod v jistém bodě na tři obvody, pak velikost proudu v tomto jednom obvodu musí být rovna součtu velikostí tří proudů v obvodech následujících.

Nyní předložíme několik příkladů elektrických sítí, od jednoduchých po poněkud komplikovanější.

Jistě nejjednodušším příkladem elektrické sítě je ta o pouze jednom obvodu.

Obrázek 1: Jednoduchá elektrická síť o jednom obvodu.

Baterie v této síti dodává napětí o velikosti 10 V. Zapojeny jsou za sebou tři resistory o odporech 5, 2 a 3 Ω . K výpočtu proudu procházejícího celým obvodem nebudeme potřebovat Kirchhoffův zákon proudění (protože se síť nedělí na více obvodů) ani lineární systém. Bude stačit jediná rovnice. Totiž, podle Kirchhoffova zákona napětí musí celkový nárůst napětí (zde 10 V) být roven jeho celkovému poklesu. Dohromady musejí tedy ony tři zapojené resistory "spolknout" 10 V napětí. Protože je celkový odpor obvodu roven 5+2+3=10 Ω a víme, že platí napětí = proud odpor, můžeme spočítat, že proud procházející obvodem je roven 1 A.

Nyní již uvážíme síť o třech obvodech: jednom vnějším (označeném modře), jednom vnitřním (z baterie přes resistor o 4 Ω a zase do baterie) a jednom bez baterie (obdélník obsahující oba resistory).

Obrázek 2: Elektrická síť o třech obvodech.

Proud i_0 procházející sítí se v uzlu označeném N_1 dělí na dva: i_1 a i_2 . Podle Kirchhoffova zákona o proudění musí platit rovnost $i_0=i_1+i_2$. Podobně, v uzlu N_2 se proudy i_1 a i_2 pojí v jeden: i_0 . Podle stejného zákona platí rovněž $i_1+i_2=i_0$.

Navíc, pro každý ze tří obvodů platí Kirchhoffův zákon napětí. V případě vnitřního obvodu (kterým prochází proud o velikosti i_2) musí resistor snížit napětí o celých 12 V. Z pravidla napětí = proud · odpor dostáváme rovnici $12 = i_2 \cdot 4$. Podobně, modrý vnější obvod splňuje rovnici $12 = i_2 \cdot 4$.

 $i_1\cdot 3$. Nakonec zde máme obvod bez baterie. Ten má celkové napětí 0 V. Resistorem nalevo prochází napětí $4\cdot i_2$ a resistorem napravo napětí $3\cdot i_1$. Protože však elektřina proudí resistorem napravo opačným směrem oproti resistoru napravo, musíme tento fakt vykompensovat změnou znaménka. Celkový pokles napětí v tomto obvodu je pročež $4\cdot i_2 - 3\cdot i_1$. Ten musí být nulový (neb nedošlo k žádnému nárůstu napětí), čili $4\cdot i_2 - 3\cdot i_1 = 0$.

Po využití obou Kirchhoffových zákonů docházíme k závěru, že proud procházející sítí je popsán soustavou rovnic

$$i_0 = i_1 + i_2$$
 $i_1 + i_2 = i_0$
 $4i_2 = 12$
 $3i_1 = 12$
 $4i_2 - 3i_1 = 0$. (1.3)

Jak si můžete všimnout, jisté rovnice jsou tu zbytečné, třeba druhá a pátá. Na tom by nám nemuselo záležet, dostaneme-li správný výsledek tak či tak, ale z výpočetního hlediska je tato situace neoptimální. Totiž, v praxi počítáme obvykle systémy o tisících ba statisících lineárních rovnicích a zcela jistě není vhodné nechat počítač řešit například pět tisíc rovnic, mohl-li řešit tisíc pouze jeden. Které rovnice jsou však zbytečné a které ne, není triviální bez bližšího studia určit. Například aspoň jednu z prvních dvou rovnic ponechat musíme, neboť bez nich nespočítáme proud i_0 . Dále, z posledních tří rovnic si rovněž musíme libovolné dvě ponechat a tu třetí můžeme zanedbat. Jak problém "Které rovnice v soustavě jsou zbytečné?" řešit zodpovíme brzy.

Řešením systému je $i_0 = 7, i_1 = 4, i_2 = 3$.

Posledním obvodem, který si ukážeme a jejž by bylo opravdu obtížné řešit bez teorie soustav lineárních rovnic, je tzv. Wheatstonův most na obrázku 3.

Obrázek 3: Wheatstonův most.

Tato síť obsahuje čtyři uzly a bezpočet obvodů. Protože neznámých velikostí proudu je šest, potřebujeme najít minimálně šest různých rovnic, ve kterých se každá z proměnných vyskytuje celkem aspoň jednou. Aplikace Kirchhoffova zákona na horní a spodní uzel dá rovnice

$$i_0 = i_1 + i_2$$

$$i_3 + i_4 = i_0.$$

Z levého a pravého uzlu pak získáme rovnice (nesmíme zapomenout změnit znaménko, když počítáme s velikostí proudu v "opačném" směru oproti nakreslenému)

$$i_1 - i_5 = i_3$$

 $i_2 + i_5 = i_4$.

Dále, Kirchhoffův zákon napětí použitý na vnitřní obvod s baterií dává rovnici

$$10 = 5i_1 + 10i_3.$$

Naopak, z vnějšího obvodu s baterií usoudíme, že

$$10 = 2i_2 + 4i_4$$
.

Konečně musíme najít obvod, který nám umožní spočítat hodnotu proměnné i_5 . Tím je například onen "horní trojúhelník". Z něj dostaneme rovnici

$$5i_1 + 50i_5 - 2i_2 = 0.$$

Celkem tedy řešíme soustavu o sedmi rovnicích a šesti neznámých:

$$i_0 = i_1 + i_2$$

$$i_3 + i_4 = i_0$$

$$i_1 - i_5 = i_3$$

$$i_2 + i_5 = i_4$$

$$10 = 5i_1 + 10i_3$$

$$10 = 2i_2 + 4i_4$$

$$0 = 5i_1 + 50i_5 - 2i_2$$

jejímž řešením je $i_0 = 7/3, i_1 = 2/3, i_2 = 5/3, i_3 = 2/3, i_4 = 5/3$ a $i_5 = 0$.

Wheatstonův most se často používá k měření odporu různých zařízení ve smyslu, který si dostanete šanci rozmyslet prostřednictvím cvičení na konci kapitoly.

1.1.3 Chemické rovnice

Lineární systémy se objevují též v chemii, konkrétně při vyčíslování reakcí. Uvažme reakci, kdy se toluen C_7H_8 slučuje s kyselinou dusičnou HNO_3 a produkuje trinitrotoluen (zkráceně TNT) $C_7H_5O_6N_3$ s vodou H_2O . Počet molekul na obou stranách reakce označíme postupně písmeny x,y,z,w. Pak můžeme reakci zapsat jako

$$x C_7 H_8 + y HNO_3 \rightarrow z C_7 H_5 O_6 N_3 + w H_2 O.$$

Aby taková reakce mohla nastat, musí díky zákonu zachování hmoty být počet atomů na levé straně roven počtu atomů na straně pravé. Jelikož v reakci vystupují čtyři různé atomy, dostáváme systém o čtyřech rovnicích:

C:
$$7x = 7z$$

H: $8x + y = 5z + 2w$
N: $y = 3z$
O: $3y = 6z + w$

Všimněte si, že takový systém rovnic má **nekonečně mnoho** řešení, protože obě strany chemické reakce závisejí na úvodním množství (aspoň jedné ze) sloučenin. Aby měl systém se čtyřmi proměnnými přesně jedno řešení, musí obsahovat minimálně čtyři lineární rovnice, ale – jak vidno – nemusí to vždy stačit.

1.1.4 Interpolace

Důležitou úlohou statistiky je schopnost aproximovat diskrétní data souvislou křivkou dané "výpočetní složitosti". Diskrétními daty se myslí zkrátka množina měření jisté veličiny nebo

veličin v čase. Uvažme příklad hodnoty akcií firmy NVIDIA za poslední měsíc. Měření této hodnoty každý týden v pondělní poledne dá graf na obrázku 4.

Obrázek 4: Graf hodnot akcií firmy NVIDIA za měsíc září 2026.

Jakožto finančních analytiků je naší úlohou na základě dosavadních dat zkusit odhadnout vývoj hodnoty akcií firmy NVIDIA v budoucích týdnech. Tomuto "doplnění" daných dat o chybějící údaje (ať už mezi jednotlivými týdny nebo v týdnech budoucích) se říká *interpolace*. Nejjednodušší (ale zato nejrychlejší) způsob interpolace je proložení přímkou (tzv. *line of best-fit*). Taková úloha vede přirozeně na řešení soustavy lineárních rovnic.

Totiž, přímka v rovině je dána lineární rovnicí y = ax + b. My máme k dispozici pět dvojic čísel (x,y) - x je číslo týdne, y je hodnota akcie – a chceme z nich určit koeficienty a,b. Zapsány do tabulky, jsou hodnoty akcií v jednotlivých týdnech následující:

týden	hodnota akcie		
1	\$171.65		
2	\$168.245		
3	\$175.65		
4	\$179.845		
5	\$181.85		

Tabulka 1: Hodnoty akcií firmy NVIDIA za měsíc září 2026.

Rovnici přímky pak najdeme vyřešením soustavy rovnic

$$171.65 = a \cdot 1 + b$$

$$168.245 = a \cdot 2 + b$$

$$175.65 = a \cdot 3 + b$$

$$179.845 = a \cdot 4 + b$$

$$181.85 = a \cdot 5 + b$$

Všimněte si na této soustavě jedné zásadní věci – ona řešení ale vůbec nemá! Totiž, z prvních dvou rovnic můžeme zjistit, že a=-3.41 a b=175 (přibližně), avšak tato dvojice neřeší například rovnici třetí. Co s tím? Jestliže všech pět bodů na přímce neleží, uměli bychom najít nějakou přímku, která je jim všem "co nejblíže", ve smyslu, že součet vzdáleností všech bodů od této přímky je nejmenší možný? Jak snad správně čekáte, odpověď na tuto otázku je "ano". Jak přesně se takové řešení soustavy dá najít se však dozvíme až později. Výsledkem příslušného výpočtu by byla přímka y=3.2x+166 na obrázku 5.

Obrázek 5: Aproximace hodnot akcií firmy NVIDIA přímkou.

1.1.5 Úlohy na závěr

(1) Předpovězte hodnoty tří průmyslů v příštím roce, jejichž vzájemný vztah je dán tabulkou 2.

	užívá zemědělství	užívá železnice	užívá logistika	užívají ostatní	celkem
hodnota zemědělství	25	50	100	625	800
hodnota železnice	25	50	50	175	300
hodnota logistiky	15	10	0	475	500

Tabulka 2: Vzájemný vztah tří průmyslů.

(2) Spočtěte proud procházející každým resistorem v obvodu na obrázku 6.

Obrázek 6: Elektrická síť k úloze 2.

(3) Dokažte, že jsou-li dány odpory zařízení ve Wheatstonově mostě jako na obrázku 7 a proud procházející resistorem r_g (tím prostředním) je nulový, pak platí rovnost

$$r_4 = \frac{r_2 \cdot r_3}{r_1}.$$

Měření odporu resistoru r_4 probíhá tak, že upravujeme odpory zařízení r_1,r_2 a r_3 , dokud není odpor r_g nulový. V ten moment známe odpor r_4 díky rovnosti výše.

Obrázek 7: Wheatstonův most s neznámými odpory.

1.2 Řešení lineárních systémů

V této sekci formulujeme Gauβův-Jordanův algoritmus na řešení lineárních systémů. S mírnými modifikacemi je tento algoritmus využíván počítači stále a je zatím řádově nejrychlejším algoritmem na řešení lineárních systémů, jejž známe.

Nejprve však zavedeme pár základních definic a značení.

Definice 1.2.1 (Lineární kombinace): Ať n je přirozené číslo, $x_1, x_2, ..., x_n$ jsou proměnné a $a_1, a_2, ..., a_n$ jsou čísla. Výraz typu

$$a_1x_1 + a_2x_2 + ... + a_nx_n$$

nazveme *lineární kombinací* proměnných $x_1,...,x_n$.

Definice 1.2.2 (Lineární rovnice): Jsou-li $x_1,...,x_n$ proměnné a $a_1,...,a_n,b$ čísla, pak rovnost

$$a_1 x_1 + a_2 x_2 + \dots + a_n x_n = b, (1.4)$$

kde levá strana je lineární kombinace proměnných $x_1,...,x_n$, nazveme lineární rovnicí (v proměnných $x_1,...,x_n$). $\check{Rešením}$ lineární rovnice je jakákoli n-tice čísel $(s_1,s_2,...,s_n)$, pro kterou platí rovnost (1.4) po dosazení za proměnné $x_1,...,x_n$.

Definice 1.2.3 (Lineární systém): Množinu lineárních rovnic

$$a_{1,1}x_{1} + a_{1,2}x_{2} + \dots + a_{1,n}x_{n} = b_{1}$$

$$a_{2,1}x_{1} + a_{2,2}x_{2} + \dots + a_{2,n}x_{n} = b_{2}$$

$$\vdots \qquad \vdots \qquad \vdots$$

$$a_{m,1}x_{1} + a_{m,2}x_{2} + \dots + a_{m,n}x_{n} = b_{m}$$

$$(1.5)$$

nazveme lineárním systémem. Řešením lineárního systému (1.5) je jakákoli n-tice $(s_1, s_2, ..., s_n)$ řešící každou jeho rovnici.

Při práci s lineárními rovnicemi budeme vždy předpokládat, že jsou zapsány jako v (1.4). Když lineární rovnice není v tomto tvaru, např. $3x_1 - 2x_2 - 5 = 3x_3$ můžeme ji totiž na tento tvar snadno upravit tak, že všechny proměnné dáme nalevo a čísla napravo, tedy takto: $3x_1 - 2x_2 - 3x_3 = 5$.

1.2.1 Gaußův-Jordanův algoritmus

Ideu nalezení řešení lineárního systému přes Gauβův-Jordanův algoritmus nejprve ilustrujeme na příkladě.

$$x_1 + 2x_2 - x_3 = 7$$

$$2x_1 + 2x_2 = 0$$

$$-x_1 + 4x_2 + 2x_3 = 7$$
(1.6)

Budeme postupovat tak, že nejprve z prvního sloupce a všech řádků kromě prvního "vyeliminujeme" proměnnou x_1 . Konkrétně, odečteme dvojnásobek první rovnice od druhé a pak přičteme první rovnici ke třetí. Zatím nám věřte, že takovéto úpravy nechávají řešení systému nedotčeno. Brzy si to rozmyslíme pořádně.

Výsledkem bude systém

$$x_1 + 2x_2 - x_3 = 7$$

 $-2x_2 + 2x_3 = -14$
 $6x_2 + x_3 = 14$

Konečně, z druhého sloupce a všech řádků pod druhým (tedy již pouze z třetího) vyeliminujeme proměnnou x_2 . Díky tomu, že již v žádném řádku kromě prvního není přítomna proměnná x_1 , zbavíme se takto z třetího řádku proměnné x_2 , aniž do něj "vrátíme" proměnnou x_1 . Přičítáme proto trojnásobek druhé rovnice ke třetí a dostáváme

$$x_1 + 2x_2 - x_3 = 7$$

 $-2x_2 + 2x_3 = -14$
 $7x_3 = -28$

Teď je systém ve stavu, kdy můžeme zpětnou substitucí (nejprve spočítáme x_3 , s jeho pomocí x_2 atd.) systém dopočítat. Z poslední rovnice víme, že $x_3=-4$. Dosazením do druhé rovnice dostaneme

$$-2x_2 + 2 \cdot (-4) = -14$$

a tím pádem $x_2 = 3$. Konečně, z první rovnice

$$x_1 + 2 \cdot 3 - (-4) = 7,$$

takže $x_1 = -3$. Našli jsme řešení (1.6) v podobě (-3, 3, -4).

V právě spočteném příkladě jsme upravovali lineární systém tak, že jsme přičítali (či odečítali) násobky rovnic od rovnic jiných. Že je tato úprava **ekvivalentní** ve smyslu, že nemění množinu řešení systému, si záhy rozmyslíme. Navíc k této úpravě můžeme též prohazovat rovnice a násobit rovnice nenulovými čísly. Tyto tři úpravy lineárních systémů se souhrnně nazývají "elementární řádkové úpravy" z důvodů, jež ještě objasníme.

Definice 1.2.1.1 (Elementární řádkové úpravy): Následující tři úpravy lineárních systémů:

- (1) prohození dvou rovnic,
- (2) vynásobení rovnice nenulovým číslem,
- (3) přičtení násobku jedné rovnice k jiné,

nazveme elementárními řádkovými úpravami.

Tvrzení 1.2.1.1: Elementární řádkové úpravy nemění množinu řešení lineárního systému.

Důkaz: Že úpravy (1) a (2) nemění množinu řešení lineárního systému, je zřejmé, protože jsou ihned zvratné prohozením týchž rovnic či zpětným vydělením vynásobené rovnice.

Spočítáme si pořádně, že úprava (3) nemění množinu řešení lineárního systému

$$a_{1,1}x_{1} + a_{1,2}x_{2} + \dots + a_{1,n}x_{n} = b_{1}$$

$$a_{2,1}x_{1} + a_{2,2}x_{2} + \dots + a_{2,n}x_{n} = b_{2}$$

$$\vdots \qquad \vdots \qquad \vdots$$

$$a_{m,1}x_{1} + a_{m,2}x_{2} + \dots + a_{m,n}x_{n} = b_{m}.$$

$$(1.7)$$

Řekněme, že jsme provedli přičtení c-násobku i-té rovnice k j-té. Pak místo j-té rovnice v systému vznikne rovnice

$$a_{i,1}x_1 + a_{i,2}x_2 + \dots + a_{i,n}x_n + c \cdot (a_{i,1}x_1 + a_{i,2}x_2 + \dots + a_{i,n}x_n) = b_i + c \cdot b_i.$$
 (1.8)

Abychom ověřili, že množina řešení systému zůstala i po této změně stejná, vezměme nějaké řešení $(s_1, s_2, ..., s_n)$ systému (1.7). Protože j-tá rovnice je ta jediná změněná, dosadíme do ní řešení $(s_1, ..., s_n)$ a ověříme, že je jejím řešením stále. Dostaneme

$$a_{j,1}s_1 + a_{j,2}s_2 + \dots + a_{j,n}s_n + c \cdot (a_{i,1}s_1 + a_{i,2}s_2 + \dots + a_{i,n}s_n) = b_j + c \cdot b_i.$$

Jelikož ale $(s_1,...,s_n)$ řeší jak *i*-tou, tak *j*-tou rovnici, platí

$$a_{i,1}s_1 + a_{i,2}s_2 + \dots + a_{i,n}s_n = b_i,$$

 $a_{i,1}s_1 + a_{i,2}s_2 + \dots + a_{i,n}s_n = b_i$

Dosazením do (1.8) vznikne

$$b_i + c \cdot (b_i) = b_i + c \cdot b_i,$$

kterážto rovnice zřejmě platí. Tím máme hotovo, protože jsme ověřili, že jakékoli řešení původního systému je stále řešením modifikovaného systému.

Na elementárních řádkových úpravách je postaven právě Gau β ův-Jordanův algoritmus, jak jste měli možnost vidět už na příkladu výše. Formulujeme jej nyní formálně, ale doporučujeme při jeho čtení mít stále na mysli příklad ze začátku podsekce. Jediný případ, který tento příklad nepokrývá a může nastat, je, že například v druhém sloupci a druhém řádku proměnná x_2 není (její koeficient je 0). V tomto případě prohodíme druhý řádek s nějakým nižším, ve kterém proměnná x_2 je a pokračujeme s eliminací. Pokud v žádném řádku pod druhým proměnná x_2 není, nebudeme ji eliminovat (není odkud) a pokračujeme s proměnnou x_3 .

Gauβův-Jordanův algoritmus

INPUT: lineární systém (1.5)

OUTPUT: tentýž lineární systém ve tvaru připraveném na zpětnou substituci (tzv. *odstupňovaný* tvar)

V i-tém sloupci dělej následující.

- (1) Najdi $k \geq i$ takové, že $a_{k,i} \neq 0$ (tj. v k-té rovnici "je" proměnná x_i).
 - ullet Pokud takové k neexistuje, nic nedělej a pokračuj dalším sloupcem.
- (2) Prohoď *i*-tý a *k*-tý řádek.
- (3) Pro každé j > i (tedy pro každý řádek pod i-tým):
 - (a) Spočti $c=-a_{j,i}/a_{i,i}$ (tedy čím musím vynásobit řádek i, aby měl u x_i -koeficient u x_i v řádku j).
 - (b) Přičti c-násobek i-tého řádku k j-tému (tím se zbavím x_i v j-tém řádku).
- (4) Pokračuj dalším sloupcem.