PATENT ABSTRACTS OF JAPAN

(11) Publication number: 60074643 A

(43) Date of publication of application: 26.04.85

(51) Int. CI

H01L 21/82 G06F 11/22 H01L 21/66

(21) Application number: 58181991

(22) Date of filing: 30.09.83

(71) Applicant:

FUJITSU LTD

(72) Inventor:

SHIRATO TAKEHIDE

(54) MANUFACTURE OF SEMICONDUCTOR DEVICE

(57) Abstract:

PURPOSE: To contrive to simplify the process after reception of user's demand and to improve the yield by a method wherein all of various kind of optional circuits built in a microprocessor are formed in the state of being connected by means of wirings before the completion of an integrated circuit, and each circuit is formed as demanded by users.

CONSTITUTION: A user selection circuit built in the microprocessor formed in a semiconductor substrate is formed by selective cutting of a wiring after the initial functional test of this microprocessor. The wirings are cut at any of parts shown by X, according to the option of users; or switched over with a switching means 34. In such a manner, the optional circuit is completed by cutting or not cutting the wiring, according to the option of users; then package test of the final test or the final test is performed after passage through the process of assembly.

COPYRIGHT: (C)1985,JPO&Japio

(9 日本国特許庁(JP)

m 特許出願公開

⑫公開特許公報(A)

昭60-74643

MInt Cl.4

識別記号 广内整理番号

④公開 昭和60年(1985)4月26日

H 01 L 21/82 G 06 F 11/22 H 01 L 21/66 6655-5F 6913-5B 6603-5F

審查請求 有

発明の数 1 (全4頁)

図発明の名称

半導体装置の製造方法

②特 願 昭58-181991

愛出 願 昭58(1983)9月30日

川崎市中原区上小田中1015番地 富士通株式会社内

川崎市中原区上小田中1015番地

砂代 理 人 弁理士 松岡 宏四郎

明 相 唱

1.発明の名称

半導体装置の製造方法

2.特許請求の範囲

半導体基板に形成されたマイクロプロセッサに 内臓されるユーザー選択回路を、該マイクロプロ セッサの初期的な機能試験を終えた後に配線体を 選択的に切断することによって規定することを特 徴とする半導体装置の製造方法。

3.発明の詳細な説明

(1)発明の技術分野

本発明は半導体装置の製造方法、詳しくはマイ クロプロセッサ等に内蔵される樹々のユーザーの オプション(遺訳) 国路の形成方法に関する。

②技術の背景

マイクロプロセッサ等に内蔵されるユーザーオ プション国路は従来よりユーザープログラム用統 出し専用メモリ(ROM) 形成と同時に行われてお り、その形成工程後の短納期化が重要な課題であ る。

(3)従来技術と問題点

従来、ユーザーオプション回路の形成はROM 形 成と同時に電極コンタクト窓の有無によって行わ れた。例えばエンハンスメント型 HOS 電界効果ト ランジスタの選択ピットがピット線に接続されて いるかあるいは接続されていないかによって異な る2つの導電状態を2値記憶装置に対応させるROM を作るにおいて、すべてのピットに放当するエン ハンスメント型 NOS 電界効果トランジスタを形成 し、絶縁膜を成長させた後、電極コンタクト用窓 閉きを選択的に行い、その後配線体形成、カバー 保護膜の成長およびこのカバー保護膜を選択的に 除去しポンディング用パッドを形成し ROM を完成 する。ユーザーオブション国路も前述のROM の確 定と同じ工程、すなわち電極コンタクト用窓関き 工程で形成されていた。ユーザーオプション回路 を含むマイクロプロセッサの製造は絶縁膜が形成 されたウエハ状態でスタンバイされており、ユー ザーの要求があると前記ウェハにユーザーの求め るオプション回路を形成するためのウェハプロセ

スを行い、しかる後にオプション国路を含めウェ ハについて初期試験を行い、組立工程を経た後に 最終試験を行う。

上記の方法においては、ウェハプロセスが長く、かつ終った後組立工程の前に初期試験が入るためにオプション回路形成後の手番が長くなる点に問題があり、ユーザーの要求があってから完成までの時間を更に短縮すること、すなわち製造工程の簡素化が要求される。

更には、未だ何等の試験も行われていないウエハ、すなわち歩留りの見地からは不良品かもしれないウェハに対してもオプション回路が形成され、その後の初期試験で始めて良品か不良品かが判定されるので、製造歩留りについて問題がある。オプション回路の形成は、製造管理の見地からは良品であるウェハに対してなされることが好ましいことはいうまでもない。

⑷発明の目的

本発明は上記従来の問題点に鑑み、マイクロブ ロセッサ等に内限される種々のユーザーオプショ

(3.)

は RAM 、 5 は デコーダ (DEC) 、 6 は ROM 、 7 は スタンパイ (STBY) 、 8 は ポート、 9 は テスタ (TBST) 、 10はレジスタ (REG) 、 11は アナログ・ディジタル・マルチプレクサ (ADMPX) 、 12は プログラムカウンタ、 13は プレスケーラ (prescaler) 、 14はスタックレジスタ (atack register) 、 15はシステムプロセッサ (SP) 、 16はクロック、 17は プログラマブル・ロジック・アレイ (PLA) 、 18は ポート、 19は PLA 、 20は フラッグ (PLG) 、 21は ポート (PORT) 、 22は スタンパイ (STBY) 、 23は ロジック 回路 (LOGIC) を示す。

上記の半導体チップは完成品であるが、現実の 製造工程においてユーザーオプション回路は、シ リアル・ポート・ラッチ、PLA 出力形式、出力回 路形式 (PORT) に関する。

本発明の方法によると、ウエハにオブション回路以外の国路を形成するだけでなく、上記3つのオブション回路をも形成し、ウエハ毎に初期試験を行う。初期試験はプローバテスト、イニシアルテストまたはウエハテストとも呼称される。この

ン回路の形成において、ユーザーの要求を受けた 後の工程が簡素化され、かつ製造管理の面から歩 習りの向上せしめられた半導体集積回路を製造す る方法を提供することを目的とする。

⑥発明の模成

そしてこの目的は本発明によれば、半導体基板上に形成されたマイクロプロセッサに内限されるユーザー選択回路を、該マイクロプロセッサの初期的な機能試験を終えた後に配談体を選択的に切断することによって規定することを特徴とする半導体装置の製造方法を提供することによって達成される。

(6)発明の実施例

以下本発明実施例を図面によって辞説する。

第1図はマイクロプロセッサに内臓される半導体チップ1の平面図であって、このチップは3.92mm×5.08mmの大きさのものであり、半導体チップ1の4様には各種のパッド2が形成され、符号2aで示す斜線を付したパッドは出力形式パッドである。なお同図において、3はポート(PORT)、4

(4)

ときの試験は直流試験(DC試験)、ファンクション試験およびスピード試験に大別されるが、ファンクション試験とスピード試験は同等の試験であるので(つまりファンクション試験にAC試験を入れて行うので)、試験はDC試験とAC試験とに大別されることもある。

直流試験では電源電流(Icc)、人力機子についてViH、ViLを、出力端子についてVoH、VoLを、出力端子についてVoH、VoLを、リーク電流を端子およびスタンバイについて試験する。

ファンクション試験は機能毎に分割して、CPU の算術論理装置(ALU)、アナログコンピュータ (AC)、レジスタ、フラグ、割込みについて試験 し、ROM とPLA で"1"と"0"が正しく答かれ ているか否かを試験し、AC試験は高速と低速で回 路が正しく動作するか否かを試験する。

本発明の方法においては、前記オプション回路 は次の如くに形成する。先ずシリアル・ポート・ ラッチについて、第2図回を参照すると、31はシ リアル・パッファ回路プロック、32はラッチ、33 はインバータを示し、34はユーザーのオプションによりラッチを通すか通さないかの状態を作るための切換手段を示す。本発明の方法においては、第2図(0)に示す回路を形成し、ユーザーのオプションにより配額体を図にXで示す部分のいずれかで切断する。前記した初期試験は第2図(0)の回路について実施する。

PLA 出力形式は第3 図を参照するとA (4ビット並列)とB (8ビット並列)を図示の如くに形成し、切換手段34でA またはB に切換える代りに、A、B を共にインバータ33に接続し、配線体を X 印を付したいずれかの部分で切断する。初期試験 ・ はシリアル・ポート・ラッチの場合と同様に行う。

出力回路形式については、第4図の(のと(の)に示されるいずれかの出力回路が要求されるとする。 このとき、第4図(の)に示される回路を形成し、図 にXで示す部分を切るか切らないかによって(の)ま たは(の)の回路を得る。初期試験は前記の例と同様 にして行う。

本発明の方法によると、基本回路に加え、オブ

(7)

(7)発明の効果

以上詳細に説明した如く、本発明の方法によると、マイクロプロセッサに内殿される種々のオプション回路を集積回路装置の完成までにすべて配線体で接続する状態で形成しておき(オプション回路以外の回路は完全動作可能状態に形成し、試験で動作確認してある)、その後ユーザーの要求に応じ各回路形成を行うため、不必要な回路の配線体を切断し短い手番で製品を出荷することが可能となる。

4.図面の簡単な説明

第1図はマイクロプロセッサに内蔵される半導体チップの平面図、第2図はシリアル・ボート・ラッチの回路図、第3図は PLA出力形式を示す回路図、第4図は出力回路形式を示す回路図である。

2a…出力形式パッド、 3.8.18,21 … ポート、19… PLA、31…シリアル・ バッファ、32…ラッチ、33…インバータ、 34…切換手段 ション回路も第2図(4)、第3図、第4図(4)に示される如く形成しておいて、前配した初期試験を行う。本願発明者の実験によると、初期試験において必要な試験の99%が終了したことになった。

なお以上には配線体切断によるユーザーオプションの形成について説明したか、本発明の方法は、保護膜を形成した後に、選択的な保護膜除去および配線体の切断を行う場合、または配線体のみ選択的に切断し、しかる後に保護膜を設けて集積回路を完成する場合にも実施されうる。

(8)

