

⑯ BUNDESREPUBLIK
DEUTSCHLAND

DEUTSCHES
PATENTAMT

⑯ Gebrauchsmust r
⑯ DE 297 14 517 U 1

⑯ Int. Cl. 6:
G 01 D 5/00
G 01 D 3/028

⑯ Aktenzeichen: 297 14 517.7
⑯ Anmeldetag: 13. 8. 97
⑯ Eintragungstag: 10. 9. 98
⑯ Bekanntmachung im Patentblatt: 22. 10. 98

⑯ Inhaber:
Siemens AG, 80333 München, DE

⑯ Recherchenergebnisse nach § 7 Abs. 2 GbmG:

DE 44 39 578 C1
DE 195 33 505 A1
DE 43 11 614 A1
DE 34 46 248 A1
DE 33 18 977 A1
GB 21 83 342 A

Interkarma. In: Energie, 12. Jg., Nr. 10,
Okt. 1960, S.455-456;
Entwicklungsberichte, 1955, S.209;
Messumformer mit elektrischem Ausgangssignal
0...20 mA, Übersichtsblatt TE, Hartmann & Braun
Meß- und Regeltechnik, Impressum 6000/4.62/Vo,
S.1-6;

⑯ Meßumformer

DE 297 14 517 U 1

DE 297 14 517 U 1

13.06.97

Beschreibung**Meßumformer**

- 5 Die Erfindung bezieht sich auf einen Meßumformer nach dem Oberbegriff des Anspruchs 1.

Ein derartiger Meßumformer ist aus dem Prospekt „Der Meßumformer SITRANS P, Konventionell und smart - beides in einem 10 Gerät“ der Siemens AG mit der Bestell-Nr. E80001-V341-A23, gedruckt im Oktober 1995, bekannt. An Außenseiten des Meßumformers sind zu seiner Identifikation zwei Schilder angebracht. Das eine trägt exemplarspezifische Daten, beispielsweise eine Meßstellennummer, das andere typspezifische Daten 15 wie Typbezeichnung, Bestellnummer und technische Daten des Meßumformers. Zur Vorverarbeitung der von einem Druckaufnehmer an der Meßstelle aufgenommenen Signale ist ein Mikroprozessor integriert. Das Verarbeitungsprogramm des Mikroprozessors ist mit zahlreichen Parametern an die jeweilige Meßaufgabe 20 anpaßbar. Z. B. können Nullpunkt und Meßspanne, Dämpfung oder das Ausgangssignal im Fehlerfall sowie Kennliniencharakteristik des Meßumformers als Parameter eingegeben werden. Nach der Eingabe sind diese Daten elektronisch im Gerät abgespeichert. In einer prozeßtechnischen Anlage werden zu den 25 Meßumformern noch weitere exemplar- oder typspezifische Daten, z. B. vom Einbauort abhängige Montagehinweise, Inbetriebsetzungsdaten oder eine typspezifische Bedienungsanleitung, in einer elektronisch oder handgeführten Dokumentation der Anlage festgehalten.

10.10.97

1. Ein elektronisches Abspeichern von Daten in dem Meßumformer selbst bringt das Problem mit sich, daß im Fall einer Gerätestörung die Daten nicht am Meßumformer abrufbar sind. Ein Hinterlegen der Daten in einem evtl. entfernten Archiv hat 5 bei Wartungs- und Reparaturarbeiten den Nachteil, daß die erforderlichen Unterlagen zunächst besorgt und zum Einbauort mitgenommen werden müssen. Bei plötzlichem Ausfall eines Meßumformers und damit evtl. verbundenem Anlagenstillstand führt die Beschaffung der Unterlagen zu einer erheblichen Reparaturverzögerung und damit zu hohen Kosten.

Der Erfindung liegt die Aufgabe zugrunde, einen Meßumformer zu schaffen, bei welchem ein Wartungs- oder Inbetriebsetzungingenieur direkt am Einbauplatz des Meßumformers sogar 15 bei dessen Ausfall auf die erforderlichen Daten zugreifen kann.

Zur Lösung dieser Aufgabe weist der neue Meßumformer der eingangs genannten Art die im kennzeichnenden Teil des Anspruchs 20 1 angegebenen Merkmale auf. In den Unteransprüchen sind vorteilhafte Weiterbildungen der Erfindung beschrieben.

Die Erfindung hat den Vorteil, daß aufgrund einer Aufbewahrung des Informationsträgers in einem verschließbaren Raum am 25 oder im Gehäuse des Meßumformers bezüglich des Informationsträgerschutzes dieselben Anforderungen an Industrietauglichkeit erfüllt werden können, wie sie an den Elektronikraum des Meßumformers gestellt werden. Der verschließbare Raum ist nach Öffnen einer Abdeckung für das Personal zugänglich und 30 der Informationsträger kann für die Wartungs- und Inbetrieb-

setzungsarbeiten herausgenommen werden. Evtl. weite Wegstrecken in ein entfernt gelegenes Archiv entfallen. Mit Abschluß der Arbeiten wird der Informationsträger wieder in der Kammer hinterlegt und diese verschlossen. Der Informationsträger
5 kann umweltresistent ausgeführt werden, so daß ein Verschleiß oder ein Verlust der Daten ausgeschlossen ist.

In vorteilhafter Weise kann der Informationsträger auch während des Betriebs des Meßumformers, also online, entnommen
10 werden, wenn der verschließbare Raum zur Aufbewahrung des Informationsträgers vom Elektronikraum und/oder dem Anschlußraum getrennt ist.

Je nach Ausführung des Informationsträgers, sei es als Faltblatt in einer Folienhülle oder als elektronischer Datenträger in Form einer Scheckkarte, kann auf umfangreiche Daten ohne technische Hilfsmittel oder automatisch zugegriffen werden. Eine Lesbarkeit der Daten ohne technische Hilfsmittel hat den Vorteil, daß die Daten direkt verfügbar sind. Ein
15 elektronisch lesbarer Speicher auf dem Informationsträger bietet eine große Datenmenge auf kleinem Träger und die Möglichkeit einer automatischen Weiterverarbeitung der Daten. Die beiden Zugriffsvarianten können bei einem Informationssträger auch kombiniert werden. Vorteilhaft ist in beiden Fällen eine umweltresistente, robuste Ausführung des Informationsträgers.
20
25

Bei Reparatur oder Austausch eines defekten Meßumformers ist eine Kommunikationsschnittstelle am Meßumformer von Vorteil,
30 an welche ein Gerät zur Programmierung von Parametern des

Meßumformers anschließbar ist. Mit geringem Zeitaufwand kann ein Informationsträger, auf welchem die Parameter elektronisch lesbar hinterlegt sind, aus dem defekten Meßumformer entnommen und in ein Programmiergerät eingeführt werden, das 5 die Parameter automatisch vom Informationsträger erfaßt und den Meßumformer über die Kommunikationsschnittstelle neu parametriert. Auch ein Ändern der Parameter kann vorteilhaft mit dem Programmiergerät durchgeführt werden. Von Vorteil ist ein tragbares Programmiergerät, das beispielsweise als Hand-10 held-Gerät oder als Laptop ausgeführt ist, da es leicht zum jeweiligen Einbauort des Meßumformers transportiert werden kann. Nach den Arbeiten am Meßumformer sind die Daten und Änderungen auch im Programmiergerät vorhanden und können für eine Dokumentation des Anlagenzustands weiterverarbeitet und 15 archiviert werden.

Ein elektronisch lesbarer Datenträger, der unmittelbar beim Meßumformer aufbewahrt wird, kann durch ein Programmiergerät bereits in der Planungsphase mit den erforderlichen Informa-20 tionen zu der jeweiligen Meßstelle des Meßumformers beschrieben werden. Bei der Inbetriebsetzung der Anlage wird der Informationsträger dem jeweiligen Meßumformer zugeordnet, die gespeicherten Parameter werden am Einbauort des Meßumformers, beispielsweise durch ein Handheld-Gerät, gelesen und über die 25 Kommunikationsschnittstelle in den Meßumformer zu dessen Parametrierung geladen. Danach wird der Informationsträger in dem dafür vorgesehenen verschließbaren Raum am Einbauort des Meßumformers hinterlegt und ist dort jederzeit wieder verfügbar.

13.08.97

Anhand der Zeichnung, in welcher ein Ausführungsbeispiel der Erfindung dargestellt ist, werden im folgenden Vorteile und Ausgestaltungen der Erfindung näher erläutert.

- 5 Ein Meßumformer 1 ist gemäß der Figur an ein Meßrohr 2 zur Erfassung des Drucks in einem Rohr einer in der Figur nicht weiter dargestellten prozeßtechnischen Anlage angeschlossen. Prinzipiell kann es sich auch um einen Meßumformer für andere Prozeßgrößen, z. B. Durchfluß, Temperatur oder Dichte, handeln. Der Meßumformer 1 besitzt einen Elektronikraum 3, in welchem die Hardware zur Signalverarbeitung untergebracht ist. Diese besteht im wesentlichen aus einer Anpaßelektronik für einen am Meßrohr 2 angebrachten Meßfühler, einen Mikroprozessor zur Signalverarbeitung, einen Speicher für ein Verarbeitungsprogramm sowie eine Anschaltung für eine Kommunikationsschnittstelle 4. Ein Handheld-Gerät 5 ist als Programmiergerät an die Kommunikationsschnittstelle 4 des Meßumformers 1 angeschlossen und mit einer Anzeige 6 sowie Bedienelementen 7 versehen. Die Kommunikationsschnittstelle 4 ist hier als Punkt-zu-Punkt-Verbindung dargestellt; es kann sich aber ebenso um einen Feldbus der prozeßtechnischen Anlage oder ein anderes Kommunikationsnetzwerk handeln. Über ein Kabel 8, das mit Klemmen in einem Anschlußraum 9 an den Meßumformer 1 angeschlossen ist, wird dieser mit der erforderlichen Hilfsenergie versorgt. Das Kabel 8 dient zudem als Kommunikationschnittstelle zu einem Leitrechner, über welche die mit dem Meßumformer 1 ermittelten Meßwerte übertragen werden. Das Handheld-Gerät 5 kann auch an diese Kommunikationsschnittstelle angeschlossen werden. Ein Informationsträger 10, auf welchem exemplar- und/oder typspezifische Daten des Meßumformers 1 hinterlegt sind, wird geschützt vor Umwelteinflüssen

in einem verschließbaren Raum 11 hinterlegt. Zur Entnahme des Informationsträgers 10 ist an dem verschließbaren Raum 11 ein Auswurfknopf 12 vorgesehen, bei dessen Drücken ein Verschluß geöffnet und der Informationsträger 10 freigegeben wird. Auf 5 dem Informationsträger 10 sind Daten zur Identifikation des Meßumformertyps, der Meßstelle in der prozeßtechnischen Anlage, Parameter des Verarbeitungsprogramms, vom Einbauort abhängige Montagehinweise, Inbetriebsetzungsdaten, eine Beschreibung und/oder eine Bedienungsanleitung des Meßumformers 10 1 gespeichert. Der verschließbare Raum 11 ist vom Elektronikraum 3 und vom Anschlußraum 9 getrennt. Er muß daher nicht denselben Sicherheitsanforderungen genügen und kann beispielweise bei einem Meßumformer für einen Einsatz in explosionsgefährdeten Bereichen weniger aufwendig gestaltet werden. Bei einer Reparatur eines defekten Meßumformers sind auf 15 dem Informationsträger 10 sämtliche Daten verfügbar und müssen nicht aufwendig aus einem Archiv zur Dokumentation der technischen Anlage beschafft werden. Das Wartungs- und Inbetriebsetzungspersonal kann vielmehr den Informationsträger 10 aus dem verschließbaren Raum 11 entnehmen und in das Handheld-Gerät 5 zum Auslesen der Daten einsetzen, wie es in der Figur durch Pfeile symbolisiert ist. Falls eine Änderung von Parametern auf dem Informationsträger 10 erforderlich ist, werden die geänderten Parameter durch das Programmiergerät 5 20 sowohl auf dem Informationsträger 10 abgelegt als auch zur Parametrierung des Meßumformers 1 über die Kommunikations- schnittstelle 4 verwendet. Auf diese Weise wird ein konsistenter Zustand von Meßumformer 1 und Informationsträger 10 erreicht.

In dem Ausführungsbeispiel ist ein Informationsträger mit einem Chip 13 nach Art einer Telefonkarte dargestellt. Zur Speicherung der Daten können selbstverständlich auch andere Speichermedien, z. B. Magnetstreifen, eingesetzt werden.

5

Die Daten können auch in direkt lesbarer Form abgelegt werden. Das hat den Vorteil, daß ohne ein lesefähiges Programmiergerät die Daten bei defektem Meßumformer durch das Wartungspersonal gelesen und zur Parametrierung eines neuen Meß-
10 umformers verwendet werden können.

Abweichend von dem gezeigten Ausführungsbeispiel kann der Meßumformer 1 selbst mit einer Anzeige und Bedienelementen versehen sein, so daß kein Programmiergerät verwendet werden
15 muß. In diesem Fall kann ein Programmiergerät zum Auslesen von Parametern aus dem Meßumformer 1 und zum Speichern der Parameter auf dem Informationsträger 10 dienen, um eine Konsistenz der Daten zu gewährleisten.

13.08.97

Schutzansprüche

1. Meßumformer, der mit einem Informationsträger (10) für exemplar- und/oder typspezifische Daten versehen ist, dadurch gekennzeichnet, daß zur Aufbewahrung des Informationsträgers (10) ein verschließbarer Raum (11) am oder im Gehäuse des Meßumformers (1) vorhanden ist.
5
2. Meßumformer nach Anspruch 1, dadurch gekennzeichnet, daß der verschließbare Raum (11) von einem Elektronikraum (3) und/oder einem Anschlußraum (9) des Meßumformers (1) getrennt ist.
10
3. Meßumformer nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß der Informationsträger (10) zur Speicherung umfangreicher Daten geeignet ist, z. B. vom Einbauort des Meßumformers (1) abhängiger Montagehinweise, Inbetriebsetzungsdaten, einer typspezifischen Bedienungsanleitung und/oder bei einem Meßumformer (1) mit einem Mikroprozessor 15 zur Signalverarbeitung Parameter des Verarbeitungsprogramms.
20
4. Meßumformer nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß exemplar- oder typspezifische Daten in einer ohne technische Hilfsmittel lesbaren Form auf dem Informationsträger abgelegt sind.
25
5. Meßumformer nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß exemplar- oder typspezifische Daten in einem elektronisch lesbaren Speicher (13) auf dem Informationsträger (10) abgelegt sind.
30

10.08.97

6. Meßumformer nach Anspruch 5, dadurch gekennzeichnet, daß eine Kommunikationsschnittstelle (4) vorhanden ist, an welche ein Gerät (5) zur Programmierung von Parametern des Meßumformers (1) in Abhängigkeit der exemplar-
5 oder typspezifischen Daten auf dem Informationsträger (10) anschließbar ist.
7. Meßumformer nach Anspruch 6, dadurch gekennzeichnet, daß eine Kommunikationsschnittstelle (4) vorhanden ist, an welche ein Gerät (5) zum Auslesen von Para-
10 metern des Meßumformers (1) und zum Beschreiben des Speichers (13) auf dem Informationsträger (10) mit den Parametern an-
schließbar ist.

13.06.97

1/1

FIG

