

Universidade Federal do Ceará – IUFC Centro de Ciências – CC Departamento de Computação - DC

Disciplina: Inteligência Artificial

Prof. Dr. João Paulo do Vale Madeiro

Prazo de entrega: 11/04/24

Descrição: Suponha que um caixeiro viajante tenha que visitar *n* cidades diferentes, iniciando e encerrando sua viagem na primeira cidade. Suponha, também, que não importa a ordem com que as cidades são visitadas, e que cada uma delas pode ir diretamente a qualquer outra. O problema do caixeiro viajante consiste em descobrir a rota que torna mínima a sua viagem total. Considere c_{ij} o custo para ir da cidade i até a cidade j.

Implementação:

Deverá ser implementado o problema do caixeiro viajante, de acordo com a modelagem em (i) algoritmos genéticos e (ii) colônia de formigas vista em aula. Para tanto, utilize a tabela de custos a seguir, que define os custos c_{ij} a serem adotados na atividade.

		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
	1	0	10	15	45	5	45	50	44	30	100	67	33	90	17	50
	2	15	0	100	30	20	25	80	45	41	5	45	10	90	10	35
,	3	40	80	0	90	70	33	100	70	30	23	80	60	47	33	25
	4	100	8	5	0	5	40	21	20	35	14	55	35	21	5	40
	5	17	10	33	45	0	14	50	27	33	60	17	10	20	13	71
	6	15	70	90	20	11	0	15	35	30	15	18	35	15	90	23
	7	25	19	18	30	100	55	0	70	55	41	55	100	18	14	18
	8	40	15	60	45	70	33	25	0	27	60	80	35	30	41	35
	9	21	34	17	10	11	40	8	32	0	47	76	40	21	90	21
1	0	35	100	5	18	43	25	14	30	39	0	17	35	15	13	40
1	1	38	20	23	30	5	55	50	33	70	14	0	60	30	35	21
1	2	15	14	45	21	100	10	8	20	35	43	8	0	15	100	23
1	3	80	10	5	20	35	8	90	5	44	10	80	14	0	25	80
1	4	33	90	40	18	70	45	25	23	90	44	43	70	5	0	25
1	5	25	70	45	50	5	45	20	100	25	50	35	10	90	5	0

coluna j: cidade origem linha i: cidade destino

Deverá ser apresentado um relatório ilustrando a evolução e a convergência das buscas pela solução ótima em cada um dos algoritmos.