4. Připomínky a řešené příklady

4.1 Analýza

Věta (o limitě složené funkce) Nechť $a \in \mathbb{R}^*$, $\lim_{x\to a} f(x) = A \in \mathbb{R}^*$ a $\lim_{y\to A} g(y) = B \in \mathbb{R}^*$. Nechť platí jedna z podmínek

- (P) $\exists P(a) \ \forall x \in P(a) : \ f(x) \neq a$,
- (S) g je spojitá v $A \in \mathbb{R}$.

Pak

$$\lim_{x \to a} f(g(x)) = B.$$

Průběh funkce:

- Definiční obor,
- sudá (f(x) = f(-x)), lichá (f(x) = -f(-x)), periodická $(\exists p: f(x) = f(x+p))$,
- spojitost,
- limity (na všech krajních bodech definičního oboru většinou $\pm \infty$),
- nalezení derivace f' + v bodech, kde nelze a je spojitá děláme $\lim_{x\to a\pm} f'(x)$,
- nalezení intervalů monotonie a lokálních extrémů podle f',
- najít f'',
- najít intervaly konvexity, konkávity a inflexní body,
- obor hodnot.

Pro kreslení grafu znát průsečíky s osami a znát asymptoty v ∞ :

Bud
$$a = \lim_{x \to \inf} \frac{f(x)}{x}$$
, a $b = \lim_{x \to \infty} (f(x) - ax)$,

pak asymptota je přímka ax + b.

4.1.1 Státnicové otázky

"Spojitost a derivace $\mathbb{R} \to \mathbb{R}$, definovat pojmy, věta o vztahu derivace a spojitosti s důkazem, derivovat funkci $\operatorname{sgn}(x)$ v 0, věta o limitě monotónní funkce."

"Spojitost a limita funkce, chování spojité funkce na uzavřeném omezeném intervalu, obor hodnot funkce $e^x + e^{-x}$."

"Definice parciální derivace, totálního diferenciálu a lokálního extrému funkce, aplikovat řetízkové pravidlo pro výpočet parciální derivace nějaké funkce, tj. nutná podmínka existence extrému a postačující podmínky druhého řádu."

"Absolutní a neabsolutní konvergence, B-C podmínka, nutná podmínka a poté všechna kritéria konvergence a vyšetřit konvergenci asi čtyř řad."

"Stejnoměrná konvergence posloupností a řad funkcí, záměna limity a dalších věcí."

"Lagrangeova věta a k ní zadaný příklad, konvexita, vztah konvexity a derivace, monotónnost."

"Primitivní funkce, určitý integrál, základní vlastnosti, metody výpočtu, Newton-Leibnizova formule."

"Definice extrému funkce více proměnných vzhledem k množině - globální i lokální, formulace věty "nutná podmínka pro vázané extrémy", najít extrémy funkce f(x,y) = xy vzhledem k jednotkové kružnici."

"Taylorův polynom, Taylorovy řady, tvar zbytku, Taylorovy řady elementárních funkcí."

4.2 Algebra

Definice Elementární matice je matice, vzniklá z I řádkovou úpravou.

Definice Matice A je regulární, pokud $f_A: T^n \to T^n$ je bijekce.

Věta (o regulárních maticích) Platí

- A regulární $\Leftrightarrow Ax = b$ má právě jedno řešení $\forall b$,
- A regulární $\Leftrightarrow A$ invertovatelná,
- $A \operatorname{regul\acute{a}rn\acute{i}} \Leftrightarrow \operatorname{Ker} A = 0$,
- A regulární $\Leftrightarrow A$ je součin elementárních matic.

Věta (o zobrazeních) Nechť A je matice typu $m \times n$. Platí

- $\exists X : AX = I_m \Leftrightarrow f_A \text{ je na } T^m$,
- $\exists X: XA = I_n \Leftrightarrow f_A$ je prosté.

Věta (podprostory \mathbb{R}^2) Prostor \mathbb{R}^2 má právě podprostory $\{0\}$, \mathbb{R}^2 a $\{tx, x \in R\}$, kde x je libovolný vektor.

Věta (o matici přechodu) Platí, že matice $[id]_C^B$ je regulární a platí

$$[id]_B^C = \left([id]_C^B \right)^{-1}.$$

Definice Frobeniova norma matice je

$$||A||_F = \sqrt{\sum_{i=1}^m \sum_{j=1}^n |a_{ij}|^2}.$$

4.2.1 Státnicové otázky

"Soustavy rovnic, řešitelnost, vztah řešitelnosti s hodností matice (Frobeniova věta), příklad (2 rovnice), kdy řešení existuje, neexistuje a je právě jedno."

"Eukleidovské prostory, vztahy a vzdálenosti podprostorů, kolmost, úhel, příklad: vzdálenost bodu [2,1,1] od roviny 2x+y-z=2 or whatever."

"Definice vlastního čísla, Jordanův kanonický tvar matice a jeho výpočet pro matici $3\times 3.$ "

"Matice, její hodnost, sloupcový prostor a jádro, inverze a regularita, všemožné charakterizace regularity, poté spočíst inverz matice 3×3 ."

"Bilineární a kvadratická forma, zákon setrvačnosti, signatura."

"Lineární, bilineární a kvadratické formy, vztah kvadratické a bilineární formy, signatura, f-ortogonální báze, jak vypočítat f-ortogonální bázi pomocí vlastních vektorů, vztah skalárního součinu a bilineární formy."

"Skalární součin, ortogonalizační proces, metoda nejmenších čtverců, početní příklad na projekci vektoru z \mathbb{R}^3 na dvoudimenzionální podprostor \mathbb{R}^3 ."

"Řešení soustav rovnic - rozebrat případy pro rovnice o dvou neznámých, najít příklady na všechny situace, co mohou nastat + vztah jádra matice, obrazu matice a jejich dimenzí."

"Ortogonální diagonalizace, normální matice, spektrální věta pro normální matice, příklad diagonalizovat operátor $\mathbb{R}^2 \to \mathbb{R}^2$."

4.3 Stochastika

4.3.1 Státnicové otázky

" χ^2 , t-rozdělení, definice, jak se dá odvodit hustota těchto rozdělení, najít interval spolehlivosti pro střední hodnotu normálního rozdělení s neznámým roz-