Introduction to Bayesian Statistics II

Dawie van Lill

ECO872: Advanced Time Series Econometrics

July 27, 2020

What we will do today

- Marginalization
- Normal distribution with a noninformative prior (important)
- Normal distribution with a conjugate prior (important)
- Multivariate normal with known variance
- Multivariate normal with unknown variance (glance through)
- Bioassay example (very important, related to one of the exercises)
- Once again, the slides follows the work of AG quite closely. However, other sources were consulted to set up the slides.
- This is quite a technical session and you should try and go through the mathematics in this lecture slowly with a pen and paper.

Monte Carlo and posterior draws

- We will start the lecture with a quick discussion about Monte Carlo methods, since we will use this sporadically throughout.
- $lackbox{}{}$ $\theta^{(s)}$ draws from $p(\theta \mid y)$ can be used
 - for visualization

Monte Carlo and posterior draws

- We will start the lecture with a quick discussion about Monte Carlo methods, since we will use this sporadically throughout.
- $ightharpoonup \theta(s)$ draws from $p(\theta \mid y)$ can be used
 - for visualization
 - to approximate expectations (integrals)

$$E_{p(\theta|y)}[\theta] = \int \theta p(\theta \mid y) pprox rac{1}{S} \sum_{s=1}^{S} heta^{(s)}$$

Monte Carlo and posterior draws

- We will start the lecture with a quick discussion about Monte Carlo methods, since we will use this sporadically throughout.
- \triangleright $\theta^{(s)}$ draws from $p(\theta \mid y)$ can be used
 - for visualization
 - to approximate expectations (integrals)

$$E_{p(\theta|y)}[\theta] = \int \theta p(\theta \mid y) \approx \frac{1}{S} \sum_{s=1}^{S} \theta^{(s)}$$

 We now turn to an example to showcase the idea of posterior draws (visualization)

Marginalization

Joint distribution of parameters

$$p(\theta_1, \theta_2 \mid y) \propto p(y \mid \theta_1, \theta_2)p(\theta_1, \theta_2)$$

Marginalization

$$p(\theta_1 \mid y) = \int p(\theta_1, \theta_2 \mid y) d\theta_2$$

 $p(\theta_1 \mid y)$ is a marginal distribution

Marginalization

Joint distribution of parameters

$$p(\theta_1, \theta_2 \mid y) \propto p(y \mid \theta_1, \theta_2) p(\theta_1, \theta_2)$$

Marginalization

$$p(\theta_1 \mid y) = \int p(\theta_1, \theta_2 \mid y) d\theta_2$$

 $p(\theta_1 \mid y)$ is a marginal distribution

► Monte Carlo approximation

$$p(\theta_1 \mid y) \approx \frac{1}{S} \sum_{s=1}^{S} p(\theta_1, \theta_2^{(s)} \mid y),$$

where $\theta_2^{(s)}$ are draws from $p(\theta_2 \mid y)$

Marginalization - predictive distribution

Marginalization over posterior distribution

$$p(\tilde{y} \mid y) = \int p(\tilde{y} \mid \theta) p(\theta \mid y) d\theta$$
$$= \int p(\tilde{y}, \theta \mid y) d\theta$$

 $p(\tilde{y} \mid y)$ is a predictive distribution

$$p(\mathbf{y} \mid \mu, \sigma) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{1}{2\sigma^2}(\mathbf{y} - \mu)^2\right)$$

$$p(y \mid \mu, \sigma) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{1}{2\sigma^2}(y - \mu)^2\right)$$

Gaussian fit with posterior mean

$$p(y \mid \mu, \sigma) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{1}{2\sigma^2}(y - \mu)^2\right)$$

$$\mu^{(s)}, \sigma^{(s)} \sim p(\mu, \sigma \mid y)$$

$$\mu^{(s)}, \sigma^{(s)} \sim p(\mu, \sigma \mid y)$$

$$\mu^{(s)}, \sigma^{(s)} \sim p(\mu, \sigma \mid y)$$

$$\mu^{(s)}, \sigma^{(s)} \sim p(\mu, \sigma \mid y)$$
 with $p(\mu, \sigma^2) \propto \sigma^{-2}$

$$\mu^{(s)}, \sigma^{(s)} \sim p(\mu, \sigma \mid y)$$
 with $p(\mu, \sigma^2) \propto \sigma^{-2}$

$$p(\mu, \sigma^2 \mid y) \propto \sigma^{-2} \prod_{i=1}^n \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{1}{2\sigma^2}(y_i - \mu)^2\right)$$

$$\mu^{(s)}, \sigma^{(s)} \sim p(\mu, \sigma \mid y)$$
 with $p(\mu, \sigma^2) \propto \sigma^{-2}$

$$p(\mu, \sigma^2 \mid y) \propto \sigma^{-n-2} \exp\left(-\frac{1}{2\sigma^2} \sum_{i=1}^n (y_i - \mu)^2\right)$$

$$\mu^{(s)}, \sigma^{(s)} \sim p(\mu, \sigma \mid y)$$
 with $p(\mu, \sigma^2) \propto \sigma^{-2}$

$$p(\mu, \sigma^2 \mid y) \propto \sigma^{-n-2} \exp\left(-\frac{1}{2\sigma^2} \sum_{i=1}^n (y_i - \mu)^2\right)$$
$$= \sigma^{-n-2} \exp\left(-\frac{1}{2\sigma^2} \left[\sum_{i=1}^n (y_i - \bar{y})^2 + n(\bar{y} - \mu)^2\right]\right)$$

where
$$\bar{y} = \frac{1}{n} \sum_{i=1}^{n} y_i$$

$$\mu^{(s)}, \sigma^{(s)} \sim p(\mu, \sigma \mid y)$$
 with $p(\mu, \sigma^2) \propto \sigma^{-2}$

$$p(\mu, \sigma^2 \mid y) \propto \sigma^{-n-2} \exp\left(-\frac{1}{2\sigma^2} \sum_{i=1}^n (y_i - \mu)^2\right)$$

$$= \sigma^{-n-2} \exp\left(-\frac{1}{2\sigma^2} \left[\sum_{i=1}^n (y_i - \bar{y})^2 + n(\bar{y} - \mu)^2\right]\right)$$
where $\bar{y} = \frac{1}{n} \sum_{i=1}^n y_i$

where
$$y = -\sum_{i=1}^{n} y_i$$

= $\sigma^{-n-2} \exp \left(-\frac{1}{2\sigma^2} \left[(n-1)s^2 + n(\bar{y} - \mu)^2 \right] \right)$

where
$$s^2 = \frac{1}{n-1} \sum_{i=1}^{n} (y_i - \bar{y})^2$$

$$\sum_{i=1}^n (y_i - \mu)^2$$

$$\sum_{i=1}^{n} (y_i - \mu)^2$$

$$\sum_{i=1}^{n} (y_i^2 - 2y_i \mu + \mu^2)$$

$$egin{split} &\sum_{i=1}^n (y_i - \mu)^2 \ &\sum_{i=1}^n (y_i^2 - 2y_i \mu + \mu^2) \ &\sum_{i=1}^n (y_i^2 - 2y_i \mu + \mu^2 - ar{y}^2 + ar{y}^2 - 2y_i ar{y} + 2y_i ar{y}) \end{split}$$

$$\begin{split} &\sum_{i=1}^{n} (y_i - \mu)^2 \\ &\sum_{i=1}^{n} (y_i^2 - 2y_i \mu + \mu^2) \\ &\sum_{i=1}^{n} (y_i^2 - 2y_i \mu + \mu^2 - \bar{y}^2 + \bar{y}^2 - 2y_i \bar{y} + 2y_i \bar{y}) \\ &\sum_{i=1}^{n} (y_i^2 - 2y_i \bar{y} + \bar{y}^2) + \sum_{i=1}^{n} (\mu^2 - 2y_i \mu - \bar{y}^2 + 2y_i \bar{y}) \end{split}$$

$$\begin{split} &\sum_{i=1}^{n} (y_i - \mu)^2 \\ &\sum_{i=1}^{n} (y_i^2 - 2y_i \mu + \mu^2) \\ &\sum_{i=1}^{n} (y_i^2 - 2y_i \mu + \mu^2 - \bar{y}^2 + \bar{y}^2 - 2y_i \bar{y} + 2y_i \bar{y}) \\ &\sum_{i=1}^{n} (y_i^2 - 2y_i \bar{y} + \bar{y}^2) + \sum_{i=1}^{n} (\mu^2 - 2y_i \mu - \bar{y}^2 + 2y_i \bar{y}) \\ &\sum_{i=1}^{n} (y_i - \bar{y})^2 + n(\mu^2 - 2\bar{y}\mu - \bar{y}^2 + 2\bar{y}\bar{y}) \end{split}$$

$$\begin{split} &\sum_{i=1}^{n} (y_{i} - \mu)^{2} \\ &\sum_{i=1}^{n} (y_{i}^{2} - 2y_{i}\mu + \mu^{2}) \\ &\sum_{i=1}^{n} (y_{i}^{2} - 2y_{i}\mu + \mu^{2} - \bar{y}^{2} + \bar{y}^{2} - 2y_{i}\bar{y} + 2y_{i}\bar{y}) \\ &\sum_{i=1}^{n} (y_{i}^{2} - 2y_{i}\bar{y} + \bar{y}^{2}) + \sum_{i=1}^{n} (\mu^{2} - 2y_{i}\mu - \bar{y}^{2} + 2y_{i}\bar{y}) \\ &\sum_{i=1}^{n} (y_{i} - \bar{y})^{2} + n(\mu^{2} - 2\bar{y}\mu - \bar{y}^{2} + 2\bar{y}\bar{y}) \\ &\sum_{i=1}^{n} (y_{i} - \bar{y})^{2} + n(\bar{y} - \mu)^{2} \end{split}$$

$$\mu^{(s)}, \sigma^{(s)} \sim p(\mu, \sigma \mid y)$$

Marginal of mu

$$\mu^{(s)}, \sigma^{(s)} \sim p(\mu, \sigma \mid y)$$
 marginals $p(\mu \mid y) = \int p(\mu, \sigma \mid y) d\sigma$

Marginal of mu Empirical Exact

$$p(\sigma^2 \mid y) \propto \int p(\mu, \sigma^2 \mid y) d\mu$$

$$p(\sigma^2 \mid y) \propto \int p(\mu, \sigma^2 \mid y) d\mu$$

$$\propto \int \sigma^{-n-2} \exp\left(-\frac{1}{2\sigma^2} \left[(n-1)s^2 + n(\bar{y} - \mu)^2 \right] \right) d\mu$$

$$p(\sigma^{2} \mid y) \propto \int p(\mu, \sigma^{2} \mid y) d\mu$$

$$\propto \int \sigma^{-n-2} \exp\left(-\frac{1}{2\sigma^{2}} \left[(n-1)s^{2} + n(\bar{y} - \mu)^{2} \right] \right) d\mu$$

$$\propto \sigma^{-n-2} \exp\left(-\frac{1}{2\sigma^{2}} (n-1)s^{2}\right)$$

$$\int \exp\left(-\frac{n}{2\sigma^{2}} (\bar{y} - \mu)^{2}\right) d\mu$$

$$p(\sigma^{2} \mid y) \propto \int p(\mu, \sigma^{2} \mid y) d\mu$$

$$\propto \int \sigma^{-n-2} \exp\left(-\frac{1}{2\sigma^{2}} \left[(n-1)s^{2} + n(\bar{y} - \mu)^{2} \right] \right) d\mu$$

$$\propto \sigma^{-n-2} \exp\left(-\frac{1}{2\sigma^{2}} (n-1)s^{2}\right)$$

$$\int \exp\left(-\frac{n}{2\sigma^{2}} (\bar{y} - \mu)^{2}\right) d\mu$$

$$\int \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{1}{2\sigma^{2}} (y - \theta)^{2}\right) d\theta = 1$$

$$\begin{split} \rho(\sigma^2 \mid y) & \propto & \int \rho(\mu, \sigma^2 \mid y) d\mu \\ & \propto & \int \sigma^{-n-2} \exp\left(-\frac{1}{2\sigma^2} \left[(n-1)s^2 + n(\bar{y} - \mu)^2\right]\right) d\mu \\ & \propto & \sigma^{-n-2} \exp\left(-\frac{1}{2\sigma^2}(n-1)s^2\right) \\ & \int \exp\left(-\frac{n}{2\sigma^2}(\bar{y} - \mu)^2\right) d\mu \\ & \int \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{1}{2\sigma^2}(y-\theta)^2\right) d\theta = 1 \\ & \propto & \sigma^{-n-2} \exp\left(-\frac{1}{2\sigma^2}(n-1)s^2\right) \sqrt{2\pi\sigma^2/n} \end{split}$$

$$\begin{split} \rho(\sigma^2 \mid y) & \propto & \int \rho(\mu, \sigma^2 \mid y) d\mu \\ & \propto & \int \sigma^{-n-2} \exp\left(-\frac{1}{2\sigma^2} \left[(n-1)s^2 + n(\bar{y} - \mu)^2\right]\right) d\mu \\ & \propto & \sigma^{-n-2} \exp\left(-\frac{1}{2\sigma^2}(n-1)s^2\right) \\ & \int \exp\left(-\frac{n}{2\sigma^2}(\bar{y} - \mu)^2\right) d\mu \\ & \int \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{1}{2\sigma^2}(y-\theta)^2\right) d\theta = 1 \\ & \propto & \sigma^{-n-2} \exp\left(-\frac{1}{2\sigma^2}(n-1)s^2\right) \sqrt{2\pi\sigma^2/n} \\ & \propto & (\sigma^2)^{-(n+1)/2} \exp\left(-\frac{(n-1)s^2}{2\sigma^2}\right) \end{split}$$

$$\begin{split} \rho(\sigma^2 \mid y) & \propto & \int \rho(\mu, \sigma^2 \mid y) d\mu \\ & \propto & \int \sigma^{-n-2} \exp\left(-\frac{1}{2\sigma^2} \left[(n-1)s^2 + n(\bar{y} - \mu)^2\right]\right) d\mu \\ & \propto & \sigma^{-n-2} \exp\left(-\frac{1}{2\sigma^2} (n-1)s^2\right) \\ & \int \exp\left(-\frac{n}{2\sigma^2} (\bar{y} - \mu)^2\right) d\mu \\ & \int \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{1}{2\sigma^2} (y-\theta)^2\right) d\theta = 1 \\ & \propto & \sigma^{-n-2} \exp\left(-\frac{1}{2\sigma^2} (n-1)s^2\right) \sqrt{2\pi\sigma^2/n} \\ & \propto & (\sigma^2)^{-(n+1)/2} \exp\left(-\frac{(n-1)s^2}{2\sigma^2}\right) \end{split}$$

$$p(\sigma^2 \mid y) = \text{Inv-}\chi^2(\sigma^2 \mid n-1, s^2)$$

Gaussian - non-informative prior

Known mean

$$\sigma^2 \mid y \sim \text{Inv-}\chi^2(n, v)$$
where $v = \frac{1}{n} \sum_{i=1}^{n} (y_i - \theta)^2$

Unknown mean

$$\sigma^2 \mid y \sim \text{Inv-}\chi^2(n-1,s^2)$$
 where $s^2 = \frac{1}{n-1}\sum_{i=1}^n (y_i - \bar{y})^2$

-Exact contour plot —Cond. distribution of mu Sample from joint post.—Sample from the marg.

Marginal of sigma

$$p(\mu, \sigma^2 \mid \mathbf{y}) = p(\mu \mid \sigma^2, \mathbf{y})p(\sigma^2 \mid \mathbf{y})$$

-Exact contour plot —Cond. distribution of mu Sample from joint post.—Sample from the marg.

Marginal of sigma

$$p(\mu, \sigma^2 \mid y) = p(\mu \mid \sigma^2, y)p(\sigma^2 \mid y)$$

$$p(\sigma^2 \mid y) = \text{Inv-}\chi^2(\sigma^2 \mid n-1, s^2)$$

$$(\sigma^2)^{(s)} \sim p(\sigma^2 \mid y)$$

-Exact contour plot — Cond. distribution of mu Sample from joint post. — Sample from the marg.

Marginal of sigma

Factorization

60

$$p(\mu, \sigma^2 \mid y) = p(\mu \mid \sigma^2, y)p(\sigma^2 \mid y)$$

$$p(\sigma^2 \mid y) = \text{Inv-}\chi^2(\sigma^2 \mid n - 1, s^2)$$

$$(\sigma^2)^{(s)} \sim p(\sigma^2 \mid y)$$

$$p(\mu \mid \sigma^2, y) = N(\mu \mid \bar{y}, \sigma^2/n)$$

-Exact contour plot —Cond. distribution of mu Sample from joint post.—Sample from the marg.

Marginal of sigma

$$p(\mu, \sigma^2 \mid y) = p(\mu \mid \sigma^2, y)p(\sigma^2 \mid y)$$

$$p(\sigma^2 \mid y) = \text{Inv-}\chi^2(\sigma^2 \mid n - 1, s^2)$$

$$(\sigma^2)^{(s)} \sim p(\sigma^2 \mid y)$$

$$p(\mu \mid \sigma^2, y) = N(\mu \mid \bar{y}, \sigma^2/n) \propto \exp\left(-\frac{n}{2\sigma^2}(\bar{y} - \mu)^2\right)$$

-Exact contour plot —Cond. distribution of mu Sample from joint post.—Sample from the marg.

Marginal of sigma

Factorization

60

$$p(\mu, \sigma^2 \mid y) = p(\mu \mid \sigma^2, y)p(\sigma^2 \mid y)$$

$$p(\sigma^2 \mid y) = \text{Inv-}\chi^2(\sigma^2 \mid n - 1, s^2)$$

$$(\sigma^2)^{(s)} \sim p(\sigma^2 \mid y)$$

$$p(\mu \mid \sigma^2, y) = N(\mu \mid \bar{y}, \sigma^2/n)$$

$$\mu^{(s)} \sim p(\mu \mid \sigma^2, y)$$

-Exact contour plot —Cond. distribution of mu Sample from joint post. —Sample from the marg.

Marginal of sigma

Factorization

60

$$p(\mu, \sigma^{2} \mid y) = p(\mu \mid \sigma^{2}, y)p(\sigma^{2} \mid y)$$

$$p(\sigma^{2} \mid y) = \text{Inv-}\chi^{2}(\sigma^{2} \mid n - 1, s^{2})$$

$$(\sigma^{2})^{(s)} \sim p(\sigma^{2} \mid y)$$

$$p(\mu \mid \sigma^{2}, y) = N(\mu \mid \bar{y}, \sigma^{2}/n)$$

$$\mu^{(s)} \sim p(\mu \mid \sigma^{2}, y)$$

$$\mu^{(s)}, \sigma^{(s)} \sim p(\mu, \sigma \mid y)$$

60
-Exact contour plot — Cond. distribution of mu Sample from joint post. — Sample from the marg.

Marginal of sigma

$$p(\mu, \sigma^2 \mid \mathbf{y}) = p(\mu \mid \sigma^2, \mathbf{y}) p(\sigma^2 \mid \mathbf{y})$$

60

-Exact contour plot —Cond. distribution of mu Sample from joint post.—Sample from the marg.

Marginal of sigma

$$p(\mu, \sigma^2 \mid y) = p(\mu \mid \sigma^2, y)p(\sigma^2 \mid y)$$
$$(\sigma^2)^{(s)} \sim p(\sigma^2 \mid y)$$

60

-Exact contour plot — Cond. distribution of mu Sample from joint post. — Sample from the marg.

Marginal of sigma

$$p(\mu, \sigma^2 \mid \mathbf{y}) = p(\mu \mid \sigma^2, \mathbf{y}) p(\sigma^2 \mid \mathbf{y})$$
$$(\sigma^2)^{(s)} \sim p(\sigma^2 \mid \mathbf{y})$$
$$p(\mu \mid (\sigma^2)^{(s)}, \mathbf{y}) = N(\mu \mid \bar{\mathbf{y}}, (\sigma^2)^{(s)}/n)$$

60

-Exact contour plot —Cond. distribution of mu Sample from joint post.—Sample from the marg.

Cond distr of mu for 25 draws

Marginal of sigma

$$p(\mu, \sigma^2 \mid y) = p(\mu \mid \sigma^2, y)p(\sigma^2 \mid y)$$
$$(\sigma^2)^{(s)} \sim p(\sigma^2 \mid y)$$
$$p(\mu \mid (\sigma^2)^{(s)}, y) = N(\mu \mid \bar{y}, (\sigma^2)^{(s)}/n)$$

60

-Exact contour plot —Cond. distribution of mu Sample from joint post.—Sample from the marg.

Cond distr of mu for 25 draws

Marginal of sigma

$$p(\mu, \sigma^2 \mid y) = p(\mu \mid \sigma^2, y)p(\sigma^2 \mid y)$$
$$(\sigma^2)^{(s)} \sim p(\sigma^2 \mid y)$$
$$p(\mu \mid (\sigma^2)^{(s)}, y) = N(\mu \mid \bar{y}, (\sigma^2)^{(s)}/n)$$
$$p(\mu \mid y) \approx \frac{1}{S} \sum_{s=1}^{S} N(\mu \mid \bar{y}, (\sigma^2)^{(s)}/n)$$

60

-Exact contour plot —Cond. distribution of mu Sample from joint post. — Sample from the marg.

Marginal of sigma

Cond. distr of mu

$$p(\mu, \sigma^2 \mid y) = p(\mu \mid \sigma^2, y)p(\sigma^2 \mid y)$$

$$(\sigma^2)^{(s)} \sim p(\sigma^2 \mid y)$$

$$p(\mu \mid (\sigma^2)^{(s)}, y) = N(\mu \mid \bar{y}, (\sigma^2)^{(s)}/n)$$

$$p(\mu \mid y) \approx \frac{1}{S} \sum_{s=1}^{S} N(\mu \mid \bar{y}, (\sigma^2)^{(s)}/n)$$

$$p(\mu \mid y) = \int_0^\infty p(\mu, \sigma^2 \mid y) d\sigma^2$$

$$p(\mu \mid y) = \int_0^\infty p(\mu, \sigma^2 \mid y) d\sigma^2$$

$$\propto \int_0^\infty \sigma^{-n-2} \exp\left(-\frac{1}{2\sigma^2} \left[(n-1)s^2 + n(\bar{y} - \mu)^2 \right] \right) d\sigma^2$$

$$p(\mu \mid y) = \int_0^\infty p(\mu, \sigma^2 \mid y) d\sigma^2$$

$$\propto \int_0^\infty \sigma^{-n-2} \exp\left(-\frac{1}{2\sigma^2} \left[(n-1)s^2 + n(\bar{y} - \mu)^2 \right] \right) d\sigma^2$$

Transformation

$$A = (n-1)s^2 + n(\mu - \bar{y})^2$$

$$p(\mu \mid y) = \int_0^\infty p(\mu, \sigma^2 \mid y) d\sigma^2$$

$$\propto \int_0^\infty \sigma^{-n-2} \exp\left(-\frac{1}{2\sigma^2} \left[(n-1)s^2 + n(\bar{y} - \mu)^2 \right] \right) d\sigma^2$$

Transformation

$$A = (n-1)s^2 + n(\mu - \bar{y})^2$$
 and $z = \frac{A}{2\sigma^2}$

$$p(\mu \mid y) = \int_0^\infty p(\mu, \sigma^2 \mid y) d\sigma^2$$

$$\propto \int_0^\infty \sigma^{-n-2} \exp\left(-\frac{1}{2\sigma^2} \left[(n-1)s^2 + n(\bar{y} - \mu)^2 \right] \right) d\sigma^2$$

Transformation

$$A = (n-1)s^2 + n(\mu - \bar{y})^2$$
 and $z = \frac{A}{2\sigma^2}$ $p(\mu \mid y) \propto A^{-n/2} \int_0^\infty z^{(n-2)/2} \exp(-z) dz$

$$p(\mu \mid y) = \int_0^\infty p(\mu, \sigma^2 \mid y) d\sigma^2$$

$$\propto \int_0^\infty \sigma^{-n-2} \exp\left(-\frac{1}{2\sigma^2} \left[(n-1)s^2 + n(\bar{y} - \mu)^2 \right] \right) d\sigma^2$$

Transformation

$$A = (n-1)s^2 + n(\mu - \bar{y})^2$$
 and $z = \frac{A}{2\sigma^2}$ $p(\mu \mid y) \propto A^{-n/2} \int_0^\infty z^{(n-2)/2} \exp(-z) dz$

$$p(\mu \mid y) = \int_0^\infty p(\mu, \sigma^2 \mid y) d\sigma^2$$

$$\propto \int_0^\infty \sigma^{-n-2} \exp\left(-\frac{1}{2\sigma^2} \left[(n-1)s^2 + n(\bar{y} - \mu)^2 \right] \right) d\sigma^2$$

Transformation

$$A=(n-1)s^2+n(\mu-ar{y})^2$$
 and $z=rac{A}{2\sigma^2}$ $p(\mu\mid y)\propto A^{-n/2}\int_0^\infty z^{(n-2)/2}\exp(-z)dz$

$$\propto [(n-1)s^2 + n(\mu - \bar{y})^2]^{-n/2}$$

$$p(\mu \mid y) = \int_0^\infty p(\mu, \sigma^2 \mid y) d\sigma^2$$

$$\propto \int_0^\infty \sigma^{-n-2} \exp\left(-\frac{1}{2\sigma^2} \left[(n-1)s^2 + n(\bar{y} - \mu)^2 \right] \right) d\sigma^2$$

Transformation

$$A = (n-1)s^2 + n(\mu - \bar{y})^2$$
 and $z = \frac{A}{2\sigma^2}$
$$p(\mu \mid y) \propto A^{-n/2} \int_0^\infty z^{(n-2)/2} \exp(-z) dz$$

$$\propto [(n-1)s^2 + n(\mu - \bar{y})^2]^{-n/2}$$

 $\propto \left[1 + \frac{n(\mu - \bar{y})^2}{(n-1)s^2}\right]^{-n/2}$

$$p(\mu \mid y) = \int_0^\infty p(\mu, \sigma^2 \mid y) d\sigma^2$$

$$\propto \int_0^\infty \sigma^{-n-2} \exp\left(-\frac{1}{2\sigma^2} \left[(n-1)s^2 + n(\bar{y} - \mu)^2 \right] \right) d\sigma^2$$

Transformation

$$A = (n-1)s^2 + n(\mu - \bar{y})^2$$
 and $z = \frac{A}{2\sigma^2}$ $p(\mu \mid y) \propto A^{-n/2} \int_0^\infty z^{(n-2)/2} \exp(-z) dz$

$$\propto [(n-1)s^2 + n(\mu - \bar{y})^2]^{-n/2}$$

$$\propto \left[1 + \frac{n(\mu - \bar{y})^2}{(n-1)s^2}\right]^{-n/2}$$
 $p(\mu \mid y) = t_{n-1}(\mu \mid \bar{y}, s^2/n)$ Student's t

Gaussian - non-informative prior

▶ Marginal posterior $p(\mu \mid y)$

$$p(\mu \mid y) = \int_0^\infty p(\mu \mid \sigma^2, y) p(\sigma^2 \mid y) d\sigma^2$$

- see visualization demo3_3
- ▶ marginal posterior of μ a mixture of normal distributions where mixing density is the marginal posterior of σ^2

-Exact contour plot —Cond. distribution of mu Sample from joint post.—Sample from the marg.

Marginal of sigma

Predictive distribution for new \tilde{y}

$$p(\tilde{y} \mid y) = \int p(\tilde{y} \mid \mu, \sigma) p(\mu, \sigma \mid y) d\mu \sigma$$

-Exact contour plot —Cond. distribution of mu Sample from joint post.—Sample from the marg.

Marginal of sigma

Predictive distribution for new \tilde{y}

$$p(\tilde{y} \mid y) = \int p(\tilde{y} \mid \mu, \sigma) p(\mu, \sigma \mid y) d\mu \sigma$$
$$\mu^{(s)}, \sigma^{(s)} \sim p(\mu, \sigma \mid y)$$

60

-Exact contour plot —Cond. distribution of mu Sample from joint post.—Sample from the marg.

Marginal of sigma

Posterior predictive distribution

Predictive distribution for new \tilde{y}

$$p(\tilde{y} \mid y) = \int p(\tilde{y} \mid \mu, \sigma) p(\mu, \sigma \mid y) d\mu \dot{\sigma}$$
 Sample from the predictive distribution Predictive distribution given the posterior same

$$\mu^{(s)}, \sigma^{(s)} \sim p(\mu, \sigma \mid y)$$

$$\tilde{y}^{(s)} \sim p(\tilde{y} \mid \mu^{(s)}, \sigma^{(s)})$$

60

-Exact contour plot —Cond. distribution of mu Sample from joint post. — Sample from the marg.

Marginal of sigma

Predictive distribution for new \tilde{y}

$$p(\tilde{y} \mid y) = \int p(\tilde{y} \mid \mu, \sigma) p(\mu, \sigma \mid y) d\mu \dot{\sigma}$$
 Sample from the predictive distribution Predictive distribution given the posterior sample from the predictive distribution given the posterior sample from the predictive distribution given the posterior sample from the predictive distribution given the posterior sample given given the predictive distribution given g

$$\mu^{(s)}, \sigma^{(s)} \sim p(\mu, \sigma \mid y)$$

$$\tilde{y}^{(s)} \sim p(\tilde{y} \mid \mu^{(s)}, \sigma^{(s)})$$

Posterior predictive distribution

60

-Exact contour plot —Cond. distribution of mu Sample from joint post. — Sample from the marg.

Marginal of sigma

Predictive distribution for new $\tilde{\gamma}$

$$p(\tilde{y} \mid y) = \int p(\tilde{y} \mid \mu, \sigma) p(\mu, \sigma \mid y) d\mu \dot{\sigma}_{\text{Predictive distribution given the posterior sample}}^{\text{Sample from the predictive distribution}}$$

$$\begin{split} \boldsymbol{\mu^{(s)}}, \boldsymbol{\sigma^{(s)}} \sim \boldsymbol{p(\mu, \sigma \mid y)} \\ \tilde{\boldsymbol{y}^{(s)}} \sim \boldsymbol{p(\tilde{y} \mid \mu^{(s)}, \sigma^{(s)})} \end{split}$$

Posterior predictive distribution

Joint posterior

60

-Exact contour plot —Cond. distribution of mu Sample from joint post. — Sample from the marg.

Predictive distribution for new \tilde{y}

• Sample from the predictive distribution
$$p(\tilde{y} \mid y) = \int p(\tilde{y} \mid \mu, \sigma) p(\mu, \sigma \mid y) d\mu \sigma$$
 • Predictive distribution given the posterior sample from the predictive distribution given the posterior sample from the predictive distribution given the posterior sample from the predictive distribution given the predictive given give

$$\mu^{(s)}, \sigma^{(s)} \sim p(\mu, \sigma \mid y)$$
$$\tilde{y}^{(s)} \sim p(\tilde{y} \mid \mu^{(s)}, \sigma^{(s)})$$

Marginal of sigma

Posterior predictive distribution

· Sample from the predictive distribution

Exact predictive distribution

Posterior predictive distribution given known variance

$$p(\tilde{y} \mid \sigma^2, y) = \int p(\tilde{y} \mid \mu, \sigma^2) p(\mu \mid \sigma^2, y) d\mu$$

Posterior predictive distribution given known variance

$$p(\tilde{y} \mid \sigma^2, y) = \int p(\tilde{y} \mid \mu, \sigma^2) p(\mu \mid \sigma^2, y) d\mu$$
$$= \int N(\tilde{y} \mid \mu, \sigma^2) N(\mu \mid \bar{y}, \sigma^2/n) d\mu$$

Posterior predictive distribution given known variance

$$p(\tilde{y} \mid \sigma^2, y) = \int p(\tilde{y} \mid \mu, \sigma^2) p(\mu \mid \sigma^2, y) d\mu$$
$$= \int N(\tilde{y} \mid \mu, \sigma^2) N(\mu \mid \bar{y}, \sigma^2/n) d\mu$$
$$= N(\tilde{y} \mid \bar{y}, (1 + \frac{1}{n})\sigma^2)$$

Posterior predictive distribution given known variance

$$p(\tilde{y} \mid \sigma^2, y) = \int p(\tilde{y} \mid \mu, \sigma^2) p(\mu \mid \sigma^2, y) d\mu$$
$$= \int N(\tilde{y} \mid \mu, \sigma^2) N(\mu \mid \bar{y}, \sigma^2/n) d\mu$$
$$= N(\tilde{y} \mid \bar{y}, (1 + \frac{1}{n})\sigma^2)$$

this is up to scaling factor same as $p(\mu \mid \sigma^2, y)$

Posterior predictive distribution given known variance

$$p(\tilde{y} \mid \sigma^2, y) = \int p(\tilde{y} \mid \mu, \sigma^2) p(\mu \mid \sigma^2, y) d\mu$$
$$= \int N(\tilde{y} \mid \mu, \sigma^2) N(\mu \mid \bar{y}, \sigma^2/n) d\mu$$
$$= N(\tilde{y} \mid \bar{y}, (1 + \frac{1}{n})\sigma^2)$$

this is up to scaling factor same as $p(\mu \mid \sigma^2, y)$

$$p(\tilde{y} \mid y) = t_{n-1}(\tilde{y} \mid \bar{y}, (1 + \frac{1}{n})s^2)$$

- Conjugate prior has to have a form $p(\sigma^2)p(\mu \mid \sigma^2)$ (see the chapter notes)

- Conjugate prior has to have a form $p(\sigma^2)p(\mu \mid \sigma^2)$ (see the chapter notes)
- Handy parametrization

$$\mu \mid \sigma^2 \sim N(\mu_0, \sigma^2/\kappa_0)$$

$$\sigma^2 \sim \text{Inv-}\chi^2(\nu_0, \sigma_0^2)$$

which can be written as

$$p(\mu, \sigma^2) = \text{N-Inv-}\chi^2(\mu_0, \sigma_0^2/\kappa_0; \nu_0, \sigma_0^2)$$

- Conjugate prior has to have a form $p(\sigma^2)p(\mu \mid \sigma^2)$ (see the chapter notes)
- Handy parametrization

$$\mu \mid \sigma^2 \sim N(\mu_0, \sigma^2/\kappa_0)$$

$$\sigma^2 \sim \text{Inv-}\chi^2(\nu_0, \sigma_0^2)$$

which can be written as

$$p(\mu, \sigma^2) = \text{N-Inv-}\chi^2(\mu_0, \sigma_0^2/\kappa_0; \nu_0, \sigma_0^2)$$

- μ and σ^2 are a priori dependent
 - if σ^2 is large, then μ has wide prior

Joint posterior (exercise 3.9)

$$p(\mu, \sigma^2 \mid y) = \text{N-Inv-}\chi^2(\mu_n, \sigma_n^2/\kappa_n; \nu_n, \sigma_n^2)$$

where

$$\mu_{n} = \frac{\kappa_{0}}{\kappa_{0} + n} \mu_{0} + \frac{n}{\kappa_{0} + n} \bar{y}$$

$$\kappa_{n} = \kappa_{0} + n$$

$$\nu_{n} = \nu_{0} + n$$

$$\nu_{n} \sigma_{n}^{2} = \nu_{0} \sigma_{0}^{2} + (n - 1) s^{2} + \frac{\kappa_{0} n}{\kappa_{0} + n} (\bar{y} - \mu_{0})^{2}$$

▶ Conditional $p(\mu \mid \sigma^2, y)$

$$\mu \mid \sigma^2, y \sim N(\mu_n, \sigma^2/\kappa_n)$$

$$= N\left(\frac{\frac{\kappa_0}{\sigma^2}\mu_0 + \frac{n}{\sigma^2}\bar{y}}{\frac{\kappa_0}{\sigma^2} + \frac{n}{\sigma^2}}, \frac{1}{\frac{\kappa_0}{\sigma^2} + \frac{n}{\sigma^2}}\right)$$

▶ Marginal $p(\sigma^2 \mid y)$

$$\sigma^2 \mid \mathbf{y} \sim \text{Inv-}\chi^2(\nu_n, \sigma_n^2)$$

▶ Marginal $p(\mu \mid y)$

$$\mu \mid \mathbf{y} \sim t_{\nu_n}(\mu \mid \mu_n, \sigma_n^2/\kappa_n)$$

Multinomial model for categorical data

- Extension of binomial
- Observation model

$$p(y \mid \theta) \propto \prod_{j=1}^k \theta_j^{y_j},$$

- BDA3 p. 69-

Multivariate Gaussian

Observation model

$$p(y \mid \mu, \Sigma) \propto \mid \Sigma \mid^{-1/2} \exp \left(-\frac{1}{2} (y - \mu)^T \Sigma^{-1} (y - \mu) \right),$$

- BDA3 p. 72-
- New recommended LKJ-prior mentioned in Appendix A, see more in Stan manual

Dose, x_i (log g/ml)	Number of animals, n_i	Number of deaths, <i>y_i</i>
-0.86	5	0
-0.30	5	1
-0.05	5	3
0.73	5	5

Dose, x_i (log g/ml)	Number of animals, n_i	Number of deaths, <i>y_i</i>
-0.86	5	0
-0.30	5	1
-0.05	5	3
0.73	5	5

Find out lethal dose 50% (LD50)

- used to classify how hazardous chemical is
- 1984 EEC directive has 4 levels (see the chapter notes)

Dose, x_i (log g/ml)	Number of animals, n_i	Number of deaths, <i>y_i</i>
-0.86	5	0
-0.30	5	1
-0.05	5	3
0.73	5	5

Find out lethal dose 50% (LD50)

- used to classify how hazardous chemical is
- 1984 EEC directive has 4 levels (see the chapter notes)

Bayesian methods help to

- reduce the number of animals needed
- easy to make sequential experiment and stop as soon as desired accuracy is obtained

Binomial model

$$y_i \mid \theta_i \sim \text{Bin}(\theta_i, n_i)$$

Binomial model

$$y_i \mid \theta_i \sim \text{Bin}(\theta_i, n_i), \quad \text{logit}(\theta_i) = \log\left(\frac{\theta_i}{1 - \theta_i}\right) = \alpha + \beta x_i$$

$$y_i \mid \theta_i \sim \text{Bin}(\theta_i, n_i)$$
 $\text{logit}(\theta_i) = \log\left(\frac{\theta_i}{1 - \theta_i}\right)$
 $= \alpha + \beta x_i$

Logistic regression fit
$$y_i \mid \theta_i \sim \text{Bin}(\theta_i, n_i)$$

$$\log \operatorname{it}(\theta_i) = \log \left(\frac{\theta_i}{1 - \theta_i}\right)$$

$$= \alpha + \beta x_i$$

$$\theta_i = \frac{1}{1 + \exp(-(\alpha + \beta x_i))}$$
Logistic regression fit
$$Cogistic regression fit

Dose (log g/ml)

Logistic regression in latent space$$

26/31

LD50:
$$E\left(\frac{y}{n}\right) = logit^{-1}(\alpha + \beta x) = 0.5$$

27/31

Dose (log g/ml) LD50:
$$E\left(\frac{y}{n}\right) = logit^{-1}(\alpha + \beta x) = 0.5 \Rightarrow x_{LD50} = -\alpha/\beta$$
 $x_{LD50}^{(s)} = -\alpha^{(s)}/\beta^{(s)}$

Binomial model

$$y_i \mid \theta_i \sim \text{Bin}(\theta_i, n_i)$$

Link function

$$\mathsf{logit}(\theta_i) = \alpha + \beta x_i$$

Binomial model

$$y_i \mid \theta_i \sim \text{Bin}(\theta_i, n_i)$$

Link function

$$logit(\theta_i) = \alpha + \beta x_i$$

Likelihood

$$p(y_i \mid \alpha, \beta, n_i, x_i) \propto \theta_i^{y_i} [1 - \theta_i]^{n_i - y_i}$$

Binomial model

$$y_i \mid \theta_i \sim \text{Bin}(\theta_i, n_i)$$

Link function

$$logit(\theta_i) = \alpha + \beta x_i$$

Likelihood

$$p(y_i \mid \alpha, \beta, n_i, x_i) \propto \theta_i^{y_i} [1 - \theta_i]^{n_i - y_i}$$

$$p(y_i \mid \alpha, \beta, n_i, x_i) \propto [\log i t^{-1} (\alpha + \beta x_i)]^{y_i} [1 - \log i t^{-1} (\alpha + \beta x_i)]^{n_i - y_i}$$

Binomial model

$$y_i \mid \theta_i \sim \text{Bin}(\theta_i, n_i)$$

Link function

$$logit(\theta_i) = \alpha + \beta x_i$$

Likelihood

$$p(y_i \mid \alpha, \beta, n_i, x_i) \propto \theta_i^{y_i} [1 - \theta_i]^{n_i - y_i}$$

$$p(y_i \mid \alpha, \beta, n_i, x_i) \propto [\log i t^{-1} (\alpha + \beta x_i)]^{y_i} [1 - \log i t^{-1} (\alpha + \beta x_i)]^{n_i - y_i}$$

Posterior (with uniform prior on α, β)

$$p(\alpha, \beta \mid y, n, x) \propto p(\alpha, \beta) \prod_{i=1}^{n} p(y_i \mid \alpha, \beta, n_i, x_i)$$

Posterior density evaluated in a grid

Density evaluated in grid, but plotted using interpolation

Density evaluated in grid, and plotted without interpolation

Density evaluated in a coarser grid

- Approximate the density as piecewise constant function
- Evaluate density in a grid over some finite region
- Density times cell area gives probability mass in each cell

Posterior density evaluated in a grid

- Densities at 1, 2, and 3: 0.0027 0.0010 0.0001
- Probabilities of cells 1, 2, and 3: 0.0431 0.0166 0.0010
- Probabilities of cells sum to 1

- Sample according to grid cell probabilities

Posterior density and draws in a grid

- Sample according to grid cell probabilities

Posterior density and draws in a grid

- Sample according to grid cell probabilities
- Several draws can be from the same grid cell

Posterior density in a grid and jittered draws

- Jitter can be added to improve visualization

Grid sampling

- Draws can be used to estimate expectations, for example

$$E[x_{\text{LD50}}] = E[-\alpha/\beta] \approx \frac{1}{S} \sum_{s=1}^{S} \frac{\alpha^{(s)}}{\beta^{(s)}}$$

Grid sampling

- Draws can be used to estimate expectations, for example

$$E[x_{\text{LD50}}] = E[-\alpha/\beta] \approx \frac{1}{S} \sum_{s=1}^{S} \frac{\alpha^{(s)}}{\beta^{(s)}}$$

 Instead of sampling, grid could be used to evaluate functions directly, for example

$$\mathsf{E}[-\alpha/\beta] \approx \sum_{t=1}^T \mathbf{w}_{\mathrm{cell}}^{(t)} \frac{\alpha^{(t)}}{\beta^{(t)}},$$

where $\mathbf{w}_{\text{cell}}^{(t)}$ is the normalized probability of a grid cell t, and $\alpha^{(t)}$ and $\beta^{(t)}$ are center locations of grid cells

Grid sampling

- Draws can be used to estimate expectations, for example

$$E[x_{\text{LD50}}] = E[-\alpha/\beta] \approx \frac{1}{S} \sum_{s=1}^{S} \frac{\alpha^{(s)}}{\beta^{(s)}}$$

 Instead of sampling, grid could be used to evaluate functions directly, for example

$$\mathsf{E}[-\alpha/\beta] \approx \sum_{t=1}^T \mathbf{w}_{\mathrm{cell}}^{(t)} \frac{\alpha^{(t)}}{\beta^{(t)}},$$

where $\mathbf{w}_{\text{cell}}^{(t)}$ is the normalized probability of a grid cell t, and $\alpha^{(t)}$ and $\beta^{(t)}$ are center locations of grid cells

 Grid sampling gets computationally too expensive in high dimensions