Visual Tracking with Online Multiple Instance Learning

Boris Babenko, Ming-Hsuan Yang, Serge Belongie

Kelsie Zhao

Content

- Goal
- Background: Tracking by Detection
- Previous Work
- New Tracking Solution
 - MILTrack
 - Online MILBoost
- Experiments & Results

Goal

Track one arbitrary object in video, given its location in first frame

Frame 1 is labeled, tracker location known

 Crop one positive and some negative patches near tracker

Use patches to train the classifier

• Frame 2 comes

Classifier

 Calculate classifier response within a range of the old tracker location

Find the maximum response location

Move tracker

Frame 1 Frame 2

Repeat

Frame 2

 Problem: If tracker location is not precise, might select bad training examples

• Problem: If tracker location is not precise, might select bad training examples

Model start to degrade!

• Problem: If tracker location is not precise, might select bad training examples

Model start to degrade!

How to select good training examples?

Previous Work

Solution 1: multiple positive examples around tracker location

Previous Work

 Solution 1 Might confuse classifier!

Previous Work

Solution 2: Multiple Instance Learning (MIL)

Multiple examples in one bag

Multiple examples in one bag

- Multiple examples in one bag
- One bag one label

- Multiple examples in one bag
- One bag one label
- Bag Positive if at least one example is Positive

[Keeler '90, Dietterich et al. '97]

MIL training input:

$$\{(X_1, y_1) \dots (X_n, y_n)\},\$$

where,

$$X_i = \{x_{i1} \dots x_{im}\},\$$

$$y_i = max_j y_{ij}$$

MIL training input:

$$\{(X_1, y_1) \dots (X_n, y_n)\},\$$

where,

$$X_i = \{x_{i1} \dots x_{im}\},\$$

$$y_i = max_j y_{ij}$$

Bag babel is 1
if at least one instance is 1

[Keeler '90, Dietterich et al. '97]

Now we have training examples!

How to train the classifier?

MIL + boosting

Train a boosting classifier that maximizes log likelihood of bags

$$logL = \sum_{i} log(p(y_i | X_i))$$

where,

$$p(y_i | X_i) = 1 - \prod_j (1 - p(y_i | x_{ij}))$$

MIL + boosting

Train a boosting classifier that maximizes log likelihood of bags

$$logL = \sum_{i} log(p(y_i | X_i))$$

where,

$$p(y_i | X_i) = 1 - \prod_j (1 - p(y_i | x_{ij}))$$

$$\uparrow \qquad \uparrow$$

Problem: need all training examples

But in tracking, only current frame available

But in tracking, only current frame available

Need an online training algorithm for MIL

Main Contribution of this paper

- Online-MILBoost:
 Online training for MIL-based classifier
- MILTrack
 New tracking solution using Online-MILBoost

New frame comes in:

1. Crop out a set of image patches

$$X^s = \{x \mid < s^1 \text{ pixels from tracker location}\}$$

New frame comes in:

1. Crop out a set of image patches

$$X^s = \{x \mid < s^1 \text{ pixels from tracker location}\}$$

New frame comes in:

1. Crop out a set of image patches

$$X^s = \{x | < s^1 \text{ pixels from tracker location}\}$$

New frame comes in:

1. Crop out a set of image patches

$$X^s = \{x \mid < s^1 \text{ pixels from tracker location}\}$$

New frame comes in:

1. Crop out a set of image patches

$$X^s = \{x \mid < s^1 \text{ pixels from tracker location}\}$$

New frame comes in:

1. Crop out a set of image patches

$$X^s = \{x | < s \text{ pixels from tracker location}\}$$

2. Use MIL classifier to find new tracker location

$$l_{new} = l(\underset{x \in X^s}{\operatorname{argmax}} \ p(y = 1|x))$$

New frame comes in:

- 1. Crop out a set of image patches $X^s = \{x | < s \text{ pixels } from \text{ } tracker \text{ } location\}$
- 2. Use MIL classifier to find new tracker location

$$l_{new} = l(\underset{x \in X^s}{\operatorname{argmax}} \ p(y = 1|x))$$

3. 1) Crop positive examples $X^r = \{x | < r^1 \text{ pixels from tracker location}\}$

1: r = 5 in authors' experiment

New frame comes in:

- 1. Crop out a set of image patches $X^s = \{x | < s \text{ pixels } from \text{ } tracker \text{ } location\}$
- 2. Use MIL classifier to find new tracker location $l_{new} = l(\underset{x \in X^s}{\operatorname{argmax}} \ p(y = 1|x))$
- 3. 1) Crop positive examples $X^r = \{x | < r^1 \text{ pixels from tracker location}\}$

1: r = 5 in authors' experiment

New frame comes in:

- 1. Crop out a set of image patches $X^s = \{x | < s \text{ pixels from tracker location} \}$
- 2. Use MIL classifier to find new tracker location

$$l_{new} = l(\underset{x \in X^s}{\operatorname{argmax}} \ p(y = 1|x))$$

- 3. 1) Crop positive examples $X^r = \{x | < r \text{ pixels from tracker location} \}$
- 3. 2) Crop Negative examples $X^{r,\beta} = \{x \mid r \text{ to } \beta^1 \text{ pixels away from tracker location}\}$

1: β = 50 in authors' experiment

New frame comes in:

1: β = 50 in authors' experiment

- Crop out a set of image patches $X^s = \{x \mid < s \text{ pixels from tracker location}\}$
- Use MIL classifier to find new tracker location $l_{new} = l(\underset{x \in X^s}{\operatorname{argmax}} \ p(y = 1|x))$
- 1) Crop positive examples 3. $X^r = \{x \mid < r \text{ pixels from tracker location}\}$
- 3. 2) Crop Negative examples $X^{r,\beta} = \{x \mid r \text{ to } \beta^1 \text{ pixels away from tracker location}\}$

Babenko et al., 09

New frame comes in:

- 1. Crop out a set of image patches $X^s = \{x | < s \text{ pixels from tracker location} \}$
- 2. Use MIL classifier to find new tracker location $l_{new} = l(\underset{x \in X^s}{\operatorname{argmax}} \ p(y = 1|x))$
- 3. Crop positive and negative examples near new object location
- Online MILBoost:
 Update MIL classifier with positive and negative example bags

Image patch x

f_1
f_2
f_3

Image patch x

• h_k : a weak classifier using one feature

	f_1
$h_1(x)$	f_2
	f_3
$h_2(x)$	f ₉

Image patch x

• h_k : a weak classifier using one feature

$$h_k(x) = \log \left[\frac{p(y=1|f_k(x))}{p(y=0|f_k(x))} \right]$$

	f_1
	f_2
	f_3
$n_k(x)$	f _t

Image patch x

• h_k : a weak classifier using one feature

$$h_k(x) = \log \left[\frac{p(y=1|f_k(x))}{p(y=0|f_k(x))} \right]$$

with,

$$p(f_k(x)|y=1) \sim \mathcal{N}(\mu_1, \sigma_1)$$

$$p(f_k(x)|y=0) \sim \mathcal{N}(\mu_0, \sigma_0)$$

$$p(y=1) = p(y=0)$$

	f ₁
	f_2
	f_3
$h_k(x)$	f _t

Image patch x

 H(x): the MIL classifier made from weak classifiers

$$\boldsymbol{H}(\boldsymbol{x}) = \sum_{k=1}^{K} h_k(\boldsymbol{x})$$

 Always keep a pool of M >> K weak classifier candidates

 Update all M weak classifiers with positive and negative bags

Babenko et al., 09

• Pick best K weak classifiers to form H(x), where

$$h_k = \underset{h \in \{h_1 \dots h_M\}}{\operatorname{argmax}} \log L(H_{k-1} + h)$$

$$\boldsymbol{H}(\boldsymbol{x}) = \sum_{k=1}^{K} h_k(\boldsymbol{x})$$

where H_{k-1} is the classifier made up of the first k-1 weak classifiers

• Prediction : $p(y = 1|x) = \sigma(H(x))$

$$\sigma(x) = \frac{1}{1 + e^{-x}}$$

• Prediction : $p(y = 1|x) = \sigma(H(x))$

$$h_1(x) = 2$$
, $h_2(x) = 1.8$, $h_3(x) = 0.6$

$$\sigma(x) = \frac{1}{1 + e^{-x}}$$

• Prediction : $p(y = 1|x) = \sigma(H(x))$

$$\sigma(t) = \frac{1}{1 + e^{-t}}$$

$$h_1(x)$$
 f_1
 $h_2(x)$ f_2
 $h_3(x)$ f_3

$$h_1(x) = 2$$
, $h_2(x) = 1.8$, $h_3(x) = 0.6$

$$H(x) = \sum_{k=1}^{K} h_k(x) = 4.4$$

$$p(y = 1|x) = \sigma(H(x)) = 0.99$$

New frame comes in:

1. Crop out a set of image patches

$$X^s = \{x | < s \text{ pixels from tracker location}\}$$

2. Use MIL classifier to find new tracker location

$$l_{new} = l(\underset{x \in X^s}{\operatorname{argmax}} \ p(y = 1|x))$$

- 3. Crop positive and negative examples near new object location
- 4. Online MILBoost:

 Update MIL classifier with positive and negative example bags

Experiments

Datesets: 8 publicly available videos,

- Grayscale, 320 x 240 pixels
- Ground truth labeled every 5 frames by hand

Coke can

Girl

Occluded face

Occluded face 2

David

Sylvester

Tiger 1

Tiger 2

Babenko et al., 2009

Experiments

Compared with:

- OAB1
 - Online AdaBoost w/ 1 positive example per frame
- OAB5
 - Online AdaBoost w/ 45 positive examples per frame
- SemiBoost
 - Label in 1st frame only.
- FragTrack
 - Static appearance model

Experiments

Evaluation criterion:

Tracker position error (pixels) w.r.t. Ground truth

Video David

Position error versus Frame #, Video David

Babenko et al., 2009

Video Occluded Face

Position error versus Frame #, Video Occluded Face

Average Center location errors (pixels)

BestSecond Best

Video Clip	OAB1	OAB5	SemiBoost	Frag	MILTrack
David Indoor	49	72	59	46	23
Sylvester	25	79	22	11	11
Occluded Face	44	105	41	6	27
Occluded Face 2	21	93	43	45	20
Girl	48	68	52	27	32
Tiger 1	35	58	46	40	15
Tiger 2	34	33	53	38	17
Coke Can	25	57	85	63	21

Conclusion

- Online MILBoost:
 Online algorithm to update MIL-based classifier
- Performance of "MILTrack" is stable

Discussion

- Why it can handle occlusion?
- Possible improvements
 - Motion Model
 - Features
 - Part based representation

Note...

Note...

Note...

Thank You! Q&A