EDA

January 21, 2019

1 Exploratory Data Analysis: Haberman's Survival

1.1 About Dataset

1.1.1 Sources:

• (a) Donor: Tjen-Sien Lim (limt@stat.wisc.edu)

• (b) Date: March 4, 1999

1.1.2 Relevant Information:

The dataset contains cases from a study that was conducted between 1958 and 1970 at the University of Chicago's Billings Hospital on the survival of patients who had undergone surgery for breast cancer.

1.1.3 Attributes or Features Information:

- There are 4 features including class label/dependent variable.
- 30 It represents age of patient at the time of operation(numerical)
- 64 It represents year of operation(numerical)
- 1 It tells no of +ve auxillry node detected(numerical)
- 1.1 Survival status 1 = the patient survived 5 years or longer 2 = the patient died within 5 year

1.2 Objective

 To predict/classify whether the patient who had undergone surgery for breast cancer will survive after 5 years or not based upon the patient's age, year of treatment and the number of auxiliary lymph nodes

```
In [10]: import pandas as pd
        import seaborn as sns
        import matplotlib.pyplot as plt
        import numpy as np
        import warnings

# suppress warnings
warnings.filterwarnings("ignore")
```

```
# Load habermans.csv into Pandas DataFrame
         patients_df = pd.read_csv("haberman.csv")
In [11]: # (Q) how many data-points and features?
         print (patients_df.shape)
         shape = patients_df.shape
         print('\n***** There are {} data-points and {} features in this dataset ******'.for
         # Hence there are 305 rows(data-points) and 4 columns(features) in this dataset.
(305, 4)
***** There are 305 data-points and 4 features in this dataset ******
In [12]: #(Q) What are the column names in our dataset?
         print (patients_df.columns)
Index(['30', '64', '1', '1.1'], dtype='object')
In [13]: # As the columns names are not clear and we know the column names so set the names in
         patients_df.columns = ['age', 'year_of_treatment', 'positive_aux_nodes', 'survival_sta'
         columns = patients_df.columns
         print('*** column1: "{}", column2: "{}", column3: "{}", column4: "{}" ***'.format(col
         patients_df.head()
         # Now the column names are more readable
*** column1: "age", column2: "year_of_treatment", column3: "positive_aux_nodes", column4: "sur
Out [13]:
                year_of_treatment positive_aux_nodes
                                                        survival status
         0
             30
                                62
                                                      3
         1
             30
                                65
                                                      0
                                                                       1
         2
                                                      2
                                                                       1
             31
                                59
         3
             31
                                65
                                                      4
                                                                       1
             33
                                58
                                                     10
In [14]: # modify the target column values to be meaningful as well as categorical
         patients_df['survival_status'] = patients_df['survival_status'].map({1:"Survived", 2:
         patients_df['survival_status'] = patients_df['survival_status'].astype('category')
         patients_df.head()
Out [14]:
            age year_of_treatment positive_aux_nodes survival_status
             30
                                62
                                                      3
                                                               Survived
             30
                                65
                                                      0
                                                               Survived
         1
         2
             31
                                59
                                                      2
                                                               Survived
         3
             31
                                65
                                                      4
                                                               Survived
             33
                                58
                                                     10
                                                               Survived
```

```
In [15]: #(Q) How many data points for each class are present?
         #(or) How many patients for each class are present?
         patients_df["survival_status"].value_counts()
         # So there are 2 classes (1(the patient survived 5 years or longer)
         # and 2(the patient died within 5 year))
         # class 1 has 224 patients and class 2 has 81 patients.
Out[15]: Survived
                         224
         Not Survived
                          81
         Name: survival_status, dtype: int64
In [16]: patients_df.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 305 entries, 0 to 304
Data columns (total 4 columns):
                      305 non-null int64
year_of_treatment
                      305 non-null int64
positive_aux_nodes
                      305 non-null int64
survival_status
                      305 non-null category
dtypes: category(1), int64(3)
memory usage: 7.6 KB
```

1.3 Observations

- There are 304 values in every feature and there is no null or missing value
- All values are of type int64
- habermans is a imbalanced dataset

1.4 Bivariate Analysis

1.4.1 1. Scatter Plot

A scatter plot is a useful visual representation of the relationship between two numerical variables (attributes) and is usually drawn before working out a linear correlation or fitting a regression line. The resulting pattern indicates the type (linear or non-linear) and strength of the relationship between two variables.

```
In [21]: # 1-d scatter plot

survived = patients_df.loc[patients_df["survival_status"] == 'Survived']
    not_survived = patients_df.loc[patients_df["survival_status"] == 'Not Survived']
    plt.plot(survived["age"], np.zeros_like(survived["age"]), 'o', label = "survival_statured")
    plt.plot(not_survived["age"], np.zeros_like(not_survived["age"]), 'o', label = "Not Survived")
    plt.title("1-D scatter plot for age")
```

```
plt.xlabel("age")
plt.legend()
plt.show()
```


1.4.2 observations

• Many person died whose age was between 42-70.

```
In [23]: # 2-D Scatter plot with color-coding for each feature type/class.
    sns.set_style("whitegrid");
    sns.FacetGrid(patients_df, hue="survival_status", size=4) \
        .map(plt.scatter, "age", "year_of_treatment") \
        .add_legend();
    plt.title('2-D Scatter plot of age vs year_of_treatment')
    plt.show();

# Notice that the blue and orange points cannot be easily seperated.
# we can't draw a line to separate both classes.
# Can we draw multiple 2-D scatter plots for each combination of features?
# How many cobinations exist? 3C2 = 3.

sns.set_style("whitegrid");
sns.FacetGrid(patients_df, hue="survival_status", size=4) \
    .map(plt.scatter, "age", "positive_aux_nodes") \
```

```
.add_legend();
plt.title('2-D Scatter plot of age vs positive_aux_nodes');
plt.show();

sns.set_style("whitegrid");
sns.FacetGrid(patients_df, hue="survival_status", size=4) \
    .map(plt.scatter, "year_of_treatment", "positive_aux_nodes") \
    .add_legend();
plt.title('2-D Scatter plot of year_of_treatment vs positive_aux_nodes');
plt.show();
```


Observation(s): 1. Seperating both classes is nearly impossibe as they have considerable overlap. 2. Combination of features is not useful in classification

1.4.3 2. Pair-plot

Observation(s): 1. Pair plot between year_of_treatment vs positive_aux_nodes gives better separation than all other combinations.

1.5 Univariate Analysis(pdf, cdf, boxplot and violin plot)

1.5.1 1. PDF

```
In [25]: survived_df = patients_df.loc[patients_df["survival_status"] == "Survived"]
        not_survived_df = patients_df.loc[patients_df["survival_status"] == "Not Survived"]
In [26]: # function to draw PDFs for given feature as argument
        def draw_pdf_for_feature(feature):
            g = sns.FacetGrid(patients_df, hue="survival_status", size=5) \
                .map(sns.distplot, feature) \
                .add_legend();
            g.set_axis_labels(feature, 'Density')
            plt.title('Histogram of {}'.format(feature))
            plt.show();
In [27]: feature_names = patients_df.columns
         # Since survival_status is our target feature, we need to remove it from list.
        feature_names = feature_names[:-1]
        for feature in feature_names:
            print("****** "+feature+" *******")
            draw_pdf_for_feature(feature)
         # ['age', 'year_of_treatment', 'positive_aux_nodes', 'survival_status']
***** age ******
```


****** year_of_treatment ******

****** positive_aux_nodes ******

Observation(s): 1. The number of positive aux nodes of the survivors is highly densed from 0 to 5 which indicate there is more number of survivors in this range as compare to non survivors.

1.5.2 2. CDF

• The cumulative distribution function (cdf) is the probability that the variable takes a value less than or equal to x.

```
plt.title('(PDF and CDF) for {}'.format(feature))
plt.legend()
plt.show()
```

****** age ******

Bin Edges: [30. 35.3 40.6 45.9 51.2 56.5 61.8 67.1 72.4 77.7 83.]

PDF: [0.04918033 0.08852459 0.15081967 0.17377049 0.18032787 0.13442623 0.13442623 0.05901639 0.02295082 0.00655738]

CDF: [0.04918033 0.13770492 0.28852459 0.46229508 0.64262295 0.77704918 0.91147541 0.9704918 0.99344262 1.]

****** year_of_treatment ******

Bin Edges: [58. 59.1 60.2 61.3 62.4 63.5 64.6 65.7 66.8 67.9 69.]
PDF: [0.20655738 0.09180328 0.0852459 0.07540984 0.09836066 0.09180328 0.09180328 0.08196721 0.07868852]

CDF: [0.20655738 0.29836066 0.38360656 0.45901639 0.55737705 0.6557377 0.74754098 0.83934426 0.92131148 1.]

****** positive_aux_nodes ******

Bin Edges: [0. 5.2 10.4 15.6 20.8 26. 31.2 36.4 41.6 46.8 52.] PDF: [0.7704918 0.09836066 0.05901639 0.02622951 0.0295082 0.00655738

0.00327869 0. 0.00327869 0.00327869]

CDF: [0.7704918 0.86885246 0.92786885 0.95409836 0.98360656 0.99016393 0.99344262 0.99344262 0.99672131 1.]


```
In [38]: # plot pdf and cdf with survival_status for each feature
         def plot_cdf_with_survival_status(feature):
             # survived = df.loc[patients_df["survival_status"] == 'Survived']
             # not_survived = df.loc[patients_df["survival_status"] == 'Not Survived']
             # cdf gives you cummulative probability associated with a function
             # Cumulative sum of area under curve upto gives you cdf
             survived = patients_df.loc[patients_df["survival_status"] == 'Survived']
             not_survived = patients_df.loc[patients_df["survival_status"] == 'Not Survived']
             label = ["pdf of class survived", "cdf of class survived", "pdf of class not surv
             counts, bin_edges = np.histogram(survived[feature], bins=10, density = True)
             pdf = counts/(sum(counts))
             cdf = np.cumsum(pdf)
             plt.title("pdf and cdf for {}".format(feature))
             plt.xlabel(feature)
             plt.ylabel("% of patient's")
             plt.plot(bin_edges[1:], pdf)
             plt.plot(bin_edges[1:], cdf)
             counts, bin_edges = np.histogram(not_survived[feature], bins=10, density = True)
             pdf = counts/(sum(counts))
             cdf = np.cumsum(pdf)
             plt.plot(bin_edges[1:], pdf)
             plt.plot(bin_edges[1:], cdf)
             plt.legend(label)
```

plt.show()

Observation(s): 1. Almost 78% of the patients have less than or equal to 5 positive aux nodes. 2. patients who has more than 46 auxillary_lymph_node did not survived.

1.5.3 3. Box plot and Whiskers

- Box plot takes a less space and visually represents the five number summary of the data points in a box.
- The outliers are displayed as points outside the box.
- 1. Q1 (25th percentile)
- 2. Q2 (50th percentile or median)
- 3. Q3 (75th percentile)
- 4. Q1 1.5*IQR
- 5. Q3 + 1.5*IQR
- point 4 and 5 denotes outliers.
- Inter Quartile Range = Q3 -Q1

1.5.4 4. Violin Plots

for index, feature in enumerate(feature_names):
 violin_plot_for_feature(feature, ax[index])

Observation(s): 1. Patients with age less than 43 has slightly higher chance to survive for 5 or more years after surgery. 2. Patients who are treated before 1960 are more likely to die within 5 years of surgery and those whoe are treated after 1966 have slightly higher chance to surive than the rest. 3. Around 80% of patients who survived 5 years or more after surgery has positive aux nodes less than 5.

1.6 Conclusion

- 1. The given dataset is imbalanced as it does not contains equal number of data-points for both classes.
- 2. There are too much overlapping in the data-points and hence it is very diffucult to classify.
- 3. axillary_lymph_node is giving some intution in the dataset.
- 4. We can not build simple model using only if else condition we need to have some more complex technique to handle this dataset.