Sieci Neuronowe	
Kierunek	Termin
Informatyczne Systemy Automatyki	Czwartek 17 ⁰⁵ – 18 ⁴⁵
lmię, nazwisko, numer albumu	Data
Piotr Brajer 272538 Jakub Golec 272553	09.12.2024
Temat Porównanie sięci splotowej CNN oraz wielowarstwowej MLP, kategoryzacja zdjęć ryb	

Sprawozdanie

<u>GitHub</u>

1 Cel projektu i zadanie sieci neuronowej

Projekt wykonywany jest w celu nauczenia się podstawowej i zaawansowanej wiedzy związanej z projektowaniem, implementowaniem oraz badaniem sieci neuronowych.

W tym sprawozdaniu będziemy rozważać wykorzystywanie sieci neuronowej do klasyfikacji obiektów znajdujących się na zdjęciach, w związku z czym zadanie sieci generowanej dla tego projektu polega na rozróżnianiu gatunków ryb za pomocą zdjęć.

2 Zbiór danych

Właściwości Zbioru:

- Zbiór podzielony jest na 8 gatunków ryb i 1 skorupiak
- Każdy gatunek posiada 1000 zdjęć
- Format zdjęć to jpg
- Rozmiar zdjęć to 256x256px
- Przed rozpoczęciem nauki sieci kolejność zdjęć jest mieszana
- Na każdym zdjęciu wykonywany jest przypadkowy obrót w okresie 0-30°
- Na każdym zdjęciu wykonywany jest przypadkowy obrót pionowy
- Wszystkie zdjęcia przechodzą normalizację na podstawie zmiennych wcześniej wyliczonych przy użyciu odrębnego skryptu

3 Projektowanie sieci neuronowych

W celu odnalezienia najlepszego modelu dla naszego zadania wykonane będą 2 różne rodzaje sieci neuronowych.

Każdy z modeli wykonany będzie w języku Python za pomocą biblioteki pyTorch.

Pierwsza sieć neuronowa będzie typu wielowarstwowego perceptronu (MLP, Multilayer Perceptron)

Struktura sieci:

- 1. Typ sieci:
- Sieć w pełni połączona zbudowana z:
 - 3 ukrytych warstw
 - Aktywacji ReLu po każdej warstwie liniowej , co nadaje nieliniowości
 - Warstwy wyjściowej przystosowanej do liczby klas w zbiorze
- 2. Wejście sieci:
- Wejście to obrazy o wymiarach 256x256×3, które są "spłaszczane" do jednowymiarowego wektora o długości 256x256×3 = 196 608
- 3. Liczba neuronów w ukrytych warstwach:
- Wszystkie ukryte warstwy mają tą samą ilość neuronów (w zależności od modelu liczba może być w zasięgu od 64-1024
- 4. Wyjście sieci:
- Liczba neuronów w warstwie wyjściowej odpowiada liczbie klas w zbiorze danych, a aktywacja wyjściowa jest przystosowana do funkcji kosztu

Charakterystyka procesu treningowego:

- Model jest trenowany na GPU (jeśli dostępne), co znacznie przyspiesza obliczenia
- Optymalizator: Adam z domyślnym współczynnikiem uczenia 0.001
- Harmonogram uczenia: Redukcja współczynnika uczenia przy stagnacji poprawy (opartej na średniej stracie testowej)
- Funkcja kosztu: CrossEntropyLoss, odpowiednia dla problemów klasyfikacji wieloklasowej

Druga sieć neuronowa to konwolucyjna sieć neuronowa (CNN, Convolutional Neural Network)

Struktura sieci:

- 1. Typ sieci:
- Sieć wielowarstwowa konwolucyjna zbudowana z:
 - Sekcji warstw konwolucyjnych i poolingowych
 - Sekcji w pełni połączonych warstw
- 2. Część konwolucyjna:
- Używa sekwencji warstw Conv2d (konwolucja) i MaxPool2d (próbkowanie maksymalne) do redukcji wymiarów przestrzennych i wyodrębnienia cech
- W zależności od modelu od 1-3 sekcji
- 3. Część w pełni połączona:
- Dane po wyjściu z warstw konwolucyjnych są spłaszczane
- Przechodzą przez od 1 do 3 w pełni połączonych warstw (Linear) z funkcjami aktywacji ReLU każda o tej samej ilości neuronów w zależności od modelu (32-1024)
- 4. Wejście i wyjście sieci:
- Wejście: Obraz 256x256x3 (wysokość, szerokość, kanały)
- Wyjście: Wyniki klasyfikacji dla każdej z klas
- 5. Liczba neuronów w ukrytych warstwach:
- Wszystkie ukryte warstwy mają tą samą ilość neuronów (w zależności od modelu liczba może być w zasięgu od 32-1024
- 6. Wymiarowanie danych:
- Wymiary danych po przejściu przez warstwy konwolucyjne:
 - Po ostatniej warstwie: 1024x4x4, gdzie 4x4 to rozmiar przestrzenny po operacjach poolingowych
 - Spłaszczone dane: 1024x4x4=16 384 wejść do pierwszej w pełni połączonej warstwy

Charakterystyka procesu treningowego:

- Model jest trenowany na GPU
- Optymalizator: Adam z domyślnym współczynnikiem uczenia 0.001
- Harmonogram uczenia: Redukcja współczynnika uczenia, gdy strata walidacyjna przestaje się poprawiać (ReduceLROnPlateau)
- Funkcja kosztu: CrossEntropyLoss, odpowiednia dla problemów klasyfikacji wieloklasowej
- Zatrzymanie wczesne: Proces uczenia jest przerywany, jeśli strata walidacyjna osiągnie próg 0.15, (95% celności +-1%)

4 Badanie sieci neuronowych

Każdy model badany będzie dla:

- Dokładności Udział poprawnych przewidywań danej klasy w stosunku do wszystkich przykładów, które zostały przypisane do tej klasy
 - $O Wzór: Dokładność = \frac{Liczba poprawnych przewidywań}{liczba wszystkich przykładów}$
 - o Dobrze oddaje efektywność modelu, gdy klasy są równomiernie zbalansowane,
 - Może być myląca w przypadku niezbalansowanych zbiorów danych, gdy większość przykładów pochodzi z jednej klasy
- Precyzji Udział poprawnych przewidywań danej klasy w stosunku do wszystkich rzeczywistych przykładów tej klasy
 - $\bigcirc \quad \text{Wz\'or: } \textit{Precyzyjno\'s\'c} = \frac{\textit{Liczba prawdziwie pozytywnych (TP)}}{\textit{Liczba wszystkich przewidywanych pozytywnych (TP+FP)}}$
 - Ważna w przypadkach, gdzie fałszywe alarmy (false positives) są kosztowne
- Czułości, pełności Udział poprawnych przewidywań danej klasy w stosunku do wszystkich rzeczywistych przykładów tej klasy
 - $\circ \quad \text{Wz\'or: } Precyzyjno\'s\'c = \frac{\textit{Liczba prawdziwie pozytywnych (TP)}}{\textit{Liczba wszystkich rzeczywistych pozytywnych (TP+FN)}}$
 - Ważna w przypadkach, gdzie pominięcie prawdziwego przypadku (false negative) jest kosztowne
- Miara F1 Harmoniczna średnia precyzji i czułości

 - Miara F1 równoważy precyzję i czułość, szczególnie w przypadkach, gdy mamy niezbalansowane dane
 - Im bliższa 1, tym lepszy model w sensie ogólnej równowagi między precyzją a czułością
- Macierz konfuzji Tabela pokazująca liczbę prawidłowych i błędnych klasyfikacji dla każdej klasy
 - Umożliwia szczegółową analizę błędów klasyfikacji:
 - TP (True Positive): Prawdziwie pozytywne poprawnie zaklasyfikowane jako dana klasa
 - FP (False Positive): Fałszywie pozytywne błędnie przypisane do danej klasy.
 - FN (False Negative): Fałszywie negatywne błędnie wykluczone z danej klasy.
 - TN (True Negative): Prawdziwie negatywne poprawnie wykluczone z danej klasy.

Sieć neuronowa MLP

Każdy model nazwany będzie według ilości neuronów dla jednej sekcji w pełni połączonych warstw.

1. Dokładność:

2. Precyzja:

3. Czułość:

4. F1:

5. Macierz konfuzji:

64Neuron

128Neuron

7

256Neuron

512Neuron

1024Neuron

Sieć neuronowa CNN

Każdy model nazywany będzie według ilości sekcji warstw konwolucji i poolingu oraz sekcji w pełni połączonych warstw np.: 2CNN3FC – 2 sekcje warstw konwolucji oraz 3 sekcje w pełni połączonych warstw.

1. Dokładność:

2. Precyzja:

3. Czułość:

4. F1:

5. Macierz konfuzji:

1CNN1FC

1CNN2FC

1CNN3FC

2CNN2FC

2CNN3FC

3CNN3FC

5 Wnioski

Porównanie sieci neuronowych typu MLP (Multi-Layer Perceptron) i CNN (Convolutional Neural Network) wskazuje na istotne różnice wynikające z ich architektury i zastosowań.

MLP to sieć w pełni połączona, gdzie każdy neuron w jednej warstwie łączy się z każdym neuronem w następnej, co sprawia, że jest uniwersalna, ale mniej efektywna w analizie danych o dużej liczbie cech, takich jak obrazy. Wymaga przekształcenia danych wejściowych na jednowymiarowe wektory, co utrudnia wykorzystanie lokalnych zależności. Z kolei CNN, dzięki operacjom splotowym, jest zoptymalizowana do przetwarzania danych przestrzennych, takich jak obrazy czy wideo, i potrafi rozpoznawać lokalne wzorce, takie jak krawędzie czy tekstury, bez konieczności spłaszczania danych.

CNN lepiej radzi sobie z analizą dużych zbiorów danych wizualnych, jest bardziej skalowalna i redukuje liczbę parametrów dzięki współdzieleniu wag. Podczas gdy MLP jest prostsze w implementacji i może być skuteczne w przypadku danych tablicowych lub o niskim wymiarze, CNN przewyższa je w zadaniach wizji komputerowej, takich jak klasyfikacja obrazów, segmentacja czy wykrywanie obiektów.

