Name:	_
Roll Number:	_

Practice final

$\operatorname{MTH}302$ - Set Theory and Mathematical Logic

(Odd Semester 2024/25, IIT Kanpur)

INSTRUCTIONS

- 1. Write your **Name** and **Roll number** above.
- 2. This exam contains $\mathbf{5}\,+\,\mathbf{1}$ questions and is worth $\mathbf{50}\%$ of your grade.
- 3. Answer \mathbf{ALL} questions.

Page 2 MTH302

Question 1. $[5 \times 2 \text{ Points}]$

For each of the following statements, determine whether it is true or false. No justification required.

- (i) There exists a sequence of ordinals $\langle \alpha_n : n < \omega \rangle$ such that $\alpha_{n+1} < \alpha_n$ for every $n < \omega$.
- (ii) $(\mathbb{Q},<)$ is an elementary submodel of $(\mathbb{R},<)$.
- (iii) Every consistent first order theory has an infinite model.
- (iv) $\mathsf{Th}([0,1],<)$ is ω -categorical.
- (v) If $A\subseteq \omega$ is c.e., then $A+A=\{m+n:m,n\in A\}$ is c.e.

Page 3 MTH302

Question 2. [10 Points]

Call a subset $E \subseteq \mathbb{R}$ mid-point free if there do not exist x < y < z in E such that x + z = 2y.

- (a) [2 Point] State Zorn's lemma.
- (b) [4 Points] Show that there is a maximal mid-point free set $E \subseteq \mathbb{R}$. This means that E is mid-point free and for every $x \in \mathbb{R} \setminus E$, $E \cup \{x\}$ is not mid-point free.
- (c) [4 Points] Show that every maximal mid-point free set has cardinality $\mathfrak{c}.$

Page 4 MTH302

Question 3. [10 Points]

Let \mathcal{L} be the empty language. For each $n \geq 2$, recall that $\exists_{\geq n}$ denotes the following \mathcal{L} -sentence:

$$(\exists x_1)(\exists x_2)\dots(\exists x_n)\left(\bigwedge_{i< j\leq n}\neg(x_i=x_j)\right)$$

Define $T = \{\exists_{\geq n} : n \geq 2\}$. Prove the following.

- (a) [2 Points] T does not have a finite model.
- (b) [2 Points] T is consistent.
- (c) [2 Points] T is ω -categorical.
- (d) [2 Points] T is complete.
- (e) [2 Points] $\{\phi: T \vdash \phi\}$ is computable.

Page 5 MTH302

Question 4. [10 Points]

Let $T = \mathsf{Th}(\mathbb{Z}, <)$. So T is an \mathcal{L} -theory where $\mathcal{L} = \{<\}$.

- (a) $[2 \ \mathbf{Point}]$ Is T a complete theory? Justify your response.
- (b) [2 Point] State the compactness theorem for first order logic.
- (c) [6 Points] Show that T is not ω -categorical. Hint: Put $\mathcal{L}_1 = \{<, c, d\}$ where c, d are constant symbols and consider the \mathcal{L}_1 -theory $T_1 = T \cup \{\psi_n : n \geq 1\}$ where ψ_n is says "there are at least n elements between c and d".

Page 6 MTH302

Question 5 [10 Points]

Let $\mathcal{N} = (\omega, 0, S, +, \cdot)$ be the standard model of PA. Define

$$\mathsf{True}_{\mathcal{N}} = \{ \ulcorner \psi \urcorner : \mathcal{N} \models \psi \} \text{ and } \mathsf{False}_{\mathcal{N}} = \{ \ulcorner \psi \urcorner : \mathcal{N} \models \neg \psi \}$$

- (a) [3 Points] Let $E \subseteq \omega$. What does it mean to say that E is definable in \mathcal{N} ?
- (b) $[{f 3 \ Points}]$ State Tarski's theorem on undefinability of truth in arithmetic.
- (c) [4 Points] Suppose $S \subseteq \omega$, True $\mathcal{N} \subseteq S$ and False $\mathcal{N} \subseteq (\omega \setminus S)$. Show that S is not computable.

Page 7 MTH302

Bonus Question [5 Points]

Recall that φ_e is the eth partial computable function on ω . Define $A=\{e:e\in \mathsf{dom}(\varphi_e) \text{ and } \varphi_e(e)=0\}$ and $B=\{e:e\in \mathsf{dom}(\varphi_e) \text{ and } \varphi_e(e)=1\}$. Show that $A,B\subseteq \omega$ are disjoint c.e. sets and there is no computable $R\subseteq \omega$ such that $A\subseteq R$ and $B\subseteq \omega\setminus R$.