

Online Covering

Secretaries, Prophets, and Universal Maps

Gregory Kehne (Harvard)

FOCS 2021 + Forthcoming Work Roie Levin

Set Cover

S m sets

Set Cover

S m sets

Set Cover

S m sets

Apx: $\log n + 1$ [Johnson 74],[Lovasz 75], [Chvatal 79]

 \mathcal{U} n elements

[Alon Awerbuch Azar Buchbinder Naor 03]

[Alon Awerbuch Azar Buchbinder Naor 03]

[Alon Awerbuch Azar Buchbinder Naor 03]

[Alon Awerbuch Azar Buchbinder Naor 03]

[Alon Awerbuch Azar Buchbinder Naor 03]

 \mathcal{U} n elements

[Alon Awerbuch Azar Buchbinder Naor 03]

[Alon Awerbuch Azar Buchbinder Naor 03]

[Alon Awerbuch Azar Buchbinder Naor 03]

[Alon Awerbuch Azar Buchbinder Naor 03]

[Alon Awerbuch Azar Buchbinder Naor 03]

[Alon Awerbuch Azar Buchbinder Naor 03]

S m sets

CR: $O(\log n \log m)$ [Alon+03]
[Buchbinder Naor 09]

[Alon Awerbuch Azar Buchbinder Naor 03]

CR: $O(\log n \log m)$ [Alon+03] [Buchbinder Naor 09]

n elements

Q: What happens beyond the worst case?

m sets

 s_1 *s*₂ • *S*₄ • *S*₅

 \mathcal{U} n elements

m sets

*s*₁ •

*s*₂ •

53

*S*₄ •

*S*₅

56

 \mathcal{U} n elements

m sets

m sets

*s*₁ •

*s*₂ •

s₃

*S*₄ •

*S*₅

 S_6

 \mathcal{U} n elements

m sets

m sets

m sets

m sets

m sets

S m sets

S m sets

Relaxation 2: Random Instance

S m sets

Relaxation 2: Random Instance

S m sets


```
m = \# \text{ sets}
n = \# \text{ elements}
```

Instance

	Random	Adversarial
Random		
Adversarial		O(log n log m) [Alon+03] [Buchbinder Naor 09]

m = # sets n = # elements

Instance

	Random	Adversarial
Random	O(log(m [support size])) [Gupta Grandoni Leonardi Miettinen Sankowski Singh 08]	
Adversarial		O(log n log m) [Alon+03] [Buchbinder Naor 09]

```
m = \# \text{ sets}
n = \# \text{ elements}
```

Instance

	Random	Adversarial Secretary
Random	O(log(m [support size])) [Gupta Grandoni Leonardi Miettinen Sankowski Singh 08]	
Adversarial		O(log n log m) [Alon+03] [Buchbinder Naor 09]

```
m = \# \text{ sets}
n = \# \text{ elements}
```

Random Adversarial Secretary Random O(log(m [support size])) O(log n log m) [Alon+03] Prophet

Instance

m = # sets n = # elements

Instance

$$m = \# \text{ sets}$$
 $n = \# \text{ elements}$

Some reasons to believe $o(\log n \log m)$ not possible...

Instance

$$m = \# \text{ sets}$$
 $n = \# \text{ elements}$

Theorem [Gupta Kehne L. FOCS 21]:

There is a poly time algorithm for secretary Covering IPs with competitive ratio $O(\log mn)$.

Instance

$$m = \# \text{ sets}$$
 $n = \# \text{ elements}$

Theorem [Gupta Kehne L. FOCS 21]:

There is a poly time algorithm for **secretary** Covering IPs with competitive ratio $O(\log mn)$.

New algorithm! We show how to learn distribution & solve at same time.

Instance

$$m = \# \text{ sets}$$
 $n = \# \text{ elements}$

Theorem [Gupta Kehne L. FOCS 21]:

There is a poly time algorithm for secretary Covering IPs with competitive ratio $O(\log mn)$.

Theorem [Gupta Kehne L. 22]:

There is a poly time algorithm for **prophet** Covering IPs with competitive ratio $O(\log mn)$.

Instance

Universal! Gives sample complexity bound O(n).

m = # sets n = # elements

Theorem [Gupta Kehne L. FOCS 21]:

There is a poly time algorithm for secretary Covering IPs with competitive ratio $O(\log mn)$.

Theorem [Gupta Kehne L. 22]:

There is a poly time algorithm for **prophet** Covering IPs with competitive ratio $O(\log mn)$.

Talk Outline

Secretary

LearnOrCover in Exponential Time

LearnOrCover in Poly Time

(Single Sample) Prophet

Conclusion & Extensions

Talk Outline

Intro

Secretary

LearnOrCover in Exponential Time
LearnOrCover in Poly Time

(Single Sample) Prophet

Conclusion & Extensions

2 Stage algorithm!

2 Stage algorithm!

(I) Solve LP.

(II) Round.

2 Stage algorithm!

(I) Solve LP.

$$\min \sum_{S} x_{S}$$

$$\forall v \in \mathcal{U} : \sum_{S} x_{S} \ge 1$$

$$\forall S \in \mathcal{S}: \quad x_S \ge 0$$

(II) Round.

2 Stage algorithm!

(I) Solve LP.

$$\min_{S} \sum_{S} x_{S}$$

$$\forall v \in \mathcal{U}: \sum_{S \ni v} x_S \ge 1$$

$$\forall S \in \mathcal{S}: \quad x_S \ge 0$$

This is relaxation, so $c(x) \le c(OPT)$.

(II) Round.

2 Stage algorithm!

(I) Solve LP.

$$\min \sum_{S} x_{S}$$

$$\forall v \in \mathcal{U}: \sum_{S \ni v} x_{S} \ge 1$$

$$\forall S \in \mathcal{S}: x_{S} \ge 0$$

This is relaxation, so $c(x) \le c(OPT)$.

(II) Round.

Buy S with probability x_S .

2 Stage algorithm!

(I) Solve LP.

$$\min \sum_{S} x_{S}$$

$$\forall v \in \mathcal{U} : \sum_{S \ni v} x_{S} \ge 1$$

$$\forall S \in \mathcal{S} : x_{S} \ge 0$$

This is relaxation, so $c(x) \le c(\mathsf{OPT})$.

(II) Round.

Buy S with probability x_S .

Expected cost is c(x)!

2 Stage algorithm!

(I) Solve LP.

$$\min \sum_{S} x_{S}$$

$$\forall v \in \mathcal{U} : \sum_{S \ni v} x_{S} \ge 1$$

$$\forall S \in \mathcal{S} : x_{S} \ge 0$$

This is relaxation, so $c(x) \le c(\mathsf{OPT})$.

(II) Round.

Buy S with probability x_S .

Expected cost is c(x)!

Can show $\forall v \in \mathcal{U}$, covered with constant prob.

2 Stage algorithm!

(I) Solve LP.

$$\min \sum_{S} x_{S}$$

$$\forall v \in \mathcal{U}: \sum_{S \ni v} x_{S} \ge 1$$

$$\forall S \in \mathcal{S}: x_{S} \ge 0$$

This is relaxation, so $c(x) \le c(\mathsf{OPT})$.

(II) Round.

Buy S with probability x_S .

Expected cost is c(x)!

Can show $\forall v \in \mathcal{U}$, covered with constant prob.

Repeat $O(\log n)$ times, union bound.

2 Stage algorithm!

(I) Solve LP.

$$\min \sum_{S} x_{S}$$

$$\forall v \in \mathcal{U} : \sum_{S \ni v} x_{S} \ge 1$$

$$\forall S \in \mathcal{S} : x_{S} \ge 0$$

This is relaxation, so $c(x) \le c(\mathsf{OPT})$.

(II) Round.

Buy S with probability x_S .

Expected cost is c(x)!

Can show $\forall v \in \mathcal{U}$, covered with constant prob.

Repeat $O(\log n)$ times, union bound.

Expected Cost: $O(\log n) \cdot OPT$

Same 2 Stages!

Same 2 Stages!

(I) Solve LP Online.

Same 2 Stages!

(I) Solve LP Online.

$$\min \sum_{S} x_{S}$$

$$\forall v \in \mathcal{U}: \sum_{S \ni v} x_{S} \ge 1$$

$$\forall S \in \mathcal{S}: x_{S} \ge 0$$

Same 2 Stages!

(I) Solve LP Online.

$$\min \sum_{S} x_{S}$$

$$\forall v \in \mathcal{U} : \sum_{S \ni v} x_{S} \ge 1$$

$$\forall S \in \mathcal{S} : x_{S} \ge 0$$

Can guarantee x is $O(\log m)$ -apx, and only increases **monotonically**.

Same 2 Stages!

(I) Solve LP Online.

$$\min \sum_{S} x_{S}$$

$$\forall v \in \mathcal{U} : \sum_{S \ni v} x_{S} \ge 1$$

$$\forall S \in \mathcal{S} : x_{S} \ge 0$$

Can guarantee x is $O(\log m)$ -apx, and only increases **monotonically**.

Same 2 Stages!

(I) Solve LP Online.

$$\min \sum_{S} x_{S}$$

$$\forall v \in \mathcal{U}: \sum_{S \ni v} x_{S} \ge 1$$

$$\forall S \in \mathcal{S}: x_{S} \ge 0$$

Can guarantee x is $O(\log m)$ -apx, and only increases **monotonically**.

Same 2 Stages!

(I) Solve LP Online.

$$\min \sum_{S} x_{S}$$

$$\forall v \in \mathcal{U} : \sum_{S \ni v} x_{S} \ge 1$$

$$\forall S \in \mathcal{S} : x_{S} \ge 0$$

Can guarantee x is $O(\log m)$ -apx, and only increases **monotonically.**

(II) Round Online.

Take S with prob. $\propto \Delta x_S$.

Same 2 Stages!

(I) Solve LP Online.

$$\min \sum_{S} x_{S}$$

$$\forall v \in \mathcal{U} : \sum_{S \ni v} x_{S} \ge 1$$

$$\forall S \in \mathcal{S} : x_{S} \ge 0$$

Can guarantee x is $O(\log m)$ -apx, and only increases monotonically.

(II) Round Online.

Suffices to analyze *offline* rounding. Repeat $\log n$ times, union bound.

Same 2 Stages!

(I) Solve LP Online.

$$\min \sum_{S} x_{S}$$

$$\forall v \in \mathcal{U} : \sum_{S \ni v} x_{S} \ge 1$$

$$\forall S \in \mathcal{S} : x_{S} \ge 0$$

Can guarantee x is $O(\log m)$ -apx, and only increases monotonically.

(II) Round Online.

Suffices to analyze *offline* rounding. Repeat $\log n$ times, union bound.

Expected Cost: $O(\log n \log m) \cdot OPT$

Online LP Solver of [Alon+03]

$$x_{S_1}$$
 x_{S_2} x_{S_4} x_{S_4}

Online LP Solver of [Alon+03]

 $oldsymbol{\mathcal{X}}_{S_1}$ $oldsymbol{\mathcal{X}}_{S_2}$ $oldsymbol{\mathcal{X}}_{S_4}$ $oldsymbol{\mathcal{X}}_{S_4}$

 $\operatorname{Init} x \leftarrow 1/m$.

While v (fractionally) uncovered:

• $\times 2$ to x_S for all $S \ni v$.

 $oldsymbol{x}_{S_1}$ $oldsymbol{x}_{S_2}$ $oldsymbol{x}_{S_4}$ $oldsymbol{x}_{S_4}$

 $\operatorname{Init} x \leftarrow 1/m$.

While ν (fractionally) uncovered:

 $oldsymbol{x}_{S_1}$ $oldsymbol{x}_{S_2}$ $oldsymbol{x}_{S_4}$ $oldsymbol{x}_{S_4}$

 $\operatorname{Init} x \leftarrow 1/m$.

While ν (fractionally) uncovered:

 x_{S_1} x_{S_2} x_{S_4} x_{S_4}

 $\operatorname{Init} x \leftarrow 1/m.$

While v (fractionally) uncovered:

 $\operatorname{Init} x \leftarrow 1/m$.

While v (fractionally) uncovered:

 $\operatorname{Init} x \leftarrow 1/m$.

While v (fractionally) uncovered:

 $\operatorname{Init} x \leftarrow 1/m$.

While v (fractionally) uncovered:

 $\operatorname{Init} x \leftarrow 1/m$.

While v (fractionally) uncovered:

 $\operatorname{Init} x \leftarrow 1/m$.

While v (fractionally) uncovered:

 $\operatorname{Init} x \leftarrow 1/m$.

While v (fractionally) uncovered:

 $\operatorname{Init} x \leftarrow 1/m$.

While ν (fractionally) uncovered:

 $\operatorname{Init} x \leftarrow 1/m$.

While v (fractionally) uncovered:

- $\times 2$ to x_S for all $S \ni v$.
- \bullet +1 to y_v .

 $\operatorname{Init} x \leftarrow 1/m$.

While v (fractionally) uncovered:

- $\times 2$ to x_S for all $S \ni v$.
- \bullet +1 to y_v .

Claim 1: x feasible for (P).

 $\operatorname{Init} x \leftarrow 1/m$.

While v (fractionally) uncovered:

- $\times 2$ to x_S for all $S \ni v$.
- \bullet +1 to y_v .

Claim 1: x feasible for (P).

Claim 2: $c(x) \le c(y)$

 $\operatorname{Init} x \leftarrow 1/m$.

While v (fractionally) uncovered:

- $\times 2$ to x_S for all $S \ni v$.
- \bullet +1 to y_v .

Claim 1: x feasible for (P).

Claim 2: $c(x) \leq c(y)$

Claim 3: $y/\log m$ feasible for (D).

Independent rounding loses $\Omega(\log n)$.

Independent rounding loses $\Omega(\log n)$.

Theorem [Gupta Kehne L.]: $\Omega(\log m)$ for fractional algos in RO.

Independent rounding loses $\Omega(\log n)$.

Theorem [Gupta Kehne L.]: $\Omega(\log m)$ for fractional algos in RO.

Theorem [Gupta Kehne L.]: algo of [Alon+03] gets $\Omega(\log m \log n)$ in RO.

Independent rounding loses $\Omega(\log n)$.

Theorem [Gupta Kehne L.]: $\Omega(\log m)$ for fractional algos in RO.

Theorem [Gupta Kehne L.]: algo of [Alon+03] gets $\Omega(\log m \log n)$ in RO.

New algorithm needed!

Independent rounding loses $\Omega(\log n)$.

Theorem [Gupta Kehne L.]: $\Omega(\log m)$ for fractional algos in RO.

Theorem [Gupta Kehne L.]: algo of [Alon+03] gets $\Omega(\log m \log n)$ in RO.

New algorithm needed!

We maintain <u>coarse</u> solution x, neither <u>feasible</u> nor <u>monotone</u>, but round x anyway...

Talk Outline

Intro

LearnOrCover in Exponential Time
LearnOrCover in Poly Time

(Single Sample) Prophet

Conclusion & Extensions

Talk Outline

Intro

Secretary

LearnOrCover in Exponential Time LearnOrCover in Poly Time

(Single Sample) Prophet

Conclusion & Extensions

(Unit cost, exp time warmup)

(Unit cost, exp time warmup)

$$\mathcal{P} = \binom{\mathcal{S}}{k}$$

k := |OPT|

(Unit cost, exp time warmup)

@ time t, element v arrives:

(Unit cost, exp time warmup)

@ time t, element ν arrives: If ν covered, do nothing.

(Unit cost, exp time warmup)

@ time t, element v arrives:

If v covered, do nothing.

Else:

(I) choose $T \sim \mathcal{P}$, buy random $R \sim T$.

(II) "Prune" $T \not\ni v$ from \mathcal{P} .

(Unit cost, exp time warmup)

@ time t, element v arrives:

If *v* covered, do nothing.

Else:

- (I) choose $T \sim \mathcal{P}$, buy random $R \sim T$.
- (II) "Prune" $T \not\ni v$ from \mathscr{P} .

Buy arbitrary set to cover v.

(Unit cost, exp time warmup)

$$\mathcal{P} = \binom{\mathcal{S}}{k}$$

k := |OPT|

@ time t, element v arrives:

If v covered, do nothing.

Else:

(I) choose $T \sim \mathcal{P}$, buy random $R \sim T$.

(II) "Prune" $T \not\ni v$ from \mathscr{P} .

Buy arbitrary set to cover v.

Case 1: $\geq 1/2$ of $T \in \mathcal{P}$ cover $\geq 1/2$ of \mathcal{U} .

Case 2: > 1/2 of $T \in \mathcal{P}$ cover < 1/2 of \mathcal{U} .

(Unit cost, exp time warmup)

$$\mathscr{P} = \binom{\mathcal{S}}{k}$$

$$k := |OPT|$$

@ time t, element v arrives:

If v covered, do nothing.

Else:

(I) choose $T \sim \mathcal{P}$, buy random $R \sim T$.

(II) "Prune" $T \not\ni v$ from \mathscr{P} .

Buy arbitrary set to cover v.

Case 1: $\geq 1/2$ of $T \in \mathcal{P}$ cover $\geq 1/2$ of \mathcal{U} .

R covers
$$\frac{|\mathcal{U}|}{4k}$$
 in expectation.

Case 2: > 1/2 of $T \in \mathcal{P}$ cover < 1/2 of \mathcal{U} .

(Unit cost, exp time warmup)

$$\mathcal{P} = \binom{\mathcal{S}}{k}$$

k := |OPT|

@ time t, element v arrives:

If v covered, do nothing.

Else:

(I) choose $T \sim \mathcal{P}$, buy random $R \sim T$.

(II) "Prune" $T \not\ni v$ from \mathscr{P} .

Buy arbitrary set to cover *v*.

Case 1: $\geq 1/2$ of $T \in \mathcal{P}$ cover $\geq 1/2$ of \mathcal{U} .

R covers $\frac{|\mathcal{U}|}{4k}$ in expectation.

 \mathscr{U} shrinks by $\left(1-\frac{1}{4k}\right)$ in expectation.

Case 2: > 1/2 of $T \in \mathcal{P}$ cover < 1/2 of \mathcal{U} .

(Unit cost, exp time warmup)

$$\mathcal{P} = \binom{\mathcal{S}}{k}$$

k := |OPT|

@ time t, element v arrives:

If v covered, do nothing.

Else:

(I) choose $T \sim \mathcal{P}$, buy random $R \sim T$.

(II) "Prune" $T \not\ni v$ from \mathscr{P} .

Buy arbitrary set to cover *v*.

Case 1: $\geq 1/2$ of $T \in \mathcal{P}$ cover $\geq 1/2$ of \mathcal{U} .

R covers $\frac{|\mathcal{U}|}{4k}$ in expectation.

 \mathscr{U} shrinks by $\left(1-\frac{1}{4k}\right)$ in expectation.

Case 2: > 1/2 of $T \in \mathcal{P}$ cover < 1/2 of \mathcal{U} .

 $\geq 1/2$ of $T \in \mathcal{P}$ pruned w.p. 1/2.

(Unit cost, exp time warmup)

$$\mathscr{P} = \binom{\mathcal{S}}{k}$$

k := |OPT|

@ time t, element v arrives:

If v covered, do nothing.

Else:

(I) choose $T \sim \mathcal{P}$, buy random $R \sim T$.

(II) "Prune" $T \not\ni v$ from \mathscr{P} .

Buy arbitrary set to cover *v*.

Case 1: $\geq 1/2$ of $T \in \mathcal{P}$ cover $\geq 1/2$ of \mathcal{U} .

R covers $\frac{|\mathcal{U}|}{4k}$ in expectation.

 \mathscr{U} shrinks by $\left(1-\frac{1}{4k}\right)$ in expectation.

Case 2: > 1/2 of $T \in \mathcal{P}$ cover < 1/2 of \mathcal{U} .

 $\geq 1/2$ of $T \in \mathcal{P}$ pruned w.p. 1/2.

(Unit cost, exp time warmup)

$$\mathscr{P} = \binom{\mathcal{S}}{k}$$

k := |OPT|

@ time t, element v arrives:

If v covered, do nothing.

Else:

(I) choose $T \sim \mathcal{P}$, buy random $R \sim T$.

(II) "Prune" $T \not\ni v$ from \mathscr{P} .

Buy arbitrary set to cover *v*.

Case 1: $\geq 1/2$ of $T \in \mathcal{P}$ cover $\geq 1/2$ of \mathcal{U} .

R covers $\frac{|\mathcal{U}|}{4k}$ in expectation.

 \mathscr{U} shrinks by $\left(1-\frac{1}{4k}\right)$ in expectation.

Case 2: > 1/2 of $T \in \mathcal{P}$ cover < 1/2 of \mathcal{U} .

 $\geq 1/2$ of $T \in \mathcal{P}$ pruned w.p. 1/2.

(Unit cost, exp time warmup)

@ time t, element v arrives:

If v covered, do nothing.

Else:

(I) choose $T \sim \mathcal{P}$, buy random $R \sim T$.

(II) "Prune" $T \not\ni v$ from \mathscr{P} .

Buy arbitrary set to cover *v*.

Case 1: $\geq 1/2$ of $T \in \mathcal{P}$ cover $\geq 1/2$ of \mathcal{U} .

 $R ext{ covers } \frac{|\mathcal{U}|}{\Delta k} ext{ in expectation.}$

 \mathscr{U} shrinks by $\left(1-\frac{1}{4k}\right)$ in expectation.

Case 2: > 1/2 of $T \in \mathcal{P}$ cover < 1/2 of \mathcal{U} .

 $\geq 1/2$ of $T \in \mathcal{P}$ pruned w.p. 1/2.

(Unit cost, exp time warmup)

@ time t, element v arrives:

If v covered, do nothing.

Else:

(I) choose $T \sim \mathcal{P}$, buy random $R \sim T$.

(II) "Prune" $T \not\ni v$ from \mathscr{P} .

Buy arbitrary set to cover *v*.

Case 1: $\geq 1/2$ of $T \in \mathcal{P}$ cover $\geq 1/2$ of \mathcal{U} .

R covers $\frac{|\mathcal{U}|}{4k}$ in expectation.

 \mathscr{U} shrinks by $\left(1-\frac{1}{4k}\right)$ in expectation.

Case 2: > 1/2 of $T \in \mathcal{P}$ cover < 1/2 of \mathcal{U} .

 $\geq 1/2$ of $T \in \mathcal{P}$ pruned w.p. 1/2.

LearnOrCover

(Unit cost, exp time warmup)

@ time t, element v arrives:

If v covered, do nothing.

Else:

(I) choose $T \sim \mathcal{P}$, buy random $R \sim T$.

(II) "Prune" $T \not\ni v$ from \mathscr{P} .

Buy arbitrary set to cover *v*.

Case 1: $\geq 1/2$ of $T \in \mathcal{P}$ cover $\geq 1/2$ of \mathcal{U} .

R covers $\frac{|\mathcal{U}|}{4k}$ in expectation.

 \mathscr{U} shrinks by $\left(1-\frac{1}{4k}\right)$ in expectation.

Case 2: > 1/2 of $T \in \mathcal{P}$ cover < 1/2 of \mathcal{U} .

 $\geq 1/2$ of $T \in \mathcal{P}$ pruned w.p. 1/2.

LearnOrCover

(Unit cost, exp time warmup)

@ time t, element v arrives:

If v covered, do nothing.

Else:

(I) choose $T \sim \mathcal{P}$, buy random $R \sim T$.

(II) "Prune" $T \not\ni v$ from \mathscr{P} .

Buy arbitrary set to cover *v*.

Case 1: $\geq 1/2$ of $T \in \mathcal{P}$ cover $\geq 1/2$ of \mathcal{U} .

R covers $\frac{|\mathcal{U}|}{4k}$ in expectation.

 \mathscr{U} shrinks by $\left(1-\frac{1}{4k}\right)$ in expectation.

Case 2: > 1/2 of $T \in \mathcal{P}$ cover < 1/2 of \mathcal{U} .

 $\geq 1/2$ of $T \in \mathcal{P}$ pruned w.p. 1/2.

RO Set Cover (Exponential Time Warmup)

Case 1: (COVER)

$$\mathscr{U}$$
 shrinks by $\left(1-\frac{1}{4k}\right)$ in expectation.

Case 2: (LEARN)

(Exponential Time Warmup)

Case 1: (COVER)

$$\mathscr{U}$$
 shrinks by $\left(1-\frac{1}{4k}\right)$ in expectation.

Case 2: (LEARN)

 \mathscr{P} shrinks by 3/4 in expectation.

 $|\mathcal{U}|$ initially n,

 \Rightarrow $O(k \log n)$ COVER steps suffice.

(Exponential Time Warmup)

Case 1: (COVER)

$$\mathscr{U}$$
 shrinks by $\left(1-\frac{1}{4k}\right)$ in expectation.

Case 2: (LEARN)

$$|\mathcal{U}|$$
 initially n , $\Rightarrow O(k \log n)$ COVER steps suffice.

$$|\mathcal{P}|$$
 initially $\binom{m}{k} \approx m^k$, $\Rightarrow O(k \log m)$ LEARN steps suffice.

(Exponential Time Warmup)

Case 1: (COVER)

$$\mathscr{U}$$
 shrinks by $\left(1-\frac{1}{4k}\right)$ in expectation.

Case 2: (LEARN)

 \mathscr{P} shrinks by 3/4 in expectation.

 $|\mathcal{U}|$ initially n,

 $\Rightarrow O(k \log n)$ COVER steps suffice.

 $|\mathcal{P}|$ initially $\binom{m}{k} \approx m^k$, $\Rightarrow O(k \log m)$ LEARN steps suffice.

 $\Rightarrow O(k \log mn)$ steps suffice.

(Exponential Time Warmup)

Case 1: (COVER)

$$\mathscr{U}$$
 shrinks by $\left(1-\frac{1}{4k}\right)$ in expectation.

Case 2: (LEARN)

 \mathscr{P} shrinks by 3/4 in expectation.

 $|\mathcal{U}|$ initially n,

 $\Rightarrow O(k \log n)$ COVER steps suffice.

 $|\mathcal{P}|$ initially $\binom{m}{k} \approx m^k$, $\Rightarrow O(k \log m)$ LEARN steps suffice.

 $\Rightarrow O(k \log mn)$ steps suffice.

But how to make polytime?

Can we reuse LEARN/COVER intuition?

Talk Outline

Intro

Secretary

LearnOrCover in Exponential Time LearnOrCover in Poly Time

(Single Sample) Prophet

Conclusion & Extensions

Talk Outline

Intro

Secretary

LearnOrCover in Exponential Time

LearnOrCover in Poly Time

(Single Sample) Prophet

Conclusion & Extensions

```
Init. x \leftarrow 1/m.
```

 $Init.x \leftarrow 1/m.$

@ time t, element v arrives:

 $Init. x \leftarrow 1/m.$

@ time t, element v arrives: If v covered, do nothing.

```
Init. x \leftarrow 1/m.

@ time t, element v arrives:

If v covered, do nothing.

Else:

(I) Buy random R \sim x.

(II) \forall S \ni v, set x_S \leftarrow e \cdot x_S.

Renormalize x \leftarrow x/||x||_1.
```

```
Init. x \leftarrow 1/m.

@ time t, element v arrives:

If v covered, do nothing.

Else:

(I) Buy random R \sim x.

(II) \forall S \ni v, set x_S \leftarrow e \cdot x_S.

Renormalize x \leftarrow x/||x||_1.

Buy arbitrary set to cover v.
```

```
Init. x \leftarrow 1/m.

@ time t, element v arrives:

If v covered, do nothing.

Else:

(I) Buy random R \sim x.

(II) \forall S \ni v, set x_S \leftarrow e \cdot x_S.

Renormalize x \leftarrow x/||x||_1.

Buy arbitrary set to cover v.
```

Idea! Measure convergence with potential function:

```
Init. x \leftarrow 1/m.

@ time t, element v arrives:

If v covered, do nothing.

Else:

(I) Buy random R \sim x.

(II) \forall S \ni v, set x_S \leftarrow e \cdot x_S.

Renormalize x \leftarrow x/||x||_1.

Buy arbitrary set to cover v.
```

Idea! Measure convergence with potential function:

$$\Phi(t) = c_1 \, \mathsf{KL}(x^* \, | \, x^t) \, + c_2 \, \log |\, \mathcal{U}^t \, |$$

 \mathcal{U}^t := uncovered elements @ time t

 x^* := uniform distribution on OPT

```
Init. x \leftarrow 1/m.

@ time t, element v arrives:

If v covered, do nothing.

Else:

(I) Buy random R \sim x.

(II) \forall S \ni v, set x_S \leftarrow e \cdot x_S.

Renormalize x \leftarrow x/||x||_1.

Buy arbitrary set to cover v.
```

$$\sum_{S} x_{S}^{*} \log \frac{x_{S}^{*}}{x_{S}^{t}}$$

Idea! Measure convergence with potential function:

$$\Phi(t) = c_1 \, \mathsf{KL}(x^* \, | \, x^t) \, + c_2 \, \log |\, \mathcal{U}^t \, |$$

 \mathcal{U}^t := uncovered elements @ time t

 x^* := uniform distribution on OPT

```
Init. x \leftarrow 1/m.

@ time t, element v arrives:

If v covered, do nothing.

Else:

(I) Buy random R \sim x.

(II) \forall S \ni v, set x_S \leftarrow e \cdot x_S.

Renormalize x \leftarrow x/||x||_1.

Buy arbitrary set to cover v.
```

$$\sum_{S} x_S^* \log \frac{x_S^*}{x_S^t}$$

Idea! Measure convergence with potential function:

$$\Phi(t) = c_1 \, \mathsf{KL}(x^* \, | \, x^t) \, + c_2 \, \log |\mathcal{U}^t|$$

 \mathcal{U}^t := uncovered elements @ time t

 x^* := uniform distribution on OPT

Claim 1: $\Phi(0) = O(\log mn)$, and $\Phi(t) \ge 0$.

Init. $x \leftarrow 1/m$.

@ time t, element v arrives:

If *v* covered, do nothing.

Else:

(I) Buy random $R \sim x$.

(II) $\forall S \ni v$, set $x_S \leftarrow e \cdot x_S$. Renormalize $x \leftarrow x/||x||_1$.

Buy arbitrary set to cover *v*.

$$\sum_{S} x_S^* \log \frac{x_S^*}{x_S^t}$$

Idea! Measure convergence with potential function:

$$\Phi(t) = c_1 \, \mathsf{KL}(x^* \, | \, x^t) \, + c_2 \, \log |\, \mathcal{U}^t \, |$$

 \mathcal{U}^t := uncovered elements @ time t

 x^* := uniform distribution on OPT

Claim 1: $\Phi(0) = O(\log mn)$, and $\Phi(t) \ge 0$.

Claim 2: If v uncovered, then $E[\Delta \Phi] \leq -\frac{1}{k}$.

(Recall k = |OPT|)

```
Init. x \leftarrow 1/m.

@ time t, element v arrives:

If v covered, do nothing.

Else:

(I) Buy random R \sim x.

(II) \forall S \ni v, set x_S \leftarrow e \cdot x_S.

Renormalize x \leftarrow x/||x||_1.

Buy arbitrary set to cover v.
```

$$\sum_{S} x_S^* \log \frac{x_S^*}{x_S^t}$$

Idea! Measure convergence with potential function:

$$\Phi(t) = c_1 \, \mathsf{KL}(x^* \, | \, x^t) \, + c_2 \, \log |\mathcal{U}^t|$$

 \mathcal{U}^t := uncovered elements @ time t

 x^* := uniform distribution on OPT

Claim 1:
$$\Phi(0) = O(\log mn)$$
, and $\Phi(t) \ge 0$.

Claim 2: If v uncovered, then $E[\Delta \Phi] \leq -\frac{1}{k}$.

(Recall k = |OPT|)

Bound $E_R[\Delta \log | \mathcal{U}^t]$ over randomness of R. Bound $E_v[\Delta KL]$ over randomness of v.

```
Init. x \leftarrow 1/m.

@ time t, element v arrives:

If v covered, do nothing.

Else:

(I) Buy random R \sim x.

(II) \forall S \ni v, set x_S \leftarrow e \cdot x_S.

Renormalize x \leftarrow x/||x||_1.

Buy arbitrary set to cover v.
```

$$\sum_{S} x_S^* \log \frac{x_S^*}{x_S^t}$$

Idea! Measure convergence with potential function:

$$\Phi(t) = c_1 \, \mathsf{KL}(x^* \, | \, x^t) \, + c_2 \, \log |\mathcal{U}^t|$$

 \mathcal{U}^t := uncovered elements @ time t

 x^* := uniform distribution on OPT

Claim 1:
$$\Phi(0) = O(\log mn)$$
, and $\Phi(t) \ge 0$.

Claim 2: If v uncovered, then $E[\Delta \Phi] \leq -\frac{1}{k}$.

(Recall k = |OPT|)

Bound $E_R[\Delta \log |\mathcal{U}^t|]$ over randomness of R.

Bound $E_{v}[\Delta KL]$ over randomness of v. \leftarrow This is where we use RO!

Claim 2a: If
$$v^t$$
 uncovered,
$$E_v[\Delta \mathsf{KL}] \le (e-1) \cdot E_v\left[\sum_{S \ni v} x_S\right] - \frac{1}{k}.$$
Claim 2b: If v^t uncovered,
$$E_R[\Delta \log |\mathcal{U}^t|] \le -E_v\left[\sum_{S \ni v} x_S\right].$$

$$E_{R}[\Delta \log |\mathcal{U}^{t}|] \leq -E_{v} \left[\sum_{S \ni v} x_{S} \right]$$

Claim 2a: If
$$v^t$$
 uncovered,

Claim 2a: If
$$v^t$$
 uncovered,
$$E_v[\Delta \mathsf{KL}] \le (e-1) \cdot E_v\left[\sum_{S \ni v} x_S\right] - \frac{1}{k}.$$
Claim 2b: If v^t uncovered,
$$E_R[\Delta \log |\mathcal{U}^t|] \le -E_v\left[\sum_{S \ni v} x_S\right].$$

Claim 2b: If
$$v^t$$
 uncovered

$$E_{R}[\Delta \log |\mathcal{U}^{t}|] \leq -E_{v} \left| \sum_{S \ni v} x_{S} \right|.$$

$$E[\Delta \Phi] = E_{\nu}[\Delta \mathsf{KL}] + (e-1) \cdot E_{R}[\Delta \log |\mathcal{U}^{t}|] \leq -\frac{1}{k}$$

$$E_{\nu}[\Delta \mathsf{KL}] \le (e-1) \cdot E_{\nu} \left| \sum_{S \ni \nu} x_S \right| - \frac{1}{k}.$$

Claim 2b: If v^t uncovered,

$$E_{R}[\Delta \log |\mathcal{U}^{t}|] \leq -E_{v} \left| \sum_{S \ni v} x_{S} \right|.$$

$$E[\Delta \Phi] = E_{\nu}[\Delta \mathsf{KL}] + (e-1) \cdot E_{R}[\Delta \log |\mathcal{U}^{t}|] \leq -\frac{1}{k}$$

Claim 2a: If
$$v^t$$
 uncovered,
$$E_v[\Delta \mathsf{KL}] \leq (e-1) \cdot E_v \left[\sum_{S \ni v} x_S \right] - \frac{1}{k}.$$
Claim 2b: If v^t uncovered,
$$E_R[\Delta \log |\mathcal{U}^t|] \leq -E_v \left[\sum_{S \ni v} x_S \right].$$

$$E[\Delta \Phi] = E_{\nu}[\Delta \mathsf{KL}] + (e-1) \cdot E_{R}[\Delta \log |\mathcal{U}^{t}|] \leq -\frac{1}{k}$$

Since $\Phi(0) = O(\log(mn))$, expected total cost is $k \log(mn)$.

$$E_{\nu}[\Delta \mathsf{KL}] \leq (e-1) \cdot E_{\nu} \left[\sum_{S \ni \nu} x_S \right] - \frac{1}{k}.$$

Proof:

Claim 2b: If
$$v^t$$
 uncovered,
$$E_R[\Delta \log |\mathcal{U}^t|] \le -E_v \left[\sum_{S \ni v} x_S\right].$$

$$E_{\nu}[\Delta \mathsf{KL}] \leq (e-1) \cdot E_{\nu} \left| \sum_{S=\nu} x_S \right| -\frac{1}{k}.$$

Proof:

$$KL(x^* | | x^t) - KL(x^* | | x^{t-1})$$

Claim 2b: If
$$v^t$$
 uncovered,
$$E_R[\Delta \log |\mathcal{U}^t|] \le -E_v \left[\sum_{S \ni v} x_S\right].$$

$$E_{\nu}[\Delta \mathsf{KL}] \le (e-1) \cdot E_{\nu} \left| \sum_{S=\nu} x_S \right| - \frac{1}{k}.$$

Proof:

$$\sum_{S} x_S^* \log \left(\frac{x_S^*}{x_S^t} \right) - \sum_{S} x_S^* \log \left(\frac{x_S^*}{x_S^{t-1}} \right)$$

Claim 2b: If v^t uncovered,

$$E_{R}[\Delta \log |\mathcal{U}^{t}|] \leq -E_{v} \left[\sum_{S \supset v} x_{S} \right].$$

$$E_{\nu}[\Delta \mathsf{KL}] \le (e-1) \cdot E_{\nu} \left| \sum_{S=\nu} x_S \right| - \frac{1}{k}.$$

Proof:

$$\sum_{S} x_S^* \log \left(\frac{x_S^*}{x_S^t} \right) - \sum_{S} x_S^* \log \left(\frac{x_S^*}{x_S^{t-1}} \right)$$

$$= \sum_{S} x_S^* \log \left(\frac{x_S^{t-1}}{x_S^t} \right)$$

Claim 2b: If v^t uncovered,

$$E_{R}[\Delta \log |\mathcal{U}^{t}|] \leq -E_{v} \left[\sum_{S \ni v} x_{S} \right].$$

$$E_{\nu}[\Delta \mathsf{KL}] \le (e-1) \cdot E_{\nu} \left| \sum_{S=\nu} x_S \right| - \frac{1}{k}.$$

Proof:

$$\sum_{S} x_{S}^{*} \log \left(\frac{x_{S}^{*}}{x_{S}^{t}} \right) - \sum_{S} x_{S}^{*} \log \left(\frac{x_{S}^{*}}{x_{S}^{t-1}} \right)$$

$$= \sum_{S} x_{S}^{*} \log \left(\frac{x_{S}^{t-1}}{x_{S}^{t}} \right)$$

$$= \sum_{S} x_{S}^{*} \log ||x||_{1} - \sum_{S \ni v} x_{S}^{*} \log e$$

Claim 2b: If v^t uncovered,

$$E_{R}[\Delta \log |\mathcal{U}^{t}|] \leq -E_{v} \left[\sum_{S \geq v} x_{S} \right].$$

$$E_{\nu}[\Delta \mathsf{KL}] \le (e-1) \cdot E_{\nu} \left| \sum_{S=\nu} x_S \right| - \frac{1}{k}.$$

Proof:

$$\sum_{S} x_{S}^{*} \log \left(\frac{x_{S}^{*}}{x_{S}^{t}} \right) - \sum_{S} x_{S}^{*} \log \left(\frac{x_{S}^{*}}{x_{S}^{t-1}} \right)$$

$$= \sum_{S} x_S^* \log \left(\frac{x_S^{t-1}}{x_S^t} \right)$$

$$= \sum_{S} x_{S}^{*} \log ||x||_{1} - \sum_{S \ni v} x_{S}^{*} \log e$$

Claim 2b: If v^t uncovered,

$$E_{R}[\Delta \log |\mathcal{U}^{t}|] \leq -E_{v} \left[\sum_{S=v} x_{S} \right].$$

$$E_{\nu}[\Delta \mathsf{KL}] \le (e-1) \cdot E_{\nu} \left| \sum_{S \ni \nu} x_S \right| - \frac{1}{k}.$$

Proof:

$$\sum_{S} x_{S}^{*} \log \left(\frac{x_{S}^{*}}{x_{S}^{t}} \right) - \sum_{S} x_{S}^{*} \log \left(\frac{x_{S}^{*}}{x_{S}^{t-1}} \right)$$

$$= \sum_{S} x_S^* \log \left(\frac{x_S^{t-1}}{x_S^t} \right)$$

$$= \sum_{S} x_{S}^{*} \log ||x||_{1} - \sum_{S \ni v} x_{S}^{*} \log e$$

Claim 2b: If v^t uncovered,

$$E_{R}[\Delta \log |\mathcal{U}^{t}|] \leq -E_{v} \left| \sum_{S=v} x_{S} \right|.$$

$$E_{\nu}[\Delta \mathsf{KL}] \leq (e-1) \cdot E_{\nu} \left| \sum_{S=\nu} x_S \right| - \frac{1}{k}.$$

Proof:

$$\sum_{S} x_{S}^{*} \log \left(\frac{x_{S}^{*}}{x_{S}^{t}} \right) - \sum_{S} x_{S}^{*} \log \left(\frac{x_{S}^{*}}{x_{S}^{t-1}} \right)$$

$$= \sum_{S} x_S^* \log \left(\frac{x_S^{t-1}}{x_S^t} \right)$$

$$= \sum_{S} x_{S}^{*} \log ||x||_{1} - \sum_{S \ni v} x_{S}^{*} \log e$$

$$= \log \left(\sum_{S} x_S^{t-1} + \sum_{S \ni v} (e - 1) \cdot x_S^{t-1} \right) - \sum_{S \ni v} x_S^*$$

Claim 2b: If v^t uncovered,

$$E_{R}[\Delta \log |\mathcal{U}^{t}|] \leq -E_{v} \left| \sum_{S=v} x_{S} \right|.$$

$$E_{\nu}[\Delta \mathsf{KL}] \leq (e-1) \cdot E_{\nu} \left| \sum_{S \ni \nu} x_S \right| - \frac{1}{k}.$$

Proof:

$$\sum_{S} x_{S}^{*} \log \left(\frac{x_{S}^{*}}{x_{S}^{t}} \right) - \sum_{S} x_{S}^{*} \log \left(\frac{x_{S}^{*}}{x_{S}^{t-1}} \right)$$

$$= \sum_{S} x_S^* \log \left(\frac{x_S^{t-1}}{x_S^t} \right)$$

$$= \sum_{S} x_{S}^{*} \log ||x||_{1} - \sum_{S \ni v} x_{S}^{*} \log e$$

$$= \log \left(\sum_{S} x_S^{t-1} + \sum_{S \ni v} (e - 1) \cdot x_S^{t-1} \right) - \sum_{S \ni v} x_S^*$$

Claim 2b: If v^t uncovered,

$$E_{R}[\Delta \log |\mathcal{U}^{t}|] \leq -E_{v} \left[\sum_{S \supseteq v} x_{S} \right].$$

$$E_{\nu}[\Delta \mathsf{KL}] \leq (e-1) \cdot E_{\nu} \left| \sum_{S \ni \nu} x_S \right| - \frac{1}{k}.$$

Proof:

$$\sum_{S} x_{S}^{*} \log \left(\frac{x_{S}^{*}}{x_{S}^{t}} \right) - \sum_{S} x_{S}^{*} \log \left(\frac{x_{S}^{*}}{x_{S}^{t-1}} \right)$$

$$= \sum_{S} x_S^* \log \left(\frac{x_S^{t-1}}{x_S^t} \right)$$

$$= \sum_{S} x_{S}^{*} \log ||x||_{1} - \sum_{S \ni v} x_{S}^{*} \log e_{=1}$$

$$S = 1 S \ni v$$

$$= \log \left(\sum_{S} x_S^{t-1} + \sum_{S \ni v} (e - 1) \cdot x_S^{t-1} \right) - \sum_{S \ni v} x_S^*$$

Claim 2b: If v^t uncovered,

$$E_{R}[\Delta \log |\mathcal{U}^{t}|] \leq -E_{v} \left| \sum_{S=v} x_{S} \right|.$$

$$E_{\nu}[\Delta \mathsf{KL}] \leq (e-1) \cdot E_{\nu} \left| \sum_{S=\nu} x_S \right| - \frac{1}{k}.$$

Proof:

$$\sum_{S} x_{S}^{*} \log \left(\frac{x_{S}^{*}}{x_{S}^{t}} \right) - \sum_{S} x_{S}^{*} \log \left(\frac{x_{S}^{*}}{x_{S}^{t-1}} \right)$$

$$= \sum_{S} x_S^* \log \left(\frac{x_S^{t-1}}{x_S^t} \right)$$

$$= \sum_{S} x_{S}^{*} \log ||x||_{1} - \sum_{S \ni v} x_{S}^{*} \log e$$

$$= \log \left(\sum_{S} x_S^{t-1} + \sum_{S \ni v} (e - 1) \cdot x_S^{t-1} \right) - \sum_{S \ni v} x_S^*$$

$$\leq \log\left(1 + \sum_{S \ni v} (e - 1) \cdot x_S\right) - \frac{1}{k}.$$

Claim 2b: If v^t uncovered,

$$E_{R}[\Delta \log |\mathcal{U}^{t}|] \leq -E_{v} \left| \sum_{S=v} x_{S} \right|.$$

$$E_{\nu}[\Delta \mathsf{KL}] \le (e-1) \cdot E_{\nu} \left| \sum_{S \ni \nu} x_S \right| - \frac{1}{k}.$$

Proof:

$$\sum_{S} x_{S}^{*} \log \left(\frac{x_{S}^{*}}{x_{S}^{t}} \right) - \sum_{S} x_{S}^{*} \log \left(\frac{x_{S}^{*}}{x_{S}^{t-1}} \right)$$

$$= \sum_{S} x_S^* \log \left(\frac{x_S^{t-1}}{x_S^t} \right)$$

$$= \sum_{S} x_{S}^{*} \log ||x||_{1} - \sum_{S \ni v} x_{S}^{*} \log e$$

$$= \log \left(\sum_{S} x_S^{t-1} + \sum_{S \ni v} (e - 1) \cdot x_S^{t-1} \right) - \sum_{S \ni v} x_S^*$$

$$\leq \log\left(1 + \sum_{S \ni v} (e - 1) \cdot x_S\right) - \frac{1}{k}.$$

Use $\log(1+z) \le z$, take expectation over v,

Claim 2b: If v^t uncovered,

$$E_{R}[\Delta \log |\mathcal{U}^{t}|] \leq -E_{v} \left[\sum_{S \ni v} x_{S} \right].$$

$$E_{\nu}[\Delta \mathsf{KL}] \le (e-1) \cdot E_{\nu} \left| \sum_{S \ni \nu} x_S \right| - \frac{1}{k}.$$

Proof:

$$\sum_{S} x_S^* \log \left(\frac{x_S^*}{x_S^t} \right) - \sum_{S} x_S^* \log \left(\frac{x_S^*}{x_S^{t-1}} \right)$$

$$= \sum_{S} x_S^* \log \left(\frac{x_S^{t-1}}{x_S^t} \right)$$

$$= \sum_{S} x_{S}^{*} \log ||x||_{1} - \sum_{S \ni v} x_{S}^{*} \log e$$

$$= \log \left(\sum_{S} x_S^{t-1} + \sum_{S \ni v} (e - 1) \cdot x_S^{t-1} \right) - \sum_{S \ni v} x_S^*$$

$$\leq \log\left(1 + \sum_{S \ni v} (e - 1) \cdot x_S\right) - \frac{1}{k}.$$

Use $\log(1+z) \le z$, take expectation over v,

Claim 2b: If v^t uncovered,

$$E_{R}[\Delta \log |\mathcal{U}^{t}|] \leq -E_{v} \left[\sum_{S=v} x_{S} \right].$$

$$\log |\mathcal{U}^t| - \log |\mathcal{U}^{t-1}|$$

$$E_{\nu}[\Delta \mathsf{KL}] \leq (e-1) \cdot E_{\nu} \left| \sum_{S=\nu} x_S \right| - \frac{1}{k}.$$

Proof:

$$\sum_{S} x_{S}^{*} \log \left(\frac{x_{S}^{*}}{x_{S}^{t}} \right) - \sum_{S} x_{S}^{*} \log \left(\frac{x_{S}^{*}}{x_{S}^{t-1}} \right)$$

$$= \sum_{S} x_S^* \log \left(\frac{x_S^{t-1}}{x_S^t} \right)$$

$$= \sum_{S} x_{S}^{*} \log ||x||_{1} - \sum_{S \ni v} x_{S}^{*} \log e$$

$$= \log \left(\sum_{S} x_S^{t-1} + \sum_{S \ni v} (e - 1) \cdot x_S^{t-1} \right) - \sum_{S \ni v} x_S^*$$

$$\leq \log\left(1 + \sum_{S \ni v} (e - 1) \cdot x_S\right) - \frac{1}{k}.$$

Use $\log(1+z) \le z$, take expectation over v,

Claim 2b: If v^t uncovered,

$$E_R[\Delta \log |\mathcal{U}^t|] \leq -E_v \left| \sum_{S=v} x_S \right|.$$

$$\log |\mathcal{U}^t| - \log |\mathcal{U}^{t-1}|$$

$$= \log \left(1 - \frac{|\mathcal{U}^{t-1}| - |\mathcal{U}^t|}{|\mathcal{U}^{t-1}|}\right)$$

$$E_{\nu}[\Delta \mathsf{KL}] \le (e-1) \cdot E_{\nu} \left| \sum_{S=\nu} x_S \right| - \frac{1}{k}.$$

Proof:

$$\sum_{S} x_{S}^{*} \log \left(\frac{x_{S}^{*}}{x_{S}^{t}} \right) - \sum_{S} x_{S}^{*} \log \left(\frac{x_{S}^{*}}{x_{S}^{t-1}} \right)$$

$$= \sum_{S} x_S^* \log \left(\frac{x_S^{t-1}}{x_S^t} \right)$$

$$= \sum_{S} x_{S}^{*} \log ||x||_{1} - \sum_{S \ni v} x_{S}^{*} \log e$$

$$= \log \left(\sum_{S} x_S^{t-1} + \sum_{S \ni v} (e - 1) \cdot x_S^{t-1} \right) - \sum_{S \ni v} x_S^*$$

$$\leq \log\left(1 + \sum_{S \ni v} (e - 1) \cdot x_S\right) - \frac{1}{k}.$$

Use $\log(1+z) \le z$, take expectation over v,

Claim 2b: If v^t uncovered,

$$E_{R}[\Delta \log |\mathcal{U}^{t}|] \leq -E_{v} \left| \sum_{S \ni v} x_{S} \right|.$$

Proof:

$$\log |\mathcal{U}^t| - \log |\mathcal{U}^{t-1}|$$

$$= \log \left(1 - \frac{|\mathcal{U}^{t-1}| - |\mathcal{U}^t|}{|\mathcal{U}^{t-1}|}\right)$$

Use $\log(1-z) \leq -z$.

$$E_{\nu}[\Delta \mathsf{KL}] \le (e-1) \cdot E_{\nu} \left| \sum_{S=\nu} x_S \right| - \frac{1}{k}.$$

Proof:

$$\sum_{S} x_{S}^{*} \log \left(\frac{x_{S}^{*}}{x_{S}^{t}} \right) - \sum_{S} x_{S}^{*} \log \left(\frac{x_{S}^{*}}{x_{S}^{t-1}} \right)$$

$$= \sum_{S} x_S^* \log \left(\frac{x_S^{t-1}}{x_S^t} \right)$$

$$= \sum_{S} x_{S}^{*} \log ||x||_{1} - \sum_{S \ni v} x_{S}^{*} \log e$$

$$= \log \left(\sum_{S} x_S^{t-1} + \sum_{S \ni v} (e - 1) \cdot x_S^{t-1} \right) - \sum_{S \ni v} x_S^*$$

$$\leq \log\left(1 + \sum_{S \ni v} (e - 1) \cdot x_S\right) - \frac{1}{k}.$$

Use $\log(1+z) \le z$, take expectation over v,

Claim 2b: If v^t uncovered,

$$E_{R}[\Delta \log |\mathcal{U}^{t}|] \leq -E_{v} \left| \sum_{S \ni v} x_{S} \right|.$$

Proof:

$$\log |\mathcal{U}^t| - \log |\mathcal{U}^{t-1}|$$

$$= \log \left(1 - \frac{|\mathcal{U}^{t-1}| - |\mathcal{U}^t|}{|\mathcal{U}^{t-1}|}\right)$$

Use $\log(1-z) \le -z$.

$$\leq -\frac{1}{|\mathcal{U}^{t-1}|} \sum_{v \in \mathcal{U}^{t-1}} \mathbb{1} \{R \ni v\}.$$

$$E_{\nu}[\Delta \mathsf{KL}] \le (e-1) \cdot E_{\nu} \left| \sum_{S \ni \nu} x_S \right| - \frac{1}{k}.$$

Proof:

$$\sum_{S} x_{S}^{*} \log \left(\frac{x_{S}^{*}}{x_{S}^{t}} \right) - \sum_{S} x_{S}^{*} \log \left(\frac{x_{S}^{*}}{x_{S}^{t-1}} \right)$$

$$= \sum_{S} x_S^* \log \left(\frac{x_S^{t-1}}{x_S^t} \right)$$

$$= \sum_{S} x_{S}^{*} \log ||x||_{1} - \sum_{S \ni v} x_{S}^{*} \log e$$

$$= \log \left(\sum_{S} x_S^{t-1} + \sum_{S \ni v} (e - 1) \cdot x_S^{t-1} \right) - \sum_{S \ni v} x_S^*$$

$$\leq \log \left(1 + \sum_{S \ni v} (e - 1) \cdot x_S\right) - \frac{1}{k}.$$

Use $\log(1+z) \le z$, take expectation over v,

Claim 2b: If v^t uncovered,

$$E_{R}[\Delta \log |\mathcal{U}^{t}|] \leq -E_{v} \left| \sum_{S \ni v} x_{S} \right|.$$

Proof:

$$\log |\mathcal{U}^t| - \log |\mathcal{U}^{t-1}|$$

$$= \log \left(1 - \frac{|\mathcal{U}^{t-1}| - |\mathcal{U}^t|}{|\mathcal{U}^{t-1}|}\right)$$

Use $\log(1-z) \le -z$.

$$\leq -\frac{1}{|\mathcal{U}^{t-1}|} \sum_{v \in \mathcal{U}^{t-1}} \mathbb{1} \{R \ni v\}.$$

$$E_{v}[\Delta \mathsf{KL}] \leq (e-1) \cdot E_{v} \left| \sum_{S=v} x_{S} \right| - \frac{1}{k}.$$

Proof:

$$\sum_{S} x_S^* \log \left(\frac{x_S^*}{x_S^t} \right) - \sum_{S} x_S^* \log \left(\frac{x_S^*}{x_S^{t-1}} \right)$$

$$= \sum_{S} x_S^* \log \left(\frac{x_S^{t-1}}{x_S^t} \right)$$

$$= \sum_{S} x_{S}^{*} \log ||x||_{1} - \sum_{S \ni v} x_{S}^{*} \log e$$

$$= \log \left(\sum_{S} x_S^{t-1} + \sum_{S \ni v} (e - 1) \cdot x_S^{t-1} \right) - \sum_{S \ni v} x_S^*$$

$$\leq \log\left(1 + \sum_{S \ni v} (e - 1) \cdot x_S\right) - \frac{1}{k}.$$

Use $\log(1+z) \le z$, take expectation over v,

Claim 2b: If v^t uncovered,

$$E_{R}[\Delta \log |\mathcal{U}^{t}|] \leq -E_{v} \left[\sum_{S=v} x_{S} \right].$$

Proof:

$$\log |\mathcal{U}^t| - \log |\mathcal{U}^{t-1}|$$

$$= \log \left(1 - \frac{|\mathcal{U}^{t-1}| - |\mathcal{U}^t|}{|\mathcal{U}^{t-1}|}\right)$$

Use $\log(1-z) \leq -z$.

$$\leq -\frac{1}{|\mathcal{U}^{t-1}|} \sum_{v \in \mathcal{U}^{t-1}} \mathbb{1} \{R \ni v\}.$$

$$E_{R}[\Delta \log |\mathcal{U}^{t}|] \leq -\frac{1}{|\mathcal{U}^{t-1}|} \sum_{R} x_{R} \sum_{v \in \mathcal{U}^{t-1}} \mathbb{1} \{R \ni v\}$$

$$E_{\nu}[\Delta \mathsf{KL}] \le (e-1) \cdot E_{\nu} \left| \sum_{S \supset \nu} x_S \right| - \frac{1}{k}.$$

Proof:

$$\sum_{S} x_{S}^{*} \log \left(\frac{x_{S}^{*}}{x_{S}^{t}} \right) - \sum_{S} x_{S}^{*} \log \left(\frac{x_{S}^{*}}{x_{S}^{t-1}} \right)$$

$$= \sum_{S} x_{S}^{*} \log \left(\frac{x_{S}^{t-1}}{x_{S}^{t}} \right)$$

$$= \sum_{S} x_{S}^{*} \log ||x||_{1} - \sum_{S \ni v} x_{S}^{*} \log e$$

$$= \log \left(\sum_{S} x_S^{t-1} + \sum_{S \ni v} (e - 1) \cdot x_S^{t-1} \right) - \sum_{S \ni v} x_S^*$$

$$\leq \log\left(1 + \sum_{S \ni v} (e - 1) \cdot x_S\right) - \frac{1}{k}.$$

Use $log(1 + z) \le z$, take expectation over v,

Claim 2b: If v^t uncovered,

$$E_{R}[\Delta \log |\mathcal{U}^{t}|] \leq -E_{v} \left[\sum_{S=v} x_{S} \right].$$

Proof:

$$\log |\mathcal{U}^t| - \log |\mathcal{U}^{t-1}|$$

$$= \log \left(1 - \frac{|\mathcal{U}^{t-1}| - |\mathcal{U}^t|}{|\mathcal{U}^{t-1}|}\right)$$

Use $\log(1-z) \le -z$.

$$\leq -\frac{1}{|\mathcal{U}^{t-1}|} \sum_{v \in \mathcal{U}^{t-1}} \mathbb{1} \{R \ni v\}.$$

$$E_{R}[\Delta \log |\mathcal{U}^{t}|] \leq -\frac{1}{|\mathcal{U}^{t-1}|} \sum_{R} x_{R} \sum_{v \in \mathcal{U}^{t-1}} \mathbb{1} \{R \ni v\}$$

$$= -\frac{1}{|\mathcal{U}^{t-1}|} \sum_{v \in \mathcal{U}^{t-1}} \sum_{R \ni v} x_{R}.$$

$$E_{\nu}[\Delta \mathsf{KL}] \le (e-1) \cdot E_{\nu} \left| \sum_{S \ni \nu} x_S \right| - \frac{1}{k}.$$

Proof:

$$\sum_{S} x_S^* \log \left(\frac{x_S^*}{x_S^t} \right) - \sum_{S} x_S^* \log \left(\frac{x_S^*}{x_S^{t-1}} \right)$$

$$= \sum_{S} x_S^* \log \left(\frac{x_S^{t-1}}{x_S^t} \right)$$

$$= \sum_{S} x_{S}^{*} \log ||x||_{1} - \sum_{S \ni v} x_{S}^{*} \log e$$

$$= \log \left(\sum_{S} x_S^{t-1} + \sum_{S \ni v} (e-1) \cdot x_S^{t-1} \right) - \sum_{S \ni v} x_S^*$$

$$\leq \log\left(1 + \sum_{S \ni v} (e - 1) \cdot x_S\right) - \frac{1}{k}.$$

Use $\log(1+z) \le z$, take expectation over v,

Claim 2b: If v^t uncovered,

$$E_{R}[\Delta \log |\mathcal{U}^{t}|] \leq -E_{v} \left[\sum_{S \ni v} x_{S} \right].$$

Proof:

$$\log |\mathcal{U}^t| - \log |\mathcal{U}^{t-1}|$$

$$= \log \left(1 - \frac{|\mathcal{U}^{t-1}| - |\mathcal{U}^t|}{|\mathcal{U}^{t-1}|}\right)$$

Use $\log(1-z) \le -z$.

$$\leq -\frac{1}{|\mathcal{U}^{t-1}|} \sum_{v \in \mathcal{U}^{t-1}} \mathbb{1} \{R \ni v\}.$$

$$E_{R}[\Delta \log |\mathcal{U}^{t}|] \leq -\frac{1}{|\mathcal{U}^{t-1}|} \sum_{R} x_{R} \sum_{v \in \mathcal{U}^{t-1}} \mathbb{1} \{R \ni v\}$$

$$= -\frac{1}{|\mathcal{U}^{t-1}|} \sum_{v \in \mathcal{U}^{t-1}} \sum_{R \ni v} x_{R}.$$

LearnOrCover (Some philosophy)

LearnOrCover (Some philosophy)

Perspective 1:

LearnOrCover (Some philosophy)

Perspective 1:

LearnOrCover (Some philosophy)

Perspective 1:

LearnOrCover (Some philosophy)

Perspective 1:

LearnOrCover (Some philosophy)

Perspective 1:

(Some philosophy)

Perspective 1:

(Some philosophy)

Perspective 1:

(Some philosophy)

Perspective 1:

(Some philosophy)

Perspective 1:

(Some philosophy)

Perspective 1:

LearnOrCover

Perspective 2:

(Some philosophy)

Perspective 1:

LearnOrCover

Perspective 2:

Define

$$f(x) := \sum_{v} \max \left(0, 1 - \sum_{S \ni v} x_S \right)$$

(Some philosophy)

Perspective 1:

LearnOrCover

Perspective 2:

Define

$$f(x) := \sum_{v} \max \left(0, 1 - \sum_{S \ni v} x_S \right)$$

(Goal is to minimize f in smallest # of steps)

(Some philosophy)

Perspective 1:

LearnOrCover

Perspective 2:

Define

$$f(x) := \sum_{v} \max \left(0, 1 - \sum_{S \ni v} x_S \right)$$

(Goal is to minimize f in smallest # of steps)

 $\nabla f|_S(x) = \text{#uncovered elements in } S$

(Some philosophy)

Perspective 1:

LearnOrCover

Perspective 2:

Define

$$f(x) := \sum_{v} \max \left(0, 1 - \sum_{S \ni v} x_S \right)$$

(Goal is to minimize f in smallest # of steps)

$$\nabla f|_S(x) = \text{#uncovered elements in } S$$

 $\propto E[1]\{v \in S \mid v \text{ uncovered}\}]$

(Some philosophy)

Perspective 1:

LearnOrCover

Perspective 2:

Define

$$f(x) := \sum_{v} \max \left(0, 1 - \sum_{S \ni v} x_S \right)$$

(Goal is to minimize f in smallest # of steps)

$$\nabla f|_S(x) = \text{#uncovered elements in } S$$

 $\propto E[1]\{v \in S \mid v \text{ uncovered}\}]$

RO reveals stochastic gradient...

Talk Outline

Intro

Secretary

LearnOrCover in Exponential Time

LearnOrCover in Poly Time

(Single Sample) Prophet

Conclusion & Extensions

Talk Outline

Intro

Secretary

LearnOrCover in Exponential Time

LearnOrCover in Poly Time

(Single Sample) Prophet

Conclusion & Extensions

Online set cover, but random 1/2 of elements known upfront (see [Kaplan Naori Raz 21]).

Online set cover, but random 1/2 of elements known upfront (see [Kaplan Naori Raz 21]).

Remaining fraction revealed in <u>adversarial order</u>.

- S_1
- S_2
- S_3
- S_4
- S_5
- S_6

Special Case: the With-a-Sample model

Online set cover, but random 1/2 of elements known upfront (see [Kaplan Naori Raz 21]). Remaining fraction revealed in <u>adversarial order.</u>

Special Case: the With-a-Sample model

Online set cover, but random 1/2 of elements known upfront (see [Kaplan Naori Raz 21]). Remaining fraction revealed in <u>adversarial order.</u>

Special Case: the With-a-Sample model

Online set cover, but random 1/2 of elements known upfront (see [Kaplan Naori Raz 21]). Remaining fraction revealed in <u>adversarial order.</u>

Theorem:

There is a poly time algorithm for Online **Set** Cover **With-a- Sample** with competitive ratio $O(\log(mn))$.

- S_1
- S_2
- S_3
- S_4
- S_5
- S_6

Idea:

- 1. Run LearnOrCover on samples.
- 2. Buy arbitrary sets for remaining elements.
 - $S_1 \bullet$
 - S_2
 - S_3
 - S_4 •
 - S_5
 - S_6

Idea:

- 1. Run LearnOrCover on samples.
- 2. Buy arbitrary sets for remaining elements.

 S_1

 S_2

 S_3

 S_4

 S_5

 S_6

Idea:

- 1. Run LearnOrCover on samples.
- 2. Buy arbitrary sets for remaining elements.

Idea:

- 1. Run LearnOrCover on samples.
- 2. Buy arbitrary sets for remaining elements.

Idea:

- 1. Run LearnOrCover on samples.
- 2. Buy arbitrary sets for remaining elements.

Idea:

- 1. Run LearnOrCover on samples.
- 2. Buy arbitrary sets for remaining elements.

Idea:

- 1. Run LearnOrCover on samples.
- 2. Buy arbitrary sets for remaining elements.

Idea:

- 1. Run LearnOrCover on samples.
- 2. Buy arbitrary sets for remaining elements.

Idea:

- 1. Run LearnOrCover on samples.
- 2. Buy arbitrary sets for remaining elements.

Idea:

- 1. Run LearnOrCover on samples.
- 2. Buy arbitrary sets for remaining elements.

Idea:

- 1. Run LearnOrCover on samples.
- 2. Buy arbitrary sets for remaining elements.

Idea:

- 1. Run LearnOrCover on samples.
- 2. Buy arbitrary sets for remaining elements.

Idea:

- 1. Run LearnOrCover on samples.
- 2. Buy arbitrary sets for remaining elements.

Idea:

- 1. Run LearnOrCover on samples.
- 2. Buy arbitrary sets for remaining elements.

Idea:

- 1. Run LearnOrCover on samples.
- 2. Buy arbitrary sets for remaining elements.

Pretend colored pink (sampled)/blue (adversarial) on arrival.

@ time t:

Idea:

- 1. Run LearnOrCover on samples.
- 2. Buy arbitrary sets for remaining elements.

Pretend colored pink (sampled)/blue (adversarial) on arrival.

@ time t: If v^t pink, feed to LearnOrCover.

Idea:

- 1. Run LearnOrCover on samples.
- 2. Buy arbitrary sets for remaining elements.

Pretend colored pink (sampled)/blue (adversarial) on arrival.

@ time t: If v^t pink, feed to LearnOrCover. If v^t blue, buy arbitrary set to cover.

Idea:

- 1. Run LearnOrCover on samples.
- 2. Buy arbitrary sets for remaining elements.

Pretend colored pink (sampled)/blue (adversarial) on arrival.

@ time t: If v^t pink, feed to LearnOrCover. If v^t blue, buy arbitrary set to cover.

Recall LearnOrCover proof template:

Idea:

- 1. Run LearnOrCover on samples.
- 2. Buy arbitrary sets for remaining elements.

Pretend colored pink (sampled)/blue (adversarial) on arrival.

@ time t: If v^t pink, feed to LearnOrCover. If v^t blue, buy arbitrary set to cover.

Recall LearnOrCover proof template:

Claim 1: $\Phi(0) = O(\log mn)$, and $\Phi(t) \ge 0$.

Idea:

- 1. Run LearnOrCover on samples.
- 2. Buy arbitrary sets for remaining elements.

Pretend colored pink (sampled)/blue (adversarial) on arrival.

@ time t:

If v^t pink, feed to LearnOrCover.

If v^t blue, buy arbitrary set to cover.

Recall LearnOrCover proof template:

Claim 1: $\Phi(0) = O(\log mn)$, and $\Phi(t) \ge 0$.

Claim 2: If v^t uncovered, then $E[\Delta \Phi] \leq -\Omega\left(\frac{1}{k}\right)$.

Idea:

- 1. Run LearnOrCover on samples.
- 2. Buy arbitrary sets for remaining elements.

Pretend colored pink (sampled)/blue (adversarial) on arrival.

@ time t:

If v^t pink, feed to LearnOrCover. If v^t blue, buy arbitrary set to cover.

Recall LearnOrCover proof template:

Claim 1: $\Phi(0) = O(\log mn)$, and $\Phi(t) \ge 0$.

Claim 2: If v^t uncovered, then $E[\Delta\Phi] \leq -\Omega\left(\frac{1}{k}\right)$

 Φ only deceases during pink steps (so with prob. 1/2),

but still
$$E[\Delta\Phi] \le -\Omega\left(\frac{1}{k}\right)$$

Idea:

- 1. Run LearnOrCover on samples.
- 2. Buy arbitrary sets for remaining elements.

Pretend colored pink (sampled)/blue (adversarial) on arrival.

@ time t:

If v^t pink, feed to LearnOrCover. If v^t blue, buy arbitrary set to cover.

Recall LearnOrCover proof template:

Claim 1: $\Phi(0) = O(\log mn)$, and $\Phi(t) \ge 0$.

Claim 2: If v^t uncovered, then $E[\Delta \Phi] \leq -\Omega\left(\frac{1}{k}\right)$.

 Φ only deceases during pink steps (so with prob. 1/2),

but still
$$E[\Delta\Phi] \leq -\Omega\left(\frac{1}{k}\right)$$
.

Idea: Reduction!

- 1. Run LearnOrCover on samples.
- 2. Buy arbitrary sets for remaining elements.

Idea: Reduction!

- 1. Run LearnOrCover on samples.
- 2. Buy arbitrary sets for remaining elements.

Can build map $f:\mathcal{U}\to\mathcal{S}$ before we see any actual elements.

Idea: Reduction!

- 1. Run LearnOrCover on samples.
- 2. Buy arbitrary sets for remaining elements.

Can build map $f:\mathcal{U}\to\mathcal{S}$ before we see any actual elements.

When $u \in \mathcal{U}$ arrives, commit to buying f(u)!

Idea: Reduction!

- 1. Run LearnOrCover on samples.
- 2. Buy arbitrary sets for remaining elements.

Can build map $f:\mathcal{U}\to\mathcal{S}$ before we see any actual elements.

When $u \in \mathcal{U}$ arrives, commit to buying f(u)!

Our result shows only need O(n) samples to build this map.

Talk Outline

Intro

Secretary

LearnOrCover in Exponential Time

LearnOrCover in Poly Time

(Single Sample) Prophet

Conclusion & Extensions

Talk Outline

Intro

Secretary

LearnOrCover in Exponential Time

LearnOrCover in Poly Time

(Single Sample) Prophet

Theorem: $O(\log mn)$ -comp. algo for RO Covering IPs.

Theorem: $O(\log mn)$ -comp. algo for RO Covering IPs.

Theorem: $O(\log mn)$ -comp. algo for Prophet Covering IPs.

Theorem: $O(\log mn)$ -comp. algo for RO Covering IPs.

Theorem: $O(\log mn)$ -comp. algo for Prophet Covering IPs.

- + Single-Sample!
- + Universal!

Theorem: $O(\log mn)$ -comp. algo for RO Covering IPs.

Theorem: $O(\log mn)$ -comp. algo for Prophet Covering IPs.

Theorem: Same results for Non-metric facility location.

- + Single-Sample!
- + Universal!

Theorem: $O(\log mn)$ -comp. algo for RO Covering IPs.

Theorem: $O(\log mn)$ -comp. algo for Prophet Covering IPs.

Theorem: Same results for Non-metric facility location.

Theorem: $\Omega(\log m \log f(\mathcal{N}))$ for RO submodular cover.

- + Single-Sample!
- + Universal!

Theorem: $O(\log mn)$ -comp. algo for RO Covering IPs.

Theorem: $O(\log mn)$ -comp. algo for Prophet Covering IPs.

Theorem: Same results for Non-metric facility location.

Theorem: $\Omega(\log m \log f(\mathcal{N}))$ for RO submodular cover.

- + Single-Sample!
- + Universal!

Open Questions:

Theorem: $O(\log mn)$ -comp. algo for RO Covering IPs.

Theorem: $O(\log mn)$ -comp. algo for Prophet Covering IPs.

Theorem: Same results for Non-metric facility location.

Theorem: $\Omega(\log m \log f(N))$ for RO submodular cover.

- + Single-Sample!
- + Universal!

Open Questions:

Does the LearnOrCover idea lend itself to other problems?

Theorem: $O(\log mn)$ -comp. algo for RO Covering IPs.

Theorem: $O(\log mn)$ -comp. algo for Prophet Covering IPs.

Theorem: Same results for Non-metric facility location.

Theorem: $\Omega(\log m \log f(\mathcal{N}))$ for RO submodular cover.

- + Single-Sample!
- + Universal!

Open Questions:

Does the LearnOrCover idea lend itself to other problems? Harder covering problems? Covering IPs w/ box constraints?

Theorem: $O(\log mn)$ -comp. algo for RO Covering IPs.

Theorem: $O(\log mn)$ -comp. algo for Prophet Covering IPs.

Theorem: Same results for Non-metric facility location.

Theorem: $\Omega(\log m \log f(\mathcal{N}))$ for RO submodular cover.

- + Single-Sample!
- + Universal!

Open Questions:

Does the LearnOrCover idea lend itself to other problems? Harder covering problems? Covering IPs w/ box constraints? Unified theory? Reinterpret old RO results as LearnOrCover?

Thanks!

Backup Slides

$$\min c^{\mathsf{T}}x$$

$$a_1^{\mathsf{T}}x \ge 1$$

$$a_2^{\mathsf{T}}x \ge 1$$

$$a_3^{\mathsf{T}}x \ge 1$$

$$a_4^{\mathsf{T}}x \ge 1$$

$$a_5^{\mathsf{T}}x \ge 1$$

$$x \in \mathbb{Z}_{\ge 0}^m$$

 $\min c^{T}x$

$$x \in \mathbb{Z}_{\geq 0}^m$$

 $\min c^{T}x$

$$a_1^\intercal x \ge 1$$

$$x \in \mathbb{Z}_{\geq 0}^m$$

 $\min c^{T}x$

$$a_1^\mathsf{T} x \geq 1$$

$$a_1^\mathsf{T} x \ge 1$$

$$a_2^\mathsf{T} x \ge 1$$

$$x \in \mathbb{Z}_{\geq 0}^m$$

$$\min_{a_1^T x} c^T x$$

$$a_1^T x \ge 1$$

$$a_2^T x \ge 1$$

$$a_3^T x \ge 1$$

$$x \in \mathbb{Z}_{\geq 0}^m$$

$$\min c^{\mathsf{T}}x$$

$$a_1^{\mathsf{T}}x \ge 1$$

$$a_2^{\mathsf{T}}x \ge 1$$

$$a_3^{\mathsf{T}}x \ge 1$$

$$a_4^{\mathsf{T}}x \ge 1$$

$$x \in \mathbb{Z}_{\geq 0}^m$$

$$\min c^{\mathsf{T}}x$$

$$a_1^{\mathsf{T}}x \ge 1$$

$$a_2^{\mathsf{T}}x \ge 1$$

$$a_3^{\mathsf{T}}x \ge 1$$

$$a_4^{\mathsf{T}}x \ge 1$$

$$a_5^{\mathsf{T}}x \ge 1$$

$$x \in \mathbb{Z}_{\ge 0}^m$$

$$\min c^{\mathsf{T}}x$$

$$a_1^{\mathsf{T}}x \ge 1$$

$$a_2^{\mathsf{T}}x \ge 1$$

$$a_3^{\mathsf{T}}x \ge 1$$

$$a_4^{\mathsf{T}}x \ge 1$$

$$a_4^{\mathsf{T}}x \ge 1$$

$$a_5^{\mathsf{T}}x \ge 1$$

$$x \in \mathbb{Z}_{>0}^m$$

Goal: Maintain feasible solution x that is monotonically increasing.

$$\min c^{\mathsf{T}} x$$

$$a_1^{\mathsf{T}} x \geq 1$$

$$a_2^{\mathsf{T}} x \geq 1$$

$$a_3^{\mathsf{T}} x \geq 1$$

$$a_4^{\mathsf{T}} x \geq 1$$

$$a_5^{\mathsf{T}} x \geq 1$$

$$x \in \mathbb{Z}_{\geq 0}^m$$

Goal: Maintain feasible solution x that is monotonically increasing.

Set Cover is the special case where constraint matrix A is 0/1.

Main issue: # uncovered elements <u>not</u> good proxy for cost.

Main issue: # uncovered elements <u>not</u> good proxy for cost.

LearnOrCover

```
Init. x_S \leftarrow 1/m.

@ time t, element v arrives:

If v covered, do nothing.

Else:

(I) Buy every set R w.p. x_R.

(II) \forall S \ni v, set x_S \leftarrow e \cdot x_S.

Renormalize x = x/||x||_1.

Buy arbitrary set to cover v.
```

Main issue: # uncovered elements <u>not</u> good proxy for cost.

```
(Assuming WLOG c(OPT) = 1)
\kappa_v := \text{cost of cheapest set covering } v
```

LearnOrCover

```
Init. x_S \leftarrow 1/(c_S \cdot m).

@ time t, element v arrives:

If v covered, do nothing.

Else:

(I) Buy every set R w.p. \kappa_v x_R.

(II) \forall S \ni v, set x_S \leftarrow e^{\kappa_v/c_S} \cdot x_S.

Renormalize x \leftarrow x/\langle c, x \rangle.

Buy cheapest set to cover v.
```

Main issue: # uncovered elements not good proxy for cost.

```
(Assuming WLOG c(OPT) = 1)
\kappa_v := \text{cost of cheapest set covering } v
```

LearnOrCover

```
Init. x_S \leftarrow 1/(c_S \cdot m).

@ time t, element v arrives:

If v covered, do nothing.

Else:

(I) Buy every set R w.p. \kappa_v x_R.

(II) \forall S \ni v, set x_S \leftarrow e^{\kappa_v/c_S} \cdot x_S.

Renormalize x \leftarrow x/\langle c, x \rangle.

Buy cheapest set to cover v.
```

Main Idea: tune <u>learning</u> & <u>sampling</u> rates as a function of κ_v .

Main issue: # uncovered elements <u>not</u> good proxy for cost.

(Assuming WLOG c(OPT) = 1) $\kappa_v := \text{cost of cheapest set covering } v$

LearnOrCover

```
Init. x_S \leftarrow 1/(c_S \cdot m).
```

@ time *t*, element *v* arrives:

If *v* covered, do nothing.

Else:

(I) Buy every set R w.p. $\kappa_{\nu}x_{R}$.

(II) $\forall S \ni v$, set $x_S \leftarrow e^{\kappa_v/c_S} \cdot x_S$.

Renormalize $x \leftarrow x/\langle c, x \rangle$.

Buy cheapest set to cover v.

Main Idea: tune <u>learning</u> & <u>sampling</u> rates as a function of κ_{v} .

Main issue: # uncovered elements <u>not</u> good proxy for cost.

```
(Assuming WLOG c(OPT) = 1)
\kappa_v := \text{cost of cheapest set covering } v
```

LearnOrCover

```
Init. x_S \leftarrow 1/(c_S \cdot m).
```

@ time *t*, element *v* arrives:

If *v* covered, do nothing.

Else:

(I) Buy every set R w.p. $\kappa_{\nu}x_{R}$.

(II) $\forall S \ni v$, set $x_S \leftarrow e^{\kappa_v/c_S} \cdot x_S$.

Renormalize $x \leftarrow x/\langle c, x \rangle$.

Buy cheapest set to cover v.

Main Idea: tune <u>learning</u> & <u>sampling</u> rates as a function of κ_v .

Claim 1: $\Phi(0) = c(\mathsf{OPT}) \cdot O(\log mn)$, and $\Phi(t) \ge 0$.

Main issue: # uncovered elements <u>not</u> good proxy for cost.

```
(Assuming WLOG c(OPT) = 1)
\kappa_v := \text{cost of cheapest set covering } v
```

LearnOrCover

```
Init. x_S \leftarrow 1/(c_S \cdot m).
```

@ time *t*, element *v* arrives:

If *v* covered, do nothing.

Else:

(I) Buy every set R w.p. $\kappa_{\nu}x_{R}$.

(II) $\forall S \ni v$, set $x_S \leftarrow e^{\kappa_v/c_S} \cdot x_S$.

Renormalize $x \leftarrow x/\langle c, x \rangle$.

Buy cheapest set to cover v.

Main Idea: tune <u>learning</u> & <u>sampling</u> rates as a function of κ_v .

Claim 1: $\Phi(0) = c(\mathsf{OPT}) \cdot O(\log mn)$, and $\Phi(t) \ge 0$.

Claim 2: $E[\Delta \Phi] = -\Omega(\kappa_v)$.

Main issue: # uncovered elements <u>not</u> good proxy for cost.

```
(Assuming WLOG c(OPT) = 1)
\kappa_v := \text{cost of cheapest set covering } v
```

LearnOrCover

```
Init. x_S \leftarrow 1/(c_S \cdot m).

@ time t, element v arrives:

If v covered, do nothing.

Else:
```

```
(I) Buy every set R w.p. \kappa_{v}x_{R}.

(II) \forall S \ni v, set x_{S} \leftarrow e^{\kappa_{v}/c_{S}} \cdot x_{S}.

Renormalize x \leftarrow x/\langle c, x \rangle.

Buy cheapest set to cover v.
```

Main Idea: tune <u>learning</u> & <u>sampling</u> rates as a function of κ_v .

Claim 1:
$$\Phi(0) = c(\mathsf{OPT}) \cdot O(\log mn)$$
, and $\Phi(t) \ge 0$.

Claim 2:
$$E[\Delta \Phi] = -\Omega(\kappa_v)$$
.

Claim 3: $E[\Delta cost(ALG)] = O(\kappa_v)$.

Main issue: # uncovered elements <u>not</u> good proxy for cost.

```
(Assuming WLOG c(OPT) = 1)
\kappa_v := \text{cost of cheapest set covering } v
```

LearnOrCover

```
Init. x_S \leftarrow 1/(c_S \cdot m).

@ time t, element v arrives:

If v covered, do nothing.

Else:
```

(I) Buy every set R w.p. $\kappa_{\nu} x_{R}$.

(II) $\forall S \ni v$, set $x_S \leftarrow e^{\kappa_v/c_S}$.

Renormalize $x \leftarrow x/\langle c, x \rangle$.

Buy cheapest set to cover v.

Main Idea: tune <u>learning</u> & <u>sampling</u> rates as a function of κ_v .

Claim 1: $\Phi(0) = c(\mathsf{OPT}) \cdot O(\log mn)$, and $\Phi(t) \ge 0$.

Claim 2: $E[\Delta \Phi] = -\Omega(\kappa_v)$.

Claim 3: $E[\Delta cost(ALG)] = O(\kappa_v)$.

 $\Rightarrow E[\Delta\Phi + \Delta cost(ALG)] = 0.$

Main issue: # uncovered elements <u>not</u> good proxy for cost.

```
(Assuming WLOG c(OPT) = 1)
\kappa_v := \text{cost of cheapest set covering } v
```

LearnOrCover

```
Init. x_S \leftarrow 1/(c_S \cdot m).

@ time t, element v arrives:

If v covered, do nothing.
```

Else:

(I) Buy every set R w.p. $\kappa_{\nu}x_{R}$.

(II) $\forall S \ni v$, set $x_S \leftarrow e^{\kappa_v/c_S} \cdot x_S$.

Renormalize $x \leftarrow x/\langle c, x \rangle$.

Buy cheapest set to cover v.

Main Idea: tune <u>learning</u> & <u>sampling</u> rates as a function of κ_v .

Claim 1: $\Phi(0) = c(\mathsf{OPT}) \cdot O(\log mn)$, and $\Phi(t) \ge 0$.

Claim 2: $E[\Delta \Phi] = -\Omega(\kappa_v)$.

Claim 3: $E[\Delta cost(ALG)] = O(\kappa_v)$.

 $\Rightarrow E[\Delta\Phi + \Delta cost(ALG)] = 0.$

 $E[cost(ALG)] \leq \Phi(0).$