Tarea 6: Direccionamiento Implícito

Asignatura: Organización y Arquitectura de Computadoras

Alumno: Alfonso Murrieta Villegas

Tarea 6, descripción:

1-1. Diseñe una carta ASM con hasta 8 estados, 3 entradas (X, Y, Z) Y 4 salidas (S0, S1, S2, S3).

1-2. Determine la tabla de verdad por el método de Direccionamiento Implícito.

	\mathbf{K}_1	K_0
X	0	0
Y	0	1
Z	1	0
Qaux	1	1

Estado Presente		Pru	eba	Liga		VF	Salidas					
P_2	\mathbf{P}_1	P_0	\mathbf{K}_1	\mathbf{K}_0	V_2	V_1	V_0	VF	S_3	S_2	S_1	S_0
0	0	0	1	1	*	*	*	1	1	0	0	0
0	0	1	1	0	1	1	1	1	0	0	0	0
0	1	0	0	1	0	1	0	1	1	0	0	0
0	1	1	0	1	0	0	1	0	0	0	1	0
1	0	0	0	0	1	1	0	1	0	1	0	0
1	0	1	1	1	1	0	0	0	0	0	0	1
1	1	0	1	1	0	0	0	0	0	0	0	0
1	1	1	1	1	0	0	1	0	1	1	1	1

2. Determine el número de bits de memoria que se ahorran al implementar una carta ASM que posee 4 entradas (X, Y, Z, W), 20 estados, 8 salidas (S0-S7), mediante el método de "direccionamiento implícito" respecto al método "direccionamiento por trayectoria" y "direccionamiento Entrada-Estado".

• Para el método de direccionamiento por implícito:

Estado Presente: 5 bits.

o Prueba: 3 bits

Liga: 5 bits

Valor Falso: 1 bit

o Salidas: 8 bits

Por lo tanto:

5 bits de entrada

17 bits de salida.

CÁLCULO | $(2^5)(17) = 544$ bits

• Para el método de direccionamiento por trayectoria:

• Estado Presente: 5 bits.

o Entradas: 4 bits

o Liga: 5 bits

o Salidas: 8 bits

Por lo tanto:

9 bits de entrada

13 bits de salida.

CÁLCULO | $(2^9)(13) = 6656$ bits

Para el método de direccionamiento por entrada-estado:

Estado Presente: 5 bits.

o Prueba: 2 bits

Liga Verdadera: 5 bits

Liga Falsa: 5 bits

o Salidas: 8 bits

Por lo tanto:

5 bits de entrada

20 bits de salida.

CÁLCULO | $(2^5)(20)=640$ bits

- Realizando la resta (Ahorro memoria):
 - Direccionamiento implícito respecto al direccionamiento por trayectoria:

CÁLCULO |
$$6656 - 544 = 6112$$
 bits

o Direccionamiento entrada estado el ahorro de memoria es:

CÁLCULO |
$$640 - 544 = 96$$
 bits