Ext 1 That 2004 SOLUTIONS

1. (a)
$$\frac{xy^{-1}-yx^{-1}}{x^{2}-y} = \frac{\frac{x}{y} - \frac{y}{x}}{x^{2}-y}$$

$$= \frac{x^{2}-y^{2}}{x^{2}(x-y)}$$

$$= \frac{x+y}{xy}$$
2

(b) External division, so let ratio be
$$-5:2$$

$$A(-5,12) \quad B(+,9)$$

$$= \frac{-5 \times 2 + 4 \times (-5)}{-5 + 2} \quad y = \frac{12 \times 2 + 9 \times (-5)}{-5 + 2}$$

$$= 10 \quad = 7$$

$$\therefore P: (10,7) \quad 2$$

(c)
$$f(x) = x^3 + 3x^3 - 10x - 24$$

 $f(1) = 1 + 3 - 10 - 24 \neq 0$
 $f(-2) = -8 + 12 + 20 - 24 \neq 0$
 $f(x+2)$ is a factor

$$\frac{3c^{2} + x - 12}{3c^{3} + 3x^{2} - 10x - 24}$$

$$\frac{3c^{3} + 2x^{2}}{x^{2} - 10x}$$

$$\frac{3c^{4} + x - 12}{3c^{3} + 2x^{4}}$$

$$f(x) = (x+2)(x^{2} + x-12)$$

$$= (x+2)(x+4)(x-3)$$
3

(d)
$$\int_{0}^{T/\sqrt{6}} \sin^{2} 2x \, dx = \frac{1}{2} \int_{0}^{T/\sqrt{6}} (1-\cos(4x)) dx$$

$$\int_{0}^{(6)} \cos(2x) = 1-2\sin^{2}x = \frac{1}{2} \left[x - \frac{1}{4} \sin(4x) \right]_{0}^{T/\sqrt{6}}$$

$$= \frac{1}{2} \left(\left[\frac{\pi}{\sqrt{6}} - \frac{1}{4} x \sin(4x) \right]_{0}^{T/\sqrt{6}} - \frac{1}{6} x \cos(4x) \right]$$

$$= \frac{1}{2} \left(\left[\frac{\pi}{\sqrt{6}} - \frac{1}{4} x \cos(4x) \right]_{0}^{T/\sqrt{6}} - \frac{1}{6} x \cos(4x) \right]$$

$$= \frac{1}{2} \left(\left[\frac{\pi}{\sqrt{6}} - \frac{1}{4} x \cos(4x) \right]_{0}^{T/\sqrt{6}} - \frac{1}{6} x \cos(4x) \right]$$

$$= \frac{1}{2} \left(\left[\frac{\pi}{\sqrt{6}} - \frac{1}{4} x \cos(4x) \right]_{0}^{T/\sqrt{6}} - \frac{1}{6} x \cos(4x) \right]$$

$$= \frac{1}{2} \left(\left[\frac{\pi}{\sqrt{6}} - \frac{1}{4} x \cos(4x) \right]_{0}^{T/\sqrt{6}} - \frac{1}{6} x \cos(4x) \right]$$

$$= \frac{1}{2} \left(\left[\frac{\pi}{\sqrt{6}} - \frac{1}{4} x \cos(4x) \right]_{0}^{T/\sqrt{6}} - \frac{1}{6} x \cos(4x) \right]$$

$$= \frac{1}{2} \left(\left[\frac{\pi}{\sqrt{6}} - \frac{1}{4} x \cos(4x) \right]_{0}^{T/\sqrt{6}} - \frac{1}{6} x \cos(4x) \right]$$

$$= \frac{1}{2} \left(\left[\frac{\pi}{\sqrt{6}} - \frac{1}{4} x \cos(4x) \right]_{0}^{T/\sqrt{6}} - \frac{1}{6} x \cos(4x) \right]$$

$$= \frac{1}{2} \left(\left[\frac{\pi}{\sqrt{6}} - \frac{1}{4} x \cos(4x) \right]_{0}^{T/\sqrt{6}} - \frac{1}{6} x \cos(4x) \right]$$

$$= \frac{1}{2} \left(\left[\frac{\pi}{\sqrt{6}} - \frac{1}{4} x \cos(4x) \right]_{0}^{T/\sqrt{6}} - \frac{1}{6} x \cos(4x) \right]$$

$$= \frac{1}{2} \left(\left[\frac{\pi}{\sqrt{6}} - \frac{1}{4} x \cos(4x) \right]_{0}^{T/\sqrt{6}} - \frac{1}{6} x \cos(4x) \right]$$

$$= \frac{1}{2} \left(\left[\frac{\pi}{\sqrt{6}} - \frac{1}{4} x \cos(4x) \right]_{0}^{T/\sqrt{6}} - \frac{1}{6} x \cos(4x) \right]$$

$$= \frac{1}{2} \left(\left[\frac{\pi}{\sqrt{6}} - \frac{1}{4} x \cos(4x) \right]_{0}^{T/\sqrt{6}} - \frac{1}{6} x \cos(4x) \right]$$

$$= \frac{1}{2} \left(\left[\frac{\pi}{\sqrt{6}} - \frac{1}{4} x \cos(4x) \right]_{0}^{T/\sqrt{6}} - \frac{1}{6} x \cos(4x) \right]$$

$$= \frac{1}{2} \left(\left[\frac{\pi}{\sqrt{6}} - \frac{1}{4} x \cos(4x) \right]_{0}^{T/\sqrt{6}} - \frac{1}{6} x \cos(4x) \right]$$

LARE = LACG = x

(angle in alt.

segment equal)

LABC = 90° (L in

somi-circle

1. LCAR = 90 - > (Lsum

and LBAE = 90- x (LSum of A)

. LCAB= LBAE

(Alternative proofs are possible)

2. (a)
$$\int_{1}^{\sqrt{3}} \frac{1}{\sqrt{4-x^{2}}} dx = \left[sin^{-1} \frac{x}{2} \right]^{\sqrt{3}}$$

$$= \left[sin^{-1} \sqrt{3} \right] - \left[sin^{-1} \frac{1}{2} \right]$$

$$= \frac{\pi}{3} - \pi = \frac{\pi}{4} \cdot 2$$

(b)
$$\int_{0}^{1} x \sqrt{1-x^{2}} dx = \int_{0}^{1} u^{x} dx$$

Let $u = 1-x^{2}$ $= \int_{0}^{1} \frac{1}{2} u^{x} dx$
 $\frac{du}{dx} = -2x$
 $\frac{du}{dx} = x dx$ $= \left[\frac{1}{3}u^{3}x\right]_{0}^{1}$
 $x = 0, u = 1$ $= \frac{1}{3}$ 3

2.(c)
$$y = \tan^{-1} x$$
 $x = \tan y$
 $x^2 = \tan^2 y$
 $YOL = \Pi \int_0^{\pi/4} \tan^2 y \, dy$
 $= \Pi \int_0^{\pi/4} (\sec^2 y - 1) \, dy$
 $= \Pi \left[\tan y - y \right]_0^{\pi/4}$
 $= \Pi \left[\tan^{\pi/4} - \pi/4 \right] - Lo_1$
 $= \Pi \left(1 - \pi/4 \right)$ (3)
 $= \pi/4 \left(4 - \pi/4 \right) = \pi \left(4 - \pi/4 \right) \tan^2 x^3$
(As read)

(a) Prove true $2^{3n}-1$ is div.

by 7.

For n=1, $2^3-1=7$ which

is div. by 7, - true for n=1.

Assume true for n=k, ce. $2^{3k}-1=7M$, where M is

an integer, M>0.

If true for n=k, show true

for n=k+1, ie. show true $2^{3(k+1)}-1$ is div. by 7: $2^{3k+3}-1=2^{3k}\cdot 2^3-1$ $=(7M+1)\cdot 8-1$ (from \mathfrak{E})

= 2PW + J

M>0 is an integer, :.

=7 (8M+1),

8M+1 is an integer, ...

2³⁽¹²⁺¹⁾-1 is div. by 7.

Thus if true for n=k, it is

true for n=k+1.

It is true for n=1, ... by the

principle of mathematical
induction, it is true for all n.

(4)

3. (a) 3 cos x + 4 sin x = A cos (x-x)

12HS = A cos (x-x)

= A cos x cos x + A sin x sin x

Equating coeffs:

A cos x = 3 ()

A sin x = 4 ()

A wind = 4 3

A wind = 4 3

The condition of the conditio

 $A^2 \cos^2 x + A^2 \sin^2 x = 9 + 16$ $A^2 = 2S$ $\therefore A = S$

3 = $\frac{180}{}$ or $\frac{586}{}$ is, $3 = \frac{180}{}$ or $\frac{586}{}$ is,

(b) $(3 + 4x)^{16}$ $T_{k+1} = {}^{16}C_{k} \cdot 3^{16-k} \cdot (4x)^{k}$ $T_{k} = {}^{16}C_{k-1} \cdot 3^{16-(k-1)} \cdot (4x)^{k-1}$ $= {}^{16}C_{k-1} \cdot 3^{17-k} \cdot (4x)^{k-1}$ 3(4) (cont.)

ratio of weffs:

$$\frac{T_{k+1}}{T_k} = \frac{16C_{k}.3^{16-k}.4^k}{(C_{k-1}.3^{17-k}.4^{k-1})}$$

(4)

(c)
$$v^2 = 16x - 4x^4 + 20$$

5i is in the form $5i = -n^2 \times$, where x = 3i - 2, the motion

is Shm.

(iii) Particle is at rest when 120.

$$(x+i)(x-s)=0$$

:. amplitude = 5-(-1)

2

$$4.(a) 2x^3 + 3x^2 - 4 = 0$$

$$= \left(-\frac{3}{4}\right)^{2} - 2 \times 0$$

(2)

(c) Let
$$f(x) = x^2 + x - 1$$

 $f'(x) = 3x^2 + 1$

$$x_2 = x_1 - \frac{f(x_1)}{f'(x_2)}$$
 is a better approx.

$$y_{L} = 0.5 - \frac{f(0.5)}{f'(0.5)}$$

$$= 0.5 - (-0.373)$$

(3)

$$\frac{2}{\tan A + \cot A} = \sin 2A$$

LHS =
$$\frac{2}{\tan A + \cot A} = \frac{2}{\sin A} + \frac{\cos A}{\sin A}$$

$$5(\omega)2x-y+5=0$$
 $y=-3x+7$
 $2x+5=y$
 $m_1=2$ $m_2=-3$
 $\tan\theta=\left|\frac{2+3}{1+2\times(-3)}\right|=\left|\frac{5}{-5}\right|$

(i)
$$t=0$$
, $N=S$
 $S=A(2)$ $A=\frac{S_2}{2}$ ①

(ii)
$$t=3$$
, $N=80$
 $80 = {}^{5}((1+e^{-3h}))$
 $e^{-3h} = 31$
 $-3h = \ln 31$ (2)
 $k = {}^{5}(\ln 31 = -1.14466)$
(to 5 d.p.'s)

(iii)
$$560 = \frac{5}{2}(1 + e^{\frac{1}{3}\ln^31t})$$

 $e^{\frac{1}{3}\ln^31t} = 223$
 $\frac{1}{3}\ln^31t = \ln^{223}$
 $t = 4.7 \text{ days}$ (2)

the runour within 5 days.

(ii) for x < a, f(x) is concave down for x > a, f(x) is concave up. Hence f(x) changes concavity and there is an inflexion (2) point.

6. (a) Given
$$\frac{dV}{dt} = 50$$

Need to find $\frac{dA}{dt} = \frac{dA}{dt} \cdot \frac{dr}{dt}$
 $A = 4\pi r^2$
 $V = \frac{4}{3}\pi r^3$
 $\frac{dA}{dr} = 8\pi r$
 $\frac{dV}{dr} = 4\pi r^2$

Find $\frac{dV}{dt} = \frac{dV}{dr} \cdot \frac{dV}{dt}$

$$dt = \frac{dt}{dt}$$

$$50 = 4\pi r^{2} \cdot \frac{dt}{dt}$$

$$\frac{dt}{dt} = \frac{50}{4\pi r^{2}} = \frac{25}{2\pi r^{2}} \quad (2)$$

$$\frac{dA}{dx} = 8\pi x \cdot \frac{25}{2\pi c^2} = \frac{100}{r} \quad \boxed{0}$$

$$\frac{dA}{dt} = \frac{100}{20} = \frac{Smm^2/sec}{0}$$

$$(6) (i) \quad 3i^{2} = 4ay$$

$$y = \frac{x^{2}}{4a}$$

$$dy = \frac{x}{2a}$$

Egts. of tangent at
$$(24p, ap^2)$$
:
 $y-ap^2 = p(x-2ap)$ (2)
 $y-ap^2 = px-2ap^2$
 $y-px+ap^2 = 0$ (6.5 regd)

 $x(q-p) = a(q^*-p^*)$

$$6(3)(w) (cone)$$

$$x = a(q+p)$$

$$y - ap(q+p) + ap^{2} = 0$$

$$y = apq + ap^{2} - ap^{2}$$

$$y = apq$$

$$x = apq$$

$$y = apq$$

$$x = apq$$

$$y = apq$$

$$y = apq$$

$$x = apq$$

$$y = apq$$

$$y = apq$$

$$y = apq$$

(iii) grue of
$$PO = \frac{ap^2 - 0}{2ap - 0}$$

$$= \frac{P}{L}$$

$$\frac{2ap - 0}{2aq - 0}$$

$$= \frac{q^2 - 0}{2aq - 0}$$

$$= \frac{q^2 - 0}{2aq - 0}$$

PO and QO are perp.,

$$\frac{p_{2}}{2} \cdot \frac{2}{2} = -1 \qquad 0$$

$$\frac{p_{2} = -4}{2} \quad (as \ rega.)$$

(iv)
$$x = a(p+q)$$

 $y = apq$, but $pq = -4$,
 $y = -4a$ (as req.)

7. (a) (1)
$$sin x = \frac{h}{2}$$

 $h = 2 sin x$

$$\frac{QC}{PD} = \frac{AC}{AD}$$

$$RD = 2 \cos \kappa$$

$$\frac{3c}{h} = \frac{6}{3+2\cos x}, \text{ but } h = 2\sin x$$

$$\frac{3}{3+2\cos\kappa} = \frac{12\sin\kappa}{3+2\cos\kappa} \quad (65 \text{ regd.})$$

$$\frac{dx}{dx} = \frac{(3+2\cos\alpha)(12\cos\alpha) - 12\sin\alpha(-2\cos\alpha)}{(3+2\cos\alpha)^2}$$

$$= \frac{36 \cos x + 24}{(3 + 2\cos x)^2}$$

Turning points occur when $36 \cos x + 2\tau = 0$ $\cos x = -\frac{2\tau}{36}$ $\cos x = -\frac{2\tau}{3} \quad (x = 2.3^{\circ})$ $x = 2.2^{\circ}, \quad dx = 0.846)... > 0$

$$\frac{15\sqrt{3}}{2}$$
 CoS = $-\frac{2}{3}$
 $\frac{15\sqrt{3}}{2}$ Sind = $\frac{13}{3}$

$$\frac{1}{3} = \frac{4\sqrt{5}}{\sqrt{5}} = \frac{12\sqrt{5}}{\sqrt{5}}$$

$$= \frac{4\sqrt{5}}{\sqrt{5}} = \frac{12\sqrt{5}}{\sqrt{5}} = \frac{1}{2}$$

$$\dot{x} = 0$$

 $\dot{y} = C$, when $\dot{t} = 0$, $\dot{y} = 25\cos \alpha$
 $\dot{x} = 25\cos \alpha$
 $\dot{x} = 25\cos \alpha$
 $\dot{x} = 25\cos \alpha$

```
76) (come)
Vertical
y = -10
```

j=-10++e, when +=0, j=25sinx

$$i \cdot i \cdot j = -10t + 25 \text{ sin } x$$

 $y = -5t^2 + 25 \text{ t sin } x + f$,
when $t = 0$, $y = 2$

Subs. @ mico y:

When x = 20, y=13

tames = 0.956 ..., or 5.29 ...