

Advanced Technical Information

PolarHV[™] Power MOSFET

IXTC 26N50P

 $V_{DSS} = 500 V$ $I_{D25} = 13 A$ $R_{DS(on)} = 260 m\Omega$

Electrically Isolated Tab, N-Channel Enhancement Mode, Avalanche Rated

Symbol	Test Conditions	Maximum F	imum Ratings			
V _{DSS}	T _J = 25°C to 150°C	500	V			
V _{DGR}	$T_{_{\rm J}}$ = 25°C to 150°C; $R_{_{\rm GS}}$ = 1 M Ω	500	V			
V _{gs}	Continuous	±20	V			
V _{GSM}	Transient	±30	V			
I _{D25}	T _C = 25°C	13	Α			
I _{DM}	$T_{\rm C} = 25^{\circ}$ C, pulse width limited by $T_{\rm JM}$	78	Α			
I _{AR}	T _C = 25°C	26	Α			
E _{AR}	T _C = 25°C	40	mJ			
E _{as}	$T_{c} = 25^{\circ}C$	1.0	J			
dv/dt	$I_{_{S}} \leq I_{_{DM}}$, di/dt \leq 100 A/ μ s, $V_{_{DD}} \leq V_{_{DSS}}$, $T_{_{J}} \leq$ 150°C, $R_{_{G}} = 4~\Omega$	10	V/ns			
$\overline{\mathbf{P}_{_{\mathrm{D}}}}$	T _C = 25°C	100	W			
T _J T _{JM} T _{stg}		-55 +150 150 -55 +150	°C °C °C			
T _L	1.6 mm (0.062 in.) from case for 10 s	300	°C			
V _{ISOL}	50/60 Hz, RMS, t = 1, leads-to-tab	2500	٧~			
F _c	Mounting Force	1165/2.515	N/lb			
Weight		2	g			

Symbol Test Conditions $(T_J = 25^{\circ}C, \text{ unless otherwise specified})$			Characteristic Values Min. Typ. Max.			
V _{DSS}	$V_{GS} = 0 \text{ V}, I_D = 250 \mu\text{A}$		500			V
V _{GS(th)}	$V_{DS} = V_{GS}, I_{D} = 250\mu A$		2.5		5.0	V
GSS	$V_{GS} = \pm 30 V_{DC}, V_{DS} = 0$				±100	nA
I _{DSS}	$V_{DS} = V_{DSS}$ $V_{GS} = 0 V$	T _J = 125°C			25 250	μ Α μ Α
R _{DS(on)}	$V_{GS} = 10 \text{ V}, I_{D} = I_{T}$ Pulse test, t \le 300 \mus, duty	cycle d ≤2%			260	mΩ

G = Gate D = Drain S = Source

Features

- Silicon chip on Direct-Copper-Bond substrate
- High power dissipation
- Isolated mounting surface
- 2500V electrical isolation
- Low drain to tab capacitance(<30pF)

Applications

- DC-DC converters
- Battery chargers
- Switched-mode and resonant-mode power supplies
- DC choppers
- AC motor control

Advantages

- Easy assembly
- Space savings
- High power density

Symbo	I Test Conditions		aracteristic Values		
		$(T_J = 25^{\circ}C, unless)$	otherwi		
		Min.	Тур.	Max.	
g_{fs}	$V_{DS} = 10 \text{ V}; I_{D} = _{T}, \text{ puls}$	e test 20	28	S	
\mathbf{C}_{iss})		3600	pF	
\mathbf{C}_{oss}	$V_{GS} = 0 \text{ V}, V_{DS} = 25 \text{ V},$	f = 1 MHz	380	pF	
C _{rss}	J		48	pF	
t _{d(on)})		20	ns	
t _r	$V_{GS} = 10 \text{ V}, V_{DS} = 0.5 \text{ V}$	$V_{\rm DSS}, I_{\rm D} = I_{\rm T}$	25	ns	
$\mathbf{t}_{d(off)}$	$R_{\rm G} = 4 \Omega \text{ (External)}$		58	ns	
t _f	J		20	ns	
$\mathbf{Q}_{\mathrm{g(on)}}$)		96	nC	
\mathbf{Q}_{gs}	$V_{GS} = 10 \text{ V}, V_{DS} = 0.5 \text{ V}$	I_{DSS} , $I_{D} = I_{T}$	20	nC	
\mathbf{Q}_{gd}	J		45	nC	
$\mathbf{R}_{\mathrm{thJC}}$				1.25 K/W	
$\mathbf{R}_{\mathrm{thCK}}$			0.21	K/W	

Source-Drain Diode

Characteristic Values $(T_1 = 25^{\circ}C, \text{ unless otherwise specified})$

Symbo		Test Conditions (1)	Min.	typ.	Max.	
Is		$V_{GS} = 0 V$			26	Α
I _{SM}		Repetitive			78	Α
$\mathbf{V}_{\mathtt{SD}}$		$I_F = I_S$, $V_{GS} = 0$ V, Pulse test, t \leq 300 μ s, duty cycle d \leq 2 %			1.5	V
t _{rr}	}	I _F = 25 A -di/dt = 100 A/μs		400		ns
\mathbf{Q}_{RM}	J	V _R = 100 V		5.0		μС

Note: Test Current $I_{\tau} = 13A$

MY2	INCHES		MILLIMETERS		
21M	MIN	MAX	MIN	MAX	
Α	.157	.197	4.00	5.00	
A2	.098	.118	2.50	3.00	
b	.035	.051	0.90	1.30	
b2	.049	.065	1.25	1.65	
b4	.093	.100	2.35	2.55	
С	.028	.039	0.70	1.00	
D	.591	.630	15.00	16.00	
D1	.472	.512	12.00	13.00	
Е	.394	.433	10.00	11.00	
E1	.295	.335	7.50	8.50	
е	.100 BASIC		2.55 BASIC		
L	.512	.571	13.00	14.50	
L1	.118	.138	3.00	3.50	
T°			42.5°	47.5°	

10. Boltom heatsink (Pin 4) is electrically isolated from Pin 1, 2, or 3.
2. This drawing will meet dimensional requirement of JEDEC SS Product Outline TO-273 except D and D1 dimension.

Fig. 1. Output Characteristics

Fig. 2. Extended Output Characteristics

Fig. 3. Output Characteristics @ 125°C

Fig. 4. $R_{DS(on)}$ Normalized to 0.5 I_{D25} Value vs. Junction Temperature

Fig. 5. R_{DS(on)} Normalized to 0.5 I_{D25} Value vs. I_D

Fig. 6. Drain Current vs. Case
Temperature

Fig. 7. Input Admittance

Fig. 9. Source Current vs. Source-To-Drain Voltage

Fig. 11. Capacitance

Fig. 8. Transconductance

Fig. 10. Gate Charge

Fig. 12. Forward-Bias Safe Operating Area

IXYS reserves the right to change limits, test conditions, and dimensions.

Fig. 13. Maximum Transient Thermal Resistance