

TEAMVORSTELLUNG

Name	Matrikelnummer	Projektrolle	eMail-Adresse
Lucas Kaczynski	9411266	Techn. Redakteur	inf20147@lehre.dhbw-stuttgart.de
Benjamin Esenwein	5655208	Produktmanager	inf20074@lehre.dhbw-stuttgart.de
Maximilian Meier	6020212	Leitender Entwickler	inf20084@lehre.dhbw-stuttgart.de
Yannis Plaschko	6645234	Testmanager	inf20093@lehre.dhbw-stuttgart.de
Laura Reeken	3811697	Projektleiterin	inf20051@lehre.dhbw-stuttgart.de
Isabel Schwalm	6038831	Systemarchitektin	inf20085@lehre.dhbw-stuttgart.de

INHALT

- Was ist lwIP?
- Master Use Case
- Systemarchitektur & Produktübersicht
- Funktionale und Nichtfunktionale Anforderungen
- Module
- Entwicklungsprozess
- Vorgehensweise beim Testen
- Rückblick Prototyp & Live Demo
- Fazit / Ausblick

Was ist lwIP?

- kleine unabhängige Implementierung des TCP/IP-Protokolls
- Zielsetzung
 - Reduzierung des Ressourcenverbrauchs
 - Gleichzeitige Bereitstellung eines vollwertigen TCP/IP-Protokolls
- → Geeignet für Embedded Systems
- → Lauffähig auf mehreren Betriebssystemen

MASTER USECASE

Ziel: • Websocket Support für lwIP implementieren

• lwIP-Status Seite & REST-API implementieren

Aufgabe: Mängel des vorhandenen Patch #9525 beheben

Use Case:

Beteiligte Nutzer: Entwickler von Embedded System

Zielsetzung: • Support für TCP/IP und Websockets

lwIP ist auf CPU lauffähig

SYSTEMARCHITEKTUR

Produktübersicht

Produktübersicht

FUNKTIONALE ANFORDERUNGEN

/F10/ Extra Funktion für base64 encoding

/F20/ Implementation der WebSocket API

/F30/ Schreiben eines GUI-basierten Test-Client

/F40/ http Webserver für Testzwecke

NICHTFUNKTIONALE ANFORDERUNGEN

/NF10/ Zusätzlich geschriebener Code sollte bei einem Minimum gehalten werden	
/NF20/ Effizienter Code	
/NF30/ Intuitive GUI für Test-Client	
/NF40/ Bestehen des Approval Process /NF41/ Informationsweitergabe	
/NF50/ Executable Program	

Module

```
/MOD.001/ Graphical User Interface

/MOD.002/ HTTP-Server

/MOD.003/ WebSocket Server
```

Entwicklungsprozess

- Visual Studio 2022
- WIN SDK 10.0
- Analyse & Einarbeitung Patch#9525
- Debugging
- Alternative WebSocket Server

Bildquellen:

https://logos.fandom.com/wiki/Microsoft_Visual_Studio#2021.E2.80.93present

https://cmake.org/

https://www.winpcap.org/docs/docs_412/html/

Npcap: Windows Packet Capture Library & Driver

VORGEHEN BEIM TESTEN

- LwIP ist sehr umfangreich und komplex
 - Kein White-Box-Testing nicht möglich
- Black-Box-Testing
- GUI als POC daher kaum Testdaten
- POO aus Sicht des Users
- Testplanung
 - Verifikation er Lauffähigkeit
 - Erzeugen und Zerstören von Verbindungen

RÜCKBLICK AUF PROTOTYP

- Rückmeldung der lwIP-Community stand aus
- Code-Abhängigkeits-Fehler

LIVE-DEMO

Anwendung öffnen

FAZIT

