RV COLLEGE OF ENGINEERING®

(An Autonomous Institution Affiliated to VTU)

IV Semester B. E. Regular Examinations SEP/OCT – 2024

Computer Science and Engineering

DISCRETE MATHEMATICAL STRUCTURES AND COMBINATORICS

Time: 03 Hours

Instructions to candidates:

Maximum Marks: 100

- 1. Answer all questions from Part A. Part A questions should be answered in first three pages of the answer book only.
- 2. Answer FIVE full questions from Part B. In Part B question number 2 is compulsory. Answer any one full question from 3 and 4, 5 and 6, 7 and 8, 9 and 10.
- 3. Use of statistical tables and formula handbook permitted.

PART-A

M BT CO

1 1.1	are lightly of ways that the alphabets A.B.C.D.E.F.G are			
	arranged such that A is not first position. B is not in second			
	position, G is not in seventh position.	02	2	2
1.2	Solve the recurrence relation $a_n = 4a_{n-1} - 4a_{n-2}$, $n \ge 2$ subject to			
	the initial conditions $a_1 = 1$, $a_2 = 3$.	02	2	2
1.3	Simply using law of logic:			
	$[(p \lor q) \ n(p \lor \sim q)] \lor q \Leftrightarrow p \lor q$	02	1	1
1.4	Write down the converse, inverse of the following compound			
	proposition.			
	"A person is successful in life if he puts sincere efforts"	02	2	2
1.5				
	and $g \circ f$.	02	2	2
1.6	If $R = \{(1,1), (1,2), (2,1), (2,2), (3,4), (4,3), (3,3), (4,4)\}$ is defined on the			
	set $A = \{1,2,3,4\}$ determine the partition induced.	02	2	2
1.7	Let $G = \{q \in \theta \mid q \neq -1\}$. Identify the identify element of $\{G, 0\}$ where			
	$xoy = x + y + xy$ for all $x, y \in G$.	02	2	2
1.8	What is the hamming distance between the codes '11001011' and			
	'10000111'.	02	1	1
1.9	Let G be a simple graph of order n . If the size of G is 56 and size of			
		02	2	2
1.10	,			
	order and size of G .	02	2	2
	1.2 1.3 1.4 1.5 1.6 1.7 1.8	arranged such that <i>A</i> is not first position, <i>B</i> is not in second position, <i>G</i> is not in seventh position. 1.2 Solve the recurrence relation <i>a_n</i> = 4 <i>a_{n-1}</i> − 4 <i>a_{n-2}</i> , <i>n</i> ≥ 2 subject to the initial conditions <i>a</i> ₁ = 1, <i>a</i> ₂ = 3. 1.3 Simply using law of logic: [(<i>p</i> ∨ <i>q</i>) <i>n</i> (<i>p</i> ∨ ~ <i>q</i>)] ∨ <i>q</i> ⇔ <i>p</i> ∨ <i>q</i> Write down the converse, inverse of the following compound proposition. "A person is successful in life if he puts sincere efforts" 1.5 Let <i>f</i> : <i>z</i> → <i>z</i> and <i>g</i> : <i>z</i> → <i>z</i> , given by <i>f</i> (<i>x</i>) = <i>x</i> − 1 <i>g</i> (<i>x</i>) = 2 <i>x</i> find <i>f</i> ∘ <i>g</i> and <i>g</i> ∘ <i>f</i> . 1.6 If <i>R</i> = {(1,1), (1,2), (2,1), (2,2), (3,4), (4,3), (3,3), (4,4)} is defined on the set <i>A</i> = {1,2,3,4} determine the partition induced. 1.7 Let <i>G</i> = { <i>q</i> ∈ <i>θ</i> <i>q</i> ≠ −1}. Identify the identify element of { <i>G</i> ,0} where <i>xoy</i> = <i>x</i> + <i>y</i> + <i>xy</i> for all <i>x</i> , <i>y</i> ∈ <i>G</i> . 1.8 What is the hamming distance between the codes '11001011' and '10000111'. 1.9 Let <i>G</i> be a simple graph of order <i>n</i> . If the size of <i>G</i> is 56 and size of <i>G</i> is 80, what is <i>n</i> ? 1.10 Given <i>V</i> = {(1,2,3,4,5,6)} and <i>E</i> = {12,13,23,35,61,66} draw undirected and directed graph <i>G</i> = (<i>V</i> , <i>E</i>). Also write down the	arranged such that <i>A</i> is not first position, <i>B</i> is not in second position, <i>G</i> is not in seventh position. 1.2 Solve the recurrence relation <i>a_n</i> = 4 <i>a_{n-1}</i> − 4 <i>a_{n-2}</i> , <i>n</i> ≥ 2 subject to the initial conditions <i>a</i> ₁ = 1, <i>a</i> ₂ = 3. 1.3 Simply using law of logic: [(<i>p</i> ∨ <i>q</i>) <i>n</i> (<i>p</i> ∨ ~ <i>q</i>)] ∨ <i>q</i> ⇔ <i>p</i> ∨ <i>q</i> 1.4 Write down the converse, inverse of the following compound proposition. "A person is successful in life if he puts sincere efforts" 1.5 Let <i>f</i> : <i>z</i> → <i>z</i> and <i>g</i> : <i>z</i> → <i>z</i> , given by <i>f</i> (<i>x</i>) = <i>x</i> − 1 <i>g</i> (<i>x</i>) = 2 <i>x</i> find <i>f</i> ∘ <i>g</i> and <i>g</i> ∘ <i>f</i> . 1.6 If <i>R</i> = {(1,1), (1,2), (2,1), (2,2), (3,4), (4,3), (3,3), (4,4)} is defined on the set <i>A</i> = {1,2,3,4} determine the partition induced. 1.7 Let <i>G</i> = { <i>q</i> ∈ <i>θ</i> <i>q</i> ≠ −1}. Identify the identify element of { <i>G</i> ,0} where <i>xoy</i> = <i>x</i> + <i>y</i> + <i>xy</i> for all <i>x</i> , <i>y</i> ∈ <i>G</i> . 1.8 What is the hamming distance between the codes '11001011' and '10000111'. 1.9 Let <i>G</i> be a simple graph of order <i>n</i> . If the size of <i>G</i> is 56 and size of <i>G</i> is 80, what is <i>n</i> ? 1.10 Given <i>V</i> = {(1,2,3,4,5,6)} and <i>E</i> = {12,13,23,35,61,66} draw undirected and directed graph <i>G</i> = (<i>V</i> , <i>E</i>). Also write down the	arranged such that A is not first position, B is not in second position, G is not in seventh position. Solve the recurrence relation $a_n = 4a_{n-1} - 4a_{n-2}, n \ge 2$ subject to the initial conditions $a_1 = 1, a_2 = 3$. Simply using law of logic: $[(p \lor q) \ n(p \lor \sim q)] \lor q \Leftrightarrow p \lor q$ 1.4 Write down the converse, inverse of the following compound proposition. "A person is successful in life if he puts sincere efforts" 1.5 Let $f: z \to z$ and $g: z \to z$, given by $f(x) = x - 1$ $g(x) = 2x$ find $f \circ g$ and $g \circ f$. 1.6 If $R = \{(1,1), (1,2), (2,1), (2,2), (3,4), (4,3), (3,3), (4,4)\}$ is defined on the set $A = \{1,2,3,4\}$ determine the partition induced. 1.7 Let $G = \{q \in \theta \mid q \neq -1\}$. Identify the identify element of $\{G,0\}$ where $xoy = x + y + xy$ for all $x, y \in G$. 1.8 What is the hamming distance between the codes '11001011' and '10000111'. 1.9 Let G be a simple graph of order n . If the size of G is 56 and size of G is 80, what is n ? 1.10 Given $V = \{(1,2,3,4,5,6)\}$ and $E = \{12,13,23,35,61,66\}$ draw undirected and directed graph $G = (V, E)$. Also write down the

PART-B

2	а	Find the number of proper divisors of 38808.	04	2	2
_	b	A person inverse some amount at the rate of 11% annual			
	~	compound interest. Determine the period for principal amount to			
		get doubled.	04	2	3
	С	Find a generating function for the recurrence relation			
		$a_{n+2} - 6a_{n+1} + 9a_n = 0$ for $n \ge 0, a_0 = 5, a_1 = 12$.	04	2	2
	d	In how many ways can 10 identical dimes be distributed among 5			
		children if			
	,	i) There are no restrictions			
		ii) Each child gets at least one dime.	04		
		/			

a Let p, q and r be the propositions P: I study; q: I will fail in the examination r: I watch TV in the evening Express each of these proposition as an English sentence Express each of these proposition as an English sentence Express each of these proposition as an English sentence Express each of these proposition as an English sentence Express each of these proposition as an English sentence Express each of these proposition as an English sentence Express each of these proposition in the symbolic form and find its Write the following proposition in the symbolic form and find its negation. "If all triangles are right angles then no triangle is equiangular" OR For the following statement, state the converse inverse and contrapositive. The universe consist of all integers "If m divides n and n divides p, then m divides p" Prove the validity of the following argument p → (q ∧ q) r → s	2 2 3
For the following statement, state the converse and contrapositive. The universe consist of all integers "If m divides n and n divides p, then m divides p" Prove the validity of the following argument p → (q ∧ q) Prove the validity of the following argument p → (q ∧ q) Prove the validity of the following argument p → (q ∧ q) Prove the validity of the following argument p → (q ∧ q) For the following statement, state the converse inverse and contrapositive. The universe consist of all integers "If m divides n and n divides p, then m divides p" Prove the validity of the following argument p → (q ∧ q) r → s	2 2 2
or a lif f: A → B, g: B → C, h: C → D then show that (h ∘ g) of = h ∘ (g ∘ f). b lif A = {1,2,3,4} and R,S are relations on A defined by R = {(1,2)(1,3)(2,4)(4,4)} S = {(1,1)(1,2)(1,3)(1,4)(2,3)(2,4)}. c lind the lower and upper bounds of the subsets {a, b, c}; {i, h} and bridges are right angles then no triangle is equiangular" or o	2 2 3
For the following statement, state the converse inverse and contrapositive. The universe consist of all integers "If m divides n and n divides p, then m divides p" Prove the validity of the following argument p → (q ∧ g) r → s	2
b Prove the validity of the following argument p → (q ∧ g) r → s	2
 c	3
Define open statement and find whether the following variable is valid. No engineering students of 1st or 2nd sem studies logic. Anil is an engineering student who studies logic. Anil is not in second semester. If $f: A \to B$, $g: B \to C$, $h: C \to D$ then show that $(h \circ g)$ of $= h \circ (g \circ f)$. If $A = \{1,2,3,4\}$ and A , A are relations on A defined by A and A are so in the integral A by A and A are so in the integral A by A and A are relations on A defined by A and A are so in the integral A by A and A are relations on A defined by A and A are so in the integral A by A and A are relations on A defined by A and A are relations on A defined by A and A are relations on A defined by A and A are relations on A defined by A and A are relations on A defined by A and A are relations on A defined by A and A are relations on A defined by A and A are relations on A defined by A and A are relations on A defined by A and A are relations on A defined by A and A are relations on A defined by A and A are relations on A defined by A and A are relations on A defined by A and A are relations on A defined by A and A are relations on A defined by A and A are relations on A defined by A and A are relations on A defined by A and A are relations on A defined by A are relations on A defined by A and A are relations on A defined by A and A are relations on A defined by A and A are relations on A defined by A and A are relations on A defined by A and A are relations on A defined by A are relations on A are relation	
∴ Anil is not in second semester. 5 a If $f: A \rightarrow B$, $g: B \rightarrow C$, $h: C \rightarrow D$ then show that $(h \circ g)$ of $= h \circ (g \circ f)$. b If $A = \{1,2,3,4\}$ and R,S are relations on A defined by $R = \{(1,2)(1,3)(2,4)(4,4)\}$ $S = \{(1,1)(1,2)(1,3)(1,4)(2,3)(2,4)\}$. Find $R \circ S$, $S \circ R$, R^2 and S^2 . C Draw the Hasse diagram for all positive integer divisors of 72. Also write R. OR 6 a Find the lower and upper bounds of the subsets $\{a,b,c\}$; $\{i,h\}$ and	
If $f: A \rightarrow B, g: B \rightarrow C, h: C \rightarrow D$ then show that $(h \circ g) \circ b = h \circ (g \circ f)$. If $A = \{1,2,3,4\}$ and R,S are relations on A defined by $R = \{(1,2)(1,3)(2,4)(4,4)\}$ $S = \{(1,1)(1,2)(1,3)(1,4)(2,3)(2,4)\}$. Find $R \circ S, S \circ R, R^2$ and S^2 . Draw the Hasse diagram for all positive integer divisors of 72. Also write R. OR Find the lower and upper bounds of the subsets $\{a,b,c\}$; $\{i,h\}$ and	2
$R \circ S$, $S \circ R$, R^2 and S^2 . Draw the Hasse diagram for all positive integer divisors of 72. Also write R. OR Find the lower and upper bounds of the subsets $\{a, b, c\}$; $\{i, h\}$ and	
OR Find the lower and upper bounds of the subsets $\{a, b, c\}$; $\{i, h\}$ and	3
Find the lower and upper bounds of the subsets $\{a, b, c\}$; $\{i, h\}$ and	
$\{a,c,d,f\}$ in the poset with Hasse diagram shown in Fig 6a. Also find the glb and lub of $\{b,d,g\}$.	
Fig 6a 08 3	2
b Let $f: R \to R$ be define by $f(x) = \begin{cases} 3x - 5 & \text{if } x > 0 \\ -3x + 1 & \text{if } x \le 0 \end{cases}$. Find $f^{-1}(1)$ and $04 = 3$	3
c If R is a relation on $A = \{1,2,3,4\}$ define by xRy if x divides y. Prove that (A,R) is a poset. $\begin{vmatrix} 04 & 3 \\ 04 & 2 \end{vmatrix}$	2
7 a If \circ is an operation on Z define by $x \circ y = x + y + 1$. Prove that $(G.\circ)$	
is an Abelian group. b Prove that	3
i) Identity element in a group is unique ii) Inverse of each element in a group is unique 04 2	

С	The encoding function $E = Z_2^2 \rightarrow Z_2^5$ is given by the generator matrix $G = \begin{bmatrix} 1 & 0 & 1 & 1 & 1 \\ 0 & 1 & 1 & 0 \end{bmatrix}$ i) Find associated parity check matrix H ii) Determine all code words iii) Find decoded word for received msq $\begin{bmatrix} 1 & 1 & 1 & 0 & 1 \end{bmatrix}$ iv) What is error detection and correction capability.	07	4	4	
	OR				
8 a	Define the encoding function $E: \mathbb{Z}_2^3 \to \mathbb{Z}_2^6$ by means of the parity – check matrix	04	2	2	
С	$H = \begin{bmatrix} 1 & 0 & 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 & 0 & 1 \end{bmatrix}$ Determine all code words. State and prove Lagrange's theorem. Find the right cosets of $H = \{1, -1\}$ in multiplicative group of fourth root of unity.	05	3 2	3	3
9 a	Define Isomorphic and show that G_1 is isomorphic to G_2 .				
b	Explain the Konigsberg – Bridge problem.	08		3 4	3 4
	OR				
10 a	If a tree has four vertices of degree 2, one vertex of degree 3, two of degree 4 and one of degree 5, how many pendant vertices doe it have?	5	8	2	2
b	Prove the following for the graph $G = (V, E)$ i) $\sum_{vtV} \deg(V) = 2 E $ ii) The number of vertices of odd degree must be even.	C)8	2	2