Data Science and Artificial Intelligence Probability and Statistics

Bivariate Random Variable

Lecture No.-08

Topics to be Covered

Topic

Question Based on Bivariate Continuous Random Variable Parobability computer + Data + Concept Leasn (Vndergraduate) Bayes. Inly + quadrate + Pand C

Topic: Question Based on Bivariate Continuous Random Variables

Marginal PMF = discrete Rando

The joint probability distribution of two random variables X and Y is given by: Q1.

$$P[X=xi, Y=Y;] = \text{font } PMF = P[X=xi, Y=Y;]$$

$$P(X=0, Y=1) = \frac{1}{3}, \quad P(X=1, Y=-1) = \frac{1}{3}, \text{ and } P(X=1, Y=1) = \frac{1}{3},$$
Find
$$marginal \quad PMF \quad fn \quad X$$
(i) Marginal distributions of X and Y, and
$$P_{X}[x] = \sum_{i} P[X=Xi, Y=Y; i]$$

- (ii) The conditional probability distribution of X given Y = 1.

X=0,1,-1 P[x=0, x=1]== $P[X=1, Y=-1] = \frac{1}{3}$ (0,0) P[x=1, Y=1]=1 X and y bivariate Distrete

$$P\left[\frac{X=X_{i}}{Y=1}\right] = P\left[\frac{X=-1}{Y=1}\right] = P\left[\frac{X=-1 \land Y=1}{P[Y=1]}\right]$$

$$X=-1,0,1$$

$$Y=\Phi$$

$$Y=\Phi$$

$$Y=\Phi$$

$$Y=1$$

$$Y=1$$

$$Y=1$$

$$X=-1,0,1$$
 $P(\frac{A}{B})$ Equien

Topic: Question Based on Bivariate Continuous Random Variables

PMF

Q2. For the joint probability distribution of two random variables X and Y given

below.		
Find:		

- (i) The marginal distributions of X and Y, and
- (ii) Conditional distribution of X given the value of Y=1 and that Y given the

						1
XY	1	2	3	4	Total	_
1	4 36	$\frac{3}{36}$	² / ₃₆	$\frac{1}{36}$	$\frac{10}{36}$	P(X
2	$\frac{1}{36}$	$-\frac{3}{36}+$	$\frac{3}{36}$ +	$\frac{2}{36}$	$\left(\frac{9}{36}\right)$	P(x=
3,	$\left(\frac{5}{36}\right)$	$\frac{1}{36}$	$\frac{1}{36}$	$\frac{1}{36}$	$\frac{8}{36}$	P X=
4	$\frac{1}{36}$	2 71 18-21	1 36 1423	5 36 Plys	9 36	Plx=
Total	$\frac{11}{36}$	9 36	$\frac{7}{36}$	$\frac{9}{36}$	1	

Doyourself

Topic: Question Based on Bivariate Continuous Random Variables

Q3. The joint probability density function of a two-dimensional random variable

(X, Y) is given by
$$f(x, y) = \begin{cases} 2; & 0 < x < 1, & 0 < y < x; \\ 0, & elsewhere \end{cases}$$

$$\begin{cases} (x, y) = \begin{cases} 2; & 0 < x < 1, & 0 < y < x; \\ 0, & elsewhere \end{cases}$$

- (i) Find the marginal density functions of X and Y.
- (ii) Find the conditional density function of Y given X = x and conditional density function of X given Y = y.
 - (iii) Check for independence of X and Y.

marginal density Function $f_{X}(x) = \int_{-\infty}^{\infty} f_{X} \chi(x,y) dy$ $Lfr(y) = \int_{-\infty}^{\infty} f_{x}r(x,y) dx.$ conditional f(x,y) = f(x,y) $f_{xy}\left(\frac{x}{y}\right) = f_{xy}\left(\frac{x}{x},y\right)$

 $fx(x) = \int fxy(x,y)dy$ Marginal density function X $\begin{cases}
\frac{\nabla \langle x \langle y \rangle}{\nabla \langle y \langle x \rangle} = \int_{-\infty}^{\infty} f(x,y) dy.$ Marginal f(x)Starfordal Marginal f(x)Starfordal f(x) f(x) f(x) f(x)marginal density function ?. y=x (x=1 $f_{\gamma}(y) = \int_{0}^{\infty} f_{\chi\gamma}(x,y) dx$ = \(\frac{1}{2} dx = \frac{2(1-y)}{}

Horizontal allewed X=D x= Vertical Stemp! 4-2 AX=

$$\frac{f\left(\frac{\gamma}{x}\right)}{f_{x}(x)} = \frac{f_{x}(x,\gamma)}{f_{x}(x)} = \frac{2}{2x} = \frac{1}{x} \quad \underline{\nu(x<1)}$$

$$f_{xy}\left(\frac{x}{y}\right) = \frac{f_{x}(x,\gamma)}{f_{y}(x,\gamma)} = \frac{2}{2(1-\gamma)} = \frac{1}{(1-\gamma)} \quad \underline{\gamma(x<1)}$$

both are independent

both are modependent
$$\frac{\int xy(x,y) = \int x(x) \int_{Y} (y) \int marginal}{\int xy(x,y) = \int x(x) \int_{Y} (y) \int marginal}$$
Not
Independent $\lim_{x \to \infty} \int \frac{\int xy(x,y)}{\int xy(y)} = \lim_{x \to \infty} \int \frac{\int xy(x,y)}{\int xy(y)} = \lim_{x \to \infty} \int \frac{\int xy(x,y)}{\int xy(y,y)} = \lim_{x \to \infty} \int \frac{\int xy(x,y)}{\int xy(x,y)} = \lim_{x \to \infty} \int \frac{\int xy(x,y)}{\int xy(x,y)} = \lim_{x \to \infty} \int \frac{\int xy(x,y)$

Topic: Question Based on Bivariate Continuous Random Variables

Q4.

The joint p.d.f. of two random variables X and Y is given by:
$$f(x,y) = \begin{cases} k; & x^2 \le y \le x, \ 0 < x < 1 \end{cases}$$

$$f(x,y) = \begin{cases} k; & x^2 \le y \le x, \ 0 < x < 1 \end{cases}$$

$$f(x,y) = \begin{cases} k; & x^2 \le y \le x, \ 0 < x < 1 \end{cases}$$

$$f(x,y) = \begin{cases} k; & x^2 \le y \le x, \ 0 < x < 1 \end{cases}$$

$$f(x,y) = \begin{cases} k; & x^2 \le y \le x, \ 0 < x < 1 \end{cases}$$

$$f(x,y) = \begin{cases} k; & x^2 \le y \le x, \ 0 < x < 1 \end{cases}$$

$$f(x,y) = \begin{cases} k; & x^2 \le y \le x, \ 0 < x < 1 \end{cases}$$

$$f(x,y) = \begin{cases} k; & x^2 \le y \le x, \ 0 < x < 1 \end{cases}$$

$$f(x,y) = \begin{cases} k; & x^2 \le y \le x, \ 0 < x < 1 \end{cases}$$

$$f(x,y) = \begin{cases} k; & x^2 \le y \le x, \ 0 < x < 1 \end{cases}$$

$$f(x,y) = \begin{cases} k; & x^2 \le y \le x, \ 0 < x < 1 \end{cases}$$

$$f(x,y) = \begin{cases} k; & x^2 \le y \le x, \ 0 < x < 1 \end{cases}$$

$$f(x,y) = \begin{cases} k; & x^2 \le y \le x, \ 0 < x < 1 \end{cases}$$

$$f(x,y) = \begin{cases} k; & x^2 \le y \le x, \ 0 < x < 1 \end{cases}$$

$$f(x,y) = \begin{cases} k; & x^2 \le y \le x, \ 0 < x < 1 \end{cases}$$

$$f(x,y) = \begin{cases} k; & x^2 \le y \le x, \ 0 < x < 1 \end{cases}$$

$$f(x,y) = \begin{cases} k; & x^2 \le y \le x, \ 0 < x < 1 \end{cases}$$

- Find: (i) k, $\sqrt{f_x(x)}$, $f_7(y)$
 - (ii) The marginal p.d.f.'s of X and Y.
 - (iii) The conditional p.d.f of X given Y = y and of Y given X = x.

$$\int f_{x}(x) = 6(x-x^{2}) o(x<1)$$

 $\int f_{y}(x) = 6(x-x^{2}) o(x<1)$

$$f_{xy}\left(\frac{x}{y}\right) = \frac{f_{xy}(x,y)}{f_{y}(y)} = \frac{1}{\sqrt{y}-y}$$

$$f_{xy}\left(\frac{y}{x}\right) = \frac{f_{xy}(x,y)}{f_{x}(x)} = \frac{1}{\sqrt{x-n^2}}$$

dy (24-22)

THANK - YOU