Estimação de Matrizes OD - Revisão Bibliográfica

Carlos Miguel Moreira Gonçalves

Simulação de Tráfego

Coleta de Artigos

- Foram coletados 53 artigos do Google Scholar
 - Utilizando a tag "origin destination matrix estimation";
 - Não foram selecionados artigos que usavam informações além do fluxo ou tempo;
 - Foram recolhidos artigos até a 3 página pelo crítério de título;
 - Foram coletados artigos nas seguintes faixas: até 2000, 2000 a 2010 e 2010 até atual;
 - 11 foram descartados após a lida.

- A pesquisa atual sobre estimação de ODs não foca mais em algoritmos.
- Em 2010 houve a chegada do ML na estimação
- Dificuldade em pesquisar o que eu exatamente quero;
- Parece que a estimação de ODs evoluiu separado de TA

Principais Métodos de Estimação de Matrizes OD Utilizando Fluxo na Rede

1. Método de Entropia Máxima (ME)

- Baseado na teoria da informação.
- Maximiza a entropia sujeita a restrições de fluxo observadas.

2. Método de Mínimos Quadrados (LS)

- Minimiza a soma dos quadrados das diferenças entre os fluxos observados e estimados.
- Simples e eficiente, mas pode n\u00e3o capturar bem a variabilidade dos dados.

Principais Métodos de Estimação de Matrizes OD Utilizando Fluxo na Rede

3. Método do Gradiente (Network Equilibrium)

- Baseado na teoria de equilíbrio de tráfego.
- Assume que os motoristas escolhem rotas para minimizar o tempo de viagem.

4. Método de Máxima Verossimilhança (ML)

- Maximiza a probabilidade dos fluxos observados dados os parâmetros do modelo.
- Requer uma boa modelagem estatística dos dados.

Método de Máxima Verossimilhança

Admite-se que T_i segue uma distribuição de Poisson com parâmetro $\lambda = p_i imes \hat{T}_i.$

A função de verossimilhança para uma distribuição de Poisson é dada por:

$$L(p_i imes\hat{T}_i;T_i) = \prod_{i=1}^n rac{e^{-p_i imes\hat{T}_i}(p_i imes\hat{T}_i)^{T_i}}{T_i!}$$

Para maximizar a verossimilhança, tomamos o logaritmo da função de verossimilhança:

$$\min \log L(p_i imes \hat{T_i}; T_i) = \sum_{i=1}^n \left(p_i imes \hat{T_i} - T_i \log(\hat{T_i})
ight)$$

$$\sum_{i=1}^n \delta_{i,a} T_i = v_a$$

onde $\delta_{i,a}$ é uma variável indicadora que vale 1 se a OD i contribui para o arco a e 0 caso contrário, e v_a é o fluxo observado no arco a.

Método de Lagrange

Para resolver o problema de estimação de matrizes OD utilizando o método de Lagrange, introduzimos multiplicadores de Lagrange λ_a para cada restrição de fluxo observada.

A função Lagrangiana é dada por:

$$\mathcal{L}(p_i imes \hat{T}_i, \lambda_a) = \log L(p_i imes \hat{T}_i; T_i) + \sum_a \lambda_a \left(\sum_{i=1}^n \delta_{i,a} T_i - v_a
ight)$$

Passo 0

- Inicialize $\lambda_a \leftarrow 0, a \in A$.
- ullet Defina $s_i \leftarrow
 ho_i, i \in I.$

Passo 1

Para cada $a \in A$:

1. Calcule

$$d_a^{\min} = -\min_{i \in I, \; n_{ia} > 0} rac{s_i}{n_{ia}}$$

e defina I^\prime como o conjunto de pares O-D para os quais este mínimo é atingido.

Passo 1 (continuação)

2. Se $I'\subset I^o$ e

$$\sum_{i \in I^+} rac{n_{ia}t_i}{s_i + n_{ia}d_a^{\min}} \leq V_a$$

então defina $d_a \leftarrow d_a^{\min}$,

senão encontre $d_a>d_a^{\min}$ que satisfaça:

$$\sum_{i\in I^+}rac{n_{ia}t_i}{s_i+n_{ia}d_a}=V_a$$

Passo 1 (continuação)

3. Atualize:

$$\circ \lambda_a \leftarrow \lambda_a + d_a$$

$$\circ \; s_i \leftarrow s_i + n_{ia} d_a, \quad i \in I.$$

Passo 2

Se $||d|| > \epsilon$, volte ao **Passo 1**.

Caso contrário, compute:

$$T_i^* = rac{t_i}{s_i}, \quad ext{para todos } i \in I ext{ com } s_i > 0.$$

Passo 3

Para $i \operatorname{com} s_i = 0$, resolva o seguinte sistema linear:

$$\sum_{i\in I,\;s_i=0}n_{ia}T_i=V_a-\sum_{i\in I^+}n_{ia}T_i^*,\quad a\in A.$$

Com as condições:

ullet $T_i \geq 0$ para todos $i \in I^o$ com $s_i = 0$.

- 1. Esse problema matemático é convexo;
- 2. Precisa saber a priori uma estimativa da matriz OD.
- 3. Precisa-se saber, quando foi proposto, da matriz $n_{i,a}$

Aerde, Michel Van, Hesham Rakha, and Harinarayan Paramahamsan. "Estimation of origin-destination matrices: Relationship between practical and theoretical considerations." Transportation Research Record 1831.1 (2003): 122-130.

Método do Gradiente

$$Z(\hat{T}) \; = \; rac{1}{2} \, \sum_{a \in \hat{A}} ig[v_a(\hat{T}) - \hat{v}_a ig]^2,$$

- $oldsymbol{\hat{T}}$: vetor de demandas OD (para todos os pares Origem-Destino $i \in I$).
- $v_a(g)$: volume estimado no link a quando se atribui g.
- \hat{v}_a : volume observado no link a.
- \hat{A} : conjunto de links com contagem observada.

Para cada par OD i, podemos ter um conjunto de rotas k. O volume em cada link a:

$$v_a \ = \ \sum_{i \in I} \sum_{k \in K_i} \delta_{ak} \, h_k,$$

onde:

- $\delta_{ak}=1$ se o link a pertence à rota k, e 0 caso contrário.
- h_k : fluxo na rota k.

Se definirmos a **probabilidade** de rota $p_k = h_k/g_i$, obtemos:

$$v_a \ = \ \sum_{i \in I} g_i \sum_{k \in K_i} \delta_{ak} \, p_k.$$

O gradiente de Z em relação à demanda g_i :

$$rac{\partial Z}{\partial g_i} \, = \, \sum_{a \in \hat{A}} rac{\partial v_a}{\partial g_i} ig[v_a - \hat{v}_a ig].$$

Supondo p_k localmente constantes (isto é, não variam instantaneamente com g_i), temos:

$$rac{\partial v_a}{\partial g_i} \ = \ \sum_{k \in K_i} \delta_{ak} \, p_k.$$

Logo,

$$rac{\partial Z}{\partial g_i} \ = \ \sum_{a \in \hat{A}} \sum_{k \in K_i} \delta_{ak} \, p_k \, ig[v_a - \hat{v}_a ig].$$

Para cada iteração ℓ , queremos atualizar g_i no **sentido** de maior declive negativo.

Forma multiplicativa (evita alterar zeros e considera variação percentual):

$$g_i^{(\ell+1)} \ = \ g_i^{(\ell)} \Big(\, 1 \ - \ \lambda^{(\ell)} \, rac{\partial Z}{\partial g_i} \Big),$$

onde $\lambda^{(\ell)}$ é o **tamanho de passo** a ser escolhido na iteração ℓ .

Para achar o **tamanho de passo ótimo** λ , precisamos do valor $v_a' = \frac{d\,v_a}{d\,\lambda}$.

Pelo critério da regra da cadeia:

$$v_a' \ = \ rac{d\,v_a}{d\,\lambda} \ = \ \sum_{i\in I} rac{d\,g_i}{d\,\lambda} \ rac{\partial v_a}{\partial g_i}.$$

Como
$$rac{d\,g_i}{d\,\lambda} = -\,g_i\,rac{\partial Z}{\partial\,q_i}$$

na direção de descida multiplicativa, obtemos:

$$egin{array}{lll} v_a' &=& -\sum_{i\in I} g_i \Bigl(\sum_{k\in K_i} \delta_{ak}\, p_k\Bigr) \Bigl(\sum_{a'\in \hat{A}} \delta_{a'k} \left[v_{a'} - \hat{v}_{a'}
ight]\Bigr). \end{array}$$

Queremos minimizar Z ao longo da direção de descida. A derivada de Z em função de λ :

$$rac{d\,Z(\lambda)}{d\,\lambda} = \sum_{a\in\hat{A}} v_a' \Big([v_a - \hat{v}_a] + \lambda\,v_a' \Big).$$

Encontrando o ponto ótimo λ^* (onde esta derivada se anula):

$$\lambda = rac{\sum_{a \in A} v_a' (\hat{v_a} - v_a)}{\sum_{a \in A} v_a'^2}$$

- 1. Inicia com $g^{(0)}$ (matriz OD inicial).
- 2. Atribui na rede ightarrow obtém $v_a^{(\ell)}$.
- 3. Calcula $\frac{\partial Z}{\partial q_i}$ para cada i.
- 4. Estima $\lambda^{(\ell)}$ usando a fórmula acima.
- 5. Atualiza $g_i^{(\ell+1)}=g_i^{(\ell)}ig[1-\lambda^{(\ell)}\,rac{\partial Z}{\partial g_i}ig].$
- 6. Repete até convergência ou limite de iterações.

- 1. Dependência de da posição inicial
- 2. Custo Computacional
- 3. Problema mal posto
- 4. Admite equilíbrio

GLS

- ullet Objetivo: Estimar a matriz Origem-Destino ${f t}$ a partir de:
 - 1. **Estimativa prévia** au (vinda de pesquisa ou modelo), com covariância $extbf{V}$.
 - 2. Contagens de tráfego \mathbf{f}_{obs} em links da rede, com covariância \mathbf{W} .
 - 3. Assignment (matriz \mathbf{A} relacionando \mathbf{t} e os fluxos).

2. Relação entre as Variáveis

A relação entre au, \mathbf{f}_{obs} e \mathbf{t} é dada por:

1.
$$oldsymbol{ au}=\mathbf{t}+\mathbf{c}$$
, onde $\mathrm{E}[\mathbf{c}]=oldsymbol{\mu}\,\mathrm{e}\,\mathrm{Var}(\mathbf{c})=\mathbf{V}.$

2.
$$\mathbf{f}_{obs} = \mathbf{A} \, \mathbf{t} + \boldsymbol{\varepsilon}$$
, onde $\mathrm{E}[\boldsymbol{\varepsilon}] = \boldsymbol{\delta} \, \mathrm{e} \, \mathrm{Var}(\boldsymbol{\varepsilon}) = \mathbf{W}$.

3. Sistema Linear Estocástico

Juntamos as observações $oldsymbol{ au}$ e \mathbf{f}_{obs} no seguinte sistema linear:

$$egin{pmatrix} oldsymbol{ au} & oldsymbol{ a$$

4. Função-Objetivo do GLS

A função-objetivo do GLS é minimizar a diferença ponderada entre as observações e a estimativa de ${f t}$:

$$(\mathbf{y} - \mathbf{X}\mathbf{t})^{ op} \mathbf{B}^{-1} (\mathbf{y} - \mathbf{X}\mathbf{t}),$$

onde
$$\mathbf{y} = egin{pmatrix} oldsymbol{ au} \\ \mathbf{f}_{obs} \end{pmatrix}$$
 e $\mathbf{X} = egin{pmatrix} \mathbf{I} \\ \mathbf{A} \end{pmatrix}$.

5. Solução Fechada

A solução do estimador GLS para **t** é dada por:

$$\hat{\mathbf{t}} = \left(\mathbf{V}^{-1} + \mathbf{A}^{\top} \mathbf{W}^{-1} \mathbf{A}\right)^{-1} \left(\mathbf{V}^{-1} \boldsymbol{\tau} + \mathbf{A}^{\top} \mathbf{W}^{-1} \mathbf{f}_{obs}\right).$$

6. Viés e Covariância

- **Viés**: Se $\mu \neq \mathbf{0}$ ou $\delta \neq \mathbf{0}$, o estimador pode ser viesado.
- Covariância: A variância do estimador é dada por:

$$\operatorname{Var}(\hat{\mathbf{t}}) = \left(\mathbf{V}^{-1} + \mathbf{A}^{\top} \mathbf{W}^{-1} \mathbf{A}\right)^{-1}.$$

7. Vantagens do GLS

- 1. **Integração de informações**: Combina estimativas prévias e contagens de tráfego de forma eficiente.
- 2. **Flexibilidade**: Não depende de uma distribuição específica (como Poisson), apenas das matrizes de covariância ${\bf V}$ e ${\bf W}$.
- 3. **Fórmula direta**: Oferece uma solução fechada para $\hat{\mathbf{t}}$ quando o assignment é simples.

8. Desvantagens do GLS

- 1. **Necessidade de estimar V e W**: Essas matrizes podem ser difíceis de estimar corretamente.
- 2. **Viés**: O estimador pode ser viesado se a estimativa prévia τ ou a matriz de assignment $\mathbf A$ forem imprecisas.
- 3. **Assignment não linear**: Se o assignment depender da própria O-D (equilíbrio de tráfego), o modelo se torna não linear.

Máxima Entropia

$$\max \sum_{r,s} \left(x_{rs} \ln(x_{rs}) - x_{rs}
ight)$$

$$\sum_{k \in K_{rs}} f_{k_{rs}} \delta_{a,k} = v_a \quad orall a \in A \quad f_{k_{rs}} \geq 0$$

- $f_{k_{rs}}$: Fluxo de caminho (k) entre (r) e (s).
- v_a : Fluxo observado no link (a).
- x_{rs} é o número de viagens entre os pares origem (r) e destino (s).

Passos Detalhados do Algoritmo

1. Inicialização:

- \circ Definir uma matriz O-D inicial x_{rs}^0 .
- \circ A inicialização pode ser feita atribuindo $x_{rs}=\hat{v}_a$ para os links da sub-rede, e $x_{rs}=0$ para os outros pares origem-destino (r,s).

 Resolver o problema linearizado do modelo de Máxima Entropia (ME):

$$\min \sum_{r,s} \left(\sum_{k \in K_{rs}} f_{k_{rs}} \ln f_{k_{rs}} - f_{k_{rs}}
ight)$$

Sujeito a:

$$\sum_{k \in K_{rs}} f_{k_{rs}} \delta_{a,k} = \hat{v}_a \quad orall a \in A$$

Onde $f_{k_{rs}}$ é o fluxo do caminho k entre os pares O-D (r,s), e $\delta_{a,k}$ é o indicador de incidência do link a no caminho k.

3. Busca de Linha:

 \circ Encontre o valor ótimo de α (um parâmetro de mistura) resolvendo:

$$\min \left(\sum_{r,s} \left(x_{rs} \ln x_{rs} - x_{rs}
ight) + lpha \sum_{r,s} \left(y_{rs} \ln y_{rs} - y_{rs}
ight)
ight)$$

Aqui, y_{rs} é a matriz auxiliar de viagens obtida no Passo 1.

4. Atualização da Solução:

 \circ Atualize a matriz O-D x_{rs} com base no valor de α :

$$x_{rs}^{n+1} = x_{rs}^n + lpha(y_{rs} - x_{rs}^n)$$

Onde x_{rs}^n é a matriz O-D na iteração n, e y_{rs} é a solução auxiliar obtida no Passo 1.

5. Teste de Convergência:

 Verifique se a solução convergiu, ou seja, se a mudança entre as iterações foi suficientemente pequena:

$$\|x_{rs}^{n+1}-x_{rs}^n\|<\epsilon$$

Caso o critério de convergência seja atendido, pare. Caso contrário, retorne ao Passo 1.

Vantagens

- Eficiência Computacional: Evita a enumeração completa de caminhos, usando geração de colunas.
- **Escalabilidade**: Adequado para redes grandes, com muitos nós e links.
- Solução Viável: Sempre gera uma solução viável, desde que haja dados de fluxo.

Desvantagens

- Dependência de Fluxos Precisos: A precisão depende dos dados de fluxo nos links.
- Complexidade em Redes Muito Grandes: A busca de caminhos curtos pode ser um gargalo em redes muito grandes.
- Não Considera Custos de Viagem: Não incorpora explicitamente variáveis de custo de viagem, como tempo ou congestionamento.
- Matriz de Incidência: Necessita saber a priori.

Modelagens recentes

Modelagens mistas

$$F(g,v) = \gamma_1 \mathbf{F}_1(g,\hat{g}) + \gamma_2 \mathbf{F}_2(v,\hat{v})$$

- Modelagens com Machine Leraning
- Metaheruísticas

Modelagem de Matrizes OD com ML

- Utilização de técnicas de Machine Learning para estimar matrizes
 OD.
- Aplicação de modelos como Redes Neurais, Regressão, e Árvores de Decisão.
- Integração de dados de diversas fontes, como sensores de tráfego e dados de GPS.
- Melhoria na precisão das estimativas em comparação com métodos tradicionais.
- Capacidade de adaptação a diferentes cenários e condições de tráfego.

- Divide a matriz OD em dois tensores (R e C) que representam características latentes de origens e destinos.
- Modela a sequência temporal desses tensores usando redes recorrentes (GRU/LSTM) combinadas com convolução em grafos (GCNN).
- Reconstrói a matriz OD multiplicando R e C, depois usa softmax para normalizar e obter histogramas de probabilidade.

Hu, Jilin, et al. "Stochastic origin-destination matrix forecasting using dual-stage graph convolutional, recurrent neural networks." 2020 IEEE 36th International conference on data engineering (ICDE). IEEE, 2020.

- ullet Cada matriz $M^{(t)}$ é fatiada por origem ou destino.
- Aplicamos GCNN com matrizes de adjacência (W, W') para considerar vizinhança espacial.
- Geramos tensores menores **R** e **C** que capturam características latentes.
- Substituímos as camadas totalmente conectadas de uma GRU por **filtros de convolução em grafos**.
- Cada iteração da GRU considera vizinhos das regiões, explorando dependências espaciais e temporais.

Hu, Jilin, et al. "Stochastic origin-destination matrix forecasting using dual-stage graph convolutional, recurrent neural networks." 2020 IEEE 36th International conference on data engineering (ICDE). IEEE, 2020.

- Para cada passo futuro (t+h):
 - 1. Previsão de $\widehat{R}^{(t+h)}$ e $\widehat{C}^{(t+h)}$ pela GCNN-RNN.
 - 2. Multiplicação: $\widetilde{M}^{(t+h)} = \widehat{R}^{(t+h)} imes \widehat{C}^{(t+h)}$.
 - 3. **softmax** para garantir que cada célula seja um histograma (probabilidades somando 1).

Hu, Jilin, et al. "Stochastic origin-destination matrix forecasting using dual-stage graph convolutional, recurrent neural networks." 2020 IEEE 36th International conference on data engineering (ICDE). IEEE, 2020.

- t: vetor ou matriz de viagens OD reais (a desconhecida).
- $\bar{\mathbf{t}}$: estimativa inicial (alvo).
- **f**: fluxos em cada link resultantes de \$ \mathbf{t} \$.
- $\overline{\mathbf{f}}$: contagens de tráfego medidas em alguns links.
- ullet Custo no link ℓ : $c_\ell = c_\ell(f_\ell)$.
- Equilíbrio (por exemplo, SUE Stochastic User Equilibrium):
 - \circ Fração de ${f t}$ que escolhe um caminho k depende de c_k .
 - \circ **f** é resultado da soma de fluxos de todos os caminhos e OD.

Minimizar uma medida de desvio entre: ${f t}$ e $ar{f t}$ e ${f f}$

Por exemplo, via Mínimos Quadrados Generalizados (GLS):

$$\min_{\mathbf{x} \geq 0} \ (\mathbf{x} - \overline{\mathbf{t}})^\mathsf{T} V^{-1} (\mathbf{x} - \overline{\mathbf{t}}) \ + \ (\overline{\mathbf{f}} - \mathbf{f}(\mathbf{x}))^\mathsf{T} W^{-1} (\overline{\mathbf{f}} - \mathbf{f}(\mathbf{x})).$$

- $\mathbf{f}(\mathbf{x})$ requer resolver o equilíbrio (pois $\mathbf{c} = \mathbf{c}(\mathbf{f})$).
- Logo, a solução final \mathbf{t}^* satisfaz um **ponto fixo**: $\mathbf{t}^* = T[\mathbf{f}(\mathbf{t}^*)]$, isto é, "atribuindo \mathbf{t}^* na rede (equilíbrio), e voltando ao problema de mínimos quadrados, obtemos de novo \mathbf{t}^* ".

- 1. Dado $\mathbf{t}^{(k-1)}$, resolva o **equilíbrio** (DUE/SUE)
 - \circ Obtenha $\mathbf{f}^{(k)}$ e custos $\mathbf{c}^{(k)}$.
- 2. Resolva o subproblema de mínimos quadrados (ou outro critério) fixando a matriz de atribuição do passo anterior.
 - \circ Obtenha $\mathbf{t}^{(k)}$.
- 3. Se $\|\mathbf{t}^{(k)} \mathbf{t}^{(k-1)}\|$ < tolerância, parar. Caso contrário, repetir.

- Iniciar: k=0 e ${f t}^{(0)}=ar{f t}$.
- Resolver a atribuição (SUE) para $\mathbf{t}^{(0)}$. Obter $\mathbf{f}^{(0)}, \mathbf{c}^{(0)}, H^{(0)}$.
- Resolver:

$$\mathbf{x}^{(k)} = rg\min_{\mathbf{x} \geq 0} ig[F_1(\mathbf{x}, \mathbf{ar{t}}) + F_2(H^{(k-1)}\,\mathbf{x}, \mathbf{ar{f}})ig].$$

- Definir $\mathbf{t}^{(k)} = \mathbf{x}^{(k)}$.
- ullet Atribuir ${f t}^{(k)}
 ightarrow$ resolver SUE, obter ${f f}^{(k)}$ e $H^{(k)}$.
- ullet Se convergiu, parar. Senão, $k \leftarrow k+1$ e repetir.

- Resolver o subproblema e obter $\mathbf{x}^{(k)}$.
- Fazer uma média com $\mathbf{t}^{(k-1)}$:

$$\mathbf{t}^{(k)} = lpha_k \, \mathbf{x}^{(k)} + (1 - lpha_k) \, \mathbf{t}^{(k-1)},$$

onde geralmente $lpha_k=rac{1}{k}$ ou outra sequência decrescente.

3. Atribuir $\mathbf{t}^{(k)}$, etc.