Web Intelligence Similarity Measures

Previously ...

- Similarity is a key ingredient of Recommender Systems
 - And of several other Web Mining Tools ...
- There are several similarity measures we can chose from
- The best depends on the specific task
 - We might need to design a new measure for new task
 - Are the vector pairs below equally similar?

We will see that dimensionality is an issue

Minkowski distances

• Given two N-dimensional objects X and Y, where $X = [x_0, ..., x_{N-1}]$ and $Y = [y_0, ..., y_{N-1}]$

$$d(X,Y) = \sqrt[q]{|x_0 - y_0|^q + |x_1 - y_1|^q + \dots + |x_{N-1} - y_{N-1}|^q}$$

$$= \sqrt[q]{\sum_{0 \le i < N} |x_i - y_i|^q}$$

Euclidean Distance

• If $q=2, L_2$ norm or *Euclidean Distance*:

$$d(X,Y) = \sqrt[2]{|x_0 - y_0|^2 + |x_1 - y_1|^2 + \dots + |x_{N-1} - y_{N-1}|^2}$$

- It defines a metric space:
 - d(X,Y) >= 0

(Positivity)

• d(X,Y) = d(Y,X) (Symmetry)

d(X,Y) <= d(X,Z) + d(Z,Y) (Triangular inequality)

Same distance from A

Manhattan Distance

• If $q=1, L_1$ norm or *Manhattan* or *City-Block*:

$$d(X,Y) = |x_0 - y_0| + |x_1 - y_1| + \ldots + |x_{N-1} - y_{N-1}|$$

Same distance from A

Chebyshev Distance

• If $q \rightarrow \infty$, L_{∞} norm or Chebyshev, Chessboard Distance:

$$d(X,Y) = \max_{i} |x_i - y_i|$$

same distance from A

Chessboard Distance

Binary Vectors

- Document representation
 - Document X = [0,1,0,1,0,1,0,1,1,1]
 - Document Y = [1,0,1,1,1,0,1,0,1,1]
 - X[i] = 1 iff the *i*-th term occurs in X

Contingency table:

	Λ			
		1	0	sum
Y	1	q	r	q+r
	0	S	t	s+t
	sum	q+s	r+t	p

V

- Jaccard: $X \cap Y/(X \cup Y)$ or q/(q+r+s)
- Simple matching: (q+t)/p
- Entries of the contingency table can be weighted as needed

Cosine Similarity

- Document representation
 - Document X = [0,0,0,3,0,5,0,14,7,9]
 - Document Y = [1,0,2,2,4,0,10,0,3,11]
 - X[i] is the number of times the i-th term occurs in X

$$\cos(X, Y) = \frac{X \cdot Y}{\|X\|_2 \|Y\|_2}$$
$$= \frac{\sum x_i y_i}{\sqrt{\sum x_i^2} \sqrt{\sum y_i^2}}$$

Pearson Correlation

- Linear dependency between variables
 - Does X increase when Y increases ?
 - Is there any correlation between income and degree ?
- Standardize and multiply:

$$X_{i} = \frac{x_{i} - \overline{X}}{\sqrt{\sum (x_{i} - \overline{X})^{2}}} \qquad Y_{i} = \frac{y_{i} - \overline{Y}}{\sqrt{\sum (y_{i} - \overline{Y})^{2}}}$$

$$\rho(X,Y) = \sum X_i Y_i$$

Correlation plots

Standardization?

- Most data has Gaussian Distribution:
 - Average height of people
 - Error in measurements
 - [Central Limit Theorem]

$$f(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{\frac{-(x-\mu)^2}{2\sigma^2}}$$

- 68.2% of points is at distance at most one standard deviation from the mean
- 95,5% of points is at distance at most two standard deviation from the mean
- ${\bf \cdot}$ Standardization is a normalization technique $~X_i=$ under Gaussian Distribution assumption
 - Set mean to 0, set variance to 1

$$X_i = \frac{x_i - \overline{X}}{\sqrt{\sum (x_i - \overline{X})^2}}$$

Similarity of time-series

- Examples:
 - ECG, stocks, temperatures, stars luminosity, etc.
- Euclidean Distance ?
 - Not robust against phase changes

$$d(A,B) = \sqrt{(0-0)^2 + (0-0)^2 + (2-0)^2 + (0-0)^2 + (0-2)^2} = \sqrt{4+4} = 2.82$$

Periodic Distance

Periodic Distance

- Fourier Transform:
 - "Understands" the important frequencies in a signal, in terms of Amplitude and Phase
 - $Amplitude_X = [100, 80, 70, 10, 0, 0, 0]$
 - $Amplitude_Y = [99, 80, 50, 20, 10, 0, 0]$
- Periodic Distance is Euclidean over amplitudes

Fig. 1. 5-NN euclidean and periodic matches on an ECG dataset. ¹⁸

The curse of dimensionality

- Originally used to address optimization problems
 - Find the value of x that minimizes function f.
- Suppose you want to find the optimum value of $x \in \{1,2,3,4,5,6,7,8,9,10\}$.
 - Try every value and check the function to optimize.
- Suppose you have to variables $x,y \in \{1,2,3,4,5,6,7,8,9,10\}$.
 - You may need to try 100 cases:
 - x=1 & y=1, x=1 & y=2, x=1 & y=3, etc. etc.
- Suppose you have n such variables, the search space grows up to 10^n .
- Problems are considered intractable starting from n=10

Not only optimization problems

 Anytime you have objects with a large number of attributes (variables)

- In our case:
 - Objects are documents
 - Variables are term occurrence counts
 - Minimize similarity

- Suppose objects are identically independently distributed at random in the (search) space
- Every dimension has values in the interval [0, 1]
- Find objects at distance <0.25 from x.

- Suppose objects are identically independently distributed at random in the (search) space
- Every dimension has values in the interval [0, 1]
- Find objects at distance <0.25 from x.

Interesting space = $\frac{1}{2}$ = 50%

- Suppose objects are identically independently distributed at random in the (search) space
- Every dimension has values in the interval [0, 1]
- Find objects at distance <0.25 from x.

- Suppose objects are identically independently distributed at random in the (search) space
- Every dimension has values in the interval [0, 1]
- Find objects at distance <0.25 from x.

What does it mean?

- The region of interest halves when increasing the number of dimensions
 - 50%, 25%, 12.5%, ...
- Consequently, the number of interesting objects gets smaller and smaller
- For large values of n there will be no results, and for similar search radii
- You need to significantly increase the search radius to get some objects, but, you'll likely get everything!
- Anything is similar or un-similar to anything else

Curse of Dimentionality

Everything is at the same distance.

How to overcome the dimensionality curse?

Try to understand what is useful, and what is not!

Dimensionality reduction!

• In most cases it is worthwhile to first reduce the number of dimensions and then run any other analysis

References

- Data Mining Concepts and Techniques Third Edition. Jiawei Han, Micheline Kamber Jian Pei. Morgan Kaufmann/Elsevier. Third Edition.
 - Section 2.4 Measuring Data Similarity and Dissimilarity
 - [optional] Chapter 2