DoSA-Open_3D User Manual

Example of Linear Vibrator

2021-09-23 GiTae Kweon (zgitae@gmail.com)

DoSA Structure

PC Requirement

> CPU: 4 Core and above

> RAM: 16GB and above

Program Structure

Toolbar

1. Operations

✓ New : Create a new design

✓ Open : Open previous design

✓ Save : Save the design

✓ SaveAs : Save in different name

✓ Shape: Check the 3D Shape

2. Design

✓ Coil : Add a coil and specification design

✓ Magnet : Add a magnet and determine specifications

✓ Steel : Add a steel and determine specifications

3. Experiment

✓ Force : Magnetic force estimation for driving part

Analysis Model

Analysis Model

1. Shape Model

2. Product Specifications

A. Coil

• Coil Turns: 126 turns

• Coil Resistance: 15.75 Ohm

B. Magnet

• Material : NdFeB 40

• Magnetization Direction: 90 (UP)

C. Power

• Voltage: 2.5V

(Example Files: DoSA-Open_3D Install directory > Samples > LV)

New design

- 1. Toolbar > Click New button
- 2. Design Name: "LV"
- 3. Shape File (STEP): Select LV.step (Example Files: DoSA Install directory > Samples > LV)

[Precautions for the Shape Model]

DoSA-Open_3D still has the following functional limitations.

- 가. Limitation of Coil Shape
 - Coil center axis should be Y axis direction.
 - The current is applied like a cylindrical coil. (Square coils can cause some differences)
- 나. Moving Part
 - The moving part still supports only one component..

New design

- 4. Check the solenoid shape in Gmsh.
- 5. Exit the Gmsh.
- 6. Check the part names.
- 7. Click the OK button if there are no problem with the shape and part names.

New design

8. Check the design creation.

Parts Design

Add coil

- 1. Toolbar > Click Coil button
- Coil
- 2. Select "Coil" in the list box.
- 3. Click the OK button.

Coil design

- 1. Input the coil instrumental specifications
 - ✓ Part Material : Select Copper
 - ✓ Current Direction : Select IN (Inner direction)
 - ✓ Moving Parts: MOVING (Moving Component)
 - ✓ Coil Wire Grade: Bonded IEC Grade 1B
 - ✓ Inner Diameter: 3 mm
 - ✓ Outer Diameter: 3.73 mm
 - ✓ Coil Height: 1.18 mm
 - ✓ Copper Diameter: 0.045 mm
 - ✓ Horizontal Coefficient : 0.95 (Bonded Type)
 - ✓ Vertical Coefficient : 1.13 (Bonded Type)
 - ✓ Resistance Coefficient : 1.1 (Bonded Type)
- 2. Calculate the coil specification
 - ✓ Click the "Coil Design" button

2

Coil Design

1			
Δ	Common Fields		
	Node Name	Coil	
Δ	Specification Fields		
	Part Material	Copper	
	Curent Direction	IN	
	Moving Parts	MOVING	
Δ	Calculated Fields		
	Coil Turns	126	
	Coil Resistance [Ω]	15,74769	
	Coil Layers	6	
	Turns of One Layer	21	
Δ	▲ Design Fields (optional)		
	Coil Wire Grade	Bonded_IEC_Grade_1B	
	Inner Diameter [mm]	3	
	Outer Diameter [mm]	3,73	
	Coil Height [mm]	1.18	
	Copper Diameter [mm]	0,045	
	Wire Diameter [mm]	0,04953	
	Coil Temperature [*€]	20	
	Horizontal Coefficient	0,95	
	Vertical Coefficient	1,13	
	Resistance Coefficient	1.1	

Add magnet

- 1. Toolbar > Click Magnet button
- 2. Select "Magnet" in the list box.
- 3. Click the OK button.

Magnet setting

1. Magnet Settings

✓ Part Material : NdFeB_40

✓ Hc, Br is set automatically

✓ Moving Parts : FIXED (Fixed Component)

✓ Magnet Plane : XY_Plane_Z

✓ Magnet Angle : 90 or Click the Up Button

1			
Δ	Common Fields		
	Node Name	Magnet	
Δ	■ Specification Fields		
	Part Material	NdFeB_40	
	Hc	969969	
	Br	1,26497	
	Moving Parts	FIXED	
⊿	Magnetization Fields		
	Magnet Plane	XY_Plane_Z	
	Magnet Angle	90	

[Ref.] Magnetization Setting of Magnet

✓ Magnet Plane : XY_Plane_Z

✓ Magnet Angle: 90

✓ Magnet Plane : ZX_Plane_Y

✓ Magnet Angle : 45° (135°, -45°, -135°)

Add plate

- 1. Toolbar > Click Steel button
- Steel
- 2. Select "Plate" in the list box.
- 3. Click the OK button.

Plate setting

1. Plate settings

✓ Part Material : SUS_430

✓ Moving Parts : FIXED (Fixed Component)

[BH Curve]

1

Add case

- 1. Toolbar > Click Steel button
- Steel
- 2. Select "Case" in the list box.
- 3. Click the OK button.

Case setting

1. Case Setting

✓ Part Material : SUS_430

✓ Moving Parts : FIXED (Fixed Component)

[BH Curve]

1

▲ Common Fields		
Node Name	Case	
■ Specification Fields		
Part Material	SUS_430	
Moving Parts	FIXED	

Virtual Experiments

Virtual experiment of magnetic force

1. Toolbar > Click Force Button

4 Force

2. Force Experiment Name: "Force"

3. Click OK button

4. Setting of magnetic force experiment

✓ Voltage: 2.5 V

5. Setting of analysis condition

✓ Mesh Size Percent : 5 %

✓ Actuator Type : VCM

6. Click "Force Test" Button

Run the virtual experiment

- 7. Click the Run button after checking the shape.
- 8. If you want to see the analysis progress, click the status bar of the Gmsh.

Run the virtual experiment

- 9. Check the analysis results after solving. (The solving time is depend on you system specification)
- 10. Quit the Gmsh.
- 11. Click the run button again. (VCM type actuators require twice analysis for accuracy)

Results of the virtual experiment

- 12. Quit the Gmsh after checking the analysis results.
- 13. Check the magnetic force of the VCM.

Thank You

Email: zgitae@gmail.com

Homepage: http://openactuator.org