ТЕОРІЯ СТІЙКОСТІ

За лекціями Горбань Н.

Редактори: Терещенко Д.

Людомирський Ю.

Зміст

1.	Лекція 1		3
	1.1.	Нормальні системи диференційних рівнянь	3
	1.2.	Основні поняття теорії стійкості	5
	1.3.	Приклади дослідження на стійкість за означенням	7
	1.4.	Стійкість розв'язків лінійних систем	8
	1.5.	Стійкість ЛОС зі сталою матрицею	11

1. Лекція 1

1.1. Нормальні системи диференційних рівнянь

$$\begin{cases} x'_1(t) = f_1(t, x_1(t), ..., x_n(t)) \\ x'_2(t) = f_2(t, x_1(t), ..., x_n(t)) \\ \vdots \\ x'_n(t) = f_n(t, x_1(t), ..., x_n(t)) \end{cases}$$
(1)

Системою диф. рівнянь n-го порядку в нормальній формі називається система вигляду (1), де $f_i: D \to \mathbb{R}, \quad D \subset \mathbb{R}^{n+1}, \quad i = \overline{1,n}.$

Позначення.

$$\overline{x}(t)=\left[egin{array}{c} x_1(t) \\ \dots \\ x_n(t) \end{array}
ight]$$
— невідома вектор-функція, $\overline{f}(t,\overline{x}(t))=\left[egin{array}{c} f_1 \\ \dots \\ f_n \end{array}
ight]$, що

$$D \to \mathbb{R}, \quad D \subset \mathbb{R}^{n+1}$$
, тоді $(1) : \overline{x}'(t) = \overline{f}(t, \overline{x}(t))$.

Означення. Розв'язком системи (1) на (α, β) називається така векторфункція $\overline{x}(t) \in C^1(\alpha, \beta)$, що:

- 1) $(t, x_1(t), \dots, x_n(t)) \in D \quad \forall t \in (\alpha, \beta);$
- 2) $\overline{x}(t)$ перетворює (1) на тотожність на інтервалі (α, β) .

Загальним розв'язком системи (1) називається n-параметрична сім'я розв'язків (1), що охоплює всі розв'язки системи.

Задача Коші. Для заданих $t_0, \overline{x}^0 \in D$ знайти такий розв'язок (1), що $\overline{x}(t_0) = \overline{x}^0$. Нехай $\Pi = \{(t, \overline{x}) \in \mathbb{R} \mid |t - t_0| \le a, ||\overline{x} - \overline{x}_0|| \le b\}$. **Теорема 1.1** (Теорема Пеано). Нехай $\vec{f} \in C(\Pi)$. Тоді розв'язок задачі Коші:

$$\begin{cases} \overline{x}' = \overline{f}(t, \overline{x}) \\ \overline{x}(t_0) = \overline{x}_0 \end{cases}$$

існує принаймні на проміжку $I_h=(t_0-h,t_0+h),$ де $h=\min\{a,\frac{b}{M}\},$ $M=\max_{(t,x)\in\Pi}||\overline{f}(t,\overline{x})||.$

Теорема 1.2 (про продовження). Нехай для системи (1) виконується, що $\overline{f} \in C(D)$, $D \subset \mathbb{R}^{n+1}$ – обмежена область. Тоді $\forall t: (t_0, \overline{x}_0) \in D$ існують такі $t^-, t^+: t^- < t_0 < t^+$, що розв'язок системи (1) з початкової умови $\overline{x}(t_0) = \overline{x}_0$ існує на інтервалі (t^-, t^+) , причому $(t^-, \overline{x}(t^-))$ та $(t^+, \overline{x}(t^+))$ належать межі області D.

Теорема 1.3 (Теорема Пікара). Нехай

- 1) $\overline{f} \in C(\Pi)$;
- 2) $\exists ! L > 0 : \forall (t_1, \overline{x}_1), (t_2, \overline{x}_2) \in \Pi$ справедливо, що $||f(t_1, \overline{x}_1) f(t_2, \overline{x}_2)|| \le L||\overline{x}_1 \overline{x}_2||$ (умова Ліпшиця).

Тоді $\exists !$ розв'язок задачі Коші з початкової умови $\overline{x}(t_0) = \overline{x}_0(t)$, визначений принаймні на $I_h = (t_0 - h, t_0 + h), \quad h = \min\{a, \frac{b}{M}\}, \quad M = \max_\Pi ||f(t, \overline{x})||.$

1.2. Основні поняття теорії стійкості.

Розглянем систему диференційних рівнянь $\overline{x}' = \overline{f}(t, \overline{x})$ (1), де $f: D \to \mathbb{R}^n$ та $D = [a, +\infty] \times G$, $G \subset \mathbb{R}^n$. Нехай при цьому \overline{f} задавольняє умовам існування та єдиності розв'язку задачі Коші в будь-якій точці $(t_0, \overline{x}_0) \in D$

Означення. Розв'язок $\overline{x} = \overline{\varphi}(t)$ системи (1) називається **стійким** за Ляпуновим, якщо

- 1) $\overline{x} = \overline{\varphi}(t)$ \exists на $[a, +\infty]$ (відсутніть вертикальних асимптот)
- 2) $\forall \varepsilon > 0 \quad \forall t_0 \geq a \quad \exists \delta > 0 : \forall$ розв'язку $\overline{x}(t)$ системи (1) такого, що $||\overline{x}(t_0) \overline{\varphi}(t_0)|| < \delta$ виконується наступне, що $\overline{x}(t)$ існує на $[t_0, +\infty]$ та $||\overline{x}(t) \overline{\varphi}(t)|| < \varepsilon \quad \forall t \geq t_0$.

Означення. Розв'язок $\overline{x}=\overline{\varphi}(t)$ системи (1) називається **асимптотично стій- ким** за Ляпуновим, якщо

- 1) $\overline{x} = \overline{\varphi}(t)$ стійкий;
- 2) $\forall t_0 \geq a \quad \exists \delta > 0 : \forall$ розв'язку $\vec{x}(t)$ с-ми (1) такого, що $||\vec{x}(t_0) \vec{\varphi}(t_0)|| < \delta$ справедливо, що $||\vec{x}(t_0) \vec{\varphi}(t_0)|| \to 0$ при $t \to +\infty$.

Роз'язок $\vec{\varphi}(t)$ називається **нестійким за Ляпуновим**, якщо він не є стійким, тобто:

- 1) Або $\overline{x}=\overline{\varphi}(t)$ \nexists на $[a,+\infty]$ (вертикальні асимптоти);
- 2) Або $\exists \varepsilon > 0: \exists t_0 \geq a: \forall \delta > 0$ існує розв'язок $\vec{x}(t)$ системи (1) такий, що $||\vec{x}(t_0) \vec{\varphi}(t_0)|| < \delta, \text{ але } ||\vec{x}(t_0) \vec{\varphi}(t_0)|| > \varepsilon$

1.3. Приклади дослідження на стійкість за означенням.

Приклад. Дослідити на стійкість розв'язок З.К.:

$$\begin{cases} x = 1 \\ x(0) = 0 \end{cases}$$

1. Знайдемо розв'язок заданої З.К.: $x=1 \Rightarrow x=t+C$ - заг. розв.

Підставимо: $0 = 0 + C \implies C = 0 \implies \boxed{\varphi(t) = t}$ - будемо досліджувати.

Зазначений розв'язок не має вертикальних асимптот та існує на всьому $\mathbb{R}.$ 2.

Знайдемо розв'язок довільної З.К. $x(t_0) = x_0$.

$$x_0 = t_0 + C \Rightarrow C = x_0 - t_0 \Rightarrow x(t) = t + x_0 - t_0$$

3. Нехай $|x(t_0) - \varphi(t_0)| = |x_0 - t_0| < \delta$;

Тоді
$$|x(t) - \varphi(t)| = |x_0 - t_0| < \varepsilon = \delta.$$

Таким чином, розв'язок є стійким, але не є асимптотично стійким.

Приклад. Дослідити на стійкість розв'язок З.К.:

$$\begin{cases} \dot{x} = 1 + t - x \\ x(0) = 0 \end{cases}$$

1. Знайдемо розв'язок даної задачі Коші:

$$\dot{x} = -x + 1 + t = |$$
 методом Бернуллі $| = t + Ae^{-t}$

Знайшли загальний розв'язок. Підставимо умову із з. К.: $A=0 \Rightarrow \varphi(t)=t$

7

2. Знайдемо розв'язок довільної З.К.:

$$x(t_0) = x_0$$
 $x_0 = t_0 + Ae^{-t_0}$ $A = (x_0 - t_0)e^{t_0}$

$$x(t) = t + (x_0 - t_0)e^{t_0 - t}$$
 — загальний розв'язок з. К.

3. Нехай $|x(t_0)-\varphi(t_0)|=|x_0-t_0|<\delta$. Розглядаємо: $\forall t\geq t_0$:

$$|x(t) - \varphi(t)| = |t + (x_0 - t_0) \cdot e^{t_0 - t} - t| = |x_0 - t_0| < \delta \to 0 \quad (t \to +\infty)$$

Отримали, що знайдений розв'язок є асимптотично стійким.

Перейдемо знов до систем диф. рівнянь: $\overline{x}' = \overline{f}(t, \overline{x})$ (1).

 $\overline{x}=\overline{arphi}(t)$ - розв'язок, який ми маємо дослідити на стійкість.

Заміна $\overline{z}(t) = \overline{x}(t) - \overline{\varphi}(y)$. Отримаємо систему:

$$\overline{z}' + \overline{\varphi}' = \overline{f}(t, \overline{z} + \overline{\varphi})(t)$$

$$\overline{f}'(t) = \overline{f}(t, \overline{\varphi}) \Longrightarrow \boxed{\overline{z}' = \overline{\varphi}(t, \overline{z} + \overline{\varphi}(t)) - \overline{f}(t, \varphi(t))}$$

1.4. Стійкість розв'язків лінійних систем

Лінійна неоднорідна система рівнянь має вигляд (далі ЛНС):

$$\overline{x}' = A(t)\overline{x} + \overline{f}(t), \text{ де}$$
 (2)

 $A(t)\in\mathbb{R}^{n\times n}, A(t)\in C[a,+\infty], \overline{f}\in C[a,+\infty]$ Застосуємо заміну: $\overline{z}(t)=\overline{x}-\overline{\varphi}(t),$ де

 $\overline{z}(t)$ - нова невідома вектор-функція, а $\overline{arphi}(t)$ - розв'язок, який ми маємо дослі-

дити на стійкість.

Отримали лінійну однорідну систему першого порядку (далі ЛОС):

$$\overline{z}' + \overline{\varphi} = A(t)\overline{z} + A(t)\overline{\varphi} + \overline{f}(t)$$

$$\overline{z}' = A(t)\overline{z} \tag{3}$$

Заміною ми звели дослідження довільного розв'язку лінійної неоднорідної системи до дослідження нульового розв'язку відвовідної ЛОС. Таким чином, приходимо до висновку, що усі розв'язки є одночасно стійкими або не стійкими, або асимптотично стійкими. А отже, розглядаючи будь-яку лінійну систему, можемо говорити про стійкість не окремого розв'язку, а системи в цілому.

Розв'яжемо ЛОС (3) (перейдемо для зручності до змінної x): $\overline{x}' = A(t)\overline{x}$ - ЛОС (3).

X(t) - її фундаментальна матриця (далі ФМ). Тоді з.р. $\overline{x}(t)=X(t)\cdot\overline{C}$, де $\overline{C}\in\mathbb{R}^n$. Розв'язок з. К. з початковими умовами $\overline{x}(t_0)=\overline{x_0}$:

$$\overline{x}_0 = X(t_0) \cdot C \Rightarrow \overline{C} = X^{-1}(t_0) \cdot \overline{x}_0 \Rightarrow \boxed{x(t) = X(t)X^{-1}(t_0)\overline{x}_0}$$

Теорема 1.4 (Про стійкість ЛОС).

- a) (3) ct. $\iff \exists K > 0 : \sup_{t \ge a} ||X(t)|| \le K$.
- б) (3) ас. ст. $\iff ||X(t)|| \to 0$, при $t \to +\infty$.
- в) (3) нест. $\iff \exists \{t_n\}_{n=1}^{\infty} : ||X(t_n)|| \to +\infty$, при $n \to \infty$

За означенням, візьмемо розв'язок довільної задачі Коші з початковими умовами $\overline{x}(t_0) = \overline{x}_0$.

Нехай $||\overline{x}_0|| < \delta$ і розглянемо $||\overline{x}(t)|| = ||X(t) \cdot X^{-1}(t_0) \cdot \overline{x}_0|| \le ||X(t)|| \cdot ||X^{-1}(t_0)|| \cdot ||\overline{x}_0|| \le K \cdot ||X^{-1}(t_0)|| \cdot ||\overline{x}_0|| < K ||X^{-1}(t_0)|| \delta < \varepsilon$ при $\delta = \frac{\varepsilon}{K||X^{-1}(t_0)|| + 1}$. Отже, $\forall t_0 \ge a \quad \forall \varepsilon > 0 \quad \exists \delta > 0 \quad \left(\delta = \frac{\varepsilon}{K||X^{-1}(t_0)|| + 1}\right)$ для довільного розв'язку з $||\overline{x}_0|| < \delta$ справедливо $||\overline{x}(t)|| < \varepsilon \Longrightarrow$ стійкість розв'язку (системи).

 \Longrightarrow Нехай (3) - стійка. Припустимо від супротивного, що $\exists \{t_n\}_{n\geq 1}^{\infty}: ||X(t_n)|| \to +\infty$ при $n\to\infty$.

Тоді $\exists j = \overline{1,n} : ||\overline{x}^j(t_n)|| \to \infty$, де \overline{x}^j - це j-тий стовпчик ΦM .

Покладемо $\forall \delta > 0$:

$$\overline{x}_0^\delta = rac{\delta X(t_0)\overline{e}_j}{2||X(t_0)||}$$
 , де $\overline{e}_j = egin{bmatrix} 0 \ dots \ 1 \ -j \ dots \ 0 \ \end{bmatrix}$

Тоді
$$||\overline{x}_0^{\delta}|| = \frac{1}{2||X(t_0)||} \cdot \delta||X(t_0) \cdot \overline{e}_j|| < \delta.$$

Розглядаємо розв'язок з.К. з початковими умовами $\overline{x}(t_0) = \overline{x}_0^{\delta}$. Маємо:

$$\overline{x}(t) = X(t) \cdot X^{-1}(t_0) \cdot \overline{x}_0^{\delta} = X(t) X^{-1}(t_0) \cdot \frac{\delta X(t_0) \overline{e}_j}{2||X(t_0)||} = \frac{\delta}{2} \cdot \frac{X(t) \overline{e}_j}{||X(t_0)||} = \frac{\delta}{2||X(t_0)||} \cdot \overline{x}^j(t)$$

$$\Longrightarrow \forall \varepsilon > 0 \quad \exists n_0 \in \mathbb{N} \quad : \forall n \ge n_0$$

$$||\overline{x}(t_n)|| = \frac{\delta}{2||X(t_0)||} \cdot ||\overline{x}^j(t_n)|| \to \infty > \varepsilon -$$

3 попереднього випливає нестійкість \Rightarrow суперечність початковій побудові \Rightarrow а).

Пункт б) доводиться аналогічно а).

Пункт в) випливає із пукнта а).

1.5. Стійкість ЛОС зі сталою матрицею.

$$\overline{x}'(t) = A\overline{x}(t)$$
, де A - стала матриця $n \times n$ (4)

Теорема 1.5.