Lineární maticové rovnice Hledání soustav, které mají zadané řešení Závěrečné poznámky ke GEM

GEM a soustavy lineárních rovnic, část 2

Odpřednesenou látku naleznete v kapitolách 6 a 7.1 skript *Abstraktní a konkrétní lineární algebra*.

Minulá přednáška

● Gaussova eliminační metoda (GEM) jako universální a systematická metoda řešení soustav lineárních rovnic (nad F).

Dnešní přednáška

- Lineární maticové rovnice.
- 2 Hledání soustav, které mají zadané řešení.

Příklad

Nalezněte všechny matice **X**, které splňují rovnost^a

 $\mathbf{R}_{\alpha}\cdot\mathbf{X}=\mathbf{X}\cdot\mathbf{R}_{\alpha}$, kde $\mathbf{R}_{\alpha}:\mathbb{R}^{2}\rightarrow\mathbb{R}^{2}$ je matice rotace o úhel α , $\alpha\in[0;2\pi)$.

Rozměrová zkouška: musí platit $\mathbf{X}: \mathbb{R}^2 \to \mathbb{R}^2$.

Rešeními jsou například matice \mathbf{E}_2 , $\mathbf{O}_{2,2}$ a \mathbf{R}_{α} .

Jak nalézt všechna řešení? Předvedeme universální metodu.

$$\begin{aligned} \textbf{O} & \text{Označme } \textbf{X} = \begin{pmatrix} x_{11} & x_{12} \\ x_{21} & x_{22} \end{pmatrix} \text{. Potom} \\ \textbf{R}_{\alpha} \cdot \textbf{X} & = \begin{pmatrix} \cos \alpha \cdot x_{11} - \sin \alpha \cdot x_{21} & \cos \alpha \cdot x_{12} - \sin \alpha \cdot x_{22} \\ \sin \alpha \cdot x_{11} + \cos \alpha \cdot x_{21} & \sin \alpha \cdot x_{12} + \cos \alpha \cdot x_{22} \end{pmatrix} \textbf{a} \\ \textbf{X} \cdot \textbf{R}_{\alpha} & = \begin{pmatrix} \cos \alpha \cdot x_{11} + \sin \alpha \cdot x_{12} & -\sin \alpha \cdot x_{11} + \cos \alpha \cdot x_{12} \\ \cos \alpha \cdot x_{21} + \sin \alpha \cdot x_{22} & -\sin \alpha \cdot x_{21} + \cos \alpha \cdot x_{22} \end{pmatrix} . \end{aligned}$$

^aGeometrický význam: hledáme všechny transformace X roviny, které jsou záměnné s rotací o úhel α .

2 Rovnost $\mathbf{R}_{\alpha} \cdot \mathbf{X} = \mathbf{X} \cdot \mathbf{R}_{\alpha}$ je ekvivalentní rovnosti $\mathbf{R}_{\alpha} \cdot \mathbf{X} - \mathbf{X} \cdot \mathbf{R}_{\alpha} = \mathbf{O}_{2,2}$. Stačí tedy vyřešit soustavu čtyř rovnic

V maticovém zápisu (po skončení GEM) máme řešit soustavu

$$\left(\begin{array}{cccc|c}
\sin \alpha & 0 & 0 & -\sin \alpha & 0 \\
0 & \sin \alpha & \sin \alpha & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right)$$

v závislosti na parametru $\alpha \in [0; 2\pi)$.

3 Pro $\sin \alpha = 0$ má soustava tvar

$$\left(\begin{array}{ccc|ccc|ccc|ccc|ccc|ccc|ccc|}
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right)$$

a tudíž řešení je tvaru $\mathbf{X} = \begin{pmatrix} x_{11} & x_{12} \\ x_{21} & x_{22} \end{pmatrix}$, kde x_{11} , x_{21} , x_{12} a x_{22} jsou libovolná reálná čísla.

Závěr: s rotací o úhel 0 nebo π je záměnná libovolná transformace roviny.

1 Pro $\sin \alpha \neq 0$ má soustava tvar

$$\left(\begin{array}{ccc|ccc}
1 & 0 & 0 & -1 & 0 \\
0 & 1 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right)$$

a řešení span
$$\begin{pmatrix} 0 \\ -1 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \\ 0 \\ 1 \end{pmatrix}$$
).

Závěr: s rotací \mathbf{R}_{α} o úhel $\alpha \notin \{0,\pi\}$ jsou záměnné transformace roviny tvaru $\mathbf{X} = a \cdot \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} + b \cdot \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$, kde a,b jsou libovolná reálná čísla.

Poznámky

- Předchozí metoda (rozměrová zkouška pro hledanou matici X a následné řešení velké soustavy rovnic) je universální metodou pro řešení maticových rovnic, kde neznámá matice X vystupuje pouze v první mocnině.
 - Jak už to u universálních metod bývá: v některých případech je taková metoda zbytečně zdlouhavá.
- Předvedeme speciální metodu řešení maticových rovnic tvaru^a A · X = B.

^aProtože rovnost $\mathbf{X} \cdot \mathbf{A} = \mathbf{B}$ je ekvivalentní rovnosti $\mathbf{A}^T \cdot \mathbf{X}^T = \mathbf{B}^T$, získáme tak i metodu pro řešení rovnic tvaru $\mathbf{X} \cdot \mathbf{A} = \mathbf{B}$. Musíme ovšem obezřetně zacházet s transposicemi matic.

Převod maticové rovnice na více soustav lineárních rovnic

Maticovou rovnici $\mathbf{A} \cdot \mathbf{X} = \mathbf{B}$, kde matice $\mathbf{A} : \mathbb{F}^s \to \mathbb{F}^r$, a matice $\mathbf{B} : \mathbb{F}^p \to \mathbb{F}^r$, převedeme na p soustav

$$\mathbf{A} \cdot \mathbf{x} = \mathbf{b}_1, \quad \dots, \quad \mathbf{A} \cdot \mathbf{x} = \mathbf{b}_p$$

 $\mathsf{kde}\; \mathbf{B} = (\mathbf{b}_1\; \mathbf{b}_2\; \dots\; \mathbf{b}_p).$

- Každou takovou soustavu $\mathbf{A} \cdot \mathbf{x} = \mathbf{b}_i$ vyřešíme předešlými postupy.^a
- 2 Řešení $\mathbf{A} \cdot \mathbf{X} = \mathbf{B}$ existuje právě tehdy, když každá soustava $\mathbf{A} \cdot \mathbf{x} = \mathbf{b}_i$ má řešení.
- **3** Pokud má každá soustava $\mathbf{A} \cdot \mathbf{x} = \mathbf{b}_i$ řešení, pak "sesazením" všech řešení $\mathbf{x}_1, \dots \mathbf{x}_s$ jednotlivých soustav dostaneme řešení původní maticové rovnice: $\mathbf{X} = (\mathbf{x}_1 \ \mathbf{x}_2 \ \dots \ \mathbf{x}_p)$.

^aJak uvidíme, lze takový systém soustav řešit simultánně.

Příklad

Nad
$$\mathbb{R}$$
 vyřešte rovnici $\begin{pmatrix} 1 & 2 & 1 \\ 1 & -3 & 2 \end{pmatrix} \cdot \mathbf{X} = \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix}$.

Protože $\mathbf{X}: \mathbb{R}^2 \to \mathbb{R}^3$, máme řešit dvě soustavy:

$$\begin{pmatrix} 1 & 2 & 1 \\ 1 & -3 & 2 \end{pmatrix} \cdot \mathbf{x} = \begin{pmatrix} 2 \\ 1 \end{pmatrix} \quad \begin{pmatrix} 1 & 2 & 1 \\ 1 & -3 & 2 \end{pmatrix} \cdot \mathbf{x} = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$$

Obě soustavy mají stejnou matici soustavy, lze je tedy řešit simultánně:

Simultánní GEM:

$$\left(\begin{array}{cc|cc|c} 1 & 2 & 1 & 2 & 1 \\ 1 & -3 & 2 & 1 & 2 \end{array}\right) \sim \left(\begin{array}{cc|cc|c} 1 & 2 & 1 & 2 & 1 \\ 0 & -5 & 1 & -1 & 1 \end{array}\right) \begin{array}{cc|cc|c} R_1 \\ R_2 - R_1 \end{array}$$

Podle Frobeniovy věty mají obě soustavy řešení.

2 Zápis $\begin{pmatrix} 1 & 2 & 1 & 2 & 1 \\ 0 & -5 & 1 & -1 & 1 \end{pmatrix}$ kóduje dvě soustavy s řešeními (v pořadí soustav zleva doprava):

$$\begin{pmatrix} 3 \\ 0 \\ -1 \end{pmatrix} + \operatorname{span}\begin{pmatrix} -7 \\ 1 \\ 5 \end{pmatrix}) \quad \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} + \operatorname{span}\begin{pmatrix} -7 \\ 1 \\ 5 \end{pmatrix})$$

"Sesazení řešení dohromady": celkové řešení je tvaru

$$\mathbf{X} = \begin{pmatrix} 3 - 7a & -7b \\ a & b \\ -1 + 5a & 1 + 5b \end{pmatrix}$$

kde a, b jsou libovolná reálná čísla.

Poznámka

Víme, že pro regulární matici $\mathbf{A}: \mathbb{F}^n \to \mathbb{F}^n$ má soustava $\mathbf{A} \cdot \mathbf{X} = \mathbf{B}$ jediné řešení, a sice $\mathbf{X} = \mathbf{A}^{-1} \cdot \mathbf{B}$.

Toto jediné řešení lze nalézt postupem, kterému se někdy říká Gaussova-Jordanova eliminace: eleminace řádkovými úpravami nekončí po dosažení horní trojúhelníkové matice, ale pokračujuje nulováním i nad hlavní diagonálou.

Získáváme tak postup

$$(\mathsf{A} \mid \mathsf{B}) \sim \cdots \sim (\mathsf{E}_n \mid \mathsf{A}^{-1} \cdot \mathsf{B})$$

Speciálně: pro regulární $\mathbf{A}:\mathbb{F}^n \to \mathbb{F}^n$ lze nalézt \mathbf{A}^{-1} postupem

$$(\mathsf{A}\mid\mathsf{E}_n)\sim\cdots\sim(\mathsf{E}_n\mid\mathsf{A}^{-1})$$

Více viz cvičení a skripta, Příklad 6.4.12.

Příklad

Nad $\mathbb R$ nalezněte (jakoukoli) soustavu tvaru $\mathbf A \cdot \mathbf x = \mathbf b$, která má řešení

$$\begin{pmatrix} 3 \\ 2 \\ 6 \end{pmatrix} + \mathsf{span}(\begin{pmatrix} 1 \\ 2 \\ 0 \end{pmatrix}, \begin{pmatrix} 2 \\ 0 \\ 4 \end{pmatrix})$$

Myšlenky postupu:

1 Zadané řešení tvoří rovinu v \mathbb{R}^3 , která prochází bodem $\begin{pmatrix} 3 \\ 2 \\ 6 \end{pmatrix}$ a má "směr" určený vektory $\begin{pmatrix} 1 \\ 2 \\ 0 \end{pmatrix}$, $\begin{pmatrix} 2 \\ 0 \\ 4 \end{pmatrix}$.

Tudíž: hledanou soustavu očekáváme ve tvaru (a₁ a₂ a₃ | b), neboli a₁x + a₂y + a₃z = b.
Jak najít soustavu (a₁ a₂ a₃ | b) systematicky?

Podle Frobeniovy věty je

$$\begin{pmatrix} 3 \\ 2 \\ 6 \end{pmatrix} + span(\begin{pmatrix} 1 \\ 2 \\ 0 \end{pmatrix}, \begin{pmatrix} 2 \\ 0 \\ 4 \end{pmatrix})$$

řešením soustavy $\mathbf{A} \cdot \mathbf{x} = \mathbf{b}$, kde

- 1 Vektory $\begin{pmatrix} 1\\2\\0 \end{pmatrix}$, $\begin{pmatrix} 2\\0\\4 \end{pmatrix}$ jsou lineárně nezávislé; tvoří tudíž fundamentální systém soustavy $\mathbf{A} \cdot \mathbf{x} = \mathbf{o}$, kde $\operatorname{def}(\mathbf{A}) = 2$ a \mathbf{A} má tři sloupce. To umožní nalézt $\mathbf{A} = \begin{pmatrix} a_1 & a_2 & a_3 \end{pmatrix}$.
- Vektor $\begin{pmatrix} 3 \\ 2 \\ 6 \end{pmatrix}$ je partikulární řešení soustavy $\mathbf{A} \cdot \mathbf{x} = \mathbf{b}$, neboli $\mathbf{A} \cdot \begin{pmatrix} 3 \\ 2 \\ 6 \end{pmatrix} = \mathbf{b}$. Matici \mathbf{A} známe, můžeme dopočítat $\mathbf{b} = (b)$.

Nalezení A:

Protože má platit
$$(a_1 \ a_2 \ a_3) \cdot \begin{pmatrix} 2 \\ 0 \\ 4 \end{pmatrix} = 0$$
, musí platit $(2\ 0\ 4) \cdot \begin{pmatrix} a_1 \\ a_2 \end{pmatrix} = 0$.

Protože má platit
$$(a_1 \ a_2 \ a_3) \cdot \begin{pmatrix} 1 \\ 2 \\ 0 \end{pmatrix} = 0,$$
musí platit $(1 \ 2 \ 0) \cdot \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix} = 0$

Tudíž $\begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix}$ je fundamentální systém soustavy

$$\begin{pmatrix} 2 & 0 & 4 & 0 \\ 1 & 2 & 0 & 0 \end{pmatrix}, \text{ neboli (např.)} \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix} = \begin{pmatrix} 2 \\ -1 \\ -1 \end{pmatrix} \text{ a}$$

$$\mathbf{A} = (2 - 1 - 1).$$

- **1** Nalezení **b**. Protože $\mathbf{A} = \begin{pmatrix} 2 & -1 & -1 \end{pmatrix}$ a $\mathbf{A} \cdot \begin{pmatrix} 3 \\ 2 \\ 6 \end{pmatrix} = \mathbf{b}$, je b = -2
- **5** Závěr: hledaná soustava je (například) $(2 1 1 \mid -2)$.

Poznámky

- Předchozí příklad nalezl obecnou rovnici roviny z jejího parametrického zadání. Postup využíval platnosti Frobeniovy věty a základních vlastností matic.
- Očekáváme: podobný postup bude fungovat pro nalezení soustavy $\mathbf{A} \cdot \mathbf{x} = \mathbf{b}$ nad tělesem \mathbb{F} , která má řešení

$$\mathbf{p} + \operatorname{span}(\mathbf{x}_1, \dots, \mathbf{x}_d)$$

kde vektory $\mathbf{x}_1, \ldots, \mathbf{x}_d$ jsou lineárně nezávislé.

Definice

Zápisu $\mathbf{p} + \operatorname{span}(\mathbf{x}_1, \dots, \mathbf{x}_d)$ v \mathbb{F}^s , kde vektory $\mathbf{x}_1, \dots, \mathbf{x}_d$ jsou lineárně nezávislé, říkáme afinní podprostor dimense d v prostoru \mathbb{F}^s . a Seznamu $(\mathbf{x}_1, \dots, \mathbf{x}_d)$ říkáme směr (také: zaměření) tohoto podprostoru.

^aTaké: d-dimensionální plocha v 𝔽^s.

Tvrzení

Ke každému d-dimensionálnímu afinnímu podprostoru $\mathbf{p} + \operatorname{span}(\mathbf{x}_1, \dots, \mathbf{x}_d)$ v \mathbb{F}^s existuje alespoň jedna soustava tvaru $\mathbf{A} \cdot \mathbf{x} = \mathbf{b}$, která má $\mathbf{p} + \operatorname{span}(\mathbf{x}_1, \dots, \mathbf{x}_d)$ jako množinu řešení.

Důkaz.

Podrobně na přednášce; hlavní myšlenky jsou:

- **1** Musí platit $\mathbf{A} \cdot \mathbf{x}_i = \mathbf{o}$ pro i = 1, ..., d a $\mathbf{A} \cdot \mathbf{p} = \mathbf{b}$.
- ② Označme $\mathbf{X} = (\mathbf{x}_1, \dots, \mathbf{x}_d)$. Protože seznam $(\mathbf{x}_1, \dots, \mathbf{x}_d)$ je lineárně nezávislý, platí $d = \operatorname{rank}(\mathbf{X}) = \operatorname{rank}(\mathbf{X}^T)$. Soustava^a $\mathbf{X}^T \cdot \mathbf{a} = \mathbf{o}$ má s d prvků ve svém fundamentálním systému. Označme tento systém jako $(\mathbf{a}_1, \dots, \mathbf{a}_{s-d})$.
- 3 Známe $\mathbf{A} = (\mathbf{a}_1, \dots, \mathbf{a}_{s-d})^T$ a dopočteme \mathbf{b} z rovnice $\mathbf{A} \cdot \mathbf{p} = \mathbf{b}$.

^aPozor: matici \mathbf{X}^T známe, neznámá je označena jako \mathbf{a} .

Příklad

Nad \mathbb{R} nalezněte (jakoukoli) soustavu tvaru $\mathbf{A} \cdot \mathbf{x} = \mathbf{b}$, která má řešení

$$\begin{pmatrix} 1 \\ 1 \\ -2 \\ 0 \\ 2 \end{pmatrix} + \operatorname{span}\left(\begin{pmatrix} 2 \\ 1 \\ 1 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 2 \\ 0 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} -1 \\ 2 \\ 0 \\ 0 \\ 1 \end{pmatrix}\right)$$

- Označme $\mathbf{X} = \begin{pmatrix} 2 & 1 & -1 \\ 1 & 2 & 2 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 2 & 2 & 1 \end{pmatrix}$, potom $\mathbf{X}^T = \begin{pmatrix} 2 & 1 & 1 & 0 & 0 \\ 1 & 2 & 0 & 1 & 0 \\ -1 & 2 & 0 & 0 & 1 \end{pmatrix}$. Platí $3 = \operatorname{rank}(\mathbf{X}) = \operatorname{rank}(\mathbf{X}^T).$
- Matice **A** má jako řádky fundamentální systém soustavy $\mathbf{X}^T \cdot \mathbf{a} = \mathbf{o}$. Protože $rank(\mathbf{X}^T) = 3$, bude mít matice **A** dva lineárně nezávislé řádky.

3 Fundamentální systém soustavy $\mathbf{X}^T \cdot \mathbf{a} = \mathbf{o}$, neboli homogenní soustavy

$$\left(\begin{array}{ccc|c} 2 & 1 & 1 & 0 & 0 & 0 \\ 1 & 2 & 0 & 1 & 0 & 0 \\ -1 & 2 & 0 & 0 & 1 & 0 \end{array} \right), \text{ je například} \left(\begin{array}{c} -1/2 \\ -1/4 \\ 5/4 \\ 1 \\ 0 \end{array} \right), \left(\begin{array}{c} 1/2 \\ -1/4 \\ -3/4 \\ 0 \\ 1 \end{array} \right).$$

Užitečný trik:^a proto je i
$$4 \cdot \begin{pmatrix} -1/2 \\ -1/4 \\ 5/4 \\ 1 \\ 0 \end{pmatrix} = \begin{pmatrix} -2 \\ -1 \\ 5 \\ 4 \\ 0 \end{pmatrix}, \ 4 \cdot \begin{pmatrix} 1/2 \\ -1/4 \\ -3/4 \\ 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 2 \\ -1 \\ -3 \\ 0 \\ 4 \end{pmatrix}$$

fundamentální systém soustavy $\mathbf{X}^T \cdot \mathbf{a} = \mathbf{o}$.

Můžeme tedy psát:
$$\mathbf{A} = \begin{pmatrix} -2 & -1 & 5 & 4 & 0 \\ 2 & -1 & -3 & 0 & 4 \end{pmatrix}$$
.

^aFundamentální systém tvoří bázi jádra matice soustavy. A nenulové skalární násobky prvků jakékoli báze opět tvoří bázi.

O Dopočteme **b** z rovnice $\mathbf{A} \cdot \begin{pmatrix} 1 \\ 1 \\ -2 \\ 0 \\ 2 \end{pmatrix} = \mathbf{b}.$

Tudíž
$$\mathbf{b} = \begin{pmatrix} -2 & -1 & 5 & 4 & 0 \\ 2 & -1 & -3 & 0 & 4 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ 1 \\ -2 \\ 0 \\ 2 \end{pmatrix} = \begin{pmatrix} -13 \\ 15 \end{pmatrix}.$$

Odpověď: 3-dimensionální afinní podprostor v \mathbb{R}^5

$$\begin{pmatrix} 1\\1\\-2\\0\\2 \end{pmatrix} + \operatorname{span}\begin{pmatrix} 2\\1\\1\\0\\0 \end{pmatrix}, \begin{pmatrix} 1\\2\\0\\1\\0 \end{pmatrix}, \begin{pmatrix} -1\\2\\0\\0\\1 \end{pmatrix})$$

je řešením soustavy $\left(\begin{array}{ccccc} -2 & -1 & 5 & 4 & 0 & -13 \\ 2 & -1 & -3 & 0 & 4 & 15 \end{array} \right)$ nad $\mathbb R.$

Závěrečné poznámky

- GEM je sice universální metodou řešení soustav lineárních rovnic, nad R (nebo C) je však numericky nestabilní.
 - V praxi je pro řešení (zvláště velkých) soustav lineárních rovnic nad \mathbb{R} (nebo \mathbb{C}) nutno použít jiné metody (například iterační Gaussovu-Seidelovu metodu, a jiné). Tyto metody jsou mimo sylabus standardní přednášky z lineární algebry.
- 2 Jak řešit soustavy s parametrem? GEM je universální metodou! Při řešení soustav s parametrem pomocí GEM musíme být velmi opatrní na provádění elementárních úprav.
 - Pro soustavy se čtvercovou maticí vyvineme později další metodu řešení (kombinaci GEM a Cramerovy věty).
- **Nepovinné**: Nad \mathbb{R} lze mít i další geometrický pohled na GEM (tzv. Householderovy reflexe).

^aViz Poznámku 6.4.7 skript.