Appunti di Algebra e geometria

Nicola Ferru

Indice

	0.1 Premesse	7
	0.2 Simboli	8
1	Vettori	9
	.1 Spazio Vettoriale	9
2	Numeri Complessi	11
	2.1 Operazioni con Numeri complessi	11
3	Autovalori e autovettori 1	13
	3.1 Definizione, esempi e applicazioni	13

4 INDICE

Elenco delle tabelle

Elenco delle figure

0.1 Premesse...

In questo repository sono disponibili pure le dimostrazioni grafiche realizzate con Geogebra consiglio a tutti di dargli un occhiata e di stare attenti perché possono essere presenti delle modifiche per migliorare il contenuto degli stessi appunti, comunque solitamente vengono fatte revisioni tre/quattro volte alla settimana perché sono in piena fase di sviluppo. Ricordo a tutti che questo è un progetto volontario e che per questo motivo ci potrebbero essere dei rallentamenti per cause di ordine superiore e quindi potrebbero esserci meno modifiche del solito oppure potrebbero esserci degli errori, chiedo la cortesia a voi lettori di contattarmi per apportare una modifica. Tengo a precisare che tutto il progetto è puramente open souce e infatti sono disponibili i sorgenti dei file allegati insieme ai PDF.

Cordiali saluti

0.2 Simboli

 $\in \mathsf{Appartiene}$ $\Rightarrow \mathrm{Implica}$ β beta $\not\in$ Non appartiene \iff Se e solo se γ gamma \exists Esiste \neq Diverso Γ Gamma $\exists ! \ Esiste \ unico$ \forall Per ogni δ, Δ delta \subset Contenuto strettamente \ni : Tale che ϵ epsilon $\subseteq Contenuto$ \leq Minore o uguale σ, Σ sigma \supset Contenuto strettamente \geq Maggiore o uguale ρ rho \supseteq Contiene α alfa

Capitolo 1

${f Vettori}$

1.1 Spazio Vettoriale

Spazio Vettoriale 1. Uno spazio vettoriale reale (R-spazio vettoriale) è un insieme V in cui sono definite un'operazione di SOMMA tra elementi di V e un'operazione di Prodotto tra un reale e un elemento di V che soddisfano 8 proprietà:

- 1. La somma è associativa quando $\forall v_1, v_2, v_3 \in V (v_1 + v_2) + v_3 = v_1 + (v_2 + v_3);$
- 2. La somma è commutativa quando $\forall v_1, v_2 \in V$ $v_1 + v_2 = v_2 + v_1$
- 3. Esistenza elemento neutro 0 se e solo se $\forall v \in V \ v + 0 = 0 + v = v$
- 4. Esistenza opposto -v se e solo se $\forall v \in V \ v + (-v) = (-v) + v = 0$
- 5. Il prodotto per uno scalare è assoluto quando $\forall c_1, c_2 \in R, \forall v \in V \ c_1(c_2v) = (c_1c_2)v$
- 6. Il prodotto per uno scalare è distributiva quando $\forall c_1, c_2 \in R, \forall v \in V \ (c_1 + c_2)v = c_1v + c_2v$
- 7. Il prodotto per uno scalare è distributiva quando $\forall c \in R, \forall v_1, v_2 \in V \ c(v_1 + v_2) = cv_1 + cv_2$
- 8. Esistenza elemento neutro 1 quando $\forall v \in V \ 1v = v$

ES:
$$V_0^2 V_0^3$$

ES:
$$f: \mathbb{R} \to \mathbb{R}$$
 x^2 , $g(x) = e^x$, $f(x) + g(x) = x^2 + e^x$ $3f(x) = 3x^2$

ES: \mathbb{R}^n n-uple di numeri reali

$$\begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} + \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix} = \begin{bmatrix} x_1 + y_1 \\ x_2 + y_2 \\ \vdots \\ x_n + y_n \end{bmatrix} \quad C \in \mathbb{R} \ c \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} cx_1 \\ cx_2 \\ \vdots \\ cx_n \end{bmatrix}$$

ES: $\mathbb{R}_n[x]$ polinomi di grado $\leq n$ nella variabile x a coefficiente reale

•
$$p(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n$$

•
$$q(x) = b_0 + b_1 x + b_2 x^2 + \dots + b_n x^n$$

ES: $\mathbb{R}[x]$ polinomio di grado qualsiasi

$$p(x) + q(x) = a_0 + b_0 + (a_1 + b_1)x + \dots + (a_n + b_n)x^n$$

$$c \in \mathbb{R}, \ cp(x) = ca_0 + ca_1x + ca_2x^2 + \dots + ca_nx^n$$

9

Capitolo 2

Numeri Complessi

Numeri reali 1. Un numero complesso è definito come un numero della forma x+iy, con x e y numeri reali e i una soluzione dell'equazione $x^2 = -1$ detta unità immaginaria. i numeri reali sono

2.1 Operazioni con Numeri complessi

1. Modulo e distanza

$$|z| = \sqrt{x^2 + y^2} \tag{2.1}$$

Il valore assoluto (modulo) ha proprietà queste proprietà:

$$|z+w| \ge |z| + |w|, \ |zw| = |z||w|, \ \left|\frac{z}{w}\right| = \frac{|z|}{|w|}$$

Valide per tutti i numeri complessi z e w. La prima proprietà è una versione della disuguaglianza triangolare.

Capitolo 3

Autovalori e autovettori

3.1 Definizione, esempi e applicazioni

Definizione. Sia V un \mathbb{K} -spazio vettoriale $e \ f : V \to V$ un endomorfismo¹. Un dice autovettore di f se si ha

$$f(v) = \lambda v \tag{3.1}$$

per qualche $\lambda \in \mathbb{K}$. Il coefficiente numerico λ si dice autovalore relativo all'autovettore v.

In altre parole, un autovettore è un vettore non nullo che viene mandato dalla funzione in un suo multiplo. Notiamo che questo è sempre banalmente vero per il vettore nullo $\bar{0}$, in quanto come sappiamo (si deve l'inizio dela dimostrazione della Proposizione) se f è un lineare allora $f(\bar{0}) = \bar{0}$ è verifica sempre per qualunque endomorfismo e qualunque scalare λ (è per questo motivo che questo caso banale viene escluso dalla definizione).

Vediamo subito alcuni esempi di autovettori:

Esempio. Sia $V = V_O^2$ lo spazio dei vettori geometrici applicati in un punto O del piano e sia $f: V_O^2 \to V_O^2$ la ruflessione rispetto a una retta r che passa per O. Quando riflettiamo un vettore $v = \overrightarrow{OP}$ perpendicolare alla retta r, il vettore viene mandato nel suo opposto, ovvero f(v) = -v = (-1)v. Quinmdi tale vettore è un atovettore f con autovalore associato -1.