GEOMETRÍA

INTRODUCTORIO

1. En la figura, halle el valor de x.

Resolución

ΔABC:
$$4\beta + 3\beta + 2\beta = 180^{\circ}$$

 $9\beta = 180^{\circ}$
 $\beta = 20^{\circ}$... (1)

$$\Delta DEC: x + \beta + 2\beta = 180^{\circ}$$

 $x + 3\beta = 180^{\circ} \dots (2)$

Reemplazando 1 en 2:

$$X + 3(20^{\circ}) = 180^{\circ}$$

 $x = 120^{\circ}$

2. Las longitudes de los lados de un triángulo son 6 y 13. Calcule la diferencia entre el máximo y el mínimo valor entero que puede tomar la longitud del tercer lado.

- Piden: x_{máx} x_{mín}
- Aplicando el teorema.

15 - 8 < x < 15 + 8
7 < x < 23
x = 8; 9;
$$\frac{1}{10}$$
; ...; $\frac{20}{10}$; 21; $\frac{22}{10}$
Si: a $\frac{x}{10}$ x = 14
Entonces: $\frac{a - b}{10}$ x < $\frac{a + b}{10}$

3. En un triángulo ABC, las bisectrices de los ángulos BAC y BCA se intersectan en l. Si m₄AIC = 7x y m₄ABC = 2x, halle el valor de x.

$$5x = 90^{\circ} + \frac{4x}{2}$$

$$5x = 90^{\circ} + 2x$$

$$3x = 90^{\circ}$$

$$x = 30^{\circ}$$

4. Halle el valor de x.

TEOR. DE LA MEDIATRIZ.

5. En un triángulo rectángulo ABC recto en B, se ubican los puntos D en \overline{AC} y E en \overline{BC} , tal que: AD = DC = BE y m \not BED = 70°. Halle la m \not EDC.

6. En la figura, ABCD es un romboide de perímetro 1200. Halle el valor de x

Resolución

Piden x

□ABCD (romboide)

$$2x + 4x + 2x + 4x = 120$$

 $\frac{2p}{b}$

$$x = 10$$

ABE y A ECD (Isósceles)

7. En un rombo ABCD, se sabe que m∡ABC = 106° y AC = 32. Calcule BD.

8. Halle el valor de x, si D, E y F son puntos de tangencia.

- Piden: x
 - Aplicando el t. del ángulo inscrito:

$$m\widehat{DF} = 220^{\circ}$$

$$m\widehat{DEF} = 140^{\circ}$$

Aplicando el t. del ángulo exterior:

$$x + 140^{\circ} = 180^{\circ}$$

$$x = 40^{\circ}$$