

CS-C3240 – Machine Learning D

Round 3: From features to classification

Stephan Sigg

Department of Communications and Networking Aalto University, School of Electrical Engineering stephan.sigg@aalto.fi

Version 2.3, February 12, 2022

Exponential growth Volume of the space grows exponentially with dimension

Exponential growth Volume of the space grows exponentially with dimension

Curse of dimensionality

Too sparse samples across regions to estimate a distribution in that space (Problematic for methods that require statistical significance)

Exponential growth Volume of the space grows exponentially with dimension

Curse of dimensionality

Too sparse samples across regions to estimate a distribution in that space (Problematic for methods that require statistical significance)

Hughes (peaking) phenomenon

Predictive power of classifier first increases with dimension, then decreases

Exponential growth Volume of the space grows exponentially with dimension Counter-intuitive properties in higher dimensional spaces

Exponential growth Volume of the space grows exponentially with dimension Counter-intuitive properties in higher dimensional spaces

Example – Volume of a sphere

Consider a sphere of radius r = 1 in a *D*-dimensional space

Exponential growth Volume of the space grows exponentially with dimension Counter-intuitive properties in higher dimensional spaces

Example – Volume of a sphere

Consider a sphere of radius r = 1 in a D-dimensional space

Fraction of the volume between radius r = 1 and $r' = 1 - \varepsilon$?

Exponential growth Volume of the space grows exponentially with dimension Counter-intuitive properties in higher dimensional spaces

Example - Volume of a sphere

Consider a sphere of radius r = 1 in a *D*-dimensional space

Fraction of the volume between radius r = 1 and $r' = 1 - \varepsilon$?

Volume of shpere with radius *r*:

$$V_D(r) = \delta_D r^D$$
 for appropriate δ_D

Exponential growth Volume of the space grows exponentially with dimension Counter-intuitive properties in higher dimensional spaces

Example - Volume of a sphere

Consider a sphere of radius r = 1 in a *D*-dimensional space

Fraction of the volume between radius r = 1 and $r' = 1 - \varepsilon$?

Volume of shpere with radius *r*:

Given by

$$V_D(r) = \delta_D r^D$$
 for appropriate δ_D

$$\frac{V_D(1)-V_D(1-\varepsilon)}{V_D(1)}=1-(1-\varepsilon)^D$$

Exponential growth Volume of the space grows exponentially with dimension Counter-intuitive properties in higher dimensional spaces

Example - Volume of a sphere

Consider a sphere of radius r = 1 in a D-dimensional space

Fraction of the volume between radius r = 1 and $r' = 1 - \varepsilon$?

Volume of shpere with radius *r*:

Given by

$$V_D(r) = \delta_D r^D$$
 for appropriate δ_D

$$\frac{V_D(1)-V_D(1-\varepsilon)}{V_D(1)}=1-(1-\varepsilon)^D$$

For large D, this fraction tends to 1

In high dimensions, most of the volume of a sphere concentrates near the surface

Exponential growth Volume of the space grows exponentially with dimension

Counter-intuitive properties in higher dimensional spaces

Example - Volume of a sphere

Consider a sphere of radius r = 1 in a *D*-dimensional space Fraction of the volume between radius r = 1 and $r' = 1 - \varepsilon$?

Volume of shpere with radius *r*:

$$V_D(r) = \delta_D r^D$$
 for appropriate δ_D

Given by

0.8

0.6

For large D, this fraction tends to 1

In high dimensions, most of the volume of a sphere concentrates near the surface

Exponential growth Volume of the space grows exponentially with dimension Counter-intuitive properties in higher dimensional spaces

Example – Gaussian distribution

Probability mass concentrated in a thin shell

(here plotted as distance from the origin in a polar coordinate system)

Exponential growth Volume of the space grows exponentially with dimension Counter-intuitive properties in higher dimensional spaces

Example – Gaussian distribution

Probability mass concentrated in a thin shell

(here plotted as distance from the origin in a polar coordinate system)

Curse of Dimensionality

Mechanisms to efficiently reduce dimensions or classifiers that respect properties of high-dimensional spaces required.

Questions?

Stephan Sigg stephan.sigg@aalto.fi

Si Zuo si.zuo@aalto.fi

Literature

- C.M. Bishop: Pattern recognition and machine learning, Springer, 2007.
- R.O. Duda, P.E. Hart, D.G. Stork: Pattern Classification, Wiley, 2001.

