Weekly Exercises - Statistical Inference

Eliana Duarte

02.11.2023

1 Week 7

- 1. Suppose $X_1, X_2, ..., X_n$ is an iid sample where $X_i \sim \text{Bernoulli}(p)$. What is the distribution of $Y = \sum_{i=1}^n X_i$?
- 2. [1, 5.3] Let X_1, X_2, \ldots, X_n be iid random variables with continuous cumulative distribution function F_X , and suppose $E(X_i) = \mu$. Define the random variables Y_1, \ldots, Y_n by

$$Y_i = \begin{cases} 1 & \text{if } X_i \ge \mu \\ 0 & \text{if } X_i \le \mu. \end{cases}$$

Find the distribution of $\sum_{i=1}^{n} Y_i$.

3. Read Section 5.3.1 in [1]. The goal is to understand the properties in the following theorem and the proof:

Theorem 1.1. Let X_1, \ldots, X_n be a random sample from a $N(\mu, \sigma^2)$ distribution, and let $\overline{\mathbf{X}} = (1/n) \sum_{i=1}^n X_i$ and $S^2 = [1/(n-1)] \sum_{i=1}^n (X_i - \overline{X})^2$. Then

- (a) $\overline{\mathbf{X}}$ and S^2 are independent random variables,
- (b) $\overline{\mathbf{X}}$ has a $N(\mu, \sigma^2/n)$ distribution,
- (c) $(n-1)S^2/\sigma^2$ has a chi-squared distribution with n-1 degrees of freedom.
- 4. [1, 6.6] Let $\mathbf{X} = \{X_1, \dots, X_n\}$ be a random sample from a $\Gamma(\alpha, \beta)$ population. Find a two dimensional sufficient statistic for (α, β) .

References

[1] G. Casella and R. L. Berger. Statistical inference. Cengage Learning, 2021.