Durée: 1 heure.

Aucun document ni calculatrice n'est autorisé.

Veuillez répondre sur le sujet.

NOM

PRÉNOM

Sans indiquer votre raisonnement, compléter ci-dessous.

Pour toutes les questions

$$P = (X^2 + X + 1)(X - 2)(X + 2), \quad Q = (X^2 + X + 1)(X^2 + 4) \text{ et } F = \frac{X^2 - 4}{X^2 + 4}$$

- 1. Écrire en langage mathématiques que P appartient à l'ensemble des polynômes à coefficients réels : $P \in \mathbb{R}[X]$
- 2. Un polynôme est unitaire si le coefficient dominant vaut 1.
- 3. α est une racine d'un polynôme P si $P(\alpha) = 0$.
- 4. 2 est une racine simple de P car X-2|P mais $(X-2)^2 \not\mid P$ ou P(2)=0 et $P'(2)\neq 0$.
- 5. deg(P+Q) est 4
- 6. $\deg(F)$ est 0
- 7. $P \wedge Q = X^2 + X + 1$
- 8. $P \vee Q = (X^2 + X + 1)(X 2)(X + 2)(X^2 + 4)$
- 9. Factorisation de Q sur \mathbb{R} : $(X^2 + X + 1)(X^2 + 4)$
- 10. Factorisation de Q sur \mathbb{C} : $(X \frac{-1 + \sqrt{3}i}{2})(X \frac{-1 \sqrt{3}i}{2})(X + 2i)(X 2i) = (X e^{\frac{2\pi}{3}i})(X e^{\frac{4\pi}{3}i})(X + 2i)(X 2i)$
- 11. Les polynômes irréductibles sur \mathbb{R} sont de degré 1 ou 2 avec discriminant négatif.
- 12. Théorème d'Alembert-Gauss : Soit $P \in \mathbb{C}[X]$. Alors P admet autant de racines, comptées avec leur ordre de multiplicité que son degré.
- 13. Théorème de Bézout : Soient $P,Q \in \mathbb{K}[X]$ avec $P \neq 0$ ou $Q \neq 0$. Il existe deux polynômes $U,V \in \mathbb{K}[X]$ tels que PU + QV = pgcd(P,Q).
- 14. Partie entière de F:1
- 15. Décomposition en éléments simples théorique de F sur $\mathbb{R}: F=1+\frac{aX+b}{X^2+4},\ a,b\in\mathbb{R}$
- 16. Décomposition en éléments simples théorique de F sur $\mathbb{C}: F = 1 + \frac{a}{X+2i} + \frac{b}{X-2i}, a, b \in \mathbb{C}$
- 17. Éléments simples (non théoriques) de F sur \mathbb{C} : $\frac{-2i}{X+2i}$ et $\frac{2i}{X-2i}$
- 18. A est un polynôme de degré 5. Si A(1) = 0, A'(1) = 0, A''(1) = 0 et $A^{(3)}(1) \neq 0$ alors 1 est racine d'ordre de multiplicité 3.
- 19. Factorisation sur \mathbb{C} de $X^5 1 : \prod_{k=0}^4 (X e^{\frac{2k\pi}{5}i})$
- 20. La méthode de Ruffini permet de diviser un polynôme par $(X \alpha)$, avec $\alpha \in \mathbb{R}$