3D Transformation

Translation

In three-dimensional homogeneous coordinate representation, a point is transformed from position P = (x, y, z) to P' = (x', y', z') This can be written as:

Translation

$$\begin{bmatrix} x'y'z'1 \end{bmatrix} = \begin{bmatrix} x & y & z & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ T_x & T_y & T_z & 1 \end{bmatrix}$$

Rotation

Rotation about z axis

Rotation

Rotation about x axis

Rotation

Scaling

• The matrix expression for the scaling transformation of a position $P = (x_i, y_i, z_i)$ relative to coordinate origin can be written as:

$$\begin{bmatrix} x_i & y_i & z_i & w \end{bmatrix} \begin{bmatrix} S_x & 0 & 0 & 0 \\ 0 & S_y & 0 & 0 \\ 0 & 0 & S_z & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} S_x x_i & S_y y_i & S_z z_i & w \end{bmatrix}$$

Reflection

Reflection

Shearing

$\lceil 1$	0	0	0	Γ1	Shx	0	0]	Γ1	0	Shx	0
shy	1	0	0	0	1	0	0	0	1	Shy	0
shz			0	0	Shz	1	0	0	0	1	0
0	0	0	1	0	0	0	1	0	0	0	1

- Shearing about X axis- X coordinate will change but no change in Y and Z axis coordinate.
- Shearing about Y axis- Y coordinate will change and changes are made only in X and Z axis.
- Shearing about Z axis- Z coordinate will change but no change in X and Y axis.

