Homework 5, 63.00/110.00 (57.27%)

October 22, 2019

Problem 3 score: 10/10

ok

Problem 11 score: $0/10^1$

NOT ok

$$y\cos x = x^{2} + y^{2}$$

$$\frac{dy}{dx}\cos x + y \cdot (-\sin x) = 2x + 2y \cdot \frac{dy}{dx}$$

$$\frac{dy}{dx} = 2y \frac{dy}{dx} = 2x + y\sin x$$

Where did $\cos x$ disappear?

Problem 15 score: 10/10

OK

Problem 22 score: $0/10^2$

$$\frac{d}{dx}g(x) + \frac{d}{dx}(x\sin g(x)) = \frac{d}{dx}(x^2)$$

$$\frac{d}{dx}g(x) + \frac{(x\cos g(x) + \sin g(x))}{dx}\frac{d}{dx}g(x) = \frac{d}{dx}(x^2)$$

$$\frac{d}{dx}(x\sin g(x)) = \sin g(x) + x\cos g(x)\frac{d}{dx}g(x).$$

¹similar problems: 12,17

²similar problems: 21

Problem 30 score: $0/10^3$

$$\frac{dy}{dx} \cdot \frac{2}{3} \cdot \frac{1}{\sqrt[3]{y}} = -\frac{2}{3} \frac{1}{\sqrt[3]{x}}$$
 where didminus go?
$$\frac{dy}{dx} = \sqrt[3]{y}$$

Problem 39 score: $0/10^4$

$$y'' = (y'(x))' = \left(-\frac{y}{x + e^y}\right)' = \frac{-\frac{dy}{dx} \cdot (x + e^y) + y\left(1 + e^y \frac{dy}{dx}\right)}{\left(x + e^y\right)^2} \neq \frac{(ye^y - x)\frac{dy}{dx} + y}{\left(x + e^y\right)^2}.$$

where did $-e^y \frac{dy}{dx}$ in the denominator go?

Problem 44 score: 10/10

ok

Problem 49 score: 10/10

ok

Problem 57 score: 10/10

ok

Problem 67 score: $8/10^5$

ok, but

- 1. what about c < 0 case?
- 2. what about k < 0 case?
- 3. what about k = 0 case?
- 4. when you did implicit differentiation of $x^2 + 2y^2 = k$, did you consider points where x = 0 or y = 0? (-2 points for this)

³similar problems: 31.32

⁴similar problems: 40

 $^{^{5}}$ similar problems: 68

Problem 77 score: $5/10^6$

where is b)?

 $^{^6}$ similar problems: 71