Note per il corso di *Geometria e algebra lineare* 2024-25 LT in Informatica

9 II teorema spettrale

Ricordiamo (cf. §2.9) il prodotto scalare euclideo di \mathbb{R}^n :

Definizione 1. Il prodotto scalare euclideo (o canonico) di \mathbb{R}^n è la funzione che alla coppia $x,y\in\mathbb{R}^n$ associa il numero reale

$$x \cdot y = \sum_{i=1}^{n} x_i y_i = (x_1 \cdots x_n) (y_1 \cdots y_n)^T.$$

9.1 Basi ortonormali

Quando si studiano problemi che riguardano lunghezze di vettori, ortogonalità, angoli, conviene utilizzare delle basi di tipo particolare.

Definizione 2. Una base $\{u_1,\ldots,u_m\}$ di un sottospazio U di \mathbb{R}^n è una base ortonormale di U se $u_i\cdot u_j=0$ per $i\neq j$ e $u_i\cdot u_i=1$ per $i=1,\ldots,m$.

Ad esempio, la base canonica di \mathbb{R}^n è ortonormale.

Se $\mathcal{B}=\{u_1,\ldots,u_m\}$ è una base ortonormale di U, le coordinate x_1,\ldots,x_m di un vettore $v\in U$ rispetto a \mathcal{B} si ottengono mediante il prodotto scalare

$$x_j = v \cdot u_j, \quad j = 1, \dots, m.$$

Infatti, se $v=x_1u_1+\cdots+x_mu_m$, allora $v\cdot u_j=\sum_{i=1}^m x_i(u_i\cdot u_j)=x_j$.

Costruzione di basi ortonormali (Gram-Schmidt) A partire da una base $\{v_1,\ldots,v_m\}$ di U, si può costruire una base ortonormale di U. Si procede ricorsivamente, ponendo $u_1=\frac{v_1}{\|v_1\|}$ e poi definendo in successione i vettori u_2,\ldots,u_m con la formula

$$u_k = c \left(v_k - \sum_{i=1}^{k-1} (v_k \cdot u_i) u_i \right)$$

con $c \in \mathbb{R}$ scelto in modo che sia $||u_k|| = 1$.

Esempio. Dalla base $\mathcal{B}=\{(1,0,1),(1,0,0),(2,1,0)\}$ di \mathbb{R}^3 , con il prodotto canonico, mediante il procedimento di Gram-Schmidt si ottiene

$$\begin{split} u_1 &= \frac{v_1}{\|v_1\|} = \frac{1}{\sqrt{2}}(1,0,1) = \left(\frac{1}{\sqrt{2}},0,\frac{1}{\sqrt{2}}\right) \\ v_2 &- (v_2 \cdot u_1)u_1 = (1,0,0) - \frac{1}{\sqrt{2}}\frac{1}{\sqrt{2}}(1,0,1) = \left(\frac{1}{2},0,-\frac{1}{2}\right) \text{ da cui} \\ u_2 &= \frac{v_2 - (v_2 \cdot u_1)u_1}{\|v_2 - (v_2 \cdot u_1)u_1\|} = \sqrt{2}\left(\frac{1}{2},0,-\frac{1}{2}\right) = \left(\frac{1}{\sqrt{2}},0,-\frac{1}{\sqrt{2}}\right). \\ v_3 &- (v_3 \cdot u_1)u_1 - (v_3 \cdot u_2)u_2 = (2,1,0) - \sqrt{2}\left(\frac{1}{\sqrt{2}},0,\frac{1}{\sqrt{2}}\right) - \sqrt{2}\left(\frac{1}{\sqrt{2}},0,-\frac{1}{\sqrt{2}}\right) = (0,1,0) \end{split}$$

da cui

$$u_3 = (0, 1, 0).$$

Osservazione. Sia $P=M^{\mathcal{E}}_{\mathcal{B}}(Id)$ la matrice di transizione dalla base ortonormale \mathcal{B} alla base canonica \mathcal{E} di \mathbb{R}^n . Le colonne P^i di P sono gli elementi di \mathcal{B} . Quindi

$$P^i \cdot P^j = \begin{cases} 1 \text{ per } i = j \\ 0 \text{ per } i \neq j \end{cases} \quad \text{che equivale a} \quad P^T P = I_n.$$

Definizione 3. Una matrice quadrata $P \in M_n(\mathbb{R})$ è detta ortogonale se $P^TP = I_n$.

Ogni matrice ortogonale è invertibile, con inversa $P^{-1}=P^T$, poiché per il Teorema di Binet $\det(P^T)\det(P)=\det(I_n)=1$, e quindi

$$(\det P)^2 = 1 \Rightarrow \det P = \pm 1.$$

Una matrice ortogonale di determinante 1 è anche detta *matrice di rotazione*, poiché le rotazioni del piano attorno all'origine e le rotazioni dello spazio attorno a una retta per l'origine sono rappresentate da matrici di questo tipo.

9.2 II teorema spettrale

L'insieme degli autovalori di una matrice è anche chiamato spettro della matrice.

Proposizione 1. Sia A una matrice reale simmetrica $n \times n$. Allora A ha n autovalori reali, contati con la loro molteplicità algebrica (cioè il polinomio caratteristico di A si scompone nel prodotto di n fattori lineari a coefficienti reali).

Dimostrazione. Sia $T_A:\mathbb{C}^n\to\mathbb{C}^n$ l'endomorfismo definito da A. Sia $x\in\mathbb{C}^n$, $x\neq 0$, un autovettore di T_A con autovalore (complesso) λ . Per la simmetria di A

$$Ax = \lambda x \implies x^T A = \lambda x^T \implies \bar{x}^T A = \bar{\lambda} \bar{x}^T.$$

Dunque

$$\bar{x}^T A x = \bar{\lambda} \bar{x}^T x.$$

D'altra parte,

$$\bar{x}^T A x = \bar{x}^T \lambda x = \lambda \bar{x}^T x$$

e quindi $0=(\bar{\lambda}-\lambda)\bar{x}^Tx$, con $\bar{x}^Tx=\sum_{i=1}^n|x_i|^2>0$. Ne segue che $\lambda=\bar{\lambda}$ è un numero reale.

Teorema 1. (Teorema spettrale o Teorema degli assi principali) Sia A una matrice reale simmetrica $n \times n$. Allora A è diagonalizzabile: esiste una base ortonormale di \mathbb{R}^n costituita da autovettori di A, cioè esiste una matrice ortogonale P tale che $P^{-1}AP = D$ sia diagonale.

Dimostrazione. Procediamo per induzione su n. Se n=1, ogni vettore di \mathbb{R}^n di norma uno è una base ortonormale di autovettori di A. Sia n>1 e supponiamo l'enunciato vero per matrici di ordine n-1. Per la Proposizione precedente, possiamo trovare un autovalore (reale) λ_1 di A, con autovettore u_1 , che possiamo scegliere di norma uno. Sia $\mathcal{B}'=\{u_1,v_2,\ldots,v_n\}$ una base ortonormale di \mathbb{R}^n con primo vettore u_1 .

Sia $U = \langle u_1 \rangle$ e sia $\mathcal{P} = pr_{u_1}$ la proiezione ortogonale su u_1 :

$$\mathcal{P}(v) = (v \cdot u_1)u_1.$$

 $\mathcal P$ è una funzione lineare, con immagine U e nucleo il sottospazio U^\perp di dimensione n-1 formato dai vettori ortogonali a u_1 . Inoltre $T_A(v)=Av\in U^\perp$ per ogni $v\in U^\perp$, poiché

$$(Av) \cdot u_1 = (Av)^T u_1 = (v^T A^T) u_1 = v^T (Au_1) = v^T (\lambda_1 u_1) = \lambda_1 (v \cdot u_1) = 0.$$

Dunque si può considerare la restrizione S dell'endomorfismo T_A al sottospazio U^\perp . La matrice A è simile alla matrice

$$A' = M_{\mathcal{B}'}(T_A) = \begin{bmatrix} \lambda_1 & w \\ 0 & B \end{bmatrix} = P'^{-1}AP'$$

con $P'=M_{\mathcal{B}'}^{\mathcal{E}}(id)$ matrice ortogonale. Dunque $A'^T=(P'^{-1}AP')^T=P'^{-1}A^TP'=P'^{-1}AP'=A'$ e anche A' è simmetrica, cioè w=0 e $B=B^T$. Ma $B=M_{\mathcal{B}''}(S)$, con $\mathcal{B}''=\{v_2,\ldots,v_n\}$.

Per l'ipotesi induttiva, essendo B simmetrica di ordine n-1, B è simile a una matrice diagonale, e si può trovare una base ortonormale $\{u_2,\ldots,u_n\}$ di U^\perp costituita da autovettori di S, e quindi di T_A . I vettori u_2,\ldots,u_n sono ortogonali a u_1 , poiché appartengono a U^\perp . Quindi $\{u_1,u_2,\ldots,u_n\}$ è un insieme ortonormale, e dunque una base ortonormale di \mathbb{R}^n .

Osservazione. La relazione di similitudine $P^{-1}AP=D$ tra la matrice simmetrica A e la matrice diagonale

$$D = \begin{bmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \cdots & \vdots \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda_n \end{bmatrix}$$

contiene la matrice di transizione $P=M^{\mathcal{E}}_{\mathcal{B}}(id)$ dalla base \mathcal{B} alla base canonica \mathcal{E} di \mathbb{R}^n , cioè una matrice ortogonale. Ne deriva che la relazione di similitudine tra A e D enunciata nel Teorema spettrale può essere riscritta nel modo seguente:

$$P^{-1}AP = P^TAP = D.$$

Il Teorema degli assi principali viene talvolta enunciato nel modo seguente: ogni matrice reale simmetrica è "ortogonalmente simile" a una matrice reale diagonale. La matrice ortogonale P del teorema può essere scelta di determinante P. Infatti, se ha determinante P0, è sufficiente cambiare segno a una sua colonna (è ancora un autovettore di P1, per ottenere det P1.

Osservazione. Per ottenere una base ortonormale di autovettori di A, è sufficiente unire basi ortonormali degli autospazi di A. Infatti, autovettori relativi ad autovalori distinti di una matrice simmetrica sono sempre ortogonali: se $Ax = \lambda x$, $Ay = \mu y$, con $\lambda \neq \mu$, allora

$$\lambda(x \cdot y) = (\lambda x) \cdot y = (Ax) \cdot y = (Ax)^T y = x^T A y = x^T \mu y = \mu(x \cdot y).$$

Dunque $(\lambda - \mu)(x \cdot y) = 0$, da cui $x \cdot y = 0$ e i due autovettori sono ortogonali.

Esempio. La matrice reale simmetrica $A=\begin{bmatrix}7&1&1\\1&7&1\\1&1&7\end{bmatrix}$ ha polinomio caratteristico

$$p_A(\lambda) = \det(A - \lambda I_4) = \det\begin{bmatrix} 7 - \lambda & 1 & 1\\ 1 & 7 - \lambda & 1\\ 1 & 1 & 7 - \lambda \end{bmatrix} = \det\begin{bmatrix} 7 - \lambda & 1 & 1\\ 1 & 7 - \lambda & 1\\ 0 & \lambda - 6 & 6 - \lambda \end{bmatrix}$$
$$= (\lambda - 6) \det\begin{bmatrix} 7 - \lambda & 1 & 1\\ 1 & 7 - \lambda & 1\\ 0 & 1 & 1 \end{bmatrix} = (\lambda - 6)(-(6 - \lambda) - (7 - \lambda)^2 + 1)$$

$$= -(\lambda - 6)(\lambda^2 - 15\lambda + 54) = -(\lambda - 6)^2(\lambda - 9).$$

Dunque ha autovalori 6 (doppio), e 9 (semplice), con autovettori

$$E(6) = N(A - 6I_4) = N \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} = N \begin{bmatrix} 1 & 1 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} = \langle (1, 0, -1), (0, 1, -1) \rangle.$$

$$E(9) = N(A - 9I_4) = N \begin{bmatrix} -2 & 1 & 1 \\ 1 & -2 & 1 \\ 1 & 1 & -2 \end{bmatrix} = N \begin{bmatrix} 1 & 0 & -1 \\ 0 & 1 & -1 \\ 0 & 0 & 0 \end{bmatrix} = \langle (1, 1, 1) \rangle.$$

Per ottenere una base ortonormale di E(6) basta applicare il procedimento di Gram-Schmidt: $\frac{1}{\sqrt{2}}(1,0,-1)$ ha norma 1,

$$(0,1,-1) - \frac{1}{2}(0,1,-1)(1,0,-1)^T(1,0,-1) = (0,1,-1) - \frac{1}{2}(1,0,-1) = \left(-\frac{1}{2},1,-\frac{1}{2}\right)$$

che ha norma $\frac{\sqrt{6}}{2}$. Dunque E(6) ha base ortonormale $\left\{\left(\frac{1}{\sqrt{2}},0,-\frac{1}{\sqrt{2}}\right),\left(-\frac{1}{\sqrt{6}},\frac{2}{\sqrt{6}},-\frac{1}{\sqrt{6}}\right)\right\}$, mentre E(9) ha base ortonormale $\left\{\left(\frac{1}{\sqrt{3}},\frac{1}{\sqrt{3}},\frac{1}{\sqrt{3}}\right)\right\}$, che unite formano una base ortonormale costituita da autovettori di A.

La matrice

$$P = \begin{bmatrix} \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} \\ 0 & \frac{2}{\sqrt{6}} & \frac{1}{\sqrt{3}} \\ -\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} \end{bmatrix},$$

con colonne gli elementi della base ortonormale di \mathbb{R}^3 , è una matrice ortogonale, di determinante 1, ed ha la proprietà

$$P^T A P = P^{-1} A P = \begin{bmatrix} 6 & 0 & 0 \\ 0 & 6 & 0 \\ 0 & 0 & 9 \end{bmatrix}.$$

9.3 Risolvere sistemi lineari impossibili

Un sistema Ax=b di m equazioni lineari in n incognite è risolubile se e solo se $b\in Im(T_A)=\langle A^1,\ldots,A^n\rangle$. Se il sistema non è risolubile, si può cercare una n-upla $y\in\mathbb{R}^n$ che minimizzi la norma $\|Ax-b\|$, detta soluzione ai minimi quadrati del sistema:

$$||Ay - b|| = \min_{x \in \mathbb{R}^n} ||Ax - b||.$$

(Il minimo è zero se, e solo se, Ay = b, cioè y è soluzione)

Per semplicità, supponiamo che rg(A)=n, in modo che la soluzione, se esiste, sia unica. Per ottenere una soluzione ai minimi quadrati, consideriamo la proiezione ortogonale $b'=\pi(b)$ di b su $Im(T_A)$. Se $\mathcal{B}=\{u_1,\ldots,u_n\}$ è una base ortonormale di $Im(T_A)$, la proiezione di $x\in\mathbb{R}^n$ sul sottospazio $Im(T_A)$ è data da

$$\pi(x) = \sum_{i=1}^{n} pr_{u_i}(x) = \sum_{i=1}^{n} (x \cdot u_i)u_i.$$

(Infatti $x-\pi(x)$ è ortogonale a ogni u_j : $(x-\pi(x))\cdot u_j=x\cdot u_j-\sum_i(x\cdot u_i)(u_i\cdot u_j)=x\cdot u_j-x\cdot u_j=0$ e quindi $x-\pi(x)$ è ortogonale ad ogni vettore di $Im(T_A)$.)

La proiezione ortogonale $b'=\pi(b)$ è il vettore del sottospazio $Im(T_A)$ più vicino a b: per il Teorema di Pitagora, se $z\in Im(T_A)$,

$$||z - b||^2 = ||(z - b') + (b' - b)||^2 = ||z - b'||^2 + ||b' - b||^2 \ge ||b' - b||^2$$

con uguaglianza se e solo se z = b'.

L'unica soluzione y del sistema (risolubile) $Ax=b^\prime$ è una soluzione ai minimi quadrati del sistema Ax=b :

$$||Ay - b|| = ||b' - b|| = ||\pi(b) - b|| = \min_{z \in Im(T_A)} ||z - b|| = \min_{x \in \mathbb{R}^n} ||Ax - b||.$$

Per trovare la soluzione ai minimi quadrati y di Ax=b, senza calcolare la proiezione ortogonale b', si può considerare il sistema quadrato associato (detto sistema di equazioni normali per y)

$$A^T A x = A^T b$$

Infatti la soluzione y di Ax=b' risolve anche il sistema $A^TAx=A^Tb'$. Ma $A^T(b'-b)=0$ poiché b'-b è ortogonale alle colonne di A (righe di A^T).

Il sistema quadrato associato $n \times n$ ha matrice dei coefficienti simmetrica A^TA di rango n :

$$A^T A z = 0 \Rightarrow (Az)^T A z = ||Az||^2 = 0 \Rightarrow Az = 0 \Rightarrow z = 0$$

poiché null(A)=n-rg(A)=0. Dunque $null(A^TA)=0$ e $rg(A^TA)=n$. L'unica soluzione del sistema $A^TAx=A^Tb$ è dunque data da

$$y = (A^T A)^{-1} A^T b$$
 (soluzione ai minimi quadrati di $Ax = b$).

Esempio (Retta di regressione). Se n=1, A e b sono vettori colonna $a=(a_1\cdots a_m)^T\neq 0$ e $b=(b_1\cdots b_m)^T$. Il sistema Ax=b diventa

$$\begin{cases} a_1 x = b_1 \\ \vdots \\ a_m x = b_m \end{cases}$$

Il sistema ha una soluzione y=t se e solo se gli m punti $(a_1,b_1),\ldots,(a_m,b_m)$ stanno sulla retta y=tx. La soluzione ai minimi quadrati fornisce il coefficiente angolare t della retta di regressione. Il sistema quadrato associato $A^TAx=A^Tb$ fornisce la soluzione

$$t = (a^T a)^{-1} a^T b = \frac{a \cdot b}{a \cdot a}.$$

(Se gli m punti non hanno baricentro 0, si applica il procedimento ai punti traslati

$$(a_1 - \bar{a}, b_1 - \bar{b}), \dots, (a_m - \bar{a}, b_m - \bar{b})$$

dove $P=(\bar{a},\bar{b})$ è il baricentro, cioè $\bar{a}=\frac{1}{m}\sum_i a_i$ e $\bar{b}=\frac{1}{m}\sum_i b_i$ e la retta di regressione è la retta per P con coefficiente angolare t).

Esercizio. Mostrare che la parabola il cui grafico approssima (non *interpola*!) i 4 punti (1,1), (2,-6), (-2,4), (-1,1) ha equazione $p(x)=\frac{5}{3}-2x-\frac{2}{3}x^2$.