IBIO 2240: PROGRAMACIÓN CIENTÍFICA

Profesor: Luis Felipe Giraldo T. Tarea #2

Universidad de los Andes

2023-I

Para cada problema, soluciones incompletas harán que la calificación del punto entero sea 0.0.

1. (40 puntos) Una compañía produce medicamentos tipo 1 y tipo 2 a partir de los materiales farmacéuticos M1 y M2. La siguiente tabla muestra las características de producción de estos materiales:

	Tons material / Tons de		Disponibilidad máxima
	Medicamento 1	Medicamento 2	diaria (Tons)
Material M1	6	4	24
Material M2	1	2	6
Ganancia por tonelada	\$5	\$4	

Se sabe que la demanda máxima diaria de medicamento 2 es de 2 toneladas, y la demanda diaria de medicamento 2 no puede exceder al medicamento 1 en más de 1 tonelada.

- a) Formule matemáticamente el problema de optimización.
- b) Grafique la región factible manualmente. No utilice algún software especializado para hacerlo.
- c) Encuentre la cantidad de medicamentos 1 y 2 diarios que maximiza las ganancias y satisface las restricciones del problema. En otras palabras, resuelva el problema de optimización planteado. Utilice alguna función en Python para hacer esto.
- 2. (10 puntos) Considere una función $f: \mathbb{R}^n \to \mathbb{R}$. El espacio de interés donde están las variables es $\Omega \subset \mathbb{R}^n$. De esta función se sabe que, para todos los puntos en Ω , la Hessiana es positiva definida. Se sabe que un punto dado $\bar{x} \in \mathbb{R}^n$ es un punto interior y satisface $\nabla f(\bar{x}) = 0$. Determine si es posible conocer si \bar{x} es un minimizador local o global de f sobre \mathbb{R}^n . Justifique su respuesta.
- 3. (20 puntos) Considere la función $f(x) = x_1^2 x_2 + x_2^2 x_1$, donde $x = [x_1, x_2]^T$. Encuentre:
 - a) La aproximación de primer orden de esta función alrededor del punto $a = [1, 2]^T$. Es decir, encuentre un plano que mejor aproxima a f(x) alrededor de a.
 - b) La aproximación de segundo orden de esta función alrededor del punto $a = [1, 2]^T$. Es decir, use la Hessiana para encontrar una aproximación de la función.
- 4. (30 puntos) Considere la función $f(x) = 2x_1^2 + x_2^2$, donde $x = [x_1, x_2]^T$.
 - a) Encuentre la aproximación de primer orden de esta función alrededor del punto $a = [2, -1]^T$. Es decir, encuentre un plano que mejor aproxima a f(x) alrededor de a.
 - b) Muestre que la aproximación de segundo orden de esta función alrededor de cualquier punto $a = [a_1, a_2]^T$ es la misma función f(x). Recuerde que aquí debe usar la Hessiana para encontrar una aproximación de la función.