计算机学院专业基础课

计算机组成

流水线处理器 形式建模综合方法

高小鹏

北京航空航天大学计算机学院

提纲

- □ 集中式译码与分布式译码
- □ 基础指令集与流水线设计规划
- □ 无转发数据通路构造方法
- □ 功能部件控制信号构造方法
- □ 数据冒险的一般性分析方法
- □ 暂停机制生成方法
- □ 转发机制生成方法
- □ 控制冒险处理机制

集中式控制器与分布式控制器

□ 集中式控制器

- ◆ 控制器只在ID阶段
- 控制器产生全部的译码信号
- 流水所有的译码信号

集中式控制器与分布式控制器

- □ 分布式式控制器
 - ◆ 控制器分布在多个流水线阶段
 - ◆ 每级控制器只产生该级功能部件相关的译码信号
 - ◆ 流水指令

集中式控制器与分布式控制器

□ 资源使用率:集中式控制器

🤉 结构简洁性: 分布式控制器

□ 项目维护性:分布式控制器

□ 代码可读性:分布式控制器

提纲

- □ 集中式译码与分布式译码
- □ 基础指令集与流水线设计规划
- □ 无转发数据通路构造方法
- □ 功能部件控制信号构造方法
- □ 数据冒险的一般性分析方法
- □ 暂停机制生成方法
- □ 转发机制生成方法
- □ 控制冒险处理机制

基础指令集与标准流水线

- □ 指令集
 - lw, sw, addu, subu, ori, lui, beq, j, jal, jalr
- □ 典型指令;可以支持大多数程序需求
- □ jal, jalr: 涉及2个写入操作, PC写入, RF写入
 - ◆ 比较特殊的指令

LW
SW
ADDU
SUBU
ORI
LUI
BEQ
J
JAL
JALR

基础指令集与标准流水线

- 流水线: 以性能为目标的标准流水线
 - □ 数据冒险:转发、暂停
 - □ 控制冒险: 分支比较前移、转发、暂停

3控制器架构

- □ 功能部件控制器: 就是书中的控制器
 - ◆ 译码指令,控制各个功能部件
 - ▲ 属于功能性设计范畴:即与指令的功能相关,与性能无关
 - 无论单周期还是流水线,设计思路相同
- □ 暂停控制器
 - ◆ 将IF/ID指令与前序指令(位于后序流水段)分析,决定是否暂停
 - ▲ 属于性能设计范畴
- □ 转发控制器
 - ◆ 分析各级指令的相关性,决定如何转发
 - ◆ 属于性能设计范畴
- □ 三控制器架构特点
 - ◆ 结构清晰,易于理解
 - ◆ 暂停控制器、转发控制器:独立,相互不干扰

流水线功能部件

- 延用单周期数据通路功能部件
- 按流水段分类, 便于理解和记忆
- RF在2个阶段均被使用
 - □ 译码/读操作数阶段;结果回写寄存器阶段

阶段	部件	输入	输出	描述
	PC	D	Q	程序计数器
取指令	ADD4	PC, +4	PC4	完成PC+4
	IM	Α	D	指令存储器
	RF	A1, A2, A3, WD	RD1, RD2	寄存器堆
译码/读	EXT	I16	IMM32	立即数扩展
操作数	NPC	PC, 126	NextPC	为B类/J计算下条地址
	CMP	D1, D2	Result	比较2个数
计算	ALU	A, B	ALU	算数/逻辑运算
访存	DM	A, WD	RD	数据存储器
回写	RF			-

流水线寄存器

- □ 需要设置4级流水线寄存器
 - ◆ 5级流水线的最后一级寄存器为RF
- □ 标记X: 代表对应流水级需要设置相应寄存器
 - ◆ IR: 4个流水级均需要
 - ◆ AO: 仅M级和W级需要

名称	功能	D级 IF/ID	E级 ID/EX	M级 EX/MEM	W级 MEM/WB
IR	传递指令	X	X	X	X
PC4	下一条指令地址	X	X	X	X
RS	RF的RS值(RD1输出)		X		
RT	RF的RT值(RD2输出)		X	X	
EXT	扩展后的32位立即数		X		
AO	ALU计算结果			X	X
DR	DM读出结果				X

提纲

- □ 集中式译码与分布式译码
- □ 基础指令集与流水线设计规划
- □ 无转发数据通路构造方法
- □ 功能部件控制信号构造方法
- □ 数据冒险的一般性分析方法
- □ 暂停机制生成方法
- □ 转发机制生成方法
- □ 控制冒险处理机制

流水线数据通路构造表格

- 每级由寄存器和功能部件组成
 - □ 按流水线5个阶段划分
- X@Y: 代表Y阶段的X寄存器
 - □ IR@W: W级的IR
- PC: 出现在3个阶段
 - □ F级: 取指令
 - □ D级: 保存PC+4
 - □ E级:保存B/J/JAL/JALR的值
- RF: 出现在2个阶段
 - □ D阶段: 准备操作数
 - □ W阶段: 回写结果

S1: LW的数据通路

□ 根据RTL描述建立各级流水线寄存器、功能部件间连

- ◆ LW: 5级
- □ IR必填
 - ◆ 采用分布式译码
- □ 指令不涉及的不需要填: 如PC4
- □ X[y]: 代表X部件的y域
- □ IR@D[i16]: D级IR的16位立即数

		_
部件	输入	LW
PC		
ADD4		PC
IM		PC
PC		ADD4
IR@D		IM
PC4@D		
RF	A1	IR@D[r
КΓ	A2	
EXT		IR@D[i1
NPC	PC4	
NPC	I26	
PC		
IR@E		IR@D
PC4@E		
RS@E		RF.RD2
RT@E		
EXT@E		EXT
ALU	A	RS@E
ALU	В	EXT@I
IR@M		IR@E
PC4@M		
AO@M		ALU
RT@M		
DM	A	AO@M
DM	WD	
IR@W		IR@M
PC4@W		
AO@W		
DR@W		DM
RF	A3	IR@W[r
Λſ	WD	DR@W

14

部件	ŧ	输入	LW	SW	ADDU	SUBU	ORI	BEQ	,_	JAL	JALR
	PC			C1.	全平		学	打握通	段		
AD)D4		PC	PC	TC H		(HUS	人)地位	2 12 l b (PC	PC
	IM		PC	PC	PC	PC	PC	PC	PC	PC	PC
	PC		ADD4	ADD4	ADD4	ADD4	ADD4	ADD4	ADD4	ADD4	ADD4
IR	@D		IM	IM	IM	IM	IM	IM	IM	IM	IM
PC4@	@D							ADD4	ADD4	ADD4	ADD4
	RF	A1	IR@D[rs]	IR@D[rs]	IR@D[rs]	IR@D[rs]	IR@D[rs]	IR@D[rs]	IR@D[rs]		IR@D[rs]
	Kr	A2			IR@D[rt]	IR@D[rt]		IR@D[rt]	IR@D[rt]		
Е	EXT		IR@D[i16]	IR@D[i16]			IR@D[i16]				
C	MP	D1						RF.RD1			
Ci	MP	D2						RF.RD2			
N	NPC-	PC4						PC4@D	PC4@D	PC4@D	
IN	NPC	I26						IR@D[i16]	IR@D[i26]	IR@D[i26]	
	PC							NPC	NPC	NPC	RF.RD1
IR	@Е		IR@D	IR@D	IR@D	IR@D	IR@D			IR@D	IR@D
PC40	@E									PC4@D	PC4@D
RS(@Е		RF.RD1	RF.RD1	RF.RD1	RF.RD1	RF.RD1				
RT	@E			RF.RD2	RF.RD2	RF.RD2					
EXT(@E		EXT	EXT			EXT				
Λ.	\LU	Α	RS@E	RS@E	RS@E	RS@E	RS@E				
A	ALU	В	EXT@E	EXT@E	RT@E	RT@E	EXT@E				
IR@	@M		IR@E	IR@E	IR@E	IR@E	IR@E			IR@E	IR@E
PC4@	@M									PC4@E	PC4@E
A0@	@M		ALU	ALU	ALU	ALU	ALU				
RT@	@M			RT@E							
Т	DM-	Α	AO@M	AO@M							
	ואוע	WD		RT@M							
IR@	DW.		IR@M		IR@M	IR@M	IR@M			IR@M	IR@M
PC4@	ØW									PC4@M	PC4@M
A0@	DW[AO@M	AO@M	AO@M				
DR@	ØM		DM								
	RF	А3	IR@W[rt]		IR@W[rd]	IR@W[rd]	IR@W[rt]			0x1F	IR@W[rd]
	ТΓ	WD	DR@W		AO@W	AO@W	AO@W			PC4@W	PC4@W 院

S2: 综合全部指令的数据通路

- □ 水平方向归并
 - ★ 去除冗余输入来源
- □ 在每个输入来源个数大于1的输入端前增加1个MUX
 - ◆ 注意:同时需要产生相应的控制信号
- □ 特例: NPC的i16和i26归并为i26

部件	输入	<u> </u>	輸入来源		MUX	控制
PC						
ADD4		PC				
IM		PC				
PC		ADD4	NPC	RF.RD1	M1	PCSel
IR@D		IM				
PC4@D		ADD4				
DE	A1	IR@D[rs]				
RF	A2	IR@D[rt]				
EXT		IR@D[i16]				
CMD	D1	RF.RD1				
CMP	D2	RF.RD2				
NDC	PC4	PC4@D				
NPC	I26	IR@D[i26]				
IR@E		IR@D				
PC4@E		PC4@D				
RS@E		RF.RD1				
RT@E		RF.RD2				
EXT@E		EXT				
A I I I	A	RS@E				
ALU	В	EXT@E	RT@E		M2	BSel
IR@M		IR@E				
PC4@M		PC4@E				
AO@M		ALU				
RT@M		RT@E				
DM	A	AO@M				
DM	WD	RT@M				
IR@W		IR@M				
PC4@W		PC4@M				
AO@W		AO@M				
DR@W		DM				
DE	A3	IR@W[rt]	IR@W[rd]	0x1F	М3	WRSel
RF	WD	DR@W	AO@W	PC4@W	M4	WDSel

提纲

- □ 集中式译码与分布式译码
- □ 基础指令集与流水线设计规划
- □ 无转发数据通路构造方法
- □ 功能部件控制信号构造方法
- □ 数据冒险的一般性分析方法
- □ 暂停机制生成方法
- □ 转发机制生成方法
- □ 控制冒险处理机制

功能部件控制信号构造方法

- □ 控制信号产生基本原理:与单周期相同
- □ 分歧点:集中式译码?分布式译码?
 - ◆ 集中式:
 - 与单周期控制器设计完全相同
 - 流水控制信号
 - ◆ 分布式:多个小控制器
 - 每个小控制器的设计思路与单周期相同
 - 流水指令

提纲

- □ 集中式译码与分布式译码
- □ 基础指令集与流水线设计规划
- □ 无转发数据通路构造方法
- □ 功能部件控制信号构造方法
- □ 数据冒险的一般性分析方法
- □ 暂停机制生成方法
- □ 转发机制生成方法
- □ 控制冒险处理机制

数据冒险:需求与供给能否匹配?

- □ 需求者:需要引用reg值的component
 - ◆ 由于reg值最终被某个component使用,因此那个component才是需求者
 - ◆ 例如: 所有运算类指令的需求在E级的ALU
 - ◆ 例如: j指令不需要读取任何GPR, 因此j指令没有需求
- □ 供给者:保存有reg新结果的流水线寄存器
 - ◆ 例如: 所有运算类指令的供给者是EX/MEM、MEM/WB
 - ◆ 例如: load类指令的供给者是MEM/WB
- □ 数据冒险可以转化为:需求与供给的匹配
 - ◆ 无法匹配: 暂停
 - ◆ 可以匹配:转发

需求者的最晚时间模型

- □ *T_{use}*(time-to-use): 指令进入IF/ID寄存器后,其后的某个功能部件 再经过多少cycle就必须要使用相应的寄存器值
 - ◆ 特点1: 是读取操作数的时间上限
 - ◆ 特点2: 同一条指令可以有2个不同的Tuse
 - ◆ 例如,R型计算类指令的T_{use}为1
 - rs/rt值: 最晚被ID/EX寄存器驱动
 - ◆ 例如, store型计算类指令的T_{use}分别为1和2
 - rs值:最晚被ID/EX寄存器驱动
 - rt值:最晚被EX/MEM寄存器驱动

供给者的最早时间模型

- T_{new}(time-to-new): 位于ID/EX及其后各流水线的指令,再经过多 少周期能够产生要写入寄存器的结果
 - ◆ 特点1: 动态值, 随着指令的流动, 该值在不断减小, 直至0
 - ◆ 特点2: 一条指令可以有多个不同的T_{new}
 - ◆ 例如,R型计算类指令的Tnew为1或0
 - 1: 指令位于ID/EX, ALU正在计算。
 - 0: 指令位于EX/MEM和MEM/WB
 - ◆ 例如, load型计算类指令的T_{new}为2, 1, 0
 - 2: 指令位于ID/EX,尚未读取存储器。
 - 1: 指令位于EX/MEM,正在读取存储器
 - 0: 指令位于MEM/WB,包含了结果

数据冒险的策略分析

- □ T_{new} = 0: 表明结果已经产生
 - ◆ 指令位于MEM/WB: 那么虽然结果尚未最终写入RF, 但RF设计使得W结果可以被正确的读出, 因此无需任何操作
 - ◆ 指令位于其他位置:通过转发解决数据相关
- T_{new} ≠ 0: 表明结果尚未产生
 - ◆ T_{new} > T_{use}: 不可能及时供给数据,只能<mark>暂停</mark>流水线
 - ◆ T_{new} ≤ T_{use}: 由于结果产生时间短于读取时间,因此当结果产生后可以通过 转发解决数据冒险

- □ 暂停: T_{new} > T_{use}
- 转发: T_{new} = 0&指令不在MEM/WB 或 T_{new} ≤ T_{use}

数据冒险的策略分析

- □ 暂停:由于在IF/ID就能决定是否需要暂停,因此分析量少
 - ◆ 只需将指令的Tuse与各级的Tnew进行对比即可决定是否需要暂停
- □ 转发:由于在ID级、EX级、MEM级均涉及操作数读取,因此分析量大
 - ◆ 需要将各级指令与其后的各级指令进行对比
- □ 思路: 先解决暂停, 再解决转发
 - ◆ 先易后难
 - ◆ 去除暂停部分后,有助于减少转发的分析量

提纲

- □ 集中式译码与分布式译码
- □ 形式建模综合方法概述
- □ 基础指令集与流水线设计规划
- □ 无转发数据通路构造方法
- □ 功能部件控制信号构造方法
- □ 数据冒险的一般性分析方法
- □ 暂停机制生成方法
- □ 转发机制生成方法
- □ 控制冒险处理机制

BEQ

- □ 示例指令集
 - ◆ add, sub: cal_r类,即R型计算类指令
 - ◆ andi, ori: cal_i类,即I型计算类指令
 - ◆ beq: b_type类
 - ◆ lw: ld类
 - ◆ sw: st类
- □ 会产生结果的指令: cal_r类, cal_i类, load类
- □ 用指令分类可以大幅度简化分析工作量

```
cal_r = add + sub + or + ...
cal_i = addi + ori + andi + ...
ld = lw + lb + lh + ...
st = sw + sb + ...
```

构造Tuse表和Tnew表

□ Tuse表:以指令位于IF/ID来分析

◆ 流水线在指令被存储在IF/ID后就决定是否需要暂停

□ Tnew表:只需分析处于ID/EX和EX/MEM这2种情况

◆ IF/ID: 无任何结果

◆ MEM/WB: 如果结果到达该阶段,则通过RF设计可以消除数据冒险

IF/	IF/ID当前指令										
指令 类型	源寄 存器	Tuse									
beq	rs/rt	0									
cal_r	rs/rt	1									
cal_i	rs	1									
load	rs	1									
store	rs	1									
store	rt	2									

	ID/EX (Tnew)		X/MEN (Tnew)	MEM/WB (Tnew)			
		cal_r 0/rd	_	_			

构造阻塞矩阵

- □ 凡是T_{new} > T_{use} 的指令序列,都需要阻塞
- □ 示例
 - ◆ 序列1 cal_r beq: 由于cal_r需要1个cycle后才能得到结果,而beq现在就需要读取寄存器,因此只能暂停
 - ◆ 序列2 load store: store要读取的rs将在1个cycle后必须使用,而位于ID/EX的load必须经过2个cycle后才能读出DM的数据,因此只能暂停

IF/IC	当前排	旨令		EX/MEM (T _{new})		
指令类型	源寄 存器	T _{use}	cal_r 1/rd	(T _{new}) cal_i 1/rt	load 2/rt	load 1/rt
beq	rs/rt	0	暂停	暂停	暂停	暂停
cal_r	rs/rt	1			暂停	
cal_i	rs	1			暂停	
load	rs	1			暂停	
store	rs	1			暂停	

28

暂停控制信号

□ 建立分类指令的暂停条件

29

□ 建立最终的暂停条件

$$stall = stall_b + ...$$

- □ 建立控制信号
- □ PC.en = !stall
- □ IR D

IF/IC	当前排	旨令		EX/MEM		
				(T _{new})		
指令 类型	源寄 存器	T_{use}	cal_r 1/rd	cal_i 1/rt	load 2/rt	load 1/rt
beq	rs/rt	0	暂停	暂停	暂停	暂停
cal_r	<u>rs/rt</u>	1			暂停	
cal_i	rs	1			暂停	
load	rs	1			暂停	
store	rs	1			暂停	

暂停控制信号

□ 执行动作:

- ①冻结IF/ID: sub继续被保存
- ◆ ②清除ID/EX: 指令全为0,等价于插入NOP

◆ ③禁止PC: 防止PC继续计数, PC应保持为PC+4

```
IR_D.en = !stall
IR_E.clr = stall
PC.en = !stall
```

提纲

- □ 集中式译码与分布式译码
- □ 基础指令集与流水线设计规划
- □ 无转发数据通路构造方法
- □ 功能部件控制信号构造方法
- □ 数据冒险的一般性分析方法
- □ 暂停机制生成方法
- □ 转发机制生成方法
- □ 控制冒险处理机制

转发机制生成方法

□ S1: 根据Tuse和Tnew构造每个转发MUX

□ S2:构造每个转发MUX的控制信号表达式

- □ 按照指令分类,梳理指令在各级流水线的rs或rt读需求
- □ 每个读需求对应1个转发MUX
- □ 转发MUX的输入0:必然是本级流水线寄存器
 - ◆ 对于IF/ID级来说,输入0则来自是RF的输出
- □ 【建议】命名应遵循一定的规则

流水级	源寄 存器	涉及指令			
IR@D	rs	beq	MFRSD	ForwardRSD	RF.RD1
	rt	beq	MFRTD	ForwardRTD	RF.RD2
IR@E	rs	cal_r, cal_i, ld, st	MFRSE	ForwardRSE	RS@E
	rt	cal_r, st	MFRTE	ForwardRTE	RT@E
IR@M	rt	st	MFRTM	ForwardRTM	RT@M
			转发MUX	控制信号	输入0

- □ 用Tnew中剔除非0后的表项,来分析转发MUX的后续输入
 - ◆ 注意:并非有N个O项就有N个后续输入

	ID/EX EX/MEM MEM/WB (Tnew) (Tnew)																
cal_r 1/rd	cal_i 1/rt			al_r /rd	cal_i 0/rt	load 1/rt											
												EX/N (Tn			EM/W (Tnew)		
流水组		京寄字器	涉	及指	i令							cal_r 0/rd	cal_i 0/rt	cal_r 0/rd	cal_i 0/rt	load 0/rt	
IF/IC		rs		beq		MFRS	SD	Forwa	ardR	SD	RF.RD1						
		rt		beq		MFR	ΓD	Forwa	ardR	TD	RF.RD2						
ID/E	X	rs	cal_r, c	cal_i	i, ld, st	MFR	SE	Forwa	ardR	RSE	RS@E						
		rt	ca	al_r,	st	MFR	MFRTE ForwardRTE										
EX/ME	M	rt		st		MFRT	MFRTM ForwardRTM										
转发MUX 控制信号						输入0											

- □ 构造每个转发MUX的后续输入
- □ 示例: MFRSD
 - ◆ EX/MEM: cal_r和cal_i指令都是计算类,结果必然由ALU产生,因此均填入 AO。即代表MFRSD的输入来自EX/MEM中的AO寄存器
 - AO: 代表ALUOut

◆ MEM/WB:由于这是最后一级,即所有指令的结果都通过M4(MUX)回写,

因此均填入M4。

						(Tn	ew)		(Tnew))
流水级	源寄 存器	涉及指令				cal_r 0/rd	cal_i 0/rt	cal_r 0/rd	cal_i 0/rt	load 0/rt
IF/ID	rs	beq	MFRSD	ForwardRSD	RF.RD1	AO	AO	M4	M4	M4
	rt	beq	MFRTD	ForwardRTD	RF.RD2					
ID/EX	rs	cal_r, cal_i, ld, st	MFRSE	ForwardRSE	RS@E					
	rt	cal_r, st	MFRTE	ForwardRTE	RT@E					
EX/MEM	rt	st	MFRTM	ForwardRTM	RT@M					
			转发MUX	控制信号	输入0					

EX/MEM

MEM/WB

- □ 根据前例,可以构造出全部的转发MUX
 - ◆ 当store类指令位于EX/MEM时,不可能再有同级的指令了
 - ◆ 因此有2项空白
- □ 构造更大指令集时,需求项及供给项可能均需要调整
 - ◆ 但由于MIPS的指令功能到格式映射的相对统一,因此调整不会剧烈

◆ 再次从一个侧面反映出MIPS指令集设计的水平! EX/MEM

						(Tn	ew)		(Tnew)	
流水级	源寄 存器	涉及指令				cal_r 0/rd	cal_i 0/rt	cal_r 0/rd	cal_i 0/rt	ld 0/rt
IF/ID	rs	beq	MFRSD	ForwardRSD	RF.RD1	AO	AO	M4	M4	M4
	rt	beq	MFRTD	ForwardRTD	RF.RD2	AO	AO	M4	M4	M4
ID/EX	rs	cal_r, cal_i, ld, st	MFRSE	ForwardRSE	RS@E	AO	AO	M4	M4	M4
	rt	cal_r, st	MFRTE	ForwardRTE	RT@E	AO	AO	M4	M4	M4
EX/MEM	rt	st	MFRTM	ForwardRTM	RT@M			M4	M4	M4
			转发MUX	控制信号	输入0					

□ 对于MFRSD来说,其最终有效输入为3个

- 输入0~RF.RD1; 输入1~AO; 输入2~M4
- □ 实现转发MUX时,需要剔除每级中的重复项

输入	来源
0	RF.RD1
1	AO@M
2	M4@W

□ 在表格中保留重复项的目的在于有利于建立后续的控制信号方程

ForwardRSD	RF.RD1	AO	AO	M4	M4	M4
ForwardRTD	RF.RD2	AO	AO	M4	M4	M4
ForwardRSE	RS@E	AO	AO	M4	M4	M4
ForwardRTE	RT@E	AO	AO	M4	M4	M4
ForwardRTM	RT@M			M4	M4	M4
控制信号	输入0					
	ForwardRTD ForwardRSE ForwardRTE ForwardRTM	ForwardRTD RF.RD2 ForwardRSE RS@E ForwardRTE RT@E ForwardRTM RT@M	ForwardRTD RF.RD2 AO ForwardRSE RS@E AO ForwardRTE RT@E AO ForwardRTM RT@M	ForwardRTD RF.RD2 AO AO ForwardRSE RS@E AO AO ForwardRTE RT@E AO AO ForwardRTM RT@M	ForwardRTD RF.RD2 AO AO M4 ForwardRSE RS@E AO AO M4 ForwardRTE RT@E AO AO M4 ForwardRTM RT@M M4	ForwardRTD RF.RD2 AO AO M4 M4 ForwardRSE RS@E AO AO M4 M4 ForwardRTE RT@E AO AO M4 M4 ForwardRTM RT@M M4 M4

MFRSD	ForwardRSD	RF.RD1	AO@M	M4
MFRTD	ForwardRTD	RF.RD2	AO@M	M4
MFRSE	ForwardRSE	RS@E	AO@M	M4
MFRTE	ForwardRTE	RT@E	AO@M	M4
MFRTM	ForwardRTM	RT@M	M4	
转发MUX	控制信号	输入0	输入1	输入2

数据通路增加转发MUX

- 遍历数据通路的功能部件,找 到所有出现rs和rt的需求点
- □ 注意ALU.B和RT@M,这两个rt需求是相同的!
 - ◆ 这意味着它们应该来自同一个转发 MUX

部件	输入	4	渝入来源		MUX	控制
PC						
ADD4		PC				
IM		PC				
PC		ADD4	NPC	RF.RD1	M1	PCSel
IR@D		IM				
PC4@D		ADD4				
RF	A1	IR@D[rs]				
KI	A2	IR@D[rt]				
EXT		IR@D[i16]				
СМР	D1	RF.RD1				
CML	D2	RF.RD2				
NPC	PC4	PC4@D				
NFC	I26	IR@D[i26]				
IR@E		IR@D				
PC4@E		PC4@D				
RS@E		RF.RD1				
RT@E		RF.RD2				
EXT@E		EXT				
ALU	A	RS@E				
ALU	В	EXT@E	RT@E		M2	BSel
IR@M		IR@E				
PC4@M		PC4@E				
AO@M		ALU				
RT@M		RT@E				
DM	A	AO@M				
DIVI	WD	RT@M				
IR@W		IR@M				
PC4@W		PC4@M				
A0@W		AO@M				
DR@W		DM				
RF	A3	IR@W[rt]	IR@W[rd]	0x1F	М3	WRSel
KF	WD	DR@W	A0@W	PC4@W	M4	WDSel

数据通路增加转发MUX

- 遍历数据通路的功能部件,找 到所有出现rs和rt的需求点

					11102						
. —		A T T		PC4@D		ADD4					
□ 将対	t应的输。	入替换为	j转发ML	JX	RF	A1	IR@D[rs]				
		V Ш 32(7 3			Kr	A2	IR@D[rt]				
的输	ì出	EXT		IR@D[i16]							
	•				СМР	D1	MFRSD				
• 3	主意ALU.B	重本	CMP	D2	MFRTD						
•		_ ,	-	-	NPC	PC4	PC4@D				
둣	è相 同的,	凶此 应该	用同一个结	转发	NFC	I26	IR@D[i26]				
Λ.	1UX				IR@E		IR@D				
IV	ΊΟΛ				PC4@E		PC4@D				
<u>, >-</u>	Ŷ ゞ	ъс + Т	+/->/± ++ //-		RS@E		RF.RD1				
→ }=	上思: 刈丁	TPC,田丁	·构造转发l	VIUX	RT@E		RF.RD2				
Á	有示例指令	拿 中没有	ial/ialr指ぐ	<u> </u>	EXT@E		EXT				
的示例指令集中没有jal/jalr指令, 因此缺乏相应的转发MUX与之对应						A	MFRSE				
						В	EXT@E	MFRTE		M2	BSel
					IR@M		IR@E				
			T	I	PC4@M		PC4@E				
MFRSD	RF.RD1	AO@M	M4		AO@M		ALU				
	25.22	10011			RT@M		MFRTE				
MFRTD	RF.RD2	AO@M	M4		DM	A	AO@M				
MFRSE	RS@E	AO@M	M4			WD	MFRTM				
1411 1132	1.56.1	7.00111	1411		IR@W		IR@M				
MFRTE	RT@E	AO@M	M4		PC4@W		PC4@M				
MFRTM	DTANA	M4			AO@W		AO@M				
IVIEKTIVI	RT@M	IVI4			DR@W		DM				
转发MUX	输入0	输入1	输入2		RF	A3		IR@W[rd]	-	M3	WRSel
	1177	1177	1	1011 / 1/2		WD	DR@W	AO@W	PC4@W	M4	WDSel

输入

PC

PC

ADD4

IM

PC ADD4

IM

PC

IR@D

输入来源

NPC

RF.RD1

MUX

M1

PCSel

转发机制生成方法

- □ S1: 根据Tuse和Tnew构造每个转发MUX
- □ S2: 构造每个转发MUX的控制信号表达式

S2: 构造每个转发MUX的控制信号表达式

- □ 控制信号表达式构造的基本思路
 - ◆ 精确控制每个转发选择
 - ◆ 所有非转发的条件都用于选择输入0

输入	来源
0	RF.RD1
1	AO@M
2	M4@W

						· •	ЛЕМ ew)		IEM/W (Tnew)	
流水级	源寄 存器	涉及指令				cal_r 0/rd	cal_i 0/rt	cal_r 0/rd	cal_i 0/rt	ld 0/rt
IF/ID	rs	beq	MFRSD	ForwardRSD	RF.RD1	AO	AO	M4	M4	M4
	rt	beq	MFRTD	ForwardRTD	RF.RD2	АО	AO	M4	M4	M4
ID/EX	rs	cal_r, cal_i, ld, st	MFRSE	ForwardRSE	ID/EX.RS	АО	AO	M4	M4	M4
	rt	cal_r, st	MFRTE	ForwardRTE	ID/EX.RT	АО	AO	M4	M4	M4
EX/MEM	rt	st	MFRTM	ForwardRTM	EX/MEM.RT			M4	M4	M4
			转发MUX	控制信号	输入0					

示例: always语句建模MF_RS_D的控制信号表达式

- [」] <mark>宏定义</mark>提高可读性和一致性
 - `define *op* 31:26
 - `define *rs* 25:21

输入	来源
0	RF.RD1
1	AO@M
2	M4@W

北京航空航天大学计算机学院

School of Computer Science and Engineering, Beihang University

- □ 顺序代表优先级
- MEM/WB EX/MEM 多条前序指令写同一个寄存器 (Tnew) (Tnew) ld cal r cal i cal r cal i 源寄 流水级 涉及指令 存器 0/rd | 0/rt | 0/rd | 0/rt | 0/rt IF/ID **ForwardRSD MFRSD** RF.RD1 AO beq AO **M4 M4 M4** rs ForwardRTD RF.RD2 **MFRTD** AO AO M4 M4 M4 rt beq

控制信号

输入0

转发MUX

提纲

- □ 集中式译码与分布式译码
- □ 形式建模综合方法概述
- □ 基础指令集与流水线设计规划
- □ 无转发数据通路构造方法
- □ 功能部件控制信号构造方法
- □ 数据冒险的一般性分析方法
- □ 暂停机制生成方法
- □ 转发机制生成方法
- □ 控制冒险处理机制

控制冒险处理机制

□ 分歧点1: 是否实现延迟槽

◆ 如果实现,需要注意jal及jalr指令应保存PC+8(或者更多,取决于是否前移)

□ 分歧点2: 执行是否前移至ID阶段

□ 课程要求:实现延迟槽,并且前移至ID阶段

延迟槽前移	是	否
温	硬件无需处理	B类:有条件清除IF/ID J类:无条件清除IF/ID
否		B类: 有条件清除IF/ID、ID/EX J类: 无条件清除IF/ID、ID/EX、EX/MEM

Q: JAL、JALR的回写寄存器怎么处理呢?

A: 视同普通的回写

总结

- □ 流水线设计的复杂性在于对冲突的覆盖性分析
 - ▼ 覆盖性分析使得设计与测试均具备了完整的正向设计的理论基础
 - ◆ 分析避免了频繁的、无谓的试错
 - ◆ 提高开发效率,确保开发正确性
- □ 教科书中存在的不足
 - 没有覆盖性分析,难以满足大规模指令集的流水线设计与测试需求
 - ◆ 没有覆盖性分析,必然遗漏部分数据相关
 - 如lw~sw指令,必须暂停。但事实上可以通过增加转发MUX实现不停顿
 - 如cal~sw指令,未明确指出处理机制
 - ◆ RF内部的数据转发语焉不详
 - 内部转发: 当读和写同一个寄存器时, 读出的数据应该为要写入的数据

