

Definições para o Projeto Final

1. Identificação do Problema

O crescimento acelerado de e-commerces impôs novos desafios logísticos aos centros de distribuição como a necessidade latente por agilidade, precisão e escalabilidade. Nessa lógica, empresas como Amazon, Ocado e Walmart já demonstraram que a automação logística - com uso de robôs móveis, braços robóticos, esteiras e algoritmos inteligentes - é a chave para suprir essa demanda crescente e complexa.

Porém, sistemas automatizados ainda são inacessíveis para pequenas operações ou projetos experimentais. Além disso, há lacunas práticas, como a alocação de caixas em depósitos dinâmicos, reorganização frequente por proximidade de destino, e compatibilidade entre inteligência de planejamento (ex: PDDL) e robôs físicos.

Então, visando uma POC (Proof of Concept) iremos tratar da automação completa e otimizada de um centro de distribuição, considerando os problemas principais de alocar caixas com destinos semelhantes de forma próxima e realizar isso de maneira automatizada por robô.

2. Requisitos do Projeto

• RF: Requisitos funcional

RNF: Requisito não funcional

Código	Descrição
RF01	O braço robótico deve ser capaz de pegar uma caixa em uma posição de origem e depositá-la em uma posição de destino.
RF02	O sistema deve receber, via comunicação com backend, o local onde a caixa deve ser posicionada.
RF03	O sistema deve identificar a cor da caixa usando um sensor e associá-la a uma rota de armazenagem.
RF04	O firmware deve interpretar comandos de movimentação (ângulo dos servos) vindos do plano de execução.
RF05	O braço deve ser capaz de posicionar a caixa com precisão em prateleiras de uma maquete de estantes.
RF06	O sistema deve atualizar visualmente a operação executada.
RNF7	O tempo de resposta do sistema, do input de plano de organização até a execução, deve ser inferior a 10 segundos.
RNF8	O sistema embarcado deve operar com consumo compatível com fonte USB de bancada ou bateria 5V.

3. Lista Inicial de Materiais

Item	Descrição
01 Kit Braço Robótico MDF	https://www.huinfinito.com.br/chassis-plataformas/16 37-kit-braco-robotico-mdf.html
02 BitDogLab	Plataforma do curso
01 Sensor de cor	Sensor presente no kit
02 Protoboard	Protoboard para o protótipo e ligação dos servos motores
02 cabo USB de alimentação	Para alimentar as bitdoglabs
01 Estrutura de estante	Impressa em 3d ou manualmente construída para representar os locais de depósito
04 servo motores	Presentes no braço robótico
06 caixas de fósforo	Representando as caixas, pintaremos com cores diferentes.

