Unit 1 Simple Linear Regression

Prof. Phil Schniter

ECE 4300: Introduction to Machine Learning, Sp20

Learning objectives

- Understand how to load datasets in Python using pandas
- Visualize data using a scatter plot
- Understand sample mean, variance, and covariance
- Describe a linear model for data
 - Identify the target variable and predictor
- Compute the least-squares fit using the regression formula
- Compute the R^2 measure-of-fit
- Visually assess goodness-of-fit and identify causes of poor fit

2 / 32

Outline

- Motivating Example: Predicting Automobile MPG
- Linear Model
- Least-Squares Fit: The Problem
- Sample Mean, Variance, Standard Deviation, Covariance
- Least-Squares Fit: The Solution
- Assessing Goodness-of-Fit

Example: Predicting automobile mpg

- We will consider the task of predicting the fuel efficiency (in mpg) of a car from features like # cylinders, horsepower, weight, etc.
- Demo in Jupyter notebook: demo01_auto_mpg.ipynb
 - Learn from demo, and test your understanding in the lab
- Uses data from UCI library: https://archive.ics.uci.edu/ml/
- Data is loaded using Python's pandas library
 - Pandas routines have many options!
 - Learn from examples; Google is your friend!
 - Pandas read_csv command creates a dataframe object with 3 main components:
 - df.values: numerical values in Numpy format
 - df.columns: column labels
 - df.index: row labels

Result of pandas' read_csv

import pandas as pd

16.0

4 17.0

5 15.0

8

8

8

304.0

302.0

429.0

```
import numpy as np
         names = ['mpg', 'cylinders', 'displacement', 'horsepower',
In [3]:
                    'weight', 'acceleration', 'model year', 'origin', 'car name']
         df = pd.read csv('https://archive.ics.uci.edu/ml/machine-learning-databases/'+
In [4]:
                              'auto-mpg/auto-mpg.data'.
                             header=None, delim whitespace=True, names=names, na values='?')
         df.head(6)
Out[4]:
                  cylinders
                           displacement horsepower
                                                  weight acceleration model year origin
                                                                                                 car name
          0 18.0
                        8
                                 307.0
                                            130.0
                                                  3504.0
                                                                12.0
                                                                            70
                                                                                   1 chevrolet chevelle malibu
             15.0
                        8
                                 350.0
                                            165.0
                                                  3693.0
                                                                11.5
                                                                            70
                                                                                           buick skylark 320
          2 18.0
                        8
                                 318 0
                                            150.0 3436.0
                                                                11.0
                                                                            70
                                                                                           plymouth satellite
```

150.0 3433.0

140.0 3449.0

198.0 4341.0

12.0

10.5

10.0

70

70

70

amc rebel sst

ford galaxie 500

ford torino

5 / 32

Visualizing the data

- When possible, visualize the data before working with it.
- Python has MATLAB-like plotting features in the matplotlib module.

Visualizing the Data

We load the matplotlib module to plot the MATLAB.

```
In [15]: import matplotlib
import matplotlib.pyplot as plt
%matplotlib inline
```

First, let's extract some data columns and co

```
In [16]: xstr = 'displacement'
x = np.array(df[xstr])
y = np.array(df['mpg'])
```

Now we can create a scatter plot:

```
In [17]: plt.plot(x,y,'o')
   plt.xlabel(xstr)
   plt.ylabel('mpg')
   plt.grid(True)
```

Postulating a model

- What relationships do you see?
- Is there a mathematical model relating the variables?
- How well can you predict mpg from these variables?

ECE 4300

7/32

Outline

Motivating Example: Predicting Automobile MPG

- Linear Model
- Least-Squares Fit: The Problem
- Sample Mean, Variance, Standard Deviation, Covariance
- Least-Squares Fit: The Solution
- Assessing Goodness-of-Fit

Describing and visualizing data

- y: the variable we are trying to predict
 - Many names: target, regressand, response variable, dependent variable, label
- x: the variable we are using for prediction
 - Many names: feature, predictor, regressor, attribute, independent variable
 - For now we consider a single variable, but in general there can be many
- Data: the set of pairs $\{(x_i, y_i)\}_{i=1}^n$
 - Each pair is called a sample
 - We will use n for the number of samples
- A scatter plot is used to visualize the data pairs

ECE 4300

9 / 32

Single-variable linear model

Assume a linear relationship:

$$y \approx \beta_0 + \beta_1 x$$

- β₁: slope
- β_0 : intercept
- $\beta = [\beta_0, \beta_1]^T$ are the parameters of the model. Also called coefficients or weights
- Why this model?
 - easy to interpret & analyze
 - simple to optimize parameters (as we will see)
- When is this a good model?

The regression line is shown in red

Outline

- Motivating Example: Predicting Automobile MPG
- Linear Model
- Least-Squares Fit: The Problem
- Sample Mean, Variance, Standard Deviation, Covariance
- Least-Squares Fit: The Solution
- Assessing Goodness-of-Fit

Linear model: The residual

■ Note: *x* does not *exactly* predict *y*:

$$y \approx \beta_0 + \beta_1 x$$

Let's model this behavior explicitly using a residual, ϵ :

$$y = \beta_0 + \beta_1 x + \epsilon$$

- For the *i*th sample, we then have:
 - **predicted value:** $\hat{y}_i = \beta_0 + \beta_1 x_i$
 - residual: $\epsilon_i = y_i \widehat{y}_i$

The residual ϵ_i is the vertical deviation from y_i to the regression line

Phil Schniter (OSU) Unit 1 ECE 4300 12/32

Least-squares fit

- How do we choose the model parameters $\beta = [\beta_0, \beta_1]^T$?
- Minimize the residual sum of squares (RSS):

$$RSS(\beta_0, \beta_1) \triangleq \sum_{i=1}^{n} \epsilon_i^2 = \sum_{i=1}^{n} (y_i - \widehat{y}_i)^2$$

https://en.wikipedia.org/wiki/Residual_sum_of_squares

- Also called the sum of squared errors (SSE) and sum of square residuals (SSR)
- Note that ϵ_i and \widehat{y}_i are implicitly functions of $[\beta_0, \beta_1]$
- The value of β that minimizes RSS is the least-squares fit.
 - Geometrically: minimizes sum of squared distances to the regression line.

Phil Schniter (OSU) Unit 1 ECE 4300 13 / 32

The optimization approach: A general ML recipe

General ML problem

- Assume a model with some parameters
- Get data
- Choose a loss function
- Find parameters that minimize loss

Simple Linear Regression

- \rightarrow Linear model: $\hat{y} = \beta_0 + \beta_1 x$
- \rightarrow Data: $\{(x_i, y_i)\}_{i=1}^n$
- $\rightarrow \operatorname{RSS}(\beta_0, \beta_1) \triangleq \sum_{i=1}^n (y_i \widehat{y}_i)^2$
- \rightarrow Find (β_0, β_1) that minimizes $RSS(\beta_0, \beta_1)$

Outline

- Motivating Example: Predicting Automobile MPG
- Linear Model
- Least-Squares Fit: The Problem
- Sample Mean, Variance, Standard Deviation, Covariance
- Least-Squares Fit: The Solution
- Assessing Goodness-of-Fit

Sample mean, variance, & standard deviation

■ Sample mean:

$$\overline{x} \triangleq \frac{1}{n} \sum_{i=1}^{n} x_i, \quad \overline{y} \triangleq \frac{1}{n} \sum_{i=1}^{n} y_i$$

Sample variance:

$$s_x^2 \triangleq \frac{1}{n} \sum_{i=1}^n (x_i - \overline{x})^2, \quad s_y^2 \triangleq \frac{1}{n} \sum_{i=1}^n (y_i - \overline{y})^2$$

- Note: some authors use $\frac{1}{n-1}$ to give an unbiased estimate. More on this later
- Sample standard deviation (SD): s_x , s_y
 - Simply the square-root of the sample variance

Phil Schniter (OSU)

Visualizing sample mean & SD on scatter plot

- Sample means \overline{x} and \overline{y} :
 - The center of mass in each axis
- Standard deviations s_x and s_y :
 - The "spread" in each axis about the mean
 - If the data was Gaussian distributed...
 - \blacksquare 68% of points <1 SD from mean
 - \blacksquare 95% of points < 2 SDs from mean
 - 99.7% of points < 3 SDs from mean

■ What are your estimates of $\overline{x}, \overline{y}, s_x, s_y$ from the above scatter plot?

Phil Schniter (OSU) Unit 1 ECE 4300 17/32

Computing the sample mean & SD in Python

• We can exactly compute $\overline{x}, \overline{y}, s_x, s_y$ using the Numpy package in Python

```
In [27]: xm = np.mean(x)
ym = np.mean(y)
sxx = np.mean((x-xm)**2)
syy = np.mean((y-ym)**2)

xm = 104.47, ym= 23.45
sqrt(sxx) = 38.44, sqrt(syy) = 7.80
```


Sample covariance

The sample covariance is

$$s_{xy} \triangleq \frac{1}{n} \sum_{i=1}^{n} (x_i - \overline{x})(y_i - \overline{y})$$

which indicates how "related" $\{x_i\}$ and $\{y_i\}$ are.

■ The value s_{xy} is easier to interpret after normalization. This is done via the sample (Pearson) correlation coefficient:

$$\rho_{xy} \triangleq \frac{s_{xy}}{s_x s_y} \in [-1, 1]$$

- The property $\rho_{xy} \in [-1,1]$ is a consequence of the Cauchy-Schwarz inequality.
- **Example** scatterplots for datasets with various ρ_{xy} :

https://en.wikipedia.org/wiki/Pearson_correlation_coefficient

Alternative expressions for sample variance & covariance

- Recall that the sample variance was defined as $s_x^2 \triangleq \frac{1}{n} \sum_{i=1}^n (x_i \overline{x})^2$
- A very useful alternative formula can be found by expanding the square:

$$s_x^2 = \frac{1}{n} \sum_{i=1}^n x_i^2 - 2\overline{x} \frac{1}{n} \sum_{i=1}^n x_i + \overline{x}^2 = \frac{1}{n} \sum_{i=1}^n x_i^2 - \overline{x}^2 \quad \Rightarrow \quad \frac{1}{n} \sum_{i=1}^n x_i^2 = s_x^2 + \overline{x}^2$$

- Similarly, for the sample covariance we had $s_{xy} \triangleq \frac{1}{n} \sum_{i=1}^{n} (x_i \overline{x})(y_i \overline{y})$
- and a useful alternative expression is

$$s_{xy} = \frac{1}{n} \sum_{i=1}^{n} x_i y_i - \overline{xy} \quad \Rightarrow \quad \frac{1}{n} \sum_{i=1}^{n} x_i y_i = s_{xy} + \overline{xy}$$

Phil Schniter (OSU)

Notation

- We will use the following notation in this class (we'll try to be consistent)
- Note: some books/authors use different notations

Statistic	Notation	Formula	Python
sample mean	\overline{x}	$\frac{1}{n} \sum_{i=1}^{n} x_i$	xm
sample variance	$s_x^2 = s_{xx}$	$\frac{1}{n} \sum_{i=1}^{n} (x_i - \overline{x})^2$	sxx
sample standard deviation	$s_x = \sqrt{s_{xx}}$	$\sqrt{\frac{1}{n}\sum_{i=1}^{n}(x_i-\overline{x})^2}$	sx
sample covariance	s_{xy}	$ \frac{1}{n} \sum_{i=1}^{n} (x_i - \overline{x})(y_i - \overline{y}) $	sxy
sample correlation coefficient	$ ho_{xy}$	$rac{s_{xy}}{s_x s_y}$	rhoxy

Outline

- Motivating Example: Predicting Automobile MPG
- Linear Model
- Least-Squares Fit: The Problem
- Sample Mean, Variance, Standard Deviation, Covariance
- Least-Squares Fit: The Solution
- Assessing Goodness-of-Fit

Minimizing RSS

■ To minimize $RSS(\beta_0, \beta_1)$, we find the β_0 and β_1 that zero the partial derivatives

$$\frac{\partial \operatorname{RSS}(\beta_0, \beta_1)}{\partial \beta_0} = 0, \quad \frac{\partial \operatorname{RSS}(\beta_0, \beta_1)}{\partial \beta_1} = 0$$

Because RSS is quadratic with a positive Hessian, the zero-gradient point is guaranteed to occur at a minimum (more on this later)

 After some manipulations (see next page), we obtain the optimal values

$$\beta_1 = \frac{s_{xy}}{s_{xx}} = \frac{\rho_{xy}s_y}{s_x}, \qquad \beta_0 = \overline{y} - \beta_1 \overline{x}$$

Minimizing RSS: Derivation

The minimum RSS is achieved by values of (β_0, β_1) that zero the gradient, i.e.,

$$0 = \frac{\partial \operatorname{RSS}(\beta_0, \beta_1)}{\partial \beta_0} = \frac{\partial}{\partial \beta_0} \sum_{i=1}^n (y_i - \beta_0 - \beta_1 x_i)^2 = -2 \sum_{i=1}^n (y_i - \beta_0 - \beta_1 x_i)$$
 (1)

$$0 = \frac{\partial \operatorname{RSS}(\beta_0, \beta_1)}{\partial \beta_1} = \frac{\partial}{\partial \beta_1} \sum_{i=1}^n (y_i - \beta_0 - \beta_1 x_i)^2 = -2 \sum_{i=1}^n x_i (y_i - \beta_0 - \beta_1 x_i)$$
 (2)

Starting with (1), we can multiply both sides by $-\frac{1}{2n}$ to give

$$0 = \frac{1}{n} \sum_{i=1}^{n} (y_i - \beta_0 - \beta_1 x_i) = \underbrace{\frac{1}{n} \sum_{i=1}^{n} y_i - \beta_0 - \beta_1}_{\overline{y}} \underbrace{\frac{1}{n} \sum_{i=1}^{n} x_i}_{\overline{x}} \quad \Leftrightarrow \quad \boxed{\beta_0 = \overline{y} - \beta_1 \overline{x}}$$
(3)

Doing the same with (2) gives

$$0 = \frac{1}{n} \sum_{i=1}^{n} x_i (y_i - \beta_0 - \beta_1 x_i) = \frac{1}{n} \sum_{i=1}^{n} x_i y_i - \overline{x} \beta_0 - \beta_1 \frac{1}{n} \sum_{i=1}^{n} x_i^2$$
 (4)

Minimizing RSS: Derivation (continued)

Plugging in (3) into (4) gives

$$0 = \underbrace{\frac{1}{n} \sum_{i=1}^{n} x_i y_i - \overline{x} \overline{y}}_{S_{xy}} - \beta_1 \left(\underbrace{\frac{1}{n} \sum_{i=1}^{n} x_i^2 - \overline{x}^2}_{S_{xx}} \right) \quad \Leftrightarrow \quad \boxed{\beta_1 = \frac{s_{xy}}{s_{xx}}}$$

To find the minimum RSS, we plug the optimal value of β_0 into the RSS definition to get

$$RSS(\beta_0, \beta_1) = \sum_{i} \left(y_i - \beta_0 - \beta_1 x_i \right)^2 = \sum_{i} \left(\left(y_i - \overline{y} \right) - \beta_1 (x_i - \overline{x}) \right)^2$$

$$= \underbrace{\sum_{i} (y_i - \overline{y})^2 - 2\beta_1}_{ns_{yy}} \underbrace{\sum_{i} (y_i - \overline{y})(x_i - \overline{x})}_{ns_{xy}} + \beta_1^2 \underbrace{\sum_{i} (x_i - \overline{x})^2}_{ns_{xx}}$$
(5)

and then we plug the optimal value of β_1 into (5) to get

$$RSS(\beta_0, \beta_1) = n \left(s_{yy} - 2 \frac{s_{xy}^2}{s_{xx}} + \frac{s_{xy}^2}{s_{xx}} \right) = n \left(s_{yy} - \frac{s_{xy}^2}{s_{xx}} \right)$$
$$= n \left(1 - \frac{s_{xy}^2}{s_{xx}s_{yy}} \right) s_{yy} = n (1 - \rho_{xy}^2) s_{yy}$$

Automobile demo

Applied to our Python demo. . .


```
xm = np.mean(x)
ym = np.mean(y)
sxx = np.mean((x-xm)**2)
syy = np.mean((y-ym)**2)
syx = np.mean((y-ym)*(x-xm))
beta1 = syx/sxx
beta0 = ym - beta1*xm
```

beta0=39.94, beta1=-0.16

$$\widehat{\mathsf{mpg}} = \beta_0 + \beta_1 \times \mathsf{horsepower}$$

Another good simple-linear-regression demo can be found at https://stattrek.com/regression/regression-example.aspx?Tutorial=AP

Outline

- Motivating Example: Predicting Automobile MPG
- Linear Model
- Least-Squares Fit: The Problem
- Sample Mean, Variance, Standard Deviation, Covariance
- Least-Squares Fit: The Solution
- Assessing Goodness-of-Fit

\mathbb{R}^2 Goodness-of-fit

- Key question: How good is this linear prediction?
- Let's split the variance-of-y into two parts:

$$s_y^2 = \underbrace{\left[s_y^2 - \frac{\mathrm{RSS}}{n}\right]}_{\text{explained by } x} + \underbrace{\left[\frac{\mathrm{RSS}}{n}\right]}_{\text{unexplained by } x} = \left(\underbrace{\left[1 - \frac{\mathrm{RSS}/n}{s_y^2}\right]}_{\text{explained by } x} + \underbrace{\left[\frac{\mathrm{RSS}/n}{s_y^2}\right]}_{\text{unexplained by } x}\right) s_y^2 + \underbrace{\left[\frac{\mathrm{RSS}/n}{s_y^2}\right]}_{\text{explained by } x} + \underbrace{\left[\frac{\mathrm{RSS}/n}{s_y^2}\right]}_{\text{unexplained by } x}\right) s_y^2 + \underbrace{\left[\frac{\mathrm{RSS}/n}{s_y^2}\right]}_{\text{explained by } x} + \underbrace{\left[\frac{\mathrm{RSS}/n}{s_y^2}\right]}_{\text{unexplained by } x}$$

■ The *fraction* of the variance-of-y explained by x is

$$1 - \frac{\text{RSS}/n}{s_y^2} \triangleq R^2,$$

known as the "coefficient of determination"

https://en.wikipedia.org/wiki/Coefficient_of_determination

- Note that $R^2 \in [0,1]$
- **E**x: $R^2 = 0.48$ means that "48% of s_y^2 is explained by x."
- With LS coefficients (β_0, β_1) , we have

$$RSS(\beta_0, \beta_1) = n(1 - \rho_{xy}^2)s_y^2 \quad \Rightarrow \quad \boxed{R^2 = \rho_{xy}^2}$$

Visualizing the correlation coefficient

- $Arr R^2 =
 ho_{xy}^2 pprox 1$: Linear model is a very good fit
- $Arr R^2 =
 ho_{xy}^2 pprox 0$: Linear model is a very poor fit

Phil Schniter (OSU)

If the prediction error is large. . .

- There are many sources of error in linear models
- Example on right:
 - All 4 datasets have same regression line
 - Their prediction errors are large for different reasons
- A lot can be learned from visually inspecting the scatter plot!

A better model for the automobile example?

- What if we predicted the inverse: $\frac{1}{\text{mpg}} \approx \beta_0 + \beta_1 \times \text{horsepower}$
- This uses a nonlinear data transformation followed by linear regression
- Will explore this idea later in the course

Learning objectives

- Understand how to load datasets in Python using pandas
- Visualize data using a scatter plot
- Understand sample mean, variance, and covariance
- Describe a linear model for data
 - Identify the target variable and predictor
- Compute the least-squares fit using the regression formula
- Compute the R^2 measure-of-fit
- Visually assess goodness-of-fit and identify causes of poor fit