Ouestão Acerto: 0,2 / 0,2

Em Python é possível implementar um array utilizando o tipo padrão list. Essa implementação permite o uso das seguintes funções para inserir e remover um elemento, respectivamente:

	impose, remove/destroy.
	insert, delete/pop.
X	append, remove/pop.
	append, pop/delete.
	insert, remove/destroy.

Explicação:

Em Python a função append insere um elemento ao final da lista. As funções "remove" e "pop" podem remover um elemento, de maneiras diferentes. Remove tira um elemento conhecido usando o seu conteúdo, já pop remove um elemento usando seu índice, ou seja, a sua posição na lista.

Acerto: 0,2 / 0,2

Uma lista L encadeada e ordenada está armazenada em memória seguindo o exemplo abaixo. Após a remoção do nó de chave 3, quais alterações terão ocorrido?

Endereço	Chave	Próximo
128	5	64
64	8	32
32	11	null
24	3	128

O endereço 24 conterá a chave 5 e próximo 64.

🛚 🗸 🗸 A variável L apontará para 128.

O endereço 32 terá seu campo próximo apontando para 24.

L terá sido apagada.

L---->

O conteúdo armazenado no endereço 32 será apagado.

A remoção solicitada é do primeiro elemento da lista encadeada. Para realizar esse tipo de remoção, basta apontar a variável que guarda o primeiro elemento (L) para o endereço do segundo elemento. Este endereço está armazenado no campo próximo do primeiro elemento. Ou seja, a variável L deverá apontar para 128.

A resposta endereço 24 conterá a chave 5 está errada pois na lista encadeada, os elementos não precisam ser puxados após uma remoção.

A resposta endereço 32 terá seu campo próximo alterado está errada, pois isso adicionaria um elemento ao final da lista, no caso tornando-a circular.

As demais respostas estão erradas pois nada será apagado.

de implementar de forma eficientemente.

Questão

Acerto: 0,2 / 0,2

A raiz é o ponto de partida para acessar todos os elementos de uma árvore. Marque a opção correta acerca dos principais conceitos de árvore binária de busca:

	Novas chaves maiores que a raiz sempre serão inseridas à esquerda.
X 🛷	Em todas as estruturas de dados onde se realiza busca, inserção e remoção não são admitidas duplicidade de chaves. Isto também inclui as árvores binárias de busca.
	Qualquer nó pode ter um número arbitrário de nós, sempre maior que 2.
	Dado um nó qualquer da árvore binária, todos os nós à direita dele são menores ou iguais a ele.
	O objetivo principal da estrutura de dados árvore binária de busca é ordenar uma lista sem a preocupação

Explicação:

O grau máximo de um nó em uma árvore binária é 2. A unicidade de chave é um pressuposto para estruturas de busca. O objetivo principal de uma árvore binária de busca é implementar os algoritmos de busca, inserção e remoção de forma otimizada. Chaves maiores que a raiz devem ser inseridas à direita. Dado qualquer nó de uma árvore binária de busca, deve valer recursivamente a propriedade de que as chaves contidas à esquerda são menores que a raiz e a direita maiores

Questão

Acerto: 0,2 / 0,2

Em uma Árvore B, temos que: Cada nó contém no mínimo m registros (m+1 descendentes) e no máximo 2m registros (e 2m+1 descendentes), exceto o nó que é raiz que pode conter entre 1 e 2m registros e todos os nós folhas aparecem no mesmo nível. Sobre Árvores B, é correto afirmar:

□ O particionamento de nós em uma Árvore B ocorre quando um registro precisa ser inserido em um nó com menos de 2m registros.
 □ O particionamento de nós ocorre quando é necessário diminuir a altura da árvore.
 □ O particionamento de nós em uma Árvore B ocorre quando um registro precisa ser buscado em um nó com 2m + 1 registros.
 □ O particionamento de nós em uma Árvore B ocorre quando a chave do registro a ser inserido contém um valor(conteúdo) intermediário entre os valores das chaves dos registros contidos no mesmo nó.
 ▼ ✓ O particionamento de nós em uma Árvore B ocorre quando um registro precisa ser inserido em um nó com 2m registros.

Respondido em 08/11/2023 23:32:05

Explicação:

O particionamento de nós em uma Árvore B ocorre quando um registro precisa ser inserido em um nó com 2m registros.

Questão

Acerto: 0,2 / 0,2

O uso de funções recursivas pode facilitar a implementação de diversos algoritmos. Toda recursão depende de dois elementos: o caso base e o passo recursivo. Dentre as opções a seguir, a que apresenta um passo recursivo é:

- ☐ fat(1)=1
- \square par(n)=par(n)

Respondido em 08/11/2023 23:32:2

Explicação:

O passo recursivo é o elemento que faz o cálculo da função recursiva mover-se em direção ao resultado. Deve envolver a chamada da própria função com um valor diferente de entrada. Isso só acontece na resposta correta: fat(n)=n*fat(n-1), passo recursivo da função de cálculo de fatorial.

fat(1)=1 é o caso base dessa mesma função. par(n)=par(n) é uma tautologia, e não uma recursão. As demais respostas são funções que não chamam a si mesmas, não podendo ser passos recursivos.

Uma Deque é uma estrutura de dados mais generalista que as pilhas e filas. Para implementá-la de forma eficiente, você pode usar:

	Pilha com 1 variável: topo.
X 🛷	Lista duplamente encadeada com 2 variáveis: início e final.
	Lista simplesmente encadeada com nó cabeça.
	Fila com 2 variáveis: início e final.
	Lista contígua com 1 variável: início.

Respondido em 08/11/2023 23:32:38

Explicação:

Para implementar uma deque eficientemente, você precisa ter um ponteiro para o início e o final da deque, permitindo inserções e remoções em ambas as pontas com complexidade O(1), sem a necessidade de percorrer a estrutura, o que seria O(n).

Além disso, a fila é uma especialização da deque. Ou seja, toda fila é um deque, mas nem toda deque é uma fila. Podemos assim eliminar a resposta contendo fila. A resposta restante que possui 2 variáveis é a correta. Lista duplamente encadeada. Ela permite a inserção e remoção nas extremidades com complexidade O(1).

A lista contígua e a simplesmente encadeada com nó cabeça levariam a operação de inserção e remoção ao final da fila terem complexidade O(n) por precisarem percorrer toda a estrutura, sendo também descartadas.

As operações de busca, remoção e inserção de nós em uma **árvore binária de busca** levam determinado tempo de execução de seus algoritmos. Esses tempos são dados pela alternativa:

	Busca: O(log n) / Remoção: O(n) / Inserção: O(log n)
X 🎺	Busca: O(n) / Remoção: O(n) / Inserção: O(n)
	Busca: O(n) / Remoção: O(log n) / Inserção: O(log n)
	Busca: O(n) / Remoção: O(n) / Inserção: O(log n)
	Busca: O(1) / Remoção: O(log n) / Inserção: O(log n)

Respondido em 08/11/2023 23:33:54

Explicação:

No pior caso uma árvore binária de busca com n chaves tem n níveis. Assim, o pior caso da busca, é buscar o nó mais profundo da árvore que demandará n comparações. Como a busca é subrotina da inserção e da remoção, então as três operações terão complexidade de pior caso de O(n).

Questão

Acerto: 0,2 / 0,2

Seja a seguinte árvore AVL abaixo. Com a inserção da chave 90, marque a opção que indica exatamente o que acontecerá com a árvore resultante após essa inserção:

- A árvore resultante irá desbalancear à direita do nó de chave 40.
- A árvore resultante irá desbalancear à direita do nó de chave 80.
- A árvore resultante irá manter o balanceamento geral da árvore.
- 🛚 🗸 🗸 A árvore resultante irá desbalancear à esquerda do nó de chave 60.
 - A árvore resultante irá desbalancear à esquerda do nó de chave 10.

Respondido em 08/11/2023 23:34:1

Explicação:

Ao inserir o nó de chave 90, ele é maior que o nó 80, sendo assim, inserido ao lado direito de 80, causando desbalanceamento do nó 60 que tem altura da subárvore direita 2 e esquerda 0.

Questão

Acerto: 0,2 / 0,2

Dada a seguinte matriz M, inicializada com o código:

M=[[1,2,3,4],[5,6,7,8],[9,10,11,12],[13,14,15,16]]

O código em Python para imprimir cada elemento da coluna iniciada pelo elemento 3 é:

1	1	2	3	4
	5	6	7	8
	9	10	11	12
	13	14	15	16

for linha in M:

	print(linha)
	print(M[2])
	for linha in M:
X 🗸	print(linha[3]) for linha in M:
	print(linha[2]) for coluna in M:
	print(coluna)

Respondido em 08/11/2023 23:34:5

Explicação:

O laço deve percorrer uma coluna, iterando linha a linha e extraindo dela o seu terceiro elemento, ou seja linha[2]. A resposta correta itera pelas linhas e imprime o elemento [2] de cada uma.

Dentre as respostas erradas, apenas escrever ¿print(linha)¿ imprimirá cada linha como um todo, resultando na impressão de toda a matriz, linha a linha.

A resposta "print(coluna)" terá o mesmo resultado pois para o código linha e coluna são apenas nomes escolhidos pelo programador. Poderia ser i, aux ou qualquer outra variável escolhida.

Já "print(linha[3])" está com o índice errado, imprimindo os elementos da coluna iniciada por 4. E ¿print(M[2])¿ imprime toda a linha iniciada por 9.

Acerto: 0,2 / 0,2

Em uma implementação da estrutura de dados do tipo fila, você possui um espaço de memória contíguo a ela alocada com capacidade para M nós. A variável da fila é F, e duas variáveis guardam os índices do início e final da fila (inicioF e finalF). Em uma implementação otimizada de F, como podemos identificar que a fila está cheia?

☐ FinalF== M

X ✓ InicioF==(finalF+1)mod M
☐ InicioF = M
☐ InicioF== finalF
☐ InicioF==finalF + 1

Respondido em 08/11/2023 23:35:4

Explicação:

Em uma implementação otimizada da fila, é usado um sistema modular, onde o início e o final da fila se movem a cada inserção. A cada inserção, finalF aumenta em 1, até o máximo M, depois volta para 0 e assim por diante. A cada remoção inícioF aumenta em 1, até o máximo M e depois volta a 0. dessa forma a fila está cheia quando (finalF+1)modM é igual a inicio.