MATH 131B: Homework #4

Professor Dave Penneys
Assignment: 34, 37, 39, 40; Optional: 35

Eric Chuu

UID: 604406828

May 3, 2016

Problem 34

Let $(X, d_X), (Y, d_Y)$ be metric spaces.

- (a) Show that the map $\pi_X: X \times Y \to X$ by $(x,y) \mapsto x$ is continuous.
- (b) Prove that π_X is open, i.e., if $U \subseteq X \times Y$ is open, then $\pi_X(U) \subseteq X$ is open.
- (c) Is π_X closed? That is, if $F \subseteq X \times Y$ is closed, then is $\pi_X(F) \subseteq X$ closed?

Solution

(a) We will show that the map $\pi_X : X \times Y \to X$ is (topologically) continuous by showing that all open sets in X have pre-images that are open in $X \times Y$. We first prove a few lemmas that help with the proof:

Lemma 1: $B_r(x) = \prod_{i=1}^n B_r^i(x_i)$, $x = (x_1, x_2, \dots, x_n)$, in X is the product of open balls $B_r^1(x_1)$, $B_r^2(x_2)$, ..., $B_r^n(x_n)$, where $B_r^i(x_i)$ is the open ball of radius r > 0 centered about $x_i \in X_i$.

Proof: Consider $y \in B_r(x) \Leftrightarrow \max\{d_i(x_i, y) : 1 \leq i \leq n\} < r \Leftrightarrow d_i(x_i, y) < r \Leftrightarrow y \in B_r^i(x_i) \text{ for } 1 \leq i \leq n \Leftrightarrow y \in B_r^1(x_1) \times B_r^2(x_2) \times \ldots \times B_r^n(x_n), \text{ and we are done.}$

Lemma 2: If $U_i \in X_i, 1 \le i \le n$, are open subsets of X_i , then $\prod_{i=1}^n U_i$ is open in $X = X_1 \times ... \times X_n$.

Proof: Let $x = (x_1, \ldots, x_n) \in \prod_{i=1}^n U_i$. Then there exist positive r_1, \ldots, r_n such that $B_{r_i}(x_i) \subset U_i, 1 \leq i \leq n$. Take $r := \min\{r_1, \ldots, r_n\}$. Then $B_r^i(x_i) \subset U_i, 1 \leq i \leq n$, and by Lemma 1, we can conclude that $B_r^1(x_1) \times \ldots \times B_r^n(x_n) \subset \prod_{i=1}^n U_i$, so $\prod_{i=1}^n U_i$ is open in X.

We now consider the map $\pi_X: X \times Y \to X$. Consider an open ball around $x \in X$, $B_r(x) \subset X$. Then we can write the pre-image of this as

$$\pi_X^{-1}(B_r(x)) = B_r(x) \times Y \tag{1}$$

since $B_r(x)$ is a subset of one of the metric spaces in the product space $X \times Y$. Let $U \subseteq X$ be open. We will show that $\pi_X^{-1}(U)$ is open in $X \times Y$. Note that U can be written as the union of open balls around points in U, $U = \bigcup_{x \in U} B_{r_x}(x)$, where each radius r_x depends on the point $x \in U$. Then

$$\pi_X^{-1}(U) = \pi_X^{-1} \Big(\bigcup_{x \in U} B_{r_x}(x) \Big) = \bigcup_{x \in U} \big(\pi_X^{-1}(B_{r_x}(x)) \big)$$

We can apply the equality in (1) to get

$$\bigcup_{x \in U} \left(\pi_X^{-1}(B_{r_x}(x)) \right) = \bigcup_{x \in U} \left(B_{r_x}(x) \times Y \right) = \left(\bigcup_{x \in U} B_{r_x}(x) \right) \times Y = U \times Y.$$

Since U is open in X and Y is open in Y, then applying Lemma 2, we see that $U \times Y$ is open in $X \times Y$, so the map π_X is continuous.

(b) Let $U \in X \times Y$ be open. We will show that $\pi_X(U)$ is open in X. U can be written as a union of open balls about points in U, $U = \bigcup_{z \in U} B_{r_z}(z)$, and applying Lemma 1 from above, we know that this can be that opens balls in $U \subset X \times Y$ can be written as: $B_{r_z}(z) = B_r(x) \times B_r(y)$, the product of open balls in X and Y, respectively. Applying the map π_X , we get

$$\pi_X(U) = \pi_X \big(\bigcup_{z \in U} B_{r_z}(z)\big) = \bigcup_{z \in U} \pi_X(B_{r_z}(z)) = \bigcup_{x \in G \cap X} B_r(x),$$

which is an arbitrary union of open sets in X, hence open in X.

(c) Consider the map $\pi_X : \mathbb{R} \times \mathbb{R} \to \mathbb{R}$. Then the set $F = \{(x,y) : xy \ge 1, x > 0\}$ is closed in $\mathbb{R} \times \mathbb{R}$, as it it contains all of its boundary points. However, $\pi_X(F) = (0, \infty)$, which is not closed in \mathbb{R} since 0 is adherent to $(0, \infty)$, but $0 \notin (0, \infty)$, and we conclude that the map π_X is not a closed map.

Problem 35

Let X, Y be metric spaces and let $\pi_X : X \times Y \to X$ be the map defined by $(x, y) \mapsto x$ as in Problem 34. Assume Y is compact. Show that π_X is closed.

Solution

We first show the following lemmas.

(a) Show that for every $x \in X$, the set $\{x\} \times Y$ is compact.

Proof Let $(x_n, y_n) \subset \{x\} \times Y$ be a sequence. Since the only element in $\{x\}$ is x, then $x_n = x$ for all n, so we have $x_n \to x$. By assumption Y is compact \Leftrightarrow sequentially compact, so $(y_n) \subset Y$ has a convergent subsequence that converges to $y \in Y$. Hence, we've shown that for a sequence $(x_n, y_n) \subset \{x\} \times Y$, we can find a subsequence $(x_{n_k}, y_{n_k}) \to (x, y) \in \{x\} \times Y$, so $\{x\} \times Y$ is sequentially compact \Leftrightarrow compact.

(b) Suppose $F \subset X \times Y$ is closed, $x \in X$ such that $(\{x\} \times Y) \cap F = \phi$. Show there is an $\epsilon > 0$ such that $(B_{\epsilon}(x) \times Y) \cap F = \phi$.

Proof Suppose for contradiction that $B_{\epsilon}(x) \cap F \neq \phi$ for every $\epsilon > 0$. Let $(x_0, y_0) \in (B_{\epsilon}(x) \times Y) \cap F$. Then let (x_n, y_n) be a sequence in $B_{\epsilon}(x) \times Y$. Since Y is compact \Leftrightarrow sequentially compact, then we can pass y_n to a subsequence $(y_{n_k}) \subset Y$ that converges to $y \in Y$. Since $x_n \in B_{\epsilon}(x)$ for every $\epsilon > 0$, then $x_n \to x$, and $x_{n_k} \to x$. Then, we have that $(x_{n_k}, y_{n_k}) \to (x, y)$. Since $(x_n, y_n) \subset F$, and F is closed in $X \times Y$, then $(x, y) \in F$, but this contradicts our assumption that $(\{x\} \times Y) \cap F = \phi$. Thus, we conclude that there does exists $\epsilon > 0$ such that $(B_{\epsilon}(x) \times Y) \cap F = \phi$.

We now show that π_X is closed. Let $F \subset X \times Y$ be closed. We want to show that $\pi_X(F)$ is closed. It suffices to show that $(X - \pi_X(F))$ is open, that is for any $x \in (X - \pi_X(F))$, there exists $\epsilon > 0$ such that $B_{\epsilon}(x) \cap \pi_X(F) = \phi$. Let $x \in (X - \pi_X(F))$. Note that this means that $(x, y) \notin F$ for all $y \in Y$ since $x \notin \pi_X(F)$. In other words, this means that $(\{x\} \times Y) \cap F = \phi$. Applying part (b) above, we know there exists $\epsilon > 0$ such that

$$(B_{\epsilon}(x) \times Y) \cap F = \phi \tag{2}$$

Applying π_X , we get $\pi_X(B_{\epsilon}(x) \times Y) = B_{\epsilon}(x) \subset X$, and by the the empty intersection in (2) above, we see that $B_{\epsilon}(x) \cap \pi_X(F) = \phi$, so $B_{\epsilon}(x) \subset (X - \pi_X(F))$, so $(X - \pi_X(F))$ is open $\Leftrightarrow \pi_X(F)$ closed, so the map π_X is closed.

Problem 37

Suppose $f:(X,d_X)\to (Y,d_Y)$.

(a) Prove that if f is continuous, then the graph of f is closed in $X \times Y$.

Solution

The graph of f is graph $(f) = \{(x, f(x)) : x \in X\}$. Let $(x_n, f(x_n))$ be a sequence in graph(f) that converges to (x_0, y_0) . To show graph(f) is closed, we need to show that $(x_0, y_0) \in \text{graph}(f)$, that is $(x_0, y_0) = (x_0, f(x_0))$. Since $(x_n, f(x_n)) \to (x_0, y_0)$, we have component-wise convergence, so $x_n \to x_0$ and $f(x_n) \to y_0$. By continuity of f, $x_n \to x_0$ implies $f(x_n) \to f(x_0)$. Since limits are unique, we conclude that $f(x_0) = y_0$, so we have $(x_0, y_0) = (x_0, f(x_0))$, and $(x_0, y_0) \in \text{graph}(f)$, so graph(f) is closed in $X \times Y$.

(b) Find metric spaces $(X, d_X), (Y, d_Y)$ and a function $f: X \to Y$ which is not continuous such that the graph of f is closed in $X \times Y$.

Solution

Consider the metric space $(\mathbb{R}, |\cdot|)$, and the function $f : \mathbb{R} \to \mathbb{R}$, where $f(x) = \frac{1}{x}$ if $x \neq 0$, and f(0) = 0. Then clearly, f is not continuous at 0. If we consider the graph of f, however, graph $(f) = \{(x, f(x)) : x \in \mathbb{R}\}$, then we see that it is closed in $\mathbb{R} \times \mathbb{R}$, as it contains all of its boundary points. In particular, f(0) = 0, which is a limit point as $x \to \infty$ or $x \to -\infty$.

(c) Suppose now that (Y, d_Y) is compact. Prove that if the graph of $f: X \to Y$ is closed, then f is continuous.

Solution

Let $x_0 \in X$. Then $f(x_0) \in Y$. Let V be the open ball around $f(x_0) \in Y$. Then (Y - V) is closed, and since $\operatorname{graph}(f)$ is closed in $X \times Y$, then $\operatorname{graph}(f) \cap (X \times (Y - V))$ is closed in $X \times Y$. By Problem 35, we also know that $\pi_X(\operatorname{graph}(f) \cap (X \times (Y - V)))$ is closed in X, so $X - \pi_X(\operatorname{graph}(f) \cap (X \times (Y - V))) =: U$ is open in X. Since $f(x_0) \in V$, then $f(x_0) \notin Y - V$, so $(x_0, f(x_0)) \notin X \times (Y - V)$, and $x \notin \pi_X(\operatorname{graph}(f) \cap (X \times (Y - V)))$, so $x_0 \in U$. We are done if we can show that for arbitrary $x \in U$, $f(x) \in V$. Let $x \in U$. Then we can follow similar logic as above: $(x, f(x)) \notin (X \times (Y - V)) \implies f(x) \notin Y - V \implies f(x) \in V \implies f(U) \subset V$, so f is continuous at x_0 , which was arbitrary, so we conclude that f is continuous.

Problem 39

Let (X, d) be a metric space and $(E_{\alpha\alpha\in I})$ be a collection of connected subsets of X. Suppose $\bigcap_{\alpha\in I} E_{\alpha} \neq \phi$. Show that $\bigcup_{\alpha\in I} E_{\alpha}$ is connected.

Solution

Let $X := \bigcup_{\alpha \in I} E_{\alpha}$. Since X is connected if and only if every continuous two valued function on X is constant, then it suffices to show that $f: X \to \{0,1\}$ is constant. Since each E_{α} is connected, then $f|_{E_{\alpha}}: X \to \{0,1\}$ is constant. Since $\bigcap_{\alpha \in I} E_{\alpha} \neq \phi$, let $x_0 \in \bigcap_{\alpha \in I} E_{\alpha}$. Then $x_0 \in E_{\alpha}$ for all $\alpha \in I$, hence in the union, X. By connectedness of each of the E_{α} 's, we can say without loss of generality that $f(x_0) = 0$, hence constant. Since $E_{\alpha} \subset X$ for all $\alpha \in I$, then the continuous function $f: X \to \{0,1\}$ is also constant, so $X = \bigcup_{\alpha \in I} E_{\alpha}$ is connected.

Problem 40

Let (X, d_X) be a metric space, and let $E \subseteq X$.

(1) Show that if E is connected, then \overline{E} is connected.

Solution

Suppose E is connected. Then all continuous two-valued functions on E are constant. Suppose without loss of generality that for all $x \in E$, f(x) = 0. Then it suffices to show that for any $x \in \overline{E}$, f(x) = 0 as well. Let $x_0 \in \overline{E}$. Then x_0 is adherent to E, so there exists a sequence $(x_n) \subset E$ that converges to x_0 . Then we take the limit of $f(x_n)$, and by continuity of f on E, we can write

$$\lim_{n \to \infty} f(x_n) = f\left(\lim_{n \to \infty} x_n\right) = f(x_0).$$

Since $f(x_n) = 0$ for all n, then we conclude that $f(x_0) = 0$, so the continuous two valued function $f: \overline{E} \to \{0,1\}$ is in fact constant, so \overline{E} is connected.

(2) Is the converse true?

Solution

Let $E \subset (\mathbb{R}^2, d_2)$ be the union of the open balls of radius 1 about $x_1 := (-1,0)$ and $x_2 := (1,0)$, $E = B_1(x_1) \cup B_1(x_2)$. Then if we consider the closure of E, then we see that \overline{E} is connected, as \overline{E} is the union of two closed balls in \mathbb{R}^2 , which cannot be written as the union of two open, nonempty sets. However, by construction, E is disconnected, so \overline{E} being connected does not imply that E is connected. \square

(3) Is it true that if E is connected, then int(E) connected?

Solution

Let $E \subset (\mathbb{R}^2, d_2)$ be the union of the closed balls of radius 1 about the points $x_1 := (-1, 0)$ and $x_2 := (1, 0)$. Then E is connected, as it cannot be written as the union of two open, nonempty sets. However, if we consider $\operatorname{int}(E)$, which consists of the union of the two open balls of radius 1 about x_1 and x_2 , then we see that the interior is exactly the union of two open, nonempty sets, which implies that $\operatorname{int}(E)$ is disconnected. Thus, E being connected does not imply that $\operatorname{int}(E)$ is connected.