

Escuela Superior Politécnica del Litoral Facultad de Ingeniería en Mecánica Y Ciencias de la Producción Guía de Laboratorio de Mecánica de Fluidos

PRACTICA # 4 "BOMBAS HOMÓLOGAS"

OBJETIVOS:

 Predecir el funcionamiento de una bomba geométricamente y dinámicamente similar (homóloga) a partir de los datos de otra de características conocidas y comparar los resultados teóricos con los obtenidos experimentalmente.

DESCRIPCIÓN DEL BANCO EXPERIMENTAL:

El sistema consiste básicamente de dos bombas centrifugas homologas que operan en un circuito cerrado. Ellas pueden ser estudiadas trabajando individualmente, en serie o en paralelo.

La bomba N-1 tiene un rango de velocidad de 0 a 3000 r.p.m. y la bomba N-2 es reversible, es decir, puede trabajar como bomba y como turbina. Y tiene un rango de velocidad de 0 a 3500 r.p.m.

CÁLCULOS:

Para la bomba N. 2, para cada posición de la válvula de descarga, calcular:

Cabezal total: Ht (m) $Ht = H_{des} - H_{adm}$

Potencia Hidráulica: P_w (W). $P_w = Ht * \dot{m} * g$

Dónde: m = flujo másico (Kg/s)

 $g = gravedad (m/s^2)$

Potencia Mecánica: P_m (W). $P_m = W * T = (2\pi * N * T)/60$

Donde T = 0.165 F

F = Fuerza en dinamómetro.

N = Velocidad angular en R.P.M.

Eficiencia Total de la Bomba: η . $\eta = Pw / Pm$

Es el cociente entre la potencia hidráulica y la potencia mecánica.

Usando los resultados obtenidos para la bomba $\,$ N. 2 (modelo), y mediante los grupos adimensionales, estimar los parámetros $\,$ Ht, $\,$ Q, $\,$ y $\,$ P $_{m}$ para la bomba $\,$ N. 1 (prototipo) trabajando a 2000 $\,$ RPM , donde ρ es la densidad del agua ($\,$ kg/m 3)

Diámetro del rotor Bomba N. 1: 140 mm Diámetro del rotor Bomba N. 2: 101 mm

Por análisis dimensional se encuentra que existen cuatro grupos adimensionales que definen el comportamiento de una serie de bombas homologas:

• Grupo de Caudal
$$(\pi Q)$$
: $\pi Q = \frac{Q}{N \times D^3}$

• Grupo de Cabezal
$$(\pi H)$$

$$\pi H = \frac{H \times g}{(N \times D)^2}$$

• Grupo de Potencia
$$(\pi P)$$
 $\pi P = \frac{P}{\rho \times N^3 \times D^5}$

• Eficiencia total
$$(\pi\eta)$$
:
$$\pi\eta = \frac{\pi Q \times \pi H}{\pi P}$$

TABLA DE DATOS Y RESULTADOS:

BOMBA N- 2 @3000 RPM (MODELO)				BOMBA N- 1 @2700 RPM (PROTOTIPO)				
Q (It/s)	H _{adm} (m)	H _{des} (m)	F (N)	Q (lt/s)	H _{adm} (m)	H _{des} (m)	F (N)	
0.10	0	16.50	2.00	0.25	-1.00	24.50	11.40	
0.20	0	15.50	2.50	0.48	-1.00	22.00	20.70	
0.30	0	15.50	2.50	0.72	-1.00	23.00	32.10	
0.40	0	14.00	3.00	0.96	-1.00	21.00	38.70	
0.50	0	12.00	3.00	1.20	-1.00	17.60	41.40	
0.60	0	11.00	3.50	1.44	-1.00	16.10	45.60	
1.10	0	9.00	4.00	2.65	-1.00	8.30	45.60	
1.30	0	7.00	5.00	3.12	-1.00	9.80	62.80	
1.50	0	8.50	5.50	3.60	-1.00	8.30	62.20	
1.70	0	6.60	6.00	4.07	-1.00	7.50	64.60	

Tabla de Datos

Q	H _{adm}	H _{des}	F		
(lt/s)	(m)	(m)	(N)		
0.01	0.05	0.05	0.02		

Tabla de incertidumbres

BOMBA N- 2 @3000 RPM (MODELO)				BOMBA N- 1 @2700 valores estimados				RPM (PROTOTIPO) valores experimentales			
Q (lt/s)	H _t (m)	P _w (W)	Efic.	Q (lt/s)	H _t (m)	P _w (W)	Efic.	Q (lt/s)	H _t (m)	P _w (W)	Efic. η

Tabla de Resultados

GRÁFICOS:

- ♦ Graficar H_t y P_w versus "Q" estimadas y experimentales de la bomba N. 1
- ♦ Graficar H_t y P_w versus "Q" experimentales de la bomba N. 1 y bomba N. 2