TPUT	REPEAL = F		<i>></i> -	2.17513+00	1.03639+00	6.49749-01	3.51978-01	2.63287-01	1.33162-01	1.61067-01	5.87735-03	2.92465-02
COMPREHENSIVE OU	PLOTRS = T		j a-	1.50000+601	1.05000+002	2.25000+002	3.45000+002	4.65000+002	5,85000+002	7.05000+002	8.25000+0002	9.45000+002
ING AND NORMALLY	PRFINL = T		>	2.38005+00	1.28123+00	7.04310-01	4.61291-01	2.73046-01	1.77709-01	1.03332-01	6.39275-02	000000
1 - WITH PROPER UNIT WEIGHTING AND NORMALLY COMPREHENSIVE OUTPUT	PRPREL = F			1.00000+001	5.00001+001 7.50000+001	1.95000+002	3.15000+002	4,35000+0002	5.55000+002	6.75000+002	7.95000+002	9.15000+002
DATA SET 1 - WITH PR	P R Y H		>	2.72385+60	1.83133+00	7.93438-01	4.99157-01	3.28100-01	2.48385-01	8.17959-02	1.19229-01	2.95760-02
TEST DATA	F NONNEG = F		-	5.00000+000	4.50000+001	1.65000+002	2.85000+002	4.05000+002	5.25000+002	6.45000+002	7.65000+002	8.85000+002
(APRIL 1976)	a I MOBASE a	TEND NT .450000+002 10 .945000+003 30	> -	3.17951+00	1.96817+00 1.60041+00	9.11274-01	5.95533-01	3.81508-01	2.66722-01	1.55815-01	7.68593-02	1.99340-02
DISCRETE - VERSION 18 (APRIL 1976)	LAST = F REGINT = NLAMMX = 4 IWT =	131ART .000000 .750004002		0.0000	2.00000+001 4.00000+001	1,35000+002	2.55000+002	3.75000+002	4.95000+002	6.15000+002	7.35000+002	8.55000+n02

LAMBDA

TEST DATA SET 1 - WITH PROPER BUIL WEIGHTING: AND NORMALLY COMPREHENSIVE OUTPUT

FINAL ANALYSIS ASSUMING 1 COMPONENTS

ITK VARIANCE	4			ALPHA	LAMBDA	ALPHA	LAMBDA	ALPHA	LAMBDA	ALPHA
0 1.1790+000	00.00		2.36+000							
1 1.1523+000			2.39+000							
2 1.1517+000			2.40+000						,	
3 1.1517+000			2.40+000							
4 1.1517+000		1.66-001	2,40+000 9.44-003							
5 1.1517+000	1.00+00*		2.40+000							
4										
CORRE	CORRELATION COEFFICIENTS	ICIENTS								
LAM1	ALP1									
.367										
HASE .531	272									

NPHI = 5.671-0.5STANDARD DEVIATION OF FIT = SIGYY = 1.76432-01

STD. ERROR 8.692-02 4.089-02 ALPHA 2.3956+000 1.6587-001 PERCENT 10,552 LAMBDA +- STD. ERROR 9.4412-003 +- 9.962-04 BASELINE

PERCENT 3.628 24.650

TEST DATA SET, 1 - WITH PROPER UNIT WEIGHTING AND NORMALLY COMPREHENSIVE OUTPUT

FINAL ANALYSIS ASSUMING 2 COMPONENTS

LAMBDA		
ALPHA		
LAMBDA		
ALPHA	·	
LAMBDA		PERCENT 2.340 3.305 176.980
АГРНА	•	SID. ERROR 3.920-02 4.854-02 1.660-02
LAMBDA 4.91-002 5.81-002 6.04-002 6.05-002 6.05-002		1 1 ! ! !
ALPHA 1.46+000 1.48+000 1.47+000 1.47+000 1.47+000		ALPHA 1.6754+000 1.4687+000 9.3814~003
ALPHA LAMBDA 1.59+000 4.37-003 1.66+000 4.15-003 1.68+000 4.25-003 1.68+000 4.25-003		3.49398-02 PERCENT 4.898 6.697
9.38-003 9.38-003 9.37-003 9.37-003 9.38-003	1C1ENTS ALP2 462	
DAMPING 0 0.00 1.09+80 1.35+00 1.36+00 1.56+00	CORRELATION COEFFICIENTS M1 LAM2 ALP1 ALP2 45 .827 .732 83482732 43 .404 .229462	2.860-03 DEVIATION OF FIT LAMBDA +- 4.2465-003 +- 6.0475-002 +- BASELINE
ITR VARIANCE 0 c.5832-002 1 4.3062-002 2 4.2728-002 3 4.2728-002 4 4.2728-002 5 4.2728-002	CORRELAM1 LAM2 .645 ALF1 .623 ALF2683 BASE .843	NPHI = 2.860-03 STANDARD DEVIATION OF FIT = SIGYY = LAMBDA +- STD. ERROR 4.2465-003 +- 2.080-04 6.0475-002 +- 4.050-03 BASELINE

•

TEST DATA SET 1 - WITH PROPER UNIT WEIGHTING AND NORMALLY COMPREHENSIVE OUTPUT

FINAL ANALYSIS ASSUMING 3 COMPONENTS

АГРНА LАМВDА		
LAMBDA A:		
ALPHA		
LAMBDA 9.44-002 8.45-002 8.48-002 8.48-002 8.48-002		PERCENT 16.508 20.413 10.556
ALPHA 1.08+000 1.14+000 1.14+000 1.14+000 1.14+000		STD. ERROR 2.030-01 1.827-01
LAMBDA 1.40-002 1.33-002 1.32-002 1.32-002 1.32-002		
ALPHA 9.78-601 8.96-001 8.95-001 8.95-001 8.95-001		ALPHA 1,2295+000 8,9518-001
ALPHA LAMBBA 1.23+000 2.64-003 1.23+000 2.71-003 1.23+000 2.72-003 1.23+000 2.72-003 1.23+000 2.72-003	ALP2 ALP3	2.72265-02 PERCENT 25.106 35.834 11.978
BASELINE -9.34-002 -8.57-002 -8.38-002 -8.39-002 -6.39-002	1	= SIGYY = STD. ERROR 6.823-04 4.732-03 1.016-02
6AMP186 Q 0.00 9.18-01 9.92-01 9.46-01 1.08+00	CORRELATION COEFFICIENTS M1 LAM2 LAM3 ALP1 84 .708 87 .963 .573 47 .963 .573 15711147861 53688842763 71 .786 .403 .850	ON OF FIT : 8-80 +- 8-9003 +- 8-9002 +-
11R VARIANCE 60 0 2.5411-002 1 2.4474-002 2 2.4462-002 3 2.4462-002 4 2.4462-002 5 2.4462-002	CORRELATT LAM1 LAM2 .884 .708 .947 .963 -915711 -653658	STANDARD DEVIATION OF FIT = SIGYY = LAMBDA +- STD, ERROR 2,7174-003 +- 6,823-04 1,5205-002 +- 1,016-02
118 0 10 20 12 20 20 12 20 20 13 20 20 14 20 20 15 20 20 16 20 20 20 20 20 16 20 20 20 20 20 20 20 20 20 20 20 20 20	LAME LAME ALP1 ALP2 ALP3 BASE	NEH1 STAND

v,

ALPHA LAMBDA

TEST DATA SET 1 - WITH PROPER UNIT WEIGHTING AND NORMALLY COMPREHENSIVE OUTPUT

FINAL ANALYSIS ASSUMING 4 COMPONENTS

Control Cont	•																																				
National Colon Nati	Œ	27-0	11-0	-80-	.85-00	.05-00	.29-00	00-00	.57-00	.16-00	.59-00	.94-00	.50-00	.12-00	.55-00	00-06.	.45-00	.0800	.51-00	.85-00	.41-00	.03-00	.47-00	.81-00	00-06.	00-06	.35-00	.98-00	.60-00	.14-00	00-06	.40-00	.64-00	.68-00	.64-00	•68-00	
13.74540 13.6400 14.6400 14.6400 15.6400 16.	LPH	.14-00	.32-00	.57-00	00+400	20+00	.36+00	3.20+00	1.27	-1.40	-24.6	2.32+00	2.01-0	-6.54-0	8.57-00	1.83+00	2.85-0	-5.13-0	7.67-0	1.40+0	3.72-0	-9.72-0	6.75-0	0-84-0	0.00	-6.87-0	9.17-0	2.20-0	1.72+0	3.78-0	2.08-0	8.27-0	3.78+0	-2.74+0	3.86+00	73+00	
R. VARIANCE DAMPING G BASELINE ALPHD A LAWEDA ALPHA LAMBBA	E	.33-0	.32-0	.13-00	00-69.	.41-00	.16-00	-16-	-65.	-96	.55.	-14-	-25-	-26.	-84	ċ	53.	.87	.43	• 00	67	83.	.38.	• 01	8.92.	8.50	.04	· (0.7	.92.	. 55.	. 45.	76	8.68	8.64	8.68	8.64-00	
BASELINE	٩	0-96.	.68-0	.53-0	.34-	• 43+	.43+	.10+	.78-0	.50+0	.56-0	.23	• 00	.05+00	.43	.30	12	.61+0	0-62*	.03-0	.21-0	.19+00	.16-0	.05-0	00+60	.21+00	.24-0	.17-0	.85-0	123-0	.26-0	0-90.	.65+00	.88+00	.72+00	00+9	
THE VARIANCE DAMPING G BASELINE ALPHA LAMBDA ALPH 15.3705-002 0.00 -6.72-002 1.42+000 3.16-003 1.59+00 1.53.705-002 2.55-002 1.42+000 3.16-003 9.28+00 2.25-002 2.55-002 1.42+000 3.16-003 9.28+00 2.25-002 2.55-002 1.42+000 3.16-003 9.28+00 2.25-002 2.55-002 1.59+000 3.10-003 9.28+00 2.25-002 2.55-002 1.59+000 3.10-003 9.28+00 2.25-002 2.55-002 1.59+000 3.10-003 9.28+00 2.25-002 2.55-002 1.59+000 3.10-003 9.28+00 2.25-002 2.55-002 1.59+000 3.10-003 9.28+00 2.25-002 2.55-002 1.59+000 3.10-003 9.28+00 2.25-002 2.55-002 1.59+000 3.10-003 9.28+00 2.25-002 2.55-002 1.51+000 2.98+003 8.38+00 2.45-002 4.15-002 4.15-002 1.31+000 2.98+003 8.38+00 2.45-002 1.28+02 1.28+02 1.28+02 1.31+000 2.98+003 8.45-00 2.24-002 1.28+0	MBD	.16-00	00-77.	.19-00	.08-00	.07-00	.07-00	00-25	52-00	53-00	53-00	53-00	24-00	24-00	24-00	2-00	25-00	55-00	2-00	26-00	9-00	27-00	57-00	27-00	57-00	36-00	36-00	37-00	37-00	38-00	8-00	39-00	39-00	00-6	-00	0-	
R VARIANCE DAMPING G BASELINE ALPHA LLAW 1 3.3705-002 2 8.404-002 2 .35-01 2 .625-002 1 .40+000 3 .15-1 2 .624-002 2 .35-01 2 .625-002 1 .39+000 3 .10-1 2 .625-002 2 .31-01 2 .625-002 1 .39+000 3 .10-1 2 .6212-002 2 .31-01 2 .625-002 1 .39+000 3 .10-1 2 .6213-002 2 .35-01 2 .625-002 1 .39+000 3 .10-1 3 .625-002 1 .39+000 3 .10-1 3 .45-03 2 .45	Hail	39+00	01+00	38-00	28-00	29-0	29-0	38-0	37-0	39-0	38-0	0-05	39-0	41-0	40-0	-25	41-	43-	-24.	43-	43-0	0-55.	0-77.	.45-0	.52-0	-68-	68-	.68-0	.68-0	.67-0	.68-0	.68-0	.68-0	.68-0	.68-0	-88-	
REVARIANCE DAMPING G BASELINE ALISTS VARIANCE DAMPING G BASELINE ALISTS OF 0.00	E	-16-	.15-00	.12-00	.10-00	.10-00	.10-00	.98-00	.98-00	.98-00	.98-00	.98-00	.98-00	.98-00	2.98-00	2.98-00	.98-00	-86.	-86.	-86.	-86.	-86.	-86-2	2.98-	2.98-	-18	81-	82-	82-	82-00	82-00	3-00	2.83-00	2.83-00	2.83-00	2.83-	
R. VARIANCE DAMPING G BASELIN 5.3.5705-002	نه	46+00	42+00	00+07	39+00	39+00	39+00	31+00	31+	31+	1+00	1+00	+	+	31+	31+	31+00	31+00	31+00	31+00	31+00	31+00	32+	32+	31+	25+00	25+00	25+00	26+00	00+9	00+9	00+9	4.9	+9	+9	0	
R VARIANCE DAMPING G 2.8404-002 2.8404-002 2.8404-002 2.52-013 2.6204-002 2.6204-002 2.6205-002 2.6205-002 2.6205-002 2.6205-002 2.4508-002 2.4508-002 2.4508-002 3.41-033 2.4589-002 3.41-033 2.4589-002 4.15-033 2.4589-002 4.15-033 2.4589-002 4.15-033 2.4589-002 4.15-033 2.4589-002 4.15-033 2.4589-002 4.15-033 2.4617-002 4.20-02 4.20-02 2.4617-002 4.20-02 2.4617-002 4.20-03 4.20-	ASELI	.72-00	6.25-00	6.21-00	6.25-00	5-00	5-00	2-00	6.43-00	6.43-00	00-559	0.44-00	00-75-9	4-00	5-00	5-00	5-00	00-9	00-9	0-9	20-2	2-00	20-2	7-00	30-5	3-00	7-00	5-00	7.54-00	7.54-00	7.53-00	7.52-00	7.51-00	7.51-00	7.51-00	7.51-00	
#	AMPING	0.00	13.3			2.78-02	2.85-03	6.12-01	3.4	1.4	4.1	1.2	7 • 0	1.5	4.1	-	4.1	1.2	4 • 2	1.5	2-0	.19-0	.22-0	17-0	6.93-04	7.50-01	.00-02	.00-02	.00-02	.04-03	.00-02	1.00-02*	.11-0	.34-0	0-4	0-60.	
	VARIANCE	3+3705-002	2.8404	2.7175	2.6264	2.6212	2.6205	2.458											~	(31)	3 2.4644	0.2.4638	1 2.4652	2 2.4640	3 2.46	4 2.443	5 2.468	5 2.44	7 2.448	8 2.44	75.44	0 2.448	1 2.448	2 2.4481-00	3 2,4432-002	4 2.4482-002	

SINGULARITY IN INVERTING FULL LEAST SQUARES MATRIX - NO CORRELATIONS CALCULATED.

DATE 011778

MIN RESIDUAL=L=-5.5-002

MAX RESIDUAL=U= 6.4-002

PLOT OF RESIDUALS - FOR BEST SOLUTION.

\$

120

100

80

9

50

PAGE

TEST DATA SET 1 - WITH PROPER UNIT WEIGHTING AND NORMALLY COMPREHENSIVE OUTPUT DISCRETE - VERSION 18 (APRIL 1976)

ALPHA - STEER FRECHT	ATTHE STORES PRECENT 1, 12, 100 1, 12, 1	BEST SOLUTION 3 COMPONENTS
### ##################################	ACKINGTE PROMACTITY THAT THIS SOLUTION IS BEALLY BEFTER THAN THE SECOND BEST SOLUTION - PROCESS = 1.000 - 1.10	**************************************
ALPIA - SID GRELLTE RECENT 1 - 0.00 1 -	## # # # # # # # # # # # # # # # # # #	**************************************
Not the stouds of the stoud o	SECOND BEST SOLUTION ALTHIA STD ERR PERCENT ALTHIA S	= 2.7227-02 SIGNAL/NOISE RATIO OF FIT = 2.7227-02 SIGNAL/NOISE RATIO OF FIT = 2.11-04 AND 4.16-01 NPHI = 5.39-02
ALDIA 4 - STD ERR PERCENT 1.075 (10 + - 3.70 c)	SECOND BEST SOLUTION A PHIA - SID ESP FERCENT A SID ESP CALCADO A SID ESP CAL	B. RESIDUALS UNCORRELATED .709 .534 .532 .003 .387 WEIGHTED AVERAGE # PUNC = .539 * CONTINUALS UNCORRELATED .709 .539 *
ALPHA +- STD ERR PRECENT	ACTION 1 FIT = 2.86-03 (UNCORRECTED PNG WOULD BE 1 1.64-201 + 21-302	SECOND BEST SOLUTION 2 COMPONENTS
ERATIONS IN FIT = 5.4940-02 SIGNAL/NOISE RATIO OF FIT = 1.4940-02 SIGNAL/NOISE RATIO OF FIT = 1.4940-03 SIGNAL/NOISE RATIO OF FIT = 1.7943-01 SIGNAL/NOISE SIGNAL/NOI	ERATIONS IN FIT = 7.000 NPHI = 2.86-03 (UNCORRECTED PNG WOULD BE 1 1	**************************************
08. RESIDUALS UNCORRELATED .046 .436 .029 .115 WEIGHTED AVERAGE = * PUNC = .267 * THIRD BEST SOLUTION	60B. RESIDUALS UNCORRELATED04643694802915 WEIGHTED AVERAGE = * PUNC = .267 * THIRD BEST SOLUTION 1 COMPONENTS ALPHA +- STD ERR PERCENT	- 2.86-03 (UNCORRECTED PNG WOULD BE 1 NS IN FIT = 3.4940-02 SIGNAL/NOISE RATIO OF FIT = 3.4940-02
THIRD BEST SOLUTION 1 COMPONENTS ALPHA +- STD ERR PERCENT LAMBDA +- STD ERR FERCENT * STARTING LAMBDA (FROM FIT TO TRANSFORMS - 1 TRIES) 2.596+00 +- 8.7-02	THIRD BEST SOLUTION 1 COMPONENTS ALPHA +- STD ERR PERCENT LAMBDA +- STD FRR FERCENT * STARTING LAMBDA (FROM FIT TO TRANSFORMS - 1 TRIES) 2.396+001 +- 87-02 24,650 0.000 +- 0.00 1.659+001 +- 4.1-02 2.4650 1.000 1.000 NPH	6 08. RESIDUALS UNCORRELATED .046 .436 .948 .029 .115 WEIGHTED AVERAGE = * PUNC = .267 * ELECTROLISHES ELECTROLISHED FOR EXPERIENCE ELECTROLISHES ELECTROLIS
ALPHA +- STD ERR PERCENT	ALPHA +- STD ERR PERCENT ALPHA +- STD ERR PERCENT 2.396+00 +- 8.7-02	THIRD BEST SOLUTION 1 COMPONENTS
(1/3) FRATIONS IN FIT = 1.000 K = 1 K = 2 K = 3 K = 4 K = 5 RESIDUALS UNCORRELATED .000 .000 .000 .012	(1/3) RATIONS IN FIT = 5.67-03 (UNCORRECTED PNG WOULD BE 1.000 K = 1 K = 2 K = 3 K = 4 K = 5 **********************************	**************************************
R = 1 K = 2 K = 3 K = 4 K = 5	B. RESIDUALS UNCORRELATED .000 .000 .012 .367 .794 WEIGHTED AVERAGE = * PUNC = .111 * *******************************	IN FIT = 5.67-03 (UNCORRECTED PNG WOULD BE 1
ことのように しんしんしん しんしん しんしん しんしん しんしん しんしん しんしん	ORDER FREE TO THE ORDER OR THE TREE THE	K = 1 K = 2 K = 4 K = 5

PAGE

	REPEAT = T	>-	2,17513+00	00.25.400.	1.03639+00	6.49749-01	3.51978-01	2.63287-01	1.33162-01	1.61067-01	5.87735-05	2.92465-04
REHENSIVE OUTPUT	PLOTRS = T	-	1.50000+001	3.50000+001	1.05000+002	2.25000+002	3.45000+002	4.65000+002	5.85000+002	7.05000+002	8.25000+002	9.45000+002
AND MOST COMPI	PRFINL = T	> -	2,38005+00	1.71227+00	1.28123+00	7.04310-01	4.61291-01	2.73046-01	1.77709-01	1.03332-01	6.39275-02	00000
DATA SET 2 - WITH INCORRECT WEIGHTING AND MOST COMPREHENSIVE OUTPUT	PRPREL = T	-	1,00000+001	3.00000+001	7.50000+001	1.95000+002	3.15000+002	4.35000+002	5.55000+002	6.75000+002	7.95000+002	9.15000+002
SET 2 - WITH IN	т т	>-	2.72335+00	1.83133+00	1.52702+00	7.93438-01	4.99157-01	3.28100-01	2.48385-01	8,17959-02	1,19229-01	2.95760-02
TEST DATA	NONNEG G	-	5.00000+000	2.50000+001	4.50000+001	1,65000+002	2.85000+002	4.05000+002	5.25000+002	6.45000+002	7.65000+0002	8.85000+002
(APRIL 1976)	= F NOBASE = F = S MTRY = S	>	3.17951+00	1.96817+00	1.60041+00	9.11274-01	5.95533-01	3.81508-01	2.66722-01	1.55815-01	7.4850302	1.99340-02
DISCRETE - VERSION 18 (APRIL 1976)	LAST = 1 REGINT = F NLAMMX = 4 IWT ==-3	⊢	00000.0	2.00000+001	4.90000+001	1.35000+002	2.55000+002	3.75000+002	200+00056.7	4.15 DOD + D	200:0000110	8,55000+0002

o,

. ALPHA LAMBDA

ALPHA LAMBDA

LAMBDA

PRELIMINARY ANALYSIS TO DETERMINE WEIGHTS ANALYSIS ASSUMING 1 CONPONENTS

ITR VARIANCE	DAMPING Q	BASELINE		DA ALPHA	LAMBDA	ALPHA
0 1.6340+000	0.00	1.22-002		03		
1 1.2020+000	1.36+00	1,24-001	2.35+000 7.83-003	03		
2 1,1533+000	1.70+00	1.59-001		03		
3 1.1517+000	1.96+00	1.66-001		0.3		
4 1.1517+000	2.03+00	1.66-001		03		
5 1.1517+000	2.04+00	1.66-001	2.40+000 9.44-003	03		
4 1.1517+000	1.00-02*		2.40+000 9.44-003	0.3		

CORRELATION COEFFICIENTS
LAN1 ALP1
.367
.531 -.272

ALP1 BASE

STANDARD DEVIATION OF FIT = SIGYY = 1.76432-01

PERCENT	3.628	24.650
ALPHA +- STD. ERROR PERCENT	8 • 692-02	4.089-02
! +	+	1+
ALPHA	2.3956+000 +-	1.6587-001
PERCENT	10.552	
SID. ERROR	.12-003 +- 9.962-04 10.552	
+	+	
LAMBUA	9.4412-003	BASELINE

ALPHA LAMBDA

TEST DATA SET 2 - WITH INCORRECT WEIGHTING AND MOST COMPREHENSIVE OUTPUT

PRELIMINARY ANALYSIS TO DETERMINE WEIGHTS ANALYSIS ASSUMING Z COMPONENTS

LAMBDA
ALPHA.
L АМВ D А
ALPHA
LAMBDA ALPHA LAMBDA 1.83-003 1.86+000 1.59-002 4.63-003 1.44+000 2.85-002 3.29-003 1.45+000 4.57-002 4.21-003 1.48+000 5.97-002 4.25-003 1.47+000 6.05-002 4.25-003 1.47+000 6.05-002 4.25-003 1.47+000 6.05-002
ALPHA 9.85-001 1.35+000 1.65+000 1.67+000 1.68+000 1.68+000 1.68+000
6ASELINE -1.56-001 7.46-002 -6.25-002 7.15-002 7.12-003 9.46-003 9.38-003 9.38-003
DAMPING 9 0.00 1.09+00* 1.14+00 1.22+00 1.36+00 1.36+00 1.35+00 1.35+00
1TR VARIANCE 0 5.3846-001 1 3.1760-001 2 6.3537-002 3 4.276-002 4 4.276-002 5 4.2728-002 6 4.2728-002 7 4.2728-002 8 4.2728-002

COEFFICIENIS	ALP2				794
				732	.229
RELATION	LAMZ		.827	482	• 404
CORF		.645	.623	683	.843
		LAMZ	ALP1	ALP2	BASE

1017776

PERCENT 2.340 3.305 176.980

. STD. ERROR 3.920-02 4.854-02 1.660-02

1 1 1 1

PRELIMINARY ANALYSIS TO DETERMINE WEIGHTS ANALYSIS ASSUMING 3 COMPONENTS

LAMBDA
АГРНА
LAMBDA
АГРНА
ALPHA LAMBDA 1.77+000 2.74-002 1.65+000 3.30-002 1.40+000 5.09-002 1.28+000 7.10-002 1.25+000 7.55-002 1.20+000 8.04-002 1.14+000 8.48-002 1.14+000 8.48-002 1.14+000 8.48-002 1.14+000 8.48-002 1.14+000 8.48-002
ALFHA LAMBOA .06-001 5.40-003 .56-001 4.41-003 .20+000 6.69-003 .00+000 9.71-002 .90-001 1.17-002 .84-001 1.32-002 .95-001 1.32-002 .95-001 1.32-002
a BASELINE ALPHA LAMBDA ALFHA LAMBDA ALPHA ALPHA <t< td=""></t<>
BASELINE -4.79-001 -1.82+000 -2.33+000 -2.48-001 -1.27-001 -8.42-002 -8.39-002 -8.39-002 -8.39-002
0.00 2.80-01 2.80-01 1.05+00 1.10+00 4.27-01 6.18-01 1.00+00* 1.01+00 9.55-01 9.59-01
1TR VARIANCE 0 2.1455-001 1 1.4234-001 2 5.6960-002 3 2.6940-002 4 2.5334-002 5 2.4723-002 5 2.4467-002 7 2.4467-002 9 2.4462-002 10 2.4462-002

~						Ŋ
ALP						555
ALPZ					,359	- 883
ALP1				861	763	.850
LAM3			.573	147	842	.403
LAMZ		.708	.963	711	888	.786
LAMI	7 38.	.480	276.	915	653	.971
	LAMZ	LAM3	ALP1	ALFZ	ALP3	PASE
	LAM2 LAM3 ALP1	LAM1 LAM2 LAM3 ALP1 ALP2 .384	LAM1 LAM2 LAM3 ALP1 ALP2 .884 .480 .708	LAM1 LAM2 LAM3 ALP1 ALP2 .854 .460 .708 .947 .963 .573	LAM1 LAM2 LAM3 ALP1 ALP2 .884 .480 .708 .947 .963 .573 915711147861	.708 .963 .573 711147861 888842763 .359

STANDARD DEVIATION OF FIT = SIGYY = 2.72265-02

က်	2.030-01	1.827-01	1.207-01	20-242-02
+	+	+	i +	+
ALPHA	1,2295+000	8.9518-001	1.1436+000	-8.3896-002
PERCENT	25.106	35.834	11.978	
STD. ERROR	6.825-04	4.732-03	1.016-02	
;	1+	+	+	
LAMBDA	2.7174-003	1.3205-002	8.4816-002	BASELINE

PERCENT 16.508 20.413 10.556 68.499

TEST DATA SET 2 - WITH INCORRECT WEIGHTING AND MOST COMPREHENSIVE OUTPUT

PRELIMINARY ANALYSIS TO DETERMINE WEIGHTS ANALYSIS ASSUMING 4 COMPONENTS

LAMBDA										
ALPHA										
ALPHA LAMBDA	200-67.5 000+67.	.54+000 4.80-002	,49+000 4.96-002	.39+000 5.58-002	,18+000 7.63-002	,19+000 8.26-002	.19+000 8.21-002	.19+000 8.21-002	.19+000 8.21-002	.19+000 8.21-002
ALPHA LAMBDA	2.91-001 1.03-002 1.	1.83+000 4.50-003 1.	4.99-001 6.44-001 7.18-003 -1.03+000 3.79-004 1.50+000 1.94-003 1.49+000 4.96-002	8.96-001 8.12-003 2.74+001 3.79-004*-4.12+001 2.11-004 1.39+000 5.58-002	5.24+001 2.11-004* 1.	2.66+001 3.79-004*-3.97+001 2.11-004* 1.19+000 8.26-002	2.63+001 3.79-004*-3.93+001 2.11-004* 1.19+000 8.21-002	2,63+001 3,79-004*-3,93+001 2,11-004* 1,19+000 8,21-002	2.63+001 3.79-004*-3.93+001 2.11-004* 1.19+000 8.21-002	2.63+001 3.79-004*-3.93+001 2.11-004* 1.19+000 8.21-002
ALPHA LAMBDA	2.14+000 2.82-003 -	9.52-001 2.11-004	-1.03+000 3.79-004	2.74+001 3.79-004*-	3.45+001 3.79-004*-	2.66+001 3.79-004*-	2.63+001 3.79-004*-	2,63+001 3,79-004*-		
ALPHA LAMBDA	9.13-001 7.71-004	4.42-001 5.23-003	6.44-001 7.18-003	8.96-001 8.12-003	1.03+000 1.16-002	1.15+000 1.04-002	1.15+000 1.03-002	1.15+000 1.03-002	1.15+000 1.03-002	1.15+000 1.03-002
BASELINE	3.24-001 -	-7.90-001 -	4.99-001	1.47+001	1.89+001	1.40+001		1.38+001	1.38+001	1.38+001
DAMPING Q	00.0	3.08-01	6.89-02	2.77-01	1.00+00*	1.00+00*	1.00+00+	1.07+00	1.00+00	1.07+00
ITR VARIANCE	0 8.7549-002	1 5.2776-002	2 5.1004-002	3 4.0842-002	4 2.6722-002	5 2.4751-002	5 2.4748-002	7 2.4748-002	8 2.4748-002	9 2.4748-002

PARAMETERS USED TO GENERATE WEIGHTS FOR TRANSFORMS

3.05-02	
CURVE) =	
ERRFIT (UNCERTAINTY TERM ADDED TO ABSOLUTE VALUES OF THEORETICAL CURVE) = 3.05-02	0,1
S 0 F	1.00+
VALUE	DELTA = 1.00+01
ABSOLUTE	DELT
SED TO	
M ADE	s
→	USFORM
TAIN1	TRA
(UNCEF	INARY PARTS OF TRANSFORMS
FIT	Y PAI
E	AGINAF
	REAL AND IMAGI
+00 +00 +00 +00	EAL A
ALPHA 1.229+00 8.952-01 1.144+00	œ
LAMBDA 2.717-03 1.320-02 8.482-02	n N
2.7 1.3	

REAL AND IMAGINARY PARTS OF TRANSFORMS					
0.5					
PARTS					
IMAGINARY		4.542+000	-5.363+000	3.437+000	2.757-001
AND			•		
REAL	2.756+001	-3.339+000	-4,125+000	-6.190-001	-1.123+000
MU	000.	1.369	2.737	4.106	5.474

TEST DATA SET 2 - WITH INCORRECT WEIGHTING AND MOST COMPREHENSIVE OUTPUT

INITIAL ANALYSIS OF THE RAW DATA AND THEN THE TRANSFORMS - ASSUMING 1 COMPONENTS

	LAMBDA	LAMBDA
	АГРНА	ALPHA
,	LAMRDA	LAMBDA
	ALPHA	АГРНА
	LAMBDA	LAMBDA
	ALPHA	ALPHA
	LAMBDA	LAMBDA
	АГРНА	АСРНА
STARTING SET 1	2.16+000 5.40-003 1.95+000 4.35-003 1.97+000 4.45-003 1.97+000 4.45-003 1.97+000 4.45-003	
FIT USING STARTING S	9PING 9 BASELINE 2.91-002 2.1 1.28+00 -7.59-003 1.5 1.20+00 -3.02-003 1.5 1.20+00 -2.98-003 1.5 1.20+00 -2.98-003 1.5 1.00+00* -2.98-003 1.5	BASELINE 1.85-002 1.8 4.93-002 1.6 5.01-002 1.9
	0.00 1.28+00 1.20+00 1.20+00 1.20+00 1.20+00	DAMPING Q D.00 1.00+00* 1.00+00*
	11R VARIANCE 0 1.0999+000 1 9.0562-001 2 9.0286-001 3 9.0286-001 5 9.0286-001	ITR VARIANCE DAMPING Q BASELINE ALPHA LOSS79+000 0.00 1.85-002 1.82+000 4.4 1.4078-003 1.00+00* 4.93-002 1.94+000 5.2 2.4579-009 1.00+00* 5.01-002 1.95+000 5.2

TEST DATA SET 2 - WITH INCORRECT WEIGHTING AND MOST COMPREHENSIVE OUTPUT

INITIAL ANALYSIS OF THE RAW DATA AND THEN THE TRANSFORMS - ASSUMING 2 COMPONENTS

	•		
	Ì	-	-
	į	ı	
	4	,	2
		-	
		2	
		_	
		5	
		5	
		_	
		,	
	١		
		Z	•
		-	
		/	
		-	
	•	u	

LAMBDA	LAMBDA
ALPHA	ALPHA
LAMBDA	LAMBDA
АГРНА	Al PHA
LAMBDA	LAMBDA
АГРНА	ALPHA
LAMBDA 5.24-003 8.91-003 1.00-002 1.21-002 1.76-002 2.94-002 3.67-002 3.82-002 3.82-002 3.82-002	ALPHA LAMBDA 1.60+000 3.82-002 1.24+000 3.27-002 1.23+000 3.22-002
ALPHA 1.73+000 1.63+000 1.49+000 1.33+000 1.19+000 1.60+000 1.61+000 1.61+000	ALPHA 1.60+000 1.24+000 1.23+000
LAMBDA 1.05-003 1.30-003 1.87-003 2.48-003 3.11-003 3.12-003 3.21-003 3.21-003 3.21-003	S AMBDA 1-003 3-003 2-003
ALPHA LAMBDA 4.06-001 1.05-003 8.91-001 1.30-003 9.54-001 1.87-003 1.11+000 2.48-003 1.34+000 3.11-003 1.44+000 3.21-003 1.44+000 3.21-003 1.44+000 3.21-003 1.44+000 3.21-003	TO TRANSFORMS ALPHA LAMBDA 1.42+000 3.51-003 1.49+000 3.53-003 1.48+000 3.52-003
BASELINE -1.47-001 -2.58-001 -1.56-001 -9.64-002 -5.55-002 -6.04-002 -5.90-002 -5.69-002 -5.69-002	BASELINE -5.22-002 -2.83-002 -2.90-002
0.00 1.29+00 1.29+00 1.74-01 2.92-01 6.94-01 1.31+00 1.47+00 1.03+00 1.47+00	PAM DATA, S. DAMPING & 0.00 9.97-01 1.00+00
1TR VARIANCE 0 7.8269-001 1 5.6437-001 2 5.4527-001 3 5.2165-001 4 4.8490-001 5 4.1369-001 5 4.0468-001 7 4.0447-001 8 4.0447-001 9 4.0447-001	END OF FIT TO RAW DATA, START OF FIT TO TRANSFORM LITE VARIANCE DAMPING & BASELINE ALPHA LOT14661-001 0.00 -5.22-002 1.42+000 3.22 1.0495-007 1.00+00 -2.90-002 1.48+000 3.5
H H D + MW 4 N 0 V 80 0 C	ITR O

TEST DATA SET 2 - WITH INCORRECT WEIGHTING AND MOST COMPREHENSIVE OUTPUT

INITIAL ANALYSIS OF THE RAW DATA AND THEN THE TRANSFORMS - ASSUMING 3 COMPONENTS

FIL USING STARTING SET 1

		4							
					ORMS	TO TRANSFO	TART OF FIT	RAW DATA, S	END OF FIT TO RAW DATA, START OF FLT TO TRANSFO
			1.18+000 8.28-002	9.36-001 1.18-002		1.17+000	-9.80-002	1.02+00	8 3.7945-001
			1.18+000 8.28-002	9.36-001 1.18-002	2,53-003 9,36	1.17+000	-9.80-002	1.03+00	7 3.7945-001
			1.18+000 8.28-002	5-001 1.18-002		1.17+000	-9.80-002	1.02+00	6 3.7945-001
			1,18+000 8.27-002			1.17+000	-9.81-002	1.00+00*	5 3.7945-001
			1.19+000 8.07-002	5-001 1.17-002		1,17+000	-9.62-002	1.00+00*	4 3.7950-001
			1.14+000 6.42-002	3-001 1.33-002		1.24+000	-8.84-002		3 3.8292-001
			1.34+000 4:91-002	1-001 9.71-003		1.21+000	-8.23-002		2 3.8740-001
			1.34+000 4.03-002	3.51-001 1.26-002		1.33+000 2	-7.10-002	4.07-01	1,3.9677-001
			1.70+000 3.22-002	-3.42-001 1.06-002		1.59+000	-4.14-002	00.00	0 4.1791-001
	200	ALTIA		ALPHA LAMBDA	LAMBDA	ALPHA	CASELINE	DARFING S	TANKING XI

TEST DATA SET 2 - WITH INCORRECT WEIGHLING AND MOST COMPREHENSIVE OUTPUT

INITIAL ANALYSIS OF THE RAW DATA AND THEN THE TRANSFORMS - ASSUMING 4 COMPONENTS

FIT USING STARTING SET 1

LAMBDA	LAMBDA	100 SLOW
AL PHA	ALPHA	10 SLOW***
ALPHA LAMBDA 1,14+000 8.31-002 9.86-001 8.92-002 1.04+000 9.20-002 1.01+000 9.45-002 1.05+000 9.35-002 1.05+000 9.28-002	ALPHA LAMBDA .04+000 9.28-002 .06+000 9.24-002 .08+000 9.24-002 .09+000 9.25-002 .09+000 9.26-002 .09+000 9.26-002	***T00 SLOW***T00 SLOW***T00 SLOW***T00 SLOW***T00 SLOW**
1.0000	المصافحة المحافظة الم	O SLOW*
LAMBDA 3.39-002 3.82-002 2.43-002 3.06-002 2.46-002 2.82-002 2.58-002	LAMBDA 2.58-002 2.22-002 1.99-002 1.83-002 1.77-002 1.73-002	3LOW***T
LAMBDA ALPHA LAMBDA 1.38-002 -4.54-003 3.39-002 1.19-002 2.79-001 3.82-002 1.00-002 3.21-001 3.04-002 1.03-002 3.13-001 2.44-002 1.03-002 3.35-001 2.82-002	3.10-001 2.58-002 3.64-001 2.52-002 4.39-001 1.99-002 5.24-001 1.83-002 5.75-001 1.77-002 6.38-001 1.71-002	001***M01
LAMBDA 1.38-002 1.19-002 1.00-002 1.03-002 1.07-002	7.82-001 1.03-002 7.28-001 9.70-003 6.67-001 8.96-003 6.13-001 8.11-003 5.92-001 7.53-003 5.86-001 7.06-003 5.90-001 6.69-003	***T00 SI
ALPHA 8.60-001 7.80-001 7.96-001 7.37-001 7.53-001 7.63-001	ALPHA 7.82-001 7.28-001 6.67-001 6.13-001 5.92-001 5.86-001	IMES.
ALPHA LAMBDA 1.26+000 2.79-003 1.22+000 2.70-003 1.16+000 2.54-003 1.15+000 2.54-003 1.15+000 2.51-003 1.15+000 2.51-003 1.15+000 2.50-003	ALPHA LAMBDA 1.14+000 2.50-003 1.12+000 2.46-003 1.10+000 2.41-003 1.07+000 2.35-003 1.04+000 2.35-003 1.01+000 2.25-003 9.84-001 2.21-003	THE LAST 4 TIMES.
ALPHA 1.26+000 1.22+000 1.16+000 1.15+000 1.15+000 1.15+000 1.15+000	ALPHA 1.14+000 1.12+000 1.10+000 1.07+000 1.01+000	
MFING A BASELINE 0.00 2.55-01 -8.49-002 5.62-01 -9.58-002 1.92-01 -9.64-002 8.00-02* -9.82-002 8.00-02* -9.93-002	BASELINE -9.80-002 -1.00-001 -1.03-001 -1.06-001 -1.12-001	ANTLY DECRE
DAMFING A 0.00 2.55-01 5.62-01 1.92-01 8.00-02* 9.63-02 8.00-02* 8.00-02*	0.00 1.32-02 1.15-02 1.08-02 6.66-03 5.19-03	OT SIGNIFIC
17k VARIANCE DAMFING & BASELINE ALPHA LAI 0 3.8048-001 2.55-01 -8.49-002 1.26+000 2.79- 1 3.8009-001 2.55-01 -8.49-002 1.22+000 2.70- 2 3.7942-001 5.62-01 -9.64-002 1.16+000 2.54- 3 3.7935-001 1.92-01 -9.64-002 1.15+000 2.51- 5 3.7932-001 8.00-02* -9.81-002 1.15+000 2.51- 6 3.7931-001 8.00-02* -9.82-002 1.15+000 2.55- 6 3.7931-001 8.00-02* -9.82-002 1.15+000 2.55- 8 1.00 0F FIT TO KAW DATA, START OF FIT TO TRANSFORMS	1TR VARIANCE 0 5.6734-002 1 3.6324-002 2 3.5939-002 3 3.5627-002 4 3.538-002 5 3.5179-002 6 3.5044-002	VARIANCE DID NOT SIGNIFICANTLY DECREASE IN

FIT USING STARTING SET 2

LAMBDA	LAMBDA
A P P H A	A L P H A
LAMBDA 1.00-001 1.00-001 1.00-001 9.97-002 9.89-002 9.72-002 9.71-002 9.69-002 9.41-002	ALPHA LAMBDA 1.01+000 9.35-002 1.04+000 9.26-002 1.06+000 9.26-002 1.07+000 9.25-002 1.08+000 9.26-002 1.08+000 9.28-002 1.08+000 9.29-002 1.08+000 9.30-002
ALPHA 1.11+0000 1.10+0000 1.10+0000 1.10+0000 1.10+0000 1.00+0000 1.00+0000 1.00+0000 1.00+0000 1.00+0000 1.00+0000	ALPHA 1.01+000 1.04+000 1.06+000 1.07+000 1.08+000 1.08+000 1.08+000
LAMBDA 1,42-002 1,43-002 1,44-002 1,52-002 1,93-002 2,19-002 2,19-002 2,96-002 2,83-002 2,84-002	LAMBDA 2.84-002 2.41-002 2.14-002 1.91-002 1.91-002 1.86-002 1.83-002
ALPHA 9.20-001 9.27-001 8.89-001 7.98-001 4.39-001 8.27-001 3.97-001 3.97-001 3.72-001	ALPHA 3.54-001 3.89-001 5.47-001 5.60-001 5.91-001 6.15-001
LAMBDA 3.85-003 4.63-003 5.68-003 7.24-003 1.03-002 1.15-002 1.10-002 9.92-003 9.72-003 9.72-003	LAMBDA 9.78-003 9.13-003 8.39-003 7.08-003 6.68-003 6.34-003
ALPHA 6.04-001 2.78-001 1.51-001 5.98-001 5.18-001 7.93-001 7.97-001 7.97-001 7.97-001 7.97-001	ALPHA 8.04-001 7.65-001 6.95-001 6.95-001 7.03-001 7.17-001
PHA LAMBDA D01 2.40-003 000 2.40-003 000 2.52-003 000 2.62-003 000 2.55-003 000 2.55-003 000 2.43-003 000 2.43-003 000 2.42-003 000 2.42-003 000 2.42-003 000 2.42-003 000 2.42-003	LAMBDA 2.42-003 2.37-003 2.30-003 2.15-003 2.08-003 2.01-003
A N N N N N N N N N N N N N N N N N N N	000 000 000 000 000 000 000 000 000
BASELINE -1.13-001 -1.00-001 -9.57-002 -9.20-002 -9.64-002 -9.64-002 -1.03-001 -1.04-001 -1.04-001	6ASELINE -1.03-001 -1.07-001 -1.16-001 -1.20-001 -1.28-001
0.00 1.00-02* 4.31-03 2.51-02 5.67-02 3.67-02 6.72-01 8.44-02 6.72-01 8.00-02* 5.82-01 7.05-02	DAMPING G 0.00 1.89-02 1.50-02 1.36-02 9.73-03 6.92-03 4.96-03
ITR VARIANCE DAMPING G BASELINE AL 13-001 7:03-01 13.8005-001 1.00-02* -1.00-001 1.01+ 2 3.8005-001 1.00-02* -1.00-001 1.01+ 2 3.8005-001 4.31-03 -9.57-002 1.13+ 3 3.7999-001 2.51-02 -9.35-002 1.13+ 3 3.7994-001 2.51-02 -9.24-002 1.20+ 5 3.7959-001 2.27-01 -9.60-002 1.20+ 5 3.7959-001 8.44-02 -9.64-002 1.17+ 7 3.7954-001 8.44-02 -9.64-002 1.17+ 7 3.7958-001 6.72-01 -1.03-001 1.12+ 9 3.7928-001 5.82-01 -1.04-001 1.12+ 11 3.7927-001 7.05-02 -1.04-001 1.11+ 11 3.7927-001 7.05-02 -1.04-001 1.11+ 11 3.7927-001 7.05-02 -1.04-001 1.11+ 10.18	1TR VARIANCE 0 3.2880-002 1 3.225-002 2 3.1722-002 3 3.153-002 4 3.104-002 5 3.0820-002 6 3.0634-002 7 3.0476-002

DATE U11778

•		,	١
			ĺ
		,	
	•	,	e
	١		2
		2	
	•		4
	۱	-	-
	ı	9	¢
	•	<	į
	•	,	-
	Ŀ		
	•	7	,
	٩	,	7
		-	
	ı	L	۷

L AMB D A	LAMBDA	LAMBDA
A L P H A	A L P H A	ALPHA
ALPHA LAMBDA 1.99+001 2.00-003 1.52+000 1.49-002 1.28+000 1.98-002 1.39+000 4.50-002 1.39+000 4.50-002 1.39+000 4.50-002 1.39+000 7.50-002 1.22+000 5.89-002 1.22+000 7.96-002 1.22+000 7.96-002 1.22+000 7.96-002 1.22+000 7.96-002 1.22+000 7.96-002	ALPHA LAMBDA 1.53+000 5.21-002 1.48+000 5.38-002 1.40+000 5.45-002 1.40+000 5.92-002 1.41+000 5.92-002 1.28+000 6.53-002 1.29+000 6.53-002 1.22+000 7.95-002 1.22+000 7.95-002 1.22+000 7.95-002 1.22+000 7.95-002 1.22+000 7.96-002	ALPHA LAMBDA 5.07+000 1.00-001 1.25+000 1.18-002 1.25+000 1.15-002 1.26+000 1.15-002 1.26+000 1.11-002 1.27+000 1.11-002 1.14+000 9.69-003 1.16+000 9.58-003 1.16+000 9.58-003
BASELINE ALPHA LAMBDA -1.25+001 0.00 2.84-004*4.79+000 5.45-004*4.59+000 1.04-003*1.16+000 0.00 2.84-004*6.57-001 5.45-004*1.04+000 3.94-003*4.81-001 1.38+000 2.84-004*6.57-001 5.45-004*1.04+000 3.94-003*4.81-001 1.13+000 1.38-003*9.55-001 2.11-004*1.01+000 6.20-003 2.53+000 1.13+000 7.21-004*4.001 2.11-004*1.01+000 6.20-003 2.53+000 3.03+000 7.21-004*1.01+000 6.20-003 5.41+000 7.21-004*1.02+001 2.11-004*1.01+000 9.57-003 9.66+000 1.37+001 4.66-004*2.25+001 2.11-004*1.16+000 9.58-003 9.18+000 1.31+001 4.66-004*2.15+001 2.11-004*1.16+000 9.60-003 9.18+000 1.31+001 4.66-004*2.15+001 2.11-004*1.16+000 9.60-003 9.18+000 1.31+001 4.66-004*2.15+001 2.11-004*1.16+000 9.60-003 9.18+000 1.31+001 4.66-004*2.15+001 2.11-004*1.16+000 9.60-003 9.18+000 1.31+001 4.66-004*2.15+001 2.11-004*1.16+000 9.60-003 9.18+000 1.31+001 1.31+001 1.31+001 2.11-004*1.16+000 9.60-003 9.18+000 1.31+001 1.31+001 4.66-004*2.15+001 2.11-004*1.16+000 9.60-003 9.18+000 1.31+001 1.31+001 4.66-004*2.15+001 2.11-004*1.16+000 9.60-003 9.18+000 1.31+001 4.66-004*2.15+001 2.11-004*1.16+000 9.60-003 9.18+000 1.31+001 4.66-004*2.15+001 2.11-004*1.16+000 9.60-003 9.18+000 9.18+000 9.18+000 9.18+000 9.18+000 9.18+000 9.00-003 9.18+000 9.18+000 9.18+000 9.18+000 9.18+000 9.18+000 9.00-003	### BASELINE ALPHA LAMBDA ALS.104000 2.04-003 1.90+000 3.85-003 10.00 4.45+000 2.84-004-4.16+000 2.11-004 1.34+000 4.99-003 10.00 4.65+000 2.84-004-4.16+000 2.11-004 1.37+000 4.99-003 10.11-004-9.11-004-9.13-1003 10.11-004-9.11-004-9.13-1003 10.11-004-9.11-004-9.13-1003 10.11-004-9.11	### BASELINE ALPHA LAMBDA ALPHA ALPHA ALPHA LAMBDA ALPHA
ITR VARIANCE DAMFING 3 0 8.4566-001 1 4.7490-001 2 4.5544-001 3 4.4144-001 4 3.8734-001 5 3.8659-001 5 3.8659-001 6 3.5659-001 6 3.7659-001 1 0.15-00 10 3.7752-001 1 3.7752-001 1 3.7752-001 1 3.7752-001 1 3.7752-001 1 3.7752-001 1 3.7752-001 1 3.7752-001 1 3.7752-001 1 3.7752-001 1 3.7752-001 1 100+00+00	176 VARIANCE DAMPING Q 0 3.9301-001 0.00 1 3.8725-001 1.27-01 2 3.8748-001 5.65-01 3 3.847-001 5.55-01 4 3.8447-001 5.39-02 5 3.8440-001 6.47-03 6 3.7959-001 6.47-03 7 3.788-001 5.09-02* 8 3.7862-001 5.32-02* 9 3.7745-001 1.04+00 11 3.7734-001 1.04+00	P. VARIANCE. DA 9.9563-001 3.8843-001 3.8843-001 3.824-001 3.524-001 3.7752-001 3.7758-001 3.7728-001

PAGE

ALPHA LAMBDA

TEST DATA SET 2 - WITH INCORRECT WEIGHTING AND MOST COMPREHENSIVE OUTPUT

PRELIMINARY ANALYSIS TO DETERMINE WEIGHTS ANALYSIS ASSUMING 1 COMPONENTS

LAMBDA		,					
ALPHA							
LAMBDA							
ALPHA							
LAMBDA							
ALPHA							
ALPHA LAMBDA	2.29+000 4.45-003	2.33+000 7.15-003	2,38+000 8,86-003	+000 9.40-003	2.40+000 9.44-003	+000 9.44-003	2.40+000 9.44-003
⋖							
BASELINE	-6.65-002	1.02-001	1.52-001	1.65-001	1.66-001	1.66-001	1.66-001
DAMPING 4	00.00	1.23+00	1.59+00	1.90+00	2.03+00	2.04+00	4.00+00
ITR VARIANCE	0 2,0350+000	1 1.2618+000	2 1.1574+000	3 1.1518+NOP	4 1.1517+00n	5 1.1517+000	£ 1.1517+000

CORRELATION COEFFICIENTS
LAM1 ALP1
ALP1 .367 -.272
BASE .531 -.272

STANDARD DEVIATION OF FIT = SIGYY = 1.76432-01

STD. ERROR	8.692-02	20-680.7
+	! +	+
ALPHA	2,3956+000 +- 8,692-02	1.6587-001
PERCENT	10.552	
STD. ERROR	9.4412-003 +- 9.962-04	
+	+	
LAMBDA	9.4412-003	SACEL TAKE

PERCENT 3.628 24.650

ALPHA LAMBDA

TEST DATA SET 2. - WITH INCORRECT WEIGHTING AND MOST COMPREHENSIVE OUTPUT

PRELIMINARY ANALYSIS TO DETERMINE WEIGHTS ANALYSIS ASSUMING 2 COMPONENTS

LAMBDA		1					
ALPHA							
LAMBDA							
ALPHA							
ALPHA LAMBDA	1.65+000 3.82-002	1.49+000 5.13-002	1.48+000 5.87-002	1.47+000 6.04-002	1.47+000 6.05-002	1.47+000 6.05-002	1.47+000 6.05-002
ALPHA LAMBDA	3.21-003	1.60+000 4.17-003 1	1.66+000 4.18-003	1.67+000 4.24-003	1.68+000 4.25-003	1.68+000 4.25-003	1.68+000 4.25-003
BASELINE	-5.54-002	1.31-002	5.93-003	9.17-003	9.38-003	9.38-003	9.38-003
DAMPING Q	0.00	1.13+00	1.13+00	1.35+00	1.25+00	1.14+00	1.25+00
ITR VARIANCE	0 9.0627-002	1 5.1834-002	2 4.2909-002	3 4.2728-002	4 4.2728-002	5 4.2728-002	6 4.2728-002

CORRELATION COEFFICIENTS
LAM1 LAM2 ALP1 ALP2
.645 .827
-683 -.482 -.732
.843 .404 .229 -.462 LAM2 ALP1 ALP2 BASE

STANDARD DEVIATION OF FIT = SIGYY = 3.49398-02

ALPHA +- STD. ERROR	3.920-02	4.854-02	1.660-02
i +	+	+	1
ALPHA	1.6754+000	1.4687+000 +-	9.3815-003
PERCENT	868.7	6.697	
LAMBDA +- STD. ERROR	2.080-04	4.050-03	
+	+	! +	
LAMBDA	4.2463-003	6.0475-002	BASELINE

PERCENT 2.340 3.305 176.979

ALPHA LAMBDA

TEST DATA SET 2 - WITH INCORRECT WEIGHTING AND MOST COMPREHENSIVE OUTPUT

PRELIMINARY ANALYSIS TO DETERMINE WEIGHTS ANALYSIS ASSUMING 3 COMPONENTS

LAMBDA		1				
ALPHA						
ALPHA LAMBDA	8.28-002	8.45-002	8.48-002	8.48-002	8.48-002	8.48-002
ALPHA		1.15+000 8.45-002	1.14+000 8.48-002	1.14+000 8.48-002	1.14+000 8.48-002	8.95-001 1.32-002 1.14+000 8.48-002
LAMBDA	1.17+000 2.53-003 9.39-001 1.18-002	8.94-001 1.30-002	1.23+000 2.72-003 8.95-001 1.32-002	8.95-001 1.32-002	8.95-001 1.32-002	1.32-002
ALPHA	9.39-001	8.94-001	8.95-001	8.95-001	8.95-001	8.95-001
LAMBDA	2.53-003	2.72-003	2.72-003	2.72-003	2.72-003	2.72-003
ALPHA	1.17+000	1.22+000	1.23+000	1.23+000	1,23+000	1.23+000
BASELINE	-9.77-002 1.17+000 2.53-003 9.	-8.29-002	-8.39-002	-8.39-002	-8,39-002	-8.39-002
DAMPING Q	0.00	9.31-01	1.00+00*	9.46-01	9.82-01	9.52-01
ITR VARIANCE	0 2.4532-002	1 2.4470-002	2 2.4402-002	3 2.4462-002	4 2.4462-002	5 2.4462-002

	COR	CORRELATION COEFFICIENTS	COEFF	ICIENTS			
	LAM1	LAMZ	LAM3	ALP1	ALPZ	ALP3	
LAMZ	.884						
LAM3	.480	.708					
ALP1	276.		.573				
ALPZ	915		147	861			
ALP3	653	1.88E	842	763	.359		
BASE	.971		.403	.850	883	555	

2,72265-02
1)
SIGYY
H
FIT
0.5
IATION
DEV
STANDARD

PERCENT	16.508	20.413	10.556	68.499
STD. ERROR	2.030-01	1.827-01	1.207-01	5.747-02
! +	1+	+	+	!
ALPHA			1.1436+000	
PERCENT	25.106	35.834	11.978	
STD. ERROR	6.823-04	4.732-03	1.016-02	
!	+	+	1+	
LAMBDA			8.4816-002	BASELINE

LAMBDA

TEST DATA SET 2 - WITH INCORRECT WEIGHTING AND MOST COMPREHENSIVE OUTPUT

PRELIMINARY ANALYSIS TO DETERMINE WEIGHTS ANALYSIS ASSUMING 4 COMPONENTS

1 -2.56+001 2.11-004 1.61+001 4.30-004 1.16+000 9.58-003 1.22+000 7.96-002 1.22+001 2.11-004 1.61+001 4.30-004 1.16+000 9.58-003 1.22+000 7.96-002 1.296+001 2.11-004* 1.85+001 4.30-004* 1.14+000 1.03-002 1.19+000 8.21-002 1.296+001 2.11-004* 1.85+001 4.30-004* 1.14+000 1.03-002 1.19+000 8.21-002 1.296+001 2.11-004* 1.85+001 4.30-004* 1.14+000 1.03-002 1.19+000 8.21-002 1.296+001 2.11-004* 1.85+001 4.30-004* 1.14+000 1.03-002 1.19+000 8.21-002
ALPHA LAMBDA ALPHA LAMBDA ALPHA 1.61+001 4.30-004 1.16+000 9.58-003 1.22+000 1.85+001 4.30-004* 1.14+000 1.03-002 1.19+000 1.85+001 4.30-004* 1.14+000 1.03-002 1.19+000 1.85+001 4.30-004* 1.14+000 1.03-002 1.19+000
ALPHA LAMBDA ALPHA LAMBDA 1.61+001 4.30-004 1.16+000 9.58-003 1.85+001 4.30-004* 1.14+000 1.03-002 1.85+001 4.30-004* 1.14+000 1.03-002 1.85+001 4.30-004* 1.14+000 1.03-002 1.85+001 4.30-004* 1.14+000 1.03-002
ALPHA LAMBDA ALPHA 1.61+001 4.30-004 1.16+000 1.85+001 4.30-004* 1.14+000 1.85+001 4.30-004* 1.14+000 1.85+001 4.30-004* 1.14+000
ALPHA LAMBDA 1.61+001 4.30-004* 1.85+001 4.30-004* 1.85+001 4.30-004* 1.85+001 4.30-004*
ALPHA 1.61+001 1.85+001 1.85+001 1.85+001
LAMBDA 2.11-004 2.11-004* 2.11-004* 2.11-004*
ALPHA -2.54+001 -2.96+001 -2.96+001 -2.96+001
BASELINE 1.01+001 1.19+001 1.19+001 1.20+001
DAMPING Q 0.00 1.08+00 1.07+00 1.00+00
TR VARIANCE 0 2.4851-002 2 2.4742-002 2 2.4742-002 3 2.4742-002 4 2.4742-002

PARAMETERS USED TO GENERATE WEIGHTS FOR RAW DATA

ERRFIT (UNCERTAINTY TERM ADDED TO ABSOLUTE VALUES OF THEORETICAL CURVE) = 3.05-02			
ERRFIT CUNCERT			
ALPHA	1.229+00	8.952-01	1.144+00
LAMBDA	2.717-03	1.320-02	8.482-02

DATE 011778

TEST DATA SET 2 - WITH INCORRECT WEIGHTING AND MOST COMPREHENSIVE OUTPUT

FINAL ANALYSIS ASSUMING 1 COMPONENTS

TR VARIANCE DO 1.0415+000	DAMPING Q	BASELINE 2.47-002	2.13+000 5.24-003	DA ALPHA	LAMBDA	DA ALPHA	LAMBDA	ALPHA	LAMBDA	ALPHA	LAMBDA
1 9.0400-001	1.26+00	-5.93-003	1.95+000 4.39-0	103							
2 9.0286-001	1.20+00	-3.00-003	1.97+000 4.45-003	103					,		
5 5.0286-001	1.20+00	-2.98-003	1.97+000 4.45-003	103							
9.0286-001	1.00+00*	.00+00* -2.98-003	1.97+000 4.45-003	103							
5 9.0266-001	1.00+00*	.60+00* -2.98-003	1.97+000 4.45-003	103							
CORRELA	CORRELATION COEFFICIENTS	ICIENTS									
LAM1 AL	ALP1										
ALP1 .634											
.832	.308										
20 C E 1 11000											
NPHI = 1.223-03 STANDARD DEVIATION OF FIT = SIGYY =	ON OF FIT	= SI6YY =	1.56210-01								
8 V I	TAMBDA +- S	STD. ERROR	PERCENT	ALPHA	1+	STD. ERROR	PERCENT				
4.4546-003	+	2.852-04	6.403	1.9694+000	+	9.996-02	5.076				
TANE TANE	u N			-2.9833-003	•	1.469-02	492.316				

DATE 011778

23

TEST DATA SET 2 - WITH INCORRECT "EIGHTING AND MOST COMPREHENSIVE OUTPUT

FINAL ANALYSIS ASSUMING 2 COMPONENTS

LAMBDA						
ALPHA						
ALPHA LAMBDA			1			
ALPHA						
LAMBDA						
ALPHA						
LAMBDA	3.22-002	3.69-002	3.80-002	3.81-002	3.82-002	3.82-002
ALPHA	1,33+000 3,22-002	1.61+000	1.60+000	1.61+000	1.61+000	1.61+000
LAMBDA	3,52-003	3.16-003	3.21-003	3.21-003	3.21-003	3.21-003
ALPHA	1.51+000 3.52-003	1.43+000	1.44+000	1.44+000	1,44+000 3,21-003	1.44+000 3.21
BASELINE	-3.57-002	-5.97-002	-5.67-002	1.15+00 -5.69-002		.15+00 -5.69-002
DAMPING Q	00.0	1,06+00	1,31+00	1,15+00	1.31+00	1.15+00
ITR VARIANCE	0 4.3394-001	1 4.0468-001	2 4.0448-001	3 4.0447-001	4 4.0447-001	5 4.0447-001

COEFFICIENTS	ALPZ				256	
	ALP1			-,307	.652	
CORRELATION	LAMZ		629.			
202	LAM1	.540	.843	300	.941	
		LAMZ	ALFI	ALPZ	BASE	

	1.07501-01
	SIGYY =
	= 111 =
7.205-02	DEVIATION O
7 II IIIda	STANDARD

4		2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	12 00 00 00 00 00 00 00 00 00 00 00 00 00	400	+	Jasa avada ara et vindir	0000
ドロジョドコ	1	LAMEDA +- SID: ERROR FERLENI	- LU	KILIK	-	20.00	ر د د
	+	3.225-04	10.053	1.4442+000 +-	+	1.073-01	۲.
5.8187-n02 +-	! +		25.063	1.6060+000	+	2.455-01	15.
HASFLINE				-5.6861-002 +-	+		39.

.432 .289

TEST DATA SET 2 - WITH INCORRECT WEIGHTING AND MOST COMPREHENSIVE OUTPUT

FINAL ANALYSIS ASSUMING 3 COMPONENTS

		LINAL ANALISTS A	TIMAL ANAETOLO MOSOPILMO O CONTOMENTO	2				
2		ALPHA LAMBDA 1.26+000 2.79-003			ALPHA	LAMBDA	ALPHA	LAMBDA
1 3.7961-001 8.73-01 2 3.7945-001 1.00+00*	1 -9.29-002 0* -9.81-002	1.18+000 2.59-003	9.08-001 1.19-002 9.36-001 1.18-002	1.19+000 8.27-002 1.18+000 8.28-002				
		1.17+000 2.53-003	_			ı		
		1.17+000 2.53-003	-					
3.7945-001 1.03+00	0 -9.80-002	1.17+000 2.53-003	9.36-001 1.18-002	1.18+000 8.28-002				
CORRELATION CUEFFICIENTS	EFFICIENTS							
LAM1 LAM2 LAM3		ALP2 ALP3						
LAM3 .414 .648								
ALP1 .972 .937 .474	7.4							
443053	364							
530	594	293						
BASE .983 .802 .361	.916	476470						
NPHI = 6.229-01 STANDARD DEVIATION OF FIT = SIGYY =	= X16YY =	1.07231-01						
LAMBDA +-	STD. ERROR	PERCENT	ALPHA +- ST	STD. ERROR PERCENT				
2,5331-003 +-		42.853	+	4.188-01 35.835				
1.1342-002 +-		88.054	1+					
8.2792-002 +-			1 +					
BASELINE			i +	7.908-02 80.682				

ALPHA LAMBDA

TEST DATA SET 2 - WITH INCORRECT WEIGHTING AND MOST COMPREHENSIVE OUTPUT

FINAL ANALYSIS ASSUMING 4 COMPONENTS

LAMBDA	9.30-002	9.37-002	9.53-002	1.02+000 9.64-002	8.69-002	1.02+000 9.53-002	1.01+000 9.59-002	
ALPHA	1.08+000	1.06+000	1.04+000	1.02+000	1.00+000 9.69-002	1.02+000	1.01+000	
LAMBDA	1.81-002	1.96-002	2.32-002	2.62-002	2.88-002	2.67-002	3.70-001 2.91-002	
ALPHA	6.44-001 1.81-002	5.85-001 1.96-002	4.64-001	4.05-001 2.62-002	3.80-001	3.86-001 2.67-002	3.70-001	
ALPHA LAMBDA	7.31-001 6.06-003	7.15-003	9.00-003	9.71-003	1.00-002	7,74-001 9.79-003	8.00-001 1.00-002	
	7.31-001	6.79-001	7.06-001	1.12+000 2.43-003 7.59-001 9.71-003	7.92-001	7,74-001		
ALFHA LAMBDA	8.77-001 1.95-003	2.18-003	2.39-003	2.43-003	2.45-003	1.12+000 2.43-003	1.12+000 2.44-003	
ALFHA	8.77-001	9.89-001	1.10+000	1.12+000	1.13+000	1.12+000	1.12+000	
BASELINE	-1.34-001	-1.19-001	-1.06-001	-1.04-001	-1.03-001	-1,04-001	-1.03-001	
DAMPING 9	0.00	2.33-02	4.50-02	5.38-02	1.40-01	1.56-01	1.70-01	
ITR VARIANCE	0 3.7974-001	1 3.7950-001	2 3.7933-001	3 3.7930-001	4 3.7929-001	5 3.7929-001	6 3:7928-001	

	COR	RELATION	A COEFF	ICIENTS					
	LAM1	LAM2 LI	LAM3	LAMS LAM4	ALP1	ALP2	ALP3	ALP4	
	.934								
AM3	.721	. 388							
	.472	.030	.864						
	.991	296.	.772	.514					
	772.	926.	726.	.761	.804				
	969*-	672	319	.119	710	493			
	565	739	953	951	613	871	.032		
	166.	.887	.663	.427	.965	.677	669	513	

	S
	‡.
	ALPHA +- S
1.10612-01	PERCENT
NPHI = .1.423+02 STANDARD DEVIATION OF FIT = SIGYY = 1.10612-01	LAMBDA +- STD, ERROR PERCENT

			876.769		
STD. ERROR	1.472+00	4.419+00	3,245+00	4 • 683 +00	1.843-01
+	+	+	+	1+	‡
ALPHA	1.1240+000	8.0003-001	3.7015-001	1,0053+000	-1,0350-001
PERCENT	123.744	506.256	1755.702	287.871	
STD. ERROR	3.021-03	5.085-02	5.117-01	2.760-01	
+	1+	+	! +	+	
LAMBDA	2.4409-003	1.0045-002	2.9143-002	9.5860-002	BASELINE

MAX RESIDUAL=U= 3.2-001

PLOT OF RESIDUALS MULTIPLIED BY SQUARE-ROOT OF WEIGHTS - FOR BEST SOLUTION.

120

100

80

9

20

MIN RESIDUAL=L=-2.5-001

9	
2	
1.1.4	

92	
PAGE	

PAGE

	SOLUTION IS ACTUALLY BEST IS ONLY .581. LOOK AT SECOND BEST SOLUTION ALSO. +++++
2 COMPONENTS	ACTUALLY BEST IS ONLY .
BEST SOLUTION	++++++ NOTE - THE APPROX. PROBABILITY THAT THIS SOLUTION IS
	+++++ NOTE - THE APPR

	- (LAMBDA +	ı	SID ERR PERCENT *	START	ING LAMBDA CFROM	STARTING LAMBDA (FROM FIT TO TRANSFORMS -	1 TRIES)
1.444+00 +- 1.1-01 7.452	25	3.208-03 +	1	10.053 *		3.520-03		
1.606+00 +- 2.5-01 15.289	68	3.819-02	4- 9.6-03	25.063 *		3.215-02		
* -5.686-02 +- 2.3-02 39.900	0.0	0.000	0.0 -+	* 000°				
***********************	*******	******		*******			1	
ITERATIONS IN FIT =		. 2	STD.	STD. DEV. OF FIT	T = 1.0	= 1.0750-01	SIGNAL/NOISE RATIO OF FIT	F FIT =
LAMBDA HELD EETEWEEN 2.11-04 AND 4.16-01	AND 4.16	-01	IHdN		= 5	2.51-02		
LAG	₩ 11 22	K = 2	K = 3 K = 4	X 11 4 X 11 5	11 1∕2		· ***********	
PROB. RESIDUALS UNCORRELATED	066*	.737	.730	.000	.122 W	WEIGHTED AVERAGE = * PUNC = .712 *	* PUNC = .712 *	

	SECOND BEST SOLUTION	NOIL	3 COMPONENTS	- A SIGNIFICANT POSSIBILITY ++++++++++++++++++++++++++++++++++++	+++++++
***************************************	***********	*****	*****		
* ALPHA +~ STD ERR PERCENT * 1 1460+00 4- 4.2-01 35 875	0	LAMBDA +- STD ERR	PERCENT *	STARTING LAMBDA (FROM FIT TO TRANSFORMS - 1 TRIES)	S)
× 9.360-01 +- 4.1-01 43.471			88.054 *	1,383-02	
	8.279-02		76.067 *	8.313-02	
* -9.801-02 +- 7.9-02 80.682	82 0.000	0.0 -+	* 000*		
*************************************	***********	*********	****		
PNG(3/2) =	.581	IHdN	H	6.23-01	.349)
ITERATIONS IN FIT =	2	STD.	STD. DEV. OF FIT =	-	Ħ
LAG	ж Н Т Н				
PROB. RESIDUALS UNCORRELATED	.651 .517		.000	WEIGHTED AVERAGE = * PUNC = .541 *	
医骨骨 电双压线 有有 医医生性 医电阻 化苯甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲	#1 #1 #1 #1 #1 #1 #1 #1 #1 #1 #1 #1 #1 #	11	# 1	化化铁铁铁铁铁铁铁铁铁铁铁铁铁铁铁铁铁铁铁铁铁铁铁铁铁铁铁铁铁铁铁铁铁铁铁铁	1
6	***************************************	11	11 11 11 11 11 11 11 11 11 11	化砂铁矿铁铁铁矿铁矿铁铁矿铁铁铁铁铁铁铁铁铁铁铁铁铁铁铁铁铁铁铁铁铁铁铁铁铁铁	11 11 11 11 11

				STARLING LAMBDA LIKUM	TILL O TANNING OF THE
* 1.124+00 +- 1.5+00 130,928	2.441-03	+- 3.0-03 123.744 *		1.948-03 (NO E	1.948-03 (NO EXACT FIT TO THE TRANSFORMS FOUND)
* 8.000-01 +- 4.4+00 552.398	1.004-02		506.256 *	6.063-03 (NO E	6.063-03 (NO EXACT FIT TO THE TRANSFORMS FOUND)
* 3.702-01 +- 3.2+00 876.769	2.914-02		755.702 *	1.811-02 (NO E	XACT FIT TO THE TRANSFORMS FOUND)
4- 4.7+00	9.586-02	+- 2.8-01 287.871 *	287.871 *	9.301-02 (NO E	XACT FIT TO THE TRANSFORMS FOUND)
* -1.035-01 +- 1.8-01. 178.054	000.0	0.0 -+	* 000°		
********************	*****	******	****		
PNG(4/2)	1.000	NFHI	ŧI	1.42+02	CUNCORRECTED PNG WOULD BE .725)
ITERATIONS IN FIT =	9	STD. D	STD. DEV. OF FIT =	1.1061-01	SIGNAL/NOISE RATIO OF FIT =
LAG PROH. RESIDUALS UNCORRELATED	K = 1 K = 2	K = 3 $K = 4$ $K = 5$ • 000 • 169	000 . 000		**************************************

4 COMPONENTS

THIRD BEST SOLUTION

1 COMPONENTS	
SOLUTION	
FOURTH BEST	

* 1.969+00 +- 1.0-01 5.076 4.455-03 +- 2.9-04 6.403 * * -2.983-03 +- 1.5-02 492.316 0.000 +- 0.0 ***********************************	492.316 ************************************	4.455-03 0.000 *******	4.455-03 +- 2.9-04 6.403 * 0.000 +- 0.0	******** 00° 07°9 7		5.239-03	
PNG(1/2) = ITERATIONS IN FIT =	.	1.000 5	NPHI STD.	I • DEV. OF	H LI H	NPHI = 1.26-03 STD, DEV, OF FIT = 1.5621-01	(UNCORRECTED PNG WOULD BE 1.000) SIGNAL/NOISE RATIO OF FIT =
LAG PROB. RESIDUALS UNCORRELATED	. 001	к = 2 .010	к = 3 .018	x = 4 .750	K = 5	WEIGHTED AVERAGE	**************************************