Name: Example Work

Homework Week #3

2D Vectors & Motion Due Thurs 9/05/19

Reading

Tuesday: C&J 3.3-3.5

Thursday: C&J 4.1-4.6

It is required that students provide a sketch of the coordinate system and approximately scaled vector arrows for vector quantities. Don't forget to include such if you want full credit.

Focus on Concepts

Problem 1. 1.7.8

Problem 2. 1.7.12

Problem 3. 3.3.3

Problems

Problem 4. 1.6.33

Problem 5. 1.7.39

Problem 6. 1.8.46

Problem 7. 1.CCP.70

Problem 8. 3.1.3

Problem 9. 3.1.9

Problem 10. 3.3.12

1. FOC 1.7.8

If a displacement can be represented by

then it can be y components

We ante

$$\vec{A} = \vec{A}_x + \vec{A}_y$$

$$\vec{A} = A_x \hat{i} + A_y \hat{j}$$

2. FOC 1.7.12 1/2

Express a vector A in a different coordinate system that has the same onthe as a standard X-y coordinate sys.

0 = 35° Ā = -450,0m j Find Ax', Ay' for $\vec{A} = Ax'\hat{x}' + Ay'\hat{y}'$ note: ĵ = (1 unit in y dinee tron.) so lets write $x' \equiv 1$ unit in x' direction ŷ' = 1 unit in y' direction

2.FOC 1.7.122/2

I advise redrawing the Nght trimgle are are using for the working coordinate system. I'm the working coordinate

A=450.0 0=35° Ay'

Ay'

Ax1=-Asin 0

Ay' =-A cos O

 $A_{x'} = -258m$

 $A_{5}' = -369m$

3. FOC 3.3.3

Consider 2 cases

when $|\vec{a}| = g$

y=h $\sqrt{v_{0}}$ $\sqrt{v_{0}}$ $\sqrt{v_{0}}$ $\sqrt{v_{0}}$

Using D_{x} $\vec{a} = -g \hat{j}$

V10 = - Vo J

 $\vec{V}_{20} = V_o \left(\cos \theta \hat{i} + \sin \theta \hat{j} \right)$

Remember $\sqrt{7} \neq \bar{a}$ | For such a projectile the acceleration due to gravity (from the earth) is 9 downwards.

(c) Same \bar{a} at all times

 $\frac{1}{\sqrt{2}} = \frac{1}{\sqrt{2}} = \frac{1$

$$\frac{4! \cdot 1.6.33}{\text{Find}} \frac{1/2}{\vec{F}_3} = 0$$

if $\vec{F}_1 = \vec{F}_1 \left(+ \cos \theta_1 \hat{i} - \sin \theta_1 \hat{j} \right), \quad \vec{F}_2 = 50.0N$

and $\vec{F}_2 = -\vec{F}_2 \hat{i}, \quad \vec{F}_2 = 90.0 \text{ N}.$

$$F_{1x} + F_{2x} + F_{3x} = 0$$

$$F_{3x} = -\left(F_{1x} + F_{2x}\right) = -\left(+F_{1}\cos\theta_{1} - F_{2}\right)$$

$$F_{3y} = -\left(F_{1y} + F_{2y}\right) = -\left(-F_{1}\sin\theta_{1}\right)$$

$$F_{3x} = 65.0N$$
 $F_{3y} = 43.3N$

We're not finished!

$$F_3 = \sqrt{F_{3x}^2 + F_{3y}^2}$$

$$O_3 = 33.7^{\circ}$$

$$\int = \int x^2 + y^2$$

$$+ an \theta = \frac{y}{x}$$

$$\int f = 222m$$

$$Q = 55.8^{\circ}$$

Find Rif A = 5.00m, B=5.00m, C=4.00m.

$$\vec{R} = \vec{A} + \vec{B} + \vec{c}$$

$$R_x = A_x + B_x + C_x$$

$$R_y = A_y + B_y + C_y$$

$$A_{x} = +A \cos 60^{\circ} \quad B_{x} = -B \cos 20^{\circ} \quad C_{x} = 0$$

$$A_{y} = +A \sin 60^{\circ} \quad B_{y} = +B \sin 20^{\circ} \quad C_{y} = -C$$

$$R_{x} = (5.00m)(\cos 60^{\circ} - \cos 20^{\circ})$$

$$R_{y} = (5.00 \sin 60^{\circ} - 4.00)m$$

$$\vec{R} = (-2.10 \vec{L} + 0.33 \hat{J})m$$

$$\overline{R} = 2.22 m, 8.54° from - x-axis$$

Find A and By if
$$\vec{A} = \vec{B}$$
.

$$\begin{array}{c|c}
A & A \\
\hline
 & A_y \\
\hline
 & A_x
\end{array}$$

$$\begin{array}{c|c}
A & A \\
\hline
 & 3 \\
\hline$$

If
$$\vec{A} = \vec{B}$$
 then

(i)
$$A = B$$
, $O_A = O_B$

(ii)
$$A_x = B_x$$
, $A_y = B_y$

tan
$$\theta = \frac{B_y}{B_x}$$
 \Rightarrow $B_y = (35.0 m) + an 22.0°$

$$\cos \theta = \frac{A_x}{A} \rightarrow A = \frac{(35.0m)}{\cos 22.0^\circ}$$

$$\vec{a} = 340 \frac{m}{s^2}$$
, 51° for $t = 0.050s$ calculate $\vec{V_L} = \vec{V_{LX}} \hat{i} + \vec{V_{Ly}} \hat{j}$

$$\vec{V}_{L} = \vec{a} t$$

$$\vec{V}_{Lx} = a_{x} t$$

$$\vec{V}_{Ly} = \vec{a} t$$

$$\vec{V}_{Ly} = a_{y} t$$

$$a_x = a \cos \Theta = 214 \frac{m}{s^2}$$

 $a_y = a \sin \Theta = 264 \frac{m}{s^2}$

$$V_{Lx} = 10.7 \, m/s^2$$
 $V_{Ly} = 13.2 \, m/s^2$

9. 3.1.9 If
$$\vec{v}_0 = 0$$
, $\Delta s = 12.0 \text{ m}$
and $|\vec{v}_f| = V_f = 7.70 \text{ m}$ (a) find a and (b) Δx if $\Theta = 25.0^\circ$

$$a_{x} = a \cos 25.0^{\circ}$$

$$25.0^{\circ}$$

$$\sqrt{2}$$

For s-direction:
$$V^2 = V_0^2 + 2a\Delta s$$

 $V_0 = 0 \longrightarrow a = \frac{V^2}{2\Delta s} = \frac{(7.70)^2}{2(12.0)} \frac{m^2/s^2}{m}$

$$a = 2.47 \frac{m}{5^2}$$

$$a_x = 2.24 \frac{m}{5^2}$$

If $\vec{V}_0 = 5480 \frac{m}{5} \hat{z}$ and for 842s an acceleration $\vec{a} = (1.20\hat{z} + 8.40\hat{j}) \frac{m}{5}^2$ is applied than what is V_X and V_Y ?

$$\vec{V} = \vec{V}_0 + \vec{a} t = \begin{cases} v_x = v_{0x} + a_x t \\ v_y = v_{0y} + a_y t \end{cases}$$

$$V_{x} = 6490 \frac{m}{5}$$
 $V_{y} = 7073 \frac{m}{5}$