Band-Gap Engineering of Graphene

Energy Band-Gap Engineering of Graphene-Derived Nanostructures

Nick Woods

nw637@york.ac.uk

Supervisor: Dr. Yvette Hancock

June 3, 2015

Overview

Band-Gap Engineering of Graphene

Overview

Introduction

Theory

Results

Conclusior

- 1 Introduction
 - What is graphene?
 - Research question and motivation.
- 2 Theory
- 3 Results
- 4 Conclusion

Introduction

Band-Gap Engineering of Graphene

Nick Woods

Introduction

I heor

Result

Conclusio

Research Question

Band-Gap Engineering of Graphene

Nick Woods

Introduction

Introductio

i neory

Results

Conclusion

How can the band-gap of graphene be modified in a useful way?

Motivation

Band-Gap Engineering of Graphene

Nick Wood:

Quartien

Introduction

Theory

Results

Conclusio

 Semiconductors play a huge role in the electronics industry (e.g. transistors).

Motivation

Band-Gap Engineering of Graphene

Nick Wood

) von iou

Introduction

Theory

Results

_ .

 Semiconductors play a huge role in the electronics industry (e.g. transistors).

Computer processors can have in excess of one billion transistors.

Motivation

Band-Gap Engineering of Graphene

Nick Woods

Introduction

Theony

ĺ

Results

Conclusio

- Semiconductors play a huge role in the electronics industry (e.g. transistors).
- Computer processors can have in excess of one billion transistors.
- Why Graphene?

Band-Gap Engineering of Graphene

.....

0.10.11.011

Introductio

Theory

Results

Conclusio

Density Functional Theory

Tight-Binding Model

Density Functional Theory

Band-Gap Engineering of Graphene

Nick Woods

■ *Ab initio* technique.

Tight-Binding Model

A model (not a theory).

Introductio

Theory

Results

Conclusio

Density Functional Theory

Band-Gap Engineering of Graphene

Ab initio technique.

Long computation times.

Tight-Binding Model

A model (not a theory).

Short computation times.

Theory

Band-Gap Engineering of Graphene

Nick Woods

IIILIOGUCCIO

Theory

Results

Conclusio

Density Functional Theory

- Ab initio technique.
- Long computation times.

Tight-Binding Model

- A model (not a theory).
- Short computation times.

Strategy: Use density functional theory to parametrise the tight-binding model.

Bulk Graphene

Band-Gap Engineering of Graphene

Theory

■ Bulk graphene has no band gap.

Techniques to Alter the Band-Gap

Band-Gap Engineering of Graphene

Nick Woods

Introduce strain.

lntro du cti

miroductio

Theory

Results

Conclusion

Techniques to Alter the Band-Gap

Band-Gap Engineering of Graphene

Nick Woods

view

miroductio

Theory

Results

Conclusio

- Introduce strain.
- Pattern two-dimensional graphene sheets into quasi-one-dimensional graphene nanoribbons (GNRs).

Graphene Nanoribbons

Band-Gap Engineering of Graphene

Nick Woods

O VCI VICVV

Introduction

Theory

Results

Conclusion

■ Large range of band-gaps available to GNRs by increasing the width alone.

Strained GNRs

Band-Gap Engineering of Graphene

Nick Woods

IIILIOGUCLIOI

I heory

Results

Conclusio

 Uniaxial strain is able to increase and decrease the band-gap in (a) armchair-edged graphene nanoribbons and (b) zigzag-edged graphene nanoribbons.

Foreign Species within GNRs

Band-Gap Engineering of Graphene

Results

■ Change the geometrical structure of GNRs by introducing

periodic copper connections (orange).

Foreign Species within GNRs

Band-Gap Engineering of Graphene

Nick Woods

Overview

Introduction

I heory

Results

Conclusion

• Only the smallest width copper-GNR is a semiconductor.

The rest are metallic.

Conclusions

Band-Gap Engineering of Graphene

INICK VVOOd:

Introductio

1 neory

Results

Conclusion

 Bulk graphene does not posses an inherent band gap despite an applied uniaxial strain.

Conclusions

Band-Gap Engineering of Graphene

Conclusion

Bulk graphene does not posses an inherent band gap -

despite an applied uniaxial strain.

 Patterning graphene into quasi-one-dimensional GNRs allows for a large range of band-gaps to be realised.

Conclusions

Band-Gap Engineering of Graphene

Nick Woods

Introductio

Theory

Conclusion

- Bulk graphene does not posses an inherent band gap despite an applied uniaxial strain.
- Patterning graphene into quasi-one-dimensional GNRs allows for a large range of band-gaps to be realised.
- Positions GNRs well for use in next-generation nanoelectronics.

Further Work

Band-Gap Engineering of Graphene

Nick Woods

Introductio

Theory

D lu .

Conclusion

 Band-gaps are not the only feature of a successful semiconductor.

- What other properties do strained or doped GNRs posses?
 - Electron transport calculations.

The End

Band-Gap Engineering of Graphene

Nick Wood

Overview

Introduction

Theor

Results

Conclusion

Questions?