Continuity

A function $f: \mathbb{R} \to \mathbb{R}$ is continuous at $x \in \mathbb{R}$ iff $\forall \epsilon > 0 \exists \delta > 0$ such that if $|x - y| < \delta$ then $|f(x) - f(y)| < \epsilon$.

We can extend this definition to multivariate functions: a function $F: D \subseteq \mathbb{R}^n \mapsto \mathbb{R}^m$ is continuous at $\vec{x} \in D$ iff $\forall \epsilon > 0 \exists \delta > 0$ such that whenever $\|\vec{x} - \vec{y}\| < \delta$, then $\|F(\vec{x}) - F(\vec{y})\| < \epsilon$.

Lemma

Linear functions are continuous.

Proof. Fix $\epsilon > 0$. Let L be a linear function, and $\overrightarrow{h} = \overrightarrow{x} - \overrightarrow{y}$; we want to show that $\exists \delta > 0$ such that if $\|\overrightarrow{h}\| < \delta$ then $\|L(\overrightarrow{x} + \overrightarrow{h}) - L(\overrightarrow{x})\| < \epsilon$.

Let \overrightarrow{C} be the matrix representing L, that is, $L(\overrightarrow{y}) = \overrightarrow{C}\overrightarrow{y} \ \forall \ \overrightarrow{y}$. Then, $\left\|L(\overrightarrow{x}+\overrightarrow{h}) - L(\overrightarrow{x})\right\| = \left\|L(\overrightarrow{x}) + L(\overrightarrow{h}) - L(\overrightarrow{x})\right\| = \left\|L(\overrightarrow{h})\right\| = \left\|\overrightarrow{C}\overrightarrow{h}\right\| \le \left\|\overrightarrow{C}\right\| \cdot \left\|\overrightarrow{h}\right\|$. We can then specify $\delta = \frac{\epsilon}{\|\overrightarrow{C}\|}$.

Suppose
$$\|\overrightarrow{h}\| < \frac{\epsilon}{\|\overrightarrow{C}\|}$$
. Then $\|L(\overrightarrow{x} + \overrightarrow{h}) - L(\overrightarrow{x})\| = \|L(-\overrightarrow{h})\| = \|-\overrightarrow{C}\overrightarrow{h}\| \le \|\overrightarrow{C}\| \cdot \|-\overrightarrow{h}\| < \|\overrightarrow{C}\| \cdot \frac{\epsilon}{\|\overrightarrow{C}\|} = \epsilon$

Therefore L is continuous on \vec{x} . Since \vec{x} was arbitrary, L is continuous.

Theorem

A function $F: \mathbb{R}^n \to \mathbb{R}^m$ is written as $F((x_1, x_2 \cdots x_n)) = (f_1(x_1, x_2 \cdots x_n), f_2(x_1, x_2 \cdots x_n) \cdots f_m(x_1, x_2 \cdots x_n))$ F is continuous iff $f_1, f_2 \cdots f_m : \mathbb{R}^n \to \mathbb{R}$ are continuous.

Proof. Let us first prove one direction of the theorem. Let us assume that F is continuous, and try to show that f_i is continuous $\forall i$. If we fix $\epsilon > 0$, \vec{x} , we know that $\exists \delta > 0$ such that if $\|\vec{x} - \vec{y}\| < \delta$ then $\|F(\vec{x}) - F(\vec{y})\| < \epsilon$.

We want to show that
$$|f_i(\vec{x}) - f_i(\vec{y})| < \epsilon$$
. We know that $\epsilon > ||F(\vec{x}) - F(\vec{y})|| = \sqrt{\sum_{j=1}^m (f_j(x_1, x_2 \cdots x_n) - f_j(y_1, y_2 \cdots y_n))^2} \ge \sqrt{(f_i(x_1, x_2 \cdots x_n) - f_i(y_1, y_2 \cdots y_n))^2} = |f(\vec{x} - f(\vec{y}))|$. This proves the theorem in this direction.

To prove the other direction, we assume that $f_1, f_2 \cdots f_m$ are continuous, that is, $\forall \epsilon_i > 0 \exists \delta_i > 0$ such that if $\|\vec{x} - \vec{y}\| < \delta_i$ then $|f_i(\vec{x}) - f_i(\vec{y})| < \epsilon_i$.

Fix $\epsilon > 0$. Let $\epsilon_i = \frac{\epsilon}{\sqrt{m}}$ and use the above definition to define δ_i . Let $\delta = \min(\delta_1, \delta_2 \cdots \delta_m)$. If $\|\vec{x} - \vec{y}\| < \delta$ then $\|F(\vec{x}) - F(\vec{y})\| = \sqrt{\sum_{i=1}^m (f_i(\vec{x}) - f_i(\vec{y}))^2} < \sqrt{\sum_{i=1}^m (\frac{\epsilon}{\sqrt{m}})^2} = \epsilon$.