Orthogonal Equipartitions of 3-color Points in the Plane

Krittapas Ngammuengman¹, Tirasan Khandhawit^{1,*}

¹Department of Mathematics, Faculty of Science, Mahidol University, Bangkok, Thailand

*tirasan.kha@mahidol.edu

Abstract

Orthogonal equipartition is a problem of subdividing the plane to regions containing equal numbers of points using only vertical and horizontal lines. Previously, Sergey Bereg proved that an equipartition of a set of 2-color points into two regions needs at most 1 horizontal and 1 vertical segments. We will be interested in a set of 3-color points. We give an algorithm to find an equipartition into two regions with at most 3 vertical and 2 horizontal segments. We also find examples that cannot be equipartitioned with less than 5 segments.

Keywords: Equitable subdivision, Orthogonal partition, Colored point sets

Objective

Minimizing the number of line segments of orthogonal equipartition of 3-color points in general position in the plane.

Definition

Let A be a set of points in the plane. The points in set A are lying in **general position** if no three points lie on the same line. In other words, any three points can make a triangle.

The **orthogonal partition** consists of vertical line segments and horizontal line segments such that the intersection of any two segment is either an empty set or a vertex of two segments.

Let a and b be positive integers. A partition of the plane into two regions A and B is called (a, b)—balanced with respect to a measure λ if

$$\lambda(A) = \frac{a}{(a+b)}$$
 and $\lambda(B) = \frac{b}{(a+b)}$

and called (a, b)-balanced if it is (a, b)-balanced with respect to both measure λ and μ . We say that (a, b)-balanced partition is **equitable** if a = b.

Notation

Let A is a set of k—color points in general position on lattice \mathbb{Z}^2 with length $n \times n$, where n > 1 and k > 2 be integers. Defined a_{ij} is a $k \times 1$ -dimensional matrix of the number of points of each color over y = i from x = 0 to x = j.

Defined S_j by $k \times 1$ -dimensional matrix of the number of points of each color on the left side of a line x = j, that is $S_j = \sum_{i=1}^n a_{ij}$.

Note that S_n is $k \times 1$ -dimensional matrix of the number of points of each color in the plane.

Defined V by the k-dimension vector of the number of points of each color in left region of orthogonal partition.

First Vertical Line

Find a smallest $j \in \{0, 1, ..., n\}$ satisfying

It can be written in the form

$$V = S_j = \sum_{i=0}^n a_{ij}.$$

3 Line Segments

Given index $0 < i_1 < n$ and $0 < j_1 < n$ into y—axis and x—axis of first vertical line, respectively. The orthogonal partition when we added index i_1 , j_1 as shown below.

It can be written in the form

$$V = \sum_{i=0}^{i_1} a_{ij} + \sum_{i=i_1}^{n} a_{ij_1} \quad \text{or} \quad V = \sum_{i=0}^{i_1} a_{ij_1} + \sum_{i=i_1}^{n} a_{ij},$$
where $0 \le j_1 \le j$.

Some Cases of 5 Line Segments

Given an index $0 < i_2 < n$ into y—axis of three line segments. The orthogonal partition when we added index i_1 , j_1 as shown below.

It can be written in the form

$$V = \sum_{i=0}^{i_1} a_{ij} + \sum_{i=i_1}^{i_2} a_{ij_1} + \sum_{i=i_2}^{n} a_{ij},$$

$$V = \sum_{i=0}^{i_1} a_{ij_1} + \sum_{i=i_1}^{i_2} a_{ij} + \sum_{i=i_2}^{n} a_{ij_1},$$

where $0 \le j_1 \le j$ and $0 < i_1 < i_2 < n$.

Verify a Solution

This orthogonal partition is a solution when

$$\left|\frac{S_n}{2} - V\right| \le \frac{1}{2},$$

and it is a equitable when every element in matrix S_n are even.

Rotational Coordinate

For the algorithm above, we can swap between the coordinate $x,\ y$ and find orthogonal equipartitions with same iteration.

References

- [1] S. Bereg, Orthogonal Equipartition, Computational Geometry 42, 305-314. (2009).
- [2] M. Uno, T. Kawano, M. Kano, Bisections of Two Sets of Points in the Plane Lattice, **Graphs and Combinatorics E92-A** (2009)
- [3] A. Kaneko, M. Kano, Balanced partitions of two sets of points in the plane, Comput. Geom. Theory Appl. 13 (1999)

Result

The counterexample of 3 line segments for 3-color points.

An example of 5 line segments for 3-color points.

An counterexample of some cases of 5 line segments for 4, 5-color points, respectively.

Conclusion

In case 3-color points in general position have to use more than 3 line segments and it can find orthogonal equipartitions with 5 line segments for every sample from our generator. For k greater than 3, we have counterexample for some cases of 5 line segments. However, It maybe partitioning by general case of 5 line segments as shown below.

In general case we add index j_2 , j_3 for translation of vertical segments in previous some cases of 5 segments. It can be written in the form

$$V = \sum_{i=0}^{i_1} a_{ij_1} + \sum_{i=i_1}^{i_2} a_{ij_2} + \sum_{i=i_2}^{n} a_{ij_3},$$

where $i_1 \leq i_2$, or

$$V = \sum_{i=0}^{i_1} a_{ij_1} - \sum_{i=i_1}^{i_2} a_{ij_2} + \sum_{i=i_2}^{n} a_{ij_3},$$

where $i_1 > i_2$.