Electronic Devices

Final Term Lecture - 10

Reference book:

Electronic Devices and Circuit Theory (Chapter-8)

Robert L. Boylestad and L. Nashelsky, (11th Edition)

JFET Small Signal Model

JFET Input Impedance Z_i

The input impedance of all commercially available JFETs is sufficiently large to assume that the input terminals approximate an open circuit. In equation form,

$$Z_i(\text{JFET}) = \infty \Omega$$
 (8.10)

For a JFET a practical value of $10^9~\Omega~(1000~\text{M}\Omega)$ is typical, whereas a value of $10^{12}~\Omega$ to $10^{15}~\Omega$ is typical for MOSFETs and MESFETs.

JFET Output Impedance Z_o

The output impedance of JFETs is similar in magnitude to that of conventional BJTs. On JFET specification sheets, the output impedance will typically appear as g_{os} or y_{os} with the units of μ S. The parameter y_{os} is a component of an *admittance equivalent circuit*, with the subscript o signifying an output network parameter and s the terminal (source) to which it is attached in the model. For the JFET of Fig. 6.20, g_{os} has a range of 10 μ S to 50 μ S or $20 \text{ k}\Omega$ ($R = 1/G = 1/50 \mu$ S) to $100 \text{ k}\Omega$ ($R = 1/G = 1/10 \mu$ S).

In equation form,

$$Z_o \text{ (JFET)} = r_d = \frac{1}{g_{os}} = \frac{1}{y_{os}}$$
 (8.11)

JFET AC Equivalent Circuit

Now that the important parameters of an ac equivalent circuit have been introduced and discussed, a model for the JFET transistor in the ac domain can be constructed. The control of I_d by V_{gs} is included as a current source g_mV_{gs} connected from drain to source as shown in Fig. 8.8. The current source has its arrow pointing from drain to source to establish a 180° phase shift between output and input voltages as will occur in actual operation.

Example

EXAMPLE 8.6 Given $g_{fs} = 3.8$ mS and $g_{os} = 20 \mu$ S, sketch the FET ac equivalent model. **Solution:**

$$g_m = g_{fs} = 3.8 \text{ mS}$$
 and $r_d = \frac{1}{g_{os}} = \frac{1}{20 \mu \text{S}} = 50 \text{ k}\Omega$

resulting in the ac equivalent model of Fig. 8.9.

FIG. 8.9

JFET ac equivalent model for Example 8.6.

FIXED-BIAS CONFIGURATION

Now that the JFET equivalent circuit has been defined, a number of fundamental JFET small-signal configurations are investigated. The approach parallels the ac analysis of BJT amplifiers with a determination of the important parameters of Z_i , Z_o , and A_v for each configuration.

The *fixed-bias* configuration of Fig. 8.10 includes the coupling capacitors C_1 and C_2 , which isolate the dc biasing arrangement from the applied signal and load; they act as short-circuit equivalents for the ac analysis.

JFET fixed-bias configuration.

Continued.

FIG. 8.11

Substituting the JFET ac equivalent circuit unit into the network of Fig. 8.10.

FIG. 8.12

Redrawn network of Fig. 8.11.

Z_i Figure 8.12 clearly reveals that

$$Z_i = R_G \tag{8.13}$$

because of the infinite input impedance at the input terminals of the JFET.

Setting $V_i = 0$ V as required by the definition of Z_o will establish V_{gs} as 0 V also. The result is $g_m V_{gs} = 0$ mA, and the current source can be replaced by an open-circuit equivalent as shown in Fig. 8.13. The output impedance is

$$Z_o = R_D \| r_d \tag{8.14}$$

$$Z_o \cong R_D$$
 $r_d \ge 10R_D$

 A_v Solving for V_o in Fig. 8.12, we find

but
$$V_o = -g_m V_{gs}(r_d \| R_D)$$

$$V_{gs} = V_i$$
 and
$$V_o = -g_m V_i(r_d \| R_D)$$

so that

$$A_{v} = \frac{V_o}{V_i} = -g_m(r_d || R_D)$$

If $r_d \geq 10R_D$,

$$A_{v} = \frac{V_{o}}{V_{i}} = -g_{m}R_{D}$$

$$r_{d} \ge 10R_{L}$$

Phase Relationship The negative sign in the resulting equation for A_{ν} clearly reveals a phase shift of 180° between input and output voltages.

EXAMPLE 8.7 The fixed-bias configuration of Example 7.1 had an operating point defined by $V_{GS_Q} = -2$ V and $I_{D_Q} = 5.625$ mA, with $I_{DSS} = 10$ mA and $V_P = -8$ V. The network is redrawn as Fig. 8.14 with an applied signal V_i . The value of y_{os} is provided as 40 μ S.

- a. Determine g_m .
- b. Find r_d .
- c. Determine Z_i .
- d. Calculate Z_o .
- e. Determine the voltage gain A_{ν} .
- f. Determine A_v ignoring the effects of r_d .

JFET configuration for Example 8.7.

Solution:

a.
$$g_{m0} = \frac{2I_{DSS}}{|V_P|} = \frac{2(10 \text{ mA})}{8 \text{ V}} = 2.5 \text{ mS}$$

 $g_m = g_{m0} \left(1 - \frac{V_{GS_Q}}{V_P} \right) = 2.5 \text{ mS} \left(1 - \frac{(-2 \text{ V})}{(-8 \text{ V})} \right) = 1.88 \text{ mS}$

b.
$$r_d = \frac{1}{y_{os}} = \frac{1}{40 \,\mu\text{S}} = 25 \,\text{k}\Omega$$

c.
$$Z_i = R_G = 1 M\Omega$$

d.
$$Z_o = R_D \| r_d = 2 k\Omega \| 25 k\Omega = 1.85 k\Omega$$

e.
$$A_v = -g_m(R_D || r_d) = -(1.88 \text{ mS})(1.85 \text{ k}\Omega)$$

= -3.48

f.
$$A_v = -g_m R_D = -(1.88 \text{ mS})(2 \text{ k}\Omega) = -3.76$$

As demonstrated in part (f), a ratio of 25 k Ω :2 k Ω = 12.5:1 between r_d and R_D results in a difference of 8% in the solution.

End of Lecture-10