Module G12 : Probabilités de base.

Examen 2e session : durée deux heures.

Documents autorisés : polycopié et notes personnelles de cours, liste des lois usuelles. Mardi 12 juin 2007.

Exercice 1. Soit $(X_n)_{n \in \mathbb{N}^*}$ une suite de variables aléatoires indépendantes et identiquement distribuées suivant la loi gaussienne $\mathcal{N}(0,1)$; X_1 a pour densité $x \longmapsto \frac{1}{\sqrt{2\pi}}e^{-x^2/2}$.

- 1. Calculer, pour $s \in \mathbf{R}$, $\mathbb{E}\left[e^{sX_1}\right]$.
- 2. Montrer que la suite de terme général

$$Y_n = \frac{\sum_{k=1}^n X_k^2}{\sum_{k=1}^n e^{X_k}}$$

converge presque sûrement et préciser sa limite.

Exercice 2. Soit $(X_n)_{n\geq 1}$ une suite de variables aléatoires réelles indépendantes et identiquement distribuées suivant la loi de Bernoulli de paramètre $1/2 : \mathbb{P}(X_1 = 1) = \mathbb{P}(X_1 = 0) = 1/2$. On pose, pour $n \geq 1$,

$$U_n = \sum_{k=1}^n \frac{X_k}{2^k}.$$

1. Soit φ la fonction caractéristique de X_1 . Montrer que

$$\forall t \neq 0 \ (2\pi), \qquad \varphi(t) = e^{it/2} \cos(t/2) = \frac{1}{2} e^{it/2} \frac{\sin t}{\sin(t/2)}.$$

2. Montrer que la suite $(U_n)_{n\geq 1}$ converge en loi vers une variable aléatoire U de loi uniforme sur [0,1].

Exercice 3. Soit $(X_n)_{n\geq 1}$ une suite de variables aléatoires indépendantes et identiquement distribuées de carré intégrable et centrées; on note $\sigma^2 = \mathbb{E}[X_1^2]$ et on suppose $\sigma^2 > 0$. On considère d'autre part une suite de variables aléatoires $(Y_n)_{n\geq 1}$ telle que,

$$\forall n \ge 1, \qquad \mathbb{P}(Y_n = 0) = 1 - \frac{1}{n^2}.$$

- 1. On pose, pour tout $n \ge 1$, $T_n = \sum_{1 \le k \le n} Y_k$.
 - (a) Montrer que $\mathbb{P}(\limsup\{Y_n \neq 0\}) = 0$.
 - (b) En déduire que $\sup_{n\geq 1}|T_n|<+\infty$ presque sûrement.
- 2. Montrer que la suite de terme général $\frac{1}{\sqrt{n}} \sum_{1 \leq k \leq n} (X_k + Y_k)$ converge en loi vers une variable aléatoire Z dont on précisera la loi.

Exercice 4. Les deux questions sont indépendantes.

Soit $(X_n)_{n\geq 1}$ une suite de variables aléatoires indépendantes et identiquement distribuées suivant la loi de Poisson de paramètre $\lambda>0$:

$$\forall k \in \mathbf{N}, \qquad \mathbb{P}(X_1 = k) = e^{-\lambda} \frac{\lambda^k}{k!}.$$

On note G la fonction génératrice de X_1 :

$$\forall |z| \le 1, \qquad G(z) = \mathbb{E}\left[z^{X_1}\right] = e^{\lambda(z-1)}.$$

- 1. (a) Calculer, pour tout $n \geq 0$, la fonction génératrice de $S_n = \sum_{k=0}^n X_{k+2}$ et préciser la loi de S_n .
 - (b) Exprimer à l'aide de G la fonction génératrice de la variable aléatoire S définie par

$$\forall \omega \in \Omega, \qquad S(\omega) = \sum_{k=0}^{X_1(\omega)} X_{k+2}(\omega).$$

- 2. On considère, pour $n \ge 1$, $Y_n = \prod_{1 \le k \le n} X_k$.
 - (a) Calculer, pour $n \geq 1$, $\mathbb{P}(Y_n \neq 0)$.
- (b) En remarquant que, pour $0 < \varepsilon < 1$, $\mathbb{P}(|Y_n| > \varepsilon) = \mathbb{P}(Y_n \neq 0)$, montrer que la suite $(Y_n)_{n \geq 1}$ converge en probabilité vers 0.
 - (c) La convergence a-t-elle lieu presque sûrement?
 - (d) La convergence a t-elle lieu dans L^1 ?