```
import pandas as pd
import matplotlib.pyplot as plt
df = pd.read_csv('Advertising.csv')
df.head()
df.describe()
df.isnull().sum()
df.shape
     (200, 5)
x=df[["TV","Radio","Newspaper"]]
y=df["Sales"]
            22.1
            10.4
            9.3
     2
     3
            18.5
           12.9
            . . .
     195
            7.6
            9.7
     196
     197
          12.8
         25.5
     198
     199
            13.4
     Name: Sales, Length: 200, dtype: float64
from sklearn.model selection import train test split
x_train,x_test,y_train,y_test = train_test_split(x,y,test_size = 0.2,random_state=101)
from sklearn.linear model import LinearRegression
1 = LinearRegression()
1.fit(x_train,y_train)
y_pred =1.predict(x_test)
x_test
```

	TV	Radio	Newspaper
37	74.7	49.4	45.7
109	255.4	26.9	5.5
31	112.9	17.4	38.6
89	109.8	47.8	51.4
66	31.5	24.6	2.2
119	19.4	16.0	22.3
54	262.7	28.8	15.9
74	213.4	24.6	13.1
145	140.3	1.9	9.0
142	220.5	33.2	37.9
148	38.0	40.3	11.9
112	175.7	15.4	2.4
174	222.4	3.4	13.1
55	198.9	49.4	60.0
141	193.7	35.4	75.6
149	44.7	25.8	20.6
25	262.9	3.5	19.5
34	95.7	1.4	7.4
170	50.0	11.6	18.4
39	228.0	37.7	32.0
172	19.6	20.1	17.0
153	171.3	39.7	37.7
175	276.9	48.9	41.8
61	261.3	42.7	54.7
65	69.0	9.3	0.9
50	199.8	3.1	34.6
42	293.6	27.7	1.8
129	59.6	12.0	43.1
179	165.6	10.0	17.6
2	17.2	45.9	69.3

12 23.8 35.1 65.9

```
print("Regressor Slope: ",l.coef [0])
print("Regressor intercept:",l.intercept_)
y_pred
     Regressor Slope: 0.04532831653793596
     Regressor intercept: 2.9013136928731758
     array([15.68292592, 19.58907536, 11.33442246, 16.97160642, 9.00229777,
             6.8258424 , 20.28370847 , 17.25050474 , 9.62422935 , 19.21261943 ,
            12.28165709, 13.79124205, 13.63171832, 21.3166205, 18.4260183,
             9.83360121, 15.48826256, 7.50717778, 7.37608168, 20.40569824,
             7.61221263, 18.21702553, 24.75227276, 22.87105326, 7.79566192,
            12.55620637, 21.47155589, 7.89397664, 12.3119109, 12.41822104,
            10.6650977 , 19.23984433 , 9.92216352 , 6.53329195 , 17.27904496 ,
             7.60035587, 9.1023379, 8.10416927, 10.45284718, 10.49584758])
from sklearn import metrics
MSE=metrics.mean squared error(y test,y pred)
print("MSE is {}".format(MSE))
r2=metrics.r2 score(y test,y pred)
print("R squared error is {}".format(r2))
1.predict([[150.3,240.5,234.5]])
     MSE is 2.063418850121476
     R squared error is 0.9303140201228004
     /usr/local/lib/python3.7/dist-packages/sklearn/base.py:451: UserWarning: X does not hav
       "X does not have valid feature names, but"
     array([55.4591243])
```