

Classical Mechanics and Special Relativity Course # PHY 204 Fall 2020

Prepared by Abu Mohammad Khan

Example:

- Oconsider the function : $f(x) = x^2 2xe^{-x} + e^{-2x}$. Find the solution of this function f(x) = 0 within 10^{-5} by using
 - a. Newton's method
 - b. By using Aitken acceleration

O Note:

- a. Within 10^{-5} means that the answer must accurate upto five decimal places because $10^{-5} = 0.00001$.
- b. The question is which one is the answer: the f(x) = 0 or the root x_{\star} ?
- c. If it is f(x) = 0, then we reach the answer when $f(x_k) < 0.00001$ where k is the iteration number, we say that $f(x_k) \approx 0$ within the upper bound of the error.
- d. If it is x_{\star} , then if $|x_{\star} x_k| < 0.00001$ for some iteration number, then we say that $|x_{\star} x_k| \approx 0$, and x_k is the root within the upper bound of the error.
- e. When x_{\star} is irrational (van not be solved exactly by analytical method, or f(x) = 0 can not be solved exactly, then numerical method is the ONLY way to solve.
- f. This means that we look for $f(x_k) = 0$ in general when x_* is unknown or irrational.

 $f(x) \longrightarrow f(x) = 2x - 2\pi^2 - 2\pi(-\bar{e}^x) - 2\bar{e}^{2x}$.: Iteration formula (Newton's Method).

$$= \frac{\chi_{k}^{2} - 2\chi_{k}^{2} + e^{2\chi_{k}}}{2\chi_{k}^{2} - 2e^{\chi_{k}^{2}} + 2\chi_{k}^{2} - 2e^{2\chi_{k}^{2}}}$$

K = iteration number

Starting frint: $x_0 = 1 (K=0)$

K	×K	AF(XK)	25-1(XD) < 165
0	1	0.399576	NO
1	(0,768941)	0.093292	NO
2	0.664590	0.022532	NO
3	0.6 5033	J(x3)=0,005537	NO
4	0,590884	0.001372	N 7

BRAC UNIVERSITY 1/2 ((Xa) < 185 PK 0.378963 - (1x5)-0000342 NO NO O. DODOR5 - 1.4×10 NO 0,3 XID 5 0.568615 Xx = Lambort W (1) = 0.567143