Executive Summary

The world has been taken over by zombies and they have ravaged nearly everyone on the planet. A billionaire is providing the investment to create a highly scalable and full orchestrated environment which will be the backbone of a manufacturing facility. This facility is building ships to transport what's left of the human race to the moon before sending them to Mars for colonization.

This system will be a lab-based deployment to determine whether the infrastructure is sound to build out for the other sites.

Business Requirements

Number	Item
R01	Deployments must go through Horizon
	Dashboard

Business Constraints

Number	Item
C01	VMware cluster
C02	Other hypervisor integration
C03	OpenStack
C04	1 Linux VM, 1 Windows VM

Business Assumptions

Number	ltem
A01	UPS Power is provided
A02	Air-conditioning is provided
A03	Limited professional support services for
	environment

Business Risks

Number	l Item
Trullioci.	i com

K01	Geoff building and understanding an OpenStack
	deployment in 5 days
K02	KVM failover is manual

Document Purpose

This document serves as the configuration document to layout the deployment infrastructure and process for the local deployment teams.

Physical Datacenter Overviews

• Datacenter rack layout

The following configuration would allow the best scaling of compute and storage nodes while taking into consideration fault domains within a datacenter.

- Networking
 - Cisco 5548UP 2
 - Cisco 6248 2
- o Compute
 - Cisco C240 M3 12
- Storage
 - Cisco C240 M3 6
 - Solidfire SF6010

• Power configurations

The installed equipment will draw the following power requirements. Some numbers are obtained from maximums from the vendor websites and some are actual tested numbers based on the vendor's documentation. The racks will consist of two power distribution units that will be connected to separate uninterruptible power supplies. There is an assumption, A01, that the facility will have a generator capable of supplying power in case of main grid failure. The rack will have connections to UPS-A and UPS-B. The numbers are a best representation of the data provided:

Rack	Item	UPS-A Watts	UPS-B Watts
3	Cisco 5548UP	193W	193W
4	Cisco 5548UP	193W	193W
3	Cisco 6248	193W	193W
4	Cisco 6248	193W	193W
1	Cisco C240 M3	375W	375W
1	Cisco C240 M3	375W	375W
1	Cisco C240 M3	375W	375W
1	Cisco C240 M3	375W	375W
1	Cisco C240 M3	375W	375W
1	Cisco C240 M3	375W	375W
1	Cisco C240 M3	375W	375W
1	Cisco C240 M3	375W	375W
2	Cisco C240 M3	375W	375W
2	Cisco C240 M3	375W	375W
2	Cisco C240 M3	375W	375W
2	Cisco C240 M3	375W	375W
2	Cisco C240 M3	375W	375W
2	Cisco C240 M3	375W	375W
2	Cisco C240 M3	375W	375W
2	Cisco C240 M3	375W	375W
2	Cisco C240 M3	375W	375W
2	Cisco C240 M3	375W	375W

1	Solidfire SF6010	150W	150W
1	Solidfire SF6010	150W	150W
1	Solidfire SF6010	150W	150W
1	Solidfire SF6010	150W	150W
1	Solidfire SF6010	150W	150W
2	Solidfire SF6010	150W	150W
2	Solidfire SF6010	150W	150W
2	Solidfire SF6010	150W	150W
2	Solidfire SF6010	150W	150W
2	Solidfire SF6010	150W	150W
Total Consumed Power		9022	9022

• HVAC configurations

The equipment will need to be cooled during operation. There is an assumption, A02, that the facility will have a room for the datacenter equipment to reside in. Using the Table 1 provided in this document, the amount of AC tonnage required to cool the equipment is as follows:

- Formula Total Watts * 0.000283 = Tons
- o Calculation 18044 * 0.000283 = 5.106452 Tons

Physical Infrastructure Overviews

Network Infrastructure

The following configuration is composed of a pair of Cisco 5596UP switches. There are Cisco 6296UP Fabric Interconnects that are providing the UCS Manager and Service Profiles for the Cisco C240 M3s.

These machines connect into the fabric extenders which then connects back to the 5596UPs. This configuration provides scale out functions should the need to add more compute nodes be necessary.

• Network Design

VLAN	Purpose
A	Management Network
В	VM Network
С	vMotion
D	iSCSI
E	Floating IP Network

• Host Infrastructure

o Cisco C240 M3 x12

CPU	RAM	NIC	Power	Storage
2x2.8Ghz E5-2680	256GB – 1866Mhz	VIC 1225	Dual 750W	Dual SD Card

Storage Infrastructure – Swift Object Storage

o Cisco C240 M3 x6

CPU	RAM	NIC	Power	Boot Storage	Internal Storage
2x2.8Ghz E5- 2680	256GB – 1866Mhz	VIC 1225	Dual 750W	Dual SD Card	3x Intel S3700 DC
					800GB

The storage infrastructure physical layout is shown above. Certain components have been removed for clarity of connectivity. Only one of the Solidfire SF6010's is being shown as the others connect in the same fashion to the 5596UP for 10Gbe storage and the 2232TM for 1Gbe Management. The two 10Gbe connections from each of the SolidFire controllers will be setup in a vPC between the two 5596UPs. The Management network connections will be plugged into both Fabric Extenders to allow connectivity in case of a Fabric Extender or 5596UP device failure. The C240 servers will be plugged into the Fabric Extenders via their VIC 1225 for their 10Gbe uplinks. These will

Virtualization Infrastructure Overviews

• vSphere and Ubuntu KVM Definitions

One of the requirements was to scale down but still use the same software components, R01, with a constraint that the software vendors had to be used, C03.

vSphere Component	Description
VMware vSphere	The core products of the VMware vSphere environment include:
	 ESXi – 2 instances will compose the management cluster and 6 hosts will comprise the compute cluster for VM consumption vCenter Server – 1 installed VM instance vCenter Server Database – 1 VM instance for the single instance of vCenter Server SSO – Single Sign-on component that is required for connecting to the vSphere Client and vSphere Web Client vSphere Client – Still needed to manage VMware Update Manager vSphere Web Client – Used to manager the vSphere environment vSphere Update Manager – Used to update hosts and virtual machines
Ubuntu KVM 14.04 LTS	 KVM – 2 instances of KVM will provide an HA cluster for an additional copy of the Nova Controller VM Horizon

- Glance
- Cinder
- Keystone
- RabbitMQ
- MySQL
- HAProxy
- Nova
- Swift Proxy

• vSphere Component Architecture

Design Section	vSphere Components
vSphere Architecture – Management Cluster	 vCenter Server and vCenter Database vCenter Cluster and ESXi hosts Single Sign-On vSphere Update Manager
vSphere Architecture – Compute Cluster	 vCenter Cluster and ESXi hosts

• Ubuntu KVM Component Architecture

Design Section	vSphere Components
Ubuntu KVM – Management Cluster	 HAProxy Nova-controller Keystone MySQL RabbitMQ Horizon Glance Cinder Swift
Ubuntu KVM Architecture – Compute Cluster	KVMNova-compute

- vSphere and Ubuntu Architecture Design Overview
- High level Architecture

The vSphere components are being split out to facilitate ease of troubleshooting of the management components without disruption of the resource components. They are split out as follows:

Management cluster that will host the management components of the vSphere infrastructure as well as one of the redundant Ubuntu Nova Controller VMs. They are split out to ensure they have dedicated resources in which to consume. The Ubuntu Nova Controller VMs will be split across the hypervisors in an active/active configuration. In case of VMware host failure, VMware HA will restart the controller on the other ESXi host. In case of full failure of the VMware management cluster, the Ubuntu KVM nodes will take over servicing the compute nodes.

Compute cluster that will host the virtual machines for OpenStack to spawn up on.

vSphere HA

OpenStack HA

Site Considerations

The vSphere management and compute clusters are both residing within the same facility. This will provide the lowest latency for management as well as a consistent datacenter in which to manage the clusters.

There are no other sites that are in scope for this project.

- Design Specifications
- vSphere Architecture Design Management Cluster
 - Computer Logical Design
 - Datacenter

One vCenter datacenter will be built to house the two clusters for the vSphere environment.

vSphere Cluster

Below is the cluster configuration for the management cluster for the environment.

Attributes	Specification		
Number of ESXi Hosts	2		
DRS Configuration	Fully Automated		
DRS Migration Threshold	Level 3		
HA Enable Host Monitoring	Enabled		
HA Admission Control Policy	Disabled		
VM restart priority	Medium – vCenter and vCenter DB set High		
	priority		
Host Isolation response	Leave powered on		
VM Monitoring	Disabled		

Host logical Design

Attribute	Specification		
Host Type and Version	VMware ESXi Installable		
Processors	X86 Compatible		
Storage	FlexFlash SD for local ESXi install, shared storage		
	for VMs		
Networking Connectivity to all needed VLANS			
Memory	Sized for workloads		

Network Logical Design

Switch Name	Switch Type	Function	# of Physical Ports
vSwitch0	Standard	Management	2x10Gbe
		vMotion	
		VM Network	
		Floating IP Network	
vSwitch1	Standard	iscsi	2x10Gbe

The VIC 1225 in the Cisco C240 M3 allows the ability to split out 2 10Gbe Network connections into 256 vnics. The configuration is to create 4 vnics through the Service Profile, 2 with bindings to Fabric Interconnect A and Fabric Interconnect B. A pair of vnics, one going to either Fabric Interconnect, will compose the port group uplinks necessary for failover purposes and redundancy within the vSphere environment. This is illustrated below:

Port group configurations

Attribute	Setting		
Load balancing	Route based on originating virtual port ID		
Failover Detection	Link Status Only		
Notify Switches	Yes		
Failover Order	MGMT – Active vmnic0/Standby vmnic1		
	vMotion – Standby vmnic0/Active vmnic1		
	VM Network – Active vmnic3/Active vmnic4		
	Floating IP Network – Active vmnic0/Standby		
	vmnic1		
	iSCSI1 – Active vmnic3/Unused vmnic4		
	iSCSI2 – Active vmnic4/Unused vmnic3		

Shared Storage Logical Design

Attribute	Specification
Number of LUNs to start	1
LUN Size	1TB
VMFS Datastores per LUN	1
VMs per LUN	4

Management Components

This is the list of Management components that will be running on the management cluster:

- vCenter Server
- vCenter Database
- Active Directory
- Ubuntu Controller
 - Management Components Resiliency Considerations

Component	HA Enabled?
vCenter Server	Yes
vCenter Database	Yes
Active Directory	Yes
Ubuntu Controller	Yes

Management Server Configurations

VM	vCPUs	RAM	Disk1	Disk2	Disk3	Controller	Quantity
vCenter	2	16GB	40GB	200GB	N/A	LSI Logic	1
Server						SAS	
vCenter	2	16GB	40GB	100GB	N/A	LSI Logic	1
Database						SAS	
Active	2	8GB	30GB	N/A	N/A	LSI Logic	1
Directory						SAS	

Ubuntu	4	16GB	100GB	N/A	N/A	LSI Logic	1
Controller						SAS	

- vSphere Architecture Design Compute Cluster
 - o Computer Logical Design
 - Datacenter

One datacenter will be built to house the two clusters for the environment.

vSphere Cluster

Attributes	Specification
Number of ESXi Hosts	3
DRS Configuration	Fully Automated
DRS Migration Threshold	Level 3
HA Enable Host Monitoring	Enabled
HA Admission Control Policy	Disabled
VM restart priority	Medium -
Host Isolation response	Leave powered on
VM Monitoring	Disabled

Host Logical Design

Attribute	Specification		
Host Type and Version	VMware ESXi Installable		
Processors	X86 Compatible		
Storage	FlexFlash SD for local ESXi install, shared storage		
	for VMs		
Networking	Connectivity to all needed VLANS		
Memory	Sized for workloads		

Network Logical Design

Switch Name	Switch Type	Function	# of Physical Ports
vSwitch0	Standard	Management	2x10Gbe
		vMotion	
		VM Network	
		Floating IP Network	
vSwitch1	Standard	iSCSI	2x10Gbe

The network configuration for the Compute Cluster follows the exact same pattern as that of the Management cluster for simplicity.

Port group configurations

Attribute	Setting
Load balancing	Route based on originating virtual port ID
Failover Detection	Link Status Only
Notify Switches	Yes
Failover Order	MGMT – Active vmnic0/Standby vmnic1
	vMotion – Standby vmnic0/Active vmnic1

VM Network – Active vmnic3/Active vmnic4
Floating IP Network – Active vmnic0/Standby
vmnic1
iSCSI1 – Active vmnic3/Unused vmnic4
iSCSI2 – Active vmnic4/Unused vmnic3

• KVM Architecture Design – Management Cluster

o Host logical Design

Attribute	Specification
Host Type and Version	Ubuntu 14.04 LTS
Processors	X86 Compatible
Storage	FlexFlash SD for local KVM install, shared storage
	for VMs
Networking	Connectivity to all needed VLANS
Memory	Sized for workloads

Network Logical Design

Switch Name	vBonds	Function	# of Physical Ports	
Bond Group1	Bond0.A	Management	2x10Gbe	
	Bond0.B	vMotion		
	Bond0.D	VM Network		
		Floating IP Network		
Bond Group2	Bond1.E	iSCSI	2x10Gbe	

The VIC 1225 in the Cisco C240 M3 allows the ability to split out 2 10Gbe Network connections into 256 vnics. The configuration is to create 4 vnics through the Service Profile, 2 with bindings to Fabric Interconnect A and Fabric Interconnect B. A pair of vnics, one going to either Fabric Interconnect, will compose the port group uplinks necessary for failover purposes and redundancy within the KVM environment. This is illustrated below:

KVM uses a uniquely different type of connection binding called a bond. A Bond is split into a bond per VLAN necessary.

Shared Storage Logical Design

Attribute	Specification
Number of LUNs to start	1
LUN Size	200GB
VMs per LUN	1

Management Components

This is the list of Management components that will be running on the management cluster:

- Ubuntu Controller
 - HAProxy
 - Nova-controller
 - Keystone

- o MySQL
- o RabbitMQ
- o Horizon
- o Glance
- o Cinder
- Swift Proxy

Management Components Resiliency Considerations

Component	Live Migration
Ubuntu Controller	Yes

The KVM hypervisor supports Live Migration, however the process is a manual one, K02.

Management Server Configurations

VM	vCPUs	RAM	Disk1	Disk2	Disk3	Controller	Quantity
Ubuntu	4	16GB	100GB	N/A	N/A	LSI Logic	1
Controller						SAS	

• KVM Architecture Design – Compute Cluster

Attributes	Specification	
Number of KVM Hosts	3	

o Host Logical Design

Attribute	Specification	
Host Type and Version	Ubuntu 14.04 LTS	
Processors	X86 Compatible	
Storage	FlexFlash SD for local KVM install, shared storage	
	for VMs	
Networking	Connectivity to all needed VLANS	
Memory	Sized for workloads	

o Network Logical Design

Switch Name	vBonds	Function	# of Physical Ports	
Bond Group1	Bond0.A	Management	2x10Gbe	
	Bond0.B	vMotion		
	Bond0.D	VM Network		
		Floating IP Network		
Bond Group2	Bond1.E	iSCSI	2x10Gbe	

The network configuration for the Compute Cluster follows the exact same pattern as that of the Management cluster for simplicity.

Attribute	Specification
Number of LUNs to start	1
LUN Size	1TB
VMFS Datastores per LUN	1
VMs per LUN	4

SolidFire storage will be used for block storage. Swift is not able to produce block based storage. Also, vSphere needs block-based access that only SolidFire can provide. Use of SolidFire storage alleviates this problem.

Compute Components

This is a list of the components that will be running on the compute cluster for the environment:

• Nova-compute

- Storage Components
 - Swift Object Storage Design

The Swift Object Storage access is controlled by the Swift Proxy. These proxies broker connections into the store. Each Swift Storage node is composed of six the following servers:

СРИ	RAM	NIC	Power	Boot Storage	Internal Storage
2x2.8Ghz E5-	256GB –	VIC 1225	Dual 750W	Dual SD Card	3x Intel
2680	1866Mhz				S3700 DC
					800GB

The SSDs provide the storage space necessary to provide the distributed storage. The SSDs are not put into any form of RAID and are made resilient through Swift rings.

- vSphere Security
 - Host Security

Hosts will be placed into lockdown mode to prevent root access. This would ensure that only access can be done through the DCUI.

Network Security

All virtual switches will have the following settings:

Attribute	Setting
Promiscuous Mode	Management Cluster – Reject
	Compute Cluster - Reject
MAC Address Changes	Management Cluster – Reject

	Compute Cluster – Reject
Forged Transmits	Management Cluster – Reject
	Compute Cluster - Reject

vCenter Security

By default when vCenter is added to an Active Directory domain, the Domain Administrators group is granted local administrator permissions to the vCenter Server. A new vCenter Admins group will be created, appropriate users will be added to the group and that group will become the new local administrators on the vCenter Server. The Domain Administrators group will be removed.

Appendix A – Bill of Materials

	Equipment	Quantity
Cisco 5596UP		2
Cisco 6296UP		2
Cisco C240 M3		18
SolidFire SF6010		10
Racks		4
PDUs		8