COL 751: Practice Sheet - 2

Note: Problems marked as * are optional and much harder than other problems.

1. Distance Oracles of stretch 3

Argue that for any vertex x in an unweighted graph G (given as adjacency list representation), BFS(x,r) can be computed in $O(r^2)$ time. Use this to prove that for unweighted graphs there exists a construction of distance oracle of multiplicative stretch 3 that takes $O(m\sqrt{n}\log n + n^2)$ pre-processing time.

2. Girth Conjecture

The Girth Conjecture by Erdos states that for every $k \ge 1$ and for sufficiently large n, there are n-vertex graphs with girth 2k+2 and $\Omega(n^{1+1/k})$ edges. Prove that if Girth Conjecture holds true then the greedy construction of (2k-1) spanner presented in Lecture 4 is of optimal size (up to constant factors).

3. Distance Oracles with stretch less than 3

Show that any distance oracle with multiplicative stretch strictly less than 3 for unweighted graphs takes $\Omega(n^2)$ space. (Hint: Argue that you can use such a distance oracle as black-box to identify edges of a bipartite graph G=(A,B,E) satisfying |A|=|B|=n.)

4. Subset Distance Oracles

Let G = (V, E) be an n vertex unweighted graph and $Z \subseteq V$ be a set of size k. Argue that there exists a $Z \times Z$ distance oracle with stretch 5 that takes $O((nk)^{2/3} \log n)$ space. Can you improve space further to $O(n \log n)$ for $k \le n^{3/4}$? (Hint: Think simple!)

5. Distance Spanner for vertex pairs in $Z \times V$

Let G = (V, E) be an n vertex unweighted graph and $Z \subseteq V$ be a set of size k. Argue that there exists a $Z \times V$ distance spanner with stretch 3 that takes $O(n\sqrt{k}\log n)$ space.

6. Distributed Systems

Let G=(V,E) be a large network comprising of n nodes, where each node is associated with a local computer possessing a storage capacity of $O(\sqrt{n}\log n)$. Show that it is possible to store partial information about G in the local computers so that for any $x,y\in V$ a 3-approximation to (x,y) distance can be computed solely based on local information stored at nodes x and y.

7. Distance Oracles with (3, 2) stretch

A distance oracle is said to have (α, β) stretch if for every $x, y \in V$ it satisfies

$$dist(x,y) \leqslant \widehat{d}(x,y) \leqslant \alpha \cdot dist(x,y) + \beta.$$

Show that for n vertex unweighted graphs you can compute a distance oracle of stretch (3,2) that takes $O(n^2 \log^2 n)$ pre-processing time.

8. Distance Spanners for Directed graphs

Show that there exists n vertex digraphs for which any finite stretch distance spanner takes $\Omega(n^2)$ space.

9. Diameter Preservers

Show that for any n vertex strongly connected directed graph G = (V, E) we can compute a subgraph $H = (V, E_H)$ with $O(n^{1.5} \log n)$ edges satisfying $diam(H) \leq \lceil 1.5 \ diam(G) \rceil$.

Hint: Use the idea of hitting vertices of high (i.e. $\geqslant \sqrt{n}$) in-degree/out-degree.

10. Additive Spanners for Weighted graphs

Show that for any n vertex weighted graph G with edge weights in range [1,W], it is possible to compute a +2W additive spanner in $\widetilde{O}(n^2)$ time. Further, show that there exists weighted graphs with edge weights in range [1,W], for which any +W approximate distance oracle takes $\Omega(n^2)$ space.

11. Approximate Distance Matrix (*)

An approximate distance matrix \hat{M} is said to have (α, β) stretch if for every $x, y \in V$ it satisfies

$$dist(x,y) \leqslant \hat{M}[x,y] \leqslant \alpha \cdot dist(x,y) + \beta.$$

Show that for any n vertex unweighted graph it is possible to compute in $\widetilde{O}(n^2)$ time an approximate distance matrix of stretch (2,c), for some large enough constant c.