MORT CELLULAIRE

I. <u>Mort cellulaire et physiopathologie</u>

La mort cellulaire permet de réguler négativement l'homéostasie d'un tissu en éliminant :

 les cellules indésirables ou inutiles : sculpture de l'organisme au cours du dvlpmt
 ex : pndt le dvlpmt embryonnaire, il y a des phénomènes de prolifération qui permettent la régulation positive du nb de cellules composant les tissus + régulation négative : mort cellulaire

Pattes de souris : doigts avec tissus interdigitaux au stade précoce, ces tissus vont disparaître pour individualiser les doigts.

- des cellules endommagées
 - ex : si mutations persistantes P53 capable de faciliter l'expression de gènes codant pour des protéines pro-apoptotiques
- des cellules infectées : identifiées par les cellules du système immunitaire qui vont les éliminer

Patho associées:

Mort cellulaire excessive:

- Maladies neuro-dégénératives (Parkinson, Alzheimer, ..) : cellules du SNC meurent
- Accidents CV
 - ex : Infarctus du Myocarde \rightarrow mort par nécrose d'une partie des cellules du muscle cardiovasculaire
- SIDA: virus HIV, patients immunodep ++
 Lymphocytes T CD4 → meurent par apoptose

Mort cellulaire défectueuses :

- KC : cellules KC résistent à la mort cellulaire
- Maladies Auto-immunes : Accumulation de Lymphocytes Auto-réactifs
- Infections virales: virus peuvent coder pour des protéines anti-apoptotiques pour augmenter la survie des cellules infecter et faciliter la survie du virus, à la fin de la réplication virale, il y a un phénomène de mort cellulaire permettant la propagation des virions.

II. Nécrose / Apoptose

II.A. Principales caractéristiques morpho

Nécrose → mort accidentelle caractérisée par l'altération de la perméabilité des mb Ceci provoque une Oncose → cellule gonflée par entrée d'eau massive dans la cellule Mb intra cellulaires aussi altérées → diffusion de la chromatine

 Diffusion chromatine

Apoptose → Mort cellulaire programmée caractérisée par l'activation de mécanismes intracellulaires hautement conservés

Gènes codent pour des protéines pro-apoptotiques : toutes les cellules de l'organisme sont programmées pour mourir

Phénomènes de condensation de la cellule : cellule devient pycnotique avec forte condensation de la chromatine \rightarrow fragmentation nucléaire \rightarrow fragmentation cellulaire cellulaire: corps apoptotiques

Apoptose

Fragmentation nucléaire

II.B. Principales caractéristiques biochimiques

	Apoptose	Nécrose	
Mb	Externalisation des PS (pas spé de l'apoptose ex: activation plaquettes)	Rupture physique car oxydation lipides et protéines : formation de pores mb → entrée d'eau → oncose → éclatement	
Organites	Aug modérée de la perméabilité des mb Perméabilité de la Mb mitochondriale externe: facilite l'activation de la signalisation conduisant à la mort cellulaire par apoptose → Diminution du ΔΨ (potentiel mb entre la matrice mito et l'espace intermb, lié au gradient de protons): protons s'échappent dans le cytosol	Idem: vacuolisation des organites	

Signalisation	Caspases → protéolysent	Production d'espèces réactives de l'oxygène ROS → induisent	
ADN	activation d' endonucléases qui produisent des fragments de	accumulation des ROS → Dégradation globale et aléatoire de l'ADN : Multiples fragments et donc migration	
	de multiples de 180 pb diffuse Mulitples fragments		

II.C. Inflammation

Apoptose est anti-inflammatoire

 Lorsque les cellules meurent, elles externalisent leur PS → reco par les macrophages qui les phagocytent

Il y a alors sécrétion de $\mathsf{TGF}\beta$: cytokines anti-inflammatoires qui interviennent dans la modulation des gènes des macrophages

Nécrose est pro-infammatoire

- Aug de la perméabilité mb : facilite la libération de molécules cytotoxiques et proinflammatoires (molécules oxydées, protéases, lipases, ..)
- Phagocytose de débris cellulaires par les macrophages : les macrophages expriment des gènes codant pour des cytokines pro-inflammatoires : TNFα, IL1β, IL6

III. <u>Différentes Caspases de l'Apoptose</u>

Caspases → Cystéine Aspartate Specific Proteinase

C : Cystéine présente sur le site catalytique nécessaire à l'activité catalytique !

Asp: Clive après Aspartate

Ase: enzyme: protéase

Organisation générale quand inactive:

- N-term: avec pro-domaine

Grande SU catalytique

- Domaine intermédiaire

C-term : petite SU catalytique

Activation par clivage entre pro-domaine / Grande SU Catalytique, Grande SU/Domaine intermédiaire, Domaine intermédiaire/Petite SU → libération de la grande et petite SU catalytique qui vont se réarranger pour former une Caspase active sous forme d'Hétérotétramère actif : il faut 2 caspases inactives pour générer 1 caspase active (avec 2 Cystéines)

Il existe 3 groupes de Caspases, dont 2 impliqués causalement dans l'apoptose :

Groupes	Exemples	Seq de clivage (seq peptidiques reconnues par Casp)
Caspases initiatrices	Casp 8 Casp 9	(I ou V ou L) E x D
Caspases effectrices	Casp 3 Casp 7	DExD

IV. Mode d'activation des Caspases : exemple des Fas

Récepteur Fas : Récepteur de mort du TNFα, expression ubiquitaire

Voie extrinsèque :

- (1) Récepteur Fas au nv de la mb, sa portion intracellulaire fait partie du complexe DISC (Death Inducing Signaling Complex)
- (2) Liaison de Fas ligand : oligomérisation des récepteurs à la mb
- (3) Facilite le recrutement de FADD (protéine adaptatrice) qui facilite le recrutement de Casp 8 (initiatrice) (pluisieurs monomères)
- (4) DISC recrute + facilite l'activation des Caspases 8 initiatrices
- (5) Caspases 8 initiatrices clivent et activent à leur tour les Caspases 3 et 7 effectrices de l'Apoptose
- (6) Apoptose

Souvent, la voie extrinsèque n'est pas suffisante pour aboutir à une mort cellulaire par apoptose, il faut un système d'amplification de la signalisation apoptotique par la voie intrinsèque.

Voie intrinsèque :

- (1) Récepteur Fas à la mb, DISC
- (2) Oligomérisation des Récepteur suit eà la liaison du Fas ligand
- (3) Recrutement FADD
- (4) Recrutement puis activation des Caspases 8 initiatrices au nv du DISC
- (5) Augmentation de la perméabilité de la mb mito externe
- (6) Relargage de protéines de la mitochondrie dans le cytosol : Cytochrome C
- (7) Dans le cytosol, Cytochromes C vont faciliter la formation d'un 2ème complexe : l'Apoptosome constitué de Cytochrome C + Casp 9 + Apaf 1 qui facilite action de Casp9
- (8) Apoptosome facilite l'activation de Caspases 9 initiatrices
- (9) Hors du complexe, Caspases 9 initiatrices clivent et activent Caspases 3 et 7 effectrices
- (10) Apoptose

NB: Cytochrome C a une fonction totalement différente selon si il se trouve sur la mb de la mitochondrie (chainne respi → survie) ou dans le cytosol (Complexe Apoptosome → déclanchement de la mort)

V. Exemples de substrats des Caspases

Une fois les Caspases activées, elles vont cliver et inactiver des substrat protéiques indisp à la vie de la cellule : modification morpho et biochimiques caractéristiques des cellules apoptotiques :

- Fodrine:

Cortex de la MP

Clivage des Fodrine = déstabilisation du cortex → invagination de la MP « Blebbing »

Lamine

Lamina nucléaire

Clivage Lamine = destabilisation de la mb nucléaire \rightarrow déformation \rightarrow fragmentation du noyau

CAD : endonucléase

ICAD : protéine Inhibiteur de CAD : séquestre CAD dans le cytosol (masque seq NLS)

Caspases inactivent ICAD \to libération de CAD \to machinerie d'importation nucléaire \to fragmentation internucléosomale de l'ADN

- PARP: impliquée dans la réparation de l'ADN

PARP clivé = inactivé → facilite fragmentation de l'ADN (par défaut de réparation)

VI. Principales techniques d'étude de la mort cellulaire

VI.A. Études morpho

	Contrôle	Apoptose	Nécrose
MO: MGG (Colore noyau et cytoplasme)		A A	ND ND
	Rapport nucléo- cytoplasmique élevé	Condensation cellule Condensation chromatine Fragmentation du noyau	Oncose avec diffusion progressive de la chromatine
Microscope à fluo : DAPI (on marque les noyaux)	Noyaux arrondis	Fragmentation noyau + Condensation de la	Diffusion de la
	Noyaux arronais	chromatine	chromatine
<u>ME</u>			

VI.B. Études par cytométrie de flux

Quantification de l'apoptose et de la nécrose

Analyse de l'externalisation des PS et de la perméabilité mb

Annexine 5 couplée à FITC (vert):

Annexine V a une forte aff pour les PS : elle va marquer les cellules apoptotiques (car PS seront externalisées et donc accessibles pour le marquage).

On peut aussi marquer les cellules nécrotiques car augmentation de la perméabilité de la MP : Annexine marquée peut entrer et marquer les PS sur le feuillet interne de la MP

<u>lodure de propidium</u>: marque spécifiquement les cellules nécrotiques

Agent intercalent de l'ADN qui ne rentre que quand les cellules sont perméabilisées.

Analyse de la fragmentation de l'ADN au cours du cycle cellulaire

On utilise uniquement l'Iodure de Propidium avec une technique de perméabilisation des mb → toutes les cellules sont marquées à l'Iodure de Propidium

En présence de Fas Ligand : profil différent. Apparition de cellules avec un marquage à l'lodure de Propidium inferieur au marquage que l'on peut observe en G0 − G1 → contenu en ADN inférieur à 2n = cellules hypodiploïdes = cellules apoptotiques avec fragmentation internucléosomale de l'ADN

VI.C. Western Blot

Activation des Caspases :

Casp7:

– N-term : pro-domaine

Grande SU catalytique p20

Domaine intermédiaire

C-Term: petite SU catalytique p17

Inactive: 35kDa

Clivage pro-domaine: 32kDa

Clivage partie intermédiaire : 20 kDa → on ne voit plus que p20

Ac anti p20:

Au début Casp 7 inactive

Après traitement avec Fas ligand on voit apparaître la forme à 32kDa : activation de la Casp 7,

Au bout de 2h : diminution progressive 35 et 32 kDa au profit de la forme 20 kDa

Ici, on est dans des conditions dénaturantes : pas de liaisons covalentes entre les petites et grandes SU (on ne voit pas la forme active en hétérotétramère)

Relocalisation du Cytochrome C:

Relocalisation, du cytochrome c

Après incubation avec du Fas ligand, on récupère les cellules et on fait une séparation des mitochondries et du cytosol (centrifugation).

Au fur et à mesure du temps, on a une augmentation du pool de cytochrome C dans le cytosol au dépend d'une diminution de cytochrome C dans les mitochondries.

Cela s'explique par l'augmentation de la perméabilité de la mb externe de la mitochondrie qui facilite la sortie du cytochrome C dans le cytosol