Complex Analysis Short recap

Let $a, b \in \mathbb{R}$ and $z \in \mathbb{C}$ such that z = a + bi. Real part $\Re e(a+ib)=a$ Real part $\mathfrak{Fm}(a+ib)=b$ Absolute Values $|z| = \sqrt{zz^*}$ $= \|(a \ b)\|_2$ Complexe conjugate $(a+ib)^* = a - ib$ $(a - ib)^* = a + ib$ Trig. Formulas Trig. Formulas

Properties 1 (Complexe conjugate)

- \bullet $(Z^*)^* = Z \bullet (Z + W)^* = Z^* + W^*$
- $(Z-W)^* = Z^* W^* (ZW)^* = Z^*W^*$
- $Z^*Z = |Z|^2 (Z^n)^* = (Z^*)^n$, for $n \in \mathbb{Z}$
- $ln(Z^*) = (ln(Z))^*$ if Z is not 0 or a negative real number.

Properties 2 (Absolute Values)

- $|z_1z_2| = |z_1| |z_2|$ The absolute value define the metric of the space \mathbb{C} (\mathbb{C} is com- $\begin{array}{l} plete). \quad \bullet \ |z_1+z_2|^2 = |z_1|^2 + |z_2|^2 + \Re e(z_1 z_2^*) \\ \bullet \ |z_1-z_2|^2 = \ |z_1|^2 + |z_2|^2 - \Re e(z_1 z_2^*) \\ \bullet \ |z_1+z_2|^2 + |z_1-z_2|^2 = 2(|z_1|^2 + |z_2|^2) \end{array}$

Linear Algebra

Linear Operator

A linear operator between the vector spaces V and W is define to be any function $\hat{A}: V \to W$ which satisfies: $\hat{A}(\alpha \vec{v} + \beta \vec{w}) = \alpha \hat{A} \vec{v} + \beta \hat{A} \vec{w}.$

Properties 3 Let \hat{A} be a linear operator on $V \to W$ and A be the matrix representation of \hat{A} . • $\hat{A}(\sum_i a_i | v_i \rangle) = \sum_i a_i \hat{A} | v_i \rangle$ • $\hat{A} |v_i\rangle = \sum_i A_{ij} |w_i\rangle$

Inner product

A Inner Product $\langle ., . \rangle$ is a function that output a complex number and satisfies the following conditions: Let $\vec{v} \in \mathbb{C}^n$, $\vec{w} \in \mathbb{C}^n$.

- 1. $\langle \vec{v}, \sum_i a_i \vec{w_i} \rangle = \sum_i a_i \langle \vec{v}, \vec{w_i} \rangle$
- 2. $\langle \vec{v}, \vec{w} \rangle = (\langle \vec{w}, \vec{v} \rangle)^*$
- 3. if x = 0 and only if $\langle \vec{w}, \vec{w} \rangle \geq 0$

In quantum mecanics the inner product is generaly noted $\langle .|. \rangle$.

Inner product Space

An inner product space is a vector space V equipped with an inner product $\langle \cdot, \cdot \rangle$: $V \times V \to \mathbb{C}$ (or \mathbb{R}).

An Inner product space with an orthonormal basis $|i\rangle$ such that $v = \sum_{i} v_i |i\rangle$ and $w = \sum_{i} w_{i} |i\rangle$, the inner product space of $\langle v, w \rangle$ is define by $(v^*)^T w$.

Hilbert Spaces

A Hilbert space is a vector space (generaly complex) equipped with an inner product, meaning every Cauchy sequence of vectors with respect to the induced norm converges to a vector within the space. In finit dimentions hilbert spaces is exactly the same thing as Inner Product space.

Dirac Notation (or Bra-Ket Notation)

Terminology: ket of A is $|A\rangle$ and bra of A is $\langle A|$. ket is a row vector and bra is a column vector.

Example, let $\Sigma = \{A, B, C\}$ then

$$|B\rangle = \begin{bmatrix} 0\\1\\0 \end{bmatrix}$$
 and $\langle B| = (0,1,0)$

Kronecker delta(δ_{ij})

$$\delta_{ij} = \begin{cases} 1 & \text{if } i = j, \\ 0 & \text{if } i \neq j. \end{cases}$$

Properties 5 • $\langle i|j\rangle = \delta_{ij}$ • $\mathbb{I}_{ij} = \delta_{ij}$ • $\sum_{i} \delta_{ij} a_i = a_j$ • $\sum_{k} \delta_{ik} \delta_{kj} = \delta_{ij}$

Gram-Schmidt(in Dirac Notation)

$$|v_1\rangle = \frac{|w_1\rangle}{\||w_1\rangle\|}$$

$$|v_{k+1}\rangle = \frac{|w_{k+1}\rangle - \sum_{i=1}^{k} \langle v_i | w_{k+1}\rangle |v_i\rangle}{\left\||w_{k+1}\rangle - \sum_{i=1}^{k} \langle v_i | w_{k+1}\rangle |v_i\rangle\right\|}$$

Adjoin (Hermician conjugate)

Let \hat{A} be a linear operator on the hilbert space V. $\exists ! \hat{A}^{\dagger}$ on V such that $\langle v, \hat{A}w \rangle =$ $\langle \hat{A}^{\dagger}v, w \rangle$.

Properties 4 •
$$\langle A, A \rangle = \|A\|^2$$
 • if **Properties 6** • $|v\rangle^{\dagger} = \langle v|$ • $(\hat{A}^{\dagger})^{\dagger} = \hat{A}$ $\langle A, B \rangle = 0$ then A and B are orthogonal. • $(\hat{A}\hat{B})^{\dagger} = \hat{A}^{\dagger}\hat{B}^{\dagger}$ • $(\sum_{i} a_{i}\hat{A}_{i})^{\dagger} = \sum_{i} a_{i}^{*}\hat{A}_{i}^{\dagger}$

Quantum mecanics

Pauli Matrices

•
$$\sigma_0 = I = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$
 • $\sigma_x = X = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$
• $\sigma_y = Y = \begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix}$ • $\sigma_z = Z = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$

•
$$\sigma_y = Y = \begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix}$$
 • $\sigma_z = Z = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$

Mathematical Concepts

Dirac Notation(or Bra-Ket Notation)

Terminology: ket of A is $|A\rangle$ and bra of A is $\langle A|$. Example, let $\Sigma = \{A, B, C\}$ then $|A\rangle = \begin{bmatrix} 1\\0\\0 \end{bmatrix}, |B\rangle = \begin{bmatrix} 0\\1\\0 \end{bmatrix} \text{ and } \langle A| = (1,0,0),$ $\langle B| = (0,1,0)$ Note that $|\Psi\rangle$ then $\langle \Psi| =$

bra-kets: we denote $\langle a|b\rangle$ the matrice product of

Cartesian product

Let
$$y = \{0, 1\}$$
 and $x = \{a, b\}$. Then,
 $x \times y = \{(0, a), (0, b), (1, a), (1, b)\}$ and
 $y \times x = \{(a, 0), (a, 1), (b, 0), (b, 1)\}.$

Tensor Product of vectors

$$\begin{bmatrix} a_0 \\ \vdots \\ a_n \end{bmatrix} \otimes \begin{bmatrix} b_0 \\ \vdots \\ b_n \end{bmatrix} = \begin{bmatrix} a_0 b_0 \\ \vdots \\ a_n b_n \end{bmatrix}$$

Tensor Product Properties

1.
$$(|\phi_1\rangle + |\phi_2\rangle) \otimes |\psi\rangle = |\phi_1\rangle \otimes |\psi\rangle + |\phi_2\rangle \otimes |\psi\rangle$$

2. $(a | \phi \rangle) \otimes | \psi \rangle = a(| \phi \rangle \otimes | \psi \rangle)$

3.
$$|a\rangle \otimes |b\rangle = |b\rangle \otimes |a\rangle$$

Quantum Information Systems State Vector

Quantum State of a sytem is represented by a complex column vector. Let the quan-

tum state vector v be equal to $\begin{bmatrix} \vdots \\ a_n \end{bmatrix}$, where

 $\sum_{i=0}^{n} |a_i|^2 = 1 \text{ The euclidean norm of}$ the $||v|| = \sqrt{\sum_{i=0}^{n} |a_i|^2}$

Common Quantum States

$$\begin{array}{ll} \text{Plus State} & |+\rangle = \frac{1}{\sqrt{2}} \, |0\rangle + \frac{1}{\sqrt{2}} \, |1\rangle \\ \text{Minus State} & |-\rangle = \frac{1}{\sqrt{2}} \, |0\rangle - \frac{1}{\sqrt{2}} \, |1\rangle \\ \text{Other State} & \frac{1+2i}{3} \, |0\rangle - \frac{2}{3} \, |1\rangle \end{array}$$

Standart Basis Measurement

Let a quantum system be in the state $|\psi\rangle$, then the probability for the measure

outcome to be a is Pr(outcome = a) = $|\langle a|\psi\rangle|^2$ If U is an unary matrice then the following Propertie hold, $||U\psi|| = ||\psi||$

Unary Operations

Unary Matrice

A squared matrix U having complex number entries is unitary if it satisfies the equations, $UU^{\dagger} = U^{\dagger}U = \mathbb{I}$ where \mathbb{I} is the identity matrix.

Some unitary operations on qubits

Pauli operations:

Fault operations.
$$\mathbb{I} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \sigma_x = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \sigma_y = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}$$

$$\sigma_z = \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}$$

Hadamard operation: $H = \begin{pmatrix} \frac{1}{\sqrt{2}} & 0\\ 0 & \frac{1}{\sqrt{2}} \end{pmatrix}$ Phase operations: $P_{\theta} = \begin{pmatrix} 1 & 0\\ 0 & e^{i\theta} \end{pmatrix}$

Quantum cirtcuit