Phys 396 2018 Ledwe 7

Thes: Two in HW 3

Thus: Seminar

Next week Friday - prenic?

Quantum states and measurements

We have seen that for spin-1/2 systems one meaning of states is that they give measurement statistics. A typical situation is:

outcome state prob
$$S_{n} = + \frac{\pi}{2} \qquad |+\hat{n}\rangle \qquad |\langle +\hat{n}|\psi \rangle|^{2}$$

$$S_{n} = -\frac{\pi}{2} \qquad |-\hat{n}\rangle \qquad |\langle -\hat{n}|\psi \rangle|^{2}$$

Then in order to compute such inner products, we need a representation for states 1+n2,1-n2. This is:

For any unit vector \hat{n} that is described using spherical co-ordinates Θ , ϕ these states are: $|+\hat{n}\rangle = (\cos(\theta/2)|+\hat{z}\rangle + e^{i\phi}\sin(\theta/2)|-\hat{z}\rangle$

We now aim to extend this to other physical systems. The example that we will consider is single photons and specifically their polarization states. We will:

- review classical polarization
- adapt this to quartum systems.

Polarization in classical electromagnetism,

Classical electromagnetic theory predicts that light is an electromagnetic wave consisting of electric + magnetic fields that vary in space + time. By starting with Maxwell's equations in a vacuum one can show that:

- 1) waves of electric + magnetic fields exist.
- 2) the electric field and magnetic fields are perpendicular to each other and perpendicular to the direction of propagation
- 3) the field magnitudes are related by $|\vec{B}| = \frac{1}{c} |\vec{E}|$

Thus, in order to describe an electromagnetic wave, we only need

1) a direction of propagation

2) the electric field

A particular important class of such waves are sinusoidal plane waves. Examples of such waves that propagate along the z-axis are:

Example a)
$$\vec{E} = \vec{E}_o \cos(kz - \omega t)$$

b)
$$\vec{E} = \vec{E}_0 \sin(kz-\omega t)$$

A more convenient representation of these is via complex exponentials, in which case a generic form for the wave is:

A generic plane electromagnetic wave that propagates along the Z axis is:

where $k=2\pi/2$ is the wavenumber

$$w = 2\pi f$$
 " frequercy

Eo is independent of z and t.

This is set up so that the observed electric field is attained from the complex exponential via:

Linear polarization

Consider the following possibility for the electric field:

$$\stackrel{\rightarrow}{E} = E_0 \hat{\chi} e^{i(kz-\omega t)}$$

Then the real part of this is

and the electric field ascillates along the & axis. This is called horizontally polarized light, and is one example of linearly polarized light.

Another example would be if $\vec{E}_0 = \vec{E}_0 \hat{y}$. Then

gives a real field of Eoû cos(kz-ut) and this oscillates purely along the ŷ axis. This is called vertically polarized.

Most light sensors will not distinguish between these. We will see that certain optical elements can do this

Eo X light propagates

out

Exercise: Consider the following complex amplitudes. Describe the result real electric field at a given location as time passes

b)
$$\vec{E}_o = \frac{E_o}{\sqrt{2}} (\hat{x} + e^{i\pi/2} \hat{y})$$

Answer: In all cases we need the real part of Epei(kz-wt)

a) Re
$$(Eoe^{i(kz-wt)}) = (Eoxx+Eoyy)$$
 cos(kz-wt)

This is linearly polarized along the indicated axis

b)
$$\vec{E} = \frac{E_0}{\sqrt{2}} \hat{x} e^{i(kz-\omega t)} + \frac{E_0}{\sqrt{2}} \hat{y} e^{i(kz-\omega t + \sqrt{2})}$$

$$Re(\vec{E}) = \frac{E_0}{\sqrt{2}} \cos(kz - \omega t) \hat{x} + \frac{E_0}{\sqrt{2}} \cos(kz - \omega t + \overline{1}/z) \hat{y}$$

$$= \frac{E_0}{\sqrt{2}} \left(\cos(kz - \omega t) \hat{x} - \sin(kz - \omega t) \hat{y}\right)$$

This gives a field that rotates about the z-axis in a counterclackwise sense. This is left circular polarization.

at z=0 $\vec{E} = \frac{E_1(os(\omega t))}{2}$

c) Similar to b)

Detecting polarization states

light

How could we detect the polarization state of light? There are various possibilities.

1) Inear polarizing fillers absorb the component of the field perpendicular to a transmission axis and transmit the component parallel to the transmission axis.

This could be regarded as a type of measurement $\stackrel{?}{E_0} = E_0 \hat{x} + E_0 \hat{y}$ transmission oxis vertical as a type of measurement $\stackrel{?}{E_0} = E_0 \hat{x} + E_0 \hat{y}$ $\stackrel{?}{E$

2) polarizing beam splitter. A beam splitter transmits some light and reflects the rest. A polarizing beam splitter is sensitive to the polarization. This honz Eox x̂

can be used to incident wertical detect and transmit

as it does not absorb

Intensity + polarization

In classical aprices intensity is the rate at which the wave transmits energy per second per unit area perpendicular to its propagation direction. Various results in electromagnetism yield:

If \vec{E} is the complex representation of a wave then the intensity of this light is. $T = CE_0 \vec{E}^* \cdot \vec{E}/2$

Exercise: Suppose that the following electric fields are incident on a PBS. Determine the fraction of intensity reflected + transmitted in each case:

a) Linearly polarized
$$\vec{E} = (E_{ox}\hat{x} + E_{oy}\hat{y}) e^{i(kz-\omega t)}$$

b) Circularly " $\vec{E} = \frac{E_{o}}{\sqrt{2}}(\hat{x} + e^{\pm i\pi/2}\hat{y}) e^{i(kz-\omega t)}$

Answer: a) Incident intensity $J_i = \frac{CE_0}{Z} \left(\frac{E_0 x^2 + E_0 y^2}{E_0 x^2 + E_0 y^2} \right)$ Reflected (horiz) field $\vec{E} = \frac{E_0 x^2}{Z} \left(\frac{E_0 x^2}{E_0 x^2} \right)^2 \Rightarrow \text{fraction} = \frac{E_0 x^2}{E_0 x^2 + E_0 y^2}$ Transmitted (vert) $J_i = \frac{CE_0}{Z} \left(\frac{E_0 y}{E_0 y^2} \right)^2 \Rightarrow \frac{E_0 y^2}{E_0 x^2 + E_0 y^2}$

b) Incident intensity
$$I_i = \frac{CE_0}{Z} E_0^2$$

Reflected field $\frac{Eo\hat{x}}{Vz} e_i(kz-wt)$
 $I_r = \frac{CE_0}{Z} E_0^2 = 0$ fraction= $\frac{1}{2}$

Transmitted field $\frac{Eo\hat{y}}{Vz} e_i(kz-wt)$

It= CE E02 = 0 Fraction = 1/2

Single photon polarization

There are two special states relative to this:

(17) and transmitted " " (vertical

When subjected to another PBS whatever is reflected will again be reflected with certainty so the state after is 1-0). Thus these have the same properties as 1+2) and 1-2) states do for spin-1/2 S62 measurements.

General rules for measurement imply that these kets form a basis.

Thus any single photon polarization state must be able to

the described as

$$|\Psi\rangle = \alpha_x |\to\rangle + \alpha_y |\uparrow\rangle$$

where a_x, a_y are complex. Normalization requires that $|a_x|^2 + |a_y|^2 = 1$.

and we just need the relevant mathematics. In this case the rule is

142>

1 (4) 2

If $\vec{E}_0 = \vec{E}_{0x} \hat{x} + \vec{E}_{0y} e^{i\phi} \hat{y}$ describes the classical polarization state then the associated single photon quantum

$$|\Psi\rangle = \frac{1}{\sqrt{E_{c}x^{2}+E_{c}y^{2}}} \left\{ E_{cx} | - 0 \right\} + E_{cy} e^{i\phi} | 1 \rangle$$

Exercise a) Determine expressions for the state of a photon which is linearly polarized along the axis 45° between
$$+\hat{x}$$
 and $+\hat{y}$, Call this $|\uparrow\rangle$

- b) Repeat for the state, of a photon which is linearly polarized along the axis 45° between +x and -y. Denote
 - c) Repeat for the L and R circularly polarized states.
- d) A photon in state 17> is subjected to a horiz/vert measurement. Determine probabilities of outcomes

f) A photon in the 1L) state is subjected to a arbitrary linear polaritation measurement. Determine probabilities of outcomes.

Answer: a)
$$\phi=0$$
 Eox = Eoy =0 $|A\rangle = \frac{1}{\sqrt{2}}\{1-0\rangle + |A\rangle\}$

c)
$$\phi = \frac{11}{2}$$
 For Edy =0 $|L\rangle = \frac{1}{\sqrt{2}} \{ |-0\rangle + i |\uparrow\rangle \}$

$$\phi = -\frac{\pi}{2}$$
 $= \frac{1}{\sqrt{2}} \{ -\frac{1}{\sqrt{2}} \{ -\frac{1}{\sqrt{2}} \}$

$$rad$$
) $Prob (honiz) = |\langle \rightarrow | \nearrow \rangle|^2$

$$\langle \neg \rangle | \nearrow \rangle = \langle \neg \rangle \left(\frac{1}{\sqrt{2}} | \neg \rangle + | \uparrow \rangle \right) = \frac{1}{\sqrt{2}} \underbrace{\langle \neg \rangle}_{=0} + \frac{1}{\sqrt{2}} \underbrace{\langle \neg \rangle}_{=0} + \frac{1}{\sqrt{2}} \underbrace{\langle \neg \rangle}_{=0} + \underbrace{\langle \neg$$

=> Prob (hoit)=1/2

Likewise Prob (vet) = 1/2

e) Similar to d) Prob (horiz) =
$$(\langle -1 \rangle | 2)$$
 | 2

and $\langle -1 \rangle = \frac{1}{\sqrt{2}} \Rightarrow Prob = \frac{1}{2}$

Prob(upt) = $|\langle +1 \rangle|^2 = \frac{1}{2}$

f) Let
$$|V_1\rangle = \frac{1}{\sqrt{E_{0x}^2 + E_{0y}^2}} \left\{ E_{0x} | - \rangle + E_{0y} | 7 \right\}$$

$$|V_2\rangle = \frac{1}{\sqrt{E_{0x}^2 + E_{0y}^2}} \left\{ E_{0y} | - \rangle - E_{0x} | 6 \right\}$$

represent the two polarizations

Prob (outcome 1) =
$$\left| \left\langle |k_1| | L \right\rangle \right|^2$$

 $\left| \left\langle |k_1| | L \right\rangle \right|^2 = \frac{1}{\sqrt{2} \operatorname{Ecx}^2 + \operatorname{Ecy}^2} \left(\frac{1}{\sqrt{2}} \operatorname{Eox} + \frac{v}{\sqrt{2}} \operatorname{Ecy} \right)$
Prob (outcome 1) = $\frac{1}{\operatorname{Ecx}^2 + \operatorname{Ecy}^2} \left(\frac{1}{2} \operatorname{Ecx}^2 + \frac{1}{2} \operatorname{Ecy}^2 \right) = \frac{1}{2}$

Likewise Probloutcome 2)= 1/2

Exercise: Consider the two experiments:

Determe probability that photon passes each, given initially in state 14)

Answer: a) After 1st state is 1th but this is blocked by second

b) After ist state is $|\uparrow\rangle$. This passes upper arm of second with prob-1/2 and in state $|\uparrow\rangle$. This passes upper arm of third with prob-1/2. Total probability is. $\frac{1}{2} \left| \left\langle \uparrow | \psi \right\rangle \right|^2 = \frac{1}{4} \left| \left\langle \uparrow | \psi \right\rangle \right|^2$