L2 Mention Informatique

UE Probabilités

Chapitre 3 : Variables aléatoires réelles

Notes de cours rédigées

par

Régine André-Obrecht, Julien Pinquier, Sergei Soloviev

Soit (Ω, \mathcal{A}, P) et $X : \Omega \to R$ une variable aléatoire.

I. Variable aléatoire réelle

Définition: Soit (Ω, \mathcal{A}, P) et $X : \Omega \to R$ une variable aléatoire. X est une variable aléatoire réelle si $\forall I$, intervalle de R, $\{X \in I\} \in \mathcal{A}$.

Proposition : Cette condition est vérifiée dès que $\{X \le x\} \in \mathcal{A}$, pour tout x de R.

Elle entraı̂ne que $\{X \in B\} \in \mathcal{A}$, pour tout borélien B de la tribu borélienne $\mathcal{B}(R)$ et que la loi de X est définie par $P_x(B) = P(\{X \in B\})$, pour tout B de $\mathcal{B}(R)$.

Fonction de répartition On appelle Fonction de répartition de la variable aléatoire X, la fonction $F: R \rightarrow [0,1]$ définie par :

$$F(x) = P(X \le x)$$

La fonction de répartition caractérise la loi de probabilité de la variable X.

II. Variable aléatoire réelle à densité

a. Définitions

- 1. Soit $f: R \square \to R^+$ continue par morceaux avec un nombre fini de discontinuités, intégrable et tel que $\int_{-\infty}^{+\infty} f(x) dx = 1$. f est une densité.
- 2. X est dite à densité, de densité f, si $\forall x \in R, F(x) = \int_{-\infty}^{x} f(u)du$.

Propriétés : Si X est une variable aléatoire réelle de densité f :

1.
$$P(]a,b]) = P(]-\infty,b]) - P(]\infty,a]) = F(b) - F(a) = \int_a^b f(u)du$$
,

- 2. P(X=x) = 0,
- 3. En tout point où f est continue : F'(x) = f(x).

Réciproque : Soit F la fonction de répartition de X. Si X est dérivable (sauf en un nombre fini de points) alors X est à densité et f(x) = F'(x) si la dérivée existe et 0 sinon.

Représentation $P(A) = \int f(u)du =$ « Aire sous la courbe »

b. Lois usuelles

Loi uniforme sur [a, b] (équiprobabilité)

Loi uniforme sur [a, b] (équiprobabilité)
$$f(x) = \begin{cases} \frac{1}{b-a} & \text{si } a \leq x \leq b, \\ 0 & \text{sinon.} \\ 0 & \text{si } x \leq a, \end{cases}$$

$$F(x) = \begin{cases} \frac{1}{b-a} \int_{a}^{x} du = \frac{x-a}{b-a} & \text{si } a \leq x \leq b, \\ 1 & \text{si } x \geq b. \end{cases}$$

Fonction de base pour la simulation d'autres lois.

Loi exponentielle de paramètre λ

- Durée de vie d'un phénomène (sans mémoire)
- Délai entre 2 événements imprévisibles (Fonctionnement d'un ordinateur avant une panne, Emission de particules radioactives, Tremblement de terre)

$$f(x) = \begin{cases} \lambda e^{-\lambda x} & \text{si } x \ge 0, \\ 0 & \text{sinon.} \end{cases}$$

$$F(x) = \int_0^x \lambda e^{-\lambda u} du = \left[-e^{-\lambda u} \right]_0^x = 1 - e^{-\lambda x}$$

Loi gaussienne ou normale (centrée réduite)

$$f(x) = \frac{1}{\sqrt{2\pi}} e^{\left(-\frac{1}{2}x^2\right)}$$

 $\text{Intégrale de Gauss}: \int_{-\infty}^{+\infty} e^{\left(-\frac{1}{2}x^2\right)} = \sqrt{2\pi} \ \text{donc } \int_{-\infty}^{+\infty} f(u) du = 1 \, .$

 $\int_{-\infty}^{x} f(u)du$? Approximation de la fonction de répartition \Rightarrow tables numériques.

III. Moments d'une variable aléatoire réelle

Définition: X : $\Omega \square \rightarrow R$ à densité f et $\varphi : R \square \rightarrow R$ continue par morceaux.

Si $\int |\varphi(x)| f(x) dx < +\infty$ alors $\varphi(X)$ est une variable aléatoire intégrable et $E(\varphi(X)) = \int \varphi(x) f(x) dx$

Définition: E(X) est l'espérance de X et $var(X) = E((X - E(X))^2)$

Remarques:

- 1. Avec cette définition, on peut tout faire à la seule condition qu'il faut vérifier à chaque fois que les valeurs absolues des fonctions soient intégrables.
- 2. Il faut interpréter $E(\phi(X))$ comme la valeur moyenne des valeurs prises par la variable $\phi(X)$.
- 3. Toutes les propriétés obtenues pour les variables discrètes dénombrables vont ainsi être retrouvées dès que les intégrales convergent (*la page suivante devient inutile !*).

Définition : Si $\int |x|^n f(x) dx < +\infty$, on dit que X admet un moment d'ordre n et égal à : $E(X^n) = \int x^n f(x) dx$.

Propriétés :

- Si X a un moment d'ordre n, X a des moments d'ordre j, $j \le n$,
- $\operatorname{var}(X) = \operatorname{E}(X^2) \operatorname{E}(X)^2$ et $\operatorname{var}(\lambda X + \gamma) = \lambda^2 \operatorname{var}(X)$,
- $\bullet \quad E(X)^2 \le E(X^2)$
- $E(X)^2 = E(X^2) \iff P(X=E(X)) = 1.$

Une astuce courante:

Si $\phi = 1_A$ la fonction indicatrice d'un borélien A sur R, c'est-à-dire :

$$\varphi(x) = 1, si \ x \in A$$

$$\varphi(x) = 0$$
, $si \ x \notin A$

$$P(A) = E(1_A(X)) = \int_A f(u)du$$

IV. Vecteurs aléatoires

Définition: Soient n variables aléatoires réelles $\{X_1, X_2, ..., X_n\}$ définies à partir de (Ω, \mathcal{A}, P) , on appelle vecteur aléatoire la variable $X = (X_1, X_2, ..., X_n)$

Si
$$X_i \Omega \rightarrow R$$
, $X \Omega \rightarrow R^n$.

Proposition : si les (X_i) sont des variables aléatoires réelles, X est un vecteur aléatoire réel dont la loi est entièrement caractérisée par :

$$si\ I = I_1 x I_2 x ... x I_n,\ P_X(I) = P(X \in I) = P(X_1 \in I_1, X_2 \in I_2, ..., X_n \in I_n)$$

Fonction de répartition : $F(x_1, x_2, ..., x_n) = P(X_1 \le x_1, X_2 \le x_2, , X_n \le x_n)$

Définition : X est un vecteur aléatoire réel à densité s'il existe une fonction f de R^n dans R^+ , vérifiant

$$F(x_1, x_2, ..., x_n) = \int_{-\infty}^{x_1} \int_{-\infty}^{x_2} ... \int_{-\infty}^{x_n} f(u_1, u_2, ..., u_n) du_1 du_2 ... du_n$$

$$P(X \in]-\infty, x_1] \times]-\infty, x_2] \times ... \times]-\infty, x_n] = \int_{-\infty}^{x_1} \int_{-\infty}^{x_2} ... \int_{-\infty}^{x_n} f(x_1, x_2, ..., x_n) dx_1 dx_2 ... dx_n]$$

Loi marginale de X_i: si X est un vecteur réel à densité, X_i est une va réelle à densité avec pour densité $f_i(x_i) = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} \dots \int_{-\infty}^{+\infty} f(u_1, u_2, \dots, u_i, u_n) du_1 du_2 \dots d\hat{u}_i \dots du_n$, où $d\hat{u}_i$ signifie que l'on n'intègre pas selon la coordonnée i.

V. Indépendance

Définition : n variables aléatoires réelles $\{X_1, X_2, ..., X_n\}$ définies à partir de (Ω, \mathcal{A}, P) sont dites indépendantes si et seulement si :

$$P(X_1 \in I_1, X_2 \in I_2, ..., X_n \in I_n) = \prod_{i=1}^n P(X_i \in I_i)$$

Théorème: Soit X le vecteur de n variables aléatoires réelles $\{X_1, X_2, ..., X_n\}$, les variables $\{X_1, X_2, ..., X_n\}$ sont indépendantes si et seulement si

$$F(x_1, x_2,...,x_n) = \prod_i F_i(x_i)$$

où F et F_i sont les fonctions de répartition de X et X_i.

Proposition: $X = (X_i)_{i=1,...,n}$ un vecteur aléatoire. Si X est à densité f et si f se factorise: $f(x_1,...,x_n) = \prod_{i=1}^n f_i(x_i)$ avec une densité f_i , alors les $f(x_i)$ sont indépendantes. (Réciproque vraie)

 $\begin{array}{lll} \textbf{Th\'eor\`eme}: & Soit & (X_i)_{i=1,\dots,n} & variables & al\'eatoires & ind\'ependantes & \grave{a} & densit\'es, \\ \forall g_i: R \rightarrow R. \ tel \ que \ g_i(X_i) & int\'egrable, \ alors \ E\big(g_1\big(X_1\big)...g_n\big(X_n\big)\big) = \prod E\big(g_i\big(X_i\big)\big). \end{array}$

Réciproquement si cette relation est vraie $\forall g_i$ alors les (X_i) sont indépendants.

Unité de cours Probabilités - Exercices - Chapitre 3 : Variables aléatoires discrètes

Exercice 1* (Annales décembre 2009)

Soit X une variable aléatoire de densité f (x) égale à :

- 0 si x < 0;
- x/2 quand $0 \le x \le 1$;
- $\frac{1}{2}$ quand $1 \le x \le 3/2$;
- 2x 5/2 quand $3/2 \le x \le 2$;
- 0 quand x > 2.
- 1. Quel est le graphe de densité ?
- 2. Quel est le graphe de la fonction de répartition F(X) ?
- 3. Trouver la valeur de x tel que $P(X < x) = \frac{3}{4}$ (cette valeur s'appelle « quantile de $\frac{3}{4}$ »).
- 4. Calculer l'expression de l'espérance de X.

Exercice 2*

On suppose que la taille moyenne d'un homme de 25 ans est une variable aléatoire réelle *T* à densité normale de moyenne 175 et d'écart-type 6. On veut estimer le pourcentage d'hommes de 25 ans ayant une taille supérieure à 185, en utilisant la table de la loi normale centrée réduite.

- (valable quelque soit la variable X, à compter du moment où la moyenne et la variance de cette variable existe!) Quels sont la moyenne et l'écart-type d'une variable Y = αX + β où α et β sont deux réels quelconques, en fonction de la moyenne et l'écart-type de la variable X (lorsqu'ils existent)?
- 2. Soit X = T. Quelles valeurs faut-il prendre pour α et β pour que Y suive une loi normale centrée réduite ?
- 3. Exprimer $P(T \ge 185)$ en fonction d'une probabilité sur Y.

La table de la loi normale centrée réduite donne $F(u) = P(Y \le u)$ pour des réels $0 \le u < 3$ (voir Annexe). Il faut donc exprimer les probabilités qu'on veut calculer sur Y en fonction de F(u) pour certains $0 \le u < 3$.

- 4. Exprimer, pour α quelconque, $P(Y \ge \alpha)$ en fonction d'un certain F(u).
- 5. En utilisant la table de la loi normale centrée réduite, donner la valeur de $P(T \ge 185)$.
- 6. Quel pourcentage d'hommes de 25 ans ont une taille comprise entre 160 et 190 ?

On veut maintenant trouver un réel ε tel que $P(175 - \varepsilon \le T \le 175 + \varepsilon) \ge 90\%$.

7. Exprimer $P(175 - \varepsilon \le T \le 175 + \varepsilon)$ en fonction de F, puis calculer ε .

Exercice 3* (vecteurs aléatoires et somme de variables aléatoires)

Préliminaire : Soit le couple de variables aléatoires réelles (X,Y) de loi uniforme sur [a,b]x[a,b].

- a) Calculer la densité f.
- b) a=0 et b=1. Soit Z=X+Y. Calculer la fonction de répartition de Z.

La densité de probabilités d'un couple de variables aléatoires réelles (X,Y) est donnée par :

- 1. Calculer la constante c.
- 2. Calculer P(1<X<2,2<Y<3).
- 3. Calculer les lois marginales de X et Y au travers de leur densité.
- 4. Déterminer la fonction de répartition F de (X,Y), FX de X et FY de Y. Conclure sur l'indépendance des variables.
- 5. Calculer P(X+Y < 3).

Exercice « maison »

On a observé que la durée moyenne d'une conversation téléphonique est d'environ 10 minutes. On veut modéliser la durée d'une telle conversation par une variable aléatoire continue D de loi exponentielle.

- 1. Quel doit être le paramètre de cette loi ?
- 2. On arrive à une cabine téléphonique juste après une autre personne qui vient d'arriver. Quelle est la probabilité d'avoir à attendre au moins 10 minutes ?
- 3. On attend 10 minutes, et la personne ne sort toujours pas. Quelle est la probabilité d'avoir à attendre encore au moins 10 minutes ?
- 4. Qu'est-ce qui peut justifier le choix d'une loi exponentielle pour modéliser D?

Exercice « maison »

Une entreprise fabrique un certain type d'appareils électroniques constitués de composants extrêmement fiables. On supposera que les composants ne tombent jamais en panne, sauf deux composants C_1 et C_2 dont les durées de vie V_1 et V_2 suivent des lois normales de durées moyennes respectives 1500 heures et 1800 heures, et d'écart-types respectifs 150h et 200h :

$$E(V_1) = 1500$$
, $\sigma(V_1) = 150$, $E(V_2) = 1800$, $\sigma(V_2) = 200$.

Soit V la variable aléatoire donnant la durée de vie d'un de ces appareils.

- 1. Exprimer $P(V \ge t)$ en fonction de probabilités sur V_1 et V_2 . Quelle hypothèse faut-il faire ?
- 2. Tracer la courbe des $P(V \ge t)$ pour les valeurs de t allant de 1200 à 2000 de 100 en 100.
- 3. Quelle est la probabilité qu'on ait du changer un élément et un seul au bout de 1600 heures ?
- 4. Quelle est la probabilité qu'on ait du changer au moins un composant au bout de \$ 1600 heures ?

Annexe:

				_						
X	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
0.0	.5000	.5040	.5080	.5120	.5160	.5199	.5239	0.5279		
0.1	.5398	.5438	.5478	.5517	.5557	.5596	.5636		.5714	
0.2	.5793	.5832	.5871	.5910	.5948	.5987	.6026	0.6064	.6103	
0.3	.6179	.6217	.6255	.6293	.6331	.6368	.6406	0.6443	.6480	
0.4	.6554	.6591	.6628	.6664	.6700	.6736	.6772	0.6808	.6844	.6879
0.5	.6915	.6950	.0985	.7019	.7054	.7088	.7123	0.7157	.7190	.7224
0.6	.7257	.7291	.7324	.7357	.7389	.7422	.7454	0.7486	.7517	.7549
0.7	.7580	.7611	.7642	.7673	.7703	.7734	.7764	0.7794	.7823	.7852
0.8	.7881	.7910	.7939	.7967	.7995	.8023	.8051	0.8078	.8106	.8133
0.9	.8159	.8186	.8212	.8238	.8264	.8289	.8315	0.8340	.8365	.8389
1.0	.8413	.8438	.8461	.8485	.8508	.8531	.8554	0.8577	.8599	.8621
1.1	.8643	.8665	.8686	.8708	.8729	.8749	.8770	0.8790	.8810	.8830
1.2	.8849	.8869	.8888	.8907	.8925	.8944	.8962	0.8980	.8997	.9015
1.3	.9032	.9049	.9066	.9082	.9099	.9115	.9131	0.9147	.9162	.9177
1.4	.9192	.9207	.9222	.9236	.9251	.9265	.9279	0.9292	.9306	.9319
1.5	.9332	.9345	.9357	.9370	.9382	.9394	.9406	0.9418	.9429	.9441
1.6	.9452	.9463	.9474	.9484	.9495	.9505	.9515	0.9525	.9535	.9545
1.7	.9554	.9564	.9573	.9582	.9591	.9599	.9608	0.9616	.9625	.9633
1.8	.9641	.9649	.9656	.9664	.9671	.9678	.9686	0.9693	.9699	.9706
1.9	.9713	.9719	.9726	.9732	.9738	.9744	.9750	0.9756	.9761	.9767
2.0	.9772	.9778	.9783	.9788	.9793	.9798	.9803	0.9808	.9812	.9817
2.1	.9821	.9826	.9830	.9834	.9838	.9842	.9846	0.9850	.9854	-9857
2.2	.9861	.9864	.9868	.9871	.9875	.9878	.9881	0.9884	.9887	.9890
2.3	.9893	.9896	.9898	.9901	.9904	.9906	.9909	0.9911	.9913	.9916
2.4	.9918	.9920	.9922	.9925	.9927	.9929	.9931	0.9932	.9934	.9936
2.5	.9938	.9940	.9941	.9943	.9945	.9946	.9948	0.9949	.9951	.9952
2.6	.9953	.9955	.9956	.9957	.9959	.9960	.9961	0.9962	.9963	.9964
2.7	.9965	.9966	.9967	.9968	.9969	.9970	.9971	0.9972	.9973	.9974
2.8	.9974	.9975	.9976	.9977	.9977	.9978	.9979	0.9979	.9980	.9981
2.9	.9981	.9982	.9982	.9983	.9984	.9984	.9985	0.9985	.9986	.9986