一、单项选择题

1. 设 f(1,1) = -1 为函数 $f(x,y) = ax^3 + by^3 + cxy$ 的极值, 则 a,b,c 分别等于 (A).

- (A) 1, 1, -3; (B) 1, 1, 3; (C) 1, 1, -1; (D) -1, -1, 3.
- 2. $z'_x(x_0, y_0) = 0$ 与 $z'_y(x_0, y_0)$ 同时存在是函数 z = z(x, y) 在点 (x_0, y_0) 处取得极值的(D).
 - (A) 必要条件但非充分条件; (B) 充分条件但非必要条件;
 - (C) 充分必要条件; (D) 既非必要也非充分条件.
 - 3. 设函数 z = f(x,y) 的全微分为 $\mathrm{d}z = x\mathrm{d}x + y\mathrm{d}y$, 则点 (0,0) (C).
 - (A) 不是 f(x,y) 的极值点; (B) 是 f(x,y) 的极大值点;
 - (C) 是 f(x,y) 的极小值点; (D) 无法判断是否极值点.
 - 4. 曲面 z = x + f(y z) 的任一点处的切平面(D)
 - (A) 垂直于一定直线; (B) 平行于一定平面;
 - (C) 与一定坐标面成定角; (D) 平行于一定直线.
- 5. 设 f(x,y) 与 $\varphi(x,y)$ 均为可微函数, 且 $\varphi'_y(x,y) \neq 0$. 已知 (x_0,y_0) 是 f(x,y) 在约束条件 $\varphi(x,y) = 0$ 下的一个极值点, 下列选项正确的是(B).
 - (A) <math><math><math>f'_x(x_0, y_0) \neq 0, <math><math><math><math>f'_y(x_0, y_0) = 0; (B) <math><math>f'_x(x_0, y_0) \neq 0, <math><math>f'_y(x_0, y_0) \neq 0;

二、填空题

1. 如果曲线 $x = t, y = -t^2, z = t^3$ 在点 M(x, y, z) 处的切线平行于平面 x + 3y + 3z = 4, 则切点 M 的坐标为

答案
$$\left(\frac{1}{3}, -\frac{1}{9}, \frac{1}{27}\right) = \frac{1}{27}(9, -3, 1).$$

- 3. 函数 $u = \sqrt{x^2 + y^2 + z^2}$ 在点 M(1,1,1) 处沿曲面 $2z = x^2 + y^2$ 在该点的外法线方向的方向导数为_____.

答案 $\frac{1}{3}$.

答案 $ax + z = \frac{\pi a}{2}$.

5. 函数 $f(x,y) = e^{xy}$ 在点 (0,1) 处具有Peano余项的二阶Taylor公式为

答案
$$1 + x + \frac{1}{2}[x^2 + 2x(y-1)] + o(x^2 + (y-1)^2)$$
.

三、计算题

1. 求曲线 $\left\{ \begin{array}{l} \frac{x^2}{4} + \frac{y^2}{4} + \frac{z^2}{2} = 1 \\ x - 2y + z = 0 \end{array} \right.$ 在点 M(1,1,1) 处的切线方程和法平面方程.

解 曲线的切向量

$$\boldsymbol{s} = \begin{vmatrix} \boldsymbol{i} & \boldsymbol{j} & \boldsymbol{k} \\ \frac{x}{2} & \frac{y}{2} & z \\ 1 & -2 & 1 \end{vmatrix} = \frac{1}{2} \begin{vmatrix} \boldsymbol{i} & \boldsymbol{j} & \boldsymbol{k} \\ 1 & 1 & 2 \\ 1 & -2 & 1 \end{vmatrix} = \frac{1}{2} (5\boldsymbol{i} + \boldsymbol{j} - 3\boldsymbol{k})$$

因此切线方程为

$$\frac{x-1}{5} = \frac{y-1}{1} = \frac{z-1}{-3}.$$

法平面方程为 5(x-1) + (y-1) - 3(z-1) = 0, 即 5x + y - 3z - 3 = 0.

2. 过直线 $\begin{cases} 10x + 2y - 2z = 27, \\ x + y - z = 0 \end{cases}$ 作曲面 $3x^2 + y^2 - z^2 = 27$ 的切平面, 求其方程.

解 过直线的平面束方程为

$$10x + 2y - 2z - 27 + \lambda(x + y - z) = 0,$$

$$(10 + \lambda)x + (2 + \lambda)y - (2 + \lambda)z - 27 = 0.$$

设切点为 $M(x_0, y_0, z_0)$. 曲面在切点的法向量为 $(3x_0, y_0, -z_0)$, 有

$$\begin{cases}
(10+\lambda)x_0 + (2+\lambda)y_0 - (2+\lambda)z_0 - 27 = 0, \\
3x_0^2 + y_0^2 - z_0^2 = 27, \\
\frac{3x_0}{10+\lambda} = \frac{y_0}{2+\lambda} = \frac{-z_0}{-(2+\lambda)}.
\end{cases}$$

解得 $\lambda = -1$ 或者 $\lambda = -19$,因此切平面方程为

$$9x + y - z - 27 = 0$$
 或 $9x + 17y - 17z - 27 = 0$.

3. 求函数 u = x + y + z 在 $x^2 + y^2 \le z \le 1$ 上的最大值和最小值.

解 由于
$$\frac{\partial u}{\partial x} = 1$$
, $\frac{\partial u}{\partial y} = 1$ $\frac{\partial u}{\partial z} = 1$, 故在内部没有驻点.

在 z=1 $(x^2+y^2=1)$ 上, 作Lagrange函数

$$F(x, y, \lambda) = x + y + 1 + \lambda(x^2 + y^2 - 1),$$

解方程组

$$\begin{cases} 1 + 2\lambda x = 0, \\ 1 + 2\lambda y = 0, \\ x^2 + y^2 = 1. \end{cases}$$

解得
$$x = \frac{\sqrt{2}}{2}, y = \frac{\sqrt{2}}{2}, z = 1$$
 或 $x = -\frac{\sqrt{2}}{2}, y = -\frac{\sqrt{2}}{2}, z = 1$.

在 $z = x^2 + y^2$ 上,作Lagrange函数

$$F(x, y, z, \lambda) = x + y + z + \lambda(x^2 + y^2 - z),$$

解方程组

$$\begin{cases} 1 + 2\lambda x = 0, \\ 1 + 2\lambda y = 0, \\ 1 - \lambda = 0, \\ x^2 + y^2 - z = 0. \end{cases}$$

解得
$$x = -\frac{1}{2}, y = -\frac{1}{2}, z = \frac{1}{2}$$
. 由于

$$u\left(\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}, 1\right) = 1 + \sqrt{2}, u\left(-\frac{\sqrt{2}}{2}, -\frac{\sqrt{2}}{2}, 1\right) = 1 - \sqrt{2}, u\left(-\frac{1}{2}, -\frac{1}{2}, \frac{1}{2}\right) = -\frac{1}{2}.$$

故满足条件的最大值为 $u\left(\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}, 1\right) = 1 + \sqrt{2}$, 最小值为 $u\left(-\frac{1}{2}, -\frac{1}{2}, \frac{1}{2}\right) = -\frac{1}{2}$.

4. 求由方程 $2x^2 + 2y^2 + z^2 + 8xz - z + 8 = 0$ 所确定的函数 z = f(x, y) 的极值.

 \mathbf{m} 方程两端分别对 x,y 求偏导得

$$4x + 2z\frac{\partial z}{\partial x} + 8\left(z + x\frac{\partial z}{\partial x}\right) - \frac{\partial z}{\partial x} = 0, \quad (1)$$
$$4y + 2z\frac{\partial z}{\partial y} + 8x\frac{\partial z}{\partial y} - \frac{\partial z}{\partial y} = 0, \quad (2)$$

解得 $\frac{\partial z}{\partial x} = \frac{4x + 8y}{1 - 8x - 2z}$, $\frac{\partial z}{\partial y} = \frac{4y}{1 - 8x - 2z}$. 令 $\frac{\partial z}{\partial x} = 0$, $\frac{\partial z}{\partial y} = 0$,解得 x = -2z, y = 0, 代入原方程, 有

$$x = -2, y = 0, z = 1$$
 或 $x = \frac{16}{7}, y = 0, z = -\frac{8}{7}$.

在 (1) 两端对 x, y 求偏导, (2)式两端对 y 求偏导, 有

$$4 + 2\left[\left(\frac{\partial z}{\partial x}\right)^2 + z\frac{\partial^2 z}{\partial x^2}\right] + 8\left(\frac{\partial z}{\partial x} + \frac{\partial z}{\partial x} + x\frac{\partial^2 z}{\partial x^2}\right) - \frac{\partial^2 z}{\partial x^2} = 0, \quad (3)$$

$$2\left(\frac{\partial z}{\partial y}\frac{\partial z}{\partial x} + z\frac{\partial^2 z}{\partial x \partial y}\right) + 8\left(\frac{\partial z}{\partial y} + x\frac{\partial^2 z}{\partial x \partial y}\right) - \frac{\partial^2 z}{\partial x \partial y} = 0,\tag{4}$$

$$4 + 2\left[\left(\frac{\partial z}{\partial y}\right)^2 + z\frac{\partial^2 z}{\partial y^2}\right] + 8x\frac{\partial^2 z}{\partial y^2} - \frac{\partial^2 z}{\partial y^2} = 0,$$
 (5)

将点 (-2,0) 代入(3),(4),(5) 式有

$$A = \left. \frac{\partial^2 z}{\partial x^2} \right|_{(-2,1)} = \frac{4}{15}, B = \left. \frac{\partial^2 z}{\partial x \partial y} \right|_{(-2,1)} = 0, C = \left. \frac{\partial^2 z}{\partial y^2} \right|_{(-2,0)} = \frac{4}{15}.$$

由于 $AC - B^2 = \frac{16}{225} > 0, A = \frac{4}{15} > 0$, 故 (-2,0) 是 z = z(x,y) 的极小值点, 极小值 1.

将点
$$\left(\frac{16}{7},0\right)$$
 代入 $(3),(4),(5)$ 式有

$$A = \left. \frac{\partial^2 z}{\partial x^2} \right|_{\left(\frac{16}{7},0\right)} = -\frac{4}{15}, B = \left. \frac{\partial^2 z}{\partial x \partial y} \right|_{\left(\frac{16}{7},0\right)} = 0, C = \left. \frac{\partial^2 z}{\partial y^2} \right|_{\left(\frac{16}{7},0\right)} = -\frac{4}{15}.$$

由于 $AC - B^2 = \frac{16}{225} > 0, A = -\frac{4}{15} < 0,$ 故 $\left(\frac{16}{7}, 0\right)$ 是 z = z(x, y) 的极大值点,极大值 $-\frac{8}{7}$.

5. 拋物面 $z=x^2+y^2$ 被平面 x+y+z=1 截成一个椭圆, 求原点到该椭圆的最长距离和最短距离

解 作Lagrange函数

$$F(x, y, z, \lambda, \mu) = x^2 + y^2 + z^2 + \lambda(x^2 + y^2 - z) + \mu(x + y + z - 1)$$
$$= z + z^2 + \lambda(x^2 + y^2 - z) + \mu(x + y + z - 1).$$

解方程组

$$\begin{cases} 2\lambda x + \mu = 0, & (1) \\ 2\lambda y + \mu = 0, & (2) \\ 2z + 1 + \mu = 0, & (3) \\ x^2 + y^2 - z = 0, & (4) \\ x + y + z - 1 = 0. & (5) \end{cases}$$

由(1),(2)得 $\lambda=0$, 或 x=y. 若 $\lambda=0$, 解得 $z=-\frac{1}{2}$, 矛盾. 故 x=y, 代入(4),(5) 解得 $x=\frac{-1-\sqrt{3}}{2},y=\frac{-1-\sqrt{3}}{2},z=2-\sqrt{3}, \text{ 或 } x=\frac{-1+\sqrt{3}}{2},y=\frac{-1+\sqrt{3}}{2},z=2+\sqrt{3},$ 由实际意义.最长距离为 $\sqrt{9+5\sqrt{3}}$. 最短距离为 $\sqrt{9-5\sqrt{3}}$.

- 6. 将长为 *l* 的细铁丝剪成三段, 分别用来围成圆、正方形和正三角形, 问怎样剪法才能使它们围成的面积之和为最小, 并求出最小值.
- 解 设剪成的三段长度为别为 x,y,z. 则围成的面积之和为 $S=\frac{x^2}{4\pi}+\frac{y^2}{16}+\frac{\sqrt{3}z^2}{36}$. 作Lagrange函数

$$F(x, y, z, \lambda) = \frac{x^2}{4\pi} + \frac{y^2}{16} + \frac{\sqrt{3}z^2}{36} + \lambda(x + y + z - l).$$

解方程组

$$\begin{cases} \frac{x}{2\pi} + \lambda = 0, \\ \frac{y}{8} + \lambda = 0, \\ \frac{\sqrt{3}z}{18} + \lambda = 0, \\ x + y + z - l = 0, \end{cases}$$

圆半径为
$$\frac{l}{2(\pi+4+3\sqrt{3})}$$
, 正方形边长为 $\frac{l}{\pi+4+3\sqrt{3}}$, 正三角形边长为 $\frac{\sqrt{3}l}{\pi+4+3\sqrt{3}}$.