Midterm Exam FE621 Section A

Saturday, March 30, 2019

Name:

- In this exam you may use any material you want. Please be aware the submission window closes 4 hours after it has been opened. So you need 4 continuous hours of work.
- Be very specific with your definitions and derivations. Showcase your work.
- Please submit a well written report containing all the answers to the exam questions. Submitting commented code is not appropriate and will earn 0 in this exam.
- Scanned handwritten pages are appropriate for certain problems requiring mathematical derivations.
- Communication with other students either physical or virtual is strictly forbidden.

For instructor's use only

Problem	Points	Score
1	20	
2	30	
3	30	
4	20	
Total	100	

Problem 1. Numerical integration

- (a) Numerically compute the integral $\int_0^2 e^{x^2} dx$ using the trapezoid method with 100 steps
- (b) Compute numerically the integral $\int_0^2 e^{x^2} dx$, using Simpson's quadrature rule, with 100 steps
- (c) Please compare the two results obtained. Comment.

Problem 2. Option pricing using a trinomial tree Construct a trinomial tree to price an American put option. To this end start with the following given parameters: $S_0 = 100$, K = 120, maturity T = 8 months, r = 0, $\delta = 0$, volatility $\sigma = 30\%$, time steps N = 200.

- (a) What is the best choice for Δx to obtain the best order of convergence? Calculate Δx
- (b) Calculate the American Put option price using the tree.
- (c) Estimate Gamma of the American Put at time t = 0.

Problem 3. Option price range Assume a Stock is at \$23.35. You look at the market to a European Call option with strike \$22.5 and Maturity 8 weeks. Assume r = 0.01. The listed best bid is \$3.2 and best ask is \$3.8. Use the code you turned in the assignments to answer the following questions.

- (a) Calculate an interval of possible values for the European Put.
- (b) Calculate an interval of possible values for the American Call.

Problem 4. We know that an option price under a certain stochastic model satisfies the following PDE:

$$\frac{\partial V}{\partial t} + 2\cos(S)\frac{\partial V}{\partial S} + 0.2S^{\frac{3}{2}}\frac{\partial^2 V}{\partial S^2} - rV = 0.$$

Assume you have an equidistant grid with points of the form $(i, j) = (i\Delta t, j\Delta x)$, where $i \in \{1, 2, ..., N\}$ and $j \in \{-N_S, N_S\}$. Let $V_{i,j} = (i\Delta t, j\Delta x)$. Discretize the derivatives and give the finite difference equation for an Explicit scheme. Use the notation introduced above.