Medidas de dispersão ou variação

Amplitude: Diferença entre as entradas máximas e mínimas.

Valores	41	38	39	45	47	41	44	41	37	42
---------	----	----	----	----	----	----	----	----	----	----

Amplitude = 47 - 37 = 10

Desvio Populacional

Diferença entre o valor e a média do conjunto de dados populacional.

Valores	Desvio (x - μ)
41	-0,5
38	-3,5
39	-2,5
45	3,5
47	5,5
41	-0,5
44	2,5
41	-0,5
37	-4,5
42	0,5
$\Sigma x = 415$	$\Sigma (x-\mu) = 0$

Variância Populacional

$$\sigma^2 = \frac{\sum (x - \mu)^2}{N}$$

$$\sigma^2 = \frac{88,5}{10} = 8,85$$

Desvio padrão Populacional

$$\sigma = \sqrt{\sigma^2}$$

$$\sigma = \sqrt{8,85} = 2,97$$

Valores	Desvio (x - μ)	(x - μ) ²
41	-0,5	0,25
38	-3,5	12,25
39	-2,5	6,25
45	3,5	12,25
47	5,5	30,25
41	-0,5	0,25
44	2,5	6,25
41	-0,5	0,25
37	-4,5	20,25
42	0,5	0,25
$\Sigma x = 415$	$\Sigma (x-\mu) = 0$	Σ = 88,5

Variância Amostral

$$S^2 = \frac{\sum (x - \bar{x})^2}{n - 1}$$

$$S^2 = \frac{88,5}{9} = 9,83$$

Desvio padrão Amostral

$$S = \sqrt{S^2}$$

$$\sigma = \sqrt{9,83} = 3,14$$

Valores	Desvio (x - μ)	$(x - \mu)^2$
41	-0,5	0,25
38	-3,5	12,25
39	-2,5	6,25
45	3,5	12,25
47	5,5	30,25
41	-0,5	0,25
44	2,5	6,25
41	-0,5	0,25
37	-4,5	20,25
42	0,5	0,25
$\Sigma x = 415$	$\Sigma (x-\mu) = 0$	Σ = 88,5

Graus de liberdade (n-1) para correção com relação a variância populacional.

Regra Empírica – para distribuições simétricas

Distribuição em forma de sino

Teorema de Chebychev

Aplicado em qualquer distribuição

$$m = 1 - \frac{1}{k^2}$$

m = percentual dos dados.

K = número de desvios padrões (> 1).

$$k = 2$$
: $m = 1 - \frac{1}{2^2} = 0.75$

$$k = 3$$
: $m = 1 - \frac{1}{3^2} = 0.89$

$$k = 4$$
: $m = 1 - \frac{1}{4^2} = 0.94$

Desvio padrão para dados agrupados

$$S = \sqrt{\frac{\sum (x - \bar{x})^2 \cdot f}{n - 1}}$$

)		
		_

$$S = 1,72$$

x	f	xf
0	10	0
1	19	19
2	7	14
3	7	21
4	2	8
5	1	5
6	4	24
	$\Sigma = 50$	$\Sigma = 91$

$x - \overline{x}$	$(x-\overline{x})^2$	$(x-\overline{x})^2 f$
-1,8	3,24	32,40
-0,8	0,64	12,16
0,2	0,04	0,28
1,2	1,44	10,08
2,2	4,84	9,68
3,2	10,24	10,24
4,2	17,64	70,56
		S = 145,40

$$\overline{x} = \frac{\sum xf}{n} = \frac{91}{50} \approx 1.8$$

Medidas de posição

Fractis: Divisão do conjunto de dados em partes iguais (Quartis, percentis, Mediana...).

Quartis: Divide o conjunto de dados em 4 partes iguais.

Amplitude Interquartil (IQR):

$$IQR = Q_3 - Q_1$$

Gráfico BoxPlot ou Caixa e Bigodes

