```
In [1]:
        import pandas as pd
        import numpy as np
        from sklearn.model selection import train test split
        from sklearn.linear model import LogisticRegression
        from sklearn.metrics import accuracy score
        sonar data = pd.read csv("Copy of sonar data.csv",header=None)
        sonar data.head(10)
In [3]:
               0
                      1
                             2
                                    3
                                                 5
                                                        6
                                                               7
                                                                      8
                                                                                      51
Out[3]:
                                           4
                                                                             9 ...
                                                                                             52
        0 0.0200 0.0371 0.0428
                                      0.0954 0.0986 0.1539 0.1601 0.3109 0.2111 ... 0.0027 0.0065 0.
                               0.0207
        1 0.0453 0.0523 0.0843 0.0689
                                      ... 0.0084
        2 0.0262 0.0582 0.1099
                                0.1083 0.0974 0.2280 0.2431 0.3771 0.5598
                                                                        0.6194
                                                                               ... 0.0232 0.0166 0.
        3 0.0100 0.0171 0.0623 0.0205
                                      0.0205 0.0368 0.1098
                                                          0.1276 0.0598
                                                                        0.1264
                                                                               ... 0.0121
        4 0.0762 0.0666 0.0481 0.0394 0.0590 0.0649 0.1209 0.2467 0.3564
                                                                         0.4459
                                                                               ... 0.0031 0.0054 0.
        5 0.0286 0.0453 0.0277 0.0174 0.0384 0.0990 0.1201 0.1833 0.2105
                                                                        0.3039
                                                                               ... 0.0045 0.0014 0.
        6 0.0317 0.0956 0.1321 0.1408 0.1674 0.1710 0.0731 0.1401 0.2083 0.3513 ... 0.0201 0.0248 0.
        7 0.0519 0.0548 0.0842 0.0319 0.1158 0.0922 0.1027 0.0613 0.1465
                                                                               ... 0.0081 0.0120 0.
                                                                        0.2838
        8 0.0223 0.0375 0.0484 0.0475 0.0647 0.0591 0.0753 0.0098 0.0684
                                                                         0.1487
                                                                               ... 0.0145 0.0128 0.
        9 0.0164 0.0173 0.0347 0.0070 0.0187 0.0671 0.1056 0.0697 0.0962 0.0251 ... 0.0090 0.0223 0.
        10 rows × 61 columns
        sonar data.shape
        (208, 61)
Out[4]:
        sonar data.describe() # describe --> statistical measures the data
```

Out[5]:

	0	1	2	3	4	5	6	7
count	208.000000	208.000000	208.000000	208.000000	208.000000	208.000000	208.000000	208.000000
mean	0.029164	0.038437	0.043832	0.053892	0.075202	0.104570	0.121747	0.134799
std	0.022991	0.032960	0.038428	0.046528	0.055552	0.059105	0.061788	0.085152
min	0.001500	0.000600	0.001500	0.005800	0.006700	0.010200	0.003300	0.005500
25%	0.013350	0.016450	0.018950	0.024375	0.038050	0.067025	0.080900	0.080425
50%	0.022800	0.030800	0.034300	0.044050	0.062500	0.092150	0.106950	0.112100
75%	0.035550	0.047950	0.057950	0.064500	0.100275	0.134125	0.154000	0.169600
max	0.137100	0.233900	0.305900	0.426400	0.401000	0.382300	0.372900	0.459000

8 rows × 60 columns

In [6]: sonar_data.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 208 entries, 0 to 207
Data columns (total 61 columns):

Data	columns	(total 61 column	ns):
#	Column	Non-Null Count	Dtype
0	0	208 non-null	float64
1	1	208 non-null	float64
2	2	208 non-null	float64
3	3	208 non-null	float64
4	4	208 non-null	float64
5	5	208 non-null	float64
6	6	208 non-null	float64
7	7	208 non-null	float64
8	8	208 non-null	float64
9	9	208 non-null	float64
10	10	208 non-null	float64
11	11	208 non-null	float64
12	12	208 non-null	float64
13	13	208 non-null	float64
14	14	208 non-null	float64
15	15	208 non-null	float64
16	16	208 non-null	float64
17	17	208 non-null	float64
18	18	208 non-null	float64
19	19	208 non-null	float64
20	20	208 non-null	float64
21	21	208 non-null	float64
22	22	208 non-null	float64
23	23	208 non-null	float64
24	24	208 non-null	float64
25	25	208 non-null	float64
26	26	208 non-null	float64
27	27	208 non-null	float64
28	28	208 non-null	float64
29	29	208 non-null	float64
30	30	208 non-null	float64
31	31	208 non-null	float64
32	32	208 non-null	float64
33	33	208 non-null	float64
34	34	208 non-null	float64
35	35	208 non-null	float64
36	36	208 non-null	float64
37	37	208 non-null	float64
38	38	208 non-null	float64
39	39	208 non-null	float64
40	40	208 non-null	float64
41	41	208 non-null	float64
42	42	208 non-null	float64
43	43	208 non-null	float64
44	44	208 non-null	float64
45	45	208 non-null	float64
46	46	208 non-null	float64
47	47	208 non-null	float64
48	48	208 non-null	float64
46 49			
	49	208 non-null	float64
50 51	50 51	208 non-null	float64
51	51	208 non-null	float64
52	52	208 non-null	float64
53	53	208 non-null	float64
54	54	208 non-null	float64

In [11]: X

```
Project 1 SONAR Rock vs Mine Prediction with Python
           55
               55
                       208 non-null
                                        float64
                                        float64
           56
               56
                       208 non-null
           57
               57
                       208 non-null
                                        float64
           58
              58
                       208 non-null
                                        float64
           59
               59
                       208 non-null
                                        float64
           60
               60
                       208 non-null
                                        object
          dtypes: float64(60), object(1)
          memory usage: 99.2+ KB
          sonar_data[60].value_counts() # M --> Mine And R --> Rock
In [7]:
               111
Out[7]:
                97
         Name: 60, dtype: int64
 In [8]:
          sonar_data.groupby(60).mean(60)
                                              3
                                                        4
                                                                5
                                                                         6
                                                                                  7
                                                                                           8
                                                                                                    9
Out[8]:
                    0
                             1
                                      2
          60
          M 0.034989 0.045544 0.050720 0.064768 0.086715 0.111864 0.128359 0.149832 0.213492 0.251022
           R 0.022498 0.030303 0.035951 0.041447 0.062028 0.096224 0.114180 0.117596 0.137392 0.159325
         2 rows × 60 columns
          # Seprating data and lables
In [9]:
In [10]:
          X = sonar_data.drop(columns=60,axis=1)
          Y = sonar data[60]
```

6

7

50

51

5

2

0

Out[11]:

```
0 0.0200 0.0371
                        ... 0.0232 0.0027
          1 0.0453 0.0523 0.0843 0.0689 0.1183 0.2583 0.2156 0.3481 0.3337 0.2872
                                                                       ... 0.0125 0.0084
          2 0.0262 0.0582
                        0.1099
                             0.1083 0.0974 0.2280
                                               0.2431 0.3771
                                                           0.5598
                                                                0.6194
                                                                       ... 0.0033 0.0232
          3 0.0100 0.0171
                        0.0623
                              0.1264
                                                                       ... 0.0241 0.0121
          4 0.0762 0.0666 0.0481
                              0.0394 0.0590 0.0649 0.1209 0.2467 0.3564
                                                                 0.4459
                                                                       ... 0.0156 0.0031
        203
            0.2684
                                                                       ... 0.0203 0.0116
            0.2154
                                                                       ... 0.0051 0.0061
        205 0.0522 0.0437 0.0180 0.0292 0.0351 0.1171 0.1257 0.1178 0.1258 0.2529
                                                                       ... 0.0155 0.0160
        206 0.0303 0.0353 0.0490 0.0608 0.0167 0.1354 0.1465 0.1123 0.1945 0.2354
                                                                       ... 0.0042 0.0086
        207 0.0260 0.0363 0.0136 0.0272 0.0214 0.0338 0.0655 0.1400 0.1843 0.2354 ... 0.0181 0.0146
        208 rows × 60 columns
                                                                                   •
In [12]:
              R
Out[12]:
              R
        2
              R
        3
              R
        4
              R
        203
              Μ
        204
              Μ
        205
              Μ
        206
              Μ
        207
        Name: 60, Length: 208, dtype: object
        Training and Test data
        X_train,X_test,Y_train,Y_test = train_test_split(X,Y,test_size=0.1,random_state=1,stra
In [13]:
        X.shape,X_train.shape,X_test.shape
In [14]:
        ((208, 60), (187, 60), (21, 60))
Out[14]:
        print(X_train)
In [15]:
        print(Y_train)
```

```
0
                   1
                            2
                                     3
                                                       5
                                                                6
                                              4
                                                                         7
     0.0414
              0.0436
                       0.0447
                                0.0844
                                         0.0419
                                                  0.1215
                                                           0.2002
                                                                    0.1516
115
                                                                             0.0818
     0.0123
              0.0022
                       0.0196
                                                  0.0492
38
                                0.0206
                                         0.0180
                                                           0.0033
                                                                    0.0398
                                                                             0.0791
56
     0.0152
              0.0102
                       0.0113
                                0.0263
                                         0.0097
                                                  0.0391
                                                           0.0857
                                                                    0.0915
                                                                             0.0949
123
     0.0270
              0.0163
                       0.0341
                                0.0247
                                         0.0822
                                                  0.1256
                                                           0.1323
                                                                    0.1584
                                                                             0.2017
18
     0.0270
              0.0092
                       0.0145
                                0.0278
                                         0.0412
                                                  0.0757
                                                           0.1026
                                                                    0.1138
                                                                             0.0794
                                                      . . .
140
     0.0412
              0.1135
                       0.0518
                                0.0232
                                         0.0646
                                                  0.1124
                                                           0.1787
                                                                    0.2407
                                                                             0.2682
     0.0286
5
              0.0453
                       0.0277
                                0.0174
                                         0.0384
                                                  0.0990
                                                           0.1201
                                                                    0.1833
                                                                             0.2105
154
     0.0117
                                0.0583
              0.0069
                       0.0279
                                         0.0915
                                                  0.1267
                                                           0.1577
                                                                    0.1927
                                                                             0.2361
     0.1150
131
              0.1163
                       0.0866
                                0.0358
                                         0.0232
                                                  0.1267
                                                           0.2417
                                                                    0.2661
                                                                             0.4346
203
     0.0187
              0.0346
                       0.0168
                                0.0177
                                         0.0393
                                                  0.1630
                                                           0.2028
                                                                    0.1694
                                                                             0.2328
          9
                        50
                                 51
                                          52
                                                   53
                                                            54
                                                                     55
                                                                              56
               . . .
     0.1975
                    0.0222
                                                        0.0053
115
              . . .
                             0.0045
                                      0.0136
                                               0.0113
                                                                 0.0165
                                                                          0.0141
38
     0.0475
              . . .
                    0.0149
                             0.0125
                                      0.0134
                                               0.0026
                                                        0.0038
                                                                 0.0018
                                                                          0.0113
                                               0.0036
                                                        0.0013
56
     0.1504
                    0.0048
                             0.0049
                                      0.0041
                                                                 0.0046
                                                                          0.0037
              . . .
123
     0.2122
                    0.0197
                             0.0189
                                      0.0204
                                               0.0085
                                                        0.0043
                                                                 0.0092
                                                                          0.0138
              . . .
     0.1520
18
                    0.0045
                             0.0084
                                      0.0010
                                               0.0018
                                                        0.0068
                                                                 0.0039
                                                                          0.0120
              . . .
. .
              . . .
140
     0.2058
                    0.0798
                             0.0376
                                      0.0143
                                               0.0272
                                                        0.0127
                                                                 0.0166
                                                                          0.0095
              . . .
5
     0.3039
                    0.0104
                             0.0045
                                      0.0014
                                               0.0038
                                                        0.0013
                                                                 0.0089
                                                                          0.0057
              . . .
     0.2169
154
                    0.0039
                             0.0053
                                      0.0029
                                               0.0020
                                                        0.0013
                                                                 0.0029
                                                                          0.0020
131
     0.5378
                    0.0228
                             0.0099
                                      0.0065
                                               0.0085
                                                        0.0166
                                                                 0.0110
                                                                          0.0190
              . . .
203
     0.2684
                    0.0203
                            0.0116
                                      0.0098
                                               0.0199
                                                        0.0033
                                                                 0.0101
                                                                          0.0065
              . . .
          57
                   58
                            59
115
     0.0077
              0.0246
                       0.0198
38
     0.0058
              0.0047
                       0.0071
56
     0.0011
              0.0034
                       0.0033
              0.0105
123
     0.0094
                       0.0093
18
     0.0132
              0.0070
                       0.0088
                  . . .
     0.0225
140
              0.0098
                       0.0085
5
     0.0027
              0.0051
                       0.0062
154
     0.0062
              0.0026
                       0.0052
131
     0.0141
              0.0068
                       0.0086
203
     0.0115
              0.0193
                       0.0157
[187 rows x 60 columns]
115
       Μ
38
       R
56
       R
123
       Μ
18
        R
140
       Μ
5
        R
154
       Μ
131
       Μ
203
Name: 60, Length: 187, dtype: object
Model Training Logistic regression
```

In [16]: # Training the Logestic regression model with training data
In [17]: model = LogisticRegression()

```
In [18]:
         model.fit(X_train,Y_train)
         LogisticRegression()
Out[18]:
             Model Evaluation
          # Accuracy on training data
In [19]:
         X train prediction = model.predict(X train)
In [20]:
         training_data_accuracy = accuracy_score(X_train_prediction,Y_train)
In [21]:
         print(' Accuracy on training data :' ,training_data_accuracy)
          Accuracy on training data: 0.8342245989304813
In [22]:
         # Accuracy on training data
         X test prediction = model.predict(X test)
          test data accuracy = accuracy score(X test prediction,Y test)
         print(' Accuracy on test data :' , accuracy_score(X_test_prediction,Y_test) )
In [23]:
          Accuracy on test data : 0.7619047619047619
         Making a predictive system
         input_data = (0.0519,0.0548,0.0842,0.0319,0.1158,0.0922,0.1027,0.0613,0.1465,0.2838,0.
In [25]:
                        0.0121,0.0097,0.0085,0.0047,0.0048,0.0053)
         # changing the input data to a numpy array
         input_data_as_numpy_array = np.asarray(input_data)
         # reshape the np array as we are predicting for one instance
         input_data_reshape = input_data_as_numpy_array.reshape(1,-1)
         prediction = model.predict(input_data_reshape )
         print(prediction)
         if (prediction[0]=='M'):
              print('The object is a Mine')
         else:
              print('The object is a Rock')
         ['M']
         The object is a Mine
```