Report AWS

Part 1 – Data Collection & Preprocessing

Goal:

Collect and prepare customer reviews for NLP sentiment analysis.

Tools Used:

Python, BeautifulSoup, Requests, Pandas, deep_translator (GoogleTranslator), Amazon S3

Steps Taken:

- Created S3 bucket: zanggar/technodom_reviews/
- Scraped product titles and user reviews from Technodom.kz using BeautifulSoup and Requests
- Translated reviews from Russian to English using deep_translator
- Cleaned the data: removed empty values, fixed encoding issues, ensured consistent formatting
- Uploaded the cleaned dataset (technodom_reviews_cleaned_final.csv) to S3 for processing

Outcome:

Final dataset uploaded to S3 for use in further AWS-based processing.

Part 2 – Data Preparation with AWS Glue

Goal:

Prepare the dataset for querying and transformation using AWS Glue and Athena.

Steps Taken:

- 1. Crawler and Athena Querying:
 - Ran AWS Glue crawler: technodom_reviews_crawler
 - Issue: Athena detected headers as data and used generic column names (col0, col1, etc.)

Solution: Created a new table in Athena with proper column names using SQL:

CREATE TABLE my_data_catalog.technodom_reviews_fixed AS

SELECT col0 AS original, col1 AS translated

FROM my_data_catalog.technodom_technodom_reviews

WHERE col0 != 'original';

0

2. ETL Job in AWS Glue:

- Developed a Glue job using PySpark to clean and deduplicate the data:
 - Dropped nulls and duplicates
 - Cast columns to correct types
 - Saved cleaned output to: s3://zanggar/technodom_reviews/cleaned_final_output

3. Validation in Glue Notebook:

- Used boto3 and pandas to load cleaned data
- Previewed and validated structure using PySpark

Outcome:

Cleaned, validated dataset ready for machine learning and analysis.

Part 3 – Sentiment Analysis Using Transformers

Goal:

Perform sentiment analysis using HuggingFace Transformers instead of AWS Comprehend.

Steps Taken:

1. Model Setup:

Used HuggingFace pipeline for sentiment analysis:

from transformers import pipeline

sentiment_analyzer = pipeline("sentiment-analysis")

0

2. Processing:

Loaded cleaned data from S3

Applied the model to the translated column:

```
df["label"] = df["translated"].apply(lambda text:
sentiment_analyzer(str(text)[:512])[0]["label"].lower())
```

0

3. Exporting Results:

- Saved the results to a local CSV: sentiment_labels.csv
- Uploaded the file to S3:s3://zanggar/technodom_reviews/results/sentiment_labels.csv

Sample Output:

translated	label
"Great phone!"	positive
"Didn't get the gift box"	negative

Outcome:

Final sentiment-labeled dataset prepared for visualization in QuickSight.

Part 4 – Visualization in Amazon QuickSight

Goal:

Create visual summaries of review sentiments using QuickSight.

Steps Taken:

- 1. Data Source:
 - Only one file used: sentiment_labels.csv
 - o No merging required

2. Manifest File:

```
Created manifest.json to define file location and format:
```

```
{
  "fileLocations": [
    {
      "URIs": ["s3://zanggar/technodom_reviews/results/sentiment_labels.csv"]
    }
],
  "globalUploadSettings": {
    "format": "CSV",
    "delimiter": ",",
    "textqualifier": "\"",
    "containsHeader": true
}
```

3. Connecting to QuickSight:

- Uploaded the manifest
- QuickSight parsed translated and label columns correctly
- o Built visualizations using bar and pie charts

Visualizations Created:

- Proportion of positive vs negative reviews
- Review sentiment distribution

Outcome:

Interactive sentiment insights successfully visualized in QuickSight.

Final Output

- Cleaned and translated reviews stored in S3
- Sentiment-labeled results saved and uploaded
- Visualizations built using QuickSight
- Graphics available in the PDF: visual_2025-04-22T12_31_26.pdf