

Blockchain

Blockchain & Money

Casos reales, escándalos y conceptos clave Curso 2024/2025

Diego Martín de Andrés

fhernando@uva.es

diego.martin.andres@uva.es

indice de contenidos

- 1. Estafas y esquemas Ponzi
- 2. Casos reales de estafa
- 3. Efecto Milei
- 4. Efecto Elon Musk
- 5. Qué pasó con FTX
- 6. Otros escándalos conocidos
- 7. ¿Blockchain o Base de Datos?

indice de contenidos

- 8. ¿Cómo se crea una criptomoneda?
- 9. Firma electrónica y Blockchain
- 10. Cómo se minan bloques
- 11. ¿Cómo se ve una transacción en Blockchain?
- 12. Ejemplo: la caja fuerte
- 13. Conclusión y repaso final
- 14. CryptoZombies (con Solidity)

Grandes estafas y esquemas Ponzi

- Esquema Ponzi: una estafa que promete ganancias altas y rápidas usando el dinero de personas nuevas para pagar a las anteriores.
- • Ejemplos de lo que prometen:
 - "Gana 10% al mes sin riesgo"
 - "Tu dinero trabaja por ti, sin que hagas nada"
- Se disfrazan de inversiones reales:
 - Oro y metales preciosos
 - Criptomonedas falsas o poco conocidas
 - Apps de trading que no existen o no funcionan

- 👮 Cómo evitan ser detectados:
 - Usan criptomonedas difíciles de rastrear, como Monero
 - Operan en plataformas sin regulación ni supervisión
 - Cuentan con redes de usuarios anónimos que reclutan más gente

¿Qué elementos comunes tienen estas estafas? Haz una lista de 3 señales de alerta que hayas visto o escuchado.

- Prometen ganancias rápidas que parecen demasiado buenas para ser verdad.
- No dan información clara ni transparente sobre cómo funciona la inversión.
- Piden que invites a más personas para poder ganar dinero, lo que es típico de un esquema Ponzi.

¿Cómo intentan ocultarse en Blockchain?

Aunque las transacciones en blockchain son públicas, se puede ocultar el rastro:

1. Mezcladores (Mixers)

- Agrupan y mezclan muchas transacciones para dificultar el seguimiento.
- Ejemplo: Tornado Cash (prohibido en EE.UU.).

2. Criptomonedas privadas

- Como Monero, Zcash o Dash, que ocultan origen, destino y cantidad.
- Son preferidas en actividades que buscan anonimato total.

3. Cadenas puente (bridges)

• Permiten mover fondos entre distintas blockchains para dificultar el rastreo.

4. Fragmentación de transacciones

 Se divide una gran operación en muchas pequeñas (técnica conocida como "dusting").

Ejercicio:

¿Crees que debería ser posible ocultar tu identidad en blockchain? ¿Por qué sí o por qué no?

- **Sí**, cuando se trata de proteger privacidad en contextos legítimos (activismo, derechos humanos, censura).
- No, si se usa para lavar dinero, evadir impuestos o cometer fraudes.
- Idealmente, se necesita un equilibrio entre trazabilidad y privacidad.

Casos reales de estafa

- OneCoin: una criptomoneda falsa que estafó a miles de personas, robando unos 4.000 millones de dólares.
- **Bitconnect**: prometía beneficios fijos diarios, algo muy sospechoso porque el mercado cambia cada día.
- Mt. Gox: uno de los primeros grandes exchanges de Bitcoin, que perdió cerca de 850.000 bitcoins en un hackeo, dejando a muchos usuarios sin su dinero.
- Terra/LUNA: una stablecoin algorítmica que colapsó en 2022, causando grandes pérdidas y mostrando riesgos en criptomonedas que intentan mantener su valor con mecanismos complejos.

- Señales típicas de estafa:
 - Promesas vagas y poco claras
 - Rentabilidad garantizada sin riesgos
 - Falta de regulación o supervisión oficial
- Ejemplo sencillo: si alguien promete que siempre ganarás dinero, sin perder nunca, ¡cuidado!

Piensa en una oferta que hayas visto o escuchado que parecía demasiado buena para ser verdad. ¿Qué señales de alerta podrías identificar?

- Promesas de ganancias seguras y sin riesgos.
- Falta de información clara sobre cómo se generan esas ganancias.
- Ausencia de regulación o supervisión oficial que garantice la seguridad.
- Ofertas que parecen muy atractivas pero no explican los detalles o riesgos.

Efecto Milei

- Javier Milei es un político argentino que quiere reducir el tamaño del Estado.
- Muchas personas en Argentina usan criptomonedas para:
 - Proteger su dinero de la inflación alta
 - Evitar el sistema bancario tradicional, que a veces falla o cobra mucho
- A Riesgos: sin control ni regulación, pueden aparecer estafas o fraudes.
- Ejemplo: alguien compra criptomonedas para ahorrar, pero si no sabe bien cómo funcionan, puede perderlo todo.

¿Qué ventajas y riesgos ves en usar criptomonedas para proteger tu dinero?

Respuesta:

Ventajas:

- Protegen contra la inflación cuando la moneda local pierde valor.
- Permiten evitar bancos tradicionales que pueden fallar o cobrar comisiones altas.

Riesgos:

- Falta de regulación puede facilitar estafas.
- Si no se entiende bien cómo funcionan, se puede perder todo el dinero.
- La volatilidad puede causar grandes pérdidas.

Efecto Elon Musk

- Elon Musk, empresario famoso, influye mucho en el mercado con sus tweets.
- Cuando habla de Dogecoin o Bitcoin, el precio puede subir o bajar rápidamente.
- Lecciones importantes:
 - No te dejes llevar solo por lo que dice alguien famoso
 - o Investiga y piensa antes de invertir
- Ejemplo: un tweet puede hacer que mucha gente compre o venda en minutos.

¿Por qué crees que las emociones afectan tanto al mercado de criptomonedas? ¿Cómo puedes evitar tomar decisiones impulsivas?

- Las emociones afectan porque muchas personas compran o venden rápido basándose en noticias o comentarios, sin analizar bien.
- Para evitar decisiones impulsivas, es importante investigar, informarse bien y no dejarse llevar solo por opiniones de famosos.
- Pensar a largo plazo y tener un plan de inversión ayuda a controlar emociones.

Qué pasó con FTX?

- FTX era uno de los exchanges (plataformas para comprar y vender criptomonedas) más grandes y confiables.
- Usaban el dinero de sus clientes para hacer apuestas y especulaciones arriesgadas.
- En 2022, la empresa colapsó y muchos clientes perdieron sus ahorros.
- X Problemas: mala gestión, falta de transparencia y control.
- Ejemplo: como si alguien guardara tu dinero y lo usara para jugar a la ruleta sin avisarte.

¿Qué preguntas harías antes de confiar tu dinero a una plataforma de criptomonedas?

- ¿Está regulada y supervisada por alguna autoridad?
- ¿Cómo protege mi dinero y mis datos?
- ¿Qué transparencia tiene en sus operaciones y gestión?
- ¿Qué experiencia y reputación tiene la empresa?
- ¿Ofrece garantías o seguros para proteger mis fondos?

Otros escándalos conocidos

- / Mt. Gox (2014)
 - Uno de los primeros grandes exchanges de Bitcoin
 - Hackeo masivo → pérdida de 850.000 BTC
 - X Usuarios perdieron sus fondos
 - Provocó crisis y desconfianza global
- * Terra/LUNA (2022)
 - Stablecoin algorítmica que prometía mantener valor estable
 - ○ Mecanismo fallido → colapso total
 - Miles de inversores perdieron sus ahorros
 - o Fiemplo de lo peligroso que puede ser confiar en sistemas sin pruebas sólidas

¿Qué lecciones podemos aprender de estos escándalos para proteger nuestro dinero?

- No confiar ciegamente en plataformas o criptomonedas sin investigar.
- Entender los riesgos y cómo funciona la tecnología detrás.
- Buscar empresas reguladas y con buena reputación.
- Diversificar inversiones para no perder todo en un solo lugar.
- Estar atento a señales de alerta y evitar promesas de ganancias garantizadas.

Mini reto: ¿Blockchain o Base de Datos?

- Qué tecnología usarías en cada caso?
 - **E Registro de estudiantes** → X Base de datos tradicional
 - Se necesita privacidad y actualización frecuente.
 - § Donaciones públicas → ✓ Blockchain
 - Transparencia y trazabilidad para todos.
 - • Chat entre amigos → X Base de datos
 - Información privada y dinámica.
 - - Seguridad, integridad y auditoría pública.

- Blockchain es útil cuando necesitas confianza y nadie pueda borrar o cambiar datos sin permiso.
- Base de datos tradicional funciona para cosas simples y privadas.

Piensa en un ejemplo de tu vida diaria. ¿Usarías blockchain o base de datos?

- Para cosas que necesitan mucha seguridad y transparencia, como contratos o votos, usaría blockchain.
- Para información privada o que cambia mucho, como contactos o mensajes, usaría base de datos tradicional.
- La elección depende de si necesito que los datos sean inmutables y confiables para todos.

¿Qué te gustaría crear con un contrato inteligente? Piensa en algo sencillo que puedas programar.

- Podría crear un contrato para dividir pagos entre amigos automáticamente.
- Un sistema para registrar votos en una encuesta pequeña.
- Un juego simple donde los usuarios puedan comprar y vender objetos digitales.
- Algo que me ayude a entender cómo funcionan las reglas automáticas en blockchain.

% ¿Cómo se crea una criptomoneda?

- Paso 1: Se define el nombre y símbolo (por ejemplo: PEPE , SOL , FRANCOIN)
- Paso 2: Se usa un lenguaje como Solidity o plataformas que lo hacen fácil (ej. Remix, CoinTool)
- Paso 3: Se sube a una red (Ethereum, Binance Smart Chain, etc.)
- Resultado: ¡Ya está en la red! Pero no significa que valga algo.
- **1** Muchas estafas crean "tokens" vacíos solo para atraer gente.

Ejemplo real:

Vitalik Buterin, creador de Ethereum, desarrolló una plataforma de código abierto que permite crear contratos inteligentes y nuevas criptomonedas.

Busca un generador de tokens online. ¿Cuáles son los pasos? ¿Te parece fácil crear uno?

- Los pasos suelen ser elegir nombre y símbolo, configurar cantidad y características, y luego desplegar el token en una red.
- Muchas plataformas lo hacen con formularios sencillos y sin necesidad de programar mucho.
- Sí, crear un token básico es fácil, pero eso no garantiza que tenga valor o sea seguro.

Firma electrónica española y Blockchain

- En España puedes firmar documentos digitalmente con validez legal.
- Algunas firmas usan blockchain para:
 - Validar que el contenido no ha cambiado
 - Saber quién firmó y cuándo
- Esto es útil para documentos importantes como contratos o certificados.
- Seguridad y confianza para documentos digitales.

¿Dónde crees que sería útil usar firma electrónica con blockchain? Da un ejemplo.

- En contratos legales para asegurar que nadie cambie el documento después de firmado.
- En certificados académicos para validar autenticidad.
- En documentos oficiales del gobierno para evitar fraudes.
- En acuerdos entre empresas para tener prueba segura de la firma.

Cómo se minan bloques?

- Minar bloques es resolver un problema matemático difícil.
- Imagina que es como resolver un sudoku muy complicado:
 - i. El problema matemático es encontrar un número que, al combinarlo con la información del bloque, genere un resultado especial (hash) que cumpla ciertas reglas (como empezar con varios ceros).
 - ii. Los mineros prueban muchas combinaciones hasta encontrar la correcta.
 - iii. Cuando alguien encuentra la solución, la anuncia a todos.
 - iv. Los demás mineros verifican que la solución es válida y, si es así, se añade el bloque a la cadena.

- Quien resuelve primero gana una recompensa en criptomonedas.
- Esto asegura que los datos no se puedan cambiar sin que todos lo noten (inmutabilidad).
- Ejemplo: es como un concurso donde solo el primero en resolver gana.

¿Por qué crees que es importante que minar bloques sea difícil? ¿Qué pasaría si fuera muy fácil?

- Es importante que sea difícil para evitar que alguien pueda controlar la cadena y cambiar datos.
- Si fuera muy fácil, cualquiera podría crear bloques falsos y manipular la información.
- La dificultad asegura que todos confíen en la seguridad y en la integridad de la blockchain.

¿Cómo se ve una transacción en Blockchain?

- Puedes consultar cualquier pago real en páginas como:
 - o etherscan.io
 - blockchair.com
- ¿Qué se ve?
 - Dirección de quien envía y quien recibe
 - Fecha y cantidad
 - Estado: éxito o fallo
- Todo esto es público y no se puede borrar

Entra en etherscan.io y busca una transacción. ¿Qué puedes entender de lo que ves?

- Puedo ver quién envió y quién recibió el dinero.
- La cantidad transferida y cuándo se hizo la transacción.
- Si la transacción fue exitosa o falló.
- Que toda esta información es pública y permanente, nadie puede borrarla.

Ilustración: caja fuerte

- • El bloque es como una caja fuerte digital que guarda información.
- If Se abre con una clave secreta, que se obtiene al minar.
- 🚄 Si alguien cambia algo, la caja fuerte se rompe y todos lo notan.
- Todos los participantes guardan una copia para verificar que nadie mienta.

¿Cómo ayuda esta "caja fuerte" a que la información sea segura? Explica con tus palabras.

- Porque sólo se puede abrir con la clave correcta, nadie puede cambiar lo que hay dentro sin que se note.
- Si alguien intenta modificar algo, todos los demás se dan cuenta porque sus copias no coinciden.
- Así se mantiene la información protegida y confiable para todos.

Conclusión

- Blockchain es una tecnología útil para proteger información y dinero digital.
- No es magia: hay que entenderla y usarla bien.
- Las estafas siguen existiendo, por eso es importante educarse.
- La mejor defensa es aprender y ser crítico con las ofertas.

Conceptos clave para recordar

- Blockchain es transparente y seguro, pero no infalible.
- Los fraudes existen incluso con tecnologías nuevas.
- Aprender y preguntar siempre antes de invertir.

CryptoZombies

- Aprende a programar en Solidity, el lenguaje de Ethereum, creando juegos con zombis.
- Es ideal para principiantes que quieren entender cómo funcionan los contratos inteligentes.
- Puedes crear tus propios zombis y ver cómo funcionan los contratos.
- Página web: cryptozombies.io

CryptoZombies: Crea y ataca con tu zombi

- Aprender Solidity puede ser divertido: diseña zombis que luchan.
- Cada zombi tiene un ADN único y puede atacar a otros zombis.

Definimos el zombi:

```
pragma solidity ^0.8.0;
contract ZombieFactory {
    uint dnaDigits = 16;
    uint dnaModulus = 10 ** dnaDigits;
    struct Zombie {
        string name;
        uint dna;
        bool invisible;
    Zombie[] public zombies;
    function _createZombie(string memory _name, uint _dna) internal {
        zombies.push(Zombie( name, dna, false));
    function _generateRandomDna(string memory _str) private view returns (uint) {
        return uint(keccak256(abi.encodePacked( str))) % dnaModulus;
    function createRandomZombie(string memory _name) public {
        uint randDna = _generateRandomDna(_name);
        _createZombie(_name, randDna);
```

Ejercicio final:

¿Qué has aprendido sobre blockchain y criptomonedas? Escribe 3 cosas importantes para recordar.

- Que blockchain ayuda a proteger y asegurar la información de forma transparente.
- Que existen muchas estafas, por lo que hay que informarse bien antes de invertir.
- Que no todo lo que brilla es oro; es importante ser crítico y no dejarse llevar por promesas fáciles.