

Basketball Salary Analytics:

An analysis of NBA & WNBA player salaries and their predictors

- → Project Management
- → Data Retrieval & Cleanup
- → Experimental Design
- → Exploratory Data Analysis
- → Model Building
- → Visualizations
- → Findings & Conclusions
- → Questions

Scrum Project Management

- Defined user stories to align with project goals
- → Maintained a backlog of tasks to be completed
- → Met regularly as a group to discuss progress and areas of concern
- → Collaborated on tasks in order to efficiently and effectively meet deadlines

Web Scraping

```
D ►≣ WI
  URL = 'https://www.spotrac.com/wnba/rankings/average/'
  page = requests.get(URL).text
  soup = BeautifulSoup(page, 'lxml')
  names= []
  for name in soup.find all('a', class = 'team-name'):
    names.append(name.get_text())
  teams=[]
  for team in soup.find all('div', class = 'rank-position'):
    teams.append(team.get_text())
  avg salaries=[]
  for salaries in soup.find all('span', class = 'info'):
   avg salaries.append(salaries.get text())
  pos= []
  pos2= []
  for p in soup.find all('td', class = 'center small'):
    pos.append(p.get text())
  for i in pos:
      j = i.replace(' ','').replace('\n', '')
      pos2.append(j)
  pos2[136] = 'F'
  age= []
  for v in pos2:
      if len(v) % 2 == 0:
          age.append(v)
  positions= []
  for v in pos2:
      if len(v) % 2 != 0:
          positions.append(v)
  wnha= 'WNRA'
```

```
▶ ►≡ MI
 url = 'https://www.basketball-reference.com/leagues/NBA 2021 per game.html'
html doc = requests.get(url)
 parsed html = BeautifulSoup(html doc.content, 'html.parser')
 table = parsed html.find(id='per game stats')
 table header = table.find('thead') #html 'thead' element contains all header-related data
header elements = table header.find all('th') #store all 'th' (header) elements from 'thead' element
 headers = [] #initialize empty list to later store headers
 for header in header elements:
     item = header.get text().strip() #extract each header value (text)
     headers.append(item) #append each header value to list
 headers
 table body = table.find('tbody') #html 'tbody' element contains all body-related data
body rows = table body.find all('tr') #store all 'tr' (row) elements from 'tbody' element
 rows = [] #initialize empty list to later store data rows
 for row in body rows:
     row header = row.find('th').get text() #extract the row's header (season)
     items = row.find all('td') #extract data values from row
     row = [row header] #initialize list w/ row header
     for item in items: #iterate through the values of the row and store each in row list
         row.append(item.get text())
     rows.append(row)
```

Our Data - NBA & WNBA Player Stats and Salaries

- Web Scraping & Pre-processing:
 - Scraped data separately for the leagues
 - Pulled from 2 sites (spotrac for salaries, basketballreference for stats)
 - Removed NA's & duplicate entries (players that switched teams)
- Merging:
 - Removed accent marks from player names
 - Adjusted column names to match b/w datasets
- Data Types:
 - Numerical & string data:
 - Player, league, positon, points, asists, etc.

	Player	G	GS	MP	FG	FGA	FG%	3Р	3PA	3P%	PTS	League	Team	Position	Age	Avg_Salary	salary_float	salary_ratio	GS%	Salary_Rank
0	James Harden	42	42	37.1	8.0	17.2	.463	2.8	7.8	.358	 25.2	NBA	BKN	G	31	\$42,782,880	42782880.0	0.00578	1.000000	1
1	John Wall	40	40	32.2	7.3	18.2	.404	2.0	6.2	.317	20.6	NBA	HOU	G	30	\$42,782,880	42782880.0	0.00578	1.000000	2
2	Russell Westbrook	54	54	35.7	8.3	19.0	.437	1.3	4.1	.311	21.8	NBA	WAS	G	31	\$41,358,814	41358814.0	0.00559	1.000000	3
3	Kevin Durant	25	22	32.5	9.4	17.3	.544	2.5	5.4	.467	27.5	NBA	BKN	F	32	\$41,063,925	41063925.0	0.00555	0.880000	4
4	Stephen Curry	53	53	34.1	10.2	20.9	.489	5.2	12.1	.427	31.3	NBA	GSW	G	32	\$40,231,758	40231758.0	0.00544	1.000000	5
158	Lexie Brown	17	13	374	2.2	6.5	0.342	0.8	3.1	0.269	6.4	WNBA	CHI	G	26	\$70,040	70040.0	0.00117	0.764706	159
161	Seimone Augustus	21	0	332	2.6	5.2	0.491	0.6	1	0.545	5.9	WNBA	LA	G	36	\$70,040	70040.0	0.00117	0.000000	162
162	Nia Coffey	15	1	230	1.1	2.5	0.421	0.5	1.4	0.333	2.7	WNBA	LA	F	25	\$70,040	70040.0	0.00117	0.066667	163
163	Bria Holmes	18	4	291	1.9	5.4	0.357	0.6	1.7	0.333	4.9	WNBA	LA	G	27	\$70,040	70040.0	0.00117	0.222222	164
164	Theresa Plaisance	13	0	90	0.8	2.2	0.379	0.4	1.3	0.294	2.5	WNBA	WAS	F	28	\$70,040	70040.0	0.00117	0.000000	165
158	rows x 34 columns																			

Experimental Design

- 1) Data Retrieval
 - Included only 100 highest paid players from each league
 - Avoid skewness from rookie salaries
- 2) Driving Question/Thesis
 - Is there a legitimate difference in wages between the NBA & WNBA?
 - Contributors to salary valued differently b/w leagues?
 - Difference in salary trends w/ age b/w leagues?
 - Overvalued & undervalued players?
- 3) Exploratory Data Analysis
 - Scale salaries based on league revenue
 - Compare leagues on scatter plots
 - Look for statistical difference b/w leagues (wage gap)
- 4) Model Generation
 - Use multiple linear regression to predict salaries based on player stats (for each league)
 - Compare models
- 5) Visualization & Conclusions
 - Wage gap?
 - Stats valued differently between leagues?
 - Most undervalued, overvalued players?

Exploratory Data Analysis

Views of Salaries vs League

Exploratory Data Analysis, cont.

Adjusted Views of Salaries Ratio vs League

Correlation Matrix

Model Building

```
class linearModel:
   def init (self, df):
       self.stats = df
       # clean up the dataframe
       columns_to_drop = ['League', 'Team', 'Position', 'Age', 'Avg_Salary', 'salary_ratio', 'Salary_Rank']
       self.stats = self.stats.dropna()
       self.stats = self.stats.drop(columns_to_drop, axis=1)
       # seperate response and predictors
       self.salary = self.stats.iloc[:, -1]
       self.stats = self.stats.iloc[:, 4:-1]
       # Split the sample data into train and test data
       self.X_train, self.X_test, self.Y_train, self.Y_test = train_test_split(self.stats,
                                                                               self.salary,
       # fit the linear model
       self.model = LinearRegression().fit(self.X_train, self.Y_train)
   def feature_selection(self, direction=None):
       sfs = SequentialFeatureSelector(self.model, n_features_to_select=3, direction=direction)
       self.sfs = sfs.fit(self.X_train, self.Y_train)
       # filter the columns by the selected features
       self.X_train_columns = self.X_train.columns[sfs.get_support()]
       self.X_test_columns = self.X_test.columns[sfs.get_support()]
       self.X_train = self.X_train[self.X_train_columns]
       self.X_test = self.X_test[self.X_test_columns]
       # fit the linear model
       self.model = LinearRegression().fit(self.X_train, self.Y_train)
```

- Our team utilized the sklearn module to build a statistical model with OOP
- It features powerful tool for predictive data analysis
- We split our data into test and training data
- Fit a Linear Regression model
- Performed Forward and Backward selection techniques
- Calculated the R-squared values
- Selected the 3 most significant predictors

Dep. Var:	iable:	salary_flo	at R-s	squa	red:		0.52
Model:			LS Ad	j. R	-squared:		0.50
Method:		Least Squar	es F-s	stat	istic:		26.2
Date:	т	ue, 27 Apr 20	21 Pro	ob (F-statisti	c):	1.57e-1
Time:		20:09:	33 Log	j-Li	kelihood:		-1278.
No. Obsei	rvations:		75 AI	::			2565
Df Resid	uals:		71 BI	::			2574
Df Model:							
Covarian	ce Type:	nonrobu	st				
		========	======	===		========	
	coef	std err	1		P> t	[0.025	0.975
const	4.744e+06	2.37e+06	1.998	3	0.050	9696.710	9.48e+0
AST	1.862e+06	3.96e+05	4.70	L	0.000	1.07e+06	2.65e+0
BLK	2.973e+06	1.36e+06	2.18	5	0.032	2.62e+05	5.68e+0
PTS	5.289e+05	1.4e+05	3.791	L	0.000	2.51e+05	8.07e+0

Games Started (%) vs. Salary Ratio

Player Position vs. Salary Ratio

Use of the Findings

Who can use this data?

- This type of data analysis can be useful to teams deciding how much to pay players
- Players can look for new offers if they find they are undervalued
- Fans can get angry at management for overpaying players

Questions?