$\begin{array}{c} \textbf{Chapter 12: Linear Maps} \\ \text{\tiny March 25, 2023} \end{array}$

Contents

1	General approach		
	1.1	Definition	1
	1.2	Notation	1
	1.3	Specific Linear Maps	1
		1.3.1 Definition	1
	1.4	Necessary Condition	1
		1.4.1 Proof	1
2	\mathbf{Ker}	nel and Images	2
	2.1	Definition	2
	2.2	Example	2
		Proposition	

1 General approach

1.1 Definition

Let E, F two $\mathbb{K} - VS$, and f a mapping from E to F. We say that f is a linear (or f is a linear map) if:

$$\forall (\alpha, X, Y) \in \mathbb{K} \times E \times E, f(\alpha \cdot X + Y) = \alpha \cdot f(X) + f(Y)$$

$$\iff$$

$$\forall (\alpha, \beta, X, Y) \in \mathbb{K} \times \mathbb{K} \times E \times E, f(\alpha \cdot X + \beta \cdot Y) = \alpha \cdot f(X) + \beta \cdot f(Y)$$

1.2 Notation

We denote L(E, F) the set of all linear maps from E to F.

1.3 Specific Linear Maps

1.3.1 Definition

- 1. Let $f \in \mathcal{L}(E, F)$: we say f is an endomorphism if E = F we then denote $\mathcal{L}(E)$ the set of all endomorphism of E.
- 2. Let $f \in \mathcal{L}(E, F)$: we say f is an isomorphism if f is bijective.
- 3. Let $f \in \mathcal{L}(E, F)$: we say f is an automorphism if f is an endomorphism and an isomorphism. (E = F and bijective)

1.4 Necessary Condition

$$f \in \mathcal{L}(E, F) \Longrightarrow f(0_E) = 0_F$$

1.4.1 **Proof**

Let
$$X \in E$$

$$f(0_E) = f(0_E \times X)$$

$$f(0_E) = 0_F \times f(X)$$

$$f(0_E) = 0_F$$
Let $X \in E$

$$f(0_E) = f(X - X)$$

$$f(0_E) = f(X) - f(X)$$

$$f(0_E) = 0_F$$

2 Kernel and Images

2.1 Definition

Let E and F two $\mathbb{K} - VS$ and $f \in \mathcal{L}(E, F)$. Then:

1. We call kernel of f and denote Ker(f) the subset of E defined as follows:

$$Ker(f) = \{X \in E, f(X) = 0_F\} = f^{-1}(\{0_F\})$$

Note: $f^{-1}()$ is NOT the inverse of f beacause f is not necessarily bijective.

2. We call image of f and denote Im(f) the subset of F defined as follows:

$$Im(f) = \{f(X), X \in E\} = \{Y \in F, \exists X \in E, f(X) = Y\}$$

2.2 Example

$$f \colon R^2 \longrightarrow R^3 \qquad \qquad \boxed{1} \quad f \in \mathcal{L}(R^2, R^3)?$$

$$\begin{pmatrix} x \\ y \end{pmatrix} \longmapsto \begin{pmatrix} x \\ 0 \\ y \end{pmatrix} \qquad \boxed{2} \quad \text{Kerf} = ?$$

$$\boxed{3} \quad \text{Imf} = ?$$

① Necessary condition:
$$f(0_E) = 0_F$$
: $f(0_{R^2}) = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \rightarrow \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$?
$$\forall (\alpha, X, Y) \in \mathbb{R} \times \mathbb{R}^2 \times \mathbb{R}^2, X = \begin{pmatrix} x \\ y \end{pmatrix} \text{ and } Y = \begin{pmatrix} x' \\ y' \end{pmatrix}, x, y, x', y' \in \mathbb{R}$$

$$f(\alpha \cdot X + Y) = \begin{pmatrix} \alpha \cdot x + x' \\ \alpha \cdot y + y' \end{pmatrix} = \begin{pmatrix} \alpha \cdot x + x' \\ 0 \\ \alpha \cdot y + y' \end{pmatrix} = \alpha \cdot \begin{pmatrix} x \\ 0 \\ y \end{pmatrix} + \begin{pmatrix} x' \\ 0 \\ y' \end{pmatrix} = \alpha \cdot f(X) + f(Y)$$

so 1
$$f \in \mathcal{L}(R^2, R^3)$$
 \checkmark

2.3 Proposition

1. Let $f \in \mathcal{L}(E, F)$ and $g \in \mathcal{L}(F, G)$. Then:

$$g \circ f \in \mathcal{L}(E,G)$$

- 2. If f is bijectif then f^{-1} is bijective and $f^{-1} \in \mathcal{L}(F, E)$
- 3. $\mathcal{L}(E, F)$ is a $\mathbb{K} VS$:

$$\mathcal{L}(E,F): \quad E \longrightarrow F$$

$$X \mapsto B_F \in \mathcal{L}(F,E)$$

$$\forall (\alpha, f, g) \in \mathbb{K} \times \mathcal{L}^2(E,F)$$

$$\alpha \cdot f + g \in \mathcal{L}(E,F)$$