ĐỀ KHỞI ĐỘNG 02

Câu 1: Nghiệm của phương trình $\log_2(2x-6)=3$ là:

A.
$$x = 6$$

B.
$$x = 9$$

C.
$$x = 8$$

D.
$$x = 7$$

Câu 2: Tập xác định của hàm số $y = 7^x$ là

$$\mathbf{A}.(0;+\infty)$$

$$\mathbf{B}.\,\mathbb{R}$$

$$\mathbf{C}.[0;+\infty)$$

$$\mathbf{D}.\mathbb{R}\setminus\{0\}$$

Câu 3: Họ nguyên hàm của hàm số $f(x) = -\cos x$ là

$$\mathbf{A} - \cos x + C$$

B.
$$\cos x + C$$

$$\mathbf{C} \cdot \sin x + C$$

$$\mathbf{D} \cdot -\sin x + C$$

Câu 4: Gọi S là diện tích của hình phẳng giới hạn bởi các đường $y = 3^x$, y = 0, x = 0, x = 2. Mệnh đề nào dưới đây đúng?

$$\mathbf{A.}\,S = \int_{0}^{2} 3^{x} dx$$

$$\mathbf{B.}\,S = \pi \int_{0}^{2} 3^{2x} dx$$

A.
$$S = \int_{0}^{2} 3^{x} dx$$
 B. $S = \pi \int_{0}^{2} 3^{2x} dx$ **C.** $S = \pi \int_{0}^{2} 3^{x} dx$ **D.** $S = \int_{0}^{2} 3^{2x} dx$

D.
$$S = \int_{0}^{2} 3^{2x} dx$$

Câu 5: Cho *a* là số thực dương khác 1. Mệnh đề nào dưới đây đúng?

$$\mathbf{A.} \, \log_a a^5 = 3$$

A.
$$\log_a a^5 = 5$$
 B. $\log_a a^5 = -\frac{1}{5}$ **C.** $\log_a a^5 = -5$ **D.** $\log_a a^5 = \frac{1}{5}$

C.
$$\log_a a^5 = -5$$

D.
$$\log_a a^5 = \frac{1}{5}$$

Câu 6: Cho hàm số bậc ba y = f(x) có đồ thị là đường cong trong hình vẽ

Điểm cực tiểu của đồ thị hàm số đã cho là

A.
$$x = -1$$

C.
$$x = 1$$

D.
$$(-1;-1)$$

Câu 7: Trong không gian Oxyz, cho hai điểm A(1,-2,3), B(2,5,4). Độ dài của \overrightarrow{AB} bằng

A.
$$\sqrt{51}$$

Câu 8: Cho hàm số $y = ax^4 + bx^2 + c$ có đồ thị là đường cong hình bên.

Giá trị cực đại của hàm số đã cho là

B.
$$-1$$
.

Câu 9: Tập xác định của hàm số $y = \log_2(x-3)$ là:

A.
$$(-\infty; +\infty)$$
. **B.** $(3; +\infty)$.

B.
$$(3;+\infty)$$
.

C.
$$[3;+\infty)$$
.

D.
$$(0;+\infty)$$

Câu 10: Hàm số nào dưới đây đồng biến trên tập xác định của nó?

A.
$$y = \left(\sqrt{2}\right)^x$$
. **B.** $y = \left(\frac{2}{3}\right)^x$. **C.** $y = \left(\frac{e}{\pi}\right)^x$.

B.
$$y = \left(\frac{2}{3}\right)^x$$

$$\mathbf{C.} \ \ y = \left(\frac{e}{\pi}\right)^x$$

D.
$$y = (0,5)^x$$

Câu 11: Đồ thị của hàm số nào dưới đây có dạng như đường cong trong hình bên?

B.
$$y = -x^3 + 3x$$
.

C.
$$y = x^3 - 3x$$
.

D.
$$v = 3x^4 - 2x^2$$
.

Câu 12: Cho khối hộp chữ nhật có các cạnh là 3,4,5. Thể tích của khối hộp chữ nhật đã cho bằng

- **A.** 6.
- **B.** 20.
- **C.** 60.
- **D.** 12.

Câu 13: Cho cấp số nhân (u_n) với $u_1 = 3$ và công bội q = 5. Giá trị của u_2 bằng

A. 8

B. 15

D. 3^{5}

Câu 14: Biểu thức $P = \sqrt[3]{x.\sqrt[4]{x}}, (x > 0)$ viết dưới dạng lũy thừa với số mũ hữu tỷ là:

A.
$$P = x^{\frac{5}{12}}$$

B.
$$P = x^{\frac{1}{12}}$$

$$\mathbf{C.}\,P = x^{\frac{1}{7}}$$

D.
$$P = x^{\frac{5}{4}}$$

Câu 15: Cho hàm số f(x) liên tục trên $\mathbb{R}\setminus\{1\}$ và có bảng xét dấu của f'(x) như sau:

Số điểm cực trị của hàm số đã cho là

D.2

Câu 16: Trên khoảng $(0; +\infty)$, đạo hàm của hàm số $y = x^{\frac{\pi}{3}}$ là

A.
$$y = \frac{3}{7}x^{\frac{7}{3}}$$

A.
$$y = \frac{3}{7}x^{\frac{7}{3}}$$
 B. $y = \frac{4}{3}x^{-\frac{1}{3}}$ **C.** $y = \frac{3}{4}x^{\frac{1}{3}}$

C.
$$y = \frac{3}{4}x^{\frac{1}{3}}$$

D.
$$y = \frac{4}{3}x^{\frac{1}{3}}$$

Câu 17: Giá trị nhỏ nhất của hàm số $f(x) = x^4 - 24x^2 - 4$ trên [0;19] bằng:

- A.-150
- B.-148
- C.-149
- **D.**-144

Câu 18: Đồ thị hàm số $y = x^3 + 7x + 8$ cắt trục hoành tại bao nhiều điểm có hoành độ âm

- $\mathbf{A.0}$
- **B.**1

D.3

Câu 19: Trong không gian Oxyz, cho các điểm M(1;2;-3), N(3;2;4). Độ dài đoạn thẳng MN bằng

- **B.** $2\sqrt{13}$
- **C.** $2\sqrt{53}$
- **D.** $3\sqrt{6}$

Câu 20: Đường cong trong hình vẽ là đồ thị của hàm số nào dưới đây?

- **A.** $y = \frac{x+2}{x-1}$ **B.** $y = \frac{x-2}{x+1}$
- **C.** $y = \frac{x-2}{x-1}$

Câu 21: Cho hàm số y = f(x) có bảng biến thiên như sau:

Số đường tiệm cận đứng và tiệm cận ngang của đồ thị hàm số đã cho là

D. 1

Câu 22: Tập nghiệm của bất phương trình $\left(\frac{3}{8}\right)^{4} < 48$ là

- **A.** $S = \left[-\infty; \log_{\frac{3}{2}} 48 \right]$ **B.** $S = \left[-\infty; \log_{\frac{3}{2}} 48 \right]$ **C.** $S = \left[\log_{\frac{3}{2}} 48; +\infty \right]$ **D.** $S = \left[\log_{\frac{3}{2}} 48; +\infty \right]$

Câu 23: Cho hàm số $f(x) = \cos x - 4x^3$. Khẳng định nào dưới đây đúng?

- $\mathbf{A.} \int f(x) dx = \cos x x^4 + C$
- $\mathbf{B.} \int f(x) dx = -\sin x x^4 + C$
- **C.** $\int f(x) dx = \sin x 12x^2 + C$
- $\mathbf{D.} \int f(x) dx = \sin x x^4 + C$

Câu 24: Trong không gian Oxyz, cho mặt cầu (S): $x^2 + y^2 + z^2 + 2x - 4y - 6z - 2 = 0$. Tọa độ tâm I và bán kính R của mặt cầu (S) là

- **A.** I(-1;2;3), R = 4 **B.** I(1;-2;-3), R = 4 **C.** I(-1;2;3), R = 16 **D.** I(1;-2;-3), R = 16

Câu 25: Cho hàm số y = f(x) có đồ thị như hình vẽ:

Diện tích S của miền được tô đậm được tính theo công thức nào sau đây?

- **A.** $S = -\int_{0}^{3} f(x) dx$. **B.** $S = -\int_{0}^{4} f(x) dx$. **C.** $S = \int_{0}^{3} f(x) dx$. **D.** $S = \int_{0}^{4} f(x) dx$.

Câu 26: Cho hình hộp chữ nhật ABCD.A'B'C'D' có AB = AD = a và $AA' = a\sqrt{2}$ (tham khảo hình vẽ). Góc giữa đường thẳng CA' và mặt phẳng (ABCD) bằng

- $A.90^{0}$
- $B.60^{\circ}$
- $C.30^{\circ}$
- $D.45^{\circ}$

Câu 27: Cho biết $\int_{-1}^{x} f(x) dx = 5$, khi đó $\int_{-1}^{2} (3x^2 + f(x)) dx$ bằng

A.12

- **C.**14

Câu 28: Hàm số $F(x) = e^{2x} + \cos 3x$ là nguyên hàm của hàm số nào sau đây?

A.
$$f(x) = 2e^{2x} + 3\sin 3x$$

B.
$$f(x) = \frac{1}{2}e^{2x} - \frac{1}{3}\sin 3x$$

C.
$$f(x) = 2e^{2x} - 3\sin 3x$$

D.
$$f(x) = e^{2x} - \sin 3x$$

Câu 29: Cho góc ở đỉnh của một hình nón bằng 60° . Gọi r, h, l lần lượt là bán kính đáy, đường cao, đường sinh của hình nón đó. Khẳng đinh nào sau đây đúng?

A.
$$l = 2r$$

B.
$$h = 2r$$

C.
$$l = r$$

$$\mathbf{D.} \ h = r$$

Câu 30: Giá trị lớn nhất của hàm số $f(x) = x + \frac{4}{x}$ trên đoạn [-6;-1] bằng

$$C.\frac{-20}{3}$$

Câu 31: Cho hàm số y = f(x) có đạo hàm $f'(x) = (-x+3)^2 (1-x)(x+3)$ với mọi $x \in \mathbb{R}$. Hàm số đã cho đồng biến trên khoảng nào dưới đây?

$$\mathbf{A.}(-\infty;-2)$$

$$\mathbf{C.}(3;+\infty)$$

$$\mathbf{D.}(-3;1)$$

Câu 32: Trong không gian Oxyz, cho điểm A(-1;4;2) và mặt phẳng (P): 3x-4y+2z-1=0.

Đường thẳng đi qua A và vuông góc với mặt phẳng (P) có phương trình là

$$\mathbf{A.} \frac{x-1}{3} = \frac{y+4}{-4} = \frac{z+2}{2}$$

B.
$$\frac{x+1}{3} = \frac{y-4}{4} = \frac{z-2}{2}$$

$$\mathbf{C} \cdot \frac{x+1}{3} = \frac{y-4}{-4} = \frac{z-2}{2}$$

D.
$$\frac{x-1}{3} = \frac{y-4}{-4} = \frac{z-2}{2}$$

Câu 33: Cho hàm số $y = f(x) = \frac{ax+b}{cx+d}(a,b,c,d \in \mathbb{R})$ có đồ thị là đường cong trong hình vẽ. Phương trình f(x)+2=0 có nghiệm là

B.
$$x = 2$$

C.
$$x = 0$$

D.
$$x = -2$$

Câu 34: Trong không gian Oxyz, mặt cầu (S) tâm I(-2;1;4) và tiếp xúc với mặt phẳng (P): 2x-2y+z-7=0 có phương trình là

A.(S):
$$(x-2)^2 + (y+1)^2 + (z+4)^2 =$$

A.(S):
$$(x-2)^2 + (y+1)^2 + (z+4)^2 = 3$$
 B.(S): $(x+2)^2 + (y-1)^2 + (z-4)^2 = 3$

C.(S):
$$(x+2)^2 + (y-1)^2 + (z-4)^2 = 9$$

D.
$$(S):(x-2)^2+(y+1)^2+(z+4)^2=9$$

Câu 35: Cho hình chóp S.ABC có $SA \perp (ABC)$, SA = AB = 2a, tam giác ABCvuông tại B (tham khảo hình vẽ). Khoảng cách từ A đến mặt phẳng (SBC) bằng

$$\mathbf{B}.a$$

$$\mathbf{C}.a\sqrt{3}$$

D.
$$a\sqrt{2}$$

Câu 36: Cho hàm số bậc ba y = f(x) có đồ thị là đường cong trong hình vẽ bên. Có bao nhiều giá trị nguyên của tham số m để phương trình 3f(x)+1=m có 3 nghiệm thực phân biệt?

B. 12.

D. 14.

Câu 37: Một nhóm học sinh gồm 9 học sinh nam và 3 học sinh nữ được phân công ngẫu nhiên vào 3 nhóm nhảy, mỗi nhóm nhảy gồm 4 học sinh. Xác suất để mỗi nhóm đều có 3 học sinh nam và 1 học sinh nữ bằng

A.
$$\frac{39}{55}$$

B.
$$\frac{28}{165}$$

$$\mathbf{C} \cdot \frac{16}{55}$$

D.
$$\frac{8}{165}$$

Câu 38: Cho a,b là các số thực dương thỏa mãn $a,b \neq 1, a^2 = b^5 \sqrt{a}$. Giá trị của biểu thức $P = \log_a b$ bằng

A.
$$P = \frac{3}{10}$$

B.
$$P = \frac{1}{2}$$

B.
$$P = \frac{1}{2}$$
 C. $P = \frac{10}{3}$ **D.** $P = \frac{15}{2}$

D.
$$P = \frac{15}{2}$$

Câu 39: Cho hai số thực a, b đều lớn hơn 1 thỏa mãn $\frac{1}{\log_{ab} a} + \frac{1}{\log_{4 - b} b} = \frac{9}{4}$. Khi đó $\log_a b$ bằng

B.
$$\frac{1}{4}$$

$$C.\frac{1}{2}$$

Câu 40: Cho hàm số $y = \frac{x+1}{x^2 + x + m}$. Số giá trị nguyên của tham số $m \in [-20; 20]$ để hàm số đã cho nghịch biến trên khoảng (-1;1) là

Câu 41: Tất cả giá trị thực của tham số m để đồ thị hàm số $y = x^4 - (3m+4)x^2 + m^2$ cắt trục hoành tại bốn điểm phân biệt là

A.
$$m \in (-\infty; -4) \cup \left(-\frac{5}{4}; 0\right) \cup (0; +\infty)$$
. **B.** $m \in \left(-\frac{4}{3}; 0\right) \cup (0; +\infty)$.

B.
$$m \in \left(-\frac{4}{3}; 0\right) \cup \left(0; +\infty\right)$$

C.
$$m \in \left(-\frac{4}{5}; 0\right) \cup (0; +\infty)$$
.

D.
$$m \in \mathbb{R} \setminus \{0\}$$

Câu 42: Cho hình lăng trụ đứng ABC.A'B'C' có đáy ABC là tam giác vuông cân tại B, AB = a. Biết rằng góc giữa hai mặt phẳng (ACC') và (AB'C') bằng 60°. Thể tích khối chóp B'.ACC'A' bằng

A.
$$\frac{a^3}{2}$$
.

B.
$$\frac{a^3}{6}$$
.

B.
$$\frac{a^3}{6}$$
. **C.** $\frac{a^3\sqrt{3}}{3}$. **D.** $\frac{a^3}{3}$.

D.
$$\frac{a^3}{3}$$

Câu 43: Cho hai hàm số y = f(x), y = g(x). Biết đồ thị hai hàm số $f'(x) = ax^3 + bx^2 + cx + d(a > 0)$ và $g'(x) = qx^2 + nx + p, (q \neq 0)$ cắt nhau tại ba điểm có hoành độ 0;1;2. Hình phẳng giới hạn bởi đồ thị hàm số y = f'(x), y = g'(x) có diện tích bằng 10 và f(2) = g(2). Diện tích hình phẳng giới hạn bởi các đồ thị hàm số y = f(x) và y = g(x) bằng

A.
$$\frac{4}{15}$$

B.
$$\frac{8}{15}$$
 C. $\frac{16}{3}$

$$\mathbf{C} \cdot \frac{16}{3}$$

D.
$$\frac{10}{3}$$

Câu 44: Cho hàm số y = f(x) liên tục trên $\mathbb{R} \setminus \{-1; -2\}$ thỏa mãn $(x^2 + 3x + 2) f'(x) + f(x) = x^2 + x - 2$ với mọi $x \in \mathbb{R} \setminus \{-1; -2\}$ và f(-3) = 0. Khi đó giá trị của f(0) là

A.
$$6 - 6 \ln 2$$

B.
$$6 - 3 \ln 2$$

C.
$$-3 \ln 2$$

D.
$$3 - 6 \ln 2$$

Câu 45: Trong không gian Oxyz, cho đường thẳng (d): $\frac{x-1}{2} = \frac{y+1}{2} = \frac{z-1}{1}$ và mặt phẳng (P): x+y+z+3=0. Gọi (d') là hình chiếu vuông góc của (d) lên mặt phẳng (P). Lấy M(a;b;1)thuộc (d'). Tính 2a + 3b

Câu 46: Có bao nhiều giá trị nguyên của tham số m trong đoạn [-10;10] để hàm số $y = \left| \frac{mx+3}{x+m+2} \right|$ đồng biến trên khoảng $(1;+\infty)$?

Câu 47: Cho hàm số y = f'(x) có đồ thị như hình vẽ. Có bao nhiều giá trị nguyên dương của tham số m để hàm số $y = \left| 2f(\ln x) - \ln^2 x + 1 - m \right|$ nghịch biến trên (1;e), biết f(1)=2?

Câu 48: Trong không gian Oxyz, cho mặt cầu $(S): x^2 + y^2 + z^2 - 6x - 4y - 2z - 11 = 0$ và điểm M(0;-2;1). Gọi d_1 , d_2 , d_3 là ba đường thẳng thay đổi không đồng phẳng cùng đi qua điểm M và lần lượt cắt mặt cầu (S) tại điểm thứ hai là A, B, C. Thể tích của tứ diện MABC đạt giá trị lớn nhất bằng

A.
$$\frac{50\sqrt{3}}{9}$$

A.
$$\frac{50\sqrt{3}}{9}$$
. **B.** $\frac{1000\sqrt{3}}{27}$. **C.** $\frac{100\sqrt{3}}{9}$.

C.
$$\frac{100\sqrt{3}}{9}$$

D.
$$\frac{500\sqrt{3}}{27}$$
.

Câu 49: Tìm số các giá trị nguyên của x sao cho với mỗi x tồn tại đúng 5 số nguyên y thỏa mãn $3^{y^2-|x-2y|} \le \log_{y^2+3} (|x-2y|+3)$

Câu 50: Cho hàm số y = f(x) liên tục trên \mathbb{R} và thỏa mãn

 $\sin x f(\cos x) + \cos x f(\sin x) = \sin 2x - \frac{1}{3}\sin^3 2x \text{ v\'oi } \forall x \in \mathbb{R} \text{ . Khi d\'o } I = \int_0^1 f(x) dx \text{ bằng}$

A.
$$\frac{1}{6}$$
.

C.
$$\frac{7}{18}$$

D.
$$\frac{1}{3}$$
.

------HÉT-----

Tài Liệu Ôn Thi Group

BẢNG ĐÁP ÁN

1.D	2.B	3.D	4.A	5.A	6.D	7.A	8.D	9.B	10.A
11.B	12.C	13.B	14.A	15.D	16.D	17.B	18.B	19.A	20.A
21.C	22.D	23.D	24.A	25.A	26.D	27.C	28.C	29.A	30.D
31.D	32.C	33.C	34.C	35.D	36.A	37.C	38.A	39.C	40.C
41.C	42.D	43.C	44.A	45.B	46.A	47.C	48.B	49.A	50.C