

Growth of Diamond film by MPCVD Process for Detector Applications

by

Shyam Kumar*, M. Jadhav, K. Das Gupta, B.P. Singh, R. Varma IIT Bombay

Topics

- ➤ Why diamond?
- ➤ Comparison of Silicon and Diamond
- ➤ Diamond as Time of flight detector
- >Issues with Diamond
- ➤ Growth of Diamond film by MPCVD Process
- >Future Plan

Why Diamond?

- > LHC (2008), $L = 10^{34}$ /cm²sec
 - ➤ 14 TeV pp Collider, 25 ns bunch spacing

10 Years
$$\phi(r = 4 \ cm)$$
 500 fb⁻¹

$$\sim 3\times 10^{15}\ /cm^2$$

LHC upgrade: Super LHC

$$L = 10^{35} / cm^2 sec$$
5 Years
$$\phi(r = 4 cm)$$
2500 fb⁻¹

$$\sim 1.6 \times 10^{16} / cm^2$$

Radiation hard detector with High rate Ref: Development of Radiation Hard Si Detectors, capabilities is required=>Diamond Dr. Ajay K. Srivastava Hamburg, D-22761, Germany

Comparison of Silicon and Diamond

Silicon	Diamond	Effect in Diamond
1.12	5.45	Leakage current is very
		small and No cooling
		required
1450	2200	Signal is very fast
500	1600	
11.9	5.7	Low Capacitance and
		noise
21	43	Radiation hardness is
		high
3.6	13.6	Smaller signal
89	36	Smaller signal
100 (Single crys-	100% for Single	Smaller signal
tal)	Crystal & 50% for	
	Polycrystalline	
1.5	22	No cooling required
	1.12 1450 500 11.9 21 3.6 89 100 (Single crystal)	1.12 5.45 1450 2200 500 1600 11.9 5.7 21 43 3.6 13.6 89 36 100 (Single crystal & 50% for Polycrystalline Crystal & 50% for Polycrystalline

Ref: Application of sCVD diamonds as beam condition monitors, BI Seminar ,23 rd Nov 2012

Two pieces of Si and Diamond of thickness d= 300 μm and area 1× 1 cm^2 and apply 100 V after making Ohmic contact

$$R = \frac{\rho d}{A}$$
 and $I = \frac{V}{R}$

For Silicon: $\rho = 6.4 \times 10^2 \Omega m \ at \ 20 \ ^{\circ}C$

$$R = \frac{6.4 \times 10^2 \times 300 \times 10^{-6}}{10^{-4}} = 1920 \,\Omega$$

Leakage current $I = \frac{100 \text{ V}}{1920 \Omega} = 0.0521 \text{ A} = 52.1 \text{ mA}$

For Diamond: $\rho = 1 \times 10^{12} \Omega m \ at \ 20 \ ^{\circ}C$

$$R = \frac{1 \times 10^{12} \times 300 \times 10^{-6}}{10^{-4}} = 3 \times 10^{12} \Omega$$

Leakage current $I = \frac{100 \text{ V}}{3 \times 10^{12} \Omega} = 33.33 \times 10^{-12} A = 33.33 \text{ pA}$

F. Borchelt et al, Nuclear Instruments and Methods in Physics Research A 354 (1995) 318-327

- ➤ Higher resistivity of diamond => No P-n Junction required as in case of Silicon
- Average Energy for e-hole pair creation is larger for diamond (ϵ = 13.6 eV) than Si (ϵ = 3.6 eV)=> Probability of creation of delta electrons will be small (not much disturb of charge center of gravity)
- Effective radiation length $\frac{d}{X_0}$ for diamond sensors $(X_0 = 12.14 \ cm)$ will be smaller than Silicon $(X_0 = 9.37 \ cm)$ for the same thickness (d) of sensors
- ➤ Radiation Damage in Silicon are of two types
- Surface Damage (due to Ionizing energy Loss)
- ➤ Bulk damage (due to Non-Ionizing energy Loss)
- \triangleright In diamond there will be no Surface damage as there is no SiO_2 layer
- The Bulk damage will also be small due to large atomic displacement energy than Si

Particle Identification: different Methods

- dedx vs p -up to maximum 1 GeV
- Time of flight method (β vs p or m_0^2) up to maximum 3 GeV or more depends on detector time resolution and track length
- \triangleright Cherenkov radiation ($\theta_c \ vs \ p$ or m_0^2)- for High Momentum
- > Transition Radiation detection -In much higher Momentum range
- ➤ Diamond can also be used as the sensor in time of flight PID detector as (time resolution<100 ps)
- Dedx vs Momentum in diamond

$$Separation (Sigma) = \frac{\left(\frac{dE}{dx}\right)_{A} - \left(\frac{dE}{dx}\right)_{B}}{\left(\frac{dE}{dx}\right)_{res}}$$

Energy resolution in diamond will not be good because of small charge

Diamond as Time of flight detector

Time of flight difference

$$\Delta t = \frac{L}{pc^2} (E_1 - E_2)$$

L-> Track length p-> Momentum

Diamond as ToF detector

696

If MP track length = 7.8 m & Time resolution (σ) <100 ps (diamond)

$$\Delta t \ge n \sigma$$

n- Separation plotted

Better separation for **Pion-Kaon and Protons**

Issues with Diamond

 \triangleright The comparison of Charge in 300 μm thick Si and Diamond by MIP

- For Silicon:
- The mean charge created in 300 $\mu m = 89 \times 300 = 26700$ e-h pairs
- ➤ We have silicon single crystal (CCE=100%) wafer of larger size
- For Diamond:
- The mean charge created in 300 $\mu m = 36 \times 300 = 10800$ e-h pairs
- We have single crystal diamond (CCE=100%) of $1 \times 1 cm^2$, but Polycrystalline diamond (CCE=50%) are of larger size
- ➤ So In diamond Extraction of signal from low charge is big issue!

Growth of Diamond film by MPCVD Process

MPCVD: Microwave Plasma Chemical Vapour Deposition

- > Electrode less process => small sheath potential
- ➤ Plasma density is high
- ➤ Stability of Plasma up to many days
- Ability to scale up the process over large substrates

Home made MPCVD System

- ➤ Growth Parameter of Film:
- ➤ Diamond Film Growth on Si (100)
- \triangleright Methane = 2 sccm
- ➤ Hydrogen = 250 sccm
- ➤ Pressure =77-91 torr
- ➤ Substrate temperature = 840-877 °C
- \triangleright Power Input = 0.5-0.6 kW
- \triangleright Power Reflected = 0 kW
- ➤ Deposition Time = 16 hrs
- ightharpoonup Thickness of film = 10 μ m

Film Grown in the Laboratory is characterized by X-ray diffraction (XRD), Raman Spectroscopy, Scanning Electron Microscope (SEM) and Energy dispersive X-ray Analysis (EDAX)

- > SEM Crossectional image shows the thickness of grown film = $10 \mu m$
- ➤ EDAX analysis shows the elemental composition of the film only carbon is present in the film

Future Plan

- Diamond shows excellent properties only charge CCE is low (50%) for large size diamond (polycrystalline)
- Diamond will be the future material for colliders where luminosity is very high but still R&D is required
- ➤ Doing simulation by using diamond as Tof detector in Pandaroot
- > We have grown polycrystalline diamond film on Si (100) up to thickness 10 μm
- We are also trying to grow single crystal diamond up to thickness 300 μm so that we can use it for detector applications

Thank You