Prédiction Conformelle UE TER semestre 2 Master 1

Emilio Picard

Sous la direction de Claire Boyer (LPSM)

Sorbonne Université

mai 2023

Table des matières

- Introduction
- Prédiction conformelle
- 3 Construction $\hat{\mathcal{C}}$ pour la **régression**
 - Full conformal prediction
 - Split Conformal
 - Jackknife+
 - Validation croisée+
 - Résumé
- 4 Construction \hat{S} pour la classification

Table des matières

- Introduction
- 2 Prédiction conformelle
- $oldsymbol{\Im}$ Construction $\hat{\mathcal{C}}$ pour la **régressio**n
 - Full conformal prediction
 - Split Conformal
 - Jackknife+
 - Validation croisée+
 - Résumé
- 4 Construction \hat{S} pour la classification

Introduction

- Machine learning et Apprentissage supervisé
 - But : estimer μ telle que $Y = \mu(X)$, (on notera $\hat{\mu}$)
 - ullet $\hat{\mu}$ obtenu par un algorithme ${\cal A}$ entraîné sur des données d'entraînement
 - Variable Y :
 - Quantitative (continue) → Régression
 - ullet Qualitative (discrète) o Classification
 - $(X_i, Y_i)_{i=1,...,n}$ iid suivant une loi \mathcal{P}_{XY} inconnue.

- Importance quantification d'incertitude
 - Fiabilité/incertitude de l'algorithme A
 - Incertitude de la distribution \mathcal{P}_{XY}

Introduction

- Machine learning et Apprentissage supervisé
 - But : estimer μ telle que $Y = \mu(X)$, (on notera $\hat{\mu}$)
 - ullet $\hat{\mu}$ obtenu par un algorithme ${\cal A}$ entraîné sur des données d'entraînement
 - Variable Y :
 - Quantitative (continue) → Régression
 - ullet Qualitative (discrète) o Classification
 - $(X_i, Y_i)_{i=1,...,n}$ iid suivant une loi \mathcal{P}_{XY} inconnue.

- Importance quantification d'incertitude
 - ullet Fiabilité/incertitude de l'algorithme ${\cal A}$
 - Incertitude de la distribution \mathcal{P}_{XY}

Table des matières

- Introduction
- 2 Prédiction conformelle
- $oldsymbol{\Im}$ Construction $\hat{\mathcal{C}}$ pour la **régressio**n
 - Full conformal prediction
 - Split Conformal
 - Jackknife+
 - Validation croisée+
 - Résumé
- 4 Construction \hat{S} pour la classification

Prédiction Conformelle - Exemples

Exemple de régression

Attributs connus:

- Vagues de chaleurs
- Fréquence anciens tsunami

But : "A 95% sûr, prochain tsunami îles salomon entre Mai 2024 et octobre 2024", au lieu de : "5 juillet 2024" et se tromper

Exemple de Classification

Trier des images

- Entrées : images (C étiquettes possibles)
- Sorties (étiquettes) : renvoyer un ensemble d'étiquettes avec la bonne étiquette dedans à 95%

On évite les mauvaises prédictions.

Prédiction Conformelle - Exemples

Exemple de régression

Attributs connus:

- Vagues de chaleurs
- Fréquence anciens tsunami

But : "A 95% sûr, prochain tsunami îles salomon entre Mai 2024 et octobre 2024", au lieu de : "5 juillet 2024" et se tromper

Exemple de Classification

Trier des images.

- Entrées : images (C étiquettes possibles)
- Sorties (étiquettes) : renvoyer un ensemble d'étiquettes avec la bonne étiquette dedans à 95%

On évite les mauvaises prédictions.

Prédiction Conformelle - Objectif

Soit y un candidat pour X_{test} ($(X_{test}, y) \sim \mathcal{P}_{XY}$).

Objectif régression

Construire un intervalle de prédiction $\hat{\mathcal{C}}(X_{test})$ qui garantit :

$$\mathbb{P}\big(y\in\hat{\mathcal{C}}(X_{test})\big)\geq 1-\alpha.$$

Objectif classification

Construire un ensemble de prédiction $\hat{S}(X_{test})$ qui garantit :

$$\mathbb{P}(y \in \hat{\mathcal{S}}(X_{test})) \geqslant 1 - \alpha$$

Prédiction Conformelle - Objectif

Soit y un candidat pour X_{test} ($(X_{test}, y) \sim \mathcal{P}_{XY}$).

Objectif régression

Construire un intervalle de prédiction $\hat{\mathcal{C}}(X_{test})$ qui garantit :

$$\mathbb{P}\big(y \in \hat{\mathcal{C}}(X_{test})\big) \geq 1 - \alpha.$$

Objectif classification

Construire un ensemble de prédiction $\hat{\mathcal{S}}(X_{test})$ qui garantit :

$$\mathbb{P}(y \in \hat{\mathcal{S}}(X_{test})) \geqslant 1 - \alpha.$$

Table des matières

- Introduction
- Prédiction conformelle
- 3 Construction $\hat{\mathcal{C}}$ pour la **régression**
 - Full conformal prediction
 - Split Conformal
 - Jackknife+
 - Validation croisée+
 - Résumé
- 4 Construction \hat{S} pour la classification

Full conformal prediction

- Première méthode implémentée
- Ensemble de données $\mathcal{Z} = (X_i, Y_i)_{i=1,...,n}$
- But : Pour un X_{test} , tester des candidats y et construire un intervalle de prédiction avec ces candidats
- $\hat{\mathcal{C}}$ dépend des candidats y

Construction Full Conformal Prediction

Notation préliminaire : $q_{1-\alpha}(S) = q_{1-\alpha}(S_n)$, où $S_n(s) = \frac{1}{n} \sum_{i=1}^n \mathbb{1}_{\{S_i \leq s\}}$.

Méthode de construction pour le full conforma

Pour un candidat y :

- Entraı̂ner l'algorithme \mathcal{A} sur $\mathcal{Z} \cup (X_{test}, y)$, on obtient $\hat{\mu}_{y}$
- Sur $\{Z \cup (X_{test}, y)\}$, calculer les scores :

$$S^{(X_{test},y)}(X_i,Y_i) = |Y_i - \hat{\mu}_y(X_i)|, i \in \{1,\dots,n_{train}-1\}$$

 $S(X_{test},y) = |y - \hat{\mu}_y(X_{test})|$

(petit score = bonne prédiction)

- Calculer le quantile 1α des scores $S \cup \{\infty\}$, noté $q_{1-\alpha}(S \cup \{\infty\})$
- On inclut y dans $\hat{\mathcal{C}}(X_{test})$ si $S(X_{test}, y) \leq q_{1-\alpha}(\mathcal{S} \cup \{\infty\})$

Construction Full Conformal Prediction

Notation préliminaire : $q_{1-\alpha}(S) = q_{1-\alpha}(S_n)$, où $S_n(s) = \frac{1}{n} \sum_{i=1}^n \mathbb{1}_{\{S_i \leq s\}}$.

Méthode de construction pour le full conformal

Pour un candidat y :

- Entraı̂ner l'algorithme \mathcal{A} sur $\mathcal{Z} \cup (X_{test}, y)$, on obtient $\hat{\mu}_y$
- Sur $\{Z \cup (X_{test}, y)\}$, calculer les scores :

$$S^{(X_{test},y)}(X_i,Y_i) = |Y_i - \hat{\mu}_y(X_i)|, i \in \{1,\ldots,n_{train}-1\}$$

 $S(X_{test},y) = |y - \hat{\mu}_y(X_{test})|$

(petit score = bonne prédiction)

- Calculer le quantile 1α des scores $S \cup \{\infty\}$, noté $q_{1-\alpha}(S \cup \{\infty\})$
- On inclut y dans $\hat{\mathcal{C}}(X_{test})$ si $S(X_{test}, y) \leq q_{1-\alpha}(S \cup \{\infty\})$

Exemple Full conformal prediction

Conditions théoriques vérifiées

Théorème 1

Soit $(X_i, Y_i)_{i=1,...,n}$ iid. Pour un seuil $\alpha \in [0,1]$, et un couple (X_{test}, y) , \hat{C} ainsi construit vérifie :

$$\mathbb{P}(y \in \hat{\mathcal{C}}(X_{test})) \geq 1 - \alpha.$$

Lemme et démonstration. Cette démonstration repose sur un lemme des quantiles.

Lemme

Quantile lemma. Si $V_1, \ldots, V_n, V_{n+1}$ iid, alors $\forall \alpha \in [0, 1]$

$$\mathbb{P}(V_{n+1} \leq q_{1-\alpha}(V_{1:n} \cup \{\infty\})) \geq 1 - \alpha.$$

Conditions théoriques vérifiées

Théorème 1

Soit $(X_i, Y_i)_{i=1,...,n}$ iid. Pour un seuil $\alpha \in [0,1]$, et un couple (X_{test}, y) , \hat{C} ainsi construit vérifie :

$$\mathbb{P}(y \in \hat{\mathcal{C}}(X_{test})) \geq 1 - \alpha.$$

Lemme et démonstration. Cette démonstration repose sur un lemme des quantiles.

Lemme

Quantile lemma. Si $V_1, \ldots, V_n, V_{n+1}$ iid, alors $\forall \alpha \in [0, 1]$,

$$\mathbb{P}(V_{n+1} \leq q_{1-\alpha}(V_{1:n} \cup \{\infty\})) \geq 1 - \alpha.$$

Motivations pour le Split conformal

Full conformal prediction:

- ullet $\hat{\mu}$ réentraîné pour chaque candidat y
- Temps de calcul onéreux si beaucoup de données

Solution: Split Conformal Prediction (SCP).

- ullet Entraîner $\hat{\mu}$ une seule fois au total
- Diviser ensemble des données en 2 sous-ensembles
- Garanties théoriques vérifiées

Motivations pour le Split conformal

Full conformal prediction:

- ullet $\hat{\mu}$ réentraîné pour chaque candidat y
- Temps de calcul onéreux si beaucoup de données

Solution: Split Conformal Prediction (SCP).

- Entraîner $\hat{\mu}$ une seule fois au total
- Diviser ensemble des données en 2 sous-ensembles
- Garanties théoriques vérifiées

Construction algorithme Split Conformal

Méthode de construction pour le Split conformal

- Diviser les données en 2 : ensemble d'entraînement et ensemble de calibration
- Sur l'entraînement, entraîner A, ce qui nous donne $\hat{\mu}$
- Sur le calibration : Calculer les scores $S(X_i, Y_i), i \in \{1, ..., n_{cal}\}$
- ullet On construit $\hat{\mathcal{C}}$ de sorte que :

$$\hat{\mathcal{C}}(X_{test}) = [\hat{\mu}(X_{test}) \pm q_{1-\alpha}(S \cup \{\infty\})]$$

Remarque : intervalle indépendant du candidat *y* Conditions théoriques vérifiées avec théorème 1.

Construction algorithme Split Conformal

Méthode de construction pour le Split conformal

- Diviser les données en 2 : ensemble d'entraînement et ensemble de calibration
- Sur l'entraînement, entraîner A, ce qui nous donne $\hat{\mu}$
- Sur le calibration : Calculer les scores $S(X_i, Y_i), i \in \{1, ..., n_{cal}\}$
- ullet On construit $\hat{\mathcal{C}}$ de sorte que :

$$\hat{\mathcal{C}}(X_{test}) = [\hat{\mu}(X_{test}) \pm q_{1-\alpha}(S \cup \{\infty\})]$$

Remarque: intervalle indépendant du candidat y.

Conditions théoriques vérifiées avec théorème 1

Construction algorithme Split Conformal

Méthode de construction pour le Split conformal

- Diviser les données en 2 : ensemble d'entraînement et ensemble de calibration
- Sur l'entraînement, entraîner A, ce qui nous donne $\hat{\mu}$
- Sur le calibration : Calculer les scores $S(X_i, Y_i), i \in \{1, ..., n_{cal}\}$
- ullet On construit $\hat{\mathcal{C}}$ de sorte que :

$$\hat{\mathcal{C}}(X_{test}) = [\hat{\mu}(X_{test}) \pm q_{1-\alpha}(S \cup \{\infty\})]$$

Remarque: intervalle indépendant du candidat *y*. Conditions théoriques vérifiées avec théorème 1.

Motivation pour Jacknife +

Résumé SCP:

- Avantange :
 - Peu coûteux en calculs
 - $\hat{\mathcal{C}}$ indépendant du candidat y
- Inconvénients :
 - Mauvais intervalles
 - ② Gaspillage des données $\Rightarrow \hat{\mu}$ moins précis

Motivations pour Jackknife+ prédiction :

- Réutiliser des données si \mathcal{Z} petit \Rightarrow Jackknife+
- Meilleures garanties théoriques

Motivation pour Jacknife +

Résumé SCP:

- Avantange :
 - Peu coûteux en calculs
 - 2 $\hat{\mathcal{C}}$ indépendant du candidat y
- Inconvénients :
 - Mauvais intervalles
 - ② Gaspillage des données $\Rightarrow \hat{\mu}$ moins précis

Motivations pour Jackknife+ prédiction :

- Réutiliser des données si \mathcal{Z} petit \Rightarrow Jackknife+
- Meilleures garanties théoriques

Motivation pour Jacknife +

Résumé SCP:

- Avantange :
 - Peu coûteux en calculs
 - 2 $\hat{\mathcal{C}}$ indépendant du candidat y
- Inconvénients :
 - Mauvais intervalles
 - ② Gaspillage des données $\Rightarrow \hat{\mu}$ moins précis

Motivations pour Jackknife+ prédiction :

- Réutiliser des données si $\mathcal Z$ petit \Rightarrow Jackknife+
- Meilleures garanties théoriques

Approche naïve

Construction de $\hat{\mathcal{C}}$ na $\ddot{\mathbf{r}}$

Sur l'ensemble des données, on entraı̂ne A, puis on calcule les scores

$$S_i = |Y_i - \hat{\mu}(X_i)|, i = 1, ..., n$$

On considère ainsi

$$\hat{\mathcal{C}}(X_{test}) = [\hat{\mu}(X_{test}) \pm q_{1-\alpha}(\mathcal{S})].$$

Remarque

Overfitting de $\hat{\mu}$ sur l'ensemble d'entraı̂nement peu impliquer des mauvaises prédictions si peu de données.

Approche naïve

Construction de $\hat{\mathcal{C}}$ na $\ddot{\mathbf{r}}$

Sur l'ensemble des données, on entraı̂ne A, puis on calcule les scores

$$S_i = |Y_i - \hat{\mu}(X_i)|, i = 1, ..., n$$

On considère ainsi

$$\hat{\mathcal{C}}(X_{test}) = [\hat{\mu}(X_{test}) \pm q_{1-\alpha}(\mathcal{S})].$$

Remarque:

Overfitting de $\hat{\mu}$ sur l'ensemble d'entraı̂nement peu impliquer des mauvaises prédictions si peu de données.

Approche Jackknife +

Construction de \hat{C} avec Jackknife+

- Soit $\mathcal{D}_n = \{(X_1, Y_1), \dots, (X_n, Y_n)\}$ l'ensemble d'entraînement
- Pour chaque itération $i \in \{1, ..., n\}$:
 - 1 Entraı̂ner A_{-i} sur $D_n \setminus (X_i, Y_i)$ (méthode LOO)
 - Calculer les bornes inf et sup de l'IP à l'itération i :

$$S_{up[i]/down[i]} = \left\{ \hat{\mu}^{-i}(X_{test}) \pm \left| \hat{\mu}^{-i}(X_{test}) - Y_i \right| \right\}$$

• On construit l'intervalle de prédiction :

$$\hat{\mathcal{C}}(X_{new}) = \left[q_{\alpha/2}(\mathcal{S}_{down}); q_{1-\alpha/2}(\mathcal{S}_{up})\right]$$

Remarque: potentiel overfitting corrigé.

Approche Jackknife +

Construction de \hat{C} avec Jackknife+

- Soit $\mathcal{D}_n = \{(X_1, Y_1), \dots, (X_n, Y_n)\}$ l'ensemble d'entraînement
- Pour chaque itération $i \in \{1, ..., n\}$:
 - Entraı̂ner A_{-i} sur $D_n \setminus (X_i, Y_i)$ (méthode LOO)
 - 2 Calculer les bornes inf et sup de l'IP à l'itération i :

$$S_{up[i]/down[i]} = \left\{ \hat{\mu}^{-i}(X_{test}) \pm \left| \hat{\mu}^{-i}(X_{test}) - Y_i \right| \right\}$$

• On construit l'intervalle de prédiction :

$$\hat{\mathcal{C}}(X_{new}) = ig[q_{lpha/2}(\mathcal{S}_{down}); q_{1-lpha/2}(\mathcal{S}_{up})ig]$$

Remarque: potentiel overfitting corrigé.

Approche Jackknife +

Construction de \hat{C} avec Jackknife+

- Soit $\mathcal{D}_n = \{(X_1, Y_1), \dots, (X_n, Y_n)\}$ l'ensemble d'entraînement
- Pour chaque itération $i \in \{1, ..., n\}$:
 - 1 Entraı̂ner A_{-i} sur $D_n \setminus (X_i, Y_i)$ (méthode LOO)
 - 2 Calculer les bornes inf et sup de l'IP à l'itération i :

$$S_{up[i]/down[i]} = \left\{ \hat{\mu}^{-i}(X_{test}) \pm \left| \hat{\mu}^{-i}(X_{test}) - Y_i \right| \right\}$$

• On construit l'intervalle de prédiction :

$$\hat{\mathcal{C}}(X_{new}) = ig[q_{lpha/2}(\mathcal{S}_{down}); q_{1-lpha/2}(\mathcal{S}_{up})ig]$$

Remarque: potentiel overfitting corrigé.

Garanties théoriques

Théorème 2

Si $\mathcal{D}_n \cup (X_{test}, y)$ sont *iid*, alors on a la garantie

$$\mathbb{P}(y \in \hat{\mathcal{C}}(X_{new})) \geqslant 1 - \frac{\alpha}{2}.$$

Remarque:

On remarque que l'intervalle de prédiction est plus précis théoriquement (valeur seuil à $1-\frac{\alpha}{2}$).

Motivations pour Validation croisée +

- Avantages Jackknife+ :
 - Précis, bons résultats
 - Correction potential overfitting
- Inconvénients :

Temps de calculs onéreux, on entraı̂ne ${\mathcal A}$ pour chaque donnée de ${\mathcal Z}$

Une solution est la validation croisée+.

Motivations pour Validation croisée +

- Avantages Jackknife+ :
 - Précis. bons résultats
 - 2 Correction potential overfitting
- Inconvénients :

Temps de calculs onéreux, on entraîne ${\mathcal A}$ pour chaque donnée de ${\mathcal Z}$

Une solution est la validation croisée+.

Validation croisée+

Principe validation croisée - Exemple pour K=3

K	Dossier 1	Dossier 2	Dossier 3
1	Calibration	Entraînement	Entraînement
2	Entraînement	Calibration	Entraînement
3	Entraînement	Entraînement	Calibration

Validation croisée avec 3 dossiers

Avantages CV+

- ullet Même principe que Jacknife $+\Rightarrow$ bonnes garanties théoriques
- Moins cher en calculs, méthode optimale

Validation croisée+

Principe validation croisée - Exemple pour K=3

K	Dossier 1	Dossier 2	Dossier 3
1	Calibration	Entraînement	Entraînement
2	Entraînement	Calibration	Entraînement
3	Entraînement	Entraînement	Calibration

Validation croisée avec 3 dossiers

Avantages CV+

- \bullet Même principe que Jacknife+ \Rightarrow bonnes garanties théoriques
- Moins cher en calculs, méthode optimale

Approche CV+ prediction

Construction $\hat{\mathcal{C}}$ par validation croisée+

- Soit $\mathcal{D}_n = \{(X_1, Y_1), ..., (X_n, Y_n)\}$ l'ensemble d'entraînement
- Diviser \mathcal{D}_n en K dossiers $(D_1, ..., D_K)$
- Pour tout $k \in \{1, ..., K\}$: Entraı̂ner \mathcal{A}^{-D_k} sur $\mathcal{D}_n \setminus \mathcal{D}_k$ $\forall i \in \mathcal{D}_k$:
 - ① Calculer $S_i = |Y_i \hat{\mu}^{-D_k}(X_i)|$
 - ② Calculer les bornes inf et sup de l'IP à l'itération i : $S_{up[i]/down[i]} = \{\hat{\mu}^{-D_k}(X_{test}) \pm S_i\}$
- ullet On construit finalement $\hat{\mathcal{C}}^{CV+}$ tel que

$$\hat{\mathcal{C}}^{CV+}(X_{test}) = \left[q_{\alpha/2}(S_{down}); q_{1-\alpha/2}(S_{up})\right]$$

Remarque: Mêmes garanties théoriques que Jackknife+. Si K = n, CV+ = Jackknife+.

Approche CV+ prediction

Construction $\hat{\mathcal{C}}$ par validation croisée+

- Soit $\mathcal{D}_n = \{(X_1, Y_1), ..., (X_n, Y_n)\}$ l'ensemble d'entraînement
- Diviser \mathcal{D}_n en K dossiers $(D_1, ..., D_K)$
- Pour tout $k \in \{1, ..., K\}$: Entraîner \mathcal{A}^{-D_k} sur $\mathcal{D}_n \setminus \mathcal{D}_k$ $\forall i \in \mathcal{D}_k$:

 - ② Calculer les bornes inf et sup de l'IP à l'itération i : $S_{up[i]/down[i]} = \{\hat{\mu}^{-D_k}(X_{test}) \pm S_i\}$
- ullet On construit finalement $\hat{\mathcal{C}}^{CV+}$ tel que

$$\hat{\mathcal{C}}^{CV+}(X_{test}) = \left[q_{\alpha/2}(S_{down}); q_{1-\alpha/2}(S_{up})\right]$$

Remarque: Mêmes garanties théoriques que Jackknife+. Si K = n, CV+ = Jackknife+.

Approche CV+ prediction

Construction $\hat{\mathcal{C}}$ par validation croisée+

- Soit $\mathcal{D}_n = \{(X_1, Y_1), ..., (X_n, Y_n)\}$ l'ensemble d'entraînement
- Diviser \mathcal{D}_n en K dossiers $(D_1, ..., D_K)$
- Pour tout $k \in \{1, ..., K\}$: Entraîner \mathcal{A}^{-D_k} sur $\mathcal{D}_n \setminus \mathcal{D}_k$ $\forall i \in \mathcal{D}_k$:

 - **2** Calculer les bornes inf et sup de l'IP à l'itération i : $S_{up[i]/down[i]} = \{\hat{\mu}^{-D_k}(X_{test}) \pm S_i\}$
- ullet On construit finalement $\hat{\mathcal{C}}^{\mathcal{C}V+}$ tel que

$$\hat{\mathcal{C}}^{CV+}(X_{test}) = \left[q_{lpha/2}(S_{down}); q_{1-lpha/2}(S_{up})
ight]$$

Remarque: Mêmes garanties théoriques que Jackknife+. Si K = n, CV+ = Jackknife+.

Approche CV+ prediction

Construction $\hat{\mathcal{C}}$ par validation croisée+

- Soit $\mathcal{D}_n = \{(X_1, Y_1), ..., (X_n, Y_n)\}$ l'ensemble d'entraînement
- Diviser \mathcal{D}_n en K dossiers $(D_1, ..., D_K)$
- Pour tout $k \in \{1, ..., K\}$: Entraı̂ner \mathcal{A}^{-D_k} sur $\mathcal{D}_n \setminus \mathcal{D}_k$ $\forall i \in \mathcal{D}_k$:

 - ② Calculer les bornes inf et sup de l'IP à l'itération i : $S_{up[i]/down[i]} = \{\hat{\mu}^{-D_k}(X_{test}) \pm S_i\}$
- ullet On construit finalement $\hat{\mathcal{C}}^{\mathcal{C}V+}$ tel que

$$\hat{\mathcal{C}}^{CV+}(X_{test}) = \left[q_{lpha/2}(S_{down}); q_{1-lpha/2}(S_{up})\right]$$

Remarque: Mêmes garanties théoriques que Jackknife+. Si K = n. CV+ = Jackknife+.

Comparaison des méthodes en régression linéaire

Comparaison des méthodes pour les k-plus proches voisins

Résumé

Conclusion Régression

- 4 approches différentes
- Pour chacune des méthodes, garanties théoriques
- Classement en calculs (ordre croissant) :
 - Split conformal prediction
 - 2 CV+
 - Jackknife+
 - Full conformal prediction
- Classement en précision :
 - Full conformal prediction
 - 2 Jackknife+
 - CV+
 - Split conformal prediction
- Méthode optimale : CV+ prediction

Résumé

Conclusion Régression

- 4 approches différentes
- Pour chacune des méthodes, garanties théoriques
- Classement en calculs (ordre croissant) :
 - Split conformal prediction
 - 2 CV+
 - Jackknife+
 - Full conformal prediction
- Classement en précision :
 - Full conformal prediction
 - 2 Jackknife+
 - CV+
 - Split conformal prediction
- Méthode optimale : CV+ prediction

Résumé

Conclusion Régression

- 4 approches différentes
- Pour chacune des méthodes, garanties théoriques
- Classement en calculs (ordre croissant) :
 - Split conformal prediction
 - 2 CV+
 - Jackknife+
 - Full conformal prediction
- Classement en précision :
 - Full conformal prediction
 - 2 Jackknife+
 - CV+
 - Split conformal prediction
- Méthode optimale : CV+ prediction

Table des matières

- Introduction
- 2 Prédiction conformelle
- $oldsymbol{\Im}$ Construction $\hat{\mathcal{C}}$ pour la **régressio**n
 - Full conformal prediction
 - Split Conformal
 - Jackknife+
 - Validation croisée+
 - Résumé
- 4 Construction \hat{S} pour la classification

$\hat{\mathcal{S}}$ en classification

But

Construire des ensembles de prédiction à la place d'intervalles de prédiction pour un X_{test} donné.

 $\forall i \in \{1, ..., n\}, Y_i \in \mathcal{Y}, \text{ avec } \mathcal{Y} \text{ discret fini.}$

Remarque : Pour simplifier, on prendra $\mathcal{Y}=\{1,\ldots,C\}$. De plus, l'algorithme \mathcal{A} nous renverra $\hat{\pi}(X)=(\hat{\pi}_1(X),\ldots,\hat{\pi}_C(X))$, probabilités estimées pour chaque classe.

$\hat{\mathcal{S}}$ en classification

But

Construire des ensembles de prédiction à la place d'intervalles de prédiction pour un X_{test} donné.

 $\forall i \in \{1, ..., n\}, Y_i \in \mathcal{Y}, \text{ avec } \mathcal{Y} \text{ discret fini.}$

Remarque: Pour simplifier, on prendra $\mathcal{Y}=\{1,\ldots,C\}$. De plus, l'algorithme \mathcal{A} nous renverra $\hat{\pi}(X)=(\hat{\pi}_1(X),\ldots,\hat{\pi}_C(X))$, probabilités estimées pour chaque classe.

Construction $\hat{\mathcal{S}}$ avec SCP na $\ddot{\mathbf{r}}$

- Diviser l'ensemble des données en deux sous-ensembles, ensemble d'entraînement et de calibration
- Entraı̂ner \mathcal{A} sur l'ensemble d'entraı̂nement $\Rightarrow \hat{\pi}$
- Sur l'ensemble de calibration, on calcule les scores :

$$\forall i \in \{1, \dots, n_{cal}\}, \ S_i = S(X_i, Y_i) = 1 - \hat{\pi}_{Y_i}(X_i)$$

• Ensemble de prédiction :

$$\hat{\mathcal{S}}(X_{test}) = \{ y \text{ tels que } \mathsf{S}(X_{test}, y) \leqslant q_{1-lpha}(\mathsf{S}) \}$$

Exemple SCP naïf

Remarque : Il y a des données non prédites + score intuitif mais non performant \Rightarrow SCP adaptée.

Construction $\hat{\mathcal{S}}$ avec SCP adapté

- Diviser l'ensemble total (ensemble d'entraînement et de calibration)
- ullet Entraîner ${\cal A}$ sur l'ensemble d'entraînement, qui nous donne $\hat{\pi}$
- Pour tout $i \in \{1, \ldots, n_{cal}\}$:
 - ① Trier par ordre décroissant $\hat{\pi}_{\sigma_i(1)}(X_i) \geqslant \cdots \geqslant \hat{\pi}_{\sigma_i(C)}(X_i)$
 - 2 Calculer tous les scores $S_i = \sum_{k=1}^{\sigma_i^{-1}(Y_i)} \hat{\pi}_{\sigma_i(k)}(X_i)$
- On renvoie à la fin les classes $\sigma_{new}(1), ..., \sigma_{new}(r^*)$, où

$$r^{\star} = \operatorname{argmax}_{1 \leqslant r \leqslant C} \left\{ \sum_{k=1}^{r} \hat{\pi}_{\sigma_{new}(k)}(X_{new}) < q_{1-\alpha}(S) \right\} + 1$$

Remarque: Garanties théoriques.

Construction $\hat{\mathcal{S}}$ avec SCP adapté

- Diviser l'ensemble total (ensemble d'entraînement et de calibration)
- ullet Entraîner ${\cal A}$ sur l'ensemble d'entraînement, qui nous donne $\hat{\pi}$
- Pour tout $i \in \{1, \dots, n_{cal}\}$:
 - **①** Trier par ordre décroissant $\hat{\pi}_{\sigma_i(1)}(X_i) \geqslant \cdots \geqslant \hat{\pi}_{\sigma_i(C)}(X_i)$
 - **2** Calculer tous les scores $S_i = \sum_{k=1}^{\sigma_i^{-1}(Y_i)} \hat{\pi}_{\sigma_i(k)}(X_i)$
- On renvoie à la fin les classes $\sigma_{new}(1),...,\sigma_{new}(r^*)$, où

$$r^{\star} = \operatorname{argmax}_{1 \leqslant r \leqslant C} \left\{ \sum_{k=1}^{r} \hat{\pi}_{\sigma_{new}(k)}(X_{new}) < q_{1-\alpha}(S) \right\} + 1$$

Remarque : Garanties théoriques.

Construction $\hat{\mathcal{S}}$ avec SCP adapté

- Diviser l'ensemble total (ensemble d'entraînement et de calibration)
- ullet Entraîner ${\cal A}$ sur l'ensemble d'entraînement, qui nous donne $\hat{\pi}$
- Pour tout $i \in \{1, \dots, n_{cal}\}$:
 - **①** Trier par ordre décroissant $\hat{\pi}_{\sigma_i(1)}(X_i) \geqslant \cdots \geqslant \hat{\pi}_{\sigma_i(C)}(X_i)$
 - **2** Calculer tous les scores $S_i = \sum_{k=1}^{\sigma_i^{-1}(Y_i)} \hat{\pi}_{\sigma_i(k)}(X_i)$
- On renvoie à la fin les classes $\sigma_{new}(1),...,\sigma_{new}(r^*)$, où

$$r^{\star} = \operatorname{argmax}_{1 \leqslant r \leqslant C} \left\{ \sum_{k=1}^{r} \hat{\pi}_{\sigma_{new}(k)}(X_{new}) < q_{1-lpha}(S)
ight\} + 1$$

Remarque: Garanties théoriques.

Exemple SCP Adapté

MERCI POUR VOTRE ECOUTE