Data analysis on death by disease

Asifur Rahman

Contents

- Problem overview
- Data overview
- Exploratory data Analysis(EDA)
- Time Series
- Model Performance Summary
- Conclusion

Problem Overview

 Disease can change the picture of a country or world. As we have seen in 2021 because of covid out gdp went down and now things are getting normal and gdp becoming normal also.

So my main objective of this project figure out if there relationship predicting gdp with the death number caused by disease. Also i will build a time series model to predict future gdp in coming years.

Data Overview

4 datasets

- 1. 30 year data of death that cause by disease for all countries
- 2. 71 years gdp data of United States (from 1950 to 2021)
- 3. 30 years cancer death by type data for all countries
- 4. 30 years population data of all countries

Exploratory Data Analysis

 From 1990 to 2019 death caused by disease like cancer, cardiovascular disease, liver, alzheimer's, drug use disorder, diabetes have increased.

Death by decease

 meningitis disease, drowing, dirhea, maternal disorder, nutritional deficiencies death rate have been decreased in last 30 years

Sum of death by disease in last 30 years

Sum of death by type of cancer

Death rate by type of cancer in USA

cancer

- Cancer rate in Australia is about 579 per 100000 people
- USA cancer rate is 571 per 100000 and death rate is about 183 people per 100k

death rate by disease

country	disease	amount
Bulgaria	cardiovascular_diseases	11.302586
Lesotho	hiv_aids	5.078255
Hungary	n eop lasms	3.540913
Fiji	diabetes_mellitus	1.938482
Chad	diarrheal	1.904574
Central African Republic	tuberculosis	1.820255
Mali	neonatal_disorder	1.628125
Sierra Leone	malaria	1.499666
Nepal	chronic_respiratory_deasease	1.426123
Somalia	lower_respiratory_infection	1.343720
Japan	alzhimers_disease	1.299650

1.299650	alzhimers_disease	Japan
1.000000	PopTotal	Afghanistan
0.992566	chronic_kidney_disease	Mauritius
0.756181	nutritional_deficiencies	Mali
0.755296	digestive_disease	Romania
0.739377	protein_energy_malnutrition	Mali
0.641606	road_injuries	Central African Republic
0.638637	conflict_and_terrorism	Afghanistan
0.623932	cirrohosis_liver_deasease	Egypt
0.472159	interpersonal_violence	El Salvador
0.346427	self_harm	Lesotho
0.333429	meningitis	Niger
0.314472	alcohol_use_disorders	Belarus
0.203108	maternal_disorders	Chad
0.199708	drug_use_disorders	United States
0.181719	drowing	Solomon Islands
0.154160	parkinsons_disease	Germany
0.128374	force_of_nature	Bahamas

clustering

Countries can be divided within 4 different clusters.

Cluster

1. Cluster 3

Turkey, Azerbaijan, Cyprus, Lebanon

2. Cluster 1

Iceland, Greece, Ireland, Italy

3. Cluster 0

Mali, Lesotho, Nigerm Guinea

4. Cluster 2

Russia, Kazakhstan, Belarus, Greenland

Predicting gdp by death rate

Random forest have score better than all other model. Its have 100 percent accuracy on train and in test almost 99 percent. Also precision and recall score have score close to 100.

	model	train_score	test_score	recall_score_train	recall_score_test	precision_train	precision_test	cross_val_score
0	Logistic_Regression	0.835486	0.814669	0.548443	0.479839	0.908309	0.904943	0.827619
1	Tuned_logreg	0.863841	0.844794	0.659170	0.598790	0.893318	0.886567	0.859064
2	knn	0.918866	0.863130	0.826990	0.717742	0.914833	0.837647	0.845593
3	tuned_knn	1.000000	0.849378	1.000000	0.665323	1.000000	0.837563	0.852892
4	Decision_Tree	1.000000	0.971185	1.000000	0.949597	1.000000	0.961224	0.969681
5	tuned_decision_tree	0.729927	0.719057	0.925606	0.915323	0.549846	0.539834	0.728521
6	bagged_d_tree	0.999719	0.979699	0.999135	0.951613	1.000000	0.985386	0.975009
7	tuned_bagged_d_tree	0.996070	0.979699	0.992215	0.955645	0.995660	0.981366	0.974450
8	$random_forest$	1.000000	0.985593	1.000000	0.971774	1.000000	0.983673	0.983154
9	tuned_random_forest	0.999439	0.983628	0.998270	0.961694	1.000000	0.987578	0.982873
10	ada_boost	0.948344	0.922069	0.906574	0.864919	0.932384	0.891892	0.934581
11	tuned_ada_boost	0.742841	0.744597	0.892734	0.891129	0.565789	0.568123	0.759401
12	svc	0.765020	0.754420	0.294118	0.266129	0.941828	0.923077	0.760245
13	Gradient_Boost	0.989613	0.967256	0.976644	0.935484	0.991220	0.962656	0.963781
14	tuned_gradient_boost	0.992139	0.967256	0.981834	0.935484	0.993870	0.962656	0.965185

Confusion metrics

1. Base accuracy score was 31 percent

Feature importance

 These specific feature have larger effect on our model that is being used to predict gdp.

Forecasting next 4 years gdp

Conclusion

We can conclude that from cardiovascular and lower respiratory infection people are dying much more than other disease. If we compare the death rate from 1990 to 2019 we can see that some disease death rate are decreasing and some of them are increasing. The percentage of death by cancer, liver disease, cardiovascular, diabetes are increasing day by day. And death rate from disease like Malaria, diarrhea is decreasing all over the world.

Most of the developed country have high death rate from cancer, cardiovascular, alzheimer's disease, parkinson's disease and very low in diarrhea, malaria