ANALIZA MATEMATYCZNA

LISTA ZADAŃ 4

28.10.2019

(1) Udowodnij nierówność Bernoulliego: dla $x \ge 0$ oraz dowolnego $n \in \mathbb{N}$ zachodzi $(1+x)^n \ge 1 + nx.$

(2) Pokaż, że dla x > 0 i dowolnego $n \in \mathbb{N}$ zachodzi

$$(1+x)^n > 1 + \frac{n(n-1)}{2}x^2.$$

(3) Udowodnij, że dla dowolnego $n \in \mathbb{N}$ zachodzą równości

(a)
$$\binom{n}{0} + \binom{n}{1} + \dots + \binom{n}{n} = 2^n,$$

(b)
$$\sum_{\substack{k=1\\k\text{-pienarzyste}}}^{n} \binom{n}{k} = \sum_{\substack{k=0\\k\text{-parzyste}}}^{n} \binom{n}{k}.$$

(4) Oblicz granice (wsk.: wykorzystaj definicję liczby e):

(a)
$$\lim_{n \to \infty} \left(1 + \frac{1}{n^2}\right)^n$$
, (b) $\lim_{n \to \infty} \left(1 - \frac{1}{n}\right)^n$.
(5) Znajdź granice ciągów:

(a)
$$a_n = \sqrt[n]{2^n + 3^n}$$
, (b) $a_n = \sqrt[n]{2^n + 3^n + 5^n}$.

(6) Dla jakich liczb rzeczywistych α istnieje granica

$$\lim_{n\to\infty}\sqrt[3]{n+n^{\alpha}}-\sqrt[3]{n}.$$

Oblicz granicę dla tych α dla których istnieje.

(7) Oblicz granicę:
$$\lim_{n \to \infty} \frac{1^2 + 2^2 + 3^2 + \dots + n^2}{n^3}.$$
(8) Oblicz granicą giagów:

(8) Oblicz granice ciągów:
(a)
$$a_n = \frac{\sin^2 n}{n}$$
, (b) $a_n = \sqrt[n]{\log n}$, (c) $a_n = \frac{1}{n^2} \log \left(1 + \frac{(-1)^n}{n}\right)$.

- (9) Udowodnij, że jeżeli $a_n \xrightarrow{n\to\infty} g$ to także $|a_n| \xrightarrow{n\to\infty} g^{n-1}$ Pokaż też, że powyższe twierdzenie nie działa w drugą stronę, to znaczy znajdź ciąg $\{a_n\}$ który nie jest
- zbieżny, chociaż $\{|a_n|\}$ jest zbieżny. (10) Udowodnij, że jeżeli $|a_n| \xrightarrow{n \to \infty} 0$ to także $a_n \xrightarrow{n \to \infty} 0$.
- (11) Udowodnij, że jeżeli ciąg $\{a_n\}$ jest zbieżny i $a_n \geq 0$, to

$$\lim_{n\to\infty} a_n \ge 0.$$

(12) Udowodnij, że jeżeli ciągi $\{a_n\}$ i $\{b_n\}$ spełniają $a_n \leq b_n$ i są zbieżne, to

$$\lim_{n \to \infty} a_n \le \lim_{n \to \infty} b_n.$$

(13) Pokaż, że jeżeli $a_n \xrightarrow{n\to\infty} 0$ oraz ciąg $\{b_n\}$ jest ograniczony, to

$$\lim_{n \to \infty} (a_n \cdot b_n) = 0.$$

(14) Pokaż, że jeżeli $a_n>0$ dla wszystkich $n\in \mathbf{N},$ oraz $a_n\xrightarrow{n\to\infty}~0$ to

$$\lim_{n \to \infty} \frac{1}{a_n} = \infty$$

(15) Niech $a_n=\frac{\sqrt{n^2+n}}{n}$ oraz $\epsilon=\frac{1}{100}$. Znajdź $n_0\in \mathbf{N}$ takie, że dla $n\geq n_0$ zachodzi $|a_n-1|<\epsilon$.