MAC-015 – Atividade 3 – 2024/3

Resistência dos Materiais

Prof. Artur Hallack (arturladeira@gmail.com)

Instruções: Deverá ser entregue um relatório contendo a explicação do código, os exemplos testados, bem como eventuais limitações e simplificações adotadas.

Data de entrega: 14/02/2025

Sugestão: Aproveite, no que couber, as rotinas implementadas nas Atividade 01 e 02.

1. Seja uma seção composta por retângulos tal como indicado na Figura 1.

Figura 1

Escreva um programa computacional que possa ser utilizado para calcular os momentos de inércia e e produto de inércia em relação aos eixos centroidais de seções transversais compostas por retângulos. Sugestões para testar seu programa estão indicadas nas Figuras 2, 3 e 4.

2. Com base no Problema 01 da Atividade 02, desenvolva uma rotina computacional para calcular as máximas tensões de tração e de compressão, provocadas pelo momento fletor, na seção mais solicitada da viga.

OBS.: utilizar a rotina desenvolvida no Problema 01 da Atividade 03 para cálculo do momento de inércia da seção transversal. Arbitrar o módulo de elasticidade do material.

3. O eixo AB consiste em n elementos cilíndricos homogêneos, que podem ser cheios ou vazados. Sua extremidade A é engastada, enquanto a extremidade B é livre, e está submetido ao carregamento mostrado na Figura 5. O comprimento do elemento i é designado por L_i , seu diâmetro externo por OD_i , seu diâmetro interno por ID_i , seu módulo de elasticidade transversal por G_i , e o torque aplicado à extremidade direita por T_i , sendo que a intensidade T_i desse torque é considerada positiva se T_i estiver no sentido anti-horário quando se observa a barra da extremidade B, e negativa em caso contrário. (Note que $ID_i = 0$ se o elemento for cheio).

Elabore um programa de computador que possa ser utilizado para determinar a tensão de cisalhamento máxima em cada elemento, o ângulo de torção de cada elemento e o ângulo de torção do eixo inteiro.

Figura 5

Sugestão:

Use esse programa para resolver o seguinte exercício (e outros similares): A barra de alumínio AB (G = 27 GPa) está ligada à barra de latão BD (G = 39 GPa). Sabendo que a parte CD da barra de latão é vazada e tem um diâmetro interno de 40 mm, determine o ângulo de torção em A.

Figura 6