# kNN, Decision Tree, Random Forest

Mikhail Lipkovich 06/25/2018

## Nearest Neighbor Algorithm

- Learning Algorithm:
  - Store training examples
- Prediction Algorithm:
  - To classify a new example  $\mathbf{x}$  by finding the training example  $(\mathbf{x}^i, \mathbf{y}^i)$  that is *nearest* to  $\mathbf{x}$
  - Guess the class  $y = y^i$

## K-Nearest Neighbor Methods

• To classify a new input vector x, examine the k-closest training data points to x and assign the object to the most frequently occurring class



common values for k: 3, 5

## **Nearest Neighbor**

#### When to Consider

- Instance map to points in  $\mathbb{R}^n$
- Less than 20 attributes per instance
- Lots of training data

#### **Advantages**

- Training is very fast
- Learn complex target functions
- Do not lose information

#### **Disadvantages**

- Slow at query time
- Easily fooled by irrelevant attributes

#### Issues

- Distance measure
  - Most common: Euclidean
- Choosing k
  - Increasing k reduces variance, increases bias
- For high-dimensional space, problem that the nearest neighbor may not be very close at all!
- Memory-based technique. Must make a pass through the data for each classification. This can be prohibitive for large data sets.

#### Distance

Notation: object with p measurements

$$X^{i} = (X_{1}^{i}, X_{2}^{i}, ..., X_{p}^{i})$$

• Most common distance metric is *Euclidean* distance:

$$d_{E}(x^{i}, x^{j}) = \left(\sum_{k=1}^{p} (x_{k}^{i} - x_{k}^{j})^{2}\right)^{\frac{1}{2}}$$

- ED makes sense when different measurements are commensurate; each is variable measured in the same units.
- If the measurements are different, say length and weight, it is not clear.

#### Standardization

When variables are not commensurate, we can standardize them by dividing by the sample standard deviation. This makes them all equally important.

The estimate for the standard deviation of  $x_k$ :

$$\hat{\sigma}_{k} = \left(\frac{1}{n} \sum_{i=1}^{n} \left(x_{k}^{i} - \overline{x}_{k}\right)^{\frac{1}{2}}\right)$$

where  $x_k$  is the sample mean:

$$\overline{X}_k = \frac{1}{n} \sum_{i=1}^n X_k^i$$

## Weighted Euclidean distance

Finally, if we have some idea of the relative importance of each variable, we can weight them:

$$d_{WE}(i, j) = \left(\sum_{k=1}^{p} W_k(X_k^i - X_k^j)^2\right)^{\frac{1}{2}}$$

# Non-numerical Data

How to calculate distance for categorical or text data?

# Non-numerical Data

How to calculate distance for categorical or text data?

Categorical data:

$$c1 = c2 => dist = 0$$

$$c1 != c2 => dist = 1$$

# Non-numerical Data

How to calculate distance for categorical or text data?

Categorical data:

$$c1 = c2 => dist = 0$$
  
 $c1 != c2 => dist = 1$ 

Text data:

```
d(Анау, Мынау) = 2
d(Сергей, Серик) = 3
```

# KNN Classifier Algorithm



# How to choose K?

- If infinite number of samples available, the larger is k, the better is classification.
- k = 1 is often used for efficiency, but sensitive to





## **KNN Advantages**

- Easy to program
- No optimization or training required
- Classification accuracy can be very good; can outperform more complex models