Datasciences & IA

Christophe Rodrigues

Rappel - les différents types de recherche

- Algorithme génétique
- Apriori A*
- Programmation par contrainte
- En présence d'un adversaire
- Recherche d'hypothèses dans un espace d'exemples :

Apprentissage Automatique (Machine Learning)

Plan du cours

- Définition de l'apprentissage
- Evaluation de l'apprentissage
- Exemple de méthode supervisée (kNN)
- Exemple de méthode non-supervisée (DBSCAN)
- Historique de l'apprentissage

Apprentissage par induction

Définition de l'apprentissage

Espace des exemples : X

Espace des hypothèses : H

On Cherche une hypothèse h capable d'expliquer au mieux les exemples

Choix d'un langage d'hypothèses

Exemple des hypothèses « rectangles » : Définition d'un langage

Expressivité d'un langage

Impossible dans ce cas avec une hypothèse « rectangle » de ne pas faire d'erreurs de prédiction

Exploration de l'espace des hypothèses

Les erreurs de l'apprentissage

Le compromis Biais/Variance

Apprentissage automatique (ML)

Apprentissage supervisé

- Classification (prédire une catégorie)
- Régression (prédire une valeur continue)

Apprentissage non-supervisé

Regroupement (partitionner les exemples)

Evaluation de l'apprentissage

- Comment tester si une hypothèse et assez générale et éviter le surapprentissage ?
- · Séparation des données en deux groupes :
 - Données d'apprentissage
 - Données d'évaluations
 - (voir trois) Données de validations
- · Répartition des données par tirage aléatoire

Evaluation de l'apprentissage - Erreur

Dans le cas binaire de l'exemple :

Matrice de confusion

	·+'	، _ ,
·+'	Vrais positifs	Faux positifs
6_9	Faux négatifs	Vrais négatifs

Généralisable à plusieurs classes

Dans le cas continu pour N exemples :

MSE =
$$\frac{1}{N} \sum_{i=1}^{N} (y_i - \hat{y}_i)^2$$

Exemple supervisé - k plus proches voisins

Repose sur la densité

Généralisable à plusieurs dimensions, plusieurs classes ou en régression Dépend fortement du paramètre k

Exemple non-supervisé - DBSCAN

Deux paramètres : epsilon (taille du cercle) et MinPts (nombre minimal de points par cercle pour créer un cluster)

Comparaison de méthodes de clustering

Évolution de l'apprentissage automatique

Évolution de l'apprentissage automatique

Évolution de l'apprentissage automatique

Apprentissage artificiel:

une théorisation et une mise à l'épreuve

régite de Vappil

Nouvelles méthodes:

- SVMs

- Boosting

Data mining
Text mining

