```
import pandas as pd
import numpy as np
import seaborn as sns
ds = pd.read_csv('Churn_Modelling.csv')
ds.head()
\overline{\mathbf{x}}
        RowNumber CustomerId Surname CreditScore Geography Gender Age Tenure
      0
                     15634602 Hargrave
                                                 619
                 2
                     15647311
                                    Hill
                                                 608
      1
      2
                 3
                     15619304
                                                 502
                                   Onio
      3
                     15701354
                 4
                                   Boni
                                                 699
                 5
                     15737888
                                Mitchell
                                                 850
 Next steps: Generate code with ds
                                      View recommended plots
ds.isna().sum()
→ RowNumber
                        0
     CustomerId
                        0
     Surname
                        a
     CreditScore
                        0
     Geography
                        0
     Gender
                        0
     Age
                        0
     Tenure
                        0
     Balance
     {\tt NumOfProducts}
     HasCrCard
                        0
     IsActiveMember
                        0
     EstimatedSalary
                        0
     Exited
                        0
    dtype: int64
ds.shape

→ (10000, 14)
ds.info()
   <class 'pandas.core.frame.DataFrame'>
     RangeIndex: 10000 entries, 0 to 9999
     Data columns (total 14 columns):
                          Non-Null Count Dtype
     # Column
     ---
          -----
                           -----
     0
          RowNumber
                           10000 non-null
                                           int64
          {\tt CustomerId}
                           10000 non-null
                                           int64
      2
          Surname
                           10000 non-null
                                           object
          CreditScore
                           10000 non-null
                                           int64
          Geography
                           10000 non-null
                                           object
      5
         Gender
                           10000 non-null
                                           object
                           10000 non-null
      6
          Age
                                           int64
                           10000 non-null
          Tenure
                                           int64
      8
                           10000 non-null
         Balance
                                           float64
         NumOfProducts
      9
                           10000 non-null
                                           int64
      10
         HasCrCard
                           10000 non-null
                                           int64
      11
         IsActiveMember
                           10000 non-null
                                           int64
         EstimatedSalary 10000 non-null
                           10000 non-null
                                           int64
     dtypes: float64(2), int64(9), object(3)
     memory usage: 1.1+ MB
```

Bala

8380

8 15966

2 12551

2

1

1

France Female

Spain Female

France Female

France Female

Spain Female

42

41

42

39

43

ds.describe(include='all')

	RowNumber	CustomerId	Surname	CreditScore	Geography	Gender	A
count	10000.00000	1.000000e+04	10000	10000.000000	10000	10000	10000.0000
unique	NaN	NaN	2932	NaN	3	2	N
top	NaN	NaN	Smith	NaN	France	Male	N
freq	NaN	NaN	32	NaN	5014	5457	N
mean	5000.50000	1.569094e+07	NaN	650.528800	NaN	NaN	38.9218
std	2886.89568	7.193619e+04	NaN	96.653299	NaN	NaN	10.4878
min	1.00000	1.556570e+07	NaN	350.000000	NaN	NaN	18.0000
25%	2500.75000	1.562853e+07	NaN	584.000000	NaN	NaN	32.0000
50%	5000.50000	1.569074e+07	NaN	652.000000	NaN	NaN	37.0000
75%	7500.25000	1.575323e+07	NaN	718.000000	NaN	NaN	44.0000

NaN

850.000000

NaN

NaN

92.0000

ds.columns

 $\overline{\mathbf{T}}$

ds= ds.drop(columns=['RowNumber', 'CustomerId', 'Surname'])

10000.00000 1.581569e+07

ds.head()

₹		CreditScore	Geography	Gender	Age	Tenure	Balance	NumOfProducts	HasCrCard	I
	0	619	France	Female	42	2	0.00	1	1	
	1	608	Spain	Female	41	1	83807.86	1	0	
	2	502	France	Female	42	8	159660.80	3	1	
	3	699	France	Female	39	1	0.00	2	0	
	4	850	Spain	Female	43	2	125510.82	1	1	

Next steps: Generate code with ds

View recommended plots

ds['Geography'].unique()

⇒ array(['France', 'Spain', 'Germany'], dtype=object)

ds['Gender'].unique()

⇒ array(['Female', 'Male'], dtype=object)

ds = pd.get_dummies(ds,columns=["Geography","Gender"],drop_first=True)

ds.head()

₹		CreditScore	Age	Tenure	Balance	NumOfProducts	HasCrCard	IsActiveMember	Esti
	0	619	42	2	0.00	1	1	1	
	1	608	41	1	83807.86	1	0	1	
	2	502	42	8	159660.80	3	1	0	
	3	699	39	1	0.00	2	0	0	
	4	850	43	2	125510.82	1	1	1	
	4								

Next steps: Generate code with ds

View recommended plots

<Axes: xlabel='Exited', ylabel='count'>

X_in = ds.drop('Exited',axis=1)
y_in =ds['Exited']

y_in.value_counts()

→ Exited

0 7963 1 2037

Name: count, dtype: int64

from imblearn.over_sampling import SMOTEN
X,y = SMOTEN().fit_resample(X_in,y_in)

y.value_counts()

Exited

1 7963

0 7963

Name: count, dtype: int64

ds.corr()

→		CreditScore	Age	Tenure	Balance	NumOfProducts	HasCrCar
	CreditScore	1.000000	-0.003965	0.000842	0.006268	0.012238	-0.0054
	Age	-0.003965	1.000000	-0.009997	0.028308	-0.030680	-0.01172
	Tenure	0.000842	-0.009997	1.000000	-0.012254	0.013444	0.02258
	Balance	0.006268	0.028308	-0.012254	1.000000	-0.304180	-0.0148
	NumOfProducts	0.012238	-0.030680	0.013444	-0.304180	1.000000	0.00318
	HasCrCard	-0.005458	-0.011721	0.022583	-0.014858	0.003183	1.00000
	IsActiveMember	0.025651	0.085472	-0.028362	-0.010084	0.009612	-0.0118€
	EstimatedSalary	-0.001384	-0.007201	0.007784	0.012797	0.014204	-0.00993
	Exited	-0.027094	0.285323	-0.014001	0.118533	-0.047820	-0.00713
	Geography_Germany	0.005538	0.046897	-0.000567	0.401110	-0.010419	0.01057
	Geography_Spain	0.004780	-0.001685	0.003868	-0.134892	0.009039	-0.01348
	Gender_Male	-0.002857	-0.027544	0.014733	0.012087	-0.021859	0.0057€

#splitting from sklearn.model_selection import train_test_split

X_test, X_train, y_test, y_train = train_test_split(X, y, test_size=0.2, random_state=0)

#Feature Scaling
from sklearn.preprocessing import StandardScaler
sc = StandardScaler()
X_train = sc.fit_transform(X_train)
X_test = sc.transform(X_test)

X_train

```
array([[-1.27858987, 0.32900953, 1.15825177, ..., 1.50588589, -0.49892083, 0.99187233],

[-0.41459149, -1.15278912, 0.13091599, ..., 1.50588589, -0.49892083, -1.00819428],

[ 0.49794612, 0.82294242, 0.81580651, ..., 1.50588589, -0.49892083, 0.99187233],

...,

[-1.10384862, -1.05400255, -1.23886506, ..., -0.66406094, -0.49892083, -1.00819428],

[-1.12326432, 0.13143638, -1.58131032, ..., -0.66406094, -0.49892083, -1.00819428],

[ 0.97363062, -1.2515757, -0.21152928, ..., 1.50588589, -0.49892083, 0.99187233]])
```

#Logistic Regression
from sklearn.linear_model import LogisticRegression
lo = LogisticRegression()
lo.fit(X_train,y_train)

▼ LogisticRegression LogisticRegression()

yp1 = lo.predict(X_test)

from sklearn.metrics import precision_score, recall_score, accuracy_score, f1_score from sklearn.metrics import mean_squared_error, mean_absolute_error

```
print("LOGISTIC REGRESSION")
print("Accuracy= ",accuracy_score(y_test,yp1))
print("Precision= ",precision_score(y_test,yp1))
print("Recall= ",recall_score(y_test,yp1))
print("F1_Score= ",f1_score(y_test,yp1))
print("MSE= ",mean_squared_error(y_test,yp1))
print("MAE= ",mean_absolute_error(y_test,yp1))
→ LOGISTIC REGRESSION
     Δcciracv= 0 7827315541601256
#Random Forest
from sklearn.ensemble import RandomForestClassifier
rf = RandomForestClassifier()
rf.fit(X_train,y_train)
     ▼ RandomForestClassifier
      RandomForestClassifier()
yp2 = rf.predict(X_test)
from sklearn.metrics import precision_score, recall_score, accuracy_score, f1_score
from sklearn.metrics import mean_squared_error, mean_absolute_error
print("RANDOM FOREST CLASSIFIER")
print("Accuracy= ",accuracy_score(y_test,yp2))
print("Precision= ",precision_score(y_test,yp2))
print("Recall= ",recall_score(y_test,yp2))
print("F1_Score= ",f1_score(y_test,yp2))
print("MSE= ",mean_squared_error(y_test,yp2))
print("MAE= ",mean_absolute_error(y_test,yp2))
→ RANDOM FOREST CLASSIFIER
     Accuracy= 0.8793563579277865
Precision= 0.8978583196046128
     Recall= 0.8559761269043505
     F1_Score= 0.8764171423976843
     MSE= 0.1206436420722135
     MAE= 0.1206436420722135
#Gradient Boosting
from sklearn.ensemble import GradientBoostingClassifier
gb = GradientBoostingClassifier()
gb.fit(X_train,y_train)
     ▼ GradientBoostingClassifier
      GradientBoostingClassifier()
yp3 = gb.predict(X_test)
from \ sklearn.metrics \ import \ precision\_score, \ recall\_score, \ accuracy\_score, \ f1\_score
from sklearn.metrics import mean_squared_error, mean_absolute_error
print("GRADIENT BOOSTING")
print("Accuracy= ",accuracy_score(y_test,yp3))
print("Precision= ",precision_score(y_test,yp3))
print("Recall= ",recall_score(y_test,yp3))
print("F1_Score= ",f1_score(y_test,yp3))
print("MSE= ",mean_squared_error(y_test,yp3))
print("MAE= ",mean_absolute_error(y_test,yp3))
→ GRADIENT BOOSTING
```