

REDES NEURAIS COM TENSORFLOW

DIEGO RODRIGUES DSC

INFNET

Agenda

Parte 1: Meta Heurística de Treinamento Robusta II

- Novo ciclo do CRISP
- Modelos Multiclasse
- Relevância das Variáveis
- Pattern Search nos Hiperparâmetros
- Matriz de Confusão

Parte 2 : Prática

Notebook: Classificador Multiclasse Robusto Iris

Parte 3: Trabalhos

Escopo & Evolução

Cross
Industry
Process for
Data Mining
(CRISP-DM)

Novo Ciclo CRISP

Algoritmo

- Reta 2 Pontos
- NN 10% VAL
- NN 10 Folds
- Pattern Search10 Folds

Representação

- 2D
- 2D
- 2D
- 4D / 3 Classes

Preparação

- Nenhuma
- Nenhuma
- Scale
- Scale

Modelagem

- Reta 2 Pontos
- NN Básica
- NN Hidden
- NN Hidden

Validação

- Nenhuma
- Precisão/Recall
- Precisão/Recall
- Acurácia

- Modelo Multiclasse
- Busca nos hiperparâmetros ótimos (# funções de ativação)
- Identificar as variáveis mais relevantes

Análise de Negócio

Modelos Multiclasse

- Discriminar múltiplos objetos em paralelo.
- Rede Neural é naturalmente multiclasse.
- Ensembles podem ser
 utilizados para especializar
 modelos.

Modelos Multiclasse

A A B B C C B

ONE AGAINST ALL

ONE AGAINST ONE

Modelos Multiclasse

DIRECTED	ACYCLIC	GRAPH	(DAG)
----------	----------------	-------	-------

							- /	1. 1.	TTOT.	31					
	Code Word														
Class	f_0	f_1	f_2	f_3	f_4	f_5	f_6	f_{7}	f_{θ}	f_{θ}	f_{10}	f_{11}	f_{12}	f_{13}	f_{14}
0	1	1	0	-0	0	0	1	0	1	-0	0	1	1	-0	1
1	0	0	1	1	1	1	0	1	-0	1	1	0	-0	1	0
2	1	0	-0	1	-0	0	0	1	1	1	1	0	1	0	1
3	0	0	1	1	-0	1	1	1	-0	-0	0	0	1	0	1
4	1	1	1	-0	1	0	1	1	-0	-0	1	0	-0	0	1
5	0	1	0	0	1	1	0	1	1	1	0	0	-0	0	1
6	1	0	1.	1	1	0	0	0	0	1	0	1	-0	0	1
7	0	0	0	1	1	1	1	0	1	0	1.	1	-0	0	1
8	1	1	0	1	-0	1	1	0	0	1	0	0	-0	1	1
9	0	1	1	1	-0	0	0	0	1	-0	1	0	0	1	1

Error Correcting Code (ECOC)

Representação

- Seleção de Atributos
 - Filter > Ocorre ANTES Do treinamento.
 - Correlação
 - ANOVA
 - Wrapper > Ocorre APÓS o treinamento e utiliza o modelo como gerador da estatística de qualidade do atributo.
 - Entropia/Gini (Árvores de Decisão)
 - Dropout (Redes Neurais)
 - Relevância (Redes Neurais)

Ganho de Gini

$$Gini = 1 - \sum_j p_j^2$$

Relevância

$$R(X_j) = \frac{\sum_{i=1}^{N} ||\hat{y}(\mathbf{x_i}) - \hat{y}(\mathbf{x_i}|_{x_{ij} = \bar{x}_j})||^2}{N}$$

Modelagem

- Algoritmo Pattern Search
 - Busca livre no espaço de hiperparâmetros.
 - Não precisa estimar gradiente.
 - Controle de ganho 5% do mínimo para mudança de configuração da rede.

Validação

- Matriz de Confusão
 - Comparação entre o resultado do classificador para as diferentes classes.

Iris Multiclasse Robusto

Modelagem

Rede Neural Feed Forward

- Representação: 4 atributos > 2 atributos mais relevantes
- Hiperparâmetros: PATTERN SEARCH no # de neurônios de cada tipo na camada oculta.
- Treinamento: base de treino completa.
 - Acurácia
 - Validação Cruzada 10 Folds