Θ2.04: Θεωρία Αναπαραστάσεων και Συνδυαστική Φυλλάδιο Ασκήσεων 2

Σε ότι ακολουθεί G είναι μια πεπερασμένη ομάδα, n είναι ένας θετικός ακέραιος και όλοι οι διανυσματικοί χώροι είναι πεπερασμένης διάστασης πάνω από το \mathbb{C} .

Άσκηση 2.1. (Πίνακας χαρακτήρων της διεδρικής ομάδας) Υποθέτουμε ότι $n \geq 3$. Έστω

$$D_{2n} = \langle r, s \mid r^n = s^2 = \epsilon, rsr = s \rangle$$

η διεδρική ομάδα τάξης 2n. Να δείξετε τα εξής.

(1) Αν n = 2k, τότε οι κλάσεις συζυγίας της D_{2n} είναι

$$\{\epsilon\}, \{r^k\}, \{r^{\pm 1}\}, \{r^{\pm 2}\}, \dots, \{r^{\pm (k-1)}\}, \{s, sr^2, \dots, sr^{2(k-1)}\}, \{sr, sr^3, \dots, sr^{2(k-1)+1}\},$$

ενώ αν n=2k+1, τότε οι κλάσεις συζυγίας της \mathbf{D}_{2n} είναι

$$\{\epsilon\}, \{r^{\pm 1}\}, \{r^{\pm 2}\}, \dots, \{r^{\pm k}\}, \{s, sr, \dots, sr^{n-1}\}.$$

(2) $\Gamma\iota\alpha \ 1 \le k \le n-1, \eta \ \rho_k : D_{2n} \to GL_2(\mathbb{C})$

$$\rho_k(r) = \begin{pmatrix} \cos(2\pi k/n) & \sin(2\pi k/n) \\ -\sin(2\pi k/n) & \cos(2\pi k/n) \end{pmatrix}, \quad \text{kat} \quad \rho_k(s) = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}.$$

είναι ανάγωγη αναπαράσταση της D_{2n} .

- (3) Αν ο n είναι άρτιος (αντ. περιττός), τότε τα ζεύγη (ρ_k, ρ_{n-k}) είναι ισόμορφες αναπαραστάσεις για $1 \le k \le \frac{n}{2} 1$ (αντ. $1 \le k \le \frac{n-1}{2}$).
- (4) Αν ο n είναι άρτιος (αντ. περιττός), τότε το πλήθος των μη ισόμορφων αναπαραστάσεων διάστασης 1 είναι ίσο με τέσσερα (αντ. δύο). Ποιές είναι αυτές;
- (5) Υπολογίστε τον πίνακα χαρακτήρων της D_{2n} .

Υπόδειξη: Λύστε την άσκηση πρώτα για n=4 και n=5 και έπειτα γενικεύστε.

Άσκηση 2.2. (Ιδιότητες χαρακτήρων)

Έστω χ ο χαρακτήρας μιας αναπαράστασης (ρ, V) της G. Να δείξετε τα εξής.

- (1) Αν $g \in G$ και m ο ελάχιστος μη αρνητικός ακέραιος για τον οποίο $g^m = \epsilon$, τότε το $\chi(g)$ είναι άθροισμα m-οστών ριζών της μονάδας.
- (2) Για κάθε $g \in G$, ισχύει ότι $\chi(g^{-1}) = \overline{\chi(g)}$.
- (3) Aν g και g^{-1} είναι συζυγή στην G, τότε $\chi(g) \in \mathbb{R}$.

 Υ πόδειξη: Για το (1), θεωρήστε την υποομάδα που παράγεται από το g, η οποία είναι ισόμορφη με την C_m . Τι μπορείτε να πείτε για τον πίνακα $\rho(g)$ όταν "περιοριστούμε" σε αυτή τη δράση; Για το (2) (αντ. (3)), χρησιμοποιήστε το (1) (αντί. (2)).

Ημερομηνία: 24 Οκτωβρίου 2025.

Άσκηση 2.3. (Ο χαρακτήρας της αναπαράστασης μεταθέσεων και το Λήμμα του Burnside) Υποθέτουμε ότι η G δρα σε ένα πεπερασμένο σύνολο S και έστω χ ο χαρακτήρας της επαγόμενης αναπαράσταση μεταθέσεων. Να δείξετε τα εξής.

- (1) Για κάθε $g \in G$, ισχύει ότι $\chi(g) = |S^g|$, όπου $S^g := \{s \in S : g \cdot s = s\}$.
- (2) Η διάσταση του $\mathbb{C}[S]^G$ ισούται με το πλήθος των τροχιών της δράσης της G στο S.
- (3) Το πλήθος των τροχιών της δράσης της G στο S ισούται με

$$\frac{1}{|G|} \sum_{g \in G} |S^g|.$$

(4) Πόσοι διαφορετικοί τρόποι υπάρχουν να χρωματίσουμε τις κορυφές ενός κανονικού εξαγώνου χρησιμοποιώντας 3 χρώματα, ως προς κυκλική συμμετρία; Δηλαδή, δυο χρωματισμοί θεωρούνται "ίδιοι" αν διαφέρουν κατά μια στροφή ως προς το κέντρο του εξαγώνου.

Υπόδειξη: Για το (1), δείξτε ότι ο πίνακας του ρ(g) ως προς τη συνήθη βάση του $\mathbb{C}[S]$ είναι πίνακας μετάθεσης. Για το (2), σκεφτείτε τι σημαίνει για ένα στοιχείο του $\mathbb{C}[S]$ να είναι σταθερό από τη δράση της G. Για το (4), εξετάστε τη δράση της G6 στο σύνολο όλων των πιθανών χρωματισμών.

Άσκηση 2.4. (Αναμενώμενος αριθμός σταθερών σημείων μιας τυχαίας μετάθεσης) Να υπολογίσετε τα παρακάτω αθροίσματα

$$\sum_{\pi \in \mathfrak{S}_n} \mathrm{fix}(\pi) \quad \kappa \alpha \iota \quad \sum_{\pi \in \mathfrak{S}_n} \mathrm{fix}(\pi)^2,$$

όπου $fix(\pi) := |\{i \in [n] : \pi_i = i\}|$. Ποιός είναι ο αναμενώμενος αριθμός των σταθερών σημείων μιας τυχαίας μετάθεσης;

Υπόδειξη: Χρησιμοποιήστε τις σχέσεις ορθογωνιώτητας και την ισοτυπική διάσπαση της αναπαράστασης καθορισμού της \mathfrak{S}_n .

Άσκηση 2.5. (Αθροίσματα γραμμών του πίνακα χαρακτήρων)

Έστω ψ_G ο χαρακτήρας της αναπαράστασης μεταθέσεων που επάγεται από τη δράση της G στον εαυτό της με συζυγία. Να δείξετε τα εξής.

(1) Έχουμε

$$\psi_G = \sum_{\gamma} \chi \overline{\chi},$$

όπου στο άθροισμα το χ διατρέχει όλους τους ανάγωγους χαρακτήρες της G.

(2) Αν χ είναι ένας ανάγωγος χαρακτήρας της G, τότε

$$(\psi_G,\chi)=\sum_K\chi(K),$$

όπου στο άθροισμα το K διατρέχει όλες τις κλάσεις συζυγίας της G.

(3) Τα αθροίσματα των στοιχείων των γραμμών του πίνακα χαρακτήρων της G είναι μη αρνητικοί αριθμοί.

Υπόδειξη: Για το (1), χρησιμοποιήστε τις σχέσεις ορθογωνιώτητας και τον την Άσκηση 2.3 (1). Για το (2), γρησιμοποιήστε το (1), Για το (3), γρησιμοποιήστε το Πόρισμα 7.5.