МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА) Кафедра МО ЭВМ

ОТЧЕТ

по лабораторной работе №4 по дисциплине «Искусственные нейронные сети» Тема: «Распознавание рукописных символов»

Студент гр. 7381	 Габов Е.С,
Преподаватель	 Жукова Н.А

Санкт-Петербург 2020 Цель работы.

Реализовать классификацию черно-белых изображений рукописных цифр (28х28)

по 10 категориям (от 0 до 9).

Набор данных содержит 60,000 изображений для обучения и 10,000 изображений

для тестирования.

Задачи.

Ознакомиться с представлением графических данных

• Ознакомиться с простейшим способом передачи графических данных

нейронной сети

• Создать модель

• Настроить параметры обучения

• Написать функцию, позволяющая загружать изображение пользователи и

классифицировать его

Ход работы.

1) Найти архитектуру сети, при которой точность классификации

будет не менее 95%.

Была найдена архитектура, которая даёт точность 98 процентов параметры

которой представлены ниже.

Оптимизатор: Adam

Функция потерь: Categorical crossentropy

Количество эпох: 5

Размер пакета: 64

Архитектура:

первый слой : Flatten() – слой, преобразующий формат изображения из

двумерного массива в одномерный.

Второй слой: Dense(218, activation='relu')

Третий слой: Dense(10, activation='softmax')

2

2) Исследовать влияние различных оптимизаторов, а также их параметров, на процесс обучения.

Параметры оптимизаторов и их описание.

Параметр	Описание	
learning_rate	скорость обучения – влияет на то, как	
	сильно веса изменяются каждый раз во время обучения	
momentum	ускоряет оптимизатор	
rho	коэффициент затухания скользящего	
	среднего значения градиента	

Оптимизатор SGD.

При значении *momentum* = 0.0 переберём значение **кеттел** от 0.1 до 0.001. Результаты точности представлены в таблице:

karing <u>u</u> de	Значение точности	
0.1	0.9734	
0.01	0.9264	
0.001	0.8512	

С уменьшением скорости обучения модели уменьшается и ее точность.

Теперь при значении жет станов переберём значение повым 0.1, 0.5,

0.9. Результаты точности представлены в таблице:

MORILIO	Значение точности	
0.1	0.9267	
0.5	0.9409	
0.9	0.9714	

Оптимизатор RMSprop.

При значении rho = 0.9 переберём значение levillet от 0.1 до 0.001.

kerig <u>r</u> æ	Значение точности
0.1	0.857
0.01	0.9756
0.001	0.9787

При значении же 0.1, 0.5, 0.9.

ita	Значение точности
0.1	0.9737
0.5	0.9774
0.9	0.9816

С увеличением значения жетіз как увеличивается точность модели.

Оптимизатор Adam.

Переберём значение жет ст 0.1 до 0.001.

kariv <u>e</u> ude	Значение точности	
0.1	0.8609	
0.01	0.9654	
0.001	0.9814	

С увеличением значения значения увеличивается точность модели.

Выводы.

В ходе выполнения данной работы было изучено представление графических данных. Была построена и протестирована на пользовательских изображениях сеть с точностью 98 процентов. Реализована функция считывания изображения из файла.