2_아날로그와 디지털

2-1 신호란 무엇인가?

- 정보전달을 위해서는 전송매체에서 사용될 수 있는 **전자기 신호**가 필요
 - 통신 시스템에서 데이터는 전자기 신호로 변환되어 한 지점에서 다른 지점으로 전달
- 전자기 신호 : 아날로그 신호와 디지털 신호로 구분
 - 아날로그(analog): 어떤 물리량의 변화가 표현 수단에서의 변화 모습과 비슷하다는 의미
 - 연속적으로 변하는 물리량, 전자기파를 나타냄
 - **디지털(digital)** : 손가락으로 셈을 할 때 그 단위가 되는 손가락 하나하나를 의미하는 '디지트(Digit)' 로부터 나온 단어
 - 매체를 통해 전송되는 일련의 전압 펄스를 의미
 - 예를 들어, 일정한 양(+)의 전압은 이진수 1을 표현, 일정한 음(-)의 전압은 이진수 0을 표시
 - 디지털 전송의 장점은 아날로그 신호보다 비용이 적게 들고 잡음에 강함

- 아날로그와 디지털의 차이 : 선과 숫자로 구별
 - 아날로그
 - 연속되는 선의 형태로 정보를 전달
 - 주파수나 진폭 등 연속적으로 변화하는 형태로 전류를 전달
 - 아날로그의 경우 0.3은 0.3, 0.327은 0.327 그대로 표시

• 디지털

- 0과 1이라는 숫자를 통해 정보를 전달
- 전류가 흐르는 상태(1)와 흐르지 않는 상태(0)의 2가지를 조합하여 전달
- 디지털 방식은 아날로그 신호의 모든 값을 전달할 수 없기 때문에 아날로그 신호 값들을 잘게 나누어서 각각의 값을 표시(연속적인 값들을 세분해서 그 값들을 하나의 값으로 표시)
- 디지털의 경우 0부터 1사이는 0, 1부터 2사이는 1로 표시

■ **아날로그 신호** : 주파수에 따라 다양한 매체를 통해 전송, 연속적으로 변하는 전자기파

<아날로그 신호의 모양>

- **디지털 신호** : 매체를 통해 전송되는 일련의 전압 펄스
 - 디지털 방식이 등장하게 된 계기 : 연속적인 값을 표현하기에 실제 전류는 매우 불안정 -> 전류가 흐르거나 흐르지 않는 두 상태로 모든 값들을 표현하고자 했음
 - 디지털방식에서는 연속적인 값들을 분류해서 0과 1의 조합으로 값을 나타내고 처리
 - 데이터 정보와 이미지 정보는 일반적으로 0과 1로 구성된 디지털 신호로써 표현

<디지털 신호의 모양>

- 아날로그(Analog)를 디지털(Digital)로 바꿔보자.
 - A->D를 하기 위해서는 **표본화, 양자화, 부호화**를 거치게 된다.

sin*10의파형

■ 표본화

- 시간축을 따라 이산 값으로 변환하는 과정을 샘플링이라 한다.
- 샤논(shannon)의 표본화 정리에 따르면 신호 주파수의 2배 이상의 빈도로 샘플링하면 샘플링된 데이터로부터 본래의 데이터를 재연할 수 있다.

• 양자화

- 진폭 축을 따라 이산 값으로 변환하는 과정을 양자화라 한다
- 아날로그 신호의 진폭을 양자화 레벨의 숫자로 나누어 간격에서 뽑아낸 표본 값을 미리 정해진 값에서 가장 가까운 값으로 변환한다.
- 이과정에서 불가피하게 양자화 잡음이 생기는데, 예를 들어 4.7의 신호를 양자화 하면 5가 돼서 0.3의 오차가 발생한다.

■ 부호화

- 표본화와 양자화가 끝난 값을 2진 디지털 부호로 바꾸는 과정이다.
- 부호화하는 시스템에 따라 nbit로 부호화한다.

표본화 -> 양자화 -> 부호화

■ 비트와 보오

- 정보통신에서 통신 속도 : 단위 시간에 전송되는 정보의 양으로 표시
- 단위 시간에 전송되는 정보의 기본단위 : 비트(bit)
- 디지털 정보의 전송속도
 - * bps(bit per second) : 매 초당 전송되는 비트(bit)의 수
 - * 보오(baud) : <u>매 초당 몇 단위개의 신호 변화</u>가 있었는지, 혹은 <u>매 초당 몇 개의 다른 상태 변화</u>가 있었는지를 나타내는 <u>신호속도의 단위</u>

baud = bps / 단위 신호당 비트수 bps = baud x 단위 신호당 비트수

- Ex1) 1초 동안 전송된 비트수가 1000 bps, 한 신호가 2비트로 구성되어 있을 때 baud는? 1000/2 = 500 baud
- Ex2) 변조 속도가 80 baud이고, 한 신호는 4비트로 구성되어 있을 때, bps는? 80 x 4 = 320 bps

(a) 1개의 비트가 한 신호 단위인 경우 (bps=baud)

(b) 2개의 비트가 한 신호 단위인 경우 (bps/2=baud)

- (c) 3개의 비트가 한 신호 단위인 경우 (bps/3=baud)
- 한 비트가 하나의 신호를 표현하는 단위로 쓰이는 경우 bps나 보오 속도는 동일
- 2비트나 3비트가 모여서 하나의 신호를 나타내는 경우에 있어서 보오 속도는 bps의 1/2, 1/3

<연습문제>

- 문1) 2개의 비트가 한 신호 단위인 경우, 2400 bps는 몇 보오(baud)인가? ()

- ① 400 baud ② 800 baud ③ 1200 baud ④ 2400 baud
- 문2) 데이터 속도가 9600 bps인 회선 상에 한 번의 신호로 세 개의 비트를 전송할 때 신호 속도는? ()

- ① 3200 baud ② 4800 baud ③ 6400 baud ④ 9600 baud
- 문3) 보오(baud) 속도가 2400 보오이고, 한 번에 2개의 비트를 전송할 때 데이터 신호속도(bps)는 얼마인가? (
 - ① 2400 bps ② 4800 bps ③ 7200 bps ④ 9600 bps

■ 주파수 스펙트럼

- 대부분의 물리적 현상들은 어떤 주파수의 형식으로 자신을 표현
- 음성 전송에 이용하는 주파수 대역 300Hz~3,300Hz

<빛의 스펙트럼>

■ 대역폭(bandwidth)

- 대역폭은 특정한 기능을 수행할 수 있는 주파수의 범위로, 헤르츠 단위로 측정된다.
- 신호 주파수의 하한선과 상한선의 범위
- 전화의 경우 : 3000Hz(300Hz~3,300Hz)
- 대역폭은 수도관을 통해 흐를 수 있는 물의 양과 비교할 수 있다. 데이터 연결의 대역폭이 클수록 한 번에 주고받을 수 있는 데이터도 많아진다.
- 통신 링크, 즉 파이프의 용량이 클수록 초당 더 많은 데이터가 흐를 수 있다.

<음성신호의 대역폭>

■ 부호화(encoding)

- <u>전송 매체에서 사용하는 신호 형태</u>와 <u>보내고자 하는 정보의 표현 형태</u>가 다른 경우 정보를 전송 매체에 서 전송 가능한 형태로 변환하는 작업을 '부호화'라고 함
- 컴퓨터를 이용해 영상·이미지·소리 데이터를 생성할 때 데이터의 양을 줄이기 위해 데이터를 코드화 하고 압축하는 것
- 정보의 형태나 형식을 표준화, 보안, 처리 속도 향상, 저장 공간 절약 등을 위해서 다른 형태나 형식으로 변환하는 것

■ 복호화(decoding)

- 전송매체를 통해 전달된 변환된 신호를 수신측에서 원래의 정보 형태로 복원하는 과정
- 부호화(encoding)된 데이터를 부호(code)화 되기 전 형태로 바꾸어, 사람이 읽을 수 있는 형태로 되돌려 놓는 것

- 신호변환기(Signal Conversion Device) : 부호화와 복호화를 수행하는 기기
 - DSU/CSU(Digital Service Unit/Channel Service Unit)
 - DSU(Digital Service Unit) : 디지털용 회선에 사용하는 장비인데, 디지털 데이터를 디지털 신호로 변환해주는 역할
 - CSU(Channel Service Unit):
 - 모뎀(Modulator DeModulator) : 아날로그 회선에서 사용하며, 디지털 데이터를 아날로그 신호로 바꾸 거나 그 역의 기능을 한다.
 - **코덱(Codec)** : 데이터(정보)를 관리(처리)하기 쉽도록 부호화 시켰다가, 다시 데이터를 읽기 위해 복호화 하는 것
 - PCM기기,
 - 전화기,
 - 방송장비 등
- 정보가 디지털이나 아날로그 두 가지 형태가 있듯이, 신호 또한 디지털이나 아날로그의 두 가지 형태가 있다.

- 4가지 부호화 방식 : 디지털/디지털, 디지털/아날로그, 아날로그/디지털, 아날로그/아날로그
 - 1) 디지털-디지털 부호화(digital-to-digital encoding)

- 디지털 신호를 디지털 전송에 적합한 형태로 변환하는 방법
- EX) 컴퓨터에서 디지털 모니터로 데이터를 전송하는 경우
- 디지털-디지털 부호화는 크게 단극형, 극형, 양극형 방식으로 분류

※ 변조를 하는 이유

- 전송선에 디지털 신호를 바로 보내면 신호 전달이 잘 되지 않기 때문
- 데이터가 같은 비트로 연속되면 전송 특성상 신호 전달에 문제가 발생하므로 **전송선의 특성에 맞추어 변조**한다.

b. 극형: NRZ-L

c. 극형: NRZ-I

■ 단극형(Unipolar)

- 오직 한 준위의 값만 이용
- 0 또는 1의 값 중에 하나의 값만 부호화
- 단순하며 구현 비용이 저렴
- 부호화되지 않은 신호는 0 또는 휴지회선으로 표현
- 직류성분과 동기화라는 문제 때문에 실제로는 잘 사용되지 않음

■ 극형(Polar)

- 양과 음의 두 가지 전압준위를 같이 사용
- 회선의 평균전압을 감소, 직류성분 문제 완화

■ 양극형(Bipolar)

- 양, 음, 영의 세가지 전압준위를 사용
- 준위 0은 이진수 0을 표현, 양전압과 음전압은 교대로 1을 표현

2) 아날로그-디지털 부호화

• 아날로그 정보를 디지털 신호로 표현하는 것

- LAN에 연결된 컴퓨터를 이용하여 인터넷 전화를 사용할 경우
- 음성 신호를 컴퓨터 간에 전송 가능한 신호인 디지털 신호로 변환
- 디지털 전송을 위한 아날로그 신호는 대부분 PCM(펄스코드변조)을 기반으로 저장되고 전송된다.

※ 코덱

- 음성 또는 영상의 신호(Analog)를 디지털 신호로 변환하는 코더(coder)와 그 반대로 변환시켜 주는 디코더(decode)의 기능을 함께 갖춘 기술
- 음성이나 비디오 데이터를 컴퓨터가 처리할 수 있게 디지털로 바꿔 주고, 그 데이터를 컴퓨터 사용자가 알 수 있게 모니터에 본래대로 재생시켜 주기도 하는 소프트웨어
- 코덱은 쉽게 말해 동영상을 원활하게 재생하기 위해 필요한 장치 임

■ 펄스코드변조(Pulse Code Modulation : PCM)

- 가장 일반적으로 사용되는 변조 방법
- 컴퓨터와 관련된 아날로그신호 체계는 거의 PCM 방식으로 저장되어 전송
- PAM(Pulse Amplitude Modulation) : 아날로그 정보를 크기에 따라 높이가 다른 펄스열로 나열한 1차적인 펄스변조방법
- PCM 신호를 생성하는 순서
 - 아날로그 신호를 양자화하여 PAM 신호로 변환
 - 펄스의 디지털 레벨의 비트 수만큼 이진 코드 열로 변환
 - 변환된 이진수 값을 펄스로 표현

<아날로그 신호에서 PCM 디지털 부호로의 변환>

3) 디지털-아날로그 부호화

- 디지털 정보를 아날로그 신호로 변환하는 것
- 아날로그 신호만을 전송할 수 있는 전송매체(전화선)를 이용하여 디지털 정보를 전달하는 경우

진폭 편이변조(Amplitude Shift Keying : ASK)

- 이진수 0과 1을 표현하기 위해서 신호의 세기, 즉 진폭을 변경
- 주파수와 위상은 진폭이 변하는 동안 일정하게 유지
- ASK는 잡음에 의해서 가장 큰 영향을 받는 가장 취약한 부호화 방법

주파수 편이변조(Frequency Shift Keying : FSK)

- 신호의 주파수를 변경, 진폭과 위상은 일정하게 유지
- 1보오 당 1비트의 신호가 전송되므로 비트율과 보오율은 같음
- 진폭 편이변조 방식보다 잡음에 강하고, 비교적 회로도 간단하여 데이터 전송에 많이 사용

■ 위상 편이변조(Phase Shift Keying : PSK)

- 신호의 위상을 변경
- 위상은 변화하지만 진폭과 주파수는 일정하게 유지
- 잡음이나 주파수 제한 등에 영향을 안 받음

■ 구상 진폭변조(Quadrate Amplitude Modulation : QAM)

- ASK와 PSK를 조합하여 하나의 신호 변화에 보다 많은 비트를 표현
- 4-QAM, 8-QAM, 16-QAM 등

<연습문제>

- 문1) 보오(baud) 속도가 2400 보오(baud)이고, 8위상 편이 변조 방식을 사용할 때 전송 속도는? (3)

- ① 2400 bps ② 4800 bps ③ 7200 bps ④ 9600 bps

8위상은 위 그림과 같이 8가지를 표현할 수 있다는 의미입니다. 8가지를 표현하기 위해서 는 3bit(2의 3승=8)를 가지면 표현할 수 있죠.

- * bps = baud × 단위신호당 비트수
- 위 공식에 맞춰 2400 × 3 = 7200 입니다.

<연습문제>

문2) 8위상 2진폭 변조를 하는 모뎀이 2400 baud 라면 그 모뎀의 속도는?(**4**)

- ① 2400 bps ② 3200 bps ③ 7200 bps ④ 9600 bps

<해설>

8위상 2진폭의 의미를 알아야 겠네요!

8위상은 신호 전송 방향이 8방향 이라는 말입니다.

그리고 2진폭이란 말은 한 방향으로 2가지씩 전송한다는 말 이구요.

그럼 신호 수는 한 방향으로 2가지씩 8방향이니까 16가지 신호를 말하는 겁니다.

16가지를 표현하기 위해서는 4bit로 구성을 해야 하구요.

2진수 n bit → 2의 n승 가지를 표현할 수 있죠?

정리하면 신호의 구성 비트는 4bit, baud는 2400.

따라서 4 × 2400 = 9600 입니다.

※ 4위상 2진폭은 신호 비트수가 3bit를 의미합니다.

4) 아날로그-아날로그 부호화

- 아날로그 신호로 아날로그 정보를 전송하는 것
- 흔히 접할 수 있는 아날로그 방송이 대표적인 예

라디오 방송 스튜디오

방송장비

<아날로그 캠코더 (아날로그 – 아날로그)>

AM 변조신호

■ 진폭 변조(Amplitude Modulation)

• 신호의 진폭변화에 따라 반송파의 진폭이 같이 바뀌는 변조 방식

FM 변조신호

- 주파수 변조(Frequency Modulation)
 - 반송파의 주파수가 신호의 전압 변화에 따라 변조

PM 변조신호

- 위상 변조(Phase Modulation)
 - 신호의 전압준위(진폭)의 변화에 따라 신호의 위상이 바뀌는 변조 방식

2-4 코덱과 모뎀

■ 코덱(codec)

- 부호화기(coder)와 복호화기(decoder)의 합성어
- 아날로그 형태인 음성정보를 디지털 신호로 변환하고,
- 또 디지털 신호로부터 다시 원래의 음성정보를 복원해내는 기기

2-4 코덱과 모뎀

■ 모뎀(MODEM, MOdulator and DEModulator)

- 공중전화망은 아날로그 신호를 실어 나르는데 적합
- 모뎀은 일종의 신호 변환기로, 주로 컴퓨터 정보통신을 위한 주변기기로 많이 사용
- 모뎀은 아날로그/디지털 변환기의 일종으로 컴퓨터의 디지털 신호를 아날로그 신호로 바꾸어 전송하고,
 아날로그 신호를 받아 디지털 신호로 읽어낸다.
- 정보 전달(주로 디지털 정보)을 위해 신호를 변조하여 송신하고, 수신측에서 원래의 신호로 복구하기 위해 복조하는 장치를 말한다.
- 변조 기능 : 디지털 정보 -> 아날로그 신호
- 복조 기능 : 아날로그 신호 -> 디지털 정보

2-4 코덱과 모뎀

■ 모뎀의 분류

- 사용 형태에 따라 내장형, 외장형으로 분류
- 통신속도에 따라 저속, 중속, 고속 모뎀으로 분류
- 채널의 대역폭, 사용 가능 거리, 사용 가능한 포트 수에 따라 분류되기도 함

a. 내장형 모뎀

b. 외장형 모뎀

c. 노트북용 모뎀

e. 와이브로 모뎀

- 전화는 역사가 가장 오래된 전기통신 수단
- 전화를 이용한 통신(전화망)은 그 이후에 등장하는 모든 통신망에 영향을 줌
- 전화망은 회선 교환망(Circuit Switched Network)의 대표 모델

❖ 통신망은 전화망의 이해로 부터

- **전신(Telegraph)** : 현대적 전기 통신의 시초
 - 1837년 모스(Samuel F.B. Morse) 발명
 - 전자 신호를 이용하여 다른 지역으로 정보를 전달하기위한 첫 번째 장치
 - 1844년 상업용의 전신 시스템 개발 -> 이때 사용된 부호가 모스부호(Morse Code)

전화(Telephone)

- 1876년 3월 Alexander Graham Bell 전화 발명
- 1877년 1월 30일 상자모양의 전화기가 등장
- 그해 600여대의 전화가 교환국 없이 각자의 전용선으로 연결
- 1887년 벨은 유럽에 전화기를 소개하고, 빅토리아 여왕 앞에서 직접 전화통화 시연
- 최초의 전화 시장은 파리였음
- 전선을 연결하는 작업은 구매가 직접 해야 했음

- 초기 전화망의 형태로 연결하게 되면 사용자가 n명일 경우, n(n-1)/2개의 회선이 필요
- 연결 비용이 많이 들고, 회선의 관리가 어려움

<초기 전화망의 형태>

<교환기에 연결된 전화망 형태>

- 이후에 가입자의 폭발적인 증가로 점차 많은 교환기가 필요
- 증설된 교환기를 관리하기 위해 2단계의 교환기가 투입되는 등 다단계 형태로 확장

❖ 전화망 구성

- 전화망에 사용되는 통신 매체
 - 가입자 회선 : 트위스티드 페어(Twisted Pair)
 - 교환기 상호간 : 동축 케이블, 마이크로웨이브, 광섬유
- 전화망에서 디지털 신호의 사용시 장점
 - 신호를 멀리 전송할 수 있고, 어느 정도의 거리까지 신호를 정확히 식별할 수 있는지 산출하기 쉬움
 - -> 효율적으로 관리가 가능
 - 디지털 신호는 안전한 전송을 위해 중간에 디지털 신호 재생기를 사용하기도 함
 - -> 정보의 손실 없이 먼 거리까지 전송이 가능
 - -> 반면 아날로그 신호는 증폭이 되면 어느 정도 원래 정보의 손실이 있게 마련이고 손실은 누적됨
 - 일반자료, 음성, 데이터, 영상 등의 데이터를 함께 다중화 시킬 수 있음
 - -> 회로 및 장비를 더 효율적으로 사용할 수 있고, 결과적으로 더 많은 데이터 전송 가능
 - 디지털 전송은 아날로그 전송에 비해 비용이 적게 소요
 - 장거리 아날로그 전송에서는 많은 증폭기를 거치면서 생기게 되는 손실을 재생해 주어야 함
 - 디지털 전송에서는 0과 1만 인식이 가능하면 충분하기 때문에 아날로그 방식에서와 같은 증폭은 필요 하지 않음

- 전화망에 사용되는 시설
 - 시내 전화망(local network)과 시외 전화망(toll network)
 - -> 전화망은 넓은 지역에 분포하는 시설들의 효율적인 유지보수와 시외통화에 대한 과금 처리의 문제점 때문에 시내와 시외 전화망으로 구분해서 설치
 - 전화망을 구성하는 시설은 크게 전송시설과 교환시설로 분류
 - 전송시설은 다시 가입자 선로(loop) 시설과 중계선(trunk) 시설로 구분
 - 교환시설은 기능에 따라 시내(local) 교환기, 시외(toll) 교환기, 중계(tandem) 교환기 등으로 구분

<전화망의 구성요소와 기능>

종류	구성장비		수행기능
전송 시설	가입자선로(loop)		가입자 전화기를 시내 교환기에 연결
	중계선 (trunk)	시내 중계선	시내 교환기 상호간, 시내 교환기와 시외 교환기 사이 를 연결
		시외 중계선	시외 교환기 상호간의 연결
교환 시설	시내(local) 교환기		가입자 전화기를 수용하며 동일 시스템 내부 가입자 상호간이나 내부 가입자를 다른 교환기와 연결되는 중계선 사이에서 교환
	시외(toll) 교환기		시내 교환기의 중계선과 시외 교환기의 중계선 사이 에서 교환기능 수행
	중계(tandem)교환기		중계선 사이의 교환기능은 시외 교환기와 동일하나 연결 구역이 시내지역으로 한정됨