CS118: Computer Network Fundamentals

Lecture-1: introduction

CS118: explains (roughly) how the Internet works

- Internet: a huge, complex network of networks
- Divide-and-conquer
 - Figure out how many major parts,
 - Learn one piece at a time
- Your job:
 - Read textbook, think, collect a list of questions
 - review every lecture slide deck after each class
 - Ask questions in class/office hours/via Piazza
 - Practice what you learn through homework and projects

Brief Contents

Chapter 1	Computer Networks and the Internet	
Chapter 2	Application Layer	8
Chapter 3	Transport Layer	18
Chapter 4	The Network Layer: Data Plane	30
Chapter 5	The Network Layer: Control Plane	37
Chapter 6	The Link Layer and LANs	44
Chapter 7	Wireless and Mobile Networks	53
Chapter 8	Security in Computer Networks	60
	References	69
	Index	7

Course assignment and due schedule

Midterm	In-class, Wednesday Feb 5 (Location TBD)
Final	3:00PM-6:00PM Saturday March 21 (Location TBD)
Homework	Release: on Thursday of week 1, 3, 5, 7; Due: 11:59pm Tuesday of week 3, 5, 7, 9.
Project 0	Release: Monday Jan 6, 2024 (Week 1) Due: 11:59pm Wednesday, Jan 15, 2024 (Week 2) 1.5 weeks
Project 1	Release: Thursday Jan 16, 2024 (Week 2) Due: 11:59pm Sunday, Feb 16, 2024 (Week 6) Grading: auto-grading script (sample tests will be provided to let everyone test their code before submission)
Project 2	Release: Monday, Feb 17, 2024 (Week 7) 4 weeks Due: 11:59pm Sunday, March 16, 2024 (Week 10) Grading: auto-grading script (sample tests will be provided to let everyone test their code before submission)

Course workload and grading

- Bi-weekly homework assignments
- 2 programming projects, plus a warmup exercise
 - 0. UDP socket (individual)
 - 1. Reliable data delivery (2-3 people team)
 - 2. Secured reliable data delivery (2-3 people team)
- Midterm and final exams (cheat sheets allowed, 2 pages double sided)
- Strict Grading Policy
 - Homework: do it yourself; no credit for late submission
 - Project: 20% credit reduction per late day
 - No make-up exam

Homework	20%
Programming Projects	25% (5/ 10/ 10)
Midterm	25%
Final exam	30%

2% extra credits based on piazza

Class Policy

The following actions are strictly prohibited

- Posting/sharing/selling class material, with or without answers, to anyone outside this class, during or after this quarter.
- Use of old homework/midterm/finals in doing homework or exams
- Use ChatGPT in doing assignments
- Making your project code publicly available either during or after this quarter
 - you must use private repository on GitHub or GitLab

Hints for Getting Good Grade

- Review previous lecture slides
- Read textbook before coming to each lecture
- Ask questions
- Get your work done early
 - Lecture slides uploaded to BruinLearn one day before the lecture
 - Get HWs and projects done before the deadline

Let's get started

Today we cover the basic concepts in Chapter 1 of the textbook

What is a Computer Network

What is a Computer Network

Terminology

billions of connected computing devices:

- hosts = end systems
- running network apps
- Apps send/receive data packets

 Routers = packet switches inside network

wired links

- communication links
 - fiber, copper, radio, satellite
 - transmission rate = bandwidth (BW)

Recent years witnessed rapid growth of giant cloud service providers

"Nuts and Bolts"

- Internet: "network of networks"
 - Interconnected ISPs, enterprise networks, now also cloud service providers
- Protocols: define how to send, receive packets
 - e.g., HTTP, TCP, IP, 802.11
- Internet protocol standards
 - RFCs: "Request for Comments"
 - https://www.rfc-editor.org/rfc-index.html
 - Developed by Internet Engineering Task Force (IETF)
 - IEEE Standards
 - W3C (World Wide Web Consortium), and others

What is a protocol?

14

Traffic light protocol

- Green: go
- Red: stop
- Yellow: slow down stop

... specific messages sent

... specific actions taken when the messages received

human protocols:

computer protocols:

Internet protocols

computer protocols:

- Communication between machines rather than humans
- all communication activity governed by protocols

protocols define format, order of packets sent and received among network entities, and actions taken on packet transmission, receipt

Delivering data over the global Internet is a complicated process, involving many many steps

How to get the work done: divide and conquer Group functions to a few modules

Internet protocol stack

- Application layer protocols
 - Support data exchange between application processes
 - Example: SMTP, HTTP, DNS
 (Simple Mail Transfer Protocol)
- Transport layer protocols
 - handling delivery reliability, multiplex within a host
 - Example: TCP, UDP
- Network layer protocols
 - forward packets from source to destination
 - Example: IP
- Link layer protocols
 - transfer data between directly connected network elements
 - Example: Ethernet protocol, WiFi
- Physical layer: bits "on the wire"

application transport network

link

physical

Application View

apps

trans

net

Application protocols

- Assume network can send data to any hosts on the Internet
- Don't know/care how data is sent, and assume all data delivered reliably

They talk to each other using application protocols (web protocol: HTTP)

Runs on top of a transport protocol

Transport View

apps

trans

net

- A transport protocol's job: delivering data between the two communicating ends
 - Don't know or care about which paths data may traverse through the network
- Multiple transport protocols exist, each offers somewhat different functions (e.g. reliability, congestion control)

Actually, transport protocols don't do delivery → network protocol's job

Network Layer View

apps

trans

20

- network protocol's job: forward packets from source to destination host
- A really hard problem: the Internet is large, run by many different parties
 - connection from laptop to CNN.com:
 WiFi → campus backbone → local ISP → other ISP → CNN website

Link Layer View

apps

net

- Link layer's job: Get a packet transmitted across some communication medium to next hop
- ◆ Different medium → different link layer protocol

What protocol "layer" really means

application transport

network

link

physical

Link layer

Network protocol

protocol

Transport Application Application protocol

data

(Tentative) Schedule of the Quarter

We	ek: 1	2	3	4	5	
Mon	1/6 Course intro BW& delay	1/1 <mark>3</mark> HTTP	1/20 Martin Luther King Jr. Day	1/27 Transport protocols	2/3 Congestion Control	
Wed	1/8 Socket programming, Web & HTTP	1/1 <mark>5</mark> DNS	1/22 DNS	1/29 TCP	2/5 Midterm	
'	6	7	8	9	10	
Mon	6 2/10 Security 101	7 2/17 Presidents' Day	2/24 Routing algorithms & protocols 2/26 Routing algorithms &	3/3 Routing in the Internet	10 3/10 Hubs and switches	Final Exam

The big yellow numbers indicate the chapter numbers in the textbook.

Packet Switching: Statistical Multiplexing

- Each node sends packets as soon as link available
 - Receiver gets a full packet first, then forwards it towards the destination

- Packet switch can temporarily buffer up packets
 - Introduce delay
 - Packets get dropped when the queue is full

Network Performance

- 3 basic measurements
 - Throughput (bits/sec, Kbps=1000 bits/sec, Mbps)
 - Loss rate (% of packets lost)
 - Delay (sec, msec)

Throughput

over a single link: point-to-point

Buttoning data into the pinor throughout link bandwidth

- Pumping data into the pipe: throughput = link bandwidth
- Multi-access:

a lot more difficult to measure, Why?

Packet Losses

- Wired links
 - Loss due to transmission errors
 - Loss due to congestion
- Wireless links
 - Limited transmission rate
 - Higher (than wire) bit error rate
 - Host mobility: high variance in the number of hosts sharing the same wireless channel

Do users know there are packet losses?
Do users' performance get affected by losses?

Delay in packet-switched networks

4 sources of delay at each hop

- node processing:
 - check bit errors
 - determine output link
- Queuing = #packets in queue
 X transmission time
 of each packet

Transmission = Length / rate

R = link bandwidth (bps)

L = packet length (bits)

Propagation = distance/sec

d = length of physical link

s = propagation speed in medium (~2x10⁸ m/sec)

Example: calculating one hop delay

total delay $(A \rightarrow B) = ?$

- Queuing delay = ?
- transmission delay = ?
- Propagation delay = ?

link length = 100 km
Bandwidth= 1 Mbps
packet size= 1000 bits
(all pkts equal length)

(2.0x10⁸ meters/sec in a fiber)

Example: calculating one hop delay

total delay (A—B) =
$$1ms \times 2 + 1ms + 0.5ms = 3.5ms$$

- Queuing delay = Waiting time for 2 pkts
- * transmission delay = $\frac{1000bits}{1000000bits/sec}$ = 1 msec
- Propagation delay = $\frac{100,000m}{2 \times 10^8 m/\text{sec}} = 0.5 \text{ msec}$

link length = 100 km
Bandwidth= 1 Mbps
packet size= 1000 bits
(all pkts equal length)

(2.0x10⁸ meters/sec in a fiber)

Transmission vs. propagation delay

Transmission delay: L/R

R = link bandwidth (bit-persecond, bps) L = packet length (bits)

Propagation: d/s

d = length of a physical link

s = signal's propagation speed in the medium (~2x10⁸ meter/sec)

bandwidth

1000 bits to send

np 0.5ms 1ms

How long it takes to pump 1K bits into each pipe:

(1)
$$\frac{10^3 bits}{10^6 bps}$$
 =1msec

(2)
$$\frac{10^3 bits}{2 \times 10^6 bps}$$
 =0.5msec

1Mbps

2Mbps

What we covered today

- Internet: made of a huge number of hosts, routers, wired and wireless links
- Hosts: run application protocols to exchange data packets with each other
- Routers: run bunch of protocols to move all packets towards their destinations
- Why protocols are layered
- How to calculate packet delays as they move across a packet-switched network