课程编号______1800440080

得分	教师签名	批改日期

深圳大学实验报告

课程名称:_	大	学物理实验	<u>(-)</u>		
实验名称: _	数5	字示波器的位	吏用		
学 院:_	计算	算机与软件等	学院		
指导教师 <u>:</u>		王光辉			
报告人:	_何泽锋	组号:	12	2	
学号 <u>2022</u>	<u>150221</u> 5	实验地点	214	1	
实验时间:_	2023	年4_	月_	27	_日
提交时间:	2023	年	月		日

1

一、实验目的

- 1、用数字示波器观察交流电压信号,了解示波器扫描频率和信号频率的关系
- 2、学习用示波器测定电信号的频率、幅度。
- 3、用示波器观察李萨如图形,理解两个互相垂直正弦信号合成理论。
- 4、通过对以上内容的观察,掌握示波器的使用方法

二、实验原理

1. 示波器原理

示波器主要包括: 电子枪、偏转系统和荧光屏三部分

电压加在这个系统上)

图 1-1 示波器理图

2. 李萨如图形原理: 两个振动反向相互垂直的正弦信号的合成

$$X = A\cos(\omega_1 t + \phi_1) \tag{1}$$

$$Y = B\cos(\omega_2 t + \varphi_2) \tag{2}$$

特征:

$$\frac{f_1}{f_2} = \frac{n_2}{n_1}$$
 (3)

图 1-2 波形图

三、实验仪器

①数字示波器 DS1052E, 如图 3-1

图 3-1 数字示波器实物图

常用菜单介绍:

图 3-2 菜单 MENU 介绍

Acquire(获取)、Measure(测量)、storage(存储)、Cursor (光标)、display(显示)、utility(工具)

②信号发生器,如图 3-3

图 3-3 信号发生器实物图

部件介绍:

1. 显示屏 2. 功能键 3. 数字键 4. 调节旋钮 5. 电源按钮 6. 菜单软键 7. CHA、CHB 输出 8. 同步输出/计数输入 9. $\,$ U 盘插座 10. 方向键

四、实验内容与步骤

- 1、观察频率为 1KHz 的正弦, 方波、三角波波形
- (1) 将待测信号输入通道 CH1 或 CH2;
- (2) 按下 AUTO 按键,示波器将自动使波形显示达到最佳状态。可调节垂直、水平档位,直至波形显示符合要求

在示波器上显示出占满屏幕上 80%范围<u>一个完整</u>波形。将波形分别画在坐标纸上, 对应记录示波器的扫描频率 fx。

- 2、观察频率为 1KHz 的正弦波形,研究扫描频率与信号频率的关系,改变扫描时间灵敏度,显示 2 个和 1/2 个正弦波
- 3、测量正弦信号的电压有效值
- (1) 直接测量
- a. 按 measure 键,在右侧显示自动测量菜单;按下菜单操作键的第1个键,选择信源(CH1或CH2);
- b. 按下菜单操作键的第2个键,选择电压测量;在电压测量菜单中选择均方根值(即为有效电压)
- (2) 记录示波器电压灵敏度数值($S=__V/div$);纪录正弦波从最低点到最高点的格数 $n=__div$;电压有效值

$$V_{rms} = \frac{S * n}{2 \sqrt{2}} \tag{4}$$

4、观察李萨如图形

- (1) 将两个正弦信号输入通道 CH1 或 CH2;
- (2) 若通道为被显示, 按下 CH1 或 CH2 按钮;
- (3) 按下 auto 键
- (4) 调整SCALE旋钮使两路信号幅度大致相等;
- (5) 按下水平控制栏下的 MENU 菜单按钮以调出水平控制菜单(在屏幕的右侧显示)
- (6) 按下时基菜单按钮选择 X-Y,可显示李萨如图形,按下运行控制栏的 RUN/STOP 可使李萨如图形静止。
- (7)、观察李萨如图形,设置频率比为fy:fx=1:2; 1:3; 2:3 并画图

五、数据处理

见附页

实验三:实验中测量电压为 373mV。

计算电压为 200mV*5div/2/√2=353mV

误差为 373-353=20mV

六、结果陈述

本次实验一共做了 4 个实验。实验一是观察频率为 1KHz 的正弦波、方波、三角波。在按照要求连接电路并打开仪器后,调整为 1KHz 的频率,依次观察一个周期内的正弦波、方波、三角波。实验二是观察 1/2、2 个周期的正弦波,此时只需调整不同的时间 t 即可。实验三是测量信号的有效电压,本次实验测得的电压为 373mV,而计算得电压为 353mV,可见有一定的误差。实验四是测量特定频率比下的李萨如图形。调整不同的 x、y 频率后调整合适的相位差画出图形即可。

七、思考题

1. 在观察李萨如图形时,如果把 fx、fy 对调,图形会怎么样?

原来在x 轴上运动频率高的正弦波现在会在y 轴上运动,而原来在y 轴上运动频率高的正弦波现在会在x 轴上运动。这会导致图形的细节和线条发生变化,但基本的形状和对称性依然存在。

2. 用李萨如图形测频率实验时, 屏幕上的图形在时刻转动, 为什么?

两个波的频率有差异,它们之间就会产生"拍动"现象,会出现相对相位的变化,造成图形的旋转。

指导教师批阅意见

成绩评定

预习	操作及记录	数据处理与结果陈述	思考题	报告整体	总分
(20 分)	(40分)	(30分)	(10分)	印 象	

注:正文统一用5号字,标题可大一号,图表名可小一号;

原始数据记录表需单独起页(表格自拟,作为预习报告评分的一部分),提交报告时附在最后;

原始数据记录表

组号	12	姓名	何泽锋	
20.7	14	XL.11	17] 1十 1年	

1、观察频率为 1KHz 的正弦波、方波、三角波,要求将一个周期的波形分别画在准备好的 坐标绘图纸上,对应记录示波器的扫描时间。

图 5-1 频率为 1KHz 的正弦,方波、三角波波形

2、将 1/2、2 和正弦波形画在坐标纸上,并记录示波器扫描时间: 扫描时间(1/2个)_____,扫描时间(2个)_____,

图 5-2 扫描频率与信号频率关系

3、测量信号的有效电压:

表 1 正弦信号的电压有效值

序号	灵敏/(V/div)	格数/div	电压/V

4、画出频率比为_: _、 _: _和_: _的李萨如图形并记录相应的信号频率:

$$(_:_): f_x = ___, (_:_) f_x = ___, (_:_) f_x = ___, f_y = ___, f_y = ___,$$

图 5-3 特定频率下的李萨如图形