Question	Scheme	Marks
number		
10 (a)	$AB = AO + OB = -(2\mathbf{a} - \mathbf{b}) + 3\mathbf{a} + \mathbf{b} = \mathbf{a} + 2\mathbf{b}$	M1A1
		[2]
(b)	OC = OB + BC = 3a + b - a + 3b = 2a + 4b = 2(a + 2b)	M1
	Conclusion required; same direction and OC is a multiple of AB	A1
	therefore \overrightarrow{OC} is parallel to \overrightarrow{AB} .	[2]
(c)	$AC = AB + BC = \mathbf{a} + 2\mathbf{b} + (-\mathbf{a} + 3\mathbf{b}) = 5\mathbf{b}$	B1
	$AX = \mu AC = \mu 5\mathbf{b}$	B1
	$AX = AO + OX = -(2\mathbf{a} - \mathbf{b}) + \lambda(3\mathbf{a} + \mathbf{b})$	M1 M1
	$\Rightarrow \mu 5\mathbf{b} = -(2\mathbf{a} - \mathbf{b}) + \lambda(3\mathbf{a} + \mathbf{b})$	
	$\Rightarrow -2 + 3\lambda = 0 \Rightarrow \lambda = \frac{2}{3}$	M1
	$\Rightarrow 5\mu = 1 + \lambda \Rightarrow \mu = \frac{1}{3}$	A1
	$\Rightarrow AX : XC = 1 : 2$	A1
		[7]
Total 11 marks		
(2)		

(a) Use of $\overrightarrow{AB} = \overrightarrow{AO} + \overrightarrow{OB}$ **M1 A1** a + 2b**(b)** Use of $\overrightarrow{OC} = \overrightarrow{OB} + \overrightarrow{BC}$ Correct conclusion i.e. $\overrightarrow{OC} = 2\overrightarrow{AB}$ \therefore \overrightarrow{OC} is parallel to \overrightarrow{AB} **M1 A1** (c) $AC = 5\mathbf{b}$ may be implied by 2^{nd} B1 $AX = \mu 5\mathbf{b}$ or $XC = \lambda 5\mathbf{b}$ A correct vector for AX or OX or BX or CX or BC including an unknown multiple of a vector e.g. $AX = -(2\mathbf{a} - \mathbf{b}) + \lambda(3\mathbf{a} + \mathbf{b})$ **B**1 **B1** M1Equate 2 forms of the same vector e.g. $\mu 5\mathbf{b} = -(2\mathbf{a} - \mathbf{b}) + \lambda(3\mathbf{a} + \mathbf{b})$ **M1** Comparing coefficients **M1** $\lambda = \frac{2}{3}$ or $\mu = \frac{1}{3}$ **A1 A1** AX:XC=1:2