Olasılıksal Robotik

Dr. Öğr. Üyesi Erkan Uslu

Temel Olasılık

Kovaryans

$$\sigma_{XY}^{2} = covX, Y$$

$$= E \{ (X - \mu_X) (Y - \mu_Y) \}$$

$$= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} (X - \mu_X) (Y - \mu_Y) p(x, y) dx dy$$

$$= E \{ XY \} - \mu_X \mu_Y$$

Temel Olasılık

Scatter plot - yayılım grafikleri:

$$cov(x,y) \approx 0$$

Temel Olasılık

Unimodal

Multimodal

Normal Dağılım

1B Normal Dağılım

$$p(x) = \frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

2B Normal Dağılımı

$$p(\boldsymbol{x}) = \det(2\pi\boldsymbol{\Sigma})^{-\frac{1}{2}} e^{-\frac{1}{2}(\boldsymbol{x}-\boldsymbol{\mu})^T \boldsymbol{\Sigma}^{-1}(\boldsymbol{x}-\boldsymbol{\mu})}$$

Örnek - Correction

• X rassal değişkenine dair 2 bağımsız tahmin verilmiştir. İlk tahmin x_1 olup varyansı σ_1^2 , ikinci tahmin x_2 olup varyansı σ_2^2 olarak verildiğine göre, bu iki tahmin edicinin minimum varyanslı doğrusal birleşimi nasıl elde edilebilir?

$$\omega_{1} + \omega_{2} = 1$$

$$\hat{x} = \omega_{1}x_{1} + \omega_{2}x_{2}$$

$$\sigma_{\hat{x}}^{2} = E\left[(\hat{x} - E[\hat{x}])^{2}\right]$$

$$= E\left[(\omega_{1}x_{1} + \omega_{2}x_{2} - E[\omega_{1}x_{1} + \omega_{2}x_{2}])^{2}\right]$$

$$= E\left[(\omega_{1}x_{1} + \omega_{2}x_{2} - \omega_{1}E[x_{1}] - \omega_{2}E[x_{2}])^{2}\right]$$

$$= E\left[(\omega_{1}(x_{1} - E[x_{1}]) + \omega_{2}(x_{2} - E[x_{2}])^{2}\right]$$

$$\sigma_{\hat{x}}^{2} = E\left[\left(\omega_{1}\left(x_{1} - E\left[x_{1}\right]\right) + \omega_{2}\left(x_{2} - E\left[x_{2}\right]\right)\right)^{2}\right]$$

$$= E\left[\omega_{1}^{2}\left(x_{1} - E\left[x_{1}\right]\right)^{2} + \omega_{2}^{2}\left(x_{2} - E\left[x_{2}\right]\right)^{2} + 2\omega_{1}\omega_{2}\left(x_{1} - E\left[x_{1}\right]\right)\left(x_{2} - E\left[x_{2}\right]\right)\right]$$

$$= \omega_{1}^{2}E\left[\left(x_{1} - E\left[x_{1}\right]\right)^{2}\right] + \omega_{2}^{2}E\left[\left(x_{2} - E\left[x_{2}\right]\right)^{2}\right] + 2\omega_{1}\omega_{2}E\left[\left(x_{1} - E\left[x_{1}\right]\right)\left(x_{2} - E\left[x_{2}\right]\right)\right]$$

$$= \omega_{1}^{2}\sigma_{1}^{2} + \omega_{2}^{2}\sigma_{2}^{2} + 2\omega_{1}\omega_{2}E\left[\left(x_{1} - E\left[x_{1}\right]\right)\left(x_{2} - E\left[x_{2}\right]\right)\right]$$

$$= \omega_{1}^{2}\sigma_{1}^{2} + \omega_{2}^{2}\sigma_{2}^{2}$$

$$\sigma_{\hat{x}}^{2} = \omega_{1}^{2}\sigma_{1}^{2} + \omega_{2}^{2}\sigma_{2}^{2}$$

$$= \omega_{1}^{2}\sigma_{1}^{2} + (1 - \omega_{1})^{2} \sigma_{2}^{2}$$

$$\arg\min_{\omega_{1}} \left\{ \sigma_{\hat{x}}^{2} \right\} = \omega_{1} \Big|_{\frac{\partial \sigma_{\hat{x}}^{2}}{\partial \omega_{1}} = 0}^{\frac{\partial \sigma_{\hat{x}}^{2}}{\partial \omega_{1}} = 0}$$

$$\frac{\partial \sigma_{\hat{x}}^{2}}{\partial \omega_{1}} = 0$$

$$2\omega_{1}\sigma_{1}^{2} - 2(1 - \omega_{1})\sigma_{2}^{2} = 0$$

$$\omega_{1} = \frac{\sigma_{2}^{2}}{\sigma_{1}^{2} + \sigma_{2}^{2}}, \ \omega_{2} = \frac{\sigma_{1}^{2}}{\sigma_{1}^{2} + \sigma_{2}^{2}}$$

 Tahmin edicilerin lineer bir birleşimi olarak elde edilecek en küçük varyanslı tahmin edicinin tahmini ve varyansı:

$$\hat{x} = \frac{x_1 \sigma_2^2 + x_2 \sigma_1^2}{\sigma_1^2 + \sigma_2^2}$$

$$\sigma_{\hat{x}}^2 = \frac{\sigma_1^2 \sigma_2^2}{\sigma_1^2 + \sigma_2^2} = \left(\frac{1}{\sigma_1^2} + \frac{1}{\sigma_2^2}\right)^{-1}$$

- · Yorumu:
- Varyansı daha küçük olan tahmin edici sonuca daha fazla katkı yapar
- Her iki tahmin ediciden de daha keskin bir tahmin yapılmış olur (her iki tahmin ediciden de daha küçük varyans)

$$\omega_{2} = \frac{\sigma_{1}^{2}}{\sigma_{1}^{2} + \sigma_{2}^{2}}$$

$$\sigma_{\hat{x}}^{2} = \frac{\sigma_{1}^{2}\sigma_{2}^{2}}{\sigma_{1}^{2} + \sigma_{2}^{2}}$$

$$\sigma_{\hat{x}}^{2} = (1 - \omega_{2}) \sigma_{1}^{2}$$

Örnek - Prediction

 Başlangıç durumu için tahmin ve varyans değerlerinin sırasıyla x ve σ² olduğu biliniyor olsun. Başlangıç durumundayken belirsizliği σ²_u olan bir u kontrol işareti uygulandığında ulaşılan durum için tahmin x' ve varyansı σ'² ne olur?

 Sonraki durum için tahmin başlangıç durumuna kontrol işaretinin uygulanmasıdır

$$x' = x + u$$

Sonraki durum varyansı:

$$\sigma'^{2} = E\left[\left(x' - E\left[x'\right]\right)^{2}\right]$$

$$= E\left[\left(x + u - E\left[x + u\right]\right)^{2}\right]$$

$$= E\left[\left(x - E\left[x\right] + u - E\left[u\right]\right)^{2}\right]$$

$$= E\left[\left(x - E\left[x\right]\right)^{2} + \left(u - E\left[u\right]\right)^{2} + 2\left(x - E\left[x\right]\right)\left(u - E\left[u\right]\right)\right]$$

$$= \sigma^{2} + \sigma_{u}^{2}$$

- Yorumu:
- Hem başlangıç durumu hem de kontrol işaretinden daha yüksek bir varyans oluştu

Gaussian Yak. Vs Histogram Yak.

Gaussian Rassal Değişken(ler)

 Gaussian rassal değişkenin doğrusal bir fonksiyonun olasılık dağılımı

$$\begin{array}{c} X \sim N\left(\mu, \sigma^2\right) \\ Y = aX + b \end{array} \Rightarrow Y \sim N\left(a\mu + b, a^2\sigma^2\right)$$

 İki Gaussian rassal değişkenin olasılık çarpımının dağılımı

$$\begin{array}{c} X_1 \sim N\left(\mu_1, \sigma_1^2\right) \\ X_2 \sim N\left(\mu_2, \sigma_2^2\right) \end{array} \Rightarrow p(X_1)p(X_2) \sim N\left(\frac{\sigma_2^2 \mu_1}{\sigma_1^2 + \sigma_2^2} + \frac{\sigma_1^2 \mu_2}{\sigma_1^2 + \sigma_2^2}, \frac{\sigma_1^2 \sigma_2^2}{\sigma_1^2 + \sigma_2^2}\right)$$

Gaussian Rassal Değişken(ler)

 İki Gaussian rassal değişkenin toplamının olasılık dağılımı

$$\begin{array}{c} X_1 \sim N \left(\mu_1, \sigma_1^2 \right) \\ X_2 \sim N \left(\mu_2, \sigma_2^2 \right) \end{array} \Rightarrow X_1 + X_2 \sim N \left(\mu_1 + \mu_2, \sigma_1^2 + \sigma_2^2 \right)$$

- Bayes filtresinin özel bir halidir
- Lineer sistemlerde (durum geçişleri doğrusal fonksiyon) durum tahmini
- Gürültüler normal dağılımla modellenir
- Prediction ve Correction adımları ile yürütülür
- İki adet Gauss fonksiyonun çarpımı yine bir Gauss fonksiyonu verir

 Ayrık zamanlı lineer sistem durum denklemi ve ölçüm denklemi

$$x_t = ax_{t-1} + bu_t$$
$$z_t = cx_t$$

a, b, c skalar

 Yarıçapı 50 cm olan 100 cm uzunluğundaki silindirik bir su tankına her t anında sabit bir miktar (1 lt) su ekleniyor. Tankın kapağında bulunan bir ultrasonik sensör ise tpeden su seviyesine kadar olan mesafeyi ölçebiliyor. Tanktaki su seviyesine (cm) ilişkin fiziki modeli yazınız.

$$x_t = x_{t-1} + \frac{1000}{2500\pi} u_t$$
$$z_t = -x_t + 100$$

 Ayrık zamanlı lineer sistem durum denklemi ve ölçüm denklemi

23

- Durum tahmini PREDICTION ve CORRECTION adımlarından oluşacak: Bayes Filtresinde olduğu gibi
- $(\overline{\mu}_{t}, \overline{\sigma}_{t}) = PREDICTION(\mu_{t-1}, \sigma_{t-1}, u_{t})$
- $(\mu_t, \sigma_t) = CORRECTION(\overline{\mu}_t, \overline{\sigma}_t, z_t)$

Prediction

$$\bar{\mu}_t = a\mu_{t-1} + b\mu_{ut}$$

$$\bar{\sigma}_t^2 = a^2 \sigma_{t-1}^2 + b^2 \sigma_{ut}^2 + R_t$$

Correction

$$K_t = \frac{c\bar{\sigma}_t^2}{c^2\bar{\sigma}_t^2 + Q_t} \Rightarrow \qquad \mu_t = \bar{\mu}_t + K_t \left(z_t - c\bar{\mu}_t\right)$$
$$\sigma_t^2 = (1 - cK_t)\bar{\sigma}_t^2$$

Prediction

Kontrol işareti deterministikse

$$\bar{\mu}_t = a\mu_{t-1} + b\mu_{ut}$$

$$\bar{\sigma}_t^2 = a^2 \sigma_{t-1}^2 + b^2 \sigma_{ut}^2 + R_t$$

$$\bar{\mu}_t = a\mu_{t-1} + bu_t$$
$$\bar{\sigma}_t^2 = a^2\sigma_{t-1}^2 + R_t$$

Correction

$$K_t = \frac{c\bar{\sigma}_t^2}{c^2\bar{\sigma}_t^2 + Q_t} \Rightarrow \qquad \mu_t = \bar{\mu}_t + K_t \left(z_t - c\bar{\mu}_t\right)$$
$$\sigma_t^2 = \left(1 - cK_t\right)\bar{\sigma}_t^2$$

z/c ve μ için tahmin

Örnek Kalman Filtresi

- 1B uzayda hareket edebilen bir robot için ilk konum, bilinmediğinden geniş bir tahmi $\hat{x}_0 = 3, \ \sigma_0^2 = 100$ ştir.
- Robot başlangıçtan itibaren 5 kontrol işaretini de sabit bir belirsizlikle yürütm $\ddot{u}_{0:4}=(2,3,2,1,1)\,,\;\sigma_u^2=2$

• Robot başlangıçtan itibaren 5 ölçümü de sabit bir belirsizl $z_1:5=(2,5,7,8,9)$, $\sigma_z^2=4$

- Robot önce hareket komutu yürütüp sonra ölçüm almaktadır
- Ölçümler x=0 noktasına uzaklığı ölçebilen bir sensör ile yapılmaktadır
- Robotun her adım sonrasındaki konum inancını Kalman filtresi yardımıyla belirleyiniz

$$\hat{x}_{1}' = \hat{x}_{0} + u_{0}$$

$$\sigma_{\hat{x}_{1}'}^{2} = \sigma_{\hat{x}_{0}}^{2} + \sigma_{u_{0}}^{2}$$

$$3 + 2 = 5$$

 $100 + 2 = 102$

$$\omega = \frac{\sigma_{\hat{x}_{1}'}^{2}}{\sigma_{\hat{x}_{1}'}^{2} + \sigma_{z_{1}}^{2}}$$

$$\hat{x}_{1} = \hat{x}_{1}' + \omega \left(z_{1} - \hat{x}_{1}'\right)$$

$$\sigma_{\hat{x}_{1}}^{2} = (1 - \omega) \sigma_{\hat{x}_{1}'}^{2}$$

$$\frac{102}{102 + 4} = 0.962$$

$$5 + 0.962(2 - 5) = 2.113$$

$$(1 - 0.962) 102 = 3.849$$

	Tahmin	Varyans
Prediction0	5.00	102.5
Correction1	2.11	3.85
Prediction1	5.11	5.85
Correction2	5.05	2.38
Prediction2	7.05	4.38
Correction3	7.02	2.09
Prediction3	8.02	4.09
Correction4	8.01	2.02
Prediction4	9.01	4.02
Correction5	9.01	2.01

Kalman Filtresi - Matris Form

 Ayrık zamanlı lineer sistem durum denklemi ve ölçüm denklemi

$$x_t = A_t x_{t-1} + B_t u_t + \varepsilon_t$$
$$z_t = C_t x_t + \delta_t$$

- A, B, C matris
- x, u, z vektör

 2B uzayda doğrusal hareket yapan bir robotun sağ ve sol teker hızları kontrol edilebilmektedir. Robot üzerindeki sensörle 4 noktadan ölçüm yapılabilmektedir. Buna göre robotun konum tahmininde Kalman Filtresi kullanılacaksa durum denklem katsayılarının boyutları nasıl oluşur.

$$\mathbf{x} = \begin{bmatrix} x \\ y \\ \theta \end{bmatrix} \qquad \mathbf{u} = \begin{bmatrix} v_r \\ v_\ell \end{bmatrix} \qquad \mathbf{z} = \begin{bmatrix} z_1 \\ z_2 \\ z_3 \\ z_4 \end{bmatrix}$$

 2B uzayda doğrusal hareket yapan bir robotun sağ ve sol teker hızları kontrol edilebilmektedir. Robot üzerindeki sensörle 4 noktadan ölçüm yapılabilmektedir. Buna göre robotun konum tahmininde Kalman Filtresi kullanılacaksa durum denklem katsayılarının boyutları nasıl oluşur.

$$\mathbf{x}_{3\times 1} = \mathbf{A}_{3\times 3}\mathbf{x}_{3\times 1}^{'} + \mathbf{B}_{3\times 2}\mathbf{u}_{2\times 1}$$
$$\mathbf{z}_{4\times 1} = \mathbf{C}_{4\times 3}\mathbf{x}_{3\times 1}^{}$$

- A_t (nxn) önceki durumun sonraki duruma etkisi
- B_t (nxl) kontrol işaretinin durum geçişine etkisi
- C_t (kxn) durumun ölçüme etkisi
- δ_t Sıfır ortalamalı R kovaryanslı rassal değişken
- ε_t Sıfır ortalamalı Q kovaryanslı rassal değişken

 Başlangıç durumu için de inanç normal dağılıma uyacak şekilde tanımlanabilir

$$bel(x_0) \sim N(x_0; \mu_0, \sigma_0^2)$$

$$bel(\mathbf{x_0}) \sim N(\mathbf{x_0}; \mu_0, \Sigma_0)$$

 Hareket modeli / sistem dinamiği durum, kontrol ve hatanın doğrusal bir fonksiyonudur

$$x_{t} = A_{t} x_{t-1} + B_{t} u_{t} + \varepsilon_{t}$$

$$p(x_{t} | u_{t}, x_{t-1}) = N(x_{t}; A_{t}x_{t-1} + B_{t}u_{t}, R_{t})$$

$$\overline{bel}(x_t) = \int p(x_t \mid u_t, x_{t-1}) \qquad bel(x_{t-1}) dx_{t-1}$$

$$\downarrow \qquad \qquad \qquad \downarrow$$

$$\sim N(x_t; A_t x_{t-1} + B_t u_t, R_t) \sim N(x_{t-1}; \mu_{t-1}, \Sigma_{t-1})$$

$$\overline{bel}(x_{t}) = \int p(x_{t} | u_{t}, x_{t-1}) \qquad bel(x_{t-1}) dx_{t-1}$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \qquad N(x_{t}; A_{t}x_{t-1} + B_{t}u_{t}, R_{t}) \sim N(x_{t-1}; \mu_{t-1}, \Sigma_{t-1})$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad$$

Gözlem modeli durum ve hatanın doğrusal bir fonksiyonudur

$$z_{t} = C_{t} x_{t} + \delta_{t}$$

$$p(z_t \mid x_t) = N(z_t; C_t x_t, Q_t)$$

$$bel(x_t) = \eta \quad p(z_t \mid x_t) \qquad \overline{bel}(x_t)$$

$$\downarrow \qquad \qquad \downarrow$$

$$\sim N(z_t; C_t x_t, Q_t) \qquad \sim N(x_t; \overline{\mu}_t, \overline{\Sigma}_t)$$

$$bel(x_{t}) = \eta \quad p(z_{t} \mid x_{t}) \qquad \overline{bel}(x_{t})$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$\sim N(z_{t}; C_{t}x_{t}, Q_{t}) \qquad \sim N(x_{t}; \overline{\mu}_{t}, \overline{\Sigma}_{t})$$

$$\downarrow \qquad \qquad \downarrow$$

$$bel(x_{t}) = \eta \exp\left\{-\frac{1}{2}(z_{t} - C_{t}x_{t})^{T} Q_{t}^{-1}(z_{t} - C_{t}x_{t})\right\} \exp\left\{-\frac{1}{2}(x_{t} - \overline{\mu}_{t})^{T} \overline{\Sigma}_{t}^{-1}(x_{t} - \overline{\mu}_{t})\right\}$$

$$bel(x_{t}) = \left\{ \mu_{t} = \overline{\mu}_{t} + K_{t}(z_{t} - C_{t}\overline{\mu}_{t}) \right\} \qquad \text{with} \qquad K_{t} = \overline{\Sigma}_{t} C_{t}^{T} (C_{t} \overline{\Sigma}_{t} C_{t}^{T} + Q_{t})^{-1}$$

1. Algorithm Kalman_filter(μ_{t-1} , Σ_{t-1} , u_t , z_t):

- 2. Prediction:
- $\mathbf{3} \quad \overline{\mu}_{t} = A_{t} \mu_{t-1} + B_{t} u_{t}$
- $\frac{1}{\Sigma_t} = A_t \Sigma_{t-1} A_t^T + R_t$
- 5. Correction:
- $6. K_t = \overline{\Sigma}_t C_t^T (C_t \overline{\Sigma}_t C_t^T + Q_t)^{-1}$
- $7. \qquad \mu_t = \overline{\mu}_t + K_t(z_t C_t \overline{\mu}_t)$
- $\mathbf{8} \cdot \boldsymbol{\Sigma}_{t} = (I K_{t}C_{t})\overline{\boldsymbol{\Sigma}}_{t}$
- 9. Return μ_t , Σ_t

