**1:** 30 points

Norms and SVD

- (a) Consider the matrices  $A = \begin{bmatrix} 0 & 1 \\ 3 & -2 \end{bmatrix}$  and  $B = \begin{bmatrix} 0 & 1 \\ 3 & 0 \end{bmatrix}$ . Compute the spectral radius, the Frobenius norm, the 1-norm, the 2-norm, and the  $\infty$ -norm of A and B.
- (b) A generalized matrix norm is norm on a matrix that satisfies all properties other than  $||AB|| \le ||A|| ||B||$ . Show that  $||A||_{\max} = \max_{i,j} |a_{ij}|$  is a generalized matrix norm by demonstrating that it satisfies the four fundamental properties and giving examples that show  $||A||_{\max} < \rho(A)$  and  $||AB||_{\max} > ||A||_{\max} ||B||_{\max}$ .
- (c) For a SISO system, show that the  $H_2$  and  $H_{\infty}$  norms are invariant to time delays and all-pass filters, i.e. show  $\|QG\|_2 = \|G\|_2$  and  $\|QG\|_{\infty} = \|G\|_{\infty}$  for  $Q = e^{-sT}$  and  $Q = \frac{s-a}{s+a}$  with a > 0.

## **2:** 20 points

MIMO Design

Consider the  $2 \times 2$  transfer function matrix

$$G(s) = \begin{bmatrix} \frac{10(s+2)}{s^2 + 0.2s + 100} & \frac{1}{s+5} \\ \frac{s+2}{s^2 + 0.1s + 10} & \frac{5(s+1)}{(s+2)(s+3)} \end{bmatrix}.$$

In this problem you will design two DIDO controllers for this system using different approaches.

- (a) <u>Dynamic Decoupling</u>. Find a <u>proper</u> approximation to  $G^{-1}$ . Use this to design a dynamic decoupling-based controller that achieves (approximately) loop shapes of  $L = \frac{100}{s}$  for each of the diagonal elements. Form the loop transfer function L = GK and use the margin command to show the performance of  $L_{1,1}$  and plot the Bode magnitude of the  $2 \times 2$  sensitivity function.
- (b) Mixed Sensitivity Synthesis. Using first order weights for  $W_p$  and  $W_T$  and a constant actuator weight corresponding to a maximum control usage of 100 at each input, design a mixed sensitivity controller that
  - Maximizes the bandwidth such that  $\gamma < 1$ .
  - Rejects steady state disturbances by a factor of 1000
  - Rejects high frequency noise by a factor of 1000
  - Has a sensitivity peak of no more than 2 and a complementary sensitivity peak of no more than 1.5
  - Has a complementary sensitivity crossover frequency at most  $3\times$  the sensitivity crossover frequency.

Plot the magnitudes of  $W_pS$ ,  $W_TT$ , and  $W_UKS$  for your final design.

## **3:** 30 points

## Generalized Plants

(a) For the block diagram shown below: 1.) Find the generalized plant P, and 2.) Find  $N = F_l(P, K)$ . For simplicity, feel free to give the system inside the dashed line a name - say  $G^*$ .



- (b) Use the Matlab command sysic to generate the generalized plant for the mixed sensitivity problem in Problem 2.b. NOTE: Use the block diagram from class it is very different from the one in 3.a. Run the command K = hinfsyn(P,2,2) for your generalized plant and compare the controller to the one you found in Problem 2.b.
- (c) The state space description of a transfer function matrix can be written as an LFT. Find H such that

$$F_l\left(H, \frac{1}{s}\right) = C\left(sI - A\right)^{-1}B + D.$$