Chemistry, The Central Science, 10th edition Theodore L. Brown; H. Eugene LeMay, Jr.; and Bruce E. Bursten

Chapter 1 Introduction: Matter and Measurement

John D. Bookstaver
St. Charles Community College
St. Peters, MO
© 2006, Prentice Hall

Chemistry:

The study of matter and the changes it undergoes.

Scientific Method:

A systematic approach to solving problems.

Matter:

Anything that has mass and takes up space.

Matter

Atoms are the building blocks of matter.

Matter

- Atoms are the building blocks of matter.
- Each element is made of the same kind of atom.

Matter

- Atoms are the building blocks of matter.
- Each element is made of the same kind of atom.
- A compound is made of two or more different kinds of elements.

Measurement

States of Matter

Mixtures and Compounds

Properties and Changes of Matter

Properties of Matter

- Physical Properties:
 - Can be observed without changing a substance into another substance.
 - Boiling point, density, mass, volume, etc.
- Chemical Properties:
 - Can only be observed when a substance is changed into another substance.
 - Flammability, corrosiveness, reactivity with acid, etc.

Properties of Matter

- Intensive Properties:
 - Independent of the amount of the substance that is present.
 - Density, boiling point, color, etc.
- Extensive Properties:
 - Dependent upon the amount of the substance present.
 - Mass, volume, energy, etc.

Changes of Matter

- Physical Changes:
 - Changes in matter that do not change the composition of a substance.
 - Changes of state, temperature, volume, etc.
- Chemical Changes:
 - □ Changes that result in new substances.
 - Combustion, oxidation, decomposition, etc.

Chemical Reactions

In the course of a chemical reaction, the reacting substances are converted to new substances.

Chemical Reactions

Compounds

Compounds can be broken down into more elemental particles.

Electrolysis of Water

Separation of Mixtures

Distillation:

Separates
homogeneous
mixture on the basis
of differences in
boiling point.

Distillation

Filtration:

Separates solid substances from liquids and solutions.

Chromatography:

Separates substances on the basis of differences in solubility in a solvent.

Units of Measurement

SI Units

Physical Quantity	Name of Unit	Abbreviation
Mass	Kilogram	kg
Length	Meter	m
Time	Second	s^a
Temperature	Kelvin	K
Amount of substance	Mole	mol
Electric current	Ampere	A
Luminous intensity	Candela	cd

^aThe abbreviation sec is frequently used.

- Système International d'Unités
- Uses a different base unit for each quantity

Metric System

Prefixes convert the base units into units that are appropriate for the item being measured.

Prefix	Abbreviation	Meaning	Example
Giga Mega Kilo Deci Centi Milli Micro Nano	Abbreviation G M k d c m	$ \begin{array}{c} 10^9 \\ 10^6 \\ 10^3 \\ 10^{-1} \\ 10^{-2} \\ 10^{-3} \\ 10^{-6} \\ 10^{-9} \end{array} $	1 gigameter (Gm) = 1×10^9 m 1 megameter (Mm) = 1×10^6 m 1 kilometer (km) = 1×10^3 m 1 decimeter (dm) = 0.1 m 1 centimeter (cm) = 0.01 m 1 millimeter (mm) = 0.001 m 1 micrometer (μ m) = 1×10^{-6} m 1 nanometer (nm) = 1×10^{-9} m
Pico Femto	p f	$10^{-12} \\ 10^{-15}$	1 picometer (pm) = 1×10^{-12} m 1 femtometer (fm) = 1×10^{-15} m

^aThis is the Greek letter mu (pronounced "mew").

Volume

- The most commonly used metric units for volume are the liter (L) and the milliliter (mL).
 - A liter is a cube 1 dm long on each side.
 - A milliliter is a cube 1 cm long on each side.

Uncertainty in Measurements

Different measuring devices have different uses and different degrees of accuracy.

Temperature:

A measure of the average kinetic energy of the particles in a sample.

Temperature

- In scientific measurements, the Celsius and Kelvin scales are most often used.
- The Celsius scale is based on the properties of water.
 - 0°C is the freezing point of water.

And Measurement

□ 100°C is the boiling point of water.

Temperature

- The Kelvin is the SI unit of temperature.
- It is based on the properties of gases.
- There are no negative Kelvin temperatures.
- $K = {}^{\circ}C + 273.15$

Temperature

 The Fahrenheit scale is not used in scientific measurements.

•
$$^{\circ}F = 9/5(^{\circ}C) + 32$$

•
$$^{\circ}$$
C = 5/9($^{\circ}$ F - 32)

Density:

Physical property of a substance

$$d=\frac{m}{V}$$

Uncertainty in Measurement

Significant Figures

- The term significant figures refers to digits that were measured.
- When rounding calculated numbers, we pay attention to significant figures so we do not overstate the accuracy of our answers.

Significant Figures

- 1. All nonzero digits are significant.
- 2. Zeroes between two significant figures are themselves significant.
- 3. Zeroes at the beginning of a number are never significant.
- 4. Zeroes at the end of a number are significant if a decimal point is written in the number.

Significant Figures

- When addition or subtraction is performed, answers are rounded to the least significant decimal place.
- When multiplication or division is performed, answers are rounded to the number of digits that corresponds to the *least* number of significant figures in any of the numbers used in the calculation.

Significant Digit Calculations

Addition
Sig Figs

Subtraction

Multiplication

Division

Clear Math

Calculate

Accuracy versus Precision

- Accuracy refers to the proximity of a measurement to the true value of a quantity.
- Precision refers to the proximity of several measurements to each other.

Good accuracy Good precision

Poor accuracy Good precision

Poor precision

