19日本国特許庁(]

$\Psi 4 - 60059$ ⑫特 許 公 報(B2)

Int. Cl. 5

識別記号

庁内整理番号

2040公告 平成 4年(1992) 9月25日

C 03 C 3/087 6971-4G

発明の数 1 (全5頁)

❷発明の名称 易強化ガラス組成物

> 团特 願 昭61-87196

昭62-246839 69公

22出 願 昭61(1986)4月17日 @昭62(1987)10月28日

涯 @発 明 者 荒 谷

三重県多気郡明和町上村字松本90-101

何発 明 本 者 村

三重県松阪市川井町246 īE

セントラル硝子株式会 മ്പ 顧 人

山口県宇部市大字沖宇部5253番地

00代 理 人

弁理士 坂本 栄一

審音官 吉 村 康 男

図参考文献 特開 昭61-197444(JP,A)

1

2

切特許請求の範囲

1 重量百分率で、下記酸化物であり、

SiO₂ 68.0~71.0% Al₂O₃ 1.6~3.0% CaO MgO 2.0~4.0% 12.5~16.0% Na₂O 0.9~3.0% K₂O

これら成分の総和が97%以上であつて、かつ

SiO₂+Al₂O₃

CaO+MgO

12.0~15.0%

Na₂O+K₂O

13.5~17.0%

の組成成分範囲からなり、しかも10°ポイズに なる粘性温度が650~685℃ならびに1012ポイズに 度差が96~103℃になることを特徴とする易強化 ガラス組成物。

発明の詳細な説明

〔産業上の利用分野〕

ロート方式で製造され、熱強化することによつて 強化ガラスを得る際の最適なガラス組成物に関す る。

本発明は、自動車・鉄道車輌等の窓ガラスを初 め、建築用窓ガラスおよびドアガラス、家具、調 25 Na₂O, CaO, MgO, Al₂O₃, Fe₂O₃およびSO₃

理用機器、電子電気機器等の広い分野で採用され 得るものである。

〔従来の技術〕

シートガラスおよびフロートガラスが強化用素 8.5~11.0% 5 板として利用されていたが、最近ではフロートガ ラスの比重が増しつつあり、板厚においても薄板 化が進みつつある。しかもフロートガラス特有の 表面平滑性、平面性、板厚の均一性等があるので 種々分野に使用され、なかでも自動車用窓ガラス 70.0%~73.0% 10 等に広く採用され、より強化性のあるガラスが望 まれ、種々の強化方法、ガラス組成等が提案され ている。

また、シートガラスおよびフロートガラスは SiO₂, Al₂O₃, CaO, MgO, Na₂O, K₂Oを主要 なる粘性温度が555~585℃であり、かつ両者の温 15 成分としてなるソーダライムガラスであり、さら に軟化点温度付近まで昇温し、その後、表面から エアーで急冷することによる熱強化法によつて強 化ガラスがつくられている。

例えば、特公昭57-7574号公報にはシートガラ 本発明は、強化しやすいガラス組成物、特にフ 20 スおよびフロートガラスの製造方法が開示され、 その組成範囲として重量パーセントでSiO2 70~ 73.3, Na₂O 15.5 \sim 19.0, CaO 5.5 \sim 7.7, MgO $3.5 \sim 4.9$, Al₂O₃ $0.1 \sim 1.5$, Fe₂O₃ $0.03 \sim 0.7$, $K_2O = 0 \sim 0.5$, $SO_3 = 0.2 \sim 0.5$ csup 50, SiO_2 ,

の割合は組成物全体の少なくとも98重量%であ り、CaO/MgOの重量比は1.3~1.9の範囲であ り、Na₂O/CaOの重量比は2.0~3.2であるフラ ツトガラスシートが記載されている。また、特開 昭46-1185号公報には、改良された熱強化処理法 5 が開示され、板ガラスの強化法において、板ガラ スを冷却流体との接触によって変形点以上の温度 から低温に冷却することと、最終的には室温まで 冷却することと、SiOzを重量で最低60%、アル カリ土類金属酸化物を重量で最低 5%, K₂O+ 10 Na₂Oを計 5~25%含有し、ガラスの軟化点と変 形点との温度差を約177℃以内にすること、ある いは、急冷したガラスを変形点と軟化点との間で 加熱した場合の比容積と変化を在来のフロートガ 変化より大きくすること等が記載され、知られて いる。

〔発明が解決しようとする問題点〕

前述した特公昭57-7574号公報に記載されてい るガラス成分組成では成形性は良くなるものの熱 20 強化法による易強化性は良好とはならず、その原 料価格も高いものとなるものであり、特開昭46-1185号公報に記載されているように、通常のフロ ートガラス成分組成では、軟化点と変形点の温度 は/およびTiOzを選択添加することが不可欠で あるものであり、原料価格も高くなり、通常の建 築用ガラス板、自動車用窓ガラス等の使用には採 用しにくいものとなるものである。

〔問題点を解決するための手段〕

本発明は、従来のかかる欠点に鑑みてなしたも のであり、ソーダライムガラスの成分構成であつ て、熱膨張係数、ヤング率およびポアソン比を大 きい方にかつ熱伝導率を小さい方になるよう特異 形性も充分に有する易強化ガラス組成物を提供す るものである。

すなわち、本発明は重量百分率で、SiO₂ 68.0 \sim 71.0%, Al₂O₃ 1.6 \sim 3.0%, CaO 8.5 \sim 11.0%, ~3.0%の酸化物成分からなり、これら成分の総 和が97%以上であって、かつSiO2+AI2O2 70.0~ 73.0%, CaO+MgO 12.0 \sim 15.0%, Na₂O+K₂O 13.5~17.0%の組成成分範囲からなり、しかも10°

ポイズになる粘性温度が650~685℃ならびに1012 ポイズになる粘性温度が555~585℃であり、かつ 両者の温度差が96~103℃となることを特徴とす る易強化ガラス組成物を提供するものである。

4

ここで、SiO₂成分を重量百分率で68.0~71.0% としたのは、68.0%未満では表面にやけ等が発生 しやすく耐候性が下がり実用上の問題が生じてく るものであり、71.0%を超えるとその易強化性が 下がり、溶融も難しくなるものであり、Al₂O₃成 分を重量百分率で1.6~3.0%としたのは、1.6未満 では耐候性が下がり表面にやけ等が発生しやすく 実用上の問題が生じてくるものであり、3%を超 えると失透が生じやすくなり成形温度範囲がせま くなり製造が難しくなるものであり、CaO成分を ラスを変形点から軟化点まで加熱した場合に起る 15 重量百分率で8.5~11.0%としたのは、8.5%未満 では易強化性が下がり、また融剤として不足気味 となり溶融温度も高くなりまた流動温度を低くし ないので製造しにくくなり、11%を超えると失透 しやすくなり、成形作業範囲が狭くなり製造が難 しくなるものであり、MgO成分を重量百分率で 2.0~4.0%としたのは2.0%未満では溶融温度が上 がり操作範囲をせばめるので製造がしにくくな り、4.0%を超えると易強化性が下がるものであ り、Na₂O成分を重量百分率で12.5~16.0%とし 差が177 \circ 以内にすることは難しく、 B_2O_3 あるい 25 たのは、12.5%未満では易強化性が下がり、成形 性が難しくなり、失透も生じやすくなるので操作 範囲がせばまり製造しにくくなり、16.0%を超え ると耐候性が下がり、表面にやけ等が発生しやす くなり実用上の問題が生じてくるものであり、コ 30 ストアップにもつながるものであり、K₂O成分を 重量百分率で0.9~3.0%としたのは、0.9%未満で は易強化性が下がり、3.0%を超えると耐候性が 下がりかつコストも高くなるものである。

 $\sharp t$, SiO₂, Al₂O₃, CaO, MgO, Na₂O, な成分組成とし、易強化性が上がり、耐候性、成 35 K₂Oの成分の総和を重量百分率で97.0%以上とし たのは、例えばFe₂O₃, SO₃などの微量成分とし ては3%を超えない量に制御するためであり、 Fe₂O₃については例えば透明ガラスでは重量百分 率で0.1%前後が好ましく、多すぎても少なすぎ MgO 20~4.0%, Na₂O12.5~16.0%, K₂O 0.9 40 ても色あいがかわつたり、原料の精製等からも影 響をうけるものであり、SO2については例えば重 量百分率で0.1~0.4%程度である。なお、TiO₂成 分については、不純物として超微量、例えば5~ 10ppm程度であれば許容することができ、この程

度であれば組成上無視できるものである。さら に、SiO+Al₂O₃を重量百分率で70.0~73.0%とし たのは、70%未満では耐候性が下がり、73.0%を 超えると易強化性が下がり問題が生じるものであ り、CaO+MgOを重量百分率で12.0~15.0%とし たのは、CaOおよびMgO成分は溶融温度を下げ るために用いられるとともに、12%未満では易強 化性が下がり、15%を超えると失透しやすくなり 製造上難しくなるものであり、Na₂O+K₂Oを重 では易強化性が下がり、失透も生じやすくなつて 成形において作業温度範囲が狭くなり、製造が難 しくなり、17.0%を超えると耐候性が下がり実用 上の問題を生じるものであるとともにコスト的に も高くなるものである。

さらに加えて、粘性温度について10°ポイズと 1012ポイズを取り上げたのは、100ポイズは実用 上強化開始温度であり、1012ポイズは事実上粘性 流動が小くなり強化の終了する温度であると考え 粘性温度が650~685℃および1012ポイズになる粘 性温度が555~585℃であり、かつ両者の温度差が 96~103℃になるものであり、96℃未満では易強 化性は上がるが耐候性、失透性、成形性ならびに 問題が生じ、103℃を超えると易強化性が小さく なり、所望の易強化ガラスを得ることができない ものである。

(作用)

すなわち酸化物成分の特定組成範囲を組み合せ、 特定の粘度温度をも考慮した組成物とすることに よつて、成形性、耐候性、失透性、コストおよび 溶融性等を考慮し、製造条件等をほとんど変化さ せず、例えば従来のフロートガラスのもつ性質に 35 つた。 加えて易強化性を向上さすことができるものであ り、さらに、従来熱強化方法では充分な強化度が 得られなかつた薄板ガラス等でも、充分な強化度 が得られるようになる等、熱強化度が向上したガ ラス板が得られるので従来採用しにくいとされた 40 電子電気機器、調理用機器等の分野にもより採用 され易いものとなり、自動車、鉄道車輌等の窓ガ ラス、建築用窓ガラスおよびドアガラスおよび家 具用ガラス等にもより確実で安定した高強度の強

化ガラスを提供できるものとなり、さらに本発明 は、製造上の生産性等をほぼ不変にして、強化処 理の生産性の向上をもたらし、充分耐候性のある ものとなるものである。

〔実施例〕

以下本発明の実施例について説明する。

実施例1~11

ガラスは、特選珪砂(共立窯業製)と1級試薬 τ 5 Al_2O_3 , Fe_2O_3 , $CaCO_3$, $MgCO_2$, 量百分率で13.5~17.0%としたのは、13.5%未満 10 Na₂SO₃, KNO₃を所期の目標組成になるよう秤 量調合し、該調合原料をルツポに入れ、約1450℃ に保持した電気炉中で約3時間溶融しガラス化し て、さらに均質化および清澄のため、1420℃~ 1430℃で2時間保持した後、型に流し出しガラス 15 ブロックとし、大きさ100mx×100mxで厚み3.5mx のガラス板に切出し、研削研磨し、各試料とし た。

この作製した試料について、JISR-3101に基 づく湿式分析を行い、表1の各実施例に示す数値 てよいものであるためであり、10°ポイズになる 20 を得た。粘性温度についてはベンデイングアーム 法により粘度曲線を測定し、10°ポイズおよび 1012ポイズの温度を求め、表2の各実施例に示す 数値を得た。なお確認の意味で歪点をリリー法 で、また軟化点をリトルトン法を用いて測定し、 コスト等のうち少なくとも1つ以上のいずれかに 25 ガラスの軟化点と歪点との温度差は大体200~240 ℃の範囲にあるものであつた。失透性について は、所定の温度で2時間保持してから後急冷し、 結晶の有無を顕微鏡で調べ、失透温度が1040℃以 下であり、問題ないものであつた。成形性につい 前述したとおり、本発明の易強化ガラス組成物 30 ては、ガラスを約700℃でプレスし、その成形精 度および離型性等を加味して総合的に判断し、問 題がないものであつた。耐候性については、99% RHで50℃の雰囲気温度下に約2ヶ月間さらし、 その表面状態を観察したが、問題はないものであ

> 易強化性については、前記の試料を雰囲気温度 約730℃の炉内で約3~5分間加熱した後、エア 圧1300Agで通常の風冷強化し、大きさ100mx× 100㎜で板厚3.5㎜の強化ガラス板を得、この板の コーナー部の角端面から3000の位置で衝撃を与え て破砕し、全面に破砕されたガラス板の中央領域 で50㎜×50㎜の面積当りの破砕数を数えたとこ ろ、JISで決められている60~400個内にあり、充 分満足できるものであつた。それぞれ表2に示す

7

とおりである。 比較例 1~9

ガラス板およびその粘性温度、易強化性、失透 性、成形性、耐候性等については実施例と同様に 実施し、その結果は実施例と同様に表1および表2に示すとおりである。

なお、失透については、結晶の初晶はすべて β ーウオラストナイトであつた。

表

1

	ガラス成分組成(重量百分率)							
	SiO₂	A1203	Ca0	MgO	Na₂0	K₃ O	Fe ₂ O ₃ +SO ₃	
実施例 1	69.3	2,5	9.0	3.7	13.6	0.9	1.0	
2	69.6	2.0	9.5	3.3	13.6	1.0	1.0	
3	69.6	1.8	8.8	4.0	13.7	1.1	1.0	
4	69.6	2.0	9.2	3, 5	13.7	1.0	1.0	
5	69.3	1.8	10.0	3, 5	13.4	1.0	1.0	
6	69. 1	2.0	9.0	3, 5	13.4	2.0	1.0	
7	69.3	1.6	8.5	3.6	15.0	1.0	1.0	
8	69.5	1.7	10.3	2,0	12.5	3.0	1.0	
9	71.0	1.6	9.5	2.5	13.5	0.9	1.0	
10	68.0	3.0	9.4	3,6	13.5	1.5	1.0	
11	68.4	1.7	10.0	2.0	16.0	0.9	1.0	
比較例 1	72,5	1.5	7.8	3.7	12.4	1.1	1.0	
2	68.3	1.7	11.5	3.0	13,5	1.0	1.0	
3	71.4	2.2	8.0	3, 6	12.8	1.0	1.0	
4	70.7	2.5	9.2	3.8	12.0	1.0	1.0	
5	67.3	1.7	9.5	3.0	16.5	1.Ô	1.0	
6	70.7	3.3	8.5	4.0	11.0	1.5	1.0	
7	66.5	3.0	9.4	1.8	17.0	1.3	1.0	
8	66.1	2.1	10.3	3.5	13.5	3.5	1.0	
9	71.4	2.6	9.0	2.0	12.0	2.0	1.0	

表

2

	粘	易強 化性	失透 性	成形性	耐候 性		
	10゚ポイズ	1012ポイズ	温度差	161±	迁	Œ.	<u> </u>
実施例 1	681	579	102	0	0	0	0
2	678	578	100	0	0	0	0
3	675	573	102	0	0	0	0

	杜	易強 化性	失透 性	成形性	耐候		
	10° ポイズ	1012ポイズ	温度差	1619	IE.	性.	性
4	677	576	101	0	0	0	0
5	679	580	99	0	0	0	0
6	671	570	101	0	0	0	0
7	677	577	100	0	0	0	0
8	670	572	98	0	0	0	0
9	677	577	100	0	0	0	0
10	679	579	100	0	0	0	0
11	654	558	96	0	0	0	0
比較例 1	685	579	106	×	0	Δ	0
2	679	584	95	0	×	0	0
3	685	580	105	×	0	Δ	0
4	696	592	104	Δ	×	×	0
5	647	552	95	0	0	0	×
6	705	598	107	×	×	×	0
7	645	550	95	0	0	×	×
8	658	563	95	0	0	Δ	Δ
9	687	583	104	Δ	0	Δ	0

但し、易強化性:60個以上 O、59~40個 Δ、39個以下 × 失透性:1040℃以下 O、1041~1050℃ △、1051℃以上 ×

〔発明の効果〕

なように、本発明によつて、特殊な成分を添加す ることなくSiO₂, Al₂O₃, CaO, MgO, Na₂O, K₂Oの成分を大部分の成分としたガラス成分組成 物として易強化性をもたらすとともに、製造条件 をほとんど変更することなく、特にフロートガラ 35 をもたらすものである。

スを製造上問題を生じるようなことがなく製造し 前述した本発明の実施例と比較例からも明らか 30 得て、しかも、製造したガラスの耐候性も優れた ものとなるものである。

> 以上のように、本発明は薄板ガラスの熱強化を 可能にし、熱強化法による強化ガラスの採用され る範囲を拡大することができるという顕著な効果