

UNIVERSIDADE DO SUL DE SANTA CATARINA CURSO DE CIÊNCIA DA COMPUTAÇÃO CAMPUS DE TUBARÃO

3.

Disciplina: Pesquisa Operacional

Professora Vanessa Soares Sandrini Garcia

Aluno(a): Pâmela Domingos

Data: 25/outubro/2016

2ª AVALIAÇÃO - Peso 4

1. Duas fábricas (A e B) produzem 3 diferentes tipos de papel. A companhia que controla as fábricas tem um contrato para produzir diariamente no mínimo 12 toneladas de papel fino, 7 toneladas de papel médio e 25 toneladas de papel grosso. O custo de fabricação da fábrica A é de R\$800 por dia e na B é de R\$ 1200, por dia. A fábrica A produz 8 toneladas de papel fino, 2 toneladas de papel médio e 2 toneladas de papel grosso, por dia, enquanto a produção diária da B é de 2 toneladas de papel fino, 1 tonelada de papel médio e 7 toneladas de papel grosso. Quantos dias cada fábrica deverá operar para suprir os pedidos com o menor custo?

Com base no relatório em anexo, responda as seguintes questões:

(a) Apresente a modelagem do problema que minimiza o custo.

Quantos dias cada fábrica deverá operar para atender aos pedidos? Qual é o custo mínimo dessa produção?

(c) No relatório aparece um número 10 (grifado) nas informações do papel fino, o que ele significa?

Quanto se pode aumentar o custo da primeira fábrica para que o esquema de produção se mantenha o mesmo? Justifique.

Existe a possibilidade de os pedidos do papel grosso caírem 20%, temos perda ou ganho com essa diminuição? Caso diminua nessa quantidade, precisamos rever o resultado apresentado? Por quê?

Em contrapartida, há a possibilidade de aumento de 100% dos pedidos do papel médio. Qual o impacto na solução (precisa resolver novamente) e no custo final (aumenta, diminui ou se mantém)?

O que significa valor 800 que aparece nos relatórios junto à segunda fábrica (B)?

 A Expedidora de vôos, Eli Cóptero, da Companhia de Frete aéreo Cauda Alta, que opera de um terminal central com aviões de 3 tipos. As capacidades em milhares de toneladas estão na tabela abaixo.

A Eli Cóptero deve expedir aviões para as cidades A e B. As necessidades de tonelagem (em milhares de toneladas) estão na tabela abaixo; o excesso de capacidade de tonelagem fornecida a uma cidade não tem nenhum valor. O custo de enviar um avião do terminal a cada cidade é dado pelo seguinte quadro:

	Tipo 1	Tipo 2	Tipo 3	Necessidade (milhares de tonelada)
Cidade A ∧	23	15	1,4	20
Cidade B	58	20	3,8	28
Capacidades (milhares de tonelada)	15	17	8	

(340)

Formule o modelo de programação linear que minimiza o custo.

UNIVERSIDADE DO SUL DE SANTA CATARINA CURSO DE CIÊNCIA DA COMPUTAÇÃO CAMPUS DE TUBARÃO

LP OPTIMUM FOUND AT STEP

OBJECTIVE FUNCTION VALUE

1) 5200.000

VARIABLE	VALUE	REDUCED COST
A	2.000000	0.000000
R	3 000000	0.000000

ROW	SLACK OR SURPLUS	DUAL PRICES
FINO)	10.000000	0.000000
MEDIO)	0.000000	266.666656
GROSSO)	0.000000	133 333328

NO. ITERATIONS= 1

RANGES IN WHICH THE BASIS IS UNCHANGED:

		OBJ COEFFICIENT	RANGES
VARIABLE	CURRENT	ALLOWABLE	ALLOWABLE
	COEF	INCREASE	DECREASE
A	800.000000	1600.000000	457.142853
В	1200.000000	1600.000000	800.000000
		RIGHTHAND SIDE R	ANGES
ROW	CURRENT	ALLOWABLE	ALLOWABLE
	RHS	INCREASE	DECREASE
FINO	12.000000	10.000000	INFINITY
MEDIO	7.000000	18.000000	2.307692
GROSSO	25.000000	24.000000	18.000000

$$\begin{vmatrix} 22/24 + 2 = 2x0 \\ 25/14 \\ 49/50 + 1 = 1 + 133 \end{vmatrix}$$

l'herina Dari eteus a e, avan el recheur sinsel f a) Significa o valor de guanto se pode diminuir do valor de custo da fabrica B, sem que altere o sistema (A) mingasto = 23 Qu + 15 Qu + 1/4 Qu + 58 Qu + 20 Qu + 3,8 Qu Q11+Q12+Q13). 20(Q21+ Q22+Q23 2 28 48t Q11+Q21 615 Q12+Q22 617 Q13+Q23 € 8 Q11+Q12+Q13+Q27+Q22+Q23 > O