152113022 VERİ YAPILARI LABORATUVARI LAB LAB WORK 3

8 October 2024

Objectives:

• Iterative, recursive algorithm, contiguous and non-contiguous allocation

Question 1. A: C++ program to find the factorial of a given number (Recursion)

Example Output:

A Factorial of 5 using Recursion is: 120

Question 1. B: C++ program to find factorial of given number (Iteration)

Example Output

A Factorial of 5 using Iteration is: 120

Question 2. A: Display multiplication table up to 10.

Example Output

Enter an integer: 5

5 * 1 = 5

5 * 2 = 10

5 * 3 = 15

5 * 4 = 20

5 * 5 = 25

5 * 6 = 30

5 * 7 = 35

5 * 8 = 40

5 * 9 = 45

5 * 10 = 50

Question 2. B: Display multiplication table up to a given range.

Example Output

Enter an integer: 8

Enter range: 7

8 * 1 = 8

8 * 2 = 16

8 * 3 = 24

8 * 4 = 32

```
8 * 5 = 40
```

$$8 * 6 = 48$$

$$8 * 7 = 56$$

Question 3.: Write a program that will include numbers from zero to n. The program will be carried out in the following steps:

- Use arraylist for store the data (contiguous allocation)
- Use linked list for store the data (non-contiguous allocation)
- And show each representations (arraylist and linked list) data and adresses.
- Repeat all implementations for different data types (double, int, etc.)

Hint for non-contiguous allocation!: https://www.geeksforgeeks.org/list-cpp-stl/

Example Output

(contiguous allocation for char)

$$X[0] = A$$
, Address = $0x7$ ffdeaa 78040

$$X[1] = B$$
, Address = $0x7$ ffdeaa 78041

$$X[2] = C$$
, Address = $0x7$ ffdeaa 78042

$$X[3] = D$$
, Address = $0x7$ ffdeaa 78043

$$X[4] = E$$
, Address = $0x7$ ffdeaa 78044

Question 4.: Write a program to show contiguous allocation on 2D arrays. The program will be carried out in the following steps:

- Define a 2-dimensional integer array.
- Get row and column information from the user.
- Print the address information of the elements in the array to the screen.
- Print the total amount of memory used on the screen.

Example Output (if user enters 3 for row and column)

$$&X[0][0] = 100, Address = 0x7ffdeaa78040$$

&
$$X[0][1] = 104$$
, Address = $0x7$ ffdeaa 78044

&
$$X[0][2] = 108$$
, Address = $0x7$ ffdeaa 78048

&
$$X[1][0] = 112$$
, Address = $0x7$ ffdeaa 7804 c

&
$$X[1][1] = 116$$
, Address = $0x7$ ffdeaa 78050

$$&X[1][2] = 120$$
, Address = $0x7$ ffdeaa 78054

&
$$X[2][0] = 124$$
, Address = $0x7$ ffdeaa 78058

&
$$X[2][1] = 128$$
, Address = $0x7$ ffdeaa 7805 c

$$X[2][2] = 132$$
, Address = $0x7$ ffdeaa 78060