Examen final Modules 4 et 5 DUBii 2021

Marika Kapsimali

09 April, 2021

Contents

onsignes	
troduction	
nalyses	
Organisation de votre espace de travail	
Téléchargement des données brutes	
Contrôle qualité	
Nettoyage des reads	
Alignement des reads sur le génome de référence	
Croisement de données	
Visualisation:	
References	

Consignes

Complétez ce document en remplissant les chunks vides pour écrire le code qui vous a permis de répondre à la question. Les réponses attendant un résultat chiffré ou une explication devront être insérés entre le balises html code. Par exemple pour répondre à la question suivante :

La bioinfo c'est : <code>MERVEILLEUX</code>.

N'hésitez pas à commenter votre code, enrichier le rapport en y insérant des résultats ou des graphiques/images pour expliquer votre démarche. N'oubliez pas les **bonnes pratiques** pour une recherche **reproductible**! Nous souhaitons à minima que l'analyse soit reproductible sur le cluster de l'IFB.

Introduction

Vous allez travailler sur des données de reséquençage d'un génome bactérien : Bacillus subtilis. Les données sont issues de cet article :

• Complete Genome Sequences of 13 Bacillus subtilis Soil Isolates for Studying Secondary Metabolite Diversity

Analyses

Organisation de votre espace de travail

```
ssh -XY mkapsimali@core.cluster.france-bioinformatique.fr
# go to dir projects/dubii2021/mkapsimali and create dir projet_M45
cd ../../
cd projects/dubii2021/mkapsimali
mkdir projet_M45
cd projet_M45
mkdir QC
mkdir FASTQ
mkdir Cleaning
mkdir Mapping
ls
```

Téléchargement des données brutes

Récupérez les fichiers FASTQ issus du run **SRR10390685** grâce à l'outil sra-tools @sratoolkit

```
#recover FASTQ files
module load sra-tools
srun --cpus-per-task=6 fasterq-dump --split-files -p SRR10390685 --outdir FASTQ
#verify files are in dir FASTQ
cd FASTQ
ls
#zip files fastq
srun gzip *.fastq
#visualize format with first 8 lines
zcat SRR10390685_1.fastq.gz | head -8
zcat SRR10390685_2.fastq.gz | head -8
```

Combien de reads sont présents dans les fichiers R1 et R2?

```
#calculate number of reads
zcat SRR10390685_1.fastq.gz | echo $((`wc -l`/4))
zcat SRR10390685_2.fastq.gz | echo $((`wc -l`/4))
```

The FASTQ files contain 7066055 reads.

Téléchargez le génome de référence de la souche ASM904v1 de Bacillus subtilis disponible à cette adresse

```
#recover ref. genome in dir projet_M45
cd ../
srun wget https://ftp.ncbi.nlm.nih.gov/genomes/all/GCF/000/009/045/GCF_000009045.1_ASM904v1
/GCF_000009045.1_ASM904v1_genomic.fna.gz
# verify ref. genome file
ls
```

Quelle est la taille de ce génome?

```
#unzip ref. genome file to calculate size
gunzip GCF_000009045.1_ASM904v1_genomic.fna
#visualize start and end to calculate nucleotides per line in the file
head -n 3 GCF_000009045.1_ASM904v1_genomic.fna
tail -n 3 GCF_000009045.1_ASM904v1_genomic.fna
#80 nucleotides per line except last line 6 nucleotides. First line:name of the sequence
#Total number of lines:
```

```
wc -l GCF_000009045.1_ASM904v1_genomic.fna
#52697
#calculate number of nucleotides:
echo "$((52695 * 80 + 6))"
```

The genome size is 4215606 base pairs.

Téléchargez l'annotation de la souche ASM904v1 de Bacillus subtilis disponible à cette adresse

 $srun\ wget\ https://ftp.ncbi.nlm.nih.gov/genomes/all/GCF/000/009/045/GCF_000009045.1_ASM904v1/GCF_000009045.1_ASM904v1_genomic.gff.gz$

Combien de gènes sont connus pour ce génome?

```
#unzip
gunzip GCF_000009045.1_ASM904v1_genomic.gff
head GCF_000009045.1_ASM904v1_genomic.gff
cut -f 3 GCF_000009045.1_ASM904v1_genomic.gff | grep "gene" |wc -l
cut -f 3 GCF_000009045.1_ASM904v1_genomic.gff | grep "pseudogene" |wc -l
```

4536 genes, of which 88 pseudogenes are found in the annotation file.

Contrôle qualité

Lancez l'outil fastqc @fastqc dédié à l'analyse de la qualité des bases issues d'un séquençage haut-débit

```
module load fastqc
fastqc --version
#FastQC v0.11.9
srun --cpus-per-task 8 fastqc FASTQ/SRR10390685_1.fastq.gz -o QC/ -t 8
srun --cpus-per-task 8 fastqc FASTQ/SRR10390685_2.fastq.gz -o QC/ -t 8
```

La qualité des bases vous paraît-elle satisfaisante ? Pourquoi ?

• [x] Oui

because the boxplots and mean values are mostly above score 30 shown in the per base quality graph However, there are overepresented sequences (N or G) above 0.1% shown in over-represented sequence table and low adapter contamination shown in adapter content graph of SRR10390685 2

Est-ce que les reads déposés ont subi une étape de nettoyage avant d'être déposés ? Pourquoi ?

• [x] Oui

Partially. Although N content across all bases is zero, there are overepresented sequences N for SRR10390685_1 and adapter content is not always zero for SRR10390685_2

Quelle est la profondeur de séquençage (calculée par rapport à la taille du génome de référence) ?

The number of reads is 7066055. The number of bases is approximately 150 based on the 2 QC sequencing reports. The reference genome size is 4215606bp

```
echo "$(((7066055 * 150 * 2)/4215606))"
```

La profondeur de séquençage est de : 502 X.

Nettoyage des reads

Vous voulez maintenant nettoyer un peu vos lectures. Choisissez les paramètres de fastp @fastp qui vous semblent adéquats et justifiez-les.

```
module load fastp
fastp --version
#fastp 0.20.0
srun --cpus-per-task 8 fastp --in1 FASTQ/SRR10390685_1.fastq.gz --in2 FASTQ/SRR10390685_2.fastq.gz
--out1 Cleaning/SRR10390685_1.cleaned_filtered.fastq.gz
--out2 Cleaning/SRR10390685_2.cleaned_filtered.fastq.gz
--html Cleaning/fastp.html --thread 8 --cut_mean_quality 30 --cut_window_size 8
--length_required 100 --cut_tail --json Cleaning/fastp.json
#calculate loss of reads after filtering
echo "$(((100*(7066055-6777048)))/7066055))"
```

The following parameters are chosen:

Parameter | Value | Explanation |

1)Cut_mean_quality 30: to keep only very good quality of bases. 2)Length_required 100: reads shorter than 100 are discarded (smaller size too short for good quality mapping). 3)Cut_tail, it moves a sliding window from tail (3') to front, drops the bases in the window if its mean quality < threshold, stops otherwise. 4)Cut_window_size 8: the window size option for cut_tail (sequencing of this extremity can be of bad quality)

These parameters allow keeping 6777048 paired reads, with a loss of 4% of raw reads.

Alignement des reads sur le génome de référence

Maintenant, vous allez aligner ces reads nettoyés sur le génome de référence à l'aide de bwa @bwa et samtools @samtools.

```
#move ref.genome file in Mapping dir for simplicity
mv GCF_000009045.1_ASM904v1_genomic.fna Mapping/GCF_000009045.1_ASM904v1_genomic.fna
cd Mapping
module load bwa
#Index FASTA file with bwa index
srun bwa index GCF_000009045.1_ASM904v1_genomic.fna
#Map reads with bwa mem
srun --cpus-per-task=32 bwa mem GCF_000009045.1_ASM904v1_genomic.fna
../Cleaning/SRR10390685_1.cleaned_filtered.fastq.gz
../Cleaning/SRR10390685 2.cleaned filtered.fastq.gz -t 32
> SRR10390685_on_GCF_000009045.1_ASM904v1_genomic.sam
module load samtools
samtools --version
#samtools 1.10
#convert SAM file to BAM file with samtools view
srun --cpus-per-task=8 samtools view --threads 8 SRR10390685_on_GCF_000009045.1_ASM904v1_genomic.sam
-b > SRR10390685_on_GCF_000009045.1_ASM904v1_genomic.bam
#Sort the BAM file with samtools sort
srun samtools sort SRR10390685_on_GCF_000009045.1_ASM904v1_genomic.bam -o
SRR10390685 on GCF 000009045.1 ASM904v1 genomic.sort.bam
#Index the BAM file with samtools index
srun samtools index SRR10390685 on GCF 000009045.1 ASM904v1 genomic.sort.bam
```

Combien de reads ne sont pas mappés?

```
srun samtools flagstat SRR10390685_on_GCF_000009045.1_ASM904v1_genomic.sort.bam
>SRR10390685_on_GCF_000009045.1_ASM904v1_genomic.sort.bam.flagstat
#view stats
cat SRR10390685_on_GCF_000009045.1_ASM904v1_genomic.sort.bam.flagstat
#calculate
echo "$((13571369-12826829))"
```

744540 reads are not mapped.

Croisement de données

Calculez le nombre de reads qui chevauchent avec au moins 50% de leur longueur le gène trmNF grâce à l'outil bedtools @bedtools:

```
#go to Projet_45 dir where there is GCF_000009045.1_ASM904v1_genomic.gff
cd ../
#find line with trmNF gene
grep trmNF GCF_000009045.1_ASM904v1_genomic.gff
#Choose line with trmNF where 3rd column is 'qene' and write to output file.
grep trmNF GCF_000009045.1_ASM904v1_genomic.gff |awk '$3=="gene"' > trmNF_gene.gff
module load bedtools
#Get genomic sequence of the gene with bedtools getfasta
srun bedtools getfasta -fi Mapping/GCF_000009045.1_ASM904v1_genomic.fna -bed trmNF_gene.gff
> trmNF gene.fasta
#to verify presence of trmNF_gene.fasta
#to have a look at the sequence
head trmNF_gene.fasta
#Calculate the number of reads of which at least 50% overlaps with the gene trmNF with
#bedtools intersect and write to output file
srun bedtools intersect -f 0.50 -b trmNF_gene.gff -a
Mapping/SRR10390685_on_GCF_000009045.1_ASM904v1_genomic.sort.bam
> result_intersection.bam
#sort the output file and see statistics
srun samtools sort result_intersection.bam -o result_intersection.sort.bam
srun samtools flagstat result_intersection.sort.bam > result_intersection.sort.bam.flagstat
cat result_intersection.sort.bam.flagstat
#For visualisation necessary:
samtools index result_intersection.sort.bam
```

2801 reads overlap with the gene of interest.

Visualisation:

Utilisez IGV @igv sous sa version en ligne pour visualiser les alignements sur le gène. Faites une capture d'écran du gène entier.

See picture for trmNF result_intersection https://github.com/mkapsimali/DuBii2021/blob/master/result_intersection.png

It was obtained by uploading on IGV the genome (fna and fnai),

SRR10390685_on_GCF_000009045.1_ASM904v1_genomic.sort.bam and bai, and the (trmNF) result intersection.sort.bam and bai.

See also tree https://github.com/mkapsimali/DuBii2021/blob/master/tree.png

References

- 1. toolkit NS. NCBI sra toolkit. NCBI, GitHub repository. 2019.
- 2. Andrews S. FastQC a quality control tool for high throughput sequence data. http://www.bioinformatics.babraham.ac.uk/projects/fastqc/. http://www.bioinformatics.babraham.ac.uk/projects/fastqc/.
- 3. Zhou Y, Chen Y, Chen S, Gu J. Fastp: An ultra-fast all-in-one fastq preprocessor. Bioinformatics. 2018;34:i884–90. doi:10.1093/bioinformatics/bty560.
- 4. Li H. Aligning sequence reads, clone sequences and assembly contigs with bwa-mem. arXiv preprint arXiv:13033997. 2013.
- 5. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, et al. The sequence alignment/map format and samtools. Bioinformatics. 2009;25:2078–9.
- 6. Quinlan AR, Hall IM. BEDTools: A flexible suite of utilities for comparing genomic features. Bioinformatics. 2010;26:841–2.
- 7. Thorvaldsdóttir H, Robinson JT, Mesirov JP. Integrative genomics viewer (igv): High-performance genomics data visualization and exploration. Briefings in bioinformatics. 2013;14:178–92.