

E-fólio B | Folha de resolução para E-fólio

APERTA

UNIDADE CURRICULAR: Raciocínio e Representação do Conhecimento

CÓDIGO: 21097

DOCENTE: Vitor Rocio

NOME: Inês Correia Gonçalves Marques

N.º DE ESTUDANTE: 2103589

CURSO: Licenciatura em Engenharia Informática

DATA DE ENTREGA: 20 de Maio de 2024

Índice

Intr	odução	3
1.	Indicador escolhido e variáveis independentes	3
I	ndicador Escolhido	3
١	/ariáveis Independentes	3
2	Tratamento dos Dados:	4
	Discretização e Normalização dos Dados	4
3. [Métodos	5
3	3.1 Árvore de decisão	5
3	3.2 K vizinhos mais próximos	5
3	3.3 Redes neuronais	5
4. I	Reflexão sobre resultados	6
Со	nclusão	8
Bib	oliografia	9
Ou	tros recursos	9
ΔΝ	EXO – Código R e Tabelas de resultados	10

TRABALHO / RESOLUÇÃO:

Introdução

No E-Fólio B explorou-se a utilização de técnicas de aprendizagem automática para prever a participação de adultos na aprendizagem. Utilizaram-se três algoritmos: Árvores de Decisão, K Vizinhos Mais Próximos (KNN) e Redes Neuronais, aplicados aos dados fornecidos pelo Pordata.

1. Indicador escolhido e variáveis independentes

O objetivo principal é prever a participação de adultos na aprendizagem com base em diferentes indicadores sociais e económicos. Os indicadores selecionados incluem acesso à internet, disparidade salarial e taxa de desemprego de longa duração.

Indicador Escolhido

Participação de adultos na aprendizagem (<u>ODS Educação de Qualidade:</u> <u>Objetivo 4</u>)

Este indicador é fundamental para compreender a adesão dos adultos a atividades educativas contínuas, essencial para a adaptação às mudanças no mercado de trabalho e para o desenvolvimento pessoal.

Variáveis Independentes

Taxa de desemprego de longa duração: total e por sexo

O desemprego de longa duração pode motivar indivíduos a procurar educação adicional para melhorar as suas qualificações e reentrar no mercado de trabalho. No âmbito deste E-Fólio, considerou-se apenas a taxa total.

- Disparidade salarial entre homens e mulheres

As disparidades salariais podem influenciar a motivação para participar em programas de educação, especialmente se a educação for vista como uma via para alcançar a igualdade salarial.

- Assinaturas do acesso à Internet

O acesso à Internet é um facilitador na educação de adultos, especialmente para programas de aprendizagem online e cursos à distância.

2. Tratamento dos Dados:

Foram carregados os dados das quatro fontes, em csv:

- Assinaturas do Acesso à Internet
- Disparidade Salarial entre Homens e Mulheres
- Participação de Adultos na Aprendizagem
- Taxa de Desemprego de Longa Duração

Os dados foram transformados através da função *pivot_longer* para garantir que cada observação (país/ano) fosse uma linha e cada variável fosse uma coluna.

Os dados foram então unidos com base nas colunas comuns de país e ano.

Eliminaram-se os anos consecutivos, mantendo apenas anos pares para evitar dependências entre observações consecutivas.

Discretização e Normalização dos Dados

A variável *target* (participação de adultos na aprendizagem) foi discretizada para classificação binária, utilizando a mediana como ponto de corte para definir classes "low" e "high".

Dividiram-se os dados disponíveis num conjunto de treino (70% dos dados) e num conjunto de teste (30% restantes) para validar a eficácia dos modelos:

Data							
🔾 data	29 obs. of 6 variables						
○ dataTest	8 obs. of 6 variables						
dataTest_no	8 obs. of 3 variables						
🕠 dataTrain	21 obs. of 6 variables						

As variáveis de *input* foram normalizadas para garantir que todas tivessem uma escala comparável.

Verificou-se também se havia valores NA ou NaN nos dados normalizados.

Para detalhes adicionais basta consultar o código em anexo. Desta forma, obtiveram-se as tabelas necessárias, organizadas e limpas.

3. Métodos

3.1 Árvore de decisão

Para as Árvores de Decisão, utilizou-se o algoritmo *Random Forest* com uma única árvore (ntree = 1) para alinhamento com o exemplo do professor. Os dados foram discretizados e categorizados conforme necessário. A variável alvo foi transformada em binária (0 e 1) para classificação. A taxa de erro OOB foi de 50%, o que indica a necessidade de melhorias.

```
rf_model <- randomForest(x = dataTrain[, 3:5], y =
factor(dataTrain$adult_learning_participation, levels = c(0, 1)), ntree = 1, importance =
TRUE)

rf_predictions <- predict(rf_model, dataTest[, 3:5])

rf_accuracy <- confusionMatrix(factor(rf_predictions, levels = c(0, 1)),
factor(dataTest$adult_learning_participation, levels = c(0, 1)))$overall['Accuracy']</pre>
```

3.2 K vizinhos mais próximos

Para o KNN, utilizou-se a função knn3 da biblioteca *caret*. Os dados foram normalizados para assegurar que todas as variáveis tivessem igual peso no cálculo das distâncias.

```
knn_model <- knn3(x = dataTrain_norm, y = factor(dataTrain$adult_learning_participation,
levels = c(0, 1)), k = 5)
knn_predictions <- predict(knn_model, dataTest_norm)
knn_predictions_class <- ifelse(knn_predictions[, 2] > 0.5, 1, 0)
knn_accuracy <- confusionMatrix(factor(knn_predictions_class, levels = c(0, 1)),
factor(dataTest$adult_learning_participation, levels = c(0, 1)))$overall['Accuracy']</pre>
```

3.3 Redes neuronais

Para redes neuronais, utilizou-se a função *nnet*. O modelo foi treinado com um neurónio na camada oculta. A variável alvo foi transformada em binária e os dados foram normalizados.

```
nn_model <- nnet(x = dataTrain_norm, y = dataTrain$adult_learning_participation, size = 1,
maxit = 500)</pre>
```

```
nn_predictions <- predict(nn_model, dataTest_norm, type = "raw")
nn_predictions_class <- ifelse(nn_predictions > 0.5, 1, 0)
nn_accuracy <- confusionMatrix(factor(nn_predictions_class, levels = c(0, 1)),
factor(dataTest$adult_learning_participation, levels = c(0, 1)))$overall['Accuracy']</pre>
```

4. Reflexão sobre resultados

Os resultados dos três modelos foram os seguintes:

	Model	Accuracy
1	Decision Tree	0.375
2	K-Nearest Neighbors	0.500
3	Neural Network	0.375
>		

Método	Precisão
Árvore de Decisão (Random Forest com ntree=1)	0.375
K Vizinhos Mais Próximos (k=5)	0.500
Redes Neuronais (neurónio com size=1)	0.375

Os resultados indicam que, embora todos os modelos tenham apresentado precisão abaixo do ideal, o algoritmo KNN apresentou a melhor performance, o que pode ser atribuído à natureza dos dados e à simplicidade dos modelos de árvore de decisão utilizado com apenas uma árvore, e de redes neuronais apenas com um neurónio.

Em redes neuronais, a vantagem de utilizar um único neurónio na camada oculta é ser rápido de treinar e interpretar, o que é útil para dados relativamente simples, como é o caso. No entanto, modelos tão simples podem não capturar padrões complexos nos dados, resultando em menor precisão comparado com redes neuronais mais profundas com múltiplos neurónios e camadas.

Da mesma forma, em árvores de decisão, a utilização de apenas uma árvore simplifica a implementação e permite uma visualização direta da árvore de decisão, mas com desvantagens em termos de robustez e precisão.

A análise das variáveis mostrou que a taxa de desemprego e acesso à Internet influenciam diretamente a necessidade e a capacidade de aceder a oportunidades educacionais.

Para melhorar a performance, poderia fazer-se um tratamento diferente dos valores ausentes e considerar mais variáveis que possam influenciar a participação na aprendizagem. Também seria recomendável testar diferentes configurações e explorar outros algoritmos.

Assim sendo, alteraram-se as configurações e verificaram-se os novos resultados:

Método	Precisão
Árvore de Decisão (Random Forest com ntree=10)	0.375
K Vizinhos Mais Próximos (k=1)	1.000
Redes Neuronais (neurónios com size=5)	0.750

Alterar k no algoritmo KNN não deve, em teoria, impactar diretamente a precisão das redes neuronais. No entanto, variações na divisão dos dados de treino e teste, a sensibilidade dos dados e outras possíveis interdependências podem explicar diferenças nos resultados observados.

K = 1, size = 5

	Model	Accuracy
1	Decision Tree	0.375
2	K-Nearest Neighbors	1.000
3	Neural Network	0.375

$$K = 5$$
, size = 5

	Mode I	Accuracy
1	Decision Tree	0.375
2	K-Nearest Neighbors	0.500
3	Neural Network	0.750

Consideraram-se os maiores valores de precisão de cada modelo nesta análise.

Independentemente de utilizar 1 árvore ou 100, o valor da precisão não se alterou no modelo da árvore de decisão, indicando que pode haver limitações nos dados ou na seleção de atributos.

No entanto, reduzir o k no algoritmo de K Vizinhos mais próximos aumentou a precisão para 1.000, mas isso pode indicar que ocorreu *overfitting*.

Aumentar o número de neurónios para 5 no algoritmo de redes neuronais também aumentou a precisão para 0.750. Essa melhoria sugere que uma arquitetura mais complexa pode ser benéfica.

Mais detalhes e análises sobre os resultados, e também sobre o "problema" encontrado para a árvore de decisão, em Anexo.

Conclusão

Os resultados deste estudo indicam que a previsão da participação de adultos na aprendizagem através de técnicas de aprendizagem automática ainda apresenta desafios significativos. A análise comparativa dos modelos de Árvores de Decisão, K Vizinhos Mais Próximos (KNN) e Redes Neuronais revelou que, embora todos os modelos tenham apresentado precisão abaixo do ideal, o KNN demonstrou a melhor performance entre os métodos analisados, especialmente com um valor de k=1.

No entanto, observou-se que a utilização de apenas uma árvore de decisão ou de uma rede neural com um único neurónio não foi suficiente para capturar a complexidade dos dados, resultando em menor precisão. Este estudo destaca a importância da escolha adequada dos parâmetros e da complexidade dos modelos de aprendizagem para obter resultados mais precisos.

Futuras melhorias podem incluir a inclusão de variáveis adicionais e a utilização de modelos mais complexos. A análise dos dados também sugere que fatores externos e políticas governamentais desempenham um papel significativo na participação em programas de aprendizagem, o que pode justificar a inclusão de variáveis contextuais em futuras pesquisas.

Este estudo reforça a necessidade de uma abordagem iterativa na modelagem preditiva, onde a experimentação e o ajuste contínuo dos modelos são essenciais para alcançar melhores resultados preditivos.

Bibliografia

Russell, S., Norvig, P., Artificial Intelligence: A Modern Approach, Prentice-Hall.

Outros recursos

PORDATA, 2024. PORDATA

Exercício disponibilizado pelo professor: 'Aprendizagem automática: usando bibliotecas em R', com exemplos de código e explicações sobre o funcionamento da linguagem R.

OpenAI, ChatGPT, 2024. Utilizado para suporte na identificação de variáveis para o indicador escolhido.

Caraça, G. (2023). Raciocínio e Representação do Conhecimento. Relatório de E-Fólio B. Curso de Licenciatura em Engenharia Informática, Universidade Aberta. Entregue a 29 de Maio de 2023.

Veríssimo da Cruz, R. M. G. (2023). Raciocínio e Representação do Conhecimento. Relatório de E-Fólio B. Curso de Licenciatura em Engenharia Informática, Universidade Aberta. Entregue a 29 de Maio de 2023.

ANEXO – Código R e Tabelas de resultados

Algumas das tabelas apresentam apenas parte dos resultados. Para consultar todos os dados, executar o programa em R.

Anos	country	internet_access	wage_gap	adult_learning_participation	unemployment_rate
1 2009	AT - Áustria	NA	24.3	13.9	1.4
2 2009	BE - Bélgica	NA	10.1	7.1	3.2
3 2009	BG - Bulgária	998	13.3	1.6	3.4
4 2009	CH - Suíça	NA	18.4	23.9	NA
5 2009	CY - Chipre	NA	17.8	NA	0.6
6 2009 C	Z - República Checa	NA	25.9	7.1	2.0

Tabela 1 - Dados Combinados

_						
	Anos	coun	ry internet_access	wage_gap	unemployment_rate ad	Hult_learning_participation
1	2010	AT - Áusti	ia NA	24.0	1.5	13.8
2	2012	AT - Áusti	ia NA	22.9	1.5	14.2
3	2014	AT - Áusti	ia NA	22.2	1.9	14.3
4	2016	AT - Áusti	ia NA	20.8	2.4	14.9
5	2018	AT - Áusti	ria NA	20.4	1.7	15.1
6	2010	BE - Bélg	ca NA	10.2	3.7	7.4
7	2012	BE - Bélg	ca NA	8.3	3.1	6.9
8	2014	BE - Bélg	ca NA	6.6	3.9	7.4
9	2016	BE - Bélg	ca NA	6.0	3.7	7.0
10	2018	BE - Bélg	ca NA	5.8	2.6	8.5
11	2010	BG - Bulgái	ia NA	13.0	NA	NA
12	2012	BG - Bulgái	ia NA	15.1	7.2	1.7
13	2014	BG - Bulgái	ia NA	14.2	7.4	2.1
14	2016	BG - Bulgái	ia NA	14.6	5.0	2.2
15	2018	BG - Bulgái	ia NA	13.9	3.6	2.5

Tabela 2 - Dados Tratados

	Anos	country	internet access	wage gap	unemplovment rate	adult_learning_participation
22	2012	CY - Chipre	221	15.6	3.6	7.7
23	2014	CY - Chipre	244	14.2	7.7	7.1
24	2016	CY - Chipre	278	12.3	5.8	6.9
25	2018	CY - Chipre	313	10.4	2.7	6.7
42	2012	EE - Estónia	365	29.9	5.4	12.8
43	2014	EE - Estónia	386	28.1	3.3	11.6
44	2016	EE - Estónia	414	24.8	2.2	15.3
45	2018	EE - Estónia	441	21.8	1.3	19.3
68	2014	HR - Croácia	952	8.7	10.1	2.8
92	2012	LT - Lituânia	732	11.9	6.6	5.4
93	2014	LT - Lituânia	802	13.3	4.8	5.1
94	2016	LT - Lituânia	858	14.4	3.0	6.0
95	2018	LT - Lituânia	789	14.0	2.0	6.6
97		LU - Luxemburgo	171	7.0	1.6	14.2
98		LU - Luxemburgo	187	5.4	1.6	14.5
99		LU - Luxemburgo	203	3.9	2.2	16.8
		LU - Luxemburgo	225	1.4	1.4	18.0
	2012	LV - Letónia	472	14.9	8.6	7.2
	2014	LV - Letónia	500	17.3	5.1	5.6
	2016	LV - Letónia	512	19.7	4.4	7.3
	2018	LV - Letónia	519	19.6	3.4	6.7
	2012	MT - Malta	136	9.5	3.8	7.2
	2014	MT - Malta	152	10.6	2.9	7.7
	2016	MT - Ma]ta	171	11.6	2.4	7.8
	2018	MT - Malta	192	13.0	1.9	10.9
	2012	SI - Eslovénia	531	4.5	4.3	13.8
	2014	SI - Eslovénia	572	7.0	5.3	12.1
	2016	SI - Eslovénia	627	8.1	4.3	11.6
145	2018	SI - Eslovénia	672	9.3	2.2	11.4

Tabela 3 - NAs Removidos

```
Type of random forest: classification
Number of trees: 1
No. of variables tried at each split: 1

OOB estimate of error rate: 50%

Confusion matrix:
0 1 class.error
0 0 4 1
1 0 4 0
```

Tabela 4 - Random Forest OBB e Matriz de Confusão

	left daugh	ter	right	daughter	split v	ar s	split	point	status	prediction
1		2		3	unemployment_ra	ite	229	32735	1	<na></na>
2		0		0	<n< th=""><th>A></th><th></th><th>0</th><th>-1</th><th>1</th></n<>	A>		0	-1	1
3		0		0	<n.< th=""><th> A></th><th></th><th>0</th><th>-1</th><th>0</th></n.<>	A>		0	-1	0

Tabela 5 - Árvore de Decisão

O *split point* indica o ponto de divisão (threshold) da *slipt var.* O valor de 22932735 parece um erro, pois deveria ser um valor dentro do intervalo esperado para unemployment_rate. Este valor sugere que pode haver um problema no processo de treino ou um erro de escala. A coluna *status* mostra se o nó é terminal (-1) ou não (1). Os nós 2 e 3 são terminais (status = -1), enquanto o nó 1 não é terminal (status = 1). *Prediction* vai indicar a classe prevista para os nós terminais, ou seja, o nó 2 prevê a classe 1, e o nó 3 prevê a classe 0.


```
num [1:8, 1:2] 0 0 1 1 1 1 1 0 1 1 ...
- attr(*, "dimnames")=List of 2
..$ : NULL
..$ : chr [1:2] "0" "1"
```

Tabela 6 - Estrutura K Vizinhos Mais Próximos k = 1

```
num [1:8, 1:2] 0.6 0.4 0.6 0.6 0.4 0.4 0.2 0.4 0.4 0.6 ...
- attr(*, "dimnames")=List of 2
..$ : NULL
..$ : chr [1:2] "0" "1"
```

Tabela 7 - Estrutura K Vizinhos Mais Próximos k = 5

A previsão gerada pelo modelo K-Nearest Neighbors (KNN) usando o valor de k=5 é uma matriz numérica com 8 linhas e 2 colunas, ou seja, há 8 observações (ou exemplos) no conjunto de teste e 2 classes previstas (neste caso, "0" e "1"). Existem, por exemplo, 0.6, 0.4, 0.6, 0.6, etc., valores que representam as probabilidades de cada observação pertencer a cada uma das duas classes. Se uma linha da matriz é [0.6, 0.4], isso significa que o modelo KNN prevê que a probabilidade da observação pertencer à classe "0" é 60% e à classe "1" é 40%.

```
> nn_model <- nnet(x = dataTrain_norm, y = dataTrain$adult_learning_participation, size = 1, maxit = 500)
# weights: 6
initial value 5.538301
final value 5.238095
converged
> print(nn_model)
a 3-1-1 network with 6 weights
options were -
> 
> # Mostrar os pesos da rede neural
> print(nn_model$wts)
[1] -0.69780351  0.11390875 -0.47895635 -0.19736726 -0.04351698  0.13876603
```

Tabela 6 - Redes Neuronais size = 1

Tabela 7 - Redes Neuronais size = 5

A rede neuronal foi executada com sucesso, atingindo o valor final de 5.238094, com uma redução do erro em relação ao valor inicial de 5.266704.

Contém 3 neurónios na camada de entrada, 5 na camada oculta e 1 na camada de saída.

O valor obtido para a precisão do treino foi de 0.750 (75.0%), o que significa que o modelo foi capaz de acertar mais de metade das previsões do conjunto de treino. Os resultados obtidos para size = 5 são bastante mais aceitáveis do que para size =1.

Código R (com ntree=1 e size=1):

```
# Verificar e instalar pacotes necessários
if (!require('randomForest')) install.packages('randomForest', dependencies = TRUE)
if (!require('caret')) install.packages('caret', dependencies = TRUE)

if (!require('nnet')) install.packages('nnet', dependencies = TRUE)

# Carregar as bibliotecas necessárias
library(randomForest)
library(caret)
library(nnet)
library(readr)
library(tidyr)
library(tidyr)
library(tidyr)
library(class)

# Função para carregar e ajustar os tipos de dados
load_data <- function(file_path, value_name) {</pre>
```

```
data <- read csv(file path, show col types = FALSE)</pre>
 data <- data %>%
    mutate(across(-Anos, as.character)) %>%
    pivot_longer(cols = -Anos, names_to = "country", values_to = value_name)
 data[[value_name]] <- as.numeric(data[[value_name]])</pre>
 return(data)
}
# Carregar os dados
internet data <- load data('C:/Users/nokas/Desktop/UAb 23-24/2º Semestre/Raciocínio e
Representação do Conhecimento/e-folio B/final/AssinaturasAcessoInternet.csv',
'internet_access')
wage_gap_data <- load_data('C:/Users/nokas/Desktop/UAb 23-24/2º Semestre/Raciocínio e
Representação do Conhecimento/e-folio B/final/DisparidadeSalarialHomensMulheres.csv',
'wage_gap')
learning_data <- load_data('C:/Users/nokas/Desktop/UAb 23-24/2º Semestre/Raciocínio e
Representação do Conhecimento/e-folio B/final/ParticipacaoAdultosAprendizagem.csv',
'adult_learning_participation')
unemployment_data <- load_data('C:/Users/nokas/Desktop/UAb 23-24/2º Semestre/Raciocínio e
Representação do Conhecimento/e-folio B/final/TaxaDesempregoLongaDuracao.csv',
'unemployment_rate')
# Verificar os dados carregados
print("Dados de Acesso à Internet")
print(head(internet_data))
print("Dados de Disparidade Salarial")
print(head(wage gap data))
print("Dados de Participação de Adultos na Aprendizagem")
print(head(learning_data))
print("Dados de Taxa de Desemprego de Longa Duração")
print(head(unemployment_data))
# Unir os dados por um identificador comum (Anos e country)
data <- merge(merge(merge(internet_data, wage_gap_data, by = c("Anos", "country")),</pre>
```

```
learning_data, by = c("Anos", "country")),
              unemployment_data, by = c("Anos", "country"))
# Verificar o conjunto de dados combinado
print("Dados Combinados")
print(head(data))
# Selecionar as colunas relevantes e remover anos consecutivos
data <- data %>%
 select(Anos, country, internet access, wage gap, unemployment rate,
adult_learning_participation) %>%
 arrange(country, Anos)
# Eliminar anos consecutivos (mantendo apenas anos pares para simplificação)
data <- data %>% filter(as.integer(Anos) %% 2 == 0)
# Tratar valores em falta
print("Dados Antes de Remover NAs")
print(data)
data <- na.omit(data)</pre>
print("Dados Depois de Remover NAs")
print(data)
# Verificar que países estão incluídos
print("Países Incluídos")
print(unique(data$country))
# Discretizar a variável target para classificação
data$adult_learning_participation <- cut(data$adult_learning_participation,</pre>
```

```
breaks = c(-Inf,
median(data$adult_learning_participation, na.rm = TRUE), Inf),
                                           labels = c("low", "high"))
# Converter variáveis em fatores
data[, 3:5] <- lapply(data[, 3:5], factor)</pre>
# Subtrair 1 da variável de resposta para ter valores binários 0 e 1
data$adult_learning_participation <- as.numeric(data$adult_learning_participation) - 1</pre>
# Dividir os dados em conjuntos de treino e teste
set.seed(42)
trainIndex <- createDataPartition(data$adult_learning_participation, p = 0.7,</pre>
                                   list = FALSE,
                                   times = 1)
dataTrain <- data[ trainIndex,]</pre>
dataTest <- data[-trainIndex,]</pre>
# Normalizar os dados
preProcValues <- preProcess(dataTrain[, -c(1, 2, 6)], method = c("center", "scale"))</pre>
dataTrain_norm <- predict(preProcValues, dataTrain[, -c(1, 2, 6)])</pre>
dataTest_norm <- predict(preProcValues, dataTest[, -c(1, 2, 6)])</pre>
# Verificar se há valores NA ou NaN nos dados normalizados
sum(is.na(dataTrain_norm))
sum(is.na(dataTest_norm))
# Garantir que todas as colunas de input para knn são numéricas
str(dataTrain_norm)
str(dataTest_norm)
```

```
# Modelos de aprendizagem
##### Árvores de Decisão #####
rf_model <- randomForest(x = dataTrain[, 3:5], y =</pre>
factor(dataTrain$adult_learning_participation, levels = c(0, 1)), ntree = 1, importance =
print(rf_model)
# Mostrar a árvore de decisão da Random Forest
tree_info <- getTree(rf_model, 1, labelVar = TRUE)</pre>
print(tree_info)
# Verificar o tipo de modelo Random Forest para validar que foi uma classificação e não
uma regressão
print(rf_model$type)
# Prever usando o modelo Random Forest
rf_predictions <- predict(rf_model, dataTest[, 3:5])</pre>
rf_accuracy <- confusionMatrix(factor(rf_predictions, levels = c(0, 1)),</pre>
                               factor(dataTest$adult_learning_participation, levels = c(0,
1)))$overall['Accuracy']
# Verificar o valor de OOB error rate
cat("00B Error Rate:", rf_model$err.rate[nrow(rf_model$err.rate), "00B"], "\n")
###### K Vizinhos Mais Próximos usando knn3 ######
knn_model <- knn3(x = dataTrain_norm, y = factor(dataTrain$adult_learning_participation,</pre>
levels = c(0, 1), k = 5
knn_predictions <- predict(knn_model, dataTest_norm)</pre>
# Verificar a estrutura da previsão
str(knn_predictions)
```

```
# Converter as probabilidades em classes binárias 0 e 1
knn_predictions_class <- ifelse(knn_predictions[, 2] > 0.5, 1, 0)
# Avaliar a precisão do modelo KNN
knn_accuracy <- confusionMatrix(factor(knn_predictions_class, levels = c(0, 1)),
                                factor(dataTest$adult_learning_participation, levels =
c(0, 1)))$overall['Accuracy']
##### Redes Neuronais #####
nn_model <- nnet(x = dataTrain_norm, y = dataTrain$adult_learning_participation, size = 1,</pre>
maxit = 500)
print(nn_model)
# Mostrar os pesos da rede neural
print(nn_model$wts)
# Prever usando o modelo de Redes Neuronais
nn_predictions <- predict(nn_model, dataTest_norm, type = "raw")</pre>
nn_predictions_class <- ifelse(nn_predictions > 0.5, 1, 0)
# Avaliar a precisão do modelo de Redes Neuronais
nn accuracy <- confusionMatrix(factor(nn predictions class, levels = c(0, 1)),
                               factor(dataTest$adult_learning_participation, levels = c(0,
1)))$overall['Accuracy']
# Resultados
results <- data.frame(</pre>
 Model = c("Decision Tree", "K-Nearest Neighbors", "Neural Network"),
 Accuracy = c(rf_accuracy, knn_accuracy, nn_accuracy)
)
```

Mostrar resultados
print(results)