Lay 2.3 Math 2210Q

<u>The Invertible Matrix Theorem:</u> Let A be a square $n \times n$ matrix. Then the following statements are equivalent.

- (a) A is an invertible matrix.
- (b) A is row equivalent to the $n \times n$ identity matrix.
- (c) A has n pivot positions.
- (d) The equation $A\vec{x} = \vec{0}$ has only the trivial solution.
- (e) The columns of A form a linearly independent set.
- (f) The linear transformation $\vec{x} \mapsto A\vec{x}$ is one-to-one.
- (g) The equation $A\vec{x} = \vec{b}$ has at least one solution for each \vec{b} in $\mathbb{R}^{\mathbf{n}}$.
- (h) The columns of A span $\mathbb{R}^{\mathbf{n}}$.
- (i) The linear transformation $\vec{x} \mapsto A\vec{x}$ maps $\mathbf{R}^{\mathbf{n}}$ onto $\mathbf{R}^{\mathbf{n}}$.
- (j) There is an $n \times n$ matrix C such that CA = I.
- (k) There is an $n \times n$ matrix D such that AD = I.
- (l) A^T is an invertible matrix.

Question 1 Determine if the matrices below are invertible.

A square matrix that is row equivalent to I_8 .

Multiple Choice:

- (a) Invertible ✓
- (b) Not Invertible

$$A = \begin{bmatrix} 1 & 2 & 0 \\ 0 & 3 & -1 \\ 0 & 0 & 4 \end{bmatrix}.$$

Multiple Choice:

- (a) Invertible ✓
- (b) Not Invertible

Lay 2.3 Math 2210Q

$$A = \begin{bmatrix} 1 & 8 & 0 & 5 \\ 0 & 6 & 0 & 3 \\ 0 & 0 & 1 & 1 \end{bmatrix}.$$

Multiple Choice:

- (a) Invertible
- (b) Not Invertible ✓

$$A = \begin{bmatrix} 1 & 8 & 0 & 5 \\ 0 & 6 & 0 & 3 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}.$$

Multiple Choice:

- (a) Invertible
- (b) Not Invertible ✓

$$A = \begin{bmatrix} 5 & 0 & 0 \\ -3 & -7 & 0 \\ 8 & 5 & -1 \end{bmatrix} . \mbox{ (Hint: A is not in echelon form)}$$

Multiple Choice:

- (a) Invertible ✓
- (b) Not Invertible