Assignment 2 – Logistic Regression

Problem Statement:

You work in XYZ Company as a Python Data Scientist. The company officials have collected some data on health parameters based on diabetes and wish for you to create a model from it. Dataset: diabetes.csv

Tasks To Be Performed:

- 1. Load the dataset using pandas
- 2. Extract data from outcome column is a variable named Y
- 3. Extract data from every column except outcome column in a variable named X
- 4. Divide the dataset into two parts for training and testing in 70% and 30% proportion
- 5. Create and train Logistic Regression Model on training set
- 6. Make predictions based on the testing set using the trained model
- 7. Check the performance by calculating the confusion matrix and accuracy score of the model
- In [1]: import pandas as pd
 from sklearn.model_selection import train_test_split
 from sklearn.linear_model import LogisticRegression
 from sklearn.metrics import *
- In [2]: df = pd.read_csv(r"csv files/diabetes.csv")
 df

Out[2]:		Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	ВМІ	DiabetesPedigreeFunction	Age	Outcome
	0	6	148	72	35	0	33.6	0.627	50	1
	1	1	85	66	29	0	26.6	0.351	31	0
	2	8	183	64	0	0	23.3	0.672	32	1
	3	1	89	66	23	94	28.1	0.167	21	0
	4	0	137	40	35	168	43.1	2.288	33	1
	763	10	101	76	48	180	32.9	0.171	63	0
	764	2	122	70	27	0	36.8	0.340	27	0
	765	5	121	72	23	112	26.2	0.245	30	0
	766	1	126	60	0	0	30.1	0.349	47	1
	767	1	93	70	31	0	30.4	0.315	23	0

768 rows × 9 columns

STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.

Increase the number of iterations (max_iter) or scale the data as shown in:
 https://scikit-learn.org/stable/modules/preprocessing.html

Please also refer to the documentation for alternative solver options:
 https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression
 n_iter_i = _check_optimize_result(

Out[5]: Value LogisticRegression LogisticRegression()

In [6]: y_pred = lr.predict(X_test)
In [7]: confusion_matrix(y_test, y_pred)

In [8]: accuracy_score(y_test, y_pred)

Out[8]: 0.7402597402597403

In []