

Recurrence Pand

Recurrence

- A function represented by the same function(s) of smaller size(s)
- ~ related to divide-and-conquer algorithms

Examples

$$- a_n = a_{n-1} + 2$$

$$- f(n) = n f(n-1)$$

$$- f(n) = f(n-1) + f(n-2)$$

$$- f(n) = f(n/2) + n$$

Running Time of Mergesort

Recurrence of running time: T(n) = 2T(n/2) + overheada mergesort of size n= two mergesorts of size n/2 + overhead

Methods of Asymptotic Analyses

1. Iteration^{반복대치}

Iterative substitution by smaller functions

2. Guess & Verification ^{추정후증명}

Guess the conclusion, then prove by mathematical induction

3. Master Theorem^{마스터정리}

Determine the complexity when a function is in some particular forms

Assumption

- 1. For all T(n), n is a positive integer
- 2. All functions are monotonically nondecreasing
 - $T(n) \le T(m) \ \forall n \le m$
- 3. If needed, we can assume WLOG $n = a^k$ for any polynomial asymptotic function

a: positive integer

1. Iteration

$$T(n) = T(n-1) + n$$
$$T(1) = 1$$

$$T(n) = T(n-1) + n$$

$$= (T(n-2) + (n-1)) + n$$

$$= (T(n-3) + (n-2)) + (n-1) + n$$
...
$$= T(1) + 2 + 3 + ... + n$$

$$= 1 + 2 + ... + n$$

$$= n(n+1)/2$$

$$= \Theta(n^2)$$

Iteration

$$T(n) = 2T(n/2) + n$$
$$T(1) = 1$$

Assume
$$n = 2^k$$

$$T(n) = 2T(n/2) + n$$

$$= 2(2T(n/2^{2}) + n/2) + n = 2^{2}T(n/2^{2}) + 2n$$

$$= 2^{2}(2T(n/2^{3}) + n/2^{2}) + 2n = 2^{3}T(n/2^{3}) + 3n$$
...
$$= 2^{k}T(n/2^{k}) + kn$$

$$= n + n \log n$$

$$= \Theta(n \log n)$$

Another Example of Iteration

$$T(n) = n + 3T(\frac{n}{4})$$

Assume $n = 4^k$

$$T(n) = n + 3T(\frac{n}{4})$$

$$= n + 3(\frac{n}{4} + 3T(\frac{n}{4^2})) = n + \frac{3}{4}n + 3^2T(\frac{n}{4^2})$$

$$= n + \frac{3}{4}n + 3^2(\frac{n}{4^2} + 3T(\frac{n}{4^3})) = n + \frac{3}{4}n + (\frac{3}{4})^2n + 3^3T(\frac{n}{4^3})$$
...
$$= n + \frac{3}{4}n + (\frac{3}{4})^2n + \dots + 3^{\log_4 n}T(\frac{n}{4^{\log_4 n}})$$

$$\leq n \sum_{i=0}^{\infty} (\frac{3}{4})^i + n^{\log_4 3}\Theta(1)$$

$$= 4n + o(n) \qquad \text{Here, } o(n) \text{ is not a set but a function in } o(n)$$

$$= \Theta(n) \qquad \text{This is a set}$$

T(n) = O(n)

2. Guess and Verify

$$T(n) = 2T\left(\frac{n}{2}\right) + n$$

Guess: $T(n) = O(n \log n)$, i.e., $T(n) \le cn \log n$

```
Assume T(k) \le ck \log k \ \forall k < n

T(n) = 2T(n/2) + n

S(n/2) \log(n/2) + n

S(n/2) \log(n/2)
```

Reminder: $O(n\log n) = \{f(n) \mid \exists c > 0, n_0 \ge 0 \text{ s.t. } \forall n \ge n_0, f(n) \le cn\log n \}$

Another Example of Guess & Verify

$$T(n) = 2T\left(\frac{n}{2} + 17\right) + n$$

Guess: $T(n) = O(n \log n)$, $\subseteq T(n) \le cn \log n$

Assume $T(k) \le ck \log k \ \forall k \le n$

Assume
$$T(k) \le ck \log k \ \forall k < n$$

$$T(n) = 2T(\frac{n}{2} + 17) + n$$

$$\le 2c(\frac{n}{2} + 17)\log(\frac{n}{2} + 17) + n$$

$$= c(n+34)\log(\frac{n}{2} + 17) + n$$

$$\le c(n+34)\log(\frac{3n}{4} + n)$$

$$= cn\log n + cn\log(\frac{3}{4} + 34c\log(\frac{3n}{4} + n))$$

$$= cn\log n + n(c\log(\frac{3}{4} + 1) + 34c\log(\frac{3n}{4} + n))$$

$$\le cn\log n \text{ for sufficiently large } n$$
Choose $c = 5$

- 10 / 33 -

The Constant c Should be Consistent!

Counterintuitive Example of Guess & Verify

$$T(n) = 2T\left(\frac{n}{2}\right) + 1$$

Guess:
$$T(n) = O(n)$$
, i.e., $T(n) \le cn$

<Proof>

$$T(n) = 2T(n/2) + 1$$
 $\leq 2\underline{c(n/2)} + 1$
 $= cn + 1$
 $\leq cn$
Inductive substitution

Can't proceed anymore!

Though Counterintuitive...

$$T(n) = 2T\left(\frac{n}{2}\right) + 1$$

Guess:
$$T(n) \le cn-2$$

• Why not $T(n) \le cn+2$?

<Proof>

$$T(n) = 2T(n/2) + 1$$

$$\leq 2(c(n/2) - 2) + 1$$

$$= cn - 3$$

$$\leq cn - 2$$

 $\leq 2(c(n/2)-2)+1$ — Inductive substitution

If We Follow Intuition...

$$T(n) = 2T\left(\frac{n}{2}\right) + 1$$

Guess:
$$T(n) \le cn+2$$

<Proof>

Usually It is Straightforward

to verify a claim for boundary cases

e.g.
$$T(n) = 10T(n/10) + n$$
, $T(1) = 1$

Guess $T(n) \le cn \log n$
 $\ge cn \log n$
 $O()$
 $\ge cn \log n$
 $O()$
 $O()$
 $O()$
 $O()$
 $O()$
 $O()$

The common practice usually doesn't explicitly prove the boundary cases in Guess & Verify

3. Master Theorem

Recurrences of the form
$$T(n) = aT\left(\frac{n}{b}\right) + f(n)$$
 can be directly determined by Master Theorem.

Backgraound

```
Given a recurrence,

T(1) = 1

T(n) = aT(\frac{n}{b}) + f(n) for n > 1,

where

a, b are positive constants

f(n) = O(g(n)) for some polynomial ft g(n)
```

$$T(n) = f(n) + aT(\frac{n}{b})$$

$$= f(n) + a(f(\frac{n}{b}) + aT(\frac{n}{b^2}))$$

$$= f(n) + a(f(\frac{n}{b}) + a(f(\frac{n}{b^2}) + aT(\frac{n}{b^3}))$$
...

$$= \sum_{i=0}^{k-1} a^{i} f\left(\frac{n}{b^{i}}\right) + a^{k} T\left(\frac{n}{b^{k}}\right)$$

$$= \sum_{i=0}^{k-1} a^{i} f\left(\frac{n}{b^{i}}\right) + n^{\log_{b} a}$$

$$a^k = a^{\log_b n} = n^{\log_b a}$$

- ° Particular solution
- Cost of all overheads
- Homogeneous solution
- Cost of solving the boundary subproblems of size 1
- Criterion for time complexity

Intuitive Understanding of Master Thm

$$T(n) = aT\left(\frac{n}{b}\right) + f(n)$$

Let
$$n^{\log_b a} = h(n)$$

- ① h(n) is heavier $\rightarrow h(n)$ determines the running time
- ② f(n) is heavier $\rightarrow f(n)$ determines the running time
- ③ h(n) and f(n) draw \rightarrow multiply h(n) by $\log n$

Master Theorem

$$T(n) = aT\left(\frac{n}{b}\right) + f(n)$$

Let
$$n^{\log_b a} = h(n)$$

- 1 $\frac{f(n)}{h(n)} = O(\frac{1}{n^{\varepsilon}})$ for some positive constant ε $\to T(n) = \Theta(h(n))$
- 2 $\frac{f(n)}{h(n)}$ = $\Omega(n^{\varepsilon})$ for some positive constant ε

and
$$af\left(\frac{n}{b}\right) < f(n)$$
 for all large enough n

$$\to T(n) = \Theta(f(n))$$

3
$$\frac{f(n)}{h(n)} = \Theta(1)$$

 $\rightarrow T(n) = \Theta(h(n) \log n)$

Examples of Using Master Thm

•
$$T(n) = 2T(\frac{n}{3}) + c$$

- $a=2, b=3, h(n) = n^{\log_3 2}, f(n) = c$
- $T(n) = \Theta(h(n)) = \Theta(n^{\log_3 2})$

•
$$T(n) = 2T(\frac{n}{4}) + n$$

- $a=2, b=4, h(n) = n^{\log_4 2}, f(n) = n$ and $2f(\frac{n}{4}) = \frac{n}{2} < n = f(n)$
- $T(n) = \Theta(f(n)) = \Theta(n)$

•
$$T(n) = 2T(\frac{n}{2}) + n$$

- $a=2, b=2, h(n) = n^{\log_2 2} = n, f(n) = n$
- $T(n) = \Theta(h(n)\log n) = \Theta(n\log n)$

Complexity of Matrix Multiplication

For interest

$$\mathbf{A} \cdot \mathbf{B}$$

✓ Running time: $\Theta(n^3)$

$$\mathbf{A} \bullet \mathbf{B} = \begin{pmatrix} \mathbf{A}_1 & \mathbf{A}_2 \\ \mathbf{A}_3 & \mathbf{A}_4 \end{pmatrix} \begin{pmatrix} \mathbf{B}_1 & \mathbf{B}_3 \\ \mathbf{B}_2 & \mathbf{B}_4 \end{pmatrix} = \begin{pmatrix} \mathbf{A}_1 \mathbf{B}_1 + \mathbf{A}_2 \mathbf{B}_2 & \mathbf{A}_1 \mathbf{B}_3 + \mathbf{A}_2 \mathbf{B}_4 \\ \mathbf{A}_3 \mathbf{B}_1 + \mathbf{A}_4 \mathbf{B}_2 & \mathbf{A}_3 \mathbf{B}_3 + \mathbf{A}_4 \mathbf{B}_4 \end{pmatrix}$$

Asymptotically,
$$T(n) = 8T(n/2) + \Theta(n^2)$$
, $T(1) = \Theta(1)$

✓ Running time: still $\Theta(n^3)$ by Master Thm

Strassen Algorithm

Strassen, a young German mathematician, devised a clever method (1968)

$$\mathbf{A} \bullet \mathbf{B} = \begin{pmatrix} A_1 & A_2 \\ A_3 & A_4 \end{pmatrix} \begin{pmatrix} B_1 & B_3 \\ B_2 & B_4 \end{pmatrix} = \begin{pmatrix} -P_2 + P_4 + P_5 + P_6 & P_1 + P_2 \\ P_3 + P_4 & P_1 - P_3 + P_5 - P_7 \end{pmatrix}$$

$$P_1 = A_1(B_3 - B_4)$$

$$P_2 = (A_1 + A_2)B_4$$

$$P_3 = (A_3 + A_4)B_1$$

$$P_4 = A_4(-B_1+B_2)$$

$$P_5 = (A_1 + A_4)(B_1 + B_4)$$

$$P_6 = (A_2 - A_4)(B_2 + B_4)$$

$$P_7 = (A_1 - A_3)(B_1 + B_3)$$

Instead

$$\begin{array}{|c|c|c|c|c|}\hline A_1B_1 + A_2B_2 & A_1B_3 + A_2B_4 \\\hline A_3B_1 + A_4B_2 & A_3B_3 + A_4B_4 \\\hline \end{array}$$

Asymptotically, $T(n) = 7T(n/2) + \Theta(n^2)$, $T(1) = \Theta(1)$

✓ Running time: $\Theta(n^{\log_2 7}) = \Theta(n^{2.81})$

- After Strassen, many, many improvements ... down to $\Theta(n^{2.376})$
- But, ... proved that
 - Strassen algorithm is optimal in bilinear combination of n/2 * n/2 matrices
- We were curious
 - ✓ How many algorithms other than Strassen's algorithm exist?
 - Can a search algorithm achieve the efficiency of finding the same or equivalent algorithms?

We Found at Least 608 Such Algorithms

REPRESENTATIVE SOLUTIONS IN EACH GROUP

Group 1 (Strassen's Solution)	Group 2	Group 3
$P_1 = A_1(B_3 - B_4)$	$P_1 = A_1(B_3 - B_4)$	$P_1 = A_1(B_3 - B_4)$
$P_2 = (A_1 + A_2)B_4$	$P_2 = (A_1 + A_2)B_4$	$P_2 = (A_1 + A_2)B_4$
$P_3 = (A_3 + A_4)B_1$	$P_3 = A_4(B_2 + B_4)$	$P_3 = (A_3 - A_4)B_2$
$P_4 = A_4(-B_1 + B_2)$	$P_4 = A_3(B_1 + B_3)$	$P_4 = A_3(B_1 + B_2)$
$P_5 = (A_1 + A_4)(B_1 + B_4)$	$P_5 = (A_2 + A_4)(B_1 - B_2)$	$P_5 = (A_1 + A_2 + A_3 + A_4)(B_1 + B_2 + B_3 + B_4)$
$P_6 = (A_2 - A_4)(B_2 + B_4)$	$P_6 = (A_1 + A_2 + A_4)(B_1 + B_4)$	$P_6 = (A_1 + A_2 - A_3 + A_4)(B_1 + B_2 + B_3 - B_4)$
$P_7 = (-A_1 + A_3)(B_1 + B_3)$	$P_7 = (A_1 + A_2 + A_3 + A_4)B_1$	$P_7 = (A_1 - A_2 + A_3 - A_4)(B_1 - B_2 + B_3 - B_4)$
$C_1 = -P_2 + P_4 + P_5 + P_6$	$C_1 = -P_2 - P_3 - P_5 + P_6$	$C_1 = -P_1 - P_3 + 0.5P_6 + 0.5P_7$
$C_2 = P_1 + P_2$	$C_2 = P_1 + P_2$	$C_2 = P_1 + P_2$
$C_3 = P_3 + P_4$	$C_3 = P_2 + P_3 - P_6 + P_7$	$C_3 = -P_3 + P_4$
$C_4 = P_1 - P_3 + P_5 + P_7$	$C_4 = -P_2 + P_4 + P_6 - P_7$	$C_4 = -P_2 - P_4 + 0.5P_5 - 0.5P_6$
Group 4	Group 5	Group 6
$P_1 = A_4(-B_1 + B_2 - B_3 + B_4)$	$P_1 = (A_1 + A_2)(B_1 + B_3)$	$P_1 = (A_1 + A_2)(B_3 + B_4)$
$P_2 = A_1(B_1 - B_2 - B_3 + B_4)$	$P_2 = (A_1 + A_2 - A_3 + A_4)(B_2 - B_3)$	$P_2 = (A_1 - A_2)(B_3 - B_4)$
$P_3 = (A_1 + A_4)(B_1 - B_2 + B_3 + B_4)$	$P_3 = (-A_3 + A_4)(B_1 - B_3)$	$P_3 = (A_2 - A_4)(B_1 - B_2 - B_3 + B_4)$
$P_4 = (A_1 - A_3)B_3$	$P_4 = (A_1 + A_2 - A_3 - A_4)(B_1 + B_2)$	$P_4 = (A_2 + A_4)(B_1 + B_2 + B_3 + B_4)$
$P_5 = (A_3 + A_4)(B_1 + B_3)$	$P_5 = (A_1 - A_2 - A_3 + A_4)(B_1 - B_2)$	$P_5 = (A_1 - A_4)(B_1 + B_4)$
$P_6 = (A_1 + A_2)(B_2 - B_4)$	$P_6 = A_2(B_1 - B_2 + B_3 - B_4)$	$P_6 = (A_1 + A_2 - A_3 - A_4)(B_1 - B_3)$
$P_7 = (A_2 - A_4)B_4$	$P_7 = A_4(B_1 + B_2 - B_3 - B_4)$	$P_7 = (A_1 - A_2 + A_3 - A_4)(B_1 + B_3)$
$C_1 = 0.5P_1 + 0.5P_2 + 0.5P_3 + P_6 + P_7$	$C_1 = 0.5P_1 + 0.5P_2 - 0.5P_3 + 0.5P_5$	$C_1 = -0.5P_1 + 0.5P_2 - 0.5P_3 + 0.5P_4 + P_5$
$C_2 = 0.5P_1 - 0.5P_2 + 0.5P_3 + P_7$	$C_2 = 0.5P_1 - 0.5P_2 + 0.5P_3 - 0.5P_5 - P_6$	$C_2 = 0.5P_1 + 0.5P_2$
$C_3 = 0.5P_1 + 0.5P_2 - 0.5P_3 + P_4 + P_5$	$C_3 = 0.5P_1 + 0.5P_2 - 0.5P_3 - 0.5P_4$	$C_3 = -0.5P_1 - 0.5P_2 + 0.5P_3 + 0.5P_4 - 0.5P_6 + 0.5P_7$
$C_4 = 0.5P_1 - 0.5P_2 + 0.5P_3 - P_4$	$C_4 = 0.5P_1 + 0.5P_2 + 0.5P_3 - 0.5P_4 - P_7$	$C_4 = 0.5P_1 - 0.5P_2 - P_5 + 0.5P_6 + 0.5P_7$
Group 7	Group 8	Group 9 (Winograd's Solution)
$P_1 = A_1 B_1$	$P_1 = A_1 B_1$	$P_1 = A_1 B_1$
$P_2 = A_2 B_2$	$P_2 = A_2 B_2$	$P_2 = A_2 B_2$
$P_3 = A_3(B_1 + B_2 + B_3 + B_4)$	$P_3 = A_3(B_3 + B_4)$	$P_3 = A_3(B_1 + B_2 + B_3 + B_4)$
$P_4 = (A_2 + A_4)(B_1 + B_2 - B_3 - B_4)$	$P_4 = (A_2 + A_4)(B_1 + B_2 + B_3 + B_4)$	$P_4 = (A_2 + A_4)(B_3 + B_4)$
$P_5 = (A_3 - A_4)(B_2 + B_4)$	$P_5 = (A_3 - A_4)B_4$	$P_5 = (A_3 - A_4)(B_2 + B_4)$
$P_6 = (A_2 - A_3 + A_4)(B_1 - B_2 - B_3 - B_4)$	$P_6 = (A_2 - A_3 + A_4)(B_1 + B_3 + B_4)$	$P_6 = (A_2 - A_3 + A_4)(B_2 - B_2 - B_3 - B_4)$
$P_7 = (A_1 - A_2 + A_3 - A_4)(B_1 - B_4)$	$P_7 = (A_1 - A_2 + A_3 - A_4)(B_1 + B_3)$	$P_7 = (A_1 - A_2 + A_3 - A_4)B_3$
$C_1 = P_1 + P_2$	$C_1 = P_1 + P_2$	$C_1 = P_1 + P_2$
$C_2 = P_1 - P_2 + P_3 - P_6 - P_7$	$C_2 = -P_1 + P_5 + P_6 + P_7$	$C_2 = -P_2 + P_5 + P_6 + P_7$
$C_3 = -P_2 + 0.5P_3 + 0.5P_4 + 0.5P_6$	$C_3 = -P_2 - P_3 + P_4 - P_6$	$C_3 = -P_2 + P_3 - P_4 + P_6$
$C_4 = P_2 + 0.5P_3 - 0.5P_4 - P_5 + 0.5P_6$	$C_4 = P_3 - P_5$	$C_4 = P_2 + P_4 - P_5 - P_6$

Group 1 (Strassen's Solution)	
$P_1 = A_1(B_3 - B_4)$	3
$P_2 = (A_1 + A_2)B_4$	3
$P_3 = (A_3 + A_4)B_1$	3
$P_4 = A_4(-B_1 + B_2)$	3
$P_5 = (A_1 + A_4)(B_1 + B_4)$	4
$P_6 = (A_2 - A_4)(B_2 + B_4)$	4
$P_7 = (-A_1 + A_3)(B_1 + B_3)$	4
$C_1 = -P_2 + P_4 + P_5 + P_6$	
$C_2 = P_1 + P_2$	
$C_3 = P_3 + P_4$	
$C_4 = P_1 - P_3 + P_5 + P_7$	

Group 2
$P_1 = A_1(B_3 - B_4)$
$P_2 = (A_1 + A_2)B_4$
$P_3 = A_4(B_2 + B_4)$
$P_4 = A_3(B_1 + B_3)$
$P_5 = (A_2 + A_4)(B_1 - B_2)$
$P_6 = (A_1 + A_2 + A_4)(B_1 + B_4)$
$P_7 = (A_1 + A_2 + A_3 + A_4)B_1$
$C_1 = -P_2 - P_3 - P_5 + P_6$
$C_2 = P_1 + P_2$
$C_3 = P_2 + P_3 - P_6 + P_7$
$C_4 = -P_2 + P_4 + P_6 - P_7$

Group 3
$P_1 = A_1(B_3 - B_4)$
$P_2 = (A_1 + A_2)B_4$
$P_3 = (A_3 - A_4)B_2$
$P_4 = A_3(B_1 + B_2)$
$P_5 = (A_1 + A_2 + A_3 + A_4)(B_1 + B_2 + B_3 + B_4)$
$P_6 = (A_1 + A_2 - A_3 + A_4)(B_1 + B_2 + B_3 - B_4)$
$P_7 = (A_1 - A_2 + A_3 - A_4)(B_1 - B_2 + B_3 - B_4)$
$C_1 = -P_1 - P_3 + 0.5P_6 + 0.5P_7$
$C_2 = P_1 + P_2$
$C_3 = -P_3 + P_4$
$C_4 = -P_2 - P_4 + 0.5P_5 - 0.5P_6$

Group 4
$P_1 = A_4(-B_1 + B_2 - B_3 + B_4)$
$P_2 = A_1(B_1 - B_2 - B_3 + B_4)$
$P_3 = (A_1 + A_4)(B_1 - B_2 + B_3 + B_4)$
$P_4 = (A_1 - A_3)B_3$
$P_5 = (A_3 + A_4)(B_1 + B_3)$
$P_6 = (A_1 + A_2)(B_2 - B_4)$
$P_7 = (A_2 - A_4)B_4$
$C_1 = 0.5P_1 + 0.5P_2 + 0.5P_3 + P_6 + P_7$
$C_2 = 0.5P_1 - 0.5P_2 + 0.5P_3 + P_7$
$C_3 = 0.5P_1 + 0.5P_2 - 0.5P_3 + P_4 + P_5$
$C_4 = 0.5P_1 - 0.5P_2 + 0.5P_3 - P_4$

Group 5
$P_1 = (A_1 + A_2)(B_1 + B_3)$
$P_2 = (A_1 + A_2 - A_3 + A_4)(B_2 - B_3)$
$P_3 = (-A_3 + A_4)(B_1 - B_3)$
$P_4 = (A_1 + A_2 - A_3 - A_4)(B_1 + B_2)$
$P_5 = (A_1 - A_2 - A_3 + A_4)(B_1 - B_2)$
$P_6 = A_2(B_1 - B_2 + B_3 - B_4)$
$P_7 = A_4(B_1 + B_2 - B_3 - B_4)$
$C_1 = 0.5P_1 + 0.5P_2 - 0.5P_3 + 0.5P_5$
$C_2 = 0.5P_1 - 0.5P_2 + 0.5P_3 - 0.5P_5 - P_6$
$C_3 = 0.5P_1 + 0.5P_2 - 0.5P_3 - 0.5P_4$
$C_4 = 0.5P_1 + 0.5P_2 + 0.5P_3 - 0.5P_4 - P_7$

Group 6
$P_1 = (A_1 + A_2)(B_3 + B_4)$
$P_2 = (A_1 - A_2)(B_3 - B_4)$
$P_3 = (A_2 - A_4)(B_1 - B_2 - B_3 + B_4)$
$P_4 = (A_2 + A_4)(B_1 + B_2 + B_3 + B_4)$
$P_5 = (A_1 - A_4)(B_1 + B_4)$
$P_6 = (A_1 + A_2 - A_3 - A_4)(B_1 - B_3)$
$P_7 = (A_1 - A_2 + A_3 - A_4)(B_1 + B_3)$
$C_1 = -0.5P_1 + 0.5P_2 - 0.5P_3 + 0.5P_4 + P_5$
$C_2 = 0.5P_1 + 0.5P_2$
$C_3 = -0.5P_1 - 0.5P_2 + 0.5P_3 + 0.5P_4 - 0.5P_6 + 0.5P_7$
$C_4 = 0.5P_1 - 0.5P_2 - P_5 + 0.5P_6 + 0.5P_7$

~ =
Group 7
D 4 D
$P_1 = A_1 B_1$
$P_2 = A_2 B_2$
$P_3 = A_3(B_1 + B_2 + B_3 + B_4)$
$P_4 = (A_2 + A_4)(B_1 + B_2 - B_3 - B_4)$
$P_5 = (A_3 - A_4)(B_2 + B_4)$
$P_6 = (A_2 - A_3 + A_4)(B_1 - B_2 - B_3 - B_4)$
$P_7 = (A_1 - A_2 + A_3 - A_4)(B_1 - B_4)$
$C_1 = P_1 + P_2$
$C_2 = P_1 - P_2 + P_3 - P_6 - P_7$
$C_3 = -P_2 + 0.5P_3 + 0.5P_4 + 0.5P_6$
$C_4 = P_2 + 0.5P_3 - 0.5P_4 - P_5 + 0.5P_6$

Group 8
$P_1 = A_1 B_1$
$P_2 = A_2 B_2$
$P_3 = A_3(B_3 + B_4)$
$P_4 = (A_2 + A_4)(B_1 + B_2 + B_3 + B_4)$
$P_5 = (A_3 - A_4)B_4$
$P_6 = (A_2 - A_3 + A_4)(B_1 + B_3 + B_4)$
$P_7 = (A_1 - A_2 + A_3 - A_4)(B_1 + B_3)$
$C_1 = P_1 + P_2$
$C_2 = -P_1 + P_5 + P_6 + P_7$
$C_3 = -P_2 - P_3 + P_4 - P_6$
$C_4 = P_3 - P_5$

Group 9 (Winograd's Solution)
$P_1 = A_1 B_1$
$P_2 = A_2 B_2$
$P_3 = A_3(B_1 + B_2 + B_3 + B_4)$
$P_4 = (A_2 + A_4)(B_3 + B_4)$
$P_5 = (A_3 - A_4)(B_2 + B_4)$
$P_6 = (A_2 - A_3 + A_4)(B_2 - B_2 - B_3 - B_4)$
$P_7 = (A_1 - A_2 + A_3 - A_4)B_3$
$C_1 = P_1 + P_2$
$C_2 = -P_2 + P_5 + P_6 + P_7$
$C_3 = -P_2 + P_3 - P_4 + P_6$
$C_4 = P_2 + P_4 - P_5 - P_6$