Light Residual Network for Human Activity Recognition using Wearable Sensor Data

Francisco M. Calatrava Nicolás (francisco.calatrava-nicolas@oru.se)

Oscar Martinez Mozos

Orebro University, AI for Life

Human Activity Recognition (HAR)

- It is about classifying and understanding human activities
- This could be used in many fields: health, sports, security, human robot interaction...
- Example:
 - Wellbeing monitoring of elderly at home.

Human Activity Recognition Problem

Classify a set of human activities using inertial sensor data

Our Contribution

Previous Works: Gaps

- Classification: Deep Learning surpass traditional machine learning methods in HAR but:
 - Increase the number of parameters[19][21][27]
 - Increase the computational cost
- Comparisons: Observed a benchmark gap for the UCI-HAR dataset.
 - State-of-the-art training and testing conditions differ greatly.
 - It's challenging to make a fair comparison.

Our Contributions

A new light Deep Learning architecture
Unified benchmark for the UCI-HAR dataset

Dataset: UCI-HAR

30 Participants

6 Activities

Smartphone's IMU

Controlled lab environment

Input data: Preprocessing [1]

Body Estimated ACC:

Butterworth Filter

Fixed-Width Sliding Window [1]

Fixed-Width Sliding Window

- Windows Size: 128 points (2.56 s)
- Overlapping: 50%
- A unique activity is mapped to every sample

Our Approach: Light Architecture

Inertial Signals after

Preprocessing & Segmentation &

Input Shape: (9, 1, 128)

Our Approach: Light Architecture

Inspired in ResNet 18 [1]. We have modified:

1-D Kernels

Example 1D inertial signal

As a result, we reduced to 234 950 Parameters

(ResNet18 is around 11 million)

UCI-HAR Original Splitting (70%-30%) [1]

Train – 70% of Participants (21)

■ Test – 30% of Participants (9)

Approaches	F1-Score	Accuracy	Params.
	(%)	(%)	
GRU [19] (2023)	89.2	89.2	-
CNN-LSTM Self-Att. [26] (2022)	90.9	93.1	634,188
Res-BiLSTM [22] (2018)	91.5	91.6	-
CNN-LSTM [23] (2020)	-	92.1	-
Bi-LSTM [21] (2019)	92.7	92.7	-
Stacked LSTM [24] (2019)	93.1	93.1	-
CNN [25] (2019)	93.5	-	-
iSPLInception [27](2021)	95.0	95.1	1,327,754
GRU+Attention [19] (2023)	95.8	96.0	1,600,000
CNN-DCT [20] (2023)	97.1	-	930,000
ResNet-DCT [20] (2023)	97.5	-	3,540,000
Our model	97.6	97.6	234,950

Leave-One-(Person)-Out Cross-Validation

Leave-One-(Person)-Out Cross-Validation

Leave-One-(Person)-Out Cross-Validation

		Predicted label											
		WA	WIL	WD	SI	ST	LA	Sup.					
	WA	95.7%	3.5%	0.6%	0.2%	0.0%	0.0%						
		1648	60	11	0	0	0	1722					
	WD	0.6%	98.3%	1.0%	0.0%	2.0%	0.0%						
		10	1518	16	0	0	0	1544					
label	WU	0.0%	0.0%	99.9%	0.1%	0.0%	0.0%						
		0	0	1404	2	0	0	1406					
Actual	SI	0.0%	0.2%	0.0%	92.3%	7.4%	0. %						
Ä		0	3	0	1641	132		1777					
	ST	0.0%	0.0%	0.0%	5.2%	94.8%	0.0						
		0	0	0	99	1807	0	1906					
	LA	0.0%	0.0%	0.0%	0.0%	0.0%	100.0%						
		0	0	0	0	0	1944	1944					

Global Confusion Matrix from Leave-One(Person)-Out Cross-Validation

Confusion Matrix Participant 14

Predicted label

		WA	WU	WD	SI	ST	LA	Sup.				
	V V/	0.0%	100.0%	0.0%	0.0%	0.0%	0.0%					
		0	59	0	0	0	0	59				
-	WU	0.0%	100.0%	0.0%	0.0%	0.0%	0.0%					
		0	54	0	0	0	0	54				
-	WD	0.0%	0.0%	100.0%	0.0%	0.0%	0.0%					
		0	0	45	0	0	0	45				
	SI	0.0%	0.0%	0.0%	77.8%	22.2%	0.0%					
		0	0	0	42	12	0	54				
	ST	0.0%	0.0%	0.0%	0.0%	100.0%	0.0%					
		0	0	0	0	60	0	60				
-	LA	0.0%	0.0%	0.0%	0.0%	0.0%	100.0%					
		0	0	0	0	0	51	51				

Additional Results from our Benchmark

Person out	t	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Precision	100	0.0 ± 0.0	99.4 ± 1.5	98.6 ± 2.5	98.4 ± 2.4	93.2 ± 14.3	98.7 ± 3.3	98.3 ± 4.2	97.3 ± 6.7	94.4 ± 5.5	83.8 ± 17.2	100.0 ± 0.0	97.9 ± 5.2	99.7 ± 0.7	71.8 ± 40.6	99.7 ± 0.8
Recall	100	0.0 ± 0.0	99.3 ± 1.8	98.4 ± 3.1	98.4 ± 2.6	92.2 ± 14.8	98.5 ± 3.7	97.9 ± 5.1	97.2 ± 6.8	94.5 ± 7.5	81.0 ± 20.8	100.0 ± 0.0	97.1 ± 7.2	99.7 ± 0.8	79.6 ± 40.0	99.7 ± 0.7
F1-Score	100	0.0 ± 0.0	99.3 ± 1.1	98.5 ± 2.3	98.4 ± 2.5	91.5 ± 11.5	98.5 ± 2.3	98.0 ± 3.1	97.0 ± 4.6	94.4 ± 6.3	79.3 ± 11.5	100.0 ± 0.0	97.2 ± 4.4	99.7 ± 0.5	73.8 ± 38.4	99.7 ± 0.5
Support		347	302	341	317	302	325	308	281	288	294	316	320	327	323	328
Person out		16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
Precision	94.	4 ± 9.8	97.7 ± 4.3	99.4 ± 1.4	99.8 ± 0.5	100.0 ± 0.0	98.0 ± 4.9	99.7 ± 0.6	97.3 ± 6.6	100.0 ± 0.0	93.7 ± 10.9	100.0 ± 0.0	99.8 ± 0.5	95.8 ± 10.4	99.5 ± 1.3	100.0 ± 0.0
Recall	94.3	3 ± 10.4	97.2 ± 5.6	99.5 ± 1.1	99.8 ± 0.6	100.0 ± 0.0	97.6 ± 5.8	99.7 ± 0.7	96.8 ± 7.8	100.0 ± 0.0	93.4 ± 10.2	100.0 ± 0.0	99.8 ± 0.6	93.8 ± 15.3	99.5 ± 1.3	100.0 ± 0.0
F1-Score	94.	1 ± 9.2	97.4 ± 4.2	99.5 ± 0.8	99.8 ± 0.3	100.0 ± 0.0	97.7 ± 3.6	99.7 ± 0.4	96.8 ± 5.0	100.0 ± 0.0	93.3 ± 9.8	100.0 ± 0.0	99.8 ± 0.3	93.7 ± 10.1	99.5 ± 0.8	100.0 ± 0.0
Support		366	368	364	360	354	408	321	372	381	409	392	376	382	344	383
Predicted label																
	WA	WU	WD	SI	ST	LA Sup.	Classes	Precision	Recall	F1-Score	Support					
WA	0.0%	100.0%		0.0%		0.0%	WA	1.000	1.000	1.000	60					
- >4/11	0	59	0	0	0	0 59	WU	1.000	1.000	1.000	52			· • 548.4.4C		
WU	0.0%	100.0%	0.0%	0.0%	0.0%	0.0%	WD	1.000	1.000	1.000	45					

- 100.0% 0.0% 0.0% 0.0% 0.0% 77.8% 22.2% 0.0% 12 0.0% 0.0% 0.0% 0.0% 0.0% 100.0% 60 0.0% 0.0% 0.0% 0.0% 100.0% 0 51 51
- LOOCV Confusion Matrices

0.940

0.964

1.000

LOOCV Metrics

0.959

0.947

1.000

- 10-fold cross validation
- Ablation Study (Residual Blocks)

0.949

0.956

1.000

Thank you for your attention

Contact Details:

Name: Francisco Miguel Calatrava Nicolás

Email: francisco.calatrava-nicolas@oru.se

