TARGET SQL CASE STUDY

Name: Sai Vivekanand Kuchimanchi (Vivek)

Date: 17/4/2023

- 1. Import the dataset and do usual exploratory analysis steps like checking the structure & characteristics of the dataset
 - 1. Data type of columns in a table
 - 2. Time period for which the data is given
 - 3. Cities and States of customers ordered during the given period

~ Import the dataset

High level overview of relationship between datasets:

~ do usual exploratory analysis steps like checking the structure & characteristics of the dataset

1. Data type of columns in a table

Results per page:

50 ▼

1 - 50 of 8463

2. In-depth Exploration:

1. Is there a growing trend on e-commerce in Brazil? How can we describe a complete scenario? Can we see some seasonality with peaks at specific months?

Query:

Query results

If we take a graph of the Month and Year orders, the graph has up and down trends. But the trend line is showing an upward trend.

So I aggregated it to only years, so the trend is strikingly apparent

<u>Year</u>	<u>Num_orders</u>
2016	329
2017	45101
2018	54011

Points:

- Orders trend is growing overall.
- Although some months are very dull. 2016 (Sep, Dec) and 2018 (Sep, Dec) there is a downward trend
- 2017 (Sep, Dec) orders were quite high(2017 Sep 4285, 2017 Dec 5673).
- 2017 Nov 7544 Orders (highest in the dataset)
 - 2. What time do Brazilian customers tend to buy (Dawn, Morning, Afternoon or Night)?

Category <u>Num_orders</u> Night Dawn Morning Afternoon

Points:

- Its obvious that in the 'Night' the orders are quite high and there is a dip during 'Dawn'. Sales pick up during 'Morning' and in 'Afternoon', where its highest.
- 3. Evolution of E-commerce orders in the Brazil region:
 - 1. Get month on month orders by states

Results per page:

50 ▼

1 - 50 of 565

Its not possible to have all 565 state-wise, year-month wise, count of orders.

Minimum orders were from the following months

order_num ↓↑	year_month 🔻	cust_state 🔻
1	2016-9	RR
1	2016-9	RS
1	2016-10	PB
1	2016-10	PI
1	2016-10	RR
1	2016-12	PR

Maximum orders were from the following months

order_num →	year_month 🔻	cust_state 🔻
3253	2018-8	SP
3207	2018-5	SP
3059	2018-4	SP
3052	2018-1	SP
3037	2018-3	SP
3012	2017-11	SP
2777	2018-7	SP
2773	2018-6	SP
2703	2018-2	SP
2357	2017-12	SP

Highest 16 orders are from the state 'SP'

If we remove the year-month from the equation and aggregate the num of orders per state

2. Distribution of customers across the states in Brazil

Whether we use Order numbers per state or cust_id per state, the data points are same. 27 data points (states).

- 4. Impact on Economy: Analyze the money movement by e-commerce by looking at order prices, freight and others.
 - 1. Get % increase in cost of orders from 2017 to 2018 (include months between Jan to Aug only) You can use "payment_value" column in payments table

Solution:

Prepare 2017 data, prepare 2018 data, compare both to find the % increase in cost of orders.

Query:

```
with
x as (
select
tot_price, month
from
(
select (price + freight_value) as tot_price,
extract(year from order_purchase_timestamp) as year,
extract(month from order_purchase_timestamp) as month
from `Target.orders` o1
join
`Target.order_items` o2
on o1.order_id = o2.order_id
) as a
```

```
where year = 2017 and month between 1 and 8),
y as (
select
tot_price, month
from
select (price + freight_value) as tot_price,
extract(year from order_purchase_timestamp) as year,
extract(month from order_purchase_timestamp) as month
from `Target.orders` o1
join
`Target.order_items` o2
on o1.order_id = o2.order_id
) as a
where year = 2018 and month between 1 and 8 )
# Formula
select round(((sum(y.tot_price) - sum(x.tot_price)) / sum(x.tot_price)) * 100,3) as percentage
_cost_increase
from x join y on x.month = y.month ;
```

Row percentage_cost_increase //
1 1.215

2. Mean & Sum of price and freight value by customer state

Query:

```
select
```

```
avg(price) as mean_price, sum(price) as tot_price,
avg(freight_value) as mean_frieght_value, sum(freight_value) as tot_frieght_value,
avg(price + freight_value) as mean_order_cost, sum(price + freight_value) as tot_order_cost,
customer_state

from `Target.order_items` x
join
`Target.orders` y
on x.order_id = y.order_id
join `Target.customers` c
on y.customer_id = c.customer_id

group by customer_state;
```

JOB IN	FORMATION	RESULTS	JSON	EXECUTION DET	AILS EXE	CUTION GRAPH	PREVIEW
Row	mean_price	tot_price	mean_frieght_va	tot_frieght_value	mean_order_cos	tot_order_cost	customer_state
1	148.297184	156453.529	28.1662843	29715.4300	176.463469	186168.960	MT
2	145.204150	119648.219	38.2570024	31523.7700	183.461152	151171.990	MA
3	180.889211	80314.81	35.8436711	15914.5899	216.732882	96229.3999	AL
4	109.653629	5202955.05	15.1472753	718723.069	124.800904	5921678.11	SP
5	120.748574	1585308.02	20.6301668	270853.460	141.378740	1856161.49	MG
6	145.508322	262788.029	32.9178626	59449.6599	178.426184	322237.690	PE
7	125.117818	1824092.66	20.9609239	305589.310	146.078742	2129681.98	RJ
8	125.770548	302603.939	21.0413549	50625.4999	146.811903	353229.440	DF
9	120.337453	750304.020	21.7358043	135522.740	142.073257	885826.759	RS
10	153.041168	58920.8500	36.6531688	14111.4699	189.694337	73032.3199	SE
11	119.004139	683083.760	20.5316515	117851.680	139.535790	800935.439	PR
12	165.692416	178947.809	35.8326851	38699.3000	201.525101	217647.109	PA

- 5. Analysis on sales, freight and delivery time
 - 1. Calculate days between purchasing, delivering and estimated delivery

```
select
order_id,
date_diff(order_delivered_customer_date, order_purchase_timestamp, day) as days_delivered_in,
date_diff(order_estimated_delivery_date, order_purchase_timestamp, day) as SLA,
date_diff(order_delivered_customer_date, order_estimated_delivery_date, day) as days_delay
from `Target.orders`
order by days_delivered_in desc, SLA, days_delay;
```

Row	order_id	days_delivered_in	SLA /	days_delay
1	ca07593549f1816d26a572e06	209	28	181
2	1b3190b2dfa9d789e1f14c05b	208	19	188
3	440d0d17af552815d15a9e41a	195	30	165
4	285ab9426d6982034523a855f	194	28	166
5	0f4519c5f1c541ddec9f21b3bd	194	32	161
6	2fb597c2f772eca01b1f5c561b	194	39	155
7	47b40429ed8cce3aee9199792	191	15	175
8	2fe324febf907e3ea3f2aa9650	189	22	167
9	2d7561026d542c8dbd8f0daea	188	28	159
10	c27815f7e3dd0b926b5855262	187	25	162
11	437222e3fd1b07396f1d9ba8c	187	42	144
12	dfe5f68118c2576143240b8d7	186	32	153
13	6e82dcfb5eada6283dba34f16	182	27	155
14	2ba1366baecad3c3536f27546	181	28	152

Out of 17876 rows of data fetched - Fastest delivered order:

<u>S #</u>	<u>order_id</u>	days_delivered_in	<u>SLA</u>	days_delay
14226	eec7f369423b033e549c02f3c5381205	20	155	-134

Order should have taken 155 days, but delivered in 20 days, saved 134 days.

Out of 17876 rows of data fetched - Most delayed order:

<u>S #</u>	<u>order_id</u>	days_delivered_in	<u>SLA</u>	days_delay
2	1b3190b2dfa9d789e1f14c05b647a14a	208	19	188

Order should have taken 19 days, but delivered in 208 days, delay of 188 days.

- 2. Find time_to_delivery & diff_estimated_delivery. Formula for the same given below:
 - time_to_delivery = order_purchase_timestamporder_delivered_customer_date
 - diff_estimated_delivery = order_estimated_delivery_dateorder_delivered_customer_date

Formula seems to be wrong.

<u>s#</u> -	<u>order_id</u>	•	days_delivered_in		SLA -	days_delay 🔻	Minus Values 🔻
1195 ed638k	613c111b199c3550cb29fd6	bfa	44	1	45	-1	TRUE
1196 e282da	baac0b31c7da8a0896fd56e	7f3	44	1	45	-1	TRUE
1605 0d40f8	fd78977af4c4fa84293ae7fa	21	41	L	43	-1	TRUE
1908 cb667d	lb7bf699e2940c1ccdc16ef7e	ec7	39	9	40	-1	TRUE
1909 c6d263	41bec0769b3ccfa232c63b3	675	39	9	40	-1	TRUE

Formula should be:

time_to_delivery(days_delivered_in) =
order_delivered_customer_date - order_purchase_timestamp

diff_estimated_delivery(days_delay) =

order_delivered_customer_date - order_estimated_delivery_date if days delay is in negative then order has arrived so many days early.

```
Query:
select
order_id,
date_diff(order_delivered_customer_date , order_purchase_timestamp, day) as time_to_delivery,
date_diff(order_delivered_customer_date, order_estimated_delivery_date, day) as diff_estimated
_delivery
```

from `Target.orders`
order by time_to_delivery desc, diff_estimated_delivery;

Row	order_id	time_to_delivery	diff_estimated_delivery	le
1	ca07593549f1816d26a572e06	209		181
2	1b3190b2dfa9d789e1f14c05b	208		188
3	440d0d17af552815d15a9e41a	195		165
4	2fb597c2f772eca01b1f5c561b	194		155
5	0f4519c5f1c541ddec9f21b3bd	194		161
6	285ab9426d6982034523a855f	194		166
7	47b40429ed8cce3aee9199792	191		175
8	2fe324febf907e3ea3f2aa9650	189		167
9	2d7561026d542c8dbd8f0daea	188		159
10	437222e3fd1b07396f1d9ba8c	187		144
11	c27815f7e3dd0b926b5855262	187		162
12	dfe5f68118c2576143240b8d7	186		153
13	6e82dcfb5eada6283dba34f16	182		155
14	2ba1366baecad3c3536f27546	181		152
15	d24e8541128cea179a11a6517	175		161
16	3566eabb132f8d64741ae7b92	174		137

Points:

- 1. **time_to_delivery** days in which the order is delivered from purchase timestamp to delivery date.
- 2. **diff_estimated_delivery** is the delay of the order. After how many days past the estimate, the order is delivered.

3. Group data by state, take mean of freight_value, time_to_delivery, diff_estimated_delivery

Query:

```
select
c.customer_state,
round(avg(o1.freight_value),3) as mean_freight_value,
round(avg(date_diff(order_delivered_customer_date , order_purchase_timestamp, day)),3) as mean
_time_to_delivery,
round(avg(date_diff(order_delivered_customer_date, order_estimated_delivery_date, day)),3) as
mean_diff_estimated_delivery

from `Target.order_items` o1
join `Target.orders` o2 on o1.order_id = o2.order_id
join `Target.customers` c on o2.customer_id = c.customer_id

group by customer_state
order by mean_freight_value desc;
```

- 1. freight_value
- 2. days delivered in

Mean means average, so take average of:

3. days delay

Row	customer_state	mean_freight_value	mean_time_to_delivery	mean_diff_estimated_delivery
1	RR	42.984	27.826	-17.435
2	РВ	42.724	20.119	-12.15
3	RO	41.07	19.282	-19.081
4	AC	40.073	20.33	-20.011
5	PI	39.148	18.931	-10.683
6	MA	38.257	21.204	-9.11
7	ТО	37.247	17.003	-11.461
8	SE	36.653	20.979	-9.165
9	AL	35.844	23.993	-7.977
10	PA	35.833	23.302	-13.375
11	RN	35.652	18.873	-13.056
12	AP	34.006	27.753	-17.444

- 4. Sort the data to get the following:
 - Top 5 states with highest/lowest average freight value sort in desc/asc limit

Query:

```
# Highest average freight value
select
c.customer_state,
round(avg(o1.freight_value),3) as mean_freight_value

from `Target.order_items` o1
join `Target.orders` o2 on o1.order_id = o2.order_id
join `Target.customers` c on o2.customer_id = c.customer_id

group by customer_state
order by mean_freight_value desc

limit 5;
```

Row	customer_state	mean_freight_value
1	RR	42.984
2	РВ	42.724
3	RO	41.07
4	AC	40.073
5	PI	39.148

Lowest average freight value

```
select
c.customer_state,
round(avg(o1.freight_value),3) as mean_freight_value
```

```
from `Target.order_items` o1
join `Target.orders` o2 on o1.order_id = o2.order_id
join `Target.customers` c on o2.customer_id = c.customer_id
group by customer_state
```

limit 5;

Row	customer_state	mean_freight_value
1	SP	15.147
2	PR	20.532
3	MG	20.63
4	RJ	20.961
5	DF	21.041

order by mean_freight_value

Top 5 states with highest/lowest average time to delivery

Query:

```
# Highest average time to delivery(days_delivered_in)
select
c.customer_state,
round(avg(date_diff(order_delivered_customer_date , order_purchase_timestamp, day)),3) as mean
_time_to_delivery,

from `Target.order_items` o1
join `Target.orders` o2 on o1.order_id = o2.order_id
join `Target.customers` c on o2.customer_id = c.customer_id

group by customer_state
order by mean_time_to_delivery desc
limit 5;
```

Row	customer_state	11	mean_time_to_delivery
1	RR		27.826
2	AP		27.753
3	AM		25.963
4	AL		23.993
5	PA		23.302

```
# Lowest average time to delivery(days_delivered_in)
select
c.customer_state,
round(avg(date_diff(order_delivered_customer_date , order_purchase_timestamp, day)),3) as mean
_time_to_delivery,

from `Target.order_items` o1
join `Target.orders` o2 on o1.order_id = o2.order_id
join `Target.customers` c on o2.customer_id = c.customer_id

group by customer_state
order by mean_time_to_delivery
limit 5;
```

Row	customer_state //	mean_time_to_delivery_
1	SP	8.26
2	PR	11.481
3	MG	11.516
4	DF	12.501
5	SC	14.521

 Top 5 states where delivery is really fast/ not so fast compared to estimated date

Query:

```
# Highest average delay
select
c.customer_state,
round(avg(date_diff(order_delivered_customer_date, order_estimated_delivery_date, day)),3) as
mean_diff_estimated_delivery

from `Target.order_items` o1
join `Target.orders` o2 on o1.order_id = o2.order_id
join `Target.customers` c on o2.customer_id = c.customer_id

group by customer_state
order by mean_diff_estimated_delivery
```

limit 5;

Row	customer_state	mean_diff_estimated_delivery
1	AC	-20.011
2	RO	-19.081
3	AM	-18.975
4	AP	-17.444
5	RR	-17.435

Lowest average delay

```
select
```

```
c.customer_state,
```

round(avg(date_diff(order_delivered_customer_date, order_estimated_delivery_date, day)),3) as
mean_diff_estimated_delivery

```
from `Target.order_items` o1
join `Target.orders` o2 on o1.order_id = o2.order_id
join `Target.customers` c on o2.customer_id = c.customer_id
group by customer_state
order by mean_diff_estimated_delivery desc
```

limit 5;

Row	customer_state	mean_diff_estim
1	AL	-7.977
2	MA	-9.11
3	SE	-9.165
4	ES	-9.769
5	BA	-10.119

6. Payment type analysis:

1. Month over Month count of orders for different payment types

Query:

Note: using the year and month in select clause just to do the sorting in order by.

Row	month //	year //	month_year	ord_count	payment_type
1	9	2016	9 - 2016	3	credit_card
2	10	2016	10 - 2016	254	credit_card
3	10	2016	10 - 2016	63	UPI
4	10	2016	10 - 2016	23	voucher
5	10	2016	10 - 2016	2	debit_card
6	12	2016	12 - 2016	1	credit_card
7	1	2017	1 - 2017	583	credit_card

Extra Analysis.

• Year-wise split of count of all payments types

<u>year</u>	All_payment_types	
2016	6	
2017	48	
2018	36	

• Year-wise split of sum of orders

<u>year</u>	sum_order_count	
2016	346	
2017	47525	
2018	56015	

2. Count of orders based on the no. of payment installments

Query:

```
select *
from `Target.payments` ;
select
count(order_id) as num_of_orders,
payment_type,
payment_installments
from `Target.payments`
group by payment_installments, payment_type ;
```

D			
Row /	num_of_orders/	payment_type	payment_installments
1	2	credit_card	0
2	5775	voucher	1
3	3	not_defined	1
4	25455	credit_card	1
5	1529	debit_card	1
6	19784	UPI	1
7	12413	credit_card	2
8	10461	credit_card	3
9	7098	credit_card	4
10	5239	credit_card	5
11	3920	credit_card	6
12	1626	credit_card	7

ACTIONABLE INSIGHTS:

- 1. Actual delivery delivery estimated gives you delay / faster delivery in days
- 2. Actual delivery order purchase timestamp gives you days delivered in.
- 3. Based on the above points, target can ramp up staff during peak months and ask employees to take holidays during Sep, Dec months.
- 4. Reduce delays, by planning logistic pipelines. Based on the trend, keep a par stock in the local warehouse, all those items that are sure to be sold / necessary so as to reduce delay and increase customer satisfaction.
- 5. Give away some gifts during festivals and make target a household brand.

RECOMMENDATIONS:

- 1. They should start 24 outlets at-least during Christmas to make lot of sales
- 2. Open an app / loyalty program and give discounts, coupons to retain customers.
- 3. Train staff to be more friendly and help elders in their shopping.
- 4. Organize events in some parts of the cities. Go to the customers, rather than customers coming to store to buy.