

INSTITUTO POLITÉCNICO NACIONAL ESCUELA SUPERIOR DE CÓMPUTO

Práctica 2

Algoritmos básicos II

Unidad académica: Análisis de Algoritmos **Profesor a cargo:** Dra. Sandra Díaz Santiago

Grupo: 3CV1 **Realizada por:**

• Medina Juárez Jesús Booz

• Ríos Altamirano Alam Yael

Sesión de laboratorio: 28 de febrero del 2018 Fecha de entrega: 2 de marzo del 2018

Diseño de algoritmos

Ejercicio 1

maximominimo(A[n])	Costo	#Operaciones
res [2] := A[0] // arreglo de dos posiciones, ambas inician en A[0]	C1	1
for i := 0 to n	C2	n
if(A[n] < res[min])	C3	n
res[min] := A[n]	C4	n
if(A[n] > res[max])	C3	n
res[max] := A[n]	C4	n
return res	C5	1
Tiempo polinomial y notación asintótica		
$T(n) = C_1 + (C_2 + 2C_3 + 2C_4)n + C_5$		
T(n) = a + bn		
T(n) = O(n)		
Demostrado que existe c tal que $a + bn \le cn$		
suponiendo que c = a + b		
$a + bn \le (a + b)n$		
Es cierto para $n \ge 1$		

Ejercicio 2

Exponenciación modular rápida (logarítmica)

```
exponenciacionModularRapida(a, m, n)
                                                                                  Costo
                                                                                         #Operaciones
        res := 1
                                                                                  C1
                                                                                          1
        a := a \mod n
                                                                                  C2
                                                                                          1
                while (m>0)
                                                                                  C3
                                                                                          log_2n
                        if (odd(m))
                                                                                  C4
                                                                                          log_2n
                                res = (res * a) mod n
                                                                                  C5
                                                                                          log_2n
                        m = m >> 1
                                                                                  C6
                                                                                          log_2n
                        a = (a * a) mod n
                                                                                          log_2n
                                                                                  C7
                                                                                  C8
        return res
                                                                                          1
Tiempo polinomial y notación asintótica
T(n) = C_1 + C_2 + (C_3 + C_4 + C_5 + C_6 + C_7)log_2n
T(n) = a + b(\log_2 n)
T(n) = O(log_2n)
Demostrado que existe c tal que a + b(log_2n) \le c(log_2n)
suponiendo que c = a + b
a + b(log_2 n) \le (a + b)log_2 n
Es cierto para n \ge 1
```

Ejercicio 3

Tiempo polinomial y notación asintótica

$$\begin{split} T(n) &= C_1 n + C_2 n + C_3 \left[\frac{1}{2} n^2 + \frac{1}{2} n \right] + C_4 \left[\frac{1}{2} n^2 + \frac{1}{2} n \right] + C_5 \left[\frac{1}{2} n^2 + \frac{1}{2} n \right] + C_6 n + C_7 \\ T(n) &= a n^2 + b n + c \\ T(n) &= \mathbf{O}(n^2) \\ Demostrado \ si \ existe \ d \ tal \ que \ a n^2 + b n + c \leq d n^2 \\ Suponiendo \ d &= a + b + c \\ a n^2 + b n + c \leq (a + b + c) n^2 \\ Es \ cierto \ para \ n \geq 1 \end{split}$$

Ejercicio 4

Ejemplo de aplicación de algoritmo merge sort para el ordenamiento de alturas de ramas de árboles

97.97	56.12	46.43	88.17	59.48	92.91	49.40	24.82					
97.97	56.12	46.43	88.17		59.48	92.91	49.40	24.82				
97.97	56.12		46.43	88.17		59.48	92.91		49.40	24.82		
97.97		56.12		46.43		88.17		59.48		92.91	49.40	24.82
56.12	97.97		46.43	88.17		59.48	92.91		24.82	49.40		
46.43	56.12	88.17	97.97		24.82	49.40	59.48	92.91				
24.82	46.43	49.40	56.12	59.48	88.17	92.91	97.97					