Intrusion Detection

Dr. Demetrios Glinos University of Central Florida

CIS3360 - Security in Computing

Readings

- "Computer Security: Principles and Practice", 3rd Edition, by William Stallings and Lawrie Brown
 - Chapter 8
 - Appendix J (Optional on base rate fallacy)

Outline

- Intruders
- Intrusion Detection
- IDS Effectiveness
- Analysis Approaches
- Host-Based Intrusion Detection
- Network-Based Intrusion Detection
- Distributed or Hybrid Intrusion Detection
- Port Scanning
- Honeypots

Classes of Intruders

1. Cyber criminals:

- individuals or organized crime groups
- goal is financial reward
- identity theft, theft of financial credentials, corporate espionage, data theft, or data ransoming

2. Activists (hactivists):

- typically individual insiders, or outside groups
- motivated by political or social causes
- website defacement, DoS attacks, disclosure of embarassing information

3. State-sponsored groups:

sponsored by a government to conduct espionage or sabotage

4. Others:

- classic hackers motivated by technical challenge and peer group esteem
- also includes "hobby hackers" who use attack toolkits

Intruder Skill Levels

Apprentice

- minimal technical skill
- primarily use existing attack toolkits
- most attackers are of this type, including many criminal and activist attackers

Journeyman

- able to extend or modify existing toolkits to expoit newly discovered (or purchased) vulnerabilities, or to focus on different targets
- may also be able to locate new vulnerabilities similar to some already known

Master

- high-level technical skills capable of discovering new categories of vulnerabilities, or writing new powerful attack toolkits
- in this group: some classical hackers, plus some state-sponsored organizations

Typical Intruder Behavior

- 1. Target acquisition and information gathering
 - using publicly available information and network exploration tools
- 2. Initial access
 - via remote network access vulnerability, guessing weak username/passwords, or via malware using social engineering or drive-by download
- 3. Privilege escalation
 - once in, using various methods to acquire root (admin) privileges
- 4. Information gathering or system exploitation
 - finding and using information on the target, or navigating to other targets
- 5. Maintaining access
 - installing backdoors or other malicious software, adding hidden username/password, disabling OS updates or anti-virus
- 6. Covering tracks
 - disables or edits audit logs to remove evidence of attack
 - also using rootkits and other measures to hide covertly installed files or code

Intrusion and Intrusion Detection

From RFC 2828 (Internet Security Glossary):

Security Intrusion:

A security event, or a combination of multiple security events, that constitutes a security incident in which an intruer gains, or attempts to gain access to a system (or system resource) without having authorization to do so.

Intrusion Detection:

A security service that monitors and analyzes system events for the purpose of finding, and providing real-time or near real-time warning of, attempts to access system resources in an unauthorized manner.

Note: Intrusion detection services supplement, but do not replace firewalls, authentication facilities, and access control facilities

Intrusion Detection Systems

Intrusion detection systems (IDS)

 Hardware and/or software system used to detect malicious activity on a network or on an individual computer

IDS Components

Sensors

- used to collect data that may contain evidence of an intrusion or intrusion attempt
- examples: network packets, log files, system call traces

Analyzers

- determine whether an intrusion has occurred, based on the data collected
- issues an "alarm" when an intrusion is detected

User Interface

 display and management component that enables the user to view the output of the IDS and to control the behavior of the system

Basis for Intrusion Detection

- Basic idea: Intruders act differently from legitimate users in quantifiable ways
- However, there is overlap
- As a result, for every IDS, there are
- false alarms (positives)
 - no intrusion, but alarm issued
- false negatives
 - attack is real, but no alarm

IDS Effectiveness

- **Ideal IDS** produces only true positives and true negatives
- Actual IDSs produce some false positives and false negatives
- Effectiveness of IDS is often counter-intuitive due to the effect of the "base rate fallacy"

Base rate fallacy

- An error in thinking
- If presented with related base rate information and specific information, the mind tends to focus on the specific

Example:

- Suppose the likelihood of a malicious attack is 0.01% and an IDS will
 correctly recognize a malicious event 99% of the time (i.e., if the situation
 is malicious, the IDS sounds an alarm 99% of the time)
- Suppose also that the IDS issues an alarm on a benign event only 0.1% of the time
- → What is the false alarm rate? (i.e., the likelihood that if an alarm is raised, the situation is benign -- In other words: what is the false positive rate?)

False Alarm Rate Calculation (1)

- One is tempted to think the false alarm rate is 0.1%, but this is not so
- Analysis uses Bayes' theorem from statistics
- See http://yudkowsky.net/rational/bayes for an interesting explanation

We are given

```
The likelihood of a malicious attack is 0.01% (this is our given base rate) (So, out of 10,000 events, 1 is malicious -- that's what 0.01% means)
```

99% of the time, the IDS recognizes a malicious event as malicious 0.1% of the time, the IDS issues an alarm when the event is benign

Let

M represent a malicious event

B represent a benign event

A represent an alarm being issued by the IDS

Then our given information is

p(B) = .9999	Out of 10,000 events, 9,999 of them are benign
p(M) = .0001	Out of 10,000 events, 1 of them is malicious
p(A M) = .99	99% of the time recognizes an M as an M
p(A B) = .001	this is the 0.1% of the time IDS thinks a B is an M

False Alarm Rate Calculation (2)

Our given information, once again, is

p(B) = .9999	Out of 10,000 events, 9,999 of them a	are benign
--------------	---------------------------------------	------------

$$p(M) = .0001$$
 Out of 10,000 events, 1 of them is malicious

$$p(A|M) = .99$$
 99% of the time recognizes an M as an M

$$p(A|B) = .001$$
 .1% of the time IDS thinks a B is an M

Now, the **false alarm rate** is **p(B|A)**, which, by Bayes' Theorem, is computed as:

$$p(B|A) = \frac{p(A|B) p(B)}{p(A)}$$

Now,
$$p(A) = p(A|M)p(M) + p(A|B)p(B)$$

$$= (.99)(.0001) + (.001)(.9999)$$

$$= .000099 + .0009999$$

= .0010989

So,
$$p(B|A) = [(.001)(.9999)] / .0010989 = .0009999 / .0010989 = .9099$$

→ False alarm rate is 90.99 %

False Alarm Rate Calculation (3)

- Q: Does this make sense?
- A: Yes!
- Think of it this way
 - Out of 10,000 events, 1 of them is malicious *and* it is probably detected (99%)
 .99 alarms issued true positives
 - But also, out of the remaining 9,999 events, which are all benign, 0.1% of them result in alarms

```
9.999 (false) alarms issued ← false positives
```

 So, out of the approximately 11 events thought to be malicious by the IDS, about 10 out of 11 of them are false alarms

```
false alarm rate = ( # false alarms ) / ( # total alarms )
= 9.999 / ( 9.999 + .99 )
= 9.999 / 10.989
= 90.99% (same result as before)
```

Analysis Approach: Anomaly Detection

• IDSs typically use one of these analysis approaches

Anomaly detection

- collect lots of behavior data for legitimate users over a period of time
- determine the statistical profile of characteristics of "normal" behavior
- analyze current observed behavior and compare against expected behavior
- Typical statistical information:
 - Count, Average, Percentage, Metering, Time-interval length
- Thresholds used to trigger alarms based on significant deviations

Analysis Approach: Signatures or Heuristics

Signature or Heuristic detection

- use a set of known malicious data patterns (signatures) or attack heuristics encoded as *rules*
- compare current observed behavior against these patterns or rules to determine if a known attack is being conducted
- this approach can only detect known attacks for which it has patterns or rules
- Typical data in event records:
 - Subject, Object, Action, Exception-handling, Resource usage, Time stamp
- Example rules:
 - Desktop computers may not be used as HTTP servers
 - HTTP servers may not acept unencrypted telnet or FTP sessions

Types of IDSs

Host-based IDS (HIDS)

- monitors the characteristics of a single host and the events occurring within it, for evidence of suspicious activity
- examples: system call traces, log file records, registry access, file integrity checksums

Network-based IDS (NIDS)

- monitors network traffic on particular network segments or devices
- analyzes network, transport and application protocols to identify suspicious activity

Distributed or hybrid IDS

- combines information from a number of sensors, often both host and network-based
- uses a central analyzer

Distributed Host-Based IDS Architecture

- Host agent modules background process on hosts, collects log data
- LAN monitor agent modules monitors traffic on LANs
- Central manager module correlates all data for comprehensive intrusion detection analysis

Network-Based Intrusion Detection Systems

NIDS Sensor deployment

- 1. just inside firewall (typical)
- 2. outside firewall (also possible)
- 3. & 4. sensors to protect backbone networks

Distributed or Hybrid Intrusion Detection

- Basic idea: gathering more comprehensive data allows more subtle intrusion detection and quicker adaptation
 - each host and network device (router) contains sensor
 - e.g., Intel's "autonomic enterprise security" architecture

PEP = policy enforcement point

DDI = distributed detection and inference

source: Fig. 8.6

Port Scanning – Part 1

- Port Scanning
 - a technique for finding out which ports on a machine are accepting connections
- Can be legitimate use (e.g., to evaluate security of own network)
- Commonly used to perform pre-attack reconnaissance
 - Port scanners can sometimes determine remote service or OS features (this is called *fingerprinting*)
 - → Detecting port scanning is an important form of preliminary intrusion detection

Port Scanning – Part 2

Port scanning methods

- TCP scans attempt to connect, if successful, then port is open.
- SYN scan send only the SYN packet; if receive SYN-ACK, send RST (reset)
- Idle scanning Use a zombie to scan a target machine and hide attacker ID
 - Attacker sends zombie unsolicited SYN-ACK; zombie sends RST with seq ID
 - Attacker sends SYN to target, spoofing source as zombie
 - If port open, target sends SYN-ACK to zombie and zombie sends RST (to target) with incremented sequence ID
 - Attacker probes zombie with another unsolicited SYN-ACK
 - When the attacker receives the RST from the zombie, he knows that the target port is open if seq ID from zombie was doubly incremented

Honeypots

- Another component of intrusion detection technology
- Can detect intrusions, including port scans
- Involves setting up a "bait" computer that appears tempting to attackers
 - Containing software with known vulnerabilities
 - Dummy data that appears valuable (attractive content)
 - Set up so that legitimate users would never connect to the honeypot
- → All attempts to connect are intrusions
 - Easier to identify intrusion and intruder
- → Can also distract intruders from truly valuable resources

source: Fig. 8.8 (annotated)