CMSC 474, Game Theory

2. Analyzing Normal-Form Games

Dana Nau
University of Maryland

Chapter 2 of the textbook, plus several related topics

How to reason about games?

- In single-agent decision theory, look at an **optimal** strategy
 - Maximize the agent's expected payoff in its environment
- What is your optimal strategy if you're interacting with other agents?
 - Depends on both your choices and theirs
- Identify certain subsets of outcomes called **solution concepts**
- Chapter 2 discusses two solution concepts:
 - Pareto optimality
 - Nash equilibrium
- Chapter 3 will discuss several others

Pareto Optimality

- Vilfredo Pareto (1848–1923)
- A strategy profile **s Pareto dominates** a strategy profile **s'** if
 - rile., $u_i(\mathbf{s}) \ge u_i(\mathbf{s}')$ for all i,
 - > at least one agent does better with s than with s', i.e., $u_i(s) > u_i(s')$ for at least one i
- s is Pareto optimal (or Pareto efficient) if there's no other strategy profile that Pareto dominates s
 - > Every game has at least one Pareto optimal profile
 - Always at least one Pareto optimal profile in which the strategies are pure

Examples

Prisoner's Dilemma

- (D,D) isn't Pareto optimal
 - \triangleright (C,C) Pareto dominates it
- \bullet (*D*, *C*) is Pareto optimal
 - \triangleright For all other strategy profiles, u_1 is lower
 - Let $s_1 = \{(p, C), (1-p, D)\}$ and $s_2 = \{(q, C), (1-q, D)\}$
 - $u_1(s_1, s_2) = 3pq + 5(1-p)q + 0 + (1-p)(1-q)$
- (*C*,*D*) is Pareto optimal
 - For other strategy profiles, u_2 is smaller
- (C,C) is Pareto optimal
 - In all other strategy profiles, either u_1 is smaller or u_2 is smaller
- (s_1, s_2) is Pareto optimal for every (s_1, s_2) except (D,D)

Examples

- Which Side of the Road
 - Pareto optimal: (Left,Left) and (Right,Right)

	Left	Right
Left	1, 1	0, 0
Right	0, 0	1, 1

- In common-payoff games, all Pareto optimal strategy profiles have the same payoffs
 - ➤ If not, the one with lower payoffs wouldn't be Pareto optimal

• **Poll 2.1**: Here's a common-payoff game. Which strategy profiles are Pareto optimal?

	Left	Right
Left	1, 1	2,2
Right	0, 0	2,2

Best Response

- Suppose agent i knows how the others are going to play
- Then *i* has an ordinary optimization problem:
 - Maximize i's expected utility
- We'll use \mathbf{s}_{-i} to mean a strategy profile for all of the agents except i

$$\mathbf{s}_{-i} = (s_1, ..., s_{i-1}, s_{i+1}, ..., s_n)$$

Notation: if s_i is a strategy for agent i, then

$$(s_i, \mathbf{s}_{-i}) = (s_1, ..., s_{i-1}, s_i, s_{i+1}, ..., s_n)$$

• s_i is a **best response** to s_{-i} if for every strategy s_i' available to agent i,

$$u_i(s_i, \mathbf{s}_{-i}) \geq u_i(s_i', \mathbf{s}_{-i})$$

There is always at least one best response

Examples

- Poll 2.2: Suppose 1's strategy is Left
 - ➤ What are 2's best responses?

	Left	Right
Left	1, 1	0, 0
Right	0, 0	1, 1

- **Poll 2.3**: Suppose 1's strategy is $\{(\frac{1}{2}, \text{Left}), (\frac{1}{2}, \text{Right})\}$
 - ➤ What are 2's best responses?
- **Poll 2.4**: Suppose 1's strategy is $\{(^2/_3, \text{Left}), (^1/_3, \text{Right})\}$
 - > What are 2's best responses?

Announcements (Sept 6)

- I'm recovering from an illness
- Ali Shafahi's office hours: Wednesdays & Thursdays, 11am–12pm
- What we've covered so far:
 - Pareto dominance, Pareto optimality
 - Prisoner's Dilemma: all strategy profiles are Pareto optimal except (D,D)
 - Common-payoff games: all Pareto optimal strategy profiles have same payoffs

\triangleright Notation: \mathbf{s}_{-i}		Left	Right
• (S_i, \mathbf{S}_{-i})	Left	1, 1	0, 0
Best response:	Right	0, 0	1, 1

- Given \mathbf{s}_{-i} , a strategy that maximizes $u(s_i, \mathbf{s}_{-i})$
- How does *i* know what _{-i} is?

Best Response

Theorem. Given \mathbf{s}_{-i} , there are only two possibilities:

- (1) *i* has a pure strategy s_i that is the *only* best response to \mathbf{s}_{-i}
- (2) *i* has *infinitely many* best responses to \mathbf{s}_{-i}

Proof strategy: Show that if (1) is false then (2) must be true.

Proof. Let s_i be a best response to \mathbf{s}_{-i} , and suppose (1) is false.

- Either s_i isn't the only best response to \mathbf{s}_{-i} or s_i isn't pure
- Case 1: s_i isn't the only best response to \mathbf{s}_{-i}
 - \triangleright The others must have the same expected utility as s_i
 - > Thus every mixture of them is a best response, so (2) holds.
- Case 2: s_i isn't pure. It's a mixture of at least two pure strategies
 - \triangleright Each of them must have the same expected utility as s_i
 - ➤ They're both best responses, so this reduces to Case 1.

Nash Equilibrium

- $\mathbf{s} = (s_1, ..., s_n)$ is a **Nash equilibrium** if for every i, s_i is a best response to \mathbf{s}_{-i}
 - > Every agent's strategy is a best response to the other agents' strategies
 - ➤ No agent can do better by *unilaterally* changing his/her strategy
- Theorem (Nash, 1951): Every game with finitely many agents and action profiles has at least one Nash equilibrium
- Prisoner's Dilemma: (*D*,*D*)

	C	D
C	3, 3	0, 5
D	5, 0	1, 1

Nash Equilibrium

- $\mathbf{s} = (s_1, ..., s_n)$ is a **Nash equilibrium** if for every i, s_i is a best response to \mathbf{s}_{-i}
 - > Every agent's strategy is a best response to the other agents' strategies
 - ➤ No agent can do better by *unilaterally* changing his/her strategy
- Theorem (Nash, 1951): Every game with finitely many agents and action profiles has at least one Nash equilibrium
- Prisoner's Dilemma: (*D*,*D*)

	C	D
C	3, 3	0, 5
D	5, 0	1, 1

- Modified Prisoner's Dilemma:
 - (s,D), s is any mixture of D and E

	C	D
C	3, 3	0, 5
D	5, 0	1, 1
E	5, 0	1, 1

Strict and Weak Nash Equilibria

- Let $\mathbf{s} = (s_1, \dots, s_n)$ be a Nash equilibrium
 - > s is strict if each s_i in **s** is the *only* best response to \mathbf{s}_{-i}
 - any agent who unilaterally changes strategy will do worse
 - > Otherwise s is weak
- If s includes a mixed* strategy s_i , then s is weak
 - \triangleright e.g., (s,D) where $s = \{(\frac{1}{2}, D), (\frac{1}{2}, E)\}$

• For s to be strict, all strategies in s must be pure
--

	C	D
C	3, 3	0, 5
D	5, 0	1, 1

	C	D
C	3, 3	0, 5
D	5, 0	1, 1
E	5, 0	1, 1

Poll 2.5: if all strategies in **s** are pure, is **s** guaranteed to be strict?

Strict and Weak Nash Equilibria

- Weak Nash equilibria often are less stable than strict Nash equilibria
 - ➤ If s is weak, at least one agent has infinitely many best responses and only one of them is in s
- Example: $s_1 = s_2 = \{(\frac{1}{2}, \text{Left}), (\frac{1}{2}, \text{Right})\}$
 - \triangleright For 2, Left is also a best response to s_1
 - ➤ If 2 unilaterally switches to Left, 1's strategy is no longer a best response

	Left	Right
Left	1, 1	0, 0
Right	0, 0	1, 1

- Difficult in general
 - > Easier if we can identify the support of the equilibrium strategies
- In 2x2 games, it's easy
 - > Each agent has two actions, support must include both of them
- If there's a mixed*-strategy Nash equilibrium (s_1, s_2) then
 - \triangleright s_1 is a mixture of actions a and a' that have same expected utility given s_2
 - \triangleright s_2 is a mixture of actions b and b' that have same expected utility given s_1
- Look for s_1 and s_2 that make those things true
 - > Solve linear equations

• Example: Battle of the Sexes

$$> s_1 = \{(p, A), (1-p, B)\}$$

$$> s_2 = \{(q, A), (1-q, B)\}$$

• If 2's strategy isn't pure, 2's actions must have same expected utility

$$u_2(s_1,A) = u_2(s_1,B)$$

 $p = 2/3$

$$> s_1 = \{(2/3, A), (1/3, B)\}$$

	A	B
A	2,1	0,0
В	0,0	1,2

$$1p + 0(1-p) 0p + 2(1-p)$$
$$p = 2(1-p)$$

• Example: Battle of the Sexes

$$> s_1 = \{(p, A), (1-p, B)\}$$

$$> s_2 = \{(q, A), (1-q, B)\}$$

• If 2's strategy isn't pure, 2's actions must have same expected utility

$$u_2(s_1,A) = u_2(s_1,B)$$

 $p = 2/3$

$$> s_1 = \{(2/3, A), (1/3, B)\}$$

 \triangleright **Poll 2.6**: what is q?

$$\begin{array}{c|cccc}
 A & B \\
 A & 2,1 & 0,0 \\
 B & 0,0 & 1,2
\end{array}$$

$$1p + 0(1-p) 0p + 2(1-p)$$
$$p = 2(1-p)$$

Example: Battle of the Sexes

$$> s_1 = \{(p, A), (1-p, B)\}$$

$$> s_2 = \{(q, A), (1-q, B)\}$$

• If 2's strategy isn't pure, 2's actions must have same expected utility

$$u_2(s_1,A) = u_2(s_1,B)$$

 $p = 2/3$
 $s_1 = \{(2/3, A), (1/3, B)\}$

• If 1's strategy isn't pure, 1's actions must have same expected utility

$$u_1(A, s_2) = u_1(B, s_2)$$

 $y = 1/3$
 $v = \{(1/3, A), (2/3, B)\}$

$$1p + 0(1-p) 0p + 2(1-p)$$
$$p = 2(1-p)$$

• Example: Battle of the Sexes

$$> s_1 = \{(p, A), (1-p, B)\}$$

$$> s_2 = \{(q, A), (1-q, B)\}$$

• If 2's strategy isn't pure, 2's actions must have same expected utility

$$u_2(s_1,A) = u_2(s_1,B)$$

 $p = 2/3$
 $s_1 = \{(2/3, A), (1/3, B)\}$

• If 1's strategy isn't pure, 1's actions must have same expected utility

$$u_1(A, s_2) = u_1(B, s_2)$$

 $y_1(A, s_2) = u_1(B, s_2)$
 $y_2(B, s_2) = \{(1/3, A), (2/3, B)\}$

$$\begin{array}{c|cccc}
 A & B \\
 A & 2,1 & 0,0 \\
 B & 0,0 & 1,2
\end{array}$$

$$1p + 0(1-p) 0p + 2(1-p)$$
$$p = 2(1-p)$$

• What will happen if there's no mixed*-strategy equilibrium?

Matching Pennies

- No pure-strategy Nash equilibrium
 - ➤ In every case, one of the agents can do better by changing strategy

	Heads	Tails
Heads	1, -1	-1, 1
Tails	-1, 1	1, -1

- There's a mixed-strategy equilibrium
 - Get it the same way as in the Battle of the Sexes
 - Result is (s,s), where $s = \{(\frac{1}{2}, \text{Heads}), (\frac{1}{2}, \text{Tails})\}$
 - More about this in Chapter 3

Another Interpretation of Mixed Strategies

- Suppose agent *i* has a deterministic method for picking a strategy, but it depends on things that aren't part of the game itself
 - \triangleright If *i* plays a game several times, *i* may pick different strategies
- If the other players don't know how *i* picks a strategy, they'll be uncertain what *i*'s strategy will be
 - Agent *i*'s mixed strategy is **everyone else's assessment** of how likely *i* is to play each pure strategy
- Example:

In a series of soccer penalty kicks, use a pseudo-random number generator to decide whether to kick left or right

Finding Nash Equilibria

- For 2x2 games:
 - Pure-strategy equilibria
 - Look for cells where neither player can do better by switching to the other action

- Mixed-strategy equilibria
 - Write 1's strategy as $\{(p, a), (1-p, a')\}$
 - \rightarrow Look for p such that 2 gets same expected utility for b and b'
 - Write 2's strategy as $\{(q, b), (1-q, b')\}$
 - \rightarrow Look for q such that 1 gets same expected utility for a and a'
- > Equilibria where one strategy is pure and the other is mixed*
 - If there is a weak pure-strategy equilibrium, then look for mixed-strategy best-responses
- What about the general case?

Finding Nash Equilibria

- General case (not in the book):
 - \triangleright *n* players, m_i actions for player *i*
 - \triangleright size of payoff matrix: $m_1 m_2 \dots m_n$
- Brute-force approach:
 - > Pure-strategy equilibria
 - Look for cells where no player can do better by unilaterally choosing a different action
 - Time is polynomial in the size of the matrix
 - > Equilibria in which one or more strategies are mixed*
 - For every possible combination of supports for $s_1, ..., s_n$
 - > Solve sets of simultaneous equations
 - Exponentially many combinations of supports → exponential time
- Can it be done more quickly?

Complexity of Finding Nash Equilibria

- 2 players:
 - Lemke & Howson (1964): solve a set of simultaneous equations that includes all possible sets of supports
 - Some of the equations are quadratic => worst-case exponential time
 - Porter, Nudelman, & Shoham (2004)
 - AI methods (constraint programming)
 - Sandholm, Gilpin, & Conitzer (2005)
 - Mixed Integer Programming (MIP) problem
- *n*-player games
 - > van der Laan, Talma, & van der Heyden (1987)
 - ➤ Govindan, Wilson (2004)
 - > Porter, Nudelman, & Shoham (2004)
- Worst-case running time still is exponential in the size of the payoff matrix

Complexity of Finding Nash Equilibria

- For the general case,
 - > It's unknown whether there are polynomial-time algorithms to do it
 - ➤ It's unknown whether there are polynomial-time algorithms to compute approximations
- One of the most important open problems in computational complexity theory
- Some special cases can be done in polynomial time
 - > Finding pure-strategy Nash equilibria
 - Check each square of the payoff matrix
 - Finding Nash equilibria in zero-sum games
 - Linear programming

Problem Structure

- In some classes of problems, can reason about problem structure
- Example (not in the book):
 - > Suppose 1,000 drivers want to go from *S* (start) to *D* (destination)
- $t = \frac{\text{cars}}{25}$
- \triangleright Two routes: $S \rightarrow A \rightarrow D$ and $S \rightarrow B \rightarrow D$
- \triangleright $S \rightarrow A$ and $B \rightarrow D$ are long and wide
 - t = 50 minutes, no matter how many cars
- \rightarrow A \rightarrow D and S \rightarrow B are short, but narrow
 - t = (number of cars)/25
- Assume each driver's utility is -t
- Huge payoff matrix:
 - \gt 2¹⁰⁰⁰ action profiles
- But we don't need to write the matrix

Problem Structure

- Nash equilibrium:
 - > 500 cars go through A
 - > 500 cars through B
- Everyone's expected time: 50 + 20 = 70 minutes

- Consider a driver whose strategy is $s = S \rightarrow A \rightarrow D$
 - \triangleright Suppose the driver changes unilaterally to $S \rightarrow B \rightarrow D$
 - 501 cars on $S \rightarrow B \rightarrow D$
 - Expected travel time: 50 + 501/25 = 70.04
- Can generalize to the case where $s = \{(p, S \rightarrow A \rightarrow D), (1-p, S \rightarrow B \rightarrow D)\}\$

Problem Structure

- Nash equilibrium:
 - ➤ On average, 500 cars go $S \rightarrow A \rightarrow D$ and 500 cars go $S \rightarrow B \rightarrow D$
- Everyone's expected travel time: 50 + 20 = 70 minutes

- Modify the network
 - Add a road from B to A that's very short and very wide
 - > 0 minutes, regardless of how many cars
- Three possible routes:
 - $\triangleright S \rightarrow A \rightarrow D$
 - $\triangleright S \rightarrow B \rightarrow D$
 - \triangleright S \rightarrow B \rightarrow A \rightarrow D
- **Poll 2.7**: which one would you take?

Braess's Paradox

- Nash equilibrium: all cars go $S \rightarrow B \rightarrow A \rightarrow D$
 - \rightarrow time for S \rightarrow B is 1000/25 = 40
 - \triangleright same for $A \rightarrow D$
- Total time is 40 + 40 = 80 minutes
- To see that it's a Nash equilibrium:
 - ➤ If a driver unilaterally switches to $S \rightarrow A \rightarrow D$ or $S \rightarrow B \rightarrow D$

- driving time is 50 + 40 = 90 minutes
- > If a driver unilaterally switches to
 - $s = \{(p, S \rightarrow B \rightarrow A \rightarrow D), (q, S \rightarrow A \rightarrow D), (1-p-q, S \rightarrow B \rightarrow D)\}$ with p < 1
 - What happens?

Braess's Paradox

- To see that $S \rightarrow B \rightarrow A \rightarrow D$ is the *only* Nash equilibrium:
- Let
 - $\rightarrow a = \text{expected } \# \text{ of cars } S \rightarrow A \rightarrow D$
 - $\rightarrow b = \text{expected } \# \text{ of cars } S \rightarrow B \rightarrow D$
 - \rightarrow 0 < a + b < 1000
- Times:
 - \rightarrow time to go S \rightarrow A \rightarrow D:

•
$$50 + (1000-b)/25 = 90 - b/25$$

- \triangleright time to go S \rightarrow B \rightarrow D:
 - 50 + (1000-a)/25 = 90 a/25
- \rightarrow time to go S \rightarrow B \rightarrow A \rightarrow D:
 - (1000-a)/25 + (1000-b)/25 = 80 a/25 b/25
- \rightarrow Any driver that goes $S \rightarrow A \rightarrow D$ or $S \rightarrow B \rightarrow D$ can get lower travel time by switching to $S \rightarrow B \rightarrow A \rightarrow D$

Discussion

- Travel time
 - > 70 minutes before adding the road
 - > 80 minutes after
- Suggests that sometimes adding road capacity can hurt
- We assumed
 - \rightarrow t = 0 regardless of how many cars
 - > t = 50 regardless of how many cars
 - $\rightarrow t = cars/25$
- Is that realistic?
- Can this really happen in practice?

Braess's Paradox in Practice

- 1969, Stuttgart, Germany when a new road to the city center was opened, traffic got worse; didn't improve until the road was closed
- 1990, Earth day, New York closing 42nd street improved traffic flow
- 1999, Seoul, South Korea closing a tunnel improved traffic flow
- 2003, Seoul, South Korea traffic flow was improved by closing a 6-lane motorway and replacing it with a 5-mile-long park
- 2010, New York closing parts of Broadway has improved traffic flow
- Sources
 - http://www.umassmag.com/transportationandenergy.htm
 - http://www.cs.caltech.edu/~adamw/courses/241/lectures/brayes-j.pdf
 - http://www.guardian.co.uk/environment/2006/nov/01/society.travelsenvironmentalimpact
 - ► http://www.scientificamerican.com/article.cfm?id=removing-roads-and-traffic-lights
 - http://www.lionhrtpub.com/orms/orms-6-00/nagurney.html

Discussion

- Nash equilibrium:
 - \rightarrow All 1000 cars go S \rightarrow B \rightarrow A \rightarrow D
 - > Total time is 80 minutes

Compare with the Prisoner's Dilemma

Comments

- Braess's paradox can also occur in other kinds of networks
 - Queueing networks
 - Communication networks
- In principle, it can occur in Internet traffic
 - ➤ I don't know enough about this topic to know how much of a problem it is

Here's Another Game

- All of you can play!
 - \triangleright Choose a number in the range $0 \le x \le 100$
 - Write your choice on a piece of paper
 - > Fold the paper so nobody else can see your number
 - > Pass the paper to the front of the room
- The winner(s) will be those whose number is closest to 2/3 of the average of all the numbers

• I'll present the results next time

Announcements (Sept 8)

- What we covered last time:
 - Best response
 - Nash equilibrium
 - strict, weak
 - finding mixed-strategy Nash equilibria
 - problem structure (Braess's paradox)
 - > Game:
 - choose a number between 0 and 100
 - winner(s): whoever chooses a number that's closest to 2/3 of the average

(not in the book)

- In the Prisoner's dilemma, recall that
 - (C,C) is the action profile that provides the best outcome for everyone
 - > If we assume each payer acts to maximize his/her utility without regard to the other, we get (D,D)
 - > By choosing (C,C), each player could have gotten 3 times as much

	C	D
C	3, 3	0, 5
D	5, 0	1, 1

	C	D
C	3, 3	0, 5
D	5, 0	1, 1

Let's generalize "best outcome for everyone"

- Social welfare function w(s)
 - measures the players' welfare given s
 - ▶ **Utilitarian** welfare function: w(s) = average expected utility
 - **Egalitarian** welfare function: w(s) = minimum expected utility
- Social optimum: benevolent dictator chooses s^* that optimizes w
 - $> s* = arg max_s w(s)$
 - > Is this Pareto optimal?
- **Anarchy**: no dictator; every player selfishly tries to optimize his/her own expected utility, disregarding the welfare of the other players
 - Get a strategy profile s (e.g., a Nash equilibrium)
 - ➤ In general, $w(\mathbf{s}) \le w(\mathbf{s}^*)$
- Price of anarchy = $w(s^*)/w(s)$

- Example: the Prisoner's Dilemma
 - > Utilitarian welfare function: $w(\mathbf{s})$ = average expected utility
- Social optimum: $s^* = (C,C)$

$$> w(s^*) = 3$$

- Anarchy: $\mathbf{s} = (D,D)$
 - > w(s) = 1
- Price of anarchy

$$= w(s^*)/w(s) = 3/1 = 3$$

	C	D
C	3, 3	0, 5
D	5, 0	1, 1

What would the answer be if we used the egalitarian welfare function?

- Sometimes instead of maximizing a welfare function w, we want to minimize a cost function c
 - ightharpoonup Utilitarian function: $c(\mathbf{s}) = \text{avg. expected cost}$
 - \triangleright Egalitarian function: $c(\mathbf{s}) = \max$. expected cost
- Need to adjust the definitions
 - > Social optimum: $s^* = \arg\min_{s} c(s)$
 - > Anarchy: every player selfishly tries to minimize his/her own cost, disregarding the costs of the other players
 - Get a strategy profile s (e.g., a Nash equilibrium)
 - In general, $c(\mathbf{s}) \ge c(\mathbf{s}^*)$
 - > Price of anarchy = $c(s) / c(s^*)$
 - reciprocal of what we had before

- Example: Braess's Paradox
 - \triangleright Utilitarian cost function: $c(\mathbf{s})$ = average expected cost
- Social optimum:
 - $> s^* = [500 \text{ go S} \rightarrow A \rightarrow D; 500 \text{ go S} \rightarrow B \rightarrow D]$
 - $c(s^*) = 70$
- Anarchy: $\mathbf{s} = [1000 \text{ drivers go S} \rightarrow \mathbf{B} \rightarrow \mathbf{A} \rightarrow \mathbf{D}]$
 - c(s) = 80
- Price of anarchy = $c(\mathbf{s}) / c(\mathbf{s}^*) = 8/7$

- What would the answer be if we used the egalitarian cost function?
- This can be generalized

Summary

- Pareto optimality
 - > Prisoner's Dilemma, Which Side of the Road
- Best responses and Nash equilibria
 - Battle of the Sexes, Matching Pennies
- Finding pure-strategy and mixed-strategy Nash equilibria
 - Methods for special cases
- Not in the book:
 - Brief discussion of computational complexity
- Road-network example (not in the book)
 - Braess's paradox
- Price of anarchy (not in the book)
 - Prisoner's dilemma, road networks