Betz random variables

The density of a Beta candem variable is proportional to $X^{\alpha-1}(1-x)^{\beta-1}$ for $0 \le x \le 1$ and α , β some fixed parameters. $f_{\chi}(x) = \frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha)\Gamma(\beta)} \times \frac{\alpha^{-1}(1-x)^{\beta-1}}{\Gamma(\alpha)\Gamma(\beta)}$ for $0 \le x \le 1$ = 0 otherwise

Idea! The beta random variable models the behavior of some proportion (X is the proportion; natice O<X<I), based on the prior observations related to the random variable. Based on these, we set (and fix) & and B to model tuture of the random variable X.