Biology 4605 /	7220
Quiz 11b	

Name	Key
	2 December 2015

1. From the following table, compute the mortality risk (% killed), the relative risk at high relative to low seal abundance, the mortality odds [risk / (1 - risk)], and the mortality odds ratio at high seal abundance relative to low.

lle

	Sear abu	ndance		
	Low	High		
Surviving	8	32		
Killed	8	8		
		1 21		075
Odds		0.25	Odds ratio	. 23
	0			0 /1 .
Risk	,5	0.2	Relative risk	0,4:

2. Write a generalized linear model (binomial error, logit link) to compare survival in two types of mosquito, controlled for body size. Be sure to assign a symbol and name to all variables, both response and explanatory.

(14)

3. An agricultural experiment station completes an experiment with 4 treatments in each of 3 different fields, and 2 measurements per treatment.

State the sample size $n \frac{12 \times 2 = 24}{}$

List explanatory variables with name and symbol, then state whether each is random or fixed factor.

Treatment To Fixed
Fields F Random

18)

Write a general linear model to test for treatment effects, where the response variable is a canola yield in kg/hectare. Show degrees of freedom beneath each term in the model.

Write a generalized linear model to test for treatment effects where the response variable

is a count ranging from 0 to 8 flowers per plant.

Count = e M + Poisson evvor (1 marle) n= Bo+ BTV-TV +BFF+BTV.F. TV.F