1. Siguin

$$F_1 = \langle (1, -1, 1, -1), (2, -2, 1, 1), (-3, 3, 0, 1), (0, 0, 5, 6) \rangle$$
$$F_2 = \langle (1, 2, 3, 4), (-1, 4, 2, 3) \rangle$$

subespais vectorials de \mathbb{Q}^4 .

- (a) Calculeu la dimensió i una base dels subespais vectorials F_1 , F_2 , $F_1 \cap F_2$ i $F_1 + F_2$.
- (b) Amplieu la base de $F_1 \cap F_2$ que heu trobat a una base de F_1 i a una base de F_2 .
- (c) Trobeu un sistema d'equacions lineal homogeni tal que F_1 sigui el conjunt de les solucions d'aquest sistema.
- 2. En aquest exercici estudiem \mathbb{R} com a \mathbb{Q} -espai vectorial.
 - (a) Siguin m_1, \ldots, m_k enters lliures de quadrats (si un primer p divideix a m_i aleshores p^2 no el divideix) i coprimers dos a dos (els primers que divideixen m_i no divideixen m_j , per a tot i, j). Demostreu per inducció que el conjunt $\{\sqrt{m_1}, \ldots, \sqrt{m_k}\}$ és un conjunts d'elements \mathbb{Q} -linealment independents.
 - (b) Demostreu que, per a tot $k \geq 0$, el conjunt $\{2, \sqrt{2}, \sqrt[4]{2}, \dots, \sqrt[2^k]{2}\}$ és un conjunt \mathbb{Q} -linealment independent. Per fer-ho, podeu serguir els següents passos:
 - i. Demostreu que per a tot $m \geq 1$ el polinomi $x^m 2$ és irreductible a $\mathbb{Q}[x]$, és a dir que no es pot escriure com a producte de dos polinomis a $\mathbb{Q}[x]$ de grau < k. En particular, per qualsevol $k \geq 0$ el polinomi $x^{2^k} 2$ és irreductible. (Indicació: trobeu primer les arrels complexes de $x^m 2$, després escriviu $x^m 2 = g(x)h(x)$, i raoneu per què els termes constant de g(x) i h(x) no poden ser enters).
 - ii. Demostreu que una combinació lineal no trivial dels elements fins a $\sqrt[2^k]{2}$ dona lloc a un polinomi de grau dividint 2^{k-1} que té $\sqrt[2^k]{2}$ com a arrel.
 - iii. Deduïu una contradicció fent servir els dos apartats anteriors (recordeu la divisió de polinomis: donats polinomis a(x) i b(x), existeixen polinomis q(x) i r(x) amb $\operatorname{grau}(r(x)) < \operatorname{grau}(b(x))$ tals que a(x) = b(x)q(x) + r(x).)