

(1) Publication number: 0 506 363 A1

12

EUROPEAN PATENT APPLICATION

(21) Application number: 92302573.8

22) Date of filing: 25.03.92

(f) Int. CI.⁵: **C07D 403/04**, C07D 413/04, C07D 417/04, C07D 405/04, C07D 409/04, C07D 401/04, A61K 31/40

39 Priority: 28.03.91 US 677016

(43) Date of publication of application : 30.09.92 Bulletin 92/40

Designated Contracting States:
 AT BE CH DE DK ES FR GB GR IT LI LU NL PT SE

(1) Applicant: ELI LILLY AND COMPANY Lilly Corporate Center Indianapolis Indiana 46285 (US) 72 Inventor: Booher, Richard Nolan 6886 Hillcrest Court Indianapolis, Indiana 46227 (US) Inventor: Lawhorn, David Ernest 709 North Wilson Street Greenfield, Indiana 46140 (US) Inventor: Paget, Charles Johnson, Jr. 1628 Ridge Hill Avenue Indianapolis, Indiana 46217 (US) Inventor: Schaus, John Mehnert 135 Raintree Drive Zionsville, Indiana 46077 (US)

(4) Representative : Tapping, Kenneth George Erl Wood Manor Windlesham Surrey, GU20 6PH (GB)

6-Heterocyclic-4-amino-1,3,4,5-tetrahydrobenz[cd]indoles.

6 6-heterocyclic-4-amino-1,3,4,5-tetrahydrobenz[cd]indoles are provided which are useful in modifying the function of serotonin in mammals.

EP 0 506 363 A1

This invention relates to 6-heterocyclic-4-amino-1,3,4,5-tetrahydrobenz[cd]indoles, their use in modifying the function of serotonin in a mammal, pharmaceutical formulations thereof and processes for preparing same.

Flaugh in U.S. Patent No. 4,576,959 (issued 1986) disclosed a family of 6-substituted-4-dialkylamino-1,3,4,5-tetrahydrobenz[cd]indoles which are described as central serotonin agonists. Leander in U.S. Patent 4,745,126 (1988) disclosed a method for treating anxiety in humans employing a 4-substituted-1,3,4,5-tetrahydrobenz[cd]indole-6-carboxamide derivative.

European Patent Application 399,982 discloses certain heterocyclic-substituted aminotetralins. These compounds are disclosed as being serotonin agonists, partial agonists or antagonists.

Despite the progress of science as represented above, many mammals, both humans and animals, continue to be afflicted with diseases which can be cured or ameliorated with compounds capable of modifying serotonin function in the body. Accordingly, the need continues for safer, more selective, drugs which can be used to modify such function. As such, it is an object of the present invention to provide certain 6-heterocyclic-substituted tetrahydrobenz[cd]indoles which are useful in treating conditions requiring modification of the serotonin function in the body.

The present invention provides compounds of the Formula 1

wherein:

15

20

25

30

 R^1 is hydrogen, C_1 – C_4 alkyl, C_3 – C_4 alkenyl, cyclopropylmethyl, aryl-substituted C_1 – C_4 alkyl, -(CH₂)_nS(C₁–C₄ alkyl), -C(O)R⁴, -(CH₂)_nC(O)NR⁵R⁶;

R2 is hydrogen, C1-C4 alkyl, cyclopropylmethyl or C3-C4 alkenyl,

R3 is hydrogen, C1-C4 alkyl or an amino-blocking group;

n is 1-4

R4 is hydrogen, C₁-C₄ alkyl, C₁-C₄ haloalkyl, C₁-C₄ alkoxy or phenyl;

R⁵ and R⁶ are independently hydrogen, a C₁-C₄ alkyl, or a C₅-C₈ cycloalkyl, with the proviso that when one of R⁵ or R⁶ is a cycloalkyl the other is hydrogen;

HET is an aromatic 5- or 6-membered heterocyclic ring, said ring having from one to three heteroatoms which are the same or different and which are selected from the group consisting of sulfur, oxygen, and nitrogen with the proviso that the 6-membered heterocyclic ring can only contain carbon and nitrogen and with the further proviso that the 5-membered ring may contain no more than one oxygen or one sulfur but not both oxygen and sulfur.

The invention also provides a pharmaceutical formulation comprising a compound of Formula 1 in combination with a pharmaceutically acceptable excipient therefor.

A further embodiment of the invention is a method for effecting a biological response at the $5HT_{1A}$ receptor or $5HT_{1D}$ by administering a compound of Formula $\underline{1}$. Another embodiment involves a method for treating a variety of conditions in a mammal which require regulation of serotonin functions by administering a compound of Formula $\underline{1}$.

A final embodiment of the invention is to provide a process suitable for preparing compounds of Formula I.

As used herein, the term "alkyl" represents a straight or branched alkyl chain having the indicated number of carbon atoms. For example, " C_1 - C_4 alkyl" groups are methyl, ethyl, \underline{n} -propyl, isopropyl, \underline{n} -butyl, $\underline{sec.}$ -butyl, isobutyl and \underline{tert} -butyl. " C_1 - C_8 alkyl" groups include those listed for C_1 - C_4 alkyl as well as \underline{n} -pentyl, 2-methylbutyl, 3-methylbutyl, \underline{n} -hexyl, 4-methylpentyl, \underline{n} -heptyl, 3-ethylpentyl, 2-methylhexyl, 2,3-dimethylpentyl, \underline{n} -octyl, 3-propylpentyl, 6-methylheptyl, and the like.

The term "C₃-C₄ alkenyl" refers to olefinically unsaturated alkyl groups such as -CH2CH=CH2, -CH2CH2 CH=CH2, -CH(CH3)CH=CH2 and the like.

The term "aryl" means an aromatic carbocyclic structure having six to ten carbon atoms. Examples of such ring structures are phenyl, naphthyl, and the like.

The term "cycloalkyl" means an aliphatic carbocyclic structure having the Indicated number of carbon atoms in the ring. For example, the term "C₃-C₇ cycloalkyl" means cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, and cycloheptyl.

The term "aryl (C_1 - C_4 alkyl)" means an aryl structure joined to a C_1 - C_4 alkyl group. Examples of such groups are benzyl, phenylethyl, a-methylbenzyl, 3-phenylpropyl, a-naphthylmethyl, β -naphthylmethyl, 4-phenylbutyl, and the like. Similarly the term "aryl (C_1 - C_3 alkyl)" means an aromatic carbocyclic structure joined to a C_1 - C_3 alkyl.

The C_1 - C_8 alkyl, the aryl, the aryl (C_1 - C_4 alkyl) groups, and the aryl (C_1 - C_3 alkyl) can be substituted by one or two moieties. Typical aryl and/or alkyl substitutents are C_1 - C_3 alkoxy, halo, hydroxy, C_1 - C_3 thioalkyl, nitro, and the like. Moreover, the aryl, aryl (C_1 - C_4 alkyl) and aryl (C_1 - C_3 alkyl) groups can also be substituted by a C_1 - C_3 alkyl or a trifluoromethyl group.

In the foregoing, the term " C_1 - C_3 alkyl" means any of methyl, ethyl, <u>n</u>-propyl, and isopropyl; the term " C_1 - C_3 alkoxy" means any of methoxy, ethoxy, n-propoxy, and isopropoxy; the term "halo" means any of fluoro, chloro, bromo, and iodo; and the term " C_1 - C_3 thioalkyl" means any of methylthio, ethylthio, <u>n</u>-propylthio, and isopropylthio.

Examples of substituted C₁-C₈ alkyl are methoxymethyl, trifluoromethyl, 6-chlorohexyl, 2-bromopropyl, 2-ethoxy-4-iodobutyl, 3-hydroxypentyl, methylthiomethyl, and the like.

Examples of substituted aryl are <u>p</u>-bromophenyl, <u>m</u>-lodophenyl, <u>p</u>-tolyl, <u>o</u>-hydroxyphenyl, <u>B</u>-(4-hydroxy)naphthyl, <u>p</u>-(methylthio)phenyl, <u>m</u>-trifluoromethylphenyl, 2-chloro-4-methoxyphenyl, a-(5-chloro)naphthyl, and the like.

Examples of the substituted aryl (C1-C4 alkyl) are <u>p</u>-chlorobenzyl, <u>o</u>-methoxybenzyl, <u>m</u>-(methylthio)-a-methyl-benzyl, 3-(4'-trifluoromethylphenyl)propyl, <u>o</u>-iodobenzyl, <u>p</u>-methylbenzyl, and the like.

The term "amino-blocking group" is used herein as it is frequently used in synthetic organic chemistry, to refer to a group which will prevent an amino group from participating in a reaction carried out on some other functional group of the molecule, but which can be removed from the amine when it is desired to do so. Such groups are discussed by T. W. Greene in chapter 7 of <u>Protective Groups in Organic Synthesis</u>, John Wiley and Sons, New York, 1981, and by J. W. Barton in chapter 2 of <u>Protective Groups in Organic Chemistry</u>, J. F. W. McOmle, ed., Plenum Press, New York, 1973, which are incorporated herein by reference in their entirety. Examples of such groups include benzyl and substituted benzyl such as 3,4-dimethoxybenzyl, o-nitrobenzyl, and triphenylmethyl; those of the formula - COOR where R includes such groups as methyl, ethyl, propyl, isopropyl, 2,2,2-trichloroethyl, 1-methyl-1-phenylethyl, isobutyl, t-butyl, t-amyl, vinyl, allyl, phenyl, benzyl, p-nitrobenzyl, o-nitrobenzyl, and 2,4-dichlorobenzyl; acyl groups and substituted acyl such as formyl, acetyl, chloroacetyl, trichloroacetyl, trifluoroacetyl, benzoyl, and p-methoxybenzoyl; and other groups such as methanesulfonyl, p-toluenesulfonyl, p-bromobenzenesulfonyl, p-nitrophenylethyl, and p-toluenesulfonylaminocarbonyl. Preferred amino-blocking groups are benzyl (-CH₂C₈H₅), acyl [C(O)R] or SiR₃ where R is C₁-C₄ alkyl, halomethyl, or 2-halo-substituted-(C₂-C₄ alkoxy).

The term "aromatic 5- or 6-membered heterocyclic ring" refers to a ring containing from one to three heteroatoms which can be nitrogen, oxygen or sulfur. The 5-membered heterocyclic rings can contain carbon and nitrogen atoms and up to one oxygen or one sulfur but not one of each. In 5-membered rings not containing oxygen or sulfur, one nitrogen can be substituted with either a hydrogen, C₁-C₃ alkyl, phenyl or (C₁-C₃ alkyl)phenyl group. The 6-membered heterocyclic rings can contain carbon and nitrogen atoms only. The 5-or 6-membered rings can have one or two of the carbon atoms in the ring substituted independently with C₁-C₃ alkyl, halogen, OH, C₁-C₃ alkoxy, C₁-C₃ alkylthio, NH₂, CN or phenyl. Adjacent carbons in the heterocyclic ring may be connected with a -CH=CH-CH=CH- bridge to form a benzo-fused ring on the heterocycle.

These aromatic 5- or 6-membered heterocyclic rings can be either substituted or unsubstituted and include furan, thiophene, thiazole, oxazole, isoxazole, isothiazole, oxadiazole, thiadiazole, pyridine, pyridine, pyridine, pyrazole, imidazole, and triazole. The heterocyclic ring can be attached to the benzene ring by any carbon in the heterocyclic ring, for example, 2- or 3-furan.

As used herein the following terms refer to the structure indicated and includes all of the structural isomers:

55

5

15

While all of the compounds of the invention are useful for the purposes taught herein, certain of the present compounds are preferred for such uses. Preferably R^1 and R^2 are both C_1 - C_4 alkyl, particularly n-propyl, R^3 is hydrogen, and HET is one of the following isoxazole, pyrazole, pyridine, thiazole, furan, thiophene or oxadiazole. Other preferred aspects of the present invention are noted hereinafter.

5

55

5

10

15

The compounds of the instant invention have at least one chiral center and therefore at least two stereolsomers can exist for each. A chiral center exists at position 4 of Formula 1. If a substitutent group contains a chiral center, then additional stereolsomers can exist. Racemic mixtures as well as the substantially pure stereolsomers of Formula 1 are contemplated as within the scope of the present invention. By the term "substantially pure", it is meant that at least about 90 mole percent, more preferably at least about 95 mole percent and most preferably at least 98 mole percent of the desired stereolsomer is present compared to other possible stereolsomers.

The terms "R" and "S" are used herein as commonly used in organic chemistry to denote specific configuration of a chiral center. The term "R" refers to "right" and refers that configuration of a chiral center with a clockwise relationship of group priorities (highest to second lowest) when viewed along the bond toward the lowest priority group. The term "S" or "left" refers to that configuration of a chiral center with a counterclockwise relationship of group priorities (highest to second lowest) when viewed along the bond toward the lowest priority group. The priority of groups is based upon their atomic number (heaviest isotope first). A partial list of priorities and a discussion of stereo chemistry is contained in the book: The Vocabulary of Organic Chemistry, Orchin, et al., John Wiley and Sons Inc., publishers, page 126, which is incorporated herein by reference.

As set forth above, this invention includes the pharmaceutically-acceptable salts of the compounds of Formula 1. Since the compounds of this invention are amines, they are basic in nature and accordingly react with any number of Inorganic and organic acids to form pharmaceutically acceptable salts such as hydrochloric acid, nitric acid, phosphoric acid, sulfuric acid, hydrobromic acid, hydroiodic acid, phosphorous acid and others, as well as salts derived from nontoxic organic acids such as aliphatic mono and dicarboxylic acids, amino acids, phenyl-substituted alkanolc acids, hydroxyalkanolc and hydroxyalkandicic acid, aromatic acids, aliphatic and aromatic sulfonic acids. Such pharmaceutically-acceptable salts thus include sulfate, pyrosulfate, bisulfate, sulfite, bisulfite, nitrate, phosphate, monohydrogenphosphate, dihydrogenphosphate, metaphosphate, pyrophosphate, chloride, bromide, iodide, acetate, proplonate, caprylate, acrylate, formate, tartrate isobutyrate, caprate, heptanoate, propiolate, oxalate, malonate, succinate, suberate, sebacate, furnarate, maleate, mandelate, butyne-1,4-dioate, hexyne-1,6-dioate, hippurate, benzoate, chlorobenzoate, methylbenzoate, phthalate, terephthalate, benzenesulfonate, toluenesulfonate, chlorobenzenesulfonate, xylenesulfonate, phenylacetate, phenylpropionate, phenylbutyrate, citrate, lactate, β-hydroxybutyrate, glycolate, malate, naphthalene-1-sulfonate, naphthalene-2-sulfonate and mesylate.

Preferred compounds of Formula 1 include the compounds in which R3 is hydrogen, R1 and R2 are both either n-propyl or methyl and HET is 3-isoxazolyl, 5-isoxazolyl, 3-isothiazolyl, 5-isothiazolyl, 2-imidazolyl or 4-imidazolyl. These compounds include the stereoisomers at position 4, i.e., racemic mixture of 4-R and 4-S as well as the substantially pure stereoisomers of each in which the configuration at position 4 is R or S.

As depicted in Scheme I, the compounds of the present invention can be prepared by reacting a 4-amino-6-metallo-substituted tetrahydrobenz[cd]indole as represented by structure 2 with a heterocyclic compound represented by structure 4. In structure 2, M represents a metallo moiety such as lithium, magnesium, zinc, tin, mercury, boronic acid(-BO₂H₂) and the like while Z is an amino-blocking group. When the metallo moiety is multivalent, it is normally associated with other moieties such as, for example, halo for magnesium (Grignard reagent) and alkyl groups for tin (trialkyltin). The heterocycle represented by structure 4 containing a leaving group "L", such as a chloro, bromo, or trifluoromethylsulfonoxy group, which can be displaced by the metallo-indole. The heterocycle can be substituted as set forth hereinabove. Alternatively, a 6-metallo-1,2,2a,3,4,5-hexahydrobenz[cd]indole 3 can be similarly reacted with a heterocyclic 4 to provide the

6-heteroaryl-1,2,2a,3,4,5-hexahydrobenz[cd]indole $\underline{5}$ which can then be oxidized and the blocking group \underline{Z}^1 exchanged or replaced to provide the compounds of Formula 1.

Scheme 1

5

45

The reaction of the metallo-indole $\underline{2}$ or metallo-indoline $\underline{3}$ and heterocycle $\underline{4}$ is accomplished in the presence of a palladium or nickel catalyst such as $Pd[P(C_6H_5)_3]_4$, $PdCl_2$, $Pd[P(C_6H_5)_3]_2$, $Ni(acac)_2$, $NiCl_2[P(C_6H_5)_3]_2$ and the like, wherein "acac" represents acetylacetonate and " C_6H_5 " represents a phenyl group. The organometallic reagent $\underline{2}$ or $\underline{3}$ is prepared by methods commonly used in the art for such preparations, for example, the lithium or magnesium reagents can be prepared by contacting the appropriate 6-chloro-, 6-bromo- or 6-iodo-substituted tetrahydro- or hexahydro- benzindole with an organolithium reagent or magnesium metal in a solvent such as ether or tetrahydrofuran. Other organometallic derivatives can be used such as zinc, tin, mercury or boronic acid (-8O₂H₂). The zinc, tin and mercury reagents can be prepared by reaction of the lithiated benzindole with a zinc, tin or mercury derivative such as zinc chloride, chlorotrialkylstannane, or mercuric chloride. The boronic acid derivative can be prepared by reacting the lithium reagent with trimethylborate followed by hydrolysis of the resulting boronate ester. Mercuric acetate can be contacted directly with the hexahydrobenzindole to provide the mercurated derivative.

The 1-nitrogen of the benzindole is preferably protected with a group such as triphenylmethyl (trityl), benzyl,

or, for the tetrahydrobenzindole only, triisopropylsilyl. These protecting groups are represented by Z in structures 2 and 3. The protecting group can be removed after the coupling reaction is accomplished to provide the 1-hydrobenzindole compound.

An alternative method of preparing the compounds of the instant invention involves contacting an organometallic reagent prepared from a heterocyclic compound with a 6-bromo or 6-iodo-4-aminobenzindole. The reaction is accomplished in the presence of a catalyst such as that used in reaction Scheme I. The metal in the organometallic derivative of the heterocycle can be lithium, magnesium (Grignard reagent), zinc, tin, mercury, or a boronic acid (-BO₂H₂). These organometallic compounds can be prepared by standard methods, as described above for the benzindoles. Alternatively, the lithiated heterocycles can be prepared by treating a heterocycle with a strong base such as an alkyllithium or a lithium dialkylamide.

Unless otherwise indicated, in the following preparation procedures, R_a and R_a ' may independently be hydrogen, C_1 - C_3 alkyl, halogen, OH, O(C_1 - C_3 alkyl), S(C_1 - C_3 alkyl), NH₂, CN, or phenyl. R_b may be hydrogen, C_1 - C_3 alkyl, phenyl, or (C_1 - C_3 alkyl)phenyl. R_b may be a hydrogen or C_1 - C_3 alkyl, R_d may be OH, O(C_1 - C_3 alkyl), O-(phenyl), O(C_1 - C_3 alkylphenyl), halo, S(C_1 - C_3 alkyl), S(phenyl), S(C_1 - C_3 alkylphenyl), NH₂, NH(C_1 - C_3 alkyl), N(C_1 - C_3 alkyl), OCO(C_1 - C_3

In an alternative preparation procedure, compounds of the instant invention having a 5-membered heterocyclic ring in the 6-position can be prepared by the cycloaddition of a compound of the the represented in structure 8 wherein R¹ and R² are as defined above and B is an amino-protecting group or hydrogen,

with a 1,3-dipole of the the 'T=U-V' in which T, U, and V can be selected from the following list of (a) through (i).

	T	T T	v
(a)	CRa	N	CHRa
(b)	CR_a	N	NR_{b}
(c)	CRa	N	0
(d)	N	N	0
(e)	CR_a	CRa'	NR_b
(f)	CR_a	CRa'	0
(g)	N	CRa'	CHRa
(h)	N	CRa'	NR_{b}
(i)	N	CRa'	0

In this list R_a and R_a ' are not OH or NH₂, N represents nitrogen and O represents oxygen. This cycloaddition provides products of the structure $\underline{10}$, wherein R^1 and R^2 are as defined above and B is an amino protecting group or hydrogen.

55

50

20

25

30

35

40

The 1-nitrogen of structures $\underline{8}$ and $\underline{10}$ can be protected using standard protecting groups preferably $(C_2H_5)_2NC(O)$ -, triisopropylsilyl, or benzenesulfonyl.

Alternatively, the 6-alkyne-substituted indole of structure $\underline{8}$ can be reacted with a dipole of the type ^+T -U=V $^-$ in which T, U, and V are selected from the following list for (j) and (k):

	<u> </u>	Ū	v
(j)	CHRa	N	N
(k)	NTP.	N	N

In this list Ra is not OH or NH2 and N is nitrogen. This reaction provides products of structure 12,

wherein R1, R2, Ra and B are as defined above.

20

25

30

35

40

Alternative procedures for preparing certain of the instant compounds are set forth hereinbelow in Schemes through 18. As used in these reaction Schemes, "Ar" refers to the benz[cd]indole, which can be 1,3,4,5-tetrahydro or 1,2,2a,3,4,5-hexahydro, with the indicated substituent in the 6-position, "Me" is methyl, "Et" is ethyl, "NBS" represents n-bromosuccinimide, Ra, Rb and Rc are defined above, "MsCl" represents methanesulfonyl chloride, "A" represents heat, "ø" and "Ph" each represent phenyl, "DMF" represents dimethylformamide, "TMS" represents trimethylsilyl, "[O]" represents an oxidant, Lawesson's reagent is p-methoxyphenylthionophosphine sulfide dimer, "Ac" represents acetyl, "NCS" represents N-chlorosuccinimide, "DCC" represents dicyclohexyl-carbodiimide, "DMS" represents dimethyl sulfide, "Im" represents 1-imidazolyl, and "[H]" represents a reductant. As set forth hereinabove, the 1-nitrogen of the benz[cd]indole is normally protected with an aminoblocking group. When Ar is tetrahydrobenz[cd]indole, the 1-blocking group is preferably triisopropylsilyl. When Ar is hexahydrobenz[cd]indole, the prefered 1-blocking group is triphenylmethyl. In the reaction schemes provided, Ar is preferably hexahydrobenz[cd]indole with the resulting 6-heteroaryl-substituted hexahydrobenz[cd]indole being oxidized to the corresponding tetrahydrobenz[cd]indole product.

Scheme 2

* Direct bromination can be used when Ar is tetrahydro when the 1-nitrogen is blocked with triisopropylsilyl.

40

45

55

Scheme 3

*when $R_{\rm d}$ is OH the ArCOR $_{\rm d}$ substrate is preferably activated by prior contact with DCC or diimidazolylcarbonyl.

Scheme 4

5

$$R_a$$
 R_a
 R_a

*When Ar is tetrahydrobenz[cd]indole the 1-nitrogen is blocked with triisopropylsilyl.

Scheme 5

5 Me₃SiQ *(Ar is tetrahydro) Br_a H or OCH MCHP. Br₂or NBS Br₃ 10 (Ar is hexamydro) Ar 15 N. OH BuONO 20 25 N. NHPh NH₃+ 1. HCOOR, 30 1. KSCN 2. RX, ba 35 Ar <u>5-2</u> 40

*Direct bromination can be used when Ar is tetrahydro when the 1-nitrogen is blocked with triisopropylsilyl.

50

55

Scheme 6

*For example, DCC or Im2CO.

Scheme 7

*When R_d is OH a coupling agent, for example DCC or Im_2CO , is preferably employed.

Scheme 8

Scheme 9

*Direct bromination can be used when Ar is tetrahydro when the 1-nitrogen is blocked with triisopropylsilyl.

Scheme 10

Scheme 11

*Preferably 1-nitrogen blocked with triisopropylsily1.

45

50

Scheme 12

Scheme 13

[0]*, e.g., $SOCl_2$ or SCl_2 or S_2Cl_2 or SO_2Cl_2

Scheme 14

Scheme 15

Arch
$$\frac{1) \text{ Et}_2\text{BCl}}{2) \text{ H}_2\text{S}}$$
 $\stackrel{\text{NH}_2}{\longrightarrow}$ $\stackrel{\text{NH}_2}{\longrightarrow}$ $\stackrel{\text{R}_a}{\longrightarrow}$ $\stackrel{\text{R}_a}{\longrightarrow}$ $\stackrel{\text{R}_a}{\longrightarrow}$ $\stackrel{\text{R}_a}{\longrightarrow}$ $\stackrel{\text{R}_a}{\longrightarrow}$ $\stackrel{\text{R}_a}{\longrightarrow}$ $\stackrel{\text{R}_a}{\longrightarrow}$ $\stackrel{\text{N}_a}{\longrightarrow}$ $\stackrel{\text$

35

45

55

* 1-nitrogen preferably blocked with triisopropylsilyl.

Scheme 16

Scheme 17

5 Arcooh
$$Im_2CO$$
 Arch Im_2CO Arch Im_2C

Scheme 18

Br NH NHNH2

Me3SiC Ar NBEt2

ArCN
$$= \frac{10}{10}$$

ArCOOH $= \frac{10}{10}$

ArCOOH $= \frac{10}$

Scheme 19 illustrates a preparation of a starting material for reaction Scheme 1.

Scheme 19

In Scheme 19, epoxides of Formula 16 are known to the art or can be prepared from compounds known to the art using common reagents and techniques. For example, Flaugh, et al., J. Med. Chem., 31, 1746 (1988); Nichols et al., Org. Prep. and Proc., Int., 9, 277 (1977); and Leanna et al., Tet. Lett., 30, No. 30, 3935 (1989), teach methods of preparation of various embodiments of compounds of structures 16. Those skilled in the art of organic chemistry will recognize that there are four stereoisomers of structure 16:

40

50

55

Structures $\underline{16a}$ and $\underline{16b}$ are herein referred to collectively as the exo-isomers; similarly, structures $\underline{16c}$ and $\underline{16d}$

are the endo-isomers. Leanna et al., supra, teach the preparation of epoxides of structures 16 which are substantially exo or substantially endo, as desired. The preferred starting material is the compound of structure 16 wherein Z is benzoyl and X is hydrogen; the most preferred starting material is the mixture of substantially the exo-isomers thereof.

Amino alcohols of structure <u>18</u> are formed by reacting an epoxide of structure <u>16</u> with an amine of formula R¹⁰NH₂. Such amines are readily available. Opening of the epoxide ring proceeds substantially regiospecifically with the amino group at the 5-position and the hydroxyl group at the 4-position. The reaction is also stereospecific in the sense that stereoisomers of structure <u>18a-d</u> are formed from, respectively, stereoisomers of structure 16a-d,

X NHR 10

10

15

20

X MHR 10 OH

NHP 10 H

MHR 10 CH

A stereoselective synthesis of the amino alcohol of structure $\underline{18}$, and hence of all the subsequent intermediates and products of Scheme 19, can be effected by using a substantially pure enantiomer of an amine of the formula $R^{10}NH_2$ wherein R^{10} contains at least one chiral center. The diastereomers of the resulting amino alcohol can then be separated by a number of means known in the art, for example by chromatography or crystallization. Suitable solvents for recrystallization include those such as diethyl ether, n-butanol, and mixtures of hexane and ethyl acetate. An alternative method of achieving a stereospecific synthesis is depicted in Scheme 19 and comprises conversion of all the diastereomers of structure $\underline{18}$ to corresponding diastereomers of structure $\underline{20}$, followed by the separation of said diastereomers of structure $\underline{20}$; that alternative method is discussed below. If a stereoselective synthesis is not desired, then separation of the stereoisomers of the amino

A particularly efficient stereoselective process for a highly preferred compound of structure <u>18</u>, 1-benzoyl-4-hydroxy-5-(1-phenylethyl)amino-1,2,2a,3,4,5-hexahydrobenz[cd]indole, comprises the reaction of a mixture of substantially the exo-isomers of the corresponding epoxide of structure <u>16</u>, or a mixture of substantially the endo-isomers of the corresponding epoxide of structure <u>16</u>, with a substantially pure enantiomer of 1-phenethylamine in the solvent n-butanol and the subsequent selective crystallization of one of the two isomers of the amino alcohol. The temperature of the reaction can be from about 50° to about 150°C, preferably about 80° to about 100°C.

alcohol of structure 18 is not required and the amine R10NH2 need not be optically active.

After the reaction is complete, as determined for example by thin layer chromatography or liquid chromatography, the desired amino alcohol is crystallized at about -20° to about 40°C; the preferred temperature for the crystallization is about 0° to about 15°C. Therefore this process has the valuable attribute that the reaction and the separation of stereoisomers occur efficiently in a single step. By the proper selection of the epoxide isomers, exo or endo, and the enantiomer of 1-phenyl-ethylamine, R or S, one can determine which of the stereoisomers of the compound of structure 18 precipitate from the reaction mixture.

A number of methods of forming aziridines such as those of structure <u>20</u> from amino alcohols such as those of Formula 18 are known to the art. Two examples are the use of diethyl azodicarboxylate and triphenylphosphine (O. Mitsunobu, <u>Synthesis</u>, January, 1981, page 1), and the use of bromine and triphenylphosphine (J. P. Freemer and P. J. Mondron, Synthesis, December, 1974, page 894).

A particularly efficient alternative to the above methods involving treating a compound of structure <u>18</u> with a tertiary amine in an inert solvent followed by the addition of methanesulfonyl chloride. The following stereoisomers of the aziridine of structure <u>20</u>, <u>20a-d</u>, arise respectively from the stereoisomers of structure <u>18a-d</u>, with retention of configuration at any chiral center in the substituents Z, R¹⁰ or X:

Suitable tertiary amines are those of the formula (R¹¹)₃N, where the R¹¹ groups are independently C₁-C₄ alkyl. Suitable solvents are chlorinated hydrocarbons such as methylene chloride, chloroform, carbon tetrachloride, and dichloroethane; aromatic hydrocarbons such as benzene, toluene, and the xylenes; and ethers such as tetrahydrofuran, diethyl ether, and methyl t-butyl ether. The reaction can be conducted at a temperature from about -35° to about 45°C. In the preferred embodiment, the amino alcohol is treated with triethylamine in methylene chloride at about -20° to about 0°C, then the reaction mixture is warmed to about 15° to about 35°C for the completion of the reaction. If desired, the product, an aziridine of structure 20, can be crystallized from an appropriate solvent such as acetonitrile or isopropanol after an aqueous workup. In the event that Z contains at least one chiral center in substantially a single stereoconfiguration and that the aziridine of structure 20 is prepared as a mixture of stereoisomers, said stereoisomers can be separated by methods such as chromatography and crystallization, thereby providing a stereospecific synthesis of the aziridine of structure 20 and subsequent products.

The aziridine ring can be opened to form an intermediate secondary amine of structure 22. A number of methods of opening aziridines are commonly known. It is, however, crucial that the method used for opening the aziridine to form a secondary amine of structure 22 be substantially regiospecific; the aziridine must be opened to form substantially the 4-amino compound rather than the 5-amino compound. One such method is catalytic hydrogenolysis as taught by Y. Sugi and S. Mitsui, Bull. Chem. Soc. Jap., 43, pp. 1489-1496 (1970). Catalysts which are suitable are the usual hydrogenation and hydrogenolysis catalysts, such as the noble metal catalysts; the preferred catalyst is palladium. Suitable solvents include hydrocarbons such as hexanes and heptanes; aromatic hydrocarbons such as benzene, toluene, xylenes, ethylbenzene, and t-butylbenzene; alcohols such as methanol, ethanol, and isopropanol; and mixtures of solvents such as acetic acid mixed with said alcohols. The preferred solvent for preparing the compound of structure 22, wherein Z is benzoyl, X is hydrogen, and R10 is 1-phenylethyl, is a mixture of methanol and phosphoric acid or acetic acid. The source of hydrogen can be an atmosphere of elemental hydrogen supplied at a pressure of about 1 atmosphere or higher, or the source of hydrogen can be compounds which are suitable to serve as hydrogen donors in a catalytic transfer hydrogenolysis reaction, such as formic acid, hydrazine, or cyclohexene. The preferred hydrogen source is an atmosphere of hydrogen gas supplied at about 1 to about 10 atmospheres pressure. The temperature of the reaction may be from about -20° to about 80°C; the preferred temperature for the hydrogenolysis of the azirldine wherein Z is benzoyl, X is hydrogen, and R¹⁰ is 1-phenylethyl is about -20° to about 0°C.

The conversion of compounds of structure <u>20</u> to compounds of structure <u>22</u> proceeds without disturbing the stereochemical configuration of the chiral centers at the 2a- or 4-positions of the structure <u>22</u> or of the chiral centers that may be present in any of the substituents.

If desired, the compound of structure <u>22</u> can be isolated by the usual methods such as crystallization. The secondary amine of structure <u>22</u> can be converted to a primary amine of structure <u>24</u> by a number of methods known to the art of organic chemistry, or alternatively the secondary amine itself can be isolated.

However, the preferred method is to convert the secondary amine of structure <u>22</u> to the primary amine of structure <u>24</u> without isolating the secondary amine, but rather by simply continuing without interruption the hydrogenolysis reaction that produced the compound of structure <u>22</u>. Therefore, the preferred solvent and catalyst are the same as those for the preparation of the secondary amine of structure <u>22</u>. It may be desirable to conduct the hydrogenolysis of the secondary amine of structure <u>22</u> at a different temperature or a different pressure or different temperature and pressure than the hydrogenolysis of the aziridine of structure <u>20</u>. For the hydrogenolysis of the preferred compound of structure <u>22</u> wherein Z is benzoyl, X is hydrogen, and R¹⁰ is 1-phenylethyl, the preferred temperature and pressure are about 50° to about 60°C and about 1 to about 20 atmospheres. Under these conditions, the hydrogenolysis of compounds of structure <u>22</u> to compounds of structure <u>24</u> proceeds without disturbing the stereochemical configuration of the chiral center at the 4-postion.

The isolation of the compound of structure 24 can be accomplished by the usual methods such as crys-

tallization. If desired, the compound of structure 24 can be further purified, for example by recrystallization.

Of course, as those skilled in the art will recognize, variations of Scheme 10 will be desirable or necessary for certain embodiments of the invention. For example, it may be undesirable to subject a compound in which X is halo to the catalytic hydrogenolysis steps of Scheme 19 because the undesired displacement of the halogen may compete with the desired hydrogenolysis of the carbon nitrogen bonds. One alternative strategy is to postpone the halogenation until after the hydrogenolysis. Another alternative strategy is to use a milder means of reduction that would leave the halogen in place. A third alternative, useful in the instance when the halogen is to serve as a leaving group, is to perform the desired displacement of halogen before the hydrogenolysis step.

Compounds of Formula 1 can be prepared from the compound of structure 24, whether it exists as a mixture of stereoisomers or as a substantially pure enantiomer, using common reagents and methods well known in the art. A preferred intermediate to the compounds of the instant invention is the 6-bromo-derivative. Preferably Z is an aminoblocking group such as benzoyl. A preferred method of introducing the bromo substituent at the 6-position is by reaction with bromine in glacial acetic acid, buffered with sodium acetate. Amino blocking groups can be added, if desired, to the 4-amino substituent using such methods as those disclosed by Greene, supra, and Barton, supra. Alkyl groups can be added, if desired, to the 4-amino substituent using such common methods as ammonolysis of the appropriate halide as discussed by Morrison and Boyd, Chapter 22, Organic Chemistry, Third Edition, Allyn and Bacon, Boston, 1973, to provide a compound of structure 26 wherein R¹ and R² are defined hereinabove. If desired, the benzoyl group can be removed from the 1-position using known methods and optionally replaced with other amino- protecting groups. Preferably the benzoyl group represented by Z is replaced with a triphenylmethyl group in structure 28 prior to the metallating step to form structure 2. The amino-protecting groups and alkyl groups can be added either before or after the bromination, as desired.

The 4-amino-6-bromotetrahydrobenz[cd]indole starting materials used to prepare the compounds of the invention can be readily prepared by other processes such as depicted as Reaction Scheme 2 disclosed in United States Patent No. 4,576,959 of Flaugh, incorporated herein by reference in its entirety.

The compound of structure <u>26</u> can be oxidized to the tetrahydrobenz[cd]indole <u>28</u> using oxidizing agents such as mananese dioxide. The compound <u>28</u> where X is halo can be metallated as discussed hereinabove to provide the compound of structure <u>2</u>.

The procedure of Scheme 19 using the 4,5-epoxide provides a convenient way to prepare the optically active isomers of the compounds of the present invention. Such isomers can also be isolated by resolving racemic mixtures. This resolution can be carried out in the presence of a resolving agent, by chromatography or by repeated crystallization. Particularly useful resolving agents are d- and 1-tartaric acids, d- and 1-ditoluoyltartaric acids, and the like.

The methods of preparation described in Schemes 2-18 provide compounds in which the heteroaromatic ring may or may not be substituted. The general reactions provided below set forth methodology for incorporating, interconverting, and removing substituents on the heteroaromatic ring. Additional methods for performing these transformations are cited in <u>Comprehensive Organic Transformations</u> by Richard C. Larock, VCH Publishers, Inc., New York (1989) which is incorporated herein by reference. "HET" refers to the heteroaromatic attached to the tetrahydrobenz[cd]indole at position C-6.

40 1. Halogen substituents (X):

HET-OH \rightarrow HET-X POX₃, PX₃, SOX₂, PPh₃ \bullet X₂, or P(OR)₃ \bullet X₂ HET-NH₂ \rightarrow HET-X 1. HONO; 2. CuX, or KI, or HBF₄, Δ

45 2. O(C₁ - C₃ alkyl), i.e., [OR]

HET-X \rightarrow HET-OR RO-, Cul, (DMF, or DMAc, or NMP), \triangle HET-OH \rightarrow HET-OR Base, RX; or CH₂N₂

50 3. Hydroxy substituent:

HET-NH₂ \rightarrow HET-OH 1.HONO; 2. H₃O+, \triangle HET-OMe \rightarrow HET-OH 48% HBr, \triangle ; or BBr₃

55 4. Cyano substituent:

HET-NH₂ → HET-CN 1. HONO; 2. CuCN HET-X → HET-CN CuCN, (DMF, or DMAc, or NMP), Δ ; or CN⁻, Δ

5. S(C₁ - C₃ alkyl); i.e., [SR]

HET-NH₂ → HET-SR

1. HONO; 2. RSH, base

HET-X → HET-SR

RS-, Cul, (DMF, or DMAc, or NMP), Δ

6. Amino substituent:

HET-NO₂ → HET-NH₂ H₂, catalyst (i.e., Pt or Pd)

7. Hydrogen substituent:

HET-X → HET-H

H₂, catalyst; or R₃SnH, 2,2'-azobls(2-methyl)propionitrile), Δ

HET-OH → HET-H

1. 5-chloro-1-phenyltetrazole 2. H₂, catalyst

 $\text{HET-NH}_2 \rightarrow \text{HET-H}$

1. HONO, 2. H₃PO₂

HET-CH₂Ph → HET-H: H₂, catalyst (ie Pd) (This applies if the benzyl group is attached to a nitrogen in the

heterocyclic ring.)

HET-SR → HET-H Raney Ni

6-acyl-substituted-tetrahydrobenz[cd]indoles are preferred intermediates in the preparation of certain of the compounds of the instant invention, particularly 6-isoxazole-indoles and 6-pyrazole-indoles. The 6-acyl substituted indoles can be prepared by several routes using the 6-iodo-substituted indole of structure 30 as depicted in Scheme 20 where R1, R2 and Z are as defined hereinabove.

25

30

35

Scheme 20

5

10

$$R^{12}$$
 R^{12}
 R^{12}

In a preferred method of preparation as depicted in Scheme 20, the nitrile <u>32</u> is contacted with an organometallic reagent such as a Grignard reagent under standard conditions to provide the 6-acyl derivative <u>34</u>. For this reaction Z is preferably triisopropysityl. Alternatively, a 6-alkyne intermediate of structure <u>36</u> can be prepared and then hydrolyzed to provide the acyl derivative <u>38</u>. This method provides a methylene group adjacent to the carbonyl group. In this method Z can be an amino protecting group such as benzoyl although the unprotected 1-nitrogen is preferred, i.e., Z is hydrogen. Compounds of structure <u>30</u> can be contacted with a palladium catalyst Pd(PPh₃)₄ [where Ph is phenyl] and the tin alkyne compound R¹²-C∫C-Sn(CH₃)₃ wherein R¹² is a C₁-C₇ alkyl, substituted C₁-C₇ alkyl, aryl (C₁-C₃ alkyl), substituted aryl (C₁-C₃ alkyl), or C₃-C₇ cycloalkyl. This reaction is normally conducted in a solvent such as toluene at an elevated temperature, for example at about 100°C. Typically an excess of the tin alkyne is used along with about 0.25 equivalents of the palladium compound based on compound <u>30</u>. The 6-alkyne <u>36</u> is then contacted with HgSO₄ in water to provide the ketone <u>38</u>. If desired the corresponding <u>1,2,2a,3,4,5-hexahydrobenz[cd]indole can be used in a reaction scheme similar to that of Scheme 20 followed by an oxidation step to provide structure <u>38</u>. In this case the preferred blocking group for the 1-nitrogen, i.e., Z, is benzoyl or trityl.</u>

45

In another preparation method depicted in Scheme 21, the 6-iodo derivative 30 can be used to prepare certain 6-acyl compounds directly. This is accomplished by contacting the 6-iodo compound with a trialkyltinal-

kyl complex and carbon monoxide in the presence of a palladium catalyst Pd(PPh3)4 [where Ph is phenyl] as described in the literature for arylhalides. [A. Schoenberg and R. F. Heck, J. Org. Chem., 39, p. 3327 (1974); and A. Schoenberg, I. Bartoletti, and R. F. Heck, J. Org. Chem., 39, p. 3318 (1974)]. Although a blocking group Z such as diethylcarbamoyl can be used for this method, the method can also be accomplished when Z is hydrogen or the blocking group can be removed to provide compounds of structure 40 where R¹, R² and R¹² are as defined above. Alternatively the corresponding indoline can be used in the sequence of scheme 21 followed by an oxidation step to provide structure 40.

Scheme 21

15
$$\frac{R^{12}}{Z \cdot N} = \frac{R^{12}}{R_{1}SnR^{12}}$$
 $\frac{C}{Z \cdot N} = \frac{R^{12}}{Z \cdot N} = \frac{R^{12}}{AN} = \frac{R^{12}}{$

As those skilled in the art will recognize, variations of any of the reaction schemes, reagents and procedures discussed herein may be desirable or necessary for certain embodiments of the invention, such variations are contemplated as within the scope of the present invention.

The following examples further illustrate the preparation of the compounds of this invention. The examples are provided for purposes of illustration only and are not to be construed as limiting the scope of the instant invention in any way.

The terms and abbreviations used in the instant examples have their normal meaning unless otherwise designated, for example, "oC" refers to degrees celsius; "N" refers to normal or normality; "mmol" referes to millimole; "g" refers to gram; "mL" means milliliter; "M" refers to molar; "min" refers to minutes; "hr" refers to hours; "NMR" refers to nuclear magnetic resonance; "IR" refers to infrared spectroscopy; "U.V." refers to ultraviolet spectroscopy; and "MS" refers to mass spectrometry.

Example 1

25

30

35

40

A. Preparation of (±) -1-Benzoyl-6-cyano-4-(di-n-propylamino)-1,2,2a,3,4,5-hexahydrobenz[c,d]indole

To a solution of (\pm)-1-benzoyl-6-bromo-4-(di-n-propylamino)hexahydrobenz[cd]indole (5.5 g, 12.5 mmol) in DMF (100 mL) under a N₂ atmosphere was added 3.4g (37.5 mmol) of CuCN and 7.1 g (37.5 mmol) of Cul. The reaction mixture was then stirred at 140°C. for 6 hr. The reaction mixture was poured onto ice, diluted with water, CH₂Cl₂ added and stirred for 30 minutes. The mixture was filtered through a Celite pad and the filtrate was extracted twice with CH₂Cl₂. Thy organic solution was washed twice with saturated NaCl solution. The CH₂Cl₂ solution was dried over MgSO₄ and then evaporated to provide 4 g of a solid. Chromatography of this crude product over silica gel with 1:19 MeOH/CH₂Cl₂ as eluent gave 3 g (62%) of product. mp = 122-124°C.

B. Preparation of (-)(2aR,4S)-1-Benzoyl-6-cyano-4-(di-n-propylamino)-1,2,2a,3,4,5-hexahydrobenz[cd]indole.

To a solution of (-)6-bromo compound (30.0 g; 0.088 mol) in 500 ml of DMF was added CuCN (18.3 g; 0.2 mol) and Cul (38.0 g; 0.2 mol). The reaction mixture was then stirred at 140°C for 6hr. The reaction mixture was poured into 4L of water. The ppt was collected and washed several times with water. The ppt was suspended in dil NH₄OH and slurred with ethyl acetate. The whole mixture was filtered through a celite pad. The ethyl acetate solution was separated and washed with brine solution. The ethyl acetate solution was dried (MgSO₄) and concentrated to dryness to provide 21.3 g of the (-)-6-nitrile.

C. Preparation of (+)(2aS,4R)-6-cyano counterpart of Example 1B.

In a similar manner as in Example 1B above, the (+)-6-bromo compound (17.1 g, 0.039 mol) was contacted with CuCN (10.75 g; 0.12 mol) and CuI (22.8 g; 0.12 mol) in 300 ml DMF to give 11.6 g of (+)-6-cyano compound.

Example 2

5

Preparation of (±) -6-cyano-4-(di-n-propylamino)-1,2,2a,3,4,5-hexahydrobenz[cd]indole.

To a stirred solution of 4.8 g (0.0124 mol) of (±)-1-benzoyl-6-cyano-4-(di-n-propylamino)-1,2,2a,3,4,5-hexahydrobenz[cd]indole in 200 mL of THF cooled to -78°C under a N₂ atmosphere were added 16 mL (0.025 mol) of 1.6 M solution of n-butyl lithium in hexane. The reaction mixture was stirred at -78° C. for 30 minutes and then allowed to warm to -20° C. To the reaction mixture was added 100 mL of IN HCI. The mixture was extracted once with ethyl ether. The acidic solution was made alkaline with the addition of cold 5N NaOH. The basic mixture was extracted twice with CH₂Cl₂. The combined organic solution was washed with saturated NaCl solution. The CH₂Cl₂ solution was dried over MgSO₄ and evaporated to give 4 g of an oil. Chromatogrphy of this oil over silica gel with ethyl acetate as eluent gave 3 g (85%) of product as an oil which upon standing solidified.

20 Example 3

25

Preparation of (+)(2aS,4R)-1-trityl-6-cyano-4-(di-n-propylamino)-1,2,2a,3,4,5-hexahydrobenz[cd]indole.

To a solution of (+)(2aS,4R)-6-cyano-4-(di-n-propylamino)-1,2,2a,3,4,5-hexahydrobenz[cd]indole (12.8 g, 0.045 mol) and triethylamine (4.5 g, 0.045 mol) in 400 mL of methylene chloride was added a solution of triphenylmethyl chloride (trityl chloride) (12.6 g, 0.045 mol) in 100 mL of methylene chloride dropwise at RT. The reaction mixture was stirred for 16 hr at RT. The reaction mixture was extracted water and cold 1N HCl. The organic solution was washed with saturated NaHCO₃ solution and with saturated brine solution. The organic layer was dried (MgSO₄) and concentrated to dryness *in vacuo* to give a residue. The residue was slurried with warm hexanes, cooled and filtered to remove insolubles. The filtrate was concentrated to an oil. The oil was chromatographed (silica gel, 20% ethyl acetate in hexanes) to provide 20.6 g of the (+)-trityl nitrile.

Example 4

Preparation of (+)(2aS,4R)-6-acetyl-4-(di-n-propylamino)-1,2,2a,3,4,5-hexahydrobenz[cd]indole.

A solution of 2.4 g (4.6 mmol) (+)-1-trityl-6-cyano-4-(dl-n-propylamlno)-1,2,2a,3,4,5-hexahydrobenz[cd]Indole in 100 mL of THF was treated with 25 mL of 2.0M methylmagnesium bromide in diethyl ether. The reaction mixture was refluxed for 16 hr. The reaction mixture was cooled and excess Grignard reagent was decomposed with addition of saturated NH₄Cl solution. The reaction mixture was extracted with ethyl acetate. The organic solution was evaporated to an oil. The oil was dissolved in 25 mL of 5N HCl and the solution was stirred at room temperature for 30 min. The acidic solution was made alkaline with the addition of excess concentrated NH₄OH solution. The basic mixture was extracted twice with ethyl acetate. The combined organic solution was washed once with saturated NaCl solution and dried over MgSO₄. The ethyl acetate solution was evaporated to yield 1.4 g of an oil. Chromatography of this oil over silicia gel with ethyl acetate as eluent gave 1.2 g (87%) of product. Recrystallization from hexanes yielded 840 mg of the product (+) ketone. mp = 121-122°C

Example 5

50

Preparation of (±)-6-Acetyl-4-(di-n-propylamino)-1,2,2a,3,4,5-hexahydrobenz[cd]indole.

A solution of 0.5 g (1.8 mmol) of (±)-6-cyano-4-(di-n-propylamino)-1,2,2a,3,4,5-hexahydrobenz[cd]indole in 75 mL of benzene was treated with 5 mL of 2.0M methylmagnesium bromide in diethyl ether. The reaction mixture was refluxed for 2 days. The reaction mixture was cooled and excess Grignard reagent was decomposed with addition of saturated NH₄Cl solution. The benzene layer was separated and washed once with saturated NaCl solution. The organic solution was evaporated to an oil. The oil was dissolved in 25 mL of 5N HCl and the solution was stirred at room temperature for 30 min. The acidic solution was made alkaline with the

addition of excess concentrated NH $_4$ OH solution. The basic mixture was extracted twice with CH $_2$ Cl $_2$. The combined organic solution was washed once with saturated NaCl solution and dried over MgSO $_4$. The CH $_2$ Cl $_2$ solution was evaporated to yield 0.5 g of an oil. Chromatography of this oil over silicia gel with ethyl acetate as eluent gave 0.4 g (75%) of product as an oil which upon standing solidified.

mp = 76-77° C

Example 6

Preparation of (±)(2aS,4R)-6-(3-pyrazyl)-4-(di-n-propylamino)-1,2,2a,3,4,5-hexahydrobenz[cd]indole●2 HCl.

A solution of (+)-1-triphenylmethyl-6-acetyl-4-(di-n-propylamino)-1,2,2a,3,4,5-hexahydrobenz[cd]indole (1.67 g, 3 mmol) and 3 mL of tris(dimethylamino)methane in 50 mL of toluene was refluxed for 5 hr. The reaction was concentrated *in vacuo* and the residue was dissolved in 100 mL of CH₃OH. To the CH₃OH solution was 2 mL of 85% hydrazine and the reaction mixture was stirred at RT for 16 hours. To the reaction mixture was added 50 ml of 1N HCl and stirred for an additional 1 hr. The solution was concentrated *in vacuo* to remove CH₃OH and the acidic solution was extracted with ethyl acetate. The acidic solution was separated and made alkaline with addition of excess concentrated NH₄OH. The basic mixture was extracted with ethyl acetate. The ethyl acetate solution was washed with brine solution, dried (MgSO₄) and concentrated *in vacuo* provide 900 mg of an oil. The crude product was chromatographed through silica gel (flash column, ethyl acetate) to yield 700 mg of pyrazole compound. The oil was dissolved in 50 mL of CH₃OH and 2 equivalents of 0.1 N HCL was added to the solution. The solution was concentrated *in vacuo* and the residue was crystallized from ethanol/ethyl ether.

Yield - 400 mg mp = 260 d

MS m/e 324 (FD)

Analysis calculated for C20H28N4 • 2HC

Theory: C, 60.45; H, 7.61; N, 14.1;

Found: C, 60.21; H, 7.60; N, 14.26.

30 Example 7

Preparation of (±) -6-(5(isoxazolyl)-4-(di-n-propylamino)-1,2,2a,3,4,5-hexahydrobenz[cd]indole•2HCl.

To a solution of (±)-6-acetyl-4-(dl-n-propylamino)-1,2,2a,3,4,5-hexahydrobenz[cd]indole (2.3 g, 7.7 mmol) and triethylamine (1.1 ml, 8 mmol) in 90 ml CH₂Cl₂ under N₂ was added dropwise a solution of 2,2,2-trichloroethyl chloroformate. The reaction mixture was stirred at RT for 1 hr. The CH₂Cl₂ solution was extracted with water and 1N HCl. The organic solution was washed with saturated NaHCO₃ solution and with brine solution. The CH₂Cl₂ solution was dried (MgSO₄) and concentrated *in vacuo* to give 3.3 g of the 1-carbamylindoline.

A solution of this 1-carbamylindoline (3.3 g, 7.7 mmol) and tris(dimethylamino)-methane (5 mL) in 70 mL of toluene was stirred at reflux for 16 hr. The reaction mixture was concentrated to dryness *in vacuo*. The residue was dissolved in 50 mL of acetic acid and hydroxylamine hydrochloride (2.5 g, 36 mmol) was added. The reaction mixture was stirred at RT for 16 hr and then concentrated *in vacuo* to dryness. The residue was suspended in water and excess concentrated NH₄OH was added to the mixture. The basic mixture was extracted with CH_2Cl_2 . The organic solution was washed with brine solution, dried (MgSO₄) and concentrated *in vacuo* to give 3.1 g of an oil. The crude product was chromatographed (flash column, silical gel 20% hexanes in ethyl acetate) to yield 2.0 g of (\pm)-1-carbamyl-6-isoxazolylindoline.

This isoxazole carbamate was dissolved in 20 mL of acetic acid and 1 g of zinc dust was added at once. The reaction mixture was stirred at RT for 4 hr. The reaction mixture was filtered through a celite pad and the filtrate was concentrated to dryness *in vacuo*. The residue was suspended in saturated NaHCO₃ solution and extracted with CH₂Cl₂. The organic solution was washed with brine solution, dried (MgSO₄) and concentrated to an oil. The crude material was chromatographed (flash column, silica gel, ethyl acetate) to give 500 mg of isoxazole indoline. The product was dissolved in 50 mL of CH₃OH and 2 equivalents of 0.1N HCl were added. The solution was concentrated to dryness and the residue was crystallized from ethanol/ethyl ether to give 85 mg of isoxazole substituted product as the dihyrochloride.

mp = 226°C d

55

MS m/e 325(FD)

Analysis calculated for C₂₀H₂₇N₃O+2HCl

Theory: C, 60.30; H, 7.34; N, 10.55;

Found: C, 58.83; H, 7.18; N, 10.01.

Example 8

Preparation of (+)(2aS,4R)-6-(3-isoxazolyl)-4-(di-n-propylamino)-1,2,2a,3,4,5-hexahydrobenz[cd]indole•2 HCl.

A solution of (+)-1-triphenylmethyl-6-acetyl-4-(di-n-propylamino)-1,2,2a,3,4,5-hexahydrobenz[cd]indole (3.33 g, 6 mmol), 5 g hydroxylamine hydrochloride, 20 mL pyridine and 30 mL of ethanol was refluxed for 16 hr. The reaction mixture was concentrated to dryness *in vacuo* and the residue was dissolved in 5N HCl. The acidic mixture was extracted with ethyl acetate. The acidic solution was made alkaline with excess NH₄OH solution and extracted with ethyl acetate. The ethyl acetate solution was washed with brine solution, dried (MgSO₄) and concentrated *in vacuo* to give 1.5 g of crude product which was chromatographed (flash column, silica gel, ethyl acetate) give to 1.2 g of oxime.

mp = 129-130°C.

To a solution of this oxime (1.2 g, 3.8 mmol) in 100 mL of THF cooled to -5°C under a N₂ atmosphere was added 7.5 mL n-butyllithium (1.6 M in hexanes) dropwise with stirring. The reaction mixture was stirred with continued cooling for 1 hr. To the reaction mixture was added 2 mL (26 mmol) of DMF at once and then stirred for 1 hr at RT. The reaction mixture was poured into 50 mL of 1N H₂SO₄ and the acidic solution was warmed on a steam bath for 1 hr. The acidic solution was cooled, extracted with ethyl ether, and then made alkaline with excess 5N NaOH. The basic mixture was extracted with ethyl acetate. The organic was layer was washed with brine solution, dned (MgSO₄) and concentrated *in vacuo* to give 1 g of an oil. The oil was chromatographed (flash column, silica gel, ethyl acetate) to yield 500 mg of product as an oil. The oil was dissolved in 50 mL of CH₃OH and 2 equivalents of O.1N HCL was added. The solution was concentrated to dryness in vacuo and the residue was crystallized from ethanol/ethyl ether. Crystallization gave 300 mg of the dihydrochloride of the 6-isoxazolyl product.

mp = 215°C d MS m/e 325 (FD)

Example 9

40

50

55

Preparation of (±) -1-benzoyl-6-[4-(2-aminothiazolyl)]-4-(di-n-propylamino)-1,2,2a,3,4,5-hexahyd-robenz[cd]indole.

To a solution of (\pm)-6-acetyl-4-(di-n-propylamino)-1,2,2a,3,4,5-hexahydrobenz[cd]indole (205 mg, 0.7 mmol) and triethyl amine (81 mg, 0.8 mmol) in 20 mL of CH₂Cl₂ was added a solution of benzoyl chloride (112 mg, 0.8 mmol) in 20 mL of CH₂Cl₂. The reaction mixture was stirred at RT for 2 hr. The reaction mixture was successively washed with water, saturated NaHCO₃ solution, brine solution and dried (MgSO₄). The organic layer was concentrated to dryness *in vacuo* to give 200 mg of the 1-benzoyl derivative.

A solution of this N-benzoyl compound (200 mg, 0.5 mmol) in 20 mL of acetic acid was saturated with HBr(gas). To the solution was added dropwise a solution of bromine (0.2 mL) in 5 mL of acetic acid. The reaction was stirred at RT for 30 min and then concentrated to dryness *in vacuo*. The residue was dissolved in 30 mL of ethanol then 500 mg of thiourea were added and the mixture refluxed for 16 hr. The reaction was concentrated to dryness *in vacuo* and the residue dissolved in water. The acidic solution was made alkaline with the addition of excess concentrated NH₄OH. The basic mixture was extracted with CH₂Cl₂. The organic solution was washed with brine solution, dried (MgSO₄) and evaporated to dryness to give 200 mg of an oil. The oil was chromatographed (flash column, silica gel, ethyl acetate) to provide 140 mg of the named 6-aminothiazolyl compound.

MS m/e 460(FD)

Example 10

Preparation of (+)(2aS,4R)-8-(5-isoxazolyl)-4-(di-n-propylamino)-1,2,2a,3,4,5-hexahydrobenz[cd]indole ● 2 HCl

To a solution of (+)(2aS,4R)-6-acetyl-4-(di-n-propylamino)-1,2,2a,3,4,5-hexahydrobenz[cd]indole (1.7 g, 5.7 mmol) and triethylamine (0.8 ml, 6 mmol) in 90 ml CH_2Cl_2 was added dropwise a solution of 2,2,2-trichloroethychloro-formate (1.3 g, 6 mmol) in 10 ml CH_2Cl_2 . The reaction mixture was stirred at room temperature

for one hour and then extracted with water and 1N HCI. The organic solution was washed with a saturated NaHCO₃ solution, a saturated brine solution, dried over MgSO₄ and then concentrated to dryness in vacuo to give 2.5 g of the 1-carbamylindoline.

A solution of the 1-carbamylindoline (2.5 g, 5.7 mmol) and tris(dimethylamino)methane (5 ml) in 100 ml of toluene was stirred at reflux for 16 hours. After 16 hours the reaction mixture was concentrated to dryness in vacuo. The resulting residue was dissolved in 50 ml of acetic acid and 1.5 g (22 mmol) of a hydroxylamine hydrochloride solution were added. The resulting reaction mixture was stirred at room temperature for 16 hours and then concentrated to dryness in vacuo. The resulting residue was suspended in water and an excess of a concentrated NH₄OH solution was added to basicify the mixture. The basic mixture was then extracted with CH2Cl2 and the resulting organic extract was washed with a saturated brine solution, dried over MgSO4 and then concentrated in vacuo to give 2.1 g of an oil. This oil was chromatographed (flash column, silica gel, EtOAc) to yield 1.9 g of (+)(2aS,4R)-6-isoxazolylindoline. The above compound was dissolved in 30 ml of acetic acid. and 1.5 g of zinc dust were added all at once. The resulting reaction mixture was stirred at room temperature for four hours and then filtered through a celite pad. The filtrate thus obtained was then concentrated to dryness In vacuo. The resulting residue was suspended in a saturated NaHCO3 solution, which was then extracted with CH₂Cl₂. The organic extract was then washed with a saturated brine solution, dried over MgSO₄ and concentrated in vacuo to an oil. This oil was chromatographed (flash column, silica gel, EtOAc) to give 400 mg of isoxazolylindoline. Such compound was dissolved in 50 ml of methanol and two equivalents of 0.1N HCl were added. The resulting solution was concentrated to dryness in vacuo and the resulting residue was then crystallized from ethanol/diethyl ether to give 170 mg of title compound.

mp = 235°C d MS m/e 325(FD) [α]_D + 27.29° (MeOH)

Analysis calculated for C₂₀H₂₇N₃O◆2HCl

Theory: C, 60.30; H, 7.34; N, 10.55; Found: C, 60.53; H, 7.54; N, 10.26.

Example 11

30 Preparation of (-)(2aR,4S)-6-(5-isoxazolyl)-4-(di-n-propylamino)-1,2,2a,3,5-hexahydrobenz[cd]indole ● 2 HCl

The title compound was prepared substantially in accordance with the method described in Example 10, above, utilizing 2.5 g (8.3 mmol) of (-)(2aR,4S)-6-acetyl-4-(di-n-propylamino)-1,2,2a,3,4,5-hexahyd-robenz[cd]indole (prepared substantially in accordance with the method described in Example 4) and 1.5 g (22 mmol) of a hydroxylamine hydrochloride solution. Such reaction sequence provided 500 mg of title compound. m.p. 235°C d

MS m/e 325(FD) [α]_D-29.18°(MeOH)

Analysis calculated for C₂₀H₂₇N₃•2HCl

Theory: C, 60.30; H, 7.34; N, 10.55; Found: C, 60.11; H, 7.41; N, 10.43.

Example 12

Preparation of (-)(2aR,4S)-6-(3-phenyloxadiazol-5-yl)-4-(di-n-propylamino)-1,2,2a,3,4,5-hexahydrobenz[cd]indole

A sodium ethoxide solution was prepared by dissolving 49 mg (2.1 mmol) of sodium in 35 ml of ethanol. Phenylhydroxamidine (1.73 g, 12.71 mmol) and 6-ethoxycarbonyl-4-(di-n-propylamino)-1,2,2a,3,4,5-hexahydrobenz[cd]indole (890 mg, 2.1 mmol) were added to the ethoxide solution and the resulting solution was heated to reflux and stirred at that temperature for 6.25 hours and then stirred overnight at room temperature. The next morning additional sodium ethoxide solution (50 mg of sodium in 10 ml of ethanol) was added and the reaction mixture was again stirred at reflux overnight. The next morning water was added to the reaction mixture and the resulting solution was then extracted with ethyl acetate. The organic extract was washed sequentially with water and a saturated brine solution, dried over sodium sulfate and then concentrated in vacuo to provide 2.33 g of a brown oil. This oil was purified by flash chromatography [2.5% Isopropanol In chloroform (NH₄OH)] to provide 260 mg of title product as a light yellow solid. Such product was purified by recrystallization from hexane. Analysis calculated for C₂₆H₃₀N₄O

Theory: C, 74.59; H, 7.51; N, 13.92; Found: C, 74.59; H, 7.52; N, 13.90.

Example 13

Preparation of (-)(2aR,4S)-6-(2-furyl)-4-(di-n-propylamino)-1,2,2a,3,4,5-hexahydrobenz[cd]indole

To a sealed tube with threads containing 13 ml of dry tetrahydrofuran were added 1.2 g (2.46 mmol) of (+)(2aS,4R)-1-benzyl-6-iodo-4-(di-n-propylamino)-1,2,2a,3,4,5-hexahydrobenz[cd]indole, 968 mg (2.71 mmol) of 2-(tributylstannyl)furan and 200 mg of bis(triphenylphosphine)palladium(II) chloride. The resulting mixture was then deaerated with argon for 15 minutes. After deaeration, the tube was sealed with a teflon cap and the contents thereof were heated at reflux temperature for 24 hours. After 24 hours, the reaction mixture was cooled, filtered concentrated in vacuo to provide a viscous orange oil. Flash chromatography of this oil over silica gel with 60% ethyl acetate/hexane plus 0.5% ammonium hydroxide as eluent gave the protected analog of the title compound in 61% yield.

The above-mentioned protected analog (635 mg, 1.4 mmol) was dissolved in 10 ml of dry tetrahydrofuran and the resulting solution was chilled to a -78°C. Once chilled, 1.5 ml (2.39 mmol) of a 1.7M solution of n-butyllithium in hexane was added dropwise via syringe. Once n-butyllithium addition was complete the reaction mixture was warmed to room temperature. The reaction mixture was quenched with a saturated NaHCO₃ solution and then partitioned between ethyl acetate and water. The aqueous layer was extracted with ethyl acetate, and the organic layers were combined, washed with a saturated brine solution, dried over sodium sulfate and then concentrated in vacuo to provide a viscous orange oil. This oil was chromatographed over silica gel (elution with 20% ethyl acetate/hexane plus 0.5% ammonium hydroxide) to provide 161 mg of title compound as a pale yellow oil.

MS m/e 324(FD)

[α]_D -45.63°(MeOH)

Analysis calculated for C₂₁H₂₈N₂O:

Theory: C, 77.74; H, 8.70; N, 8.63;

Found: C, 78.74; H, 8.82; N, 8.27.

30 Example 14

35

Preparation of (+)(2aS,4R)-6-(2-furyl)-4-(di-n-propylamino)-1,2,2a,3,4,5-hexahydrobenz[cd]indole

The title compound was prepared substantially in accordance with the method set forth in Example 13, above, utilizing 1.5 g (3.07 mmol) of (-)(2aR,4S)-1-benzyl-6-iodo-4-(di-n-propylamino)-1,2,2a,3,4,5-hexahyd-robenz[cd]Indole, 250 mg of bls(triphenylphosphine)palladlum(II) chloride and 1.21 g (3.38 mmol) of 2-(tributyl-stannyl)furan to provide 592 mg of title compound as a viscous brown oil.

MS m/e 325.22(FD)

ω [α]_D +42.0°(MeOH)

Analysis calculated for C₂₁H₂₈N₂O:

Theory: C, 77.74; H, 8.70; N, 8.63;

Found: C, 77.59; H, 8.10; N, 8.83.

45 Example 15

Preparation of (-)(2aR,4\$)-6-(3-furyl)-4-(di-n-propylamino)-1,2,2a,3,4,5-hexahydrobenz[cd]indole

The title compound was prepared substantially in accordance with the method described in Example 13, above, utilizing 1.50 g (3.07 mmol) of (+)(2aS,4R)-1-benzyl-6-iodo-4-(di-n-propylamino)-1,2,2a,3,4,5-hexahyd-robenz[cd]indole, 1.21 g (3.38 mmol) of 3-(tributylstannyl)furan and 250 mg of bis(triphenylphosphine)palladium(II) chloride to provide 711 mg of title product as a pale yellow viscous oil.

MS m/e 324(FD)

Analysis calculated for C₂₁H₂₈N₂O

55 Theory: C, 77.24; H, 8.70; N, 8.63;

Found: C, 77.49; H, 8.68; N, 8.45.

Example 16

Preparration of (+)(2aS,4R)-6-(2-thiophenyl)-4-(di-n-propylamino)1,2,2a,3,4,5-hexahydrobenz[cd]indole

The title compound was prepared substantially in accordance with the method set forth in Example 13, above, utilizing 1.5 g (3.1 mmol) of (-)(2aR,4S)-1-benzyl-6-iodo-4-(di-n-propylamino)-1,2,2a,3,4,5-hexahyd-robenz[cd]indole, 150 mg of bis(triphenylphosphine)palladium(II) chloride and 1.27 g (3.41 mmol) of 2-(tributyl-stannyl)thiophene to provide 719 mg of title compound as a light brown viscous oil.

MS m/e 341(FD)

Analysis calculated for C₂₁H₂₈N₂S

Theory: C, 74.07; H, 8.29; N, 18.60; S, 9.42;

Found: C, 74.24; H, 8.60; N, 7.52; S, 9.15.

Example 17

15

Preparation of (+)(2aS,4R)-6-(2-pyridinyl)-4-(di-n-propylamino)-1,2,2a,3,4,5-hexahydrobenz[cd]indole

The title compound was prepared substantially in accordance with the method set forth in Example 13, above, utilizing 1.50 g (3.07 mmol) of (-)(2aR,4S)-1-benzyl-6-iodo-4-(di-n-propylamino)-1,2,2a,3,4,5-hexahyd-robenz[cd]indole, 250 mg of bis(triphenylphosphine)palladium(II) chloride and 1.24 g (3.38 mmol) of 2-(tributyl-stannyl)pyridine to produce 474 mg of title compound as a colorless foam. The hydrochloride salt of the title compound was prepared by dissolving the foam in diethyl ether and then treating the resulting solution with a saturated hydrochloric acid in methanol solution. A yellow foam comprised of such salt was afforded after concentration in vacuo.

5 MS m/e 336.24(FD)

Analysis calculated for C22H29N3•HCI

Theory: C, 71.04; H, 8.13; N, 11.30;

Found: C, 70.60; H, 8.46; N, 10.58.

30 Example 18

Preparation of (+)(2aS,4R)-6-(3-pyrridyl)-4-(di-n-propylamino)-1,2,2a,3,4,5-hexahydrobenz[cd]indole

The title compound was prepared substantially in accordance with the procedure set forth in Example 13, above, utilizing 1.50 g (3.07 mmol) of (-)(2aR,4S)-1-benzyl-6-iodo-4-(di-n-propylamino)-1,2,2a,3,4,5-hexahyd-robenz[cd]indole, 250 mg of bis(triphenylphosphine)palladium(II) chloride and 1.24 g (3.38 mmol) of 3-(tributyl-stannyl)pyrridine to produce 475 mg of title compound as a pale yellow oil. The bishydrochloric acid salt of the title compound was prepared by dissolving the oil in diethyl ether and then adding a saturated hydrochloric acid in methanol solution dropwise. Once an excess of hydrochloric acid has been added the mixture was concentrated in vacuo to provide a pale yellow foam.

MS m/e 336.24(FD)

Analysis calculated for C22H29N3•2HCI:

Theory: C, 64.70; H, 7.65; N, 10.29;

Found: C, 65.84; H, 7.55; N, 9.76.

Example 19

Preparation of (-)(2aR,4S)-6-(2-oxazolyl)-4-(di-n-propylamino)-1,2,2a,3,4,5-hexahydrobenz[cd]indole

50 A. 2-tributylstannyloxazole

A solution of 1.00 g (14.5 mmol) of oxazole in 25 ml of THF at -78°C was treated with 10.2 ml (14.6 mmol) of 1.43M butyllithium in hexane. After stirring for 30 minutes, an addition of 3.93 ml (14.5 mmol) of tributyltin chloride was made, and the solution was allowed to warm to room temperature. Stirring was continued for another hour after which most of the solvents were evaporated in vacuo. The resulting residue was taken up in 50 ml of hexane, and the resulting precipitate was separated by filtration through filtercel. Evaporation of the solvent from the filtrate provided 5.13 g of a colorless oil which was identified by NMR as the 2-stannyl derivative plus a small amount of tetrabutylstannane.

B. (-)(2aR,4S)-1-benzoyl-6-(2-oxazolyl)-4-(di-n-propylamino)-1,2,2a,3,4,5-hexahydrobenz[cd]indole

A solution of 5.0 g (13.8 mmol) of the crude 2-tributylstannyloxazole prepared above and 6.8 g (13.9 mmol) of (+)(2aS,4R)-1-benzoyl-6-iodo-4-(di-n-propylamino)-1,2,2a,3,4,5-hexahydrobenz[cd]indole in 100 ml of toluene was treated with 0.7 g (0.6 mmol) of tetrakis(triphenylphosphine)palladium then refluxed under nitrogen for 20 hours. After cooling the reaction mixture was washed with a saturated brine solution and then dried over Na2SO₄. Concentration in vacuo provided a viscous oil which was chromatographed over a silica gel column using a solvent gradient progressing from toluene to 1:1 toluene/EtOAc. The product from the column was dissolved in 1M HCl. This solution was then washed with ether, basicified with 5M NaOH, and extracted with CH₂Cl₂. Concentration of the extract in vacuo gave about 4 g of a brown oil. When this oil was dissolved in pentane a small amount of a red/brown resin separated leaving a clear, yellow solution. The resin was separated and the pentane was evaporated to provide a residue. This residue was crystallized by dissolving it in a small amount of CH₂Cl₂ and slowly adding isoctane. The crystalline (-)(2aR,4S)-1-benzoyl-6-(2-oxazolyl)-4-(din-propylamino)-1,2,2a,3,4,5-hexahydrobenz[cd]indole, obtained in four crops, weighed 2.63 g. mp 103-4°C.

C. (-)(2aR,4S)-6-(2-oxazolyl)-4-(di-n-propylamino)-1,2,2a,3,4,5-hexahydrobenz[cd]indole

A solution of 1.00 g (2.33 mmol) of the above 1-benzoyl compound in 25 ml of THF was stirred at -78°C as 3.0 ml (4.29 mmol) of 1.43M butyllithium in hexane was added. The resulting solution was allowed to warm to 0°C, then poured into water and extracted with CH₂Cl₂. The CH₂Cl₂ extract was then, in turn, extracted with 1M HCl. The resulting aqueous extract was basicified with 1M NaOH, and, in turn, extracted with CH₂Cl₂. After drying over Na2SO₄, the extract was concentrated in vacuo to provide title compound as a viscous oil. MS m/e 326(FD)

 $[\alpha]_D = -60^{\circ}(MeOH).$

Analysis calculated for C₂₀H₂₇N₃O:

Theory: C, 73.81; H, 8.36; N, 12.91;

Found: C, 73.37; H, 8.26; N, 12,09.

Example 20

30

Preparation of (-)(2aR,4S)-6-(5-isoxazolyl)-4-[di-(cyclopropylmethyl)amino]-1,2,2a,3,4,5-hexahydrobenz[cd]indole

To a solution of (-)(2aR,4S)-6-acetyl-4-[di-(cyclopropylmethyl)amino]-1,2,2a,3,4,5-hexahydrobenz[cd]indole (2.5 g, 7.7 mmol) and triethylamine (1.1 ml, 8 mmol) in 90 ml $\rm CH_2Cl_2$ was added dropwise a solution of 2,2,2-trichloroethylchloroformate (1.7 g, 8 mmol) in 10 ml $\rm CH_2Cl_2$. The reaction mixture was stirred at room temperature for one hour and then extracted with water and 1N HCl. The organic solution was washed with a saturated NaHCO₃ solution, a saturated brine solution, dried over MgSO₄ and then concentrated to dryness in vacuo to give 3.1 g of the 1-carbamylindoline.

A solution of the 1-carbamylindoline (3.1 g, 6.2 mmol) and tris(dimethylamino)methane (5 ml) in 100 ml of toluene was stirred at reflux for 16 hours. After 16 hours the reaction mixture was concentrated to dryness in vacuo. The resulting residue was dissolved in 50 ml of acetic acid and 2.0 g (29 mmol) of a hydroxylamine hydrochloride solution were added. The resulting reaction mixture was stirred at room temperature for 16 hours and then concentrated to dryness in vacuo. The resulting residue was suspended in water and an excess of a concentrated NH₄OH solution was added to basicify the mixture. The basic mixture was then extracted with CH₂Cl₂ and the resulting organic extract was washed with a saturated brine solution, dried over MgSO₄ and then concentrated in vacuo to give 2.1 g of an oil. This oil was chromatographed (flash column, silica gel, EtOAc) to yield 1.7 g of the protected (-) (2aR,4S)-6-isoxazolylindoline.

The above compound (1.7 g, 3.2 mmol) was dissolved in 30 ml of acetic acid and 1.5 g of zinc dust were added all at once. The resulting reaction mixture was stirred at room temperature for four hours and then filtered through a celite pad. The filtrate thus obtained was then concentrated to dryness in vacuo. The resulting residue was suspended in a saturated NaHCO₃ solution, which was extracted with CH₂Cl₂. The organic extract was then washed with a saturated brine solution, dried over MgSO₄ and concentrated in vacuo to an oil. This oil was chromatographed (flash column, silica gel, EtOAc) to give 660 mg of title compound.

Example 21

Preparation of (+)(4S)-8-(3-isoxazolyl)-4-(di-n-propylamino)-1,3,4,5-tetrahydrobenz[cd]indole.

A mixture of (+)-6-(3-isoxazolyl)4-(di-n-propylamino)-1,2,2a,3,4,5-hexahydrobenz[cd]indole (180 mg, 0.5 mmol) and 1 g of MnO₂ in 40 mL of CH₂Cl₂ was sonicated at 50-55 KHz for 2 hr. The reaction mixture warmed to reflux during the time period. The reaction mixture was filtered through a celite pad and the filtrate was concentrated to dryness *in vacuo*. The residue was chromatographed (flash column, silica gel, ethyl acetate) to provide 50 mg of the isoxazole indole product as an oil.

Example 22

Preparation of (-)(4R)-6-(3-isoxazolyl)-4-(di-n-propylamino)-1,3,4,5-tetrahydrobenz[cd]indole

A mixture of (-)(2aR,4S)-6-(3-Isoxazolyl)-4-(dl-n-propylamino)-1,2,2a,3,4,5-hexahydrobenz[cd]indole (400 mg, 1.2 mmol) and 1g of MnO₂ in 100 ml of CH₂Cl₂ was sonicated at 50-55 KHz for four hours. The reaction mixture was warmed to reflux during the time period. After four hours, the reaction mixture was filtered through a celite pad and the filtrate was concentrated to dryness in vacuo. The resulting residue was chromatographed (flash column, silica gel, EtOAc) to provide 55 mg of title product as an oil.

NMR (300 MHz, CDCl₃) δ 0.90 (t, 6H); 1.2-1.6 (m, 5H); 2.2-3.6 (m, 8H); 6.6 (s, 1H); 6.9 (s, 1H); 7.2 (d, 1H); 7.4 (d, 1H); 8.0 (bs, 1H); 8.4 (s, 1H).

Example 23

25

Preparation of (-)(4R)-6-(5-isoxazolyl)-4-(di-n-propylamino)-1,3,4,5-tetrahydrobenz[cd]indole

A mixture of (-)(2aR,4S)-8-(5-isoxazolyl)-4-(di-n-propylamino)-1,2,2a,3,4,5-hexahydrobenz[cd]indole (253 mg, 0.8 mmol) and 1g of MnO₂ in 100 ml of CH₂Cl₂ was sonicated at 50-55 KHz for four hours. The reaction mixture was warmed to reflux during the time period. After four hours, the reaction mixture was filtered through a celite pad and the filtrate was concentrated to dryness in vacuo. The resulting residue was chromatographed (flash column, silica gel, EtOAc) to provide 130 mg of title product. Recrystallization from hexane gave 60 mg of purified title product.

mp 126-127°C

MS m/e 323(FD)

Analysis calculated for C20H25N3O

Theory: C, 74.27; H, 7.79; N, 12.99;

Found: C, 74.44; H, 7.71; N, 12.78.

40 Example 24

Preparation of (-)(4R)-8-(5-isoxazolyl)-4-[di-(cyclopropylmethyl)amino]-1,3,4,5-tretrahydrobenz[cd]indole

A mixture of (-)(2aR,4S)-6-(5-isoxazolyl)-4-[di-cyclopropylmethyl)amino]-1,2,2a,3,4,5-hexahydfobenz[cd]indole (660 mg, 1.9 mmol) and 3g of MnO₂ in 100 ml of CH₂Cl₂ was sonicated at 50-55 KHz for four hours. The reaction mixture was warmed to reflux during the time period. After four hours, the reaction mixture was filtered through a celite pad and the filtrate was concentrated to dryness in vacuo. The resulting residue was chromatographed (flash column, silica gel, EtOAc) to provide 300 mg of title product. Recrystallization from hexane gave 125 mg of purified title product.

50 mp 146-147°C

MS m/e 347(FD)

Analysis calculated for C₂₂H₂₅N₃O

Theory: C, 76.05; H, 7.25; N, 12.09;

Found: C, 76.09; H, 7.37; N, 12.10.

Example 25

5

Preparation of (-)(4R)-6-(3-pyrazyl)-4-[di-(cyclopropylmethyl)amino]-1,3,4,5-tetrahydrobenz[cd]indole

A solution of (-)(4R)-6-acetyl-4-[di-(cyclopropylmethyl)amino]-1,3,4,5-tetrahydrobenz[cd]indole (0.5 g, 1.6 mmol) and 2 ml of tris(dimethylamino)methane in 100 ml of toluene was refluxed for 16 hours. After 16 hours, the reaction solution was concentrated to dryness in vacuo and the resulting residue was dissolved in 100 ml of ethanol. Two milliters of an 85% hydrazine solution were added to the ethanolic solution and the resulting reaction mixture was stirred at reflux temperature for 2 hours. After 2 hours, the reaction solution was, again, concentrated to dryness in vacuo. The resulting residue was then dissolved in 50 ml of 1N hydrochloric acid and the acidic solution was extracted with EtOAc. After extraction with EtOAc the acidic solution was then basicified by adding an excess of a concentrated NH₄OH solution. The basic mixture was then extracted with EtOAc. The organic extract was washed with a saturated brine solution, dried over MgSO₄ and concentrated to dryness in vacuo to provide 500 mg of an oil. This oil was purified via chromatography (silica gel, flash column, EtOAc) to provide 400 mg of title compound as an oil.

MS m/e 346(FD)

NMR (300 MHz, CDCl₃) δ 0.1 (bs, 4H); 0.5 (m, 4H); 0.95 (m, 2H); 1.3 (dd, 1H); 2.6-3.8 (m, 9H); 6.4 (s, 1H); 6.9 (s, 1H); 7.2 (d, 1H); 7.3 (d, 1H); 7.6 (s, 1H); 8.2 (bs, 1H).

20 Example 26

Preparation of (-)(4R)-6-(3-pyrazyl)-4-(di-n-propylamino)-1,2,2a,3,4,5-tetrahydrobenz[cd]indole

A solution of (-)(4R)-6-acetyl-4-(di-n-propylamino)-1,3,4,5-tetrahydrobenz[cd]indole (0.4 g, 1.3 mmol) and 2 ml of tris(dimethylamino)methane in 100 ml of toluene was refluxed for 16 hours. After that time, the reaction solution was concentrated to dryness in vacuo and the resulting residue was dissolved in 100 ml of ethanol. Two milliliters of an 85% hydrazine solution were added to the ethanolic solution and the resulting reaction mixture was stirred at reflux for 2 hours. After 2 hours, the reaction solution was concentrated to dryness in vacuo and the resulting residue was dissolved in 50 ml of 1N hydrochloric acid. The acidic solution was extracted with EtOAc and then bacisified by adding an excess of a concentrated NH₄OH solution. The basic mixture was then extracted with EtOAc. The organic extract was washed with a saturated brine solution, dried over MgSO₄ and then concentrated in vacuo to provide an oil. This oil was purified by chromatography (silica gel, flash column, EtOAc) to provide 400 mg of title compound as an oil.

5 NMR (300 MHz CDCl₃) δ 0.9 (t, 6H); 1.5 (m, 4H); 2.4-2.6 (m, 4H); 2.8 (dd, 1H); 3.0 (m, 2H); 3.1-3.3 (m, 2H); 6.5 (s, 1H); 6.9 (s, 1H); 7.1 (d, 1H); 7.3 (bs, 1H); 7.7 (d, 1H); 8.1 (bs, 1H).

Example 27

Preparation of (-) (4R)-6-(3-phenyloxadiazol-5-yl)-4-(dipropylamino)-1,3,4,5-tetrahydrobenz[cd]indole

Magnesium dioxide (200 mg) was added to a solution of (-) (2aR,4S)-6-(3-phenyloxadiazol-5-yl)-4-(din-propylamino)-1,2,2a,3,4,5-hexahydroxbenz[cd]indole (40 mg, 0.10 mmol) in 15 ml of hexane. The resulting mixture was then sonicated at 50-55 KHz, while maintaining the reaction solution's temperature between 25-35°C, for 135 minutes. After that time the reaction mixture was filtered through celite and the recovered solid was washed sequentially with hexane and CH₂Cl₂. The filtrate was combined with the organic washes and the resulting solution was washed sequentially with water and a saturated brine solution, dried over Na₂SO₄ and then concentrated in vacuo to give 30 mg of an orange film. This film was purified by flash chromatography [2:3 ether:hexane (NH₄OH)] to give 70 mg of title product. This product was purified by recrystallization from a CH₂Cl₂/hexane solvent system to give 50 mg of title compound as a light green solid.

Analysis calculated for C₂₅H₂₈N₄O•0.25 H₂O

Theory: C, 74.14; H, 7.09; N, 13.83; Found: C, 74.21; H, 7.01; N, 13.58.

Example 28

Preparation of (-)(4R)-6-(2-oxazolyl)-4-(di-n-propylamino)-1,3,4,5-tetrahydrobenz[cd]indole

A mixture of (-)(2aR,4S)-6-(2-oxazolyl)-4-(di-n-propylamino)-1,2,2a,3,4,5-hexahydrobenz[cd]indole (650 mg, 2.0 mmol) and 2.5g of MnO₂ in 30 ml of CH₂Cl₂ was sonicated at 50-55 KH₂ for 5 hours. After 5 hours, the reaction mixture was filtered through a celite pad and the filtrate was concentrated to dryness in vacuo. The resulting residue was chromatographed (flash column, silica gel, 1:9 EtOAc/toluene) to yield a solid which, upon crystallization from isooctane, provided 240 mg of title product.

mp 73-74°C MS me 324(FD)

15

40

 $[\alpha]_D = -60^{\circ}(MeOH)$.

Analysis calculated for C₂₀H₂₅N₃O

Theory: C, 74.27; H, 7.79; N, 12.99;

Found: C, 73.97; H, 7.84; N, 12.90.

The present compounds of Formula 1 have been found to have selective affinity for the 5HT receptors in the brain with much less affinity for other receptors. Because of their ability to selectively bind to 5HT receptors, the compounds of Formula 1 are useful in treating disease states which require alteration of 5-HT receptor function, particularly 5-HT_{1A}, and/or 5HT_{1D} but without the side effects which may be associated with less selective compounds. This alteration may involve reproducing (an agonist) or inhibiting (an antagonist) the function of serotonin. These disease states include anxiety, depression, gastric acid secretion, hypertension, nausea, sexual dysfunction, cognition, senile dementia, migraine, consumptive disorders such as appetite disorders, alcoholism and smoking. The foregoing conditions are treated with a pharmaceutically effective amount of a compound of Formula 1 or a pharmaceutically acceptable salt thereof.

The term "pharmaceutically effective amount", as used herein, represents an amount of a compound of the invention which is capable of diminishing the adverse symptoms of the particular disease. The particular dose of compound administered according to this invention of course be determined by the particular circumstances surrounding the case, including the compound administered, the route of administration, the particular condition being treated, and similar considerations. The compounds can be administered by a variety of routes including the oral, rectal, transdermal, subcutaneous, intravenous, intramuscular or intranasal routes. A typical single dose for prophylactic treatment, however, will contain from about 0.01 mg/kg to about 50 mg/kg of the active compound of this invention when administered orally. Preferred oral doses will be about 0.01 to about 3.0 mg/kg, ideally about 0.01 to about 0.1 mg/kg. When a present compound is given orally it may be necessary to administer the compound more than once each day, for example about every eight hours. For IV administration by bolus, the dose will be from about 10 μg/kg to about 300 μg/kg, preferably about 20 μg/kg to about 50 μg/kg.

The following experiments were conducted to demonstrate the ability of the compounds of the Formula I to bind to 5-HT receptors. Such experiments demonstrate the utility of the compounds of Formula I in treating disease states (such as those noted above) which require alteration of the 5-HT receptor function.

The affinities of certain of the compounds of Formula 1 at the central 5-HT_{1A} receptors were determined using a modification of the binding assay described by Taylor, et al., J. Pharmacol. Exp. Ther., 236, 118-125 (1986). Membranes for the binding assay were prepared from male Sprague-Dawley rats (150-250 g). The animals were killed by decapitation, and the brains were rapidly chilled and dissected to obtain the hippocampi. Membranes from the hippocampi were either prepared that day, or the hippocampi were stored frozen (-70°C) until the day of preparation. The membranes were prepared by homogenizing the tissue in 40 volumes of icecold Tris-HCl buffer (50 mM, pH 7.4 at 22°C) using a Techmar Tissumizer (setting 65 for 15 seconds), and the homogenate was centrifuged at 39800xg for 10 minutes. The resulting pellet was then resuspended in the same buffer, and the centrifugation and resuspension process was repeated three additional times to wash the membranes. Between the second and third washes the resuspended membranes were incubated for 10 minutes at 37°C to facilitate the removal of endogenous ligands. The final pellet was resuspended in 67 mM Tris-HCl, pH 7.4, to a concentration of 2 mg of tissue original wet weight/200 µl. This homogenate was stored frozen (-70°C) until the day of the binding assay. Each tube for the binding assay had a final volume of 800 µl and contained the following: Tris-HCI (50 mM), pargyline (10 μM), CaCl₂ (3 mM), [PH]8-OH-DPAT (1.0 nM), appropriate dilutions of the drugs of interest, and membrane resuspension equivalent to 2 mg of original tissue wet weight, for a final pH of 7.4. The assay tubes were incubated for 10 minutes at 37°C, and the contents were then rapidly filtered through GF/B filters (pretreated with 0.5% polyethylenimine), followed by four 1 ml washes with ice-cold buffer. The radioactivity trapped by the filters was quantitated by liquid scintillation spectometry, and specific [3H]8-OH-DPAT binding to the 5-HT_{1A} sites was defined as the difference between [3H]8-OH-DPAT bound in

the presence and absence of 10 µM 5-HT.

45

55

The results of the evaluation of various compounds of Formula 1 in the test system described above are set forth in Table 1, below. In Table 1, the first column provides the example number of the compound evaluated while the second column provides the amount of test compound (expressed in nanomolar concentration) required to inhibit the binding of [3H]8-OH-DPAT by 50% (indicated as IC₅₀).

TABLE I

10	EXAMPLE NO.	5-HTLA in vitro binding (IC ₅₀ ,nM)
15	21	0.61
	23	0.10
•	27	7.1

The affinities of certain of the compounds of Formula 1 at the central 5-HT_{1D} binding sites were determined using a modification of the binding assay described by Heuring and Peroutka, J. Neurosci., 7, 894 (1987). Bovine brains were obtained and the caudate nuclei were dissected out and frozen at -70°C until the time that the membranes were prepared for the binding assays. At that time the tissues were homogenized in 40 volumes of ice-cold Tris-HCl buffer (50 mM, pH 7.4 at 22°C) with a Techmar Tissumizer (setting 65 for 15 seconds). and the homogenate was centrifuged at 39,800 xg for 10 minutes. The resulting pellet was then resuspended in the same buffer, and the centrifugation and resuspension process was repeated three additional times to wash the membranes. Between the second and third washes the resuspended membranes were incubated for 10 minutes at 37°C to facilitate the removal of endogenous 5-HT. The final pellet was resuspended in Tris buffer to a concentration of 25 mg of original tissue wet weight/ml for use in the binding assay. Each tube for the binding assay had a final volume of 800 µl and contained the following: Tris-HCl (50 mM), pargyline (10 µM), ascorbate (5.7 mM), CaCl₂ (3mM), 8-OH-DPAT (100 nM to mask 5-HT_{1A} receptors), mesulergine (100 nM to mask 5-HT_{1C} receptors), [3H]5-HT (1.7-1.9 nM), appropriate dilutions of the drugs of interest, and membrane resuspension equivalent to 5 mg of original tissue wet weight, for a final pH of 7.4. The assay tubes were incubated for 10 minutes at 37°C, and the contents were then rapidly filtered through GF/B filters (pretreated with 0.5% polyethylenimine), followed by four 1 ml washes with ice-cold buffer. The radioactivity trapped by the filters was quantitated by liquid scintillation spectrometry, and specific [3H]5-HT binding to the 5-HT_{1D} sites was defined as the difference between [3H]5-HT bound in the presence and absence of 10 µm 5-HT.

The results of the evaluation of various compounds of Formula 1 in the test system described above are set forth in Table 2 below. In Table 2, the first column provides the example number of the compound evaluated while the second column provides the amount of test compound (expressed in nanomolar concentration) required to inhibit the binding of [3H]-5-HT by 50% (indicated as IC₅₀).

TABLE 2
In Vitro Binding Activity At The 5-HTID Receptor

	5-HTlD in vitro		
50	EXAMPLE NO.	binding (IC50,nM)	
	21	18.60	
	23	46.36	

The compounds of the present invention are preferably formulated prior to administration. Therefore, yet another embodiment of the present invention is a pharmaceutical formulation comprising a compound of the invention and a pharmaceutically acceptable excipient therefor.

The present pharmaceutical formulations are prepared by known procedures using well known and readily available ingredients. In making the compositions of the present invention, the active ingredient will usually be mixed with an excipient, diluted by an excipient or enclosed within an excipient serving as a carrier which can be in the form of a capsule, sachet, paper or other container. When the excipient serves as a diluent, it can be a solid, semi-solid or liquid material which acts as a vehicle, carrier or medium for the active ingredient. Thus, the compositions can be in the form of tablets, pills, powders, lozenges, sachets, cachets, elixirs, suspensions, emulsions, solutions, syrups, aerosols (as a solid or in a liquid medium), ointments containing for example up to 10% by weight of the active compound, soft and hard gelatin capsules, suppositories, sterile injectable solutions and sterile packaged powders.

Some examples of suitable excipients include lactose, dextrose, sucrose, sorbitol, mannitol, starches, gum acacia, calcium phosphate, alginates, tragacanth, gelatin, calcium silicate, microcrystalline cellulose, polyvinylpyrrolidone, cellulose, water, syrup, and methyl cellulose. The formulations can additionally include lubricating agents such as talc, magnesium stearate and mineral oil, wetting agents, emulsifying and suspending agents, preserving agents such as methyl and propylhydroxybenzoates, sweetening agents or flavoring agents. The compositions of the invention may be formulated so as to provide quick, sustained or delayed release of the active ingredient after administration to the patient by employing procedures well known in the art.

The compositions are preferably formulated in a unit dosage form, each dosage containing from about 0.5 to about 50 mg, more usually about 1 to about 10 mg of the active ingredient. The term "unit dosage form" refers to physically discrete units suitable as unitary dosages for human subjects and other mammals, each unit containing a predetermined quantity of active material calculated to produce the desired therapeutic effect, in association with a suitable pharmaceutical excipient.

The following formulation examples are illustrative only and are not intended to limit the scope of the invention in any way.

5 Formulation 1

Hard gelatin capsules are prepared using the following ingredients:

	•	Quantity (mg/capsule)
30 ·	(+)-6-(3-isoxazolyl)-4-(di-n-	
	propylamino)-1,3,4,5-tetrahydroben	1 z -
	[cd]indole	25
35	Starch, dried	425
	Magnesium stearate	10
	Total	460 mg

The above Ingredients are mixed and filled into hard gelatin capsules in 460 mg quantities.

Formulation 2

40

A tablet formula is prepared using the ingredients below:

45	•	Ouantity (mg/tablet)
	(±)-6-[3-(5-aminothiazoly1)]-4-	
	(di-n-propylamino)-1,3,4,5-tetra-	
50	hydrobenz[cd]indole	25
	Cellulose, microcrystalline	625
	Colloidal Silicon dioxide	10
55	Stearic acid	· 5

The components are blended and compressed to form tablets each weighing 665 mg.

Formulation 3

A dry powder inhaler formulation is prepared containing the following components:

5		Weight %
	(±)-6-(5-isoxazolyl)-4-(di-n-	
	propylamino)-1,3,4,5-tetrahydrobenz-	
10	[cd] indole	5
70	Lactoge	05

The active compound is mixed with the lactose and the mixture added to a dry powder inhaling applicance.

15 Formulation 4

Tablets each containing 60 mg of active ingredient are made up as follows:

The active ingredient, starch and cellulose are passed through a No. 20 mesh U.S. sieve and mixed thoroughly. The solution of polyvinylpyrrolldone is mixed with the resultant powders which are then passed through a No. 4 mesh U.S. sieve. The granules so produced are dried at 50-60°C and passed through a No. 16 mesh U.S. sieve. The sodium carboxymethyl starch, magnesium stearate and talc, previously passed through a No. 30 mesh U.S. sieve, are then added to the granules which, after mixing, are compressed on a tablet machine to yield tablets each weighing 150 mg.

Formulation 5

45

Capsules each containing 20 mg of medicament are made as follows:

50	50 (±)-6-(5-oxadiazolyl)-4-(di-		
	methylamino)-1,3,4,5-tetrahydrobenz-		
	[cd]indole	20	mg
55	Starch	169	mg
	Magnesium stearate	1	mg
	Total	190	mg

The active ingredient, cellulose, starch and magnesium stearate are blended, passed through a No. 20 mesh U.S. sieve, and filled into hard gelatin capsules in 190 mg quantities.

Formulation 6

5

10

15

20

Suppositories each containing 225 mg of active ingredient are made as follows:

The active ingredient is passed through a No. 60 mesh U.S. sieve and suspended in the saturated fatty acid glycerides previously melted using the minimum heat necessary. The mixture is then poured into a suppository mold of nominal 2 g capacity and allowed to cool.

Formulation 7

Suspensions each containing 50 mg of medicament per 5 ml dose are made as follows:

	(±)-6-(2-thiazolyl)-4-(di-n-	
25	propylamino)-1,3,4,5-tetrahydrobenz-	•
	[cd]indole	50 mg
	Xanthan Gum	4 mg
00	Sodium carboxymethyl cellulose (11%)	
30	Microcrystalline Cellulose (89%)	50 mg
	Sucrose	1.75 g
	Sodium Benzoate	10 mg
35		
	Flavor	q.v.
40	Color	q.v.
40	Purified water to	5 ml

The medicament, sucrose and xanthan gum are blended, passed through a No. 10 mesh U.S. sieve, and then mixed with a previously made solution of the microcrystalline cellulose and sodium carboxymethylcellulose in water. The sodium benzoate, flavor and color are diluted with some of the water and added with stirring. Sufficient water is then added to produce the required volume.

Formulation 8

50 Capsules each containing 50 mg of medicament are made as follows:

(+)-6-(5-isoxazolyl)-4-(di-methyl-amino)-1,3,4,5-tetrahydrobenz[cd]-indole 50 mg
Starch 507 mg
Magnesium stearate 3 mg
Total 560 mg

4

The active ingredient, cellulose, starch and magnesium stearate are blended, passed through a No. 20 mesh U.S. sieve, and filled Into hard gelatin capsules.

15 Claims

A compound of the formula

20

25

30

35

40

45

55

5

10

HET NR¹ R²

wherein

 R^1 is hydrogen, C_1 - C_4 alkyl, C_3 - C_4 alkenyl, cyclopropylmethyl, phenyl - substituted C_1 - C_4 alkyl, -(CH₂)_nS(C_1 - C_4 alkyl), -C(O)R⁴,

-(CH₂)_nC(O)NR⁵R⁶;

R2 is hydrogen, C1-C4 alkyl, cyclopropylmethyl or C3-C4 alkenyl;

R³ is hydrogen, C₁-C₄ alkyl or an amino protecting group;

n is 1-4:

R4 is hydrogen, C1-C4 alkyl, C1-C4 haloalkyl, C1-C4 alkoxy or phenyl;

 R^5 and R^6 are independently hydrogen, a C_1 - C_4 alkyl, or a C_5 - C_8 cycloalkyl with the proviso that when one of R^5 or R^6 is a cycloalkyl the other is hydrogen;

HET is an aromatic 5- or 6-membered heterocyclic ring, said ring having from one to three heteroatoms from the group consisting of sulfur, oxygen, and nitrogen with the proviso that the 6-membered heterocyclic ring can only contain carbon and nitrogen and with the further proviso that the 5-membered ring contains no more than one oxygen or one sulfur but not both oxygen and sulfur; or pharmaceutically acceptable salts thereof.

- The compound of Claim 1 wherein HET is an isoxazole, a pyrazole, a pyridine, a thiazole, a furan, a thiophene, an oxadiazole or a pharmaceutically acceptable salt thereof.
- 3. The compound of Claim 1 or Claim 2 wherein R¹ and R² are independently C₁-C₃ alkyl or a pharmaceutically acceptable salt thereof.
- 4. The compound of any one of Claims 1 to 3 wherein R³ is hydrogen or a pharmaceutically acceptable salt thereof.
 - 5. The compound of Claim 1 or Claim 2 wherein R¹ is -(CH₂)_nC(O)NR⁵Rê wherein n is 2, R⁵ is hydrogen, R⁶ is cyclohexyl, R² is C₁-C₃ alkyl, and R³ is hydrogen or C₁-C₄ alkyl or a pharmaceutically acceptable salt thereof.
 - A substantially pure stereoisomer of a compound of any one of Claims 1 to 5 or a pharmaceutically acceptable salt thereof.

- 7. A compound of Claim 1 selected from the group propylamino)-1,3,4,5-tetrahydrobenz[cd]indole; (-)(4R)-6-(5-isoxazolyl)-4-(di-n-propylamino)-1,3,4,5-tetrahydrobenz[cd]indole; (±)-6-(3-pyrazolyl)-4-(di-n-propylamino)-1,3,4,5-tetrahydrobenz[cd]indole; (-)(4R)-6-(4-pyridinyl)-4-(di-n-propylamino)-1,3,4,5-tetrahydrobenz[cd]indole; (-)(4R)-6-(4-pyridinyl)-4-(di-n-propylamino)-1,3,4,5-tetrahydrobenz[cd]indole; (-)(4R)-6-(2-pyridinyl)-4-(di-n-propylamino)-1,3,4,5-tetrahydrobenz[cd]indole; (-)(4R)-6-(3-thiazolyl)-4-(di-n-propylamino)-1,3,4,5-tetrahydrobenz[cd]indole; (-)(4R)-6-(5-isoxazolyl)-4-[di-(cyclopropropylmethy)-amino]-1,3,4,5-tetrahydrobenz[cd]indole; (-)(4R)-6-(3-isoxazolyl)-4-[di-(cyclopropylmethy)-amino]-1,3,4,5-tetrahydrobenz[cd]indole; (-)(4R)-6-(3-pyrazyl)-4-[di-(cyclopropylmethyl)amino]-1,3,4,5-tetrahydrobenz[cd]indole; (-)(4R)-6-(3-pyrazyl)-4-(di-n-propylamino)-1,3,4,5-tetrahydrobenz[cd]indole; (-)(4R)-6-(2-oxazolyl)-4-(di-n-propylamino)-1,3,4,5-tetrahydrobenz[cd]indole; (-)(4R)-6-(2-oxazolyl)-4-(di-n-pro
- A pharmaceutical formulation comprising as active ingredient a compound as claimed in any one of Claims
 to 7, or a pharmaceutically acceptable salt thereof, associated with one or more pharmaceutically acceptable carriers, diluents or excipients therefor.
 - 9. A compound as claimed in any one of Claims 1 to 7 for use in treating serotonin related disorders.
 - 10. A process for preparing a compound of the formula 1

wherein

5

10

25

30

35

40

45

50

55

 R^1 is hydrogen, C_1 - C_4 alkyl, C_3 - $_4$ alkenyl, cyclopropylmethyl, phenyl - substituted C_1 - C_4 alkyl, -(CH_2)_nS(C_1 - C_4 alkyl), -C(O) R^4 ,

-(CH₂)_nC(O)NR⁵R⁶;

R² is hydrogen, C₁-C₄ alkyl, cyclopropylmethyl or C₃-C₄ alkenyl;

R3 is hydrogen, C1-C4 alkyl or an amino protecting group;

n is 1-4;

R4 is hydrogen, C1-C4 alkyl, C1-C4 haloalkyl, C1-C4 alkoxy or phenyl;

R⁵ and R⁶ are independently hydrogen, a C₁-C₄ alkyl, or a C₅-C₆ cycloalkyl with the proviso that when one of R⁵ or R⁶ is a cycloalkyl the other is hydrogen;

HET is an aromatic 5- or 6-membered heterocyclic ring, said ring having from one to three heteroatoms which are the same or different and which are selected from the group consisting of sulfur, oxygen, and nitrogen with the proviso that the 6-membered heterocyclic ring can only contain carbon and nitrogen and with the further proviso that the 5-membered ring contains no more than one oxygen or one sulfur but not both oxygen and sulfur; or a pharmaceutically acceptable salt thereof, which comprises:

1) reacting a 4-amino-6-metallo-substituted hexahydrobenz[cd]indole of the formula

wherein R1 and R2 are as set forth above; Z is an amino protecting group and M is a metallo moiety,

with a heterocyclic compound of the formula

HET-L,

wherein HET is as defined above and L is a leaving group;

2) deprotecting a compound of the formula

15

5

10

wherein HET, R¹ and R² are as defined above and R³ is an amino protecting group so as to provide a compound of the formula 1 wherein R³ is hydrogen;

3) reacting a 4-amino-6-halo-substituted hexahydrobenz[cd]indole of the formula

20

25

wherein R^1 , R^2 and R^3 are as defined above and X is halo with an organometallic derivative of the formula

M-HET

wherein HET is as defined above and M is lithium, magnesium, zinc, tin, mercury or boronic acid; 4) reacting a compound of the formula

35

40

30

45

where R^1 , R^2 and R^3 are as defined above and R_a is hydrogen, C_1 - C_3 alkyl, halogen, $O(C_1$ - C_3 alkyl), $S(C_1$ - C_3 alkyl), CN or phenyl, with a 1,3-dipole of the formula

*T = U-V

in which T, U and V can be selected from the following list

55

<u>T</u>	U	<u>v</u>
CR_a	N	CHRa
CRa	N	NR_b
CRa	N	0
N	N	0
CRa	CRa'	NR_b
CRa	CRa'	0
N ·	CRa'	CHRa
N	CRa'	NR_b
N	CRa'	0

where R_a is as set forth above, R_a' is hydrogen, C_1 - C_3 alkyl, halogen, $O(C_1$ - C_3 alkyl), $S(C_1$ - C_3 alkyl), CN or phenyl and R_b is hydrogen, C_1 - C_3 alkyl, phenyl or $(C_1$ - C_3 alkyl)phenyl, so as to provide a compound of the

wherein R^1 , R^2 , R^3 , R_a , T, U and V are as set forth above; 5) reacting a compound of the formula

15

20

25

30

35

40

45

50

55

wherein R¹. R², and R³ are as defined above and R₂ is hydrogen, C₁-C₃ alkyl, halogen, O(C₁-C₃ alkyl), S(C₁-C₃ alkyl), CN or phenyl, with a 1, 3 - dipole of the formula ${}^{4}T$ -U = V $^{-}$

in which T, U and V are selected from the following

_T	U	<u>v</u>
CHRa	N	N

where Ra is as set forth above and Rb is hydrogen, C1-C3 alkyl, phenyl or (C1-C3 alkyl)phenyl, so as to

provide a compound of the formula

5

,10

15

20

25

30

35

40

45

50

55

wherein R¹, R², R³, R_a, V, U and T are as defined above; 6) reacting a compound of the formula

wherein R^1 , R^2 and R^3 are as set forth above, X is halo and R_a is hydrogen, C_1 - C_3 alkyl, halogen, OH, $O(C_1$ - C_3 alkyl), $S(C_1$ - C_3 alkyl), NH_2 , CN or phenyl, with

 $\text{NH}_4{}^+\text{R}_a\text{COO-}$ (where R_a is as defined above) so as to provide a mixture of compounds of the formula

and then, optionally, separating the compounds from each other; 7) dehydrating a compound of the formula

wherein R^1 , R^2 and R^3 are as set forth above, A is $C-R_a$ or NH and each R_a is independently hydrogen, C_1-C_3 alkyl, halogen, OH, O(C_1-C_3 alkyl), S(C_1-C_3 alkyl), NH₂, CN or phenyl, so as to provide a compound of the formula 1 wherein HET is

Pa N

8) cyclizing and dehydrating a compound of the

5

10

30

35

40

45

50

55

15 OR_C R_a R_a ONH OR_C R_a ONH OR_C OR_C OR

wherein R^1 , R^2 and R^3 are as set forth above, R_a is hydrogen, C_1 - C_3 alkyl, halogen, OH, O(C_1 - C_3 alkyl), S(C_1 - C_3 alkyl), NH₂, CN or phenyl and R_a is hydrogen or C_1 - C_3 alkyl, so as to provide a compound of the formula 1 wherein HET is

$$R_a$$

9) reacting a compound of the formula

R₃C=O NR¹R²

where R^1 , R^2 and R^3 are as set forth above and R_4 is halo, $S(C_1-C_3$ alkyl), S(phenyl), $S(C_1-C_3$ alkyl-phenyl), NH_2 , $NH(C_1-C_3$ alkyl), $N(C_1-C_3$ alkyl), $OCO(C_1-C_3$ alkyl-phenyl), with

so as to provide a compound of the formula 1 wherein HET is

10) cyclizing and dehydrating a compound of the formula

wherein R^1 , R^2 and R^3 are as set forth above and R_a is hydrogen, C_1 - C_3 alkyl, halogen, OH, O(C_1 - C_3 alkyl), so as to provide a compound of the formula 1 wherein HET is

11) cyclizing and dehydrating a compound of the formula

wherein R¹, R² and R³ are as set forth above and R₂ is hydrogen, C₁-C₃ alkyl, halogen, OH, O(C₁-C₃ alkyl), S(C₁-C₃ alkyl), NH₂, CN or phenyl, with hydroxylamine so as to provide a compound of the formula 1 wherein HET is

12) cyclizing and dehydrating a compound of the formula

wherein R^1 , R^2 and R^3 are as set forth above and R_a is hydrogen, $C_{1^-}C_3$ alkyl, halogen, OH, O($C_{1^-}C_3$ alkyl), S($C_{1^-}C_3$ alkyl), NH₂, CN or phenyl, with hydroxylamine so as to provide a compound of the formula 1 wherein HET is

13) cyclizing and dehydrating a dianion of the formula

wherein R^1 , R^2 and R^3 are as set forth above and R_a is hydrogen, C_1 - C_3 alkyl, halogen, OH, O(C_1 - C_3 alkyl), derivative of the formula R_a COOR $_c$ (where R_a is as defined above and R_c is hydrogen or C_1 - C_3 alkyl) or R_a CON(CH $_3$) $_2$ (where R_a is as defined above) so as to provide a compound of the formula 1 wherein HET is

14) cyclizing and dehydrating a compound of the formula

wherein R^1 , R^2 and R^3 are as set forth above and R_a is hydrogen, C_1 - C_3 alkyl, halogen, OH, O(C_1 - C_3 alkyl), S(C_1 - C_3 alkyl), NH₂, CN or phenyl, with hydroxylamine so as to provide a compound of the formula 1 wherein HET is

15) reacting a compound of the formula

R³-N

wherein R^1 , R^2 and R^3 are as set forth above, X is halo and R_a is hydrogen, C_1 - C_3 alkyl, halogen, OH, O(C_1 - C_3 alkyl), S(C_1 - C_3 alkyl), NH₂, CN or phenyl, with

(where $R_{\!\scriptscriptstyle a}$ is as set forth above) so as to provide a compound of the formula 1 wherein HET is

16) reacting a compound of the formula

wherein R^1 , R^2 and R^3 are as set forth above and R_a is hydrogen, C_1 - C_3 alkyl, halogen, OH, O(C_1 - C_3 alkyl), S(C_1 - C_3 alkyl), NH₂, CN or phenyl, with KSCN, and then R_o X (where R_o is hydrogen or C_1 - C_3 alkyl and X is halogen) in the presence of a base so as to provide a compound of the formula 1 wherein HET is

17) dehydrating a compound of the formula

wherein R^1 , R^2 and R^3 are as set forth above and R_a is hydrogen, C_1 - C_3 alkyl, halogen, OH, O(C_1 - C_3 alkyl), S(C_1 - C_3 alkyl), NH₂, CN or phenyl, in the presence of ammonia or ammonium hydroxide so as to provide a compound of the formula 1 wherein HET is

18) reacting a compound of the formula

wherein R^1 , R^2 and R^3 are as set forth above and R_b is hydrogen, C_1 - C_3 alkyl, phenyl or (C_1 - C_3 alkyl)phenyl, with a compound of the formula

wherein R_a is hydrogen, C_1 - C_3 alkyl, halogen, OH, O(C_1 - C_3 alkyl), S(C_1 - C_3 alkyl), NH₂, CN or phenyl, and X is halo, so as to provide a compound of the formula 1 wherein HET is

19) dehydrating a compound of the formula

wherein R^1 , R^2 and R^3 are as set forth above, R_a is hydrogen, C_1 - C_3 alkyl, halogen, OH, O(C_1 - C_3 alkyl), S(C_1 - C_3 alkyl), NH₂, CN or phenyl, and R_b is hydrogen, C_1 - C_3 alkyl, phenyl or (C_1 - C_3 alkyl)phenyl, in the presence of ammonia or ammonium hydroxide so as to provide a compound of the formula 1 wherein HET is

20) reacting a compound of the formula

5

10

15

20

25

30

35

40

50

55

P_a NR¹ R²

wherein R^1 , R^2 and R^3 are as set forth above and R_a is hydrogen, C_1 – C_3 alkyl, halogen, OH, O(C_1 – C_3 alkyl), S(C_1 - C_3 alkyl), NH₂, CN or phenyl, with an azide of the formula R_bN_3 , where R_b is hydrogen, C_1 – C_3 alkyl, phenyl or (C_1 – C_3 alkyl)phenyl, followed by dehydration of the resulting compound so as to provide a compound of the formula 1 wherein HET is

21) cyclizing and dehydrating a compound of the formula

NH NH NR¹ R²

wherein R^1 , R^2 and R^3 are as set forth above, R_a is hydrogen, C_1 - C_3 alkyl), halogen, OH, O(C_1 - C_3 alkyl), S(C_1 - C_3 alkyl), NH₂, CN or phenyl, and B is O or NH, so as to provide a compound of the formula 1 wherein

with the proviso that when B is O said cyclization reaction is run in the presence of ammonia or ammonium hydroxide;

22) reacting a compound of the formula

wherein R^1 , R^2 and R^3 are as set forth above and R_d is OH, O(C₁-C₃ alkyl), O(phenyl), O(C₁-C₃ alkyl), phenyl), halo, S(C₁-C₃ alkyl), S(phenyl), S(C₁-C₃ alkyl), P(C₁-C₃ alkyl), NH₂, NH(C₁-C₃ alkyl), N(C₁-C₃ alkyl)₂, OCO(C₁-C₃ alkyl), OCO(phenyl) or OCO(C₁-C₃ alkyl)phenyl), with a compound of the formula

wherein R_a is hydrogen, C₁-C₃ alkyl, halogen, OH, as to provide a compound of the formula 1 wherein HET is

23) reacting a compound of the formula

wherein R¹, R² and R³ are as set forth above, with R_aCN , where R_a is hydrogen, C_1 - C_3 alkyl, halogen, OH, O(C_1 - C_3 alkyl), S(C_1 - C_3 alkyl), NH₂, CN or phenyl, so as to provide a compound of the formula 1 wherein HET is

24) cyclizing and dehydrating a compound of the formula

wherein R^1 , R^2 and R^3 are as set forth above and R_a is hydrogen, C_1 – C_3 alkyl, halogen, OH, O(C_1 – C_3 alkyl), S(C_1 – C_3 alkyl), NH₂, CN or phenyl, so as to provide a compound of the formula 1 wherein HET is

25) reacting a compound of the formula

O R_s
NR¹ R²

wherein R^1 , R^2 and R^3 are as set forth above and R_a is hydrogen, C_1 - C_3 alkyl, halogen, OH, O(C_1 - C_3 alkyl), S(C_1 - C_3 alkyl), NH₂, CN or phenyl, with a compound of the formula

(where R_e is as set forth above) in the presence of an oxidizing agent, so as to provide a compound of the formula 1 wherein HET is

26) reacting a compound of the formula

5

10

15

20

25

30

35

40

45

50

55

P_a P_a NR¹ R²

wherein R¹, R² and R³ are as set forth above and R_a is hydrogen, C₁-C₃ alkyl, halogen, OH, O(C₁-C₃ alkyl), S(C₁-C₃ alkyl), NH₂, CN or phenyl, with a compound of the formula H₂NNHR₀, where R₀ is hydrogen, C₁-C₃ alkyl, phenyl or (C₁-C₃ alkyl)phenyl, so as to provide compounds of the formula 1 wherein HET is

and then, optionally, separating the compounds from each other; 27) reacting a compound of the formula

N(CH₃)₂
R_a
NR¹R²

wherein R^1 , R^2 and R^3 are as set forth above and R_a is hydrogen, C_1 – C_3 alkyl, halogen, OH, O(C_1 – C_3 alkyl), S(C_1 – C_3 alkyl), NH₂, CN or phenyl, with a compound of the formula H₂NNHR_b, where R_b is hydrogen, C₁–C₃ alkyl, phenyl or (C₁–C₃ alkyl)phenyl, so as to provide compounds of the formula 1 wherein HET is

 $\begin{array}{c|c} & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & &$

and then, optionally, separating the compounds from each other;

wherein R^1 , R^2 and R^3 are as set forth above and R_a is hydrogen, C_1 – C_3 alkyl, halogen, OH, O(C_1 – C_3 alkyl), S(C_1 – C_3 alkyl), NH₂, CN or phenyl, with a compound of the formula H₂NNHR_b, where R_b is hydrogen, C₁–C₃ alkyl, phenyl or (C₁–C₃ alkyl)phenyl, so as to provide compounds of the formula 1 wherein HET is

and then, optionally, separating the compounds from each other; 29) reacting a compound of the formula

wherein R^1 , R^2 and R^3 are as set forth above and R_a is hydrogen, C_1 – C_3 alkyl, halogen, OH, O(C_1 – C_3 alkyl), S(C_1 – C_3 alkyl), NH $_2$, CN or phenyl, with a compound of the formula H $_2$ NNHR $_b$, where R_b is hydrogen, C_1 – C_3 alkyl, phenyl or (C_1 – C_3 alkyl)phenyl, so as to provide a compound of the formula 1 wherein HET is

30) reacting a compound of the formula

wherein R^1 , R^2 and R^3 are as set forth above and R_a is hydrogen, C_1 - C_3 alkyl, halogen, OH, O(C_1 - C_3 alkyl), S(C_1 - C_3 alkyl), NH₂, CN or phenyl, with a compound of

(where $R_{\mathbf{a}}$ is as set forth above) so as to provide a compound of the formula 1 wherein HET is

31) reacting a compound of the formula

wherein R^1 , R^2 and R^3 are as set forth above and R_a is hydrogen, C_1 - C_3 alkyl, halogen, OH, O(C_1 - C_3 alkyl), S(C_1 - C_3 alkyl), NH₂, CN or phenyl, with a compound of the formula

(where Ra is as set forth above) so as to provide a compound of the formula 1 wherein HET is

32) reacting a compound of the formula

CH₃S_{SCH₃}
R_a
NR¹R²

wherein R^1 , R^2 and R^3 are as set forth above and R_a is hydrogen, C_1 - C_3 alkyl, halogen, OH, O(C_1 - C_3 alkyl), S(C_1 - C_3 alkyl), NH₂, CN or phenyl, with a compound of the formula

(where Ra is as set forth above) so as to provide a compound of the formula 1 wherein HET is

33) reacting a compound of the formula

where R^1 , R^2 and R^3 are as set forth above and R_a is hydrogen, C_1 - C_3 alkyl, halogen, OH, O(C_1 - C_3 alkyl), S(C_1 - C_3 alkyl), NH₂, CN or phenyl, with a compound of the formula

(where Ra is as set forth above) so as to provide a compound of the formula 1 wherein HET is

N N :

34) reacting a compound of the formula

wherein R1, R2 and R3 are as set forth above, with a compound of the formula

where R_a is hydrogen, C_1 - C_3 alkyl, halogen, OH, O(C_1 - C_3 alkyl), S(C_1 - C_3 alkyl), NH₂, CN or phenyl, so as to provide a compound of the formula 1 wherein HET is

35) reacting a compound of the formula

wherein R^1 , R^2 and R^3 are as set forth above and R_o is hydrogen or C_1 - C_3 alkyl, with a compound of the formula R_o CH₂NNH, where R_o is hydrogen, C_1 - C_3 alkyl, halogen, OH, O(C_1 - C_3 alkyl), S(C_1 - C_3 alkyl), NH₂, CN or phenyl, so as to provide a compound of the formula 1 wherein HET is

36) reacting a compound of the formula

wherein R^1 , R^2 and R^3 are as set forth above, and R_a is hydrogen, C_1 - C_3 alkyl, halogen, OH, O(C_1 - C_3 alkyl), S(C_1 - C_3 alkyl), NH₂, CN or phenyl, so as to provide a

37) reacting a compound of the formula

wherein R¹, R² and R³ are as set forth above, and R_a is hydrogen, C_1 – C_3 alkyl), halogen, OH, O(C_1 – C_3 alkyl), S(C_1 – C_3 alkyl), NH₂, CN or phenyl, with P₂S₅ so as to provide a compound of the formula 1 wherein HET is

38) reacting a compound of the formula

wherein R^1 , R^2 and R^3 are as set forth above, with a compound of the formula $H_2NNHCSNH_2$, in the presence of polyphosphoric acid, so as to provide a compound of the formula 1 wherein HET is

39) reacting a compound of the formula

wherein R^1 , R^2 and R^3 are as set forth above, with carbon disulfide so as to provide a compound of the formula 1 wherein HET is

40) reacting a compound of the formula

wherein R^1 , R^2 and R^3 are as set forth above, with $(CNS)_2$ so as to provide a compound of the formula 1 wherein HET is

41) oxidizing a compound of the formula

wherein R^1 , R^2 and R^3 are as set forth above, and R_a is hydrogen, C_1 - C_3 alkyl, halogen, OH, O(C_1 - C_3 alkyl), S(C_1 - C_3 alkyl), NH₂, CN or phenyl, so as to provide a compound of the formula 1 wherein HET is

S Pa

42) reacting a compound of the formula

5

10

25

30

35

40

45

50

55

wherein R^1 , R^2 and R^3 are as set forth above and Y is -CN or -C(O)NH₂, with an oxidizing agent such as SOCl₂, SCl₂, S₂Cl₂ or SO₂Cl₂ so as to provide a compound of the formula 1 wherein HET is

43) reacting a compound of the formula

R₃ NR¹R²

wherein R¹, R² and R³ are as set forth above, X is halogen and R_a is hydrogen, C₁-C₃ alkyl, halogen, OH, O(C₁-C₃ alkyl), S(C₁-C₃ alkyl), NH₂, CN or phenyl, with R_aCSNH₂, where R_a is as set forth above, so as to provide a compound of the formula 1 wherein HET is

44) reacting a compound of the formula

wherein R¹, R² and R³ are as set forth above, and R_a is hydrogen, C_1 - C_3 alkyl, halogen, OH, O(C_1 - C_3 alkyl), S(C_1 - C_3 alkyl), NH $_2$, CN or phenyl, with P_2S_5 so as to provide a compound of the formula 1 wherein HET is

45) reacting a compound of the formula

wherein R^1 , R^2 and R^3 are as set forth above, with a compound of the formula

where R_a is hydrogen, C₁-C₃ alkyl, halogen, OH, O(C₁-C₃ alkyl), S(C₁-C₃ alkyl), NH₂, CN or phenyl, so as to provide a compound of the formula 1 wherein HET is

46) reacting a compound of the formula

wherein R^1 , R^2 and R^3 are as set forth above, and R_a is hydrogen, C_1 - C_3 alkyl), halogen, OH, O(C_1 - C_3 alkyl), S(C_1 - C_3 alkyl), NH₂, CN or phenyl, with R_a C(S)NH₂, where R_a is as set forth above, so as to provide a compound of the formula 1 wherein HET is

47) reacting a compound of the formula

H₂N = R₃ NR¹ R²

wherein R^1 , R^2 and R^3 are as set forth above and R_a is hydrogen, C_1 - C_3 alkyl, halogen, OH, O(C_1 - C_3 alkyl), S(C_1 - C_3 alkyl), NH₂, CN or phenyl, with an oxidizing agent so as to prepare a compound of the formula 1 wherein HET is

48) reacting a compound of the formula

wherein R^1 , R^2 and R^3 are as set forth above and R_a is hydrogen, C_1 - C_3 alkyl, halogen, OH, O(C_1 - C_3 alkyl), S(C_1 - C_3 alkyl), NH₂, CN or phenyl, with an oxidizing agent so as to provide a compound of the formula 1 wherein HET is

49) reacting a compound of the formula

Pa NR¹ R²

wherein R^1 , R^2 and R^3 are as set forth above and R_a is hydrogen, C_1 - C_3 alkyl), halogen, OH, O(C_1 - C_3 alkyl), S(C_1 - C_3 alkyl), NH₂, CN or phenyl, with an oxidizing agent so as to provide a compound of the formula 1 wherein HET is

50) reacting a compound of the formula

wherein R¹, R² and R³ are as set forth above and W is hydrogen or CHO, with KSCN or NaHSSO₃ and then reacting the intermediate formed thereby with ammonia or ammonium hydroxide so as to provide a compound of the formula 1 wherein HET is

SIN

51) reacting a compound of the formula

5

10

15

20

25

30

35

40

45

50

55

NR¹ R²

wherein R^1 , R^2 and R^3 are as set forth above and W is hydrogen or CHO, with H_2NSSO_3K and then reacting the intermediate formed thereby with a base so as to provide a compound of the formula 1 wherein HET is

SIN

52) reacting a compound of the formula

COOR_C

H₂N

NR¹ R²

wherein R^1 , R^2 and R^3 are as set forth above and R_c is hydrogen or C_1 - C_3 alkyl, with $CSCl_2$ so as to provide a compound of the formula 1 wherein HET is

53) reacting a compound of the formula

wherein R^1 , R^2 and R^3 are as set forth above and R_a is hydrogen, C_1 - C_3 alkyl, halogen, OH, O(C_1 - C_3 alkyl), S(C_1 - C_3 alkyl), NH₂, CN or phenyl, with NCS so as to provide a compound of the formula 1 wherein HET is

54) reacting a compound of the formula

wherein R^1 , R^2 and R^3 are as set forth above, X is halogen and R_a is hydrogen, C_1 - C_3 alkyl, halogen, OH, O(C_1 - C_3 alkyl), S(C_1 - C_3 alkyl), NH₂, CN or phenyl, with

(where Ra is as set forth above) so as to provide a compound of the formula 1 wherein HET is

55) reacting a compound of the formula

wherein R1, R2 and R3 are as set forth above and D is =NH or =O, with a compound of the formula

R_a R_a

5

10

15

20

25

30

35

40

45

50

55

where R_a is hydrogen, C_1 - C_3 alkyl, halogen, OH, O(C_1 - C_3 alkyl), S(C_1 - C_3 alkyl), NH₂, CN or phenyl, so as to provide a compound of the formula 1 wherein HET is

56) reacting a compound of the formula 1 wherein HET is substituted with at least one hydroxy group with POX₃, PX₃, SOX₂, P(phenyl)₃ \bullet X₂ or P(C₁-C₃ alkoxy)3 \bullet X₂, where each X is a halogen, so as to convert the hydroxy group to a halogen substituent;

57) reacting a compound of the formula 1 where HET is substituted with at least one amino group with HONO so as to form the corresponding diazonium ion, followed by conversion of such ion to the corresponding halide substituted compound with CuX (where X is halogen), KI or HBF₄ with heat;

58) reacting a compound of the formula 1 wherein HET is substituted with at least one halogen substituent with an alkoxide anion of the formula

so as to convert the halogen substituent to an alkoxy substituent;

59) reacting a compound of the formula 1 wherein HET is substituted with at least one hydroxy group with a $(C_1-C_3$ alkyl)halide so as to convert the hydroxy group to an alkoxy substituent;

60) reacting a compound of the formula 1 wherein HET is substituted with at least one hydroxy substituent with a diazo compound of the formula $(C_1-C_3 \text{ alkyl})N_2$ so as to convert the hydroxy group to an alkoxy substituent;

61) reacting a compound of the formula 1 wherein HET is substituted with at least one amino group with HONO so as to form the corresponding diazonium ion, followed by conversion of such ion to the corresponding hydroxy substituted compound using water or an acid;

62) reacting a compound of the formula 1 wherein HET is substituted with at least one C_1 - C_3 alkoxy group with concentrated hydroiodic acid, concentrated hydrobromic acid or a Lewis Acid so as to convert the alkoxy group to a hydroxy substituent;

63) reacting a compound of the formula 1 wherein HET is substituted with at least one amino substituent with HONO so as to form the corresponding diazonium ion, followed by conversion of such ion to the

corresponding nitrile substituted compound using CuCN;

64) reacting a compound of the formula 1 wherein HET is substituted with at least one amino substituent with HONO so as to form the corresponding diazonium ion, followed by conversion of such ion to the corresponding C_1 - C_3 alkylthio substituted compound using a C_1 - C_3 alkyl mercaptan;

65) reacting a compound of the formula 1 wherein HET is substituted with at least one halogen substituent with an alkylthio anion of the formula

so as to convert the halogen substituent to an alkylthio moiety;

66) reacting a compound of the formula 1 wherein HET is substituted with at least one -SH moiety with a $(C_1-C_3 \text{ alkyl})$ halide so as to provide the corresponding compound of the formula 1 having an alkylthio moiety;

67) reducing a compound of the formula 1 wherein HET is substituted with at least one nitro substituent, so as to provide a compound of the formula 1 wherein the nitro substituent is converted to an amino moiety;

68) reducing a compound of the formula 1 wherein HET is substituted with at least one halogen substituent so as to convert the halogen substituent to a hydrogen atom;

69) reducing a compound of the formula 1 wherein HET is substituted with at least one hydroxy group so as to convert the hydroxy substituent to a hydrogen atom;

70) reacting a compound of the formula 1 wherein HET is substituted with at least one amino moiety with HONO so as to form the corresponding diazonium ion, followed by conversion of such ion to the corresponding unsubstituted compound using H₃PO₂;

71) reducing a compound of the formula 1 wherein HET is substituted on one of the nitrogen atoms in such heterocyclic ring with a C₁-C₃ alkyl phenyl group so as to provide the corresponding compound of the formula 1 wherein the nitrogen atom is unsubstituted;

72) reducing a compound of the formula 1 wherein HET is substituted with at least one C_1 - C_3 alkylthic moiety so as to provide the corresponding unsubstituted compound of the formula 1;

73) oxidizing a compound of the formula

wherein HET, R¹, R² and R³ are as defined above, so as to provide a compound of the formula 1; or 74) reacting a compound of the formula 1 with a pharmaceutically acceptable organic or inorganic acid so as to form a pharmaceutically acceptable acid addition salt of such compound.

Claims for the following Contracting States: GR, ES

A process for preparing a compound of the formula

wherein

5

10

15

20

25

30

35

40

50

55

R¹ is hydrogen, C_1 – C_4 alkyl, C_3 – C_4 alkenyl, cyclopropylmethyl, phenyl - substituted C_1 – C_4 alkyl, -(CH₂)_n S(C_1 - C_4 alkyl), -C(O)R⁴, -(CH₂)_nC(O)NR⁵R⁶;

R² is hydrogen, C₁-C₄ alkyl, cyclopropylmethyl or C₃-C₄ alkenyl;

R3 is hydrogen, C1-C4 alkyl or an amino protecting group;

n is 1-4;

5

10

15

20

25

30

35

40

45

50

55

R4 is hydrogen, C1-C4 alkyl, C1-C4 haloalkyl, C1-C4 alkoxy or phenyl;

 R^5 and R^6 are independently hydrogen, a C_1 - C_4 alkyl, or a C_5 - C_8 cycloalkyl with the proviso that when one of R^5 or R^6 is a cycloalkyl the other is hydrogen;

HET is an aromatic 5- or 6-membered heterocyclic ring, said ring having from one to three heteroatoms which are the same or different and which are selected from the group consisting of sulfur, oxygen, and nitrogen with the proviso that the 6-membered heterocyclic ring can only contain carbon and nitrogen and with the further proviso that the 5-membered ring contains no more than one oxygen or one sulfur but not both oxygen and sulfur; or a pharmaceutically acceptable salt thereof, which comprises:

1) reacting a 4-amino-6-metallo-substituted hexahydrobenz[cd]indole of the formula

wherein R^{1} and R^{2} are as set forth above; Z is an amino protecting group and M is a metallo moiety, with a heterocyclic compound of the formula

HET-L.

wherein HET is as defined above and L is a leaving group;

2) deprotecting a compound of the formula

wherein HET, R¹ and R² are as defined above and R³ is an amino protecting group so as to provide a compound of the formula 1 wherein R³ is hydrogen;

3) reacting a 4-amino-6-halo-substituted hexahydrobenz[cd]indole of the formula

wherein R1, R2 and R3 are as defined above and X is halo with an organometallic derivative of the formula

M-HET

where HET is as defined above and M is lithium, magnesium, zinc, tin, mercury or boronic acid; 4) reacting a compound of the formula

where R¹, R² and R³ are as defined above and R_a is hydrogen, C_1 - C_3 alkyl, halogen, $O(C_1$ - C_3 alkyl), $S(C_1$ - C_3 alkyl), CN or phenyl, with a 1,3-dipole of the formula $^+T = U$ -V- $^-$

in which T, U and V can be selected from the following list.

<u> </u>	U	v
CRa	N	CHR
CRa	N	NR
CRa	N	0
N	N	0
CRa	CRa'	NRb
CRa	CR _a '	0
N	CRa'	CHRa
N	CRa'	NRb
N	CRa '	o

where R_a is as set forth above, R_a' is hydrogen, C_1 - C_3 alkyl, halogen, $O(C_1$ - C_3 alkyl), $S(C_1$ - C_3 alkyl), CN or phenyl and R_b is hydrogen, C_1 - C_3 alkyl, phenyl or $(C_1$ - C_3 alkyl)phenyl, so as to provide a compound of the formula

wherein R^1 , R^2 , R^3 , R_a , T, U and V are as set forth above; 5) reacting a compound of the formula

wherein R^1 , R^2 , and R^3 are as defined above and R_a is hydrogen, C_1 - C_3 alkyl, halogen, $O(C_1$ - C_3 alkyl), $S(C_1$ - C_3 alkyl), C_1 - C_3 alkyl), C_2 - C_3 alkyl), C_3 - C_4 - C_5 -

+T-U = V-

in which T, U and V are selected from the following

<u> </u>	U	V	
CHRa	N	N	
NRb	N	N	

where R_a is as set forth above and R_b is hydrogen, C_1 - C_3 alkyl, phenyl or $(C_1$ - C_3 alkyl) phenyl, so as to provide a compound of the formula

wherein R^1 , R^2 , R^3 , R_a , V, U and T are as defined above; 6) reacting a compound of the formula

wherein R^1 , R^2 and R^3 are as set forth above, X is halo and R_a is hydrogen, C_1 - C_3 alkyl, halogen, OH, $O(C_1$ - C_3 alkyl), $S(C_1$ - C_3 alkyl), NH_2 , CN or phenyl, with NH_4 + R_a COO- (where R_a is as defined above) so as to provide a mixture of compounds of the formula

1 wherein HET is

5

15

20

25

30

35

40

45

50

55

R_a and R_a

and then, optionally, separating the compounds from each other; 7) dehydrating a compound of the formula

NH NR¹ R²

wherein R^1 , R^2 and R^3 are as set forth above, A is C-R_a or NH, and each R_a is independently hydrogen, C₁-C₃ alkyl, halogen, OH, O(C₁-C₃ alkyl), S(C₁-C₃ alkyl), NH₂, CN or phenyl, so as to provide a compound of the formula 1 wherein HET is

8) cyclizing and dehydrating a compound of the formula

wherein R^1 , R^2 and R^3 are as set forth above, R_a is hydrogen, C_1 - C_3 alkyl, halogen, OH, O(C_1 - C_3 alkyl), S(C_1 - C_3 alkyl), NH₂, CN or phenyl and R_c is hydrogen or C_1 - C_3 alkyl, so as to provide a compound of the formula 1 wherein HET is

9) reacting a compound of the formula

5

10

15

20

25

30

35

40

45

55

R₃C=0 NR¹ R²

where R^1 , R^2 and R^3 are as set forth above and R_d is OH, O(C₁-C₃ alkyl), O(phenyl), O(C₁-C₃ alkyl-phenyl), NH₂, halo, S(C₁-C₃ alkyl), S(phenyl), S(C₁-C₃ alkyl-phenyl), NH(C₁-C₃ alkyl), N(C₁-C₃ alkyl), OCO(C₁-C₃ alkyl), OCO(phenyl), or OCO(C₁-C₃ alkyl-phenyl), with

so as to provide a compound of the formula 1 wherein HET is

10) cyclizing and dehydrating a compound of the formula

wherein R^1 , R^2 and R^3 are as set forth above and R_a is hydrogen, C_1 - C_3 alkyl, halogen, OH, O(C_1 - C_3

alkyl), S(C₁-C₃ alkyl), NH₂, CN or phenyl, with hydroxylamine so as to provide a compound of the formula 1 wherein HET is

N Ra

11) cyclizing and dehydrating a compound of the formula

5

10

15

20

25

30

35

45

50

55

H N(CH₃)₂

R₃

NR¹ R²

wherein R^1 , R^2 and R^3 are as set forth above and R_a is hydrogen, C_1 - C_3 alkyl, halogen, OH, O(C_1 - C_3 alkyl), S(C_1 - C_3 alkyl), NH₂, CN or phenyl, with hydroxylamine so as to provide a compound of the formula 1 wherein HET is

 $P_{\mathbf{a}}$;

12) cyclizing and dehydrating a compound of the formula

CH₃S SCH₃

R₈

NR¹ R²

wherein R^1 , R^2 and R^3 are as set forth above and R_a is hydrogen, C_1 - C_3 alkyl), halogen, OH, O(C_1 - C_3 alkyl), S(C_1 - C_3 alkyl), NH₂, CN or phenyl, with hydroxylamine so as to provide a compound of the formula 1 wherein HET is

N SCH₃

13) cyclizing and dehydrating a dianion of the formula

wherein R^1 , R^2 and R^3 are as set forth above and R_a is hydrogen, C_1 – C_3 alkyl, halogen, OH, O(C_1 – C_3 alkyl), S(C_1 – C_2 alkyl), NH₂, CN or phenyl, with a carbonyl derivative of the formula R_a COOR_a (where R_a is as defined above and R_a is hydrogen or C_1 – C_3 alkyl) or R_a CON(CH₃)₂ (where R_a is as defined above so as to provide a compound of the formula 1 wherein HET is

14) cyclizing and dehydrating a compound of the formula

wherein R^1 , R^2 and R^3 are as set forth above and R_a is hydrogen, C_1 - C_3 alkyl, halogen, OH, O(C_1 - C_3 alkyl), S(C_1 - C_3 alkyl), NH₂, CN or phenyl, with hydroxylamine so as to provide a compound of the formula 1 wherein HET is

15) reacting a compound of the formula

$$\bigcap_{\mathsf{R}_{\mathsf{S}}}^{\mathsf{X}}\mathsf{R}_{\mathsf{S}}$$

$$\mathsf{NR}^{\mathsf{1}}\mathsf{R}^{\mathsf{2}}$$

wherein R^1 , R^2 and R^3 are as set forth above, X is halo and R_a is hydrogen, C_1 - C_3 alkyl, halogen, OH, O(C_1 - C_3 alkyl), S(C_1 - C_3 alkyl), NH₂, CN or phenyl, with

(where Ra is as set forth above) so as to provide a compound of the formula 1 wherein HET is

16) reacting a compound of the formula

wherein R^1 , R^2 and R^3 are as set forth above and R_a is hydrogen, C_1 - C_3 alkyl, halogen, OH, O(C_1 - C_3 alkyl), S(C_1 - C_3 alkyl), NH₂, CN or phenyl, with KSCN, and then R_o X (where R_o is hydrogen or C_1 - C_3 alkyl and X is halogen) in the presence of a base so as to provide a compound of the formula 1 wherein HET is

17) dehydrating a compound of the formula

wherein R^1 , R^2 and R^3 are as set forth above and R_a is hydrogen, C_1 – C_3 alkyl, halogen, OH, O(C_1 – C_3 alkyl), S(C_1 – C_3 alkyl), NH₂, CN or phenyl, in the presence of ammonia or ammonium hydroxide so as to provide a compound of the formula 1 wherein HET is

18) reacting a compound of the formula

wherein R^1 , R^2 and R^3 are as set forth above and R_b is hydrogen, C_1 - C_3 alkyl, phenyl or $(C_1$ - C_3 alkyl)phenyl, with a compound of the formula

wherein R_a is hydrogen, C₁-C₃ alkyl, halogen, OH, O(C₁-C₃ alkyl), S(C₁-C₃ alkyl), NH₂, CN or phenyl, and X is halo, so as to provide a compound of the formula 1 wherein HET is

19) dehydrating a compound of the formula

wherein R^1 , R^2 and R^3 are as set forth above, R_a is hydrogen, C_1 - C_3 alkyl, halogen, OH, O(C_1 - C_3 alkyl), S(C_1 - C_3 alkyl), NH₂, CN or phenyl, and R_b is hydrogen, C_1 - C_3 alkyl, phenyl or (C_1 - C_3 alkyl)phenyl, in the presence of ammonia or ammonium hydroxide so as to provide a compound of the formula 1 wherein HET is

20) reacting a compound of the formula

wherein R^1 , R^2 and R^3 are as set forth above and R_a is hydrogen, C_1 - C_3 alkyl, halogen, OH, O(C_1 - C_3 alkyl), S(C_1 - C_3 alkyl), NH₂, CN or phenyl, with an azide of the formula R_bN_3 , where R_b is hydrogen, C_1 - C_3 alkyl, phenyl or (C_1 - C_3 alkyl) phenyl, followed by dehydration of the resulting compound so as to provide a compound of the formula 1 wherein HET is

21) cyclizing and dehydrating a compound of the formula

wherein R¹, R² and R³ are as set forth above, R_a is hydrogen, C₁-C₃ alkyl, halogen, OH, O(C₁-C₃ alkyl), S(C₁-C₃ alkyl), NH₂, CN or phenyl, and B is O or NH, so as to provide a compound of the formula 1 wherein HET is

with the proviso that when B is O said cyclization reaction is run in the presence of ammonia or ammonium hydroxide;

22) reacting a compound of the formula

wherein R¹, R² and R³ are as set forth above and R_d is OH, O(C₁-C₃ alkyl), O(phenyl), O(C₁-C₃ alkyl-phenyl), halo, S(C₁-C₃ alkyl), S(phenyl), S(C₁-C₃ alkyl-phenyl), NH₂, NH(C₁-C₃ alkyl), N(C₁-C₃ alkyl)₂, OCO(C₁-C₃ alkyl), OCO(phenyl) or OCO(C₁-C₃ alkyl-phenyl), with a compound of the formula

wherein R_a is hydrogen, C_1 - C_3 alkyl, halogen, OH, O(C_1 - C_3 alkyl), S(C_1 - C_3 alkyl), NH₂, CN or phenyl, so as to provide a compound of the formula 1 wherein HET is

23) reacting a compound of the formula

OH NH NR1R2

wherein R^1 , R^2 and R^3 are as set forth above, with R_a CN, where R_a is hydrogen, C_1 - C_3 alkyl, halogen, OH, O(C_1 - C_3 alkyl), S(C_1 - C_3 alkyl), NH₂, CN or phenyl, so as to provide a compound of the formula 1 wherein HET is

24) cyclizing and dehydrating a compound of the formula

wherein R^1 , R^2 and R^3 are as set forth above and R_a is hydrogen, C_1 - C_3 alkyl, halogen, OH, O(C_1 - C_3 alkyl), S(C_1 - C_3 alkyl), NH₂, CN or phenyl, so as to provide a compound of the formula 1 wherein HET is

25) reacting a compound of the formula

wherein R^1 , R^2 and R^3 are as set forth above and R_a is hydrogen, C_1 - C_3 alkyl), R^2 alkyl), R^3 are as set forth above and R_a is hydrogen, R^3 alkyl), R^3 alkyl), R^3 alkyl), R^3 alkyl), R^3 alkyl), R^3 alkyl), R^3 are as set forth above and R_a is hydrogen, R^3 alkyl), R^3 alkyl), R^3 are as set forth above and R^3 are as a set forth above and R^3 are as set forth above and R^3 are as a set forth above an

(where $R_{\rm e}$ is as set forth above) in the presence of an oxidizing agent, so as to provide a compound of the formula 1 wherein HET is

$$R_a$$
 N
 R_a
 R_a
 R_a

26) reacting a compound of the formula

wherein R^1 , R^2 and R^3 are as set forth above and R_a is hydrogen, C_1 - C_3 alkyl, halogen, OH, O(C_1 - C_3 alkyl), S(C_1 - C_3 alkyl), NH₂, CN or phenyl, with a compound of the formula H_2 NNHR_b, where R_b is hydrogen, C_1 - C_3 alkyl, phenyl or (C_1 - C_3 alkyl) phenyl, so as to provide compounds of the formula 1 wherein HET is

and then, optionally, separating the compounds from each other; 27) reacting a compound of the formula

wherein R^1 , R^2 and R^3 are as set forth above and R_a is hydrogen, C_1 - C_3 alkyl, halogen, OH, O(C_1 - C_3 alkyl), S(C_1 - C_3 alkyl), NH₂, CN or phenyl, with a compound of the formula H₂NNHR_b, where R_b is hydrogen, C_1 - C_3 alkyl, phenyl or (C_1 - C_3 alkyl)phenyl, so as to provide compounds of the formula 1 wherein HET is

and then, optionally, separating the compounds from each other; 28) reacting a compound of the formula

wherein R^1 , R^2 and R^3 are as set forth above and R_a is hydrogen, C_1 – C_3 alkyl, halogen, OH, O(C_1 – C_3 alkyl), S(C_1 – C_3 alkyl), NH₂, CN or phenyl, with a compound of the formula H₂NNHR_b, where R_b is hydrogen, C₁–C₃ alkyl, phenyl or (C₁–C₃ alkyl)phenyl, so as to provide compounds of the formula 1 wherein HET is

and then, optionally, separating the compounds from each other; 29) reacting a compound of the formula

wherein R^1 , R^2 and R^3 are as set forth above and R_a is hydrogen, C_1 - C_3 alkyl, halogen, OH, O(C_1 - C_3 alkyl), S(C_1 - C_3 alkyl), NH₂, CN or phenyl, with a compound of the formula H₂NNHR_b, where R_b is hydrogen, C_1 - C_3 alkyl, phenyl or (C_1 - C_3 alkyl) phenyl, so as to provide a compound of the formula 1 wherein HET is

30) reacting a compound of the formula

wherein R^1 , R^2 and R^3 are as set forth above and R_a is hydrogen, C_1 - C_3 alkyl, halogen, OH, O(C_1 - C_3 alkyl), S(C_1 - C_3 a alkyl), NH₂, CN or phenyl, with a compound of the formula

(where $R_{\rm a}$ is as set forth above) so as to provide a compound of the formula 1 wherein HET is

31) reacting a compound of the formula

N(CH₃)₂

R₃

NR¹ R²

wherein R^1 , R^2 and R^3 are as set forth above and R_a is hydrogen, C_1 - C_3 alkyl, halogen, OH, O(C_1 - C_3 alkyl), S(C_1 - C_3 alkyl), NH₂, CN or phenyl, with a compound of the formula

(where Ra is as set forth above) so as to provide a compound of the formula 1 wherein HET is

32) reacting a compound of the formula

wherein R¹, R² and R³ are as set forth above and R_e is hydrogen, C_1 - C_3 alkyl, halogen, OH, O(C_1 - C_3 alkyl), S(C_1 - C_3 alkyl), NH₂, CN or phenyl, with a compound of the formula

(where $R_{\!\scriptscriptstyle a}$ is as set forth above) so as to provide a compound of the formula 1 wherein HET is

R_a N SCH

33) reacting a compound of the formula

OHC H NR¹ R²

where R^1 , R^2 and R^3 are as set forth above and R_a is hydrogen, C_1 - C_3 alkyl, halogen, OH, O(C_1 - C_3 alkyl), S(C_1 - C_3 alkyl), NH₂, CN or phenyl, with a compound of the formula

(where R_a is as set forth above) so as to provide a compound of the formula 1 wherein HET is

34) reacting a compound of the formula

55

5

10

15

20

25

30

35

40

45

wherein R1, R2 and R3 are as set forth above, with a compound of the formula

where R_a is hydrogen, C_1 - C_3 alkyl, halogen, OH, O(C_1 - C_3 alkyl), S(C_1 - C_3 alkyl), NH₂, CN or phenyl, so as to provide a compound of the formula 1 wherein HET is

35) reacting a compound of the formula

wherein R¹, R² and R³ are as set forth above and R_c is hydrogen or C_1 - C_3 alkyl, with a compound of the formula R_a CH₂NNH, where R_a is hydrogen, C_1 - C_3 alkyl, halogen, OH, O(C_1 - C_3 alkyl), S(C_1 - C_3 alkyl), NH₂, CN or phenyl, so as to provide a compound of the formula 1 wherein HET is

36) reacting a compound of the formula

wherein R^1 , R^2 and R^3 are as set forth above, and R_a is hydrogen, C_1 - C_3 alkyl), haiogen, OH, O(C_1 - C_3 alkyl), S(C_1 - C_3 alkyl), NH₂, CN or phenyl, so as to provide a compound of the formula 1 wherein HET is

37) reacting a compound of the formula

25 R₃ NH NR¹ R²

wherein R^1 , R^2 and R^3 are as set forth above, and R_a is hydrogen, C_1 - C_3 alkyl), halogen, OH, O(C_1 - C_3 alkyl), S(C_1 - C_3 alkyl), NH₂, CN or phenyl, with P_2S_5 so as to provide a compound of the formula 1 wherein HET is

38) reacting a compound of the formula

55

50

45

5

10

15

wherein R^1 , R^2 and R^3 are as set forth above, with a compound of the formula $H_2NNHCSNH_2$, in the presence of polyphosphoric acid, so as to provide a compound of the formula 1 wherein HET is

39) reacting a compound of the formula

wherein R^1 , R^2 and R^3 are as set forth above, with carbon disulfide so as to provide a compound of the formula 1 wherein HET is

40) reacting a compound of the formula

wherein R^1 , R^2 and R^3 are as set forth above, with $(CNS)_2$ so as to provide a compound of the formula 1 wherein HET is

41) oxidizing a compound of the formula

5

20

25

30

35

40

50

55

10 15

> wherein R1, R2 and R3 are as set forth above, and Ra is hydrogen, C1-C3 alkyl, halogen, OH, O(C1-C3 alkyl), S(C1-C3 alkyl), NH2, CN or phenyl, so as to provide a compound of the formula 1 wherein HET

42) reacting a compound of the formula

NR¹ R² 45

> wherein R^1 , R^2 and R^3 are as set forth above and Y is -CN or -C(0)NH₂, with an oxidizing agent such as $SOCl_2$, SCl_2 , S_2Cl_2 or SO_2Cl_2 so as to provide a compound of the formula 1 wherein HET is

43) reacting a compound of the formula

wherein R^1 , R^2 and R^3 are as set forth above, X is halogen and R_a is hydrogen, C_1 - C_3 alkyl, halogen, OH, O(C_1 - C_3 alkyl), S(C_1 - C_3 alkyl), NH₂, CN or phenyl, with R_a CSNH₂, where R_a is as set forth above, so as to provide a compound of the formula 1 wherein HET is

44) reacting a compound of the formula

wherein R¹, R² and R³ are as set forth above, and R_a is hydrogen, C_1 – C_3 alkyl, halogen, OH, O(C_1 – C_3 alkyl), S(C_1 – C_3 alkyl), NH₂, CN or phenyl, with P₂S₅ so as to provide a compound of the formula 1 wherein HET is

45) reacting a compound of the formula

wherein R1, R2 and R3 are as set forth above, with a compound of the formula

where R_a is hydrogen, C_1 - C_3 alkyl, halogen, OH, O(C_1 - C_3 alkyl), S(C_1 - C_3 alkyl), NH₂, CN or phenyl, so as to provide a compound of the formula 1 wherein HET is

46) reacting a compound of the formula

wherein R^1 , R^2 and R^3 are as set forth above, and R_a is hydrogen, C_1 - C_3 alkyl, halogen, OH, O(C_1 - C_3 alkyl), S(C_1 - C_3 alkyl), NH₂, CN or phenyl, with R_a C(S)NH₂, where R_a is as set forth above, so as to provide a compound of the formula 1 wherein HET is

47) reacting a compound of the formula

wherein R^1 , R^2 and R^3 are as set forth above and R_a is hydrogen, C_1 - C_3 alkyl, halogen, OH, O(C_1 - C_3 alkyl), S(C_1 - C_3 alkyl), NH₂, CN or phenyl, with an oxidizing agent so as to prepare a compound of the formula 1 wherein HET is

48) reacting a compound of the formula

wherein R^1 , R^2 and R^3 are as set forth above and R_a is hydrogen, C_1 - C_3 alkyl, halogen, OH, O(C_1 - C_3 alkyl), S(C_1 - C_3 alkyl), NH₂, CN or phenyl, with an oxidizing agent so as to provide a compound of the formula 1 wherein HET is

49) reacting a compound of the formula

wherein R^1 , R^2 and R^3 are as set forth above and R_a is hydrogen, C_1 - C_3 alkyl, halogen, OH, O(C_1 - C_3 alkyl), S(C_1 - C_3 alkyl), NH₂, CN or phenyl, with an oxidizing agent so as to provide a compound of the formula 1 wherein HET is

50) reacting a compound of the formula

wherein R¹, R² and R³ are as set forth above and W is hydrogen or CHO, with KSCN or NaHSSO₃ and then reacting the intermediate formed thereby with ammonia or ammonium hydroxide so as to provide a compound of the formula 1 wherein HET is

51) reacting a compound of the formula

wherein R¹, R² and R³ are as set forth above and W is hydrogen or CHO, with H₂NSSO₃K and then reacting the intermediate formed thereby with a base so as to provide a compound of the formula 1 when

rein HET is

SIN

52) reacting a compound of the formula

15

10

5

20

wherein R^1 , R^2 and R^3 are as set forth above and R_c is hydrogen or C_1 - C_3 alkyl, with $CSCl_2$ so as to provide a compound of the formula 1 wherein HET is

25

30

53) reacting a compound of the formula

35

40

wherein R^1 , R^2 and R^3 are as set forth above and R_a is hydrogen, C_1 – C_3 alkyl, halogen, OH, O(C_1 – C_3 alkyl), S(C_1 – C_3 alkyl), NH₂, CN or phenyl, with NCS so as to provide a compound of the formula 1 wherein HET is

50

45

102

55

54) reacting a compound of the formula

wherein R^1 , R^2 and R^3 are as set forth above, X is halogen and R_a is hydrogen, C_1 - C_3 alkyl, halogen, OH, O(C_1 - C_3 alkyl), S(C_1 - C_3 alkyl), NH₂, CN or phenyl, with

(where R_a is as set forth above) so as to provide a compound of the formula 1 wherein HET is

55) reacting a compound of the formula

wherein R1, R2 and R3 are as set forth above and D is =NH or =O, with a compound of the formula

where R_a is hydrogen, C₁-C₃ alkyl, halogen, OH, O(C₁-C₃ alkyl), S(C₁-C₃ alkyl), NH₂, CN or phenyl, so as to provide a compound of the formula 1 wherein HET is

10

5

56) reacting a compound of the formula 1 wherein HET is substituted with at least one hydroxy group with POX_3 , PX_3 , SOX_2 , $P(phenyl)_3 \circ X_2$ or $P(C_1-C_3$ alkoxy) $_3 \circ X_2$, where each X is a halogen, so as to convert the hydroxy group to a halogen substituent;

15

HONO so as to form the corresponding diazonium ion, followed by conversion of such ion to the corresponding halide substituted compound with CuX (where X is halogen), KI or HBF₄ with heat; 58) reacting a compound of the formula 1 wherein HET is substituted with at least one halogen sub-

57) reacting a compound of the formula 1 where HET is substituted with at least one amino group with

stituent with an alkoxide anion of the formula

20

25

30

35

40

50

55

so as to convert the halogen substituent to an alkoxy substituent;

59) reacting a compound of the formula 1 wherein HET is substituted with at least one hydroxy group with a $(C_1-C_3$ alkyl)halide so as to convert the hydroxy group to an alkoxy substituent;

60) reacting a compound of the formula 1 wherein HET is substituted with at least one hydroxy substituent with a diazo compound of the formula (C₁-C₃ alkyl)N₂ so as to convert the hydroxy group to an alkoxy substituent;

61) reacting a compound of the formula 1 wherein HET is substituted with at least one amino group with HONO so as to form the corresponding diazonium ion, followed by conversion of such ion to the corresponding hydroxy substituted compound using water or an acid;
62) reacting a compound of the formula 1 wherein HET is substituted with at least one C₁-C₃ alkoxy

group with concentrated hydroiodic acid, concentrated hydrobromic acid or a Lewis Acid so as to convert the alkoxy group to a hydroxy substituent;

63) reacting a compound of the formula 1 wherein HET is substituted with at least one amino substituent with HONO so as to form the corresponding diazonium ion, followed by conversion of such ion to the corresponding nitrile substituted compound using CuCN;

64) reacting a compound of the formula 1 wherein HET is substituted with at least one amino substituent with HONO so as to form the corresponding diazonium ion, followed by conversion of such ion to the corresponding C_1 - C_3 alkylthlo substituted compound using a C_1 - C_3 alkyl mercaptan;

65) reacting a compound of the formula 1 wherein HET is substituted with at least one halogen substituent with an alkylthio anion of the formula

so as to convert the halogen substituent to an alkylthic moiety;

66) reacting a compound of the formula 1 wherein HET is substituted with at least one -SH moiety with a (C₁-C₃ alkyl)halide so as to provide the corresponding compound of the formula 1 having an alkylthic moiety;

67) reducing a compound of the formula 1 wherein HET is substituted with at least one nitro substituent, so as to provide a compound of the formula 1 wherein the nitro substituent is converted to an amino moiety;

68) reducing a compound of the formula 1 wherein HET is substituted with at least one halogen substituent so as to convert the halogen substituent to a hydrogen atom;

69) reducing a compound of the formula 1 wherein HET is substituted with at least one hydroxy group so as to convert the hydroxy substituent to a hydrogen atom;

70) reacting a compound of the formula 1 wherein HET is substituted with at least one amino moiety with HONO so as to form the corresponding diazonium ion, followed by conversion of such ion to the corresponding unsubstituted compound using H₃PO₂;

71) reducing a compound of the formula 1 wherein HET is substituted on one of the nitrogen atoms in such heterocyclic ring with a C_1 - C_3 alkyl phenyl group so as to provide the corresponding compound of the formula 1 wherein the nitrogen atom is unsubstituted;

72) reducing a compound of the formula 1 wherein HET is substituted with at least one C1-C3 alkylthio

moiety so as to provide the corresponding unsubstituted compound of the formula 1; 73) oxidizing a compound of the formula

5

10

15

wherein HET, R¹, R² and R³ are as defined above, so as to provide a compound of the formula 1; or 74) reacting a compound of the formula 1 with a phamaceutically acceptable organic or inorganic acid so as to form a pharmaceutically acceptable acid addition salt of such compound.

The process of Claim 1 wherein HET is an isoxazole, a pyrazole, a pyridine, a thiazole, a furan, a thiophene, an oxadiazole or a pharmaceutically acceptable salt thereof.

3. The process of Claim 1 or Claim 2 wherein R¹ and R² are independently C₁-C₃ alkyl or a pharmaceutically acceptable salt thereof.

4. The process of any one of Claims 1 to 3 wherein R³ is the drogen or a pharmaceutically acceptable salt thereof.

25

35

40

20

5. The process of Claim 1 or Claim 2 wherein R¹ is -(CH₂)_nC(O)NR⁵R⁶ wherein n is 2, R⁵ is hydrogen, R⁶ is cyclohexyl, R² is C₁-C₃ alkyl, and R³ is hydrogen or C₁-C₄ alkyl or a pharmaceutically acceptable salt thereof.

30 6. A process for preparing a substantially pure stereoisomer of a compound of Claim 1 or a pharmaceutically acceptable salt thereof which comprises the process of any one of Claims 1 to 5.

7. A process of Claim 1 which is used to prepare a compound selected from the group consisting of (+)(4S)-6-(3-isoxazolyl)-4-(di-n-propylamino)-1,3,4,5-tetrahydrobenz[cd]indole; (-)(4R)-6-(5-isoxazolyl)-4-(di-n-propylamino)-1,3,4,5-tetrahydrobenz[cd]indole; (-)(4R)-6-(3-pyrazolyl)-4-(di-n-propylamino)-1,3,4,5-tetrahydrobenz[cd]indole; (-)(4R)-6-(4-pyrazolyl)-4-(dimethylamino)-1,3,4,5-tetrahydrobenz[cd]indole; (-)(4R)-6-(4-pyridinyl)-4-(di-n-propylamino)-1,3,4,5-tetrahydrobenz[cd]indole; (-)(4R)-6-(2-thiazolyl)-4-(di-n-propylamino)-1,3,4,5-tetrahydrobenz[cd]indole; (-)(4R)-6-(5-thiazolyl)-4-(di-n-propylamino)-1,3,4,5-tetrahydrobenz[cd]indole; (-)(4R)-6-(5-thiazolyl)-4-(di-n-propylamino)-1,3,4,5-tetrahydrobenz[cd]indole; (-)(4R)-6-(5-isoxazolyl)-4-[di-(cyclopropylmethyl)amino]-1,3,4,5-tetrahydrobenz[cd]indole; (-)(4R)-6-(3-pyrazyl)-4-[di-(cyclopropylmethyl)amino]-1,3,4,5-tetrahydrobenz[cd]indole; (-)(4R)-6-(3-pyrazyl)-4-[di-(cyclopropylmethyl)amino]-1,3,4,5-tetrahydrobenz[cd]indole; (-)(4R)-6-(3-phenyloxadiazol-5-yl)-4-(di-n-propylamino)-1,3,4,5-tetrahydrobenz[cd]indole; (-)(4R)-6-(3-phenyloxadiazol-5-yl)-4-(di-n-propylamino)-1,3,4,5-tetrahydrobenz[cd]indole; (-)(4R)-6-(3-phenyloxadiazol-5-yl)-4-(di-n-propylamino)-1,3,4,5-tetrahydrobenz[cd]indole; (-)(4R)-6-(3-phenyloxadiazol-5-yl)-4-(di-n-propylamino)-1,3,4,5-tetrahydrobenz[cd]indole; (-)(4R)-6-(3-pyrazyl)-4-(di-n-propylamino)-1,3,4,5-tetrahydrobenz[cd]indole; (-)(4R)-6-(3-pyrazyl)-4-(di-n-propylamino)-1,3,4,5-tetrahydrobenz[cd]indole; (-)(4R)-6-(3-pyrazyl)-4-(di-n-propylamino)-1,3,4,5-tetrahydrobenz[cd]indole; (-)(4R)-6-(3-pyrazyl)-4-(di-n-propylamino)-1,3,4,5-tetrahydrobenz[cd]indole; (-)(4R)-6-(3-pyrazyl)-4-(di-n-propylamino)-1,3,4,5-tetrahydrobenz[cd]indole; (-)(4R)-6-(3-pyrazyl)-4-(di-n-propylamino)-1,3,4,5-tetrahydrobenz[cd]indole; (-)(4R)-6-(3-pyrazyl)-4-(di-n-propylamino)-1,3,4,5-tetrahydrobenz[cd]indole; (-)(4R)-6-(3-pyrazyl)-4-(di-n-propylamino)-1,3,4,5-tetrahydrobenz[cd]indole; (-)(4R)-6-(3-pyrazyl)-4-(di-n-propylamino)-1,3,4,5-tetrahydrobenz[cd]in

45

A process for preparing a pharmaceutical formulation which comprises admixing a compound of the formula

50

wherein

5

10

15

20

25

30

35

 R^{1} is hydrogen, $C_{1}-C_{4}$ alkyl, $C_{3}-C_{4}$ alkenyl, cyclopropylmethyl, phenyl - substituted $C_{1}-C_{4}$ alkyl, -(CH₂), S(C₁-C₄ alkyl), -C(O)R⁴,

- (CH2)nC(O)NR5R6;

R² is hydrogen, C₁-C₄ alkyl, cyclopropylmethyl or C₃-C₄ alkenyl;

R³ is hydrogen, C1-C4 alkyl or an amino protecting group;

n is 1-4;

R4 is hydrogen, C1-C4 alkyl, C1-C4 halo alkyl, C1-C4 alkoxy or phenyl;

 R^6 and R^6 are independently hydrogen, a C_1 - C_4 alkyl, or a C_5 - C_8 cycloalkyl with the proviso that when one of R^6 or R^6 is a cycloalkyl the other is hydrogen;

HET is an aromatic 5- or 6-membered heterocyclic ring, said ring having from one to three heteroatoms which are the same or different and which are selected from the group consisting of sulfur, oxygen, and nitrogen with the proviso that the 6-membered heterocyclic ring can only contain carbon and nitrogen and with the further proviso that the 5-membered ring contains no more than one oxygen or one sulfur but not both oxygen and sulfur; or a pharmaceutically acceptable salt thereof, with one or more pharmaceutically acceptable carriers, diluents or excipients therefor.

55

50

EUROPEAN SEARCH REPORT

92 30 2573

DOCUMENTS CONSI	DERED TO BE RELEVA	NT		
citation of document with it of relevant pa	ndication, where appropriate,	Reievant to claim	CLASSIFICATION OF THE APPLICATION (Int. CL5)	
,A US-A-4 576 959 (ELI LI	LLY AND COMPANY)	1,8,9	C070403/04	
* column 2, line 28- co			C070413/04	
·	_		C07D417/D4	
A EP-A-0 399 982 (AKTIEBO	LAGET ASTRA)	1,8,9	C07D405/04	
* page 2 - 3 *			C07D409/D4	
			C07D401/D4	
_			A61K31/40	
			TECHNICAL FIELDS SEARCHED (Int. Cl.5)	
			C07D	
The present search report has b	een drawn up for all claims			
Place of search	Date of completion of the search		Execution	
THE HAGUE	30 JUNE 1992	VAN	BIJLEN H.	
CATEGORY OF CITED DOCUME X: particularly relevant if taken alone Y: particularly relevant if combined with an elecament of the same category A: technological background	after the filin other D : document cit	ciple underlying the document, but put game at the application of for other reasons	B	
O : non-written disciosure P : intermediate document	& : member of the	& : member of the same patent family, corresponding document		

EPO PORM (503 03.82 (POM)