CS344: Design and Analysis of Computer Algorithms

Homework 3

Group Members: Stephen Kuo, Derek Mui

- 2.4) Suppose you are choosing between the following three algorithms:
- Algorithm A solves problems by dividing them into five subproblems of half the size, recursively solving each subproblem, and then combining the solutions in linear time.
- Algorithm B solves problems of size n by recursively solving two subproblems of size n-1 and then combining the solutions in constant time.
- Algorithm C solves problems of size n by dividing them into nine subproblems of size n/3, recursively solving each subproblem, and then combining the solutions in $O(n^2)$ time.

Answer:

- T(n) = 5 * T(n/2) + cn. Applying master theorem a = 2, b = 5, f(n) = c n, degree(f(n)) = 1Since $\log_2 5 > 1$, $T(n) = O(n^{\log_a b}) = O(n^{\log_2 5})$
- T(n) = 2T(n-1) + c. : $T(n) = O(2^n)$
- $T(n) = 9T(\frac{n}{3}) + cn^2$. Applying master theorem a = 3, b = 9, $f(n) = cn^2$, degree(f(n)) = 2Since $\log_3 9 = 2$, $T(n) = O(n^2 \log n)$

Time complexity of the third algorithm is the best. : choose algorithm C

2.5) Solve the following recurrence relations and give a Θ bound for each of them.

Answer:

2.14) You are given an array of n elements, and you notice that some of the elements are duplicates; that is, they appear more than once in the array. Show hoe to remove all duplicates from the area in time $O(n \log n)$

2.25) ? Answer:			
2.28) ? Answer:			
3.5) ? Answer:			
3.31) ? Answer:			
3.43) ? Answer:			

Answer: Simply sort the elements of the array using merge sort in $O(n \log n)$

time and then remove the duplicate elements by traversing the sorted array.