MATH 215 FALL 2023 Homework Set 8: §15.7 – 16.1 Zhengyu James Pan (jzpan@umich.edu)

1. For the following problem, take r, θ, ρ , and ϕ to have the standard definitions in cylindrical and spherical coordinates. Describe (and try to sketch) the following surfaces:

(a)
$$r = \theta$$

Solution: A cylinder through a spiral starting from the origin.

(b)
$$\rho = \theta$$

Solution: A spiral in the xy plane, where each point has vertical arcs of circles passing through them to the line x = y = 0, each with the origin as their center.

(c)
$$r = \rho$$

Solution: The xy plane.

(d) $\theta = \phi$

Solution: A curved surface. When a curve is drawn on this surface with ρ fixed, the curve looks similar to a sin curve when viewed from the y-axis.

2. Let E be the ball of radius 1 centered at the point (0, 0, 1).

(a) Show that E is given in Cartesian coordinates by the equation $x^2 + y^2 + z^2 - 2z \le 0$.

Solution:

$$x^{2} + y^{2} + (z - 1)^{2} \le 1$$

 $x^{2} + y^{2} + z^{2} - 2z + 1 \le 1$
 $x^{2} + y^{2} + z^{2} - 2z \le 0$

(b) Write E in spherical coordinates. Make sure to specify the domain of ρ , θ , and ϕ . Solution:

$$x = \rho \sin(\phi) \cos(\theta), y = \rho \sin(\phi) \sin(\theta), z = \rho \cos(\phi)$$

$$(\rho \sin(\phi) \cos(\theta))^{2} + (\rho \sin(\phi) \sin(\theta))^{2} + (\rho \cos(\phi))^{2} - 2(\rho \cos(\phi)) \leq 0$$

$$\rho^{2} \sin^{2}(\phi) \cos^{2}(\theta) + \rho^{2} \sin^{2}(\phi) \sin^{2}(\theta) + \rho^{2} \cos^{2}(\phi) - 2\rho \cos(\phi) \leq 0$$

$$\rho^{2} \sin^{2}(\phi) \cos^{2}(\theta) + \rho^{2} \sin^{2}(\phi) \sin^{2}(\theta) + \rho^{2} \cos^{2}(\phi) - 2\rho \cos(\phi) \leq 0$$

$$\rho^{2} \sin^{2}(\phi)(\cos^{2}(\theta) + \sin^{2}(\theta)) + \rho^{2} \cos^{2}(\phi) - 2\rho \cos(\phi) \leq 0$$

$$\rho^{2} - 2\rho \cos(\phi) \leq 0$$

$$\rho(\rho - 2\cos(\phi)) \leq 0$$

$$0 \leq \rho \leq 2\cos(\phi), 0 \leq \phi \leq -\frac{\pi}{2}, 0 \leq \theta \leq 2\pi$$

(c) Suppose the density on E is proportional to the distance to the origin, with the largest density being equal to 2. Use spherical coordinates to compute the mass and center of mass of E.

Solution: A density equal to ρ satisfies these conditions.

$$M = 2\pi \int_0^{\frac{\pi}{2}} \int_0^{2\cos(\phi)} \rho^3 \sin(\phi) \, d\rho \, d\phi$$

$$2\pi \int_0^{\frac{\pi}{2}} \sin(\phi) \left[\frac{\rho^4}{4} \right]_{\rho=0}^{2\cos(\phi)} \, d\phi$$

$$2\pi \int_0^{\frac{\pi}{2}} \sin(\phi) 4 \cos^4(\phi) \, d\phi$$

$$u = \cos(\phi), du = -\sin(\phi) \, d\phi$$

$$2\pi \int_1^0 -4u^4 \, d\phi$$

$$-8\pi \left(\frac{u^5}{5} \right)_{u=1}^0$$

$$M = \boxed{\frac{8\pi}{5}}$$

By symmetry, $\overline{x} = \overline{y} = \overline{\phi} = \overline{\theta} = 0$. So, to find \overline{z} , we can actually find $\overline{\rho}$:

$$\overline{\rho} = \frac{5}{8\pi} 2\pi \int_0^{\frac{\pi}{2}} \int_0^{2\cos(\phi)} \rho^4 \sin(\phi) \, d\rho \, d\phi$$

$$\frac{5}{4} \int_0^{\frac{\pi}{2}} \sin(\phi) \left[\frac{\rho^5}{5} \right]_{\rho=0}^{2\cos(\phi)} \, d\phi$$

$$\frac{1}{4} \int_0^{\frac{\pi}{2}} \sin(\phi) 32 \cos^5(\phi) \, d\phi$$

$$u = \cos(\phi), du = -\sin(\phi) \, d\phi$$

$$\int_1^0 -8u^5 \, d\phi$$

$$-\frac{8}{6} \left[u^6 \right]_{u=1}^0$$

$$\overline{z} = \overline{\rho} = \frac{4}{3}$$

$$(\overline{x}, \overline{y}, \overline{z} = (0, 0, \frac{4}{3})$$

(d) Suppose we tried to do this problem for the ball of radius 1 centered at the point (0, 1, 0). Why is this problem harder with the new ball?

Solution: This is harder because the region of integration is not as simply described by any coordinate system. For instance, in spherical the region would be $0 \le \rho \le 2\sqrt{\sin^2(\theta) + \sin^2(\phi)}, 0 \le \theta \le \pi, 0 \le \phi \le \pi$. These bounds are much more annoying to integrate due to the square root for the upper bound of ρ .

3. Begin with a sphere of radius R and bore a hole into the sphere in the shape of a right circular cylinder, leaving only a band of height h. Find the volume of the resulting shape.

Solution: The radius of the cylinder will be $r_c = \sqrt{R^2 - h^2}$. We use cylindrical coordi-

nates to perform the integration.

$$2\pi \int_{-h}^{h} \int_{\sqrt{R^{2}-z^{2}}}^{\sqrt{R^{2}-z^{2}}} r \, dr \, d\theta$$

$$= \pi \int_{-h}^{h} (r^{2}) \left| \sqrt{\frac{R^{2}-z^{2}}{\sqrt{R^{2}-h^{2}}}} \, dr \, d\theta$$

$$= \pi \int_{-h}^{h} R^{2} - z^{2} - R^{2} + h^{2} \, d\theta$$

$$= \pi \left(-\frac{z^{3}}{3} + h^{2}z \right) \right|_{z=-h}^{h}$$

$$= \left[\frac{4\pi h^{3}}{3} \right]$$

4. Find the mass of a wedge cut from a sphere of radius R by two planes that intersect along a diameter and at an angle of $\frac{\pi}{5}$, assuming that the density is proportional to the distance from the origin in such a way that the maximum density is 2. (This shape should look like a segment of an orange.)

Solution: We use spherical coordinates for this problem, with (r, θ, ϕ) . The density function will be $\rho(r) = \frac{2r}{R}$ to have a maximum density of 2 when the distance is equal to the radius.

$$\frac{\pi}{5} \int_0^R \int_0^\pi \frac{2r}{R} r^2 \sin(\phi) \, d\phi \, dr$$

$$= \frac{\pi}{5R} \int_0^R 2r^3 \int_0^\pi \sin(\phi) \, d\phi \, dr$$

$$= \frac{\pi}{5R} \int_0^R 2r^3 \left(-\cos(\phi) \right) \Big|_{\phi=0}^\pi \, dr$$

$$= \frac{\pi}{5R} \int_0^R 4r^3 \, dr$$

$$= \frac{\pi}{5R} \left(r^4 \right) \Big|_{r=0}^R$$

$$= \left[\frac{\pi R^3}{5} \right]$$

5. Find $\int \int_R f(x,y) dA$ where $f(x,y) = 3y^2 - 4xy - 4x^2$ and R is the quadrilateral with vertices (0, 2), (3, 0), (5, 4), and (2, 6). Hint: There may be a straightforward but tedious way to solve this problem, as well as a faster, more subtle, way to solve this problem.

Solution: We can factor f(x,y) = (3y+2x)(y-2x). Then, we can use change of variables to change both the function and the bounds. Let u = 3y + 2x, v = y - 2x. Then f(u,v) = uv, $d(x,y) = (2-3(-2)))^{-1} d(u,v) = \frac{1}{8}d(u,v)$. Also, R has vertices at (u,v) = (6,2), (6,-6), (22,-6), (22,2).

$$\frac{1}{8} \int_{-6}^{2} \int_{6}^{22} uv \, du \, dv$$

$$= \frac{1}{24} \int_{-6}^{2} v \left[(22)^{2} - (6)^{2} \right] \, dv$$

$$= \frac{1}{16} \int_{-6}^{2} 448v \, dv$$

$$= \frac{1}{16} \left(224v^{2} \right) |_{v=-6}^{2}$$

$$= \frac{1}{16} \cdot (-7168)$$

$$= \boxed{-448}$$

- 6. Let E be the region in the first quadrant that is above the line $y = \frac{x}{3}$, below the line y = 3x, and between the curves defined by xy = 3 and xy = 27.
 - (a) Sketch the region.
 - (b) Evaluate $\int \int (\frac{x^2}{y^2} + x^2 y^2) dA$. (Hint: Try u = xy and $v = \frac{y}{x}$.)
 - (c) Why was the hint a reasonable guess for a change of coordinates?
- 7. Do Exercises 13-18 of §16.1 in Stewart's Multivariable Calculus.

Solution:

- 13. \overline{IV} vectors with direction and magnitude equal to displacement, except flipped vertically.
- 14. V downward direction when x < y, upward when y < x, horizontal when x = y.
- 15. I when y = -2, vectors are horizontal.
- 16. \overline{VI} magnitude increases more with x than y.
- 17. III the magnitude/direction oscillates when either coordinate is fixed.
- 18. *II* direction becomes more vertical when x increases, while horizontal component oscillates.

8. Do Exercises 19-22 of §16.1 in Stewart's Multivariable Calculus.

Solution:

- 19. \overline{IV} only constant vector field.
- 20. \overline{I} the vector field is constant when z is fixed.
- 21. \overline{III} always positive vertical direction, same direction as displacement from origin for x and y.
- 22. III same direction/magnitude as displacement from origin.
- 9. Do Exercises 31-34 of §16.1 in Stewart's Multivariable Calculus.

Solution:

- 31. \overline{III} gradient is (2x, 2y), so linearly increasing magnitude and same direction as displacement from origin.
- 32. \overline{IV} gradient is (2x+y,x), thus the direction is close to horizontal near the y-axis and becomes more vertical as x increases.
- 33. \overline{II} gradient is (2x + 2y, 2y + 2x). Since the x and y coordinates are the same, the direction is always the same $\langle 1, 1 \rangle$, except with positive or negative magnitude.
- 34. I Gradient will include something with cos for both f_x and f_y coordinates, thus the magnitude will oscillate.