计算机组成原理试题(2022年秋)

班-											
	(所有答案均写在答题纸上。本试卷共七道大题,满分 100 分)										
	说明: (1) 本试卷仅限本次考试使用,不得外传。										
	(2) 本试卷中 1KB = 1024B、1MB = 1024KB。										
—,	. 单项选择题(共 5 题,每题 2 分,共 10 分)										
1.	某计算机按字节编址,指令字长固定且只有二地址指令和三地址指令两种指令格式,										
	其中三地址指令31条,二地址256条,每个地址字段为6位,则指令字长至少应该是()。										
	A. 23 位 B. 24 位 C. 26 位 D. 32 位										
2.	以下关于 RISC-V 经典五级流水线 CPU 说法错误的是()。										
	A. 当需要在 EXE 段暂停流水线时,IF/ID 和 ID/EXE 流水段寄存器都应该保持不变;此时 MEM 流水段在没有阻塞的情况下,应将 EXE/MEM 流水段寄存器设置为空指令										
	时 MEM 流水段在没有阻塞的情况下,应将 CAC MEM 流水段寄存备设置为空指令对应的值										
	B. 当 ID 和 EXE 两个流水段下一周期需要清空时,IF/ID 和 ID/EXE 流水段寄存器都设										
	置为空指令对应的值										
	C. 在 IF 和 MEM 两个流水段发生结构冲突时,应该优先处理 IF 流水段的请求,以防止流水线中的指令流被阻塞住										
	D. 在同一时钟周期有可能同时发生数据、控制、结构冲突										
3.	在 THINPAD 平台上所实现的流水线结构 CPU 上,使用循环计算 1 到 100 的和,所有										
	数据都在寄存器中,可能引发若干种冲突。针对此问题,下列说法中正确的是 ()。										
	A. 使用 beq 指令判断循环是否应该结束时,可能引发控制冲突										
	B. 相邻的两轮循环可能因为读写相同的寄存器造成结构冲突										
	C. 分支目标缓冲(Branch Target Buffer)对减少本次实验中的冲突没有帮助 D. 数据旁路无法完全消除该程序中数据冲突带来的性能损失										
	D. 数据方时几层元主用陈该性序中数据冲关带未的性能视大										
4.	某磁盘的转速为 10000 转/分,平均寻道时间是 6 ms,磁盘传输速率是 20 MB/s,磁盘										
	控制器延迟为 0.2 ms, 读取一个 4 KB 的扇区所需的平均时间约为 ()。 A. 9 ms B. 9.4 ms C. 12 ms D. 12.4 ms										
	7. 5 H3										
5.	下列关于虚拟内存,描述正确的有()。										
	I. 增加 TLB 可以提高虚拟内存访问性能										
	II. 虚拟内存可以提高存储访问性能 III. 多级页表可以节省内存页表占用空间										
	A. 仅 I B. I 和 III C. II 和 III D. 全部都正确										
	1										

- 二、填空题(共9空,每空2分,共18分)
- 1. 采用了类 IEEE 754 规则的半精度浮点数表示、格式如下。

Sign	Exponent	Fraction
(1 bit)	(5 bit)	(10 bit)

\+\J	15th .
请计	「昇.

- (1) -0 的二进制表示是: ;
- (2) 最大的非规格化数的二进制表示是: _____。
- 2. 在企业级内存中需要提高数据容错,数据通常采用校验方式。
- (2) 若采用带全局校验的海明码的方式, 1011 和 0011 两个 4 位数据的编码分别是______和___。(全局校验位放在最左侧)
- 3. 某计算机 CPU 的频率为 1GHz, 处理器的平均 IPC 为 0.75。某外设有一个 16 位的数据缓冲器。处理器平均需要执行 200 条指令才能完成对外设的一次数据传输。中断服务程序还需要另外 300 条指令完成中断调度,在中断处理函数中还需要执行前述的 200 条指令完成数据传输。采用程序直接控制的方式,能够达到的最大数据传输率为_____。同样的设备采用 DMA 的方式,一次可以传输 4KB 数据到内存中,但是需要耗费 100 个时钟周期(包括配置和数据传输时间)加一次中断(中断需要执行 300 条指令),则采用 DMA 方式能够达到的最大数据传输率为____。
- 三、简答题(共6题,每题3分,共18分。请给出结论,并简述理由。若理由错误,则不得分。)
- 1. 函数调用 call 与返回 ret 指令均可以通过 jalr 指令实现吗?
- 2. 计算机性能指标 CPI 是否是越低越好?
- 3. 数据旁路可以解决所有数据冲突吗?
- 4. RISC-V 只用一套 CSR 寄存器, 能否支持中断嵌套?
- 5. 若全相联映射和组相联映射使用 LRU 替换算法,全相联映射的缓存命中率一定不低于组相联映射和直接映射吗?
- 6. 相比于不做 RAID 的方式, RAID1 的读写性能提升接近两倍吗?
- 四、(6分)请采用布斯乘法计算(-3) * 10。(用6位二进制表示)

五、(12分) 有如下 RISC-V 代码:

1.	lui	a5,%hi(fibo)
2.	addi	a4,a5,%lo(fibo)
3.	li	a3,1
4.	addi	a5,a5,%lo(fibo)
5.	SW	a3,0(a4)
6.	SW	a3,4(a4)
7.	addi	a2,a5,32
8.	li	a4,1
9.	j	.L3
10L5	:	
11.	lw	a4,4(a5)
12.	lw	a3,0(a5)
13L3	:	
14.	add	a4,a4,a3
15.	SW	a4,8(a5)
16.	addi	a5,a5,4
17.	bne	a5,a2,.L5
18.	ret	

RISC-V 指令格式如下:

31	30	25	24	21	20	19	15	14	12	11	8	7	6	0	
funct7				rs2		rs	1	funct	3		rd		opco	de	R-type
imm[11:0]						rs.	1	funct	3		rd		opco	de	I-type
imm[11:5]				rs2		rs	1	funct	3	in	ım[4:	:0]	opco	de	S-type
imm[12] imm[10):5]		rs2		rs.	1	funct	3	imm[4:	1] i	mm[11]	opco	de	B-type
			im	m[31:1	.2]						rd		opco	de	U-type
imm[20] in	nm[10	0:1]	in	nm[11]	ir	nm[1	9:12]			rd		opco	de	J-type
imi	m[12 10:5]			rs2		rs1		000	1	imm[4	1 11	.] 1	10001	1	BEQ
imi	m[12 10:5			rs2		rs1		001	T	imm[4	1 11] 1	10001	1	BNE
imi	m[12 10:5			rs2		rs1		100		imm[4	1 11	.] 1	10001	1	BLT
imi	m[12 10:5			rs2		rs1		101	1	imm[4	1 11] 1	10001	1	BGE
imi	m[12 10:5			rs2		rs1		110		imm[4	1 11	.] 1	10001	1	BLTU
imi	m[12 10:5			rs2		rs1		111	1	imm[4	1 11	.] 1	10001	1	BGEU
		F	- 1		_		_		_			-			

请回答:

- (1) 请写出"bne a5,a2,.L5"对应指令的十六进制表示。(a5 和 a2 的寄存器编号分别 为 15 和 12。)(2 分)
- (2) 请分析 bne 理论上的跳转范围。(2分)
- (3) 对于上面的代码,请写出等效的 C 伪代码,并给出程序终止后 a4 的值。(4分)
- (4) 如果使用五阶段流水线 CPU 设计, 请指出上述代码中所有可能出现的数据冲突。(4分)

六、(16分) 一个五级流水线 RISC-V CPU 各流水段的基本功能部件如图所示。

(1) 该 CPU 仅实现了部分数据旁路,在没有发生结构冲突的情况下,CPU 从 init 开始 执行、执行 swap 代码段时仅发生了 1 次暂停。

```
vec:
                           # word 是 32 位
  .word 1,9,2,2
init:
 li a1, 0
 la a0, vec
 nop
 nop
swap:
 ori
       a1, a1, 1
 slli t0, a1, 2
      t0, a0, t0
 add
       t1, 0(t0)
  lw
       t2, 4(t0)
  SW
       t2, 0(t0)
       t1, 4(t0)
 SW
// End of swap
```

- a) 请写出该 CPU **没有**实现的数据旁路,需要说明部件名称与流水段寄存器名称(若有)。如: ALU@EXE/MEM->ALU, 表示保存在 EXE/MEM 流水段的 ALU 计算结果到 ALU 的数据旁路。(3 分)
- b) 重写该代码段,在保证代码段整体执行结果一致的情况下,避免 CPU 出现暂停。(3分)
- (2) 若该 CPU 实现了所有可能的数据旁路,且该 CPU 不支持分支预测,且在跳转指令之后取 PC+4 作为 next PC,若执行跳转则清空 IF、ID,并将跳转目的地址作为 next PC。CPU 从 init 开始执行下列代码。

vec:

```
.word 0
init:
    la a0, vec
    addi t0, x0, 0x1
    addi t1, x0, 0x0
    addi t3, x0, 0xa
    nop
count:
    add t0, t0, 0x1
    add t3, t3, -1
    add t1, t1, t0
    bne t3, x0, count
out:
    sw t1, (a0)
    nop
    nop
```

- a) 请写出: EXE 段执行上述 sw 指令的**前一个周期**, CPU 各流水段正在执行的指令 (空 泡用 nop 代替)。(3 分)
- b) **CPU** 在执行上述 **count** 时是否使用了所有可能的数据旁路? 若有请写出所有未使用的数据旁路。(4分)

(3) 有两种方案用于处理 ID 段产生的异常:

方案一:将 ID 段产生的异常信号存入 ID\EXE 流水寄存器,在下一个周期由 EXE 段的异常处理模块处理。

方案二:将ID段产生的异常信号直接传递给EXE段的异常处理模块,使得在这一周期即可开始进行处理。

在上述两个方案中,异常处理模块在接收到异常信号后,将发生异常的指令 PC 写入 MEPC,等待流水线清空,并控制 PC 寄存器的下一个取值为异常处理程序首地址。

这两个方案中有一个方案不满足精确异常定义。请指出不满足的方案, 并通过汇编代码, 举例说明在什么情况下, 该方案无法实现精确异常。(译码异常指令用 RV.X 代替。)(3分)

七、(20分)某同学买到了两款处理器芯片,这两款芯片均只有一级处理器缓存。其中一款芯片 A 可以查询到芯片规范 (Specification),另一个款芯片 B 查不到芯片规范。该同学想了解一下这两款芯片的缓存结构,以改善程序性能。

内存地址采用从 0 开始字节编址的线性地址空间。

- (1) 该同学查询到芯片 A 的缓存大小(数据部分)为 32KB, 路数为 8, 缓存行大小为 64B。 对于一个 32 位内存地址,请标记其中的标记位(Cache Tag, CT)、索引位(Cache Index, CI)、块内偏移(Cache Offset, CO)部分,并给出计算理由。(4分)
- (2) 该同学查询到芯片 B 所在的系列芯片的相关参数的可能取值范围,计划通过程序访问性能统计(缓存命中率)来推测芯片 B 的参数。

芯片 B 的可能取值范围如下:

- 缓存行大小可能的取值是: 16B、32B、64B 和 128B;
- 缓存大小(数据部分)可能的取值是: 4KB、8KB;
- 路数可能的取值是: 1、2、4、8。
- 缓存替换策略采用 FIFO 策略。

该同学设计的访问内存地址为:

在对上述地址连续的 24 次访存中,采集到的前 8 次访问、中间 8 次访问、最后 8 次访问的缓存命中次数分别为 3 次、0 次、8 次。

请问该芯片的缓存行大小、路数多少、缓存大小,并简要写出理由。(9分)

(3) 该同学正在调试一个应用程序的性能,该程序包含三个双精度浮点数二维数组 M, N, O 的操作,原始程序如下:

```
for (i=0; i<n; i++) {
    for (j=0; j<n; j++) {
        sum = 0.0;
        for (k=0; k<n; k++)
            sum += M[i][k] * N[k][j];
        Q[i][j] = sum;
    }
```

假设 n 足够大,请写出缓存效率最优的算法(不考虑矩阵切块),并分析其缓存命中率(缓存中仅保存 M、N、Q,循环变量和 sum 均在寄存器中)。(7分)