EKOLOGICKY OPTIMÁLNE RIEŠENIE VÝKONOVÝCH POLOVODIČOVÝCH MENIČOV

ECOLOGICALLY OPTIMAL SOLUTION OF POWER SEMICONDUCTORS CONVERTERS Pavol Špánik, Ivan Feňo, Gabriel Kácsor

Katedra výkonových elektrotechnických systémov, Elektrotechnická fakulta, Žilinská univerzita, 010 26 Žilina, E-mail: spanik@fel.utc.sk

Ivan Lokšeninec

Elektrotechnický výskumný a projektový ústav, Trenčianská 19, 018 51 Nová Dubnica

Abstrakt Jedným z relevantných vedeckých programov Katedry výkonových elektrotechnických systémov je výskum ekologicky optimálnych topologických riešení hlavných obvodov výkonových polovodičových meničov. Článok prezentuje niektoré metódy redukcie negatívnych vplyvov výkonových polovodičových meničov na napájaciu sieť. Dosiahnuté výsledky boli aplikované aj v praxi, konkrétne v meničoch vyrábaných Elektrotechnickým výskumným a projektovým ústavom v Novej Dubnici

Summary One of the relevant scientific programs of Department of Power Electrical Systems is research of ecologically optimal topologies main circuits of power converters. This paper presents some methods how to reduce unfavourable influences of power converters on the grid. The achieved results were applied in praxis, especially in the power converters produced by Electrotechnical Research and Projecting Institute in Nova Dubnica.

1. ÚVOD

V druhej osemdesiatych polovici rokoch bola počiatočná eufória, sprevádzajúca nasadenie statických meničov, vystriedaná obdobím kritického posudzovania a hľadania vlastností nových, kvalitatívne optimálnejších riešení. Pozitívny vplyv na uvedený proces mal ai vývoj v oblasti výkonových polovodičových súčiastok, konkrétne zdokonalenie unipolárnej štruktúry a vytvorenie IGBT. Zvýšila sa spínacia frekvencia, zlepšila sa kvalita časového priebehu výstupného napätia a celkovo narástla úroveň technických parametrov meniča. Niektorým negatívnym vlastnostiam sa však venovala neadekvátne malá, resp. žiadna pozornosť. Išlo najmä o odber neharmonického a akustických prúdu, úroveň elektromagnetických emisií. Tiež sa pomerne malá pozornosť sústreďovala na také javy, ako degradácia izolácie elektrických strojov

Masové nasadenie malých meničov, vrátane spínaných zdrojov počítačovej a spotrebnej elektroniky v priebehu deväť desiatych rokov, však prinieslo rad problémov, dotýkajúcich sa najmä distribútorov elektrickej energie a prevádzkovateľ ov informačných a telekomunikačných zariadení. Niektoré z nich pritom zásadným spôsobom vplývali na ich prevádzku, alebo vyvolávali javy ohrozujúce činnosť existujúcich systémov. Táto situácia sa odrazila predovšetkým v oblasti normotvorby, kde došlo k zavedeniu noriem, ktoré podrobne špecifikovali maximálne hranice miery negatívnych vplyvov zariadení pripojených na elektrickú sieť.

Dopad na konštrukciu statických výkonových meničov bol dvojaký. V prvom rade išlo o redukciu negatívnych vplyvov už existujúcich zariadení ďalším prídavným zariadením – aktívnym filtrom [1]. Jeho problematika bola podrobne rozpracovaná, pričom môžeme povedať, že v súčasnosti sa prešlo do aplikačného štádia. Získané skúsenosti [2] potvrdili, že aktívny filter sa dokáže pomerne dobre vysporiadať s harmonickými zložkami v dolnej časti spektra a pri vhodnej topológii prispieva

aj k symetrizácii nesúmerných sústav. Jeho negatívnou stránkou je generovanie vyšších harmonických zložiek spôsobené konečnou hodnotou spínacej frekvencie a celkovým znížením účinnosti ošetreného systému. Preto sa v súčasnosti, u novo konštruovaných zariadení, začína uplatňovať druhý spôsob redukcie, založený na takom riešení meniča, ktoré by eliminovalo samotný vznik uvedených negatívnych účinkov. Existuje pomerne veľké množstvo spôsobov, ako uvedený efekt dosiahnuť [3]. Nie všetky sú však jednoznačne výhodné, pričom ich výsledné vlastnosti závisia ako na výkonových parametroch, tak aj na aplikačnej oblasti meniča.

Z dôvodov komplexného posúdenia vlastností meniča sa začalo používať kritérium tzv. ekologického riešenia. Jeho podstatou je minimalizácia stratového výkonu, vyšších harmonických zložiek prúdu, úrovne elektromagnetického vyžarovania a akustických emisií. V rámci súboru výskumných úloh riešených našou pracovnou skupinou, sme sa sústredili na elimináciu harmonických zložiek odoberaného prúdu a zlepšenie účinnosti meniča.

2. OPTIMALIZÁCIA VSTUPNEJ ČASTI MENIČA

Meniče menších výkonov sú napájané spravidla z jednofázovej siete, prostredníctvom jednofázového neriadeného usmerňovača, na ktorého výstupné svorky kapacitný filter, reprezentujúci pripojený jednosmerný medziobvod. Schéma takéhoto zapojenia je uvedená na obr.1. Pre väčšie výkony sa používa troifázový usmerňovač v mostovom Vzhľadom na to, že ide o principiálne rovnaké obvody, pričom trojfázové zapojenie má lepšie spektrum harmonických zložiek vstupného prúdu, sústredili sme sa na optimalizáciu jednofázového zapojenia.

Obr. 1. Schéma zapojenia jednofázového usmerňovača s kapacitným filtrom

Obr. 2. Časové priebehy sieťového napätia a prúdu Fig. 2. Line input voltage and line input current waveforms of the rectifier

Na základe rozsiahlej analýzy činnosti usmerňovača bolo zistené, že dominantný podiel na tvare časového priebehu vstupného prúdu má jednosmerný medziobvod. Hodnoty jeho komponentov sú pritom určené požadovanými parametrami usmerňovača, konkrétne jeho tvrdosťou $k_{\rm u}$ a zvlnením výstupného napätia $U_{\rm pp}$.

Zo získaných výsledkov bolo zrejmé, že mieru negatívneho spätného vplyvu meniča na napájaciu sieť môžeme ovplyvniť vhodnou voľbou prvkov kapacitného filtra. Ide však o určitú formu kompromisu medzi tvrdosťou výstupnej charakteristiky usmerňovača a obsahom vyšších harmonických. Ako vyplýva z obr.3, k redukcii negatívneho spätného vplyvu dochádza pri znižovaní koeficientu napäťovej tvrdosti usmerňovača - ku. To znamená, že z hľadiska spätného vplyvu na sieť bude lepší usmerňovač s mäkkou výstupnou charakteristikou, čo dokazuje aj spektrum vstupného prúdu, uvedené na obr. 3.

Technické využitie tejto vlastnosti je však problematické a vedie k väčšej zložitosti riadiaceho algoritmu meničov pripojených na výstup usmerňovača. Nezanedbateľný je aj cenový dopad aplikácie pomerne veľkej tlmivky, ktorej indukčnosť môže, pre malé hodnoty ku, dosiahnuť niekoľko desiatok mH.

Obr.3. Závislosť amplitúdy harmonických zložiek vstupného prúdu na tvrdosti výstupnej charakteristiky Fig.3. Current magnitude harmonic components with respect of the type of output characteristics

Na druhej strane však treba poukázať na pozitívny aspekt takejto aplikácie, prejavujúci sa v redukcii efektívnej hodnoty (znižovaní činiteľa tvaru) vstupného prúdu. Uvedená skutočnosť má význam pri použití napájacieho transformátora, ktorý môže mať nižší typový výkon.

Technické obmedzenia optimalizácie kapacitného filtra viedli k hľadaniu iných možností potlačenia harmonických zložiek sieťového prúdu. Jednou z nich, ktorú sme rozpracovali v rámci našej výskumnej činnosti, je aj použitie predregulátora faktora výkonu, označovaného aj Power Factor Correction (ďalej PFC).

Ide o výkonový elektronický člen, situovaný v jednosmernom medziobvode meniča, ktorý v svojej podstate reprezentuje zvyšujúci DC/DC menič (boost). Jeho základná schéma zapojenia je uvedená na obr.4

Obr. 4. Schéma zapojenia usmerňovača s PFC Fig.4. The power – factor – corrected rectifier

Jeho vhodným riadením sa dosahuje to, že prúd zo siete je odoberaný počas celej polperiódy sieťového napätia a nielen v úzkom intervale, ako to bolo v predchádzajúcom prípade. Následkom toho dôjde k zníženiu činiteľa tvaru sieťového prúdu na hodnotu blízku 1,11 (sínusový priebeh) a podstatnej redukcii jeho harmonických zložiek v časti spektra blízkej sieťovej frekvencii.

Vzhľadom na to, že uvedené zapojenie je pomerne dobre prepracované, zamerali sme našu výskumnú činnosť na aplikáciu mäkko spínaných obvodových topológií v časti PFC, čím sme sledovali zvýšenie celkovej účinnosti vstupného meniča, jeho výkonového rozsahu a redukciu rušivých signálov. Aj keď táto výskumná úloha nie je ukončená, môžeme konštatovať, že dosiaľ získané výsledky sú veľmi povzbudivé a ukazujú výrazné rozšírenie aplikačnej oblasti upraveného meniča.

3. IMPULZOVÝ USMERŇOVAČ

Zatiaľ čo predchádzajúce riešenia boli určené pre malé výkony, impulzový usmerňovač je schopný zabezpečiť odber harmonického prúdu s nízkym THD aj pri stredných a vyšších výkonoch. Jeho aplikačná oblasť je veľmi široká, pričom siaha od meničov s výkonmi desiatky kW až po trakčné meniče s výkonom niekoľko MW. Výhodou niektorých zapojení je možnosť obojstranného toku energie, čo je veľmi výhodné pri rekuperácii, resp. brzdení pohonu. V rámci našej výskumnej činnosti sme sa zaoberali týmto meničom najmä v súvislosti s jeho aplikáciou v elektrickej trakcii.

Obr. 5. Jednofázový impulzový usmerňovač Fig. 5. Circuit diagram of single-phase current shaping rectifier

Na obr. je uvedená principiálna schéma jednofázového usmerňovača. Skratovací spínač nevyhnutný pre činnosť meniča, je realizovaný štvoricou IGBT tranzistorov, ktoré sú pripojené antiparalelne k diódam usmerňovacieho mostíka. Treba pripomenúť, že IGBT tranzistory môžu byť nahradené ľubovoľným vypínateľným polovodičovým prvkom, pokiaľ postačuje jeho výkon. To znamená, že v prípade v prípade malého výkonu môže byť hlavný obvod meniča realizovaný na báze MOS tranzistorov, čo umožní dosiahnúť vyššie spínacie frekvencie, a teda aj redukovať hodnotu THD sieťového prúdu.

4. AKTÍVNY FILTER

Výkonový aktívny filter je elektronické zariadenie, ktoré v podstatnej miere kompenzuje nepriaznivé vplyvy iných elektrických zariadení na napájaciu a rozvodnú sústavu. Svojim princípom činnosti je predurčené k aplikácii vo vyššej výkonovej oblasti, najmä k už existujúcim meničom s nevhodnými ekologickými vlastnosťami. Aktívne filtre je možné nasadzovať aj v dôležitých uzloch elektrickej siete, kde vylepšujú kvalitu elektrickej energie.

Podľa spôsobu pripojenia rozoznávame sériové a paralelné aktívne filtre. Rozdiel medzi oboma

skupinami, ako to už z názvu vyplýva, je v spôsobe pripojenia k záťaži (sériovo, alebo paralelne) a v konečnom dôsledku aj v charaktere primárne kompenzovanej veličiny.

Sériové aktívne filtre kompenzujú sieťové napätia, ktorých priebehy môžu byť zdeformované výkonovými polovodičovými súčiastkami (riadený tyristorový usmerňovač) a paralelné aktívne filtre zas kompenzujú sieťové prúdy, ktoré sú deformované nelineárnou záťažou (napr. diódový usmerňovač s kapacitným filtrom) .

V rámci výskumnej činnosti KVES boli vyvinuté funkčné vzorky jedno a trojfázového paralelného aktívneho filtra, vrátane príslušného riadiaceho softvéru. Po ukončení ich laboratórnych testov boli, v spolupráci katedry a EVPÚ Nová Dubnica, postavené prototypy zariadení a overené v praktických aplikáciách.

Jednofázový paralelný aktívny filter je určený pre jednofázové aplikácie, z ktorých najvýznamnejšou je oblasť elektrickej trakcie. Jeho schéma zapojenia je uvedená na obrázku 6.

Obr.6. Jednofázový paralelný aktívny filter Fig.6. Block diagram of single-phase parallel active filter

Veľmi dôležitou časťou filtra sú riadiace obvody, realizované na báze DSP. Využíva sa v nich technika fázového závesu, ktorá riadiaci systém informuje o elektrickom uhle meranej veličiny (8, alebo viac bitov podľa druhu použitého čítača). To je dôležité pre riadenie účinníka a celkovú stabilitu riadiaceho systému. Ďalej systém obsahuje dva analógovo číslicové (A/D) prevodníky slúžiace k prevodu prúdu záťaže (pre potreby určenia prvej harmonickej) a skutočného prúdu kompenzátora (pre spínanie hysteréznych komparátorov), ktoré sú v tomto prípade realizované programovými prostriedkami v riadiacom procesore, reprezentovaného na obr.6 digitálneho spracovania signálov.

Kritickým parametrom riadiacich obvodov je práve výpočtový výkon použitého DSP, vyžadujúci aplikáciu obvodu s veľmi dobrými dynamickými vlastnosťami.

Na obr.7 sú uvedené časové priebehy charakteristických elektrických veličín, namerané na funkčnej vzorke aktívneho filtra.

Obr. 7. Časové priebehy elektrických veličín v jednofázovom aktívnom filtri

Fig.7. Current waveforms of the single-phase active filter

Horný priebeh reprezentuje prúd odoberaný zo siete, v strednej časti je prúd tečúci záťažou a dolný priebeh predstavuje prúd generovaný filtrom.

Na obrázku 8 je ukázaný dynamický dej pripojenia jednofázovej záťaže.

Obr. 8. Časové priebehy prúdov počas pripojenia jednofázovej záťaže.

Fig. 8. Single-phase active filter current of the applying single-phase load

Prakticky okamžitá reakcia filtra na zmenu záťaže bola dosiahnutá aplikovaním techniky kĺzavého priemeru pri výpočte referenčnej hodnoty kompenzačného prúdu.

Princíp činnosti trojfázového aktívneho filtra, ktorého schéma zapojenia je uvedená na obr.9, je podobný ako u jednofázového zapojenia. Hlavný obvod reprezentovaný trojfázovým napäťovým striedačom, avšak oproti jednofázovému zapojeniu sú o niečo zložitejšie aj riadiace obvody. Pribudli tu hysterézne komparátory prúdov a dva číslicovo analógové prevodníky (D/A). Blok hysteréznych komparátorov preberá úlohu vytvárania spínacích signálov a tým odľahčuje digitálny signálový procesor. Ten generuje referenčné prúdy jednotlivých fáz cez pripojené D/A prevodníky. Logika fázového závesu teraz generuje 6 impulzov za periódu.

Obr.9. Trojfázový aktívny filter Fig.9. Block diagram of threee-phase parallel active filter

Trojfázové zapojenie nám poskytuje aj možnosť kompenzovania nesymetrických záťaží. Ide však o záležitosť kladúcu vysoké nároky na dynamické vlastnosti použitého riadiaceho systému.

5. ZÁVER

V tomto článku sme sa snažili prezentovať určitý pohľad na problematiku ekologicky optimálneho riešenia, resp. eliminácie negatívnych vlastností, vstupných obvodov výkonových polovodičových meničov. Jeho základom sú skúsenosti získané výskumným programom pracovnej skupiny Výkonová elektronika - KVES, riešeným v súčinnosti s EVPÚ Nová Dubnica.

LITERATÚRA

- [1] DOBRUCKÝ B., POKORNÝ M., ROCH M., HAVRILA R.: Techniques of Active Load's Current or/and Power Computing for Dynamic Compensation of Three-Phase Symmetrical System. PEVD'98, Londýn, Sept. 1998, S. 150-155
- [2] DOBRUCKÝ B., RÁČEK V., POKORNÝ M., HAVRILA R.: A New Method of the Instantaneous Reactive Power Determination for Single-Phase Power Electronic Systems. EPE'99, Loussane, Švajčiarsko
- [3] HAVRILA R., MAKAROVIČ J.: Nové technológie znižovania nepriaznivých vplyvov v elektrizačnej sústave. Skriptum ÚCV ŽU, Žilina, marec 1998

Článok bol napísaný s podporou grantového projektu VEGA č. 1/0178/03