DFAS, NFAS, Reg. Exps.

$$\underbrace{e.g.}_{a} \longrightarrow \underbrace{\bigcirc_{a}^{b}}_{a} \xrightarrow{\bigcirc_{a}^{b}}_{a} \xrightarrow{\bigcirc_{a}^{b}}_{a}$$

This Famile automaton accepts strings (over I = {a,b}) with # a's divisible by 3.

Deterministic (DFA)

Finite automata

-> Non-deterministic (NFA)

e.g. (NFA W/ Contractictory Trans.)

$$\begin{array}{c} a \\ \rightarrow \\ 0 \\ \rightarrow \\ 0 \\ \hline \end{array}$$

eg. (NFA W/ E-trans.)

$$\frac{\varepsilon}{0} \xrightarrow{\alpha} 0 \xrightarrow{\delta} 0$$

$$\xrightarrow{\varepsilon} 0 \xrightarrow{\alpha} 0 \xrightarrow{\varepsilon} 0$$

defin a DFA is a 5-tuple (P, Σ, S, q_0, F) where

• Q is a finite set of states

• Σ is a finite set of symbols (alphabet)

• $S: Q \times \Sigma \to Q$ is a transition function

• $q_0 \in Q$ is the stant state

• $F \subseteq Q$ is the set of final states.

defn an NFA is exactly the same except...

· S: Q × ([U { E }]) → 8(Q).

is the non-det. trans. Function

e.g. Write an NFA that accepts Strings where the 4th to last character is an a (where $Z = \{a, b\}$).

prestion: Can we write a DFA fore this?

yes...

thm (Kleene's).

Reg. Exp. are equivalent to NFAs which are equivalent to DFAs.

alg. (Thompson).

- Company	
Reg Exp.	NFA
3	$\rightarrow \bigcirc$
$a \in \Sigma$	$\rightarrow 0 \xrightarrow{a} 0$
RIRZ	-> RI EX
R, RZ	E RI ZE
	EX RZ Z
R*	E E E
	5