

Programación II Práctica Calificada 2 Pregrado

2021-II

Profesor: Jorge Villavicencio

Lab: 1.01

Indicaciones específicas:

- Esta evaluación contiene 10 páginas (incluyendo esta página) con 3 preguntas. El total de puntos son 20.
- El tiempo límite para la evaluación es 100 minutos.
- Cada pregunta deberá ser respondida en un solo archivo con el número de la pregunta.
 - p1.cpp
 - p2.cpp
 - p3.cpp
- Deberás subir estos archivos directamente a www.gradescope.com, uno en cada ejercicio. También puedes crear un .zip

Competencias:

Para los alumnos de la carrera de Ciencia de la Computación

Aplicar conocimientos de computación apropiados para la solución de problemas definidos y sus requerimientos en la disciplina del programa. (nivel 2)

Diseñar, implementar y evaluar soluciones a problemas complejos de computación.(nivel 2)

Crear, seleccionar, adaptar y aplicar técnicas, recursos y herramientas modernas para la práctica de la computación y comprende sus limitaciones. (nivel 2)

• Para los alumnos de las carreras de Ingeniería

Aplicar conocimientos de ingeniería en la solución de problemas complejos de ingeniería (nivel 2).

Diseñar soluciones relacionados a problemas complejos de ingeniería (nivel 2)

Crear, seleccionar y utilizar técnicas, habilidades, recursos y herramientas modernas de la ingeniería y las tecnologías de la información, incluyendo la predicción y el modelamiento, con la comprensión de sus limitaciones (nivel 2)

• Para los alumnos de Administración y Negocios Digitales

Analizar información verbal y/o lógica proveniente de distintas fuentes, encontrando relaciones y presentándola de manera clara y concisa (nivel 2)

Analizar y evaluar el comportamiento del consumidor y el desarrollo de estrategias comerciales (nivel 2)

Trabajar de manera efectiva con equipos multidisciplinarios y diversos en género, nacionalidad, edad, etc. (nivel 2) $\,$

Calificación:

Tabla de puntos (sólo para uso del professor)

Question	Points	Score
1	7	
2	6	
3	7	
Total:	20	

1. (7 points) Suma el borde de los elementos de una matriz Tema a evaluar: Matrices

Desarrollar un programa que permite sumar los bordes de una matriz aleatoria de numeros enteros. Para eso su programa debe ejecutar lo siguiente:

- El usuario debe ingresar la cantidad de filas y columnas para el programa.
- El valor de la filas y columnas tienen que ser mayor igual a 2, en caso que el usuario ingrese un número menor al 2 se debe volver a solicitar.
- Generación de la matriz de enteros con números aleatorios entre 1 a 100.
- Mostrar la matriz generada al usuario.
- Indicar la sumatoria de los bordes de la matriz.
- Liberar la memoria dinámica utilizada.

IMPORTANTE: En este ejercicio no puede utilizar librerias. Para resolver el ejercicio debe utilizar matrices dinámicas.

Listing 1: Ejemplo de resultado 1

```
Filas:1
Filas:0
Filas:2
Columnas:6
58
         7
                   53
                            83
                                      75
                                               87
         59
10
                   31
                            93
                                      28
                                               83
Sumatoria de borde:667
```

Listing 2: Ejemplo de resultado 2

```
Filas:4
Columnas:4
72
         94
                   80
                             37
50
         97
                   63
                             72
87
         99
                   75
                             22
51
         56
                   79
                             49
Sumatoria de borde:749
```

Listing 3: Ejemplo de resultado 3

Filas	: 4				
Column	nas:1				
Column	nas:-4				
Column	nas:5				
5	84	9	16	50	
77	52	43	13	71	
59	34	47	7	85	
36	87	69	11	50	
Sumat	Sumatoria de borde:709				

Los criterios en la rúbrica (y el puntaje respectivo) se condicionan a que la solución presentada corresponda al problema planteado

Criterio	Excelente	Adecuado	Mínimo	Insuficiente	
Ejecución	El diseño del	El diseño del al-	El diseño tiene	El diseño es de-	
	algoritmo es or-	goritmo es orde-	algunas deficien-	ficiente y la eje-	
	denado y claro,	nado y claro. La	cias pero la eje-	cución no es cor-	
	siguiendo bue-	ejecución es cor-	cución es cor-	recta (0.5pts)	
	nas prácticas en	recta (2pts)	recta (1pts).		
	programación.				
	La ejecución es				
	correcta (3pts)				
Sintaxis	No existen er-	Existen al-	Existen errores	El código tiene	
	rores sintácticos	gunos errores	sintácticos en	errores de	
	o de compilación	sintácticos de	la forma de	sintáxis que	
	(2pts)	menor rele-	ejecución, que	afectan el resul-	
		vancia, que no	no afectan el re-	tado (0.5pts)	
		afectan el resul-	sultado (1pts).		
		tado (1.5pts).			
Optimizacion	El código es	El código es de	El código no	El código no está	
	óptimo y efi-	buen perfor-	está optimizado	optimizado y la	
	ciente. De buen	mance durante	pero la eje-	ejecución es defi-	
	performance	la ejecución	cución no es	ciente (Opts)	
	e interacción	(1.5pts)	deficiente(1pts)		
	con el usuario				
	(2pts)				

2. (6 points) Creación de listas de vocales.

Tema a evaluar: Vectores

Diseñe e implemente un programa que permita ingresar varias palabras hasta que el usuario ingrese -1. Con el listado de palabras se deben crear 3 listas. La primera lista con todas las palabras que empiezan con vocal abiertas ('a', 'e' y 'o'), la segunda lista con todas las palabras que empiezan con vocal cerradas ('i' y 'u'), y la última lista con las palabras restantes que no esten en la primera y segunda lista. Finalmente, imprimimos las tres listas. No considerar el -1 en ninguna lista.

IMPORTANTE: En este ejercicio puede utilizar la biblioteca String, Vector.

Listing 4: Ejemplo de resultado 1

```
Palabra: orca
Palabra: iman
Palabra: pelicano
Palabra: ulaula
Palabra: enano
Palabra: marciano
Palabra: -1
La primera lista: [orca, ana, enano,]
La segunda lista: [pelicano, marciano,]
```

Listing 5: Ejemplo de resultado 2

```
Palabra: oso
Palabra: a
Palabra: e
Palabra: i
Palabra: o
Palabra: u
Palabra: furia
Palabra: desodorante
Palabra: televisor
Palabra: netflix
Palabra: imantado
Palabra: -1
La primera lista: [oso, a, e, o, ]
La segunda lista: [i, u, imantado, ]
La tercera lista: [furia, desodorante, televisor, netflix, ]
```

La tercera lista:

[]

Listing 6: Ejemplo de resultado 3

Palabra: a
Palabra: e
Palabra: i
Palabra: -1
La primera lista: [a, e,]
La segunda lista: [i,]

Los criterios en la rúbrica (y el puntaje respectivo) se condicionan a que la solución presentada corresponda al problema planteado

Criterio	Excelente	Adecuado	Mínimo	Insuficiente
Ejecución	El diseño del	El diseño del al-	El diseño tiene	El diseño es de-
	algoritmo es or-	goritmo es orde-	algunas deficien-	ficiente y la eje-
	denado y claro,	nado y claro. La	cias pero la eje-	cución no es cor-
	siguiendo bue-	ejecución es cor-	cución es cor-	recta (0.5pts)
	nas prácticas en	recta (2pts)	recta (1pts).	
	programación.			
	La ejecución es			
	correcta (3pts)			
Sintaxis	No existen er-	Existen al-	Existen errores	El código tiene
	rores sintácticos	gunos errores	sintácticos en	errores de
	o de compilación	sintácticos de	la forma de	sintáxis que
	(2pts)	menor rele-	ejecución, que	afectan el resul-
		vancia, que no	no afectan el re-	tado (0.5pts)
		afectan el resul-	sultado (1pts).	
		tado (1.5pts).		
Optimization	El código es	El código es de	El código no	El código no está
	óptimo y efi-	buen perfor-	está optimizado	optimizado y la
	ciente. De buen	mance durante	pero la eje-	ejecución es defi-
	performance	la ejecución	cución no es	ciente (Opts)
	e interacción	(1.5pts)	deficiente(1pts)	
	con el usuario			
	(2pts)			

3. (7 points) Listado de cursos de un profesor de UTEC. Tema a evaluar: Clases y Objetos

Se te solicita construir un software que permita ingresar los datos básicos(nombre, apellido paterno y apellido materno) de un profesor de UTEC e indicar cuales son los cursos que está dictando en el año 2022-1.

Para cumplir con este requerimiento debes crear un programa que permita solicitar los datos de 'n' cantidad de cursos y almacenar esos datos en el atributo **v**_**cursos** de la clase CProfesor. La clase tiene tiene los siguientes atributos y métodos especificados:

```
CProfesor
nombre: string
apellido_paterno: string
apellido_materno: string
cant_cursos: int
v_cursos: vector<string>
CProfesor()
CProfesor(\_nombre, \_apellido_naterno, \_apellido_materno)
\simCProfesor()
getNombre()
getApellido_paterno()
getApellido_materno()
getCant_cursos()
setNombre(_nombre)
setApellido_paterno(_apellido_paterno)
setApellido_materno(_apellido_materno)
setCant_cursos(_cant_cursos)
agregarCurso(_nombreCurso)
mostrarCursos()
```

Además, los nombres de los curso se van almacenar en un vector de tipo string y se agregan utilizando el método agregarCurso(_nombreCurso).

Para terminar el programa debe imprimir el listado de cursos del profesor y la cantidad de cursos que dicta en UTEC.

IMPORTANTE: En este ejercicio puede utilizar la biblioteca String y Vector.

A continuación se muestra algunos ejemplos de la ejecución correcta del código:

Listing 7: Ejemplo de resultado 1

Luis
Vidal
Martinez
Ingresar cantidad de cursos: 3
Curso 1: Calculo
Curso 2: Programacion
Curso 3: Estadistica

Listado de cursos del profesor: Luis Vidal Martinez
1) Calculo
2) Programacion
3) Estadistica

Cantidad de cursos: 3

Listing 8: Ejemplo de resultado 2

Jorge
Villavicencio
Antunez
Ingresar cantidad de cursos: 4
Curso 1: Ingles
Curso 2: Programacion
Curso 3: Variables
Curso 4: Fisica

Listado de cursos del profesor: Jorge Villavicencio Antunez
1) Ingles
2) Programacion
3) Variables
4) Fisica

Cantidad de cursos: 4

Listing 9: Ejemplo de resultado 3

```
Jesus
Fiestas
Vidal
Ingresar cantidad de cursos: 6
Curso 1: Programacion
Curso 2: Integrales
Curso 3: Dise o
Curso 4: Electivo
Curso 5: Agil
Curso 6: Calculo
Listado de cursos del profesor: Jesus Fiestas Vidal
1) Programacion
2) Integrales
3) Dise o
4) Electivo
5) Agil
6) Calculo
Cantidad de cursos: 6
```

Los criterios en la rúbrica (y el puntaje respectivo) se condicionan a que la solución presentada corresponda al problema planteado

Criterio	Excelente	Adecuado	Mínimo	Insuficiente	
Ejecución	El diseño del algo-	El diseño del algo-	El diseño tiene	El diseño es de-	
	ritmo es ordenado	ritmo es ordenado	algunas deficien-	ficiente y la eje-	
	y claro, siguiendo	y claro. La eje-	cias pero la eje-	cución no es cor-	
	buenas prácticas	cución es correcta	cución es cor-	recta (0.5pts)	
	en programación.	(2pts)	recta (1pts).		
	La ejecución es				
	correcta (3pts)				
Sintaxis	No existen er-	Existen algunos	Existen errores	El código tiene	
	rores sintácticos	errores sintácticos	sintácticos en	errores de	
	o de compilación	de menor rele-	la forma de	sintáxis que	
	(2pts)	vancia, que no	ejecución, que	afectan el resul-	
		afectan el resul-	no afectan el re-	tado (0.5pts)	
		tado (1.5pts).	sultado (1pts).		
Optimization	El código es	El código es de	El código no	El código no está	
	óptimo y efi-	buen performance	está optimizado	optimizado y la	
	ciente. De buen	durante la eje-	pero la eje-	ejecución es defi-	
	performance e	cución (1.5pts)	cución no es	ciente (Opts)	
	interacción con el		deficiente(1pts)		
	usuario (2pts)				