Math 113 Homework 1

Aniruddh V.

September 2023

1 Problem 1

Solution Claim: $A \cap B = A \setminus B^c$.

Proof. Let $x \in A \cap B$. Then $x \in A$ and $x \in B$, so $x \notin B^c$. But then $x \in A$ and $x \notin B^c$, so $x \in A \setminus B^c$. Thus $A \cap B \subseteq A \setminus B^c$. On the other hand, let $x \in A \setminus B^c$. Then $x \in A$ and $x \notin B^c$, so $x \in A$ and $x \in B$, and thus $x \in A \cap B$. So $A \setminus B^c \subseteq A \cap B$. But then $A \cap B = A \setminus B^c$

2 Problem 2

Solution Suppose $f_{\rho} = f_{\sigma}$. Then f_{ρ} and f_{σ} have the same domains, codomains, and assignments. In particular, for all $x_1, \ldots, x_n \in X_1, \ldots X_n$, $f_r ho(x_1, \ldots, x_n) = f_{\sigma}(x_1, \ldots, x_n) = y$. By the definition of f_{σ} and f_{ρ} , this means that the relations $\sigma(x_1, \ldots, x_n, y)$ and $\rho(x_1, \ldots, x_n, y)$ both hold, so the relations ρ and σ are equipotent. On the other hand, suppose σ and ρ are equipotent. Then $\sigma(x_1, \ldots, x_n, y)$ holds exactly when $\rho(x_1, \ldots, x_n, y)$ holds. But this means that for all $x_1, \ldots, x_n \in X_1, \ldots, X_n$, $f_r ho(x_1, \ldots, x_n) = f_{\sigma}(x_1, \ldots, x_n) = y$. Then f_{ρ} and f_{σ} have the same domains, codomains, and targets, and thus $f_{\rho} = f_{\sigma}$. Therefore, $f_{\rho} = f_{\sigma}$ if and only if ρ and σ are equipotent.

3 Problem 3

Solution Suppose x = x' and y = y'. Then clearly $\{\{x\}, \{x,y\}\} = \{\{x'\}, \{x',y'\}\}\}$. On the other hand, if $\{\{x\}, \{x,y\}\} = \{\{x'\}, \{x',y'\}\}\}$, then by definition x = x' and y = y', since the ordered pairs (x_1, \ldots, x_m) and (y_1, \ldots, y_n) are equal if and only if n = m and $x_i = y_i$ for $i = 1, \ldots, n$. In this case, our ordered pair consists of two elements, one of which is an ordered pair itself. Thus they are equal if x = x' and y = y', so $\{\{x\}, \{x,y\}\} = \{\{x'\}, \{x',y'\}\}\}$ if and only if x = x' and y = y'.