Национальный исследовательский университет «МЭИ»

ИНСТИТУТ РАДИОТЕХНИКИ И ЭЛЕКТРОНИКИ Кафедра Радиотехнических систем

Курсовая работа

по дисциплине

«Аппаратура потребителей спутниковых радионавигационных систем»

по теме

Разработка модуля расчёта координат спутника Beidou

ФИО студента: Жеребцов И.С.
Группа: ЭР-15-16
Вариант №: 2
Дата:
Подпись:
ФИО преподавателя: Корогодин И.В.
Оценка:

Москва 2021

СОДЕРЖАНИЕ

BB	ЕДЕНИЕ	3
3 A ,	ДАНИЕ	4
ПЕ	РВЫЙ ЭТАП: Использование сторонних средств	6
1.	Определение формы орбиты и положения спутника на ней	6
2.	Расчет графика угла места собственного спутника от времени	7
3.	Расчет диаграммы угла места и азимута спутника	9
4.	Формирование таблицы эфемерид собственного спутника 1	1
BT	ОРОЙ ЭТАП: Моделирование1	2
1.	Реализация в Matlab 1	2
2.	Траектории спутника1	2
3.	Расчет лиаграммы угла места и азимута спутника	4

ВВЕДЕНИЕ

Цель проекта - добавление в программное обеспечение приемника функции расчета положения спутника Beidou на заданное время по данным его эфемерид.

Требования к разрабатываемому программному модулю:

- требования назначения;
- отсутствие утечек памяти;
- малое время выполнения;
- низкий расход памяти;
- корректное выполнение при аномальных входных данных.

Для достижения цели выполняется ряд задач, соответствующих этапам проекта и контрольным мероприятиям:

- обработка данных от приемника, работа со сторонними сервисами для подготовки входных и проверочных данных для разрабатываемого модуля;
- моделирование модуля в Matlab/Python;
- реализация программного модуля на C/C++, включая юниттестирование в Check.

Конечная цель всего курсового проекта - получить библиотеку функций на «С++», позволяющую рассчитывать положение спутника Beidou по его эфемеридам.

ЗАДАНИЕ

Этап 1. Использование сторонних средств

Конечная цель всего курсового проекта - получить библиотеку функций на Си++, позволяющую рассчитывать положение спутника Beidou по его эфемеридам. На первом этапе подготовим вспомогательные данные для разработки: эфемериды и оценки положения спутника от сторонних сервисов (чтобы было с чем сравниваться на след. этапах)

На крыше корпуса Е МЭИ установлена трехдиапазонная антенна Harxon HX-CSX601A. Она через 50-метровый кабель, сплиттер, bias-tee и усилитель подключена к трем навигационным приемникам:

Javad Lexon LGDD,

SwiftNavigation Piksi Multi,

Clonicus разработки ЛНС МЭИ.

Эти приемники осуществляют первичную обработку сигналов Beidou B1I, выдавая по интерфейсам соответствующие потоки данных - наблюдения псевдодальностей и эфемериды спутников. Данные от приемника Clonicus, записанные вечером 16 февраля 2021 года, доступны в рабочем репозитории (директория logs) в нескольких форматах.

Этап 2. Моделирование

Эфемериды - параметры некоторой модели движения спутника. В разных ГНСС эти модели разные, а значит отличается и формат эфемерид, и алгоритмы расчета положения спутника.

Одна из самых простых и удобных моделей - в системе GPS. Beidou наследует данную модель.

Требуется реализовать на языке Matlab или Python функцию расчета положения спутника Beidou на заданный момент по шкале времени UTC. В качестве эфемерид использовать данные, полученные на предыдущем этапе.

Построить трехмерные графики множества положений спутника Beidou с системным номером, соответствующим номеру студента по списку. Графики в двух вариантах: в СК ЕСЕГ WGS84 и соответствующей ей инерциальной СК. Положения должны соответствовать временному интервалу с 8:00 МСК 16 февраля до 06:00 МСК 17 февраля 2021 года. Допускается использовать одни и те же эфемериды на весь рассматриваемый интервал.

Построить SkyView за указанный временной интервал (напоминаю, антенна на крыше корпуса E) и сравнить результат с Trimble GNSS Planning Online, полученный на прошлом этапе.

Этап 3. Реализация

Требуется разработать на языке C/C++ функцию расчета положения спутника Beidou на заданное время по шкале UTC, минимизируя время её исполнения и количество затрачиваемой оперативной памяти. Вызов функции не должен приводить к выбросу исключений или утечкам памяти при любом наборе входных данных.

Функция расчета положения спутника в Matlab/Python относительно проста, т.к. доступны библиотеки линейной алгебры и решения уравнений. Но при разработке встраиваемого ПО приходится сохранять лицензионную частоту, минимизировать вычислительную нагрузку и затраты памяти. Поэтому отобразить модель из Matlab/Python в прошивку приемника дословно, как правило, не получается. В рассматриваемом примере потребуется, как минимум, выполнить свою реализацию решения трансцендентного уравнения.

Программный модуль должен сопровождаться unit-тестами под check:

Тесты функции решения уравнения Кеплера

Тест расчетного положения спутника в сравнении с Matlab/Python с шагом 0.1 секунды.

Во время второго теста должно вычисляться и выводиться средняя длительность исполнения функции. Допускается использовать одни и те же эфемериды на весь рассматриваемый интервал (как на предыдущем этапе).

Требуется провести проверку на утечки памяти с помощью утилиты valgrind.

ПЕРВЫЙ ЭТАП: Использование сторонних средств

1. Определение формы орбиты и положения спутника.

Используя сервис «Википедия» определим ID и SCN спутника 7:

Nº ≑	Спутник +	PRN +	Дата (UTC) +	Ракета ≑	NSSDC ID +	SCN +	Орбита 💠	Статус +	Система ≑
_	Бэйдоу-1 А	N/A	30.10.2000, 16:30	CZ-3A	2000-069A₽	26599 &	ГСО, 140° в. д.	выведен с декабря 2011	
_	Бэйдоу-1 В	N/A	20.12.2000, 16:20	CZ-3A	2000-082A₽	26643 &	ГСО, 80° в. д.	выведен с декабря 2011	Faŭnov 1
_	Бэйдоу-1 С	N/A	24.05.2003, 16:34	CZ-3A	2003-021A₽	27813&	ГСО, 110,5° в. д.	выведен с декабря 2012	Бэйдоу-1
_	Бэйдоу-1 D	N/A	02.02.2007, 16:28	CZ-3A	2007-003A₽	30323៤	сведён с орбиты ^[23]	выведен с февраля 2009	
1	Компас М1	N/A	13.04.2007, 20:11	CZ-3A	2007-011A@	31115₺	<u>СОО</u> , ~21 500 км	выведен	
2	Компас G2	N/A	14.04.2009, 16:16	CZ-3C	2009-018A@	34779 🗗	неконтролируемая ^[24]	выведен	
3	Компас G1	N/A	16.01.2010, 16:12	CZ-3C	2010-001A₽	36287 &	ГСО, 140° в. д. ^[15]	в резерве	
4	Компас G3	N/A	02.06.2010, 15:53	CZ-3C	2010-024A@	36590₺	ГСО, 110,5° в. д.	в резерве	
5	Компас IGSO-1	C06	31.07.2010, 20:50	CZ-3A	2010-036A@	36828&	Геосинхронная, накл. 55°; 118° в. д.	действующий	
6	Компас G4	C04	31.10.2010, 16:26	CZ-3C	2010-057A₽	37210₺	ГСО, 160° в. д.	действующий	
7	Компас IGSO-2	C07	17.12.2010, 20:20	CZ-3A	2010-068A	37256 <mark></mark> ਫ਼	Геосинхронная, накл. 55°; 118° в. д.	действующий	

Рисунок 1 - Состояние системы BeiDou с сайта Википедия

Из таблицы рисунка 1, с сервис «Википедия», видно, что спутник 7 имеет ID 2010-068A и SCN 37256. Введем в сервисе CelesTrak, SCN спутника и проведем моделирование на момент времени 15:00, 16 февраля 2021, так как на данном сервисе отсчет времени происходит по UTC(0).

18:00 МСК 16 февраля до 06:00 МСК 17 февраля 2021 года.

Рисунок 2 - Моделирование с помощью сервиса CelesTrak

2. Расчет графика угла места собственного спутника от времени

Настроим для моделирования GNSS Planning Online, координаты установим в соответствии с расположеним антенны — и они будут соответствовать значению корпуса Е МЭИ «55.756555, 37.702868». Начальное время будет соответствовать 18:00, временной пояс будет равен +3 (UTC +3) на всем этапе моделирования в сервисе GNSS Planning Online.

Рисунок 3 — Заданные параметры моделирования в сервисе Trimble GNSS Planning

Так же ограничим количество отображаемых спутников и оставим в моделирование только нужны нам спутник – ${
m C07}.$

Рисунок 4 – График угла места собственного спутника от времени

По графику видно, что на указанном в задание интервале с 18:00-06:00, спутник не был виден, в область видимости же он попадает только после конца заданного интервала и виден 17 февраля с 6:10 до 15:10.

3. Расчет диаграммы угла места и азимута спутника

Так как сервис для определения Sky Plot используется тот же - Trimble GNSS Planning Online, то настройки оставим прежние, и проведем моделирование Sky Plot во временном интервале с 6:10 до 15:10 и зафиксируем положение спутника на небосводе в критических точках.

Рисунок 5 – Моделирование с помощью сервиса Trimble GNSS Planning в 17 февраля 2021 в 06:10

Рисунок 6 – Моделирование с помощью сервиса Trimble GNSS Planning в 17 февраля 2021 в 15:10

4. Формирование таблицы эфемерид собственного спутника

Таблица 1. Значения эфемерид спутника

Параметры	Значения	Размерность
Sat	07	-
Toe	284400000.000	МС
Crs	1.16406250000000000e+01	M
Dn	1.98079681996976564e-12	рад/с
M0	-2.45617118216572505e+00	рад
Cuc	2.35158950090408325e-07	рад
e	8.14774842001497746e-03	-
Cus	-2.74321064352989197e-06	рад
sqrtA	6.49292568778991699e+03	$_{ m M}^{1/_{2}}$
Cic	-2.70549207925796509e-07	рад
omega0	2.63970155955976082e+00	рад
Cis	-1.01979821920394897e-07	рад
i0	8.91248838651520714e-01	рад
Crs	3.05328125000000000e+02	M
omega	-2.52291283308052350e+00	рад
OmegaDot	-2.82868925483299065e-12	рад/мс
iDot	-2.30009580822278564e-13	рад/мс
Tgd	2.43000000000000000e+05	МС
toc	2.8440000000000000e+08	МС
af2	0.00000000000000000e+00	MC^{-1}
af1	-1.36628486302470264e-11	-
af0	-9.36393141746520996e-01	мс
URA	0	-
IODE	257	-
IODC	1	-
codeL2	0	-
L2P	0	-
WN	789	

ВТОРОЙ ЭТАП: Моделирование

2.1 Реализация в Matlab

Для расчета были использованы данные из таблицы 1, полученные на прошлом этапе. Начальная точка во времени была выбрана 16-ое число. Так как 16-ое число является началом 2-ой недели, то можем отнять от 16-ти 14 дней. Поскольку время у нас московское, то вычтем 3 часа (UTC+3) и переведём в секунды и получим: $((16-2\cdot7)+18-3)\cdot60\cdot60=226800$ [c].

2.2 Траектории спутника

Алгоритм расчета был взят из [ИКД Beidou, сигнал B1 стр.36]. Скорость вращения земли (Ωе) была взята из [ИКД Beidou, сигнал B1 стр.3]. Построенные траектории в различных СК можно увидеть на рис. 7 и 8. Алгоритм в приложение А.

Рисунок 7 — Траектория спутника в СК ECEF WGS84

Рисунок 8 — Траектория спутника в инерциальной СК

2.3 Построение SkyView.

Для сравнения с моделью полученный с помощью сервиса Trimble GNSS Planning в 1-ом этапе с рассчитанной SkyView. Полученный результат продемонстрирован на рисунке 9.

Рисунок 9 – Рассчитанный SkyView

```
close all;
clear all;
clc;
Toe = 284400;
Crs = 1.164062500000000000e+01;
mu = 3.986004418e+14;
dn = 1.98079681996976564e-12;
Cuc = 2.35158950090408325e-07;
e = 8.14774842001497746e-03;
Cus = -2.74321064352989197e-06;
A = 6.49292568778991699e+03^2;
Cic = -2.70549207925796509e-07;
Wo = 2.63970155955976082e+00;
Cis = -1.01979821920394897e - 07;
Io = 8.91248838651520714e-01;
Crc = 3.053281250000000000e+02;
Mo = -2.45617118216572505e+00;
We = 7.2921150e-5;
W = -2.52291283308052350e+00;
Wdot = -2.82868925483299065e-12;
idot = -2.30009580822278564e-13;
T = 226800;
wur = 55.45235679;
dl = 37.42120145;
H = 200;
for j=1:86400;
no = sqrt(mu/(A^3));
Tk=T-Toe;
n=no+dn;
M = Mo + n * Tk;
E=0;
for l=1:100;
E=M+e*sin(E);
end
nu = atan2 (sqrt (1-e^2) * sin (E), cos (E) - e);
F1 = nu+W;
du = Cus*sin(2*F1)+Cuc*cos(2*F1);
dr = Crs*sin(2*F1)+Crc*cos(2*F1);
di = Cis*sin(2*F1)+Cic*cos(2*F1);
F2 = F1+du;
r = A*(1-e*cos(E))+dr;
i = Io+di+idot*Tk;
poX = r*cos(F2);
poY = r*sin(F2);
Omega = Wo+(Wdot-We)*(Tk)-We*Toe;
x = poX*cos(Omega) - poY*cos(i)*sin(Omega);
y = poX*sin(Omega)+poY*cos(i)*cos(Omega);
z = poY*sin(i);
Resfix(j,:) = [x y z];
phi = We*Tk;
xc = x*cos(phi)-y*sin(phi);
yc = x*sin(phi)+y*cos(phi);
zc = z;
ResECI(j,:)=[xc yc zc];
[East, North, Up] = ecef2enu(x, y, z, wur, dl,H, wgs84Ellipsoid);
R = sqrt(East^2 + North^2 + Up^2);
```

```
el(j) = rad2deg(-asin(Up/R))+90;
az(j) = atan2(East, North);
T=T+1;
end
[X, Y, Z] = sphere(10);
figure;plot3(Resfix(:,1),Resfix(:,2),Resfix(:,3));
hold on;
surf(X*6.371*10^6, Y*6.371*10^6, Z*6.371*10^6);
grid on;
xlabel('X,M');
ylabel('Y, M');
zlabel('Z,M');
figure; plot3(ResECI(:,1),ResECI(:,2),ResECI(:,3));
hold on;
surf(X*6.371*10^6, Y*6.371*10^6, Z*6.371*10^6);
grid on;
xlabel('X, M');
ylabel('Y, M');
zlabel('Z,M');
s = 1;
for y = 1:length(el);
 if el(y) <= 90;</pre>
    Cel(s) = el(y);
    Caz(s) = az(y);
    s = s+1;
 end
end
figure;
polar(2*pi-Caz, Cel);
camroll(90);
```