madrid_2009

In [1]: import pandas as pd
 import numpy as np
 from matplotlib import pyplot as plt
 import seaborn as sns
 from sklearn.linear_model import LinearRegression,LogisticRegression,Lasso,Ridg
 from sklearn.model_selection import train_test_split

In [2]: df=pd.read_csv(r"C:\Users\user\Downloads\csvs_per_year\csvs_per_year\madrid_200
df

Out[2]:

	date	BEN	co	EBE	MXY	NMHC	NO_2	NOx	OXY	O_3	PM
0	2009- 10-01 01:00:00	NaN	0.27	NaN	NaN	NaN	39.889999	48.150002	NaN	50.680000	18.2600
1	2009- 10-01 01:00:00	NaN	0.22	NaN	NaN	NaN	21.230000	24.260000	NaN	55.880001	10.5800
2	2009- 10-01 01:00:00	NaN	0.18	NaN	NaN	NaN	31.230000	34.880001	NaN	49.060001	25.1900
3	2009- 10-01 01:00:00	0.95	0.33	1.43	2.68	0.25	55.180000	81.360001	1.57	36.669998	26.5300
4	2009- 10-01 01:00:00	NaN	0.41	NaN	NaN	0.12	61.349998	76.260002	NaN	38.090000	23.7600
215683	2009- 06-01 00:00:00	0.50	0.22	0.39	0.75	0.09	22.000000	24.510000	1.00	82.239998	10.8300
215684	2009- 06-01 00:00:00	NaN	0.31	NaN	NaN	NaN	76.110001	101.099998	NaN	41.220001	9.9200
215685	2009- 06-01 00:00:00	0.13	NaN	0.86	NaN	0.23	81.050003	99.849998	NaN	24.830000	12.4600
215686	2009- 06-01 00:00:00	0.21	NaN	2.96	NaN	0.10	72.419998	82.959999	NaN	NaN	13.0300
215687	2009- 06-01 00:00:00	0.37	0.32	0.99	1.36	0.14	54.290001	64.480003	1.06	56.919998	15.3600

215688 rows × 17 columns

In [3]: df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 215688 entries, 0 to 215687
Data columns (total 17 columns):

#	Column	Non-Null Count	Dtype
0	date	215688 non-null	object
1	BEN	60082 non-null	float64
2	CO	190801 non-null	float64
3	EBE	60081 non-null	float64
4	MXY	24846 non-null	float64
5	NMHC	74748 non-null	float64
6	NO_2	214562 non-null	float64
7	NOx	214565 non-null	float64
8	OXY	24854 non-null	float64
9	0_3	204482 non-null	float64
10	PM10	196331 non-null	float64
11	PM25	55822 non-null	float64
12	PXY	24854 non-null	float64
13	S0_2	212671 non-null	float64
14	TCH	75213 non-null	float64
15	TOL	59920 non-null	float64
16	station	215688 non-null	int64
dtyp	es: float	64(15), int64(1),	object(1)

memory usage: 28.0+ MB

In [4]: df1=df.dropna()
 df1

Out[4]:

	date	BEN	со	EBE	MXY	имнс	NO_2	NOx	ОХҮ	0_3	PM1
3	2009- 10-01 01:00:00	0.95	0.33	1.43	2.68	0.25	55.180000	81.360001	1.57	36.669998	26.53000
20	2009- 10-01 01:00:00	0.38	0.32	0.32	0.89	0.01	17.969999	19.240000	1.00	65.870003	10.52000
24	2009- 10-01 01:00:00	0.55	0.24	0.65	1.79	0.18	36.619999	43.919998	1.28	48.070000	19.15000
28	2009- 10-01 02:00:00	0.65	0.21	1.20	2.04	0.18	37.169998	48.869999	1.21	26.950001	32.20000
45	2009- 10-01 02:00:00	0.38	0.30	0.50	1.15	0.00	17.889999	19.299999	1.00	60.009998	12.26000
215659	2009- 05-31 23:00:00	0.54	0.27	1.00	0.69	0.09	28.280001	29.490000	0.86	78.750000	15.17000
215663	2009- 05-31 23:00:00	0.74	0.35	1.13	1.65	0.15	56.410000	69.870003	1.26	56.799999	11.80000
215667	2009- 06-01 00:00:00	0.78	0.29	0.99	1.96	0.04	64.870003	82.629997	1.13	58.000000	12.67000
215683	2009- 06-01 00:00:00	0.50	0.22	0.39	0.75	0.09	22.000000	24.510000	1.00	82.239998	10.83000
215687	2009- 06-01 00:00:00	0.37	0.32	0.99	1.36	0.14	54.290001	64.480003	1.06	56.919998	15.36000

24717 rows × 17 columns

In [5]: df1=df1.drop(["date"],axis=1)

```
In [6]: | sns.heatmap(df1.corr())
Out[6]: <AxesSubplot:>
                                                        -1.0
            BEN
             CO
                                                        - 0.8
            EBE
            MXY
                                                        - 0.6
           NMHC
           NO 2
                                                        0.4
            NŌx
            OXY
                                                        - 0.2
            03
           PMI0
                                                        - 0.0
           PM25
            PXY
                                                         -0.2
            SO 2
            TĊH
            TOL
          station
                In [7]: plt.plot(df1["EBE"],df1["PXY"],"o")
Out[7]: [<matplotlib.lines.Line2D at 0x1b59f30f250>]
          50
          40
          30
          20
          10
           0
                               20
                                        30
                                                40
                      10
In [8]: data=df[["EBE","PXY"]]
In [9]: # sns.stripplot(x=df["EBE"],y=df["PXY"],jitter=True,marker='o',color='blue')
In [10]: x=df1.drop(["EBE"],axis=1)
         y=df1["EBE"]
         x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3)
```

LINEAR

```
In [11]: li=LinearRegression()
         li.fit(x_train,y_train)
Out[11]: LinearRegression()
In [12]: prediction=li.predict(x_test)
         plt.scatter(y_test,prediction)
Out[12]: <matplotlib.collections.PathCollection at 0x1b59f3c8f40>
           25
           20
           15
           10
           5
                                20
                                         30
                                                 40
                       10
                                                          50
In [13]: lis=li.score(x_test,y_test)
In [14]: |df1["TCH"].value_counts()
Out[14]: 1.39
                  1091
         1.36
                  1056
         1.38
                  1046
         1.40
                  1018
         1.37
                  1017
                  . . .
         2.52
                     1
         1.16
                     1
         2.41
                     1
         1.13
                     1
         2.79
         Name: TCH, Length: 169, dtype: int64
In [15]: df1.loc[df1["TCH"]<1.40,"TCH"]=1</pre>
         df1.loc[df1["TCH"]>1.40,"TCH"]=2
         df1["TCH"].value_counts()
Out[15]: 1.0
                 12963
         2.0
                 11754
         Name: TCH, dtype: int64
In [16]: # Lasso
```

```
In [17]: la=Lasso(alpha=5)
la.fit(x_train,y_train)

Out[17]: Lasso(alpha=5)

In [18]: prediction1=la.predict(x_test)
plt.scatter(y_test,prediction1)
```



```
In [19]: las=la.score(x_test,y_test)
```

RIDGE

```
In [20]: rr=Ridge(alpha=1)
rr.fit(x_train,y_train)
```

Out[20]: Ridge(alpha=1)

```
In [21]: prediction2=rr.predict(x_test)
plt.scatter(y_test,prediction2)
```

Out[21]: <matplotlib.collections.PathCollection at 0x1b59f3326a0>


```
In [22]: rrs=rr.score(x_test,y_test)
```

ElasticNet

```
In [23]: en=ElasticNet()
en.fit(x_train,y_train)
```

Out[23]: ElasticNet()

```
In [24]: prediction2=rr.predict(x_test)
    plt.scatter(y_test,prediction2)
```

Out[24]: <matplotlib.collections.PathCollection at 0x1b5a005e2b0>


```
In [25]: ens=en.score(x_test,y_test)
In [26]: print(rr.score(x_test,y_test))
         rr.score(x_train,y_train)
         0.8655545107640262
Out[26]: 0.891088111281474
         LOGISTIC
In [27]: | g={"TCH":{1.0:"Low",2.0:"High"}}
         df1=df1.replace(g)
         df1["TCH"].value_counts()
Out[27]: Low
                 12963
         High
                 11754
         Name: TCH, dtype: int64
In [28]: x=df1.drop(["TCH"],axis=1)
         y=df1["TCH"]
         x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3)
In [29]: |lo=LogisticRegression()
         lo.fit(x_train,y_train)
Out[29]: LogisticRegression()
In [30]: prediction3=lo.predict(x_test)
         plt.scatter(y_test,prediction3)
Out[30]: <matplotlib.collections.PathCollection at 0x1b59fd047c0>
          Low
              High
                                                      Low
In [31]: los=lo.score(x_test,y_test)
```

Random Forest

```
In [32]: | from sklearn.ensemble import RandomForestClassifier
         from sklearn.model selection import GridSearchCV
In [33]: |g1={"TCH":{"Low":1.0,"High":2.0}}
         df1=df1.replace(g1)
In [34]: x=df1.drop(["TCH"],axis=1)
         y=df1["TCH"]
         x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3)
In [35]: |rfc=RandomForestClassifier()
         rfc.fit(x_train,y_train)
Out[35]: RandomForestClassifier()
In [36]: parameter={
              'max_depth':[1,2,4,5,6],
             'min_samples_leaf':[5,10,15,20,25],
             'n_estimators':[10,20,30,40,50]
         }
In [37]: grid_search=GridSearchCV(estimator=rfc,param_grid=parameter,cv=2,scoring="accur
         grid search.fit(x train,y train)
Out[37]: GridSearchCV(cv=2, estimator=RandomForestClassifier(),
                       param_grid={'max_depth': [1, 2, 4, 5, 6],
                                   'min_samples_leaf': [5, 10, 15, 20, 25],
                                   'n estimators': [10, 20, 30, 40, 50]},
                       scoring='accuracy')
In [38]: rfcs=grid_search.best_score_
In [39]: rfc_best=grid_search.best_estimator_
```

```
In [40]: from sklearn.tree import plot_tree
    plt.figure(figsize=(80,40))
    plot_tree(rfc_best.estimators_[5],feature_names=x.columns,class_names=['Yes',"]
    Text(4425.517241379311, 155.3142857142857, 'gini = 0.031\nsamples = 118\nv alue = [3, 189]\nclass = No')]
```

```
In [41]: print("Linear:",lis)
    print("Lasso:",las)
    print("Ridge:",rrs)
    print("ElasticNet:",ens)
    print("Logistic:",los)
    print("Random Forest:",rfcs)
```

Linear: 0.8655713958460309 Lasso: 0.3459256380275074 Ridge: 0.8655545107640262 ElasticNet: 0.5761325583219384 Logistic: 0.5230582524271845 Random Forest: 0.8623202837321089

Best Model is Random Forest

madrid_2010

In [42]: df2=pd.read_csv(r"C:\Users\user\Downloads\csvs_per_year\csvs_per_year\madrid_20
df2

Out[42]:

	date	BEN	со	EBE	MXY	NMHC	NO_2	NOx	ОХҮ	0_3	PI
0	2010- 03-01 01:00:00	NaN	0.29	NaN	NaN	NaN	25.090000	29.219999	NaN	68.930000	ı
1	2010- 03-01 01:00:00	NaN	0.27	NaN	NaN	NaN	24.879999	30.040001	NaN	NaN	ı
2	2010- 03-01 01:00:00	NaN	0.28	NaN	NaN	NaN	17.410000	20.540001	NaN	72.120003	ı
3	2010- 03-01 01:00:00	0.38	0.24	1.74	NaN	0.05	15.610000	21.080000	NaN	72.970001	19.410
4	2010- 03-01 01:00:00	0.79	NaN	1.32	NaN	NaN	21.430000	26.070000	NaN	NaN	24.670
										•••	
209443	2010- 08-01 00:00:00	NaN	0.55	NaN	NaN	NaN	125.000000	219.899994	NaN	25.379999	ı
209444	2010- 08-01 00:00:00	NaN	0.27	NaN	NaN	NaN	45.709999	47.410000	NaN	NaN	51.259
209445	2010- 08-01 00:00:00	NaN	NaN	NaN	NaN	0.24	46.560001	49.040001	NaN	46.250000	ı
209446	2010- 08-01 00:00:00	NaN	NaN	NaN	NaN	NaN	46.770000	50.119999	NaN	77.709999	ı
209447	2010- 08-01 00:00:00	0.92	0.43	0.71	NaN	0.25	76.330002	88.190002	NaN	52.259998	47.150

209448 rows × 17 columns

In [43]: df2.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 209448 entries, 0 to 209447
Data columns (total 17 columns):

#	Column	Non-Null Count	Dtype	
0	date	209448 non-null	object	
1	BEN	60268 non-null	float64	
2	CO	94982 non-null	float64	
3	EBE	60253 non-null	float64	
4	MXY	6750 non-null	float64	
5	NMHC	51727 non-null	float64	
6	NO_2	208219 non-null	float64	
7	NOx	208210 non-null	float64	
8	OXY	6750 non-null	float64	
9	0_3	126684 non-null	float64	
10	PM10	106186 non-null	float64	
11	PM25	55514 non-null	float64	
12	PXY	6740 non-null	float64	
13	S0_2	93184 non-null	float64	
14	TCH	51730 non-null	float64	
15	TOL	60171 non-null	float64	
16	station	209448 non-null	int64	
dtyp	es: float	64(15), int64(1),	object(1)	

memory usage: 27.2+ MB

In [44]: df3=df2.dropna()
df3

Out[44]:

	date	BEN	со	EBE	MXY	NМНС	NO_2	NOx	ОХҮ	0_3	PM1
11	2010- 03-01 01:00:00	0.78	0.18	0.84	0.73	0.28	10.420000	11.900000	1.0	90.309998	18.37000
23	2010- 03-01 01:00:00	0.70	0.23	1.00	0.73	0.18	17.820000	22.290001	1.0	70.550003	23.63999
35	2010- 03-01 02:00:00	0.58	0.17	0.84	0.73	0.28	3.500000	4.950000	1.0	68.849998	5.60000
47	2010- 03-01 02:00:00	0.33	0.21	0.84	0.73	0.17	10.810000	14.900000	1.0	74.750000	7.89000
59	2010- 03-01 03:00:00	0.38	0.16	0.64	1.00	0.26	2.750000	4.200000	1.0	93.629997	5.13000
191879	2010- 05-31 22:00:00	0.60	0.26	0.82	0.13	0.16	33.360001	43.779999	1.0	38.459999	20.34000
191891	2010- 05-31 23:00:00	0.41	0.16	0.71	0.19	0.10	24.299999	26.059999	1.0	50.290001	14.38000
191903	2010- 05-31 23:00:00	0.57	0.28	0.64	0.19	0.18	35.540001	44.590000	1.0	34.020000	22.84000
191915	2010- 06-01 00:00:00	0.34	0.16	0.69	0.22	0.10	23.559999	25.209999	1.0	45.930000	10.77000
191927	2010- 06-01 00:00:00	0.43	0.25	0.79	0.22	0.18	34.910000	42.369999	1.0	29.540001	15.35000

6666 rows × 17 columns

In [45]: df3=df3.drop(["date"],axis=1)

```
In [46]: sns.heatmap(df3.corr())
```

Out[46]: <AxesSubplot:>


```
In [47]: x=df3.drop(["TCH"],axis=1)
y=df3["TCH"]
x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3)
```

Linear

```
In [48]: li=LinearRegression()
li.fit(x_train,y_train)
```

Out[48]: LinearRegression()

```
In [49]: prediction=li.predict(x_test)
    plt.scatter(y_test,prediction)
```

Out[49]: <matplotlib.collections.PathCollection at 0x1b5a00dc4c0>


```
In [50]: lis=li.score(x_test,y_test)
In [51]: df3["TCH"].value_counts()
Out[51]: 1.36
                  364
         1.38
                  351
         1.39
                  324
         1.35
                  323
         1.37
                  321
         2.07
                    1
         2.17
                    1
         2.53
                    1
         2.12
                    1
         2.05
         Name: TCH, Length: 100, dtype: int64
In [52]: df3.loc[df3["TCH"]<1.40,"TCH"]=1</pre>
         df3.loc[df3["TCH"]>1.40,"TCH"]=2
         df3["TCH"].value_counts()
Out[52]: 1.0
                3340
         2.0
                 3326
         Name: TCH, dtype: int64
         Lasso
In [53]: la=Lasso(alpha=5)
         la.fit(x_train,y_train)
Out[53]: Lasso(alpha=5)
In [54]: prediction1=la.predict(x_test)
         plt.scatter(y_test,prediction1)
Out[54]: <matplotlib.collections.PathCollection at 0x1b5a01384c0>
          1.50
          1.48
          1.46
```

1.44

1.42

1.40 1.38

1.36

1.2

1.4

1.6

1.8

2.0

2.2

2.4

2.6

```
In [55]: las=la.score(x_test,y_test)
```

Ridge

```
In [56]: rr=Ridge(alpha=1)
rr.fit(x_train,y_train)
```

```
Out[56]: Ridge(alpha=1)
```

```
In [57]: prediction2=rr.predict(x_test)
plt.scatter(y_test,prediction2)
```

Out[57]: <matplotlib.collections.PathCollection at 0x1b5a01974c0>


```
In [58]: rrs=rr.score(x_test,y_test)
```

ElasticNet

```
In [59]: en=ElasticNet()
en.fit(x_train,y_train)
```

Out[59]: ElasticNet()

```
In [60]: prediction2=rr.predict(x_test)
         plt.scatter(y_test,prediction2)
Out[60]: <matplotlib.collections.PathCollection at 0x1b5a01ebf40>
          1.8
          1.7
          1.6
          1.5
          1.4
          1.3
          1.2
                                1.8
                                      2.0
                                            2.2
                    1.4
                          1.6
                                                  2.4
                                                         2.6
In [61]: ens=en.score(x_test,y_test)
In [62]: print(rr.score(x_test,y_test))
         rr.score(x_train,y_train)
         0.4588987162157072
Out[62]: 0.44755643852232574
         Logistic
In [63]: g={"TCH":{1.0:"Low",2.0:"High"}}
         df3=df3.replace(g)
         df3["TCH"].value_counts()
Out[63]: Low
                  3340
         High
                  3326
         Name: TCH, dtype: int64
In [64]: x=df3.drop(["TCH"],axis=1)
         y=df3["TCH"]
         x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3)
In [65]: lo=LogisticRegression()
         lo.fit(x_train,y_train)
Out[65]: LogisticRegression()
```

```
In [66]: prediction3=lo.predict(x_test)
         plt.scatter(y_test,prediction3)
```

Out[66]: <matplotlib.collections.PathCollection at 0x1b59fbd1ee0>


```
In [67]: los=lo.score(x_test,y_test)
```

Random Forest

```
In [68]: from sklearn.ensemble import RandomForestClassifier
         from sklearn.model_selection import GridSearchCV
In [69]: |g1={"TCH":{"Low":1.0,"High":2.0}}
         df3=df3.replace(g1)
In [70]: x=df3.drop(["TCH"],axis=1)
         y=df3["TCH"]
         x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3)
In [71]: rfc=RandomForestClassifier()
         rfc.fit(x_train,y_train)
Out[71]: RandomForestClassifier()
In [72]: parameter={
             'max_depth':[1,2,4,5,6],
             'min_samples_leaf':[5,10,15,20,25],
              'n_estimators':[10,20,30,40,50]
         }
```

```
In [73]: grid search=GridSearchCV(estimator=rfc,param grid=parameter,cv=2,scoring="accur
                       grid_search.fit(x_train,y_train)
Out[73]: GridSearchCV(cv=2, estimator=RandomForestClassifier(),
                                                       param_grid={'max_depth': [1, 2, 4, 5, 6],
                                                                                      'min_samples_leaf': [5, 10, 15, 20, 25],
                                                                                     'n estimators': [10, 20, 30, 40, 50]},
                                                       scoring='accuracy')
In [74]: rfcs=grid search.best score
In [75]: rfc best=grid search.best estimator
In [76]: from sklearn.tree import plot_tree
                       plt.figure(figsize=(80,40))
                       plot_tree(rfc_best.estimators_[5],feature_names=x.columns,class_names=['Yes',
Out[76]: [Text(2080.734939759036, 2019.0857142857144, 'BEN <= 0.735\ngini = 0.5\nsam
                       ples = 2926\nvalue = [2353, 2313]\nclass = Yes'),
                         Text(907.5903614457832, 1708.457142857143, '0_3 <= 42.015 \setminus gini = 0.464 \setminus s
                       amples = 2045\nvalue = [2081, 1196]\nclass = Yes'),
                         Text(255.4698795180723, 1397.8285714285716, 'MXY <= 0.185\ngini = 0.473\ns
                       amples = 387\nvalue = [239, 385]\nclass = No'),
                         Text(107.56626506024097, 1087.2, 'CO <= 0.205\ngini = 0.108\nsamples = 21
                       Text(53.78313253012048, 776.5714285714287, 'gini = 0.0\nsamples = 10\nvalu
                       e = [18, 0]\nclass = Yes'),
                         Text(161.34939759036143, 776.5714285714287, 'gini = 0.208\nsamples = 11\nv
                       alue = [15, 2]\nclass = Yes'),
                         Text(403.3734939759036, 1087.2, 'PM10 <= 16.33\ngini = 0.455\nsamples = 36
                       6\nvalue = [206, 383]\nclass = No'),
                         Text(268.9156626506024, 776.5714285714287, 'NOx <= 33.24\ngini = 0.489\nsa
                       mples = 218\nvalue = [150, 201]\nclass = No'),
                         Text(161.34939759036143, 465.9428571428573, 'PM25 <= 5.665 \cdot ngini = 0.477 \cdot ngini = 0.4
                       samples = 58\nvalue = [57, 37]\nclass = Yes'),
                         Text(107.56626506024097, 155.3142857142857, 'gini = 0.26\nsamples = 15\nva
```

```
In [77]: print("Linear:",lis)
    print("Lasso:",las)
    print("Ridge:",rrs)
    print("ElasticNet:",ens)
    print("Logistic:",los)
    print("Random Forest:",rfcs)
```

Linear: 0.45900314075246096 Lasso: -2.087909812176214e-05 Ridge: 0.4588987162157072

ElasticNet: 0.34488908831719434

Logistic: 0.487

Random Forest: 0.7801114444920703

```
In [ ]:
```