PRÁCTICA 2. CURSO 2015/16 INFORMÁTICA INDUSTRIAL Grado Ingeniería Electrónica Industrial y Automática.

Se pide simular un sistema en el que un conjunto de sensores trasmiten sus lecturas a un proceso de control. Este a su vez gestiona el almacenamiento de estas en una lista.

Concretamente el sistema está formado por los siguientes elementos (véase la figura):

- ➤ Un proceso de control que se comunica a lo sumo con MAX_SENSORES procesos sensor activos e intercambia información con ellos. MAX_SENSORES es consignado por el usuario mediante la línea de comandos, al lanzar el proceso de control. Este proceso de control lleva a cabo la siguientes tareas:
 - Detecta los sensores que se incorporan al sistema, a los que identifica por su pid.
 - Solicita periódicamente la temperatura leída. Si alguno de los sensores no responden al cabo de un cierto tiempo de espera (timeout) el proceso de control eliminará dicho sensor del sistema.
 - Recibe, a través de memoria compartida, la información enviada por cada sensor (temperatura leída, pid del sensor e instante de lectura timestamp) y solicita al proceso lista guardar esta información en un contenedor.
 - El proceso de control termina cuando se pulsa un retorno de Ctrl+C. Antes de finalizar debe enviar señal de terminación a todos los procesos conectados (sensores y proceso lista) y destruir todos los mecanismos de comunicación y sincronización creados.
- Una serie de procesos sensor idénticos. Cada sensor:
 - Deberá solicitar el alta al proceso control enviándole su pid a través de shmemo_alta.
 Como este permite solamente la conexión de MAX_SENSORES, si se intenta conectar alguno más, los que excedan este número quedarán bloqueados hasta que otros sensores activos sean dados de baja.
 - Los sensores envían al proceso de control, a petición de él, información sobre la temperatura leída. Para ello emplearán la memoria compartida **shmemo_sensor.**
- Un proceso lista que gestiona un contenedor con todas las lecturas de los sensores:
 - Al arrancar este proceso carga el contendor con las lecturas de la sesión anterior que figuran en un fichero.
 - Queda a la espera de la información que reciba del proceso de control por una cola de mensajes. Introduce en el contenedor los registros de los sensores con los campos temp, pid y tiempo que llegan por la cola de mensajes.
 - Ante la llegada de la solicitud de terminación, antes de finalizar guardará la información del contenedor en un fichero para que pueda ser cargada en la siguiente sesión.

PLAZO DE ENTREGA

La fecha de tope de entrega para subir el trabajo a la plataforma es el viernes 18 de diciembre a las 23:59 horas.

PRÁCTICA 2. CURSO 2015/16 INFORMÁTICA INDUSTRIAL

