Teoria do Risco Aula 8

Danilo Machado Pires danilo.pires@unifal-mg.edu.br

https://atuaria.github.io/portalhalley/index.html

Modelo de Risco individual

 X_i Independentes

$$S_{ind} = \sum_{i=1}^{n} X_i = \sum_{i=1}^{n} B_i I_i$$

$$E(S_{ind}) = E\left(\sum_{i=1}^{n} X_i\right) = \sum_{i=1}^{n} E(X_i)$$

 S_{ind} , X_i , B_i , I_i

$$M_{S_{ind}}(t) = \prod_{i=1}^{n} M_{X_i}(t)$$

$$E(S_{ind}) = \sum_{i=1}^{n} E(B_i)q_i$$

$$var(S_{ind}) = \sum_{i=1}^{n} var(B_i)q_i + \sum_{i=1}^{n} E(B_i)^2 q_i (1 - q_i)$$

$$F_{X_i}(x_i) = F_{B_i}(x_i)q_i + (1 - q_i)I_{[0,\infty)}(x_i)$$

$$f_{X_i}(x_i) = \begin{cases} (1 - q_i), se \ x_i = 0 \\ q_i f_{B_i}(x), se \ x_i > 0 \end{cases}$$

$$f_S(s) = f_X * f_Y(s) = \int_0^s f_Y(s - x) f_X(x) dx$$
$$F_S(s) = F_X * F_Y(s) = \int_0^s F_Y(s - x) f_X(x) dx$$

$$P_X * P_Y(s) = \sum_{\forall x \le s} P_Y(s - x) P_X(x)$$

$$F_X * F_Y(s) = \sum_{\forall x < s} F_Y(s - x) P_X(x)$$

- D teorema central do limite é um poderoso teorema da estatística.
- Em teoria das probabilidades, esse teorema afirma que distribuição da soma amostral aproximasse da distribuição normal a medida que o número de elementos que compõem a soma aumenta, consequentemente o teorema se estende a distribuição das médias amostrais.

Suponha o lançamento de 4 moedas, com probabilidade de sair coroa igual a q (sucesso) e 1-q (fracasso), representaremos 1 como os casos que aconteceram coroa e $\mathcal D$ os casos que ocorreram cara, assim vamos avaliar todos os possíveis resultados nesse experimento e avaliar a soma de coroas que podem acontecer:

Moeda 1	Moeda 2	Moeda 3	Moeda 4	Nº de coroas
Cara	Cara	Cara	Cara	0
Coroa	Cara	Cara	Cara	1
Cara	Coroa	Cara	Cara	1
Cara	Cara	Coroa	Cara	1
Cara	Cara	Cara	Coroa	1
Coroa	Coroa	Cara	Cara	2
Coroa	Cara	Coroa	Cara	2
Coroa	Cara	Cara	Coroa	2
Cara	Coroa	Cara	Coroa	2
Cara	Cara	Coroa	Coroa	2
Cara	Coroa	Coroa	Cara	2
Cara	Coroa	Coroa	Coroa	3
Coroa	Cara	Coroa	Coroa	3
Coroa	Coroa	Cara	Coroa	3
Coroa	Coroa	Coroa	Cara	3
Coroa	Coroa	Coroa	Coroa	4

> Definição:

Seja S_n uma variável aleatória correspondente a uma soma de n variáveis aleatórias $X_1, X_2, X_3, \ldots, X_n$ independentes e identicamente distribuídas, cada qual com esperança μ e variância σ^2 . Então, se n tende ao infinito, a variável:

$$Z_n = \frac{S_n - n\mu}{\sigma\sqrt{n}} \to Z \sim N(0,1)$$

$$Z_n = \frac{S_n - n\mu}{\sigma\sqrt{n}}$$

$$Z_n \rightarrow Z \sim N(0,1)$$

Logo

$$E(S_n) = n\mu \ var(S_n) = \sigma^2 n$$

$$S_n \sim N(n\mu, \sigma^2 n)$$

Então o Teorema central do limite sugere uma metodologia aproximada para a obtenção de valores para distribuição da soma de variáveis independentes, consequentemente também para a distribuição da média de variáveis aleatórias.

$$\bar{X} = \frac{S_n}{n} \sim N\left(\mu, \frac{\sigma^2}{n}\right)$$

$$E(\bar{X}) = \mu \quad var(\bar{X}) = \frac{\sigma^2}{n}$$

...Se aplica bem quando não se conhece a distribuição de S_{ind} , ou sua obtenção é trabalhosa.

Condições do Teorema Central do Limite,

- $\rightarrow X_i$ independentes e identicamente distribuídos,
- $\rightarrow X_i$ deve ter variância finita.
- ightarrow 0 número de sinistros tem que ser grande e não somente o número de apólices (n).

Uma interessante aplicação da aproximação de S_{ind} pela distribuição normal é sua utilização para obtenção de um prêmio (Π_S) baseado em uma probabilidade (α) das indenizações superarem esse prêmio.

$$P(S_{ind} \geq \Pi_S) = \alpha$$

$$P(S_{ind} \leq \Pi_S) = 1 - \alpha$$

$$P\left(\frac{S_{ind} - E(S_{ind})}{\sigma_{S_{ind}}} \le \frac{\Pi_S - E(S_{ind})}{\sigma_{S_{ind}}}\right) = 1 - \alpha$$

Tem-se que
$$\frac{S_{\mathrm{ind}}-E(S_{ind})}{\sigma_{S_{ind}}}=\frac{\sum_{i=1}^{n}X_{i}-n\mu_{X}}{\sigma_{X}\sqrt{n}}=Z=\frac{S_{n-n\mu}}{\sigma\sqrt{n}}\sim N(0,1)$$

Pois
$$\sigma_{S_{ind}}^2=\sum_{{
m i}=1}^{{
m n}}\sigma_i^2=n\sigma_X^2$$
, assim $\sigma_{S_{ind}}=\sqrt{n\sigma_X^2}=\sigma_X\sqrt{{
m n}}$

$$P\left(Z \le \frac{\Pi_S - E(S_{ind})}{\sigma_{S_{ind}}}\right) = 1 - \alpha$$

$$\frac{\prod_{S} - E(S_{ind})}{\sigma_{S_{ind}}} = z_{1-\alpha}$$

$$\Pi_{S} = z_{1-\alpha}\sigma_{S_{ind}} + E(S_{ind})$$

A partir dessas condições, pode-se calcular o carregamento de segurança (θ)
utilizado no principio do prêmio carregado.

$$\Pi_S = E(S_{ind})(1+\theta)$$

$$\Pi_{S} = z_{1-\alpha}\sigma_{S_{ind}} + E(S_{ind}) \tag{1}$$

$$\Pi_{S} = E(S_{ind}) + \theta E(S_{ind}) \tag{2}$$

$$\theta = \frac{\sigma_{S_{ind}} z_{1-\alpha}}{E(S_{ind})}$$

- Quanto menor a probabilidade do sinistro agregado superar o prêmio puro total da carteira, maior terá que ser o carregamento de segurança.
- Quanto maior o desvio padrão do sinistro agregado em relação à média do sinistro, maior será o carregamento de segurança.

Uma carteira de seguro de vida possui 3 faixas de importâncias seguradas, quais sejam: R\$10 000, R\$30 000 e R\$50 000.

O número de apólices em cada faixa é de $200\,000$, $300\,000$ e $100\,000$, respectivamente. Em cada uma dessas 3 faixas a probabilidade de morte em 1 ano é de 0,01, 0,005 e 0,02 respectivamente.

Calcular o carregamento de segurança e o prêmio puro total anual de modo que a probabilidade de que o sinistro agregado não o exceda seja de 5%, utilizando a aproximação Normal para S_{ind} .

$$S_{ind} = [X_1 + X_2 + \dots + X_{200000}] + [Y_1 + Y_2 + \dots + Y_{300000}] + [Z_1 + Z_2 + \dots + Z_{100000}]$$

X_i	$P(X_i)$	I_i	$P(I_i)$	B_i	$P(B_i)$
<i>R</i> \$0	0,99	0	0,99		
R\$10000	0,01	1	0,01	R\$10000	1
Y_i	$P(Y_i)$				
<i>R</i> \$0	0,995	0	0,995		
R\$30000	0,005	1	0,005	R\$30000	1
Z_i	$P(Z_i)$				
<i>R</i> \$0	0,98	0	0,98		
<i>R</i> \$50000	0,02	1	0,02	R\$50000	1

$$E(S_{ind}) = \sum_{i=1}^{n} E(B_i)q_i$$

$$var(S_{ind}) = \sum_{i=1}^{n} var(B_i)q_i + E(B_i)^2 var(I_i)$$

Lembrando que no caso de seguro de vida, invalidez a indenização B_i é fixa (conhecida antecipadamente a apólice), nesse caso:

$$E(S_{ind}) = \sum_{i=1}^{n} B_i q_i$$

$$var(S_{ind}) = \sum_{i=1}^{n} B_i^2 q_i (1 - q_i).$$

$$E(S_{ind}) = \sum_{i=1}^{200000} 0.01R\$10000.00 + \sum_{i=1}^{300000} 0.005R\$30000.00 + \sum_{i=1}^{100000} 0.02R\$50000.00$$

$$E(S_{ind}) = R\$165000.000.00$$

$$var(S_{ind}) = \sum_{i=1}^{200000} 0.01 \times 0.99 \times (R\$10000.00)^2 + \sum_{i=1}^{300000} 0.005 \times 0.995 \times (R\$30000.00)^2 + \sum_{i=1}^{1000000} 0.02 \times 0.98 \times (R\$50000.00)^2 = R\$^26.44125 \times 10^{12}$$

$$\Pi_S = E(S_{ind}) + \sigma_{S_{ind}} z_{0,95} = R$169 174 575,64$$

$$\theta = \frac{\sigma_{S_{ind}} z_{1-\alpha}}{E(S_{ind})} = \frac{2559297}{165000\ 000} \, 1,645 = 2,55\%$$

A probabilidade de ocorrer um sinistro devido a um vendaval em um seguro residencial é de 0,01. Seja uma carteira com 200 apólices e com o valor de cada sinistro ocorrendo de acordo com uma distribuição Exponencial $(\alpha=0,0001)$.

Calcule o carregamento de segurança de modo que a probabilidade do sinistro agregado superar o prêmio puro total, não exceda a 5% utilizando a aproximação Normal para S_{ind} .

$$E(B_i) = \frac{1}{0.0001} = 10000$$
 $var(B_i) = (10000)^2$

$$E(S_{ind}) = \sum_{i=1}^{n} E(B_i)E(I_i)$$

$$E(S_{ind}) = \sum_{i=1}^{200} 0,01 \times R\$10000,00 = 200 \times 100 = R\$20000,00$$

$$var(S_{ind}) = \sum_{i=1}^{200} (10000)^2 (0,01) + (10000)^2 (0,01)(0,99)$$

$$var(S_{ind}) = R^{2}398000000$$

$$\theta = \frac{\sigma_{S_{ind}} z_{1-\alpha}}{E(S_{ind})}$$

$$\theta = \frac{R\$19949,94(1,645)}{R\$20000} = 1,64$$

Uma seguradora cobre o risco de desmoronamento em um seguro residencial em uma carteira com 200 residências, conforme a seguinte distribuição de importância segurada (IS):

<i>IS</i> (\$)	10000	15000	20000	30000	100000
N° de Apólices	55	70	50	20	5

A probabilidade de ocorrer um desmoronamento em uma residência em 1 ano é de 0,01. Os valores dos sinistros seguem uma distribuição Uniforme (0, IS). Calcule o prêmio puro total anual que a seguradora deve cobrar de modo que a probabilidade do sinistro agregado anual superar o prêmio puro total anual não exceda a 5%, considerando uma aproximação Normal para o sinistro agregado;

$$E(S_{ind}) = \sum_{i=1}^{n} E(B_i)q_i$$

$$var(S_{ind}) = \sum_{i=1}^{n} var(B_i)q_i + E(B_i)^2 var(I_i)$$

Uma seguradora cobre o risco de desmoronamento em um seguro residencial em uma carteira com 200 residências, conforme a seguinte distribuição de importância segurada (IS):

<i>IS</i> (\$)	10000	15000	20000	30000	100000
N° de Apólices	55	70	50	20	5

$$S_{ind} = (X_1 + \dots + X_{55}) + (Y_1 + \dots + Y_{70}) + (Z_1 + \dots + Z_{50}) + (U_1 + \dots + U_{20}) + (V_1 + \dots + V_5).$$

Logo

$$E(S_{ind}) = \sum_{i=1}^{n} E(B_i)E(I_i) ,$$

$$E(S_{ind}) = 0.01 \left(\sum_{i=1}^{55} \frac{10000}{2} + \sum_{i=1}^{70} \frac{15000}{2} + \sum_{i=1}^{50} \frac{20000}{2} + \sum_{i=1}^{20} \frac{30000}{2} + \sum_{i=1}^{5} \frac{100000}{2} \right)$$

$$= R\$18500.00$$

$$S_{ind} = (X_1 + \dots + X_{55}) + (Y_1 + \dots + Y_{70}) + (Z_1 + \dots + Z_{50}) + (U_1 + \dots + U_{20}) + (V_1 + \dots + V_5).$$

$$var(S_{ind}) = \sum_{i=1}^{n} var(B_i)q_i + \sum_{i=1}^{n} E(B_i)^2 var(I_i),$$

$$var(S_{ind}) = 0.01 \left(\sum_{i=1}^{55} \frac{10000^2}{12} + \sum_{i=1}^{70} \frac{15000^2}{12} + \sum_{i=1}^{50} \frac{20000^2}{12} + \sum_{i=1}^{20} \frac{30000^2}{12} + \sum_{i=1}^{5} \frac{100000^2}{12} \right) + 0.0099 \left[\sum_{i=1}^{55} \left(\frac{10000}{2} \right)^2 + \sum_{i=1}^{70} \left(\frac{15000}{2} \right)^2 + \sum_{i=1}^{50} \left(\frac{20000}{2} \right)^2 + \sum_{i=1}^{20} \left(\frac{30000}{2} \right)^2 + \sum_{i=1}^{5} \left(\frac{100000}{2} \right)^2 \right] \right]$$

$$var(S_{ind}) =$$
361435417

$$\sigma_{S_{ind}} = \sqrt{361435417} = 19011,45$$

$$S_{ind} = (X_1 + \dots + X_{55}) + (Y_1 + \dots + Y_{70}) + (Z_1 + \dots + Z_{50}) + (U_1 + \dots + U_{20}) + (V_1 + \dots + V_5).$$

$$E(S_{ind}) = R$18500,00$$

$$var(S_{ind}) = 361435417$$

$$\sigma_{S_{ind}}=19011,45$$

Finalmente o prêmio puro é obtido.

$$\Pi = E(S_{ind}) + \sigma_{S_{ind}} z_{0,95}$$

$$\Pi = R$18500,00 + R$19011,45(1,645) = R$49773,84$$