TITLE: Optical glass based on oxides of silicon, boron and

lanthanum - having high index of refraction and low

dispersion.

DERWENT CLASS: LO

L01 P81

PATENT ASSIGNEE(S): (NIKR) NIPPON KOGAKU KK

COUNTRY COUNT:
PATENT INFORMATION:

PATENT NO	KIN	D DATE	WEEK	LA	PG	MAIN	IPC
DE 2653581 JP 52063920 JP 54002646 DE 2653581	A B	19770602 19770526 19790210 19790823	(19772) (19791)	7) 0)			

PRIORITY APPLN. INFO: JP 1975-140944 19751125

INT. PATENT CLASSIF.: C03C003-08; G02B001-00

BASIC ABSTRACT:

DE 2653581 A UPAB: 19930901

Optical glass contains 51-74 mole % of (SiO2 + B2O3 + La2O3). The molar ratio SiO2:La2O3 is 0.33-0.66 (pref. 0.39-0.63, esp. 0.59); B2O3:La2O3 is 0.46-0.86 (pref. 0.50-0.74, esp. 0.59).

Glass having high index of refraction (nD=1.84-1.95) and low Abbe number (nu d = 33-43) can be produced on industrial scale at a low cost. The prodn. is facilitated in that the compsn. does not much deviate from the eutectic point so that the fusion temp. is relatively low. The glass does not contain the objectionable thorium oxide (which is often used in commercial glasses having high index of refraction).

FILE SEGMENT: CPI GMPI

FIELD AVAILABILITY: AB

MANUAL CODES: CPI: L01-A01B; L01-A02; L01-A03A; L01-A03C; L01-A06D;

L01-A07; L01-L05

19日本国特許庁

①特許出願公告

特 許 公

昭54 - 2646

51 Int.Cl.2

識別記号 50日本分類

庁内整理番号

@公告 昭和54年(1979) 2月10日

C 03 C 3/12 C 03 C 3/30

砂出

21 A 22 101

7417 - 4G 7417 - 4G

発明の数 1

(全13頁)

1

*⑫発 明 者 市村健夫 ❷光学ガラス

東京都目黒区自由ケ丘2の18の

昭50-140944 20特

昭50(1975)11月25日

@昭52(1977)5月26日

切出 願 人 日本光学工業株式会社

公 昭52-63920 5

東京都千代田区丸の内3の2の3

四代 理 人 弁理士 岡部正夫 外5名

2

石橋和史 ⑫発 明

相模原市麻溝台3023

の特許請求の範囲

	SiO ₂	8 - 2	1		モノ	n %	(2	_	7	重量	%)	1
	B ₂ O ₃ 1	1 - 2	3		モノ	n %	(4	- 1	1	重量	%)	1
	ただし SiO2-	+ B ₂ O ₃	3	24 - 40	モノ	n %	(1	0	– 1	4. 7	重量	%))
	La ₂ O ₃ 2	1 - 3	5		モノ	n %	(4	7	- 6	5	重量	%))
	ZnO	0 - 3	9		モノ	n %	(0	- 2	0	重量	%))
	MgO	0 —	3		モノ	r %	(0	_	1.	重量	%))
	CaO	0 -	3		モノ	n %.	(0	_	1. 5	重量	%))
	SrO	0 -	3 .		モノ	10%	(0	-	2 .	重量	%)	ŀ
•	ВаO	0 -	2		モノ	2%	(0	-	1. 5	重量	%)	١.
	PbO	0 -	3		モノ	n % :	(0		3	重量	%)	,
	$A L_2 O_3$	0 - 1	0		モノ	i %	(0	_	5	重量	%)	1
	Y ₂ O ₃	0 -	6 .	•	モノ	~ %	(0	 .	8 .	重量	%)	
	TiO2	0 - 1	7		モノ	~ %	.().	0	- 1	.0	重量	%)	
	ZrO_2	0	7	•	モノ	v %	(0	_	6	重量	%)	ı
	GeO2	0 - 3	1		モノ	2 % .	(0	– 1	9. 4	重量	%)	ı
	Ta ₂ O ₅	0 -	8		モノ	r %	(0	– 1	7	重量	%)	ı
	Nb_2O_5	0 —	7		モノ	2 %	(0.	– 1	0	重量	%.)	1
	TeO2	0 -	7		モノ	2 %	(0	_	7	重量	%)	ı
	WO ₃	0 —	7		モノ	1 %	(0	÷	9	重量	%)	ı
	Gd ₂ O ₃	0 —	4		モノ	r %	(0	_	6	重量	%)	
	Ta_2O_5+ZnO	1 - 4	5		モノ	r % .	(5	- 3	5	重量	%)	
	F_2	0 -	8		モノ	r %	(0	_	2	重量	%)	
h	成る 光学 ガラス												

より成る光学ガラス。

発明の詳細な説明

トリウムが含有されていたが、トリウムは放射能

本発明は高屈折率低分散の光学ガラスに関する。35を有し、人体に有害であるためとれをガラス成分 従来、高屈折率低分散の光学ガラスには多くの 場合高屈折率低分散性を付与する成分として酸化

として用いるととは避けなければならない。 酸化トリウムを含まない高屈折率低分散の光学

ガラスの例として S i O_2 , B_2 O_3 及び La_2 O_3 を $\ \, \Leftrightarrow \ \, Ta_2$ O_5 , Nb_2 O_5 , WO_3 又 は 弗 素 を 添 加して 樽 主成分として基礎的に含有するものが知られてい る(トイッ特許第1061976号明細書)。 このガラス は表 1 に示すABCDEの各点を結ぶ直線で囲まれた 範囲に対応する SiO2 , B2O3 及び La2O3 の三 5 成分を基礎とし、これにMgO,CaO,SrO,BaO,

成されている。とのガラスは屈折率(n e)及び アネベ数(ν dı)がそれぞれ 1.651~1.902 及び 4 0.5~5 6.9 の光学恒数を有している。し かし、全体に屈折率は充分に高いといはえず 且つ1.813を超えるものには大量のTa₂O₅ ZnO,CdO,PbO,Al2O3,ZrO2,TiO2, ☆ を含有し、極めて高価である欠点を有している。

表

	重	量パーセン	/	モノ	レパーセン	۲
	SiO2	B ₂ O ₃	La ₂ O ₃	SiO2	B ₂ O ₃	La ₂ O ₃
A	10	4 5	4 5	1 8	6 7	1 5
В	10	5	8 5	3 3	1 4	5 3
C	4 0	5	5 5	7 3	8	1 9
D	2 0	2 5	5 5	3 9	4 1	2 0
E	20	3 5	4 5	3 4	5 2	1 4

本発明に係る光学ガラスはSiO₂,B₂O₃及び La₂O₃をSiO₂及びB₂O₃のLa₂O₃に対する 含有率の比がモル比でそれぞれ0.33~0.66及 び 0.46~0.86の範囲で含有し、且つ該三成分 のガラスに対する含有率の和がモルパーセントで 25 点1311℃の点に於けるB₂O₃のLa₂O₃に対 51~74の範囲にある光学ガラスである。

SiO2及びB2O3はガラス網目構成酸化物とし て広く用いられるものであり、又La。O、はガラ スに高屈折率・低分散の性質を付与する網目修飾 酸化物として最も有用なものであり、本発明に係 30 ら他の酸化物を混融させ易くなり、従つて安定な る光学ガラスはこれら三成分を主成分として基本 的に含有する高屈折率低分散光学ガラスであり、 その屈折率(n d)及びアッペ数(v d)はそれ ぞれ1.84~1.95及び33~43の範囲にある。

La₂O₃を、SiO₂及びB₂O₃のLa₂O₃に対す る含有率の比がモル比でそれぞれ 0.33~0.66 及び 0.46~0.86の範囲になるように含有して いる。この範囲には、SiO2-La2O3及び 於けるSiО₂及びB₂О₃のLa₂O₃に対する モル 比が含まれている。即ちSiO₂-La₂O₃二成分 系の共融点の内高ランタン側の融点1775℃の 点に於けるSiO2のLa2O3に対する含有率の比

は 0.5 9 であつて、 これは本発明に係る光学ガラ スのSiO2のLa2O3に対する含有率の比0.33 ~0.66の範囲に含まれている。又、 B₂O₃ -La₂O₃ 二成分系の共融点の内高ランタン側の融 する含有率の比は 0.5 9 であつて、とれは本発明 に係る光学ガラスのB2O3のLa,O3に対する含 有率の比0.46~0.86の範囲に含まれる。

共融点の附近に於ては、溶融温度が低くなるか ガラス組成はこの附近で得やすくなる。 SiO。及 びB₂O₃のLa₂O₃に対する含有率の比の上限及 び下限については、それぞれ 0.66及び 0.86を 超え、又はそれぞれ 0.3 4 及び 0.4 2 に未満のと 本発明に係る光学ガラスは SiO_2 , B_2O_3 及び 35 きは溶融温度が高くなつてガラス反応が実用上進 行し難い。

SiO₂-La₂O₃及びB₂O₃-La₂O₃の二成 分系には低ランタン側にそれぞれ1625℃及び 1132℃にも共融点があり、その附近に於ても $B_2O_3-La_2O_3$ のそれぞれの二成分の共融点に 40 安定なガラス組成を得ることができるが、 SiO_2 及びB₂O₃の含有率が高く、高屈折率を付与する La₂O₃を高い含有率で組成に加えることができ ないから充分に高屈折率低分散の光学ガラスを工 業的且つ廉価には得られない。

6

に対する含有率の和はモルパーセントで51~74の 範囲になければならない。SiO2,B2O3及びLa2O3 の三成分のみでは、共融点附近の溶融温度の低い 組成であつても、実用上工業的製造には溶融温度 5 てより安定化するために必要である。適当な温度 として未だ充分低下して居らず、且つ液相温度が 極めて高く結晶化傾向が著しいからである。

本発明ではSiO2を8~21モル多(2~7重 量多)、B₂O₃を11~23モル多(4~11重 量多)、 La_2O_3 を21~35 モル男(47~65 10 ZnO, PbO, A ℓ_2O_3 , Y_2O_3 , Gd_2O_3 , GeO_2 重量多)の範囲で含有している。SiO2とB2O3 の上限、下限を越えるとガラスが失透に対して安 定に得られなくなる。 La 2 O3 の上限、下限 を 越*

 SiO_2 , B_2O_3 及び La_2O_3 の三成分のガラス * えるとガラスが失透に対して安定に得られなくな る。

> ただしSiO2+B2O3を24~40モルダ (10~14.7重量多)とすることが失透に対し で溶融し、且つ結晶化傾向を低下させ、失透せず に安定な高屈折率低分散の光学ガラスを得る為に 他の酸化物又は弗素の組成への添加を必要とする。 との為に適当な酸化物は MgO, CaO, SrO, BaO TiO₂, ZrO₂, TeO₂, Nb₂O₅, Ta₂O₅及び WO3である。

これらの添加物の適切な量は以下のような範囲である。

```
0- 3モル多(0- 1 重量多)
MgO
       0 - 3モル多(0- 1.5重量多)
CaO
       0- 3モルダ(0- 2 重量多)
SrO
       0- 2モルダ(0-1.5重量多)
BaO
       0-39モルダ(0-20 重量多)
ZnO
       0- 3モルダ(0- 3 重量多)
PbO
       0-10モル多(0-5 重量多)
Al<sub>2</sub>O<sub>3</sub>
       0- 6モルダ(0- 8 重量多)
Y_2O_3
       0- 4モルダ(0- 6 重量多)
Gd<sub>2</sub>O<sub>3</sub>
GeO2
       0-31モル多(0-19.4重量多)
       0-17モル多(0-10 重量多)
TiO2
ZrO_2
       0- 7モルあ(0- 6 重量多).
TeO2
       0- 7モルあ(0- 7 重量多)
Nb_2O_5
       0- 7モル多(0-10 重量多)
       0- 8モル多(0-17 重量多)
Ta<sub>2</sub>O<sub>5</sub>
       0- 7モル多(0- 9 重量多)
WO_3
```

これらの上限を越えると、失透し易くガラスを安定に得ることが難いし。

弗素は 0.8 モルダ(0.2 重量ダ) 用いると溶融 温度を低下させ且つ液相温度を低下させ、ガラス 化範囲を拡大して高屈折率性を付与する酸化物の 添加を容易にするが、過度に用いると屈折率を低 40 下させ、失透性を増大させる。とれらの酸化物又 は弗素は26~49モルパーセント加える。即ち SiO,,B₂O₃及びLa₂O₃の含有率の和は51~ 74モルパーセントの範囲にあることが望ましい。

との和が51モルパーセント未満のときは失透性 が増大し、14モルパーセントを超えても失透性 が増大し、工業的製造は困難である。

本発明に係る光学ガラスは各成分の原料として それぞれ対応する酸化物、炭酸塩、硝酸塩、弗化 物等を使用し、所望の割合に秤取し必要ならば清 **磴削として亜砒酸等を加え、充分混合して調合原** 料となし、これを1300~1450℃に加熱し

た電気炉中の白金るつぼに投入し、溶融清登後攪拌し、均一化してから鉄製の鋳型に鋳込み、徐冷して製造することができる。

本発明に係る光学ガラスの実施例の組成、屈折 なお、参考までに表率 (nd)、及びアツペ数 (νd) を表 2 に示す 5 す表 2 Aを添付する。 (但し数値はモルダで表わしてある。)ただし、

8

実施例42は、ガラスに含まれている陽イォンを 酸化物で計算し、ガラス中の酸素の一部が表に記 載の弗素で置換されていることを示す。

たお、参考までに表2の同一組成を重量%で示 す表2Aを添付する。

医皮肤性 医双头麻羊的皮炎

		2	8	4	5	9	. L	∞.
\$102	1 7.6 1	1 6.4 3	1 5.5 9	1 8.0 4	1 5.5 6	1 6.0 7	1 9.8 6	1 9.0 9
B ₂ O ₃	1 7.6 1	1 6.4 3	1 8.0 4	1 5.5 9	1 5.5 6	1 6.0 7	1 9.8 6	1 9.0 9
La ₂ O ₃	2 9.9 9	27.97	3 0.7 2	3 0.7 2	2 6.4 8	2 7.3 6	3 3.8 3	3 2.5 2
ZnO	2 8.7 9	3 3.5 7	2 9.5 0	2 9.5 0	2 3.3 2	2 4.0 8	1	 I
A 2 0 9	ı	ı	ı	1	5.30	ı	6.77	6.50
TiO_2	ı	1	ı	í	1 0.6 0	1 0.9 5	1 3.5 3	1 3.0 0
ZrO2	ı	ı	1	ı	3.18	3.2 8	1	3.90
GeO ₂ .	ı	ı	1	1	ı	2.19	1	l .
Ta_2O_5	0.0.9	5.60	6.15	6.15	1	1	3.44	3.30
Nb_2O_5	l	1	ı	_	l	1	2.7 1	2.60
SiO2のLa2O3に対するモル比	0.5 9	0.5 9	0.5 1	0.59	0.59	0.59	0.59	0.59
B20gのLa20g に対するモル比	0.59	0.59	0.59	0,51	0.59	0.59	0.59	0.5 9
SiO ₂ +B ₂ O ₃ +La ₂ O ₃	6 5.2 1	6 0.8 3	6 4.3 5	64.35	5 7.6 0	5 9.5 0	7 3.5 5	7 0.7 0
n d	1.8971	1.8984	1.9029	1.9056	1.8933	1.9274	1.914	1.9204
φ.	3 9.7	3 9.1	3 9.3	3 9.0	3 7.1	3 5.1	I	3 5.3

表 2 (モルパーセン

	6	1 0	1 1	1.2	13	14	. 15	16
SiO ₂	18.50	16.15	1 5.7 2	1 6.6 1	1 5.5 6	1 6.2 5	1 5.2 4	1 4.7 2
B ₂ O ₃	18.50	16.15	1 5.7 2	1 6.6 1	15.56	1 6.2 5	1 5.2 4	1 4.7 2
La ₂ O ₃	3 1.5 0	27.51	2 6.7 8	2 8.2 9	2 6.4 9	27.66	2 5.9 4	2 5.0 8
ВвО	1	1	ı	ı	ſ	ı	ı	5.8 2
ZnO	1	2 6.4 0	2 5.7 1	27.17	3 7.0 9	2 6.5 6	3 1.1 3	ı
AL2 03	6.30	i		5.66	ı	7.7 5	7.26	1
Y_2O_3	.1	ı	ı	1	ı	1.	ı	4.0 1
TiO2	1.2.6 0	1 1.0 0	1 0.7 1	<u>,</u> 1	ı	I	1	ı
ZrO ₂	3.78	1	ı	ı	ı	ı	!	3.0 1
Ge 02	ı	ı	1	1	ı	ŧ	1	3 0.0 9
Ta 2 O5	6.30	2.7 9	5.36	5.66	5.30	5.5 3	5.19	2.5 5
Nb ₂ O ₅	2.5 2	ı	. 1	ı	ı	ı	ı	í
SiO ₂ のLa ₂ O ₃ に対するモル比	0.5 9	0.5 9	0.5 9	0.5 9	0.59	0.5 9	0.5 9	0.59
B ₂ O ₃ O La ₂ O ₃ に対するモル比	0.59	0.5 9	0.5 9	0.59	0.59	0.59	0.5 9	0.59
SiO ₂ + B ₂ O ₃ + La ₂ O ₃	68.50	5 9.8 1	5 8.2 2	6 1.5 1	5 7.6 1	6 0.1 6	5 6.4 2	5 4.5 2
пd	1.9337	1.9193	1.9332	1.8 7 9 6	1.8992	1.8 7 2 7	1.8749	1.8 4 9 2
ָּא מַ	3 4.0	3 5.8	3 5.0	4 0.3	3 8.6	4 0.5	4 0.0	4 2.2

表 2 (

14

	1.7	18	1 9	2 0	2 1	2.2	2 3	2.4
810,	1 4.8 4	1 4.8 4	14.84	1 4.8 4	1 4.8 4	14.84	1 5.3 1	1 4.5 5
B, O,	1 4.8 4	1 4.8 4	1 4.8 4	1 4.8 4	1 4.8 4	14.84	1 5.3 1	1 6.5 3
L8,0,	2 5.2 8	2 5.2 9	2 5.2 9	2 5.2 8	2 5.2 8	2 5.2 9	2 6.0 6	2 4.7 8
Ouz	1 0.1 1	1 5.1 7	2 0.2 2	1 5.1 7	3 0.3 4	2 0.2 2	2 0.8 6	2 1.8 0
A 2, 03	ı	ı			ı	. 1	5.2 1	4.96
$Y_2 O_3$	4.04	4.04	4.0 4	4.04	4.04	4.04	4.17	ı
Ti02	1	ı	J	I	1	1 5.1 7	1 0.4 3	9.9 1
ZrO ₂	3.03	3.03	3.03	3.03	3.03	3.03	ı	2.9 7
GeO,	2 5.2 9	2 0.2 2	15.17	1 5.1 7	5.06	ı	1	i
Ta ₂ O ₅	2.5 7	2.5 7	2.5 7	2.5 7	2.5 7	2.5 7	2.6 5	2.5 2
Nb 2 O5	ı	ı	1	5.06	1	!	ı	1.98
SiO2のLa2O3に対するモル比	0.59	0.5 9	0.5 9	0.5 9	0.59	0.59	0.5 9	0.5 9
B2 03のLa2 03 に対するモル比	0.59	0.5 9	0.59	0.5 9	0.5 9	0.59	0.5 9	2 9.0
SiO, + B, O ₃ + La ₂ O ₃	5 4.9 6	5 4.9 7	5 4.9 7	54.96	5 4.9 6	5 4.9 7	5 6.6 8	5 5.8 6
n. d	1.8617	1.8690	1.8755	1.90	1.8991	1.9455	1.9060	1.9 1 6 0
ב	4 1.6	4 1.4	4 0.9	ı	3 8.5	3 4.1	3 6.7	3 5.3

表 2

	2.5	2 6	2.7	2.8	2.9	3.0	3 1.	3.2
SiO ₂ .	15.15	1 3.0 9	1 4.4 1	14.84	1 4.8.4	1.4.8.4	14.84	1 3.9 8
B ₂ O ₃	1 3.0 9	15.15	1 4.4 1	1 4.8 4	1 4.8.4	1 4.8 4	1 4.8 4	1 3.9 8
La ₂ O ₃	2 5.8 0	2 5.8 0	2 4.5 3	2 5.2 9	2 5.2 9	2 5.2 9	2 5.2 8	2 3.8 2
ВаО	1.		. 1	ı	ı	ı		0.76
ZnO	2 2.7 0	2 2.7 0	24.53	2 0.2 2	2 2.2 4	1 2.1 3	17.19	2 0.9 5
A 2 0 3	5.16	5.16	4.9 1	5.0 6	5.06	5.0 6	5.06	4.7 6
TiO2	1 0.3 2	1 0.3 2	9.8 1	1 0.1 1	1 0.1 1	1 0.1 1	1 0.1 1	9.5 2
Zr0 ₂	3.10	3.10	4.91	3.0 3	3.03	3.03	3.03	2.8 6
TeO_2	1	ı	 	i	1	í	5.06	ı
GeO ₂	. 1	ı	1	1	ı	1 0.1 1		ı
Ta_2O_5	2.62	2.62	2.4 9	2.5 7	2.5 7	2.5 7	2.5 7	2.4 2
Nb ₂ 05	2.06	2.0 6		4.04	2.0 2	2.0 2	2.02	1.90
WO ₃	1	1	l		1	1		4.76
AS ₂ O ₃	I	ı		l		1		0.29
SiO ₂ OLa ₂ O ₃ に対するモル比	0.59	0.51	0.59	0.5 9	0.59	0.59	0.59	0.59
B ₂ O ₃ のLa ₂ O ₃ に対するモル比	0.5 1	0.59	0.59	0.5 9	0.59	0.5 9	0.59	0.5 9
SiO ₂ + B ₂ O ₃ + La ₂ O ₃	5 4.0 4	5 4.0 4	5 3.3 5	5 4.9 7	5 4.9 7	5 4.9 7	5 4.9 6	5 1.7 8
nd	19309	1.9290	1.9133	1.9368	1.9228	1.9088	1.9254	1.9387
ב	3 4.6	3 4.6	3 5.9	3 3.8	3 5.0	3 5.5	3 4.2	3 3.1

表 2 (税

	3.3	3.4	3 5	3 6	3.7	3.8	3.9	4 0
8:0.	1 1.1 3	9.23	1 4.68	1 4.6 8	1 4.68	1 4.6 8	1 4.68	1 3.0 7
2010	1 5.2 9	1 5.6 2	1 4.6 0	1 4.68	14.68	14.68	1 4.6 8	18.21
12 C3	9	6.6	2 5.0 0	2 5.0 0	2 5.0 0	2 5.0 0	2 5.0 0	2 4.9 6
La ₂ O ₃	;	;					ı	ı
MgO	ı	1	2.0 0	i	1	1		
CaO	ı	_	ı	2.0 0	ı	1	1	ı
0.10	ı	ı	1	ı	2.00	ı	1	ı
O & &	0.83	0.85	1	ı	1	ı	ı	0.77
ZnO	2 2.9 2	2 3.4 0	2 1.1.0	2 1.1 0	2 1.1 0	2 1.1 0	2 1.1 0	2 1.0 9
OHO	1	1	i	1	ļ	2.0 0	1	ı
	5.2.1	5.3 2	5.00	5.0 0	5.00	5.00	5.00	4.7 9
A 2 03				1	1	ı	2.0 0	1
Gd ₂ O ₃	I							L
TiO_2	1 0.4 2	1 0.6 4	1 0.0 0	1 0.0 0	1 0.0 0	1 0.0 0	1 0.0 0	
Zr0,	3.13	3.19	3.00	3.00	3.00	3.0 0	3.0 0	2.88
73°C.	2.65	2.70	2.5 4	2.5 4	2.5 4	2.5 4	2.5 4	2.43
0.4V	2.08	2.13	2.00	2.0 0	2.0 0	2.00	2.00	1.92
,0°2°0°	0.3 1	0.32	l	ı	ı	1	i	0.29
SiO,のLa, O, に対するモル比	0.43	0.35	0.5 9	0.5 9	0.5 9	0.59	0.59	0.5 2
R. O. のL. a. O. に対するモル比	0.59	0.59	0.59	0.5 9	0.59	0.5 9	0.59	0.73
SiO, + B, O, + La, O,	5 2.4 5	5 1.4 5	5 4.3 6	5 4.3 6	5 4.3 6	5 4.3 6	5 4.3 6	5 6.2 4
, P	1.9343	1.9405	1.9228	1.9 2 2 3	1.9219	. 1.9308	1.9252	1.9138
: 10 : 2.	3 4.4	3 4.1	3 5.0	3 5.0	3 5.0	3 4.0	3 4.6	3 5.6

表 2 (

19 表 2 (続き)

	4 1	4 2
SiO ₂	1 0.0 7	1 5. 4 5
B ₂ O ₃	2 1. 2 1	1 5. 4 5
La ₂ O ₃	2 4.9 6	3 1. 5 8
BaO	0. 7 7	0.84
ZnO	2 1.0 9	1 2.6 3
Al ₂ O ₃	4.79	5. 2 6
TiO ₂	9.59	1 0. 5 3
ZrO ₂	2.88	3.1 6
Ta ₂ O ₅	2.43	2. 6 7
Nb ₂ O ₅	1.92	2.1 1
AS ₂ O ₃	0. 2 9	0.32
F ₂	_	7.40
SiO2のLa2O8に対するモル比	0.40	0.49
B ₂ O ₃ のLa ₂ O ₃ に対するモル比	0.85	0.49
$SiO_2 + B_2O_3 + La_2O_3$	5 6. 2 4	6 2.4 8
n d	1.9099	1.8991
νd	3 5.8	3 6.7

22

表 2 表 A

重量パーセント

	1	2	3	4	5	6	7	8
SiO2	6.2 1	6.0 0	5.4 1	6.2 7	6.5 3	6.6 7	6.7 8	6.5 9
B ₂ O ₃	7.1 9	6.9 5	7.25	6.28	7.5 6	7.73	7.85	7.6 4
La ₂ O ₃	5 7.3 1	5 5.4 2	5 7.7 9	5 7.8 6	6 0.2 4	6 1.6 4	6 2.5 9	6 0.8 8
ZnO	1 3.7 4	1 6.6 0	1 3.8 6	1 3.8 8	1 3.2 5	1 3.5 4		
Al ₂ O ₃					3.7 7		3.9 2	3.8 1
TiO2					5.9 1	6.0 5	6.1 4	5.9 7
ZrO ₂					2.7 4	2.7 9		2.7 6
GaO2						1.5 8		
Ta 2 O 5	1 5.5 5	1 5.0 3	1 5.6 9	1 5.7 1			. 8.6 3	8.38
Nb ₂ O ₅						·	4.0 9	3.9 7
n d	1.8971	1.8 9 8 4	1.9029	1.9056	1.8933	1.9 2 7 4	1.9 1 4	1.9 2 0 4
νd	3 9.7	3 9 1	3 9.3	3 9.0	3 7.1	3 5.1	_	3 5.3

							·····	
	9	10	11	. 12	1 3	14	15	16
SiO2	6.1 0	6.3 3	5.8 7	5.9 9	5.8 4	5.9 1	5.7 2	5.3 5
B ₂ O ₃	7.0 6	7.3 4	6.8 1	6.9 4	6.7 7	6.8 5	6.6 3	6.2 0
La ₂ O ₃	5 6.3 1	5 8.5 2	5 4.2 6	5 5.3 3	5 3.9 1	5 4.5 7	5 2.8 4	4 9.4 6
BaO	_	_	_	-	-	-	-	3.4 0
ZnO	_	1 4.0 2	1 3.0 1	1 3.2 7	18.85	1 3.0 9	1 5.8 4	_
Al ₂ O ₃	3.5 2	_	_	3.4 6	_	4.7 8	4.6 3	
Y ₂ O ₃	_	_	_		_		_	5.4 8
TiO2	5.5 2	5.7 4	5.3 2		_	-	-	_
ZrO2	2.5 5	_	_	_	_	. —	-	2.2 4
GeO2		_	_		· _		_	1 9.0 5
Ta ₂ O ₅	1 5.2 7	8.0 5	1 4.7 3	1 5.0 1	1 4.6 3	1 4.8 0	1 4.3 4	6.8 2
Nb ₂ O ₅	3.6 7		; <u>-</u>	· –				
n đ	1.9337	1.9 1 9 3	1.9 3 3 2	1.8 7 9 6	1.8992	1.8727	1.8749	1.8 4 9 2
νd	3 4.0	3 5.8	3 5.0	4 0.3	3 8.6	4 0.5	4 0.0	4 2.2

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		1 7	1 8	1 9	2 0	2 1	2 2	2 3	2 4
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	SiO2	5.5 6	5.6 0	5.6 4	5.3 2	5.7 2	5.7 7	5.8 8	5.7 6
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	B 2 O 3	6.4 4	6.4 8	6.5 3	6.17	6.6 3	6.69	6.8 1	7.5 8
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	La ₂ O ₃	5 1.3 0	5 1.7 1	5 2.0 9	4 9.1 8	5 2.8 6	5 3.3 6	5 4.2 6	5 3.2 0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	ZnO	5.1 3	7.75	1 0.4 0	7.3 7	1 5.8 4	1 0.6 5	1 0.8 4	11.69
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Al ₂ O ₃	-		_	-	_	_	3.3 9	3.3 3
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Y ₂ O ₃	5.68	5.7.2	5.7 7	5.4 5	4.0 4	5.9 1	6.0 2	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	TiO2	_	-	_	-	_	7.85	5.3 2	5:2 2
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	ZrO2	2.3 3	2.3 4	2.3 6	2.2 3	2.4 0	2.42	_	2.4 1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	GeO ₂	1 6.4 8	1 3.2 7	1 0.0 3	9.4 7	3.4 0	-	-	_
nd	Ta ₂ O ₅	7.08	7.1 3	7.1 8	6.78	7.29	7.35	7.48	7.3 4
v d 4 1.6 4.1.4 4 0.9 — 3 8.5 3 4.1 3 6.7 3 5.3 Si O ₂ 5.87 5.06 5.83 5.67 5.81 5.72 5.67 5.34 B ₂ O ₃ 5.87 6.79 6.76 6.57 6.73 6.63 6.56 6.19 La ₂ O ₃ 5 4.19 5 4.12 5 3.84 5 2.43 5 3.72 5 2.88 5 2.34 4 9.33 BaO — — — — — — — 0.74 ZnO 11.91 11.89 13.44 10.47 11.79 6.34 8.89 10.84 AL ₂ O ₃ 3.39 3.37 3.28 3.36 3.31 3.28 3.09 Ti O ₂ 5.32 5.31 5.28 5.14 5.26 5.19 5.13 4.84 Zr O ₂ 2.46 2.46 4.07 2.38 2.43 2.40 2.37 2.24 TeO ₂ — — —<	Nb ₂ O ₅	<u> </u>	_	_	8.0 3	_	_	_	3.4 7
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	n d	1.8617	1.8690	1.8755	1.9 0	1.8991	1.9 4 5 5	1.9060	1.9160
SiO2 5.87 5.06 5.83 5.67 5.81 5.72 5.67 5.34 B2O3 5.87 6.79 6.76 657 6.73 6.63 6.56 6.19 La2O3 54.19 54.12 53.84 52.43 53.72 52.88 52.34 49.33 BaO — — — — — — 0.74 ZnO 11.91 11.89 13.44 10.47 11.79 6.34 8.89 10.84 AL2O3 3.39 3.39 3.37 32.8 33.6 3.31 32.8 3.09 TiO2 5.32 5.31 52.8 5.14 52.6 5.19 5.13 4.84 ZrO2 24.6 24.6 4.07 2.38 24.3 2.40 2.37 2.24 TeO2 — — — — — 5.13 — GeO2 — — — — 6.74 7.41 7.23 7.40 7.29 7.22 6.80 Nb2O5 3.53 <td< td=""><td>νd</td><td>-4 1.6</td><td>4.1.4</td><td>4 0.9</td><td>_</td><td>3 8.5</td><td>3 4.1</td><td>3 6.7</td><td>3 5.3</td></td<>	νd	-4 1.6	4.1.4	4 0.9	_	3 8.5	3 4.1	3 6.7	3 5.3
SiO2 5.87 5.06 5.83 5.67 5.81 5.72 5.67 5.34 B2O3 5.87 6.79 6.76 657 6.73 6.63 6.56 6.19 La2O3 54.19 54.12 53.84 52.43 53.72 52.88 52.34 49.33 BaO — — — — — — 0.74 ZnO 11.91 11.89 13.44 10.47 11.79 6.34 8.89 10.84 AL2O3 3.39 3.39 3.37 32.8 33.6 3.31 32.8 3.09 TiO2 5.32 5.31 52.8 5.14 52.6 5.19 5.13 4.84 ZrO2 24.6 24.6 4.07 2.38 24.3 2.40 2.37 2.24 TeO2 — — — — — 5.13 — GeO2 — — — — 6.74 7.41 7.23 7.40 7.29 7.22 6.80 Nb2O5 3.53 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>									
B_2O_3 5.87 6.79 6.76 6.57 6.73 6.63 6.56 6.19 La_2O_3 54.19 54.12 53.84 52.43 53.72 52.88 52.34 49.33 BaO — — — — — — 0.74 ZnO 11.91 11.89 13.44 10.47 11.79 6.34 8.89 10.84 AL_2O_3 33.9 33.7 32.8 33.6 33.1 32.8 30.9 TiO_2 5.32 5.31 52.8 51.4 52.6 51.9 51.3 48.4 ZrO_2 24.6 24.6 40.7 23.8 24.3 24.0 23.7 22.4 TeO_2 — — — — — 5.13 — GeO_2 — — — — — — — Ta_2O_5 7.46 7.45 7.41 7.23 7.40 7.29 7.22 6.80 $Nb_$		2 5	2 6	2 7	28	2 9	30.	3 1	3 2
La ₂ O ₃ 54.19 54.12 53.84 52.43 53.72 52.88 52.34 49.33 BaO — — — — — — 0.74 ZnO 11.91 11.89 13.44 10.47 11.79 6.34 8.89 10.84 $A \angle_2$ O ₃ 3.39 3.37 328 3.36 3.31 328 3.09 Ti O ₂ 5.32 5.31 5.28 5.14 5.26 5.19 5.13 4.84 Zr O ₂ 24.6 24.6 4.07 2.38 24.3 2.40 2.37 2.24 TeO ₂ — — — — — 5.13 — — Ge O ₂ — — — — — 5.13 — — Ta ₂ O ₅ 7.46 7.45 7.41 7.23 7.40 7.29 7.22 6.80 Nb ₂ O ₅ 3.53 3.53 — 6.83 3.50 3.45 3.41 3.21 WO ₃ — — —	SiO ₂	5.8 7	5.0 6	5.8 3	. 5.6 7	5.8 1	5.7 2	5.6 7	5.3 4
BaO - - - - - - - - - 0.74 ZnO 1 1.9 1 1 1.8 9 1 3.4 4 1 0.4 7 1 1.7 9 6.3 4 8.8 9 1 0.8 4 AL ₂ O ₃ 3.3 9 3.3 9 3.3 7 3.2 8 3.3 6 3.3 1 3.2 8 3.0 9 Ti O ₂ 5.3 2 5.3 1 5.2 8 5.1 4 5.2 6 5.1 9 5.1 3 4.8 4 Zr O ₂ 2 4.6 2.4 6 4.0 7 2.3 8 2.4 3 2.4 0 2.3 7 2.2 4 TeO ₂ - - - - - - 5.1 3 - - GeO ₂ - - - - - - 5.1 3 - <td< td=""><td>B₂O₃</td><td>5:8 7</td><td>6.79</td><td>6.7 6</td><td>6.5 7</td><td>6.7 3</td><td>6.6.3</td><td>6.5 6</td><td>6.19</td></td<>	B ₂ O ₃	5:8 7	6.79	6.7 6	6.5 7	6.7 3	6.6.3	6.5 6	6.19
ZnO 11.91 11.89 13.44 10.47 11.79 6.34 8.89 10.84 AL ₂ O ₃ 3.39 3.39 3.37 3.28 3.36 3.31 3.28 3.09 TiO ₂ 5.32 5.31 5.28 5.14 5.26 5.19 5.13 4.84 ZrO ₂ 24.6 2.46 4.07 2.38 2.43 2.40 2.37 2.24 TeO ₂ — — — — — 5.13 — GeO ₂ — — — — 6.79 — — Ta ₂ O ₅ 7.46 7.45 7.41 7.23 7.40 7.29 7.22 6.80 Nb ₂ O ₅ 3.53 3.53 — 6.83 3.50 3.45 3.41 3.21 WO ₃ — — — — — — — — 7.02 AS ₂ O ₃ — — — — — — — — 0.36 n d 1.9309 1.9290 1.9133 1.9368 1.9228 1.9088 1.9254 1.9387	La ₂ O ₃	5 4.1 9	5 4.1 2	5 3.8 4	5 2.4 3	5 3.7 2	5 2.8 8	5 2.3 4	4 9.3 3
A42 O3 3.39 3.39 3.37 328 3.36 3.31 328 3.09 Ti O2 5.32 5.31 5.28 5.14 5.26 5.19 5.13 4.84 Zr O2 24.6 24.6 4.07 2.38 24.3 2.40 2.37 2.24 Te O2 — — — — — 5.13 — Ge O2 — — — — — 5.13 — Ta 2 O5 7.46 7.45 7.41 7.23 7.40 7.29 7.22 6.80 Nb 2 O5 3.53 3.53 — 6.83 3.50 3.45 3.41 321 WO3 — — — — — — — 7.02 AS 2 O3 — — — — — — — 0.36 n d 1.9309 1.9290 1.9133 1.9368 1.9228 1.9088 1.9254 1.9387	BaO	_	, -	_	_	_	_	-	0.7 4
Ti O ₂ 5.3 2 5.3 1 5.2 8 5.1 4 5.2 6 5.1 9 5.1 3 4.8 4 Zr O ₂ 2 4.6 2.4 6 4.0 7 2.3 8 2.4 3 2.4 0 2.3 7 2.2 4 Te O ₂ — — — — — — — — 5.1 3 — Ge O ₂ — — — — — — 6.7 9 — — — Ta ₂ O ₅ 7.4 6 7.4 5 7.4 1 7.2 3 7.4 0 7.2 9 7.2 2 6.8 0 Nb ₂ O ₅ 3.5 3 3.5 3 — 6.8 3 3.5 0 3.4 5 3.4 1 3.2 1 WO ₃ — — — — — — — — 7.0 2 AS ₂ O ₃ — — — — — — — — 0.3 6 n d 1.9 3 0 9 1.9 2 9 0 1.9 1 3 3 1.9 3 6 8 1.9 2 2 8 1.9 0 8 8 1.9 2 5 4 1.9 3 8 7	ZnO	1 1.9 1	1 1.8 9	1 3.4 4	1 0.4 7	1 1.7 9	6.3 4	8.8 9	1 0.8 4
$ \begin{array}{c cccccccccccccccccccccccccccccccc$	AL ₂ O ₃	3.3 9	3.3 9	3.3 7	3.2 8	3.3 6	3.3 1	3.2 8	3.0 9
TeO2 — — — — 5.13 — GeO2 — — — — 6.79 — — Ta2O5 7.46 7.45 7.41 7.23 7.40 7.29 7.22 6.80 Nb2O5 3.53 3.53 — 6.83 3.50 3.45 3.41 3.21 WO3 — — — — — — 7.02 AS2O3 — — — — — — 0.36 nd 1.9309 1.9290 1.9133 1.9368 1.9228 1.9088 1.9254 1.9387	Ti O ₂	5.3 2	5.3 1	5.28	- 5.14	-5.2 6	5.1 9	5.1 3	4.8 4
GeO2 — — — — — — — — Ta2O5 7.46 7.45 7.41 7.23 7.40 7.29 7.22 6.80 Nb2O5 3.53 3.53 — 6.83 3.50 3.45 3.41 3.21 WO3 — — — — — — — 7.02 AS2O3 — — — — — — — 0.36 nd 1.9309 1.9290 1.9133 1.9368 1.9228 1.9088 1.9254 1.9387	ZrO ₂	2 4.6	2.4 6	4.0 7	2.3 8	24 3	2.4 0	2.3 7	2.2 4
Ta ₂ O ₅ 7.46 7.45 7.41 7.23 7.40 7.29 7.22 6.80 Nb ₂ O ₅ 3.53 3.53 - 6.83 3.50 3.45 3.41 3.21 WO ₃ - - - - - - - 7.02 AS ₂ O ₃ - - - - - - - 0.36 nd 1.9309 1.9290 1.9133 1.9368 1.9228 1.9088 1.9254 1.9387	TeO2	_			_	_	-	5.1 3	
Nb ₂ O ₅ 3.5 3 3.5 3 - 6.8 3 3.5 0 3.4 5 3.4 1 3.2 1 WO ₃ 7.0 2 AS ₂ O ₃ 0.3 6 n d 1.9 3 0 9 1.9 2 9 0 1.9 1 3 3 1.9 3 6 8 1.9 2 2 8 1.9 0 8 8 1.9 2 5 4 1.9 3 8 7	GeO2	_		-	_	_	6.7 9	_	_
WO ₃ 7.02 AS ₂ O ₃ 0.36 nd 1.9309 1.9290 1.9133 1.9368 1.9228 1.9088 1.9254 1.9387	Ta ₂ O ₅	7.4 6	7.45	7.4 1	7.23	7.4 0	7.29	7.2 2	6.80
WO ₃ 7.02 AS ₂ O ₃ 0.36 nd 1.9309 1.9290 1.9133 1.9368 1.9228 1.9088 1.9254 1.9387	Nb ₂ O ₅	3.5 3	3.5 3	<u> </u>	6.83	3.5 0	3.4 5	3.4 1	3.2 1
nd 1.9309 1.9290 1.9133 1.9368 1.9228 1.9088 1.9254 1.9387	WO ₃	_	_	-		-	-	-	
nd 1.9309 1.9290 1.9133 1.9368 1.9228 1.9088 1.9254 1.9387	AS ₂ O ₃	_		_	· —	-	-	_	
	nd	1.9 3 0 9	1.9290	1,9133	1.9368	1.9 2 2 8	1.9088	1.9 2 5 4	
	νd ·	3 4.6	3 4.6	3 5.9	3 3.8	3 5.0	3 5.5		

	3 3	3 4	3 5	3 6	3 7	3 8	3 9	4 0
S i O ₂	4.2 5	3.4 8	5.8 1	5.8 0	5.7 6	5.6 7	5.5 7	5.1 4
ВгОз	6.7 6	6.8 2	6.73	6.7 2	6.6 8	6.5 7	6.4 6	8.3 0
La ₂ O ₃	5 3.9 0	5 4.3 2	5 3.6 7	5 3.5 5	5 3.2 2	5 2.4 1	5 1.4 8	5 3.2 6
MgO	_	_	0.5 3	_	_	_	-	
CaO		_	_	0.7 4	-		_	
SrO			_	_	1.3 5		_	_
BaO	0.8 1	0.8 2	-	-				0.7 7
ZnO	1 1.8 5	1.194	1 1.3 1	1 1.2 9	1 1.2 2	1 1.0 4	1 0.8 5	1 1.2 4
РьО	_	-	_	_	_	2.8 7	_	-
A & 2 O 3	3.3 8	3.4 0	3.3 6	3.3 5	3.3 3	3.2 8	3.2 2	3.2 0
Gd ₂ O ₃	_	_	_	_	_	_	4.5 8	_
TiO2	5.2 9	5.3 3	5.2 6	5.2 5	5.2 2	5.1 4	5.0 5	5.0 2
ZrO2	2.4 5	2.4 6	2.4 4	2.4 3	2.4 2	2.3 8	2.3 4	2.3 2
Ta ₂ O ₅	7.4 4	7.4 8	7.39	7.3 8	7.3 3	7.2 2	7.09	7.03
Nb ₂ O ₅	3.48	3.5 5	3.5 0	3.4 9	3.4 7	3.4 2	3.3 6	3.3 4
As ₂ O ₃	0.3 9	0.4 0	_		_	_	_	0.38
n d	1.9 3 4 3	1.9 4 0 5	1.9 2 2 8	1.9 2 2 3	1.9219	1.9308	1.9 2 5 2	1.9138
νd	3 4.4	3 4.1	3 5.0	3 5.0	3 5.0	3 4.0	3 4.6	3 5.6

	4 1	4 2		
SiO ₂	3.9 5	5.45		
B ₂ O ₃	9.65	6.32		
La ₂ O ₃	5 3.1 5	6 0.4 5		
BaO	0.77	0.76		
ZnO	1 1.2 2	6.04		
A & 2 O 3	3.1 9	3. 1 5		
TiO2	5.01	4.94		
ZrO2	2.32	2.29		
Ta 2 O 5	7.02	6.93		
Nb ₂ O ₅	3. 3 4	3. 3 0		
AS ₂ O ₃	0.38	0. 3 7		
F ₂	_	1.65		
n d	1.9099	1.8991		
νd	3 5.8	3 6.7		

25 本発明によれば高屈折率低分散の光学ガラス、 殊に屈折率(nd)が1.84~1.95、アッペ数 (νd)が33~43の範囲にあるトリウムを含 まない光学ガラスを工業的且つ安価に製造すると とができる。

30

66引用文献

 特
 公
 昭47-15881
 1
 1

 35特
 開
 昭48-2388
 0
 9

 特
 開
 昭50-1010
 1
 4
 1
 4

 米国特許
 3029152
 2
 52
 2
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4<

40