Introduction to Geographic Information Analysis

SERGIO REY

Geographic Information Analysis

School of Geographical Sciences and Urban Planning Arizona State University

Geographic Information Analysis by Sergio Rey is licensed under a Creative Commons Attribution 4.0 International License.

- GIS and Spatial Analysis
 - Big Picture
 - What is Spatial Analysis?

- EDA and ESDA
 - Exploratory Data Analysis (EDA)
 - Exploratory Spatial Data Analysis (ESDA)

Outline

- GIS and Spatial Analysis
 - Big Picture
 - What is Spatial Analysis?

- EDA and ESDA
 - Exploratory Data Analysis (EDA)
 - Exploratory Spatial Data Analysis (ESDA)

GIS Then

GIS Then

GIS Now

Nearby: * North Austin * South Austin * West Humboldt Park * Ward 30 * Ward 37

GIS Functions

Anselin-Getis (1992) Taxonomy

- Input
- Storage
- Analysis
- Output

Many other taxonomies

GIScience

Goodchild (1992)

- cross-disciplinary
- central role for spatial analysis
- scientific glue

Outline

- GIS and Spatial Analysis
 - Big Picture
 - What is Spatial Analysis?

- EDA and ESDA
 - Exploratory Data Analysis (EDA)
 - Exploratory Spatial Data Analysis (ESDA)

What is Spatial Analysis?

From Data to Information

- Beyond mapping
- added value
- transformations, manipulations and application of analytical methods to spatial (geographic data)

Locational Invariance

How Insights Change with location

- spatial analysis is not locationally invariant
- the results change when the locations of the study objects change
- where matters

State Income Distributions 1929

State Income Distributions 1929

Randomized Income Distribution 1929

Randomized Income Density 1929

Locational Invariance

Spatial Autocorrelation Income 1929

Spatial Autocorrelation Randomized Income 1929

Locational Variance

Components of Spatial Analysis

Mapping and Geovisualization

showing interesting patterns

Exploratory Spatial Data Analysis

discovering interesting patterns

Spatial Modeling

explaining interesting patterns

Summary: Spatial Analysis

Beyond Mapping

Central role for analysis

Distinguished by Locational Variance

Location matters

Components

Showing, discovering, explaining

Outline

- GIS and Spatial Analysis
 - Big Picture
 - What is Spatial Analysis?

- EDA and ESDA
 - Exploratory Data Analysis (EDA)
 - Exploratory Spatial Data Analysis (ESDA)

EDA: John Tukey (1977)

- EDA is an approach, not simply a set of techniques, but an attitude/philosophy about how a data analysis should be carried out.
- Postpones the usual assumptions about what kind of model the data follow

Goals and Purpose of EDA

Set of techniques to

- maximize insight into a data set
- uncover underlying structures
- extract important variables
- detect outliers and anomalies
- test underlying assumptions
- suggest hypotheses
- develop parsimonious models

EDA Components

1. Exploratory Data Analysis

This chapter presents the assumptions, principles, and techniques necessary to gain insight into data via EDA--exploratory data analysis.

1. EDA Introduction

- What is EDA?
- 2. EDA vs Classical &
- Bayesian
- 3. EDA vs Summary
- 4. EDA Goals
- 5. The Role of Graphics
- 6. An EDA/Graphics Example
- 7. General Problem Categories

3. EDA Techniques

- 1. Introduction
- 2. Analysis Ouestions
- 3. Graphical Techniques: Alphabetical
- 4. Graphical Techniques: By Problem Category
- 5. Quantitative Techniques
- 6. Probability Distributions

2. EDA Assumptions

- 1. Underlying Assumptions
- 2. Importance
- 3. Techniques for Testing Assumptions
- 4. Interpretation of 4-Plot
- 5. Consequences

4. EDA Case Studies

- 1. Introduction
- 2. By Problem Category

Detailed Chapter Table of Contents References

EDA Techniques

Statistical Graphics

- EDA relies heavily on statistical graphics
- EDA is not identical to statistical graphics
- Graphics support pattern recognition and open-minded exploration
- Interactive graphics push this even further

Quantitative Methods

Although heavily graphic in orientation, there are also a number of numerical techniques in EDA.

EDA Versus Confirmatory Analysis

Confirmatory Analysis (e.g. regression)

 $\textbf{Problem} \rightarrow \textbf{Theory} \rightarrow \textbf{Model} \rightarrow \textbf{Data} \rightarrow \textbf{Conclusion}$

Exploratory Analysis

 $\textbf{Problem} \rightarrow \textbf{Data} \rightarrow \textbf{Analysis} \rightarrow \textbf{Model}$

Outline

- GIS and Spatial Analysis
 - Big Picture
 - What is Spatial Analysis?

- EDA and ESDA
 - Exploratory Data Analysis (EDA)
 - Exploratory Spatial Data Analysis (ESDA)

What is ESDA?

Definitions

- Type of EDA
- Extended to include spatial attributes of the data

Cross fertilization

- Applying classic EDA to spatial data
- Developing new EDA methods for spatial data
- Interactions between EDA and ESDA

How does ESDA fit in spatial analysis?

Spatial Modeling?

- Modeling based on assumptions
- ESDA largely model free
- Matter of degree (e.g., clustering)

Mapping?

- Maps play a critical role in ESDA
- Does a map = ESDA?
- No. ESDA = map, manipulation + visualization

PySAL and ESDA (Video)

