Lab2

Tristen Tooming 1/18/2021

1

Pre

```
library(ISLR)
library(leaps)
summary(Hitters)
```

```
AtBat
                   Hits
                               HmRun
                                              Runs
Min. : 16.0
              Min. : 1
                           Min. : 0.00
                                        Min. : 0.00
1st Qu.:255.2
             1st Qu.: 64
                          1st Qu.: 4.00
                                        1st Qu.: 30.25
                         Median: 8.00
Median :379.5
             Median : 96
                                        Median : 48.00
                          Mean :10.77
Mean :380.9
              Mean :101
                                        Mean : 50.91
3rd Ou.:512.0
              3rd Ou.:137 3rd Ou.:16.00
                                        3rd Ou.: 69.00
Max. :687.0
              Max. :238
                           Max. :40.00
                                        Max. :130.00
    RBT
                   Walks
                                                  CAtBat
                                  Years
Min. : 0.00
               Min. : 0.00
                              Min. : 1.000
                                             Min. : 19.0
1st Ou.: 28.00
               1st Qu.: 22.00
                              1st Ou.: 4.000
                                             1st Qu.: 816.8
Median : 44.00
               Median : 35.00
                               Median : 6.000
                                              Median: 1928.0
Mean : 48.03
               Mean : 38.74
                               Mean : 7.444
                                             Mean : 2648.7
3rd Qu.: 64.75
               3rd Qu.: 53.00
                               3rd Qu.:11.000
                                              3rd Qu.: 3924.2
Max. :121.00
               Max. :105.00
                               Max. :24.000
                                              Max. :14053.0
                   CHmRun
                                                   CRBI
   CHits
                                  CRuns
Min. : 4.0
               Min. : 0.00
                               Min. : 1.0
                                              Min. :
                                                       0.00
1st Qu.: 209.0
               1st Qu.: 14.00
                               1st Qu.: 100.2
                                              1st Qu.: 88.75
Median : 508.0
               Median : 37.50
                               Median : 247.0
                                              Median : 220.50
Mean : 717.6
               Mean : 69.49
                               Mean : 358.8
                                              Mean : 330.12
3rd Ou.:1059.2
               3rd Ou.: 90.00
                               3rd Ou.: 526.2
                                               3rd Ou.: 426.25
Max. :4256.0
               Max. :548.00
                               Max. :2165.0
                                              Max. :1659.00
                                  PutOuts
   CWalks
               League Division
                                                  Assists
Min. : 0.00
                               Min. : 0.0 Min. : 0.0
              A:175 E:157
1st Qu.: 67.25
                N:147
                       W:165
                                1st Qu.: 109.2
                                              1st Qu.: 7.0
Median : 170.50
                                Median: 212.0 Median: 39.5
Mean : 260.24
                                Mean : 288.9
                                               Mean
                                                     :106.9
3rd Qu.: 339.25
                                3rd Qu.: 325.0
                                               3rd Qu.:166.0
Max. :1566.00
                                Max. :1378.0 Max. :492.0
   Errors
                  Salary
                              NewLeague
Min. : 0.00
              Min. : 67.5
                              A:176
1st Qu.: 3.00
              1st Qu.: 190.0
                              N:146
              Median : 425.0
Median : 6.00
Mean : 8.04
              Mean : 535.9
3rd Qu.:11.00
              3rd Qu.: 750.0
Max. :32.00
              Max.
                    :2460.0
              NA's
                    :59
```

```
# Fit
# Showing only best (nbest = 1)
regfit.models <- regsubsets(Salary~., data = Hitters, nbest = 1, nvmax = ncol(Hitters))
# Summary, Cp, BIC
res.sum <- summary(regfit.models)
# as.data.frame(res.sum$outmat)

plot(regfit.models, scale='Cp')</pre>
```


plot(regfit.models, scale='bic')


```
Best Cp (5.01) model: 10
Model: Salary ~ (Intercept) + AtBat + Hits + Walks + CAtBat + CRuns + CRBI + CWalks + DivisionW
+ PutOuts + Assists

Best BIC (-147.92) model: 6
Model: Salary ~ (Intercept) + AtBat + Hits + Walks + CRBI + DivisionW + PutOuts
```

Forward Stepwise Selection

```
regfit.fwd = regsubsets(Salary~., data=Hitters, nvmax=ncol(Hitters), method ="forward")
regfit.fwd.sum = summary(regfit.fwd)
regfit.fwd.sum.min.bic = which.min(regfit.fwd.sum$bic)
regfit.fwd.sum.min.bic.value = min(regfit.fwd.sum$bic)
regfit.fwd.sum.min.cp = which.min(regfit.fwd.sum$cp)
regfit.fwd.sum.min.cp.value = min(regfit.fwd.sum$cp)
```

```
Best Cp (5.01) model: 10
Model: Salary ~ (Intercept) + AtBat + Hits + Walks + CAtBat + CRuns + CRBI + CWalks + DivisionW + PutOuts + Assists

Best BIC (-147.92) model: 6
Model: Salary ~ (Intercept) + AtBat + Hits + Walks + CRBI + DivisionW + PutOuts
```

Backward Stepwise Selection

```
regfit.bfd = regsubsets(Salary~., data=Hitters, nvmax=ncol(Hitters), method ="backward")
regfit.bfd.sum = summary(regfit.bfd)

regfit.bfd.sum.min.bic = which.min(regfit.bfd.sum$bic)
regfit.bfd.sum.min.bic.value = min(regfit.bfd.sum$bic)

regfit.bfd.sum.min.cp = which.min(regfit.bfd.sum$cp)
regfit.bfd.sum.min.cp.value = min(regfit.bfd.sum$cp)
```

```
Best Cp (5.01) model: 10
Model: Salary ~ (Intercept) + AtBat + Hits + Walks + CAtBat + CRuns + CRBI + CWalks + DivisionW + PutOuts + Assists

Best BIC (-147.38) model: 8
Model: Salary ~ (Intercept) + AtBat + Hits + Walks + CRuns + CRBI + CWalks + DivisionW + PutOut s
```

Exercise 1. Conclusion

Coeffs and their Significance (Sorted by P-value)

term	estimate	std.error	statistic	p.value
PutOuts	0.282	0.077	3.640	0.000
Walks	6.231	1.829	3.408	0.001
Hits	7.501	2.378	3.155	0.002
AtBat	-1.980	0.634	-3.123	0.002
DivisionW	-116.849	40.367	-2.895	0.004
CWalks	-0.812	0.328	-2.474	0.014
CRuns	1.454	0.750	1.938	0.054
(Intercept)	163.104	90.779	1.797	0.074
Assists	0.371	0.221	1.678	0.095
CAtBat	-0.171	0.135	-1.267	0.206
CRBI	0.808	0.693	1.166	0.245
Runs	-2.376	2.981	-0.797	0.426
LeagueN	62.599	79.261	0.790	0.430
Errors	-3.361	4.392	-0.765	0.445
HmRun	4.331	6.201	0.698	0.486
RBI	-1.045	2.601	-0.402	0.688
NewLeagueN	-24.762	79.003	-0.313	0.754
Years	-3.489	12.412	-0.281	0.779
CHits	0.134	0.675	0.199	0.843
CHmRun	-0.173	1.617	-0.107	0.915

Best Subset Selection and Forward Stepwise Selection perform simillary and they give identical results. However selecting model based on BIC criteria Backward Stepwise Selection performs best with BIC value of -147.38 compared -147.92 when using Best Subset and Stepwise Forward methods. When using Cp-value as a comparison all methods gave identical models: Salary ~ (Intercept) + AtBat + Hits + Walks + CAtBat + CRuns + CRBI + CWalks + DivisionW + PutOuts + Assists with Cp-value of 5.01.

Using p-values of the full model and just simply counting and concluding subset, forward and backwards results the most important variables are: PutOuts, Walks, Hits, AtBat, DivisionW, Cwalks, CRuns and AtBat. For improving model we could add interaction terms and perform model selection again.

2

Pre

```
Loading required package: lattice
Loading required package: ggplot2
Attaching package: 'pls'
The following object is masked from 'package:caret':
    R2
The following object is masked from 'package:stats':
    loadings
- Attaching packages -
                                                             - tidyverse 1.3.0 -

√ tibble 3.0.5

                    ✓ dplyr
                              1.0.3
√ tidyr
          1.1.2
                    ✓ stringr 1.4.0
          1.4.0
                    ✓ forcats 0.5.1
√ readr
√ purrr
          0.3.4
 — Conflicts -
                                                        - tidyverse conflicts() —
x dplyr::filter() masks stats::filter()
x dplyr::lag() masks stats::lag()
x purrr::lift()
                masks caret::lift()
x dplyr::select() masks MASS::select()
tecator = read.csv("/Users/tuuba/code/ISRL/Lab2/tecator.csv")
tecator subset = tecator[ , !names(tecator) %in% c('Sample', 'Protein', 'Moisture')]
set.seed(2707)
smp_size <- floor(0.75 * nrow(tecator_subset))</pre>
train ind <- sample(seq len(nrow(tecator subset)), size = smp size)</pre>
tecator train = tecator subset[train ind, ]
tecator_test = tecator_subset[-train_ind, ]
x = 1:215
matplot(x = x, y=tecator subset, type = '1')
```


The straight lines indicate good linear relationships so on PCR, PLS, Lasso and Ridge ression could be suitable to model the data.

```
model_pcr <- train(
  Fat~., data = tecator_train, method = "pcr",
  scale = TRUE, # scale = TRUE for standardizing the variables to make them comparable.
  trControl = trainControl("cv", number = 25),
  tuneLength = 50
  )
# Plot model RMSE vs different values of components
plot(model_pcr, main = 'Performance of PCR')</pre>
```

Performance of PCR

Print the best tuning parameter ncomp that
minimize the cross-validation error, RMSE
model_pcr\$bestTune

```
| ncomp | <dbl>
30 | 30 |
```

```
model_pls <- train(
  Fat~., data = tecator_train, method = "pls",
  scale = TRUE, # scale = TRUE for standardizing the variables to make them comparable.
  trControl = trainControl("cv", number = 25),
  tuneLength = 50
  )
# Plot model RMSE vs different values of components
plot(model_pls, main = 'Performance of PLS')</pre>
```

Performance of PLS

Print the best tuning parameter ncomp that
minimize the cross-validation error, RMSE
model_pls\$bestTune

```
# Predictions

# Make predictions

pcr_predictions <- model_pcr %>% predict(tecator_test)

pls_predictions <- model_pls %>% predict(tecator_test)

# Model performance metrics

pcr_mse = caret::RMSE(pcr_predictions, tecator_test$Fat)**2

pls_mse = caret::RMSE(pls_predictions, tecator_test$Fat)**2
```

```
# Regularization parameters
parameters <- c(seq(0.1, 2, by =0.1), seq(2, 5, 0.5), seq(5, 25, 1))
model lasso <- train(</pre>
  Fat~., data = tecator_train, method = "glmnet",
  scale = TRUE, # scale = TRUE for standardizing the variables to make them comparable.
  trControl = trainControl("cv", number = 25),
  tuneGrid = expand.grid(alpha = 1, lambda = parameters),
  metric = 'RMSE'
  )
model_ridge <- train(</pre>
 Fat~., data = tecator_train, method = "glmnet",
  scale = TRUE, # scale = TRUE for standardizing the variables to make them comparable.
  trControl = trainControl("cv", number = 25),
  tuneGrid = expand.grid(alpha = 0, lambda = parameters),
  metric = 'RMSE'
  )
plot(model_lasso, main = 'Performance of Lasso')
```

Performance of Lasso


```
plot(model_ridge, main = 'Performance of Ridge')
```

Performance of Ridge


```
# Predictions
lasso_predictions <- model_lasso %>% predict(tecator_test)
ridge_predictions <- model_ridge %>% predict(tecator_test)

# Model performance metrics
lasso_mse = caret::RMSE(lasso_predictions, tecator_test$Fat)**2
ridge_mse = caret::RMSE(ridge_predictions, tecator_test$Fat)**2
```

```
PCR MSE: 4.70
PLS MSE: 3.92
Lasso MSE: 12.42
Ridge MSE: 17.30
```

PLS has the best performance with MSE of 3.92, then comes PCR (MSE = 4.70), Lasso (MSE = 12.42) and lastly Ridge (MSE = 17.30).