Departamento de Matemática Aplicada Análisis Numérico, IC303

Myrian González Orellana

UNAH

PACIII2023

Tabla de Contenidos

- 1 Preliminares del cálculo
- 2 Raíces de ecuaciones
- 3 Aproximación de funciones
- 4 Ejercicios

Teoremas Preliminares I

Esta presentación esta basada en el texto de Burden, 2017.

Criterio del límite

Sea $f: \mathbb{R} : \to \mathbb{R}$. Asuma que $\lim_{x \to \infty} f(x)$ existe y es igual a L. Entonces la sucesión $\{a_n\} = \{f(n)\}$ converge a L también.

Enlace a ejercicio.

Teorema de convergencia monótona

Suponga que la sucesión $\{a_n\}$ es monótona creciente y acotada superiormente, entonces $\{a_n\}$ es convergente.

Enlace a ejercicio.

Teorema del sándwich

Suponga que $\{a_n\}$ y $\{b_n\}$ convergen al valor de L. Además asuma que

$$a_n \le x_n \le b_n$$

para n > N para algún N fijo; entonces $\{x_n\}$ converge a L.

Enlace a ejercicio.

Teoremas Preliminares II

Teorema del valor medio

Si $f \in C[a,b]$ y f es diferenciable en (a,b), entonces existe un número c en (a,b) con

$$f'(c) = \frac{f(b) - f(a)}{b - a}.$$

Figura: En la figura se puede ver un ejemplo con $f(x) = \sin(x)$ para $x \in \left[0, \frac{5\pi}{4}\right]$

Teoremas Preliminares III

Teorema del valo extremo

■ Si $f \in C[a,b]$, entonces existe $c_1, c_2 \in [a,b]$ con

$$f(c_1) \le f(x) \le f(c_2)$$

para $x \in [a, b]$.

■ Si además f es diferenciable en (a, b), entonces c_1 y c_2 son iguales a los extremos $(a \circ b)$ o los lugares donde la derivada se hace cero en (a, b).

Enlace a ejercicio

Figura: Se puede apreciar en el ejemplo, que el máximo de la función se alcanza en un lugar donde la derivada es cero y el mínimo en el extremo derecho.

Teoremas Preliminares IV

Teorema del valor intermedio

Si $f \in C[a,b]$ y K es cualquier número entre f(a) y f(b), entonces existe un número c en (a,b) para el cual f(c)=K.

Enlace a ejercicio

Teoremas Preliminares V

Se define $C^n[a,b] = \{f : [a,b] \to \mathbb{R} | f, f', \dots, f^{(n)} \text{ son continuas en } [a,b] \}.$

Teorema de Taylor

Supong que:

- $\quad \blacksquare \ f \in C^n[a,b].$
- $f^{(n+1)}$ esta definida en [a, b].
- $x_0 \in [a, b].$

Entonces, para cada $x \in [a, b]$, existe $\xi(x) \in (x_0, x)$ (si $x > x_0$ y $\xi(x) \in (x, x_0)$ en el otro caso) tal que:

- $f(x) = P_n(x) + R_n(x)$ donde
- $P_n(x) = \sum_{k=0}^n \frac{f^{(k)}(x_0)}{k!} (x x_0)^k$ y
- $R_n(x) = \frac{f^{(n+1)}(\xi(x))}{(n+1)!} (x x_0)^{(n+1)}.$

Enlace a ejercicio

Raíces de ecuaciones I

Figura: Método de Bisección: En la figura se muestra el mécanismo de la bisección.

Raíces de ecuaciones II

Listing 1: "Método de Bisección"

```
function x=Biseccion (f, a, b, TOL, N0)
        i = 1; FA = f(a);
 \frac{3}{4} \frac{4}{5} \frac{6}{7} \frac{8}{9}
        while (i < = N0)
          p=a+(b-a)/2;
          FP=f(p);
           if (FP==0 \mid | (b-a)/2 < TOL)
             x=p;
             break;
           endif
10
           i=i+1;
11
           if(FA*FP>0)
12
             à=p;
FA=FP;
13
14
           else
15
             b=p;
16
           endif
17
        endwhile
18
        if (i>N0)
19
          x=inf;
20
        endif
21
     endfunction
```

Raíces de ecuaciones III

Teorema de convergencia del método de bisección

Supongamos que $f \in C[a,b]$ y f(a)f(b) < 0. El método de bisección genera una sucesión $\{p_n\}$ que aproxima a un cero de p de f, tal que:

$$|p_n - p| \le \frac{b - a}{2^n}.$$

Enlace a ejercicio

Primero note que $p \in [a_n, b_n]$ (teorema del valor intermedio), entonces

$$|p - (a_n + b_n)/2| \le (b_n - a_n)/2.$$

Raíces de ecuaciones IV

De esto se tiene que:

$$|p_n - p| = |(a_n + b_n)/2 - p|$$

$$\leq \frac{b_n - a_n}{2}$$

$$\leq \frac{1}{2} \frac{b - a}{2^{n-1}} (\text{ inducción} : b_n - a_n \leq \frac{b - a}{2^{n-1}})$$

$$= \frac{b - a}{2^n}$$

Iteración de Newton Raphson

La iteración de Newton Rapshon se define como:

$$p_{n+1} = p_n - \frac{f(p_n)}{f'(p_n)}.$$

La sucesión $\{p_n\}$ intenta resolver el problema:

$$f(x) = 0.$$

Raíces de ecuaciones V

Como se suele encontrar en muchos textos y con justa razón, el método de Newton-Raphson es uno de los métodos más poderosos conocidos para la resolución de ecuaciones.

Idea detrás del método: Suponga que se quiere investigar como resolver la ecuación:

$$f(x) = 0$$

Supogan además que la raíz a esta ecuación sucede en x=p. Por el teorema de Taylor bajo algunas suposiciones tenemos que:

$$0 = f(p) = f(x) + (p - x)f'(x) + \frac{(p - x)^2}{2}f''(\xi(x))$$

Si se asume que x está cerca de p entonces, después de despejar arriba se tiene:

$$p \approx x - \frac{f(x)}{f'(x)}, \ (p - x)^2 \approx 0.$$

Esto último, como se puede notar, tiene la estructura de la iteración del método de Newton presentada al inicio.

El método iterativo de Newton se puede analizar desde el teorema de punto fijo; para ello considere primero el enunciado de dicho teorema:

Raíces de ecuaciones VI

Teorema de punto fijo

Suponga lo siguiente:

- $g \in C[a,b].$
- $g(x) \in [a,b].$
- Suponga que g' existe en (a,b).
- Existe una constante positiva k menor que 1 tal que $|g'(x)| \le k$ para toda $x \in (a, b)$.

Entonces para cualquier $p_0 \in [a,b]$ la sucesión definida por $p_n=g(p_{n-1})$ converge al único punto fijo p tal que

$$p = g(p)$$
.

En la iteración de Newton, $g(x) = x - \frac{f(x)}{f'(x)}$; si se asume que

 $f'(p) \neq 0$ y cumple con todas las condiciones del teorema de punto fijo, entonces la conclusión de este es que la sucesión converge a p y

$$p = g(p) = p - \frac{f(p)}{f'(p)},$$

Raíces de ecuaciones VII

esto deriva en que f(p) = 0; lo que justamente se anda buscando.

Para que se garantice el teorema de punto fijo, se tiene el siguiente teorema sobre el método de Newton:

Teorema de convergencia del método de Newton

Suponga que:

- $\quad \blacksquare \ f \in C^2[a,b].$
- $\quad \blacksquare \ p \in [a,b].$
- $f(p) = 0, f'(p) \neq 0.$

Entonces existe un $\delta > 0$ tal que la sucesión $\{p_n\}$ converge a p para cualquier aproximación inicial $p_0 \in [p - \delta, p + \delta]$.

La demostración del teorema se puede encontrar en Burden, 2017. En el podrás observar que se usa el teorema de punto fijo.

Para apreciar la importancia del método de Newton, se necesita la siguiente definición:

Raíces de ecuaciones VIII

Orden de convergencia

Suponga que $\{p_n\}$ es una sucesión que converge a p y que $p \neq p_n$ para toda n. Además asuma que existen constantes positivas λ y α tales que:

$$\lim_{n \to \infty} \frac{|p_{n+1} - p|}{|p_n - p|^{\alpha}} = \lambda.$$

entonces se dice que:

- \bullet a es le orden de convergencia de la sucesión $\{p_n\}$.
- lacktriangle λ es la constante de error asintótica.

Observaciones:

- La parte más relevante en la definición anterior es el orden de convergencia α ; entre más grande sea este, el método convergerá con mayor rapidez.
- El método de bisección tiene un orden de convergencia $\alpha = 1$ (esto se denomina convergencia lineal).
- Bajo ciertos supuestos razonables, el método de Newton posee una convergencia de al menos $\alpha = 2$ (esto se denomina convergencia cuadrática). Debido a su valor en el orden de convergencia, a este método se le considera de rápida convergencia.

Raíces de ecuaciones IX

Usualmente se preferirá el método de Newton sobre el método de bisección; sin embargo hay que notar que la desventaja del método de Newton es la escogencia del valor inicial y una combinación de ambos métodos es en general la mejor opción.

Enlace a ejercicio

Raíces de ecuaciones X

Sistema de ecuaciones

Un sistema de ecuaciones, en general tiene la siguiente forma:

$$\begin{bmatrix} f_1(x_1, \dots, x_n) = 0 \\ f_2(x_1, \dots, x_n) = 0 \\ \vdots \\ f_n(x_1, \dots, x_n) = 0 \end{bmatrix}$$

El cual se puede expresar de forma compacta como:

$$F(X) = 0,$$

donde
$$X = [x_1, \dots, x_n]$$
 y $F(X) = [f_1(X), \dots, f_n(X)]$.

Todo el análisis que se hizo antes en el caso de una variable, se puede hacer para el caso en el que queremos resolver un sistema de ecuaciones.

Raíces de ecuaciones XI

Iteración del método de Newton para sistemas

Se define la iteración de Newton para sistemas como:

$$p_{n+1} = p_n - J^{-1}(p_n)F(p_n),$$

donde:

$$J(x) = \begin{pmatrix} \frac{\partial f_1(X)}{\partial x_1} & \dots & \frac{\partial f_1(X)}{\partial x_n} \\ \vdots & \vdots & \vdots \\ \frac{\partial f_n(X)}{\partial x_1} & \dots & \frac{\partial f_n(X)}{\partial x_n} \end{pmatrix}$$
$$= \begin{pmatrix} \nabla f_1(X) \\ \vdots \\ \nabla f_n(X) \end{pmatrix}$$
$$p_n \in \mathbb{R}^n$$

A J se le conoce como el jacobiano en la literatura.

Para medir los errores en el caso de sistemas, en lugar del valor absoluto se usa su equivalente, las normas. Las normas que se suelen usar son las siguientes:

Norma 2: $||x||_2 = \sqrt{x_1^2 + \dots + x_n^2}$.

Raíces de ecuaciones XII

- Norma 1: $||x||_1 = |x_1| + \cdots + |x_n|$.
- Norma infinito: $||x||_{\infty} = \max_{1 \le i \le n} |x_i|$.

Por ejemplo, si se quiere medir el error entre la aproximación p_n de p, donde estos son vectores, entonces:

- \blacksquare Error absoluto en la norma infinito: $\parallel p-p_n \parallel_{\infty}$
- \blacksquare Error relativo en la norma 1: $\frac{\parallel p p_n \parallel_1}{\parallel p \parallel_1}$

Cuando no se conoce el valor exacto entonces se suelen usar medidas para estimar el valor relativo o absoluto; para ello suponga que se quiere estimar el error para una suceción $\{p_n\}$ vectorial:

- \blacksquare Estimación error absoluto en la norma 2: $\parallel p_{n+1} p_n \parallel_2$
- Estimación del error relativo en la norma infinito: $\frac{\parallel p_{n+1} p_n \parallel_{\infty}}{\parallel p_{n+1} \parallel_{\infty}}$

Enlace a ejercicio

Teoremas preliminares

Teorema (Weierestrass)

Suponga que f está definida y es continua en [a,b]. Para cada $\epsilon>0$, existe un polinomio P(x), con la propiedad de que

$$|f(x) - P(x)| < \epsilon, \quad \forall x \in [a, b]$$

Los polinomios son ampliamente utilizados para la interpolación numérica porque:

- Aproximan de manera uniforme a las funciones conitnuas.
- Tienen derivadas e integrales fáciles de calcular. Además, sus integrales y derivadas también son polinomios.
 - Las principales limitaciones de los polinomios de Taylor son:
- Generalmente no ofrecen una buena aproximación en todo un intervalo, sino que la aproximación se concentra alrededor de x_0 .
- Aumentar el grado del polinomio de Taylor no necesariamente brindará una mejor aproximación.
- No utilizan más que un único punto para definir el polonomio.

Limitaciones de los polinomios de Taylor para la interpolación

Debido a las limitaciones expuestas, los polinomios de Taylor se usan principalmente para:

- Derivación de otros métodos numéricos, como el método de diferencias finitas.
- 2 Estimación del error

Teorema de Taylor

Suponga que $f \in C^n[a, b]$, $f^{(n+1)}$ esta definida en [a, b] y $x_0 \in [a, b]$. Entonces, para cada $x \in [a, b]$, existe $\xi(x) \in (x_0, x)$ (si $x > x_0$ y $\xi(x) \in (x, x_0)$ en el otro caso) tal que:

$$f(x) = P_n(x) + R_n(x)$$
 donde

$$P_n(x) = \sum_{k=0}^n \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k$$
 y

$$R_n(x) = \frac{f^{(n+1)}(\xi(x))}{(n+1)!} (x - x_0)^{(n+1)}.$$

Regreso a fórmula de segundo orden.

Polinomio interpolante de Lagrange

Teorema (Polinomios de Lagrange)

Si f es una funcion definida en los diferentes valores $\{x_0, \dots, x_n\}$, entonces existe un único polinomio P(x) de grado a lo más n, con la propiedad:

$$f(x_k) = P(x_k) \quad k = 0, 1, \dots, n$$

El polinomio P(x) se define como sigue:

$$P(x) = \sum_{k=0}^{n} f(x_k) L_{n,k}(x) = f(x_0) L_{n,0} + \dots + f(x_n) L_{n,n}$$

donde

$$L_{n,k} = \frac{(x-x_0)(x-x_1)\dots(x-x_{k+1})(x-x_{k+1})\dots(x-x_n)}{(x_k-x_0)(x_k-x_1)\dots(x_k-x_{k+1})(x_k-x_{k+1})\dots(x_k-x_n)}$$

Teorema (Error del polinomio de Lagrange)

Suponga que x_0, x_1, \ldots, x_n son números distintintos en el intervalo [a,b] y que $f \in C^{n+1}[a,b]$. Entonces, para cada x en [a,b] existe in número $\xi(x)$ en (a,b) con

$$f(x) = P(x) + \frac{f^{(n+1)}(\xi(x))}{(n+1)!}(x-x_0)(x-x_1)\dots(x-x_n)$$

donde P(x) es el polinomio interpolante de Lagrange.

Enlace a ejercicio.

Interpolación, Spline Cúbicos I

Considere el siguiente ajuste polinomial:

Figura: En la figura se observa la interpolación por polinomios de Lagrange para $f(x) = \frac{1}{1+25x^2}$ para $x \in [-1,1]$ con 30 puntos equidistante comenzando en -1 y finalizando en 1.

Interpolación, Spline Cúbicos II

El ejemplo anterior demuestra que los polinomios de alto orden (en el ejemplo de la figura tendríamos un polinomio de orden 31) pueden oscilar erráticamente. Evidentemente esta característica es indeseable en muchas situaciones; en este apartado se mostrará una técnica que puede evitar este problema siempre con la idea de hacer un ajuste polinomial.

Los ingredientes para construir un **spline** (esta palabra no tiene traducción al español, su significado es "larga tira flexible") **cúbico interpolante** S de alguna función f se basan en las siguiente consideraciones:

- lacksquare Una función f de variable real definida en el intervalo [a,b].
- Una partición del intervalo [a, b]; $a = x_0 < x_1 < \cdots < x_n = b$.
- S(x) restringido a $[x_j, x_{j+1}]$ es un polinomio cúbico para cada $j = 0, \dots, n-1$. A esta parte se le denota por $S_j(x)$.
- $S_j(x_j) = f(x_j)$ y $S_j(x_{j+1}) = f(x_{j+1})$ para cada $j = 0, \dots, n-1$.
- $S'_{j+1}(x_{j+1}) = S'_{j}(x_{j+1})$ para cada $j = 0, \dots, n-2$.
- $S''_{j+1}(x_{j+1}) = S''_{j}(x_{j+1})$ para cada $j = 0, \dots, n-2$.
- Si $S''(x_0) = S''(x_n) = 0$ se dice que es un **Spline de frontera** natural. Si $S'(x_0) = f'(x_0)$ y $S'(x_n) = f'(x_n)$ se dice que es un **Spline con frontera sujeta**.

Interpolación, Spline Cúbicos III

Figura: Aquí se muestran algunas condiciones de los spline. La función que se ve arriba en azul es $f(x) = \frac{1}{1+25x^2}$. En verde se observan los splines cúbicos.

Interpolación, Spline Cúbicos IV

Fórmulas de recurrencia para los Splines Cúbicos

Definanse los Splines Cúbicos de la función f definida en $[x_0, x_n]$:

$$S(x) = S_j(x) \equiv a_j + b_j(x - x_j) + c_j(x - x_j)^2 + d_j(x - x_j)^3$$

para $x \in [x_j, x_{j+1}]$ donde $j = 0, \dots, n-1$.

Por comodidad definanse los siguientes elementos:

$$a_n \equiv f(x_n), b_n \equiv S'(x_n), c_n \equiv S''(x_n)/2, h_j \equiv x_{j+1} - x_j, j = 0, \dots, n-1.$$

Las siguientes ecuaciones de recurrencia deben ser verificadas para que los S_j cumplan con las condiciones de un Spline Cúbico.

- **1** $a_j \equiv f(x_j) \text{ para } j = 0, \dots, n-1.$
- $a_j + b_j h_j + c_j h_j^2 + d_j h_j^3 = a_{j+1} \text{ para } j = 0, \dots, n-1.$
- 3 $b_j + 2c_jh_j + 3d_jh_j^2 = b_{j+1} \text{ para } j = 0, \dots, n-1.$
- $c_j + 3d_j h_j = c_{j+1} \text{ para } j = 0, \dots, n-1.$
- $\frac{3}{h_j}(a_{j+1}-a_j) \frac{3}{h_{j-1}}(a_j-a_{j-1}) = h_{j-1}c_{j-1} + 2(h_{j-1}+h_j)c_j + h_jc_{j+1}$ para $j=1,\cdots,n-1$.

Interpolación, Spline Cúbicos V

Las ecuaciones en el numeral 5 permiten resolver para los $\{c_j\}$; luego en el numeral 4 se pueden resolver los $\{d_j\}$ y con el numeral 2 se pueden encontrar los $\{b_j\}$. Los $\{a_j\}$ son conocidos desde el principio y con ello se pueden encontrar los Splines Cúbicos.

Si se recuerda, c_j está definido para $j=0, \dots n$. Entonces es necesario encontrar n+1 valores. La ecuación en el numeral 5 solo provee de n-1 ecuaciones; por lo tanto faltan dos ecuaciones más que se podrán obtener de considerar las condiciones en la frontera (naturales o fijas).

Mínimos cuadrados I

Considere el siguiente conjunto de datos $\{(x_i, y_i)\}_{i=1}^N$ asociados:

Abajo se aprecian los pares ordenados correspondientes a cada par asociado:

Figura: Recta de aproximación a los pares ordenados.

Mínimos cuadrados II

El objetivo consiste en determinar la recta $Y = a_1X + a_0$ que mejor modele al conjunto de datos asociados.

Existen algunos enfoques para encontrar esta recta:

Problema Minimax

$$\min_{a_0, a_1} \max_{1 \le i \le 10} |y_i - (a_1 x_i - a_0)|$$

Problema de desviación absoluta

$$\min_{a_0, a_1} \sum_{i=1}^{10} |y_i - (a_1 x_i - a_0)|$$

Problema de mínimos cuadrados

$$\min_{a_0, a_1} \sum_{i=1}^{10} |y_i - (a_1 x_i - a_0)|^2 = \min_{a_0, a_1} \sum_{i=1}^{10} (y_i - (a_1 x_i - a_0))^2$$

Mínimos cuadrados III

A continuación se mostrará una forma muy conocida para la deducción del método de mínimos cuadrados; para ello defina los siguientes vectores:

$$X = [x_1, \dots, x_n]^T$$

$$Y = [y_1, \dots, y_n]^T$$

$$U = [1, \dots, 1]^T$$

Entonces podemos pensar en el problema de ajuste de la siguiente manera: Deseamos encontrar a_0 y a_1 tales que

$$a_1X + a_0U = Y$$

De forma matricial esto sería:

$$(X|U)\left(\begin{array}{c}a_1\\a_0\end{array}\right)=Y$$

Si ahora se multiplica por la transpuesta de la primer matriz, se obtine:

$$\left(\begin{array}{c} X^T \\ U^T \end{array}\right)(X|U) \left(\begin{array}{c} a_1 \\ a_0 \end{array}\right) = \left(\begin{array}{c} X^T \\ U^T \end{array}\right) Y$$

Mínimos cuadrados IV

Esto es equivalente a lo siguiente:

$$\left(\begin{array}{cc} X^TX & X^TU \\ U^TX & U^TU \end{array}\right) \left(\begin{array}{c} a_1 \\ a_0 \end{array}\right) = \left(\begin{array}{c} X^TY \\ U^TY \end{array}\right)$$

Como se puede apreciar, resolviendo este sistema podemos encontrar las soluciones para los coeficientes de la regresión lineal.

Ahora considere le problema siguiente: Se desan encontrar los valores $[a_m,a_{m-1},\cdots,a_0]$ de manera tal que:

$$a_m X^m + \dots + a_1 X + a_0 U = Y,$$

donde $X^k = [x_1^k, \cdots, x_n^k]^T$. Nuevamente esto se puede escribir como el siguiente sistema:

$$(X^m|X^{m-1}|\cdots X|U)\left(\begin{array}{c}a_m\\\vdots\\a_0\end{array}\right)=Y$$

Mínimos cuadrados V

Multiplicando por la transpuesta:

$$\begin{pmatrix} (X^m)^T \\ \vdots \\ (X)^T \\ U^T \end{pmatrix} (X^m | X^{m-1} | \cdots X | U) \begin{pmatrix} a_m \\ \vdots \\ a_0 \end{pmatrix} = \begin{pmatrix} (X^m)^T \\ \vdots \\ (X)^T \\ U^T \end{pmatrix} Y$$

Lo que termina siendo equivalente a resolver el sistema:

$$\begin{pmatrix} (X^{m})^{T}X^{m} & (X^{m})^{T}X^{m-1} & \dots & (X^{m})^{T}U \\ \vdots & & \vdots & & \vdots \\ (X)^{T}X^{m} & (X)^{T}X^{m-1} & \dots & (X)^{T}U \\ U^{T}X^{m} & U^{T}X^{m-1} & \dots & U^{T}U \end{pmatrix} \begin{pmatrix} a_{m} \\ \vdots \\ a_{0} \end{pmatrix} = \begin{pmatrix} (X^{m})^{T}Y \\ \vdots \\ (X)^{T}Y \\ U^{T}Y \end{pmatrix}$$

Derivación Numérica

Enlace al teorema de Taylor. Aquí se mostrará una manera estándar de deducir la fórmula numérica para la aproximación de la segunda derivada por medio de la fórmula de Taylor:

$$f(x+h) = -f(x) + f'(x)h + \frac{f''(x)}{2}h^2 + \frac{f^{(3)}(x)}{6}h^3 + \frac{f^{(4)}(\xi)}{24}h^4.$$

Derivación Numérica

Enlace al teorema de Taylor. Aquí se mostrará una manera estándar de deducir la fórmula numérica para la aproximación de la segunda derivada por medio de la fórmula de Taylor:

$$\begin{split} f(x+h) &= \quad f(x) + f'(x)h + \frac{f''(x)}{2}h^2 + \frac{f^{(3)}(x)}{6}h^3 + \frac{f^{(4)}(\xi)}{24}h^4 \,. \\ f(x-h) &= \quad f(x) + f'(x)(-h) + \frac{f''(x)}{2}(-h)^2 + \frac{f^{(3)}(x)}{6}(-h)^3 + \frac{f^{(4)}(\eta)}{24}(-h)^4 \end{split}$$

Derivación Numérica

Enlace al teorema de Taylor. Aquí se mostrará una manera estándar de deducir la fórmula numérica para la aproximación de la segunda derivada por medio de la fórmula de Taylor:

$$f(x+h) = f(x) + f'(x)h + \frac{f''(x)}{2}h^2 + \frac{f^{(3)}(x)}{6}h^3 + \frac{f^{(4)}(\xi)}{24}h^4.$$

$$f(x-h) = f(x) + f'(x)(-h) + \frac{f''(x)}{2}(-h)^2 + \frac{f^{(3)}(x)}{6}(-h)^3 + \frac{f^{(4)}(\eta)}{24}(-h)^4$$

$$= f(x) - f'(x)h + \frac{f''(x)}{2}h^2 - \frac{f^{(3)}(x)}{6}h^3 + \frac{f^{(4)}(\eta)}{24}h^4$$

Derivación Numérica

Enlace al teorema de Taylor. Aquí se mostrará una manera estándar de deducir la fórmula numérica para la aproximación de la segunda derivada por medio de la fórmula de Taylor:

$$f(x+h) = f(x) + f'(x)h + \frac{f''(x)}{2}h^2 + \frac{f^{(3)}(x)}{6}h^3 + \frac{f^{(4)}(\xi)}{24}h^4.$$

$$f(x-h) = f(x) + f'(x)(-h) + \frac{f''(x)}{2}(-h)^2 + \frac{f^{(3)}(x)}{6}(-h)^3 + \frac{f^{(4)}(\eta)}{24}(-h)^4$$

$$= f(x) - f'(x)h + \frac{f''(x)}{2}h^2 - \frac{f^{(3)}(x)}{6}h^3 + \frac{f^{(4)}(\eta)}{24}h^4$$

$$f(x+h) + f(x-h) = 2f(x) + f''(x)h^2 + \frac{f^{(4)}(\eta)}{24}h^4 + \frac{f^{(4)}(\xi)}{24}h^4$$

Derivación Numérica

Enlace al teorema de Taylor. Aquí se mostrará una manera estándar de deducir la fórmula numérica para la aproximación de la segunda derivada por medio de la fórmula de Taylor:

$$f(x+h) = f(x) + f'(x)h + \frac{f''(x)}{2}h^2 + \frac{f^{(3)}(x)}{6}h^3 + \frac{f^{(4)}(\xi)}{24}h^4.$$

$$f(x-h) = f(x) + f'(x)(-h) + \frac{f''(x)}{2}(-h)^2 + \frac{f^{(3)}(x)}{6}(-h)^3 + \frac{f^{(4)}(\eta)}{24}(-h)^4$$

$$= f(x) - f'(x)h + \frac{f''(x)}{2}h^2 - \frac{f^{(3)}(x)}{6}h^3 + \frac{f^{(4)}(\eta)}{24}h^4$$

$$f(x+h) + f(x-h) = 2f(x) + f''(x)h^2 + \frac{f^{(4)}(\eta)}{24}h^4 + \frac{f^{(4)}(\xi)}{24}h^4$$

$$= 2f(x) + f''(x)h^2 + \frac{f^{(4)}(\eta) + f^{(4)}(\xi)}{2}\frac{1}{12}h^4$$

Derivación Numérica

Enlace al teorema de Taylor. Aquí se mostrará una manera estándar de deducir la fórmula numérica para la aproximación de la segunda derivada por medio de la fórmula de Taylor:

$$f(x+h) = f(x) + f'(x)h + \frac{f''(x)}{2}h^2 + \frac{f^{(3)}(x)}{6}h^3 + \frac{f^{(4)}(\xi)}{24}h^4.$$

$$f(x-h) = f(x) + f'(x)(-h) + \frac{f''(x)}{2}(-h)^2 + \frac{f^{(3)}(x)}{6}(-h)^3 + \frac{f^{(4)}(\eta)}{24}(-h)^4$$

$$= f(x) - f'(x)h + \frac{f''(x)}{2}h^2 - \frac{f^{(3)}(x)}{6}h^3 + \frac{f^{(4)}(\eta)}{24}h^4$$

$$f(x+h) + f(x-h) = 2f(x) + f''(x)h^2 + \frac{f^{(4)}(\eta)}{24}h^4 + \frac{f^{(4)}(\xi)}{24}h^4$$

$$= 2f(x) + f''(x)h^2 + \frac{f^{(4)}(\eta) + f^{(4)}(\xi)}{12}h^4$$

$$= 2f(x) + f''(x)h^2 + f^{(4)}(\theta)\frac{1}{12}h^4$$

Despejando finalmente para f''(x) se obtiene una aproximación a la segunda deriva:

Aproximación de la segunda derivada

$$f''(x) \approx \frac{f(x+h) - 2f(x) + f(x-h)}{h^2}$$

Integración Numérica I

Suponga que se quiere encontrar el valor de la siguiente integral usando los métodos vistos en cálculo (integración por partes, cambio de variables,...etc):

$$\int_0^a \sqrt{1 + \cos^2(x)} dx$$

Si se intentara hacer, nos daríamos cuenta de que es un problema bastante complicado; de hecho se puede demostrar formalmente que el problema es irresoluble planteado en estos términos.

Técnica de cuadratura

La técnica de cuadratura consiste en encontrar unos valores (denominados pesos) $\{a_0, \cdots, a_n\}$ correspondientes a los puntos $\{x_0, \cdots, x_n\}$ en el intervalo [a, b] de manera que:

$$\int_{a}^{b} f(x)dx \approx \sum_{k=0}^{n} a_{k} f(x_{k})$$

Integración Numérica II

$$\int_{a}^{b} f(x)dx = \int_{a}^{b} \sum_{k=0}^{n} f(x_{k}) L_{k}(x) dx + \int_{a}^{b} \prod_{k=0}^{n} (x - x_{k}) \frac{f^{(n+1)}(\xi(x))}{(n+1)!}
= \sum_{k=0}^{n} f(x_{k}) \int_{a}^{b} L_{k}(x) dx + \int_{a}^{b} \prod_{k=0}^{n} (x - x_{k}) \frac{f^{(n+1)}(\xi(x))}{(n+1)!}$$

Integración Numérica III

Comparando con la ténica de cuadratura, se observa que se pueden escoger los a_k de manera tal que:

$$a_k = \int_a^b L_k(x) dx$$

El error como se puede ver es igual a:

$$E(f) = \int_{a}^{b} \prod_{k=0}^{n} (x - x_k) \frac{f^{(n+1)}(\xi(x))}{(n+1)!}$$

Teorema (Valor medio para integrales)

Suponga que $f \in C[a,b]$, g es Riemann integrable en [a,b] y que g no cambia de signo en [a,b]. Entonces existe un número $c \in (a,b)$ tal que:

$$\int_a^b f(x)g(x)dx = f(c)\int_a^b g(x)dx.$$

Ejercicio de estimación del error.

Integración Numérica IV

Regla del trapecio

$$\int_{a}^{b} f(x)dx \approx \frac{b-a}{2} [f(a) + f(b)]$$

Figura: Como se puede apreciar en la figura, el nombre de la regla proviene de la fórmula del área de un trapecio de altura b - a y bases f(a), f(b).

Integración Numérica V

Se deducirá la regla de Simpson, donde x_0, x_1 y x_2 son puntos equidistantes en [a,b] con $x_0=a$ y $x_2=b$.

$$\int_{x_0}^{x_2} f(x)dx = \left[f(x_1)x + \frac{f'(x_1)}{2}(x - x_1)^2 + \frac{f''(x_1)}{6}(x - x_1)^3 + \frac{f^{(3)}(x_1)}{24}(x - x_1)^4 \right]_{x_0}^{x_2} + \frac{1}{24} \int_{x_0}^{x_2} f^{(4)}(\xi(x))(x - x_1)^4 dx$$

$$= \left[f(x_1)x + \frac{f'(x_1)}{2}(x - x_1)^2 + \frac{f''(x_1)}{6}(x - x_1)^3 + \frac{f^{(3)}(x_1)}{24}(x - x_1)^4 \right]_{x_0}^{x_2} + f^{(4)}(\xi) \frac{1}{24} \int_{x_0}^{x_2} (x - x_1)^4 dx$$

$$= 2hf(x_1) + \frac{h^3}{3} f''(x_1) + \frac{f^{(4)}(\xi)}{60} h^5$$

$$= 2hf(x_1) + \frac{h^3}{3} (\frac{1}{h^2} [f(x_0) - 2f(x_1) + f(x_2)] - \frac{h^2}{12} f^{(4)}(\theta)) + \frac{f^{(4)}(\xi)}{60} h^5 \approx \frac{h}{3} [f(x_0) + 4f(x_1) + f(x_2)]$$

Regla de Simpson

$$\int_{x_0}^{x_2} f(x)dx \approx \frac{h}{3} [f(x_0) + 4f(x_1) + f(x_2)]$$

Integración Numérica VI

Grado de Precisión

Se dice que una fórmula de cuadratura tiene **grado de precisión** n si n es el entero positivo más grande tal que esta fórmula es exacta para x^k para $k=0,1,\cdots,n$.

Integración Numérica VII

Error de cuadratura

Sea $\sum_{k=0}^{n} a_k f(x_k)$ una fórmula de cuadratura para $\int_a^b f(x) dx$. Se define el error de la fórmula de cuadratura por

$$E(f(x)) = \left| \sum_{k=0}^{n} a_k f(x_k) - \int_{a}^{b} f(x) dx \right|$$

Caracterización de exactitud

Una fórmula de cuadratura tiene precisión n si y solo si E(f(x)) = 0 para todo polinomio f(x) de grado n y $E(x^{n+1}) \neq 0$.

Teorema(Fórmula cerrada de Newton-Cotes)

Suponga que se divide el intervalor [a,b] en los nodos x_k para $k=0,\cdots,n$. Donde $a=x_0,$ $b=x_n$ y $x_i=x_{i-1}+h$ para $h=\frac{b-a}{n}$. Entonces existe un $\xi\in(a,b)$ de manera tal que:

$$\int_{a}^{b} f(x)dx = \sum_{k=0}^{n} a_{k} f(x_{k})dx + \frac{h^{n+c+1} f^{(n+c)}(\xi)}{(n+c)!} \int_{0}^{n} t^{c} (t-1) \cdots (t-n)dt$$

donde $f \in C^{n+c}[a,b], c = 2 - n \% 2 \text{ y } a_k = \int_a^b L_k(x) dx.$

Teorema(Fórmula cerrada de Newton-Cotes)

Suponga que se divide el intervalor [a, b] en los nodos x_k para $k = 0, \dots, n$.

Donde $a = x_0$, $b = x_n$ y $x_i = x_{i-1} + h$ para $h = \frac{b-a}{n}$. Entonces existe un $\xi \in (a,b)$ de manera tal que:

$$\int_{a}^{b} f(x)dx = \sum_{k=0}^{n} a_{k} f(x_{k})dx + \frac{h^{n+c+1} f^{(n+c)}(\xi)}{(n+c)!} \int_{0}^{n} t^{c} (t-1) \cdots (t-n)dt$$

donde
$$f \in C^{n+c}[a,b], c = 2 - n \% 2 \text{ y } a_k = \int_a^b L_k(x) dx.$$

Teorema(Fórmula cerrada de Newton-Cotes)

Suponga que se divide el intervalor [a, b] en los nodos x_k para $k = 0, \dots, n$.

Donde $a = x_0$, $b = x_n$ y $x_i = x_{i-1} + h$ para $h = \frac{b-a}{n}$. Entonces existe un $\xi \in (a,b)$ de manera tal que:

$$\int_{a}^{b} f(x)dx = \sum_{k=0}^{n} a_{k} f(x_{k})dx + \frac{h^{n+c+1} f^{(n+c)}(\xi)}{(n+c)!} \int_{0}^{n} t^{c} (t-1) \cdots (t-n)dt$$

donde
$$f \in C^{n+c}[a, b], c = 2 - n \% 2 \text{ y } a_k = \int_a^b L_k(x) dx.$$

Combinando los dos últimos resultados se puede argumentar que la regla de Simpson tiene grado de precisión 3 de una manera más sencilla.

Teorema(Fórmula cerrada de Newton-Cotes)

Suponga que se divide el intervalor [a, b] en los nodos x_k para $k = 0, \dots, n$.

Donde $a = x_0$, $b = x_n$ y $x_i = x_{i-1} + h$ para $h = \frac{b-a}{n}$. Entonces existe un $\xi \in (a,b)$ de manera tal que:

$$\int_{a}^{b} f(x)dx = \sum_{k=0}^{n} a_{k} f(x_{k})dx + \frac{h^{n+c+1} f^{(n+c)}(\xi)}{(n+c)!} \int_{0}^{n} t^{c} (t-1) \cdots (t-n)dt$$

donde
$$f \in C^{n+c}[a, b], c = 2 - n \% 2 \text{ y } a_k = \int_a^b L_k(x) dx.$$

Combinando los dos últimos resultados se puede argumentar que la regla de Simpson tiene grado de precisión 3 de una manera más sencilla.

La regla de Simpson se deduce del teorema con n=2; en este caso $c=2-2\,\%2=2$. De esta forma se tendría que:

Teorema(Fórmula cerrada de Newton-Cotes)

Suponga que se divide el intervalor [a, b] en los nodos x_k para $k = 0, \dots, n$.

Donde $a = x_0$, $b = x_n$ y $x_i = x_{i-1} + h$ para $h = \frac{b-a}{n}$. Entonces existe un $\xi \in (a,b)$ de manera tal que:

$$\int_{a}^{b} f(x)dx = \sum_{k=0}^{n} a_{k} f(x_{k})dx + \frac{h^{n+c+1} f^{(n+c)}(\xi)}{(n+c)!} \int_{0}^{n} t^{c}(t-1) \cdots (t-n)dt$$

donde
$$f \in C^{n+c}[a, b], c = 2 - n \% 2 \text{ y } a_k = \int_a^b L_k(x) dx.$$

Combinando los dos últimos resultados se puede argumentar que la regla de Simpson tiene grado de precisión 3 de una manera más sencilla.

La regla de Simpson se deduce del teorema con n=2; en este caso $c=2-2\,\%2=2$. De esta forma se tendría que:

$$\int_{a}^{b} f(x)dx = \sum_{k=0}^{2} a_{k} f(x_{k}) dx + \frac{h^{5} f^{(4)}(\xi)}{4!} \int_{0}^{2} t^{2} (t-1)(t-2) dt$$

Teorema(Fórmula cerrada de Newton-Cotes)

Suponga que se divide el intervalor [a, b] en los nodos x_k para $k = 0, \dots, n$.

Donde $a = x_0$, $b = x_n$ y $x_i = x_{i-1} + h$ para $h = \frac{b-a}{n}$. Entonces existe un $\xi \in (a,b)$ de manera tal que:

$$\int_{a}^{b} f(x)dx = \sum_{k=0}^{n} a_{k} f(x_{k})dx + \frac{h^{n+c+1} f^{(n+c)}(\xi)}{(n+c)!} \int_{0}^{n} t^{c} (t-1) \cdots (t-n)dt$$

donde
$$f \in C^{n+c}[a, b], c = 2 - n \% 2 \text{ y } a_k = \int_a^b L_k(x) dx.$$

Combinando los dos últimos resultados se puede argumentar que la regla de Simpson tiene grado de precisión 3 de una manera más sencilla.

La regla de Simpson se deduce del teorema con n=2; en este caso $c=2-2\,\%2=2$. De esta forma se tendría que:

$$\int_{a}^{b} f(x)dx = \sum_{k=0}^{2} a_{k}f(x_{k})dx + \frac{h^{5}f^{(4)}(\xi)}{4!} \int_{0}^{2} t^{2}(t-1)(t-2)dt$$

Se deduce que $E(f(x)) = |\frac{h^5 f^{(4)}(\xi)}{4!} \int_0^2 t^2 (t-1)(t-2)dt|$, por lo tanto E(f(x)) = 0 para cualquier polinomio f(x) de grado 3 ya que $f^{(4)}(\xi) = 0$ en este caso, y además $f^{(4)}(\xi) = 4!$ para $f(x) = x^4$ y por lo tanto $E(x^4) \neq 0$. Finalmente por la caracterización de la precisión se tendría que el grado de exactitud de la regla de Simpson es 3.

Se deduce que $E(f(x)) = |\frac{h^5 f^{(4)}(\xi)}{4!} \int_0^2 t^2 (t-1)(t-2)dt|$, por lo tanto E(f(x)) = 0 para cualquier polinomio f(x) de grado 3 ya que $f^{(4)}(\xi) = 0$ en este caso, y además $f^{(4)}(\xi) = 4!$ para $f(x) = x^4$ y por lo tanto $E(x^4) \neq 0$. Finalmente por la caracterización de la precisión se tendría que el grado de

Teorema(Fórmula abierta de Newton-Cotes)

exactitud de la regla de Simpson es 3.

Suponga que se divide el intervalor [a, b] en los nodos x_k para $k = 0, \dots, n$.

Donde $a+h=x_0,\,b-h=x_n$ y $x_i=x_{i-1}+h$ para $h=\frac{b-a}{n+2}$. Entonces existe un $\xi\in(a,b)$ de manera tal que:

$$\int_{a}^{b} f(x)dx = \sum_{k=0}^{n} a_{k} f(x_{k})dx + \frac{h^{n+c+1} f^{(n+c)}(\xi)}{(n+c)!} \int_{-1}^{n+1} t^{c} (t-1) \cdots (t-n)dt$$

donde $f \in C^{n+c}[a,b], c = 2 - n \mod 2 \text{ y } a_k = \int_a^b L_k(x) dx.$

Reglas compuestas

Teorema 4.5 Sean $f \in C^2[a, b]$, h = (b - a)/n y $x_j = a + jh$ para cada j = 0, 1, ..., n. Existe una $\mu \in (a, b)$ tal que la **regla compuesta del trapecio** para n subintervalos puede escribirse con su término de error como

$$\int_{a}^{b} f(x) dx = \frac{h}{2} \left[f(a) + 2 \sum_{j=1}^{n-1} f(x_{j}) + f(b) \right] - \frac{b-a}{12} h^{2} f''(\mu).$$

Reglas Compuestas

Teorema 4.4 Sean $f \in C^4[a, b]$, n par, h = (b - a)/n y $x_j = a + jh$ para cada $j = 0, 1, \ldots, n$. Existe $\mu \in (a, b)$ tal que la **regla compuesta de Simpson** para n subintervalos puede escribirse con su término de error como

$$\int_{a}^{b} f(x) \, dx = \frac{h}{3} \left[f(a) + 2 \sum_{j=1}^{(n/2)-1} f(x_{2j}) + 4 \sum_{j=1}^{n/2} f(x_{2j-1}) + f(b) \right] - \frac{b-a}{180} h^4 f^{(4)}(\mu).$$

Polinomios Ortogonales

Definición 1(Polinomios de Legendre)

Se define el conjunto de polinomios de Legendre $\{P_k(x)\}, k \in \{0, 1, 2, ...\}$ a través de las siguientes propiedades:

- Para cada k, $P_k(x)$ es un polinomio de grado k.

Polinomios Ortogonales

Definición 1(Polinomios de Legendre)

Se define el conjunto de polinomios de Legendre $\{P_k(x)\}, k \in \{0, 1, 2, ...\}$ a través de las siguientes propiedades:

- Para cada k, $P_k(x)$ es un polinomio de grado k.

Si el coeficiente principal del polinomio de Legendre es 1, entonces este es único; de lo contratrio podrían variar por algún factor real.

Definición 2(Polinomios de Legendre)

Los polinomios de Legendre se definen explícitamente como:

$$P_n(x) = \frac{1}{2^n} \sum_{k=0}^n \binom{n}{k}^2 (x+1)^{n-k} (x-1)^k$$

Cuadratura Gaussiana

Fórmula de cuadratura Gaussiana

Sean $x_{i=1}^n$ las raíces del polinomio de Legendre $P_n(x)$. Defina los c_i de la siguiente forma:

$$c_{i} = \int_{-1}^{1} \prod_{j=1, j \neq i}^{n} \frac{x - x_{j}}{x_{i} - x_{j}} dx$$

La fórmula de cuadratura Gaussiana es:

$$\int_{-1}^{1} f(x) \approx \sum_{i=1}^{n} c_i f(x_i).$$

Si f(x) es cualquier polinomio de grado menor que 2n, entonces la aproximación es exacta y por lo tanto el grado de precisión es de 2n-1.

Ejercicio del examen del IIPA2023

Sea $f(x) = \sqrt{x - x^2}$ y $P_2(x)$ el polinomio interpolante de Lagrange en $x_0 = 0$, x_1 y $x_2 = 1$. Calcule el valor de x_1 más grande en el intervalo (0,1) para el cual $f(0,5) - P_2(0,5) = -0.25$

Tip: evalúe en los puntos desde el inicio, así se sabe que términos se cancelaran.

$$f(x_0) = f(0) = 0$$
 $f(x_1) = \sqrt{x_1 - x_1^2}$ $f(x_2) = f(x_1) = 0$

Parte I: Determine el polinomio de Lagrange

$$\begin{split} &P_2(x) \\ &= L_0(x)f(x_0) + L_1(x)f(x_1) + L_2(x)f(x_2) \\ &= \frac{(x-x_1)(x-x_2)}{(x_0-x_1)(x_0-x_2)}f(x_0) + \frac{(x-x_1)(x-x_2)}{(x_1-x_0)(x_1-x_2)}f(x_1) + \frac{(x-x_1)(x-x_2)}{(x_2-x_0)(x_2-x_1)}f(x_2) \\ &= \frac{(x-0)(x-1)}{(x_1-0)(x_1-1)}\sqrt{x_1-x_1^2} \\ &= \frac{x(x-1)}{x_1(x_1-1)}\sqrt{x_1-x_1^2} \end{split}$$

Parte 2: Evalúe en 0.5

$$P_2(0,5) = \frac{0.5(0.5-1)}{x_1(x_1-0.5)} \sqrt{x_1 - x_1^2} = -\frac{0.25\sqrt{x_1 - x_1^2}}{x_1(x_1-1)}$$

Parte 3: Garantizar que $f(0,5) - P_2(0,5) = -0.25$

$$f(0,5) - P_2(0,5) = -0.25$$

$$0.5 + \frac{0.25\sqrt{x_1 - x_1^2}}{x_1(x_1 - 1)} = -0.25$$

$$\frac{0.5 + 0.25}{0.25} = \frac{\sqrt{x_1 - x_1^2}}{x_1(x_1 - 1)}$$

$$-3 = \frac{\sqrt{x_1(1 - x_1)}}{-x_1(1 - x_1)} = -\frac{1}{\sqrt{x_1(1 - x_1)}}$$

$$9x_1(x_1 - 1) = 1$$

$$-9x_1^2 + 9x_1 - 1 = 0 \implies x = \frac{1}{2} \pm \frac{\sqrt{5}}{6}$$

Por lo tanto, $x_1 = \frac{1}{2} + \frac{\sqrt{5}}{6} \approx 0.8726779$ Teoremas Preliminares.

Ejercicio Spline Cúbico

Encuentre los splines cúbicos para la función $f(x) = \frac{1}{1+25x^2}$ en los puntos $\{x_0, \dots, x_4\} = \{-1, -\frac{1}{2}, 0, \frac{1}{2}, 1\}$. Suponga condiciones naturales en -1 y fijas en 1.

Note que $h_j = \frac{1}{2}$ para todo j. Del númeral 5 en las fórmulas de recurrencia se obtiene que:

$$\frac{3}{h_1}(a_2 - a_1) - \frac{3}{h_0}(a_1 - a_0) = h_0c_0 + 2(h_0 + h_1)c_1 + h_1c_2$$

$$\frac{3}{h_2}(a_3 - a_2) - \frac{3}{h_1}(a_2 - a_1) = h_1c_1 + 2(h_1 + h_2)c_2 + h_2c_3$$

$$\frac{3}{h_3}(a_4 - a_3) - \frac{3}{h_2}(a_3 - a_2) = h_2c_2 + 2(h_2 + h_3)c_3 + h_3c_4$$

■ Sustituyendo los valores conocidos:

$$6(f(0) - f(-1/2)) - 6(f(-1/2) - f(-1)) = c_0/2 + 2c_1 + c_2/2$$

$$6(f(1/2) - f(0)) - 6(f(0) - f(-1/2)) = c_1/2 + 2c_2 + c_3/2$$

$$6(f(1) - f(1/2)) - 6(f(1/2) - f(0)) = c_2/2 + 2c_3 + c_4/2$$

■ Sustituyendo los valores conocidos:

$$6(f(0) - f(-1/2)) - 6(f(-1/2) - f(-1)) = c_0/2 + 2c_1 + c_2/2$$

$$6(f(1/2) - f(0)) - 6(f(0) - f(-1/2)) = c_1/2 + 2c_2 + c_3/2$$

$$6(f(1) - f(1/2)) - 6(f(1/2) - f(0)) = c_2/2 + 2c_3 + c_4/2$$

Simplificando:

$$\frac{3450}{377} = c_0 + 4c_1 + c_2$$
$$-\frac{600}{29} = c_1 + 4c_2 + c_3$$
$$\frac{3450}{377} = c_2 + 4c_4 + c_4$$

Sustituyendo los valores conocidos:

$$6(f(0) - f(-1/2)) - 6(f(-1/2) - f(-1)) = c_0/2 + 2c_1 + c_2/2$$

$$6(f(1/2) - f(0)) - 6(f(0) - f(-1/2)) = c_1/2 + 2c_2 + c_3/2$$

$$6(f(1) - f(1/2)) - 6(f(1/2) - f(0)) = c_2/2 + 2c_3 + c_4/2$$

Simplificando:

$$\frac{3450}{377} = c_0 + 4c_1 + c_2$$
$$-\frac{600}{29} = c_1 + 4c_2 + c_3$$
$$\frac{3450}{377} = c_2 + 4c_4 + c_4$$

En este punto se necesitan agregar las condiciones de frontera. Si se empieza por las naturales se tendría que

 $S''(-1) = S_0''(-1) = 2c_0 = 0$, lo cuál implica que $c_0 = 0$.

La condición en el extremo derecho exige que $f'(1) = -\frac{25}{338} = b_4$. Si se agrupan las últimas ecuaciones en las fórmulas de recurrencia, se obtendría:

$$a_n = a_{n-1} + b_{n-1}h_{n-1} + c_{n-1}h_{n-1}^2 + d_{n-1}h_{n-1}^3$$

$$b_n = b_{n-1} + 2c_{n-1}h_{n-1} + 3d_{n-1}h_{n-1}^2$$

$$c_n = c_{n-1} + 3d_{n-1}h_{n-1}$$

Si se despeja b_{n-1} y d_{n-1} desde la segunda y tercera ecuación respectivamente y luego se sustituye y se simplifica en la primera ecuación, se obtiene que:

$$2h_{n-1}c_n + h_{n-1}c_{n-1} = \frac{3}{h_{n-1}}(a_{n-1} - a_n)$$
$$2h_3c_4 + h_3c_3 = \frac{3}{h_3}(a_3 - a_4)$$

Sustituyendo los valores conocidos se obtiene que:

$$c_4 + c_3/2 = 6(f(1/2) - f(1))$$

$$2c_4 + c_3 = \frac{450}{377}$$

Juntando las condiciones de frontera obtenemos que:

$$0 = c_0$$

$$\frac{450}{377} = 2c_4 + c_3$$

$$\frac{3450}{377} = c_0 + 4c_1 + c_2$$

$$-\frac{600}{29} = c_1 + 4c_2 + c_3$$

$$\frac{3450}{377} = c_2 + 4c_3 + c_4$$

Juntando las condiciones de frontera obtenemos que:

$$0 = c_0$$

$$\frac{450}{377} = 2c_4 + c_3$$

$$\frac{3450}{377} = c_0 + 4c_1 + c_2$$

$$-\frac{600}{29} = c_1 + 4c_2 + c_3$$

$$\frac{3450}{377} = c_2 + 4c_3 + c_4$$

Resolviendo el sistema anterior se obtiene que:

$$[a_0, a_1, a_2, a_3, a_4] = \left[\frac{1}{26}, \frac{4}{29}, 1, \frac{4}{29}, \frac{1}{26}\right]$$

$$[b_0, b_1, b_2, b_3] = \left[-\frac{17850}{36569}, \frac{4425}{2813}, -\frac{1275}{36569}, -\frac{52425}{36569}\right]$$

$$[c_0, c_1, c_2, c_3, c_4] = \left[0, \frac{150750}{36569}, -\frac{268350}{36569}, \frac{166050}{36569}, -\frac{61200}{36569}\right]$$

$$[d_0, d_1, d_2, d_3] = \left[\frac{100500}{36569}, -\frac{279400}{36569}, \frac{289600}{36569}, -\frac{151500}{36569}\right]$$

Ejercicio de Richard Burden, Sección de trazadores cúbicos

Un trazador cúbico sujeto S de la función f está definido por:

$$S(x) = \begin{cases} S_0(x) = 1 + Bx + 2x^2 - 2x^3 & x \in [0, 1] \\ S_1(x) = 1 + b(x - 1) - 4(x - 1)^2 + 7(x - 1)^3 & x \in [1, 2] \end{cases}$$

Obtenga f'(0) y f'(2).

Ejercicio de Richard Burden, Sección de trazadores cúbicos

Un trazador cúbico sujeto S de la función f está definido por:

$$S(x) = \begin{cases} S_0(x) = 1 + Bx + 2x^2 - 2x^3 & x \in [0, 1] \\ S_1(x) = 1 + b(x - 1) - 4(x - 1)^2 + 7(x - 1)^3 & x \in [1, 2] \end{cases}$$

Obtenga f'(0) y f'(2).

Dado que estos representa trazadores cúbicos entonces se cumplen las siguientes condiciones:

$$S_0(1) = S_1(1)$$

$$S_0'(1) = S_1'(1)$$

Ejercicio de Richard Burden, Sección de trazadores cúbicos

Un trazador cúbico sujeto S de la función f está definido por:

$$S(x) = \begin{cases} S_0(x) = 1 + Bx + 2x^2 - 2x^3 & x \in [0, 1] \\ S_1(x) = 1 + b(x - 1) - 4(x - 1)^2 + 7(x - 1)^3 & x \in [1, 2] \end{cases}$$

Obtenga f'(0) y f'(2).

Dado que estos representa trazadores cúbicos entonces se cumplen las siguientes condiciones:

$$S_0(1) = S_1(1)$$

$$S_0'(1) = S_1'(1)$$

Ejercicio de Richard Burden, Sección de trazadores cúbicos

Un trazador cúbico sujeto S de la función f está definido por:

$$S(x) = \begin{cases} S_0(x) = 1 + Bx + 2x^2 - 2x^3 & x \in [0, 1] \\ S_1(x) = 1 + b(x - 1) - 4(x - 1)^2 + 7(x - 1)^3 & x \in [1, 2] \end{cases}$$

Obtenga f'(0) y f'(2).

Dado que estos representa trazadores cúbicos entonces se cumplen las siguientes condiciones:

$$S_0(1) = S_1(1)$$

 $S'_0(1) = S'_1(1)$

La primera ecuación deja como resultado:

$$1 + B = S_0(1) = S_1(1) = 1 \Longrightarrow B = 0.$$

La segunda ecuación dá como resultado:

$$-2 = S'_0(1) = S'_1(1) = b \Longrightarrow b = -2.$$

Con esto se puede calcular $f'(0) = S'_0(0) = 0$ y $f'(2) = S'_1(2) = 11$.

Ejercicio (Cota de error interpolación de Lagrange)

Considere la siguiente función $f(x) = \sin(\ln(x))$. Encuentre una cota para el error de aproximación del polinomio interpolante de Lagrange en el intervalo [2, 2,6] con tres puntos; $x_0 = 2$, $x_1 = 2$,4 y $x_2 = 2$,6.

Ejercicio (Cota de error interpolación de Lagrange)

Considere la siguiente función $f(x) = \sin(\ln(x))$. Encuentre una cota para el error de aproximación del polinomio interpolante de Lagrange en el intervalo [2, 2,6] con tres puntos; $x_0 = 2$, $x_1 = 2$,4 y $x_2 = 2$,6.

Por el teorema relacionado con el polinomio de Lagrange, se sabe que:

$$|f(x) - P(x)| = \left| \frac{f^{(3)}(\xi(x))}{6} (x - 2)(x - 2, 4)(x - 2, 6) \right|,$$

para $x \in [2, 2, 6]$ y $\xi(x) \in (2, 2, 6)$

Ejercicio (Cota de error interpolación de Lagrange)

Considere la siguiente función $f(x) = \sin(\ln(x))$. Encuentre una cota para el error de aproximación del polinomio interpolante de Lagrange en el intervalo [2, 2,6] con tres puntos; $x_0 = 2$, $x_1 = 2$,4 y $x_2 = 2$,6.

Por el teorema relacionado con el polinomio de Lagrange, se sabe que:

$$|f(x) - P(x)| = \left| \frac{f^{(3)}(\xi(x))}{6} (x - 2)(x - 2, 4)(x - 2, 6) \right|,$$

para $x \in [2, 2, 6]$ y $\xi(x) \in (2, 2, 6)$

Para encontrar las cotas sobre la tercera derivada se necesitan los siguientes cálculos:

$$f^{(3)}(z) = \frac{3\sin(\ln(z)) + \cos(\ln(z))}{z^3}$$
$$f^{(4)}(z) = -\frac{10\sin(\ln(z))}{z^4}$$

Si se analizan los lugares donde la derivada de la tercera derivada se hacen cero, entonces se obtiene la ecuación:

$$\sin(\ln(z)) = 0,$$

esta ecuación tiene como solución $z=e^{n\pi}$ donde $n\in\mathbb{Z}$. Para todo $n\in\mathbb{Z}$, $e^{n\pi}\notin[2,2,6]$ y por lo tanto los únicos valores extremos de la tercera derivada son 2 y 2.6.

Evaluando la tercera derivada se obtiene que:

$$f^{(3)}(2) \approx 0.335765$$

$$f^{(3)}(2,6) \approx 0.1722$$

y por lo tanto se puede garantizar que:

$$|f^{(3)}(x)| \le f^{(3)}(2)$$

para todo $x \in [2, 2, 6]$.

Si se analizan los lugares donde la derivada de la tercera derivada se hacen cero, entonces se obtiene la ecuación:

$$\sin(\ln(z)) = 0,$$

esta ecuación tiene como solución $z=e^{n\pi}$ donde $n\in\mathbb{Z}$. Para todo $n\in\mathbb{Z}$, $e^{n\pi}\notin[2,2,6]$ y por lo tanto los únicos valores extremos de la tercera derivada son 2 y 2.6.

Evaluando la tercera derivada se obtiene que:

$$f^{(3)}(2) \approx 0.335765$$

$$f^{(3)}(2,6) \approx 0.1722$$

y por lo tanto se puede garantizar que:

$$|f^{(3)}(x)| \le f^{(3)}(2)$$

para todo $x \in [2, 2, 6]$.

Defina ahora la otra parte para la cota de error:

$$g(x) \equiv (x-2)(x-2,4)(x-2,6) = \frac{25x^3 - 175x^2 + 406x - 312}{25}$$

Resolviendo para la ecuación de segundo grado:

$$g'(x) = 0.$$

Se obtiene que $x=\frac{35-\sqrt{7}}{15}$ (una de las dos raíces) es el lugar donde alcanza el valor más alto. Entonces:

$$|g(x)| \le g\left(\frac{35 - \sqrt{7}}{15}\right)$$

para toda $x \in [2, 2, 6]$.

Resolviendo para la ecuación de segundo grado:

$$g'(x) = 0.$$

Se obtiene que $x=\frac{35-\sqrt{7}}{15}$ (una de las dos raíces) es el lugar donde alcanza el valor más alto. Entonces:

$$|g(x)| \le g\left(\frac{35 - \sqrt{7}}{15}\right)$$

para toda $x \in [2, 2, 6]$.

■ Finalmente:

$$|f(x) - P(x)| = \left| \frac{f^{(3)}(\xi(x))}{6} (x - 2)(x - 2, 4)(x - 2, 6) \right| \le g\left(\frac{35 - \sqrt{7}}{15}\right) f^{(3)}(2) / 6 \approx 9,4574 \times 10^{-4}$$

La cota de error entonces es aproximadamente 9.5×10^{-4} .

Ejercicio (Ajuste lineal)

Considere el siguiente conjunto de datos:

$\overline{x_i}$	$\overline{y_i}$
1	6.612
2	9.742
3	10.455
4	14.545
5	17.293
6	19.544
7	21.279
8	26.167
9	$\frac{28.341}{28.341}$
10	$\frac{20.011}{29.158}$
	20.100

Por medio del método de mínimos cuadrados encuentre la pendiente (a_1) y el intercepto (a_0) del ajuste lineal.

Después de plantear el problema con los datos anteriores se obtiene la siguiente gráfica:

Figura: En el ajuste se obtubieron los coeficientes $a_1 = 2,631, a_0 = 3,843.$

Ejercicio (Derivación de fórmula numérica)

Derive una fórmula de cinco puntos $O(h^4)$ para aproximar f'(x) que utilice f(x-h), f(x+h), f(x+2h), f(x+3h).

El problema se puede plantear de la siguiente forma; encontrar constantes A,B,C y D tales que:

$$f'(x) = Af(x-h) + Bf(x+h) + Cf(x+2h) + Df(x+3h) + Ef(x).$$
 (1)

Dado que se requiere una fórmula de orden 4, entonces se usará la fórmula de Taylor hasta el orden 5. Dejando de lado los residuos (estos tendrán como factor común a h^5), al hacer la suma y agrupar la parte derecha (1) como un polinomio cuártico en términos de h, se obtienen los siguientes coeficientes:

- Coeficiente independiente: (A + B + C + D + E)f(x).
- Coeficiente de h: (3D + 2C + B A)f'(x).
- Coeficiente de h^2 : (9D + 4C + B + A)/2f''(x).
- Coeficiente de h^3 : $(27D + 8C + B A)/6f^{(3)}(x)$.
- Coeficiente de h^4 : $(81D + 16C + B + A)/24f^{(4)}(x)$.

Para que se cumpla (1) (salvo por los residuos producto del polinomio de Taylor) se impondrá que todos los coeficientes del polinomio cuártico sean cero con excepción de el coeficiente de h y h^0 (ya que se desea que sea igual a f'(x)),

El coeficiente de h, convenientemente se hace igual a $\frac{1}{h}$ para que sea igual a f'(x) en lado izquierdo de(1). El sistema que resulta de los planteamientos que se hicieron antes, queda expresado de la siguiente forma:

$$0 = E + D + C + B + A$$

$$\frac{1}{h} = 3D + 2C + B - A$$

$$0 = 9D + 4C + B + A$$

$$0 = 27D + 8C + B - A$$

$$0 = 81D + 16C + B + A$$

Después de resolver el sistema obtenemos.

$$A = -\frac{1}{4h}, B = \frac{3}{2h}, C = -\frac{1}{2h}, D = \frac{1}{12h}, E = -\frac{5}{6h}.$$

Sustituyendo se obtiene:

$$f'(x) \approx \frac{-3f(x-h) + 18f(x+h) - 6f(x+2h) + f(x+3h) - 10f(x)}{12h}$$

Ejercicio (Regla del trapecio)

Por medio del teorema del valor medio y la cuadratura con polinomios de Lagrange, pruebe la regla del trapecio:

$$\int_{a}^{b} f(x)dx = \frac{h}{2}[f(b) + f(a)] - \frac{h^{3}}{12}f''(\xi)$$

Donde $h = b - a, \xi \in (a, b)$.

$$\int_{a}^{b} f(x)dx = \int_{a}^{b} \frac{x-b}{a-b} f(a) + \frac{x-a}{b-a} f(b)dx + \frac{1}{2} \int_{a}^{b} f''(\xi(x))(x-a)(x-b)dx$$

Ejercicio (Regla del trapecio)

Por medio del teorema del valor medio y la cuadratura con polinomios de Lagrange, pruebe la regla del trapecio:

$$\int_{a}^{b} f(x)dx = \frac{h}{2}[f(b) + f(a)] - \frac{h^{3}}{12}f''(\xi)$$

Donde $h = b - a, \xi \in (a, b)$.

$$\int_{a}^{b} f(x)dx = \int_{a}^{b} \frac{x-b}{a-b} f(a) + \frac{x-a}{b-a} f(b)dx + \frac{1}{2} \int_{a}^{b} f''(\xi(x))(x-a)(x-b)dx = \frac{b-a}{2} [f(a) + f(b)] - f''(\xi) \int_{a}^{b} (x-a)(x-b)dx = \frac{b-a}{2} [f(a) + f(b)] - \frac{(b-a)^{3}}{6} f''(\xi).$$

Regreso a Técnicas de Cuadraturas.

Ejercicio 2

Encuentre la fórmula de cuadratura Gaussiana para n=2.

$$P_2(x) = \frac{1}{2^2} \sum_{k=0}^{2} {2 \choose k}^2 (x+1)^{2-k} (x-1)^k$$

Ejercicio 2

Encuentre la fórmula de cuadratura Gaussiana para n=2.

$$P_{2}(x) = \frac{1}{2^{2}} \sum_{k=0}^{2} {2 \choose k}^{2} (x+1)^{2-k} (x-1)^{k}$$

$$= \frac{1}{4} ({2 \choose 0}^{2} (x+1)^{2} (x-1)^{0} + {2 \choose 1}^{2} (x+1) (x-1) + {2 \choose 2}^{2} (x+1)^{0} (x-1)^{2}$$

Ejercicio 2

Encuentre la fórmula de cuadratura Gaussiana para n=2.

$$P_{2}(x) = \frac{1}{2^{2}} \sum_{k=0}^{2} {2 \choose k}^{2} (x+1)^{2-k} (x-1)^{k}$$

$$= \frac{1}{4} ({2 \choose 0}^{2} (x+1)^{2} (x-1)^{0} + {2 \choose 1}^{2} (x+1) (x-1) + {2 \choose 2}^{2} (x+1)^{0} (x-1)^{2}$$

$$= \frac{1}{4} ((x+1)^{2} + 4(x+1)(x-1) + (x-1)^{2})$$

Ejercicio 2

Encuentre la fórmula de cuadratura Gaussiana para n=2.

$$P_{2}(x) = \frac{1}{2^{2}} \sum_{k=0}^{2} {2 \choose k}^{2} (x+1)^{2-k} (x-1)^{k}$$

$$= \frac{1}{4} {(2 \choose 0)^{2}} (x+1)^{2} (x-1)^{0} + {2 \choose 1}^{2} (x+1) (x-1) + {2 \choose 2}^{2} (x+1)^{0} (x-1)^{2}$$

$$= \frac{1}{4} ((x+1)^{2} + 4(x+1)(x-1) + (x-1)^{2})$$

$$= \frac{1}{4} (x^{2} + 2x + 1 + 4(x^{2} - 1) + x^{2} - 2x + 1)$$

Ejercicio 2

Encuentre la fórmula de cuadratura Gaussiana para n=2.

$$P_{2}(x) = \frac{1}{2^{2}} \sum_{k=0}^{2} {2 \choose k}^{2} (x+1)^{2-k} (x-1)^{k}$$

$$= \frac{1}{4} {(2 \choose 0}^{2} (x+1)^{2} (x-1)^{0} + {2 \choose 1}^{2} (x+1) (x-1) + {2 \choose 2}^{2} (x+1)^{0} (x-1)^{2}$$

$$= \frac{1}{4} ((x+1)^{2} + 4(x+1)(x-1) + (x-1)^{2})$$

$$= \frac{1}{4} (x^{2} + 2x + 1 + 4(x^{2} - 1) + x^{2} - 2x + 1)$$

$$= \frac{1}{4} (6x^{2} - 2)$$

Ejercicio 2

Encuentre la fórmula de cuadratura Gaussiana para n=2.

$$P_{2}(x) = \frac{1}{2^{2}} \sum_{k=0}^{2} {2 \choose k}^{2} (x+1)^{2-k} (x-1)^{k}$$

$$= \frac{1}{4} {({2 \choose 0}^{2} (x+1)^{2} (x-1)^{0} + {2 \choose 1}^{2} (x+1) (x-1) + {2 \choose 2}^{2} (x+1)^{0} (x-1)^{2}}$$

$$= \frac{1}{4} ((x+1)^{2} + 4(x+1)(x-1) + (x-1)^{2})$$

$$= \frac{1}{4} (x^{2} + 2x + 1 + 4(x^{2} - 1) + x^{2} - 2x + 1)$$

$$= \frac{1}{4} (6x^{2} - 2)$$

$$= \frac{3}{2} x^{2} - \frac{1}{2}$$

Ejercicio 2

Encuentre la fórmula de cuadratura Gaussiana para n=2.

Incialmente calculamos el polinomio de Legendre $P_2(x)$

$$P_{2}(x) = \frac{1}{2^{2}} \sum_{k=0}^{2} {2 \choose k}^{2} (x+1)^{2-k} (x-1)^{k}$$

$$= \frac{1}{4} {(\binom{2}{0})^{2}} (x+1)^{2} (x-1)^{0} + {2 \choose 1}^{2} (x+1) (x-1) + {2 \choose 2}^{2} (x+1)^{0} (x-1)^{2}$$

$$= \frac{1}{4} ((x+1)^{2} + 4(x+1)(x-1) + (x-1)^{2})$$

$$= \frac{1}{4} (x^{2} + 2x + 1 + 4(x^{2} - 1) + x^{2} - 2x + 1)$$

$$= \frac{1}{4} (6x^{2} - 2)$$

$$= \frac{3}{2} x^{2} - \frac{1}{2}$$

De aquí se deduce que $x_1 = \frac{1}{\sqrt{3}}$ y $x_2 = -\frac{1}{\sqrt{3}}$.

$$c_1 = \int_{-1}^{1} \prod_{j=1, j \neq 1}^{2} \frac{x - x_j}{x_1 - x_j} dx$$

$$c_{1} = \int_{-1}^{1} \prod_{j=1, j\neq 1}^{2} \frac{x - x_{j}}{x_{1} - x_{j}} dx$$
$$= \int_{-1}^{1} \frac{x - x_{2}}{x_{1} - x_{2}} dx$$

$$c_{1} = \int_{-1}^{1} \prod_{j=1, j \neq 1}^{2} \frac{x - x_{j}}{x_{1} - x_{j}} dx$$

$$= \int_{-1}^{1} \frac{x - x_{2}}{x_{1} - x_{2}} dx$$

$$= \int_{-1}^{1} \frac{x + \frac{1}{\sqrt{3}}}{\frac{1}{\sqrt{3}} + \frac{1}{\sqrt{3}}} dx$$

$$c_{1} = \int_{-1}^{1} \prod_{j=1, j \neq 1}^{2} \frac{x - x_{j}}{x_{1} - x_{j}} dx$$

$$= \int_{-1}^{1} \frac{x - x_{2}}{x_{1} - x_{2}} dx$$

$$= \int_{-1}^{1} \frac{x + \frac{1}{\sqrt{3}}}{\frac{1}{\sqrt{3}} + \frac{1}{\sqrt{3}}} dx$$

$$= \frac{\sqrt{3}}{2} \left[\frac{x^{2}}{2} + \frac{x}{\sqrt{3}} \right]_{-1}^{1}$$

Por otro lado se deben calcular los c_i .

$$c_{1} = \int_{-1}^{1} \prod_{j=1, j \neq 1}^{2} \frac{x - x_{j}}{x_{1} - x_{j}} dx$$

$$= \int_{-1}^{1} \frac{x - x_{2}}{x_{1} - x_{2}} dx$$

$$= \int_{-1}^{1} \frac{x + \frac{1}{\sqrt{3}}}{\frac{1}{\sqrt{3}} + \frac{1}{\sqrt{3}}} dx$$

$$= \frac{\sqrt{3}}{2} \left[\frac{x^{2}}{2} + \frac{x}{\sqrt{3}} \right]_{-1}^{1}$$

$$= 1.$$

De forma similar se puede encontrar que $c_2 = 1$. De esta forma se obtiene la fórmula:

$$f\left(\frac{1}{\sqrt{3}}\right) + f\left(-\frac{1}{\sqrt{3}}\right)$$

Por otro lado se deben calcular los c_i .

$$c_{1} = \int_{-1}^{1} \prod_{j=1, j\neq 1}^{2} \frac{x - x_{j}}{x_{1} - x_{j}} dx$$

$$= \int_{-1}^{1} \frac{x - x_{2}}{x_{1} - x_{2}} dx$$

$$= \int_{-1}^{1} \frac{x + \frac{1}{\sqrt{3}}}{\frac{1}{\sqrt{3}} + \frac{1}{\sqrt{3}}} dx$$

$$= \frac{\sqrt{3}}{2} \left[\frac{x^{2}}{2} + \frac{x}{\sqrt{3}} \right]_{-1}^{1}$$

$$= 1.$$

De forma similar se puede encontrar que $c_2 = 1$. De esta forma se obtiene la fórmula:

$$f\left(\frac{1}{\sqrt{3}}\right) + f\left(-\frac{1}{\sqrt{3}}\right)$$

Según el teorema, esta fórmula de cuadratura tiene precisión 3. En este sentido tiene el mismo grado de precisión que la regla de simpson con menos puntos.

Ejercicio 3

Utilice la fórmula de cuadratura anterior para encontrar:

$$\int_0^{\pi/4} \cos^2(x) dx$$

Primero se necesita hacer el cambio de variable para que la integral quede definida en el intervalo de [-1,1]. Es bien conocido que el cambio de variable necesesario es:

$$x = \frac{1}{2}[(b-a)t + a + b] = \frac{1}{2}\left[\frac{\pi}{4}t + \frac{\pi}{4}\right] = \frac{\pi}{8}t + \frac{\pi}{8}$$

Con la fórmula anterior se obtiene lo siguiente:

Ejercicio 3

Utilice la fórmula de cuadratura anterior para encontrar:

$$\int_0^{\pi/4} \cos^2(x) dx$$

Primero se necesita hacer el cambio de variable para que la integral quede definida en el intervalo de [-1,1]. Es bien conocido que el cambio de variable necesesario es:

$$x = \frac{1}{2}[(b-a)t + a + b] = \frac{1}{2}\left[\frac{\pi}{4}t + \frac{\pi}{4}\right] = \frac{\pi}{8}t + \frac{\pi}{8}$$

Con la fórmula anterior se obtiene lo siguiente:

$$\int_0^{\pi/4} \cos^2(x) dx = \int_{-1}^1 \cos^2(\frac{\pi}{8}t + \frac{\pi}{8}) \frac{\pi}{8} dt$$

Ejercicio 3

Utilice la fórmula de cuadratura anterior para encontrar:

$$\int_0^{\pi/4} \cos^2(x) dx$$

Primero se necesita hacer el cambio de variable para que la integral quede definida en el intervalo de [-1,1]. Es bien conocido que el cambio de variable necesesario es:

$$x = \frac{1}{2}[(b-a)t + a + b] = \frac{1}{2}[\frac{\pi}{4}t + \frac{\pi}{4}] = \frac{\pi}{8}t + \frac{\pi}{8}$$

Con la fórmula anterior se obtiene lo siguiente:

$$\int_0^{\pi/4} \cos^2(x) dx = \int_{-1}^1 \cos^2(\frac{\pi}{8}t + \frac{\pi}{8}) \frac{\pi}{8} dt$$

$$\approx \frac{\pi}{8} (\cos^2(\frac{\pi}{8\sqrt{3}} + \frac{\pi}{8}) + \cos^2(-\frac{\pi}{8\sqrt{3}} + \frac{\pi}{8})) = 0,642317$$

Por otro lado:

$$\int_0^{\pi/4} \cos^2(x) dx = \left[\frac{\sin(2x)}{4} + \frac{x}{2}\right]_0^{\pi/4} \approx 0.6426990816987241$$

Por otro lado:

$$\int_0^{\pi/4} \cos^2(x) dx = \left[\frac{\sin(2x)}{4} + \frac{x}{2}\right]_0^{\pi/4} \approx 0.6426990816987241$$

El error de aproximación se cálcula acontinuación:

$$E(\cos^2(x)) = 3.8184610^{-4}$$

Ejercicio 4

Determine las constantes a,b,c,d y e que producirán una fórmula de cuadratura:

$$\int_{-1}^{1} f(x)dx = af(-1) + bf(0) + cf(1) + df'(-1) + ef'(1)$$

cuya precisión es 4.

$$\int_{-1}^{1} 1 dx = 2 = a + b + c$$

$$\int_{-1}^{1} 1 dx = 2 = a+b+c$$

$$\int_{-1}^{1} x dx = 0 = -a+c+d+e$$

$$\int_{-1}^{1} 1 dx = 2 = a+b+c$$

$$\int_{-1}^{1} x dx = 0 = -a+c+d+e$$

$$\int_{-1}^{1} x^{2} dx = \frac{2}{3} = a+c-2d+2e$$

$$\begin{split} &\int_{-1}^{1} 1 dx = 2 = & a+b+c \\ &\int_{-1}^{1} x dx = 0 = & -a+c+d+e \\ &\int_{-1}^{1} x^2 dx = \frac{2}{3} = & a+c-2d+2e \\ &\int_{-1}^{1} x^3 dx = 0 = & -a+c+3d+3e \end{split}$$

$$\begin{split} &\int_{-1}^{1} 1 dx = 2 = & a+b+c \\ &\int_{-1}^{1} x dx = 0 = & -a+c+d+e \\ &\int_{-1}^{1} x^2 dx = \frac{2}{3} = & a+c-2d+2e \\ &\int_{-1}^{1} x^3 dx = 0 = & -a+c+3d+3e \\ &\int_{-1}^{1} x^4 dx = \frac{2}{5} = & a+c-4d+4e \end{split}$$

$$\begin{split} &\int_{-1}^{1} 1 dx = 2 = & a+b+c \\ &\int_{-1}^{1} x dx = 0 = & -a+c+d+e \\ &\int_{-1}^{1} x^2 dx = \frac{2}{3} = & a+c-2d+2e \\ &\int_{-1}^{1} x^3 dx = 0 = & -a+c+3d+3e \\ &\int_{-1}^{1} x^4 dx = \frac{2}{5} = & a+c-4d+4e \end{split}$$

Resolviendo este sistema se obtiene:

$$a = \frac{7}{15}, b = \frac{16}{15}, c = \frac{7}{15}, d = \frac{1}{15}, e = -\frac{1}{15}$$

Ejercicio 1

Determine los valores de n y h de manera que la integral:

$$\int_0^2 \frac{1}{x+4} dx,$$

$$E(f) = \left| \frac{b-a}{12} h^2 f''(\mu) \right| = \left| \frac{2-0}{12} h^2 \frac{2}{(\mu+4)^3} \right| \left(f''(x) = \frac{2}{(x+4)^3} \right)$$

Ejercicio 1

Determine los valores de n y h de manera que la integral:

$$\int_0^2 \frac{1}{x+4} dx,$$

$$E(f) = \left| \frac{b-a}{12} h^2 f''(\mu) \right| = \left| \frac{2-0}{12} h^2 \frac{2}{(\mu+4)^3} \right| \left(f''(x) = \frac{2}{(x+4)^3} \right)$$
$$= \left| \frac{1}{3} h^2 \frac{1}{(\mu+4)^3} \right| \left(\frac{1}{(x+4)^3} \le \frac{1}{4^3} \right)$$

Ejercicio 1

Determine los valores de n y h de manera que la integral:

$$\int_0^2 \frac{1}{x+4} dx,$$

$$E(f) = \left| \frac{b-a}{12} h^2 f''(\mu) \right| = \left| \frac{2-0}{12} h^2 \frac{2}{(\mu+4)^3} \right| \left(f''(x) = \frac{2}{(x+4)^3} \right)$$
$$= \left| \frac{1}{3} h^2 \frac{1}{(\mu+4)^3} \right| \left(\frac{1}{(x+4)^3} \le \frac{1}{4^3} \right)$$
$$\le \left| \frac{1}{3} h^2 \frac{1}{(4)^3} \right|$$

Ejercicio 1

Determine los valores de n y h de manera que la integral:

$$\int_0^2 \frac{1}{x+4} dx,$$

$$E(f) = \left| \frac{b-a}{12} h^2 f''(\mu) \right| = \left| \frac{2-0}{12} h^2 \frac{2}{(\mu+4)^3} \right| \left(f''(x) = \frac{2}{(x+4)^3} \right)$$
$$= \left| \frac{1}{3} h^2 \frac{1}{(\mu+4)^3} \right| \left(\frac{1}{(x+4)^3} \le \frac{1}{4^3} \right)$$
$$\le \left| \frac{1}{3} h^2 \frac{1}{(4)^3} \right|$$
$$\le 10^{-5}.$$

Ejercicio 1

Determine los valores de n y h de manera que la integral:

$$\int_0^2 \frac{1}{x+4} dx,$$

$$E(f) = \left| \frac{b-a}{12} h^2 f''(\mu) \right| = \left| \frac{2-0}{12} h^2 \frac{2}{(\mu+4)^3} \right| \left(f''(x) = \frac{2}{(x+4)^3} \right)$$

$$= \left| \frac{1}{3} h^2 \frac{1}{(\mu+4)^3} \right| \left(\frac{1}{(x+4)^3} \le \frac{1}{4^3} \right)$$

$$\le \left| \frac{1}{3} h^2 \frac{1}{(4)^3} \right|$$

$$\le 10^{-5}.$$

$$h \le 10^{-5/2} 2^3 \sqrt{3}$$

Ejercicio 1

Determine los valores de n y h de manera que la integral:

$$\int_0^2 \frac{1}{x+4} dx,$$

$$E(f) = \left| \frac{b-a}{12} h^2 f''(\mu) \right| = \left| \frac{2-0}{12} h^2 \frac{2}{(\mu+4)^3} \right| \left(f''(x) = \frac{2}{(x+4)^3} \right)$$

$$= \left| \frac{1}{3} h^2 \frac{1}{(\mu+4)^3} \right| \left(\frac{1}{(x+4)^3} \le \frac{1}{4^3} \right)$$

$$\le \left| \frac{1}{3} h^2 \frac{1}{(4)^3} \right|$$

$$\le 10^{-5}.$$

$$h \le 10^{-5/2} 2^3 \sqrt{3}$$

$$\frac{2}{n} = \frac{b-a}{n} = h \le 10^{-5/2} 2^3 \sqrt{3}$$

Ejercicio 1

Determine los valores de n y h de manera que la integral:

$$\int_0^2 \frac{1}{x+4} dx,$$

$$E(f) = \left| \frac{b-a}{12} h^2 f''(\mu) \right| = \left| \frac{2-0}{12} h^2 \frac{2}{(\mu+4)^3} \right| \left(f''(x) = \frac{2}{(x+4)^3} \right)$$

$$= \left| \frac{1}{3} h^2 \frac{1}{(\mu+4)^3} \right| \left(\frac{1}{(x+4)^3} \le \frac{1}{4^3} \right)$$

$$\le \left| \frac{1}{3} h^2 \frac{1}{(4)^3} \right|$$

$$\le 10^{-5}.$$

$$h \le 10^{-5/2} 2^3 \sqrt{3}$$

$$\frac{2}{n} = \frac{b-a}{4^3,64354} = h \le 10^{-5/2} 2^3 \sqrt{3}$$

$$n \Rightarrow n = 46.$$

Ejercicio 1

Determine los valores de n y h de manera que la integral:

$$\int_0^2 \frac{1}{x+4} dx,$$

$$E(f) = \left| \frac{b-a}{12} h^2 f''(\mu) \right| = \left| \frac{2-0}{12} h^2 \frac{2}{(\mu+4)^3} \right| \left(f''(x) = \frac{2}{(x+4)^3} \right)$$

$$= \left| \frac{1}{3} h^2 \frac{1}{(\mu+4)^3} \right| \left(\frac{1}{(x+4)^3} \le \frac{1}{4^3} \right)$$

$$\le \left| \frac{1}{3} h^2 \frac{1}{(4)^3} \right|$$

$$\le 10^{-5}.$$

$$h \le 10^{-5/2} 2^3 \sqrt{3}$$

$$\frac{2}{n} = \frac{b-a}{4^3,64354} = h \le 10^{-5/2} 2^3 \sqrt{3}$$

$$n \Rightarrow n = 46.$$

$$0,40546510810 \approx \ln(6) - \ln(4) = \int_0^2 \frac{dx}{x+4} \approx (R.C.T. \ con \ n = 46)0,405470577804$$

Ejercicio (Criterio de límite)

Encontrar el límite de la sucesión $\left\{n\sin\left(\frac{1}{n}\right)\right\}$

Ejercicio (Criterio de límite)

Encontrar el límite de la sucesión $\left\{n\sin\left(\frac{1}{n}\right)\right\}$

Usando el criterio del límite:

$$\lim_{n \to \infty} n \sin(1/n) = \lim_{n \to \infty} \frac{\sin(1/n)}{(1/n)}$$

Ejercicio (Criterio de límite)

Encontrar el límite de la sucesión $\left\{n\sin\left(\frac{1}{n}\right)\right\}$

Usando el criterio del límite:

$$\lim_{n \to \infty} n \sin(1/n) = \lim_{n \to \infty} \frac{\sin(1/n)}{(1/n)}$$
$$= \lim_{n \to \infty} \frac{\cos(1/n)(-1/n^2)}{(-1/n^2)}$$

Ejercicio (Criterio de límite)

Encontrar el límite de la sucesión $\left\{n\sin\left(\frac{1}{n}\right)\right\}$

Usando el criterio del límite:

$$\lim_{n \to \infty} n \sin(1/n) = \lim_{n \to \infty} \frac{\sin(1/n)}{(1/n)}$$

$$= \lim_{n \to \infty} \frac{\cos(1/n)(-1/n^2)}{(-1/n^2)}$$

$$= \lim_{n \to \infty} \cos(1/n)$$

Ejercicio (Criterio de límite)

Encontrar el límite de la sucesión $\left\{n\sin\left(\frac{1}{n}\right)\right\}$

Usando el criterio del límite:

$$\lim_{n \to \infty} n \sin(1/n) = \lim_{n \to \infty} \frac{\sin(1/n)}{(1/n)}$$

$$= \lim_{n \to \infty} \frac{\cos(1/n)(-1/n^2)}{(-1/n^2)}$$

$$= \lim_{n \to \infty} \cos(1/n)$$

$$= 1$$

Ejercicio (Criterio de límite)

Encontrar el límite de la sucesión $\left\{n\sin\left(\frac{1}{n}\right)\right\}$

Usando el criterio del límite:

$$\lim_{n \to \infty} n \sin(1/n) = \lim_{n \to \infty} \frac{\sin(1/n)}{(1/n)}$$

$$= \lim_{n \to \infty} \frac{\cos(1/n)(-1/n^2)}{(-1/n^2)}$$

$$= \lim_{n \to \infty} \cos(1/n)$$

$$= 1$$

Entonces el límite buscado es 1. Teoremas Preliminares.

Ejercicio (Teorema del Sandwich)

Determine el límite de la sucesión $\left\{\frac{\cos(n)}{n}\right\}$

Ejercicio (Teorema del Sandwich)

Determine el límite de la sucesión $\left\{\frac{\cos(n)}{n}\right\}$

$$-1 \le \cos(n) \le 1$$

Ejercicio (Teorema del Sandwich)

Determine el límite de la sucesión $\left\{\frac{\cos(n)}{n}\right\}$

$$-1 \le \cos(n) \le 1$$
$$\Rightarrow \frac{-1}{n} \le \frac{\cos(n)}{n} \le \frac{1}{n}$$

Ejercicio (Teorema del Sandwich)

Determine el límite de la sucesión $\left\{\frac{\cos(n)}{n}\right\}$.

$$\begin{split} &-1 \leq \cos(n) \leq 1 \\ \Rightarrow & \frac{-1}{n} \leq \frac{\cos(n)}{n} \leq \frac{1}{n} \\ \Rightarrow & \lim_{n \to \infty} \frac{-1}{n} \leq \lim_{n \to \infty} \frac{\cos(n)}{n} \leq \lim_{n \to \infty} \frac{1}{n} \end{split}$$

Ejercicio (Teorema del Sandwich)

Determine el límite de la sucesión $\left\{\frac{\cos(n)}{n}\right\}$.

$$\begin{split} &-1 \leq \cos(n) \leq 1 \\ \Rightarrow & \frac{-1}{n} \leq \frac{\cos(n)}{n} \leq \frac{1}{n} \\ \Rightarrow & \lim_{n \to \infty} \frac{-1}{n} \leq \lim_{n \to \infty} \frac{\cos(n)}{n} \leq \lim_{n \to \infty} \frac{1}{n} \\ \Rightarrow & 0 \leq \lim_{n \to \infty} \frac{\cos(n)}{n} \leq 0 \end{split}$$

Ejercicio (Teorema del Sandwich)

Determine el límite de la sucesión $\left\{\frac{\cos(n)}{n}\right\}$.

$$\begin{aligned} &-1 \leq \cos(n) \leq 1 \\ \Rightarrow & \frac{-1}{n} \leq \frac{\cos(n)}{n} \leq \frac{1}{n} \\ \Rightarrow & \lim_{n \to \infty} \frac{-1}{n} \leq \lim_{n \to \infty} \frac{\cos(n)}{n} \leq \lim_{n \to \infty} \frac{1}{n} \\ \Rightarrow & 0 \leq \lim_{n \to \infty} \frac{\cos(n)}{n} \leq 0 \end{aligned}$$

Por lo tanto, el límite de la sucesión en cuestión es 0. Teoremas Preliminares.

Ejercicio (Teorema de la sucesión monótona)

Encuentre el límite de la sucesión definida recursivamente por $a_n = \sqrt{1 + a_{n-1}}$ con $a_1 = 1$, asumiendo que $\{a_n\}$ es acotada superiormente y es estrictamente creciente.

Por el teorema de convergencia monótona existe el límite; sea L tal límite, entonces:

Ejercicio (Teorema de la sucesión monótona)

Encuentre el límite de la sucesión definida recursivamente por $a_n = \sqrt{1 + a_{n-1}}$ con $a_1 = 1$, asumiendo que $\{a_n\}$ es acotada superiormente y es estrictamente creciente.

Por el teorema de convergencia monótona existe el límite; sea L tal límite, entonces:

$$a_n = \sqrt{1 + a_{n-1}}$$

Ejercicio (Teorema de la sucesión monótona)

Encuentre el límite de la sucesión definida recursivamente por $a_n = \sqrt{1 + a_{n-1}}$ con $a_1 = 1$, asumiendo que $\{a_n\}$ es acotada superiormente y es estrictamente creciente.

Por el teorema de convergencia monótona existe el límite; sea L tal límite, entonces:

$$a_n = \sqrt{1 + a_{n-1}}$$

$$\Rightarrow \lim_{n \to \infty} a_n = \lim_{n \to \infty} \sqrt{1 + a_{n-1}}$$

Ejercicio (Teorema de la sucesión monótona)

Encuentre el límite de la sucesión definida recursivamente por $a_n = \sqrt{1 + a_{n-1}}$ con $a_1 = 1$, asumiendo que $\{a_n\}$ es acotada superiormente y es estrictamente creciente.

Por el teorema de convergencia monótona existe el límite; sea L tal límite, entonces:

$$a_n = \sqrt{1 + a_{n-1}}$$

$$\Rightarrow \lim_{n \to \infty} a_n = \lim_{n \to \infty} \sqrt{1 + a_{n-1}}$$

$$\Rightarrow L = \sqrt{1 + L}$$

Ejercicio (Teorema de la sucesión monótona)

Encuentre el límite de la sucesión definida recursivamente por $a_n = \sqrt{1 + a_{n-1}}$ con $a_1 = 1$, asumiendo que $\{a_n\}$ es acotada superiormente y es estrictamente creciente.

Por el teorema de convergencia monótona existe el límite; sea L tal límite, entonces:

$$a_n = \sqrt{1 + a_{n-1}}$$

$$\Rightarrow \lim_{n \to \infty} a_n = \lim_{n \to \infty} \sqrt{1 + a_{n-1}}$$

$$\Rightarrow L = \sqrt{1 + L}$$

Resolviendo la última ecuación se obtiene que:

$$L = \frac{1 + \sqrt{5}}{2}$$

Ejercicio(Teorema de valores extremos)

Encuentre $\max_{x \in [2,5]} |f(x)|$ donde $f(x) = 1 - \exp(-\cos(x-1))$.

• f es continua y diferenciable en [2,5].

Ejercicio (Teorema de valores extremos)

Encuentre $\max_{x \in [2,5]} |f(x)|$ donde $f(x) = 1 - \exp(-\cos(x-1))$.

- f es continua y diferenciable en [2,5].
- Por el teorema de valores extremos, existen c_1 , c_2 tales que

$$f(c_1) \le f(x) \le f(c_2),$$

para todo $x \in [2,5]$ y entonces $\max_{x \in [2,5]} |f(x)| = \max(|f(c_1)|, |f(c_2)|).$

Ejercicio (Teorema de valores extremos)

Encuentre $\max_{x \in [2,5]} |f(x)|$ donde $f(x) = 1 - \exp(-\cos(x-1))$.

- f es continua y diferenciable en [2,5].
- Por el teorema de valores extremos, existen c_1 , c_2 tales que

$$f(c_1) \le f(x) \le f(c_2),$$

para todo $x \in [2, 5]$ y entonces $\max_{x \in [2, 5]} |f(x)| = \max(|f(c_1)|, |f(c_2)|).$

Además dado que la función es diferenciable, se sabe que los posibles valores extremos se alcanzan en 2, 5 o donde la derivada se hace cero.

$$f'(x) = \exp(-\cos(x-1))(\sin(x-1)) = 0.$$

Las soluciones de esta ecuación son $x=1+n\pi$., $n\in\mathbb{Z}$. La única solución que se encuentra en el intervalo [2,5] es $x=1+\pi$.

- Al evaluar en los candidatos, se obtiene:
 - $f(2) \approx 0.42.$
 - $f(5) \approx -0.92.$
 - $f(1+\pi) \approx -1.72.$

Entonces $c_1 = 1 + \pi$ y $c_2 = 2$.

- Al evaluar en los candidatos, se obtiene:
 - $f(2) \approx 0.42.$
 - $f(5) \approx -0.92.$
 - $f(1+\pi) \approx -1.72.$

Entonces $c_1 = 1 + \pi$ y $c_2 = 2$.

■ De lo anterior se obtiene que $\max_{x \in [2,5]} |f(x)| = \max(|f(2)|, |f(1+\pi)|) = e-1.$

- Al evaluar en los candidatos, se obtiene:
 - $f(2) \approx 0.42.$
 - $f(5) \approx -0.92$.
 - $f(1+\pi) \approx -1.72.$

Entonces $c_1 = 1 + \pi \ y \ c_2 = 2$.

■ De lo anterior se obtiene que $\max_{x \in [2,5]} |f(x)| = \max(|f(2)|, |f(1+\pi)|) = e-1.$

Figura: Gráfica de f(x) en [2,5].

Ejercicio (Teorema del valor intermedio)

Determine si la siguiente ecuación tiene una solución

$$\sin(x)/\log(x) = 0,$$

en el intervalo [2,4].

Ejercicio (Teorema del valor intermedio)

Determine si la siguiente ecuación tiene una solución

$$\sin(x)/\log(x) = 0,$$

en el intervalo [2,4].

Elija $f(x) = \sin(x)/\log(x)$.

Dado que f(2) > 0, f(4) < 0, f es continua en [2,4] y f(4) < 0 < f(2), entonces (tomando K = 0) por el teorema del valor intermedio existe un c tal que f(c) = K = 0.

Ejercicio (Método de bisección)

Encuentre la aproximación para la solución del problema anterior usando el método de bisección. Además determine cuál es el valor de n para conseguir un error de a lo mucho 10^{-5} ; calcule el error asumiendo que la solución exacta es π . $(f(x) = \sin(x)/\log(x), x \in [2, 4].)$

n	\mathbf{a}	b	p	f(p)	p-p *
0	2	4	*	*	*
1	3	4	3	1.284530 e - 01	1.415927e - 01
2	3	3.5	3.5	-2.800077e-01	3.584073 e - 01
3	3	3.25	3.25	-9.179542e -02	1.084073 e - 01
16	3.1416	3.1416	3.1416	1.887677e - 05	2.160867e - 05
17	3.1416	3.1416	3.1416	5.547064e - 06	6.349879 e - 06
18	3.1416	3.1416	3.1416	-1.117744e-06	1.279516e-06
19	3.1416	3.1416	3.1416	2.214656e-06	2.535182 e - 06

Ejercicio (Método de bisección)

Encuentre la aproximación para la solución del problema anterior usando el método de bisección. Además determine cuál es el valor de n para conseguir un error de a lo mucho 10^{-5} ; calcule el error asumiendo que la solución exacta es π . $(f(x) = \sin(x)/\log(x), x \in [2, 4].)$

n	a	h	n	f(p)	p-p *
0	2	$\frac{3}{4}$	*	*	*
1	3	4	3	1.284530 e - 01	1.415927e - 01
$\begin{vmatrix} 2 \\ 3 \end{vmatrix}$	3	$\frac{3.5}{2.5}$	3.5	-2.800077e - 01	3.584073e-01
3	3	3.25	3.25	-9.179542e-02	$1.084073\mathrm{e}{-01}$
16	3.1416	3.1416	3.1416	1.887677 e - 05	2.160867 e - 05
17	3.1416	3.1416	3.1416	5.547064 e - 06	6.349879 e - 06
18	3.1416	3.1416	3.1416	-1.117744e-06	1.279516e-06
19	3.1416	3.1416	3.1416	2.214656e - 06	2.535182e - 06

Se necesita garantizar que $|p-\pi| \le 10^{-5}$. Por el teorema de bisección, se tiene

$$|p-\pi| \le \frac{b-a}{2^n} = \frac{4-2}{2^n} = \frac{1}{2^{n-1}} \le 10^{-5}$$

Si se resuleve la última desigualdad, se obtiene que $n \ge 17,61$, es decir que se puede escoger n = 18. Raices de ecuaciones.

144 / 180

Ejercicio (Teorema de Taylor)

Considere la función $f(x) = \ln(\ln(x))$. Determine lo siguiente:

- Calcule $P_3(x)$ centrada en $x_0 = 3$.
- Aproxime $P_3(1,5)$.
- Encuentre la expresión para $R_3(x)$.
- Calcule el error absoluto y relativo de la aproximación anterior.
- Aproxime $\int_{2}^{4} f(x)dx$ usando $P_{3}(x)$.

Ejercicio (Teorema de Taylor)

Considere la función $f(x) = \ln(\ln(x))$. Determine lo siguiente:

- Calcule $P_3(x)$ centrada en $x_0 = 3$.
- Aproxime $P_3(1,5)$.
- Encuentre la expresión para $R_3(x)$.
- Calcule el error absoluto y relativo de la aproximación anterior.
- Aproxime $\int_{2}^{4} f(x)dx$ usando $P_{3}(x)$.

$$P_3(x) = \sum_{k=0}^{3} \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k$$

Ejercicio (Teorema de Taylor)

Considere la función $f(x) = \ln(\ln(x))$. Determine lo siguiente:

- Calcule $P_3(x)$ centrada en $x_0 = 3$.
- Aproxime $P_3(1,5)$.
- Encuentre la expresión para $R_3(x)$.
- Calcule el error absoluto y relativo de la aproximación anterior.
- Aproxime $\int_{2}^{4} f(x)dx$ usando $P_{3}(x)$.

$$P_3(x) = \sum_{k=0}^{3} \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k$$

= $\frac{f(3)}{0!} (x - 3)^0 + \frac{f'(3)}{1!} (x - 3)^1 + \frac{f''(3)}{2!} (x - 3)^2 + \frac{f'''(3)}{3!} (x - 3)^3.$

$$= \ln(\ln(3)) + \frac{(x-3)}{3\ln(3)} - \left(\frac{1}{18\ln(3)} + \frac{1}{18\ln^2(3)}\right)(x-3)^2 + \frac{1}{162}\left(\frac{2}{\ln(3)} + \frac{3}{\ln^2(3)} + \frac{2}{\ln^3(3)}\right)(x-3)^3$$

$$= \ln(\ln(3)) + \frac{(x-3)}{3\ln(3)} - \left(\frac{1}{18\ln(3)} + \frac{1}{18\ln^2(3)}\right)(x-3)^2$$
$$+ \frac{1}{162}\left(\frac{2}{\ln(3)} + \frac{3}{\ln^2(3)} + \frac{2}{\ln^3(3)}\right)(x-3)^3$$

$$P_3(1,5) = \ln(\ln(3)) + \frac{(1,5-3)}{3\ln(3)} - \left(\frac{1}{18\ln(3)} + \frac{1}{18\ln^2(3)}\right)(1,5-3)^2 + \frac{1}{162}\left(\frac{2}{\ln(3)} + \frac{3}{\ln^2(3)} + \frac{2}{\ln^3(3)}\right)(1,5-3)^3$$

$$\approx -0.69955228$$

$$= \ln(\ln(3)) + \frac{(x-3)}{3\ln(3)} - \left(\frac{1}{18\ln(3)} + \frac{1}{18\ln^2(3)}\right)(x-3)^2$$
$$+ \frac{1}{162} \left(\frac{2}{\ln(3)} + \frac{3}{\ln^2(3)} + \frac{2}{\ln^3(3)}\right)(x-3)^3$$

$$P_3(1,5) = \ln(\ln(3)) + \frac{(1,5-3)}{3\ln(3)} - \left(\frac{1}{18\ln(3)} + \frac{1}{18\ln^2(3)}\right)(1,5-3)^2 + \frac{1}{162}\left(\frac{2}{\ln(3)} + \frac{3}{\ln^2(3)} + \frac{2}{\ln^3(3)}\right)(1,5-3)^3$$

$$\approx -0.69955228$$

$$R_3(x) = \frac{f^{(4)}(\xi(x))}{(4)!} (x-3)^4$$

$$= -\frac{6 (\log \xi(x))^3 + 11 (\log \xi(x))^2 + 12 \log \xi(x) + 6}{\xi(x)^4 (\log \xi(x))^4} (x-3)^4.$$

Observación: Si p^* es una aproximación de p, entonces se definen los errores:

- Error absoluto: $|p p^*|$.
- Error relativo: $\frac{|p-p^*|}{|p|}$.

Error absoluto:

$$|f(1,5) - P_3(1,5)| \approx 0.20316817$$

Error relativo:

Observación: Si p^* es una aproximación de p, entonces se definen los errores:

- Error absoluto: $|p p^*|$.
- Error relativo: $\frac{|p-p^*|}{|p|}$.

Error absoluto:

$$|f(1,5) - P_3(1,5)| \approx 0.20316817$$

Error relativo:

$$\frac{|f(1,5) - P_3(1,5)|}{|f(1,5)|} \approx 0.22506211$$

$$\int_{2}^{4} f(x)dx \approx \int_{2}^{4} P_{3}(x)dx$$

$$\int_{2}^{4} f(x)dx \approx \int_{2}^{4} P_{3}(x)dx$$

$$= \int_{2}^{4} \ln(\ln(3)) + \frac{(x-3)}{3\ln(3)} - \left(\frac{1}{18\ln(3)} + \frac{1}{18\ln^{2}(3)}\right)(x-3)^{2}$$

$$+ \frac{1}{162} \left(\frac{2}{\ln(3)} + \frac{3}{\ln^{2}(3)} + \frac{2}{\ln^{3}(3)}\right)(x-3)^{3}dx$$

$$\begin{split} \int_{2}^{4} f(x) dx &\approx \int_{2}^{4} P_{3}(x) dx \\ &= \int_{2}^{4} \ln(\ln(3)) + \frac{(x-3)}{3\ln(3)} - \left(\frac{1}{18\ln(3)} + \frac{1}{18\ln^{2}(3)}\right) (x-3)^{2} \\ &\quad + \frac{1}{162} \left(\frac{2}{\ln(3)} + \frac{3}{\ln^{2}(3)} + \frac{2}{\ln^{3}(3)}\right) (x-3)^{3} dx \\ &= \left[\ln(\ln(3))(x-3) + \frac{(x-3)^{2}}{6\ln(3)} - \left(\frac{1}{54\ln(3)} + \frac{1}{54\ln^{2}(3)}\right) (x-3)^{3} \right. \\ &\quad + \frac{1}{162} \left(\frac{2}{4\ln(3)} + \frac{3}{4\ln^{2}(3)} + \frac{2}{4\ln^{3}(3)}\right) (x-3)^{4} \bigg]_{2}^{4} \end{split}$$

$$\begin{split} \int_{2}^{4} f(x) dx &\approx \int_{2}^{4} P_{3}(x) dx \\ &= \int_{2}^{4} \ln(\ln(3)) + \frac{(x-3)}{3\ln(3)} - \left(\frac{1}{18\ln(3)} + \frac{1}{18\ln^{2}(3)}\right) (x-3)^{2} \\ &\quad + \frac{1}{162} \left(\frac{2}{\ln(3)} + \frac{3}{\ln^{2}(3)} + \frac{2}{\ln^{3}(3)}\right) (x-3)^{3} dx \\ &= \left[\ln(\ln(3))(x-3) + \frac{(x-3)^{2}}{6\ln(3)} - \left(\frac{1}{54\ln(3)} + \frac{1}{54\ln^{2}(3)}\right) (x-3)^{3} \right. \\ &\quad + \frac{1}{162} \left(\frac{2}{4\ln(3)} + \frac{3}{4\ln^{2}(3)} + \frac{2}{4\ln^{3}(3)}\right) (x-3)^{4} \right]_{2}^{4} \\ &\approx 0,1242167 \end{split}$$

Ejercicios (Método de Newton-Raphson, Examen I, PACI2023)

Una partícula parte del reposo sobre un plano inclinado uniforme, cuyo ángulo θ cambia con una rapidez constante de $\frac{d\theta}{dt} = \omega < 0$. Al final de t segundos, la posición del objeto está dada por:

$$x(t) = -\frac{g}{2\omega^2} \left(\frac{e^{\omega t} - e^{-\omega t}}{2} - \sin(\omega t) \right)$$

Suponga que la partícula se desplazó 60 pies en 2
s. Encuentre la rapidez ω con que cambia θ . Asuma que $g=32,17pies/s^2$. Para calcular dicha rapidez realice lo siguiente:

Plantee la ecuación y determine el intervalo con extremos enteros de menor valor absoluto que contenga la solución de la ecuación.

Ejercicios (Método de Newton-Raphson, Examen I, PACI2023)

Una partícula parte del reposo sobre un plano inclinado uniforme, cuyo ángulo θ cambia con una rapidez constante de $\frac{d\theta}{dt} = \omega < 0$. Al final de t segundos, la posición del objeto está dada por:

$$x(t) = -\frac{g}{2\omega^2} \left(\frac{e^{\omega t} - e^{-\omega t}}{2} - \sin(\omega t) \right)$$

Suponga que la partícula se desplazó 60 pies en 2
s. Encuentre la rapidez ω con que cambia θ . Asuma que $g=32,17pies/s^2$. Para calcular dicha rapidez realice lo siguiente:

Plantee la ecuación y determine el intervalo con extremos enteros de menor valor absoluto que contenga la solución de la ecuación. Dado que x(2) = 60, se sustituye esto en la ecuación ofrecida.

$$60 = -\frac{g}{2\omega^2}(\sinh(2\omega) - \sin(2\omega))$$
$$120 + \frac{g}{\omega^2}(\sinh(2\omega) - \sin(2\omega)) = 0$$

Defina entonces:

$$f(\omega) = 120 + \frac{g}{\omega^2} (\sinh(2\omega) - \sin(2\omega)).$$

$$60 = -\frac{g}{2\omega^2}(\sinh(2\omega) - \sin(2\omega))$$
$$120 + \frac{g}{\omega^2}(\sinh(2\omega) - \sin(2\omega)) = 0$$

Defina entonces:

$$f(\omega) = 120 + \frac{g}{\omega^2} (\sinh(2\omega) - \sin(2\omega)).$$

Dado que $\omega < 0$, entonces rápidamente se puede ver que f(-1) > 0 y f(-2) < 0. Con esto se escoge el intervalo [-2, -1].

$$60 = -\frac{g}{2\omega^2}(\sinh(2\omega) - \sin(2\omega))$$
$$120 + \frac{g}{\omega^2}(\sinh(2\omega) - \sin(2\omega)) = 0$$

Defina entonces:

$$f(\omega) = 120 + \frac{g}{\omega^2} (\sinh(2\omega) - \sin(2\omega)).$$

Dado que $\omega < 0$, entonces rápidamente se puede ver que f(-1) > 0 y f(-2) < 0. Con esto se escoge el intervalo [-2, -1].

¿Cuántas iteraciones son suficientes para alcanzar una exactitud de 10^{−12} mediante el método de bisección?

$$60 = -\frac{g}{2\omega^2}(\sinh(2\omega) - \sin(2\omega))$$
$$120 + \frac{g}{\omega^2}(\sinh(2\omega) - \sin(2\omega)) = 0$$

Defina entonces:

$$f(\omega) = 120 + \frac{g}{\omega^2} (\sinh(2\omega) - \sin(2\omega)).$$

Dado que $\omega < 0$, entonces rápidamente se puede ver que f(-1) > 0 y f(-2) < 0. Con esto se escoge el intervalo [-2, -1].

 ¿Cuántas iteraciones son suficientes para alcanzar una exactitud de 10⁻¹² mediante el método de bisección?
 Usando el teorema de cota de error del método de bisección se plantea:

$$|p_n - p| \le \frac{b - a}{2^n} = \frac{-1 - (-2)}{2^n} = \frac{1}{2^n} \le 10^{-12}.$$

$$10^{12} \le 2^n.$$

Resolviendo la inecuación se obtiene $n \ge 40$.

■ Realice tres iteraciones del método de bisección, calcule el error relativo en cada iteración.

Realice tres iteraciones del método de bisección, calcule el error relativo en cada iteración. Cuando no conocemos el valor de la raíz, la estimación del error relativo se calcula de la siguiente forma:

$$\frac{|p_{n+1} - p_n|}{|p_{n+1}|}$$

De esta forma se puede generar la siguiente tabla:

Realice tres iteraciones del método de bisección, calcule el error relativo en cada iteración. Cuando no conocemos el valor de la raíz, la estimación del error relativo se calcula de la siguiente forma:

$$\frac{|p_{n+1} - p_n|}{|p_{n+1}|}$$

De esta forma se puede generar la siguiente tabla:

Realice tres iteraciones del método de bisección, calcule el error relativo en cada iteración. Cuando no conocemos el valor de la raíz, la estimación del error relativo se calcula de la siguiente forma:

$$\frac{|p_{n+1} - p_n|}{|p_{n+1}|}$$

De esta forma se puede generar la siguiente tabla:

n	a _	b	p	f(p)	Error relativo
0	-2	-1	*	*	*
1	-1.5	-1	-1.5	$-2.121565\mathrm{e}{+01}$	
2	-1.5	-1.25	-1.25		2.0000000e-01
3	-1.375	-1.25	-1.375	-6.045842e+00	9.090909e - 02

■ Aplique el método de Newton-Raphson para obtener una aproximación con una exactitud de 10⁻⁵. Utilice como aproximación inicial la aproximación encontrada en el iniciso anterior.

```
 \begin{array}{|c|c|c|c|c|c|} \hline n & p_-n & f(p_-n) & Error \ relativo \\ \hline 0 & -1.375 & -6.0458 & * \\ 1 & -1.3226 & -1.150768e-01 & 3.962162e-02 \\ 2 & -1.3216 & -4.145716e-05 & 7.840103e-04 \\ 3 & -1.3216 & -5.371703e-12 & 2.826484e-07 \\ \hline \end{array}
```

Primero se requiere calcular la derivada de la función analizada:

$$f'(\omega) = \frac{32,17 \, \left(2 \, \cosh \left(2 \, \omega\right) - 2 \, \cos \left(2 \, \omega\right)\right)}{\omega^2} - \frac{64,34 \, \left(\sinh \left(2 \, \omega\right) - \sin \left(2 \, \omega\right)\right)}{\omega^3}$$

Con esto la iteración del método de Newton queda expresado como:

$$p_{n+1} = p_n - \frac{f(p_n)}{f'(p_n)}$$

$$= p_n + \frac{3217 p_n \sinh(2 p_n) - 3217 p_n \sin(2 p_n) + 12000 p_n^3}{6434 \sinh(2 p_n) - 6434 \sin(2 p_n) - 6434 p_n \cosh(2 p_n) + 6434 p_n \cos(2 p_n)}$$

Para los resultados se uso el error relativo, es decir $\frac{|p_{n+1}-p_n|}{|p_{n+1}|}$.

Raices de ecuaciones.

Ejercicio (Ecuaciones no lineales, Ejercicio IIPAC2023)

Sea el sistema de ecuaciones no lineales:

$$\begin{bmatrix} \ln(x^2 + y^2) - \sin(xy) & = & \ln(2) - \ln(\pi) \\ x^2 + 4y^2 \cos(x) & = & 4 \end{bmatrix}$$

Realice una iteración del método de Newton Raphson para sistemas con la aproximación inicial:

$$p_0 = \begin{bmatrix} -1.5 \\ -2.5 \end{bmatrix}$$

Además calcule $\parallel p_k - p_{k-1} \parallel_{\infty} y \parallel p_k - p_{k-1} \parallel_2$.

Ejercicio (Ecuaciones no lineales, Ejercicio IIPAC2023)

Sea el sistema de ecuaciones no lineales:

$$\begin{bmatrix} \ln(x^2 + y^2) - \sin(xy) & = & \ln(2) - \ln(\pi) \\ x^2 + 4y^2 \cos(x) & = & 4 \end{bmatrix}$$

Realice una iteración del método de Newton Raphson para sistemas con la aproximación inicial:

$$p_0 = \begin{bmatrix} -1.5 \\ -2.5 \end{bmatrix}$$

Además calcule $||p_k - p_{k-1}||_{\infty}$ y $||p_k - p_{k-1}||_2$.

Primero se definirán la función y el jacobiano para usar el método de Newton:

$$F(x,y) = \begin{pmatrix} \ln(x^2 + y^2) - \sin(xy) + \ln(\pi) - \ln(2) \\ 4\cos(x)y^2 + x^2 - 4 \end{pmatrix}$$

$$J(x,y) = \begin{pmatrix} \frac{2x}{x^2 + y^2} - y\cos(xy) & \frac{2y}{x^2 + y^2} - x\cos(xy) \\ 2x - 4\sin(x)y^2 & 8\cos(x)y \end{pmatrix}$$

$$J(-1,5,-2,5) = \begin{pmatrix} -2,40433956981949 & -1,819074330126988 \\ 21,93737466510136 & -1,414744033354058 \end{pmatrix}$$

$$J^{-1}(-1,5,-2,5) = \begin{pmatrix} -0,03266761001938535 & 0,04200393103760224 \\ -0,5065521278147188 & -0,05551818955887632 \end{pmatrix}$$

$$F(-1,5,-2,5) = \begin{pmatrix} 0,873750 \\ 0,018430 \end{pmatrix}$$

$$p_1 = p_0 - J^{-1}(p_0)F(p_0)$$

$$= \begin{pmatrix} -1,5 \\ -2,5 \end{pmatrix} - J^{-1}(-1,5,-2,5)F(-1,5,-2,5) = \begin{pmatrix} -1,472231 \\ -2,056377 \end{pmatrix}$$

$ \mathbf{n} \mathbf{p}_{-}\mathbf{n}(1) \mathbf{p}_{-}\mathbf{n}(2) \mathbf{f}(\mathbf{p}_{-}\mathbf{n})$ Norma 2	Norma inf
$\begin{bmatrix} 0 & -1.5 & -2.5 & 0.87375 & * \\ 1 & 0.87375 & * \end{bmatrix}$	* 4.0.000
$\begin{bmatrix} 1 & -1.4722 & -2.0564 & -9.606503e -02 & 4.444916 \\ 2 & -1.4663 & -2.1091 & -1.654021e -04 & 5.303766 \end{bmatrix}$	
$\begin{vmatrix} 2 & -1.4003 & -2.1031 & -1.0340216 & -04 & 3.303706 \\ 3 & -1.4667 & -2.1087 & -1.031003e & -07 & 5.406173 \end{vmatrix}$	

Raices de ecuaciones.

Ejercicio (Cota de error interpolación de Lagrange)

Considere la siguiente función $f(x) = \sin(\ln(x))$. Encuentre una cota para el error de aproximación del polinomio interpolante de Lagrange en el intervalo [2, 2,6] con tres puntos; $x_0 = 2$, $x_1 = 2$,4 y $x_2 = 2$,6.

Ejercicio (Cota de error interpolación de Lagrange)

Considere la siguiente función $f(x) = \sin(\ln(x))$. Encuentre una cota para el error de aproximación del polinomio interpolante de Lagrange en el intervalo [2, 2,6] con tres puntos; $x_0 = 2$, $x_1 = 2$,4 y $x_2 = 2$,6.

Por el teorema relacionado con el polinomio de Lagrange, se sabe que:

$$|f(x) - P(x)| = \left| \frac{f^{(3)}(\xi(x))}{6} (x - 2)(x - 2, 4)(x - 2, 6) \right|,$$

para $x \in [2, 2, 6]$ y $\xi(x) \in (2, 2, 6)$

Ejercicio (Cota de error interpolación de Lagrange)

Considere la siguiente función $f(x) = \sin(\ln(x))$. Encuentre una cota para el error de aproximación del polinomio interpolante de Lagrange en el intervalo [2, 2,6] con tres puntos; $x_0 = 2$, $x_1 = 2$,4 y $x_2 = 2$,6.

Por el teorema relacionado con el polinomio de Lagrange, se sabe que:

$$|f(x) - P(x)| = \left| \frac{f^{(3)}(\xi(x))}{6} (x - 2)(x - 2, 4)(x - 2, 6) \right|,$$

para $x \in [2, 2, 6]$ y $\xi(x) \in (2, 2, 6)$

Para encontrar las cotas sobre la tercera derivada se necesitan los siguientes cálculos:

$$f^{(3)}(z) = \frac{3\sin(\ln(z)) + \cos(\ln(z))}{z^3}$$
$$f^{(4)}(z) = -\frac{10\cos(\ln(z))}{z^4}$$

Si se analizan los lugares donde la derivada de la tercera derivada se hacen cero, entonces se obtiene la ecuación:

$$\sin(\ln(z)) = 0,$$

esta ecuación tiene como solución $z=e^{n\pi}$ donde $n\in\mathbb{Z}$. Para todo $n\in\mathbb{Z}$, $e^{n\pi}\notin[2,2,6]$ y por lo tanto los únicos valores extremos de la tercera derivada son 2 y 2.6.

Evaluando la tercera derivada se obtiene que:

$$f^{(3)}(2) \approx 0.335765$$

$$f^{(3)}(2,6) \approx 0.1722$$

y por lo tanto se puede garantizar que:

$$|f^{(3)}(x)| \le f^{(3)}(2)$$

para todo $x \in [2, 2, 6]$.

Si se analizan los lugares donde la derivada de la tercera derivada se hacen cero, entonces se obtiene la ecuación:

$$\sin(\ln(z)) = 0,$$

esta ecuación tiene como solución $z=e^{n\pi}$ donde $n\in\mathbb{Z}$. Para todo $n\in\mathbb{Z}$, $e^{n\pi}\notin[2,2,6]$ y por lo tanto los únicos valores extremos de la tercera derivada son 2 y 2.6.

Evaluando la tercera derivada se obtiene que:

$$f^{(3)}(2) \approx 0.335765$$

$$f^{(3)}(2,6) \approx 0.1722$$

y por lo tanto se puede garantizar que:

$$|f^{(3)}(x)| \le f^{(3)}(2)$$

para todo $x \in [2, 2, 6]$.

Defina ahora la otra parte para la cota de error:

$$g(x) \equiv (x-2)(x-2,4)(x-2,6) = \frac{25x^3 - 175x^2 + 406x - 312}{25}$$

Resolviendo para la ecuación de segundo grado:

$$g'(x) = 0.$$

Se obtiene que $x=\frac{35-\sqrt{7}}{15}$ (una de las dos raíces) es el lugar donde alcanza el valor más alto. Entonces:

$$|g(x)| \le g\left(\frac{35 - \sqrt{7}}{15}\right)$$

para toda $x \in [2, 2, 6]$.

Resolviendo para la ecuación de segundo grado:

$$g'(x) = 0.$$

Se obtiene que $x=\frac{35-\sqrt{7}}{15}$ (una de las dos raíces) es el lugar donde alcanza el valor más alto. Entonces:

$$|g(x)| \le g\left(\frac{35 - \sqrt{7}}{15}\right)$$

para toda $x \in [2, 2, 6]$.

■ Finalmente:

$$|f(x) - P(x)| = \left| \frac{f^{(3)}(\xi(x))}{6} (x - 2)(x - 2, 4)(x - 2, 6) \right| \le g\left(\frac{35 - \sqrt{7}}{15}\right) f^{(3)}(2) / 6 \approx 9,4574 \times 10^{-4}$$

La cota de error entonces es aproximadamente 9.5×10^{-4} .

Ejercicio del examen del IIPA2023

Sea $f(x) = \sqrt{x - x^2}$ y $P_2(x)$ el polinomio interpolante de Lagrange en $x_0 = 0$, x_1 y $x_2 = 1$. Calcule el valor de x_1 más grande en el intervalo (0,1) para el cual $f(0,5) - P_2(0,5) = -0.25$

Tip: evalúe en los puntos desde el inicio, así se sabe que términos se cancelaran.

$$f(x_0) = f(0) = 0$$
 $f(x_1) = \sqrt{x_1 - x_1^2}$ $f(x_2) = f(x_1) = 0$

Parte I: Determine el polinomio de Lagrange

$$\begin{split} &P_{2}(x) \\ &= L_{0}(x)f(x_{0}) + L_{1}(x)f(x_{1}) + L_{2}(x)f(x_{2}) \\ &= \frac{(x - x_{1})(x - x_{2})}{(x_{0} - x_{1})(x_{0} - x_{2})}f(x_{0}) + \frac{(x - x_{1})(x - x_{2})}{(x_{1} - x_{0})(x_{1} - x_{2})}f(x_{1}) + \frac{(x - x_{1})(x - x_{2})}{(x_{2} - x_{0})(x_{2} - x_{1})}f(x_{2}) \\ &= \frac{(x - 0)(x - 1)}{(x_{1} - 0)(x_{1} - 1)}\sqrt{x_{1} - x_{1}^{2}} \\ &= \frac{x(x - 1)}{x_{1}(x_{1} - 1)}\sqrt{x_{1} - x_{1}^{2}} \end{split}$$

Parte 2: Evalúe en 0.5

$$P_2(0,5) = \frac{0.5(0.5-1)}{x_1(x_1-0.5)} \sqrt{x_1-x_1^2} = -\frac{0.25\sqrt{x_1-x_1^2}}{x_1(x_1-1)}$$

Parte 3: Garantizar que $f(0,5) - P_2(0,5) = -0.25$

$$f(0,5) - P_2(0,5) = -0.25$$

$$0.5 + \frac{0.25\sqrt{x_1 - x_1^2}}{x_1(x_1 - 1)} = -0.25$$

$$\frac{0.5 + 0.25}{0.25} = \frac{\sqrt{x_1 - x_1^2}}{x_1(x_1 - 1)}$$

$$-3 = \frac{\sqrt{x_1(1 - x_1)}}{-x_1(1 - x_1)} = -\frac{1}{\sqrt{x_1(1 - x_1)}}$$

$$9x_1(x_1 - 1) = 1$$

$$-9x_1^2 + 9x_1 - 1 = 0 \implies x = \frac{1}{2} \pm \frac{\sqrt{5}}{6}$$

Por lo tanto, $x_1 = \frac{1}{2} + \frac{\sqrt{5}}{6} \approx 0.8726779$

Referencias

Burden, Richard L y otros (2017). Analisis numerico.

Xiao, Xiaoyong y Hongwei Yin (2015). "A simple and efficient method with high order convergence for solving systems of nonlinear equations". En: Computers & Mathematics with Applications 69.10, págs. 1220-1231.