Permutações e Simetrias de funções

Permutações

Seja A um conjunto. Uma permutação sobre A é uma bijeção de A em si mesmo.

Exemplo

Sejam A = $\{1, 2, 3, 4, 5\}$ e $f: A \rightarrow A$ definida por:

$$f = \{(1, 2), (2, 4), (3, 1), (4, 3), (5, 5)\}$$

Como f é uma função injetora e sobrejetora (isto é, uma bijeção) de A para A, então ela é uma permutação.

Note que, como f é uma bijeção, a lista f(1), f(2), f(3), f(4), f(5) = (2, 4, 1, 3, 5), nada mais é que uma reordenação de (1, 2, 3, 4, 5).

Definição

Denota-se por S_n o conjunto de todas as permutações sobre o conjunto $\{1, 2, ..., n\}$.

Notação em ciclos

Considere a seguinte permutação em S₅:

$$\pi = \{(1, 2), (2, 4), (3, 1), (4, 3), (5, 5)\}$$

Outra forma de representar permutações é através de tabela:

x	π (x)
1	2
2	4
3	1
4	3
5	5

Também podemos representar por meio de uma matriz 2 x 5 inteiros:

$$\pi = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 4 & 1 & 3 & 5 \end{bmatrix}$$

Ou através da notação em ciclos:

$$\pi = (1, 2, 4, 3)(5)$$

As duas listas entre parênteses são chamadas ciclos.

0 ciclo (1, 2, 4, 3) significa que $1 \mapsto 2 \mapsto 4 \mapsto 3 \mapsto 1$

Em outras palavras

$$\pi(1) = 2$$
, $\pi(2) = 4$, $\pi(4) = 3$, $\pi(3) = 1$

E o 5 que tem como resultado ele mesmo: $\pi(5) = 5$

Cálculos com permutações

Inversão

Se π aplica $a \mapsto b$, então π^{-1} aplica $b \mapsto a$. Assim, se (a, b, c, ...) é um ciclo de π , então (c, b, a, ...) é um ciclo de π^{-1}

Exemplo

Dada a permutação $\pi = (1, 2, 7, 9, 8)(5, 6, 3)(4) \in S_9$. Calcule π^{-1}

Resposta: $\pi^{-1} = (8, 9, 7, 2, 1)(3, 6, 5)(4)$

Composição

Dados duas permutações $\pi e \sigma \in S_9$

$$\pi = (1,3,5)(4,6)(2,7,8,9)$$

$$\sigma = (1,4,7,9)(2,3)(5)(6,8)$$

Calcule $\pi \circ \sigma$.

Começando com $\sigma(1)=4$, depois precisamos encontrar $\pi(4)=6$. Assim temos os primeiros elementos:

$$\pi \circ \sigma = (1, 6, ...$$

Agora vamos encontrar $\pi \circ \sigma(6)$, inicialmente encontramos a resultado para a função $\sigma(6) = 8$, e $\pi(8) = 9$, portanto:

$$\pi \circ \sigma = (1, 6, 9, ...)$$

Continuando o processo, teremos:

$$\pi \circ \sigma = (1, 6, 9, 3, 7, 2, 5)$$

Ainda falta o 4 que está em outro ciclo:

$$\pi \circ \sigma = (1, 6, 9, 3, 7, 2, 5)(4, 8)$$

Simetria

Em matemática, a palavra simetria refere-se a figuras geométricas. E informalmente podemos definir simetria como um movimento que, quando aplicado a um objeto, tem como resultado uma figura que é exatamente a mesma que a original.

Simetria de um quadrado

Se submetermos o quadrado a um giro de 90° , no sentido anti-horário, o quadrado será o mesmo, a esse movimento chamamos de *simetria* R_{90} :

Podemos também girar o quadrado numa rotação de 180°, tanto no sentido horário quanto horário, que teremos o mesmo quadrado:

Ainda podemos girar o quadrado 270^{0} , o que chamamos de R_{270} . Já no caso de 360^{0} retornamos ao original, passando a impressão que não foi movimentado o quadrado. Essa simetria é chamada de I (identidade).

Temos ainda a possibilidade de gira-lo no seu eixo horizontal, denominada F_H e no seu eixo vertical, denominada F_V :

E ainda no eixo diagonal F_{ℓ} e no oposto F_{l} :

Simetrias como permutações

A simetria R_{90} pode ser expressa como: $\pi = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 2 & 3 & 4 & 1 \end{bmatrix}$, perceba que o 1 foi para posição do 2, o 2 para a posição do 3 e assim por diante. Que pode ser expressa na forma de ciclo: (1, 2, 3, 4).

Todas as 8 simetrias do quadrado podem ser expressas na notação de ciclos:

Nome da simetria	1 2 3 4 Vão para a posição		Forma do ciclo		
Ι	1	2	3	4	(1) (2) (3) (4)
R ₉₀	2	3	4	1	(1, 2, 3, 4)
R ₁₈₀	3	1	4	2	(1, 3) (2, 4)
R ₂₇₀	4	1	2	3	(1, 4, 3, 2)
F _H	2	1	4	3	(1, 2) (3, 4)
F_V	4	3	2	1	(1, 4) (2, 3)
F,	3	2	1	4	(1, 3) (2) (4)
F _\	1	4	3	2	(1) (2, 4) (3)

Combinações de simetria

O que acontece se, primeiro, movemos o quadrado horizontalmente e, em seguida, o submetermos a uma rotação de 90°? O movimento combinado se apresenta assim:

O resultado é uma simetria F_{ℓ} , que pode ser expresso na seguinte forma:

$$R_{90} \circ F_H = F_f$$

Que podemos comprovar através do uso dos rótulos:

$$R_{90} \circ F_H = (1, 2, 3, 4) \circ (1, 2) (3, 4)$$

= (1, 3) (2) (4) = F_f

Monte uma tabela mostrando o efeito combinado de cada par de simetrias

0	I	R ₉₀	R ₁₈₀	R ₂₇₀	F_H	F_V	$F_{/}$	F\
I								
R ₉₀								
R ₁₈₀								
R ₂₇₀								
F_H								
F_V								
$F_{/}$								
F\								

Tabela esperada

o	I	R ₉₀	R ₁₈₀	R ₂₇₀	F_H	F_V	$F_{/}$	F_{\setminus}
I	I	R ₉₀	R ₁₈₀	R ₂₇₀	F_H	F_V	$F_{/}$	F_{\setminus}
R ₉₀	R_{90}	R ₁₈₀	R ₂₇₀	I	F_{\setminus}	$F_{/}$	F_H	F_V
R ₁₈₀	R ₁₈₀	R ₂₇₀	I	R ₉₀	F_V	F_H	F_{\setminus}	F_f
R ₂₇₀	R ₂₇₀		R ₉₀	R ₁₈₀	F_{f}	F_{\setminus}	F_V	F_H
F_H	F_H	$F_{/}$	F_V	F_{\setminus}	I	R ₁₈₀	R ₉₀	R ₂₇₀
F_V	F_V	F_{\setminus}	F_H	$F_{/}$	R ₁₈₀	I	R ₂₇₀	R ₉₀
$F_{/}$	$F_{/}$	F_V	F_{\setminus}	F_H	R ₂₇₀	R ₉₀	I	R ₁₈₀
F_{\setminus}	F_{\setminus}	F_H	$F_{/}$	F_V	R ₉₀	R ₂₇₀	R ₁₈₀	I

Alguns comentários:

- A operação \circ não é comutativa. Note que $R_{90} \circ F_H = F_{/}$, mas $F_H \circ R_{90} = F_{\backslash}$.
- O elemento / é um elemento identidade para o
- Todo elemento tem um inverso. Por exemplo, R_{90}^{-1} = R_{270} , porque R_{90} R_{270} = R_{270} R_{90} = I
- A operação o é associativa.