Seq2Seq (Sequence to Sequence)

자연어처리 텍스트마이닝

Seq2Seq (Sequence to Sequence)

https://arxiv.org/pdf/1409.3215.pdf

RNN 활용

http://cs231n.stanford.edu/slides/2017/cs231n_2017_lecture10.pdf

Seq2Seq (1)

Encoder-Decoder

https://arxiv.org/pdf/1406.1078.pdf

Seq2Seq (2)

Seq2Seq (3)

```
1 2 3 4
나는/내일/여행을/간다.
1 2 3 4 5 6 7
I/am/going/on/a/trip/tomorrow.
```

Seq2Seq (3)

Seq2Seq (4)

인코더 컨텍스트 벡터 디코더

나는 내일 여행을 간다

Seq2Seq (5)

인코더

인코더

. . . 인코더 h_2 h_1 h_3 h_9 컨텍스트 벡터 **RNN RNN RNN RNN** X_1 X_2 X_3 X_{10} <pad> 나는 내일 여행을

컨텍스트 벡터

디코더 - greedy decoding

디코더 softmax 인코더 디코더 R R R R R R R R R R R R 컨텍스트 Ν Ν Ν Ν Ν N Ν N Ν Ν 벡터 Ν Ν Ν Ν Ν N N Ν N Ν N N 단어 임베딩 단어 임베딩 내일 여행을 나는 간다 <SOS>

디코더

디코더

$$y_t = argmax(p_t)$$

최대확률을 가지는 단어 선택

$$p_t = softmax(s_t)$$

확률 분포 계산

$$s_t=g(h_t)$$

RNN 출력 계산

$$h_t = RNN(h_{t-1}, x_t)$$

Hidden State 계산

h_t: t시점 Hidden State

x_t : t시점 입력

학습 - Teacher Forcing

학습

$$-\sum_{j=1}^K y_{t,j} {\log \hat{y}_{t,j}}$$

FIN INSIGHT Copyright FIN INSIGHT. All Right Reserved 가치를 높이는 금융 인공지능 실무교육

Seq2Seq (3)

Seq2Seq (4)

Seq2Seq with Attention (Effective Approaches to Attention-based Neural Machine Translation)

https://arxiv.org/pdf/1508.04025.pdf

Seq2Seq with Attention (1)

Seq2Seq with Attention (1)

FIN INSIGHT Copyright FIN INSIGHT. All Right Reserved 가치를 높이는 금융 인공지능 실무교육

Insight campus

Seq2Seq with Attention (2)

Seq2Seq with Attention (2)

Seq2Seq with Attention (3)

Seq2Seq with Attention (4)

BLEU

$$BLEU = min \left(1, \frac{predict \ length}{ref \ erence \ length} \right) \left(\prod_{i=1}^{4} precision_{i} \right)^{\frac{1}{4}}$$