实变函数第十二次作业

16231057 王延鹏

June 25, 2020

17.4

19

Proof.

设 μ^* 是 2^X 上的外测度, \mathcal{M} 是关于 μ^* 的全体可测集。 $\overline{\mu}$ 是 μ^* 在 \mathcal{M} 上面的限制。 $(X,\mathcal{M},\overline{\mu})$ 是一个由外测度诱导的测度空间。

首先证明零测集是可测的。假设 $\mu^*(E)=0$, 那么, 任取集合 $A\subseteq 2^X$, $A\cap E\subseteq E$, $A\cap E^c\subseteq A$, 根据外测度的有限单调性 $\mu^*(A\cap E)+\mu^*(A\cap E^c)\le \mu^*(A)$ 。所以零测集是可测的

下面证明零测集的子集都是可测的,设 $\mu^*(E) = 0$,任取 $A \subseteq E$,根据外测度的有限单调性, $0 \le \mu^*(A) \le \mu^*(E) = 0$,所以 $\mu^*(A) = 0$,因此 A 是可测的

21

Proof.

由 μ 确定的外测度 μ^* ,根据诱导的外测度的定义,对于任何非空集合 $A\subseteq X$,只能由 X来覆盖,所以 $\mu^*(A)=1$; $\mu^*(\emptyset)=0$ 。

根据可测的定义,如果 E 是 \emptyset 或者 X,那么对于 X 中的任意子集 $A\subseteq X$, $\mu^*(A)=\mu^*(A\cap E)+\mu^*(A\cap E^c)$ 成立。如果 E 是 X 中的非空子集,并且 $X\setminus E\neq\emptyset$,那么存在 X 中的非空子集 A

$$1 = \mu^*(A) \neq \mu^*(A \cap E) + \mu^*(A \cap E^c) = 2$$

所以可测集只有 $\{\emptyset, X\}$, 他们是一个 σ 代数。

23

Proof.

由 μ 确定的外测度 $\mu^* = \mu$ 。 \mathcal{S} 中所有的元素,即 \mathbb{R} 的所有子集都是可测的。这里使用反证法,若存在 \mathbb{R} 中的子集 E 不可测,那么存在 \mathbb{R} 中的子集 E 不可测,那么存在 \mathbb{R} 中的子集 E 不可测,那么存在 \mathbb{R} 中的子集 E 和 E 的子集都是可测的,并且是一个 E 代数

17.5

25

Proof.

由于不存在不相交的集合所以有限可加性成立;分别对 A 和 X 验证,可列单调性是成立的,因此 μ 是一个预测度。 μ 可以扩张为一个测度,考虑 $\mathcal{S}'=\{\emptyset,A,X,X\setminus A\}$,并且定义 $\mu'(\emptyset)=0$, $\mu'(X\setminus A)=1$,这样可以验证 \mathcal{S} 中的集合都是 μ' 可测的,并且在 \mathcal{S} 上 $\mu=\mu'$ 。

首先由 μ 诱导的外测度 μ^* ,若 $E \subseteq A$, $\mu^*(E) = 1$;若 $E \setminus A \neq \emptyset$, $\mu^*(E) = 2$ 。容易知道对于任意集合 $B \subseteq X$,若 $E = \emptyset$ 或者 E = X 都有

$$\mu^*(B) = \mu^*(B \cap E) + \mu^*(B \setminus E)$$

除此之外,X 中的集合 E 还有可能是以下三种情况, $(1)E \subseteq A$ $(2)E \subseteq X \setminus A$ $(3)E \cap A \neq \emptyset$ 并且 $E \cap (X \setminus A) \neq \emptyset$ 。可以验证,上述三种情况下的集合都不是可测的,因为对于情况(1)和情况(2),可以取 B 为情况(3);对于情况(3),可以取 B 为满足情况(3)并且 $E \subset B$ 。综上都有

$$\mu^*(B) \neq \mu^*(B \cap E) + \mu^*(B \setminus E)$$

所以可测集只有 X 和 \emptyset

30

(i) Proof.

首先说明对于可列封闭,设 $\{E_k\}_{k=1}^{\infty}$ 是 \mathcal{S}_{σ} 中的任意一列集合,并且每个 $E_k = \bigcup_{i=1}^{\infty} E_{ki}$,其中 $E_{ki} \in \mathcal{S}$ 。由于可列个可列集合仍是可列的,所以 $\{E_{ki}\}_{i,k=0}^{\infty}$ 是可列的,所以 $\bigcup_{k=1}^{\infty} E_k = \bigcup_{i=0}^{\infty} E_k i \in \mathcal{S}_{\sigma}$ 。

对于有限交,考虑有限个集合 $\{E_k\}_{k=1}^n$, 其中 $E_k = \bigcup_{i=1}^{\infty} E_{ki}$,

$$\bigcap_{k=1}^{n} E_k = \bigcap_{k=1}^{n} \bigcup_{i=1}^{\infty} E_{ki} = \bigcup_{j=1}^{\infty} \bigcap_{k=1}^{n} E_{ki}$$

其中 $A_j = \bigcap_{k=1}^n E_{ki}$,这里 $j = \sum i$ 。由于 \mathcal{S} 对有限交封闭,所以 $A_j \in \mathcal{S}$,所以 $\bigcup_{j=1}^\infty A_j \in \mathcal{S}_\sigma$,因此 \mathcal{S}_σ 对有限交封闭

(ii) Proof.

设 $\bigcap_{k=1}^{\infty} E_k \in \mathcal{S}_{\sigma\delta}$, 其中 $E_k \in \mathcal{S}_{\sigma}$ 。令 $A_n = \bigcap_{k=1}^n E_k$,由于 \mathcal{S}_{σ} 对有限交封闭,所以 $A_n \in \mathcal{S}_{\sigma}$,并且有 $\bigcap_{n=1}^{\infty} A_n = \bigcap_{k=1}^{\infty} E_k$, $A_{n+1} \subseteq A_n$ 。因此 $\{A_n\}$ 即为 \mathcal{S}_{σ} 中所求的递降序列。

33

(i) Proof.

任意两个有界区间的交是一个有界区间,差可能是有界区间或者两个有界区间的并,并且这些区间属于 \mathcal{S} 、所以是一个 semi-ring

(ii) Proof.

交是一个二维的有界区域,并且横纵坐标所组成的区间属于 \mathcal{S} ,因此该区域属于 semi-ring 的二维乘积,差可能一个或者两个或者四个有界区域的并,这些有界区域的横纵坐标构成 的区间同样属于 \mathcal{S} ,因此并也属于 semi-ring 的二维乘积

(iii) Proof.

将二维换成 n 维即可