

(12) NACH DEM VERTRAG ÜBER DIE INTERNATIONALE ZUSAMMENARBEIT AUF DEM GEBIET DES
PATENTWESENS (PCT) VERÖFFENTLICHTE INTERNATIONALE ANMELDUNG

(19) Weltorganisation für geistiges Eigentum
Internationales Büro

(43) Internationales Veröffentlichungsdatum
11. August 2005 (11.08.2005)

PCT

(10) Internationale Veröffentlichungsnummer
WO 2005/073988 A1

(51) Internationale Patentklassifikation⁷: **H01F 6/06**,
G01R 33/381

SCHUSTER, Johann [DE/DE]; Gleiwitzer Str. 1, 90522
Oberasbach (DE). **STOCKER, Stefan** [DE/DE]; Lerchen-
str. 18 b, 91091 Grossenseebach (DE).

(21) Internationales Aktenzeichen: PCT/EP2005/050172

(74) Gemeinsamer Vertreter: **SIEMENS AKTIENGE-SELLSCHAFT**; Postfach 22 16 34, 80506 München (DE).

(22) Internationales Anmeldedatum:
17. Januar 2005 (17.01.2005)

(25) Einreichungssprache: Deutsch

(81) Bestimmungsstaaten (soweit nicht anders angegeben, für jede verfügbare nationale Schutzrechtsart): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.

(26) Veröffentlichungssprache: Deutsch

(84) Bestimmungsstaaten (soweit nicht anders angegeben, für jede verfügbare regionale Schutzrechtsart): ARIPO (BW,

(30) Angaben zur Priorität:
10 2004 004 294.2 28. Januar 2004 (28.01.2004) DE

[Fortsetzung auf der nächsten Seite]

(71) Anmelder (für alle Bestimmungsstaaten mit Ausnahme von US): **SIEMENS AKTIENGESELLSCHAFT** [DE/DE];
Wittelsbacherplatz 2, 80333 München (DE).

(72) Erfinder; und
(75) Erfinder/Anmelder (nur für US): **EBERLEIN, Eva** [DE/DE]; Schiessäckerstr. 33, 91083 Baiersdorf (DE).

(54) Title: VACUUM HOUSING FOR A MAGNETIC RESONANCE APPARATUS

(54) Bezeichnung: VAKUUMGEHÄUSE FÜR EIN MAGNETRESONANZGERÄT

WO 2005/073988 A1

(57) Abstract: Disclosed is a vacuum housing (13) for a magnetic resonance apparatus (1), comprising a recess (25) for leading through lead wires (21, 29, 39) to elements located inside the vacuum housing (13), and at least one first bushing module (23A). Said first bushing module (23A) is provided with a first closing plate (31A) which is configured so as to vacuum-tightly seal the recess (25) along with at least one second closing plate (31B). The first bushing module (23A) is also provided with a first structural component (21) that is to be at least partially led through the recess during assembly of the bushing module (23A) and whose size defines a minimum size of the recess (25), which is greater than the size of the first closing plate (31A).

[Fortsetzung auf der nächsten Seite]

GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW), eurasisches (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), europäisches (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IS, IT, LT, LU, MC, NL, PL, PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Zur Erklärung der Zweibuchstaben-Codes und der anderen Abkürzungen wird auf die Erklärungen ("Guidance Notes on Codes and Abbreviations") am Anfang jeder regulären Ausgabe der PCT-Gazette verwiesen.

Veröffentlicht:

— mit internationalem Recherchenbericht

(57) Zusammenfassung: Vakuumgehäuse (13) für ein Magnetresonanzerät (1) mit einer Aussparung (25) zur Durchführung von Zuführungen (21, 29, 39) zu Elementen im Inneren des Vakuumgehäuses (13) und mit mindestens einem ersten Durchführungsmodul (23A), wobei das erste Durchführungsmodul (23A) eine erste Verschlussplatte (31A) aufweist, die derart ausgebildet ist, dass sie gemeinsam mit mindestens einer zweiten Verschlussplatte (31B) die Aussparung (25) vakuumdicht abdichtet, und dass das erste Durchführungsmodul (23A) eine erste bauliche Komponente (21) aufweist, die bei der Montage des Durchführungsmoduls (23A) zumindest teilweise durch die Aussparung zu führen ist und deren Ausmaß eine minimale Größe der Aussparung (25) definiert, welche größer ist als die der ersten Verschlussplatte (31A).

Beschreibung

Vakuumgehäuse für ein Magnetresonanzgerät

5 Die Erfindung betrifft ein Vakuumgehäuse für ein Magnetresonanzgerät mit einer Aussparung zur Durchführung von Zuführungen zu Elementen ins Innere des Vakuumgehäuses und mit mindestens einem ersten Durchführungsmodul.

10 Ein Ansatz zur Unterdrückung von Lärm, der beim Betrieb eines Magnetresonanzgeräts (MR-Geräts) erzeugt wird, besteht darin einen größtmöglichen Teil der schwingenden Oberflächen des MR-Geräts mit Vakuum zu umgeben. Dazu wird beispielsweise das MR-Gerät mit einer luftdichten Kapselung umgeben, in der ein
15 Druck von ca. 100 mbar herrscht. Die Evakuierung des gekapselten Hohlraums bewirkt eine Schallentkopplung zwischen den schwingenden Oberflächen und der Außenwand der Vakuumkapselung. Dabei stellt sich das Problem der luftdichten Durchführung von Zuführungsleitungen ins Innere des Vakuumgehäuses.

20 Besonders aufwändig sind dabei Durchführungen von sperrigen Stromleitungen von eingekapselten Gradientenspulen und vom zugehörigen Kühlkreislauf. Aufgrund der hohen Stromstärken werden hier steife und entsprechend sperrige Versorgungsleitungen mit beispielsweise großen Leiter-Durchmessern verwendet.
25 Weitere Beispiele für mögliche Zuführungen sind elektrischen Serviceleitungen z.B. für Kleinsignale zur Temperaturmessung oder Steuerströme, die mit Stromstärken von bis zu 5 mA in ansteuerbare Magnetfeldspulen innerhalb der Vakuumkapselung fließen.

30 Der Erfindung liegt die Aufgabe zugrunde, ein Vakuumgehäuse für ein Magnetresonanzgerät anzugeben, welches die Durchführung von sperrigen Zuführungen zu Elementen im Inneren des Vakuumgehäuses ermöglicht.

35 Die Aufgabe, bezogen auf das eingangs erwähnte Vakuumgehäuse, wird dadurch gelöst, dass das erste Durchführungsmodul eine

erste Verschlussplatte aufweist, die derart ausgebildet ist, dass sie gemeinsam mit mindestens einer zweiten Verschlussplatte die Aussparung vakuumdicht abdichtet, und dass das erste Durchführungsmodul eine erste bauliche Komponente aufweist, die bei der Montage des Durchführungsmoduls zumindest teilweise durch die Aussparung zu führen ist und deren Ausmaß eine minimale Größe der Aussparung definiert, welche größer ist als die der ersten Verschlussplatte.

Ein Vorteil des Vakuumgehäuses nach der Erfindung liegt darin, dass es die Vakuumdurchführung von sperrigen baulichen Komponenten vereinfacht, indem es die Größe der Aussparung, welche von den Ausmaßen der ersten baulichen Komponente benötigt wird, von der Größe der ersten baulichen Komponente zugeordneten Verschlussplatte entkoppelt. Auf diese Weise kann man einerseits eine einfachere Handhabbarkeit, z.B. Einbau oder Austausch, von sperrigen baulichen Komponenten erhalten, ohne andererseits die Geometrie des Vakuumgehäuses nachteilig zu beeinflussen.

Ein Beispiel für eine sperrige bauliche Komponente ist beispielsweise eine Gradientenleitung, auf die aufgrund der hohen Ströme im Magnetfeld erhebliche Kräfte wirken. Entsprechend ist sie sehr steif und stabil ausgeführt. Die Gradientenleitung verbindet eine Gradientenspule über das Durchführungsmodul mit einem außerhalb der Vakuumkammer angeordneten elektrischen Kontakt einer Stromzuführung. Sie kann eine Länge von größer 1 m aufweisen und ist in ihrer Form an die räumlichen Gegebenheiten angepasst. Beispielsweise kann sie innerhalb der Vakuumkammer auf einer radialen Linie vom Durchführungsmodul zur Gradientenspule verlaufen, wogegen sie außerhalb der Vakuumkammer derart geformt ist, dass sie mit einem auch unter einem anderen azimutalen Winkel angeordneten Kontakt verbunden werden kann. Als weitgehend unflexible Leitung weist sie somit Ausmaße auf, die ihre Handhabung erschweren. Mithilfe der Erfindung lässt sich ihr Ein- oder Ausbau leicht durchführen.

In einer besonders vorteilhaften Weiterbildung des Vakuumgehäuses ist die zweite Verschlussplatte Teil eines zweiten Durchführungsmoduls. Dies hat den Vorteil, dass die aufgrund der baulichen Komponente benötigte Größe der Aussparung zum Aus- und Einbringen der Zuführungen durch die Aussparung dazu genutzt werden kann, weitere Zuführungen zu Elementen im Inneren des Vakuumgehäuses zu nutzen.

10 In einer besonders vorteilhaften Weiterbildung umfasst das zweite Durchführungsmodul eine schubladenartige Führungseinheit. Diese ermöglicht es, beispielsweise eine Hochfrequenz-, Temperatursignalleitung und/oder eine Shim-Steuerleitung derart zu führen, dass die elektrische Leitung auch an einem 15 aufgrund der Geometrie des MR-Geräts schwer zugänglichen Bereich geführt und dort kontrolliert mit z.B. einen Stecker elektrisch verbunden werden können.

Weitere vorteilhafte Ausführungsformen der Erfindung sind 20 durch die Merkmale der Unteransprüche gekennzeichnet.

..

Es folgt die Erläuterung eines Ausführungsbeispiels anhand der Figuren 1 und 2. Es zeigen:

25 FIG 1 einen vertikalen Schnitt durch den Frontbereich eines Magnetresonanzgerätes mit einem zylinderförmigen Grundfeldmagneten entlang der Zylinderachse und

FIG 2 eine perspektivische Ansicht auf einen Ausschnitt 30 des Vakuumgehäuses, in dem eine Aussparung mit zwei Durchführungsmodulen abgedichtet werden kann.

Figur 1 zeigt schematisch einen Schnitt durch ein Magnetresonanzgerät 1 mit einem zylinderförmigen Grundfeldmagneten 3.

35 Das Magnetresonanzgerät 1 ist am Boden mit einer stabilen Halterung 4 befestigt, die beispielsweise aus zwei parallel verlaufenden Trägern 4A besteht. Die Magnethauptachse 5 ent-

spricht der Zylindersymmetriearchse des Grundfeldmagneten 3. Mithilfe einer Patientenliege 7 kann ein Patient in den Untersuchungsbereich 9 des Magnetresonanzgeräts 1 eingebbracht werden. Zur Magnetresonanzuntersuchung werden hohe Magnetfelder im Untersuchungsbereich 9 benötigt. Diese werden durch Gradientenmagnetfelder der Gradientenspuleneinheiten 11 modifiziert, um eine ortsauf lösende Bildgebung zu ermöglichen. Für die Bildqualität sind die Stärke des Grundmagnetfeldes, die Gradientenstromstärke und die Anstiegszeit der Gradientenströme von Bedeutung.

Aufgrund der hohen Ströme in den Gradientenspulen 11 im herrschenden Grundmagnetfeld des Grundfeldmagneten 3 wirken starke Lorenz-Kräfte auf die jeweiligen Gradientenspulen und bewirken Schwingungen, die zu starker Lärmemission führen.

Zur Lärmunterdrückung werden die schwingenden Systemkomponenten mithilfe eines Vakuumgehäuses 13, welches den Grundfeldmagneten 3 und die Gradientenspuleneinheiten 11 im wesentlichen vollständig umgibt, akustisch vom Untersuchungsbereich 9 isoliert. Das Vakuumgehäuse 13 umfasst einen zentralen Bereich 15, eine hintere und eine vordere ringförmige Verkleidung 17A, 17B und zwei ringförmige Dichtungsplatten 19A, 19B, die am Grundfeldmagneten 3 vakuumdicht befestigt sind. Die abnehmbaren Teile des Vakuumgehäuses 13 werden über Dichtungsringe 20A, 20B vakuumdicht aufgebracht. Das vom Vakuumgehäuse 13 umschlossene Volumen wird beispielsweise auf einen Druck von 100 mbar evakuiert. Dies bewirkt die akustische Entkopplung des Vakuumgehäuses 13 und damit des Untersuchungsbereichs 9 von den schwingenden Komponenten innerhalb des Vakuumgehäuses. Als alternative vorteilhafte Ausgestaltung des Vakuumgehäuses 13 können beispielsweise der zentrale Teil 15, die hintere Frontplatte 17A und der Dichtungsring 19A einteilig ausgeführt werden.

35

Bei einem derartigen MR-Gerät 1 müssen verschiedenste Leitungen in das Innere des Vakuumgehäuses geführt werden:

- Gradientenzuführungen zu Gradientenspulen zur Erzeugung variabler und inhomogener Magnetfelder durch gesteuerte Strompulse von mehreren 100 Ampere,
- Körperspulensignalleitungen zum Senden und Empfangen von Hochfrequenzpulsen,
- Kühlungsleitungen zum Abführen von dissipativer Leistung von z.B. bis zu 20 kW aufgrund von resistiven Verlusten in den Gradientenspulen,
- Kleinsignalleitungen, beispielsweise zur Temperaturmessung mithilfe von NTC's
- Steuerstromleitungen zur Einstellung der Grundmagnetfeldeigenschaften auf die Bedingungen zum Zeitpunkt der Messung (Shim-Steuerströme).

15 In der Figur 1 sind beispielhaft drei starre Gradientenleitungen 21 für die drei Raumrichtungen, in denen Gradientenmagnetfelder erzeugt werden sollen, eingezeichnet. Sie weisen einen im Vakuum befindlichen Teil 21A und einen außerhalb des Vakuumgehäuses verlaufenden Teil 21B auf. Aufgrund der durch das starke Grundmagnetfeld und durch die sehr hohen Ströme bewirkten Kräfte auf die Gradientenleitungen müssen diese stabil ausgebildet werden. Entsprechend sind die Gradientenleitungen steif und sperrig bei Ein- und Ausbau zu handhaben. In einer möglichen koaxialleitungähnlichen Realisierungsform werden sie beispielsweise durch Lizen mit einem Durchmesser von 15 mm realisiert, welche isoliert in Kupferröhren von beispielsweise ca. 22 mm Durchmesser verlaufen. Die hohen Ströme bedingen einen derartigen Durchmesser. Der stabile und somit sperrige Aufbau der Gradientenleitungen 21 ist nicht auf dem Bereich innerhalb des Vakuumgehäuses beschränkt, da auch außerhalb des Vakuumgehäuses, im Fall der Figur 1 unterhalb des Grundfeldmagneten, hohe Magnetfelder vorliegen.

30 Zur Aufnahme der sperrigen Gradientenleitungen 21 weist in Figur 1 die Frontplatte 17B im Bereich der Patientenliege 7 eine Ausformung in Art einer Hutze auf. Um den Zugang zum Untersuchungsbereich 9 möglichst wenig einzuschränken, wurden

die Zuführungen zu den Gradientenspulen im Bereich der einführenden Patientenliege 7 angeordnet. Diese Anordnung der Hutze hat des Weiteren den Vorteil, dass ein aufgrund der Vakuumverkapselung vergrößerter Bauraum so minimal wie möglich gehalten wird.

Voraussetzung für die Verwendung des Vakuumgehäuses 13 ist die leichte Wartung und Austauschbarkeit der Durchführungsleitungen selbst unter eingeschränkten räumlichen Bedingungen. Erfindungsgemäß können die Zuführungen, beispielsweise die Gradientenleitungen 21 mit dem Durchführungsmodul 23, zu Servicezwecken auch unter beschränkten räumlichen Gegebenheiten komplett entfernt werden, ohne beispielsweise den Magneten anheben zu müssen. Die Gradientenleitung 21A stellt somit eine Komponente dar, die bei der Montage des Durchführungsmoduls 23A durch die Aussparung 25 zu führen ist und deren Ausmaß eine minimale Größe der Aussparung 25 vorgibt, welche größer ist als die einer Verschlussplatte 31A des Durchführungsmoduls 23A.

Figur 2 zeigt eine perspektivische Ansicht der vorderen Dichtungsplatte 19B im Bereich der Durchführungsmodule 23A, 23B, welche in der Aussparung 25 der Dichtungsplatte 19B bodennah angeordnet sind. Dabei wurde eine Blickrichtung vom Untersuchungsbereich 9 aus auf die Aussparung 25 gewählt. Für eine freie Ansicht der Durchführungsmodule 23A, 23B sind die Gradientenspulen 11, der Grundfeldmagnet 3 und das Vakuumgehäuse 13 (mit Ausnahme der Dichtungsplatte 19B) nicht dargestellt.

In der Figur 2 erkennt man die beiden parallelen Träger 4A und 4B, auf denen der Grundfeldmagnet 3 ruht. Auf dem Träger 4A ist eine Kontaktseinheit 27 für die Gradientenleitungen 21A,...21C angeordnet.

Die Gradientenleitungen 21A,...21C sowie Kleinsignalleitungen 29 werden vakuumdicht auf den Verschlussplatten 31A, 31B vormontiert. Die Leitungen 21, 29 zusammen mit den Verschluss-

platten 31A, 31B bilden die Durchführungsmodule 23A, 23B, die gemeinsam die Aussparung 25 vakuumdicht verschließen. Dazu werden sie beispielsweise an die Dichtungsplatte 19B vakuum-abgedichtet angeschraubt.

5

Dadurch, dass mehrere Durchführungsmodule 23A, 23B gemeinsam die Aussparung 25 abdichten, ist es möglich, auch das sehr steife Gebilde des Durchführungsmoduls 23A durch die Aussparung einzubauen bzw. zu entfernen. Der Austausch der Gradientenleitungen 21 erfolgt beispielsweise folgendermaßen:

Nachdem die Frontplatte 17B abgenommen worden ist, werden die Kleinsignalleitungen, die mithilfe des Durchführungsmoduls 23D verlegt werden, gelöst, und das Durchführungsmodul 23B wird in Pfeilrichtung herausgezogen. Des Weiteren werden die Gradientenleitungen 21 von der Gradientenspule 11 und von der Kontakteinheit 27 gelöst. Anschließend wird das Durchführungsmodul 23A durch Drehen um die Magnethauptachse 5, durch Ziehen und eventuell durch Verkippen vollständig entfernt.
15 Dies ist möglich, da erfindungsgemäß die Aussparung 25 in ihrer Größe an die Ausmaße der sperrigen Gradientenleitungen 21B angepasst ist. Dieses Vorgehen ist durch die Pfeile 33A,...33C in der Figur 2 angedeutet.

25 Das Durchführungsmodul 23D weist als Besonderheit eine schubladenähnliche Struktur 35 auf, die im montierten Zustand in den unzugänglichen Bereich unter den Grundfeldmagneten 3 hineinragt. Sie erlaubt es beispielsweise, Signaleinleitungen vorteilhaft so zu führen, dass sie leicht mit entsprechenden elektronischen Einheiten 37 verbunden werden können. Die schubladenartige Struktur 35 wird beispielsweise durch Führungen 39A,...39D, die am Grundfeldmagneten 3 befestigt sind, geführt.
30

35 Alternativ können beispielsweise die Kleinsignalleitungen 29 durch Rohre, die zur Leitungsführung dienen, zu den entsprechenden Komponenten 37 geführt werden. Wird beispielsweise

das Durchführungsmodul 23B entfernt, ziehen sich die Leitungen 29 durch die Führungsrohre und können auf der Verschlussplattenrückseite abgeschraubt werden. Öffnet man beide Verbindungen mit den Enden einer der Leitungen 29, so kann diese 5 Leitung durch das beispielsweise unter den Magneten 3 verlaufende Führungsrohr gezogen und nach einer Servicekontrolle wieder eingeführt bzw. ausgetauscht werden.

Wie schematisch in Figur 2 angedeutet, kann eine größere Ausparung auch durch mehr als zwei Durchführungsmodule 23A, 23B vakuumdicht verschlossen werden. Zur Verdeutlichung zeigt Figur 2 ein gestrichelt umrandetes beispielhaftes drittes Durchführungsmodul 23C. Das Durchführungsmodul 23C kann beispielsweise zur Durchführung von Kühlleitungen 41 verwendet 15 werden.

Patentansprüche

1. Vakuumgehäuse (13) für ein Magnetresonanzgerät (1) mit einer Aussparung (25) zur Durchführung von Zuführungen

5 (21, 29, 39) zu Elementen (11) im Inneren des Vakuumgehäuses (13) und mit mindestens einem ersten Durchführungsmodul (23A),

d a d u r c h g e k e n n z e i c h n e t , dass das erste Durchführungsmodul (23A) eine erste Verschlussplatte (31A) aufweist, die zur vakuumdichten Abdichtung der Aussparung 25 gemeinsam mit mindestens einer zweiten Verschlussplatte (31B) ausgebildet ist, und dass das erste Durchführungsmodul (23A) eine erste bauliche Komponente (21) aufweist, die bei einer Montage des Durchführungsmoduls (23A) 10 zumindest teilweise durch die Aussparung (25) zu führen ist und deren Ausmaß eine minimale für die Montage benötigte Größe der Aussparung (25) definiert, welche größer ist als die der ersten Verschlussplatte (31A).

20 2. Vakuumgehäuse (13) nach Anspruch 1,

d a d u r c h g e k e n n z e i c h n e t , dass das erste Durchführungsmodul (23A) als erste Komponente (21) mindestens eine unflexible Gradientenleitung (21A,...21C) aufweist.

25

3. Vakuumgehäuse (13) nach Anspruch 1 oder 2,

d a d u r c h g e k e n n z e i c h n e t , dass die zweite Verschlussplatte (31B) Teil eines zweiten Durchführungsmoduls (23) ist.

30

4. Vakuumgehäuse (13) nach Anspruch 3,

d a d u r c h g e k e n n z e i c h n e t , dass das zweite Durchführungsmodul (23B) eine schubladenartige Führungseinheit (35) umfasst, die insbesondere zur Führung einer Hochfrequenz-, Temperatursignalleitung und/oder einer Shim-Steuerleitung (29) ausgebildet ist

10

5. Vakuumgehäuse (13) nach einem der Ansprüche 1 bis 4,
d a d u r c h g e k e n n z e i c h n e t , dass die
Aussparung (25) bodennah im Vakuumgehäuse (13) angeordnet
ist.

5

6. Vakuumgehäuse (13) nach einem der Ansprüche 1 bis 5,
d a d u r c h g e k e n n z e i c h n e t , dass das
Vakuumgehäuse (13) im Bereich der Aussparung (25) ausgehend
in Form einer Hutze zur Aufnahme der Zuführungen (21,29,39)
10 ausgebildet ist.

FIG 1

FIG 2

INTERNATIONAL SEARCH REPORT

International Application No

PCT/EP2005/050172

A. CLASSIFICATION OF SUBJECT MATTER
 IPC 7 H01F6/06 G01R33/381

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC 7 H01F G01R

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

EPO-Internal

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category °	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	US 5 369 387 A (WOODS ET AL) 29 November 1994 (1994-11-29) claims 1,8-11 figures 1,2 column 1, lines 19-22	1-3,5,6
A		4
X	US 5 686 876 A (YAMAMOTO ET AL) 11 November 1997 (1997-11-11) column 6, line 46 - line 51 column 8, line 63 - line 65 figure 6	1,3,5,6
A	EP 1 193 507 A (GENERAL ELECTRIC COMPANY) 3 April 2002 (2002-04-03) claims 1,5,7 paragraphs '0021!, '0040! column 12, line 24 - line 46 column 14, line 36 - column 15, line 2; figures 1,6	1,2,5,6

Further documents are listed in the continuation of box C.

Patent family members are listed in annex.

° Special categories of cited documents :

- *A* document defining the general state of the art which is not considered to be of particular relevance
- *E* earlier document but published on or after the international filing date
- *L* document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- *O* document referring to an oral disclosure, use, exhibition or other means
- *P* document published prior to the international filing date but later than the priority date claimed

- *T* later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
- *X* document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
- *Y* document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.
- *&* document member of the same patent family

Date of the actual completion of the international search

Date of mailing of the international search report

3 May 2005

11/05/2005

Name and mailing address of the ISA

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,
Fax: (+31-70) 340-3016

Authorized officer

Stichauer, L

INTERNATIONAL SEARCH REPORT

Information on patent family members

International Application No

PCT/EP2005/050172

Patent document cited in search report	Publication date	Patent family member(s)		Publication date
US 5369387	A 29-11-1994	JP	6020832 A	28-01-1994
US 5686876	A 11-11-1997	JP	7142237 A	02-06-1995
EP 1193507	A 03-04-2002	US CN EP JP	6437568 B1 1344928 A 1193507 A2 2002219112 A	20-08-2002 17-04-2002 03-04-2002 06-08-2002

INTERNATIONALER RECHERCHENBERICHT

Internationales Aktenzeichen

PCT/EP2005/050172

A. KLASIFIZIERUNG DES ANMELDUNGSGEGENSTANDES
IPK 7 H01F6/06 G01R33/381

Nach der Internationalen Patentklassifikation (IPK) oder nach der nationalen Klassifikation und der IPK

B. RECHERCHIERTE GEBIETE

Recherchierte Mindestprüfstoff (Klassifikationssystem und Klassifikationssymbole)
IPK 7 H01F G01R

Recherchierte aber nicht zum Mindestprüfstoff gehörende Veröffentlichungen, soweit diese unter die recherchierten Gebiete fallen

Während der internationalen Recherche konsultierte elektronische Datenbank (Name der Datenbank und evtl. verwendete Suchbegriffe)

EPO-Internal

C. ALS WESENTLICH ANGESEHENE UNTERLAGEN

Kategorie*	Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile	Betr. Anspruch Nr.
X	US 5 369 387 A (WOODS ET AL) 29. November 1994 (1994-11-29)	1-3,5,6
A	Ansprüche 1,8-11 Abbildungen 1,2 Spalte 1, Zeilen 19-22 -----	4
X	US 5 686 876 A (YAMAMOTO ET AL) 11. November 1997 (1997-11-11) Spalte 6, Zeile 46 - Zeile 51 Spalte 8, Zeile 63 - Zeile 65 Abbildung 6 -----	1,3,5,6
A	EP 1 193 507 A (GENERAL ELECTRIC COMPANY) 3. April 2002 (2002-04-03) Ansprüche 1,5,7 Absätze '0021!, '0040! Spalte 12, Zeile 24 - Zeile 46 Spalte 14, Zeile 36 - Spalte 15, Zeile 2; Abbildungen 1,6 -----	1,2,5,6

Weitere Veröffentlichungen sind der Fortsetzung von Feld C zu entnehmen

Siehe Anhang Patentfamilie

- * Besondere Kategorien von angegebenen Veröffentlichungen :
- *A* Veröffentlichung, die den allgemeinen Stand der Technik definiert, aber nicht als besonders bedeutsam anzusehen ist
- *E* älteres Dokument, das jedoch erst am oder nach dem internationalen Anmeldeatum veröffentlicht worden ist
- *L* Veröffentlichung, die geeignet ist, einen Prioritätsanspruch zweifelhaft erscheinen zu lassen, oder durch die das Veröffentlichungsdatum einer anderen im Recherchenbericht genannten Veröffentlichung belegt werden soll oder die aus einem anderen besonderen Grund angegeben ist (wie ausgeführt)
- *O* Veröffentlichung, die sich auf eine mündliche Offenbarung, eine Benutzung, eine Ausstellung oder andere Maßnahmen bezieht
- *P* Veröffentlichung, die vor dem internationalen Anmeldeatum, aber nach dem beanspruchten Prioritätsatum veröffentlicht worden ist
- *T* Spätere Veröffentlichung, die nach dem internationalen Anmeldeatum oder dem Prioritätsatum veröffentlicht worden ist und mit der Anmeldung nicht kollidiert, sondern nur zum Verständnis des der Erfindung zugrundeliegenden Prinzips oder der ihr zugrundeliegenden Theorie angegeben ist
- *X* Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann allein aufgrund dieser Veröffentlichung nicht als neu oder auf erfinderischer Tätigkeit beruhend betrachtet werden
- *Y* Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann nicht als auf erfinderischer Tätigkeit beruhend betrachtet werden, wenn die Veröffentlichung mit einer oder mehreren anderen Veröffentlichungen dieser Kategorie in Verbindung gebracht wird und diese Verbindung für einen Fachmann naheliegend ist
- *&* Veröffentlichung, die Mitglied derselben Patentfamilie ist

Datum des Abschlusses der internationalen Recherche

Absendedatum des internationalen Recherchenberichts

3. Mai 2005

11/05/2005

Name und Postanschrift der Internationalen Recherchenbehörde
Europäisches Patentamt, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel: (+31-70) 340-2040, Tx. 31 651 epo nl.
Fax: (+31-70) 340-3016

Bevollmächtigter Bediensteter

Stichauer, L

INTERNATIONALER RECHERCHENBERICHT

Angaben zu Veröffentlichungen, die zur selben Patentfamilie gehören

Internationales Aktenzeichen

PCT/EP2005/050172

Im Recherchenbericht angeführtes Patentdokument		Datum der Veröffentlichung		Mitglied(er) der Patentfamilie		Datum der Veröffentlichung
US 5369387	A	29-11-1994	JP	6020832 A		28-01-1994
US 5686876	A	11-11-1997	JP	7142237 A		02-06-1995
EP 1193507	A	03-04-2002	US CN EP JP	6437568 B1 1344928 A 1193507 A2 2002219112 A		20-08-2002 17-04-2002 03-04-2002 06-08-2002