문제 1.

10개의 숫자를 입력받고 최솟값, 최댓값, 평균을 출력하시오. 평균은 소숫점을 버리고 정수로 출력한다.

예시

(입력)12345678910

Min:1
Max:10
Average:5

문제 2.

소인수분해를 하는 프로그램을 작성하시오. 아래와 같은 함수를 구현해야 한다.

int is_prime(int n)

n이 소수이면 1, 아니면 0을 반환.

출력은 작은 수 순서대로 한다.

예시

(입력)95

95=5^1*19^1

(입력)2592

2592=2^5*3^4

문제 3.

큰 수 덧셈 계산기를 만드시오. 기본적으로 우리 컴퓨터는 64비트이기 때문에 한번에 64비트가 넘어가는 정수는 계산할 수 없다. 예를 들자면 2^64-1 = 9,223,372,036,854,775,807을 넘어가는 수는 계산 결과로 나올 수 없다. 하지만 인간의 10진수 계산법을 이용하면 이는 쉽게 구현할 수 있을 것처럼 보인다.

- -손으로 계산하는 것처럼 한자리씩 10 넘어가면 자릿수를 1 올리는 방식으로 구현.
- -stdio.h, stdlib.h, string.h 이외 사용 금지.
- -문자열 입력 사용 금지. %c 사용
- -편의를 위해서 먼저 입력할 숫자의 자리수를 입력받고 숫자를 입력한다. 입력되는 숫자는 두 개이며 두 숫자의 자리수는 동일하다.

예시

(입력)10

(입력)1231231235 9999999999

11231231234

4. 첫째 줄에는 테스트 케이스의 개수 C가 주어진다. 둘째 줄부터 각 테스트 케이스마다 사람의 수 N(0<=N<=1000, N은 정수)이 첫 수로 주어지고, 이어서 N명의 나이가 주어진다.(N이 0일 경우, 아무것도 출력하지 않는다) 나이는 1보다 크거나 같고 120보다 작거나 같은 정수이다. 각 케이스마다 한 줄씩 평균보다 나이가 적은 사람들의 비율을 반올림하여 소수점 셋째 자리까지 출력한다.

입력 예시1	출력 예시1
2 1 100 2 30 100	0.000% 50.000%

입력 예시2	출력 예시2
3 6 10 49 70 48 19 120 6 19 38 19 37 111 38 6 19 47 29 57 19 100	66.667% 83.333% 50.000%

입력 예시3	출력 예시3
3 8 29 48 67 38 17 48 19 40 8 38 57 19 48 17 36 18 59 8 19 30 95 39 28 57 29 49	50.000% 50.000% 62.500%

5. 정수 N(N>0)을 입력받고 직사각형 내부에 진폭을 N, 파장의 길이를 N*4+1로 하는 파동의 한 파장을 출력하는 프로그램을 작성하시오. 직사각형의 가로의 길이는 N*2+1이며 세로의 길이는 파장의 길이와 동일하다. (파동은 'O'로 표현하고 직사각형 내부의 여백은 'X'로 표현, 파동을 반시계 방향으로 90도 돌렸을 때 홀수를 입력하면 (0,2π)의 범위의 y=sinx의 그래프와 같은 형태가 되도록 작성하고 짝수를 입력하면 y=sin(-x)의 그래프와 같은 형태가 되도록 작성하여라)

ex 1)

입력

1

출력

XOX

XXO

XOX

OXX

XOX

ex 2)

입력

2

출력

XXOXX

XOXXX

OXXXX

XOXXX

XXOXX

XXXXX

XXXXO

XXXXX

XXOXX

6. 배열을 사용하지 않고 높이 n을 입력받아서 다음과 같은 형태로 숫자를 출력해보세요.

입력 예시	출력 예시
4	7
	456
	89123
	1234567

입력 예시	출력 예시
	4
	123
	56789
7	7891234
	789123456
	56789123456
	1234567891234

7. 회전 축에 대한 정보와 2차원 5*5크기의 윤곽선 또는 도형이 주어진다. 회전 축을 기준으로 멀리 떨어진 윤곽선을 모선으로 하는 회전체를 3차원으로 그리시오. 이 때 출력해야 하는 3차원 공간은 (0<=x,y<=9 && 0<=z<=4)이다.

입력:

회전 축에 대한 정보, 즉 회전축의 x,y 좌표를 입력받는다. 회전축은 xy 평면에 수직인 직선이다.

이후 5*5 2차원 문자 값을 입력받는다. (_) 은 빈 공간을, (*)은 해당 위치가 채워져 있음을 의미한다. 이때 회전축은 좌측 1열에 있다고 간주한다. (주의: 좌측 1열 회전축은 모선이 주어지지 않아도 존재함.)

출력:

회전 축으로부터 가장 멀리 떨어진 윤곽선을 모선으로 하는 3차원 회전체를 저장하고 저장된 값을 출력한다. (저장하지 않고 바로 출력하여도 상관 없음)이때 z=4 부터 z=0까지의 xy 평면을 줄바꿈으로 구별하며 출력해주면 된다.

예시)
INPUT
5 5
*
 _*
 *
*

OUTDUIT
OUTPUT
*
*
*
*

*
*

*

*____

****** ******* *******

****** ***** *___*

INPUT 2 10 5
OUTPUT 2
*
*

*
*

*

***** ***** ****** *****

INPUT 3
3 3
*
 *
*_ ***
OUTDUT 3
OUTPUT 3
<u></u> *
*

_***
*
×

_****

*

*

***** ***** **** 예시 해설)

예시 1의 경우

·____

*

__*_

*

에서 좌측 1열은 회전축이다. 그리고 회전축과 가장 멀리 떨어진 윤곽선을 모선으로 하는 회전체를 그려야 하므로, 회전축과 윤곽선 사이를 모두 채워넣는다.

^___

**

회전 축은 빨간색, 가장 멀리 떨어진 윤곽선은 파란색, 윤곽선과 회전축 사이를 채운 부분은 노란색으로 표시하였다. 이렇게 만들어진 2차원 5*5 도형을 3차원에서 회전시킨 것이다. 이를 xy 평면에 수직인 회전축을 세우고 돌리면 원뿔이 나올 것이다. 이를 xy 평면으로 쪼개어 표시하면 OUTPUT이 된다.

OUTPUT을 보면 z=4 부터 z=0 까지 순차적으로 원을 그리며 커진다. 이는 원뿔을 xy 평면으로 쪼개어 본 모습과 일치한다.

예시 3 ----*--*-***-예시 3도 표현하면 *_-***_

***__

다음과 같은 5*5 도형을 회전축을 기준으로 돌리는 것으로 볼 수 있고, 결과적으로 원기둥이 그려진다. 따라서 OUTPUT과 같이 z=0 일때와 z=1,2,3에서의 xy 평문이 모두 같은 형태가 된다. Z=4일 때는 회전축 만이 표시되는 것을 볼 수 있다.