Course: Computer Application in Physics (MPC 33)

Semester: M.Sc. III, 2018

Question Set No.:

Compiled by: Pijush K. Ghosh Date: July 23, 2018

Sorting, Searching etc.

- 1. Write a C++ programme to arrange a given set of N numbers in ascending/descending order.
- 2. Write a C++ program to obtain the maxima, minima and the number of data from a set of numbers written in a file.
- 3. A class of N students appeared for an examination. Write a C++ program to implement the following with $N \ge 10$:
 - Read the number of students from a file.
 - Read from the file the marks obtained by each student.
 - Find the average marks of the class.
 - Count the number of students who scored more than the average.
- 4. Write a programme in C++ to find the square-root of an integer up to three decimal places. You are not allowed to use the in-built C++ functions sqrt(x), pow(x,p). You may use any search-algorithm to find the root.

Preparing a Data file and Plotting

- 1. Consider the functions: $\psi_1(x) = 5sin(x)$, $\psi_2(x) = 5sin(2x)$, $\psi_3(x) = 5sin(3x)$, $\psi(x) = \psi_1(x) + \psi_2(x) + \psi_3(x)$. Write a C++ program to tabulate the values of $\psi_1(x)$, $\psi_2(x)$, $\psi_3(x)$ and $\psi(x)$ at intervals of 0.01 for $0 \le x \le 6.3$ and plot using Gnuplot.
- 2. Wave-functions of a quantum particle: Write a program in C++ to tabulate the values at equal intervals of the first three normalized eigenstates $\psi_n(x)$, n=1,2,3 of a particle moving in (a) an infinite square well potential and (b) a simple harmonic oscillator potential. Parameters like mass(m) of the particle, angular frequency (ω) of the oscillator, length(L) of the well etc. may be taken as inputs.
 - Plot $\psi_n(x)$ vs. x and study how $\psi_n(x)$ changes with varying (i) m, (ii) L and (iii) ω .
- 3. **Lissajous curves**: Write a program in C++ to tabulate the values of the following trigonometric functions,

 $X(t) = A_X cos(2f_X t),$

 $Y(t) = A_Y sin(2f_Y t + \phi),$

Z(t) = X(t) + Y(t)

at the equally spaced times $t=n\Delta t$, with $\mathbf{n}=0,\ldots,N$. Take the parameters $f_X,f_Y,A_X,A_Y,\phi,\Delta t$ and N as inputs and write the outputs X(t),Y(t) and Z(t) in a file.

- Plot X(t) vs. Y(t). Give graphical evidences in support of the fact that closed curves are obtained for rational $\frac{f_X}{f_Y}$.
- Plot Z(t) vs. t and demonstrate the phenomenon of beats by taking $f_X \approx f_Y$.
- 4. **Butterfly curve**: Write a program in C++ to tabulate the values of X(t) and Y(t):

$$X(t) = r(t)cost(t), \ Y(t) = r(t)sin(t), \\ r(t) = e^{cos(t)} - 2cos(4t) + sin^5(\frac{t}{12})$$

at the equally spaced time-intervals Δt for $-T \leq t \leq T$, where Δt and T are to be treated as inputs. Plot X(t) vs. Y(t).

 $5. \ \, \textbf{Surface plots: Sphere, Torus, Spherical Harmonics etc.} \\$

Use the parametric plot('set parametric') and surface plot('splot') features of gnuplot to implement the following:

(a) Plot for (i) c = 0, a > 0, (ii) c > a, a, c > 0, (iii) c = a > 0, (iv) c < a, c, a > 0.

$$x=(c+acosv)cosu, y=(c+acosv)sinu, z=asinv, \ u,v\in [0,2\pi), a,c\in \Re$$

(b) Plot spherical harmonics: (i) $Y_0^0, Y_1^0, Y_1^1, Y_1^{-1}$.

Sum, Infinite Series etc.

- 1. Write a C programme to find the sum $S_{N,k} = \sum_{i=1}^{N} i^k$ for pre-fixed integer values of N and k.
 - Check your numerical result by comparing it with the known exact results for k = 1, 2.
 - Allow N to take very large values and show that the series $S_{\infty,k}$ converges to a finite value for $k \leq -2$ and diverges for $k \geq -1$. Tabulate the results for at least six different values of k distributed equally in the two ranges specified above.
- 2. Evaluate the sum

$$S = \sum_{r=0}^{N} (-1)^{r} {^{N}C_r}, {^{N}C_r} \equiv \frac{N!}{r!(N-r)!}$$

for five different values of $N \geq 10$. Does your result depend on N? Note that ${}^{N}C_{r}$ is to be evaluated by using a C programme.

3. Write a C programme to find the sum

$$(i)S_1 = \sum_{i \neq j \neq k \neq i; i, j, k=1}^{N} \frac{1}{(i-j)(j-k)}, \quad (ii)S_2 = \sum_{i \neq j \neq k \neq i; i, j, k=1}^{N} \frac{i+j+k}{(i-j)(j-k)}$$

for a fixed value of N

4. Write a C programme to find the value of f(x) at a given value of x by using the power-series expansion of the function f(x).

(i)
$$f(x) = e^{\pm x}$$
, (ii) $cosx$, (iii) $sinx$, (iv) $tanhx$

- Tabulate your results for at least ten different values of x between -100 < x < 100.
- Check the accuracy of your result up to four decimal places.
- Plot the function f(x) for the range $-100 \le x \le 100$ by using Gnuplot. Mark the points $f(x_i)$, i = 1, 2, ..., 10 on the same plot, where $f(x_i)$ correspond to the numerically obtained values of the function.
- 5. Write a C programme to generate Fibonacci sequences:

$$F_n = F_{n-1} + F_{n-2}, \ n \ge 2, \ F_0 = 0, F_1 = 1$$

- Tabulate the results for first 100 elements in this sequence.
- Check numerically while implementing the previous task that the identity holds $\sum_{i=0}^{N} F_i^2 = F_N F_{N+1}$ for all N.
- 6. The Kummer's function is defined as

$$M(a,b,x) = 1 + \frac{ax}{b} + \frac{(a)_2 x^2}{(b)_2 2!} + \dots + \frac{(a)_n x^n}{(b)_n n!} + \dots,$$

$$(a)_n \equiv a(a+1)(a+2)\dots(a+n-1), (a)_0 \equiv 1$$

Evaluate M(a, b, x) for pre-fixed values of a > 0, b > a and x with an accuracy of the order of 10^{-4} .

Check the relation $M(a, b, x) = e^x M(b - a, b, -x)$ Plot M(a, b, x) for fixed a, b and $-1 \le x \le 1$.

7. The ν th order Bessel function $J_{\nu}(x)$ has the following series expansion:

$$J_{\nu}(x) = \left(\frac{x}{2}\right)^{\nu} \sum_{n=0}^{\infty} \frac{\left(-\frac{1}{4}x^{2}\right)^{n}}{n!\Gamma(\nu+n+1)}, \quad \Gamma(1) = 1, \quad \Gamma(n+1) = n\Gamma(n)$$

Evaluate $J_1(x)$ for 20 distinct points within the range $-1 \le x \le 1$ with an accuracy of the order of 10^{-4} . Plot $J_1(x)$ for $-1 \le x \le 1$.

8. Use the recursion relation satisfied by the Legendre functions $P_n(x)$,

$$(n+1)P_{n+1}(x) = (2n+1) x P_n(x) - nP_{n-1}(x), P_0(x) = 1, P_1(x) = x$$

to find $P_5(x)$ on 20 distinct points within the interval $-1 \le x \le 1$. Plot $P_5(x)$ vs. x using Gnuplot.

Logic Gates & Truth Table

1. Write a C programme for n-input truth table for (i) OR and (ii) AND gate.

Complex Numbers

- 1. Write a C++ program to evaluate the sum, difference and product of two given complex numbers.
- 2. Write a C++ program to compute the square and cube roots of a complex number given in the form x + iy numerically.

Number Theory

- 1. **Primality Test**: Write a C programme to determine whether a given number is a prime or not. Find all the primes between 1 and 1000 by using your programme.
- 2. Write a C programme to find the greatest common divisor of three given integers less than 1000. [Hint: You may use the following result from number theory for writing the programme. Any number can be factorized as a product of powers of prime numbers. This factorization is unique for a given number.]
- 3. Change of bases: Write a C programme to find the binary equivalent of a given decimal number.
- 4. Generalize the above problem to the case when a decimal number is expressed in a number system with base $b, 2 \le b \le 8$.
- 5. Change of bases: Write a C programme to find the decimal equivalent of a given binary number.
- 6. **Diophantine equations**: Write a C programme to find the integer-valued solutions for X, Y, Z of the equation, $X^2 + Y^2 = Z^2$.

Recreational Mathematics, Games, Calenders etc.

1. Magic square: Read in a square array of positive integers $n(1 \le n \le N^2)$, and determine if it is a magic square or not. If yes, find its magic constant.

2. Constructing a Magic square: The ij^{th} elements of a magic square of odd order may be constructed by using the following formula:

$$M_{ij} = n\left\{\left(i + j - 1 + \left[\frac{n}{2}\right]\right) \bmod n\right\} + \left\{\left(i + 2j - 2\right) \bmod n\right\} + 1$$

where [x] denotes the integral part of x and $p \mod q \equiv p - q[p/q]$. Construct a magic square of order 9 and print it in the form of a square array.

- 3. Playing Cards: Consider a standard deck of 52 playing cards. Assign the numbers 0-51 in order to each card. Read in a number x $(0 \le x \le 51)$ and identify the corresponding card.
- 4. Chess: Assign the numbers 0-63, row by row, to the various squares on a 8×8 chess-board. Read in two numbers $x, y (0 \le x, y \le 63)$ and determine if the queen at x can capture the queen at y.
- 5. Calender: Read in a date in the form date(D)/month(M)/Year(Y) in the Gregorian calender. Print the day(d) of the week corresponding to the date by using the formula:

$$d = D + \left[2.6M - 0.2\right] - 2a_0 + a_1 + \left[\frac{a_0}{4}\right] + \left[\frac{a_1}{4}\right] (mod7)$$

where $a_0 = [Y/100]$, $a_1 = Y \pmod{100}$. Assign March = 1, April = 2, ... and 0 = Sunday, 1 = Monday,

Vector and Tensor Operations

- 1. Write a C programme to implement the $d \geq 2$ dimensional Kronecker-delta tensor
- 2. Write a C programme to implement the $d \geq 2$ dimensional Levi-Civita tensor.
- 3. Write a C Programme to implement dot product, cross product, scalartriple product and vector triple-product of any given three dimensional vectors.
- 4. Write a C Programme to find the reciprocal lattice vectors for a given set of vectors.

Matrix Operations

- 1. Write a C++ program to evaluate the sum, difference and product of two given matrices of order $N \times N$.
- 2. Write a C++ program to evaluate the determinant and trace of a given matrix of order $N \times N$.
- 3. Write a C++ program to determine the inverse of a given 2×2 matrix.

4. The Pauli matrices $\sigma_{1,2,3}$ are given by,

$$\sigma_1 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad \sigma_2 = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}, \quad \sigma_3 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

(a) Write a C programme to verify the following relations:

$$\sigma_i \sigma_j = i \epsilon_{ijk} \sigma_k, \quad \{\sigma_i, \sigma_j\} = 2 \delta_{ij}, \quad [\sigma_i, \sigma_j] = 2i \epsilon_{ijk} \sigma_k, \quad i, j, k = 1, 2, 3$$

(b) Define four matrices $\xi_{1,2,3,4}$ in terms of the Pauli matrices $\sigma_{1,2,3}$ and the 2×2 identity matrix I:

$$\xi_1 = i\sigma_1 \otimes \sigma_2, \quad \xi_2 = i\sigma_2 \otimes \sigma_2, \quad \xi_3 = -\sigma_3 \otimes \sigma_2, \quad \xi_4 = I \otimes \sigma_3$$

Implement the operation $A \otimes B$ using a C programme and find the form of the matrices (i) $\xi_1, \xi_2, \xi_3, \xi_4$, (ii) $\{\xi_i, \xi_i\}$, (iii) $\gamma_5 = \xi_1 \xi_2 \xi_3 \xi_4$.

Note: The outer-product of two operators A and B is denoted as $A \otimes B$. An example of outer-product of two 2×2 matrices A and B are given below:

$$A \otimes B = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} \otimes \begin{pmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{pmatrix} = \begin{pmatrix} a_{11}B & a_{12}B \\ a_{21}B & a_{22}B \end{pmatrix}$$

5. A quantum system of two spin- $\frac{1}{2}$ particles is described by the Hamiltonian $_{H}.$

$$H_{\pm} = \alpha \vec{S}_1 \cdot \vec{S}_2 + \beta (S_1^z \pm S_2^z), \quad (\alpha, \beta) \in R.$$

- (a) Represent the operators $\vec{S}_{1,2}$ in terms of the Pauli matrices as $S_1^a = \frac{1}{2}\sigma^a \otimes I$, $S_2^a = \frac{1}{2}I \otimes \sigma^a$ and write H_+ as a 4×4 matrix.
- (b) Check numerically that the following states are eigenstates of H_{+} :

$$\begin{aligned} |1,1\rangle &= \begin{pmatrix} 1 \\ 0 \end{pmatrix} \otimes \begin{pmatrix} 1 \\ 0 \end{pmatrix}, |1,0\rangle &= \frac{1}{\sqrt{2}} \left[\begin{pmatrix} 1 \\ 0 \end{pmatrix} \otimes \begin{pmatrix} 0 \\ 1 \end{pmatrix} + \begin{pmatrix} 0 \\ 1 \end{pmatrix} \otimes \begin{pmatrix} 1 \\ 0 \end{pmatrix} \right], \\ |1,-1\rangle &= \begin{pmatrix} 0 \\ 1 \end{pmatrix} \otimes \begin{pmatrix} 0 \\ 1 \end{pmatrix}, |0,0\rangle &= \frac{1}{\sqrt{2}} \left[\begin{pmatrix} 1 \\ 0 \end{pmatrix} \otimes \begin{pmatrix} 0 \\ 1 \end{pmatrix} - \begin{pmatrix} 0 \\ 1 \end{pmatrix} \otimes \begin{pmatrix} 1 \\ 0 \end{pmatrix} \right], \end{aligned}$$

and find the corresponding eigenvalues.

(c) Are all the states above also eigenstate of H_{-} ?

Coin Tossing, Random Walks etc.

- (a) An unbiased coin is thrown N times. Simulate the process numerically by writing a C++ program. Read the value of N from the terminal and write the output to a file.
 - Record the sequence of 'heads'(H) and 'tails'(T).
 - Identify the longest sub-sequence of (i) consecutive 'heads' and consecutive 'tails'.

- Count the total number of 'heads' and 'tails' at the end of the process.
- \bullet Repeat the computations for the case of two unbiased coins thrown simultaneously N times. Record the sequence of HH, TT and HT/TH.
- (b) Write a C++ program to evaluate the value of π numerically with an accuracy up to two decimal places by computing the ratio of the areas of a circumscribed square and its in-circle.
- (c) A drunkard is moving randomly on one dimensional uniform lattice of unit size. Choose the probability of moving in the forward direction to be p. Read in p and the initial position of the drunkard and simulate the process numerically. Record the position(P) of the drunkard from his/her initial position after each step for the total steps $N = 1000, 2000, \ldots, 10000$. Plot P vs. step for each N.
- (d) A drunkard is moving randomly on a uniform square-lattice of unit lattice constant. At each vertex, there are four possible directions: forward, backward, right and left. Choose the probability to move in any one of these directions to be 1/4. Simulate the process numerically.
 - Record the Position(x, y) of the drunkard after each step for the total steps $N = 1000, 2000, \dots, 10000$. Generate a surface-plot of the variables (x, y, step) for each N.
 - Print the path(plot of yvs.x) followed by the drunkard.
 - Repeat your computations for a drunkard moving randomly on a uniform cubic lattice.