Submitted by-Aditya Gautam

Roll No-12

M.sc. 3<sup>rd</sup> semester

Date of Assignment-03/11/2020

Date of Submission-10/11/2020

## **Experiment No -03**

**Topic**- Tracing of Power curve for testing variance of a Normal Population.

**Problem** – A random sample of size 16 is drawn from a N(5, $\sigma^2$ ), where  $\sigma^2$  is unknown. Draw the Power curves for testing  $H_0$ :  $\sigma^2 = 3$  against

i) 
$$H_1: \sigma^2 > 3$$

ii) 
$$H_1: \sigma^2 < 3$$

ii) 
$$H_1$$
:  $\sigma^2 < 3$  iii)  $H_1$ :  $\sigma^2 \neq 3$ 

Given that the size of the test in each of the cases is  $\alpha = 0.05$ 

#### **Theory and Calculation-**

Using Neyman's pearson fundamental lemma, the critical region is given by-

$$W = \{x : \frac{L(x, \theta_1)}{L(x, \theta_0)} \ge k\}$$

Here, 
$$f(x, \mu, \sigma^2) = \frac{1}{\sigma \sqrt{2\pi}} e^{-\frac{1}{2} \left(\frac{x-\mu}{\sigma}\right)^2}; \quad -\infty < x < \infty, -\infty < \mu < \infty, \sigma > 0$$

$$\therefore \frac{L(x,\sigma_{1}^{2})}{L(x,\sigma_{0}^{2})} = \frac{\prod_{i=1}^{n} f(x_{i}, \mu, \sigma_{1}^{2})}{\prod_{i=1}^{n} f(x_{i}, \mu, \sigma_{0}^{2})} \ge k$$

$$\Rightarrow \frac{\left(\frac{1}{\sigma_{1}\sqrt{2\pi}}\right)^{n} e^{-\frac{1}{2\sigma_{1}^{2}}\sum_{i=1}^{n}(x_{i}-\mu)^{2}}}{\left(\frac{1}{\sigma_{0}\sqrt{2\pi}}\right)^{n} e^{-\frac{1}{2\sigma_{0}^{2}}\sum_{i=1}^{n}(x_{i}-\mu)^{2}}} \geq k$$

$$\Rightarrow \left(\frac{\sigma_0}{\sigma_1}\right)^n e^{\frac{1}{2}\sum_{i=1}^n (x_i - \mu)^2 \left(\frac{1}{\sigma_0^2} - \frac{1}{\sigma_1^2}\right)} \ge k$$

$$\Rightarrow n \log \left(\frac{\sigma_0}{\sigma_1}\right) + \frac{1}{2} \sum_{i=1}^n (x_i - \mu)^2 \left(\frac{1}{\sigma_0^2} - \frac{1}{\sigma_1^2}\right) \ge \log k$$

$$\Rightarrow \frac{1}{2} \sum_{i=1}^{n} (x_i - \mu)^2 \left( \frac{{\sigma_1}^2 - {\sigma_0}^2}{{\sigma_0}^2 {\sigma_1}^2} \right) \ge \log k - n \log \left( \frac{{\sigma_0}}{{\sigma_1}} \right)$$

$$\Rightarrow \sum_{i=1}^{n} (x_i - \mu)^2 (\sigma_1^2 - \sigma_0^2) \ge 2\sigma_0^2 \sigma_1^2 [\log k - n \log \left(\frac{\sigma_0}{\sigma_1}\right)]$$

$$\Rightarrow \sum_{i=1}^{n} (x_i - \mu)^2 (\sigma_1^2 - \sigma_0^2) \ge k'$$
 (say)

Where,

$$k' = 2\sigma_0^2 \sigma_1^2 [\log k - n \log \left(\frac{\sigma_0}{\sigma_1}\right)]$$

#### Case 1:

When  $\sigma_1^2 > \sigma_0^2$ , then the C.R. is,

$$W_1 = \{ x : \sum_{i=1}^{n} (x_i - \mu)^2 \ge k_1 \}$$

#### **Case 2:**

When  $\sigma_1^2 < \sigma_0^2$ , then the C.R. is,

$$W_2 = \{ x : \sum_{i=1}^{n} (x_i - \mu)^2 < k_2 \}$$

(i) The C.R. for testing  $H_0: \sigma^2 = 3$  against  $H_1: \sigma^2 > 3$  is given by

$$W_1 = \{ \underset{\sim}{x} : \sum_{i=1}^{16} (x_i - 5)^2 > k_1 \}$$

where  $k_{1}$  is a constant to be determined such that the size of the C.R. is equal to  $\,\alpha\,$  ,

i.e., 
$$P(x \in W_1 | H_0) = \alpha$$

$$\Rightarrow P\{\sum_{i=1}^{16} (x_i - 5)^2 > k_1 \mid H_0\} = .05$$

$$\Rightarrow P\{\frac{\sum_{i=1}^{16} (x_i - 5)^2}{\sigma_0^2} > \frac{k_1}{\sigma_0^2}\} = .05$$

$$\Rightarrow P\{\chi_{(n)}^2 > \frac{k_1}{\sigma_0^2}\} = .05$$

$$\Rightarrow 1 - P\{\chi_{(n)}^2 > \frac{k_1}{\sigma_0^2}\} = 1 - .05$$

$$\Rightarrow P\{\chi_{(n)}^2 < \frac{k_1}{\sigma_0^2}\} = .95$$

To find the value of  $k_1$ , we use the following R-command:

a = qchisq(0.95,16,0) (0 is the non-centrality parameter)

This gives us the value  $\frac{k_1}{\sigma_0^2} = 26.29623$ 

$$\therefore k_1 = 26.29623 \times \sigma_0^2 = 26.29623 \times 3 = 78.88869$$

Thus the C.R. is given by,

$$W_1 = \{x : \sum_{i=1}^{16} (x_i - 5)^2 > 78.88869\}$$

Now, the Power of the test is given by,

Power=1- $\beta$ 

$$=P\{Reject H_0|H_1 \text{ is true}\}$$

$$= P(x \in W_1 \mid H_1)$$

$$= P\{\sum_{i=1}^{16} (x_i - 5)^2 > 78.88869 \mid H_1\}$$

$$= P\{\frac{\sum_{i=1}^{16} (x_i - 5)^2}{\sigma_1^2} > \frac{78.88869}{\sigma_1^2}\}$$

$$= P\{\chi_{(n)}^{2} > \frac{78.88869}{\sigma_{1}^{2}}\}$$

$$=1-P\{\chi_{(n)}^{2}<\frac{78.88869}{\sigma_{1}^{2}}\}$$

Where,  $P\{\chi_{(n)}^2 < \frac{78.88869}{\sigma_1^2}\}$  is the distribution function of the chi-square distribution with 'n' d.f.

Now to trace the power curve we consider different trial values of  $\sigma_1^2 > 3$  and construct the following table using R-Programming.

#### **Programming in R for case 1**

```
a = qchisq(0.95,16,0)
a
var = 3
k1 = var*a
k1
sigma1=c(3.1,3.2,3.3,3.4,3.5,3.6,3.7,3.8,3.9,4.0,4.1,4.2,4.3,4.4,4.5,4.6,4.7,4.8,4.9,5.0,5.1,5.2,5.3,5.4,5.5,5.6,5.7,5.8,5.9,6.0)
sigma11 = k1/sigma1
power = mat.or.vec(30,1)
power1 = mat.or.vec(30,1)
for(i in 1:30){
power[i] = pchisq(sigma11[i],16,0)
power1[i] = 1-power[i]}
power1
plot(sigma1,power1)
```

TABLE: 1

| <b>Trial values of</b> $\sigma_1^2$ (>3) | Power                                                    |
|------------------------------------------|----------------------------------------------------------|
|                                          | $=1-P\{\chi_{(n)}^{2}<\frac{78.88869}{\sigma_{1}^{2}}\}$ |
| 4.1                                      | 0.2563569                                                |
| 4.2                                      | 0.2800755                                                |
| 4.3                                      | 0.3040172                                                |
| 4.4                                      | 0.3280564                                                |
| 4.5                                      | 0.3520771                                                |
| 4.6                                      | 0.3759738                                                |
| 4.7                                      | 0.3996513                                                |
| 4.8                                      | 0.4230254                                                |
| 4.9                                      | 0.4460222                                                |
| 5.0                                      | 0.4685780                                                |
| 5.1                                      | 0.4906386                                                |
| 5.2                                      | 0.5121589                                                |
| 5.3                                      | 0.5331021                                                |
| 5.4                                      | 0.5534392                                                |
| 5.5                                      | 0.5731480                                                |
| 5.6                                      | 0.5922128                                                |
| 5.7                                      | 0.6106233                                                |
| 5.8                                      | 0.6283744                                                |
| 5.9                                      | 0.6454653                                                |
| 6.0                                      | 0.6618989                                                |
| 6.1                                      | 0.6776815                                                |
| 6.2                                      | 0.6928221                                                |
| 6.3                                      | 0.7073322                                                |
| 6.4                                      | 0.7212251                                                |
| 6.5                                      | 0.7345157                                                |
| 6.6                                      | 0.7472204                                                |
| 6.7                                      | 0.7593562                                                |
| 6.8                                      | 0.7709412                                                |
| 6.9                                      | 0.7819939                                                |
| 7.0                                      | 0.7925329                                                |

## Power curve for case 1



(ii) The C.R. for testing  $H_0$ :  $\sigma^2 = 3$  against  $H_1$ :  $\sigma^2 < 3$  is given by

$$W_2 = \{x : \sum_{i=1}^{16} (x_i - 5)^2 < k_2\}$$

where  $k_2$  is a constant to be determined such that the size of the C.R. is equal to  $\,\alpha\,$  ,

i.e., 
$$P(x \in W_2 \mid H_0) = \alpha$$

$$\Rightarrow P\{\sum_{i=1}^{16} (x_i - 5)^2 < k_2 \mid H_0\} = .05$$

$$\Rightarrow P\{\frac{\sum_{i=1}^{16} (x_i - 5)^2}{\sigma_0^2} < \frac{k_2}{\sigma_0^2}\} = .05$$

$$\Rightarrow P\{\chi_{(n)}^2 < \frac{k_2}{\sigma_0^2}\} = .05$$

To find the value of k<sub>2</sub>,we use the following R-command:

a = qchisq(0.05, 16,0) (0 is the non-centrality parameter)

This gives us the value  $\frac{k_2}{\sigma_0^2} = 7.961646$ 

$$\therefore k_2 = 7.961464 \times \sigma_0^2 = 7.961646 \times 3 = 23.884938$$

Thus the C.R. is given by,

$$W_2 = \{x : \sum_{i=1}^{16} (x_i - 5)^2 < 23.884938\}$$

Now, the Power of the test is given by,

Power=1-β

$$=P\{Reject H_0|H_1 \text{ is true}\}$$

$$= P(x \in W_2 \mid H_1)$$

$$= P\{\sum_{i=1}^{16} (x_i - 5)^2 < 23.884938 \mid H_1\}$$

$$= P\{\frac{\sum_{i=1}^{16} (x_i - 5)^2}{\sigma_1^2} < \frac{23.884938}{\sigma_1^2}\}$$

$$= P\{\chi_{(n)}^2 < \frac{23.884938}{\sigma_1^2}\}$$

Where,  $P\{\chi_{(n)}^2 < \frac{23.884938}{\sigma_1^2}\}$  is the distribution function of the chi-square distribution

with 'n' d.f.

Now to trace the power curve we consider different trial values of  $\sigma_1^2 < 3$  and construct the following table using R-Programming.

#### **Programming in R for case 2**

```
a = qchisq(0.05, 16, 0)
a
var = 3
k1 = var*a
k1
sigma1 =
c(2.01, 2.02, 2.03, 2.04, 2.05, 2.06, 2.07, 2.08, 2.09, 2.10, 2.11, 2.12, 2.13, 2.14, 2.15, 2.16, 2.17, 2.18, 2.19,
2.20,2.21,2.22,2.23,2.24,2.25,2.26,2.27,2.28,2.29,2.30)
sigma11 = k1/sigma1
power = mat.or.vec(30,1)
for(i in 1:30){
power[i] = pchisq(sigma11[i],16,0)
power
plot(sigma1,power)
```

TABLE: 2

| <b>Trial values of</b> $\sigma_1^2$ (<3) | <u>Power</u>                                         |
|------------------------------------------|------------------------------------------------------|
| _                                        | $= P\{\chi_{(n)}^2 < \frac{23.884938}{\sigma_1^2}\}$ |
| 2.01                                     | 0.2480098                                            |
| 2.02                                     | 0.2440114                                            |
| 2.03                                     | 0.2400737                                            |
| 2.04                                     | 0.2361961                                            |
| 2.05                                     | 0.2323777                                            |
| 2.06                                     | 0.2286180                                            |
| 2.07                                     | 0.2249163                                            |
| 2.08                                     | 0.2212720                                            |
| 2.09                                     | 0.2176842                                            |
| 2.10                                     | 0.2141525                                            |
| 2.11                                     | 0.2106760                                            |
| 2.12                                     | 0.2072542                                            |
| 2.13                                     | 0.2038862                                            |
| 2.14                                     | 0.2005715                                            |
| 2.15                                     | 0.1973093                                            |
| 2.16                                     | 0.1940989                                            |
| 2.17                                     | 0.1909398                                            |
| 2.18                                     | 0.1878311                                            |
| 2.19                                     | 0.1847723                                            |
| 2.20                                     | 0.1817626                                            |
| 2.21                                     | 0.1788013                                            |
| 2.22                                     | 0.1758879                                            |
| 2.23                                     | 0.1730216                                            |
| 2.24                                     | 0.1702017                                            |
| 2.25                                     | 0.1674277                                            |
| 2.26                                     | 0.1646988                                            |
| 2.27                                     | 0.1620144                                            |
| 2.28                                     | 0.1593739                                            |
| 2.29                                     | 0.1567766                                            |
| 2.30                                     | 0.1542218                                            |

# Power curve for case 2



(iii) The C.R. for testing  $H_0: \sigma^2 = 3$  against  $H_1: \sigma^2 \neq 3$  is given by

W<sub>3</sub>={ 
$$x : \sum_{i=1}^{16} (x_i - 5)^2 < k_3 \text{ or } \sum_{i=1}^{16} (x_i - 5)^2 > k_4 }$$

where k<sub>3</sub> and k<sub>4</sub> are constants to be determined such that,

$$P(x \in W_3 \mid H_0) = \alpha$$

$$\Rightarrow P\{\sum_{i=1}^{16} (x_i - 5)^2 < k_3 \text{ or } \sum_{i=1}^{16} (x_i - 5)^2 > k_4 | H_0 \} = .05$$

$$\Rightarrow P\{\frac{\sum_{i=1}^{16} (x_i - 5)^2}{\sigma_0^2} < \frac{k_3}{\sigma_0^2}\} + P\{\frac{\sum_{i=1}^{16} (x_i - 5)^2}{\sigma_0^2} > \frac{k_4}{\sigma_0^2}\} = .05$$

Since, both are mutually exclusive

Assuming that the test is equitailed we have,

$$P\{\frac{\sum_{i=1}^{16} (x_i - 5)^2}{\sigma_0^2} < \frac{k_3}{\sigma_0^2}\} = .05/2 = .025 \Rightarrow P\{\chi_{(n)}^2 < c\} = .025$$

$$P\{\frac{\sum_{i=1}^{16} (x_i - 5)^2}{\sigma_0^2} > \frac{k_4}{\sigma_0^2}\} = .05/2 = .025 \Rightarrow P\{\chi_{(n)}^2 > d\} = .025 \Rightarrow P\{\chi_{(n)}^2 < d\} = .975$$

To calculate the value of c and d, we use the following R-command:

$$c = qchisq(0.025,16,0)$$

$$var = 3$$

$$k3 = var*c$$

d = qchisq(0.975,16,0)

var = 3

k4 = var\*d

 $\therefore k_3 = 20.72299$ 

 $k_4 = 86.53605$ 

Thus the C.R. is given by,

W<sub>3</sub>={ 
$$x: \sum_{i=1}^{16} (x_i - 5)^2 < 20.72299 \text{ or } \sum_{i=1}^{16} (x_i - 5)^2 > 86.53605 }$$

Now, the Power of the test is given by,

 $Power = P(x \in W_3 \mid H_1)$ 

= 
$$P\{x : \sum_{i=1}^{16} (x_i - 5)^2 < 20.72299 \text{ or } \sum_{i=1}^{16} (x_i - 5)^2 > 86.53605 | H_1 \}$$

$$= P\{\frac{\sum_{i=1}^{16} (x_i - 5)^2}{\sigma_1^2} < \frac{20.72299}{\sigma_1^2}\} + P\{\frac{\sum_{i=1}^{16} (x_i - 5)^2}{\sigma_1^2} > \frac{86.53605}{\sigma_1^2}\}$$

$$= P\{\chi_{(n)}^{2} < \frac{20.72299}{\sigma_{1}^{2}}\} + [1 - P\{\chi_{(n)}^{2} < \frac{86.53605}{\sigma_{1}^{2}}\}]$$

Now to trace the power curve we consider different trial values of  $\sigma_1^2 \neq 3$  and construct the following table using R-Programming.

## Programming in R for case 3

```
c = qchisq(0.025,16,0)
d = qchisq(0.975,16,0)
var = 3
k3 = var*c
k4 = var*d
k3
k4
3.5,3.6,3.7,3.8,3.9,4.0,4.1,4.2,4.3,4.4,4.5,4.6,4.7,4.8,4.9,5.0)
sigma11 = k3/sigma1
sigma11
sigma22 = k4/sigma1
sigma22
power1 = mat.or.vec(40,1)
for(i in 1:40){
power1[i] = pchisq(sigma11[i],16,0)+(1-pchisq(sigma22[i],16,0))
power1
plot(sigma1,power1)
```

### **TABLE: 3**

| Trial values of $\sigma_1^2$ ( $\neq 3$ ) | $\underline{\mathbf{Power}} = P\{\chi_{(n)}^{2} < \frac{20.72299}{\sigma_{1}^{2}}\} + [1 - P\{\chi_{(n)}^{2} < \frac{86.53605}{\sigma_{1}^{2}}\}]$ |
|-------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|
| 0.9                                       | 0.88694674                                                                                                                                         |
| 1.1                                       | 0.81059418                                                                                                                                         |
| 1.2                                       | 0.72290398                                                                                                                                         |
| 1.3                                       | 0.63161004                                                                                                                                         |
| 1.4                                       | 0.54289735                                                                                                                                         |
| 1.5                                       | 0.46082501                                                                                                                                         |

| 1.6 | 0.38753198 |
|-----|------------|
| 1.7 | 0.32373148 |
| 1.8 | 0.26921596 |
| 1.9 | 0.22326209 |
| 2.0 | 0.18491564 |
| 2.1 | 0.15317390 |
| 2.2 | 0.12709197 |
| 2.3 | 0.08871020 |
| 2.4 | 0.07514532 |
| 2.5 | 0.06469934 |
| 2.6 | 0.05703406 |
| 2.7 | 0.05189660 |
| 2.8 | 0.04909969 |
| 2.9 | 0.04850352 |
| 3.1 | 0.05349975 |
| 3.2 | 0.05892191 |
| 3.3 | 0.06618671 |
| 3.4 | 0.07521037 |
| 3.5 | 0.08590204 |
| 3.6 | 0.09816245 |
| 3.7 | 0.11188378 |
| 3.8 | 0.12695044 |
| 3.9 | 0.14324051 |
| 4.0 | 0.16062749 |
| 4.1 | 0.17898227 |
| 4.2 | 0.19817508 |
| 4.3 | 0.21807731 |
| 4.4 | 0.23856317 |
| 4.5 | 0.25951116 |
| 4.6 | 0.28080528 |
| 4.7 | 0.30233591 |
| 4.8 | 0.32400060 |
| 4.9 | 0.34570450 |
| 5.0 | 0.36736067 |

# power curve for case 3



# **Conclusion-**

Thus we get three different power curves for testing  $H_0$ :  $\sigma^2 = 3$  against

i)  $H_1$ :  $\sigma^2 > 3$ , ii)  $H_1$ :  $\sigma^2 < 3$  and iii)  $H_1$ :  $\sigma^2 \neq 3$  respectively at the level of significance  $\alpha = 0.05$ 

.