

Signals and Systems

Assignment 1

Spring 2020

 $\label{lem:mohammadKhalaji76@gmail.com-JaliliA370@gmail.com-JaliliA370@gmail.com-Telegram Channel: @SignalsAndSystems99Spring$

Question 1

For the signal x(t) shown in the figure, plot the following (step-by-step):

- (a) x(2t+3)
- (b) x(-2t)
- (c) x(-3t-4)
- (d) $x(\frac{t-1}{3})$

For each of the signals listed below, find the even and odd components $Ev\{x(t)\}$ and $Od\{x(t)\}$.

(a)
$$x(t) = e^{-5t}cos(t)u(t)$$

(b)
$$x(t) = e^{-6|t|} cos(t)$$

(c)
$$x(t) = \Pi(t - 3.5)$$
 (Solve by sketching) Hint:

$$\Pi(t) = rect(t) = unit pulse = u(t + 0.5) - u(t - 0.5)$$

Determine if each signal is periodic. If so, determine the fundamental period and the fundamental frequency.

(a)
$$x(t) = \sin^2(4t - \frac{\pi}{4})$$

(b)
$$x(t) = e^{-2|t|} sin(t)$$

(c)
$$x(t) = e^{3j(8t + \frac{\pi}{3})}$$

(d)
$$x(t) = \sin^3(5t)$$

(e)
$$x[n] = 3sin(4\pi n)$$

(f)
$$x[n] = 3sin(4n)$$

(g)
$$x[n] = e^{\frac{jn}{2}} + e^{\frac{jn}{3}}$$

(h)
$$x[n] = e^{\frac{jn\pi}{2}} + e^{\frac{jn\pi}{3}}$$

(i)
$$x[n] = cos(\frac{\pi}{8}n^2)$$

(j)
$$x[n] = (-1)^n cos(\frac{2\pi}{5}n)$$

(k)
$$x(t) = \sum_{n=-\infty}^{\infty} e^{-(2t-n)}$$

Determine whether these systems are memoryless, causal, stable, time-invariant and linear. Justify your answers! Answers without justifications are not accepted.

Incorporate the following table (without any changes) in your answers. Fill in the table with zeros and ones.

	Memoryless	Causal	Stable	Time-Invariant	Linear
a					
b					
С					
d					
е					
f					
g					
h					

(a)
$$y(t) = e^{x(t)}$$

(b)
$$y(t) = cos(3t)x(t)$$

(c)
$$y(t) = \int_{-\infty}^{2t} x(\tau) d\tau$$

(d)
$$y(t) = sin(x(t))$$

(e)
$$y[n] = x[4n+1]$$

(f)
$$y[n] = (n-2)x[n]$$

(g)
$$y[n] = x[n] \sum_{k=-\infty}^{\infty} \delta[n - (2k+1)]$$

(h)
$$y[n] = \sum_{k=-\infty}^{n} x[k+3]$$

Determine whether the following systems are invertible. If so, find the invert system.

- (a) $y(t) = \frac{d}{dt}x(t)$
- (b) y[n] = x[2n]
- (c) y(t) = x(2t)

Determine the values of P_{∞} and E_{∞} for the following signals.

- (a) $x(t) = e^{-8t}u(t)$
- (b) $x(t) = e^{j(3t + \frac{\pi}{8})}$
- (c) $x[n] = \left(\frac{1}{3}\right)^n u[n]$

Matlab Question 1

Using Matlab's plot() function, plot the following CT signals for t=-5 to t=5 with 0.01 time steps.

(a)
$$x(t) = e^{-4t}u(t)$$

(b)
$$x(t) = cos(t) \left(u(t+2) - u(t-2) \right)$$

Matlab Question 2

Using Matlab's stem() function, plot the following DT signals for n=-20 to n=20.

- (a) $x[n] = 5\cos(3\pi n)$
- (b) $x[n] = 5\cos(3n)$
- (c) $x[n] = (\frac{1}{2})^n \left(u[n] u[n-10] \right)$