SECTION A: (46 MARKS)

Answer **all** questions from this section.

1.	(a)	Complete the following equations for nuclear reactions .	
		(i) $^{27}_{14}Si \longrightarrow ^{27}_{13}Al + \dots$	(01 mark)
		(ii) ${}^{236}_{92}U + {}^{1}_{0}n \longrightarrow 2{}^{1}_{0}n + \gamma + {}^{147}_{60}Nd + \dots$	(01 marks)
	(b)	When a radioactive isotope was left to stand, it decayed by original value in 45 days . Calculate the half-life of the radioactive.	lioactive
		isotope.	$(2\frac{1}{2} marks)$
	•••••		
	•••••		
	•••••		
2.	(a)	State three factors that can affect electron affinity.	
	•••••		
	(b)	Write equation for the first electron affinity of sulphur.	
	(c)	The first and second electron affinities of sulphur are -20 +649 kJ mol^{-1} respectively. Explain the difference in the	00 and
		affinities of sulphur.	(04 marks)
	•••••		

Poly	styrene	e is formed by polymerization of phenylethene.			
(a)	(i)	Write the structural formula of polystyrene.	(01 ma		
••••	(ii)	Name the type of polymerization involved in the polystyrene.			
	The osmotic pressure of a solution containing 5.5g of polystyrene in 1dm^3 of benzene is 1.0 x 10 ⁻³ atmospheres at 20 ⁰ C.				
(b)		osmotic pressure of a solution containing 5.5g of p			
(b)		osmotic pressure of a solution containing 5.5g of p of benzene is 1.0 x 10 ⁻³ atmospheres at 20 ⁰ C. Calculate the relative molecular mass of polystyr	oolystyrene i		
(b)	dm ³	osmotic pressure of a solution containing 5.5g of p of benzene is 1.0 x 10 ⁻³ atmospheres at 20 ⁰ C. Calculate the relative molecular mass of polystyr	oolystyrene in rene. $(R = 0.0)$ $(R = 0.0)$		
(b)	dm ³	osmotic pressure of a solution containing 5.5g of p of benzene is 1.0 x 10^{-3} atmospheres at 20 °C. Calculate the relative molecular mass of polystyr atm $dm^3 K^{-1} mol^{-1}$)	polystyrene in rene. $(R = 0.0)$ $(R = 0.0)$		
(b)	dm ³	osmotic pressure of a solution containing 5.5g of p of benzene is 1.0 x 10 ⁻³ atmospheres at 20 ⁰ C. Calculate the relative molecular mass of polystyn $atm \ dm^3 \ K^{-1} mol^{-1})$ (0	polystyrene in rene. $(R = 0.0)$ $(R = 0.0)$		

4. (a) The figure below shows the energy diagram for the reaction between nitrogen monoxide and oxygen.

Reaction co-ordinate

(i)	Identify K and L.
-----	-------------------

K	(½ mark)
L	(½ mark)

(ii) State whether the reaction is endothermic or exothermic.

(½ mark)

.....

.....

(b) The experimental results in the table below were obtained for the reaction in (a).

	centration dm ⁻³)	Rate of reaction (mol dm ⁻³ s ⁻¹)
NO	O_2	
0.03	0.03	2.7×10^{-5}
0.03	0.06	5.4×10^{-5}
0.06	0.03	10.8×10^{-5}

(i) Deduce the order of the reaction with respect to; nitrogen monoxide.

(01 mark)

	•••••	Oxygen.	(01 mark)
	(ii)	Write the rate equation for the reaction.	(01 mark)
(c)	Calc	ulate the	
	(i)	rate constant (k) for the reaction and state its units.	(1½ mark
	_	pound ${f Q}$ was steam distilled at 95 0 C and at 760mmHg	, the distill
conta	ained 7	pound ${f Q}$ was steam distilled at 95 0 C and at 760mmHg 7.1% by mass of ${f Q}$. Calculate the molecular formula	, the distill of $oldsymbol{Q}$.
conta	ained 7 vapo	pound ${f Q}$ was steam distilled at 95 0 C and at 760mmHg	, the distill of Q . (04 mark
conta	ained 7 vapo	pound \mathbf{Q} was steam distilled at 95°C and at 760mmHg 7.1% by mass of \mathbf{Q} . Calculate the molecular formula courpressure of water at 95°C is 526mmHg]	, the distill of Q . (04 mark
conta	ained 7 vapo	pound \mathbf{Q} was steam distilled at 95°C and at 760mmHg 7.1% by mass of \mathbf{Q} . Calculate the molecular formula courpressure of water at 95°C is 526mmHg]	, the distill of Q . (04 mark
conta	ained 7 vapo	pound \mathbf{Q} was steam distilled at 95°C and at 760mmHg 7.1% by mass of \mathbf{Q} . Calculate the molecular formula courpressure of water at 95°C is 526mmHg]	, the distill of Q . (04 mark
conta	ained 7 vapo	pound \mathbf{Q} was steam distilled at 95°C and at 760mmHg 7.1% by mass of \mathbf{Q} . Calculate the molecular formula courpressure of water at 95°C is 526mmHg]	, the distill of Q . (04 mark
conta	ained 7 vapo	pound \mathbf{Q} was steam distilled at 95°C and at 760mmHg 7.1% by mass of \mathbf{Q} . Calculate the molecular formula courpressure of water at 95°C is 526mmHg]	, the distill of Q . (04 mark
conta	ained 7 vapo	pound \mathbf{Q} was steam distilled at 95°C and at 760mmHg 7.1% by mass of \mathbf{Q} . Calculate the molecular formula courpressure of water at 95°C is 526mmHg]	, the distill of Q . (04 mark

6.	Draw the structures and name the shapes for the following species	
		$(4\frac{1}{2} marks)$

species	Structure	Name
(i) <i>SO</i> ₂		
(ii) H ₂ S		
(iv) SO ₄ ²⁻		

7.	(a)	Explain what is meant by the term an ideal solution .	(1½ marks)
	••••		
	(b)	A mixture of liquids A and B behaves as an ideal solution pressures of A and B are 473.2Pa and 139.8Pa respective Calculate the composition of the vapour from a mixture mole fraction of liquid A at 20°C.	vely at 20°C.
	••••		
	••••		

	ld take j	place when sodium hydroxide solution is added dro	ded drop-wise until i	
(a)	Lead	nitrate solution.	(03 marks	
• • • • •	Obse	rvation.		
	Equa	tion(s).		
(b)	Iron ((II) chloride solution.	(02 marks	
	Obse	rvation.		
••••				
	Equa	tion.		
 (a)		State the conditions for the reaction between benz sulphuric acid.		
(a)		State the conditions for the reaction between benz	ene and	
(a)		State the conditions for the reaction between benz	ene and (01 mark)	

••••		SECTION B (54 MA	RKS)	
		Answer six questions from 1	this section.	
(a)	State what	is meant by the term entha	lpy of solution.	(01 mari
• • • • •				
(b)	The table h	pelow shows the heats of hy	dration and lattice	energies of
(0)		oride and sodium chloride.	diation and lattice	chergies of
	Salt	Enthalpy of hydration	Lattice energy	
	Sait	$(kJ mol^{-1})$	$(kJ \ mol^{-1})$	
	LiCl	-882	+848	
		-765	+788	
	NaCl			
		he heat of solution of		
	Calculate t			(1½ mar
••••	Calculate t	he heat of solution of		(1½ mar
	Calculate t	he heat of solution of		(1½ mar
	Calculate t	he heat of solution of		(1½ mar
	Calculate t (i) Lith	he heat of solution of ium chloride		
	Calculate t (i) Lith	he heat of solution of		(1½ mar
	Calculate t (i) Lith	he heat of solution of ium chloride		
	Calculate t (i) Lith	he heat of solution of ium chloride		
	Calculate t (i) Lith (ii) Sod	he heat of solution of ium chloride	e solubility of the ty	(01 mari

(c)	Explain how hy	dration energy affects the so	lubility of salts in water. (03 mark)
	nplete the following	g equations and in each case	write the accepted
	0	NH_2NH_2/H^+	
(a)			(04 marks
••••			
••••			
(b)	CH=CH ₂	<i>HI</i> →	(03 mark)
	C1 (<i>CH</i> ₃) ₂ <i>CCH</i> ₂ <i>CH</i>	NaOH(aq)	

(a)	State	how the following anhydrous chlorides ca	an he prepared
(u)	(i)	Aluminium chloride.	(01mar)
••••	(ii)	Phosphorous (III) chloride.	(01 mar
(b)	Writ	e equations for the reaction between water	
	(i)	Aluminium chloride.	(1½ ma
••••	(ii)	Phosphorous (III) chloride.	$(1^{1}/_{2} ma)$
(c)		te sodium hydroxide solution was added di ution of aluminium chloride in water.	
	(i)	State what was observed.	(1½ ma
••••	(ii)	Write equation(s) for the reaction (s) tha	
• • • • •	• • • • • • • • •		

•••••			
(b)	Dete	rmine the molecular formula of Y .	(02 marks)
(c)	Writ	e the structural formulae of all the possible open cha	nin isomers of Y . (1½ marks)
(d)	(i)	Ozonolysis of \mathbf{Y} and subsequent work-up gave on Identify \mathbf{Y} .	e compound. (½ marks)
	(ii)	Write an equation to show how Y can be synthesized 2-ol and indicate a mechanism for the reaction.	zed from butan- (03 marks)
••••			

(a)	Defi	ne the term partition		(01 mar			
••••				•••••			
				• • • • • • • • • •			
••••					•••••	• • • • • • • • • • • • • • • • • • • •	
(b)	belov	per (II) ions forms a c w shows the results of per(II) ions and trichlo	f partitio	on of amr			
	[NF	H ₃] (0.1M Cu ²⁺ (aq))	0.88	1.08	1.34	1.56	1.80
		H ₃] (CHCl ₃)	0.02	0.03	0.04	0.05	0.06
	(i)	Plot a graph of [NH	I_{3}] (0.1 N_{3}	1 Cu ²⁺ (a	q)) agains	st [NH ₃] (CHCl ₃
						(0	93 mai
	(ii)	Determine the velu	с .	.1		(0	11/
	(ii)	Determine the value	e of n in	the com	plex.	(2	1/2 mai
••••	(11)				•	,	
	(II) 			•••••		,	
••••	(II) 					•••••	
	(II) 					•••••••••••••••••••••••••••••••••••••••	
 (c)	(i)						
 (c)			tion coe	fficient,	 K _D of am	monia bet	ween
 (c)		Determine the parti	tion coe	fficient, l	K _D of am	monia bet	
 (c)		Determine the parti	tion coe	fficient, I	K _D of am	monia bet	ween
 (c)		Determine the parti	tion coe	fficient, l	K _D of am	monia bet	ween 1/2 mar

Name the reagent(s) that can be used to distinguish between the compounds. In each case state what would be observed when e separately treated with the reagent.	
$(a) \qquad \qquad \bigcap^{C \equiv CH}$	(03 marks)
Reagent(s)	
Observation:	
(b) CH_3 and CH_2Br	(03 marks)
Reagent(s)	
Observation:	

	OH and OH									
Reagent(s)	~									
Observation:										
			• • • • • • • • • • • • • • • • • • • •			• • • • • • • • •				
The table below shows	the eter	nia radir	ic and th	a first is	nization	onorgy	٥f			
some elements in perior					mzanon	energy	ΟI			
	1	.	.		D	T 0	_			
Element Atom radius (nm)	Na 0.186	Mg 0.160	Al 0.143	Si 0.117	P 0.110	S 0.104	(
First ionization	496	738	577	787	1060	1000				
energy	150	750		707	1000	1000				
$(kj \ mol^{-1})$										
(kj mol ⁻¹) (a) (i) State how (ii) Explain yo				ments va	aries acre	oss the p (01 m				
(a) (i) State how				ments va	aries acre	(01 m				
(a) (i) State how				ments va	aries acro	(01 m				
(a) (i) State how				ments va	aries acro	(01 m				
(a) (i) State how				ments va	aries acro	(01 m				
(a) (i) State how				ments va	aries acro	(01 m				

•••••	•••••		•••••
	•••••		
	•••••		
•••••	•••••		
•••••	•••••		
(b)	(i)	Explain how atomic radius affects the first ion	ization energy.
		-	(02marks)
• • • • • •	• • • • • • •		• • • • • • • • • • • • • • • • • • • •
(i	:,		
(i	i)	Why is the first ionization energy of aluminium	
(i		Why is the first ionization energy of aluminium magnesium?	m lower than that of (03 marks)
(i		Why is the first ionization energy of aluminium magnesium?	m lower than that of (03 marks)
(i		Why is the first ionization energy of aluminium magnesium?	m lower than that of (03 marks)
(i		Why is the first ionization energy of aluminium magnesium?	m lower than that of (03 marks)
(i		Why is the first ionization energy of aluminium magnesium?	m lower than that of (03 marks)
(i		Why is the first ionization energy of aluminium magnesium?	m lower than that of (03 marks)
(i		Why is the first ionization energy of aluminium magnesium?	m lower than that of (03 marks)

♥ ===END===

WELCOME TO SENIOR SIX, YEAR 2023
This is the last page of the printed paper, Page 14

THE PERIODIC TABLE

	T	T					****								-		
1	2											3	4	5	6	7	8
1.0 H 1															1.0 H	4.0 H	
6.9 Li 3	9.0 Be 4											10.8 B 5	C	14.0 N 7	16.0 O 8	19.0 F 9	20.2 N 10
	24.3 Mg 12							 				27.0 Al 13		31.0 P 15	32.1 S 16	35.4 Cl 17	40.0 A 18
39.1 K 19	40.1 Ca 20	I am a second		50.9 V 23		54.9 Mn 25		58.9 Co 27			65.7 Zn 30			1		22/12/2019/20	1
85.5 Rb 37	87.6 Sr 38	88.9 Y 39	91.2 Zr 40		1		101 Ru 44		106 Pd 46	108 Ag 47	112 Cd 48	115 In 49	119 Sn 50	122 Sb 51	128 Te 52	127 I 53	131 Xe 54
133 Cs 55	137 Ba 56	139 La 57	178 Hf 72	181 Ta 73	184 W 74	186 Re 75	190 Os 76	192 Ir 77	195 Pt 78	197 Au 79	201 Hg 80	204 TI 81	207 Pb 82	209 Bi 83	209 Po 84	210 At 85	222 Rn 86
223 Fr 87	226 Ra 88	227 Ac 89	-			2 13 2 13 19 135		9 45				3 3 3 6 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6					2 28
		6 (1			The state of the s	144 Nd 60		150 Sm 62	152 Eu 63			162 Dy 66	165 Ho 67	167 Er 68	169 Tm 69	173 Yb 70	175 Lu 71
			227 Ac 89		231 Pa 91							251 Cf 98	Es		Md		