Contents

	Prefa	ce	<i>page</i> ix	
	PART	Γ ONE FOUNDATIONS OF NEURONAL DYNAMICS	1	
1	Introduction: neurons and mathematics			
	1.1	Elements of neuronal systems	3	
	1.2	Elements of neuronal dynamics	7	
	1.3	Integrate-and-fire models	10	
	1.4	Limitations of the leaky integrate-and-fire model	19	
	1.5	What can we expect from integrate-and-fire models?	23	
	1.6	Summary	25	
2	Ion channels and the Hodgkin-Huxley model		28	
	2.1	Equilibrium potential	28	
	2.2	Hodgkin-Huxley model	31	
	2.3	The zoo of ion channels	42	
	2.4	Summary	56	
3	Dendrites and synapses			
	3.1	Synapses	58	
	3.2	Spatial structure: the dendritic tree	64	
	3.3	Spatial structure: axons	72	
	3.4	Compartmental models	75	
	3.5	Summary	79	
4	Dime	nsionality reduction and phase plane analysis	81	
	4.1	Threshold effects	81	
	4.2	Reduction to two dimensions	84	
	4.3	Phase plane analysis	91	
	4.4	Type I and type II neuron models	96	
	4.5	Threshold and excitability	103	
	4.6	Separation of time scales and reduction to one dimension	108	
	4.7	Summary	111	

vi Contents

	PAR'	T TWO GENERALIZED INTEGRATE-AND-FIRE NEURONS	115	
5	Nonlinear integrate-and-fire models			
	5.1	Thresholds in a nonlinear integrate-and-fire model	120	
	5.2	Exponential integrate-and-fire model	124	
	5.3	Quadratic integrate and fire	129	
	5.4	Summary	132	
6	Adaptation and firing patterns			
	6.1	Adaptive exponential integrate-and-fire	136	
	6.2	Firing patterns	140	
	6.3	Biophysical origin of adaptation	149	
	6.4	Spike Response Model (SRM)	154	
	6.5	Summary	165	
7	Varia	ability of spike trains and neural codes	168	
	7.1	Spike-train variability	169	
	7.2	Mean firing rate	172	
	7.3	Interval distribution and coefficient of variation	178	
	7.4	Autocorrelation function and noise spectrum	179	
	7.5	Renewal statistics	181	
	7.6	The problem of neural coding	190	
	7.7	Summary	199	
8	Noisy	y input models: barrage of spike arrivals	202	
	8.1	Noise input	202	
	8.2	Stochastic spike arrival	207	
	8.3	Subthreshold vs. superthreshold regime	212	
	8.4	Diffusion limit and Fokker–Planck equation (*)	215	
	8.5	Summary	221	
9	Noisy	y output: escape rate and soft threshold	224	
	9.1	Escape noise	224	
	9.2	Likelihood of a spike train	229	
	9.3	Renewal approximation of the Spike Response Model	232	
	9.4	From noisy inputs to escape noise	235	
	9.5	Summary	241	
10	Estimating parameters of probabilistic neuron models			
	10.1	Parameter optimization in linear and nonlinear models	244	
	10.2	Statistical formulation of encoding models	249	
	10.3	Evaluating goodness-of-fit	255	
	10.4	Closed-loop stimulus design	263	
	10.5	Summary	264	

		Contents	vii
11	Encoding and decoding with stochastic neuron models		267
	11.1	Encoding models for intracellular recordings	268
	11.2	Encoding models in systems neuroscience	273
	11.3	Decoding	278
	11.4	Summary	285
		T THREE NETWORKS OF NEURONS AND ULATION ACTIVITY	207
	POP	ULATION ACTIVITY	287
12	Neur	onal populations	291
	12.1	Columnar organization	293
	12.2	Identical neurons: a mathematical abstraction	297
	12.3	Connectivity schemes	300
	12.4	From microscopic to macroscopic	309
	12.5	Summary	322
13	Continuity equation and the Fokker-Planck approach		325
	13.1	Continuity equation	326
	13.2	Stochastic spike arrival	328
	13.3	Fokker–Planck equation	332
	13.4	Networks of leaky integrate-and-fire neurons	335
	13.5	Networks of nonlinear integrate-and-fire neurons	341
	13.6	Neuronal adaptation and synaptic conductance	347
	13.7	Summary	353
14	Quas	si-renewal theory and the integral-equation approach	357
	14.1	Population activity equations	358
	14.2	Recurrent networks and interacting populations	367
	14.3	Linear response to time-dependent input	375
	14.4	Density equations vs. integral equations	381
	14.5	Adaptation in population equations	386
	14.6	Heterogeneity and finite size	390
	14.7	Summary	392
15	Fast transients and rate models		395
	15.1	How fast are population responses?	397
	15.2	Fast transients vs. slow transients in models	399
	15.3	Rate models	408
	15.4	Summary	414

viii Contents

	PAR	FOUR DYNAMICS OF COGNITION	417
16	Com	peting populations and decision making	421
	16.1	Perceptual decision making	422
	16.2	Competition through common inhibition	426
	16.3	Dynamics of decision making	428
	16.4	Alternative decision models	433
	16.5	Human decisions, determinism, and free will	436
	16.6	Summary	439
17	Mem	ory and attractor dynamics	442
	17.1	Associations and memory	442
	17.2	Hopfield model	446
	17.3	Memory networks with spiking neurons	458
	17.4	Summary	464
18	Cortical field models for perception		467
	18.1	Spatial continuum model	468
	18.2	Input-driven regime and sensory cortex models	472
	18.3	Bump attractors and spontaneous pattern formation	484
	18.4	Summary	488
19	Synaptic plasticity and learning		491
	19.1	Hebb rule and experiments	492
	19.2	Models of Hebbian learning	495
	19.3	Unsupervised learning	505
	19.4	Reward-based learning	516
	19.5	Summary	519
20	Outlook: dynamics in plastic networks		524
	20.1	Reservoir computing	524
	20.2	Oscillations: good or bad?	529
	20.3	Helping patients	541
	20.4	Summary	544
	Refer	ences	547
	Index		573