*		UNIVERSIDAD TECNOLÓGICA NACIONAL FACULTAD REGIONAL CORDOBA	Electrónica Aplicada 2		
	Nombre del práctico	Apellidos y nombres	Curso	Hoja	
	Realimentación Negativa		4R	1	

Trabajo Práctico 1

Tema: Realimentación Negativa.

1.0bjetivo:

Verificar de manera práctica el comportamiento de un Circuito Amplificador con Realimentación negativa.

2. Conocimientos Previos:

Unidad Temática 1:

Realimentación negativa. Distintas topologías de Circuitos realimentados .Calculo de Ganancia de Lazo cerrado, lazo abierto, Impedancias de lazo abierto y cerrado. Beneficios de circuitos realimentados. Concepto de Desensibilidad

3. Equipamiento e Instrumental de Laboratorio, Documentación :

- Multímetro ,Osciloscopio, Generador de Señales (Onda Senoidal)
- Fuente de alimentación variable hasta +30 V
- Programa de simulación
- Hoja de Datos Transistor BC 337 o similar

4. Consignas:

- 1. Implementar un amplificador realimentado según la topología del circuito de la Figura 1.
- 2. Realizar las mediciones de Av, Zo, Zi, Avf, Zof, Zif.
- 3. Realizar la medición de Desensibilidad provocando una variación máxima de Av del 45%, para lo cual se deberá modificar algún componente del amplificador. Utilizar Vs = 250 mV para medir Avf y Vs =10 mV para medir Av. (Frecuencia de trabajo fs = 1,5Khz)
- 4. Obtener y graficar la curva de respuesta en frecuencia de la ganancia circuito a lazo abierto y lazo cerrado del circuito implementado.
- 5. Haciendo uso del simulador verificar los valores obtenidos del punto anterior de ganancia y respuesta en frecuencia

*	UNIVERSIDAD TECNOLÓGICA NACIONAL FACULTAD REGIONAL CORDOBA	Electrónica Aplicada 2		
Nombre del práctico	Apellidos y nombres	Curso	Hoja	
Realimentación Negativa		4R	2	

Fig 1 Circuito esquemático del Amplificador de 2 etapas

Valores de Componentes Normalizados :

V_{cc}	22 V	R _{e1}	130 Ω	R_{c2}	2.0kΩ	$R_{\rm f}$	1.6ΚΩ	C_{e2}	10 μF
R_{b1}	820ΚΩ	R_{e2}	12 KΩ	R_{e3}	240Ω	C_{a1}	1 μF	C_{o}	1 μF
R_{b2}	560ΚΩ	R_{b3}	110ΚΩ	R _{e4}	200Ω	C_{E1}	10 μF	Q_1 ,	BC 337
R_{c1}	18ΚΩ	R_{b4}	24 ΚΩ	RL	470 Ω	C_{a2}	1 μF	Q_2	BC 337