On exact computation of square ice entropy

Silvère Gangloff

LIP, ENS Lyon

March 11, 2019

I. Representations of square ice

Square ice model [Pauling-Lieb]:

Discrete curves subshift $[X^s]$:

Discrete curves subshift $[X^s]$:

S.Gangloff, M. Sablik, *Quantified block gluing, aperiodicity and entropy of multidimensional SFT* , 2017.

S.Gangloff, M. Sablik, Quantified block gluing, aperiodicity and entropy of multidimensional SFT , 2017.

Entropy value ?

E.H. Lieb, Residual entropy of square ice, Physical Review, 1967.

S.Gangloff, M. Sablik, Quantified block gluing, aperiodicity and entropy of multidimensional SFT, 2017.

Entropy value ?

E.H. Lieb, Residual entropy of square ice, Physical Review, 1967.

→ Proof under some hypothesis

S.Gangloff, M. Sablik, Quantified block gluing, aperiodicity and entropy of multidimensional SFT, 2017.

Entropy value ?

E.H. Lieb, Residual entropy of square ice, Physical Review, 1967.

→ Proof under some hypothesis

S. Gangloff, A proof that square ice entropy is $\frac{3}{2} \log_2(4/3)$, 2019.

II. Subshifts of finite type and entropy

Ex: Hard square shift, or hard core model.

Ex: Hard square shift, or hard core model.

Ex: Hard square shift, or hard core model.

0	0	0	0	0
0	0	0	1	0
	0			1
0	0	0	1	0
1	0	0	0	0

Ex: Hard square shift, or hard core model.

0	0	0	0	0
0	0	0	1	0
	0			1
1	0	0	1	0
0	0	0	0	0

Ex: Hard square shift, or hard core model.

0	0	0	0	0
0	0	0	1	0
0	0	0	0	1
1	0	1	0	0
0	0	0	0	0

Ex: Hard square shift, or hard core model.

Forbidden patterns $\begin{bmatrix} 1\\1 \end{bmatrix}$ et $\boxed{1 \mid 1}$.

Ex: Hard square shift, or hard core model.

0	0	0	0	0
0	0	0	1	0
0	0	0	0	1
1	0	1	0	0
0	0	0	0	0

 $\mathcal{N}_N(X)$: number of size N square patterns observable in the system.

 $\mathcal{N}_N(X)$: number of size N square patterns observable in the system.

1 0		0	0	
L L	1 1 1	1		

 $\mathcal{N}_N(X)$: number of size N square patterns observable in the system.

 $\mathcal{N}_N(X)$: number of size N square patterns observable in the system.

	1		0	
 - -	0	1		

 $\mathcal{N}_{N}(X)$: number of size N square patterns observable in the system.

 $\mathcal{N}_N(X)$: number of size N square patterns observable in the system.

	0	- - - -	1	
1	1	1	0	
L	-	_ '_	-	-

 $\mathcal{N}_N(X)$: number of size N square patterns observable in the system.

 $\mathcal{N}_N(X)$: number of size N square patterns observable in the system.

	0	0	-1
ĪLL	1	1	

 $\mathcal{N}_N(X)$: number of size N square patterns observable in the system.

 $\mathcal{N}_{N}(X)$: number of size N square patterns observable in the system.

 $\mathcal{N}_N(X)$: number of size N square patterns observable in the system.

	1	0	
ĪLL	1		1

 $\mathcal{N}_N(X)$: number of size N square patterns observable in the system.

	1			0	
ī	_		ī	_	-1
1	1				
L	_	_	ı_	_	$-^{\dagger}$

 $\mathcal{N}_N(X)$: number of size N square patterns observable in the system.

FILL	0	1	
111	1	1	

 $\mathcal{N}_N(X)$: number of size N square patterns observable in the system.

 $\mathcal{N}_N(X)$: number of size N square patterns observable in the system.

Г 1 1	1	 1	-
ĪLL	0	 1	

 $\mathcal{N}_N(X)$: number of size N square patterns observable in the system.

	1			1	
1	-		ı	-	- 1
1	1		ı	Τ	- 1
L	_	_	_	_	_1

 $\mathcal{N}_{N}(X)$: number of size N square patterns observable in the system.

$$\mathcal{N}_2(X) = 2^{2^2}$$

 $\mathcal{N}_N(X)$: number of size N square patterns observable in the system.

$$\mathcal{N}_2(X) = 2^{2^2}$$
$$\mathcal{N}_N(X) = 2^{N^2}$$

$$\mathcal{N}_N(X) = 2^{N^2}$$

 $\mathcal{N}_{N}(X)$: number of size N square patterns observable in the system.

Free tiles

$$\mathcal{N}_2(X) = 2^{2^2}$$
$$\mathcal{N}_N(X) = 2^{N^2}$$

 $\mathcal{N}_N(X)$: number of size N square patterns observable in the system.

Free tiles

$$\mathcal{N}_2(X) = 2^{2^2}$$
$$\mathcal{N}_N(X) = 2^{N^2}$$

$$\begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}$$

 $\mathcal{N}_{N}(X)$: number of size N square patterns observable in the system.

Free tiles

$$\mathcal{N}_2(X) = 2^{2^2}$$
$$\mathcal{N}_N(X) = 2^{N^2}$$

 $\mathcal{N}_N(X)$: number of size N square patterns observable in the system.

Free tiles

$$\mathcal{N}_2(X) = 2^{2^2}$$
$$\mathcal{N}_N(X) = 2^{N^2}$$

 $\mathcal{N}_{N}(X)$: number of size N square patterns observable in the system.

Free tiles

$$\mathcal{N}_2(X) = 2^{2^2}$$
$$\mathcal{N}_N(X) = 2^{N^2}$$

 $\mathcal{N}_{N}(X)$: number of size N square patterns observable in the system.

Free tiles

$$\mathcal{N}_2(X) = 2^{2^2}$$
$$\mathcal{N}_N(X) = 2^{N^2}$$

 $\mathcal{N}_{N}(X)$: number of size N square patterns observable in the system.

Free tiles

$$\mathcal{N}_2(X) = 2^{2^2}$$
$$\mathcal{N}_N(X) = 2^{N^2}$$

 $\mathcal{N}_{N}(X)$: number of size N square patterns observable in the system.

Free tiles	Hard core
$\mathcal{N}_2(X) = 2^{2^2}$ $\mathcal{N}_N(X) = 2^{N^2}$	$\mathcal{N}_2(X) = 7$

 $\mathcal{N}_N(X)$: number of size N square patterns observable in the system.

Free tiles	Hard core
$\mathcal{N}_2(X)=2^{2^2}$	$\mathcal{N}_2(X)=7$
$V_N(X)=2^{N^2}$	$\mathcal{N}_N(X) = 2^{N^2(h(X) + o(1))}$

$$h(X) = \inf_{N} \frac{\log_2(\mathcal{N}_N(X))}{N^2}$$

Free tiles	Hard core	Square ice [Lieb 67]
h = 1	$h \ge 1/2$	$h = \frac{3}{2}\log_2(4/3)$

$$h(X) = \inf_{N} \frac{\log_2(\mathcal{N}_N(X))}{N^2} = \inf_{N} \frac{\log_2(\mathcal{N}_N^{loc}(X))}{N^2}$$

Free tiles	Hard core	Square ice [Lieb 67]
h = 1	$h \ge 1/2$	$h = \frac{3}{2} \log_2(4/3)$

$$h(X) = \inf_{N} \frac{\log_2(\mathcal{N}_N(X))}{N^2} = \inf_{N} \frac{\log_2(\mathcal{N}_N^{loc}(X))}{N^2}$$

Free tiles Hard core Square ice [Lieb 67]
$$h = 1$$
 $h \ge 1/2$ $h = \frac{3}{2} \log_2(4/3)$

$$h(X) = \inf_{N} \frac{\log_2(\mathcal{N}_N(X))}{N^2} = \inf_{N} \frac{\log_2(\mathcal{N}_N^{loc}(X))}{N^2}$$

Free tiles Hard core Square ice [Lieb 67]
$$h = 1$$
 $h \ge 1/2$ $h = \frac{3}{2} \log_2(4/3)$

$$h(X) = \inf_{N} \frac{\log_2(\mathcal{N}_N(X))}{N^2} = \inf_{N} \frac{\log_2(\mathcal{N}_N^{loc}(X))}{N^2}$$

Free tiles Hard core Square ice [Lieb 67]
$$h = 1$$
 $h \ge 1/2$ $h = \frac{3}{2} \log_2(4/3)$

$$h(X) = \inf_{N} \frac{\log_2(\mathcal{N}_N(X))}{N^2} = \inf_{N} \frac{\log_2(\mathcal{N}_N^{loc}(X))}{N^2}$$

Free tiles Hard core Square ice [Lieb 67]
$$h=1$$
 $h\geq 1/2$ $h=\frac{3}{2}\log_2(4/3)$

II. Lieb transfer matrices approach

Entropy of square ice:

$$h(X^s) = \lim_{M,N} \frac{\log_2(\mathcal{N}_{M,N}(X^s))}{MN}.$$

Stripes subshifts:

$$h(X^s) = \lim_{N} \frac{h(X_N^s)}{N}$$

Cylindric stripes subshifts:

Cylindric stripes subshifts:

$$h(X^s) = \lim_{N} \frac{h(\overline{X}_N^s)}{N}$$

$$V_N(t)[\boldsymbol{u},\boldsymbol{v}] = \sum_{\boldsymbol{u} \mathcal{R}[w]\boldsymbol{v}} t^{|w|}.$$

where |w|=# of \square and \square

$$V_N(t)[\boldsymbol{u},\boldsymbol{v}] = \sum_{\boldsymbol{u} \mathcal{R}[w]\boldsymbol{v}} t^{|w|}.$$

where |w|=# of \square and \square

$$h(X^s) = \lim_{N} \frac{\log_2(\lambda_{\max}(V_N(1)))}{N}$$

 $V_N(1)$ •

III. Yang-Baxter transfer matrices

R-matrices and monodromy matrices:

$$R(0,1)=\left(egin{array}{cc} 0 & \\ \end{array}
ight)$$

$$R(0,1) = \begin{pmatrix} 0 & \lambda \\ & \end{pmatrix}$$

$$R(0,1) = \begin{pmatrix} 0 & \lambda \\ 0 & \end{pmatrix}$$

$$R(0,1) = \left(\begin{array}{cc} 0 & \lambda \\ 0 & 0 \end{array} \right)$$

$$R(0,1) = \left(\begin{array}{cc} 0 & \lambda \\ 0 & 0 \end{array}\right)$$

$$R(0,1) = \left(\begin{array}{cc} 0 & \lambda \\ 0 & 0 \end{array}\right)$$

0

$$R(0,1) = \left(\begin{array}{cc} 0 & \lambda \\ 0 & 0 \end{array}\right)$$

$$R(0,1) = \left(\begin{array}{cc} 0 & \lambda \\ 0 & 0 \end{array}\right)$$

$$R(0,1) = \left(\begin{array}{cc} 0 & \lambda \\ 0 & 0 \end{array}\right)$$

$$R(0,1) = \left(\begin{array}{cc} 0 & \lambda \\ 0 & 0 \end{array}\right)$$

$$R(0,1) = \left(\begin{array}{cc} 0 & \lambda \\ 0 & 0 \end{array}\right)$$

 $\boldsymbol{\epsilon} \in \{0,1\}^{N}$

0

$$R(0,1) = \left(\begin{array}{cc} 0 & \lambda \\ 0 & 0 \end{array}\right)$$

Yang-Baxter transfer matrices:

$$T_N[\epsilon, \eta] = \sum_{u \in \{0,1\}} M_N(u, u)[\epsilon, \eta].$$

Composition of these matrices and condition for commutation:

Composition of these matrices and condition for commutation:

Yang-Baxter equation:

$$R_{\mu_t}^{\times} = \frac{1}{\sin(\mu_t/2)} \left(\begin{array}{cccc} \sin(\mu_t - x) & 0 & 0 & 0 \\ 0 & \sin(x) & \sin(\mu_t) & 0 \\ 0 & \sin(\mu_t) & \sin(x) & 0 \\ 0 & 0 & 0 & \sin(\mu_t - x) \end{array} \right).$$

$$R_{\mu_t}^{\mathsf{x}} = \frac{1}{\sin(\mu_t/2)} \left(\begin{array}{cccc} \sin(\mu_t - \mathsf{x}) & 0 & 0 & 0 \\ 0 & \sin(\mathsf{x}) & \sin(\mu_t) & 0 \\ 0 & \sin(\mu_t) & \sin(\mathsf{x}) & 0 \\ 0 & 0 & 0 & \sin(\mu_t - \mathsf{x}) \end{array} \right).$$

Bethe ansatz: if $(p_i)_i$ is solution of:

$$Np_{j} = 2\pi j - (n+1)\pi - \sum_{k=1}^{n} \Theta_{t}(p_{j}, p_{k})$$

$$R_{\mu_t}^{\mathsf{x}} = \frac{1}{\sin(\mu_t/2)} \left(\begin{array}{cccc} \sin(\mu_t - x) & 0 & 0 & 0 \\ 0 & \sin(x) & \sin(\mu_t) & 0 \\ 0 & \sin(\mu_t) & \sin(x) & 0 \\ 0 & 0 & 0 & \sin(\mu_t - x) \end{array} \right).$$

Bethe ansatz: if $(p_i)_i$ is solution of:

$$Np_{j} = 2\pi j - (n+1)\pi - \sum_{k=1}^{n} \Theta_{t}(p_{j}, p_{k})$$

then we have a candidate eigenvector for the eigenvalue:

$$\prod_{k=1}^{n} L_{t}(e^{ip_{k}}) + \prod_{k=1}^{n} M_{t}(e^{ip_{k}}).$$

$$R_{\mu_t}^{\mathsf{x}} = \frac{1}{\sin(\mu_t/2)} \left(\begin{array}{cccc} \sin(\mu_t - x) & 0 & 0 & 0 \\ 0 & \sin(x) & \sin(\mu_t) & 0 \\ 0 & \sin(\mu_t) & \sin(x) & 0 \\ 0 & 0 & 0 & \sin(\mu_t - x) \end{array} \right).$$

Bethe ansatz: if $(p_i)_i$ is solution of:

$$Np_j = 2\pi j - (n+1)\pi - \sum_{k=1}^n \Theta_t(p_j, p_k)$$

then we have a candidate eigenvector for the eigenvalue:

$$\prod_{k=1}^{n} L_{t}(e^{ip_{k}}) + \prod_{k=1}^{n} M_{t}(e^{ip_{k}}).$$

 \rightarrow **Known:** existence and analycity in t.

• Simplification of equations when $t = \sqrt{2}$.

- **1** Simplification of equations when $t = \sqrt{2}$.
- ② For some H_N diagonalised, $V_N(\sqrt{2})H_N = H_N V_N(\sqrt{2})$.

- **1** Simplification of equations when $t = \sqrt{2}$.
- **2** For some H_N diagonalised, $V_N(\sqrt{2})H_N = H_N V_N(\sqrt{2})$.
- **3** Perron-Frobenius theorem.

- **1** Simplification of equations when $t = \sqrt{2}$.
- **2** For some H_N diagonalised, $V_N(\sqrt{2})H_N = H_N V_N(\sqrt{2})$.
- 3 Perron-Frobenius theorem.
- 4 Indentification around $\sqrt{2}$, on $(0, \sqrt{2})$ by analycity.

IV. Asymptotics

Asymptotics of counting functions:

Asymptotics of counting functions: $n_k/N_k \rightarrow 1/2$.

$$\xi_t^{(k)}: \alpha \mapsto \frac{1}{2\pi} \kappa_t(\alpha) + \frac{n_k + 1}{2N_k} + \frac{1}{2\pi N_k} \sum_{i=1}^{n_k} \theta_t(\alpha, \alpha_j^{(k)})$$

$$\xi_t^{(k)}: \alpha \mapsto \frac{1}{2\pi} \kappa_t(\alpha) + \frac{n_k + 1}{2N_k} + \frac{1}{2\pi N_k} \sum_{i=1}^{n_k} \theta_t(\alpha, \alpha_j^{(k)})$$

$$\xi_t^{(k)}: \alpha \mapsto \frac{1}{2\pi} \kappa_t(\alpha) + \frac{n_k + 1}{2N_k} + \frac{1}{2\pi N_k} \sum_{i=1}^{n_k} \theta_t(\alpha, \alpha_j^{(k)})$$

$$\lim_{N} \frac{\log_2(\lambda_{\max}(V_N(1))}{N} = \lim_{k} \frac{1}{N_k} \sum_{i=1}^{n_k} f(\alpha_j^{(k)}) = \int_{\mathbb{R}} f(\alpha) \rho_t(\alpha) d\alpha.$$

 $\bullet \ \, \mathsf{Extend} \,\, \xi_t^{(k)} \,\, \mathsf{on} \,\, \mathsf{a} \,\, \mathsf{stripe} \,\, \mathsf{including} \,\, \mathbb{R} :$

1 Extend $\xi_t^{(k)}$ on a stripe including \mathbb{R} :

 \mathbb{R}

1 Extend $\xi_t^{(k)}$ on a stripe including \mathbb{R} :

1 Extend $\xi_t^{(k)}$ on a stripe including \mathbb{R} :

1 Extend $\xi_t^{(k)}$ on a stripe including \mathbb{R} :

$$\xi_{t}^{(0)}|_{\mathcal{K}}$$

1 Extend $\xi_t^{(k)}$ on a stripe including \mathbb{R} :

$$\xi_t^{(1)}|_{\mathcal{K}}$$

1 Extend $\xi_t^{(k)}$ on a stripe including \mathbb{R} :

$$\xi_t^{(2)}|_{\mathcal{K}}$$

1 Extend $\xi_t^{(k)}$ on a stripe including \mathbb{R} :

$$\xi_t^{(+\infty)}|\kappa$$

1 Extend $\xi_t^{(k)}$ on a stripe including \mathbb{R} :

$$\xi_t^{(+\infty)}|\kappa$$

1 Extend $\xi_t^{(k)}$ on a stripe including \mathbb{R} :

$$\xi_{\mathbf{t}}^{(+\infty)}|_{\mathcal{K}}$$

- **2** Assume $(\xi_t)^{\nu(k)} \to \xi_t^{(+\infty)}$ on any compact K.
- \S $\xi_t^{(+\infty)}$ verifies an integral equation with unique solution ρ_t .

1 Extend $\xi_t^{(k)}$ on a stripe including \mathbb{R} :

- **2** Assume $(\xi_t)^{\nu(k)} \to \xi_t^{(+\infty)}$ on any compact K.
- 3 $\xi_t^{(+\infty)}$ verifies an integral equation with unique solution ρ_t .
- **4** Thus, $\xi_t^{(k)} \to \xi_t^{(\infty)}$.

26 / 32

Rarefaction of the roots and $\xi_t^{(k)}$ biholomorphisms: $\epsilon > 0$:

Rarefaction of the roots and $\xi_t^{(k)}$ biholomorphisms: $\epsilon > 0$:

The functions have distinct values on $\mathcal V$ and Γ . Thus they are bihilomorphisms onto $\mathcal V$.

Lace integral expression of $\xi_t^{(k)}$:

Lace integral expression of $\xi_t^{(k)}$:

By residues theorem:

$$\xi_t^{(k)}(\alpha) = \frac{1}{2\pi}\kappa_t(\alpha) + \frac{n_k + 1}{2N_k} + \oint_{\Gamma} \theta_t\left(\left(\xi_t^{(k)}\right)^{-1}(\alpha)\right) \frac{e^{2i\pi s N_k}}{e^{2i\pi s N_k} - 1} ds + O(\epsilon).$$

Fredholm integral equation: Limit and change of variable:

$$\xi_t^{(\infty)}(\alpha) = \frac{1}{2\pi}\kappa_t(\alpha) + \frac{1}{4} + \int_0^{+\infty} \theta_t(\alpha) \left(\xi_t^{(\infty)}\right)'(\alpha) d\alpha.$$

Fredholm integral equation: Limit and change of variable:

$$\xi_t^{(\infty)}(\alpha) = \frac{1}{2\pi} \kappa_t(\alpha) + \frac{1}{4} + \int_0^{+\infty} \theta_t(\alpha) \left(\xi_t^{(\infty)}\right)'(\alpha) d\alpha.$$

Solution by Fourier transforms.

Final computation:

Final computation:

$$h(X^s) = \int_{\mathbb{R}} \log_2(2|\sin(\kappa_t(\alpha))/2|) . \rho_t(\alpha) d\alpha.$$

Final computation:

$$h(X^s) = \int_{\mathbb{R}} \log_2(2|\sin(\kappa_t(\alpha))/2|).\rho_t(\alpha)d\alpha.$$

Through an expression of $ho_t = \left(\xi_t^{(\infty)}\right)'$ and lace integrals computations:

$$h(X^s) = \frac{3}{2}\log_2(4/3).$$

V. Comments

Why mathematical physics are hard to read for mathematicians?

Archaeology of Knowledge, 1969

Concept of discursive formation

Mathematics and mathematical physics are distinct discursive formations; different conceptions of units of meaning, etc.

Further research:

• Extensions: eight-vertex model [Baxter], dimer model [Lieb]...

Further research:

• Extensions: eight-vertex model [Baxter], dimer model [Lieb]...

2 Hard core model ? Tridimensional ice ? Kari-Culik tilings ?

Further research:

• Extensions: eight-vertex model [Baxter], dimer model [Lieb]..

2 Hard core model ? Tridimensional ice ? Kari-Culik tilings ?

3 Transformation of entropy by subshifts operators?

