TCS

Dr. Jürgen Koslowski

Theoretische Informatik 2, Klausur, alte P.O. 2019-07-23

- Bitte schreiben Sie mit einem dokumentenechten Stift, nicht in Rot und verwenden Sie separate Blätter für jede bearbeitete Aufgabe.
- Markieren Sie jede bearbeitete Aufgabe in der untenstehenden Tabelle, indem Sie die Aufgabennummer einkreisen. Das erleichtert die Korrektur ungemein.
- Legen Sie bitte Ihren Studenten- und Personalausweis bereit.
- Schalten Sie Handys aus und nehmen Sie sie während der Klausur nicht zur Hand!
- Bearbeitungseit: 180 Minuten; mit 40 von 100 Punkten ist die Klausur sicher bestanden.

Aufgabe 1 [10 PUNKTE]

Aus der Theoretischen Informatik 1 sollte Ihnen bekannt sein, dass die Sprache

$$L = \{ a^n b^m c^n d^m : m, n > 0 \} \subseteq \{ a, b, c, d \}^+$$

nicht kontextfrei ist. Konstruieren Sie eine deterministische (!) 2-Band-Maschine M_1 mit $\mathcal{L}(M_1) = L$, indem Sie

- [3 PUNKTE] zunächst eine grobe Spezifikation der Arbeitsweise angeben, so dass die Maschine i.A. schneller laufen sollte als eine 1-Band-Maschine;
- [7 PUNKTE] dann einen Zustandsgraphen für die Maschine zeichnen.

Zur Verbesserung der Übersichtlichkeit können Sie den abweisenden Zustand $q_{\rm rej}$ weglassen. [Hinweis: es reichen weniger als 10 Zustände.]

Aufgabe 2 [10 PUNKTE]

Gegeben sei die folgende deterministische * 1-Band Turingmaschine M.

- * Der Übersichtlichkeit halber haben wir darauf verzichtet, den Zustand $q_{\rm rej}$ und die Schleifen am Zustand $q_{\rm acc}$ einzuzeichnen..
- (1) [6 PUNKTE] Bestimmen Sie die von M akzeptierte Sprache mit detaillierter Begründung.
- (2) [2 PUNKTE] Schätzen Sie die Laufzeit für eine Eingabe der Länge k ab.
- (3) [2 PUNKTE] Zeigen oder widerlegen Sie: ein Zustand lässt sich einsparen, indem man q_{bd} und q_d zusammenfasst.

Aufgabe 3 [10 PUNKTE]

Untersuchen Sie die folgenden Sprachen darauf, ob der Satz von Rice anwendbar ist, und ermitteln Sie ggf. das Ergebnis: $L_i \subseteq \{0,1\}^*$ bestehe aus allen TM-Codes w, so dass

- (1) $\mathcal{L}(M_w)$ eine gerade endliche Anzahl von Elementen hat;
- (2) M_w eine gerade Anzahl von Zuständen hat;
- (3) $\mathcal{L}(M_w)$ von einer TM mit einer geraden Anzahl von Zuständen erzeugt werden kann;
- (4) jedes Wort aus $\mathcal{L}(M_w)$ eine Berechnung gerader Länge hat;
- (5) jedes Wort aus $\mathcal{L}(M_w)$ von einer geraden Anzahl von Berechnung akzeptiert wird.

Aufgabe 4 [10 PUNKTE]

[10 PUNKTE] Das E-Problem 3FACH-SAT hat eine Boole'sche Formel φ in KNF als Eingabe. Zu entscheiden ist, ob φ auf mindestens drei verschiedene Weisen erfüllt werden kann. Weisen Sie die NP-Vollständigkeit von 3FACH-SAT nach.

Aufgabe 5 [10 PUNKTE]

In Multi-Graphen sind Schleifen und mehr als eine Kante zwischen je zwei Knoten erlaubt.

Euler-Kreis (EULER-KREIS)

Gegeben: ein gerichteter Multi-Graph $G = \langle V, E \rangle$

zu entscheiden: ob es in G einen Euler-Kreis gibt, d.h., einen Rundweg, der alle Knoten berührt (evtl. auch mehrfach) und jede Kante genau einmal verwendet.

- (1) [4 PUNKTE] Zeigen Sie, dass G genau dann einen Eulerschen Kreis hat, G zusammenhängend ist und jeder Knoten dieselbe Anzahl von eingehenden wie ausgehenden Kanten hat. [Hinweis: mindestens eine Beweisrichtung sollte eine Induktion verwenden.]
- (2) [6 PUNKTE] Entwerfen Sie einen deterministischen Polynomialzeitalgorithmus, der Codierungen gerichteter Graphen darauf testet, ob sie Eulersche Kreise haben. Verwenden Sie zur Codierung quadratische Adjazenzmatrizen mit natürlichen Zahlen als Einträgen.

Aufgabe 6 [10 PUNKTE]

Richtig oder falsch: geben Sie jeweils eine kurze Begründung:

- (1) Bzgl. der Reduktions-Quasiordnung \leq^R für eine Klasse R von Funktionen zwischen freien Monoiden, die alle Identitätsabbildungen enthält und unter Komposition abgeschlossen ist, sind alle Sprachen der Form Σ^* äquivalent (Σ eine endliche Menge).
- (2) Aus P = NP folgt NP = coNP.
- (3) Es existieren NP-harte Probleme außerhalb von P. (Falls ja, nennen Sie eins.)
- (4) Es existieren Probleme in L, die nicht NL-hart sind. (Falls ja, nennen Sie eins.)
- (5) Für jedes NL-harte Problem und jede endliche Teilmenge $B \subseteq A$ ist das Problem A B ebenfalls NL-hart.

Aufgabe 7 [10 PUNKTE]

In Analogie zu den \mathcal{C} -harten Problemen bzgl. \leq^{\log} bzw. $\leq^{\operatorname{poly}}$ (oder allgemeiner \leq^R) für eine Klasse \mathcal{C} entscheidbarer Probleme kann man \mathcal{C} -leichte Probleme definieren: diese können auf jedes Problem in \mathcal{C} reduziert werden:

A is
$$C$$
-leicht, wenn $A \leq^R C$ für alle $c \in C$

Weiter möge die jeweilige $H\ddot{u}lle$ C^* von C aus allen Problemen bestehen, die leicht bzgl. der Klasse aller C-harten Probleme sind, also

 $A \in \mathcal{C}^*$ sofern für alle E-Probleme B gilt: wenn B \mathcal{C} -hart ist, dann $A \leq^R B$.

Zeigen oder widerlegen Sie:

- (1) [3 PUNKTE] $(-)^*$ ist extensiv: C ist immer Teilmenge der Hülle C^* .
- (2) [3 PUNKTE] (-)* ist monoton: Aus $C \subseteq \mathcal{D}$ folgt $C^* \subseteq \mathcal{D}^*$.
- (3) [4 PUNKTE] $(-)^*$ ist idempotent: $C^{**} = C^*$.

Wenn Sie die Hüllen von \emptyset bzgl. \leq^{\log} bzw. $\leq^{\operatorname{poly}}$ identifizieren können, gibt es [5. SONDER-PUNKTE]

Aufgabe 8 [10 PUNKTE]

Betrachte das E-Problem

Cycle (CYCLE)

Gegeben: eingerichteter Graph $G = \langle V, E \rangle$ und ein Knoten $v \in V$

zu entscheiden: Liegt v auf einem Kreis in G?

Zeigen Sie die *NL*-Vollständigkeit von CYCLE.

Aufgabe 9 [10 PUNKTE]

Betrachte das E-Problem

<u>Inzidenzsystem</u> (IS)

Gegeben: eine endliche Menge X, eine Teilmenge S der Potenzmenge von X und eine Zahl $k \in \mathbb{N}$.

zu entscheiden: Existiert eine Teilmenge T von X mit $|T| \le k$ und $T \cap S \ne \emptyset$ für alle $S \in S$?

- (1) [3 PUNKTE] überlegen Sie sich zunächst eine vernünftige quasi-binäre Codierung (über dem Alphabet $\{0,1,\#\}$) von Instanzen dieses Problems als Eingabe für eine Turingmaschine.
- (2) [7 PUNKTE] Beweisen Sie dann detailliert die **NP**-Vollständigkeit dieses Problems.

Aufgabe 10 [10 PUNKTE]

Wo steckt der Fehler in folgenden Argumenten?

(1) [5 PUNKTE]

- \triangleright Annahme P = NP.
- ightharpoonup Dann existiert ein k mit SAT $\in DTIME(n^k)$.
- riangleright Da jede Sprace in NP auf SAT reduzierbar ist, gilt $NP \subseteq DTIME(n^k)$.
- ightharpoonup Nach Voraussetzung gilt damit $P \subseteq DTIME(n^k)$.
- $\,\rhd\,$ Damit kann $DTIME(n^k)\,$ keine echte Teilmenge von $DTIME(n^{k+1})\,$ sein, Widerspruch.
- \triangleright Also folgt $P \neq NP$.

(2) [5 PUNKTE]

- ▷ Das E-Problem 3-FÄRBBARKEIT ist NP-vollständig.
- \triangleright Jeder Graph, der einen K_4 (= Clique mit 4 Knoten) als Untergraphen enthält, benötigt mindestens vier Farben zu einer legitimen (Knoten-)Färbung.
- ▷ Benötigt man umgekehrt vier oder mehr Farben, so muß spätestens dann eine vierten Farbe verwendet werden, wenn ein Knoten drei verschiedenfarbige Nachbarn hat, also Teil einer 4-Clique ist.
- ▶ Da die Anzahl der möglichen 4-Cliquen eines Graphen polvnmial in der Knotenzahl ist, liegt 3-FÄRBBARKEIT in P.
- ightharpoonup Somit gilt P = NP.