Self-supervised Learning for Speech and Image Hung-yi Lee

Review: Self-supervised Learning for Text

Self-supervised Learning for Speech

Speech processing Universal PERformance Benchmark (SUPERB) https://superbbenchmark.org/

Intent Phoneme Speaker Voice Classifcaiton Identificaiton Recognition Conversion Keyword Speaker Spoken Speech **Spotting** Verificaiton **Enhancement Published** Slot Filling at IS 2021 Speaker Speech Speaker **ASR** Diarization Separation Translation **Emotion** QbyE **Published** Recogition at ACL 2022 **Synthesis** Semantic Speaker Paralinguistic

Content

SUPERB: Speech processing Universal PERformance Benchmark

Shu-wen Yang¹, Po-Han Chi^{1*}, Yung-Sung Chuang^{1*}, Cheng-I Jeff Lai^{2*}, Kushal Lakhotia^{3*}, Yist Y. Lin^{1*}, Andy T. Liu^{1*}, Jiatong Shi^{4*}, Xuankai Chang⁶, Guan-Ting Lin¹, Tzu-Hsien Huang¹, Wei-Cheng Tseng¹, Ko-tik Lee¹, Da-Rong Liu¹, Zili Huang⁴, Shuyan Dong^{5†}, Shang-Wen Li^{5†}, Shinji Watanabe⁶, Abdelrahman Mohamed³, Hung-yi Lee¹

Presented at INTERSPEECH 2021

https://arxiv.org/abs/2105.01051

SUPERB-SG: Enhanced Speech processing Universal PERformance Benchmark for Semantic and Generative Capabilities

Hsiang-Sheng Tsai¹*, Heng-Jui Chang¹*, Wen-Chin Huang²*, Zili Huang³*, Kushal Lakhotia⁴*, Shu-wen Yang¹, Shuyan Dong⁵, Andy T. Liu¹, Cheng-I Lai⁶, Jiatong Shi⁷, Xuankai Chang⁷, Phil Hall⁸, Hsuan-Jui Chen¹, Shang-Wen Li⁵, Shinji Watanabe⁷, Abdelrahman Mohamed⁵, Hung-yi Lee¹

To be appeared at ACL 2022

https://arxiv.org/abs/2203.06849

Speech processing Universal PERformance Benchmark (SUPERB)

• To learn more:

https://youtu.be/MpsVE60iRLM (Mandarin version)

https://youtu.be/GTjwYzFG54E (English version)

Toolkit – S3PRL: https://github.com/s3prl/s3prl

Self-supervised Learning for Image

Image Recognition

Object Detection

Semantic Segmentation

Visual Navigation

- How Well Do Self-Supervised Models Transfer? https://arxiv.org/abs/2011.13377
- Scaling and Benchmarking Self-Supervised Visual Representation Learning

https://arxiv.org/abs/1905.01235

Source of image: https://arxiv.org/abs/2110.09327

1. Generative Approaches

Masking

How about **speech**?

https://arxiv.org/abs/1910.12638

Masking

Smoothness of acoustic features

https://arxiv.org/abs/1910.12638

Masking consecutive features

Masking strategies for speech

Learn more speaker information in this way

TERA: https://arxiv.org/abs/2007.06028

Masking specific dimensions

Predicting Future

GPT series

Predictive Coding

For text:

$$n = 1$$

For speech:

Usually n > 3

How about **speech**?

https://arxiv.org/abs/1910.12607

How about image?

Speech and images contain many details that are difficult to generate.

Can a model learn without generation?

2. Predictive Approach

Image - Predicting Rotation

https://arxiv.org/abs/1803.07728

Image – Context Prediction

https://arxiv.org/abs/1505.05192

Similar idea on **Speech**

https://ieeexplore.ieee.org/document/9060816

Predict Simplified Objects

Speech

HuBERT https://arxiv.org/abs/2106.07447

BEST-RQ https://arxiv.org/abs/2202.01855

Image

DeepCluster https://arxiv.org/abs/1807.05520

Speech and images contain many details that are difficult to generate.

Can a model learn without generation?

3. Contrastive Learning

Basic Idea of Contrastive Learning

MoCo

https://arxiv.org/abs/1911.05722

MoCo v2 https

https://arxiv.org/abs/2003.04297

Contrastive Learning for Speech

CPC https://arxiv.org/abs/1807.03748

Wav2vec

VQ-wav2vec Contrastive Learning for Speech https://arxiv.org/abs/1910.05453 How to train with quantization: https://youtu.be/JZvEzb5PV3U Linear Predicter Encoder Encoder

Contrastive Learning for Speech

VQ-wav2vec + BERT

https://arxiv.org/abs/1910.05453

Discrete BERT

https://arxiv.org/abs/1911.03912

Contrastive Learning for Speech

Wav2vec 2.0

https://arxiv.org/abs/2006.11477

Continuous input is critical

Quantized target improves performance

Jointly trained

Why not formulated as typical classification?

Alterative way to understand Wav2vec 2.0

Is BERT contrastive learning?

Alterative way to understand Wav2vec 2.0

Alterative way to understand Wav2vec 2.0

Selecting Negative Examples is not trivial ...

• The negative examples should be hard enough. But cannot be too hard ...

Learning without negative examples

4. Bootstrapping Approaches

as close as possible Bootstrapping Approaches update: as close as possible **Predictor** update: update: Collapse! Encoder Encoder Encoder Encoder Copy positive positive

Alterative way to understand Bootstrapping

Bootstrapping Approaches

- Image
 - Bootstrap your own latent (BYOL)
 - https://arxiv.org/abs/2006.07733
 - Simple Siamese (SimSiam)
 - https://arxiv.org/abs/2011.10566
- Speech
 - Data2vec: the student learns from multiple layers of the teacher
 - https://arxiv.org/abs/2202.03555

Learning without negative examples

5. Simply Extra Regularization

Barlow Twins https://arxiv.org/abs/2103.03230

Variance-Invariance-Covariance Regularization (VICReg)

https://arxiv.org/abs/2105.04906

Concluding Remarks

- Generative
- Contrastive
- No negative examples
 - Predictive
 - Bootstrapping
 - Regularization