Sada: 1

Jméno: Marek Bryša

UČO: 323771

- 1. (a) Ano patří, třída NP je uzavřená na průnik a sjednocení. Stroj pro sjednocení akceptuje, pokud aspoň jeden z M_1, M_2 akceptují vstup. Stroj pro průnik vyžaduje akceptaci obou M_1 a M_2 .
 - (b) Verifikátor proA(w,c)funguje takto: (\bigstar je BÚNO oddělovník)
 - Pokud c není tvaru $c_1 \bigstar c_2$ zamítni.
 - Vyzkoušej všchny pozice, kde končí první a začína druhé slovo w_1, w_2 .
 - Pokud je první i druhé slovo verifikováno svými $A_1(w_1, c_1)$, $A_2(w_2, c_2)$, akceptuje, jinak zamítá.

 A_1 i A_2 se volá maximálně |w|+1krát, takže A je polynomiální.

Stroj M(x) pro L_1^* :

- Pokud je x prázdné slovo, akceptuj.
- Nedeterministicky zvol $1 \le n \le |x|$:
- Nedeterministicky zvol rozdělení x na $x_1x_2...x_n$:
- Pokud $M_1(x_i)$ akceptuje pro všechna $1 \le i \le n$, akceptuj.
- Jinak zamítni.

První dva kroky lze provést v lineárním čase, třetí v polynomiálním. Každý $M_i \in O(n^k)$ a celý cyklus je volán n-krát. Celkem je tedy algoritmus NP.

(c) Rozhodovací stroj pro $L_1 \cdot L_2$ funguje zcela analogicky jako verifikátor v 1.(b), jen se vypustí certifikáty a místo verifikace se simulují M_1, M_2 .

Slovo w je z L_1^* právě tehdy, když platí jedno z:

- $w = \epsilon$
- $w \in L_1$
- w = uv takové, že $u, v \in L_1^*$

Nechť $w=w_1\dots w_n$. Stroj buduje pole $P(i,j)=true\iff w_{i,j}\in L_1^*$. To udělá tak, že projde všechny podřetězce w postupně od délky 1 do n a simuluje na nich M_1 . To jde pomocí 3 vnořených cyklů, přičemž M_1 je voláno n^2 -krát na vstup délky nejvýše n, celková časová složitost tedy zůstává polynomiální. Stroj akceptuje, pokud P(1,n)=true.

(d) Je třeba najít verifkátor V a zamítač Z pro $L_1\oplus L_2$. $L_1,L_2\in NP\cap co-NP\implies \exists V_1,V_2,Z_1,Z_2$ s polynomiální složitostí.

V akceptuje $(x, c_1 \bigstar c_2)$ jestliže:

 $(V_1(x,c_1))$ akceptuje $\wedge Z_2(x,c_2)$ akceptuje) nebo $(Z_1(x,c_1))$ akceptuje $\wedge V_2(x,c_2)$ akceptuje). Jinak zamítá.

Podobně Z akceptuje $(x, c_1 \bigstar c_2)$ jestliže:

 $(V_1(x,c_1)$ akceptuje $\wedge V_2(x,c_2)$ akceptuje) nebo $(Z_1(x,c_1)$ akceptuje $\wedge Z_2(x,c_2)$ akceptuje). Jinak zamítá.

Oba stroje jsou zřejmě polynomiální. QED

2. Podle vět z přednášky:

```
NTIME(n^2) \subseteq NSPACE(n^2) \subseteq DSPACE(n^4)
```

Podle deterministické separace:

 $DSPACE(n^4) \subseteq DSPACE(n^5)$, tj. existuje L takový, že $L \in DSPACE(n^5) \land L \notin DSPACE(n^4) \implies L \notin NTIME(n^2)$. QED