```
clc
clear
The above lines ensure a clean slate for creating variables and a new
%script
%%Problem 1
%Problem 1A
a=4*(pi)^2
%Problem 1B
A = [1 \ 2 \ 3]
B = [4 5 6]
C = [789]
AA=sum(A)
BB=sum(B)
CC=sum(C)
%The above 3 lines take the sum of the matrices stored in the defined
%variables: A,B,C and redefines them to the respective variables:
AA,BB,CC
Product=AA*BB*CC
%Problem 1C
%the above line defines the variable e which is used in the line below
avrg=mean(2.1*[5; 17; 18]+[e; 5^(.5);1.27^(2.2)])
%Problem 1D
A1=[1 0 1 0; 0 0 1 0; 1 1 0 1; 0 1 0 0]
B2=[A1 A1 A1 A1 A1 A1]
C3=[A1; A1; A1; A1; A1; A1]
D=C3*B2
The above 4 lines are all variables that hold contents provided to us
%the lab 8 pdf file
E=nnz(D)
The line above takes the contents stored in the variable D and
calculates
%how many nonzero values exist then redefines that calculation in the
%variable E
a =
   39.4784
A =
     1
          2
```

1

B = 4 5 6 C =7 8 9 AA = 6 BB = 15 CC =24 Product = 2160 e = 2.7183 avrg = 30.2154 A1 = 1 0 1 0 0 0 1 0 1 1 0 1 0 1 0 0

Columns 1 through 13

1 0 1 0 1 0 1 0 1 0 1
0 1

2

B2 =

	0		0	1	0	0	0	1	0	0	0	1
0		0										
_	1	_	1	0	1	1	1	0	1	1	1	0
1	0	1	1	0	0	0	7	0	0	0	1	0
0	0	0	1	0	0	0	1	0	0	0	1	0
U		U										
C	olui	nns	14	through	24							
	0		1	0	1	0	1	0	1	0	1	0
	0 1		1 0	0	0	0	1 0	0	0 1	0 1	1 0	0
	1		0	1 0	1 0	1 1	0	1 0	0	1	0	1 0
			O	O	O	_	O	O	O	_	U	O
C3 :	=											
	1		0	1	0							
	0 1		0 1	1 0	0 1							
	0		1	0	0							
	1		0	1	0							
	0		0	1	0							
	1		1	0	1							
	0		1	0	0							
	1		0	1	0							
	0		0	1	0							
	1		1	0	1							
	0		1	0	0							
	1		0	1	0							
	0		0	1	0							
	1 0		1 1	0	1 0							
	1		0	0 1	0							
	0		0	1	0							
	1		1	0	1							
	0		1	0	0							
	1		0	1	0							
	0		0	1	0							
	1		1	0	1							
	0		1	0	0							
D =												
Columns 1 through 13												
C	o±ui	กทร	⊥ t	.nrough 1	13							
	2		1	1	1	2	1	1	1	2	1	1
1		2										
	1		1	0	1	1	1	0	1	1	1	0
1		1										
	1		1	2	0	1	1	2	0	1	1	2
0		1										

	0	0	1	0	0	0	7	0	0	0	7
0	0	0	1	0	0	0	1	0	0	0	1
1	2 2	1	1	1	2	1	1	1	2	1	1
	1	1	0	1	1	1	0	1	1	1	0
1	1 1	1	2	0	1	1	2	0	1	1	2
0	1										
0	0	0	1	0	0	0	1	0	0	0	1
1	2 2	1	1	1	2	1	1	1	2	1	1
	1	1	0	1	1	1	0	1	1	1	0
1	1 1	1	2	0	1	1	2	0	1	1	2
0	1 0	0	1	0	0	0	1	0	0	0	1
0	0										
1	2 2	1	1	1	2	1	1	1	2	1	1
1	1 1	1	0	1	1	1	0	1	1	1	0
	1	1	2	0	1	1	2	0	1	1	2
0	1 0	0	1	0	0	0	1	0	0	0	1
0	0 2	1	1	1	2	1	1	1	2	1	1
1	2										
1	1 1	1	0	1	1	1	0	1	1	1	0
0	1 1	1	2	0	1	1	2	0	1	1	2
	0	0	1	0	0	0	1	0	0	0	1
0	0 2	1	1	1	2	1	1	1	2	1	1
1	2 1	1	0	1	1	1	0	1	1	1	0
1	1	_	0	_	_	_	-	_	_	_	-
0	1 1	1	2	0	1	1	2	0	1	1	2
0	0	0	1	0	0	0	1	0	0	0	1
Columns 14 through 24											
C											
	1 1	1 0	1 1	2 1	1 1	1 0	1 1	2 1	1 1	1 0	1 1
	1	2	0	1	1	2	0	1	1	2	0
	0	1	0	0	0	1	0	0	0	1	0
	1	1	1	2	1	1	1	2	1	1	1
	1	0	1	1	1	0	1	1	1	0	1
	1	2	0	1	1	2	0	1	1	2	0
	0 1	1 1	0 1	0 2	0 1	1 1	0 1	0 2	0 1	1 1	0 1
	_		1	∠	1	1	1	4	1	1	

1	0	1	1	1	0	1	1	1	0	1
1	2	0	1	1	2	0	1	1	2	0
0	1	0	0	0	1	0	0	0	1	0
1	1	1	2	1	1	1	2	1	1	1
1	0	1	1	1	0	1	1	1	0	1
1	2	0	1	1	2	0	1	1	2	0
0	1	0	0	0	1	0	0	0	1	0
1	1	1	2	1	1	1	2	1	1	1
1	0	1	1	1	0	1	1	1	0	1
1	2	0	1	1	2	0	1	1	2	0
0	1	0	0	0	1	0	0	0	1	0
1	1	1	2	1	1	1	2	1	1	1
1	0	1	1	1	0	1	1	1	0	1
1	2	0	1	1	2	0	1	1	2	0
0	1	0	0	0	1	0	0	0	1	0

E =

396

%Problem 2

array1 = randi(5,1,100)

%in the parenthesis above the 5 indicates the max value of the integers

%being created. the default minimum integer value is 1.

%the 1 indicated the amount of rows being created in the array

%the 100 indicated the amount of collumns being created in the array
histogram(array1,10)

%the above line creates a histogram using the values generated in the
array

%the number 10 indicates we want 10 bins

avgarr1=mean(array1)

%the above line calculates the mean value of all the values generated
in

%the array.

array1 =

Columns 1 through 13

3 3 5 2 2 1 5 4 3 4 3 4 3

Columns 14 through 26

4 3 5 2 1 1 1 3 3 2 4 4 4

Columns 27 through 39

5 5 1 1 1 4 1 3 3 5 3 2

4 4 4

Columns 40 through 52

3 2 1 3 2 1 4 2 3 4 2

Columns 53 through 65

4 4 3 1 2 3 2 1 5 3 5

2 4 Columns 66 through 78

2 5 4 2 2 4 5 2 4 3 5

4 1 Columns 79 through 91

5 3 5 3 5 3 1 1 3 4 5 4

2 3 Columns 79 through 100

1 1 1 4 3 1 3 1 3 1 1

2.9500


```
%Problem 3
filename='lab6data.xls'
%the line above sets the variable called filename to reference the
 excel
%file saves as lab6data
sheet=1
%the line above indicates that within the excel file we want to
reference
%the first sheet
xlRange1='A98:A169'
xlRange2='B98:B167'
xlRange3='C98:C163'
%the above lines indicate the range of cells from the excel document
we want to
%reference for each indicated 'run'. It saves the parameters for ech
 run in
%the respected variables listed above represented run 1, 2 and 3
accA= xlsread(filename, sheet, xlRange1);
MaxaccA= max(accA)
The above 2 lines utilize the variables we specified above with the
first range variable and then uses
%the xlsread function to pull the data from the excel document into
matlab.
```

```
%It indicates to save this data in the variable accA, representing the
 first run, and then proceeds to
%analyze that data to find the maximum acceleration value that exists.
%takes this maximum accereration value and stores it in the variable
%MaxaccA
accB= xlsread(filename, sheet, xlRange2);
MaxaccB= max(accB)
The above 2 lines utilize the variables we specified above with the
 second range variable and then uses
%the xlsread function to pull the data from the excel document into
matlab.
%It indicates to save this data in the variable accB, representing the
 second run, and then proceeds to
%analyze that data to find the maximum acceleration value that exists.
%takes this maximum accereration value and stores it in the variable
%MaxaccB
accC= xlsread(filename, sheet, xlRange3);
MaxaccC= max(accC)
%The above 2 lines utilize the variables we specified above with the
 third range variable and then uses
%the xlsread function to pull the data from the excel document into
matlab.
%It indicates to save this data in the variable accC, representing the
 third run, and then proceeds to
%analyze that data to find the maximum acceleration value that exists.
%takes this maximum accereration value and stores it in the variable
%MaxaccC
filename =
    'lab6data.xls'
sheet =
     7
xlRange1 =
    'A98:A169'
x1Range2 =
    'B98:B167'
```

xlRange3 =

'C98:C163'

MaxaccA =

42.4000

MaxaccB =

15.3000

MaxaccC =

17

Published with MATLAB® R2017a