ECE 113: Communication Electronics

Lecture 6: Resonant Circuits

February 4, 2019

Resonance

Definition

- the quality in a sound of being deep, full, and reverberating
- the condition in which an object or system is subjected to an oscillating force having a frequency close to its own natural frequency
- the occurrence of a simple ratio between the periods of revolution of two bodies about a single primary

Image retrieved from [1] http://www.delawareright.com/wp-content/uploads/2014/12/pendulum.jpg

Electromagnetic Resonance

• Occurs when Capacitors and Inductors (reactive components that store energy) are connected together in a circuit

- Oscillates between 2 states:
 - Discharging capacitor produces current that sets up H-field in inductor
 - Collapsing H-field produces current that charges capacitor

- In resonant circuits, this oscillation happens very fast
 - Resonant frequency frequency in which

Ave. energy stored in L = Ave. energy stored in C

- Ideal LC tank circuit (lossless)
 - In reality, damping will introduced

Series Resonant Circuit

Input Impedance

$$Z_{in} = R + j\omega L - j\frac{1}{\omega C}$$

Complex Power

$$S_{in} = \frac{1}{2}VI^* = \frac{1}{2}|I|^2Z_{in} = \frac{1}{2}I^2(R + j\omega L - j\frac{1}{\omega C})$$

$$S_{in} = P_{loss} + i\omega(W_M - W_F)$$

At Resonance

 Resonance occurs when average energy stored in E-field and H-field are equal

$$Z_{in} = \frac{P_{loss} + j\omega(W_M - W_E)}{\frac{|I|^2}{2}} = \frac{P_{loss}}{\frac{|I|^2}{2}} = R$$

• Resonant frequency, $W_M = W_E$

$$\frac{1}{2}|I|^2L = \frac{1}{2}|I|^2\frac{1}{\omega^2C} \to \omega_o = \frac{1}{\sqrt{LC}}$$

Series Resonant Circuit

Circuit Q (Series Resonant Circuit)

- Different from component Q
- Measure of loss in the circuit
- Measure of selectivity (for tuning circuits)
- ↑Q translates to ↓loss

$$Q = 2\pi imes rac{\textit{Max Energy Stored}}{\textit{Energy Lost Per Cycle}}$$

Circuit Q (Series Resonant Circuit)

• At resonance:

$$Q = 2\pi \times \frac{W_M \text{ or } W_E}{\frac{P_{loss}}{f_o}}$$

$$Q_s = \frac{\omega_o L}{R}$$

$$Q_s = \frac{1}{\omega_o RC}$$

Example: Varying Resistance

Example: Varying Inductance

Example: Varying Capacitance

Parallel Resonant Circuit

Input impedance

$$Z_{in} = \left(\frac{1}{R} - \frac{j}{\omega I} + j\omega C\right)^{-1}$$

Complex Power

$$S_{in} = \frac{1}{2}VI^* = \frac{1}{2}V(\frac{V}{Z_{in}})^* = \frac{1}{2}\frac{|V|^2}{Z_{in}^*}$$

$$S_{in} = P_{loss} + j\omega(W_M - W_E)$$

At Resonance

 Input impedance is still purely real (purely resistive) at resonance

$$Z_{in} = \frac{P_{loss}}{\frac{|I|^2}{2}} = R$$

Resonant frequency is still

$$\omega_o = \frac{1}{\sqrt{LC}}$$

Parallel Resonant Circuit

Circuit Q (Parallel Resonant Circuit)

At resonance:

$$Q = 2\pi \times \frac{W_M \text{ or } W_E}{\frac{P_{loss}}{f_o}}$$

$$Q_p = \frac{R}{\omega_o L}$$

$$Q_p = \omega_o RC$$

Example: Varying Resistance

Example: Varying Inductance

Example: Varying Capacitance

Resonant Circuits in RF Applications

- Used extensively to <u>selectively pass</u> certain frequency components from a source to a load while attenuating other undesired frequencies.
- Lowpass, Highpass, Bandpass, Bandstop Filters

- Insertion Loss
 - The attenuation that is introduced into the passband to the resonant circuit.

Ripple

- Measure of flatness of the passband
- The difference between minimum and maximum attenuation at the passband of the resonant circuit

Bandwidth

 Difference between the upper and lower frequency of the circuit at which the magnitude response is 3dB below the passband response

$$BW = \omega_H - \omega_L$$

- Fractional Bandwidth
 - Bandwidth divided by the center frequency ω_o

$$fBW = \frac{\omega_H - \omega_L}{\omega_o}$$

- Circuit Quality Factor (Q)
 - Ratio between energy stored and energy dissipated in a resonant circuit
 - Measure of selectivity of the resonant circuit

$$Q = rac{\omega_o}{\omega_H - \omega_L} = rac{\omega_o}{BW}$$

- Shape Factor
 - Measures the steepness of the "skirts" of a resonant circuit
 - Ratio between 60dB and 3dB bandwidth of a resonant circuit

$$\mathsf{SF} = \frac{\omega_{H60} - \omega_{L60}}{\omega_{H} - \omega_{I}}$$

- Ultimate Attenuation
 - Minimum attenuation of the resonant circuit outside of the pass band

END