INDEX OF AUTHORS

VOLUME XLVII

TRANSACTIONS OF AMERICAN SOCIETY FOR METALS

1955

		Hawkes, M. F	135
A		Hazlett, Thomas H	508
Averbach, B. L267, 291,	380	Horne, G. T	423
В		J	
Barnett, W. J	892	Jatczak, C. F	748
Beattie, H. J., Jr	211	Jepson, James O	543
	473	Jominy, W. E	
Bever, M. G	794	Jones, M. H	926
Bhattacharyya, Subrata Binder, W. O	351 231	K	
Bond, W. E	578	Keeler, J. H	157
Brenner, William, Jr	715	Kehl, George L	351
Brown, W. F., Jr	926	Kenney, D. J	520
Busby, C. C	135	Kraft, R. Wayne, Jr	611
Busby, Paul E	408	L	
С		Lement, B. S	291
Carlson, O. N	520	Lena, A. J	193
Chapman, R. D	869	Libsch, J. F	853
Clarkin, P. A	794	Lillys, Peter	785
Cochardt, A. W	440	Littmann, Walter E	692
Cohen, Morris267, 291, 380, Culp, Neil J	650 769	M	
Curry, W. E	193	Matthews, Norman A	611
		Mehl, R. F	423
D	052	Morris, W	463
Danko, J. C	853 605	Muir, Hugh	380
Davis, Moss V	748	N	
Dieter, G. E	423	Nehrenberg, A. E	785
Domagala, R. F	565	Newman, D. P	926
Dorn, John E102,	632	Nusbaum, C	715
Duwez, Pol	543	0	
F		Orrell, F. L., Jr	554
Fiedler, H. C	267	P	
Fisher, John C	451	Paliwoda, E. J	680
Fishel, W. P	605	Paxton, H. W	135
Fontana, M. G	231	Payson, Peter Porembka, S. W	785 665
Frenkel, Robert E	632	Priest, D. K	473
Frohmberg, R. P	892	Pugh, J. W.	984
Fukutomi, Takeo	599	R	
G		Rhines, F. N	578
Garofalo, F	957	Roberts, E. C	650
Grant, N. J	650	Ross, S. T	727
		Rostoker, W565,	1002
Н	# 00	Rozalsky, I.	77
Hansen, Rosa D	508	Rummel, R. A	578
Hauser, F. E	102	Rutter, J. W	463
	10	19	

s		Tiller, W. A Troiano, A. R	463 892
Sachs, G	926	V	
Saller, H. A	665	Vajda, John	408
Sernka, R. P	727	VanHorn, Kent R	38
Sherby, Oleg D	632	VerSnyder, F. L	211
Signorelli, R. A	815		
Smith, G. V	957	W	
Speiser, Rudolph	493	Weeton, J. W	815
Spretnak, J. W	493	Wilhelm, H. A	520
Stacy, J. T	665	Wilks, Charles R	611
Starr, C. D	102	Wilson, D. V	321
		Winegard, W. C	463
Т		Wulff, John	
Thompson, James	231	Y	
Tietz, L	102	Yamamoto, A. S	1002

SUBJECT INDEX

Activation energy	Aluminum plate (cont.)
for creep	longitudinal and transverse strain
for recovery 636	distributions82–85, 96
Alloy formation	for hydraulic cicular bulges82-85, 96
thermodynamic expressions 494	effect of bulging pressure 83–85
Alloy steels, high carbon	retained tensile
hardenability. See under Hardenability.	ductility86–93, 96–97 effect of biaxial tension and biaxial compression 88–89, 97
Aluminum	effect of prestrain in simple
hardness traverses85-87	compression or simple
tensile specimens prestrained in	tension89-91, 97
biaxial tension 85–87	effect of prestrain stress
wrought products38-75	state90-91, 97
factors affecting directional	effect of tensile and compressive
properties	prestrain86–89, 96
Aluminum alloy bar	tensile fracture stress91-93, 97-98
directional properties66–74	comparison of compressive
correlation with preferred	effects93, 97–98
orientation	for various prestrain states and prestrain
	directions93, 97–98
Aluminum alloys, dilute	effect of various prestrain stress
effect of cold work on creep. See	states91–93, 97–98
Cold work.	yield strength94–96, 98
Aluminum-copper-magnesium	comparison of compressive
alloy	prestrain effects
pole figures	upon94, 96, 98
illustrating duplex type of	for various prestrains stress
preferred orientation in	states and
extruded bar67-68	directions94, 96, 98
tensile properties68-69, 72-74	effect of various stress
after recrystallization72-74	states94–95, 98
effect of preferred orientation 72	
Aluminum plate	Aluminum sheet
	deep drawing47-48, 50, 63-66
compressive prestrain81–82, 96 dependence of strain	effect of preferred
anisotropy upon81–82, 96	orientations47–48, 50
flow properties94–99	drawing capacity62-65
effect of prestraining under	effects of preferred
different stress states94–99	orientation62–65
fracture properties77-93, 96-99	ear formation60-62
effect of prestraining under	earing
different stress	pole figures
states77–93, 96–99	40-41, 45-49, 52-54, 58-63, 65

Aluminum sheet (cont.)	Austenite
mixture of rolling and recrystallization textures48, 62-63, 65 rolling texture40, 47, 58-60 recrystallization	decomposition products727-746 isothermal transformation of under applied tensile stress. See Isothermal transformation of austenite.
texture46, 49, 60–62	Austenitic ductile cast irons
tensile tests	creep and stress rupture data 615–623 hot tensile properties625–627 structural stability and growth623–625
Aluminum-vanadium system	Austenitic steels
alloy examination522–523 aluminum rich alloys523–529	See Chromium-Manganese Steel. See Stainless Steels, Austintic.
microstructures525-527	Bainite
solid solubility of vanadium. 524 aluminum rich diagram 539	effect of stress on formation . 359–366 character of bainite
phase diagram	formed
vanadium rich alloys529-534 lattice constant - composition 531 microstructures530, 532-533 solid solubility of aluminum. 529	Banitic structures SAE 4340 steel918–919 room temperature aging characteristics918–919
Annealing	Bauschinger Effect 96
hardened steels	Bend planes
effect on elastic limit.392–393, 396 Annual Address of the President	in magnesium
Annual Dinner of ASM 32	schematic illustration117
Annual Meeting of ASM 7	Boron
Annual Report - ASM Foundation for Educa- tion and Research 29	in end-quenched steel sections effect on tensile and impact properties413-416
Annual Report of the Secretary	Carbide morphology
	effect on fatigue properties of
Annual Report of the Treasurer	eutectoid steel434 438
Arc-melting	Carbides
Zirconium179–192	distribution in iron-carbon- titanium-vanadium
ASM Foundation for Educa-	alloys605-610
tion and Research -	in 4.5% chromium steels
Annual Report 29	changes during tempering.660-661

Carbon	Carbon tool steel
content of steel	hardenability of cylinders. See
effect on elastic limit 387–390, 395–397	under Hardenability.
distribution in iron-carbon-	Case depth
titanium-vanadium alloys	determinations for carbon tool steel cylinders776–782
of 4.5% chromium steels 653-654	Case hardening atmospheres
effect on hardenability 411 effect on machinability of steel 683, 687–689	role of water vapor and ammonia794–814
effect on transformation tem-	Cathodic protection
peratures of iron504, 506 in end-quenched steel sections effect on tensile and impact	of magnesium alloy J 1 from stress-corrosion483-485
properties 417	Cementite
solubility in ferrite306-310 in titanium	solubility in gamma iron504-505
effect on beta-alpha trans-	Cementite in steel
formation506–507	effect of cold work
Carbonitriding	changes in magnetic
steel AISI 1020794-814	intensity343–344
case depth800-801, 804	displacement of Curie
effect of water vapor800-801	point340–343
effect of ammonia concentration800–801	on magnetic intensity325-330
carbon concentrations	mechanical reversibility.330-334
802–803, 807–808, 810–813	solonoid studies334–335
effect of ammonia 802–803	tectural stress evidence344-345
effect of water vapor802-803	thermal-magnetic
microhardness797–799, 804	analysis322–325
effect of water vapor797-799	x-ray results
effect of ammonia	Comentite particles
concentration797-799	Cementite particles
nitrogen concentrations	minimum stable size304-306
802–803, 807–808, 810–813	solubility in ferrite
effect of ammonia802-803	effect of carbon form 310
effect of water vapor802-803	effect of size306–309
retained austenite800-802	effect of strain309–310
effect of water vapor800-801	Cerium
effect of ammonia	
concentration 801	in iron alloys. See Iron—
role of water vapor and	cerium system.
ammonia794–814	Ch! Dhan
surface hardness.797-798, 803-805	Chi Phase
effect of water	in 12% Cr-4% Mo stainless
vapor797–798, 803–805	alloy211–230
effect of ammonia concen-	effect of titanium
trations 797–798, 803–805	213–215, 223–224, 226–230

Chi Phase (cont.)	Chromium-manganese-nickel
identification219-223	steels (cont.)
chemical analysis 222 lattice parameters 220, 222, 229 photomicrographs 221 structure 220–223	work hardening 239, 243, 247–250 effect of manganese 239, 243 yield strength
C1	phases present233-240, 242-243
Chromium	after heating at 1075 °C and air cooling233-239
in binary zirconium alloys	effect of carbon236–238
effect on elevated temperature	effect of chromium234-239
strength671-674	effect of manganese234–239
effect on workability and	effect of nickel234–239
hardness670-671	effect of nitrogen236–238
in high carbon alloy steels	in chill cast samples at various
effect on hardenability759, 762	temperatures
Chromium-manganese-nickel	relative magnetism 239–240, 242
steels	stress - rupture strength262-265
corrosion resistance255–258	true stress – strain curves247–250
effect of chromium256–257	welding characteristics254-255
effect of manganese255–257	charpy impact 254
effect of nickel	effect of nickel 254
intergranular corrosion256–258	tensile properties of weld 254
effect of carbon256–258	
effect of nitrogen256-258	Chromium-manganese steel
izod impact241, 249–254	photomicrographs207–208
influence of composition249-252	showing sigma formation. 207-208
effect of carbon251, 253	rate of sigma formation 207
effect of chromium 251	effect of cold work 207
effect of manganese251-252	effect of recrystallization 207
effect of nickel 251	Chromium-molybdenum-
effect of nitrogen251, 253	vanadium steel
influence of temperature252-254	17-22A (S) steel926-956
effect of aging253–254	effect of variation in nor-
mechanical properties	malizing and tempering
239–241, 243–254	procedure926–956
elongation241, 244–246	creep embrittlement926-956
effect of cold working 246	notch sensitivity926-956
effect of manganese241, 245	stress rupture strength926-956
Erichsen values241, 245	Chromium-nickel-copper steel
izod impact241, 249–254	
tensile strength240-241, 244-246	17-4PH steel926–956
effect of carbon241, 244	effect of variation in
effect of chromium 240–241, 244	normalizing and tempering
effect of cold working245–246	procedure creep embrittlement926-956
effect of manganese .241, 244–245	notch sensitivity926–956
effect of nickel240–241, 244	stress rupture strength926–956
effect of nitrogen241, 244	stress rupture strength920-930

Chromium steel	Columbium
hardened 4.5 chromium steels creep-tempering relation- ships. See creep-tempering relationships.	in binary zirconium alloys effect on elevated temperature strength
Cobalt base alloy	C 484-48 48
See stellite 21	See Phase Diagrams.
Cold-rolled steel, low carbon	Continuous cooling diagrams
effect of rolling temperature on zonal texture experimental procedure716-719 previous investigations715-716 rolling conditions717-718 strip thickness vs. temperature717-719 x-ray diffraction study719-726 intensity curves721-726 pale figures724	determined by magnetic permeability method876-879 Grange and Kiefer diagram.877-879 Continuous cooling transformations magnetic method for determining869-891
Cold work	Cooling curves
chromium-manganese steel 207 effect on sigma formation 207 effect on cementite in steel. See	SAE 4340 steel
Cementite in steel.	Cooling rate
effect on creep properties of dilute aluminum alloys activation energy for creep	calculation for carbon tool steel cylinders
activation energy for	Cooling transformation curves
recovery 636 alloys tested 633	SAE 4340 steel 872
creep curves	Cooling transformation diagrams730–733, 884–887 Bainite region886–887 transformation products884–885
stress parameter relation637-640	Copper-gold system
to creep strain	constitution of ordering alloys alloys investigated

Corrosion resistance	Creep properties (cont.)
chromium-manganese-nickel steels255–258	of 4.5% chromium steels 655 of steel isothermally transformed
Corrugations	under applied tensile stress
formation during solidification	
464, 469	Creep-rupture curves
Cottrell mechanism978-980, 982	for 4.5% chromium steels653-656
Cottrell's theory 451	effect of carbon content653–654 microstructures654
Crack formation	Creep-rupture data
magnesium125–129, 132–134	molybdenum999–1000
Creep curves	Creep-rupture fracture
molybdenum994–995 substructure influence in nickel	molybdenum999–1000
and nickel alloys	Creep-rupture properties
alloys tested	molybdenum995–1000
constant creep rate region.514-515 formula for initial curve513-514	of zirconium – 8% tungsten
nickel-cobalt 515	alloy at 1800 °F674-675
effect of alloy content 515	Creep-rupture test
nickel-iron	molybdenum996–997
prestrain for linear	minimum creep rate996-997
curve	activation energy 996
prestraining substructure	as a function of reciprocal
treatment508-510	absolute tempera-
effect of amount of pre-	ture
strain508–509, 511, 516	as a function of true stress. 996
effect on tensile properties	Creep strain
pure nickel curves511–513	in dilute aluminum alloys
relation to flow stress509, 512	equation 633
test procedure509–510	relation to stress parameter
	637–640
Creep embrittlement	relation to structure
Cr - Mo - V and 17 Cr - 4 Ni -	parameter639–641
4 Cu steels926–956	Creep-tempering relationships
effects of variation in normal- izing and tempering pro-	in hardened 4.5% chromium steels
cedure926–956	analysis of tempering
cedure	phenomena656–661
Creep properties	changes in carbides660-661
of dilute aluminum alloys	hardness and electrical
effect of cold work on. See	resistance data656-660
Cold work.	creep-rupture behavior653-656
of ductile or modular cast	effect of carbon content.653-654
irons613–623	microstructures 654

Creep-tempering relationships	Deformation
(cont.) effect of stress during	effect on cementite in steel. See Cementite in steel.
tempering	of iron-carbon alloys effect on carbon solubility . 309-310
resistance 661 effect of structural	Deformation mechanisms
instability 662	in polycrystalline magnesium.102-129
experimental procedure phases formed during	Delayed failure
tempering	steel 892-922 from hydrogen embrittle-
Critical cooling velocity	ment892–922
in hardening carbon tool	Delayed yield
steels	dislocation theory. See Dis- location theory.
for isothermal transformation of austenite360-362	Dendritic growth in alloys
Crystallographic orientation zirconium173, 175–176, 178 relation to plastic strain173, 175–176, 178	constitutional surpercooling 469 corrugations
Curie paints effect of cold work on328-343 Damping of some engineering alloys	distribution coefficient 463, 465, 470 experimental procedure 465–466 solute concentration 463–464 solute temperature distribution 469
effect of static stress	Detwinning
cause in ferromagnetic materials 447	magnesium112, 115–116
compositions of alloys 443	Directional properties
formula for	aluminum alloy bar
on AISI 403 steel444 447	Dislocation theory
effect of temperature 445 on Refractory 26445 446 effect of temperature 446 plastic flow damping447-449	application to delayed yield in steel Cottrell's theory
Deep drawing	sults453–458
aluminum sheet47-48, 50, 63-66 effect of preferred orientations47-48, 50 cylindrical cup	effect of strain aging 457 exceptions
schematic representation 55	relation to temperature. 454–458

Dislocation theory (cont.)	Ductile cast iron (cont.)
energy to initiate slip452–453 rate of thermal nucleation 453 yield stress vs. temperature	microstructures857–863 secondary graphite854 showing influence of com-
458-461	position on secondary
for iron	graphite861–863
for morybdenum 400	showing metamorphosis of
Drawing capacity	secondary graphite857–862
aluminum alloy sheet62-65	polarized light observations.855–856
effects of preferred orienta-	quenched and tempered 853–868 secondary graphitization 853–868
tion62–65	secondary graphite857–863
Ductile cast iron	influence of composition 861–863
	metamorphosis of857–862
bright field observations855–856 elevated temperature properties	silicon-rich carbides856-857, 859
alloys tested	
advantages of ductile irons. 611	Ductility
austenitic ductile iron	molybdenum992–995
creep and stress rupture	as a function of tempera-
data 615, 617, 620–623	ture992–995
creep curves619, 622	SAE 4340 steel899-906
residual tensile properties. 615	effect of hydrogen embrittle-
stress rupture curves621, 623	ment899–906
experimental procedure612-619	17-22A(S) steel938–941, 946–947
ferritic ductile iron	effect of normalizing tem-
creep and stress rupture	perature938–939
data 613, 617, 620, 623	at several times to rupture
creep curves	938–939
residual tensile properties. 613	effect of rupture time 947
stress rupture curves620, 623	at several test tempera- tures
heat treatments	effect of tempering tempera-
limiting creep stress vs. tem-	ture
perature617, 620–623	at several rupture times.939–940
comparative data for low	effect of tempering time946–947
carbon steel 620	at various tempering tem-
limiting rupture stress vs.	peratures946–947
temperature617, 620-623	effect of tempering time939-941
comparative data for low	at several times to rupture
carbon steel 623	
metallography616, 626	17-4 PH steel940–942
pearlitic ductile iron	effect of tempering tempera-
creep and stress rupture	ture940–942
data614, 617, 620–623	at several rupture times.941-942
creep curves	effect of test temperature940–942
residual tensile properties. 614	at several rupture times. 941–942
stress rupture curves620, 623	various steels
structural stability and growth623-625	brine quenched and refrig- erated140-141
g10wtii023-025	Cratcu140-141

Ductility (cont.)	Electrical resistance
effect of refrigeration140-141 effect of specimen size142-144, 154-155 quenched in iced brine137-140 quenched in oil141-142 Ear formation	of tempered 4.5% chromium steels
aluminum sheet60–62	Electron metallography
Earing	of dependence of microstructure on hardenability727–746
aluminum sheet 47-48, 60-65	Electron micrographs
Elastic limit and yield behavior	of iron-carbon alloys tempered at 700-1000 °F
of hardened steels apparatus and procedure381–386 definition380–381	294, 297–299, 314–316 of steel isothermally transformed374–375
effect of isothermal anneal- ing	of ductile or nodular cast irons. See Ductile cast irons. of wrought binary zirconium alloys. See zirconium alloys.
tempering temperature	Elmendorf curve
390–397	SAE 4063 steel880-881
effect of tempering temperature	chromium - manganese - nickel steels
steels tested	perature938–939
stress residual strain curves	at several times to rupture
temper embrittlement 384, 386	effect of tempering tempera-
Election of officers 31	at several rupture times .939–940

Embrittlement (cont.)	Ferromagnetic materials
effect of tempering time939-941 at several times to rupture	damping characteristics444 447
	Flow properties
17-4 PH steel940–942	aluminum plate94–99
effect of tempering tempera-	effect of prestraining under different stress states94-99
at several rupture times .941–942	_
effect of test temperature 940–942	Fracture properties
at several rupture times . 941-942	aluminum plate77–93, 96–99
End-quenching	effect of prestraining under different stress states
of heavy steel sections	77–93, 96–99
transverse properties. See	
Slack-quenched steel.	Flow stress
Enthalpy	relation to substructure of nickel alloys509, 512
of binary interstitial solid solu-	anoys
tions494-507	Free energy
Erichsen values	of binary interstitial solid solu-
chromium – manganese – nickel	tions
steels241, 245	austenite
Fatigue properties	Gamma iron
of lamellar and spheroidal eu-	solubility of cementite in504–505
tectoid steel	
crack location432–433	Glass rods, annealed
effect of carbide morphology 434–438	relationship between bending
effect of inclusions 425, 433, 436	stress and time for fracture 921–922
factors affecting433-438	
fatigue statistics430-432	Grain boundary shear
material and testing426-427	magnesium122-126
mechanical properties 426 microstructures433–435	Grain orientation
statistical analysis methods	aluminum wrought products39-42
423–425, 427–430	correlation with directional
Ferritic ductile cast irons	properties39–42
creep and stress rupture data	Grains
	magnesium
hot tensile properties625-627	orientation104, 106–107
structural stability and growth	Grain size
623–625	of iron-carbon alloys
Ferroboron	effect of tempering tempera-
compared with Grainal No. 79	ture on296–302
for effect on hardenability .412-413	zirconium170–172, 174–175
for effect on tensile and im-	effect of annealing tempera-
pact properties412-414	ture170–172, 174–175

Hardenability (cont.) Grinding electron metallography..... influence on structure of734-742, 744 hardened steel effect of mechanical variables identification of transformation products ...735-738 702–705 effect of wheel condition..704-705 free energy, temperature, decomposition relation..740-741 electrical simulation of ... 696-697 hardenability data728-729 experimental work693-697 microstructures728-729 grinding conditions 696 steels tested 728 grinding energy relation.... of heavy steel sections effect of boron......410-413 peak temperature vs. microeffect of carbon..... 411 hardness699-700 effect of nickel..... 412 reason for investigating. . 692-693 effect of rare earth meals... 410 results from electrical heateffect of silicon......410-412 ing 698 of high carbon alloy steels temperature distribution becomposition of steels.....750-751 neath surface700-701 computation of hardenability temperature for rehardening 754–764 effect of chromium......759, 762 temperature for tempering. 698-702 effect of manganese.....757, 761 temperature vs. grinding coneffect of molybdenum....759, 762 transverse temperature variaeffect of nickel plus mangations700-702 nese effect of silicon......752-753 Hardenability hardenability data749-754 reason for interest......748-749 of carbon tool steel cylinders calculated cooling rates...770-775 Hardenability data calculated hardness penetration curves for 0.4% carbon steels.....728-729 case depth determinations. 776-782 comparison with calculated Hardened steels elastic limit and yield behavior. critical cooling velocity...774-775 See Elastic limit and yield hardness penetration curves behavior. 771–775 steels used Hardness dependance on microstructure character of bainite 739 18% Cr-8% Ni stainless steel. 27 character of pearlite 739 austenite cooling rates vs. percent martensite 273 martensite729-730 17-22A(S) steel930-937 cooling transformation diaas a function of normalizing temperature and time. 931-932

as a function of tempering

temperature and time. 931-933

method of constructing . . 730-731

method of using......733-734

Hardness (cont.)	Hardness (cont.)
of hardened steels relation to elastic limit393–394 relation to mechanical properties	zirconium
387–388, 391–392, 405–407	
of iron-carbon alloys	Hardness penetration curves
effect of tempering tempera-	for carbon tool steel cylinders
ture on293, 304	771–775
low carbon steels971–973, 981–982	Hardness traverses
effect of strain aging971–973 effect of aging time971–973 relationship to transition tem-	aluminum tensile specimens85-87 prestrained in biaxial tension
peratures972–973	85–87
martensitic steels785–793	Heat tinting
effect of alloying elements.790–791	stellite 21 821–822, 834–836, 842
effect of carbon788–789, 791–793 effect of chromium	Heat treatment
effect of nitrogen. 788-789, 791-793	effect on stress-corrosion
stainless steels, type 310208-209	of magnesium alloy J1 479
effect of sigma formation. 208-209	High carbon alloy steels
stellite 21830–833, 841, 849–851	hardenability. See under
aging830–833	Hardenability.
effect of aging tempera-	Hot hardness
ture for various times	low carbon steels
effect of time at various	961–962, 973–976, 981–982
temperatures 831	effect of aging time974-976
changes with heat treatment. 841	effect of temperature973-974
effect of different quenching	Hydrogen embrittlement
methods849–850	proposed mechanisms895–898
isothermal transformation.830–833	Cottrell atmosphere surround-
effect of temperature for	ing a dislocation 896
various times 832	Griffith crack theory896-898
effect of time at various temperatures 831	planar pressure theory895–896
of tempered 4.5% chromium	SAE 4340 steel892–922
steels	bainitic structures918–919
effect of stress during temper-	room temperature aging characteristics918-919
ing	ductility899–900, 903–906
of titanium-cobalt alloys 562	effect of charging condi-
vanadium-oxygen alloys1015-1016	tions899–900
as a function of oxygen con-	effect of charging time 899
tent1015–1016	effect of removing surface
of wrought binary zirconium	layers of metal from
alloys	charged specimens .903-906
at room temperature and	at two strength levels 904–905
1600°F670–671	effect of aging904–905

Hydrogen embrittlement (cont.)	Impact properties (cont.)
effect of aging time	effect of carbon146–148, 153 effect of chromium147–148, 153 effect of manganese
900–901	Interstitial solid solutions
charged and uncharged specimens900-901	thermodynamics. See Thermodynamics.
Impact properties	
of end-quenched heavy steel sections	Iron
effect of boron413–416 effect of carbon417	yield stress vs. temperature 461
effect of mass418-420	Iron-carbon alloys
effect of nickel	microstructural changes on tempering. See Tempering of iron-carbon alloys.
low carbon martensites 135–152 steels	Iron-cerium system
effect of alloying elements146–148, 151	determination of cerium552–553 diffraction data550–551

Iron-cerium system (cont.)	Lattice parameters
effect of cerium on transfor- mation	18% Cr – 8% Ni type 269 austenite 269 martensite 269 stellite 21 838 vanadium-oxygen system 1007, 1011 beta phase 1007 VO phase 1011
phases	Laves phase
Co Fe ₃ phase 552	in 12% Cr-4% Mo stainless
Iron-cobalt alloys	alloy
damping447–449	213–215, 233–224, 226–230
Isothermal transformation of austenite under applied tensile stress	identification
applied stress relation to per-	structure216–220
cent transformed359–360 character of banite formed367–371	Lead-tin alloys
creep behavior	dendritic growth463-470
critical true strain 366	Low carbon steels
during a portion of transformation time	creep and rupture stress vs. temperature617, 620-623 effect of rolling temperature on texture. See Cold-rolled steel, low carbon impact transition temperature range960-967, 980-981 effect of prestraining in compression and aging963-965 effect of aging temperature963-965 effect of prestraining in tension
of unstable austenite trans-	and aging961–963
formed to banite366–367 typical microstructures 361	effect of aging temperature.963 effects of straining and strain aging980-981
Izod impact	effect of stress-relief
chromium-manganese-nickel steels241, 249–254	treatments966–967 microstructure976 effect of strain aging
Larson-Miller parameter	treatments
as a function of stress997–998 for molybdenum997–998	effect of strain aging971–973 effect of aging time971–973

Low carbon steels (cont.)	Magnesium (cont.)
hot hardness973–976, 981–982 effect of aging time974–976 effect of temperature973–974	detwinning
tensile properties966-971	method of identification104-105
effect of prestraining in com- pression and aging969–971	orientation104, 106–107 noncrystallographic low angle
effect of prestraining in ten-	boundaries117-122
sion and aging966–969 tensile strength966–971	crossing grain boundary120–121 effect of stress on displace-
effect of prestraining in com-	ment of
pression and aging969–971	formation and movement118–120
effect of prestraining in tension and aging966–969	noncrystallographic surface
effect of aging time966–967	traces
transition temperatures972–973	rupturing
relationship to hardness972–973	slip
relationship to yield	slip-bands
strength972–973	stress-strain curves105, 107–108
time stress-strain curves965-966	twinning
prestrained in compression	bending planes associated
and aged965-966	with 117
prestrained in tension and	bilateral growth112-113
aged965–966	detwinning112, 115–116
yield point behavior970-971	unilateral growth112, 114
effect of prestraining and	Magnesium alloys
aging	
yield strength966–971	stress-corrosion. See Stress-
effect of prestraining in com-	corrosion
pression and aging969–971 effect of prestraining in ten-	Magnetic intensity
sion and aging966–969	of cold worked steel325-344
effect of aging time966–969	Magnetic transformation curves
Machinability	SAE 4340 steel 872
of rephosphorized open hearth	Magnetic transformation
screw steel effect of composition. See	diagram
Rephosphorized open	SAE 4340 steel
hearth screw steel	relation of magnetic perme-
Machinability index 689	ability to temperature.875-876
	Magneto-mechanical
Magnesium	damping447-449
bend planes	Manganese
109–110, 112–113, 117–118	
associated with twinning117–118	effect on machinability of steel. 687
schematic illustration 117	in high carbon alloy steels
crack formation125–129, 132–134	effect on
deformation mechanisms in 102–129	hardenability757, 760–761

Manganese steels	Mechanical properties (cont.)
martensitic transformation286-288	of hardened steels385-389
Martensite	relation to hardness
18% Cr – 8% Ni stainless steel relationship to electrical	of lamellar and spheroidal eutectoid steel
resistance269–270 isothermal forma-	molybdenum987–995 material constants vs.
tion272–275, 282–284 18% Cr – 8% Ni stainless	temperature987–991 strength and ductility vs.
steel	temperature992–995 SAE 4340 steel899–900
temperature272–275 effect of plastic deforma-	effect of hydrogen embrittle- ment899–900
tion282–283	Melting points
mechanical stabilization .282–284 mechanism of formation352–354 SAE 4340 steel918–919	of titanium-aluminum-manganese alloys 576
hydrogen embrittlement918-919	Microstructure
room temperature aging characteristics918–919	of Al-V alloys .525-527, 530, 532-533 of 4.5% chromium steels 654
Martensitic steels	of cold-worked steel
attainable hardness	relationship to magnetic intensity
Martensitic transformation	graphite
18% Cr – 8% Ni stainless	secondary graphite857–862
steel	secondary graphite 854 of ductile or nodular cast
effect of deformation267-290 effect of plastic strain on	of fatigue cracks in eutectoid
subsequent transformation	steel
martensite produced by plastic deformation273-277 for a range of temper-	changes during tempering. See Tempering of iron carbon alloys
atures	low carbon steels 976 effect of strain aging
nature of martensitic	treatments 976 relationship to hardenability .727–746
product	17-22A(S) steel942-943, 945-947
Mechanical properties	normalized at various temperatures942–943
chromium-manganese-nickel steels239–241, 243–254	tempered for various lengths of time945-947

Microstructure (cont.)	Molybdenum (cont.)
of steel during transformation. 361 Stellite 21.818, 821, 823-830, 835-841	Larson-Miller parameter997–998 as a function of stress997–998
as rolled818, 821, 827, 838 effect of different quenching	mechanical properties987-995 material constants vs.
methods849–850	temperature987–991
heat treated and isothermally	strength and ductility vs.
transformed 837	temperature992–995
showing pearlite surrounded	minimum creep rate996–997
by border 837	activation energy 996
pearlitic structures840–841	as a function of reciprocal ab-
precipitation by aging826–830	solute temperature996-997
precipitation by isothermal	as a function of true stress 996
transformation823–830	reduction of area993–995
solution-treated818, 827	as a function of
of stress-corrosion	temperature993–995
in magnesium alloy	strain hardening coefficient
J 1479–480, 483	
of titanium-aluminum-manganese	as a function of reciprocal
alloys	absolute temperature 988, 991
of titanium-cobalt alloys556–560	strain rate sensitivity
vanadium-oxygen alloys	987–991, 993–995
1006, 1008–1010, 1013	as a function of reciprocal
Minimum creep rate	absolute temperature. 988, 991
	stress at unit strain987–988, 990 stress-rupture life995
molybdenum	equation 995
as a function of reciprocal	tensile fracture
absolute temperature. 996–997	tensile properties984–1000
as a function of true stress. 996	at elevated temperatures.984–1000
as a function of true stress 970	tensile strength990–995
Molybdenum	as a function of tempera-
in binary zirconium alloys	ture992–995
effect on elevated temperature	true stress-true strain
strength671-674	curves986–989
effect on workability and	yield points989–992
hardness670-671	yield strength992-995
creep curves994–995	as a function of tempera-
creep-rupture data999-1000	ture
creep-rupture fracture999-1000	yield stress vs. temperature 460
creep-rupture properties995-1000	Zener-Hollomon parameter. 996-998
ductility	as a function of true stress. 996–998
as a function of temper- ature992–995	M. Temperatures873–875, 879–880
elongation	equation for 874
temperature992–995	Nickel
in high carbon alloy steels	creep curves vs. prestrain511-513
effect on hardenability759, 762	effect on hardenability 412

Nickel (cont.)	Notch strength ratio
in end-quenched steel sections effect on tensile and impact	17-22A(S) steel938-941, 949-952 as a function of rupture
properties	time949–952 for several normalizing
effect on hardenability 758, 760–761	temperatures949-950 for various tempering
Nickel-cobalt alloys	treatments950–952 effect of normalizing temper-
creep curves vs. prestrain 515	ature938–939
effect of alloy content 515	at several times to rupture938–939
Nickel-iron alloys	effect of tempering temper-
creep curves vs. prestrain 514	ature939–940 at several rupture times.939–940
Nickel-titanium alloys	effect of tempering time939-941
creep curves vs. prestrain 514	at several times to rupture940–941
Nitrogen	17 – 4PH940–942
effect on machinability of steel. 687	effect of tempering tempera- ture940–942
effect on transformation	at several rupture times. 941–942
temperatures of iron504, 506 in titanium	effect of test tempera-
effect on beta to alpha	ture940–942
transformation506–507	at several rupture times.941–942
	Oxygen
Nodular cast irons	in titanium
elevated temperature properties. See Ductile cast irons	effect on beta to alpha transformation506–507
Noncrystallographic low angle	Pearlite
boundaries	effect on fatigue crack
	propagation435–438
magnesium	structural nature 739
effect of stress on displace-	Pearlitic ductile cast irons
ment of	creep and stress rupture data614–623
Noncrystallographic surface traces	hot tensile properties625–627 structural stability623–625
magnesium127–128	Phase diagrams
Notch sensitivity	aluminum-vanadium524, 539 copper-gold579, 587
Cr-Mo-V and 17 Cr-4 Ni-	iron-cerium544, 547–548
4 cu steels926–956	titanium-aluminum-
effects of variation in normal-	manganese566–576
izing and tempering	titanium-cobalt 557
procedure926–956	vanadium-oxygen 1005

Phase transformations	Pole figures (cont.)
during tempering of 4.5% Cr steels	aluminum sheet40, 46–49, 58–65 mixture of rolling and recrystal-
Phosphorus	lization textures .48, 62–63, 65 recrystallization texture
effect on machinability of steel. 687	rolling texture46, 49, 60–62
Photomicrographs	
chromium-manganese steel showing sigma formation 207-208 18% Cr - 8% Ni stainless steel271-273, 278-282, 289 showing change in martensite on cooling after deformation280-282 showing martensite produced by deformation278-280 showing nature of martensitic product271-273 stainless steels, 12% Cr - 4% Mo213-215, 221 effect of titanium213-215 stainless steels, type 310179-203 showing sigma formation .197-203	aluminum alloy bar69-72 correlation with directional properties69-72 aluminum-copper-magnesium bar
zirconium170, 174–175	Probit analysis
Plain carbon eutectoid steel fatigue properties423-439	of fatigue properties
Plain carbon steel	Rare earth metals
solubility of carbon306–310 Planar Pressure Theory 895 Plastic flow	in end-quenched steel sections effect on hardenability 410 effect on tensile and impact properties414-416
aluminum sheet	Rate sensitivity definition
Plastic flow damping447–449 Plastic strains types	equations
Pole figures	Recovery
aluminum-copper-magnesium alloy bar	in cold worked aluminum activation energy

Recrystallization	Screw steel
chromium-manganese steel 207 effect on sigma formation 207	machinability vs. composition
stainless steels, type 310200–207 effect on sigma formation.200–207	Secondary graphite
Reduction of area	ductile cast iron854, 857–863
molybdenum	influence of composition 861–863 metamorphosis of 857–862 microstructure
Refractaloy 26	Secondary graphitization
damping under static stress445-446	ductile cast iron853–868 quenched and tempered853–868
Rephosphorized open hearth screw steel	Secretary's annual report 15
influence of composition on	Shear modulus
machinability advantages of open hearth	relation to delayed yield time
steel 681	454 458
effect of carbon683, 687–689	Sigma formation
effect of manganese	austenitic stainless steels effect of cold work and re- crystallization
compression or simple tension	effect on hardenability410-412 effect on machinability of steel683-685, 687-689 in end-quenched steel sections effect on tensile and impact
effect of rolling temperature. See Cold-rolled steel, low carbon	properties414-417 in high carbon alloy steels effect on hardenability752-753

Slack-quenched steel	Specific volumes
sections effect of mass	18% Cr – 8% Ni stainless steel. 269 austenite 269 martensite 269
hardenability results409–413 previous results408–409	Stain etching
procedure 409	Stellite 21821–822, 834–836, 842
tensile and impact properties	Stainless steels
Slip	AISI 403 damping under static stress
energy to initiate452–453	
magnesium	12% Cr – 4% Mo steels211–230 Chi phase211–230
Slip-bands	effect of titanium
magnesium108–111	Laves phase
Smooth strength ratio	effect of titanium
17-22A(S) steel949-952 as a function of rupture time	photomicrographs213-215, 221 effect of titanium213-215
for several normalizing tem-	Stainless steels, austenitic
peratures949–950	chrominum-manganese-nickel
as a function of rupture time	steels .239-241, 243-258, 262-265
950–952	corrosion resistance255–258
for various tempering treat-	intergranular corrosion.256–258
ments950–952	elongation241, 244–246
Solid solubility limits	Ericksen values
thermodynamic expressions. 501–507 cementite in gamma iron504–505	mechanical properties 239–241, 243–254
Solid solutions	oxidation tests264–265 stress-rupture strength262–265
thermodynamics of binary inter- stitial. See Thermodynamics	tensile strength240–241, 244–246 true stress-strain curves247–250
Solidification	yield strength241, 244, 246 welding characteristics254-255
deutritic growth463–470	work hardening239, 243, 247-250
Solonoid	18% Cr – 8% Ni type267–290 electrical resistance269–270
use in studying cold worked steel334–335	relationship to percent martensite269–270
Solute	hardness
concentration during solidifica-	martensite 273
tion	isothermal formation of mar-
temperature distribution during	tensite272-275, 282-284
solidification 464	effect of carbon272–275

Stainless steels, austenitic (cont.)	Stainless steels, austenitic (cont.)
effect of holding temperature	rate of sigma formation193-207 effect of aging temperature195-196, 198-207 effect of aging time195-196, 198-207 effect of cold working195-196, 198-207 effect of recrystallization200-207 sigma formation193-209 effect of cold work and recrystallization193-209
effect of carbon	Static stress
effect of deformation267–290	effect on damping. See Damping of some engineering alloys.
effect of plastic strain on subsequent transforma-	Statistical analysis
martensite produced by plastic deformation	of fatigue properties
	Steels
for a range of temperatures	See Low Carbon steels. delayed yield. See Dislocation theory. effect of cold work on cementite. See Cementite in steel. effect of grinding on structure. See Grinding. impact properties144-148, 150-151 effect of alloying elements
duced by deformation 278–280	magnetic permeability versus
showing martensite271–273 specific volumes269 austenite269 martensite269 type 310193–209 bend angle208–209 effect of sigma formation208–209 hardness208–209 effect of sigma formation208–209	temperature

Steels (cont.)	Steel, trade designations (cont.)
tensile properties137-144, 148-150 effect of strain aging148-150 transformation points869-875 magnetic detection869-875 determination of M _s points	SAE 1340 hardenability vs. microstructure
operation of equipment 873–875	SAE 4340727–746
schematic diagram of apparatus 871	hardenability vs. microstruc- ture
schematic diagram of cir- cuit 870	SAE 5140 hardenability vs. microstruc-
typical cooling and magnetic transformation curves. 872	ture
SAE 4063 Elmendorf curve880–881 SAE 4340872, 876–877	hardenability vs. microstruc- ture727–746
cooling curves for several	Stellite 21
quenching media876–877 cooling and magnetic transformation curves 872	grain boundary behavior 830 hardness830–833, 841, 849–851 aging830–833
Steel, trade designations	effect of aging temperature
AISI 403 damping under static stress	for various times 832 effect of time at various
AISI 1020 elastic limit and yield be-	changes with heat treatment. 841 effect of different quenching methods849–850
havior	isothermal transformation
elastic limit and yield be- havior	effect of temperature for
AISI 1045 isothermal transformation	various times 832 effect of time at various
curves 359	temperatures 831 versus aging temperatures .850–851
AISI 1080 elastic limit and yield behavior	heat tinting821–822, 834–836, 842 lattice parameter
AISI 1085 isothermal transformation	microstructure
curves	as-rolled818, 821, 827, 838 effect of different quenching methods849–850
curves	heat treated and isothermally transformed
hardenability vs. microstruc- ture	showing pearlite surrounded by border 837
SAE 1090 electron micrographs314-316	pearlite structures840–841 precipitation by aging826–830

Stellite 21 (cont.)	Stress (cont.)
precipitation by isothermal transformation823–830 solution treated818, 827 stain-etching821–822, 834–836, 842 stress rupture life850–851	effect on isothermal transforma- tion of austenite. See Iso- thermal transformation of austenite.
versus aging temperature.850–851	Stress at unit strain
X-ray diffraction	molybdenum987–988, 990
819–821, 833–834, 841–842 matrix phases819–821, 833	Stress-corrosion
minor phases	of magnesium alloy J 1 apparatus and procedure475–479
Stereographic projections	cathodic protection483–485 direction of cracking482–483
51–53, 56–59, 70–71	effect of heat treatment 479
Strain aging	mechanism of485–486 microstructures479–480, 483
effect on delayed yield time 457	nature of stress corrosion 474
relation to solute segregation 451	previous observations 475
mechanism of976–980, 982	Stress-residual strain curves
of steel effect on carbon diffusion 347	for hardened steels384, 386
Strain energy	Stress rupture life
of binary interstitial solid solu-	molybdenum 995
tions500-507	equation 995
Strain-hardening coefficient	Stellite 21850–851
molybdenum987–991, 993–995	versus aging temperatures.850–851
as a function of reciprocal	Stress-rupture properties
absolute temperature. 988, 991	of ductile or nodular cast irons
Strain-hardening exponent	613–623
zirconium. 160, 162, 170-172, 176-179	Stress-rupture strength
effect of annealing tempera- ture170–172	chromium-manganese-nickel
effect of testing tempera-	steels262–265
tures160, 162, 180–181	Cr-Mo-V and 17 Cr-4 Ni-
relation to texture176-179	4 Cu steel926–956 effects of variation in normal-
Strain rate sensitivity	izing and tempering pro-
molybdenum987–991, 993–995	cedure926–956
as a function of reciprocal	17-22A(S) steel
absolute temperature.988, 991	932–937, 944–945, 948–949
Stress	as a function of hardness 948
effect on creep-tempering	at several rupture times 948 effect of carbide structure.944–945
of 4.5% chromium steels .661–662	effect of grain size 945
effect on elastic limit of steel	effect of tempering tempera-
394–395, 403	ture934–937

Stress-rupture strength (cont.)	Tantalum
effect of tempering time936–937 at various rupture times 936–937 effect of normalizing temperature932–935	in binary zirconium alloys effect on elevated temperature properties
at various rupture times	Technical program and reports of officers, American Society for Metals—36th Annual Convention, Chicago, November 1 to 5, 1954
	Temperature
specimen	during cold-rolling of steel effect on texture715-726 effect on damping of AISI 403 steel
effect of grinding. See Grinding.	tempering relationships.
Substructure	Tempering of iron-carbon alloys
effect on creep in nickel and nickel alloys. See Creep curves.	cementite particles effect of carbon form on sol- ubility
Sulphur	effect of strain on solubility
effect on machinability of steel	minimum stable size
Supercooling	compositions of alloys tested 292
during solidification 469	effect on ferritic grain size296-302

Tempering of iron-carbon alloys	Tensile properties (cont.)
(cont.) effect on hardness293, 304	of end-quenched heavy steel sec- tions
effect of temperature up to 700 °F291–292	effect of boron413-416
electron micrographs	effect of carbon
microstructural changes at 700-	effect of nickel
1000 °F	
Tempering temperature	low carbon martensites135–152
of steel	low carbon steels966-971, 981
effect on elastic limit	effect of prestraining in com- pression and aging969–971
effect on hardness and strength	effect of prestraining in ten- sion and aging966-969
effect of rate of cooling from 390–397	molybdenum984-1000 at elevated temperatures.984-1000
effect on yield strength384–391	of nickel and nickel alloys
Tensile characteristics	effect of prestrain on .508–511, 513
effect of annealing tempera-	steels137-144, 148-150, 154-155 brine quenched and refrig-
ture	erated
impurities	effect of specimen size 142–144, 154–155
influence of texture	effect of strain aging148-150 load-extension curves148, 150
Tensile fracture	quenched in iced brine137-140
molybdenum993, 995	quenched in oil141–142 zirconium180–182
Tensile fracture stress	
aluminum plate91–93, 97–98 comparison of compressive	Tensile strength
effects	chromium-manganese-nickel steels240-241, 244-246 of hardened steels
effect of various prestrain stress states91-93, 97-98	relation to elastic limit393–394 low-carbon steels966–969, 981 effect of prestraining in com-
Tensile.properties	pression and aging969-971
aluminum-copper-magnesium alloy	effect of prestraining in ten- sion and aging966–969
extruded bar68–69, 72–74 after recrystallization72–74 effect of preferred orientation	effect of aging time966–969 molybdenum992–995 as a function of temperature

Tensile strength (cont.)	Thermo-magnetic balance
zirconium	322–325
effect of annealing tempera-	PT 84 8
ture	Titanium
effect of test temperature	beta to alpha transformation
	effect of carbon, oxygen and
Tensile stress	nitrogen on506–507
	carbide forming tendencies in
effect on isothermal transfor-	steel605–610
mation of austenite. See Isothermal transformation	Titanium-aluminum-manganese
of austenite.	system
T	contour projection of the beta
Tensile tests	space 569
aluminum sheet46–47, 49	examination of alloys 571
effect of preferred orienta-	isothermal section at 750 °C 566 isothermal section at 800 °C 567
tions	isothermal section at 900 °C 567
molybdenum	isothermal section at 1000 °C 568
autographic record 992	isothermal section at 1000 °C 568
Texture	isothermal section at 1200 °C 569
zirconium	literature review565–568
influence on tensile character-	melting point contour projec-
istics	tion 576
172–173, 175–176, 178–179	microstructures572-573
relation to strain-hardening	phase equilibria571–576
exponent176–179	procedure
Thermal nucleation	vertical sections574–576
rate for steel	Titanium-cobalt system
rate for steel 455	beta decomposition 559
Thermodynamics	eutectic composition 558
of binary interstitical solid solu-	hardness values
tions	intermediate phases559–562
beta to alpha transformation	literature review554–555
in titanium	melting range determinations 562
effect of carbon, oxygen and	metallographic studies556-560
nitrogen506–507	phase diagram 557
energies for formation494-507	procedure555–556
enthalpy	Tool steels
expressions for alloy forma-	
tion 494	hardenability of carbon steel cylinders. See under
influence of carbon and nitro-	Hardenability.
gen in iron on gamma- alpha transformation tem-	
peratures504–506	Torsional deformation
solid solubility limit501–507	of tungsten wires602–604
of cementite in gamma iron	Transformation of austenite
504–505	See Isothermal transformation
strain energies500-507	of austenite.

e stress-true strain unstable austenite before and during transformation
for cold worked aluminum
e stress-true strain unstable austenite before and during transformation
e stress-true strain unstable austenite before and during transforma- tion
unstable austenite before and during transformation
before and during transforma- tion
tion366–367
e stress-true strain curves
e stress-true strain curves
romium-manganese-nickel
steels247–250
w carbon steels965–966
prestrained in compression
and aged965–966
prestrained in tension and
aged965–966
olybdenum986–989
AE 4340 steel900–901
effect of hydrogen embrittle-
ment900–901
rconium
159–164, 166, 168, 171, 173,
175–176, 178, 180–181, 183–184
effect of annealing tempera-
ture and grain size171, 176
influence of strain rate166, 168
logarithmic plot159, 161
showing range of values re-
sulting from changes in
test variables183-184
strong and weak texture
ngsten
binary zirconium alloys
effect on creep-rupture at
1800 °F674–675
effect on elevated temperature
properties671-674
effect on workability and
hardness670-671
ngsten wires
ffect of twisting at high
temperatures599-604
apparatus and procedure600-602
importance of sagging re-
sistance 599

Tungsten wires (cont.)	Welding characteristics
resistance to torsional deformation602-604	chromium-manganese-nickel steels254-255
effect of grain structure 604	Workability
Twinning	of binary zirconium alloys670-671
magnesium111-117, 125 bending planes associated	Work hardening
with	chromium-manganese-nickel steels 239, 243, 247–250
unilateral growth112, 114	X-Ray diffraction
Vanadium allotropy in	Stellite 21.819–821, 833–834, 841–842 matrix phases819–821, 833 minor phases
electrical resistance1014-1015 as a function of tempera-	X-Ray diffraction camera
ture1014–1015	"structure integrating" 44
in binary zirconium alloys effect on elevated temperature	X-Ray diffraction lines
properties	vanadium-oxygen system .1010–1011 delta phase1010–1011
V	X-Ray diffraction patterns
Vanadium-Oxygen phase diagram 1005	standards 819
Vanadium-Oxygen alloys	X-Ray diffraction study
hardness as a function of oxygen content1015–1016 melting points1012	of iron-cerium system550-551 of texture of cold-rolled steel effect of temperature719-726 of worked steel336-340
microstructures	X-Ray photograms
	of cold worked aluminum before and after creep tests 638
Vanadium-Oxygen System	Yield point behavior
beta phase	low carbon steels970–971 effect of prestraining and aging970–971
delta phase	Yield points
solubility limit of oxygen. 1006–1007 VO phase	molybdenum

Yield strength	Zirconium (cont.)
aluminum plate	grain size
ture161–162, 167, 180	tensile characteristics
Yield stress	influence of texture
as function of temperature for iron	tensile properties180–182 tensile strength
for molybdenum	161–162, 170–172, 180, 186 effect of annealing temperature170–172
as a function of true stress for molybdenum creep data996-998	effect of test tempera- ture
Zirconium	exponent176–179
elongation .161-162, 170-172, 180-181 effect of annealing temperature	true stress - true strain curves159-164, 166, 168, 171, 173, 175-176, 178, 180-181, 183-184 effect of annealing temperature and grain size171, 176 influence of strain rate166, 168

Zirconium (cont.)

showing range of values re-
sulting from changes in
test variables183-184
strong and weak texture
yield point
yield strength .161-162, 170-172, 180
effect of annealing tempera-
ture170–172
yield strength
effect of testing tempera-
ture161–162, 167, 180

Zirconium alloys