CS6375 - ML - Project Assignment #2

Submitted by Kapil Gautam – KXG180032

(Bagging) Construct four models for each combination of maximum depth d = 3; 5 and bag size (k = 10; 20). Report the confusion matrix for these four settings.

Depth: 3 Bag Size: 10 Test Error = 3.76%.			Depth: 3 Bag Size: 20 Test Error = 3.76%.		
	Positive	Negative		Positive	Negative
Actual Positive	1153	43	Actual Positive	1153	43
Value Negative	34	816	Value Negative	34	816
Depth: 5 Bag Size: 10			Depth: 5 Bag Size: 20		
Test Error = 0.15%.			Test Error = 0.15%.		
Classifier Prediction			Classifier Prediction		
	Positive	Negative		Positive	Negative
Actual Positive	1193	3	Actual Positive	1193	3
Value Negative	0	850	Value Negative	0	850

(Boosting) Construct four models for each combination of maximum depth d = 1; 2 and bag size (k = 20; 40). Report the confusion matrix for these four settings.

Depth: 1 Bag Size:	20		Depth: 1 Bag Size:	40		
Test Error = 9.34%.			Test Error = 9.34%.			
Classifier Prediction			Classifier Prediction			
	Positive	Negative		Positive	Negative	
Actual Positive	1037	159	Actual Positive	1037	159	
Value Negative	32	818	Value Negative	32	818	
Depth: 2 Bag Size: 20			Depth: 2 Bag Size: 40			
Test Error = 4.89%.			Test Error = 4.89%.			
Classifier Prediction			Classifier Prediction			
	Positive	Negative		Positive	Negative	
Actual Positive	1100	96	Actual Positive	1100	96	
Value Negative	4	846	Value Negative	4	846	

(Scikit-learn) Use scikit-learn's bagging and AdaBoost learners and repeat the experiments as described in parts (a) and (b) above. Report the confusion matrices for these sets of settings. What can you say about the quality of your implementation's performance versus scikit's performance?

Note - In binary classification in sklearn, the count of true negatives is C[0][0], false negatives is C[1][0], true positives is C[1][1] and false positives is C[0][1].

Bagging:

Depth: 3 Bag Size: 10	Depth: 3 Bag Size: 20
test error (%): 3.910068426197455	test error(%): 4.740957966764414
Confusion matrix:	Confusion matrix:
[[846 4]	[[846 4]
[76 1120]]	[93 1103]]
Depth: 5 Bag Size: 10	Depth: 5 Bag Size: 20
test error(%): 0.0	test error(%): 0.0
Confusion matrix:	Confusion matrix:
[[850 0]	[[850 0]
[0 1196]]	[0 1196]]

AdaBoost

Depth: 1 Bag Size: 20	Depth: 1 Bag Size: 40
test error(%): 0.2932551319648091	test error(%): 0.0
Confusion matrix:	Confusion matrix:
[[846 4]	[[850 0]
[2 1194]]	[0 1196]]
Depth: 2 Bag Size: 20	Depth: 2 Bag Size: 40
test error(%): 0.0	test error(%): 0.0
Confusion matrix:	Confusion matrix:
[[850 0]	[[850 0]
[0 1196]]	[0 1196]]

Scikit implementation for Bagging is almost the same as my implementation.

For Boosting, Scikit probably uses better decision tree criteria, which gives it a better edge over my implementation.