W6 Pulling it All Together

6.1 What about using statistical software to select samples?

Frame

e.g. Census Blocks

Using R

- Change Directory
- setwd("M:\\Coursera sampling methods")
- Open data file

frame <- read.table(file = "frame.txt", header=TRUE, sep = "\t")

• View data in a spreadsheet edit(frame)

library(sampling)

simple random sample

without replacement

sam.srswor <- srswor(n=20, N=975)

sample.srswor <- frame[which(x = (sam.srswor == 1)),]</pre>

sam.srswor

7 7			
7213528616772568577780	mple.sr seqno 7 21 93 185 222 228 301 306 347 472 495 506 538 705 804	rent 395 0 5 0 0 10 0 0 14 0 6 8 12 6 0 6 51	owner 1 0 9 11 12 14 0 17 16 14 12 18 33 30
804 809 879	804 809 879	1 10 64	57 49 20

```
## Simple Random sampling with Replacement ##
sam.srswr <- srswr(n=20, N=975)
sample.srswr <- frame[which(x=(sam.srswr >= 1)), ]
sam.srswr
  [38] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
 > sample.srswr
     seqno
24
157
               rent
0 0 0 1
2 2 2 4 4 0 9 9 5 2 6 2 3 5 8 8 4 6 3 3 1 0
                                  dup
1
1
1
1
1
1
1
1
1
1
1
1
1
 213
240
278
281
296
352
       213
240
278
                           10
10
11
10
14
8
17
21
22
1
15
2
8
74
0
15
15
       281
296
352
 464
485
547
614
675
739
760
820
881
       464
485
547
614
675
739
760
820
881
886
941
956
       886
941
956
## Systematic Samples ##
  ## Random start – equal size ##
prob.sys <- rep(x=20/975, times=975)
sam.sys <- UPsystematic(pik=prob.sys)
sample.sys <- frame[which(x = (sam.sys == 1)), ]
> sam.sys
   • Interval = 975/20 = 48.75
• Gaps of 48 and 49
 > sample.sys
     seqno
33
 33
                   1
0
7
        82
131
180
 82
131
180
228
277
326
375
423
472
521
570
618
667
716
765
813
                   0
        228
277
                  10
8
16
5
6
8
9
3
14
10
40
37
2
75
                                > ## PPS samples ##
> ## random selections ##
> prob.pps <- inclusionprobabilities(a = frame$owner_hu, n = 20)
Warning message:
In inclusionprobabilities(a = frame$owner_hu, n = 20) :
    there are zero values in the initial vector a</pre>
        326
375
423
472
                            0
12
14
                            14
16
        521
        570
618
667
716
765
813
                            25
18
25
0
12
                                > sam.pps <- UPbrewer(pik = prob.pps)
                                > sample.pps <- frame[which(x = (sam.pps == 1)),]
                                862
        862
                             2
                 114
```

> s	ample.	pps				1 -			
	segno	rent	owner	<pre>> sample.ppssys</pre>					
149	149	1	6		S	eqno	rent	owner	
236	236	ō	12	9		9	145	278	
252	252	2	10	1	31	181	2	7	
403	403	6	13	2	76	276	0	13	
410	410	0	19	3.	57	357	6	11	
				4:	17	417	5	14	
447	447	ō	21	4	70	470	7	15	
491	491	5	19		L8	518	14	11	
569	569	12	16		63	563	3	24	
576	576	0	28		06	606	27	3	
620	620	0	32		17	647	2	32	
639	639	10	23		37	687	1	36	
687	687	1	36						
693	693	8	29		26	726	1	40	
738	738	3	40		88	768	1	48	
762	762	12	36		04	804	1	57	
920	920	52	71		37	837	2	64	
923	923	5	121	8	59	869	46	33	
944	944	18	140	9:	L9	919	119	2	
				9	14	944	18	140	
962	962	87	120	9	52	962	87	120	
975	975	41	257	9	73	973	41	234	

6.2 Stratified Multistage Sampling

- First, identify sampling units:
- PSU (Primary Sampling Units)
- Secondary units within PSU, etc.

e.g. Area Sample of households: PSU = county

- Then stratify at each stage
- stratification as a general purpose tool ...
- assure representation
- potentially provide gains in precision
- For example, PSU stratification
- Follow principles similar to element stratification
- use cluster characteristics to **create** homogeneous, mutually exclusive, exhaustive **groups**
- stratifying variables, boundaries etc. follow element sampling stratification principles
- allocate sample clusters across strata: proportionate, paired, equal, other (Neyman or minimum variance unusual)
- select samples from each group
- later, after data collection, computer estimates separately for each group statistic and sampling variance
- combine results across groups
- Purpose
- control the distribution of the sample
- decrease sampling variance

e.g. Area sample of households: Stratum = MSA(Metropolitan Statistical Areas) 4 categories: very large – medium sized – smaller sized – non metropolitan

e.g. Area sample of households: Stratification = implicit

• Second stage units

Area sample of households: Second stage units

- within selected PSU
- Census tracts across entire selected county?