

ISFAHAN UNIVERSITY OF TECHNOLOGY DEPARTMENT OF MATHEMATICAL SCIENCES

Applied Linear Algebra Quiz #1

- 1. Which item is true? If it is true give a proof, otherwise give a counterexample.
 - (i) If W_1 and W_2 are two subspaces of \mathbb{R}^4 such that dim $W_1 = \dim W_2 = 3$ then dim $(W_1 \cap W_2) \ge 2$.
 - (ii) If W_1 and W_2 are two subspaces of \mathbb{R}^4 such that dim $W_1 = \dim W_2 = 2$ then $W_1 + W_2 = \mathbb{R}^4$.
 - (ii) Planes xoy and xoz are orthogonal subspaces of \mathbb{R}^3 .
- 2. Let v_1, \ldots, v_n be orthonormal vectors. Also, let $x = \alpha_1 v_1 + \cdots + \alpha_n v_n$. Prove that $||x||^2 = |\alpha_1|^2 + \cdots + |\alpha_n|^2$.
- 3. Let $W \subset \mathbb{R}^4$ be the span of the vectors $\{x_1, x_2, x_3, x_4\}$. We know that dim W = 3. Find an orthonormal basis for W.

$$x_1 = \begin{bmatrix} 0 \\ 0 \\ 1 \\ 1 \end{bmatrix}, x_2 = \begin{bmatrix} 0 \\ 1 \\ 1 \\ 2 \end{bmatrix}, x_3 = \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix}, x_4 = \begin{bmatrix} 2 \\ 1 \\ 2 \\ 1 \end{bmatrix}$$

1

- 4. Let $u = [5, -6, 7]^T$ and W be the set of all vectors in \mathbb{R}^3 orthogonal to u.
 - (i) Find the projection of $x = [1,2,3]^T$ onto W.
 - (ii) Find the distance from the vector $x = [1,2,3]^T$ to the subspace W.