CBSE Board

Class X Mathematics

Sample Paper 2 (Basic)

Time: 3 hrs Total Marks: 80

General Instructions:

- a. All questions are compulsory
- b. The question paper consists of 40 questions divided into four sections A, B, C and D.
- c. Section A comprises of 20 questions of 1 mark each. Section B comprises of 6 questions of 2 marks each. Section c comprises of 8 questions of 3 marks each. Section D comprises 6 questions of 4 marks each.
- d. There is no overall choice. However internal choices have been provided in two questions of 1 mark each, two questions of 2 mark each, three questions of 3 marks each and three questions of 4 marks each. You have to attempt only one of the alternatives in all such questions.
- e. Use of calculators is not permitted.

Section A

(Questions 1 to 10 are multiple choice questions. Select the most appropriate answer from the given options)

- 1. $3.\overline{27}$ is
 - A. An integer
 - B. A rational number
 - C. A natural number
 - D. An irrational number
- **2.** If the mean of 6, 7, x, 8, y, 14 is 9 then
 - A. x + y = 21
 - B. x + y = 19
 - C. x y = 19
 - D. x y = 21
- 3. In the given figure, PT is a tangent to the circle with centre 0. If OT = 6 cm and OP = 10 cm, then the length of tangent PT is

- A. 8 cm
- B. 10 cm
- C. 12 cm
- D. 16 cm
- **4.** The smallest number by which $\sqrt{27}$ should be multiplied so as to get a rational number
 - is
 - A. $\sqrt{27}$
 - B. $3\sqrt{3}$
 - C. √3
 - D. 3
- **5.** Which of the following cannot be the probability of occurrence of an event?
 - A. $\frac{2}{3}$
 - B. -1.5
 - C. 15%
 - D. 0.7
- **6.** A quadratic polynomial, the sum of whose zeroes is 0 and product is 3, is
 - A. $x^2 9$
 - B. $x^2 + 9$
 - C. $x^2 + 3$
 - D. $x^2 3$
- 7. The decimal expansion of the rational number $\frac{33}{2^2 \times 5}$ will terminate after
 - A. One decimal place
 - B. Two decimal places
 - C. Three decimal places
 - D. More than 3 decimal places
- **8.** If the sum of the zeros of the quadratic polynomial $kx^2 + 2x + 3k$ is equal to the product of its zeros then k =
 - A. $\frac{1}{3}$
 - B. $\frac{-1}{3}$
 - C. $\frac{2}{3}$
 - D. $-\frac{2}{3}$

- **9.** The distance between the points P(-1, 1) and Q(5, -7) is
 - A. 11 units
 - B. 10 units
 - C. 5 units
 - D. 7 units
- **10.** If the centroid of the triangle formed by (7, x), (y, -6) and (9, 10) is at (6, 3) then (x, y) =
 - A. (2, 5)
 - B. (5, 2)
 - C. (3,5)
 - D. (5, 3)

(Q 11 - Q 15) fill in the blanks

- **11.** The point which divides the join of A(-1, 7) and B(4, -3) in the ratio 2:3 then its coordinates are ____

The system of equations 3x - 2y = 0 and kx + 5y = 0 has infinitely many solutions. Then $k = \underline{\hspace{1cm}}$

- **13.** The value of ($\sin 40^{\circ} \cos 50^{\circ}$) is ____
- **14.** If $2\sin 2\theta = \sqrt{3}$ then $\theta =$
- **15.** In a triangle ABC, AD is the bisector of \angle A. If AB = 5.6 cm, AC = 4 cm and DC = 3 cm then BD = ___

(Q 16 - Q 20) Answer the following

16. Find the value of $(1 - \cos^2 A) \sec^2 A$.

- **17.** A wheel covers 88 km. Then find the diameter of the wheel.
- **18.** If the probability of winning a game is 0.4, the probability of losing it is?
- **19.** Find the 8th term of the A.P. 5, 2, -1, -4, -7,...
- **20.** A die is rolled. What is the probability that the number appearing on upper face is less than 3?

Section B

- **21.** There are 2 red, 2 white and 2 green balls in a bag. One ball is drawn at random. C is the event that the ball is not green. Find the probability that getting the ball is not green.
- **22.** Each card bears one letter from the word 'mathematics'. The cards are placed on a table upside down. Find the probability that a card drawn bears the letter 'm'.

OR

Six faces of a die are as shown below

ABCDEA

If the die is rolled once, find the probability that

- i. 'A' appears on upper face
- ii. 'D' appears on upper face
- 23. In two tangents are drawn from an external point then prove that
 - i. They subtend equal angles at the centre and
 - ii. They are equally inclined to the line segment joining the centre to that point.
- **24.** Prove that $\frac{1 \tan^2 A}{\cot^2 A 1} = \tan^2 A$

OR

Prove that
$$\frac{\tan \theta}{\sec \theta - 1} + \frac{\tan \theta}{\sec \theta + 1} = 2\csc \theta$$

- **25.** If the area of a quadrant of a circle whose circumference is 22 cm.
- **26.** Read the following passage and answer the questions that follows: A teacher has given students homework to write some examples of polynomials. Some examples are given below:

i.
$$x + 2$$

ii.
$$x^2 + 5x + 3$$

iii.
$$x^2 + x + 1$$

iv.
$$x^3 + 1$$

$$v. x - 1$$

vi.
$$x^3 + x$$

vii.
$$x^2 + 7x$$

viii. $x^3 - x^2$

- 1. How many students wrote linear polynomial?
- 2. Divide the polynomial $x^2 + x + 1$ by x + 2.

Section C

- **27.** Find k if the sum of the roots of the quadratic equation $x^2 4kx + k + 3 = 0$ is double their product.
- **28.** Construct a \triangle ABC in which BC = 5 cm, CA = 6 cm and AB = 7 cm. Construct a \triangle A'BC' similar to \triangle ABC, each of whose sides is $\frac{7}{5}$ times the corresponding sides of \triangle ABC.
- **29.** The areas of two concentric circles are 962.5 cm² and 1386 cm². Find the width of the ring.

OR

A spherical glass vessel has a cylindrical neck 7 cm long and 4 cm in diameter. The diameter of the spherical part is 21 cm. Find the quantity of water it can hold. Use = $\pi = \frac{22}{7}$.

30. Prove that $\sec \theta (1 - \sin \theta)(\sec \theta + \tan \theta) = 1$

OR

Prove that $(\sin \theta + \csc \theta)^2 + (\cos \theta + \sec \theta)^2 = 7 + \tan^2 \theta + \cot^2 \theta$

31. Prove that $\sqrt{5} + \sqrt{3}$ is irrational given that $\sqrt{3}$ is an irrational number.

OR

Prove that $\frac{2\sqrt{2}}{3}$ is irrational.

- **32.** Prove that the parallelogram circumscribing a circle, is a rhombus.
- **33.** Find the value of k for which the system of equations 3x + y = 1 and kx + 2y = 5 has (i) a unique solution (ii) no solution
- **34.** Read the following passage and answer the questions that follows: In a class room, four students A, B, C and D are sitting at A(2, 1), B(5, 1), C(5, 4) and D(2, 4) respectively. Then a new student E joins the class
 - i. Teacher tells E to sit in the middle of the students B and D. Find the coordinates of the position where E can sit.
 - ii. Calculate the distance between A and C.
 - iii. Calculate the distance between B and D.

Section D

35. The table below shows the daily expenditure on food of 30 households in a locality:

Daily expenditure	No. of households
100-150	6
150-200	7
200-250	12
250-300	3
300-350	2

Find the mean and median daily expenditure on food.

Following is the distribution of marks of 70 students in a periodical test:

Marks	No. of students
Marks less than 10	3
Marks less than 20	11
Marks less than 30	28
Marks less than 40	48
Marks less than 50	70

Draw a cumulative frequency curve for the above data and find the median.

- **36.** The sum of two numbers is 8. Determine the numbers if the sum of their reciprocal is $\frac{8}{15}$.
- **37.** If the 9^{th} and 21^{st} terms of an A.P. are 75 and 183 respectively, find its 81^{st} term?

OR

Find the nth term and 16th term of the AP 3, 5, 7, 9, 11,...

38. A person is standing at a distance of 80 m from a church looking at its top. The angle of elevation is of 45°. Find the height of the church.

OR

The angle of elevation of a cloud from a point 60 metres above a lake is 30° and the angle of depression of the reflection of the cloud in the lake is 60° . Find the height of the cloud.

39. A bucket is in the form of a frustum of a cone and its can hold 28.49 litres of water. If the radii of its circular ends are 28 cm and 21 cm, find the height of the bucket.

$$\left[\text{Use } \pi = \frac{22}{7} \right]$$

40. Prove that the ratio of the areas of two similar triangles is equal to the ratio of the square of their corresponding sides.