FIG. 1A

Met Leu Ala Arg Ala Leu I	Leo Leu Cys Ala Val Leu Ala Le 10	eu Ser His 15
Thr Ala Asn Pro Cys Cys S 20	Ser His Pro Cys Gln Asn Arg Gly 25 30	Val Cys
Met Ser Val Gly Phe Asp (35	Gln Tyr Lys Cys Asp Cys Thr Ar 40 45	g The Gly
Phe Tyr Gly Glu Asn Cys S 50	Ser Thr Pro Glu Phe Leu Thr Arg 55 60	lle Lys
Leu Phe Leu Lys Pro Thr P 65 70	Pro Asn Thr Val His Tyr Ne Leu 75	Thr His 80
Phe Lys Gly Phe Trp Asn \ 85	Val Val Asn Asn Ile Pro Phe Leu 90	Arg Asn 95
Ala Ile Met Ser Tyr Val Le 100	eu Thr Ser Arg Ser His Leu De As 105 110	sp Segr
Pro Pro Thr Tyr Asn Ala A 115	asp Tyr Gly Tyr Lys Ser Trp Glu 120 125	Ala Phe
Ser Asn Leu Ser Tyr Tyr Ti 130	hr Arg Ala Leu Pro Pro Val Pro 2 35 140	Asp Asp
Cys Pro Thr Pro Leu Gly V 145 150	/al Lys Gly Lys Lys Gln Leu Pro 155	Asp Ser 160
Asn Glu Ile Val Glu Lys Le 165	eu Leu Leu Arg Arg Lys Phe Ile I 170	Pro Asp 175
Pro Gln Gly Ser Asn Met M 180	Met Phe Ala Phe Phe Ala Gln His 185 190	
His Gln Phe Phe Lys Thr A	asp His Lys Arg Gly Pro Ala Phe 200 205	Thr Asn
Gly Leu Gly His Gly Val A 210 2	asp Leu Asn His Ile Tyr Gly Glu 115 220	Thr Leu
Ala Arg Gln Arg Lys Leu A 225 230	Arg Leu Phe Lys Asp Gly Lys Me 235	t Lys Ty
Gln lle lle Asp Gly Glu Met 245	t Tyr Pro Pro Thr Val Lys Asp Ti 250 25	
Ala Glu Met Ile Tyr Pro Pro 260	o Gln Val Pro Glu His Leu Arg Pl 265 270	he Ala
Val Gly Gln Glu Val Phe Gl 275	lly Leu Val Pro Gly Leu Met Met 280 285	Tyr Ala
Thr Ile Trp Leu Arg Glu His 290 295	s Asn Arg Val Cys Asp Val Leu I 5. 300	Lys Gln

<u>FIG. 1B</u>

Glu His I 305	Pro Glu Trp (Gly Asp Gl 310		Phe Gln ' 315	Thr Ser A	rg Leu 320
Ne Leu II	le Gly Glu Tl 325	hr Ne Lys li	le Val IIe (330	Glu Asp T	yr Val G 335	lo
His Leu	Ser Gly Tyr I 340	His Phe Ly:	Leu Lys 345	Phe Asp I	Pro Glu L 350	eu Leu
	Lys Gln Phe 355		ln Asn Ar 60		Ala Glu P 865	he Asn
Thr Leu 370	Tyr His Trp	His Pro Lei 375	ı Leu Pro	Asp Thr F 380	he Gln II	e His
Asp Gln 385	Lys Tyr Asn	Tyr Gln G 390	la Phe lle	Tyr Asn A	Asn Ser II	e Lev 400
Leu Glu	His Gly lle 7 405	Thr Gln Phe	Val Glu : 410	Ser Phe Ti		n Ile 15
Ala Gly	Arg Val Ala 420	Gly Gly A	g Asn Va 425	Pro Pro	Ala Val C 430	in Lys
Val Ser (Gln Ala Ser l 435	le Asp Gln 440	Ser Arg (- ys Tyr Gl 45	n Ser
Phe Asn 450	Glu Tyr Arg	Lys Arg P 455	he Met Le	u Lys Pro 460		Ser Phe
Glu Glu 465	Leu Thr Gly	Glu Lys G 470	lu Met Se	r Ala Glu 475	Leu Glu A	Ala Leu 480
Tyt Gly	Asp lle Asp . 485	Ala Val Gl	u Leu Tyr 490	Pro Ala I		'al Glu 95
Lys Pro	Arg Pro Asp 500	Ala lle Phe	Gly Glu 505	Thr Met \	Val Glu V 510	al Gly
Ala Pro	Phe Ser Leu 515	Lys Gly Le 52	u Met Gly 0		Ile Cys S 525	er Pro
Ala Tyr 530	Trp Lys Pro	Ser Thr Pho 535	e Gly Gly	Glu Val (540	Gly Phe G	ln De
lle Asn 7 545	Thr Ala Ser 1 5	le Gln Ser l 50	Leu lle Cy 55:		n Val Lys	Gly 560
Cys Pro	Phe Thr Ser 565	Phe Ser Va	l Pro Asp 570	Pro Giu L	eu Ile Ly 57:	
Val Thr	Ne Asn Ala S 580	Ser Ser Ser	Arg Ser C 585	ily Leu A	sp Asp Ile 590	Asn
Pro Thr	Val Leu Leu 595		rg Ser Thr 10	Glu Leu		

FIG. 2A

GTCCAGGAAC TCCTCAGCAG CGCCTCCTTC AGCTCCACAG CCAGACGCCC TCAGACAGCA	60
AAGCCTACCC CCGCGCCCCG CCCTGCCCCC CGCTGCGATG CTCGCCCCGC CCCTGCTGCT	120
GTGCGCGGTC CTGGCGCTCA GCCATACAGC AAATCCTTGC TGTTCCCACC CATGTCAAAA	180
CCGAGGTGTA TGTATGAGTG TGGGATTTGA CCAGTATAAG TGCGATTGTA CCCGGACAGG	240
ATTCTATGGA GAAAACTGCT CAACACCGGA ATTTTTGACA AGAATAAAAT TATTTCTGAA	300
ACCCACTCCA AACACAGTGC ACTACATACT TACCCACTTC AAGGGATTTT GGAACGTTGT	360
GAATAACATT CCCTTCCTTC GAAATGCAAT TATGAGTTAT GTGTTGACAT CCAGATCACA	420
TITIGATTGAC AGTOCACCAA CTTACAATGC TGACTATGGC TACAAAAGCT GGGAAGCCTT	480
CICTAACCTC TCCTATTATA CTAGAGCCCT TCCTCCTGTG CCTGATGATT GCCCGACTCC	540
CITGGGTGTC AAAGGTAAAA AGCAGCTTCC TGATTCAAAT GAGATTGTCG AAAAATTGCT	600
TCTAAGAAGA AAGTTCATCC CTGATCCCCA GGGCTCAAAC ATGATGTTTG CATTCTTTGC	660
CCAGCACTTC ACGCACCAGT TTTTCAAGAC AGATCATAAG CGAGGGCCAG CTTTCACCAA	720
CGGGCTGGGC CATGGGGTGG ACTTAAATCA TATTTACGGT GAAACTCTGG CTAGACAGCG	780
TAAACTGCGC CTTTTCAAGG ATGGAAAAAT GAAATATCAG ATAATTGATG GAGAGATGTA	840
TCCTCCCACA GTCAAAGATA CTCAGGCAGA GATGATCTAC CCTCCTCAAG TCCCTGAGCA	900
TCTACCGTTT GCTGTGGGGC AGGAGGTCTT TGGTCTGGTG CCTGGTCTGA TGATGTATGC	960
CACAATCTGG CTGCGGGAAC ACAACAGAGT ATGTGATGTG	1020
ATGGGGTGAT GAGCAGTTGT TCCAGACAAG CAGGCTAATA CTGATAGGAG AGACTATTAA	1080
GATTGTGATT GAAGATTATG TGCAACACTT GAGTGGCTAT CACTTCAAAC TGAAATTTGA	1140
CCCAGAACTA CTTTTCAACA AACAATTCCA GTACCAAAAT CGTATTGCTG CTGAATTTAA	1200
CACCCTCTAT CACTGGCATC CCCTTCTGCC TGACACCTTT CAAATTCATG ACCAGAAATA	1260
CAACTATCAA CAGTITATCT ACAACAACTC TATATTGCTG GAACATGGAA TTACCCAGTT	1320
TGTTGAATCA TTCACCAGGC AAATTGCTGG CAGGGTTGCT GGTGGTAGGA ATGTTCCACC	1380
CGCAGTACAG AAAGTATCAC AGGCTTCCAT TGACCAGAGC AGGCAGATGA AATACCAGTC	1440
TTTTAATGAG TACCGCAAAC GCTTTATCCT CAACCCCTAT GAATTG	1500
AGGAGAAAAG GAAATGTCTG CAGAGTTGGA AGCACTCTAT GGTGACATCG ATGCTGTGGA	1560
GCTGTATCCT GCTCTTCTCC TAGA A A CCC TCCCCO A C T CCC TCCCCO	1620
GGTAGAAGTT GGAGCACCAT TCTCCTTGAA AGGACTTATG GGTAATGTTA TATGTTCTCC	1680
TGCCTACTGG AAGCCAAGCA CTTTTGGTGG AGAAGTGGGT TTTCAAATCA TCAACACTCC	

FIG. 2B

CTCAATTCAG TCTCTCATCT GCAATAACGT GAAGGGCTGT CCCTTTACTT CATTCAGTGT	1800
TCCAGATCCA GAGCTCATTA AAACAGTCAC CATCAATGCA AGTTCTTCCC GCTCCGGACT	1860
AGATGATATC AATCCCACAG TACTACTAAA AGAACGGTCG ACTGAACTGT AGAAGTCTA	1920
TGATCATATT TATTTATTTA TATGAACCAT GTCTATTAAT TTAATTATTT AATAATATTT	1980
ATATTAAACT CCTTATGTTA CITAACATCT TCTGTAACAG AAGTCAGTAC TCCTGTTGCG	2040
GAGAAAGGAG TCATACTTGT GAAGACTTTT ATGTCACTAC TCTAAAGATT TTGCTGTTGC	2100
TOTTAAGITT GGAAAACAGT TITTATICIG TTITATAAAC CAGAGAGAAA TGAGTTITGA	2160
CGTCTTTTTA CTTGAATTTC AACTTATATT ATAAGGACGA AAGTAAAGAT GTTTGAATAC	2220
TTAAACACTA TCACAAGATG CCAAAATOCT GAAAGTTTTT ACACTGTCGA TGTTTCCAAT	2280
GCATCTTCCA TGATGCATTA GAAGTAACTA ATGTTTGAAA TIITAAAGTA CTTTTGGGTA	2340
TITITICIGIC ATCAAACAAA ACAGGTATCA GTGCATTATT AAATGAATAT TTAAATTAGA	2400
CATTACCAGT AATTICATGT CTACTTITTA AAATCAGCAA TGAAACAATA ATTIGAAATT	2460
TCTAAATICA TAGGGTAGAA TCACCTGTAA AAGCTTGTTT GATTTCTTAA AGTTATTAAA	2520
CTTGTACATA TACCAAAAAG AAGCTGTCTT GGATTTAAAT CTGTAAAATC AGATGAAATT	2580
TTACTACAAT TGCTTGTTAA AATATTTTAT AAGTGATGTT CCTTTTTCAC CAAGAGTATA	2640
AACCTTTTTA GTGTGACTGT TAAAACTTCC TTTTAAATCA AAATGCCAAA TTTATTAAGG	2700
TGGTGGAGCC ACTGCAGTGT TATCTCAAAA TAAGAATATC CTGTTGAGAT ATTCCAGAAT	2760
CTGTTTATAT GGCTGGTAAC ATGTAAAAAC CCCATAACCC CGCCAAAAGG GGTCCTACCC	2820
TTGAACATAA AGCAATAACC AAAGGAGAAA AGCCCAAATT ATTGGTTCCA AATTTAGGGT	2880
TTAAACTTTT TGAAGCAAAC TTTTTTTAG CCTTGTGCAC TGCAGACCTG GTACTCAGAT	2940
TTTGCTATGA GGTTAATGAA GTACCAAGCT GTGCTTGAAT AACGATATGT TTTCTCAGAT	3000
ITTCTGTTGT ACAGTTTAAT TTAGCAGTCC ATATCACATT GCAAAAGTAG CAATGACCTC	3060
ATAAAATACC TCTTCAAAAT GCTTAAATTC ATTTCACACA TTAATTTTAT CTCAGTCTTG	3120
AAGCCAATTC AGTAGGTGCA TTGGAATCAA GCCTGGCTAC CTGCATGCTG TTCCTTTTCT	3180
TTICTTCTTT TAGCCATTTT GCTAAGAGAC ACAGTCTTCT CAAACACTTC GTTTCTCCTA	3240
ITTIGTITIA CTAGTTITAA GATCAGAGIT CACITTCITT GGACTCTGCC TATATTTTCT	3300
TACCTGAACT TTTGCAAGTT TTCAGGTAAA CCTCAGCTCA GGACTGCTAT TTAGCTCCTC	3360
ТТААБААБАТ ТАААААААА ААААААБ	2207