# BEST AVAILABLE COPY

# PATENT ABSTRACTS OF JAPAN

(11)Publication number:

2002-135171

(43) Date of publication of application: 10.05.2002

(51)Int.CI.

H04B 3/23 G05B 13/02 H03H 21/00

(21)Application number: 2000-323958

(71)Applicant: JAPAN SCIENCE & TECHNOLOGY

CORP

(22)Date of filing:

24.10.2000

(72)Inventor: NISHIYAMA KIYOSHI

### (54) SYSTEM IDENTIFICATION METHOD

### (57)Abstract:

PROBLEM TO BE SOLVED: To obtain high-speed real-time identification and estimation for time constant and varying systems.

SOLUTION: An estimation criterion for H∞ is determined newly, and a high-speed algorithm for a deformed H∞ filter is developed based on this criterion, while a method for high-speed time-varying system identification is proposed, based on this high speed H∞ filtering algorithm. The high-speed H∞ filtering algorithm can track a time-varying system, which changes rapidly with a calculation volume O (N) per unit-time step. It matches perfectly with the high-speed Kalman filtering algorithm at the limit of the upper limit value. If the estimated value of an impulse response is obtained, a pseudo-echo can be determined successively based on the value. Subtracting the pseudo-echo from the real echo and canceling echo can provide an echo canceller.



### **LEGAL STATUS**

[Date of request for examination]

30.04.2004

[Date of sending the examiner's decision of rejection]

rejection]
[Kind of final disposal of application other than the examiner's decision of rejection or

application converted registration]
[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

(19)日本国特許庁 (JP)

# (12) 公開特許公報(A)

(11)特許出願公開番号 特開2002-135171 (P2002-135171A)

(43)公開日 平成14年5月10日(2002.5.10)

| (51) Int.Cl. <sup>7</sup> |       | 識別記号 | FΙ            | デーマコート <sup>*</sup> (参考) |
|---------------------------|-------|------|---------------|--------------------------|
| H04B                      | 3/23  |      | H 0 4 B 3/23  | 5H004                    |
| G05B                      | 13/02 |      | G 0 5 B 13/02 | T 5J023                  |
| H03H                      | 21/00 |      | H 0 3 H 21/00 | 5 K O 4 6                |
|                           |       |      |               | 011010                   |

審査請求 未請求 請求項の数8 OL (全 30 頁)

| (21)出願番号 | 特顧2000-323958(P2000-323958) | (71) 出願人 396020800                                                                                                                                                                                                                                    |
|----------|-----------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (22)出顧日  | 平成12年10月24日 (2000, 10, 24)  | 科学技術振興事業団<br>埼玉県川口市本町4丁目1番8号<br>(72)発明者 西山 清<br>岩手県盛岡市青山4-17-47-504<br>(74)代理人 100107010<br>弁理士 橋爪 健<br>Fターム(参考) 5H004 GA17 GB20 KC03 KC08 KC18<br>MA11<br>5J023 DA01 DA05 DB01 DC01 DC07<br>DD05<br>5K046 AA01 BA06 BB01 BB05 HH11<br>HH24 HH35 HH58 |

### (54) 【発明の名称】 システム同定方法

### (57)【要約】

【課題】 時不変および時変システムの高速実時間同定 および推定を実現する。

【解決手段】 新たにH。評価基準を定め、これに基づく変形H。フィルタの高速アルゴリズムを開発すると共に、この高速H。フィルタリングアルゴリズムに基づく高速時変システム同定方法を提案する。高速H。フィルタリングアルゴリズムは、単位時間ステップ当たり計算量O(N)で急激に変化する時変システムの追跡が可能である。上限値の極限で高速カルマンフィルタリングアルゴリズムと完全に一致する。さらに、インパルス応答の推定値が得られれば、これより疑似エコーを逐次求めることができ、これを実際のエコーから差し引き、エコーを打ち消せばエコーキャンセラが実現できる。



【特許請求の範囲】

\*次式で表されるH. フィルタ方程式を用い、

【数1】

【請求項1】時不変又は時変システムの高速実時間同定 を行うシステム同定方法において、

 $\hat{x}_{k+1|k+1} = \hat{x}_{k|k} + K_{s,k+1}(y_{k+1} - H_{k+1}\hat{x}_{k|k})$ 

ただし、

œ k là: 観測信号 10~9k までを用いた時刻 k の状態zk の推定値

yk: 観測信号

Kek+1: フィルタゲイン

H .: 规则行列

B. 評価基準として、評価関数の重み(ρ)で重み付け された外乱からフィルタ誤差への最大エネルギーゲイン を、予め与えられた上限値( $\gamma_1^2$ )より小さく抑える ように定めることにより、外乱に対して頑健なフィルタ リングアルゴリズムとしたシステム同定方法。

【請求項2】前記H。評価基準は、 { (フィルタ誤差 を示す値/評価関数の重み(ρ))/ [(初期状態を 示す値)+(システム雑音を示す値)+(観測雑音を示※20

※す値/評価関数の重み(ρ))] }の最大値が、予め 与えられた上限値( r, 2 ) より小さいことを特徴とす る請求項1 に記載のシステム同定方法。

【請求項3】さらに、次式により時刻kの状態推定値x ^ \* / \* から出力信号を求めるようにした請求項1又は 2 に記載のシステム同定方法。

【数2】

 $\hat{x}_{k|k} = H_k \hat{x}_{k|k}$ 

24: 出力信号

【請求項4】前記評価関数の重み(p)と前記予め与え られた上限値 $(\gamma,^2)$ は、次式の関係であることを特 徴とする請求項1乃至3のいずれかに記載のシステム同 定方法。

 $0 < \rho = 1 - \gamma_1^{-2} \le 1$ 

列K、を用いて、次の関係式により与えられることを特 徴とする請求項1乃至4のいずれかに記載のシステム同 定方法。

★【請求項5】前記フィルタゲインK。. k は、ゲイン行

30 【数3】

 $\gamma_t > 1$ 

 $K_{a,k} = G_k^{-1} \tilde{K}_k, G_k = \rho + \gamma_f^{-2} H_k \tilde{K}_k \in \mathcal{R}$ 

ただし、

 $\tilde{K}_k(i) = \rho K_k(i,1), \quad i = 1, 2, \cdots, N.$ 

【請求項6】ゲイン行列K、、補助変数、状態推定値x ^ 👢 👢 の再帰式の初期条件を定めるステップと、

K』に補助変数を含む行を増やした第2のゲイン行列を 求めるステップと、第2のゲイン行列を分割し、第1及 び第2の分割ゲイン行列を求めるステップと、

分割された第1及び第2の分割ゲイン行列を含む式によ り時刻k+1におけるゲイン行列Kk+1を求め、ゲイ ン行列K、とフィルタゲインK。、との前記関係式に より時刻 k + 1 におけるフィルタゲイン K . . \* + 」を 求めるステップと、

求められたフィルタゲインド。・・・・に基づき、前記 H。フィルタ方程式を更新するステップと、

時刻 k における補助変数を再帰的に決定し、ゲイン行列 40 時刻を進ませて、各前記ステップを繰り返すためのステ ップとを含む請求項1乃至5のいずれかに記載のシステ ム同定方法。

> 【請求項7】さらに、高速処理に適した存在条件とし て、次式を用いることにより、計算量O(N)で前記高 速H。フィルタの存在性を検査することを特徴とする請 求項1乃至6のいずれかに記載のシステム同定方法。

【数4】

 $-e^{\frac{\pi}{2}i} + p\gamma_i^2 > 0, \quad i = 0, \dots, k$ ここで、

 $\varrho = 1 - \gamma_f^2, \ \hat{\Xi}_i = \frac{H_i \tilde{K}_i}{1 - H_i \tilde{K}_i}$ 

【数5】

【請求項8】前記H。フィルタ方程式を適用し、状態推 10×よりエコーキャンセラを実現することを特徴とする請求 定値x~k」kを求め、 項1乃至7のいずれかに記載のシステム同定方法。

擬似エコーを次式のように推定し、

求められた擬似エコーで実際のエコーを打ち消すことに\*

$$\hat{d}_k = H_k \hat{x}_{k|k} = \sum_{i=0}^{N-1} \hat{h}_i[k] u_{k-i}$$

 $H_k = [u_k, \cdots, u_{k-N+1}]$ 

ただし、

む 疑似エコー

법 受信信号

N タップ数

[k] エコーパスのインパルス応答の推定値

### 【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、システム同定方法 に係り、特に、新たなH。評価基準に基づいて開発され た変形H。フィルタの高速H。フィルタリングアルゴリ ズムを用いて時変システムを高速に実時間同定するもの 30 である。

[0002]

【従来の技術】一般に、システム同定(system identifi cation)とは、入出力データに基づいてシステムの入出 力関係の数理モデル(伝達関数、あるいはインバルス応 答など)を推定することである。代表的な応用例とし て、国際通信におけるエコーキャンセラ、データ通信に おける自動等化器、音響システムにおけるエコーキャン セラや音場再生および自動車などにおけるアクティブ騒 音制御などがある。詳細は、1993年電子情報通信学 40 として、その簡便さより、次のLMSアルゴリズム(lea 会「ディジタル信号処理ハンドブック」等参照。

【0003】(基本原理)図14に、システム同定のた めの構成図を示す。とのシステムは、未知システム1、※

※適応フィルタ2を備える。また、適応フィルタ2は、F IRディジタルフィルタ3、適応アルゴリズム4を有す る。以下に、未知システム1を同定する出力誤差方式の 一例を説明する。ととで、 u k は未知システム1の入 力、d、は所望信号であるシステムの出力、d ^ 、はフ ィルタの出力である。(なお、「^」は、推定値の意味 であり、文字の真上に付されるものであるが、入力の都 合上文字の右上に記載する。以下同様。)

【0004】未知システムのパラメータとしては、一般 にインパルス応答が用いられるので、適応フィルタは図 の評価誤差  $e_k = d_k - d_k$  を最小にするように適応 アルゴリズムによってFIRディジタルフィルタ3の係 数を調節する。

【0005】図15に、インパルス応答の調節機構につ いての構成図を示す。ことで、適応アルゴリズムの一例 st mean square algorithm)が広く用いられている。 [0006]

【数6】

[LMS アルゴリズム]

$$\hat{h}_{k+1} = \hat{h}_k + \mu u_k (y_k - u_k^T \hat{h}_k) \tag{1}$$

ただし、

 $\hat{h}_k = [\hat{h}_0[k], \dots, \hat{h}_{N-1}[k]]^T, \quad u_k = [u_k, \dots, u_{k-N+1}]^T, \quad \mu > 0 \quad (2)$ 

【0007】また、一般に、時変システムの同定には、50 例えば、収束性が早いカルマンフィルタが適している。

\* \*【数7】

[0008]

[カルマンフィルタ]

$$\hat{x}_{k|k} = \hat{x}_{k|k-1} + K_k(y_k - H_k \hat{x}_{k|k-1}) 
\hat{x}_{k+1|k} = \hat{x}_{k|k} 
K_k = \hat{P}_{k|k-1} H_k^T (1 + H_k \hat{P}_{k|k-1} H_k^T)^{-1}$$
(3)

$$K_{k} = \tilde{P}_{k|k-1}H_{k}^{T}(1 + H_{k}\hat{P}_{k|k-1}H_{k}^{T})^{-1}$$

$$\hat{P}_{k|k} = \hat{P}_{k|k-1} - K_{k}H_{k}\hat{P}_{k|k-1}$$
(4)

$$\hat{P}_{k+1|k} = \hat{P}_{k|k} + \frac{\sigma_w^2}{\sigma_v^2} I \tag{5}$$

ただし、

$$\hat{x}_{k|k} = [\hat{h}_{0}[k], \dots, \hat{h}_{N-1}[k]]^{T}, \quad H_{k} = [u_{k-1}, \dots, u_{k-N}] 
\hat{x}_{0|-1} = 0, \quad \hat{P}_{0|-1} = \varepsilon_{0}I, \quad \varepsilon_{0} > 0$$
(6)

【0009】 ことで、求めるべきインパルス応答{h,} は状態推定値x^klkとして得られ、システムへの入 力{u,}は観測行列H,の要素として用いられている。 また、 $\sigma^2 = 0$ のときのカルマンフィルタに対して、 観測行列H<sub>k</sub> のシフト特性 (H<sub>k+1</sub> (i+1)=H<sub>k</sub> (i))を利用して、単位時間ステップ当たりの計算量 をNに比例した演算回数、すなわちO(N)までに軽減し た高速カルマンフィルタリングアルゴリズムが知られて いる。詳細は、1993年電子情報通信学会「ディジタ ル信号処理ハンドブック」など参照。

【0010】 (エコーキャンセラへの適用例) 国際電話 など長距離電話回線では、信号増幅などの理由から4線 式回線が用いられている。一方、加入者回線は比較的短 距離なので、2線式回線が使用されている。図16に通 信系とエコーについての説明図を示す。2線式回線と4 線式回線の接続部には図示のようにハイブリッドトラン スが導入され、インピーダンス整合が行われている。と のインピーダンス整合が完全であれば、話者Bからの信 号(音声)は話者Aのみに到達する。しかし、一般に整合 を完全とするのはむずかしく、受信信号の一部は4線式 回線に漏れ、増幅された後、再び受信者(話者A)に戻る と云った現象が起こる。これがエコー (echo) である。 エコーは、伝送距離が長くなるにつれて(遅延時間が長 くなるにつれて)影響が大きくなり、著しく通話の品質 を劣化させる(パルス伝送においては近距離であっても エコーによる通話品質の劣化は大きく影響する)。

【0011】図17に、エコーキャンセラの原理図を示 す。そこで、図示のようにエコーキャンセラ(echo canc eller) を導入し、直接観測可能な受信信号とエコーを 用いてエコーパスのインパルス応答を逐次推定し、それ を利用して得た疑似エコーを実際のエコーから差し引く ことによってエコーを打ち消し、その除去を図ってい

留エコー ex の平均2乗誤差が最小になるように行われ る。このとき、エコーパスの推定を妨害する要素は、回 線雑音と話者Aからの信号(音声)である。一般に、話者 20 2人が同時に話し始めた(ダブルトーク)ときはインバル ス応答の推定を中断する。また、ハイブリッドトランス のインパルス応答長は50 [ms] 程度なので、サンプリ ング周期を125 [μς]とするとエコーパスのインパル ス応答の次数は実際は400程度となる。

[0013]

【発明が解決しようとする課題】従来技術では、適応ア ルゴリズムとして、その簡便さより、LMSアルゴリズ ム(least mean square algorithm)が広く用いられて来 たが、収束性が非常に遅いため急激に変化するような時 30 変システムの同定は不可能であった。

【0014】また、追従性の優れたカルマンフィルタ は、計算量がO(N²)あるいはO(N³)であり、ぞ れが、タップ数Nと共に急速に増加してしまい、高いタ ップ数Nが要求される現実の問題の実時間処理は困難で あった。この対策として、タップ数Nに対して単位時間 ステップ当たり計算量O(N)で同定可能な高速カルマ ンフィルタが提案されているが、その定常的な特性(シ ステム雑音が考慮できない点)から時変システムの同定 は不可能であった。

【0015】本発明は、以上の点に鑑み、新たなH。評 価基準に基づいて開発した変形H。フィルタの高速H。 フィルタリングアルゴリズムを用いて、時不変および時 変システムの高速実時間同定および推定を実現すること を目的とする。また、本発明は、本アルゴリズムの特殊 な場合として高速カルマンクイルタリングアルゴリズム を含み、また、時変システムの追従性を支配するシステ ム雑音の共分散を理論的に決定することを目的とする。 また、本発明は、突然回線が切り替わるような激しく変 化する時変システムのエコーキャンセラなどのように、

【0012】エコーパスのインバルス応答の推定は、残 50 入力信号が不連続に変化する場合においても、非常に有

効な高速時変システム同定方法を提供することを目的と する。また、本発明は、通信システムや音響システムに おけるエコーキャンセラ、音場再生又は騒音制御などに 適用することができるシステム同定方法を提供すること を目的とする。

### [0016]

【課題を解決するための手段】本発明では、上述の課題 を解決するために、新たにH。評価基準を考案し、これ に基づく変形H。フィルタの高速アルゴリズムを開発す ると共に、この高速H。フィルタリングアルゴリズムに 10 基づく高速時変システム同定方法を提案する。本発明に よる高速アルゴリズムは、単位時間ステップ当たり計算 量O(N)で急激に変化する時変システムの追跡が可能 である。また、 $\gamma_1 = \infty$ の極限で高速カルマンフィルタ リングアルゴリズムと完全に一致すると云った便利な特 性をもっている。

### [0017]

【発明の実施の形態】以下に、本発明の実施の形態につ いて説明する。なお、詳細は、例えば、K. Nishiyama :"Derivation of A Fast Algorithm of Modified H. Filters", IEEEinternational Conference on Industri al Electronics, Control and Instrumentation, Octob er, 2000 に示されている。

【0018】1. 記号の説明

まず、本発明の実施の形態で用いる主な記号及びその既 知又は未知について説明する。

Xx: 状態ベクトルまたは単に状態 ; 未知、これ が推定の対象となる。

x。: 初期状態 ; 未知である。

Wk: システム雑音 : 未知である。

V k : 観測雑音 ; 未知である。

Ук: 観測信号 ; フィルタの入力となり、既知で ある。

> $x_k + w_k$  $y_k = H_k x_k + v_k, y_k, v_k \in \mathcal{R}$

 $z_k = H_k x_k, z_k \in \mathcal{R}, H_k \in \mathcal{R}^{1 \times N}$ 

【0021】 ここで、エコーキャンセラなどを想定し、  $L_k = H_k \quad (H_k = [u_k \quad u_{k-2} \cdot \cdot \cdot \quad u]$ 対して、次式(10)のようなH。評価基準(新たに左※ (7)

(8)

(9)

40※辺に $\gamma$ ,が入っている)を提案する。

[0022]

【数8】

\* Z 】: 出力信号 : 未知である。 H k : 観測行列 ; 既知である。 L : 出力行列 ; 既知である。

の状態xxの状態推定値; フィルタ方程式によって与 えられる。

x ^。」。: 状態の初期推定値 : 本来未知である

が、便宜上0が用いられる。

K。, k + 1:フィルタゲイン ; 行列P ^ k | k - 1 から得られる。

Σνι : システム雑音の共分散行列に対応 ; 理 論上は既知であるが、実際には未知である。

に対応 ; リカッチ方程式によって与えられる。

P 1 1 。: 初期状態の誤差の共分散行列に対応 ; 本来未知であるが、便宜上ε。Ιが用いられる。

σ'、 : 観測雑音の分散 ; 理論上は既知として 扱われるが、実際には未知である。

 $\sigma^{2}$  : システム雑音の分散 ; 理論上は既知と 20 して扱われるが、実際には未知である。

【0019】なお、記号の上に付される" ^ "は、推定 値の意味であり、"U"は、行列を1行増やしたことを表 す。"また、"~"等は、便宜上付加した記号である。 とれらの記号は、入力の都合上、文字の右上に記載する が、数式で示すように、文字の真上に記載されたものと 同一である。また、L、H、P、K等は行列であり、数 式で示すように太文字で記されるものであるが、入力の 都合上、普通の文字で記載する。

2. 変形H。フィルタ

30 【0020】つぎに、次式(7)~(9)のような状態 空間モデルを考える。

【数9】

$$\sup_{x_{0},\{w_{i}\},\{v_{i}\}} \frac{\sum_{i=0}^{h} \|e_{f,i}\|^{2}/\rho}{\|x_{0} - \bar{x}_{0}\|_{-1}\|_{\Sigma_{0}^{-1}}^{2} + \sum_{i=0}^{h} \|w_{i}\|_{\Sigma_{w_{h}}}^{2} + \sum_{i=0}^{h} \|v_{i}\|^{2}/\rho} < \gamma_{f}^{2}$$
(10)

【0023】との評価基準を満たすレベル $\gamma$ ,の変形H 50  $\sigma$ フィルタは、 $\rho$ や $\Sigma$ 、 $\nu$  が $\gamma$ 、に依存しないと仮定す

れば、システム同定の分野で通常知られる方法を適用することによって、次の式(11)~式(14)で与えられる。なお、その通常知られる方法として、例えば、B. Hassibi, A. H. Sayed, and T. Kailath: "Linear Estimation in Krein Spaces – Part I: Theory," IEEE Trans. Automatic Control, 41, 1, pp.18–33,1996.、B.\*\*

\* Hassibi, A. H. Sayed, and T. Kailath: "Linear Estimation in Krein Spaces – Part II: Applications," IEEE Trans. Automatic Control, 41, 1, pp.34–49, 1996.等を参照のこと。

10

【0024】【数10】

$$\hat{x}_{k|k} = H_k \hat{x}_{k|k}$$
 (11)
$$\hat{x}_{k+1|k+1} = \hat{x}_{k|k} + K_{s,k+1}(y_{k+1} - H_{k+1}\hat{x}_{k|k})$$
 フィルタ方程式 (12)
$$K_{s,k+1} = \hat{P}_{k+1|k} H_{k+1}^T (H_{k+1}\hat{P}_{k+1|k} H_{k+1}^T + \rho)^{-1}$$
 フィルタゲイン (13)
$$\hat{P}_{k+1|k} = \hat{P}_{k|k-1} - \hat{P}_{k|k-1}[H_k^T H_k^T] R_{s,k}^{-1} \begin{bmatrix} H_k \\ H_k \end{bmatrix} \hat{P}_{k|k-1} + \Sigma_{w_k}$$
 リカッチ方程式 (14)

$$e_{f,i} = \tilde{z}_{i|i} - H_{i}x_{i}$$

$$R_{\sigma,k} = R_{k} + \begin{bmatrix} H_{k} \\ H_{k} \end{bmatrix} \hat{P}_{k|k-1}[H_{k}^{T} H_{k}^{T}]$$

$$R_{k} = \begin{bmatrix} \rho & 0 \\ 0 & -\rho\gamma_{f}^{2} \end{bmatrix}, \quad \Sigma_{w_{k}} = \gamma_{f}^{-2}\hat{P}_{k+1|k}$$

$$\hat{P}_{k|k-1}^{-1} + H_{k}^{T}H_{k} > 0, \quad \hat{P}_{1|0} = \varepsilon_{0}I, \quad \varepsilon_{0} > 0$$

$$0 < \rho = 1 - \gamma_{f}^{-2} \le 1, \quad \gamma_{f} > 1$$
(15)

【0025】また、評価基準の重み $\rho$ は予めに決められた上限値 $\gamma$ 、に依存するので、上述のアルゴリズムは通常の $H_{\bullet}$ フィルタとは本質的に異なる。本アルゴリズムは $\rho$ で重みづけされた外乱(初期状態x。,システム雑音  $\{w_i\}$ ,観測雑音  $\{v_i\}$  からフィルタ誤差  $\{e_{\tau,i}\}$  への最大エネルギーゲインを $\gamma_{\tau}$  2 より小さく押えているので、外乱に対してロバスト(頑健)なフィルタリングアルゴリズムとなる。との性質が時変システムの追従特性に反映される。また、 $\gamma_{\tau}$  → $\infty$ のとき、 $\rho$  = 1、 $\Sigma_{\psi}$   $_{k}$  = 0 となり、変形 $H_{\bullet}$  フィルタは通常の $H_{\bullet}$  フィルタと一致する。

一致する。ゆえに、xxの次元が増加するにつれて変形 Ha フィルタの実行に要する計算時間は急速に増大する。この計算上の負担を克服するために変形Ha フィルタの高速アルゴリズムの導出が必要となる。

30 【0027】3. 高速H。フィルタリングアルゴリズム変形H。フィルタの計算量は、式(14)のリカッチ方程式(誤差の共分散方程式)の計算に支配される。よって、変形H。フィルタを高速に処理するためには、リカッチ方程式を用いずに式(13)のフィルタゲインを直接決定できれば、大幅に計算量を削減できる。しかし、フィルタゲインK。 、 ∈ R<sup>N×1</sup> を求める高速アルゴリズムの導出は困難なため、次のように定義されるゲイン行列を高速に計算するアルゴリズムを導出することを考える。

40 【0028】 【数11】

(16)

$$K_k = P_k C_k^T \in \mathcal{R}^{N \times 2}$$

(7)

ただし、

$$P_{k} = \left[\mathcal{O}_{k}^{T} \Omega_{k} \mathcal{O}_{k}\right]^{-1} = \left[\sum_{i=1}^{k} \rho^{k-i} C_{i}^{T} W_{i} C_{i}\right]^{-1}$$

$$\Omega_{k} = \left[\begin{array}{c|c} \rho \Omega_{k-1} & 0 \\ \hline 0 & W_{k} \end{array}\right], \quad \Omega_{1} = W_{1}, \quad W_{i} = \rho R_{i}^{-1} = \begin{bmatrix} 1 & 0 \\ 0 & -\gamma_{f}^{-2} \end{bmatrix} \in \mathcal{R}^{2 \times 2}$$

$$\mathcal{O}_{k} = \begin{bmatrix} C_{1} \\ \vdots \\ C_{k} \end{bmatrix}, \quad C_{i} = \begin{bmatrix} H_{i} \\ H_{i} \end{bmatrix} \in \mathcal{R}^{2 \times N}. \tag{17}$$

【0029】とのとき、次の補題が成り立つ。

補題1

行列 $P_k$ は式(14)のリカッチ方程式を満たす。これより、ゲイン行列 $K_k$ が求まれば、次の補題からフィルタゲイン $K_{k+1,k}$ が直ちに得られる。

【0030】補題2

\*変形H。フィルタのフィルタゲインはK。 は、ゲイン行列K。を用いて次のように得られる。実際、ゲイン行列K。は次の再帰的方法によって高速に計算できる。 【0031】

【数12】

₩20

$$K_{a,k} = G_k^{-1} \tilde{K}_k, G_k = \rho + \gamma_f^{-2} H_k \tilde{K}_k \in \mathcal{R}$$
 (18)

ただし、

$$\tilde{K}_k(i) = \rho K_k(i,1), \quad i = 1, 2, \dots, N.$$
 (19)

【0032】補題3

**%**[0033]

ゲイン行列K、は次のように更新される。

※ 【数13】

$$K_{k+1} = m_k - B_k F_k^{-1} \mu_k \in \mathcal{R}^{N \times 2}$$
 (20)

$$\begin{bmatrix} m_k \\ \mu_k \end{bmatrix} = \begin{bmatrix} 0 \\ K_k \end{bmatrix} + \begin{bmatrix} S_k^{-1} \\ A_k S_k^{-1} \end{bmatrix} \begin{bmatrix} c_k^T + A_k^T C_k^T \end{bmatrix}$$
 (21)

【0036】また、補助変数 $A_k \in R^N \times 1$  , $S_k \in R$  および $B_k F^{-1}_k \in R^N \times 1$  も同様に得られる。結論として、高速 $H_*$  フィルタリングアルゴリズムは以下のように要約することができる。図1に、高速アルゴリズムのフローチャートを示す。なお、Lは最大データ数を

示す。

[ステップ0] 再帰式の初期条件を以下のようにする。とこで $\varepsilon$ 。は充分に大きい正の定数である。 [0037] 【数15】

$$K_0 = 0, A_{-1} = 0, \ddot{S}_{-1} = \frac{\rho}{\epsilon_0}, D_{-1} = 0, \dot{x}_{0|0} = 0$$

【0038】[ステップ1] 時刻kと最大データ数Lとを比較する。時刻kが最大データ数より大きければ処理を終了し、以下であれば次のステップに進む。(不要であれば条件文を取り除くことができる。)

\*[ステップ2] A<sub>k</sub> とS<sub>k</sub> を以下のように再帰的に決 定する。

[0039]

【数16】

 $\tilde{e}_k = c_k + C_k A_{k-1} \qquad \in \mathcal{R}^{2 \times 1}$  $A_k = A_{k-1} - K_k W_k \tilde{e}_k \qquad \in \mathcal{R}^{N \times 1}$  $e_k = c_k + C_k A_k \qquad \in \mathcal{R}^{2 \times 1}$  $S_k = \rho S_{k-1} + e_k^T W_k \tilde{e}_k \qquad \in \mathcal{R}$ 

【0040】[ステップ3] K<sup>u</sup> \* を以下のように計 ※【0041】 算する。 ※ 【数17】

$$\check{K}_{k} = \begin{bmatrix} S_{k}^{-1} e_{k}^{T} \\ K_{k} + A_{k} S_{k}^{-1} e_{k}^{T} \end{bmatrix} \in \mathcal{R}^{(N+1) \times 2}$$

【0042】[ステップ4] K<sup>u</sup> 、を以下のように分 ★【0043】 割する。 ★ 【数18】

$$\check{K}_k = \begin{bmatrix} m_k \\ \mu_k \end{bmatrix} \quad m_k \in \mathcal{R}^{N \times 2}, \ \mu_k \in \mathcal{R}^{1 \times 2}$$

$$\begin{split} \eta_k &= c_{k-N} + C_{k+1} D_{k-1} \\ D_k &= [D_{k-1} - m_k W_k \eta_k] [1 - \mu_k W_k \eta_k]^{-1} \\ K_{k+1} &= m_k - D_k \mu_k \\ \tilde{K}_{k+1}(i) &= \rho K_{k+1}(i,1), \quad i = 1, \cdots, N \\ K_{\delta,k+1} &= G_{k+1}^{-1} \tilde{K}_{k+1}, \quad G_{k+1} = \rho + \gamma_f^{-2} H_{k+1} \tilde{K}_{k+1} \end{split}$$

[0046] ととで、 $\eta_k \in \mathbb{R}^{2 \times 1}$ ,  $D_k \in \mathbb{R}^{N \times 1}$ ,  $K_k \div_1 \in \mathbb{R}^{N \times 2}$ ,  $K_{\bullet, \cdot, \cdot, k+1} \in \mathbb{R}^{N \times 1}$ ,  $0 < \rho = 1 - \gamma_f^{-2} \le 1$ ,  $\gamma_f > 1$  である。

[ステップ6] H<sub>w</sub> フィルタのフィルタ方程式を以下 のように更新する。 【0047】

【数20】

### $\hat{x}_{k+1|k+1} = \hat{x}_{k|k} + K_{s,k+1}(y_{k+1} - H_{k+1}\hat{x}_{k|k})$

(9)

【0048】[ステップ7] 時刻kを進ませて(k= k+1)、 ステップ2に戻り、データがある限り続け \*条件を用いれば、計算量O(N)で高速H。フィルタの 存在性が検査できる。

[0049]

(高速処理に適した存在条件:補題6)また、次の存在\*

【数21】

[存在条件]

$$-\rho \hat{\Xi}_i + \rho \gamma_f^2 > 0, \quad i = 0, \cdots, k \tag{22}$$

ここで、

$$e = 1 - \gamma_f^2, \ \hat{\Xi}_i = \frac{H_i \hat{K}_i}{1 - H_i \hat{K}_i}$$
 (23)

【0050】4. 本高速アルゴリズムの計算量 つぎに、高速H。フィルタリングアルゴリズムの計算量 が、変形 H. フィルタリングアルゴリズムの計算量と比 べて如何に減少するかを考察する。ここで、式の計算量 30 の評価は乗算回数のみに注目し、以下のような方法で計 算した。

(J×K行列)×(K×L行列)の乗算回数=J×K× L(回)

ただし、行列やベクトルが3つ以上乗算されるときは特 に図に示さない限り左から計算されるものとする。

【0051】(変形H。フィルタリングアルゴリズムの 計算量) 図2及び図3に、変形H。フィルタリングアル ゴリズムの各部分の計算量の説明図を示す。ただし、N はタップ数である。ととで、図3(a)においてR。 k から $R_{\bullet, k}$   $^{-1}$  を求めるための計算は無視する。同 様に、図2(a)において(H<sub>k+1</sub> P<sup>\*</sup><sub>k+1|k</sub> H <sup>\*</sup> <sub>k + 1</sub> + 1) の部分から(H<sub>k + 1</sub> P <sup>^</sup> <sub>k + 1 | k</sub> H 「 \* + 1 + 1 ) - 1 を求める計算も無視する。

【0052】図2(a)、図3(a)および図3(b) より、K., k+1、R., k およびP^k+1, k は計 算量がタップ数の2乗に比例することがわかる。よっ て、変形H。フィルタリングアルゴリズム全体の計算量 は単位時間ステップ当りO(N²)となる。

合の計算量の説明図を示す。すなわち、リカッチ方程式 において、図3(b)と比較して、次に示した部分の行 列計算の順番を変えた場合の計算量を図4 に示す。上述 の部分の計算量がインバルス応答の次数の3乗に比例す るので、P ^ L + L L L の計算量もインパルス応答の次 数の3乗に比例する。これに伴い、H。フィルタ全体の 計算量もタップ数の2乗から3乗にまで増加する。

【0054】しかし、いずれのアルゴリズムにせよタッ ブ数の2乗または3乗に比例する計算量をもつので、タ ップ数の増加と共にフィルタの実行にかかる計算上の負 担が著しく増加する。実際、通信工学の分野に利用する 場合などはタップ数が例えば400程度であるため、と のアルゴリズムでの実用はかなり困難なものとなる。

【0055】(高速H。フィルタリングアルゴリズムの 計算量)次に、図5及び図6に、髙速H。フィルタリン グアルゴリズムの計算量の説明図を示す。 ここで、図5 (b)のK"、の式においてS、-1 はS、から求めら れるが、その計算は無視する。同様に、図6(a)のD  $_{\mathbf{k}}$  の式において、 $[1-\mu_{\mathbf{k}}$   $\mathbb{W}_{\mathbf{k}}$   $\eta_{\mathbf{k}}$  ]から $[1-\mu_{\mathbf{k}}$   $\mathbb{W}$ k η k ] - 1 を求める計算も無視する。

【0056】図5及び図6より、本髙速アルゴリズム全 体を通して計算量が単位時間ステップ当りO(N)にな っている。よって、高速日。フィルタリングアルゴリズ 【0053】また、図4に、行列計算の順番を変えた場 50 ムは計算量はタップ数に比例することがわかる。また、

この場合、高速H. フィルタを1回実行するためにかか る計算量(乗算回数)は単位ステップ当り28N+16で あり、高速カルマンフィルタの12N+3と比べて約2 倍の計算量(乗算回数)が必要である。

【0057】以上のように、変形H。フィルタリングア ルゴリズムではタップ数の2乗または3乗に比例する計 算量が、本高速アルゴリズムではタップ数の1乗に比例 するまで減少させることができる。

\*【0058】5. エコーキャンセラ

つぎに、エコーキャンセラの例を取り上げ、本発明の効 果を検証する。まず、受信信号{u,}がエコーパスへの 入力信号となることを考慮すれば、エコーパスの(時変) インパルス応答{h: [k]}により、エコー{d: }の観測 値{yょ}は次式で表される。

[0059]

【数22】

$$y_k = d_k + v_k = \sum_{i=0}^{N-1} h_i[k] u_{k-i} + v_k, \quad k = 0, 1, 2, \cdots$$
 (24)

【0060】 CCで、uk, yk はそれぞれ時刻 t k (=kT:Tはサンプリング周期)における受信信号 とエコーを表し、vkは時刻tkにおける平均値0の回 線雑音とし、 $h_i[k]$ , i=0, · · · · , N-1 は緩 やかな変動を想定した時変インバルス応答であり、その※20 【数23】

※タップ数Nは既知とする。このとき、インパルス応答の 推定値{h ^, [k]}が時々刻々得られれば、それを用い て次のように疑似エコーが生成される。

[0061]

$$\hat{d}_k = \sum_{i=0}^{N-1} \hat{h}_i[k]u_{k-i}, \quad k=0,1,2,\cdots$$

(25)

【0062】とれをエコーから差し引けば(yx - d ^ ょ ≒ 0 ) 、エコーをキャンセルすることができる。ただ し、k-i < 0のとき $u_{k-1} = 0$ とする。以上より、 らエコーパスのインパルス応答{h: [k]}を逐次推定す る問題に帰着できる。一般に、エコーキャンセラにH. フィルタを適用するには、まず式(24)を状態方程式★

★と観測方程式からなる状態空間モデルで表現しなければ ならない。そとで、問題がインパルス応答{h, [k]}を 推定することであるから、{h, [k]}を状態変数xkと 問題は直接観測可能な受信信号{u,}とエコー{y,}か 30 し、w,程度の変動を許容すれば、エコーバスに対して 次の状態空間モデルを立てることができる。

[0063]

【数24】

$$x_{k+1} = x_k + w_k, x_k, w_k \in \mathcal{R}^N (26)$$

$$y_k = H_k x_k + v_k, y_k, v_k \in \mathcal{R} (27)$$

$$z_k = H_k x_k, z_k \in \mathcal{R}, H_k \in \mathcal{R}^{1 \times N} (28)$$

ただし、

$$x_k = [h_0[k], \dots, h_{N-1}[k]]^T, \quad w_k = [w_k(1), \dots, w_k(N)]^T$$
 $H_k = [u_k, \dots, u_{k-N+1}], \quad L_k = H_k$ 

【0064】このような状態空間モデルに対する変形お よび高速H. フィルタリングアルゴリズムは先に述べて 通りである。また、インパルス応答の推定の際、送信信 号の発生を検知するとその間推定を中止するのが一般的 である。以上より、インパルス応答の推定値{h^

i [k]}が得られれば、これより疑似エコーが次のよう に逐次求めることができる。

[0065]

【数25】

$$\hat{d}_k = H_k \hat{x}_{k|k} = \sum_{i=0}^{N-1} \hat{h}_i[k] u_{k-i}$$

(29)

【0066】よって、とれを実際のエコーから差し引 き、エコーを打ち消せばエコーキャンセラが実現でき る。このとき、推定誤差である $e_k = y_k - d^*_k$  は残 留エコーと呼ばれる。

6. 時不変インパルス応答に対する評価 【0067】(推定精度に対する評価)エコーパスのイ\* \*ンパルス応答が時間的に不変であり(h, [k]= hi)、かつそのタップ数Nが24である場合につい て、シミュレーションを用いて変形H。フィルタと高速 H. フィルタを評価する。

[0068] 【数26】

$$y_k = \sum_{i=0}^{23} h_i u_{k-i} + v_k$$

(30)

【0069】なお、図7は、ここでのインパルス応答 {h;}の値を示す図である。また、υは平均値0、分 20 だし、フィルタの実行はステップ数100までとする。 散σ、2 = 1.0×10 o定常なガウス白色雑音とし、サ ンプリング周期Tを便宜上1.0とする。また、受信信号 {uょ}は次のように2次のARモデルで近似する。  $u_{k} = \alpha_{1} u_{k-1} + \alpha_{2} u_{k-2} + w_{k}'$ ただし、 $\alpha_1 = 0.7$ ,  $\alpha_2 = 0.1 + とし、<math>w_k$  ' は平均値 0、分散 σ<sub>w</sub> · 2 =0.04の定常なガウス白色雑音とす る。

【0070】CCで、変形H。フィルタと高速H。フィ ルタとを比較する。図8に変形H。フィルタと高速H。 フィルタによるインパルス応答の推定結果の説明図を示 30 または3乗に比例することになるが、いずれにせよ実用 す (初期値:x^。, 。=0, 100ステップ目の推定値  $X^{\hat{1}00|100}$ ,  $\varepsilon_0=20$ )。図8(a)、(b)は $\gamma_0$ =10'のときの両者の推定結果であり、図8(c), (d)は  $\gamma_r = 2.0$ のときの推定結果である。これより、両者の 推定精度に対する性能は等しいことがわかる。すなわ ち、高速化することで推定精度の低下は生じない。ここ で、アイが小さすぎるとフィルタの存在条件を満たさな いので注意が必要である。また、 $\gamma$ , =1.0×10 $^{\circ}$ の場合 は高速カルマンフィルタの結果とほぼ一致していた。以 上より、高速H。フィルタリングアルゴリズムは、高速 カルマンフィルタリングアルゴリズムを含んでおり、か つか、を調節することによって、収束を早くできること がわかる。

【0071】(計算時間の評価)つぎに、エコーパスの インバルス応答が時間的に不変であり、かつタップ数を 24,48,96,192,384と増加させたときの変形 H.。フィルタ と高速H。フィルタの計算時間を評価する。ただし、1 回の測定では結果にばらつきがあるので、4回測定した 平均を結果として用いた。また、シミュレーションに用 いるインパルス応答{h, }は図7の値とし、それ以降

(24≤k<N)のインパルス応答{h,}は0とする。た 計算時間は、ワークステーション(sparc,60MHz, 32MB) 上のMATLABのコマンドetimeによって計測された。 【0072】図9に、計算時間の測定結果の図を示す。 ととで、変形H。フィルタ(2)はリカッチ方程式におい て、計算量がタップ数の2乗に比例するように行列計算 を行ったものであり、変形H。フィルタ(1)は計算量が タップ数の3乗に比例する行列計算を行ったものである (図3(b)および図4参照)。 このように、変形H。フィ ルタは行列計算の順序によって計算量がタップ数の2乗 的ではない。

【0073】7. 時変インパルス応答に対する評価 (追従性能の評価) システム(インバルス応答)が時間的 に変化したときの各アルゴリズムの追従性能についてエ コーキャンセラの例を用いて評価する。ただし、インバ ルス応答のタップ数は48とし、{h;}は、図7の値を元 に図10(a)のように時間的に変化した場合を想定す る。ただし、vk は平均値0、σ、2 =1.0×10-8 の 定常なガウス白色雑音とし、サンプリング周期Tを便宜 上とする。また、受信信号{u\_k}は次のように2次のAR モデルで近似する。

 $u_{k} = \alpha_{1} u_{k-1} + \alpha_{2} u_{k-2} + w_{k}'$ [0074] ことで、 $\alpha_1 = 0.7$ 、 $\alpha_2 = 0.1$ とし、 $w_k$ は平均値0、分散 σ² ▼・=0.04の定常なガウス白色雑音 とする。図10及び図11に、各アルゴリズムのシミュ レーション結果の図を示す。これは、高速H. フィルタ (高速 HF)、高速カルマンフィルタ (高速 KF) および LMSアルゴリズム (LMS) の時変システムの追従性 能を示すものである。図10(b)は7,=2.0の場合の髙 50 速H. フィルタによる推定値であり、図11(a)は高速

カルマンフィルタによる推定値である。ただし、高速H。フィルタの初期値は $x^\circ$ 。 $1^\circ$ 0 = 0.  $\varepsilon$ 0 = 20 とし、高速カルマンフィルタの初期値も同様に設定した。また、図11(b)にLMSアルゴリズムによる推定値を示す。ただし、初期値は $1^\circ$ 0 = 0、ステップサイズは安定かつ早い収束を与えるように $1^\circ$ 0.5とした。これより、高速H。フィルタの追従性能が飛躍的に優れており、インパルス応答の変化後約30ステップで推定値が安定していることがわかる。一方、高速カルマンフィルタとLMSアルゴリズムについては全く追従できていない。

21

【0075】一般に、システム雑音を伴わない $H_*$ フィルタの追従性が低下する原因は、 $P^*_{k-1}_{k-1}$ の対角成分の減少によりフィルタゲインの値が小さくなり推定値の更新量が減少するからである。つまり、ステップ数が経過するとほとんど推定値を更新しなくなる。よって、カルマンフィルタや $H_*$ フィルタの追従性を向上させるためには、行列の $P^*_{k-1}_{k-1}$ の対角成分の値に外部から適当な値を加えてやれば良い。しかし、直接導入したのでは観測行列 $H_*$ のシフト特性を利用した高速20アルゴリズムを導出できない。この問題を重み $\rho=1-\tau_*^2$ を $H_*$ 評価基準に導入することによって理論的に解決したことが本発明の大きな特徴のひとつである。この重み $\rho$ は高速 $H_*$ フィルタリングアルゴリズムの $S_*$ の更新式の中に次のように現れる。

【0076】(高速H。フィルタの補助変数Skの更新)高速H。フィルタの補助変数Skは、次式の通りである。

 $S_k = \rho S_{k-1} + e^T_k W_k e^K_k$ ,  $0 < \rho = 1 - \gamma$ 

また、高速H。フィルタリングアルゴリズムにおいて、 $S_k$ は、 $K_k^*$ の式で $S_k^{-1}$ の形で用いられる。よって、より大きな値の更新を行うためには、より $S_k^{-1}$ が大きくなければならない。つまり $S_k$ を小さく保ち大きな値の更新を保持する必要がある。 $\rho$ の存在は $S_k$ の急激なz増大を防ぎ、結果的にシステム雑音を付加することと等価となり、追従性の向上につながっている。また、重み $\rho$ は $\rho$ = $1-\gamma_*$ -2 で定義されているので、

シミュレーションで確認されたとおり 7 , を変化させる ことで追従性を変化させることができる。

【0077】図12に、 $\gamma_t$  と $\rho$ の関係図を示す。これによると $\gamma_t$  = 3.0のとき $\rho$  = 0.8889なので $S_{k-1}$  の8 9%が $S_k$  に伝えられることになる。しかし、あまり $\gamma_t$  を小さくしすぎると $S_{k-1}$  の影響が著しく低下すると同時にフィルタの存在条件を満たさなくなるため、注意が必要である。また、 $\gamma_t$  が大きい場合は $\rho$  = 1 となり $S_k$  の増大を全く抑制しないため追従性が低下する。特に $\gamma_t$  =  $\infty$ 0のとき本高速アルゴリズムは高速カルマンフィルタリングアルゴリズムと完全に一致する。

【0078】(計算時間の評価)図13に、高速H。フィルタ、高速カルマンフィルタおよびLMSアルゴリズムにおけるインバルス応答のタップ数(tap number)と計算時間[s]の関係図を示す。なお、フィルタの実行ステップ数:300、アィ=3.0とした。そして、高速H。フィルタ、高速カルマンフィルタリングアルゴリズムおよびLMSアルゴリズムに対して、図10及び図11の例においてタップ数を48,96,192,384と増加させたときの計算時間を計測した。ただし、1回の測定では結果にばらつきがあるので、一例として4回測定しその平均をとった。

【0079】いずれのアルゴリズムも計算量がタップ数の1乗に比例することが確認できる。また、タップ数が多い場合、高速H。フィルタリングアルゴリズムの計算時間は高速カルマンフィルタリングアルゴリズムと比べて、約2倍弱であり、実用的なLMSアルゴリズムと比較しても4倍程度であることがわかる。追従性を考慮すれば、高速H。フィルタリングアルゴリズムの有効性は30十分に高いと言えよう。

【0080】8. 補題の証明

ととで、上述の補題の証明について説明する。

(補題1の証明) P、の逆行列をとれば、式(33)となる。さらに、逆行列の補助定理を用いれば、式(34)に示すように、行列P、に関する再帰式が得られる。

[0081]

【数27】

$$P_{k}^{-1} = \rho \mathcal{O}_{k-1}^{T} \Omega_{k-1} \mathcal{O}_{k-1} + C_{k}^{T} W_{k} C_{k}$$

$$= \rho P_{k-1}^{-1} + C_{k}^{T} W_{k} C_{k}. \tag{33}$$

(13)

$$P_{k} = \left[\rho P_{k-1}^{-1} + [H_{k}^{T} H_{k}^{T}]W_{k} \left[ \begin{array}{c} H_{k} \\ H_{k} \end{array} \right] \right]^{-1}$$

$$= \rho^{-1}P_{k-1} - \rho^{-1}P_{k-1}[H_{k}^{T} H_{k}^{T}]$$

$$\cdot \left( W_{k}^{-1} + \left[ \begin{array}{c} H_{k} \\ H_{k} \end{array} \right] \rho^{-1}P_{k-1}[H_{k}^{T} H_{k}^{T}] \right)^{-1} \cdot \left[ \begin{array}{c} H_{k} \\ H_{k} \end{array} \right] \rho^{-1}P_{k-1},$$

$$\rho P_{k} = P_{k-1} - P_{k-1}[H_{k}^{T} H_{k}^{T}]$$

$$\cdot \left( R_{k} + \left[ \begin{array}{c} H_{k} \\ H_{k} \end{array} \right] P_{k-1}[H_{k}^{T} H_{k}^{T}] \right)^{-1} \cdot \left[ \begin{array}{c} H_{k} \\ H_{k} \end{array} \right] P_{k-1},$$

$$P_{k} = P_{k-1} - P_{k-1}[H_{k}^{T} H_{k}^{T}]$$

$$\cdot \left( R_{k} + \left[ \begin{array}{c} H_{k} \\ H_{k} \end{array} \right] P_{k-1}[H_{k}^{T} H_{k}^{T}] \right)^{-1} \cdot \left[ \begin{array}{c} H_{k} \\ H_{k} \end{array} \right] P_{k-1} + \gamma_{f}^{-2} P_{k}.$$

$$(34)$$

【0082】CCで、P』をP^』+」;」と見倣せ \*3。 ば、上式が式(13)のリカッチ方程式を満たすことが 【0083】 わかる。 【数28】

(補題2の証明)ゲイン行列K、が次のように整理できょ

$$K_{k}$$

$$= P_{k}C_{k}^{T} = \left[\rho P_{k-1}^{-1} + C_{k}^{T}W_{k}C_{k}\right]^{-1}C_{k}^{T}$$

$$= \rho^{-1}P_{k-1}C_{k}^{T} - \rho^{-1}P_{k-1}C_{k}^{T} \cdot \left[W_{k}^{-1} + C_{k}\rho^{-1}P_{k-1}C_{k}^{T}\right]^{-1}C_{k}\rho^{-1}P_{k-1}C_{k}^{T}$$

$$= \rho^{-1}P_{k-1}C_{k}^{T}$$

$$= \rho^{-1}P_{k-1}C_{k}^{T}\left[W_{k}^{-1} + C_{k}\rho^{-1}P_{k-1}C_{k}^{T}\right]^{-1} \cdot \left[\left(W_{k}^{-1} + C_{k}\rho^{-1}P_{k-1}C_{k}^{T}\right) - W_{k}^{-1}\right]$$

$$= \rho^{-1}P_{k-1}C_{k}^{T}\left[I + W_{k}C_{k}\rho^{-1}P_{k-1}C_{k}^{T}\right]^{-1}$$

$$= \rho^{-1}P_{k-1}C_{k}^{T}W_{k} \cdot \left[W_{k} + \rho^{-1}W_{k}C_{k}P_{k-1}C_{k}^{T}W_{k}\right]^{-1}$$

$$= \rho^{-1}P_{k-1}\left[H_{k}^{T} - \gamma_{f}^{-2}H_{k}^{T}\right]\left[\left[1 & 0 \\ 0 & -\gamma_{f}^{-2}\right] + \rho^{-1}\left[H_{k}^{T} - \gamma_{f}^{-2}H_{k}\right]P_{k-1}\left[H_{k}^{T} - \gamma_{f}^{-2}H_{k}^{T}\right]^{-1}$$

$$= \rho^{-1}P_{k-1}\left[H_{k}^{T} H_{k}^{T}\right]\left(1 + H_{k}P_{k-1}H_{k}^{T}\right)^{-1}$$

$$(35)$$

[0084] さらに、 $G_k = (p+H_k P_{k-1} H^T_k)/(1+H_k P_{k-1} H^T_k)$ と、 $H_k$  K~ $_k = H_k P_{k-1} H^T_{-k}/(1+H_k P_{k-1} H^T_{-k})$ 

よ)を用いれば、ゲイン行列K、の第1ブロック列から式(18)のようにフィルタゲインを得ることができる。

【0085】(補題3の証明) ゲイン行列 $K_{i}$ , i=0・・・・、k が与えられたと仮定し、次の $K_{k+1}$  を求めることにする。

\* 7) と式(38) を導入する。このとき、Q<sup>u</sup> kは式(39) のように再帰的に表され、かつ次の式(40) のように分割される。

 $Q_{k+1} K_{k+1} = C_{k+1}^{T}$  (36)

[0086]

まず、C k のシフト特性を利用するため、新たに式(3 \*

【数29】

$$\check{\boldsymbol{C}}_{k}^{T} = \begin{bmatrix} \boldsymbol{c}_{k}^{T} \\ \boldsymbol{C}_{k}^{T} \end{bmatrix} = \begin{bmatrix} \boldsymbol{C}_{k+1}^{T} \\ \boldsymbol{c}_{k-N}^{T} \end{bmatrix} \in \mathcal{R}^{(N+1) \times 2}$$
(37)

(14)

$$\check{\boldsymbol{Q}}_{k} = \sum_{i=1}^{k} \rho^{k-i} \check{\boldsymbol{C}}_{i}^{T} \boldsymbol{W}_{i} \check{\boldsymbol{C}}_{i} \in \mathcal{R}^{(N+1) \times (N+1)}$$
(38)

$$\check{\mathbf{Q}}_{k} = \rho \check{\mathbf{Q}}_{k-1} + \check{\mathbf{C}}_{k}^{T} \mathbf{W}_{k} \check{\mathbf{C}}_{k}. \tag{39}$$

$$\tilde{\boldsymbol{Q}}_{k} = \begin{bmatrix} M_{k} & T_{k}^{T} \\ T_{k} & Q_{k} \end{bmatrix} = \begin{bmatrix} Q_{k+1} & \underline{T}_{k}^{T} \\ \underline{T}_{k} & \underline{M}_{k} \end{bmatrix}.$$
(40)

【0087】 この表記を用いれば、時間ステップkおよ ※【0088】 びk+1の式(36)は、次式に含まれる。 ※ 【数30】

$$\tilde{Q}_{k} \begin{bmatrix} 0 \\ K_{k} \end{bmatrix} = \begin{bmatrix} \alpha_{k}^{T} \\ C_{k}^{T} \end{bmatrix} = \tilde{C}_{k}^{T} + \begin{bmatrix} \alpha_{k}^{T} - c_{k}^{T} \\ 0 \end{bmatrix}$$

$$\tilde{Q}_{k} \begin{bmatrix} K_{k+1} \\ 0 \end{bmatrix} = \begin{bmatrix} C_{k+1}^{T} \\ \beta_{k}^{T} \end{bmatrix} = \tilde{C}_{k}^{T} + \begin{bmatrix} 0 \\ \beta_{k}^{T} - c_{k-N}^{T} \end{bmatrix}$$
(41)

ただし、

$$\alpha_k^T = T_k^T K_k \in \mathcal{R}^{1 \times 2}, \ \beta_k^T = T_k K_{k+1} \in \mathcal{R}^{1 \times 2}.$$

【0089】 これらの表記に基づけば、K、を直接求め 40★【0090】 る変わりに、次式を満たすK<sup>u</sup>、∈R<sup>(N+1)×2</sup>を 【数31】 求める方が便利である。 ★

$$\ddot{Q}_k \ddot{K}_k = \ddot{C}_k^T \tag{43}$$

ここで、

$$\check{K}_{k} = \left[k_{k+1}^{T} K_{k}^{T}\right]^{T} = \left[K_{k+1}^{T} k_{k-N}^{T}\right]^{T}. \tag{44}$$

【0091】そのため、式 (41) から得られる式 (46) のように整理できる。 5)を用いれば、 $K^{\circ}$  、 $ER^{(N+1)\times 2}$  を式 (45) を式 (0092)

【数32】

$$\tilde{C}_{k}^{T} = \tilde{Q}_{k} \begin{bmatrix} 0 \\ K_{k} \end{bmatrix} - \begin{bmatrix} \alpha_{k}^{T} - c_{k}^{T} \\ 0 \end{bmatrix}$$
(45)

$$\begin{split}
\check{K}_{k} &= \begin{bmatrix} m_{k} \\ \mu_{k} \end{bmatrix} = \check{Q}_{k}^{-1} \check{C}_{k}^{T} = \begin{bmatrix} 0 \\ K_{k} \end{bmatrix} - \check{Q}_{k}^{-1} \begin{bmatrix} \alpha_{k}^{T} - c_{k}^{T} \\ 0 \end{bmatrix} \\
&= \begin{bmatrix} 0 \\ K_{k} \end{bmatrix} - \begin{bmatrix} S_{k}^{-1} \\ A_{k} S_{k}^{-1} \end{bmatrix} [\alpha_{k}^{T} - c_{k}^{T}] \tag{46}
\end{split}$$

【0093】 ここで、 $K^{U}$  k は、 $m_k \in R^{N \times 2}$  と $\mu_k$   $*^{N \times 1}$  と $S_k \in R$  は次式を満たす。  $\in R^{1 \times 2}$  に分割される。また、 $\alpha^{T}$  k  $-c^{T}$  k =- 20 【0094】 ( $c_k$   $^{T}$   $+ A_k$   $^{T}$   $C_k$   $^{T}$  )に注意されたい。さらに、Q 【数33】 "k は逆行列が存在すると仮定し、補助変数 $A_k \in R$  \*

$$\vec{Q}_{k} \begin{bmatrix} 1 \\ A_{k} \end{bmatrix} = \begin{bmatrix} S_{k} \\ 0 \end{bmatrix} \quad \left( \begin{bmatrix} 1 \\ A_{k} \end{bmatrix} S_{k}^{-1} = \vec{Q}_{k}^{-1} \begin{bmatrix} 1 \\ 0 \end{bmatrix} \right)$$
(47)

$$\tilde{Q}_{k}\tilde{B}_{k} = \tilde{Q}_{k} \begin{bmatrix} B_{k} \\ F_{k} \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \end{bmatrix} \left( \tilde{B}_{k} = \begin{bmatrix} B_{k} \\ F_{k} \end{bmatrix} \right)$$
(48)

$$\tilde{K}_{k} - \tilde{B}_{k} F_{k}^{-1} \mu_{k} = \begin{bmatrix} m_{k} \\ \mu_{k} \end{bmatrix} - \begin{bmatrix} B_{k} F_{k}^{-1} \\ 1 \end{bmatrix} \mu_{k} 
= \begin{bmatrix} m_{k} - B_{k} F_{k}^{-1} \mu_{k} \\ 0 \end{bmatrix}$$
(49)

【0097】さらに、左から式(49)の左辺にQ<sup>u</sup>。 【0098】 を掛ければ、次のように整理できる。 【数35】

$$\check{Q}_{k}(\check{K}_{k} - \check{B}_{k}F_{k}^{-1}\mu_{k})$$

$$= \check{Q}_{k}\check{K}_{k} - \check{Q}_{k}\check{B}_{k}F_{k}^{-1}\mu_{k} = \check{C}_{k}^{T} - \begin{bmatrix} 0\\1 \end{bmatrix} F_{k}^{-1}\mu_{k}$$

$$= \check{C}_{k}^{T} - \begin{bmatrix} 0\\F_{k}^{-1}\mu_{k} \end{bmatrix} \tag{50}$$

【0099】上式の左辺に式(49)を代入すれば、式 (43) は次式で表される。 【数36】

$$\ddot{Q}_{k}(\ddot{K}_{k} - \ddot{B}_{k}F_{k}^{-1}\mu_{k}) = \ddot{C}_{k}^{T} - \begin{bmatrix} 0 \\ F_{k}^{-1}\mu_{k} \end{bmatrix}, \\
\begin{bmatrix} Q_{k+1} & \underline{T}_{k}^{T} \\ \underline{T}_{k} & \underline{M}_{k} \end{bmatrix} \begin{bmatrix} m_{k} - B_{k}F_{k}^{-1}\mu_{k} \\ 0 \end{bmatrix} = \begin{bmatrix} C_{k+1}^{T} \\ c_{k-N}^{T} \end{bmatrix} + \begin{bmatrix} 0 \\ -F_{k}^{-1}\mu_{k} \end{bmatrix}$$
(51)

【0101】 これは式(42) と同じ形であり、式(5 1) の上ブロックから次式 (52) を導くことができ ※  $Q_{k+1} (m_k - B_k F_k^{-1} \mu_k) = C_{k+1}^T$ とこで、式(36)と式(52)を比較すれば、ゲイン ★に得られる。 行列K、の更新式を得ることができる。 [0103] 【0102】(補題4)補助変数AkとSkは次のよう★30 【数37】

$$A_{k} = A_{k-1} - K_{k} W_{k} [c_{k} + C_{k} A_{k-1}] \in \mathcal{R}^{N \times 1}$$

$$S_{k} = \rho S_{k-1} + [c_{k}^{T} + A_{k}^{T} C_{k}^{T}] W_{k} [c_{k} + C_{k} A_{k-1}] \in \mathcal{R}$$
(53)

[0104]  $\hbar \hbar U$ ,  $A_{-1} = 0$ ,  $S_{-1} = 1/\epsilon_0$  Cると、式(56)を得る。 ある。 [0105] (証明) A とS の次式 (55) と式 (39) を用い 40 【数38】

$$\ddot{Q}_{k} \begin{bmatrix} 1 \\ A_{k-1} \end{bmatrix} = \rho \ddot{Q}_{k-1} \begin{bmatrix} 1 \\ A_{k-1} \end{bmatrix} + \ddot{C}_{k}^{T} W_{k} [c_{k} + C_{k} A_{k-1}] 
= \begin{bmatrix} \rho S_{k-1} \\ 0 \end{bmatrix} + \begin{bmatrix} c_{k}^{T} \\ C_{k}^{T} \end{bmatrix} W_{k} [c_{k} + C_{k} A_{k-1}]$$
(56)

$$\check{Q}_{k}\begin{bmatrix}0\\K_{k}\end{bmatrix}W_{k}[c_{k}+C_{k}A_{k-1}] = \begin{bmatrix}\alpha_{k}\\C_{k}^{T}\end{bmatrix}W_{k}[c_{k}+C_{k}A_{k-1}]. \tag{57}$$

【0108】式(56)から式(57)を引けば、次式 ※【0109】 (58)が成り立つ。 ※ 【数40】

$$\tilde{Q}_{k} \begin{bmatrix} 1 \\ A_{k-1} \end{bmatrix} - \begin{bmatrix} 0 \\ K_{k} \end{bmatrix} W_{k} [c_{k} + C_{k} A_{k-1}] \\
= \begin{bmatrix} \rho S_{k-1} \\ 0 \end{bmatrix} + \begin{bmatrix} c_{k}^{T} \\ C_{k}^{T} \end{bmatrix} W_{k} [c_{k} + C_{k} A_{k-1}] - \begin{bmatrix} \alpha_{k}^{T} \\ C_{k}^{T} \end{bmatrix} W_{k} [c_{k} + C_{k} A_{k-1}], \\
\tilde{Q}_{k} \begin{bmatrix} 1 \\ A_{k-1} - K_{k} W_{k} [c_{k} + C_{k} A_{k-1}] \end{bmatrix} \\
= \begin{bmatrix} \rho S_{k-1} + [c_{k}^{T} - \alpha_{k}^{T}] W_{k} [c_{k} + C_{k} A_{k-1}] \\ 0 \end{bmatrix}$$
(58)

【0110】とれを式(47)と比較すれば、 $\alpha_k$  <sup>T</sup> =  $T_k$  <sup>T</sup>  $K_k$  =  $-A_k$  <sup>T</sup>  $C_k$  <sup>T</sup> より、式(53)と式(54)を得る。

【0111】(補題5)補助変数D<sub>k</sub>=B<sub>k</sub>F

 $_{k}$   $^{-1}$  は、次式 (59) のように得られる。また、 $F_{k}$  は、次式 (60) で更新される。

[0112]

【数41】

$$D_{k} = [D_{k-1} - m_{k}W_{k}\eta_{k}][1 - \mu_{k}W_{k}\eta_{k}]^{-1} \in \mathcal{R}^{N \times 1}$$
(59)

$$F_{k} = F_{k-1}[1 - \mu_{k}W_{k}\eta_{k}]/\rho \in \mathcal{R}$$
 (60)

【0113】ただし、 $n_k = C^u_k D^u_{k-1} = c$  \*れば、式 (62) が成り立つ。  $k-N+C_{k+1}D_{k-1}$  ,  $D_{-1}=0$  ,  $F_{-1}=0$  10 【0114】 である。 【数42】

(証明) B とF を更新するため、式 (61) を用い\*

$$\ddot{\boldsymbol{Q}}_{k-1}\ddot{\boldsymbol{B}}_{k-1} = \boldsymbol{\check{Q}}_{k-1} \begin{bmatrix} \boldsymbol{B}_{k-1} \\ \boldsymbol{F}_{k-1} \end{bmatrix} = \begin{bmatrix} \boldsymbol{0} \\ \boldsymbol{1} \end{bmatrix}$$
(61)

$$\tilde{\boldsymbol{Q}}_{k}\tilde{\boldsymbol{B}}_{k-1} = \rho \tilde{\boldsymbol{Q}}_{k-1}\tilde{\boldsymbol{B}}_{k-1} + \tilde{\boldsymbol{C}}_{k}^{T}\boldsymbol{W}_{k}\tilde{\boldsymbol{C}}_{k}\tilde{\boldsymbol{B}}_{k-1} 
= \rho \begin{bmatrix} \mathbf{0} \\ 1 \end{bmatrix} + \tilde{\boldsymbol{C}}_{k}^{T}\boldsymbol{W}_{k}\tilde{\boldsymbol{C}}_{k}\tilde{\boldsymbol{B}}_{k-1}$$
(62)

【0115】上式を式(61)と同じ形に変形するた ※【0116】 め、式(62)から C<sup>u</sup> <sup>™</sup> W <sup>™</sup> C <sup>u</sup> <sup>™</sup> B <sup>™</sup> 【数43】 を引けば、次式を得る。 ※

$$\ddot{Q}_{k}\ddot{B}_{k-1} - \ddot{C}_{k}^{T}W_{k}\ddot{C}_{k}\ddot{B}_{k-1} = \ddot{Q}_{k}\ddot{B}_{k-1} - \ddot{Q}_{k}\ddot{K}_{k}W_{k}\ddot{C}_{k}\ddot{B}_{k-1} = \rho \begin{bmatrix} 0 \\ 1 \end{bmatrix},$$

$$\ddot{Q}_{k}[\ddot{B}_{k-1} - \ddot{K}_{k}W_{k}\ddot{C}_{k}\ddot{B}_{k-1}] = \rho \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$
(63)

【0117】 この最後の式と式 (48) を比較すれば、 ★ 【0118】 B<sup>u</sup> k に関する再帰式を得る。 ★ 【数44】

$$\ddot{B}_{k} = (\ddot{B}_{k-1} - \ddot{K}_{k} W_{k} \ddot{C}_{k} \ddot{B}_{k-1})/\rho \tag{64}$$

$$D_{k} = B_{k}F_{k}^{-1}, \ \check{D}_{k} = \check{B}_{k}F_{k}^{-1} = \begin{bmatrix} D_{k} \\ 1 \end{bmatrix}$$
 (65)

【0119】 これより、 $B_k$  と $F_k$  が更新される。しかし、 $B^0$   $_k$  と $D_k = B_k$   $F_k$   $^ ^+$   $^+$  そ $R^N$   $^*$   $^+$  としてだけ用いられるので、式(48)と式(64)を次式(65)のように書き換えた方が便利である。また、この行 50

列D<sub>k</sub> は次式 (66) を満たす。 【0120】 【数45】

$$\check{Q}_{k}\check{D}_{k} = \check{Q}_{k}\check{B}_{k}F_{k}^{-1} = \begin{bmatrix} 0\\1 \end{bmatrix}F_{k}^{-1}, \ \check{Q}_{k}\begin{bmatrix} D_{k}\\1 \end{bmatrix} = \begin{bmatrix} 0\\F_{k}^{-1} \end{bmatrix}$$
 (66)

$$\check{Q}_{k}[\check{B}_{k-1}F_{k-1}^{-1} - \check{K}_{k}W_{k}\check{C}_{k}\check{B}_{k-1}F_{k-1}^{-1}] = \check{Q}_{k}[\check{D}_{k-1} - \check{K}_{k}W_{k}\check{C}_{k}\check{D}_{k-1}] \\
= \begin{bmatrix} 0 \\ \rho F_{k-1}^{-1} \end{bmatrix}$$
(67)

【0121】次に、式(63)にF<sub>k-1</sub>- <sup>1</sup>を掛けれ \*理できる。 ば、次式(67)となり、さらにD<sup>u</sup><sub>k-1</sub>=B<sup>u</sup> 【0122】 k-1F<sub>k-1</sub>- を用いれば次式(68)のように整\* 【数46】

$$\begin{split} & \boldsymbol{\check{Q}_k} \left[ \boldsymbol{\check{D}_{k-1}} - \left[ \begin{array}{c} m_k \\ \mu_k \end{array} \right] \boldsymbol{W}_k \boldsymbol{\check{C}_k} \boldsymbol{\check{D}_{k-1}} \right] = \left[ \begin{array}{c} 0 \\ \rho F_{k-1}^{-1} \end{array} \right], \\ & \boldsymbol{\check{Q}_k} \left[ \begin{array}{c} \boldsymbol{D_{k-1}} - m_k \boldsymbol{W}_k \boldsymbol{\check{C}_k} \boldsymbol{\check{D}_{k-1}} \\ 1 - \mu_k \boldsymbol{W}_k \boldsymbol{\check{C}_k} \boldsymbol{\check{D}_{k-1}} \end{array} \right] = \left[ \begin{array}{c} 0 \\ \rho F_{k-1}^{-1} \end{array} \right]. \end{split}$$

(68)

[0123] これより、式 (68) に  $[1-\mu_k]$   $\mathbb{W}_k$  C ※ [0124]  $\mathbb{W}_k$  D  $\mathbb{W}_k$  -  $\mathbb{W}_k$  -  $\mathbb{W}_k$  を掛ければ、次式が得られる。 ※ 【数47】

$$\begin{split} \check{Q}_{k} \left[ \begin{array}{c} [D_{k-1} - m_{k} W_{k} \check{C}_{k} \check{D}_{k-1}] [1 - \mu_{k} W_{k} \check{C}_{k} \check{D}_{k-1}]^{-1} \\ 1 \end{array} \right] \\ = \left[ \begin{array}{c} 0 \\ \rho F_{k-1}^{-1} [1 - \mu_{k} W_{k} \check{C}_{k} \check{D}_{k-1}]^{-1} \end{array} \right] \end{split}$$

【0125】 これを式 (66) と比較すれば、最終的に D<sub>k</sub> とF<sub>k</sub> の更新式が得られる。

(補題6(高速処理に適した存在条件)の証明)上述したように、式(22)、(23)の存在条件を用いれば、計算量O(N)で高速H。フィルタの存在が検査で

きる。その証明を以下に示す。次式 (69) で示す $2\times 2$  の行列R。、、の特性方程式を解けば、R。、、の固有値 $\lambda$ 、が次式 (70) のように得られる。

【0126】 【数48】

$$|\lambda I - R_{e,k}| = \begin{vmatrix} \lambda - (\rho + H_k \hat{\Sigma}_{k|k-1} H_k^T) & -H_k \hat{\Sigma}_{k|k-1} H_k^T \\ -H_k \hat{\Sigma}_{k|k-1} H_k^T & \lambda - (-\rho \gamma_f^2 + H_k \hat{\Sigma}_{k|k-1} H_k^T) \end{vmatrix}$$

$$= \lambda^2 - (2H_k \hat{\Sigma}_{k|k-1} H_k^T + \rho \varrho) \lambda - \rho^2 \gamma_f^2 + \rho \varrho H_k \hat{\Sigma}_{k|k-1} H_k^T = 0$$
(69)

$$\lambda_i = \frac{\vec{\Phi} \pm \sqrt{\vec{\Phi}^2 - 4\rho\varrho H_k \hat{\Sigma}_{k|k-1} H_k^T + 4\rho^2 \gamma_f^2}}{2} \quad (70)$$

ただし、 $\Phi = 2H_k \hat{\Sigma}_{k|k-1} H_k^T + \rho \varrho, \varrho = 1 - \gamma_e^2$ 

【0127】もし、次式 (71) が成り立てば、行列R • . . の2つの固有値の1つは正となり、もう1つは負 となり、行列R』とR。」」は同じイナーシャをもつ。 これより、次式 (72) を用いれば、式 (22) の存在\*20 【数49】

\*条件が得られる。 C C で、 H k K ~ k の計算が O (N) 回の掛け算を必要としている。

[0128]

$$-4\rho \varrho H_k \hat{\Sigma}_{k|k-1} H_k^T + 4\rho^2 \gamma_f^2 > 0 \tag{71}$$

$$H_k \hat{\Sigma}_{k|k-1} H_k^T - H_k K, \tag{72}$$

$$H_{k}\hat{\Sigma}_{k|k-1}H_{k}^{T} = \frac{H_{k}K_{k}}{1-H_{k}K_{k}}$$
 (72)

### [0129]

【発明の効果】本発明によると、以上のように、新たな H。評価基準に基づいて開発した変形H。フィルタの高 速アルゴリズム(高速H。フィルタリングアルゴリズ ム)を用いて、時不変および時変システムの高速実時間 同定および推定を実現することができる。また、本発明 によると、本アルゴリズムの特殊な場合として高速カル マンクフィルタリングアルゴリズムを含み、また、時変 システムの追従性を支配するシステム雑音の共分散に対 40 の説明図(1)。 応する項を理論的に決定することができる。また、本発 明によると、突然回線が切り替わるような激しく変化す る時変システムのエコーキャンセラなどのように、シス テム(インパルス応答)が時間的に不連続に変化する場 合において、特に、非常に有効な高速時変システム同定 方法を提供することができる。また、本発明によると、 通信システムや音響システムにおけるエコーキャンセ ラ、音場再生又は騒音制御などに適用することができる システム同定方法を提供することができる。

【図面の簡単な説明】

【図1】高速アルゴリズムのフローチャート。

【図2】変形H. フィルタリングアルゴリズムの各部分 の計算量の説明図(1)。

【図3】変形H...フィルタリングアルゴリズムの各部分 の計算量の説明図(2)。

【図4】行列計算の順番を変えた場合の計算量の説明 図、

【図5】高速H. フィルタリングアルゴリズムの計算量

【図6】高速H。フィルタリングアルゴリズムの計算量 の説明図(2)。

【図7】インバルス応答{h,}の値を示す図。

【図8】変形H。フィルタと髙速H。フィルタによるイ ンバルス応答の推定結果の比較説明図。

【図9】計算時間の測定結果の図。

【図10】各アルゴリズムのシミュレーション結果の図 (1)

【図11】各アルゴリズムのシミュレーション結果の図 50 (2).

【図12】7,とρの関係図。

【図13】高速H。フィルタ、高速カルマンフィルタおよびLMSアルゴリズムにおけるインバルス応答のタップ数(tap number)と計算時間[s]の関係図。

【図14】システム同定のための構成図。

【図15】インバルス応答の調節機構についての構成

図。

\*【図16】通信系とエコーについての説明図。 【図17】エコーキャンセラの原理図。

【符号の説明】

- 1 未知システム
- 2 適応フィルタ
- 3 FIRディジタルフィルタ
- 4 適応アルゴリズム

[図1]

[図7]



| ho              | à <sub>1</sub> | h <sub>2</sub>  | h <sub>2</sub>  | À,     | As     |
|-----------------|----------------|-----------------|-----------------|--------|--------|
| 0.0             | 0.008          | -0.012          | 0.064           | 0.013  | -0.052 |
| he              | hı             | h <sub>6</sub>  | he              | Å10    | À11    |
| -0.007          | 0.039          | 0.011           | 0.0             | -0.002 | -0.009 |
| h <sub>12</sub> | has            | h14             | h <sub>18</sub> | h10    | h17    |
| -0.016          | -0.013         | -0.001          | 0.004           | 0.015  | 0.013  |
| Aze             | his            | h <sub>20</sub> | h <sub>21</sub> | h22    | h28    |
| 0.007           | 0.0            | -0.001          | -0.002          | -0.001 | 0.0    |

【図13】

| タップ数 | 高速 田 [6] | 高速 KF [a] | LMS [e] |
|------|----------|-----------|---------|
| 48   | 8.82     | 6.00      | 2.18    |
| 96   | 14.9     | 10.3      | 3.75    |
| 192  | 27.3     | 19.2      | 6.96    |
| 384  | 51.7     | 35.8      | 13.4    |

【図9】

| タップ数 | 変形日。0フィルタ (1)        | 変形日。フィルタ (2) | 高速圧。コイルク |
|------|----------------------|--------------|----------|
| 24   | 1.76                 | 1.37         | 1.95     |
| 48   | 6.66                 | 2.77         | 2.92     |
| 96   | 49.9                 | 8.56         | 4.76     |
| 192  | 419.1                | 32.5         | 8.61     |
| 384  | 3.41×10 <sup>3</sup> | 126.6        | 16.3     |

[図2]



【図3】



[図4]



【図8】



### 【図5】

$$\begin{array}{c} \widetilde{e}_{k} = c_{k} + C_{k} A_{k-1} \\ 2 \times 1 & 2N \\$$

### 【図10】



【図6】





 $D_{ki}K_{k+1}($ フィルタゲイン),フィルタ方程式の計算量

: その 行列計算の乗集回数 : 行列の次元

【図11】



[図12]



[図15]



【図14】



[図16]



【図17】



# This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

## **BEST AVAILABLE IMAGES**

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

□ BLACK BORDERS
□ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
□ FÂDED TEXT OR DRAWING
□ BLURRED OR ILLEGIBLE TEXT OR DRAWING
□ SKEWED/SLANTED IMAGES
□ COLOR OR BLACK AND WHITE PHOTOGRAPHS
□ GRAY SCALE DOCUMENTS
□ LINES OR MARKS ON ORIGINAL DOCUMENT

# IMAGES ARE BEST AVAILABLE COPY.

OTHER:

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.

REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY