

ERASynth: An Open Source, Arduino-Compatible RF Signal Generator with Wi-Fi Connectivity

DATASHEET

GENERAL DESCRIPTION

ERASynth is an open source analog RF signal generator featuring an Arduino Due microcontroller and an ESP8266 powered web GUI. ERASynth uses advanced PLL/VCO technology, coupled with an internal ultra-low phase noise frequency reference to form a programmable analog signal generator capable of generating a low phase noise signals up to 20 GHz. ERASynth provides fast frequency switching and fine-tuning resolution using a multi-loop PLL architecture. ERASynth also offers frequency, amplitude and pulse modulation capabilities. The frequency tuning and control commands are loaded into the instrument via the serial interface or via the web GUI or Windows GUI.

FEATURES

Architecture: Multiloop Integer-N PLL driven by a tunable reference.

Frequency Range:

ERASynth: 250 kHz to 6 GHz
ERASynth+: 250 kHz to 15 GHz
ERASynth++: 250 kHz to 20 GHz

Amplitude Range: -60 to +15 dBm (typical)

Phase Noise: -120 dBc/Hz (typical phase noise @ 1 GHz output and 10 kHz offset)

Frequency Switching Time: 250 µs (typical)

Reference: Ultra-low noise 100 MHz VCXO locked to a

• ±0.5 ppm 10 MHz TCXO for ERASynth

• ±25 ppb 10 MHz OCXO for ERASynth+ and ERASynth++

• 10 MHz external reference

MCU: ATSAM3X8EA-CU (same as in the Arduino Due board with BGA package Atmel Microcontroller)

Interfaces:

- Wi-Fi interface for web-based GUI access
- Serial-USB (mini USB) for serial access
- Micro USB for power input
- Trigger Input (SMA) for triggered sweep
- REF In (SMA) for external reference input
- REF Out (SMA) for 10 MHz reference output
- RF Out

Dimensions: 10 cm x 14.5 cm x 2 cm

Weight: 400 g (14.1 oz)

Power Input: 4.5 to 12 V

Power Consumption:

• Typ < 6 W for ERASynth

• Typ < 7 W for ERASynth+ and ERASynth++

Enclosure: Precision-milled, nickel-plated aluminum case

Open Source: Schematics, embedded Arduino code, Web GUI source code, and RS-232

command set

Modulation: FM, AM, Pulse (Internal and external)

Figure 1: ERASynth general block diagram

ORDER GUIDE

	ERASynth	ERASynth+	ERASynth++
Frequency Range	250 kHz to 6 GHz	250 kHz to 15 GHz	250 kHz to 20 GHz (*)
Architecture	LMX2594 driven by LMX2594	LMX2594 driven by LMX2594	LMX2595 driven by LMX2594
Reference	±0.5 ppm TCXO	±0.5 ppm TCXO and ±25 ppb OCXO	±0.5 ppm TCXO and ±25 ppb OCXO
* ERASynth++ comes with an external 15 to 20 GHz cavity filter for subharmonic rejection.			

ELECTRICAL CHARACTERISTICS

	Minimum	Туріса	al	Maximum
Supply Voltage	4.5 V	5 V		12 V
Supply Current		1.1 A		
Supply Current, RF Out Muted		300 mA		
Minimum Output Power				-60 dBm
		250 kHz-15 GHz	17 dBm	
Maximum Output Power (*)		15 GHz-16 GHz	12 dBm	
		16 GHz-19 GHz	8 dBm	
0		250 kHz-15 GHz	± 1.5 dB	
Output Level Accuracy		15 GHz-20 GHz	± 3.5 dB	
Output Power Resolution	0.1 dB		В	
Frequency Resolution	1 Hz			
Frequency Accuracy (using internal OCXO)		±25 ppb		
Minimum Dwell Time**	1 ms			
External Reference Input Level	-10 dBm	0 dBm		+10 dBm
External Reference Locking Range		10 MHz ± 30 ppm		
External Trigger Low Level Input Voltage	0 V			0.7 V
External Trigger High Level Input Voltage	2 V			3.3 V
External Modulation Input Voltage Level				0 ± 1.65 V
RF Output Impedance		50 Ohm		

 $^{^{\}ast}$ See Figure 2 for maximum unleveled output power up to 15 GHz.

^{**} Dwell time: Duration of each signal point in a sweep sequence set by user.

THERMAL CHARACTERISTICS

Operating temperature range: 0 to +50 $^{\circ}\text{C}$

Non-operating temperature range: -40 to +85 °C

Warm-up time: 10 minutes

TYPICAL PERFORMANCE

1. Max Unleveled Output Power

Figure 2: ERASynth+ Max Unleveled Power Output

2. Spectral Purity

ERASynth's multiloop architecture minimizes the spurious artifacts commonly encountered in fractional frequency synthesizers.

Broadband Non-Harmonic Spurious Emissions

Frequency	dBc (typical) at 0 dBm specified output power		
250 kHz-30 MHz	-67 dBc		
30 MHz-4500 MHz	-63 dBc		
4500 MHz-20000 MHz	-58 dBc		

Harmonics (2nd or 3rd harmonics, whichever is worse)

Frequency	dBc (typical) at 0 dBm specified output power
1 MHz	-29 dBc
3 MHz	-35 dBc
10 MHz	-47 dBc
20 MHz	-47 dBc
30 MHz	-55 dBc
100 MHz	-10 dBc
300 MHz	-10 dBc
1 GHz	-14 dBc
2 GHz	-16 dBc
3 GHz	-25 dBc
6 GHz	-22 dBc
10 GHz	-33 dBc

Sub-Harmonics (1/2 or 1/3 harmonics, whichever is worse)

Frequency	dBc (typical) at 0 dBm specified output power	
3 MHz	-77 dBc	
9 MHz	-77 dBc	
30 MHz	-72 dBc	
100 MHz	<-90 dBc	
1 GHz	<-90 dBc	
3 GHz	-86 dBc	
6 GHz	<-90 dBc	
9 GHz	-55 dBc	
12 GHz	-52 dBc	
15 GHz	-30 dBc	
15 GHz-20 GHz	<-100 dBc (*)	
* Sub-harmonics are rejected with external cavity filter. The cavity filter is included in the package with ERASynth++		

Figure 3: ERASynth+ Narrow-band Spurious Performance at 100 MHz

Figure 4: ERASynth+ Narrow-band Spurious Performance at 600 MHz

Figure 5: ERASynth+ Narrow-band Spurious Performance at 1 GHz

Figure 6: ERASynth+ Narrow-band Spurious Performance at 2.5 GHz

Figure 7: ERASynth+ Narrow-band Spurious Performance at 4.2 GHz

Figure 8: ERASynth+ Narrow-band Spurious Performance at 6 GHz

Figure 9: ERASynth+ Narrow-band Spurious Performance at 8.9 GHz

Figure 10: ERASynth+ Narrow-band Spurious Performance at 10 GHz

Figure 11: ERASynth+ Narrow-band Spurious Performance at 12 GHz

Figure 12: ERASynth+ Narrow-band Spurious Performance at 13.9 GHz

Figure 13: ERASynth+ Narrow-band Spurious Performance at 15 GHz

3. Phase Noise

Figure 14: ERASynth++ Phase Noise Performance at 1 GHz RF Output (Low Spurious Mode vs Low Phase Noise Mode)

3.1.Low Spurious Mode

Figure 15: ERASynth++ Phase Noise Performance at 1 GHz RF Output

Figure 16: ERASynth++ Phase Noise Performance at Various RF Output (10 MHz to 6000 MHz)

Figure 17: ERASynth++ Phase Noise Performance at Various RF Output (10 GHz to 19 GHz)

3.2.Low Phase Noise Mode

Figure 18: ERASynth++ Phase Noise Performance at 1 GHz RF Output

Figure 19: ERASynth++ Phase Noise Performance at Various RF Output (10 MHz to 6000 MHz)

Figure 20: ERASynth++ Phase Noise Performance at Various RF Output (10 GHz to 19 GHz)

Figure 21: ERASynth+ 10 MHz REF OUT Phase Noise (Internal REF Source is selected as OCXO)

4. Operating Modes

ERASynth has two operating modes: Low Spurious Mode and Low Phase Noise mode.

The mode can be changed according to user application and requirements. There are some trade-offs that are explained as follow.

4.1.Low Spurious Mode

This mode is the default mode.

ERASynth uses multiloop Integer-N PLL driven by a tunable reference. Thanks to this multiloop architecture there is no fractional-N or integer boundary spurs at the output signal. However, this mode consumes more power and the phase noise increases slightly.

4.2.Low Phase Noise Mode

In Low Phase Noise mode one of the PLL IC is bypassed and powered down. In this way, ERASynth not only consumes about 2W less power but also the phase noise improves about 3dB. But the spur levels increase.

Note that this mode can be activated when the output frequency is above 30 MHz.

Figure 22: ERASynth++ Phase Noise Performance at 1 GHz RF Output (Low Spurious Mode vs Low Phase Noise Mode)

5. Phase Shift

Phase shift is only available in Low Phase Noise mode. Maximum shift amount that can be applied to the device at once is dependent on frequency. Nevertheless, multiple shift command can be applied one after another for getting desired amount of phase shift.

Maximum Phase Shift Amount at Once*	30 MHz	1 degree (typ)
	100 MHZ	3 degree (typ)
	1 GHz	44 degree (typ)
	5 GHz	179 degree (typ)
	10 GHz	359 degree (typ)

^{*}Phase shift is available at frequencies higher than 30 MHz.

6. Modulation

Amplitude Modulation (AM)

Modulation Depth	30 dB (typ) (*)	
Maximum Depth (Linear)	%95	
Internal Modulation Waveforms	Sine, Triangle, Ramp, Square	
Maximum Internal Modulation Frequency	30 kHz (typ)	
Maximum External Modulation Frequency	20 kHz (typ)	
External Input	± 1.65 V (typ)	
External Input Impedance	8 kΩ (typ)	
*Measured with power set at max. amplitude range. AM is clipped when available power (min. or max.) is reached.		

Narrow Band Frequency Modulation (NBFM)

1 MHz	45 Hz (typ)
10 MHz	450 Hz (typ)
100 MHz	4500 Hz (typ)
1 GHz	45 kHz (typ)
10 GHz	450 kHz (typ)
27.5 °C	5 ppm (typ)
40.0 °C	1 ppm (typ)
43.5 °C	400 ppb (typ)
45.3 °C	170 ppb (typ)
Sine, Triangle, Ramp, Square	
30 kHz (typ)	
20 kHz (typ)	
± 1.65 V (typ)	
8 kΩ (typ)	
	10 MHz 100 MHz 1 GHz 10 GHz 27.5 °C 40.0 °C 43.5 °C 45.3 °C Sine, Triangle, 30 kH 20 kH ± 1.65

^{*}When NBFM modulation is enabled, voltage control input of VCXO is switched to an internal DAC. That causes a frequency shift. Temperature values are read from internal sensor

Wide Band Frequency Modulation (WBFM)

Minimum deviation	100 MHz	5 kHz (typ)
	1 GHz	10 kHz (typ)
	3 GHz	30 kHz (typ)
	10 GHz	100 kHz (typ)
Maximum deviation	100 MHz	500 kHz (typ)
	1 GHz	5 MHz (typ)
	3 GHz	9.9 MHz
	10 GHz	9.9 MHz
Internal Modulation Waveforms	Sine, Triangle, Ramp, Square	
Maximum Internal Modulation Frequency	30 kHz (typ)	
Maximum External Modulation Frequency	20 kHz (typ)	
External Input	± 1.65 V (typ)	
External Input Impedance	8 kΩ (typ)	

Pulse Modulation

250 kHz-100 MHz	>90 dB (typ)	
1 GHz 88 dB (typ)		
3 GHz	82 dB (typ)	
6 GHz	76 dB (typ)	
10 GHz	65 dB (typ)	
15 GHz	75 dB (typ)	
30 us (typ)		
60 us (typ)		
999 s		
15 us (typ)		
6 us (typ)		
+3.3 V = RF ON, 0 V = RF OFF		
8 kΩ (typ)		
	3 GHz 6 GHz 10 GHz 15 GHz 30 us 60 us 99 15 us 6 us +3.3 V = RF ON	

¹ Minimum Pulse Width is 130us and Minimum Pulse Period is 260us if the embedded firmware version is older than v1.0.11

² Pulse period must be at least 30 us higher than the pulse width value.