Project

Marco Brianti Vito Cormun

Boston College

August 2018

Objective of the Project

Estimating responses of key macroeconomic variables to a noise shock.

Preview of the results:

- GDP, consumption, investment, and hours worked display a positive and hump-shaped response over the first 6-8 quarters.
- Counterintuitively, inflation tends to decrease.
- Real profits tend to display a negative response after 4-6 quarters which lasts for almost one year.

Econometric Procedure - Overview

We use a 2-step procedure

- Estimate series of noise shocks controlling for other possible source of fluctuations
- 2 Estimate IRFs via local projection à la Jorda (2005)

Step 1 - Overview

We estimate a noise shock as a change in the expected future growth rate of real GDP which is orthogonal to

- contemporaneous structural shocks
- 2 lagged principal components from a large dataset
- past and future TFP

Step 1 - Estimation of Z_t

Data

- X_t is log of Real GDP at time t
- $X_{t+k|t} = E[X_{t+k}|I(t)]$ provided by Survey of Professional Forecasters

Procedure

$$Z_t = (X_{t+4|t} - X_{t|t}) - (X_{t+4|t-1} - X_{t|t-1})$$

where

- $(X_{t+4|t} X_{t|t})$ is expected growth rate of Real GDP conditional on information set up to time t
- $(X_{t+4|t-1} X_{t|t-1})$ is expected growth rate of Real GDP conditional on information set up to time t-1
- ullet Z_t is a shock to the expectations of output growth rate

Step 1 - Estimation of \tilde{Z}_t

Problem. Z_t is correlated with current and future fundamentals such as fiscal policy, monetary policy, current and future TFP.

Solution. Estimate \tilde{Z}_t as follows

$$Z_{t} = C + \sum_{j=-J}^{H} \delta_{j} \Delta TFP_{t+j} + \gamma SS_{t} + \mu PC_{t-1} + \tilde{Z}_{t}$$

where

- *C* is a constant parameter
- ΔTFP_t is first difference of utility-adjusted total factor productivity at time t
- SS_t is a vector of structural shocks at time t possibly estimated via narrative approach
- ullet PC_{t-1} is a vector of principal component at time t-1

 \tilde{Z}_t represents a change in expectations which is orthogonal to any source of fundamental fluctuations, i.e. a **noise shock**.

Noise Shocks \tilde{Z}_t

Step 2 - Estimation of IRFs to \tilde{Z}_t

Define Y_t to be the log-transformation of an endogenous aggregate macroeconomic variable.

Using standard OLS techniques we estimate H regressions

$$Y_{t+h} = C + \gamma T_t + \Theta_h^Y \tilde{Z}_t + \delta X_{t-1} + \epsilon_{t+h}$$

where

- h = 1, 2, ..., H represent the forecast horizon
- C is a constant parameter
- T_t is a linear time trend
- X_t is a vector of control variables at t-1: TFP, PC, ...

 Θ_1^Y , Θ_2^Y , ..., Θ_H^Y represent the path of the impulse response function of Y_t to a unit deviation of \tilde{Z}_t .

Bootstrapping Techniques

- **1** Consider the tuple $\Gamma_h^Y = \{Y_{t+h}, T_t, \tilde{Z}_t, X_{t-1}\}.$
- ② Divide Γ_h^Y over time t in smaller blocks and randomly reorder these blocks in order to form a new tuple $\Gamma_{h,Boot1}^Y$ of the same size of the previous one.
- **3** Estimate $\Theta_{h,Boot1}$ from $\Gamma_{h,Boot1}^{Y}$ using standards OLS techniques.
- Redo (1)-(3) 2000 times and select confidence intervals.

Local Projection - Confidence Interval 68% and 90%

Robustness Check

