→ Import Libraries

```
import pandas as pd
import matplotlib.pyplot as plt
import numpy as np
import seaborn as sns
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.linear_model import LinearRegression
from sklearn.tree import DecisionTreeRegressor
```

Import Dataset

data = pd.read_csv('abalone.csv')
data

	Sex	Length	Diameter	Height	Whole weight	Shucked weight	Viscera weight	Shell weight	Rings
0	М	0.455	0.365	0.095	0.5140	0.2245	0.1010	0.1500	15
1	М	0.350	0.265	0.090	0.2255	0.0995	0.0485	0.0700	7
2	F	0.530	0.420	0.135	0.6770	0.2565	0.1415	0.2100	9
3	М	0.440	0.365	0.125	0.5160	0.2155	0.1140	0.1550	10
4	I	0.330	0.255	0.080	0.2050	0.0895	0.0395	0.0550	7
4172	F	0.565	0.450	0.165	0.8870	0.3700	0.2390	0.2490	11
4173	М	0.590	0.440	0.135	0.9660	0.4390	0.2145	0.2605	10
4174	М	0.600	0.475	0.205	1.1760	0.5255	0.2875	0.3080	9
4175	F	0.625	0.485	0.150	1.0945	0.5310	0.2610	0.2960	10
4176	М	0.710	0.555	0.195	1.9485	0.9455	0.3765	0.4950	12

4177 rows × 9 columns

data.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 4177 entries, 0 to 4176
Data columns (total 9 columns):

#	Column	Non-Null Count	Dtype
0	Sex	4177 non-null	object
1	Length	4177 non-null	float64

```
Diameter
                                      float64
 2
                     4177 non-null
 3
     Height
                     4177 non-null
                                      float64
 4
    Whole weight
                     4177 non-null
                                      float64
 5
     Shucked weight 4177 non-null
                                      float64
 6
    Viscera weight 4177 non-null
                                      float64
 7
     Shell weight
                     4177 non-null
                                      float64
 8
     Rings
                     4177 non-null
                                      int64
dtypes: float64(7), int64(1), object(1)
memory usage: 293.8+ KB
```

Univariate Analysis

```
plt.hist(data['Sex']);
plt.xlabel('Sex');
```



```
plt.hist(data['Rings']);
plt.xlabel('Rings');
```



```
sns.boxplot(x=data['Length'])
plt.xlabel('Length');
```


plt.hist(data['Diameter']);
plt.xlabel('Diameter');

plt.hist(data['Height']);
plt.xlabel('Height');

sns.boxplot(x=data['Whole weight'])
plt.xlabel('Whole weight');

sns.boxplot(x=data['Shucked weight'])
plt.xlabel('Shucked weight');

plt.hist(data['Viscera weight']);
plt.xlabel('Viscera weight');


```
plt.hist(data['Shell weight']);
plt.xlabel('Shell weight');
```


→ Bivariate Analysis

```
plt.figure(figsize=(10, 6))
sns.lineplot(x=data["Height"], y=data["Whole weight"]);
plt.xlabel('Height');
plt.ylabel('Whole weight');
```



```
plt.figure(figsize=(10, 6))
sns.lineplot(x=data["Length"], y=data["Height"]);
plt.xlabel('Length');
plt.ylabel('Height');
```



```
plt.figure(figsize=(10, 6))
sns.lineplot(x=data["Diameter"], y=data["Height"]);
plt.xlabel('Diameter');
plt.ylabel('Height');
```



```
plt.figure(figsize=(10, 6))
sns.lineplot(x=data["Length"], y=data["Diameter"]);
plt.xlabel('Length');
plt.ylabel('Diameter');
```



```
plt.figure(figsize=(10, 6))
plt.scatter(x=data["Shucked weight"], y=data["Whole weight"]);
plt.xlabel('Shucked weight');
plt.ylabel('Whole weight');
```



```
plt.figure(figsize=(10, 6))
plt.scatter(x=data["Viscera weight"], y=data["Whole weight"]);
plt.xlabel('Viscera weight');
plt.ylabel('Whole weight');
```


Multi-variate Analysis

sns.pairplot(data, hue='Sex');

plt.figure(figsize=(10, 6));
sns.heatmap(data.corr(), annot=True);

Descriptive Statistics

Shucked weight -	0.9	0.89	0.77	0.97	1	0.93	0.88	0.42	
<pre>data.describe()</pre>									

		Length	Diameter	Height	Whole weight	Shucked weight	Viscera weight	
C	ount	4177.000000	4177.000000	4177.000000	4177.000000	4177.000000	4177.000000	41
n	nean	0.523992	0.407881	0.139516	0.828742	0.359367	0.180594	
	std	0.120093	0.099240	0.041827	0.490389	0.221963	0.109614	
	min	0.075000	0.055000	0.000000	0.002000	0.001000	0.000500	
:	25%	0.450000	0.350000	0.115000	0.441500	0.186000	0.093500	
	50%	0.545000	0.425000	0.140000	0.799500	0.336000	0.171000	
	75%	0.615000	0.480000	0.165000	1.153000	0.502000	0.253000	
I	max	0.815000	0.650000	1.130000	2.825500	1.488000	0.760000	

Handling Missing Values

data.isna().sum()

Sex	0
Length	0
Diameter	0
Height	0
Whole weight	0
Shucked weight	0
Viscera weight	0
Shell weight	0
Rings	0
dtype: int64	

Outlier Handling

```
numeric_cols = ['Length', 'Diameter', 'Height', 'Whole weight', 'Shucked weight', 'Viscera
def boxplots(cols):
```

```
fig, axes = plt.subplots(4, 2, figsize=(15, 20))
    t=0
    for i in range(4):
        for j in range(2):
            sns.boxplot(ax=axes[i][j], data=data, x=cols[t])
    plt.show()
def Flooring_outlier(col):
    Q1 = data[col].quantile(0.25)
    Q3 = data[col].quantile(0.75)
    IQR = Q3 - Q1
    whisker_width = 1.5
    lower_whisker = Q1 -(whisker_width*IQR)
    upper_whisker = Q3 + (whisker_width*IQR)
    data[col]=np.where(data[col]>upper_whisker,upper_whisker,np.where(data[col]<lower_whis</pre>
print('Before Outliers Handling')
print('='*100)
boxplots(numeric_cols)
for col in numeric_cols:
    Flooring outlier(col)
print('\n\nAfter Outliers Handling')
print('='*100)
boxplots(numeric_cols)
```

Before Outliers Handling

0.1 0.2 0.3 0.1 0.2 0.4 0.5 0.6 0.7 0.8 0.3 0.4 Length Diameter 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.5 1.0 1.5 Height Whole weight 1.2 1.4 0.2 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.1 0.3 0.4 Shucked weight Viscera weight

▼ Encode Categorical Columns

data = pd.get_dummies(data, columns = ['Sex'])
data

15

Rings

	Length	Diameter	Height	Whole weight	Shucked weight	Viscera weight	Shell weight	Rings	Se
0	0.455	0.365	0.095	0.5140	0.2245	0.1010	0.1500	15.0	
1	0.350	0.265	0.090	0.2255	0.0995	0.0485	0.0700	7.0	
2	0.530	0.420	0.135	0.6770	0.2565	0.1415	0.2100	9.0	
3	0.440	0.365	0.125	0.5160	0.2155	0.1140	0.1550	10.0	
4	0.330	0.255	0.080	0.2050	0.0895	0.0395	0.0550	7.0	
4172	0.565	0.450	0.165	0.8870	0.3700	0.2390	0.2490	11.0	
4173	0.590	0.440	0.135	0.9660	0.4390	0.2145	0.2605	10.0	
4174	0.600	0.475	0.205	1.1760	0.5255	0.2875	0.3080	9.0	
4175	0.625	0.485	0.150	1.0945	0.5310	0.2610	0.2960	10.0	
4176	0.710	0.555	0.195	1.9485	0.9455	0.3765	0.4950	12.0	

1177 rowe x 11 columns

Split Data into Dependent & Independent Columns

```
Y = data[['Rings']]
X = data.drop(['Rings'], axis=1)
```

Scale the independent Variables

Train Test Split

Model Training & Testing

Colab paid products - Cancel contracts here