Characterizing Minkowski Functionals

Chnagjae Lee

August 21, 2024

In this article, we fix a field \mathbb{K} by \mathbb{R} or \mathbb{C} and X be a \mathbb{K} -vector space.

Definition 1. For $x, y \in X$, $A \subseteq \mathbb{K}$, $\alpha \in \mathbb{K}$, and $S, T \subseteq X$,

1.
$$[x,y] = \{tx + (1-t)y \mid 0 \le t \le 1\},\$$

2.
$$AS = \{ \alpha s \mid \alpha \in \mathbb{K} \text{ and } s \in S \},$$

3.
$$\alpha S = \{\alpha\} S$$
,

4.
$$S + T = \{s + t \mid s \in S \text{ and } t \in T\}$$

Definition 2. Let $S \subseteq X$. We say that the set S is

$$\begin{array}{ll} star\text{-}shaped & (\forall s \in S, \exists s_0 \in S) & [s_0, s] \subseteq S \\ convex & (\forall x, y \in S) & [x, y] \subseteq S \\ absorbing & (\forall x \in X, \exists r_x > 0) & |c| \ge r_x \Rightarrow x \in cS \\ balanced & (\forall \alpha \in \mathbb{K}) & |\alpha| \le 1 \Rightarrow \alpha S \subseteq S \end{array}$$

Proposition 1. If $B \subseteq X$ is balanced, then

$$(\forall \alpha \in \mathbb{K}) \quad |\alpha| = 1 \Rightarrow \alpha B = B$$

Proof.

$$B = \alpha(\overline{\alpha}B) \subseteq \alpha B \subseteq B$$

Proposition 2. Suppose $S \subseteq X$ is convex or balanced. If $(0, \infty)S = X$, then S is absorbing.

Proof. Suppose $(0, \infty)S = X$ and fix nonezero $x \in X$. Let

$$T_x = \{t > 0 \mid x \in tS\}$$

Since $(0, \infty)S = X$, T_y is nonempty for each $y \in X$. Choose r_y by

$$r_u = \inf T_u$$

.

$$r = \inf\{r_{\alpha x} \mid \alpha \in \mathbb{K} \text{ and } |\alpha| = 1\}$$

. Note that r > 0. If not $\alpha x = 0$ for some $|\alpha| = 1$. It contradicts to the fact that x is nonzero.

1. If S is convex, then $0 \in S$ since $0 \in r_0S$ for some $r_0 > 0$. If $|\alpha| \ge r$,

$$\frac{|\alpha|}{\alpha}x \in rS \Rightarrow \frac{r}{|\alpha|}\frac{|\alpha|}{\alpha}x + \frac{|\alpha| - r}{|\alpha|}0 = \frac{r}{\alpha}x \in rS \Leftrightarrow x \in \alpha S$$

by the convexity of S.

2. If S is balanced. If $|\alpha| \geq r$,

$$\frac{|\alpha|}{\alpha}x \in rS \Leftrightarrow x \in \alpha\left(\frac{r}{|\alpha|}S\right) \subseteq \alpha S$$

by the balancedness of S.

Definition 3. Let $S \subseteq X$ and let $f: X \to [0, +\infty]$. We say that the function g is

$$\begin{array}{ll} \textit{positively homogeneous} & (\forall r > 0, \forall x \in X) & f(rx) = rf(x) \\ \textit{absolutely homogenous} & (\forall \alpha \in \mathbb{K}, \forall x \in X) & f(\alpha x) = |\alpha| \, f(x) \\ \textit{real-valued} & (\forall x \in X) & f(x) \in \mathbb{R} \\ \textit{subadditive} & (\forall x, y \in X) & f(x+y) \leq f(x) + f(y) \end{array}$$

Definition 4. Let $S \subseteq X$. A *Minkowski functional* of S is a function

$$\mu_S: X \to [0, +\infty]$$

defined by

$$\mu_S(x) = \inf\{t \in (0, \infty) \mid t^{-1}x \in S\}$$

Here we define

$$\inf \emptyset = +\infty \quad \text{and} \quad \sup \emptyset = -\infty$$

Proposition 3. Let $S \subseteq X$.

- (a) μ_S is positively homogeneous.
- (b) μ_S is subadditive iff (0,1)S is convex.
- (c) μ_S is absolutely homogeneous iff S is balanced.

Proof. (a) $\forall r, t \in (0, \infty)$

$$r^{-1}x \in S \Leftrightarrow (tr)^{-1}(tx) \in S$$

So, $\mu_S(tx) = t\mu_S(x)$.

(b) Suppose that (0,1)S is convex. If one of $\mu_s(x)$ and $\mu_S(y)$ is $+\infty$, then inequality holds. Now suppose both of them are finite. If $s > \mu_S(x)$ and $t > \mu_S(y)$ for some real numbers s and t, then

$$\frac{x+y}{s+t} = \left(\frac{s}{s+t}\right)\frac{x}{s} + \left(\frac{t}{s+t}\right)\frac{y}{t} \in S$$

So, $\mu_S(x+y) \le \mu_S(x) + \mu_S(y)$

Conversely, suppose that $\mu_S(x+y) > \mu_S(x) + \mu_S(y)$ for some $x, y \in X$. Then, both $s^{-1}x$ and $t^{-1}y$ in X but $(s+t)^{-1}(x+y) \notin X$ for some $s, t \in (0, \infty)$ So,

$$\frac{x+y}{s+t} = \left(\frac{s}{s+t}\right)\frac{x}{s} + \left(\frac{t}{s+t}\right)\frac{y}{t} \notin S$$

This shows (0,1)S is not convex.

(c) Suppose that S is balanced.

For any $\alpha \in \mathbb{K}$, therefore,

$$\mu_S(\alpha x) = \mu_S\left(|\alpha| \frac{\alpha}{|\alpha|} x\right) = |\alpha| \mu_S\left(\frac{\alpha}{|\alpha|} x\right) = |\alpha| \mu_S(x)$$

the last equality holds by the proposition 1

Conversely, if S is not balanced, then $\alpha S \nsubseteq S$ for some $0 < |\alpha| \le 1$. So, there exists $x \in S$ and $r \in (\mu_S(x), \infty)$

$$r^{-1}\alpha x \notin S$$

Hence,

$$\mu_S(x) < \mu_S(\alpha x)$$

Proposition 4. Let $f: X \to [0, +\infty]$ be any function and $S \subseteq X$ be any subset. The following statements are equivalent:

1. f is positive homogeneous, f(0) = 0, and

$$A = \{x \in X \mid f(x) < 1\} \subseteq S \subseteq B = \{x \in X \mid f(x) \le 1\}$$

2. $f = \mu_S$, S contains the origin, and S is star-shpaed at the origin.

Theorem 1. Let $S \subseteq X$. Then μ_S is a seminorm on X iff all of the following conditions hold.

- 1. $(0, \infty)S = X$ (or equivalently, μ_S is real-valued).
- 2. (0,1)S is convex (or euivalently, μ_S is subadditive).
- 3. $(0,1)\alpha S \subseteq (0,1)S$ for all $\alpha \in \mathbb{K}$ s.t. $|\alpha| = 1$.

Conversley, if p is a seminorm on X then the set

$$V = \{ x \in X : f(x) < 1 \}$$

satisfies all three of the above conditions and also, $p = \mu_V$; moreover, V is necessarily convex, balanced, absorbing and satisfies

$$(0,1)V = V = [0,1]V$$

Corollary 1. If $A \subseteq X$ is convex, balanced, and absorbing, then μ_A is a seminorm on X.

Definition 5. A positive sublinear function is a positive homogeneous subadditive function $f: X \to [0, \infty)$.

Theorem 2. Suppose X is a topological vector space. Then the nonempty open convex subsets of X are exactly those sets that are of the form

$$z + \{x \in X \mid p(x) < 1\} = \{x \in X \mid p(x - z) < 1\}$$

for some $z \in X$ and some positive continuous sublinear function p on X.