

"USART" - RS232 DATA (Universal Synchronous and Asynchronous Receiver Transmitter)

COMMUNICATION

What is RS232?

- Short Distance DATA Communication System
- Can connect to any Microcontroller, Microprocessor or a Computer
- Easy 3 wire 7 wire Communication Method
- Data Transmitted in ASCII Format
- Global Standard Protocol.

RS232 System:

RS232 HARDWARE SETUP

TRANSMISSION OF CHARACTER 'A'

Voltage Levels

RS-232 TTL Logic
-15V ... -3V +2V ... +5V High
+3V ... +15V 0V ... +0.8V Low

RS232 – Serial Hardware

www.SoDoItYourself.com

Converted Result:

RS232 Port Settings

Port Settings		
Bits per second:	9600	•
Data bits:	8	•
Parity:	None	•]
Stop bits:	[1	•]
Flow control:	None	•
	Restore	Defaults

HYPER TERMINAL:

- > Hyper Terminal is a Computer software
- Used for Dial up network connection.
- > It can connect to computer ports like: Rs232, USB Ports etc.
- Text Data or Voice Data can be transmitted or received through Hyper Terminal.
- Can be used for testing RS232 data Transmission and Reception.

USART Registers & Bits

- Transmit Status and Control (TXSTA)
- Receive Status and Control (RCSTA)
- Baud Rate Control (BAUDCTL & SPBRG)
- Transmitter and Receiver Register (RCREG&TXREG)

Control bits

- CREN = 1
- SYNC = 0
- SPEN = 1
- TXEN=1

SPBRG Baud Rate Table:

BAUD RATE	SYNC = 0, BRGH = 1, BRG16 = 0											
	Fosc = 4.000 MHz			Fosc = 3.6864 MHz		Fosc = 2.000 MHz			Fosc = 1.000 MHz			
	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)
300	<u>(24—4</u> 1)	<u> </u>	2_2		_		-		<u> </u>	300	0.16	207
1200	1202	0.16	207	1200	0.00	191	1202	0.16	103	1202	0.16	51
2400	2404	0.16	103	2400	0.00	95	2404	0.16	51	2404	0.16	25
9600	9615	0.16	25	9600	0.00	23	9615	0.16	12	_	:::	_
10417	10417	0.00	23	10473	0.53	21	10417	0.00	11	10417	0.00	5
19.2k	19.23k	0.16	12	19.2k	0.00	11	-		-			_
57.6k		-	_	57.60k	0.00	3	-	_	_	_	-	_
115.2k	_		: 	115.2k	0.00	1	-	_	-	_	99 98	-

Sample code to start with:


```
void InitUART(void)
   TRISC6 = 0;
                                    // TX Pin
   TRISC7 = 1;
                                    // RX Pin
    SPBRG = ((XTAL FREQ/16)/BAUDRATE) - 1;
                                    // Fast baudrate
   BRGH = 1;
    SYNC = 0;
                                    // Asynchronous
                                    // Enable serial port pins
    SPEN = 1;
   CREN = 1;
                                    // Enable reception
    SREN = 0;
                                    // No effect
                                    // Disable tx interrupts
   TXIE = 0;
   RCIE = 1:
                                    // Enable rx interrupts
                                    // 8-bit transmission
   TX9 = 0;
   RX9 = 0;
                                    // 8-bit reception
   TXEN = 0;
                                    // Reset transmitter
   TXEN = 1:
                                    // Enable the transmitter
```


Sample code to start with:


```
void receive()
while (RCIF==1)
x = RCREG;
RCIF=0;
void trans(unsigned int *i)
while (TRMT==1);
TXREG=*i;
TXIF=0;
*i++;
```


QUERIES??

12/2 RVM Complex, Near PSG Arts, Avinashi Road, SITRA, Coimbatore – 14

www.manfreetechnologies.com | info@manfreetechnologies.com | 9944766990 | 9751509702

