Signali i sustavi

Sva pitanja za domaću zadaću - 5. svibnja 2008.

1. /	Za prii	odni	odziv	sustava	vrijedi	(samo	je	jedna	tvrdnja	točna)	:
------	---------	------	-------	---------	---------	-------	----	-------	---------	--------	---

a) prirodni odziv nije umjetni
b) ovisi o ulaznoj pobudi
c) identičan je impulsnom odzivu sustava
d) jednak je odzivu mirnog sustava
e) ovisi samo o početnom stanju sustava

2. Konvolucija $x[n] * (\delta[n+3] + \delta[n-3])$ je:

a) $\mu[n-3] + \mu[n+3]$ b) x[n-3] + x[n+3] c) $x[3-n] + x[3+n] \cdot \mu[n]$ d) $x[n] \cdot (\mu[n-3] + \mu[n+3])$

3. Zadan je sustav $T[x[n]] = 8x^2[n]$. Izračunajte $T[3x_1[n] + 2x_2[n]]$.

a) $72x_1^2[n] + 32x_2^2[n] + 12x_1[n]x_2[n]$ b) $24x_1^2[n] + 16x_2^2[n]$ c) $72x_1^2[n] + 32x_2^2[n]$ d) $24x_1^2[n] + 16x_2^2[n] + 2x_1[n]x_2[n]$ e) $72x_1^2[n] + 32x_2^2[n] + 96x_1[n]x_2[n]$

4. Zadana je diferencijalna jednadžba kojom je opisan sustav $\ddot{y}(t) + 2\dot{y}(t) + y(t) = u(t)$. Odredi impulsni odziv sustava!

a) te^{-t} b) te^{-5t} c) $5te^{-t}$ d) e^t e) e^{-t}

5. Ako je jedini korijen karakteristične jednadžbe q = -1 odziv homogenog rješenja $y_h(n)$ je:

a) konstantan, amplituda se ne mijenja promjenom koraka n
b) oscilatoran, povećanjem koraka n amplituda se povećava
c) aperiodski, povećanjem koraka n amplituda se povećava
d) apsolutna vrijednost amplitude je konstantna
e) oscilatoran, povećanjem koraka n amplituda se smanjuje

6. Odredi nultočke karakterističnog polinoma jednadžbe diferencija y(n+2) + 5y(n+1) + 6y(n) = 8u(n+2) + 4u(n)!

a) $q_1 = C_1 e^{-2n}$, $q_2 = C_2 e^{-3n}$ b) $q_1 = 2$, $q_2 = -3$ c) $q_1 = 4$, $q_2 = 9$ d) $q_1 = 2$, $q_2 = 3$ e) $q_1 = -2$, $q_2 = -3$

7. Kako su povezana Diracova $\delta(t)$ funkcija i step-funkcija (samo je jedan odgovor točan):

a) $\delta(t) = \frac{d}{dt}\mu(t)$ **b)** $\mu(t) = 10\delta(t)$ **c)** $\delta(t) = 10\mu(t)$ **d)** $\mu(t) = \frac{d}{dt}\delta(t)$ **e)** $\delta(t) = \mu(t)$

8. Red jednadžbe diferencija zapisane u operatorskom zapisu preko operatora E dan je:

a) razlikom najveće i najmanje potencije operatora E b) najvećom potencijom operatora E c) najmanjom potencijom operatora E d) potencija operatora ne određuje red jednadžbe diferencija e) razlikom najmanje i najveće potencije operatora E

9. Zadan je sustav $T\{x(t)\} = \sin(\frac{\lambda}{2}\pi)x(\lambda t)$. Za koji λ je sustav vremenski promjenjiv:

a) $\lambda = 2$ b) $\lambda = 4$ c) $\lambda = 0$ d) $\lambda = 1$ e) $\lambda = 3$

10. Konvolucija $(at + b) * \delta(ct - t_0)$ $(t_0, a, b i c su realne konstante, t je vrijeme) je:$

a) $a(t-t_0/c)+2b\delta(t-t_0/c)$ b) $a(t-t_0/c)\mu(t-bt_0/c)$ c) $a(t-t_0/c)+b$ d) $at_0/c+b$ e) $a(ct-t_0)+b(ct-t_0)$

11. Jedini vremenski nepromjenjiv i bezmemorijski sustav od ponuđenih je $(t_0 \neq 0$ je realna konstanta):

a) $T\{x(t)\} = tx(t)$ e) $T\{x(t)\} = t_0x(t-t_0)$ c) $T\{x(t)\} = (t-t_0)x(t)$ d) $T\{x(t)\} = tx(t-t_0)$

12. Koji od navedenih sustava nije linearan? y(t) je izlaz, a x(t) je ulaz u sustav.

a) y(t) = 5x(t) b) $y(t) = \frac{d}{dt}(x(t))$ c) $y(t) = \int_{t_0}^{t_1} x(\tau) d\tau$ d) $y(t) = \sqrt{x(t)}, x(t) \ge 0$ e) y(t) = (t+1)x(t)

13. Znamo da je odziv linearnog sustava na signal $\sin(t)$ jednak 2, a na $\cos(t)$ jednak 4. Koliki je odziv sustava na $\sin(t + \frac{\pi}{4})$?

a) $\frac{1}{2}\sqrt{2}$ **b)** $2\sqrt{2}$ **c)** $3\sqrt{2}$ **d)** 3 **e)** $\frac{3}{2}\sqrt{2}$

14. Zadan je karakteristični polinom jednadžbe diferencija $aq^2 + bq + c = 0$, gdje su a, b i c realne konstante. Ako je $b^2 - 4ac < 0$, korijeni karakteristične jednadžbe mogu se prikazati kao (r i θ su konstante):

a) $q_1 = re^{-j\theta}$, $q_2 = -re^{-j\theta}$ b) $q_1 = re^{\theta}$, $q_2 = re^{-\theta}$ c) $q_1 = C_1 e^{-j\theta}$, $q_2 = C_2 e^{-j\theta}$ d) $q_1 = re^{j\theta}$, $q_2 = re^{-j\theta}$ e) $q_1 = -re^{j\theta}$, $q_2 = re^{j\theta}$

19.	Ako jedini korijeni q karakterističnog polinoma leže na realnoj osi kompleksne ravnine i $ q < 1$, odziv je:
	a) aperiodski, amplituda se povećava povećanjem koraka n b) oscilatoran i neprigušen c) aperiodski, amplituda se smanjuje povećanjem koraka n d) konstantan e) oscilatoran i prigušen
20.	Zadana je jednadžba diferencija $y(n+2) + 2y(n+1) + 2y(n) = 12u(n)$. Homogeno rješenje jednadžbe je oblika:
	a) $y_h(n) = C\sqrt{2}^n e^{j\frac{\pi}{4}n} - C\sqrt{2}^n e^{-j\frac{\pi}{4}n}$ b) $y_h(n) = C_1\sqrt{2}^n e^{\frac{3\pi}{4}n} + C_2\sqrt{2}^n e^{-\frac{3\pi}{4}n}$ c) $y_h(n) = C_1\sqrt{2}^n e^{j\frac{3\pi}{4}n} + C_2\sqrt{2}^n e^{-j\frac{\pi}{4}n}$ e) $y_h(n) = C_1\sqrt{2}^n e^{j\frac{\pi}{4}n} - C_2\sqrt{2}^n e^{-j\frac{\pi}{4}n}$
21.	Sustav je zadan prijenosnom funkcijom $H(s) = \frac{s+1}{s^3+2s^2+s+1}$. Kolike su dimenzije matrice A ako taj sustav prikažemo u prostoru varijabli stanja?
	a) 2×3 b) 3×2 c) 3×1 d) 2×2 e) 3×3
22.	Koji od navedenih diskretnih sustava je linearan?
	a) $y[n] = nx[n^2] + e^n$ b) $y[n] = x[n] + x[n-1]$ c) $y[n] = x[n+3] - 3$ d) $y[n] = x[3n^2] + x^2[n]$ e) $y[n] = x[3n] + 3x[n] + 3$
23.	Ako jedini korijeni q karakterističnog polinoma diferencijske jednadžbe leže na realnoj osi i $ q > 1$, odziv je:
	a) aperiodski, amplituda se smanjuje povećanjem koraka n b) konstantan c) oscilatoran i prigušen d) oscilatoran i neprigušen e) aperiodski, amplituda se povećava povećanjem koraka n
24.	Konvolucija $\left(\sin(t)*\delta(t+2)\right)\delta(t-1)$ je:
	a) $\sin(t) * \delta(t-1)$ b) $\sin(t) * \delta(t+1)$ c) $\sin(t+1)$ d) $\sin(t-1)$ e) $\sin(3)\delta(t-1)$
25.	Jedini vremenski nepromjenjiv i bezmemorijski sustav od ponuđenih je:
	a) $T\{x[n]\} = x^2[n+1]$ b) $T\{x[n]\} = \frac{1}{n+1}x^3[n-1]$ c) $T\{x[n]\} = \frac{1}{n-1}\sum_{k=n-1}^n 3x^2[k]$ d) $T\{x[n]\} = \frac{1}{n}\sum_{k=n+1}^{n+2} kx^2[k]$ e) $T\{x[n]\} = 3x^2[n]$
26.	Sustav $T[x[n]] = x^2[n] + \cos(k\pi)$, gdje je k realna konstanta, je linearan:
	a) za $k=\pi^{-1}$ b) za sve neparne k c) ne postoji takav k d) za sve parne k e) za $k=\frac{1}{2}$
27.	Ako je pobuda linearne jednadžbe diferencija s konstantnim koeficijentima eksponencija oblika $u[n] = Aq^n$, $A \in \mathbb{C}$ i ako je q k -struki korijen karakteristične jednadžbe tada je $y_p(n) = Cn^kq^n$, gdje je $C \in \mathbb{C}$ neka konstanta!
	a) netočno b) točno
28.	Prirodni odziv sustava je $y_{\text{prirodni}}(n) = 2(-1)^n + 8(-2)^n$, dok je prisilni odziv sustava $y_{\text{prisilni}}(n) = 16(-3)^n$. Totalni odziv sustava $y_T(n)$ je:
	a) $y_T(n) = -2(-1)^n - 8(-2)^n + 16(-3)^n$ b) $y_T(n) = 2(-1)^n + 8(-2)^n + 16(-3)^n$ c) $y_T(n) = 32(3)^n + 128(6)^n$ d) $y_T(n) = 2(-1)^n + 8(-2)^n - 16(-3)^n$ e) $y_T(n) = -2(-1)^n - 8(-2)^n - 16(-3)^n$

b) $T\{x[n]\} = x[n^2]$ **c)** $T\{x[n]\} = x[-n]$ **d)** $T\{x[n]\} = x[-n+1]$ **e)** $T\{x[n]\} = x[-n]$

a) $T\{x(t)\} = \frac{1}{2t_0} \int_{t-t_0}^{t+t_0} x(\tau) d\tau$ b) $T\{x(t)\} = \frac{1}{2t} \int_{t-t_0}^{t+t_0} x(\tau^2) d\tau$ c) $T\{x(t)\} = \frac{1}{2t} \int_{t-t_0}^{t+t_0} \tau x(\tau) d\tau$ d) $T\{x(t)\} = \frac{1}{2t} \int_{t-t_0}^{t+t_0} \tau^2 d\tau$ e) $T\{x(t)\} = \frac{1}{2t_0} \int_{0}^{t+t_0} \tau^2 d\tau$

a) y(0) = 1, y(1) = 3, y(2) = -9 **b)** y(0) = 1, y(1) = 3, y(2) = -12 **c)** y(0) = 1, y(1) = 2, y(2) = -12 **d)** y(0) = 0, y(1) = 1, y(2) = 3 **e)** y(0) = 1, y(1) = 2, y(2) = 3

18. Odredi prva tri uzorka prisilnog odziva sustava zadanog jednadžbom diferencija $y(n-3) + 12y(n-2) + y(n) = 2\delta(n-1)$

15. Koliki je maksimum impulsnog odziva $h(n) = \frac{3}{4}(\delta(n) + 3\delta(n) + \delta(n-2))$?

17. Jedan je od sljedećih sustava vremenski nepromjenjiv. Koji? $t_0 \neq 0$ je neka realna konstanta.

c) $\frac{3}{4}$ d) $\frac{1}{4}$ e) 4

b) $\frac{3}{2}$

a) $T\{x[n]\} = (x[n])^2$ $x[(n-n_0)^2], n_0 \in \mathbb{N}$

16. Koji je od sljedećih sustava bezmemorijski?

a) 3

 $1) + \delta(n)!$

	a) Netočan, bio bi točan kada bi pisalo $\int_0^t h(t)d\tau = \int_0^t u(t)d\tau!$ b) Ispravan! c) Netočan, bio bi točan kada bi pisalo $\int_0^t h(t-\tau)u(t-\tau)d\tau = \int_0^t u(t-\tau)h(t-\tau)d\tau!$ d) Netočan, bio bi točan kada bi pisalo $\int_0^t u(\tau)d\tau = \int_0^t h(\tau)d\tau!$ e) Netočan, bio bi točan kada bi pisalo $\int_0^t h(t-\tau)u(t-\tau)d\tau = \int_0^t d\tau!$
33.	Koji od sljedećih sustava NIJE kauzalan?
	a) $y[n] = x[n-1]$ b) $y[n] = x[n-4] + 4$ c) $y[n] = nx[n]$ d) $y[n] = 2x[n] + 3$ e) $y[n] = x[2n]$
34.	Koja od navedenih jednadžbi diferencija nije homogena?
	a) $y(n-3)+14y(n-2)=0$ b) $y(n)=0$ c) $y(n+3)=0$ d) $y(n-2)+y(n-4)=0$ e) $y(n-2)+17y(n-1)=25(-2)^n$
35.	Koji je od sljedećih sustava bezmemorijski?
	a) $T\{x(t)\} = e^{x(t)+1}$ b) $T\{x(t)\} = x(t^2-t)$ c) $T\{x(t)\} = x(t^2)$ d) $T\{x(t)\} = e^{-t}x(2t)$ e) $T\{x(t)\} = \frac{x(t)}{1+x(t-1)}$
36.	Zadana je jednadžba diferencija $y(n+2) + 5y(n+1) + 6y(n) = 24u(n+1) - 24u(n)$ gdje je $u(n) = n$. Partikularno rješenje jednadžbe je:
	a) $y_p(n) = n^2$ b) $y_p(n) = 1$ c) $y_p(n) = 3$ d) $y_p(n) = n$ e) $y_p(n) = 2$
37.	Zadan je sustav $T\{x[n]\}=n^2x[n],\ \alpha\neq 0$ je realna konstanta. Signal prvo dovodimo na sustav za jedinično kašnjenje, pa zatim tako zakašnjen signal dovodimo u sustav T . Ako je na ulaz tako sastavljenog sustava doveden signal $x[n]$, izlaz $y[n]$ iznosi:
	a) $y[n] = n^2 x[n-1]$ b) $y[n] = (n-1)^2 x[n]$ c) $y[n] = (n^2 - 2n + 1)x[n]$ d) $y[n] = n^2 x[n]$ e) $y[n] = (n-1)^2 x[n-1]$
38.	Konvolucija $x[n]*(\delta[n+m]+\delta[n-m])$ je:
	a) 1 b) $\mu[n-m] + \mu[n+m]$ c) $x[m-n] + x[m+n]\mu[n]$ d) $x[n](\mu[n-m] + \mu[n+m])$ e) $x[n-m] + x[n+m]$
39.	Konvolucija $x(t)*(\delta(t+2)+\delta(t-3))$ je:
	a) $\mu(t-2) + \mu(t+3)$ b) $x(3-t) + x(2+t) * \mu(t)$ c) $x(t)(\mu(t-2) + \mu(t+3))$ d) $x(t-3) + x(t+2)$ e) 1
40.	Koji je od sljedećih sustava bezmemorijski?
	a) $T\{x[n]\} = \sum_{k=-\infty}^{\infty} x[k] \delta[n-k]$ b) $T\{x[n]\} = x[n^3]$ c) $T\{x[n]\} = x[n-1]$ d) $T\{x[n]\} = \sum_{k=-\infty}^{\infty} x[k] \mu[n-k]$ e) $T\{x[n]\} = \sum_{k=-\infty}^{\infty} x[k] e^{-x[k]}$
41.	Koji je jedini od sljedećih sustava nelinearan i vremenski promjenjiv?
	a) $T\{x[n]\} = x^2[n] + e^3x[n]$ b) $T\{x[n]\} = x^2[n] + 3x[n]$ c) $T\{x[n]\} = x^2[n] + nx[n]$ d) $T\{x[n]\} = x[n] + nx[n]$ e) $T\{x[n]\} = 7x[n] + x^2[n]$
42.	Jedini vremenski nepromjenjiv i bezmemorijski sustav od ponuđenih je:
	a) $T\{x[n]\} = (n-1) \sum_{k=-\infty}^{\infty} x[k-n] \delta[k-n]$ b) $T\{x[n]\} = \sum_{k=-\infty}^{\infty} x[k] \delta[k-n]$ c) $T\{x[n]\} = nx[n] \delta[1-n]$ d) $T\{x[n]\} = \sum_{k=-\infty}^{\infty} nx[k-n] \delta[k-n]$ e) $T\{x[n]\} = \frac{1}{3}x[n+1] \delta[n-1]$
43.	Odziv nekog sustava na signal $\mu(t)$ je $\mu(-t)$. Taj sustav nije kauzalan!

Koliko ulaza ima kontinuirani sustav čija matrica \mathbf{B} u prikazu po varijablama stanja iznosi $\mathbf{B} = \begin{bmatrix} 0 & 1 \\ 4 & 0 \\ 3 & 2 \end{bmatrix}$?

a) 3

a) netočno

a) točno

b) 1

b) točno

b) netočno

c) 5 d) 4

31. Homogenost sustava T definirana je izrazom T(ax(t)) = aT(x(t)).

30. Aditivnost sustava T definirana je izrazom $T(x_1(t) + x_2(t)) = T(x_1(t)) + T(x_2(t))$.

32. Profesor je na ploči napisao: $\int_0^t h(t-\tau)u(\tau)\,d\tau=\int_0^t u(t-\tau)h(\tau)d\tau$. Taj je izraz:

	a) netočno b) točno
44.	Konvolucija $(x(t) + y(t) * \delta(t + 2t_0)) * \delta(t - t_0)$ je:
	a) $x(t-t_0) + y(t+t_0)$ b) $x(t-t_0)$ c) $y(t-t_0) + x(t+t_0)$ d) $x(t+t_0) + y(t+3t_0)$ e)
45.	Zadana je diferencijalna jednadžba kojom je opisan sustav $2\dot{y}(t)+y(t)=u(t).$ Impulsni odziv sustava je
	a) $e^{\frac{t}{2}}$ b) e^{-2t} c) e^{t} d) e^{2t} e) $e^{-\frac{t}{2}}$
46.	Ako je pobuda linearne jednadžbe diferencija s konstantnim koeficijentima eksponencija oblika $u[n] = Ae$

 $=Aq^n, A \in \mathbb{C}$ i ako je q k-struki korijen karakteristične jednadžbe tada je $y_p(n) = Cq^n$, gdje je $C \in \mathbb{C}$ neka konstanta!

e) $x(t-t_0) \cdot \mu(t)$

- a) netočno **b)** točno
- 47. Ako sustav ima 3 ulaza, 4 izlaza i 2 varijable stanja onda su dimenzije matrice B?
 - **b)** 2×3 **c)** 4×3 d) 2×4
- **48.** Ako je $\mathbf{A} = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 3 \end{bmatrix}$, $\mathbf{B} = \begin{bmatrix} 1 \\ 3 \\ 2 \end{bmatrix}$, $\mathbf{C} = \begin{bmatrix} 3 & 1 & 2 \end{bmatrix}$ i $\mathbf{D} = \begin{bmatrix} 3 \end{bmatrix}$ onda je fundamentalna matrica u drugom koraku jednaka (vremenski diskretan sustav):

a)
$$\begin{bmatrix} 2 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 3 \end{bmatrix}$$
 b) $\begin{bmatrix} 4 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 9 \end{bmatrix}$ c) $\begin{bmatrix} 2 & 0 & 1 \\ 4 & 1 & 0 \\ 9 & 0 & 3 \end{bmatrix}$ d) $\begin{bmatrix} 9 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 4 \end{bmatrix}$ e) $\begin{bmatrix} 9 & 0 & 4 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$

- **49.** Izraz $\int_0^t h(t-\tau)u(\tau) d\tau$ nazivamo:
 - b) konvolucijska suma a) konvolucijski integral c) integracijska suma d) transformacijska suma e) transformacijski integral
- **50.** Da bi konvolucija x[n] * y[n] bila jednaka x[n] samo s kašnjenjem m tada y[n] mora biti:
 - **a)** $\mu[n+m]$ **b)** $\delta[n+m]$ **c)** $\mu[n-m]$ **d)** x[n-m] **e)** $\delta[n-m]$
- **51.** Konvolucija $(\mu(t)\delta(t-t_0)\delta(t+t_0)+1)*\delta(t+t_0)$ je: **b)** $\mu(t+t_0)$ **c)** $\mu(t+t_0)+1$ **d)** $\delta(t+t_0)$ **e)** $\delta(t+t_0)+1$ a) 1
- **52.** Koji je od sljedećih sustava memorijski?
 - a) $T\{x(t)\} = x(t+1)$ b) $T\{x(t)\} = \sin(\pi x(t))$ c) $T\{x(t)\} = \int_{-\infty}^{\infty} x(\tau)\delta(t-\tau) d\tau$ d) $T\{x(t)\} = e^{x(t)} + x(t) + 1$ e) $T\{x(t)\} = x(t) + 1$
- 53. Koji od sljedećih sustava je memorijski?
 - **a)** $T\{x(t)\} = (x(t))^2$ **b)** $T\{x(t)\} = (x(t))^3$ **c)** $T\{x(t)\} = \frac{d}{dt}x(t)$ **d)** $T\{x(t)\} = 2x(t) + 3$ **e)** $T\{x(t)\} = 2x(t)$
- **54.** Za linearne sustave vrijedi princip superpozicije.
 - a) netočno b) točno
- Jedini vremenski nepromjenjiv i kauzalan sustav od ponudenih je $(t_0 \neq 0$ je neka realna konstanta): **55.**

a)
$$T\{x(t)\} = \frac{1}{2t} \int_{t-t_0}^t x(\tau) d\tau$$
 b) $T\{x(t)\} = \frac{1}{2t} \int_{t-t_0}^t \tau^2 x(2\tau) d\tau$ c) $T\{x(t)\} = \frac{1}{2t_0} \int_{t-t_0}^t x(\tau) d\tau$ d) $T\{x(t)\} = \frac{1}{2t_0} \int_{t-t_0}^t \tau x(\tau) d\tau$ e) $T\{x(t)\} = \frac{1}{2t_0} \int_0^{t+t_0} \tau x(\tau) d\tau$

- Koliko izlaza ima sustav ako mu matrica \mathbf{C} u prikazu po varijablama stanja iznosi $\mathbf{C} = \begin{bmatrix} 0 & 1 & 2 & 3 \\ 4 & 9 & 1 & 0 \\ 2 & 3 & 0 & 0 \end{bmatrix}$?
 - **a**) 4 **b**) 5 **c**) 1 **d**) 3 **e**) 2
- Ako sustav ima 3 varijable stanja, 1 ulaz i 4 izlaza koliko stupaca ima matrica **D**?
 - **a**) 5 **b**) 4 **c**) 3 **d**) 2 e) 1
- Miran sustav je sustav s početnom energijom jednakom nuli.

	a) $T\{x(t)\} = \cos(2\pi x(t+1))$ b) $T\{x(t)\} = \sin(2\pi x(t)+1)$ c) $T\{x(t)\} = x(\cos(t))$ d) $T\{x(t)\} = x(\cos(t)-1)$ e) $T\{x(t)\} = \sin(x(t-1))$
60.	Konvolucija $(\mu[n]\delta[n-1]\delta[n+4]+1)*\delta[n+2]$ je:
	a) $\delta[n+3]+1$ b) 1 c) $\mu[n+5]$ d) $\mu[n+5]+1$ e) $\delta[n+2]$
61.	Sustav $y[n] = 7x[n] + 7$ je:
	a) memorijski b) kauzalan c) linearan d) vremenski promjenjiv e) nestabilan
62.	Zadani su odzivi LTI sustava (linearnog vremenski nepromjenjivog sustava) na Diracov impuls $\delta(t).$ Koji od njih je bezmemorijski?
	a) $h(t) = 3\delta(t-1)$ b) $h(t) = 2\delta(t)$ c) $h(t) = 2\mu(t-1)$ d) $h(t) = 5\mu(t-1)$ e) $h(t) = 3\mu(t)$
63.	Ako sustav ima tri varijable stanja, koje su dimenzije matrice \mathbf{A} ?
	a) 3×1 b) 1×3 c) 2×2 d) 1×1 e) 3×3
64.	Konvolucija dva kontinuirana signala je komutativna, odnosno vrijedi $x(t) * y(t) = y(t) * x(t)$.
	a) točno b) netočno
65.	Homogenost sustava T definirana je izrazom $T(x_1(t) + x_2(t)) = T(x_1(t)) + T(x_2(t))$.
	a) netočno b) točno
66.	Konvolucija $(x[n] + y[n] * \delta[n+5]) * \delta[n-2]$ je:
	a) $x[n-2] + y[n+3]$ b) $x[n+2] + y[n-3]$ c) $x[n+2] + y[n+8]$ d) $x[n-2] \cdot \mu[n]$ e) $x[n] + y[n]$
67.	Samo je jedna od slijedećih tvrdnji neistinita za sustav $T\{x(t)\} = 2x(t^2)$. Koja?
	 a) Sustav nije kauzalan. b) Sustav je vremenski promjenjiv. c) Sustav je vremenski nepromjenjiv. d) Sustav nije bezmemorijski. e) Sustav je linearan.
68.	Konvolucija $\delta[n-1] * (\exp(n) + \cos(n))$ je:
	a) $\delta[n-1]$ b) 1 c) $\exp(n-1) + \cos(n-1)$ d) $\mu[n-1] \exp(n-1) + \mu[n+1] \cos(n+1)$ e) $\exp(1-n) + \cos(1-n) \mu[n]$
69.	Fundamentalna matrica je u koraku $n=0$ jednaka:
	a) trokutastoj matrici b) jediničnoj matrici c) tridijagonalnoj matrici d) matrici A e) nul-matrici
70.	Zadan je sustav $T\{x[n]\}=\sin(x[n])x[n]$. Prije sustava T smo postavili sustav za jedinično kašnenje. Ako je u tako složen sustav doveden signal $x[n]$, izlaz $y[n]$ iznosi:
	a) $y[n] = \sin(x[n-1])x[n]$ b) $y[n] = \sin(x[n])x[n]$ c) $y[n] = \sin(x[n])x[n-1]$ d) $y[n] = \sin(x[n+1])x[n-1]$ e) $y[n] = \sin(x[n-1])x[n-1]$
71.	Konvolucija $\delta(t+3) * x(t+1) * \delta(3t-1)$ je:
	a) Ništa od navedenoga! b) $x(t-2+1/3)$ c) $x(t+1)*\delta(3t-1)$ d) $x(t+4-1/3)$ e) $x(t+3-1/4)$
72.	Impulsni odziv kontinuiranog LTI sustava (u prostoru varijabli stanja) dan je izrazom $h(t) = \begin{cases} 0, & t < 0 \\ \mathbf{C}e^{\mathbf{A}t} + \mathbf{D}\delta(t), & t \geq 0 \end{cases}$!
	a) točno b) netočno
73.	Koji je od sljedećih sustava kauzalan?
	a) $y(t) = \int_{t-3}^{t+1} x(\tau) d\tau$ b) $y(t) = \int_{t-2}^{t+2} x(\tau+1) d\tau$ c) $y(t) = \int_{t-3}^{t-1} x(\tau) d\tau$ d) $y(t) = \int_{t-3}^{t+1} x(\tau-1) d\tau$ e) $y(t) = \int_{t-t_0}^{t+t_0} x(\tau) d\tau$, $t_0 \neq 0$
74.	Za koju od navedenih funkcija $y(n)$ vrijedi $x(n) * y(n) = x(n)$:
	a) $\mu(n)$ b) 1 c) $\delta(n)$ d) $x(n)$ e) $\mu(n) - \mu(n-2)$

a) Netočno

b) Točno

59. Koji je od sljedećih sustava bezmemorijski?

75.	Ako je pobuda linearne jednadžbe diferencija s konstantnim koeficijentima eksponencija oblika $u[n] = Aq^n$, $A \in \mathbb{C}$ i ako q nije korijen karakteristične jednadžbe tada je $y_p(n) = Cq^n$, gdje je $C \in \mathbb{C}$ neka konstanta!
	a) točno b) netočno
76.	Zadan je sustav $T\{x(t)\} = \sin(t)x(t)$. Ako je $y_1(t)$ odziv na $x_1 = x(t-t_0)$ (vremenski pomaknut ulaz), y_1 iznosi:
	a) $y_1(t) = \sin(t)x(t)$ b) $y_1(t) = \sin(t - t_0)x(t - t_0)$ c) $y_1(t) = \sin(t)x(t - t_0)$ d) $y_1(t) = \sin(t_0)x(t - t_0)$ e) $y_1(t) = \sin(t - t_0)x(t)$
77.	Obzirom na vremenski interval u kojem je signal definiran za kauzalne signale kažemo da su:
	a) uvijek jednaki nuli za $t < 0$ b) uvijek jednaki nuli za $t > 0$ c) uvijek različiti od nula za $t < 0$ d) uvijek jednaki nula e) različiti od nula skoro svuda
78.	Koji je od sljedećih sustava kauzalan?
	a) $y(t) = t^2 x(t^2)$ b) $y(t) = 2tx(2t)$ c) $y(t) = 3tx(3t)$ d) $y(t) = tx(t)$ e) $y(t) = t^3 x(t^3)$
79.	Nepobuđeni odziv sustava (ili komplementarno rješenje) nazivamo još i:
	 a) Stacionarno stanje b) Partikularno rješenje sustava c) Vlastito titranje ili gibanje sustava d) Harmonijsko gibanje sustava e) Prisilno titranje sustava
80.	Odredi prva tri uzorka prisilnog odziva sustava zadanog jednadžbom diferencija $11y(n-3)+y(n)=2\delta(n-2)+4\delta(n-1)+5\delta(n)$
	a) $y(0) = -5$, $y(1) = -7$, $y(2) = -2$ b) $y(0) = -5$, $y(1) = 4$, $y(2) = -2$ c) $y(0) = 5$, $y(1) = 4$, $y(2) = 2$ d) $y(0) = 5$, $y(1) = -4$, $y(2) = 2$ e) $y(0) = -5$, $y(1) = 2$, $y(2) = -2$
81.	Zadana je jednadžba diferencija $y(n+2) + 3y(n+1) + 2y(n) = 2(-1)^n$. Partikularno rješenje jednadžbe je oblika:
	a) $y_p(n) = Cn(-1)^n$ b) $y_p(n) = Cn^2(-1)^n$ c) $y_p(n) = Cn(-1)^{n+1}$ d) $y_p(n) = C(-1)^n$ e) $y_p(n) = C(-1)^{n+1}$
82.	Ako odziv na $\delta[n]$ linearnog, vremenski nepromjenjivog sustava jednak 2 $\delta[n]$, koliki je odziv tog sustava na jediničnu stepenicu?
	a) $2\mu[n+1]$ b) $2\mu[n] + 2$ c) $2\mu[n]$ d) n e) $n+1$
83.	Konvolucija $(\sin(n) * \delta[n+1])\delta[n-2]$ je:
	a) $\sin(n+1)$ b) $\sin(n) * \delta[n-1]$ c) $\sin(n-1)$ d) $\sin(3)\delta[n-2]$ e) $\sin(n) * \delta[n+1]$
84.	Kompleksna eksponencijala W_N^{nk} je $e^{+2\pi j\frac{nk}{N}}$.
	a) netočno b) točno
85.	Sustav je linearan ako vrijedi:
	 a) svojstvo aditivnosti b) svojstvo aditivnosti i homogenosti c) svojstvo homogenosti d) svojstvo antisimetričnosti e) svojstvo kauzalnosti
86.	Sustav $T:$ [Realni $\to Y$] \to [Realni $\to Y$] je bezmemorijski ako postoji funkcija $f:Y\to Y$ tako da za svaki $t\in$ Realni i za svaki $x\in$ [Realni $\to Y$] vrijedi:
	a) $T\{x(t)\} = f(x(t) + x(t+1))$ b) $T\{x(t)\} = f(x(t-1))$ c) $T\{x(t)\} = f(x(t+1))$ d) $T\{x(t)\} = f(x(t))$ e) $T\{x(t)\} = f(x(t+1))$
87.	Množenjem nekauzalnog niza Heavisideovim nizom $\mu[n]$ on postaje kauzalan?
	a) točno b) netočno
88.	Samo je jedan od sljedećih diskretnih sustava vremenski nepromjenjiv. Koji?
	a) $T\{x[n]\} = 3x[n]\cos(2n)$ b) $T\{x[n]\} = 2n^2x[n]\cos(\pi nx[n])$ c) $T\{x[n]\} = x^2[n]\cos(2n\pi)$ d) $T\{x[n]\} = 2nx[n]\cos(\pi x[n])$ e) $T\{x[n]\} = 2nx[n]\cos(2\pi nx[n])$
89.	Koji od navedenih je impulsni odziv sustava opisanog jednadžbom diferencija $y(n) = u(n) + u(n-2)$? Podvučeni element označava mjesto koraka $n = 0$.
	a) $h(n) = \{\underline{1}, 0, 1\}$ b) $h(n) = \{\underline{1}, 0, 0\}$ c) $h(n) = \{\underline{0}, 1, 0\}$ d) $h(n) = \{1, 0, \underline{1}\}$ e) $h(n) = \{1, \underline{0}, 1\}$

90.	Kontinuirani sustav prikazan je u prostoru varijabli stanja. Matrica $\bf A$ je dimenzija 3×3 , a matrica $\bf D$ je dimenzija 2×1 . Koje su dimenzije matrice $\bf B$?
	a) 2×3 b) 3×2 c) 2×2 d) 3×1 e) 2×1
91.	Neki sustav s pobudom $f(n)$ možemo opisati jednadžbom diferencija. Koju pobudu moramo odabrati da bi diferencijska jednadžba postala homogena?
	a) $f(n) = \sin(3n)$ b) $f(n) = 1$ c) $f(n) = e^{2n}$ d) $f(n) = 0$ e) $f(n) = \cos(4n)$
92.	Koji od navedenih diskretnih sustava je linearan? $x[n]$ je ulaz, a $y[n]$ je izlaz iz sustava.
	a) $y[n] = n^2 x[n] + x[n-1]$ b) $y[n] = x^3[n] \cos(5n)$ c) $y[n] = n^2 x^2[n] + x[n]$ d) $y[n] = \sin(x[n] + 2)$ e) $y[n] = nx[n] + 5$
93.	Zadana je pobuda jednadžbe diferencija u obliku $u(n) = 2(-1)^n$, a jedine nultočke karakteristične jednadžbe su -2 i -4 . Partikularno rješenje možemo zapisati u obliku (C je konstanta):
	a) $y_p(n) = Cn^2(-1)^n$ b) $y_p(n) = C(-1)^n$ c) $y_p(n) = Cne^n$ d) $y_p(n) = Cn^3(-1)^n$ e) $y_p(n) = Cn(-1)^n$
94.	Ako je ulaz sustava $u(n)=0$ onda izlaz sustava ovisi samo o početnom stanju sustava i iznosi:
	a) $y(n) = \mathbf{D}\Phi(n)\mathbf{x}(0)$ b) $y(n) = \Phi(n)\mathbf{D}\mathbf{x}(0)$ c) $y(n) = \mathbf{B}\Phi(n)\mathbf{x}(0)$ d) $y(n) = \mathbf{C}\Phi(n)\mathbf{x}(0)$ e) $y(n) = \Phi(n)\mathbf{C}\mathbf{x}(0)$
95.	Zadana je pobuda u obliku polinoma $f(n) = 2n^2 + 3n + 4$. Partikularno rješenje jednadžbe diferencija dano je u obliku $(C_0, C_1 \text{ i } C_2 \text{ su konstante})$:
	a) $y_p(n) = C_0 + C_1 n + C_2 n^2$ b) $y_p(n) = C_0 + C_1 n + C_2 n^2 + C_3 n^3$ c) $y_p(n) = C + C n + C n^2$ d) $y_p(n) = C_0 + C_1 n$ e) $y_p(n) = C n^2$
96.	Koji od sljedećih sustava NIJE kauzalan?
	a) $y(t) = 2x(t-2)$ b) $y(t) = \frac{1}{2}x(t+\frac{1}{2})$ c) $y(t) = 2x(t-\frac{1}{2})$ d) $y(t) = \frac{1}{2}x(t-\frac{1}{2})$ e) $y(t) = \frac{1}{2}x(t-2)$
97.	Za koju od navedenih funkcija $y(t)$ vrijedi $x(t) * y(t) = x(t + t_0)$:
	a) $\mu(t+t_0)$ b) $x(t)$ c) $\delta(t+t_0)$ d) $\delta(t-t_0)$ e) $\mu(t-t_0)$
98.	Profesor tumači da je odziv diskretnog LTI sustava na Hevisideov niz $\mu(n)$ impulsni odziv. Smatrate da je to:
	a) točno b) netočno
99.	Ako je $\mathbf{A} = \begin{bmatrix} 2 & 3 \\ 0 & 1 \end{bmatrix}$, $\mathbf{B} = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$, $\mathbf{C} = \begin{bmatrix} 2 & 3 \end{bmatrix}$ i $\mathbf{D} = \begin{bmatrix} 2 \end{bmatrix}$ onda je fundamentalna matrica u drugom koraku jednaka (vremenski diskretan sustav):
	a) $\begin{bmatrix} 0 & 9 \\ 4 & 1 \end{bmatrix}$ b) $\begin{bmatrix} 4 & 3 \\ 0 & 1 \end{bmatrix}$ c) $\begin{bmatrix} 4 & 1 \\ 0 & 9 \end{bmatrix}$ d) $\begin{bmatrix} 0 & 1 \\ 4 & 9 \end{bmatrix}$ e) $\begin{bmatrix} 4 & 9 \\ 0 & 1 \end{bmatrix}$
100.	Ako sustav ima 2 ulaza, 4 varijable stanja i 3 izlaza koliko redaka ima matrica ${f B}$?

a) 5 **b)** 2 **c)** 4 **d)** 1 **e)** 3

 $\textbf{101.} \quad \text{Odredi nultočke karakterističnog polinoma jednadžbe diferencija} \ 6y(n-2) + 5y(n-1) + y(n) = 8u(n-2) + 4u(n)!$

a) $q_1 = -2$, $q_2 = -3$ b) $q_1 = 2$, $q_2 = 3$ c) $q_1 = 2$, $q_2 = -3$ d) $q_1 = C_1 e^{-2n}$, $q_2 = C_2 e^{-3n}$ e) $q_1 = 4$, $q_2 = 9$

102. Ako izlaz sustava y(t) u trenutku $t=t_0$ ovisi o ulazu x(t) za $t\leq t_0$ onda kažemo da je sustav:

- a) vremenski nepromjenjiv b) kauzalan c) linearan d) antikauzalan e) nekauzalan
- 103. Odziv nepobuđenog sustava drugog reda je $y_n(n)=3(-1)^n-8(-2)^n$ za $n{\geq}0$. Početna stanja sustava su:
 - a) y(-1) = 1, y(-2) = -1, y(-3) = -1 b) y(-1) = -5, y(-2) = 13, y(-3) = -1 c) y(-1) = -5, y(-2) = -19 d) y(-1) = 1, y(-2) = 1 e) y(-1) = 13, y(-2) = -29
- 104. Zadani su odzivi h(t) LTI (linearnih vremenski nepromjenjivih) sustava na pobudu $\delta(t)$. Koji sustav je memorijski?
 - a) $h(t) = \delta(t-2)$ b) $h(t) = \pi \delta(t)$ c) $h(t) = e^2 \delta(t)$ d) $h(t) = 4 \delta(t)$ e) h(t) = 0

105.	Zadan je sustav $T\{x(t)\}=\sin(t)x(t).$ Odziv sustava $y(t')=T\{x_1(t')\},$ uz $t'=t-t_0$ (vremenski pomaknut izlaz), iznosi:
	a) $y_1(t) = \sin(t - t_0)x(t)$ b) $y_1(t) = \sin(t - t_0)x(t - t_0)$ c) $y_1(t) = \sin(t_0)x(t)$ d) $y_1(t) = \sin(t_0)x(t - t_0)$ e) $y_1(t) = \sin(t)x(t)$
106.	Pobuđen sustav je sustav s početnom energijom jednakom nuli.
	a) Točno b) Netočno
107.	Konvolucija je distributivna operacija, odnosno $f * (g + h) = (f * g) + (f * h)!$
	a) točno b) netočno
108.	Ako je odziv linearnog sustava na signal $\sin(t)$ jednak 2, a na $\cos(t)$ jednak 3, koliki je odziv sustava na signal $\sin(t + \frac{\pi}{2})$?
	a) 2 b) 4 c) 3 d) 1 e) 5
109.	Odaberi netočnu tvrdnju među ponuđenima:
	a) Konvolucija bilo koje funkcije s Diracovom δ distribucijom daje istu tu funkciju. b) Konvolucija je distributivna c) Konvolucija je kumulativna. d) Konvolucija je asocijativna. e) Konvolucija je komutativna.
110.	Sustav za deriviranje opisan izrazom $y(t) = \frac{d}{dt}(x(t)), t \in \mathbb{R}$ je nekauzalan.
	a) točno b) netočno
111.	Konvolucija $\delta[n-3]*x[n+1]*\delta[n+2]$ je:
	a) $x[n-1]$ b) $x[n+1]$ c) $x[n+3]\delta[n-3]$ d) $x[n]$ e) Ne znam i nije me briga!
112.	Općenito, rješenje jednadžbe diferencija, ima dvije komponente:
	 a) Samo je jedno rješenje – homogeno b) Samo je jedno rješenje – partikularno c) Partikularno rješenje i impulsni odziv d) Partikularno rješenje i prisilni odziv e) Rješenje homogene jednadžbe i partikularno rješenje
113.	Konvolucija je komutativna operacija!
	a) netočno b) točno
114.	Konvolucija nije asocijativna operacija, odnosno vrijedi $f*(g*h) \neq (f*g)*h!$
	a) točno b) netočno
115.	Konvolucija $(3n+2)*\delta[3n-6]$ je:
	a) $3n \mu[n]$ b) $2\delta[3n-6]$ c) $3(3n+6)+2(3n+6)$ d) $3n-4$ e) $3n(3n-6)+2(3n-6)$
116.	Odredi prva tri uzorka odziva nepobuđenog sustava ako je jednadžba diferencija $5y[n-2]+15y[n-1]+5y[n]=13u[n]$ za $n\ge 0$ uz početne uvjete $y[-2]=0$ i $y[-1]=1$.
	a) $3, -10, -33$ b) $-3, -8, 21$ c) $-3, 8, -21$ d) $3, -10, -33$ e) $-3, -10, 33$
117.	Konvolucija $\delta[n-m] * (\exp(n) + \cos(n))$ je:
	a) $\exp(m-n) + \cos(m-n) \mu[n]$ b) $\exp[n-m] + \cos[n-m]$ c) $\delta[n-m]$ d) 1 e) $\mu[n-m] \exp(n-m) + \mu[n+m] \cos(n+m)$
118.	Koji je od sljedećih sustava bezmemorijski? $t_0>0$ je realna konstanta.
	a) $T\{x(t)\} = x(t - t_0)$ b) $T\{x(t)\} = x^2(t)$ c) $T\{x(t)\} = \frac{d}{dt}x(t)$ d) $T\{x(t)\} = x(t + t_0)$ e) $T\{x(t)\} = \int_{-\infty}^{t} x(\tau) d\tau$
119.	Konvolucija $(\sin(n) * \delta[n+m])\delta[n-m]$ je:
	a) $\sin(n-m)$ b) $\sin(2m)\delta[n-m]$ c) $\sin(n)*\delta[n-m]$ d) $\sin(n)*\delta[n+m]$ e) $\sin(n+m)$
120.	Za mirni MIMO sustav s M ulaza, K izlaza i N stanja impulsni odziv $\mathbf{h}(n)$ je matrica dimenzija:
	a) $K \times N$ b) $N \times M$ c) $N \times K$ d) $M \times K$ e) $K \times M$
121.	Sustav $y[n] = x[n-1]$ je:
	a) vremenski promjenjiv b) nestabilan c) bezmemorijski d) kauzalan e) nelinearan

	a) 1 b) 2 c) 3 d) 4 e) 5
123.	Jedini vremenski nepromjenjiv i kauzalan sustav od ponuđenih je:
	a) $T\{x[n]\} = 1 + x[n] $ b) $T\{x[n]\} = (n+1)^2 + x[n-1] $ c) $T\{x[n]\} = 1 + n^2 x[n+1] $ d) $T\{x[n]\} = 1 + x[n+1] $ e) $T\{x[n]\} = 1 + n^2 x[n-1] $
124.	Koji od navedenih sustava je linearan? $x(t)$ je ulaz, a $y(t)$ je izlaz sustava.
	a) $y(t) = x(t) + \cos(t)$ b) $y(t) = \sin(x(t) - 1)$ c) $y(t) = \sin(x(t))$ d) $y(t) = \cos(x(t - 1))$ e) $y(t) = tx(t)$
125.	Samo jedna od dolje navedenih tvrdnji opisuje svojstva Diracove δ distribucije. Koja?
	a) $\delta(t) = 0$ za $t \neq 0$ i $\int_{-\infty}^{\infty} \delta(t) dt = 1$ b) $\delta(t) = 0$ za $t \neq 1$ c) $\delta(t) = 0$ za $t = 0$ i $\int_{-\infty}^{\infty} \delta(t) dt = 1$
	d) $\int_{-\infty}^{\infty} \delta(t) dt = 0$ e) $\delta(t) = 1$ za $t \neq 0$ i $\int_{-\infty}^{\infty} \delta(t) dt = 0$
126.	Zadana je jednadžba diferencija $y(n+2) + 7y(n+1) + 12y(n) = 0$. Pripadni karakteristični polinom dan je jednadžbom (uz $y(n) = q^n$, $q \in \mathbb{C}$):
	a) $1 + 7q^{-2} + 12q^{-3} = 0$ b) $q^3 + 7q^2 + 12q = 0$ c) $q^2 + 7q + 12 = u(n)$ d) $q^2 + 7q + 12 = 0$ e) $q^2 + 12q + 7 = 0$
127.	Ako znamo odziv linearnog sustava na pobudu $\delta(t)$ tada možemo odrediti i odziv sustava na pobudu $\mu(t)$!
	a) točno b) netočno
128.	Zadan je sustav $T\{x[n]\} = \alpha^n x[n]$, $\alpha \neq 0$ je realna konstanta. Signal prvo propuštamo kroz sustav za jedinično kašnjenje, a zatim tako zakašnjeni signal dovodimo na ulaz u sustav T . Ako je u tako sastavljen sustav doveden signal $x[n]$, izlaz $y[n]$ iznosi:
	a) $y[n] = \alpha^n x[n-1]$ b) $y[n] = \alpha^n x[n]$ c) $y[n] = \alpha^{n-1} x[n+1]$ d) $y[n] = \alpha^{n-1} x[n-1]$ e) $y[n] = \alpha^{n-1} x[n]$
129.	Koja od zadanih jednadžbi diferencija opisuje diskretni integrator prvog reda? Pri tome je $y(n)$ izlaz integratora, $u(n)$ ulaz u integrator i T vrijeme diskretizacije. Uputa: Diskretni integrator akumulira vrijednosti ulaza pomnoženih s T .
	a) $y(n) = -y(n-1) + Tu(n)$ b) $y(n) = y^2(n-1) + u(n)$ c) $y(n) = -y(n-1) + \frac{T}{2}(u(n) + u^2(n-1))$ d) $y(n) = y(n-1) + \frac{T}{2}(u^2(n) + u(n-1))$ e) $y(n) = y(n-1) + Tu(n)$
130.	Neka je q m -terostruki korijen karakteristične jednadžbe. Pobuda je oblika $u(n) = q^n$. Partikularno rješenje je oblika (C je konstanta):
	a) $y_p(n) = Cq^n$ b) $y_p(n) = Cn^mq^n$ c) $y_p(n) = Cn^{m-1}q^n$ d) $y_p(n) = Cnq^n$ e) $y_p(n) = Cn^{m+1}q^n$
131.	Neka je struja $i(t)$ kroz dvopol ulaz u sustav, a napon na priključnicama $u(t)$ izlaz iz sustava. Koji od idealnih dvopola predstavlja bezmemorijski sustav?
	a) otpor R b) kapacitet C c) paralelni spoj L i C d) serijski spoj R , L i C e) induktivitet L
132.	Stacionarno stanje sustava je rješenje homogene diferencijske jednadžbe.
	a) Netočno b) Točno
133.	Koji je jedini od sljedećih sustava linearan i vremenski promjenjiv?
	a) $T\{x(t)\} = x(t) + e^3x(t)$ b) $T\{x(t)\} = x(t) + tx(t)$ c) $T\{x(t)\} = x(t) + x^2(t)$ d) $T\{x(t)\} = x^4(t) + t^3x^2(t)$ e) $T\{x(t)\} = x^2(t) + tx(t)$
134.	Odredi prva dva uzorka impulsnog odziva mirnog sustava zadanog jednadžbom diferencija $y[n-3]-2y[n-2]+y[n]=u[n-1]+u[n]$ uz $n \ge 0$!
	a) $1, 1$ b) $0, 0$ c) $-1, 1$ d) $1, -1$ e) $-1, -1$
135.	Prisilni odziv sustava se još naziva i:
	a) Homogeni odziv sustava b) Stacionarno stanje sustava c) Partikularno rješenje d) Impulsni odziv sustava

136. Ako je odziv linearnog vremenski nepromjenjivog sustava na jedinični skok jednak $3\,\delta[n]$, koliki je odziv sustava na

e) Odziv nepobuđenog sustava

jediničnu rampu?

122. Ako sustav ima 3 ulaza, 4 izlaza i 2 varijable stanja koliko stupaca ima fundamentalna matrica?

	a) $y[n] = n + 1$ b) $y[n] = 3\mu[n]$ c) $y[n] = n$ d) $y[n] = 3\mu[n - 1]$ e) $y[n] = 3\mu[n] + 2$
137.	Mirni sustav je:
	 a) sustav u kojem energija teži u beskonačnost b) nestabilan sustav c) sustav kojemu su početna tri stanja različita od nule d) sustav u kojem nema energije e) stabilan sustav
138.	Ako je sustav linearan i vremenski nepromjenjiv i ako znamo njegov impulsni odziv onda možeme naći njegov odziv na jediničnu stepenicu.
	a) netočno b) točno
139.	Odziv stanja nepobuđenog vremenski diskretnog sustava opisanog matricama \mathbf{A} , \mathbf{B} , $\mathbf{C} = \mathbf{I}$ i $\mathbf{D} = 0$ u koraku $n+1$ je:
	a) $\mathbf{x}(n+1) = \mathbf{A}^{-n}\mathbf{x}x(0)$ b) $\mathbf{x}(n+1) = \mathbf{A}^{n+1}\mathbf{x}(0)$ c) $\mathbf{x}(n+1) = \mathbf{A}^{-n+1}\mathbf{x}(0)$ d) $\mathbf{x}(n+1) = \mathbf{A}^{n}\mathbf{x}(0)$ e) $\mathbf{x}(n+1) = \mathbf{A}^{n-1}\mathbf{x}(0)$
140.	Sustav $y[n] = nx[n-2] + x^2[n]$ je linearan? $y[n]$ je izlaz, a $x[n]$ je ulaz u sustav.
	a) točno b) netočno
141.	Impulsni odziv digitalnog integratora $y(n) = y(n-1) + Tu(n)$ glasi (T je konstanta):
	a) $h(n) = (\frac{1}{5})^n \mu(n)$ b) $h(n) = (\frac{1}{2})^n \mu(n)$ c) $h(n) = T \mu(n)$ d) $h(n) = (\frac{1}{3})^n \mu(n)$ e) $h(n) = \mu(n)$
142.	Zadana je jednadžba diferencija $y(n+2) + 3y(n+1) + 2y(n) = (-3)^n$. Rješenje nehomogene jednadžbe diferencija $y(n)$ možemo napisati u obliku $(C_1, C_2 \text{ i } C_3 \text{ su konstante})$:
	a) $y(n) = C_1(-2)^n + C_2(-3)^n$ b) $y(n) = C(-3)^n$ c) $y(n) = C_1(-1)^n + C_2(-2)^n + C_3(-3)^n$ d) $y(n) = C_1n(-2)^n + C_2n(-3)^n$ e) $y(n) = C_1(-1)^n + C_2n(-2)^n + C_3n(-3)^n$
143.	Miran sustav je sustav pobuđen funkcijom pobude $u(n)$ različitom od nule
	a) Netočno b) Točno
144.	Rješenje homogene diferencijske jednadžbe nazivamo:
	 a) Nepobuđenim odzivom b) Odzivom mirnog sustava c) Prisilnim odzivom d) Odzivom na rampu e) Impulsnim odzivom
145.	Zadana je jednadžba diferencija $y(n+2)+7y(n+1)+12y(n)=4\cos(n+1)+8\sin(n)$. Pripadni karakteristični polinom dan je jednadžbom (uz $y(n)=q^n,\ q\in\mathbb{C}$):
	a) $q^2 + 7q + 12 = 0$ b) $q^3 + 7q^2 + 12q = 0$ c) $q^2 + 12q + 7 = 0$ d) $q^2 + 7q + 12 = u(n)$ e) $1 + 7q^{-2} + 12q^{-3} = 0$
146.	a) $q^2+7q+12=0$ b) $q^3+7q^2+12q=0$ c) $q^2+12q+7=0$ d) $q^2+7q+12=u(n)$ e) $1+7q^{-2}+12q^{-3}=0$ Obzirom na vremenski interval u kojem je signal definiran za antikauzalne signale kažemo da su:
146.	
146. 147.	Obzirom na vremenski interval u kojem je signal definiran za antikauzalne signale kažemo da su: a) različiti od nula skoro svuda b) uvijek jednaki nuli za $t > 0$ c) uvijek jednaki nula d) uvijek jednaki
	Obzirom na vremenski interval u kojem je signal definiran za antikauzalne signale kažemo da su: a) različiti od nula skoro svuda b) uvijek jednaki nuli za $t>0$ c) uvijek jednaki nula d) uvijek jednaki nuli za $t<0$ e) uvijek različiti od nula za $t>0$ Jedini korijeni karakteristične jednadžbe diferencijske jednadžbe $q_{1,2}=re^{\pm j\theta},r>1$ i θ su konstante. Homogeno rješenje
	Obzirom na vremenski interval u kojem je signal definiran za antikauzalne signale kažemo da su: a) različiti od nula skoro svuda b) uvijek jednaki nuli za $t>0$ c) uvijek jednaki nula d) uvijek jednaki nuli za $t<0$ e) uvijek različiti od nula za $t>0$ Jedini korijeni karakteristične jednadžbe diferencijske jednadžbe $q_{1,2}=re^{\pm j\theta},r>1$ i θ su konstante. Homogeno rješenje $y_h(n)$ određuje odziv sustava koji možemo opisati kao: a) oscilatoran, amplituda koja teži u beskonačnost povećanjem koraka n b) konstantan c) oscilatoran s amplitudom koja teži k nuli povećanjem koraka n d) aperiodski s amplitudom koja teži u beskonačnost povećanjem
147.	Obzirom na vremenski interval u kojem je signal definiran za antikauzalne signale kažemo da su: a) različiti od nula skoro svuda b) uvijek jednaki nuli za $t>0$ c) uvijek jednaki nula d) uvijek jednaki nuli za $t<0$ e) uvijek različiti od nula za $t>0$ Jedini korijeni karakteristične jednadžbe diferencijske jednadžbe $q_{1,2}=re^{\pm j\theta},\ r>1$ i θ su konstante. Homogeno rješenje $y_h(n)$ određuje odziv sustava koji možemo opisati kao: a) oscilatoran, amplituda koja teži u beskonačnost povećanjem koraka n b) konstantan c) oscilatoran s amplitudom koja teži k nuli povećanjem koraka n d) aperiodski s amplitudom koja teži u beskonačnost povećanjem koraka n e) aperiodski s amplitudom koja teži k nuli povećanjem koraka n
147.	Obzirom na vremenski interval u kojem je signal definiran za antikauzalne signale kažemo da su: a) različiti od nula skoro svuda b) uvijek jednaki nuli za $t>0$ c) uvijek jednaki nula d) uvijek jednaki nuli za $t<0$ e) uvijek različiti od nula za $t>0$ Jedini korijeni karakteristične jednadžbe diferencijske jednadžbe $q_{1,2}=re^{\pm j\theta},r>1$ i θ su konstante. Homogeno rješenje $y_h(n)$ određuje odziv sustava koji možemo opisati kao: a) oscilatoran, amplituda koja teži u beskonačnost povećanjem koraka n b) konstantan c) oscilatoran s amplitudom koja teži k nuli povećanjem koraka n d) aperiodski s amplitudom koja teži u beskonačnost povećanjem koraka n e) aperiodski s amplitudom koja teži k nuli povećanjem koraka n Snamo da je odziv linearnog sustava na signal $\cos(t)$ jednak 5. Koliki je odziv sustava na signal $\cos^2(\frac{t}{2})$?
147. 148.	Obzirom na vremenski interval u kojem je signal definiran za antikauzalne signale kažemo da su: a) različiti od nula skoro svuda b) uvijek jednaki nuli za $t>0$ c) uvijek jednaki nula d) uvijek jednaki nuli za $t<0$ e) uvijek različiti od nula za $t>0$ Jedini korijeni karakteristične jednadžbe diferencijske jednadžbe $q_{1,2}=re^{\pm j\theta},r>1$ i θ su konstante. Homogeno rješenje $y_h(n)$ određuje odziv sustava koji možemo opisati kao: a) oscilatoran, amplituda koja teži u beskonačnost povećanjem koraka n b) konstantan c) oscilatoran s amplitudom koja teži k nuli povećanjem koraka n d) aperiodski s amplitudom koja teži u beskonačnost povećanjem koraka n e) aperiodski s amplitudom koja teži k nuli povećanjem koraka n Sznamo da je odziv linearnog sustava na signal $\cos(t)$ jednak 5. Koliki je odziv sustava na signal $\cos^2(\frac{t}{2})$? a) ne može se izračunati b) 4 c) 11 d) 9 e) 6
147. 148.	Obzirom na vremenski interval u kojem je signal definiran za antikauzalne signale kažemo da su: a) različiti od nula skoro svuda b) uvijek jednaki nuli za $t>0$ c) uvijek jednaki nula d) uvijek jednaki nuli za $t<0$ e) uvijek različiti od nula za $t>0$ Jedini korijeni karakteristične jednadžbe diferencijske jednadžbe $q_{1,2}=re^{\pm j\theta},\ r>1$ i θ su konstante. Homogeno rješenje $y_h(n)$ određuje odziv sustava koji možemo opisati kao: a) oscilatoran, amplituda koja teži u beskonačnost povećanjem koraka n b) konstantan c) oscilatoran s amplitudom koja teži k nuli povećanjem koraka n d) aperiodski s amplitudom koja teži u beskonačnost povećanjem koraka n e) aperiodski s amplitudom koja teži k nuli povećanjem koraka n Znamo da je odziv linearnog sustava na signal $\cos(t)$ jednak 5. Koliki je odziv sustava na signal $\cos^2(\frac{t}{2})$? a) ne može se izračunati b) 4 c) 11 d) 9 e) 6 Stacionarno stanje je stanje sustava uz konstantnu ili periodičku pobudu:

151. Rampa, odnosno signal r[n]=n za $n\geq 0$, te r[n]=0 inače, je kauzalan signal.

152.	Kada je kauzalan signal jednak nuli?
	a) za $t = 0$ b) nikada c) za $t > 0$ d) uvijek e) za $t < 0$
153.	Mirni sustav je sustav u kojem nema energije.
	a) netočno b) točno
154.	Da bi konvolucija $x(t)*y(t)$ bila jednaka $x(t)$ samo s kašnjenjem t_0 tada $y(t)$ mora biti:
	a) $\mu(t-t_0)$ b) $\delta(t+t_0)$ c) $\delta(t-t_0)$ d) $x(t-t_0)$ e) $\mu(t+t_0)$
155.	Zadana je diferencijalna jednadžba kojom je opisan sustav $\dot{y}(t) + 5y(t) = u(t)$. Odredi impulsni odziv sustava!
	a) e^t b) $5e^{-5t}$ c) e^{-t} d) $5e^t$ e) e^{-5t}
156.	Samo je jedna od navedenih tvrdnji ispravna. Koja?
	 a) Za konvolucijski integral ne vrijedi zakon asocijativnosti. b) Konvolucija bilo koje funkcije s odskočnom funkcijom daje istu tu funkciju. b) Konvolucija bilo koje funkcije s odskočnom funkcijom daje istu tu funkciju. d) Za konvolucijski integral ne vrijedi zakon komutativnosti. e) Konvolucija bilo koje funkcije s rampom daje istu tu funkciju.
157.	Ako je pobuda linearne jednadžbe diferencija s konstantnim koeficijentima eksponencija oblika $u[n]=Aq^n,\ A\in\mathbb{C}$ i ako q nije korijen karakteristične jednadžbe tada je $y_p(n)=Cn^2q^n,$ gdje je $C\in\mathbb{C}$ neka konstanta!
	a) netočno b) točno
158.	Koji je jedini od sljedećih sustava nelinearan i vremenski nepromjenjiv?
	a) $T\{x(t)\} = x^2(t) + tx(t)$ b) $T\{x(t)\} = x^3(t) + t^4x(t)$ c) $T\{x(t)\} = x(t) + e^2x(t)$ d) $T\{x(t)\} = x(t) + x^2(t)$ e) $T\{x(t)\} = x(t) + tx(t)$
159.	Koja je od slijedećih tvrdnji istinita za sustav $T\{x(t)\} = x(t+t_0)\frac{1}{t+t_0}$:
	 a) Izlaz iz sustava ovisi o trenutnom ulazu. b) Sustav je nelinearan. c) Sustav je bezmemorijski. d) Sustav je vremenski promjenjiv. e) Sustav je kauzalan.
160.	Koja je od slijedećih tvrdnji istinita za sustav $T\{x(t)\} = 2x^2(t^2)$:
	 a) Sustav je vremenski promjenjiv. b) Sustav je bezmemorijski. c) Sustav je linearan. d) Sustav je kauzalan. e) Sustav je vremenski nepromjenjiv.
161.	Ako izlaz sustava $y(t)$ u trenutku $t=t_0$ ovisi o ulazu $x(t)$ za $t>t_0$ onda kažemo da je sustav:
	a) vremenski invarijantan b) kauzalan c) linearan d) antikauzalan e) nekauzalan
162.	Izračunaj diskretnu Fourierovu transformaciju duljine 4 DFT $_4[x[n]]$ niza s četiri uzorka $x[n] = \{\underline{1}, 0, 0, 0\}$. Podcrtani član odgovara indeksu nula.
	a) $X[k] = \{\underline{1}, 0, 0, 0\}$ b) $X[k] = \{\underline{1}, 1, 1, 1\}$ c) $X[k] = \{\underline{W_4^0}, 0, 0, 0\}$ d) $X[k] = \{\underline{1}, -j, -1, j\}$ e) $X[k] = \{\underline{0}, 1, 0, 0\}$
163.	Koji od slijedećih sustava nije linearan?
	a) $y[n] = x[3 + \cos(n\pi)]$ b) $y[n] = e^n x[n]$ c) $y[n] = n^3 x[n] + x[-n]$ d) $y[n] = \cos(n)x[n] + 3e^n$ e) $y[n] = \cos(n)x[n] + 3x[n]$
164.	Zadan je sustav $T\{x(t)\} = x(t)\sin(x(t))$. Sustav za kašnjenje koji zakasni signal za t_p je postavljen prije ulaza u sustav T . Ako je u tako sastavljen sustav doveden signal $x(t)$, izlaz $y(t)$ iznosi:
	a) $y(t) = x(t)\sin(x(t-t_p))$ b) $y(t) = x(t)\sin(x(t))$ c) $y(t) = x(t)\sin(x(t_p))$ d) $y(t) = x(t-t_p)\sin(x(t-t_p))$ e) $y(t) = x(t-t_p)\sin(x(t))$
165.	Konvolucijom dva jedinična skoka $\mu[n]*\mu[n]$ dobivamo:
	a) $n \mu[n]$ b) $(n+1) \mu[n]$ c) $\mu[n]$ d) $\delta[n]$ e) 1
166.	Ako sustav ima 2 ulaza, 2 varijable stanja i 1 izlaz onda su dimenzije fundamentalne matrice:

a) netočno

b) točno

	a) $y(t_0)$ ovisi o vrijednostima $x(t)$ za $t < t_0$ b) $y(t_0)$ ovisi samo o vrijednosti $x(t)$ u $t = t_0$ c) $y(t_0)$ ovisi o vrijednostima $x(t)$ za $t > t_0$ d) $y(t_0)$ ovisi o vrijednostima $x(t)$ za $t \le t_0$ e) $y(t_0)$ ovisi o vrijednostima $x(t)$ za $t \ge t_0$
168.	Neki složeni sustav se sastoji od kaskade dvaju LTI sustava čiji su impulsni odzivi $h_1(n)$ i $h_2(n)$. Ako na ulaz u taj sustav dovedemo signal $x(n)$, što ćemo dobiti na izlazu?
	a) Ovisi o poretku sustava čiji su impulsni odzivi $h_1(n)$ i $h_2(n)$! b) $x(n)*h_1(n)*h_2(n)$ c) $h_1\big(x(n)\big)h_2(n)$ d) $\big(x(n)*h_1(n)\big)h_2(n)$ e) $x(n)\big(h_1(n)*h_2(n)\big)$
169.	Koliko varijabli stanja ima kontinuiran sustav zadan diferencijalnom jednadžbom $3\ddot{y}(t) + 2\dot{y}(t) + y(t) = 5u(t)$?
	a) 2 b) 4 c) 3 d) 1 e) 5
170.	Za koju od navedenih funkcija $y[n]$ vrijedi $x[n] * y[n] = x[n+1]$:
	a) $\delta[n+1]$ b) $\mu[n+1]$ c) $\mu[n-1]$ d) $\delta[n-1]$ e) $x[n+1]$
171.	Izračunaj diskretnu Fourierovu transformaciju duljine 4 DFT $_4\big[x[n]\big]$ niza s četiri uzorka $x[n]=\{\underline{0},0,1,0\}$. Podcrtani član odgovara indeksu nula.
	a) $X[k] = \{\underline{1}, 1, 1, 1\}$ b) $X[k] = \{\underline{-1}, 1, -1, 1\}$ c) $X[k] = \{\underline{0}, 0, W_4^2, 0\}$ d) $X[k] = \{\underline{1}, -1, 1, -1\}$ e) $X[k] = \{\underline{W_4^{2k}}, 0, 0, 0\}$
172.	Diskretnu Fourierovu transformaciju (DFT) signala $x[n]$ računamo kao $X[k] = \frac{1}{N} \sum_{i=0}^{N-1} x[n] W_N^{nk}$, gdje je $W_N^{nk} = e^{-2\pi j \frac{nk}{N}}$.
	a) točno b) netočno
173.	Koji je od sljedećih sustava memorijski?
	a) naponsko sljedilo b) integrator c) invertirajuće pojačalo d) atenuator e) neinvertirajuće pojačalo
174.	Aditivnost sustava T definirana je izrazom $T(ax(t)) = aT(x(t))$, pri čemu je a konstanta.
	a) netočno b) točno
175.	Konvolucija $(x(t) + y(t) * \delta(t+2)) * \delta(t-1)$ je:
	a) $x(t-1) \cdot \mu(t)$ b) $y(t-1) + x(t+1)$ c) $x(t-1)$ d) $x(t+1) + y(t+3)$ e) $x(t-1) + y(t+1)$
176.	Impulsni odziv kontinuiranog LTI sustava u prostoru varijabli stanja dan je izrazom $h(t) = \begin{cases} 0, t < 0 \\ \mathbf{B}e^{\mathbf{D}t} + \mathbf{C}\delta(t), t \geq 0 \end{cases}$.
	a) netočno b) točno
177.	Zadana je jenadžba diferencija $y(n+2) + 5y(n+1) + 6y(n) = 8u(n+1) + 4u(n)$ uz $u(n) = (\frac{1}{2})^n$. Partikularno rješenje je:
	a) $y_p(n) = \frac{32}{45}(\frac{1}{2})^n$ b) $y_p(n) = \frac{32}{35}(-\frac{1}{4})^n$ c) $y_p(n) = \frac{32}{45}(-\frac{1}{2})^n$ d) $y_p(n) = \frac{32}{35}(\frac{1}{2})^n$ e) $y_p(n) = \frac{16}{19}(\frac{1}{2})^{2n}$
178.	Neki sustav se sastoji od kaskade dvaju podsustava čiji su impulsni odzivi $h_1(t)$ i $h_2(t)$. Ako na ulaz u sustav dovedemo signal $x(t)$ što ćemo dobiti na izlazu?
	a) $x(t) * h_1(t) \cdot h_2(t)$ b) $x(t) \cdot h_1(t) * h_2(t)$ c) Ovisi o poretku podsustava! d) $h_1(x(t)) \cdot h_2(t)$ e) $x(t) * h_1(t) * h_2(t)$
179.	Linearni vremenski nepromjenjiv sustav je bezmemorijski ako za njegov impulsni odziv vrijedi $(a$ je realna konstanta):
	a) $h(t) = a \delta(t+1)$ b) $h(t) = a \delta(t-1)$ c) $h(t) = e^{-a \cdot t}$ d) $h(t) = a \mu(t)$ e) $h(t) = a \delta(t)$
180.	Kontinuirani sustav prikazan je u prostoru varijabli stanja. Matrica $\bf A$ je pritom dimenzija 3×3 , matrica $\bf B$ je dimenzija 3×1 , a matrica $\bf C$ dimenzija 2×3 . Koje su dimenzije matrice $\bf D$?

e) 1 × 1

a) 2×1

a) 3×2

impuls $\delta[n-2]$ je:

b) 2 × 2

c) 2×1

d) 1×2

e) 2 × 3

181. Odziv nekog bezmemorijskog vremenski nepromjenjivog sustava na impuls $\delta[n-1]$ je $3\delta[n-1]$. Odziv istog sustava na

b) 1×2 **c)** 1×3 **d)** 2×2

167. Za bezmemorijski sustav sa ulazom x(t) i izlazom y(t) vrijedi:

	a) $6 \delta[n-2]$ b) $3 \delta[n-2] + 3 \delta[n-1]$ c) $3 \delta[n-1]$ d) $3 \delta[n-2]$ e) $\delta[n-2]$
182.	Izračunaj diskretnu Fourierovu transformaciju duljine 4 DFT $_4[x[n]]$ niza s četiri uzorka $x[n] = \{\underline{0}, 1, 0, 0\}$. Podcrtani član odgovara indeksu nula.
	a) $X[k] = \{\underline{0}, W_4^1, 0, 0\}$ b) $X[k] = \{\underline{W_4^k}, 0, 0, 0\}$ c) $X[k] = \{\underline{1}, j, -1, -j\}$ d) $X[k] = \{\underline{1}, 1, 1, 1\}$ e) $X[k] = \{\underline{1}, -j, -1, j\}$
183.	Konvolucijom dviju step funkcija $\mu(t)*\mu(t)$ dobivamo:
	a) $t\mu(t)$ b) 1 c) $\mu(t)$ d) Irski step ples e) $\delta(t)$
184.	Je li sustav $T\{x(t)\} = \frac{1}{2t_0} \int_{t-t_0}^{t+t_0} x(\tau) d\tau$ vremenski promjenjiv ili nepromjenjiv? $t_0 \neq 0$ je neka realna konstanta!
	a) Promjenjiv je za $t \in [-t_0, t_0]$. b) Promjenjiv je za $\forall t \in \mathbb{R}$ c) Nepromjenjiv je samo za $t \in [-t_0, t_0]$. d) Vremenska promjenjivost se ne može odrediti bez poznavanja konstante t_0 ! e) Nepromjenjiv je za $\forall t \in \mathbb{R}$!
185.	Odziv nepobuđenog sustava uz zadane početne uvjete odgovara:
	 a) partikularnom rješenju jednadžbe diferencija uz iste početne uvjete b) ukupnom rješenju jednadžbe diferencija uz iste početne uvjete uvjete c) prisilnom odzivu sustava d) homogenom rješenju jednadžbe diferencija uz iste početne uvjete e) impulsnom odzivu sustava
186.	Ako sustav ima 3 ulaza, 2 izlaza i 4 varijable stanja koliko redaka ima matrica \mathbf{A} ?
	a) 5 b) 4 c) 1 d) 2 e) 3
187.	Sustav $y(t) = 3x^2(t) + x(t+1)$ je nelinearan!
	a) točno b) netočno
188.	Ako sustav ima 2 ulaza, 3 varijable stanja i 1 izlaz onda su dimenzije fundamentalne matrice:
	a) 2×3 b) 3×2 c) 3×1 d) 1×3 e) 3×3
189.	Stacionarno stanje sustava je stanje sustava uz konstantnu ili periodičku pobudu.
	a) Netočno b) Točno
190.	Stacionarno stanje sustava je odziv sustava na step funkciju $\mu(n)$.
	a) Netočno b) Točno
191.	Ako sustav ima 3 ulaza, 2 izlaza i 4 varijable stanja koliko redaka ima fundamentalna matrica?
	a) 4 b) 5 c) 1 d) 2 e) 3
192.	Kompleksna eksponencijala W_N^{nk} je $e^{-2\pi j\frac{nk}{N}}$.
	a) točno b) netočno
193.	Neka su A i B realni brojevi i k prirodan broj. Koji od navedenih pet sustava može bit bezmemorijski diskretni LTI

(linearni vremenski nepromjenjivi) sustav?

a) $T\{x[n]\} = Ax[n]$ b) $T\{x[n]\} = Ax[n+k]$ c) $T\{x[n]\} = Ax[k \cdot n] + B$ d) $T\{x[n]\} = Ax[n-k]$ e) $T\{x[n]\} = Ax[k \cdot n]$

194. Konvolucija $\delta(t-2)*(\exp(t)+\cos(t))$ je:

a) $\exp(t-2) + \cos(t-2)$ b) 1 c) $\exp(2-t) + \cos(2-t)$ d) $\mu(t-2) \exp(t-2) + \mu(t+2) \cos(t+2)$ e) $\delta(t-2)$

195. Odredi partikularno rješenje jednadžbe diferencija $y(n+2) + 2y(n+1) + y(n) = (-1)^n!$

a) $y_p(n) = \frac{1}{4}n(-2)^n$ b) $y_p(n) = \frac{1}{2}n^2(-1)^n$ c) $y_p(n) = \frac{1}{4}n^3(-1)^n$ d) $y_p(n) = \frac{1}{2}n(-1)^n$ e) $y_p(n) = \frac{1}{4}n^5(-1)^n$

196. Koji je od sljedećih sustava memorijski?

a) $T\{x(t)\} = x(t) + 1$ b) $T\{x(t)\} = \frac{d}{dt}x(t)$ c) $T\{x(t)\} = \int_{-\infty}^{t} x(\tau) \, \delta(t - \tau) \, d\tau$ d) $T\{x(t)\} = t^2 x(t)$ e) $T\{x(t)\} = x^2(t)$

197. Ako sustav ima 2 izlaza, 1 ulaz i 3 varijable stanja koje su dimenzije matrice C?

	a) 2×2 b) 2×3 c) 3×2 d) 3×1 e) 3×3
198.	Konvolucija je asocijativna operacija, odnosno vrijedi $f*(g*h)=(f*g)*h!$
	a) točno b) netočno
199.	Koja je od navedenih jednadžbi diferencija homogena?
	a) $y(n+3) = \mu(n)$ b) $y(n-2) + y(n-4) = \delta(n) + \delta(n+1)$ c) $y(n-2) + 17y(n-1) = 0$ d) $y(n) = \delta(n)$ e) $y(n-3) + 14y(n-2) = (-3)^n$
200.	Znamo da je odziv linearnog sustava na signal $\sin(t)$ jednak $\frac{1}{2}$, a na $\cos(t)$ jednak 3. Koliki je odziv sustava na $\cos(t + \frac{\pi}{4})$?
	a) $\frac{7}{2}\sqrt{2}$ b) $\frac{5}{2}\sqrt{2}$ c) $\frac{7}{4}\sqrt{3}$ d) $\frac{5}{4}\sqrt{2}$ e) ne može se izračunati
201.	Jedini korijeni karakteristične jednadžbe su -2 i -3 , pri čemu je -2 dvostruki korijen, a -3 jednostruki korijen. Homogeno rješenje jednadžbe diferencija možemo zapisati u obliku $(C_1, C_2$ i C_3 su konstante):
	a) $y_h(n) = C_1 n^2 (-2)^n + C_2 (-3)^n + C_3$ b) $y_h(n) = (C_1 n + C_2)(-2)^n + C_3 (-3)^n$ c) $y_h(n) = (C_1 + C_2 n^2)(-2)^n + C_3 (-3)^n$ d) $y_h(n) = (C_1 n^2 + C_2)(-2)^n + C_3 n^2 (-3)^n$ e) $y_h(n) = C_1 n (-2)^n + (C_2 n + C_3)(-3)^n$
202.	Profesor tumači da je odziv diskretnog LTI sustava na Kroneckerovu $\delta(n)$ funkciju impulsni odziv. Smatrate da je to:
	a) točno b) netočno
203.	Za koju od navedenih funkcija $y(t)$ vrijedi $x(t) * y(t) = x(t)$:
	a) $\mu(t) - \mu(t-2)$ b) $\delta(t)$ c) $\mu(t)$ d) 1 e) $x(t)$
204.	Koja je od slijedećih tvrdnji istinita za sustav $T\{x(t)\}=2x^2(t)$:
	 a) Sustav je vremenski promjeniv. b) Sustav je vremenski nepromjenjiv. c) Sustav ima memoriju. d) Sustav je linearan. e) Sustav je nekauzalan.
205.	Zadan je sustav $T\{x[n]\} = \cos(\lambda n)x^2[n]$. Za koje λ je sustav vremenski nepromjenjiv?
	a) Samo za $\lambda = 0$. b) Za sve $\lambda \in \mathbb{Z}$. c) Za sve $\lambda = 2k\pi$, $k \in \mathbb{Z}$! d) Za sve $\lambda \in \mathbb{R}$. e) Za sve $\lambda = 2k$, $k \in \mathbb{Z}$.
206.	Sustav $T[x[n]] = x[n] + \cos(k\pi)$, gdje je k realna konstanta, je linearan (samo jedan odgovor je točan):
	a) za sve parne k b) za sve neparne k c) za $k=0$ d) za $k=\frac{1}{2}$ e) ne postoji takav k
207.	Koji od sljedećih sustava nije linearan?
	a) $y[n] = x[n]$ b) $y[n] = x[n+1] + x[n-2]$ c) $y[n] = \sum_{i=-\infty}^{+\infty} x[i] \delta[n-i]$ d) $y[n] = x[n-1]$ e) $y[n] = x^2[n] - 2x[n]$
208.	Profesor tumači da je odziv diskretnog LTI sustava na Kroneckerovu $\delta(n)$ funkciju prijelazna funkcija. Smatrate da je to:
	a) netočno b) točno
209.	Odredi prirodni odziv sustava s karakterističnim korijenima u -2 i -3 uz početne uvjete $y(-1) = 0$ i $y(-2) = 1$.
	a) $y_{\text{prirodni}}(n) = -6(-2)^n + 18(-3)^n$ b) $y_{\text{prirodni}}(n) = 6(-2)^n + 18(-3)^n$ c) $y_{\text{prirodni}}(n) = 12(-2)^n - 18(-3)^n$ d) $y_{\text{prirodni}}(n) = -12(-2)^n + 18(-3)^n$ e) $y_{\text{prirodni}}(n) = 12(-2)^n + 18(-3)^n$
210.	Pobuđen sustav je sustav pobuđen funkcijom pobude $u(n)$ različitom od nule.
	a) Netočno b) Točno
211.	Da bi jednadžba diferencija $y(n-2)+2y(n-1)+y(n)=u(n)$ bila homogena, mora vrijediti:
	a) $u(n) = (-1)^n$ b) $u(n) = n(-1)^n$ c) $u(n) = 0$ d) $u(n) = n^2 + 1$ e) $u(n) = \delta(n)$

212. Jedini korijeni karakteristične jednadžbe su $q_{1,2}=re^{\pm j\theta},\ r<1$ i θ su konstante. Odziv (odnosno oblik) homogenog

 \mathbf{b}) aperiodski, povećanjem koraka n amplituda se povećava

 \mathbf{d}) oscilatoran, povećanjem koraka n amplituda se

rješenja $y_h(n)$ je:

smanjuje

a) povećanjem koraka n amplituda se ne mijenja

 \mathbf{c}) oscilatoran, povećanjem koraka n amplituda se povećava

e) aperiodski, povećanjem koraka n amplituda se smanjuje

216.	Impulsni odziv LTI sustava je odziv sustava na:
	a) pilu b) step funkciju c) Diracovu δ distribuciju d) funkciju $\cos(2t)$ e) rampu
217.	Jedini vremenski nepromjenjiv i bezmemorijski sustav od navedenih je:
	a) $T\{x[n]\} = n^3 - x[n]$ b) $T\{x[n]\} = x^2[n] - x^7[n-1]$ c) $T\{x[n]\} = x^2[n] - 3x[n]$ d) $T\{x[n]\} = 3x^2[n-1]$ e) $T\{x[n]\} = n^2x[n]$
218.	Ako je funkcija $z(t)$ zadana kao $z(t) = x(t) * y(t)$, koliko bi tad iznosilo $x(t-t_0) * y(t-t_0)$?
	a) $z(t+2t_0)$ b) $z(t+t_0)$ c) $z(t)$ d) $z(t-t_0)$ e) $z(t-2t_0)$
219.	Prisilni odziv sustava je:
	 a) odziv sustava na pobudu uz početne uvjete jednake nuli b) odziv sustava na pobudu uz proizvoljne početne uvjete c) odziv sustava na impuls d) odziv sustava na pobudu jednaku nuli e) odziv sustava na jediničnu strepenicu
220.	Diskretni sustav je opisan matricama $\mathbf{A},\mathbf{B},\mathbf{C}$ i $\mathbf{D}.$ Impulsni odziv diskretnog sustva za $n=0$ iznosi:
	a) A b) D c) C d) B e) A^n
221.	Kako nazivamo odziv sustava na Diracovu δ distribuciju?
	a) odziv pobuđenog sustava b) fazor c) odziv mirnog sustava d) impulsni odziv e) prisilni odziv
222.	Izračunaj diskretnu Fourierovu transformaciju duljine 4 DFT $_4[x[n]]$ niza s četiri uzorka $x[n] = \{\underline{0}, 0, 0, 1\}$. Podcrtani član odgovara indeksu nula.
	a) $X[k] = \{\underline{-1}, -j, 1, j\}$ b) $X[k] = \{\underline{W_4^{3k}}, 0, 0, 0\}$ c) $X[k] = \{\underline{0}, 0, 0, W_4^3\}$ d) $X[k] = \{\underline{1}, j, -1, -j\}$ e) $X[k] = \{\underline{1}, 1, 1, 1\}$
223.	Jedan je od sljedećih sustava linearan i vremenski promjenjiv. Koji?
	a) $T\{x(t)\} = 2x(2t) + 2$ b) $T\{x(t)\} = 2x(2t) + x(t+1)$ c) $T\{x(t)\} = 2x(2t) + x(t) + 2$ d) $T\{x(t)\} = 2x(2t) + x(t) + 2$ e) $T\{x(t)\} = 2x(2t) + x(t+1)$
224.	Diskretnu Fourierovu transformaciju (DFT) signala $x[n]$ računamo kao $X[k] = \frac{1}{N} \sum_{i=0}^{N} x[n] W_{N-1}^{nk}$, gdje je $W_{N-1}^{nk} = e^{-2\pi j \frac{nk}{N-1}}$.
	a) točno b) netočno
225.	Zadana je jednadžba diferencija $3y(n+2) + 2y(n+1) + y(n) = 3u(n+2) + 2u(n+1) + u(n)$. Zapis jednadžbe diferencija pomoću operatora E dan je sljedećom jednadžbom $(E[f(n)] = f(n+1))$
	a) $3E^2y(n) + 2Ey(n) + y(n) = 3E^2u(n) + 2Eu(n) + u(n)$ b) $3yE^{n+2}(n) + 2yE^{n+1}(n) + yE^n(n) = 3uE^{n+2}(n) + 2uE^{n+1}(n) + uE^n(n)$ c) $3E^{n+2}y(n) + 2E^{n+1}y(n) + E^ny(n) = 3E^{n+2}u(n) + 2(E^{n+1})u(n) + E^nu(n)$ d) $3E^2y(n) + 2Ey(n) + y(n) = 3E^2u(n) + 2Eu(n) + u(n)$ e) $3yE^2(n) + 2yE(n) + y(n) = 3uE^2(n) + 2uE(n) + u(n)$
226.	Ako je funkcija $f[n]$ zadana kao $f[n] = x[n] * y[n]$, koliko bi tad iznosilo $x[n+1] * y[n+1]$?
	a) $f[n-2]$ b) $f[n-1]$ c) $f[n+2]$ d) $f[n+1]$ e) $f[n]$
227.	Zadana je pobuda jednadžbe diferencija u obliku $u(n) = 2(-1)^n$, a jedine nultočke karakterističnog polinoma su -1 i -2 . Partikularno rješenje $y_p(n)$ možemo zapisati u obliku $(C$ je konstanta):
	a) $y_p(n) = Cn^3(-1)^n$ b) $y_p(n) = Cne^n$ c) $y_p(n) = Cn^2(-1)^n$ d) $y_p(n) = C(-1)^n$ e) $y_p(n) = Cn(-1)^n$

c) vremenski nepromjenjivi

Jedini korijeni karakteristične jednadžbe su -2 i -3, pri čemu su oba jednostruki korijeni. Homogeno rješenje jednadžbe

b) $y_h(n) = C_1 n(-2)^n + C_2 n(-3)^n$ **e)** $y_h(n) = C_1 (-2)^n + C_2 (-3)^n$

b) bilinearna transformacija

e) Jerenov postupak

215. Koji od navedenih postupaka možemo koristiti za određivanje partikularnog rješenja jednadžbe diferencija?

d) antikauzalni

c) Eulerova unazadna diferencija

e) kauzalni

d) La-

c) $y_h(n) = C_1 n(-2)^n + C_2 (-3)^n$

213. Svi bezmemorijski sustavi su:

a) $y_h(n) = C_1 n^3 (-2)^n + C_2 n^3 (-3)^n$ d) $y_h(n) = C_1 n^2 (-2)^n + C_2 n^2 (-3)^n$

a) Eulerova unaprijedna diferencija

grangeova metoda varijacije parametara

b) vremenski promjenjivi

diferencija možemo zapisati u obliku (C_1 i C_2 su konstante):

a) linearni

214.