CISC455/851 - Evolutionary Optimization and Learning

0: Introduction

- Your instructor
- Terminology
- Evolution
- Course expectation and schedule
- Course assessment
- Learning outcomes

Your instructor

- Prof. Ting Hu (email: ting.hu@queensu.ca)
 https://www.cs.queensu.ca/people/Ting/Hu
- Office hours (Goodwin 730): Wednesday 11 1
- Courses: CISC121, CISC365, CISC455/851
- Research interests:
 - Evolutionary computing
 - Machine learning and Al
 - Biomedical computing

Terminology

Artificial Intelligence

Machine Learning

Metaheuristic

Computational Intelligence

Soft Computing

Nature-inspired computing

Why learn from biology?

• The research areas where researchers try to extract more or less abstract principles and procedures from living organisms, and realize them in computational (algorithmic, software) settings.

Human brain --> Artificial neural networks

Bird flocking, ant colonies, fish schooling → Swarm intelligence

Artificial immune network algorithm

Colonal selection algorithms

Negative selection algorithms

Danger theory inspired algorithms

Dendritic cell algorithms

Vertebrate immune system → Artificial immune system

Natural evolution and genetics — Evolutionary algorithms

Evolution

- The change of traits of biological populations/species over generations
- The interaction between traits and environment
- Why's in biology find their answers in evolution
 - Early birds vs. night owls
 - Instinct to fit in
 - The negativity bias

Comparison

- EC vs. reinforcement learning
- EC vs. deep learning
- Fusion and meta-learning

Course expectations

- Apply evolution concepts to optimization and learning problems
- Evaluate and choose among evolutionary computing solutions for applications
- Formulate and implement evolutionary algorithms
- Present and defend designs of evolutionary algorithms

Really, what can we benefit from this course?

- A creative and fun Al technique
- Challenging and complex real-world problems
- Group collaboration on a complete project
- Peer review and self-reflection
- Research

What is scientific research?

- Research is an attempt to discover (new or better) answers to questions or solutions to problems
- Education vs. research
- Why do research?
- How to do research?
 - Observation/question
 - Get to the knowledge boundary by background research
 - Primary and secondary literature
 - Identify the knowledge gap and propose a hypothesis
 - Design and implement your own method
 - Collect, analyze, and interpret your results

What makes research challenging?

- The knowledge boundary is not always clear
- No roadmap
- No answer-key

What makes research exciting?

- Intellectually stimulating
- Stretch your limit
- New discoveries
- Never-ending learning

Week	Dates	Topic(s)
1	January 9 - 13	Introduction
2	January 16 - 20	Evolutionary computing overview
3	January 23 - 27	Genetic algorithm
4	January 30 - February 3	Genetic algorithm
5	February 6 - 10	Evolution strategies
6	February 13 - 17	Genetic programming
	February 20 - 24 (Mid-term Break)	
7	February 27 - March 3	Pitch presentations
8	March 6 - 10	Linear genetic programming
9	March 13 - 17	Evolutionary computing applications
10	March 20 - 24	Parameter setting
11	March 27 – 31	New techniques
12	April 3 - 6	Evolution and learning

Learning outcomes

- How to learn and implement a new technique
- How to solve a novel and challenging problem
- How to present an idea
- How to conduct research
- How to write a scientific research report
- How to work with a team
- How to incorporate feedback
- Perseverance, confidence, and optimism

Assessment

- Assignment (10%)
 - A full implementation of an evolutionary algorithm, due on February 7th
- Test (25%)
 - Fundamentals of evolutionary computing, March 7th, in-class
- Group project (groups of three)
 - Proposal (10%)
 - Pitch presentation (10%)
 - Final report (40%)
 - Individual students receive group grades adjusted with peer evaluations
- Peer review contribution (5%)

Textbook and communication

- Introduction to Evolutionary Computing, 2nd edition
 - Eiben and Smith, Springer, 2015
- OnQ for all course material
- MS Teams for QnA and discussion
- Email: ting.hu@queensu.ca ([CISC455] or [CISC851] in the title)

Welcome Glad you're here!