# Estimating the evolution of Sparks in Partially Screened Gap of Pulsars from Subpulse Drifting

Rahul Basu<sup>®</sup>, Dipanjan Mitra<sup>®</sup>, and George I. Melikidze<sup>®</sup>, and George I.

<sup>1</sup> Janusz Gil Institute of Astronomy, University of Zielona Góra, ul. Szafrana 2, 65-516 Zielona Góra, Poland.
<sup>2</sup> National Centre for Radio Astrophysics, Tata Institute of Fundamental Research, Pune 411007, India.
<sup>3</sup> Evgeni Kharadze Georgian National Astrophysical Observatory, 0301 Abastumani, Georgia.

Reporter: 曹顺顺 (Shunshun Cao)

2023.3 ApJ accepted

I. Intro to pulsar radiationII. Geometry measurementIII. Model related to observation

# Contents

## I. Intro to pulsar radiation



Theories predict that there exists places where E·B≠0 (such as vacuum gaps), at which a series of particle processes happen.



The paper considers inner acceleration gap or inner acceleration region (IAR).



#### Particle acceleration and plasma's formation: Take pure vacuum gap (like RS 75) for example:



Bunches of electrons/positrons flow out of vacuum gap, produce coherent radio radiation.....

## pure vacuum gap $\rightarrow \rightarrow \rightarrow$ sub-pulse drifting: INTEGRATED PULSE PROFILE FLUX TUBE POLAR CAP 30° LONGITUDE Min drift **E**<sub>ae</sub>**xB** makes sparks LOS rotate. Period Pa. Max drift

A spark ⇔ A sub-pulse

# Challenges: more complex drifting phenomena (bi-drifting...) (and drifting speed, binding energy...)



Gil, Melikidze and Geppert 2003: Partially Screened Gap (PSG) model.

- · Non-dipole magnetic field near pulsar surface.
- · Positive ions continuously flow out.
- → → ExB variable (drifting is locally decided).

Way to figure out magnetic field (polar cap) structure:



### II. Geometry measurement

Observation: J1034-3224 and J1720-2933, GMRT

| PSR                      | P    | $\dot{P}$             | ν     | $W_C$         | $W_{5\sigma}$    | $W_B$ | $R_{ppa}$ | $\alpha$         | $\alpha_m$ | β         | ρ    | $S_{los}$  | h    |
|--------------------------|------|-----------------------|-------|---------------|------------------|-------|-----------|------------------|------------|-----------|------|------------|------|
|                          | (s)  | $(s \ s^{-1})$        | (MHz) | (°)           | (°)              | (°)   | (°)       | (°)              | (°)        | (°)       | (°)  |            | (km) |
| $\overline{1034 - 3224}$ | 1.15 | $2.3 \times 10^{-16}$ | 325   | $7.4 \pm 0.9$ | 80.2±1.8         | 2.37  | 9.95      | $17.4 \pm 2.0$   | 16.6/163.4 | ±1.6      | 11.9 | $\pm 0.14$ | 1073 |
|                          |      |                       | 610   | $7.1 \pm 0.2$ | $68.9 {\pm} 0.4$ | 2.16  |           | $16.5 {\pm} 0.5$ |            |           | 10.3 | $\pm 0.16$ | 806  |
|                          |      | 1.6                   |       |               |                  |       |           |                  |            |           |      |            |      |
| J1720 - 2933             | 0.62 | $7.5 \times 10^{-16}$ | 325   | $5.0 \pm 0.2$ | $25.7 \pm 0.4$   | 2.37  | -6.6      | $37.1 \pm 1.7$   | 38.3/141.7 | $\pm 5.4$ | 9.2  | $\pm 0.59$ | 348  |
|                          |      |                       | 610   | $4.2 \pm 0.2$ | $24.1 {\pm} 0.4$ | 2.16  |           | $40.3 \pm 2.3$   |            |           | 8.8  | $\pm 0.61$ | 320  |

Profile half width (from Mitra et al. 2016):

$$W_C = W_B P^{-0.5} / \sin \alpha$$

PPA steepest gradient:  $R_{ppa} = |\sin \alpha / \sin \beta|$ 

Beam angle:  $\sin^2(\rho_{\nu}/2) = \sin \alpha \sin (\alpha + \beta) \sin^2(W_{5\sigma}/4) + \sin^2(\beta/2)$ 

Emission height:  $h_{\nu} = 10P \left(\frac{\rho_{\nu}}{1.23^{\circ}}\right)^2 \mathrm{km}$ 



et al. (2016), and we carried out RVM fits to obtain  $R_{ppa}$  for each pulsar (the detailed RVM fitting process for the pulsars in the MSPES survey, including the two reported here, is shown in Mitra et al. 2023, in preparation). The  $\alpha$ 

#### Drifting properties for J1034-3224:



#### Drifting properties for J1720-2933:



Basu & Mitra (2018)

#### III. Model related to observation

Magnetic field settings:

Non-dipole field



+ some weaker dipole fields on star surface

$$m{m}_i = (m^i, \theta_m^i, \phi_m^i)$$
  $m{r}_i = (r_s^i, \theta_s^i, \phi_s^i)$   $m{m} = 0.01d$   $m{r}_s = 0.95 R_S$ 

Polar cap located at:  $(R_S, \theta^c_{cap}, \phi^c_{cap}, \phi^c_{cap})$   $R_S = 10^6 \text{ cm}$ 

Polar cap and sparks: elliptical, major axis a, minor axis b

Effective size of sparks: 
$$h_{\perp} \sim \sqrt{a_{sprk}b_{sprk}}$$





#### Potential difference in the gap:

$$\Delta V_{PSG} = \frac{4\pi\eta b B_d |\cos\alpha_l|}{Pc} h_{\perp}^2$$

Non-dipole/Dipole

$$b = B_s/B_d$$

Screening factor:  $\eta = 1/(2\pi P_3 |\cos \alpha_l|) = 1 - \rho_i/\rho_{\rm GJ}$ 

#### Polar cap temperature:

$$T_i = (\eta b)^{1/2} |\cos \alpha_l|^{1/4} \left(\frac{h_\perp}{2.6\text{m}}\right)^{1/2} \left(\frac{\dot{P}_{-15}}{P}\right)^{1/4} \times 10^6 \text{ K}.$$



 $\alpha_l$ , the angle made by the local non-dipolar magnetic field with the rotation axis

#### Numerical calculation results:

Table 2. The physical parameters of Partially Screened Gap

|            | $a_{cap}$ | $b_{cap}$ | $	heta_{cap}$ | $	heta_{cap}^c$ | $\phi^c_{cap}$ | $b = B_s/B_d$ | $ \cos \alpha_l $ | $\eta$ | $h_{\perp}$ | $T_i$            | $\Delta V_{PSG}$      |
|------------|-----------|-----------|---------------|-----------------|----------------|---------------|-------------------|--------|-------------|------------------|-----------------------|
|            | (m)       | (m)       | (°)           | (°)             | (°)            |               |                   |        | (m)         | $(10^6 {\rm K})$ | $(10^{10} \text{ V})$ |
| J1034-3224 | 36.2      | 15.1      | -45.5         | 166.5           | -48.8          | $\sim 67$     | $\sim 0.65$       | 0.034  | 4.3         | 1.17             | 1.56                  |
| J1720-2933 | 75.2      | 30.1      | -36.8         | 37.1            | 20.9           | $\sim 32$     | $\sim 0.25$       | 0.26   | 8.8         | 3.93             | 22.4                  |



Simulation results: J1034-3224:

Sparking Evolution in Polar Cap



## Simulation results: J1034-3224:





## Simulation results: J1720-2933:

Sparking Evolution in Polar Cap



## Simulation results: J1720-2933:



## Thank you for your attention