

(19) Europäisches Patentamt
European Patent Office
Office européen des brevets

(11) Publication number:

0 685 572 A2

(12)

EUROPEAN PATENT APPLICATION

(21) Application number: 95103339.8

(51) Int. Cl.⁶: C23C 30/00, C23C 16/40,
C23C 16/36

(22) Date of filing: 08.03.95

(30) Priority: 31.05.94 JP 141100/94
31.05.94 JP 141101/94
31.05.94 JP 141122/94
31.05.94 JP 141123/94
15.06.94 JP 156842/94
15.06.94 JP 156843/94
15.06.94 JP 156844/94
15.06.94 JP 156845/94
19.09.94 JP 249945/94

(43) Date of publication of application:
06.12.95 Bulletin 95/49

(84) Designated Contracting States:
DE FR GB IT

(71) Applicant: MITSUBISHI MATERIALS
CORPORATION
5-1, Otemachi 1-chome
Chiyoda-ku,
Tokyo (JP)

(72) Inventor: Yoshimura, Hironori, c/o
Tsukuba-Seisakusho
MITSUBISHI MATERIALS CORP.,
1511, Ooaza Furumagi
Ishige-machi,
Yuuki-gun,
Ibaraki-ken (JP)
Inventor: Osada, Akira, c/o
Tsukuba-Seisakusho
MITSUBISHI MATERIALS CORP.,
1511, Ooaza Furumagi
Ishige-machi,
Yuuki-gun,
Ibaraki-ken (JP)

Inventor: Onou, Kenichi, c/o
Tsukuba-Seisakusho
MITSUBISHI MATERIALS CORP.,
1511, Ooaza Furumagi
Ishige-machi,
Yuuki-gun,
Ibaraki-ken (JP)
Inventor: Oshika, Takatoshi, c/o
Tsukuba-Seisakusho
MITSUBISHI MATERIALS CORP.,
1511, Ooaza Furumagi
Ishige-machi,
Yuuki-gun,
Ibaraki-ken (JP)
Inventor: Sugawara, Jun, c/o
Tsukuba-Seisakusho
MITSUBISHI MATERIALS CORP.,
1511, Ooaza Furumagi
Ishige-machi,
Yuuki-gun,
Ibaraki-ken (JP)
Inventor: Hamaguchi, Yuuki, c/o
Tsukuba-Seisakusho
MITSUBISHI MATERIALS CORP.,
1511, Ooaza Furumagi
Ishige-machi,
Yuuki-gun,
Ibaraki-ken (JP)

(74) Representative: Hansen, Bernd, Dr.
Dipl.-Chem. et al
Hoffmann, Eitle & Partner,
Patentanwälte,
Arabellastrasse 4
D-81925 München (DE)

EP 0 685 572 A2

(54) Coated hard-alloy blade member.

(57) A coated hard alloy blade member is disclosed which includes a substrate formed of a hard alloy of a WC-based cemented carbide or a TiCN-based cermet, and a hard coating deposited on the substrate. The hard coating includes an inner layer of TiCN having unilaterally grown crystals of an elongated shape and an outer layer of Al₂O₃ having a crystal form x or $x + \alpha$ wherein $x > \alpha$. The resulting blade member is highly resistant to wear and fracturing, and possesses cutting ability of a higher level.

BACKGROUND OF THE INVENTIONTechnical Field of the Invention

5 The present invention relates to coated hard alloy blade members or cutting tools having exceptional steel and cast iron cutting ability for both continuous and interrupted cutting.

Background Art

10 Until now, the use of a coated cemented carbide cutting tool made by using either chemical vapor deposition or physical vapor deposition to apply a coating layer of an average thickness of 0.5-20 μm comprised of either multiple layers or a single layer of one or more of titanium carbide, titanium nitride, titanium carbonitride, titanium oxycarbide titanium oxycarbonitride, and aluminum oxide (hereafter indicated by TiC, TiN, TiCN, TiCO, TiCNO, and Al_2O_3) onto a WC-based cemented carbide substrate for cutting steel
15 or cast iron has been widely recognized.

The most important technological advance that led to the wide usage of the above-mentioned coated cemented carbide cutting tool was, as described in Japanese Patent Application No. 52-46347 and Japanese Patent Application No. 51-27171, the development of an exceptionally tough substrate wherein the surface layer of a WC-based cemented carbide substrate included a lot of Co, a binder metal, in
20 comparison with the interior, whereby the fracture resistance of the coated cemented carbide cutting tool rapidly improved.

In addition, as disclosed in Japanese Patent Application No. 52-156303 and Japanese Patent Application No. 54-83745, the confirmation that, by sintering the WC-based cemented carbide containing nitrogen in a denitrifying atmosphere such as a vacuum, the surface layer of the WC-based cemented carbide
25 substrate can be made from WC-Co which does not include a hard dispersed phase having a B-1 type crystal structure, whereby it is possible to cheaply produce WC-based cemented carbide having more Co in its surface layer than in the interior, was also important.

Concerning the advancement of the coating layer, coated cemented carbides having coating layers
30 wherein the X-ray diffraction peaks of the Ti compounds such as TiC, TiN, and TiCN have a strong (200) orientation and the Al_2O_3 has an α -type crystal structure such as described in Japanese Patent Application No. 61-231416 and coated cemented carbides having coating layers wherein the X-ray diffraction peaks of the Ti compounds such as TiC, TiN, and TiCN have a strong (220) orientation and the Al_2O_3 has a χ -type crystal structure such as described in Japanese Patent Application No. 62-29263 have little variation in the tool life.

35 Furthermore, Japanese Patent Application No. 2-156663 shows that a coated cemented carbide having a coating layer wherein the TiC has a strong (111) orientation and the Al_2O_3 is of the χ -type has the features that there is less spalling of the coating layer and has a long life.

However, since the Ti compounds such as TiC of Japanese Patent Application No. 61-231416, Japanese Patent Application No. 62-29263, and Japanese Patent Application No. 2-156663 are coated by
40 the normal CVD method, the crystal structure is in a granular form identical to the coating layers of the past, and the cutting ability was not always satisfactory.

45 Additionally, Japanese Patent Application No. 50-16171 discloses that coating is possible with the use of organic gas for a portion of the reaction gas, at a relatively low temperature. In this patent, the crystal structure of the coating layer is not described, and furthermore, the crystal structure may have a granular form, or the crystals may grow in one direction (elongated crystals) depending on the coating conditions. Moreover, in the references given in this patent, the coating layer is made up of only TiCN, and Al_2O_3 is not disclosed. Additionally, this TiCN had a low bonding strength with the substrate.

SUMMARY OF THE INVENTION

50 In recent years cutting technology has shown remarkable progress towards unmanned, high speed processes. Therefore, tools which are highly resistant to wear and fracturing are required. Consequently, the present inventors conducted research to develop a coated cemented carbide cutting tool having cutting ability of a higher level.

55 It was discovered that by coating the surface of a WC-based cemented carbide substrate and a TiCN-based cermet substrate with TiCN having crystals growing in one direction (elongated crystals) as an inner layer, and coating with Al_2O_3 having a crystal structure χ or $\chi + \alpha$ wherein $\chi > \alpha$ as an outer layer, remarkable steel and cast iron cutting ability was shown for both continuous cutting and interrupted cutting.

Thus, the coated hard alloy blade member in accordance with the present invention comprises a substrate formed of a hard alloy selected from the group consisting of a WC-based cemented carbide and a TiCN-based cermet, and a hard coating deposited on said substrate, the hard coating including an inner layer of TiCN having unilaterally grown crystals of an elongated shape and an outer layer of Al_2O_3 having a crystal form x or $x + \alpha$ wherein $x > \alpha$.

BRIEF DESCRIPTION OF THE DRAWING

FIG. 1 is a photograph of a coated cemented carbide blade member in accordance with the present invention as taken by a scanning electron microscope.

DETAILED DESCRIPTION OF THE INVENTION

The coated hard alloy blade member or cutting tool in accordance with the present invention will now be described in detail.

As mentioned before, the coated hard alloy blade member in accordance with the present invention comprises a substrate formed of a hard alloy selected from the group consisting of a WC-based cemented carbide and a TiCN-based cermet, and a hard coating deposited on said substrate, the hard coating including an inner layer of TiCN having unilaterally grown crystals of an elongated shape and an outer layer of Al_2O_3 having a crystal form x or $x + \alpha$ wherein $x > \alpha$.

In order to practicalize the present invention, it is first necessary to coat the substrate with elongated crystal TiCN having high bonding strength. If the conditions are such that, for example, during the coating of the TiCN, the percentages of the respective volumes are: TiCl_4 : 1-10%, CH_3CN : 0.1-5%, N_2 : 0-35%, H_2 : the rest, the reaction temperature is 800-950 °C, the pressure is 30-500 Torr, and furthermore, the CH_3CN gas is decreased to 0.01-0.1% at the beginning of the coating as a first coating reaction for 1-120 minutes, then the CH_3CN gas is increased to 0.1-1% as a second coating reaction, then elongated crystal TiCN having high bonding strength can be obtained. The thickness of the TiCN coating layer should preferably be 1-20 μm . This is because at less than 1 μm the wear resistance worsens, and at more than 20 μm the fracture resistance worsens.

Furthermore, during the coating of the TiCN, if the reaction temperature or the amount of CH_3CN is increased, the (200) plane component of the X-ray diffraction pattern of the TiCN becomes weaker than the (111) and (220) plane components, the bonding strength with the Al_2O_3 in the upper layer which has x as its main form increases, and the wear resistance goes up.

Next, Al_2O_3 of x form or $x + \alpha$ form wherein form $x > \alpha$ is coated. For coating Al_2O_3 which has x as its principal form, the conditions should be such that, for example, the reaction gas is made up of the following volume percentages in the first 1-120 minutes: AlCl_3 : 1-20%, HCl : 1-20% and/or H_2S : 0.05-5% as needed, and H_2 : the rest, and a first reaction be performed, then afterwards, a second reaction is performed in which AlCl_3 : 1-20%, CO_2 : 0.5-30%, HCl : 1-20% and/or H_2S : 0.05-5% as needed, and H_2 : the rest, with the conditions of a reaction temperature of 850-1000 °C and pressure of 30-500 Torr.

The thickness of this Al_2O_3 coating layer should preferably be 0.1-10 μm . At less than 0.1 μm the wear resistance worsens, while at over 10 μm the fracturing resistance worsens.

The combined thickness of the first TiCN layer and the second Al_2O_3 layer should preferably be 2-30 μm .

The K ratio of the $x + \alpha$ Al_2O_3 of the present invention uses a peak from Cu- $\text{x}\alpha$ X-ray diffraction, and is determined the following equation, wherein if $x > \alpha$ then the x ratio is over 50%.

$$\kappa \text{ ratio (\%)} = \frac{I_{\kappa 2.79} + I_{\kappa 1.43}}{I_{\kappa 2.79} + I_{\kappa 1.43} + I_{\alpha 2.085} + I_{\alpha 1.601}} \times 100$$

wherein

- $I_{\kappa 2.79}$: The height of the X-ray diffraction peak for ASTM No. 4-0878 with a plane index spacing of $d = 2.79$
 $I_{\kappa 1.43}$: The height of the X-ray diffraction peak for ASTM No. 4-0878 with a plane index spacing of $d = 1.43$

$I_{d=2.085}$: The height of the X-ray diffraction peak for ASTM No. 10-173 with a plane index spacing of $d = 2.085$ (the (113) plane)

$I_{d=1.601}$: The height of the X-ray diffraction peak for ASTM No. 10-173 with a plane index spacing of $d = 1.601$ (the (116) plane)

5 As further modified embodiments of the present invention, the following are included.

(1) As an outermost layer, either one or both of TiN or TiCN may be coated on the outer Al_2O_3 layer. The reason for this coating layer is to discriminate between areas of use, and a thickness of 0.1-2 μm is preferable.

10 (2) As an innermost layer, either one or more of TiN, TiC, or TiCN (granular form) may be coated underneath the inner TiCN layer. By coating with this innermost layer, the bonding strength of the elongated crystal TiCN improves and the wear resistance improves. The most preferable thickness for this coating is 0.1-5 μm .

15 (3) Between the inner TiCN layer and the outer Al_2O_3 layer, either one or more of TiN, TiC, or TiCN (granular form) may be coated as a first intermediate layer. This first intermediate layer improves the wear resistance during low speed cutting. However, during high speed cutting, it worsens the wear resistance. The most preferable thickness for this first intermediate layer is 1-7 μm .

20 (4) Between the inner TiCN layer and the outer Al_2O_3 layer, either one or both of TiCO, TiCNO is coated as a second intermediate layer. This second intermediate layer increases the bonding strength between the elongated crystal TiCN and the α or $\alpha + \beta$ form Al_2O_3 . The most preferable thickness of this second intermediate layer is 0.1-2 μm .

(5) It is possible to combine the above-mentioned (1)-(4) as appropriate.

(6) The inner layer coated with elongated crystal TiCN may be divided by one or more TiN layers to define a divided TiCN layer. This divided TiCN layer is less susceptible to chipping, and the fracture resistance improves.

25 (7) With the divided elongated TiCN described above and the α or $\alpha + \beta$ form Al_2O_3 , it is possible to coat with an outermost layer of one or both of TiN or TiCN as in (1) above, coat with an innermost layer of one or more of TiN, TiC, or TiCN as in (2) above, coat with a first intermediate layer of one or more of TiC, TiN, or TiCN as in (3) above, coat with a second intermediate layer of one or both of TiCO or TiCNO as in (4) above, or to take a combination of them.

30 (8) The most preferable composition of the WC-based cemented carbide substrate is, by the percentage of weight, as follows:

Co: 4-12%	Ti: 0-7%	Ta: 0-7%
Nb: 0-4%	Cr: 0-2%	
N: 0-1%	W and C: the rest	

35

Unavoidable impurities such as O, Fe, Ni, and Mo are also included.

40 (9) For the WC-based cemented carbide of the present invention, for lathe turning of steel, it is preferable that the cemented carbide be such that the amount of Co or Co + Cr in the surface portion (the highest value from the surface to within 100 μm) be 1.5 to 5 times the amount in the interior (1 mm from the surface), and for lathe turning of cast iron, it is preferable that there is no enrichment of the Co or Co + Cr, and that the amount of Co or Co + Cr be small. Furthermore, in the case of steel milling, cemented carbide in which there has been no enrichment of the Co or Co + Cr, and the amount of Co or Co + Cr is large, is preferable.

45 (10) The most preferable composition of the TiCN-based cermet substrate is, by the percentage of weight, as follows:

Co: 2-14%	Ni: 2-12%	Ta: 2-20%
Nb: 0.1-10%	W: 5-30%	Mo: 5-20%
N: 2-8%	Ti and C: the rest	
Cr, V, Zr, Hf: 0-5%		

50

55 Unavoidable impurities such as O and Fe are included.

(11) In the TiCN-based cermet of the present invention, the substrate surface layer (the largest value within 100 μm of the surface) should be 5% or more harder than the interior (1 mm from the surface) or there should be no difference between the hardnesses of the surface layer and the interior.

The present invention will be explained in more detail by way of the following examples.

EXAMPLE 1

As the raw materials, medium grain WC powder having an average particle size of 3 μm , 5 μm coarse grain WC powder, 1.5 μm (Ti, W)C (by weight ratio, TiC/WC = 30/70) powder 1.2 μm (Ti, W)(C, N) (TiC/TiN/WC = 24/20/56) powder, 1.5 μm Ti(C, N) (TiC/TiN = 50/50) powder, 1.6 μm (Ta, Nb)C (TaC/NbC = 90/10) powder, 1.8 μm TaC powder, 1.1 μm Mo₂C powder, 1.7 μm ZrC powder, 1.8 μm Cr₃C₂ powder, 2.0 μm Ni powder, 2.2 μm NiAl (Al: 31% by weight) powder, and 1.2 μm Co powder were prepared, then these raw material powders were blended in the compositions shown in Table 1 and wet-mixed in a ball mill for 72 hours. After drying, they were press-shaped into green compacts of the form of ISO CNMG 120408 (cemented carbide substrates A-D, cermet substrates F-G) and SEEN 42 AFTN 1 (cemented carbide substrates E and E'), then these green compacts were sintered under the conditions described in Table 1, thus resulting in the production of cemented carbide substrates A-E, E' and cermet substrates F-G.

Experimental values taken at over 1 mm from the surface of the sintered compacts of the cemented carbide substrates A-E, E' and the cermet substrates F-G are as shown in Table 2.

Furthermore, in the case of the above cemented carbide substrate B, after maintenance in an atmosphere of CH₄ gas at 100 torr and a temperature of 1400 °C for 1 hour, a gradually cooling carburizing procedure was run, then, by removing the carbon and Co attached to the substrate surface using acid and barrel polishing, a Co-rich region 40 μm deep was formed in the substrate surface layer wherein, at a position 10 μm from the surface the maximum Co content was 15% by weight.

Additionally, in the case of cemented carbide substrates A and D above, while sintered, a Co-rich region 20 μm deep was formed wherein, at a position 15 μm from the surface, the maximum Co content was 11% and 9% by weight, respectively, and in the remaining cemented carbide substrates C, E and E', no Co-rich region was formed, and they had similar compositions over their entirety.

In the above cermet substrates F and G, in the sintered state, a surface layer harder than the interior existed. The hardnesses at the surface and 1 mm below the surface for the cermet substrates F and G are shown in Table 2.

Next, after honing the surfaces of the cemented carbide substrates A-E, E' and cermet substrates F and G, by forming coating layers under the special coating conditions shown in Tables 3(a) and 3(b) and having the compositions, crystal structures, orientation of TiCN (shown, starting from the left, in the order of the intensity of the corresponding X-ray diffraction peak) and average thicknesses shown in Table 4 by using a chemical vapor deposition apparatus, the coated cemented carbide cutting tools of the present invention 1-12 and 15-26, the coated cermet cutting tools of the present invention 13, 14, 27, and 28, the coated cemented carbide cutting tools of the prior art 1-12 and 15-26, and the coated cermet cutting tools 13, 14, 27, and 28 of the prior art were produced.

Then, for the coated cemented carbide cutting tools of the present invention 1-10 and 15-24, and the coated cemented carbide cutting tools of the prior art 1-10 and 15-24, a mild steel continuous cutting test was performed under the following conditions,

Workpiece: mild steel round bar

Cutting Speed: 270 m/min

Feed: 0.25 mm/rev

Depth of Cut: 2 mm

Cutting Time: 30 min

in which a determination was made whether or not the cutting failed due to tears made in the workpiece because of chipping of the cutting blade or spalling of the coating layer. Then, for those which were able to cut for the set period of time, the amount of flank wear was measured. Furthermore, an interrupted cutting test was performed under the following conditions,

Workpiece: mild steel round bar with groove

Cutting Speed: 250 m/min

Feed: 0.25 mm/rev

Depth of Cut: 1.5 mm

Cutting Time: 40 min

in which a determination was made whether or not the cutting failed due to trouble such as fracturing or chipping of the cutting blade. Then, for those which were able to cut for the set period of time, the amount of flank wear was measured.

For the coated cemented carbide cutting tools of the present invention 11, 12, 25 and 26, and the coated cemented carbide cutting tools of the prior art 11, 12, 25 and 26, a mild steel milling test was performed under the following conditions,

Workpiece: mild steel square block

5 Cutting Speed: 250 m/min

Feed: 0.35 mm/tooth

Depth of Cut: 2.5 mm

Cutting Time: 40 min

in which a determination was made whether or not the milling failed due to trouble such as chipping of the 10 cutting blade. Then, for those which were able to cut for the set period of time, the amount of flank wear was measured.

For the coated cermet cutting tools of the present invention 13, 14, 27 and 28, and the coated cermet cutting tools of the prior art 13, 14, 27 and 28, a mild steel continuous cutting test was performed under the following conditions,

15 Workpiece: mild steel round bar

Cutting Speed: 320 m/min

Feed: 0.25 mm/rev

Depth of Cut: 1 mm

Cutting Time: 20 min

20 in which a determination was made whether or not the cutting failed due to chipping or fracturing of the cutting blade. Then, for those which were able to cut for the set period of time, the amount of flank wear was measured. Furthermore, an interrupted cutting test was performed under the following conditions,

Workpiece: mild steel round bar with groove

Cutting Speed: 300 m/min

25 Feed: 0.20 mm/rev

Depth of Cut: 1 mm

Cutting Time: 20 min

in which a determination was made whether or not the cutting failed due to trouble such as chipping of the 30 cutting blade. Then, for those which were able to cut for the set period of time, the amount of flank wear was measured.

The results of the above tests are shown in Tables 4-7. As is able to be seen from Tables 4-7, all of the coated cemented carbide cutting tools and coated cermet cutting tools of the present invention demonstrate the properties that it is difficult to fracture or chip the cutting blades and spalling of the coating layers is rare, in addition to exhibiting superior wear and fracture resistance.

35

EXAMPLE 2

Using the same cemented carbide substrates A-E, E' and cermet substrates F and G as Example 1, under the same coating conditions as shown in Tables 3(a) and 3(b) in Example 1, by forming coating 40 layers of the composition, crystal structures, and average thicknesses shown in Tables 8 and 9, the coated cemented carbide cutting tools of the present invention 29-40, the coated cermet cutting tools of the present invention 41 and 42, the coated cemented carbide cutting tools of the prior art 29-40, and the coated cermet cutting tools 41 and 42 of the prior art were produced.

Then, for the coated cemented carbide cutting tools of the present invention 29-38, and the coated 45 cemented carbide cutting tools of the prior art 29-38, a mild steel continuous cutting test was performed under the following conditions,

Workpiece: mild steel round bar

Cutting Speed: 250 m/min

Feed: 0.27 mm/rev

50 Depth of Cut: 2 mm

Cutting Time: 30 min

and an appraisal identical to that of Example 1 was made. Furthermore, an interrupted cutting test was performed under the following conditions,

Workpiece: mild steel round bar with groove

55 Cutting Speed: 230 m/min

Feed: 0.27 mm/rev

Depth of Cut: 1.5 mm

Cutting Time: 40 min

and an appraisal identical to that of Example 1 was made.

For the coated cemented carbide cutting tools of the present invention 39 and 40, and the coated cemented carbide cutting tools of the prior art 39 and 40, a mild steel milling test was performed under the following conditions,

- 5 Workpiece: mild steel square block
Cutting Speed: 230 m/min
Feed: 0.37 mm/tooth
Depth of Cut: 2.5 mm
Cutting Time: 40 min

10 and an appraisal identical to that of Example 1 was made.

For the coated cermet cutting tools of the present invention 41 and 42, and the coated cermet cutting tools of the prior art 41 and 42, a mild steel continuous cutting test was performed under the following conditions,

- 15 Workpiece: mild steel round bar
Cutting Speed: 300 m/min
Feed: 0.27 mm/rev
Depth of Cut: 1 mm
Cutting Time: 20 min

20 and an appraisal identical to that of Example 1 was made. Furthermore, an interrupted cutting test was performed under the following conditions,

- 25 Workpiece: mild steel round bar with groove
Cutting Speed: 280 m/min
Feed: 0.22 mm/rev
Depth of Cut: 1 mm
Cutting Time: 20 min

and an appraisal identical to that of Example 1 was made.

The results of the above tests are shown in Tables 8, 9(a) and 9(b). As is able to be seen from Tables 8, 9(a) and 9(b), all of the coated cemented carbide cutting tools and coated cermet cutting tools of the present invention demonstrate the properties that it is difficult to fracture or chip the cutting blades and 30 spalling of the coating layers is rare, in addition to exhibiting superior wear and fracture resistance.

EXAMPLE 3

Using the same cemented carbide substrates A-E, E' and cermet substrates F and G as Example 1, 35 under the same coating conditions as shown in Tables 3(a) and 3(b) in Example 1, by forming coating layers of the composition, crystal structures, and average thickness shown in Tables 10-13, the coated cemented carbide cutting tools of the present invention 43-54 and 57-68, the coated cermet cutting tools of the present invention 55, 56, 69 and 70, the coated cemented carbide cutting tools of the prior art 43-54 and 57-68, and the coated cermet cutting tools 55, 56, 69 and 70 of the prior art were produced. Figure 1 40 shows a photograph of the surface layer of the coated cemented carbide cutting tool of the present invention as taken by a scanning electron microscope.

Then, for the coated cemented carbide cutting tools of the present invention 43-52 and 57-66, and the coated cemented carbide cutting tools of the prior art 43-52 and 57-66, a mild steel continuous cutting test was performed under the following conditions.

- 45 Workpiece: mild steel round bar
Cutting Speed: 280 m/min
Feed: 0.23 mm/rev
Depth of Cut: 2 mm
Cutting Time: 30 min

50 and an appraisal identical to that of Example 1 was made. Furthermore, an interrupted cutting test was performed under the following conditions,

- 55 Workpiece: mild steel round bar with groove
Cutting Speed: 260 m/min
Feed: 0.23 mm/rev
Depth of Cut: 1.5 mm
Cutting Time: 40 min

and an appraisal identical to that of Example 1 was made.

For the coated cemented carbide cutting tools of the present invention 53, 54, 67 and 68, and the coated cemented carbide cutting tools of the prior art 53, 54, 67 and 68, a mild steel milling test was performed under the following conditions,

- Workpiece: mild steel square block
- 5 Cutting Speed: 260 m/min
- Feed: 0.33 mm/tooth
- Depth of Cut: 2.5 mm
- Cutting Time: 40 min
- and an appraisal identical to that of Example 1 was made.
- 10 For the coated cermet cutting tools of the present invention 55, 56, 69 and 70, and the coated cermet cutting tools of the prior art 55, 56, 69 and 70, a mild steel continuous cutting test was performed under the following conditions,

 - Workpiece: mild steel round bar
 - Cutting Speed: 330 m/min
 - 15 Feed: 0.23 mm/rev
 - Depth of Cut: 1 mm
 - Cutting Time: 20 min
 - and an appraisal identical to that of Example 1 was made. Furthermore, an interrupted cutting test was performed under the following conditions,
 - 20 Workpiece: mild steel round bar with groove
 - Cutting Speed: 310 m/min
 - Feed: 0.18 mm/rev
 - Depth of Cut: 1 mm
 - Cutting Time: 20 min
 - 25 and an appraisal identical to that of Example 1 was made.

The results of the above tests are shown in Tables 10-13. As is able to be seen from Tables 10-13, all of the coated cemented carbide cutting tools and coated cermet cutting tools of the present invention demonstrate the properties that it is difficult to fracture or chip the cutting blades and spalling of the coating layers is rare, in addition to exhibiting superior wear and fracture resistance.

30 EXAMPLE 4

Using the same cemented carbide substrates A-E, E' and cermet substrates F and G as Example 1, under the same coating conditions as shown in Tables 3(a) and 3(b) in Example 1, by forming coating 35 layers of the composition, crystal structures, and average thicknesses shown in Tables 14-17, the coated cemented carbide cutting tools of the present invention 71-82 and 85-96, the coated cermet cutting tools of the present invention 83, 84, 97 and 98, the coated cemented carbide cutting tools of the prior art 71-82 and 85-96, and the coated cermet cutting tools 83, 84, 97 and 98 of the prior art were produced.

Then, for the coated cemented carbide cutting tools of the present invention 71-80 and 85-94, and the 40 coated cemented carbide cutting tools of the prior art 71-80 and 85-94, a mild steel continuous cutting test was performed under the following conditions,

- Workpiece: mild steel round bar
- Cutting Speed: 260 m/min
- Feed: 0.26 mm/rev
- 45 Depth of Cut: 2 mm
- Cutting Time: 30 min
- and an appraisal identical to that of Example 1 was made. Furthermore, an interrupted cutting test was performed under the following conditions,
- Workpiece: mild steel round bar with groove
- 50 Cutting Speed: 240 m/min
- Feed: 0.26 mm/rev
- Depth of Cut: 1.5 mm
- Cutting Time: 40 min
- and an appraisal identical to that of Example 1 was made.

55 For the coated cemented carbide cutting tools of the present invention 81, 82, 95 and 96, and the coated cemented carbide cutting tools of the prior art 81, 82, 95 and 96, a mild steel milling test was performed under the following conditions,

- Workpiece: mild steel square block

Cutting Speed: 240 m/min
 Feed: 0.36 mm/tooth
 Depth of Cut: 2.5 mm
 Cutting Time: 40 min

5 and an appraisal identical to that of Example 1 was made.

For the coated cermet cutting tools of the present invention 83, 84, 97 and 98, and the coated cermet cutting tools of the prior art 83, 84, 97 and 98, a mild steel continuous cutting test was performed under the following conditions,

Workpiece: mild steel round bar
 10 Cutting Speed: 310 m/min
 Feed: 0.26 mm/rev
 Depth of Cut: 1 mm
 Cutting Time: 20 min

and an appraisal identical to that of Example 1 was made. Furthermore, an interrupted cutting test was 15 performed under the following conditions,

Workpiece: mild steel round bar with groove
 Cutting Speed: 290 m/min
 Feed: 0.21 mm/rev
 Depth of Cut: 1 mm
 20 Cutting Time: 20 min

and an appraisal identical to that of Example 1 was made.

The results of the above tests are shown in Tables 14-17. As is able to be seen from Tables 14-17, all of the coated cemented carbide cutting tools and coated cermet cutting tools of the present invention demonstrate the properties that it is difficult to fracture or chip the cutting blades and spalling of the coating 25 layers is rare, in addition to exhibiting superior wear and fracture resistance.

EXAMPLE 5

Using the same cemented carbide substrates A-E, E' and cermet substrates F and G as Example 1, 30 under the same coating conditions as shown in Tables 3(a) and 3(b) in Example 1, by forming coating layers of the composition, crystal structures, and average thicknesses shown in Tables 18-21, the coated cemented carbide cutting tools of the present invention 99-112 and 122-126, the coated cermet cutting tools of the present invention 113-121, the coated cemented carbide cutting tools of the prior art 99-112 and 122-126, and the coated cermet cutting tools 113-121 of the prior art were produced.

35 Then, for the coated cemented carbide cutting tools of the present invention 99-112, and the coated cemented carbide cutting tools of the prior art 99-112, a mild steel high-feed continuous cutting test was performed under the following conditions,

Workpiece: mild steel round bar
 40 Cutting Speed: 210 m/min
 Feed: 0.38 mm/rev
 Depth of Cut: 2 mm
 Cutting Time: 30 min

and an appraisal identical to that of Example 1 was made. Furthermore, a deep cut interrupted cutting test was performed under the following conditions,

45 Workpiece: mild steel round bar
 Cutting Speed: 210 m/min
 Feed: 0.23 mm/rev
 Depth of Cut: 4 mm
 Cutting Time: 40 min

50 and an appraisal identical to that of Example 1 was made.

For the coated cemented carbide cutting tools of the present invention 122-126, and the coated cemented carbide cutting tools of the prior art 122-126, a mild steel milling test was performed under the following conditions,

55 Workpiece: mild steel square block
 Cutting Speed: 260 m/min
 Feed: 0.33 mm/tooth
 Depth of Cut: 3 mm
 Cutting Time: 40 min

and an appraisal identical to that of Example 1 was made.

For the coated cermet cutting tools of the present invention 113-121, and the coated cermet cutting tools of the prior art 113-121, a mild steel continuous cutting test was performed under the following conditions,

- 5 Workpiece: mild steel round bar
Cutting Speed: 340 m/min
Feed: 0.22 mm/rev
Depth of Cut: 1 mm
Cutting Time: 20 min

- 10 and an appraisal identical to that of Example 1 was made. Furthermore, an interrupted cutting test was performed under the following conditions,

- Workpiece: mild steel round bar with groove
Cutting Speed: 320 m/min
Feed: 0.17 mm/rev
15 Depth of Cut: 1 mm
Cutting Time: 20 min

and an appraisal identical to that of Example 1 was made.

The results of the above tests are shown in Tables 18-21. As is able to be seen from Tables 18-21, all 20 demonstrate the properties that it is difficult to fracture or chip the cutting blades and spalling of the coating layers is rare, in addition to exhibiting superior wear and fracture resistance.

25

30

35

40

45

50

55

TABLE 1

Type	Blend Composition (% by weight)						Sintering Conditions		
	Co	(Ti, W)C	Ti, W/CN	(Ta, Nb)C	Cr ₂ C ₂	WC	Pressure	Temperature (°C)	Holding Time (hours)
A	6	-	6	4	-	Balance (medium grain)	Vacuum (0.10 torr)	1380	1
B	5	5	-	5	-	Balance (medium grain)	Vacuum (0.05 torr)	1450	1
Cemented Carbide Substrate									
C	9	8	-	5	-	Balance (medium grain)	Vacuum (0.05 torr)	1380	1.5
D	5	-	5	3	-	Balance (medium grain)	Vacuum (0.05 torr)	1410	1
E	10	-	-	2	-	Balance (coarse grain)	Vacuum (0.05 torr)	1380	1
E'	10	-	-	-	0.7	Balance (coarse grain)	Vacuum (0.05 torr)	1380	1
Cermet Substrate									
F	30.2 TiC - 23 TiN - 10 TaC - 13 WC - 10 Mo ₂ C - 0.5 zrC - 8 Co - 5 Ni - 0.3 NiAl					Vacuum (0.10 torr)	1500	1.5	
G	57 TiCN - 10 TaC - 1 NbC - 9 WC - 9 Mo ₂ C - 7 Co - 7 Ni					N ₂ Atmosphere (110 torr)	1520	1.5	

5

10

15

20

25

30

35

40

45

50

55

5
10
15
20
25
30
35
40
45
50
55

TABLE 2

	Composition of Sintered Body (1 by weight)	Hardness	
		Interior (HRA)	Surface (HRA)
A	6.1 Co - 2.1 Ti - 3.4 Ta - 0.4 Nb - Rest (W + C)	90.5	-
B	5.2 Co - 1.2 Ti - 4.2 Ta - 0.4 Nb - Rest (W + C)	91.0	-
C	9.0 Co - 1.9 Ti - 4.3 Ta - 0.4 Nb - Rest (W + C)	90.3	-
D	5.2 Co - 1.7 Ti - 2.5 Ta - 0.3 Nb - Rest (W + C)	91.1	-
E	9.8 Co - 1.7 Ta - 0.2 Nb - Rest (W + C)	89.7	-
E'	9.8 Co - 0.6 Cr - Rest (W + C)	89.8	-
F	9.4 Ta - 12.2 W - 9.4 Mo - 0.4 Zr - 7.9 Co - 5.1 Ni - 0.1 Al - 3.8 N - Rest (Ti + C)	91.7	92.2
G	9.5 Ta - 0.9 Nb - 8.5 W - 8.5 Mo - 7.1 Co - 7.0 Ni - 6.8 N - Rest (Ti + C)	91.6	92.6

TABLE 3 (a)

(Coating Conditions)

	Composition	X-ray Orientation	Gas Composition (% by volume)	Temperature (°C)	Pressure (Torr)
5	Innermost Layer Granular TiC		TiCl ₄ :2, CH ₄ :5, H ₂ :Rest	1020	50
10	Innermost Layer Granular TiN		TiCl ₄ :2, N ₂ :25, H ₂ :Rest	920	50
15	Innermost Layer Granular TiCN		TiCl ₄ :2, CH ₄ :4, N ₂ :20, H ₂ :Rest	1020	50
20	Inner Layer Elongated TiCN	(111) (220) (200)	First Reaction - TiCl ₄ :2, CH ₃ CN:0.05, N ₂ :20, H ₂ :Rest Second Reaction - TiCl ₄ :2, CH ₃ CN:0.6, N ₂ :20, H ₂ :Rest	860	50
25	Inner Layer Elongated TiCN	(220) (111) (200)	First Reaction - TiCl ₄ :2, CH ₃ CN:0.05, N ₂ :20, H ₂ :Rest Second Reaction - TiCl ₄ :2, CH ₃ CN:0.6, N ₂ :20, H ₂ :Rest	900	50
30	Inner Layer Elongated TiCN	(111) (200) (220)	First Reaction - TiCl ₄ :2, CH ₃ CN:0.05, N ₂ :20, H ₂ :Rest Second Reaction - TiCl ₄ :2, CH ₃ CN:0.3, N ₂ :20, H ₂ :Rest	860	50
35	Inner Layer Elongated TiCN	(220) (200) (111)	First Reaction - TiCl ₄ :4, CH ₃ CN:0.05, N ₂ :20, H ₂ :Rest Second Reaction - TiCl ₄ :4, CH ₃ CN:0.3, N ₂ :20, H ₂ :Rest	900	50
40	Inner Layer Granular TiCN	(111) (200) (220)	TiCl ₄ :4, CH ₄ :6, N ₂ :2, H ₂ :Rest	1050	500
45	Inner Layer Granular TiCN	(220) (200) (111)	TiCl ₄ :4, CH ₄ :4, N ₂ :2, H ₂ :Rest	1050	500
50	Inner Layer Granular TiCN	(200) (220) (111)	TiCl ₄ :4, CH ₄ :2, N ₂ :2, H ₂ :Rest	1000	100
	Divided Layer Granular TiN		TiCl ₄ :2, N ₂ :25, H ₂ :Rest	900	200
	Divided Layer Granular TiN		TiCl ₄ :2, N ₂ :25, H ₂ :Rest	860	200
	First Intermediate Layer Granular TiC		TiCl ₄ :2, CH ₄ :5, H ₂ :Rest	1020	50
	First Intermediate Layer Granular TiCN		TiCl ₄ :2, CH ₄ :4, N ₂ :20, H ₂ :Rest	1020	50
	Second Intermediate Layer Granular TiCO		TiCl ₄ :4, CO:6, H ₂ :Rest	980	50
	Second Intermediate Layer Granular TiCNO		TiCl ₄ :4, CH ₄ :2, N ₂ :1.5, CO ₂ :0.5, H ₂ :Rest	1000	50

TABLE 3 (b)

	Composition	X-ray Orientation	Gas Composition (% capacity)	Temperature (°C)	Pressure (Torr)
5	Outer Layer Al ₂ O ₃	100% κ	First Reaction - AlCl ₃ :3%, H ₂ :Rest Second Reaction - AlCl ₃ :3%, CO ₂ :5%, H ₂ S:0.3, H ₂ :Rest	970	50
10	Outer Layer Al ₂ O ₃	94% κ	First Reaction - AlCl ₃ :3%, H ₂ :Rest Second Reaction - AlCl ₃ :3%, CO ₂ :5%, H ₂ :Rest	970	50
15	Outer Layer Al ₂ O ₃	85% κ	First Reaction - AlCl ₃ :3%, H ₂ :Rest Second Reaction - AlCl ₃ :3%, CO ₂ :6%, H ₂ S:0.2, H ₂ :Rest	980	50
20	Outer Layer Al ₂ O ₃	73% κ	First Reaction - AlCl ₃ :3%, H ₂ :Rest Second Reaction - AlCl ₃ :3%, CO ₂ :6%, H ₂ :Rest	980	50
25	Outer Layer Al ₂ O ₃	62% κ	First Reaction - AlCl ₃ :3%, H ₂ :Rest Second Reaction - AlCl ₃ :3%, CO ₂ :7%, H ₂ S:0.2, H ₂ :Rest	990	50
30	Outer Layer Al ₂ O ₃	55% κ	First Reaction - AlCl ₃ :3%, H ₂ :Rest Second Reaction - AlCl ₃ :3%, CO ₂ :8%, H ₂ :Rest	1000	50
	Outer Layer Al ₂ O ₃	40% κ	First Reaction - AlCl ₃ :3%, H ₂ S:0.05, H ₂ :Rest Second Reaction - AlCl ₃ :3%, CO ₂ :9%, H ₂ S:0.1, H ₂ :Rest	1010	50
	Outer Layer Al ₂ O ₃	100% α	AlCl ₃ :3%, CO ₂ :10%, H ₂ :Rest	1020	100
	Outermost Layer Granular TiN		TiCl ₄ :2, N ₂ :30, H ₂ :Rest	1020	200
	Outermost Layer Granular TiN		TiCl ₄ :2, CH ₄ :4, N ₂ :20, H ₂ :Rest	1020	200

35

40

45

50

55

5
10
15
20
25
30
35
40
45
50

TABLE 4

Type	Substrate Symbol	Hard Coating Layer						Flank Wear (mm)		
		Inner Layer		Outer Layer		Outermost Layer		Continuous Cutting	Interrupted Cutting	
		Composition	Crystal Structure	Orientation	Composition	Crystal Structure	Composition	Crystal Structure	Flank Wear (mm)	
	1 A	TiCN(8.4)	Elongated Growth	(111)(220)(200)	Al ₂ O ₃ (2.2)	K:94%	TiN(0.5)	Granular	0.17	0.26
	2 A	TiCN(5.5)	Elongated Growth	(220)(111)(200)	Al ₂ O ₃ (6.2)	K:85%			0.19	0.28
	3 A	TiCN(11.4)	Elongated Growth	(111)(220)(200)	Al ₂ O ₃ (1.8)	K:100%	TiCN-TiN(0.7)	Granular	0.19	0.31
	4 B	TiCN(8.2)	Elongated Growth	(111)(200)(220)	Al ₂ O ₃ (2.1)	K:100%	TiN(0.4)	Granular	0.17	0.31
Coated	5 B	TiCN(5.1)	Elongated Growth	(111)(220)(200)	Al ₂ O ₃ (5.2)	K:73%			0.21	0.26
Cementing	6 C	TiCN(10.2)	Elongated Growth	(220)(111)(200)	Al ₂ O ₃ (1.2)	K:55%	TiN(0.3)	Granular	0.22	0.31
Carbide	7 C	TiCN(5.4)	Elongated Growth	(220)(200)(111)	Al ₂ O ₃ (0.9)	K:62%	TiN(0.6)	Granular	0.26	0.34
Cutting	8 D	TiCN(6.4)	Elongated Growth	(111)(220)(200)	Al ₂ O ₃ (5.7)	K:73%	TiN(0.2)	Granular	0.16	0.26
Tool	9 D	TiCN(3.7)	Elongated Growth	(220)(111)(200)	Al ₂ O ₃ (8.2)	K:62%			0.17	0.30
of the	10 D	TiCN(7.9)	Elongated Growth	(111)(220)(200)	Al ₂ O ₃ (2.5)	K:100%			0.18	0.26
Invention	11 E	TiCN(4.2)	Elongated Growth	(220)(111)(200)	Al ₂ O ₃ (0.5)	K:100%			0.17	(Milling)
	12 E'	TiCN(4.0)	Elongated Growth	(111)(220)(200)	Al ₂ O ₃ (0.4)	K:94%	TiN(0.3)	Granular	0.19	(Milling)
	13 F	TiCN(4.6)	Elongated Growth	(220)(111)(200)	Al ₂ O ₃ (0.4)	K:100%	TiN(0.4)	Granular	0.16	0.29
	14 G	TiCN(3.2)	Elongated Growth	(111)(220)(200)	Al ₂ O ₃ (0.8)	K:94%	TiN(0.2)	Granular	0.16	0.27

TABLE 5

Type	Substrate Symbol	Hard Coating Layer						Flank Wear (mm)	
		Inner Layer			Outer Layer			Composition	Crystal Structure
		Composition	Crystal Structure	Orientation	Composition	Crystal Structure	Composition		
1	A	TiCN(8.5)	Granular	(111)(200)(220)	Al2O3(2.0)	α :100%	TiN(0.5)	Granular	0.47 (Chipping)
2	A	TiCN(5.4)	Granular	(220)(200)(111)	Al2O3(6.0)	α :100%			0.52 (Chipping)
3	A	TiCN(11.3)	Granular	(111)(200)(220)	Al2O3(11.9)	K:40%	TiCN-TiN(0.8)	Granular	0.52 (Chipping)
4	B	TiCN(8.1)	Granular	(200)(220)(111)	Al2O3(2.2)	α :100%	TiN(0.3)	Granular	Failure after 12.8 min. due to Layer Separation
5	B	TiCN(4.9)	Granular	(111)(200)(220)	Al2O3(5.2)	α :100%			Failure after 10.7 min. due to Layer Separation
6	C	TiCN(10.3)	Granular	(220)(200)(111)	Al2O3(11.1)	α :100%	TiN(0.4)	Granular	Failure after 5.6 min. due to Layer Separation
7	C	TiCN(5.5)	Granular	(200)(220)(111)	Al2O3(1.1)	K:40%			Failure after 0.8 min. due to Fracturing
8	D	TiCN(6.5)	Granular	(111)(200)(220)	Al2O3(5.6)	α :100%	TiN(0.3)	Granular	Failure after 10.4 min. due to Layer Separation
9	D	TiCN(7.8)	Granular	(220)(200)(111)	Al2O3(8.4)	K:40%			Failure after 7.9 min. due to Fracturing
10	E	TiCN(7.1)	Granular	(111)(200)(220)	Al2O3(12.4)	α :100%			Failure after 5.2 min. due to Chipping
11	E	TiCN(4.1)	Granular	(220)(200)(111)	Al2O3(10.6)	α :100%			Failure after 7.0 min. due to Chipping
12	E	TiCN(5.9)	Granular	(111)(200)(220)	Al2O3(0.3)	α :100%	TiN(0.2)	Granular	Failure after 20.8 min. due to Chipping (Milling)
13	F	TiCN(4.4)	Granular	(220)(200)(111)	Al2O3(0.4)	α :100%	TiN(0.4)	Granular	Failure after 1.0 min. due to Chipping
14	G	TiCN(3.3)	Granular	(111)(200)(220)	Al2O3(0.9)	α :100%	TiN(0.3)	Granular	Failure after 2.8 min. due to Chipping

5
10
15
20
25
30
35
40
45
50
55

TABLE 6

Type	Substrate Symbol	Hard Coating Layer						Flank Wear (mm)			
		Innermost Layer			Outer Layer			Outermost Layer	Continuous Cutting	Granular Cutting	
		Compo- sition	Crystal Structure	Compo- sition	Orientation	Compo- sition	Crystal Structure	Compo- sition	Crystal Structure	Granular Cutting	
15	A	TiN (0.9)	Granular	TiCN (8.2)	Elongated Growth	(111) (220) (200)	Al203 (2.1)	K: 941 (0.8)	TiN (0.8)	Granular	0.13 0.15
16	A	TiN (0.5)	Granular	TiCN (5.5)	Elongated Growth	(220) (111) (200)	Al203 (6.1)	K: 858			0.15 0.14
17	A	TiCN (0.8)	Granular	TiCN (11.2)	Elongated Growth	(111) (220) (200)	Al203 (11.9)	K: 1001	TiCN-TiN (0.8)	Granular	0.18 0.20
18	B	TiC-TiN (1.5)	Granular	TiCN (8.1)	Elongated Growth	(111) (200) (220)	Al203 (2.0)	K: 1001	TiN (0.5)	Granular	0.16 0.21
Coated Cemented Carbide Cutting Tools of the Invention	19	B	TiN (1.5)	Granular	TiCN (4.8)	Elongated Growth	(111) (220) (200)	Al203 (5.5)	K: 739		0.17 0.17
20	C	TiN (0.1)	Granular	TiCN (10.2)	Elongated Growth	(220) (111) (200)	Al203 (11.2)	K: 551	TiN (0.3)	Granular	0.17 0.20
21	C	TiC (0.4)	Granular	TiCN (5.5)	Elongated Growth	(220) (200) (111)	Al203 (11.0)	K: 621	TiN (0.5)	Granular	0.20 0.22
22	D	TiN (0.6)	Granular	TiCN (6.5)	Elongated Growth	(111) (220) (200)	Al203 (5.3)	K: 738			0.13 0.16
23	D	TiN (1.2)	Granular	TiCN (3.9)	Elongated Growth	(220) (111) (200)	Al203 (8.1)	K: 621			0.16 0.19
24	D	TiCN (0.6)	Granular	TiCN (7.8)	Elongated Growth	(111) (220) (200)	Al203 (2.4)	K: 1001			0.17 0.18
25	E	TiN (0.3)	Granular	TiCN (3.5)	Elongated Growth	(220) (111) (200)	Al203 (0.6)	K: 1001			0.13 (Willing)
26	E	TiN (0.3)	Granular	TiCN (4.0)	Elongated Growth	(111) (220) (200)	Al203 (0.4)	K: 941	TiN (0.3)	Granular	0.15 (Willing)
27	F	TiN (0.7)	Granular	TiCN (4.5)	Elongated Growth	(220) (111) (200)	Al203 (0.3)	K: 1001	TiN (0.4)	Granular	0.15 0.28
28	G	TiN-TiCN (0.9)	Granular	TiCN (3.1)	Elongated Growth	(111) (220) (200)	Al203 (0.7)	K: 941	TiN (0.2)	Granular	0.14 0.27

5
10
15
20
25
30
35
40
45
50

TABLE 7 (a)

Type	Substrate Symbol	Hard Coating Layer						Flank Wear (mm)
		Innermost Layer			Outer Layer			
		Compo- sition	Crystal Structure	Compo- sition	Crystal Orientation	Compo- sition	Crystal Structure	
15	A	TiN (1.0)	Granular	TiCN (8.1)	Granular (111)(200)(220)	Al2O3 (2.0)	α :100 α	TiN (0.8) Granular (Chipping) Cutting
16	A	TiN (0.5)	Granular	TiCN (5.3)	Granular (220)(200)(111)	Al2O3 (6.0)	α :100 α	TiN (0.43) Granular (Chipping) Cutting
17	A	TiCN (0.7)	Granular	TiCN (11.4)	Granular (111)(200)(220)	Al2O3 (2.1)	K:40 α	TiCN-TiN (0.7) Granular (Chipping) Chipping
18	B	TiC-TiN (1.4)	Granular	TiCN (8.4)	Granular (200)(220)(111)	Al2O3 (1.9)	α :100 α	TiN (0.4) Granular Failure after 11.2 min. due to Layer Separation
19	B	TiN (1.8)	Granular	TiCN (4.2)	Granular (111)(200)(220)	Al2O3 (4.9)	α :100 α	Failure after 14.5 min. due to Layer Separation
20	C	TiN (0.1)	Granular	TiCN (10.0)	Granular (220)(200)(111)	Al2O3 (1.1)	α :100 α	TiN (0.3) Granular Failure after 8.7 min. due to Layer Separation
Coated Cemented Carbide Cutting Tools of prior Art	21	C	TiC (0.5)	Granular	TiCN (5.4)	Granular (200)(220)(111)	K:40 α	TiN (0.5) Granular Failure after 10.8 min. due to Layer Separation
	22	D	TiN (0.4)	Granular	TiCN (6.7)	Granular (111)(200)(220)	Al2O3 (5.0)	Failure after 20.2 min. due to Chipping Failure after 16.1 min. due to Chipping
	23	D	TiN (1.1)	Granular	TiCN (1.8)	Granular (220)(200)(111)	Al2O3 (8.2)	Failure after 10.1 min. due to Chipping Failure after 5.6 min. due to Chipping
	24	D	TiCN (0.5)	Granular	TiCN (7.6)	Granular (111)(200)(220)	Al2O3 (2.5)	Failure after 14.4 min. due to Chipping Failure after 7.6 min. due to Chipping

TABLE 7 (b)

Type	Substrate Symbol	Hard Coating Layer						Flank Wear (mm)	
		Innermost Layer		Outer Layer		Outermost Layer		Continuous Cutting	Interrupted Cutting
		Compo- sition Structure	Crystal Composition Structure	Orientation	Compo- sition Structure	Crystal Composition Structure	Granular		
25	E	TiN (0.3)	Granular	TiCN (3.9)	(220) (200) (111)	Al ₂ O ₃ (0.6)	α :100 δ	Failure after 26.7 min. due to Chipping (Milling)	Failure after 23.3 min. due to Layer Separation (Milling)
26	E'	TiN (0.1)	Granular	TiCN (3.4)	(111) (200) (220)	Al ₂ O ₃ (0.4)	α :100 δ	TiN (0.3)	Granular
27	F	TiN (0.6)	Granular	TiCN (4.4)	(220) (200) (111)	Al ₂ O ₃ (0.4)	α :100 δ	TiN (0.4)	Failure after 1.2 min. due to Fracturing
28	G	TiN-TiCN (11.0)	Granular	TiCN (3.2)	(111) (200) (220)	Al ₂ O ₃ (0.8)	α :100 δ	TiN (0.3)	Failure after 3.0 min. due to Fracturing

5
 10
 15
 20
 25
 30
 35
 40
 45
 50
 55

5
10
15
20
25
30
35
40
45
50

TABLE 8

Type	Substrate Symbol	Hard Coating Layer						Flank Wear (mm)		
		Innermost Layer			Intermediate Layer		Outer Layer	Outermost Layer	Continuous Cutting	Interrupted Cutting
		Composition	Crystal Structure	Orientation	Composition	Crystal Structure				
29	A	TiN (0.9)	Granular	TiCN (6.5) Elongated Growth	TiC (111)(220)(200)	Granular Al2O3 (3.0)	K:941 (2.5)	TiN (0.2)	Granular 0.15	0.19
30	A	TiN (0.5)	Granular	TiCN (3.0) Elongated Growth	TiC (1220)(1111)(200)	Granular Al2O3 (2.4)	K:854 (6.0)		0.18	0.18
31	A			TiCN (1.9) Elongated Growth	TiC (1111)(220)(200)	Granular Al2O3 (2.3)	K:1000 (2.1)	TiCN-TiN (0.8)		
32	B	TiC-TiN (1.1)	Granular	TiCN (4.5) Elongated Growth	TiC (1111)(200)(220)	Granular Al2O3 (3.9)	K:1001 (1.7)	TiN (0.2)	Granular 0.18	0.29
33	B	TiN (1.6)	Granular	TiCN (4.9) Elongated Growth	TiC (1111)(220)(200)	Granular Al2O3 (1.0)	K:731 (4.0)		0.15	0.28
34	C	TiN (0.1)	Granular	TiCN (6.8) Elongated Growth	TiC (2220)(1111)(200)	Granular Al2O3 (3.2)	K:551 (1.2)	TiN (0.1)	0.19	0.20
35	C	TiC (0.7)	Granular	TiCN (3.3) Elongated Growth	TiC (2220)(200)(111)	Granular Al2O3 (1.9)	K:621 (0.9)	TiN (0.1)	0.25	0.25
36	D	TiN (0.6)	Granular	TiCN (3.6) Elongated Growth	TiC (1111)(2220)(200)	Granular Al2O3 (2.8)	K:731 (5.2)		0.15	0.20
37	D			TiCN (2.6) Elongated Growth	TiCN (2220)(1111)(200)	Granular Al2O3 (1.0)	K:621 (1.8)		0.16	0.27
38	D	TiN (0.4)	Granular	TiCN (5.6) Elongated Growth	TiC (1111)(2220)(200)	Granular Al2O3 (2.3)	K:1001 (2.7)		0.16	0.24
39	E	TiN (0.3)	Granular	TiCN (2.5) Elongated Growth	TiC (2220)(1111)(200)	Granular Al2O3 (1.5)	K:1001 (0.5)		0.15 (Milling)	
40	E'			TiCN (2.7) Elongated Growth	TiC (1111)(2220)(200)	Granular Al2O3 (1.6)	K:941 (0.3)	TiN (0.2)		
41	F			TiCN (3.5) Elongated Growth	TiC (2220)(1111)(200)	Granular Al2O3 (1.3)	K:1001 (0.4)	TiN (0.2)	0.16	0.26
42	G	TiN-TiCN (1.0)	Granular	TiCN (1.7) Elongated Growth	TiC (1111)(2220)(200)	Granular Al2O3 (1.0)	K:941 (0.6)	TiN (0.3)	0.14	0.24

55

5
10
15
20
25
30
35
40
45
50

TABLE 9 (a)

Type	Substrate Symbol	Hard Coating Layer						Flank Wear (nm)	
		Innermost Layer	First Intermediate Layer	Outer Layer	Outermost Layer	Continuous Cutting	Interrupted Cutting		
		Composition Crystal Structure	Orientation	Composition Crystal Structure	Composition Crystal Structure	Composition Crystal Structure	Composition Crystal Structure		
29	A	TiN (1.0)	Granular (9.3)	TiCN (2.5)	Granular (2.5)	Al2O3 (2.5)	TiN (0.2)	0.43 (Chipping)	0.54 (Chipping)
30	A	TiN (0.5)	Granular (3.1)	TiCN (2.1)	Granular (2.1)	Al2O3 (5.6)		0.50 (Chipping)	0.51 (Chipping)
31	A			TiCN (9.5)	Granular (2.1)	Al2O3 (2.1)	K:40 (0.6)	0.50 (Chipping)	0.48 (Chipping)
32	B	TiC-TiN (1.2)	Granular (4.7)	TiCN (2.0)	Granular (4.0)	Al2O3 (1.8)	TiN (0.2)	Failure after 11.9 min. due to Layer Separation	Failure after 8.8 min. due to Layer Separation
33	B	TiN (1.7)	Granular (4.8)	TiCN (1.1)	Granular (2.2)	TiC (1.2)	Granular (3.9)	Failure after 11.1 min. due to Layer Separation	Failure after 6.2 min. due to Layer Separation
Coated Cemented Carbide Cutting Tools of Prior Art									
34	C	TiN (0.1)	Granular (5.8)	TiCN (2.5)	Granular (2.5)	Al2O3 (1.1)	TiN (0.3)	Failure after 6.8 min. due to Layer Separation	Failure after 1.4 min. due to Fracturing
35	C	TiC (0.6)	Granular (3.2)			Al2O3 (1.0)	TiN (0.4)	Failure after 11.6 min. due to Layer Separation	Failure after 4.1 min. due to Fracturing
36	D	TiN (0.4)	Granular (3.5)	TiCN (2.0)	Granular (2.9)	Al2O3 (4.8)	TiN (0.1)	Failure after 18.5 min. due to Chipping	Failure after 9.2 min. due to Chipping
37	D			TiCN (2.7)	Granular (2.9)	Al2O3 (8.1)		Failure after 16.8 min. due to Chipping	Failure after 6.4 min. due to Chipping
38	D	TiCN (0.5)	Granular (5.7)	TiCN (2.5)	Granular (2.7)	Al2O3 (1.0)	TiN (0.1)	Failure after 14.7 min. due to Chipping	Failure after 8.2 min. due to Chipping

55

TABLE 9 (b)

Type	Substrate Symbol	Innermost Layer			Hard Coating Layer			Flank Wear (mm)		
		Composition	Crystal Structure	Orientation	First Intermediate Layer	Composition	Crystal Structure	Outer Layer	Outermost Layer	Continuous Cutting
Coated Cemented Carbide Cutting Tools of Prior Art	J9	E	TiN (0.3)	Granular TiCN (2.5)	Granular (220) (200) (111)	TiC (1.4)	Granular Al2O3 (0.5)	α:100% (0.5)		Failure after 19.7 min. due to Chipping (Milling)
	40	E'		TiCN (2.6)	Granular (111) (200) (220)	TiC (1.5)	Granular Al2O3 (0.4)	α:100% (0.3)		Failure after 19.3 min. due to Layer Separation (Milling)
	41	F		TiCN (3.4)	Granular (220) (200) (111)	TiCN (1.4)	Granular Al2O3 (0.3)	α:100% (0.3)		Failure after 1.4 min. due to Fracturing
	42	G	TiN-TiCN (0.9)	Granular (1.9)	(111) (200) (220)	TiC (1.1)	Granular Al2O3 (0.7)	α:100% (0.2)		Failure after 3.2 min. due to Chipping
										Failure after 0.3 min. due to Fracturing

5

10

15

20

25

30

35

40

45

50

55

TABLE 10

Type	Substrate Symbol	Hard Coating Layer				Plank Wear (mm)			
		Inner Layer		Second Intermediate Layer	Outer Layer	Outermost Layer		Continuous Cutting	Granular Cutting
43	A	TiCN (8.4)	Crystal Structure (111)(220)(200)	TiCNO (0.1)	Granular Al2O3 (2.0)	K:948 (0.5)	TiN (0.5)	Granular 0.15	0.17
44	A	TiCN (5.7)	Elongated (220)(111)(200)	TiCNO (0.1)	Granular Al2O3 (6.0)	K:858			
45	A	TiCN (11.4)	Elongated (111)(220)(200)	TiCNO (0.1)	Granular Al2O3 (1.9)	K:1008	TiCNO (0.6)	Granular 0.15	0.19
46	B	TiCN (8.2)	Elongated (111)(200)(220)	TiCNO (0.1)	Granular Al2O3 (2.1)	K:1008 (0.3)	TiN (0.6)	Granular 0.14	0.20
47	B	TiCN (5.0)	Elongated (111)(220)(200)	TiCO (0.1)	Granular Al2O3 (5.3)	K:738			
48	C	TiCN (10.2)	Elongated (220)(111)(200)	TiCO (0.1)	Granular Al2O3 (1.2)	K:558	TiN (0.3)	Granular 0.17	0.19
49	C	TiCN (5.4)	Elongated (220)(200)(111)	TiCNO (0.1)	Granular Al2O3 (0.9)	K:628	TiN (0.4)	Granular 0.18	0.21
50	D	TiCN (6.5)	Elongated (111)(220)(200)	TiCNO (0.1)	Granular Al2O3 (5.4)	K:948 (0.2)	TiN (0.2)	Granular 0.13	0.18
51	D	TiCN (3.8)	Elongated (220)(111)(200)	TiCNO (0.1)	Granular Al2O3 (8.2)	K:628			
52	D	TiCN (7.7)	Elongated (111)(220)(200)	TiCNO (0.1)	Granular Al2O3 (2.4)	K:1008			
53	E	TiCN (4.1)	Elongated (220)(111)(200)	TiCNO (0.1)	Granular Al2O3 (0.6)	K:1008			
54	E'	TiCN (4.0)	Elongated (111)(220)(200)	TiCNO (0.1)	Granular Al2O3 (0.5)	K:948 (0.3)	TiN (0.3)	Granular 0.16	(Milling)
55	F	TiCN (4.4)	Elongated (220)(111)(200)	TiCO (0.1)	Granular Al2O3 (0.3)	K:1008 (0.3)	TiN (0.3)	Granular 0.12	0.18
56	G	TiCN (3.0)	Elongated (111)(220)(200)	TiCNO (0.2)	Granular Al2O3 (0.7)	K:948 (0.2)	TiN (0.2)	Granular 0.13	0.17

5
10
15
20
25
30
35
40
45
50

55

5
10
15
20
25
30
35
40
45
50

TABLE 11 (a)

Type	Substrate Symbol	Hard Coating Layer						Flank Wear (mm)	
		Inner layer		Second Intermediate Layer		Outer Layer		Outermost Layer	
		Composition	Crystal Structure	Orientation	Cooperation	Crystal Structure	Composition	Crystal Structure	Continuous Cutting
43	A	TiCN (6.2)	Granular	(111)(200)(220)	TiCNO (0.1)	Granular	Al2O3 (2.1)	TiN (0.4)	0.54 Cutting
44	A	TiCN (5.5)	Granular	(220)(200)(111)	TiCNO (0.1)	Granular	Al2O3 (6.1)		0.47 (Chipping)
45	A	TiCN (11.5)	Granular	(111)(200)(220)	TiCNO (0.1)	Granular	Al2O3 (1.8)		0.51 (Chipping)
46	B	TiCN (8.3)	Granular	(200)(220)(111)	TiCNO (0.1)	Granular	K:40A (2.0)	TiCN-TiN (0.7)	0.55 (Chipping)
47	B	TiCN (4.8)	Granular	(111)(200)(220)	TiCO (0.2)	Granular	Al2O3 (5.2)	TiN (0.3)	Failure after 17.5 min. due to Layer Separation
Coated Cemented Carbide Cutting Tools Of Prior Art									
48	C	TiCN (10.3)	Granular	(220)(200)(111)	TiCO (0.1)	Granular	Al2O3 (1.3)	TiN (0.2)	Failure after 14.0 min. due to Layer Separation
49	C	TiCN (5.2)	Granular	(200)(220)(111)	TiCNO (0.1)	Granular	Al2O3 (0.9)	K:40A (0.5)	Failure after 8.2 min. due to Layer Separation
50	D	TiCN (6.6)	Granular	(111)(200)(220)	TiCNO (0.1)	Granular	Al2O3 (5.5)	TiN (0.3)	Failure after 11.6 min. due to Layer Separation
51	O	TiCN (1.7)	Granular	(220)(200)(111)	TiCNO (0.1)	Granular	Al2O3 (8.1)	K:40A	Failure after 5.3 min. due to Fracturing
52	O	TiCN (7.8)	Granular	(111)(200)(220)	TiCNO (0.1)	Granular	Al2O3 (2.3)	Failure after 16.3 min. due to Chipping	Failure after 10.1 min. due to Chipping

TABLE 11 (b)

Type	Substrate Symbol	Hard Coating Layer						Flank Wear (nm)	
		Inner Layer		Intermediate Layer		Outer Layer		Outermost Layer	
		Compo- sition	Crystal Structure	Compo- sition	Crystal Structure	Compo- sition	Crystal Structure	Continuous Cutting	Interrupted Cutting
53	E	TiCN (4.2)	Granular (220) (200) (111)	TiCNO (0.1)	Granular (0.1)	Al ₂ O ₃ (0.5)	α:100%	Failure after 26.9 min. due to Chipping (Milling)	
54	E'	TiCN (4.0)	Granular (111) (200) (220)	TiCNO (0.1)	Granular (0.1)	Al ₂ O ₃ (0.4)	α:100%	Granular Failure after 24.2 min. due to Layer Separation (Milling)	
55	F	TiCN (4.5)	Granular (220) (1200) (111)	TiCO (0.1)	Granular (0.1)	Al ₂ O ₃ (0.3)	α:100%	Granular Failure after 2.0 min. due to Chipping	Failure after 0.2 min. due to Fracturing
56	G	TiCN (3.2)	Granular (111) (200) (220)	TiCNO (0.2)	Granular (0.2)	Al ₂ O ₃ (0.6)	α:100%	Granular Failure after 5.2 min. due to Chipping	Failure after 0.7 min. due to Fracturing

5
10
15
20
25
30
35
40
45
50
55

TABLE 12

Type	Substrate Symbol	Hard Coating Layer						Flank Wear (nm)		
		Innermost Layer		Intermediate Layer		Outer Layer		Crystalline Structure	Continuous Cutting	Interrupted Cutting
		Composition	Crystal Structure	Orientation	Composition	Crystal Structure	Composition	Crystalline Structure	Granular	0.13
57	A	TiN (1.0)	Granular	TiCN (8.5) Growth	(111)(220)(200)	TiCN (10.1)	Al2O3 K:94A (12.2)	TiN (0.5)	Granular	0.13
58	A	TiN (0.5)	Granular	TiCN (5.6) Growth	(220)(111)(200)	TiCN (10.1)	Al2O3 K:85A (16.0)	TiN (0.5)	Granular	0.15
59	A	TiCN (0.8)	Granular	TiCN (11.5) Growth	(111)(220)(200)	TiCN (10.1)	Al2O3 K:100A (11.8)	TiN (0.7)	Granular	0.11
60	B	TiC-TiN (1.4)	Granular	TiCN (8.2) Growth	(111)(200)(220)	TiCN (10.1)	Al2O3 K:100A (12.0)	TiCN-TiN (0.3)	Granular	0.14
Coated Cemented Carbide Cutting Tools of the Invention	61	B	TiN (1.6)	Granular	TiCN (4.9) Growth	(111)(220)(200)	TiCO Granular Al2O3 K:73A (5.1)	TiN (0.3)	Granular	0.15
	62	C	TiN (0.1)	Granular	TiCN (10.1) Growth	(220)(111)(200)	TiCO Granular Al2O3 K:55A (11.1)	TiN (0.3)	Granular	0.17
	63	C	TiC (0.5)	Granular	TiCN (5.3) Growth	(220)(200)(111)	TiCN Granular Al2O3 K:62A (0.9)	TiN (0.5)	Granular	0.19
	64	D	TiN (0.6)	Granular	TiCN (6.4) Growth	(111)(220)(200)	TiCO Granular Al2O3 K:94A (18.3)	TiN (0.2)	Granular	0.21
	65	D	TiN (1.2)	Granular	TiCN (3.8) Growth	(220)(111)(200)	TiCN Granular Al2O3 K:62A (15.6)	TiN (0.2)	Granular	0.20
	66	D	TiCN (0.4)	Granular	TiCN (7.8) Growth	(111)(220)(200)	TiCO Granular Al2O3 K:94A (10.1)	TiN (0.1)	Granular	0.12
	67	E	TiN (0.3)	Granular	TiCN (4.2) Growth	(220)(111)(200)	TiCN Granular Al2O3 K:62A (12.5)	TiN (0.1)	Granular	0.15
	68	E'	TiN (0.3)	Granular	TiCN (4.1) Growth	(111)(220)(200)	TiCO Granular Al2O3 K:100A (0.6)	TiN (0.1)	Granular	0.11
	69	F	TiN (0.7)	Granular	TiCN (4.6) Growth	(220)(111)(200)	TiCO Granular Al2O3 K:94A (0.4)	TiN (0.3)	Granular	0.14
	70	G	TiN-TiCN (1.0)	Granular	TiCN (3.1) Growth	(111)(220)(200)	TiCN Granular Al2O3 K:94A (0.2)	TiN (0.2)	Granular	0.11

5
10
15
20
25
30
35
40
45
50

5
10
15
20
25
30
35
40
45
50

TABLE 13 (a)

Type	Substrate Symbol	Hard Coating Layer						Plank Wear (mm)		
		Innermost Layer			Second Intermediate Layer			Outer Layer	Outermost Layer	Continuous Cutting
		Composition	Crystal Structure	Orientation	Composition	Crystal Structure	Orientation			
57	A	TiN (1.0)	Granular TiCN (8.4)	(111) (200) (220)	TiCNO Granular Al2O3 $\alpha:100\%$ (0.1)	Crystalline Al2O3 $\alpha:100\%$ (2.1)	Crystalline Al2O3 $\alpha:100\%$ (0.1)	TiN Granular	0.38 (Chipping)	0.51 (Chipping)
58	A	TiN (0.6)	Granular TiCN (5.3)	(220) (200) (111)	TiCNO Granular Al2O3 $\alpha:100\%$ (5.9)	Crystalline Al2O3 $\alpha:100\%$ (1.9)	Crystalline Al2O3 $\alpha:100\%$ (0.6)	TiN Granular	0.41 (Chipping)	0.49 (Chipping)
59	A	TiCN (0.7)	Granular TiCN (11.3)	(111) (200) (220)	TiCNO Granular Al2O3 $\alpha:100\%$ (0.1)	Crystalline Al2O3 $\alpha:100\%$ (1.7)	Crystalline Al2O3 $\alpha:100\%$ (0.1)	TiN Granular	0.40 (Chipping)	0.54 (Chipping)
60	B	TiC-TiN (1.5)	Granular TiCN (8.1)	(200) (220) (111)	TiCNO Granular Al2O3 $\alpha:100\%$ (2.2)	Crystalline Al2O3 $\alpha:100\%$ (0.1)	Crystalline Al2O3 $\alpha:100\%$ (0.1)	TiN Granular	Failure after 18.8 min. due to Layer Separation	Failure after 12.3 min. due to Layer Separation
61	B	TiN (1.6)	Granular TiCN (4.8)	(111) (200) (220)	TiCNO Granular Al2O3 $\alpha:100\%$ (0.2)	Crystalline Al2O3 $\alpha:100\%$ (5.0)	Crystalline Al2O3 $\alpha:100\%$ (0.1)	TiN Granular	Failure after 15.1 min. due to Layer Separation	Failure after 8.6 min. due to Layer Separation
Coated Cemented Carbide Cutting Tools of Prior Art		62	C	TiN (0.1)	Granular TiCN (10.2)	(220) (200) (111)	TiCNO Granular Al2O3 $\alpha:100\%$ (5.0)	TiN Granular	Failure after 9.0 min. due to Layer Separation	Failure after 1.7 min. due to Layer Separation
		63	C	TiC (0.4)	Granular TiCN (5.4)	(200) (220) (111)	TiCNO Granular Al2O3 $\alpha:100\%$ (1.0)	TiN Granular	Failure after 14.6 min. due to Layer Separation	Failure after 5.9 min. due to Fracturing
		64	D	TiN (0.5)	Granular TiCN (6.6)	(111) (200) (220)	TiCNO Granular Al2O3 $\alpha:100\%$ (5.3)	TiN Granular	Failure after 21.4 min. due to Chipping	Failure after 12.1 min. due to Chipping
		65	D	TiN (1.3)	Granular TiCN (1.9)	(220) (200) (111)	TiCNO Granular Al2O3 $\alpha:100\%$ (8.2)	TiN Granular	Failure after 19.5 min. due to Chipping	Failure after 9.1 min. due to Chipping
		66	D	TiCN (0.5)	Granular TiCN (7.7)	(111) (200) (220)	TiCNO Granular Al2O3 $\alpha:100\%$ (2.3)	TiN Granular	Failure after 17.1 min. due to Chipping	Failure after 10.8 min. due to Chipping

TABLE 13 (b)

Type	Substrate Symbol	Hard Coating Layer						Flank Wear (mm)	
		Innermost Layer		Second Intermediate Layer		Outer Layer		Outermost Layer	
	Composition	Crystal Structure	Orientation	Composition	Crystal Structure	Composition	Crystal Structure	Continuous Cutting	Interrupted Cutting
Coated Cemented Carbide Cutting Tools of Prior Art	67 E	TiN (0.3)	Granular TiCN (4.0)	Granular (220)(200)(111) TiCN	Granular (0.1)	Al2O3 α:100% (0.6)		Failure after 28.0 min. due to Chipping (Milling)	
	68 E'	TiN (0.3)	Granular TiCN (3.9)	Granular (111)(200)(220) TiCN	Granular (0.1)	Al2O3 α:100% (0.4)	TiN (0.3)	Failure after 24.8 min. due to Layer Separation (Milling)	
	69 F	TiN (0.7)	Granular TiCN (4.5)	Granular (220)(200)(111) TiCO	Granular (0.1)	Al2O3 α:100% (0.4)	TiN (0.4)		Failure after 2.5 min. due to Chipping
	70 G	TiN-TiCN (1.0)	Granular TiCN (3.3)	Granular (111)(200)(220) TiCN	Granular (0.2)	Al2O3 α:100% (0.9)	TiN (0.2)	Failure after 5.7 min. due to Chipping	Failure after 0.9 min. due to Fracturing

5

10

15

20

25

30

35

40

45

50

55

5
10
15
20
25
30
35
40
45
50

TABLE 14

Type	Substrate Symbol	Hard Coating Layer						Flank wear (mm)		
		Inner Layer		First Intermediate Layer		Second Intermediate Layer				
		Composition	Orientation	Composition	Structure	Composition	Structure			
	71 A	TiCN (6.3) Elongated	(111)(220)(200)	TiC (3.2)	Granular	TiCN (0.1)	Granular	Al2O3 (2.1)	K:941 (0.21)	TiN Granular 0.16 0.20
	72 A	TiCN (3.1) Elongated	(220)(111)(200)	TiC (2.0)	Granular	TiCN (0.1)	Granular	Al2O3 (6.0)	K:851 (0.2)	TiN Granular 0.19 0.19
	73 A	TiCN (9.4) Elongated	(111)(220)(200)	TiC (2.0)	Granular	TiCN (0.1)	Granular	Al2O3 (2.1)	K:1001 (0.7)	TiN Granular 0.16 0.21
	74 B	TiCN (4.6) Elongated	(111)(200)(220)	TiC (3.8)	Granular	TiCN (0.1)	Granular	Al2O3 (0.1)	K:1001 (0.7)	TiN Granular 0.15 0.23
Coated Cemented Carbide Cutting Tools of the Invention	75 B	TiCN (4.8) Elongated	(111)(220)(200)	TiC (1.4)	Granular	TiCO (0.1)	Granular	Al2O3 (1.8)	K:731 (0.5)	TiN Granular 0.19 0.21
	76 C	TiCN (6.6) Elongated	(220)(111)(200)	TiC (3.1)	Granular	TiCO (0.2)	Granular	Al2O3 (1.0)	K:551 (0.3)	TiN Granular 0.20 0.24
	77 C	TiCN (3.3) Elongated	(220)(200)(111)	TiN (1.9)	Granular	TiCN (0.1)	Granular	Al2O3 (0.9)	K:621 (0.5)	TiN Granular 0.25 0.25
	78 D	TiCN (3.5) Elongated	(111)(220)(200)	TiC (2.9)	Granular	TiCN (0.1)	Granular	Al2O3 (5.2)	K:731 (0.5)	TiN Granular 0.15 0.19
	79 D	TiCN (2.4) Elongated	(220)(111)(200)	TiCN (0.6)	Granular	TiCN (0.1)	Granular	Al2O3 (8.0)	K:621 (0.5)	TiN Granular 0.14 0.22
	80 D	TiCN (5.5) Elongated	(111)(220)(200)	TiC (2.6)	Granular	TiCN (0.1)	Granular	Al2O3 (2.7)	K:1001 (0.5)	TiN Granular 0.15 0.21
	81 E	TiCN (2.6) Elongated	(220)(111)(200)	TiC (1.3)	Granular	TiCN (0.1)	Granular	Al2O3 (0.5)	K:1001 (0.2)	TiN Granular 0.15 (Milling)
	82 E	TiCN (2.3) Elongated	(111)(220)(200)	TiC (1.5)	Granular	TiCN (0.1)	Granular	Al2O3 (0.4)	K:941 (0.2)	TiN Granular 0.14 0.20
	83 F	TiCN (3.4) Elongated	(220)(111)(200)	TiCN (1.2)	Granular	TiCO (0.1)	Granular	Al2O3 (0.4)	K:1001 (0.3)	TiN Granular 0.13 0.19
	84 G	TiCN (1.9) Elongated	(111)(220)(200)	TiC (1.0)	Granular	TiCN (0.2)	Granular	Al2O3 (0.8)	K:941 (0.3)	TiN Granular 0.13 0.19

5
10
15
20
25
30
35
40
45
50

TABLE 15 (a)

Type	Substrate Symbol	Hard Coating Layer						Plank Wear (mm)	
		Inner Layer		First Intermediate Layer		Second Intermediate Layer			
		Composition	Crystal Structure	Orientation	Composition	Crystal Structure	Composition		
Coated Cemented Carbide Cutting Tools of Prior Art	71 A	TiCN (6.2)	Granular	(111)(200)(220) (1.2)	TiC Granular (0.1)	TiCN Granular (0.1)	Al ₂ O ₃ α:100% (2.5)	TiN Granular (0.1)	Failure after 6.3 min. due to Chipping
	72 A	TiCN (1.0)	Granular	(220)(200)(111) (2.0)	TiC Granular (0.1)	TiCN Granular (0.1)	Al ₂ O ₃ α:100% (5.9)	TiN Granular (0.1)	Failure after 6.8 min. due to Chipping
	73 A	TiCN (9.3)	Granular	(111)(200)(220) (2.1)	TiC Granular (0.1)	TiCN Granular (0.1)	Al ₂ O ₃ α:40% (2.2)	TiCN Granular (0.6)	Failure after 7.0 min. due to Chipping
	74 B	TiCN (4.7)	Granular	(200)(220)(111) (3.7)	TiC Granular (0.1)	TiCN Granular (0.1)	Al ₂ O ₃ α:100% (1.9)	TiN Granular (0.2)	Failure after 7.5 min. due to Layer Separation
	75 B	TiCN (4.8)	Granular	(111)(200)(220) (1.2)	TiC Granular (0.1)	TiCO Granular (0.1)	Al ₂ O ₃ α:100% (1.7)	TiN Granular (0.2)	Failure after 8.1 min. due to Layer Separation
	76 C	TiCN (6.7)	Granular	(220)(200)(111) (2.9)	TiC Granular (0.2)	TiCO Granular (0.2)	Al ₂ O ₃ α:100% (1.2)	TiN Granular (0.4)	Failure after 8.8 min. due to Layer Separation
	77 C	TiCN (1.2)	Granular	(200)(220)(111) (1.8)	TiN Granular (0.1)	TiCO Granular (0.1)	Al ₂ O ₃ α:40% (0.8)	TiN Granular (0.4)	Failure after 9.8 min. due to Layer Separation
	78 D	TiCN (1.4)	Granular	(111)(200)(220) (2.8)	TiC Granular (0.1)	TiCO Granular (0.1)	Al ₂ O ₃ α:100% (5.1)	TiN Granular (0.3)	Failure after 10.6 min. due to Chipping
	79 D	TiCN (2.4)	Granular	(220)(200)(111) (1.3)	TiCN Granular (0.1)	TiCO Granular (0.1)	Al ₂ O ₃ α:40% (8.1)	TiN Granular (0.1)	Failure after 11.0 min. due to Chipping
	80 D	TiCN (5.3)	Granular	(111)(200)(220) (2.5)	TiC Granular (0.1)	TiCO Granular (0.1)	Al ₂ O ₃ α:100% (2.6)	TiN Granular (0.1)	Failure after 11.9 min. due to Chipping

TABLE 15 (b)

Type	Substrate Symbol	Hard Coating Layer						Flank Wear (mm)	
		Inner Layer	Orientation	First Intermediate Layer	Second Intermediate Layer	Outer Layer	Outermost Layer	Continuous Cutting	Interrupted Cutting
81	E	TiCN (2.4)	Granular (220)(200)(111)	TiC (1.5)	Granular TiCN (0.1)	Al ₂ O ₃ (0.4)	α :1000	Failure after 20.2 min. due to Chipping (Milling)	
82	E*	TiCN (2.5)	Granular (111)(1200)(220)	TiC (1.4)	Granular TiCN (0.1)	Al ₂ O ₃ (0.4)	α :1000	Failure after 20.1 min. due to Layer Separation (Milling)	
83	F	TiCN (1.3)	Granular (220)(200)(111)	TiCN (1.3)	Granular TiCO (0.1)	Al ₂ O ₃ (0.3)	α :1000	Granular Failure after 1.6 min. due to Chipping	
84	C	TiCN (1.8)	Granular (111)(200)(220)	TiC (1.0)	Granular TiCN (0.2)	Al ₂ O ₃ (0.7)	α :1000	Failure after 0.1 min. due to Fracturing	

5
10
15
20
25
30
35
40
45
50
55

5

10

15

20

25

30

35

40

45

50

55

TABLE 16

Type	Sub- strate Symbol	Hard Coating Layer						Plank Wear (mm)							
		Innermost Layer		First Intermediate Layer		Second Intermediate Layer		Outer Layer	Outermost Layer						
		Compo- sition	Crystal Struc- ture	Compo- sition	Orientation	Compo- sition	Crystal Struc- ture	Compo- sition	Crystal Struc- ture	Compo- sition					
85	A	TiN (0.8)	TiCN (6.4)	TiCN (1.0)	(1111)(220)(100)	TiC (1.0)	Granular (0.1)	TiCNO (0.1)	Granular (2.5)	Al2O3 (2.5)	K: 948 (0.2)	TiN (0.2)	Granular (0.15)	0.19	
86	A	TiN (0.4)	TiCN (3.0)	TiCN (1.0)	(220)(1111)(100)	TiC (2.3)	Granular (0.1)	TiCNO (0.1)	Granular (5.9)	Al2O3 (5.9)	K: 858 (0.2)		0.17	0.18	
87	A	TiCN (0.7)	TiCN (9.2)	TiCN (1.0)	(1111)(220)(100)	TiC (2.1)	Granular (0.1)	TiCNO (0.1)	Granular (2.0)	Al2O3 (2.0)	K: 1008 (0.6)	TiCN-TiN (0.6)	Granular (0.15)	0.20	
88	B	TiC-TiN (1.2)	TiCN (4.7)	TiCN (1.0)	(1111)(200)(220)	TiC (1.8)	Granular (0.1)	TiCNO (0.1)	Granular (1.9)	Al2O3 (1.9)	K: 1008 (0.2)	TiN (0.2)	Granular (0.14)	0.22	
Coated Cemented Carbide Cutting Tools of h...	89	B	TiN (11.5)	TiCN (4.8)	Elongated Groove	(1111)(220)(100)	TiC (1.2)	Granular (0.1)	TiCNO (0.1)	Granular (3.9)	Al2O3 (3.9)	K: 738 (0.3)		0.18	0.19
90	C	TiN (0.1)	TiCN (6.7)	TiCN (1.2)	(220)(1111)(200)	TiC (3.0)	Granular (0.2)	TiCNO (0.1)	Granular (1.1)	Al2O3 (1.1)	K: 558 (0.3)	TiN (0.3)	Granular (0.18)	0.23	
91	C	TiC (0.7)	TiCN (1.2)	TiCN (1.0)	(220)(200)(1111)	TiN (1.7)	Granular (0.1)	TiCNO (0.1)	Granular (0.8)	Al2O3 (0.8)	K: 628 (0.5)	TiN (0.5)	Granular (0.23)	0.24	
92	D	TiN (0.6)	TiCN (3.6)	TiCN (2.1)	Elongated Groove	(1111)(220)(200)	TiC (2.8)	Granular (0.1)	TiCNO (0.1)	Granular (5.1)	Al2O3 (5.1)	K: 738 (0.1)		0.11	0.19
93	D	TiN (1.0)	TiCN (5.4)	TiCN (2.1)	Elongated Groove	(220)(1111)(200)	TiC (1.2)	Granular (0.1)	TiCNO (0.1)	Granular (8.1)	Al2O3 (8.1)	K: 628 (2.8)		0.11	0.21
94	D	TiCN (0.4)	TiCN (1.0)	TiCN (1.0)	(1111)(220)(200)	TiC (2.5)	Granular (0.1)	TiCNO (0.1)	Granular (2.8)	Al2O3 (2.8)	K: 1008 (0.5)		0.14	0.20	
95	E	TiN (0.3)	TiCN (2.5)	TiCN (2.6)	Elongated Groove	(220)(1111)(200)	TiC (1.4)	Granular (0.1)	TiCNO (0.1)	Granular (0.5)	Al2O3 (0.5)	K: 1008 (0.2)		0.14	(Milling)
96	E'	TiN (0.3)	TiCN (1.9)	TiCN (2.5)	Elongated Groove	(1111)(220)(200)	TiC (1.5)	Granular (0.1)	TiCNO (0.1)	Granular (0.3)	Al2O3 (0.3)	K: 948 (0.2)	TiN (0.2)	Granular (0.16)	(Milling)
97	F	TiN (0.5)	TiCN (3.2)	TiCN (1.3)	Elongated Groove	(220)(1111)(200)	TiC (1.4)	Granular (0.1)	TiCNO (0.1)	Granular (0.3)	Al2O3 (0.3)	K: 1008 (0.3)	TiN (0.3)	Granular (0.13)	0.19
98	G	TiN-TiCN (1.1)	TiCN (1.9)	TiCN (1.1)	Elongated Groove	(1111)(220)(200)	TiC (1.0)	Granular (0.2)	TiCNO (0.2)	Granular (0.7)	Al2O3 (0.7)	K: 948 (0.2)	TiN (0.2)	Granular (0.13)	0.18

5
10
15
20
25
30
35
40
45
50

55

TABLE 17

Type	Substrate Symbol	Hard Coating Layer					Flank Wear (mm)
		Innermost Layer		First Intermediate Layer		Second Intermediate Layer	
		Crystallization Structure	Orientation	Crystallization Structure	Crystallization Structure	Outermost Layer	
85	A	TiCN (6.0)	Granular	TiCN (200/1200) (1.3)	Granular (0.1)	TiCN (2.4)	Al2O3 (0.2) Granular (0.41) (Chipping) 0.52 (Chipping)
86	A	TiN (6.4)	Granular	TiCN (220/1240) (1.1)	Granular (0.1)	TiCN (1.5)	Al2O3 (0.2) Granular (15.8) (Chipping) 0.50 (Chipping)
87	A	TiCN (6.5)	Granular	TiCN (200/1200) (1.2)	Granular (0.1)	TiCN (1.2)	K: 40% Al2O3 (0.2) Granular (2.2) TiCN-TiN Granular (0.7) (Chipping) 0.35 (Chipping)
88	B	TiC-TiN (4.6)	Granular	TiCN (200/1220) (1.1)	TiC Granular (3.9)	TiCN (1.0)	Al2O3 (0.2) Granular (1.8) TiN (0.2) Granular (0.1) Failure after 9.8 min. due to Layer Separation
89	B	TiN (1.6)	Granular	TiCN (4.7)	TiC Granular (1.3)	TiCN (1.8)	Al2O3 (0.2) Granular (1.8) Failure after 12.6 min. due to Layer Separation
90	C	TiN (6.5)	Granular	TiCN (220/1240) (1.1)	TiC Granular (3.0)	TiCN (1.1)	Al2O3 (0.2) Granular (0.3) Failure after 7.1 min. due to Layer Separation
Prior Art	91	C	TiC (6.0)	Granular	TiCN (200/1220) (1.1)	TiN Granular (1.3)	TiCN (0.4) Granular (10.9) Failure after 6.7 min. due to Layer Separation
	92	D	TiN (6.5)	Granular	TiCN (3.4)	TiCN (2.9)	Al2O3 (0.2) Granular (15.0) Failure after 13.3 min. due to Layer Separation
	93	D	TiN (6.9)	Granular	TiCN (220/1260) (1.1)	TiCN (1.3)	TiCN (0.1) Granular (18.2) Failure after 6.7 min. due to Layer Separation
	94	D	TiCN (6.5)	Granular	TiCN (1.1)	TiCN (1.1)	Al2O3 (0.2) Granular (2.6) Failure after 19.2 min. due to Layer Separation
	95	E	TiN (6.3)	Granular	TiCN (220/1280) (1.1)	TiC Granular (1.4)	Al2O3 (0.2) Granular (10.5) Failure after 21.9 min. due to Chipping (Milling)
	96	E	TiN (6.3)	Granular	TiCN (220/1280) (1.1)	TiC Granular (1.5)	Al2O3 (0.2) Granular (10.1) Failure after 20.3 min. due to Layer Separation (Milling)
	97	F	TiN (6.4)	Granular	TiCN (220/1280) (1.1)	TiCN (1.3)	Al2O3 (0.2) Granular (10.4) Failure after 1.8 min. due to Fracturing
	98	G	TiN-TiCN (6.0)	Granular	TiCN (200/1220) (1.1)	TiCN (0.1) Granular (0.1) Failure after 9.8 min. due to Fracturing	

5
10
15
20
25
30
35
40
45
50

TABLE 18 (a)

Type	Sub- strate Symbol	Innermost Layer	Hard Coating Layer						Inner Layer		
			First Divided Layer	First Dividing Layer	Second Divided Layer	Second Dividing Layer	Third Divided Layer	Third Dividing Layer	Forth Divided Layer		
Coated Cemented Carbide Cutting Tools of the Invention			Composition Crystal Structure	Composition Crystal Structure	Composition Crystal Structure	Composition Crystal Structure	Composition Crystal Structure	Composition Crystal Structure	TiCN (2.3) Elongated Growth	TiCN (2.3) Elongated Growth	TiCN (2.3) Elongated Growth
	99	A	TiN (1.0)	TiCN (2.4) Elongated Growth	TiN (0.1) Granular	TiCN (2.4) Elongated Growth	TiN (0.2) Granular	TiCN (2.4) Elongated Growth	TiN (0.2) Granular	TiCN (2.3) Elongated Growth	TiCN (2.3) Elongated Growth
	100	A		TiCN (3.0)	TiN (0.2) Granular	TiCN (3.0) Elongated Growth	TiN (0.2) Granular	TiCN (3.0) Elongated Growth			
	101	A	TiN (0.5)	TiCN (3.2)	TiN (0.2) Granular	TiCN (3.1) Elongated Growth	TiN (0.2) Granular	TiCN (3.1) Elongated Growth			
	102	A	TiN (0.5)	TiCN (3.1)	TiN (0.2) Granular	TiCN (3.0) Elongated Growth	TiN (0.2) Granular	TiCN (3.0) Elongated Growth			
	103	B		TiCN (2.7)	TiN (0.2) Granular	TiCN (2.7) Elongated Growth	TiN (0.2) Granular	TiCN (2.7) Elongated Growth	TiN (0.2) Granular	TiCN (2.6) Elongated Growth	TiCN (2.6) Elongated Growth
	104	B	TiC-TiN (1.4)	TiCN (2.2)	TiN (0.3) Granular	TiCN (2.2) Elongated Growth	TiN (0.3) Granular	TiCN (2.2) Elongated Growth	TiN (0.2) Granular	TiCN (2.8) Elongated Growth	TiCN (2.8) Elongated Growth
	105	B	TiN (1.6)	TiCN (3.4)	TiN (0.2) Granular	TiCN (3.4) Elongated Growth	TiN (0.2) Granular	TiCN (3.4) Elongated Growth	TiN (0.2) Granular	TiCN (2.8) Elongated Growth	TiCN (2.8) Elongated Growth
	106	C		TiCN (4.7)	TiN (0.2) Granular	TiCN (4.7) Elongated Growth	TiN (0.2) Granular	TiCN (4.8) Elongated Growth			
	107	C	TiC (0.5)	TiCN (1.1)	TiN (0.1) Granular	TiCN (1.1) Elongated Growth	TiN (0.2) Granular	TiCN (1.0) Elongated Growth	TiN (0.2) Granular	TiCN (1.0) Elongated Growth	TiCN (1.0) Elongated Growth
	108	C	TiN (0.5)	TiCN (2.5)	TiN (0.2) Granular	TiCN (2.5) Elongated Growth	TiN (0.2) Granular	TiCN (2.5) Elongated Growth	TiN (0.2) Granular	TiCN (2.4) Elongated Growth	TiCN (2.4) Elongated Growth
	109	D	TiN (0.6)	TiCN (3.2)	TiN (0.2) Granular	TiCN (3.2) Elongated Growth	TiN (0.2) Granular	TiCN (3.2) Elongated Growth			
	110	D	TiN (0.8)	TiCN (1.2)	TiN (0.2) Granular	TiCN (1.2) Elongated Growth	TiN (0.2) Granular	TiCN (1.0) Elongated Growth			
	111	D	TiCN (0.6)	TiCN (2.0)	TiN (0.3) Granular	TiCN (2.0) Elongated Growth	TiN (0.3) Granular	TiCN (1.8) Elongated Growth	TiCN (1.9) Elongated Growth	TiCN (1.7) Elongated Growth	TiCN (1.7) Elongated Growth
	112	D		TiCN (3.4)	TiN (0.2) Granular	TiCN (3.5) Elongated Growth	TiN (0.2) Granular	TiCN (3.5) Elongated Growth			

5
10
15
20
25
30
35
40

TABLE 18 (b)

Type	Substrate Symbol	Hard Coating Layer						Plank Wear (mm)		
		Inner Layer	First Intermediate Layer	Second Intermediate Layer	Outer Layer		Outermost Layer			
					Composition	Crystal Structure		Composition	Crystalline Structure	Deep-cut Cutting
Coated Cemented Carbide Cutting Tools of the Invention	99	A	(1111)(220)(1200)	TiCN (0.1)	Al2O3 (2.5)	K: 94A (0.2)	TiN (0.2)	Granular	0.15	0.15
	100	A	(220)(1111)(200)	TiC (1.0)	Al2O3 (0.1)	K: 100A (2.7)	TiN (0.2)	Granular	0.16	0.20
	101	A	(1111)(220)(1200)	TiC (1.9)	Al2O3 (2.0)	K: 100A (0.6)	TiCN-TiN (0.6)	Granular	0.17	0.18
	102	A	(1111)(200)(1200)	TiC (1.0)	Al2O3 (2.7)	K: 73A (0.2)	TiN (0.2)	Granular	0.21	0.19
	103	B	(1111)(220)(1200)	TiCO (0.1)	Al2O3 (3.4)	K: 100A (1.9)	TiN (0.2)	Granular	0.16	0.22
	104	B	(1111)(200)(1200)	TiC (1.8)	Al2O3 (1.9)	K: 73A (0.2)	TiN (0.2)	Granular	0.15	0.17
	105	B	(1111)(220)(1200)	TiCO (0.1)	Al2O3 (1.2)	K: 55A (1.2)			0.20	0.16
	106	C	(220)(1111)(200)	TiCO (0.1)	Al2O3 (1.5)	K: 85A (0.2)	TiN (0.2)	Granular	0.20	0.21
	107	C	(220)(1200)(1111)	TiN (1.8)	Al2O3 (0.8)	K: 62A (2.6)			0.24	0.20
	108	C	(1111)(220)(1200)	TiCO (0.1)	Al2O3 (12.6)	K: 94A (0.5)	TiN (0.5)	Granular	0.19	0.21
	109	D	(1111)(220)(1200)	TiCO (0.1)	Al2O3 (8.1)	K: 73A (5.2)			0.15	0.17
	110	D	(220)(1111)(200)	TiCN (1.4)	Al2O3 (12.8)	K: 100A (2.8)			0.15	0.22
	111	D	(1111)(220)(1200)	TiCN (1.4)	Al2O3 (8.1)	K: 100A (2.8)			0.16	0.19
	112	D	(1111)(220)(1200)	TiC (1.2)	Al2O3 (4.2)	K: 73A (0.2)	TiN (0.2)	Granular	0.16	0.17

45

50

55

5
10
15
20
25
30
35
40
45
50

TABLE 19 (a)

Type	Sub-stance Symbol	Hard Coating Layer						Inner Layer					
		Innermost Layer		First Divided Layer		Second Dividing Layer		Third Dividing Layer		Fourth Divided Layer			
		Compo-sition	Crystal Structure	Compo-sition	Crystal Structure	Compo-sition	Crystal Structure	Compo-sition	Crystal Structure	Compo-sition	Crystal Structure	Compo-sition	Crystal Structure
113	F	TiN (0.4)	TiCN (1.6)	TiN (0.2)	TiCN (1.5)	TiN (0.2)	TiCN (1.5)	TiN (0.2)	TiCN (1.5)	TiN (0.2)	TiCN (1.5)	TiN (0.2)	Elongated Growth
114	F	TiN-TiCN (1.0)	Granular	TiCN (0.9)	Elongated Growth	TiN (0.1)	Granular	TiCN (1.0)	Elongated Growth	TiN (0.1)	Granular	TiCN (1.0)	Elongated Growth
115	F			TiCN (1.9)	Elongated Growth	TiN (0.2)	Granular	TiCN (2.0)	Elongated Growth	TiN (0.2)	Granular	TiCN (1.9)	Elongated Growth
116	F			TiCN (2.2)	Elongated Growth	TiN (0.3)	Granular	TiCN (2.3)	Elongated Growth	TiN (0.3)	Granular	TiCN (2.3)	Elongated Growth
117	C	TiC-TiN (0.9)	Granular	TiCN (1.1)	Elongated Growth	TiN (0.2)	Granular	TiCN (1.1)	Elongated Growth	TiN (0.1)	Granular	TiCN (1.0)	Elongated Growth
118	C			TiCN (1.4)	Elongated Growth	TiN (0.2)	Granular	TiCN (1.3)	Elongated Growth	TiN (0.2)	Granular	TiCN (1.3)	Elongated Growth
119	C	TiN (0.5)	Granular	TiCN (1.1)	Elongated Growth	TiN (0.1)	Granular	TiCN (0.8)	Elongated Growth	TiN (0.2)	Granular	TiCN (1.0)	Elongated Growth
120	C			TiCN (1.7)	Elongated Growth	TiN (0.2)	Granular	TiCN (1.6)	Elongated Growth	TiN (0.2)	Granular	TiCN (1.6)	Elongated Growth
121	C			TiCN (2.2)	Elongated Growth	TiN (0.2)	Granular	TiCN (2.0)	Elongated Growth	TiN (0.2)	Granular	TiCN (2.0)	Elongated Growth
122	E	TiCN (0.6)	Granular	TiCN (0.7)	Elongated Growth	TiN (0.2)	Granular	TiCN (0.6)	Elongated Growth	TiN (0.2)	Granular	TiCN (0.6)	Elongated Growth
123	E	TiN (0.3)	Granular	TiCN (1.3)	Elongated Growth	TiN (0.1)	Granular	TiCN (1.3)	Elongated Growth	TiN (0.1)	Granular	TiCN (1.3)	Elongated Growth
124	E	TiN (0.3)	Granular	TiCN (1.8)	Elongated Growth	TiN (0.1)	Granular	TiCN (1.7)	Elongated Growth	TiN (0.1)	Granular	TiCN (1.7)	Elongated Growth
125	E'			TiCN (1.4)	Elongated Growth	TiN (0.3)	Granular	TiCN (1.3)	Elongated Growth	TiN (0.3)	Granular	TiCN (1.3)	Elongated Growth
126	E'	TiC (0.7)	Granular	TiCN (1.5)	Elongated Growth	TiN (0.2)	Granular	TiCN (1.6)	Elongated Growth	TiN (0.2)	Granular	TiCN (1.6)	Elongated Growth

55

5

10

15

20

25

30

35

40

45

50

55

TABLE 19 (b)

Type	Sub- script Symbol	Hard Coating Layer						Plank Wear (mm)		
		Inner Layer	First Intermediate Layer	Second Intermediate Layer	Outer Layer		Outermost Layer			
					Composition	Crystal Structure		Composition	Crystal Structure	
					TiCN	Granular (0.1)	Al2O3	K:1000 (0.2)	TiN Granular (0.2)	0.14 0.18
113	F	{220}{111}{1200}	{1.4}	TiCN	Granular (0.1)	Al2O3	K:1000 (0.2)	TiN Granular (0.2)	0.14 0.18	
114	F	{111}{1220}{1200}		TiCNO	Granular (0.2)	Al2O3	K:940 (0.7)	TiN Granular (0.2)	0.12 0.19	
115	F	{111}{1220}{1200}	{1.1}	TiCN	Granular (0.1)	Al2O3	K:1000 (1.5)	TiN Granular (0.3)	0.13 0.25	
116	F	{111}{1200}{1220}		TiCN	Granular (0.1)	Al2O3	K:940 (1.2)	TiN Granular (0.3)	0.14 0.21	
117	G	{111}{1220}{1200}		TiCO	Granular (0.1)	Al2O3	K:550 (0.5)		0.12 0.20	
118	C	{1220}{1111}{1200}		TiCO	Granular (0.1)	Al2O3	K:940 (2.0)	TiN Granular (0.4)		
119	C	{1220}{1200}{1111}	{1.7}	TiN	Granular (0.1)	Al2O3	K:620 (0.8)	TiN Granular (0.5)	0.15 0.20	
120	C	{1111}{1220}{1200}	{2.9}	TiC	Granular (0.1)	Al2O3	K:850 (1.2)		0.14 0.19	
121	C	{1220}{1111}{1200}		TiCNO	Granular (0.1)	Al2O3	K:1000 (1.0)		0.12 0.23	
122	E	{1111}{1220}{1200}		TiC	Granular (0.1)	Al2O3	K:940 (0.8)	TiN Granular (0.3)	0.14 0.19 (Milling)	
123	E	{1220}{1111}{1200}	{1.4}	TiCN	Granular (0.1)	Al2O3	K:1000 (0.5)		0.15 0.19 (Milling)	
124	E	{1111}{1220}{1200}		TiCNO	Granular (0.1)	Al2O3	K:1000 (0.4)	TiN Granular (0.2)	0.14 0.15 (Milling)	
125	E'	{1220}{1111}{1200}	{0.8}	TiCN	Granular (0.2)	Al2O3	K:1000 (0.3)		0.15 0.19 (Milling)	
126	E'	{1111}{1220}{1200}		TiCNO	Granular (0.2)	Al2O3	K:940 (0.2)	TiN Granular (0.2)	0.14 0.19 (Milling)	

5
10
15
20
25
30
35
40
45
50

TABLE 20

Type	Substrate Symbol	Hard Coating Layer						Flank Wear (mm)	
		Innermost Layer			First Intermediate Layer	Second Intermediate Layer	Outer Layer	Outermost Layer	
		Composition	Crystal Structure	Orientation	Composition	Crystal Structure	Composition	Crystal Structure	Composition
99	A	TiN (11.0)	Granular (9.5)	TiCN (111) (200) (220)	TiCNO (10.1)	Granular (2.3)	Al2O3 α:100% (0.2)	TiN Granular (0.57)	0.53 (Chipping)
100	A	TiCN (6.1)	Granular (2.8)	TiC (220) (200) (111)	TiCNO (0.1)	Granular (2.8)	Al2O3 α:100% (0.2)	TiN Granular (0.61)	0.52 (Chipping)
101	A	TiN (0.6)	Granular (9.1)	TiCN (111) (200) (220)	TiC (2.0)	Granular (1.9)	Al2O3 K:40% (0.6)	TiCN Granular (0.59)	0.43 (Chipping)
102	A	TiN (0.5)	Granular (6.0)	TiC (200) (220) (111)	TiC (3.0)	Granular (2.5)	Al2O3 α:100% (0.3)	TiN Granular (0.60)	0.57 (Chipping)
103	B			TiCN (8.4)	TiCO (0.1)	Granular (3.4)	Al2O3 α:100% (0.3)	TiN Granular (0.64)	0.60 (Chipping)
104	B	TiC-TiN (1.5)	Granular (6.6)	TiCN (220) (200) (111)	TiC (3.6)	Granular (2.1)	Al2O3 α:100% (0.3)	TiN Granular (0.59)	0.39 (Chipping)
105	B	TiN (11.7)	Granular (8.7)	TiCN (200) (220) (111)	TiCO (0.1)	Granular (1.2)			
106	C			TiCN (9.8)	TiC (0.1)	Granular (1.6)	Al2O3 α:100% (0.2)	TiN Granular (19.5)	Failure after 21.6 min. due to Layer Separation
107	C	TiC (0.4)	Granular (2.5)	TiCN (220) (200) (111)	TiN (1.8)	Granular (0.1)	Al2O3 K:40% (0.9)	TiN Granular (15.1)	Failure after 20.8 min. due to Layer Separation
108	C	TiN (0.5)	Granular (7.7)	TiCN (111) (200) (220)	TiCNO (2.5)		Al2O3 α:100% (0.5)	TiN Granular (19.5)	Failure after 19.9 min. due to Layer Separation
109	D	TiN (0.6)	Granular (6.3)	TiCN (220) (200) (111)	TiCNO (0.1)	Granular (5.0)	Al2O3 α:100% (18.0)	TiN Granular (13.9)	Failure after 13.6 min. due to Chipping
110	D	TiN (0.7)	Granular (2.4)	TiCN (111) (200) (220)	TiCN (1.2)	Granular (12.9)	Al2O3 α:100% (12.9)	TiN Granular (12.4)	Failure after 12.5 min. due to Fracturing
111	D	TiCN (0.5)	Granular (8.2)	TiCN (220) (200) (111)	TiC (1.3)	Granular (4.2)	Al2O3 α:100% (0.3)	TiN Granular (11.5)	Failure after 6.5 min. due to Fracturing
112	D			TiCN (6.9)	TiC (1.3)	Granular (4.2)			

5
10
15
20
25
30
35
40
45
50

TABLE 21
Hard Coating Layer

Substrate Symbol	Type	Innermost Layer			Outer Layer			Outermost Layer			Flank Wear (nm)	
		Composition	Crystal Structure	Orientation	Composition	Crystal Structure	Orientation	Composition	Crystal Structure	Orientation	Continuous Cutting	Interrupted Cutting
113 F	TiN (0.1)	TiCN Granular (1.2)	(111)(200)(220)	TiCN Granular (0.1)	TiCO Granular (0.1)	TiCO Granular (0.1)	TiCO Granular (0.1)	TiN (0.2)	TiN Granular (0.2)	TiN Granular (0.2)	Failure after 13.6 min. due to Chipping	Failure after 6.0 min. due to Fracturing
114 F	TiN-TiCN (0.9)	TiCN Granular (2.1)	(220)(200)(111)		TiCNO Granular (0.2)	TiCNO Granular (0.2)	TiCNO Granular (0.2)	TiN (0.7)	TiN Granular (0.7)	TiN Granular (0.7)	Failure after 16.0 min. due to Chipping	Failure after 7.6 min. due to Fracturing
115 F	TiCN (6.5)	TiCN Granular (1.2)	(111)(200)(220)	TiCN Granular (1.2)	TiCO Granular (1.2)	TiCO Granular (1.2)	TiCO Granular (1.2)	K:40	K:40	K:40	Failure after 16.4 min. due to Layer Separation	Failure after 1.1 min. due to Fracturing
116 F		TiCN Granular (4.6)	(200)(220)(111)									
117 G	TiC-TiN (1.0)	TiCN Granular (1.5)	(111)(200)(220)		TiCO Granular (0.1)	TiCO Granular (0.1)	TiCO Granular (0.1)	TiN (0.3)	TiN Granular (0.3)	TiN Granular (0.3)	Failure after 13.1 min. due to Layer Separation	Failure after 6.1 min. due to Fracturing
118 G		TiCN Granular (7.0)	(220)(200)(111)		TiCO Granular (0.1)	TiCO Granular (0.1)	TiCO Granular (0.1)					
Coated Cemented Carbide Cutting Tools of Prior Art	119 G	TiN (0.6)	TiCN Granular (1.1)	(100)(220)(111)	TiN Granular (1.0)	TiN Granular (1.0)	TiN Granular (1.0)	K:40	K:40	K:40	Failure after 12.5 min. due to Chipping	Failure after 7.4 min. due to Fracturing
	120 G		TiCN Granular (1.3)	(111)(200)(220)	TiC Granular (2.0)	TiC Granular (2.0)	TiC Granular (2.0)					
	121 G		TiCN Granular (1.5)	(220)(200)(111)								
	122 E	TiCN (0.5)	TiCN Granular (1.2)	(111)(200)(220)								
123 E	TiN (0.3)	TiCN Granular (2.6)	(220)(200)(111)	TiC Granular (1.5)	TiCNO Granular (0.1)	TiCNO Granular (0.1)	TiCNO Granular (0.1)	TiN (0.8)	TiN Granular (0.8)	TiN Granular (0.8)	Failure after 13.3 min. due to Layer Separation	Failure after 7.9 min. due to Fracturing
124 E	TiN (0.3)	TiCN Granular (1.5)	(111)(200)(220)									
125 E		TiCN (3.0)	(220)(200)(111)	TiCN Granular (0.9)	TiCN Granular (0.9)	TiCN Granular (0.9)	TiCN Granular (0.9)	K:40	K:40	K:40	Failure after 17.6 min. due to Layer Separation	Failure after 5.2 min. due to Fracturing
126 E	TiC (0.8)	TiCN Granular (2.9)	(111)(200)(220)		TiCNO Granular (0.2)	TiCNO Granular (0.2)	TiCNO Granular (0.2)					

Claims

1. A coated hard alloy blade member comprising a substrate formed of a hard alloy selected from the group consisting of a WC-based cemented carbide and a TiCN-based cermet, and a hard coating deposited on said substrate, characterized in that said hard coating includes an inner layer of TiCN having unilaterally grown crystals of an elongated shape and an outer layer of Al_2O_3 having a crystal form x or $x + \alpha$ wherein $x > \alpha$.

2. A coated hard alloy blade member according to claim 1, wherein the TiCN in said elongated crystals of said inner layer has X-ray diffraction peaks such that strength at (200) plane is weak compared to strengths at (111) and (220) planes.
- 5 3. A coated hard alloy blade member according to claim 1 or claim 2, wherein said hard coating further includes an innermost layer of one or more of granular TiN, TiC, or TiCN formed underneath said inner layer.
- 10 4. A coated hard alloy blade member according to any one of the preceding claims, wherein said hard coating further includes an outermost layer of one or both of granular TiN or TiCN formed on said outer layer of Al_2O_3 .
- 15 5. A coated hard alloy blade member according to any one of the preceding claims, wherein said hard coating further includes a first intermediate layer of one or more of granular TiC, TiN, or TiCN formed between said inner layer of TiCN and said outer layer of Al_2O_3 .
- 20 6. A coated hard alloy blade member according to any one of the preceding claims, wherein said hard coating further includes a second intermediate layer of one or both of TiCO or TiCNO formed between said inner layer of TiCN and said outer layer of Al_2O_3 .
- 25 7. A coated hard alloy blade member according to any one of the preceding claims, wherein said inner layer of TiCN further includes one or more layers of TiN such that the inner layer is divided by the layers of TiN.
- 30 8. A coated hard alloy blade member according to any one of the preceding claims, wherein said WC-based cemented carbide consists essentially of 4 - 12 % by weight of Co, 0 - 7 % by weight of Ti, 0 - 7 % by weight of Ta, 0 - 4 % by weight of Nb, 0 - 2 % by weight of Cr, 0 - 1 % by weight of N, and balance W and C.
- 35 9. A coated hard alloy blade member according to claim 8, wherein the maximum amount of Co in a surface layer of the substrate ranging up to $100 \mu\text{m}$ depth from a surface thereof is 1.5 to 5 times as much as the amount of Co in an interior 1 mm deep from the surface.
- 40 10. A coated hard alloy blade member according to any one of the preceding claims, wherein said TiCN-based cermet consists essentially of 2 - 14 % by weight of Co, 2 - 12 % by weight of Ni, 2 - 20 % by weight of Ta, 0.1 - 10 % by weight of Nb, 5 - 30 % by weight of W, 5 - 20 % by weight of Mo, 2 - 8 % by weight of N, optionally no greater than 5 % by weight of at least one of Cr, V, Zr or Hf, and balance Ti and C.
- 45 11. A coated hard alloy blade member according to claim 10, wherein hardness in a surface layer of the substrate ranging up to $100 \mu\text{m}$ depth from a surface thereof is more than 5% harder than hardness of an interior 1 mm deep from the surface.
12. The use of a hard coated blade member according to any one of the preceding claims in cutting tools.

50

55

FIG. 1 COATED CEMENTED CARBIDE CUTTING TOOL "64"

European Patent
Office

EUROPEAN SEARCH REPORT

Application Number
EP 95 10 3339

DOCUMENTS CONSIDERED TO BE RELEVANT			CLASSIFICATION OF THE APPLICATION (Int.Cl.)
Category	Citation of document with indication, where appropriate, of relevant passages	Relevant to claim	
Y	PATENT ABSTRACTS OF JAPAN vol. 012, no. 479 (C-552), 14 December 1988 & JP-A-63 195268 (MITSUBISHI METAL CORP), 12 August 1988, * abstract * ---	1,3,12	C23C30/00 C23C16/40 C23C16/36
Y	PATENT ABSTRACTS OF JAPAN vol. 018, no. 392 (C-1228), 22 July 1994 & JP-A-06 108254 (MITSUBISHI MATERIALS CORP), 19 April 1994, * abstract * ---	1,3,12	
A	EP-A-0 594 875 (MITSUBISHI MATERIALS CORP) 4 May 1994 * claims 1,2; table 1 * ---	1-12	
A.	EP-A-0 408 535 (SECO TOOLS AB) 16 January 1991 ---		
P,X	DATABASE WPI Section Ch, Week 9432 Derwent Publications Ltd., London, GB; Class L02, AN 94-259893 XP002007194 & JP-A-06 190 605 (MITSUBISHI MATERIALS CORP) , 12 July 1994 * abstract * -----	1,12	TECHNICAL FIELDS SEARCHED (Int.Cl.) C23C
The present search report has been drawn up for all claims			
Place of search	Date of completion of the search	Examiner	
THE HAGUE	1 July 1996	Patterson, A	
CATEGORY OF CITED DOCUMENTS		T : theory or principle underlying the invention E : earlier patent document, but published on, or after the filing date D : document cited in the application L : document cited for other reasons A : member of the same patent family, corresponding document	
X : particularly relevant if taken alone Y : particularly relevant if combined with another document of the same category A : technological background O : non-written disclosure P : intermediate document			