STEEL_DATA를 활용한 불량률 예측 분 석

1조

김성민, 염동화, 이규진, 이주상

목차 a table of contents

- 1 분석배경
- **2** 데이터 분석 및 목표 설정
- 3 머신러닝 모델 수립 및 적용
- 4 기대효과

Part 1 분석배경

Steel Mill, Steelworks

'산업의 쌀' 생산하는 제철소!

- 1. 철강은 인류의 가장 큰 산업
- 2. 산업의 기초는 철강
- 3. 철강의 다양한 활용은 고급 및 핵심기술

Part 1 분석배경

철강 '불량 제로' 만든건 데이터 전문가...'디지 털 협업'이 R&D 완성

獨 철강설비 기업의 도전 핵심은 디지털·데이터 공유

"앞으로 모든 회사는 인공지능(AI) 기업이 될 것이다. AI 기반 기술 플랫폼 구축이 경쟁 우위의 기본이다. 시장 기회를 빠르게 포착하고, 위기에 신속히 대응하는 것은 기술 플랫폼에 달렸다."

독일의 철강설비 엔지니어링 기업 SMS는 올초 '데이터 챌린지'를 열었다. 인공지능(AI)을 활용한 머신러닝을 철강 공정에 도입해 생산량을 늘릴 방안을 찾기 위한 행사였다. 독일 명문대에서 데이터 과학을 전공하는 학부생과 대학원생 25명이 참여했다. 철강업에 대한 지식이 전무한 데이터 전문가들이었다.

이들이 내놓은 결과물은 놀라웠다. 철강업계 전문가들이 수십 년간 해결하지 못한 난제를 두 달 만에 풀어냈다. 철강 주조 과정에서 불량품을 빠르게 잡아내는 알고리즘을 개발한 것이다. 미국의 한 철강회사 공정에서 나온 3만여 개 데이터를 활용해 불량품을 잡아내는 정확도를 100%까지 높였다. 철강업계에선 현장에 적용하면 비용 감소, 탄소 절감 등의 효과로 이어질 '혁신적 성과'라는 평가나 나왔다. SMS는 "젊은 데이터 과학자들의 혁신적 접근은 우리에게 엄청난 도움이 될 것"이라고 밝혔다.

Part 1 분석배경

칼럼 명	칼럼 설명	칼럼 명	칼럼 설명
PLATE_NO	플랜트 고유 ID	FUR_HZ_TEMP	HZ가열로 온도(℃)
ROLLING_DATE	제작일자	FUR_HZ_TIME	HZ가열로 시간(초)
SCALE	양품/불량	FUR_SZ_TEMP	sz가열로 온도(°C)
SPEC	품명	FUR_SZ_TIME	sz가열로 시간(초)
STEEL_KIND	종류	FUR_TIME	가열로 내부에 있었던 시간(초)
PT_THK	두께(mm)	FUR_EXTEMP	가열로 추출온도(℃)
PT_WDTH	너비(mm)	ROLLING_TEMP_T5	롤링 온도(℃)
PT_LTH	길이(mm)	HSB	HSB 적용여부
PT_WGT	무게(kg)	ROLLING_DESCALING	ROLLING DESCALING 작업 횟수
FUR_NO	가열로 NO	WORK_GR	작업그룹
FUR_NO_ROW	가열로 ROW		

PLATE_NO	ROL	LING_DATE	SCALE	SPEC	STEEL_K	(IND	PT_THK	PT_WD	TH PT_LTH	PT_WGT	FUR_NO	
PB562774		2008-08-01 00:00:15	양품	AB/EH32- TM		T1	32.25	37	07 15109	14180	1호기	
PB562775		2008-08-01 00:00:16	양품	AB/EH32- TM		T1	32.25	37	07 15109	14180	1호기	
PB562776		2008-08-01 00:00:59	양품	NV-E36- TM		T8	33.27	36	19 19181	18130	2호기	
PB562777		2008-08-01 00:01:24	양품	NV-E36- TM		T8	33.27	36	19 19181	18130	2호기	
PB562778		2008-08-01 00:01:44	양품	BV-EH36- TM		T8	38.33	30	98 13334	12430	3호기	
FUR_\$Z_T	IME	FUR_TIME	FUR_I	EXTEMP	ROLLING	_TEN	IP_T5 I	HSB RO	LLING_DE	SCALING	WORK_G	R
	59	282		1133			934	적용		8	2	조
	53	283		1135			937	적용		8	2	조
	55	282		1121			889	적용		8	3	조
	68	316		1127			885	적용		8	3	조
	48	314		1128			873	적용		8	1	조
SCALE	•	count					<u> </u>					
불링	‡	231							발상			
양품	<u> </u>	489						익	32%	0		

1

작업 시간

>>

STEP 1

시간 별 양품 및 불량 개수 측정 STEP 2

불량률 계산을 위한 데이터 전처리

STEP 3

시간 별 불량률 측정

>>

- 작업 시간 데이터

```
df['ROLLING_DATE']
      2008-08-01 00:00:15
      2008-08-01 00:00:16
     2008-08-01 00:00:59
     2008-08-01 00:01:24
      2008-08-01 00:01:44
     2008-08-02 13:35:36
      2008-08-02 13:35:02
     2008-08-02 14:40:00
     2008-08-02 13:35:19
     2008-08-02 14:40:53
Name: ROLLING_DATE, Length: 720, dtype: datetime64[ns]
df['rolling_hour'] = df['ROLLING_DATE'].dt.hour
df['rolling_hour']
# ROLLING_DATE 를 시간만 추출
        0
715
       13
716
      13
717
      14
718
      13
      14
Name: rolling_hour, Length: 720, dtype: int64
```


- 작업 시간 데이터

```
def convert(SCALE):
    if SCALE == "불량":
        return 1
    else:
        return 0
df['SCALE_no'] = df['SCALE'].apply(lambda x: convert(x))
양품을 0, 불량을 1로 지정한 열 생성
```


시간 별 불량률(%)

- 작업 시간 데이터

```
def slot(x):
   if 0<=x<=5:
       return "새벽"
   elif 6<=x<=11:
       return "오전"
   elif 12<=x<=17:
       return "오후"
   else:
       return "저녁"
df['rolling_slot'] = df['rolling_hour'].apply(slot)
df['rolling_slot']
# ROLLING_DATE를 시간만 추출해 시간대로 분류 0~5시를 새벽 6~11시를
# 오전 12~17시를 오후 18~23시를 저녁으로 지정
      새벽
      새벽
      새벽
      새벽
715
      오호
716
     오호
717
      오후
718
     오후
719
     오후
Name: rolling_slot, Length: 720, dtype: object
df_rolling_slot = df.groupby(
   ['rolling_slot'], as_index = False)[['SCALE_no']].agg("mean")
df_rolling_slot
# 시간대별로 불량률을 계산
```


2

Steel 종류

STEP 1

제품 별 상대 생산율

STEP 2

제품 별 상대 불량률

STEP 3

- 철강 종류

count 비율

S٦	ſΕ	Εl	_	ΚI	N	D
_	_			-		

C0	503	69.9
C1	1	0.1
C3	7	1.0
то	16	2.2
T1	18	2.5
Т3	2	0.3
Т5	43	6.0
77	35	4.9
Т8	95	13.2

가장 많이 생산하는 제품 = 'C0'

제품 별 상대 생산율

- 철강 종류

STEEL_KIND	불량품	불량률
C0	212	91.77
C1	1	0.43
C3	1	0.43
T0	2	0.87
T1	2	0.87
Т3	0	0.00
T5	2	0.87
T7	6	2.60
T8	5	2.16

가장 높은 **불량률**을 보이는 제품= 'C 0' 'CO' 를 중점으로 불량품 줄이기

제품 별 상대 불량률

5

'C0' 기준 데이터 시각화

STEP 3 STEP 2 SZ 가열로 온도/시간 FUR_TIME ROLLING_TEMP >> >> HZ 가열로 온도/시간 FUR_EXTEMP **ROLLING_DATE**

- 'C0' 기준 시각화

가열로 온도가 1150℃ 이상일 때 불량이 많이 발생하는 것 을 확인

추출 시간이 275초 이상일 때 불량이 많이 발생하는 것을 확인

- 'C0' 기준 시각화

각 가열로별 불량 분포가 동일하지 않다

- 'C0' 기준 시각화

롤링 온도가 1000℃ 이상일 때 불량품의 생산량이 증가한다

- 예측 모델 선정

* 지도학습 (Supervised Learning)

관여자가 문제에 대한 답을 알고 있을 때, 인공지능(AI)이 그것을 알아낼 수 있도록 훈련

 \rightarrow

Classification

'C0' 기준 양품/불량품 분류(Classification) 모델 선택

- Decision Tree

Decision Tree

> 뿌리(Root)노드를 기준으로 뻗어나가게 되며, 규칙(Decision)노드의 조건에 의해 리프(Leaf)노드로 분류되거나 또다른 규칙노드가 생성

장점

- 데이터 전처리가 다른 모형에 비해 상대적으로 필요 X
- 학습 결과에 대한 이해와 가시적 표현이 쉽다 **단점**
- 데이터에 크게 의존 (학습 데이터가 바뀌면 구조가 크게 바뀔 수 있음)
- 깊어짐에 따라 분류를 결정하는 방식이 더욱 복잡해 짐> 결정트리의 예측 성능 저

깊이 (depth) 하

- 분류 모델 Decision Tree

```
target= ['HSB', 'SCALE', 'STEEL_KIND', 'rolling_slot',
             'FUR_NO','FUR_HZ_TEMP','FUR_HZ_TIME','FUR_SZ_TEMP','FUR_SZ_TIME','FUR_TIME','ROLLING_TEMP_T5','ROLLING_DESCALING']
dataset = df[target]
dataset = pd.get_dummies(dataset)
drop_dataset = dataset.drop(['SCALE_양품', 'STEEL_KIND_C1','STEEL_KIND_C3','STEEL_KIND_T0','STEEL_KIND_T1','STEEL_KIND_T3',
                           'STEEL_KIND_T5','STEEL_KIND_T7']
                           axis = 1
from sklearn.model selection import train test split
from sklearn.tree import DecisionTreeClassifier
X = drop_dataset.drop(['SCALE_불량'], axis = 1)
Y = drop dataset['SCALE 불량'].ravel()
X_train, X_test, Y_train, Y_test = train_test_split(X,Y, test_size = 0.3, random_state = 0)
model = DecisionTreeClassifier(max depth = 5)
model.fit(X_train, Y_train)
train_accuracy = model.score(X_train, Y_train)
test_accuracy = model.score(X_test, Y_test)
print(f'훈련 정확도 : {train accuracy}')
print(f'테스트 정확도 : {test accuracy}')
훈련 정확도 : 0.972222222222222
                                       train_accuracy - test_accuracy
테스트 정확도 : 0.9675925925925926
```

0.00462962962962965

- 분류 모델 Decision Tree

Decision Tree 결과 시각화

- 분류 모델 Decision Tree

Decision Tree결과를 통한 특성 중요도 시각화

importance[importance['coefficient']!=0.00].sort_values(by = "coefficient", ascending = False)

feature_names coefficient

5	ROLLING	TEMP T5	0.694772

8 HSB_적용 0.153631

2 FUR_SZ_TEMP 0.087427

6 ROLLING_DESCALING 0.045576

4 FUR_TIME 0.018595

- 예측모델 보안

앙상블 학습 (Ensemble Learning)

 > 여러 개의 분류기 (Classifier) 에서 각각 예측을 수 행,

모델 종류

- 보팅 (Voting)
- 배깅 (Bagging)
- 랜덤포레스트 (Random Forest)
- 그레디언트 부스팅 (Gradient Boosting)
- 스테킹 (Stacking)

나타나는 나무의 영향력을 줄일 수 있음

- Random Forest

• Random Forest 의사결정 트리의 오버피팅의 한계를 극복하기 위한 전략

- Random Forest

```
from sklearn.preprocessing import StandardScaler
from sklearn.ensemble import RandomForestClassifier
X = drop_dataset.drop(['SCALE_불량'], axis = 1)
Y = drop_dataset['SCALE_불량'].ravel()
X_train, X_test, Y_train, Y_test = train_test_split(X,Y, test_size = 0.3, random_state = 0)
scaler = StandardScaler()
scaler.fit(X_train)
x_{train_std} = scaler.transform(X_{train})
x_test_std = scaler.transform(X test)
rf_cIf = RandomForestClassifier(max_depth = 4, n_estimators=150)
rf_clf.fit(x_train_std, Y_train)
RandomForestClassifier(max_depth=4, n_estimators=150)
rf_train_score = rf_clf.score(x_train_std, Y_train)
rf_test_score = rf_clf.score(x_test_std, Y_test)
print(f'랜덤포레스트 훈련 정확도는 {round(rf_train_score,3)} 입니다.')
print(f'랜덤포레스트 테스트 정확도는 {round(rf_test_score,3)} 입니다.')
랜덤포레스트 훈련 정확도는 0.952 입니다.
랜덤포레스트 테스트 정확도는 0.949 입니다.
round(rf_train_score,3) - round(rf_test_score,3)
0.0030000000000000027
```

```
train_score=[]
test_score=[]
for i in range(1,21):
    rf_clf = RandomForestClassifier(max_depth = i, n_estimators=150)
    rf_clf.fit(x_train_std, Y_train)
    train_score.append(rf_clf.score(x_train_std, Y_train))
    test_score.append(rf_clf.score(x_test_std, Y_test))
plt.figure()
plt.title('score for depths')
plt.plot(range(1,21),train_score)
plt.plot(range(1,21),test_score)
plt.xticks(range(1,21))
plt.show()
```


- Random Forest

	feature_names	coefficient
5	ROLLING_TEMP_T5	0.401593
12	rolling_slot_오전	0.104162
2	FUR_SZ_TEMP	0.100554
6	ROLLING_DESCALING	0.084385
7	HSB_미적용	0.070386
8	HSB_적용	0.055893
3	FUR_SZ_TIME	0.040705
9	STEEL_KIND_C0	0.030310
0	FUR_HZ_TEMP	0.027710
4	FUR_TIME	0.027326
1	FUR_HZ_TIME	0.022899
13	rolling_slot_오후	0.015511
11	rolling_slot_새벽	0.008819
10	STEEL_KIND_T8	0.004210
17	FUR_NO_3호기	0.002235
14	rolling_slot_저녁	0.001494
16	FUR_NO_2호기	0.000986
15	FUR_NO_1호기	0.000823

- Gradient Boosting

Gradient Boosting

Gradient Boosting

- 약한 모델들을 단계적으로 **Boosting**하는 과정에서 이전 모델의 오류를 손실함수로 나타내고 이 손실함수를 최소화하는 분석기 법
- Boosting : 단순한 모델들을 결합하여 단계적으로 학습함으로써 이전 모델의 약점을 점점 보완해 가는 기법

from sklearn.ensemble import GradientBoostingClassifier

- Gradient Boosting

plt.show()

```
gbrt = GradientBoostingClassifier(max depth = 3, learning rate = 0.1)
gbrt.fit(x_train_std, Y_train)
GradientBoostingClassifier()
gbrt_train_score = gbrt.score(x_train_std, Y_train)
gbrt_test_score = gbrt.score(x_test_std, Y_test)
print(f'그레디언트부스팅 훈련 정확도는 {round(gbrt_train_score,3)} 입니다.')
print(f'그레디언트부스팅 테스트 정확도는 {round(gbrt test score,3)} 입니다.')
그레디언트부스팅 훈련 정확도는 1.0 입니다.
그레디언트부스팅 테스트 정확도는 0.995 입니다.
train score=[]
test score=[]
for i in range(1,21):
   gbrt = GradientBoostingClassifier(max_depth = i, learning_rate = 0.1)
   gbrt.fit(x_train_std, Y_train)
   train_score.append(gbrt.score(x_train_std, Y_train))
   test score.append(gbrt.score(x test std, Y test))
plt.figure()
plt.title('score for depths')
plt.plot(range(1,21),train_score)
plt.plot(range(1,21),test_score)
plt.xticks(range(1,21))
```


- Gradient Boosting

feature	names	coefficient

5	ROLLING_TEMP_T5	0.621451
6	ROLLING_DESCALING	0.103057
2	FUR_SZ_TEMP	0.082401
7	HSB_미적용	0.070155
8	HSB_적용	0.065040
4	FUR_TIME	0.031466
0	FUR_HZ_TEMP	0.013472
1	FUR_HZ_TIME	0.005971
3	FUR_SZ_TIME	0.003405
15	FUR_NO_1호기	0.001326
12	rolling_slot_오전	0.001315
9	STEEL_KIND_C0	0.000875
17	FUR_NO_3호기	0.000066

Decision Tree

Random Forest

Gradient Boosting

from sklearn.metrics import confusion_matrix
conf_matrix = confusion_matrix(Y_test, pred_dt)
print(conf_matrix)

[[145 8] [3 60]] conf_matrix = confusion_matrix(Y_test, pred_rf)
print(conf_matrix)

[[153 0] [5 58]] conf_matrix = confusion_matrix(Y_test, pred_gb)
print(conf_matrix)

[[153 0] [3 60]]

각 모델에 대한 Confusion Matrix

from sklearn.metrics import classification_report
class_report = classification_report(Y_test, pred_dt)
print(class_report)

print(class_report)					
	precision	recall	f1-score	support	
0 1	0.98 0.88	0.95 0.95	0.96 0.92	153 63	
accuracy macro avg weighted avg	0.93 0.95	0.95 0.95	0.95 0.94 0.95	216 216 216	

class_report = classification_report(Y_test, pred_rf)
print(class_report)

	precision	recall	f1-score	support
0 1	0.97 1.00	1.00 0.92	0.98 0.96	153 63
accuracy macro avg weighted avg	0.98 0.98	0.96 0.98	0.98 0.97 0.98	216 216 216

class_report = classification_report(Y_test, pred_gb)
print(class_report)

	precision	recall	f1-score	support
0 1	0.98 1.00	1.00 0.95	0.99 0.98	153 63
accuracy macro avg weighted avg	0.99 0.99	0.98 0.99	0.99 0.98 0.99	216 216 216

각 모델에 대한 Classification Report

Part 4 기대 효과

Part 4 참조

https://newsroom.posco.com/kr/%EA%B3%B5%EC%9B%90-%EC%86%8D-%EC%A0%9C%EC%B2%A0%EC%86%8C/

https://www.hankyung.com/economy/artide/2020111991421

https://www.hankyung.com/economy/artide/2020111991421

https://gomguard.tistory.com/173

https://blog.naver.com/philia38/222881874984

https://iphoong.tistory.com/6

https://communities.sas.com/t5/SAS-Tech-Tip/EM-%EA%B7%B8%EB%9E%98%EB%94%94%EC%96%B8%ED%8A%B8-%EB%B6%80%EC%8A%A4%ED%8C

%85-Gradient-Boosting-%EC%9D%B4%EB%A1%A0/ta-p/656745

https://m.blog.naver.com/luvwithcat/222103025023

https://blog.naver.com/teorw272/222082729148

감사합니다

아이구 감사합니다