SI231B: Matrix Computations, 2024 Fall

Homework Set #3

Acknowledgements:

- 1) Deadline: 2024-12-02 23:59:59
- 2) Please submit the PDF file to gradescope. Course entry code: 8KJ345.
- 3) You have 5 "free days" in total for all late homework submissions.
- 4) If your homework is handwritten, please make it clear and legible.
- 5) All your answers are required to be in English.
- 6) Please include the main steps in your answer; otherwise, you may not get the points.

Problem 1. (Diagonalization) (15 points)

1) Determine whether each of the following matrices is diagonalizable. (10 points)

$$\mathbf{A} = \begin{bmatrix} 1 & -1 & 1 \\ 2 & 4 & -2 \\ -3 & -3 & 5 \end{bmatrix}, \mathbf{B} = \begin{bmatrix} 0 & 0 & 1 \\ 3 & 1 & 2 \\ 1 & 0 & 0 \end{bmatrix}. \tag{1}$$

2) If it is diagnolizable, diagonalize the matrix using a similarity transformation. (5 points)

Problem 2. (Eigenvector, eigenvalue) (15 points)

Suppose A, $B \in \mathbb{R}^{2 \times 2}$ are unitary and the dimension of $\mathcal{N}(A - B)$ is 1. Prove the following statements:

- 1) $\mathbf{A^{-1}B}$ and $\mathbf{B^{-1}A}$ have the same eigenvalues. (5 points)
- 2) $A^{-1}B$ and $B^{-1}A$ have a shared eigenvector. (5 points)
- 3) Suppose that $A^{-1}B$ is diagonalizable. Show that A and B are not similar. (5 points)

Problem 3. (Eigenvector) (20 points)

Given $\mathbf{A} \in \mathbb{R}^{3\times 3}$, $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3$ are eigenvectors associated with three different eigenvalues $\lambda_1, \lambda_2, \lambda_3$. Let $\mathbf{b} = \mathbf{v}_1 + \mathbf{v}_2 + \mathbf{v}_3$.

- 1) Prove that $\mathbf{b}, \mathbf{Ab}, \mathbf{A}^2\mathbf{b}$ are linearly independent. (10 points)
- 2) If $A^3b = Ab$, what is the rank of A I? Compute det(A + I). (10 points)

Problem 4. (Schur decomposition) (20 points)

- 1) Let $\mathbf{A} = \begin{bmatrix} 5 & 7 \\ -2 & -4 \end{bmatrix}$. Compute the Schur decomposition of $\mathbf{A} = \mathbf{U}\mathbf{T}\mathbf{U}^T$, where \mathbf{U} is (real) orthogonal. (The answer is not unique.) (10 points)
- 2) Let $\mathbf{B} = \begin{bmatrix} 1 & 1 \\ -2 & -1 \end{bmatrix}$. Compute the Schur decomposition of $\mathbf{B} = \mathbf{U}\mathbf{T}\mathbf{U}^H$, where \mathbf{U} is unitary. (The answer is not unique.) (10 points)

Problem 5. (Variational Characterizations) (20 points)

For $\mathbf{M} \in \mathbb{S}^{n \times n}$, let $\lambda_k(\mathbf{M})$ denote the kth largest eigenvalue of \mathbf{M} , i.e., $\lambda_n(\mathbf{M}) \leq \cdots \leq \lambda_1(\mathbf{M})$. We make the convention that $\lambda_i(\mathbf{M}) = -\infty, \forall i \geq n+1$ and $\lambda_i(\mathbf{M}) = +\infty, \forall i \leq 0$.

1) Let $A, B \in \mathbb{S}^{n \times n}$. Suppose that B has exactly π positive eigenvalues and exactly ν negative eignevalues. Prove that

$$\lambda_i(\mathbf{A} + \mathbf{B}) \le \lambda_{i-\pi}(\mathbf{A}), \quad i = \pi + 1, \dots, n,$$

 $\lambda_{i+\nu}(\mathbf{A}) \le \lambda_i(\mathbf{A} + \mathbf{B}), \quad i = 1, \dots, n - \nu.$

(Hint: you might use Weyl's inequality and the interlacing theorem in section 4.6 of the lectures.) (15 points)

2) Let $A, B \in \mathbb{S}^{n \times n}$. Suppose that B is singular and has rank r. Prove that

$$\lambda_i(\mathbf{A} + \mathbf{B}) \le \lambda_{i-r}(\mathbf{A}), \quad i = r+1, \dots, n,$$

 $\lambda_{i+r}(\mathbf{A}) \le \lambda_i(\mathbf{A} + \mathbf{B}), \quad i = 1, \dots, n-r.$

(Hint: use the result of 1).) (5 points)

Problem 6. (Power Iteration) (10 points)

Let
$$\mathbf{A} = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1/2 \end{bmatrix}$$
. Starting with $\mathbf{v}^{(0)} = \begin{bmatrix} a \\ b \\ c \end{bmatrix}$ such that $\|\mathbf{v}^{(0)}\| = 1$, $\{\mathbf{v}^{(0)}, \mathbf{v}^{(1)}, \mathbf{v}^{(2)}, \cdots\}$ is generated by

- 1) Does the sequence $\{\mathbf{v}^{(k)}\}_{k\geq 0}$ converge? (There are three choices: it converges; it may converge, and may not; it does not converge.) Briefly explains why. (4 points)
- 2) Let $a \neq b$. Describe the sequence $\{\mathbf{v}^{(k)}\}_{k\geq 0}$ in terms of the eigenvectors of \mathbf{A} . Specifically, if we decompose $\mathbf{v}^{(k)}$ as a linear combination of the eigenvectors of \mathbf{A} to get $\mathbf{v}^{(k)} = \alpha^{(k)}\mathbf{u}_1 + \beta^{(k)}\mathbf{u}_2 + \gamma^{(k)}\mathbf{u}_3$, and consider the scalar sequences $\{\alpha^{(k)}\}_{k\geq 0}$, $\{\beta^{(k)}\}_{k\geq 0}$ and $\{\gamma^{(k)}\}_{k\geq 0}$, whether their magnitudes increase or decrease? Do they keep changing signs? Finally, does $\{\mathbf{v}^{(k)}\}_{k\geq 0}$ converge? (6 points)

(Hint:
$$\mathbf{A} = \begin{bmatrix} \mathbf{B} & 0 \\ 0 & 1/2 \end{bmatrix}$$
 is block diagonal and \mathbf{B} is orthogonal.)