

Jan 29, 2025

# • Imaging axonal calcium dynamics in ex vivo mouse brain slices



In 1 collection

DOI

## dx.doi.org/10.17504/protocols.io.81wgbx9eolpk/v1



Yan-Feng Zhang<sup>1,2</sup>, Stephanie J Cragg<sup>3,4</sup>

**Team Cragg** 



## Cláudia C. Mendes

University of Oxford

# OPEN ACCESS



DOI: dx.doi.org/10.17504/protocols.io.81wgbx9eolpk/v1

**Protocol Citation:** Yan-Feng Zhang, Stephanie J Cragg 2025. Imaging axonal calcium dynamics in ex vivo mouse brain slices. **protocols.io** <a href="https://dx.doi.org/10.17504/protocols.io.81wgbx9eolpk/v1">https://dx.doi.org/10.17504/protocols.io.81wgbx9eolpk/v1</a>

#### Manuscript citation:

Zhang et al. (2024) An axonal brake on striatal dopamine output by cholinergic interneurons, bioRxiv

**License:** This is an open access protocol distributed under the terms of the <u>Creative Commons Attribution License</u>, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

Protocol status: Working

We use this protocol and it's working

Created: November 27, 2023

Last Modified: January 29, 2025

<sup>&</sup>lt;sup>1</sup>Department of Clinical and Biomedical Sciences, University of Exeter, Exeter, United Kingdom;

<sup>&</sup>lt;sup>2</sup>Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA;

<sup>&</sup>lt;sup>3</sup>Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT, UKAligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA;

<sup>&</sup>lt;sup>4</sup>Oxford Parkinson's Disease Centre, University of Oxford, Oxford, United Kingdom



Protocol Integer ID: 91481

Keywords: calcium, ex vivo, calcium, mouse, dopamine, striatum

**Funders Acknowledgements:** 

Aligning Science Across Parkinson's

Grant ID: ASAP-020370

## **Abstract**

This protocol describes how to image calcium dynamics in striatal dopaminergic axons in *ex vivo* mouse brain slices. We imaged calcium transients in response to single and trains (4 pulses, 100 Hz) of electrical stimulus pulses using genetically encoded calcium indicator GCaMP6f expressed in DAT-Cre:Ai95D mice.

## **Materials**

## **Equipment:**

- Olympus BX51WI microscope equipped with a OptoLED Lite system (CAIRN Research);
- Prime Scientific CMOS (sCMOS) Camera (Teledyne Photometrics);
- x40/0.8 NA water-objective (Olympus UK)
- ITC-18 A/D board (Instrutech)

#### Software:

- Micro-Manager v1.4
- Matlab vR2019b
- Fiji v1.5
- Igor Pro 6 (WaveMetrics)

## Before start

This protocol was performed in heterozygous DAT-Cre:Ai95D (4-7 weeks) mice. These mice were bred from homozygous DAT-Cre mice (B6.SJL-Slc6<sup>a3tm1.1(cre)Bkmn</sup>/J, JAX stock number 006660) crossed with homozygous Ai95D mice (B6:129S-Gt(ROSA)26Sor<sup>tm95.1(CAG-GCaMP6f)Hze</sup>/J, JAX stock number 028865).

#### Note

Ai95(RCL-GCaMP6f)-D (also called Ai95D; RRID:IMSR\_JAX:028865) mice are a Cre-dependent, fluorescent, calcium-indicator tool strain. Ai95D has a floxed-STOP cassette preventing transcription of the GCaMP6 fast variant calcium indicator (GCaMP6f; a detector of single neuronal action potentials with fast response kinetics). After Cre exposure, bright EGFP fluorescence is observed following calcium binding (such as neuronal activation).

This Ai95D allele is on a C57BL/6J genetic background.

We prepare *ex vivo* mouse brain slices by performing **steps 1 to 11** from **Protocol: Fast-scan cyclic voltammetry to assess dopamine release in ex vivo mouse brain slices.** 



# **Image Acquisition**

- 1 Using a x40/0.8 NA water-objective (Olympus UK), position the stimulating electrode on the surface of the brain slice and centre it in the field of view.
- 2 Change the exposure time to reach a frame rate of around 16.6 Hz every 2.5 min using Micro-Manager v1.4. 16.6 Hz frame rate every 2.5 min using Micro-Manager 1.4.
- Apply electrical stimulus pulses singly and in trains (4 pulses, 100 Hz) using custom-written procedures in Igor Pro 6 (WaveMetrics) and an ITC-18 A/D board (Instrutech).

#### Note

The order of single and train stimulations was alternated and equally distributed and data were collected in duplicate before and after a change in extracellular experimental condition.

4 Record changes in fluorescence intensity using custom-written procedures in Igor Pro 6 (WaveMetrics) and an ITC-18 A/D board (Instrutech).

# Image Analysis

- 5 The following steps were performed in MATLAB vR2019b and Fiji v1.5.
  - Extract fluorescence intensity from the region of interest 25  $\mu m$  \* 25  $\mu m$  which was 50  $\mu m$  away from the electrical stimulating electrode tip.
- After background subtraction, bleach-correct the Ca<sup>2+</sup> transients by fitting an exponential curve function through both the baseline (2 s prior to stimulation) and the last 1 s in a 7.2 s recording window.
- 7 Expressed data as  $\Delta F/F$  where F is the fitted curve.