FMQL15T485 芯片的开发流程 V01

Date	Version	Revision
2024/9/8	V01	Initial release

目录

F	FMQL15T485芯片的开发流程V01	1
1	1 必须要打两个补丁	3
	2 支持的开发环境	
3	3 VIVADO嵌入IP补丁	3
	3.1 存放IP补丁	3
	3.2 设置IP补丁环境变量	3
	3.3 VIVADO添加IP补丁	4
	3.3.1 <i>添加IP补丁</i>	4
	3.3.2 生成补丁按钮	4
4	4	5
	4.1	
5	5 安装PROCISE软件	7
	5.1 安装PROCISE软件	7
	5.2 设置PROCISE环境变量	
	5.3 设置IAR安装路径	
_		
ь		
	6.1 建立VIVADO工程	
	6.1.1 建立新工程	
	6.1.2 更改老工程	
	6.2 一键式补丁	
	6.2.1 <i>给工程加IP补丁</i>	
	6.2.2 IP Cache设置 6.2.3 IP综合的要求	
	6.2.4 位流bit补丁的设置	
	6.2.5 <i>工程编译及位流生成</i>	
	6.3 工程下载及调试	
_		
7	7 开发PS端工程	19
	7.1 构造IAR工程	
	7.1.1 建立Procise工程	
	7.1.2 <i>导入Vivado工程</i>	
	7.1.3 <i>启动IAR工程</i>	
	7.2 工程下载及调试	23
8	8 联合调试PL+PS	25
9	9 烧写QSPI	25
,	<i>y</i> ⊔ ¬ ∀ ₹ 1	

1 必须要打两个补丁

我司PL端开发必须要打的两个补丁分别是IP补丁和Bit补丁。

IP补丁的详细情况可以参考我司《IP PATCH工具使用说明 ...》。

Bit补丁的详细情况可以参考我司Procise安装目录下document文档,或者我司下载站中《FMSH补丁全流程操作指南》。

2 支持的开发环境

PL端的开发环境: Vivado2018. 3版本或者Vivado2022. 1版本, 7系列器件推荐使用Vivado2018. 3版本, 9系列器件推荐使用Vivado2022. 1版本。

PS端的开发环境: IAR 8.11.2版本或者IAR 9.20.4版本,内核A7器件推荐使用IAR 8.11.2版本,内核A53器件推荐使用IAR 9.20.4版本。

Procise版本: 安装20240301之后的版本。

3 Vivado嵌入IP补丁

我司IP补丁是嵌入在Vivado开发环境中运行的。

3.1 存放IP补丁

从复旦微公司获取IP补丁压缩文件JFM_Kits.rar文件,FMQL15T485芯片,必须要使用5.3.0以上的IP补丁。 选择需要存放的位置,解压缩JFM Kits.rar,得到如下图所示,IP补丁存放完成。

3.2 设置IP补丁环境变量

新建用户变量,建立变量名为JFM_PATH,变量值为刚刚IP补丁存放的位置。环境变量后,若已开启Vivado,需要关闭重启Vivado,否则环境变量设置无法生效。**此操作,单台电脑只需要操作一次就够了。**

JFM_PATH	
.!\JFM_Kits	
浏览文件(F)	确定 取消
	:\VFM_Kits

3.3 Vivado添加IP补丁

3.3.1 添加IP补丁

在环境变量设置完成后,关闭重启Vivado。在Vivado开发软件的Tcl窗口,输入一下指令source 到run.tcl文件,run.tcl路径就是IP补丁存放的位置,若下图所示。

source // JFM Kits/ip patch/run.tcl

此时补丁已添加到Vivado开发环境中。此操作,单台电脑只需要操作一次就够了。

3.3.2生成补丁按钮

Source ···run. tcl后,IP补丁相当于已经添加Vivado开发环境钟了,为了简化后续任何工程添加补丁的工作量,在Vivado开发软件的Tcl窗口,输入指令create_ip_patch_button,若下图所示,这样就生成了添加IP补丁和删除IP补丁的两个按钮。

结果如下图所示, "+表示本工程添加IP补丁, "-"表示本工程删除IP补丁。

以上步骤,一台电脑或者一个Vivado开发软件只要做一次就够了,跟开发工程没有关系。**此操作,单台电脑** 只需要操作一次就够了。

4 更新Vivado库文件

这个更新Vivado库文件包括更新Vivado中的器件库和编译库,在7系列中,替换库文件,只适用对标器件的GT是GTP的芯片,如XC7A50芯片、XC7Z015等,或者我司带有AI功能的芯片,其他芯片不需要更新Vivado库文件。

4.1 添加器件库

打开Vivado,打开已有的xc7z015clg485-2工程,或者新建一个xc7z015clg485-2工程,或者仅仅打开 hardware Manger窗口。点击"+"添加了IP补丁,目的为了调用IP补丁中的指令。

而在5.3.1之后的补丁上,在TCL窗口输入fmsh_install_device,也可可实现添加FMSH特有的器件及时序库。此操作,单台电脑只需要操作一次就够了。

指令fmsh_install_device执行成功后,器件库就会多出11个可选器件,如下图所示。**此操作,单台电脑只需要操作一次就够了。**

Part	I/O Pin C	Available I	LUT Elem	FlipFl	Block R	Ultra R	D	Gb Transcei	GTPE2 Transcei	GTXE2
xc7k325t_fmk230tffg676-3	676	400	188200	407600	445	0	840	8	0	8
xc7k325t_fmk230tffg676-2	676	400	188200	407600	445	0	840	8	0	8
xc7k325t_fmk230tffg676-2L	676	400	188200	407600	445	0	840	8	0	8
xc7k325t_fmk230tffg676-1	676	400	188200	407600	445	0	840	8	0	8
xc7k325t_fmk300tffg900-3	900	500	188200	407600	445	0	840	16	0	16
xc7k325t_fmk300tffg900-2	900	500	188200	407600	445	0	840	16	0	16
xc7k325t_fmk300tffg900-2L	900	500	188200	407600	445	0	840	16	0	16
xc7k325t_fmk300tffg900-1	900	500	188200	407600	445	0	840	16	0	16
xc7z045_fmql15clg485-3	485									
xc7z045_fmql15clg485-2	485									
xc7z045_fmql15clg485-1	485									

5 安装Procise软件

此Procise可以实施bit补丁。

5.1 安装Procise软件

安装20240301之后的版本,如下所示。

5.2 设置Procise环境变量

新建用户变量,建立变量名为FMSH_PROCISE_PATH,变量值为刚刚Procise安装位置。环境变量添加完成后,需要重启 VIVADO。这样Vivado在位流生成后会自动调用 Procise对位流打Bit补丁。**此操作,单台电脑只需要操作一次就够了。**

5.3 设置IAR安装路径

在上方菜单选择 Tools->Integrated Tools Options。

6 开发PL端工程

6.1 建立Vivado工程

6.1.1 建立新工程

6.1.2 更改老工程

之前老流程:器件选择xc7z015clg485-2,在tcl输入replace 7z015 file指令替换编译库。

现有新流程:器件选择xc7z045_fmq115c1g485-2,不需要输入任何指令,开发GT资源也不需要先切到xc7z045上选择GTX了。

在已有老流程工程的情况下,首先执行reset_database_to_default指令,然后器件设置更改为 xc7z045_fmq115c1g485-2,即可完成从老流程工程切换到新流程工程,完成工程移植。在IP补丁5.3.0之前,开发 JFMQL15T485器件,使用的都是老流程,涉及到GT资源时,首先在xc7z045器件上添加GTX对应的IP, 然后打IP补丁,再切到xc7z015器件上完成综合、实现及生成BIT位流。使用新流程后,再也不用切换器件了,因为新流程能选gtx IP。

器件更改为xc7z045_fmql15c1g485-2后,涉及的GTX方面的IP需要Upgrade,还需要reset output products和 Generate output products。

Verilog options:

verilog_version=Verilog 2001

✓ SIMULATION

Source File

6.2 一键式补丁

6.2.1 给工程加IP补丁

FPGA工程建立完成后,点击"+"给工程添加了IP补丁,如下图所示。此操作,跟工程有关,因此每个工程都需要操作一次。若本工程不想打补丁了,也可以点击"-"。

TCL窗口,会弹出如下信息,说明本工程添加了IP补丁。

```
add_hook_tcl_to_prj;
No subcore find in the project!

xfft, fir_compiler, dds_compiler, cpri, jesd, cordic, divgen, floating point IPs files modified successfully!(Total 26 files)

Set -device to 0!

Set PCIE -pcie_version NEW!

Set MIG -mig_comp FALSE!

Set MIG -idel_dec_cnt 1!

Set MIG -mig_ecc OFF!

Set MIG -precharge_check FALSE!

Set MIG -max pc cnt 100000!
```


末尾显示本次补丁的版本。点击"+"后,在工程目录下,会多出一个IP Patch文件夹,如下图。

ip_patch	2024/4/1 13:32	文件夹	
all_ip_list.log	2024/4/1 14:00	文本文档	1 KB
call_procise.bat	2024/4/1 14:09	Windows 批处理	1 KB
all_procise_disable_icap.bat	2024/4/1 14:09	Windows 批处理	1 KB
FMQL15T485_GKK.xpr	2024/4/1 17:16	Vivado Project F	58 KB
ip_need_patch_list.cfg	2024/3/21 10:49	CFG 文件	1 KB
ip_need_patch_list.log	2024/4/1 14:00	文本文档	1 KB
ip_not_ooc_list.log	2024/4/1 14:00	文本文档	1 KB
ip_patch.log	2024/4/1 14:00	文本文档	1 KB
ip_patch_version_info.log	2024/4/1 14:00	文本文档	1 KB
ip_patched_time_list.log	2024/4/1 14:01	文本文档	4 KB
ip_upgrade.log	2024/4/1 13:40	文本文档	19 KB
procise_incr_cfg.txt	2024/3/21 9:50	文本文档	1 KB
procise_run.tcl	2024/4/1 14:09	TCL 文件	1 KB

6.2.2 IP Cache设置

打IP补丁,必须要将 IP Cache 下的 Cache scope 选项设置为 Disabled。Tools/Settings下,将 IP Cache 下的 Cache scope 选项设置为 Disabled。此操作,跟工程有关,因此每个工程都需要操作一次。

6.2.3 IP综合的要求

IP综合必须要是00C模式,如下图所示。IP 综合选项要选择 "Out of context per IP。 此操作,跟工程的IP有关,因此每个工程的IP都需要操作一次。

6.2.4 位流bit补丁的设置

把工程中IP Patch文件夹中的procise_incr_cfg. txt拷贝出来,放到工程目录下。

ip_patch 🖊	2024/4/1 13:32	文件夹	
all_ip_list.log	2024/4/1 14:00	文本文档	1 KB
call_procise.bat	2024/4/1 14:09	Windows 批处理	1 KB
call_procise_disable_icap.bat	2024/4/1 14:09	Windows 批处理	1 KB
FMQL15T485_GKK.xpr	2024/4/1 17:16	Vivado Project F	58 KB
ip_need_patch_list.cfg	2024/3/21 10:49	CFG 文件	1 KB
ip_need_patch_list.log	2024/4/1 14:00	文本文档	1 KB
ip_not_ooc_list.log	2024/4/1 14:00	文本文档	1 KB
ip_patch.log	2024/4/1 14:00	文本文档	1 KB
ip_patch_version_info.log	2024/4/1 14:00	文本文档	1 KB
ip_patched_time_list.log	2024/4/1 14:01	文本文档	4 KB
ip_upgrade.log	2024/4/1 13:40	文本文档	19 KB
procise_incr_cfg.txt	2024/3/21 9:50	文本文档	1 KB
procise_run.tcl	2024/4/1 14:09	TCL 文件	1 KB

打开procise_incr_cfg.txt,更改里面的器件,根据实际顶层文件的名字更改位流的名称,因为QL15器件不需要再打GT补丁,因此-gt_cfg serdes_parameter.cfg前面必须有##,同时若需要添加其他功能补丁,删除指令前的##即可,具体如下所示。

6.2.5 工程编译及位流生成

在完成5.2.4后,工程编译和位流生成就跟开发进口器件是一样的。综合后,会出现很多有关IP Patch相关的文件,通过这些文件可以知道哪些IP打了补丁,补丁版本等,同时Generate bitstream会产生3个bit,由此可知,Vivado后台调用了Procise打bit补丁,如下图所示。

ip_patch	2024/4/1 13:32	文件夹			
all_ip_list.log	2024/4/1 14:00	文本文档	1 KB		
scall_procise.bat	2024/4/1 14:09	Windows 批处理	1 KB		
call_procise_disable_icap.bat	2024/4/1 14:09	Windows 批处理	1 KB		
FMQL15T485_GKK.xpr	2024/4/1 17:16	Vivado Project F	58 KB		
ip_need_patch_list.cfg	2024/3/21 10:49	CFG 文件	1 KB		
ip_need_patch_list.log	2024/4/1 14:00	文本文档	1 KB		
ip_not_ooc_list.log	2024/4/1 14:00	文本文档	1 KB		
ip_patch.log	2024/4/1 14:00	文本文档	1 KB		
ip_patch_version_info.log	2024/4/1 14:00	文本文档	1 KB		
ip_patched_time_list.log	2024/4/1 14:01	文本文档	4 KB		
ip_upgrade.log	2024/4/1 13:40	文本文档	19 KB		
procise_incr_cfg.txt	2024/3/21 9:50	文本文档	1 KB		
□ z7_sys_top.bit ←	z7_sys_top_incr_cfg.bit				
z7_sys_top.hwdef	z7	_sys_top_incr_cfg_dis	able_icap.bit		
z7_sys_top.ltx	z7	_sys_top_io_placed.rp	ot		

6.3 工程下载及调试

在Vivado环境下,可以使用Xilinx的JTAG仿真器下载和调试bit文件。在Procise环境下,可以使用Xilinx的JTAG仿真器或者J-link仿真器下载bit,若有ltx调试文件,建议还是使用Vivado+Xilinx的JTAG仿真器来调试。

在Vivado环境下,只支持最长的bit下载,其余bit无法下载,可以使用我司Procise下载,现象如下所示。

```
prefresh_hw_device [lindex [get_hw_devices xc7z015_0] 0]
 INFO: [Labtools 27-1435] Device xc7z015 (JTAG device index = 0) is not programmed (DONE status = 0).
  set_property PROBES.FILE {D:/D/FMQL15_DEMO/FMQL15T485_PCIE_slotref_fmsh/FMQL15T485_CKK.runs/impl_2/z7_sys_top.ltx} [get_hw_devices xc7z015_0]
 set_property FULL_PROBES.FILE (D:/D/FMQL15_DEMO/FMQL15T485_PCIE_slotref_fmsh/FMQL15T485_GKK.runs/impl_2/z7_sys_top.ltx) [get_hw_devices xc7z015_0]
 set_property PROGRAM.FILE [D:/D/FMQL15_DEMO/FMQL15T485_PCIE_slotref_fnsh/FMQL15T485_GKK.runs/inpl_2/z7_sys_top.bit} [get_hw_devices xc7z015_0]
 program_hw_devices [get_hw_devices xc7z015_0]
  ERROR: [Labtools 27-3303] Incorrect bitstream assigned to device. Bitfile is incompatible for this device.
  ERROR: [Labtools 27-3165] End of startup status: LOW
 ERROR: [Common 17-39] 'program_hw_devices' failed due to earlier errors.
  set_property PROBES.FILE {D:/D/FMQL15_DEMO/FMQL15T485_PCIE_slotref_fmsh/FMQL15T485_CKK.runs/impl_2/z7_sys_top.ltx} [get_hw_devices xc7z015_0]
  set_property FULL_PROBES.FILE {D:/D/FMQL15_DEMO/FMQL15T485_PCIE_slotref_fmsh/FMQL15T485_GKK.runs/impl_2/z7_sys_top.ltx} [get_hw_devices xc7z015_0]
 set_property PROGRAM.FILE (D:/D/FMQL15_DEMO/FMQL15T485_PCIE_slotref_fmsh/FMQL15T485_GKK.runs/impl_2/z7_sys_top_incr_cfg.bit) [get_hw_devices xc7z015_0]
 program hw devices [get hw devices xc7z015 0]
 ERROR: [Labtools 27-3303] Incorrect bitstream assigned to device. Bitfile is incompatible for this device.
  ERROR: [Labtools 27-3165] End of startup status: LOW
 ERROR: [Common 17-39] 'program_hw_devices' failed due to earlier errors.
 refresh hw device [lindex [get hw devices xc7z015 0] 0]
 INFO: [Labtools 27-1435] Device xc7z015 (JTAG device index = 0) is not programmed (DONE status = 0).
  set_property PROBES.FILE (D:/D/FMQL15_DEMO/FMQL15T485_PCIE_slotref_fmsh/FMQL15T485_GKK.runs/impl_2/z7_sys_top.ltx) [get_hw_devices xc7z015_0]
  set\_property\ FULL\_PROBES.\ FILE\ \ \  (D:/D/FMQL15DEMO/FMQL15T485\_PCIE\_slotref\_fmsh/FMQL15T485\_GKK.\ runs/impl\_2/z7\_sys\_top.ltx)\ \ [get\_hw\_devices\ xc7z015\_0]
 set_property PROGRAM.FILE (D:/D/FMQL15_DEMO/FMQL15T485_PCIE_slotref_fmsh/FMQL15T485_GKK.runs/impl_2/z7_sys_top_incr_cfg_disable_icap.bit) [get_hw_devices xc7z015_0]
 program hw devices [get hw devices xc7z015 0]
 INFO: [Labtools 27-3164] End of startup status: HIGH
 program_hw_devices: Time (s): cpu = 00:00:07; elapsed = 00:00:08. Memory (MB): peak = 1855.281; gain = 0.000
refresh_hw_device [lindex [get_hw_devices xc7z015_0] 0]
A INFO: [Labtools 27-2302] Device xc7z015 (TTAG device index = 0) is programmed with a design that has 1 ILA core(s).
  display_hw_ila_data [ get_hw_ila_data hw_ila_data_1 -of_objects [get_hw_ilas -of_objects [get_hw_devices xc7z015_0] -filter (CELL_NAME=~"ila_inst")]]
```

7 开发PS端工程

7.1 构造IAR工程

7.1.1 建立Procise工程

新建一个空的 Procise 工程,器件选择 fmq115t485,其余点击NEXT即可,如下图所示。

7.1.2 导入Vivado工程

在上方菜单选择 PSOC->From Vivado。

加入 Vivado 生成的 system.bd 文件与 PS 的 IP 配置 (.xci) 文件 其中, Vivado 的Block Design 文件(.bd)的路径一般是:

 ${prj_name} \setminus {prj_name}. srcs \setminus {bd_name} \setminus {bd_name}. bd$

Vivado PS 的配置文件(.xci) 的路径一般是:

 $\label{local_state} $$ \{ prj_name \} . srcs sources_1 \bd \{ bd_name \} _ processing_system 7_0_0 \ kbd_name \}_p $$ rocessing_system 7_0_0. xci $$$

双击PS核,在VVD配置PS的基础上可以做相应地更改。

7.1.3 启动IAR工程

执行Export Hardware,弹出第三方开发平台IAR模板工程,选择FSBL和Hellworld,接着执行Launch IAR,

打开IAR开发软件。PS端的裸机开发和FSBL开发必须要在IAR开发环境中进行。

注意,在级联模式下,在访问任何 PL资源之前,需要使能 USER LEVEL SHIFTER寄存器。

```
FMSH_WriteReg(FPS_SLCR_BASEADDR, 0x008, 0xDF0D767BU); //unlock
FMSH_WriteReg(FPS_SLCR_BASEADDR, 0x838, 0xf); //Open USER_LVL_SHFTR_EN_A and USER_LVL_SHFTR_EN_5
FMSH_WriteReg(FPS_SLCR_BASEADDR, 0x004, 0xDF0D767BU); //lock
```

7.2 工程下载及调试

若需要调试裸机PS,则必须是要在IAR下进行。在IAR环境下,使用J-link仿真器下载.out文件调试。在 IAR_SDK 中,点击上方的绿色小箭头, Download and Debug

弹出提示,点击 OK,接着选择 Cortex-A7,点击 OK。

成功进入 Debug 模式。与其他嵌入式工程一样,可以进行单步调试,设置断点等操作。按小箭头按钮 GO 可以看到流水灯运行。

8 联合调试PL+PS

单独调试PL端,芯片处于级联模式或者独立模式都是可以的。单独调试PS端,芯片也可以处于级联模式或者独立模式。

若是需要同时调试PL端和PS端裸机APP或者FABL程序,则必须要在独立模式下进行。因为PL端调试需要使用 Vivado+Xilinx的JTAG仿真器来调试,而PS端的裸机APP或者FABL程序需要在IAR+JLINK来调试,因此需要两个独立的JTAG端口。

9 烧写QSPI

在上方菜单选择 PSOC->Program Flash。

在弹出的界面有Procise和IAR,可以选择使用Procise来烧写QSPI,也可以选择IAR中的flashloader来烧写QSPI。

技术支持

