Statistics for Data Science

Test and their Types

- Parametric Test
- Non-Parametric Test

Parametric Test

- 1. More relaible results
- 2. First we have to meet the assumptions Example: Not Equal Data(The Comparison of girls and boys *Age*)

Non-Parametric Test

- 1. Less Relaible results
- 2. Calculate the rank of Data
- 3. No need to meet the Assumptions Example: Based on Ranking(the age of boy 1,2..)

Step-1

Normality Test

- Test to be Used:
 - 1. Shapiro-Wilk Test Specific(Relaible)
 - 2. Kolmogorov-Smirnov Test General(Less Relaible)

Step-2

- Homogenity Test
 - The Variance of the Variable
 - Test to be Used:
 - 1. Levene's Test

Step-3

Purpose

- Know thw Purpose of your Research Question
- There are two types of Purposes
 - 1. Comparison (Difference)
 - 2. Relationship (Connection)

1. Comparison

- Atleast two groups
 - Example:
 - Male vs Female

- Control Group vs Treatment Group
- Grouping Individual by Color Preferences

1. Relatioship

- Find a Connection
 - Examples:
 - Can food predict weight of a group of individuals
 - Do fertilizer application increase crop growth
- We seek following here
- Connection
- Correlation
- Causation
- Prediction

Step-4

Data Type

- Know the Type Of Data you are working with
- Two types of Data
 - 1. Categorical
 - 2. Continuous

1- Categorical

- Qualitative
- Non-Numerical Meaning
- Represented in Texts Example:
 - 1. Character
 - 2. Factors

Example:

- Yes or No answer
 - Do you like Mangoes
 - Are you learning with Baba Aammar

2- Continuous

- Quantitative
- Numerical
- Mostly Represented in number
- Example:
 - Numerical Variable(int and float)

Examples:

- Amount
- Number

- Age
- Plants Height
- Number of Plants Colonies
- Chlorophyl Content
- Fertilizer Ammount

Step-5

Statistical Test

- Choose a Statistical Test for 3 main families
 - 1. Chi-Squared
 - 2. t-Test/ANOVA
 - 3. Correlation
- Chi-squared(It is a Non-Parametric Test)
 - Purpose: Comparison
 - Data: Categorical Only
 - Types
 - 1. Test of Homogeneity
 - 2. Test of Independance
 - When to use?
 - 1. Nothing affect this
 - 2. Can be used with number of level or groups

t-Test/ANOVA

- Purpose: Comparison
- Data: Categorical and Continuous
 - Types
- 1. One-Sample t-Test
 - For one sample group with a known mean
- 2. Two-Sample t-Test
 - Unpaired t-Test
 - Two different group
 - Paired t-Test
 - Same group twice

3. ANOVA

- Analysis of Variance
- 3+Level of groups are involved
- One way ANOVA
- Even one group is significant you wil get significant results, but doesn't tell which one
- Two way ANOVA
- Repeated measures of ANOVA
- 3+paired groups, scale up of paired t-Test

Correlation

- Purpose: Relationship
- Data: Continuous Only
 - Types
- 1. Pearson's Correlation
 - One Independent & One Dependent Variabele
- 2. Regression
 - One Independent & One Dependent Variabele
 - Correlation: Tell us how closely two variable are connected " Is food a predictor of weight gain"
 - Regression: Tell us specific mathematical equation that describe the relationship e.g
 Missing values can be predicted like this.

Difference betweeen ANOVA, ANCOVA, MANOVA & MANCOVA

The core component is ANOVA. ANOVA test three or more groups for mean difference of continuous response varaible(dependent variable)

ANCOVA

- C stands for Covariance
- It has single continuous variable like ANOVA
- ANCOVA compare a response variable by both a factor and a continuous independent variable
- The continuous independent variable used in ANCOVA is called **Covariate**

MANOVA

- MANOVA is an ANOVA with two or more continuous variable
- M stands for Multivariate
- MANOVA has both one way and two way types

MANCOVA

Both MANOVA and MANCOVA has two or more response varaible