Ciência de Dados Quântica 2022/23

QUBO 4 QAOA:

Quantum Approximate
Optimization Algorithm

LUÍS PAULO SANTOS

Material de Consulta

- Fred Glover, Gary Kochenberger, Yu Du; Quantum Bridge Analytics I: A Tutorial on Formulating and Using QUBO Models https://arxiv.org/pdf/1811.11538.pdf
- Qiskit Summer School 2021: 5.2 Introduction to QAOA and Applications
- Qiskit Summer School 2021: Lab2 Introduction to Variational Algorithms

Combinatorial Optimization

Combinatorial optimization problems: finding an optimal object out of a finite set of objects.

 \blacktriangleright Our formulation: finding optimal bit strings, $z=\{0,1\}^{\otimes n}$, out of a set of finite bitstrings

▶ These problems are NP-hard

QAOA operator

- lacktriangle Let H_0 be the mixer Hamiltonian and H_p be the problem Hamiltonian
- Then $U(\beta, H_0) = e^{-i\beta H_0}$ and $U(\alpha, H_p) = e^{-i\alpha H_p}$ are the unitaries, with α and β capturing both time evolution and the $\frac{1}{p}$ term associated with trotterization
- Finally we get: $|\psi(\alpha,\beta)\rangle = U(\beta_p, H_0)U(\alpha_p, H_p)\cdots U(\beta_1, H_0)U(\alpha_1, H_p)H|0\rangle$

QAOA: overall

find (α^*, β^*) such that the expectation of H_p is minimized: $|\psi(\alpha^*, \beta^*)\rangle = \underset{\alpha, \beta}{\operatorname{argmin}} \langle |\psi(\alpha, \beta)| H_p |\psi(\alpha, \beta)\rangle$

▶ sample basis states $|z\rangle$ from $|\psi(\alpha^*, \beta^*)\rangle$ to find a solution

Problem Statement

- We want to use near term quantum hardware to solve classical combinatorial optimization problems
- Adiabatic Computing (in general) and QAOA (in particular) seem like good candidates to investigate whether a quantum advantage can be unleashed
- But how do we transform a classical combinatorial problem into the specification of an Hamiltonian suitable for the QAOA framework?

Problem Statement

- It has been found that the framework of Quadratic Unconstrained Binary Optimization (QUBO) can embrace a wide set of important combinatorial optimization problems
- Once formulated as a QUBO these problems can be efficiently solved using QUBO solvers, including QAOA within the quantum context
- QUBO is a special case of Quadratic Programming

Quadratic Programming

- subject to
 - $ightharpoonup Ax \leq b$
 - $> x^T Q x + c^T x \le r_i$

linear constraints

quadratic constraints

range constraints

QUBO –

Quadratic Unconstrained Binary Optimization

▶
$$\min_{z} (z^T Q z + c^T z)$$
, $z \in \{0,1\}^n$, $c \in \mathbb{R}^N$, $Q \in \mathbb{R}^{N*N}$

- > subject to
 - $\rightarrow Ax \leq b$

 - $ightharpoonup l_i \le x_i \le u_i$

 $\rightarrow x^T Q x + c^T x \le r_i$ quadratic constraints

- Binary variables
- no variable constraints
 - ▶ although linear constraints Ax = b can be supported

QUBO – Basic definitions

- ▶ $\min_{z} (z^T Q z + c^T z), \quad z \in \{0,1\}^n, \quad c \in \mathbb{R}^N, \quad Q \in \mathbb{R}^{N*N}$
- $c \in \mathbb{R}^N$, is a vector containing the coefficients of the linear terms of the objective function, i.e. c_i is the coefficient of the term z_i
- ▶ $Q \in \mathbb{R}^{N*N}$, is a square symmetric matrix containing the coefficients of the quadratic terms of the objective function, i.e. q_{ij} is the coefficient of the term $z_i z_j$
- ▶ Q is symmetric since $z_i z_j = z_j z_i$, for binary variables z_t
 - ▶ If *Q* is not given on a symmetric form it can always be made symmetric by redefining it:

$$q_{ij} = (q_{ij} + q_{ji})/2, \quad \forall i, j; j \neq i$$

QUBO – Basic example I

linear

quadratic

We can evaluate f(z) for $\forall z$, obtaining

$$\min_{z} \left(\{ z_{1} \quad z_{2} \quad z_{3} \quad z_{4} \} \begin{bmatrix} 0 & 2 & 4 & 0 \\ 2 & 0 & 1 & 0 \\ 4 & 1 & 0 & 5 \\ 0 & 0 & 5 & 0 \end{bmatrix} \begin{Bmatrix} z_{1} \\ z_{2} \\ z_{3} \\ z_{4} \end{Bmatrix} + \{ -5 \quad -8 \quad -3 \quad -6 \} \begin{Bmatrix} z_{1} \\ z_{2} \\ z_{3} \\ z_{4} \end{Bmatrix} \right)$$

From QUBO to QAOA

$$C(z) = \sum_{i=1,j=1,i\neq j}^{n} z_i \, q_{ij} z_j + \sum_{i=1}^{n} c_i z_i$$

$$H_p = \sum_{i=1,j=1,i\neq j}^{n} \frac{1}{4} q_{ij} \, Z_i \, Z_j - \sum_{i=1}^{n} \frac{1}{2} \left(c_i + \sum_{j=1}^{n} q_{ij} \right) Z_i + \left(\sum_{i=1,j=1,i\neq j}^{n} \frac{q_{ij}}{4} + \sum_{i=1}^{n} \frac{c_i}{2} \right)$$
Drop

The Hamiltonian is given by a sum of Pauli Z's, as expected

QUBO – Basic example I

$$\min_{z} \left(\{ z_{1} \quad z_{2} \quad z_{3} \quad z_{4} \} \begin{bmatrix} 0 & 2 & 4 & 0 \\ 2 & 0 & 1 & 0 \\ 4 & 1 & 0 & 5 \\ 0 & 0 & 5 & 0 \end{bmatrix} \begin{Bmatrix} z_{1} \\ z_{2} \\ z_{3} \\ z_{4} \end{Bmatrix} + \{ -5 \quad -8 \quad -3 \quad -6 \} \begin{Bmatrix} z_{1} \\ z_{2} \\ z_{3} \\ z_{4} \end{Bmatrix} \right)$$

$$H_p = \sum_{i=1, j=1, i \neq j}^{n} \frac{1}{4} q_{ij} Z_i Z_j - \sum_{i=1}^{n} \frac{1}{2} \left(c_i + \sum_{j=1}^{n} q_{ij} \right) Z_i$$

$$H_p = Z_1 Z_2 + 2 Z_1 Z_3 + 0.5 Z_2 Z_3 + 2.5 Z_3 Z_4 + 0.5 Z_1 - 2.5 Z_2 + 3.5 Z_3 - 0.5 Z_4$$

QUBO – Basic example I

$$H_p = Z_1 Z_2 + 2 Z_1 Z_3 + 0.5 Z_2 Z_3 + 2.5 Z_3 Z_4 + 0.5 Z_1 - 2.5 Z_2 + 3.5 Z_3 - 0.5 Z_4$$

$$U(\propto_t, H_p) = e^{-i\alpha_t H_p} = R_{Z_1 Z_2}(\propto_t) * R_{Z_1 Z_3}(2 \propto_t) * R_{Z_2 Z_3}(0.5 \propto_t) * R_{Z_3 Z_4}(2.5 \propto_t) * R_{Z_1}(0.5 \propto_t) * R_{Z_2}(-2.5 \propto_t) * R_{Z_3}(3.5 \propto_t) * R_{Z_4}(-0.5 \propto_t)$$

QUBO - MaxCut

Given the weighted adjacency matrix of a graph cut it onto two subgraphs, such that the cut is maximal

QUBO - MaxCut

The cost function is given by:

$$C(z) = \sum_{i,j,i\neq j}^{n} w_{ij} * z_i (1-z_j) \qquad \Leftrightarrow \qquad C(z) = \sum_{i,j,i\neq j}^{n} w_{ij} * z_i - \sum_{i,j,i\neq j}^{n} w_{ij} * z_i z_j$$

spinning the sign to convert to a minimization problem

$$C(z) = \sum_{i,j,i \neq j}^{n} -w_{ij} * z_i + \sum_{i,j,i \neq j}^{n} w_{ij} * z_i z$$

write in the QUBO representation

$$c_i = \sum_{j=1}^n -w_{ij} \qquad q_{ij} = w_{ij}, \ i \neq j$$

QUBO - MaxCut

▶ Given a set S of numbers partition to into two disjoint subsets, S_0 and S_1 , such that the sum of their elements is minimal:

$$\min \left| \sum_{s \in \mathcal{S}_0} s - \sum_{s \in \mathcal{S}_1} s \right|$$

- ▶ Let $S = \{s_1, ..., s_n\}$ and $z_i \in \{0,1\}, i = 1 ... n$ indicate to which subset s_i belong to
- $\blacktriangleright \quad sum \, S_1 = \sum_{i=1}^n s_i * z_i ; sum \, S_0 = \sum_{i=1}^n s_i \sum_{i=1}^n s_i * z_i$
- ▶ Let $S = \sum_{i=1}^{n} s_i$ then $sum S_0 sum S_1 = S \sum_{i=1}^{n} s_i * z_i$
- ▶ Let our objective function be

$$C(z) = \left(S - \sum_{i=1}^{n} s_i * z_i\right)^2$$

$$C(z) = \left(S - \sum_{i=1}^{n} s_i * z_i\right)^2$$

$$C(z) = S^2 - 2S \sum_{i=1}^{n} s_i * z_i + \left(\sum_{i=1}^{n} s_i * z_i\right)^2$$

$$\left(\sum_{i=1}^{n} s_i * z_i\right)^2 = \sum_{i=1}^{n} s_i^2 * z_i + \sum_{i,j=1,i\neq j}^{n} 2s_i s_j * z_i z_j$$

$$C(z) = S^2 - 2S \sum_{i=1}^{n} s_i * z_i + \sum_{i=1}^{n} s_i^2 * z_i + \sum_{i,j=1,i\neq j}^{n} 2s_i s_j * z_i z_j$$

$$C(z) = S^2 + 4 \sum_{i=1}^{n} s_i (s_i - S) * z_i + 8 \sum_{i,j=1,i\neq j}^{n} s_i s_j * z_i z_j$$

$$\min_{Z} C(z) = \min_{Z} \left(\sum_{i=1}^{n} s_{i}(s_{i} - S) * z_{i} + 2 \sum_{i,j=1,i\neq j}^{n} s_{i}s_{j} * z_{i}z_{j} \right)$$

$$c_i = s_i(s_i - S) \qquad q_{ij} = s_i s_j$$

Let $S = \{25, 7, 13, 31, 42, 17, 21, 10\}$

One optimal solution:

- $ightharpoonup z = \{0, 0, 0, 1, 1, 0, 0, 1\}$
- \triangleright $S_0 = \{25, 7, 13, 17, 21\}; sum = 80$
- \triangleright $S_1 = \{31, 41, 10\}; sum = 81$

QUBO with linear equality constraints

- ▶ Consider a QUBO $z^TQ'z + c'^Tz$
- ▶ subject to M constraints of the form $A_m z = b_m$
- \blacktriangleright Each constraint m can be converted into a quadratic constraint of the form:

$$P\left(\sum_{i=1}^{n} (a_{mi}z_i) - b_m\right)^2 = P\left[\sum_{i=1}^{n} (a_{mi}^2 - 2a_{mi}b_m)z_i + \sum_{i,j=1,j\neq i}^{n} (2a_{mi}a_{mj})z_iz_j + b_m^2\right]$$

The quadratic constraints are added to the original QUBO to build a "constrained" QUBO

QUBO with linear equality constraints

$$\min_{z} (20z_{1} + 5z_{2} + 7z_{3} + 10z_{4})$$
s.t.
$$10z_{1} + 5z_{2} + 5z_{3} + 5z_{4} = 10$$

$$\triangleright P=1$$

$$\min_{z} \begin{pmatrix} 20z_{1} + 5z_{2} + 7z_{3} + 10z_{4} - 100z_{1} - 75z_{2} - 75z_{3} - 75z_{4} + \\ 100z_{1}z_{2} + 100z_{1}z_{3} + 100z_{1}z_{4} + \\ 50z_{2}z_{3} + 50z_{2}z_{4} + 50z_{3}z_{4} \end{pmatrix}$$

$$\min_{z} \begin{pmatrix} -90z_{1} - 70z_{2} - 68z_{3} - 65z_{4} + \\ 100z_{1}z_{2} + 100z_{1}z_{3} + 100z_{1}z_{4} + \\ 50z_{2}z_{3} + 50z_{2}z_{4} + 50z_{3}z_{4} \end{pmatrix}$$

QUBO with linear equality constraints

$$\min_{z}(20z_1 + 5z_2 + 7z_3 + 10z_4)$$

s.t.
$$10z_1 + 5z_2 + 5z_3 + 5z_4 = 10$$

$$p=2$$
; $P=1$

0110: min = 12; constraint 10=10

0101: min = 15; constraint 10=10