2ª Guía Compiladores

Nombre: Cruz López Adrián Grupo: 3CM15 Fecha: 18/12/2021

A partir de hoc4 se usan dos etapas en hoc. ¿Cuáles son y qué hacen?

- 1. Generación de código: inserta en la RAM de la máquina virtual todas las instrucciones y operandos que se necesitan para generar la funcionalidad escrita. Utiliza progp, yyparse(), code().
- **2. Ejecución de código:** utilizando un contador de programa, se ejecutan todas las instrucciones en la RAM.

Escriba 3 cosas importantes que se almacenan usualmente en un marco (o registro de activación) de función.

1. <u>Dirección de retorno</u> 2. <u>Parámetros</u> 3. <u>Variables locales</u>

Falso o Verdadero (F/V)

1.	En lenguaje C los parámetros formales no tienen nombre	(F)
2.	En lenguaje C las variables locales (no estáticas) se crean cuando se entra a una función y se destruyen cuando se sale de la función	(V)
3.	En hoc los parámetros formales no tienen nombre	(V)
4.	No es posible definir funciones recursivas en hoc	(F)
5.	En hoc no hay variables locales	(F)
6.	Es imposible que la pila de hoc se desborde (Stack Overflow)	(F)
7.	En hoc cuando una función termina su ejecución se saca su marco de la pila de llamadas	(٧)
8.	En hoc los parámetros reales son listas de expresiones	(٧)
9.	En hoc el código que ejecuta la máquina virtual de pila está en prefijo (considere como se ejecuta una operación de suma)	(F)
10.	Los valores de los atributos sintetizados se calculan a partir de los valores de atributos de su nodo padre o sus nodos hermanos.	(F)
11.	En hoc4 la variable pc se usa en la etapa de ejecución	(V)
12.	En hoc4 la variable progp se usa en la etapa de generación de código	(V)
13.	La variable progp indica la posición de la RAM donde está la sig. instrucción a ejecutar	(F)
14.	La variable pc indica cual es la sig. posición de la RAM donde se almacenará una instrucción	(F)

1. Un	es	$s [A \rightarrow \alpha, \beta, a] dc$	nde A $\rightarrow \alpha\beta$ e	es una pro	ducción y a es	s un t	term	inal o \$.
a) man	go b) prefij	io viable <mark>c) el</mark>	emento LR (1)	d) eleme	ento LR(0)	(С)
2. Es una pro	ducción de G co	n un punto en (cierta posició	n del lado	derecho.			
a) man	go b) prefij	o viable c) el	emento LR (1)	d) eleme	ento LR(0)	(D)
3. Son prefijo	s de las formas d	e frase derecha	que pueder	n aparecer	en la pila			
a) man	b) elem go ((ento LR c) ;	orefijo viable	d) eleme	ento LR (1)	(С)
de g donde l	de un a cadena b podrí ⁄ia en una deriva	a encontrarse y	sustituirse p					
a) prefijo v	iable <mark>b) ma</mark>	<mark>ingo</mark> c) ele	mento LR (0)	d) eleme	nto LR (1)	(В)
valor of the valor							5.	
a) 1, 2, 3	, 4 b) 1, 3	3, 4 ,2	c) 2, 1, 4, 3	d) 4	-, 3, 2, 1	(С)
Problema 1	Considere la sigu	ıiente gramátic	a:					
1) S → X	2) X → a X c	3) X → X X	4) X	→ b				
cerrad	The second seco		XX·}) eir_a	{{X → a · X ∘	c }, X)			
-	$ura({X \rightarrow X X \cdot}) =$	{						

 $X \to X X$.

}

$$ir_a (\{X \rightarrow a \cdot Xc\}, X) = \{X \rightarrow a X \cdot c\}$$

Para el **Análisis LR** las gramáticas se muestran con sus producciones numeradas

Para cada gramática:

- Calcule los conjuntos PRIMERO y SIGUIENTE
- Construya la tabla Análisis Sintáctico Predictivo no Recursivo (LL (1))
- Construya la colección de conjuntos de elementos LR (0)
- Construya la tabla SLR

 $PRIM(S)=\{a, b\} PRIM(X)=\{a,b\}$

 $SIG(S) = {\$}$ $SIG{X} = {c,\$,a,b}$

Problema 2

1) A → x A	2) A → y A	3) A → y	

Explicar porque esta gramática no es LL (1).

Il=ir_a (I0, **x**), I2=ir_a (I0, **y**), I3=ir_a (I0, A), I4=ir_a (I1, A), I5=ir_a(I2, A) Ya que no se tiene un terminal de lad

Problema 3

1)
$$S \rightarrow \mathbf{a}$$
 2) $S \rightarrow (S R 3) R \rightarrow S R 4) R \rightarrow S R$

Il=ir_a (IO, **a**), I2=ir_a (IO, **(**), I3=ir_a (IO, S), I4=ir_a (I2, S), I5=ir_a(I4,,), I6=ir_a(I4,,), I7=ir_a (I4, R), I8=ir_a (I5, S), I9=ir_a (I8, R)

Use ambos análisis para analizar las siguientes cadenas:

(a)		(a, a)	(a,	a, a)	(a, a, a, a)
PRIMERO(S) : PRIMERO(R)				E(S) = { , ,) , \$	
	а	(,)	\$
S	S → a	$S \rightarrow (SR)$			
R			$R \rightarrow , SR$	R →)	

 $I1=ir_a(I0, \mathbf{a})$, $I2=ir_a(I0, \mathbf{()})$, $I3=ir_a(I0, S)$, $I4=ir_a(I2, S)$, $I5=ir_a(I4, \mathbf{,)}$, $I6=ir_a(I4, \mathbf{)}$), $I7=ir_a(I4, R)$, $I8=ir_a(I5, S)$, $I9=ir_a(I8, R)$

IO:I5:
$$S' \rightarrow \cdot S$$
 $R \rightarrow , \cdot SR$ $S \rightarrow \cdot (SR)$ $S \rightarrow \cdot (SR)$ $S \rightarrow \cdot a$ $S \rightarrow \cdot a$ II:I6: $S' \rightarrow S \cdot$ $R \rightarrow , S \cdot R$ I2: $R \rightarrow , SR$ $S \rightarrow \cdot (SR)$ $R \rightarrow \cdot , SR$ $S \rightarrow \cdot a$ I7: $S \rightarrow \cdot a$ $R \rightarrow , SR \cdot$ I3:I8: $S \rightarrow (S \cdot R)$ $S \rightarrow a \cdot$ $R \rightarrow \cdot , SR$ I9: $R \rightarrow \cdot , SR$ $R \rightarrow) \cdot$

Estados			Acción			Ir.	_a
	()	а	,	\$	S	R
0	d2		d8			1	
1					Aceptar		
2	d2		d8			3	
3		d9		d5			4
4		r2		r2	r2		
5	d2		d8			6	
6		d9		d5			7
7		r3		r3	r3		
8		rl		rl	rl		
9		r4		r4	r4		

(a) Análisis Sintáctico Peredictivo no Recursivo.

S → (S R·

Pila	Entrada	Acción
\$ S	(a)\$	$S \rightarrow (SR)$
\$RS((a)\$	
\$RS	a)\$	S → a
\$Ra	a)\$	
\$R)\$	R →)
\$))\$	
\$	\$	

Pila	Entrada	Acción
0	(a)\$	d2
0(2	a)\$	d8
0(2a8)\$	rl
0(2S3)\$	d9
0(2S3)9	\$	r4
0(2S3R4	\$	r2
OS1	\$	Aceptar

(a,a)
Análisis Sintáctico Peredictivo no Recursivo.

Pila	Entrada	Acción
\$S	(a,a)\$	S→(SR
\$RS((a,a)\$	
\$RS	a,a)\$	S→ a
\$Ra	a,a)\$	
\$R	,a)\$	R→,SR
\$RS,	,a)\$	
\$RS	a)\$	S → a
\$Ra	a)\$	
\$R)\$	$R \rightarrow)$
\$))\$	
\$	\$	

Pila	Entrada	Acción
0	(a,a)\$	d2
0(2	a,a)\$	d8
0(2a8	,a)\$	rl
0(2S3	,a)\$	d5
0(2S3,5	a)\$	d8
0(2S3,5a8)\$	rl
0(2S3,5S6)\$	d9
0(2S3,5S6)9	\$	r4
0(2S3,5S6R7	\$	r3
0(2S3R4	\$	r2
OS1	\$	Aceptar

(a,a,a)
Análisis Sintáctico Peredictivo no Recursivo.

Pila	Entrada	Acción
\$ S	(a,a,a)\$	S→(SR
\$RS((a,a,a)\$	
\$RS	a,a,a)\$	S → a
\$Ra	a,a,a)\$	
\$R	,a,a)\$	$R \rightarrow , SR$
\$RS,	,a,a)\$	
\$RS	a,a)\$	S → a
\$Ra	a,a)\$	
\$R	,a)\$	$R \rightarrow , SR$
\$RS,	,a)\$	
\$RS	a)\$	S → a
\$Ra	a)\$	
\$R)\$	$R \rightarrow)$
\$))\$	
\$	\$	

SLR

Pila	Entrada	Acción
O	(a,a,a)\$	d2
0(2	a,a,a)\$	d8
0(2a8	,a,a)\$	rl
0(2S3	,a,a)\$	d5
0(2S3,5	a,a)\$	d8
0(2S3,5a8	,a)\$	rl
0(2S3,5S6	,a)\$	d5
0(2S3,5S6,5	a)\$	d8
0(2S3,5S6,5a8)\$	rl
0(2S3,5S6,5S6)\$	d9
0(2S3,5S6,5S6)9	\$	r4
0(2S3,5S6,5S6R7	\$	r3
0(2S3,5S6R7	\$	r3
0(2S3R4	\$	r2
OS1	\$	Aceptar

(a , a , a , a)

Análisis Sintáctico Peredictivo no Recursivo.

Pila	Entrada	Acción
\$ S	(a,a,a,a)\$	$S \rightarrow (SR)$
\$RS((a,a,a,a)\$	
\$RS	a,a,a,a)\$	S → a
\$Ra	a,a,a,a)\$	
\$R	,a,a,a)\$	R →, S R
\$RS,	,a,a,a)\$	
\$RS	a,a,a)\$	S → a
\$Ra	a,a,a)\$	
\$R	,a,a)\$	$R \rightarrow , SR$
\$RS,	,a,a)\$	
\$RS	a,a)\$	S → a
\$Ra	a,a)\$	
\$R	,a)\$	$R \rightarrow , SR$
\$RS,	,a)\$	
\$RS	a)\$	S → a
\$Ra	a)\$	
\$R)\$	R →)
\$))\$	
\$	\$	

Pila	Entrada	Acción
0	(a,a,a,a)\$	d2
0(2	a,a,a,a)\$	d8
0(2a8	,a,a,a)\$	rl
0(2S3	,a,a,a)\$	d5
0(2S3,5	a,a,a)\$	d8
0(2S3,5a8	,a,a)\$	rl
0(2S3,5S6	,a,a)\$	d5
0(2S3,5S6,5	a,a)\$	d8
0(2S3,5S6,5a8	,a)\$	rl
0(2S3,5S6,5S6	,a)\$	d5
0(2S3,5S6,5S6,5	a)\$	d8
0(2S3,5S6,5S6,5a8)\$	rl
0(2S3,5S6,5S6,5S6)\$	d9
0(2S3,5S6,5S6,5S6)9	\$	r4
0(2S3,5S6,5S6,5S6R7	\$	r3
0(2S3,5S6,5S6R7	\$	r3
0(2S3,5S6R7	\$	r3
0(2S3R4	\$	r2
OS1	\$	Aceptar

1) S → A	2) A → ε	3) A → bb A

I1=ir_a (I0, b), I2=ir_a (I0, S), I3=ir_a (I0, A), I4=ir_a (I1, b), I5=ir_a(I4, A)

Use ambos análisis para analizar la siguiente cadena: **bbbb**

Pila	Entrada	Acción
\$S	bbbb\$	$S \rightarrow A$
\$A	bbbb\$	
\$bbA	bbbb\$	A → bbA
\$bbbbA	bbbb\$	
\$ bbbb A	bb\$	A → bbA
\$ bbbb $arepsilon$	bb\$	
\$ bb $arepsilon$	ε\$	$A \rightarrow \varepsilon$
\$ <i>ε</i>	ε\$	
\$	\$	

Análisis LR Para cada gramática:

- Calcule los conjuntos PRIMERO y SIGUIENTE
- Construya la colección de conjuntos de elementos LR (0)
- Construya la tabla SLR
- Use la tabla de análisis SLR para analizar la(s) cadena(s) propuesta(s)

Problema 5

11=ir_a (I0, b), I2=ir_a (I0, A), I3=ir_a (I2, a)

cadenas	d	dc	dcc	dccc

Problema 5.1

l1=ir_a (I0, b), I2=ir_a (I0, S), I3=ir_a (I2, a)

	1	I		i	1
cadenas	b	ba	baa	baaa	

Problema 6

1) S → AA	2) A → a A	3) A → b

 $I1=ir_a (IO, a), I2=ir_a (IO, b), I3=ir_a (IO, S), I4=ir_a (IO, A), I5=ir_a (I1, A), I6=ir_a (I4, A)$

cadenas: abab y baab

Estado		Acción		ir <u>.</u>	_a
	а	b	\$	Α	S
0	d3	d4		2	7
1			Aceptar		
2	d3	d4		5	
3	d4	r3		6	
4					
5	ok	r3			
6			r2		

1. abab

Pila	Cadena	Acción
0	abab\$	r3
0b1	bab\$	d4
0b4a3	ab\$	d4
0b4a3a3	b\$	r2
0b4	\$	rl
0	\$	

2. baab

Pila	Cadena	Acción
0	baab\$	d4
0b1	aab\$	r3
0b4a3	ab\$	d4
0b4a3a3	b\$	r2
0b4	\$	rl
0	\$	

1)
$$S \rightarrow BB$$
 2) $B \rightarrow \mathbf{b} B$ 3) $B \rightarrow \mathbf{c}$

 $I1=ir_a (I0, b), I2=ir_a (I0, c), I3=ir_a (I0, S), I4=ir_a (I0, B), I5=ir_a (I1, B), I6=ir_a (I4, B)$

cadenas: **bcbc** y **cbbc**

Problema 8

I1=ir_a (IO, (), **I2**=ir_a (IO, **a**), **I3**=ir_a (IO, A), **I4**=ir_a (I1, A), **I5**=ir_a(I4,))

cadenas (a) ((a)) (((a))) ((((a))))

IO =
$$A' \rightarrow .A$$

$$A \rightarrow \cdot (A)$$

$$A \rightarrow \cdot (A)$$

$$A \rightarrow \cdot a$$
II =
$$A' \rightarrow A$$

$$I3 = A \rightarrow a \cdot A$$

$$I4 = A \rightarrow (A \cdot A)$$

$$I5 = A \rightarrow (A)$$

Estado		Acción		ir_	_a
	()	а	\$	а
0	d2				1
7			d3	ok	
2	d2				4
3		r2	d3	r2	
4		d5			
5		rl		r]	

1. (a)

Análisis Sintáctico Peredictivo no Recursivo.

Pila	Entrada	Acción
\$A	(a)\$	$A \rightarrow (A)$
\$)A((a)\$	
\$)A	a)\$	A→a
\$)a	a)\$	
\$))\$	
\$	\$	

Pila	Entrada	Acción		
0	(a)\$	d2		
0(2	a)\$	d5		
0(2a5)\$	r2		
0(2A3)\$	d4		
0(2A3)4	\$	rl		
0A1	\$	aceptar		

2. ((a))

Análisis Sintáctico Peredictivo no Recursivo.

Pila	Entrada	Acción
\$A	((a))\$	$A \rightarrow (A)$
\$)A(((a))\$	
\$)A	(a))\$	$A \rightarrow (A)$
\$))A((a))\$	
\$))A	a))\$	A → a
\$))a	a))\$	
\$))))\$	
\$))\$	
\$	\$	

SLR

Pila	Entrada	Acción
0	((a))\$	d2
0(2	(a))\$	d2
0(2(2	a))\$	d5
0(2(2a5))\$	r2
0(2(2A3))\$	d4
0(2(2A3)4)\$	rl
0(2A3)\$	d4
0(2A3)4	\$	rl
0A1	\$	Aceptar

3. (((a)))

Análisis Sintáctico Peredictivo no Recursivo.

Pila	Entrada	Acción
\$A	(((a)))\$	$A \rightarrow (A)$
\$)A((((a)))\$	
\$)A	((a)))\$	$A \rightarrow (A)$
\$))A(((a)))\$	
\$))A	(a)))\$	$A \rightarrow (A)$
\$)))A((a)))\$	
\$)))A	a)))\$	A → a
\$)))a	a)))\$	
\$))))))\$	
\$))))\$	
\$))\$	
\$	\$	

Pila	Entrada Acción	
0	(((a)))\$	d2
0(2	((a)))\$	d2
0(2(2	(a)))\$	d2
0(2(2(2	a)))\$	d5
0(2(2(2a5)))\$	r2
0(2(2(2A3)))\$	d4
0(2(2(2A3)4))\$	rl
0(2(2A3))\$	d4
0(2(2A3)4)\$	rl
0(2A3)\$	d4
0(2A3)4	\$	r]
0A1	\$	Aceptar

4. ((((a))))

Análisis Sintáctico Peredictivo no Recursivo.

Pila	Entrada	Acción
\$A	((((a))))\$	$A \rightarrow (A)$
\$)A(((((a))))\$	
\$)A	(((a))))\$	$A \rightarrow (A)$
\$))A((((a))))\$	
\$))A	((a))))\$	$A \rightarrow (A)$
\$)))A(((a))))\$	
\$)))A	(a))))\$	$A \rightarrow (A)$
\$))))A((a))))\$	
\$))))A	a))))\$	A → a
\$))))a	a))))\$	
\$))))))))\$	
\$))))))\$	
\$))))\$	
\$))\$	
\$	\$	

Pila	Entrada	Acción
0	((((a))))\$	d2
0(2	(((a))))\$	d2
0(2(2	((a))))\$	d2
0(2(2(2	(a))))\$	d2
0(2(2(2	a))))\$	d5
0(2(2(2a5))))\$	r2
0(2(2(2A3))))\$	d4
0(2(2(2A3)4)))\$	rl

0(2(2A3)))\$	d4
O(2(2(2A3)4))\$	rl
0(2(2A3))\$	d4
0(2(2A3)4)\$	rl
0(2A3)\$	d4
0(2A3)4	\$	rl
OA1	\$	Aceptar

 $\textbf{11} = ir_a \text{ (IO, (), } \textbf{12} = ir_a \text{ (IO, } \textbf{e), } \textbf{13} = ir_a \text{ (IO, S), } \textbf{14} = ir_a \text{ (II, S), } \textbf{15} = ir_a \text{ (I4, } \textbf{)} \text{)}$

cadenas	(e)	((e))	(((e)))	((((e))))

Tabla SLR

Estado	Acción			Ir_a	
	()	а	\$	S
0	d2		d5		7
٦				Aceptar	
2	d2		d5		3
3		d4			
4		rl		rī	
5		r2		r2	

1. (e)

Análisis Sintáctico Peredictivo no Recursivo.

Pila	Entrada	Acción
\$S	(e)\$	$S \rightarrow (S)$
\$)S((e)\$	
\$)S	e)\$	S→e
\$)e	e)\$	
\$))\$	
\$	\$	

Pila	Entrada	Acción
0	(e)\$	d2
0(2	e)\$	d5
0(2e5)\$	r2
0(2S3)\$	d4
0(2S3)4	\$	rl
0S1	\$	aceptar

2. ((e))

Análisis Sintáctico Peredictivo no Recursivo.

Pila	Entrada	Acción
\$ S	((e))\$	S → (S)
\$)S(((e))\$	
\$)S	(e))\$	$S \rightarrow (S)$
\$))S((e))\$	
\$))S	e))\$	S→e
\$))e	e))\$	
\$))))\$	
\$))\$	
\$	\$	

SLR

Pila	Entrada	Acción
0	((e))\$	d2
0(2	(e))\$	d2
0(2(2	e))\$	d5
0(2(2e5))\$	r2
0(2(2S3))\$	d4
0(2(2S3)4)\$	rl
0(2S3)\$	d4
0(2S3)4	\$	rl
OS1	\$	Aceptar

3. (((e)))

Análisis Sintáctico Peredictivo no Recursivo.

Pila	Entrada	Acción
\$ S	(((e)))\$	$S \rightarrow (S)$
\$)S((((e)))\$	
\$)S	((e)))\$	$S \rightarrow (S)$
\$))S(((e)))\$	
\$))S	(e)))\$	$S \rightarrow (S)$
\$)))S((e)))\$	
\$)))S	e)))\$	S→ e
\$)))e	e)))\$	
\$))))))\$	
\$))))\$	
\$))\$	
\$	\$	

Pila	Entrada	Acción
0	(((e)))\$	d2
0(2	((e)))\$	d2
0(2(2	(e)))\$	d2
0(2(2(2	e)))\$	d5
0(2(2(2e5)))\$	r2
0(2(2(2S3)))\$	d4
0(2(2(2S3)4))\$	rl
0(2(2S3))\$	d4
0(2(2S3)4)\$	rl
0(2S3)\$	d4
0(2S3)4	\$	rl
OS1	\$	Aceptar

4. ((((e))))

Análisis Sintáctico Peredictivo no Recursivo.

Pila	Entrada	Acción
\$ S	((((e))))\$	S → (S)
\$)S(((((e))))\$	
\$)S	(((e))))\$	S → (S)
\$))S((((e))))\$	
\$))S	((e))))\$	S → (S)
\$)))S(((e))))\$	
\$)))S	(e))))\$	$S \rightarrow (S)$
\$))))S((e))))\$	
\$))))S	e))))\$	S → e
\$))))e	e))))\$	
\$))))))))\$	
\$))))))\$	
\$))))\$	
\$))\$	
\$	\$	

_	T	
Pila	Entrada	Acción
0	((((e))))\$	d2
0(2	(((e))))\$	d2
0(2(2	((e))))\$	d2
0(2(2(2	(e))))\$	d2
0(2(2(2(2	e))))\$	d5
0(2(2(2e5))))\$	r2
0(2(2(2S3))))\$	d4
0(2(2(2(2S3)4)))\$	rl
0(2(2(2S3)))\$	d4
0(2(2(2S3)4))\$	rl
0(2(2S3))\$	d4
0(2(2S3)4)\$	rl
0(2S3)\$	d4
0(2S3)4	\$	r٦
OS1	\$	Aceptar

1) E → n	2) E → (E, E)	Donde n es un entero

 $I1=ir_a (IO, (), I2=ir_a (IO, n), I3=ir_a (IO, E), I4=ir_a (I1, E), I5=ir_a (I4, ,), I6=ir_a (I5, E), I7=ir_a (I6,))$

IO: $E' \rightarrow \cdot E$ **I4:** $E \rightarrow (E \cdot, E)$

 $E \rightarrow \cdot n$ 5. (E, ·E)

 $E \rightarrow \cdot (E, E)$ $E \rightarrow \cdot n$

 $\Pi: E' \to E \cdot (E, E)$

12: $E \rightarrow n$ · **16:** $E \rightarrow (E, E \cdot)$

 $\mathbf{13:} \, \mathsf{E} \to (\mathsf{E} \, \mathsf{E} \, \mathsf{E})$

E \rightarrow · n

 $E \rightarrow \cdot (E, E)$

Estado		Acc	Ir_	_A		
	n	()	,	\$	Е
0	d2	d3				1
1					Aceptar	
2			rl	rl	rl	
3	d2	d3				4
4				d5		
5	d2	d3				6
6			d7			
7			r2	r2	r2	

cadena ((21, 18), 17)

Pila	Entrada	Acción
0	((21,18),17)\$	d3
0(3	(21,18),17)\$	d3
0(3(3	21,18),17)\$	d2
0(3(3n2	,18),17)\$	rl
0(3(3E4	,18),17)\$	d5
0(3(3E4,5	18),17)\$	d2
0(3(3E4,5n2),17)\$	rl
0(3(3E4,5E6),17)\$	d7
0(3(3E4,5E6)7	,17)\$	r2
0(3E4	,17)\$	d5
0(3E4,5	17)\$	d2
0(3E4,5n2)\$	rl
0(3E4,5E6)\$	d7
0(3E4,5E6)7	\$	r2
0E1	\$	Aceptar

1) S → [L]	2) S → a	3) L → L, S	4) L → S

 $I1=ir_a (I0, [), I2=ir_a (I0, a), I3=ir_a (I0, S), I4=ir_a (I1, S), I5=ir_a (I1, L), I6=ir_a (I5,]), I7=ir_a (I5,), I8=ir_a (I7, S)$

IO:
$$S' \rightarrow \cdot S$$

 $S \rightarrow \cdot [L]$

 $S \rightarrow \cdot a$

 $\mathbf{I1:} S' \rightarrow S$

I2: S → [· L]

 $L \rightarrow \cdot L, S$

 $L \rightarrow \cdot S$

 $S \rightarrow \cdot [L]$

 $S \rightarrow \cdot a$

I3: $S \rightarrow [L \cdot]$

I4: S → [L] ·

I5: S → a ·

16: L → L · , S

I7: $L \rightarrow L, \cdot S$

S → ·[L]

 $S \rightarrow \cdot a$

18: $L \rightarrow L, S$

19: L → S ·

Estado	Acción				Ir	A	
	а	[,]	\$	S	L
0	d3	d4				2	
7			d5	d6			
2					ok		
3			r2	r2	r2		
4	d3	d4					
5	d3	d5				7	
6	r4				r4	8	
7			d5	d6			9
8			d5	d6			10
9			rl	rl	rl		
10	r3				r3		

Problema 12.-Considere la siguiente gramática:

2) S → B**b**Ba

3) A $\rightarrow \varepsilon$

4) B $\rightarrow \varepsilon$

 $I1=ir_a (I0, S), I2=ir_a (I0, A), I3=ir_a (I0, B), I4=ir_a (I2,$ **a** $), I5=ir_a (I3,$ **b** $), I6=ir_a (I4, A), I7=ir_a (I5, B), I8=ir_a (I6,$ **b** $), I9=ir_a (I7,$ **a**)

cadenas: **ab** y **ba**

IO: $S' \rightarrow \cdot S$

 $S \rightarrow \cdot AaAb$

S → · BbBa

 $\Pi: S' \to S$

I2: S → A · aAb

I3: S → Aa · Ab

I4: $S \rightarrow AaA \cdot b$

I5: $S \rightarrow AaAb \cdot$

16: S → B · bBa

17: S → Bb · Ba

I8: S → BbB · a

I9: S → BbBa ·

Estados	Acción			Ira_A		
	а	b	\$	S	Α	В
0				7	2	6
1						
2	d3		Aceptar			
3						
4		d5			4	
5						
6		d7		rl		
7						8
8	d9					
9				r2		