50.034 – Introduction to Probability and Statistics

January–May Term, 2019

Homework Set 7

Due by: Week 11 Cohort Class (11 Apr 2019 or 12 Apr 2019)

Note: The tables of values for the χ^2 distribution and the t distribution can be found at the back of the course textbook.

Question 1. Let $\{X_1,\ldots,X_n\}$ be a random sample of n observable normal random variables with mean μ and variance σ^2 . Let $\hat{\sigma}^2$ denote the sample variance of this random sample $\{X_1,\ldots,X_n\}$. For each of the two inequalities given below, determine the smallest possible value for the sample size n such that the inequality is satisfied:

- (i) $\Pr\left(\frac{\hat{\sigma}^2}{\sigma^2} \le 1.2\right) \ge 0.8.$ (ii) $\Pr\left(|\hat{\sigma}^2 0.77\sigma^2| \le 0.37\sigma^2\right) \ge 0.725.$

Question 2. Consider a statistical model consisting of observable exponential random variables X_1, \ldots, X_n that are conditionally iid given the parameter θ . Let $\hat{\theta}$ be the maximum likelihood estimator of θ . What is the conditional probability density function of the random variable $n(\hat{\theta})^{-1}$ given $\theta = 5$? (Hint: Theorem 5.7.7 of the course textbook may be useful.)

Question 3. An automated juice vending machine dispenses orange juice in cups. A total of 25 dispensed cups of orange juice are collected, and the amount of juice in each cup is measured. Consider a statistical model consisting of a random sample $\{X_1,\ldots,X_{25}\}$ of normal random variables with unknown mean μ and unknown variance σ^2 , where each X_i represents the amount of juice (in ml) in the *i*-th dispensed cup. Let \overline{X}_{25} and s_{25}^2 be the sample mean and the unbiased sample variance respectively of $\{X_1, \ldots, X_{25}\}.$

- (i) Find an exact 90% confidence interval for μ in terms of \overline{X}_{25} and s_{25}^2 .
- (ii) After measuring the amount of juice in these 25 dispensed cups, it was noticed that the 25 cups have a mean amount of 251 ml and a standard deviation of 4 ml. Using this information, find an observed value of the 90% confidence interval that you found in the previous part.

Question 4. At a Fuji apple farm in Fujisaki, Japan, 10 Fuji apples are randomly selected and weighed. Consider a statistical model consisting of a random sample $\{X_1,\ldots,X_{10}\}$ of normal random variables with unknown mean μ and unknown variance σ^2 , where each X_i represents the weight (in grams) of the *i*-th selected apple. Let \overline{X}_{10} and s_{10}^2 be the sample mean and the unbiased sample variance respectively of $\{X_1, \ldots, X_{10}\}$.

- (i) Find an exact 95% confidence interval for μ in terms of \overline{X}_{10} and s_{10}^2 .
- (ii) The measurements of all 10 weights (in grams) are indicated below:

148, 150, 155, 154, 152, 148, 155, 160, 152, 145.

Using these values, find an observed value of the 95% confidence interval for μ that you found in the previous part.

Question 5. At a steel factory, the tensile strength of 20 randomly cut steel sample pieces are measured. Consider a statistical model consisting of a random sample $\{X_1, \ldots, X_{20}\}$ of normal random variables with unknown mean μ and unknown variance σ^2 , where each X_i represents the tensile strength (in MPa) of the *i*-th steel sample piece. Let \overline{X}_{20} and s_{20}^2 be the sample mean and the unbiased sample variance respectively of $\{X_1, \ldots, X_{20}\}$.

- (i) Find an exact 95% confidence interval for the variance σ^2 in terms of \overline{X}_{20} and s_{20}^2 .
- (ii) After the 20 measurements have been collected, it was noticed that the 20 steel sample pieces have a mean tensile strength of 355 MPa and a standard deviation of 25 MPa. Using this information, find an observed value of the 95% confidence interval that you found in the previous part.