Trabalho de conclusão de curso Biblioteca Gráfica para Simulações de Física na Computação

Rafael Issao Miyagawa Alberto Hideki Ueda Orientador: José Coelho de Pina Junior

12 de novembro de 2012

Sumário

I	Pai	rte objetiva	2
1	Intr	rodução	2
	1.1	Física na computação	2
	1.2	Integração com a computação	2
	1.3	Simulador	2
2	Con	nceitos e tecnologias utilizadas	3
	2.1	Linguagem e Plataformas	3
		2.1.1 Ruby	3
		2.1.2 Chipmunk	3
		2.1.3 Gosu e Chingu	3
		2.1.4 Glade	3
	2.2	Configuração do ambiente de desenvolvimento	3
	2.3	Conceitos	3
		2.3.1 Tempo de simulação	3
		2.3.2 Broad Phase	4
		2.3.3 Detecção de colisão - SAT Theorem (Separatinh Axis The-	
		orem	4
	2.4	Conceitos físicos do chipmunk	4
3	Ativ	vidades realizadas	5
	3.1	Demonstrações	5
	3.2	Simulador	5
4	Resi	ultados e produtos obtidos	6
5	Con	aclusões	7
II	Pa	arte subjetiva	8

Parte I

Parte objetiva

1 Introdução

O foco deste projeto é atrair a atenção dos alunos do IME em relação a disciplina de física ministrada no curso de bacharelado em ciência da computação. Com o simulador podemos integrar melhor os alunos aos assuntos abordados na física com demonstrações de ambientes físicos, integrando exercícios programas (EP) e também para ser utilizado em sala de aula.

1.1 Física na computação

A disciplina de Física (FAP-0126), oferecida no curso de BCC, é puramente teórica e não mostra nenhuma relação com a Ciência da Computação. Isso torna a disciplina menos interessante e frequentemente faz os alunos pensarem: "Para que serve esta disciplina?". Para motivar os alunos e ilustrar melhor a relação entre as disciplinas básicas (Física, Estatística, Álgebra e Cálculo) com a Ciência da Computação, pretendemos criar uma biblioteca gráfica de simulação. Esta biblioteca será capaz de realizar uma leitura de dados de uma simulação de um EP e mostrar graficamente o resultado da simulação, por exemplo. Esta biblioteca também proporcionará um ambiente de simulação específico e pronto para ser mostrado em salas de aula.

1.2 Integração com a computação

Existem muitos problemas ao tentar simular um ambiente físico com a computação. Temos o problema do tempo de simulação, que é o tempo que damos para os objetos físicos se interagirem e tomar o rumo necessário para refletir a realidade. Existem alguns conceitos como broad phase, que é a fase em que os objetos são filtrados para realizarmos depois a narrow phase que é onde verificamos se aconteceu alguma colisão entre os objetos.

1.3 Simulador

A idéia do simulador é poder mostrar os problemas que encontramos ao tentar simular um ambiente físico com montagem de demonstrações.

2 Conceitos e tecnologias utilizadas

Definições de conceitos, frameworks e linguagem utilizada.

2.1 Linguagem e Plataformas

2.1.1 Ruby

A linguagem Ruby é uma linguagem dinâmica orientada a objetos. Ruby é responsável pela lógica dos ambientes físicos e pela interação do usuário de interface com o simulador físico.

2.1.2 Chipmunk

Chipmunk é responsável pela mecânica da simulação de física. É feito em C e possui uma extensão para a linguagem Ruby. Na versão 6 é possível selecionar os algoritmos da Broad Phase. Os algoritmos são Sweep and Prune, AABB Tree e Spatial Hashing. Para detecção de colisão, o chipmunk utiliza Separating Axis Theorem.

2.1.3 Gosu e Chingu

Gosu e Chingu são ferramentas, em ruby, para criar interfaces para jogos. Utilizado para mostrar o ambiente físico.

2.1.4 Glade

Glade é uma outra ferramenta, do linux, para criação de GUI(Graphical User Interface). A interface inicial é feita com o glade.

2.2 Configuração do ambiente de desenvolvimento

Colocar o texto disponível em README.md!

2.3 Conceitos

2.3.1 Tempo de simulação

Tempo de simulação é o tempo que é utilizado no simulador do ambiente físico, ou seja, o tempo em que os objetos físicos irão se interagir. COMPLETAR!

Fixo

Variável

Semi-Fixo

2.3.2 Broad Phase

É a fase utilizado para filtrar os objetos físicos que deverão passar pelo algoritmo de detecção de colisão. Essa fase é importante para a otimização da simulação. COMPLETAR!

Algoritmo Sweep and Prune

AABB Tree

Spatial Hashing

- 2.3.3 Detecção de colisão SAT Theorem (Separatinh Axis Theorem
- 2.4 Conceitos físicos do chipmunk

COMPLETAR!

3 Atividades realizadas

Criamos algumas demonstrações básicas demonstrando a capacidade da plata-forma Chipmunk e etc...

3.1 Demonstrações

falar sobre as demonstrações feitas.. Aqui tem que ficar bonito pq vamos colocar imagem

3.2 Simulador

falar sobre o que o simulador faz...

4 Resultados e produtos obtidos

5 Conclusões

Parte II Parte subjetiva