子小涛 12232426

1. Let $\hat{g} = P(y=1|x)$ where $x \in \mathbb{R}^3$, The label y will be 1 if $\hat{g} > 0.5$, otherwise y will be 0 Network structure:

The network has 3 input nodes, 2 hidden nodes and 1 output node. The activation function is sigmoid $(x) = \frac{1}{1+e^{-x}}$

Data: $D = \{(x^{(n)}, y^{(n)}) \mid y^{(n)} \in \{0, 1\}\}_{n=1}^{8}$ Learning rate: $\beta = 0.0$]

Loss function: Chois Entropy Loss $L_{ce} = -(y \log \hat{y} + (1-y)) \log (1-\hat{y})$ Train process:

I terate epoch number times:

for i=1 to 8

forward $\chi^{(i)}$ to the network and obtain $\hat{y}^{(i)}$ compute Lie based on $y^{(i)}$ and $\hat{y}^{(i)}$ backpropagate and uptate $W=W-\frac{1}{2}$

end for End Loop 2. Since there are five base learner for a binary classification problem.

Lens =
$$10 \times (0.35)^3 \times (0.85)^2 + 5 \times (0.35)^4 \times (0.65)^5 + 1 \times (0.35)^5$$