Math 4720: Statistical Methods

10^{th} and 11^{th} Week Summary (11/19/18)

- ANOVA.....
- ANalysis Of VAriance (ANOVA) is a popular statistical tool to analyze the effect of a categorical variable with different level of treatments (factor) on a numerical variable (response).
- In general we can write:

Total Variation = Variation Between Treatments + Variation Within Treatments

• Grand	I Mean: $\bar{y}_{} = \frac{n_1 \bar{y}_1 + n_2 \bar{y}_2 + \dots + n_t \bar{y}_t}{n_1 + n_2 + \dots + n_t}$						Treatment Levels					
	,		n ₁ +n ₂ +···	+n _t			1	2	3 .		t	
Total V	ariahility:		∇^t	∇^{n_i}	$(y_{ij} - \bar{y}_{})^2$		y_{11}	y_{21}	y_{31}		y_{t1}	
Total	arrability.		Δi	$=1 \Delta j$	=1 $(yij y)$		y_{12}	y_{22}	y_{32}		y_{t2}	
 Variabi 	lity Between Sa	mples:	\sum_{i}^{t}	$=_1 n_i$	$(\bar{y}_{i.} - \bar{y}_{})^2$			•	•			
		-						•				
 Variabi 	lity Within Sam	ples:	\sum_{i}^{t}	$=1$ $\sum_{j=1}^{n_i}$	$\int_{a=1}^{a} \left(y_{ij} - \bar{y}_{i.}\right)^2$		y_{1n_1}	y_{2n_2}	y_{3n_3}		y_{tn_t}	
	CC(T 1)		CCD		CCE	Mean	\bar{y}_1 .	$\bar{y}_{2.}$	\bar{y}_3 .	:=====	===== ӯ _t .	
	SS(Total)	=	SSB	+	SSE	St.dev.	S_1	s_2	s_3		s_t	
df's:	$\sum n_i - 1$		t-1		$\sum n_i - t$							

• Hypothesis Testing:

$$H_0: \mu_1 = \mu_2 = \dots = \mu_t$$

 $H_a: \mu_i \neq \mu_j$ for some pairs (i, j)

Test Statistics: TS:
$$F = \frac{SS_B/df_B}{SS_E/df_E}$$

Decision Rule: Reject H_0 in favor of H_a if $F > F_{\alpha}(df_B, df_E)$

Source of Variation	df	Sum of Squares	Mean Square	F	p-value
Group (Between)	t-1	$\sum n_i (\bar{y}_{i\bullet} - \bar{y}_{\bullet\bullet})^2 = SS_B$	$\frac{SS_B}{df_B} = MS_B$	$\frac{MS_B}{MS_E} = F_{\text{calc}}$	$Pr(F > F_{calc})$
Error (Within)	N-t	$\sum (n_i - 1)s_i^2 = SS_E$	$\frac{SS_E}{df_E} = MS_E$		
Total		$\sum (y_{ij} - \overline{y}_{\bullet \bullet})^2 = SS_T$			

 $\bullet\,$ For the above ANOVA table:

$$N = \sum_{i} n_i$$

$$SS_T = SS_B + SS_E$$

 MS_E is the pooled sample variance, an estimator for σ^2

• Assumptions:

$$\sigma_1 = \sigma_2 = \dots = \sigma_t$$

Data is generated from normal distribution for each treatment

• What if normality fails?

We use the Non-parametric test: "The Kruskal-Wallis Test"

• What if equality of variances fails?

We "transform" the data: "see slides for Chapter 8(B)"