A read-filtering algorithm for high-throughput marker-gene studies that greatly improves OTU accuracy

Fernando Puente-Sánchez^{1*}, Jacobo Aguirre^{1,2,3}, Víctor Parro¹.

Supplementary information

Supplementary Note 1. The Poisson binomial filtering algorithm.

Supplementary Note 2. Generation of taxonomic biases during filtration of a population of sequences.

Supplementary Note 3. Datasets used in this study.

Supplementary Note 4. Results on mock communities.

Supplementary Note 5. Results on environmental communities.

Supplementary Note 6. Software commands, parameters and computational resources.

Supplementary References.

¹Department of Molecular Evolution, Centro de Astrobiología (INTA-CSIC). Instituto Nacional de Técnica Aeroespacial, Ctra de Torrejón a Ajalvir km 4. 28850 Torrejón de Ardoz, Madrid, Spain.

²Centro Nacional de Biotecnología (CSIC). c/ Darwin 3, 28049 Madrid, Spain.

³Grupo Interdisciplinar de Sistemas Complejos (GISC).

^{*}Correspondence should be addressed to F.P.S. (puentesf@cab.inta-csic.es).

Supplementary Note 1. The Poisson binomial filtering algorithm

SN1.1 Error probability distribution associated to a sequence

Let us suppose we have 1 sequence of length N nucleotides, each nucleotide with a different (and known) probability p_i of being erroneous and a probability $(1 - p_i)$ of being correct. We are interested in obtaining the probability of a sequence of having j = 0, 1, 2, ..., N erroneous nucleotides. Statistically, our problem can be analyzed as the probability distribution of the number of successes in a sequence of N independent yes/no experiments with success probabilities $p_1, p_2, ..., p_N$. This is equivalent to the sum S_N of N independent Bernoulli distributed random variables $X_1, X_2, ..., X_N$ such that

$$S_N = \sum_{i=1}^N X_i$$

where

$$P(X_i = j) = \begin{cases} 1 - p_i & \text{for } j = 0, \\ p_i & \text{for } j = 1, \\ 0 & \text{for } j > 1, \end{cases}$$
 (SN1.1)

and $P(X_i = j)$ stands for the probability of obtaining j errors in nucleotide i.

The stochastic variable S_N is known to follow a Poisson binomial distribution, from where the method proposed in this paper takes its name. The mean and variance of this distribution are

$$E[S_N] = \sum_{i=1}^N p_i,$$

$$Var(S_N) = \sum_{i=1}^N (1 - p_i)p_i.$$

Following Eq. (SN1.1) and taking into account that all X_i are independent, the probability of the sequence of having zero errors is

$$P(S_N = X_1 + X_2 + ... + X_N = 0) = \prod_{i=1}^N (1 - p_i),$$

the probability of the sequence of having one error is

$$P(S_N = 1) = \sum_{i=1}^{N} p_i \prod_{\substack{k=1 \ k \neq i}}^{N} (1 - p_k),$$

and the probability of the sequence of having *j* errors is

$$P(S_N = j) = \sum_{\sigma \in C(N,j)} \left(\prod_{x=\sigma_1}^{\sigma_j} \rho_x \right) \left(\prod_{y=\sigma_1^c}^{\sigma_{N-j}^c} (1 - \rho_y) \right)$$
 (SN1.2)

where σ is a map from $\{1,2,...,j\}$ to $E=\{1,2,...,N\}$ in a way that represents the combination of N elements taken j at a time without repetition, and satisfies $\sigma_r \leq \sigma_s$ for r < s. Note that σ^c is the complement of σ , i.e. $\sigma^c = \{1,2,...,N\} \setminus \sigma$. For example, if N=4 and j=2, $\sigma=\{\{1,2\},\{1,3\},\{1,4\},\{2,3\},\{2,4\},\{3,4\}\}\}$ and $\sigma^c=\{\{3,4\},\{2,4\},\{2,3\},\{1,4\},\{1,3\},\{1,2\}\}$.

SN1.2 Algorithm to obtain the error probability distribution of a sequence

While Eq. (SN1.2) is exact for all j, it becomes useless in practice for moderate values of j, as the number of elements in the summation of the equation is

$$\binom{N}{j} = \frac{N!}{j!(N-j)!},$$

which grows extremely fast with j. We explain here an algorithm inspired in (Butler & Stephens, 1993) that allows us to calculate $P(S_N = j)$ for all j in a simple and efficient way.

If we have two random variables Y and Z, each of them taking discrete values $0, 1, 2, \ldots$, the probability of the sum Y + Z of taking value j is

$$P(Y+Z=j) = \sum_{i=0}^{j} P(Y=i)P(Z=j-i).$$
 (SN1.3)

As we know the exact probability p_i of each nucleotide of being erroneous, the basic idea of the algorithm is to calculate the error probability of the first two nucleotides of having j errors, add the third nucleotide to calculate the error probability of the first three nucleotides of having j errors, and continue recursively until we reach the N-th nucleotide and finally obtain the probability that the total sequence has j errors. When this is done for j = 0, 1, 2, ..., N errors, we obtain the error probability distribution of the total sequence.

The algorithm results:

- 1. Obtain $P(X_1 = j)$ following Eq. (SN1.1). Let $U = X_1$.
- 2. For i = 2, 3, ..., N, the distribution is obtained by following (a-c) recursively.
 - (a) Calculate $P(X_i = j)$ applying Eq. (SN1.1).
 - (b) Calculate P(Y + Z = j) applying Eq. (SN1.3), being Y = U and $Z = X_i$. Note that all the terms P(Y = i) and P(Z = j i) for i = 0, ..., j needed in Eq. (SN1.3) were already calculated in previous steps of the algorithm.
 - (c) Let U = Y + Z.
- 3. The exact probability for the sequence under study of having j errors, $P(S_N = j)$, is given by U when i = N.
- 4. The steps (1-3) must be repeated for j = 0, 1, 2, ..., N.

SN1.3 Filtering of sequences based on their error distribution

1. In practice, steps (1-3) of the algorithm presented in the former section must only be repeated up to $j=j_{max}$, where j_{max} is the lowest value of j that satisfies $\sum_{r=0}^{r=j} P(S_N=r) \geq \xi$, and $0<\xi<1$ is a confidence coefficient (in our case $\xi=0.995$). Let j_ξ be the number such that the sequence has a probability ξ of having less than j_ξ errors. It is obtained interpolating the accumulated error probability of the sequence between the values $r=j_{max}-1$ and $r=j_{max}$ to obtain its exact value in $r=j_\xi$. A linear interpolation yields

$$j_{\xi} = j_{max} - 1 + \frac{\xi - \sum_{r=0}^{j_{max}-1} P(S_N = r)}{P(S_N = j_{max})}$$
.

2. Let j_{tol} be the maximum tolerable number of errors per sequence, that is, the maximum number of errors allowed for a correct clustering. In our case, j_{tol} was equal to 1% of the sequence length (i.e. $j_{tol} = 2.5$ for N = 250 nt). The sequence under study is discarded if $j_{\xi} > j_{tol}$, and accepted as correct otherwise. At this moment, the calculation for this particular sequence is finished, and it is time to repeat the whole algorithm (subsections SN1.2 and SN1.3) for the rest of the sequences of the population.

Supplementary Figures SN1.1a,b show the error probability distribution and the accumulated error probability distribution respectively for a high quality sequence, an ambiguous sequence and a low quality sequence. The results obtained by the algorithm presented above (i.e. the Poisson binomial filtering method) are compared to those obtained with a Poisson approximation (see next subsection). **Supplementary Figure SN1.1c** shows a zoom of (b) to clarify the algorithm just presented.

Figure SN1.1. Error probability distribution (**a**) and accumulated error probability distribution (**b**) for three particular sequences of N=250 nucleotides. The Poisson binomial exact calculation (circles connected with solid lines) and the Poisson approximation (triangles connected with dashed lines) are plotted for a high quality sequence (black), an ambiguous sequence (blue) and a low quality sequence (red). j_{ξ} stands for the 100ξ -th percentile of the error probability (i.e. a sequence has a probability ξ of having less than j_{ξ} errors). In (**c**) we plot a zoom of (**b**) where the calculation of j_{ξ} for the high quality sequence is sketched. j_{max} is the lowest integer for which the accumulated probability of having j_{max} errors is greater than ξ . In our calculations, $\xi=0.995$ and the maximum tolerable number of errors per sequence is $j_{tol}=2.5$. Sequences with $j_{\xi}>j_{tol}$ are discarded in the filtering step.

SN1.4 Approximate calculation of the error probability distribution of a sequence

In the former subsections we presented the Poisson binomial filtering method to calculate the exact distribution of the error probability of a sequence, provided the error probabilities p_i of each of its nucleotides. The Poisson binomial filtering algorithm is fast and computationally simple. Here, we compare it with several approximations that can be used.

As our problem can be faced as the sum of N binomial distributions of probabilities p_i and number of trials n = 1, it can be approximated to a Poisson distribution as far as N is high and $p_i \ll 1$. The probability mass function of X is given by

$$f(j;\lambda) = P(S_N = j) = \frac{\lambda^j \exp(-\lambda)}{j!}$$
 (SN1.4)

where $P(S_N = j)$ is the probability of a sequence of having j errors, and the mean value and variance of the Poisson distribution, λ , is obtained as

$$\lambda = \sum_{i=1}^{N} p_i . (SN1.5)$$

The Le Cam's theorem affirms that the sum has approximately a Poisson distribution and the inequality

$$\sum_{j=0}^{\infty} \left| P(S_N = j) - \frac{\lambda^j \exp(-\lambda)}{j!} \right| < 2 \sum_{i=1}^N p_i^2$$

bounds the approximation error in terms of the total variation distance between the exact solution and the approximation. The Poisson approximations following Eqs. (SN1.4) and (SN1.5) are plotted in **Supplementary Figure SN1.1** in triangles joined by dashed lines. Note that the accuracy of the Poisson approximation decreases substantially for high values of p_i , that is, for low quality sequences. Therefore, the exact method and the Poisson approximation could give different results for high values of j_{tol} and $j_{\xi} \sim j_{tol}$, i.e. for ambiguous sequences. Other approximations of higher precision than the Poisson approximation, but of a more complex implementation, such as the Kolmogorov-type approximations or the ones obtained using the Pearson family of distributions, are also available (Butler & Stephens, 1993).

In summary, the accuracy, simplicity and speed of the exact method make it in general a better option than the approximative methods, as the latter will be either less precise or even more complex to implement.

Supplementary Note 2. Generation of taxonomic biases during filtration of a population of sequences

SN2.1 Calculation of the statistical properties of a filtered population of sequences

Let us suppose that we have M sequences belonging to k different taxa. In a process of filtering we eliminate m < M sequences chosen randomly from the total population in a way that all sequences are equally probable to be erased. We name $n_i(m)$ the number of sequences of taxon i = 1, ..., k that remain in the population after removing m sequences, and

$$p_i(m) = \frac{n_i(m)}{M - m}$$

the fraction of such remaining population that belongs to taxon i. In this calculation, we are interested in the statistical properties (i.e., mean and variance) of the fraction $p_i(m)$ of sequences of each taxon i over the total number of remaining sequences when the number of removed sequences m grows.

The hypergeometric distribution applies to sampling without replacement from a finite population whose elements can be classified into two mutually exclusive categories (in our case, each taxon *i* and the rest of the population). Therefore, the stochastic variable

$$X_i = n_i(0) - n_i(m)$$

that represents the number of sequences removed from taxon i when m sequences are randomly chosen from the total population follows a hypergeometric distribution of population size M, number of initial success states in the population $n_i(m=0)$ and number of draws m. In consequence, the probability mass function of X_i is given by

$$P(x) = \frac{\binom{n_i(0)}{x} \binom{M - n_i(0)}{m - x}}{\binom{M}{m}}$$

where P(x) is the probability of erasing exactly x sequences from taxon i after eliminating m sequences in the total population. Its mean and variance are, respectively and for every taxon i,

$$E[X_i] = \frac{n_i(0)m}{M},$$

$$Var(X_i) = \frac{(M - n_i(0))n_i(0)(M - m)m}{M^2(M - 1)}.$$

As mentioned above, we are interested in the fraction of the remaining total population that belongs to taxon i after removing m sequences, that is, $p_i(m) = n_i(m)/(M-m)$. The stochastic variable $Y_i = p_i(m)$ verifies

$$Y_i = p_i(m) = \frac{n_i(m)}{M - m} = \frac{n_i(0) - X_i}{M - m}$$

and its statistical properties are

$$E[Y_{i}] = E[p_{i}(m)] = E\left[\frac{n_{i}(0) - X_{i}}{M - m}\right] = \frac{n_{i}(0)}{M - m} - \frac{n_{i}(0)m}{M(M - m)}$$

$$= \frac{n_{i}(0)}{M} = p_{i}(0), \qquad (SN2.1)$$

$$Var(Y_{i}) = Var(p_{i}(m)) = Var\left(\frac{n_{i}(0) - X_{i}}{M - m}\right) = \frac{Var(X_{i})}{(M - m)^{2}} = \frac{n_{i}(0)(M - n_{i}(0))}{M^{2}(M - 1)} \frac{m}{M - m}$$

$$= \frac{p_{i}(0)(1 - p_{i}(0))}{M - 1} \frac{m}{M - m}. \qquad (SN2.2)$$

Equation SN2.1 yields that the mean value $E[p_i(m)] = p_i(0)$ and therefore is independent of the number of removed sequences m. On the contrary, its variance grows monotonically with m:

$$Var(p_i(m)) = \sigma^2(p_i(m)) \propto \frac{m}{M-m}$$
.

In summary, we observe that the filtering process of a total population leads to fractions of each taxon that are maintained in average but grow in variance when the number of removed sequences *m* increases. This leads to the following general statement: the more sequences are erased, the larger error we will be committing when measuring the composition of the total population.

Finally, note that the term M-1 in the denominator of Eq. (SN2.2) moderates the influence of m in the generation of taxonomic bias. A greater source of taxonomic bias during sequence filtering is described in the next subsection.

SN2.2 Taxonomic bias is inherent to raw reads in 454 and Illumina sequencing platforms

Most of the discussion on taxonomic bias in massive sequencing projects has focused on the coverage bias (i.e. some fragments getting a larger number of amplicons than others) caused by PCR amplification (Polz & Cavanaugh, 1998; Huber *et al.*, 2009; Kumar *et al.*, 2011; Ross *et al.*, 2013; Klindworth *et al.*, 2013). However, it is generally assumed that, after sequencing a pool of DNA molecules, the length and quality distributions of the obtained reads are independent of their taxonomic origin. If that were not to happen, the length trimming and quality filtering processes would result in the under-representation of the taxa with smaller average length and quality, generating a bias in the retrieved community composition.

We have found evidences of this problem occurring in the 454 datasets analyzed for this work. After taxonomically classifying all the raw reads from the 454 Even3T library with mothur, we found out that the reads classified into the genus Staphylococcus (the most abundant taxon in the sample) were significantly shorter than the reads classified as *Streptococcus* (the second most abundant taxon in the sample) (**Supplementary** Figure SN2.1a,b). We also found that the Staphylococcus reads had more expected errors per base than the *Streptococcus* reads (**Supplementary Figure SN2.1c**). This is not surprising: since in the 454 platform the read quality drops at the end of the reads (Edgar, 2013), the longer reads are expected to have a higher average quality. Our pipeline included a pre-filtering step in which reads were trimmed to a fixed length of 250 nt, and reads shorter than 250 nt were discarded. Because of the differences in the read length distributions, 11.7 % of the Staphylococcus reads were discarded during this step, in contrast to only 7.8% of the Streptococcus reads. This produced a 4.4% (since 92.2/88.3=1.044) artificial enrichment of Streptococcus versus Staphylococcus in the pre-filtered dataset. Pre-filtering also amplified the differences in quality between the Staphylococcus and the Streptococcus reads. Due to the relationship between position and quality in 454 reads, trimming to a fixed length will leave only high quality nucleotides in the longer reads, but may leave low quality nucleotides at the end of the shorter ones. Differences in length distribution will thus result in differences in quality distribution after trimming (Supplementary Figure SN2.1c,d). Even if the pre-filtering step considerably reduced the average expected errors per base, it also caused a significant increase in the taxonomic bias. Performing quality filtering with our default cutoff of 0.01 errors per base would have discarded 59.6% of the Staphylococcus reads but only 37.0% of the Streptococcus reads, resulting in a 56.2% artificial enrichment of Streptococcus versus Staphylococcus in the filtered dataset. Note that this comes in addition to the previous enrichment caused by the length trimming step.

Length and quality biases were also detected for the IonTorrent platform, a fact that has been described elsewhere (Salipante *et al.*, 2014). For example, filtering with our 200nt length and 0.01 errors per base cutoffs removed 89.46% of the *Bacteroides* (the

most abundant genus in the sample) reads from the IonTorrent Even2P, but 94.56% of the *Streptococcus* (second most abundant genus in the sample) reads, resulting in a 192% artificial enrichment of *Bacteroides* versus *Streptococcus*. A similar problem, albeit to a lesser extent, was found in reads generated using the Illumina MiSeq plattform. In this case, reads from diferent taxa showed different quality distributions. When quality-filtering raw reads from MiSeq Even1M library, we found out that 63.03% of the reads classified as *Staphylococcus* (the most abundant genus in the sample) had 0.01 errors per base or more, while 68.37% of the reads classified as *Acinetobacter* had 0.01 errors per base or more. Filtering with those parameters caused a 16.9% artificial enrichment of *Staphylococcus* versus *Acinetobacter*.

These biases are likely originated during base/quality calling: for instance, 454 reads show a systematic decrease in quality after homopolymer regions (Brockman et al., 2008), which will penalize the taxa with longer homopolymer stretches on its 16S gene. We propose the incorporation of a simple step into the filtering pipeline that substantially minimizes this problem. It is based on the assumption of the fact that, in spite of differences in quality, identical sequences should have the same origin, as it is unlikely that two biologically unrelated sequences became identical due to sequencing errors. Thus, identical sequences were collapsed, and the representative with the highest overall quality was used to decide whether the whole group was discarded or allowed into the filtered dataset. In practice, this mitigates the effect of biases in quality distribution as even low abundance sequences are expected to have a high quality representative. Our solution rendered similar quality distributions for the different taxa, even after length trimming (Supplementary Figure SN2.1e,f), and significantly lower taxonomic biases than other filtering approaches, especially for 454 data (Figure 2c). Every method that relies on quality scores for sequence filtering will be affected by this source of bias. We therefore propose the approach described above as a general solution to this problem, since its simplicity makes it very easy to integrate into any filtering pipeline.

Figure SN2.1. Addressing the taxonomic bias generated during the pre-processing and quality filtering of raw sequences. (a, b) Raw reads from Streptococcus and Staphylococcus, the two most abundant genera in sample Even3T, show different length distributions. The dashed vertical lines in (a) indicate the average read lengths. The arrows in (b) indicate the fraction of reads from each taxon removed after discarding sequences shorter than $I_{min} = 250$ nt. (**c**, **d**, **e**) Errors per base distributions of Streptococcus and Staphylococcus reads in the (c) raw dataset, (d) after trimming the reads to 250 nt and discarding the ones shorter than the cut-off, and (e) after collapsing the trimmed reads. The dashed lines indicate average errors per base. Note that length trimming substantially increases the difference between the Streptococcus and Staphylococcus error distributions (d) when compared to that of the raw reads (c). Filtering at this point would cause a 56.2% overrepresentation of Streptococcus versus Staphylococcus. Collapsing identical reads prior to filtering solves this problem (e), reducing the overrepresentation to 1%. (f) Compositional bias generated during the pre-processing and filtering of the six 454 mock community samples, measured as the Bray-Curtis dissimilarity between the raw and the processed read communities. This shows that results in (c, d, e) can be generalized to all the taxa present in all the samples.

Supplementary Note 3. Datasets used in this study

Table SN3.1. Dataset accession numbers and abbreviations

This table shows details on the 16S datasets used in this study. NCBI Short Read Archive accession numbers are provided, unless otherwise specified. The 454 even mock community 1 was taken from the example in mothur's 454 SOP webpage (http://www.mothur.org/wiki/454_SOP). The Illumina mock communities were taken from Bokulich *et al.*, 2013 and Edgar, 2013. For Illumina datasets, the number of pairs is provided. The IonTorrent environmental communities were taken from mothur's SOP webpage (http://www.mothur.org/wiki/Ion_Torrent_sequence_analysis_using_Mothur).

, , ,	_				•
Dataset name	Abbreviation	Community type	Accession	Platform	Reads/Pairs
454 HMP Even Mock Community 1 (mothur SOP)	Even1T/E1T	Mock, even	(mothur's 454 SOP)	454 GS FLX Titanium	8,969
454 HMP Even Mock Community 2	Even2T/E2T	Mock, even	SRR072220	454 GS FLX Titanium	24,922
454 HMP Even Mock Community 3	Even3T/E3T	Mock, even	SRR072239	454 GS FLX Titanium	23,850
454 HMP Staggered Mock Community 1	Stag1T/S1T	Mock, staggered	SRR072221	454 GS FLX Titanium	23,049
454 HMP Staggered Mock Community 2	Stag2T/S1T	Mock, staggered	SRR072223	454 GS FLX Titanium	46,541
454 HMP Staggered Mock Community 3	Stag3T/S3T	Mock, staggered	SRR072237	454 GS FLX Titanium	20,449
Illumina HMP Even Mock Community 1	Even1M/E1M	Mock, even	(Bokulich et al., 2013)	Illumina MiSeq	1,520,374*
Illumina HMP Even Mock Community 2	Even2M/E2M	Mock, even	(Bokulich et al., 2013)	Illumina MiSeq	1,644,911*
Illumina HMP Staggered Mock Community 1	Stag1M/S1M	Mock, staggered	(Bokulich et al., 2013)	Illumina MiSeq	1,857,075*
Illumina HMP Staggered Mock Community 2	Stag2M/S2M	Mock, staggered	(Bokulich et al., 2013)	Illumina MiSeq	2,576,656*
IonTorrent HMP Even Mock Community 1	Even1P/E1P	Mock, even	SRR1204732	IonTorrent PGM	4,313,746*
IonTorrent HMP Even Mock Community 2	Even2P/E2P	Mock, even	SRR1204734	IonTorrent PGM	4,261,813*
Bacterial Sequences from Saliva	HumanOral	Environmental	SRR823350	454 GS FLX Titanium	5,057
Cryoconite sediments	IceMetagenome	Environmental	SRR1142358	454 GS FLX Titanium	12,159
Storr's Lake Microbial Mat	MicrobialMat	Environmental	SRR1015086	454 GS FLX Titanium	22,642
Pig gut metagenome	PigGut	Environmental	SRR1174681	454 GS FLX Titanium	17,321
Bacterial diversity in agricultural soils	SoilMetagenome	Environmental	SRR1119147	454 GS FLX Titanium	6,660
Wastewater Treatment Plant in Jonkowo	WasteWater	Environmental	SRR1019213	454 GS FLX Titanium	6,031
Concrete Corrosion Biofilm	ConcreteCorrosion	Environmental	SRR869416	Illumina MiSeq	24,291
Gull fecal bacterial community	GullFecal	Environmental	SRR1036650	Illumina MiSeq	110,158*
Human gut metagenome	HumanGut	Environmental	SRR1212611	Illumina MiSeq	35,577
Negative control from a soil metagenome project	LabWater	Environmental	SRR1371022	Illumina MiSeq	1,058
Mouse metagenome isolated from cecum of mouse	MouseGut	Environmental	SRR651466	Illumina MiSeq	144,051*
Microbial community diversity in petroleum reservoirs	PetroleumReservoir	Environmental	SRR1295596	Illumina MiSeq	115,443*
mothur SOP IonOct49	Ion49	Environmental	(mothur's IonTorrent SOP)	IonTorrent PGM	5,513
mothur SOP IonOct51	Ion51	Environmental	(mothur's IonTorrent SOP)	IonTorrent PGM	4,783
mothur SOP IonOct57	Ion57	Environmental	(mothur's IonTorrent SOP)	IonTorrent PGM	5,214
mothur SOP IonOct58	Ion57	Environmental	(mothur's IonTorrent SOP)	IonTorrent PGM	5,584
mothur SOP IonOct61	Ion61	Environmental	(mothur's IonTorrent SOP)	IonTorrent PGM	5,603
mothur SOP IonOct62	Ion62	Environmental	(mothur's IonTorrent SOP)	IonTorrent PGM	6,123
mothur SOP IonOct64	Ion64	Environmental	(mothur's IonTorrent SOP)	IonTorrent PGM	5,064
mothur SOP IonOct68	Ion68	Environmental	(mothur's IonTorrent SOP)	IonTorrent PGM	5,244
mothur SOP IonOct71	lon71	Environmental	(mothur's IonTorrent SOP)	IonTorrent PGM	5,709
mothur SOP IonOct72	Ion72	Environmental	(mothur's IonTorrent SOP)	IonTorrent PGM	5,354
mothur SOP IonOct76	Ion76	Environmental	(mothur's IonTorrent SOP)	IonTorrent PGM	5,423
mothur SOP IonOct78	Ion78	Environmental	(mothur's IonTorrent SOP)	IonTorrent PGM	5,113
mothur SOP IonOct79	Ion79	Environmental	(mothur's IonTorrent SOP)	IonTorrent PGM	6,214
· · · · · · · · · · · · · · · · · · ·					

^{*} When a dataset contained more than 40,000 reads, all analyses were performed over a random subsample of 40,000 raw reads. For each of those datasets, an additional file containing the names of the randomly selected sequences is provided as a **Supplementary resource.**

Supplementary Note 4. Results on mock communities

SN4.1. Poisson binomial filtering accurately discriminates between good and erroneous sequences

When applying our default cut-off of 1% errors allowed per sequence, our algorithm accurately classified 96% of the mock community sequences from the Even1M dataset (**Figure 1d**). 3% of the sequences were incorrectly discarded while, remarkably, only 1% of the sequences were incorrectly retained. Moreover, most of those incorrectly retained sequences had only 3 true errors (1.2% errors per sequence), meaning that they would likely cluster correctly when applying the standard 3% OTU distance cut-off. The rest of the Illumina datasets rendered similar results. The accuracy of our method was slightly lower for the 454 and lonTorrent datasets, but it nevertheless resulted in a minimum of 88% (for 454) and 79% (for lonTorrent) correctly classified sequences. (**Supplementary Figure SN4.1**).

SN4.2. Performance of the different filtering methods on the mock community datasets

Publicly available datasets from even and staggered mock communities from the Human Microbiome Project (Haas *et al.*, 2011) were filtered with PBF, mothur, USEARCH and QIIME (**Figure 2**, **Supplementary Tables SN4.2**, **SN4.4**). These artificial communities contain known amounts of 16S rRNA gene copies from 20 different bacterial organisms. The fact that both the qualitative and quantitative composition of the samples are known beforehand allowed us to thoroughly compare the effects of the different filtering methods in terms of OTU accuracy, alpha diversity and community composition. OTU accuracy was defined as the maximum similarity of its representative sequence to the 16S sequences of the microorganisms used to build the mock community, as previously described in Edgar (2013). We were also interested in determining how the different filtering processes affected the observed community composition. The taxonomic bias in community composition caused by any given filtering method was calculated as the Bray-Curtis dissimilarity between the raw and the filtered datasets, after taxonomically classifying their reads down to the genus level.

In the even datasets, which contain the same number of 16S rRNA gene copies for each organism, all methods resulted in more than 20 OTUs after clustering. This was not surprising, since contaminations, PCR errors and sequencing errors were expected to inflate the observed diversity. In the staggered communities, in which the number of 16S rRNA gene copies varied by several orders of magnitude between the different organisms, the observed diversity was generally lower, due to some species being present at very low abundances. The total number of reported OTUs greatly varied between filtering methods, with Poisson binomial filtering consistently resulting in values that were the closest to the true diversity of the samples.

PBF also produced the highest proportion of accurate OTUs in all the 16S mock datasets for both sequencing platforms, while minimizing the number of singletons and spurious OTUs retrieved (**Figure 2a,b**). In the 454 and IonTorrent datasets it also discarded the smallest number of reads and resulted in the smallest taxonomic bias (**Figure 2c,d**). In the Illumina datasets QIIME retrieved a larger number of reads, while both QIIME and mothur caused smaller taxonomic biases than our method. (**Figure 2c,d - Illumina**). However, we

believe that this was the result of a too shallow filtering by mothur and QIIME, since both methods produced a remarkably lower proportion of accurate OTUs and a larger number of OTUs and singletons (**Figure 2a,b - Illumina**). QIIME produced an especially high number of spurious OTUs, a fact that has also been discussed elsewhere (Edgar, 2013). Their pipeline (Bokulich *et al.*, 2013) deals with this problem by applying a post-hoc OTU size cut-off at the cost of sensitivity. Nonetheless, our results show that, even after the removal of singletons from the QIIME-filtered dataset, their number of OTUs would exceed that of the dataset filtered with our method, including singletons (**Supplementary Table SN4.4**).

The two filtering algorithms included in the USEARCH suite showed an intermediate performance in terms of the number and accuracy of the OTUs retrieved for both the 454 and Illumina platforms. Quality trimming yielded the smallest number of reads and resulted in the highest taxonomic bias, which supports the idea that over-stringent filtering may lead to undesirable effects. In the IonTorrent datasets, USEARCH filtering (as recommended in http://www.brmicrobiome.org/#!16sprofilingpipeline/cuhd) performed below binomial filtering for all the studied bechmarks (Figure 2 - IonTorrent). Finally, the mothur implementation of the PyroNoise algorithm (Quince et al., 2009) showed lower OTU accuracy than the other methods tested for filtering 454 reads. It has been previously described that the denoising process can introduce minor alterations in the original reads (Gaspar & Thomas, 2013), a phenomenon that might explain these results. It must be noted that, albeit a pipeline for filtering lonTorrent reads with PyroNoise has been described, the publicly available lonTorrent mock community datasets were only available in Fastg format (Stephen Salipante, personal communication), which precluded the use of flowgram denoising algorithms. However, this limitation was not present for the environmental datasets, and a comparison of quality filtering algorithms for lonTorrent datasets that includes PyroNoise can therefore be found in **Supplementary Figure SN5.3**.

Table SN4.1. Taxonomic composition of the 454 16S mock community datasets

This table gives the taxonomic composition of the raw datasets from the 16S mock communities sequenced with the 454 GS FLX Titanium platform, classified at the genus level.

Anaerobacter 0.0000% 0.0088% 0.0000% 0.0000% 0.0000%	9% 0.0000%
Azorhizophilus 0.0000% 0.0000% 0.0000% 0.0097% 0.002	0.0000%
Bacillus 0.7250% 0.6151% 0.5623% 0.5290% 0.455	0.4512%
Bacteroides 19.3125% 8.0090% 8.2915% 0.0388% 0.051	7% 0.0282%
Clostridium_sensu_stricto 5.3875% 2.9918% 3.0788% 2.2227% 2.541	1% 1.6695%
Corynebacterium 0.0000% 0.0000% 0.0000% 0.0000%	0.0000%
Deinococcus 7.6875% 34.2149% 33.9770% 0.1359% 0.041	8% 0.0677%
Devosia 0.0000% 0.0000% 0.0000% 0.0000% 0.0000%	0.0056%
Enterococcus 0.8500% 0.6634% 0.6222% 0.0971% 0.086	0.3610%
Escherichia_Shigella 0.8000% 0.4964% 0.3180% 2.9069% 2.996	0.6317%
Helicobacter 1.3750% 0.1142% 0.0784% 0.0049% 0.004	9% 0.0113%
Lactobacillus 0.6250% 0.3515% 0.3365% 0.0194% 0.027	71% 0.0451%
Lactovum 0.0000% 0.0044% 0.0000% 0.0000% 0.0000	0.0000%
Listeria 1.6625% 1.3751% 1.5025% 0.0971% 0.098	0.1072%
Methanobrevibacter 0.0000% 0.0308% 0.0184% 0.1407% 0.260	0.1184%
Mycobacterium 0.0000% 0.0000% 0.0000% 0.0097% 0.009	0.0226%
Neisseria 5.1000% 2.1615% 2.1985% 0.0922% 0.145	0.0564%
Prevotella 0.0125% 0.0000% 0.0000% 0.0000% 0.0000%	0.0000%
Propionibacterium 4.9000% 3.1280% 2.7469% 0.0874% 0.100	0.0226%
Pseudomonas 1.2500% 0.9797% 0.9540% 0.8396% 0.710	0.4230%
Rhodobacter 0.3250% 0.5623% 0.5899% 5.1393% 4.063	9% 4.5065%
Salmonella 0.0000% 0.0000% 0.0046% 0.0097% 0.039	0.0169%
Staphylococcus 31.2500% 34.6147% 35.1293% 66.4418% 65.410	69.4078%
Stenotrophomonas 0.0000% 0.0000% 0.0000% 0.0049% 0.000	0.0000%
Streptococcus 9.7250% 5.4609% 0.0000% 21.0376% 22.784	2% 21.9402%
Sulfitobacter 0.0000% 0.0000% 5.8257% 0.0049% 0.0000	0.0000%

Figure SN4.1. Poisson binomial filtering accurately discriminates between good and erroneous sequences.

Comparison between the number of errors j_{ξ} predicted by the Poisson binomial algorithm and the true number of errors for all sequences from the 454 and Illumina MiSeq mock community dataset. Dots represent unique sequences. True mock community sequences are plotted in blue, contaminant sequences are plotted in gray, and chimeric sequences are plotted in red. The blue background represents sequence abundance. Red lines indicate our error cutoff of 2.5 errors per sequence (j_{tol} , 2 errors per sequence for the lonTorrent datasets). The percentage of true mock community sequences present on each quadrant is also indicated. The graph is plotted in logarithmic scale (the 0 in the x-axis is added for clarity).

Table SN4.2. Results on the 454 mock communities

This table shows the results obtained after quality filtering the six 454 mock communities with different filtering methods. For each method, the "NoSUB" table shows the results obtained directly after filtering, while the "SUB" table shows the results obtained after performing 100 independent random sub-samplings of the filtered reads. For each sample, the number of reads kept by the most stringent method was chosen as the sub-sampling size for the rest of the methods. Abbreviations: std, standard deviation; Coverage, Good's coverage; TaxBias, taxonomic bias (see methods).

Even1T

Poisson bind	mial filtering				
NoSUB					
OTUs	Singletons	Coverage	TaxBias	#Reads pass	ing filters
25	6	0.9992	0.0293	7421	
Perfect	Good	Noisy	Contaminant	Other	
16	0	3	4	2	
SUB_6071					
OTUs	OTUs_std	Singletons	Singletons_std	Coverage	Coverage_std
23.93	1.06	5.2	1.06	0.9991	0.0002
Perfect	Good	Noisy	Contaminant	Other	
16.12	0	2.79	3.12	1.9	

PyroNoise				
NoSUB				
OTUs	Singletons	Coverage	TaxBias	#Reads passing filters
26	8	0.9987	0.0432	6071
Perfect	Good	Noisy	Contaminant	Other
0	0	18	0	8

USEARCH ex	pected errors				
NoSUB					
OTUs	Singletons	Coverage	TaxBias	#Reads pass	ing filters
25	6	0.9991	0.0498	6915	
Perfect	Good	Noisy	Contaminant	Other	
16	0	3	4	2	
SUB_6071					
OTUs	OTUs_std	Singletons	Singletons_std	Coverage	Coverage_std
24.26	1.05	5.56	1.06	0.9991	0.0002
Perfect	Good	Noisy	Contaminant	Other	
16.12	0	2.68	3.53	1.93	

Quality-trimm	ning				
NoSUB					
OTUs	Singletons	Coverage	TaxBias	#Reads pass	ing filters
24	5	0.9992	0.0826	6320	
Perfect	Good	Noisy	Contaminant	Other	
17	0	1	3	3	
SUB_6071					
OTUs	OTUs_std	Singletons	Singletons_std	Coverage	Coverage_std
24.05	0.64	5.05	0.64	0.9992	0.0001
Perfect	Good	Noisy	Contaminant	Other	
17	0	1.18	2.91	2.96	

Even2T

Poisson bino	mial filtering				
NoSUB					
OTUs	Singletons	Coverage	TaxBias	#Reads pass	ing filters
34	11	0.9994	0.0271	16963	
Perfect	Good	Noisy	Contaminant	Other	
17	1	3	0	13	
SUB_7437					
OTUs	OTUs_std	Singletons	Singletons_std	Coverage	Coverage_std
26.78	2	6.1	2.1	0.9992	0.0003
Perfect	Good	Noisy	Contaminant	Other	
17.5	1.06	1.27	0	6.95	

PyroNoise					
NoSUB					
OTUs	Singletons	Coverage	TaxBias	#Reads pass	ing filters
42	19	0.9985	0.0702	12951	
Perfect	Good	Noisy	Contaminant	Other	
17	1	1	1	22	
SUB_7437					
OTUs	OTUs_std	Singletons	Singletons_std	Coverage	Coverage_std
32.81	2.42	12.54	2.5	0.9983	0.0003
Perfect	Good	Noisy	Contaminant	Other	
17.73	0.98	0.38	0.48	13.24	

USEARCH ex	cpected errors				
NoSUB					
OTUs	Singletons	Coverage	TaxBias	#Reads pass	ing filters
37	15	0.9984	0.1047	9251	
Perfect	Good	Noisy	Contaminant	Other	
18	1	2	0	16	
SUB_7437					
OTUs	OTUs_std	Singletons	Singletons_std	Coverage	Coverage_std
33.9	1.46	12.45	1.51	0.9983	0.0002
Perfect	Good	Noisy	Contaminant	Other	
17.75	1	1.8	0	13.35	

Quality-trimn	ning			
NoSUB				
OTUs	Singletons	Coverage	TaxBias	#Reads passing filters
26	6	0.9992	0.1281	7437
Perfect	Good	Noisy	Contaminant	Other
16	2	2	0	6

Even3T

Poisson bino	mial filtering				
NoSUB					
OTUs	Singletons	Coverage	TaxBias	#Reads passi	ing filters
22	3	0.9998	0.0445	15123	
Perfect	Good	Noisy	Contaminant	Other	
17	1	2	0	2	
SUB_5876					
OTUs	OTUs_std	Singletons	Singletons_std	Coverage	Coverage_std
20.14	0.92	1.19	0.9	0.9998	0.0002
Perfect	Good	Noisy	Contaminant	Other	
17.69	1	0.73	0	0.72	

PyroNoise					
NoSUB					
OTUs	Singletons	Coverage	TaxBias	#Reads pass	ing filters
27	5	0.9993	0.0471	12951	
Perfect	Good	Noisy	Contaminant	Other	
17	1	1	0	8	
SUB_5876					
OTUs	OTUs_std	Singletons	Singletons_std	Coverage	Coverage_std
21.94	0.93	2.17	1.01	0.9996	0.0002
Perfect	Good	Noisy	Contaminant	Other	
17.81	1	0.84	0	2.29	

USEARCH ex	pected errors				
NoSUB					
OTUs	Singletons	Coverage	TaxBias	#Reads pass	ing filters
27	5	0.9993	0.13	7610	
Perfect	Good	Noisy	Contaminant	Other	
17	1	1	0	8	
SUB_5876					
OTUs	OTUs_std	Singletons	Singletons_std	Coverage	Coverage_std
25.76	1.02	4.34	1.12	0.9993	0.0002
Perfect	Good	Noisy	Contaminant	Other	
17.2	1	0.6	0	6.96	

Quality-trimming									
NoSUB									
OTUs	Singletons	Coverage	TaxBias	#Reads passing filters					
26	8	0.9986	0.1418	5876					
Perfect	Good	Noisy	Contaminant	Other					
16	3	1	0	6					

Stag1T

Poisson bino	mial filtering				
NoSUB					
OTUs	Singletons	Coverage	TaxBias	#Reads pass	ing filters
23	9	0.9994	0.0398	15189	
Perfect	Good	Noisy	Contaminant	Other	
15	1	3	0	4	
SUB_7866					
OTUs	OTUs_std	Singletons	Singletons_std	Coverage	Coverage_std
18.49	1.57	5.78	1.8143	0.9993	0.0002
Perfect	Good	Noisy	Contaminant	Other	
14.05	0.49	1.81	0	2.14	

PyroNoise					
NoSUB					
OTUs	Singletons	Coverage	TaxBias	#Reads passi	ing filters
27	12	0.9989	0.0856	10750	
Perfect	Good	Noisy	Contaminant	Other	
13	1	4	0	9	
SUB_7866					
OTUs	OTUs_std	Singletons	Singletons_std	Coverage	Coverage_std
23.59	1.7	8.87	1.68	0.9989	0.0002
Perfect	Good	Noisy	Contaminant	Other	
13.26	0.72	3.18	0	6.4	

USEARCH ex	pected errors				
NoSUB					
OTUs	Singletons	Coverage	TaxBias	#Reads pass	ing filters
25	10	0.9990	0.1233	10177	
Perfect	Good	Noisy	Contaminant	Other	
15	2	4	0	4	
SUB_7866					
OTUs	OTUs_std	Singletons	Singletons_std	Coverage	Coverage_std
22.63	1.41	8.77	1.56	0.9989	0.0002
Perfect	Good	Noisy	Contaminant	Other	
14.17	1.53	3.85	0	2.95	

Quality-trimming										
NoSUB										
OTUs	Singletons	Coverage	TaxBias	#Reads passing filters						
25	10	0.9987	0.2081	7866						
Perfect	Good	Noisy	Contaminant	Other						
15	1	3	0	6						

Stag2T

Poisson bino	mial filtering				
NoSUB					
OTUs	Singletons	Coverage	TaxBias	#Reads passi	ing filters
27	8	0.9997	0.0408	30660	
Perfect	Good	Noisy	Contaminant	Other	
15	0	2	0	10	
SUB_15567					
OTUs	OTUs_std	Singletons	Singletons_std	Coverage	Coverage_std
22.09	1.6	6.02	1.75	0.9996	0.0001
Perfect	Good	Noisy	Contaminant	Other	
14	0	2.05	0	6.04	

PyroNoise					
NoSUB					
OTUs	Singletons	Coverage	TaxBias	#Reads passi	ing filters
30	12	0.9995	0.0725	21922	
Perfect	Good	Noisy	Contaminant	Other	
14	2	3	0	11	
SUB_15567					
OTUs	OTUs_std	Singletons	Singletons_std	Coverage	Coverage_std
26.44	1.61	9.36	1.55	0.9994	0.0001
Perfect	Good	Noisy	Contaminant	Other	
13.26	1.67	2.93	0	8.58	

USEARCH ex	pected errors				
NoSUB	•				
OTUs	Singletons	Coverage	TaxBias	#Reads passi	ing filters
28	9	0.9995	0.1392	19899	
Perfect	Good	Noisy	Contaminant	Other	
15	0	3	0	10	
SUB_15567					
OTUs	OTUs_std	Singletons	Singletons_std	Coverage	Coverage_std
25.97	1.16	8.24	1.39	0.9995	0.0001
Perfect	Good	Noisy	Contaminant	Other	
14.46	0	3.02	0	8.49	

Quality-trimming									
NoSUB									
OTUs	Singletons	Coverage	TaxBias	#Reads passing filters					
32	10	0.9994	0.2263	15567					
Perfect	Good	Noisy	Contaminant	Other					
14	1	4	0	13					

Stag3T

Poisson bind	mial filtering				
NoSUB					
OTUs	Singletons	Coverage	TaxBias	#Reads pass	ing filters
25	10	0.9991	0.0545	11014	
Perfect	Good	Noisy	Contaminant	Other	
10	2	2	1	10	
SUB_3690					
OTUs	OTUs_std	Singletons	Singletons_std	Coverage	Coverage_std
16.76	1.7	5.45	1.9	0.9985	0.0005
Perfect	Good	Noisy	Contaminant	Other	
9.75	1.05	1.06	0.35	4.55	

PyroNoise NoSUB					
OTUs	Singletons	Coverage	TaxBias	#Reads pass	ing filters
23	6	0.9992	0.0989	7327	
Perfect	Good	Noisy	Contaminant	Other	
Periect	Good	Noisy	Comaminant	Other	
11	2	2	1	7	
SUB_3690					
OTUs	OTUs_std	Singletons	Singletons_std	Coverage	Coverage_std
19.44	1.53	5.15	1.73	0.9986	0.0005
Perfect	Good	Noisy	Contaminant	Other	
10.92	1.22	1.69	0.49	5.12	

USEARCH ex	cpected errors				
NoSUB					
OTUs	Singletons	Coverage	TaxBias	#Reads pass	ing filters
26	10	0.9981	0.1864	5288	
Perfect	Good	Noisy	Contaminant	Other	
10	3	1	1	11	
SUB_3690					
OTUs	OTUs_std	Singletons	Singletons_std	Coverage	Coverage_std
22.49	1.57	8.67	1.79	0.9977	0.0005
Perfect	Good	Noisy	Contaminant	Other	
9.73	2.42	1.33	0.61	8.4	

Quality-trimn	Quality-trimming										
NoSUB											
OTUs	Singletons	Coverage	TaxBias	#Reads passing filters							
23	8	0.9978	0.3376	3690							
Perfect	Good	Noisy	Contaminant	Other							
9	2	1	1	10							

Table SN4.3. Taxonomic composition of the Illumina 16S mock community datasets

This table gives the taxonomic composition of the raw datasets from the 16S mock communities sequenced with the Illumina MiSeq platform, classified at the genus level. The taxonomic composition from both the assembled paired-end reads (labeled with the suffix "P") and the forward single reads (labeled with the suffix "S") is provided.

	Even1M_P	Even1M_S	Even2M_P	Even2M_S	Stag1M_P	Stag1M_S	Stag2M_P	Stag2M_S
Acinetobacter	21.7594%	21.3406%	17.9154%	18.3935%	0.8911%	0.9059%	0.8478%	0.8718%
Actinomyces	1.1290%	1.1484%	1.3095%	1.3039%	0.0134%	0.0163%	0.0055%	0.0056%
Aeromonas	0.0000%	0.0000%	0.0026%	0.0000%	0.0000%	0.0000%	0.0000%	0.0000%
Alkanindiges	0.0000%	0.0000%	0.0000%	0.0027%	0.0000%	0.0000%	0.0000%	0.0028%
Azomonas	0.0000%	0.0027%	0.0026%	0.0027%	0.0000%	0.0000%	0.0000%	0.0000%
Azotobacter	0.0000%	0.0027%	0.0000%	0.0000%	0.0000%	0.0000%	0.0000%	0.0000%
Bacillus	0.0000%	0.0080%	0.0079%	0.0054%	0.0080%	0.0109%	0.0055%	0.0139%
Bacteroides	3.7790%	4.1118%	4.2584%	4.2724%	0.0348%	0.0408%	0.0436%	0.0472%
Clostridium_sensu_stricto	2.4043%	2.2941%	2.4447%	2.4669%	1.5734%	1.5560%	1.7037%	1.7298%
Cronobacter	0.0000%	0.0000%	0.0000%	0.0000%	0.0000%	0.0000%	0.0027%	0.0000%
Deinococcus	6.0161%	6.1570%	7.3974%	7.5743%	0.0696%	0.0707%	0.0518%	0.0500%
Devosia	0.0000%	0.0000%	0.0000%	0.0000%	0.0107%	0.0109%	0.0000%	0.0000%
Dorea	0.0052%	0.0000%	0.0000%	0.0000%	0.0000%	0.0000%	0.0000%	0.0000%
Enterococcus	0.9252%	0.8914%	0.8897%	0.7970%	0.0054%	0.0054%	0.0082%	0.0083%
Escherichia_Shigella	0.5018%	0.3962%		0.4283%	1.9908%	2.3585%	2.3443%	2.6433%
Helicobacter	2.3469%	2.4200%		2.6025%				0.2027%
Lactobacillus	0.1829%	0.1579%		0.2223%	0.0080%	0.0027%	0.0273%	0.0194%
Listeria	2.3730%	2.3771%		2.4480%				0.1472%
Methanobrevibacter	0.4809%	0.4872%		0.4581%				6.9414%
Neisseria	1.9757%	1.8069%	2.0434%	2.0766%	0.1552%	0.1578%	0.0927%	0.0944%
Phenylobacterium	0.0000%	0.0000%		0.0000%				0.0028%
Propionibacterium	0.0157%	0.0054%		0.0163%				0.0000%
Pseudomonas	2.2371%	2.0211%	2.2124%	2.0467%				1.2356%
Rhodobacter	0.9774%	0.9931%	0.8844%	0.9136%	6.5960%	6.6730%	6.6458%	6.7359%
Staphylococcus	47.7054%	47.7567%	47.9460%	48.4683%	70.4825%	70.6257%	69.6443%	69.7634%
Stenotrophomonas	0.0000%	0.0000%		0.0000%				0.0056%
Streptococcus	5.1850%	5.6216%	6.5368%	5.5004%	9.6412%	9.0696%	10.0777%	9.4791%

Table SN4.4. Results on the Illumina mock communities

This table shows the results obtained after quality filtering the four Illumina mock communities with different filtering methods. For each method, the "NoSUB" table shows the results obtained directly after filtering, while the "SUB" table shows the results obtained after performing 100 independent random sub-samplings of the filtered reads. For each sample, the number of reads kept by the most stringent method was chosen as the sub-sampling size for the rest of the methods. Abbreviations: std, standard deviation; Coverage, Good's coverage; TaxBias, taxonomic bias (see methods).

⊏,	10	'n	1 N	v

Poisson bino	mial filtering				
NoSUB					
OTUs	Singletons	Coverage	TaxBias	#Reads pass	ing filters
41	17	0.9995	0.0490	35081	
Perfect	Good	Noisy	Contaminant	Other	
17	4	1	0	19	
SUB_28517					
OTUs	OTUs_std	Singletons	Singletons_std	Coverage	Coverage_std
38.14	1.84	15.7	2.18	0.9994	0.0001
Perfect	Good	Noisy	Contaminant	Other	
17	3.67	1.53	0	15.94	

mothur					
NoSUB					
OTUs	Singletons	Coverage	TaxBias	#Reads pass	ing filters
66	41	0.9988	0.0426	34040	-
Perfect	Good	Noisy	Contaminant	Other	
17	4	1	1	43	
SUB_28517					
OTUs	OTUs_std	Singletons	Singletons_std	Coverage	Coverage_std
59.45	2.46	35.56	2.41	0.9988	0.0001
Perfect	Good	Noisy	Contaminant	Other	
17	3.51	1.76	0.87	36.31	

QIIME					
NoSUB					
OTUs	Singletons	Coverage	TaxBias	#Reads pass	ing filters
228	189	0.9948	0.0321	36011	
Perfect	Good	Noisy	Contaminant	Other	
18	3	7	3	197	
	ა		ى -	197	
SUB_28517					
OTUs	OTUs_std	Singletons	Singletons_std	Coverage	Coverage_std
188.74	5.27	155.9	5.22	0.9945	0.0002
				0.1	
Perfect	Good	Noisy	Contaminant	Other	
18.21	2.71	5.4	2.42	160	

USEARCH ex	cpected errors				
NoSUB					
OTUs	Singletons	Coverage	TaxBias	#Reads pass	ing filters
61	32	0.9991	0.0461	34578	
Perfect	Good	Noisy	Contaminant	Other	
17	4	4	2	34	
SUB_28517					
OTUs	OTUs_std	Singletons	Singletons_std	Coverage	Coverage_std
55.19	2.49	28.98	2.69	0.9990	0.0001
Perfect	Good	Noisy	Contaminant	Other	
17.11	3.82	3.99	1.63	28.64	

Quality-trimn	ning				
OTUs 44	Singletons 21	Coverage 0.9993	TaxBias 0.0678	#Reads passing filters 28517	
Perfect 17	Good 3.67	Noisy 1.53	Contaminant 0	Other 15.94	

Even2M

Poisson bino	mial filtering				
NoSUB					
OTUs	Singletons	Coverage	TaxBias	#Reads passi	ing filters
29	6	0.9998	0.0558	33841	
Perfect	Good	Noisy	Contaminant	Other	
18	3	0	0	8	
SUB_26471					
OTUs	OTUs_std	Singletons	Singletons_std	Coverage	Coverage_std
27.53	1.05	5.3	1.03	0.9998	0.0000
Perfect	Good	Noisy	Contaminant	Other	
17.96	2.69	0.32	0	6.56	

41					
mothur					
NoSUB					
OTUs	Singletons	Coverage	TaxBias	#Reads passi	ng filters
67	41	0.9988	0.0481	32849	
Perfect	Good	Noisy	Contaminant	Other	
18	3	4	0	42	
SUB_26471					
OTUs	OTUs_std	Singletons	Singletons_std	Coverage	Coverage_std
58.23	2.52	33.66	2.4	0.9987	0.0001
Perfect	Good	Noisy	Contaminant	Other	
18	2.78	2.85	0	34.6	

aritus a					
qiime					
NoSUB					
OTUs	Singletons	Coverage	TaxBias	#Reads pass	ing filters
319	279	0.9922	0.0291	35677	
Perfect	Good	Noisy	Contaminant	Other	
19	3	11	1	285	
SUB_26471					
OTUs	OTUs_std	Singletons	Singletons_std	Coverage	Coverage_std
319	0	279	0	0.9922	0.0000
Perfect	Good	Noisy	Contaminant	Other	
19	3	11	1	285	

USEARCH ex	pected errors				
NoSUB					
OTUs	Singletons	Coverage	TaxBias	#Reads pass	ing filters
53	25	0.9992	0.0559	33130	
Perfect	Good	Noisy	Contaminant	Other	
18	4	3	0	28	
SUB_26471					
OTUs	OTUs_std	Singletons	Singletons_std	Coverage	Coverage_std
47.31	2.31	21.32	2.45	0.9992	0.0001
Perfect	Good	Noisy	Contaminant	Other	
18	3.83	2.59	0	22.89	

Quality-trimming								
NoSUB								
OTUs	Singletons	Coverage	TaxBias	#Reads passing filters				
40	12	0.9995	0.0818	26471				
Perfect	Good	Noisy	Contaminant	Other				
18	4	1	0	17				

	1	

Poisson bind	mial filtering		_		
NoSUB					
OTUs	Singletons	Coverage	TaxBias	#Reads passi	ing filters
29	12	0.9996	0.0342	33497	
Perfect	Good	Noisy	Contaminant	Other	
16	2	0	3	8	
SUB_26431					
OTUs	OTUs_std	Singletons	Singletons_std	Coverage	Coverage_std
26.61	1.3	9.92	1.4	0.9996	0.0001
Perfect	Good	Noisy	Contaminant	Other	
15.94	1.57	0.06	2.65	6.39	

mothur					
NoSUB					
OTUs	Singletons	Coverage	TaxBias	#Reads pass	ing filters
77	57	0.9982	0.0204	32406	
Perfect	Good	Noisy	Contaminant	Other	
16	1	4	4	52	
SUB_26431					
OTUs	OTUs_std	Singletons	Singletons_std	Coverage	Coverage_std
65.92	2.85	47.06	2.95	0.9982	0.0001
Perfect	Good	Noisy	Contaminant	Other	
15.97	0.78	3.37	3.39	42.41	

QIIME					
NoSUB					
OTUs	Singletons	Coverage	TaxBias	#Reads pass	ing filters
248	217	0.9936	0.0264	34062	
Perfect	Good	Noisy	Contaminant	Other	
15	2	8	8	215	
SUB_26431					
OTUs	OTUs_std	Singletons	Singletons_std	Coverage	Coverage_std
198.31	6.96	172.1	7.57	0.9935	0.0003
Perfect	Good	Noisy	Contaminant	Other	
14.57	1.74	7.06	6.53	168.41	

USEARCH ex	pected errors				
NoSUB					
OTUs	Singletons	Coverage	TaxBias	#Reads passi	ing filters
44	22	0.9993	0.0244	32671	
Perfect	Good	Noisy	Contaminant	Other	
16	1	6	3	18	
SUB_26431					
OTUs	OTUs_std	Singletons	Singletons_std	Coverage	Coverage_std
39.29	1.87	19.32	2.13	0.9993	0.0001
Perfect	Good	Noisy	Contaminant	Other	
15.7	1	4.65	2.78	15.16	

Quality-trimming									
NoSUB									
OTUs	Singletons	Coverage	TaxBias	#Reads passing filters					
30	11	0.9996	0.1063	26431					
Perfect	Good	Noisy	Contaminant	Other					
15	0	2	3	10					

Poisson bind	omial filtering				
NoSUB					
OTUs	Singletons	Coverage	TaxBias	#Reads pass	ina filters
24	6	0.9998	0.0262	32465	3
	· ·	0.000	0.0202	02.00	
Perfect	Good	Noisy	Contaminant	Other	
17	1	1	1	4	
SUB 26471	_		_	·	
OTUs	OTUs_std	Singletons	Singletons_std	Coverage	Coverage_s
22.46	1.11	4.72	1.22	0.9998	0.0000
22.40	1.11	4.72	1.22	0.9990	0.0000
Perfect	Good	Noisy	Contaminant	Other	
		-	0.73		
16.97	0.69	0.9	0.73	3.17	
us satis i un					
mothur					
NoSUB	Cin al -4	0-145	Tav:Di	#Daad	£14
OTUs	Singletons	Coverage	TaxBias	#Reads pass	ing tilters
75	52	0.9983	0.0217	31319	
Perfect	Good	Noisy	Contaminant	Other	
17	1	4	1	52	
SUB_26471					
OTUs	OTUs_std	Singletons	Singletons_std	Coverage	Coverage_s
63.79	2.85	42.97	3.04	0.9983	0.0001
Perfect	Good	Noisy	Contaminant	Other	
16.97	0.77	2.85	0.79	42.41	
QIIME					
NoSUB					
OTUs	Singletons	Coverage	TaxBias	#Reads pass	ing filters
317	280	0.9917	0.0261	33748	
Perfect	Good	Noisy	Contaminant	Other	
15	1	13	3	285	
SUB 26471					
OTUs	OTUs_std	Singletons	Singletons_std	Coverage	Coverage_s
241.02	7.98	211.49	7.81	0.9915	0.0003
				2.3020	2.0000
Perfect	Good	Noisy	Contaminant	Other	
15.02	0.76	10.35	2.42	212.47	
			· · _		
USEARCH ex	pected errors				
NoSUB					
				#Doods page	ing filters
	Singletons	Coverage	TaxRias		
OTUs	Singletons	Coverage	TaxBias	•	
	Singletons 20	Coverage 0.9994	TaxBias 0.0391	31454	
OTUs 42	20	0.9994	0.0391	31454	
OTUs 42 Perfect	20 Good	0.9994 Noisy	0.0391 Contaminant	31454 Other	g
OTUs 42 Perfect 16	20	0.9994	0.0391	31454	g
OTUs 42 Perfect 16 SUB_26471	20 Good 2	0.9994 Noisy 4	0.0391 Contaminant 1	31454 Other 19	
OTUs 42 Perfect 16 SUB_26471 OTUs	Good 2 OTUs_std	0.9994 Noisy 4 Singletons	0.0391 Contaminant 1 Singletons_std	31454 Other 19 Coverage	Coverage_s
OTUs 42 Perfect 16 SUB_26471	20 Good 2	0.9994 Noisy 4	0.0391 Contaminant 1	31454 Other 19	
OTUs 42 Perfect 16 SUB_26471 OTUs 37.34	Good 2 OTUs_std 2.15	0.9994 Noisy 4 Singletons 16.95	0.0391 Contaminant 1 Singletons_std 2.28	31454 Other 19 Coverage 0.9993	Coverage_s
OTUs 42 Perfect 16 SUB_26471 OTUs 37.34 Perfect	Good 2 OTUs_std 2.15 Good	0.9994 Noisy 4 Singletons 16.95 Noisy	0.0391 Contaminant 1 Singletons_std 2.28 Contaminant	31454 Other 19 Coverage 0.9993 Other	Coverage_s
OTUs 42 Perfect 16 SUB_26471 OTUs 37.34	Good 2 OTUs_std 2.15	0.9994 Noisy 4 Singletons 16.95	0.0391 Contaminant 1 Singletons_std 2.28	31454 Other 19 Coverage 0.9993	Coverage_s
OTUs 42 Perfect 16 SUB 26471 OTUs 37.34 Perfect 15.96	Good 2 OTUs_std 2.15 Good 1.68	0.9994 Noisy 4 Singletons 16.95 Noisy	0.0391 Contaminant 1 Singletons_std 2.28 Contaminant	31454 Other 19 Coverage 0.9993 Other	Coverage_s
OTUs 42 Perfect 16 SUB_26471 OTUs 37.34 Perfect 15.96 Quality-trimn	Good 2 OTUs_std 2.15 Good 1.68	0.9994 Noisy 4 Singletons 16.95 Noisy	0.0391 Contaminant 1 Singletons_std 2.28 Contaminant	31454 Other 19 Coverage 0.9993 Other	Coverage_s
OTUs 42 Perfect 16 SUB_26471 OTUs 37.34 Perfect 15.96	Good 2 OTUs_std 2.15 Good 1.68	0.9994 Noisy 4 Singletons 16.95 Noisy	0.0391 Contaminant 1 Singletons_std 2.28 Contaminant	31454 Other 19 Coverage 0.9993 Other	Coverage_s

#Reads passing filters

26471

Other

8

TaxBias

0.0984

Contaminant

Singletons

10

Good

3

Coverage

0.9996

Noisy

1

OTUs

28

Perfect

15

Table SN4.5. Taxonomic composition of the IonTorrent 16S mock community datasets

This table gives the taxonomic composition of the raw datasets from the 16S mock communities sequenced with the IonTorrent PGM platform, classified at the genus level.

	Even1P	Even2P
Propionibacterium	5.9725%	0.0359%
Enterococcus	2.5484%	3.1057%
Lactobacillus	4.4973%	5.2174%
Pseudomonas	0.5743%	1.5448%
Listeria	6.6078%	6.1435%
Actinobacillus	0.0108%	0.0000%
Bacillus	3.3918%	3.6685%
Rhodobacter	2.0997%	2.6226%
Enterobacter	0.0467%	0.0399%
Salmonella	0.0036%	0.0000%
Escherichia_Shigella	2.4120%	1.7484%
Helicobacter	14.3929%	14.1232%
Actinomyces	3.2375%	0.0000%
Neisseria	8.7003%	7.7043%
Citrobacter	0.0000%	0.0160%
Clostridium_sensu_stricto	4.1671%	5.3411%
Bacteroides	11.8660%	15.4844%
Streptococcus	12.6736%	14.4425%
Yokenella	0.0036%	0.0120%
Staphylococcus	7.9753%	9.6363%
Acinetobacter	3.8046%	5.4529%
Deinococcus	5.0142%	3.6605%

Table SN4.6. Results on the IonTorrent mock communities

This table shows the results obtained after quality filtering the two IonTorrent mock communities with different filtering methods. For each method, the "NoSUB" table shows the results obtained directly after filtering, while the "SUB" table shows the results obtained after performing 100 independent random sub-samplings of the filtered reads. For each sample, the number of reads kept by the most stringent method was chosen as the sub-sampling size for the rest of the methods. Abbreviations: std, standard deviation; Coverage, Good's coverage; TaxBias, taxonomic bias (see methods).

ᆮ	ν	eı	ч	LF

Poisson bind	omial filtering				
NoSUB					
OTUs	Singletons	Coverage	CompBias	#Reads pass	ing filters
24	4	0.9997	0.1642	12303	
Perfect	Good	Noisy	Contaminant	Other	
16	3	3	0	2	
SUB_6850					
OTUs	OTUs_std	Singletons	Singletons_std	Coverage	Coverage_std
21.79	1.11	3.22	1.22	0.9995	0.0002
Perfect	Good	Noisy	Contaminant	Other	
15.55	2.83	2.33	0	1.08	

USEARCH ex	pected errors				
NoSUB					
OTUs	Singletons	Coverage 0.9978	CompBias 0.2223	#Reads passing filters	
38	15	0.9978	0.2223	6850	
Perfect	Good	Noisy	Contaminant	Other	
16	4	6	0	12	

Even2P

Poisson hine	omial filtering				
NoSUB	onna memg				
OTUs 30	Singletons 9	Coverage 0.9993	CompBias 0.1159	#Reads passi 12644	ing filters
Perfect 12	Good 4	Noisy 4	Contaminant 0	Other 10	
SUB_7432					
OTUs	OTUs_std	Singletons	Singletons_std	Coverage	Coverage_std
26.45	1.44	5.72	1.52	0.9992	0.0002
Perfect	Good	Noisy	Contaminant	Other	
11.92	4.25	2.93	0.08	7.27	

USEARCH ex	pected errors				
NoSUB					
OTUs	Singletons	Coverage	CompBias	#Reads passing filters	
43	16	0.9978	0.1454	7432	
Perfect	Good	Noisy	Contaminant	Other	
12	5	4	1	21	

Supplementary Note 5. Results on environmental communities

SN5.1. Performance of the different filtering methods on the environmental communities datasets

The performance of the different filtering methods was also evaluated by quality-filtering publicly available datasets obtained by sequencing environmental communities (Supplementary Figures SN5.1, SN5.2, SN5.3) The results were similar to the ones obtained with the mock communities, with Poisson binomial filtering filtering being the most consistent method in producing the smallest number of OTUs and singletons. Additionally, the OTUs obtained with PBF were overall the most similar to the 16S sequences present in the SILVA 16S reference alignment (Quast et al., 2013), which suggests that they contained the smallest number of errors. In the environmental 454 datasets, PyroNoise showed better results than in the 454 mock communities, but did it in an irregular fashion, especially in terms of OTU accuracy (Supplementary Figure SN5.1d). This inconsistency may be again due to the alteration of the original reads, and suggests that PyroNoise requires a finer parameter optimization than other approaches in order to be fully effective. In the environmental IonTorrent datasets PyroNoise discarded the smallest number of reads, but resulted in the highest number of singletons and OTUs, which also beared the least similarity to the reference alignment. USEARCH showed an intermediate performance between PyroNoise and Poisson binomial filtering (Supplementary Figure SN5.3). Finally, in the environmental Illumina datasets all filtering methods showed a similar behaviour to that in the mock communities (Supplementary Figure SN5.2).

Figure SN5.1. Results on 454 environmental communities

- (a, b): Number of singletons (a, bars), total species (a, symbols) and reads (c) retrieved after filtering the raw reads with the different methods and performing chimera removal and clustering with a common pipeline. OTU and singleton numbers were obtained by averaging the results from 100 independent library size standardizations.
- (c): Taxonomic bias caused by the different filtering methods, measured as the Bray-Curtis dissimilarity between the raw and the filtered read communities.
- (d): Average percent OTU similarity to their best hit from the SILVA bacterial 16S reference alignment. This number was obtained by averaging the results from 100 independent library size standardizations.

Table SN5.1. Results on the 454 environmental communities

This table shows the results obtained after quality filtering the six 454 environmental communities with different filtering methods. For each method, the "NoSUB" table shows the results obtained directly after filtering, while the "SUB" table shows the results obtained after performing 100 independent random sub-samplings of the filtered reads. For each sample, the number of reads kept by the most stringent method was chosen as the sub-sampling size for the rest of the methods. Abbreviations: std, standard deviation; Coverage, Good's coverage; TaxBias, taxonomic bias (see methods); OTUsim, average OTU similarity to their best hit from the SILVA bacterial 16S reference alignment.

Poisson bin	omial filtering						
NoSUB	<u> </u>						
OTUs	Singletons	Coverage	OTUsim	OTUsim_std	TaxBias	#Reads pass	ing filters
127	43	0.9874	94.61	3.42	0.0672	3409	_
SUB_2418							
OTUs	OTUs_std	Singletons	Singletons_std	Coverage	Coverage_std	OTUsim	OTUsim_std
112.66	2.38	39.02	2.77	0.9839	0.0011	94.69	3.4
DuraNaiaa							
PyroNoise NoSUB							
OTUs	Singletons	Coverage	OTUsim	OTUsim std	TaxBias	#Reads pass	ing filters
126	47	0.9830	94.52	6.57	0.2330	#Reaus pass 2758	ing inters
SUB 2418	41	0.9030	34.32	0.57	0.2330	2730	
OTUs	OTUs std	Singletons	Singletons std	Coverage	Coverage_std	OTUsim	OTUsim std
120.6	1.68	44.07	1.92	0.9818	0.0008	94.75	6.47
LICE ADOLL O	xpected errors						
NoSUB	xpected errors						
OTUs	Singletons	Coverage	OTUsim	OTUsim std	TaxBias	#Reads pass	ing filters
133	47	0.9849	94.54	3.41	0.0858	3110	ing inters
SUB 2418		0.0040	04.04	0.41	0.0000	0110	
OTUs	OTUs std	Singletons	Singletons std	Coverage	Coverage std	OTUsim	OTUsim std
122.03	1.92	45.1	2.89	0.9813	0.0012	94.66	3.44
Quality-trimi	mina						
NoSUB	iiiig						
OTUs	Singletons	Coverage	OTUsim	OTUsim std	TaxBias	#Reads pass	ina filters
113	44	0.9818	94.69	3.39	0.1391	2418	ing inters

Poisson bin	omial filtering						
NoSUB							
OTUs	Singletons	Coverage	OTUsim	OTUsim_std	TaxBias	#Reads pass	ing filters
127	60	0.9830	90.97	6.63	0.1361	3519	
SUB_375							
OTUs	OTUs_std	Singletons	Singletons_std	Coverage	Coverage_std	OTUsim	OTUsim_std
40.26	4.27	22.8	4.24	0.9390	0.0113	91.8	6.13
PyroNoise							
NoSUB							
OTUs	Singletons	Coverage	OTUsim	OTUsim_std	TaxBias	#Reads pass	ing filters
99	71	0.8107	90.72	4.87	0.4366	375	
USEARCH ex	xpected errors						
NoSUB	•						
OTUs	Singletons	Coverage	OTUsim	OTUsim_std	TaxBias	#Reads pass	ing filters
134	63	0.9762	90.6	7.01	0.0796	2644	
SUB_375							
OTUs	OTUs_std	Singletons	Singletons_std	Coverage	Coverage_std	OTUsim	OTUsim_std
49.18	4.46	27.99	4.54	0.9254	0.0121	91.77	6.36
Quality-trim	ning						
NoSUB							
OTUs	Singletons	Coverage	OTUsim	OTUsim_std	TaxBias	#Reads pass	ing filters
133	60	0.9765	91.2	6.24	0.1086	2555	
SUB_375							
OTUs	OTUs_std	Singletons	Singletons_std	Coverage	Coverage_std	OTUsim	OTUsim_std
47.13	4.43	27.54	4.79	0.9266	0.0128	91.78	6.22

Poisson bine	omial filtering						
NoSUB							
OTUs	Singletons	Coverage	OTUsim	OTUsim_std	TaxBias	#Reads pass	sing filters
961	494	0.9110	88.02	7.02	0.1948	5549	
SUB_2543							
OTUs	OTUs_std	Singletons	Singletons_std	Coverage	Coverage_std	OTUsim	OTUsim_std
624.59	13.11	353.49	14.49	0.8610	0.0057	88.3	6.97
PyroNoise							
NoSUB							
OTUs	Singletons	Coverage	OTUsim	OTUsim std	TaxBias	#Reads pass	sina filters
2973	2042	0.7140	77.86	9.6	0.2380	7140	J
SUB_2543							
OTUs	OTUs_std	Singletons	Singletons_std	Coverage	Coverage_std	OTUsim	OTUsim_std
1418.56	18.86	1048.85	24.58	0.5876	0.0097	78.18	9.64
USEARCH ex	xpected errors						
NoSUB	Apostou orrore						
OTUs	Singletons	Coverage	OTUsim	OTUsim std	TaxBias	#Reads pass	sing filters
1058	616	0.8584	88.32	6.82	0.2146	4350	ū
SUB_2543							
OTUs	OTUs_std	Singletons	Singletons_std	Coverage	Coverage_std	OTUsim	OTUsim_std
761.12	11.96	467.58	13.72	0.8161	0.0054	88.53	6.76
Quality-trimr	mina						
NoSUB							
OTUs	Singletons	Coverage	OTUsim	OTUsim_std	TaxBias	#Reads pass	sing filters
751	460	0.8191	88.61	6.45	0.2311	2543	-

	omial filtering						
NoSUB							
OTUs	Singletons	Coverage	OTUsim	OTUsim_std	TaxBias	#Reads pass	sing filters
232	103	0.9781	82.04	8.86	0.2910	4707	
SUB_1701							
OTUs	OTUs_std	Singletons	Singletons_std	Coverage	Coverage_std	OTUsim	OTUsim_std
144.5	5.97	69.06	7.14	0.9594	0.0042	82.23	8.76
PyroNoise							
NoSUB							
OTUs	Singletons	Coverage	OTUsim	OTUsim std	TaxBias	#Reads pass	sing filters
426	258	0.8483	92.15	4.55	0.2303	1701	Ū
USEARCH ex	pected errors						
NoSUB							
OTUs	Singletons	Coverage	OTUsim	OTUsim_std	TaxBias	#Reads pass	sing filters
313	184	0.9366	80.31	8.65	0.3267	2900	
SUB_1701							
OTUs	OTUs_std	Singletons	Singletons_std	Coverage	Coverage_std	OTUsim	OTUsim_std
229.79	5.73	133.8	7.11	0.9213	0.0042	80.34	8.62
Quality-trimr	nina						
NoSUB	iiiig						
OTUs	Singletons	Coverage	OTUsim	OTUsim std	TaxBias	#Reads pass	sina filters
199	106	0.9405	82.17	9.05	0.3082	1782	omg mero
SUB 1701	100	0.0400		0.00	0.0002	1.02	
OTUs	OTUs_std	Singletons	Singletons_std	Coverage	Coverage_std	OTUsim	OTUsim std
194.14	1.95	103.52	2.53	0.9391	0.0015	82.2	9.04

Poisson bine	omial filtering						
NoSUB							
OTUs	Singletons	Coverage	OTUsim	OTUsim_std	TaxBias	#Reads pass	ing filters
990	588	0.8528	83.67	5.04	0.0472	3995	
SUB_3712							
OTUs	OTUs_std	Singletons	Singletons_std	Coverage	Coverage_std	OTUsim	OTUsim_std
946.79	6.25	569.97	7.07	0.8465	0.0019	83.7	5.04
PyroNoise							
NoSUB	Cinaloto	Corrores	OTUsim	OTHeim etal	ToyDies	#Doods need	ing filtoro
OTUs	Singletons	Coverage		OTUsim_std	TaxBias	#Reads pass	ing filters
1266	796	0.7912	90.07	5.22	0.0406	3813	
SUB_3712	OTH	0:	Circulaterra etal	0	0	0711-1	OTU-:
OTUs	OTUs_std	Singletons	Singletons_std	Coverage	Coverage_std	OTUsim	OTUsim_std
1244.62	5.07	782.37	5.74	0.7892	0.0015	90.09	5.21
USEARCH ex	xpected errors						
NoSUB							
OTUs	Singletons	Coverage	OTUsim	OTUsim std	TaxBias	#Reads pass	ing filters
1003	597	0.8507	83.67	5.13	0.0495	3999	· ·
SUB_3712							
OTUs	OTUs_std	Singletons	Singletons_std	Coverage	Coverage_std	OTUsim	OTUsim_std
958.18	6.07	578.84	8.25	0.8441	0.0022	83.71	5.12
Ovelity tuins							
Quality-trimr NoSUB	ning						
	Cinalotono	Coverage	OTUsim	OTHeim etcl	TayDiag	#Doods noos	ina filtoro
OTUs 941	Singletons 565	Coverage 0.8478	83.75	OTUsim_std 4.95	TaxBias 0.0494	#Reads pass 3712	ing inters

	omial filtering						
NoSUB							
OTUs	Singletons	Coverage	OTUsim	OTUsim_std	TaxBias	#Reads passi	ing filters
390	169	0.9597	90.07	8.4	0.0567	4191	
SUB_2731							
OTUs	OTUs_std	Singletons	Singletons_std	Coverage	Coverage_std	OTUsim	OTUsim_std
321.81	7	151.1	8.66	0.9447	0.0032	90.5	8.23
DimoNaisa							
PyroNoise NoSUB							
OTUs	Cinalatona	Coverage	OTUsim	OTHeim etcl	TaxBias	#Doodo nooo	ina filtoro
297	Singletons 109	Coverage 0.9752	95.11	OTUsim_std 4.18	0.1083	#Reads passi 4397	ing inters
SUB 2731	109	0.9752	95.11	4.18	0.1083	4397	
OTUs	OTUs std	Singletons	Singletons_std	Coverage	Coverage_std	OTUsim	OTUsim_std
245.22	5.73	102.81	5.54	0.9624	0.0020	95.27	4.15
245.22	3.73	102.01	3.34	0.3024	0.0020	95.21	4.13
USEARCH e	xpected errors						
NoSUB							
OTUs	Singletons	Coverage	OTUsim	OTUsim_std	TaxBias	#Reads passi	ing filters
412	197	0.9489	89.88	8.47	0.0718	3853	
SUB_2731							
OTUs	OTUs_std	Singletons	Singletons_std	Coverage	Coverage_std	OTUsim	OTUsim_std
348.56	6.41	176.9	6.79	0.9352	0.0025	90.26	8.31
Quality-trim	mina						
NoSUB	illing						
OTUs	Singletons	Coverage	OTUsim	OTUsim std	TaxBias	#Reads passi	ina filters
345	160	0.9414	90.33	8.29	0.1050	2731	
343	100	0.9414	3 0.33	0.29	0.1000	2131	

Figure SN5.2. Results on the Illumina environmental communities

- (a, b): Number of singletons (a, bars), total species (a, symbols) and reads (c) retrieved after filtering the raw reads with the different methods and performing chimera removal and clustering with a common pipeline. OTU and singleton numbers were obtained by averaging the results from 100 independent library size standardizations.
- (c): Taxonomic bias caused by the different filtering methods, measured as the Bray-Curtis dissimilarity between the raw and the filtered read communities.
- (d): Average percent OTU similarity to their best hit from the SILVA bacterial 16S reference alignment. This number was obtained by averaging the results from 100 independent library size standardizations.

Table SN5.2. Results on the Illumina environmental communities

This table shows the results obtained after quality filtering the six Illumina environmental communities with different filtering methods. For each method, the "NoSUB" table shows the results obtained directly after filtering, while the "SUB" table shows the results obtained after performing 100 independent random sub-samplings of the filtered reads. For each sample, the number of reads kept by the most stringent method was chosen as the sub-sampling size for the rest of the methods. Abbreviations: std, standard deviation; Coverage, Good's coverage; TaxBias, taxonomic bias (see methods); OTUsim, average OTU similarity to their best hit from the SILVA bacterial 16S reference alignment.

Poisson bino	mial filtering						
NoSUB							
OTUs	Singletons	Coverage	OTUsim	OTUsim_std	TaxBias	#Reads pass	ing filters
78	34	0.9981	96.79	2.66	0.0940	17739	-
SUB 941							
OTUs	OTUs_std	Singletons	Singletons_std	Coverage	Coverage_std	OTUsim	OTUsim_std
19.7	3.03	9.32	2.86	0.9901	0.0030	97.98	2.48
mothur							
NoSUB							
OTUs	Singletons	Coverage	OTUsim	OTUsim_std	TaxBias	#Reads pass	ing filters
80	35	0.9976	96.57	3.33	0.0809	14379	
SUB_941							
OTUs	OTUs_std	Singletons	Singletons_std	Coverage	Coverage_std	OTUsim	OTUsim_std
20.63	2.8	10.1	2.69	0.9893	0.0029	97.94	2.67
QIIME							
NoSUB							
OTUs	Singletons	Coverage	OTUsim	OTUsim_std	TaxBias	#Reads pass	ing filters
238	171	0.9922	93.87	4.8	0.0441	21856	
SUB_941							
OTUs	OTUs_std	Singletons	Singletons_std	Coverage	Coverage_std	OTUsim	OTUsim_std
27.58	4	17.71	3.94	0.9812	0.0042	95.94	4.71
	-						
USEARCH exp	pected errors						
NoSUB	0: 1.1		0711-1	0711-1-1-1-1	T. D'.	" D	
OTUs 97	Singletons	Coverage	OTUsim 96.1	OTUsim_std	TaxBias 0.0952	#Reads pass	ing filters
	47	0.9969	96.1	2.86	0.0952	15247	
SUB_941	OTU- and	Cinalatana	Cimalatana atd			OTUsion	OTUS: std
OTUs	OTUs_std	Singletons	Singletons_std	Coverage	Coverage_std	OTUsim	OTUsim_std
23.55	2.86	12.63	2.81	0.9866	0.0030	97.51	2.64
Quality-trimm	ina						
NoSUB							
OTUs	Singletons	Coverage	OTUsim	OTUsim std	TaxBias	#Reads pass	ing filters
32	12	0.9872	97.66	3.81	0.1385	941	

Poisson bin	omial filtering						
NoSUB							
OTUs	Singletons	Coverage	OTUsim	OTUsim_std	TaxBias	#Reads pass	ing filters
12	8	0.9996	95.26	5.14	0.1859	18905	
SUB_3860							
OTUs	OTUs_std	Singletons	Singletons_std	Coverage	Coverage_std	OTUsim	OTUsim_std
4.5	1.25	2.31	1.22	0.9994	0.0003	97.07	4.19
mothur							
NoSUB							
OTUs	Singletons	Coverage	OTUsim	OTUsim_std	TaxBias	#Reads pass	ing filters
74	56	0.9976	95.55	2.8	0.1241	23628	
SUB_3860							
OTUs	OTUs_std	Singletons	Singletons_std	Coverage	Coverage_std	OTUsim	OTUsim_std
16.41	3.48	12.75	3.54	0.9967	0.0009	96.34	2.78
OIIME							
NoSUB							
OTUs	Singletons	Coverage	OTUsim	OTUsim_std	TaxBias	#Reads pass	ing filters
1512	1449	0.9632	94.47	3.05	0.0027	39428	
SUB_3860							
OTUs	OTUs_std	Singletons	Singletons_std	Coverage	Coverage_std	OTUsim	OTUsim_std
158.38	11.66	153.82	11.47	0.9602	0.0030	94.64	3.06
USEARCH e	xpected errors						
NoSUB							
OTUs	Singletons	Coverage	OTUsim	OTUsim_std	TaxBias	#Reads pass	ing filters
14	10	0.9991	94.94	4.79	0.3496	11344	
SUB_3860							
OTUs	OTUs_std	Singletons	Singletons_std	Coverage	Coverage_std	OTUsim	OTUsim_std
6.69	1.72	4.28	1.73	0.9989	0.0004	95.99	4.47
Quality-trim	ming						
NoSUB							
OTUs	Singletons	Coverage	OTUsim	OTUsim_std	TaxBias	#Reads pass	ing filters
8	6	0.9984	93.74	5.64	0.4755	3860	

	omial filtering						
NoSUB							
OTUs	Singletons	Coverage	OTUsim	OTUsim_std	TaxBias	#Reads pass	ing filters
182	64	0.9970	95.94	3.67	0.0670	21675	
SUB_8450							
OTUs	OTUs_std	Singletons	Singletons_std	Coverage	Coverage_std	OTUsim	OTUsim_std
128.57	5.32	45.93	5.35	0.9946	0.0006	96.34	3.54
mothur							
NoSUB							
OTUs	Singletons	Coverage	OTUsim	OTUsim_std	TaxBias	#Reads pass	ing filters
808	573	0.9742	93.43	4.09	0.0584	22218	
SUB_8450							
OTUs	OTUs_std	Singletons	Singletons_std	Coverage	Coverage_std	OTUsim	OTUsim_std
395.32	13.57	267.85	13.3	0.9683	0.0016	93.98	4.14
QIIME							
NoSUB							
OTUs	Singletons	Coverage	OTUsim	OTUsim_std	TaxBias	#Reads pass	ing filters
1088	938	0.9721	92.19	5.33	0.0228	33646	
SUB_8450							
OTUs	OTUs_std	Singletons	Singletons_std	Coverage	Coverage_std	OTUsim	OTUsim_std
356.29	13.35	266.96	14.14	0.9684	0.0017	93.17	5.3
	xpected errors						
NoSUB							
OTUs	Singletons	Coverage	OTUsim	OTUsim_std	TaxBias	#Reads pass	ing filters
212	93	0.9953	95.69	3.61	0.0611	19811	
SUB_8450							
OTUs	OTUs_std	Singletons	Singletons_std	Coverage	Coverage_std	OTUsim	OTUsim_std
146.58	5.78	59.33	5.88	0.9930	0.0007	96.01	3.62
Quality-trim	ming						
NoSUB							
OTUs	Singletons	Coverage	OTUsim	OTUsim_std	TaxBias	#Reads pass	ing filters
116	36	0.9957	96.45	3.4	0.1144	8450	

	omial filtering						
NoSUB							
OTUs	Singletons	Coverage	OTUsim	OTUsim_std	TaxBias	#Reads pass	ing filters
22	2	0.9975	99.14	1.75	0.0518	799	
SUB_491							
OTUs	OTUs_std	Singletons	Singletons_std	Coverage	Coverage_std	OTUsim	OTUsim_std
21.22	0.73	1.34	0.75	0.9973	0.0015	99.1	1.77
mothur							
NoSUB							
OTUs	Singletons	Coverage	OTUsim	OTUsim_std	TaxBias	#Reads pass	ing filters
39	19	0.9786	96.74	5	0.0294	888	
SUB_491							
OTUs	OTUs_std	Singletons	Singletons_std	Coverage	Coverage_std	OTUsim	OTUsim_std
30.1	2.12	10.43	2.22	0.9788	0.0045	97.46	4.4
QIIME							
NoSUB							
OTUs	Singletons	Coverage	OTUsim	OTUsim_std	TaxBias	#Reads pass	ing filters
94	73	0.9266	92.68	6.69	0.0110	994	_
SUB_491							
OTUs	OTUs_std	Singletons	Singletons_std	Coverage	Coverage_std	OTUsim	OTUsim_std
56.47	4.3	36.12	4.28	0.9264	0.0087	93.97	6.52
USEARCH e	xpected errors						
NoSUB							
OTUs	Singletons	Coverage	OTUsim	OTUsim_std	TaxBias	#Reads pass	ing filters
25	5	0.9938	98.76	1.97	0.0559	808	
SUB_491							
OTUs	OTUs_std	Singletons	Singletons_std	Coverage	Coverage_std	OTUsim	OTUsim_std
22.91	1.1	3.14	1.23	0.9936	0.0025	98.85	1.93
Quality-trim	ming						
NoSUB							
OTUs	Singletons	Coverage	OTUsim	OTUsim_std	TaxBias	#Reads pass	ing filters
21	1	0.9980	99.02	1.77	0.1823	491	

Poisson bind	omial filtering						
NoSUB							
OTUs	Singletons	Coverage	OTUsim	OTUsim_std	TaxBias	#Reads pass	ing filters
222	80	0.9966	93.1	3.46	0.3498	23805	
SUB_15794							
OTUs	OTUs_std	Singletons	Singletons_std	Coverage	Coverage_std	OTUsim	OTUsim_std
192.5	4.73	63.23	4.77	0.9960	0.0003	93.19	3.42
mothur							
NoSUB							
OTUs	Singletons	Coverage	OTUsim	OTUsim_std	TaxBias	#Reads pass	ing filters
614	341	0.9880	94.44	3.27	0.1391	28341	
SUB_15794							
OTUs	OTUs_std	Singletons	Singletons_std	Coverage	Coverage_std	OTUsim	OTUsim_std
428.74	11.02	226.25	11.38	0.9857	0.0007	94.43	3.29
QIIME							
NoSUB							
OTUs	Singletons	Coverage	OTUsim	OTUsim_std	TaxBias	#Reads pass	ing filters
10904	10291	0.7207	89.4	5.36	0.0366	36846	
SUB_15794							
OTUs	OTUs_std	Singletons	Singletons_std	Coverage	Coverage_std	OTUsim	OTUsim_std
4858.7	45.17	4565.39	46.84	0.7109	0.0030	89.52	5.34
	spected errors						
NoSUB							
OTUs	Singletons	Coverage	OTUsim	OTUsim_std	TaxBias	#Reads pass	ing filters
732	522	0.9763	91.19	3.75	0.3619	22067	
SUB_15794			l <u>.</u>	_	_		
OTUs	OTUs_std	Singletons	Singletons_std	Coverage	Coverage_std	OTUsim	OTUsim_std
575.78	10.28	399.21	10.27	0.9747	0.0007	91.38	3.77
Quality-trimr	nina						
NoSUB	iiiig						
OTUs	Singletons	Coverage	OTUsim	OTUsim_std	TaxBias	#Reads pass	ing filters
436	262	0.9834	91.79	3.62	0.3750	15794	

	omial filtering						
NoSUB							
OTUs	Singletons	Coverage	OTUsim	OTUsim_std	TaxBias	#Reads pass	ing filters
1416	921	0.9630	92.9	5.18	0.1015	24917	
SUB_21410							
OTUs	OTUs_std	Singletons	Singletons_std	Coverage	Coverage_std	OTUsim	OTUsim_std
1279.65	11.6	831.23	13.12	0.9612	0.0006	92.97	5.21
mothur							
NoSUB							
OTUs 1466	Singletons 976	Coverage 0.9603	OTUsim 92.78	OTUsim_std 5.42	TaxBias 0.0983	#Reads pass 24593	ing filters
SUB_21410							
OTUs	OTUs_std	Singletons	Singletons_std	Coverage	Coverage_std	OTUsim	OTUsim_std
1332.13	11.63	882.88	11.9	0.9588	0.0006	92.86	5.41
QIIME							
NoSUB	0:1-1		0711-1	0711-1	T	"D!	
OTUs 3161	Singletons 2546	Coverage 0.9121	OTUsim 91.92	OTUsim_std 6.2	TaxBias 0.0963	#Reads pass 28954	ing filters
SUB_21410							
OTUs	OTUs_std	Singletons	Singletons_std	Coverage	Coverage_std	OTUsim	OTUsim_std
2469.47	22.37	1967.14	23.13	0.9081	0.0011	92.04	6.22
USEARCH ex	spected errors						
NoSUB							
OTUs	Singletons	Coverage	OTUsim	OTUsim_std	TaxBias	#Reads pass	ing filters
2669	1986	0.9218	92.73	5.14	0.0880	25385	-
SUB_21410							
OTUs	OTUs_std	Singletons	Singletons_std	Coverage	Coverage_std	OTUsim	OTUsim_std
2339.45	17.61	1743.07	19.69	0.9186	0.0009	92.78	5.16
Quality-trimn	nina						
NoSUB	9						
OTUs	Singletons	Coverage	OTUsim	OTUsim std	TaxBias	#Reads pass	ina filters
1963	1397	0.9348	92.87	5.18	0.1057	21410	

Figure SN5.3. Results on the IonTorrent environmental communities

- (a, b): Number of singletons (a, bars), total species (a, symbols) and reads (c) retrieved after filtering the raw reads with the different methods and performing chimera removal and clustering with a common pipeline. OTU and singleton numbers were obtained by averaging the results from 100 independent library size standardizations.
- (c): Taxonomic bias caused by the different filtering methods, measured as the Bray-Curtis dissimilarity between the raw and the filtered read communities.
- (d): Average percent OTU similarity to their best hit from the SILVA bacterial 16S reference alignment. This number was obtained by averaging the results from 100 independent library size standardizations.

Table SN5.3. Results on the IonTorrent environmental communities

This table shows the results obtained after quality filtering the thirteen IonTorrent environmental communities with different filtering methods. For each method, the "NoSUB" table shows the results obtained directly after filtering, while the "SUB" table shows the results obtained after performing 100 independent random sub-samplings of the filtered reads. The number of reads kept in sample Ion51 by Poisson binomial filtering was used as the subsampling size for all the datasets. Abbreviations: std, standard deviation; Coverage, Good's coverage; TaxBias, taxonomic bias (see methods); OTUsim, average OTU similarity to their best hit from the SILVA bacterial 16S reference alignment.

Poisson bine	omial filtering						
NoSUB							
OTUs 462	Singletons 112	Coverage 0.44	OTUsim 87.81	OTUsim_std 8.3	CompBias 0.1290	#Reads pass 1895	ing filters
SUB_1124							
OTUs 347.49	OTUs_std 7.33	Singletons 95	Singletons_std 5.98	Coverage 0.4097	Coverage_std 0.4098	OTUsim 88.03	OTUsim_std 8.2
PyroNoise							
NoSUB							
OTUs 2481	Singletons 1651	Coverage 0.2608	OTUsim 84.54	OTUsim_std 7.6	CompBias 0.0850	#Reads pass 4108	ing filters
SUB_1124							
OTUs 840.41	OTUs_std 12.46	Singletons 618.05	Singletons_std 14.86	Coverage 0.1741	Coverage_std 0.1744	OTUsim 84.98	OTUsim_std 7.55
USEARCH e	xpected errors						
NoSUB							
OTUs 582	Singletons 184	Coverage 0.4171	OTUsim 87.56	OTUsim_std 8.26	CompBias 0.1056	#Reads pass 2014	ing filters
SUB_1124							
OTUs 409.02	OTUs_std 8.76	Singletons 137.63	Singletons_std 8.42	Coverage 0.3844	Coverage_std 0.3845	OTUsim 87.91	OTUsim_std 8.09

Poisson bin	omial filtering						
NoSUB							
OTUs 275	Singletons 80	Coverage 0.4302	OTUsim 85.39	OTUsim_std 10.75	CompBias 0.2951	#Reads pass 1124	ing filters
PyroNoise							
NoSUB							
OTUs	Singletons	Coverage	OTUsim	OTUsim_std	CompBias	#Reads pass	ing filters
1651	1126	0.2477	80.68	10.35	0.1290	2640	_
SUB_1124							
OTUs	OTUs_std	Singletons	Singletons_std	Coverage	Coverage_std	OTUsim	OTUsim_std
807.82	11.55	607.53	14.9	0.1906	0.2506	81.11	10.37
USEARCH e	xpected errors						
NoSUB							
OTUs	Singletons	Coverage	OTUsim	OTUsim_std	CompBias	#Reads pass	ing filters
373	129	0.4050	84.5	10.73	0.2726	1232	
SUB_1124							
OTUs	OTUs_std	Singletons	Singletons_std	Coverage	Coverage_std	OTUsim	OTUsim_std
351.16	4.15	128.87	4.84	0.4013	0.4013	84.55	10.7

Poisson bin	omial filtering						
NoSUB							
OTUs 480	Singletons 115	Coverage 0.4158	OTUsim 85.44	OTUsim_std 10.07	CompBias 0.1670	#Reads pass 1615	ing filters
SUB_1124							
OTUs	OTUs_std	Singletons	Singletons_std	Coverage	Coverage_std	OTUsim	OTUsim_std
389.31	7.43	101.75	6.79	0.3949	0.3949	85.66	9.96
PyroNoise							
NoSUB							
OTUs 2208	Singletons 1429	Coverage 0.2496	OTUsim 82.94	OTUsim_std 8.92	CompBias 0.1091	#Reads pass 3532	ing filters
SUB_1124							
OTUs	OTUs_std	Singletons	Singletons_std	Coverage	Coverage_std	OTUsim	OTUsim_std
840.49	11.44	599.03	14.22	0.1742	0.1745	83.44	8.91
USEARCH e	xpected errors						
NoSUB							
OTUs 604	Singletons 180	Coverage 0.3905	OTUsim 85.13	OTUsim_std 10.27	CompBias 0.1605	#Reads pass 1712	ing filters
SUB_1124							
OTUs	OTUs_std	Singletons	Singletons_std	Coverage	Coverage_std	OTUsim	OTUsim_std
461.75	7.86	150.49	8.61	0.3644	0.3645	85.4	10.13

Poisson bine	omial filtering						
NoSUB							
OTUs 452	Singletons 98	Coverage 0.4335	OTUsim 87.45	OTUsim_std 8.88	CompBias 0.1298	#Reads pass 1783	ing filters
SUB_1124							
OTUs 353.35	OTUs_std 7.37	Singletons 84.49	Singletons_std 6.15	Coverage 0.4131	Coverage_std 0.4131	OTUsim 87.74	OTUsim_std 8.68
PyroNoise							
NoSUB							
OTUs 2538	Singletons 1609	Coverage 0.2590	OTUsim 84.58	OTUsim_std 7.52	CompBias 0.1069	#Reads pass 4108	ing filters
SUB_1124							
OTUs 869.3	OTUs_std 11.53	Singletons 605.04	Singletons_std 14.33	Coverage 0.1685	Coverage_std 0.1687	OTUsim 85.09	OTUsim_std 7.4
USEARCH e	xpected errors						
NoSUB							
OTUs 576	Singletons 164	Coverage 0.4084	OTUsim 86.9	OTUsim_std 9.12	CompBias 0.1211	#Reads pass 1888	ing filters
SUB_1124							
OTUs 421.76	OTUs_std 9.22	Singletons 127.94	Singletons_std 7.87	Coverage 0.3838	Coverage_std 0.3838	OTUsim 87.35	OTUsim_std 8.86

Poisson bind	omial filtering						
NoSUB							
OTUs 511	Singletons 147	Coverage 0.3932	OTUsim 85.7	OTUsim_std 10.1	CompBias 0.1804	#Reads pass 1460	ing filters
SUB_1124							
OTUs 435.01	OTUs_std 6.69	Singletons 128.29	Singletons_std 6.44	Coverage 0.3776	Coverage_std 0.3776	OTUsim 85.88	OTUsim_std 10.06
PyroNoise							
NoSUB							
OTUs 2457	Singletons 1618	Coverage 0.2246	OTUsim 83.41	OTUsim_std 8.51	CompBias 0.1171	#Reads pass 3625	ing filters
SUB_1124							
OTUs 897.09	OTUs_std 11.7	Singletons 656.78	Singletons_std 15.23	Coverage 0.1450	Coverage_std 0.1453	OTUsim 83.81	OTUsim_std 8.64
USEARCH ex	xpected errors						
NoSUB	•						
OTUs 689	Singletons 223	Coverage 0.3605	OTUsim 85.58	OTUsim_std 10.07	CompBias 0.1753	#Reads pass 1620	ing filters
SUB_1124							
OTUs 537.47	OTUs_std 8.24	Singletons 186.19	Singletons_std 7.76	Coverage 0.3347	Coverage_std 0.3348	OTUsim 85.78	OTUsim_std 10.01

	omial filtering						
NoSUB							
OTUs	Singletons	Coverage	OTUsim	OTUsim_std	CompBias	#Reads pass	ing filters
488	167	0.4049	85.79	10.5	0.1639	1556	
SUB_1124							
OTUs	OTUs_std	Singletons	Singletons_std	Coverage	Coverage_std	OTUsim	OTUsim_std
401.22	7.45	138.8	6.1	0.3897	0.3897	86.08	10.44
PyroNoise							
NoSUB							
OTUs	Singletons	Coverage	OTUsim	OTUsim_std	CompBias	#Reads pass	ing filters
2339	1498	0.2784	84.51	8.79	0.1037	4105	
SUB_1124							
OTUs	OTUs_std	Singletons	Singletons_std	Coverage	Coverage_std	OTUsim	OTUsim_std
806.76	10.54	577.76	14.15	0.1943	0.1945	85.11	8.88
LICEADOLL 6	rnootod orroro						
NoSUB	xpected errors						
OTUs	Cinalatona	Coverage	OTUsim	OTUsim std	Complies	#Doodo noo	ina filtoro
	Singletons	Coverage			CompBias	#Reads pass	ing inters
664	274	0.3721	85.3	10.49	0.1500	1743	
SUB_1124		<u> </u>	<u>.</u>	_			
OTUs	OTUs_std	Singletons	Singletons_std	Coverage	Coverage_std	OTUsim	OTUsim_std
492.7	9.27	209.19	9.24	0.3491	0.3492	85.66	10.46

Poisson bind	omial filtering						
NoSUB							
OTUs 542	Singletons 133	Coverage 0.3689	OTUsim 85.32	OTUsim_std 10.77	CompBias 0.1924	#Reads pass 1339	ing filters
SUB_1124							
OTUs 482.73	OTUs_std 6.14	Singletons 133.27	Singletons_std 5.17	Coverage 0.3557	Coverage_std 0.3557	OTUsim 85.47	OTUsim_std 10.7
D							
PyroNoise NoSUB							
OTUs 2405	Singletons 1555	Coverage 0.2196	OTUsim 83.94	OTUsim_std 8.59	CompBias 0.1222	#Reads pass	ing filters
SUB 1124	1000	0.2100	00.54	0.00	0.1222	0-131	
OTUs 907.44	OTUs_std 10.66	Singletons 655.57	Singletons_std 15.26	Coverage 0.1396	Coverage_std 0.1400	OTUsim 84.53	OTUsim_std 8.53
USEARCH e	xpected errors						
NoSUB	Apostou orroro						
OTUs 744	Singletons 228	Coverage 0.3243	OTUsim 85.16	OTUsim_std 10.54	CompBias 0.1651	#Reads pass 1488	ing filters
SUB_1124							
OTUs 606.01	OTUs_std 7.98	Singletons 212.37	Singletons_std 8.51	Coverage 0.3020	Coverage_std 0.3021	OTUsim 85.4	OTUsim_std 10.45

Poisson bine	omial filtering						
NoSUB							
OTUs 652	Singletons 245	Coverage 0.3514	OTUsim 86.62	OTUsim_std 9.58	CompBias 0.1458	#Reads pass 1430	ing filters
SUB_1124							
OTUs 557.63	OTUs_std 7.39	Singletons 220.12	Singletons_std 6.87	Coverage 0.3330	Coverage_std 0.3331	OTUsim 86.86	OTUsim_std 9.48
PyroNoise							
NoSUB							
OTUs 2436	Singletons 1646	Coverage 0.2323	OTUsim 84.79	OTUsim_std 8.13	CompBias 0.0796	#Reads pass 3672	ing filters
SUB_1124							
OTUs 889.97	OTUs_std 10.26	Singletons 667.26	Singletons_std 14.59	Coverage 0.1485	Coverage_std 0.1488	OTUsim 85.32	OTUsim_std 8.19
USEARCH e	xpected errors						
NoSUB							
OTUs 897	Singletons 379	Coverage 0.3240	OTUsim 86.47	OTUsim_std 9.31	CompBias 0.1581	#Reads pass 1790	ing filters
SUB_1124							
OTUs 642.5	OTUs_std 10.33	Singletons 288.57	Singletons_std 11.29	Coverage 0.2908	Coverage_std 0.2909	OTUsim 86.83	OTUsim_std 9.21

Poisson bin	omial filtering						
NoSUB							
OTUs	Singletons	Coverage	OTUsim	OTUsim_std	CompBias	#Reads pass	ing filters
681	217	0.3744	84.84	10.37	0.1503	1740	
SUB_1124							
OTUs	OTUs_std	Singletons	Singletons_std	Coverage	Coverage_std	OTUsim	OTUsim_std
511.78	8.77	163.23	7.96	0.3440	0.3441	85.13	10.33
PyroNoise							
NoSUB							
OTUs	Singletons	Coverage	OTUsim	OTUsim_std	CompBias	#Reads pass	ing filters
2658	1744	0.2157	83.35	9.05	0.0902	3910	
SUB_1124							
OTUs	OTUs_std	Singletons	Singletons_std	Coverage	Coverage_std	OTUsim	OTUsim_std
897.24	12.08	644.82	15.35	0.1413	0.1417	83.89	9.03
I ISEADOU A	xpected errors						
NoSUB	xpected errors						
OTUs	Singletons	Coverage	OTUsim	OTUsim std	CompBias	#Reads pass	ina filtoro
880	313	0.3447	84.54	10.28	0.1447	1899	ing inters
SUB 1124	313	0.3447	04.54	10.20	0.1447	1099	
OTUs	OTUs std	Singletons	Singletons_std	Coverage	Coverage_std	OTUsim	OTUsim std
612.22	10.41	232.17	9.63	0.3007	0.3008	84.83	10.21
612.22	10.41	232.17	9.63	0.3007	0.3008	84.83	10.21

Poisson bin	omial filtering						
NoSUB							
OTUs 714	Singletons 236	Coverage 0.3415	OTUsim 86.5	OTUsim_std 9.44	CompBias 0.1436	#Reads pass 1461	ing filters
SUB_1124							
OTUs 598.79	OTUs_std 8.32	Singletons 209.6	Singletons_std 7.97	Coverage 0.3201	Coverage_std 0.3202	OTUsim 86.71	OTUsim_std 9.4
PyroNoise							
NoSUB							
OTUs 2692	Singletons 1760	Coverage 0.2086	OTUsim 84.92	OTUsim_std 8.48	CompBias 0.0785	#Reads pass 3804	ing filters
SUB_1124							
OTUs	OTUs_std	Singletons	Singletons_std	Coverage	Coverage_std	OTUsim	OTUsim_std
935.42	11.9	691.38	15.96	0.1250	0.1254	85.5	8.38
USEARCH e	xpected errors						
NoSUB							
OTUs 936	Singletons 338	Coverage 0.3249	OTUsim 86.26	OTUsim_std 9.42	CompBias 0.1247	#Reads pass 1762	ing filters
SUB_1124							
OTUs	OTUs_std	Singletons	Singletons_std	Coverage	Coverage_std	OTUsim	OTUsim_std
685.38	9.27	272.34	8.96	0.2791	0.2792	86.64	9.31

Poisson bin	omial filtering						
NoSUB							
OTUs	Singletons	Coverage	OTUsim	OTUsim_std	CompBias	#Reads pass	ing filters
531	107	0.4090	85.97	9.89	0.1232	1637	_
SUB_1124							
OTUs	OTUs_std	Singletons	Singletons_std	Coverage	Coverage_std	OTUsim	OTUsim_std
426.2	7.34	92.3	6.07	0.3870	0.3870	86.21	9.77
PyroNoise							
NoSUB							
OTUs	Singletons	Coverage	OTUsim	OTUsim_std	CompBias	#Reads pass	ing filters
2448	1499	0.2423	83.7	8.29	0.0926	3793	
SUB_1124							
OTUs	OTUs_std	Singletons	Singletons_std	Coverage	Coverage_std	OTUsim	OTUsim_std
878.6	10.9	591.73	15.99	0.1601	0.1604	84.21	8.22
USEARCH e	xpected errors						
NoSUB							
OTUs	Singletons	Coverage	OTUsim	OTUsim_std	CompBias	#Reads pass	ing filters
679	165	0.3765	85.9	9.83	0.1126	1697	
SUB_1124							
OTUs	OTUs_std	Singletons	Singletons_std	Coverage	Coverage_std	OTUsim	OTUsim_std
522.18	8.14	138.67	6.45	0.3491	0.3492	86.17	9.74

Poisson bin	omial filtering						
NoSUB							
OTUs	Singletons	Coverage	OTUsim	OTUsim_std	CompBias	#Reads pass	ing filters
557	155	0.4028	86.82	9.6	0.1143	1728	•
SUB_1124							
OTUs	OTUs_std	Singletons	Singletons_std	Coverage	Coverage_std	OTUsim	OTUsim_st
424.47	8.2	125.41	7.18	0.3768	0.3769	87.05	9.5
PyroNoise							
NoSUB							
OTUs	Singletons	Coverage	OTUsim	OTUsim_std	CompBias	#Reads pass	ing filters
2383	1603	0.2305	84.11	8.21	0.0817	3668	
SUB_1124							
OTUs	OTUs_std	Singletons	Singletons_std	Coverage	Coverage_std	OTUsim	OTUsim_st
853.33	10.69	631.01	14.98	0.1609	0.1612	84.6	8.13
USEARCH e	xpected errors						
NoSUB							
OTUs	Singletons	Coverage	OTUsim	OTUsim_std	CompBias	#Reads pass	ing filters
717	241	0.3686	86.32	9.6	0.1284	1811	
SUB_1124							
OTUs	OTUs_std	Singletons	Singletons_std	Coverage	Coverage_std	OTUsim	OTUsim_st
517.68	9.58	184.03	7.33	0.3380	0.3381	86.66	9.44

Poisson bine	omial filtering						
NoSUB							
OTUs 536	Singletons 214	Coverage 0.3891	OTUsim 89.34	OTUsim_std 7.45	CompBias 0.1557	#Reads pass 1501	ing filters
SUB_1124							
OTUs 445.11	OTUs_std 7.14	Singletons 190.05	Singletons_std 7.6	Coverage 0.3714	Coverage_std 0.3714	OTUsim 89.45	OTUsim_std 7.47
PyroNoise							
NoSUB							
OTUs	Singletons	Coverage	OTUsim	OTUsim_std	CompBias	#Reads pass	ing filters
2447	1648	0.2847	87.14	6.9	0.0571	4353	•
SUB_1124							
OTUs 804.79	OTUs_std 12.08	Singletons 608.33	Singletons_std 14.64	Coverage 0.1924	Coverage_std 0.1926	OTUsim 87.74	OTUsim_std 6.83
USEARCH e	xpected errors						
NoSUB							
OTUs 698	Singletons 294	Coverage 0.3728	OTUsim 89.12	OTUsim_std 7.44	CompBias 0.1551	#Reads pass 1753	ing filters
SUB_1124							
OTUs	OTUs_std	Singletons	Singletons_std	Coverage	Coverage_std	OTUsim	OTUsim_std
519.08	7.58	237.14	8.44	0.3434	0.3434	89.34	7.47

Supplementary Note 6. Software commands, parameters and computational resources

SN6.1 Primer removal from mock and environmental datasets

Some of the environmental datasets analyzed in this study had missing information regarding the PCR primers that were used for 16S amplification. In order to account for this issue, putative primers were predicted for all the environmental datasets using the *tagcleaner.pl* script (Schmieder *et al.*, 2010). In all the 454 environmental datasets, a putative primer was identified with more than 99% certainty. However, *tagcleaner.pl* failed to clearly identify primer sequences in the environmental Illumina datasets and in the mock lonTorrent datasets. While this probably meant that the authors removed primer sequences before uploading their libraries to the NCBI Sequence Read Archive, we trimmed 20 nucleotides from the 5' end of both the forward and reverse reads of those datasets in order to minimize the risk of including primer sequences into the analysis. As for the Illumina mock community datasets, primers and adaptors had been removed from the libraries beforehand. Therefore, no primer removal step was introduced in the Illumina mock community processing pipelines.

SN6.2 Commands used for filtering the 454 datasets

SN 6.2.1 Commands for Pyro-Noise

```
mothur
sffinfo(sff=reads.sff)
trim.flows(flow=reads.flow, oligos=primers.txt, pdiffs=2)
shhh.flows(file=reads.flow.files)
trim.seqs(fasta=reads.trim.shhh.fasta, name=reads.trim.shhh.names,
oligos=primers.txt, pdiffs=2, bdiffs=1, maxhomop=8, minlength=250,
keepfirst=250, flip=T, processors=2)
quit()
```

SN 6.2.2 Commands for Quality-trimming

```
mothur
trim.seqs(fasta=reads.fasta, qfile=reads.qual, oligos=primers.txt,
pdiffs=2, bdiffs=1, maxhomop=8)
make.fastq(fasta=reads.trim.fasta, qfile=reads.trim.qual)
quit()
usearch -fastq_filter reads.trim.fastq -fastaout filtered.fasta
-fastq truncqual 15 -fastq trunclen 250
```

SN 6.2.3 Commands for USEARCH expected errors

```
mothur
trim.seqs(fasta=reads.fasta, qfile=reads.qual, oligos=primers.txt,
pdiffs=2, bdiffs=1, maxhomop=8)
make.fastq(fasta=reads.trim.fasta, qfile=reads.trim.qual)
quit()
usearch -fastq_filter reads.trim.fastq -fastaout filtered.fasta
-fastq maxeee 0.5 -fastq trunclen 250
```

SN 6.2.4 Commands for Poisson binomial filtering

```
mothur
trim.seqs(fasta=reads.fasta, qfile=reads.qual, oligos=primers.txt,
pdiffs=2, bdiffs=1, maxhomop=8)
quit()

moira.py --forward_fasta reads.trim.fasta --forward_qual
reads.trim.qual --truncate 250 --uncert 0.01 --alpha 0.005
```

SN6.3 Commands used for filtering the Illumina datasets

SN 6.3.1 Length truncation of contigs generated from Illumina paired-end reads

While the sequences used in this study were normally truncated to 250 nucleotides, some environmental communities were sequenced with pairs of primers that generated smaller contigs. In those cases, contigs were truncated to a smaller length. This modified the values of the following parameters:

- mothur: minlength, keepfirst
- Quality-trimming and USEARCH expected errors: fastg_trunclen
- Poisson binomial filtering: truncate

A file containing the truncation lengths used for those datasets is provided as a **Supplementary resource**.

SN 6.3.2 Commands for mothur

NOTE: mothur developers recommended a value of 275 for the maxlength parameter when analyzing the V4 region of the 16S rRNA gene. Some of the environmental communities were sequenced using different primers. For them, a custom maxlength value was selected, based on the contig length distribution, in order to discard the clearly missasembled contigs. A file containing the maxlength values used in these datasets is provided as a **Supplementary resource**.

```
mothur
make.contigs(ffasta=reads_1.fasta, rfasta=reads_2.fasta,
fqfile=reads_1.qual, rqfile=reads_2.qual)
trim.seqs(fasta=reads.trim.contigs.fasta, maxambig=0,
maxlength=275, minlength=250, keepfirst=250)
quit()
```

SN 6.3.3 Commands for QIIME

```
split_libraries_fastq.py -i reads.fastq -m primer_map.txt -o
filtered --barcode_type=not-barcoded --sample_ids=sample_name -r 3
-p 0.75 -q 3 -n 0 -phred_offset=33
```

SN 6.3.4 Commands for Quality-trimming

```
usearch -fastq_mergepairs reads_1.fastq -reverse reads_2.fastq
-fastq_truncqual 2 -fastqout merged.fastq
usearch -fastq_filter merged.fastq -fastaout filtered.fasta
-fastq truncqual 15 -fastq trunclen 250
```

SN 6.3.5 Commands for USEARCH expected errors

```
usearch -fastq_mergepairs reads_1.fastq -reverse reads_2.fastq
-fastq_truncqual 2 -fastqout merged.fastq
usearch -fastq_filter merged.fastq -fastaout filtered.fasta
-fastq_maxee 0.5 -fastq_trunclen 250
```

SN 6.3.6 Commands for Poisson binomial filtering

```
moira.py --paired --forward_fasta reads_1.fasta --forward_qual
reads_1.qual --reverse_fasta reads_2.fasta --reverse_qual
reads 2.qual --truncate 250 --uncert 0.01 --alpha 0.005
```

SN6.4 Commands used for filtering the IonTorrent datasets

SN 6.4.1 Commands for Pyro-Noise

```
mothur
sffinfo(sff=reads.sff)
trim.flows(flow=reads.flow, oligos=primers.txt, pdiffs=2)
shhh.flows(file=reads.flow.files, order=I)
trim.seqs(fasta=reads.trim.shhh.fasta, name=reads.trim.shhh.names,
oligos=primers.txt, pdiffs=1, bdiffs=1, maxhomop=8, maxambigs=0,
minlength=200, keepfirst=200, flip=T, processors=2)
quit()
```

SN 6.4.2 Commands for USEARCH expected errors

```
mothur
trim.seqs(fasta=reads.fasta, qfile=reads.qual, oligos=primers.txt,
pdiffs=1, bdiffs=1, maxhomop=8, maxambigs=0)
make.fastq(fasta=reads.trim.fasta, qfile=reads.trim.qual)
quit()
usearch -fastq_filter reads.trim.fastq -fastaout filtered.fasta
-fastq maxeee 0.5 -fastq trunclen 200
```

SN 6.4.3 Commands for Poisson binomial filtering

```
mothur
trim.seqs(fasta=reads.fasta, qfile=reads.qual, oligos=primers.txt,
pdiffs=1, bdiffs=1, maxhomop=8, maxambigs=0)
quit()

moira.py --forward_fasta reads.trim.fasta --forward_qual
reads.trim.qual --truncate 200 --uncert 0.01 --alpha 0.005
```

SN6.5 Common downstream processing pipeline

In order to evaluate the different methods on equal grounds, filtered reads were processed with a common downstream pipeline that included chimera-filtering with UCHIME (main text ref. 15), sample size standardization and OTU clustering. Reference databases were obtained from the mothur webpage. For each sample, the number of reads kept by the most stringent method was chosen as the sub-sampling size for the rest of the methods. Steps from 11 to 17 (for mock community datasets) or from 11 to 16 (for environmental community datasets) were repeated 100 times, and the results were retrieved and averaged with an in-house script. The script *moira.py* and mothur's command *shhh.flows* generated a mothur name file in addition to the filtered fasta file. For those two methods, step 1 was omitted. For the lonTorrent environmental datasets, step 3 parameters was substituted by "screen.seqs(fasta=filtered.unique.align, name=filtered.names, start, 1044, optimize=end)".

```
1)unique.seqs(fasta=filtered.fasta)
2)align.seqs(fasta=filtered.unique.fasta,
reference=silva.bacteria.fasta)
3)screen.seqs(fasta=filtered.unique.align, name=filtered.names,
optimize=start-end, criteria=95)
4) filter.seqs(fasta=filtered.unique.good.align, vertical=T,
trump=.)
5)unique.seqs(fasta=filtered.unique.good.filter.fasta,
name=filtered.good.names)
6)pre.cluster(fasta=filtered.unique.good.filter.unique.fasta,
name=filtered.unique.good.filter.names, diffs=2)
7) chimera.uchime(fasta=filtered.unique.good.filter.unique.preclust
er.fasta,
name=filtered.unique.good.filter.unique.precluster.names)
8) remove.seqs(fasta=filtered.unique.good.filter.unique.precluster.
fasta, name=filtered.unique.good.filter.unique.precluster.names)
9)classify.seqs(fasta=filtered.unique.good.filter.unique.precluste
r.pick.fasta,
name=filtered.unique.good.filter.unique.precluster.pick.names,
template=trainset9 032012.pds.fasta,
taxonomy=trainset9 032012.pds.tax, cutoff=40)
10) remove.lineage(fasta=filtered.unique.good.filter.unique.preclus
```

```
ter.pick.fasta,
name=filtered.unique.good.filter.unique.precluster.pick.names,
taxonomy=filtered.unique.good.filter.unique.precluster.pick.pds.wa
ng.taxonomy, taxon=Mitochondria-Chloroplast-Archaea-Eukaryota-
unknown)
11) sub.sample(fasta=filtered.unique.good.filter.unique.precluster.
pick.pick.fasta,
name=filtered.unique.good.filter.unique.precluster.pick.pick.names
, size=subsampling size)
12)dist.seqs(fasta=filtered.unique.good.filter.unique.precluster.p
ick.pick.subsample.fasta, cutoff=0.15)
13)cluster(column=filtered.unique.good.filter.unique.precluster.pi
ck.pick.subsample.dist,
name=filtered.unique.good.filter.unique.precluster.pick.pick.subsa
mple.names)
14) get.oturep(fasta=filtered.unique.good.filter.unique.precluster.
pick.pick.subsample.fasta,
name=filtered.unique.good.filter.unique.precluster.pick.pick.subsa
mple.names,
list=filtered.unique.good.filter.unique.precluster.pick.pick.subsa
mple.an.list,
column=filtered.unique.good.filter.unique.precluster.pick.pick.sub
sample.dist, label=0.03)
16)align.seqs(fasta=filtered.unique.good.filter.unique.precluster.
pick.pick.subsample.an.0.03.rep.fasta,
reference=silva.bacteria.fasta)
17) align.seqs(fasta=filtered.unique.good.filter.unique.precluster.
pick.pick.subsample.an.0.03.rep.fasta, reference=HMP mock.fasta)
```

SN6.6 Computational resources

All analyses were conducted on the Data Intensive Academic Grid (DIAG) computing infrastructure (http://diagcomputing.org/), which is funded by the National Science Foundation's MRI-R2 project #DBI-0959894.

Supplementary references

- Bokulich N, Subramanian S, Faith JJ, Gevers D, Gordon, JI, Knight R. *et al.* (2013). Quality-filtering vastly improves diversity estimates from Illumina amplicon sequencing. *Nat. Methods* **10**: 57-59.
- Brockman W, Alvarez P, Young S, Garber M, Giannoukos G, Lee WL, Russ C, Lander ES, Nusbaum C, Jaffe DB (2008). Quality scores and SNP detection in sequencing-by-synthesis systems. *Genome Res*, **18**: 763-770.
- Butler K & Stephens M (1993) The distribution of a sum of binomial random variables. *Technical Report* **467**, Stanford University, Stanford, California, USA.
- Gaspar J & Thomas W. (2013). Assessing the consequences of denoising marker-based metagenomic data. *PLOS One* **8**: e60458.
- Haas BJ, Gevers D, Earl AM, Feldgarden M, Ward DV, Giannoukos G. (2011). Chimeric 16S rRNA sequence formation and detection in Sanger and 454-pyrosequenced PCR amplicons. *Genome Res.* **21**: 494-504.
- Huber J, Morrison HG, Huse SM, Neal PR, Sogin ML, Mark Welch DB (2009) Effect of PCR amplicon size on assessments of clone library microbial diversity and community structure. *Environ. Microbiol.* **11**: 1292–1302.
- Klindworth A, Pruesse E, Schweer T, Peplies J, Quast C, Horn M, Glöckner FO (2013). Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next generation sequencing-based diversity studies. *Nucleic Acids Res.* **41**: e1.
- Kumar P, Brooker M, Dowd S & Camerlengo T (2011) Target region selection is a critical determinant of community fingerprints generated by 16S pyrosequencing. *PLOS One* **6**: e20956.
- Edgar R, Haas B, Clemente J, Quince C & Knight R. (2011). UCHIME improves sensitivity and speed of chimera detection. *Bioinformatics* **27**: 2194-2200.
- Edgar, R. UPARSE: highly accurate OTU sequences from microbial amplicon reads. (2013) *Nat. Methods.* **10**: 996–998.
- Polz M & Cavanaugh C. (1998). Bias in template-to-product ratios in multitemplate PCR. Appl. Environ. Microbiol. 64, 3724-3730.

- Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P *et al.* (2013). The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. *Nucl. Acids Res.* **41**: 590-596.
- Quince C, Lanzén A, Curtis TP, Davenport RJ, Hall N, Head IM *et al.* (2009). Accurate determination of microbial diversity from 454 pyrosequencing data. *Nat. Methods* **6**: 639-641.
- Ross M, Russ C, Costello M, Hollinger A, Lennon NJ, Hegarty R, Nusbaum C, Jaffe DB (2013). Characterizing and measuring bias in sequence data. *Genome Biol.* **29**: R51.
- Salipante SJ, Kawashima T, Rosenthal C, Hoogestraat DR, Cummings LA, Sengupta DJ, Harkins TT, Cookson BT, Hoffman NG (2014). Performance Comparison of Illumina and Ion Torrent Next-Generation Sequencing Platforms for 16S rRNA-Based Bacterial Community Profiling. *Appl Environ Microbiol* **80**, 7583-7591.
- Schloss P, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB *et al.* (2009). Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. *Appl. Environ. Microbiol.* **75**: 7537-7521.
- Schmieder R, Lim YW, Rohwer F, Edwards R (2010). TagCleaner: Identification and removal of tag sequences from genomic and metagenomic datasets. *BMC Bioinformatics* **11**: 341.