CASE PROJECT - FINAL ASSIGMENT

LETTER A

<u>Consider a linear model where the sale price of a house is the dependent variable and the explanatory variables are the other variables given above. Perform a test for linearity. What do you conclude based on the test result?</u>

Regressing using the dataset provided, we obtain:

. regress sell lot bdms fb sty drv rec ffin ghw ca gar reg

Source	SS	df	MS		Number of obs F(11, 534)	
Model Residual	2.6158e+11 1.2703e+11		534 237874666		Prob > F R-squared Adj R-squared	= 0.0000 = 0.6731
Total	3.8860e+11	545 713	713032635		Root MSE	= 15423
sell	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
lot	3.546303	.3503	10.12	0.000	2.858168	4.234438
bdms	1832.003	1047	1.75	0.081	-224.7409	3888.748
fb	14335.56	1489.921	9.62	0.000	11408.73	17262.38
sty	6556.946	925.2899	7.09	0.000	4739.291	8374.6
drv	6687.779	2045.246	3.27	0.001	2670.065	10705.49
rec	4511.284	1899.958	2.37	0.018	778.9759	8243.592
ffin	5452.386	1588.024	3.43	0.001	2332.845	8571.926
ghw	12831.41	3217.597	3.99	0.000	6510.706	19152.11
ca	12632.89	1555.021	8.12	0.000	9578.182	15687.6
gar	4244.829	840.5442	5.05	0.000	2593.65	5896.008
reg	9369.513	1669.091	5.61	0.000	6090.724	12648.3
_cons	-4038.35	3409.471	-1.18	0.237	-10735.97	2659.271

At the 5% level significance, we can see that the number of bedrooms and the inclusion of a recreational room are not statistically significant in defining the sale price of a house.

Plotting the residuals of such regression, we obtain:

Also, performing a Jarque-Bera test with the residuals, we obtain:

sktest residuals

Skewness/Kurtosis tests for Normality

	Variable	Obs	Pr(Skewness)	Pr(Kurtosis)		Prob>chi2
_	residuals	546	0.0000	0.0000	72.09	0.0000

We therefore reject the null hypothesis of normality of the residuals.

LETTER B

Now consider a linear model where the log of the sale price of the house is the dependent variable and the explanatory variables are as before. Perform again the test for linearity. What do you conclude now?

Performing the regression stated above, we obtain:

. regress logsell lot bdms fb sty drv rec ffin ghw ca gar reg

Source	SS	df	MS		Number of obs F(11, 534)	
Model Residual	51.0238728 24.3892974		63853389)456728 4 2		Prob > F R-squared Adj R-squared	= 0.0000 = 0.6766
Total	75.4131702	545 .1	.38372789		Root MSE	= .21371
logsell	Coef.	Std. Err	:. t	P> t	[95% Conf.	Interval]
lot	.0000506	4.85e-06	10.42	0.000	.000041	.0000601
bdms	.0340205	.0145078	2.34	0.019	.0055211	.0625199
fb	.1677687	.0206452	8.13	0.000	.127213	.2083244
sty	.0922745	.0128213	7.20	0.000	.0670881	.1174609
drv	.1306512	.02834	4.61	0.000	.0749796	.1863229
rec	.0735165	.0263268	2.79	0.005	.0217996	.1252334
ffin	.0993997	.0220045	4.52	0.000	.0561737	.1426257
ghw	.1783544	.0445848	4.00	0.000	.0907714	.2659375
ca	.1780197	.0215472	8.26	0.000	.135692	.2203474
gar	.0507568	.011647	4.36	0.000	.0278772	.0736365
reg	.1271134	.0231278	5.50	0.000	.0816807	.172546
_cons	10.02556	.0472435	212.21	0.000	9.93275	10.11836

The residuals of such regression in a histogram are as follows:

Performing the Jarque-Bera test, we obtain:

. sktest residualslog

Skewness/Kurtosis tests for Normality

Variable	Obs	Pr(Skewness)	Pr(Kurtosis)		joint ——— Prob>chi2
residualslog	546	0.0567	0.0458	7.41	0.0246

We still reject the null hypothesis of normality.

LETTER C

Regressing the linear model including both the variable lot size and log(lot size), we obtain the following results:

. regress logsell loglot lot bdms fb sty drv rec ffin ghw ca gar reg

Source	SS	df	MS		Number of obs	= 546
					F(12, 533)	= 97.51
Model	51.8121891	12 4.31	768243		Prob > F	= 0.0000
Residual	23.6009811	533 .044	279514		R-squared	= 0.6870
					Adj R-squared	= 0.6800
Total	75.4131702	545 .138	372789		Root MSE	= .21043
logsell	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
loglot	.3826883	.0906977	4.22	0.000	.2045195	.5608571
lot	0000149	.0000162	-0.92	0.359	0000468	.000017
bdms	.0348924	.0142863	2.44	0.015	.0068281	.0629568
fb	.1659386	.0203324	8.16	0.000	.125997	.2058801
sty	.091213	.0126267	7.22	0.000	.0664087	.1160173
drv	.1068137	.0284706	3.75	0.000	.0508854	.162742
rec	.0546692	.0263042	2.08	0.038	.0029966	.1063418
ffin	.1052473	.0217106	4.85	0.000	.0625985	.1478961
ghw	.1790865	.0438998	4.08	0.000	.0928487	.2653243
ca	.1643383	.0214624	7.66	0.000	.1221771	.2064994
gar	.0482648	.0114832	4.20	0.000	.0257069	.0708226
reg	.1343625	.022837	5.88	0.000	.0895008	.1792241
_cons	7.150477	.682984	10.47	0.000	5.808806	8.492148

We can observe that we have two different p-values for both log of the lot size and the lot size itself:

$$p \ value \ (log \ of \ lot \ size) = 0.000$$

$$p \ value \ (lot \ size) = 0.359$$

Therefore, it is best to use the log of lot size instead of the untransformed variable.

LETTER D

To test whether the variables have significant effects or not, we defined the interaction variable as the variable log(lotsize) times the other explanatory variables we would like to test. Therefore, the result was as it follows:

Source	SS	df	MS		Number of obs		546
					F(21, 524)		56.89
Model	52.4204317		2.49621103		Prob > F	=	0.0000
Residual	22.9927385	524	.043879272		R-squared	=	0.6951
					Adj R-squared		0.6829
Total	75.4131702	545	.138372789		Root MSE	=	.20947
logsell	Coef.	Std. E	rr. t	P> t	[95% Conf.	In	terval]
loglot	.1526855	.12829	38 1.19	0.235	0993479		4047189
bdms	.019076	.32669	98 0.06	0.953	6227263		6608783
fb	3682336	.42904	76 -0.86	0.391	-1.211098		.474631
sty	. 4888853	.30969	96 1.58	0.115	1195199	1	.097291
drv	-1.46337	.71722	47 -2.04	0.042	-2.872359	-	.054381
rec	1.673993	.65591	88 2.55	0.011	.3854396	2	.962546
ffin	0318449	.44554	34 -0.07	0.943	9071156		8434259
ghw	5058876	.90273	32 -0.56	0.575	-2.279308	1	.267533
ca	3402737	.49604	09 -0.69	0.493	-1.314747		6341993
gar	.4019411	.25864	64 1.55	0.121	1061703		9100524
reg	.1184847	.4798	56 0.25	0.805	8241931	1	.061162
loglotbdms	.0020695	.03865	38 0.05	0.957	073866		.078005
loglotfb	.0620367	.05014	54 1.24	0.217	036474		1605474
loglotsty	0463612	.03594	16 -1.29	0.198	1169685		0242461
loglotdrv	.1915418	.08736	06 2.19	0.029	.0199218		3631618
loglotrec	1884625	.07637	34 -2.47	0.014	3384982		0384267
loglotffin	.0159131	.05285	14 0.30	0.763	0879135		1197398
loglotghw	.0811352	.10692	91 0.76	0.448	1289273		2911976
loglotca	.0595486	.05802	37 1.03	0.305	0544391		1735362
loglotgar	0413586	.03014	17 -1.37	0.171	1005721		0178548
loglotreg	.0015151	.05598	97 0.03	0.978	1084767		1115069
_cons	8.966495	1.0706	67 8.37	0.000	6.863168	1	1.06982

We can observe that, at the 5% level, only the interaction of log(lotsize) with the dummy variable related to the driveway and the dummy variable related to the presence or not of a recreational room were significant.

LETTER E

Performing the F test, we obtain:

$$F = \frac{23.64 - 22.99}{10} * \frac{22 - 10}{22.9} = 1.47$$

We have n = 546 observations. Therefore, at the 1% level, the critical value of F is:

$$FCrit = 1.83$$

Therefore, we reject the hypothesis of joint significance of interaction effects.

LETTER F

By performing the general-to-specific approach model specification, we obtain a step-by-step of:

Source	SS	df		MS		Number of obs		546
Madal	52.4204317	21	0.40	621103		F(21, 524) Prob > F		56.89
Model								
Residual	22.9927385	524	.043	879272		R-squared		0.6951
	75 44 04 700	EAE	400	27270		Adj R-squared		0.6829
Total	75.4131702	545	.138	372789		Root MSE	=	.20947
logsell	Coef.	Std.	Err.	t	P> t	[95% Conf.	Inte	erval]
loglot	.1526855	.1282	938	1.19	0.235	0993479	. 40	047189
bdms	.019076	.3266	998	0.06	0.953	6227263	. 6	608783
fb	3682336	.4290	476	-0.86	0.391	-1.211098		474631
sty	. 4888853	.3096	996	1.58	0.115	1195199	1.0	097291
drv	-1.46337	.7172	247	-2.04	0.042	-2.872359	0	054381
rec	1.673993	. 6559	188	2.55	0.011	.3854396	2.	962546
ffin	0318449	. 4455	434	-0.07	0.943	9071156	.8	434259
ghw	5058876	.9027	332	-0.56	0.575	-2.279308	1.5	267533
ca	3402737	.4960	409	-0.69	0.493	-1.314747	. 6	341993
gar	.4019411	.2586	464	1.55	0.121	1061703	. 9:	100524
reg	.1184847	.479	856	0.25	0.805	8241931	1.0	061162
loglotbdms	.0020695	.0386	538	0.05	0.957	073866	. (078005
loglotfb	.0620367	.0501	454	1.24	0.217	036474	.1	605474
loglotsty	0463612	.0359	416	-1.29	0.198	1169685	. 0:	242461
loglotdrv	.1915418	.0873	606	2.19	0.029	.0199218	.3	631618
loglotrec	1884625	.0763	734	-2.47	0.014	3384982	0	384267
loglotffin	.0159131	.0528	514	0.30	0.763	0879135	.13	197398
loglotghw	.0811352	.1069	291	0.76	0.448	1289273	.2	911976
loglotca	.0595486	.0580	237	1.03	0.305	0544391	.1	735362
loglotgar	0413586	.0301	417	-1.37	0.171	1005721	.0:	178548
loglotreg	.0015151	.0559	897	0.03	0.978	1084767	.13	115069
_cons	8.966495	1.070	667	8.37	0.000	6.863168	11	.06982

Source	SS	df	MS		Number of obs F(13, 532)	
Model	52.1584308	13 4.	01218698		Prob > F	= 0.0000
Residual	23.2547394		43711916		R-squared	= 0.6916
					Adj R-squared	
Total	75.4131702	545 .1	38372789		Root MSE	= .20907
	1					
	Ι					
logsell	Coef.	Std. Err	. t	P> t	[95% Conf.	Interval]
loglot	.1790575	.0770663	2.32	0.021	.0276658	.3304491
bdms	.0388127	.0143012	2.71	0.007	.010719	.0669064
fb	.161451	.0202535	7.97	0.000	.1216643	.2012377
sty	.0908278	.0125416	7.24	0.000	.0661907	.1154648
drv	-1.189961	.6646176	-1.79	0.074	-2.495558	.1156359
rec	1.502532	.6255276	2.40	0.017	.2737249	2.731339
ffin	.1027617	.0215735	4.76	0.000	.0603821	.1451414
ghw	.1844812	.043682	4.22	0.000	.0986708	.2702916
ca	.16526	.0212085	7.79	0.000	.1235974	.2069226
gar	.0469019	.0114209	4.11	0.000	.0244663	.0693375
reg	.1326028	.02255	5.88	0.000	.0883049	.1769007
loglotdrv	.15943	.0812426	1.96	0.050	0001657	.3190257
loglotrec	1682589	.0727042	-2.31	0.021	3110815	0254363
_cons	8.741889	.6286296	13.91	0.000	7.506988	9.97679
Source	SS	df	MS		Number of obs F(12, 533)	
Model	51.9900967	12 4.	33250806		Prob > F	= 0.0000
Residual	23.4230735	533 .0	43945729		R-squared	= 0.6894
Total	75.4131702	545 .1	.38372789		Adj R-squared Root MSE	= 0.6824 = .20963
logsell	Coef.	Std. Err	. t	P> t	[95% Conf.	Interval]
loglot	.3202423	.0276981	11.56	0.000	.2658316	.3746531
bdms	.0384222	.014338	2.68	0.008	.0102563	.0665881
fb	.1631818	.0202884	8.04	0.000	.1233269	.2030368
sty	.0907958	.012575	7.22	0.000	.0660931	.1154985
drv	.1131157	.0281545	4.02	0.000	.0578084	.168423
rec	1.443133	.6264636	2.30	0.022	.2124929	2.673774
ffin	.104499	.0216129	4.84	0.000	.0620421	.1469558
ghw	.1842855	.0437986	4.21	0.000	.0982465	.2703245
ca	.1659338	.0212623	7.80	0.000	.1241656	.207702
gar	.0480981	.0114351	4.21	0.000	.0256348	.0705614
reg	.1337299	.0226029	5.92	0.000	.0893283	.1781316
loglotrec	1	.0220023				.1.01010
_	1611205	.0728071		0.027	3041446	0180965
_cons	1		-2.21			

In the end, the only interaction effect that is significant is the interaction with the dummy variable related to the presence of recreational rooms (one might argue that the driveway dummy variable is also significant, as its p value was exactly 0.05 in STATA. However, it is actualy 5.0505 ... %, which is greater than the 5% significance level chosen for this project).

LETTER G

It will be overestimated, as the "condition" variable is included in the air-conditioning variable and is probably positive, that is, a house in better condition is more valuable. Therefore, it is straightforward to see that the addition of a variable that can accurately captures how well maintained is the house will definitely reduces the effect of the air-conditioning variable.

LETTER F

The regression suing the first 400 observations is as it follows:

Source	SS	df	MS		Number of obs	= 400
					F(11, 388)	= 71.77
Model	39.5418672	11	3.5947152		Prob > F	= 0.0000
Residual	19.4329558	388	.050084938		R-squared	= 0.6705
					Adj R-squared	= 0.6611
Total	58.974823	399	.147806574		Root MSE	= .2238
,	'					
logsell	Coef.	Std. E	rr. t	P> t	[95% Conf.	Interval]
loglet	.3137757	.03614	99 8.68	0.000	.2427015	.38485
loglot						
bdms	.0378721	.01743	74 2.17	0.030	.0035885	.0721556
fb	.1523751	.02469	45 6.17	0.000	.1038234	.2009269
sty	.0882383	.01819	35 4.85	0.000	.052468	.1240086
drv	.0864138	.03140	94 2.75	0.006	.0246599	.1481676
rec	.0546501	.03392	13 1.61	0.108	0120425	.1213427
ffin	.1147108	.02673	23 4.29	0.000	.0621526	.167269
ghw	.1986973	.05301	46 3.75	0.000	.0944655	.3029292
ca	.1776342	.02723	6.52	0.000	.1240803	.2311881
gar	.0530146	.0147	97 3.58	0.000	.0239222	.0821069
reg	.1511603	.04214	85 3.59	0.000	.0682922	.2340284
_cons	7.673094	.29240	37 26.24	0.000	7.0982	8.247988

Using Excel's spreadsheet to calculate the MAE and the STDEV, we obtain:

VARIABLES MODI		logsellfitted	obs	Insell	Inlot	bdms	fb	sty	drv	rec	ffin	ghw	ca	gar	reg	erro	
LOGLOT	0.313	11.49801333		11.43496			3	1	1	1	1	1	0	1	2	1 0.0	
BDMS	0.037	11.46006813	402	11.23849	8.961879		3	1	1	1	0	1	0	1	2	1 0	0.221
FB	0.152	11.36627281	403	11.25803	8.828348		3	1	1	1	1	1	0	1	0	1 0	0.108
STY	0.088	11.17518628	404	11.28978	8.757784		3	1	3	1	0	0	0	0	0	1 0.1	.1145
DRV	0.086	11.3137802	405	11.28978	8.794825		4	2	1	1	0	1	0	0	0	1 0.0	.0239
REC	0.054	11.3446936	406	11.3621	8.839277		3	2	1	1	1	1	0	0	0	1 0.0	.0174
FFIN	0.114	11.2847802	407	11.37366	8.794825		3	1	1	1	1	1	0	0	2	1 0.0	.0888
GHW	0.198	11.29212527	408	11.37939	8.767173		3	1	3	1	0	1	0	0	0	1 0.0	.0872
CA	0.177	11.4537802	409	11.39639	8.794825		3	2	1	1	0	1	0	1	0	1 0.0	.0573
GAR	0.053	11.5157802	410	11.40645	8.794825		3	2	3	1	0	0	0	1	0	1 0.1	.1093
REG	0.151	11.2748587	411	11.40756	9.10498		3	1	1	1	0	1	0	0	1	1 0.1	.1327
CONST	7.67	11.51100148	412	11.46163	8.779557		3	2	3	1	0	0	0	1	0	1 0.0	.0493
		11.59218628	413	11.62625	8.757784		3	2	4	1	0	0	0	1	0	1 0.0	.0340
MAE	0.128921	11.03311964	414	10.37036	8.575462		3	1	1	0	0	0	0	1	0	1 0.6	.6627
STDEV	0.256912	11.01593825	415	10.859	7.955074		3	2	2	0	0	1	0	0	0	1 0.1	.1569
		11.39914867	416	11.40756	8.764053		3	1	1	1	1	1	0	1	1	1 0.0	.0084
		11.51960897	417	11.51293	9.321434		3	1	1	1	0	1	0	1	1	1 0.0	.0066
		11.25481421	418	11.42628	8.817298		2	1	1	1	1	1	0	0	2	1 0.1	.1714
		11.77779205	419	12.06968	8.922658		4	2	2	1	0	1	0	1	3	1 0.2	.2918
		11.31994812	420	11.45847	8.699515		3	1	2	1	0	0	1	0	1	1 0.1	.1385
		11.39425981	421	11.12726	9.234057		2	1	1	1	0	0	0	1	2	1 0.2	.2669
		11.36528134	422	11.28978	8.54403		3	1	2	1	1	1	0	1	0	1 0.0	.0754
		11.11116911	423	11.02027	8.131531		3	1	2	1	0	1	0	0	2	1 0.0	.0909
		10.83921576	424	11.0493	7.965546		3	1	2	1	0	0	0	0	0	1 0.2	.2100
		10.98226025	425	11.08981	8.253228		3	1	2	1	0	0	0	0	1	1 0.1	.1075
		10.96912707	426	11.09741	7.962067		2	1	2	1	1	1	0	0	0	1 0.1	.1282
		10.95929855	427	10.80973	8.579229		2	1	1	1	0	0	0	0	1	1 0.1	.1495
		10.82931352	428	10.81978	8.163941		2	1	1	1	0	0	0	0	1	1 0.0	.0095
		10.77344851	429	10.88744	8.154788		2	1	1	1	0	0	0	0	0	1 0.1	.1139
		11.1120597	430	10.97764	8.188689		3	1	1	1	0	1	0	1	0	1 0.1	.1344
		10.86502569	431	11.07442	8.166216		2	1	2	1	0	0	0	0	0	1 0.2	.2093
		11.19929855	432	11.08214	8.579229		3	1	2	1	1	1	0	0	0	1 0.1	
		11.08902786	433	11.14186	8.706159		3	1	1	1	0	0	0	0	2	1 0.0	.0528
		11.23312282		11.19821			2	1	2	1	0	0	0	0	0	1 0.0	
		11.62526393		11.22524			3	1	2	1	1	1	0	1	2	1 0.4	
		11.30811964		11.22524			4	2	1	1	0	0	0	1	0	1 0.0	
		11.30306813		11.79056			3	2	2	1	0	0	0	0	0	1 0.4	

We can see that:

MAE = 0.128STDEV = 0.256

Therefore, the model sure has a good predictive power (the MAE is about half of the STDEV of the predicted values).