0 Contents

1	CNIN	N Convolutional Neural Networks
1		
	1.1	Keras 1 Flattening 1
	1.2	Flattening
2	Con	volution
	2.1	Firing of neurons
	2.2	mathematical model of a feature detector
		Example of convolution
		Reasons for convolution
		Stride
	2.6	Padding
	2.7	Max Pooling
		Example with Keras
		««« ②. ÐIE AI IZhy?
	2 10	Tensor
	2.11	An example for image classification
		== 2.9= \$\tilde{s}\tilde{s}\tilde{t}\tilde{t}\tilde{t}\tilde{s}\tilde{t}\tilde{s}\tilde{t}\tilde{s}\tilde{t}\tilde{s}\tilde{s}\tilde{t}\tilde{s}\tilde{s}\tilde{t}\tilde{s}\ti
	2.10	Drop Out
» »	»> 8	3ecdfe547f7c8733c0793218c6c212702d6a2422

1 CNN Convolutional Neural Networks

1.1 1/. . .

A python library that wraps tensorflow for classification.

We will use this in this module to classify images like so:

1.2 Flattening

When we convert an image into a long vector, we lose information in the human sense, or rather make it hidden. todo, explain what is hidden and why

2 Convolution

2.1 Firing of neurons

Neurons are clearly connected to something very specific, this would then also be reflected in the artificial neural network. In other words, neuron 1 handles horizontal lines, another a line with a slight angle and so-on.

2.2 mathematical model of a feature detector

• Two Inputs

– a picture

Note that rgb would give you 3 channels red, green and blue

- A filter(kernel)

- * an m by n matrix in the simplest case (1 channel, grayscale).
- \ast an m by n x 3 "stack of matrices" in the case of a 3 channel input (e.g. an RGB image)
- * an m by n x d "stack of matrices". The depth of the kernel must equal the number of input channels.

One Output

A feature map (where is the thing that we wanted to search / determine by)

One convolution produces one feature map. Even if the input and the filter have multiple channels, the output of the convolution has one channel.

• The Operation: Convolution

We convolve the input image with the convolutional kernel

2.3 Example of convolution

As you can see here, a filter will be used to detect something specific, like a pattern.

This means that you will be combining multiple different filters in order to properly figure out what picture the underlying image is composed of.

Explanation for the first calculation: 0*-1+0*-1+0*1+0*0+156*1+155*-1+0*0+153*1+154*1=308

multiply each number in the top red square with the number in the same position in the bottom square. We then proceed to do this for all channels (complexity of input, 3 for rgb), which will then be combined to 1 single output value.

This output value will then also be combined with a bias.

The entire reason we do this, is so that we can have an easier time calculating the images with a pc

2.4 Reasons for convolution

- Features can be detected independent of location -> filters will always find what they are supposed/created to find
- This calculation is done in parallel, which is very fast for gpus when doing matrix calculations! -> Hence the use of tensorflow with cuda!
- Shared weights mean using the same kernel values, this reduces the use of a singular value for each neuron. -> more processing etc

2.5 Stride

Stride is simply the offset by which we move towards the right and the bottom when we move to the next calculation.

The default value here is 1, which means Stride 1.

2.6 Padding

Padding is simply the edge of the matrix that has been predefined. A same padding is made entirely of 0's!

Note, with padding, we can effectively go over the bounds of the matrix!

Image								
0	0	0	0	0	0	0		
0						0		
0						0		
0						0		
0						0		
0						0		
0	0	0	0	0	0	0		

2.7 Max Pooling

Max pooling simplyfies the image by taking the maximum value in each sector.

For example in the first red square, the highest value will be placed in the right red square.

Similar to before, we then iterate with the stride as the length to iterate and do this again and again until we are done.

2.8 Example with Keras

```
model = Sequential([
  layers.Rescaling(1./255, input_shape=(img_height, img_width, 3)),
  layers.Conv2D(16, 3, padding='same', activation='relu'),
  layers.MaxPooling2D(),
  layers.Conv2D(32, 3, padding='same', activation='relu'),
  layers.MaxPooling2D(),
  layers.Conv2D(64, 3, padding='same', activation='relu'),
  layers.MaxPooling2D(),
  layers.HaxPooling2D(),
  layers.Platten(),
  layers.Dense(128, activation='relu'),
  layers.Dense(num_classes)
])
```


2.9 Softmax

Softmax is used to get the probabilities of each classification.

2.10 Drop Out

This is similar but not quite the same as emsemble method learning.

It is used to get models that are more robust than otherwise.

This entire ordeal is done during training, not during inference!

2.11 Why?

The entire filter is essentially just a shape, packed into a matrix.

If you for example have a filter of a 2x2 matrix and you only fill the bottom left and top right square with one and the others with 0, then you will detect whether or not the shape in question has a diagonal line inside of it.

Note that with the others being 0, you will ignore the rest of the shape around it. This means you will detect ALL diagonal lines, even if they are within another shape..

Should you want to only detect diagonal lines that have no other color around it, then you need to make the other values in the filter matrix as negative, indicating that you only want the diagonal lines that are isolated.

2.12 Tensor

A tensor is just a multidimensional array. The structure is as follows:

In other words: amount of sub-arrays, width of sub-array, length of sub-array

Tensors are immutable, meaning you can only create new ones, you can't update them!

Rank

The amount of parameters, in the example we had rank3, but what if the sub-arrays had a height as well? -> rank 4!

a particular dimension of a tensor, remember 3 dimensions = rank3

A rank-4 tensor, shape: [3, 2, 4, 5]

Shape

The length (number of elements) of each of the axes of a tensor.

The total number of items in the tensor, the product of the shape vector's elements.

Indexing

simply the indexing of the array like in python.

```
rank_1_tensor = tf.constant([0, 1, 1, 2, 3, 5, 8, 13, 21, 34])
print(rank_1_tensor.numpy())
print("First:", rank_1_tensor[0].numpy())
print("Second:", rank_1_tensor[1].numpy())
print("Last:", rank_1_tensor[-1].numpy())
# First: 0
  Second:
           1
# Last: 34
```

Reshaping

reshapes a vector by a given list. -> shape is a list!

Remember that the order and amount of axis need to match! Otherwise you get trash!

```
# Shape returns a 'TensorShape' object that shows the size along each axis
x = tf.constant([[1], [2], [3]])
print(x.shape)
# You can reshape a tensor to a new shape.
# Note that you're passing in a list
reshaped = tf.reshape(x, [1, 3])
print(x.shape)
print(reshaped.shape)
# (3, 1)
# (1, 3)
```

When tensors aren't the same size, you can essentially default extend them, in this case the last value will be taken.

```
x = tf.constant([1, 2, 3])
y = tf.constant(2)
  = tf.constant([2, 2, 2])
# All of these are the same computation
print(tf.multiply(x, 2))
print(x * y)
print(x * z)
# tf.Tensor([2 4 6], shape=(3,), dtype=int32)
# tf.Tensor([2 4 6], shape=(3,), dtype=int32)
```

```
# tf.Tensor([2 4 6], shape=(3,), dtype=int32)
```

code tutorial

2.13 An example for image classification

```
# import necessary modules
import tensorflow as tf
from tensorflow.keras import datasets, layers, models
import matplotlib.pyplot as plt
(train_images, train_labels), (test_images, test_labels) = datasets.cifar10.load_data()
\mbox{\tt\#} Normalize pixel values to be between 0 and 1
# show pictures
plt.figure(figsize=(10,10))
for i in range (25):
    plt.subplot(5,5,i+1)
    plt.xticks([])
    plt.yticks([])
    plt.grid(False)
    plt.imshow(train_images[i])
    # The CIFAR labels happen to be arrays,
    # which is why you need the extra index
    plt.xlabel(class_names[train_labels[i][0]])
plt.show()
# create convolutional base
model = models.Sequential()
model.add(layers.Conv2D(32, (3, 3), activation='relu', input_shape=(32, 32, 3)))
model.add(layers.MaxPooling2D((2, 2)))
model.add(layers.Conv2D(64, (3, 3), activation='relu'))
model.add(layers.MaxPooling2D((2, 2)))
model.add(layers.Conv2D(64, (3, 3), activation='relu'))
# Add dense layers on top
model.add(layers.Flatten())
model.add(layers.Dense(64, activation='relu'))
model.add(layers.Dense(10))
# Compile and train the model
model.compile(optimizer='adam'
               loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),
               metrics=['accuracy'])
# Evaluate the model
history = model.fit(train_images, train_labels, epochs=10,
                      validation_data=(test_images, test_labels))
plt.plot(history.history['accuracy'], label='accuracy')
plt.plot(history.history['val_accuracy'], label = 'val_accuracy')
plt.xlabel('Epoch')
plt.ylabel('Accuracy')
plt.ylim([0.5, 1])
plt.legend(loc='lower right')
test_loss, test_acc = model.evaluate(test_images, test_labels, verbose=2)
# print the accuracy at the end
print(test_acc)
full tutorial
```