CODE: 16EC1001

ADITYA INSTITUTE OF TECHNOLOGY AND MANAGEMENT, TEKKALI (AUTONOMOUS)

I B.Tech II Semester Supplementary Examinations, February-2022

ELECTRONIC DEVICES

(Electronics and Communication Engineering)

Answer ONE Question from each Unit All Questions Carry Equal Marks All parts of the Question must be answered at one place **UNIT-I** Explain the operation of CRO with a neat block diagram and mention its 1. 14M applications. (OR) Explain the motion of a charged particle under uniform magnetic field. 2. a) 8M Explain how voltage, current and phase are measured using cathode ray b) 6M oscilloscope. **UNIT-II** What is the difference between intrinsic and extrinsic semiconductors? Explain the 3. a) 8M

formation of P-type semiconductor with a neat sketch. Explain the expression for conductivity of a semiconductor and find the intrinsic 6M b) conductivity for silicon. Assume $n_i = 1.5 \times 10^{10} \text{cm}^{-3}$, $\mu_n = 1300$ and $\mu_p = 500 \text{cm}^2/\text{V-s}$ respectively.

(OR)

4. Explain the concepts of diffusion and Hall effect. 8M a) Explain the classification of materials based on energy band diagram. 6M

Discuss the V-I characteristics of PN junction diode and its dependency on 5. a) 8M the temperature.

Derive the expression for transition capacitance of a PN junction diode. b) (OR)

6M

Max Marks: 70

Explain the concept of Zener break down and application of Zener diode as voltage 6. a) regulator.

Discuss the principle of LED and its applications. b)

Time: 3 Hours

6M

8M

6M

7. Explain the input and output characteristics of bipolar junction transistor in CE 10M a) configuration.

Calculate the base current in a BJT with current gain α =0.98 and emitter current 4M b) 10mA.

(OR)

Explain how transistor acts as an amplifier. 8. a) 8M

Explain different current components in bipolar junction transistor. b)

UNIT-V

Explain n channel JFET characteristics. 9. a) 8M

b) Discuss the differences between BJT and JFET. 6M

(OR)

Discuss the V-I characteristics of UJT with a neat diagram. 10. a) 8M

Derive the relation between r_d , g_m and μ , related to JFET. b) 6M

AR13

CODE: 13BS1002 SET-2 ADITYA INSTITUTE OF TECHNOLOGY AND MANAGEMENT, TEKKALI (AUTONOMOUS)

I B.Tech II Semester Supplementary Examinations, February-2022

ENGINEERING MATHEMATICS -II (Common to EEE & ECE)

Time: 3 Hours Max Marks: 70

PART-A

ANSWER ALL QUESTIONS

 $[1 \times 10 = 10 \text{ M}]$

- 1. a) Briefly write the condition for initial approximation for solving a transcendental equation.
 - b) Write the normal equations of the straight line y=a+bx by least squares method.
 - c) Prove that $\nabla = 1 E^{-1}$.
 - d) What is the rule required for Simpson's 1/3 rule for number of divisions of the interval?
 - e) Write the formula used in modified Euler's method.
 - f) What are multi step methods?
 - Find $L\left[e^{-2t}\operatorname{Sin} 4t\right]$ if $L(\operatorname{Sin} 4t) = \frac{4}{S^2 + 16}$.
 - h) Find the L.T of the function Sin^2t if $L(\cos 2t) = \frac{S}{S^2 + 4}$.
 - i) Write the auxiliary ODEs of the PDE p(z-y) + q(x-z) = y-x
 - j) Solve: $z = px + qy + \sqrt{1 + p^2 + q^2}$

PART-B

Answer one question from each unit

[5x12=60M]

UNIT-I

- 2 a The equation $x^3 3x + 4 = 0$ has one real root between -2 and -3. Find the root to four places after decimal by false position method.
 - b Fit a curve $y = ax^b$ to the following data by the method of least squares.

6M

X	2	4	7	10	20	40	60	80
У	43	25	18	13	8	5	3	2

(OR)

- 3 a Using Newton-Raphson method find reciprocal of a number. Apply the methods to N = 24 to obtain the result correct to 2 decimals by taking the initial approximation as $x_0 = 0.045$.
 - b Fit a straight line to the following data by the method of least squares.

6M

X	0	1	2	3	4
V	1	1.8	3.3	4.5	6.3

UNIT-II

- 4. a Form the backward difference table of $f(x) = x^3 3x^2 + 5x + 7$, for the values of 0,2,4,6,8 **6M** and verify for f(10) by interpolation and actual calculation.
 - b From the following table values of x and $y = e^x$ interpolate value of y when x = 1.91 by Gauss forward differences.

X	1.7	1.8	1.9	2.0	2.1	2.2
y	5.4739	6.0496	6.6859	7.3891	8.1662	9.0250

5	a	Use Gauss backward interpolation formula to find $f(32)$, given that $f(25) = 0.2707$, $f(30) =$	6M
		0.3027, $f(35) = 0.3386$, $f(40) = 0.3794$.	

b	Given that	6M
---	------------	----

X	4	4.2	4.4	4.6	4.8	5.0	5.2
logx	1.3863	1.4351	1.4816	1.5261	1.5686	1.6094	1.6487

Evaluate $\int_{4}^{5.2} \log x dx$ by Simpson's 3/8 rule.

UNIT-III

Solve the ODE
$$\frac{dy}{dx} = xe^y$$
, $y(0) = 0$ by Picard's method upto 2^{nd} approximation. Estimate $y(0.3)$, and $y(1)$.

(OR)

Using modified Euler's method upto 4 approximations, find y(0.2) and y(0.4) given **12M** $\frac{dy}{dx} = y + e^x, y(0) = 0$

UNIT-IV

8. a
$$\int_{0}^{\infty} t^{3}e^{-t} \sin t \, dt$$
 Evaluate 0

Evaluate
$$L^{-1} \left[\frac{S^2}{\left(S^2 + a^2\right)\left(S^2 + b^2\right)} \right]$$
 by Convolution theorem.

(OR)

9. a Evaluate
$$L(t^2 \cos at)$$

6M

Find $L^{-1}\left[\frac{S^2}{(S^2+4)^2}\right]$ by Convolution theorem.

UNIT-V

10 a Solve:
$$y^2 - xyq = x(z - 2y)$$

b Solve: $(x^2 - y^2 - yz)p + (x^2 - y^2 - zx)p = z(x - y)$
6M

11. A homogeneous rod of conducting material of length 100 cm has its ends kept at zero temperature and the temperature initially is u(x,0) = x for $0 \le x \le 50$ and 100 - x for $50 \le x \le 100$. Then find the temperature u(x,t) at any time t.