# Tema 7: Implementación RAID software y cuotas

Programación y Administración de Sistemas (2023-2024)

Javier Sánchez Monedero

30 de septiembre de 2024

# Tabla de contenidos

| 1 | Receta        | 1 |
|---|---------------|---|
| 2 | RAID software | 3 |
| 3 | Cuotas        | g |

# 1 Receta

### Receta

En esta receta vamos a implementar una configuración típica:

- RAID software para la carpeta /home para aumentar tamaño, fiabilidad ante fallos...
- Uso de cuotas para restringir el espacio y cantidad de ficheros/directorios por usuarios o grupos.

Esta combinación, junto con el uso de NFS (y obviamente más cosas), es la que tenemos en las aulas de prácticas de la UCO.

Estos pasos y configuración han sido probados en Debian 12.

# **Esquema**





# Añadir discos

Necesitarás añadir al menos dos discos duros virtuales en VirtualBox. No necesitan ser formateados previamente. Después de añadirlos, verás algo así:

```
$ lsblk
NAME
                    SIZE RO TYPE MOUNTPOINTS
       MAJ:MIN RM
sda
         8:0
                 0
                      8G
                          0 disk
        8:1
                0
                   3,7G
                         0 part /
 sda1
 sda2
        8:2
                0
                     1K
                         0 part
        8:5
                0
                   953M
                         0 part [SWAP]
 sda5
                   1,9G
        8:6
                0
                         0 part /var
 sda6
 sda7
        8:7
                   1,5G 0 part /tmp
sdb
         8:16
                   100M
                          0 disk
sdc
         8:32
                    100M
                          0 disk
sdd
         8:48
                    100M
                          0 disk
        11:0
sr0
                 1 1024M
                          0 rom
```

# 2 RAID software

## Herramienta mdadm

- La herramienta mdadm permite crear o administrar un dispositivo RAID, convertir un disco "normal" en parte de un RAID...
- Tiene distintos modos de funcionamiento create: configurar y activar sistemas RAID.
- /proc/mdstat lista todos los sistemas RAID (dispositivos md) activos con información sobre su estado.
- Las particiones que formen el RAID tienen que un flag RAID (*Linux raid auto*), de esta manera serán detectadas y activadas en el proceso de arranque.

## Instalación mdadm

Instalamos la herramienta mdadm y también rsync que nos servirá para la migración de datos.

```
sudo apt update
sudo apt upgrade
sudo apt install mdadm
sudo apt install rsync
```

# Ejemplo de creación de un RAID5

Listar dispositivos RAID previos:

```
$ cat /proc/mdstat
Personalities : [linear] [multipath] [raid0] [raid1] [raid6] [raid5] [raid4] [raid10]
unused devices: <none>
```

Si existe alguno tendrás que reiniciarlos.

Encontrar los dispositivos sobre los que construiremos el RAID (sdb, sdc y sdd en nuestro caso):

```
lsblk
```

Salida:

```
$ lsblk
NAME
     MAJ:MIN RM SIZE RO TYPE MOUNTPOINTS
sda
      8:0 0 8G 0 disk
     8:1 0 3,7G 0 part /
sda1
sda2 8:2 0 1K 0 part
sda5 8:5 0 953M 0 part [SWAP]
          0 1,9G 0 part /var
sda6 8:6
sda7 8:7 0 1,5G 0 part /tmp
     sdb
sdc
      8:48 0 100M 0 disk
sdd
sr0
     11:0 1 1024M 0 rom
```

Vamos a crear el RAID 5:

```
sudo mdadm --create --verbose /dev/md0 --level=5 --raid-devices=3 /dev/sdb /dev/sdc /dev/sdd
```

#### Salida:

```
mdadm: layout defaults to left-symmetric
mdadm: layout defaults to left-symmetric
mdadm: chunk size defaults to 512K
mdadm: size set to 100352K
mdadm: Defaulting to version 1.2 metadata
mdadm: array /dev/md0 started.
```

## Confirmar que se ha creado:

Crear un sistema de archivos en el RAID:

```
sudo mkfs.ext4 -F /dev/md0
mke2fs 1.47.0 (5-Feb-2023)
Creating filesystem with 200704 1k blocks and 50200 inodes
Filesystem UUID: 015bee08-b8b0-4b98-9a7d-b0f205f2ea8d
```

```
Superblock backups stored on blocks:
8193, 24577, 40961, 57345, 73729

Allocating group tables: done
Writing inode tables: done
Creating journal (4096 blocks): done
Writing superblocks and filesystem accounting information: done
```

Veamos cómo va nuestro sistema de ficheros:

```
$ lsblk
NAME
    MAJ:MIN RM SIZE RO TYPE MOUNTPOINTS
sda
      8:0
          0
               8G 0 disk
     8:1 0 3,7G 0 part /
sda1
sda2 8:2 0 1K 0 part
sda5 8:5 0 953M 0 part [SWAP]
sda6 8:6 0 1,9G 0 part /var
     8:7 0 1,5G 0 part /tmp
sda7
     sdb
     9:0 0 196M 0 raid5
sdc
     8:32 0 100M 0 disk
          0 196M 0 raid5
     9:0
md0
sdd
     9:0 0 196M 0 raid5
md0
```

A continuación, crear un punto de montaje para montar el nuevo sistema de archivos:

```
sudo mkdir -p /mnt/md0
```

Puedes montar el sistema de archivos con el siguiente comando:

```
sudo mount /dev/md0 /mnt/md0
```

Después, comprueba si el nuevo espacio está disponible:

```
df -h -x devtmpfs -x tmpfs
```

Salida:

```
S.ficheros
               Tamaño Usados Disp Uso% Montado en
/dev/sda1
                 3,6G
                        1,6G 1,9G 46% /
/dev/sda6
                        275M 1,5G 16% /var
                 1,8G
/dev/sda7
                 1,5G
                         40K
                             1,4G
                                    1% /tmp
                                    1% /mnt/md0
/dev/md0
                 179M
                         14K
                             165M
```

Información sobre el estado:

```
sudo mdadm --detail --scan
```

Y saldrá algo así:

```
ARRAY /dev/md0 metadata=1.2 name=debian:0 UUID=cbb045c1:8b657f24:54e78477:2f05318b
```

Para asegurarnos de que la configuración se aplica en cada inicio y se incluye en el **initramfs** (ver tema de arranque):

```
sudo mdadm --detail --scan | sudo tee -a /etc/mdadm/mdadm.conf
sudo update-initramfs -u
```

Finalmente añadimos el punto de montaje nuevo:

```
echo '/dev/md0 /mnt/md0 ext4 defaults 0 0' | sudo tee -a /etc/fstab
```

Reinicia y comprueba que el sistema de ficheros está montado y el espacio esperado con df.

## Nuevo /home

Idealmente el /home se montaría sobre un RAID1 o RAID5 (mínimo 3 discos):

```
• RAID1: --level=1 --raid-devices=2
```

<sup>•</sup> RAID5: --level=5 --raid-devices=3

# Migración al /home

¿Cómo migraríamos y usaríamos este volumen como /home?:

Para reemplazar el /home, una vez listo todo lo anterior, tendrás que:

1. Poner el sistema en modo monousuario de forma programada y avisando previamente a usuarios.

```
sudo systemctl isolate rescue.target
```

2. Montar el sistema nuevo (si no lo tenías ya montado):

```
sudo mount /dev/md0 /mnt/md0
```

3. Copiar todo el contenido de la partición antigua a la nueva. Por ejemplo con rsync. Es importante poner la barra al final de las rutas para no crear una carpeta home dentro de md0:

```
sudo rsync -avr /home/ /mnt/md0/
```

4. Eliminar anterior partición (renombramos en vez de eliminar por precaución):

```
sudo mv /home /home-old
sudo umount /mnt/md0
sudo mkdir -p /home
```

Nota. Si /home ya era una partición bastará con desmontarla.

Puede que tengamos que expulsar usuarios o procesos.

```
You are in rescue mode. After logging in, type "journalctl -xb" to view 
system logs, "systemctl reboot" to reboot, "systemctl default" or "exit"
to boot into default mode.
Contrase?a de root para mantenimiento
(o pulse Control-D para continuar):
oot@debian:~# umount /home
umount: /home: el destino está ocupado.
oot@debian:~# lsof /home
COMMAND PID USER
                       FD
                             TYPE DEVICE SIZE/OFF NODE NAME
         795
                              DIR
                                       9,0
              pas
                     cwd
                                                 1024
                                                         12 /home/pas
oot@debian:~# kill 795°
 oot@debian:~# lsof /home
COMMAND PID USER
                       FD
                             TYPE DEVICE SIZE/OFF NODE NAME
          795
                      cwd
                              DIR
                                       9,0
                                                         12 /home/pas
oash
               pas
                                                 1024
 oot@debian:~# kill -9 795
root@debian:~# lsof /home
root@debian:~# umount /home
 oot@debian:~#
```

5. Añadir nueva línea en /etc/fstab:

```
/dev/md0 /home ext4 defaults 0 2
```

6. Aplicar cambios con:

```
sudo mount -a
```

- 7. Comprobar que los datos están en su sitio.
- 8. Volver a modo multiusuario (o reiniciar):

```
sudo systemctl isolate multi-user.target
```

9. Si todo ha ido bien debes tener una salida así:

```
$ df -h -x devtmpfs -x tmpfs
S.ficheros
               Tamaño Usados
                              Disp Uso% Montado en
/dev/sda1
                              1,9G
                 3,6G
                         1,6G
                                     46% /
/dev/sda6
                         275M
                              1,5G
                                     16% /var
                 1,8G
/dev/sda7
                 1,5G
                          40K
                               1,4G
                                      1% /tmp
/dev/md0
                 179M
                          24M
                               141M 15% /home
```

10. Puedes añadir discos de repuesto con (spare) con: mdadm /dev/md0 -a /dev/DISCO

# 3 Cuotas

En cualquier entorno multiusuario necesitaremos limitar recursos por usuario para dimensionar recursos y para evitar problemas de seguridad o rendimiento.

Imaginemos que un usuario almacena más información de la que cabe en un sistema de ficheros:

¿Cómo podríamos evitar este problema?

## Activar las cuotas en el sistema de ficheros

Pasos a realizar para establecer las cuotas de disco:

1. Instalar las utilidades de cuota:

```
sudo apt-get install quota
```

2. Opcional. En algunas imágenes de servidores virtuales **Ubuntu** puede no estar disponible el módulo del kernel y será necesario instalar:

```
sudo apt install linux-image-extra-virtual
```

3. Activar opción de quota a nivel de sistema de ficheros. En versiones antiguas de ext4 y anteriores era una opción en fstab y aún muchos tutoriales lo indican así. Como root:

```
sudo systemctl isolate rescue.target
umount /home
```

Con el sistema de ficheros desmontado:

```
umount /home
tune2fs -0 quota /dev/md0
mount /home
```

Nota: al crear el sistema de ficheros se podría haber activado la cuota (mkfs ... -0 quota ...)

#### Activar cuotas de disco

4. Activar la cuotas en el sistema de ficheros. Este comando crea los archivos /home/aquota.user y /home/aquota.group que contienen información sobre los límites y el uso del sistema de archivos, y deben existir antes de activar la supervisión de cuotas.

```
# -u cuotas usuario
# -g activaría las de grupo
sudo quotaon -vug /home
# Podemos desactivar con
sudo quotaoff -vug
```

quotaon: añade el contenido de los ficheros de control de cuotas.

- v: verbose.
- u: cuotas para usuarios.
- **g**: cuotas para grupos.
- a: activa cuotas en todos los dispositivos.

#### Establecer cuotas de disco

5. Fijar la cuota del usuario pas a 50MB de límite *blando* y 60MB de límite *duro*. No hay límte en número de archivos/directorios (inodos) creados :

```
sudo setquota -u pas 50M 60M 0 0 /home
```

6. O alternativamente con edquota que abre un editor de texto (tendrás que especificar el tamaño en Ks). La columna blocks y inodes informa de cuántos bloques e inodos están en uso respectivamente y puede confundir, ya que mezcla información del sistema con el fichero de configuración.

```
Disk quotas for user pas (uid 1000):

Filesystem blocks soft hard inodes soft hard
/dev/md0 24423 51200 51200 21392 0 0
```

Nota: El concepto de bloque no está bien especificado y puede cambiar dependiendo de muchos factores, incluyendo la herramienta de línea de comandos que los esté proporcionando. En el contexto de cuotas en Ubuntu y Debian, es bastante seguro asumir que 1 bloque equivale a 1 kilobyte de espacio en disco.

## Periodo de gracia

7. Establecer el periodo de gracia (tiempo en el que se puede superar el límite blando): edquota -t

```
Grace period before enforcing soft limits for users:

Time units may be: days, hours, minutes, or seconds

Filesystem Block grace period Inode grace period

/dev/md0 7days 7days
```

- 8. Copiar cuotas: edquota -up pas usuario
- 9. Estadísticas de las cuotas: repquota /dev/md0 (-s muestra información en formato entendible por personas)

```
$ sudo repquota -s /dev/md0
*** Report for user quotas on device /dev/md0
Block grace time: 7days; Inode grace time: 7days
                        Space limits
                                                     File limits
User
                        soft
                                               used soft hard grace
                used
                                hard grace
                                                               0
root
                 27K
                          OK
                                  OK
                                                   4
                                                         0
                                                         0
                                                               0
pas
              24423K 51200K 51200K
                                               21392
```

10. Probemos nuestro caso de agotar el espacio.

```
$ fallocate --length 200MB ~/fichero
md0: write failed, user block limit reached.
md0: write failed, user block limit reached.
md0: write failed, user block limit reached.
...
$ df -h /home
S.ficheros Tamaño Usados Disp Uso% Montado en
/dev/md0 179M 51M 115M 31% /home
```

## Referencias

Debian 12 Bookworm Set Disk Quota https://www.server-world.info/en/note?os=Debian\_12&p=quota

How To Create RAID Arrays with mdadm on Ubuntu 22.04 https://www.digitalocean.com/community/tutorials/how-to-create-raid-arrays-with-mdadm-on-ubuntu-22-04

 $How\ To\ Set\ Filesystem\ Quotas\ on\ Ubuntu\ 20.04\ https://www.digitalocean.com/community/tutorials/how-to-set-filesystem-quotas-on-ubuntu-20-04$