UNIVERSIDAD DE CONCEPCION

FACULTAD DE CIENCIAS

FISICAS Y MATEMATICAS

DEPARTAMENTO DE INGENIERIA MATEMATICA

ALGEBRA Y ALGEBRA LINEAL 520142

Práctica 2 (Conjuntos)

Problema 1. Demuestre que:

(a)
$$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$$

(b)
$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$$

(c)
$$(A \cup B)^c = A^c \cap B^c$$
 (En práctica)

(d)
$$A - B = A \cap B^c$$

(e)
$$A\Delta B = (A \cup B) - (A \cap B)$$
 (En práctica)

(f)
$$(A \cap B) \cup (A \cap C) = A \cap B \cap C$$

(g)
$$[A \subseteq B \land A \cup B = \phi] \Rightarrow A = \phi$$

(h)
$$A \times (B \cup C) = (A \times B) \cup (A \times C)$$

(i)
$$A \times (B \cap C) = (A \times B) \cap (A \times C)$$

Problema 2. Sean
$$A = \{x \in \mathbb{N}/1 \le x \le 4\}$$
, $B = \{x \in \mathbb{N}/50 \le x^2 \le 100\}$ y $C = \{9, 10, 11, 12\}$.

Calcular:

- (a) $A \times B$ y $B \times A$. Compare sus resultados.
- (b) $A \times (B \cup C)$ y $(A \times B) \cup (A \times C)$. Compare resultados. (En práctica)
- (c) $A \times (B \cap C)$ y $(A \times B) \cap (A \times C)$. Compare sus resultados.
- (d) $A \times B \times C$
- (e) $\mathcal{P}(A \times B)$.

Problema 3. Considere los conjuntos: $A := \{x \in \mathbb{R}/1 \le x < 3\}$, $B := \{x \in \mathbb{R}/x^2 - 5x + 4 \le 0\}$ y $C = \{x \in \mathbb{R}/x^2 + x - 6 \ge 0\}$.

- (a) Determine si $A \subseteq B$ ó $B \subseteq A$.
- (b) Calcule $A \cup C$, $A \cap C$, $B \cup C$ y $B \cap C$ (En práctica)
- (c) Calcule $A^c \cap C^c$, $A\Delta C$ y $A \cap (B-C)$
- (d) Calcule y represente gráficamente los conjuntos: $A \times A, \ A \times C, \ C \times A \ y \ C \times B$

Problema 4.

- (a) Encuentre el conjunto de las partes para:
 - (i) ϕ y U
 - (ii) $A = \{a, b, c\}$
- (iii) $B = \{a, b, c, d, e\}$
- (b) Para los conjuntos de (ii) y (iii) anteriores, es verdad que $P(A) \subseteq \mathcal{P}(B)$.
- (c) Demuestre que si A y B son conjuntos entonces

$$A \subseteq B \iff \mathcal{P}(A) \subseteq \mathcal{P}(B).$$

Problema 5.

- (a) ¿Cuántos subconjuntos de un solo elemento tiene un conjunto de n elementos?. ¿Cuántos de dos elementos?.
- (b) Un padre sale a pasear cada domingo con uno o varios de sus 6 hijos. Este año el padre prometió que no saldría dos veces con el mismo grupo. ¿Puede cumplir su promesa?

Problema 6. De un total de 80 alumnos 52 aprobaron álgebra, 47 aprobaron cálculo y 15 reprobaron ambas asignaturas. Determine:

- (a) Cuántos alumnos aprobaron sólo álgebra.
- (b) Cuántos alumnos aprobaron sólo cálculo.
- (c) Cuántos alumnos aprobaron álgebra y cálculo.
- (d) Cuántos alumnos aprobaron cálculo o álgebra.

Problema 7. De un conjunto de 40 personas hay 15 que no estudian ni trabajan, 10 que estudian y 3 personas que estudian y trabajan. Determine cuántas personas trabajan, cuántas sólo trabajan y cuántas personas sólo estudian.

Problema 8. (En práctica) Una encuesta de opinión sobre las preferencias por los candidatos a rector, identificados por X, Y y Z, dió los siguientes resultados:

30 encuestados prefieren a X
35 encuestados prefieren a Y
100 encuestados prefieren a Z
15 encuestados prefieren a X e Y
15 encuestados prefieren a X y Z
20 encuestados prefieren a Y y Z
5 encuestados prefieren a X, Y y Z
Determine cuántos electores fueron encuestados.

Problema 9. En una encuesta a 200 estudiantes se encontró que

- 68 prefieren matemáticas
- 138 son inteligentes
- 160 son estudiosos
- 120 son estudiosos e inteligentes
- 20 prefieren matemáticas pero no son inteligentes
- 13 prefieren matemáticas y son inteligentes pero no estudiosos
- 15 prefieren matemáticas y son estudiosos pero no inteligentes

Determine

- (a) Cuántos prefieren matemáticas, son estudiosos y son inteligentes.
- (b) Cuántos son estudiosos e inteligentes pero no prefieren matemáticas.
- (c) Cuántos no prefieren matemáticas, no son inteligentes ni estudiosos.