第五次作业参考答案

By 朱映

第五次作业最大问题:

- 看清题目,要求用直接证明+演绎定理,就不能只写一种;
- ② 演绎定理、反证法等运用时要说明清楚
- ① 分别利用直接证明(即根据"证明"的定义,基于三个公理、Γ及 MP 规则进行证明)和演绎定 理写出下面的证明过程(注明证明依据) $\Gamma = \{p, (q \to (p \to r))\}$,证明 $\Gamma \vdash (q \to r)$

直接证明:

$$(1)p$$
 假定 $(2)p \rightarrow (q \rightarrow p)$ (L1) 肯定后件律

$$egin{aligned} (3)q &
ightarrow p \ (4)q &
ightarrow (p
ightarrow r) \end{aligned}$$

$$(5)(q
ightarrow(p
ightarrow r))
ightarrow((q
ightarrow p)
ightarrow(q
ightarrow r))$$

由演绎定理, 只需证明: $\Gamma \cup \{q\} \vdash r$

$$(1)q$$
 假定

$$(3)p \to r$$

$$(4)p$$
 $(5)r$

假定

(4), (5) MP

原式得证。

证明下列定理(注明证明依据)。

$$\textcolor{red}{\blacksquare} \vdash (q \rightarrow p) \rightarrow (\neg p \rightarrow \neg q)$$

$$2 \vdash \neg (p \to q) \to (q \to p)$$

$$lacksquare ((p
ightarrow q)
ightarrow p)
ightarrow p$$

答:

① 证明:根据演绎定理,只用证明 $\{q \to p\} \vdash \neg p \to \neg q$

$$(1) \neg \neg q \rightarrow q$$

双重否定律

假定

$$(3) \neg \neg q \rightarrow p$$

(1), (2) HS

$$(4)p
ightarrow \lnot \lnot p$$

第二双重否定律

(3), (4) HS

$$(6)(\lnot\lnot q
ightarrow \lnot\lnot p)
ightarrow (\lnot p
ightarrow \lnot q)$$

(L3) 换位律

$$(7)\neg p \rightarrow \neg q$$

(5), (6) MP

① 证明:根据演绎定理,只用证明 $\{\neg(p \to q)\} \vdash q \to p$

$$(1)\neg(p \to q)$$
 假定 $(2)\neg(p \to q) \to ((p \to q) \to p)$ 否定前件律 $(3)(p \to q) \to p$ (1), (2) MP $(4)\neg p \to (p \to q)$ 否定前件律 $(5)\neg p \to p$ (3), (4) HS $(6)(\neg p \to p) \to p$ 否定肯定律 $(7)p$ (5), (6) HS $(8)p \to (q \to p)$

(7), (8) MP

得证

① 证明:根据演绎定理,只用证明 $\{(p \rightarrow q) \rightarrow p\} \vdash p$

 $(9)q \rightarrow p$

$$(1)(p o q) o p$$
 假定 $(2) \neg p o (p o q)$ 否定前件律 $(3) \neg p o p$ (1), (2) HS $(4)(\neg p o p) o p$ 否定肯定律 $(5)p$ (3), (4) MP

得证

① 证明:根据演绎定理,只用证明 $\{p \to q\} \vdash (\neg p \to q) \to q$ 再次使用演绎定理,只用证明 $\{p \to q, \neg p \to q\} \vdash q$

$$(1)p o q$$
 假定 $(2)(p o q) o (\neg q o \neg p)$ 換位律 $(3)\neg q o \neg p$ (1), (2) MP $(4)\neg p o q$ 假定 $(5)\neg q o q$ (3), (4) HS $(6)(\neg q o q) o q$ 否定肯定律 $(7)q$ (5), (6) MP

得证

① 不用公理 L3(目前反证律的证明过程中间接地使用了 L3),尝试利用归谬律和双重否定律 $(\vdash \neg \neg p \rightarrow p)$ 推出反证律。

证明:由反证律前提,我们有:

$$(1) \Gamma \cup \{\neg p\} \vdash q$$

(2)
$$\Gamma \cup \{\neg p\} \vdash \neg q$$

由归谬律可得:

$$\Gamma \vdash \neg \neg p$$

即存在 $\neg \neg p$ 从 Γ 的证明:

于是我们有 $\Gamma \vdash p$, 反证律得证。