Exercises for the lecture

Fundamentals of Simulation Methods

Friedrich Röpke & Cornelis Dullemond

Exercise sheet 5

Particle-Mesh Mapping

1. Weight coefficients and shape functions in 2-D

In the lecture you have learned how to map a set of point particles onto a grid using shape functions. Three shape functions were discussed: a delta function, a top-hat function and a pyramid function. These represent the zeroth, first and second order algorithms. In this exercise you will derive the expressions for the weight coefficients $W_{k,l}(X_i, Y_i)$ for the 2-D case, where k,l are the indices of the cells in x- and y-direction, respectively, and X_i , Y_i are the x- and y-coordinates of particle i. The grid has $K \times K$ cells, equally spaced between [-H, H] in both dimensions. The cell size is therefore $2H/K \times 2H/K$. The symbols (x_k, y_l) represent the cell-centers while $(x_{k\pm 1/2}, y_{l\pm 1/2})$ represent the cell interfaces. The k, l indices range from 0 to K-1.

- a) Given the (X_i, Y_i) -coordinates of particle i, derive an expression for the indices k, l such that $x_{k-1/2} \leq X_i < x_{k+1/2}$ and $y_{l-1/2} \leq Y_i < y_{l+1/2}$, i.e. such that the particle lies inside the cell (k, l).
- b) Given the k and l indices derived in this way for N particles, how would you compute the numerical form of the $\rho(x,y)$ function using the zeroth order method? In other words: how would you compute $\rho_{k,l}$ with the Dirac-delta function as the shape function?

For the first and second order method, things become a bit more complicated. We will have to define a 3×3 stencil of weights

$$W_{k+\delta k,l+\delta l}(X_i,Y_i) \tag{1}$$

with $\delta k = -1, 0, 1$ and $\delta l = -1, 0, 1$. This is a 3×3 matrix with the central element $(\delta k = 0, \delta l = 0)$ representing the cell containing the particle i, and the surrounding 8 elements are the neighboring cells. We have the normalization

$$\sum_{\delta k = -1, 0, +1} \sum_{\delta l = -1, 0, +1} W_{k+\delta k, l+\delta l}(X_i, Y_i) = 1$$
(2)

For the zeroth order method this stencil is simple: W=0 for all $(\delta k, \delta l)$ except for $(\delta k, \delta l)=(0,0)$, for which W=1. In other words: for the zeroth order algorithm the 3×3 matrix has its central element equal to 1, the rest is 0. But for the first and second order methods the 9 elements of the stencil become more complex. Let us write these 9 elements as W[0,0], W[0,1], W[0,2], W[1,0], W[1,1], W[1,2], W[2,0], W[2,1], W[2,2], where we started from 0 instead of -1 simply because most computer languages start

array indexing from 0. Note that in Python and C the second of these indices is the x-direction while the first is the y-direction! Now let us define ϵ_x as

$$\epsilon_x = (X_i - x_{k-1/2}) / (x_{k+1/2} - x_{k-1/2})$$
 (3)

(which has the property that $0 \le \epsilon_x < 1$), and likewise ϵ_y for the y-direction.

a) Derive expressions for the 9 elements of W for the first- and second-order methods. You are allowed to write these expressions in a sequential way: first starting with W[:,:]=1, then doing the x-direction as W[:,{0,1,2}]=W[:,{0,1,2}]*something, and finally doing the y-direction as W[{0,1,2},:]=W[{0,1,2},:]*something. To help you on track, we give here the answer for the second-order method (in Python), and you have to derive that expression:

```
W[:,:] = np.ones((3,3))
W[:,0]*=0.5-ex+0.5*ex**2
W[:,1]*=0.5+ex-ex**2
W[:,2]*=0.5*ex**2
W[0,:]*=0.5-ey+0.5*ey**2
W[1,:]*=0.5+ey-ey**2
W[2,:]*=0.5*ey**2
```

where ex is ϵ_x , and ey is ϵ_y . Note: Don't forget to also do the first order version. You may need to use an if-statement for that (though it can also be done without).

3. Computing a density map from a set of particles in 2-D

Using what we have derived in the previous exercise, we can now put it in practice. We take H = 10.0, K = 20. We will have N particles of mass M/N, where M = 1.0 is the mass of all the particles together.

- a) Design and program a function that takes (X_i, Y_i) and returns the indices k, l and the W-matrix. To keep things easy, assume that you can be sure that (X_i, Y_i) are always at least 1 cell width away from the boundary, so that the 3×3 stencil always fits inside the grid.
- b) Set up a single particle (N=1), randomly positioned in the box, but make sure that it is at least 1 cell away from the boundary. Apply the weighting matrix to compute the density "function" $\rho_{k,l}$ (a $K \times K$ matrix). Show this as an image. Repeat this for zeroth, first and second order methods, and convince yourself that your stencil W[:,:] properly places the particle onto the $\rho_{k,l}$ grid.
- c) Now set up N=100 randomly positioned points following a 2-D Gaussian probability function with standard deviation $\sigma=3.0$. Reject all particles that lie within 1 cell of the boundary or beyond the boundary (the number N will thus decrease a bit). Now compute the $\rho_{k,l}$ using the zeroth, first and second order methods, for the same particle cloud, and compare these maps.
- d) Repeat for N=10000, and convince yourself that this approaches the right answer. For instance: is the integral $\int \int \rho(x,y) dx dy \simeq M$, as it should (the slight difference being the few particles that were rejected for lying outside the grid)?