Отчет о выполнении лабораторной работы 2.1.6 "Эффект Джоуля-Томсона"

Калашников Михаил, Б03-205

Цель работы: 1) определение изменения температуры углекислого газа при протекании через малопроницаемую перегородку при разных начальных значениях давления и температуры; 2) вычисление по результатам опытов коэффициентов Ван-дер-Ваальса "a" и "b".

Оборудование:

- трубка с пористой перегородкой;
- труба Дьюара;
- термостат ($\sigma_T = 0,01 \ K$);
- дифференциальная термопара;
- микровольтметр ($\sigma_U = 1 \ \mu V$)
- балластный баллон;
- манометр ($\sigma_{\Delta P} = 0.1 \ atm$).

1. Теоретическая часть

Эффектом Джоуля—Томсона называется изменение температуры газа, медленно протекающего из области высокого в область низкого давления в условиях хорошей тепловой изоляции. Изменение характеризуется коэффициентом Джоуля-Томсона:

$$\mu = \frac{\Delta T}{\Delta P} = \frac{(2a/RT) - b}{C_p}$$

Температура, при которой коэффициент меняет знак называется температурой инверсии, и, используя связь между коэффициентами a и b и критической температурой, получим:

$$T_{inv} = \frac{27}{4}T_{cr}$$

2. Экспериментальная установка

Схема установки для исследования эффекта Джоуля—Томсона в углекислом газе представлена на рисунке. Основным элементом установки является трубка 1 с пористой перегородкой 2, через которую пропускается исследуемый газ. Углекислый газ под повышенным давлением поступает в трубку через змеевик 5 из балластного баллона 6. Давление газа в трубке измеряется манометром М и регулируется вентилем В. Разность температур газа до перегородки и после нее измеряется дифференциальной термопарой медь — константан. Константановая проволока соединяет спаи 8 и 9, а медные проволоки подсоединены к цифровому вольтметру 7. Для уменьшения теплоотвода трубка с пористой перегородкой помещена в трубу Дьюара 3, стенки которой посеребрены, для уменьшения теплоотдачи, связанной с излучением. Для уменьшения теплоотдачи за счет конвекции один конец трубы Дьюара уплотнен кольцом 4, а другой закрыт пробкой 10 из пенопласта. Такая пробка практически не создает перепада давлений между внутренней полостью трубы и атмосферой.

Рис. 1: Схема установки для изучения эффекта Джоуля-Томсона

3. Проведение эксперимента

- 1. Убедившись в работспособности экспериментальной установки, можем приступить к выполнению измерений.
- 2. Включим термостат и выставим комнатную температуру в 20 градусов Цельсия.
- 3. Зафиксируем значение вольтметра при отсутствии перепада давления.

$$U_0 = -5 \ \mu V$$

Откроем вентиль B настолько, чтобы перепад давлений составил 4 атмосферы.

- 4. Выждав время, достаточное для окончания переходных процессов, зафиксируем значение вольтметра в таблицу 1.
- 5. Понизив давление на полатмосферы и снова выждав некоторое время, запишем показания вольтметра.
- 6. Повторим предыдущий пункт понижая давление вплоть до 2 атмосфер.
- 7. Повысим температуру термостата и повторим предыдущие пункты.

4. Обработка данных

8. Используя табличные значения зависимости напряжения на термопаре от разности температуры на термопаре (таблица 2), переконвертируем значения таблицы 1 по формуле:

$$\Delta T = \frac{1}{\alpha(T)}(U - U_0)$$

Полученный результат отобразим в таблице 3.

- 9. Отложим полученные точки на графике $\Delta T(\Delta P)$. По наклону графика получим коэффициент Джоуля-Томсона для каждой температуре (таблица 3).
- 10. Мы знаем, что зависимость $\mu(\frac{1}{T})$ линейна и представима в виде

$$\mu(T) = \frac{2a}{RC_p} \frac{1}{T} - \frac{b}{C_p}$$

Проведем прямую y=kx+m через значения μ и $\frac{1}{T}$, полученные в ходе эксперимента. Из параметров этой прямой можно найти коэффициенты a и b:

$$a = \frac{kRC_p}{2}; \quad b = -C_p m$$

Из справочника, для углекислого газа $C_p=41~\frac{J}{mol\cdot K}$. Температуру инверсии найдем по формуле:

$$T_{inv} = \frac{2a}{Rb}$$

5. Расчет погрешностей

Относительная случайная погрешность коэффициента a равна относительной погрешности коэффициента наклона прямой $\mu(\frac{1}{T})$. Последняя так же определяется из метода наименьших квадратов. Аналогично можно найти отнгосительную случайную погрешность коэффициента b.

$$\varepsilon_{a(rand)} = \varepsilon_k = \frac{\sigma_k}{k} = 9.1\%$$

$$\varepsilon_{b(rand)} = \varepsilon_m = \frac{\sigma_m}{m} = 11.0\%$$

Приборную погрешность найдем из формулы погрешности косвенных измерений.

рении.
$$\varepsilon_{a(inst)} = \sqrt{\varepsilon_T^2 + \varepsilon_{\Delta T}^2 + \varepsilon_{\Delta P}^2} = 4.0\%$$

$$\varepsilon_{b(inst)} = \sqrt{\varepsilon_{\Delta T}^2 + \varepsilon_{\Delta P}^2} = 4.0\%$$

$$\varepsilon_{\Delta T} = \varepsilon_U = \sigma_U < \frac{1}{U - U_0} >, \quad \varepsilon_T = \sigma_T < \frac{1}{T} >, \quad \varepsilon_P = \sigma_P < \frac{1}{P} >$$

Полная погрешность равна:

$$\varepsilon_{a} = \sqrt{\varepsilon_{a(rand)}^{2} + \varepsilon_{a(inst)}^{2}} = 9.9\%$$

$$\varepsilon_{b} = \sqrt{\varepsilon_{b(rand)}^{2} + \varepsilon_{b(inst)}^{2}} = 11.7\%$$

Таким образом, величины a и b равны:

$$a = 1.9 \pm 0.2 \frac{Pa \cdot m^6}{mol^2}$$
 $b = (1.3 \pm 0.1) \cdot 10^{-3} \frac{m^3}{mol}$

Найдем температуру инверсии:

$$T_{inv} = \frac{2a}{Rb} = 372 \pm 57 \ K$$

6. Вывод

Полученные значения очень сильно отличаются от табличных значений. Коэффициент a превышает в 5 раз, b — в 30 раз. Температура инверсии в 6 раз больше табличного значения. Очевидно, точности уравения Ван-дер-Ваальса недостаточно при обработки результатов данного эксперимента.

7. Приложения

$t, {^{\circ}C}$ $\Delta P, atm$	4,0	3, 5	3,0	2, 4	2,0
20,00	91	71	53	34	21
25,00	88	69	53	38	28
35,00	87	74	62	44	32
45,00	81	72	61	47	38
55,00	72	68	59	45	37

Таблица 1: Показания вольметра в μV в зависимости от перепада давления ΔP и температуры термостата T

$t,^{\circ}C$	20	25	35	45	55
$\alpha, \mu V/K$	40,3	40,7	41,6	42,5	43,3

Таблица 2: Зависимость чувствительности термопары от температуры

T, K $\Delta P, kPa$	410	350	300	240	200
293,15	2,39	1,89	1,44	0,97	0,65
298,15	2,29	1,82	1,43	1,06	0,81
308,15	2,21	1,90	1,61	1,18	0,89
318,15	2,02	1,81	1,55	1,22	1,01
328,15	1,78	1,69	1,48	1,15	0,97

Таблица 3: Перепад температуры $\Delta T, K$ в зависимости от перепада давления ΔP и температуры термостата T

$t,^{\circ}C$	20,00	25,00	35,00	45,00	55,00
$\mu, \mu K/Pa$	8.5	7.2	6.5	5.1	4.2

Таблица 4: Зависимость коэффициента Джоуля-Томсона от температуры

Рис. 2: График зависимости $\Delta T(\Delta P)$ для различных температур

Рис. 3: График зависимости $\mu(\frac{1}{T})$