Intro to Computer Science Assignment 3

Yiping Deng

2017-09-27

Problem 3.1 Lemma: The number of elements in the power set P(s) of a finite set S with n elements is 2^n Proof:

Basis: Given a empty set $A = \emptyset$, its power set $P(A) = \{\emptyset\}$

Inductive proof: Assume Lemma holds for set A with k element \Longrightarrow the size of its power set P(A) is $2^k \Longrightarrow$ for set with a extra element $m, B = \{m\} \cup A$ has k+1 elements \Longrightarrow in its power set P(B), it includes all the element in P(A) and with a a set with its element set unioned with element $m \Longrightarrow P(B) = P(A) \cup \{C \cup \{m\} \mid C \in P(A)\} \Longrightarrow$ the size of P(B) is twice the size of $P(A) \Longrightarrow$ the size of P(B) is equal to 2^{k+1}

Problem 3.2

a)

- It is not reflexive: $a = b \implies \neg a \neq b$
- It is symmetric: $a = b \implies b = a$
- It is transitive: $a = b \land b = c \implies a = c$

b)

- It is reflexive: $|a-a|=0 \le 3 \implies \forall a \in A.(a,a) \in R$
- It is symmetric: $|a-b| \le 3 \iff |b-a| \le 3$
- It is not transitive: $\mid a-b\mid \leq 3 \wedge \mid b-c\mid \leq 3 \not \Longrightarrow \mid a-c\mid \leq 3$. A example: $a=3,b=6,c=9 \implies \mid a-b\mid \leq 3,\mid b-c\mid \leq 3,\mid a-c\mid \geq 3$

 \mathbf{c}

- It is reflexive: $\forall a \in \mathbb{Z}.(a \mod 10) = (b \mod 10)$
- It is symmetric: $\forall a, b \in \mathbb{Z}.(a \mod 10) = (b \mod 10)$ $\implies (b \mod 10) = (a \mod 10) \implies \forall (a, b) \in R, (b, a) \in R$

Problem 3.3 in problem3.hs file

Problem 3.4 in problem4.hs file (in the comment)