MECHTRON 2MD3 | Assignment 3

Question 1

Order the following functions by asymptotic growth rate:

- (1) 4nlog(n) + 2n
- (2) 2^{10}
- (3) $2^{log(n)}$
- (4) 3n + 100log(n)
- (5) $2 + n^2$
- (6) 4n
- (7) 2^n
- (8) $n^2 + 10n$
- (9) n^3
- (10) nlog(n)

If we plot all of these O(n) functions, on a Big O complexity chart. We would get the following diagram:

Using this the functions with the slowest growth rate at the top would be:

- (2) 2^{10}
- (3) $2^{log(n)}$

```
(4) 3n + 100log(n)?

(6) 4n

(10) nlog(n)

(1) 4nlog(n) + 2n

(5) 2 + n^2

(8) n^2 + 10n

(9) n^3

(7) 2^n
```

```
Show that if d(n) is O(f(n)), then ad(n) is O(f(n)), for any constant a > 0. (Hint: use the formal definition of Big-O)
```

In big O notation, we often ignore any constants in front of function. For example, if we had a function that had a big-O time of log(n) and another function of time of a*log(n). For small values of n, the value of a would have a difference on the running time of the algorithm. But in **Big-**O notation revolves around **big** numbers, in this case as $\lim_{n\to\infty}$ we would have two functions that are ∞ and $8*\infty$ which are both just the same value.

Question 3

Give a big-Oh characterization, in terms of n, of the running time of Algorithm Ex1 on page 3.

```
Algorithm Ex1(A):
    Input: An array A storing n \ge 1 integers.
    Output: The sum of the elements in A.
    s \leftarrow A[\emptyset]
    for i \leftarrow 1 to n - 1 do
    s \leftarrow s + A[i]
    return s
```

This function would be in O(n) time due to there being a for loop that iterates through each element in the A[n]

Give a big-Oh characterization, in terms of n, of the running time of Algorithm Ex2 on page 3.

```
Algorithm Ex2(A):
    Input: An array A storing n ≥ 1 integers.
    Output: The sum of the elements at even cells in A.
    s ← A[0]
    for i ← 2 to n - 1 by increments of 2 do
        s ← s + A[i]
    return s
```

This function would be also in O(n) time. This is because for a list of n items, the algorithm would go through n/2 items. For Big-O notation as we have $\lim_{n\to\infty}$ the constant O(n/2) would become O(n).

Question 5 (change!)

Give a big-Oh characterization, in terms of n, of the running time of Algorithm Ex3 on page 3.

```
Algorithm Ex3(A):
    Input: An array A storing n \ge 1 integers.
    Output: The sum of the prefix sums in A.
    s \leftarrow 0
    for i \leftarrow 0 to n-1 do
    s \leftarrow s + A[0]
    for j \leftarrow 1 to i do
    s \leftarrow s + A[j]
return s
```

This algorithm take in an array of n items and for each item it sums up the previous items before it. To find the time complexity, you would consider:

- 1. That the algorithm considers n items for the first for loop
- 2. For the second for loop it considers a total of i items up to n times
- 3. For the maximum possible case, the first for loop would have n items and the second for loop would also have a max of n items.

Since the second for loop scales from 1 item to n items, the total sum of s would be the sum of the two loops giving up O(n*n) time which would be a final time of $O(n^2)$ complexity.

Give a big-Oh characterization, in terms of n, of the running time of Algorithm Ex4 on page 3.

```
Algorithm Ex4(A):
    Input: An array A storing n \ge 1 integers.
    Output: The sum of the prefix sums in A.
    s \leftarrow A[\theta]
    t \leftarrow s
    for i \leftarrow 1 to n - 1 do
    s \leftarrow s + A[i]
    t \leftarrow t + s
    return t
```

Since this algorithm goes through $\, {}_{n} \,$ variables, the function would be at O(n) time based on n items in the array.

Question 7

Give a big-Oh characterization, in terms of n, of the running time of Algorithm Ex5 on page 3.

```
Algorithm Ex4(A):
    Input: Arrays A and B each storing n \ge 1 integers.
    Output: The number of elements in B equal to the sum of prefix sums in A. c \leftarrow 0
    for i \leftarrow 0 to n - 1 do
        s \leftarrow 0
    for j \leftarrow 0 to n - 1 do
        s \leftarrow s + A[0]
    for k \leftarrow 1 to j do
        s \leftarrow s + A[k]
        if B[i] = s then
        c \leftarrow c + 1
```

Since we have two for loops that go through $\, {}_{n} \,$ items each we would have a time complexity of $O(n^2)$. But since the second loop goes only up to a worst case of $\, {}_{n} \,$ items we would have a time of $O(n^2*n)$, leaving us with a final time of $O(n^3)$.

Given an n-element array X, Algorithm D calls Algorithm E on each element X[i]. Algorithm E runs in O(i) time when it is called on element X[i]. What is the worst-case running time of Algorithm D?

Here we have:

- D calls E on each value of n, running in O(n)
- E calls on each value running in O(n) time for each element X[n]

The worst-case running time would be that algorithm D calls each element from X[0], X[1], ..., X[n] and algorithm E runs on each element up to X[n] giving a total runtime of $O(n^2)$

Question 9

An array A contains n-1 unique integers in the range [0, n-1], that is, there is one number from this range that is not in A. Design an O(n)-time algorithm for finding that number. You are only allowed to use O(1) additional space besides the array A itself.

This would result in a function with:

- O(3) = O(1), space complexity
- O(2n) = O(n), time complexity

Question 10

Suppose you have a deque D containing the numbers (1,2,3,4,5,6,7,8), in this order. Suppose further that you have an initially empty queue Q. Give a pseudo-code description of a function that

uses only D and Q (and no other variables or objects) and results in D storing the elements (1,2,3,5,4,6,7,8), in this order

```
while(D is not empty){
   if(D.front is 4){
      Q.emplace_back(5); //swaps 4 with 5
      D.pop_front();
      continue;
   } else if(D.front is 5){
      Q.emplace_back(4); //swaps 5 with 4
      D.pop_front();
      continue;
   }
   Q.emplace_back(D.front()); //inserts the first element of D to the last element of Q
   D.pop_front(); //deletes the first element
}
Q.swap(D); //swap D and Q
```

Question 11

Suppose Alice has picked **three distinct integers** and placed them into a stack S in random order. Write a short, straight-line piece of pseudo-code **(with no loops or recursion)** that uses only **one comparison and only one variable x**, yet guarantees with probability **2/3** that at the end of this code the **variable x will store the largest** of Alice's three integers. Argue why your method is correct

```
x = S.pop(); if(x<S.top()) {x=S.pop()};
```

First we start of with a stack of [A , B , C],

We then set x = A and have a resulting stack of [B, C]

We then compare A to B, leaving us with two options:

- 1. A > B
- 2. A < B

If A is greater than B, then we have either A or C being the greatest.

the pseudocode above sets x to be A

If B is greater than A, then we have either B or C being the greatest.

• the pseudocode above sets x to be B

Thus if the largest number is in the first or second slot of the stack, \times will store the largest number between the two else if it is at the end it will not. This leaves us with a 2/3 chance of getting the largest number due to random chance since the algorithm is dependent on the random number generator landing the largest number in either A or B.