## Teoria Combinatorial dos Números

Thiago Landim

Março 2019

- Apresentação dos Problemas
- Definições e Resultados Básicos
- Parte 1

4 Parte 2

## **Problemas**

**1 Problemas Extremais.** Qual o maior conjunto  $A \subset \{1, 2, \dots, n\}$  que satisfaz uma propriedade  $\mathcal P$  dada?

#### **Problemas**

- **1 Problemas Extremais.** Qual o maior conjunto  $A \subset \{1, 2, \dots, n\}$  que satisfaz uma propriedade  $\mathcal P$  dada?
- **2 Problemas de Contagem.** Quantos conjuntos  $A \subset \{1, 2, \dots, n\}$  satisfazem uma propriedade  $\mathcal P$  dada?

#### **Problemas**

- **1 Problemas Extremais.** Qual o maior conjunto  $A \subset \{1, 2, \dots, n\}$  que satisfaz uma propriedade  $\mathcal P$  dada?
- **2 Problemas de Contagem.** Quantos conjuntos  $A \subset \{1, 2, \dots, n\}$  satisfazem uma propriedade  $\mathcal P$  dada?
- **9 Problemas Probabilísticos.** Dada uma propriedade  $\mathcal{P}$ , qual a probabilidade de um número  $n \in \mathbb{N}$  escolhido aleatoriamente possuir essa propriedade?

# Comportamento Assintótico

Dadas duas funções  $f,g \colon \mathbb{N} \to \mathbb{R}_{>0}$ , denotamos por

- **1** g(n) = O(f(n)), se existe C tal que  $\forall n \in \mathbb{N}, \ g(n) \leq Cf(n)$ .
- ②  $g(n) = \Omega(f(n))$ , se existe C tal que  $\forall n \in \mathbb{N}, \ g(n) \ge Cf(n)$ .
- **3** g(n) = o(f(n)), se

$$\lim_{n \to +\infty} \frac{g(n)}{f(n)} = 0.$$

$$\lim_{n \to +\infty} \frac{g(n)}{f(n)} = 1.$$

## Teorema dos Números Primos

Seja  $\pi(n) \coloneqq \#$  de primos  $p \le n$  (função de contagem de primos). Então é verdadeiro o seguinte resultado.

Teorema (Teorema dos Números Primos)

$$\pi(n) \sim \frac{n}{\log n}$$



Definimos um espaço de probabilidade por uma tripla:

**1** Um conjunto  $\Omega$  (que será finito) chamado *espaço amostral*;

Definimos um espaço de probabilidade por uma tripla:

- **1** Um conjunto  $\Omega$  (que será finito) chamado *espaço amostral*;
- 2 Uma coleção E de subconjuntos de  $\Omega$  cujos elementos chamaremos de eventos;

Definimos um espaço de probabilidade por uma tripla:

- **1** Um conjunto  $\Omega$  (que será finito) chamado *espaço amostral*;
- **2** Uma coleção E de subconjuntos de  $\Omega$  cujos elementos chamaremos de *eventos*;
- **1** Uma função *probabilidade*  $\mathbb{P} \colon E \to [0,1]$  que associa a cada conjunto a chance de ele ocorrer.

Definimos um espaço de probabilidade por uma tripla:

- **1** Um conjunto  $\Omega$  (que será finito) chamado *espaço amostral*;
- ② Uma coleção E de subconjuntos de  $\Omega$  cujos elementos chamaremos de *eventos*;
- ① Uma função probabilidade  $\mathbb{P} \colon E \to [0,1]$  que associa a cada conjunto a chance de ele ocorrer.

Em geral, tomaremos a distribuição uniforme

$$\mathbb{P}[S] = \frac{|S|}{|\Omega|}.$$



Uma variável aleatória é uma função  $X\colon\Omega\to\mathbb{R}$ . Em particular, a função indicadora

$$\mathbb{1}_S:\Omega\to\mathbb{R}$$
 
$$\mathbb{1}_S(x)=\begin{cases} 1, \text{ se }x\in S\\ 0, \text{caso contrário} \end{cases}$$

é uma variável aleatória. Dado  $F \subset \mathbb{R}$ , definimos

$$\mathbb{P}[X \in F] = \mathbb{P}[\{\omega \in \Omega \mid X(\omega) \in F\}].$$

Definimos a expectativa ou valor esperado de uma variável aleatória X como a média de X sobre todos os elementos de  $\Omega$ . Visto matematicamente, temos a fórmula

$$\mathbb{E}[X] = \sum_{x} x \mathbb{P}[X = x].$$

Em particular,

$$\mathbb{E}[\mathbb{1}_S] = \mathbb{P}[\mathbb{1}_S = 1] = \frac{|S|}{|\Omega|}.$$

Propriedade importante: A expectativa é linear

$$\mathbb{E}[c_1X_1 + \dots + c_nX_n] = c_1\mathbb{E}[X_1] + \dots + c_n\mathbb{E}[X_n].$$

## Densidade Assintótica

Dado  $A \subset \mathbb{N}$ , definimos sua densidade superior e inferior, respectivamente, por

$$\bar{\sigma}(A) := \limsup_{N \to \infty} \frac{A \cap [0, N)}{N}$$

е

$$\underline{\sigma}(A) := \liminf_{N \to \infty} \frac{A \cap [0, N)}{N}.$$

Se  $\bar{\sigma}(A) = \underline{\sigma}(A)$ , chamamos o limite existente de *Densidade Assintótica* e denotamos por  $\sigma(A)$ .

## Infinitude dos Primos

#### **Teorema**

Existem infinitos primos.

#### Demonstração de Erdős.

Suponha que haja uma quantidade finita de primos  $p_1,p_2,\ldots,p_k$ . Dado  $N\in\mathbb{N}$ , escreva todo  $n\leq N$  na forma  $n=a^2b$ . Então  $1\leq a\leq \sqrt{N}$ . Além disso, b é da forma  $b=p_1^{\varepsilon_1}\cdots p_k^{\varepsilon_k}$ , onde  $\varepsilon_i\in\{0,1\}$ . Então, embora haja N número entre 1 e N, há no máximo  $\sqrt{N}\cdot 2^k$  fatorações possíveis de números nesse intervalo, o que é falso para N suficientemente grande.  $\square$ 



## Infinitude dos Primos

#### Teorema

Existem infinitos primos.

#### Demonstração de Chernoff.

Iremos contar pontos em um reticulado. Note que se todos os primos são  $p_1,p_2,\ldots,p_k$ , então todo número n pode ser escrito da forma  $n=p_1^{\alpha_1}p_2^{\alpha_2}\cdots p_k^{\alpha_k}$ . Vamos contar quantas fatorações primas temos de 1 a N. Como  $2^{\alpha_i} \leq p_i^{\alpha_i} \leq N$ , temos  $\left\lfloor \frac{\log N}{\log 2} \right\rfloor + 1$  opções para  $\alpha_i$ . Portanto teríamos que

$$N \le \left( \left\lfloor \frac{\log N}{\log 2} \right\rfloor + 1 \right)^k,$$

o que é falso para N grande.



## Produto de Euler

## Teorema (Produto de Euler)

Se s > 1, então

$$\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n} = \prod_{p \in \mathcal{P}} \left( 1 - \frac{1}{p^s} \right)^{-1}.$$

## Produto de Euler

## Teorema (Produto de Euler)

Se s > 1, então

$$\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n} = \prod_{p \in \mathcal{P}} \left( 1 - \frac{1}{p^s} \right)^{-1}.$$

#### Demonstração.

Escolha aleatoriamente um número  $n\in\mathbb{N}$  com probabilidade  $\frac{1/n^s}{\zeta(s)}$ . Então, dado p primo,  $\mathbb{P}[p\mid n]=\frac{1}{n^s}$ . Assim

$$\zeta(s)^{-1} = \mathbb{P}[1 \text{ foi escolhido}] = \prod_{p \in \mathcal{P}} \left(1 - \frac{1}{p^s}\right).$$



## Exemplos de Problemas Extremais

Qual o maior tamanho de um subconjunto  $A \subset \{1, 2, \dots, 2n\}$  tal que:

- $\blacksquare$   $\nexists a,b,c\in A$  tais que a+b=c (A é chamado livre de somas).



## Números Livres de Quadrados

Um  $n \in \mathbb{N}$  é dito número livre de quadrados se

$$\forall a \in \mathbb{N} \quad a^2 \nmid n,$$

isto é, se ele é o produto de primos distintos.

Pergunta: Escolhido um número  $n \in \mathbb{N}$  aleatoriamente, qual a probabilidade de ele ser livre de quadrados?

#### "Demonstração".

Dado p primo, um número  $n\in\mathbb{N}$  escolhido aleatoriamente tem probabilidade  $\frac{1}{p^2}$  de ser múltiplo de  $p^2$ . Assim, a probabilidade de ele não ser múltiplo de nenhum primo ao quadrado é

$$\prod_{p} \left( 1 - \frac{1}{p^2} \right) = \frac{6}{\pi^2}.$$



#### Teorema

A probabilidade de dois números naturais escolhidos aleatoriamente serem coprimos é  $\frac{6}{\pi^2}$ . Mais geralmente, a probabilidade de k números  $a_1,\ldots,a_k\in\mathbb{N}$  serem coprimos é  $\frac{1}{\zeta(k)}$ .

#### "Demonstração".

A probabilidade de que um primo p divida todos os k números é  $\frac{1}{p^k}$ , então a probabilidade de que ele não divida pelo menos um deles é  $1-\frac{1}{p^k}$ . Tomando o produto sobre todos os primos e usando o produto de Euler, temos o resultado.





Uma outra pergunta que Cameron e Erdős se interessaram foi a quantidade de subconjuntos  $A \subset \{1, 2, \dots, n\}$  tais que  $\forall a, b \in A, \ \mathrm{mdc}(a, b) = 1.$ 



Uma outra pergunta que Cameron e Erdős se interessaram foi a quantidade de subconjuntos  $A\subset\{1,2,\ldots,n\}$  tais que  $\forall a,b\in A,\ \mathrm{mdc}(a,b)=1.$ 

## Teorema (Cameron-Erdős, 1990)

Se f(n) é o número de conjuntos  $A\subset\{1,2,\ldots,n\}$  tais que  $\mathrm{mdc}(a,b)=1\ \forall a\neq b\in A$ , então

$$e^{(\frac{1}{2}+o(1))\sqrt{n}}2^{\pi(n)} \le f(n) \le e^{(2+o(1))\sqrt{n}}2^{\pi(n)}.$$

Posteriormente, N. Calkin e A. Granville demonstraram um resultado mais forte.

## Teorema (Calkin-Granville, 1996)

Se f(n) é o número de conjuntos  $A\subset\{1,2,\ldots,n\}$  tais que  $\mathrm{mdc}(a,b)=1\ \forall a\neq b\in A$ , então

$$f(n) = 2^{\pi(n)} e^{\sqrt{n}(1 + O(\log \log n / \log n))}.$$



## Conjuntos Livres de Coprimos

Outro problema estudado por Cameron e Erdős foi a quantidade de subconjuntos de  $\{1,2,\ldots,n\}$  livre de coprimos.

## Teorema (Cameron-Erdős, 1990)

Se g(n) é o número de subconjuntos de  $\{1,2,\ldots,n\}$  livres de coprimos.

$$2^{\lfloor n/2 \rfloor} \le g(n) \le n 2^{\lfloor n/2 \rfloor}.$$



No mesmo artigo, N. Calkin e A. Granville também melhoraram essa cota.

## Teorema (Calkin-Granville, 1996)

A quantidade de conjuntos  $A\subset\{1,2,\ldots,n\}$  tais que  $\mathrm{mdc}(a,b)=1\ \forall a\neq b\in A$  é

$$2^{\lfloor n/2\rfloor} + 2^{\lfloor n/2\rfloor - K} + O\left(2^{\lfloor n/2\rfloor - K} \exp\left(-C\frac{n}{(\log n)^2 \log\log n}\right)\right)$$

para alguma constante C > 0, onde K satisfaz

$$K = (e^{-\gamma} + o(1)) \frac{n}{\log \log n}$$



# Função $\varphi$ de Euler

#### Teorema

Se  $n=p_1^{\alpha_1}\cdots p_r^{\alpha_r}$ , então

$$\varphi(n) = n\left(1 - \frac{1}{p_1}\right)\cdots\left(1 - \frac{1}{p_r}\right)$$

#### Demonstração.

A probabilidade de que um número entre 1 e n seja coprimo com n é, por definição,  $\frac{\varphi(n)}{n}$ . Por outro lado, a probabilidade de que um número escolhido aleatoriamente seja múltiplo de  $p_i$  é  $\frac{1}{p_i}$ . Assim probabilidade de que ele seja coprimo com n também pode ser calculada por

$$\left(1 - \frac{1}{p_1}\right) \cdots \left(1 - \frac{1}{p_r}\right),\,$$

de onde segue o teorema.



## Função $\varphi$ de Euler

Um outro resultado interessante a respeito da função  $\varphi$  é o seguinte.

$$\sum_{d|n} \varphi(d) = n.$$

Uma demonstração de tal resultado consiste em contar as frações  $\{\frac{1}{n},\frac{2}{n},\frac{3}{n},\dots,1\}$ . Obviamente, temos n frações dessa forma, mas quantas frações reduzidas temos?

A fração k/n será reduzida da forma k'/d se, e somente se,  $\mathrm{mdc}(k,n)=d$ . Ou seja, se e somente se  $\mathrm{mdc}(k,n/d)=1$ . Logo isso ocorre n/d vezes para cada divisor. Somando sobre todos os divisores, temos o resultado.



# Pequeno Teorema de Fermat

#### Teorema

Se p é um primo, então

$$p \mid a^p - a$$
.

#### Demonstração.

Desejamos contar de quantas formas é possível colorir um colar de p pérolas com a cores de modo que haja pelo menos 2 cores. Temos  $a^p-a$  colares com pelo menos 2 cores, mas cada uma delas é gerada p vezes (cada rotação), portanto

$$\frac{a^p-a}{p}$$

é um inteiro.



## Um Exemplo Olímpico

(IMO 1968) Para todo n natural, calcule a soma

$$\sum_{k=0}^{\infty} \left\lfloor \frac{n+2^k}{2^{k+1}} \right\rfloor = \left\lfloor \frac{n+1}{2} \right\rfloor + \left\lfloor \frac{n+2}{4} \right\rfloor + \dots + \left\lfloor \frac{n+2^k}{2^{k+1}} \right\rfloor + \dots$$



## Solução

Vamos contar quantos números  $\leq n$  existem da forma  $r=2^k(2m-1)$ .

$$2^{k} \le 2^{k} (2m - 1) \le n$$

$$1 \le 2m - 1 \le \frac{n}{2^{k}}$$

$$2 \le 2m \le \frac{n + 2^{k}}{2^{k}}$$

$$1 \le m \le \left\lfloor \frac{n + 2^{k}}{2^{k+1}} \right\rfloor$$

Assim, como todo número pode ser escrito dessa forma ao variarmos o k, a soma vale n.



## Problemas com Divisibilidade

Iremos estudar conjuntos  $A \subset \{1, 2, \dots, n\}$  tais que

$$\forall a, b \in A, \ a \neq b \implies a \nmid b.$$

Seja f(n) a quantidade de conjuntos dessa forma. Então  $2^{n/2} \leq f(n)$ . Cameron e Erdős conjecturaram em 1990 que existe c tal que  $f(n) = (c+o(1))^n$ , ou seja,  $\lim_n f(n)^{1/n} = c$ , e encontraram as seguintes cotas.

#### Teorema (Cameron-Erdős, 1990)

Para n suficientemente grande,

$$c_1^n \le f(n) \le c_2^n$$

para  $c_1 = 1.55967...$  e  $c_2 = 1.59...$ 



## Problemas com Divisibilidade

Esse problema foi resolvido em 2018 pelo brasileiro Rodrigo Angelo.

#### Teorema (Angelo, 2018)

Seja f(n) definido como anteriormente. Então o limite

$$\lim_{n \to \infty} f(n)^{1/n}$$

existe.

Infelizmente, sua demonstração não dá indícios de qual o valor desse limite.



# Conjuntos Livres de Somas

## Teorema (Erdős, 1965)

Seja  $A \subset \mathbb{Z}$  finito com elementos não nulos. Então existe um  $B \subset A$  livre de somas e satisfazendo |B| > |A|/3.

#### Demonstração.

Considere A imerso em algum  $\mathbb{Z}_p$  com p grande, e p=3k+2. Note que o conjunto  $S = \{k+1, \ldots, 2k+1\}$  é um conjunto livre de somas e tal que  $|S|/|\mathbb{Z}_p^{\times}| = \frac{k+1}{3k+1} > \frac{1}{3}$ . Considere a variável aleatória X(x) = # de números da forma xa em S,  $a \in A$ .

Então

$$\mathbb{E}[X] = |A|\mathbb{P}[y \in S] > \frac{|A|}{3}$$



# Conjuntos Livres de Somas

Seja f(n)= tamanho do maior conjunto  $B\subset\{1,2,\ldots,n\}$  livre de somas.

Teorema (Erdős, 1965)

$$\frac{n}{3} \le f(n) \le \frac{3}{7}n$$

Teorema (Alon-Kleitman, 1990)

$$\frac{n+1}{3} \le f(n) \le \frac{12}{29}n$$

Teorema (Bourgain, 1997)

$$\frac{n+2}{3} \le f(n)$$



# Conjuntos Livres de Somas

Seja f(n)= tamanho do maior conjunto  $B\subset\{1,2,\ldots,n\}$  livre de somas.

Teorema (Erdős, 1965)

$$\frac{n}{3} \le f(n) \le \frac{3}{7}n$$

Teorema (Alon-Kleitman, 1990)

$$\frac{n+1}{3} \le f(n) \le \frac{12}{29}n$$

Teorema (Bourgain, 1997)

$$\frac{n+2}{3} \le f(n)$$

**Problema.** É possível substituir  $\frac{n}{3}$  por  $\frac{n}{3} + 10$ ?



## Conjuntos Livres de Somas

Um desenvolvimento recente da teoria foi feito por Eberhard, Green e Manners.

Teorema (Eberhard-Green-Manners, 2014)

$$f(n) \le \left(\frac{1}{3} + o(1)\right)n$$

Mostrando que a constante  $\frac{1}{3}$  é ótima.



### Conjectura de Cameron-Erdős

#### Quantos conjuntos livre de somas há?

Teorema (Erdős-Granville-Calkin-Alon, 1990)

A quantidade de conjuntos livre de somas  $A\subset\{1,2,\ldots,n\}$  é  $2^{(rac{1}{2}+o(1))n}$  .



### Conjectura de Cameron-Erdős

#### Quantos conjuntos livre de somas há?

Teorema (Erdős-Granville-Calkin-Alon, 1990)

A quantidade de conjuntos livre de somas  $A\subset\{1,2,\ldots,n\}$  é  $2^{(rac{1}{2}+o(1))n}$  .

Teorema (Green-Sapozhenko, 2003)

A quantidade de conjuntos livre de somas  $A \subset \{1, 2, ..., n\}$  é  $O(2^{n/2})$ .



### Conjectura de Cameron-Erdős

#### Quantos conjuntos livre de somas há?

Teorema (Erdős-Granville-Calkin-Alon, 1990)

A quantidade de conjuntos livre de somas  $A\subset\{1,2,\ldots,n\}$  é  $2^{(rac{1}{2}+o(1))n}$  .

#### Teorema (Green-Sapozhenko, 2003)

A quantidade de conjuntos livre de somas  $A \subset \{1, 2, \dots, n\}$  é  $O(2^{n/2})$ .

Uma generalização desse resultado foi recentemente demonstrada.

### Teorema (Alon-Balogh-Morris-Samotij, 2012)

A quantidade de conjuntos livre de somas  $A \subset \{1,2,\ldots,n\}$  de tamanho  $m \not\in 2^{O(n/m)} \binom{\lfloor n/2 \rfloor}{m}$  e esse resultado é preciso salvo pela constante implícita no  $O(\cdot)$ .



# Conjuntos Livres de Somas Maximais

Uma outra conjectura de Cameron e Erdős é se a quantidade de conjuntos livres de soma maximais é bem menor que a quantidade de conjuntos livres de soma. Eles deram a cota inferior  $2^{\lfloor n/4 \rfloor}$ .

O seguinte resultado resolve o problema.

### Teorema (Balogh-Liu-Sharifzadeh-Treglown, 2015)

Para  $1 \le i \le 4$ , existem  $C_i$  tais que se  $n \equiv i \pmod 4$ , então  $\{1, 2, \ldots, n\}$  contém  $(C_i + o(1))2^{\lfloor n/4 \rfloor}$  conjuntos livres de somas maximais.

Um conjunto de inteiros positivos  $A=\{a_1,a_2,\ldots,a_k\}$  é dito ter somas distintas se as  $2^k-1$  somas dos elementos de subconjuntos de A são distintas dois a dois.

Seja f(n) o maior k para o qual existe um conjunto

$$\{a_1,\ldots,a_k\}\subset\{1,2,\ldots,n\}$$

com somas distintas.

O exemplo mais simples de um conjunto livre de somas é

$$\{2^i : 0 \le i \le \lfloor \log_2 n \rfloor \}.$$

Portanto

$$f(n) \ge 1 + \lfloor \log_2 n \rfloor.$$



Para encontrar uma cota superior, uma contagem simples dá conta. Como as  $2^k-1$  somas são distintas e inferiores a kn, sabemos que  $2^k \le nk$ , de onde segue que  $f(n) \le \log_2 n + \log_2 \log_2 n + O(1)$ .



Erdős ofereceu \$300 para quem conseguisse provar ou desprovar

$$f(n) \le |\log_2 n| + C.$$



Outro problema que Cameron e Erdős resolveram, foi calcular a quantidade de conjuntos em  $\{1, 2, \dots, n\}$  com somas distintas.

Como vimos, o tamanho máximo de um conjunto dessa forma é  $(1+o(1))\log_2 n$ , portanto temos a cota superior

$$f(n) \le n^{(1+o(1))\log n/\log 2}$$
.



Além disso, se escolhermos os números em ordem, para garantir que possamos adicionar  $a_{i+1}$ , basta que ele seja diferente de todas as somas da forma  $\sum_{j< i} \delta_i a_i \ (\delta_i \in \{-1,0,1\})$ .

Então temos no máximo  $\frac{3^i-1}{2}$  números proibidos, assim, enquanto  $n>\frac{3^i-1}{2}$ , podemos adicionar um número a sequência, de modo que podemos fazer pelo menos  $\lfloor \log_3 n \rfloor$  escolhas e obtemos pelo menos  $n^{(1+o(1))\log n/\log 3}$  sequências.

# Funções Aritméticas

Algumas definições de funções aritméticas que serão usadas posteriormente.

Se 
$$n=p_1^{lpha_1}\cdots p_r^{lpha_r}$$
, então

$$d(n) \coloneqq \#$$
 de divisores de  $n$ 

$$\omega(n) \coloneqq r$$

$$\Omega(n) \coloneqq \alpha_1 + \dots + \alpha_r$$



# Alguns Resultados Assintóticos

#### Série Harmônica

$$\sum_{k=1}^{n} \frac{1}{k} = \log n + \gamma + O\left(\frac{1}{n}\right)$$

#### Teoremas de Mertens

$$\sum_{p} \frac{\log p}{p} = \log n + O(1)$$

$$\sum_{p} \frac{1}{p} = \log \log n + M + O\left(\frac{1}{\log n}\right)$$

$$\lim_{n \to \infty} \log n \prod_{p \le n} \left(1 - \frac{1}{p}\right) = e^{-\gamma}$$



# A Ordem Média de d(n)

#### Teorema

$$\sum_{k=1}^{n} d(k) = n \log n + (2\gamma - 1)n + O\left(\frac{1}{\sqrt{n}}\right)$$





# A Ordem Normal de $\omega(n)$ e de $\Omega(n)$

#### Teorema (Hardy-Ramanujan, 1917; Turán, 1934)

A ordem normal de  $\omega(n)$  e de  $\Omega(n)$  é  $\log \log n$ . Isto é,  $\forall \varepsilon > 0$ ,

$$|\{n \le N \mid |\omega(n) - \log\log n| > (\log\log n)^{\frac{1}{2} + \varepsilon}\}| = o(n)$$

e o mesmo é válido para  $\Omega(n)$ .

#### Demonstração.

Mostraremos que a soma

$$\sum_{n \le N} |\omega(n) - \log \log n|^2 = O(N \log \log N).$$

Assim, se ocorresse de a quantidade do problema não ser o(n), isto é, ser  $\Omega(n)$ , então essa soma seria  $\Omega(N(\log\log N)^{1+2\varepsilon})$ . Absurdo.



# A Ordem Normal de $\log d(n)$

Note que  $\forall n \in \mathbb{N}$ ,

$$2^{\omega(n)} \le d(n) \le 2^{\Omega(n)}.$$

Portanto a ordem normal de  $\log d(n)$  é  $\log 2 \log \log n$ .

Note que, nesse caso, a ordem normal é diferente da ordem média, pois a série é dominada por alguns poucos termos grandes.



### Aplicação Interessante

Defina f(n) a quantidade de elementos de 1 a  $n^2$  que podem ser escritos como produto de dois números de 1 a n, isto é,

$$f(n) := \left| \left\{ 1 \le z \le n^2 : \exists a, b \le n, z = ab \right\} \right|.$$

Então

$$\lim_{n \to \infty} \frac{f(n)}{n^2} = 0$$



### O Teorema de Erdős-Kac

No Teorema de Hardy-Ramanujan, dissemos que a quantidade de ponto para os quais  $\omega(n)$  está longe de  $\log\log n$  a uma medida maior que  $\sqrt{\log\log n}$  tende a 0. Desejamos saber como essa diferença se comporta quando estes números estão próximos.

A resposta é que se comportam como a Distribuição Gaussiana.

### Teorema (Erdős-Kac, 1940)

Dados a < b reais, seja

$$\Phi(a,b) = \frac{1}{\sqrt{2\pi}} \int_a^b e^{-t^2/2} dt.$$

Então,

$$\lim_{N \to +\infty} \frac{1}{N} \left| n \le N : a \le \frac{\omega(n) - \log \log n}{\sqrt{\log \log n}} \le b \right| = \Phi(a,b).$$

# Teorema de Ramsey Infinito

### Teorema (Teorema de Ramsey)

Dado  $r \in \mathbb{N}$ . Para toda coloração  $c: \binom{\mathbb{N}}{2} \to \{1, 2, \dots, r\}$ , existe um subconjunto infinito  $S \subset \mathbb{N}$  monocromático.

#### Demonstração.

Escolha um ponto qualquer, escolha a vizinhança monocromática dele infinita e continue esse processo.



#### Um resultado interessante

#### **Teorema**

Existe um subconjunto infinito  $S \subset \mathbb{N}$  tal que a soma de quaisquer dois elementos de S possui uma quantidade par de divisores primos distintos.



# Propriedade Multiplicativa

Se chamarmos f(n) a quantidade de conjuntos  $A=\{a_1,\ldots,a_t\}\subset\{1,2,\ldots,n\}$  tais que nenhum termo divide o produto dos outros, trivialmente temos a vota inferior  $2^{\pi(n)}$ , mas podemos melhorá-la para.

#### Teorema (Cameron-Erdős, 1990)

Se f(n) é definido como acima,

$$2^{(c+o(1))\pi(n)} \le f(n)$$

onde

$$c = \frac{1}{\log 2} \sum_{r>1} \frac{\log(r+1)}{r(r+1)} \approx 1.1814...$$



### Demonstração

Para cada  $\sqrt{n} \le p \le n$ , podemos adicionar no máximo um pt para  $0 \le t \le n/p$ . Assim, temos pelo menos

$$\prod_{r \le \sqrt{n}} (r+1)^{\pi(n/r) - \pi(n/(r+1))}.$$

Usando o Teorema dos Números primos, o resultado segue.



# Conjuntos Sidon Multiplicativos

Um conjunto  $A = \{a_1, a_2, \dots, a_m\} \subset \mathbb{N}$  é dito Sidon se  $a_i + a_j = a_k + a_l \implies \{i, j\} = \{k, l\}$  e chamado Sidon multiplicativo se  $a_i a_j = a_k a_l \implies \{i, j\} = \{k, l\}.$ 



## Conjuntos Sidon Multiplicativos

Um conjunto  $A=\{a_1,a_2,\ldots,a_m\}\subset\mathbb{N}$  é dito Sidon se  $a_i+a_j=a_k+a_l\Longrightarrow\{i,j\}=\{k,l\}$  e chamado Sidon multiplicativo se  $a_ia_j=a_ka_l\Longrightarrow\{i,j\}=\{k,l\}.$ 

#### Teorema (Erdős, 1938)

Um conjunto Sidon multiplicativo  $A \subset \{1,2,\ldots,n\}$  tem tamanho no máximo  $\pi(n) + 2n^{2/3}$ .



## Conjuntos Sidon Multiplicativos

#### Teorema (Cameron-Erdős, 1990)

Se f(n) é a quantidade de conjuntos Sidon multiplicativos em  $\{1, 2, \ldots, n\}$ , então

$$2^{(c+o(1))\pi(n)} \le f(n)$$

onde

$$c = \frac{1}{\log 2} \sum_{r>1} \frac{\log(r+1)}{r(r+1)} \approx 1.1814...$$

#### Teorema de Schur

Enquanto estudava o Último Teorema de Fermat, Schur demonstrou o seguinte resultado.

#### Teorema (Schur, 1916)

Para qualquer r-coloração dos números naturais, existem x,y,z monocromáticos tais que x+y=z.

Que tem como corolário o seguinte teorema.

#### Teorema (Schur, 1916)

Para todo  $n \in \mathbb{N}$ , a equação

$$x^n + y^n \equiv z^n \pmod{p}$$

tem solução não trivial para todo p primo suficientemente grande.



#### Uma Resultado Recente

Uma generalização do Teorema de Schur é tentar tomar combinações não lineares de x e y. Um problema em aberto recentemente solucionado é que é possível sempre encontrar um par  $\{x+y,xy\}$  monocromático. Na verdade, temos um resultado mais forte.

#### Uma Resultado Recente

Uma generalização do Teorema de Schur é tentar tomar combinações não lineares de x e y. Um problema em aberto recentemente solucionado é que é possível sempre encontrar um par  $\{x+y,xy\}$  monocromático. Na verdade, temos um resultado mais forte.

### Teorema (J. Moreira, 2016)

Se  $\mathbb{N}$  é r-colorido, então existem infinitos x,y tais que  $\{x,x+y,xy\}$  é monocromático.

#### Teorema de Van der Waerden

#### Teorema (Van der Waerden, 1927)

Toda coloração dos números inteiros possui progressões aritméticas monocromáticas de tamanho arbitrário.



## Densidade de um Conjunto

Erdős e Turán em 1938 conjecturaram que o Teorema de Schur era consequência de um resultado mais profundo. Uma das partições deve ser grande, e esse resultado só seria suficiente para demonstrar o resultado. Considere a seguinte definição.

Dado  $A \subset \mathbb{N}$ , definimos sua densidade superior por

$$\bar{\sigma}(A) := \limsup_{N \to \infty} \frac{A \cap [0, N)}{N}$$



#### Teorema de Szemerédi

#### Teorema (Roth, 1953)

Seja  $A \subset \mathbb{N}$ . Se  $\bar{\sigma}(A) > 0$ , então existem progressões aritméticas de tamanho arbitrário em A.

### Teorema de Szemerédi

#### Teorema (Roth, 1953)

Seja  $A \subset \mathbb{N}$ . Se  $\bar{\sigma}(A) > 0$ , então existem progressões aritméticas de tamanho arbitrário em A.

#### Teorema (Szemerédi, 1969-1975)

Seja  $A \subset \mathbb{N}$ . Se  $\bar{\sigma}(A) > 0$ , então existem progressões aritméticas de tamanho arbitrário em A.



#### Teorema de Szemerédi

#### Teorema (Roth, 1953)

Seja  $A \subset \mathbb{N}$ . Se  $\bar{\sigma}(A) > 0$ , então existem progressões aritméticas de tamanho arbitrário em A.

#### Teorema (Szemerédi, 1969-1975)

Seja  $A \subset \mathbb{N}$ . Se  $\bar{\sigma}(A) > 0$ , então existem progressões aritméticas de tamanho arbitrário em A.

Posteriormente, H. Furstenberg (1982) demonstrou utilizando Teoria Ergódica e T. Gowers (2001) demonstrou usando Análise Harmônica.



### Conjectura de Erdős

#### **Teorema**

Para todo  $A \subset \mathbb{N}$  com densidade superior positiva, existem subconjuntos infinitos  $B, C \subset \mathbb{N}$  tais que  $B + C \subset A$ .

### Conjectura de Erdős

#### Teorema

Para todo  $A \subset \mathbb{N}$  com densidade superior positiva, existem subconjuntos infinitos  $B, C \subset \mathbb{N}$  tais que  $B + C \subset A$ .

Demonstrado por *Joel Moreira, Florian Karl Richter, Donald Robertson* em 2018.

# Bibliografia

- G. H. Hardy, E. M. Wright; An Introduction to the Theory of Numbers, 6th Edition, OUP, 2008.
- N. Alon, J. Spencer; The Probabilistic Method, 4th Edition, Wiley, 2015.
- T. Tao, V. Vu; Additive Combinatorics, CUP, 2006.
- R. Morris; Extremal and Probabilistic Combinatorics, http://w3.impa.br/~rob/Extremal\_and\_probabilistic\_combinatorics.pdf, 2012.