СПЕКТРАЛЬНЫЙ АНАЛИЗ ЭЛЕКТРИЧЕСКИХ СИГНАЛОВ (3.6.1)

Солодилов Михаил Б01-306

30 октября 2024 г.

1 Аннотация

Цель работы: изучить спектры сигналов различной формы и влияние параметров сигнала на вид соответствующих спектров;

В работе используются: генератор сигналов произвольной формы, цифровой осциллограф, подключённый к персональному компьютеру.

2 Теоретическое введение

Разложение сложных сигналов на периодические колебания

Представление периодического сигнала в виде суммы гармонических сигналов называется разложением в ряд Фурье.

Пусть заданная функция f(t) периодически повторяется с частотой $\Omega_1 = \frac{2\pi}{T}$, где T - период повторения. Ее разложение в ряд Фурье имеет вид

$$f(t) = \frac{a_0}{2} + \sum_{n=1}^{\infty} [a_n \cos(n\Omega_1 t) + b_n \sin(n\Omega_1 t)]$$

Здесь $\frac{a_0}{2}$ - среднее значение функции f(t),

$$a_n = \frac{2}{T} \int_{t_1}^{t_1+T} f(t) \cos(n\Omega_1 t) dt,$$

$$b_n = \frac{2}{T} \int_{t_1}^{t_1+T} f(t) \sin(n\Omega_1 t) dt.$$

Рассмотрим периодические функции, которые исследуются в нашей работе.

1. Периодическая последовательность прямоугольных импульсов (рис. 1) с амплитудой V_0 , длительностью τ , частотой повторения $\Omega_1 = \frac{2\pi}{T}$, где T - период повторения импульсов. Найдем коэффициенты разложения ряда Фурье:

$$\frac{a_0}{2} = V_0 \frac{\tau}{T},$$

$$a_n = \frac{2}{T} \int_{-\frac{\tau}{2}}^{\frac{\tau}{2}} V_0 \cos(n\Omega_1 t) dt = 2V_0 \frac{\tau}{T} \frac{\sin(n\Omega_1 \frac{\tau}{2})}{n\Omega_1 \frac{\tau}{2}} \sim \frac{\sin x}{x}.$$

Поскольку наша функция четная, все коэффициенты синусоидальных гармоник $b_n = 0$. Спектр a_n последовательности прямоугольных импульсов представлен на рис. 2 (изображен случай, когда T кратно τ).

 $\delta\nu$ 0 0 $\Delta\nu$ 0 $\Delta\nu$ $\Delta\nu$ $\Delta\nu$

Рис. 1: Прямоугольные импульсы

Рис. 2: Спектр последовательности прямоугольных импульсов

Назовем шириной спектра $\Delta \omega$ расстояние от главного максимума ($\omega=0$) до первого нуля огибающей, возникающего при $n=\frac{2\pi}{\tau\Omega_1}$. При этом

$$\Delta\omega\tau \simeq 2\pi$$

или

$$\Delta \nu \Delta t \simeq 1$$

Полученное соотношение взаимной связи интервалов $\Delta \nu$ и Δt является частным случаем соотношения неопределенности в квантовой механике.

2. Периодическая последовательность цугов гармонического колебания $V_0 \cos(\omega_0 t)$ с длительностью цуга τ и периодом повторения T (рис. 3).

Функция f(t) снова является четной относительно t=0. Коэффициент при n-й гармонике равен

$$a_{n} = \frac{2}{T} \int_{-\frac{\tau}{2}}^{\frac{\tau}{2}} V_{0} \cos(\omega_{0}t) \cos(n\Omega_{1}t) dt = V_{0} \frac{\tau}{T} \left(\frac{\sin[(\omega_{0} - n\Omega_{1})\frac{\tau}{2}]}{(\omega_{0} - n\Omega_{1})\frac{\tau}{2}} + \frac{\sin[(\omega_{0} + n\Omega_{1})\frac{\tau}{2}]}{(\omega_{0} + n\Omega_{1})\frac{\tau}{2}} \right)$$

Зависимость для случая, когда $\frac{T}{\tau}$ равно целому числу, представлена на рис. 4. Сравнивая спектр последовательности прямоугольных импульсов и цугов мы видим, что они аналогичны, но их максимумы сдвинуты по частоте на величину ω_0 .

3. **Амплитудно-модулированные колебания.** Рассмотрим гармонические колебания высокой частоты ω_0 , амплитуда которых медленно меняется по гармоническому закону с частотой Ω ($\Omega \ll \omega_0$)) (рис. 5):

$$f(t) = A_0[1 + m\cos\Omega t]\cos\omega_0 t$$

Рис. 4: Спектр последовательности цугов

Рис. 3: Последовательность цугов

Коэффициент m называют **глубиной модуляции**. При m<1 амплитуда колебаний меняется от минимальной $A_{min}=A_0(1-m)$ до максимальной $A_{max}=A_0(1+m)$. Глубина модуляции может быть представлена в виде

$$m = \frac{A_{max} - A_{min}}{A_{max} + A_{min}}$$

Простым тригонометрическим преобразованием можно найти спектр амплитудно - модулированных колебаний:

$$f(t) = A_0 \cos(\omega_0 t) + \frac{A_0 m}{2} \cos(\omega_0 + \Omega)t + \frac{A_0 m}{2} \cos(\omega_0 - \Omega)t.$$

Рис. 5: Модулированные гармонические колебания

Рис. 6: Спектр модулированных гармонических колебаний

Спектр таких колебаний содержит три составляющих основную компоненту и две боковых (рис. 6). Первое слагаемое в правой части представляет собой исходное немодулированное колебание с основной (несущей) частотой ω_0 и амплитудой $a=A_0$. Второе и третье слагаемые соответствуют новым гармоническим колебаниям с частотами $\omega_0+\Omega$ и $\omega_0-\Omega$. Амплитуды этих двух колебаний одинаковы и составляют $\frac{m}{2}$ от амплитуды немодулированного колебания: $a=\frac{A_0m}{2}$. Начальные фазы всех трех колебаний одинаковы.

Ход работы 3

А. Исследование спектра периодической последовательности прямоугольных импульсов и проверка соотношений неопределённости

- 1. Настраиваем генератор на прямоугольные импульсы с частотой повторения $\nu_{\text{повт}}=1~\text{к}\Gamma$ ц (период T=1 мс) и длительностью импульса $\tau=T/20=50$ мкс.
- 2. Получаем на экране спектр (Преобразование Фурье) сигнала.
 - **а.** Изменяем $\nu_{\text{повт}}$ при фиксированном $\tau = 50$ мкс и получаем.

 $u_{\text{повт}} = 500 \, \Gamma$ ц

При уменьшении частоты повторения сигнала уменьшается амплитуда.

б. Изменяем au при фиксированном $u_{\text{повт}} = 1$ к Γ ц и получаем:

Как видно из графиков, при уменьшении длительности сигнала увеличивается ширина

3. Измерим амплитуды a_n и частоты ν_n спектральных гармоник при фиксированных $\nu_{\text{повт}}$ = 3к Γ ц и $\tau = 50$ мкс.

п гармоники	1	2	3	4	5	6
$\nu_n^{\text{эксп}}$, к Γ ц	0.952	1.991	3.030	3.989	5.028	6.067
$ u_n^{\mathrm{reop}}, \ \mathbf{k}\Gamma$ ц	1	2	3	4	5	6
$ a_n ^{\mathfrak{s}_{\mathrm{KCII}}}$, усл.ед	69.9800	69.2600	67.6200	65.6800	63.2200	60.2400
$ a_n/a_1 _{\mathfrak{S}KC\Pi}$	1	0.9897	0.9663	0.9386	0.9034	0.8608
$ a_n/a_1 _{\text{Teop}}$	1	0.9877	0.9674	0.9393	0.9040	0.8619

$$\nu_n^{\text{reop}} = \frac{n}{T}$$
$$|a_n|_{\text{reop}} = \frac{|\sin \frac{\pi n \tau}{T}|}{\pi n}$$

4. Зафиксируем период повторения прямоугольного сигнала T=1мс, $\nu_{\text{повт}}=1$ к Γ ц. Изменяя длительность импульса τ в диапазоне от $\tau=T/50$ до $\tau=T/5$, измерим полную ширину спектра сигнала $\Delta\nu$ — от центра спектра ($\nu=0$) до гармоники с нулевой амплитудой $a_n\approx 0$ и установим зависимость между $\Delta\nu$ и τ , полученную из формулы ??.

τ , MKC	20	50	80	110	140	170	200
$\Delta \nu$, к Γ ц	50.00	20.05	12.54	9.01	6.98	5.91	4.93
$1/\tau \cdot 10^3$, c ⁻¹	50.0	20.0	12.5	9.1	7.1	5.9	5.0

Таблица 1: Исследование зависимости $\Delta \nu$ и τ

Построим график $\Delta\nu\left(\frac{1}{\tau}\right)$. Используя МНК, получим $k=1.002\pm0.003$, откуда с хорошей точностью можем заключить, что $\Delta\nu\frac{1}{\tau}=1$, что экспериментально доказывает соотношение неопределённостей. График приведён на рис.7

Рис. 7: Зависимость $\Delta \nu$ от $1/\tau$

5. Зафиксируем длительность импульса прямоугольного сигнала $\tau = 100$ мкс. Изменяя период повторения T в диапазоне от 2τ до 50τ измерим расстояния $\delta\nu = \nu_{n+1} - \nu_n$ между соседними гармониками спектра.

T, MKC	200	1160	2120	3080	4040	5000
$\delta \nu$, Γ ц	10000	870	471	335	198	196

Таблица 2: Зависимость $\delta \nu$ от T

Построим график $\delta\nu\left(\frac{1}{T}\right)$. Используя МНК, получим $k=2.08\pm0.13$, что экспериментально не доказывает соотношение неопределённостей (из-за ошибкок в считывании данных). График приведён на рис.8.

Рис. 8: Зависимость $\delta \nu$ от 1/T

Б. Наблюдение спектра периодической последовательности цугов

- 1. Настраиваем генератор на периодичные импульсы синусоидальной формы (цугов) с несущей частотой $\nu_0 = 50$ к Γ ц, частотой повторения $\nu_{\text{повт}} = 1$ к Γ ц, число периодов синусоиды в одном импульсе N = 5 (что соответствует длительности импульса $\tau = N/\nu_o = 100$ мкс).
- 2. Получаем на экране спектр (Преобразование Фурье) сигнала.
 - а. Изменяем N при фиксированных $\nu_0=50$ к Γ ц и $\nu_{\text{повт}}=1$ к Γ ц:

N=0, $\partial \nu=1$ KI II, $\Delta \nu=19.5$ KI II

N=10, $\delta \nu = 1$ к Γ ц, $\Delta \nu = 9.7$ к Γ ц

Соотношение неопределённостей:

$$\Delta \nu \cdot \tau = 19.5 \cdot 10^3 \frac{5}{50 \cdot 10^3} = 9.7 \cdot 10^3 \frac{10}{50 \cdot 10^3} \approx 1$$

Видим, что спектр остаётся симметричным относительно одной и той же точки, однако "сжимается"к ней при увеличении N.

б. Изменяем ν_0 при фиксированных N=5 и $\nu_{\text{повт}}=1$ к Γ ц:

$$u_0 = 50$$
 κΓιι, $\delta \nu = 1$ κΓιι, $\Delta \nu = 19.5$ κΓιι

$$u_0=25$$
 кГц, $\delta
u=1$ кГц, $\Delta
u=10$ кГц

Соотношение неопределённостей:

$$\Delta\nu \cdot \tau = 19.5 \cdot 10^3 \frac{5}{50 \cdot 10^3} = 10 \cdot 10^3 \frac{5}{25 \cdot 10^3} = 1$$

Видим, что в этом случае спектр не меняет свою форму, однако его центр смещается в соответсвии с изменением частоты несущей.

в. Изменяем $\nu_{\text{повт}}$ при фиксированных N=5 и $\nu_0=50$ к Γ ц:

 $u_{\text{повт}} = 1 \text{ к}$ Γц, $\delta \nu = 1 \text{ к}$ Γц, $\Delta \nu = 19.5 \text{ к}$ Γц $u_{\text{повт}} = 0.5 \text{ к}$ Γц, $\delta \nu = 0.5 \text{ к}$ Γц, $\Delta \nu = 20 \text{ к}$ Γц

Видно, что соотношение неопределённости выполняется:

$$\frac{\delta \nu}{\nu_{\text{\tiny HOBT}}} = \frac{1 \cdot 10^3}{1 \cdot 10^3} = \frac{0.5 \cdot 10^3}{0.5 \cdot 10^3} = 1$$

Также видно, что при стремлении частоты повторения к нулю, стремится к нулю и расстояние между компонентами спектра.

Г. Наблюдение спектра амплитудно-модулированного сигнала

1. Настраиваем генератор в режим модулированного по амплитуде синусоидального сигнала с несущей частотой $\nu_0=50$ к Γ ц, частотой модуляции $\nu_{\text{мод}}=2$ к Γ ц и глубиной модуляции m = 0.5.

2. Получаем на экране спектр (Преобразование Фурье) сигнала. Из графика получим $A_{max} = 318$ мВ и $A_{min} = 111.3$ мВ и убедимся в справедливости соотношения

$$m = \frac{A_{\text{max}} - A_{\text{min}}}{A_{\text{max}} + A_{\text{min}}} = \frac{206.7}{429.3} \approx 0.5$$

Поскольку мы установили глубину модуляции на 0,5, а из теории у нас получилась 0,503, то мы видим, что формула ?? верна.

3. Изменяя на генераторе глубину модуляции m в диапазоне от 10 % до 100 % (всего 6-8 точек), измерим отношение амплитуд боковой и основной спектральных линий $a_{\rm 6ok}/a_{\rm och}$. Построим график зависимости $a_{\rm 6ok}/a_{\rm och}$ от m и проверим, совпадает ли результат с теоретическим.

m, %	10	25	40	55	70	85	100
$a_{\text{бок}}/a_{\text{осн}}$	0.0489	0.1265	0.1969	0.2730	0.3490	0.4223	0.4998

Таблица 3. Исследование зависимости $a_{\text{бок}}/a_{\text{осн}}$ от m.

Рис. 9: Зависимость $a_{\text{бок}}/a_{\text{осн}}$ от m

Построим график $\frac{a_{60\mathrm{K}}}{a_{\mathrm{осн}}}(m)$. Используя МНК, получим $k=0.499x\pm0,004$, что подтверждает $\frac{a_{60\mathrm{K}}}{a_{\mathrm{осн}}}=\frac{m}{2}$, т.е. совпадает с теоретическим предсказанием. График приведён на рис.9.

4 Выводы

В данной работе мы изучили понятие спектра и спектрального анализа, исследовали спектральный состав периодических электрических сигналов.