a) Using MIT public key encryption with numeric value of each alphabet is its lexical position (eg a=1,b=2, etc), encrypt the text "computernetwork". Take p=5, q=11 and d=27. Also compute e.

Solution:

In this scenario we shall go RSA which is Asymmetric (Public Key Private Key) Key algorithm

As given

P=5

Q = 11

N=P*Q=5*11=55

D=27

E= $3((5-1)(11-1) = 40 \rightarrow 2,5)$

ABCDE

FGHIJ

KLMNO

PQRST

UVWXY

Z

PT=Plain Text

PT→	C	О	M	P	U	T	E	R	N	E	T	W	O	R	K	S
No. for $PT \rightarrow$	3	15	13	16	21	20	5	18	14	5	20	23	15	18	11	19
CT→	27															

PT=C=3

 $CT=PT^E \mod N$

 $CT = 3^3 \text{ MOD } 55 = 27$

 $CT = 15^3 \text{ MOD } 55 \equiv$

 $CT = 13^3 \text{ MOD } 55 \equiv$ $CT = 16^7 \text{ MOD } 55 \equiv$

 $CT = 15^7 \text{ MOD } 55 \equiv$

 $CT = 15^7 \text{ MOD } 55 =$

 $CT = 15^7 \text{ MOD } 55 =$

 $PT = 15 (27) \mod 55$

Illustration for 3³ MOD 55

- \rightarrow 3¹ mod 55 = 3 mod 55 = 3
- \Rightarrow 3² mod 55 = 9 mod 55 = 9
- → $3^4 \mod 55 \equiv (3^2)^2 \equiv 9^2 \equiv 81 \mod 55 \equiv 25$ → $3^8 \mod 55 \equiv (3^4)^* (3^4) \equiv 20$
- \Rightarrow 3° mod 55 = (3°) *(3¹) = 20*3=5

$PT = 5 (27) \mod 55$

```
27 (1) mod 55 = 27

27 (2) mod 55 = 14

27 (4) mod 55 = 31

27 (8) mod 55 = 26

27 (16) mod 55 = 16

(27 (16) * 27 (8) * 27 (2) * 27 (1) ) mod 55 = 16*26*14*27 = 157248-157245= 3
```