Definition 15.1 (Ring Homo/Isomorphism). A mapping ϕ from ring R to S is a ring homomorphism, if it preserve the operations, that is:

$$\phi(a+b) = \phi(a) + \phi(b)$$
 $\phi(ab) = \phi(a)\phi(b0)$

If the mapping is one-to-one and onto, then it is also a ring isomorphism.

Theorem 15.1 (Properties of Ring Homomorphism). Let ϕ a homomorphism from ring R to ring S.

- 1. For any $r \in R$ and any positive integer n, $\phi(nr) = n\phi(r)$ and $\phi(r^n) = (\phi(r))^n$
- 2. Let A a subring of R, then $\phi(A) = \{ \phi(a) \mid a \in A \}$ is a subring of S.
- 3. If A is an ideal and ϕ is onto, then $\phi(A)$ is an ideal of S.
- 4. Let B a ideal of S, then $\phi^{-1}(B) = \{ a \in R \mid \phi(a) \in B \}$ is an ideal of R.
- 5. If R is commutative, then $\phi(R)$ is commutative.
- 6. If R has a unity, $S \neq \{0\}$, and ϕ is onto, then $\phi(1)$ is the unity of S, and for any $r \in R$ where r is a unit, then $\phi(r)$ is also a unit.
- 7. ϕ is a isomorphism iff ϕ is onto and $\operatorname{Ker} \phi = \{ a \in R \mid \phi(a) = 0 \} = \{0\}.$
- 8. If ϕ is a isomorphism, then ϕ^{-1} is a isomorphism.

Proof.

- Trivial, since homomorphism preserve operations.
- Trivial.
- For any $s \in S$, there is $r \in R$ such that $\phi(r) = s$ since ϕ onto, then for any $\phi(a) \in \phi(A)$, $\phi(a)s = \phi(a)\phi(r) = \phi(ar) \in \phi(A)$, same for $s\phi(a)$.
- For any $r \in R$, $\phi(r\phi^{-1}(B)) = \phi(r)B \subseteq B$, therefore $r\phi^{-1}(B) \subseteq \phi^{-1}(B)$.
- Trivial.
- For any $s \in S$, $s = \phi(1\phi^{-1}(s)) = \phi(1)s$, therefore $\phi(1)$ is the unity.

• For any $ab \in R$, $\phi(a) = \phi(b) \to \phi(a) - \phi(b) = 0 \to \phi(a-b) = 0$, therefore a - b = 0 since $\text{Ker } \phi = \{0\}$, and a = b. Then ϕ is one-to-one.

• . . .

Theorem 15.2 (Kernals are Ideals). Let ϕ a ring homomorphism from R to S, then Ker ϕ is an ideal of R.

Proof. By ideal-test:

- 0. Ker ϕ is non-empty, since $0 \in \text{Ker } \phi$.
- 1. For any $a \ b \in \text{Ker } \phi, \ \phi(a-b) = \phi(a) \phi(b) = 0 0 = 0.$
- 2. For any $a \in \text{Ker } \phi$ and $b \in R$, $\phi(ab) = \phi(a)\phi(b) = 0\phi(b) = 0$.

Theorem 15.3 (First Isomorphism Theorem for Rings). Let ϕ a ring homomorphism from R to S, then the mapping from $R/\operatorname{Ker} \phi$ to $\phi(R)$, given by $\psi(r + \operatorname{Ker} \phi) = \phi(r)$ is a isomorphism, that is, $R/\operatorname{Ker} \phi \approx \phi(R)$.

Proof. We know First Isomorphism Theorem works on (additive) groups, so we need to check that ϕ preserve multiplication. For any $s + \operatorname{Ker} \phi$ and $t + \operatorname{Ker} \phi$:

$$\psi((s + \operatorname{Ker} \phi)(t + \operatorname{Ker} \phi))$$

$$= \psi(st + \operatorname{Ker} \phi)$$

$$= \phi(st)$$

$$= \phi(s)\phi(t)$$

$$= \psi(s + \operatorname{Ker} \phi)\psi(t + \operatorname{Ker} \phi)$$

Theorem 15.4 (Ideals are Kernals). For any ideal I of some ring R, I is the kernal of homomorphism: $\phi(r \in R) = r + I$.

Theorem 15.5 (Homomorphism from Z to a Ring with Unity). Let R be a ring with unity, the mapping $\phi(n) = n \cdot 1$ is a homomorphism from Z to R.

Proof. Obviously, ϕ is a function, then we need to check whether ϕ is a homomorphism, for all a $b \in \mathbb{Z}$:

- $\phi(a+b) = (a+b) \cdot 1 = a \cdot 1 + b \cdot 1 = \phi(a) + \phi(b)$
- $\phi(ab) = (ab) \cdot 1 = (a \cdot 1)(b \cdot 1) = \phi(a)\phi(b)$

Corollary 15.1. Let R a ring with unity, then R contains Z_n where n > 0 is the characteristic of R or \mathbb{Z} if the characteristic of R is 0.

Proof. By Theorem 15.5, we know $\phi(n) = n \cdot 1$ is a homomorphism from \mathbb{Z} to R, if char R = m where m > 0, then we know $\operatorname{Ker} \phi =$ the set of multiple of $m = m\mathbb{Z} = \langle m \rangle$, therefore $\phi(\mathbb{Z}) \approx \mathbb{Z}/m\mathbb{Z} \approx Z_m$ is a subring of R. If char R = 0, then $\operatorname{Ker} \phi = \{0\}$, therefore $\phi(\mathbb{Z}) \approx \mathbb{Z}$ is a subring of R.

Corollary 15.2. For any positive integer m, the mapping $\phi(x) = x \mod m$ is a homomorphism from Z to Z_m .

Corollary 15.3. Let F a field, then F contains Z_p if F has a non-zero characteristic p or Q if F has a zero characteristic.

Proof. By Corollary 15.1, we know F contains Z_p if char F is non-zero. We claim the mapping $\phi(\frac{a}{b}) = (a \cdot 1)(b \cdot 1)^{-1}$ is a homomorphism from Q to F. We need to show that ϕ is a function. For any $\frac{a}{b} = \frac{c}{d}$, we know ad = bc,

$$ad \cdot 1 = bc \cdot 1$$

$$(a \cdot 1)(d \cdot 1) = (b \cdot 1)(c \cdot 1)$$

$$(a \cdot 1)(b \cdot 1)^{-1} = (c \cdot 1)(d \cdot 1)^{-1}$$

therefore $\phi(\frac{a}{b}) = \phi(\frac{c}{d})$.

Then we need to check that ϕ preserves operations, for any $\frac{a}{b} \frac{c}{d} in \mathbb{Q}$:

$$\phi(\frac{a}{b} + \frac{c}{d})$$

$$= \phi(\frac{ad + bc}{bd})$$

$$= ((ad + bc) \cdot 1)(bd \cdot 1)^{-1}$$

$$= (ad \cdot 1 + bc \cdot 1)(bd \cdot 1)^{-1}$$

$$= (ad \cdot 1)(bd \cdot 1)^{-1} + (bc \cdot 1)(bd \cdot 1)^{-1}$$

$$= \phi(\frac{ad}{bd}) + \phi(\frac{bc}{bd})$$

$$= \phi(\frac{a}{b}) + \phi(\frac{c}{d})$$

$$\begin{split} \phi(\frac{a}{b} \times \frac{c}{d}) \\ = \phi(\frac{ac}{bd}) \\ = (ac \cdot 1)(bd \cdot 1)^{-1} \\ = (a \cdot 1)(c \cdot 1)(d \cdot 1)^{-1}(b \cdot 1)^{-1} \\ = (a \cdot 1)(b \cdot 1)^{-1}(c \cdot 1)(d \cdot 1)^{-1} \\ = \phi(\frac{a}{b})\phi(\frac{c}{d}) \end{split}$$

Therefore ϕ is a homomorphism from \mathbb{Q} to F, then $\phi(\mathbb{Q}) \approx \mathbb{Q}/\operatorname{Ker} \phi$ is a subring of F. We claim $\operatorname{Ker} \phi = \langle 0 \rangle$. For any $\frac{a}{b} \in \operatorname{Ker} \phi$, we know $\phi(\frac{a}{b}) = \phi(0) = 0$, therefore $(a \cdot 1)(b \cdot 1)^{-1} = 0$, we know F is an integral domain, so one of $(a \cdot 1)$ and $(b \cdot 1)^{-1}$ is zero. But we know no one have 0 as invert element, so $(a \cdot 1)$ must be 0. By char F = 0, we know no positive a such that $a \cdot 1 = 0$, so a = 0 and $\frac{a}{b} = 0$.