Matrix Multiplications

Algorithm to Multiply 2 Matrices

Input: Matrices $A_{p \times q}$ and $B_{q \times r}$ (with dimensions $p \times q$ and $q \times r$) **Result**: Matrix $C_{p \times r}$ resulting from the product $A \cdot B$

```
MATRIX-MULTIPLY(A_{p \times q}, B_{q \times r})
```

```
1. for i \leftarrow 1 to p
2. for j \leftarrow 1 to r
3. C[i,j] \leftarrow 0
4. for k \leftarrow 1 to q
5. C[i,j] \leftarrow C[i,j] + A[i,k] \cdot B[k,j]
6. return C
```

Scalar multiplication in line 5 dominates time to compute CNumber of scalar multiplications = pqr

Matrix-chain Multiplication Problem

- Suppose we have a sequence or chain A_1 , A_2 , ..., A_n of n matrices to be multiplied
 - That is, we want to compute the product $A_1A_2...A_n$
- There are many possible ways (parenthesizations) to compute the product

Matrix-chain Multiplication Problem

• Given a chain $\langle A_1, A_2, ..., A_n \rangle$ of n matrices, where for i=0,1,...,n, matrix A_i has dimension $p_{i-1} \times p_i$, fully parenthesize the product of matrices in a way that minimizes the number of scalar multiplications.

$$\langle A_1, A_2, \ldots, A_n \rangle$$
, where A_i is $p_{i-1} \times p_i$, compute $A_1 A_2 \ldots A_n$

Matrix-chain Multiplication ...conto

- To compute the number of scalar multiplications necessary, we must know:
 - Algorithm to multiply two matrices
 - Matrix dimensions

Matrix-chain Multiplication

- Example: consider the chain A₁, A₂, A₃, A₄ of 4 matrices
 - Let us compute the product $A_1A_2A_3A_4$
- There are 5 possible ways:
 - 1. $(A_1(A_2(A_3A_4)))$
 - 2. $(A_1((A_2A_3)A_4))$
 - 3. $((A_1A_2)(A_3A_4))$
 - 4. $((A_1(A_2A_3))A_4)$
 - 5. $(((A_1A_2)A_3)A_4)$

Example

- Example: Consider three matrices $A_{10\times100}$, $B_{100\times5}$, and $C_{5\times50}$
- There are 2 ways to parenthesize
 - ((AB)C) = $D_{10\times5} \cdot C_{5\times50}$ • AB $\Rightarrow 10\cdot100\cdot5=5,000$ scalar multiplications • DC $\Rightarrow 10\cdot5\cdot50=2,500$ scalar multiplications 7,500
 - $(A(BC)) = A_{10 \times 100} \cdot E_{100 \times 50}$
 - BC \Rightarrow 100·5·50=25,000 scalar multiplications
 - AE \Rightarrow 10·100·50 = 50,000 scalar multiplications

Total: 75,000

Example

• For example, if the chain of matrices is $\langle A_1, A_2, ..., A_n \rangle$, the product of $A_1A_2...A_n$ can be fully parenthesized in five distinct ways:

$$\begin{array}{l} (A_1(A_2(A_3A_4))),\\ (A_1((A_2A_3)A_4)),\\ ((A_1A_2)(A_3A_4)),\\ ((A_1(A_2A_3))A_4),\\ (((A_1A_2)A_3)A_4). \end{array}$$

Example

Example – contd.

$$(A_{1}(A_{2}(A_{2}A_{4}))) \rightarrow A_{1} \times (A_{2}A_{2}A_{4}) \rightarrow A_{2} \times (A_{3}A_{4}) \rightarrow A_{3} \times A_{4}$$

$$cost = 13*5*34 + 5*89*34 + 89*3*34$$

$$= 2210 + 15130 + 9078$$

$$= 26418$$

$$(A_1(A_2(A_3A_4)))$$
, costs = 26418
 $(A_1((A_2A_3)A_4))$, costs = 4055
 $((A_1A_2)(A_3A_4))$, costs = 54201
 $((A_1(A_2A_3))A_4)$, costs = 2856
 $(((A_1A_2)A_3)A_4)$, costs = 10582

Catalan Number

- For any n, # ways to fully parenthesize the product of a chain of n+1 matrices
- = # binary trees with n nodes.
- = # permutations generated from 1 2 ... n through a stack.
- = # n pairs of fully matched parentheses.
- = *n*-th Catalan Number = $C(2n, n)/(n + 1) = \Omega(4^n/n^{3/2})$

Matrix-chain Multiplication - Problem

- Matrix-chain multiplication problem
 - Given a chain $A_1, A_2, ..., A_n$ of n matrices, where for i=1, 2, ..., n, matrix A_i has dimension $p_{i-1} \times p_i$
 - Parenthesize the product $A_1A_2...A_n$ such that the total number of scalar multiplications is minimized
- Brute force method of exhaustive search takes time exponential in *n*

Dynamic Programming Approach

- The structure of an optimal solution
 - Let us use the notation $A_{i..j}$ for the matrix that results from the product $A_i A_{i+1} ... A_j$
 - An optimal parenthesization of the product $A_1A_2...A_n$ splits the product between A_k and A_{k+1} for some integer k where $1 \le k < n$
 - First compute matrices $A_{1..k}$ and $A_{k+1..n}$; then multiply them to get the final matrix $A_{1..n}$

Dynamic Programming Approach

...conto

- **Key observation**: parenthesizations of the subchains $A_1A_2...A_k$ and $A_{k+1}A_{k+2}...A_n$ must also be optimal if the parenthesization of the chain $A_1A_2...A_n$ is optimal (why?)
- That is, the optimal solution to the problem contains within it the optimal solution to subproblems

Dynamic Programming Approach ...contd

- Recursive definition of the value of an optimal solution
 - Let m[i, j] be the minimum number of scalar multiplications necessary to compute $A_{i,j}$
 - Minimum cost to compute $A_{1..n}$ is m[1, n]
 - Suppose the optimal parenthesization of $A_{i..j}$ splits the product between A_k and A_{k+1} for some integer k where $i \le k < j$

Dynamic Programming Approach ...contd

- But... optimal parenthesization occurs at one value of k among all possible $i \le k < j$
- Check all these and select the best one

Dynamic Programming Approach ...contd

- $A_{i..j} = (A_i A_{i+1}...A_k) \cdot (A_{k+1} A_{k+2}...A_j) = A_{i..k} \cdot A_{k+1..j}$
- Cost of computing $A_{i..j} = \cos t$ of computing $A_{i..k} + \cos t$ of computing $A_{k+1..j} + \cos t$ of multiplying $A_{i..k}$ and $A_{k+1..j}$
- Cost of multiplying $A_{i..k}$ and $A_{k+1..j}$ is $p_{i-1}p_kp_j$
- $m[i,j] = m[i,k] + m[k+1,j] + p_{i-1}p_kp_j$ for $i \le k < j$
- m[i, i] = 0 for i=1,2,...,n

Dynamic Programming Approach ...contd

- To keep track of how to construct an optimal solution, we use a table *s*
- s[i, j] = value of k at which $A_i A_{i+1} ... A_j$ is split for optimal parenthesization
- Algorithm: next slide
 - First computes costs for chains of length l=1
 - Then for chains of length l=2,3,... and so on
 - Computes the optimal cost bottom-up

Step 1

• Step 1: The structure of an optimal parenthesization

Matrix Multiplication – contd.

• If T is an optimal solution for A_1, A_2, \dots, A_n

• then, T_1 (resp. T_2) is an optimal solution for A_1 , A_2 , ..., A_k (resp. A_{k+1} , A_{k+2} , ..., A_n).

Matrix Multiplication - contd.

- Let m[i,j] be the minmum number of scalar multiplications needed to compute the product $A_i ... A_j$, for $1 \le i \le j \le n$.
- If the optimal solution splits the product $A_i ... A_j = (A_i ... A_k) \times (A_{k+1} ... A_j)$, for some $k, i \le k < j$, then $m[i,j] = m[i,k] + m[k+1,j] + p_{i-1} p_k p_j$. Hence, we have :

$$m[i,j] = \min_{i \le k < j} \{m[i,k] + m[k+1,j] + p_{i-1} p_k p_j \}$$

= 0 if $i = j$

Step 2

- Step 2: A recursive solution
 - Compute: $A_i A_{i+1} ... A_j$
 - m[i, j]= minimum number of scalar multiplications needed to compute the matrix
 - Goal: m[1, n]

$$m[i,j] = \begin{cases} 0 & i = j \\ \min_{i \le k < j} \{m[i,k] + m[k+1,j] + p_{i-1}p_k p_j\} & i \ne j \end{cases}$$

Algorithm to Compute Optimal Cost

Input: Array p[0...n] containing matrix dimensions and n

Result: Minimum-cost table m and split table s

return *m* and *s*

Step 3

```
MATRIX-CHAIN-ORDER (p)
     n \leftarrow length[p] - 1
 2
     for i \leftarrow 1 to n
 3
            do m[i, i] \leftarrow 0
     for l \leftarrow 2 to n
                                   \triangleright l is the chain length.
 5
            do for i \leftarrow 1 to n - l + 1
 6
                     do j \leftarrow i + l - 1
 7
                          m[i, j] \leftarrow \infty
 8
                          for k \leftarrow i to j-1
 9
                               do q \leftarrow m[i, k] + m[k + 1, j] + p_{i-1}p_kp_j
10
                                   if q < m[i, j]
11
                                      then m[i, j] \leftarrow q
12
                                                                     Running time:
                                            s[i, j] \leftarrow k
13
     return m and s
                                                                     O(n^3)
```

Example

- Show how to multiply this matrix chain optimally
- Solution on the board
 - Minimum cost 15,125
 - Optimal parenthesization $((A_1(A_2A_3))((A_4A_5)A_6))$

Matrix	Dimension
A_1	30×35
A_2	35×15
A_3	15×5
A_4	5×10
A_5	10×20
A_6	20×25

MCM DP—order of matrix computations $m(1,1) \ m(1,2) \ m(1,3) \ m(1,4) \ m(1,5) \ m(1,6)$ $m(2,2) \ m(2,3) \ m(2,4) \ m(2,5) \ m(2,6)$ $m(3,3) \ m(3,4) \ m(3,5) \ m(3,6)$ $m(4,4) \ m(4,5) \ m(4,6)$ $m(5,5) \ m(5,6)$ m(6,6)

Figure 15.3 The m and s tables computed by MATRIX-CHAIN-ORDER for n = 6 and the following matrix dimensions:

matrix	dimension	1	$m[3,4]+m[5,5] + 15^{10}20$ =750 + 0 + 3000 = 3750
A_1	30 × 35	111[3,5] = 11111	=750 + 0 + 3000 = 3750
A_2	35×15		
A_3	15×5		m[3,3]+m[4,5] + 15*5*20
A_4	5×10		=0 + 1000 + 1500 = 2500
A_5	10×20		=0 + 1000 + 1300 = 2300
Ac	20 × 25		

The tables are rotated so that the main diagonal runs horizontally. Only the main diagonal and upper triangle are used in the m table, and only the upper triangle is used in the s table. The minimum number of scalar multiplications to multiply the 6 matrices is m[1, 6] = 15,125. Of the darker entries, the pairs that have the same shading are taken together in line 9 when computing

$$m[2,5] = \min \begin{cases} m[2,2] + m[3,5] + p_1 p_2 p_5 = 0 + 2500 + 35 \cdot 15 \cdot 20 &= 13000, \\ m[2,3] + m[4,5] + p_1 p_3 p_5 = 2625 + 1000 + 35 \cdot 5 \cdot 20 = 7125, \\ m[2,4] + m[5,5] + p_1 p_4 p_5 = 4375 + 0 + 35 \cdot 10 \cdot 20 &= 11375 \\ = 7125. \end{cases}$$

Step 4

• Step 4: Constructing an optimal soultion

```
PRINT-OPTIMAL-PARENS (s, i, j)

1 if i = j

2 then print "A"<sub>i</sub>

3 else print "("

4 PRINT-OPTIMAL-PARENS (s, i, s[i, j])

5 PRINT-OPTIMAL-PARENS (s, s[i, j] + 1, j)

6 print ")"
```

Example: Print-Optimal-Parens(s, 1, 6): $((A_1(A_2A_3))((A_4A_5)A_6))$

- Constructing an optimal solution
 - Each entry s[i, j]=k records that the optimal parenthesization of $A_iA_{i+1}...A_j$ splits the product between A_k and A_{k+1}
 - $A_{i..j} \rightarrow (A_{i..s[i..j]})(A_{s[i..j]+1..j})$

Matrix Multiplication – contd.

 $m[i,j] = \min_{i \le k < j} \{m[i,k] + m[k+1,j] + p_{i-1} p_k p_j\}$

• To fill the entry m[i, j], it needs $\Theta(j-i)$ operations. Hence the execution time of the algorithm is

$$\sum_{i=1}^{n} \sum_{j=i}^{n} (j-i) = \sum_{j=1}^{n} \sum_{i=1}^{j} (j-i) = \sum_{j=1}^{n} [j^{2} - \frac{j(j+1)}{2}]$$

$$= \sum_{i=1}^{n} \Theta(j^{2}) = \Theta(n^{3})$$

Time: $\Theta(n^3)$ Space: $\Theta(n^2)$

Matrix Multiplication – contd.

 Consider an example with sequence of dimensions <5,2,3,4,6,7,8>

Matrix Multiplication - contd.

 $m[i,j] = \min_{i \le k < j} \{m[i,k] + m[k+1,j] + p_{i-1} p_k p_j\}$ s[i,j] = a value of k that gives the minimum

