le second groupe ne contenant pas les réactions supplémentaires. C'est d'ailleurs là l'un des avantages des équations d'Euler-Lagrange : on obtient les équations du mouvement directement, sans passer par l'élimination de réactions ou de multiplicateurs.

4° Les notes (sur 40)

Un barème excessivement bienveillant a permis à un tout petit nombre de candidats d'obtenir une note voisine de la moyenne :

1	
32	0
117	1 à 5
44	6 à 10
16	11 à 15
4	16 à 19
6	20 à 24
0	25 à 40

Nombre de copies corrigées : 219

Moyenne: 4,73 (en excluant les copies nulles: 5,55).

PROBABILITÉS ET STATISTIQUES

Sujet (durée : 6 heures)

N.B. — La troisième partie est indépendante des deuxième et quatrième parties.

DÉFINITIONS, NOTATIONS ET RAPPELS

1º Dans tout le problème, $\mathbb N$ désigne l'ensemble des entiers naturels, $\mathbb N^*$ l'ensemble des entiers strictement positifs, $\mathbb R$ l'ensemble des réels, $\mathbb R$ l'ensemble $\mathbb R$ compactifié par deux éléments à l'infini (notés ∞ et — ∞); $\mathbb R^+$ désigne l'ensemble des réels strictement positifs, et $\mathbb R^+$ l'ensemble précédent compactifié par un élément à l'infini noté « ∞ ». $\mathscr B(\mathbb R)$ désigne la tribu des boréliens de $\mathbb R$ et, plus généralement, $\mathscr B(\mathbb U)$ désigne la tribu des boréliens de $\mathbb R$, où $\mathbb U$ est un sous-ensemble de $\mathbb R$.

Toute application de $\overline{\mathbb{R}}$, ou d'un sous-ensemble de $\overline{\mathbb{R}}$, mesurable relativement aux tribus boréliennes correspondantes, sera dite borélienne.

2º Désignant par (Ω, \mathcal{B}, P) un espace probabilisé, on appelle variable aléatoire réelle (en abrégé v.a.r.) définie sur cet espace, une application de Ω dans $\overline{\mathbb{R}}$, mesurable relativement aux tribus \mathcal{B} et $\mathcal{O}(\overline{\mathbb{R}})$, et on dira qu'une v.a.r. est positive, si elle est à valeurs dans $\overline{\mathbb{R}^+}$.

Etant donnée une v.a.r. définie sur (Ω, \mathcal{A}, P) , on note $\sigma(X)$ la tribu engendrée par X et on rappelle que, si Y est une v.a.r. $\sigma(X)$ - mesurable, il existe une application borélienne f, telle que Y = f(X).

Désignant par A la fonction de répartition de X, c'est-à-dire l'application de $\overline{\mathbb{R}}$ dans $[0,\ 1]$ définie par

$$A(u) = P(X \le u) ,$$

on notera dA la mesure-image de P par X (appelée aussi loi de X) et on utilisera couramment des expressions du type :

« L'application φ borélienne est dA - intégrable », « telle propriété est vraie dA p.s. ». On notera $\int \varphi \ dA$ l'intégrale de φ relativement à la mesure dA.

Ainsi, on peut écrire :

$$\forall B \in \mathcal{B}(\overline{\mathbb{R}}), \quad P(X \in B) = \int \mathbf{1}_B dA$$

où 1_B désigne la fonction indicatrice de B.

3º Étant donnée une famille de tribus \mathcal{C}_i ($i \in I$) d'un même espace Ω , on sait que leur intersection est une tribu que l'on notera $\bigwedge_{i \in I} \mathcal{C}_i$; on notera, de même, $\bigvee_{i \in I} \mathcal{C}_i$ la plus petite tribu contenant toutes les tribus \mathcal{C}_i , laquelle est, en général, différente de leur union.

Si les X_i ($1 \le i \le n$) sont n v.a.r. définies sur le même espace probabilisé, on désigne par $\sigma(X_1, X_2, \ldots, X_n)$ la tribu $\bigvee_{\substack{1 \le i \le n \\ 1 \le i \le n}} \sigma(X_i)$, la quelle n'est autre que la tribu engendrée par le vecteur aléatoire (X_1, X_2, \ldots, X_n) .

Enfin, si $(\Omega$, \mathcal{B}) et $(\Omega'$, \mathcal{B}') sont deux espaces mesurables, on désigne par $(\Omega \times \Omega'$, $\mathcal{B} \otimes \mathcal{B}'$) l'espace mesurable produit associé.

On rappelle que la tribu produit $\mathfrak{B}\otimes\mathfrak{B}'$, est la tribu engendrée par les pavés, c'est-à-dire par tous les ensembles de la forme $E\times E'$, où E est un élément de \mathfrak{B} , et E' un élément de \mathfrak{B}' . La tribu $\mathscr{B}(\overline{\mathbb{R}})\otimes\mathscr{B}(\overline{\mathbb{R}})$ est aussi notée $\mathscr{B}(\overline{\mathbb{R}}^2)$.

4º Sur un espace probabilisé (Ω , \mathcal{B} , P), on considère une v.a.r. X, \mathcal{B} -mesurable, positive ou intégrable. Si \mathcal{B} est une sous-tribu de \mathcal{B} , le symbole $E(X \mid \mathcal{B})$ désigne l'espérance conditionnelle de la v.a.r. X par rapport à la tribu \mathcal{B} .

Si Y est une v.a.r., \mathfrak{B} -mesurable, dont la classe d'équivalence pour la relation d'égalité P-presque sûre (en abrégé, P p.s.) est $E(X \mid \mathfrak{B})$, nous dirons que Y est un représentant de $E(X \mid \mathfrak{B})$.

PREMIÈRE PARTIE

Soit (Ω, \mathcal{B}, P) un espace probabilisé sur lequel est définie une v.a.r. strictement positive S, dont on désigne par A la fonction de répartition. Pour tout $u \in \overline{\mathbb{R}}$, différent de — ∞ , on désigne par $A(u^-)$ la limite de A(v) lorsque v tend vers u par valeurs inférieures.

1º a. Quelles sont les valeurs de A(0) et de A(∞)?

Étant donné un élément u de \mathbb{R}^+ , que représente la quantité

$$A(u) - A(u^{-})?$$

Peut-on avoir $A(\infty^-) < 1$?

b. On pose
$$c = \inf \{ u \mid u \in \mathbb{R}^+, \Lambda(u) = 1 \}$$
.

Montrer que c appartient à $\overline{\mathbb{R}^+}$, que A(c)=1, et que si t< c, A(t)<1.

c. Montrer que : $S \leq c$ P p.s.,

et que, si $A(c^{-}) = 1$, S < c P p.s.

2º Étant donné t, élément de $\mathbb{R}^+,$ on désigne par S $\bigwedge t$, l'application de Ω dans $\mathbb{R}^+,$ définie par :

$$\forall \omega \in \Omega$$
, $(S \wedge t)(\omega) = \inf(S(\omega), t)$.

a. Montrer que S \wedge t est une v.a.r. positive et déterminer sa fonction de répartition.

Expliciter $P(S \land t \in B)$, où $B \in \mathcal{B}(\mathbb{R}^+)$.

b. On désigne par \mathcal{G}_t la tribu engendrée par S \wedge t.

Montrer que l'ensemble $\{S\geqslant t\}$ appartient à \mathcal{G}_t , et que toute v.a.r. \mathcal{G}_t -mesurable est constante sur cet ensemble.

3° Soit f une application borélienne de $\overline{\mathbf{R}}$ dans $\overline{\mathbf{R}}$, supposée $d\mathbf{A}$ - intégrable.

- a. Montrer que f(S) est P-intégrable, et trouver un représentant de l'espérance conditionnelle de f(S) par rapport à la tribu \mathcal{G}_t , lorsque t est supérieur ou égal à c.
- b. Si t est strictement plus petit que c, montrer qu'un représentant de l'espérance conditionnelle de f(S) par rapport à la tribu \mathcal{G}_t est donné par la v.a.r.

$$n^f(t, S \wedge t),$$

où n^f est une application de $[0\,,c[\, imes\,[0\,,c[\, imes\,]$ définie par

$$n^f(t, u) = f(u) \quad \text{si} \quad u < t,$$

$$n^{f}(t, u) = \frac{1}{1 - A(t^{-})} \int_{[t, \infty]} f dA \quad \text{si } u \geqslant t.$$

En déduire la fonction de répartition de la loi conditionnelle de S par rapport à S \wedge ι .

Montrer que n^f est $\mathcal{B}([0, c]) \otimes \mathcal{B}([0, c])$ -mesurable.

c. Expliciter le calcul précédent lorsque S suit la loi exponentielle de paramètre $\mu(\mu > 0)$, c'est-à-dire la loi dont la densité de probabilité est définie par :

$$u \mapsto \mu e^{-\mu u}$$
 si $u > 0$; $u \mapsto 0$ si $u \le 0$.

On mettra en évidence une fonction n_{μ}^f de $\mathbb{R}^+ \times \mathbb{R}^+$ dans \mathbb{R} , $\mathfrak{B}(\mathbb{R}^+) \otimes \mathfrak{B}(\mathbb{R}^+)$ -mesurable, telle que $n_{\mu}^f(t, S \wedge t)$ soit un représentant de $\mathrm{E}[f(S) \mid \mathcal{G}_t]$.

4° On considère une suite $(T_n \; ; \; n \in \mathbb{N}^*)$ de v.a.r. indépendantes qui suivent toutes une loi exponentielle; on désigne par $\lambda_n \; (\lambda_n > 0)$ le paramètre de la loi de T_n .

On pourra poser

$$\mu_n = \sum_{i=1}^n \lambda_i$$
.

On note T_n^* la v.a.r. définie par :

$$\forall \omega \in \Omega$$
, $T_n^*(\omega) = \inf_{1 \leq i \leq n} (T_i(\omega))$

- a. Quelle est la loi de T_n^* ?
- b. Montrer que, si la série de terme général λ_n diverge, T_n^* converge dans L¹ $(\Omega$, &, P) et P p.s. vers zéro.
- c. Montrer que les v.a.r. T_{n-1}^* et T_n (n > 1) sont indépendantes.

Montrer que, pour tout u appartenant à \mathbb{R} , les ensembles

$$\{T_n^* \leqslant u\}$$
 et $\{T_n \leqslant T_{n-1}^*\}$ sont indépendants.

En déduire l'indépendance des v.a.r. $\mathbf{1}_{\{T_n \leqslant T_{n-1}^*\}}$ et T_n^* .

d. Soit f une application borélienne de $\overline{\mathbb{R}}$ dans $\overline{\mathbb{R}}$, telle que :

$$\mathbb{E}[|f(\mathbf{T}_n)|] < + \infty.$$

Montrer que les v.a.r. $f(T_n)$ et $n_{\lambda_n}^f(T_{n-1}^*, T_n^*)$ ont même espérance conditionnelle par rapport à T_n^* . (La fonction $n_{\lambda_n}^f$ a été définie à la question 3°.)

En déduire $\mathbb{E}[f(T_n) \mid T_n^*]$, et déterminer par sa fonction de répartition la loi conditionnelle de T_n par rapport à T_n^* .

DEUXIÈME PARTIE

Les notations sont les mêmes que celles de la première partie.

1° a. Montrer que, si s et t sont deux éléments de \mathbb{R}^+ tels que

$$s < t$$
, on a: $\mathcal{G}_s \subset \mathcal{G}_t$

Montrer que S \wedge t est mesurable par rapport à $\vee \mathcal{C}_s$.

En déduire que $\mathcal{G}_t = \bigvee_{s < t} \mathcal{G}_s$.

b. On pose:
$$\mathcal{F}_t = \bigwedge_{s > t} \mathcal{G}_s$$
 si $t \in \mathbb{R}^+$,

et

 $\mathcal{G}_{\infty} = \mathcal{G}_{\infty}$.

Montrer que les v.a.r. \mathcal{F}_t -mesurables sont constantes sur l'ensemble $\{S > t\}$, et expliciter toutes les v.a.r. \mathcal{F}_t -mesurables.

c. Montrer que :
$$\mathscr{F}_t = \bigwedge \mathscr{F}_s$$
 $(t \in \mathbb{R}^+)$

$$\mathcal{G}_t = \bigvee \mathscr{F}_s \qquad (t \in \mathbb{R}^+)$$

$$\mathcal{G}_{\infty} = \mathscr{F}_{\infty} = \bigvee \mathscr{F}_s$$

et que \mathcal{F}_{∞} est identique à la tribu engendrée par S.

2º On considère l'espace produit $\Omega \times \mathbb{R}^+$, muni de la tribu produit $\mathfrak{F}_{\infty} \otimes \mathcal{B}(\overline{\mathbb{R}^+})$.

Soit f une application borélienne de $\overline{\mathbb{R}}$ dans $\overline{\mathbb{R}}$, $d\mathbf{A}$ - intégrable.

- a. Montrer qu'il existe une application, N^f , de $\Omega \times \mathbb{R}^+$ dans \mathbb{R} , $\mathfrak{F}_{\infty} \otimes \mathcal{B}(\mathbb{R}^+)$ mesurable, telle que :
- i. pour tout t de \mathbb{R}^+ , $N^f(ullet,t)$ est un représentant de $E[f(S)\mid \mathcal{G}_t]$;
- ii. pour tout t de $\overline{\mathbb{R}^+}$, $N^f(\bullet,t)$ est P intégrable, et, pour tout s < t, $(s \in \mathbb{R}^+)$, $N^f(\bullet,s)$ est un représentant de $E[N^f(\bullet,t) \mid \mathcal{G}_s]$;
- iii. il existe un élément C de \mathcal{F}_{∞} , P-négligeable, que l'on déterminera, tel que si $\omega \notin C$, l'application

 $t \mapsto N^f(\omega, t)$ est continue à gauche sur \mathbb{R}^+ .

- b. Montrer, de même, qu'il existe une application, M', de Ω × R+ dans R, F_∞ ⊗ B(R+) mesurable, telle que :
 i. pour tout t de R+, M'(•, t) est un représentant de
- E[$f(S) \mid \mathcal{F}_t]$; ii. pour tout t de \mathbb{R}^+ , $M^f(\bullet, t)$ est P - intégrable et, pour tout s < t ($s \in \mathbb{R}^+$), $M^f(\bullet, s)$ est un représentant de

 $\mathbb{E}[M^{I}(\bullet, t) | \mathscr{F}_{s}];$

iii. si $\omega \notin \mathbb{C}$, l'application $t \mapsto M^f(\omega, t)$ est continue à droite sur \mathbb{R}^+ , et, pour tout t de $\overline{\mathbb{R}^+}$, $M^f(\omega, t^-) = N^f(\omega, t)$.

c. Montrer que $M^f(\bullet, t)$ converge p.s. et dans $L^1(\Omega, \mathcal{B}, P)$ vers f(S), si t tend vers c par valeurs inférieures.

3° On pose
$$m_f(t) = \frac{1}{1 - A(t)} \int_{]t, \infty]} f dA$$
 si $0 \le t < c$.

Si $r \in \mathbb{R}^+$, on définit le nombre t_r par :

$$t_r = \inf\{t \mid 0 \le t < c, \mid m_r(t) \mid > r\},\$$

si cet ensemble n'est pas vide; sinon, on pose $t_r = c$.

Par ailleurs, on suppose, dans cette question, que:

$$\forall \omega \in \Omega$$
, $S(\omega) \leq c$.

On désigne par M_f^* l'application de Ω dans $\overline{\mathbb{R}}$ définie par : .

$$\forall \ \omega \in \Omega, \ M_f^*(\omega) = \sup_{t \in \overline{\mathbb{R}^+}} |M^f(\omega, t)|$$

a. Montrer que l'ensemble $\left\{\, \mathbb{M}_{f}^{*} > r \,\right\}$ est la réunion des deux ensembles :

$${S > t_r}$$
 et ${S \le t_r} \cap {|f(S)| > r}$.

En déduire que \mathcal{M}_f^* est une v.a.r. \mathcal{F}_α - mesurable.

b. Montrer que si t_r est strictement inférieur à c_r

$$P(S > t_r) \le \frac{1}{r} E[1_{\{S > t_r\}} |f(S)|].$$

Établir ensuite que

$$P(M_f^* > r) \le \frac{1}{r} E[|f(S)|].$$

c. Soit $(f_n ; n \in \mathbb{N}^*)$, une suite d'applications boréliennes de $\overline{\mathbb{R}}$ dans $\overline{\mathbb{R}}$, dA-intégrables, qui convergent vers f dans $L^1(\overline{\mathbb{R}}, \mathcal{B}(\overline{\mathbb{R}}), dA)$.

Montrer qu'on peut extraire de la suite $(f_n; n \in \mathbb{N}^*)$ une soussuite $(f_{k_n}; n \in \mathbb{N}^*)$, telle que la suite $M_{f_{k_n}}^*$ converge P p.s. vers M_f^* , si n tend vers $+\infty$.

On note

$$\mathbf{I} = \left\{ \omega \mid \lim_{n \to +\infty} \mathbf{M}_{f_{k_n}}^*(\omega) \neq \mathbf{M}_f^*(\omega) \right\}.$$

Montrer que pour tout $\omega \notin I \cup C$, et pour tout $t \in \mathbb{R}^+$:

$$\lim_{n\to\infty} M^{fk_n}(\omega, t) = M^f(\omega, t) \qquad e$$

$$\lim_{n\to\infty} N^{f_{kn}}(\omega, t) = N^{f}(\omega, t).$$

TROISIEME PARTIE

On rappelle que cette partie est indépendante des deuxième et quatrième parties.

On considère une suite $(T_n; n \in \mathbb{N}^*)$ de v.a.r. définies sur le même espace probabilisé (Ω, \mathcal{B}, P) , indépendantes, et de loi commune la loi exponentielle de paramètre λ , où λ est un nombre strictement positif donné. (La définition de la loi exponentielle a été rappelée à la question 3° c. de la première partie.)

On construit alors la suite $(S_n; n \in \mathbb{N})$ de v.a.r., de la façon suivante :

$$S_0 = 0$$
, $S_n = \sum_{i=1}^{\infty} T_i$ $(n \in \mathbb{N}^*)$.

Et, pour tout t de \mathbb{R}^+ , on pose :

$$N(t) = \sum_{n \in \mathbb{N}^*} \mathbf{1}_{\{S_n \leqslant t\}}$$

On désigne par \mathcal{C}_o la tribu $\sigma(S_o)$, par \mathcal{C}_n la tribu $\sigma(S_o, S_1, \ldots, S_n)$, par \mathcal{C}_∞ la tribu $\sigma(S_o, S_1, \ldots, S_n, \ldots)$, et enfin par $\mathcal{F}_t(t \in \mathbb{R}^+)$ l'ensemble des éléments D de \mathcal{F}_t , tels que :

pour tout n de \mathbb{N} , il existe $\mathbf{B}_n \in \mathcal{C}_n$, vérifiant :

D
$$\cap \{ N(t) = n \} = B_n \cap \{ N(t) = n \}.$$

On admettra que \mathcal{F}_t est une sous-tribu de \mathcal{C}_{∞} .

1º a. Calculer la densité de probabilité du vecteur aléatoire

$$(S_1, S_2, \ldots, S_n)$$

b. Montrer que N(t) est une v.a.r. $\widehat{\mathcal{F}}_t$ - mesurable qui suit la loi de Poisson de paramètre $\lambda t.$

c. Dans cette question, k désigne un élément de \mathbb{N}^* .

Montrer que $\frac{{
m N}(k)}{k}$ converge en loi, en probabilité et dans L²(Ω , ${\mathcal B}$, P) vers λ , lorsque k devient infini.

Montrer que, dans les mêmes conditions, $\frac{N(k) - \lambda k}{\sqrt{k}}$ converge en loi vers une loi limite que l'on précisera.

Peut-on obtenir ce dernier résultat en appliquant le théorème central limite (dit aussi théorème de convergence vers la loi de Gauss, ou encore de Moivre-Laplace)?

2º a. Montrer que, pour tout \mathbb{B}_n de la tribu $\mathcal{C}_n,$ pour tout t et pour tout u de \mathbb{R}^+ :

$$P(B_n \cap \{ N(t) = n \} \cap \{ N(t+u) - N(t) \ge 1 \})$$

$$= (1 - e^{-\lambda u}) E[\mathbf{1}_{B_n} \mathbf{1}_{\{S_n \le t\}} e^{-\lambda (t-S_n)}]$$

En déduire que les événements $B_n \cap \{N(t) = n\}$

et $\{N(t+u) - N(t) \ge 1\}$ sont indépendants.

b. On pose $R(t) = S_{N(t)+1} - t$.

Déduire de a. que R(t) est une v.a.r. \mathcal{C}_{∞} · mesurable, indépendante de $\widehat{\mathcal{F}}_t$, qui suit la loi exponentielle de paramètre λ .

c. Montrer que, plus généralement, les v.a.r.

$$R(t)$$
, $T_{N(t)+2}$, ..., $T_{N(t)+k}$, ...

constituent une suite de v.a.r. indépendante de \mathcal{F}_t .

Montrer que c'est une suite de v.a.r. indépendantes, de même loi, ayant pour loi commune la loi exponentielle de paramètre λ .

d. On pose:

$$\bar{N}_t(u) = \sum_{n \in \mathbb{N}^*} \mathbf{1}_{\{S_{N(t)+n} - t \leq u\}}$$
 pour tout $u \in \mathbb{R}^+$.

Montrer que $N_t(u)$ est, pour tout u de \mathbb{R}^+ , une v.a.r. indépendante de $\widehat{\mathcal{F}}_t$, de même loi que N(u), égale à N(t+u)-N(t).

En déduire que si u_1 , u_2 , ..., u_k sont des éléments de \mathbb{R}^+ , les v.a.r. $N(u_1)$, $N(u_1 + u_2) - N(u_1)$, ..., $N(u_1 + u_2 + \ldots, u_k)$ - $N(u_1 + u_2 + \ldots, u_{k-1})$ sont indépendantes.

3° On pose $L(t) = t - S_{N(t)}$.

a. Montrer que, pour tout x de \mathbb{R}^+ tel que $0 < x \leqslant t$,

$$P(t-S_{N(t)} \geqslant x) = P(R(t-x) > x).$$

. En déduire que la loi de L(t) est la même que celle de $T_1 \wedge t$.

b. Plus généralement, on pose, pour tout k de \mathbb{N}^* :

$$egin{aligned} & \mathrm{L}_k(t) = \inf \left\{ \left. s \mid 0 \leqslant s \leqslant t; \quad \mathrm{N}(t) - \mathrm{N}(t-s) = k \right. \right\} & \mathrm{si} \quad \mathrm{N}(t) \geqslant k, \\ & \mathrm{L}_k(t) = t \quad \mathrm{si} \quad \mathrm{N}(t) < k. \end{aligned}$$

Montrer que:

$$\begin{split} \mathbf{L}_k(t) &= \inf \big\{ \, s \, \big| \, 0 \, \leqslant \, s \, \leqslant \, t \, , \, \mathbf{N}(t-s) = \sup \, \left(\mathbf{N}(t) - k, \, 0 \right) \big\} \\ &= \operatorname{et} \, \operatorname{que} \, : \, \mathbf{L}_k(t) = \sup \, \left(t \, - \, \mathbf{S}_{\mathbf{N}(t) \, + \, 1 \, - \, k} \, , \, 0 \right). \end{split}$$

En déduire que la loi de $L_k(t)$ est la même que celle de $S_k \wedge t$.

QUATRIÈME PARTIE

(Cette partie est indépendante de la troisième partie, mais utilise les notations et résultats des deux premières parties.)

On rappelle que S est une v.a.r. strictement positive, de fonction de répartition A. Dans toute cette partie, nous supposerons que

$$\forall \omega \in \Omega$$
, $S(\omega) < c$.

On note B la fonction définie sur $\overline{\mathbb{R}^+}$, croissante et continue à gauche, définie par $B(u) = A(u^-)$.

1º On définit une nouvelle application borélienne de \mathbb{R}^+ dans \mathbb{R}^+ par :

$$\alpha(t) = \int_{]0,\ t]} \frac{d\mathbf{A}}{1 - \mathbf{B}}$$

a. Montrer que α est une fonction croissante, continue à droite, et que $\alpha(t)$ est fini si t < c.

En déduire que α est la fonction de répartition d'une mesure positive σ - finie sur [0, c[.

b. Montrer que, si h est une fonction borélienne de $\overline{\mathbb{R}^+}$ dans $\overline{\mathbb{R}},$ positive ou dA - intégrable,

$$\mathrm{E}[h(\mathrm{S})] = \mathrm{E}\left[\int_{]0,\;\mathrm{S}]} h d\alpha\right]$$

Calculer $E[\alpha(S)]$.

c. Considérons deux fonctions boréliennes de $\overline{\mathbb{R}}$ dans $\overline{\mathbb{R}}$, positives ou telles que $\int f^z dA$ et $\int h^z dA$ soient finis.

Montrer que

$$E[N^f(\bullet, S) \ h(S)] = E[f(S) \int_{[0, S]} h d\alpha]$$

où $N^{f}(\bullet, \bullet)$ est l'application $\mathscr{F}_{\infty} \otimes \mathscr{B}(\overline{\mathbb{R}}^{+})$ - mesurable introduite dans la deuxième question de la deuxième partie.

2º Pour tout u < c, pour tout $t \in \mathbb{R}^+$, on pose:

$$q_u(t) = \mathbf{1}_{\{u \leqslant t\}} - \alpha(t \wedge u).$$

 $q_u(t)$ est la différence de deux fonctions de répartition continues à droite et croissantes, finies car u < c.

On désigne par $Q(\bullet, t)$ la v.a.r. définie par :

$$Q(\omega, t) = \mathbf{1}_{\{S(\omega) \leq t\}} - \alpha[t \wedge S(\omega)]$$
 pour tout $t \in \mathbb{R}^+$,

et on note $\int_{[0, t]} f dQ(\omega, \bullet)$ la v.a.r. définie par :

$$f(S(\omega)) \mathbf{1}_{\{S(\omega) \leqslant t\}} - \int_{]0, t \land S(\omega)]} fd\alpha$$

lorsque f est une fonction borélienne de $\overline{\mathbb{R}}$ dans \mathbb{R} , positive ou $d\mathbf{A}$ -intégrable.

a. Montrer que sup E $|Q(\bullet, t)| \le 2$, et que $Q(\bullet, t)$ est une v.a.r. \mathcal{F}_t - mesurable, d'espérance nulle.

b. Montrer que, pour tout u de \mathbb{R}^+ :

$$P(S > u) = E[\alpha(S) - \alpha(S \land u)]$$

En déduire que pour tout u de \mathbb{R}^+ , la v.a.r. $\mathbb{Q}(\bullet, \infty) - \mathbb{Q}(\bullet, u)$ a une espérance conditionnelle par rapport à \mathcal{F}_u , qui est nulle.

Montrer ensuite que $\mathbb{Q}(\bullet, u)$ est un représentant de $\mathbb{E}[\mathbb{Q}(\bullet, \infty) \mid \mathcal{F}_u]$ et mettre en évidence une fonction g, de \mathbb{R} dans \mathbb{R} , borélienne, telle que :

$$\forall u \in \mathbb{R}^+, Q(\bullet, u) = M^g(\bullet, u).$$

c. Plus généralement, si f est une application borélienne de $\overline{\mathbb{R}^+}$ dans $\overline{\mathbb{R}}$, $d\Lambda$ - intégrable, montrer que l'application \overline{f} de $\overline{\mathbb{R}^+}$ dans $\overline{\mathbb{R}}$ définie par :

$$\bar{f}(x) = f(x) - \int_{[0, x]} f d\alpha \quad \text{si} \quad 0 < x < c$$

$$\bar{f}(x) = 0 \quad \text{si} \quad x \le 0 \quad \text{ou} \quad x \ge c$$

est une fonction borélienne $d\mathrm{A}$ - intégrable et que

$$\mathbb{E}[f(S) \mathbf{1}_{\{S>u\}}] = \mathbb{E}\left[\int_{]u \land S, S]} f d\alpha\right].$$

En déduire que $\int_{[0,\ t]}fdQ(\bullet,\bullet)$ est un représentant de l'espérance conditionnelle par rapport à \mathcal{F}_t de la v.a.r.

$$f(S) - \int_{]0, S]} fd\alpha = \bar{f}(S)$$

puis, que, si t < c:

$$\frac{1}{1-A(t)}\int_{]t,\ c[}fdA=\int_{]0,\ t]}fd\alpha.$$

3° On demande d'admettre que, pour tout t de $\mathbb{R}^+, t < c$, la relation suivante est vérifiée :

$$\frac{1}{1 - A(t)} = 1 + \int_{]0, t]} \frac{dA}{(1 - A)(1 - B)}$$

Utiliser le théorème de Fubini pour établir que : pour tout t de \mathbb{R}^+ strictement plus petit que c, $m_f(t) = \int_{]0}^{\infty} [m_f(\bullet) - f] d\alpha$ (où m_f est la fonction introduite dans la deuxième partie, 3° a.).

En déduire que
$$M^{f}(\omega, t) = \int_{[0, t]} (f - m_f) dQ(\omega, \bullet).$$

b. Soit h une application de \mathbb{R} dans \mathbb{R} , dA intégrable.

Montrer que si, pour tout t de \mathbb{R}^+ ,

$$\int_{]0,\ t]} h dQ(\bullet,\ \bullet) = 0 \quad \text{p.s.,}$$

h est nulle dA p.s.

En déduire que si f satisfait aux hypothèses de la question a., il existe une fonction g de $\overline{\mathbb{R}}$ dans $\overline{\mathbb{R}}$, dA - intégrable, unique au sens de l'égalité dA p.s., telle que : il existe un ensemble négligeable I, tel que pour tout $\omega \notin I$ et tout t de $\overline{\mathbb{R}}^+$,

$$\mathrm{M}^{f}(\omega\;,\;t)=\int_{\left]0\;,\;t\right]}gd\mathrm{Q}(\omega\;,\;ullet)$$

qui, à tout élément t de [0, c[, associe Pour tout $\omega \in \Omega$, calculer la discontinuité au point $S(\omega)$ de l'application c. Soit h une application borélienne de $\overline{\mathbb{R}}$ dans $\overline{\mathbb{R}}$, dA - intégrable.

$$\int_{]0,\ t]}^{\cdot} hdQ(\omega,\ \bullet)$$

Montrer ensuite que, si f est une application borélienne dA - intégrable satisfaisant à $M^{f}(\bullet, S) = N^{f}(\bullet, S)$, f est nulle dA p.s.

DE PROBABILITES ET STATISTIQUES RAPPORT SUR L'EPREUVE

1. Thème du sujet

processus à variation finie. des intégrales par rapport à une martingale fondamentale, qui est, pour chaque un de tribus engendrées par un processus ponctuel à un seul saut, s'expriment comme L'objet du problème est d'établir que toutes les martingales par rapport à la famille

Ce texte a été construit à partir de l'article de MM. CHOU et MEYER : «Sur la ponctuels». Séminaire de Probabilités IX. Lect. Notes in Math. Springer Verlag n°465. présentation des martingales comme intégrales stochastiques dans les processus

pas défavoriser les candidats moins familiarisés avec le maniement des tribus La troisième partie, pratiquement indépendante du reste, a été jointe par souci de ne

2. Résumé de la solution

(II ne s'agit que d'indications relatives à certaines questions).

PARTIE I

3° (les questions précédentes sont évidentes)

a) Si
$$t \ge c$$
, S = S Λt P. $p.s$, et $f(S\Lambda t)$ convient comme représentant.
b) Si $t < c$, P(S $\ge t$)>0. La v.a.r $f(S)$ $\mathbf{1}_{\{S < t\}}$ est \mathcal{G}_t mesurable.

$$\mathbb{E}(f(S) \mathbf{1}_{\{S \geqslant_t\}})$$

Sur $\{{\sf S}\geqslant t\}$, un représentant sera constant et égal à $P({\sf S}\!\geqslant t)$