

GAN: Geometria Analítica

Cônicas - Parábola

Prof.: Francielle Kuerten Boeing

Seções cônicas

Definição: Chama-se seção cônica ao conjunto de pontos definido pela interseção de um plano com a superfície cônica.

Ao seccionar-se uma superfície cônica por um plano π que não passa pelo vértice O obtém-se as cônicas não degeneradas conforme a relação entre o ângulo θ e α , sendo α o ângulo entre o plano π e o eixo de rotação do cone.

Seções cônicas

 $\alpha=\theta$ a seção é uma parábola

 $\alpha > \theta$ a seção é uma elipse

 $\alpha < \theta$ a seção é uma hipérbole

Seções cônicas

Caso o plano π passe pelo vértice do cone obtém-se as cônicas degeneradas:

A cônica parábola

Definição: Considere num plano α uma reta d e um ponto $F \notin d$.

A **parábola** com diretriz d e foco F é o conjunto dos pontos P(x,y) do plano α equidistantes da reta d e do ponto F, ou seja, a parábola é o conjunto dos pontos P(x,y) tais que

$$d(P,F) = d(P,d).$$

Elementos da Parábola

- Foco: ponto *F*;
- Diretriz: reta *d*;
- Eixo ou reta focal: reta e;
- Vértice: ponto de interseção da parábola com o eixo.

Caso 1: V(0,0) e eixo sobre o eixo y:

Caso 1: V(0,0) e eixo sobre o eixo y:

Temos a equação: $x^2 = \pm 2py$,

onde p é o parâmetro que dá a distância entre o foco F e a diretriz d.

$$x^2 = 2py.$$

ii) Se o foco está abaixo do vértice, a parábola tem concavidade para baixo e sua equação é:

$$x^2 = -2py.$$

Ex. 1: Determine o foco e a equação da diretriz da parábola $x^2 = 8y$.

Ex. 2: Determine a equação da parábolas

- a) Com foco em F(0,1) e V(0,0).
- b) Com diretriz d: y = 3 e F(0, -3).
- c) Vértice V(0,0) e passa pelo ponto P(-2,5).

Caso 2: V(0,0) e eixo sobre o eixo x:

Temos a equação: $y^2 = \pm 2px$

Obs: Novamente, o sinal da equação depende da posição do foco:

i) Se o foco está à direita do vértice, a parábola tem concavidade para direita e sua equação é:

$$y^2 = 2px.$$

ii) Se o foco está à esquerda do vértice, a parábola tem concavidade para esquerda e sua equação é:

$$y^2 = -2px.$$

Ex. 3: Determine o foco e a equação da diretriz da parábola $y^2 = -2x$.

Ex. 3: Determine o foco e a equação da diretriz da parábola $y^2 = -2x$.

Ex. 4: Determine a equação e represente geometricamente a parábola

a) Com diretriz d: x = 5 e V(0,0).

b) Com V(0,0) e F(-4,0).

Ex. 5: Determine o foco, a diretriz, o eixo e o vértice das parábolas:

a)
$$y = -\frac{x^2}{12}$$
.

b)
$$y^2 - x = 0$$
.

Translação de eixos

No plano cartesiano xy considere um ponto $O' = (x_0, y_0)$. Introduza um **novo** sistema x'y' tal que O' seja a nova origem e o eixo x' tenha a mesma direção e sentido de x e y' tenha a mesma direção e sentido de y.

Dizemos que o **novo** sistema x'y' com origem O' foi obtido por uma **translação** do **antigo** sistema xy. Em ambos os sistemas se conservam as unidades de medida.

Translação de eixos

Um ponto P do plano tem coordenadas (x,y) em relação ao sistema xy e (x',y') em relação ao sistema x'y'.

Translação de eixos

Um ponto P do plano tem coordenadas (x,y) em relação ao sistema xy e (x',y') em relação ao sistema x'y'.

Obtemos facilmente da figura as **fórmulas de translação**: $\begin{cases} x' = x - x_0 \\ y' = y - y_0 \end{cases}$

Caso 1: eixo de simetria é paralelo ao eixo y (parábola para cima ou para baixo)

Através de uma translação de eixos, obtemos um novo sistema x'y', cuja origem

O' coincide com o vértice $V(x_0, y_0)$.

$$\begin{cases} x' = x - x_0 \\ y' = y - y_0 \end{cases}$$

A equação da parábola no novo sistema x'y' é:

$$(x')^2 = \pm 2p(y'),$$

$$\Rightarrow (x - x_0)^2 = \pm 2p(y - y_0),$$

Caso 2: eixo de simetria é paralelo ao eixo x. (parábola para a direita ou esquerda) Através de uma translação de eixos, obtemos um novo sistema x'O'y', cuja origem O' coincide com o vértice $V(x_0, y_0)$.

$$\begin{cases} x' = x - x_0 \\ y' = y - y_0 \end{cases}$$

A equação da parábola no novo sistema x'O'y' é:

$$(y')^2 = \pm 2p(x'),$$

$$\Rightarrow (y - y_0)^2 = \pm 2p(x - x_0),$$

Equação na forma explícita

Podemos ainda escrever a equação da parábola na forma explícita:

Caso 1: parábola com eixo de simetria paralelo ao eixo y

$$y = ax^2 + bx + c$$

Caso 2: parábola com eixo de simetria paralelo ao eixo x

$$x = ay^2 + by + c.$$

Exemplo 6: Determine a equação padrão da parábola e identifique seus elementos:

a)
$$x^2 - 6x - 4y + 17 = 0$$

Solução:

Exemplo 6: Determine a equação padrão da parábola e identifique seus elementos:

b)
$$y^2 + 6y - 8x + 1 = 0$$

Solução: Exercício.

Exemplo 6: Determine a equação padrão da parábola e identifique seus elementos:

c)
$$y = 4x - x^2$$

Solução: Exercício.

Exemplo 6: Determine a equação padrão da parábola e identifique seus elementos:

d)
$$x + \frac{3y^2}{4} - 9y = 0$$

Solução:

Exemplo 7: Determine a(s) equação(ões) da(s) parábola(s) que contém os pontos A(0, -3), B(-3, 0) e C(2,5).

Solução: