

FCC PART 15 TEST REPORT

No. I16Z40414-SRD04

for

TCL Communication Ltd.

LTE/UMTS/GSM handheld station with

Bluetooth technology, WiFi and FM radio

50951

With

FCC ID: 2ACCJH043

Hardware Version: PIO

Software Version: v1K14

Issued Date: 2016-04-26

Note: The test results in this test report relate only to the devices specified in this report. This report shall not be reproduced except in full without the written approval of CTTL.

Test Laboratory:

CTTL, Telecommunication Technology Labs, Academy of Telecommunication Research, MIIT

No. 52, Huayuan Bei Road, Haidian District, Beijing, P.R.China 100191

Tel: +86(0)10-62304633-2512, Fax: +86(0)10-62304633-2504

Email: cttl_terminals@catr.cn. website:www.chinattl.com

REPORT HISTORY

Report Number	Revision	Description	Issue Date
I16Z40414-SRD04	Rev.0	1st edition	2016-03-31
I16Z40414-SRD04	Rev.1	2ed edition	2016-04-26

CONTENTS

CONTE	ENTS	3
1.	TEST LATORATORY	6
1.1.	TESTING LOCATION	6
1.2.	TESTING ENVIRONMENT	7
1.3.	PROJECT DATA	7
1.4.	SIGNATURE	7
2.	CLIENT INFORMATION	8
2.1.	APPLICANT INFORMATION	8
2.2.	MANUFACTURER INFORMATION	
3.	EQUIPMENT UNDER TEST (EUT) AND ANCILLARY EQUIPMENT(AE)	9
3.1.	ABOUT EUT	
3.1.	INTERNAL IDENTIFICATION OF EUT USED DURING THE TEST	
3.2.	INTERNAL IDENTIFICATION OF AE USED DURING THE TEST	
3.4.	GENERAL DESCRIPTION	
3.5.	INTERPRETATION OF THE TEST ENVIRONMENT	
4.	REFERENCE DOCUMENTS	10
4.1.	DOCUMENTS SUPPLIED BY APPLICANT	10
4.2.	REFERENCE DOCUMENTS FOR TESTING	10
5.	LABORATORY ENVIRONMENT	10
6.	SUMMARY OF TEST RESULTS	11
6.1.	SUMMARY OF TEST RESULTS	11
6.2.	STATEMENTS	11
6.3.	TEST CONDITIONS	11
7.	TEST EQUIPMENTS UTILIZED	12
ANNEX	X A: MEASUREMENT RESULTS	13
A.1. I	Measurement Method	13
	MAXIMUM OUTPUT POWER	
A.3. I	PEAK POWER SPECTRAL DENSITY (CONDUCTED)	15
A.4. 0	OCCUPIED 26DB BANDWIDTH(CONDUCTED)	16
Fig. 1	OCCUPIED 26DB BANDWIDTH (802.11A, 5180MHz)	16
Fig. 2	OCCUPIED 26DB BANDWIDTH (802.11A, 5200MHz)	17
Fig. 3	OCCUPIED 26DB BANDWIDTH (802.11A, 5240MHz)	17
Fig. 4	OCCUPIED 26DB BANDWIDTH (802.11n-HT20, 5180MHz)	18
Fig. 5	OCCUPIED 26DB BANDWIDTH (802.11n-HT20, 5200MHz)	18
Fig. 6	OCCUPIED 26DB BANDWIDTH (802.11n-HT20, 5240MHz)©Copyright. All rights reserved by	

Fig. 7	OCCUPIED 26DB BANDWIDTH (802.11n-HT40, 5190MHz)	19
Fig. 8	OCCUPIED 26DB BANDWIDTH (802.11n-HT40, 5230MHz)	20
A.5. BAN	D EDGES COMPLIANCE	21
A5.1 BAN	ND EDGES - CONDUCTED	21
Fig. 9	BAND EDGES (802.11A, 5180MHz)	21
Fig. 10	BAND EDGES (802.11A, 5240MHz)	22
Fig. 11	BAND EDGES (802.11n-HT20, 5180MHz)	22
FIG. 12	BAND EDGES (802.11n-HT20, 5240MHz)	23
FIG. 13	BAND EDGES (802.11n-HT40, 5190MHz)	23
Fig. 14	BAND EDGES (802.11n-HT40, 5230MHz)	24
A5.2 BAN	nd Edges - Radiated	24
Fig. 15	BAND EDGES (802.11A, 5180MHz)	25
Fig. 16	BAND EDGES (802.11n-HT20, 5180MHz)	25
Fig. 17	BAND EDGES (802.11n-HT40, 5190MHz)	26
A.6. Tra	NSMITTER SPURIOUS EMISSION	27
FIG. 18	RADIATED SPURIOUS EMISSION (802.11A, CH36, 1 GHz-3 GHz)	31
Fig. 19	RADIATED SPURIOUS EMISSION (802.11A, CH36, 3 GHz-6 GHz)	31
FIG. 20	RADIATED SPURIOUS EMISSION (802.11A, CH36, 6 GHz-18 GHz)	32
FIG. 21	RADIATED SPURIOUS EMISSION (802.11A, CH40, 30 MHz-1 GHz)	32
FIG. 22	RADIATED SPURIOUS EMISSION (802.11A, CH40, 1 GHz-3 GHz)	33
FIG. 23	RADIATED SPURIOUS EMISSION (802.11A, CH40, 3 GHz-6 GHz)	33
Fig. 24	RADIATED SPURIOUS EMISSION (802.11A, CH40, 6 GHz-18 GHz)	34
FIG. 25	RADIATED SPURIOUS EMISSION (802.11A, CH40, 18 GHz-26.5 GHz)	34
FIG. 26	RADIATED SPURIOUS EMISSION (802.11A, CH40, 26.5 GHz-40 GHz)	35
Fig. 27	RADIATED SPURIOUS EMISSION (802.11A, CH48, 1 GHz-3 GHz)	35
FIG. 28	RADIATED SPURIOUS EMISSION (802.11A, CH48, 3 GHz-6 GHz)	36
Fig. 29	RADIATED SPURIOUS EMISSION (802.11A, CH48, 6 GHz-18 GHz)	36
FIG. 30	RADIATED SPURIOUS EMISSION (802.11N-HT20, CH36, 1 GHz-3 GHz)	37
FIG. 31	RADIATED SPURIOUS EMISSION (802.11N-HT20, CH36, 3 GHz-6 GHz)	37
FIG. 32	RADIATED SPURIOUS EMISSION (802.11N-HT20, CH36, 6 GHz-18 GHz)	38
FIG. 33	RADIATED SPURIOUS EMISSION (802.11N-HT20, CH40, 30 MHz-1 GHz)	38
FIG. 34	RADIATED SPURIOUS EMISSION (802.11N-HT20, CH40, 1 GHz-3 GHz)	39
FIG. 35	RADIATED SPURIOUS EMISSION (802.11N-HT20, CH40, 3 GHz-6 GHz)	39
FIG. 36	RADIATED SPURIOUS EMISSION (802.11N-HT20, CH40, 6 GHz-18 GHz)	40
Fig. 37	RADIATED SPURIOUS EMISSION (802.11N-HT20, CH40, 18 GHz-26.5 GHz)	40
FIG. 38	RADIATED SPURIOUS EMISSION (802.11N-HT20, CH40, 26.5 GHz-40 GHz)	41
FIG. 39	RADIATED SPURIOUS EMISSION (802.11N-HT20, CH48, 1 GHz-3GHz)	41
Fig. 40	RADIATED SPURIOUS EMISSION (802.11N-HT20, CH48, 3 GHz-6 GHz)	42
Fig. 41	RADIATED SPURIOUS EMISSION (802.11N-HT20, CH48, 6 GHz-18 GHz)	42
FIG. 42	RADIATED SPURIOUS EMISSION (802.11N-HT40, CH38, 30 MHz-1 GHz)	43
FIG. 43	RADIATED SPURIOUS EMISSION (802.11N-HT40, CH38, 1 GHz-3 GHz)	43
Fig. 44	RADIATED SPURIOUS EMISSION (802.11N-HT40, CH38, 3 GHz-6 GHz)	44
Fig. 45	RADIATED SPURIOUS EMISSION (802.11N-HT40, CH38, 6 GHz-18 GHz)	44
Fig. 46	RADIATED SPURIOUS EMISSION (802.11N-HT40, CH38, 18 GHz-26.5 GHz)	45

No. I16Z40414-SRD04 Page5 of 54

ANNEX C	ACCREDITATION CERTIFICATE	54
ANNEX B:	PHOTOGRAPHS OF THE TEST SET-UP	53
A.9. Free	QUENCY STABILITY	52
Fig. 53	CONDUCTED EMISSION(802.11A, IDLE)	
FIG. 52	CONDUCTED EMISSION(802.11A, CH40, TX)	50
A.8. CON	DUCTED EMISSION (150kHz- 30MHz)	49
FIG. 51	RADIATED SPURIOUS EMISSION (802.11A, CH40, 9 KHz ~30 MHz)	48
A.7. Spui	rious Emissions Radiated < 30MHz	48
FIG. 50	RADIATED SPURIOUS EMISSION (802.11n-HT40, CH46, 6 GHz-18 GHz)	47
FIG. 49	RADIATED SPURIOUS EMISSION (802.11n-HT40, CH46, 3 GHz-6 GHz)	46
FIG. 48	RADIATED SPURIOUS EMISSION (802.11n-HT40, CH46, 1 GHz-3 GHz)	46
Fig. 47	RADIATED SPURIOUS EMISSION (802.11n-HT40, CH38, 26.5 GHz-40 GHz)	45

1. TEST LATORATORY

1.1. Testing Location

Location 1:CTTL(huayuan North Road)

Address: No. 52, Huayuan North Road, Haidian District, Beijing,

P. R. China100191

Location 2:CTTL(Shouxiang)

Address: No. 51 Shouxiang Science Building, Xueyuan Road,

Haidian District, Beijing, P. R. China100191

Location 3:CTTL(Yuetan)

Address: No. 11 Yue Tan Nan Jie, Xicheng District, Beijing, P. R.

China100045

Location 4:CTTL(BDA)

Address: No.18A, Kangding Street, Beijing Economic-Technology

Development Area, Beijing, P. R. China 100176

Location 5:CTTL(South Branch)

Address: No.12, ShangSha Innovation and Technology Park,

Futian District, Shenzhen, Guangdong, P. R.

China518048

1.2. <u>Testing Environment</u>

Normal Temperature: 15-35°C

Extreme Temperature: -20/+55°C

Relative Humidity: 20-75%

1.3. Project data

Testing Start Date: 2016-03-01 Testing End Date: 2016-03-15

1.4. Signature

Xu Zhongfei (Prepared this test report)

Li Zhibin

(Reviewed this test report)

Lv Songdong

(Approved this test report)

2. CLIENT INFORMATION

2.1. Applicant Information

Company Name: TCL Communication Ltd.

Address: 5F, C building, No. 232, Liang Jing Road ZhangJiang High-Tech Park,

Pudong Area Shanghai, P.R. China. 201203

City: Shanghai Postal Code: 201203 Country: China

Telephone: 0086-21-51798260 Fax: 0086-21-61460602

2.2. Manufacturer Information

Company Name: TCL Communication Ltd.

Address: 5F, C building, No. 232, Liang Jing Road ZhangJiang High-Tech Park,

Pudong Area Shanghai, P.R. China. 201203

City: Shanghai Postal Code: 201203 Country: China

Telephone: 0086-21-51798260 Fax: 0086-21-61460602

3. <u>EQUIPMENT UNDER TEST (EUT) AND ANCILLARY</u> EQUIPMENT(AE)

3.1. About EUT

Description LTE/UMTS/GSM handheld station with Bluetooth technology,

WiFi and FM radio

Model name 5095I

FCC ID 2ACCJH043

IC ID

Type of modulation OFDM

Antenna Integral Antenna Voltage 3.7V DC by Battery

Note: Photographs of EUT are shown in ANNEX C of this test report. Components list, please refer to documents of the manufacturer.

3.2. Internal Identification of EUT used during the test

EUT ID*	SN or IMEI	HW Version	SW Version
UT01a	1	PIO	v1K14
UT02a	/	PIO	v1K14

^{*}EUT ID: is used to identify the test sample in the lab internally.

3.3. Internal Identification of AE used during the test

AE ID*	Description	Туре	SN
AE1	Battery	CAC2960001C1	/
AE2	Charger	CBA0061AG0C1	/

^{*}AE ID: is used to identify the test sample in the lab internally.

3.4. General Description

The Equipment under Test (EUT) is a model of LTE/UMTS/GSM handheld station with Bluetooth technology, WiFi and FM radio with integrated antenna and inbuilt battery.

It has Bluetooth (EDR) function.

It consists of normal options: travel charger, USB cable and Phone.

Manual and specifications of the EUT were provided to fulfil the test.

Samples undergoing test were selected by the client.

3.5. Interpretation of the Test Environment

For the test methods, the test environment uncertainty figures correspond to an expansion factor k=2.

Measurement Uncertainty

Parameter	Uncertainty

temperature	0.48°C
humidity	2 %
DC voltages	0.003V

4. REFERENCE DOCUMENTS

4.1. Documents supplied by applicant

EUT feature information is supplied by the applicant or manufacturer, which is the basis of testing.

4.2. Reference Documents for testing

The following documents listed in this section are referred for testing.

FCC Part15	Title 47 of the Code of Federal Regulations; Chapter I			
FCC Pail 15	Part 15 - Radio frequency devices			
	Methods of Measurement of Radio-Noise Emissions from			
ANSI C63.4	Low-Voltage Electrical and Electronic Equipment in the	2014		
	Range of 9 kHz to 40 GHz			
	Guidelines for Compliance Testing of Unlicensed National			
UNII: KDB 789033	Information Infrastructure (U-NII) Devices - Part 15,	2014-06		
	Subpart E			

5. LABORATORY ENVIRONMENT

Conducted RF performance testing is performed in shielding room.

EMC performance testing is performed in Semi-anechoic chamber.

6. SUMMARY OF TEST RESULTS

6.1. Summary of Test Results

SUMMARY OF MEASUREMENT RESULTS	Sub-clause of Part15E	Sub-clause of IC	Verdict
Maximum Output Power	15.407	/	Р
Power Spectral Density	15.407	/	Р
Occupied 26dB Bandwidth	15.403	/	Р
Band edge compliance	15.209	/	Р
Transmitter spurious emissions radiated	15.407	/	Р
Spurious emissions radiated < 30 MHz	15.407	/	Р
Spurious emissions conducted < 30 MHz	15.407	/	Р
Peak Excursion	15.407	/	Р
Frequency Stability	15.407	/	NA
Transmit Power Control	15.407	/	NA

Please refer to ANNEX A for detail.

Terms used in Verdict column

Р	Pass, The EUT complies with the essential requirements in the standard.		
NM	Not measured, The test was not measured by CTTL		
NA	Not Applicable, The test was not applicable		
F	Fail, The EUT does not comply with the essential requirements in the standard		

6.2. Statements

CTTL has evaluated the test cases requested by the client/manufacturer as listed in section 6.1 of this report for the EUT specified in section 3 according to the standards or reference documents listed in section 4.1.

This report only deals with the WLAN function among the features described in section 3.

This model is a variant product which market name is 5095B; all the test results have been derived from test report of 5095B.

6.3. Test Conditions

For this report, all the test cases are tested under normal temperature and normal voltage, and also under norm humidity, the specific condition is shown as follows:

7. TEST EQUIPMENTS UTILIZED

Conducted test system

No.	Equipment	Model	Serial Number	Manufacturer	Calibration date	Calibration Due date
1	Vector Signal Analyzer	FSQ40	200089	Rohde & Schwarz	2015-07-08	2016-07-07
2	Test Receiver	ESS	847151/015	Rohde & Schwarz	2015-11-29	2016-11-28
3	LISN	ESH2-Z5	829991/012	Rohde & Schwarz	2016-4-15	2017-4-14
4	Shielding Room	S81	/	ETS-Lindgren	/	/

Radiated emission test system

No.	Equipment	Model	Serial	Manufacturer	Calibration	Calibratio
NO.	Equipment	Wiodei	Number	Number		n Due date
1	Test Receiver	ESCI 7	100948	Rohde &	2015-07-17	2016-07-16
'	rest Receiver	E3CI 7	100946	Schwarz	2015-07-17	2010-07-10
2	Loop ontonno	HFH2-Z2	829324/007	Rohde &	2014-12-17	2017-12-16
	Loop antenna	пгп2-22	029324/007	Schwarz	2014-12-17	2017-12-16
3	BiLog Antenna	VULB9163	234	Schwarzbeck	2013-09-16	2016-09-15
	Dual-Ridge					
4	Waveguide	3115	6914	EMCO	2014-12-16	2017-12-15
	Horn Antenna					
	Dual-Ridge					
5	Waveguide	3116	2661	ETS-Lindgren	2014-06-18	2017-06-17
	Horn Antenna					
6	Vector Signal	FSV	101047	Rohde &	2015-07-04	2016-07-03
0	Analyzer	гον	101047	Schwarz	2015-07-04	2010-07-03
7	Semi-anechoic	,	CT000332-1	Frankonia	,	,
/	chamber	7	074	German	,	,

ANNEX A: MEASUREMENT RESULTS

A.1. Measurement Method

A.1.1. Conducted Measurements

- 1). Connect the EUT to the test system correctly.
- 2). Set the EUT to the required work mode.
- 3). Set the EUT to the required channel.
- 4). Set the spectrum analyzer to start measurement.
- 5). Record the values. Vector Signal Analyzer

A.1.2. Radiated Emission Measurements

In the case of radiated emission, the used settings are as follows, Sweep frequency from 30 MHz to 1GHz, RBW = 100 kHz, VBW = 300 kHz; Sweep frequency from 1 GHz to 26GHz, RBW = 1MHz, VBW = 10Hz;

The measurement is made according to KDB 789033

The radiated emission test is performed in semi-anechoic chamber. The distance from the EUT to the reference point of measurement antenna is 3m. The test is carried out on both vertical and horizontal polarization and only maximization result of both polarizations is kept. During the test, the turntable is rotated 360° and the measurement antenna is moved from 1m to 4m to get the maximization result.

A.2. Maximum output Power

Measurement Limit and Method:

Standard	Frequency (MHz)	Limit (dBm)
FCC CRF Part 15.407(a)	5150MHz~5250MHz	24dBm

The measurement method SA-1 is made according to KDB 789033

Measurement Results:

802.11a mode

				Т	est Resu	lt (dBm)			
Mode Channel		Data Rate (Mbps)							
		6	9	12	18	24	36	48	54
	5180MHz (Ch36)	13.77	13.58	13.87	13.81	13.59	13.44	13.63	13.57
802.11a	5200MHz (Ch40)	/	/	13.39	/	/	/	/	/
	5240MHz(Ch48)	/	/	13.54	/	/	/	/	/

The data rate 12Mbps is selected as worse condition, and the following cases are performed with this condition.

802.11n-HT20 mode

				•	Test Res	ult (dBm))		
Mode Channel		Data Rate							
		MCS0	MCS1	MCS2	MCS3	MCS4	MCS5	MCS6	MCS7
902 11n	5180MHz (Ch36)	11.75	11.83	11.82	11.69	11.59	11.63	11.58	11.58
802.11n	5200MHz (Ch40)	/	11.92	/	/	/	/	/	/
(HT20)	5240MHz(Ch48)	/	11.80	/	/	/	/	/	/

The data rate MCS1 is selected as worse condition, and the following cases are performed with this condition.

802.11n-HT40 mode

				•	Test Res	ult (dBm)		
Mode	Channel	Data Rate							
		MCS0	MCS1	MCS2	MCS3	MCS4	MCS5	MCS6	MCS7
802.11n	5190MHz (Ch38)	12.05	11.91	11.75	11.73	11.59	11.37	11.42	11.35
(HT40)	5230MHz(Ch46)	12.15	/	/	/	/	/	/	/

The data rate MCS0 is selected as worse condition, and the following cases are performed with this condition.

A.3. Peak Power Spectral Density (conducted)

Measurement Limit:

Standard	Frequency (MHz)	Limit (dBm/MHz)
FCC CRF Part 15.407(a)	5150MHz~5250MHz	11

The output power measurement method SA-1 is made according to KDB 789033

Measurement Results:

Mode	Channel	Power Spectral Density (dBm/MHz)	Conclusion
	5180 MHz	6.29	Р
802.11a	5200 MHz	6.14	Р
	5240 MHz	6.56	Р
000 44 =	5180 MHz	3.65	Р
802.11n HT20	5200 MHz	4.98	Р
П120	5240 MHz	5.37	Р
802.11n	5190 MHz	0.56	Р
HT40	5230 MHz	0.83	Р

Conclusion: PASS

A.4. Occupied 26dB Bandwidth(conducted)

Measurement Limit:

Standard	Limit (kHz)
FCC 47 CFR Part 15.403 (i)	/

The measurement is made according to KDB 789033

Measurement Uncertainty:

Measurement Uncertainty	60.80Hz
-------------------------	---------

Measurement Result:

Mode	Channel	Occupied 26dB Bandwidth (kHz)		conclusion
	5180 MHz	Fig.1	34250	Р
802.11a	5200 MHz	Fig.2	35500	Р
	5240 MHz	Fig.3	33950	Р
902 11 n	5180 MHz	Fig.4	34600	Р
802.11n HT20	5200 MHz	Fig.5	33400	Р
П120	5240 MHz	Fig.6	37400	Р
802.11n	5190 MHz	Fig.7	73200	Р
HT40	5230 MHz	Fig.8	74480	Р

Conclusion: PASS
Test graphs as below:

Fig. 1 Occupied 26dB Bandwidth (802.11a, 5180MHz)

Fig. 2 Occupied 26dB Bandwidth (802.11a, 5200MHz)

Fig. 3 Occupied 26dB Bandwidth (802.11a, 5240MHz)

Fig. 4 Occupied 26dB Bandwidth (802.11n-HT20, 5180MHz)

Fig. 5 Occupied 26dB Bandwidth (802.11n-HT20, 5200MHz)

Fig. 6 Occupied 26dB Bandwidth (802.11n-HT20, 5240MHz)

Fig. 7 Occupied 26dB Bandwidth (802.11n-HT40, 5190MHz)

Fig. 8 Occupied 26dB Bandwidth (802.11n-HT40, 5230MHz)

A.5. Band Edges Compliance

A5.1 Band Edges - conducted

Measurement Limit:

Standard	Limit (dBm/MHz)
FCC 47 CFR Part 15.407	< -27

The measurement is made according to KDB 789033

Measurement Uncertainty:

Measurement Uncertainty	0.75dB
-------------------------	--------

Measurement Result:

Mode	Channel	Test Results	Conclusion
802.11a	5180 MHz	Fig.9	Р
002.11a	5240 MHz	Fig.10	Р
802.11n	5180 MHz	Fig.11	Р
HT20	5240 MHz	240 MHz Fig.12 P	
802.11n	5190 MHz	Fig.13	Р
HT40	5230 MHz	Fig.14	Р

Conclusion: PASS
Test graphs as below:

Date: 10.MAR.2016 11:14:23

Fig. 9 Band Edges (802.11a, 5180MHz)

Date: 10.MAR.2016 11:30:37

Fig. 10 Band Edges (802.11a, 5240MHz)

Date: 10.MAR.2016 11:18:28

Fig. 11 Band Edges (802.11n-HT20, 5180MHz)

Date: 10.MAR.2016 11:29:28

Fig. 12 Band Edges (802.11n-HT20, 5240MHz)

Date: 10.MAR.2016 11:32:54

Fig. 13 Band Edges (802.11n-HT40, 5190MHz)

Date: 10.MAR.2016 11:34:11

Fig. 14 Band Edges (802.11n-HT40, 5230MHz)

A5.2 Band Edges - Radiated

Measurement Limit:

Standard	Limit (dB μ V/m)			
FCC 47 CFR Part 15.209	Peak	74		
	Average	54		

The measurement is made according to KDB 789033

In addition, radiated emissions which fall in the restricted bands, as defined in § 15.205(a), must also comply with the radiated emission limits specified in § 15.209(a) (see § 15.205(c)).

Measurement Uncertainty:

Measurement Uncertainty	0.75dB
-------------------------	--------

Measurement Result:

Mode	Channel Test Results		Conclusion
802.11a	5180 MHz	Fig.15	Р
802.11n HT20	5180 MHz	Fig.16	Р
802.11n HT40	5190 MHz	Fig.17	Р

Conclusion: PASS
Test graphs as below:

5125

5130

RE - Power-5.125GHz-5.175GHz

Fig. 15 Band Edges (802.11a, 5180MHz)

5150

Frequency in MHz

5160

5170

5175

5140

RE - Power-5.125GHz-5.175GHz

Fig. 16 Band Edges (802.11n-HT20, 5180MHz)

Fig. 17 Band Edges (802.11n-HT40, 5190MHz)

A.6. Transmitter Spurious Emission

Measurement Limit:

Standard	Limit
FCC 47 CFR Part 15.407	-27 dBm/MHz

The measurement is made according to KDB 789033

In addition, radiated emissions which fall in the restricted bands, as defined in § 15.205(a), must also comply with the radiated emission limits specified in § 15.209(a) (see § 15.205(c)).

Limit in restricted band:

Frequency of emission (MHz)	Field strength(dBµV/m)	Measurement distance(m)
30-88	40.0	3
88-216	43.5	3
216-960	46.0	3
Above 960	54.0	3

Note: for frequency range below 960MHz, the limit in 15.209 is defined in 10m test distance. The limit used above is calculated from 10m to 3m

Measurement uncertainty:

Expanded measurement uncertainty for this test item is U =3.9 dB, k=2.

Measurement Results:

802.11a mode

Mode	Channel	Frequency Range	Test Results	Conclusion
		1 GHz ~ 3 GHz	Fig.18	Р
	36(5180MHz)	3 GHz ~ 6 GHz	Fig.19	Р
		6 GHz ~ 18 GHz	Fig.20	Р
		30 MHz ~1 GHz	Fig.21	Р
		1 GHz ~ 3 GHz	Fig.22	Р
802.11a	40(5200MHz)	3 GHz ~ 6 GHz	Fig.23	Р
002.11a		6 GHz ~ 18 GHz	Fig.24	Р
		18 GHz ~ 26.5 GHz	Fig.25	Р
		26.5 GHz ~ 40 GHz	Fig.26	Р
		1 GHz ~ 3 GHz	Fig.27	Р
	48(5240MHz)	3 GHz ~ 6 GHz	Fig.28	Р
		6 GHz ~ 18 GHz	Fig.29	Р

Mode	Channel	Frequency Range	Test Results	Conclusion
		1 GHz ~ 3 GHz	Fig.30	Р
	36(5180MHz)	3 GHz ~ 6 GHz	Fig.31	Р
		6 GHz ~ 18 GHz	Fig.32	Р
		30 MHz ~1 GHz	Fig.33	Р
		1 GHz ~ 3 GHz	Fig.34	Р
802.11n	40(5200MHz)	3 GHz ~ 6 GHz	Fig.35	Р
-HT20		6 GHz ~ 18 GHz	Fig.36	Р
		18 GHz ~ 26.5 GHz	Fig.37	Р
		26.5 GHz ~ 40 GHz	Fig.38	Р
		1 GHz ~ 3 GHz	Fig.39	Р
	48(5240MHz)	3 GHz ~ 6 GHz	Fig.40	Р
		6 GHz ~ 18 GHz	Fig.41	Р

802.11n-HT40 mode

Mode	Channel	Frequency Range	Test Results	Conclusion
		30 MHz ~1 GHz	Fig.42	Р
		1 GHz ~ 3 GHz	Fig.43	Р
	29/E100MU¬\	3 GHz ~ 6 GHz	Fig.44	Р
	38(5190MHz)	6 GHz ~ 18 GHz	Fig.45	Р
802.11n		18 GHz ~ 26.5 GHz	Fig.46	Р
HT40 46(5230MH		26.5 GHz ~ 40 GHz	Fig.47	Р
		1 GHz ~ 3 GHz	Fig.48	Р
	46(5230MHz)	3 GHz ~ 6 GHz	Fig.49	Р
		6 GHz ~ 18 GHz	Fig.50	Р

Conclusion: PASS

Note:

A "reference path loss" is established and the A_{Rpl} is the attenuation of "reference path loss", and including the gain of receive antenna, the gain of the preamplifier, the cable loss.

 $\ensuremath{\mathsf{P}_{\mathsf{Mea}}}$ is the field strength recorded from the instrument.

The measurement results are obtained as described below:

Result=P_{Mea}+A_{Rpl=} P_{Mea}+Cable Loss+Antenna Factor

802.11a

Channel 36

Fraguenov/MHz)	Result	Cable	Antenna	P _{Mea}	Polarization
Frequency(MHz)	(dBuV/m)	Loss	Factor	(dBuV/m)	
5150.000	45.2	-19.5	34.5	30.247	Н
17731.800	46.5	-13.0	41.2	18.305	V
17655.000	46.4	-13.0	41.2	18.205	Н
17702.400	46.3	-13.0	41.2	18.105	V
17700.600	46.3	-13.0	41.2	18.105	Н
17632.200	46.3	-14.9	41.2	20.018	Н

Channel 40

Eroguenov(MHz)	Result	Cable	Antenna	P _{Mea}	Polarization
Frequency(MHz)	(dBuV/m)	Loss	Factor	(dBuV/m)	
17632.800	46.3	-14.9	41.2	20.018	Н
17676.600	46.3	-13.0	41.2	18.105	Н
17686.800	46.3	-13.0	41.2	18.105	V
17708.400	46.3	-13.0	41.2	18.105	V
17653.200	46.3	-13.0	41.2	18.105	Н
17676.000	46.3	-13.0	41.2	18.105	V

Channel 48

Fraguenov/MHz)	Result	Cable	Antenna	P _{Mea}	Polarization
Frequency(MHz)	(dBuV/m)	Loss	Factor	(dBuV/m)	
17713.800	46.5	-13.0	41.2	18.305	V
17689.200	46.4	-13.0	41.2	18.205	V
17636.400	46.4	-13.0	41.2	18.205	Н
17720.400	46.3	-13.0	41.2	18.105	V
17675.400	46.3	-13.0	41.2	18.105	Н
17686.200	46.3	-13.0	41.2	18.105	V

802.11n-HT20

Channel 36

Fraguenov/MHz)	Result	Cable	Antenna	P _{Mea}	Polarization
Frequency(MHz)	(dBuV/m)	Loss	Factor	(dBuV/m)	
5150.000	41.8	-19.5	34.5	26.847	V
17662.200	46.4	-13.0	41.2	18.205	V
17689.800	46.4	-13.0	41.2	18.205	V
17728.200	46.4	-13.0	41.2	18.205	V
17626.200	46.4	-14.9	41.2	20.118	Н
17650.800	46.3	-13.0	41.2	18.105	Н

Channel 40

Fragues av (MIII-)	Result	Cable	Antenna	P _{Mea}	Polarization
Frequency(MHz)	(dBuV/m)	Loss	Factor	(dBuV/m)	
17691.600	46.5	-13.0	41.2	18.305	V
17679.000	46.5	-13.0	41.2	18.305	Н
17654.400	46.4	-13.0	41.2	18.205	V
17638.200	46.4	-13.0	41.2	18.205	Н
17701.200	46.3	-13.0	41.2	18.105	V
17698.200	46.3	-13.0	41.2	18.105	V

Channel 48

Eroguenov(MHz)	Result	Cable	Antenna	P _{Mea}	Polarization
Frequency(MHz)	(dBuV/m)	Loss	Factor	(dBuV/m)	
17725.800	46.5	-13.0	41.2	18.305	V
17671.200	46.4	-13.0	41.2	18.205	П
17653.800	46.4	-13.0	41.2	18.205	V
17674.800	46.3	-13.0	41.2	18.105	H
17721.000	46.3	-13.0	41.2	18.105	V
17658.600	46.3	-13.0	41.2	18.105	Н

802.11n-HT40

Channel 38

Fraguenov/MUz)	Result	Cable	Antenna	P _{Mea}	Polarization
Frequency(MHz)	(dBuV/m)	Loss	Factor	(dBuV/m)	
5150.000	52.6	-19.5	34.5	37.647	V
17723.400	46.4	-13.0	41.2	18.205	V
17652.600	46.4	-13.0	41.2	18.205	V
17716.200	46.3	-13.0	41.2	18.105	V
17685.600	46.3	-13.0	41.2	18.105	Н
17718.000	46.3	-13.0	41.2	18.105	V

Channel 46

Fraguenov/MHz)	Result	Cable	Antenna	P _{Mea}	Polarization
Frequency(MHz)	(dBuV/m)	Loss	Factor	(dBuV/m)	
17706.600	46.4	-13.0	41.2	18.205	Н
17630.400	46.3	-14.9	41.2	20.018	П
17634.600	46.3	-13.0	41.2	18.105	Н
17725.200	46.3	-13.0	41.2	18.105	V
17637.600	46.3	-13.0	41.2	18.105	V
17662.200	46.3	-13.0	41.2	18.105	V

Test graphs as below:

Fig. 18 Radiated Spurious Emission (802.11a, ch36, 1 GHz-3 GHz)

Fig. 19 Radiated Spurious Emission (802.11a, ch36, 3 GHz-6 GHz)

Fig. 20 Radiated Spurious Emission (802.11a, ch36, 6 GHz-18 GHz)

Fig. 21 Radiated Spurious Emission (802.11a, ch40, 30 MHz-1 GHz)

Fig. 22 Radiated Spurious Emission (802.11a, ch40, 1 GHz-3 GHz)

Fig. 23 Radiated Spurious Emission (802.11a, ch40, 3 GHz-6 GHz)

Fig. 24 Radiated Spurious Emission (802.11a, ch40, 6 GHz-18 GHz)

Fig. 25 Radiated Spurious Emission (802.11a, ch40, 18 GHz-26.5 GHz)

Fig. 26 Radiated Spurious Emission (802.11a, ch40, 26.5 GHz-40 GHz)

Fig. 27 Radiated Spurious Emission (802.11a, ch48, 1 GHz-3 GHz)

Fig. 28 Radiated Spurious Emission (802.11a, ch48, 3 GHz-6 GHz)

Fig. 29 Radiated Spurious Emission (802.11a, ch48, 6 GHz-18 GHz)

Fig. 30 Radiated Spurious Emission (802.11n-HT20, ch36, 1 GHz-3 GHz)

Fig. 31 Radiated Spurious Emission (802.11n-HT20, ch36, 3 GHz-6 GHz)

Fig. 32 Radiated Spurious Emission (802.11n-HT20, ch36, 6 GHz-18 GHz)

Fig. 33 Radiated Spurious Emission (802.11n-HT20, ch40, 30 MHz-1 GHz)

Fig. 34 Radiated Spurious Emission (802.11n-HT20, ch40, 1 GHz-3 GHz)

Fig. 35 Radiated Spurious Emission (802.11n-HT20, ch40, 3 GHz-6 GHz)

Fig. 36 Radiated Spurious Emission (802.11n-HT20, ch40, 6 GHz-18 GHz)

Fig. 37 Radiated Spurious Emission (802.11n-HT20, ch40, 18 GHz-26.5 GHz)

Fig. 38 Radiated Spurious Emission (802.11n-HT20, ch40, 26.5 GHz-40 GHz)

Fig. 39 Radiated Spurious Emission (802.11n-HT20, ch48, 1 GHz-3GHz)

Fig. 40 Radiated Spurious Emission (802.11n-HT20, ch48, 3 GHz-6 GHz)

Fig. 41 Radiated Spurious Emission (802.11n-HT20, ch48, 6 GHz-18 GHz)

Fig. 42 Radiated Spurious Emission (802.11n-HT40, ch38, 30 MHz-1 GHz)

Fig. 43 Radiated Spurious Emission (802.11n-HT40, ch38, 1 GHz-3 GHz)

Fig. 44 Radiated Spurious Emission (802.11n-HT40, ch38, 3 GHz-6 GHz)

Fig. 45 Radiated Spurious Emission (802.11n-HT40, ch38, 6 GHz-18 GHz)

Fig. 46 Radiated Spurious Emission (802.11n-HT40, ch38, 18 GHz-26.5 GHz)

Fig. 47 Radiated Spurious Emission (802.11n-HT40, ch38, 26.5 GHz-40 GHz)

Fig. 48 Radiated Spurious Emission (802.11n-HT40, ch46, 1 GHz-3 GHz)

Fig. 49 Radiated Spurious Emission (802.11n-HT40, ch46, 3 GHz-6 GHz)

Fig. 50 Radiated Spurious Emission (802.11n-HT40, ch46, 6 GHz-18 GHz)

A.7. Spurious Emissions Radiated < 30MHz

Measurement Limit(15.209, 9kHz-30MHz):

Frequency (MHz)	Field strength(μV/m)	Measurement distance(m)
0.009 - 0.490	2400/F(kHz)	300
0.490 - 1.705	24000/F(kHz)	30
1.705 – 30.0	30	30

The measurement is made according to KDB 789033

Note: The measurement distance during the test is 3m. The limit used in plots is recalculated based on the extrapolation factor of 40 dB/decade.

Measurement uncertainty:

Expanded measurement uncertainty for this test item is U =2.6dB, k=2.

Measurement Results:

Mode	Frequency Range	Test Results	Conclusion
802.11a	9 kHz ~30 MHz	Fig.51	Р

Conclusion: PASS
Test graphs as below:

RE 9kHz-30MHz

Fig. 51 Radiated Spurious Emission (802.11a, ch40, 9 kHz ~30 MHz)

A.8. Conducted Emission (150kHz- 30MHz)

Test Condition:

Voltage (V)	Frequency (Hz)
110	60

Measurement uncertainty:

Expanded measurement uncertainty for this test item is U =3.2dB, k=2.

Measurement Result and limit:

WLAN (Quasi-peak Limit)

Frequency range (MHz)	Quasi-peak Limit (dBμV)		Result (dB _µ V) With charger			
(IVITIZ)	Ειιιιι (αδμν)	11a mode	ldle			
0.15 to 0.5	66 to 56					
0.5 to 5	56	Fig. 127	Fig. 128	Р		
5 to 30	60					

NOTE: The limit decreases linearly with the logarithm of the frequency in the range 0.15 MHz to 0.5 MHz.

WLAN (Average Limit)

Frequency range (MHz)	Average Limit	Result (dBμV) With charger		With abarrar		With aborror		Conclusion
(IVITIZ)	(dBμV)	11a mode	Idle					
0.15 to 0.5	56 to 46							
0.5 to 5	46	Fig.52	Fig.53	Р				
5 to 30	50							

NOTE: The limit decreases linearly with the logarithm of the frequency in the range 0.15 MHz to 0.5 MHz.

Conclusion: PASS
Test graphs as below:

Fig. 52 Conducted Emission(802.11a, Ch40, TX)

Measurement Result:

Frequency (MHz)	QuasiPeak (dBµV)	PE	Line	Corr. (dB)	Margin (dB)	Limit (dBµV)
0.595501	42.5	GND	N	10.3	13.5	56.0
0.654001	48.2	GND	N	10.3	7.8	56.0
1.311001	38.8	GND	N	10.3	17.2	56.0
2.620501	38.2	GND	N	10.4	17.8	56.0
13.861501	40.5	GND	N	10.6	19.5	60.0
15.607501	38.4	GND	N	10.6	21.6	60.0

Measurement Result:

Frequency	QuasiPeak	Meas.	Bandwidth	Filter	Line	Corr.	Margin	Limit
(MHz)	(dBµV)	Time	(kHz)			(dB)	(dB)	(dBµV)
		(ms)						
0.595501	37.1	GND	L1	10.3	8.9	46.0	0.595501	37.1
0.654001	42.0	GND	L1	10.3	4.0	46.0	0.654001	42.0
1.252501	31.2	GND	N	10.3	14.8	46.0	1.252501	31.2
1.635001	31.0	GND	L1	10.4	15.0	46.0	1.635001	31.0
2.013001	32.2	GND	L1	10.4	13.8	46.0	2.013001	32.2
2.076001	32.0	GND	L1	10.3	14.0	46.0	2.076001	32.0

Fig. 53 Conducted Emission(802.11a, IDLE)

Measurement Result:

Frequency	QuasiPeak	Meas.	Bandwidth	Filter	Line	Corr.	Margin	Limit
(MHz)	(dBµV)	Time	(kHz)			(dB)	(dB)	(dBµ
		(ms)						V)
0.604501	45.5	GND	L1	10.3	10.5	56.0	0.604501	45.5
0.663001	51.1	GND	L1	10.3	4.9	56.0	0.663001	51.1
14.307001	46.7	GND	L1	10.6	13.3	60.0	14.307001	46.7
15.193501	47.7	GND	L1	10.6	12.3	60.0	15.193501	47.7
15.346501	47.0	GND	L1	10.6	13.0	60.0	15.346501	47.0
15.679501	46.6	GND	L1	10.6	13.4	60.0	15.679501	46.6

Measurement Result:

Frequency	QuasiPeak	Meas.	Bandwidth	Filter	Line	Corr.	Margin	Limit
(MHz)	(dBµV)	Time	(kHz)			(dB)	(dB)	(dBµV)
		(ms)						
0.604501	39.1	GND	L1	10.3	6.9	46.0	0.604501	39.1
0.663001	44.8	GND	L1	10.3	1.2	46.0	0.663001	44.8
1.981501	35.0	GND	L1	10.4	11.0	46.0	1.981501	35.0
2.040001	36.3	GND	L1	10.3	9.7	46.0	2.040001	36.3
2.098501	35.0	GND	L1	10.3	11.0	46.0	2.098501	35.0
15.117001	37.7	GND	L1	10.6	12.3	50.0	15.117001	37.7

©Copyright. All rights reserved by CTTL.

A.9. Frequency Stability

Manufacturers ensured the EUT meet the requirement of frequency stability, such that an emission is maintained within the band of operation under all conditions of normal operation as specified in the user's manual.

ANNEX B: PHOTOGRAPHS OF THE TEST SET-UP

Layout of Radiated Spurious Emission Test

ANNEX C: Accreditation Certificate

China National Accreditation Service for Conformity Assessment

LABORATORY ACCREDITATION CERTIFICATE

(No. CNAS L0570)

Telecommunication Technology Labs,

Academy of Telecommunication Research, MIIT

No.52, Huayuan North Road, Haidian District, Beijing, China No.51, Xueyuan Road, Haidian District, Beijing, China

to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration Laboratories(CNAS-CL01 Accreditation Criteria for the Competence of Testing and Calibration Laboratories) for the competence in the field of testing and calibration.

The scope of accreditation is detailed in the attached schedule bearing the same accreditation number as above. The schedule forms an integral part of this certificate.

Date of Issue: 2014-10-29
Date of Expiry: 2017-06-19

Date of Initial Accreditation: 1998-07-03

Signed on behalf of China National Accreditation Service for Conformity Assessment

China National Accreditation Service for Conformity Assessment (CNAS) is authorized by Certification and Accreditation Administration of the People's Republic of China (CNCA) to operate the national accreditation schemes for conformity assessment. CNAS is the signatory to International Laboratory Accreditation Cooperation Multilateral Recognition Arrangement (ILAC MRA) and Asia Pacific Laboratory Accreditation Cooperation Multilateral Recognition Arrangement (APLAC MRA).

No.CNASAL2

0011149