$$(Ex) = \begin{bmatrix} -2 & -1 \\ 4 & -2 \end{bmatrix}$$

$$(Ex) = \begin{bmatrix} -2 & -1 \\ 4 & -2 \end{bmatrix}$$

$$(Ex) = \begin{bmatrix} -2 & -1 \\ 4 & -2 \end{bmatrix}$$

$$(Ex) = \begin{bmatrix} -2 & -1 \\ 4 & -2 \end{bmatrix}$$

$$(Ex) = \begin{bmatrix} -2 & -1 \\ 2 & -2 \end{bmatrix}$$

$$(Ex) = \begin{bmatrix} -2 & -1 \\ 2 & -2 \end{bmatrix}$$

$$(Ex) = \begin{bmatrix} -2 & -1 \\ 2 & -2 \end{bmatrix}$$

$$(Ex) = \begin{bmatrix} -2 & -1 \\ 2 & -2 \end{bmatrix}$$

$$(Ex) = \begin{bmatrix} -2 & -1 \\ 2 & -2 \end{bmatrix}$$

$$(Ex) = \begin{bmatrix} -2 & -1 \\ 2 & -2 \end{bmatrix}$$

$$(Ex) = \begin{bmatrix} -2 & -1 \\ 2 & -2 \end{bmatrix}$$

$$(Ex) = \begin{bmatrix} -2 & -1 \\ 2 & -2 \end{bmatrix}$$

$$(Ex) = \begin{bmatrix} -2 & -1 \\ 2 & -2 \end{bmatrix}$$

$$(Ex) = \begin{bmatrix} -2 & -1 \\ 2 & -2 \end{bmatrix}$$

$$(Ex) = \begin{bmatrix} -2 & -1 \\ 2 & -2 \end{bmatrix}$$

$$(Ex) = \begin{bmatrix} -2 & -1 \\ 2 & -2 \end{bmatrix}$$

$$(Ex) = \begin{bmatrix} -2 & -1 \\ 2 & -2 \end{bmatrix}$$

$$(Ex) = \begin{bmatrix} -2 & -1 \\ 2 & -2 \end{bmatrix}$$

$$(Ex) = \begin{bmatrix} -2 & -1 \\ 2 & -2 \end{bmatrix}$$

$$(Ex) = \begin{bmatrix} -2 & -1 \\ 2 & -2 \end{bmatrix}$$

$$(Ex) = \begin{bmatrix} -2 & -1 \\ 2 & -2 \end{bmatrix}$$

$$(Ex) = \begin{bmatrix} -2 & -1 \\ 2 & -2 \end{bmatrix}$$

$$(Ex) = \begin{bmatrix} -2 & -1 \\ 2 & -2 \end{bmatrix}$$

$$(Ex) = \begin{bmatrix} -2 & -1 \\ 2 & -2 \end{bmatrix}$$

$$(Ex) = \begin{bmatrix} -2 & -1 \\ 2 & -2 \end{bmatrix}$$

$$(Ex) = \begin{bmatrix} -2 & -1 \\ 2 & -2 \end{bmatrix}$$

$$(Ex) = \begin{bmatrix} -2 & -1 \\ 2 & -2 \end{bmatrix}$$

$$(Ex) = \begin{bmatrix} -2 & -1 \\ 2 & -2 \end{bmatrix}$$

$$(Ex) = \begin{bmatrix} -2 & -1 \\ 2 & -2 \end{bmatrix}$$

$$(Ex) = \begin{bmatrix} -2 & -1 \\ 2 & -2 \end{bmatrix}$$

$$(Ex) = \begin{bmatrix} -2 & -1 \\ 2 & -2 \end{bmatrix}$$

$$(Ex) = \begin{bmatrix} -2 & -1 \\ 2 & -2 \end{bmatrix}$$

$$(Ex) = \begin{bmatrix} -2 & -1 \\ 2 & -2 \end{bmatrix}$$

$$(Ex) = \begin{bmatrix} -2 & -1 \\ 2 & -2 \end{bmatrix}$$

$$(Ex) = \begin{bmatrix} -2 & -1 \\ 2 & -2 \end{bmatrix}$$

$$(Ex) = \begin{bmatrix} -2 & -1 \\ 2 & -2 \end{bmatrix}$$

$$(Ex) = \begin{bmatrix} -2 & -1 \\ 2 & -2 \end{bmatrix}$$

$$(Ex) = \begin{bmatrix} -2 & -1 \\ 2 & -2 \end{bmatrix}$$

$$(Ex) = \begin{bmatrix} -2 & -1 \\ 2 & -2 \end{bmatrix}$$

$$(Ex) = \begin{bmatrix} -2 & -1 \\ 2 & -2 \end{bmatrix}$$

$$(Ex) = \begin{bmatrix} -2 & -1 \\ 2 & -2 \end{bmatrix}$$

$$(Ex) = \begin{bmatrix} -2 & -1 \\ 2 & -2 \end{bmatrix}$$

$$(Ex) = \begin{bmatrix} -2 & -1 \\ 2 & -2 \end{bmatrix}$$

$$(Ex) = \begin{bmatrix} -2 & -1 \\ 2 & -2 \end{bmatrix}$$

$$(Ex) = \begin{bmatrix} -2 & -1 \\ 2 & -2 \end{bmatrix}$$

$$(Ex) = \begin{bmatrix} -2 & -1 \\ 2 & -2 \end{bmatrix}$$

$$(Ex) = \begin{bmatrix} -2 & -1 \\ 2 & -2 \end{bmatrix}$$

$$(Ex) = \begin{bmatrix} -2 & -1 \\ 2 & -2 \end{bmatrix}$$

$$(Ex) = \begin{bmatrix} -2 & -1 \\ 2 & -2 \end{bmatrix}$$

$$(Ex) = \begin{bmatrix} -2 & -1 \\ 2 & -2 \end{bmatrix}$$

$$(Ex) = \begin{bmatrix} -2 & -1 \\ 2 & -2 \end{bmatrix}$$

$$(Ex) = \begin{bmatrix} -2 & -1 \\ 2 & -2 \end{bmatrix}$$

$$(Ex) = \begin{bmatrix} -2 & -1 \\ 2 & -2 \end{bmatrix}$$

$$(Ex) = \begin{bmatrix} -2 & -1 \\ 2 & -2 \end{bmatrix}$$

$$(Ex) = \begin{bmatrix} -2 & -1 \\ 2 & -2 \end{bmatrix}$$

$$(Ex) = \begin{bmatrix} -2 & -1 \\ 2 & -2 \end{bmatrix}$$

$$(Ex) = \begin{bmatrix} -2 & -1 \\ 2 & -2 \end{bmatrix}$$

$$(Ex) = \begin{bmatrix} -2 & -1 \\ 2 & -2 \end{bmatrix}$$

$$(Ex) = \begin{bmatrix} -2 & -1 \\ 2 & -2 \end{bmatrix}$$

$$(Ex) = \begin{bmatrix} -2 & -1 \\ 2 & -2 \end{bmatrix}$$

$$(Ex) = \begin{bmatrix} -2 & -1 \\ 2 & -2 \end{bmatrix}$$

$$(Ex) = \begin{bmatrix} -2 & -1 \\ 2 & -2 \end{bmatrix}$$

$$(Ex) = \begin{bmatrix} -2 & -1 \\ 2 & -2 \end{bmatrix}$$

$$(Ex) = \begin{bmatrix} -2 & -1 \\ 2 & -2 \end{bmatrix}$$

$$(Ex) = \begin{bmatrix} -2 & -1 \\ 2 & -2 \end{bmatrix}$$

$$(Ex) = \begin{bmatrix} -2 & -1 \\ 2 & -2 \end{bmatrix}$$

(ase 3:
$$y'=Ay'$$

A is not diagonalizable.

Topics: 1. general solution, 2. Solution (urves

(Ex) $y'=\begin{bmatrix}1&0\\2&1\end{bmatrix}$ (ase 3.

1et"A

(1) λ : $det(A-\lambda I) = \begin{bmatrix}1-\lambda & 0\\2&1-\lambda\end{bmatrix} = (1-\lambda)^2 = 0$

(2) $\lambda = 1$: $\begin{bmatrix}0&0\\2&0\end{bmatrix}$ (3) $\begin{bmatrix}0&1\\3&1\end{bmatrix}$ Let $V_1 = \begin{bmatrix}0&1\\3&1\end{bmatrix}$

$$y_{1}(t) = [0]e^{t}$$

 $y_{2}(t) = ?$
 $y_{1}(t) = 0 : let y(t) = e^{t}$
 $y_{2}(t) = 0 : (r-1) = 0 : r = 1$
 $y_{1}(t) = e^{t}$, $y_{2}(t) = e^{t}u(t)$
 $y_{3}(t) = t$
 $y_{4}(t) = c_{1}e^{t} + c_{2}te^{t}$

$$A = U + []$$

$$A =$$

(Trajectories)
$$y'=\begin{bmatrix}1&0\\2&1\end{bmatrix}$$
 Y.
 $y'(t)=(C_1e^t+C_2te^t)\begin{bmatrix}0\\1\end{bmatrix}+C_2e^t\begin{bmatrix}\frac{1}{2}\\0\end{bmatrix}$
1. $\lim_{t\to\infty}e^t=\infty$, $\lim_{t\to-\infty}e^t=0$
2. $\lim_{t\to\infty}e^t
Considering the second s$

Remark: If A has eigenvalues λ_1, λ_2 , $(\lambda - \lambda_1)(\lambda - \lambda_2) = 0$ iff $\lambda^2 - (\lambda_1 + \lambda_2) + \lambda_1 \lambda_2 = 0$ $trA = \lambda_1 + \lambda_2 & detA = \lambda_1 \lambda_2$ Set $p = trA = a_1 + a_{22} & q = detA$. Then $det(A - \lambda I) = \lambda^2 - p\lambda + q = 0$ $\lambda = \frac{1}{2}(p \pm \sqrt{p^2 - 4q}) : \Delta = p^2 - 4q$ the discriminant.

(1) $\Delta > 0$: two different real eigenvalues (Case 1) P > 0, q > 0: $P = \sqrt{P^2}$ $P > \sqrt{P^2 - 4g}$: $\lambda = \frac{1}{2}(P \pm \sqrt{\Delta})$ $\lambda_1 = \frac{1}{2}(P + \sqrt{\Delta}) > 0$, $\lambda_2 = \frac{1}{2}(P - \sqrt{\Delta}) > 0$ (0,0): a unstable improper node.

Because $\lim_{t \to \infty} e^{\lambda_1 t} = \infty$, $\lim_{t \to \infty} e^{\lambda_2 t} = \infty$ 2) P > 0, q < 0: $P < \sqrt{P^2 - 4g}$

$$\lambda_1 = \frac{1}{2}(P+\sqrt{\Delta}) > 0, \quad \lambda_2 = \frac{1}{2}(P-\sqrt{\Delta}) < 0$$

$$(0,0): \text{ a unstable saddle point}$$

$$(0,0): \text{ a unstable saddle point}$$

$$(0,0): \text{ A unstable saddle point}$$

$$|P| > \sqrt{P^2-49}: \text{ iff } |P| > \sqrt{\Delta}$$

$$|P| > \sqrt{P^2-49}: \text{ iff } |P| > \sqrt{\Delta}$$

$$|A| = \frac{1}{2}(P+\sqrt{\Delta}) < 0, \quad |A| = \frac{1}{2}(P-\sqrt{\Delta}) < 0$$

$$(0,0): \text{ an asymptotically stable (attractive)}$$

$$|\text{im proper node.}$$

$$\Phi P < 0, \ 9 < 0: |P| < \sqrt{P^2 - 49}$$

$$\lambda_1 = \frac{1}{2} (P + \sqrt{\Delta}) > 0, \ \lambda_2 = \frac{1}{2} (P - \sqrt{\Delta}) < 0$$

$$(0, 0): \text{ a unstable Saddle point.}$$

$$5) P = 0; \ 9 < 0: \ \lambda = \frac{1}{2} (0 \pm \sqrt{0 - 49})$$

$$(-4870)$$

$$\lambda_1 = \sqrt{\Delta}, \ \lambda_2 = -\sqrt{\Delta} < 0$$

$$(0, 0): \text{ a unstable Saddle point.}$$

(2)
$$\Delta < 0$$
: $P^2 - 4P_1 < 0$: (ase 2. $(-\Delta > 0)$)

 $D > 0$: $\lambda_1 = \frac{1}{2}(P + \sqrt{\Delta}) = \frac{1}{2}(P + i\sqrt{-\Delta})$
 $\lambda_2 = \frac{1}{2}(P - \sqrt{\Delta})$: $P > 0$

(0,0): a unstable spiral point

(2) $P < 0$: $\lambda = \frac{1}{2}(P \pm \sqrt{-\Delta}i)$

(0,0): an asymptotically stable spiral point.

(0,0): $\Delta = \frac{1}{2}(P \pm \sqrt{-\Delta}i)$

(3)
$$\Delta = 0$$
: (ase 3 $\lambda = \frac{P}{2}$
 $P > 0$:

(0,0): a unstable degenerate node

 $P < 0$:

(0,0): an asymptotically stable degenerate node.

Q proper node: (ase 1 degenerate node: (ase 1 degenerate node)