ЛЕКЦИЯ 11

ОПРЕДЕЛЕННЫЙ ИНТЕГРАЛ

Определение и условия существования определенного интеграла

1. Задачи, приводящие к понятию определенного интеграла.

а) Площадь криволинейной трапеции. Пусть функция f непрерывна на отрезке $\Delta = [a,b]$ и неотрицательна, т. е. $f(x) \geqslant 0$ при всех

Рис. 34.1

 $x \in \Delta$. Рассмотрим фигуру G (рис. 34.1), ограниченную отрезками прямых x = a, x = b, y = 0 и графиком функции y = f(x), т. е.

$$G = \{(x, y) : a \leqslant x \leqslant b, \ 0 \leqslant y \leqslant f(x)\}.$$

Такую фигуру называют *криволинейной тра-* $neque\check{u}$, а отрезок Δ — ее основанием.

Разобьем отрезок Δ

на n частей точками x_i $(i=\overline{1,n-1})$, где $x_1 < x_2 < ... < x_{n-2} < x_{n-1},$ и проведем через эти точки прямые, параллельные оси Oy. Тогда фигура G разобьется на n частей, каждая из которых является криволинейной трапецией.

Обозначим $\Delta x_i = x_i - x_{i-1}, \ x_0 = a, \ x_n = b,$ и пусть $\xi_i \in \Delta_i$, где $\Delta_i = [x_{i-1}, x_i], \ i = \overline{1,n}.$ Тогда сумма

$$\sigma = \sum_{i=1}^{n} f(\xi_i) \Delta x_i,$$

зависящая от разбиения отрезка Δ и выбора точек ξ_i , равна площади ступенчатой фигуры (рис. 34.1), составленной из n прямоугольников, причем основанием i-го прямоугольника служит отрезок Δ_i , а длина его высоты равна $f(\xi_i)$. Интуитивно ясно, что эта ступенчатая фигура будет мало отличаться от исходной фигуры G при достаточно мелком разбиении.

Будем увеличивать число точек разбиения так, чтобы наибольшая из длин отрезков Δ_i стремилась к нулю. Если при этом сумма σ будет иметь предел S, не зависящий ни от способа дробления отрезка Δ , ни от выбора точек ξ_i , то естественно считать, что площадь фигуры G равна S.

2. Понятие определенного интеграла. Пусть функция одного переменного f(x) определена на отрезке [a,b] и пусть x_i $(i=\overline{0,n})$ — совокупность точек этого отрезка таких, что

$$a = x_0 < x_1 < \dots < x_{i-1} < x_i < \dots < x_{n-1} < x_n = b.$$

Назовем эту совокупность точек *разбиением отрезка* [a,b], обозначим разбиение $T=\{x_i,\ i=\overline{0,n}\}$, а отрезки $\Delta_i=[x_{i-1},x_i]$, где $i=\overline{1,n}$, назовем *отрезками разбиения* T.

Пусть $\Delta x_i=x_i-x_{i-1}$ — длина i-го отрезка разбиения T. Тогда число $l(T)=\max_{1\leqslant i\leqslant n}\Delta x_i$ назовем мелкостью разбиения T (или диамет-

ром этого разбиения). Если $\xi_i \in \Delta_i$, то совокупность точек ξ_i $(i = \overline{1,n})$ назовем выборкой и обозначим $\xi = \{\xi_i, i = \overline{1,n}\}.$

Сумму

$$\sigma_T(\xi, f) = \sigma_T(\xi) = \sum_{i=1}^n f(\xi_i) \Delta x_i \tag{1}$$

назовем интегральной суммой для функции f при заданном разбиении T и фиксированной выборке ξ .

Определение. Число J называется определенным интегралом от функции f на отрезке [a,b] и обозначается $\int\limits_a^b f(x)\,dx$, если для любого $\varepsilon>0$ существует такое число $\delta=\delta(\varepsilon)>^a0$, что для любого разбиения T, мелкость которого $l(T)<\delta$, и для любой выборки ξ выполняется неравенство

$$\left|\sum_{i=1}^{n} f(\xi_i) \Delta x_i - J\right| < \varepsilon.$$

С помощью символов это определение можно записать так:

$$\left\{ J = \int_{a}^{b} f(x) \, dx \right\} \Leftrightarrow \forall \varepsilon > 0 \quad \exists \, \delta(\varepsilon) > 0 \colon \quad \forall T \colon l(T) < \delta(\varepsilon) \quad \forall \xi \to 0$$

$$\to |\sigma_{T}(\xi, f) - J| < \varepsilon. \quad (2)$$

Часто утверждение (2) кратко записывают в виде $\sigma_T(\xi) \to J$ при $l(T) \to 0$ или $\lim_{l(T) \to 0} \sigma_T(\xi) = J$, имея в виду, что предел не зависит от выборки ξ .

Если существует число J, определяемое условиями (2), то функцию f называют интегрируемой (по Риману) на отрезке [a,b] и говорят, что существует интеграл от функции f на отрезке [a,b].

3. Необходимое условие интегрируемости функции.

Теорема 1. Если функция f(x) интегрируема на отрезке [a,b], то она ограничена на этом отрезке.

О Пусть функция f интегрируема на отрезке [a,b]. Тогда существует число J, удовлетворяющее условию (2). Полагая в (2) $\varepsilon=1$, получаем неравенство

$$J - 1 < \sigma_T(\xi, f) < J + 1,$$
 (3)

которое должно выполняться для любого разбиения T такого, что $l(T) < \delta_1 = \delta(1)$, и при любой выборке ξ .

Зафиксируем разбиение T, удовлетворяющее условию $l(T) < \delta_1$, и предположим, что функция f не ограничена на отрезке [a,b]. Тогда она не ограничена по крайней мере на одном из отрезков Δ_i разбиения T. Без ограничения общности можно считать, что функция f не ограничена на отрезке $\Delta_1 = [x_0, x_1] = [a, x_1]$.

Фиксируем точки $\xi_2,...,\xi_n$, где $\xi_i\in\Delta_i,\ i=\overline{2,n},$ и обозначим $A=\sum_{i=2}^n f(\xi_i)\Delta x_i.$ Тогда $\sigma_T=A+f(\xi_1)\Delta x_1$ и в силу (3) получаем нера-

венства

$$J - 1 < f(\xi_1)\Delta x_1 + A < J + 1,\tag{4}$$

которые должны выполняться для любого $\xi_1 \in \Delta_1$.

Так как $\Delta x_1 > 0$, то двойное неравенство (4) равносильно неравенству

$$\frac{1}{\Delta x_1}(J-1-A) < f(\xi_1) < \frac{1}{\Delta x_1}(J+1-A),$$

из которого следует, что функция f ограничена на Δ_1 , что противоречит предположению о неограниченности функции f на отрезке Δ_1 .

Итак, предположение о неограниченности f на [a,b] приводит к противоречию. Теорема доказана. lacktriangle

4. Суммы Дарбу и их свойства. Пусть функция f, определенная на отрезке [a,b], ограничена на этом отрезке и пусть $T=\{x_i,\ i=0,\overline{n}\}$ — разбиение отрезка $[a,b],\ \Delta_i=[x_{i-1},x_i],\ \Delta x_i=x_i-x_{i-1}$ $(i=\overline{1,n}).$ Обозначим

$$M_{i} = \sup_{\substack{x \in \Delta_{i} \\ n}} f(x), \quad m_{i} = \inf_{\substack{x \in \Delta_{i} \\ n}} f(x),$$

$$S_{T} = \sum_{i=1}^{n} M_{i} \Delta x_{i}, \quad s_{T} = \sum_{i=1}^{n} m_{i} \Delta x_{i}.$$

$$(5)$$

Назовем S_T и s_T соответственно верхней и нижней суммами Дарбу для функции f при заданном разбиении T отрезка [a,b]. Заметим, что эти суммы не зависят от выборки ξ . Рассмотрим свойства сумм Дарбу.

Свойство 1. Для любой выборки ξ справедливы неравенства

$$s_T \leqslant \sigma_T(\xi) \leqslant S_T.$$
 (6)

Так как для любого $\xi_i \in \Delta_i$ выполняются неравенства

$$m_i \leqslant f(\xi_i) \leqslant M_i$$
,

TO

$$m_i \Delta x_i \leqslant f(\xi_i) \Delta x_i \leqslant M_i \Delta x_i$$
.

Складывая эти неравенства, получаем

$$\sum_{i=1}^{n} m_i \Delta x_i \leqslant \sum_{i=1}^{n} f(\xi_i) \Delta x_i \leqslant \sum_{i=1}^{n} M_i \Delta x_i. \tag{7}$$

Согласно определению сумм Дарбу и интегральной суммы σ утверждения (7) и (6) равносильны. ●

Свойство 2. Справедливы равенства

$$S_T = \sup_{\xi} \sigma_T(\xi), \tag{8}$$

$$s_T = \inf_{\xi} \sigma_T(\xi). \tag{9}$$

$$s_T = \inf_{\xi} \sigma_T(\xi). \tag{9}$$

Следующее свойство сумм Дарбу связано с еще одним понятием для разбиений. Назовем разбиение T_2 продолжением (измельчением) pазбиения T_1 , если каждая точка разбиения T_1 является точкой разбиения T_2 . Иначе говоря, разбиение T_2 либо совпадает с разбиением T_1 , либо получено из T_1 добавлением по крайней мере одной новой точки.

Свойство 3. Если разбиение T_2 — продолжение разбиения T_1 , то

$$s_{T_1} \leqslant s_{T_2} \leqslant S_{T_2} \leqslant S_{T_1},$$
 (10)

т. е. при измельчении разбиения нижняя сумма Дарбу не уменьшается, а верхняя не увеличивается.

Свойство 4. Для любых разбиений T' и T'' справедливо неравенство

$$s_{T'} \leqslant S_{T''}. \tag{11}$$

Свойство 5. Существуют числа

$$\underline{J} = \sup_{T} s_{T}, \quad \overline{J} = \inf_{T} S_{T},$$

удовлетворяющие для любых разбиений T' и T'' отрезка [a,b] условию

$$s_{T'} \leqslant \underline{J} \leqslant \overline{J} \leqslant S_{T''}.$$
 (12)

Эти числа называют соответственно нижним и верхним интегралами Дарбу от функции f на отрезке [a,b].

5. Критерий интегрируемости функции.

Tеорема 2. Для того чтобы функция f(x), определенная на отрезке [a,b], была интегрируемой на этом отрезке, необходимо и достаточно, чтобы эта функция была ограничена и удовлетворяла условию

$$\forall \varepsilon > 0 \ \exists \delta_{\varepsilon} > 0 \colon \forall T \colon l(T) < \delta_{\varepsilon} \to 0 \leqslant S_T - s_T < \varepsilon.$$
 (13)

О Необходимость. Пусть функция f интегрируема на отрезке [a,b]. Тогда она ограничена (теорема 1) и в силу определения интеграла

$$\exists J \colon \forall \varepsilon > 0 \ \exists \delta_{\varepsilon} > 0 \colon \forall T \colon l(T) < \delta_{\varepsilon} \ \forall \xi \to J - \frac{\varepsilon}{3} < \sigma_{T}(\xi) < J + \frac{\varepsilon}{3}.$$

Таким образом, при каждом разбиении T отрезка [a,b], мелкость которого удовлетворяет условию $l(T) < \delta_{\varepsilon}$, неравенство

$$J - \frac{\varepsilon}{3} < \sigma_T(\xi) < J + \frac{\varepsilon}{3} \tag{14}$$

выполняется при любой выборке ξ . Поэтому из левого неравенства (14) и равенства (9) следует, что

$$J - \frac{\varepsilon}{3} \leqslant \inf_{\xi} \sigma_T(\xi) = s_T. \tag{15}$$

Аналогично из правого неравенства (14) и равенства (8) следует, что

$$S_T = \sup_{\xi} \sigma_T(\xi) \leqslant J + \frac{\varepsilon}{3}.$$
 (16)

Из неравенств (15), (6) и (16) получаем цепочку неравенств

$$J - \frac{\varepsilon}{3} \leqslant s_T \leqslant S_T \leqslant J + \frac{\varepsilon}{3}$$

откуда следует, что

$$0 \leqslant S_T - s_T \leqslant \frac{2\varepsilon}{3} < \varepsilon.$$

Итак, интегрируемая на отрезке функция f удовлетворяет условию (13).

Достаточность. Пусть функция f ограничена на отрезке [a,b] и удовлетворяет условию (13). Докажем, что функция f интегрируема на отрезке [a,b], т. е.

$$\exists J : \ \forall \varepsilon > 0 \ \exists \delta_{\varepsilon} > 0 : \ \forall T : \ l(T) < \delta_{\varepsilon} \ \ \forall \xi \to |\sigma_T(\xi) - J| < \varepsilon.$$
 (17)

Воспользуемся свойством 5. Из неравенств (12) следует, что

$$0 \leqslant \overline{J} - \underline{J} \leqslant S_T - s_T,$$

откуда в силу (13) получаем неравенство

$$0 \leqslant \overline{J} - \underline{J} \leqslant S_T - s_T < \varepsilon,$$

справедливое для любого разбиения T такого, что $l(T) < \delta_{\varepsilon}$. Так как числа \overline{J} и \underline{J} не зависят от T, то отсюда следует, что

$$\overline{J} = \underline{J}$$
.

$$J = \overline{J} = \underline{J} \tag{18}$$

и докажем, что число J есть интеграл от функции f на отрезке [a,b]. Из (12) и (18) следует, что

$$s_T \leqslant J \leqslant S_T,$$
 (19)

а из (19) и (6) в силу (13) получаем

$$|\sigma_T(\xi) - J| \leqslant S_T - s_T < \varepsilon.$$

Это означает, что функция f интегрируема на отрезке [a,b], а число J есть интеграл от f(x) на [a,b]. lacktriangledown

Следствие. Если функция f интегрируема на отрезке $[a,b],\ a$ число J — ее интеграл на этом отрезке, то

$$J = \sup s_T = \inf S_T.$$

6. Классы интегрируемых функций.

Теорема 3. *Если функция непрерывна на отрезке*, то она интегрируема на этом отрезке.

 \circ Пусть функция f непрерывна на отрезке [a,b]. Тогда по теореме Кантора она равномерно непрерывна на этом отрезке, т. е.

$$\forall \varepsilon > 0 \ \exists \delta = \delta_{\varepsilon} > 0 \colon \forall x', x'' \in [a, b] \colon |x' - x''| < \delta \rightarrow$$

$$\rightarrow |f(x') - f(x'')| < \frac{\varepsilon}{b-a}.$$
 (24)

Докажем, что для функции f выполняется условие (13). Пусть $T=\{x_i,\ i=\overline{0,n}\}$ — произвольное разбиение отрезка [a,b] такое, что его мелкость $l(T)=\max_{1\leqslant i\leqslant n}\Delta x_i<\delta$, где $\Delta x_i=x_i-x_{i-1}$. По теореме

Вейерштрасса существуют точки $\xi_i', \xi_i'' \in \Delta_i = [x_{i-1}, x_i]$ такие, что $f(\xi_i') = m_i, \ f(\xi_i'') = M_i, \$ где $m_i = \inf_{x \in \Delta_i} f(x), \ M_i = \sup_{x \in \Delta_i} f(x), \ i = \overline{1, n}.$

Поэтому из условия (24) следует, что $\omega_i = M_i - m_i = f(\xi_i'') - f(\xi_i') < \frac{\varepsilon}{b-a}$, так как $|\xi_i'' - \xi_i'| \leqslant \Delta x_i \leqslant l(T) < \delta$. Отсюда получаем

$$\sum_{i=1}^{n} \omega_i \, \Delta x_i < \frac{\varepsilon}{b-a} \sum_{i=1}^{n} \Delta x_i = \frac{\varepsilon}{b-a} \, (b-a) = \varepsilon.$$

Итак,

$$\forall \varepsilon > 0 \ \exists \delta = \delta_{\varepsilon} > 0 \colon \forall T \colon l(T) < \delta \to S_T - s_T = \sum_{i=1}^n \omega_i \, \Delta x_i < \varepsilon,$$

и по теореме 2 функция f интегрируема на отрезке [a,b]. ullet

Пример Доказать, пользуясь определением интеграла и теоремой 3, что:

$$\int\limits_a^b x\,dx = \frac{b^2 - a^2}{2}.$$

Пусть
$$\xi_i=\frac{x_i+x_{i-1}}{2},$$
 тогда $\xi_i\in\Delta_i=[x_{i-1},x_i]$ для $i=\overline{1,n},$ и, следовательно, $\sigma_T(\xi)=\sum_{i=1}^n\xi_i\,\Delta x_i=\frac{1}{2}\sum_{i=1}^n(x_i+x_{i-1})(x_i-x_{i-1})=$ $=\frac{1}{2}\sum_{i=1}^n(x_i^2-x_{i-1}^2)=\frac{1}{2}\,(b^2-a^2),$ откуда $\lim_{l(T)\to 0}\sigma_T(\xi)=\frac{1}{2}\,(b^2-a^2).$

Так как функция f(x) = x интегрируема на отрезке [a,b], то из определения интеграла следует, что предел интегральной суммы не зависит от выбора точек ξ_i на отрезках Δ_i . Поэтому

$$\int_{a}^{b} x \, dx = \frac{1}{2} \, (b^2 - a^2). \quad \blacktriangle$$

Теорема 4. *Если функция определена на отрезке и монотонна,* то она интегрируема на этом отрезке.

О Пусть, например, функция f является возрастающей на отрезке [a,b]; тогда для всех $x \in [a,b]$ выполняется условие

$$f(a) \leqslant f(x) \leqslant f(b),$$

и поэтому функция f ограничена на отрезке [a,b].

Рассмотрим произвольное разбиение $T = \{x_i, i = \overline{0,n}\}$ отрезка [a,b]. Тогда $f(x_{i-1}) = m_i$, $f(x_i) = M_i$, где $m_i = \inf_{x \in \Delta_i} f(x)$, $M_i = \sup_{x \in \Delta_i} f(x)$, $\Delta_i = [x_{i-1}, x_i]$. Следовательно, получаем $S_T - s_T = \sum_{i=1}^n (M_i - m_i) \, \Delta x_i = \sum_{i=1}^n (f(x_i) - f(x_{i-1})) \, \Delta x_i$, откуда $S_T - s_T \leqslant \{(T) \sum_{i=1}^n (f(x_i) - f(x_{i-1})) = l(T)(f(b) - f(a))$, так как $f(x_i) - f(x_{i-1}) \geqslant 0$, $\Delta x_i \leqslant \max_{1 < i < n} \Delta x_i = l(T)$.

Отсюда имеем, что $S_T - s_T \to 0$ при $l(T) \to 0$. По теореме 2 функция f интегрируема на отрезке [a,b]. \bullet

Свойства определенного интеграла

Заметим сначала, что если функция f интегрируема на отрезке [a,b], то интеграл от этой функции является числом, не зависящим от того, какой буквой обозначен аргумент подынтегральной функции, т. е.

 $\int_a^b f(x) dx = \int_a^b f(t) dt = \int_a^b f(z) dz.$

Перейдем к рассмотрению свойств определенного интеграла. Все отмеченные ниже свойства доказываются в предположении, что подынтегральная функция ограничена на отрезке, по которому она интегрируется.

1. Свойства, связанные с операциями над функциями.

Свойство 1. Если функции f и g интегрируемы на отрезке [a,b], то для любых чисел α и β ($\alpha \in R$, $\beta \in R$) функция $\varphi(x) = \alpha f(x) + \beta g(x)$ также интегрируема на отрезке [a,b] и справедливо равенство

$$\int_{a}^{b} (\alpha f(x) + \beta g(x)) dx = \alpha \int_{a}^{b} f(x) dx + \beta \int_{a}^{b} g(x) dx.$$
 (1)

Свойство 2. Если функции f и g интегрируемы на отрезке [a,b], то функция $\varphi(x) = f(x)g(x)$ также интегрируема на этом отрезке.

2. Свойства, связанные с отрезками интегрирования.

Свойство 1. Если функция f(x) интегрируема на отрезке $\Delta = [a,b]$, то она интегрируема на любом отрезке $\Delta_1 \subset \Delta$.

Свойство 2. Если функция f(x) интегрируема на отрезке [a,b] и a < c < b, то справедливо равенство

$$\int_{a}^{b} f(x) \, dx = \int_{a}^{c} f(x) \, dx + \int_{c}^{b} f(x) \, dx. \tag{7}$$

Свойство 3. Если функция f интегрируема на отрезке [a,b] и если c_1, c_2, c_3 — любые точки этого отрезка, то

$$\int_{c_1}^{c_3} f(x) \, dx = \int_{c_1}^{c_2} f(x) \, dx + \int_{c_2}^{c_3} f(x) \, dx. \tag{10}$$

3. Оценки интегралов.

Утверждение 1. Если $f(x) \geqslant 0$ для всех $x \in [a,b]$ и если функция f(x) интегрируема на отрезке [a,b], то

$$\int_{a}^{b} f(x) \, dx \geqslant 0. \tag{11}$$

О Так как для любого разбиения T отрезка [a,b] и при любой выборке $\xi = \{\xi_i, \ i=\overline{1,n}\}$ выполняется неравенство

$$\sigma_T(\xi; f) = \sum_{i=1}^n f(\xi_i) \Delta x_i \geqslant 0,$$

то, переходя в этом неравенстве к пределу при $l(T) \to 0$, получаем неравенство (11). lacktriangle

Следствие. Если функции f(x) и g(x) интегрируемы на отрезке [a,b] и если для всех $x \in [a,b]$ выполняется неравенство $f(x) \geqslant g(x)$, то

$$\int_{a}^{b} f(x) dx \geqslant \int_{a}^{b} g(x) dx.$$

4. Интегральная теорема о среднем.

Tеорема. Пусть функции f и g удовлетворяют следующим условиям:

 $1) \ f(x) \ u \ g(x)$ интегрируемы на отрезке [a,b];

2)
$$\exists m, M \colon \forall x \in [a, b] \to m \leqslant f(x) \leqslant M; \tag{20}$$

3) функция g не меняет знака на отрезке [a,b], m. e. либо

$$g(x) \geqslant 0 \quad npu \ x \in [a, b], \tag{21}$$

либо

$$g(x) \leqslant 0$$
 npu $x \in [a, b]$.

Тогда

$$\exists \, \mu \in [m, M] \colon \int_{a}^{b} f(x)g(x) \, dx = \mu \int_{a}^{b} g(x) \, dx. \tag{22}$$

О Пусть, например, выполняется условие (21). Тогда из неравенства (20) следует, что

$$\forall x \in [a, b] \to mg(x) \leqslant f(x)g(x) \leqslant Mg(x). \tag{23}$$

Так как функции f и g интегрируемы на отрезке [a,b], то функция fg также интегрируема на этом отрезке и согласно правилу оценки интегралов b

 $m\int_{a}^{b} g(x) dx \leqslant \int_{a}^{b} f(x)g(x) dx \leqslant M\int_{a}^{b} g(x) dx.$ (24)

Заметим, что если $\int\limits_a^b g(x)\,dx=0$, то из неравенств (24) следует, что $\int\limits_a^b f(x)g(x)\,dx=0$, и поэтому равенство (22) в этом случае выполняется при любом μ .

Пусть $\int_a^b g(x) dx \neq 0$, тогда $\int_a^b g(x) dx > 0$ в силу (21). Поэтому неравенство (24) равносильно следующему неравенству:

$$m \leqslant \mu \leqslant M,\tag{25}$$

где

$$\mu = \int_{a}^{b} f(x)g(x) dx / \int_{a}^{b} g(x) dx$$
 (26)

Из (26) следует равенство (22), где $\mu \in [m,M]$ в силу неравенства (25). Теорема доказана для случая, когда $g(x) \geqslant 0$. Эта теорема справедлива и в случае $g(x) \leqslant 0$, так как при замене g(x) на -g(x) равенство (22) сохраняется. \bullet

Следствие. Если функция f(x) непрерывна, а функция g(x) интегрируема на отрезке $\Delta = [a,b]$ и не меняет знака, то

$$\exists c \in [a, b] \colon \int_{a}^{b} f(x)g(x) \, dx = f(c) \int_{a}^{b} g(x) \, dx. \tag{27}$$