Solved Exercises Optimization and Operations Research

Jordi Villà-Freixa

Last update: March 7, 2024

Contents

1	Non-linear optimization	2
	1.1 Karush-Kuhn-Tucker theorem	2
2	Network analysis	4

^{*}e.mail: jordi.villa@uvic.cat

1 Non-linear optimization

1.1 Karush-Kuhn-Tucker theorem

Exercise 1 — Maximize
$$f(x,y) = xy$$
 subject to $100 \ge x + y$ and $x \le 40$

Solution (Exercise 1) — The Karush Kuhn Tucker (KKT) conditions for optimality are a set of necessary conditions for a solution to be optimal in a mathematical optimization problem. They are necessary and sufficient conditions for a local minimum in nonlinear programming problems. The KKT conditions consist of the following elements:

For an optimization problem in its standard form:

$$\max f(x)$$
s.t. $g_i(x) - b_i \leq 0 \quad i = 1, ..., k$

$$g_i(x) - b_i = 0 \quad i = k + 1, ..., m$$

There are 4 KKT conditions for optimal primal (x4) and dual (λ) variables. If x^* denotes optimal values:

- (A)Primal feasibility: all constraints must be satisfied: $g_i(x^*)-b_i$ is feasible. Applies to both equality and non-equality constraints.
- (B)Gradient condition or No feasible descent: No possible improvement at the solution:

$$\nabla f(x^*) - \sum_{i=1}^m \lambda_i^* \nabla g_i(x^*) = 0$$

(C)Complementariety slackness:

$$\lambda_i^*(g_i(x^*) - b_i) = 0$$

(D)Dual feasibility: $\lambda_i^* \geq 0$

The last two conditions (3 and 4) are only required with inequality constraints and enforce a positive Lagrange multiplier when the constraint is active (=0) and a zero Lagrange multiplier when the constraint is inactive (>0).

To solve our problem, first we will put it in its standard form:

$$\max f(x,y) = xy$$

$$g_1(x,y) = x + y - 100 \le 0$$

$$g_2(x,y) = x - 40 \le 0$$

$$g_3(x,y) = -x \le 0$$

$$g_4(x,y) = -y \le 0$$

We will go through the different conditions:

• on the gradient:

$$\begin{pmatrix} \frac{\partial f}{\partial x} \\ \frac{\partial f}{\partial y} \end{pmatrix} - \lambda_1 \begin{pmatrix} \frac{\partial g_1}{\partial x} \\ \frac{\partial g_1}{\partial y} \end{pmatrix} - \lambda_2 \begin{pmatrix} \frac{\partial g_2}{\partial x} \\ \frac{\partial g_2}{\partial y} \end{pmatrix} - \lambda_3 \begin{pmatrix} \frac{\partial g_3}{\partial x} \\ \frac{\partial g_3}{\partial y} \end{pmatrix} - \lambda_4 \begin{pmatrix} \frac{\partial g_4}{\partial x} \\ \frac{\partial g_4}{\partial y} \end{pmatrix} = 0$$

which, in this example, resolves into:

$$y - (\lambda_1 + \lambda_2 - \lambda_3) = 0 \tag{1}$$

$$x - (\lambda_1 - \lambda_4) = 0 (2)$$

• on the complementary slackness:

$$\lambda_1(x+y-100) = 0 (3)$$

$$\lambda_2(x - 40) = 0 \tag{4}$$

$$\lambda_3 x = 0 \tag{5}$$

$$\lambda_4 y = 0 \tag{6}$$

• on the constraints:

$$x + y \le 100 \tag{7}$$

$$x \le 40 \tag{8}$$

$$-x \le 0 \tag{9}$$

$$-y \le 0 \tag{10}$$

plus $\lambda_1, \lambda_2, \lambda_3, \lambda_4 \geq 0$.

We will start by checking Eq. 3:

- -Let us seeg what occurs if $\lambda_1 = 0$. Then, from Eq. 2, $x + \lambda_4 = 0$ which implies that $x = \lambda_4 = 0^1$. But, then, from Eq. 4 we obtain that $\lambda_2 = 0$ which, using Eq. 1 gives $y + \lambda_3 = 0 \Rightarrow y = \lambda_3 = 0$. Indeed, the KKT conditions are satisfied when all variables and multipliers are zero, but it is not a maximum of the function (see figure above).
- –So, let us see what happens if x + y 100 = 0 and consider the two possibilities for x:

Case x = 0:Then, y = 100, which would lead (Eq. 6) to $\lambda_4 = 0$ and (Eq. 2) to $x = \lambda_1 = 0$, that was discussed in the previous item. So, we need top explore the other possibility for x.

Case x > 0: From Eq. 5 $\lambda_3 = 0$ and, from Eqs. 1 and 2:

$$\begin{cases} y = \lambda_1 + \lambda_2 \\ x = \lambda_1 + \lambda_4 \end{cases}$$

let us try what happens if, e.g., $\lambda_2 \neq 0$ (or, said in other words, if constraint 8 is active): x = 40. As we know we do not want $\lambda_1 = 0$, from Eq. 3 we obtain $x + y - 100 = 0 \Rightarrow y = 60$.

The point (x, y) = (40, 60) fullfills the KKT conditions and is a maximum in the constrained maximization problem.

2 Network analysis

Exercise 2 — The figure shows a network on four nodes, including net demands on the vertex, b_k , and cost an capacity on the edges, $(c_{i,j}, u_{i,j})$. (Adapted from [?])

¹Recall that both variables and multiplieras must be positive or zero, so, the only possibility for the equation to fullfill is that both are zero.

- (A)Formulate the corresponding minimum cost network flow model
- (B) Classify the nodes as source, sink or transhipment

Solution (Exercise 2) — In this problem, vertex and edges are:

$$V = \{1, 2, 3, 4\}$$

$$A = \{(1, 2), (1, 4), (2, 3), (2, 4), (4, 2), (4, 3)\}$$

we can use the variables $x_{i,j}$ to represent the flows in the different members of set A. Thus, the formulation of the problem is:

$$\min \quad 2x_{1,2} + 3x_{1,4} + 5x_{2,3} - x_{4,2} + 11x_{4,3} \\ \begin{cases} -x_{1,2} & -x_{1,4} \\ x_{1,2} & -x_{2,3} - x_{2,4} \\ x_{2,3} & +x_{4,3} \\ x_{1,4} & +x_{2,4} - x_{4,3} - x_{4,2} = 40 \\ x_{1,2} & \leq 90 \\ x_{1,4} & \leq 75 \\ x_{2,3} & \leq 50 \\ \end{cases}$$

and $x_{i,j} \geq 0$.

There are 4 KKT conditions for optimal primal (x4) and dual (λ) variables. If x^* denotes optimal values:

- (A)Primal feasibility: all constraints must be satisfied: $g_i(x^*)-b_i$ is feasible. Applies to both equality and non-equality constraints.
- (B)Gradient condition or No feasible descent: No possible improvement at the solution:

$$\nabla f(x^*) - \sum_{i=1}^m \lambda_i^* \nabla g_i(x^*) = 0$$

(C)Complementariety slackness:

$$\lambda_i^*(g_i(x^*) - b_i) = 0$$

(D)Dual feasibility: $\lambda_i^* \geq 0$

The last two conditions (3 and 4) are only required with inequality constraints and enforce a positive Lagrange multiplier when the constraint is active (=0) and a zero Lagrange multiplier when the constraint is inactive (>0).

to solve our problem, first we will put it in its standard form:

$$\min f(x,y) = -xy$$

$$\text{subject to} \quad \begin{array}{l} -x - y + 100 \geq 0 \\ -x - 40 \geq 0 \end{array}$$

We will go through the different conditions:

(A)Primal feasibility: $g_i(x^*) - b_i$ is feasible.

$$-x^* - y^* + 100 = 0$$
$$-x^* - 40 = 0$$

(B)Gradient condition or No feasible descent:

$$\begin{pmatrix} \frac{\partial f}{\partial x} \\ \frac{\partial f}{\partial y} \end{pmatrix} - \lambda_1 \begin{pmatrix} \frac{\partial g_1}{\partial x} \\ \frac{\partial g_1}{\partial y} \end{pmatrix} - \lambda_2 \begin{pmatrix} \frac{\partial g_2}{\partial x} \\ \frac{\partial g_2}{\partial y} \end{pmatrix} = 0$$

which, in this example, resolves into:

$$\begin{cases} -y + \lambda_1 + \lambda_2 = 0 \\ -x - \lambda_1 = 0 \end{cases}$$

(C)Complementariety slackness:

$$\lambda_1^*(-x^* - y^* + 100) = 0$$
$$\lambda_2^*(-x^* - 40) = 0$$

(D) Dual feasibility: $\lambda_1,\lambda_2\geq 0$

We can put the resulting 5 expressions for conditions 1 and 2 into matrix form:

$$\begin{pmatrix} -1 & -1 & 0 & 0 \\ -1 & 0 & 0 & 0 \\ 0 & -1 & 1 & 1 \\ -1 & 0 & -1 & 0 \end{pmatrix} \begin{pmatrix} x \\ y \\ \lambda_1 \\ \lambda_2 \end{pmatrix} = \begin{pmatrix} -100 \\ 40 \\ 0 \\ 0 \end{pmatrix}$$