K-means

- Centroid-based: describe each cluster by its mean
- Goal: assign datastognment Project Exam Help
- Algorithm objective: minimize the within-cluster variances of all clusters.

Add WeChat powcoder

Initialize 2 clusters and assign points to clusters

Adjust mean

Reassign points to clusters and adjust mean

Reassign points to clusters and adjust mean

Repeat this, until no cluster changes

If we have a different starting point

K-means

- A non-deterministic method
- Finds a local optimalgresuth (multiple restarts afte the pften necessary)

https://powcoder.com

Add WeChat powcoder

Algorithm description

- Initialization
 - Data are x_{1·N}
 - Choose initial cluster means $\mathbf{m}_{1:k}$ (same dimension as data).
- 2 Repeat

Assignment Project Exam Help

1 Assign each data point to its closest mean

Euclidean distance

$$z_n = \arg \inf_{i \in \{1, \dots, k\}} p(s_i, m_i)$$

2 Compute each cluster mean to be the coordinate-wise average over data points assigned to the clear. We Chat powcoder

$$\mathbf{m}_{k} = \frac{1}{N_{k}} \sum_{\{n: z_{n} = k\}} \mathbf{x}_{n}$$
For each dimension \mathbf{x}_{i} in cluster \mathbf{x}_{i} :
$$\sum_{k} \mathbf{x}_{n} = \sum_{k} N_{k}$$

For each dimension

$$(\sum_{i} x_{i,j})/N_k$$

3 Until assignments $\mathbf{z}_{1:N}$ do not change

K-means: finding optimal k

Plot the cost for each k and find the "Elbow"

Assignment Project Exam Help

