

Outline

1 Multiparty Session Types

2 Typed Open Automata

Multiparty Session Types

Syntax

$$T ::= S$$
 (session type)
 $\mid D$ (data type)

Operational Semantics

Note:

- A type S generates a directed graph (NFA) gr(S) called a semantic graph, with an initial node and the terminal node end. We can rename the nodes for convenience.
- From the graph, we can show commutativity and distributivity of nondeterminism. Hence we can just write $S_1 + S_2 + S_3$ instead of $(S_1 + S_2) + S_3$.
- Conversely, for each directed graph whose edges are defined by the production rules for *L* (can have multiple terminal nodes), we have a type.

Subtype

We want to encode in our type system

• Determinism is allowed in a nondeterministic context

$$S_1 \leq S_1 + S_2$$
.

• Waiting for more actions to be asynchronously executed is allowed

$$L_1|L_2 \leq L_1$$
.

The latter can be expressed as a relation between two edges.

Trace and Path

A path is a sequence $S_1 \xrightarrow{L_1} S_2 \xrightarrow{L_2} \cdots \xrightarrow{L_n}$ end. Given this path, we have a trace $t = L_1 \cdot L_2 \cdot \ldots \cdot L_n$. The length of t is |t| = n.

A trace $t = L_1.L_2...L_n$ is equivalent to the path from t removing a skip

$$L_1.L_2...L_n\equiv L_1...L_{j-1}.L_j...L_n$$
 if $L_j=\mathtt{skip}.$

Let $t = L_1.L_2...L_n$ and $t' = L'_1.L'_2...L'_n$. Define $t \leq t'$ if $L_i \leq L'_i$ for all $i \in \{1,...,n\}$.

Let t_1 and t_2 be two traces. Then $t_1 \leq t_2$ if there exist t_1' and t_2' of the same length such that $t_1 \equiv t_1'$, $t_2 \equiv t_2'$ and $t_1' \leq t_2'$.

Subtype

Hence we can define subtype relation based on generated graphs.

Let tr(S) the set of traces of the graph generated by S.

We define $S_1 \leq S_2$ if for any $t_1 \in \text{tr}(S_1)$, there exists $t_2 \in \text{tr}(S_2)$ such that $t_1 \leq t_2$.

But the best thing we should do is to derive equational reasoning on types.

- For each type *S*, there exists a corresponding *regular expression*.
- There have been proof theories on regular expressions (Kleen algebra) and right-linear grammar ¹

 $^{^{1}}$ Das, Anupam, and Abhishek De. "A proof theory of right-linear (ω -) grammars via cyclic proofs." Proceedings of the 39th Annual ACM/IEEE Symposium on Logic in Computer Science. 2024.

Projection

$$p o q \mid_{p} = egin{cases} 0 o \infty, & \text{if } q = 0 \\ 0 o -q, & \text{if } q < 0 \\ \varnothing, & \text{otherwise} \end{cases} \qquad q o p \mid_{p} = egin{cases} \infty o 0, & \text{if } q = 0 \\ -q o 0, & \text{if } q < 0 \\ \varnothing, & \text{otherwise} \end{cases}$$

$$egin{aligned} & L_1 \mid_{L_2} \mid_{
ho} &= L_1 \mid_{
ho} \mid_{L_2} \mid_{
ho} \ & ext{skip} \mid_{
ho} &= ext{skip} \ & p
ightarrow q(D) \mid_{
ho} &= egin{cases} p
ightarrow q \mid_{
ho} (D), & ext{if } p
ightarrow q \mid_{
ho}
eq \varnothing \ & ext{skip}, & ext{otherwise} \end{cases}$$

From gr(S), we replace each edge by its projection. The type derived from this graph is the projected type $S \mid_{p}$.

Proposition: If $S_1 \leq S_2$, then $S_1 \mid_{p} \leq S_2 \mid_{p}, \forall p \in \mathbb{N}^-$.

Typed Open Automata

Typed Open Automata

A typed open automaton is a tuple $A = \langle S, s_0, E, V, \phi_0, T \rangle$, where

- S is the set of states
- $s_0 \in S$ is the initial state
- $E \subset S$ is the set of terminal states
- V is the set of variables
- $\psi_0: V \to \mathcal{P}$ is the initial assignment
- T is the set of transitions. Each $t \in T$ has the form $\frac{\beta_j^{j \in J}, g, \psi}{s \xrightarrow{\alpha} s'}$, where
 - $s, s' \in S$ and α is an emitted action.
 - each β_j has the form $p \to q(m:D)$ or $p \to q(\ell)$ such that $p, q \in \mathbb{Z} \cup \infty$, $p \neq q$, $pq \geq 0$ and $\ell \in \mathcal{L}$.
 - \circ g is a predicate over V
 - $\circ \ \psi : V \to \mathcal{E}_V$ is a reassignment

We can ignore the emitted action and write $s \xrightarrow{\beta_j^{j \in J}, g, \psi} s'$. A pair (s, ϕ) , where $s \in S$ and $\phi : V \to \mathcal{P}$ is called a configuration of the automaton.

Example

Consider a producer-consumer communication through a size-2 circular buffer. This is modeled as an automaton A.

Type Generated by an OA

Consider
$$A = \langle S, s_0, E, V, \phi_0, T \rangle$$
.

- $\llbracket p \rightarrow q(m:D) \rrbracket = p \rightarrow q(D)$
- $\bullet \ \llbracket p \to q(\ell) \rrbracket = p \to q(\ell)$
- $[\![\beta_1,\ldots,\beta_n]\!] = [\![\beta_1]\!] |\ldots| [\![\beta_n]\!]$

Weak type

The weak type W_A generated by A is derive from the graph, called the weak type graph, such that

- The set of nodes is S, the initial node is S_0 , the set of terminal nodes is E
- Each transition $s \xrightarrow{\beta_j^{i \in J}, g, \psi} s'$ has a corresponding edge $s \xrightarrow{\llbracket \beta_j^{i \in J} \rrbracket} s'$

Example: The weak type graph for producer-consumer. Let $U=-1 \to 0(\text{int})$ and $V=0 \to -2(\text{int})$. The type is $W_A=\mu\alpha.(\text{end}+U+V).\alpha$

$$-1 \rightarrow 0(\text{int})$$

$$s_0$$

$$0 \rightarrow -2(\text{int})$$

The DFA generated by the weak type of A

Strong type

The strong type graph G_S has nodes as *configurations*. The initial node is (s_0, ϕ_0) . Terminal nodes are (s, ψ) where $s \in E$.

Each
$$(s,\phi) \xrightarrow{\beta_j^{i\in J},g,\psi} (s',\phi')$$
 corresponds to an edge $(s,\phi) \xrightarrow{[\![\beta_j^{i\in J}]\!]} (s',\phi')$.

The graph G_S derives the strong type S_A .

We should be able to show that $S_A \leq W_A$.

Example: The strong type graph for producer-consumer.

Strong type

Strong type

However, the strong type does not always exist i.e. strong type graph generation does not always halt.

Example: Consider a key-generating protocol, where the server request generating a secret key for the client to use later. The number of key consumptions cannot exceed the number of key generation requests. This is modeled as an automaton B.

Relaxed type

A relaxed type graph G_R has nodes of the form (s, P), where P is a predicate over V. The initial node is (s_0, P_0) such that $\phi_0 \vdash P_0$. Terminal nodes are (s, P) where $s \in E$.

Each $(s,\phi) \xrightarrow{\beta_j^{j\in J},g,\psi} (s',\phi')$ corresponds to an edges $(s,P) \xrightarrow{\mathbb{E}^{\beta_j^{j\in J}}} (s',P')$ such that $\phi \vdash P$ and $\phi' \vdash P'$

The graph G_R derives the strong type R_A .

We should be able to show that $S_A \leq R_A \leq W_A$.

Relaxed type

Example: Let $X=-1 \to 0 (\text{void})$ and $Y=0 \to -2 (\text{string})$. We have relaxed type graph for key-generating protocol which derives

$$R_B = \mu \alpha_0.X.\mu \alpha_1.(X.\alpha_1 + Y.\alpha_1 + Y.\alpha_0).$$

Relaxed type

Example: Another relaxed type graph for key-generating protocol. It derives R'_B .

Note that $R'_B \prec R_B$ (strictly) but $R'_B \mid_{-1} \equiv R_B \mid_{-1}$.

Directions

Let S(A) be the set of types generated by A (strongly, weakly and relaxedly). We attempt to prove or disprove that

- S(A) is totally ordered. In particular, if S_1 and S_2 are generated by an automaton A, then $S_1 \leq S_2$ if and only if the number of nodes $gr(S_1)$ is greater than or equal to the number of nodes in $gr(S_2)$.
- If there exist $S_1, S_2 \in \mathcal{S}(A)$ such that $S_1 \not\equiv S_2$ and $S_1 \mid_p \equiv S_2 \mid_p$. Then $S \mid_p \equiv S_1 \mid_p$, for every $S \in \mathcal{S}(A)$.

Note: If the latter is correct, we may be sure about the type of a child without knowing the strong type of the parent.

Composition

Consider an automaton

$$A = \langle \langle S_A, s_{0A}, E_A, V_A, \psi_{0A}, T_A \rangle \rangle \text{ and } B = \langle \langle S_B, s_{0B}, E_B, V_B, \psi_{0B}, T_B \rangle \rangle.$$

An automaton B can be safely composed to the child indexed by p of the automaton A if $\inf S(B) \leq \inf \{ S \mid_p | S \in S(A) \}.$

Reindex children of A and B if there is any conflict.

Composition

The composition of B into the internal component indexed by p < 0 of A yields an open automaton $A[B/p] := C = \langle \langle S_C, S_{0C}, E_C, V_C, \psi_{0C} \rangle \rangle$, such that

- $S_C = S_A \times S_B$
- $s_{0C} = (s_{0A}, s_{0B})$
- $E_C = E_A \times E_B$
- $V_C = V_A \uplus V_B$
- $\psi_{\mathcal{C}} = \psi_{\mathcal{A}} \uplus \psi_{\mathcal{B}}$
- $T_C = \dots$

$$T_{C} = \left\{ \frac{\beta_{j''}^{j'' \in J''}, g \wedge g', \psi \uplus \psi'}{(s, s') \xrightarrow{\alpha} (t, t')} \middle| \frac{\beta_{j}^{j \in J}, g, \psi}{s \xrightarrow{\alpha} t} \in T_{A} \wedge \frac{\beta_{j'}^{j' \in J'}, g', \psi'}{s' \xrightarrow{\alpha'} t'} \in T_{B} \wedge \llbracket \beta_{j'}^{j' \in J'} \rrbracket \preceq \llbracket \beta_{j}^{j \in J} \rrbracket \downarrow_{\rho} \right\}$$

$$\bigcup \left\{ \frac{\beta_{j}^{j \in J}, g, \psi}{(s, s') \xrightarrow{\alpha} (t, t')} \middle| s', t' \in S_{B} \wedge \frac{\beta_{j}^{j \in J}, g, \psi}{s \xrightarrow{\alpha} t} \in T_{A} \wedge \left(\cancel{\beta} \frac{\beta_{j'}^{j' \in J'}, g', \psi'}{s' \xrightarrow{\alpha'} t'} \in T_{B}, \llbracket \beta_{j'}^{j' \in J'} \rrbracket \preceq \llbracket \beta_{j}^{j \in J} \rrbracket \downarrow_{\rho} \right) \right\}$$

We have to work more on the last set. Generally speaking, all other communications in B become internal communication in A[B/p].

 $\bigcup \left\{ \dots \left| \frac{\beta_{j'}^{j' \in J'}, \mathbf{g}', \psi'}{\mathbf{g}' + \mathbf{g}'} \in T_B \land \left(\not\exists \frac{\beta_j^{j \in J}, \mathbf{g}, \psi}{\mathbf{g} + \mathbf{g}'} \in T_A, \llbracket \beta_{j'}^{j' \in J'} \rrbracket \preceq \llbracket \beta_j^{j \in J} \rrbracket \downarrow_{P} \right) \right\}$

Plans

ullet That $\inf \mathcal{S}(A[B/p]) \prec \inf \mathcal{S}(A)$ is not straightforward

Thank you for listening!