

Learning multiple layers of representation

Geoffrey E. Hinton

Department of Computer Science, University of Toronto, 10 King's College Road, Toronto, M5S 3G4, Canada

To achieve its impressive performance in tasks such as speech perception or object recognition, the brain extracts multiple levels of representation from the sensory input. Backpropagation was the first computationally efficient model of how neural networks could learn multiple layers of representation, but it required labeled training data and it did not work well in deep networks. The limitations of backpropagation learning can now be overcome by using multilayer neural networks that contain top-down connections and training them to generate sensory data rather than to classify it. Learning multilayer generative models might seem difficult, but a recent discovery makes it easy to learn nonlinear distributed representations one layer at a time.

Learning feature detectors

To enable the perceptual system to make the fine distinctions that are required to control behavior, sensory cortex needs an efficient way of adapting the synaptic weights of multiple layers of feature-detecting neurons. The backpropagation learning procedure [1] iteratively adjusts all of the weights to optimize some measure of the classification performance of the network, but this requires labeled training data. To learn multiple layers of feature detectors when labeled data are scarce or nonexistent, some objective other than classification is required. In a neural network that contains both bottom-up 'recognition' connections and top-down 'generative' connections it is possible to recognize data using a bottomup pass and to generate data using a top-down pass. If the neurons are stochastic, repeated top-down passes will generate a whole distribution of data-vectors. This suggests a sensible objective for learning: adjust the weights on the top-down connections to maximize the probability that the network would generate the training data. The neural network's model of the training data then resides in its top-down connections. The role of the bottomup connections is to enable the network to determine activations for the features in each layer that constitute a plausible explanation of how the network could have generated an observed sensory data-vector. The hope is that the active features in the higher layers will be a much better guide to appropriate actions than the raw sensory data or the lower-level features. As we shall see, this is not just wishful thinking – if three layers of feature detectors are trained on unlabeled images of handwritten

digits, the complicated nonlinear features in the top layer enable excellent recognition of poorly written digits like those in Figure 1b [2].

There are several reasons for believing that our visual systems contain multilayer generative models in which top-down connections can be used to generate low-level features of images from high-level representations, and bottom-up connections can be used to infer the high-level representations that would have generated an observed set of low-level features. Single cell recordings [3] and the reciprocal connectivity between cortical areas [4] both suggest a hierarchy of progressively more complex features in which each layer can influence the layer below. Vivid visual imagery, dreaming, and the disambiguating effect of context on the interpretation of local image regions [5] also suggest that the visual system can perform top-down generation.

The aim of this review is to complement the neural and psychological evidence for generative models by reviewing recent computational advances that make it easier to learn generative models than their feed-forward counterparts. The advances are illustrated in the domain of handwritten digits where a learned generative model outperforms discriminative learning methods at classification.

Inference in generative models

The crucial computational step in fitting a generative model to data is determining how the model, with its current generative parameters, might have used its hidden variables to generate an observed data-vector. Stochastic generative models generally have many different ways of generating any particular data-vector, so the best we can hope for is to infer a probability distribution over the various possible settings of the hidden variables. Consider, for example, a mixture of gaussians model in which each data-vector is assumed to come from exactly one of the multivariate gaussian distributions in the mixture. Inference then consists of computing the posterior probability that a particular data-vector came from each of the gaussians. This is easy because the posterior probability assigned to each gaussian in the mixture is simply proportional to the probability density of the data-vector under that gaussian times the prior probability of using that gaussian when generating data.

The generative models that are most familiar in statistics and machine learning are the ones for which the posterior distribution can be inferred efficiently and exactly because the model has been strongly constrained. These generative models include:

Figure 1. (a) The generative model used to learn the joint distribution of digit images and digit labels. (b) Some test images that the network classifies correctly even though it has never seen them before.

- Factor analysis in which there is a single layer of gaussian hidden variables that have linear effects on the visible variables (see Figure 2). In addition, independent gaussian noise is added to each visible variable [6–8]. Given a visible vector, it is impossible to infer the exact state of the factors that generated it, but it is easy to infer the mean and covariance of the gaussian posterior distribution over the factors, and this is sufficient to enable the parameters of the model to be improved.
- Independent components analysis which generalizes factor analysis by allowing non-gaussian hidden variables, but maintains tractable inference by eliminating the observation noise in the visible variables and using the same number of hidden and visible variables. These restrictions ensure that the posterior distribution collapses to a single point because there is only one setting of the hidden variables that can generate each visible vector exactly [9–11].

Figure 2. The generative model used in factor analysis. Each real-valued hidden factor is chosen independently from a gaussian distribution, N(0,1), with zero mean and unit variance. The factors are then linearly combined using weights (W_{jk}) and gaussian observation noise with mean (μ_i) and standard deviation (σ_i) is added independently to each real-valued variable (i).

 Mixture models – in which each data-vector is assumed to be generated by one of the component distributions in the mixture and it is easy to compute the density under each of the component distributions.

If factor analysis is generalized to allow non-gaussian hidden variables, it can model the development of low-level visual receptive fields [12]. However, if the extra constraints used in independent components analysis are not imposed, it is no longer easy to infer, or even to represent, the posterior distribution over the hidden variables. This is because of a phenomenon known as explaining away [13] (see Figure 3b).

Multilayer generative models

Generative models with only one hidden layer are much too simple for modeling the high-dimensional and richly structured sensory data that arrive at the cortex, but they have been pressed into service because, until recently, it was too difficult to perform inference in the more complicated, multilayer, nonlinear models that are clearly required. There have been many attempts to develop multilayer, nonlinear models [14–18]. In Bayes nets (also called belief nets), which have been studied intensively in artificial intelligence and statistics, the hidden variables typically have discrete values. Exact inference is possible if every variable only has a few parents. This can occur in Bayes nets that are used to formalize expert knowledge in limited domains [19], but for more densely connected Bayes nets, exact inference is generally intractable.

It is important to realize that if some way can be found to infer the posterior distribution over the hidden variables for each data-vector, learning a multilayer generative model is relatively straightforward. Learning is also straightforward if we can get unbiased samples from the posterior distribution. In this case, we simply adjust the parameters so as to increase the probability that the sampled states of the hidden variables in each layer would

430

Figure 3. (a) A multilayer belief net composed of logistic binary units. To generate fantasies from the model, we start by picking a random binary state of 1 or 0 for each top-level unit. Then we perform a stochastic downwards pass in which the probability, $\hat{h_i}$, of turning on each unit, i, is determined by applying the logistic function $\sigma(x) = 1/(1 + \exp(-x))$ to the total input $\sum_j h_j w_{ji}$ that i receives from the units, j, in the layer above, where h_j is the binary state that has already been chosen for unit j. It is easy to give each unit an additional bias, but to simplify this review biases will usually be ignored. r_{ij} is a recognition weight. (b) An illustration of 'explaining away' in a simple logistic belief net containing two independent, rare, hidden causes that become highly anticorrelated when we observe the house jumping. The bias of -10 on the earthquake unit means that, in the absence of any observation, this unit is e^{10} times more likely to be off than on. If the earthquake unit is on and the truck unit is off, the jump unit has a total input of 0, which means that it has an even chance of being on. This is a much better explanation of the observation that the house jumped than the odds of e^{-20} , which apply if neither of the hidden causes is active. But it is wasteful to turn on both hidden causes to explain the observation because the probability of them both happening is approximately e^{-20} .

generate the sampled states of the hidden or visible variables in the layer below. In the case of the logistic belief net shown in Figure 3a, which will be a major focus of this review, the learning rule for each training case is a version of the delta rule [20]. The inferred state, h_i , of the 'postsynaptic' unit, i, acts as a target value and the probability, \hat{h}_i , of activating i given the inferred states, h_j , of all the 'presynaptic' units, j, in the layer above acts as a prediction:

$$\Delta w_{ji} \propto h_j (h_i - \hat{h}_i)$$
 (Equation 1)

where Δw_{ji} is the change in the weight on the connection from j to i.

If i is a visible unit, h_i is replaced by the actual state of i in the training example. If training vectors are selected with equal probability from the training set and the hidden states are sampled from their posterior distribution given the training vector, the learning rule in Equation 1 has a positive expected effect on the probability that the generative model would produce exactly the N training vectors if it was run N times.

Approximate inference for multilayer generative models

The generative model in Figure 3a is defined by the weights on its top-down, generative connections, but it also has bottom-up, recognition connections that can be used to perform approximate inference in a single, bottom-up pass. The inferred probability that $h_j=1$ is $\sigma(\Sigma_i h_i r_{ij})$. This inference procedure is fast and simple, but it is incorrect because it ignores explaining away. Surprisingly, learning is still possible with incorrect inference because there is a more general objective function that the learning rule in Equation 1 is guaranteed to improve [21,22].

Instead of just considering the log probability of generating each training case, we can also take the accuracy of

the inference procedure into account. Other things being equal, we would like our approximate inference method to be as accurate as possible, and we might prefer a model that is slightly less likely to generate the data if it enables more accurate inference of the hidden representations. So it makes sense to use the inaccuracy of inference on each training case as a penalty term when maximizing the log probability of the observed data. This leads to a new objective function that is easy to maximize and is a 'variational' lower-bound on the log probability of generating the training data [23]. Learning by optimizing a variational bound is now a standard way of dealing with the intractability of inference in complex generative models [24–27]. An approximate version of this type of learning has been proposed as a model of learning in sensory cortex (Box 1), but it is slow in deep networks if the weights are initialized randomly.

A nonlinear module with fast exact inference

We now turn to a different type of model called a 'restricted Boltzmann machine' (RBM) [28] (Figure 4a). Despite its undirected, symmetric connections, the RBM is the key to finding an efficient learning procedure for deep, directed, generative models.

Images composed of binary pixels can be modeled by using the hidden layer of an RBM to model the higher-order correlations between pixels [29]. To learn a good set of feature detectors from a set of training images, we start with zero weights on the symmetric connections between each pixel i and each feature detector j. Then we repeatedly update each weight, w_{ij} , using the difference between two measured, pairwise correlations

$$\Delta w_{ij} = \varepsilon (\langle v_i h_i \rangle_{data} - \langle v_i h_i \rangle_{recon})$$
 (Equation 2)

where ε is a learning rate, $\langle v_i h_j \rangle_{data}$ is the frequency with which pixel i and feature detector j are on together when

Box 1. The wake-sleep algorithm

For the logistic belief net shown in Figure 3a, it is easy to improve the generative weights if the network already has a good set of recognition weights. For each data-vector in the training set, the recognition weights are used in a bottom-up pass that stochastically picks a binary state for each hidden unit. Applying the learning rule in Equation 1 will then follow the gradient of a variational bound on how well the network generates the training data [22].

It is not so easy to compute the derivatives of the bound with respect to the recognition weights, but there is a simple, approximate learning rule that works well in practice. If we generate fantasies from the model by using the generative weights in a top-down pass, we know the true causes of the activities in each layer, so we can compare the true causes with the predictions made by the approximate infererence procedure and adjust the recognition weights, r_{ij} , to maximize the probability that the predictions are correct:

$$\Delta r_{ij} \propto h_i \left(h_j - \sigma(\sum_i h_i r_{ij}) \right)$$
 (Equation 5)

The combination of approximate inference for learning the generative weights, and fantasies for learning the recognition weights is known as the 'wake-sleep' algorithm [22].

the feature detectors are being driven by images from the training set, and $\langle v_i h_j \rangle_{recon}$ is the corresponding frequency when the feature detectors are being driven by reconstructed images. A similar learning rule can be used for the biases.

Given a training image, we set the binary state, h_j , of each feature detector to be 1 with probability

$$p(h_j = 1) = \sigma(b_j + \sum_i v_i w_{ij})$$
 (Equation 3)

where $\sigma(\bullet)$ is the logistic function, b_j is the bias of j and v_i is the binary state of pixel i. Once binary states have been chosen for the hidden units we produce a 'reconstruction' of the training image by setting the state of each pixel to be 1 with probability

$$p(v_i = 1) = \sigma(b_i + \sum_j h_j w_{ij})$$
 (Equation 4)

The learned weights and biases directly determine the conditional distributions $p(\mathbf{h}|\mathbf{v})$ and $p(\mathbf{v}|\mathbf{h})$ Equations 3 and 4. Indirectly, the weights and biases define the joint and marginal distributions $p(\mathbf{v}, \mathbf{h}), p(\mathbf{v})$ and $p(\mathbf{h})$. Sampling from the joint distribution is difficult, but it can be done by using 'alternating Gibbs sampling'. This starts with a random image and then alternates between updating all of the features in parallel using Equation 3 and updating all of the pixels in parallel using Equation 4. After Gibbs sampling for sufficiently long, the network reaches 'thermal equilibrium'. The states of pixels and feature detectors still change, but the probability of finding the system in any particular binary configuration does not. By observing the fantasies on the visible units at thermal equilibrium, we can see the distribution over visible vectors that the model believes in.

The RBM has two major advantages over directed models with one hidden layer. First, inference is easy because there is no explaining away: given a visible vector, the posterior distribution over hidden vectors factorizes into a product of independent distributions for each hidden unit. So to get a sample from the posterior we simply turn on each hidden unit with a probability given by Equation 3.

Figure 4. (a) Two separate restricted Boltzmann machines (RBMs). The stochastic, binary variables in the hidden layer of each RBM are symmetrically connected to the stochastic, binary variables in the visible layer. There are no connections within a layer. The higher-level RBM is trained by using the hidden activities of the lower RBM as data. (b) The composite generative model produced by composing the two RBMs. Note that the connections in the lower layer of the composite generative model are directed. The hidden states are still inferred by using bottom-up recognition connections, but these are no longer part of the generative model.

Second, as we shall see, it is easy to learn deep directed networks one layer at a time by stacking RBMs. Layer-by-layer learning does not work nearly as well when the individual modules are directed, because each directed module bites off more than it can chew: it tries to learn hidden causes that are marginally independent. This is generally beyond its abilities so it settles for a generative model in which independent causes generate a poor approximation to the data distribution.

Learning many layers of features by composing RBMs

After an RBM has been learned, the activities of its hidden units (when they are being driven by data) can be used as the 'data' for learning a higher-level RBM. To understand why this is a good idea, it is helpful to consider decomposing the problem of modeling the data distribution, P_0 , into two subproblems by picking a distribution, P_1 , that is easier to model than P_0 . The first subproblem is to model P_1 and the second subproblem is to model the transformation from P_1 to P_0 . P_1 is the distribution obtained by applying $p(\mathbf{h}|\mathbf{v})$ to the data distribution to get the hidden activities for every data-vector in the training set. P_1 is easier for an RBM to model than P_0 because it is obtained from P_0 by allowing an RBM to settle towards a distribution that it can model perfectly: its equilibrium distribution. The RBM's model of P_1 is $p(\mathbf{h})$, the distribution over hidden vectors when the RBM is sampling from its equilibrium distribution. The RBM's model of the transformation from P_1 to P_0 is $p(\mathbf{v}|\mathbf{h})$.

After the first RBM has been learned, we keep $p(\mathbf{v}|\mathbf{h})$ as part of the generative model and we keep $p(\mathbf{h}|\mathbf{v})$ as a quick way of performing inference, but we throw away our model of P_1 and replace it by a better model that is obtained, recursively, by treating P_1 as the training data for the second-level RBM. This leads to the composite generative model shown in Figure 4b. To generate from this model we need to get an equilibrium sample from the top-level RBM, but then we simply perform a single downwards pass through the bottom layer of weights. So the composite model is a curious hybrid whose top two layers form an undirected associative memory and whose lower layers form a directed generative model. It is shown in reference [30] that if the second RBM is initialized appropriately, the gain from building a better model of P_1 always outweighs the loss that comes from the fact that $p(\mathbf{h}|\mathbf{v})$ is no longer the correct way to perform inference in the composite generative model shown in Figure 4b. Adding another hidden layer always improves a variational bound on the log probability of the training data unless the top-level RBM is already a perfect model of the data it is trained on.

Modeling images of handwritten digits

Figure 1a shows a network that was used to model the joint distribution of digit images and their labels. It was learned one layer at a time and the top-level RBM was trained using 'data'-vectors that were constructed by concatenating the states of ten winner-take-all label units with 500 binary features inferred from the image. After greedily learning one layer of weights at a time, all the weights were fine-tuned using a variant of the wake-sleep algorithm (see reference [30] for details). The fine-tuning significantly

improves the ability of the model to generate images that resemble the data, but without the initial layer-by-layer learning, the fine-tuning alone is hopelessly slow.

The model was trained to generate both a label and an image, but it can be used to classify new images. First, the recognition weights are used to infer binary states for the 500 feature units in the second hidden layer, then alternating Gibbs sampling is applied to the top two layers with these 500 features held fixed. The probability of each label is then represented by the frequency with which it turns on. Using an efficient version of this method, the network significantly outperforms both backpropagation and support vector machines [31] when trained on the same data [30]. A demonstration of the model generating and recognizing digit images is at my homepage (www.cs.toronto.edu/~hinton).

Instead of fine-tuning the model to be better at generating the data, backpropagation can be used to fine-tune it to be better at discrimination. This works extremely well [2,20]. The initial layer-by-layer learning finds features that enable good generation and then the discriminative fine-tuning slightly modifies these features to adjust the boundaries between classes. This has the great advantage that the limited amount of information in the labels is used only for perturbing features, not for creating them. If the ultimate aim is discrimination it is possible to use autoencoders with a single hidden layer instead of restricted Boltzmann machines for the unsupervised, layer-by-layer learning [32]. This produces the best results ever achieved on the most commonly used benchmark for handwritten digit recognition [33].

Modeling sequential data

This review has focused on static images, but restricted Boltzmann machines can also be applied to high-dimensional sequential data such as video sequences [34] or the joint angles of a walking person [35]. The visible and hidden units are given additional, conditioning inputs that come from previous visible frames. The conditioning inputs have the effect of dynamically setting the biases of the visible and hidden units. These conditional restricted Boltzmann machines can be composed by using the sequence of hidden activities of one as the training data for the next. This creates multilayer distributed representations of sequences that are far more powerful than the representations learned by standard methods such as hidden Markov models or linear dynamical systems [34].

Concluding remarks

A combination of three ideas leads to a novel and effective way of learning multiple layers of representation. The first idea is to learn a model that generates sensory data rather than classifying it. This eliminates the need for large amounts of labeled data. The second idea is to learn one layer of representation at a time using restricted Boltzmann machines. This decomposes the overall learning task into multiple simpler tasks and eliminates the inference problems that arise in directed generative models. The third idea is to use a separate fine-tuning stage to improve the generative or discriminative abilities of the composite model.

Box 2. Questions for future research

- How might this type of algorithm be implemented in cortex? In particular, is the initial perception of sensory input closely followed by a reconstruction that uses top-down connections? Computationally, the learning procedure for restricted Boltzmann machines does not require a 'pure' reconstruction. All that is required is that there are two phases that differ in the relative balance of bottom-up and top-down influences, with synaptic potentiation in one phase and synaptic depression in the other.
- Can this approach deal adequately with lateral connections and inhibitory interneurons? Currently, there is no problem in allowing lateral interactions between the visible units of a 'semirestricted' Boltzmann machine [30,43]. Lateral interactions between the hidden units can be added when these become the visible units of the higher-level, semirestricted Boltzmann machine. This makes it possible to learn a hierarchy of undirected Markov random fields, each of which has directed connections to the field below as suggested in ref. [44]. This is a more powerful type of generative model because each level only needs to provide a rough specification of the states at the level below: The lateral interactions at the lower level can settle on the fine details and ensure that they obey learned constraints.
- Can we understand the representations that are learned in the deeper layers? In a generative model, it is easy to see what a distributed pattern of activity over a whole layer means: simply generate from it to get a sensory input vector (e.g. an image). It is much harder to discover the meaning of activity in an individual neuron in the deeper layers because the effects of that activity depend on the states of all the other nonlinear neurons. The fact the some neurons in the ventral stream can be construed as face detectors is intriguing, but I can see no good reason to expect such simple stories to be generally applicable.

Versions of this approach are currently being applied to tasks as diverse as denoising images [36,37], retrieving documents [2,38], extracting optical flow [39], predicting the next word in a sentence [40] and predicting what movies people will like [41]. Bengio and Le Cun [42] give further reasons for believing that this approach holds great promise for artificial intelligence applications, such as human-level speech and object recognition, that have proved too difficult for shallow methods like support vector machines [31] that cannot learn multiple layers of representation. The initial successes of this approach to learning deep networks raise many questions (see Box 2).

There is no concise definition of the types of data for which this approach is likely to be successful, but it seems most appropriate when hidden variables generate richly structured sensory data that provide plentiful information about the states of the hidden variables. If the hidden variables also generate a label that contains little information or is only occasionally observed, it is a bad idea to try to learn the mapping from sensory data to labels using discriminative learning methods. It is much more sensible first to learn a generative model that infers the hidden variables from the sensory data and then to learn the simpler mapping from the hidden variables to the labels.

Acknowledgements

I thank Yoshua Bengio, David MacKay, Terry Sejnowski and my past and present postdoctoral fellows and graduate students for helping me to understand these ideas, and NSERC, CIAR, CFI and OIT for support.

References

- 1 Rumelhart, D.E. et al. (1986) Learning representations by back-propagating errors. Nature 323, 533–536
- 2 Hinton, G.E. and Salakhutdinov, R.R. (2006) Reducing the dimensionality of data with neural networks. Science 313, 504–507
- 3 Lee, T.S. et al. (1998) The role of the primary visual cortex in higher level vision. Vision Res. 38, 2429–2454
- 4 Felleman, D.J. and Van Essen, D.C. (1991) Distributed hierarchical processing in the primate cerebral cortex. *Cereb. Cortex* 1, 1–47
- 5 Mumford, D. (1992) On the computational architecture of the neocortex. II. The role of cortico-cortical loops. *Biol. Cybern.* 66, 241–251
- 6 Dayan, P. and Abbott, L.F. (2001) Theoretical Neuroscience: Computational and Mathematical Modeling of Neural Systems, MIT Press
- 7 Roweis, S. and Ghahramani, Z. (1999) A unifying review of linear gaussian models. *Neural Comput.* 11, 305–345
- 8 Marks, T.K. and Movellan, J.R. (2001) Diffusion networks, products of experts, and factor analysis. In *Proceedings of the International Conference on Independent Component Analysis* (Lee, T. W. et al., eds), pp. 481–485, http://citeseer.ist.psu.edu/article/marks01diffusion.
- 9 Bell, A.J. and Sejnowski, T.J. (1995) An information-maximization approach to blind separation and blind deconvolution. *Neural Comput.* 7, 1129–1159
- 10 Hyvärinen, A. et al. (2001) Independent Component Analysis, Wiley
- 11 Bartlett, M.S. et al. (2002) Face recognition by independent component analysis. IEEE Trans. Neural Netw. 13, 1450–1464
- 12 Olshausen, B.A. and Field, D. (1996) Emergence of simple-cell receptive field properties by learning a sparse code for natural images. Nature 381, 607–609
- 13 Pearl, J. (1988) Probabilistic Inference in Intelligent Systems: Networks of Plausible Inference, Morgan Kaufmann
- 14 Lewicki, M.S. and Sejnowski, T.J. (1997) Bayesian unsupervised learning of higher order structure. In Advances in Neural Information Processing Systems (Vol. 9) (Mozer, M.C. et al., eds), pp. 529–535, MIT Press
- 15 Hoyer, P.O. and Hyvärinen, A. (2002) A multi-layer sparse coding network learns contour coding from natural images. Vision Res. 42, 1593–1605
- 16 Portilla, J. et al. (2004) Image denoising using Gaussian scale mixtures in the wavelet domain. IEEE Trans. Image Process. 12, 1338–1351
- 17 Schwartz, O. et al. (2006) Soft mixer assignment in a hierarchical generative model of natural scene statistics. Neural Comput. 18, 2680–2718
- 18 Karklin, Y. and Lewicki, M.S. (2003) Learning higher-order structures in natural images. Network 14, 483–499
- 19 Cowell, R.G. et al. (2003) Probabilistic Networks and Expert Systems, Springer
- 20 O'Reilly, R.C. (1998) Six principles for biologically based computational models of cortical cognition. Trends Cogn. Sci. 2, 455–462
- 21 Hinton, G.E. and Zemel, R.S. (1994) Autoencoders, minimum description length, and Helmholtz free energy. Adv. Neural Inf. Process. Syst. 6, 3–10
- 22 Hinton, G.E. *et al.* (1995) The wake-sleep algorithm for self-organizing neural networks. *Science* 268, 1158–1161
- 23 Neal, R.M. and Hinton, G.E. (1998) A new view of the EM algorithm that justifies incremental, sparse and other variants. In *Learning in Graphical Models* (Jordan, M.I., ed.), pp. 355–368, Kluwer Academic Publishers
- 24 Jordan, M.I. et al. (1999) An introduction to variational methods for graphical models. Mach. Learn. 37, 183–233
- 25 Winn, J. and Jojic, N. (2005) LOCUS: Learning object classes with unsupervised segmentation, *Tenth IEEE International Conference on Computer Vision* (Vol. 1), pp. 756–763, IEEE Press
- 26 Bishop, C.M. (2006) Pattern Recognition and Machine Learning, Springer
- 27 Bishop, C.M. et al. (2002) VIBES: a variational inference engine for Bayesian networks. Adv. Neural Inf. Process. Syst. 15, 793–800
- 28 Hinton, G.E. (2007) Boltzmann Machines, Scholarpedia
- 29 Hinton, G.E. (2002) Training products of experts by minimizing contrastive divergence. Neural Comput. 14, 1711–1800

434

- 30 Hinton, G.E. et al. (2006) A fast learning algorithm for deep belief nets. Neural Comput. 18, 1527-1554
- 31 Decoste, D. and Schoelkopf, B. (2002) Training invariant support vector machines. Mach. Learn. 46, 161-190
- 32 Bengio, Y. et al. (2007) Greedy layerwise training of deep networks. In Advances in Neural Information Processing Systems (Vol. 19) (Schoelkopf, B. et al., eds), pp. 153-160, MIT Press
- 33 Ranzato, M. et al. (2007) Efficient learning of sparse representations with an energy-based model. In Advances in Neural Information Processing Systems (Vol. 19) (Schoelkopf, B. et al., eds), pp. 1137-1144, MIT Press
- 34 Sutskever, I. and Hinton, G.E. (2007) Learning multilevel distributed representations for high-dimensional sequences. In Proceeding of the Eleventh International Conference on Artificial Intelligence and Statistics (Meila, M. and Shen, X., eds), pp. 544-551, SAIS
- 35 Taylor, G.W. $et\ al.\ (2007)$ Modeling human motion using binary latent variables. In Advances in Neural Information Processing Systems (Vol. 19) (Schoelkopf, B. et al., eds), pp. 1345-1352, MIT Press
- 36 Roth, S. and Black, M.J. (2005) Fields of experts: a framework for learning image priors, Computer Vision and Pattern Recognition (Vol. 2), pp. 860-867, IEEE Press
- 37 Ranzato, M. et al. (2007) A unified energy-based framework for unsupervised learning. In Proc. Eleventh International Conference on Artificial Intelligence and Statistics (Meila, M. and Shen, X., eds), pp. 368-376, SAIS

- 38 Welling, M. et al. (2005) Exponential family harmoniums with an application to information retrieval. In Advances in Neural Information Processing Systems (Vol. 17) (Saul, L.K. et al., eds), pp. 1481-1488, MIT Press
- 39 Memisevic, R.F. and Hinton, G.E. (2007) Unsupervised learning of image transformations, Computer Vision and Pattern Recognition, pp. 1-8. IEEE Press
- 40 Mnih, A. and Hinton, G.E. (2007) Three new graphical models for statistical language modelling. In $Proceedings\ of\ the\ 24th\ International$ Conference on Machine Learning (Ghahramani, Z., ed.), pp. 641-648, ACM Press New York
- 41 Salakhutdinov, R.R. et al. (2007) Restricted Boltzmann machines for collaborative filtering. In Proceedings of the 24th International Conference on Machine Learning (Ghahramani, Z., ed.), pp. 791-798, ACM Press New York}
- 42 Bengio, Y. and Le Cun, Y. Scaling learning algorithms towards AI. In Large-Scale Kernel Machines (Bottou, L. et al., eds), MIT Press (in press)
- 43 Welling, M. and Hinton, G.E. (2002) A new learning algorithm for mean field Boltzmann machines. In Artificial Neural Networks - ICANN 2002: International Conference, Madrid, Spain, August 28-30, 2002 (Lecture Notes in Computer Science Vol. 2415) (Dorronsoro, J.R., ed.), pp.351-357, Springer
- 44 Osindero, S. and Hinton, G.E. Modelling image patches with a directed hierarchy of Markov random fields. Adv. Neural Inf. Process. Syst. 20 (in press)

Have you contributed to an Elsevier publication? Did you know that you are entitled to a 30% discount on books?

A 30% discount is available to all Elsevier book and journal contributors when ordering books or stand-alone CD-ROMs directly from us.

To take advantage of your discount:

1. Choose your book(s) from www.elsevier.com or www.books.elsevier.com

2. Place your order

Americas:

Phone: +1 800 782 4927 for US customers

Phone: +1 800 460 3110 for Canada, South and Central America customers

Fax: +1 314 453 4898

author.contributor@elsevier.com

All other countries:

Phone: +44 (0)1865 474 010 Fax: +44 (0)1865 474 011 directorders@elsevier.com

You'll need to provide the name of the Elsevier book or journal to which you have contributed. Shipping is free on prepaid orders within the US.

If you are faxing your order, please enclose a copy of this page.

3. Make your payment

This discount is only available on prepaid orders. Please note that this offer does not apply to multi-volume reference works or Elsevier Health Sciences products.

For more information, visit www.books.elsevier.com