# Trabalho Prático Programação com Threads

## Introdução

O propósito deste trabalho visa realizar a comparação entre as soluções concorrente e sequencial para a problemática da multiplicação de matrizes. Para realizar essa comparação foi desenvolvida uma aplicação que realiza a multiplicação entre matrizes quadradas de mesma dimensão e foram observados os tempos de execução de cada solução em cenários distintos, a fim de se identificar quais dos métodos utilizados é o mais vantajoso.

## Metodologia

Para realização deste projeto foi utilizado um computador Intel Core I5 5200U 2.20 Ghz (2 núcleos), com 500 GB de memória interna e 4GB de memória RAM. O sistema operacional utilizado para a simulação foi o Windows 7 Home Premium 64 Bits. O projeto foi desenvolvido na linguagem de programação Java, junto a IDE Eclipse. A versão do Java utilizada junto ao projeto foi a versão 11 (JDK 11.0.10).

Para execução da atividade foram fornecidos pelo docente um conjunto de matrizes quadradas, em pares, com dimensões de 4 x 4 até 2048 x 2048 (As matrizes fornecidas possuem dimensões que seguem uma sequência de potências de 2). Estes pares de matrizes foram aplicados no processo de multiplicação nos modos sequencial e concorrente. Para cada par de matrizes foram realizadas 40 repetições, 20 no modo concorrente e 20 no modo sequencial, resultando em 400 repetições para todo o conjunto de matrizes fornecidas.

Na solução desenvolvida a aplicação recebe 2 argumentos via linha de comando, um argumento que representa a dimensão das matrizes e outro argumento que representa a solução a ser utilizada. Neste caso, "S" para a solução seguencial e "C" para a solução concorrente. Em seguida, de posse dos dados informados pelo usuário, a aplicação faz a consulta dos arquivos a serem utilizados na operação: Denominados arquivos A e B. Por fim, a aplicação realiza o processo de multiplicação entre as matrizes e salva o resultado final junto a um terceiro arquivo C, localizado nos diretórios do projeto. (Caminhos: bin/resultados/concorrente e bin/resultados/sequencial)

Os tempos de execução encontrados foram calculados considerando apenas o tempo de execução da multiplicação de matrizes. Estes tempos são computados e armazenados pela aplicação em arquivos .txt presentes nos diretórios: bin/tempos/concorrente e bin/tempos/sequencial.

### Resultados

De posse dos tempos de solução de cada metodologia, foram criados gráficos e tabelas que representam o comparativo entre os métodos desejados. Neste caso, entre os métodos sequencial e concorrente.

Abaixo segue a tabela de representação da solução sequencial junto das informações estatísticas necessárias. Como ponto interessante observado, percebe-se que a solução no método sequencial apresenta vantagens no cálculo de de matrizes com dimensão menor (a nível de tempo), e perde eficiência no cálculo de matrizes com dimensão mais elevada (A partir das matrizes com dimensões 512 x 512).

| Dimensão da<br>matriz | Tempo<br>mínimo (ms) | Tempo médio<br>(ms) | Tempo<br>máximo (ms) | Desvio<br>Padrão |
|-----------------------|----------------------|---------------------|----------------------|------------------|
| 4 x 4                 | 0                    | 0,35                | 1                    | 0,48             |
| 8 x 8                 | 0                    | 0,7                 | 1                    | 0,46             |
| 16 x 16               | 0                    | 0,8                 | 1                    | 0,40             |
| 32 x 32               | 1                    | 1,8                 | 3                    | 0,60             |
| 64 x 64               | 4                    | 5,7                 | 11                   | 1,82             |
| 128 x 128             | 14                   | 18,75               | 31                   | 4,75             |
| 256 x 256             | 48                   | 63,85               | 78                   | 8,90             |
| 512 x 512             | 335                  | 347,20              | 357                  | 9,11             |
| 1024 x 1024           | 3088                 | 3185,15             | 3345                 | 62,21            |
| 2048 x 2048           | 61008                | 61490,55            | 61851                | 252,11           |

Tabela 1 - Tempos da solução sequencial

Já abaixo, seguem dados estatísticos da solução concorrente. Esta solução apresenta maior eficiência em relação a solução sequencial nas matrizes de grande tamanho (A partir das matrizes com dimensões 512 x 512). Isto se deve, ao melhor processamento realizado em concorrência pelas threads criadas pela aplicação.

| Dimensão da<br>matriz | Tempo<br>mínimo (ms) | Tempo médio<br>(ms) | Tempo<br>máximo (ms) | Desvio<br>Padrão |
|-----------------------|----------------------|---------------------|----------------------|------------------|
| 4 x 4                 | 1                    | 1,45                | 2                    | 0,50             |
| 8 x 8                 | 2                    | 2,15                | 3                    | 0,36             |
| 16 x 16               | 3                    | 4,1                 | 5                    | 0,44             |
| 32 x 32               | 7                    | 7,95                | 9                    | 0,59             |
| 64 x 64               | 18                   | 19,95               | 22                   | 1,47             |
| 128 x 128             | 34                   | 41,7                | 47                   | 3,55             |
| 256 x 256             | 92                   | 101,5               | 114                  | 7,28             |
| 512 x 512             | 242                  | 263,4               | 280                  | 12,62            |
| 1024 x 1024           | 1370                 | 1395,95             | 1414                 | 14,77            |
| 2048 x 2048           | 8999                 | 9098,35             | 9497                 | 123,55           |

Tabela 2 - Tempos da solução concorrente

Segue também a tabela comparativa entre os tempos médios das duas soluções propostas. Também é exibido o resultado do tempo do speed-up entre as soluções apresentadas.

| Dimensão da<br>matriz | Tempo médio<br>sequencial (ms) | Tempo médio<br>concorrente (ms) | Speed Up (Tempo<br>Sequencial/<br>Tempo<br>Concorrente) |
|-----------------------|--------------------------------|---------------------------------|---------------------------------------------------------|
| 4 x 4                 | 0,35                           | 1,45                            | 0,24                                                    |
| 8 x 8                 | 0,7                            | 2,15                            | 0,33                                                    |
| 16 x 16               | 0,8                            | 4,1                             | 0,20                                                    |
| 32 x 32               | 1,8                            | 7,95                            | 0,23                                                    |
| 64 x 64               | 5,7                            | 19,95                           | 0,29                                                    |
| 128 x 128             | 18,75                          | 41,7                            | 0,45                                                    |
| 256 x 256             | 63,85                          | 101,5                           | 0,63                                                    |
| 512 x 512             | 347,20                         | 263,4                           | 1,32                                                    |
| 1024 x 1024           | 3185,15                        | 1395,95                         | 2,28                                                    |
| 2048 x 2048           | 61490,55                       | 9098,35                         | 6,76                                                    |

Tabela 3 - Speed Up (Sequencial x concorrente)

Segue abaixo o gráfico em linhas dos tempos da solução sequencial e concorrente. Podemos observar aí o crescimento enorme no modelo sequencial para execução do cálculo para o último par de matrizes. (Com duração em torno de 60 segundos). Já no modelo concorrente, o crescimento a nível de tempo é mais "linear".



Gráfico 1 - Dimensão x Tempo Médio de Execução

Por fim, segue também um gráfico comparativo entre os speed-ups encontrados:



Gráfico 2 - Dimensão x Speed Up

Como bem evidenciado pelo gráfico, os valores acima de 1 retratam as situações em que o modo concorrente é mais vantajoso.

### Conclusão

Em razão dos resultados obtidos, podemos afirmar que o desempenho da solução concorrente é semelhante ou, dependendo da situação, inferior à solução sequencial. Nas situações que envolvem poucos processos, como no cálculo das matrizes com dimensões menores, a solução sequencial apresenta vantagens. Todavia, nas matrizes de tamanho mais elevado, o desempenho da solução concorrente é melhor. Isso se deve ao melhor gerenciamento do alto número de processos realizados pelas threads. Nesta situação, no modo concorrente, como o trabalho é realizado em concorrência pelas threads, o processo de solução do problema acaba sendo mais rápido. Em contrapartida, no modelo sequencial, onde os cálculos são realizados em sequência, um após ao outro, o modelo acaba apresentando maior desvantagem.