En un problema de conducción del calor en 1D como el siguiente: Pregunta 1 $k\frac{\partial^2 \phi}{\partial x^2} = 0$ Puntúa como 12,50 Marcar pregunta una condición de contorno de flujo nulo que tenga segundo orden de precisión usando un nodo ficticio se escribe como: $\alpha_i \phi_i + \alpha_{i-1} \phi_{i-1} = 0$ ¿Cuanto valen los coeficientes lpha involucrados? Pregunta 2 Un sistema lineal de un problema discretizado por Diferencias Finitas se puede escribir como: Sin responder aún $\begin{bmatrix} K_{11} & K_{1j} & K_{1,N} \\ K_{i1} & K_{ij} & K_{i,N} \\ K_{N1} & K_{Nj} & K_{N,N} \end{bmatrix} \begin{bmatrix} \phi_1 \\ \phi_i \\ \phi_N \end{bmatrix}$ Puntúa como 12,50 Marcar pregunta siendo (1,N) los índices de los nodos do (¿) el de los nodos interiores. Si hay que aplicarle condiciones Dirichlet en ambos extremos del tipo $\phi_1 = -1$ y $\phi_N = 2$, ¿Como modificaría el anterior sistema lineal para que se cumplan estas condiciones ? Pregunta 3 El termino reactivo en un problema discretizado por volúmenes finitos ¿modifica la matriz del sistema? (S/N). Sin responder aún ¿Modifica el miembro derecho? (S/N). Puntúa como 12,50 Pregunta 4 En una grilla **1D equiespaciada**, de paso $\Delta x = 0.1$ definida $\forall x \in [0,1]$ se define la función Sin responder aún $f(x) = x^4 - 2x^3 + x$ Puntúa como 12.50 Marcar pregunta Calcule la derivada primera usando volúmenes finitos centrados o de interpolación lineal en el punto x = 0.4. Repita el procedimiento usando un paso mitad, es decir, $\Delta x = 0.05$ y estime el error en ambos cálculos. ¿Qué conclusión puede sacar del ejercicio? Puntúa como 25,00 $\rho c_p \frac{\partial \phi}{\partial t} = \nabla \cdot (k \nabla \phi) - c \phi + G$ Lado: $\overrightarrow{AD} \rightarrow \phi = 20$; $Lado: \overrightarrow{BC} \rightarrow \phi = 100$; $Lado: \overrightarrow{CD} \rightarrow h = 5, \phi_{\infty} = 20$; $Lado: \overrightarrow{EF} = \overrightarrow{FG} = \overrightarrow{GH} = \overrightarrow{HE} \rightarrow q = 0$; ción Inicial: $\phi = 0$; s del modelo son: $k=0.5;\;c=0;\;\rho\,c_p=1$ esquema implicito con un paso de tiempo dt=0.25, tolerancia de en $error=1e^{-7}$ y un total de 1000 Reraciones como máximo. Considerar: $\overline{AB} \to q(x)=0$ y G=100(x+y). So lel problem la quantitate in menos de differencias finitas e información so su porte de la constanta de la • Los valores de temperatura en el punto $(5/6;\,1/2)$ en Pregunta 6 $\rho c_p \frac{\partial \phi}{\partial t} = \nabla \cdot (k \nabla \phi) - c \phi + G$ $Lado: \overline{AD} \rightarrow \phi = 20;$ $Lado:\overline{BC} \to \phi = 100;$ $Lado:\overline{CD} \to h = 5, \phi_{\infty}$ =20; $Lado: \overline{EF} = \overline{FG} = \overline{GH} = \overline{HE} \rightarrow q = 0;$ al: (\phi =0; \) ntes del modelo son: k = $0.5; \; c$ = $0; \;
ho \, c_p$ = 1receptive a problems utilizando un reformiento de mais "Ato". Seleccionar un esquena implicito con un paso de liempo d t=0.25, tolerancia de error $r=1e^{-7} \text{ y un total de }1000 \text{ iteraciones como máximo.}$ Considerar $\overline{AB} \to q(x)=0$ y $G = \begin{cases} 0, \ 0 \le x \le 0.5 \\ 100, \ 0.5 < x \le 1 \end{cases}$ unitario) e informar: Si el problema llega a un estado estacionario o no para el pas cantidad de iteraciones y tolerancia indicadas.