4 . . 4

Derivation of the Quantum Molecular Dynamics

Equations

1989. 10. 19

Ref) 1) P. Pechukas, Phys. Rev. 181, 174 (1969).

2) J. Schwinger, J. Math. Phys. 2, 407 (1961).

S. Transformation Function

(System)

$$\begin{cases} H(t) = \sum_{i=1}^{N} \frac{P_{i}^{2}}{2M} + \lambda(r_{i}R_{i}t) \\ \lambda(r_{i}R_{i}t) = \sum_{i=1}^{N} \left[\frac{P_{i}^{2}}{2M} + V(r_{i},t) \right] + \frac{1}{2} \sum_{i \neq j} \frac{e^{2}}{|r_{i}-r_{j}|} - \sum_{i,j} \frac{ze^{2}}{|r_{i}-R_{j}|} \\ + \frac{1}{2} \sum_{i \neq j} \frac{(ze)^{2}}{|R_{i}-R_{j}|} + \sum_{i=1}^{N} V(R_{i},t) \end{cases}$$
(2)

where M, R_I, P_I are the mass, coordinates, and momenta of nuclei of change Ze; m, r_i, p_i are the same for electrons.

(Transformation Function)

$$S = \frac{1}{\sum_{k} P_{k}(R)} \sum_{k} P_{k}(R) \langle kR | \mathcal{U}_{-}(t_{0}, t_{F}) \mathcal{U}_{+}(t_{F}, t_{0}) | kR \rangle$$
(3)

where

$$\mathcal{U}_{\pm}(t,t') = T_{\pm} \exp\left[-\frac{i}{\hbar} \int_{t'}^{t} d\tau H_{\pm}(\tau)\right] \tag{4}$$

and at the initial time t_0 , the neuclei are located at R and the electrons are in a mixed state represented by the statistical matrix $A_k(R)$.

(ex)

(Physical Meaning)

Suppose the Hamiltonian includes a term XF(t), then

$$\frac{SS}{SF(t)} = \frac{1}{\sum_{k} P_{k}(R)} \sum_{k} P_{k}(R) < kR | \frac{S}{SF(t)} T_{p} \exp \left[-\frac{i}{\hbar} \int_{P} dt H(t) \right] | kR >$$

$$\frac{1}{F_{+}=F_{-}} - \frac{i}{\hbar} \langle kR | \mathcal{U}_{-}(t_{0},t) \times \mathcal{U}_{+}(t,t_{0}) | kR \rangle$$

$$= -\frac{i}{\hbar} \langle k(t) | \times | k(t) \rangle$$

$$\frac{SS}{SF(t)}\Big|_{F_{t}=F_{-}} = -\frac{i}{\hbar} \frac{1}{\sum_{k} P_{k}(R)} \sum_{k} P_{k}(R) \langle k(t) | \times | k(t) \rangle$$
(5)

$$\frac{\delta}{SF(t)} \mathcal{U} = \sum_{n=0}^{\infty} \frac{1}{n!} \left(-\frac{i}{\hbar} \right)^n \frac{\delta}{SF(t)} \int_{P} dt_n \, T_p[H(t_n) \cdots H(t_n)]$$

$$= \sum_{n=1}^{\infty} \frac{1}{(n-1)!} \left(-\frac{i}{\hbar} \right)^n T_p \left\{ X_t \int_{P} dt_n \, T_p[H(t_n) \cdots H(t_n)] \right\}$$

$$= -\frac{i}{\hbar} T_p [X_t \mathcal{U}]$$

lpha If we add an appropriate external field to the system, and differentiate S with respect to the field and set $F_{+}=F_{-}$, we can calculate the physical average value of the quantity.

S. Decoupling of the Nucleus-Electron Motions

We divide the closed time path $t_0 \to t_f \to t_0$ into M sections. Hereafter, we confine ourselves to the case N=1.

Then,
$$\langle kR|T_pexp[-\frac{i}{\hbar}]dtH(t)]IkR \rangle$$

$$= \int dR_{m-1} \langle kR | e^{-iH(t_{m-1})e/\hbar} | R_{m-1} \rangle \langle R_{m-1} | e^{-iH(t_{m-2})e/\hbar} | R_{m-2} \rangle \\ \times \cdots \times \langle R_{l} | e^{-iH(t_{0})e/\hbar} | kR \rangle$$

Here,
$$\langle R_j | e^{-iH(t_{j+1})} \in /\hbar | R_{j-1} \rangle$$

$$\int d^{3}p \exp\left(-\frac{i\vec{P} \cdot \vec{E}}{2M\hbar}\right) \langle \vec{R}_{j}|P\rangle \langle \vec{P}|\vec{R}_{j-1}\rangle$$

$$(2\pi\hbar)^{-3/2} e^{i\vec{p} \cdot \vec{R}_{j}/\hbar} (\textcircled{momentum eigen states})$$

$$\rightarrow plane wave$$

$$= \int \frac{d^3p}{(2\pi\hbar)^3} \exp\left[-\frac{i\epsilon}{2M\hbar} p^2 + ip \cdot (R_j - R_{j-1})/\hbar\right]$$

$$= \int \frac{d^{3}P}{(2\pi\hbar)^{3}} \exp\left\{-\frac{i\epsilon}{2\pi\hbar} \left[P_{x} - \frac{M(R_{jx} - R_{j-1x})}{\epsilon}\right]^{2} + \frac{iM(R_{jx} - R_{j-1x})^{2}}{2\hbar\epsilon}\right\} \times (3) \times (3)$$

$$= \frac{1}{(2\pi\hbar)^{3}} \exp\left(\frac{iM|R_{j} - R_{j-1}|^{2}}{2\hbar\epsilon}\right) \left[\int_{-\infty}^{\infty} dP_{x} e^{-\frac{i\epsilon R_{x}^{2}}{2m\hbar}}\right]^{3}$$

$$= \left(\frac{2\pi m \pi}{2\pi i \epsilon \hbar}\right)^{3/2} \exp\left(\frac{iM|R_{j} - R_{j-1}|^{2}}{2\hbar\epsilon}\right)$$

$$= \left(\frac{M}{2\pi i \epsilon \hbar}\right)^{3/2} \exp\left(\frac{iM|R_{j} - R_{j-1}|^{2}}{2\hbar\epsilon}\right)$$

$$\therefore \langle R_j | e^{-iH(t_{j-1})} \in / h | R_{j-1} \rangle = \left(\frac{M}{2\pi i \epsilon h} \right)^{3/2} \exp\left(\frac{iM | R_j - R_{j-1} |^2}{2h \epsilon} \right)$$

Tp exp
$$\left[-\frac{i}{\hbar}\int_{p}^{dt}h(r,R(t),t)\right]$$

$$: S = \frac{1}{\sum_{k} P_{k}(R)} \sum_{k} P_{k}(R) \int dR_{M-1} \left(\frac{M}{2\pi i \hbar \epsilon} \right)^{3M/2} \exp \left(\frac{i}{\hbar} \int_{p}^{dt} dt \frac{M}{2} \dot{R}^{2}(t) \right)$$

$$\times \langle kR|T_{p} \exp \left[-\frac{i}{\hbar} \int_{p}^{dt} f_{k}(r, R(t), t) \right] |kR\rangle$$

$$S = \int_{p}^{R(t_0)=R} \mathfrak{D}[R(t_0)] \exp\left(\frac{i}{\hbar}S_0[R(t)]\right) T[R(t)]$$
where
$$S_0 = \int_{p} dt \frac{M}{2} \left(\frac{dR}{dt}\right)^2$$

$$\mathcal{L}$$
(6)

$$S_0 = \int_{p} dt \frac{M}{2} \left(\frac{dR}{dt}\right)^2 \tag{7}$$

$$T = \frac{1}{\mathbb{E}_{R}(R)} \mathbb{E}_{R}(R) \langle kR|T_{p} \exp\left[-\frac{i}{\hbar}\right] dt h(r, Rrt, t)] |kR\rangle$$
 (8)

$$\int_{p}^{R(t_0)=R} \mathcal{D}[R(t)] = \lim_{M \to \infty} \left(\frac{M}{2\pi i \hbar \epsilon} \right)^{3M/2} \prod_{j=1}^{M-1} \int_{dR_j}^{dR_j} (9)$$

§. Stationary-phase Approximation

$$\exp\left(\frac{i}{\hbar}S_{0}\right)T$$

$$\exp\left(\ln T\right)$$

$$=\exp\left[\frac{i}{\hbar}\left(S_{0}+\frac{\hbar}{i}\ln T\right)\right]$$

We expand the above quantity in a power series in h; the most significant contribution comes from the stationary point,

$$S\left\{S_0[R(t)] + \frac{\hbar}{i}lnT[R(t)]\right\} = 0 \tag{10}$$

* (Saddle-point Method)

$$I = \int_{-\infty}^{\infty} dx \exp\left[\frac{i}{\hbar}S(x)\right]$$

$$\frac{i}{\hbar}\left[S(x_0) + \frac{1}{2}S''(x_0)(x-x_0)^2 + \sum_{n=3}^{\infty} \frac{(x-x_0)^n}{n!}S^{(n)}(x_0)\right]$$

$$where S'(x_0) = 0$$

$$= \exp\left[\frac{i}{\hbar}S(x_0)\right] \int_{-\infty}^{\infty} dx \exp\left[\frac{i}{2\hbar}S''(x_0)(x-x_0)^2 + \frac{i}{\hbar}\sum_{n=3}^{\infty} \frac{(x-x_0)^n}{n!}S^{(n)}(x_0)\right]$$

$$\left[\frac{i}{2\hbar}S''(x_0)(x-x_0) = -r\right]$$

$$= \exp\left[\frac{i}{\hbar}S(x_0)\right] \sqrt{\frac{2\hbar}{iS''(x_0)}} \int_{-\infty}^{\infty} \exp\left(-r^2 + \frac{i}{\hbar}\sum_{n=3}^{\infty} \frac{S^{(n)}}{n!}\left(\frac{2\hbar}{iS''(x_0)}\right)^{\frac{n}{2}}r^n\right)$$

$$= \exp\left[\frac{i}{\hbar}S(x_0) + \ln\sqrt{\frac{2\hbar}{iS''(x_0)}}\right] + O(h)$$

Thus, the stationary-phase approximation is a small he expansion.

Here,

$$\frac{8S_0}{8R(t)} = -M\ddot{R}(t)$$

Substituting 1 and 2 into Eq. (10), we get

$$\stackrel{\text{i.i.}}{\text{MR}}(t) = -\frac{1}{\sum_{k} P_{k}(R)} \sum_{k} \langle k(t), R | \frac{\partial h(r, R(t), t)}{\partial R(t)} | k(t), R \rangle P_{k}(R) \tag{11}$$

Since the electronic motion is governed by the propagator

$$u(t,t) = T_{p} \exp\left[-\frac{i}{\hbar} \int_{t'}^{t} d\tau h(r,R(t),\tau)\right], \tag{42}$$

the dynamics of the electrons is equivalent to solving

$$i\hbar \frac{\partial}{\partial t} |k(t),R\rangle = h(r,R(t),t)|k(t),R\rangle$$
 (B)

with the initial condition,

$$|k(t=t_0),R\rangle = |k,R\rangle \tag{44}$$

S. Quantum Molecular Dynamics

$$M\ddot{R}(t) = -\frac{1}{\sum_{k} \rho_{k}(R)} \sum_{k} \langle k(t), R| \frac{\partial h(r, R(t), t)}{\partial R(t)} | k(t), R \rangle \longrightarrow MD$$

$$i\hbar \frac{\partial}{\partial t}|k(t),R\rangle = h(r,R(t),t)|k(t),R\rangle -- \Rightarrow time-dep. DFT$$
(1 particle Schrödunger eq.)

(Electrons move in a time dep. external potential. //

** The transformation function $S = \exp\left[\frac{i}{\hbar}S_0(R_c(t))\right]$ is equivalent to the equation system, (11) and (13).

A. Energy Conservation in the QMD Equations

 $\dot{R}(t) \times E_{9}.(11)$

①
$$M\ddot{R}(t)\cdot\dot{R}(t) = \frac{d}{dt}\left(\frac{1}{2}M\dot{R}(t)^2\right)$$

Here,

$$-\frac{d}{dt}\frac{1}{ER(R)}E< k(t),R|h(r,R(t),t)|k(t),R>P_k(R)$$

$$= -\frac{1}{\sum_{k} \rho_{k}(R)} \sum_{k} \rho_{k}(R) \left(\frac{d}{dt} \langle k(t), R| h | k(t), R \rangle + \langle k(t), R| h | \frac{d}{dt} | k(t), R \rangle + \frac{1}{\hbar} \langle k(t), R| h | \frac{d}{dt} | k(t), R \rangle + \frac{1}{\hbar} \langle k(t), R| h | \frac{d}{dt} | k(t), R \rangle + \langle k(t), R| \hat{R} \cdot \frac{\partial h(r, R(t), t)}{\partial R(t)} + \frac{\partial h(r, R(t), t)}{\partial t} | k(t), R \rangle$$

$$\frac{d}{dt} \left[\frac{1}{2} M \left(\frac{dR(t)}{dt} \right)^{2} + \frac{1}{\sum_{k} R(R)} \sum_{k} \langle k(t), R| h(t, R(t), t) | k(t), R \rangle \right] \\
= \frac{1}{\sum_{k} R(R)} \sum_{k} \langle k(t), R| \frac{\partial h(t, R(t), \overline{t})}{\partial t} | k(t), R \rangle \tag{a1}$$