FINANCIAL CONDITIONS AND THE

BUSINESS CYCLE

Tobias Adrian¹, Matthew DeHaven², Fernando Duarte²

November 1, 2023

The views expressed here are the authors' and are not necessarily representative of the views of the International Monetary Fund, its Management, or its Executive Directors.

¹International Monetary Fund. ²Brown University.

MOTIVATION

"Business Cycle Anatomy" (2020) empirically identified a *single* business cycle shock that moved

unemployment, output, investment, hours worked, and consumption,

but the business cycle shock did **not** relate to

inflation or TFP.

The authors suggest a confidence shock could lead to this result.

We show shocks to financial conditions could also lead to this result.

PREVIEW OF RESULTS

Using volatility financial conditions index (VFCI) to measure financial conditions, we find...

- Targeting VFCI generates same business cycle shock
- Including VFCI links inflation to the business cycle

VAR SETUP

A **SVAR**(p) model for a vector of variables, x_t ,

$$B_0x_t = B_1x_{t-1} + \cdots + B_px_{t-p} + \epsilon_t$$

Empirically, only the A_i matrices and reduced form residuals, v_t , can be estimated

$$x_{t} = \underbrace{B_{0}^{-1}B_{1}}_{A_{1}} x_{t-1} + \dots + \underbrace{B_{0}^{-1}B_{p}}_{A_{p}} x_{t-p} + \underbrace{B_{0}^{-1}\epsilon_{t}}_{v_{t}}$$

This relates v_t to an unknown linear mapping of stuctural shocks, ϵ_t .

$$v_t = B_0^{-1} \epsilon_t$$

Identification problem: determining the B_0 matrix.

MAX FORECAST ERROR VARIANCE IDENTIFICATION

- 1. Pick one variable to target from x_t (i.e. unemployment, $x_t^{(u)}$)
- 2. Compute the forecast error for target horizon, h

$$F_{t+h} = \underbrace{x_{t+h}^{(u)}}_{realization} - \underbrace{x_{t+h}^{(u)}}_{prediction}$$

3. Choose vector $B_0^{(u)}$ to maximize the variance of F_{t+h}

$$\max_{B_0^{(u)}} Var[F_{t+h}]$$

4. This will identify **one** shock

$$\epsilon_t^u = B_0^{(u)} \hat{\mathbf{v}}_t$$

• Can instead calculate *F* for frequency range $\{\omega^-, \omega^+\}$

VOLATILITY FINANCIAL CONDITIONS INDEX (VFCI)

VFCI can be interpreted as the **price of risk**. Constructed using

- Asset returns
- Forward consumption growth

Can target consumption growth at different forward horizons.

Will use VFCI constructed targeting a horizon of 10 quarters. Why?

- performs well
- lies within the business cycle length

Results are robust to similar horizon targets.

TARGETING VFCI MATCHES THE BUSINESS CYCLE

TARGET FREQ. OF 18:36 Q. ALLOWS PERFECT MATCH

CONTRIBUTION OF SHOCKS SIMILAR OVER TIME

SHOCKS EXPLAIN LARGE PORTION OF VARIANCE

IDENTIFIED SHOCKS THAT TARGET VFCI AND UNEMPLOYMENT ARE HIGHLY CORRELATED

VFCI LINKS INFLATION TO THE BUSSINESS CYCLE

SMALL CORR. WITH MONETARY POLICY SURPRISES

CONCLUSION

Results:

- Targeting VFCI generates same business cycle shock
- Including VFCI links inflation to the business cycle

Defining a business cycle with different frequencies yields even stronger results.

Implies that financial conditions (specifically VFCI) shocks could be driving the business cycle and are at least necessary for understanding it.

APPENDIX

SHOCK WEIGHTS

SHOCK WEIGHTS: 18 TO 36 Q

HISTORICAL CONTRIBUTION: 18 TO 36 Q

FEVDFD: 18 TO 36 Q

COMPARING VAR TARGETS

COMPARING VAR TARGETS

VFCI ESTIMATION

Assuming (1) no arbitrage and (2) a representative agent, a log-linear approximation of the representative agent's FOC relates

- asset prices, R_t
- future consumption growth, $\Delta c_{t+1} = \ln c_{t+1} \ln c_t$

This relationship can be estimated empirically:

$$\Delta c_{t+1} = \beta R_t + \varepsilon_t \tag{1}$$

$$\ln \text{Vol}[\varepsilon_t] = \lambda R_t + \upsilon_t \tag{2}$$

VFCI is predicted value from eq. (2). Interpreted as the "price of risk".

$$VFCI_t \equiv ln \widehat{Vol[\epsilon_t]}$$

VFCI ESTIMATION

Assuming (1) no arbitrage and (2) a representative agent, a log-linear approximation of the representative agent's FOC relates

- asset prices, R_t
- future consumption growth, $\Delta c_{t+2} = \ln c_{t+2} \ln c_{t+1}$

This relationship can be estimated empirically:

$$\Delta c_{t+1} = \beta R_t + \varepsilon_t \tag{1}$$

13/17

$$\ln \text{Vol}[\varepsilon_t] = \lambda R_t + \upsilon_t \tag{2}$$

VFCI is predicted value from eq. (2). Interpreted as the "price of risk".

$$VFCI_t \equiv ln \widehat{Vol[\epsilon_t]}$$

VFCI ESTIMATION

Assuming (1) no arbitrage and (2) a representative agent, a log-linear approximation of the representative agent's FOC relates

- asset prices, R_t
- future consumption growth, $\Delta c_{t+1+h} = \ln c_{t+1+h} \ln c_{t+1}$

This relationship can be estimated empirically:

$$x\Delta c_{t+1} = \beta R_t + \varepsilon_t \tag{1}$$

14/17

$$\ln \text{Vol}[\varepsilon_t] = \lambda R_t + \upsilon_t \tag{2}$$

VFCI is predicted value from eq. (2). Interpreted as the "price of risk".

$$VFCI_{t,h} \equiv ln \widehat{Vol[\epsilon_t]}$$

Can also consider longer forward growth horizons, $h \in [1, \infty)$.

VAR SETUP

1. Run the empirical VAR

$$A(L)X_t = u_t$$

with
$$A(L) \equiv \sum_{\tau=0}^{p} A_{\tau} L^{\tau}$$
, $A_0 = I$, and $\mathbf{E}[u_t u_t'] = \Sigma$

2. Orthogonalize the residuals, S = Choleskey decomposition of Σ

$$u_t = S\epsilon_t$$

with
$$\mathbf{E}[\epsilon_t \epsilon_t'] = I$$

3. Denote all possible rotations, Q, of structural shocks, ϵ_t

$$S = \tilde{S}Q$$

where Q is any orthonormal (QQ' = I) rotation matrix.

4. This is the identification problem. Which Q to choose?

MAX VARIANCE IDENTIFICATION

1. Write out the VMA(∞) representation of a VAR(p)

$$X_t = B(L)u_t$$

with
$$B(L) \equiv \sum_{\tau=0}^{p} B_{\tau} L^{\tau}$$
 and $B(L) = A(L)^{-1}$

2. Substitute in rotations of structural shocks, $u_t = \tilde{S}Q\epsilon_t$

$$X_t = C(L)Q\epsilon_t$$

with $C(L) = B(L)\tilde{S}$ and $\Gamma(L) = C(L)Q$ stores the IRF.

MAX VARIANCE IDENTIFICATION

1. The forecast error variance (FEV) for time horizon of T

$$FEV_T = \sum_{t=0}^{I} \Gamma(t)' \Gamma(t)$$
$$= \sum_{t=0}^{T} Q' C(t)' C(t) Q$$

2. The forecast error variance for a frequency range, $\{\underline{\omega}, \bar{\omega}\}$

$$FEV_{\underline{\omega},\bar{\omega}} = \int_{\underline{\omega}}^{\bar{\omega}} Q'C(e^{-i\omega})'C(e^{-i\omega})Q d\omega$$
$$= Q'\left(\int_{\underline{\omega}}^{\bar{\omega}} C(e^{-i\omega})'C(e^{-i\omega}) d\omega\right)Q$$

. . .