МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА) Кафедра ВМ-2

ОТЧЕТ по индивидуальному заданию №4 по дисциплине «Статический анализ»

Вариант №13

C.B.	
3	в С.В.

Санкт-Петербург 2020

ПОСТАНОВКА ЗАДАЧИ

Bap. 13 (83822020)

Результаты статистического эксперимента приведенны в таблице 1. Требуется оценить характер (случайной) зависимости переменной Y от уровня фактора X (простая группировка).

- 1. Построить графически зависимость переменных Y_i от уровней фактора X.
- 2. Сформулировать модели однофакторного дисперсионного анализа зависимости значений Y от уровней фактора X в центральной параметризации. Является ли дизайн данного эксперимента сбалансированным? Построить МНК оценки параметров и несмещенную оценку дисперсии. В предположении нормальности ошибок построить доверительные интервалы для параметров уровня доверия $1-\alpha$.
- 3. Сформулировать модель однофакторного дисперсионного анализа когда наибольший уровнень фактора X рассматривается как базовый. Построить МНК оценки параметров и несмещенную оценку дисперсии. В предположении нормальности ошибок построить доверительные интервалы для параметров уровня доверия $1-\alpha$.
- 4. На основании результатов, полученных в предыдущих пунктах проверить визуально монотонность влияния величины фактора X на результат. Построить графически оценку зависимости уровней фактора X на результат. Как данная зависимость согласуется с результатами пункта 1, если наложить один график на другой.
- Провести анализ ошибок. На базе ошибок построить гистограмму с шагом h. Оценить расстояние полученной оценки до класса центрированных нормальных распределений по Колмогорову.
- 6. Составить таблицу дисперсионного анализа. Проверить значимость влияния фактора X на результаты эксперимента.
- 7. Интерпретировать полученные результаты. Написать отчет.

Ta	блица	1 ($\alpha_1 = 0.0$	05; h =	2.50.												
No	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
Y	2.86	21.74	2.88	13.82	12.77	7.80	8.15	13.10	5.45	17.09	11.98	5.83	6.89	12.17	8.55	9.84	11.41
X	2	5	0	6	3	3	2	4	6	6	0	3	3	1	2	4	4
No	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34
Y	20.62	8.25	13.34	7.05	10.65	9.62	0.80	17.62	11.37	18.72	22.91	8.16	8.35	19.17	5.06	6.93	2.81
X	5	0	4	3	6	6	5	5	6	6	1	6	5	4	2	5	2
No	35	36	37	38	39	40	41	42	43	44	45	46	47	48	49	50	
Y	14.26	12.71	11.74	4.46	3.63	12.11	16.59	9.63	8.89	10.93	18.07	4.63	11.11	5.06	4.70	16.94	
X	2	3	3	1	5	3	3	0	0	5	2	5	1	3	3	3	

ХОД РЕШЕНИЯ

1. Построить графически зависимость переменных Y_i от уровней фактора X.

```
x = c(2, 5, 0, 6, 3, 3, 2, 4, 6, 6, 0, 3, 3, 1, 2, 4, 4, 5, 0, 4, 3, 6, 6, 5, 5, 6, 6, 1, 6, 5, 4, 2, 5, 2, 2, 3, 3, 1, 5, 3, 3, 0, 0, 5, 2, 5, 1, 3, 3, 3) 

<math>y = c(2.86, 21.74, 2.88, 13.82, 12.77, 7.80, 8.15, 13.10, 5.45, 17.09, 11.98, 5.83, 6.89, 12.17, 8.55, 9.84, 11.41, 20.62, 8.25, 13.34, 7.05, 10.65, 9.62, 0.80, 17.62, 11.37, 18.72, 22.91, 8.16, 8.35, 19.17, 5.06, 6.93, 2.81, 14.26, 12.71, 11.74, 4.46, 3.63, 12.11, 16.59, 9.63, 8.89, 10.93, 18.07, 4.63, 11.11, 5.06, 4.70, 16.94) 

<math>n = length(x) plot(x, y)
```


По уровням факторов:

2. Сформулировать модели однофакторного дисперсионного анализа зависимости значений Y от уровней фактора X в центральной параметризации. Является ли дизайн данного эксперимента сбалансированным? Построить МНК оценки параметров и

несмещенную оценку дисперсии. В предположении нормальности ошибок построить доверительные интервалы для параметров уровня доверия 1- α .

Модель будет иметь вид:

$$y_i = \mu + \beta_i^X + \varepsilon_i$$

Где μ – взвешенное среднее, $\beta_i^{\it X}$ – главные эффекты фактора X, ε_i - отклонения.

```
> table(x)
0 1 2 3 4 5 6
5 4 7 12 5 9 8
```

Видно, что дизайн не сбалансирован.

```
dat = data.frame(y=y, x=x)
dat1 = dat[order(x),]
lev = levels(as.factor(x))
n.lev = length(lev)
Y = as.matrix(dat1$y)
X = matrix(0, nrow = n.lev, ncol = n)
for (i in 1:n)
 X[dat1$x[i]+1, i] = 1
S = X % * % t(X)
S1 = solve(S)
bhat = S1 %*% X %*% Y
v = as.matrix(array(1/n.lev, dim=n.lev))
mu = matrix(t(v) %*% bhat, nrow = n.lev, ncol = 1)
ahat = bhat - mu
res = Y - t(X) %*% as.matrix(bhat)
SS = sum(res^2)
s2 = SS / (n - n.lev) # несмещенная оценка дисперсии
```

Получили:

Взвешенное среднее: 10.76526

 β_i^X : Пояснить, какие веса используются?

```
[-2.4392585;
1.8972415;
-2.2281156;
-0.7494252;
2.6067415;
-0.1819252;
1.0947415]
```

Несмещенная оценка дисперсии: 30.01186.

Найдем ДИ

```
CTR = diag(1, n.lev) - matrix(v, nrow = n.lev, ncol = n.lev)
```

```
C0 = as.matrix(v)
muhat = t(C0) %*% bhat
V.mu = t(C0) %*% S1 %*% C0
ahat = t(CTR) %*% bhat
V.a = t(CTR) %*% S1 %*% CTR
V = diag(V.a)
al = 0.05
xa = qt(1 - al/2, n - n.lev)
s1 = sqrt(s2)
d0 = xa * s1 * sqrt(V.mu)
     ДИ для muhat: [9.100699, 12.42982]
     ДИ для главных эффектов:
> d = xa * s1 * sqrt(V)
> CI = data.frame(cntr = ahat, lw = ahat-d, up = ahat+d)
        cntr
                    lw
1 -2.4392585 -6.934573 2.056056
2 1.8972415 -3.059282 6.853765
3 -2.2281156 -6.130144 1.673913
4 -0.7494252 -3.917424 2.418573
5 2.6067415 -1.888573 7.102056
6 -0.1819252 -3.711519 3.347669
7 1.0947415 -2.602412 4.791895
```

3. Сформулировать модель однофакторного дисперсионного анализа, когда наибольший уровень фактора X рассматривается как базовый. Построить МНК оценки параметров и несмещенную оценку дисперсии. В предположении нормальности ошибок построить доверительные интервалы для параметров уровня доверия 1.

Зададим базовым уровень наибольший, т.е. X=7. Тогда модель будет иметь вид:

$$y_i = \beta_7^X + \beta_i + \varepsilon_i$$

```
v = c(array(0,dim=n.lev-1),1)
CTR = diag(1,n.lev-1)
CTR = t(cbind(CTR,-as.matrix(array(1,dim=n.lev-1))))
C0 = as.matrix(v)
muhat = t(C0)%*%bhat
V.mu<-t(C0)%*%s1%*%C0
ahat<-t(CTR)%*%bhat
V.a<-t(CTR)%*%s1%*%CTR
V<-diag(V.a)
xa<-qt(1-a1/2,n-2)
s1<-sqrt(s2)
d0<-xa*s1*sqrt(V.mu)
CIO<-data.frame(parameter="mu",cntr=muhat,lw=muhat-d0,up=muhat+d0)
d<-xa*s1*sqrt(V)
nm<-paste0("a",c(1:(n.lev-1)))</pre>
```

```
CI<-data.frame(parameter=nm,cntr=ahat,lw=ahat-d,up=ahat+d)
CI1<-rbind(CI0,CI)</pre>
```

Главные эффекты:

```
> ahat

-3.534000

0.802500

-3.322857

-1.844167

1.512000

-1.276667
```

Взвешенное среднее (β_7^X): 11.86

Несмещенная оценка дисперсии не изменится.

ДИ для взвешенного среднего и главных эффектов:

4. На основании результатов, полученных в предыдущих пунктах проверить визуально монотонность влияния величины фактора X на результат. Построить графически оценку зависимости уровней фактора X на результат. Как данная зависимость согласуется с результатами пункта 1, если наложить один график на другой.

```
plot(x, y)
points(levels(as.factor(x)), means, type="o", col="red")
```

Визуально заметно, что величина фактора не влияет монотонно на результат.

5. Провести анализ ошибок. На базе ошибок построить гистограмму с шагом h. Оценить расстояние полученной оценки до класса центрированных нормальных распределений по Колмогорову

hh<-hist(res,breaks=seq(from=-10, to=15, by=2.5))</pre>

```
kolm.stat<-function(s) {
    sres<-sort(res)
    fdistr<-pnorm(sres,0,s)
    max(abs(c(0:(n-1))/n-fdistr),abs(c(1:n)/n-fdistr))
}
ks.dist<-nlm(kolm.stat,p=sqrt(s2))$minimum
plot.ecdf(res)
x2<-c(0:1000)*(max(res)-min(res))/1000+min(res)
y2<-pnorm(x2,0,nlm(kolm.stat,p=sqrt(s2))$estimate)
points(x2,y2,"l",col="red",lwd=2)</pre>
```


Расстояние полученной оценки до класса нормальных распределений по Колмогорову оказалась 0.09906078

6. Составить таблицу дисперсионного анализа. Проверить значимость влияния фактора X на результаты эксперимента

Получим

Рописиия	Сточени	Сумма	Дисперсия на	F -			
Вариация результата	Степени свободы	квадратов	одну степень	критерий	p		
результата	СВОООДВІ	отклонений	свободы				
Факторная	6	127.86	21.311	0.7101	0.6433		
Остаточная	43	1290.51	30.012				

Полученные внутригрупповые дисперсии можно сравнить с помощью F-критерия, проверяющего, действительно ли отношение дисперсий значимо больше $1.\ B$ нашем случае F-критерий показывает, что различие между средними статистически значимо, и влияние фактора X на результаты незначительно. Пояснить, как получается статистика F-критерия из таблицы