

Pontificia Universidad Católica de Chile Escuela de Ingeniería Departamento de Ciencia de la Computación

Clase 7 Cobertura en base a lógica

IIC3745 – Testing

Rodrigo Saffie

rasaffie@uc.cl

1. Clase pasada

- Cobertura aplicada en grafos
 - Especificación del diseño: máquinas de estado
 - Casos de uso

2. Cobertura en base a lógica

Cobertura de expresiones lógicas

- Exigido por la Administración Federal de Aviación (FAA) de USA para software crítico
- Las expresiones lógicas generan ramificaciones en el flujo de un *software*:
 - Si estas son simples la cobertura de aristas es suficiente
 - Si estas son complejas se necesita un análisis más detallado para detectar defectos

Cobertura de expresiones lógicas

- Están presentes en distintos artefactos de software
 - Código
 - if, elsif, else
 - while, for
 - switch
 - excepciones
 - Máquinas de estados
 - Pre-condiciones
 - Requisitos
 - Formales o implicitos

Cláusulas y predicados

- Cláusula (clause): unidad atómica que se evalúa a un booleano
 - Puede ser de la forma:
 - Variable booleana
 - Expresión con operador relacional
 - >, <, =, ≥, ≤, ≠
 - Llamada a función booleana
- **Predicado** (*predicate*): combinación de cláusulas a través de operadores lógicos
 - negación: ¬
 - conjunción: ∧
 - disyunción: V
 - implicancia: →
 - exclusión: ⊕
 - equivalencia: ↔

Ejemplo

$$(a < b) \lor f(x) \land D$$

3 cláusulas:

- (a < b) expresión relacional
- f(x) función booleana
- **D** variable booleana

Definiciones

- **P** es el conjunto de predicados
- p es un predicado tal que $p \in P$
- C es el conjunto de cláusulas en P
- C_p es el conjunto de cláusulas en el predicado p
- c, c_i, c_i son cláusulas contenidas en C

Cobertura de predicados y cláusulas

Cobertura de predicados (PC): Por cada $p \in P$, TR contiene dos requisitos: p se evalúa como verdadero y p se evalúa como falso.

Equivalente a la cobertura de aristas basada en grafos.

Cobertura de cláusulas (CC): Por cada $c \in C$, TR contiene dos requisitos: c se evalúa como verdadero y c se evalúa como falso.

Ejemplo **PC**

$$p = ((a > b) \lor C) \land f(x)$$

2 pruebas son necesarias:

- **p** = true
 - a = 5
 - b = 4
 - **C** = true
 - p(x) = true

- **p** = false
 - a = 5
 - **b**= 6
 - **C** = false
 - p(x) = false

Ejemplo *CC*

$$p = ((a > b) \lor C) \land f(x)$$

$$TR = \{(a > b) = true; (a > b) = false; C = true; C = false; f(x) = true; f(x) = false\}$$

2 pruebas son necesarias:

•
$$a = 5$$

•
$$b = 4$$

•
$$p(x) = true$$

•
$$a = 5$$

•
$$b = 6$$

•
$$p(x) = false$$

Problemas con *PC* y *CC*

- PC no depende de todos los átomos, en especial cuando hay evaluación con corto circuito.
- PC no asegura CC ni viceversa

{2 , 3} satisface CC pero no PC	$a \lor b$			
(2, o) dationade of pere ne i	T	T	T	1
	T	T F T	T	2
(2 1) cotictors PC nors no CC	T	T	F	3
{2 , 4} satisface PC pero no CC	F	F	F	4

CoC: Cobertura combinatoria (Combinatorial Coverage)

Por cada $p \in P$, TR contiene requisitos para las cláusulas en C_p de modo de evaluar cada combinación posible de valores de verdad

Se consideran todas las combinaciones posibles

	a	b	c	$(a \lor b) \land c$
1	T	T	T	T
2	T	T	F	F
3	T	F	T	T
4	T	F	F	F
5	F	T	T	T
1 2 3 4 5 6 7	F	T	F	F
7	F	F	T	F
8	F	F	F	F

CoC: Cobertura combinatoria (Combinatorial Coverage)

Por cada $p \in P$, TR contiene requisitos para las cláusulas en C_p de modo de evaluar cada combinación posible de valores de verdad

- Esto es simple, completo pero muy caro...
 - **2**ⁿ casos de prueba, con **n** número de cláusulas
 - Impracticable para predicados complejos

Posible mejora: probar cada cláusula activa

Cláusula activa

No todas las cláusulas impactan al valor del predicado

	a	b	c	$(a \lor b) \land c$
1	T	Т	T	Т
2	T	T	F	F
	T	F	T	T
4	Т	F	F	F
5	F	T	T	T
6	F	T	F	F
7	F	F	T	F
8	F	F	F	F

Cláusula activa

No todas las cláusulas impactan al valor del predicado

Determinación: Una cláusula c_i en un predicado p determina a p si y sólo si los valores de las demás cláusulas c_j son tales que al cambiar c_i se cambia el valor de p.

c_i es la cláusula mayorc_i son las cláusulas menores

ACC: Cobertura de cláusula activa (Active Clause Coverage)

Por cada $p \in P$ y cada cláusula mayor $c_i \in C_p$, escoja las cláusulas menores c_j con $i \neq j$ de modo que c_i determina p. TR contiene dos requisitos por cada c_i : c_i se evalúa como verdadero y c_i se evalúa como falso.

$$p = a \lor b$$

$$c_i = a \quad \mathbf{T} \quad \mathbf{f}$$

$$\mathbf{F} \quad \mathbf{f}$$

$$\mathbf{f} \quad \mathbf{T}$$

ACC: Ambigüedad

¿Es obligatorio que las cláusulas menores tengan los mismos valores cuando se evalúa el átomo mayor?

$$p = a \lor (b \land c)$$
 $c_i = a$
 t_1 : {a=true, b=false, c=true}
 t_2 : {a=false, b=false, c=false}

GACC: Cobertura de cláusula activa general (General active clause coverage)

Por cada $p \in P$ y cada cláusula mayor $c_i \in C_p$, escoja las cláusulas menores c_j con $i \neq j$ de modo que c_i determina p. TR contiene dos requisitos por cada c_i : c_i se evalúa como verdadero y c_i se evalúa como falso. Los valores escogidos para los átomos menores c_j no necesitan ser el mismo cuando c_i es verdadero y cuando c_i es falso.

GACC: Cobertura de cláusula activa general (General active clause coverage)

$$p = a \leftrightarrow b$$
 t_1 : { a =true, b =true} $\rightarrow p$ = true
 t_2 : { a =false, b =false} $\rightarrow p$ = true

- Se satisface GACC pero p nunca fue false
 GACC no implica PC
- No es un buen criterio para realizar pruebas

RACC: Cobertura de cláusula activa restrictiva (Restrictive active clause coverage)

Por cada $p \in P$ y cada cláusula mayor $c_i \in C_p$, escoja las cláusulas menores c_j con $i \neq j$ de modo que c_i determina p. TR contiene dos requisitos por cada c_i : c_i se evalúa como verdadero y c_i se evalúa como falso. Los valores escogidos para los átomos menores c_j deben ser el mismo cuando c_i es verdadero y cuando c_i es falso.

RACC: Cobertura de cláusula activa restrictiva (Restrictive active clause coverage)

$$p = a \land (b \lor c)$$
 $c_i = a$

	a	b	c	$a \wedge (b \vee c)$
1	T	T	T	T
5	F	T	T	F
2	T	T	F	T
6	F	T	F	F
3	Т	F	Т	T
7	F	F	T	F

• 3 opciones para set de pruebas

CACC: Cobertura de cláusula activa correlacionada (Correlated active clause coverage)

Por cada $p \in P$ y cada cláusula mayor $c_i \in C_p$, escoja las cláusulas menores c_j con $i \neq j$ de modo que c_i determina p. TR contiene dos requisitos por cada c_i : c_i se evalúa como verdadero y c_i se evalúa como falso. Los valores escogidos para las cláusulas menores c_j deben causar que p sea verdadero para un valor de c_i y falso para el otro valor de c_i .

CACC: Cobertura de cláusula activa correlacionada (Correlated active clause coverage)

$$p = a \land (b \lor c)$$
 $c_i = a$

	a	b	c	$a \wedge (b \vee c)$
1	Т	Т	Т	T
2	T	T	F	T
3	T	F	Т	T
5	F	Т	T	F
6	F	Т	F	F
7	F	F	T	F

• 9 opciones para *set* de pruebas

CACC vs RACC

- Considere un sistema con 2 variables:
 - modo de operación ("Operacional" o "En espera")
 - válvula con posiciones "abierta" o "cerrada"
- Suponga las siguientes restricciones:
 - Si el modo de operación es "Operacional" la válvula debe estar abierta. En cualquier otro modo estará cerrada.
 - El modo no puede "Operacional" o "En espera" al mismo tiempo.

CACC vs RACC

- El escenario cuenta con 3 cláusulas:
 - a: válvula está cerrada
 - b: modo es "Operacional"
 - c: modo es "En espera"
- Considere una acción que sólo se ejecuta con la válvula cerrada, en modos Operacional o En espera.
 - $p = a \wedge (b \vee c)$
 - r_1 : $\neg a \leftrightarrow b$
 - r_2 : $\neg(b \land c)$

CACC vs RACC

	a	b	c	$a \wedge (b \vee c)$	
1	T	Т	T	T	violates constraints 1 & 2
2	T	T	F	T	violates constraint 1
3	T	F	T	T	
4	T	F	F	F	
5	F	T	T	F	violates constraint 2
6	F	T	F	F	
7	F	F	T	F	violates constraint 1
8	F	F	F	F	violates constraint 1

- Solamente 3, 4 y 6 son viables, pero a no es activo para 4.
- Con (3,6) se satisface CACC
- RACC es inalcanzable

Pontificia Universidad Católica de Chile Escuela de Ingeniería Departamento de Ciencia de la Computación

Clase 7 Cobertura en base a lógica

IIC3745 – Testing

Rodrigo Saffie

rasaffie@uc.cl