Методы детектирования аномалий. Лекция 4: Вероятностные и статистические модели

Иван Шанин ivan.shanin@gmail.com

ипи ран

11.03.2019

Вероятность экстремальных значений

неравенство Маркова

Пусть X — случайная величина, принимающая только неотрицательные значения. Тогда для любой константы α , большей $\mathbb{E}(X)$ верно следующее:

$$P(X > \alpha) \le \frac{1}{\alpha} \mathbb{E}(X)$$

 Данная оценка не требует знания распределения, в следствие чего считается грубой.

Доказательство:

$$\mathbb{E}(X) = \int_{x} xp(x)dx = \int_{0 \le x \le \alpha} xp(x)dx + \int_{x > \alpha} xp(x)dx$$
$$\ge \int_{x > \alpha} xp(x)dx \ge \int_{x > \alpha} \alpha p(x)dx$$

Вероятность отклонения от матожидания

неравенство Чебышева

Пусть X — случайная величина, без ограничений. Тогда для любой константы $\alpha>0$ верно следующее:

$$P(|X - \mathbb{E}(X)| > \alpha) \le \frac{1}{\alpha^2} \mathbb{V}(X)$$

 Данная оценка следует из неравенства Маркова, но не требует условия неотрицательности

Доказательство:

$$|X - \mathbb{E}(X)| > \alpha \iff (X - \mathbb{E}(X))^2 > \alpha^2$$

Если взять случайную величину $Y=(X-\mathbb{E}(X))^2$ и применить к ней неравенство Маркова с константой α^2 , то получается в точности требуемое, так как по определению дисперсии $\mathbb{E}(Y)=\mathbb{V}(X)$

Суммы независимых случайных величин

Рассмотрим несколько примеров:

- Отбор игроков в команду. Есть M игроков, каждый из которых сыграл N игр, и для каждой игры известна количественная характеристика X игры каждого игрока. Тогда совокупную характеристику качества игры за N игр следует рассматривать как $X = \sum_{i=1}^{N} X_i$. Как выделить аномальных игроков?
- **Поведение покупателей.** В заданный день покупатель i приходит в магазин с вероятностью p_i , с какой вероятностью в этот день придет не менее N покупателей?
- **Контроль качества производства.** На конвейере производятся детали с вероятностью брака *p*. Как по *N* образцам определить соответствие производства норме?

Сумма бернуллиевских случайных величин

Поведение покупателей. В заданный день покупатель i приходит в магазин с вероятностью p_i , с какой вероятностью в этот день придет не менее N покупателей?

неравенство Чернова

Пусть X — случайная величина, являющаяся суммой $\mathbb N$ независимых бернуллиевских случайных величин, каждая из которых принимает значение 1 с вероятностью p_i . Тогда для любой константы $\delta \in (0,1)$, верно следующее:

$$P(X < (1 - \delta) \cdot \mathbb{E}(X)) < e^{-\mathbb{E}(X) \cdot \delta^2/2}$$

 $P(X \ge (1 + \delta) \cdot \mathbb{E}(X)) < e^{-\mathbb{E}(X) \cdot \delta^2/4}$

[TODO: Добавить скетч доказательства]

Сумма независимых случайных величин

• Отбор игроков в команду. Есть M игроков, каждый из которых сыграл N игр, и для каждой игры известна количественная характеристика X игры каждого игрока. Тогда совокупную характеристику качества игры за N игр следует рассматривать как $X = \sum_{i=1}^{N} X_i$. Как выделить аномальных игроков?

неравенство Хефдинга

Пусть X — случайная величина, являющаяся суммой $\mathbb N$ независимых случайных величин X_i , каждая из которых каким-то образом распределена на отрезке $[I_i,u_i]$. Тогда для любой константы $\theta>0$ верно следующее:

$$P(X - \mathbb{E}(X) > \theta) \le e^{-\frac{2\theta^2}{\sum_{i=1}^{N} (u_i - l_i)^2}}$$

$$P(\mathbb{E}(X) - X > \theta) \le e^{-\frac{2\theta^2}{\sum_{i=1}^{N} (u_i - l_i)^2}}$$

[TODO: Добавить скетч доказательства]

Сумма независимых одинаково распределенных случайных величин

Контроль качества производства. На конвейере производятся детали с вероятностью брака *p*. Как по *N* образцам определить соответствие производства норме?

Центральная предельная теорема

Сумма N независимых и одинаково распределенных случайных величин с матожиданием μ и стандартным отклонением σ^2 при достаточно большом N сходится к случайной величине с матожиданием μN и стандартным отклонением $\sigma \sqrt{N}$

Проверка статистических гипотез

Если исследуемое распределение является нормальным:

$$p(x) = \frac{1}{\sigma\sqrt{2\cdot\pi}} \cdot e^{\frac{-(x-\mu)^2}{2\sigma^2}}$$

то можно применять z-преобразование и использовать z-test.

- Если набор данных невелик настолько, то оценки матожидания и дисперсии будут некорректны. В этом случае следует применять критерий Стьюдента (t-test)
- ightharpoonup Если интерес представляют не данные, а квадраты их отклонений, то следует использовать критерий χ^2

Распределение Стьюдента

QQ-plot

Box plot

Box plot

