

M S RAMAIAH INSTITUTE OF TECHNOLOGY

(AUTONOMOUS INSTITUTE, AFFILIATED TO VTU)

BANGALORE - 560 054

SEMESTER END EXAMINATIONS - MAY / JUNE 2014

Course & Branch : B.E: COMMON TO ALL BRANCHES

Semester

Subject

Engineering Mathematics-II

Max. Marks : 100

Subject Code

: MAT201

Duration

3 Hrs

Instructions to the Candidates:

Answer one full question from each unit.

UNIT - I

(i) Define linear differential equation of first order and give general form of (02)1. a)

the solution of the linear differential equation. (ii) Solve: $\frac{dx}{dy} = \frac{-x \tan(xy)}{1+y \tan(xy)}$.

(03)

- Using Euler's Modified method find y at x = 0.2,. Given that $\frac{dy}{dx} = x y^2$, y(0) (80)= 1.Perform two iterations at each stage. With h=0.1
- A voltage Ee^{-at} is applied at t=0 and i=0 to a circuit of inductance L and resistance R. Show that the current at time t is $\frac{E}{R-aL} \left(e^{-at} e^{-Rt/L} \right)$. (07)
- (i) State the condition for exactness of the differential equation 2 a)

(02)

M(x,y)dx + N(x,y)dy = 0 and also write its general solution.

(ii) Using Euler's method solve $\frac{dy}{dx} - 2y = 3e^x$, y(0) = 0 at x = 0.2 by

(03)

taking h = 0.1.

- Show that the family of curves $\frac{x^2}{a^2+\lambda} + \frac{y^2}{b^2+\lambda} = 1$ is self orthogonal, where λ is (80)b) the parameter.
- Using Runge kutta method of fourth order find y(0.2) for the equation (07)c) $\frac{dy}{dx} = \frac{y-x}{y+x}, \ y(0) = 1, \text{ by taking } h = 0.1.$

UNIT - II

- 3. a) (i) Solve: $\frac{d^4y}{dx^4} a^4y = 0$. (02)
 - (ii) If $D = \frac{d}{dx}$ and X = X(x) then prove that $\frac{1}{(D+a)}X = e^{-ax} \int Xe^{ax} dx$. (03)
 - b) Solve $\frac{d^2y}{dx^2} y = (1 + x^2)e^x$ (08)
 - c) Solve $x^2y'' + xy' + 9y = 3x^2 + \sin(3\log x)$ (07)
- 4. a) (i) Write the Cauchy's linear differential equation with variable coefficients (02) of order n.

(ii) Solve
$$y'' - 2y' - 3y = 0$$
, $y(0) = 0$, $y(1) = e^3 - \frac{1}{e}$ (03)

- b) Solve $y'' + 3y' + 2y = e^{e^x}$ by using the method of variation of parameters. (08)
- c) Solve $(3x+2)^2y'' + 3(3x+2)y' 36y = 3x^2 + 4x + 1$ (07)

UNIT - III

- 5. a) (i) State the conditions for consistency and inconsistency of the system of (02) linear Equations AX=B.
 - (ii) Find the rank of the matrix $A = \begin{bmatrix} 1 & 1 & 1 \\ 2 & 2 & 2 \\ 3 & 3 & 3 \end{bmatrix}$ by reducing into row echelon (03)
 - b) Solve the following system equations by using Gauss Siedel method. (08) Carryout four iterations by taking the initial approximation(0, 0, 0). x + y + 54z = 110; 27x + 6y z = 85; 6x + 15y + 2z = 72
 - c) Find the dominant eigenvalue and the corresponding eigenvector of the (07) matrix $\begin{bmatrix} 6 & -2 & 2 \\ -2 & 3 & -1 \\ 2 & -1 & 3 \end{bmatrix}$ using Power method, considering $\begin{bmatrix} 1 & 1 \end{bmatrix}^T$ as the initial approximation. Carryout five iterations.
- 6. a) (i) Define Similarity Transformation of square matrices. (02)
 - (ii) Write the system of equations $y_1^1 = 2y_1 + y_2 2y_3$, $y_2^1 = 3y_1 2y_2$, (03) $y_3^1 = 3y_1 y_2 3y_3$ in matrix form.
 - b) Diagonalize the matrix $A = \begin{bmatrix} 1 & -1 \\ 2 & 4 \end{bmatrix}$ and hence find A^5 . (08)
 - c) Determine the values of λ and μ such that the system of equations (07)
 - x + y + z = 6; x + 2y + 3z = 10; $x + 2y + \lambda z = \mu$, may have
 - (i) unique solution (ii) an infinite number of solutions (iii) no solution.

UNIT - IV

- 7. a) (i) What should be the condition on f(t) such that (02) $L\{f'(t)\} = sL\{f(t)\} f(0).$
 - (ii) Find the Laplace Transform of $e^{-3t}H(t-3)$. (03)
 - b) If L(f(t)) = F(s) then prove that $L(t^n f(t)) = (-1)^n \frac{d^n}{ds^n} \{F(s)\}$, Where 'n' is a positive integer. (08)
 - c) A periodic function of period a, is defined by $f(t) = \begin{cases} Efor \ 0 \le t < \frac{a}{2} \\ -Efor \frac{a}{2} \le t < a \end{cases}$ (07)

 Show that $L(f(t)) = tanh(\frac{as}{4})$
- 8. a) (i) Define the periodic function with an example. (02)
 - (ii) Find $L[t^2e^{-2t}\sin{(2t)}]$ (03)
 - b) Define unit step function. Express the function $f(t) = \begin{cases} sint, & 0 < t < \pi, \\ sin2t, & \pi < t < 2\pi, \end{cases}$ in (08) terms of the Heaviside unit step functions and hence find its Laplace transform.
 - c) Find the Laplace Transform of the functions (i) $t^5 e^{4t} Cosh(3t)$ (ii) $\frac{2 \sin(t) \sin(5t)}{t}$ (07)

UNIT - V

- 9. a) (i) Define inverse Laplace transform. (02)
 - (ii) Find the inverse Laplace transform of $\frac{(s+2)^3}{s^6}$ (03)
 - b) Obtain the inverse Laplace transform of the function $\frac{s^2}{(s^2+a^2)(s^2+b^2)}$, by using convolution theorem. (08)
 - c) Employ Laplace transform to solve the equation $y'' + 5y' + 6y = 5e^{2x}$; Given that y(0) = 2, y'(0) = 1. (07)
- 10. a) (i) Define the Convolution of two functions. (02)
 - (ii) Find $L^{-1}\left\{\frac{s+2}{s^2-4s+13}\right\}$. (03)

b) Using Laplace transform method , solve the following simultaneous equations.

(80)

$$\frac{dx}{dt} - 2y = \cos 2t; \frac{dy}{dt} + 2x = \sin 2t, \text{ given that } x(0) = 1, y(0) = 0$$

c) Find the inverse Laplace transform of the functions

(07)

(i)
$$\frac{se^{-\frac{s}{2}+\pi e^{-s}}}{s^2+\pi^2}$$
 , (ii) $log\left\{\frac{s^2+4}{s(s+4)(s-4)}\right\}$

