- HRVT00_{1.04}

Arcus Vollmer Institute of Bioinformatics, University Medicine Greifswald, Germany German Centre for Cardiovascular Research (DZHK), Greifswald, Germany

Actual period

7720:7740

Name of the

time period

SS:SS or HH:MM:ss .. HH:MM:ss

Description

Name

- Available at github.com/MarcusVollmer/HRV
- **Open Source** (MIT License) free modification, transparent code
- Programmed for continuous calculation in sliding windows

Normalize

y-axis

Easy navigation

Skip 5 périods

Table 1: Table of available methods in HRV.m

	2000: p.:0::
SDSD	Standard deviation of successive differences
SDNN	Standard deviation of NN intervals
RMSSD	Root mean square of successive differences
pNNx	Probability of intervals greater x ms or smaller $-x$ ms
pNN50	Probability of intervals greater 50ms or smaller -50ms
triangular_val	Compute Triangular Index and TINN
TRI	Triangular index from the interval histogram
TINN	TINN, performing Triangular Interpolation
DFA	Detrended Fluctuation Analysis
CD	Correlation Dimension
ApEn	Approximate Entropy
fft_val_fun	Spectral analysis of an IBI sequence (LF,HF,ratio)
fft_val	Continuous spectral analysis in a windowed approach (LF,HF,ratio)
returnmap_val	Results of the Poincaré plot (SD1,SD2,ratio)
HR	Average heart rate
rrx	Relative RR intervals
rrHRV	HRV based on relative RR intervals
RRfilter	Remove artifacts from RR sequences using rrx
pattern	Recognition of patterns and regularities in data

Intuitive User Interface

- Available at **marcusvollmer.github.io/HRV/** or MatlabCentral
- **Open Source** (MIT License) free modification, transparent code
- **Hard-coded** (no use of GUIDE/App Designer)

and size

No additional toolboxes required Signal Processing Toolbox recommended

Save

COPY

results to

clipboard

Print,

MAT

ECG ,

Adjustable

number of beats

window

for rolling 60 0.75

Computational

expensive methods

what else?

Open new

record

itch Processing

% Set the path to your working directory path = 'C:\Users\yourpath'; % Set your output file outputfile = 'results.xlsx';

overlap

TINN visibility on/off

lines

% Settings for automated beat detection load('qrs_settings.mat') s = 1; % s=1 for human ECG settings Fs = 256; % Set your sampling frequency Beat_min = qrs_settings.Beat_min(s); Beat_max = qrs_settings.Beat_max(s); wl_tma = ceil(qrs_settings.wl_tma(s)*Fs); wl_we = ceil(qrs_settings.wl_we(s,:).*Fs); for id = 1:n % Loop recordings % Import ECG - use an appropriate import function sig_waveform = loadwaveform(id);

% Heart beat detection Ann = singleqrs(sig_waveform, Fs, 'downsampling', d_fs, 'Beat_min', Beat_min, 'Beat_max', Beat_max, 'wl_tma',wl_tma, 'wl_we',wl_we); Ann = Ann/Fs;

% RR intervals and filtering of artifacts RR = diff(Ann); RR_filt = HRV.RRfilter(RR,20);

% Computation of local HRV measures RR_loc = RR_filt;

 $HR_loc = HRV.HR(RR_loc,0);$

rrHRV_loc = HRV.rrHRV(RR_loc,0); SDNN_loc = HRV.SDNN(RR_loc,0) * 1000; RMSSD_loc = HRV.RMSSD(RR_loc,0) * 1000; $pNN50_loc = HRV.pNN50(RR_loc,0) * 100;$

% Save results in an Excel spreadsheet Column = calc_xls_idx(1+2); xlRange_HR = ([Column num2str(id+3)]);

xlRange_SDNN = ([Column num2str(id+4)]);

xlRange_RMSSD = ([Column num2str(id+5)]);

xlRange_pNN50 = ([Column num2str(id+6)]); xlRange_rrHRV = ([Column num2str(id+7)]); xlswrite([path filesep outputfile], rrHRV_loc, [xlRange_rrHRV ':' xlRange_rrHRV]); xlswrite([path filesep outputfile], SDNN_loc, [xlRange_SDNN ':' xlRange_SDNN]); xlswrite([path filesep outputfile], RMSSD_loc, [xlRange_RMSSD ':' xlRange_RMSSD]); xlswrite([path filesep outputfile], pNN50_loc, [xlRange_pNN50 ':' xlRange_pNN50]); xlswrite([path filesep outputfile], HR_loc, [xlRange_HR ':' xlRange_HR]);

Supported by the DZHK (German Centre for Cardiovascular Research):