Exercise 3.1 Asymptotic growth (2 points).

- (a) Prove or disprove the following statements. Justify your answer.
 - (1) For all $a, b \ge 1$, suppose $n \in \mathbb{N}$ and $n > \max\{a, b\}$, then $\log_a(n) = \Theta(\log_b(n))$.

Solution:

$$\lim_{n \to \infty} \frac{\log_a n}{\log_b n} = \lim_{n \to \infty} \frac{\frac{\log n}{\log a}}{\frac{\log n}{\log b}} = \lim_{n \to \infty} \frac{\log n}{\log a} \cdot \frac{\log b}{\log n} = \lim_{n \to \infty} \frac{\log b}{\log a} = \frac{\log b}{\log a} = C$$

And $C \in \mathbb{R}$, $0 < C < \infty$, meaning $\log_a n \in O(\log_b n)$ and $\log_b n \in O(\log_a n)$, which implies $\log_a(n) = \Theta(\log_b(n))$.

(2) For all $a, b \ge 1$, suppose $n \in \mathbb{N}$, then $a^n = \Theta(b^n)$.

Solution:

$$\lim_{n\to\infty}\frac{a^n}{b^n}=\lim_{n\to\infty}\frac{e^{\ln(a^n)}}{e^{\ln(b^n)}}=\lim_{n\to\infty}\frac{e^{n\ln a}}{e^{n\ln b}}=\lim_{n\to\infty}e^{n\ln a-n\ln b}=\lim_{n\to\infty}e^{n(\ln a-\ln b)}$$

This limit has three possible values. If $\ln a > \ln b$, we have

$$\lim_{n \to \infty} n(\ln a - \ln b) = \infty \implies \lim_{n \to \infty} e^{n(\ln a - \ln b)} = \infty \implies a^n \notin O(b^n)$$

and thus $a^n \neq \Theta(b^n)$. If $\ln a < \ln b$, we have

$$\lim_{n \to \infty} n(\ln a - \ln b) = -\infty \implies \lim_{n \to \infty} e^{n(\ln a - \ln b)} = 0 \implies b^n \notin O(a^n)$$

which also means $a^n \neq \Theta(b^n)$. The final case is $\ln a = \ln b$.

$$\lim_{n \to \infty} n(\ln a - \ln b) = 0 \implies \lim_{n \to \infty} e^{n(\ln a - \ln b)} = 1 \implies a^n = \Theta(b^n)$$

This is the only case for which the statement holds. It is generally false to assume $a^n = \Theta(b^n)$ for all $a, b \ge 1, n \in \mathbb{N}$.

(b) (1) Prove that $\lim_{n\to\infty} \frac{n}{\log(n)} = \infty$.

Hint: Use L'Hôpital's rule.

Solution:

The original limit gives us something infinitely big divided by something infinitely big:

$$\lim_{n \to \infty} \frac{n}{\log(n)} = \lim_{n \to \infty} \frac{\infty}{\log(\infty)} = \frac{\infty}{\infty}$$

So L'Hôpital's rule is used¹:

$$\lim_{n \to \infty} \frac{n}{\log(n)} = \lim_{n \to \infty} \frac{1}{\frac{1}{n \cdot \ln(10)}} = \lim_{n \to \infty} \frac{n \cdot \ln(10)}{1} = \lim_{n \to \infty} n \cdot \ln(10)$$

 $\ln(10)$ is a constant factor, so it can be ignored for $n \to \infty$, so the limit yields:

$$\lim_{n \to \infty} n \cdot \ln(10) = \lim_{n \to \infty} n = \infty$$

 $^{^{1}\}log(n)$ is assumed to mean $\log_{10}(n)$.

(2) Prove that $\lim_{n \to \infty} n(e^{1/n} - 1) = 1$.

You may use the following variant of L'Hôpital's rule:

Theorem 1 (L'Hôpital's rule (going to 0)). Assume that functions $f: \mathbb{R}^+ \to \mathbb{R}$ and $g: \mathbb{R}^+ \to \mathbb{R}$ are differentiable, $\lim_{x\to\infty} f(x) = \lim_{x\to\infty} g(x) = 0$ and for all $x \in \mathbb{R}^+$, $g'(x) \neq 0$. If $\lim_{x\to\infty} \frac{f'(x)}{g'(x)} = C \in \mathbb{R}$ or $\lim_{x\to\infty} \frac{f'(x)}{g'(x)} = \infty$, then

$$\lim_{x \to \infty} \frac{f(x)}{g(x)} = \lim_{x \to \infty} \frac{f'(x)}{g'(x)}.$$

Solution:

The original limit is as follows:

$$\lim_{n \to \infty} n(e^{\frac{1}{n}} - 1) = \lim_{n \to \infty} \infty \cdot (e^{\frac{1}{\infty}} - 1) = \lim_{n \to \infty} \infty \cdot (e^{0} - 1)$$
$$= \lim_{n \to \infty} \infty \cdot (1 - 1) = \lim_{n \to \infty} \infty \cdot 0$$

This is indeterminate and hence not immediately solvable without analyzing whether the part approaching 0 or the part approaching ∞ grows faster than the other, and that to a level that cancels out the other.

Now, a little trick is used. Let $x = \frac{1}{n}$, so for $n \to \infty$, $x \to 0$. So substituting $n = \frac{1}{x}$, this yields the following limit:

$$\lim_{n \to \infty} n(e^{\frac{1}{n}} - 1) = \lim_{x \to 0} \frac{1}{x} \cdot (e^{\frac{1}{x}} - 1) = \lim_{x \to 0} \frac{1}{x} \cdot (e^x - 1) = \lim_{x \to 0} \frac{e^x - 1}{x}$$

Now, since both terms of this fraction approach 0 and since $g'(x) = 1 \neq 0$, Theorem 1 can be used:

$$\lim_{x \to 0} \frac{e^x - 1}{x} = \lim_{x \to 0} \frac{e^x}{1} = \lim_{x \to 0} e^x = \lim_{x \to 0} e^0 = 1$$

(3) Prove that for $n \geq 3$

$$\frac{n^{1/n} - 1}{n} = \Theta\left(\frac{\ln(n)}{n^2}\right).$$

You may use results from the earlier exercises.

You may use the following fact:

Let $f,g:\mathbb{R}^+\to\mathbb{R}$. Suppose that $\lim_{n\to\infty}g(n)=\infty$ and there exists some constant $C\in\mathbb{R}$ such that $\lim_{n\to\infty}f(n)=C$. Then $\lim_{n\to\infty}f(g(n))=C$.

Solution:

The following equation² is given:

$$\frac{n^{\frac{1}{n}} - 1}{n} = \Theta\left(\frac{\ln(n)}{n^2}\right)$$

This can be transformed:

$$\lim_{n\to\infty}\frac{n^{\frac{1}{n}}-1}{n}=\lim_{n\to\infty}\frac{e^{\frac{1}{n}\cdot\ln(n)}-1}{n}=\lim_{n\to\infty}\frac{e^{\frac{\ln(n)}{n}}-1}{n}$$

Let $x_n = \frac{\ln(n)}{n}$. Since $\lim_{n \to \infty} x_n = 0$, according to exercise 3.1.b.1³, and $\lim_{n \to \infty} n(e^{\frac{1}{n}} - 1) = \lim_{x \to 0} \frac{e^{x} - 1}{x} = 1$ (from exercise 3.1.b.2), the given fact about composition⁴ above will yield the following:

$$\lim_{n \to \infty} \frac{e^{x_n} - 1}{x_n} = 1$$

This means that there exists N for which all $n \geq N$:

$$\frac{1}{2} \le \frac{e^{x_n} - 1}{x_n} \le 2$$

Multiplying by x_n and dividing by n yields:

$$\frac{1}{2}\frac{x_n}{n} \le \frac{e^{x_n} - 1}{n} \le 2\frac{x_n}{n}$$

²The LHS of the equation is in theory a limit of n to ∞ .

³It's the reciprocal of what was proven there.

⁴If $\lim_{n\to\infty}g(n)$ tends to ∞ and $\lim_{n\to\infty}f(n)$ tends to a constant C, then $\lim_{n\to\infty}f(g(n))=C$

Re-substituting $x_n = \frac{ln(n)}{n}$ gives:

$$\frac{1}{2}\frac{\ln(n)}{n^2} \le \frac{e^{\frac{\ln(n)}{n}} - 1}{n} = \frac{n^{\frac{1}{n}} - 1}{n} \le 2\frac{\ln(n)}{n^2}$$

This establishes the needed two-sided bounds for Θ -notation, so the equation stands.

Inputting n=3 is the last step to prove that the LHS does not exceed the limit in the Θ -notation:

$$\frac{3^{\frac{1}{3}} - 1}{3} = \frac{1.4422 - 1}{3} = \frac{0.4422}{3} = 0.1474$$
$$\frac{\ln(3)}{3^2} = \frac{1.0986}{9} = 0.1221$$

This gives us a positive ratio of $\frac{0.1221}{0.1474} = 1.2072$, which is perfectly fine, it's close enough to the ratio we expect for $n \to \infty$. Because then, the ratio approaches 1, as has been shown above. So $n \ge 3$ was simply an arbitrarily chosen threshold, any small natural number would have done the job.

Exercise 3.3 Counting function calls in loops (1 point).

For each of the following code snippets, compute the number of calls to f as a function of $n \in \mathbb{N}$. Provide both the exact number of calls and a maximally simplified asymptotic bound in Θ notation.

(a) Algorithm 1

$$i \leftarrow 0$$
while $i \le n$ do
$$f()$$

$$f()$$

$$i \leftarrow i + 1$$

$$j \leftarrow 0$$
while $j \le 2n$ do
$$f()$$

$$j \leftarrow j + 1$$

For this running time bound, we let n range over natural numbers that are at least 2 so that $n \log(n) > 0$.

The number of calls is mathematically described below. Note that to find the number of iterations, one was summed to the final indexes because i and j start at zero.

$$\sum_{i=0}^{n} 2 + \sum_{j=0}^{2n} 1 = (n+1) \cdot 2 + (2n+1) \cdot 1 = 2n+2+2n+1 = 4n+3$$

Let A be a function that describes the number of calls to f in Algorithm 1. We have A(n) = 4n + 3 and $A \in \Theta(n)$

(b) Algorithm 2

$$\begin{split} \mathbf{i} &\leftarrow 1 \\ \text{while } i \leq n \text{ do} \\ \mathbf{j} &\leftarrow 1 \\ \text{while } j \leq i^3 \text{ do} \\ \mathbf{f}() \\ \mathbf{j} &\leftarrow \mathbf{j} + 1 \\ \mathbf{i} &\leftarrow \mathbf{i} + 1 \end{split}$$

Hint: See Exercise 1.1.

The number of calls is mathematically described below. The definition of the sum of the first n cubic numbers was used.

$$\sum_{i=1}^{n} \sum_{j=1}^{i^3} 1 = \sum_{i=1}^{n} i^3 = \frac{n^2(n+1)^2}{4}$$

Let B be a function that describes the number of calls to f in Algorithm 2. We have $B(n) = \frac{n^2(n+1)^2}{4}$ and $B \in \Theta(n^4)$, since $\frac{n^2(n+1)^2}{4} = \frac{n^4+2n^3+n^2}{4}$.