CS 6001 Homework 2

Michael Catanzaro, Jacob Fischer, Christian Storer September 22, 2016

1 Find an x that satisfies the following linear congruences

 $x \equiv 2 \bmod 5$ $x \equiv 3 \bmod 7$

 $x \equiv 8 \bmod 11$

To do so, use Chinese Remainder Theorem

$$x \equiv a_i \bmod n_i$$

$$x = N_1 * b_1 * a_1 + N_2 * b_2 * a_2 + N_3 * b_3 * a_3$$

$$n = 5 * 7 * 11 = 385$$

$$a_1 = 2$$

$$n_1 = 5$$

$$N_1 = n/n_1 = 77$$

$$a_2 = 3$$

$$n_2 = 7$$

$$N_2 = n/n_2 = 55$$

$$a_3 = 8$$

$$n_3 = 11$$

$$N_3 = n/n_3 = 35$$

$$N_i * b_i \equiv 1 \mod n_i$$

$$N_1 * b_1 \equiv 1 \mod n_1$$

$$77*b_1 \equiv 1 \bmod 5$$

$$b_1 \equiv 3$$

$$55 * b_2 \equiv 1 \mod 7$$

$$b_2 = 6$$

$$35*b_3 \equiv 1 \ mod \ 11$$

$$b_3 = 6$$

$$x = 77 * 3 * 2 + 55 * 6 * 3 + 35 * 6 * 8$$

$$x = 3132$$

2 Discuss some useful applications of the Chinese Remainder Theorem

CRT is useful for secret sharing. If you have some secret code x, and you want it to be shared among n people, however you also wish that any subset of the n people cannot decipher the code x without all n people. To do this, you give each member some function $f_i()$, which is one of congruence equations in Problem 1. To find the x that satisfies all the equations f() you must have all the $f_i()$. Having only a subset does not spoil the secret, as they cannot calculate x.

3 Under the RSA encryption scheme, suppose p = 89 and q = 113.

Let e = 17, show how to derive the private key d.

$$\varphi(n) = (p-1)(q-1)$$

$$= (89-1)(113-1) = 9856$$

$$GCD(e, \varphi(n)) = GCD(17, 9856) = 1$$

$$d*e\ mod\ \varphi(n) = 1$$

$$d*17\ mod\ 9856 = 1$$

To find d from here, we can use Euclid's algorithm

$$17*d = 1 \pmod{9856}$$

$$9856 = 17*579 + 13 \rightarrow 13 = 9856 - 17*579$$

$$17 = 13*1 + 4 \rightarrow 4 = 17 - 13*1$$

$$13 = 4*3 + 1 \rightarrow 1 = 13 - 4*3$$

$$4 = 1*4$$

$$GCD(9856, 17) = 1$$

$$\begin{split} 1 &= 13 - 4 * 3 \\ &= (9856 - 17 * 579) - (17 - 13) * 3 \\ &= 9856 - 17 * 579 - (17 - (9856 - 17 * 579)) * 3 \\ &= 9856 - 17 * 579 - (17 * 3 - (9856 * 3 - 17 * 579 * 3)) \\ &= 9856 - 17 * 579 - (17 * 3 - 9856 * 3 + 17 * 579 * 3) \\ &= 9856 - 17 * 579 - 17 * 3 + 9856 * 3 - 17 * 579 * 3 \\ &= 9856 * 4 - 17 * 2319 \\ d &= 9856 - 2319 \\ d &= 7537 \end{split}$$

Given m = 65, compute the encryption of m and verify the encryption is correct by decrypting the encrypted value.

$$E(m) = m^e \mod n$$

$$n = 89 * 113 = 10057$$

$$E(65) = 65^{17} \mod 10057$$

$$E(65) = 6619$$

$$e = 6619$$

$$D(e) = e^d \mod n$$

$$D(e) = 6619^{7}537 \mod 10057$$

$$D(e) = 65$$