

JUNE 2002

GCE Advanced Level GCE Advanced Subsidiary Level

MARK SCHEME

MAXIMUM MARK: 75

SYLLABUS/COMPONENT:9709/3,8719/3
MATHEMATICS

(Pure 3)

Μl

ΑI

Page 1	Mark Scheme	Syllabus	Paper
	A & AS Level Examinations – June 2002	9709, 8719	3

EITHER: Express LHS in terms of $\cos\theta$ and $\sin\theta$ or in terms of $\tan\theta$

-		Make sufficient relevant use of double-angle formula(e)	MI	
		Complete proof of the result	ΑĮ	
	OR:	Express RHS in terms of $\cos\theta$ and $\sin\theta$ or in terms of $\tan\theta$	MI	
		Express RHS as the difference (or sum) of two fractions	Μl	
		Complete proof of the result	Αl	3
		[SR: an attempt ending with $\frac{1 \cdot \tan^2 \theta}{\tan \theta} = \cot \theta - \tan \theta$ earns M1 B1 only.]		
2	EITHER:	Show correct (unsimplified) version of the x or the x^2 or the x^3 term	Ml	
		Obtain correct first two terms $1 + x$	ΑI	
		Obtain correct quadratic term $2x^2$	Al	
		Obtain correct cubic term $\frac{14}{3}x^3$ (allow $\frac{28}{6}$, 4.67, 4.66 for the coefficient)	ΑI	
		[The M mark may be implied by correct simplified terms, if no working is shown. It is not earned	by	
		unexpanded binomial coefficients involving $-\frac{1}{3}$, e.g. $-\frac{1}{3}C_1$ or $\begin{pmatrix} -\frac{1}{3}\\ 2 \end{pmatrix}$.]		
		[An attempt to divide 1 by the expansion of $(1-3x)^{\frac{1}{3}}$ earns M1 if the expansion has a correct		
		(unsimplified) x , x^2 , or x^3 term and if the partial quotient contains a term in x . The remaining A marks are awarded as above.]		
	OR;	Differentiate and calculate $f(0)$, $f'(0)$, where $f'(x) = k(1-3x)^{-\frac{1}{2}-1}$	M1	
		Obtain correct first two terms $1 + x$	Al	
		Obtain correct quadratic term $2x^2$	A1	

3 Attempt to find a and/or quadratic factor by division or by inspection

Obtain partial quotient or factor $x^2 - x$ State answer a = 6State or imply the other factor is $x^2 - x + 3$ A1

[The M1 is earned if division has produced a partial quotient $x^2 + bx$, or if inspection has an unknown factor $x^2 + bx + c$ and has reached an equation in b and/or c.]

Obtain correct cubic term $\frac{14}{3}x^3$ (allow $\frac{28}{6}$, 4.67, 4.66 for the coefficient)

[SR: a correct division with unresolved constant remainder can earn M1A1B0A1.]

[NB: successive division by a pair of incorrect linear factors, e.g. x-1 and x+2 or x+1 and x+2, can earn

M1A0 or M1A1(if their product is of the form $x^2 + x + k$).]

Αl

5

Page 2	Mark Scheme	Syllabus	Paper
	A & AS Level Examinations – June 2002	9709, 8719	3

4	 (i) Use the formula correctly at least once State α = 1.26 as final answer Show sufficient iterations to justify α = 1.26 to 2d.p., or show there is a sign change in the 	M1 A1	
	interval (1.255, 1.265)	A1	3
	(ii) State any suitable equation in one unknown e.g. $x = \frac{2}{3} \left(x + \frac{1}{x^2} \right)$	B 1	
	State exact value of α (or x) is $\sqrt[3]{2}$ or $2^{\frac{1}{3}}$	Bl	2
5	Obtain derivative $\pm 2\sin x + k\cos 2x$ or $\pm 2\sin x + k(\cos^2 x \pm \sin^2 x)$	Ml	
	Equate derivative to zero and use trig formula to obtain an equation involving only one trig function	MI	
	Obtain a correct equation of this type e.g. $2\sin^2 x + \sin x - 1 = 0$ or $\cos 2x = \cos(\frac{1}{2}\pi - x)$	Al	
	Obtain value $x = \frac{1}{6}\pi$ (allow 0.524 radians or 30°)	A 1	
	Show by any method that the corresponding point is a maximum point	Al	
	Obtain second value $x = \frac{5}{6}\pi$ (allow 2.62 radians or 150°), and no others in range	Al♪	
	Determine that it corresponds to a minimum point	Al	7
6	(i) State or imply $f(x) = \frac{A}{(3x+1)} + \frac{B}{(x+1)^2} + \frac{C}{(x+1)}$	В1	
		Di	
	State or obtain $A = -3$ State or obtain $B = 2$	Bl	
	Use any relevant method to find C	B1	
	OLD TO THE STATE OF THE STATE O	Mi	

[SR: if f(x) is given an incomplete form of partial fractions, give B1 for a form equivalent to the omission of C, or E, or B in the above, and M1 for finding one coefficient.] (ii) Integrate and obtain terms $-\ln (3x+1) - \frac{2}{(x+1)} + \ln (x+1)$ B1 + B1 + B1 ✓ Use limits correctly Ml Obtain the given answer correctly ΑI 5

[Special case: allow the form $\frac{A}{(3x+1)} + \frac{Dx+E}{(x+1)^2}$ and apply the above scheme (A = -3, D = 1, E = 3).]

Obtain C = 1

www.studyguide.pk

Page 3	Mark Scheme	Syllabus	Paper
	A & AS Level Examinations – June 2002	9709, 8719	3

7	(i)	State that $\frac{dm}{dt} = k(50 - m)^2$	Bl	
		Justify $k = 0.002$	B 1	2
	(ii)	Separate variables and attempt to integrate $\frac{1}{(50-m)^2}$	Ml	
		Obtain $\pm \frac{1}{(50-m)}$ and $0.002t$, or equivalent	Al	
		Evaluate a constant or use limits $t = 0$, $m = 0$	Ml	
		Obtain any correct form of solution e.g. $\frac{1}{(50-m)} = 0.002t + \frac{1}{50}$	A1	
		Obtain given answer correctly	A1	5
	(iii)	Obtain answer $m = 25$ when $t = 10$	Bl	
	•	Obtain answer $t = 90$ when $m = 45$	Bl	2
	(iv)	State that m approaches 50	B1	1
8	(i)	State or imply a simplified direction vector of I is $3i - j + 2k$, or equivalent	В1	
		State equation of l is $\mathbf{r} = \mathbf{i} + \mathbf{k} + \lambda(3\mathbf{i} - \mathbf{j} + 2\mathbf{k})$, or $\frac{x-1}{3} = \frac{y}{-1} = \frac{z-1}{2}$, or equivalent	Bl✔	
		Substitute in equation of p and solve for λ , or one of x, y, or z	Mi	
		Obtain point of intersection $-2i + j - k$	A1	4
		[Any notation is acceptable.]		
	(ii)	State or imply a normal vector of p is $i + 3j - 2k$	Bl	
		FITHER: Use scalar product to obtain $a + 3b - 2c = 0$	Ml	

<i>EITHI</i>	CR: Use scalar product to obtain $a + 3b - 2c = 0$	Ml
	Use points on I to obtain two equations in a, b, c e.g. $a + c = 1$, $4a - b + 3c = 1$	B1 √
	Solve simultaneous equations, obtaining one unknown	M1
	Obtain one correct unknown e.g. $a = -\frac{2}{3}$	Al
	Obtain the other unknowns e.g. $b = \frac{4}{3}$, $c = \frac{5}{3}$	Al
OR:	Use scalar product to obtain $a + 3b - 2c = 0$	Ml
	Use scalar product to obtain $3a - b + 2c = 0$	Bl√
	Solve simultaneous equations to obtain one ratio e.g. a: b	Ml
	Obtain $a:b:c=2:-4:-5$, or equivalent	Al
	Obtain $a = -\frac{2}{3}$, $b = \frac{4}{3}$, $c = \frac{5}{3}$	A 1

[NB: candidates may transfer from the EITHER to OR scheme by subtracting the two "point" equations, or transfer from OR to EITHER by finding one of the "point" equations.)

OR:	Calculate the vector product $(3i - j + 2k) \times (i + 3j - 2k)$	M 1
	Obtain answer + 4i + 8j + 10k, or equivalent	A1 √
	Substitute in $-4x + 8y + 10z = d$ to find d, or equivalent	M1
	Obtain $d = 6$, or equivalent	Al
	Obtain $a = -\frac{2}{3}$, $b = \frac{4}{3}$, $c = \frac{5}{3}$	Al

OR: State or imply a correct equation of the plane e.g.
$$\mathbf{r} = \lambda(3\mathbf{i} - \mathbf{j} + 2\mathbf{k}) + \mu(\mathbf{i} + 3\mathbf{j} - 2\mathbf{k}) + \mathbf{i} + \mathbf{k}$$
 M1
State 3 equations in x , y , z , λ , and μ , e.g. $x = 3\lambda + \mu + 1$, $y = -\lambda + 3\mu$, $z = 2\lambda - 2\mu + 1$ A1
Eliminate λ and μ M1
Obtain equation $-4x + 8y + 10z = 6$, or equivalent A1
Obtain $a = -\frac{2}{3}$, $b = \frac{4}{3}$, $c = \frac{5}{3}$ A1
[SR: condone the use of $x\mathbf{i} + y\mathbf{j} + z\mathbf{k}$ for $a\mathbf{i} + b\mathbf{j} + c\mathbf{k}$ in the EITHER scheme and the first OR scheme.]

Page 4	Mark Scheme	Syllabus	Paper
	A & AS Level Examinations – June 2002	9709, 8719	3

9 (i) State or imply that $r=2$	₿I	
State or imply that $\theta = \frac{1}{3}\pi$ (allow 1.05 radians or 60°)	Bl	
Obtain modulus 4, and argument $\frac{2}{3}\pi$ of u^2 (allow 2^2 ; 2.09 or 2.10 radians or 120°)	B1 + B1 . ✓	
Obtain modulus 8 and argument π of u^3 (allow 2^3 ; 3.14 or 3.15 radians or 180°) [Follow through on wrong r and θ .] [SR: if u^2 and u^3 are only given in polar form, give B1 \wedge for u^2 and B1 \wedge for u^3 .]	Bi√	5
(ii) EITHER: Deduce that $u^2 - 2u + 4 = 0$ from $u^3 + 8 = 0$ OR: Verify that $u^2 - 2u + 4 = 0$ by calculation	BI	
State that the other root is $1 - i\sqrt{3}$, or equivalent	B1	2
[NB: stating that the roots are $1 \pm i\sqrt{3}$ is sufficient for both B marks.]		
(iii) Show both points correctly on an Argand diagram Show the correct relevant circle Show line (segment) correctly	BI BI BI	
Shade the correct region [SR: allow work on separate diagrams to be eligible for the first three B marks.]	B1	4
10 (i) State at any stage that the approximate of 4 is possible 1, or that 4 is the point (1.0)		
10 (i) State at any stage that the x-coordinate of A is equal to 1, or that A is the point $(1,0)$	B1	1
(ii) State $f'(x) = 2 \frac{\ln x}{x}$, or equivalent	B1	
Use product or quotient rule for the next differentiation	M1	
Obtain $2 \cdot \frac{1}{x} \cdot \frac{1}{x} + 2 \ln x \cdot \left(\frac{-1}{x^2}\right)$, or any equivalent correct unsimplified form	Al	
Verify that $f''(e) = 0$	A1	4
(iii) State or imply area is $\int_{1}^{e} (\ln x)^{2} dx$	В1	
Use $\frac{dx}{du} = e^{u}$, or equivalent, in substituting for x throughout	Ml	
Obtain given answer correctly (allow change of limits to be done mentally)	Al	3
(iv) Attempt the first integration by parts, going the correct way Obtain $(u^2 - 2u \pm 2)e^u$, or equivalent, after two applications of the rule	M] A1	
Obtain exact answer in terms of e, in any correct form, e.g. $(e - 2e + 2e) - 2$, or $e - 2$	A1	3

[The substitution in (iii) may be done in reverse i.e. starting with the u integral and obtaining the x integral. The M1A1 scheme applies, but only an explicit statement will earn the B1.] [The M1A1A1 in (iv) applies to those working in terms of x and obtaining $x((\ln x)^2 - 2 \ln x \pm 2)$, or equivalent.]

