1.

SELECT THE CORRECT ALTERNATIVE (ONLY ONE CORRECT ANSWER)

	with the law of :											
	(A) conservation of m	ass	(B) constant proportion	1								
	(C) multiple proportio	ns	(D) gaseous volumes									
2.	That the atom is indi	visible was proposed by :										
	(A) Ruterford	(B) Dalton	(C) Bohr	(D) Einstein								
3.	Atomic mass of an el	ement is :										
	(A) actual mass of on	(A) actual mass of one atom of the element										
	(B) relative mass of a	(B) relative mass of an atom of the element										
	(C) average relative m	(C) average relative mass of different atoms of the element										
	(D) always a whole n	umber										
4.	Which of the following expressions is correct (n = no. of moles of the gas, N_A = Avogadro constant											
		m = mass of 1 molecule of the gas, N = no. of molecules of the gas) ?										
	(A) $n = mN_A$	(B) $m = N_A$	(C) $N = nN_A$	(D) $m = n/N_A$								
5.	The volume of 1 mol	of a gas at standard temp	perature and pressure is :									
	(A) 11.2 litres	(B) 22.4 litres	(C) 100 litres	(D) none of these								
6.	The charge on 1 gra	m ions of Al^{3+} is :										
	1	1	1									
	(A) $\frac{1}{27} N_A e$ coulomb	(B) $\frac{1}{3}$ $N_A e$ coulomb	(C) $\frac{1}{9}$ $N_A e$ coulomb	(D) 3 N _A e coulomb								
7.	In which of the follow	ving pairs do 1 g of each	have an equal number of 1	molecules :								
	(A) $N_2^{}O$ and CO	(B) N_2 and C_3O_2	(C) N_2 and CO	(D) N_2O and C_2O								
8.	A quantity of aluminium has a mass of 54.0 g. What is the mass of the same number of magnesium atoms											
	(At. wt. Al = 27, Mg = 24)											
	(A) 12.1 g	(B) 23.3 g	(C) 48 g	(D) 97.2 g								
9.	Which of the followir	ng samples contains the lar	gest number of atoms?									
	(A) 1 g of Ni(s)	(B) 1 g of Ca(s)	(C) 1 g of $N_2(g)$	(D) 1 g of B(s)								
10.	Which of the followin	g contains greatest numbe	r of oxygen atoms :									
	(A) 1 g of O		(B) 1 g of O_2									
	(C) 1 g of O_3		(D) all have the same r	number of atoms								
11.			contains 3.18 mol of hydronical	rogen atoms. The number of								
	moles of oxygen atom		(0) 1.06	(D) 0.10								
4.0	(A) 0.265	(B) 0.795	(C) 1.06	(D) 3.18								
12.	How many moles of	electron weigh one kilogra	m :									
	(A) 6.023 10 ²³	(B) $\frac{1}{9.108} \times 10^{31}$	(C) $\frac{6.023}{1.000} \times 10^{54}$	(D) $\frac{1}{9.108 \times 6.023} \times 10^8$								
	(-, -, -, -, -, -, -, -, -, -, -, -, -, -	9.108	9.108	` ' 9.108×6.023								
13.	A compounds was for	and to contain 5.37% nitrog	gen. What is the minimum	$molecular\ wt.\ of\ compound:$								
	(A) 26.07 σ	(B) 2.607	(C) 260.7	(D) none								

All samples of carbon dioxide contain carbon and oxygen in the mass ratio of 3 : 8. This is in agreement

14.	Under the same conditions, two gases have the same number of molecule. They must :									
	(A) be noble gases		(B) have equal volumes							
	(C) have a volume of 2	2.4 dm³ each	(D) have an equal numb	per of atoms						
15.		arately filled with the gases for of atoms of these gase		nme temperature and pressure. k would be :						
	(A) 1 : 1 : 1 : 1	(B) 1 : 2 : 2 : 3	(C) 2 : 1 : 2 : 3	(D) 3 : 2 : 2 : 1						
16.	_	u is 63.546 . There are on lance of the 63 Cu isotope	·	isotopes of copper ⁶³ Cu and						
	(A) 10%	(B) 30%	(C) 50%	(D) 70%						
17.	If the percentage of wa	ter of crystallization in Mo	$_{3}SO_{4}.x$ $H_{2}O$ is 13%. What	t is the value of x :						
	(A) 1	(B) 4	(C) 5	(D) 7						
18.		% hydrogen and 85.7% cast the molecular formula o		sity of 2.5 g L^{-1} at 0 C and						
	(A) CH ₂	(B) C_2H_4	(C) C_4H_8	(D) C_6H_{12}						
19.	A certain alkaloid has 70 formula :	8% carbon, 6.2% hydrogen,	4.1% nitrogen and the rest	oxygen. What is its empirical						
	(A) $C_{20}H_{21}NO_4$	(B) $C_{20}H_{20}NO_4$	(C) $C_{21}H_{20}NO_3$	(D) $C_{20}H_{19}NO_3$						
20.	The empirical formula compound is :	of a compound of molecul	lar mass 120 is CH ₂ O. T	he molecular formula of the						
	(A) $C_2H_4O_2$	(B) $C_4H_8O_4$	(C) $C_3H_6O_3$	(D) all of these						
21.		M, reacts with excess fluor 52, Mo = 96, S = 32, Te		the hexafluoride MF ₆ . What						
	(A) Cr	(B) Mo	(C) S	(D) Te						
22.	A 1000 gram sample o	f NaOH contains 3 moles	s of O atoms, what is the	% purity of NaOH :						
	(A) 14%	(B) 100%	(C) 12%	(D) 24%						
23.	A 15 mL sample of 0 Cl ⁻ ions in the final solution		o 45 mL of 0.40 M AlC	$\boldsymbol{l}_{_{3}},$ What is the molarity of						
	(A) 1.0 M	(B) 0.60 M	(C) 0.35 M	(D) 0.30 M						
24.	Mole fraction of ethanol by weight of mixture is		ure is 0.25. Hence percent	tage concentration of ethanol						
	(A) 25%	(B) 75%	(C) 46%	(D) 54%						
25.	How many moles of Na	${ m a}^{\scriptscriptstyle +}$ ions are in 20 mL of 0	0.40 M Na ₃ PO ₄ :							
	(A) 0.0080	(B) 0.024	(C) 0.050	(D) 0.20						
26.	Out of Molarity (M), Mo	lality (m), Formality (F) an	nd Mole fraction (x), those	independent of temperature						
	(A) M,m	(B) F,x	(C) m,x	(D) M,x						
27.	The molality of a 1 L so grams. The value of x is		9. The weight of solvent p	present in the solution is 910						
	(A) 90	(B) 80.3	(C) 30.38	(D) 46.87						
28.	Density of ozone relativ	e to oxygen is under the	same temperature & pres	sure :						
	(A) 1	(B) 2	(C) 1.5	(D) 2.5						

30. The molarity of the solution containing 2.8% mass-volume solution of KOH/(Given atomic mass of (A) 0.1 M (B) 0.5 M (C) 0.2 M(D) 1 M 31. The molality of a sulphuric acid solution is 0.2 mol/kg. Calculate the total weight of the solution : (A) 1000 g (B) 1098.6 g (C) 980.4 g (D) 1019.6 g 32. What volume of a $0.8\ M$ solution contains $100\ millimoles$ of the solute : (A) 100 mL (C) 500 mL (D) 62.5 mL (B) 125 mL 33. 500 mL of a glucose solution contains 6.02 10^{22} molecules. The concentration of the solution is : (B) 1.0 M (C) 0.2 M50 mL of CO is mixed with 20 mL of oxygen and sparked, After the reaction, the mixture is treated with 34. an aqueous KOH solution. Choose the correct option : (A) the volume of CO that reacts = 30 mL(B) volume of CO₂ formed = 50 mL (C) volume of CO that remains after treatment with KOH = 10 mL(D) the volume of the CO that remains after treatment with KOH = 20 mL

(C) 14.5

(D) 16.8

Mole fraction of A in H_2O is 0.2. The molality of A in H_2O is :

(B) 15.5

29.

(A) 13.8

CHECK YOUR GRASP					F	NSW	ER I	KEY	EXERCISE -:			SE -1			
Que.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Ans.	В	В	С	С	В	D	С	С	D	D	С	D	С	В	С
Que.	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
Ans.	D	Α	С	Α	В	В	С	Α	С	В	С	D	С	Α	В
Que.	31	32	33	34											
Ans.	D	В	С	С											

An alloy of gold and silver contains 38.5% silver by mass and has a density of 14.6 g.mL⁻¹. What is the

SELECT THE CORRECT ALTERNATIVES (ONE OR MORE THEN ONE CORRECT ANSWERS)

molar concentration of silver in this alloy:

1.

	(A) $52.1 \text{ mol.} L^{-1}$	(B) 45.6 mol.L^{-1}	(C) $3.57 \text{ mol.} L^{-1}$	(D) 2.64 mol.L^{-1}						
2.		"Suvarnabhasm", an ayurvedic drug, is found to contain 400 ppm of colloidal gold. Mass % of gold (atomic								
	mass of $Au = 197$) v		(5) 0 0 5 0 0 0 0	(T) 4 4040						
	(A) 0.040 %	(B) 7.88 %	(C) 0.0788 %	(D) $4 10^{-4} \%$						
3.	A solution containing 12.0% sodium hydroxide by mass has a density of 1.131 g/mL. What volume of this solution contains 5.00 mol of NaOH :									
	(A) 0.0240 L	(B) 1.67 L	(C) 1.47 L	(D) 1.00 L						
4.	An aqueous solution of concentrated hydrobromic acid contains 48% HBr by mass. If the density of the solution is $1.50~\rm g$ / mL, what is its concentration :									
	(A) 11.4 mol/L		(B) 8.9 mol/L							
	(C) 5.9 mol/L		(D) 18.5 mol/L							
5.	An antifreeze mixture consists of 40% ethylene glycol ($C_2H_6O_2$) by weight in aqueous solution. If the density of this solution is 1.05 g/mL, what is the molar concentration :									
	(A) 6.77 M	(B) 6.45 M	(C) 0.017 M	(D) 16.9 M						
6.	What is the molality m, of methanol in a solution prepared by dissolving 160 g of methanol, CH_3OH , in 200.0 g of water :									
	(A) 1.0 m	(B) 5.0 m	(C) 10.0 m	(D) 25.0 m						
7.	XeF_6 fluorinates I_2 to of IF_7 :	XeF_6 fluorinates I_2 to IF_7 and liberates Xenon (g). 210 mmol of XeF_6 can yield a maximum of mmol of IF_7 :								
	(A) 420	(B) 180	(C) 210	(D) 245						
8.	When 100 g of ethylene polymerises entirely to polyethene, the weight of polyethene formed as per the equation $nCH_2 = CH_2 \rightarrow (CH_2 - CH_2)n$ is :									
	(A) $(n/2)g$	(B) 100g	(C) (100/n)g	(D) 100n g						
9.		A 10 gram sample of natural gas containing CH_4 and C_2H_4 was burnt in excess of oxygen to give 29.0 grams of CO_2 and some water. How many grams of water are formed :								
	(A) 9.42 g	(B) 18.81 g	(C) 11.42 g	(D) 15.31 g						
10.	50 g of ZnS are stro	ngly heated in air to effec	ct partial oxidation and th	e resultant mass weighed 44 g.						
	What is the ratio of	ZnO to ZnS in the resulta	ant mixture :							
	(A) 13.5 : 30.5	(B) 27 : 12.58	(C) 27 : 15.31	(D) 30.52 :13.48						
11.	The % loss in weight	after heating a pure sam	nple of potassium chlorate	e (M. wt. 122.5) will be :						
	(A) 12.25		(B) 24.50							
	(C) 39.17		(D) 49.0							
12.	In a gaseous reaction	of the type aA + bB \rightarrow	cC + dD, which is wrong	g :						
	(A) a litre of A comb	ines with b litre of B to g	give C & D							
	(B) a mole of A com	bines with b mole of B to	o give C & D							
	(C) a g of A combine	es with b g litre of B to g	give C & D							
	(D) a molecules of A	combines with b molecul	le of B to give C & D							

1 2 3	4 5 6	7 8 9 10	11 12 13 14 15								
TEASERS	AN	SWER KEY	EXERCISE -2								
(C) Inote traction of	111202 - 0.2	(D) $m_{H_2O_2} - 13.86$,								
2 2	f H O = 0.2	V	2								
			$65~\mathrm{g/L}$. Mark the correct option(s								
			TE = /I Ml il i i i i i i i								
(C) 50 g of $25\% \left(\frac{\text{w}}{\text{W}}\right)$ HCOOH											
(B) 50 g of 10 M HCOOH ($d_{solution} = 1 \text{ g/mL}$)											
			(D) Holle of these								
	(B) 58	(C) 88	(D) none of these								
What is the molar mass of diacidic organic Lewis base, if 12 g of chloroplatinate salt on ignition produced											
(A) C_3H_8	(B) $C_{3}H_{6}$	(C) C_3H_4	(D) C_4H_{10}								
	A definite amount of gaseous hydrocarbon having (carbon atoms less than 5) was burnt with sufficient amount										
(A) basic	(B) neutral	(C) acidic	(D) can't be predicted.								
1.5 times that of pu	ure HCl then the resul	tant solution be ?									
_	(B) 0.273 m	(C) 7.23 m	(D) 2.73 m								
The density of 2.45 M aqueous methanol (CH_3OH) is 0.976 g/mL. What is the molality of the solution ($CH_3OH = 32$)?											
(A) 0 mol H atom	(B) 0.2 mol H a	tom (C) 0.3 mol H at	om (D) 0.4 mol H atom								
In the following final result is0.1 mol $CH_4 + 3.01$ 10^{23} molecules $CH_4 - 9.6$ g $CH_4 = x$ mol H atoms:											
(A) 10	(B) 15	(C) 20	(D) 25								
approximately is :		<i>3</i> ,	,								
			(D) 360.1								
of carbon in cortiso	one is 69.98 %. Its mo	lar mass is :									
	(A) 176.5 A spherical ball of rapproximately is: (A) 10 In the following final (A) 0 mol H atom The density of 2.45 (CH ₃ OH = 32)? (A) 27.3 m Equal volumes of 10 1.5 times that of provential provential (A) basic A definite amount of of O_2 . The volume and O_2 . The volume and O_2 . The volume and O_2 . The volume O_3 and O_4 (B) 52 Solutions containing (A) 46 g of O_4 (B) 50 g of 10 M for O_4 (C) 50 g of 25% (O_4 (C) 50 g of 25% (O_4 (C) 50 g of 25% (O_4 (C) 50 g of 5 M for O_4 (C) 6 M for O_4 (C) 6 M for O_4 (C) 6 M for	(A) 176.5 (B) 252.2 A spherical ball of radius 7 cm contains 56 approximately is: (A) 10 (B) 15 In the following final result is0.1 mol CF (A) 0 mol H atom (B) 0.2 mol H a The density of 2.45 M aqueous methanol (CH ₃ OH = 32)? (A) 27.3 m (B) 0.273 m Equal volumes of 10% (v/v) of HCl is mixed 1.5 times that of pure HCl then the result (A) basic (B) neutral A definite amount of gaseous hydrocarbon had of O_2 . The volume of all reactants was 600 and H_2O (g)] was found to be 700 mL under is? (A) C_3H_8 (B) C_3H_6 What is the molar mass of diacidic organic 5 g residue? (A) 52 (B) 58 Solutions containing 23 g HCOOH is/are (A) 46 g of 70% $\left(\frac{w}{v}\right)$ HCOOH ($d_{solution} = 1$ g/m A sample of H_2O_2 solution labelled as "28 representing concentration of same solution (A) $M_{H_2O_2} = 2.5$ (C) mole fraction of $H_2O_2 = 0.2$	A spherical ball of radius 7 cm contains 56% iron. If density is 1.4 g/approximately is: (A) 10 (B) 15 (C) 20 In the following final result is0.1 mol CH ₄ + 3.01 10^{23} molecules C(A) 0 mol H atom (B) 0.2 mol H atom (C) 0.3 mol H at The density of 2.45 M aqueous methanol (CH ₃ OH) is 0.976 g/mL. V (CH ₃ OH = 32)? (A) 27.3 m (B) 0.273 m (C) 7.23 m Equal volumes of 10% (v/v) of HCl is mixed with 10% (v/v) NaOH so 1.5 times that of pure HCl then the resultant solution be? (A) basic (B) neutral (C) acidic A definite amount of gaseous hydrocarbon having (carbon atoms less than of O_2 . The volume of all reactants was 600 mL, after the explosion t and H_2O (g)] was found to be 700 mL under the similar conditions. The is? (A) C_3H_8 (B) C_3H_6 (C) C_3H_4 What is the molar mass of diacidic organic Lewis base, if 12 g of chlor 5 g residue? (A) 52 (B) 58 (C) 88 Solutions containing 23 g HCOOH is/are: (A) 46 g of $70\% \left(\frac{w}{v}\right)$ HCOOH ($d_{solution} = 1.40 \text{ g/mL}$) (B) 50 g of 10 M HCOOH ($d_{solution} = 1.9/\text{mL}$) (C) 50 g of $25\% \left(\frac{w}{w}\right)$ HCOOH (D) 46 g of 5 M HCOOH ($d_{solution} = 1.9/\text{mL}$) A sample of H_2O_2 solution labelled as "28 volume" has density of 26 representing concentration of same solution in other units: (A) $M_{H_2O_2} = 2.5$ (B) $\frac{w}{v} = 17$ (C) mole fraction of $H_2O_2 = 0.2$ (D) $m_{H_2O_2} = 13.88$								

BRAIN	BRAIN TEASERS ANSWER KEY										I	EXERCIS	SE -2		
Que.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Ans.	Α	Α	С	В	Α	D	В	В	В	D	С	С	D	В	В
Que.	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
Ans.	С	D	С	Α	В	В	С	D	В	D	D	С	Α	D	Α
Que.	31	32	33	34											
Ans.	Α	В	A,B	A,C,D											

TRUE / FALSE

- 1. Two elements always combine together in a fixed ratio by weight.
- 2. There is no difference between one mole and one gram molecule.
- **3.** Equal volumes of different gases under similar conditions of temperature and pressure contain equal number of atoms.
- 4. Empirical formula represents the actual number of atoms present in a molecule of the substance.
- 5. A balanced equation contains equal number of atoms of each element on both sides of the equation.
- **6.** Mass of reactants is always equal to the mass of the products.

FILL IN THE BLANKS

- 1. Law of conservation of mass was put forward by
- ${\bf 2.}$ The formation ${\rm SO_2}$ and ${\rm SO_3}$ illustrates the law of
- 4. The mass of an atom of carbon is
- **5.** The reactant which reacts completely in a reaction is called
- 6. According to Dulong and Petit's law, Atomic wt. Specific heat = (approx)
- 7. The SI unit of density is

MATCH THE COLUMN

			$\overline{}$			
1.		Column-I	Column-II			
	(A) Law of conservation of mass		(p)	$\mathrm{CH_4}$ has carbon and hydrogen in $3:1$ mass ratio.		
	(B)	Law of multiple proportion	(q)	$10~\mathrm{mL}~\mathrm{N_2}$ combines with $30~\mathrm{mL}$ of $\mathrm{H_2}$ to form $20~\mathrm{mL}$ of $\mathrm{NH_3}$		
	(C)	Law of definite proportion	(r)	S and $\mathrm{O_2}$ combine to form $\mathrm{SO_2}$ and $\mathrm{SO_3}$		
	(D)	Law of reciprocal proportion	(s)	In $\mathrm{H_2S}$ and $\mathrm{SO_2}$ mass ratio of H and O w.r.t. sulphur		
				is $1:16$, hence in $\mathrm{H_2O}$, mass ratio of H and O is		
				1:8.		
	(E)	Gay Lussac's Law	(t)	$4.2~{\rm g~MgCO_3}$ gives $2.0~{\rm g}$ residue on heating.		

2.		Column-I	Column-II (mass of product)				
	(A)	$\begin{array}{ccc} 2H_2 + O_2 & \longrightarrow & 2H_2O \\ 1g & 1g & \end{array}$	(p)	1.028 g			
	(B)	$ 3H2 + N2 \longrightarrow 2NH3 $ 1g 1g	(q)	1.333 g			
	(C)	$ 3H2 + N2 \longrightarrow 2NH3 $ $ 1g 1g $ $ H2 + Cl2 \longrightarrow 2HCl $ $ 1g 1g $	(r)	1.125 g			
	(D)	$\begin{array}{ccc} 2H_2 + C \longrightarrow CH_4 \\ 1g & 1g \end{array}$	(s)	1.214 g			

ASSERTION & REASON

These questions contains, Statement I (assertion) and Statement II (reason).

- (A) Statement-I is true, Statement-II is true; Statement-II is correct explanation for Statement-I.
- (B) Statement-I is true, Statement-II is true; Statement-II is NOT a correct explanation for statement-I
- (C) Statement-I is true, Statement-II is false
- (D) Statement-I is false, Statement-II is true
- 1. Statement-I: 16 g each O_2 and O_3 contains $\frac{N_A}{2}$ and $\frac{N_A}{3}$ atoms respectively.

Because

Statement-II : 16 g O_2 and O_3 contains same no. of atoms.

2. Statement-I: 44 g of CO₂, 28 g of CO have same volume at STP.

Because

Statement-II: Both CO₂ and CO are formed by C and oxygen.

3. Statement-I: Law of conservation of mass hold good for nuclear reaction.

Because

Statement-II: Law states that mass can be neither created nor destroyed in a chemical reaction.

4. Statement-I: A reactant that is entirely consumed when a reaction goes to completion is known as limiting reactant.

Because

Statement-II: The amount of reactant limits the amount of product formed.

5. Statement-I: The balancing of chemical equations is based on law of conservation of mass.

Because

Statement-II: Total mass of reactants is equal to total mass of products.

6. Statement-I: Pure water obtained from different sources such as, river, well, spring, sea etc. always contains hydrogen and oxygen combined in the ratio 1:8 by mass.

Recause

Statement-II: A chemical compound always contains elements combined together in same proportion by mass, it was discovered by French chemist, Joseph Proust (1799).

7. Statement-I: The percentage weight of a compound A in a solution is given by

% of A =
$$\frac{\text{Mass A}}{\text{Total mass of solution}}$$
 100

Because

Statement-II: The mole fraction of a component A is given by,

Mole fraction of A =
$$\frac{\text{No. of moles of A}}{\text{Total no. of moles of all components}}$$

Statement-I: A one molal solution prepared at 20 C will retain the same molality at 100 C, provided there is no loss of solute or solvent on heating.

Because

Statement-II: Molality is independent of temperature.

9. Statement-I: The molality and molarity of dilute aqueous solutions differ very little.

Because

Statement-II: The density of water is 1.0 g cm⁻³ at room temperature.

10. Statement-I: The average mass of one Mg atom is 24.305 amu, which is not the actual mass of one Mg atom.

Because

Statement-II: Three isotopes, ²⁴Mg, ²⁵Mg and ²⁶Mg, of Mg are found in nature.

11.	Statement-I : A molecu	ule of butane, $\mathrm{C_4H_{10}}$ has a	mass of 58.12 amu.					
	Because							
	Statement-II : One mo	le of butane contains 6.02	$22 10^{23} \mathrm{molecules} $ and $ \mathrm{l}$	nas a mass of 58.12 g.				
12.	Statement-I : Both 12 g. of carbon and 27 g. of aluminium will have $6.02 ext{ } 10^{23}$ atoms.							
	Because							
	Statement-II : Gram at	omic mass of an element	contains Avogadro's num	ber of atoms.				
COMPR	EHENSION BASED C	UESTIONS						
Compre	hension # 1							
	Potash is any potassium mineral that is used for its potassium content. Most of the potash produced in the United States goes into fertilizer. The major sources of potash are potassium chloride (KCl) and potassium sulphate (K_2SO_4) . Potash production is often reported as the potassium oxide (K_2O) equivalent or the amount of K_2O that could be made from a given mineral. KCl costs Rs. 50 per kg.							
1.	What is the cost of K	per mole of the KCl samp	ole?					
		(B) Rs. 3.73 mol^{-1}						
2.		SO ₄ be sold in order to s						
	(A) Rs. 58.40 kg^{-1}	(B) Rs. 50.00 kg^{-1}	(C) Rs. 42.82 kg^{-1}	(D) Rs. 25.00 kg^{-1}				
3.	What mass (in kg) of K	O contains the same nur	mber of moles of K atom	s as 1.00 kg KCl?				
	(A) 0.158 kg	(B) 0.315 kg	(C) 1.262 kg	(D) 0.631 kg				
Compre	hension # 2							
	of various allergies, for including lead, arsenical found by analysis to co	treatment of muscular leg s and carbon tetrachloride ntain 0.2732 g of C, 0.03 and to contain one mole of	cramps, and as an antido . A 0.8274 g sample of a 382 g H, 0.1520 g Ca a	sed medicinally for treatment of the for a variety of poisons, anhydrous calcium lactate is and 0.3640 g O. Each mole tate can be crystallised from				
1.	Simplest formula of the	calcium lactate is :						
	(A) $CaO_6C_6H_{10}$	(B) $CaO_3C_3H_5$	(C) $CaO_2C_3H_3$	(D) $CaO_2C_3H_5$				
2.	Formula weight of calci	um lactate is :						
	(A) 129 g mol^{-1}	(B) 111 g mol^{-1}	(C) 218 g mol^{-1}	(D) 113 g mol^{-1}				
3.	How many grams of ca	lcium lactate pentahydrate	e would be recovered from	m 1 g of anhydrous salt :				
	(A) 1.41 g	(B) 1.00 g	(C) 1.27 g	(D) 1.51 g				
Compre	hension # 3							
	NaBr, used to produce	AgBr for use in photogra	phy can be self prepared	as follows :				
	$Fe + Br_2 \longrightarrow FeBr_2$	_	(i)					
	$FeBr_2 + Br_2 \longrightarrow Fe$		(ii)	(not balanced)				
		\rightarrow NaBr + CO ₂ + Fe ₃ O ₄		(not balanced)				
		consumed to produce 2.0		(iv)				
1.	Mass of iron required t	o produce $2.06 10^3 ext{ kg}$		_				
	(A) 420 g	(B) 420 kg	(C) $4.2 10^5 kg$	(D) $4.2 10^8 g$				
2.				produce 2.06 10 ³ kg NaBr.				
	(A) 10^5 kg	(B) 10^5 g	(C) 10^3 kg	(D) none				

3. If yield of (iii) reaction is 90% then mole of CO_2 formed when 2.06 10^3 kg NaBr is formed. (A) 20 (B) 10 (C) 40 (D) none Comprehension # 4 A monobasic acid of weight 15.5 g is heated with excess of oxygen & evolved gases when passed through KOH solution increased its weight by 22 g and when passed through anhydrous CaCl2, increased its weight by 13.5 g. When the same mass of this organic acid is reacted with excess of silver nitrate solution form 41.75 g silver salt of the acid which on ignition gave the residue of weight 27 g. 1. The molecular formula of the organic acid is. (B) $C_0H_EO_0$ $(C) C_2H_6O_2$ (D) C_2H_4O (A) C_2H_6 2. The molar masses of the acid & its silver salt respectively are: (A) 60, 168 (B) 167, 60 (C) 60, 167 (D) 168, 60 Comprehension # 5 342 g of 20% by mass of $Ba(OH)_2$ solution (sp. gr. 0.57) is reacted with 200 mL of 2 M HNO_3 according to given balanced reaction: $Ba(OH)_2 + 2HNO_3 \longrightarrow Ba(NO_3)_2 + 2H_2O$ 1. The nature of the final solution is : (C) basic (A) acidic (B) neutral (D) can't say 2. Find the molarity of the ion in resulting solution by which nature of the above solution is identified, is (A) 0.5 M (B) 0.8 M (C) 0.4 M(D) 1 M MISCELLANEOUS TYPE QUESTION EXERCISE -3 **ANSWER KEY** <u>True / False</u> **1**. F **2**. T **3**. F **4**. F **5**. T **6**. T Fill in the Blanks $10^{-23} \ \sigma$ **2.** Multiple proportions 1. Lavoisier **3.** Atomicity **4.** 1.99 7. 5. Limiting reagent 6. kg m⁻³ kg m⁻³ Match the Column 1. (A) \rightarrow t; (B) \rightarrow r; (C) \rightarrow p; (D) \rightarrow s; (E) \rightarrow q **2.** (A) \rightarrow r; (B) \rightarrow s; (C) \rightarrow p; (D) \rightarrow q Assertion - Reason Questions **2**. B **6**. A **1**. D **3**. D 4. Α **5**. A **7**. B 8. A **9**. A **10**. A **11**. A **12**. A Comprehension Based Questions Comprehension # 1: 1. (B) 2. (C) 3. (D) Comprehension # 2: (A) **2**. (C) 3. (A) Comprehension # 3: 1. (B) **2**. (C) **3**. (B) Comprehension # 4: **1**. (C) 2. (A) Comprehension # 5: **1**. (C) **2**. (A)

- 1. 1.375 g of cupric oxide was reduced by heating in a current of hydrogen and the weight of copper obtained was 1.098 g. In another experiment, 1.179 g of copper was dissolved in nitric acid and the resulting solution was evaporated to dryness. The residue of copper nitrate when strongly heated was converted into 1.4476 g of cupric oxide. Show that the results are in agreement with the law of constant proportion.
- 2. Elements X and Y from two different compounds. In the first 0.324 g of X is combined with 0.471 g of Y. In second, 0.117 g of X is combined with 0.509 g of Y. Show that these data illustrate the law of multiple proportions.
- 3. How many g of element are present in 35.125 g atom of Si. (Given at. wt. of Si = 28.)
- 4. Calculate the no. of molecules in a drop of water weighing 0.07 g.
- 5. Calculate no. of each atom present in 106.5 g of $NaClO_3$.
- 6. Find the no. of mole of phosphorus in 92.9 g of phosphorus assuming that molecular formula of phosphorus in P_4 . Also determine the no. of atoms and molecules of phosphorus in the sample.
- 7. Calculate the number of moles in 5.75 g of sodium. (Atomic mass of sodium = 23.)
- 8. How many grams of each of the following elements must be taken to get 1 mol of the element?
 - (a) Sodium
- (b) Chlorine
- (c) Copper
- 9. The density of liquid mercury is $13.6 / \text{cm}^3$. How many moles of mercury are there in 1 litre of the metal? (Atomic mass of Hg = 200)
- 10. 50 g of $CaCO_3$ is allowed to react with 70 g of H_3PO_4 . Calculate :
 - (i) amount of Ca_3 (PO₄)₂ formed
- (ii) amount of unreacted reagent
- 11. N_2H_4 , Hydrazine a rocket fuel can be produced according to the following reaction :

$$CINH_2 + 2NH_3 \longrightarrow N_2H_4 + NH_4CI$$

When 1000 g ClNH $_2$ is reacted with excess of NH $_3$, 473 g N $_2$ H $_4$ is produced. What is the % yield of the reaction.

12. Carbon disulphide ${}^{\prime}CS_{2}^{\prime}$, can be made from by product SO_{2} . The overall reaction is

$$5C + 2SO_2 \longrightarrow CS_2 + 4CO$$

How much CS_2 can be produced from 450 kg of waste SO_2 with excess of coke if the SO_2 conversion is 82%.

13. Calculate the percent of BaO in 29.0 g of a mixture of BaO and CaO which just reacts with 100.8 mL of 6.00 M HCl.

$$BaO + 2HCl \rightarrow BaCl_2 + H_2O$$

$$CaO + 2HCl \rightarrow CaCl_2 + H_2O$$

- 14. Calculate the amount of 95% pure Na₂CO₃ required to prepare 5 litre of 0.5 M solution.
- 15. Calculate the molality of a sulphuric acid solution of specific gravity 1.2 containing $27\%~\mathrm{H_2SO_4}$ by weight.
- 16. A gaseous alkane is exploded with oxygen. The moles of O_2 for complete combustion and CO_2 formed is in the ratio 7:4. Deduce molecular formula of alkane.
- When 2.86 g of a mixture of 1-butene, C_4H_8 and butane C_4H_{10} was burned in excess of oxygen, 8.80 g of CO_2 and 4.14 g of H_2O were obtained. What is percentage by mass of butane in the mixture.

- 18. If v mL of a gaseous hydrocarbon, after explosion with excess of oxygen, showed a contraction of 2.5 v mL and a further contraction of 2v mL with caustic potash, Find the formula of hydrocarbon.
- 19. The average mass of one gold atom in a sample of naturally occurring gold is $3.2707 10^{-22}$ g. Use this to calculate the molar mass of gold.
- 20. A plant virus is found to consist of uniform symmetrical particles of 150 Å in diameter and 5000 Å long. The specific volume of the virus is 0.75 cm³/g. If the virus is considered to be a single particle, find its molecular weight.
- 21. Density of a gas relative to air is 1.17. Find the mol. mass of the gas $[M_{air} = 29 \text{ g/mol}]$
- 22. One type of artificial diamond (commonly called YAG for yttrium aluminium garnet) can be represented by the formula $Y_3Al_5O_{12}$.
 - (a) Calculate the weight percentage composition of this compound.
 - (b) What is the weight of yttrium present in a 200 carat YAG if 1 carat 200 mg ? (Y = 89, Al = 27)
- 23. A chemical commonly called "dioxin" has been very much in the news in the past few years. (It is the by product of herbicide manufacture and is thought to be quite toxic.) Its formula is $C_{12}H_4Cl_4O_2$. If you have a sample of dirt (28.3 g) that contains 1.0 10^{-4} % dioxin, how many moles of dioxin are in the dirt sample?
- 24. A chemist wants to prepare diborane by the reaction

6 LiH + 8 BF₃
$$\longrightarrow$$
 6 Li BF₄ + B₂H₆

If the starts with 2.0 moles each of LiH & BF_3 . How many moles B_2H_6 can be prepared.

- 25. One gram of an alloy of aluminium and magnesium when heated with excess of dil. HCl forms magnesium chloride, aluminium chloride and hydrogen. The evolved hydrogen collected over mercury at 0 C has a volume of 1.2 litres at 0.92 atm pressure. Calculate the composition of the alloy.
- A 10 g sample of a mixture of calcium chloride and sodium chloride is treated with Na_2CO_3 to precipitate calcium as calcium carbonate. This $CaCO_3$ is heated to convert all the calcium to CaO and the final mass of CaO is 1.62 g. Calculate % by mass of NaCl in the original mixture.
- 27. By the reaction of carbon and oxygen, a mixture of CO and CO_2 is obtained. What is the composition of the mixture by mass obtained when 20 grams of O_2 reacts with 12 grams of carbon?
- 28. The action of bacteria on meat and fish produces a poisonous compound called cadaverine. As its name and origin imply, it stinks! It is 58.77% C, 13.81 % H, and 27.42 % N. Its molar mass is 102 g/mol. Determine the molecular formula of cadaverine.
- 29. Given the following empirical formulae and molecular weight, compute the true molecular formulae:

F	Empirical formula	Molecular weight			
(a)	CH_2	84			
(b)	CH ₂ O	150			
(c)	НО	34			
(d)	HgCl	472			
(e)	HF	80			

30. What is the percentage of nitrogen in an organic compound 0.14 g of which gave by Dumas method 82.1 c.c. of nitrogen collected over water at 27 C and at a barometric pressure of 774.5 mm? (aqueous tension of water at 27 C is 14.5 mm)

31. Calculate the molarity of the following solutions :

CONCEPTUAL SUBJECTIVE EXERCISE

- (a) 4g of caustic soda is dissolved in 200 mL of the solution.
- (b) 5.3 g of anhydrous sodium carbonate is dissolved in 100 mL of solution.
- (c) 0.365~g of pure HCl gas is dissolved in 50~mL of solution.
- **32.** A mixture of ethanol and water contains 54 % water by mass. Calculate the mole fraction of alcohol in this solution.
- 33. 10 mL of a mixture of CO, CH_4 , and N_2 exploded with excess of oxygen gave a contraction of 6.5 mL. There was a further contraction of 7 mL, when the residual gas treated with KOH. What is the composition of the original mixture?
- 34. When 100 mL of a O_2 O_3 mixture was passed through turpentine, there was reduction of volume by 20 mL. If 100 mL of such a mixture is heated, what will be the increase in volume?

3.	983.5 g of Si			4.	2.34	$10^{21} {\rm r}$	molecules of	H ₂ O
5.	6.023 10 ²³ atom Na,	6.023	10^{23} atom Cl, 18	.06 1	0^{23} atom	n O		
6.	$0.75 \text{ mol}, 4.52 10^{23} \text{ mol}$	molecu	les P_4 , 18.04 10^{23}	atom	P			
7.	0.25 mol			8.	(a) 23 g	3	(b) 35.5 g	(c) 63.5 g
9.	68			10.	(i) 51.6	66 g	(ii) 37.31 g	
11.	76.12%	12.	$219.09~\rm kg~CS_{_2}$	13.	65.659	%	14.	278.94 g
15.	3.8	16.	C_2H_6	17.	60.8 %	6	18.	C_2H_6
19.	196.2	20.	$7.09 10^7$	21.	33.9			
22.	(a) $Y = 44.95\%$, $Al =$	22.73	%, O = 32.32%	(b) 17	.98 g		23.	8.8 10 ⁻⁸ mol
24.	0.250	25.	Al = 0.546 g, Mg	= 0.45	54g		26.	67.9%
27.	CO : CO ₂ =21 : 11	28.	$C_5H_{14}N_2$	29.	(a) C_6H	I ₁₂ (b)	$C_5 H_{10} O_5$ (c) H	H_2O_2 (d) Hg_2Cl_2 (e) H_4F_4
30.	66.7 %	31.	(a) 0.5M, (b) 0.5 M	, (c) 0.	2 M		32.	0.25
33.	$CO = 5mL$, $CH_4 = 2 m$	nL, N ₂	= 3 mL	34.	10 mL			

ANSWER KEY

EXERCISE-4(A)

- 1. A crystalline hydrated salt on being rendered anhydrous, loses 45.6% of its weight. The percentage composition of anhydrous salt is : Al = 10.5%, K = 15.1%, S = 24.8% and I = 49.6%. Find the empirical formula of the anhydrous and crystalline salt :
- 2. How much quantity of zinc will have to be reacted with excess of dilute HCl solution to produce sufficient hydrogen gas for completely reacting with the oxygen obtained by decomposing 5.104 g of potassium chlorate?
- 3. A 1.85 g sample of mixture of $CuCl_2$ and $CuBr_2$ was dissolved in water and mixed thoroughly with 1.8 g portion of AgCl. After reaction, the solid which now contain AgCl and AgBr was filtered, dried and weighed to be 2.052 g. What was the % by weight of $CuBr_2$ in the mixture?
- 4. 1.0 g of a sample containing NaCl, KCl and some inert impurity is dissolved in excess of water and treated with excess of $AgNO_3$ solution. A 2.0 g precipitate to AgCl separate out. also sample is 23% by mass in sodium. Determine mass percentage of KCl in the sample:
- A compound containing Ca, C, N and S was subjected to quantitative analysis and formula mass determination. A 0.25 g of this compound was mixed with $\mathrm{Na_2CO_3}$ to convert all Ca into 0.16 g $\mathrm{CaCO_3}$. A 0.115 g sample of compound was carried through a series of reactions until all its S was changed into $\mathrm{SO_4^{-2}}$ and precipitated as 0.344 g of $\mathrm{BaSO_4}$. A 0.712 g sample was processed to liberate all of its N as $\mathrm{NH_3}$ and 0.155 g $\mathrm{NH_3}$ was obtained. The formula mass was found to be 156. Determine the empirical and molecular formula of the compound :
- 7. A 0.2 g sample, which is mixture of NaCl, NaBr and NaI was dissolved in water and excess of $AgNO_3$ was added. The precipitate containing AgCl, AgBr and AgI was filtered, dried and weighed to be 0.412 g. The solid was placed in water and treated with excess of NaBr, which converted all AgCl into AgBr. The precipitate was then weighed to be 0.4881 g. It was then placed into water and treated with excess of NaI, which converted all AgBr into AgI. The precipitate was then weighed to be 0.5868 g. What was the percentage of NaCl, NaBr and NaI in the original mixture :
- 8. 2.5 g of a sample containing Na_2CO_3 ; $NaHCO_3$ and some non-volatile impurity on gentle heating loses 12% of its weight. Residue is dissolved in 100 mL water and its 10 mL portion required 15 mL 0.1 M aqueous solution of $BaCl_2$ for complete precipitation of carbonates. Determine mass percentage of Na_2CO_3 in the original sample ?
- $\bf 9$. Based on the following information, determine value x and y:

$$(CH_3)_x AlCl_y \xrightarrow{} xCH_4(g) + yCl^- + Al^{3+} \xrightarrow{} AgNO_3 \xrightarrow{} AgCl(s)$$

$$0.643 g$$

$$0.996 g$$

- A 5.0 g sample of felspar containing Na_2O , K_2O and some inert impurity is dissolved in dilute HCl solution and NaCl and KCl formed are separated by fractional crystallization. During crystallization some less soluble impurities also comes out. Mass of NaCl, KCl and impurity accompanying these salts was found to be 6.47 g. Solid crystal was then re-dissolved and required 300 mL of 0.3 M AgNO $_3$ for complete precipitation of chlorides. The precipitate this, obtained was found to contain 4.23 % insoluble impurity. Determine mass percentage of Na_2O and K_2O in the original sample:
- 11. $Pb(NO_3)_2$ and KI reacts in aqueous solution to form an yellow precipitate of PbI_2 . In one series of experiments, the masses of two reactants varied, but the total mass of the two was held constant at 5.0 g. What maximum mass of PbI_2 can be produced in the above experiment:
- Uranium is isolated from its ore by dissolving it as UO_2 (NO_3)₂ and separating it as solid UO_2 (C_2O_4). xH_2O . A 1.0 g sample of ore on treatment with nitric acid yielded 1.48 g UO_2 (NO_3)₂ which on further treatment with 0.4 g $Na_2C_2O_4$ yielded 1.23 g UO_2 (C_2O_4). xH_2O . Determine weight percentage of uranium in the original sample and x:

- 13. A mother cell disintegrate into sixty identical cells and each daughter cell further disintegrate into 24 smaller cells. The smallest cells are uniform cylindrical in shape with diameter of 120 Å and each cell is 6000 Å long. Determine molar mass of the mother cell if density of the smallest cell is 1.12 g/cm³:
- 14. A sample is a mixture of Mohr's salts and $(NH_4)_2SO_4$. A 0.5 g sample on treatment with excess of $BaCl_2$ solution gave 0.75 g $BaSO_4$. Determine percentage composition of the salt mixture . What weight of Fe_2O_3 would be obtained if 0.2 g of the sample were ignited in air ?
- 15. A chloride mixture is prepared by grinding together pure $BaCl_2.2H_2O$, KCl and NaCl. What is the smallest and largest volume of $0.15~M~AgNO_3$ solution that may be used for complete precipitation of chloride from a 0.3~g sample of the mixture which may contain any one or all of the constituents?
- One mole of a mixture of N_2 , NO_2 and N_2O_4 has a mean molar mass of 55.4. On heating to a temperature at which N_2O_4 may be dissociated : $N_2O_4 \longrightarrow 2NO_2$, the mean molar mass tends to the lower value of 39.6. What is the mole ratio of $N_2 : NO_2 : N_2O_4$ in the original mixture?
- 17. 10 mL of gaseous organic compound contain C, H and O only was mixed with 100 mL of O_2 and exploded under identical conditions and then cooled. The volume left after cooling was 90 mL. On treatment with KOH a contraction of 20 mL was observed, if vapour density of compound is 23 derive molecular formula of the compound.
- Fluorocarbon polymers can be made by fluorinating polyethylene according to the reaction $(CH_2)_n + 4nCoF_3 \longrightarrow (CF_2)_n + 2nHF + 4nCoF_2$, where n is a large integer. The CoF_3 can be regenerated by the reaction $2 CoF_2 + F_2 \longrightarrow 2CoF_3$. If the HF formed in the first reaction cannot be reused, how many kg of fluorine are consumed per kg of fluorocarbon produced, $(CF_2)_n$? If HF can be recovered and electrolyzed to hydrogen and flurine, and if this fluorine is used for regenerating CoF_3 , what is the net consumption of fluorine per kg of fluorocarbon?
- 19. $A_2 + 2B_2 \longrightarrow A_2B_4$ $\frac{3}{2}A_2 + 2B_2 \longrightarrow A_3B_4$

Two substance $A_2 \& B_2$ react in the above manner when A_2 is limited it gives A_2B_4 in excess gives A_3B_4 . A_2B_4 can be converted to A_3B_4 when reacted with A_2 . Using this information calculate the composition of the final mixture when the mentioned amount of A & B are taken :c

- (a) 4 moles A_2 & 4 moles B_2
- (b) $\frac{1}{2}$ moles $A_2 \& 2$ moles B_2
- (c) 1.25 moles A_2 & 2 moles B_2
- 20. In a water treatment plant, Cl_2 used for the treatment of water is produced from the following reaction $2KMnO_4 + 16HCl \longrightarrow 2KCl + 2MnCl_2 + 8H_2O + 5Cl_2$. If during each feed 1 L KMnO₄ having 79% (w/v) KMnO₄ & 9 L HCl with d = 1.825 g/mL & 10% (w/w) HCl are entered & if that percent yield is 80% then calculate :
 - (a) amount of Cl₂ produced.
 - (b) amount of water that can be treated by Cl_2 if 1 litre consumes 28.4 g of Cl_2 for treatment.
 - (c) calculate efficiency η of the process if $\eta = \frac{\text{vol. of water treated}}{\text{vol. of total feed}}$
- 21. A sea water sample has a density of $1.03~\text{g/cm}^3$ and 2.8% NaCl by mass. A saturated solution of NaCl in water is 5.45~M NaCl. How much water would have to be evaporated from $1.00~10^6$ L of the sea water before NaCl would precipitate ?
- 22. A sample of oleum is such that ratio of "free SO_3 " by "combined SO_3 " is equal to unity. Calculate its labelling in terms of percentage oleum.

- 23. One litre of milk weighs 1.035 kg. The butter fat is 4% (v/v) of milk has density of 875 kg/m^3 . Find the density of fat free skimed milk.
- 24. A sample of fuming sulphuric acid containing H_2SO_4 , SO_3 and SO_2 weighing 1.00 g is found to require 23.47 mL of 1.00 M alkali (NaOH) for neutralisation. A separate sample shows the presence of 1.50% SO_2 . Find the percentage of "free" SO_3 , H_2SO_4 and "combined" SO_3 in the sample.
- 25. In one process for waterproofing, a fabric is exposed to $(CH_3)_2SiCl_2$ vapour. The vapour reacts with hydroxyl groups on the surface of the fabric or with traces of water to form the waterproofing film $[(CH_3)_2SiO]_n$, by the reaction ;

$$n(CH_3)_2SiCl_2 + 2nOH \longrightarrow 2nCl^- + nH_2O + [(CH_3)_2SiO]_n$$

where n stands for a large integer. The waterproofing film is deposited on the fabric layer upon layer. Each layer is 6.0 Å thick [the thickness of the $(CH_3)_2SiO$ group]. How much $(CH_3)_2SiCl_2$ in needed to waterproof one side of a piece of fabric, 1.00 m by 3.00 m, with a film 300 layers thick? The density of the film is 1.0 g/cm³.

- 26. 20 mL of a mixture of methane and a gaseous compound of Acetylene series were mixed with 100 mL of oxygen and exploded. The volume of the products after cooling to original room temperature and pressure, was 80 mL and on treatment with potash solution a further contracting of 40 mL was observed. Calculate (a) the molecular formula of the hydrocarbon, (b) the percentage composition of the mixture.
- 27. In a solution the concentration of $CaCl_2$ is 5 M & that of $MgCl_2$ is 5 m. The specific gravity of solution is 1.05, calculate the concentration of Cl^- in the solution in terms of Molarity.

BR	AIN STORMING SUBJECTIVE EXERCISE	ANS	SWER KEY		EXERCISE-4(B)
1.	$KAlS_2O_8 \;,\; KAlS_2O_8 \;.\; 12\; H_2O$	2.	8.124 g Zn	3.	34.18
4.	29.28	5.	74.4	6.	$\mathrm{CaC_2N_2S_2},\ \mathrm{CaC_2N_2S_2}$
7.	50, 20.23, 29.77	8.	42.4 % Na ₂ CO ₃	9.	2, 1
10.	31.16, 37.34	11.	3.464 g	12.	89.4, 3
13.	$6.6 10^{10} g$	14.	18.77 mg	15.	16.38 mL, 34.18 L
16.	0.5:0.1:0.4	17.	C_2H_6O	18.	1.52 kg, 0.76 kg
19.	(a) $A_3B_4 = 2 \& A_2 = 1$; (b) $A_2B_4 = \frac{1}{2} \& B_4$	$B_2 = 1$	(c) $A_2B_4 = 0.5 \& A_3B_4 = 0.5$		
20.	(a) 10 mol, (b) L, (c) 2.5	21.	$9.095 10^5 L$	22.	110.11 %
23.	1.041 g/mL				
24.	$H_2SO_4 = 35.38\%$, Free $SO_3 = 63.1\%$, cor	nbined	SO ₃ = 28.89%	25.	0.9413 gram
26.	(b) 50	27.	$[Cl^-] = 13.36 \text{ M}$		

(1) 9.3 g

The weight of $2.01 10^{23}$ molecules of CO is

(2) 7.2 g

EXERCISE - 05 [A] JEE-[MAIN] : PREVIOUS YEAR QUESTIONS

(4) 3 g

(3) 1.2 g

[AIEEE-2002]

solution is - AIEEE-2004] c mass unit, AIEEE-2005]										
AIEEE-2004] c mass unit,										
AIEEE-2004] c mass unit,										
c mass unit,										
ms?										
AIEEE-2006]										
AIEEE-2007]										
$2Al_{(s)} + 6HCl_{(aq)} \rightarrow 2Al^{3+}_{(aq)} + 6Cl_{(aq)} + 3H_2(g)$. (1) 6L $HCl_{(aq)}$ is consumed for every 3L $H_2(g)$ produced										
cts										
(2) 33.6 L $H_{2(g)}$ is produced regardless of temperature and pressure for every mole Al that reacts (3) 67.2 L $H_{2(g)}$ at STP is produced for every mole Al that reacts										
(4) 11.2 L $H_{2(g)}$ at STP is produced for every mole $HCl_{(aq)}$ consumed										
Amount of oxalic acid present in a solution can be determined by its titration with KMnO_4 solution in the										
presence of H_2SO_4 . The titration gives unsatisfactory result when carried out in the presence of HCl, because HCl [AIEEE-2008]										
AIEEE-2008]										
(4) oxidises oxalic acid to carbon dioxide and water $11.10^{-4} \cdot 1.3 \cdot 1.4 \cdot 1.4 \cdot 1.3 \cdot 1.4 $										
If 10^{-4} dm ³ of water is introduced into a 1.0 dm ³ flask at 300 K, how many moles of water are in the vapour phase when equilibrium is established?										
[AIEEE-2010]										
(1) $1.27 10^{-3}$ mol (2) $5.56 10^{-3}$ mol (3) $1.53 10^{-2}$ mol (4) $4.46 10^{-2}$ mol A 5.2 molal aqueous solution of methyl alcohol, CH ₃ OH, is supplied. What is the mole fraction of methyl										
=										
AIEEE-2011]										
on is: (Given AIEEE-2011]										
(1) 0.49 g (2) 0.45 g (3) 22.05 g (4) 2.2 g										
of water is										
AIEEE-2012]										
CISE-5 [A]										
10										
3										

JEE-[ADVANCED] : PREVIOUS YEAR QUESTIONS EXERCISE - 05 [B]

1. How many moles of e- weight one Kg: [JEE '2002 (Scr), 1]

- (A) 6.023

- (B) $\frac{1}{9.108} \times 10^{31}$ (C) $\frac{6.023}{9.108} \times 10^{54}$ (D) $\frac{1}{9.108 \times 6.023} \times 10^{8}$
- 2. Calculate the molarity of pure water using its density to be $1000\ kg\ m^{-3}$:

[JEE' 2003]

- 3. One gm of charcoal adsorbs 100 mL 0.5 M CH, COOH to form a monolayer, and there by the molarity of CH₃COOH reduces to 0.49. Calculate the surface area of the charcoal adsorbed by each molecule of acetic acid. Surface area of charcoal = $3.01 ext{ } 10^2 \text{m}^2/\text{g}$: [JEE' 2003]
- 4. Which has maximum number of atoms :

[JEE 2003]

- (A) 24 g C(12)
- (B) 56 g Fe(56)
- (C) 27 g Al (27)
- (D) 108 g Ag(108)
- Calculate the amount of Calcium oxide required when it reacts with 852 g of P4O10. 5. [JEE 2005] $6CaO + P_4O_{10} \longrightarrow 2 Ca_3 (PO_4)_2$
- 20% surface sites have adsorbed N_2 . On heating N_2 gas evolved from sites and were collected at 0.001 6. atm and 298 K in a container of volume is $2.46~\rm cm^3$. Density of surface sites is $6.023~10^{14}/\rm cm^2$ and surface area is 1000 cm^2 , find out the no. of surface sites occupied per molecule of N_o :[JEE 2005]
- Given that the abundances of isotoes ⁵⁴Fe, ⁵⁶Fe, ⁵⁷Fe are 5%, 90% and 5% respectively, the atomic mass 7. of Fe is: JEE 2009]
 - (A) 55.85 u
- (B) 55.95 u
- (C) 55.75 u
- (D) 56.05 u

PREVIOUS YEARS QUESTIONS				ANSWER KEY				EXERCISE -5 [B]				
1.	D	2.	55.5 mol L ⁻¹	3.	5	10 ⁻¹⁹ m ²		4.	Α	5.	1008 g	

- 6. 2
- 7. В