计算机组成原理与系统结构

第2章 计算机硬件基础

- 2.1 半导体器件的开关特性
- 2.2 基本逻辑运算和基本门电路
- 2.3 组合逻辑电路实例
- 2.4 时序逻辑电路
- 2.5 计算机芯片的制造过程
- 本章小结

2.3 组合逻辑电路实例

组合逻辑电路设计方法

二进制加法器

算术逻辑运算单元ALU

译码器

数据选择器

一、组合逻辑电路设计方法

- 1. 组合逻辑电路的特点:
 - 当输入信号变化时,输出信号也跟着变化。
 - 在计算机CPU设计中,组合电路通常被用来产生控制信号,它的输入可能是指令的操作码和状态信号,而其输出则是寄存器、存储器等等的写入控制信号和数据选择信号。

一、组合逻辑电路设计方法

2. 组合逻辑电路的设计步骤:

- 分析该逻辑电路的逻辑要求;
- 根据逻辑要求确定输入变量和输出变量;
- 将输入输出关系表示成真值表;
- 根据真值表写出输出函数的逻辑表达式,并化简;
- 画出逻辑电路。

二、二进制加法器

❖加法器是计算机基本运算 部件之一。

❖一位二进制全加器:

- 输入变量: 3个,即加数X_n、 被加数Y_n和低位来的进位C_n;
- 输出变量: 2个,即本位的和 S_n 、向高位的进位 C_{n+1} 。

一位全加器真值表

X _n	Y _n	C _n	F _n C _{n+1}
0	0	0	0 0
0	0	1	1 0
0	1	0	1 0
0	1	1	0 1
1	0	0	1 0
1	0	1	0 1
1	1	0	0 1
1	1	1	1 1

二、二进制加法器

❖由真值表得全加器输出F_n和C_{n+1}的表达式为:

$$\begin{split} F_n &= X_n \overline{Y}_n \overline{C}_n + \overline{X}_n Y_n \overline{C}_n + \overline{X}_n \overline{Y}_n C_n + X_n Y_n C_n \\ C_{n+1} &= X_n Y_n \overline{C}_n + X_n \overline{Y}_n C_n + \overline{X}_n Y_n C_n + X_n Y_n C_n \\ &= X_n Y_n + X_n C_n + Y_n C_n \end{split}$$

❖化简可得:

$$F_n = X_n \oplus Y_n \oplus C_n$$

$$C_{n+1} = X_n Y_n + (X_n + Y_n)C_n$$

$$= X_n Y_n + (X_n \oplus Y_n)C_n$$

一位全加器逻辑电路

四位二进制加法器

由4个全加器串连构成行波进位加法器

- 特点: 位间进位是串行传送(称为行波进位),即本位 全加和Fi必须等低位进位Ci来到后才能得到。
- 缺点:加法时间与位数有关,速度较慢。

- ❖在行波进位加法器基础上进行改造,以便并行产生进位,构成并行进位加法器。
- ❖方法: 断开进位链

并行进位电路

引入两个辅助函数G_i和P_i:

$$G_i = X_i Y_i$$
 (进位产生)

$$P_i = X_i + Y_i$$
 (进位传递)

则由:
$$C_{i+1} = X_iY_i + (X_i + Y_i)C_i$$

那么对于4位行波进位加法器的进位依次迭代,有:

$$C_1 = G_0 + P_0 C_0$$

$$C_2 = G_1 + P_1 C_1 = G_1 + P_1 (G_0 + P_0 C_0) = G_1 + P_1 G_0 + P_1 P_0 C_0$$

$$C_3 = G_2 + P_2C_2 = G_2 + P_2G_1 + P_2P_1G_0 + P_2P_1P_0 C_0$$

$$C_4 = G_3 + P_3C_3 = G_3 + P_3G_2 + P_3P_2G_1 + P_3P_2P_1G_0 + P_3P_2P_1P_0 C_0$$

结论: C_{i+1} 的产生不再依赖于 C_i ,而是依赖于 G_i 、 P_i 及 C_0 ,即: 进位C是参加运算的数据X、Y及 C_0 的函数。

- ■特点:采用"并行进位法"或"超前进位产生电路" 来同时形成各位的进位。
- ■优点:运算速度大大加快。
- ❖上述4位并行进位加法器的逻辑框图:

三、算术逻辑运算单元ALU

- ❖ ALU(Arithmetic & Logic Unit): 算术逻辑运算单元,计算机中可以进行逻辑运算和算术运算的部件。
 - 全加器:只能对输入数据进行加法运算。
 - ALU的实现: 在并行进位加法器的基础上,再加上一些逻辑电路和功能控制信号线,可形成多功能算术逻辑运算部件ALU。

三、算术逻辑运算单元ALU

- ❖74LS181芯片: 4位多功能ALU, 内部集成了 并行进位电路。
 - 5条功能选择线: S₃S₂S₁S₀和M
 - 16种算术运算: M=0时,由 $S_3S_2S_1S_0$ 来选择, $\overline{C_n}=0$ 有进位, $\overline{C_n}=1$ 无进位。
 - 16种逻辑运算: M=1时,由S₃S₂S₁S₀来选择

三、算术逻辑运算单元ALU

❖74LS181 ALU的构成

■ 将输入数据A和B经过函数 发生器形成它们的不同组 合(由功能选择线 S₃S₂S₁S₀ 决定), 再送入 并行进位加法器进行加法 运算,从而使得ALU能够

• $X = f_{S1S0}$ (A, B)

实现各种的运算功能。

• $Y = f_{S3S2}$ (A, B)

S₁S₀控制X的产生,S₃S₂控制Y的产生

S ₃ S ₂	Υ	S ₁ S ₀	Х
0 0	0000	0 0	Α
0 1	AB	0 1	A+B
1 0	AB	1 0	A+B
1 1	Α	1 1	1111

- ❖ 功能: Fn=Xn ⊕ Yn ⊕ (M·Cn)
- ❖ 算术运算(M=0)即为: F=X加Y加Cn
- *逻辑运算(M=1):由Fn=Xn⊕Yn⊕1=Xn⊙Yn推算。

,							
	选择		正逻辑				
	S ₃ S ₂ S ₁ S ₀	M=H 逻辑 运算	M=L算术运算 				
		丛 异	Cn=H 无进位	Cn=L 有进位			
	LLLL	F=A	F=A	F=A加1			
	LLLH	F= A+B	F=A+B	F=(A+B)加1			
	LLHL	F=A B	F=A+B	F=(A+B)加1			
	LLHH	F=0	F=减1(-1)	F=0			
	LHLL	F=AB	F=A加AB	F=A加AB加1			
	LHLH	F=B	F= (A+B)加AB	F=(A+B)加AB加1			
	LHHL	F=A⊕B	F=A减B减1	F=A减B			
	LHHH	F=AB	F=AB 减1	F=AB			
	HLLL	F=A+B	F=A加AB	F=A加AB加1			
	HLLH	F= A⊕ B	F=A加B	F=A加B加1			
	HLHL	F=B	F=(A+B)加AB	F=(A+B)加AB加1			
	HLHH	F=AB	F=AB減1	F=AB			
	HHLL	F=1	F=A加A	F=A加A加1			
	HHLH	F=A+B	F=(A+B)加A	F=(A+B) 加A加1			
	HHHL	F=A+B	F=(A+B)加A	F=(A+B) 加A加1			
	нннн	F=A	F=A減1	F=A			

功能验证举例

以
$$S_3S_2S_1S_0 = 0100, M = 1$$
为例:
则 $X = A\overline{B}, Y = A$

$$F = X \oplus Y \oplus (\overline{M} \bullet \overline{Cn}), 因为逻辑运算 M = 1$$
所以 $F = X \oplus Y \oplus 1 = \overline{X} \oplus \overline{Y} = X Y + \overline{X} \overline{Y}$

$$\therefore F = \overline{AB} \oplus \overline{A} = A\overline{B} \bullet A + \overline{AB} \bullet \overline{A}$$

$$= A\overline{B} + (\overline{A} + B) \bullet \overline{A}$$

$$= A\overline{B} + \overline{A} \quad (\overline{W} \oplus \overline{A})$$

$$= \overline{A} + \overline{B} \quad (\overline{A} \oplus \overline{W} \oplus \overline{A})$$

$$= \overline{AB} \quad (\overline{A} \oplus \overline{W} \oplus \overline{A})$$

由74LS181构成16位ALU

❖用4片74LS181构成16位ALU

■ 74LS181片内: 并行进位

■ 片间:串行进位。

由74LS181构成片间并行进位的16位ALU

- ❖用4片74LS181和1片74LS182 构成
 - ❖ 74LS181片内:并行进位;片间:并行进位。

四、译码器

1. 译码器功能:

■把輸入编码译成相应的控制电位,作为芯片的片选信号或其他操作控制信号。

2. 特点:

- 有n个输入变量, 2n条输出变量 (n- 2n);
- 输入信号的2ⁿ个编码对应于2ⁿ条输出线输出: 当输入为某一编码时,对应仅有一根输出为"0"(或为"1"),其余输出均为"1"(或为"0")。

3. 常用的译码器芯片:

- <u>74LS139</u>: 2-4译码器 (n=2)
- <u>74LS138</u>: 3-8译码器 (n=3)

74LS139

❖内部集成了两个2-4 译码器:

❖功能表:

■ "使能"控制端E: 用来控制译码器是否工作,当E#端为"1"时,禁止译码器工作,此时译码器的所有输出线均为无效即"1"。

	输入		输出				
E	В	A	$\overline{Y_0}$	<u>Y</u> ₁	Y ₂	Y ₃	
н	X	X_	Ξ/	Н	н	н	
L	L	L		7	Н	н	
L	L	Н	H	L	7	н	
L	Н	L	Н	Ŧ	L	Н	
L	Н	H	H	Н	<u>/</u> ±		

X: 指可以取值1或者0

74LS139

❖按照真值表,四个输出的逻辑代数式为:

$$\overline{Y_0} = \overline{E}\overline{B}\overline{A}$$

$$\overline{Y_1} = \overline{E}\overline{B}A$$

$$\overline{Y_2} = \overline{E}B\overline{A}$$

$$\overline{Y_3} = \overline{E}BA$$

❖2一4译码器逻辑电路:

74LS138

❖3输入8输 出的译码 器: 3−8 译码器;

❖功能表:

当 $G_1\overline{G_{2A}}\overline{G_{2B}}=HLL$ 时,译码器才工作。

输 入		输 出							
$G_1G_{2A}G_{2B}$	СВА	Y ₇	$\overline{Y_6}$	$\overline{Y_5}$	$\overline{Y_4}$	$\overline{Y_3}$	\overline{Y}_2	Y ₁	Y ₀
100	000	1	1	1	1	1	1	1	9
100	0 0 1	1	1	1	1	1	1/	0/	1
100	010	1	1	1	1	1/	0	1	1
100	011	1	1	1	1/	0	1	1	1
100	100	1	1	1/	0	1	1	1	1
100	101	1	1/	0	1	1	1	1	1
100	110	1/	0	1	1	1	1	1	1
100	111	0	1	1	1	1	1	1	1
0 X X	XXX	1	1	1	1	1	1	1	1
X 1 X	XXX	1	1	1	1	1	1	1	1
X X 1	XXX	1	1	1	1	1	1	1	1

五、数据选择器

- 1. 数据选择器也称多路选择开关。
- 2. 数据选择器是从2ⁿ个输入数据中选择一个送到输出端,选择哪一个输入数据由n位地址输入来选择决定。 Y = (\overline{\overli

75.2 / 四型 1251年積以16.75。						
Ŧ	S ₁ S,	D, D, D, D,	Y			
1	××	xxxx	0			
O	1 1	D, ×××	D _a			
0	1 0	× L × ×	D _a			
O	0 1	× × D ₁ ×	D ₁			
0	0 0	××× II.	D,			

