Circuitos en Proteus 8: Explicación de componentes

Componentes comunes a todos los circuitos:

FUENTE DE ALIMENTACIÓN: Proporciona la energía necesaria para que el circuito funcione. En Proteus, se puede usar el componente "DC Voltage Source".

TIERRA: Punto de referencia común para el circuito. En Proteus, se usa el componente "Ground".

CABLES: Conectan los componentes entre sí. En Proteus, se usa la herramienta "Wire".

RESISTENCIAS: Limitan la corriente que fluye a través de ellas. En Proteus, se usa el componente "Resistor".

CONDENSADORES: Almacenan energía eléctrica en forma de campo electrostático. En Proteus, se usa el componente "Capacitor".

Componentes específicos para cada circuito

1. Diodo rectificador:

Diodo: Permite que la corriente fluya en una sola dirección. En Proteus, se usa el componente "Diode".

Análisis del comportamiento:

El diodo rectifica una señal de corriente alterna (CA) en corriente continua (CC) pulsátil. La forma de onda de la salida será una versión semiondada de la entrada de CA.

2. Transistor bipolar como amplificador:

Transistor bipolar (NPN o PNP): Amplifica una señal de corriente o voltaje. En Proteus, se usa el componente "BJT".

Resistencias de polarización: Establecen las condiciones de operación del transistor.

Condensador de desacoplamiento: Elimina el ruido de la señal de alimentación.

Análisis del comportamiento:

El transistor amplifica la señal de entrada en su salida. La ganancia del amplificador depende de la configuración del transistor y de los valores de los componentes.

3. Transistor bipolar como interruptor:

Transistor bipolar (NPN o PNP): Actúa como un interruptor controlado por una señal de corriente o voltaje. En Proteus, se usa el componente "BJT".

Resistencia de base: Controla la corriente que fluye hacia la base del transistor.

Carga: El componente que se desea controlar con el transistor.

Análisis del comportamiento:

El transistor se comporta como un interruptor, permitiendo o bloqueando el flujo de corriente a la carga dependiendo de la señal de entrada.

4. Amplificador operacional como sumador inversor:

Amplificador operacional (Op-Amp): Realiza operaciones matemáticas con señales analógicas. En Proteus, se usa el componente "Opamp".

Resistencias de retroalimentación: Establecen la ganancia y la configuración del sumador

Análisis del comportamiento:

El amplificador operacional suma las señales de entrada con signo invertido y las amplifica por un factor determinado por las resistencias de retroalimentación.

5. Amplificador operacional como comparador:

Amplificador operacional (Op-Amp): Compara dos señales analógicas y genera una salida digital. En Proteus, se usa el componente "Opamp".

Análisis del comportamiento:

El amplificador operacional compara la señal de entrada con la tensión de referencia y genera una salida digital alta si la entrada es mayor que la referencia, o baja si es menor. La histéresis evita que la salida oscile por pequeñas diferencias de voltaje.

Recursos adicionales sobre nuevos componentes incorporados a los circuitos propuestos:

Circuitos con diodos: **Diodos**

Transistores bipolares: **Transistores**

Amplificadores operacionales: **Amplificadores**