

UEFI & EDK II Training

Platform Build Lab MinnowBoard Max - Windows

tianocore.org

Copy and Paste LabGuide.md

PLATFORM BUILD LABS

Hardware Setup for MinnowBoard Max/Turbot

Build a EDK II Platform using MinnowBoard

Max/Turbot

PLATFORM HW SETUP

Setup hardware for the MinnowBoard Max/Turbot

EDK II Platform – MinnowBoard Max/Turbot

Intel® Atom processor E3800 Series (Formerly Bay Trail-I)

MinnowBoard Max/Turbot Workshop Lab Hardware

5V** Power Supply

USB thumb drive

**Warning do not use any other power supply than 5V or the board will Fry

Instructions for Lab Materials

Directory C:\PlatformBuildLab2_FW\FW\PlatformBuildLab

FTDI Driver for Serial UART Cable (COM Port) http://www.ftdichip.com/FTDrivers.htm

TeraTerm (terminal software for COM Port) https://en.osdn.jp/projects/ttssh2/releases/

Note: Download FTDI Driver and TeraTerm as described in the Readme.txt for each directory

Setup MinnowBoard Max Test System

Hardware:

- System Under Test (SUT) MinnowBoard Max
- USB to 3.3V TTL Cable (6 pin to USB Type A)
- 5V power supply

Connect the USB w/ 6 pin header to SUT (Max)

Connect the USB Type A connector to Host (Laptop)

On your Host **Go to the "Device Manager"** in the control panel.

Under the "Other devices" category you will see a yellow \(\frac{1}{4}\) with a warning icon next to it.

You may already have this driver installed if you do not see a A warning under "Other devices"

Black Wire is pin 1

Setup COM port on Host

- Right click yellow and select "Update Driver Software" from the Device Manager menu.
- Select "Browse my computer for driver software".
- Click the Browse button. Click on "Include subfolders"
- Browse to the location of the folder you unzipped earlier for the FIDI driver.
- Click on the folder and press OK.

Press Next.Driver will be installed

Setup TeraTerm

Unzip and Install TeraTerm

Open TeraTerm Software

Select the serial port assigned

Choose the correct COM Port number

Go to Setup->Serial Port and set the following:

- Baud: 115200
- Parity: None
- Data Bits: 8
- Stop Bits: 1
- Flow Control: Xon/Xoff

Power on MinnowBoard Max

Connect the Power supply cable to the MinnowBoard Max

MinnowBoard Max should boot to the UEFI Shell in the TeraTerm window.

END OF LAB

Return to the Beginning

BUILD MINNOWBOARD TURBOT

12

EDK II Platform – MinnowBoard Max/Turbot

Intel® Atom processor E3800 Series (Formerly Bay Trail-I)

Where to get Open Source MinnowBoard Max

Download Max Lab Source

OR

Use git clone to download the PlatformBuildLab2_FW

C:/> git clone https://github.com/tianocore-training/PlatformBuildLab2_FW.git

Directory PlatformBuildLab2_FW will be created

/FW /PlatformBuildLab

- asl
- FTDI-Driver
- MaxWS
- TeraTerm

- Asl Compiler
- Serial / USB cable
- MinnowBoard Max Source for the Labs
- Terminal app

Preparing to Build

Directory C:\PlatformBuildLab2_FW\FW\PlatformBuildLab from

Download or zip

1 Copy \asl Folder to C:\

File Home Share View

← → ↑ ↑ ≪ PlatformBuildLab2_FW > FW > PlatformBuildLab

□ Name □ Date modified □ Type

□ asl □ 8/2/2019 11:34 AM File folder
□ FIDI-Driver □ 8/2/2019 12:02 PM File folder
□ TeraTerm □ 8/2/2019 11:34 AM File folder
□ TeraTerm □ 8/2/2019 11:34 AM File folder

Note: Download Asl compiler described in the Readme.txt

Copy MinnowBoard Max Source

Open a VS Command prompt
 Create a working space source directory under the home directory

C:\> mkdir FW

From the FW/PlatformBuildLab folder, copy and paste folder "..FW/MaxWS" to C:/FW/MaxWS

Platform Source Directory Structure

```
./MaxWs/
                              Invoke the Build from here
   edk2/
       (EDK II common packages)
       BaseTools/
   edk2-platforms/
       Platform/Intel/
                                        Platform DSC here
          Vlv2TbltDevicePkg
      Silicon/Intel/
          Vlv2DeviceRefCodePkg/
   edk2-non-osi/
   nasm/**
   openss1/**
```

^{**} Nasm compiler and ** OpenssI may need to be downloaded per the Readme.txt file in each directory

Steps to Build & Install Firmware

- 1 At VS command prompt Cd to directory: C:/FW/MaxWS
- 2 Set up local build environment
- 3 Invoke "Edksetup Rebuild" (build BaseTools)
- 4 Invoke the build process (DEBUG & RELEASE)
- 5 Locate build output (.cap files for BIOS image)
- Flash capsule image onto the platform
- 7 Reset and boot new firmware to UEFI Shell

Next slide will follow the above steps

Copy and Paste LabGuide.md

Open a VS Command Prompt

Follow Steps from here to Pin the Visual Studio Command Prompt to the Windows Task Bar

- Open a Visual Studio Command Prompt &
 - > cd C:\FW\MaxWS

Setup the Build Environment

Run Setenv.bat or type the following: (assumes Python3.7.2 installed)

```
$> setenv.bat
```

```
set WORKSPACE=%CD%
set PACKAGES_PATH=%WORKSPACE%\edk2;%WORKSPACE%\edk2-platforms\Silicon\Intel;%WORKSPACE%\edk2-
platforms\Platform\Intel;%WORKSPACE%\edk2-non-osi\Silicon\Intel
```

```
set EDK_TOOLS_PATH=%WORKSPACE%\edk2\BaseTools
Path=%WORKSPACE%\openss1;%USERPROFILE%\AppData\Local\Programs\Python\Python37-32;%path%
set NASM_PREFIX=%WORKSPACE%\nasm\
```

Check if Python okay

```
$> python --version
Python 3.7.2
```

Note: Download Nasm compiler and Openssl described in each of the Readme.txt files

Invoke Edksetup

Invoke Edksetup from edk2 directory

- \$> cd edk2
- \$> Edksetup Rebuild

Developer Command Prompt for VS2015 - edksetup Rebuild

C:\FW\MaxWS\edk2>edksetup Rebuild

!!! ERROR !!! Cannot find BaseTools Bin Win32!!! Please check the directory C:\FW\MaxWS\edk2\BaseTools\Bin\Win32 Or configure EDK TOOLS BIN env to point Win32 directory.

copying ... target.template to C:\FW\MaxWS\edk2\Conf\target.txt

copying ... tools def.template to C:\FW\MaxWS\edk2\Conf\tools def.txt PcdValueCommon.c -FoPcdValueCommon.obj

copying ... build_rule.template to C:\FW\MaxWS\edk2\Conf\build rule.txtPcdValueCommon.c

Developer Command Prompt for VS2015 - edksetup Rebuild

SimpleFileParsing.c

cl.exe -c /nologo /Zi /c /O2 /MT /W4 /WX /D CR

seTools\Source\C\Include -I C:\FW\MaxWS\edk2\BaseTools\SLzFindMt.c StringFuncs.c -FoStringFuncs.obj

StringFuncs.c

cl.exe -c /nologo /Zi /c /O2 /MT /W4 /WX /D _CRc\Common Sdk\C\Threads.c -FoSdk\C\Threads.obj

/MT /W4 /WX /D CRT SECURE NO DEPRECATE /D _CRT_NONSTDThreads.c I C:\FW\MaxWS\edk2\BaseTools\Source\C\Include\Ia32 -I C:

TianoCompress.c -FoTianoCompress.obj

TianoCompress.c

cl.exe -c /nologo /Zi /c /O2 /MT /W4 /WX /D CR 2 /MT /W4 /WX /D CRT SECURE NO DEPRECATE /D CRT NONSTD I C:\FW\MaxWS\edk2\BaseTools\Source\C\Include\Ia32 -I C:

c32.obj Decompress.obj EfiCompress.obj EfiUtilityMsgs.obexecute command "nmake all" in directory C:\FW\MaxWS\edk2\BaseTools\Sour

th.obj ParseGuidedSectionTools.obj ParseInf.obj PeCoffLo

cdValueCommon.obi

Build executables Developer Command Prompt for VS2015

cl.exe -c /nologo /Zi /c /O2 /MT /W4 /WX /D _CRT_SECURE_NO_DEPR WS\edk2\BaseTools\Source\C\Include -I C:\FW\MaxWS\edk2\BaseTools\Source\ C\Common Sdk\C\Bra86.c -FoSdk\C\Bra86.obj

cl.exe -c /nologo /Zi /c /O2 /MT /W4 /WX /D _CRT SECURE_NO_DEPR 2 /MT /W4 /WX /D _CRT_SECURE_NO_DEPRECATE /D _CRT_NONSTDWS\edk2\BaseTools\Source\C\Include -I C:\FW\MaxWS\edk2\BaseTools\Source\ I C:\FW\MaxWS\edk2\BaseTools\Source\C\Include\Ia32 -I C:C\Common Sdk\C\LzFindMt.c -FoSdk\C\LzFindMt.obj

cl.exe -c /nologo /Zi /c /O2 /MT /W4 /WX /D _CRT SECURE_NO_DEPR WS\edk2\BaseTools\Source\C\Include -I C:\FW\MaxWS\edk2\BaseTools\Source\

link.exe /nologo /debug /OPT:REF /OPT:ICF=10 /incremental:no /no seTools\Source\C\Include -I C:\FW\MaxWS\edk2\BaseTools\SBin\Win32\LzmaCompress.exe LzmaCompress.obj Sdk\C\Alloc.obj Sdk\C\LzFin

> le.obj Sdk\C\7zStream.obj Sdk\C\Bra86.obj Sdk\C\LzFindMt.obj Sdk\C\Threa copy LzmaF86Compress.bat C:\FW\MaxWS\edk2\BaseTools\Bin\Win32\Lz 1 file(s) copied.

Install to C:\FW\MaxWS\edk2\BaseTools\Lib\Win32

Install to C:\FW\MaxWS\edk2\BaseTools\Bin\Win32

execute command "nmake all" in directory C:\FW\MaxWS\edk!!! WARNING !!! No CYGWIN_HOME set, gcc build may not be used !!!

C:\FW\MaxWS\edk2>

Platform Build Scripts

Platform Pre & Post Build Scripts

Many Platforms have a bash, bat or Python script file to pre or post process the EDK II build process

For MinnowBoard Max:

Pre build processing:

Python script VIv2TbltDevicePkg/PreBuild.py – determines date and creates Biosld.bin in build output directory

Post build processing:

Python script VIv2TbltDevicePkg/Feature/Capsule/GenerateCapsule/GenCapsuleAll.py – creates .CAP files for updating

Build Process for DEBUG Target

From the edk2 directory invoke the "build" command to build MinnowBoard Max Note: Use the Your VS TAG below with "-t" option

\$> build -a IA32 -a X64 -t VS2015x86 -p Vlv2TbltDevicePkg\PlatformPkgX64.dsc -y Vlv.report -v

Developer Command Prompt for VS2015 - build -a IA32 -a X64 -n 5 -t VS2015x86 -b DEBUG -p VIv2TbltDevicePkg\PlatformPkgX64.dsc -v

PREBUILD = python c:\fw\maxws\edk2-platforms\Platform\Intel\Vlv2TbltDevicePkg/PreBuild.p -n 5 -t VS2015x86 -b DEBUG -p Vlv2TbltDevicePkg\PlatformPkgX64.dsc -v --conf=c:\fw\maxws\edk2\c = python c:\fw\maxws\edk2-platforms\Platform\Intel\Vlv2TbltDevicePkg/Feature/Ca POSTBUILD psule/GenCapsuleAll EDKII TEST.py -a IA32 -a X64 -n 5 -t VS2015x86 -b DEBUG -p Vlv2TbltDevicePkg dsc -v --conf=c:\fw\maxws\edk2\conf all

- Prebuild Start -

PreBuild: RelativePathc:\fw\maxws\Build

PreBuild: mkdir Build

PreBuild: RelativePathc:\fw\maxws\Build\Vlv2TbltDevicePkgX64

PreBuild: mkdir Build\Vlv2TbltDevicePkgX64

PreBuild: RelativePathc:\fw\maxws\Build\Vlv2TbltDevicePkgX64\DEBUG VS2015x86

PreBuild: mkdir Build\Vlv2TbltDevicePkgX64\DEBUG VS2015x86

PreBuild: python C:\FW\MaxWS\edk2-platforms\Platform\Intel\Tools\GenBiosId\GenBiosId.py -i c:\fw 2TbltDevicePkgX64\DEBUG VS2015x86\BiosId.env -o c:\fw\maxws\Build\Vlv2TbltDevicePkgX64\DEBUG VS2

n -ot c:\fw\maxws\Build\Vlv2TbltDevicePkgX64\DEBUG VS2015x86\BiosId.txt

PreBuild:

PreBuild:

End of Pre-BUILD

Press Enter key to continue

Press Enter to Continue the build

Copy and Paste LabGuide.md

Note: RC.EXE Resource Compiler See Link:

ELLOLI

Examine Build Parameters

build -a IA32 -a X64 -t VS2015x86

-p Vlv2TbltDevicePkg\PlatformPkgX64.dsc -y Vlv.report -v

TARGET	= DEBUG
TARGET_ARCH	= IA32 X64
TOOL_CHAIN_TAG	= VS2015x86
ACTIVE_PLATFORM	<pre>= Vlv2TbltDevicePkg /PlatformPkgX64</pre>
Report file created	= Vlv.report

Build Mode

CPU Architecture

VS Tool Chain

Platform DSC file

PCDs, Libs, etc.

Platform Build and PCD Parameters

Platform Parameters

Many Platform Parameters are defined in a top .DSC file that controls PCD and build switches

For MinnowBoard Max: V1v2Tb1tDevicePkg/PlatformPkgConfig.dsc Example:

```
#
# TRUE is ENABLE. FALSE is DISABLE.
#
// . . .
DEFINE SECURE_BOOT_ENABLE = TRUE
DEFINE USER_IDENTIFICATION_ENABLE = FALSE
DEFINE VARIABLE_INFO_ENABLE = FALSE
DEFINE S3_ENABLE = TRUE
DEFINE CAPSULE_ENABLE = TRUE
DEFINE CAPSULE_RESET_ENABLE = TRUE
// . . .
```


Build Process for RELEASE Target

From the VS Command Prompt ...
Note: Use the Your VS TAG below with "-t" option

> build -a IA32 -a X64 -t VS2015x86 -b RELEASE -p Vlv2TbltDevicePkg\PlatformPkgX64.dsc -v

```
Developer Command Prompt for VS2015 - build -a IA32 -a X64 -n 5 -t VS2015x86 -b RELEASE -p VIv2TbltDevicePkg\PI...
CONF PATH
                 = c:\fw\maxws\edk2\conf
PYTHON COMMAND
                 = py -3
                 = python c:\fw\maxws\edk2-platforms\Platform\Intel\Vlv2TbltDevicePkg/PreBuild.py
PREBUILD
-a IA32 -a X64 -n 5 -t VS2015x86 -b RELEASE -p Vlv2TbltDevicePkg\PlatformPkgX64.dsc -v --conf=c:
\fw\maxws\edk2\conf all
                 = python c:\fw\maxws\edk2-platforms\Platform\Intel\Vlv2TbltDevicePkg/Feature/Cap
POSTBUILD
sule/GenerateCapsule/GenCapsuleAll_EDKII_TEST.py -a IA32 -a X64 -n 5 -t VS2015x86 -b RELEASE -p V
lv2TbltDevicePkg\PlatformPkgX64.dsc -v --conf=c:\fw\maxws\edk2\conf all
 Prebuild Start -
PreBuild: RelativePathc:\fw\maxws\Build\Vlv2TbltDevicePkgX64\RELEASE VS2015x86
PreBuild: mkdir Build\Vlv2TbltDevicePkgX64\RELEASE VS2015x86
PreBuild: python C:\FW\MaxWS\edk2-platforms\Platform\Intel\Tools\GenBiosId\GenBiosId.py -i c:\fw\
maxws\Build\Vlv2TbltDevicePkgX64\RELEASE VS2015x86\BiosId.env -o c:\fw\maxws\Build\Vlv2TbltDevice
PkgX64\RELEASE VS2015x86\BiosId.bin -ot c:\fw\maxws\Build\Vlv2TbltDevicePkgX64\RELEASE VS2015x86\
BiosId.txt
PreBuild:
PreBuild:
End of Pre-BUILD
Press Enter key to continue
```

Press Enter to Continue the build

DEBUG & RELEASE Differences

Slower boot because the time it takes to display debug info

Larger image because of debug code & embedded info

Uses the serial port for debug string output

Contains detailed debug strings that show the boot process and various ASSERT/TRACE errors

Build Process Completed

5 Locate the build .Cap images

```
GenCapsuleAll_New_Root: RelativePathc:\fw\maxdev\ws\Build\Vlv2TbltDevicePkgX64\Capsules\firmware.mc

GenCapsuleAll_New_Root: remove Build\Vlv2TbltDevicePkgX64\Capsules\firmware.metainfo.xml

GenCapsuleAll_New_Root: RelativePathc:\fw\maxdev\ws\Build\Vlv2TbltDevicePkgX64\Capsules\firmware.bi

GenCapsuleAll_New_Root: remove Build\Vlv2TbltDevicePkgX64\Capsules\firmware.bin

GenCapsuleAll_New_Root:

*** Capsule update files in directory:

*** c:\fw\maxdev\ws\Build\Vlv2TbltDevicePkgX64\CapsulesTestCert_X64_DEBUG_VS2015x86

End of Post-BUILD

- Postbuild Done -
```

The platform post build process will create capsule images to use with a capsule update process

The script displays the location of the final .cap files

Flashing the New Firmware

- 6 Flash the binary image
 - 1. Access Max .CAP files from build folder
 - . . ./Build/Vlv2TbltDevicePkgX64/Capsules/TestCert_X64_DEBUG_VS2015x86
 - *.cap
 - RELEASE . . ./Capsules/TestCert_X64_RELEASE_VS2015x86
 - 2. Copy .cap files to a USB Thumb drive
 - 3. Copy CapsuleApp.efi to a USB thumb drive
 - 4. Boot into the UEFI Shell on Max then type "FS0:"

Flashing the New Firmware

Run CapsuleApp.efi utility with MinnowMax...cap file (Note the "TAB" Key will fill out the command line for you)

```
FSO: \> CapsuleApp.efi MinnowMax.0.0.0.12.cap
```

System will start the Capsule update process
There will be 2 reboots

```
COM5 - Tera Term VT
                                                                COM5 - Tera Term VT
                                                               File Edit Setup Control Window Help
                                                                                                           COM5 - Tera Term VT
 File Edit Setup Control Window Help
    PerformFlashWrite - 0x510000(0) - 0x210 PerformFlashWrite - 0x510000(0) - 0x210 PerformFlashWrite - 0x510000(0) - 0x210
                                                                                                          File Edit Setup Control Window Help
FSOpen: Open '\Max\Capsule\CapsuleApp.efi' Succe
                                                                                                         InstallProtocolInterface: 5B1B31A1-9562-11D2-8E3F-00A0C969723B                 7869F040
FSOpen: Open '\Max\Capsule\CapsuleApp.efi' SucceVerified data written to Block at FFD10Loading driver at 0x00077E5E000 EntryPoint=0x00077E5E3E4 Shell.efi
FSOpen: Open '\Max\Capsule\CapsuleApp.efi' Succederified data written to Block at Froit rotectoerifinage common
FSOpen: Open '\Max\Capsule\CapsuleApp.efi' Succederified data written to Block at FFD12
FSOpen: Open '\Max\Capsule\Capsule\CapsuleApp.efi' Succederified data written to Block at FFD12
FHIDATABASE Hemory allocation is required after ReadyToBoot, which may chan
FERENCE OF CERENCY Max\Capsule\Capsule\CapsuleApp.efi.

FERENCE OF CERENCY Max\Capsule\CapsuleApp.efi.
FSOpen: Open '\Max\Capsule\CapsuleApp.efi' Succe
Loading driver at 0x00077FD2000 EntryPoint=0x000'
InstallProtocolInterface: BC62157E-3E33-4FEC-992Verified data written to Block at FFD14VEFI Interactive Shell v2.287477C2-69C7-11D2-8E39-00A0C969723B 78682520
                                                                                                         EDK II1ProtocolInterface: 752F3136-4E16-4FDC-A22A-E5F46812F4CA 78686D98
ProtectUefiImageCommon - 0x78027040
                                                              Verified data written to Block at FFD15\sqrt{
m EFI} \sqrt{2.70} (EDK II, 0×00010000)008-7F9B-4F30-87AC-60C9FEF5DA4E 77EE1B10
   - 0x000000077FD2000 - 0x0000000000015D40
InstallProtocolInterface: 752F3136-4E16-4FDC-A22Verified data written to Block at FFD16
                                                                                                                80: Alias(s):HD0a0d0b:;BLK1:
FSOpen: Open '\Max\Capsule\MinnowMax.0.0.0.12.ca
                                                                                                                    PciRoot(0x0)/Pci(0x14.0x0)/USB(0x0.0x0)/USB(0x3.0x0)/HD(1.MBR.0x0000
CapsuleApp: creating capsule descriptors at 0x79 Perified data written to Block at FFD17
 CapsuleApp: capsule data starts
                                                                                                                    PciRoot(0x0)/Pci(0x14,0x0)/USB(0x0,0x0)/USB(0x3,0x0)
                                                                                                         CapsuleApp: capsule block/size
                                                        0x776B4018/0x800B5D
FubProtocolWrite: Lba: 0x0 Offset: 0x6124 NumBytes: 0x3C, Buffer: 0x7B6F6018
FubProtocolWrite: Lba: 0x0 Offset: 0x6126 NumBytes: 0x1, Buffer: 0x7B6F601A
```


Capsule Update with External Monitor

Logo with a progress bar will display update process progress

Verify After Firmware Update

- 7 Reboot and Verify
 - Verify that the Firmware was updated by checking the Date
 - At the shell prompt type "exit" Shell> exit
 - The EDK II front page will show the BIOS ID with Date/time stamp

```
Minnowboard Turbot DO PLATFORM
Intel(R) Atom(TM) CPU E3826 @ 1.46GHz
MNW2MAXW.X64.0200.D01.1908051725
WARNING: Test key detected.
 Select Language
                                                                      This is the option one
                                    KStandard English>
                                                                      adjusts to change the
> Device Manager
                                                                      language for the current
 Boot Manager
                                                                      system
 Boot Maintenance Manager
  Continue
  Reset
                                <Enter>=Select Entry
```


Questions?

BACKUP

39

Build Error- RC.exe

Error message:

Find where the RC.EXE is located on your VS Installation:

Example (VS 2015): The RC.exe is located on this machine:

C:\Program Files (x86)\Windows Kits\8.1\bin\x64

Edit Conf\tools_def.txt

Build Error- RC.exe Cont.

Edit Conf\tools_def.txt

Search for your installation of Visual Studio (2013, 2015, 2017) "RC.EXE" Probably in path C:\Program Files (x86)\Windows Kits\

Update according to the path for where the RC.EXE is found

Paths on your machine

Build Error: fatal error C1041:

Build Error from fatal error C1041: cannot open program database

This Error is usually because the location you are building is being shared by another application in Windows. Example: Syncplicity may cause this

Error Message:

```
k:\fw\edk2\MdePkg\Library\BaseLib\LinkedList.c : fatal error C1041: cannot open program
database
'k:\fw\edk2\build\nt32ia32\debug_vs2013x86\ia32\mdepkg\library\baselib\baselib\vc120.pdb'; if
multiple CL.EXE write to the same .PDB file, please use /FS
NMAKE : fatal error U1077: '"C:\Program Files (x86)\Microsoft Visual Studio
12.0\Vc\bin\cl.exe"' : return code '0x2'
Stop.
```

Solution: Try using a Workspace that is not shared