Семантичен Уеб. Resource Description Framework (RDF)

Въведение в семантичен Уеб.

RDF

RDF/XML

Turtle, N3, RDFa

Примери

Източници

- RDF Primer, W3C Recommendation 10 February 2004
- Framework for the Semantic Web: An RDF Tutorial, by S. Decker et al, Stanford Univ.
- Introduction to Semantic Web,
 от Ivan Herman, W3C, 2011

Интернет и Уеб

- Роля на World Wide Web (Световна паяжина), съкр. WWW, Уеб или Световната мрежа
- Нов начин на общуване между хората, общностите и дори начините за комуникация между компютрите
- Услуги за е-бизнес, електронна търговия, еикономика, електронно правителство, електронна демокрация, електронно обучение, ...
- Информационен обмен и взаимодействие между различни актьори – лица, организации, Уеб приложения, интелигентни агенти...

Развитие на Уеб

- Тим Бърнърс-Лий, Церн, 1991 г. разработва основите на Уеб
- Проектира прости средства за пренос на взаимосвързани документи със структурирана информация до всякакви компютри, свързани в Интернет и работещи с различни операционни системи :
 - ✓ език за маркиране на хипертекст (Hypertext Markup Language, или съкр. HTML), и
 - √ протокол за трансфер на хипертекст (Hyper Text Transfer Protocol, или съкр. HTTP)
- По-късно спецификация на URI (Uniform Resource Identifier) - нотация за уникално идентифициране на обекти в целия Интернет.

Уеб 1.0 (традиционен Уеб) 1/3

 Web 1.0 - термин за етап от еволюцията на World Wide Web; обхваща периода от 1993 до 2001г.

Бизнес модел:

- top-down подход за изграждане и използване на WWW - статични страници с хипертекст (Hyperlinks е стандарт на WWW от 1993г.)
- страници на малцина автори на съдържание (webmasters), зареждани от голям брой потребители с глобален достъп;
- фокус върху презентацията, а не върху създаването на съдържание;
- печалби от броя посещения (most visited webpages)

Уеб 1.0 (традиционен Уеб) 2/3

- Технически характеристики:
- статичен хипертекст без динамика в браузера
- липса на редактиране на страниците от външни потребители
- използване на Framesets рамката (frame) е начин за представяне на няколко Уеб страници и/или медия елементи в един прозорец (или таб) на браузъра:
 - характерен за HTML 3 и 4;
 - липса на поддръжка от много браузъри, лоша индексация от търсачките, трудни връзки към рамкираните страници, лошо скролиране при ниска резолюция;
 - изключени от HTML 5

```
<frameset cols="65%, 35%">
  <frame src="URL OF FRAME PAGE 1">
  <frame src="URL OF FRAME PAGE 2">
  <noframes> Sorry but your browser do not support frames ⊗
   </noframes> Cemanturen Yeb. RDF
</frameset>
```

Уеб 1.0 (традиционен Уеб) 3/3

Още технически характеристики:

- използване на таблици () за подравняване на съдържанието на страницата
- отделяне на съдържание с прозрачни 1х1 pixel изображения в GIF format
- патентовани нестандартни HTML елементи като <bli><blink> и <marquee>
- онлайн книги за гости
- изпращане на HTML форми като ел. поща от статичен хипертекст
- сървърни технологии като PHP, Ruby, Perl, Python, JSP, and ASP.NET

Уеб 2.0 (социален Уеб) 1/3

Web 2.0:

- ✓ термин за втория етап от еволюцията на World Wide Web;
- ✓ от началото на века до наши дни;
- ✓ въведен от Tim O'Reilly на Web 2.0 conference през 2004

• Бизнес модел:

- ✓ top-down + bottom-up подход за изграждане и използване на WWW - димамични хипертекст страници с авторско съдържание и на самите потребители;
- добавена стойност от споделянето на информация и сътрудничеството между организации и хора;
- фокус върху създаването на съдържание и персонализираната презентацията

Уеб 2.0 (социален Уеб) 2/3

- Технически характеристики:
- ✓ динамичен хипертекст
- съдържание от външни потребители
- ✓ модел "Network as platform" потребителски интерфейси за достъп до разл. услуги като напр. публични сайтове с галерии на потребителя (Flickr, Picasa Web Albums, ...), частни и споделени хранилища за данни (DropBox), споделени документи (Goodle Docs), представяне на геогр. обекти върху карта (Google Mail API), ...
- ✓ оперативен обмен на данни (interoperability)
- ✓ Rich Internet Application (RIA)

Уеб 2.0 (социален Уеб) 3/3

Нови технологии:

- ✓ Клиентски (client-side/web browser):
 - XML или JSON (JavaScript Object Notation)
 - asynchronous JavaScript (Ajax)
 - Adobe Flash
 - Adobe Flex
 - JavaScript/Ajax frameworks като jQuery
 - HTML5 изисква по-малко изчислителни ресурси отколкото Adobe's Flash; по-малко ел. мощност (батерия при мобилни устройства); замразяване на публичните мобилни Adobe's Flash приставки (plugins)
- / Сървърни технологии

Социални феномени в Уеб 2.0

- Podcasting от broadcast и (i)Pod сваляне на онлайн видео или аудио съдържание от настолни или мобилни компютри
- Blogging web log поддържане на личен журнал, публикуван в Уеб на дискретни порции (т.нар. posts), показвани в ред, обратен на хронологичния
- Tagging добавяне на метаданни (описания с ключови думи и термини) към съдържание или части от него, с цел да се ползват при търсене и разглеждане (browsing)
- Folksonomy (social tagging) много потребители добавят метаданни като кл. думи към споделени ресурси Golder, Scott; Huberman, Bernardo A. (2006). "Usage Patterns of Collaborative Tagging Systems". Journal of Information Science 32 (2): 198–208.
- Social bookmarking социални отметки организиране, поддръжка и търсене на отметки към онлайн ресурси
- Social networking сътрудничество и съревнование в Уеб

Ограничения на днешния Уеб

Machine-to-human, not machine-to-machine

Проблем: приложенията не разбират значението

 "My mouse is broken. I need a new one…"

"My mouse is *broken*" vs. "My mouse is *dead*"

Използване на онтологии

Looking for a "Blue Car with Red Doors"

Simple word-matching Red Car with Blue Doors Navy Sedan with Crimson Hatches Blue Car and a Red Door "blue car red door" Car, Blue Chair, Red Door

navy = blue crimson = red sedan = car hatch = door

Semantic Matching

Red Car with Blue Doors

Navy Sedan with Crimson Hatches

Blue Car and a Red Door

hasColor(car, blue) hasColor(door, red)(hasPart(car, door)

Car, Blue Chair, Red Door

Semantic Matching

Red Car with Blue Doors

hasColor(car, red) hasColor(door, blue) hasPart(car, door)

Navy Sedan with Crimson Hatches

hasColor(sedan, navy)

Blue Car and a Red Door

hasColor(car, red) hasColor(door, blue)

hasColor(car, blue) hasColor(door, red) hasPart(car, door)

Car, Blue Chair, Red Door

hasColor(chair, blue)

Подход към семантичния Уеб

"The Semantic Web is a vision: the idea of having data on the Web defined and linked in a way that it can be used by machines not just for display purposes,

but for automation, integration and reuse of data across various applications"

W3C®

http://www.w3.org/sw/

Семантичният уеб е инициатива с цел разширяване на текущия Уеб и улесняване на Уеб автоматизацията чрез достъпни в Уеб ресурси и 'Мрежа от доверие' ('Web of Trust') - универсално достъпна платформа, която позволява данните да бъдат споделяни и обработени както от автоматизирани средства, така и от хора.

Уеб 3.0 (семантичен Уеб) 1/2

- Еволюция и преход от сегашното състояние на Световната мрежа към семантичен Уеб
- Семантични услуги базирани на онтологии за представяне на знанието за дадена предметна област:
 - Семантично анотиране на съдържание
 - Семантично търсене
 - Семантично разглеждане
 - Семантично препоръчване

. . .

Уеб 3.0 (семантичен Уеб) 2/2

- Семантични езици базирани на XML
 - ✓ Resource Description Framework (RDF) за описание на модела на метаданните относно Уеб ресурси
 - ✓ RDF Schema (RDFS, RDF(S), RDF-S или RDF/S) набор от класове с определени свойства представени в RDF, за описание на онтологии и RDF речници за структуриране на RDF ресурси
 - ✓ SPARQL Protocol + RDF Query Language език за заявки към RDF графи
 - ✓ Web Ontology Language (OWL) фамилия от езици за представяне на знания чрез онтологии

√

Средства за изграждане на Уеб 3.0

Семантичен Уеб: анотации

Семантичен Уеб: онтологии

Семантичен Уеб: правила

Семантичен Уеб: езици

Семантичен Уеб: среди

Семантичен Уеб: приложения и услуги

Визия на Tim Berners-Lee за семантичен Уеб (IJCAI-01)

Стек на семантичния Уеб (W3C, 2006)

User Interface & applications Trust Proof **Unifying Logic** ontology: Rules: Query: OWL RIF SPARQL Crypto RDF-S Data interchange: RDF **XML** URI Unicode

Adapted from http://en.wikipedia.org/wiki/Semantic_Web_Stack

Resource Description Framework (RDF)

- Рамка за описване на ресурсите
- Модел за данни
- Представя синтаксис, който да позволи обмена и използването на информация, съхранявана на различни места
- Въпросът е да се улесни четенето и правилното използване на информация от компютри, а не непременно от хора

Идея на RDF 1/2

- Resource Description Framework (RDF) език за предствяне на информация за метаданни за ресурси в Уеб (напр. име, автор, дата на създаване)
- Генерализация на концепцията Web resource -RDF може да представи информация на ресурси, които да се идентифицират в Уеб, дори и когато те не могат да бъдат директно извлечени в Уеб
- Предназначени за обработка от приложения, но не за представяне пред потребители

Идея на RDF 2/2

- RDF служи за:
 - оидентифициране на неща (обекти и субекти), използващи Уеб идентификатори (URI адреси), и
 - описание на ресурси чрез прости свойства и стойности.
- Това позволява чрез RDF да се представят прости твърдения за ресурси като <u>граф от</u> <u>възли и дъги</u>, представляващи ресурси, както и техните свойства и стойности.

"Things with properties having values"

RDF описва: неща (things) имащи свойства (properties) и техните стойности (values) – ресурси, описвани чрез твърдения (statements):

- http://www.me-xml.edu/index.html has a creator whose value is Boyan Bontchev
- http://www.me-xml.edu/index.html has a creation-date whose value is November 26, 2021
- http://www.me-xml.edu/index.html has a language whose value is Bulgarian

Субект-предикат-обект (Subject-Predicate-Object)

http://www.my-xml.edu/index.html has a creator whose value is Boyan Bontchev

- Субект (subject) е описваното нещо и се задава чрез URL http://www.my-xml/index.html
- Предикат (predicate) е свойството/характеристиката на субекта – в случая "creator"
- Обект (object) е стойността "Boyan Bontchev"

RDF компоненти

- Формален модел на данните
- Синтаксис за обмен на данни
- Вид схема (схема-модел)
- Синтаксис за машинно-разбираеми схеми
- Заявки

Необходимост от URL

- Нужда от система от машинно-обработваеми идентификатори - за идентифициране на субект, предикат, или обект - в твърдение (statement), без възможно двусмислие
- Интернет осигурява една по-обща форма на идентификатор за тези цели, наречен URL
- RDF използва URI референции (или URIref), заедно с допълнителен идентификатор за фрагмент в края, като

http://www.example.org/index.html#section2

URI, URN, URL

- Uniform Resource Identifier (URI) стринг за идентификация за име или ресурс в Интернет
- URI = URL или URN
- Uniform Resource Name (URN) дефинира идентичността на ресурс
 - ourn:isbn:0-395-36341-1
- Uniform Resource Locator (URL) предоставя метод за локацията му
 - http://www.sti-innsbruck.at/

RDF тройки, представени като граф

- Моделът на тройките от данни може да се представи като граф
- Такъв граф в изкуствения интелект се нарича семантична мрежа

Семантичен Уеб. RDF

Именовани и насочени графи

○Възли (Nodes): ресурси, литерали

○ Етикети (Labels): свойства

Крайща (Edges): твърдения (statements)

ex:john
ex:father-of
ex:bill

RDF графи

subject — http://www.example.org/index.html

http://www.example.org/index.html

- predicate http://purl.org/dc/elements/1.1/creator
- object –http://www.example.org/staffid/85740

http://purl.org/dc/elements/1.1/creator

http://www.example.org/staffid/85740

Triples нотация

Използва наредена тройка от subject, predicate, и object:

- <http://www.example.org/index.html> <http://purl.org/dc/elements/1.1/creator> <http://www.example.org/staffid/85740> .
- <http://www.example.org/index.html> <http://www.example.org/terms/creation-date> "November 26, 2021".
- <http://www.example.org/index.html> <http://purl.org/dc/elements/1.1/language> "en" .

RDF пример 1/2

- Група от твърдения:
 - sth.(sb.) is a Person
 - identified by the type http://www.w3.org/People/EM/contact#me,
 - whose name is Eric Miller,
 - whose email address is em@w3.org, and
 - whose title is Dr.

there is a Person

Dr.

- identified by http://www.w3.org/People/EM/contact#me, RDF пример 2/2
- whose name is Eric Miller,
- whose email address is em@w3.org, and

Популярни префикси на QName

- Префикс rdf:, пространство от имена с URI: http://www.w3.org/1999/02/22-rdf-syntax-ns#
- Префикс rdfs:, пространство от имена с URI: http://www.w3.org/2000/01/rdf-schema#
- Префикс dc:, пространство от имена с URI: http://purl.org/dc/elements/1.1/
- Префикс owl:, пространство от имена с URI: http://www.w3.org/2002/07/owl#
- Префикс xsd:, пространство от имена с URI: http://www.w3.org/2001/XMLSchema#

Използване на префикси

Използвайки

prefix ex:, namespace URI: http://www.example.org/

http://www.example.org/index.html

- prefix exterms:, namespace URI: http://www.example.org/terms/ (за термините, използвани от примерната организация),
- prefix exstaff:, namespace URI: http://www.example.org/staffid/ (за идентификатори на персонала в примерната организация)

получаваме

```
ex:index.html dc:creator exstaff:85740.
ex:index.html exterms:creation-date "June 26, 2021".
ex:index.html dc:language "en".
```

вместо

RDF като формат за запис на информация

RDF твърденията са подобни на други формати за запис на информация, като напр.:

- части от запис или каталог на стоки, описващи ресурси в система за обработка на данни
- редове в проста релационна база данни
- прости твърдения във формалната логика

Структури в RDF?

exstaff:12345

exterms:address

"5 J. Baurchier Blv., Sofia 1164, BULGARIA".

 Как да се изрази в RDF адресът като структура, състояща се от отделни стойности за улица, град, пощенски код и държава?

RDF стойности на структурно свойство – чрез празен (blank) възел

Идентификатори на Blank възел

Тройки с идентификатори за blank възли използват формата _:name

```
exstaff:85740 exterms:address _:johnaddress
_:johnaddress exterms:street "1501 Grant Avenue"
_:johnaddress exterms:city "Bedford"
_:johnaddress exterms:state "Massachusetts"
_:johnaddress exterms:postalCode "01730"
```

Литерали

- Обикновени литерали
 - О напр. "any text"
 - опционален маркер за език, напр. "Hello, how are you?"@en-GB
- Типови литерали
 - Haпp. "hello"^^xsd:string, "1"^^xsd:integer
 - препоръчителни типове данни:
 - XML Schema datatypes
- Явяват се само като <u>обект в тройка</u>, напр.

Типове данни (Datatypes)

- Един предифиниран тип: rdf:XMLLiteral
 - ОИзползван за вграждане на XML в RDF

- Препоръчителни типове данни са XML Schema datatypes, напр.:
 - oxsd:string
 - Oxsd:integer
 - 0xsd:float
 - 0xsd:anyURI
 - 0xsd:boolean

 individuals, напр. Eric Miller, идентифициран чрез http://www.w3.org/People/EM/contact#me

kinds of things, напр. Person, идентифициран чрез http://www.w3.org/2000/10/swap/pim/contact#Person

properties of those things, напр. mailbox, идентифициран чрез http://www.w3.org/2000/10/swap/pim/contact#mailbox

values of those properties, напр.

mailto:em@w3.org чрез стойност на mailbox свойство

Символни низове

 RDF използва също символни низове като стойностите на свойства, напр. "Eric Miller", и стойности от други типове данни като числа и дати

RDF/XML синтаксис за съхранение и обмен на RDF графи 1/2

```
1. <?xml version="1.0"?>
2. <rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
         xmlns:dc="http://purl.org/dc/elements/1.1/"
3.
         xmlns:exterms="http://www.example.org/terms/">
4.
    <rdf:Description rdf:about="http://www.example.org/index.html">
5.
       <exterms:creation-date>August 16, 1999</exterms:creation-date>
6.
       <dc:language>en</dc:language>
7.
       <ac:creator rdf:resource="http://www.example.org/staffid/85740"/>
8.
    </rdf:Description>
                                       http://www.example.org/index.html
10. </rdf:RDF>
                http://www.example.org/terms/creation-date
                                                           http://purl.org/dc/elements/1.1/creator
                           August 16, 1999
                                                             http://www.example.org/staffid/85740
                                                    http://purl.org/dc/elements/1.1/language
  XML
```

RDF/XML синтаксис за съхранение и обмен на RDF графи 2/2

```
<?xml version="1.0"?>
<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
  xmlns:contact="http://www.w3.org/2000/10/swap/pim/contact#">
 <contact:Person</pre>
  rdf:about="http://www.w3.org/People/EM/contact#me">
  <contact:fullName>Eric Miller</contact:fullName>
  <contact:mailbox rdf:resource="mailto:em@w3.org"/>
  <contact:personalTitle>Dr.</contact:personalTitle>
 </contact:Person>
</rdf:RDF>
```

Наредени тройки от субект, предикат и обект

```
<?xml version="1.0"?>
<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
   xmlns:contact="http://www.w3.org/2000/10/swap/pim/contact#">
 <contact:Person rdf:about="http://www.w3.org/People/EM/contact#me">
  <contact:fullName>Eric Miller</contact:fullName>
  <contact:mailbox rdf:resource="mailto:em@w3.org"/>
  <contact:personalTitle>Dr.</contact:personalTitle>
                                                   http://www.w3.org/1999/02/22-rdf-syntax-ns#type
 </contact:Person>
                       http://www.w3.org/People/EM/contact#me
</rdf:RDF>
                                                http://www.w3.org/2000/10/swap/pim/contact#fullName
                                                               Eric Miller
                                                http://www.w3.org/2000/10/swap/pim/contact#mailbox
                                            mailto:em@w3.org
                                 http://www.w3.org/2000/10/swap/pim/contact#personalTitle
Семантичен Уеб. RDF
    XML
                                                                                    59
```

Празни възли в RDF/XML граф

```
1. <?xml version="1.0"?>
2. <rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
      xmlns:dc="http://purl.org/dc/elements/1.1/"
3.
      xmlns:exterms="http://example.org/stuff/1.0/">
     <rdf:Description rdf:about="http://www.w3.org/TR/rdf-syntaxgrammar">
5.
        <dc:title>RDF/XML Syntax Specification (Revised)</dc:title>
6.
        <exterms:editor rdf:nodelD="abc"/>
      </rdf:Description>
8.
      <rdf:Description rdf:nodeID="abc">
9.
        <exterms:fullName>Dave Beckett</exterms:fullName>
10.
11.
        <exterms:homePage rdf:resource="http://purl.org/net/dajobe/" />
      </rdf:Description>
                                                   http://www.w3.org/TR/rdf-syntax-grammar
13. </rdf:RDF>
                                    http://www.example.org/terms/editor
                                                                    http://purl.org/dc/elements/1.1/title
                                                                   RDF/XML Syntax Specification (Revised)
                             http://www.example.org/terms/homePage
                                                                http://www.example.org/terms/fullName
    XML
                                                                 Dave Beckett
                                       http://purl.org/net/dajobe/
```

RDF/XML с типов литерал и XML единица (ENTITY)

```
<?xml version="1.0"?>
<!DOCTYPE rdf:RDF
   [<!ENTITY xsd "http://www.w3.org/2001/XMLSchema#">]>
<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-
   Syntax-ns#" xmlns:exterms="http://www.xmlcourse.org/terms/">
  <rdf:Description
   rdf:about="http://www.xmlcourse.org/test2.html">
      <exterms:creation-date rdf:datatype="&xsd;date">
                  2021-11-26
      </exterms:creation-date>
   </rdf:Description>
</rdf:RDF>
```

RDF контейнери

RDF контейнерът е ресурс, който съдържа членове. Членовете могат да бъдат ресурси (вкл. и празни възли) или литерали. RDF определя три вида контейнери:

- rdf:Bag група от неподредени ресурси или литерали, евентуално дублирани
- rdf:Seq група на подредени ресурси или литерали, евентуално дублирани
- rdf:Alt група ресурси или литерали, които представляват алтернативи, напр. списък от алтернативни интернет сайтове. Трябва да съдържа поне една алтернатива; първата е по подразбиране.

Примерен граф на контейнер от тип Вад

Описание на примерен контейнер от тип Вад

```
<?xml version="1.0"?>
<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:s="http://example.org/students/vocab#">
 <rdf:Description rdf:about="http://example.org/courses/6.001">
   <s:students>
    <rdf:Bag>
          <rdf:li rdf:resource="http://example.org/students/Amy"/>
          <rdf:li rdf:resource="http://example.org/students/Mohamed"/>
          <rdf:li rdf:resource="http://example.org/students/Johann"/>
          <rdf:li rdf:resource="http://example.org/students/Maria"/>
          <rdf:li rdf:resource="http://example.org/students/Phuong"/>
                                                                                 w3.org/1999/02/22-rdf-syntax-ns#Ba
    </rdf:Bag>
                                                     o://example.org/courses/6.00
                                                                       http://www.w3.org/1999/02/22-rdf-syntax-ns#type
   </s:students>
                                                  http://example.org/students/vocab#students
                                                                       http://www.w3.org/1999/02/22-rdf-syntax-ns#_1
 </rdf:Description>
</rdf:RDF>
                                                                       http://www.w3.org/1999/02/22-rdf-syntax-ns# 3
                                                                              http://example.org/students/Johann
                                                                       http://www.w3.org/1999/02/22-rdf-syntax-ns#_4
     XML
                                          Семантичен Уеб. RDF
                                                                               http://example.org/students/9/aria
```

http://www.w3.org/1999/02/22-rdf-syntax-ns#_5

http://example.org/students/Phuong

rdf:Bag описан чрез triples

Да опишем, че дадена резолюция е одобрена от Комитета по правилата – с характеристики на Вад контейнер, тоест че:

- комитетът включва някои членове (може би и повече!) и
- редът на описание не е от значение!
- ex:resolution exterms:approvedBy ex:rulesCommittee.
- ex:rulesCommittee rdf:type rdf:Bag.
- ex:rulesCommittee rdf:_1 ex:Fred.
- ex:rulesCommittee rdf:_2 ex:Wilma.
- ex:rulesCommittee rdf: dex:Dino.

RDF представяне чрез граф на Bag контейнер

"The lecture is attended by John, Mary and Chris"

RDF представяне чрез граф на Seq контейнер

"[RDF-Concepts] is edited by Graham and Jeremy" (в този ред)

RDF представяне чрез граф на Alt контейнер

"The source code for the application may be found at

ftp1.example.org, ftp2.example.org, or ftp3.example.org"

RDF колекции

RDF поддържа описания на групи, <u>съдържащи</u> <u>само определени членове</u>, под формата на <u>RDF колекции</u>.

"[RDF-Concepts] is edited by Graham and Jeremy (<u>in that order</u>) and <u>nobody else</u>"

RDF колекции – атрибут rdf:parseType="Collection"

```
<?xml version="1.0"?>
<rdf:RDF
  xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
  xmlns:cd="http://recshop.fake/cd#">
   <rdf:Description rdf:about="http://recshop.fake/cd/Beatles">
        <cd:artist rdf:parseType="Collection">
            <rdf:Description rdf:about="http://recshop.fake/cd/Beatles/George"/>
            <rdf:Description rdf:about="http://recshop.fake/cd/Beatles/John"/>
            <rdf:Description rdf:about="http://recshop.fake/cd/Beatles/Paul"/>
            <rdf:Description rdf:about="http://recshop.fake/cd/Beatles/Ringo"/>
        </cd:artist>
   </pdf:Description>
```

</rdf:RDF>

Как да описваме RDF твърдения посредством RDF?

- RDF осигурява вграден речник, предназначен за описване на RDF твърдения (statements).
- Описание (конкретизация) на твърдение с използване на този речник се нарича реификация (reification) на RDF твърдението.
- Речникът за RDF реификация се състои от типа rdf:Statement, и от свойствата rdf:subject, rdf:predicate и rdf:object.

Пример за реификация

(http://www.w3.org/2001/sw/RDFCore/TR/WD-rdf-primer-20030117/)

За твърдението

exproducts:item10245 exterms:weight "2.4"^^xsd:decimal.

 задаваме реификация чрез присвояване на URIref на твърдение като exproducts:triple12345 и:

```
exproducts:triple12345 rdf:type rdf:Statement exproducts:triple12345 rdf:subject exproducts:item10245 exproducts:triple12345 rdf:predicate exterms:weight exproducts:triple12345 rdf:object "2.4"^^xsd:decimal .
```

КМL Семантичен Уеб. RDF 72

RDF/XML за примера за реификация

```
<?xml version="1.0"?>
<!DOCTYPE rdf:RDF [<!ENTITY xsd</pre>
"http://www.w3.org/2001/XMLSchema#">]>
<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
       xmlns:dc="http://purl.org/dc/elements/1.1/"
       xmlns:exterms=http://www.example.com/terms/
       xml:base="http://www.example.com/2002/04/products">
<rdf:Description rdf:ID="item10245">
  <exterms:weight rdf:datatype="&xsd;decimal">2.4</exterms:weight>
</rdf:Description>
<rdf:Statement rdf:about="#triple12345">
 <rdf:subject
rdf:resource="http://www.example.com/2002/04/products#item10245"/>
  <rdf:predicate rdf:resource="http://www.example.com/terms/weight"/>
  <rdf:object rdf:datatype="&xsd;decimal">2.4</rdf:object>
  <dc:creator rdf:resource="http://www.example.com/staffid/85740"/>
                                 Семантичен Уеб. RDF
</rdf. Statement>
```

</rdf:RDF>

Реификацията при представянето на знания

 Реификация: фактически твърдения за други (може би и неверни) твърдения

Mary claims that John's name is "John Smith".

```
<<#myStatement>, rdf:type, rdf:Statement>
</#myStatement>, rdf:subject, <#john>>
</#myStatement>, rdf:predicate, <#hasName>>
</#myStatement>, rdf:object, "John Smith">
```



```
<<#john>, <#hasName>, "John Smith">
```

RDF речник (Vocabulary)

- RDF дефинира различни ресурси и свойства
- В примерите дотук: rdf:XMLLiteral, rdf:type, . . .
- RDF речник (vocabulary) е дефиниран чрез пространството от имена:

```
http://www.w3.org/1999/02/22-rdf-syntax-ns#
```

- Класове (Classes):
 - O rdf:Property, rdf:Statement, rdf:XMLLiteral
 - O rdf:Seq, rdf:Bag, rdf:Alt, rdf:List
- Свойства (Properties):
 - O rdf:type, rdf:subject, rdf:predicate, rdf:object,
 - O rdf:first, rdf:rest, rdf:_n
 - Ordf:value
- Ресурси (Resources):
 - Ordf:nil

RDF речник - типизация

Използване на rdf: type:

```
<a href="mailto:<a href="mailto:<a href="mailto:A">A</a>, rdf:type, B>
"A belongs to class B"
```

 Всички свойства принадлежат на класа rdf: Property:

```
<P, rdf:type, rdf:Property>
"P is a property"
```

```
<rdf:type, rdf:type, rdf:Property>
"rdf:type is a property"
```

RDF формати за сериализация

Съществуват нялколко формализирани формати за сериализация на RDF

RDF/XML

Turtle

N3

RDF/XML 1/3

- Сериализиране на RDF за използване в Уеб
 - XML като стандартен формат за обмен на данни:
 - Namespaces (напр. rdf:type, xsd:integer, ex:john)
 - Encoding (напр. UTF8, iso-8859-1)
 - XML Schema (напр. типове данни)
- Използване на съществуващи XML среди:
 - ОПроверка на синтаксиса (т.е. валидиране по схема)
 - ОПреобразуване (чрез XSLT)
 - Различни RDF представяния
 - Layout (XHTML)
 - Различни XML-базирани формати
- Парсване (разбор) и представяне в памет + манипулации (DOM / SAX)

XMI_

RDF/XML 2/3

```
<#john, #hasName, "John">
<#john, #marriedTo, #mary>
```

```
<!ENTITY ex "http://example.org/#">
<rdf:RDF
          xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
          xmlns:ex="http://example.org#">
     <rdf:Description rdf:about="http://example.org/#john">
       <ex:hasName>John</ex:hasName>
       <ex:marriedTo rdf:resource="&ex;mary"/>
     </rdf:Description>
</rdf:RDF>
```

Head

Body

H00

RDF/XML 3/3

ex:lecture ex:isAttendedBy

rdf:type rdf:_1

ex:Mary

ex:Chris

rdf:Bag

ex:John

rdf:_3

```
<!ENTITY ex "http://example.org/#">
<rdf:RDF
            xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
            xmlns:ex="http://example.org#">
       <rdf:Description_rdf:about="&ex;lecture">
          <ex:isAttendedBy>
               <rdf:Bag>
                  <rdf:li rdf:resource="&ex;John"/>
                  <rdf:li rdf:resource="&ex;Mary"/>
                  <rdf:li rdf:resource="&ex;Chris"/>
               </rdf:Bag>
          </ex:isAttendedBy>
       </rdf:Description>
```

RDF N3 синтаксис

- n3
- Notation3, известен повече като N3, е съкратена не-XML сериализация на RDF модели и е ориентиран към потребителя; задава контекстно-свободна граматика
- Много по-компактен и разбираем от XML нотацията за RDF
- Създаден от Tim Berners-Lee и Semantic Web community.

```
<rdf:RDF
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:dc="http://purl.org/dc/elements/1.1/">
    <rdf:Description rdf:about="http://en.wikipedia.org/wiki/Tony_Benn">
        <dc:title>Tony Benn</dc:title>
        <dc:publisher>Wikipedia</dc:publisher>
        </rdf:Description>
    </rdf:RDF>
```

RDF пример в XML нотация

```
@prefix do: <http://purl.org/dc/elements/1.1/>.
<http://en.wikipedia.org/wiki/Tony_Benn>
   do:title "Tony Benn";
   dWL:publisher "Wikipedia" Cemanturuen Yeb. RDF
```

RDF пример в N3 нотация

RDF N3 примери 1/2

• Обикновено твърдение

```
:John :Loves :Mary subject, verb and object
```

• Твърдение с реификация

```
{:John :Loves :Mary} :accordingTo :Bill
```

• Твърдение – цел:

```
gb:I gb:want {:John :Loves :Mary}
```

Префиксът **gb**: задава онтологията S-APL на Semantic Agent Programming Language (S-APL).

RDF N3 примери 2/2

	age	eyecolor
pat	24	blue
al	3	green
jo	5	green

```
<#pat> <#age> 24; <#eyecolor> "blue" .
<#al> <#age> 3; <#eyecolor> "green" .
<#jo> <#age> 5; <#eyecolor> "green" .
```

Повече за RDF N3

- http://www.w3.org/2000/10/swap/Primer.html
- http://www.w3.org/2000/10/swap/Examples.html
- http://www.w3.org/DesignIssues/Notation3

Turtle

- Turtle е съкращение от Terse RDF Triple Language
- Форма за сериализация на RDF, базирана на найполезните конструкции на Notation 3
- Представяне на тройки от вида
 Subject, Predicate, Object>
- Пример:

```
@prefix person: <http://example/person/> .
@prefix foaf: <http://xmlns.com/foaf/0.1/> .
person:A foaf:name "Bobsun" .
person:A foaf:mbox <mailto:bobsun@brey.com> .
person:B foaf:name "John" .
```

•••

Turtle - пример

XML

За самостоятелна работа: Turtle спрямо N3 и SPARQL

Turtle - Terse RDF Triple Language, Dave Beckett - http://www.dajobe.org/2004/01/turtle/2006-12-04/#sec-diff-n3:

- Turtle Compared To Notation 3
- Turtle Compared To SPARQL

https://en.wikipedia.org/wiki/Notation3#Comparison_of_Notation3,_Turtle,_and_N-Triples

RDFa

- RDFa = Resource Description Framework in attributes
- Разширение на RDF за HTML, XHTML, ...
- RDFa 1.1 е W3C препоръка от юни 2012г.
- Цели:
 - вграждане на обогатени метаданни в уеб документи
 - увеличаване на визуални данни в Уеб страниците в указания за машинно четене
 - да се намали разликата между интерпретацията на Уеб страницата от потребителя и програмите

RDFa произход

On the left, what browsers see. On the right, what humans see.

89

RDFa технология

- RDFa осигурява набор от атрибути, които могат да бъдат използвани за представянето на метаданни в XML (оттук и "a" в RDFa)
- RDFа задава обобщаващи свойства на XHTML meta и link елементите
- Това позволи на потребителя да анотира (пояснява) XHTML маркиране със семантични анотации
- Така RDFа улеснява и подобрява достъпността на Уеб страниците

RDFa набор от атрибути

- about: URI на ресурс определен от метаданни
- rel: специфицира връзка с друг ресурс
- href, src, resource: специфицират партньорски ресурс
- property: специфицира свойство за съдържанието на елемент

RDF пример (в RDF/XML)

(namespaces се използват за улеснение вместо URI-s) Източник: Ivan Herman, W3C, 2011

RDF пример (в Turtle)


```
<http://.../isbn/2020386682>
   f:titre "Le palais des miroirs"@fr ;
   f:original <http://.../isbn/000651409X> .
```

Източник: Ivan Herman, W3C, 2011

RDF пример (в RDFa)


```
The book entitled
"<span property="f:title" lang="fr">
Le palais des miroirs</span>"
is the French translation of the
"<span rel="f:original" resource="http://.../isbn/000651409X";
Glass Palace</span>" .
```

RDF - заключение

Предимства:

- Повторно използване на съществуващите стандарти / инструменти
- Осигурява някаква степен на свобода (напр. чрез контейнери)
- Стандартен формат

Недостатъци:

- Многословен
- Нетривиална реконструкция на RDF граф.

