1.
$$\frac{x-4}{x^2-3x-4}$$

2.
$$\frac{x^3-8}{x-2}$$

3.
$$\frac{5-x}{x^2-25}$$

1.
$$\frac{x-4}{x^2-3x-4}$$
 2. $\frac{x^3-8}{x-2}$ 3. $\frac{5-x}{x^2-25}$ 4. $\frac{x^2-4x-32}{x^2-16}$

II. Fill in.

1. The 3 Pythagorean Identities:

3.
$$\sin(2x) =$$

III. Simplify.

$$1. \ \frac{1}{x+h} - \frac{1}{x}$$

2.
$$\frac{\frac{2}{x^2}}{\frac{10}{x^5}}$$

3.
$$\frac{\frac{1}{3+x} - \frac{1}{3}}{x}$$

4.
$$\frac{2x}{x^2-6x+9} - \frac{1}{x+1} - \frac{8}{x^2-2x-3}$$

IV. Solve for z.

1.
$$4x + 10yz = 0$$

2.
$$y^2 + 3yz - 8z - 4x = 0$$

V. If $f(x) = \{(3,5), (2,4), (1,7)\}$, $g(x) = \sqrt{x-3}$, $h(x) = \{(3,2), (4,3), (1,6)\}$ and $k(x) = x^2 + 5$, find:

1.
$$(f+h)(1)$$

2.
$$(k-g)(5)$$
 3. $(f \circ h)(3)$ 4. $(g \circ k)(7)$

3.
$$(f \circ h)(3)$$

4.
$$(g \circ k)(7)$$

5.
$$f^{-1}(x)$$

6.
$$k^{-1}(x)$$

7.
$$\frac{1}{f(x)}$$

$$8. (kg)(x)$$

VI. Follow the directions for each problem.

1. Evaluate
$$\frac{f(x+h)-f(x)}{h}$$
 and simplify if $f(x) = x^2 - 2x$.

2. Expand
$$(x+y)^3$$

3. Simplify
$$x^{\frac{3}{2}} \left(x + x^{\frac{5}{2}} - x^2 \right)$$

VII. Expand and simplify.

1.
$$\sum_{n=0}^{4} \frac{n^2}{2}$$

$$2. \sum_{n=1}^{3} \frac{1}{n^3}$$

VIII. Simplify.

1.
$$\frac{\sqrt{x}}{x}$$
 2. $e^{\ln 3}$

2.
$$e^{\ln 3}$$

3.
$$e^{(1+\ln x)}$$

5.
$$\ln e^{7}$$

6.
$$\log_3(\frac{1}{3})$$
 7. $\log_{1/2} 8$ 8. $\ln \frac{1}{2}$

7.
$$\log_{1/2} 8$$

8.
$$\ln \frac{1}{2}$$

9.
$$e^{3 \ln x}$$

$$10. \ \frac{4xy^{-2}}{12x^{-1/3}y^{-5}}$$

11.
$$27^{\frac{2}{3}}$$

11.
$$27^{\frac{2}{3}}$$
 12. $(5a^{\frac{2}{3}})(4a^{\frac{3}{2}})$ 13. $(4a^{\frac{5}{3}})^{\frac{3}{2}}$

13.
$$\left(4a^{\frac{5}{3}}\right)^{\frac{3}{2}}$$

14.
$$\frac{3(n+1)!}{5n!}$$

IX. Using the point-slope form $y - y_1 = m(x - x_1)$, write an equation for the line:

- 1. with slope -2, containing the point (3,4)
- 2. containing the points (1,-3) and (-5,2)
- 3. with slope 0, containing the point (4,2)
- 4. parallel to 2x-3y=7 and passing through (5,1)
- 5. perpendicular to the line in problem #1, containing the point (3,4)

X. Determine the exact value of each.

2.
$$\sin \frac{\pi}{2}$$

2.
$$\sin \frac{\pi}{2}$$
 3. $\sin \frac{3\pi}{4}$ 4. $\cos \pi$ 5. $\cos \frac{7\pi}{6}$ 6. $\cos \frac{\pi}{3}$

5.
$$\cos \frac{7\pi}{6}$$

6.
$$\cos \frac{\pi}{3}$$

7.
$$\tan \frac{7\pi}{4}$$

8.
$$\tan \frac{\pi}{6}$$

9.
$$\tan \frac{2\pi}{3}$$

10.
$$\tan \frac{\pi}{2}$$

11.
$$\cos\left(\sin^{-1}\frac{1}{2}\right)$$

7.
$$\tan \frac{7\pi}{4}$$
 8. $\tan \frac{\pi}{6}$ 9. $\tan \frac{2\pi}{3}$ 10. $\tan \frac{\pi}{2}$ 11. $\cos \left(Sin^{-1} \frac{1}{2} \right)$ 12. $Sin^{-1} \left(\sin \frac{7\pi}{6} \right)$

XI. Determine the domain and range.

$$1. \quad y = \sqrt{x - 4}$$

1.
$$y = \sqrt{x-4}$$
 2. $y = \sqrt{x^2-4}$

3.
$$y = \sqrt{4 - x^2}$$

3.
$$y = \sqrt{4 - x^2}$$
 4. $y = \sqrt{x^2 + 4}$

XII. Determine all points of intersection.

1.
$$y = x^2 + 3x - 4$$
 and $y = 5x + 11$

2.
$$y = \cos x$$
 and $y = \sin x$ in the first quadrant

XIII. Solve for x, where x is a real number.

1.
$$x^2 + 3x - 4 = 14$$
 2. $\frac{x^4 - 1}{x^3} = 0$

$$2. \ \frac{x^4 - 1}{x^3} = 0$$

3.
$$(x-5)^2 = 9$$

4.
$$2x^2 + 5x = 8$$

4.
$$2x^2 + 5x = 8$$
 5. $(x+3)(x-3) > 0$ 6. $x^2 - 2x - 15 \le 0$

6.
$$x^2 - 2x - 15 \le 0$$

7.
$$12x^2 = 3x$$

8.
$$\sin 2x = \sin x$$
, $0 \le x \le 2\pi$ 9. $|x-3| < 7$

9.
$$|x-3| < 7$$

10.
$$(x+1)^2(x-2) + (x+1)(x-2)^2 = 0$$
 11. $27^{2x} = 9^{x-3}$

11.
$$27^{2x} = 9^{x-3}$$

12.
$$\log x + \log(x - 3) = 1$$
 13. $e^{3x} = 5$

13.
$$e^{3x} = 5$$

XIV. Graph each. State the domain and range.

1.
$$y = \sin x$$

2.
$$y = \cos x$$

3.
$$y = \tan x$$

$$4. \quad y = x^3 - 2x^2 - 3x$$

5.
$$y = x^2 - 6x + 1$$

4.
$$y = x^3 - 2x^2 - 3x$$
 5. $y = x^2 - 6x + 1$ 6. $y = \frac{x+4}{x-1}$

7.
$$y = \frac{x^2 - 4}{x + 2}$$

8.
$$y = e^x$$

9.
$$y = \sqrt{x}$$

10.
$$y = \sqrt[3]{x}$$

11.
$$y = \ln x$$

12.
$$y = |x+3| - 2$$

$$13. \quad y = \frac{1}{x}$$

14.
$$y = \begin{cases} x^2, & \text{if } x < 0 \\ x + 2, & \text{if } 0 \le x \le 3 \\ 4, & \text{if } x > 3 \end{cases}$$

ANSWER KEY

SECTION I:

$$1. \ \frac{1}{X+1}$$

2.
$$x^2 + 2X + 4$$
 3. $\frac{-1}{X+5}$ 4. $\frac{X-8}{X-4}$

3.
$$\frac{-1}{X+5}$$

4.
$$\frac{X-8}{X-4}$$

SECTION II:

$$\sec^2 x = 1 + \tan^2 x$$

$$\csc^2 x = 1 + \cot^2 x$$

2.
$$\cos^2 x - \sin^2 x$$

$$2\cos^2 x - 1$$

SECTION III:

$$1. \frac{-h}{x(x+h)}$$

2.
$$\frac{x^3}{5}$$

3.
$$\frac{-1}{3(x+3)}$$

1.
$$\frac{-h}{x(x+h)}$$
 2. $\frac{x^3}{5}$ 3. $\frac{-1}{3(x+3)}$ 4. $\frac{x^2+15}{(x-3)^2(x-1)}$

SECTION IV:

$$1. \ Z = \frac{-2x}{5y}$$

1.
$$z = \frac{-2x}{5y}$$
 2. $z = \frac{4x - y^2}{3y - 8}$

SECTION V:

2.
$$30 - \sqrt{2}$$
 3. 4

4.
$$\sqrt{51}$$
 5. $f^{-1} = \{(5,3), (4,2), (7,1)\}$

6.
$$k^{-1} = \sqrt{x-5}, x \ge 5$$

6.
$$k^{-1} = \sqrt{x-5}, x \ge 5$$
 7. $\frac{1}{f(x)} = \left\{ \left(3, \frac{1}{5}\right), \left(2, \frac{1}{4}\right), \left(1, \frac{1}{7}\right) \right\}$ 8. $(kg)(x) = k(x) \cdot g(x) = (x^2 + 5)\sqrt{x-3}$

8.
$$(kg)(x) = k(x) \cdot g(x) = (x^2 + 5)\sqrt{x - 3}$$

SECTION VI:

1.
$$2x + h - 2$$

1.
$$2x + h - 2$$
 2. $x^3 + 3x^2y + 3xy^2 + y^3$ 3. $x^{\frac{5}{2}} + x^4 - x^{\frac{7}{2}}$

3.
$$x^{\frac{5}{2}} + x^4 - x^{\frac{7}{2}}$$

SECTION VII:

1. 15 2.
$$\frac{251}{216}$$

SECTION VIII:

1.
$$\frac{1}{\sqrt{X}}$$
 (SIMPLIFY MEANS WRITE ANOTHER WAY) 2. 3 3. ex 4. 0 5. 7 6. -1 7. -3 8. -ln2

9.
$$x^3$$
 10. $\frac{x^{\frac{4}{3}}y^3}{3}$ 11. 9 12. $20a^{\frac{13}{6}}$ 13. $8a^{\frac{5}{2}}$ 14. $\frac{3(n+1)}{5}$

12.
$$20a^{\frac{13}{6}}$$

13.
$$8a^{\frac{5}{2}}$$

14.
$$\frac{3(n+1)}{5}$$

SECTION IX:

1.
$$y-4=-2(x-3)$$

1.
$$y-4=-2(x-3)$$
 2. $y+3=-\frac{5}{6}(x-1)$ or $y-2=-\frac{5}{6}(x+5)$ 3. $y=2$

4.
$$y-1=\frac{2}{3}(x-5)$$

4.
$$y-1=\frac{2}{3}(x-5)$$
 5. $y-4=\frac{1}{2}(x-3)$

SECTION X:

3.
$$\frac{\sqrt{2}}{2}$$

2. 1 3.
$$\frac{\sqrt{2}}{2}$$
 4. -1 5. $\frac{-\sqrt{3}}{2}$ 6. $\frac{1}{2}$ 7. -1

8.
$$\frac{\sqrt{3}}{3}$$

9.
$$-\sqrt{3}$$

8.
$$\frac{\sqrt{3}}{3}$$
 9. $-\sqrt{3}$ 10. UNDEFINED

11.
$$\frac{\sqrt{3}}{2}$$
 12. $\frac{-\pi}{6}$

12.
$$\frac{-\pi}{6}$$

SECTION XI:

1.
$$domain = [4, \infty)$$
 $range = [0, \infty)$

$$range = [0, \infty]$$

2.
$$d = [2, \infty) \cup (-\infty, -2]$$
 $r = [0, \infty)$

3.
$$d = [-2, 2]$$
 $r = [0, 2]$

4.
$$d = (-\infty, \infty)$$
 $r = [2, \infty)$

$$r = [2, \infty)$$

SECTION XII:

1.
$$(5,36)$$
 $(-3,-4)$ 2. $\left(\frac{\pi}{4},\frac{\sqrt{2}}{2}\right)$

SECTION XIII:

$$1. -6, 3$$

4.
$$\frac{-5 \pm \sqrt{89}}{4}$$

1.
$$-6, 3$$
 2. ± 1 3. $8, 2$ 4. $\frac{-5 \pm \sqrt{89}}{4}$ 5. $(-\infty, -3) \cup (3, \infty)$ 6. $[-3, 5]$ 7. $0, \frac{1}{4}$

8.
$$0, \pi, 2\pi, \frac{\pi}{3} \frac{5\pi}{3}$$

9.
$$(-4, 10)$$
 10. $-1, \frac{1}{2}, 2$

11.
$$\frac{-3}{2}$$

11.
$$\frac{-3}{2}$$
 12. 5 only! 13. $\frac{\ln 5}{3}$

SECTION XIV:

R:
$$[-1,1]$$

2. D: $(-\infty,\infty)$

R:
$$[-1,1]$$

3. D: $\left\{ x : x \neq \frac{(2k+1)\pi}{2} \right\}$

R:
$$(-\infty,\infty)$$

4. D: $(-\infty,\infty)$

R:
$$\left(-\infty,\infty\right)$$

5. D: $(-\infty,\infty)$

R:
$$\left[-8,\infty\right)$$

6. D: $\{x: x \neq 1\}$

$$R: \{y: y \neq 1\}$$

hole @ (-2,-4)

7. D: $\{x: x \neq -2\}$

R: $\{y : y \neq -4\}$

8. D: $\left(-\infty,\infty\right)$

R: $(0,\infty)$

9. D: $[0, \infty)$

R: $[0,\infty)$

10. D: $\left(-\infty,\infty\right)$

R: $(-\infty,\infty)$

11. D: $(0, \infty)$

R: $(-\infty,\infty)$

12. D: $(-\infty,\infty)$

R: $[2,\infty)$

13. D: $\{x : x \neq 0\}$

 $R: \left\{ y : y \neq 0 \right\}$

14. D: $(-\infty,\infty)$

R: $(0,\infty)$