Über beliebige Teilsummen absolut konvergenter Reihen.

Von Hans Hornich in Wien.

Sei $\sum_{j=1}^{\infty} a_j$ eine absolut konvergente Reihe mit reellen Gliedern a_j ; wir fragen nach der Menge aller Zahlen, die sich als Summen von endlich- oder unendlichvielen verschiedenen Gliedern a_j darstellen lassen.

Wir können uns dabei gleich auf den Fall beschränken, daß alle Glieder a_j positiv sind: bezeichnen wir nämlich mit α bzw. β die Summe der positiven bzw. negativen Glieder unserer Reihe, so ist $\alpha+\beta=\sum\limits_{j=1}^{\infty}a_j$; die Menge N' aller Zahlen, die sich als Summen von endlich- oder unendlichvielen Gliedern a_j darstellen lassen, geht nun ersichtlich aus der Menge N aller Zahlen, die sich als Summen endlich- oder unendlichvieler Glieder $|a_j|$ darstellen lassen, einfach durch die Transformation $x'=x+\beta=x+\sum\limits_{j=1}^{\infty}a_j-\alpha$ hervor. Wir brauchen also nur die Reihe $\sum\limits_{j=1}^{\infty}|a_j|$ zu untersuchen.

Wir nehmen gleich alle $a_j > 0$ an und es sei weiter $\sum_{j=1}^{\infty} a_j = 1$. Die Menge N aller Zahlen, die sich als Summe endlich- oder unendlichvieler Zahlen a_j darstellen lassen, liegt dann im Intervall [0, 1].

Wir denken uns die Glieder a_i der Größe nach geordnet: $a_{i+1} \le a_i$ (i = 1, 2, ...) und setzen:

$$\sum_{i=k+1}^{\infty} a_i = \sigma_k \ (k=1, 2, \ldots; \ \sigma_0 = 1).$$

Die Menge N ist abgeschlossen.

Sei p_1 p_2 ... eine konvergente Folge von Zahlen aus N; dabei sei p_i darstellbar in der Form:

$$p_i = a_{j_1^{(i)}} + a_{j_2^{(i)}} + \dots$$
 $(j_1^{(i)} < j_2^{(i)} < \dots)$

und es sei $\lim_{i\to\infty} p_i = p$. Da p=0 in trivialer Weise zu N gehört, können wir gleich p>0 annehmen.

In der Folge der a_1 a_2 ... sei j_1 der erste Index, so daß a_{j_1} in der Darstellung von unendlichvielen p_i vorkommt; einen solchen Index gibt es, da sonst jedes a_i in der Darstellung nur endlichvieler p_k auftreten würde; daraus folgte aber, daß für jedes k sich unendlichviele p_i nur mit Hilfe von a_{k+1} , a_{k+2} , ... darstellen lassen, also $\leq \sigma_k$ sind; also gäbe es beliebig kleine p_i , entgegen der Voraussetzung $p = \lim_{i \to \infty} p_i > 0$. Wir betrachten gleich jene Teilfolge der p_i , bei deren Darstellung a_{j_1} an erster Stelle steht; dadurch werden ersichtlich nur endlichviele p_i ausgeschaltet.

In der Folge a_{j_1+1} a_{j_1+2} ... sei nun j_2 der — wenn vorhandene — erste Index, so daß a_{j_2} in der Darstellung von unendlichvielen p_l auftritt; gibt es einen solchen Index nicht, so tritt jedes auf a_{j_1} folgende Glied nur endlich oftmals auf; dann gibt es aber Zahlen p_i , die beliebig nahe an a_{j_1} liegen und es ist $\lim_{i\to\infty} p_i = p = a_{j_1}$, also p in N enthalten. Gibt es andernfalls einen solchen Index j_2 , so betrachten wir gleich jene Teilfolge der p_i , bei deren Darstellung a_{j_2} stets an zweiter Stelle steht; dadurch werden wieder nur endlichviele p_i ausgeschaltet.

Wir setzen das Verfahren fort; entweder bricht nun dieses nach endlichvielen Schritten ab, in welchem Fall dann p durch endlichviele Glieder a_j darstellbar ist, oder wir erhalten eine unendliche Folge von Indices $j_1 < j_2 < \ldots$; wir setzen dann

$$p' == a_{j_1} + a_{j_2} + \ldots$$

Nun gilt p' = p: denn bei der Bestimmung des Index j_{k+1} wird jene Teilfolge der p_i betrachtet, deren Darstellung mit $a_{j_1} + a_{j_2} + \ldots + a_{j_k}$ beginnt; die Differenz von p' und den Zahlen p_i dieser Teilfolge ist daher sicher $\leq \sigma_{j_k}$; daraus folgt aber gleich $|p' - p| \leq \sigma_{j_k}$ und schließlich p' = p.

Es ist also p in N enthalten und N abgeschlossen.

Die Menge N ist insichdicht, also auch perfekt.

Denn mit jeder Zahl $p = a_{i_1} + a_{i_2} + \ldots$ gehört für jedes i auch entweder die Zahl $p - a_i$ oder die Zahl $p + a_i$ zur Menge N, je nachdem die Zahl i unter den Indices i_1 i_2 ... vorkommt oder nicht. Wegen $a_i \rightarrow 0$ ist also p auch Häufungspunkt von Punkten aus N.

Das Komplement von N in Bezug auf das Intervall $[0\ 1]$ besteht aus höchstens abzählbar vielen offenen Intervallen, deren Innenpunkte

318 H. Hornich,

nicht als Summen von Gliedern a_i darstellbar sind; diese Intervalle sollen hier näher gekennzeichnet werden.

Zunächst bemerken wir, daß mit jeder Zahl p auch 1-p durch die Glieder a_i darstellbar ist: ist nämlich $p = a_{i_1} + a_{i_2} + \ldots$, so ergibt sich 1-p einfach als Summe aller derjenigen a_i , deren Index i unter den i_1 i_2 . . . nicht auftritt. Daraus folgt weiter:

Sind alle Zahlen x des Intervalls $x_0 < x < x_1$ nicht als Summen von a_i darstellbar, so auch alle Zahlen x des Intervalles $1-x_0 > x > 1-x_1$.

Ist für einen Index k $a_k > \sigma_k$, so sind alle Zahlen x mit $a_k > x > \sigma_k$ nicht als Summen von Zahlen a_i darstellbar.

Nach dem obigen sind dann auch alle Zahlen x mit $1-a_k < x < 1-\sigma_k = a_1+a_2+\ldots+a_k$ nicht darstellbar.

Sei also $a_k > x > \sigma_k$; wegen $a_1 \ge a_2 \ge \ldots \ge a_k$ ist also auch $a_1 > x$, $a_2 > x \ldots a_{k-1} > x$; also können die Zahlen $a_1 a_2 \ldots a_k$ in der Darstellung von x jedenfalls nicht vorkommen; andererseits ist die Summe aller restlichen Glieder $\sigma_k = a_{k+1} + a_{k+2} + \ldots < x$; also ist x überhaupt nicht als Summe von Zahlen a_i darstellbar.

Ist für alle Indices $i \le k$ $a_i > \sigma_i$, so sind alle x mit

$$a_{i_1} + a_{i_2} + \ldots + a_{i_r} + a_k > x > a_{i_1} + a_{i_2} + \ldots + a_{i_r} + \sigma_k$$

nicht als Summen von Zahlen a_i darstellbar; dabei sind die $i_1 i_2 \ldots i_r$ r verschiedene Indices zwischen 1 und k—1.

Kommt der Index 1 unter den $i_1 i_2 \dots i_r$ vor, so ist a_1 zur Darstellung von x notwendig: denn

$$1-a_1 = \sigma_1 < a_1 < a_{i_1} + a_{i_2} + \ldots + a_{i_r} + \sigma_k < x.$$

Kommt aber 1 unter den $i_1 i_2 \dots i_r$ nicht vor, so kann a_1 zur Darstellung von x sicher nicht verwendet werden, weil

$$a_1 > \sigma_1 > a_{i_1} + a_{i_2} + \ldots + a_{i_r} + a_k > x.$$

In analoger Weise zeigt man sukzessive für alle Indices $2,\ 3\ldots k-1,\ da{\mathfrak b},\$ wenn sie unter den $i_1\ldots i_r$ vorkommen, die $a_2\ a_3\ldots a_{k-1}$ zur Darstellung von x notwendig sind, und andererseits, da ${\mathfrak b}$ die $a_2\ a_3\ldots a_{k-1}$ zur Darstellung nicht verwendet werden können, wenn die Indices $2,\ 3,\ldots k-1$ nicht unter den $i_1\ i_2\ldots i_r$ vorkommen. Zur Darstellung von x wären also von den Indices $1,\ldots k-1$ nur die Indices $i_1\ i_2\ldots i_r$ möglich und auch notwendig. Es müßte dann aber auch $x-a_{i_1}-a_{i_2}-\ldots -a_{i_r}$ darstellbar sein, und zwar durch die Zahlen $a_k\ a_{k+1}\ldots$; wegen $a_k>x-a_{i_1}-a_{i_2}-\ldots -a_{i_r}> \sigma_k$ ist dies nach obigem aber unmöglich.

Ist für jeden Index k $a_k > \sigma_k$, so enthält N kein Intervall und hat das Maß $\lim_{k \to \infty} 2^k \sigma_k$.

Nach dem obigen Satz enthalten alle Intervalle der Form

(*)
$$a_{i_1} + a_{i_2} + \ldots + a_{i_r} + a_k > x > a_{i_1} + a_{i_2} + \ldots + a_{i_r} + \sigma_k$$
, wo i_1 i_2 \ldots i_r r verschiedene unter den Zahlen 1 bis $k-1$ bedeuten, keine Punkte von N . Wir zeigen zunächst, daß keine zwei dieser Intervalle Punkte gemein haben. Würde die Zahl x den folgenden Ungleichungen genügen:

$$a_{i_1} + a_{i_2} + \dots + a_{i_r} + a_k > x > a_{i_1} + a_{i_2} + \dots + a_{i_r} + \sigma_k$$

 $a_{j_1} + a_{j_2} + \dots + a_{j_{r'}} + a_{j'} > x > a_{j_1} + a_{j_2} + \dots + a_{j_{r'}} + \sigma_{k'}$

 $(i_1 < i_2 < \ldots < i_r < k, j_1 < j_2 < \ldots < j_{r'} < k')$ und sei zunächst $i_1 < j_1,$ so folgt daraus:

 $x > a_{i_1} > \sigma_{i_1} > a_{j_1} + a_{j_2} + \ldots + a_{j_{r'}} + a_{k'} > x$. Die andern Fälle erledigen sich in ganz analoger Weise.

Mit einem festen k gibt es insgesamt 2^{k-1} Intervalle (*) und da jedes dieser Intervalle die Länge $a_k-\sigma_k$ hat, so bilden alle diese zueinander fremden Intervalle für alle k eine offene Menge O mit dem Maß

$$\varphi(0) = \sum_{k=1}^{\infty} 2^{k-1} (a_k - \sigma_k) = \sum_{k=1}^{\infty} 2^{k-1} (\sigma_{k-1} - 2 \sigma_k),$$

welche Reihe sicher konvergieren muß. Die k-te Partialsumme hat den Wert

$$(1-2\sigma_1)+2(\sigma_1-2\sigma_2)+\ldots+2^{k-1}(\sigma_{k-1}-2\sigma_k)=1-2^k\sigma_k$$

so daß die Summe aller angeschriebenen Intervalle das Maß 1— $\lim_{k \to \infty} 2^k \sigma_k$ hat, wobei der angeschriebene Limes existiert.

Man sieht ferner, daß die angegebenen Intervalle (*) in [01] dicht liegen; denn nach Wegnahme aller offenen Intervalle (*) von k=1 bis k=n verbleiben, wie man leicht sich überlegt, vom Intervall [01] insgesamt 2^n zueinander fremde abgeschlossene Intervalle je mit der Länge σ_n von der Art:

$$a_{i_1} + a_{i_2} + \ldots + a_{i_r} + \sigma_n \ge x \ge a_{i_1} + a_{i_2} + \ldots + a_{i_r}$$

 $(i_1 < i_2 < \ldots < i_r \le n)$. Bezeichnet man die Summe dieser Intervalle mit N_n , so ist $N \in N_n$ für alle n und es enthält daher N kein Intervall. Weiter gilt $N_{n+1} \in N_n$ und $N = \lim_{n \to \infty} N_n$ und N hat das Maß $\varphi(N) = \lim_{n \to \infty} 2^k \sigma_k$.

Dafür daß jede Zahl im Intervall [01] als Summe von Zahlen a_i darstellbar ist (daß also N das ganze Intervall [01] erfüllt), ist notwendig und hinreichend, daß für alle k $a_k \leq \sigma_k$ gilt.

Die Notwendigkeit ergibt sich unmittelbar aus dem Vorigen. Daß die Bedingung auch hinreichend ist, ist leicht einzusehen. 1)

Dafür, daß jede Zahl aus N nur auf eine Art als Summe von Zahlen a_i dargestellt werden kann, ist hinreichend, daß für jedes k $a_k > \sigma_k$ gilt.

Gibt es für eine Zahl zwei Darstellungen:

$$p = a_{i_1} + a_{i_2} + \ldots = a_{j_1} + a_{j_2} + \ldots$$

so können wir gleich $i_1 \neq j_1$ annehmen; sei etwa $i_1 < j_1$. Ist nun stets $a_k > \sigma_k$, so ist: $a_{i_1} > \sigma_{i_1} \ge a_{j_1} + a_{j_2} + \ldots = p$, was unmöglich ist.

Allgemein gilt für das lineare Maß der Menge N die Ungleichung: $\varphi(N) \leq \inf 2^k \sigma_k$.

Betrachtet man nämlich die Reihe der Glieder vom k+1-ten an, also $a_{k+1}+a_{k+2}+\ldots$, so kann durch Summen aus Gliedern dieser Reihe höchstens eine Menge vom linearen Maß σ_k dargestellt werden; mit Einschluß der k Glieder $a_1, a_2, \ldots a_k$ ist dann schließlich die Menge N höchstens vom Maß $2^k \sigma_k$.

Ein einfaches Beispiel für die Menge N ergibt sich, wenn man die Reihe $\frac{2}{3} + \frac{2}{9} + \frac{2}{27} + \dots$ betrachtet: hier ist N das bekannte Cantor sche Diskontinuum.

Schließlich sei noch hingewiesen auf den engen Zusammenhang zwischen der Menge N und der Menge A aller Zahlen, welche sich in der Form darstellen lassen: $\sum_{i=1}^{\infty} \varepsilon_i a_i$, wo die ε_i einen der Werte ± 1 annehmen können. Die Punkte von A kann man sich aus den Punkten p von N so entstanden denken, daß die bei der Darstellung von p weggelassenen Glieder a_i mit negativen Vorzeichen hinzugefügt werden; dann entsteht aus p die Zahl p— (1-p)=2p—1 und die Menge A entsteht aus der Menge N durch die Transformation x'=2x-1.

(Eingegangen: 4. VII. 1940.)

¹⁾ Vgl. auch meinen Aufsatz in Monatsh. für Math. u. Phys. 46, 317-320.