

Teenage pregnancies across the United States

Bayesian Statistics course projects

Lu, Radišić, Santamaria

17th February 2021

Short review for our dataset

The dataset contains the pregnancies carried out by teenage mothers over **51** states in the US, for a period of time between **1990-2018**.

Data is present for two age groups of teenage girls:

- 15-17 years old (highschool)
- 18-19 years old (post-highschool)

The **birth rates** are an average counting of how many girls from a sample of 1000 people in that group had a baby for a fixed year in a fixed State.

Lu. Radišić, Santamaria

SUMMARY

- Previous presentation recap
- Spatio-Temporal ST.CARar model
- Conclusion

1. Single state analysis: Missouri

We extracted from a discrete uniform distribution with support S=1,...,51 the State of our analysis and we obtained Missouri.

In order to work with ARMA(p,q) models the process must be stationary and after applying 3^{rd} order differences we were able to reject ADF test's null hypotesis.

1.1 Models tested on Missouri

Model 1:

ARIMA(2,3,3) for two univariate time series with common parameter μ_0 .

$$\begin{split} Y_{t,j}|\mu_0, \phi_j^{(1)}, \phi_j^{(2)}, \beta_j^{(1)}, \beta_j^{(2)}, \beta_j^{(3)}, \sigma_{Y_j}^2 \stackrel{\text{ind}}{\sim} \\ \mathcal{N}(\mu_0 + \phi_j^{(1)}Y_{t-1,j} + \phi_j^{(2)}Y_{t-2,j} + \\ \beta_j^{(1)}\epsilon_{t-1,j} + \beta_j^{(2)}\epsilon_{t-2,j} + \beta_j^{(3)}\epsilon_{t-3,j}, \sigma_{Y_j}^2) \\ \mu_0 \sim \mathcal{N}(0, \sigma_{\mu_0}^2) \\ \phi_j^{(i)} \stackrel{\text{ind}}{\sim} \mathcal{N}(0, \sigma_{\phi_j^{(i)}}^2), \ i = 1, 2 \\ \beta_j^{(i)} \stackrel{\text{ind}}{\sim} \mathcal{N}(0, \sigma_{\beta_j^{(i)}}^2), \ i = 1, 2, 3 \\ \sigma_{Y_j}^2 \stackrel{\text{iid}}{\sim} \mathit{InvGamma}(a_Y, b_Y) \end{split}$$

Model 2:

ARIMA(1,3,0) for two univariate time series with information sharing over the parameters μ_{0j} and ϕ_j .

$$\begin{split} Y_{t,j}|\mu_{0j},\phi_{j},\sigma_{Y_{j}}^{2} &\stackrel{\text{ind}}{\sim} \mathcal{N}(\mu_{0j}+\phi_{j}Y_{t-1,j},\sigma_{Y_{j}}^{2}) \\ \sigma_{Y_{j}}^{2} &\stackrel{\text{iid}}{\sim} \textit{InvGamma}(a_{Y},b_{Y}) \\ \mu_{0j}|\mu,\sigma_{\mu_{0}}^{2} &\stackrel{\text{iid}}{\sim} \mathcal{N}(\mu,\sigma_{\mu_{0}}^{2}) \\ \phi_{j}|\phi,\sigma_{\phi}^{2} &\stackrel{\text{iid}}{\sim} \mathcal{N}(\phi,\sigma_{\phi}^{2}) \\ \mu \sim \mathcal{N}(0,\sigma_{0}^{2}) \\ \sigma_{\mu_{0}}^{2} \sim \textit{InvGamma}(a,b) \\ \phi \sim \mathcal{N}(0,\sigma_{0}^{2}) \\ \sigma_{\phi}^{2} \sim \textit{InvGamma}(a,b) \end{split}$$

$$j = 1, 2$$
 age groups, $t = 1, ..., 23$

DISCARDED!

Bad performance about posterior inference.

i = 1, 2 age groups. t = 1, ..., 23

DISCARDED!

Violating stationarity assumption of AR model.

1.1 Models tested on Missouri

Model 3:

ARIMA(1,3,0) for two univariate time series with common ϕ , random effects on μ_{0i} .

$$\begin{aligned} \mathsf{Y}_{t,j} | \mu_{0j}, \phi, \sigma_{Y_j}^2 & \stackrel{\mathsf{ind}}{\sim} \mathcal{N}(\mu_{0j} + \phi Y_{t-1,j}, \sigma_{Y_j}^2) \\ \sigma_{Y_j}^2 & \stackrel{\mathsf{iid}}{\sim} \mathit{InvGamma}(\mathsf{a}_Y, \mathsf{b}_Y) \\ \mu_{0j} & \stackrel{\mathsf{ind}}{\sim} \mathcal{N}(0, \sigma_{\mu_{0j}}^2) \\ \phi & \sim \mathcal{N}(0, \sigma_{\phi}^2) \\ j &= 1, 2 \text{ age groups, } t = 1, ..., 23 \end{aligned} \end{aligned}$$

Model 4:

ARIMA(1,3,0) for two univariate time series with common μ_0 , random effects on ϕ_i .

$$\begin{split} Y_{t,j}|\mu_0,\phi_j,\sigma_{Y_j}^2 &\stackrel{\text{ind}}{\sim} \textit{N}(\mu_0+\phi_jY_{t-1,j},\sigma_{Y_j}^2) \\ \sigma_{Y_j}^2 &\stackrel{\text{iid}}{\sim} \textit{InvGamma}(a_Y,b_Y) \\ \mu_0 &\sim \textit{N}(0,\sigma_{\mu_0}^2) \\ \phi_j &\stackrel{\text{ind}}{\sim} \textit{N}(0,\sigma_{\phi_j}^2) \end{split}$$

$$j = 1, 2$$
 age groups, $t = 1, ..., 23$

1.1 Models comparisons

Model M_j	WAIC	MSE					
ARIMA(2,3,3)							
Highschool	73.48	0.128					
Post-highschool	104.62	2.798					
ARIMA(1,3,0), both μ_{0j} , ϕ_j rand. eff.							
Highschool	91.59	1.99					
Post-highschool	136.19	5.68					
ARIMA(1,3,0), μ_{0j} rand. eff., common ϕ							
Highschool	91.20	2.78					
Post-highschool	135.94	2.121					
ARIMA(1,3,0), ϕ_j rand. eff., common μ_0							
Highschool	91.25	1.824					
Post-highschool	134.13	1.529					

1.2 Best model for Missouri State

1.2.1 ARIMA(1,3,0) for two univariate time series with common μ_0 , random effects on ϕ_j

$$egin{aligned} Y_{t,j} | \mu_0, \phi_j, \sigma_{Y_j}^2 & \overset{\mathsf{ind}}{\sim} \mathcal{N}(\mu_0 + \phi_j Y_{t-1,j}, \sigma_{Y_j}^2) \\ \sigma_{Y_j}^2 & \overset{\mathsf{iid}}{\sim} \mathit{InvGamma}(a_Y, b_Y) \\ \mu_0 & \sim \mathcal{N}(0, \sigma_{\mu_0}^2) \\ \phi_j & \overset{\mathsf{ind}}{\sim} \mathcal{N}(0, \sigma_{\phi_j}^2) \\ j &= 1, 2 \text{ age groups, } t = 1, .., 23 \end{aligned}$$

Parameters	μ_0	ϕ_1	$\sigma_{Y_1}^2$	ϕ_2	$\sigma_{Y_2}^2$
Posterior mean	0.12	-0.84	3.38	-0.57	16.67

1.2 Best model for Missouri State

1.2.1 Diagnostics and forecasting

1.3 Accuracy of the model: MSE

1.3.1 first half of States

	High.	Post-high.		High.	Post-high.
Alabama	22.312	69.446	Illinois	19.329	49.741
Alaska	26.947	195.22	Indiana	10.359	23.456
Arizona	33.595	55.592	lowa	7.340	42.475
Arkansas	21.922	149.15	Kansas	19.063	64.509
California	8.912	30.393	Kentucky	20.171	49.478
Colorado	17.583	83.072	Louisiana	9.630	193.23
Connecticut	21.565	20.551	Maine	14.846	44.057
Delaware	47.055	95.913	Maryland	5.960	32.591
Dist. of Columbia	476.31	87.026	Massachusetts	11.594	42.709
Florida	23.882	46.929	Michigan	18.613	30.219
Georgia	22.319	67.183	Minnesota	6.510	43.305
Hawaii	73.418	83.770	Mississippi	32.854	67.324
Idaho	25.894	135.13	Montana	23.327	140.24

1.3 Accuracy of the model: MSE

1.3.2 second half of States

	High.	Post-high.		High.	Post-high.
Nebraska	21.038	176.89	Rhode Island	14.326	67.350
Nevada	22.930	94.604	South Carolina	32.776	53.714
New Jersey	18.277	56.274	South Dakota	29.063	248.66
New Hampshire	13.538	44.638	Tennessee	24.034	95.425
New Mexico	19.899	117.45	Texas	28.995	53.297
New York	21.953	19.881	Utah	22.352	100.06
North Carolina	17.187	70.141	Vermont	84.810	64.681
North Dakota	46.369	95.133	Virginia	5.081	37.197
Ohio	9.060	14.974	Washington	26.874	57.546
Oklahoma	19.823	68.813	West Virginia	6.479	61.357
Oregon	7.778	95.090	Wisconsin	13.539	34.520
Pennsylvania	8.741	30.455	Wyoming	23.116	409.58

1.4 Forecasting on other States

1.4.1 smallest MSE

1.4 Forecasting on other States

1.4.2 counter examples

... but why?

• model is trained on Missouri's data

model doesn't take into account spatial informations

 \odot data are transformed using 3^{rd} order differences

1.5 Correlation between States

1.5.1 Highschool group raw data

1.5 Correlation between States

1.5.2 Highschool group transformed data

SUMMARY

- Previous presentation recap
- Spatio-Temporal ST.CARar model
- Comparison and Conclusion

2.1.1 Global Moran's I

$$I=rac{K}{W}rac{\sum_{i}\sum_{j}w_{ij}(y_{i}-ar{y})(y_{j}-ar{y})}{\sum_{i}(y_{i}-ar{y})^{2}},~w_{ij}=1~ ext{if}~i,j$$
 are neighbours, 0 otherwise

Figura: Moran's I shows evidence of strong spatial correlation in Birth rates.

2.1.2 Moran's I

Spatial correlogram for Birth rates among USA states shows that it is reasonable to consider only first-order neighbours, as Moran's I drops when considering higher order neighbours.

2.2 ST.CARar model

$$Y_{kt}|\mu_{kt},
u^2 \stackrel{\mathsf{ind}}{\sim} \mathcal{N}(\mu_{kt},
u^2)$$
 $\mu_{kt} = \beta_0 + \phi_{kt}$
 $\beta_0 \sim \mathcal{N}(\mu_\beta, \sigma_\beta)$
 $u^2 \sim \mathit{Inv} - \mathsf{Gamma}(a, b)$

$$egin{aligned} oldsymbol{\phi}_t | oldsymbol{\phi}_{t-1},
ho_S,
ho_T, au^2 &\sim \mathcal{N}_{49}(
ho_T oldsymbol{\phi}_{t-1}, au^2 \mathbf{Q}(\mathbf{W},
ho_S)^{-1}) \ &\qquad \phi_1 \sim \mathcal{N}_{49}(\mathbf{0}, au^2 \mathbf{Q}(\mathbf{W},
ho_S)^{-1}) \ &\qquad au^2 \sim \mathit{Inv} - \mathit{Gamma}(a, b) \ &\qquad
ho_S,
ho_T \overset{\mathsf{iid}}{\sim} \mathit{Uniform}(0, 1) \ &\qquad \mathbf{Q}(\mathbf{W},
ho_S) =
ho_S[\mathit{diag}(\mathbf{W1}) - \mathbf{W}] + (1 -
ho_S)\mathbf{I} \end{aligned}$$

Where **1** is a 49x1 vector of ones, while **I** is the 49x49 identity matrix. For each State k = 1, ..., 49, with t = 1, ..., 29 and a = 1, b = 0.01.

2.3.3 Posterior inference

Posterior quantities for selected parameters

	Median	2.5%	97.5%	n.effective	Geweke.diag
(Intercept)	22.3147	22.3100	22.3196	2000.0	0.9
$ au^2$	14.7783	13.7520	15.8926	2000.0	0.2
ν^2	0.0064	0.0020	0.0225	346.5	0.2
$ ho_{\mathcal{S}}$	0.9556	0.9307	0.9734	2000.0	-0.4
ρτ	0.9426	0.9247	0.9602	2000.0	-0.8

total: 220000 burnin: 20000 thin: 100 samples: 2000

2.3.1 Posterior inference: traceplots and posterior densities

N = 2000 Bandwidth = 0.001035

2.3.2 Posterior inference: traceplots and posterior densities

2. Spatio-Temporal model

 $2.4.1\ Leave-one-state-out:$ simulating values for an unobserved State

Montana (left) and Missouri (right) observed values of Birth rate reported in blue, simulated values in red while 95% Credible Intervals in grey.

2.4 Spatio-Temporal model

2.4.2 Leave-one-state-out: simulating values for an unobserved State

Texas has higher Birth rate values than what would be expected given its neighbours. It seems to have had a bigger drop in Birth rates after 2010.

Texas' simulated values for Birth rates reported in red, observed values in blue, while 95% Credible Interval in grey.

SUMMARY

- Previous presentation recap
- Spatio-Temporal Bayesian model
- Comparison and Conclusion

3. ST.CARar vs ARIMA(1,3,0)

Predicting last 3 years of Missouri times series

Results when forecasting 2016-2018 with **ST.CARar** are much **worse** than when forecasting with **ARIMA(1,3,0)**.

3.1 Conclusion

Which model is better?

It depends on the goal of the study.

- If the goal is to predict the future values of a given state for which we have previous measures, the ARIMA(1,3,0) model makes better predictions.
- If the goal is to study the overall behaviour in the USA, or to predict
 the values of a state only by observing the measures in other states,
 the ST.CARar model should be used.

REFERENCES

- Lee, D., Rushworth, A., and Napier, G. (2018). Spatio-Temporal Areal Unit Modeling in R with Conditional Autoregressive Priors Using the CARBayesST. Journal of Statistical Software, 84(9), pp. 1–39.
- Centers for Disease Control and Prevention (2018) NCHS U.S. and State Trends on Teen Births, [online], URL https://data.cdc.gov/NCHS/NCHS-U-S-and-State-Trends-on-Teen-Births/v268-sna3/data/. Accessed on October 2020.