முழுப் பதிப்புரிமையுடையது / All Rights Reserved)

MORA E-TAMILS 2020 | Tamil Students, Faculty of Engineering, University of Moratuwa | MORA E-TAMILS 2020 | Tamil Students, Faculty of Engineering, University of Moratuwa | MORA E-TAMILS 2020 | Tamil Students, Faculty of Engineering, University of Moratuwa | MORA E-TAMILS 2020 | Tamil Students, Faculty of Engineering, University of Moratuwa | Moratuw

கல்விப் பொதுத் தராதரப் பத்திர (உயர் தர) முன்னோடிப் பரீட்சை - 2018 General Certificate of Education (Adv. Level) Pilot Examination - 2018

இணைந்த கணிதம் I Combined mathematics I

மூன்று மணித்தியாலயம் Three hours

சுட்டெண் :.....

அறிவுறுத்தல்கள் :

- 💥 இவ்வினாத்தாள் A, B என்னும் இரு பகுதிகளைக் கொண்டுள்ளது.
- * பகுதி A (வினா 1-10), பகுதி B (வினா 11-17) பகுதி A:
- அவிலா வினாக்களுக்கும் விடை எழுதுக. ஒவ்வொரு வினாவுக்கும் விடப்பட்டுள்ள இடத்தில் உமது விடைகளை எழுதுக. தேவைப்படின் மேலதிக தாள்களைப் பயன்படுத்தலாம்.

பகுதி B:

- 💥 ஐந்து வினாக்களுக்கு மாத்திரம் விடை எழுதுக. உமக்கு வழங்கப்படும் தாள்களை இதற்கு பயன்படுத்துக.
- ig* இவ்வினாத்தாளுக்கென வழங்கப்பட்ட நேரமுடிவில் பகுதி f A மேலே இருக்கும்படியாக f A, B ஆகிய **இரண்டு** ப**குதியையும்** ஒன்றாகச் சேர்த்துக் கட்டிய பின்னர் பரீட்சை மேற்பார்வையாளரிடம் கையளிக்க.
- ஆவினாத்தாளின் பகுதி B யை மாத்திரம் பரீட்சை மண்டபத்திலிருந்து வெளியே எடுத்துச் செல்ல அனுமதிக்கப்படும்.

பரீட்சகரின் உபயோகத்திற்கு மாத்திரம்

	(10) இணைந்த கன	ரிதம் I
பகுதி	வினா இல.	புள்ளிகள்
	1	
	2	
	3	
	4	
A	5	
	6	
	7	
	8	
	9	
	10	
	11	
	12	
	13	
В	14	
	15	
	16	
	17	
	மொத்தம்	
	சத வீ தம்	

வினாத்தாள் I	
வினாத்தாள் II	
மொத்தம்	
இறுதிப்புள்ளி	

இறுதிப் புள்ளிகள்

இலக்கத்தில்	
எழுத்தில்	

குறியீட்டெண்கள்

விடைத்தாள் பரீட்சகர் 1	
விடைத்தாள் பரீட்சகர் 2	
புள்ளிகளைப் பரீட்சித்தவர்	
மேற்பார்வை செய்தவர்	

A1/20	18/10/T-1			-2-				
01)	கணிதத் எனக் கா	தொகுத்தறிவுக் ரட்டுக.	கோட்பாட்டைப்	பயன்படுத்தி	எல்லா	$n \in \mathbb{Z}^+$	இற்கும்	$\sum_{r=1}^{n} 2^{r} = 2^{n+1} - 2$
						• • • • • • • • • • • • • • • • • • • •		
••••				•••••	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •		
		•••••				• • • • • • • • •		
••••				•••••				
••••	• • • • • • • • • • • • • • • • • • • •				• • • • • • • • • • • • • • • • • • • •	•••••	• • • • • • • • • • •	
						• • • • • • • • • • • • • • • • • • • •		
02)	சமனிலி	$\left \frac{2x+3}{x-1} \right < 1 $	திருப்தியாக்கும் $\it x$	இன் எல்லா ெ)மய்ப் பெį	றுமானங்	களின் தெ	தாடையைக் காண்க.
				• • • • • • • • • • • • • • • • • • • •				
••••				•••••	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •		
		•••••				• • • • • • • • •		
••••								
						• • • • • • • • • • • • • • • • • • • •		
						• • • • • • • • • •		
						• • • • • • • • • • • • • • • • • • • •		

<u> Al/20</u>	/2018/10/T-1 -3-	
03)	$ z + z-4 =6$ ஆகுமாறு z இன் ஒழுக்கு $\frac{(x-2)^2}{9}$	$\frac{y^2}{5} + \frac{y^2}{5} = 1$ எனக் காட்டுக.
••••		
04)	4) BIGGBOSS என்னும் சொல்லின் எல்லா எமு	ழத்துக்களையும் பயன்படுத்தி ஆக்கத்தக்க
0.,		இவ்வொழுங்கமைப்புக்களில் எத்தனையில் IO
••••		
• • • • •		

<u>Al/201</u>	8/10/7	Γ-1			-4-
05)			$\frac{s(1-\cos x^4)}{x^4}$	$\frac{x}{8} = \frac{1}{8}$	[– எனக் காட்டுக. }
06) 6	വണെ	யி <i>y</i> = <i>x</i>	$arkappa^2$, நேர்சே	காடுகள்	ர் $y\!=\!x\!+\!2,y\!=\!0$ ஆகியவற்றால் உருவாகும் உருவத்தின் பரப்பைக் காண்க
••••	• • • • • • • • • • • • • • • • • • • •				

$7) x = 3e^{2t}$	-t, y = e	-2t	ஆகாயவறா	, _,	~			உள்ள செவ்வ	011001
படித்திறன்	$\sin -\frac{1}{2}$ ஆ	தம். இங்கு	t ஒரு பொ	ரமானம்.	P ஐ ඉத்த	, <i>t</i> யின் டெ	<u>ற</u> ுமானத்தை	தக் காண்க; உ	மது
விடையை	் வடிவம்	$t = \ln k$	பில் தருக;	இங்கு k ϵ	ஒரு மாறிலி				
			• • • • • • • • • • • • • • • • • • • •						
•••••						• • • • • • • • • • • • • • • • • • • •			
	••••••	••••••				• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •		
அச்சுக்க	ள் இரண்	டையும் தெ	தாடுகின்றத	து. S இவ்	ா சமன்பா		ண்க. அத்த	. S ஆனது <i>x</i> , புடன் நேர்கோ(ம் காண்க.	
அச்சுக்க	ள் இரண்	டையும் தெ	தாடுகின்றத	து. S இவ்	ா சமன்பா	ட்டைக் கா	ண்க. அத்த	ு∟ன் நேர்கோ(
அச்சுக்க	ள் இரண்	டையும் தெ	தாடுகின்றத	து. S இவ்	ா சமன்பா	ட்டைக் கா	ண்க. அத்த	ு∟ன் நேர்கோ(
அச்சுக்க	ள் இரண்	டையும் தெ	தாடுகின்றத	து. S இவ்	ா சமன்பா	ட்டைக் கா	ண்க. அத்த	ு∟ன் நேர்கோ(
அச்சுக்க	ள் இரண்	டையும் தெ	தாடுகின்றத	து. S இவ்	ா சமன்பா	ட்டைக் கா	ண்க. அத்த	ு∟ன் நேர்கோ(
அச்சுக்க	ள் இரண்	டையும் தெ	தாடுகின்றத	து. S இவ்	ா சமன்பா	ட்டைக் கா	ண்க. அத்த	ு∟ன் நேர்கோ(
அச்சுக்க	ள் இரண்	டையும் தெ	தாடுகின்றத	து. S இவ்	ா சமன்பா	ட்டைக் கா	ண்க. அத்த	ு∟ன் நேர்கோ(
அச்சுக்க	ள் இரண்	டையும் தெ	தாடுகின்றத	து. S இவ்	ா சமன்பா	ட்டைக் கா	ண்க. அத்த	ு∟ன் நேர்கோ(
அச்சுக்க	ள் இரண்	டையும் தெ	தாடுகின்றத	து. S இவ்	ா சமன்பா	ட்டைக் கா	ண்க. அத்த	ு∟ன் நேர்கோ(
அச்சுக்க	ள் இரண்	டையும் தெ	தாடுகின்றத	து. S இவ்	ா சமன்பா	ட்டைக் கா	ண்க. அத்த	ு∟ன் நேர்கோ(
அச்சுக்க	ள் இரண்	டையும் தெ	தாடுகின்றத	து. S இவ்	ா சமன்பா	ட்டைக் கா	ண்க. அத்த	ு∟ன் நேர்கோ(
அச்சுக்க	ள் இரண்	டையும் தெ	தாடுகின்றத	து. S இவ்	ா சமன்பா	ட்டைக் கா	ண்க. அத்த	ு∟ன் நேர்கோ(
அச்சுக்க	ள் இரண்	டையும் தெ	தாடுகின்றத	து. S இவ்	ா சமன்பா	ட்டைக் கா	ண்க. அத்த	ு∟ன் நேர்கோ(
அச்சுக்க	ள் இரண்	டையும் தெ	தாடுகின்றத	து. S இவ்	ா சமன்பா	ட்டைக் கா	ண்க. அத்த	ு∟ன் நேர்கோ(

Al/2018/10	Г-1 -6-	
09) மை	ம் $\left(3,-1 ight)$ ஐ உடைய வட்டமானது நேர்கோடு $\left(2x-5y+18=0 ight)$ ஐ $\left(A,B ight)$ இல் இடை வெட்டுகி $\left(a+b^{2} ight)$	ன்றது
AB	$\epsilon 6$ அலகு எனின் அவ்வட்டத்தின் சமன்பாட்டைக் காண்க.	
		• • • • • •
		• • • • • •
		• • • • • •
		• • • • • •
		•••••
		•••••
	_	
10) si	$x - \cos^{-1} x = \frac{\pi}{6}$ ஐத் தீர்க்க.	
	······································	
		• • • • • •
		• • • • • •

ழழுப் பதிப்புரிமையுடையது / All Rights Reserved]

போற்பேறு பக்களைக்கழக போறியில் நடக்கால் சொற்பெற்ற பக்களைக்கழக போறியில் பக்களைக்கழக போறியில் நடக்கால் பக்களைக்கழக போறியில் நடக்காலக்கழக போறியில் பக்களைக்கழக பெறியில் பக்களைக்கழக்கில் பக்களைக்கழக்கில் பக்களைக்கு பக்களைக்கு பெறியில் பக்களைக்கு பெறியில் பக்களைக்கு பெறியில் பக்களைக்கு பெறியில் பக்களைக்கு பெறியில் பக்களைக்கு பெறியில் பக்களைக்கு பக்களைக்கு பெறியில் பக்களைக்கு பக்களைக்கு பக்கள் பக்கியில் பக்களைக்கு பெறியில் பக்களைக்கு பக்கியில் பக்களைக்கு பக்கியில் பக்களைக்கு பக்கியில் பக்களைக்கு பக்கியில் பக்களைக்கு பக்கியில் பக்களைக்கில் பக்கியில் பக்களைக்கியில் பக்களைக்கியில் பக்களைக்கியில் பக்களைக்கியில் பக்கியில் பக்

கல்விப் பொதுத் தராதரப் பத்திர (உயர் தர) முன்னோடிப் பரீட்சை - 2018 General Certificate of Education (Adv. Level) Pilot Examination - 2018

இணைந்த கணிதம் I Combined mathematics I

பகுதி B

ஐந்து வினாக்களிற்கு மட்டும் விடை தருக.

11) a. f(x) என்பது $f(x) = ax^2 + bx + c$ என்னும் வடிவமுடைய ஓர் இருபடிச் சார்பு எனக் கொள்வோம்; இங்கு a,b,c என்பன மெய் மாறிலியும், $a \neq 0$ உம் ஆகும். $\left(x + \frac{b}{2a}\right)^2 = \frac{b^2 - 4ac}{4a^2} + \frac{f(x)}{a}$ எனக் காட்டுக. **இதிலிருந்து** இருபடிச் சமன்பாடு $ax^2 + bx + c = 0$ ஆனது மெய் மூலங்களைக் கொண்டிருக்க $b^2 - 4ac \geq 0$ என உய்த்தறிக.

 $p\geq q$ ஆக **இருந்தால் - இருந்தால்** மாத்திரம் இருபடிச் சமன்பாடு $qx^2-2p\sqrt{p}x+p^2=0$ ஆனது மெய் மூலங்களைக் கொண்டிருக்கும் எனக் காட்டுக. இங்கு $p,q\in\mathbb{R}$.

 \mathbf{b} . $f(x) = ax^4 + x^3 - x^2 - x - b$ எனக் கொள்வோம். இங்கு a,b ஆகியன மெய் மாறிலிகள்.

(x-1) ஆனது f(x)இன் ஒரு காரணி எனவும் f(x) ஆனது (x-2)இனால் வகுக்கப்படும் போது மீதி 33 எனவும் தரப்பட்டுள்ளது. a,b ஆகியவற்றின் பெறுமானங்களைக் காண்க.

(x+1) உம் f(x) இன் ஒரு காரணியெனக் காட்டுக.

f(x)ஐ இரு ஏகபரிமானக் காரணிகளினதும் எல்லா $x\in\mathbb{R}$ இற்கும் நேரான ஓர் இருபடிக் காரணியினதும் ஒரு பெருக்கமாக எடுத்துரைக்க.

 $m{12}$ **a.** x>0 இற்கு $ig(10+3xig)^{15}$ இன் ஈருறுப்பு விரிவைக் கருதுக.

மேற்குறித்த விரிவில் (r+1) ஆவது உறுப்பு T_{r+1} எனக் கொள்வோம். இங்கு r=1,2,3.....,14,15

$$\frac{T_{r+1}}{T_r} = \frac{3(16-r)}{10r}x$$
 எனக் காட்டுக.

 T_9 மிகப் பெரிய உறுப்பாக இருப்பதற்கு x இன் வீச்சு $\frac{10}{3} < x < \frac{30}{7}$ எனக் காட்டுக.

இதிலிருந்து x=4 ஆகும் போது $\left(10+3x\right)^{15}$ இன் விரிவில் மிகப்பெரிய உறுப்பை **உய்த்தறிக.**

 ${f b.}$ $r\in \mathbb{Z}^+$ இற்கு $f\left(r
ight)=rac{r+a}{r^2}$ எனக் கொள்வோம்; இங்கு $a\in \mathbb{R}$.

 $r\in\mathbb{Z}^+$ இற்கு $f\left(r
ight)-f\left(r+1
ight)=rac{r^2+3r+1}{r^2\left(r+1
ight)^2}$ ஆக இருக்கத்தக்கதாக a இன் பெறுமானத்தைக் காண்க.

ஒரு முடிவில் தொடரின் r ஆவது உறுப்பு $U_r=rac{r^2+3r+1}{r^2\left(r+1
ight)^2}$ எனின் $\sum_{r=1}^n U_r$ ஐக் காண்க. $\sum_{r=1}^\infty U_r$

ஒருங்குகிறதா? உமது விடையை நியாயப்படுத்துக.

$$egin{aligned} egin{aligned} egin{aligned} egin{aligned} -1 & 0 & 0 \ 1 & 2 & 1 \ -2 & -3 & -2 \end{aligned} \end{aligned}$$
 எனக் கொள்வோம்.

 ${f A}^2-{f I}$ ஐக் கண்டு ${f A}\Big({f A}^2-{f I}\Big)={f I}-{f A}^2$ எனக் காட்டுக; இங்கு ${f I}$ ஆனது வரிசை 3 இன் அலகுத் தாயமாகும்.

இதிலிருந்து, ${f A}^{-1}$ ஐக் காண்க.

 $\mathbf{A}\mathbf{B} = \mathbf{I} + 2\mathbf{A}$ ஆக இருக்கத்தக்கதாக தாயம் \mathbf{B} ஐயும் காண்க.

b.ஆகண் வரிப்படத்தில் உள்ள P_1,P_2 என்னும் இரு புள்ளிகள் முறையே z_1,z_2 என்னும் சிக்கலெண்களை வகை குறிக்கின்றன. $\left|z_1-z_2\right|=P_1P_2$ எனக் காட்டுக.

முக்கோணி OP_1P_2 ஐக் கருதுவதன் மூலம் $\left|z_1-z_2\right|\geq \left\|z_1\right|-\left|z_2\right\|$ எனக் காட்டுக.

இங்கு Oஆனது ஆகண் தளத்தில் உற்பத்தியாகும்.

 $|z-2+i| \leq 2$ ஆகுமாறு z ஆனது மாறும் சிக்கலெண்ணாயிருக்கையில் மேலுள்ள பேறைப் பயன்படுத்தி $\sqrt{5}-2 \leq |z| \leq \sqrt{5}+2$ என உ**ய்த்தறிக**. z மாறும்போது ஆகண் தளத்தில் $|z-2+i| \leq 2$ ஆகுமாறு பிரதேசம் S ஐ நிழற்றி $\sqrt{5}-2 \leq |z| \leq \sqrt{5}+2$ எனக் காட்டுக.

14) a. $x \neq -1,2$ இற்கு $f(x) = \frac{x^2}{(x+1)(x-2)}$ எனக் கொள்வோம்.

 $x \neq -1,2$ இற்கு f(x) இன் பெறுதி f'(x) ஆனது $f'(x) = -\frac{x(4+x)}{(x+1)^2(x-2)^2}$ இனால் தரப்படுகிறதெனக் காட்டுக. அணுகுகோடுகளையும் திரும்பல் புள்ளிகளையும் காட்டி y = f(x) இன் வரைபை பரும்படியாக வரைக. வரைபைப் பயன்படுத்திச் சமனிலி $\frac{x^2}{(x+1)(x-2)} \leq 0$ ஐத் தீர்க்க.

b. தரப்பட்டுள்ள நீளம் 36 மீற்றர் ஐ உடைய ஒரு கம்பி இரு பகுதிகளாக வெட்டப்பட்டுள்ளது. ஒரு பகுதி சமபக்க முக்கோண வடிவமாகவும் மற்றைய பகுதி சதுர $h \ Vh \ VH$ _வளைக்கப்பட்டும் உள்ளன சமபக்க முக்கோணியினதும் சதுரத்தினதும் பரப்பளவுகளின் கூட்டுத்தொகை A(x) ஆனது

$$A(x) = x^2 + \frac{4\sqrt{3}}{9} (9-x)^2$$
 சதுர அலகுகளால் தரப்படுகின்றது எனக் காட்டுக;

இங்கு 4x, (0 < x < 9) ஆனது சதுர வடிவமாக வளைக்கப்பட்ட கம்பியின் பகுதியின் நீளமாகும்.

இதிலிருந்து பரப்பளவு A(x) இழிவாகும் போது வெட்டப்பட்ட கம்பியின் இரு பகுதியினதும் நீளங்கள்

$$\left(\frac{324}{9+4\sqrt{3}}\right)$$
, $\left(\frac{144\sqrt{3}}{9+4\sqrt{3}}\right)$ மீற்றர் எனக் காட்டுக.

$$oxed{15}$$
 a. பகுதிகளாகத் தொகையிடலைப் பயன்படுத்தி $\int rac{1}{x^2} \ln \left(1 + x^2
ight) \mathrm{d} x$ ஐக் காண்க.

b.
$$\frac{\mathrm{d}}{\mathrm{d}x} \left(x^{n-1} \sqrt{\left(16 - x^2\right)} \right) = \frac{16 \left(n - 1 \right) x^{n-2}}{\sqrt{\left(16 - x^2\right)}} - \frac{n x^n}{\sqrt{\left(16 - x^2\right)}}$$
 எனக் காட்டுக.

இதிலிருந்து
$$\int\limits_{0}^{2} \frac{x^{2}}{\sqrt{\left(16-x^{2}\right)}} \, \mathrm{d}x$$
 ஐக் காண்க.

$$\mathbf{c.} \quad \frac{x^3 + 3x^2 + 8x + 26}{(x+1)(x^2+9)}$$
 ஐ வடிவம் $a + \frac{b}{(x+1)} + \frac{cx+d}{(x^2+9)}$ இல் எடுத்துரைக்க.

இங்கு a,b,c,d என்பன காணப்பட வேண்டிய மாறிலிகள் ஆகும்.

$$\int\limits_{0}^{3} \frac{x^{3} + 3x^{2} + 8x + 26}{(x+1)(x^{2}+9)} \, \mathrm{d}x = 3 + 4 \ln 2 - \frac{\pi}{12}$$
 எனக் காட்டுக.

16)a. $c \neq 0$ எனின் உற்பத்தியானது நேர்கோடு ax + by + c = 0மீது இருப்பதில்லை எனக் காட்டுக.

O ஆனது உற்பத்தியாக இருக்கையில் சதுரம் OABC யின் ஓர் மூலைவிட்டம் நேர்கோடு ax+by+c=0ஆகும். இங்கு c
eq 0, a
eq b.

இச்சதுரத்தின் நான்கு பக்கங்களினதும் சமன்பாடுகள்,
$$y=\left(\frac{b-a}{b+a}\right)x, y=\left(\frac{b+a}{a-b}\right)x,$$

$$y + \frac{2bc}{a^2 + b^2} = \left(\frac{b + a}{a - b}\right)\left(x + \frac{2ac}{a^2 + b^2}\right), y + \frac{2bc}{a^2 + b^2} = \left(\frac{b - a}{a + b}\right)\left(x + \frac{2ac}{a^2 + b^2}\right)$$
எனக் காட்டுக.

இச் சதுரத்தின் பரப்பு
$$\frac{2c^2}{a^2+b^2}$$
 எனக் காட்டுக.

b. $r^2 \left(m^2 + 1 \right) = \left(q - mp - c \right)^2$ ஆக **இருந்தால்** - **இருந்தால்** மாத்திரம் நேர்கோடு y = mx + c ஆனது வட்டம் $\left(x - p \right)^2 + \left(y - q \right)^2 = r^2$ ஐத் தொடுகிறதனக் காட்டுக.

 $k\in\mathbb{R}$ எனக் கொள்வோம். நேர்கோடு x+y=k ஆனது வட்டம் $x^2+y^2-4x-2y-13=0$ ஐத் தொடுகிறது எனத் தரப்பட்டுள்ளது. k இன் இரு பெறுமானங்களையும் காண்க.

17) **a.** சமன்பாடு
$$8\sin x = \frac{\sqrt{3}}{\cos x} + \frac{1}{\sin x}$$
 இன் பொதுத்தீர்வைக் காண்க.

 ${f b}$. ஒரு முக்கோணி ABC யிற்கு வழக்கமான குறிப்பீட்டில்

$$\frac{\cos^2\left(\frac{B-C}{2}\right)}{\left(b+c\right)^2} + \frac{\sin^2\left(\frac{B-C}{2}\right)}{\left(b-c\right)^2} = \frac{1}{a^2}$$
 எனக் காட்டுக.

 \mathbf{c} . $0 \le \theta \le 2\pi$ இற்கு

- $(\mathbf{i})\sin\theta=0$ ஆகுமாறு இன் தீர்வுகளை எழுதுக.
- $(\mathbf{ii})\sin 5 heta=0$ ஆகுமாறு இன் தீர்வுகளை எழுதுக.

 $\sin 5\theta = \sin \left(3\theta + 2\theta\right)$ ஐக் கருதி $\sin 5\theta = \sin \theta \left(16\sin^4\theta - 20\sin^2\theta + 5\right)$ எனக் காட்டுக.

மேலே உள்ள முடிவுகளை A i \U Y \Rightarrow f_X I \@ $16x^4 - 20x^2 + 5 = 0$ இன் தீர்வுகள்

$$\sin\left(\frac{\pi}{5}\right), \sin\left(\frac{2\pi}{5}\right), \sin\left(\frac{6\pi}{5}\right), \sin\left(\frac{7\pi}{5}\right)$$
 என உய்த்தறிக.

 $y=x^2$ எனப் பிரதியிட்டு சமன்பாடு $16y^2-20y+5=0$ இன் மூலங்கள் $\sin^2\left(\frac{\pi}{5}\right),\sin^2\left(\frac{2\pi}{5}\right)$ என உய்த்தறிக.

இதிலிருந்து
$$\sin\left(\frac{\pi}{5}\right)\sin\left(\frac{2\pi}{5}\right)=\frac{\sqrt{5}}{4}$$
 எனவும் $\cos\left(\frac{2\pi}{5}\right)=\frac{\sqrt{5}-1}{4}$ எனவும் காட்டுக.

* END OF QUESTIONS *

முழுப் பதிப்புரிமையுடையது / All Rights Reserved]

Correction and Lorentz Corrections of Engineering. University of Moratuwal Notice Leaves of Moratuwal

கல்விப் பொதுத் தராதரப் பத்திர (உயர் தர) முன்னோடிப் பரீட்சை - 2018 General Certificate of Education (Adv. Level) Pilot Examination - 2018

இணைந்த கணிதம் II Combined mathematics II

மூன்று மணித்தியாலம் Three hours

சுட்டெண் :.....

அறிவுறுத்தல்கள் :

- 💥 இவ்வினாத்தாள் A, B என்னும் இரு பகுதிகளைக் கொண்டுள்ளது.
- * பகுதி A (வினா 1-10), பகுதி B (வினா 11-17) பகுதி A:
- அவல்லா வினாக்களுக்கும் விடை எழுதுக. ஓவ்வொரு வினாவுக்கும் விடப்பட்டுள்ள இடத்தில் உமது விடைகளை எழுதுக. தேவைப்படின் மேலதிக தாள்களைப் பயன்படுத்தலாம்.

பகுதி B:

- 💥 ஐந்து வினாக்களுக்கு மாத்திரம் விடை எழுதுக. உமக்கு வழங்கப்படும் தாள்களை இதற்கு பயன்படுத்துக.
- இவ்வினாத்தாளுக்கென வழங்கப்பட்ட நேரமுடிவில் பகுதி A மேலே இருக்கும்படியாக A, B ஆகிய இரண்டு பகுதியையும் ஒன்றாகச் சேர்த்துக் கட்டிய பின்னர் பரீட்சை மேற்பார்வையாளரிடம் கையளிக்க.
- ஆவினாத்தாளின் பகுதி B யை மாத்திரம் பரீட்சை மண்டபத்திலிருந்து வெளியே எடுத்துச் செல்ல அனுமதிக்கப்படும்.
- ※ இவ் வினாத்தாளில் புவியீர்ப்பு A i ? @Zm\X > g ž X \m/: kdZ[[î \ @g ø > "

பரீட்சகரின் உபயோகத்திற்கு மாத்திரம்

	(10) இணைந்த கல	A 21 MAY 1100
பகுதி	வினா இல.	புள்ளிகள்
ļ	1	
	2	
	3	
	4	
Α	5	
60000	6	
Ī	7	
Ī	8)
Ī	9	
1	10	
	11	
Ì	12	
Ì	13	
В	14	
Ì	15	
İ	16	
İ	17	
1	மொத்தம்	
1	ச தவீதம்	

வினாத்தாள் I	
வினாத்தாள் II	
மொத்தம்	
இறுதிப்புள்ளி	

இறுதிப் புள்ளிகள்

இலக்கத்தில்	
எழுத்தில்	

குறியீட்டெண்கள்

விடைத்தாள் பரீட்சகர் 1	
விடைத்தாள் பரீட்சகர் 2	
புள்ளிகளைப் பரீட்சித்தவர்	
மேற்பார்வை செய்தவர்	

Al/2018/10/T-11		-2-
$oxed{01}$ ஒரு பொருளானது O என் V வேகத்தை அடைந்த போது வேகத்தை காண்க	தும் O ஐ நோக்கி $lpha$:	ரான ஆர்முடுகல் eta உடன் ஓய்விலிருந்து புறப்படுகிறது. அது உடன் அமர்முடுகின்றது. அப்பொருளானது O வைக் கடக்கும்
$m{02}ig) P$ எனும் ஒரு துணி $\dot{x}^2 = k^2 \left(A^2 - x^2 ight)$ ஐத் எனக் காட்டி இதன் வீச்ச	திருப்தி செய்கிறது எனி	புள்ளியிலிருந்து x தூரத்தில் இருக்கும் போது சமன்பாடு ன், இத்துணிக்கையின் இயக்கம் எளிமை இசை இயக்கம் ங்கு k,A மாறிலிகள்.

05)	18/10/T-11				-4-					
,	உற்பத்தி O	: kித்து <i>A</i> ,	<i>B</i> யின் தா	னைக் காவிக 2	ள் முறையே	ப a,b ஆகு —	தம். இங்	த a = 1, b =	3, <i>AÔB</i> =	π 3 ஆகும்.
	$\frac{\sqrt{3}}{9}(3\mathbf{a}-2\mathbf{b})$) = 1 எனக்	காட்டுக.	$\frac{\sqrt{3}}{9}(3a-$	-2 b) ஆ€	னது <i>OA</i>	இற்கு	செங்குத்தான	ா அலகுக்∉	காவி எனக்
	காட்டுக.									
• • • • •										
		• • • • • • • • • • • • • • • • • • • •						• • • • • • • • • • • • • • • • • • • •		
										• • • • • • • • • • • • • • • • • • • •
					•••••					
• • • • •		• • • • • • • • • • • • • • • • • • • •			• • • • • • • • • • • • • • • • • • • •			•••••		•••••
			• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	•••••	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •			•••••
	• • • • • • • • • • • • • • • • • • • •									•••••
••••	• • • • • • • • • • • • • • • • • • • •		• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	•••••			••••••	• • • • • • • • • • • • • • • • • • • •	
••••			• • • • • • • • • • • • • • • • • • • •		•••••	• • • • • • • • • • •				
••••										
06)	ஆரை <i>r</i> ஐ	உடைய செ	பெல்லிய ஒ	ுப்பமான ஆ	அரைக்கோ	ாக்கிண்ண	ம் அத	ன் ഖിണിம்பு	ஆகவும் பே	மலேயும்
)								நீளம் $l(2r <$		
	ஓர் ஒப்பமான	ர சீர்க்கோல்	v AB அ	தன் முை	ன A கி	ண்ணத்தி	ன் உள்	ரமேற்பரப்பிலுப <u>்</u>	் வகன் எ	ஒருபுள்ளி C
	விளிம்புடன்	தொடுகைய ,	பில் இருக்க <u>ு</u>	தமாறும் ஒய்	விலி ருக்கி				, al a., ,	
	ஆக்கினால் co		1/ 1 \2	•	0	றது. நாப்ட	<u>க</u> ்தில் ே	கால் கிடையுட	-	് $ heta$ ബെ
	Ü	$\cos\theta = \frac{t}{16r} +$	$\sqrt{\left(\frac{l}{16r}\right)^2} +$	எனச்	க் காட்டுக.	றது. நாப்ட	த்தில் ே	கால் கிடையு∟	-	heta ബെ
••••		$\cos\theta = \frac{t}{16r} + \frac{t}{16r}$	$\sqrt{\left(\frac{l}{16r}\right)^2} + \dots$	<u>1</u> எனச்		றது. நாப்ட	பத்தில் ே 	கால் கிடையுட	-	heta ബെ
••••		$\cos \theta = \frac{\iota}{16r} + \frac{\iota}{16r} $	$\sqrt{\left(\frac{l}{16r}\right)^2} + \dots$			றது. நாப்ட 	<u>பத்</u> தில் ே	கால் கிடையுட	-	heta ബെ
		$\cos\theta = \frac{t}{16r} +$	$\sqrt{\left(\frac{l}{16r}\right)^2} + \dots$	1/2 etents		றது. நாப்ட 	பத்தில் ே 	கால் கிடையுட	-	ப் θ வை
		$\cos\theta = \frac{t}{16r} +$	$\sqrt{\left(\frac{l}{16r}\right)^2} + \cdots$	1/2 etent		றது. நாப்ட 		கால் கிடையுட	-	ற் <i>θ</i> வை
		$\cos\theta = \frac{t}{16r} +$	$\sqrt{\left(\frac{l}{16r}\right)^2} + \cdots$	1/2 61601 E		றது. நாப்ட		கால் கிடையுட	-	ற் <i>θ</i> வை
		$\cos\theta = \frac{t}{16r} +$	$\sqrt{\left(\frac{l}{16r}\right)^2} +$	1/2 GIGHT		றது. நாப்ட		கால் கிடையுட	-	ற <i>θ</i> வை
		$\cos\theta = \frac{t}{16r} +$	$\sqrt{\left(\frac{l}{16r}\right)^2} +$	1/2 61601 É		றது. நாப்ட		கால் கிடையுட	-	ற θ வை
		$\cos\theta = \frac{t}{16r} + \frac{t}{16r}$	$\sqrt{\left(\frac{l}{16r}\right)^2} +$	1/2 GIGHT &		றது. நாப்ட		கால் கிடையுட	-	ப் θ வை
		$\cos\theta = \frac{t}{16r} +$	$\sqrt{\left(\frac{l}{16r}\right)^2} + \frac{l}{16r}$	1/2 GIGGT &		றது. நாப்ட		கால் கிடையுட	-	ற் <i>θ</i> வை
		$\cos\theta = \frac{t}{16r} + \frac{t}{16r}$	$\sqrt{\left(\frac{l}{16r}\right)^2}$ +	1/2 61601 É		றது. நாப்ட		கால் கிடையுட	-	ப் θ வை
		$\cos\theta = \frac{t}{16r} + \frac{t}{16r}$	$\sqrt{\left(\frac{l}{16r}\right)^2} + \frac{l}{16r}$	1/2 61601 É		றது. நாப்ட		கால் கிடையுட	-	ற் <i>θ</i> வை
		$\cos\theta = \frac{t}{16r} +$	$\sqrt{\left(\frac{l}{16r}\right)^2} +$	1/2 61601 É		றது. நாப்ட		கால் கிடையுட	-	ற <i>θ</i> வை
		$\cos\theta = \frac{t}{16r} +$	$\sqrt{\left(\frac{l}{16r}\right)^2} +$	1/2 GIGGT &		றது. நாப்ட		கால் கிடையுட	-	ற் <i>θ</i> வை

முழுப் பதிப்புரிமையுடையது / All Rights Reserved]

KIORA E-TAMILS 2020 | Tamil Students, Faculty of Engineering, University of Moratuwa | MORA E-TAMILS 2020 | Tamil Students, Faculty of Engineering, University of Moratuwa | MORA E-TAMILS 2020 | Tamil Students, Faculty of Engineering, University of Moratuwa | MORA E-TAMILS 2020 | Tamil Students, Subject of Engineering, University of Moratuwa | MORA E-TAMILS 2020 | Tamil Students, Engineering, University of Moratuwa | MORA E-TAMILS 2020 | Tamil Students, Enculty of Engineering, University of Moratuwa | MORA E-TAMILS 2020 | Tamil Students, Enculty of Engineering, University of Moratuwa | MORA E-TAMILS 2020 | Tamil Students, Enculty of Engineering, University of Moratuwa | MORA E-TAMILS 2020 | Tamil Students, Enculty of Engineering, University of Moratuwa | MORA E-TAMILS 2020 | Tamil Students, Enculty of Engineering, University of Moratuwa | MORA E-TAMILS 2020 | Tamil Students, Enculty of Engineering, University of Moratuwa | MORA E-TAMILS 2020 | Tamil Students, Enculty of Engineering, University of Moratuwa | MORA E-TAMILS 2020 | Tamil Students, Enculty of Engineering, University of Moratuwa | MORA E-TAMILS 2020 | Tamil Students, Enculty of Engineering, University of Moratuwa | MORA E-TAMILS 2020 | Tamil Students, Enculty of Engineering, University of Moratuwa | MORA E-TAMILS 2020 | Tamil Students, Enculty of Engineering, University of Moratuwa | MORA E-TAMILS 2020 | Tamil Students, Enculty of Engineering, University of Moratuwa | MORA E-TAMILS 2020 | Tamil Students, Enculty of Engineering, University of Moratuwa | MORA E-TAMILS 2020 | Tamil Students, Enculty of Engineering, University of Moratuwa | MORA E-TAMILS 2020 | Tamil Students, Enculty of Engineering, University of Moratuwa | MORA E-TAMILS 2020 | Tamil Students, Enculty of Engineering, University of Moratuwa | MORA E-TAMILS 2020 | Tamil Students, Engineering, University of Moratuwa | MORA E-TAMILS 2020 | Tamil Students, Engineering, University of Moratuwa | MORA E-TAMILS 2020 | Tamil Students, Engineering, University of Moratuwa | MORA E-TAMILS 2020 | Tam

கல்விப் பொதுத் தராதரப் பத்திர (உயர் தர) முன்னோடிப் பரீட்சை - 2018 General Certificate of Education (Adv. Level) Pilot Examination - 2018

இணைந்த கணிதம் II Combined mathematics II

பகுதி B ஐந்து வினாக்களிற்கு மட்டும் விடை தருக.

11) **a.** இரண்டு துணிக்கைகள் P,Q என்பன AB=2s ஆகுமாறுள்ள ஒரு நேர்ப்பாதையில் A யிலிருந்து B யிற்கு இயங்குகின்றன. இதில் P ஆனது ஆரம்ப வேகம் u உடனும் மாறா ஆர்முடுகல் f உடனும் இயக்கத்தை A யிலிருந்து ஆரம்பிக்கும் அதே நேரத்தில் Q ஆனது ஆரம்ப வேகம் $u'(\neq u)$ உடனும் மாறா ஆர்முடுகல் $f'(\neq f)$ உடனும் இயக்கத்தை A யிலிருந்து ஆரம்பிக்கின்றது. இரண்டினதும் வேக-நேர வரைபுகளை தனித்தனியாக வரைக. இவ்வரைபைப் பயன்படுத்தி

 $oxed{(i)}\ AB$ யின் நடுப்புள்ளியை இரண்டும் ஒரே நேரத்தில் கடக்கும் எனின் அந்த நேரம் $t=rac{2(u-u')}{\left(f'-f
ight)}$ எனக் காட்டுக. u>u'ஆக **இருந்தால் இருந்தால்** மாத்திரம் f'>f எனக் காட்டுக.

 $ig(f{ii} ig)$ தொடரும் இயக்கத்தில் B யைக் கடக்கும் போது இரண்டினதும் வேகங்கள் சமம் எனின் $s = rac{\left(u^2 - u^{\,\prime 2}
ight)}{4 \left(f^{\,\prime} - f
ight)}$ எனக் காட்டுக.

b. படத்தில் காட்டியவாறு d அகலமான ஆறு தரை தொடர்பாக u எனும் உறுதியான கதியுடன் கரைகக்ளுக்கு சமாந்தரமாக \overrightarrow{AB} இல் பாய்கிற்து. இங்கு AB=d ஆகுமாறு A,B என்பன ஆற்றின் ஓர் கரையிலுள்ள இரு புள்ளிகளாகும். ஆறு தொடர்பாக கதி v உடன் நீந்தவல்ல மனிதன் ஒருவன் A யிலிருந்து B யிற்கும், B யிலிருந்து A யிற்கும், நீந்துவதற்கு எடுக்கும்

நேரங்கள் t,t' எனின் $u=\dfrac{d\left(t'-t
ight)}{2tt'}$ எனக் காட்டுக. மேலும் இம் மனிதன் A யிற்கு நேர் எதிரே மறுகரையில் உள்ள புள்ளி C யிற்கு நீந்தி ஆற்றைக் கடக்க எடுக்கும் நேரம் $\sqrt{tt'}$ எனக் காட்டுக.

12) a. தரப்பட்டுள்ள உருவில் உள்ள முக்கோணி ABC ஆனது திணிவு M ஐக் கொண்ட ஒரு சீரான ஒப்பமான ஆப்பின் புவியீர்ப்பு மையத்தினூடக உள்ள ஒரு நிலைக்குத்து குறுக்கு வெட்டினை வகைக் குறிக்கின்றது. இது ஒப்பமான கிடைத்தரைமீது வைக்கப்பட்டுள்ளது. இங்கு AB,AC என்பன உரிய முகங்களின் மிகப் பெரிய சரிவுக்கோடுகள் எனவும், B

 $B\hat{A}C=90^\circ, A\hat{B}C=lpha$ எனவும் தரப்பட்டுள்ளது. m_1,m_2 திணிவுகளை உடைய இரு துணிக்கைகள் முறையே இல் இயங்குமாறு ஆப்பின் உச்சி A யிலிருந்து ஒரே நேரத்தில் விடுவிக்கப்படுகின்றன. துணிக்கைகளின் ஆர்முடுகலையும் ஆப்பின் ஆர்முடுகலையும் துணிவதற்குப் போதுமான சமன்பாடுகளை எழுதுக. இரு துணிக்கைகளும் ஒரே நேரத்தில் கிடைத்தரையை அடைந்தால் $\tan \alpha = \sqrt{\frac{M+m_2}{M+m_1}}$ எனக் காட்டுக.

b. ஆரை r ஐ உடைய ஒப்பமான உருளை ஒன்று நிலைப்படுத்தப்பட்டுள்ளது. m,3m திணிவுள்ள P,Q என்னும் இரு துணிக்கைகள் ஒரு இலேசான நீளா இழையின் முனைகளிற்கு கட்டப்பட்டு, படத்தில் காட்டியவாறு m திணிவுடைய துணிக்கை P கிடை ஆரையின் முனையில் உருளையை தொட்ட வண்ணமும் 3m திணிவுடைய துணிக்கை Q மேல்முக நிலைக்குத்துடன் கோணம் α அமைக்கும் ஆரையின் முனையில் உருளையைத் தொட்டவண்ணமும் இழை இறுக்கமாக இருக்க தொகுதி ஒய்வில் பிடித்து வைக்கப்பட்டுள்ளது. அடுத்ததாகத் தொகுதி மெதுவாக விடுவிக்கப்பட $\sin \alpha > \frac{1}{3}$ எனின் துணிக்கைகள் P,Q என்பன கோளத்தின் மேற்பரப்பில் வலம்சுழிப் போக்கில் இயங்கத் தொடங்கும் எனக் காட்டுக.

தொடரும் இயக்கத்தில் துணிக்கை Q கோணம் eta திரும்பிய நிலையில் சக்திக் காப்பு கோட்பாட்டை

பிரயோகித்து Q வின் கதி v ஆனது $v^2=rac{gr}{2}ig(3\coslpha-\sineta-3\cosig(lpha+etaig)ig)$ இனால் தரப்படுகிறது

 $oldsymbol{Q}$ கோளத்தை விட்டு விலகுகின்றது

காட்டி, இக்கணத்தில் துணிக்கை

 $(5\sin\alpha-1)\sin\beta=(5\cos\beta-3)\cos\alpha$ எனக் காட்டுக.

13) இயற்கை நீளம் $\,a\,$ ஐ உடைய ஒர் இலேசான மீள்தன்மை இழையின் ஒரு நுனியானது ஒரு நிலைத்த புள்ளி O வில் $\,$ நிலைப்படுத்தப் பட்டிருக்கும் அதே வேளை இழையின் மற்றய நுனி திணிவு $\,m$ ஐ உடைய ஒரு துணிக்கை $\,P\,$ யுடன் இணைக்கப்பட்டுள்ளது துணிக்கை புள்ளி $\,E\,$ இல் நாப்பத்தில் தொங்கும் போது இழையின் நீளம் $\frac{3a}{2}$ ஆகும். இழையின் மீள்தன்மை மட்டு 2mg எனக் காட்டுக. இப்போது துணிக்கையானது புள்ளி வைத்திருக்கப்பட்டு ஒய்விலிருந்து விடுவிக்கப்படுகின்றது. தொடரும் இயக்கத்தில் இழை இறுகிய பின்னர் E இல் இருந்து கீழ் நோக்கி அளக்கப்பட்ட துணிக்கையின் இடப்பெயர்ச்சி x ஆயிருக்கையில் சக்திக் காப்பு கோட்பாட்டை பிரயோகித்து அக்கணத்தில் அதன் வேகம் \dot{x} ஆனது $\dot{x}^2 = \frac{2g}{a} \left(\frac{5a^2}{4} - x^2 \right)$ ஆல் தரப்படுகிறது எனக் காட்டுக. $-\frac{a}{2} \le x \le \frac{\sqrt{5}a}{2}$ என உய்த்தறிந்து. இழையின் உயர் நீட்சி $\frac{a}{2}(\sqrt{5}+1)$ எனக் காட்டுக. $-\frac{a}{a} \leq x \leq \frac{\sqrt{5}a}{a}$ வீச்சில் எளிமை இசை இயக்கம் உண்டு எனக் காட்டுக. $x=A\cos\omega t+B\sin\omega t$ எனும் தீர்வைக் கருத்தில் கொண்டு A,B,ω ஆகிய மாறிலிகளைக் காண்க. **இதிலிருந்து** வீச்சப் புள்ளியை அடைய எடுத்த நேரம் எனக் $\sqrt{\frac{a}{2g}} \left(\pi + 2 - \tan^{-1}2\right)$ காட்டுக.

 $m{14}$ $m{a}$. Oஆனது உற்பத்தியாயிருக்கையில் இணைகரம் OABC ஐக் கொள்வோம். இதில் O ஐக் குறித்து A,C யின் தானக்காவிகள் முறையே $m{a},m{c}$ $m{c}>rac{m{a}}{3}$ ஆகும்.

புள்ளி E ஆனது பக்கம் CB மீது CE:EB=1:2 ஆகுமாறு உள்ளது.கோடு AE ஆனது கோணம் $\angle OAC$ யின் இருகூறாக்கியை புள்ளி P யில் சந்திக்கின்றது. நீட்டப்பட்ட CP ஆனது கோடு AB ஐ புள்ளி F இல் சந்திக்கின்றது.

- (\mathbf{i}) புள்ளி E யின் தானக் காவி $\frac{\mathbf{a}+3\mathbf{c}}{3}$ எனக் காட்டுக
- (\mathbf{ii}) புள்ளி P யின் தானக் காவியை $\lambda \left(\frac{\mathbf{a}}{|\mathbf{a}|} + \frac{\mathbf{c}}{|\mathbf{c}|} \right)$ எனும் வடிவில் வெளிப்படுத்தலாம் எனக் காட்டுக. இங்கு λ மாறிலியாகும்.
- (\mathbf{iii}) EP : $PA = \mu$: 1 எனக் கருதி புள்ளி P யின் தானக்காவியை $\mathbf{a}, \mathbf{c}, \mu$ ஆகியவற்றின் சார்பில் காண்க.

இதிலிருந்து
$$\overrightarrow{OP} = \frac{3|\mathbf{a}||\mathbf{c}|}{3|\mathbf{c}|+2|\mathbf{a}|} \left(\frac{\mathbf{a}}{|\mathbf{a}|} + \frac{\mathbf{c}}{|\mathbf{c}|}\right)$$
 எனவும் $AF : FB = 3|\mathbf{c}| : 3|\mathbf{c}| - |\mathbf{a}|$ எனவும் காட்டுக.

b. தூரம் மீற்றரிலும் விசை நியூட்டனிலும் அளக்கப்பட்ட xy தளத்தில் மூன்று விசைகளைக் கொண்ட ஒரு தொகுதி அருகில் காணப்படுகின்றது. இத்தொகுதி சமனிலையில் இருப்பின் a,b,c ஐக் காண்க. இப்போது விசை \mathbf{F}_3 ஆனது புறமாற்றப்பட்டு,வலம்சுழிப் போக்கில் 21Nmபருமனுள்ள இணை சேர்க்கப்படுகின்றது. இப்புதிய தொகுதியின் விளையுளின் பருமன்,திசை,தாக்கக் கோட்டின்

Ox,Oy திசையில்		
விசைக்கூறு		
$\mathbf{F_1} = (5,6)$		
$\mathbf{F_2} = (a, -4)$		
$\mathbf{F_3} = \left(-6, b\right)$		

15) a. ஒவ்வொன்றும் w நிறையுடைய AB,BC என்னும் இரண்டு சம சீரான கோல்கள் B யில் சுயாதீனமாக மூட்டப்பட்டு,படத்தில் காட்டியவாறு கிடையுடன் 30° இல் சாய்ந்த நிலைத்த கரடான சாய்தளத்தின் மீது A,C எனும் முனைகள் இருக்க நிலைக்குத்துதளம்

சமன்பாடு என்பவற்றைக் காண்க.

ஒன்றிலே நாப்பத்தில் வைக்கப்பட்டுள்ளது. அத்துடன் கோல் BC கிடையாகவும் உள்ளது. A யிலும் C யிலும் செவ்வன் மறுதாக்கம், உராய்வு விசைகளைக் கண்டு அவற்றின் திசைகளைக் கூறுக. முனை A,C யில் உராய்வுக் குணகம் சமம் ஆயிருக்கையில் நாப்பம் தகர்க்கப்படுமெனின் C ஓய்வில் இருக்கும் அதே வேளை முனை A நழுவுவதால் அது தகர்க்கப்படுகின்றது எனக் காட்டுக. சமனிலை சாத்தியமாக உராய்வுக் குணகத்தின் இழிவுப் பெறுமானத்தை உய்த்தறிக.

b. அருகில் தரப்பட்ட உருவில் ABC என்பது AB,BC,CA என்னும் ஒப்பமாக மூட்டப்பட்ட மூன்று இலேசான கோல்களைக் கொண்ட சட்டப்படலாகும். AB கிடையாக இருக்க ஒப்மான முளையினால் A யில் தாங்கப்பட்டுள்ளது. போவின் குறியீட்டைப் பயன்படுத்தி தகைப்பு வரிப்படம் ஒன்றை வரைந்து எல்லாக் கோல்களிலுமுள்ள தகைப்புக்களைக் காண்க.

a மையத்தில் கோணம் a வை எதிர்மைக்கும் ஆரை a யை உடைய வட்டத்தின் ஒரு சீர் வட்ட ஆரைச்சிறையின் திணிவு மையம் மையத்திலிருந்து அதன் சமச்சீர் அச்சுவழியே a எனும்

தூரத்தில் உள்ளது என தொகையீட்டு முறைமூலம் காட்டுக. படத்தில் காட்டியவாறு ஆரை a ஐயும் மையத்தில் கோணம் 2α ஐ எதிரமைப்பதுமான ஓர் ஆரைச்சிறை OPQ விலிருந்து அதே மையம் O வையும் ஆரை λa ஐயும் மையத்தில் கோணம் 2α ஐ எதிரமைப்பதுமான ஓர் ஆரைச்சிறை OSR ஆனது வெட்டி நீக்கப்படுகின்றது. எஞ்சிய அடர் SPQR இன் புவியீர்ப்பு மையம் அதன் சமச்சீர் அச்சுவழியே O விலிருந்து

$$R$$
 R
 Q

$$\frac{2a\sin lpha}{3lpha} \left(\frac{\lambda^2 + \lambda + 1}{\lambda + 1} \right)$$
 எனும் தூரத்தில் உள்ளது என காட்டுக.

மையத்தில் கோணம் 2lpha வை எதிர்மைக்கும் ஆரை a ஜ உடைய ஒரு வட்டத்தின் ஒரு சீர் வட்ட வில்லின் திணிவு மையத்தை உய்த்தறிக. ஒரு சீரான அரைவட்டக் கம்பியானது ஓர் ஒப்பமான கிடை மேசை மீது வைக்கப்பட்டுள்ளது.இவ்வரைவட்டக்கம்பியின் ஓர் முனையில் படத்தில் காட்டியாறு நிலைக்குத்தாக P எனும் விசை பிரயோகிக்கும்

- 17) a. பெட்டி ஒன்றிலே 3 நீல நிற மாபிள்களும் 2 சிவப்பு நிற மாபிள்களும் இருக்கின்றன. வேறொரு பெட்டியில் 2 நீல நிற மாபிள்களும் 3 சிவப்பு நிற மாபிள்களும் இருக்கின்றன. இப்பெட்டிகளில் ஒன்றிலிருந்து எழுமாற்றாக எடுக்கப்படும் மாபிள் ஒன்று நீல நிறமாக இருக்கின்றது. அது முதற் பெட்டியிலிருந்து வந்தமக்கான நிகழ்தகவு யாது? இரு பெட்டிகளும் ஒரேமாதிரியானவை எனக் கொள்க.
 - b. வர்த்தகர் ஒருவர் தாம் விற்கும் மின் குமிழ்களின் ஆயுட் காலத்தின் சராசரி 4000 மணித்தியாலம் எனக் கூறியுள்ளார். இவ்வகை மின் குமிழ்களை அதிக அளவில் பயன்படுத்தும் ஒரு கம்பனி, தனது பழைய பதிவேடுகளைப் பயன்படுத்தி அவ்வர்த்தகரின் கூற்றைச் சோதிப்பதற்கான விருப்பத்தை தெரிவித்துள்ளது, கடந்தகாலப் பதிவேடுகளுக்கு ஏற்ப மின் குமிழ்களின் ஆயுட் காலங்களின் மீடிறன் அட்டவணை

உருவாக்கப்பட்டு கீழே தரப்பட்டுள்ளது.

1அலகு 1000 மணித்தியாலங்கள்.

மாதிரியின் இடை ஆயுட் காலத்தைக் கணிக்க.

- (ii) ஆகார வகுப்பு எது
- (iii) ஆயுட் காலத்தின் இடையத்தையும் ஆகாரத்தையும் மதிப்பிடுக.
- (iv) அதேடு, நியமவிலகலை கணித்து ஓராயவியல்பைக் கூறுக.

வகுப்பு	எண்ணிக்கை
எல்லைகள்	
(அலகுகளில்)	
0-2	10
2-4	55
4-6	30
6-8	05

* END OF QUESTIONS *