NATIONAL INSTITUTE OF TECHNOLOGY ROURKELA MID - SEM EXAMINATION, 2022

SESSION: 2022 – 2023 (Autumn) B.Tech. 3rd Semester

Subject Name: Discrete Structures

Full Marks: 30

Subject code: CS2003

Dept. Code: CS

Duration: 2 Hours

Answer ALL questions. Unnecessary and extra writing will attract negative marks.

- 1) Prove that $(P \to Q) \to (R \to S)$ and $(P \to R) \to (Q \to S)$ are not logically equivalent. [2]
- 2) Prove that $3+3\cdot 5+3\cdot 5^2+...+3\cdot 5^n=3(5^{n+1}-4)/4$ whenever n is a non-negative integer using mathematical induction theorem. [3]
- 3) Apply strong induction method to prove that every amount of postage of 12 cents or more can be formed using just 4-cent and 5-cent stamps. [3]
- 4) Consider these statements, and show that the first three are premises and the fourth is a valid conclusion.
 - "All hummingbirds are richly colored."
 - "No large birds live on honey."
 - "Birds that do not live on honey are dull in color."
 - "Hummingbirds are small."

[3]

- 5) Use rules of inference to show that if $\forall x \ (P(x) \to (Q(x) \land S(x)))$ and $\forall x \ (P(x) \land R(x))$ are true, then $\forall x \ (R(x) \land S(x))$ is true. [3]
- 6) Show that if n is an integer and $n^3 + 5$ is odd, then n is even using a) a proof by contraposition, and b) a proof by contradiction. [3]
- 7) Suppose that a and b are integers, $a \equiv 4 \pmod{13}$, and $b \equiv 9 \pmod{13}$. Find the integer c with $0 \le c \le 12$ such that
 - i) $c \equiv 9a \pmod{13}$.
 - ii) $c \equiv 11b \pmod{13}$.
 - iii) $c \equiv a + b \pmod{13}$.
 - iv) $c \equiv 2a + 3b \pmod{13}$.
 - v) $c \equiv a^2 + b^2 \pmod{13}$.

vi)
$$c \equiv a^3 - b^3 \pmod{13}$$
.

- 8) Find the sum and the product of each of these pairs of numbers. Express your answers as a binary expansion.
 - a) $(1000111)_2$, $(1110111)_2$,
 - b) $(11101111)_2$, $(10111101)_2$,
 - c) $(1010101010)_2$, $(111110000)_2$,
 - d) $(1000000001)_2$, $(1111111111)_2$.

[3]

- 9) Suppose that g is a function from A to B and f is a function from B to C. Show that if both f and g are one-to-one functions, then $f \cdot g$ is also one-to-one. [2]
- 10) Proof if a, b, and m are integers, $m \ge 2$ and $a \equiv b \pmod{m}$, then gcd(a, m) = gcd(b, m). [3]
- 11) Use the construction in the proof of the Chinese remainder theorem to find all solutions to the system of congruences $x \equiv 1 \pmod{2}$, $x \equiv 2 \pmod{3}$, $x \equiv 3 \pmod{5}$, and $x \equiv 4 \pmod{11}$.

S