

planetmath.org

Math for the people, by the people.

hyperbolic set

Canonical name HyperbolicSet
Date of creation 2013-03-22 13:40:21
Last modified on 2013-03-22 13:40:21

Owner Koro (127) Last modified by Koro (127)

Numerical id 5

Author Koro (127) Entry type Definition Classification msc 37D20

Synonym hyperbolic structure Synonym uniformly hyperbolic Related topic HyperbolicFixedPoint Let M be a compact smooth manifold, and let $f: M \to M$ be a diffeomorphism. An f-invariant subset Λ of M is said to be hyperbolic (or to have an hyperbolic structure) if there is a splitting of the tangent bundle of M restricted to Λ into a (Whitney) sum of two Df-invariant subbundles, E^s and E^u such that the restriction of $Df|_{E^s}$ is a contraction and $Df|_{E^u}$ is an expansion. This means that there are constants $0 < \lambda < 1$ and c > 0 such that

- 1. $T_{\Lambda}M = E^s \oplus E^u$;
- 2. $Df(x)E_x^s = E_{f(x)}^s$ and $Df(x)E_x^u = E_{f(x)}^u$ for each $x \in \Lambda$;
- 3. $||Df^nv|| < c\lambda^n||v||$ for each $v \in E^s$ and n > 0;
- 4. $||Df^{-n}v|| < c\lambda^n ||v||$ for each $v \in E^u$ and n > 0.

using some Riemannian metric on M.

If Λ is hyperbolic, then there exists an *adapted* Riemannian metric, i.e. one such that c=1.