Saving and Reloading Models

Lesson Objectives

After completing this lesson, you should be able to:

- -Explain some benefits of saving machine learning models
- -Determine if a model can be saved
- -Save and reload models, when possible
- -Figure out which class was used when writing out a model
- Overwrite an existing model

When is saving models

- •When re-training would be painful, because it takes a long time
- •When you want to train many models, to be evaluated later
- •When transferring between clusters, e.g. deploying a model to production

What can be saved in Spark 1.6?

- •Any Transformer or Estimator class that implements MLWritable, which includes
 - –Pipeline, CrossValidator
 - -Some feature indexers and vectorizers
 - -LinearRegression, LogisticRegression, NaiveBayes
 - -KMeans, LDA, ALS
- Notably missing
 - -DecisionTree, RandomForest
- When in doubt, try an example first

What can be saved in Spark 2.0?

- •Much more complete coverage in Spark 2.0
 - -All languages (Scala, Java, Python, and R)
 - -Nearly all dataframe-based algorithms
 - -Models and pipelines, unfitted and fitted
- Except
 - -Python does not yet support saving CrossValidator and
 - **TrainValidationSplit**
 - -Cross-language support for R needs improvement

Example - setup

Example – fit a model

```
from pyspark.ml.classification import LogisticRegression
lr = LogisticRegression()
lrModel = lr.fit(df)
lrModel.transform(df).show()
```

++		+	+-	+
label	features	rawPrediction	probability p	rediction
++				
1.0 [[1.0,2.0,3.0] [-1	8.070405604445 [1.41	945802370848	1.0
1.0	2.0,3.0,4.0][[-3	8.987081234651 [1.16	983808020729	1.0
		.2085506510254 [0.99		0.0
		.1902958840818 [0.99		0.0
++				

Example – save and load

```
lrModel.save("lrModel.parquet")
from pyspark.ml.classification import LogisticRegressionModel
sameModel = LogisticRegressionModel.load("lrModel.parquet")
sameModel.transform(df).show()
|label| features| rawPrediction| probability|prediction|
  1.0 [1.0,2.0,3.0] [-18.070405604445... [1.41945802370848... ] 1.0
  1.0 [2.0,3.0,4.0] [-38.987081234651... [1.16983808020729...] 1.0
  0.0|[-1.0,1.0,2.0]|[19.2085506510254...|[0.99999999545187...|
                                                                 0.0
  0.0|[-2.0,3.0,5.0]|[29.1902958840818...|[0.99999999999978...|
                                                                 0.0
```

Which class wrote this model?

```
!cat lrModel.parquet/metadata/part-00000
```

{"class":"org.apache.spark.ml.classification.LogisticRegressionModel","timestamp":1475089043445,"sparkVersion":"2.0.0","u
id":"LogisticRegression_43d69252fb4e6810e320","paramMap":{"regParam":0.0,"tol":1.0E-6,"fitIntercept":true,"maxIter":100,"
standardization":true,"elasticNetParam":0.0,"probabilityCol":"probability","rawPredictionCol":"rawPrediction","featuresCo
l":"features","labelCol":"label","predictionCol":"prediction","threshold":0.5}}

Lesson Summary

Having completed this lesson, you should be able to:

- -Explain some benefits of saving machine learning models
- -Determine if a model can be saved
- -Save and reload models, when possible
- -Figure out which class was used when writing out a model
- -Overwrite an existing model