3. Sea
$$A \in \mathbb{R}^{2 \times 2}$$
. Llamamos $d = \det(A)^2$ y $f = ||A||_F^2$, siendo $||A||_F = \sqrt{\sum_{i,j} |a_{ij}|^2}$ la norma Frobenius de la matriz A . Demostrar que los valores singulares de A son de la forma:

$$\sqrt{\frac{f\pm\sqrt{f^2-4d}}{2}}$$

Por hipotesis

$$det(AA^T) = det(A) \cdot det(A^T) = det(A) \cdot det(A) = det(A)^2 = d$$

$$= \lambda^{2} - \lambda \cdot \left[(AA^{T})_{11} + (AA^{T})_{22} \right] + (AA^{T})_{11} \cdot (AA^{T})_{22} - (AA^{T})_{12}^{2}$$

$$= \lambda^2 - \lambda \cdot \left[(AA^T)_{11} + (AA^T)_{22} \right] + \det(AA^T)$$

$$= \lambda^2 - \lambda \cdot \left[(AA^T)_{11} + (AA^T)_{22} \right] + d$$

$$det(AA^{T}-\lambda I) = 0 \iff \lambda = \frac{1}{2} \cdot (b \pm \sqrt{b^{2}-4d})$$

Luego los valores singulares de A son:

$$\sigma^2 = \lambda \iff \sigma = \sqrt{\lambda} \iff \sigma = \sqrt{\frac{1}{2}} \cdot (b \pm \sqrt{b^2 - 4d})$$

																				T
Bas	ita	Ver	que	z b	, = F	· <=	, ->	IA)	\ ^T) ₁ ,	1 + (TAA) _{zz}	=	Αll	2					
ī _A A	-	011	Q1Z		011	azı	=	211	+ a12			*	z							
		azı	azz		a _{1z}	azz			*		021	+az	z							_
⁽ AA)	· \	1 (0	(T)		_	2	1 02		2	٠ ـ ـ ـ	2)								
(AA)11	, (,		ZZ		CONT.	T 0.1	Z T	سحر	7 (~ 2Z	}	^T AA))11	+ (Þ	(^T A)	₂₂ =	All	l z	
1A112	=	ينك	ه ا ز	ربز ا ح	=	Z (1 ₁₁	+ a	12 4	- Q2	, †	ع م)							•	
																				-
																				1
																				-
																				1