Московский государственный университет имени М.В. Ломоносова Химический факультет

Кафедра физической химии Лаборатория строения и квантовой механики молекул

Исследование бифуркации в трехатомных гидридах методом классических траекторий.

Курсовая работа студента 411 группы Финенко А.А.

Научный руководитель: к.х.н., Петров С.В.

Москва 2016

Содержание

1	Введение	2
2	Схема получения полного колебательно-вращательного гамильтониана	2
	2.1 Переход в систему отсчета, связанную с центром масс	2
	2.2 Переход в подвижную систему отсчета	2
	2.3 Применение теоремы Донкина	6
٨	Про угловой момент	7

1 Введение

2 Схема получения полного колебательно-вращательного гамильтониана

2.1 Переход в систему отсчета, связанную с центром масс

Рассмотрим систему n материальных точек. Обозначим их массы через m_i , их радиусвекторы в лабораторной системе координат через $\vec{r_i}$, в подвижной системе координат – через $\vec{R_i}$ $(i=1\dots n)$. Разделим движение системы на движение центра масс и движение вокруг центра масс:

$$\begin{cases} \vec{r}_1 = \vec{r} + \vec{r}_1', \\ \dots \\ \vec{r}_n = \vec{r} + \vec{r}_n', \end{cases}$$

где \vec{r} – радиус-вектор центра масс в лабораторной системе координат и $\vec{r_i}'$ – радиус-векторы рассматриваемых точек в системе отсчёта, связанной с центром масс.

Кинетическая энергия T системы принимает вид:

$$T = \frac{1}{2} \sum_{i=1}^{n} m_i \dot{\vec{r}}_i^2 = \frac{1}{2} \sum_{i=1}^{n} m_i (\dot{\vec{r}} + \dot{\vec{r}}_i')^2 = \frac{1}{2} M \dot{r}^2 + \frac{1}{2} \sum_{i=1}^{n} m_i (\dot{r}_i')^2 + \dot{\vec{r}} \sum_{i=1}^{n} m_i \dot{\vec{r}}_i',$$

где $M = \sum_{i=1}^{n} m_i$.

Заметим, что последняя сумма является производной следующей суммы, которая равна нулю:

$$\sum_{i=1}^{n} m_i \dot{\vec{r}}_i' = \frac{d}{dt} \sum_{i=1}^{n} m_i \vec{r}_i' = 0.$$

Итак, мы перешли в систему координат, связанную с центром масс, и отделили энергию движения центра масс:

$$T = \frac{1}{2}M\dot{r}^2 + \frac{1}{2}\sum_{i=1}^n m_i(\dot{r}_i')^2.$$

Забудем про слагаемое, отвечающее центру масс; откинем штрихи, чтобы упростить запись.

2.2 Переход в подвижную систему отсчета

Переход от лабораторной системы отсчета к подвижной системе может быть осуществлен при помощи трех последовательных поворотов на углы Эйлера φ , θ и ψ .

Первое вращение происходит вокруг оси z на угол φ . Оно переводит лабораторную систему x, y, z в систему x', y', z'. Угол φ называется углом прецессии.

$$\begin{pmatrix} x' \\ y' \\ z' \end{pmatrix} = \begin{pmatrix} \cos \varphi & \sin \varphi & 0 \\ -\sin \varphi & \cos \varphi & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \mathbb{S}_{\varphi} \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$

Рис. 1: Углы Эйлера

Оси x', y' лежат в плоскости x, y. Затем происходит поворот вокруг оси x' на угол θ , переводящий систему x', y', z' в систему x'', y'', z''. Ось x'' совпадает с осью x'. Ось этого поворота называется линией узлов. Угол θ называется углом нутации.

$$\begin{pmatrix} x'' \\ y'' \\ z'' \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos \theta & \sin \theta \\ 0 & -\sin \theta & \cos \theta \end{pmatrix} \begin{pmatrix} x' \\ y' \\ z' \end{pmatrix} = \mathbb{S}_{\theta} \begin{pmatrix} x' \\ y' \\ z' \end{pmatrix}$$

И наконец, вращение вокруг оси z'' на угол ψ переводит систему x'', y'', z'' в систему x, y, z. Угол ψ называется углом собственного вращения.

$$\begin{pmatrix} X \\ Y \\ Z \end{pmatrix} = \begin{pmatrix} \cos \psi & \sin \psi & 0 \\ -\sin \psi & \cos \psi & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x'' \\ y'' \\ z'' \end{pmatrix} = \mathbb{S}_{\psi} \begin{pmatrix} x'' \\ y'' \\ z'' \end{pmatrix}$$

Суммарное вращение представляет собой последовательное применение описанных поворотов и имеет следующую матрицу:

$$\begin{pmatrix} X \\ Y \\ Z \end{pmatrix} = \mathbb{S} \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$

$$\mathbb{S} = \mathbb{S}_{\psi} \mathbb{S}_{\theta} \mathbb{S}_{\varphi} = \begin{pmatrix} \cos \psi \cos \varphi - \cos \theta \sin \varphi \sin \psi & \cos \psi \sin \varphi + \cos \theta \cos \varphi \sin \psi & \sin \theta \sin \psi \\ -\sin \psi \cos \varphi - \cos \theta \sin \varphi \cos \psi & -\sin \psi \sin \varphi + \cos \theta \cos \varphi \cos \psi & \sin \theta \cos \psi \\ \sin \psi \sin \theta & -\cos \varphi \sin \theta & \cos \theta \end{pmatrix}$$

Проектируя вектор угловой скорости Ω на базис, образованный Эйлеровыми угловыми скоростями $\dot{\varphi}$, $\dot{\theta}$, $\dot{\psi}$, получаем соотношение, известное как кинематическое уравнение Эйлера:

$$\begin{pmatrix} \Omega_X \\ \Omega_Y \\ \Omega_Z \end{pmatrix} = \begin{pmatrix} \sin \theta \sin \psi & \cos \psi & 0 \\ \sin \theta \cos \psi & -\sin \psi & 0 \\ \cos \theta & 0 & 1 \end{pmatrix} \begin{pmatrix} \dot{\varphi} \\ \dot{\theta} \\ \dot{\psi} \end{pmatrix}$$

Рис. 2: Угловые скорости

ПОПРАВИТЬ НА КАРТИНКЕ МАЛЕНЬКИЕ БУКВЫ НА БОЛЬШИЕ Я НЕ ЗНАЮ КАК СВЯЗАТЬ НАПИСАННОЕ НИЖЕ С ТЕМ, ЧТО ДОПИСАНО СЕЙЧАС

Перейдём в подвижную систему координат при помощи ортогональной матрицы \$:

$$\vec{r_i} = \mathbb{S}\vec{R_i}, \quad i = 1 \dots n.$$

Введем матрицу \mathbb{A} следующим образом: $\mathbb{A}=\dot{\mathbb{S}}\mathbb{S}^{-1}$. Покажем, что она является кососим-метрической матрицей; для этого продифференцируем единичную матрицу:

$$\frac{d}{dt}\mathbb{E} = \frac{d}{dt}\left(\mathbb{S}\mathbb{S}^{-1}\right) = \dot{\mathbb{S}}\mathbb{S}^{-1} + \mathbb{S}\dot{\mathbb{S}}^{-1} = 0.$$

Заметим, что первое слагаемое и есть матрица \mathbb{A} , а второе – транспонированная матрица \mathbb{A} (т.к. $\mathbb{S}^{\top} = \mathbb{S}^{-1}$ в силу ортогональности). Следовательно,

$$\mathbb{A} + \mathbb{A}^{\top} = 0,$$

т.е. по определению матрица А является кососимметрической.

Так как размерность пространства кососимметрических матриц равна 3, то существует естественный изоморфизм, позволяющий сопоставить каждой кососимметрической матрице единственный псевдовектор:

$$\mathbb{A} = \begin{pmatrix} 0 & -\omega_3 & \omega_2 \\ \omega_3 & 0 & -\omega_1 \\ -\omega_2 & \omega_1 & 0 \end{pmatrix} \quad \longleftrightarrow \quad \vec{\omega} = \begin{pmatrix} \omega_1 \\ \omega_2 \\ \omega_3 \end{pmatrix},$$

причем для любого вектора $\vec{x} \in \mathbf{R}^3$ имеем $\mathbb{A}\vec{x} = [\vec{\omega} \times \vec{x}]$, где $\vec{\omega}$ – вектор угловой скорости в лабораторной системе координат.

Получим выражение для квадратов скоростей рассматриваемых точек в лабораторной системе координат через координаты и скорости в подвижной системе координат:

$$\dot{\vec{r}_i} = \mathbb{S}\dot{\vec{R}_i} + \dot{\mathbb{S}}\vec{R}_i = \dot{\mathbb{S}}\mathbb{S}^{-1}\vec{r}_i + \mathbb{S}\dot{\vec{R}_i} = \mathbf{A}\vec{r}_i + \mathbb{S}\dot{\vec{R}_i} = [\vec{\omega} \times \vec{r}_i] + \mathbb{S}\dot{\vec{R}_i} = [\mathbb{S}\vec{\Omega} \times \mathbb{S}\vec{R}_i] + \mathbb{S}\dot{\vec{R}_i} = \mathbb{S}\left([\vec{\Omega} \times \vec{R}_i] + \dot{\vec{R}_i}\right),$$

$$\dot{\vec{r}_i}^2 = \dot{\vec{r}_i}^\top \dot{\vec{r}_i} = \left(\dot{\vec{R}_i} + [\vec{\Omega} \times \vec{R}_i]\right)^\top \mathbb{S}^\top \mathbb{S}\left(\dot{\vec{R}_i} + [\vec{\Omega} \times \vec{R}_i]\right) = \dot{R}_i^2 + 2\dot{\vec{R}_i} \ [\vec{\Omega} \times \vec{R}_i] + [\vec{\Omega} \times \vec{R}_i]^2,$$

где $\vec{\Omega}$ – вектор угловой скорости в подвижной системе координат.

Рассмотрим последнее слагаемое как смешанное произведение и применим правило Лагранжа:

$$([\vec{\Omega} \times \vec{R}_i], [\vec{\Omega} \times \vec{R}_i]) = \vec{\Omega}^{\top} [\vec{R}_i \times [\vec{\Omega} \times \vec{R}_i]] = \vec{\Omega}^{\top} \left(\vec{\Omega} (\vec{R}_i, \vec{R}_i) - \vec{R}_i (\vec{R}_i, \vec{\Omega}) \right).$$

Итак, с учётом выполненных преобразований имеем:

$$T = \frac{1}{2} \sum_{i=1}^{n} m_i \dot{r}_i^2 = \frac{1}{2} \sum_{i=1}^{n} m_i \dot{R}_i^2 + \vec{\Omega}^{\top} \sum_{i=1}^{n} m_i [\vec{R}_i \times \dot{\vec{R}}_i] + \frac{1}{2} \vec{\Omega}^{\top} \sum_{i=1}^{n} m_i \left(\vec{\Omega}(\vec{R}_i, \vec{R}_i) - \vec{R}_i(\vec{R}_i, \vec{\Omega}) \right) =$$

$$= \frac{1}{2} \sum_{i=1}^{n} m_i \dot{R}_i^2 + \vec{\Omega}^{\top} \sum_{i=1}^{n} m_i [\vec{R}_i \times \dot{\vec{R}}_i] + \vec{\Omega}^{\top} \mathbb{I} \vec{\Omega}.$$

где \mathbb{I} – матрица тензора инерции в подвижной системе координат.

Пусть исследуемая система содержит s внутренних степеней свободы. Осуществим переход от векторов в подвижной системе к внутренним координатам $q_i, j = 1 \dots s$:

$$\begin{cases} \vec{R}_1 = \vec{R}_1(q_1, \dots, q_s), \\ \dots \\ \vec{R}_n = \vec{R}_n(q_1, \dots, q_s); \\ \frac{d}{dt} \vec{R}_i = \sum_{j=1}^s \frac{\partial \vec{R}_i}{\partial q_j} \, \dot{q}_j. \end{cases}$$

Подставляя \vec{R}_i в выражение для кинетической энергии, получим:

$$\begin{split} T &= \frac{1}{2} \sum_{i=1}^{n} m_{i} \sum_{j=1}^{s} \frac{\partial \vec{R}_{i}}{\partial q_{j}} \dot{q}_{j} \sum_{k=1}^{s} \frac{\partial \vec{R}_{i}}{\partial q_{k}} \dot{q}_{k} + \vec{\Omega}^{\top} \sum_{i=1}^{n} m_{i} \left[\vec{R}_{i} \times \sum_{j=1}^{s} \frac{\partial \vec{R}_{i}}{\partial q_{j}} \, \dot{q}_{j} \right] + \vec{\Omega}^{\top} \mathbb{I} \vec{\Omega} = \\ &= \frac{1}{2} \sum_{j=1}^{s} \sum_{k=1}^{s} \left(\sum_{i=1}^{n} m_{i} \frac{\partial \vec{R}_{i}}{\partial q_{j}} \frac{\partial \vec{R}_{i}}{\partial q_{k}} \right) \dot{q}_{j} \dot{q}_{k} + \vec{\Omega}^{\top} \sum_{j=1}^{s} \left(\sum_{i=1}^{n} m_{i} \left[\vec{R}_{i} \times \frac{\partial \vec{R}_{i}}{\partial q_{j}} \right] \right) \dot{q}_{j} + \frac{1}{2} \vec{\Omega}^{\top} \mathbb{I} \vec{\Omega}. \end{split}$$

Обозначая $a_{jk} = \sum_{i=1}^n m_i \frac{\partial \vec{R}_i}{\partial q_j} \frac{\partial \vec{R}_i}{\partial q_k}, A_{jk} = \sum_{i=1}^n m_i \left[\vec{R}_i \times \frac{\partial \vec{R}_i}{\partial q_k} \right]_{\alpha}$ (здесь $\alpha = x, y, z$ соответствуют j = 1, 2, 3), представим кинетическую энергию в виде:

$$T = \frac{1}{2} \dot{\vec{q}}^{\mathsf{T}} \mathbf{a} \ \dot{\vec{q}} + \vec{\Omega}^{\mathsf{T}} \mathbf{A} \ \dot{\vec{q}} + \frac{1}{2} \vec{\Omega}^{\mathsf{T}} \mathbb{I} \ \vec{\Omega},$$

где а =
$$(a_{jk})_{j=1...s, k=1...s}$$
, $\mathbb{A} = (A_{jk})_{j=1...3, k=1...s}$.

2.3 Применение теоремы Донкина

Перепишем выражение для кинетической энергии в матричном виде для того, чтобы перейти к гамильтоновым переменным.

$$T = \frac{1}{2} \left[\vec{\Omega}^\top \ \dot{\vec{q}}^\top \right] \mathbb{B} \left[\begin{matrix} \vec{\Omega} \\ \dot{\vec{q}} \end{matrix} \right],$$

где \mathbb{B} – блочная матрица:

$$\mathbb{B} = \begin{bmatrix} \mathbb{I} & \mathbb{A} \\ \mathbb{A}^\top & \mathbb{a} \end{bmatrix}$$

Текст, поясняющий, что угловая скорость и угловой момент являются такими же сопряженными переменными как $\dot{\vec{q}}$ и \vec{p} .

А Про угловой момент..

Покажем истинность следующего результата:

$$\vec{J} = \mathbb{A}\dot{\vec{q}} + \mathbb{I}\,\vec{\Omega}$$

Рассмотрим угловой момент в лабораторной системе координат.

$$\begin{split} \vec{j} &= \sum_{i=1}^n m_i \left[\vec{r}_i \times \dot{\vec{r}_i} \right] \\ \dot{\vec{r}_i} &= \mathbb{S}^{-1} \left(\left[\vec{\Omega} \times \vec{R}_i \right] + \dot{\vec{R}_i} \right) \\ \vec{j} &= \sum_{i=1}^n m_i \left[\vec{r}_i \times \mathbb{S}^{-1} \left(\left[\vec{\Omega} \times \vec{R}_i \right] + \dot{\vec{R}_i} \right) \right] = \mathbb{S}^{-1} \sum_i m_i \left[\vec{R}_i \times \dot{\vec{R}_i} \right] + \mathbb{S}^{-1} \sum_i m_i \left[\vec{R}_i \times \left[\vec{\Omega} \times \vec{R}_i \right] \right] \end{split}$$

Внимательно посмотрим на слагаемое, содержащее двойное векторное произведение:

$$\sum_{i} m_{i} \left[\vec{R}_{i} \times \left[\vec{\Omega} \times \vec{R}_{i} \right] \right] = \sum_{i} \left(R_{i}^{2} \vec{\Omega} - \left(\vec{R}_{i}, \vec{\Omega} \right) \vec{R}_{i} \right) = \mathbb{I} \vec{\Omega}$$

Используем результат, умножаем обе части на \mathbb{S} , учтем, что $\vec{J} = \mathbb{S}\vec{j}$:

$$\vec{J} = \mathbb{A}\dot{\vec{q}} + \mathbb{I}\,\vec{\Omega}$$