AN INTRODUCTION TO PROGRAMMING

THROUGH C++

with

Manoj Prabhakaran

Lecture 15

Recursion

Example: Koch Curve

More Fractals

Given an array of n objects (say characters), print all n! permutations

a b c

• E.g.,

```
char A[3] = {'a', 'b', 'c'};
permute(A,3);

b c a
c b a
c b
c a
c b a
c a b
```

- Recall Greatest Common Divisor (a.k.a. Highest Common Factor)
 - Divisors(12) = { 1, 2, 3, 4, 6, 12}. Divisors(20) = { 1, 2, 4, 5, 10, 20}
 CommonDivisors(12,20) = { 1, 2, 4}. gcd(12,20) = 4.
 - Divisors(0) = $\{0, 1, 2, ...\}$. gcd(a,0) = a, for all a. (interpreting p greater than q to mean q divides p, gcd(0,0) = 0.)
- Bézout's Identity: For any two integers a, b, there exist integers m, n such that gcd(a,b) = ma + nb
- Examples: $gcd(12, 20) = 4 = 2 \times 12 + (-1) \times 20$ $gcd(10, 7) = 1 = (-2) \times 10 + 3 \times 7$ $gcd(100, 49) = 1 = (-24) \times 100 + 49 \times 49$
- Problem: Write a program to compute such a pair (m,n) given (a,b)

Example: Koch Curve

Recursion:

A function calling itself.

```
void draw(double L, int level) {
   if (level == 0) { forward(L); return; }
   if (level == 1) {
        draw(L/3,1); left(60);
        draw(L/3,0); left(60);
        draw(L/3,0); right(120);
        draw(L/3,0); left(60);
        draw(L/3,0); left(60);
        draw(L/3,0);
}
```

Example: Koch Curve

Base case:

Ensures that the recursion is not infinite


```
void draw(double L, int level) {
    if (level == 0) { forward(L); return; }
    draw(L/3, level-1); left(60);
    draw(L/3, level-1); right(120);
    draw(L/3, level-1); left(60);
    draw(L/3, level-1);
}
```

Example: Fibonacci Sequence

```
int Fibonacci(unsigned int n) {
  if(n==0) return 0;
  if(n==1) return 1;
  return Fibonacci(n-1) + Fibonacci(n-2);
}
```

A very inefficient implementation!

Example: A Binary Tree

Example: A Binary Tree

- Recursive structure: A (complete) binary tree of height h is:
 - Base case: If h is 0, a single point (root node)
 - Else, a root node and two (complete) binary trees of height h-1, each connected to the root node by a line (edge)

Example: A Binary Tree

```
Demo
binaryTree(double boxHeight, double boxWidth, int levels) {
  if (levels == 0) return;
  // Not shown: calculate angle, edgeLen, childBoxHeight, childBoxWidth
  left(angle); forward(edgeLen); left(-angle);
                                                            Right child
  binaryTree(childBoxHeight, childBoxWidth, levels-1);
  left(angle); forward(-edgeLen); left(-angle);
  left(-angle); forward(edgeLen); left(angle);
  binaryTree(childBoxHeight, childBoxWidth, levels-1);
                                                             Left child
                                                            Important: Turtle is back
  left(-angle); forward(-edgeLen); left(angle);
                                                            at the original position
```

- Recursive structure: A (complete) binary tree of height h is:
 - Base case: If h is 0, a single point (root node)
 - Else, a root node and two (complete) binary trees of height h-1, each connected to the root node by a line (edge)

Example: Canopy

```
void canopy(double step, int level, double angle, double ratio) {
   if (level == 0) return;
   forward(step);

   left(angle/2);
   canopy(step*ratio,level-1,angle,ratio);
    right(angle);
   canopy(step*ratio,level-1,angle,ratio);
   left(angle/2);
   Right child
```

forward(-step);

Demo

Given an array of n objects (say characters), print all n! permutations

```
• E.g.,

char A[3] = {'a', 'b', 'c'};

permute(A,3);

a b c
a c b
all permutations of {'b','c'}

b a c
b c a

all permutations of {'a','c'}

c b a
c a b

all permutations of {'a','b'}

all permutations of {'a','b'}

c b a
c a b
```

- Recursive structure of permute(A,L)
 - The first character can be each of the L characters given
 - Once the first character is fixed, the rest is a permutation of the remaining characters
 - Base case: when L=1, nothing more to do

- Recursive structure of permute(A,L)

 The first allowed to a second of the second second
 - The first character can be each of the L characters given
 - Once the first character is fixed, the rest is a permutation of the remaining characters
 - Base case: when L=1, nothing more to do

Demo

- Bézout's Identity: For any two integers a, b, there exist integers m, n such that gcd(a,b) = ma + nb
- Recursive structure of GCD:

int gcd (int a, int b) {

- Base case (b==0): gcd(a,0) = |a|
 - Else (b!=0): gcd(a,b) = gcd(b,a%b)
 - Because, for any q, gcd(a,b) = gcd(b,a-qb)and a%b = a - (a/b)*b

Exercise (optional): x is a common divisor of (a,b) if and only if it is a common divisor of (a-qb,b).
i.e., set of common divisors of (a,b) is

exactly the same as that of (a-qb,b).

The problem size decreases: If lal>lbl (which holds after at most one recursive call) and b≠0, (lbl,la%bl) < (lal,lbl).

- Bézout's Identity: For any two integers a, b, there exist integers m, n such that gcd(a,b) = ma + nb
- Recursive structure of GCD:
 - Base case (b==0): gcd(a,0) = |a|
 - Else (b!=0): gcd(a,b) = gcd(b,a%b)
 - Because, for any q, gcd(a,b) = gcd(b,a-qb), and $a\%b = a_- (a/b)*b$
- How about Bézout's Identity?
 - Suppose g = m1*b + n1*(a%b) = m1*b + n1*(a (a/b)*b). Then g = ma + nb, where m = n1 and n = m1 - n1*(a/b)

- How about Bézout's Identity?
- Suppose g = m1*b + n1*(a%b) = m1*b + n1*(a (a/b)*b).

Then g = ma + nb, where m = n1 and n = m1 - n1*(a/b)

Examples Today

Fractals

- Fibonacci sequence
- Permutations
- GCD and Bézout's Identity