HetPipe: Enabling Large DNN Training on (Whimpy) Heterogeneous GPU Clusters through Integration of Pipelined Model Parallelism and Data Parallelism

USENIX ATC 2020

Jay H. Park, Gyeongchan Yun, Chang M. Yi, Nguyen T. Nguyen, Seungmin Lee, Jaesik Choi[†], Sam H. Noh, and Young-ri Choi

Contents

- Motivation & Background
- HetPipe in a Nutshell
- Our System: HetPipe
- Evaluation
- Conclusion

Motivation

DNN (Deep Neural Network) models continue to grow

• Need more powerful GPUs for training!

Motivation

Short release cycle of new GPU architectures

- Use of heterogeneous GPUs is inevitable!
- What to do with whimpy GPUs?

DNN Training

Minibatch *i* (Training Data)

Cat?

Loss

$$w_{i+1} = w_i - \eta \cdot u_i$$

Parallelizing DNN Training

Data parallelism (DP)

GPU memory limitation

Model parallelism (MP)

Low GPU utilization

Parallelizing DNN Training

- Attempts to improve MP utilization
 - Pipelined model parallelism (PMP)

- PipeDream [SOSP'19]
- **GPipe** [NIPS'19]

- Designed for homogeneous GPUs
- Designed for a single PMP worker

HetPipe in a Nutshell

Challenges in integration PMP+DP in Heterogeneous GPUs

- What weight version should be used by each VW to synchronize with other VWs?
- How do we reduce virtual worker stragglers when we consider DP?

•

Many more in the paper

HetPipe Contributions

Enable Large DNN Training on Heterogeneous GPUs

Aggregate heterogeneous resources Reduce the straggler problem

Integrates PMP + DP

Novel parameter synchronization model WSP (Wave Synchronous Parallel)

Proof of WSP Convergence

HetPipe Workflow

HetPipe Workflow

Outline

- Motivation & Background
- HetPipe in a Nutshell
- Our System: HetPipe
 - Pipelined Model Parallelism Within a VW
 - Data Parallelism with Multiple VWs
- Evaluation
- Conclusion

Execution of a virtual worker

 N_m minibatches processed concurrently in pipeline manner

W_{bcal}

 $oldsymbol{W_{bal}}$ is a consistent version of weights within a VW

Weight management procedure

Local staleness (S_{bcal}): maximum missing updates

• Local staleness (S_{bal}): maximum missing updates

Outline

- Motivation & Background
- HetPipe in a Nutshell
- Our System: HetPipe
 - Pipelined Model Parallelism Within a VW
 - Data Parallelism with Multiple VWs
- Evaluation
- Conclusion

Wave: Sequence of concurrently executing N_m minibatches

Push occurs every clock

Parameter Server: $w_{g\,bbal}$

Pull occurs intermittently - Depending on user defined clock distance D

Parameter Server: w_{gbbal}

Pull occurs intermittently - Depending on user defined clock distance D

Parameter Server: $w_{g\,bbal}$

Pull occurs intermittently - Depending on user defined clock distance D

Pull occurs intermittently - Depending on user defined clock distance D

Parameter Server: w_{gbbal}

Local staleness (S_{bcal}) and global staleness (S_{gbbal}) with WSP

Local staleness (S_{bcal}) and global staleness (S_{gbbal}) with WSP

Outline

- Motivation & Background
- HetPipe in a Nutshell
- Our System: HetPipe
- Evaluation
 - Setup
 - Resource Allocation for Virtual Workers
 - Results
- Conclusion

Evaluation Setup

Cluster setup - 4 heterogeneous GPU nodes

Two DNN models

	ResNet-152	VGG-19
Dataset, minibatch size	ImageNet, 32	
Model parameter size	230 MB	548 MB
Characteristic	Large activation output	Large parameter size

Resource Allocation for Virtual Workers: NP, ED, HD

NP (Node Partition)

- Minimum communication overhead within VW
- Performance of each virtual worker varies
- Straggler may degrade performance with DP

Resource Allocation for Virtual Workers: NP, ED, HD

ED (Equal Distribution)

- Performance will be the same across the VWs
- Mitigates the straggler problem
- High communication overhead within each VW

Resource Allocation for Virtual Workers: NP, ED, HD

HD (Hybrid Distribution)

- Mitigates the straggler problem
- Reduces communication overhead within each VW

Parameter Placement

- Round-robin policy (default)
 - Can be used in all three policies: NP, ED, and HD

Parameters of each layer:

Example: ED

Parameter Placement

- Local placement policy
 - ED-local Parameters of each layer:

 Significantly reduces communication overhead

Parameter communication occurs

Compare Throughput with Horovod

Baseline Horovod

State-of-the-art DP using AllReduce

Horovod

 For ResNet-152, the whole model is too large to be loaded into a single G type GPU (batch size = 32)

NP

ED

ED-local

HD

ED: reduces the straggler problem

 ED-local: significantly reduces communication overhead

Performance Improvement of Adding Whimpy GPUs

■ HetPipe

Convergence Results

ResNet-152

Convergence Results

Conclusion

- HetPipe makes it possible to efficiently train large DNN models with heterogeneous GPUs
- Integrate pipelined model parallelism with data parallelism
- Propose a novel parameter synchronization model: WSP
- DNN models converge up to 49% faster with HetPipe

Thank you!

