Localização de um ponto

Leandro Baroni

leandro.baroni@ufabc.edu.br

Laboratório de guiagem, navegação e controle Problema 2 – Aula 1

Objetivos – Atividade 1

- Revisão de alguns sistemas de coordenadas comumente utilizados em engenharia aeroespacial e obtenção das transformações entre eles
- Relação dos sistemas de coordenadas com o tempo
- Estudo dos diversos sistemas de medição do tempo utilizados na engenharia aeroespacial
- Aplicar na localização de um ponto

Metodologia – Atividade 1

- Dado um vetor em coordenadas geográficas (latitude geodésica, longitude e altitude), obter este vetor em coordenadas cartesianas terrestres
- II. Dado o tempo em que ele foi medido obter o vetor normalizado em coordenadas cartesianas geocêntricas inerciais (SGI).
 - Dado um vetor \vec{R}_N em coordenadas geográficas (latitude geodésica, longitude e altitude), obter:
 - o mesmo vetor em coordenadas cartesianas terrestres \vec{R}_E
 - este vetor em coordenadas cartesianas geocêntricas inerciais \vec{R}_l

	Ponto 1	Ponto 2	Ponto 3
Latitude geodésica	5° 55′ 23″ S	2° 20′ 20″ S	23° 40′ 37″ S
Longitude	35° 09′ 51″ W	44° 24′ 18″ W	46° 33′ 46′′ W
Altitude	39 m	44 m	778 m
Tempo local	15h 54min 10s 03/06/2025	11h 23min 10s 10/07/2024	21h 45min 25s 24/06/2025

Sistema de coordenadas inerciais

- · Sistema Geocêntrico Inercial
- Este sistema tem origem no centro de massa da Terra
 - O eixo X_I aponta para o equinócio Vernal (Υ)
 - O eixo Z₁ aponta para o polo norte geográfico, coincidindo com o eixo de rotação da Terra
 - O eixo Y₁ forma o sistema dextrógiro

- Os eixos X_I e Y_I definem o plano do Equador terrestre que está inclinado de 23,5° com relação à Eclíptica
- Este sistema não gira com a Terra, é considerado inercial em relação as estrelas (exceto pela precessão dos equinócios)

Sistema cartesiano terrestre

- Sistema ECEF (Earth Centered-Earth Fixed)
- A origem do sistema cartesiano terrestre é o centro de gravidade da Terra
- O eixo Z_E está apontado para o polo norte (eixo de rotação terrestre)
- O eixo X_E está direcionado ao ponto de interseção entre o meridiano de Greenwich e o equador
- O eixo Y_E está a 90° do eixo X_E no sentido direto

Sistema cartesiano terrestre

- As coordenadas cartesianas de um ponto no espaço podem também ser representadas por meio dos ângulos em coordenadas esféricas:
 - Longitude terrestre λ
 - Latitude geocêntrica φ

$$X_E = R\cos\lambda\cos\varphi$$
$$Y_E = R\sin\lambda\cos\varphi$$
$$Z_E = R\sin\varphi$$

Sistema cartesiano terrestre

Sistemas de coordenadas: latitude, longitude e altitude

 Noureldin, A.; Karamat, T. B.; Georgy, J. Fundamentals of Inertial Navigation, Satellite-based Positioning and their Integration. Springer, 2013. DOI 10.1007/978-3-642-30466-8

Sistema geográfico

- Este sistema utiliza os mesmos eixos do sistema cartesiano terrestre
 - A Terra não é uma esfera perfeita ightarrow aproximação por um elipsoide
 - GRS80
 - WGS84
 - · outros
- A localização de um ponto é especificada pela latitude, longitude e a altitude com relação ao elipsoide de referência
 - Necessário diferenciar latitude geodésica ϕ da latitude geocêntrica φ
 - A latitude geodésica ϕ mede o ângulo entre o plano do equador e a direção do ponto em questão, passando perpendicularmente pelo plano tangente à superfície do elipsoide, nesta direção
 - A latitude geocêntrica φ mede o ângulo entre o plano do equador e a linha que liga o centro do elipsoide de referência e a intersecção da superfície do elipsoide e a normal ao plano tangente tocando a superfície
 - Murad, A. H.; Jang, K. D.; Atallah, G.; Karne, R.; Baras, J. A Summary of Satellite Orbit Related Calculations. ISR T.R. 95-107. Univ. of Maryland, 1995.

Elipsoides GRS80 e WGS84

	Ponto 1	Ponto 2	Ponto 3
Latitude geodésica	5° 55′ 23″ S	2° 20′ 20′′ S	23° 40′ 37″ S
Longitude	35° 09′ 51″ W	44° 24′ 18′′ W	46° 33′ 46″ W
Altitude	39 m	44 m	778 m
Tempo local	15h 54min 10s 03/06/2025	11h 23min 10s 10/07/2024	21h 45min 25s 24/06/2025

Sistema geográfico

Sistema geográfico

As coordenadas são

$$X_E' = R_\phi \cos \phi$$

$$Z_E' = \left(1 - e^2\right) R_\phi \sin \phi \qquad \qquad \text{e} \qquad R_\phi = \frac{R_e}{\sqrt{1 - e^2 \sin^2 \phi}}$$

• Se o ponto de observação P está a uma elevação H acima da superfície do elipsoide, então devemos adicionar $H\cos\phi$ a X_E' e $H \sec \phi$ a Z_E' . Assim,

$$X_E' = (R_\phi + H)\cos\phi$$

 $Z_E' = [(1 - e^2) R_\phi + H] \sin\phi$

- O achatamento é definido por $f = \frac{R_e R_p}{R_e}$
 - $R_e = a$ é o raio equatorial (semieixo maior) e $R_p = b$, o raio polar (semieixo menor)
- Excentricidade: $e = \frac{\sqrt{R_e^2 R_p^2}}{R_e}$

Relação entre sistemas de coordenadas

Sistema geográfico para coordenadas cartesianas terrestres

• As coordenadas cartesianas terrestres em função das coordenadas geográficas (latitude geodésica ϕ , longitude λ e altitude H) podem ser obtidas:

$$X_{E} = \left(\frac{a}{\sqrt{1 - e^{2} \operatorname{sen}^{2} \phi}} + H\right) \cos \phi \cos \lambda$$

$$Y_{E} = \left(\frac{a}{\sqrt{1 - e^{2} \operatorname{sen}^{2} \phi}} + H\right) \cos \phi \operatorname{sen} \lambda$$

$$Z_{E} = \left[\frac{a}{\sqrt{1 - e^{2} \operatorname{sen}^{2} \phi}} \left(1 - e^{2}\right) + H\right] \operatorname{sen} \phi$$

Coordenadas cartesianas terrestres para sistema geográfico

- Conversão para latitude, longitude e altitude em função das coordenadas cartesianas terrestres → algoritmo iterativo
- 1. Inicialize: $H_0 = 0$
- 2. Escolha um valor arbitrário para a latitude ou inicialize:

$$\phi_0 = \operatorname{arctg}\left[\frac{Z_E}{(1 - e^2)\sqrt{X_E^2 + Y_E^2}}\right]$$

3. Longitude:

$$\lambda = \operatorname{arctg} \frac{\mathsf{Y}_{\mathsf{E}}}{\mathsf{X}_{\mathsf{F}}}$$

4. Para i = 1, ..., faça a iteração:

$$\begin{split} R_{\phi,i} &= \frac{a}{\left(1 - e^2 \sin^2 \phi_{i-1}\right)^{1/2}} \\ H_i &= \frac{\sqrt{X_E^2 + Y_E^2}}{\cos \phi_{i-1}} - R_{\phi,i} \\ \phi_i &= \operatorname{arctg} \left[\frac{Z_E}{\sqrt{X_E^2 + Y_E^2}} \frac{R_{\phi,i} + H_i}{R_{\phi,i} \left(1 - e^2\right) + H_i} \right] \end{split}$$

5. Compare ϕ_i , ϕ_{i-1} e H_i , H_{i-1} . Se teve convergência, pare.

Relação entre os sistemas inercial e cartesiano terrestre

- Se relacionam pelo movimento de rotação da Terra: a cada um dia completo eles tornam-se momentaneamente correspondentes
 - Exceto por pequenas correções devido as irregularidades do movimento de rotação da Terra, da nutação e da precessão do eixo polar, e de pequenas oscilações relacionadas ao movimento da crosta terrestre.
 - Essas irregularidades são medidas a partir de observações astronômicas, e é de alguns segundos
- A orientação do sistema cartesiano terrestre em relação ao sistema inercial é determinada pelo ângulo entre os eixos X_I e X_E
 - Este ângulo entre o meridiano de Greenwech (eixo X_E) e o equinócio vernal (eixo X_I) é chamado de ângulo horário θ_g

Relação entre os sistemas inercial e cartesiano terrestre

Relação entre os sistemas inercial e cartesiano terrestre

Assim

$$\vec{\mathbf{v}}_E = \mathbf{A}_I^E \vec{\mathbf{v}}_I$$

е

$$\mathbf{A}_{l}^{E} = egin{bmatrix} \cos heta_g & \sin heta_g & 0 \ -\sin heta_g & \cos heta_g & 0 \ 0 & 0 & 1 \end{bmatrix}$$

•
$$\mathbf{A}_{E}^{I} = (\mathbf{A}_{I}^{E})^{-1} = (\mathbf{A}_{I}^{E})^{T}$$

- ullet Então, o problema agora é determinar o valor de $heta_g$
- Neste momento, faz-se necessário o estudo de sistemas de tempo