数学分析讲义 (第一册) 习题解答

目录

第	1章 极限	1
	习题 1.1	1
	习题 1.2	4
	习题 1.3	15
	第1章综合习题	26
第	2章 连续函数的基本概念	35
	习题 2.1	35
	习题 2.2	42
	第 2 章综合习题	46
第	3章 单变量函数的微分学	52
	习题 3.1	52
	习题 3.2	56
	习题 3.3	57

第1章 极限

习题 1.1

习题 1.1.1 设 a 是有理数, b 是无理数. 求证: a + b 和 a - b 都是无理数; 当 $a \neq 0$ 时, ab 和 $\frac{b}{a}$ 也都是无理数.

解设 a 是有理数,b 是无理数.

- (1) 若a+b是有理数,则b=(a+b)-a是有理数,矛盾.同理可证a-b是无理数.
- (2) 若 ab 是有理数,则 $b = \frac{ab}{a}$ 是有理数,矛盾.同理可证 $\frac{b}{a}$ 是无理数.

习题 1.1.2 求证: 两个不同的有理数之间有无理数.

解设a,b是两个不同的有理数,不妨设a < b.则存在正整数k,N使得

$$\left(\sqrt{2}\right)^{2k-1} a < N < \left(\sqrt{2}\right)^{2k-1} b.$$

具体而言, 取 $k > \lceil \log_2(b-a) \rceil$, 则 $k > \log_2 \frac{2\sqrt{2}}{b-a} \Rightarrow 2^k(b-a) > 2\sqrt{2} \Rightarrow \left(\sqrt{2}\right)^{2k-1}b - \left(\sqrt{2}\right)^{2k-1}a > 2$. 因此, 存在整数 $N = \left\lfloor \left(\sqrt{2}\right)^{2k-1}b \right\rfloor$, 使得 $\left(\sqrt{2}\right)^{2k-1}a < N < \left(\sqrt{2}\right)^{2k-1}b$. 于

$$a < \frac{N}{\left(\sqrt{2}\right)^{2k-1}} < b.$$

而
$$\frac{N}{\left(\sqrt{2}\right)^{2k-1}} = \frac{N\sqrt{2}}{2^k}$$
 是无理数.

习题 1.1.3 求证: $\sqrt{2}$, $\sqrt{3}$ 以及 $\sqrt{2} + \sqrt{3}$ 都是无理数.

解

- (1) 设 $\sqrt{2}$ 是有理数,则 $\sqrt{2} = \frac{p}{q}$,其中 p,q 互素.因此 $2q^2 = p^2$,由素数分解的唯一性可知 p 是 偶数,设 p = 2k,则 $2q^2 = 4k^2 \Rightarrow q^2 = 2k^2$,同理可知 q 也是偶数,与 p,q 互素矛盾.因此 $\sqrt{2}$ 是无理数.
- (2) 设 $\sqrt{3}$ 是有理数,则 $\sqrt{3} = \frac{p}{q}$,其中 p,q 互素.因此 $3q^2 = p^2$,由素数分解的唯一性可知 p 是 3 的倍数,设 p = 3k,则 $3q^2 = 9k^2 \Rightarrow q^2 = 3k^2$,同理可知 q 也是 3 的倍数,与 p,q 互素矛盾.因此 $\sqrt{3}$ 是无理数.
- (3) 设 $\sqrt{2} + \sqrt{3}$ 是有理数, 则 $\sqrt{2} + \sqrt{3} = \frac{p}{q}$, 其中 p, q 互素. 因此 $2 + 3 + 2\sqrt{6} = \frac{p^2}{q^2} \Rightarrow \sqrt{6} = \frac{p^2 5q^2}{2q^2}$, 与 $\sqrt{6}$ 是无理数矛盾. 因此 $\sqrt{2} + \sqrt{3}$ 是无理数.

习题 1.1.4 把下列循环小数表示为分数:

 $(1) \ 0.24999...$

 $(2) \ 0.\dot{3}7\dot{5}$

(3) 4.518

解

(3) 设 x = 4.518, 则 1000x = 4518.518518...,因此 $999x = 4514 \Rightarrow x = \frac{4514}{999} = \frac{122}{27}$

习题 1.1.5 设 r, s, t 都是有理数. 求证:

解

(1) 假设 $s \neq 0$, 则 $\sqrt{2} = -\frac{r}{s}$ 是有理数,与 $\sqrt{2}$ 是无理数矛盾. 因此 s = 0, 从而 r = 0.

(2) $r + s\sqrt{2} + t\sqrt{3} = 0 \Rightarrow r^2 = 2s^2 + 3t^2 + 2st\sqrt{6} \Rightarrow (r^2 - 2s^2 - 3t^2) + (-2st)\sqrt{6} = 0.$: 与 (1) 类似, 若 $st \neq 0$, 则 $\sqrt{6} = \frac{r^2 - 2s^2 - 3t^2}{2st}$ 是有理数, 与 $\sqrt{6}$ 是无理数矛盾. 故 st = 0,

(a) 若 t = 0, 则 $r + s\sqrt{2} = 0$, 由 (1) 可知 r = s = 0;

(b) 若 s = 0, 则 $r + t\sqrt{3} = 0$, 同理可知 r = t = 0.

习题 1.1.6 设 a_1, a_2, \ldots, a_n 有相同的符号, 且都大于 -1. 证明:

$$(1+a_1)(1+a_2)\cdots(1+a_n) \geqslant 1+a_1+a_2+\cdots+a_n.$$

解 利用数学归纳法:

当n=1时, 等式为

$$1 + a_1 \geqslant 1 + a_1$$

显然成立.

假设当 n = k 时, 等式成立, 即

$$(1+a_1)(1+a_2)\cdots(1+a_k) \geqslant 1+a_1+a_2+\cdots+a_k$$

以此作为条件, 当 n = k + 1 时, 由 $a_{k+1} > -1$, 可知 $1 + a_{k+1} > 0$, 因此

$$(1+a_1)(1+a_2)\cdots(1+a_k)(1+a_{k+1}) \ge (1+a_1+a_2+\cdots+a_k)(1+a_{k+1})$$

$$= 1+a_1+a_2+\cdots+a_k+a_{k+1}+a_{k+1}(a_1+a_2+\cdots+a_k)$$

$$\ge 1+a_1+a_2+\cdots+a_k+a_{k+1}.$$

其中 $a_{k+1}(a_1 + a_2 + \dots + a_k) = a_1 a_{k+1} + a_2 a_{k+1} + \dots + a_k a_{k+1} \ge 0$, 因为 a_i 与 a_{k+1} 符号相同.

习题 1.1.7 设 a, b 是实数, 且 |a| < 1, |b| < 1. 证明:

$$\left| \frac{a+b}{1+ab} \right| < 1.$$

解由 |a| < 1, |b| < 1, 可知 $ab \neq -1$. 因此

$$\left|\frac{a+b}{1+ab}\right| < 1 \Leftrightarrow |a+b| < |1+ab| \Leftrightarrow (a+b)^2 < (1+ab)^2.$$

即

$$a^{2} + b^{2} + 2ab < 1 + a^{2}b^{2} + 2ab \Leftrightarrow a^{2} + b^{2} < 1 + a^{2}b^{2} \Leftrightarrow (1 - a^{2})(1 - b^{2}) > 0.$$

显然成立.

习题 1.2

习题 1.2.1 用定义证明下面的结论:

(1)
$$\lim_{n \to \infty} \frac{n}{5+3n} = \frac{1}{3};$$

(2)
$$\lim_{n \to \infty} \frac{\sin n}{n} = 0;$$

(3)
$$\lim_{n\to\infty} (-1)^n \frac{1}{\sqrt{n+1}} = 0;$$

$$(4) \lim_{n\to\infty} \frac{n!}{n^n} = 0.$$

解

(1)
$$\forall \varepsilon > 0$$
, 取 $N = \left\lceil \frac{5}{9\varepsilon} \right\rceil$, 则当 $n > N$ 时,有
$$\left| \frac{n}{5+3n} - \frac{1}{3} \right| = \left| \frac{3n - (5+3n)}{3(5+3n)} \right| = \frac{5}{3(5+3n)} < \frac{5}{9n} < \varepsilon.$$

(2)
$$\forall \varepsilon > 0$$
, 取 $N = \left\lceil \frac{1}{\varepsilon} \right\rceil$, 则当 $n > N$ 时, 有

$$\left| \frac{\sin n}{n} - 0 \right| = \frac{|\sin n|}{n} \leqslant \frac{1}{n} < \varepsilon.$$

(3)
$$\forall \varepsilon > 0$$
, 取 $N = \left\lceil \frac{1}{\varepsilon^2} - 1 \right\rceil$, 则当 $n > N$ 时, 有

$$\left| (-1)^n \frac{1}{\sqrt{n+1}} - 0 \right| = \frac{1}{\sqrt{n+1}} < \varepsilon.$$

(4)
$$\forall \varepsilon > 0$$
, 取 $N = \left\lceil \frac{1}{\varepsilon} \right\rceil$, 则当 $n > N$ 时, 有

$$\left| \frac{n!}{n^n} - 0 \right| = \frac{n!}{n^n} = \frac{1}{n} \cdot \frac{2}{n} \cdot \dots \cdot \frac{n-1}{n} \cdot \frac{n}{n} < \frac{1}{n} < \varepsilon.$$

习题 1.2.2 若数列 $\{a_n\}$ $(n \ge 1)$ 满足条件: 任给正数 ε , 存在正整数 N, 使得当 n > N 时, 有 $|a_n - a| < M\varepsilon$ (其中 M 为常数), 则 $\{a_n\}$ 必以 a 为极限.

M 为常数指的是 M 不依赖于 ε 和 n. 例如 M=2, M=1000 等都是常数. 也就是说, 上述 (2) 其实等价于 $\forall M>0, \forall \varepsilon>0, \exists N\in\mathbb{N}^*, \forall n>N$ 都有 $|a_n-a|< M\varepsilon$ 成立.

习题 1.2.3 证明: 当且仅当 $\lim_{n\to\infty} (a_n - a) = 0$ 时, 有 $\lim_{n\to\infty} a_n = a$. (数列极限的许多证明问题, 都可用同样的方法处理.)

证明 充分性: 由 $\lim_{n\to\infty}(a_n-a)=0$, 则 $\forall \varepsilon>0, \exists N\in\mathbb{N}^*, \forall n>N$ 都有 $|a_n-a|<\varepsilon$ 成立. 因此 $\lim_{n\to\infty}a_n=a$.

必要性:由 $\lim_{n\to\infty}a_n=a$,则 $\forall \varepsilon>0,\exists N\in\mathbb{N}^*, \forall n>N$ 都有 $|a_n-a|<\varepsilon$ 成立.因此 $\lim_{n\to\infty}(a_n-a)=0$.

习题 1.2.4 证明: 若 $\lim_{n\to\infty} a_n = a$, 则 $\lim_{n\to\infty} |a_n| = |a|$; 反之不一定成立 (试举例说明). 但若 $\lim_{n\to\infty} |a_n| = 0$, 则有 $\lim_{n\to\infty} a_n = 0$.

证明 由 $\lim_{n\to\infty} a_n = a \Rightarrow \forall \varepsilon > 0, \exists N \in \mathbb{N}^*, \text{ in } n > N$ 时,有 $|a_n - a| < \varepsilon$.则

$$||a_n| - |a|| \leqslant |a_n - a| < \varepsilon.$$

 $\mathbb{P}\lim_{n\to\infty}|a_n|=|a|.$

反之不一定成立, 如数列 $a_n = (-1)^n$, 则 $\lim_{n \to \infty} |a_n| = 1$, 但 $\{a_n\}$ 发散. 若 $\lim_{n \to \infty} |a_n| = 0$, 则 $\forall \varepsilon > 0$, $\exists N \in \mathbb{N}^*$, 当 n > N 时, 有 $||a_n| - 0| < \varepsilon$. 则

$$|a_n - 0| = |a_n| < \varepsilon.$$

 $\mathbb{P}\lim_{n\to\infty}a_n=0.$

习题 1.2.5 证明: 若 $\lim_{n\to\infty} a_n = 0$, 又 $|b_n| \leqslant M$, $(n = 1, 2, \cdots)$, 则 $\lim_{n\to\infty} a_n b_n = 0$.

证明 由 $\lim_{n\to\infty} a_n = 0 \Rightarrow \forall \varepsilon > 0, \exists N \in \mathbb{N}^*, \text{ if } n > N \text{ by, } n \mid a_n - 0 \mid < \frac{\varepsilon}{M}.$ 则

$$|a_n b_n - 0| = |a_n||b_n| < \frac{\varepsilon}{M} \cdot M = \varepsilon.$$

 $\mathbb{P}\lim_{n\to\infty}a_nb_n=0.$

习题 1.2.6 证明: 若数列 $\{a_n\}$ 满足 $\lim_{k\to\infty}a_{2k+1}=a$,及 $\lim_{k\to\infty}a_{2k}=a$,则 $\lim_{n\to\infty}a_n=a$. 解 按已知条件 $\forall \varepsilon>0$, $\exists N_1>0$,当 $n>N_1$ 时 $|x_{2n}-a|<\varepsilon$. 又 $\exists N_2>0$,当 $n>N_2$ 时 $|x_{2n+1}-a|<\varepsilon$. 于是令 $N=\max\{2N_1,2N_2+1\}$,则 n>N 时恒有 $|x_n-a|<\varepsilon$. 故 $\lim_{n\to\infty}x_n=a$. 习题 1.2.7 证明下列数列不收敛:

(1)
$$a_n = (-1)^n \frac{n}{n+1}$$
; (2) $a_n = 5\left(1 - \frac{2}{n}\right) + (-1)^n$.

解

(1) 取 $a_{2n} = \frac{2n}{2n+1}$, $a_{2n+1} = -\frac{2n+1}{2n+2}$, 则 $\lim_{n\to\infty} a_{2n} = 1$, $\lim_{n\to\infty} a_{2n+1} = -1$, 而如果 $\{a_n\}$ 收敛, 则 $\lim_{n\to\infty} a_{2n} = \lim_{n\to\infty} a_{2n+1}$, 矛盾.

(2) 取
$$a_{2n} = 5\left(1 - \frac{1}{n}\right) + 1$$
, $a_{2n+1} = 5\left(1 - \frac{2}{2n+1}\right) - 1$, 则 $\lim_{n \to \infty} a_{2n} = 6$, $\lim_{n \to \infty} a_{2n+1} = 4$, 而 如果 $\{a_n\}$ 收敛,则 $\lim_{n \to \infty} a_{2n} = \lim_{n \to \infty} a_{2n+1}$, 矛盾.

习题 1.2.8 求下列极限:

(1)
$$a_n = \frac{4n^2 + 5n + 2}{3n^2 + 2n + 1};$$

(2)
$$a_n = \frac{1}{1 \cdot 2} + \frac{1}{2 \cdot 3} + \dots + \frac{1}{(n-1)n};$$

(3)
$$a_n = \left(1 - \frac{1}{3}\right) \left(1 - \frac{1}{6}\right) \cdots \left(1 - \frac{1}{n(n+1)/2}\right), n = 2, 3, \dots;$$

(4)
$$a_n = \left(1 - \frac{1}{2^2}\right) \left(1 - \frac{1}{3^2}\right) \cdots \left(1 - \frac{1}{n^2}\right);$$

(5)
$$a_n = (1+q)(1+q^2)(1+q^4)\cdots(1+q^{2^m}), (|q|<1).$$

解

(1)
$$\lim_{n \to \infty} a_n = \lim_{n \to \infty} \frac{4 + \frac{5}{n} + \frac{2}{n^2}}{3 + \frac{2}{n} + \frac{1}{n^2}} = \frac{\lim_{n \to \infty} 4 + \lim_{n \to \infty} \frac{5}{n} + \lim_{n \to \infty} \frac{2}{n^2}}{\lim_{n \to \infty} 3 + \lim_{n \to \infty} \frac{2}{n} + \lim_{n \to \infty} \frac{1}{n^2}} = \frac{4 + 0 + 0}{3 + 0 + 0} = \frac{4}{3}.$$

(2)
$$a_n = \left(1 - \frac{1}{2}\right) + \left(\frac{1}{2} - \frac{1}{3}\right) + \dots + \left(\frac{1}{n-1} - \frac{1}{n}\right) = 1 - \frac{1}{n},$$

$$\lim_{n \to \infty} a_n = \lim_{n \to \infty} 1 - \lim_{n \to \infty} \frac{1}{n} = 1 - 0 = 1.$$

(3)
$$a_{n} = \frac{2}{3} \cdot \frac{5}{6} \cdot \cdot \cdot \frac{(n^{2} + n - 2)/2}{n(n+1)/2} = \frac{2}{3} \cdot \frac{5}{6} \cdot \cdot \cdot \cdot \frac{(n-1)(n+2)}{n(n+1)} = \frac{1 \cdot 4}{2 \cdot 3} \cdot \frac{2 \cdot 5}{3 \cdot 4} \cdot \cdot \cdot \cdot \frac{(n-1)(n+2)}{n(n+1)}$$

$$= \frac{(1 \cdot 2 \cdot \cdot \cdot (n-1)) \cdot (4 \cdot 5 \cdot \cdot \cdot (n+2))}{(2 \cdot 3 \cdot \cdot \cdot (n)) \cdot (3 \cdot 4 \cdot \cdot \cdot (n+1))} = \frac{1 \cdot (n+2)}{n \cdot 3} = \frac{n+2}{3n},$$

$$\lim_{n \to \infty} a_{n} = \lim_{n \to \infty} \frac{n+2}{3n} = \lim_{n \to \infty} \frac{1}{3} + \frac{2}{3} \cdot 0 = \frac{1}{3}.$$

(4)
$$a_n = \frac{1 \cdot 3}{2 \cdot 2} \cdot \frac{2 \cdot 4}{3 \cdot 3} \cdot \dots \cdot \frac{(n-1)(n+1)}{n \cdot n} = \frac{1}{2} \cdot \frac{n+1}{n} = \frac{n+1}{2n},$$

$$\lim_{n \to \infty} a_n = \lim_{n \to \infty} \frac{n+1}{2n} = \frac{1+\frac{1}{n}}{2} = \frac{1+0}{2} = \frac{1}{2}.$$

(5)
$$a_n = \frac{(1-q)(1+q)(1+q^2)(1+q^4)\cdots(1+q^{2^n})}{1-q} = \frac{1-q^{2^{n+1}}}{1-q},$$

$$\lim_{n\to\infty} a_n = \lim_{n\to\infty} \frac{1-q^{2^{n+1}}}{1-q} = \frac{1-\lim_{m\to\infty} q^{2^{n+1}}}{1-q} = \frac{1-0}{1-q} = \frac{1}{1-q}.$$

习题 1.2.9 若 $a_n \neq 0 (n=1,2,\ldots)$ 且 $\lim_{n\to\infty} a_n = a$, 能否断定 $\lim_{n\to\infty} \frac{a_n}{a_{n+1}} = 1$? 解 不能. 例如 $a_n = \frac{1}{2^n}$, 则 $\lim_{n\to\infty} a_n = 0$, 但 $\lim_{n\to\infty} \frac{a_n}{a_{n+1}} = \lim_{n\to\infty} \frac{2^{n+1}}{2^n} = 2$.

一个可能的错误做法是

$$\lim_{n \to \infty} \frac{a_n}{a_{n+1}} = \frac{\lim_{n \to \infty} a_n}{\lim_{n \to \infty} a_{n+1}} = \frac{a}{a} = 1,$$

但这是不允许的,因为 $\lim_{n\to\infty} a_n$ 可能为 0.

习题 1.2.10 若数列 $\{a_n\}$, $\{b_n\}$ 满足 $\lim_{n\to\infty}a_n\cdot b_n=0$, 是否必有 $\lim_{n\to\infty}a_n=0$ 或 $\lim_{n\to\infty}b_n=0$? 若还 假设 $\lim_{n\to\infty} a_n = a$, 回答同样的问题.

解 不一定. 例如
$$a_n = \begin{cases} 1, & n \to 3 \\ 0, & n \to 3 \end{cases}$$
 , $b_n = \begin{cases} 0, & n \to 3 \\ 0, & n \to 3 \end{cases}$, 则 $\lim_{n \to \infty} a_n \cdot b_n = \lim_{n \to \infty} 0 = 0$, 但 $1, n \to 3$, 则 $\lim_{n \to \infty} a_n \cdot b_n = \lim_{n \to \infty} 0 = 0$, 但

 $\lim_{n\to\infty} a_n$, $\lim_{n\to\infty} b_n$ 均不存在.

当
$$\lim_{n\to\infty} a_n = a$$
 时成立. 假设 $a \neq 0$ 时, 则 $\lim_{n\to\infty} b_n = \lim_{n\to\infty} \frac{a_n b_n}{a_n} = \frac{0}{a} = 0$.

习题 1.2.11 若数列 $\{a_n\}$ 收敛, 数列 $\{b_n\}$ 发散, 则数列 $\{a_n \pm b_n\}$, $\{a_n \cdot b_n\}$ 的收敛性如何? 举例说明. 若数列 $\{a_n\}$ 与 $\{b_n\}$ 皆发散, 回答同样的问题.

解

- (1) $\{a_n\}$ 收敛,数列 $\{b_n\}$ 发散,则
 - (a) $\{a_n+b_n\}$, $\{a_n-b_n\}$ 都发散可以采用反证法: 若 $\{a_n+b_n\}$ 收敛, 由于 $\{a_n\}$ 收敛, 容易知道 $\{a_n+b_n-a_n\}=\{b_n\}$ 收敛, 这与 $\{b_n\}$ 发散矛盾, 因此 $\{a_n+b_n\}$ 发散, $\{a_n-b_n\}$ 同理可得.
 - (b) $\{a_n \cdot b_n\}$ 的收敛性不确定. I. $a_n = \frac{1}{n}, b_n = n, 则 <math>a_n \cdot b_n = 1$ 收敛; II. $a_n = 1, b_n = n, 则 <math>a_n \cdot b_n = n$ 发散.
- (2) $\{a_n\}, \{b_n\}$ 都发散,则
 - (a) $\{a_n + b_n\}$ 的收敛性不确定

I.
$$a_n = n, b_n = -n, 则 a_n + b_n = 0 收敛.$$

II.
$$a_n = n, b_n = n, 则 a_n + b_n = 2n 发散.$$

(b) $\{a_n - b_n\}$ 的收敛性不确定

I.
$$a_n = n + \frac{1}{n}, b_n = n$$
, 则 $a_n - b_n = \frac{1}{n}$, 收敛.

II.
$$a_n = (-1)^n, b_n = (-1)^{n-1}$$
, 则 $a_n - b_n = 2 \cdot (-1)^n$ 发散.

(c) $\{a_n \cdot b_n\}$ 的收敛性不确定

I.
$$a_n = \begin{cases} 1, & n \to 3 \\ 0, & n \to 3 \end{cases}$$
, $b_n = \begin{cases} 0, & n \to 3 \\ 0, & n \to 3 \end{cases}$, 则 $a_n \cdot b_n = 0$ 收敛.

II.
$$a_n = n, b_n = (-1)^n, \, \text{M} \, a_n \cdot b_n = (-1)^n n \, \text{L};$$

习题 1.2.12 下面的推理是否正确?

(1) 设数列 $\{a_n\}$: $a_1 = 1, a_{n+1} = 2a_n - 1$ (n = 1, 2, 3, ...), 求 $\lim_{n \to \infty} a_n$. 解: 设 $\lim_{n \to \infty} a_n = a$, 在 $a_{n+1} = 2a_n - 1$ 两边取极限, 得 a = 2a - 1, 即 a = 1.

(2)

$$\lim_{n \to \infty} \left(\frac{1}{\sqrt{n^2 + 1}} + \frac{1}{\sqrt{n^2 + 2}} + \dots + \frac{1}{\sqrt{n^2 + n}} \right)$$

$$= \lim_{n \to \infty} \frac{1}{\sqrt{n^2 + 1}} + \lim_{n \to \infty} \frac{1}{\sqrt{n^2 + 2}} + \dots + \lim_{n \to \infty} \frac{1}{\sqrt{n^2 + n}}$$

$$= \underbrace{0 + 0 + \dots + 0}_{n \uparrow} = 0.$$

(3)
$$\lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^n = \left[\lim_{n \to \infty} \left(1 + \frac{1}{n} \right) \right]^n = 1^n = 1.$$

- (1) 错误. 不能在未知数列是否收敛时, 就假设极限存在并对递推公式两边取极限. 实际上, 该数列的通项公式为 $a_n = 1$, 所以 $\lim_{n \to \infty} a_n = 1$.
- (2) 错误. 不能将一个数列的极限拆成无穷多个数列极限的和. 实际上

$$\frac{n}{\sqrt{n^2 + n}} \leqslant \frac{1}{\sqrt{n^2 + 1}} + \frac{1}{\sqrt{n^2 + 2}} + \dots + \frac{1}{\sqrt{n^2 + n}} \leqslant \frac{n}{\sqrt{n^2 + 1}}.$$

并有

$$\lim_{n \to \infty} \frac{n}{\sqrt{n^2 + n}} = 1, \lim_{n \to \infty} \frac{n}{\sqrt{n^2 + 1}} = 1.$$

由夹逼准则

$$\lim_{n \to \infty} \left(\frac{1}{\sqrt{n^2 + 1}} + \frac{1}{\sqrt{n^2 + 2}} + \dots + \frac{1}{\sqrt{n^2 + n}} \right) = 1.$$

(3) 错误. 不能将一个数列的极限拆成无穷多个数列极限的积. 实际上

$$\lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^n = e.$$

习题 1.2.13 设数列 $\{a_n\}$ 与 $\{b_n\}$ 分别收敛于 a,b. 若 a>b, 则从某一项开始, 有 $a_n>b_n$; 反之, 若从某项开始恒有 $a_n \ge b_n$, 则 $a \ge b$.

解 这是保序性的直接推论.

习题 1.2.14 设数列 $\{a_n\}$, $\{b_n\}$ 分别收敛于 a 及 b. 记 $c_n = \max(a_n, b_n)$, $d_n = \min(a_n, b_n)$ $(n = a_n, b_n)$ 1,2,...). 证明

$$\lim_{n \to \infty} c_n = \max(a, b), \quad \lim_{n \to \infty} d_n = \min(a, b).$$

解由 $\max(x,y) = \frac{x+y+|x-y|}{2}$, $\min(x,y) = \frac{x+y-|x-y|}{2}$, 以及数列极限的四则运算和绝 对值运算可得.

习题 1.2.15 求下列极限:

(1)
$$\lim_{n \to \infty} \left[\frac{1}{(n+1)^2} + \frac{1}{(n+2)^2} + \dots + \frac{1}{(2n)^2} \right];$$

(2) $\lim_{n \to \infty} ((n+1)^k - n^k), \sharp \oplus 0 < k < 1;$

(2)
$$\lim_{n \to \infty} ((n+1)^k - n^k)$$
, $\not = 0 < k < 1$;

(3)
$$\lim_{n \to \infty} (\sqrt{2} \cdot \sqrt[4]{2} \cdot \sqrt[8]{2} \cdots \sqrt[2^n]{2});$$

$$(4) \lim_{n\to\infty} \left(\sqrt{n^2 - n + 2} - n\right);$$

(4)
$$\lim_{n \to \infty} \left(\sqrt{n^2 - n + 2} - n \right);$$
(5)
$$\lim_{n \to \infty} \left(\sqrt{\cos^2 1 + \cos^2 2 + \dots + \cos^2 n} \right).$$

(1) 由于

$$0 \leqslant \sum_{k=1}^{n} \frac{1}{(n+k)^2} \leqslant \sum_{k=1}^{n} \frac{1}{n^2} = \frac{n}{n^2} = \frac{1}{n}.$$

并且

$$\lim_{n \to \infty} 0 = 0, \lim_{n \to \infty} \frac{1}{n} = 0.$$

由夹逼准则

$$\lim_{n \to \infty} \sum_{k=1}^{n} \frac{1}{(n+k)^2} = 0.$$

(2) 由于

$$0 \le ((n+1)^k - n^k) = n^k \left(\left(1 + \frac{1}{n} \right)^k - 1 \right) \le n^k \left(\left(1 + \frac{1}{n} \right)^1 - 1 \right) = n^{k-1}.$$

并且

$$\lim_{n\to\infty} 0 = 0, \lim_{n\to\infty} n^{k-1} = 0.$$

由夹逼准则

$$\lim_{n \to \infty} ((n+1)^k - n^k) = 0.$$

(3)

$$\lim_{n \to \infty} \prod_{k=1}^{n} \sqrt[2^k]{2} = \lim_{n \to \infty} 2^{\sum_{k=1}^{n} \frac{1}{2^k}} = 2^{\lim_{n \to \infty} \sum_{k=1}^{n} \frac{1}{2^k}} = 2^1 = 2.$$

$$\lim_{n \to \infty} \sqrt[n]{n^2 - n + 2} = \lim_{n \to \infty} e^{\frac{1}{n} \ln(n^2 - n + 2)} = e^{\lim_{n \to \infty} \frac{1}{n} \ln(n^2 - n + 2)} = e^0 = 1.$$

(5) 由于

$$\sqrt[n]{\cos^2 1} \leqslant \sqrt[n]{\cos^2 1 + \cos^2 2 + \dots + \cos^2 n} \leqslant \sqrt[n]{n}.$$

并且

$$\lim_{n \to \infty} \sqrt[n]{\cos^2 1} = 1, \lim_{n \to \infty} \sqrt[n]{n} = 1.$$

由夹逼准则

$$\lim_{n \to \infty} \sqrt[n]{\cos^2 1 + \cos^2 2 + \dots + \cos^2 n} = 1.$$

习题 1.2.16 设 a_1, a_2, \ldots, a_m 为 m 个正数, 证明:

$$\lim_{n \to \infty} \sqrt[n]{a_1^n + a_2^n + \dots + a_m^n} = \max(a_1, a_2, \dots, a_m).$$

解 设 $a_k = \max\{a_1, a_2, \dots, a_m\}$, 则

$$a_k = \sqrt[n]{a_k^n} \leqslant \sqrt[n]{a_1^n + a_2^n + \dots + a_m^n} \leqslant \sqrt[n]{ma_k^n} = m^{\frac{1}{n}}a_k.$$

由夹逼定理可得

$$\lim_{n \to \infty} \sqrt[n]{a_1^n + a_2^n + \dots + a_m^n} = a_k = \max(a_1, a_2, \dots, a_m).$$

习题 1.2.17 证明下列数列收敛:

(1)
$$a_n = \left(1 - \frac{1}{2}\right) \left(1 - \frac{1}{2^2}\right) \cdots \left(1 - \frac{1}{2^n}\right);$$

(2)
$$a_n = \frac{1}{3+1} + \frac{1}{3^2+1} + \dots + \frac{1}{3^n+1};$$

(3)
$$a_n = \alpha_0 + \alpha_1 q + \dots + \alpha_n q^n$$
, $\sharp + |\alpha_k| \leq M, (k = 1, 2, \dots), \; \overline{m} \; |q| < 1;$

(4)
$$a_n = \frac{\cos 1}{1 \cdot 2} + \frac{\cos 2}{2 \cdot 3} + \frac{\cos 3}{3 \cdot 4} + \dots + \frac{\cos n}{n(n+1)}$$
.

证明

(1) 由
$$1 - \frac{1}{2^n} < 1$$
, 可知 $\{a_n\}$ 单调减, 且 $a_n > 0$, 因此 $\{a_n\}$ 收敛.

(2) 由
$$a_n < \sum_{k=1}^n \frac{1}{3^k} < \frac{1}{2}$$
, 可知 $\{a_n\}$ 有上界, 且 a_n 单调递增, 因此 $\{a_n\}$ 收敛.

(3) 利用 Cauchy 收敛准则, 对
$$\forall \varepsilon > 0$$
, 取 $N = \left| \log_{|q|} \frac{\varepsilon(1-|q|)}{2M} \right| + 1$, 则当 $m > n > N$ 时,

$$|a_m - a_n| = |\alpha_{n+1}q^{n+1} + \dots + \alpha_m q^m| \le M(|q|^{n+1} + |q|^{n+2} + \dots) = M \frac{|q|^{n+1}}{1 - |q|} < \varepsilon.$$

(4) 利用 Cauchy 收敛准则, 对
$$\forall \varepsilon > 0$$
, 取 $N = \left| \frac{1}{\varepsilon} \right| + 1$, 则当 $m > n > N$ 时,

$$|a_m - a_n| = \left| \frac{\cos(n+1)}{(n+1)(n+2)} + \dots + \frac{\cos m}{m(m+1)} \right| \le \sum_{k=n+1}^m \frac{1}{k(k+1)} = \frac{1}{n+1} - \frac{1}{m+1} < \frac{1}{n+1} < \varepsilon.$$

习题 1.2.18 证明下列数列收敛,并求出其极限:

(1)
$$a_n = \frac{n}{c^n}$$
, $(c > 1)$;

(2)
$$a_1 = \frac{c}{2}$$
, $a_{n+1} = \frac{c}{2} + \frac{a_n^2}{2} \ (0 \leqslant c \leqslant 1)$;

(3)
$$a > 0, a_0 > 0, a_{n+1} = \frac{1}{2} \left(a_n + \frac{a}{a_n} \right)$$
 (提示: 先证明 $a_n^2 \ge a$);

(4)
$$a_0 = 1$$
, $a_n = 1 + \frac{a_{n-1}}{a_{n-1} + 1}$;

(5)
$$a_n = \sin \sin \cdots \sin 1$$
 ($n \uparrow \sin$).

解

(1) 由 Stolz 定理, 有

$$\lim_{n \to \infty} a_n = \lim_{n \to \infty} \frac{n}{c^n} = \lim_{n \to \infty} \frac{(n+1) - n}{c^{n+1} - c^n} = \lim_{n \to \infty} \frac{1}{c^n(c-1)} = 0.$$

(2)
$$a_{n+1} - a_n = \frac{1}{2}(a_n - a_{n-1})(a_n + a_{n-1})$$

由
$$a_2 - a_1 = \left(\frac{c}{2}\right)^2 > 0$$
, 可递归的得知 $a_{n+1} - a_n > 0$, 因此 $\{a_n\}$ 单调增, 且 $a_1 < c$, 归纳

的可得 $a_{n+1} < \frac{c}{2} + \frac{c^2}{2} < \frac{c}{2} + \frac{c}{2} = c$, 因此 $\{a_n\}$ 有上界, 故 $\{a_n\}$ 收敛. 设 $\lim_{n \to \infty} a_n = a$, 则 $a = \frac{c}{2} + \frac{a^2}{2} \Rightarrow a^2 - 2a + c = 0 \Rightarrow a = 1 \pm \sqrt{1-c}$, 又由 $a_n > 0$, 可知 $a = 1 - \sqrt{1-c}$.

(3) 由均值不等式,

$$a_{n+1} = \left(\frac{1}{2}\left(a_n + \frac{a}{a_n}\right)\right)^2 \geqslant a$$

于是

$$a_{n+1} - a_n = \frac{a - a_n^2}{2a_n} \le 0$$

因此 $\{a_n\}$ 在 $n\geqslant 1$ 时单调减, 且有下界 \sqrt{a} , 因此 $\{a_n\}$ 收敛. 设 $\lim_{n\to\infty}a_n=l$, 则 $l=\frac{1}{2}\left(l+\frac{a}{l}\right)$, 解得 $l=\sqrt{a}$.

(4)

$$a_n - a_{n-1} = \frac{1 + a_{n-1} - a_{n-1}^2}{a_{n-1} + 1}$$

$$1 + a_n - a_n^2 = 1 + 1 + \frac{a_{n-1}}{a_{n-1} + 1} - \left(1 + \frac{a_{n-1}}{a_{n-1} + 1}\right)^2 = \frac{1 + a_{n-1} - a_{n-1}^2}{(a_{n-1} + 1)^2}$$

由 $1+a_0-a_0^2=1>0$ 归纳的可得 $1+a_n-a_n^2>0$,因此 $a_n-a_{n-1}>0$,即 $\{a_n\}$ 单调递增,且 $1+a_n-a_n^2>0$ ⇒ $a_n<\frac{1+\sqrt{5}}{2}$ 有上界,因此 $\{a_n\}$ 收敛,设 $\lim_{n\to\infty}a_n=a$. 递推式两侧取极限,得 $a=1+\frac{a}{a+1}$ ⇒ $a^2-a-1=0$ ⇒ $a=\frac{1\pm\sqrt{5}}{2}$;由于 $a_n>0$ 始终成立,故 $a\geqslant 0$ 而 $\frac{1-\sqrt{5}}{2}<0$,故舍去这一值,进而得到 $a=\frac{1+\sqrt{5}}{2}$.

- (5) $a_n = \sin a_{n-1} < a_{n-1}$, 因此 $\{a_n\}$ 单调减, 且 $a_n > 0$, 因此 $\{a_n\}$ 收敛. 设 $\lim_{n \to \infty} a_n = a$, 则 $a = \sin a \Rightarrow a = 0$.
- 习题 1.2.19 设 $a_n \leqslant a \leqslant b_n \ (n=1,2,\ldots)$, 且 $\lim_{n\to\infty} (a_n-b_n)=0$. 求证: $\lim_{n\to\infty} a_n=a$, $\lim_{n\to\infty} b_n=a$. 解 由 $\lim_{n\to\infty} (a_n-b_n)=0$, 对 $\forall \varepsilon>0$, 存在 $N\in\mathbb{N}^*$, 使得当 n>N 时, $|a_n-b_n|<\varepsilon$. 又由 $a_n\leqslant a\leqslant b_n$, 可知 $|a_n-a|=a-a_n\leqslant b_n-a_n<\varepsilon$, 同理 $|b_n-a|<\varepsilon$. 因此 $\lim_{n\to\infty} a_n=a$, $\lim_{n\to\infty} b_n=a$.

习题 1.2.20 证明: 若 $a_n > 0$, 且 $\lim_{n \to \infty} \frac{a_n}{a_{n+1}} = l > 1$, 则 $\lim_{n \to \infty} a_n = 0$. 解 先证明一个引理: 设 $a_n > 0$, $n = 1, 2, \ldots$, 且 $\lim_{n \to \infty} a_n = a$, 则 $\lim_{n \to \infty} \sqrt[n]{a_1 a_2 \cdots a_n} = a$. 证明如下

 $(1) \ a = 0 \ \text{bt},$

$$0 \leqslant \sqrt[n]{a_1 a_2 \cdots a_n} \leqslant \frac{a_1 + a_2 + \cdots + a_n}{n}$$

同时,由Stolz定理,

$$\lim_{n \to \infty} \frac{a_1 + a_2 + \dots + a_n}{n} = \lim_{n \to \infty} \frac{a_n}{1} = 0$$

由夹逼定理, 得证.

(2) a > 0 时,

$$\frac{n}{\frac{1}{a_1} + \frac{1}{a_2} + \dots + \frac{1}{a_n}} \leqslant \sqrt[n]{a_1 a_2 \dots a_n} \leqslant \frac{a_1 + a_2 + \dots + a_n}{n}.$$

由 Stolz 定理, 有

$$\lim_{n \to \infty} \frac{n}{\frac{1}{a_1} + \frac{1}{a_2} + \dots + \frac{1}{a_n}} = \lim_{n \to \infty} \frac{1}{\frac{1}{a_n}} = a,$$

且

$$\lim_{n \to \infty} \frac{a_1 + a_2 + \dots + a_n}{n} = \lim_{n \to \infty} a_n = a.$$

由夹逼定理, 得证.

回到本题,

可知
$$\lim_{n \to \infty} \sqrt[n]{\frac{a_n}{a_{n-1}} \cdot \frac{a_{n-1}}{a_{n-2}} \cdot \cdot \cdot \frac{a_2}{a_1}} = \lim_{n \to \infty} \frac{a_n}{a_{n-1}} = \frac{1}{l} < 1$$
. 因此 $\exists r = \frac{1+\frac{1}{l}}{2} \in (0,1)$,使得当 n 充分大时, $\sqrt[n]{\frac{a_n}{a_{n-1}} \cdot \frac{a_{n-1}}{a_{n-2}} \cdot \cdot \cdot \frac{a_2}{a_1}} < r$. 由此可知,

$$\frac{a_n}{a_{n-1}} \cdot \frac{a_{n-1}}{a_{n-2}} \cdots \frac{a_2}{a_1} < r^n,$$

即 $a_n < a_1 r^n$. 因此 $\lim_{n \to \infty} a_n = 0$.

习题 1.2.21 设数列 $\{a_n\}$, $\{b_n\}$ 是正数列, 满足 $\frac{a_{n+1}}{a_n} \leqslant \frac{b_{n+1}}{b_n}$, $n=1,2,\ldots$ 求证: 若 $\{b_n\}$ 收敛,则 $\{a_n\}$ 收敛.

解 若
$$\lim_{n \to \infty} b_n = 0$$
, 则由 $a_n = a_1 \cdot \frac{a_2}{a_1} \cdot \frac{a_3}{a_2} \cdots \frac{a_n}{a_{n-1}} \leqslant a_1 \cdot \frac{b_2}{b_1} \cdot \frac{b_3}{b_2} \cdots \frac{b_n}{b_{n-1}} = a_1 \cdot \frac{b_n}{b_1}$ 可知 $\lim_{n \to \infty} a_n = 0$. 若 $\lim_{n \to \infty} b_n = b > 0$,由原式有 $\frac{a_{n+1}}{b_{n+1}} \leqslant \frac{a_n}{b_n}$,因此 $\left\{\frac{a_n}{b_n}\right\}$ 单调减,且 $\frac{a_n}{b_n} > 0$,因此 $\left\{\frac{a_n}{b_n}\right\}$ 收敛,设 $\lim_{n \to \infty} \frac{a_n}{b_n} = c$,则 $\lim_{n \to \infty} a_n = \lim_{n \to \infty} b_n \cdot \lim_{n \to \infty} \frac{a_n}{b_n} = bc$.

习题 1.2.22 利用极限 $\lim_{n\to\infty} \left(1+\frac{1}{n}\right)^n = e$, 求下列数列的极限:

(1)
$$a_n = \left(1 + \frac{1}{2n+1}\right)^{2n+1};$$
 (2) $a_n = \left(1 - \frac{1}{n-2}\right)^{n+1};$

(3)
$$a_n = \left(\frac{1+n}{2+n}\right)^n$$
; (4) $a_n = \left(1+\frac{1}{n^3}\right)^{2n^3}$.

简要说明: 由 $\lim_{n\to\infty}\left(1+\frac{1}{n}\right)^n=$ e, 故 $\left\{\left(1+\frac{1}{n}\right)^n\right\}$ 的任意子列 $\left\{\left(1+\frac{1}{n_k}\right)^{n_k}\right\}$ 也收敛于 e. 因此, 我们可以通过适当的变形, 将题目中的数列变形为 $\left(1+\frac{1}{n_k}\right)^{n_k}$ 的形式, 从而求出极限.

对于类似于 $\left(1-\frac{1}{n}\right)^{-n}$ 的形式, 可以考虑先通分再变形去掉指数的负号即可处理.

在此过程中下列命题也相同有用:

设数列 $\{a_n\}$ 收敛于 $a, a_n > 0, a > 0.$ $\{b_n\}$ 收敛于 b. 则 $\lim_{n \to \infty} a_n^{b_n} = a^b.$

请注意, 这条结论对于 1^{∞} 型是不能直接使用的, 即若 $a_n \rightarrow 1, b_n \rightarrow \infty$, 则不能直接说 $a_n^{b_n} \to 1^\infty = 1$. 但是对于 $a_n \to a > 1, b_n \to \infty$, 则可以直接说 $a_n^{b_n} \to a^{+\infty} = +\infty$; 对于 $a_n \to a < 1, b_n \to +\infty$, 则可以直接说 $a_n^{b_n} \to a^{+\infty} = 0$.

解

(1)
$$\lim_{n \to \infty} \left(1 + \frac{1}{2n+1} \right)^{2n+1} = \lim_{m \to \infty} \left(1 + \frac{1}{m} \right)^m \Big|_{m=2n+1} = e;$$

$$(2) \lim_{n \to \infty} \left(1 - \frac{1}{n-2} \right)^{n+1} = \lim_{n \to \infty} \left(1 + \frac{1}{n-3} \right)^{-n-1} = \lim_{n \to \infty} \left(1 + \frac{1}{n-3} \right)^{(n-3) \cdot \left(-\frac{n+1}{n-3} \right)} = e^{-1};$$

(3)
$$\lim_{n \to \infty} \left(\frac{1+n}{2+n} \right)^n = \lim_{n \to \infty} \left(1 + \frac{1}{n+1} \right)^{-n} = \lim_{n \to \infty} \left(1 + \frac{1}{n+1} \right)^{(n+1) \cdot \left(-\frac{n}{n+1} \right)} = e^{-1};$$

(4)
$$\lim_{n \to \infty} \left(1 + \frac{1}{n^3} \right)^{2n^3} = \lim_{n \to \infty} \left(1 + \frac{1}{n^3} \right)^{n^3 \cdot 2} = e^2.$$
习题 1.2.23 设 $\lim_{n \to \infty} a_n = \infty$, 且 $|b_n| \ge b > 0$ $(n = 1, 2, ...)$, 则 $\lim_{n \to \infty} a_n b_n = \infty$.

 \mathbf{m} 对 $\forall M > 0$, 由 $\lim_{n \to \infty} a_n = \infty$, 存在 $N \in \mathbb{N}^*$, 使得当 n > N 时, $|a_n| > \frac{M}{b}$. 又由 $|b_n| \geqslant b > 0$, 可 知 $|a_nb_n| \geqslant |a_n||b| > M$. 因此 $\lim_{n \to \infty} a_nb_n = \infty$.

习题 1.2.24 确定 $n \to \infty$ 时, $\sqrt[n]{n}$ 与 $n \sin \frac{n\pi}{2}$ $(n \ge 1)$ 是否有界, 是否趋于无穷大.

解 $\sqrt[n]{n!}$ 无界,且趋于无穷大.由均值不等式,

$$\sqrt[n]{n!} \geqslant \frac{n}{\frac{1}{1} + \frac{1}{2} + \dots + \frac{1}{n}}$$

已知 $\lim_{n\to\infty} \frac{1}{1} = +\infty$, 由 Stolz 定理,

$$\lim_{n \to \infty} \frac{n}{\frac{1}{1} + \frac{1}{2} + \dots + \frac{1}{n}} = \lim_{n \to \infty} \frac{1}{\frac{1}{n}} = +\infty.$$

因此, $\lim_{n \to \infty} \sqrt[n]{n!} = +\infty$.

注 Stolz 定理规范的思路要先说明 $\lim_{n\to\infty} \frac{a_{n+1}-a_n}{b_{n+1}-b_n}$ 存在, 然后才能说明 $\lim_{n\to\infty} \frac{a_n}{b_n}$ 存在. 为了方便, 我们也会省去前面的部分, 直接写 $\lim_{n\to\infty} \frac{a_n}{b_n} = \lim_{n\to\infty} \frac{a_{n+1}-a_n}{b_{n+1}-b_n}$. $n\sin\frac{n\pi}{2}$ 无界, 但是不趋于无穷大. 当 n=4k+1 时, $n\sin\frac{n\pi}{2} = 4k+1$,趋于无穷大; 当 $n\pi$

n = 4k + 3 时, $n \sin \frac{n\pi}{2} = -(4k + 3)$, 趋于负无穷大; 当 n 为偶数时, $n \sin \frac{n\pi}{2} = 0$.

习题 1.2.25 设数列 $\{a_n\}$ 由 $a_1=1, a_{n+1}=a_n+\frac{1}{a_n} \ (n\geqslant 1)$ 定义, 证明: $a_n\to +\infty \ (n\to \infty)$.

解 由 $a_{n+1}^2 - a_n^2 = (a_{n+1} - a_n)(a_{n+1} + a_n) = \frac{1}{a_n}(a_n + a_n + \frac{1}{a_n}) = 2 + \frac{1}{a_n^2} > 2$, 可知 $a_n^2 > 2(n-1)$, 因此 $\lim_{n\to\infty} a_n = \infty$.

习题 1.2.26 给出 $\frac{0}{0}$ 型 Stolz 定理的证明.

命题 $(\frac{0}{0}$ 型的 Stolz 定理) 设 $\{a_n\}$ 和 $\{b_n\}$ 都是无穷小量, 其中 $\{a_n\}$ 还是严格单调减少数列, 又

存在 (其中 l 为有限或 $\pm \infty$)

$$\lim_{n \to \infty} \frac{b_{n+1} - b_n}{a_{n+1} - a_n} = l,$$

则有

$$\lim_{n \to \infty} \frac{b_n}{a_n} = l.$$

证明

(1) 当 l 为有限值时,根据条件对 $\varepsilon > 0$ 存在 N, 使当 n > N 时成立

$$\left| \frac{b_n - b_{n+1}}{a_n - a_{n+1}} - l \right| < \varepsilon.$$

由于对每个 n 都有 $a_n > a_{n+1}$, 这样就有

$$(l-\varepsilon)(a_n - a_{n+1}) < b_n - b_{n+1} < (l+\varepsilon)(a_n - a_{n+1}).$$

任取 m > n, 并且将上述不等式中的 n 换成 $n + 1, \ldots$, 直到 m - 1, 然后将所有这些不等式相加, 就得到

$$(l-\varepsilon)(a_n - a_m) < b_n - b_m < (l+\varepsilon)(a_n - a_m),$$

以及

$$\left| \frac{b_n - b_m}{a_n - a_m} - l \right| < \varepsilon.$$

令 $m \to \infty$, 并利用条件 $\lim_{m \to \infty} a_m = \lim_{m \to \infty} b_m = 0$, 就知道当 n > N 时成立

$$\left| \frac{b_n}{a_n} - l \right| \leqslant \varepsilon.$$

(2) $l = +\infty$ 时. 根据条件对任意 M > 0 存在 N, 使当 n > N 时成立

$$\frac{b_n - b_{n+1}}{a_n - a_{n+1}} > M.$$

由于对每个n都有 $a_n > a_{n+1}$,这样就有

$$b_n - b_{n+1} > M(a_n - a_{n+1}).$$

任取 m > n, 并且将上述不等式中的 n 换成 n + 1, ..., 直到 m - 1, 然后将所有这些不等式相加, 就得到

$$b_n - b_m > M(a_n - a_m),$$

以及

$$\frac{b_n - b_m}{a_n - a_m} > M.$$

令 $m \to \infty$, 并利用条件 $\lim_{m \to \infty} a_m = \lim_{m \to \infty} b_m = 0$, 就知道当 n > N 时成立

$$\frac{b_n}{a_n} > M.$$

习题 1.3

习题 1.3.1 按定义证明:

(1)
$$\lim_{x \to -\infty} a^x = 0, (a > 1);$$

(2)
$$\lim_{x \to \infty} \frac{x-1}{x+1} = 1;$$

(3)
$$\lim_{x \to -1} \frac{x^2 - 1}{x^2 + x} = 2;$$

(4)
$$\lim_{x\to 0^+} x^{1/q} = 0$$
 (q 为正整数).

解

(1) 对
$$\forall \varepsilon > 0$$
, 取 $M = \log_a \varepsilon$, 则当 $x < M$ 时, $|a^x - 0| = a^x < a^M = \varepsilon$.

(2) 对
$$\forall \varepsilon > 0$$
, 取 $M = \frac{2}{\varepsilon} + 1$, 则当 $|x| > \max\{M, 1\}$ 时, $\left| \frac{x-1}{x+1} - 1 \right| = \left| \frac{-2}{x+1} \right| \leqslant \frac{2}{|x|-1} < \varepsilon$.

(3) 对
$$\forall \varepsilon > 0$$
, 取 $\delta = \min\left\{\frac{1}{2}, \frac{\varepsilon}{2}\right\}$, 则 当 $0 < |x+1| < \delta$ 时, $\left|\frac{x^2 - 1}{x^2 + x} - 2\right| = \left|\frac{-x^2 - 2x - 1}{x^2 + x}\right| = \left|\frac{x+1}{x}\right| < \frac{\delta}{1/2} \leqslant \varepsilon$.

(4) 对
$$\forall \varepsilon > 0$$
, 取 $\delta = \varepsilon^q$, 则当 $0 < x < \delta$ 时, $|x^{1/q} - 0| = x^{1/q} < \delta^{1/q} = \varepsilon$.

习题 1.3.2 求下列极限:

(1)
$$\lim_{x \to 1} \left(x^5 - 5x + 2 + \frac{1}{x} \right);$$

(2)
$$\lim_{x\to 1} \frac{x^n-1}{x-1}$$
 (n 为正整数);

(3)
$$\lim_{x \to 1} \frac{x^2 - 1}{2x^2 - x - 1}$$
;

(4)
$$\lim_{x \to -\infty} \frac{(3x+6)^{70}(8x-5)^{20}}{(5x-1)^{90}}.$$

(1) 由四则运算的极限可知,

$$\lim_{x \to 1} \left(x^5 - 5x + 2 + \frac{1}{x} \right) = 1 - 5 + 2 + 1 = -1.$$

(2) $x^n - 1 = (x - 1)(x^{n-1} + x^{n-2} + \dots + x + 1)$, 因此

$$\lim_{x \to 1} \frac{x^n - 1}{x - 1} = \lim_{x \to 1} (x^{n-1} + x^{n-2} + \dots + x + 1) = \sum_{k=0}^{n-1} 1 = n.$$

请注意, 这里 n 是常数, 因此可以交换这 n 个极限与求和的顺序.

(3)

$$\lim_{x \to 1} \frac{x^2 - 1}{2x^2 - x - 1} = \lim_{x \to 1} \frac{(x - 1)(x + 1)}{(x - 1)(2x + 1)} = \lim_{x \to 1} \frac{x + 1}{2x + 1} = \frac{2}{3}.$$

(4)

$$\lim_{x \to -\infty} \frac{\left(3 + \frac{6}{x}\right)^{70} (8 - \frac{5}{x})^{20}}{\left(5 - \frac{1}{x}\right)^{90}} = \frac{\left(3 + \lim_{x \to -\infty} \frac{6}{x}\right)^{70} \left(8 - \lim_{x \to -\infty} \frac{5}{x}\right)^{20}}{\left(5 - \lim_{x \to -\infty} \frac{1}{x}\right)^{90}} = \frac{3^{70} \cdot 8^{20}}{5^{90}}$$

事实上, $\frac{3^{70} \cdot 8^{20}}{5^{90}} = \left(\frac{3^7 \cdot 2^6}{5^9}\right)^{10} = 0.0000000000035726229189858259136514568727612$

习题 1.3.3 证明下列极限不存在:

- (1) 用 Cauchy 收敛原理. 对 $\varepsilon=\frac{1}{2}$, 任取 M>0, 总总存在 $k=\lceil M/\pi \rceil$, 使得 $x_1=\left(k+\frac{1}{2}\right)\pi>$ $M, x_2 = (k+1)\pi > M(k \in \mathbb{N}^*),$ 使得 $|\sin x_1 - \sin x_2| = 1 > \varepsilon$. 因此极限不利
- (2) 考虑两个单边极限,

$$\lim_{x \to 0^+} \frac{|x|}{x} = \lim_{x \to 0^+} 1 = 1, \quad \lim_{x \to 0^-} \frac{|x|}{x} = \lim_{x \to 0^-} -1 = -1.$$

而极限存在的充要条件是两个单边极限存在且相等, 因此极限不存在,

习题 1.3.4 设函数 f(x) 在正无穷大处的极限为 l,则对于任意趋于正无穷大的数列 $\{a_n\}$,有 $\lim_{n\to\infty} f(a_n) = l. 特别地 \lim_{n\to\infty} f(n) = l.$

(无穷版本的 Heine 定理) 解 对 $\forall \varepsilon > 0$, 由 $\lim_{x \to \infty} f(x) = l$, 存在 M > 0, 使得当 x > M 时, $|f(x)-l|<\varepsilon$. 又由 $\lim_{n\to\infty}a_n=+\infty$, 存在 $N\in\mathbb{N}^*$, 使得当 n>N 时, $a_n>M$. 因此当 n>N 时, $|f(a_n)-l|<\varepsilon$. 由此可知 $\lim_{n\to\infty}f(a_n)=l$. 特别地, 取 $a_n=n$, 则 $\lim_{n\to\infty}f(n)=l$.

习题 1.3.5 讨论下列函数在 x = 0 处的极限.

(1)
$$f(x) = [x];$$
 (2) $f(x) = \operatorname{sgn} x;$

(3)
$$f(x) = \begin{cases} 2^x, & x > 0; \\ 0, & x = 0; \\ 1 + x^2, & x < 0. \end{cases}$$
 (4) $f(x) = \begin{cases} \cos \frac{1}{x}, & x > 0; \\ x, & x \leqslant 0. \end{cases}$

解注教材中的符号 [x] 表示 x 的整数部分,即不大于 x 的最大整数.本题中,我们沿用此符号. 其他地方, 我们使用 [x] 表示对 x 向下取整, 使用 [x] 表示对 x 向上取整.

- (1) $\lim_{x\to 0^+}[x]=0$, $\lim_{x\to 0^-}[x]=-1$. 因此极限不存在.
 (2) $\lim_{x\to 0^+} \operatorname{sgn} x=1$, $\lim_{x\to 0^-} \operatorname{sgn} x=-1$. 左右极限均存在, 但不相等, 因此极限不存在.
 (3) $\lim_{x\to 0^+} 2^x=1$, $\lim_{x\to 0^-}(1+x^2)=1$. 因此极限存在, 且 $\lim_{x\to 0}f(x)=1$.
- (4) $\lim_{x\to 0^+}\cos\frac{1}{x}$ 不存在,因此右极限不存在.左极限 $\lim_{x\to 0^-}x=0$.函数在 x=0 处的极限不存在. 注 $\lim_{x\to 0^+}\cos\frac{1}{x}$ 的极限过程等同于考虑 $\lim_{x\to +\infty}\cos x$,而该极限不存在 (与习题 1.3.3(1)同理). 习题 1.3.6 求 $\lim_{n\to \infty}\cos\frac{x}{2}\cos\frac{x}{2}\cdots\cos\frac{x}{2^n}$.

解

(1) 当 $\forall m \in \mathbb{N}^*$, $\sin \frac{x}{2m} \neq 0$ 时, 二倍角公式变形可得 $\cos y = \frac{\sin 2y}{2\sin y}$, 当 $\sin y \neq 0$, 反复利用可 知

$$\cos \frac{x}{2} \cos \frac{x}{2^2} \cdots \cos \frac{x}{2^n} = \frac{\sin x}{2 \sin \frac{x}{2}} \cdot \frac{\sin \frac{x}{2}}{2 \sin \frac{x}{2^2}} \cdots \frac{\sin \frac{x}{2^{n-1}}}{2 \sin \frac{x}{2^n}} = \frac{\sin x}{2^n \sin \frac{x}{2^n}}.$$

因此

$$\lim_{n \to \infty} \cos \frac{x}{2} \cos \frac{x}{2^2} \cdots \cos \frac{x}{2^n} = \lim_{n \to \infty} \frac{\sin x}{2^n \sin \frac{x}{2^n}} = \frac{\sin x}{x} \cdot \lim_{n \to \infty} \frac{\frac{x}{2^n}}{\sin \frac{x}{2^n}} = \frac{\sin x}{x}.$$

(2) 若存在 $m_0 \geqslant 1$, $\sin \frac{x}{2^m} = 0$, 有 $\frac{x}{2^{m_0}} = k\pi$, $x = 2^{m_0}k\pi$, $k \in \mathbb{Z}$. 自然的推论是 $\forall m \leqslant m_0$, 有 $\sin \frac{x}{2^m} = \sin(2^{m_0 - m}k\pi) = 0$.

此时根据是否存在最大的 m_0 , 使得 $\sin \frac{x}{2^{m_0}} = 0$ 可以分成两种情况:

(a)
$$x = 0$$
, 则 $\forall m \in \mathbb{N}^*$, 有 $\cos \frac{x}{2^m} = 1$, 因此 $\lim_{n \to \infty} \cos \frac{x}{2} \cos \frac{x}{2^2} \cdots \cos \frac{x}{2^n} = 1$; (b) $x \neq 0 \Leftrightarrow \exists m_0, \text{ s.t. } \sin \frac{x}{2^{m_0}} = 0, \sin \frac{x}{2^{m_0+1}} \neq 0$, 也就是存在最大的 m_0 .

(b)
$$x \neq 0 \Leftrightarrow \exists m_0, \text{ s.t. } \sin \frac{1}{2^{m_0}} = 0, \sin \frac{1}{2^{m_0+1}} \neq 0,$$
 也就是存在最大的 m_0 .

因此可以得到 $x = 2^{m_0} k \pi, k = 2l + 1, l \in \mathbb{Z}$ (如果 k 是偶数, 那么与 $\sin \frac{x}{2^{m_0+1}} = \sin \frac{k\pi}{2} \neq 0$ 矛盾).

此时
$$\cos\frac{x}{2^{m_0+1}} = \cos\frac{k\pi}{2} = \cos\left(l + \frac{1}{2}\right)\pi = 0$$
, 因此 $\lim_{n \to \infty} \cos\frac{x}{2}\cos\frac{x}{2^2}\cdots\cos\frac{x}{2^n} = 0$. 不过又由于 $\sin x = 0$ 同样成立,并且 $x \neq 0$,因此可以把结果合并进 $\frac{\sin x}{x}$.

综上所述,

$$\lim_{n \to \infty} \cos \frac{x}{2} \cos \frac{x}{2^2} \cdots \cos \frac{x}{2^n} = \begin{cases} \frac{\sin x}{x}, & x \neq 0; \\ 1, & x = 0. \end{cases}$$

习题 1.3.7 求证: $\lim_{n\to\infty} \left(\sin\frac{\alpha}{n^2} + \sin\frac{2\alpha}{n^2} + \dots + \sin\frac{n\alpha}{n^2}\right) = \frac{\alpha}{2}$. 解我们先证明加下事实:

$$\sum_{k=1}^{n} \sin k\theta = \begin{cases} \frac{\sin \frac{n+1}{2}\theta \sin \frac{n}{2}\theta}{\sin \frac{\theta}{2}}, & \sin \frac{\theta}{2} \neq 0; \\ 0, & \sin \frac{\theta}{2} = 0. \end{cases}$$

我们利用积化和差

$$\sin \frac{\theta}{2} \sin k\theta = \frac{1}{2} \left(\cos \left(k - \frac{1}{2} \right) \theta - \cos \left(k + \frac{1}{2} \right) \theta \right)$$

$$\sin \frac{\theta}{2} \left(\sum_{k=1}^{n} \sin k\theta \right) = \sum_{k=1}^{n} \frac{1}{2} \left(\cos \left(k - \frac{1}{2} \right) \theta - \cos \left(k + \frac{1}{2} \right) \theta \right)$$

$$= \frac{1}{2} \left(\cos \frac{\theta}{2} - \cos \frac{3\theta}{2} + \cos \frac{3\theta}{2} - \cos \frac{5\theta}{2} + \dots + \cos \left(n - \frac{1}{2} \right) \theta - \cos \left(n + \frac{1}{2} \right) \theta \right)$$

$$= \frac{1}{2} \left(\cos \frac{\theta}{2} - \cos \left(n + \frac{1}{2} \right) \theta \right)$$

$$= \sin \frac{n+1}{2} \theta \sin \frac{n}{2} \theta.$$

因此, 当 $\sin \frac{\theta}{2} \neq 0$ 自然有

$$\sum_{k=1}^{n} \sin k\theta = \frac{\sin \frac{n+1}{2}\theta \sin \frac{n}{2}\theta}{\sin \frac{\theta}{2}}.$$

另一种情况是显然的,每一项都为 0.

回到本题, 首先, 如果 $\alpha \neq 0$, 那么这意味着存在充分大的 N 使得 n > N, $0 < \left| \frac{\alpha}{n^2} \right| < \pi$, 此 时, $\sin \frac{\alpha}{2n^2} \neq 0$. 因此 n > N 时,

$$\sum_{k=1}^{n} \sin k \frac{\alpha}{n^2} = \frac{\sin \frac{(n+1)\alpha}{2n^2} \sin \frac{n\alpha}{2n^2}}{\sin \frac{\alpha}{2n^2}}$$

考虑 $\sin x \sim x, (x \to 0)$, 于是

$$\lim_{n\to\infty} \sum_{k=1}^n \sin k \frac{\alpha}{n^2} = \lim_{n\to\infty} \frac{\sin \frac{(n+1)\alpha}{2n^2} \sin \frac{n\alpha}{2n^2}}{\sin \frac{\alpha}{2n^2}} = \lim_{n\to\infty} \frac{\frac{(n+1)\alpha}{2n^2} \cdot \frac{n\alpha}{2n^2}}{\frac{\alpha}{2n^2}} = \lim_{n\to\infty} \frac{(n+1)\alpha}{2n} = \frac{\alpha}{2}.$$

如果 $\alpha = 0$, 那么每一项都为 0, 极限自然为 $0 = \frac{\alpha}{2}$.

综上所述,

$$\lim_{n \to \infty} \left(\sin \frac{\alpha}{n^2} + \sin \frac{2\alpha}{n^2} + \dots + \sin \frac{n\alpha}{n^2} \right) = \frac{\alpha}{2}.$$

习题 1.3.8 证明: 若 $\lim_{x\to\infty} f(x) = l$, 则 $\lim_{x\to 0} f\left(\frac{1}{x}\right) = l$, 反之亦正确. 叙述并证明, 当 $x\to +\infty$ 及 $x \to -\infty$ 时类似的结论. (应用本题结论, 可将极限过程为 $x \to \infty$ 的问题化为 $x \to 0$ 处理, 或 者反过来. 例如, 我们有 $\lim_{x\to 0} (1+x)^{1/x} = e$.)

解 我们先给出这条命题的完整表述:

(1) 若 $\lim_{x \to \infty} f(x) = l$, 则 $\lim_{x \to 0^+} f\left(\frac{1}{x}\right) = l$, 反之亦正确;

(2) 若
$$\lim_{x \to +\infty} f(x) = l$$
, 则 $\lim_{x \to 0^+} f\left(\frac{1}{x}\right) = l$, 反之亦正确;
(3) 若 $\lim_{x \to -\infty} f(x) = l$, 则 $\lim_{x \to 0^-} f\left(\frac{1}{x}\right) = l$, 反之亦正确;

(3) 若
$$\lim_{x \to -\infty} f(x) = l$$
, 则 $\lim_{x \to 0^-} f\left(\frac{1}{x}\right) = l$, 反之亦正确

证明:

- (1) 由 Heine 定理, $\lim_{x\to\infty} f(x) = l \Rightarrow \forall \{x_n\}$, 若 $\lim_{n\to\infty} x_n = \infty$ 则 $\lim_{n\to\infty} f(x_n) = l$. $\Rightarrow \forall \{y_n\}$, 若 $\lim_{n\to\infty}y_n=0^+,\,\,\text{M}\,\,\lim_{n\to\infty}\frac{1}{y_n}=\infty,\,\,\text{M}\,\,\lim_{n\to\infty}f\left(\frac{1}{y_n}\right)=l.\,\,\text{th Heine}\,\,\text{定理可知}\,\lim_{x\to0^+}f\left(\frac{1}{x}\right)=l.$ 反之, 若 $\lim_{x\to 0^+} f\left(\frac{1}{x}\right) = l$, 由 Heine 定理, $\forall \{y_n\}$, 若 $\lim_{n\to\infty} y_n = 0^+$, 则 $\lim_{n\to\infty} f\left(\frac{1}{y_n}\right) = l$. \Rightarrow $\forall \{x_n\}$, 若 $\lim_{n\to\infty} x_n = \infty$, 则 $\lim_{n\to\infty} \frac{1}{x_n} = 0^+$, 则 $\lim_{n\to\infty} f(x_n) = l$. 由 Heine 定理可知 $\lim_{x\to\infty} f(x) = l$.
- (2) 由 Heine 定理, $\lim_{x \to +\infty} f(x) = l \Rightarrow \forall \{x_n\}$, 若 $\lim_{n \to \infty} x_n = +\infty$ 则 $\lim_{n \to \infty} f(x_n) = l$. $\Rightarrow \forall \{y_n\}$, 若 $\lim_{n\to\infty}y_n=0^+, \, \mathbb{M}\lim_{n\to\infty}\frac{1}{y_n}=+\infty, \, \mathbb{M}\lim_{n\to\infty}f\left(\frac{1}{y_n}\right)=l. \text{ 由 Heine } 定理可知\lim_{x\to 0^+}f\left(\frac{1}{x}\right)=l.$

反之,若 $\lim_{x\to 0^+} f\left(\frac{1}{x}\right) = l$,由 Heine 定理, $\forall \{y_n\}$,若 $\lim_{n\to\infty} y_n = 0^+$,则 $\lim_{n\to\infty} f\left(\frac{1}{y_n}\right) = l$. $\Rightarrow \forall \{x_n\}$,若 $\lim_{n\to\infty} x_n = +\infty$,则 $\lim_{n\to\infty} \frac{1}{x_n} = 0^+$,则 $\lim_{n\to\infty} f(x_n) = l$. 由 Heine 定理可知 $\lim_{n\to\infty} f(x) = l$.

(3) 由 Heine 定理, $\lim_{x \to -\infty} f(x) = l \Rightarrow \forall \{x_n\}$, 若 $\lim_{n \to \infty} x_n = -\infty$ 则 $\lim_{n \to \infty} f(x_n) = l$. $\Rightarrow \forall \{y_n\}$, 若 $\lim_{n \to \infty} y_n = 0^-$,则 $\lim_{n \to \infty} \frac{1}{y_n} = -\infty$,则 $\lim_{n \to \infty} f\left(\frac{1}{y_n}\right) = l$. 由 Heine 定理可知 $\lim_{x \to 0^-} f\left(\frac{1}{x}\right) = l$. 反之,若 $\lim_{x \to 0^-} f\left(\frac{1}{x}\right) = l$,由 Heine 定理, $\forall \{y_n\}$,若 $\lim_{n \to \infty} y_n = 0^-$,则 $\lim_{n \to \infty} f\left(\frac{1}{y_n}\right) = l$. $\Rightarrow \forall \{x_n\}$,若 $\lim_{n \to \infty} x_n = -\infty$,则 $\lim_{n \to \infty} \frac{1}{x_n} = 0^-$,则 $\lim_{n \to \infty} f(x_n) = l$. 由 Heine 定理可知 $\lim_{x \to -\infty} f(x) = l$.

习题 1.3.9 求下列极限:

$$(1) \lim_{x \to 0} \frac{\tan 2x}{\sin 5x};$$

(2)
$$\lim_{x\to 0} \frac{\cos x - \cos 3x}{x^2}$$
;

(3)
$$\lim_{x \to +\infty} \left(\frac{x+1}{2x-1} \right)^x;$$

(4)
$$\lim_{x \to \infty} \left(\frac{x^2 + 1}{x^2 - 1} \right)^{x^2}$$
.

解

(1)
$$\lim_{x \to 0} \frac{\tan 2x}{\sin 5x} = \lim_{x \to 0} \frac{\tan 2x}{2x} \cdot \frac{5x}{\sin 5x} \cdot \frac{2}{5} = 1 \cdot 1 \cdot \frac{2}{5} = \frac{2}{5}.$$

(2) 由和差化积,

$$\cos x - \cos 3x = 2\sin 2x\sin x$$

因此

$$\lim_{x \to 0} \frac{\cos x - \cos 3x}{x^2} = \lim_{x \to 0} \frac{2 \sin 2x \sin x}{x^2} = \lim_{x \to 0} \frac{\sin 2x}{2x} \cdot \frac{\sin x}{x} \cdot 4 = 1 \cdot 1 \cdot 4 = 4.$$

(3) 当 $x > \frac{7}{2}$ 时,有 $0 < \frac{x+1}{2x-1} < \frac{3}{4}$ 恒成立,因此

$$0 \leqslant \left(\frac{x+1}{2x-1}\right)^x \leqslant \left(\frac{3}{4}\right)^x$$

又由于 $\lim_{x\to +\infty} \left(\frac{3}{4}\right)^x = 0$, 由夹逼定理可知

$$\lim_{x \to +\infty} \left(\frac{x+1}{2x-1} \right)^x = 0.$$

(4)
$$\lim_{x \to \infty} \left(1 + \frac{2}{x^2 - 1} \right)^{\frac{x^2 - 1}{2} \cdot \frac{2}{x^2 - 1} x^2} = e^{\lim_{x \to \infty} \frac{2}{x^2 - 1} x^2} = e^2$$

习题 1.3.10 求下列极限.

(1)
$$\lim_{x \to +\infty} \frac{\arctan x}{x}$$
;

(2)
$$\lim_{x\to 0} x^2 \sin \frac{1}{x}$$
;

(3)
$$\lim_{x \to 2} \frac{x^3 - 2x^2}{x - 2};$$

(4)
$$\lim_{x \to \infty} (2x^2 - x + 1)$$
.

解

(1) $\arctan x$ 在 $x \to +\infty$ 时有界, 而 $x \to +\infty$ 时无界, 因此

$$\lim_{x \to +\infty} \frac{\arctan x}{x} = 0.$$

具体而言,

$$\lim_{x\to +\infty}\arctan x=\frac{\pi}{2},\ \lim_{x\to -\infty}\arctan x=-\frac{\pi}{2}.$$

(2) 由夹逼定理,

$$-x^2 \leqslant x^2 \sin \frac{1}{x} \leqslant x^2,$$

且 $\lim_{x\to 0} -x^2 = \lim_{x\to 0} x^2 = 0$, 因此

$$\lim_{x \to 0} x^2 \sin \frac{1}{x} = 0.$$

(3)

$$\lim_{x \to 2} \frac{x^3 - 2x^2}{x - 2} = \lim_{x \to 2} \frac{(x - 2)x^2}{x - 2} = \lim_{x \to 2} x^2 = 4.$$

(4) 证明:

$$\lim_{x \to \infty} (2x^2 - x + 1) = +\infty.$$

由 $2x^2 - x + 1 = x^2 + (x - 1/2)^2 + 3/4 > x^2$, 因此对 $\forall M > 0$, 取 $N = \sqrt{M}$, 则当 x > N 时, $2x^2 - x + 1 > x^2 > N^2 = M$. 由此可知

$$\lim_{x \to \infty} (2x^2 - x + 1) = +\infty.$$

习题 1.3.11 按定义证明.

(1) $\lim_{x \to +\infty} \log_a x = +\infty, (a > 1);$

(2)
$$\lim_{x\to 0^+} \log_a x = -\infty, (a > 1);$$

 $(3) \lim_{x \to \frac{\pi}{2}^-} \tan x = +\infty;$

(4)
$$\lim_{x\to 0^+} e^{1/x} = +\infty.$$

解

(1) 对 $\forall M > 0$, 取 $N = a^M$, 则 当 x > N 时, $\log_a x > \log_a N = M$.

(2) 对 $\forall M < 0$, 取 $\delta = a^M$, 则 当 $0 < x < \delta$ 时, $\log_a x < \log_a \delta = M$.

(3) 对 $\forall M > 0$, 取 $\delta = \frac{\pi}{2} - \arctan M$, 则当 $\frac{\pi}{2} - \delta < x < \frac{\pi}{2}$ 时, $\tan x > \tan(\frac{\pi}{2} - \delta) = M$.

(4) 对 $\forall M > 0$, 取 $\delta = \frac{1}{\ln M}$, 则 当 $0 < x < \delta$ 时, $e^{1/x} > e^{1/\delta} = M$.

习题 1.3.12 证明: 函数 $y = x \sin x$ 在 $(0, +\infty)$ 内无界, 但当 $x \to +\infty$ 时, 这个函数并不是无穷大量.

解 $\forall M > 0$, 存在 $x_0 = (2k-1)\pi$, $k \in \mathbb{N}^*$, 2k-1 > M, 因此 $y(x_0) = x_0 \sin x_0 = x_0 > M$. 由此可知 $y = x \sin x$ 在 $(0, +\infty)$ 内无界.

 $\forall X > 0$, 总存在 $x_1 = 2k\pi, k \in \mathbb{N}^*, 2k\pi > X$, 使得 $y(x_1) = x_1 \sin x_1 = 0$. 因此当 $x \to +\infty$ 时, $y = x \sin x$ 并不是无穷大量.

习题 1.3.13 函数 $y = \frac{1}{x} \cos \frac{1}{x}$ 在区间 (0,1) 内是否有界? 又当 $x \to 0^+$ 时, 这个函数是否为无穷大量?

解 考虑 0^+ 处的 $\frac{1}{x}\cos\frac{1}{x}$ 与考虑 $+\infty$ 处的 $x\cos x$ 是等价的. 以与习题 1.3.12类似的方法可知, $y=x\cos x$ 在 $(0,+\infty)$ 内无界,但当 $x\to+\infty$ 时, $y=x\cos x$ 并不是无穷大量. 因此, $y=\frac{1}{x}\cos\frac{1}{x}$ 在 (0,1) 内无界,但当 $x\to0^+$ 时, $y=\frac{1}{x}\cos\frac{1}{x}$ 并不是无穷大量.

习题 1.3.14 本题所涉及的函数极限有着鲜明的几何意义.

记函数 y = f(x) 所表示的曲线为 C. 若动点沿曲线无限远离原点时, 此动点与某一固定直线的距离趋于零, 则称该直线为曲线 C 的一条渐近线.

(i) 垂直渐近线 易知 (垂直于x轴的) 直线 $x = x_0$ 为曲线 C 的渐近线的充分必要条件是

$$\lim_{x \to x_0^-} f(x) = \infty \quad \text{ } \exists \vec{x} \quad \lim_{x \to x_0^+} f(x) = \infty.$$

(ii) 水平渐近线 易知 (平行于x 轴的) 直线 y = b 为曲线 C 的渐近线的充分必要条件是

$$\lim_{x \to +\infty} f(x) = b \quad \vec{\mathbf{g}} \quad \lim_{x \to -\infty} f(x) = b.$$

(iii) 斜渐近线 请读者证明, 方程为 y = ax + b $(a \neq 0)$ 的直线 L 为曲线 C 的渐近线的充分 必要条件是

$$a = \lim_{x \to +\infty} \frac{f(x)}{x}, \quad b = \lim_{x \to +\infty} (f(x) - ax);$$

或者

$$a = \lim_{x \to -\infty} \frac{f(x)}{x}, \quad b = \lim_{x \to -\infty} (f(x) - ax).$$

这里自然要假定所说的极限都存在. (提示: 以 $x \to +\infty$ 为例, 设曲线 C 及直线 L 上的横坐标为 x 的点分别为 M,N. 则 $M \subseteq L$ 的距离, 是 |MN| 的一个常数倍. 因此, 直线 L 为曲线 C 的渐近线, 等价于 $\lim_{x \to +\infty} (f(x) - (ax + b)) = 0$, 由此易得所说结果.)

求下列曲线的渐近方程.

(1)
$$y = x \ln\left(e + \frac{1}{x}\right);$$
 (2) $y = \frac{3x^2 - 2x + 3}{x - 1}.$

解 先证明, 仅证明 $+\infty$, 另一种同理. 正如提示所说, 由于距离 $d=\left|\frac{f(x)-(ax+b)}{\sqrt{a^2+1}}\right|$, 因此 l 是

渐近线, 等价于 $x \to +\infty$ 时 d 趋于 0, 等价于 f(x) - (ax + b) 趋于 0.

然后问题转化为了证明

$$\lim_{x \to +\infty} (f(x) - (ax + b)) = 0 \Leftrightarrow a = \lim_{x \to +\infty} \frac{f(x)}{x}, \quad b = \lim_{x \to +\infty} (f(x) - ax).$$

充分性: 由 $b = \lim_{x \to +\infty} (f(x) - ax)$ 可知,

$$\lim_{x \to +\infty} (f(x) - (ax + b)) = 0.$$

必要性: 由 $\lim_{x\to +\infty} (f(x) - (ax+b)) = 0$ 可知,

$$\lim_{x \to +\infty} \frac{f(x)}{x} - a - \frac{b}{x} = 0, \quad \lim_{x \to +\infty} (f(x) - ax) = b$$

因此

$$\lim_{x \to +\infty} \frac{f(x)}{x} = a, \quad \lim_{x \to +\infty} (f(x) - ax) = b.$$

- (1) (a) 垂直渐近线, $x = -\frac{1}{e}$: $\lim_{x \to (-\frac{1}{e})^-} = -\frac{1}{e} \lim_{y \to 0^+} \ln y = +\infty$;
 - (b) 斜渐近线, $y = x + \frac{1}{e}$: $\lim_{x \to \infty} \frac{y(x)}{x} = \lim_{x \to \infty} \ln(e + \frac{1}{x}) = 1$, $\lim_{x \to \infty} (y(x) x) = \lim_{x \to \infty} x (\ln(e + \frac{1}{x}) 1) = \lim_{x \to \infty} x \ln(1 + \frac{1}{ex}) = \lim_{x \to \infty} \frac{\ln(1 + \frac{1}{ex})}{\frac{1}{x}} = \lim_{x \to \infty} \frac{1/ex}{1/x} = \frac{1}{e}$ (土 两侧是同一条渐近线);
- (2) (a) 垂直渐近线, x = 1: $\lim_{x \to 1} y(x) = \lim_{x \to 1} \frac{3x^2 2x + 3}{x 1} = \infty$;
 - (b) 斜渐近线, y = 3x + 1: $\lim_{x \to \infty} \frac{y(x)}{x} = \lim_{x \to \infty} \frac{3 \frac{2}{x} + \frac{3}{x^2}}{1 \frac{1}{x}} = 3$, $\lim_{x \to +\infty} (y(x) 3x) = \lim_{x \to \infty} \frac{x + 3}{x 1} = 1$:

习题 1.3.15 证明: 在同一极限过程中等价的无穷小量有下列性质:

- (1) $\alpha(x) \sim \alpha(x)$ (自反性);
- (2) 若 $\alpha(x) \sim \beta(x)$, 则 $\beta(x) \sim \alpha(x)$ (对称性);
- (3) 若 $\alpha(x) \sim \beta(x)$, $\beta(x) \sim \gamma(x)$, 则 $\alpha(x) \sim \gamma(x)$ (传递性).

(注意, (1) 中自然需假定 $\alpha(x)$ 不取零值; 而在 (2)、(3) 中, 条件蕴含着, 所说的无穷小量在极限过程中均不取零值.)

解 解释一下, 这里说的是 (1) 需要没有 $\alpha(x) \equiv 0$ 这种情况.(2)(3) 因为有"若 xxx"的假设自然排除了这种情况.

(1) 显然,
$$\lim \frac{\alpha(x)}{\alpha(x)} = 1$$
, 因此 $\alpha(x) \sim \alpha(x)$.

(2) 由
$$\alpha(x) \sim \beta(x)$$
 可知, $\lim \frac{\alpha(x)}{\beta(x)} = 1$, 因此 $\lim \frac{\beta(x)}{\alpha(x)} = 1$, 即 $\beta(x) \sim \alpha(x)$.

(3) 由
$$\alpha(x) \sim \beta(x)$$
, $\beta(x) \sim \gamma(x)$ 可知, $\lim \frac{\alpha(x)}{\beta(x)} = 1$, $\lim \frac{\beta(x)}{\gamma(x)} = 1$, 因此 $\lim \frac{\alpha(x)}{\gamma(x)} = \lim \frac{\alpha(x)}{\beta(x)}$. $\lim \frac{\beta(x)}{\gamma(x)} = 1$, 即 $\alpha(x) \sim \gamma(x)$.

习题 1.3.16 当 $x \to 0$ 时, 比较下列无穷小的阶:

(1)
$$\tan x - \sin x - \sin x = x^3$$
;

(2)
$$x^3 + x^2 = \sin^2 x$$
;

(3)
$$1 - \cos x = x^2$$
.

解

(1)
$$\tan x - \sin x = \frac{\sin x}{\cos x} - \sin x = \sin x \left(\frac{1}{\cos x} - 1\right) = \sin x \cdot \frac{1 - \cos x}{\cos x}.$$

由 $\sin x \sim x, 1 - \cos x \sim \frac{x^2}{2}, \cos x \sim 1$,可知

$$\tan x - \sin x \sim x \cdot \frac{x^2/2}{1} = \frac{x^3}{2}.$$

因此,

$$\tan x - \sin x \sim \frac{1}{2}x^3.$$

(2)

$$\sin^2 x = (\sin x)^2 \sim x^2(x \to 0).$$

同时,

$$x^3 + x^2 = (x+1)x^2 \sim x^2(x \to 0).$$

可得

$$x^3 + x^2 \sim \sin^2 x$$

(3)

$$1 - \cos x = 2\sin^2 \frac{x}{2} \sim 2 \cdot \left(\frac{x}{2}\right)^2 = \frac{x^2}{2}(x \to 0).$$

习题 1.3.17 当 $x \to +\infty$ 时, 试比较下列无穷大量的阶:

- (1) n 次多项式 $P_n(x)$ 与 m 次多项式 $P_m(x)$ (m, n 均为正整数);
- (2) $x^{\alpha} = x^{\beta} (\alpha, \beta > 0);$
- (3) $a^x = b^x (a, b > 1)$.

解

(1)
$$\lim_{x \to +\infty} \frac{P_n(x)}{P_m(x)} = \lim_{x \to +\infty} \frac{a_n x^n + a_{n-1} x^{n-1} \cdots}{b_m x^m + b_{m-1} x^{m-1} + \cdots} = \lim_{x \to +\infty} \frac{x^n}{x^m} \frac{a_n + a_{n-1} \frac{1}{x} + \cdots}{b_m + b_{m-1} \frac{1}{x} + \cdots}$$

$$=\frac{a_n}{b_m}\lim_{x\to +\infty}x^{n-m}=\begin{cases} \frac{a_n}{b_m}, & n=m;\\ 0, & n< m; \end{cases}$$
 即得到
$$\begin{cases} P_n(x)\sim P_m(x), & n=m;\\ P_m(x)$$
更高阶, $n< m; \end{cases}$ $P_n(x)$ 更高阶, $n>m.$

(3) 利用
$$\lim_{x \to +\infty} \frac{a^x}{b^x} = \lim_{x \to +\infty} \left(\frac{a}{b}\right)^x = \begin{cases} 1, & a = b; \\ 0, & a < b; \end{cases}$$
 可得 $\begin{cases} a^x \sim b^x, & a = b; \\ b^x$ 更高阶, $a < b; \end{cases}$ $a < b;$ $a < b;$ $a > b$.

习题 1.3.18 试用等价无穷小量代换的方法

(1)
$$\lim_{x\to 0} \frac{\sin mx}{\sin nx}$$
 (m, n 均为正整数);

(2)
$$\lim_{x \to 0} \frac{\tan ax}{x};$$

(3)
$$\lim_{x\to 0} \frac{\sqrt[n]{1+\sin x}-1}{\arctan x};$$

(4)
$$\lim_{x \to 0} \frac{\sqrt{2} - \sqrt{1 + \cos x}}{\sin^2 x};$$
(6)
$$\lim_{x \to 0} \frac{\sqrt{1 + x^2} - 1}{1 - \cos x}.$$

(5)
$$\lim_{x \to 0} \frac{\sqrt{1 + x + x^2} - 1}{\sin 2x};$$

(6)
$$\lim_{x\to 0} \frac{\sqrt{1+x^2}-1}{1-\cos x}$$

解

(1) 由 $\sin x \sim x$, 可知

$$\lim_{x \to 0} \frac{\sin mx}{\sin nx} = \lim_{x \to 0} \frac{mx}{nx} = \frac{m}{n}.$$

(2) 由 $\tan x \sim x$, 可知 $a \neq 0$ 时,

$$\lim_{x \to 0} \frac{\tan ax}{x} = \lim_{x \to 0} \frac{ax}{x} = a.$$

很显然该结果对a = 0也成立。

(3) 由 $(1+x)^{\alpha}-1\sim\alpha x$, $\arctan x\sim x$, 可知

$$\lim_{x \to 0} \frac{\sqrt[n]{1 + \sin x} - 1}{\arctan x} = \lim_{x \to 0} \frac{\frac{1}{n} \sin x}{x} = \frac{1}{n}.$$

(4)
$$\frac{\sqrt{2} - \sqrt{1 + \cos x}}{\sin^2 x} = \frac{(\sqrt{2} - \sqrt{1 + \cos x})(\sqrt{2} + \sqrt{1 + \cos x})}{\sin^2 x (\sqrt{2} + \sqrt{1 + \cos x})} = \frac{1 - \cos x}{\sin^2 x (\sqrt{2} + \sqrt{1 + \cos x})}.$$

$$\text{If } 1 - \cos x \sim \frac{x^2}{2}, \sin x \sim x, \text{ If } \text{for }$$

$$\lim_{x \to 0} \frac{\sqrt{2} - \sqrt{1 + \cos x}}{\sin^2 x} = \lim_{x \to 0} \frac{\frac{x^2}{2}}{x^2 (\sqrt{2} + \sqrt{1 + \cos x})} = \frac{1}{4\sqrt{2}}.$$

(5) 由
$$(1+x)^{\alpha}-1\sim \alpha x$$
, $\sin x\sim x$, 可知

$$\lim_{x \to 0} \frac{\sqrt{1 + x + x^2} - 1}{\sin 2x} = \lim_{x \to 0} \frac{\frac{1}{2}(x + x^2)}{2x} = \frac{1}{4}.$$

(6) 由
$$(1+x)^{\alpha} - 1 \sim \alpha x, 1 - \cos x \sim \frac{x^2}{2}$$
,可知

$$\lim_{x \to 0} \frac{\sqrt{1 + x^2} - 1}{1 - \cos x} = \lim_{x \to 0} \frac{\frac{1}{2}x^2}{\frac{x^2}{2}} = 1.$$

第1章综合习题

习题 1.C.1 求下列数列的极限:

(1)
$$a_n = \frac{1}{2} \cdot \frac{3}{4} \cdots \frac{2n-1}{2n}$$
 (提示: $\frac{1}{2} \cdot \frac{3}{4} \cdots \frac{2n-1}{2n} \leqslant \frac{1}{\sqrt{2n+1}}$);

(2)
$$a_n = \frac{10}{1} \cdot \frac{11}{3} \cdots \frac{n+9}{2n-1};$$

(3)
$$\mbox{ } \mbox{ } \mbox{$$

解

(1) 由

$$(2n)^2 = 4n^2 \geqslant 4n^2 - 1 = (2n - 1)(2n + 1)$$

可得

$$\frac{2n-1}{2n} \leqslant \frac{2n-1}{\sqrt{(2n-1)(2n+1)}} = \sqrt{\frac{2n-1}{2n+1}}.$$

因此

$$a_n = \frac{1}{2} \cdot \frac{3}{4} \cdot \cdot \cdot \frac{2n-1}{2n} \leqslant \sqrt{\frac{1}{3} \cdot \frac{3}{5} \cdot \cdot \cdot \frac{2n-1}{2n+1}} = \sqrt{\frac{1}{2n+1}}.$$

而
$$\lim_{n\to\infty}\sqrt{\frac{1}{2n+1}}=0$$
, 故由夹逼定理可知 $\lim_{n\to\infty}a_n=0$;

(2) $\text{in} \lim_{n \to \infty} \frac{n+9}{2n-1} = \frac{1}{2}, \, \text{for}$

$$\lim_{n \to \infty} \sqrt[n]{\frac{10}{1} \cdot \frac{11}{3} \cdots \frac{n+9}{2n-1}} = \lim_{n \to \infty} \frac{n+9}{2n-1} = \frac{1}{2}.$$

因此 $\lim_{n\to\infty} a_n = \lim_{n\to\infty} (\sqrt[n]{a_n})^n = 0;$

(3) 由 $a_1 > 1$, 以及若 $a_n > 1$ 时, $a_{n+1} = 2 - \frac{1}{a_n} > 1$, 归纳的可知 $a_n > 1$, $\forall n \in \mathbb{N}^+$. 所以数列 有下界. 再用归纳法: 当n=1时:

$$a_2 - a_1 = 2 - \left(\frac{1}{a_1} + a_1\right) \leqslant 2 - 2 = 0,$$

推出 $a_2 \leq a_1$. 假设对 n 有 $a_n \leq a_{n-1}$, 那么当 n+1 时

$$a_{n+1} - a_n = \frac{1}{a_{n-1}} - \frac{1}{a_n} = \frac{a_n - a_{n-1}}{a_n a_{n-1}} \le 0.$$

所以 $\{a_n\}$ 是单调减有下界数列, 因此收敛. 设 $\lim_{n\to\infty} a_n = a \ge 1$. 在

$$a_{n+1} = 2 - \frac{1}{a_n}$$

两边取极限得

$$a = 2 - \frac{1}{a} \implies a^2 - 2a + 1 = 0$$

解得 $a = \pm 1$. 但 a = -1 不合题意, 所以 $\lim_{n \to \infty} a_n = 1$.

(4) $a_{n+2} = \frac{1}{1+a_{n+1}} = \frac{1}{1+\frac{1}{1+a_n}} = \frac{1+a_n}{2+a_n}$. 假如对任何 n, 有 $a_{2n} \geqslant a_{2n-2}$; $a_{2n+1} \leqslant a_{2n-1}$, 那 么对 n+1, 有

$$a_{2n+2} - a_{2n} = \frac{1}{1 + a_{2n+1}} - \frac{1}{1 + a_{2n-1}} = \frac{a_{2n-1} - a_{2n+1}}{1 + a_{2n+1}a_{2n-1}} \geqslant 0$$

$$a_{2n+3} - a_{2n+1} = \frac{1}{1 + a_{2n+2}} - \frac{1}{1 + a_{2n}} = \frac{a_{2n} - a_{2n+2}}{1 + a_{2n+2}a_{2n}} \leqslant 0$$

推出数列 $\{a_n\}$ 的子列 $\{a_{2n}\}$ 单调增有上界, $\{a_{2n-1}\}$ 单调减有下界. 因此分别收敛. 对

$$a_{2n+2} = \frac{1 + a_{2n}}{2 + a_{2n}},$$

两边取极限得

$$a = \frac{1+a}{2+a} \implies a^2 + a - 1 = 0$$

解得 $a = \frac{-1 + \sqrt{5}}{2}$. 同理, 对

$$a_{2n+3} = \frac{1 + a_{2n+1}}{2 + a_{2n+1}},$$

两边取极限得

$$b = \frac{1+b}{2+b} \implies b^2 + b - 1 = 0$$

解得 $b = \frac{-1 + \sqrt{5}}{2}$. 因此 $\lim_{n \to \infty} a_{2n} = \lim_{n \to \infty} a_{2n-1}$, 故 $\lim_{n \to \infty} a_n$ 存在, 且 $\lim_{n \to \infty} a_n = \frac{-1 + \sqrt{5}}{2}$. **习题 1.C.2** 设 $\{a_n\}$ 为单调递增的数列, 并且收敛于 a, 证明对一切 n 有 $a_n < a$. (对单调递减且有极限的数列, 类似的结论成立.)

解 反证法. 假设存在某个 n_0 , 使得 $a_{n_0} > a$. 由数列单调递增的性质, 对一切 $n > n_0$ 有 $a_n \ge a_{n_0} > a$, 于是存在 $\varepsilon = \frac{a_{n_0} - a}{2} > 0$, 使得 $\forall N$, 存在 $n = \max\{n_0, N\} + 1 > N$, 使得

$$|a_n - a| = a_n - a \geqslant a_{n_0} - a = 2\varepsilon > \varepsilon,$$

这与数列收敛的定义矛盾.

习题 1.C.3 证明下面的数列收敛:

(1)
$$a_n = 1 + \frac{1}{2^2} + \dots + \frac{1}{n^2};$$

(2) $a_n = \left(1 + \frac{1}{2}\right) \left(1 + \frac{1}{2^2}\right) \dots \left(1 + \frac{1}{2^n}\right).$

(1) 由数列定义可知 $\{a_n\}$ 单调递增. 又因为

$$a_n = 1 + \frac{1}{2^2} + \dots + \frac{1}{n^2} \le 1 + \frac{1}{1 \cdot 2} + \frac{1}{2 \cdot 3} + \dots + \frac{1}{(n-1)n} = 2 - \frac{1}{n} < 2,$$

所以 $\{a_n\}$ 有上界. 因此 $\{a_n\}$ 收敛;

(2) 由数列定义可知 $\{a_n\}$ 单调递增. 又因为

$$a_n = e^{\sum_{k=1} \ln(1 + \frac{1}{2^k})} \le e^{\sum_{k=1} \frac{1}{2^k}} = e^1.$$

所以 $\{a_n\}$ 有上界. 又由数列定义可知 $\{a_n\}$ 单调递增. 因此 $\{a_n\}$ 收敛.

习题 1.C.4 试构造一个发散的数列 $\{a_n\}$,满足条件: 对任意正数 ε , 存在正整数 N, 使当 n > N 时, 有 $|a_{n+1} - a_n| < \varepsilon$.

解 取 $a_n = \sqrt{n}$. 则对任意 $\varepsilon > 0$, 存在正整数 $N > \frac{1}{4\varepsilon^2}$, 当 n > N 时, 有

$$|a_{n+1} - a_n| = \sqrt{n+1} - \sqrt{n} = \frac{1}{\sqrt{n+1} + \sqrt{n}} < \frac{1}{2\sqrt{n}} < \varepsilon.$$

但数列 $\{a_n\}$ 显然发散.

习题 1.C.5 若数列 $\{a_n\}$ 满足: 存在常数 M, 使得对一切 n 有

$$A_n = |a_2 - a_1| + |a_3 - a_2| + \dots + |a_{n+1} - a_n| \le M.$$

证明:

- (1) 数列 $\{A_n\}$ 收敛;
- (2) 数列 $\{a_n\}$ 也收敛.

解

- (1) 由数列定义可知 $\{A_n\}$ 单调递增. 又因为对一切 n 有 $A_n \leq M$, 所以 $\{A_n\}$ 有上界. 因此 $\{A_n\}$ 收敛;
- (2) 用 Cauchy 收敛准则证明. 由 (1) 知 $\{A_n\}$ 收敛, 因此对任意 $\varepsilon > 0$, 存在正整数 $N, \forall n > N+1, p>0$, 有

$$|A_{n+p} - A_{n-1}| = |a_{n+1} - a_n| + |a_{n+2} - a_{n+1}| + \dots + |a_{n+p} - a_{n+p-1}| < \varepsilon.$$

由三角不等式可知

$$|a_{n+p} - a_n| \le |a_{n+1} - a_n| + |a_{n+2} - a_{n+1}| + \dots + |a_{n+p} - a_{n+p-1}| < \varepsilon.$$

习题 1.C.6 设 $\{a_n\}$ 是正严格递增数列. 求证: 若 $a_{n+1} - a_n$ 有界, 则对任意 $\alpha \in (0,1)$ 有 $\lim_{n\to\infty} (a_{n+1}^{\alpha} - a_n^{\alpha}) = 0$. 并说明此结论的逆不对, 即, 存在正严格递增数列 $\{a_n\}$ 使得对任意 $\alpha \in (0,1)$ 有 $\lim_{n\to\infty} (a_{n+1}^{\alpha} - a_n^{\alpha}) = 0$, 但是 $a_{n+1} - a_n$ 无界. (提示: 考虑 $a_n = n \ln n$.)

解

- (1) 若 $\{a_n\}$ 有界, 此时由于其严格单调, 故有极限, 记 $\lim_{n\to\infty}a_n=l$, 可知 $\lim_{n\to\infty}(a_{n+1}^\alpha-a_n^\alpha)=l^\alpha-l^\alpha=0$.
- (2) $\exists \{a_n\} \ \mathcal{F}, \ \mathbb{P} \lim_{n \to \infty} a_n = +\infty, \ \mathfrak{F} |a_{n+1} a_n| \leqslant M.$

$$0 \leqslant a_{n+1}^{\alpha} - a_n^{\alpha} = a_n^{\alpha} \left(\left(\frac{a_{n+1}}{a_n} \right)^{\alpha} - 1 \right) < a_n^{\alpha} \left(\frac{a_{n+1}}{a_n} - 1 \right) = \frac{a_{n+1} - a_n}{a_n^{1-\alpha}} \leqslant \frac{M}{a_n^{1-\alpha}}.$$

同时,

$$\lim_{n \to \infty} M a_n^{\alpha - 1} = 0.$$

因此由夹逼定理可知 $\lim_{n\to\infty}(a_{n+1}^{\alpha}-a_n^{\alpha})=0.$

(3) 反之不对, 取 $a_n = n \ln n$, 则

$$a_{n+1}^{\alpha} - a_n^{\alpha} = (n+1)^{\alpha} \ln^{\alpha} (n+1) - n^{\alpha} \ln^{\alpha} n$$

$$< ((n+1)^{\alpha} - n^{\alpha}) \ln^{\alpha} n$$

$$= n^{\alpha} \left(\left(1 + \frac{1}{n} \right)^{\alpha} - 1 \right) \ln^{\alpha} n$$

$$< n^{\alpha} \left(\left(1 + \frac{1}{n} \right) - 1 \right) \ln^{\alpha} n$$

$$= n^{\alpha - 1} \ln^{\alpha} n = \frac{\ln^{\alpha} n}{n^{1 - \alpha}}.$$

由于

$$\lim_{n \to \infty} \frac{\ln^{\alpha} n}{n^{1 - \alpha}} = 0,$$

因此由夹逼定理可知 $\lim_{n\to\infty}(a_{n+1}^{\alpha}-a_{n}^{\alpha})=0$. 但

$$a_{n+1} - a_n = (n+1)\ln(n+1) - n\ln n = \ln(n+1) + n\ln\left(\frac{n+1}{n}\right) > \ln(n+1),$$

显然无界.

习题 1.C.7 设数列 $\{a_n\}$ 满足 $\lim_{n\to\infty}(a_{n+1}-a_n)=a$. 证明: $\lim_{n\to\infty}\frac{a_n}{n}=a$.

解 由 Stolz 定理可知

$$\lim_{n \to \infty} \frac{a_n}{n} = \lim_{n \to \infty} \frac{a_{n+1} - a_n}{(n+1) - n} = \lim_{n \to \infty} (a_{n+1} - a_n) = a.$$

习题 1.C.8 证明: 若 $\lim_{n\to\infty} a_n = a$, 且 $a_n > 0$, 则 $\lim_{n\to\infty} \sqrt[n]{a_1 a_2 \cdots a_n} = a$.

解 由 Stolz 定理可知

$$\lim_{n \to \infty} \sqrt[n]{a_1 a_2 \cdots a_n} = \lim_{n \to \infty} e^{\frac{1}{n} (\ln a_1 + \ln a_2 + \dots + \ln a_n)} = e^{\lim_{n \to \infty} \frac{(\ln a_1 + \ln a_2 + \dots + \ln a_n)}{n}} e^{\lim_{n \to \infty} \frac{\ln a_n}{1}} = e^{\ln a} = a.$$

习题 1.C.9 证明: 若 $a_n > 0$, 且 $\lim_{n \to \infty} \frac{a_{n+1}}{a_n}$ 存在, 则 $\lim_{n \to \infty} \sqrt[n]{a_n}$ 也存在, 并且

$$\lim_{n \to \infty} \sqrt[n]{a_n} = \lim_{n \to \infty} \frac{a_{n+1}}{a_n}.$$

解 设 $b_n = \frac{a_n}{a_{n-1}}, (n>1); b_1 = a_1$, 则 $a_n = b_1b_2\cdots b_n$. 由综合习题 1.C.8可知结果. 直接 Stolz 也

可以得到结果.

$$\lim_{n \to \infty} \sqrt[n]{a_n} = \lim_{n \to \infty} e^{\frac{\ln a_n}{n}} = e^{\lim_{n \to \infty} \frac{\ln a_n}{n}}$$

$$= e^{\lim_{n \to \infty} \frac{\ln a_{n+1} - \ln a_n}{1}} = e^{\lim_{n \to \infty} \ln \frac{a_{n+1}}{a_n}}$$

$$= e^{\ln \lim_{n \to \infty} \frac{a_{n+1}}{a_n}} = \lim_{n \to \infty} \frac{a_{n+1}}{a_n}.$$

习题 1.C.10 求下列极限:

(1)
$$\lim_{n \to \infty} \frac{1 + \sqrt{2} + \sqrt[3]{3} + \dots + \sqrt[n]{n}}{n};$$
 (2) $\lim_{n \to \infty} \frac{n}{\sqrt[n]{n}!}.$

解

(1) 由 Stolz 定理可知

$$\lim_{n \to \infty} \frac{1 + \sqrt{2} + \sqrt[3]{3} + \dots + \sqrt[n]{n}}{n} = \lim_{n \to \infty} \sqrt[n]{n} = 1;$$

(2) 可以用综合习题 1.C.9来做, 记 $a_n = \frac{n^n}{n!}$ 由于

$$\lim_{n \to \infty} \frac{a_{n+1}}{a_n} = \lim_{n \to \infty} \frac{(n+1)^{n+1} \cdot n!}{n^n \cdot (n+1)!} = \lim_{n \to \infty} \frac{(n+1)^n}{n^n} = \lim_{n \to \infty} \left(1 + \frac{1}{n}\right)^n = e,$$

因此

$$\lim_{n \to \infty} \frac{n}{\sqrt[n]{n!}} = \lim_{n \to \infty} \sqrt[n]{\frac{n^n}{n!}} = \lim_{n \to \infty} \sqrt[n]{a_n} = e.$$

习题 1.C.11 已知 $\lim_{n\to\infty} a_n = a$, 求证 $\lim_{n\to\infty} \frac{a_1 + 2a_2 + \dots + na_n}{n^2} = \frac{a}{2}$.

解由Stolz定理,有

$$\lim_{n \to \infty} \frac{a_1 + 2a_2 + \dots + na_n}{n^2} = \lim_{n \to \infty} \frac{na_n}{n^2 - (n-1)^2} = \lim_{n \to \infty} \frac{na_n}{2n-1} = \lim_{n \to \infty} \frac{n}{2n-1} \lim_{n \to \infty} a_n = \frac{a}{2}.$$

习题 1.C.12 设 $\{a_n\}$ 且 $a_n \to a \in \mathbb{R}$, 又设 $\{b_n\}$ 是正数列, $c_n = \frac{a_1b_1 + a_2b_2 + \cdots + a_nb_n}{b_1 + b_2 + \cdots + b_n}$. 求证:

- (1) $\{c_n\}$ 收敛;
- (2) 若 $(b_1 + b_2 + \cdots + b_n) \rightarrow +\infty$, 则 $\lim_{n \to \infty} c_n = a$.

解

(1) 记 $B_n = b_1 + b_2 + \dots + b_n$, 由 $\lim_{n \to \infty} a_n = a$, 任取 $\varepsilon > 0$, 存在 K, 当 k > K 时, $|a_k - a| < \varepsilon$. 当 n > K, 有

$$c_n - a = \frac{\sum_{k=1}^n (a_k - a)b_k}{B_n} = \frac{\sum_{k=1}^K (a_k - a)b_k}{B_n} + \frac{\sum_{k=K+1}^n (a_k - a)b_k}{B_n}.$$

其中

$$\left|\frac{\sum_{k=K+1}^{n}(a_k-a)b_k}{B_n}\right| \leqslant \frac{\sum_{k=K+1}^{n}|a_k-a|b_k}{B_n} < \varepsilon \frac{\sum_{k=K+1}^{n}b_k}{B_n} < \varepsilon.$$

因此

$$\left| c_n - \left(a + \frac{\sum_{k=1}^K (a_k - a)b_k}{B_n} \right) \right| < \varepsilon.$$

而对于

$$q_n := \frac{\sum_{k=1}^{K} (a_k - a)b_k}{B_n}$$

 $C:=\sum_{k=1}^{K}(a_k-a)b_k$ 是仅与 K 有关,与 n 无关的常数, B_n 单调增,因此 q_n 单调有界 (C>0 时 q_n 单调减且 $q_n>0$, C<0 时 q_n 单调增且 $q_n<0$),故 q_n 收敛,设 $\lim_{n\to\infty}q_n=q$, 再取 N,使得当 n,m>N 时, $|q_m-q_n|<\varepsilon$,则当 $n,m>\max\{N,K\}$ 时,

$$|c_m - c_n| \le |c_n - (a + q_n)| + |c_m - (a + q_m)| + |q_m - q_n| < 3\varepsilon.$$

因此由 Cauchy 收敛准则可知 c_n 收敛.

- (2) 下给出两种方法,
 - (a) 由 (1) 中的过程, $q_n=\frac{C}{B_n}$, 由于 $B_n\to +\infty$, C 为常数, 因此 $q_n\to 0$, 因此存在 N, 使得当 n>N 时, $|q_n|<\varepsilon$, 则当 $n>\max\{N,K\}$ 时,

$$|c_n - a| \le |c_n - (a + q_n)| + |q_n| < \varepsilon + |q_n| < 2\varepsilon.$$

(b) 由 Stolz 定理可知

$$\lim_{n \to \infty} c_n = \lim_{n \to \infty} \frac{a_1 b_1 + a_2 b_2 + \dots + a_n b_n}{b_1 + b_2 + \dots + b_n} = \lim_{n \to \infty} \frac{a_n b_n}{b_n} = \lim_{n \to \infty} a_n = a.$$

上述解答中给出了符合题目原意的证明, 即先证明 c_n 收敛, 然后在 B_n 无界时, 再证明 $\lim_{n\to\infty}c_n=a$. 但对于这道题而言, 还可以分类 B_n 有界和无界来讨论, 即先做 (2), 然后对 B_n 有界时, 用 Cauchy 收敛准则证明 $\left\{\sum_{k=1}^n a_n b_n\right\}$ 收敛, 即两种分类下以截然不同的方式来证明 c_n 收敛.

注 $a_n := \cdots$ 中 := 表示定义. 如 $a_n := \frac{1}{n}$ 表示我们新定义了一个数列 a_n ,其通项公式为 $a_n = \frac{1}{n}$. 在上文中 " $C := \sum_{k=1}^K (a_k - a)b_k$ 是仅与 K 有关,与 n 无关的常数."表示: "记 $C = \sum_{k=1}^K (a_k - a)b_k$,则 C 是仅与 K 有关,与 n 无关的常数.",有的地方会写为 $a_n \stackrel{\mathrm{def}}{=} \cdots$.

习题 1.C.13 证明:
$$\lim_{x \to +\infty} \left(1 + \frac{1}{x^p} \right)^x = \begin{cases} 1, & p > 1, \\ e, & p = 1, \\ \infty, & p < 1. \end{cases}$$

解 实际上题目中的无穷只能是 $+\infty$.

p>0 时, $x^p\to +\infty$

$$\lim_{x \to +\infty} \left(1 + \frac{1}{x^p} \right)^x = \lim_{x \to +\infty} \left(1 + \frac{1}{x^p} \right)^{x^p \cdot \frac{1}{x^{p-1}}} = e^{\lim_{x \to +\infty} \frac{1}{x^{p-1}}} = \begin{cases} 1, & p > 1, \\ e, & p = 1, \\ +\infty, & p < 1. \end{cases}$$

 $p \leq 0$ 时, $x^p \to 0$, 则考虑 x > 1 时,

$$\lim_{x \to +\infty} \left(1 + \frac{1}{x^p} \right)^x \geqslant \lim_{x \to +\infty} 2^x = +\infty.$$

习题 1.C.14 设 f(x) 为周期函数,且 $\lim_{x\to\infty} f(x) = 0$,证明 f(x) 恒为零.

解 设
$$f(x)$$
 的正周期为 $T>0, \forall \varepsilon>0, \exists\, N\in\mathbb{N}^*,\, \exists\,\, |x|\geqslant N$ 时 $|f(x)|<\varepsilon.$ 因此对于 $n=\left\lceil\frac{N}{T}\right\rceil$,有 $nT\geqslant N$,故对于任意 $x\in[nT,(n+1)T)$,有 $f(x)<\varepsilon.$

利用周期性可以得到 $\forall x \in \mathbb{R}, |f(x)| < \varepsilon$. 由于 ε 是任意的正数, 所以 f(x) 恒为零.

习题 1.C.15 证明

- (1) 函数 f(x) 在 $x \to x_0^-$ 时有极限 l 的充分必要条件是: 对于任意一个以 x_0 为极限的单调 递增数列 $\{a_n\}$ $(a_n \neq x_0)$,都有 $\lim_{n \to \infty} f(a_n) = l$;
- (2) 函数 f(x) 在 $x \to x_0^+$ 时有极限 l 的充分必要条件是: 对于任意一个以 x_0 为极限的单调 递减数列 $\{a_n\}$ $(a_n \neq x_0)$, 都有 $\lim_{n \to \infty} f(a_n) = l$.

解

- (1) (a) 必要性: 考虑任意数列 $\{a_n\}$, 使得 $\lim_{n\to\infty} a_n = x_0$ 且 $\{a_n\}$ 单调递增,. 由于 $\lim_{x \to x_0^-} f(x) = l$, 因此, $\forall \varepsilon > 0$, $\exists \delta > 0$, 当 $x_0 - \delta < x < x_0$ 时, 有 $|f(x) - l| < \varepsilon$. 同时对于 δ , $\exists N \in \mathbb{N}^*$, 使得当n > N时, 有 $|a_n - x_0| < \delta$, 即 $x_0 - \delta < a_n < x_0$. 因此我们有 m > N 时 $|f(a_n) - l| < \varepsilon$. 即得到数列 $\{f(a_n)\}$ 收敛到 l.
 - (b) 充分性: 反证, 若 $x \to x_0^-$ 时 f(x) 的极限为 l 不成立, 即 $\exists \varepsilon > 0, \forall \delta > 0, \exists x_0 \delta < 0$ $x < x_0$, 使得 $|f(x) - l| \ge \varepsilon$. 因此我们依次构造 $\delta_1 = 1$, $\delta_n = \min\{\frac{1}{n}, x_0 - a_{n-1}\}, (n > 2)$, 则 $\exists a_n, x_0 - \delta_n < a_n < x_0$,使得 $|f(a_n) - l| \ge \varepsilon$. 即有 $a_n > a_{n-1}$, 且 $|x_0 - a_n| < \frac{1}{n}$. 这意味着 $\{a_n\}$ 单调递增, $\mathbb{1}\lim_{n\to\infty}a_n=x_0.$ 由于 $|f(a_n) - l| \ge \varepsilon$, 所以 $\{f(a_n)\}$ 不收敛到 l, 矛盾, 故充分性成立.
- (2) 证明同理. 具体而言:

设 g(x) = f(-x), 则 f(x) 在 $x \to x_0^-$ 时有极限 $l \Leftrightarrow g(x)$ 在 $x \to -x_0^+$ 时有极限 l. 由 (1) 可知, 这等价于对于任意一个以 $-x_0$ 为极限的单调递增数列 $\{b_n\}(b_n \neq -x_0)$, 都有 $\lim_{n\to\infty}g(b_n)=l$. 设 $a_n=-b_n$, 则 $\{a_n\}$ 是以 x_0 为极限的单调递减数列, 且 $\lim_{n\to\infty}f(a_n)=l$. 因此 (2) 得证.

习题 1.C.16 设 ξ 是一个无理数, a, b 是实数, 且 a < b. 求证: 存在整数 m, n 使得 $m + n\xi \in (a, b)$, 即, 集合

$$S = \{ m + n\xi \mid m, n \in \mathbb{Z} \}$$

在 ℝ 稠密.

解 稠密的定义: 设 $S \subset \mathbb{R}$, 若对任意 $a, b \in \mathbb{R}$, a < b, 都有 $S \cap (a, b) \neq \emptyset$, 则称 S 在 \mathbb{R} 中稠密.

想法是这样的, 我们为了找到某个 $m+n\xi$ 落在 (a,b) 中, 于是用 ξ 构造一个充分小的实数 $\varepsilon=m_0+n_0\xi\in(0,b-a)$. 因为这个 ε 够小, 所以能证明存在某个 $l_0\in\mathbb{Z}$, 使得 $l_0\varepsilon\in(a,b)$, 直观 理解如图 1.1 所示.

图 1.1: a, b 之间的区间长度大于 ε , 因此存在某个 $l_0 \in \mathbb{Z}$, 使得 $l_0 \varepsilon \in (a, b)$. 这里的思路和习题 1.1.2中证明两个无理数之间存在有理数的思路是类似的.

随后我们取 $m = l_0 m_0, n = l_0 n_0$ 即有 $m + n \xi = l_0 \varepsilon \in (a, b)$.

构造 ε 实际上, 对于 b-a>0, 总存在 $k\in\mathbb{N}^*$, 使得 $\frac{1}{k}< b-a$. 因此我们考虑构造一个满足 $\varepsilon<\frac{1}{k}, \varepsilon\in S$ 即可.

对于 $l = 1, 2, \dots, k + 1$, 我们考虑

$$n_l = \lfloor l\xi \rfloor$$

$$x_l = l\xi - n_l \in S.$$

 x_l 是 $l\xi$ 的小数部分, 容易知道 $x_l \in [0,1)$, 并且 x_l 之间总是两两不同的, 否则 $i\xi - n_i = j\xi - n_j$, $i \neq j$, 这意味着 $\xi = \frac{n_i - n_j}{i - j}$, 这与 ξ 为无理数矛盾.

因此对于

$$[0,1) = \bigcup_{j=1}^{k} \left[\frac{j-1}{k}, \frac{j}{k} \right),$$

这k个区间包括了k+1个不同实数 x_l . 因此总有一个区间内部存在同时两个实数, 记为 $x_p, x_q \in S, p \neq q$, 不妨认为 $x_q > x_p$.

由 x_l 的构造 $x_p = p\xi - n_p, x_q = q\xi - n_q,$ 有

$$x_q - x_p = (q - p)\xi - (n_p - x_q) \in S,$$

且由于 x_p, x_q 落在同一个区间内,而区间长度为 $\frac{1}{k}$,因此 $0 < x_q - x_p \leqslant \frac{1}{k} < b - a$,所以 $x_q - x_p$ 满足我们对 ε 的要求. 我们取

$$\varepsilon = x_q - x_p.$$

构造 m, n 我们先证明 $\exists l_0 \in \mathbb{Z}, \text{s. t. } l_0 \varepsilon \in (a, b)$: 我们取 $l_0 = \left\lceil \frac{b}{\varepsilon} \right\rceil - 1$, 则

$$l_0\varepsilon = \left(\left\lceil \frac{b}{\varepsilon} \right\rceil - 1\right)\varepsilon < \left(\frac{b}{\varepsilon} + 1 - 1\right)\varepsilon = b.$$

同时, 由于 $\varepsilon < b - a$, 因此

$$l_0\varepsilon = \left(\left\lceil \frac{b}{\varepsilon}\right\rceil - 1\right)\varepsilon \geqslant \left(\frac{b}{\varepsilon} - 1\right)\varepsilon = b - \varepsilon > b - (b - a) = a.$$

因此 $l_0\varepsilon \in (a,b)$.

于是令

$$m = l_0(n_q - n_p), n = l_0(q - p)$$

即有 $m+n\xi=l_0(n_q-n_p)+l_0(q-p)\xi=l_0\left((q-p)\xi-(n_p-n_q)\right)=l_0\varepsilon\in(a,b).$

第2章 连续函数的基本概念

习题 2.1

习题 2.1.1 设函数 f(x) 在点 x_0 附近有定义, 且 $\lim_{h\to 0^+} [f(x_0+h)-f(x_0-h)]=0$. 问 f(x) 是否必在 $x=x_0$ 处连续?

解不一定. 例如,设

$$f(x) = \begin{cases} 0, & x \neq 0, \\ 1, & x = 0. \end{cases}$$

则 $\lim_{h\to 0^+} [f(0+h)-f(0-h)] = \lim_{h\to 0^+} (0-0) = 0$,但 f(x) 在 x=0 处不连续.

习题 2.1.2 设对任意正数 $\varepsilon < \frac{b-a}{2}$, 函数 f(x) 在 $[a+\varepsilon,b-\varepsilon]$ 上连续. 证明 f(x) 在 (a,b) 内连续.

解设 $x_0 \in (a,b)$, 则存在 $\varepsilon_0 = \min\left\{\frac{b-x_0}{2}, \frac{x_0-a}{2}\right\} > 0$, 使得 $a+\varepsilon_0 < x_0 < b-\varepsilon_0$. 因为 f(x) 在 $[a+\varepsilon_0,b-\varepsilon_0]$ 上连续, 故 f(x) 在 x_0 处连续. 因此 f(x) 在 (a,b) 内连续.

习题 2.1.3 设在点 $x = x_0$ 处, 函数 f(x) 连续, 而 g(x) 不连续, 问函数 $f(x) \pm g(x)$ 与 f(x)g(x) 在点 x_0 的连续性如何? 若 f(x), g(x) 在 x_0 处都不连续, 回答同样的问题.

解

(1) $f(x) \pm g(x)$ 与 f(x)g(x) 在点 x_0 处均不连续. 反证: 若 f(x) + g(x) 在点 x_0 处连续,则 $\lim_{x \to x_0} [f(x) + g(x)] = f(x_0) + g(x_0), \quad \lim_{x \to x_0} g(x) = \lim_{x \to x_0} [f(x) + g(x)] - \lim_{x \to x_0} f(x) = f(x_0) + g(x_0) - f(x_0) = g(x_0), \quad \text{矛盾. 同理可证 } f(x) - g(x)$ 在点 x_0 处不连续. f(x)g(x) 在 x_0 处连续性未知,例如,设

$$f(x) = x, \quad g(x) = \begin{cases} 1, & x \neq 0, \\ 0, & x = 0; \end{cases}$$

则 $f(x)g(x) \equiv x$, 在点 $x_0 = 0$ 处连续. 又例如, 设

$$f(x) = 1, \quad g(x) = \begin{cases} 1, & x \neq 0, \\ 0, & x = 0; \end{cases}$$

则
$$f(x)g(x) = \begin{cases} 1, & x \neq 0, \\ 0, & x = 0; \end{cases}$$
 在点 $x_0 = 0$ 处不连续.

(2) 若 f(x), g(x) 在 x_0 处都不连续, 则 $f(x) \pm g(x)$ 与 f(x)g(x) 在点 x_0 处可能连续, 也可能

不连续. 例如,

(a) f(x) + g(x) 在点 x_0 处连续: 设

$$f(x) = \begin{cases} 0, & x \neq 0, \\ 1, & x = 0; \end{cases} g(x) = \begin{cases} 0, & x \neq 0, \\ -1, & x = 0. \end{cases}$$

则 $f(x) + g(x) \equiv 0$, 在点 $x_0 = 0$ 处连续.

(b) f(x) + g(x) 在点 x_0 处不连续: 设

$$f(x) = \begin{cases} 0, & x \neq 0, \\ 1, & x = 0; \end{cases} g(x) = \begin{cases} 0, & x \neq 0, \\ 1, & x = 0. \end{cases}$$

则
$$f(x) + g(x) = \begin{cases} 0, & x \neq 0, \\ 2, & x = 0; \end{cases}$$
 在点 $x_0 = 0$ 处不连续.

(c) f(x)g(x) 在点 x_0 处连续: 设

$$f(x) = \begin{cases} 1, & x \neq 0, \\ 0, & x = 0; \end{cases} g(x) = \begin{cases} 0, & x \neq 0, \\ 1, & x = 0. \end{cases}$$

则 $f(x)g(x) \equiv 0$, 在点 $x_0 = 0$ 处连续.

(d) f(x)g(x) 在点 x_0 处不连续: 设

$$f(x) = \begin{cases} 1, & x \neq 0, \\ 0, & x = 0; \end{cases} g(x) = \begin{cases} 1, & x \neq 0, \\ 0, & x = 0. \end{cases}$$

则
$$f(x)g(x) = \begin{cases} 1, & x \neq 0, \\ 0, & x = 0; \end{cases}$$
 在点 $x_0 = 0$ 处不连续.

习题 2.1.4

- (1) 设函数 f(x) 在点 $x = x_0$ 处连续, 则函数 |f(x)| 在点 $x = x_0$ 处也连续.
- (2) 设函数 f(x) 和 g(x) 在一个区间 I 上连续,证明:函数 $M(x) = \max(f(x), g(x))$ 及 $m(x) = \min(f(x), g(x))$ 在区间 I 上均连续.

解

(1) 因为 f(x) 在点 $x = x_0$ 处连续, 故 $\lim_{x \to x_0} f(x) = f(x_0)$, 因此 $\forall \varepsilon > 0$, $\exists \delta > 0$, 当 $|x - x_0| < \delta$ 时, 有 $|f(x) - f(x_0)| < \varepsilon$. 又因为

$$||f(x)| - |f(x_0)|| \le |f(x) - f(x_0)| < \varepsilon,$$

故 $\lim_{x \to x_0} |f(x)| = |f(x_0)|$, 即 |f(x)| 在点 $x = x_0$ 处连续.

(2) 由
$$M(x) = \frac{f(x) + g(x)}{2} + \frac{|f(x) - g(x)|}{2}$$
, $m(x) = \frac{f(x) + g(x)}{2} - \frac{|f(x) - g(x)|}{2}$ 可知, 只需

证明 |f(x)-g(x)| 在区间 I 上连续. 因为 f(x), g(x) 在区间 I 上连续, 故 f(x)-g(x) 在区 间 I 上连续. 由 (1) 可知, |f(x) - g(x)| 在区间 I 上连续.

习题 2.1.5 证明: 存在这样的函数 f(x), 处处不连续, 但函数 |f(x)| 处处连续. (提示: 适当地修 改 Dirichlet 函数可得出一个例子.)

解设

$$f(x) = \begin{cases} 1, & x \in \mathbb{Q}, \\ -1, & x \in \mathbb{R} \setminus \mathbb{Q}. \end{cases}$$

则 f(x) 处处不连续, 但 $|f(x)| \equiv 1$, 处处连续.

证明 若 f(x) 在 x_0 处连续, 则 $\lim_{x\to x_0} f(x)$ 存在, 取 $\{a_n\} \subset \mathbb{Q}$, $\lim_{n\to\infty} a_n = x_0$, 则 $\lim_{n\to\infty} f(a_n) = 1$; 取 $\{b_n\} \subset \mathbb{R} \setminus \mathbb{Q}$, $\lim_{n\to\infty} b_n = x_0$, 则 $\lim_{n\to\infty} f(b_n) = -1$, $\lim_{x\to x_0} f(a_n) \neq \lim_{x\to x_0} f(b_n)$, 矛盾. 因此 f(x) 处处

习题 2.1.6 指出下列函数的间断点,并说明其类型。

(1)
$$f(x) = \frac{x+1}{x-2}$$
; (2) $f(x) = \begin{cases} \frac{\sin x}{|x|}, & x \neq 0, \\ 1, & x = 0; \end{cases}$

(3)
$$f(x) = \lfloor |\cos x| \rfloor;$$
 (4) $f(x) = \frac{1}{1 + e^{1/x}};$

(5)
$$f(x) = \begin{cases} \frac{1}{x+7}, & -\infty < x < -7, \\ x, & -7 \le x \le 1, \\ (x-1)\sin\frac{1}{x-1}, & 1 < x < +\infty; \end{cases}$$

(6)
$$f(x) = \begin{cases} \frac{x^2 - 4}{x - 2}, & x \neq 2, \\ 4, & x = 2. \end{cases}$$

习题 2.1.7 试确定 a, 使得函数 $f(x) = \begin{cases} e^x, & x < 0, \\ a + x, & x \ge 0 \end{cases}$ 在 x = 0 处连续. $\begin{cases} a + x, & x \ge 0 \end{cases}$ 解 由 f(0) = a, $\lim_{x \to 0^-} f(x) = e^0 = 1$, $\lim_{x \to 0^+} f(x) = a + 0 = a$ 可知, 当 a = 1 时, $\lim_{x \to 0} f(x) = f(0) = 1$. The f(x) is a solution of the state of the state

习题 2.1.8 证明: 函数 $f(x) = \begin{cases} \frac{\mathrm{e}^{1/x} - \mathrm{e}^{-1/x}}{\mathrm{e}^{1/x} + \mathrm{e}^{-1/x}}, & x \neq 0, \\ 1, & x = 0 \end{cases}$, 在点 0 处右连续,但不左连续。 \mathbf{m} 因为 $\lim_{x \to 0^+} f(x) = \lim_{x \to 0^+} \frac{\mathrm{e}^{1/x} - \mathrm{e}^{-1/x}}{\mathrm{e}^{1/x} + \mathrm{e}^{-1/x}} = \lim_{x \to 0^+} \frac{1 - \mathrm{e}^{-2/x}}{1 + \mathrm{e}^{-2/x}} = 1 = f(0)$,故 f(x) 在点 0 处右连续。

解 因为
$$\lim_{x\to 0^+} f(x) = \lim_{x\to 0^+} \frac{\mathrm{e}^{1/x} - \mathrm{e}^{-1/x}}{\mathrm{e}^{1/x} + \mathrm{e}^{-1/x}} = \lim_{x\to 0^+} \frac{1 - \mathrm{e}^{-2/x}}{1 + \mathrm{e}^{-2/x}} = 1 = f(0)$$
,故 $f(x)$ 在点 0 处右连续。

又因为 $\lim_{x\to 0^-} f(x) = \lim_{x\to 0^-} \frac{e^{1/x} - e^{-1/x}}{e^{1/x} + e^{-1/x}} = \lim_{x\to 0^-} \frac{e^{2/x} - 1}{e^{2/x} + 1} = -1 \neq f(0)$, 故 f(x) 在点 0 处不左连 续.

习题 2.1.9 证明: 对每个实数 x, $\lim_{n\to\infty}\frac{1+x}{1+x^{2n}}$ 存在. 将该极限值记为 f(x), 试讨论函数 f(x) 的 连续性.

解

(a)
$$x < -1$$
 $\exists t$, $\lim_{x \to x_0} \frac{1+x}{1+x^{2n}} = \lim_{n \to \infty} \frac{x}{x^{2n}} = \lim_{n \to \infty} \frac{1}{x^{2n-1}} = 0;$

(b)
$$x = -1$$
 Ff, $\lim_{x \to x_0} \frac{1 + x^{2n}}{1 + x^{2n}} = \lim_{x \to -1} \frac{1 + x}{1 + 1} = 0;$

(c)
$$-1 < x < 1$$
 \$\overline{1}\$, $\lim_{x \to x_0} 1 + x^{2n} = 1 \Rightarrow \lim_{n \to \infty} \frac{1+x}{1+x^{2n}} = 1+x$;
(d) $x = 1$ \$\overline{1}\$, $\lim_{x \to x_0} \frac{1+x}{1+x^{2n}} = \lim_{x \to 1} \frac{1+x}{1+1} = 1$;

(d)
$$x = 1 \text{ pt}, \lim_{x \to x_0} \frac{1+x}{1+x^{2n}} = \lim_{x \to 1} \frac{1+x}{1+1} = 1;$$

(e)
$$x > 1$$
 $\exists t$, $\lim_{x \to x_0} \frac{1+x}{1+x^{2n}} = \lim_{n \to \infty} \frac{x}{x^{2n}} = \lim_{n \to \infty} \frac{1}{x^{2n-1}} = 0$.

(e) x > 1 时, $\lim_{x \to x_0} \frac{1+x^{-1}}{1+x^{2n}} = \lim_{n \to \infty} \frac{x}{x^{2n}} = \lim_{n \to \infty} \frac{1}{x^{2n-1}} = 0$. 因此, $\lim_{x \to -1^-} f(x) = 0 = f(-1)$, $\lim_{x \to -1^+} f(x) = 0 = f(-1)$, 故 f(x) 在 x = -1 处连续; $\lim_{x \to 1^-} f(x) = 2 \neq f(1)$, 故 f(x) 在 x = 1 处不连续; 对于其他点, f(x) 均连续. 综上所述, f(x) 在 $(-\infty, 1)$ \cup $(1,+\infty)$ 上连续, 在 x=1 处不连续.

习题 2.1.10 证明: 若函数 f(x) 在点 x_0 连续, 则存在一个正数 δ , 使得函数 f(x) 在区间 $(x_0 - x_0)$ $\delta, x_0 + \delta$) 上有界. (这一结果称为连续函数的局部有界性.)

解 因为 f(x) 在点 x_0 连续, 故 $\lim_{x\to x_0}f(x)=f(x_0)$, 即 $\forall \varepsilon>0$, $\exists \delta>0$, 当 $|x-x_0|<\delta$ 时, 有 $|f(x)-f(x_0)|$ < ε . 取 ε = 1, 则当 $|x-x_0|$ < δ 时,有 $|f(x)-f(x_0)|$ < 1, 即 -1 < $f(x) - f(x_0) < 1$, 故 $f(x_0) - 1 < f(x) < f(x_0) + 1$. 因此, 当 $x \in (x_0 - \delta, x_0 + \delta)$ 时, 有 $|f(x)| \leq \max\{|f(x_0)-1|,|f(x_0)+1|\},$ 即 f(x) 在区间 $(x_0-\delta,x_0+\delta)$ 上有界.

习题 2.1.11 证明: 若函数 f(x) 在点 x_0 连续, 且 $f(x_0) \neq 0$, 则存在一个正数 δ , 使得函数 f(x)在区间 $(x_0 - \delta, x_0 + \delta)$ 上与 $f(x_0)$ 同号. (这一结果称为连续函数的局部保号性) 进一步, 存在 某个正数 γ , 使得 f(x) 在这一区间中满足 $|f(x)| \ge \gamma$.

解因为 f(x) 在点 x_0 连续, 故 $\lim_{x\to \infty} f(x) = f(x_0)$, 即 $\forall \varepsilon > 0$, $\exists \delta > 0$, 当 $|x-x_0| < \delta$ 时, 有 $|f(x)-f(x_0)|<\varepsilon$. 取 $\varepsilon=\frac{|f(x_0)|}{2}$, 则当 $|x-x_0|<\delta$ 时,有 $|f(x)-f(x_0)|<\frac{|f(x_0)|}{2}$,
 即 $-\frac{|f(x_0)|}{2}$ $f(x_0)$ 其 $f(x_0)$ 其 $f(x_0)$ 其 $f(x_0)$ 其 $f(x_0)$ 其 $f(x_0)$ 其 为 $f(x_0)$ $f(x_0) \neq 0$, 故当 $x \in (x_0 - \delta, x_0 + \delta)$ 时, 有

$$|f(x)| \ge |f(x_0)| - \frac{|f(x_0)|}{2} = \frac{|f(x_0)|}{2} > 0.$$

因此, 当 $x \in (x_0 - \delta, x_0 + \delta)$ 时, 有 f(x) 与 $f(x_0)$ 同号. 进一步地, 取 $\gamma = \frac{|f(x_0)|}{2}$, 则当 $x \in (x_0 - \delta, x_0 + \delta)$ 时, $f(x) \ge \gamma$.

习题 2.1.12 证明: 若 $\lim_{x \to x_0} g(x) = a \neq g(x_0)$ (从而 x_0 为 g(x) 的可去间断点), f(u) 在 u = a 处连

续,则

$$\lim_{x \to x_0} f(g(x)) = f\left(\lim_{x \to x_0} g(x)\right) = f(a).$$

(这一结论对其他五种极限过程也成立.)

解 由于 $\lim_{u \to a} f(u) = f(a)$,故 $\forall \varepsilon > 0$, $\exists \delta_1 > 0$, 当 $|u - a| < \delta_1$ 时,有 $|f(u) - f(a)| < \varepsilon$.又因为 $\lim_{x \to x_0} g(x) = a$,故 $\forall \delta_1 > 0$, $\exists \delta_2 > 0$, 当 $|x - x_0| < \delta_2$ 时,有 $|g(x) - a| < \delta_1$.因此,当 $|x - x_0| < \delta_2$ 时,有 $|g(x) - a| < \delta_1$,即 $|f(g(x)) - f(a)| < \varepsilon$.综上所述, $\lim_{x \to x_0} f(g(x)) = f(a)$.

习题 2.1.13 证明: 若函数 u(x), v(x) 在 x_0 处连续, 且 $u(x_0) > 0$, 则函数 $u(x)^{v(x)}$ 也在点 x_0 处连续.

证明 利用 e^x 在 \mathbb{R} 上连续, $\ln x$ 在 $(0, +\infty)$ 上连续, 以及复合函数的极限可交换性, 有

$$\lim_{x \to x_0} u(x)^{v(x)} = \lim_{x \to x_0} e^{v(x) \ln u(x)} = e^{\lim_{x \to x_0} v(x) \ln u(x)} = e^{v(x_0) \ln u(x_0)} = u(x_0)^{v(x_0)}.$$

习题 2.1.14 设 f(x) 在 \mathbb{R} 上连续, 且对于任意 x 有 f(2x) = f(x). 求证 f(x) 是常数.

解 即证: $f(x) \equiv f(0)$. 对于任意点 $x_0 \in \mathbb{R}$, 考虑任意以 x_0 为极限的数列, $\{x_n\}$, 则 $\lim_{n \to \infty} f(x_n) = \lim_{n \to \infty} f\left(\frac{x_n}{2^n} \cdot 2^n\right) = \lim_{n \to \infty} f\left(\frac{x_n}{2^n}\right) = f(0)$, 因此 f(x) 在 x_0 处连续, 且 $f(x_0) = f(0)$. 由于 x_0 的任意性, 故 $f(x) \equiv f(0)$.

习题 2.1.15 设 f(x) 在 \mathbb{R} 上连续, 且对于任意 x, y 有 f(x+y) = f(x) + f(y). 求证 f(x) = cx, 其中 c 是常数.

解 由 f(0) = f(0+0) = f(0) + f(0) 可知, f(0) = 0. 又由 f(-x) + f(x) = f(0) = 0 可知, f(-x) = -f(x). 因此, f(nx) = nf(x) 对任意整数 n 成立. 又由 $f\left(\frac{m}{n}x\right) = \frac{1}{n}f(mx) = \frac{m}{n}f(x)$ 对任意有理数 $\frac{m}{n}$ 成立.

设 $x_0 \in \mathbb{R}$, 则存在有理数列 $\{r_n\}$ 使得 $\lim_{n\to\infty} r_n = x_0$. 因此, $\lim_{n\to\infty} f(r_n) = \lim_{n\to\infty} r_n f(1) = x_0 f(1)$. 由于 f(x) 在 x_0 处连续, 故 $f(x_0) = x_0 f(1)$. 由于 x_0 的任意性, 故 f(x) = cx, 其中 c = f(1).

习题 2.1.16 当 $x \to 0$ 时,用 $\sin x \sim x$, $\tan x \sim x$ 证明 $\arcsin x \sim x$, $\arctan x \sim x$;用 $\ln(1+x) \sim x$ 证明 $(e^x - 1) \sim x$.

(上述的等价无穷小,是微积分中非常基本的事实.)

解

(1)
$$f(x) = \frac{\sin x}{x}$$
, $\mathbb{N} \lim_{x \to 0} f(x) = 1$. $\mathbb{E} g(x) = \arcsin x$, $\mathbb{N} \lim_{x \to 0} g(x) = 0$. $\mathbb{E} \mathbb{E} \lim_{x \to 0} \frac{\arcsin x}{x} = \lim_{x \to 0} f(g(x)) = f\left(\lim_{x \to 0} g(x)\right) = f(0) = 1$, \mathbb{F} $\arcsin x \sim x$;

(2)
$$f(x) = \frac{\tan x}{x}$$
, $\mathbb{M} \lim_{x \to 0} f(x) = 1$. $\mathfrak{F}(x) = \arctan x$, $\mathbb{M} \lim_{x \to 0} g(x) = 0$. $\mathbb{E} \mathbb{E} \lim_{x \to 0} \frac{\arctan x}{x} = \lim_{x \to 0} f(g(x)) = f\left(\lim_{x \to 0} g(x)\right) = f(0) = 1$, $\mathbb{F}(x) = 0$ arctan $x \to x$;

(3)
$$f(x) = \frac{\ln(1+x)}{x}$$
, $\mathbb{M} \lim_{x \to 0} f(x) = 1$. $\mathcal{E} g(x) = e^x - 1$, $\mathbb{M} \lim_{x \to 0} g(x) = 0$. $\mathbb{E} \mathbb{H} \lim_{x \to 0} \frac{e^x - 1}{x} = 0$

$$\lim_{x \to 0} f(g(x)) = f\left(\lim_{x \to 0} g(x)\right) = f(0) = 1, \ \ \text{for } (e^x - 1) \sim x.$$

习题 2.1.17 求极限:

(1)
$$\lim_{x \to 0} \frac{\sqrt{1+x+x^2}-1}{\sin 2x};$$
 (2) $\lim_{x \to 0} \frac{\sqrt{1+x^2}-1}{1-\cos x};$

(3)
$$\lim_{x \to 0} \frac{(\sqrt[10]{1 + \tan x} - 1)(\sqrt{1 + x} - 1)}{2x \sin x};$$
 (4) $\lim_{x \to 0} \frac{x \cdot \arcsin(\sin x)}{1 - \cos x};$

(5)
$$\lim_{x \to 0} \frac{1 - \cos(1 - \cos x)}{x^4}$$
; (6) $\lim_{x \to -\infty} x(\sqrt{x^2 + 100} + x)$;

(7)
$$\lim_{x \to +\infty} (\sin \sqrt{x+1} - \sin \sqrt{x});$$
 (8)
$$\lim_{x \to \infty} \sqrt{2 - \frac{\sin x}{x}}.$$

解 下述过程省略了 \sim 中 $x \to 0, x \to -\infty, x \to +\infty$ 等极限过程的说明.

(1)
$$\sqrt{1+x+x^2} - 1 \sim \frac{1}{2}(x+x^2), \sin 2x \sim 2x, \, m$$

$$\lim_{x \to 0} \frac{\sqrt{1 + x + x^2} - 1}{\sin 2x} = \lim_{x \to 0} \frac{\frac{1}{2}(x + x^2)}{2x} = \frac{1}{4};$$

(2)
$$\sqrt{1+x^2} - 1 \sim \frac{1}{2}x^2, 1 - \cos x \sim \frac{1}{2}x^2, \, m = 1$$

$$\lim_{x \to 0} \frac{\sqrt{1+x^2} - 1}{1 - \cos x} = \lim_{x \to 0} \frac{\frac{1}{2}x^2}{\frac{1}{2}x^2} = 1;$$

(3)
$$\sqrt[10]{1 + \tan x} - 1 \sim \frac{1}{10} \tan x \sim \frac{1}{10} x, \sqrt{1 + x} - 1 \sim \frac{1}{2} x, 2x \sin x \sim 2x^2, \ \ \ \ \lim_{x \to 0} \frac{(\sqrt[10]{1 + \tan x} - 1)(\sqrt{1 + x} - 1)}{2x \sin x} = \lim_{x \to 0} \frac{\frac{1}{10} x \cdot \frac{1}{2} x}{2x^2} = \frac{1}{40};$$

(4)
$$x \cdot \arcsin(\sin x) \sim x^2, 1 - \cos x \sim \frac{1}{2}x^2$$
, 故

$$\lim_{x \to 0} \frac{x \cdot \arcsin(\sin x)}{1 - \cos x} = \lim_{x \to 0} \frac{x^2}{\frac{1}{2}x^2} = 2;$$

(5)
$$1 - \cos(1 - \cos x) \sim \frac{1}{2}(1 - \cos x)^2 \sim \frac{1}{2}\left(\frac{1}{2}x^2\right)^2 = \frac{1}{8}x^4$$
, the second second

$$\lim_{x \to 0} \frac{1 - \cos(1 - \cos x)}{x^4} = \lim_{x \to 0} \frac{\frac{1}{8}x^4}{x^4} = \frac{1}{8};$$

(6)
$$\lim_{x \to -\infty} x(\sqrt{x^2 + 100} + x) = \lim_{|x| \to +\infty} -|x|(\sqrt{x^2 + 100} - |x|) = \lim_{|x| \to +\infty} -|x|^2 \left(\sqrt{1 + \frac{100}{x^2}} - 1\right) = \lim_{|x| \to +\infty} -|x|^2 \cdot \frac{100}{2x^2} = -50;$$

$$(7) \left| \sin \sqrt{x+1} - \sin \sqrt{x} \right| = \left| 2 \cos \frac{\sqrt{x+1} + \sqrt{x}}{2} \sin \frac{\sqrt{x+1} - \sqrt{x}}{2} \right| \leqslant 2 \cdot 1 \cdot \left| \sin \frac{\sqrt{x+1} - \sqrt{x}}{2} \right| \leqslant 2 \cdot 1 \cdot \left| \frac{\sqrt{x+1} - \sqrt{x}}{2} \right| = \frac{1}{\sqrt{x+1} + \sqrt{x}}, \quad \exists \lim_{x \to +\infty} \frac{1}{\sqrt{x+1} + \sqrt{x}} = 0 \quad \forall x \in \mathbb{Z}, \quad \lim_{x \to +\infty} (\sin \sqrt{x+1} - \sin \sqrt{x}) = 0;$$

$$\sin \sqrt{x}) = 0;$$
(8) $\lim_{x \to \infty} \sqrt{2 - \frac{\sin x}{x}} = \sqrt{2 - \lim_{x \to \infty} \frac{\sin x}{x}} = \sqrt{2 - 0} = \sqrt{2}.$

习题 2.1.18 函数 $\sinh x = \frac{e^x - e^{-x}}{2}$ 与 $\cosh x = \frac{e^x + e^{-x}}{2}$ 分别称为双曲正弦与双曲余弦 (统称 为双曲函数), 它们均在定义域 $(-\infty, +\infty)$ 上连续. 证明以下各题. (可与三角函数的性质作比较.)

- (1) $\sinh(-x) = -\sinh x$, $\cosh(-x) = \cosh x$; (2) $\cosh^2 x \sinh^2 x = 1$;
- (3) $\sinh 2x = 2 \sinh x \cosh x$;

- (4) $\cosh 2x = \sinh^2 x + \cosh^2 x$:
- (5) $\sinh(x \pm y) = \sinh x \cosh y \pm \cosh x \sinh y$; (6) $\cosh(x \pm y) = \cosh x \cosh y \pm \sinh x \sinh y$.

解

(1)
$$\sinh(-x) = \frac{e^{-x} - e^x}{2} = -\sinh x$$
, $\cosh(-x) = \frac{e^{-x} + e^x}{2} = \cosh x$;

(2)
$$\cosh^2 x - \sinh^2 x = \left(\frac{e^x + e^{-x}}{2}\right)^2 - \left(\frac{e^x - e^{-x}}{2}\right)^2 = \frac{e^{2x} + 2 + e^{-2x}}{4} - \frac{e^{2x} - 2 + e^{-2x}}{4} = 1;$$

(3)
$$\sinh 2x = \frac{e^{2x} - e^{-2x}}{2} = \frac{(e^x)^2 - (e^{-x})^2}{2} = \frac{(e^x - e^{-x})(e^x + e^{-x})}{2} = 2\sinh x \cosh x;$$

(4)
$$\cosh 2x = \frac{e^{2x} + e^{-2x}}{2} = \frac{(e^x)^2 + (e^{-x})^2}{2} = \frac{(e^x - e^{-x})^2 + (e^x + e^{-x})^2}{4} = \sinh^2 x + \cosh^2 x;$$

$$(3) \sinh 2x = \frac{e^{2x} - e^{-2x}}{2} = \frac{(e^{x})^{2} - (e^{-x})^{2}}{2} = \frac{(e^{x} - e^{-x})(e^{x} + e^{-x})}{2} = 2 \sinh x \cosh x;$$

$$(4) \cosh 2x = \frac{e^{2x} + e^{-2x}}{2} = \frac{(e^{x})^{2} + (e^{-x})^{2}}{2} = \frac{(e^{x} - e^{-x})(e^{x} + e^{-x})}{2} = \sinh^{2}x + \cosh^{2}x;$$

$$(5) \sinh(x \pm y) = \frac{e^{x \pm y} - e^{-(x \pm y)}}{2} = \frac{e^{x}e^{\pm y} - e^{-x}e^{\pm y}}{2} = \frac{e^{x}e^{\pm y} - e^{-x}e^{\pm y} + e^{-x}e^{\pm y} - e^{-x}e^{\pm y}}{2} = \frac{(e^{x} - e^{-x})^{2} + (e^{x} + e^{-x})^{2}}{2} = \sinh^{2}x + \cosh^{2}x;$$

$$(5) \sinh(x \pm y) = \frac{e^{x \pm y} - e^{-(x \pm y)}}{2} + \left(\frac{e^{x} + e^{-x}}{2}\right)^{2} \left(\frac{e^{\pm y} - e^{\pm y}}{2}\right) = \sinh x \cosh y \pm \cosh x \sinh y;$$

(6)
$$\cosh(x \pm y) = \frac{e^{x \pm y} + e^{-(x \pm y)}}{2} = \frac{e^{x}e^{\pm y} + e^{-x}e^{\mp y}}{2} = \frac{e^{x}e^{\pm y} + e^{-x}e^{\pm y} - e^{-x}e^{\pm y} + e^{-x}e^{\mp y}}{2} = \frac{e^{x}e^{\pm y} + e^{-x}e^{\pm y} - e^{-x}e^{\pm y} + e^{-x}e^{\mp y}}{2} = \frac{e^{x}e^{\pm y} + e^{-x}e^{\pm y} - e^{-x}e^{\pm y} + e^{-x}e^{\mp y}}{2} = \frac{e^{x}e^{\pm y} + e^{-x}e^{\pm y} - e^{-x}e^{\pm y} + e^{-x}e^{\pm y}}{2} = \cosh x \cosh y \pm \sinh x \sinh y.$$

习题 2.2

习题 2.2.1 证明函数 $x \cdot 2^x - 1$ 在 [0,1] 内有零点.

解 设 $f(x) = x \cdot 2^x - 1$, 则 f(0) = -1 < 0, f(1) = 1 > 0. 又因 f(x) 在 [0,1] 上连续, 故由介值定理知, 存在 $x_0 \in (0,1)$, 使得 $f(x_0) = 0$.

习题 2.2.2 证明函数 $x - a \sin x - b$ (其中 a, b 为正数) 在 $(0, +\infty)$ 上有零点, 且零点不超过 a + b. 解 设 $f(x) = x - a \sin x - b$, 则 f(0) = -b < 0, $f(a+b) = a + b - a \sin(a+b) - b = a(1-\sin(a+b)) \ge 0$. 又因 f(x) 在 [0, a + b] 上连续, 故由介值定理知, 存在 $x_0 \in (0, a + b)$, 使得 $f(x_0) = 0$. 又因对任意 x > a + b 有 $f(x) = x - a \sin x - b > a + b - a \sin x - b \ge 0$, 故 f(x) 在 $(0, +\infty)$ 上的零点不超过 a + b.

习题 2.2.3 证明函数 $x - \sin(x+1)$ 有实零点.

解 设 $f(x) = x - \sin(x+1)$, 由 $-1 \le \sin(x+1) \le 1$ 知, 则 $f(-2) \le -2 + 1 = -1 < 0$, $f(2) \ge 2 - 1 = 1 > 0$. 又因 f(x) 在 [-2,2] 上连续, 故由介值定理知, 存在 $x_0 \in (-2,2)$, 使得 $f(x_0) = 0$. 习题 2.2.4 设函数 f(x) 在 [a,b] 上连续, 且值域就是 [a,b]. 证明 f(x) 在 [a,b] 上必有不动点, 即 有 $x_0 \in [a,b]$, 使得 $f(x_0) = x_0$.

解 函数 f(x) 的值域为 [a,b], 故存在 $x_1, x_2 \in [a,b]$, 使得 $f(x_1) = a$, $f(x_2) = b$. 设 g(x) = f(x) - x, 则 g(x) 在 [a,b] 上连续,且 $g(x_1) = a - x_1 \leq 0$, $g(x_2) = b - x_2 \geq 0$. 故由介值定理知,存在 $x_0 \in [a,b]$, 使得 $g(x_0) = 0$, 即 $f(x_0) = x_0$.

习题 2.2.5 设函数 f(x), g(x) 在区间 [a, b] 上连续, 且 f(a) > g(a), f(b) < g(b). 试证: 存在 $x_0 \in (a, b)$, 使得 $f(x_0) = g(x_0)$.

解 设 h(x) = f(x) - g(x), 则 h(x) 在 [a,b] 上连续, 且 h(a) = f(a) - g(a) > 0, h(b) = f(b) - g(b) < 0. 故由介值定理知, 存在 $x_0 \in (a,b)$, 使得 $h(x_0) = 0$, 即 $f(x_0) = g(x_0)$.

习题 2.2.6 设函数 f(x) 在 [0,2a] 上连续, 且 f(0)=f(2a). 证明: 在区间 [0,a] 上存在某个 x_0 , 使得 $f(x_0)=f(x_0+a)$.

解 设 g(x) = f(x) - f(x+a), 则 g(x) 在 [0,a] 上连续, 且 g(0) = f(0) - f(a), g(a) = f(a) - f(2a) = f(a) - f(0) = -g(0). 因此 $g(0)g(a) = -(g(0))^2 \le 0$. 由介值定理知, 存在 $x_0 \in [0,a]$, 使得 $g(x_0) = 0$, 即 $f(x_0) = f(x_0 + a)$.

习题 2.2.7 试证: 若函数 f(x) 在 [a,b] 上连续, x_1, x_2, \ldots, x_n 为此区间中的任意点, 则在 [a,b] 中有一点 ξ , 使得

$$f(\xi) = \frac{1}{n}(f(x_1) + f(x_2) + \dots + f(x_n)).$$

更一般地, 若 $q_1 > 0, q_2 > 0, \ldots, q_n > 0$, 且 $q_1 + q_2 + \cdots + q_n = 1$, 则在 [a, b] 中有一点 ξ , 使得 $f(\xi) = q_1 f(x_1) + q_2 f(x_2) + \dots + q_n f(x_n).$

解

- (1) 设 $A = \frac{1}{n}(f(x_1) + f(x_2) + \dots + f(x_n))$. 若 $f(x_i) = A$ 对某个 i 成立, 则取 $\xi = x_i$. 否 则, 设 $f(x_k) = \min\{f(x_1), f(x_2), \dots, f(x_n)\}, f(x_m) = \max\{f(x_1), f(x_2), \dots, f(x_n)\}.$ 则 $f(x_k) < A < f(x_m)$. 由介值定理知, 存在 $\xi \in (x_k, x_m)$, 使得 $f(\xi) = A$.
- (2) 设 $A = q_1 f(x_1) + q_2 f(x_2) + \cdots + q_n f(x_n)$. 若 $f(x_i) = A$ 对某个 i 成立, 则取 $\xi = x_i$. 否 则, 设 $f(x_k) = \min\{f(x_1), f(x_2), \dots, f(x_n)\}, f(x_m) = \max\{f(x_1), f(x_2), \dots, f(x_n)\}.$ 则 $f(x_k) < A < f(x_m)$. 由介值定理知, 存在 $\xi \in (x_k, x_m)$, 使得 $f(\xi) = A$.

习题 2.2.8 设函数 f(x) 在区间 $[a, +\infty)$ 上连续, 且 $\lim_{x\to +\infty} f(x)$ 存在. 证明 f(x) 在 $[a, +\infty)$ 上有 界.

解设 $\lim_{x\to +\infty} f(x) = A$, 则存在 M>0, 使得当 x>M 时, 有 |f(x)-A|<1, 即 |f(x)|<|A|+1. 又 因函数 f(x) 在区间 [a, M] 上连续, 故在该闭区间上有界, 即存在 K>0, 使得对任意 $x\in [a, M]$ 有 $|f(x)| \leq K$. 取 $N = \max\{K, |A| + 1\}$, 则对任意 $x \in [a, +\infty)$ 有 $|f(x)| \leq N$. 因此, 函数 f(x) $\mathbb{A}[a,+\infty)$ 上有界.

习题 2.2.9 证明函数 $f(x)=\frac{1+x^2}{1-x^2+x^4}$ 在 $(-\infty,+\infty)$ 上有界. 解 由习题 1.3.17 知, $\lim_{x\to+\infty}\frac{1+x^2}{1-x^2+x^4}=0$, 利用习题 2.2.8 知, 函数 f(x) 在 $[0,+\infty)$ 上有界. 又 因 f(x) 是偶函数, 故 f(x) 在 $(-\infty,0]$ 上也有界. 因此, 函数 f(x) 在 $(-\infty,+\infty)$ 上有界.

习题 2.2.10 是否有满足下面条件的连续函数? 说明理由.

- (1) 定义域为 [0,1], 值域为 $(0,+\infty)$;
- (2) 定义域为 [0,1], 值域为 (0,1);
- (3) 定义域为 [0,1], 值域为 [0,1] ∪ [2,4];
- (4) 定义域为 (0,1), 值域为 $(2,+\infty)$.

解

- (1) 不存在. 这与最值定理矛盾.
- (2) 不存在. 这与最值定理矛盾.
- (3) 不存在. 这与介值定理矛盾.
- (4) 存在. 例如, $f(x) = \frac{1}{x} + 2$.

习题 2.2.11 举例说明, 对任意正数 $\varepsilon<\frac{b-a}{2}$, 函数 f(x) 在闭区间 $[a+\varepsilon,b-\varepsilon]$ 上有界, 不能保 证 f(x) 在开区间 (a, b) 上有界. (比较习题 2.1 第 2 题.)

解例如,设
$$f(x)=rac{1}{x-a}+rac{1}{b-x}$$
,则对任意正数 $\varepsilon<rac{b-a}{2}$,函数 $f(x)$ 在闭区间 $[a+\varepsilon,b-\varepsilon]$

上有界, 但在开区间 (a, b) 上无界.

习题 2.2.12 设 y = f(x) 在开区间 I = (a, b) 上连续并严格单调. 证明 y = f(x) 的值域 f(I) 也是一个开区间.

解注不能假设 $\lim_{x\to a^+} f(x)$ 和 $\lim_{x\to b^-} f(x)$ 存在.f(I) 可能有无穷端点,例如 $f(x) = \tan x$ 在 $(-\frac{\pi}{2}, \frac{\pi}{2})$ 上连续且严格单调, 但值域是 $(-\infty, +\infty)$.

先证明 f(I) 存在两个不同的点: 取 $x_1, x_2 \in I$, 且 $x_1 < x_2$, 由严格单调性知, $f(x_1) < f(x_2)$, 故 f(I) 中至少有两个不同的点.注 如果去除单调的严格性, 则 f(I) 不一定是开区间, 例 如 f(x) = 1 在 (0,1) 上连续且单调, 但值域不是开区间.

 $\forall y_1, y_2 \in f(I)$, 且 $y_1 < y_2$. 则存在 $x_1, x_2 \in I$, 使得 $f(x_1) = y_1$, $f(x_2) = y_2$. 因为 f(x) 在 I 上 严格单调, 故 $x_1 < x_2$. 对任意 $y \in (y_1, y_2)$, 由介值定理知, 存在 $x \in (x_1, x_2) \subset I$, 使得 f(x) = y. 因此, f(I) 是区间.

下面证明 f(I) 是开区间. $\forall y \in f(I)$, 则存在 $x_0 \in I$, 使得 $f(x_0) = y$. 由 (a,b) 是开区间知, 存在 $\delta > 0$, 使得 $(x_0 - \delta, x_0 + \delta) \subset (a,b)$. 设 $\eta = \min\{f(x_0) - f(x_0 - \delta), f(x_0 + \delta) - f(x_0)\} > 0$, 则 对任意 $y' \in (y - \eta, y + \eta) \subset (f(x_0 - \delta), f(x_0 + \delta))$, 由介值定理知, 存在 $x' \in (x_0 - \delta, x_0 + \delta) \subset I$, 使得 f(x') = y'. 因此, f(I) 是开区间.

习题 2.2.13 设函数 f(x) 在有限区间 (a,b) 上一致连续. 求证 f(x) 在 a 点的右极限和在 b 点的 左极限都存在.

解 f(x) 在 (a,b) 上一致连续,则对任意 $\varepsilon > 0$,存在 $\delta > 0$,使得当 $x_1,x_2 \in (a,b)$ 且 $|x_1-x_2| < \delta$ 时,有 $|f(x_1)-f(x_2)| < \varepsilon$. 现取 $x_1,x_2 \in (a,a+\delta)$,则 $|x_1-x_2| < \delta$,故 $|f(x_1)-f(x_2)| < \varepsilon$. 因此,函数 f(x) 在 $(a,a+\delta)$ 上满足柯西收敛准则,故 $\lim_{x\to a^+} f(x)$ 存在. 同理可证 $\lim_{x\to b^-} f(x)$ 也存在. 习题 2.2.14 设函数 f(x) 在 $(0,+\infty)$ 上一致连续, $\{a_n\}$ 是正收敛数列. 求证 $\{f(a_n)\}$ 也收敛. 又问仅假设 f(x) 连续时,结论是否还成立,为什么?

解 由 f(x) 在 $(0, +\infty)$ 上一致连续,则对任意 $\varepsilon > 0$,存在 $\delta > 0$,使得当 $x_1, x_2 \in (0, +\infty)$ 且 $|x_1 - x_2| < \delta$ 时,有 $|f(x_1) - f(x_2)| < \varepsilon$. 又因 $\{a_n\}$ 是正收敛数列,故存在 $N \in \mathbb{N}^+$,使得当 n, m > N 时,有 $|a_n - a_m| < \delta$. 因此,对任意 n, m > N 有 $|f(a_n) - f(a_m)| < \varepsilon$. 由柯西收敛准则知,数列 $\{f(a_n)\}$ 收敛.

仅假设 f(x) 连续时, 结论不成立. 例如, 设 $f(x) = \sin \frac{1}{x}$ 在 $(0, +\infty)$ 上连续, 且数列 $a_n = \frac{1}{(n+\frac{1}{2})\pi}$ 收敛于 0, 但数列 $f(a_n) = \sin \left(\left(n+\frac{1}{2}\right)\pi\right) = (-1)^n$ 不收敛.

习题 2.2.15 设函数 f(x) 在 $(-\infty, +\infty)$ 上连续, $\{a_n\}$ 是收敛数列. 求证 $\{f(a_n)\}$ 也收敛.

解设 $\lim_{n\to\infty} a_n = a$, 则 $a\in (-\infty,+\infty)$. 由 f(x) 在 $(-\infty,+\infty)$ 上连续知, f(x) 在 a 点连续,即 $\lim_{x\to a} f(x) = f(a)$. 因此,对任意 $\varepsilon>0$,存在 $\delta>0$,使得当 $|x-a|<\delta$ 时,有 $|f(x)-f(a)|<\varepsilon$. 又 因数列 $\{a_n\}$ 收敛于 a,故存在 $N\in \mathbb{N}^+$,使得当 n>N 时,有 $|a_n-a|<\delta$. 因此,对任意 n>N

有 $|f(a_n) - f(a)| < \varepsilon$. 由数列的收敛定义知,数列 $\{f(a_n)\}$ 收敛于 f(a).

习题 2.2.16 给出一个在 $(-\infty, +\infty)$ 上连续且有界但不一致连续的函数.

解 例 如, $f(x) = \sin x^2$ 在 $(-\infty, +\infty)$ 上连续且有界, 但不一致连续. 反证法: 若 f(x) 在 $(-\infty, +\infty)$ 上一致连续, 则对任意 $\varepsilon = 1$, 存在 $\delta > 0$, 使得当 $x_1, x_2 \in (-\infty, +\infty)$ 且 $|x_1 - x_2| < \delta$ 时, 有 $|f(x_1) - f(x_2)| < 1$. 现取 $x_1 = \sqrt{2n\pi}, x_2 = \sqrt{2n\pi + \frac{\pi}{2}}$, 则当 $n > \left(\frac{2}{\delta}\right)^2$ 时, 有 $|x_1 - x_2| < \delta$, 但 $|f(x_1) - f(x_2)| = \left|\sin(2n\pi) - \sin\left(2n\pi + \frac{\pi}{2}\right)\right| = 1$, 矛盾.

第2章综合习题

习题 2.C.1 证明: 函数 $f(x) = \begin{cases} 0, & x \text{ 为有理数}, \\ & \text{仅在点 } x = 0 \text{ 处连续}. \end{cases}$

解设 $x_0 \in \mathbb{R}$,则对任意 $\varepsilon > 0$,存在有理数列 $\{r_n\}$ 与无理数列 $\{s_n\}$,使得 $\lim_{n \to \infty} r_n = x_0$, $\lim_{n \to \infty} s_n = x_0$ x_0 . 因此

$$\lim_{n \to \infty} f(r_n) = \lim_{n \to \infty} 0 = 0, \quad \lim_{n \to \infty} f(s_n) = \lim_{n \to \infty} s_n = x_0.$$

当 $x_0 \neq 0$ 时, $\lim_{n \to \infty} f(r_n) = 0$, $\lim_{n \to \infty} f(s_n) = x_0$, 故 $\lim_{x \to x_0} f(x)$ 不存在, 因此 f(x) 在 $x = x_0$ 处不连 续.

当 $x_0 = 0$ 时, 对任意 $\varepsilon > 0$, 取 $\delta = \varepsilon$, 则当 $|x - 0| < \delta$ 时, 有 $|f(x) - f(0)| = |f(x)| \leqslant |x| < \delta$ $\delta = \varepsilon$. 因此 $\lim_{x \to 0} f(x) = f(0) = 0$, 即 f(x) 在 x = 0 处连续.

习题 2.C.2 设 $x_1, x_2, \ldots, x_n \in [0, 1]$, 记 $f(x) = \frac{|x - x_1| + \cdots + |x - x_n|}{n}$, 证明: 存在 $x_0 \in [0, 1]$, 使得 $f(x_0) = \frac{1}{2}$.

解设 $g(x) = f(x) - \frac{1}{2}$, 则 g(x) 在 [0,1] 上连续, 且

$$f(0) + f(1) = \frac{|0 - x_1| + \dots + |0 - x_n|}{n} + \frac{|1 - x_1| + \dots + |1 - x_n|}{n}$$
$$= \frac{(x_1 + (1 - x_1)) + \dots + (x_n + (1 - x_n))}{n} = 1.$$

因此 g(0)+g(1)=f(0)+f(1)-1=0. 则 $g(0)g(1)=-(g(0))^2\leqslant 0$. 由介值定理知, 存在

 $x_0 \in [0,1]$, 使得 $g(x_0) = 0$, 即 $f(x_0) = \frac{1}{2}$. 习题 2.C.3 证明: 函数 $\frac{a_1}{x - \lambda_1} + \frac{a_2}{x - \lambda_2} + \frac{a_3}{x - \lambda_3}$ (其中 $a_1, a_2, a_3 > 0$, 且 $\lambda_1 < \lambda_2 < \lambda_3$) 在 (λ_1, λ_2) 与 (λ_2, λ_3) 内各有一个零

解 仅证明 (λ_1, λ_2) 内有一个零点, (λ_2, λ_3) 内的证明类似.

申
$$\frac{a_2}{x-\lambda_2}+\frac{a_3}{x-\lambda_3}$$
 在 $\left[\lambda_1,\frac{\lambda_1+\lambda_2}{2}\right]$ 上连续, 因此有界, 即存在 $M_1>0$, 使得对任意 $x\in\left[\lambda_1,\frac{\lambda_1+\lambda_2}{2}\right]$ 有 $\left|\frac{a_2}{x-\lambda_2}+\frac{a_3}{x-\lambda_3}\right|\leqslant M$.

又由 $\lim_{x\to\lambda_1^+}\frac{a_1}{x-\lambda_1}=+\infty$,因此存在 $\delta_1\in\left(0,\frac{\lambda_2-\lambda_1}{2}\right)$,使得对任意 $x\in(\lambda_1,\lambda_1+\delta_1)$ 有 $\frac{a_1}{x-\lambda_1} > M_1$. 因此, 存在 $x_1 \in (\lambda_1, \lambda_1 + \delta_1) \subset (\lambda_1, \frac{\lambda_1 + \lambda_2}{2})$, 使得

$$\frac{a_1}{x_1 - \lambda_1} + \frac{a_2}{x_1 - \lambda_2} + \frac{a_3}{x_1 - \lambda_3} = \frac{a_1}{x_1 - \lambda_1} + \left(\frac{a_2}{x_1 - \lambda_2} + \frac{a_3}{x_1 - \lambda_3}\right) > M_1 - M_1 = 0.$$
由 $\frac{a_1}{x - \lambda_1} + \frac{a_3}{x - \lambda_2}$ 在 $\left[\frac{\lambda_1 + \lambda_2}{2}, \lambda_2\right]$ 上连续,因此有界,即存在 $M_2 > 0$,使得对任意 $x \in \mathbb{R}$

$$\left[\frac{\lambda_1 + \lambda_2}{2}, \lambda_2\right] \not \left[\frac{a_1}{x - \lambda_1} + \frac{a_3}{x - \lambda_3}\right] \leqslant M_2.$$

又由 $\lim_{x \to \lambda_2^-} \frac{a_2}{x - \lambda_2} = -\infty$, 因此存在 $\delta_2 \in \left(0, \frac{\lambda_2 - \lambda_1}{2}\right)$, 使得对任意 $x \in (\lambda_2 - \delta_2, \lambda_2)$ 有 $\frac{a_2}{x - \lambda_2} < -M_2$. 因此, 存在 $x_2 \in (\lambda_2 - \delta_2, \lambda_2) \subset \left(\frac{\lambda_1 + \lambda_2}{2}, \lambda_2\right)$, 使得

$$\frac{a_1}{x_2 - \lambda_1} + \frac{a_2}{x_2 - \lambda_2} + \frac{a_3}{x_2 - \lambda_3} = \left(\frac{a_1}{x_2 - \lambda_1} + \frac{a_3}{x_2 - \lambda_3}\right) + \frac{a_2}{x_2 - \lambda_2} < M_2 - M_2 = 0.$$

综上, 存在 $x_1, x_2 \in (\lambda_1, \lambda_2)$, 使得对于函数 $f(x) = \frac{a_1}{x - \lambda_1} + \frac{a_2}{x - \lambda_2} + \frac{a_3}{x - \lambda_3}$ 有 $f(x_1) > 0$, $f(x_2) < 0$. 由介值定理知, 存在 $x_0 \in (x_1, x_2) \subset (\lambda_1, \lambda_2)$, 使得 $f(x_0) = 0$.

同时由于 $\frac{a_1}{x-\lambda_1}$, $\frac{a_2}{x-\lambda_2}$, $\frac{a_3}{x-\lambda_3}$ 在 (λ_1,λ_2) 上单调递减, 因此 f(x) 在 (λ_1,λ_2) 上单调递减. 因此, 零点 x_0 唯一.

习题 2.C.4 设 f(x) 是一个多项式,则必存在一点 x_0 , 使得 $|f(x_0)| \leq |f(x)|$ 对任意实数 x 成立.

解 设 $f(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$, 其中 $a_n \neq 0, n \geq 1$. 则

$$|f(x)| = |x|^n \left| a_n + \frac{a_{n-1}}{x} + \dots + \frac{a_1}{x^{n-1}} + \frac{a_0}{x^n} \right|.$$

因为 $\lim_{x \to \infty} \left(a_n + \frac{a_{n-1}}{x} + \dots + \frac{a_1}{x^{n-1}} + \frac{a_0}{x^n} \right) = a_n$, 因此存在 M > 0, 使得当 |x| > M 时, 有 $\left| a_n + \frac{a_{n-1}}{x} + \dots + \frac{a_1}{x^{n-1}} + \frac{a_0}{x^n} \right| > \frac{|a_n|}{2}.$

由 $\lim_{x\to\infty} \frac{|a_n|}{2} |x|^n = +\infty$, 因此 $\exists X > M$, 使得当 |x| > X 时, 有 $\frac{|a_n|}{2} |x|^n > |f(0)|$. 而由 |f(x)| 在 [-X,X] 上连续, 故由最值性知, 存在 $x_0 \in [-X,X]$, 使得 $|f(x_0)| = \inf\{f(x) : x \in [-X,X]\}$. 特别的, 对任意 $x \in [-X,X]$ 有 $|f(x_0)| \leq |f(0)|$. 因此对于 |x| > X 时, 有 $|f(x)| > \frac{|a_n|}{2} |x|^n \geq |f(x_0)|$. 综上, 对任意 $x \in \mathbb{R}$ 有 $|f(x_0)| \leq |f(x)|$.

习题 2.C.5 设 f(x) 在区间 [0,1] 上连续,且 f(0) = f(1). 证明: 对任意正整数 n,在区间 $\left[0,1-\frac{1}{n}\right]$ 中有一点 ξ ,使得 $f(\xi)=f\left(\xi+\frac{1}{n}\right)$.

解设
$$g(x) = f(x) - f\left(x + \frac{1}{n}\right)$$
, 则 $g(x)$ 在 $\left[0, 1 - \frac{1}{n}\right]$ 上连续, 且
$$g(0) = f(0) - f\left(\frac{1}{n}\right),$$

$$g\left(\frac{1}{n}\right) = f\left(\frac{1}{n}\right) - f\left(\frac{2}{n}\right),$$

. . .

$$g\left(\frac{n-1}{n}\right)=f\left(\frac{n-1}{n}\right)-f(1)=f\left(\frac{n-1}{n}\right)-f(0).$$
 因此 $\frac{1}{n}\left(g(0)+g\left(\frac{1}{n}\right)+\dots+g\left(\frac{n-1}{n}\right)\right)=0.$ 则 $g(0),g\left(\frac{1}{n}\right),\dots,g\left(\frac{n-1}{n}\right)$ 中至少有一

个非正, 另一个非负. 由介值定理知, 存在 $\xi \in \left[0, 1 - \frac{1}{n}\right]$, 使得 $g(\xi) = 0$, 即 $f(\xi) = f\left(\xi + \frac{1}{n}\right)$. 习题 2.C.6 证明: 存在一个实数 x, 满足 $x^5 + \frac{\cos x}{1 + x^2 + \sin^2 x} = 72$.

$$f(3) = 3^5 + \frac{\cos 3}{1 + 3^2 + \sin^2 3} \ge 243 - \frac{1}{1 + 3^2 - 1} > 0,$$

$$f(-3) = (-3)^5 + \frac{\cos(-3)}{1 + (-3)^2 + \sin^2(-3)} \le -243 + \frac{1}{1 + (-3)^2 - 1} < 0.$$

由介值定理知, 存在 $x \in [-3, 3]$, 使得 f(x) = 72.

习题 2.C.7 若 f(x) 在 $[a, +\infty)$ 上连续, 且 $\lim_{x \to +\infty} f(x)$ 存在, 则 f(x) 在 $[a, +\infty)$ 上或者有最大值, 或者有最小值.

解记

$$S = \sup\{f(x) : x \in [a, +\infty)\}, \ I = \inf\{f(x) : x \in [a, +\infty)\}, \ L = \lim_{x \to +\infty} f(x).$$

(1) 若 S > L, 取 $\varepsilon = \frac{S - L}{2} > 0$, 则存在 X > a, 使得对任意 x > X 有 $|f(x) - L| < \varepsilon$, 即 $L - \varepsilon < f(x) < L + \varepsilon$. 因此, 对任意 x > X 有 $f(x) < L + \varepsilon = \frac{S + L}{2} < S$. 因此

$$\sup\{f(x): x \in [a, X]\} = S,$$

由闭区间上连续函数的最值性, 知存在 $x_0 \in [a, X]$, 使得 $f(x_0) = S$.

(2) 若 I < L, 取 $\varepsilon = \frac{L-I}{2} > 0$, 则存在 X > a, 使得对任意 x > X 有 $|f(x) - L| < \varepsilon$, 即 $L - \varepsilon < f(x) < L + \varepsilon$. 因此, 对任意 x > X 有 $f(x) > L - \varepsilon = \frac{I+L}{2} > I$. 因此

$$\inf\{f(x): x \in [a, X]\} = I,$$

由闭区间上连续函数的最值性, 知存在 $x_0 \in [a, X]$, 使得 $f(x_0) = I$.

(3) 若 S = L = I, 则 $f(x) \equiv L$, 即任取 $x_0 \in [a, +\infty)$, 均有 $f(x_0) = L$ 同时为最大值和最小值.

注 一个只有极限没有最大值或最小值的例子是 $f(x) = \arctan x, x \in [0, +\infty)$.

习题 2.C.8 设函数 f(x) 定义在区间 [a,b] 上,满足条件: $a \le f(x) \le b$ (对任意 $x \in [a,b]$),且对 [a,b] 中任意的 x,y 有 $|f(x)-f(y)| \le k|x-y|$.这里 k 是常数, 0 < k < 1.证明:

- (1) 存在唯一的 $x_0 \in [a, b]$, 使得 $f(x_0) = x_0$.
- (2) 任取 $x_1 \in [a, b]$, 并定义数列 $\{x_n\} : x_{n+1} = f(x_n), n = 1, 2, ...,$ 则 $\lim_{n \to \infty} x_n = x_0$.
- (3) 给出一个在实轴上的连续函数, 使得对任意 $x \neq y$ 有 |f(x) f(y)| < |x y|, 但方程 f(x) x = 0 无解.

解

(1) 先证明 f(x) 在 [a,b] 上连续: 设 $x_0 \in [a,b]$, 对任意 $\varepsilon > 0$, 取 $\delta = \frac{\varepsilon}{k} > 0$, 则对任意 $x \in [a,b]$

且 $|x-x_0|<\delta$,有

$$|f(x) - f(x_0)| \le k|x - x_0| < k\delta = \varepsilon.$$

设 g(x) = f(x) - x, 则 g(x) 在 [a,b] 上连续, 且 $g(a) = f(a) - a \geqslant 0$, $g(b) = f(b) - b \leqslant 0$. 故由介值定理知, 存在 $x_0 \in [a,b]$, 使得 $g(x_0) = 0$, 即 $f(x_0) = x_0$. 又因对任意 $x,y \in [a,b]$ 有

$$|g(x) - g(y)| = |f(x) - f(y) - (x - y)| \ge ||x - y| - |f(x) - f(y)|| \ge (1 - k)|x - y|,$$
故若存在 $x_1 \ne x_0$ 使得 $f(x_1) = x_1$, 则

$$(1-k)|x_1-x_0| \leq |g(x_1)-g(x_0)| = |f(x_1)-f(x_0)-(x_1-x_0)| = 0,$$

即 $x_1 = x_0$. 因此 x_0 唯一.

- (2) (a) 若 $x_2 = x_1$, 则由 $f(x_1) = x_1$ 以及 (1) 中所述的唯一性, 知 $x_2 = x_1 = x_0$, 则 $x_3 = f(x_2) = f(x_0) = x_0$, 依此类推, 有 $x_n = x_0$ 对任意 $n \ge 1$ 成立. 因此 $\lim_{n \to \infty} x_n = x_0$.

$$|x_{n+1} - x_n| = |f(x_n) - f(x_{n-1})| \le k|x_n - x_{n-1}| \le \dots \le k^{n-1}|x_2 - x_1|.$$

因此, 对任意 $m > n \ge 1$ 有

$$|x_m - x_n| \leqslant \frac{k^{n-1}}{1 - k} |x_2 - x_1| < \varepsilon.$$

故数列 $\{x_n\}$ 为 Cauchy 列, 故存在 $\lim_{n\to\infty}x_n:=a$ 存在. 又因 f(x) 在 [a,b] 上连续, 对 递推式两侧取极限, 有

$$a = \lim_{n \to \infty} x_{n+1} = \lim_{n \to \infty} f(x_n) = f\left(\lim_{n \to \infty} x_n\right) = f(a).$$

由 (1) 中所述的唯一性, 知 $a=x_0$. 因此 $\lim_{n\to\infty} x_n=x_0$.

(3) 一个不太严谨的思考过程: 我想要构造一个满足 |f(x)-f(y)|<|x-y| 的函数, 我考虑了 |f'(x)|<1 的趋势为增的函数, 同时 f(x)-x 无解要求了 f(x) 应该是贴在 y=x 的 (不妨设为) 上方的, 于是我考虑了 f(x)=x+g(x), 其中 (也假设 g(x) 可导), 如果 -1<-g'(x)<0, 那就能保证 f(x) 的导数满足要求.(当然上述思路中, 对 g(x) 的选取过

程都只是必要的)

$$f(x) = x + \frac{1}{1 + e^x}.$$

(a) 满足 |f(x)-f(y)|<|x-y|: 设 x>y, 则

$$|f(x) - f(y)| = f(x) - f(y) = (x - y) + \frac{1}{1 + e^x} - \frac{1}{1 + e^y}$$
$$= (x - y) - \frac{e^x - e^y}{(1 + e^x)(1 + e^y)}$$
$$< x - y = |x - y|.$$

习题 2.C.9 证明: 对任意正整数 n, 方程 $x^n + x^{n-1} + \cdots + x = 1$ 恰有一个正根 x_n ; 进一步证明数列 $\{x_n\}$ $(n \ge 1)$ 收敛, 并求其极限.

解 设 $f(x) = x^n + x^{n-1} + \dots + x - 1$, 则 f(x) 在 (0,1) 上连续, 且 f(0) = -1 < 0, f(1) = n > 0. 故由介值定理知, 存在 $x_n \in (0,1)$, 使得 $f(x_n) = 0$. 若 $y_n \in (0,1)$ 且 $y_n \neq x_n$, 则由

$$x^{n} - y^{n} = (x - y)(x^{n-1} + x^{n-2}y + \dots + y^{n-1})$$

$$x^{n-1} - y^{n-1} = (x - y)(x^{n-2} + x^{n-3}y + \dots + y^{n-2})$$

$$\vdots$$

$$x - y = (x - y)$$

可知

$$0 = f(x_n) - f(y_n)$$

$$= (x_n - y_n)(x_n^{n-1} + x_n^{n-2}y_n + \dots + y_n^{n-1} + x_n^{n-2} + x_n^{n-3}y_n + \dots + y_n^{n-2} + \dots + 1)$$

$$= (x_n - y_n) \left(\sum_{i=0}^{n-1} \sum_{j=0}^{i} x_n^j y_n^{i-j} \right).$$

因为 $x_n, y_n \in (0,1)$, 故 $\sum_{i=0}^{n-1} \sum_{j=0}^{i} x_n^j y_n^{i-j} > 0$, 因此 $x_n - y_n = 0$, 即 $x_n = y_n$. 因此 x_n 唯一.

下证明数列 $\{x_n\}$ 单调递减: 若 $x_{n+1} \ge x_n$, 由 $x_n > 0$

$$1 = x_{n+1}^{n+1} + x_{n+1}^n + \dots + x_{n+1} \geqslant x_n^{n+1} + x_n^n + \dots + x_n > x_n^n + x_n^{n-1} + \dots + x_n = 1,$$

故矛盾, 因此 $x_{n+1} < x_n$. 单调减有 0 为下界, 故数列 $\{x_n\}$ 收敛, 考虑

$$1 - x_n^n = (1 - x_n)(1 + x_n + x_n^2 + \dots + x_n^{n-1}) = 1 - x_n,$$

在两边同时取极限之前, 我们还得先考虑 $\lim_{n\to\infty}x_n^n$. 由于 $1=x_2+x_2^2\geqslant x_2\cdot x_2+x_2^2=2x_2^2\Rightarrow x_2\leqslant x_2$

 $\frac{1}{\sqrt{2}} < 1$, 对 $x_n^n < x_2^n$, 由夹逼定理知 $\lim_{n \to \infty} x_n^n = 0$. 因此, 对数列 $\{x_n\}$ 取极限, 有 $1 = \lim_{n \to \infty} 1 - x_n^n = \lim_{n \to \infty} 1 - x_n \Rightarrow \lim_{n \to \infty} x_n = 1$.

习题 2.C.10 设 a < b, f(x) 在 [a, b] 上连续, 且对任意 $x \in [a, b)$ 存在 $y \in (x, b)$ 使得 f(y) > f(x). 求证: f(b) > f(a).

解 考虑 f(x) 在 [a,b] 上的最大值 $M = \max\{f(x): x \in [a,b]\}$, 由闭区间上连续函数的最值性, 知存在 $x_0 \in [a,b]$, 使得 $f(x_0) = M$. 若 $x_0 \neq b$, 则由题设条件, 存在 $y \in (x_0,b)$, 使得 $f(y) > f(x_0) = M$, 矛盾. 因此 $x_0 = b$, 即 f(b) = M. 又因 $f(a) \leq M$, 若 f(b) = f(a), 则 $f(x) \equiv f(a)$, 与题设条件矛盾. 因此 f(b) > f(a).

第3章 单变量函数的微分学

(2) $f(x) = \begin{cases} x+1, & x \ge 0, \\ 1, & x < 0; \end{cases}$

习题 3.1

习题 3.1.1 讨论下列函数在点 x = 0 处是否可导:

$$(1) f(x) = |\sin x|;$$

(3)
$$f(x) = \begin{cases} x^2 \sin \frac{1}{x}, & x \neq 0, \\ 0, & x = 0; \end{cases}$$
 (4) $f(x) = \begin{cases} \ln(1+x), & x \geqslant 0, \\ x+1, & x < 0; \end{cases}$

(5)
$$f(x) = |x|e^x$$
; (6) $f(x) = |x^3|$.

习题 3.1.2 求 a, b 的值, 使下列函数处处可导:

(1)
$$f(x) = \begin{cases} x^2, & x \le 1, \\ ax + b, & x > 1; \end{cases}$$
 (2) $f(x) = \begin{cases} \ln(1+x), & x < 0, \\ ax + b, & x \ge 0. \end{cases}$

习题 3.1.3 设函数 q(x) 在 x = a 处连续, 记 f(x) = (x - a)q(x). 证明 f'(a) = q(a).

习题 3.1.4 若函数 f(x) 在 x_0 处可导, 证明

$$\lim_{h\to 0} \frac{f(x_0 + \alpha h) - f(x_0 - \beta h)}{h} = (\alpha + \beta)f'(x_0) \quad (\alpha, \beta 为常数).$$

习题 3.1.5 设函数 f(x) 在 x = a 处可导, 且 $f(a) \neq 0$, 证明函数 |f(x)| 在 x = a 也可导. 若 f(a) = 0, 结论是否仍成立?

习题 3.1.6 求下列函数的导数.

(1)
$$y = \frac{x}{3x^2 + 5x - 2}$$
; (2) $y = \sin x \tan x + \cot x$;
(3) $y = x^2 \log_3 x$; (4) $y = \frac{x}{1 - \cos x}$; $(1 + x^2) \ln x$

(5)
$$y = \frac{1 + \ln x}{x^2 + 1}$$
; (6) $y = \frac{(1 + x^2) \ln x}{\sin x + \cos x}$;

(7)
$$y = (x^2 + 1)(3x - 1)(1 - x^3);$$
 (8) $y = x^3 \cdot \tan x \cdot \ln x.$

习题 3.1.7 求下列函数的导数:

(1)
$$y = x\sqrt{1-x^2}$$
;

(2)
$$y = \sqrt{1 + \ln^2 x}$$
;

(3)
$$y = \arccos \frac{2x-1}{\sqrt{3}};$$

$$(4) y = (\sin x + \cos x)^3;$$

(5)
$$y = (\sin x^3)^3$$
;

(6)
$$y = \sqrt{x + \sqrt{x + \sqrt{x}}};$$

(7)
$$y = \sin[\sin(\sin x)];$$

(8)
$$y = \sin[\cos^5(\arctan x^3)];$$

(9)
$$y = \left(\frac{x^2 - 1}{x^2 + 1}\right)^3$$
;

$$(10)y = x\sqrt{1+x^2}\sin x;$$

$$(11)y = e^{\sqrt{x^2 + 1}};$$

$$(12)y = \ln[\ln^2(\ln^3 x)];$$

$$(13)y = x^{x^x} + x^x + x^{2^x};$$

$$(14)y = (\ln x)^x;$$

$$(15)y = (\tan x)^{\cot x};$$

$$(16)y = 10^x$$
, $(\sin x)^{\cos x}$;

$$(17)y = \frac{(x+5)^2(x-4)^{1/3}}{(x+2)^3(x+4)^{1/2}};$$

$$(18)y = \frac{1 - \sqrt{x}}{1 + \sqrt{x}} \sqrt{\frac{1 + x}{1 + x^2}}.$$

习题 3.1.8 设 $f(x) = x^3$. 求 $f'(x^2)$ 与 $[f(x^2)]'$.

习题 3.1.9 设 $f(x) = \ln(x + \sqrt{1 + x^2}), g(x) = e^{\sqrt{x^2 + 1}}$. 求 f'[g(x)], [f(g(x))]'.

习题 3.1.10 设 f(x) 处处可导. 求 $\frac{dy}{dx}$:

(1)
$$y = f(x^3);$$

(2)
$$y = f(\sin^2 x) + f(\cos^2 x);$$

(3)
$$y = f(e^x + x^e);$$

$$(4) y = \sin[f(\sin f(x))];$$

(5)
$$y = f[f(f(x + \cos x))];$$

(6)
$$y = f(e^x)e^{f(x)}$$
.

习题 3.1.11 求下列函数的导数:

(1)
$$y = \begin{cases} xe^{1/x}, & x \neq 0, \\ 0, & x = 0; \end{cases}$$

(2)
$$y = |1 - 2x| \sin x$$
.

习题 3.1.12 设 n 为正整数,考虑函数 $f(x) = \begin{cases} x^n \sin \frac{1}{x}, & x \neq 0, \\ 0, & x = 0. \end{cases}$ 证明:

- (1) 当 n = 1 时, f(x) 在点 x = 0 处不可导;
- (2) 当 n = 2 时, f(x) 在点 x = 0 处可导, 但导函数在 x = 0 处不连续 (事实上, 在这一点有第二类间断);
- (3) 当 $n \ge 3$ 时, f(x) 在点 x = 0 处可导, 且导函数在 x = 0 处连续.

习题 3.1.13 证明: 函数 $f(x)=\begin{cases} x^2\sin\frac{1}{x^2}, & x\neq 0, \\ 0, & x=0 \end{cases}$ 在区间 [-1,1] 上处处可导,但导函数在这

个区间上无界.

习题 3.1.14 求下列函数的反函数的微商.

$$(1) \ y = xe^x;$$

(2)
$$y = \arctan \frac{1}{x}$$
;

(3)
$$y = 2x^3 - e^{-2x}$$
;

(4)
$$y = \ln(e^x + \sqrt{1 + e^{2x}}).$$

习题 3.1.15 证明: 可导的偶函数的导数为奇函数; 而可导的奇函数的导数为偶函数.

习题 3.1.16 证明: 可导的周期函数的导数仍是周期函数.

习题 3.1.17 求下列各式之和:

(1)
$$P_n = 1 + 2x + 3x^2 + \dots + nx^{n-1}$$
;

(2)
$$Q_n = 1^2 + 2^2x + 3^2x^2 + \dots + n^2x^{n-1}$$
;

(3)
$$R_n = \cos x + 2\cos 2x + \dots + n\cos nx.$$

习题 3.1.18 求下列函数的二阶导数:

(1)
$$y = e^{-x^2}$$
;

(2)
$$y = x^2 2^{2x}$$
;

(3)
$$y = (1 + x^2) \arctan x;$$

(4)
$$y = \begin{cases} x^2, & x \ge 0, \\ -x^2, & x < 0. \end{cases}$$

习题 3.1.19 设函数 f(x) 处处有三阶导数, 求 y'', y'''.

(1)
$$y = f(x^2);$$

(2)
$$y = f(e^x + x)$$
.

习题 3.1.20 设 $f(x) = x^n |x|$ (n 为正整数), 证明 $f^{(n)}(0)$ 存在, 但 $f^{(n+1)}(0)$ 不存在.

习题 3.1.21 证明: 如果 x_0 是多项式 $P_n(x)$ 的 r 重根, 即 $P_n(x)$ 可以分解成

$$P_n(x) = (x - x_0)^r Q_{n-r}(x),$$

其中 $Q_{n-r}(x)$ 是一个 n-r 次多项式, 且 $Q_{n-r}(x_0) \neq 0$. 则 $P_n(x)$ 满足条件

$$P_n(x_0) = 0$$
, $P'_n(x_0) = 0$, ..., $P_n^{(r-1)}(x_0) = 0$, $P_n^{(r)}(x_0) \neq 0$.

习题 3.1.22 求下列函数的高阶导数:

(1)
$$(x^2 e^x)^{(n)}$$
;

(2)
$$[(x^2+1)\sin x]^{(n)}$$
;

(3)
$$\left(\frac{1}{x^2 - 3x + 2}\right)^{(n)}$$
;

$$(4) (\sin x \cdot \cos x)^{(n)}.$$

- **习题 3.1.23** 求曲线 $y = \cos x$ 在 $x = \frac{\pi}{4}$ 处的切线方程.
- **习题 3.1.24** 证明: 双曲线 xy = 1 上任一点处的切线, 与两坐标轴构成的三角形的面积为定值.
- **习题 3.1.25** 有一底半径为 r cm, 高为 h cm 的正圆锥形容器, 现以 a cm $^3/s$ 的速度自顶部向其内注水, 求水面上升的速度.
- 习题 3.1.26 水自高为 18 cm, 底半径为 6 cm 的圆锥形漏斗流入直径为 10 cm 的圆柱形筒中. 已知水在漏斗中深度为 12 cm 时水平面下降的速率为 1 cm/min. 试求圆柱形筒中水面上升的速度.

习题 3.2

习题 3.2.1 设 $y = x^2 + x$, 计算在 x = 1 处, 当 $\Delta x = 10, 1, 0.1, 0.01$ 时, 相应的函数的改变量 Δy 和函数的微分 $\mathrm{d} y$, 并观察差 $\Delta y - \mathrm{d} y$ 随 Δx 减小的变化情况.

习题 3.2.2 求下列函数的微分:

(1)
$$y = \ln(\frac{\pi}{2} - \frac{x}{4});$$

$$(2) \ y = \sin x - x \cos x;$$

(3)
$$y = \arccos \frac{1}{|x|};$$

$$(4) \ \ y = \ln \left| \frac{x-1}{x+1} \right|;$$

(5)
$$y = 5\sqrt[3]{\arctan x^2}$$
;

(6)
$$y = \tan^2(1 + 2x^2);$$

(7)
$$y = e^{-x}\cos(3-x);$$

(8)
$$y = \frac{x}{\sqrt{x^2 + 1}}$$
.

习题 3.2.3 对下列函数, 求 $\frac{\mathrm{d}y}{\mathrm{d}x}$ 及 $\frac{\mathrm{d}^2y}{\mathrm{d}x^2}$.

(1)
$$\begin{cases} x = \ln(1+t^2), \\ y = t - \arctan t; \end{cases}$$

(2)
$$\begin{cases} x = t - \sin t, \\ y = 1 - \cos t; \end{cases}$$

(3)
$$\begin{cases} x = \varphi \cos \varphi, \\ y = \varphi \sin \varphi; \end{cases}$$

(4)
$$\begin{cases} x = \cos^3 \varphi, \\ y = \sin^3 \varphi. \end{cases}$$

习题 3.2.4 求下列曲线在已知点处的切线方程.

(1)
$$\begin{cases} x = \cos t, \\ y = \sin t \end{cases}$$
 在 $t = \frac{\pi}{4}$ 处;

习题 3.3

习题 3.3.1 设 f(x) = (x-1)(x-2)(x-3)(x-4), 确定方程 f'(x) = 0 的实根的个数, 并指出根所在的区间.

习题 3.3.2 设函数 f(x) 在区间 [1,2] 上有二阶微商, 且 f(1) = f(2) = 0. 记 $F(x) = (x-1)^2 f(x)$, 则在区间 (1,2) 内至少有一点 ξ , 使得 $F''(\xi) = 0$.

习题 3.3.3 举例说明, 中值定理的下述意义的逆不成立: 设 $\xi \in (a,b)$ 是指定的一点, 则存在 $c,d \in [a,b]$, 使得 $\frac{f(c)-f(d)}{c-d}=f'(\xi)$. (提示: 考虑函数 $f(x)=x^3,\xi=0$.)

习题 3.3.4 证明下列不等式:

(1)
$$\stackrel{\text{def}}{=} a > b > 0, n > 1$$
 H , $\stackrel{\text{def}}{=} nb^{n-1}(a-b) < a^n - b^n < na^{n-1}(a-b)$;

(3)
$$\stackrel{\text{def}}{=} 0 < a < b$$
 $\stackrel{\text{def}}{=} (a + b) \ln \frac{a + b}{2} < a \ln a + b \ln b$.

(4)
$$\leq 0 < \alpha < \beta < \frac{\pi}{2}$$
 $\forall \beta, \beta \in \frac{\beta - \alpha^2}{\cos^2 \alpha} < \tan \beta - \tan \alpha < \frac{\beta - \alpha}{\cos^2 \beta}$.

习题 3.3.5 证明下列恒等式:

(1)
$$\arctan x = \arcsin \frac{x}{\sqrt{1+x^2}};$$

(2)
$$\arctan x + \arctan \frac{1-x}{1+x} = \begin{cases} \frac{\pi}{4}, & x > -1, \\ -\frac{3\pi}{4}, & x < -1. \end{cases}$$

习题 3.3.6 设 f(x) 是闭区间 [0,1] 上的可导函数, 对任意 $x \in [0,1]$ 有 $f(x) \in (0,1)$; 并且对每个 $x, f'(x) \neq 1$. 证明在 (0,1) 内有且仅有一个 x, 使 f(x) = x.

习题 3.3.7 设函数 f(x) 在 [0,1] 上连续, 在 (0,1) 内可导, 且 |f'(x)| < 1, 又 f(0) = f(1). 证明: 对于 [0,1] 上的任意两点 x_1,x_2 , 有 $|f(x_1) - f(x_2)| < \frac{1}{2}$.

习题 3.3.8 若 f(x) 处处可导, 且 f'(x) = f(x). 证明 $f(x) = Ce^x$, C 为任意常数.

习题 3.3.9 设不恒为常数的函数 f(x) 在闭区间 [a,b] 上连续, 在开区间 (a,b) 内可导, 且 f(a) = f(b). 证明在 (a,b) 内存在一点 ξ , 使得 $f'(\xi) > 0$.

习题 3.3.10 设函数 f(x) 在 $[a, +\infty)$ 上可微, 且 $\lim_{x \to +\infty} f'(x) = 0$. 证明:

(1)
$$\lim_{x \to +\infty} [f(x+1) - f(x)] = 0;$$

$$(2) \lim_{x \to +\infty} \frac{f(x)}{x} = 0.$$

习题 3.3.11 证明: 若函数 f(x) 在 (有限) 开区间 (a,b) 内有有界的导函数,则 f(x) 在 (a,b) 内也有界. 如果有限区间 (a,b) 改为无穷区间,结论还成立吗? 命题的逆命题是否成立?

习题 3.3.12 设对所有的实数 x, y, 不等式 $|f(x) - f(y)| \le M|x - y|^2$ (M 为常数) 都成立. 证明: f(x) 恒为常数.

习题 3.3.13 设函数 f(x) 在区间 $[x_0, x_0 + \delta]$ 上连续 (这里 $\delta > 0$), 在 $(x_0, x_0 + \delta)$ 内可导. 若 $\lim_{x \to x_0^+} f'(x) = l$ (这里的 l 可以是无穷大), 则 f(x) 在 x_0 处的右导数也为 l, 即

$$f'_{+}(x_0) = \lim_{x \to x_0^{+}} f'(x).$$

(将区间 $[x_0, x_0 + \delta]$ 换为 $[x_0 - \delta, x_0]$, 有类似的结论.)

习题 3.3.14 应用上一题的结论证明:

- (1) 函数 $x^{1/3}$ 在 x = 0 处不可导;
- (2) 函数 $\arcsin x$, $\arccos x$ 在 x = 1 处没有左导数, 在 x = -1 处没有右导数.

习题 3.3.15 证明: 若函数 f(x) 在一个区间内处处可导,则导函数 f'(x) 不能有第一类间断点,即在 (区间内)每一点处, f'(x) 或者连续,或者有第二类间断. (由本题推出,具有第一类间断点的函数,如 $\operatorname{sgn} x$,不能成为某个函数的导函数.)

习题 3.3.16 设 f(x) 在一个区间 I 上连续, 且 (至多) 除了有限个点外, f(x) 在 I 内部的导数为正 (负), 则 f(x) 在 I 上严格单调递增 (减). (注意, 在例外的点处, f(x) 可能不可导.)

习题 3.3.17 设函数 f(x) 和 g(x) 均在区间 I 上连续,且 (至多) 除了有限个点外, f(x) 和 g(x) 在 I 内部满足 f'(x) > g'(x); 设存在 $a \in I$, 使得 f(a) = g(a) (a 不是区间端点),则当 $x \in I$ 且 x > a 时,有 f(x) > g(x);当 $x \in I$ 且 x < a 时,有 f(x) < g(x).

习题 3.3.18 若 f(x) 在 $[0, +\infty)$ 可导, f(0) = 0, f'(x) 严格递增, 证明 $\frac{f(x)}{x}$ 在 $(0, +\infty)$ 严格递增.

习题 3.3.19 设 x_0 是函数 f(x) 的一个可疑极值点,且 f(x) 在 x_0 处二阶可微, $f''(x_0) \neq 0$. 证明: 若 $f''(x_0) < 0$,则 x_0 是 f(x) 的一个极大值点;若 $f''(x_0) > 0$,则 x_0 是 f(x) 的一个极小值点. (提示: 现在必有 $f'(x_0) = 0$.)

举例说明: 若 $f''(x_0) = 0$, 则 x_0 可以是 f(x) 的极大值点或极小值点, 也可以不是极值点.

习题 3.3.20 设 f(x) 在 [0,1] 上有二阶导数, 且 f(0) = f'(0), f(1) = f'(1). 求证: 存在 $\xi \in (0,1)$, 满足 $f(\xi) = f''(\xi)$.

习题 3.3.21 求下列函数的单调区间与极值.

(1)
$$y = 2x^3 - 3x^2$$
:

(2)
$$y = x^{2/3}$$
;

(3)
$$y = x^2 e^{-x^2}$$
;

(4)
$$y = x^{1/x}$$
;

(5)
$$y = \frac{(\ln x)^2}{x}$$
;

(6)
$$y = \arctan x - \frac{1}{2}\ln(1+x^2)$$
.

习题 3.3.22 求下列函数在所给区间上的最大值和最小值.

(1)
$$y = x^4 - 2x^2 + 5, [-2, 2];$$

(2)
$$y = \sin 2x - x, \left[-\frac{\pi}{2}, \frac{\pi}{2} \right];$$

(3)
$$y = \arctan \frac{1-x}{1+x}$$
, [0, 1];

(4)
$$y = x \ln x, (0, +\infty).$$

习题 3.3.23 证明下列不等式:

(1)
$$\frac{1}{2^{p-1}} \le x^p + (1-x)^p \le 1$$
, $x \in [0,1], p > 1$;

(2)
$$\tan x > x - \frac{x^3}{3}$$
, $x \in (0, \frac{\pi}{2})$;

(3)
$$\frac{\tan x_2}{\tan x_1} > \frac{x_2}{x_1}$$
, $0 < x_1 < x_2 < \frac{\pi}{2}$;
(4) $\ln(1+x) > \frac{\arctan x}{1+x}$, $x > 0$;
(5) $1 + x \ln(x + \sqrt{1+x^2}) \geqslant \sqrt{1+x^2}$, x 为任意实数;

(4)
$$\ln(1+x) > \frac{\arctan x}{1+x}, \quad x > 0;$$

(5)
$$1 + x \ln(x + \sqrt{1 + x^2}) \ge \sqrt{1 + x^2}$$
, x 为任意实数;

(6)
$$\frac{x}{\sin x} > \frac{4}{3} - \frac{1}{3}\cos x$$
, $x \in (0, \frac{\pi}{2})$, 且右端的常数 $\frac{4}{3}$ 不能换为更大的数;

(7)
$$(1 - \frac{1}{x})^{x-1} (1 + \frac{1}{x})^x < 4, \quad x \in (1, +\infty);$$

(8)
$$x^{a-1} + x^{a+1} \ge \left(\frac{1-a}{1+a}\right)^{\frac{a-1}{2}} + \left(\frac{1-a}{1+a}\right)^{\frac{a+1}{2}}, \quad x \in (0,1), a \in (0,1).$$

(1)
$$x^3 - 6x^2 + 9x - 10$$
:

(2)
$$ax - \ln x$$
 (其中 $a > 0$).

习题 3.3.25 设 $a \in (0,1), b_1 = 1 - a$,

$$b_{n+1} = \frac{b_n}{1 - e^{-b_n}} - a, \quad n = 1, 2, \dots$$

问 $\{b_n\}$ 是否收敛? 若不收敛, 则给予证明, 若收敛, 则求极限.