In [2]:

- 1 import numpy as np
- 2 import matplotlib.pyplot as plt
- 3 import scipy stats as st

第六章 样本及抽样分布

随机样本

对某个随机事件进行试验或观察,每个可能的观察值叫做**个体**,所有可能的观察值叫做**总体**。一个总体对应于一个随机变量 X 。

定义

设 X 是具有分布函数 F 的随机变量,若 X_1, X_2, \ldots, X_n 是具有同一分布函数 F 的,相互独立的随机变量,则称 X_1, X_2, \ldots, X_n 为从分布函数 F (或总体F、或总体X)得到的容量为n的**简单随机样本**,简称**样本**,它们的观察值 x_1, x_2, \ldots, x_n 称为**样本值**,又称为 X 的n个**独立的观察值**。

理解:

样本的各个值相互独立,分布相同。

抽样分布

样本平均值

$$\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$$

样本方差

$$S^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (X_{i} - \bar{X})^{2} = \frac{1}{n-1} (\sum_{i=1}^{n} X_{i}^{2} - n\bar{X}^{2})$$

样本标准差

$$S = \sqrt{\overline{S^2}} = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (X_i - \bar{X})^2}$$

样本k阶(原点)矩

$$A_k = \frac{1}{n} \sum_{i=1}^n X_i^k, \ k = 1, 2, \dots$$

样本1阶矩为样本均值

样本k阶中心矩

$$B_k = \frac{1}{n} \sum_{i=1}^{n} (X_i - \bar{X})^k, \ k = 2, 3, \dots$$

(一) χ^2 分布

设 X_1, X_2, \ldots, X_n 是来自总体 N(0, 1) 的样本,则称统计量

$$\chi^2 = X_1^2 + X_1^2 + \dots + X_n^2$$

服从自由度为 n 的 χ^2 分布,记为 $\chi^2 \sim \chi^2(n)$ 。

数学期望和方差

$$E(\chi^2) = n, \ D(\chi^2) = 2n$$

图像

In [3]:

```
xs = np. linspace(0, 15, 51)
    ys1 = st. chi2(1). pdf(xs)
    plt.plot(xs, ys1)
    ys2 = st. chi2(2). pdf(xs)
 5
    plt.plot(xs, ys2)
    ys3 = st. chi2(3). pdf(xs)
 9
    plt.plot(xs, ys3)
10
    ys4 = st. chi2(4). pdf(xs)
11
    plt.plot(xs, ys4)
12
13
    ys5 = st. chi2(5). pdf(xs)
14
    plt.plot(xs, ys5)
15
16
    ys6 = st. chi2(6). pdf(xs)
    plt.plot(xs, ys6)
```

Out[3]:

[<matplotlib.lines.Line2D at 0x18d8d498588>]

(二) t分布

设 $X \sim N(0,1), Y \sim \chi^2(n)$,且 X,Y 相互独立,则称随机变量

$$t = \frac{X}{\sqrt{Y/n}}$$

服从自由度为 n 的 t 分布,记为 $t \sim t(n)$

当 n 足够大时 t 分布近似于 N(0,1) 分布,但对于较小的 n,t 分布与 N(0,1) 分布差异较大。

图像

In [4]:

Out[4]:

[<matplotlib.lines.Line2D at 0x18d8d1fb780>]

(三) F分布

设 $U\sim \chi^2(n_1), V\sim \chi^2(n_2)$,且 U,V相互独立,则称随机变量 $F=\frac{U/n_1}{V/n_2}$

服从自由度为 (n_1,n_2) 的 F **分布** ,记为 $F \sim F(n_1,n_2)$

图像

In [49]: H

```
xs = np. linspace(0.01, 5, 51)
  ys1 = st. f(10, 40). pdf(xs)
  plt.plot(xs, ys1, 'g')
  ys2 = st. f(11, 3). pdf(xs)
5
  plt.plot(xs, ys2, '--b')
  ys2 = st. f(20, 20). pdf(xs)
  plt.plot(xs, ys2, '-r')
```

Out [49]:

[<matplotlib.lines.Line2D at 0x264a552abe0>]

(四) 正态总体样本均值与样本方差的分布

记 \bar{X}, S^2 分别是样本均值和样本方差

$$E(\bar{X}) = \mu, D(\bar{X}) = \sigma^2/n$$

$$E(S^2) = \sigma^2$$

定理一

设 X_1, X_2, \ldots, X_n 是来自正态总体 $N(\mu, \sigma)$ 的样本, \bar{X} 是样本均值, 则有 $\bar{X} \sim N(u, \sigma^2/n)$

定理二

设 X_1, X_2, \ldots, X_n 是来自正态总体 $N(\mu, \sigma)$ 的样本, \bar{X}, S^2 分别是样本均值和样本方差,则有

1.
$$\frac{(n-1)S^2}{\sigma} \sim \chi^2(n-1)$$

2. $\bar{X} \ni S^2$ 相互独立

定理三

设 X_1, X_2, \ldots, X_n 是来自正态总体 $N(\mu, \sigma)$ 的样本, \bar{X}, S^2 分别是样本均值和样本方差,则有 $\frac{\bar{X} - \mu}{\sigma / \sqrt{n}} \sim t(n - 1)$

定理四

设 X_1,X_2,\ldots,X_n 与 Y_1,Y_2,\ldots,Y_n 分别是来自正态总体 $N(\mu_1,\sigma_1)$ 和 $N(\mu_2,\sigma_2)$ 的样本,且这两个样本相互独立。 设 $\bar{X}=\frac{1}{n_1}\sum_{i=1}^{n_1}X_i, \bar{Y}=\frac{1}{n_1}\sum_{i=1}^{n_1}Y_i$ 分别是这两个样本的均值; $S_1^2=\frac{1}{n_1-1}\sum_{i=1}^{n_1}(X_i-\bar{X})^2, S_2^2=\frac{1}{n_2-1}\sum_{i=1}^{n_2}(Y_i-\bar{Y})^2$ 分布是这两个样本的方差,则有

$$S_1^2 = \frac{1}{n_1-1} \sum_{i=1}^{n_1} (X_i - \bar{X})^2, S_2^2 = \frac{1}{n_2-1} \sum_{i=1}^{n_2} (Y_i - \bar{Y})^2$$
分布是这两个样本的方差,则有

1.
$$\frac{S_1^2/S_2^2}{\sigma_1^2/\sigma_1^2} \sim F(n_1 - 1, n_2 - 1)$$

2. $\stackrel{\text{def}}{=} \sigma_1^2 = \sigma_2^2 = \sigma^2$ $\stackrel{\text{def}}{=}$ $\stackrel{\text{def}}{=}$ $\stackrel{\text{def}}{=}$

2. 当
$$\sigma_1^2 = \sigma_2^2 = \sigma^2$$
 时

$$\frac{(\bar{X} - \bar{Y}) - (\mu_1 - \mu_2)}{S_w \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}} \sim t(n_1 + n_2 - 2)$$

其中

$$S_w^2 = \frac{(n_1 - 1)S_1^2 + (n_2 - 1)S_2^2}{n_1 + n_2 - 2}, \ S_w = \sqrt{(S_w^2)}$$