Agentes

Um agente é uma entidade com capacidade de obter informação sobre o seu ambiente (através de "sensores") e de executar ações em função dessa informação (através de "atuadores").

Propriedades do mundo de um agente

- •Acessibilidade o mundo é "acessível" se os sensores do agente permitem obter uma descrição completa do estado do mundo; o mundo será "efectivamente acessível" se é possível obter toda a informação relevante ao processo de escolha das acções.
- •Determinismo o mundo é "determinístico" se o estado resultante da execução de uma acção é totalmente determinado pelo estado actual e pelos efeitos esperados da acção.
- •Mundo episódico no caso em que cada episódio de percepção-acção é totalmente independente dos outros.
- •Dinamismo o mundo é "dinâmico" se o seu estado pode mudar enquanto o agente delibera; caso contrário, o mundo diz-se "estático".
- •Continuidade o mundo é "continuo" quando a evolução do estado do mundo é um processo continuo ou sem saltos; caso contrário o mundo diz-se "discreto".

Mundo	Acessível	Determinístico	Episódico	Dinâmico	Continuo
Xadrês s/ relógio	Sim	Sim	Não	Não	Não
Xadrês c/ relógio	Sim	Sim	Não	Semi	Não
Poker	Não	Não	Não	Não	Não
Condução de carro	Não	Não	Não	Sim	Sim
Diagnóstico médico	Não	Não	Não	Não	Sim
Sistema de análise de imagem	Sim	Sim	Sim	Semi	Sim
Manipulação robótica	Não	Não	Sim	Sim	Sim
Controlo de refinaria	Não	Não	Não	Sim	Sim
Tutor de Inglês interactivo	Não	Não	Não	Sim	Não

Redes Semânticas

Representações gráficas do conhecimento e a sua principal vantagem é a legibilidade.

Podem ser tão expressivas quanto a lógica de primeira ordem.

Permite representar conhecimento por omissão.

KIF

Esta é uma linguagem desenhada para representar o conhecimento trocado entre agentes. Pode ser usada também para representar os modelos internos de cada agente.

Características principais:

- •Pode ser tão ou mais expressiva quanto a lógica de primeira ordem.
- •Permite a representação de meta-conhecimento (ou seja, conhecimento sobre o conhecimento) Uma relação é um conjunto arbitrário de listas de objetos.

Engenharia do Conhecimento

Uma base de conhecimento é um conjunto de representações de fatores e regras de funcionamento do mundo. Engenharia do conhecimento é o processo ou atividade de construir bases de conhecimentos:

- estudar o domínio da aplicação
- determinar conceitos, objetos e relações que será necessário representar codificar o
- conhecimento genérico sobre o domínio

Redes de Bayes

Representa conhecimento impreciso em termos de um conjunto de variáveis aleatórias e respetivas dependências.

- · As dependências são expressas através de probalidade condicionadas
- · A rede é um grafo dirigido acíclico

Redes Semânticas	Redes Bayes			
São baseadas em relações Podem ter ciclos (cíclicos) Um nó pode ser um tipo ou objeto	São baseadas em probabilidades Um nó representa uma dependência probabilística Acíclicos			
Ambas são grafos dirigidos				

Pesquisa em árvore

Árvore - Cada nó pode ter vários sucessores e apenas um antecessor Definição formal: Conjunto finito de um ou mais nós, tais que existe um nó denominado raiz

Pesquisa em Largura (abrir todos os nós)

Consiste em avaliar primeiro todos os nós de um determinado nível, antes de prosseguir para a avaliação dos nós do próximo nível. É completa e ótima.

Complexidade Temporal: Proporcional ao nº de vértices somada ao nº de arestas dos grafos.

Complexidade Espacial: É de um nível de complexidade superior ao de pesquisa em profundidade, ocupa mais espaço.

Pesquisa em Profundidade (custo real)

Consiste em avaliar primeiro um dos nós e se este não for solução, avaliar um de seus filhos. Repete-se este passo até chegar a um nó que não possui filho cujos filhos já foram avaliados, sendo então obrigado a voltar ao nó pai. Não é completa nem ótima.

Complexidade Temporal: Proporcional ao nº de vértices somada ao nº de arestas dos grafos.

Complexidade Espacial: Usa poucos recursos computacionais memória < pesquisa em largura

- <u>Sem Repetição de Estados:</u> Para evitar ciclos infinitos, convém garantir que estados já visitados no caminho que liga o nó actual à raiz da árvore de pesquisa não são novamente gerados.
- <u>Com Repetição de Estados:</u> Não são considerados para expansão os nós da árvore de pesquisa cuja profundidade excede um dado limite.

Pesquisa Gulosa (custo estimado)

Dado que o custo acumulado é ignorado, não é verdadeiramente um caso particular da pesquisa A*. Tem um comportamento que se aproxima da pesquisa em profundidade. Ao ignorar o custo acumulado, facilmente deixa escapar a solução ótima.

Pesquisa de Custo Uniforme

Caso particular da pesquisa A*. Tem um comportamento parecido com o da pesquisa em largura. Caso exista solução, a primeira solução encontrada é ótima.

STRIPS

A funcionalidade de um dado tipo de operação é definida, no formalismo STRIPS, através de uma estrutura chamada *operador* que inclui a seguinte informação:

- <u>Pré-Condições</u> conjunto de fórmulas atómicas que representas as condições de aplicabilidade deste tipo de operação.
- <u>Efeitos Negativos (delete list)</u> conjunto de fórmulas atómicas que representam propriedades do mundo que deixam de ser verdade ao executar-se a operação.
- <u>Efeitos Positivos (add list)</u> conjunto de fórmulas atómicas que representam propriedades do mundo que passam a ser verdade ao executar-se a operação.

Ramificações

N -> Número de nós total da árvore de pesquisa

x -> Número de nós expandidos (os que tiveram filhos)

d -> Comprimento do caminho da árvore (número de "andares")

Ramificação Média	Ramificação Efetiva		
$RM = \frac{N-1}{x}$	$N = \frac{B^{d+1} - 1}{B - 1}$		

Pesquisa em grafo

Transições a partir de diferentes estados podem levar ao mesmo estado.

Isto leva a que a pesquisa fique menos eficiente.

Trabalha com grafos de restrições:

- Restrições unárias
- Restrições binárias
- Restrições de ordem superior

Pesquisa por melhorias sucessivas

A partir de uma dada configuração inicial, fazem-se refinamentos sucessivos até obter uma configuração satisfatória. Técnicas mais comuns:

• Reparação heurística - É a versão mais básica deste tipo de pesquisa: reparações à solução inicial vão sendo aplicadas de acordo com uma heurística local.

No caso de problemas de satisfação de restrições, a heurística pode ser: fazer a reparação que, naquele momento, mais contribui para reduzir os conflitos entre restrições.

- Montanhismo
- Recozimento simulado
- Algoritmos genéticos

Montanhismo

A pesquisa é vista como um problema de optimizar uma função. É similar à pesquisa em profundidade, diferenciando-se:

- Em escolher sempre o sucessor com melhor valor da função de avaliação
- Não existe retrocesso. (backtracking)
- Quando o valor da função no nó atual é superior ao valor da função em qualquer dos seus sucessores, pesquisa pára. (atingiu-se um máximo local)

Recozimento Simulado

Variante da pesquisa por montanhismo na qual podem ser aceites refinamento que, localmente, piorem a solução. Particularidades:

- O sucessor é selecionado aleatoriamente.
- Quando o valor da função no nó atual é superior ao valor da função no sucessor, o sucessor é aceite com a probalidade que diminui exponencialmente em função da perda na função de avaliação.
- Pesquisa termina quando um indicador designado "temperatura" chega a zero.

Conversão de uma Forma Proposicional para CNF e forma Clausal

Através dos seguintes passos:

- Remover implicações
- Reduzir o âmbito de aplicação das negações
- · Associar e distribuir até obter a CNF

Exemplo:

- Fórmula original: $A \Rightarrow (B \land C)$

- Após remoção de implicações: $\sim A \vee (B \wedge C)$

- Forma CNF: $(\sim A \lor B) \land (\sim A \lor C)$

- Forma Clausal: $\{\sim A \lor B \ , \sim A \lor C\}$