

Cluster de cómputo y SLURM

¿Qué es slurm?

Sistema de gestión y administración de trabajos en clusters de pequeño y gran tamaño.

Características más relevantes:

- Nos permite asignar el acceso a recursos de cómputo durante un tiempo establecido. Este acceso puede ser tanto restringido como abierto.
- 2. Framework para adaptar el trabajo a nuestras necesidades.
- 3. Implementa una cola de trabajo configurable con prioridades por usuario.
- 4. Control e información sobre los trabajos.

Cluster de cómputo y SLURM

Nuevo hardware

Procesador AMD ROME 7232P UP 8C/16T 3.1GHz 32MB 32GB RAM (ampliable) 1x NVMe 480GB M.2 para S.O. 12x HD 16TB SAS 12Gbs Dual 10GBase-T LAN ports 1x RJ45 Dedicated IPMI LAN port

126,71 TB efectivos

10x Adaptable Fiber/RJ45 2x RJ45 10G

Conexiones a:

1 G

2,5G

5G

10G

Cluster de cómputo y SLURM

Reorganización de las máquinas

Cluster de cómputo y SLURM

Recordatorio - Repaso

Nivel Intra-node

Nivel de nodos

¿qué podemos controlar?

Nodos Memoria Sockets GPUs

Cores Exclusividad

Threads

- -nodes=1
- -gres=gpu:A30:2
- -p=hermes
- -time=16:00:00
- -cores-per-socket=5

RAM

¿Cómo funciona un trabajo?

14 cores por socket

socket 1

- -nodes=1
- -gres=gpu:A30:2
- -p=hermes
- -time=16:00:00
- -cores-per-socket=5
- -ntasks-per-node=2

- -nodes=1
- -gres=gpu:A30:2
- -p=hermes
- -time=16:00:00
- -cores-per-socket=5
- -ntasks-per-node=2
- -gpus-per-task=1

14 cores por socket

- -nodes=1
- -gres=gpu:A30:2
- -p=hermes
- -time=16:00:00
- -cores-per-socket=5
- -ntasks per node=2
- -gpus-per-task=1

OJO, ES POSIBLE QUE SI, POR EJEMPLO, SE UTILIZA PYTORCH, INTERNAMENTE SE HAGA MULTIPROCESSING. ESTO TAMBIÉN PUEDE OCURRIR CON ACCELERATE.

LAUNCH.SH

Nivel Intra-node RAM socket 1 gpu0 gpu1 cpu cpu cpu cpu proceso 0

Nivel Intra-node proceso 0 RAM socket 1 gpu0 gpu1 cpu cpu cpu cpu cpu proceso 0

LAUNCH.SH

LAUNCH.SH

Tres tipos de posibles salidas (principalmente):

Modo interactivo:

salloc –nodes=1–gpus-per-node=2 etc.. (muestra la salida por pantalla continuamente, si abandonas la sesión, se da por finalizado el trabajo).

Modo estático:

sbatch –nodes=1 –gpus-per-node=2 ./a.sh (vuelca la salida en un fichero de texto con nombre JOBID.out).

srun –nodes=1 –gpus-per-node=2 python a.py (vuelca la salida en un fichero de texto con nombre JOBID.out).

Modo estático+email:
 sbatch -nodes=1 -mail=user etc...

Cluster de cómputo y SLURM

Configuración del clúster

- El acceso a la máquinas no está permitido mediante SSH.
 Se debe conectar por ssh al nodo login (sirius).
- Todos los datos deben guardarse en /home/\$USER/data, o en su defecto en /mnt/data/\$USER. Instalaciones, datasets, códigos... TODO.
- Para facilitar la gestión, cada usuario no tiene límite de almacenamiento, pero se controlará.
- Existen diferentes niveles de prioridad de usuario para la cola (más tarde lo vemos).
- Las carpetas de datos son individuales. Se pueden crear carpetas compartidas para grupos de trabajo o proyectos (datos muy pesados y evitar replicados).

-p=A5000

inf-004-gpu-3

inf-004-gpu-4

conexión a 2.5G

-p=A30

MOTIVOS:

- Heterogeneidad
- Velocidad de transferencia
- زز Unimos ??

JOBID	PARTITION	NAME	USER	ST	TIME	NODES	NODELIST (REASON)
00001	A5000	launch.sh	smoreno	R	15:32	2	inf-004-gpu-4, inf-004-gpu-3
00002	A30	llama.sh	alvarory	R	01:33	1	hermes
00003	A5000	update.sh	gestionIsi	PD	0:00	1	(RESOURCES)

	JOBID	PARTITION	NAME	USER	ST	TIME	NODES	NODELIST (REASON)
	- 00001	A5000	launch.sh	smoreno	R	15:32	2	inf-004-gpu-4, inf-004-gpu-3
	00002	A30	llama.sh	alvarory	R	01:33	1	hermes
	00003	A5000	update.sh	gestionIsi	PD	0:00	1	(RESOURCES)
\								

slurm-00001.out

Prioridades del usuario en la cola

PRIORITY	TIME LIMIT				
0	24:00:00				
1	48:00:00				
2	72:00:00				

Estados del sistema

Podemos conocer el estado del sistema actualmente. Comando: **sinfo**.

Estados del sistema

Podemos conocer el estado del sistema actualmente. Comando: **sinfo**.

PARTITION	AVAIL	TIMELIMIT	NODES	STATE	NODELIST (REASON)
A5000	up	infinite	2	idle	inf-004-gpu-4, inf-004-gpu-3
A30	up	infinite	1	idle	hermes

Cluster de cómputo y SLURM

Flujo de trabajo

Flujo de ejecución de los trabajos

Submission

Cluster de cómputo y SLURM

https://github.com/smorenospace