·北京林业大学 2007--2008 学年第二学期考试试卷

试卷名称:	数理统计 II (B卷)	课程所在院系:	理学院
考试班级:		姓名:	成绩:
 考试时间 答题之前 所有试题 答题完毕 	可为 120 分钟,请掌握好答	级、学号、姓名填写清楚; 带出考场;	
答题中可能用	用到的数据:		
$\Phi(1.25) = 0$	$.8944$, $\Phi(1.75) = 0.959$	$\Phi(0.4243) = 0.6228$	$\Phi(1.414) = 0.9213$,
$z_{0.025} = 1.96$	$t_{0.025}(4) = 2.7764, \ \chi^2$	$_{0.025}(4) = 11.143, \chi^2_{0.025}(4)$	(5) = 12.833
一、选择题	(在每个小题四个备选答:	案中选出一个正确答案,领	每小題3分,总计21分)
1. 设A、B	为任意两事件,且 $A \subset B$	B, P(B) > 0,则下列选择必	然成立的是(C)。
(A)P(A)	< P(A B); (B)P(A) > P(A)	$P(A B); (C)P(A) \le P(A A)$	(B) ; $(D)P(A) \ge P(A B)$
2. 对于事件	A, B, 下列命题正确的	是(D)	
(A) 若 A	A , B 互不相容,则 \overline{A} 与 \overline{B}	8 也互不相容。	
(B) 若 A	,B相容,那么 \overline{A} 与 \overline{B} 也	2.相容。	
(C) 若 A	, B 互不相容, 且概率都	大于零,则A,B也相互	独立。
(D) 若 A	A , B相互独立, 那么 \overline{A} 与	\overline{B} 也相互独立。	
25327	$,X_3$ 相互独立同服从参数	$1\lambda = 3$ 的泊松分布,令 Y	$= \frac{1}{3}(X_1 + X_2 + X_3) \cdot \square E(Y^2) =$
(C) (A) I,	(B) 9.	(C)10. (D)	6.
4. 每次试验	验结果相互独立,设每次记	式验成功的概率为 p 。则3	重复进行试验直到第 10 次才取得 &
$(1 \le k \le$	10) 次成功的概率等于_	(C)	
(A) $C_9^k p^k$	$(1-p)^{10-k}$; (B) $C_{10}^{k-1}p^{k}(1$	$(C) C^{k-1}_{9} p^{k} (1-p)^{10-k}$	$(p)^{10-k}$: (D) $C_{10}^{-k} p^k (1-p)^{9-k}$
5. 设X~	N(1.5, 4),则 P {-2 <x<4}< td=""><td>=(A)</td><td></td></x<4}<>	=(A)	

(A) 0.8543 (B) 0.1457 (C) 0.3541 (D) 0.2543

已知 $x_1, x_2, \dots x_{10}$ 是来自总体 X 的简单随机样本, $EX = \mu$ 。令 $\hat{\theta} = \frac{1}{8} \sum_{i=1}^{6} x_i + A \sum_{i=1}^{10} x_i$,则

当 $A = \underline{\hspace{1cm}}$ (C) 时, $\hat{\theta}$ 为总体均值 μ 的无偏估计

- (A) 1 / 8 (B) 1 / 4
- (C) 1 / 1 6
- (D) 1 / 1 0

皆 $X \sim t(n)$ 那么 $X^2 \sim (A)$.

- (A) F(1,n) (B) F(n,1) (C) $\chi^2(n)$
- (D) t(n)

二、填空题(在每个小题填入一个正确答案,每空3分,总计27分)

同时掷 5 颗骰子, 5 颗骰子恰有 2 颗同点的概率等于 25/54 (或 0.463) 。

- 2. 某厂有甲、乙、丙三条流水线生产同一产品,每条流水线的产品分别占总量的30%,25%,45%; 甲、乙、丙三条流水线的次品率分别为 0.05, 0.04, 0.02。则全厂的该产品的次品率等于 0.034 ; 现在从该厂中随机抽取一件该类产品,发现它为次品,则抽到的这个产品为甲 流水线产品的概率等于 0.441
- 3. 没二维随机向量 $(X,Y)\sim N(\mu_1,\mu_2,\sigma_1^1,\sigma_2^2,\rho)$ 其中 $\sigma_1,\sigma_2>0$, $-1<\rho<1$, 当 $\rho = 0$ 时,X 和 Y 相互独立。
- 设离散型随机变量 X 分布律 $P\{X=k\}=5A(1/2)^k$ $(k=1,2,\cdots)$ 则 A= 0.2。
- 总体 N(20,3) 的容量分别为 1 0 和 1 5 的两个独立样本的均值分别记为 \overline{X} 和 \overline{Y} , 则 $P\{|\overline{X} - \overline{Y}| < 0.3|\} = 0.2456$
- 7. 设 X_1, X_2, \dots, X_n 是来自正态总体 $N(\mu, \sigma^2)$ 的简单随机样本, μ 和 σ^2 均未知, 记

绝域为: $|T| \ge t_{\frac{\alpha}{2}}(n-1)$

三(6分). 设各零件的重量都是随机变量,它们相互独立,而且服从相同的分布,其数学期望为 0.5kg,标准差为 0.1. 用中心极限定理求 5000 只零件的总重量超过 2510 的概率。

解:设 X_i $(i=1,2,\cdots 100)$ 表示第i个零件的重量,X表示 5000 只零件的总重量,则

$$X = \sum_{i=1}^{100} X_i$$
, $EX = 5000 \times 0.5 = 2500$, $DX = 5000 \times 0.01 = 50$

二、填空题(在每个小题填入一个正确答案,每空3分,总计27分)

- 1. 同时掷 5 颗骰子, 5 颗骰子恰有 2 颗同点的概率等于____25/54 (或 0.463)_。
- 2. 某厂有甲、乙、丙三条流水线生产同一产品,每条流水线的产品分别占总量的 30%, 25%, 45%; 甲、乙、丙三条流水线的次品率分别为 0.05, 0.04, 0.02。则全厂的该产品的次品率等于 0.034 ; 现在从该厂中随机抽取一件该类产品,发现它为次品,则抽到的这个产品为甲流水线产品的概率等于 0.441 。
- 3. 设二维随机向量 $(X,Y)\sim N(\mu_1,\mu_2,\sigma_1^1,\sigma_2^2,\rho)$ 其中 $\sigma_1,\sigma_2>0$, $-1<\rho<1$,当 $\rho=_0$ ___时,X和Y相互独立。
- 4. 设离散型随机变量 X 分布律 $P\{X=k\}=5A(1/2)^k$ $(k=1,2,\cdots)$ 则 A= 0.2。
- 5. 设D(X) = 25, D(Y) = 36, $\rho_{XY} = 0.4$, 则 $D(X + Y) = ______$ 。
- 6. 总体 N(20,3) 的容量分别为 1 0 和 1 5 的两个独立样本的均值分别记为 \overline{X} 和 \overline{Y} ,则 $P\{|\overline{X}-\overline{Y}|<0.3|\}= 0.2456$ 。
- 7. 设 X_1, X_2, \cdots, X_n 是来自正态总体 $N(\mu, \sigma^2)$ 的简单随机样本, μ 和 σ^2 均未知, 记

$$\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_{i} \cdot Q^{2} = \sum_{i=1}^{n} (X_{i} - \overline{X})^{2},$$
 则假设 $H_{0}: \mu = 0$ 的 t 检验使用统计量 $T = -\frac{\overline{X}\sqrt{n(n-1)}}{Q}$,指

绝域为 $:|T ≥ t_{\frac{\alpha}{2}}(n-1)$

三(6分). 设各零件的重量都是随机变量,它们相互独立,而且服从相同的分布,其数学期望为0.5kg,标准差为0.1. 用中心极限定理求5000只零件的总重量超过2510的概率。

解:设 X_i ($i=1,2,\cdots 100$)表示第i个零件的重量,X表示 5000 只零件的总重量,则

$$X = \sum_{i=1}^{100} X_i$$
, $EX = 5000 \times 0.5 = 2500$, $DX = 5000 \times 0.01 = 50$

$$F_{Y}(y) = P\{Y \le y\} \cdots 1$$

$$= P\{2X + 1 \le y\}$$

$$= P\{X \le \frac{1}{2}(y - 1)\} \cdots 2$$

$$= F_{X}\{\frac{1}{2}(y - 1)\} \cdots 4$$

两边对 y 求导,得 $f_Y(y) = f_X(\frac{y-1}{2}).\frac{1}{2} = \frac{1}{2\sqrt{\pi}}e^{-[\frac{y-1}{2}-1]^2} = \frac{1}{2\sqrt{\pi}}e^{-\frac{y^2+2y+1}{4}} - ----6$ 分

法 2:
$$X = \frac{Y-1}{2},$$
 所以

$$f_{Y}(y) = f_{X}(\frac{y-1}{2}). \frac{y-1}{2}()' \cdot \dots \cdot 4 / \frac{1}{2}$$

$$= / \frac{1}{2\sqrt{\pi}} e^{-\left(\frac{y-1}{2}-1\right)^{2}} = \frac{1}{2\sqrt{\pi}} e^{-\frac{y^{2}+2y+1}{4}} \cdot \dots \cdot 6$$

六 (10 分). 设连续型随机变量 X 的密度为 $f(x) = \begin{cases} Ke^{-5x}, & x > 0 \\ 0, & x \le 0. \end{cases}$

(1)确定常数 K; (2)求 $P\{X > 0.2\}$; (3)求 X的分布函数.

解: (1) 由密度函数性质知:
$$\int_{-\infty}^{\infty} f(x)dx = \int_{0}^{\infty} Ke^{-5x}dx = \frac{K}{5} = 1$$
, 所以 $K=5$ ------ 3 分

(3) X 的分布函数

$$F(x) = \begin{cases} 0, & \text{if } x \le 0\\ \int_0^x 5e^{-5x} dx = 1 - e^{-5x}, & \text{if } x > 0 \end{cases}$$

七(12分). 设二维随机变量 X与Y的联合密度函数为

$$f(x,y) = \begin{cases} x^2 + \frac{xy}{3}, & 0 < x < 1, \ 0 < y < 2 \\ 0, & \exists \stackrel{\sim}{\Sigma} \end{cases}$$

(1) 求 $P\{X + Y \le 1\}$;

(2)分别求关于 X 与关于 Y 的边缘密度函数; (3)判断 X 与 Y 是否相互独立.

解: (1)

$$P\{X + Y \le 1\} = \iint_{D:x+y<1} f(x,y) dx dy = \int_0^1 dx \int_0^{1-x} (x^2 + \frac{xy}{3}) dy$$
$$= \int_0^1 (-\frac{5}{6}x^3 + \frac{2}{3}x^2 + \frac{x}{6}) dx = \frac{7}{72}$$

----4分

(2)
$$f_X(x) = \begin{cases} \int_{-\infty}^{\infty} f(x, y) dy = \int_{0}^{2} (x^2 + \frac{xy}{3}) dy = 2x^2 + \frac{2}{3}x, & \text{if } 0 < x < 1 \\ 0, & \text{else} \end{cases}$$

$$f_{y}(y) = \begin{cases} \int_{-\infty}^{\infty} f(x, y) dx = \int_{0}^{1} (x^{2} + \frac{xy}{3}) dx = \frac{1}{3} + \frac{1}{6}y, & \text{if } 0 < y < 2 \\ 0, & \text{else} \end{cases}$$
 ----- 1 0 \(\frac{1}{3} \)

(3) 显然,
$$f(x,y) \neq f_x(x) f_y(y)$$
, 所以X和Y不独立. ———12分

- 八(10分). 某批电子元件的使用寿命(单位:小时)服从正态分布,现从这批元件中随机抽取5只 做寿命试验,测得这5只元件的使用寿命 X的均值为1160,方差为9950,在置信水平0.95下,求:
 - (1)该批电子元件的寿命均值 µ 置信区间;
 - (2)该批电子元件的寿命的方差 σ^2 的置信区间.