Algorithm Lab

Week 8: Interval Cover

In graph theory, an interval graph is an undirected formed from a set of intervals on the real line (From Wikipedia). For an interval graph, each vertex v is an interval that have 2 ends, left end l_v and right end r_v . Edge set E is decided by the interval set V. For an arbitrary vertices pair (u, v), $(u, v) \in E$ if and only if u and v are overlapped by each other.

There are many important greedy algorithms works on interval graphs such as interval scheduling, maximum clique finding, and minimum interval cover.

We say interval (l^*, r^*) is covered by an interval (l_i, r_i) if $l_i \leq l^*$ and $r_i \geq r^*$. Suppose we have 2 overlapped intervals u and v. The coverage of these 2 vertices equivalent to the interval $(\min(l_u, l_v), \max(r_u, r_v))$. Minimum interval cover is asking you to find the minimum vertices induced subgraph of an interval graph that can cover whole range on real line.

```
Instance: a set of intervals V = \{(l_1, r_1), (l_2, r_2), ..., (l_n, r_n)\} and target interval (l^*, r^*).
```

Result: minimum $V' \subseteq V$ that cover (l^*, r^*) .

Description

- 1. Set current position $p \leftarrow l^*$, answer set $V' \leftarrow \{ \}$.
- 2. Find right-most (have largest right end) interval $v \in V$ that $l_v \leq p$.
- 3. Update $p \leftarrow r_v$, $V' \leftarrow V' \cup \{v\}$.
- 4. Repeat step 2 and 3 until $p \ge r^*$.

Questions

- 1. Analyze worst case time complexity of above algorithm.
- 2. Analyze worst case time complexity of above algorithm with sorted *V*.
- 3. Rewrite above algorithm to detect target range may impossible to be covered by original interval set. Analyze space complexity, time complexity of best case and worst case of modified algorithm.
- 4. Above algorithm is doing through left to right. Please rewrite it to a through right to left

version. Is your new algorithm always get the same result of original one? Give example(s) to explain your answer.

5. Solve https://oj.csie.ndhu.edu.tw/problem/ALG07B