Univerza *v Ljubljani* Fakulteta za *matematiko in fiziko*

POROČILO SN

RAČUNALNIŠTVO 2

Avtor naloge:

Gal Zakrajšek

Kazalo

1.	Voronoijevi diagrami	. 3
	Težave	
	Kaj sem se naučil	
4.	Struktura gradiva	. 4
5	Viri	5

1. Voronoijevi diagrami

V seminarski nalogi sem predstavil Voronoijeve diagrame. Prikazal sem tri različne algoritme s katerimi jih računamo.

Voronoijev diagram predstavlja ravnino razdeljeno na območja. Ta območja so oblikovana s pomočjo središčnih točk, ki jih bomo v nadaljevanju imenovali semena. Vsako seme ima okoli sebe območje, ki vsebuje vse točke, ki so po razdalji najbližje temu semenu. Za lažjo predstavo, bomo na vseh slikah obarvali območja vsako z svojo barvo.

Algoritmi, ki so predstavljeni so:

Naivna metodo in pa njena izboljšava Jump flood

Pri obeh metodah, si ravnino razdelimo na mrežo točk, ki jih v korakih barvamo in na koncu dobimo Voronoiev diagram. Ker je naivna metoda zelo preprosta a časovno potratna, sem predstavil tudi Jump flood izboljšavo, ki se loti barvanja mreže z pomočjo skokov in tako pri večjem številu semen hitreje pridemo do rešitve. Seveda zaradi hitrosti pride tudi do napak in tukaj so predstavljene še izboljšave, ki zmanjšajo število le teh.

Delaunauy-eva triangulacija

Predstavim tudi algoritem, ki vrne Delaunay-evo triangulacijo, katera predstavlja dual naših Voronoijevih diagramov.

Najprej opišem kako poteka algoritem, potem pa še dva načina, kako iz končne triangulacije pridemo do Voronoijevega diagrama.

Primer Delaunay-ove triangulacije:

Na koncu je še nekaj malega o Voronoijevih diagramih v različnih metrikah in pa njegovi uporabi.

2. Težave

Največja težava je bila pri začetku razumevanja, saj je Delaunay-eva triangulacija kar kompleksna in sem porabil kar nekaj časa, da sem jo razumel. Potem je vse ostalo potekalo brez težav.

3. Kaj sem se naučil

Naučil sem se veliko o Voronoijevih diagramih, saj zanj pred predstavitvijo še nisem slišal. Jump flood algoritem je uporaben tudi na drugih področjih, zato sem vesel, da sem ga odkril. Tudi Delaunay-eva triangulacija je zelo uporabna, saj mislim, da jo bom pri hobiju, kdaj uporabil pri izrisovanju kakšne računalniške grafike.

4. Struktura gradiva

Gradivo je strukturirano sledeče:

GalZakrajsek_SN/

Predstavitev/ -> notri je PowerPoint uporabljen pri predstavitvi kolegom

Slike/ -> Vse slike, ki so bile uporabljene pri predstavitvi in seminarski nalogi

Vaje/ -> Vse datoteke, uporabljene pri vajah. (Naloge, implementacija algoritmov)

GalZakrajsek_SN -> Nosilna datoteka seminarske naloge v pdf obliki

5. Viri

- Voronoi diagram. https://en.wikipedia.org/wiki/Voronoi_diagram (Dostopno 2.9.2022)
- Jump flooding algorithm. https://en.wikipedia.org/wiki/Jump_flooding_algorithm (Dostopno 2.9.2022)
- Peterson, S. Computing constrained Delaunay triangulations.
 http://www.geom.uiuc.edu/~samuelp/del_project.html#problem(Dostopno 2.9.2022)
- Delaunay triangulation. https://en.wikipedia.org/wiki/Delaunay triangulation (Dostopno 2.9.2022)