

Linguagens Formais e Autômatos

Prof. Alex Luciano Roesler Rese, MSc.

Adaptado: Rafael de Santiago, Dr.

 Linguagens mais simples (hierarquia de Chomsky), sendo possível desenvolver algoritmos de reconhecimento, de geração ou de conversão entre formalismos de pouca complexidade, de grande eficiência e de fácil implementação

Nem toda uma linguagem é uma linguagem regular!

Exemplo dos parênteses

Exemplo:

(2+5)*7

Representam ordem de Prioridades

 Sistemas de estados finitos: modelo matemático de sistema com entradas e saídas discretas. Podem assumir um número de estados finitos, necessários para determinar ações da próxima entrada

- Composição de um sistema:
 - Seqüêncial: a execução da próxima componente depende da terminação da componente anterior
 - Concorrente: resulta componentes independentes, no qual a ordem de execução não é importante
 - Não-determinista: a próxima componente a ser executada é uma escolha entre diversas componentes alternativas

• Sistema de estados

Seqüêncial

Mecanismo formal composto de:

- Fita: Dispositivo de entrada que tem a informação a palavra a ser reconhecida;
- Unidade de Controle: Reflete o estado corrente da máquina. possui um cabeçote de leitura da fita e move-se sempre para direita
- Função de transição: Função que comanda as leituras e define o estado da máquina.

- A unidade de controle lê um símbolo e move-se para a célula da direita.
- O estado corrente pode mudar conforme definido pela função de transição e depende do estado atual e do símbolo lido.

- Um AFD é definidos por uma 5-upla:
- $M = (\Sigma, Q, \delta, q_0, F)$
 - Σ = alfabeto de símbolos de entrada
 - Q = conjunto finito de estados possíveis do autômato
 - δ = função de transição tal que δ : Q X $\Sigma \rightarrow$ Q
 - q_0 = estado inicial tal que $q_0 \in Q$
 - $F = conjunto de estados finais tal que <math>F \subset Q$

Grafo para Função de Transição

Pode ser representado por um grafo onde:

Exemplos de Linguagens Regulares

- $M = (\Sigma, Q, \delta, q_0, F)$
- $M = (\{0,1\}, \{q_0,q_1,q_2\}, \delta, q_0, q_2)$

Linguagem que aceita apenas a palavra "01"

Exemplo de Linguagens Regulares

$$M = (\Sigma, Q, \delta, q_0, F)$$

$$M = (\{0,1\}, \{q_0\}, \delta, q_0, q_0)$$

$$q_0$$

Linguagem que aceita ε e qualquer número binário

Exemplo de Linguagens Regulares

$$M = (\Sigma, Q, \delta, q_0, F)$$

$$M = (\{0,1\}, \{q_0,q_1\}, \delta, q_0, q_1)$$

Linguagem que aceita números binários

Exemplos de Linguagens Regulares

$$M = (\Sigma, Q, \delta, q_0, F)$$

$$M = (\{0,1\}, \{q_0,q_1\}, \delta, q_0, q_1)$$

Linguagem que aceita números binários pares

0 1 1 0 1

 q_0

Estado Inicial

0 1 1 0 1

 q_0

palavra de entrada

transição $\underline{\delta}$ (q₁, 1) = q₀

palavra de entrada

transição $\underline{\delta}(q_0, 1) = q_0$

palavra de entrada

transição $\underline{\delta}(q_0, 0) = q_1$

palavra de entrada

transição $\underline{\delta}$ (q₁, 1) = q₀

transição $\underline{\delta}$ (q₁, 1) = q₀

A palavra "01101" não pertence a linguagem

palavra de entrada

 q_0

Estado Inicial

palavra de entrada

 q_0

transição $\underline{\delta}(q_0, 0) = q_1$

transição $\underline{\delta}(q_0, 0) = q_1$

palavra de entrada

A palavra "0110" pertence a linguagem

Parada do Autômato

Um AFD para nas seguintes situações:

Após ler o último símbolo da fita

se o estado pertence a F, aceita a palavra

se o estado não pertence a F, rejeita a palavra

Quando não existe transição definida para o símbolo lido

neste caso a palavra é rejeitada

Exemplo de transição indefinida

 $M = (\{a,b,c\}, \{q_0,q_1,q_2,q_3,q_4\}, \delta, q_0, \{q_2,q_4\})$

Palavras rejeitadas: {"ac"; "bac"; "bbc";...}

Exemplos

$$M = ({a,b}, {q_0,q_1,q_2}, \delta, q_0, q_1)$$

Linguagem das sentenças que iniciam e terminam por "a" (possuem "a" como prefixo e sufixo)

Exemplos

$$M = (\{0,1\}, \{q_0,q_1,q_2,q_3\}, \delta, q_0, \{q_1,q_2\})$$

Palavras que não contém a subpalavra "01"

Estado q_2 = estado onde um zero foi recebido

Exemplos

 $Lm = \{a,b,c,d,e,f,g,h,i,j,k,l,m,n,o,p,q,r,s,t,u,v,x,y,w,z\}$

Palavras com 1 ou mais letras

Exercícios

Apresente a definição formal e o grafo da função de transição para as seguintes linguagens:

```
números binários ímpares (\Sigma = {0,1})
palavras que possuem "ab" como prefixo (\Sigma = {a,b})
números naturais (\Sigma = {0,1,2,3,4,5,6,7,8,9})
números reais (\Sigma = {0,1,2,3,4,5,6,7,8,9,.})
```

palavras que não contém "001" como subpalavra

Tabelas de Transição

Tabelas de Transição

Gramática ⇔⇒ AF

- Conversão GR em AFND-ε
 - Considerando a seguinte GLUD
 - $S \rightarrow aA$
 - $A \rightarrow bB \mid \epsilon$
 - $B \rightarrow aA$

Produção	Transição
S→ aA	δ (S, a) = A
A→ bB	δ (A, b) = B
$A \rightarrow \epsilon$	$\delta (A, \epsilon) = qf$
B → aA	δ (B, a) = A

Conversão GR em AFND-ε

Produção	Transição
S→ aA	δ (S, a) = A
A→ bB	δ (A, b) = B
A→ ε	$\delta (A, \varepsilon) = qf$
B →aA	δ (B, a) = A

Conversão AFND em GR

Conversão AFND em GR

Transição	Produção
_	S→ q0
-	q0→ ε
-	q1→ ε
-	$q2 \rightarrow \epsilon$
δ (q0, a) = q0	q0→aq0
δ (q0, b) = q1	q0→bq1
δ (q1, b) = q1	q1→bq1
δ (q1, c) = q2	q1→cq2
δ (q2, c) = q2	q2→cq2

