Matplotlib

류영표

Matplotlib

Matplotlib 기초

그래프의 종류

Seaborn

Matplotlib basic

Matplotlib Basic

- Figure & Axes
- Axis
- Legend
- Text
- Color
- Face color
- save fig

Matplotlib

- Matplotlib이란?
 - 가장 대표적인 시각화 패키지. 그러나 다소 복잡
 - seaborn, plotnine, Plotly 등 더 다양한 기능을 지원하는 패키지가 많음
- 시작하기 앞서서

[] %matplotlib notebook

→ 쥬피터 노트북 사용시 대화형 시각화 기능 을 사용하기 위해선 코드를 반드시 실행

%matplotlib qt ->별도의 팝업창에 그래프 출력(colab X)

Matplotlib

Figure & Axes

Axes

Figure

그래프 그리기

```
plot([x], y, [fmt], *, data=None, **kwargs)
plot([x], y, [fmt], [x2], y2, [fmt2], ..., **kwargs)
import matplotlib.pyplot as plt
plt.plot([1,2,3,4])
plt.show()
```

[x],[fmt]은 생략가능

```
4.0 - 3.5 - 3.0 - 2.5 - 2.0 - 2.5 - 3.0 - 2.5 - 3.0
```

선 그래프 그리기

```
import matplotlib.pyplot as plt
data = [10,50,20,60,70]
%matplotlib inline
plt.plot(data)
```

<- 그래프 객체 정보 [<matplotlib.lines.Line2D at 0x2052afef308>]

선 그래프 그리기

```
plt.plot(data)
# 객체 정보없이 그래프만 출력
plt.show()
```


[<matplotlib.lines.Line2D at 0x2052ffa3248>]

Matplotlib의 Formating의 종류

Colors

character	color
.p.	blue
'g'	green
'r'	red
'c'	cyan
'm'	magenta
'y'	yellow
'k'	black
'w"	white

Line Styles

character	description
	solid line style
	dashed line style
''	dash-dot line style
1:1	dotted line style

Markers

character	description
	point marker
٠,٠	pixel marker
'o'	circle marker
'v'	triangle_down marker
'^'	triangle_up marker
'<'	triangle_left marker
,>,	triangle_right marker
'1'	tri_down marker
'2'	tri_up marker
'3'	tri_left marker
'4'	tri_right marker
's'	square marker
'p'	pentagon marker
***	star marker
.p.	hexagon1 marker
'н'	hexagon2 marker
.+.	plus marker
'x'	x marker
,D,	diamond marker
'd'	thin_diamond marker
.1.	vline marker
	hline marker

Figure & Axes

The pyplot API

plt.plot(x, y1)

The object-oriented API

fig, ax = plt.subplots()
ax.plot(x, y1)

• xlim, ylim

```
[15] x = np.arange(10)
    y = x+10

    plt.plot(x, y)

plt.show()
```


• ticks, tick labels

```
fig, axs = plt.subplots(1, 3, figsize=(9, 3))

axs[1].set_xticks([0,2,4,6])
axs[1].set_yticks([0,5,10])

axs[2].set_xticklabels(['A', 'B', 'C', 'D', 'E'])
axs[2].set_yticks([0,1,2])
axs[2].set_yticklabels(['a', 'b', 'c'])

plt.show()
```


• 한글 표시

```
import matplotlib
matplotlib.rcParams['font.family'] = 'Malgun Gothic' #맑은 고딕으로 폰트 설정
matplotlib.rcParams['axes.unicode_minus'] = False #마이너스(-) 폰트 깨짐 방지
```

Legend

```
x = np.linspace(-np.pi, np.pi, 201)
                                                      v1 = np.sin(x)
                                                      y2 = np.cos(x)
    fig, ax = plt.subplots()
                                                      fig.ax = plt.subplots()
                                                      ax.plot(x, y1, label = 'sin')
    ax.plot(x, y1, label = 'sin')
                                                      ax.plot(x, y2, label = 'cos')
    ax.plot(x, y2, label = 'cos')
                                                      ax.legend(loc='lower right')
    ax.legend(loc=1)
                                                      plt.show()
    plt.show()
                                                        1.00
D)
     1.00
                                                        0.75
     0.75
                                                        0.50
     0.50
                                                        0.25
                                                        0.00
     0.25
                                                       -0.25
     0.00
                                                       -0.50
     0.25
                                                       -0.75
                                                                                                               sin
    0.50
                                                                                                               cos
                                                       -1.00
     0.75
                                                                               -1
                                                                -3
                                                                       -2
                                                                                        ò
                                                                                                i
                                                                                                       2
                                                                                                               3
     1.00
```

import matplotlib.pyplot as plt

import numpy as np

참고: https://matplotlib.org/3.1.1/api/_as_gen/matplotlib.pyplot.legend.html

Text

- figure title
- axes title
- x-axis label
- y-axis label
- figure text
- axes text
- annotate

Color

```
x = np.arange(-np.pi, np.pi, 0.02)
y1 = np.sin(x)
y2 = np.cos(x)

plt.plot(x, y1, label = 'sin', color= (0.1, 0.3, 0.5))
plt.plot(x, y2, label = 'cos', color='r')
plt.legend()
plt.show()
```


- color 인자를 명시하여 색을 설정 할 수 있음
- 1)matplotlib에서 미리정해둔 값으 로 설정 {'b', 'g', 'r', 'c', 'm', 'y', 'k', 'w'}
 - 2) RGB 값을 튜플로 묶어서 주기
 - 3) 색상팔레트의 값을 string으로 주기

참고: colors

Markers

```
import matplotlib.pyplot as plt

# plt.plot([1, 2, 3, 4], [2, 3, 5, 10], 'bo-') # 파란색 + 실선 + 마커
plt.plot([1, 2, 3, 4], [2, 3, 5, 10], 'bo--') # 파란색 + 점선 + 마커
plt.xlabel('X-Axis')
plt.ylabel('Y-Axis')
plt.show()
```


• Marker 인자를 명시하여 색을 설정 할 수 있음

Colors

character	color
'b'	blue
'g'	green
'r'	red
'c'	cyan
'm'	magenta
'y'	yellow
'k'	black
'w*	white

Line Styles

character	description	
	solid line style	
	dashed line style	
٠٠	dash-dot line style	
	dotted line style	

Markers

character	description	
٠.٠	point marker	
','	pixel marker	
'0'	circle marker	
'v'	triangle_down marker	
***	triangle_up marker	
'¢'	triangle_left marker	
'>'	triangle_right marker	
'1'	tri_down marker	
'2'	tri_up marker	
3	tri_left marker	
'4'	tri_right marker	
's'	square marker	
'p'	pentagon marker	
181	star marker	
'h'	hexagon1 marker	
'н'	hexagon2 marker	
.*.	plus marker	
'x'	x marker	
,D,	diamond marker	
'd'	thin_diamond marker	
1.	vline marker	
	hline marker	

Face Color

• 바탕색

```
x = np.arange(10)
y1 = x
y2 = x**2 - x
fig, axs = plt.subplots(2, 1)
fig.set_facecolor('#c79fef')
axs[0].plot(x, y1)
axs[1].plot(x, y2)
axs[0].set_facecolor('pink')
axs[1].set_facecolor('skyblue')
plt.show()
```


savefig

• plot을 image로 저장

```
fig, ax = plt.subplots()
x = np.arange(10)
y1 = x**2
ax.plot(x, y1, label = 'sin')
fig.savefig('image_matplot_tmp.jpg')
```

그래프의 종류

그래프의 종류

- Line Plot
- Bar Plot
- Histogram
- Scatter Plot
- image

Line Plot

• plot()

```
import numpy as np
import matplotlib.pyplot as plt

%matplotlib inline

x = np.arange(-5, 5, 0.5)
y1 = x
y2 = x **2
y3 = np.sin(x)
y4 = np.cos(x)

plt plot(x,y1)
plt plot(x,y2, marker = 'D')
plt plot(x,y3, color ='r')
plt plot(x,y4, linestyle = 'dashed')
plt.show

<function matplotlib.pyplot.show(*args, **kw)>
```


Line Plot

• plot()

```
plt.plot(x,y1)

plt.figure()
plt.plot(x,y2, marker = 'D')

plt.figure()
plt.plot(x,y3, color ='r')

plt.figure()
plt.plot(x,y4, linestyle = 'dashed')
plt.show()
```


참고:

https://matplotlib.org/3.1.1/api/_as_gen/matplotlib.lines.Line2D.html#matplotlib.lines.Line2D.set marker

Bar Plot

• bar()

```
data = {'사과': 21, '바나나': 15, '배': 5, '키위': 20}
names = list(data.keys())
values = list(data.values())
                                       <BarContainer object of 4 artists>
fig, ax = plt.subplots()
ax.bar(names, values)
                                        20.0
                                        17.5
                                        15.0
                                        12.5
                                        10.0
                                        7.5
                                         5.0
                                         2.5
                                         0.0
                                                 사과
                                                          바나나
                                                                               키위
```

Histogram

• hist()

```
data = np.random.rand(10000)
fig, ax = plt.subplots()
ax.hist(data, bins = 100, facecolor='r')
plt.show()
```


2D Scatter Plot

• Scatter()

```
import matplotlib.pyplot as plt
import numpy as np
np.random.seed(0)
n = 50
x = np.random.rand(n)
y = np.random.rand(n)
plt.scatter(x, y)
plt.show()
```


3D Scatter Plot

• Scatter()

from mpl_toolkits.mplot3d import Axes3D

```
import matplotlib.pyplot as plt
import numpy as np
n = 1000
xmin, xmax, ymin, ymax, zmin, zmax = 0, 20, 0, 20, 0, 50
cmin, cmax = 0, 2
xs = np.array([(xmax - xmin) * np.random.random_sample() + xmin for i in range(n)])
ys = np.array([(ymax - ymin) * np.random.random_sample() + ymin for i in range(n)])
zs = np.array([(zmax - zmin) * np.random.random sample() + zmin for i in range(n)])
color = np.array([(cmax - cmin) * np.random.random sample() + cmin for i in range(n)])
fig = plt.figure(figsize=(6, 6))
ax = fig.add_subplot(111, projection='3d')
ax.scatter(xs, ys, zs, c=color, marker='o', s=15, cmap='Greens')
plt.show()
```


Pie chart

• Pie()

```
import matplotlib.pyplot as plt

ratio = [34, 32, 16, 18]
labels = ['Apple', 'Banana', 'Melon', 'Grapes']

plt.pie(ratio, labels=labels, autopct='%.1f%%')
plt.show()
```


Box Plot

```
import matplotlib.pyplot as plt
import numpy as np
# 1. 기본 스타일 설정
plt.style.use('default')
plt.rcParams['figure.figsize'] = (4, 3)
plt.rcParams['font.size'] = 12
# 2. 데이터 준비
np.random.seed(0)
data a = np.random.normal(0, 2.0, 1000)
data b = np.random.normal(-3.0, 1.5, 500)
data_c = np.random.normal(1.2, 1.5, 1500)
# 3. 그래프 그리기
fig, ax = plt.subplots()
ax.boxplot([data_a, data_b, data_c])
ax.set ylim(-10.0, 10.0)
ax.set xlabel('Data Type')
ax.set_ylabel('Value')
plt.show()
```


Violin Plot

```
# 기본 사용
import matplotlib.pyplot as plt
import numpy as np
# 1. 기본 스타일 설정
plt.style.use('default')
plt.rcParams['figure.figsize'] = (4, 3)
plt.rcParams['font.size'] = 12
# 2. 데이터 준비
np.random.seed(0)
data_a = np.random.normal(0, 2.0, 1000)
data_b = np.random.normal(-3.0, 1.5, 500)
data c = np.random.normal(1.2, 1.5, 1500)
# 3. 그래프 그리기
fig, ax = plt.subplots()
violin = ax.violinplot([data_a, data_b, data_c], positions=[2, 3, 4])
ax.set ylim(-10.0, 10.0)
ax.set_xticks([1, 2, 3, 4, 5])
ax.set_xlabel('Data Type')
ax.set_ylabel('Value')
plt.show()
```


Image

```
[48] import matplotlib.image as mpimg

img = mpimg.imread('img_.jpeg')
print(type(img))

c <class 'numpy.ndarray'>

imgplot = plt.imshow(img)
print(type(imgplot))

<class 'matplotlib.image.AxesImage'>
```


Seaborn

Seaborn 의 기초개념

- seaborn은 matplotlib을 기반으로 다양한 색 테마, 차트 기능을 추가한 라이브러 리입니다
- matplotlib에 의존성을 가지고 있습니다
- matplotlib에 없는 그래프(히트맵, 카운트플랏 등)을 가지고 있습니다

설치

```
import seaborn as sns
print("Seaborn version : ", sns.__version__)|
```

Seaborn version: 0.9.0

Pip install seaborn

Seaborn의 종류

참고: https://seaborn.pydata.org/tutorial.html

Seaborn_relplot

<seaborn.axisgrid.FacetGrid at 0x1bd18b8b390>

Seaborn_relplot

Seaborn_catplot

<seaborn.axisgrid.FacetGrid at 0x1bd1acb92e8>

Seaborn_catplot

Seaborn_pairplot

iris = sns.load_dataset("iris")
sns.pairplot(iris)

<seaborn.axisgrid.PairGrid at 0x1bd1b07f4e0>

Seaborn_pairplot

```
g = sns.PairGrid(iris)
g.map_diag(sns.kdeplot)
g.map_offdiag(sns.kdeplot, n_levels=6);
 sepal_length
 petal_length
     0
     3
 petal_width
                   sepal_length
                                                              sepal_width
                                                                                                        petal_length
                                                                                                                                                    petal_width
```

Seaborn_Heatmap

```
import matplotlib.pyplot as plt
flights = sns.load_dataset("flights")
flights = flights.pivot("month", "year", "passengers")
plt.figure(figsize=(10, 10))
ax = sns.heatmap(flights, annot=True, fmt="d")
```


plotnine

import plotnine

plotnine은 R의 ggplot2에 기반해 그래프를 그려주는 라이브러리입니다

!pip install plotnine

!pip3 install plotnine

Folium

- Folium은 지도 데이터(Open Street Map)에 leaflet.js를 이용해 위치 정보를 시각 화하는 라이브러리
- 자바스크립트 기반이라 interactive하게 그래프를 그릴 수 있음.
- 그 외에도 pydeck, ipyleaflet 등으로 지도 시각화를 할 수 있습니다

!pip install folium

참고: 공식문서(http://python-visualization.github.io/folium/)

: 서울지역 5대 강력범죄 데이터 분석(https://github.com/HyunSu-

Jin/seoul_crime/blob/master/seoul_crime.ipynb)

Folium

Plot.ly

- Plotly는 Interactive 그래프를 그려주는 라이브러리
- Scala, R, Python, JavaScript, MATLAB 등에서 사용할 수 있음.
- 시각화를 위해 D3.js를 사용하고 있음
- 사용해보면 사용이 쉽고, 세련된 느낌을 받음
- Plotly cloud라는 유료 모델이 있음.

pip install plotly

참고: https://plotly.com/python/ipython-notebook-tutorial/

pyecharts

- Baidu 에서 데이터 시각화를 위해 만든 Echarts.js의 파이썬 버전
- 정말 다양한 그래프들이 내장되어 있어 레포트를 작성할 때 좋다.
- 자바스크립트 기반이기 때문에 Interactive한 그래프를 그려줌.

```
pip3 install pyecharts
```

참고: https://pyecharts.org/#/en-us/