Generalized Poincaré-Hopf bifurcation and galloping instabilities in traveling waves

Benjamin Texier, Kevin Zumbrun Indiana University

Plan

- 1. Combustion, ondes de détonations : phénomènes physiques.
- 2. Equations modèles.
- 3. Equations différentielles avec invariance de groupe : bifurcation de Poincaré-Hopf généralisée.
- 4. Application à des ondes progressives solutions d'EDP simples.

Instabilités pour des ondes de détonation

Mélange explosif gazeux dans un cylindre. Ondes de compression.

Instabilités :

1D : "galloping waves" : variations périodiques de la vitesse d'une onde de détonation sous l'effet de perturbations longitudinales,

3D : "spinning waves" : structure 3D complexe, hélicoidale.

But : Description mathématique des "galloping waves", pour des modèles simples.

Equations modèles

$$\partial_t u + \partial_x f(u) = \partial_x (B(u)\partial_x u) + kq\varphi(u)z,$$

$$\partial_t z = \partial_x (D(u,z)\partial_x z) - k\varphi(u)z.$$

z fraction massique de réactant non brûlé. φ fonction d'activation. B,D : coefficients de diffusion. q chaleur dégagée par la réaction, k taux de réaction.

Modèle complexe : $u = (\rho, \rho u, e)$ (Navier-Stokes).

Modèle simplifié : u scalaire (Majda, SIAM J. Appl. Math. 81),

B = 1, D = 0.

Modèle intermédiaire : Navier-Stokes avec B,D=0 : pas de

diffusion (Zeldovich-von Neumann-Doring 40).

Modèle simplifié de Majda

$$\partial_t u + \partial_x f(u) = \partial_x^2 u + kq\varphi(u)z,$$

 $\partial_t z = -k\varphi(u)z.$

Hypothèses : f' > 0, f" > 0, et

$$\varphi(u) = \begin{cases} 0, & u \le u_i, \\ > 0, & u \ge u^i. \end{cases}$$

Existence d'ondes progressives $u_-, u_+, s(u_+)$. Détonations : ondes de compression : $u_- > u_+$. Détonations fortes : choc de Lax :

$$f'(u_+) < s < f'(u_-).$$

Résultats antérieurs

- Stabilité nonlinéaire d'ondes de détonations fortes pour le modèle de Majda pour q petit (Liu-Ying, SIAM J. Math. Analysis 95).
- Indice de stabilité Γ (basé sur fonction d'Evans, Lyng-Zumbrun 03). Condition nécessaire pour stabilité spectrale :

$$\Gamma > 0$$
.

Vérifiée par le modèle de Majda.

Instabilités?

 Γ ne détecte que la parité du nombre de valeurs propres de partie réelle positive.

Position du problème

Sur un modéle simple (scalaire, une variable d'espace) : décrire les ondes galopantes comme une bifurcation de type Hopf autour d'une onde progressive de détonation.

Hypothèse sur le spectre de l'opérateur linéarisé autour de l'onde progressive : deux valeurs propres complexes conjuguées traversent l'axe imaginaire pur pour une valeur critique d'un petit paramètre.

Par ailleurs : invariance par translation : 0 est valeur propre.

Dessin spectral à compléter.

Stabilité d'ondes progressives

Réaction de convection-diffusion-réaction :

$$\partial_t \tilde{u} = \mathcal{F}(\varepsilon, \tilde{u}) = \partial_x^2 \tilde{u} + f(\varepsilon, \tilde{u}, \partial_x \tilde{u}). \tag{1}$$

 $\bar{u}^{\varepsilon}(x)$ onde stationnaire :

$$\mathcal{F}(\varepsilon, \bar{u}^{\varepsilon}) = 0. \tag{2}$$

Invariance de groupe : $\tilde{\Phi}_{\alpha}(v) := v(x - \alpha)$.

Linéarisation des équations autour de l'onde progressive : $u:=\tilde{u}-\bar{u},$ solution de

$$\partial_t(u,\varepsilon) + L(u,\varepsilon) = G(\bar{u},u,\varepsilon).$$
 (3)

L opérateur linéarisé autour de \bar{u} .

Quelles hypothèses spectrale pour L ? Bifurcation de Poincaré Hopf généralisée. Spectre essentiel ?

Remarques sur l'équation linéarisée

Invariance de groupe :

$$\Phi_{\alpha}u(t,x) := u(t,x+\alpha) + (\bar{u}^{0}(x+\alpha) - \bar{u}^{0}(x)).$$

0 est valeur propre :

$$\frac{d\mathcal{F}}{d\tilde{u}}(\varepsilon, \bar{u}^{\varepsilon})\partial_x \bar{u}^{\varepsilon} = 0.$$

Equation différentielle avec invariance de groupe

Equation $X' = F(X), X \in \mathbb{R}^n$, admettant une invariance de groupe (additif) Φ_{α} :

$$\Phi_{\alpha}(\Psi(t, t_0, X_0)) = \Psi(t, t_0, \Phi_{\alpha}(X_0)),$$

 Ψ flot de l'équation. Hypothèse :

$$\frac{d\Phi_{\alpha}}{d\alpha}_{|\alpha=0} \neq 0.$$

Lemme 1 (TZ) Il existe un difféo local T au voisinage de 0 tel que toute trajectoire X s'écrive $X = T(Y, \alpha), Y \in \mathbb{R}^{n-1}, \alpha \in \mathbb{R}, et$

$$Y'(t) = G(Y(t)), \quad \alpha'(t) = h(Y(t)).$$

P. Olver, Applications of Lie Groups to differential equations, Springer GTM 107.

Exemple

Equation linéaire X' = AX, trajectoires au voisinage de $(0, \dots, 0, 1)$. Changement de variable

$$X = (x_1, \dots, x_n) \to (\frac{x_1}{x_n}, \dots, \frac{x_{n-1}}{x_n}, 1).$$

Le groupe additif $\Phi_{\alpha}X = e^{\alpha}X$ laisse invariante l'équation.

Les équations pour

$$Y := \left(\frac{x_1}{x_n}, \dots, \frac{x_{n-1}}{x_n}\right) \quad \text{et } \alpha := -\ln x_n$$

sont découplées.

Vérification par un calcul explicite.

Bifurcation de Poincaré-Hopf dans \mathbb{R}^2

 $X' = F(\varepsilon, X), X \in \mathbb{R}^2$, $(\varepsilon, 0)$ droite de points critiques : $F(\varepsilon, 0) = 0$. Hypothèse : le spectre de $\partial_x F(\varepsilon, 0)$ composé de deux valeurs propres conjuguées $\lambda(\varepsilon), \bar{\lambda}(\varepsilon) = \gamma(\varepsilon) \pm i\tau(\varepsilon)$, telles que

$$\gamma(0) = 0, \quad \tau(0) \neq 0, \quad (d\gamma)/(d\varepsilon)(0) > 0.$$

Théorème 1 (Poincaré-Andronov-Hopf) For a > 0, assez petit, il existe une unique orbite périodique X_a non triviale de l'équation, de taille initiale $a: |X_a(0)| = a$, pour la valeur $\varepsilon(a)$ du paramètre. La fonction $a \mapsto \varepsilon(a)$ est C^1 , le signe de $d\varepsilon/da$ détermine la stabilité de X_a .

Hale, Koçak (Springer).

Bifurcation de Poincaré-Hopf dans \mathbb{R}^n

 $X' = F(\varepsilon, X), X \in \mathbb{R}^n$, $(\varepsilon, 0)$ droite de points critiques : $F(\varepsilon, 0) = 0$. Hypothèse : le spectre de $\partial_x F(\varepsilon, 0)$ contient deux valeurs propres conjuguées $\lambda(\varepsilon), \bar{\lambda}(\varepsilon) = \gamma(\varepsilon) \pm i\tau(\varepsilon)$, telles que

$$\gamma(0) = 0, \quad \tau(0) \neq 0, \quad (d\gamma)/(d\varepsilon)(0) > 0,$$

et le reste du spectre est contenu dans le demi-plan $\{z, \Re z < 0\}$.

Théorème 2 (Poincaré-Andronov-Hopf) Il existe un voisinage \mathcal{U} de 0 dans une sous-variété de \mathbb{R}^n tel que pour tout $X_0 \in \mathcal{U}$, il existe une unique orbite périodique avec donnée initiale X_0 .

De plus : stabilité (sur la variété \Leftrightarrow sur \mathbb{R}^n) exprimée par une condition effectivement calculable; les seules orbites périodiques sont celles décrites ci-dessus.

Preuve

- a) Définition d'un flot réduit sur une variété centrale dans un voisinage de l'origine.
- b) Propriétés spectrales du flot réduit : elles vérifient les hypothèses PAH $\mathbb{R}^2.$
- c) Examen de la stabilité : sur la variété \Leftrightarrow sur \mathbb{R}^n .

Marsden, McCraken (Springer).

Bifurcation de Poincaré-Hopf généralisée dans \mathbb{R}^n

Même situation spectrale qu'au théorème précédent. De plus :

- le noyau de $\partial_x F(\varepsilon,0)$ est non trivial,
- invariance de groupe Φ_{α} ,
- $(d\Phi_{\alpha})/(d\alpha)(\alpha=0)$ non nul et non transverse au noyau.

Théorème 3 (TZ) Il existe un voisinage \mathcal{U} de 0 dans une sous-variété de \mathbb{R}^n tel que pour tout $X_0 \in \mathcal{U}$, l'orbite $t \to X(t)$ qui a pour donnée initiale X_0 est telle que

$$t \to \Phi_{-\alpha(t)} X(t)$$

est périodique, avec $\alpha(t) = \alpha^0 t + \beta(t)$, $\alpha^0 \in \mathbb{R}$ et β périodique.

Preuve

- a) Découplage des coordonnées transverses Y et longitudinales α par le Lemme $1:Y'=G(\varepsilon,Y),\ \alpha'=h(\varepsilon,Y).$
- b) $\partial_x G(\varepsilon,0)$ satisfait les hypothèses de PAH \mathbb{R}^n . Existence d'orbites périodiques.
- c) Coordonnée longitudinale correspondante :

$$\alpha(t) = \alpha(0) + \int_0^t h(\varepsilon, Y(t')) dt' = \alpha^0 t + \beta(t).$$

d) Dans les variables de départ :

$$X(t) = \Phi_{\alpha(t)}(Y(t), 0).$$

Un résultat classique de stabilité

Théorème 4 Soit \bar{u} une onde progressive qui converge exponentiellement vers u_{\pm} en $\pm \infty$. Si le spectre de $L(u_{\pm})$ est strictement à gauche de l'axe imaginaire pur, et si \bar{u} est monotone, alors \bar{u} est orbitalement stable.

Preuve : Spectre essentiel de $L(\bar{u}) \leftrightarrow$ spectre de $L(u_{\pm})$. Monotonie de $\bar{u}:0$ est la plus grande valeur propre.

Exemple: convection-diffusion

$$\partial_t u + \partial_x (f(u)) = \partial_x^2 u,$$

Onde stationnaire \bar{u} . RH : $f(u_{-}) = f(u_{+})$.

$$L(\bar{u})u = \partial_x^2 u - f'(u_{\pm})\partial_x u.$$

 $\sigma(L(u_{\pm})) = \{-k^2 - if'(u_{\pm})k, k \in \mathbb{R}\}$. Pas de trou spectral.

Normes à poids

Cadre précédent. Hypothèse : choc de Lax :

$$f'(u_+) < 0 < f'(u_-).$$

Alors il existe un poids $w>0, w\to w_\pm, x\to\pm\infty,$ $w_-<0, w_+>0,$ tel que

$$v := e^{\int_0^x w} u,$$

et l'opérateur pour v a un trou spectral.

"Convection-enhanced stability". Sattinger (Adv. Math. 76).

Hypothèses

- Les états finaux u_- , u_+ de l'onde stationnaire sont strictement spectralement stables au sens des normes à poids.
- Deux valeurs propres complexes traversent l'axe imaginaire pur.

$$||f||_{L^2_\eta} := ||e^{\eta(1+|x|^2)}f(x)||_{L^2}.$$

Résultat

Théorème 5 (TZ) Sous les hypothèse précédentes, pour a > 0 assez petit et C > 0 assez grand, il existe une fonction C^1 $a \mapsto \varepsilon(a)$, et une famille de solutions

$$u^{a}(t,x) = v^{a}(t,x - \alpha^{a}(t)), \quad \alpha^{a}(t) = \sigma^{a}t + \theta^{a}(t),$$

 $où \sigma^a \in \mathbb{R} \ et \ \theta^a \ est \ p\'eriodique, \ et$

$$||v(0) - \bar{u}^0||_{H^2_{\eta}} = a, \quad ||v^a(t) - \bar{u}^0||_{H^2_{\eta}} \le Ca.$$

De plus : stabilité orbitale de v^a donné par le signe de $d\varepsilon/da$.

Preuve

- a) Factorisation de la valeur propre 0 (réduction).
- b) Construction d'une variété centrale (troncature, bornes sur le semi-groupe).
- c) Bifurcation de Poincaré-Hopf sur la variété de dimension 2+1.