Modelo de Ising en 2-D, usando CUDA

Jorge Fernandez-de-Cossio-Diaz

12 de marzo de 2019

Resumen

Realizamos una simulación de Monte Carlo del modelo de Ising en 2 dimensiones usando CUDA. Comparamos la magnetización simulada con la solución analítica encontrada por Onsager en el límite termodinámico.

Introducción

Este proyecto de CUDA implementa el algoritmo de Metrópolis para el modelo de Ising en 2-dimensiones.

Este modelo consiste de $N=L^2$ espines que toman valores $s_i=\pm 1$, colocados en una red cuadrada de dimensiones $L\times L$. La energía de una configuración de este sistema es:

$$E = -\sum_{(ij)} s_i s_j \tag{1}$$

donde (ij) recorre los pares de espines vecinos en la red.

En una simulación de Metrópolis de la dinámica de este sistema, un espín i cambia de signo con una probabilidad

$$\min\{1, \exp(-\beta \Delta E)\}\tag{2}$$

donde ΔE es el costo energético del cambio de signo del espín i:

$$\Delta E = 2\sum_{j \in \mathcal{N}(i)} s_i s_j \tag{3}$$

 $\beta = 1/T$ es el inverso del a temperatura (en nuestras unidades la constante de Boltzmann es 1) y $\mathcal{N}(i)$ es el conjunto de espines vecinos a i en la red cuadrada. Se define la magnetización de una configuración de espines como:

$$m = \frac{1}{N} \sum_{i} s_i \tag{4}$$

Este sistema fue resuelto analícamente por Lars Onsager, en el límite termodinámico $N\to\infty$. Onsager demostró la existencia de una transición de fase a la temperatura crítica:

$$T_c = \frac{2}{\log(1+\sqrt{2})} \approx 2,269185$$
 (5)

Figura 1: Magnetización del sistema a diferentes temperaturas obtenida por simulaciones de Monte Carlo, comparada con la magnetización analítica (6).

o $\beta_c = 1/T_c \approx 0,440687$. Para $\beta \leq \beta_c$, la magnetización es cero. Para $\beta > \beta_c$, la magnetización es distinta de cero, y tiende a 1 a medida que β crece. Onsager encontró la siguiente expresión analítica para la magnetización, cuando $\beta \geq \beta_c$:

$$m = [1 - \sinh^{-4}(2\beta)]^{1/8} \tag{6}$$

Programamos una simulación de Monte Carlo de este sistema en CUDA (fichero ${\tt cuda.cu}$), con N=1024 espines (L=32). El comportamiento se grafica en la figura 1, que muestra la solución analítica y la magnetización encontrada en las simulaciones.

La discrepancia entre la solución analítica y las simulaciones se debe a que la solución de Onsager asume que el sistema es infinito $(N \to \infty)$ mientras que las simulaciones son necesariamente en un sistema finito (N=1024).

Para reproducir estos resultados, compilamos ising.cu y lo ejecutamos con los siguientes comandos:

A partir de estos datos (ising.txt), la figura 1 (Ising.png) fue obtenida con el Notebook de Mathematica plot.nb.