TP 15 Force des acides et des bases

Objectifs:

- Etudier l'influence de la dilution de solutions acides ou basiques sur le pH à l'aide d'un pH-mètre.
- Distinguer un acide fort d'un acide faible.
- Estimer la valeur d'une constante d'acidité

Données:

Produit ionique de l'eau à 25°C : Ke =
$$\frac{[H_3O^+][HO^-]}{(c0)^2}$$

$$Ke = 1,00.10^{-14}$$

I - Solution acide 30

1) Préparation des solutions diluées

La solution-mère S_0 sera de l'acide chlorhydrique (H_3O^+ , Cl^-) de concentration molaire $c_0 = 10^{-3}$ mol. L^{-1} .

Récupérer au bureau prof, avec un bécher, environ 40 mL de cette solution-mère S₀.

1.1. La solution diluée S₁.

- Avec la pipette jaugée adaptée, prélever un volume V₀ = 5,0 mL de la solution-mère S₀.
- Introduire ce prélèvement dans une fiole jaugée de volume V₁ = 50,0 mL puis le diluer avec de l'eau distillée jusqu'au trait de jauge.
- Boucher puis agiter l'ensemble afin d'homogénéiser la solution diluée S₁ de soude préparée.

1.2. La solution diluée S2.

A partir de la même solution-mère S_0 , réaliser une deuxième solution-fille S_2 , le volume V_0 étant maintenant $V_0 = 1,0$ mL et le volume fille $V_2 = 100,0$ mL

2) Mesures du pH 30

Utilisation du pH-mètre (pour des solution acides)

Un pH-mètre doit être réglé selon les solutions qu'il devra mesurer: on dit qu'il est "étalonné".

- A l'aide de la notice, procéder une seule fois à l'étalonnage du pH-mètre en utilisant directement les solutions tampon pH =
7 et pH = 4.

L'extrémité de la sonde (l'électrode) du pH-mètre comporte une boule en verre qui est fragile !

Entre deux mesures, rincer la sonde pH-métrique à l'eau distillée puis la sécher délicatement avec du papier absorbant.

- -Disposer le bécher avec le produit à tester sur un agitateur magnétique, puis introduire un barreau aimanté.
- -Mettre en fonctionnement l'agitation magnétique de façon modérée.
- -Immerger la sonde pH-métrique dans le produit à tester sur une hauteur d'environ 2 cm.
- -Attendre que la valeur du pH qui s'affiche sur le pH-mètre soit stable
 - Avec le pH-mètre, mesurer le pH des trois solutions dans cet ordre : S₂, S₁, puis S₀ et compléter le tableau ci-contre.

Calculer la concentration des solution S₁ et S₂

solution acide	S ₂	S ₁	S ₀	
Valeur de pH		7,18		
Concentration en quantité de matière c (mol.L ⁻¹)	10	10 1	10-3	
Concentration en ions oxonium $[H_3O^+_{(aq)}]$ (mol.L $^{-1}$)				

- Q1.1. Ces solutions sont-elles acides ? Justifier.
- Q1.2. Comment évolue le pH d'une solution acide en fonction de la dilution ?
- Q.1.3. Rappeler la relation entre le pH et la concentration en ions oxonium [H₃O⁺_(ao)].
- Q1.4. Calculer la concentration en ions oxonium de chaque solution. Compléter le tableau

II. Le pH dépend-il seulement de la concentration des solutions acides ?

Il existe de nombreux composés acides. Pour une même concentration en quantité de matière c, ont-ils le même effet sur le pH d'une solution aqueuse ?

➤ A l'aide du pH-mètre, mesurer le pH des solutions acides suivantes, ayant toutes la même concentration en quantité de matière c = 10⁻³ mol.L⁻¹:

acide chlorhydrique (mesure déjà réalisée au l.), acide nitrique, acide lactique, acide benzoïque.

Solution $(c = 10^{-3} \text{ mol.L}^{-1})$	Acide chlorhydrique	acide nitrique	Acide lactique	Acide benzoïque	
formule chimique	H₃O⁺, Cl	H ₃ O⁺ _, NO ₃ ⁻	H ₃ C-CH-C		
рН	- 3,03		3,47	3,68	
Concentration en ions oxonium [H ₃ O ⁺ _(aq)] (mol.L ⁻¹)					

- Q.2.1. Quel groupe caractéristique l'acide lactique et l'acide benzoïque ont-ils en commun ?
- Q.2.2. Quelles sont les solutions les plus acides ? Justifier.
- Q.2.3. Etablir le tableau d'avancement de la réaction entre un acide AH et la base H_2O . En déduire l'expression de l'avancement maximal x_{max} de cette réaction puis la concentration maximale en ion oxonium $[H_3O^+_{(aq)}]_{max}$ obtenue si la réaction est totale.
- Q.2.4. Comparer la concentration en soluté apporté (c = $1,0.10^{-3}$ mol.L⁻¹) et la concentration en ions oxonium [H₃O⁺_(aq)] pour les différents acides
- Q.2.5. Comment distinguer les acides forts des acides faibles ?
- Q.2.6. Proposer une explication au fait qu'il existe deux sortes d'acide.

III/ Cas des bases /5

Vous avez une solution d'hydroxyde de sodium et une solution d'ammoniac de concentration en quantité de matière de 1,0.10⁻³mol.L⁻¹.

- Mesurer le pH de ces solutions.
- Q.3.1. Calculer la concentration en ions oxonium [H₃O*_(aq)] et en déduire la concentration en ions hydroxyde [HO*_(aq)].
- Q.3.2. Comparer la concentration en ions hydroxyde [HO*_(aq)] et la concentration en quantité de matière en soluté apporté (c =1,0.10*3mol.L*¹). Que pouvez-vous en conclure ?

IV/ Détermination d'une constante d'acidité 30/45

Protocole:

Préparer 7 mélanges des solutions A d'acide éthanoïque CH₃COOH (aq) et B d'éthanoate de sodium (Na⁺ (aq) , CH₃COO (aq)) en prélevant les volumes V_A et v_B indiqués dans e tableau ci-dessous.

Homogénéiser ces mélanges.

mélange	M ₁	(M ₂)	M ₃	M ₄	M ₅	M ₆	M ₇
Volume V _A de solution A (mL)	5,0	10,0 5	20,0	25,0	30,0	40,0 0	45,0
Volume V _B de	45,0	40,0	30,0	25,0	20,0	10,0 †	5,0
solution B (mL)						10,0	0,0
рН	1						
$x = \log\left(\frac{V_B}{V_A}\right)$				7			

May nH:

Mesurer le pH de chacun de ces mélanges, compléter le tableau.

ightharpoonup Calculer pour chacun de ces mélanges x = log ($\frac{V_B}{V_A}$) et compléter le tableau.

> Tracer l'évolution du pH en fonction de x et ajouter la droite-modèle.

Q.4.1 Mettre en œuvre le protocole.

Q.4.2. On suppose que l'acide éthanoïque et l'ion éthanoate ne réagissent pas sur l'eau (c'est-à-dire que leurs concentrations dans les solutions A et B sont égales à c) et que leur quantités de matière ne changent pas lors du mélange des solutions.

a. Exprimer leurs concentrations à l'équilibre dans les mélange effectués, [CH3COO] et [CH3COOH] VB.

b. Montrer que log ($\frac{\rm [CH_3COO^-]\acute{e}q}{\rm [CH_3COOH]\acute{e}q}$) = log ($\frac{V_B}{V_A}$)

Q.4.3. Montrer que le graphe obtenu est en accord avec la relation :

$$pH = pK_A + log \left(\frac{[CH_3COO^-]\acute{eq}}{[CH_3COOH]\acute{eq}} \right)$$

Q.4.4. En déduire la valeur du pK_A du couple étudié.

Bilan:

Donner le diagramme de prédominance du couple étudié.

Comparer la précision de la valeur de pK_A déterminé grâce à ce protocole et celle d'une valeur de pK_A obtenue par une seule mesure de pH d'un mélange unique mélange d'acide et de base conjugués.