STA200C HW4

Reference:

- Generalizations of the Familywise Error Rate by E. L. Lehmann and Joseph P. Romano https://arxiv.org/pdf/math/0507420.pdf
- The control of the false discovery rate in multiple testing under dependency by Yoav Benjamini and Daniel Yekutieli https://projecteuclid.org/euclid.aos/1013699998

1. Q1

Fix any P and suppose H_i with $i \in I = I(P)$ are true and the remainder false, with |I| denoting the cardinality of I. Let V be the number of false rejections. Then, by Markov's inequality,

$$P(V \ge k) \le \frac{E(V)}{k}$$

$$= \frac{E(\sum_{i \in I(P)} I_{p_i \le k\alpha/n})}{k}$$

$$= \frac{P(p_i \le k\alpha/n)}{k}$$

$$\le \sum_{i \in I(P)} \frac{k\alpha/n}{k}$$

$$= |I(P)| \frac{\alpha}{n}$$

$$\le \alpha.$$

2. Q2

Fix any P and let I(P) be the indices of the true null hypothesis. Assume $|I(P)| \ge k$ or there is nothing to prove. Order the p-values corresponding to the |I(P)| true null hypothesis; call them

$$\hat{q}_{(1)} \le \dots \le \hat{q}_{|I(P)|}.$$

Let j be the smallest (random) index satisfying $\hat{p}_{(j)} = \hat{q}_{(k)}$, so

$$k \le j \le n - |I(P)| + k \tag{1}$$

because the largest possible index j occurs when all the smallest p-values cooresponding to the n-|I(P)| false null hypotheses and the next |I(P)| p-values correspond to the true null hypotheses. So $\hat{p}_{(j)} = \hat{q}_{(k)}$. Then our modified Holm procedure commits at least k false rejections if and only if

$$\hat{p}_{(1)} \le \alpha_1, \qquad \hat{p}_{(2)} \le \alpha_2, \qquad \dots, \qquad \hat{p}_{(j)} \le \alpha_j$$

which certainly implies that

$$\hat{q}_{(k)} = \hat{p}_{(j)} \le \alpha_j = \frac{k\alpha}{n+k-j}$$

But by (1),

$$\frac{k\alpha}{s+k-j} \le \frac{k\alpha}{|I(P)|}.$$

So the probability of at least k false rejections is bounded above by

$$P\left(\hat{q}_{(k)} \le \frac{k\alpha}{|I(P)|}\right).$$

By result of Question 1 the chance that the kth largest among I(P) p-values is less than or equal to $k\alpha/|I(P)|$ is less than of equal to α .

3. Q3 Let U_1, \ldots, U_n be i.i.d. uniform random variable on [0, 1]. Then U_i 's satisfy

$$P(U_i \le \alpha) \le \alpha.$$

The set of U_i 's can be considered as the p-values of n hypotheses where all null hypothesis is true and those p-values are independent. We can apply BH procedure with α level to those p-values. Let R be the number of rejected hypotheses. Then

$$FDP = \begin{cases} 1 & \text{if } R \ge 1\\ 0 & \text{if } R = 0 \end{cases}$$

Notice that $P(U_{(i)} \ge i\alpha/n, i = 1, ..., n) = P(R = 0)$. Therefore

$$P(U_{(i)} \ge i\alpha/n, i = 1, ..., n) = P(R = 0)$$

$$= 1 - P(R \ge 1)$$

$$= 1 - E(FDP)$$

$$= 1 - FDR$$

$$> 1 - \alpha.$$

4. Q4 Let

$$C_r^{(1)} = \left\{ p_{(1)}^{(1)}, \dots, p_{(r-1)}^{(1)} \le \frac{qr}{n}, p_{(r)}^{(1)} > \frac{q(r+1)}{n}, \dots, p_{(n-1)}^{(1)} > q \right\}.$$

Let $0 < i < j \le n$.

When $C_i^{(1)}$ happens,

$$p_{(1)}^{(1)}, \dots, p_{(i-1)}^{(1)} \le \frac{qi}{n}, p_{(i)}^{(1)} > \frac{q(i+1)}{n}, \dots, p_{(n-1)}^{(1)} > q$$

Then we have $p_{j-1}^{(1)} > \frac{qj}{n}$, but not $p_{j-1}^{(1)} \le \frac{qj}{n}$, i.e. $C_j^{(1)}$ does not happen. When $C_j^{(1)}$ happens,

$$p_{(1)}^{(1)}, \dots, p_{(j-1)}^{(1)} \le \frac{qj}{n}, p_{(j)}^{(1)} > \frac{q(j+1)}{n}, \dots, p_{(n-1)}^{(1)} > q$$

Then we have $p_i^{(1)} \leq \frac{q(i+1)}{n}$, but not $p_i^{(1)} > \frac{q(i+1)}{n}$, i.e. $C_i^{(1)}$ does not happen.

Therefore, $C_i^{(1)}$ and $C_j^{(1)}$ are disjoint for any i < j.

Let $0 < j \le n$. Suppose $\mathbf{p} \in C_j^{(1)}$, i.e.,

$$p_{(1)}^{(1)}, \dots, p_{(j-1)}^{(1)} \le \frac{qj}{n}, p_{(j)}^{(1)} > \frac{q(j+1)}{n}, \dots, p_{(n-1)}^{(1)} > q$$

Consider a vector \mathbf{q} such that $q_k \geq p_k$ for all $k = 1, \ldots, n$. We know that $q_{(k)} \geq p_{(k)}$ for all $k = 1, \ldots, n$. Firstly we have

$$q_{(k)}^{(1)} \ge p_{(k)}^{(1)} > \frac{q(k+1)}{n}$$
 for all $k = j, \dots, n$.

Then we find the smallest i satisfying

$$q_{(k)}^{(1)} > \frac{q(k+1)}{n}$$
 for all $k = i, \dots, j$.

Such i must exist because j is a candidate. Since i is the smallest index satisfying the above inequality, i-1 would give the below inequalities

$$q_{(1)}^{(1)} \le q_{(2)}^{(1)} \le \dots \le q_{(i-1)}^{(1)} \le \frac{qi}{n}$$

Therefore, $\mathbf{q} \in C_i^{(1)}$.

We have shown that: if $\mathbf{p} \in C_j^{(1)}$ and $\mathbf{q} \geq \mathbf{p}$ pointwisely, then $\mathbf{q} \in C_i^{(1)}$ for some $i \leq j$. In other words, if $\mathbf{p} \in C_j^{(1)}$ and $\mathbf{q} \geq \mathbf{p}$, then $\mathbf{q} \in C_1^{(1)} \cup \cdots \cup C_j^{(1)}$.