Math 131AH: Homework #3

Due on February 1, 2022

Professor Marek Biskup

Nakul Khambhati

Problem 1

Recall $\forall m, n \in \mathbb{N}$ we define $m^0 = 1$ and $m^{S(n)} = mm^n$.

- 1. Fix $s \in \mathbb{N}$. We will prove the statement by induction on r. $P_0: m^{0+s} = m^s = 1m^s = m^0m^s$. Assume P_r . Let's prove P_{r+1} : $m^{S(r)+s} = m^{S(r+s)} = mm^{r+s} = mm^rm^s = m^{S(r)}m^s$. By induction, the statement follows for all $r \in \mathbb{N}$.
- 2. Now, fix r and proceed by induction on s. $P_0: m^{r0} = m^0 = 1 = (m^r)^0$. Assume P_s and prove $P_{s+1}: m^{rS(s)} = m^{rs+r} = m^{rs}m^r = (m^r)^s m^r = (m^r)^{S(s)}$. By induction, the result follows for all $s \in \mathbb{N}$.

Problem 2

We will prove this by proposing some fact about A which we will prove for all $n \in \mathbb{N}$. Let P_n be the statement: If A contains an integer k where $0 \le k \le n$ then, A has a minimal element. P_0 is clear as if $0 \in A$ then 0 is the minimal element. Now assume P_n . We show P_{n+1} . Assume A contains some k such that $0 \le k \le n+1$. We now deal with cases: If there does not exist any $a \in A$ such that $0 \le a \le n$ then we must have k = n+1 which would then be the minimal element in A. On the other hand, if $\exists a : 0 \le a \le n$ then by the inductive hypothesis, A has a minimal element. By induction we have proved P_n for all $n \in \mathbb{N}$. Since we are given that A is nonempty, we can say that A contains some integer $k : 0 \le k \le m$ for some $m \in \mathbb{N}$. As a result, A has a minimal element.

Problem 3

We will use slightly different notation to prove that this relation is well defined. Assume that $[(m,n)] \sim [(m',n')]$ and $[(k,l)] \sim [(k',l')]$. Further assume that $[(m,n)] \leq [(k,l)]$. We are required to show that $[(m',n')] \leq [(k',l')]$.

First let's summarize our assumptions: m+n'=m'+n, k+l'=k'+l and $m+l\leq n+k$. We need to show $m'+l'\leq n'+k'$. In other word, there exists some $a\in\mathbb{N}$ such that n+k=m+l+a. We need to construct some $a'\in\mathbb{N}: n'+k'=m'+l'+a'$. By adding some of the above equations, we get n+k+m+n'+k'+l=m+l+a+m'+n+k+l'. Injectivity of addition allows us to cancel k,l,m,n from both sides leaving us with n'+k'=m'+l'+a. So in fact, the required a' is a and this makes the relation well defined.

First we show that the relation is a partial order:

- 1. By commutativity, m + n = n + m = n + m + 0 so $[(m, n)] \leq [(m, n)]$.
- 2. Assume that $[(m,n)] \leq [(m',n')]$ and $[(m',n')] \leq [(m,n)]$. Then, m+n'=m'+n+k and m'+n=m'+n+l for some $k,l \in \mathbb{N}$. So, m+n'=m+n'+k+l. By injectivity of addition, k+l=0 and k=l=0. So, $m+n'=n+m' \Rightarrow [(m,n)] \sim [(m',n')]$. Therefore, the relation is antisymmetric.
- 3. Assume that $[(m,n)] \leq [(m',n')]$ and $[(m',n')] \leq [(m'',n'')]$. Then, m+n'=m'+n+k and m'+n''=m''+n'+l for some $k,l \in \mathbb{N}$. When we add the two, we get m+n'+m'+n''=m'+n+k+m''+n'+l. By cancellation, we cancel out m',n' from both sides and by commutativity we rearrange to get m+n''=m''+n+k+l. So $[(m,n)] \leq [(m'',n'')]$ and the relation is transitive.

Now we need to show that for any two [(m,n)],[(k,l)] either $[(m,n)] \leq [(k,l)]$ or $[(k,l)] \leq [(m,n)]$. We will prove this by using the total ordering of naturals. Given [(m,n)] and [(k,l)], either $m+l \leq n+k \Rightarrow [(m,n)] \leq [(k,l)]$ or $n+k \leq m+l \stackrel{comm}{\Rightarrow} k+n \leq l+m \Rightarrow [(k,l)] \leq [(m,n)]$.

Problem 4

Again, we switch notation a bit to show that addition is well-defined. Let $[(p,q)] \sim [(p',q')]$ and $[(r,s)] \sim [(r',s')]$. Then, pq' = p'q and rs' = r's. We need to then show that $(ps + qr,qs) \sim (p's' + q'r',q's')$. LHS = (ps + qr)(q's') = (psq's' + qrq's') = (p'qss' + r'sqq') = (p's' + q'r')(qs) = RHS.

Problem 5

- 1. Let $a, b \in F$. Let $0 \le b$. Then by (O2) $0 + a = a \le a + b$. Conversely, assume $a \le a + b \Rightarrow a a = 0 \le a + b a = b$.
- 2. Let $a, b \in F$. Then, $a < b \Rightarrow a a b < b a b \Rightarrow -b < -a$.
- 3. Let $a, b \in F$. Assume $0 < a \land a \le b$. Therefore, $a \ne 0 \land b \ne 0$. Therefore a^{-1}, b^{-1} exist. Further, $0 < a^{-1}, 0 < b^{-1}$ because otherwise we would get 1 < 0. Therefore, $aa^{-1}b^{-1} \le ba^{-1}b^{-1} \Rightarrow b^{-1} \le a^{-1}$.

Problem 6

These results follow from the proposition we proved in class: $0 \le a \iff -a \le 0$.

- 1. If $0 \le a$, then |a| = a so $0 \le |a|$. Else, a < 0, |a| = -a, $0 \le |a|$.
- 2. Assume $0 \le a$. Then $-a \le a \le a$ so $-|a| \le a \le |a|$. Else, a < 0, |a| = -a. Then, $a \le a \le -a$ so $-|a| \le a \le |a|$.
- 3. If both $a, b \ge 0$ then |a + b| = |a| + |b|. Similarly, if both a, b < 0 then |a + b| = -(a + b) = (-a) + (-b) = |a| + |b|. If one is negative and one is positive: Assume WLOG $0 \le a$ and b < 0. Then, $|a + b| = |a (-b)| \le |a| + |b|$.
- 4. Assume both a, b are positive. Then ab is positive so |ab| = ab = |a||b|. Similarly, for both negative, ab is positive so |ab| = ab = (-|a|)(-|b|) = |a||b|. If only one is positive, assume WLOG $0 \le a$ and b < 0. Then ab is negative so |ab| = -(ab) = -(|a|(-|b|)) = |a||b|.

Let's prove the claim by induction on n. P_0 is trivially true. Assume P_n . Then, $\left|\sum_{i=0}^{n+1} a_i\right| = \left|\sum_{i=0}^n a_i + a_{n+1}\right| \le \left|\sum_{i=0}^n a_i\right| + |a_{n+1}| \le \sum_{i=0}^n |a_i| + |a_{n+1}| = \sum_{i=0}^{n+1} |a_i|$. By induction, the claim is true for all $n \in \mathbb{N}$.

Problem 7

- 1. The radical expression $\sqrt[3]{5-\sqrt{3}}$ solves some polynomial equation. Let's use α to denote the radical expression. Then, $5-\sqrt{3}=\alpha^3\Rightarrow (5-\alpha^3)^2=3$. So α is a root of the polynomial $p(x)=x^6-10x^3+22$. By the rational root theorem, the only possible rational roots of p(x) are $\pm 1, \pm 2, \pm 11, \pm 22$. Substituting each, we see that none of them make the polynomial equal zero. Therefore α cannot be expressed as a rational number.
- 2. We can rewrite this radical as $\sqrt{3+2\sqrt{2}}-\sqrt{2}=\sqrt{(1+\sqrt{2})^2}-\sqrt{2}=1+\sqrt{2}-\sqrt{2}=1$ which is rational.
- 3. By the rational root theorem, the only possible roots for this polynomial are ± 1 . We check that p(1) = 4, p(-1) = 0. Therefore, -1 is the only rational root of the polynomial.