starter-code

April 1, 2024

0.1 Exploration

```
[256]: import numpy as np
      import pandas as pd
      import matplotlib.pyplot as plt
      import seaborn as sns
      df train = pd.read csv("./data/train.csv")
      df_test = pd.read_csv("./data/test.csv")
      df_combined = pd.concat([df_train, df_test], axis=0)
      df = df_combined
      df_fraud = df[df.is_fraud==1]
      print('Shape for preprocessed train dataset: \n', df.shape)
      print('Shape for only-fraud train dataset: \n', df_fraud.shape)
      fig = plt.figure(figsize=(10,6))
      # sns.set()
      colors = ["#C04C36", "#00163E"]
      custom_params = {"axes.spines.right": False, "axes.spines.top": False}
      sns.set_theme(style="ticks", rc=custom_params)
      sns.set_context("notebook", font_scale=1.25)
      sns.set_palette(sns.color_palette(colors))
      # Create count plot with region on the y-axis
      g = sns.countplot(y = 'city',
                        data=df_fraud,
                        hue='gender',
                        width=0.8,
                         order=df_fraud.city.value_counts(sort=True, ascending=False).
        \hookrightarrowhead(10).index)
      # Set title, label, legend
      g.set_title('Top 10 cities in Number of fraud vs Gender', fontdict = \{ \cup \}
```

```
g.set_xlabel('Count', fontsize=15, fontweight='bold')
g.set_ylabel('City', fontsize=15, fontweight='bold')
g.legend(prop={'weight':'bold'})

# Show plot
plt.show()
```

```
Shape for preprocessed train dataset: (625184, 23)
Shape for only-fraud train dataset: (1877, 23)
```


0.2 Feature Extraction

```
def calculate_distance(row):
    customer_loc = (row['lat'], row['long'])
   merchant_loc = (row['merch_lat'], row['merch_long'])
   return great_circle(customer_loc, merchant_loc).km
def cluster_locations(df):
   print("Performing location clustering...")
   # Scaling the location data
   scaler = StandardScaler()
   loc_df_scaled = scaler.fit_transform(df[['lat', 'long']])
   kmeans = KMeans(n clusters=20, random state=0, n init='auto').

→fit(loc_df_scaled)
   df['location_cluster'] = kmeans.labels_
   print("Location clustering completed.")
   return df
def calculate_rfm_features(df, window_days):
    """Calculates frequency and average monetary value within a time window"""
   now = df['trans date trans time'].max()
   window_start = now - pd.Timedelta(days=window_days)
   window_transactions = df[df['trans_date_trans_time'] >= window_start]
   rfm_features = window_transactions.groupby('cc_num')[['amt']].agg(['count',_

    'mean'])
   rfm_features.columns = [f'freq_{window_days}days',__

→f'avg_amt_{window_days}days']

   return rfm_features
def calculate merchant_risk scores(df, window_days, delay_days):
    """Calculates terminal risk scores within time windows, with a delay"""
   now = df['trans_date_trans_time'].max()
   window_end = now - pd.Timedelta(days=delay_days)
   window_start = window_end - pd.Timedelta(days=window_days)
   window_transactions = df[(df['trans_date_trans_time'] >= window_start) &__
 terminal_risk = window_transactions.groupby('merchant')['is_fraud'].mean()
   terminal_risk.name = f'risk_score_{window_days}days'
   return terminal_risk
```

```
def calculate_category_risk_factors(df, window_days, delay_days):
    """Calculates category risk factors within time windows, with a delay"""
   now = df['trans_date_trans_time'].max()
   window_end = now - pd.Timedelta(days=delay_days)
   window_start = window_end - pd.Timedelta(days=window_days)
   window_transactions = df[(df['trans_date_trans_time'] >= window_start) &__
 category_risk = window_transactions.groupby('category')['is fraud'].mean()
   category_risk.name = f'category_risk_{window_days}days'
   return category_risk
def extract_time_category_features(df):
   # Convert transaction datetime to hour of the day
   df['trans_hour'] = df['trans_time'].apply(lambda x: x.hour)
   df['category_hour'] = df['category'].astype(str) + "_" + df['trans_hour'].
 →astype(str)
   # To use these new interaction features in a model, you need to encode them
    # This encoding could be label encoding or one-hot encoding. Here's an
 ⇔example with label encoding:
   label_encoder = LabelEncoder()
   df['category_hour_encoded'] = label_encoder.
 ⇔fit_transform(df['category_hour'])
   return df
def calculate_odds_ratios(df, category_col='category_encoded'):
   # Compute the number of fraud and non-fraud transactions
   fraud_counts = df[df['is_fraud'] == 1][category_col].value_counts().
 ⇒sort index()
   non_fraud counts = df[df['is_fraud'] == 0][category_col].value_counts().
 ⇔sort_index()
   # Calculate the odds for each category
   odds = fraud_counts / non_fraud_counts
   # Calculate the overall odds of fraud
   overall_odds = df['is_fraud'].mean()
   # Calculate odds ratios (odds for each category / overall odds)
```

```
odds_ratios = odds / overall_odds
    # Replace infinite values with a large number
   odds_ratios = odds_ratios.replace(np.inf, np.finfo(float).max)
   return odds_ratios
def process(df):
   print("Starting data processing...")
    # Convert to datetime just once
   df['dob'] = pd.to_datetime(df['dob'], format='%d/%m/%Y')
   df['trans_date_trans_time'] = pd.to_datetime(df['trans_date_trans_time'],__

¬format='%d/%m/%Y %H:%M')
    # Extracting date and time for each row
   df['trans_date'] = df['trans_date_trans_time'].dt.date
   df['trans_time'] = df['trans_date_trans_time'].dt.time
   print("Cleaning data and calculating basic statistics...")
   # Transaction amount statistics for each cardholder
   agg_funcs = ['mean', 'std', 'min', 'max']
    cardholder_stats = df.groupby('cc_num')['amt'].agg(agg_funcs).
 Grename(columns=dict(zip(agg_funcs, ['mean', 'std', 'min', 'max'])))
   df = df.join(cardholder_stats, on='cc_num', rsuffix='_cardholder')
    # Encode categorical features
    categorical_features = ['merchant', 'city', 'state', 'job']
   df[categorical_features] = df[categorical_features].apply(LabelEncoder().
 →fit_transform)
   df['category_encoded'] = LabelEncoder().fit_transform(df['category'])
   df['gender_encoded'] = LabelEncoder().fit_transform(df['gender'])
    # Calculate odds ratios for each category
   odds_ratios = calculate_odds_ratios(df, category_col='category_encoded')
   df['category_odds_ratio'] = df['category_encoded'].map(odds_ratios).

¬fillna(1)
   print("Calculating age at transaction and distances...")
   # Age at transaction
   df['age_at_transaction'] = df.apply(lambda x: calculate_age(x['dob'],_

¬x['trans_date']), axis=1)
    # Geographical feature: Distance between customer and merchant
   df['cust_merch_distance'] = df.apply(calculate_distance, axis=1)
```

```
df['trans_weekend'] = df['trans_date_trans_time'].dt.weekday >= 5
   df['trans_night'] = df['trans_date_trans_time'].dt.hour.apply(lambda x: 1,,
 \Rightarrowif 0 <= x < 6 or 20 <= x < 24 else 0)
   for window_days in [1, 7, 30]:
       rfm features = calculate rfm features(df.copy(), window days)
       df = df.merge(rfm_features, how='left', on='cc_num')
       terminal_risk = calculate merchant_risk_scores(df.copy(), window_days,_

delay_days=7)

       df = df.merge(terminal_risk, how='left', on='merchant')
       category_risk = calculate_category_risk_factors(df.copy(), window_days,_

delay_days=7)

       df = df.merge(category_risk, how='left', on='category')
   # Perform location clustering
   df = cluster_locations(df)
   df = extract_time_category_features(df)
   - 'trans_date_trans_time', 'trans_date', 'trans_time', 'cc_num'], inplace=True)
   print("Data processing completed.")
   return df
# Load the dataset
trainingSet = pd.read_csv("./data/train.csv")
# Process the DataFrame
print("Processing training set...")
train_processed = process(trainingSet)
print("Training set processed.")
# Load test set
submissionSet = pd.read_csv("./data/test.csv")
# Merge on Id so that the test set can have feature columns as well
testX= pd.merge(train_processed, submissionSet, left_on='Id', right_on='Id')
testX = testX.drop(columns=['is_fraud_x'])
testX = testX.rename(columns={'is_fraud_y': 'is_fraud'})
# The training set is where the score is not null
trainX = train_processed[train_processed['is_fraud'].notnull()]
```

```
# Save the datasets with the new features for easy access later
testX.to_csv("./data/X_test.csv", index=False)
trainX.to_csv("./data/X_train.csv", index=False)
```

Processing training set...
Starting data processing...
Cleaning data and calculating basic statistics...
Calculating age at transaction and distances...
Performing location clustering...
Location clustering completed.
Data processing completed.
Training set processed.

0.3 Creating your model

```
[312]: import pickle
       import pandas as pd
       import seaborn as sns
       import matplotlib.pyplot as plt
       from sklearn.model_selection import train_test_split
       from sklearn.model_selection import train_test_split
       from sklearn.metrics import accuracy_score, confusion_matrix, f1_score
       from xgboost import XGBClassifier
       # Load training set with new features into DataFrame
       X_train = pd.read_csv("./data/X_train.csv")
       # Split training set into training and testing set
       X_train, X_test, Y_train, Y_test = train_test_split(
               X_train.drop(['is_fraud', 'Id'], axis=1),
               X_train['is_fraud'],
               test_size=0.1,
               random_state=42
           )
       # This is where you can do more feature selection
       X_train_processed = X_train._get_numeric_data()
       print(X_train_processed.columns)
       X_test_processed = X_test._get_numeric_data()
       # Define XGBoost model (you might want to tune these)
       xgb_model = XGBClassifier(random_state=0, use_label_encoder=False,_
        ⇔eval_metric='logloss')
       # Learn the model
       xgb_model.fit(X_train_processed, Y_train)
```

```
# Pickle model
with open('xgboost_model.obj', 'wb') as f:
    pickle.dump(xgb_model, f)
# Evaluate on the testing set
Y_test_predictions = xgb_model.predict(X_test_processed)
print("Accuracy on testing set = ", accuracy_score(Y_test, Y_test_predictions))
print("F1 score on testing set = ", f1_score(Y_test, Y_test_predictions))
# Plot a confusion matrix
cm = confusion_matrix(Y_test, Y_test_predictions)
sns.heatmap(cm, annot=True)
plt.title('Confusion matrix of the classifier')
plt.xlabel('Predicted')
plt.ylabel('True')
plt.show()
Index(['merchant', 'amt', 'city', 'state', 'zip', 'lat', 'long', 'city_pop',
       'job', 'unix_time', 'merch_lat', 'merch_long', 'mean', 'std', 'min',
       'max', 'category_encoded', 'gender_encoded', 'category_odds_ratio',
       'gender_odds_ratio', 'age_at_transaction', 'cust_merch_distance',
       'trans_weekend', 'trans_night', 'freq_1days', 'avg_amt_1days',
       'risk_score_1days', 'category_risk_1days', 'freq_7days',
       'avg_amt_7days', 'risk_score_7days', 'category_risk_7days',
       'freq_30days', 'avg_amt_30days', 'risk_score_30days',
       'category_risk_30days', 'location_cluster', 'trans_hour',
       'category_hour_encoded'],
      dtype='object')
`use_label_encoder` is deprecated in 1.7.0.
Accuracy on testing set = 0.9993830461070209
F1 score on testing set = 0.9019607843137255
```


308]:	<pre>X_train_processed.head()</pre>										
308]:		merchant	amt	city	state	zip	lat	long	city_pop	job	\
	230198	70	37.81	690	47	54559	46.4959	-90.4383	795	446	
	201736	271	16.46	542	2	71960	34.4596	-93.6743	1383	265	
	426780	100	103.05	733	22	55080	45.6675	-93.2433	2607	254	
	17706	178	94.31	243	30	7022	40.8170	-74.0000	13835	354	
	180397	33	133.62	123	47	53924	43.4987	-90.2796	1360	302	
	230198 201736 426780 17706 180397	unix_tim 137585355 138701141 137513070 137732528 137863544	4 0 0	g_amt_7 85.19 71.86 45.66 60.02 87.87	99149 35179 32535 25455	risk_sc	ore_7days 0.(0.(0.(0.()))	y_risk_7da 0.0000 0.0014 0.0014 0.0000 0.0019	96 82	
		freq_30da	ys avg_	amt_30d	lays	risk_sco	re_30days	s categor	y_risk_30d	ays	\
	230198	207	.0	93.963	3188		0.010526	3	0.001	185	
	201736	202	.0	131.916	3040		0.007353	3	0.006	904	

426780	236.0	72.610085	0.000000	0.001551
17706	161.0	55.785217	0.00000	0.000639
180397	159.0	98.946667	0.005464	0.003979
	location_cluster	trans_hour	category_hour_encoded	
230198	0	5	175	
201736	11	8	154	
426780	0	20	116	
17706	6	6	20	
180397	9	10	218	
[5 70770	x 10 columnal			

[5 rows x 40 columns]

```
category_encoded
trans_night
category_odds_ratio
trans_hour
amt
category_risk_7days
min
mean
age_at_transaction
std
freq_30days
category_risk_30days
gender_encoded
max
risk_score_30days
city_pop
freq_1days
```

```
category_hour_encoded
unix_time
avg_amt_30days
freq_7days
avg_amt_7days
avg_amt_1days
risk_score_7days
lat
state
trans_weekend
long
job
city
location_cluster
zip
merch_long
cust_merch_distance
merch_lat
merchant
risk_score_1days
gender_odds_ratio
category_risk_1days
```



```
[280]: import shap

# Fit an explainer
explainer = shap.TreeExplainer(xgb_model)
```

```
test_IDs = df['Id'].copy()

X_shap = X_train_processed.copy()

shap_values = explainer.shap_values(X_shap)

print(shap_values.shape)
print(X_train_processed.shape)

shap.summary_plot(shap_values, X_train_processed)
```

```
(437628, 36)
(437628, 36)
```

No data for colormapping provided via 'c'. Parameters 'vmin', 'vmax' will be ignored

0.4 Create the Kaggle submission

```
[303]: X_submission = pd.read_csv("./data/X_test.csv")
    test_IDs = X_submission['Id']
    X_submission = X_submission.drop(columns=['is_fraud', 'Id'])
    X_submission_processed = X_submission._get_numeric_data()
```

```
X_submission['is_fraud'] = xgb_model.predict(X_submission_processed)
X_submission.is_fraud = X_submission.is_fraud.astype(int)
X_submission['Id'] = test_IDs
submission = X_submission[['Id', 'is_fraud']]
submission.to_csv("./data/submission.csv", index=False)
```

Now you can upload the submission.csv to kaggle

