Decision Under Uncertainty

State and decision in 421 game

Guillaume Lozenguez

@imt-nord-europe.fr

IMT Nord Europe

École Mines-Télécom IMT-Université de Lille

Grail: Control complex system

as efficiently as possible...

- 1. Determine State and Action space:
 - List the variables describing the system configurations
 - List the variables describing the possibility of control.
 - Evaluate the branching

That drawback a first estimation of the complexity of our system

In 421:

State:
$$\left\{h \in [0,2], \quad d1, d2, d3, \in [0,6]^3\right\} (648 states)$$

Action:
$$\left\{a1, a2, a3, \in [keep, roll]^3\right\} (8actions)$$

Grail: Control complex system

as efficiently as possible...

- 1. Determine State and Action space:
- 2. Define, compute, learn, optimize a **policy**
 - i.e. a function that returns an action to perform considering a reached state s.

Policy:
$$\pi(s) \in \text{Action}$$

Markovian condition:

The state is sufficient to determine the best action to perform, no need to look back all the history of the trajectory of the system.

Scripted policy

A succession of if, them, else statement: state= { "D1": self.dices[0], "D2": self.dices[1], "D3": self.dices[2] } if state["D3"] == 1 : if state["D2"] == 2 : if state["D1"] == 4 : action= "keep-keep-keep" else: action= "roll-keep-keep" else: action= "roll-roll-keep" else: action= "roll-roll-roll"

Scripted Policy as Decision Tree

A Tree:

- ▶ is a directed graph structure (with **Nodes** and **Oriented Edges**),
- connected, with no loop and a unique path from any 2 nodes.

Scripted Policy as Decision Tree

A Decision Tree

Nodes: variables ; **Edges:** assignment ; **leaf:** group of states / actions

Expert based Decision tree or learned: <u>ID3 algorithm</u> (supervised learning))

Based on state variable prevalence

Decision Tree (421):

Score: **222** (vs **160** for random)

A Second Decision Tree

(with a score around **320**)

A Second Decision Tree

```
if state["D3"] == 1 :
    if state["D2"] == 2 :
        if state["D1"] == 4 :
            action= "keep-keep-keep"
        else:
            action= "roll-keep-keep"
    elif state["D2"] == 1 :
        if state["D1"] == 1 :
            action= "keep-keep-keep"
        else:
            action= "roll-keep-keep"
    else:
        action= "roll-roll-keep"
else:
    action= "roll-roll-roll"
```