MAP-MRFに基づく画像表現

ビジュアルラベリング

[Besag, J (1974)]

統計的手法に基づいて画像処理を行う場合。通常の画像 処理で用いる用語以外にも、統計的手法の用語も用いら れる

サイト(site) --- 画素や特徴などの配置情報。

規則的配置と不規則的配置を含む、

ラベル(label) --- サイトに起きる事象.

連続と離散、順序関係の有無などを表現、

● サイト集合の例

m個のサイトのインデックス集合 $S = \{1, \dots, m\}$ 例えば、画素、エッジ、領域などの集合

●ラベル集合の例

離散ラベル集合 $L_d = \{l_1, \dots, l_M\} (= \{1, \dots, M\}):$ M固のラベル(インデックス)集合

連続ラベル集合 $L_c = [X_l, X_h] \subset R$: 実数線上の区間: $[X_l, X_h]$

濃度ラベル集合 $L = \{0, \cdots 255\}$: M個の順序付きラベル集合

ラベリング問題

多くの画像処理問題が、ラベルLによるサイトSのラベリング問題として記述される。

サイト集合Sのサイト s_i ($i=1,\cdots,m$)に,ラベル集合Lから1つのラベル f_i を選び,割り当てること。 $f = \{f_1, f_2, \cdots f_m\}$

ドメインSからラベルLへの写像関数: $f_i = f(i)$ $f: S \to L$

全てのサイトが同じラベル集合をもつならば、

⇒配置空間 $F = L \times L \cdots L = L^m$

近傍システム

画像処理と同様に, MRFでも近傍系という概念 が 重要な役割を果たす.

サイト集合 S内の各要素は隣接システム (N-system)によって互いに関係付けられる.

N-system: $N = \{N_i \mid \forall i \in S\}$

 N_i は、iに隣接するサイトの集合。ただし、 1) $i \notin N_i$

 $2) i \in N_j \Rightarrow j \in N_i$

近傍システムの例

(規則的サイト)

0	0	0
0	X	0
0	0	0

5	4	3	4	5
4	2	1	2	4
3	1	X	1	3
4	2	1	2	4
5	4	3	4	5

(a)

(b)

(c)

1次隣接系 (4近傍系)

NS₁システム

2次隣接システム (8近傍系)

NS2システム

1~5次の隣接システムの最外郭サイト

クリーク (Clique)

クリークとは

グラフ: $G \equiv (S,N)$:

グラフG上のクリーク:Sの部分集合

クリークの表現

```
C_1 = \{i \mid i \in S\}
C_2 = \{\{i, i'\} \mid i' \in N_i, i \in S\}
C_3 = \{\{i, i', i''\} \mid i, i', i'' \in Sで互いに隣接}
:
全てのクリークを集めたもの:
C = C_1 \cup C_2 \cup C_3 \cup \cdots
```

クリーク中のサイトには順序関係がある。 $\Rightarrow \{i,i'\} \neq \{i',i\}$

文脈情報の表現

画像理解では、文脈情報は重要.

確率の観点からは、局所的な条件付確率 によって文脈情報を表現

> サイトiにおけるラベル f_i サイト $j(j \in N_i)$ におけるラベル f_i

条件付確率 $P(f_i | \{f_i\})$

直接的に観測可能な局所的情報から 大局的情報を推論する。

Markov Random Field (MRF)

物理現象における空間 的、文脈的な依存関係を解析するための 確率論の1つ.

サイト集合S上のランダム変数の族 $F = \{F_1, F_2, \dots, F_m\}$ において、各ランダム変数 F_i はラベル集合 L内の値 f_i をとるものとする。 $(F_i = f_i)$

結合事象 $(F_1 = f_1, F_2 = f_2, \dots, F_m = f_m)$ を、 $F = f, f = \{f_1, f_2, \dots, f_m\}$ と簡略化。

 F_i が値 f_i をとる確率: $P(F_i = f_i)$, $P(f_i)$ と略記。 結合確率: $P(F_1 = f_1, \dots, F_m = f_m)$, P(f)と略記。

連続なラベル集合Lに対しては、

章 確率密度関数: $p(F_i = f_i)$, p(F = f)

Fが次の2つの条件を満たすとき、

- 1) P(f) > 0, $\forall f \in \mathbf{F}$ 正值性
- 2) $P(f_i | f_{S-\{i\}}) = P(f_i | N_i)$ マルコフ性

『Fは、隣接システムNに関する S上のマルコフ・ランダム場』である。 (Markov Random Field)

Gibbs Random Field (GRF)

ランダム変数Fの事象配置がGibbs分布に従うとき、 FはNに関するS上のGibbsランダム場と呼ばれる.

P(f):特定の配置パターンfの生起確率(事前情報).

Gibbs分布: $P(f) = Z^{-1} \times e^{-\frac{1}{T}U(f)}$

$$U(f) = \sum_{c \in C} V_c(f)$$
 ; エネルギー関数

 $V_c(f)$:全ての可能なC上のクリークポテンシャル

ある $GRFOV_c(f)$ が、S上のクリークCの相対的な位置に依存しないとき、つい 均一性GRF方向に対して独立なとき、 いい 等方性GRF.

エネルギー関数:U(f)

$$U(f) = \sum_{c \in C} V_c(f)$$

$$= \sum_{\{i\} \in C_1} V_1(f_i) + \sum_{\{i,j\} \in C_2} V_2(f_i, f_j) + \sum_{\{i,j,k\} \in C_3} V_3(f_i, f_j, f_k) + \cdots$$

ペアサイトクリークまでを考慮した場合、

$$U(f) = \sum_{i \in S} V_1(f_i) + \sum_{i \in S} \sum_{j \in N_i} V_2(f_i, f_j)$$

Markov-Gibbs Equivalence

局所的な性質で特徴付けられるMRF 大局的な性質で特徴付けられるGRF 等価

MRFの結合確率P(f)を特定する手段の提供同時に、MRFに基づく確率統計モデルの最適化問題をエネルギー最適化問題とすることが可能、

画像特徴モデル化のためのMRF

基本的な概念:

- 2つのラベル間の文脈的拘束:単純, 低コスト⇒広く利用。
- ●通常、ペアサイトクリークまでを考慮.

$$U(f) = \sum_{i \in S} V_1(f_i) + \sum_{i \in S} \sum_{j \in N_i} V_2(f_i, f_j)$$

- V₁, V₂を目的毎に選択。
 - ⇒ 特定のMRF(GRF)を構成可能.

幾つかの代表的なモデルが存在.

Auto Logistic Model

 $f_i \in L = \{0,1\}$ とし、ペアサイトまでの文脈を考慮。 ポテンシャル、条件付確率を次のように仮定。

$$U(f) = \sum_{\{i\} \in C_1} \alpha_i f_i + \sum_{\{i,j\} \in C_2} \beta_{i,j} f_i f_j$$

$$\begin{split} P(f_i \mid f_{N_i}) &= \frac{\exp\{-\alpha_i f_i - \sum_{j \in N_i} \beta_{i,j} f_i f_j\}}{\sum_{f_i \in \{0,1\}} \exp\{-\alpha_i f_i - \sum_{j \in N_i} \beta_{i,j} f_i f_j\}} \\ &= \frac{\exp\{-\alpha_i f_i - \sum_{j \in N_i} \beta_{i,j} f_i f_j\}}{1 + \exp\{-\alpha_i - \sum_{j \in N_i} \beta_{i,j} f_j\}} \end{split}$$

分布が均一ならば、 $\alpha_i = \alpha, \beta_{i,j} = \beta$ として良い。

Multi-Level Logistic Model

 $f_i \in L = \{1, \dots, M\}$ とし、ペアサイトクリークまでを考慮。ALLを一般化。

- •単一サイトクリーク: $V_1(f_i) = \alpha_i, \quad \text{もし } f_i = i \in L$
- •ペアサイトクリーク:

$$V_2(f_i, f_j) = \begin{cases} \beta_C, & \{i, j\} \in C_2$$
が同一ラベル
$$-\beta_C, & \text{それ以外} \end{cases}$$

ここで, α_i :ラベルiに対するポテンシャル, $\beta_C(<0)$:ペアサイトポテンシャル.

クリークポテンシャルの例

モデルが等方性の場合, $\beta_C = \beta_1 = \beta_2 = \beta_3 = \beta_4$

モデルが等方性の場合, MLLにおける条件付確率は

$$P(f_i = m \mid f_{N_i}) = \frac{\exp\{-\alpha_m - \beta \cdot n_i(m)\}}{\sum_{m=1}^{M} \exp\{-\alpha_m - \beta \cdot n_i(m)\}}$$

 $n_i(m)$: mでラベル付けられた N_i のサイト数

Bayes推定

あるリスクを最小化して最適値を推定する

推定値 f^* のBayesリスクは、

$$R(f^*) = \int_{f \in F} C(f^*, f) P(f | d) df$$
 (期待値計算)

 $C(f^*,f)$: コスト関数、 d:観測値

$$P(f | d) = \frac{p(d | f)P(f)}{p(d)}, \quad$$
事後確率

p(d|f): ラベリング f の尤度関数

1次のコスト関数

$$C(f^*,f) = \begin{cases} 0, & ||f^* - f|| \le \delta \text{ のとき} \\ 1, & \text{それ以外のとき} \end{cases}$$

2次のコスト関数

$$C(f^*, f) = ||f^* - f||^2$$

1次コスト関数によるBayesリスク

2次コスト関数によるBayesリスク

$$R(f^*) = \int_{f \in \mathbf{F}} ||f^* - f||^2 P(f|d) df$$

$$\frac{\partial R(f^*)}{\partial f^*} = 0 \implies f^* = \int_{f \in \mathbf{F}} f \cdot P(f|d) df$$
(ラベリング f の事後確率平均)

1次コストによる推定では一般に $\delta \to 0$. 従って、最小リスク推定は、 $f^* = \arg \max P(f | d)$

□□□ MAP (maximum a posterior)推定

観測されたdに対する確率p(d)を一定とすると

$$P(f \mid d) = \frac{p(d \mid f)P(f)}{p(d)} \propto p(d \mid f)P(f)$$

MAP推定は等価的に: $f^* = arg max\{p(d \mid f)P(f)\}$

さらに、事前確率P(f)をフラットと仮定すると

MAP-MRF Labeling

$$P(f|d)$$
の導出 \Leftarrow MRF
$$P(f) = \frac{1}{Z}e^{-U(f)} \quad , U(f) \colon \text{事前エネルギー}$$

$$P(f|d)p(d) = p(d|f)P(f)$$

$$P(f|d) = \frac{p(d|f)P(f)}{p(d)} \propto p(d|f)P(f)$$
 より、 事後エネルギー $U(f|d)$ に関して

事後エネルギー
$$U(f|d)$$
に関して
$$U(f|d) \propto U(d|f) + U(f)$$

MAP推定:事後エネルギーを最小化する f

$$f^* = \arg\min_{f} U(f \mid d) = \arg\min_{f} \{U(d \mid f) + U(f)\}$$

MAP-MRF法の概要

- 1. 与えられた問題を適切なMRFモデルで表現。
- 2. MAP解を定義する事後エネルギーを導く.
 - 2-1) サイト集合S上の近接システムNと、Nに対する クリーク集合を定義。
 - (2-2)U(f)を定義する事前クリークポテンシャル $V_{C}(f)$ を定義.
 - 2-3) 尤度エネルギーU(d|f)を導く.
 - 2-4)事後エネルギー $U(f|d) \leftarrow U(f) + U(d|f)$ を得る.
- 3. MAP解を探す。

MAP-MRF法と正則化

ビジョンにおける不良設定問題を良設定化する

一般的枠組み: 正則化 (Regularization)

滑らかさ拘束条件の付加(事前仮説)

MAP-MRF法において $[f^{(n)}]^2$ の事前エネルギーを考えた場合と等価.

主な参考文献

- Besag, J.; "Spatial interaction and the statistical analysis of lattice systems', Journal of the Royal Statistical Society, Series B, 36, pp192--236 (1974).
- S. Geman and D. Geman, "Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images," IEEE Trans. on PAMI, vol. PAMI-6, no. 6, pp. 721--741, (1984).
- S.Z.Li, Markov Random Field Modeling in Computer Vision, Springer-Verlag, (1995)