2. Übung zur Analysis I

Prof. Dr. Marc Nieper-Wißkirchen Caren Schinko, M. Sc.

24. Oktober 2016*

7. s. Sind A und B zwei Aussagen, so ist

 $A \Longrightarrow B$ äquivalent zu $\neg B \Longrightarrow \neg A$.

(Tip: Stelle für beide Aussagen die Wahrheitstafeln auf; vergleiche dazu den Beweis des Theorems in Abschnitt 0.3 der Vorlesung.)

- **8.** m. Sei $m \in \mathbf{Z}$. Sei A_m , A_{m+1} , A_{m+2} , ... eine Folge von Aussagen. Zeige folgende Modifikationen der vollständigen Induktion:
 - (a) Voraussetzung: Es gelte
 - (i) A_m ist wahr,
 - (ii) Ist $n \in \mathbb{Z}$, $n \geq m$ und ist A_n wahr, so ist auch A_{n+1} wahr.

Behauptung: A_n ist wahr für $n \in \mathbb{Z}$ mit $n \geq m$.

(b) Voraussetzung: Es gelte: Ist $n \in \mathbb{Z}$, $n \ge m$ und gilt A_k für $m \le k < n$, so gilt A_n .

Behauptung: A_n ist wahr für $n \in \mathbb{Z}$ mit $n \geq m$.

9. s. Berechnung der Bogenlänge des Einheitskreises über einer Sehne (Teil 1). Es sei s eine Sehne der Länge ℓ des Einheitskreises. Wir wollen die Länge des Bogens B über der Sehne s nach einem von Archimedes von Syrakus vorgeschlagenem Verfahren bestimmen. Dabei wird B durch Sehnenzüge Σ_n (mit $n=1, 2, 4, 8, 16, \ldots$) gleichlanger Sehnen angenähert. Die Länge einer Sehne von Σ_n werde mit b_n bezeichnet. Dabei ergibt sich b_{2n} aus b_n gemäß der folgenden Abbildung:

^{*}Die bearbeiteten Übungsblatter sind bis 9:55 Uhr am 31. Oktober 2016 in den Analysis-Briefkasten einzuwerfen.

Eine Annäherung an die Länge des Bogens B liefert dann die Folge $(B_{2^k})_{k \in \mathbb{N}_0}$ mit $B_{2^k} = 2^k \cdot b_{2^k}$.

- (a) Entwickle ein Verfahren zur rekursiven Berechnung von b_{2^k} und damit von B_{2^k} .
- (b) Teste Dein Verfahren mit einem (Taschen-) Rechner mit dem Eingabewert $\ell=2.$
- (c) Schreibe für das Verfahren ein (Scheme-) Programm. (Tip: Für betraglich sehr kleines ε tritt numerisch in einem Ausdruck der Form $1-\sqrt{1-\varepsilon}$ Auslöschung ein, also Verlust an Genauigkeit durch Subtraktion fast gleich großer Gleitkommazahlen. In diesem Falle gelingt die Vermeidung der Auslöschung durch eine einfache Termumformung: $1-\sqrt{1-\varepsilon}=\frac{(1-\sqrt{1-\varepsilon})\cdot(1+\sqrt{1-\varepsilon})}{1+\sqrt{1-\varepsilon}}=\frac{\varepsilon}{1+\sqrt{1-\varepsilon}}.)$
- 10. s. Binomialkoeffizienten. Für $a \in \mathbf{R}$ definieren wir die Folge der Binomialkoeffizienten $\binom{a}{n}$ für $n \in \mathbf{N}_0$ rekursiv durch

$$\begin{pmatrix} a \\ 0 \end{pmatrix} := 1 \quad \text{und} \quad \begin{pmatrix} a \\ n+1 \end{pmatrix} := \frac{a-n}{n+1} \cdot \begin{pmatrix} a \\ n \end{pmatrix}.$$

Seien im folgenden $a \in \mathbf{R}$ und $m, n \in \mathbf{N}_0$. Zeige:

(a)
$$\binom{a}{n} + \binom{a}{n+1} = \binom{a+1}{n+1}$$
.

Bemerkung. In dieser Gleichung ist für die speziellen Werte $a \in \mathbb{N}_0$ das Bildungsgesetz des *Pascalschen Dreiecks* enthalten. Dieses ist eine Funktionstafel für die Werte der Binomialkoeffizienten $\binom{a}{n}$ für $a, n \in \mathbb{N}_0$ mit $n \leq a$:

$$\begin{pmatrix}
0 \\
0
\end{pmatrix} & 1 & 1 \\
\begin{pmatrix}
1 \\
0
\end{pmatrix} & \begin{pmatrix}
1 \\
1
\end{pmatrix} & 1 & 1 \\
\begin{pmatrix}
2 \\
0
\end{pmatrix} & \begin{pmatrix}
2 \\
1
\end{pmatrix} & \begin{pmatrix}
2 \\
2
\end{pmatrix} & = & 1 & 2 & 1 \\
\begin{pmatrix}
3 \\
0
\end{pmatrix} & \begin{pmatrix}
3 \\
1
\end{pmatrix} & \begin{pmatrix}
3 \\
2
\end{pmatrix} & \begin{pmatrix}
3 \\
3
\end{pmatrix} & 1 & 3 & 3 & 1 \\
\begin{pmatrix}
4 \\
0
\end{pmatrix} & \begin{pmatrix}
4 \\
1
\end{pmatrix} & \begin{pmatrix}
4 \\
2
\end{pmatrix} & \begin{pmatrix}
4 \\
3
\end{pmatrix} & \begin{pmatrix}
4 \\
4
\end{pmatrix} & 1 & 4 & 6 & 4 & 1
\end{pmatrix}$$

(b) Für
$$n \le m$$
 gilt $\binom{m}{n} = \frac{m!}{n!(m-n)!} = \binom{m}{m-n}$.

(c) Für
$$n > m$$
 gilt $\binom{m}{n} = 0$.

(d)
$$\binom{m}{n} \in \mathbf{N}_0$$
.
(Tip: Benutze (a).)