32. L'aire du domaine compris entre les courbes $y = -x^2 + 9$ et

2. L'aire du domaine compris entre les courses y
$$y = -\frac{1}{3}x^2 + 3 \text{ vaut}:$$

32. L'aire du dontaine comp

$$y = -\frac{1}{3}x^2 + 3 \text{ vaut}:$$
1. 24 2. 12 3. 18 4. 20 5. 16 (M.-81)

2. L'aire du domaine comptis chie
$$y = -\frac{1}{3}x^2 + 3$$
 vaut :
1. 24 2. 12 3. 18 4. 20 5. 16 (M.-81)

2. L'aire du domaine compris chite
$$y = -\frac{1}{3}x^2 + 3$$
 vaut :
1. 24 2. 12 3. 18 4. 20 5. 16 (M.-81)

33.
$$\int_{\frac{\pi}{4}}^{\frac{\pi}{3}} (\operatorname{tg} x - \cot g x) dx =$$
1. $-\ln \sqrt{3}$ 2. $\ln \frac{2\sqrt{3}}{3}$ 3. $\frac{1}{2} \ln \frac{\sqrt{3}}{2}$ 4. $\ln \frac{2-\sqrt{3}}{4}$ 5. $\ln \frac{2\sqrt{6}}{3}$ (B.-83)

34. L'aire de la surface hachurée ci – dessus vaut :
$$x^2 = Ay$$

1. L'aire de la surface hachuree ci – dessus van
1. 9 3.
$$\frac{9}{2}$$
 · 5. 18
2. $\frac{9\pi}{4}$ 4. $\frac{27}{4}$

1.9 3.
$$\frac{1}{2}$$
 7.18

2. $\frac{9\pi}{4}$ 4. $\frac{27}{4}$ www.ecoles-rdc.net

35. Pour calculer une primitive de la fonction
$$\frac{1}{\sqrt{(x+1)(3-x)}}$$
 en ramenant a un arc sinus, il suffit d'effectuer le changement de variable.

à un arc sinus, il suffit d'effectuer le changement de variable.

$$1. t = \frac{x-1}{4} \quad 2. t = x+1 \quad 3. t = \frac{x-1}{2} \quad 4. t = 3-x \quad 5. t = \frac{x+1}{2} \quad (M.-81)$$

36.
$$\int_{0}^{\ln 2} \frac{dx}{1+3e^{x}} =$$
1. $\ln 9/7$ 2. $\ln 8/3$ 3. $\ln 4/3$ 4. $\ln 8/7$ 5. $\ln 8/5$ (M. 83)

37. On donne l'hyperbole d'équation $xy = 1$. Sur la courbe représentative C, on considère des points A et B d'abscisses respectives $2/3$ et 2, l'aire du on considère des points A et B d'abscisses respectives $2/3$ et 2, l'aire du