杭州由子科技大学学生期中试券

考试课程	大学	物理 2	考试日期	2014. 11. 10		成绩	
课程号	A0715012	教师号		任课教师姓名		徐江荣	
考生姓名		学号 (8 位)		年级		牟 亚	

(请将答案直接写在试卷上,最后两页是草稿纸,不要将答案写在草稿纸上。)

- 一、单项选择题(本大题共30分、每小题3分)
 - 一个质占作简谐振动,振幅为 4, 在起始时刻质 点的位移为 $\frac{1}{2}A$,且向 x 轴的正方向运动,代表 (A)

此简谐振动的旋转矢量图为

2 图为沿x 轴负方向传播的平面简谐波在t=0 时刻的波形、若波 的表达式以余弦函数表示,则O点处质点振动的初相为

(C) π.

- 3. 在同一媒质中两列相干的平面简谐波的强度之比是 $I_1/I_2=4$,则两列波的振幅之 比是
- (A) $A_1/A_2 = 16$.
- (B) $A_1/A_2 = 4$.
- (C) $A_1/A_2 = 2$.
- (D) $A_1/A_2 = 1/4$.

4. 沿着相反方向传播的两列相干波,其表达式为 ($y_1 = A\cos 2\pi (u - x/\lambda)$) 和 $y_2 = A\cos 2\pi (u + x/\lambda)$ 2 上上十八

叠加后形成的驻波中,波节的位置坐标为

(D)
$$x = \pm (2k+1)\lambda/4$$
.

其中的 $k=0, 1, 2, 3, \cdots$.

- (A) 2n2e.
- (B) $2n_2 e \lambda_1 / (2n_1)$.
- (C) $2n_2 e n_1 \lambda_1 / 2$. (D) $2n_2 e n_2 \lambda_1 / 2$.

6. 如图,用单色光垂直照射在观察牛顿环的装置上,当 平凸透镜垂直向上缓慢平移而远离平面玻璃时, 可以 观察到这些环状干涉条纹

- (A) 向右平移.
- (B) 向中心收缩. (D) 静止不动.
- (C) 向外扩张,
- (E) 向左平移.

- [B]
- 7. 在迈克耳孙干涉仪的一支光路中,放入一片折射率为n的透明介质薄膜后,测出 两束光的光程差的改变量为一个波长2,则薄膜的厚度是
- $(A) \lambda / 2$.
- (B) $\lambda / (2n)$.
- (C) λ/n .

- 8. 在单缝夫琅禾费衍射实验中,波长为 λ 的单色光垂直入射在宽度为 a=4 λ 的单缝 上,对应于衍射角为30°的方向,单缝处波阵面可分成的半波带数目为
- (A) 2 个.

(B) 4 个.

(C)6 个.

(D) 8 个.

	9.	测量单色光的波长时,	下列方法中哪一种方法最为准确?					
	(A)	双缝干涉.	(B) 牛顿环 .					
	(C)	单缝衍射.	(D) 光栅衍射.	[D]				
	10.	一束平行单色光垂直入	射在光栅上, 当光栅常数(a + b)为	下列哪种情况时(a 代表				
		每条缝的宽度), k=3、(5、9 等级次的主极大均不出现?					
	(A)	a+b=2a.	(B) $a+b=3$ a.	_				
	(C)	a+b=4 a.	(A) $a+b=6$ a.	(B)				
Ξ,	填空	三题(本大题共24分)						
	11.	(本题 5 分)在 $t=0$ 时,周期为 T 、振幅为 $t=0$ 的单摆分别处于图(a)、(b)、(c)三种状态.若选单摆的平衡位置为坐标的原点,坐标指向正右方,则单摆作小角度摆动的振动表达式(用余弦函数表示)分别为						
	(a)_		;					
	(b)_		;					
	(c)_		·					

- 19. (本题 5 分) 已知一平面简谐波的表达式为 $y = 0.25\cos(125t 0.37x)$ (SI)
- (1) 分别求 $x_1 = 10 \text{ m}, x_2 = 25 \text{ m两点处质点的振动方程};$
- (2) 求 x_1 , x_2 两点间的振动相位差;
- (3) 求 x_1 点在t=4 s时的振动位移.

- 20. (本愿 12 分) 如图,一角频率为 ω ,振幅为 A 的平面简谐波沿 x 轴正方向传播,设在 t=0 时该波在原点 O 处引起的振动使媒质元由平衡位置向 y 轴的负方向运动。M O' 是垂直于 x 轴的波密媒质反射面。已知 OO'=7 λ /4, $PO'=\lambda$ /4 (λ 为该波波长);设反射波不衰减,求:
- (1) 入射波与反射波的表达式;;
- (2) P点的振动方程.

21. (本题 8 分) 在图示的双缝干涉实验中,若用薄玻璃片(折射率 n_1 =1.4)覆盖缝 S_1 ,用同样厚度的玻璃片(但折射率 n_2 =1.7)覆盖缝 S_2 ,将使原来未放玻璃时屏上的中央明条纹处O变为第五级明纹. 设单色光波长 λ =480 nm(1nm=10° m),求玻璃片的厚度d(可认为光线垂直穿过玻璃片).

- 22. (本题 8 分)一衍射光栅,每厘米 200 条透光缝,每条透光缝宽为 $a=2\times10^3$ cm,在光栅后放一焦距f=1 m的凸透镜,现以 $\lambda=600$ nm (1 nm= 10^9 m)的单色平行光垂直照射光栅,求:
- (1) 透光缝 a 的单缝衍射中央明条纹宽度为多少?
- (2) 在该宽度内,有几个光栅衍射主极大?

23. (本题 8 分)有三个偏振片叠在一起,已知第一个偏振片与第三个偏振片的偏振 化方向相互垂直,一束光强为I₀的自然光垂直入射在偏振片上,已知通过三个偏振 片后的光强为I₀/16. 求第二个偏振片与第一个偏振片的偏振化方向之间的夹角.