MAT361 – Introduction à l'analyse réelle

Devoir personnel obligatoire à rendre en PC le vendredi 19 mai

Problème 1 (Théorème d'Ascoli). Ce problème propose une preuve du théorème d'Ascoli.

Dans tout le problème (et en particulier aux questions (c), (k) et (l)), la norme utilisé dans \mathbf{R}^N sera la norme sup : $||x||_{\infty} = \sup_{i=1}^N (|x_i|)$.

(a) Montrer que si (Y, d) est un espace métrique compact et $(E, \| \cdot \|)$ un espace de Banach, alors, $\mathcal{C}(Y; E)$ l'espace des fonctions continues de Y dans E, muni de la norme de la convergence uniforme $\|f\|_{\infty} = \sup_{x \in Y} \|f(x)\|$, est un espace de Banach.

Définition 1. Un espace métrique (X,d) est dit **précompact** si pour tout $\epsilon > 0$, il existe des éléments x_1, \dots, x_N de X tels que $X \subset \bigcup_{i=1}^N B(x_i, \epsilon)$.

- (b) Montrer que [0,1] est précompact dans \mathbf{R} .
- (c) Montrer que tout sous-ensemble borné de \mathbb{R}^N est précompact.
- (d) Montrer qu'un espace compact est précompact.
- (e) Soit (X, d) un espace métrique et $Z \subset X$ précompact. Montrer que \overline{Z} l'adhérence de Z est précompacte.
- (f) Montrer que (X, d) est compact si et seulement s'il est complet et précompact. On rappelle la définition d'équicontinuité et on introduit la notion d'uniforme équicontinuité.

Définition 2. Soit (Y, d) un espace métrique. Soit $\mathcal{F} \subset \mathcal{C}(Y; \mathbf{R})$ une famille d'applications continues de Y vers \mathbf{R} .

— On dit que la famille \mathcal{F} est équicontinue au point $y \in Y$ si pour tout $\varepsilon > 0$, il existe $\delta > 0$ tel que

$$\forall f \in \mathcal{F}, \ \forall y' \in Y, \quad d(y, y') < \delta \implies |f(y) - f(y')| < \varepsilon.$$

- On dit que la famille \mathcal{F} est équicontinue sur Y si elle est équicontinue en tout point de $y \in Y$.
- On dit que la famille \mathcal{F} est uniformément équicontinue si pour tout $\varepsilon > 0$, il existe $\delta > 0$ tel que

$$\forall f \in \mathcal{F}, \ \forall y, y' \in Y, \quad d(y, y') < \delta \implies |f(y) - f(y')| < \varepsilon.$$

(g) Montrer que si (Y, d) est compact et \mathcal{F} est une famille équicontinue sur Y alors elle est uniformément équicontinue.

On rappelle l'énoncé du théorème d'Ascoli.

Théorème 1 (Théorème d'Ascoli). Soit (Y,d) un espace métrique compact. Soit $\mathcal{F} \subset \mathcal{C}(Y;\mathbf{R})$ une famille de fonctions qui vérifie les hypothèses suivantes.

- La famille \mathcal{F} est équicontinue sur Y.
- Pour tout $y \in Y$, l'ensemble $\mathcal{F}(y) := \{f(y) : f \in \mathcal{F}\}$ est une partie bornée de \mathbf{R} .

Alors, de toute suite d'éléments de \mathcal{F} on peut extraire une sous-suite qui converge dans $(\mathcal{C}(Y;\mathbf{R}),\|\cdot\|_{\infty})$.

On se place maintenant sous les hypothèses du théorème d'Ascoli.

- (h) Montrer que pour démontrer le théorème, il suffit de montrer que $\overline{\mathcal{F}}$ est compact.
- (i) En déduire qu'il suffit de montrer que \mathcal{F} est précompact (on rappelle que $(\mathcal{C}(Y; \mathbf{R}), \|\cdot\|_{\infty})$ est un Banach donc complet). On fixe maintenant $\epsilon > 0$.
- (j) Soit δ (donné par l'uniforme équicontinuité de \mathcal{F}) tel que pour tout $f \in \mathcal{F}$ on ait l'implication $d(y, y') < \delta \Rightarrow |f(y) f(y')| < \epsilon/3$. Montrer qu'il existe $y_1, \dots, y_N \in Y$ tels que $Y = \bigcup_{i=1}^N B_Y(y_i, \delta)$.
- (k) Montrer que $\mathcal{F}(y_1,\cdots,y_N):=\{(f(y_1),\ldots,f(y_N))\mid f\in\mathcal{F}\}\subset\mathbf{R}^N$ est précompact. En déduire qu'il existe M tel que

$$\mathcal{F}(y_1,\cdots,y_N)\subset \bigcup_{j=1}^M B_{\mathbf{R}^N}((f_j(y_i)_{i\in[1,N]},\epsilon/3).$$

(l) Montrer que $\mathcal{F} \subset \bigcup_{j=1}^M B(f_j, \epsilon)$. En déduire que \mathcal{F} est précompact.