\mathbf{C}	ontents		6 Constants and Notations 7
			6.1 Constants
1	Orbital Dynamics	1	6.2 Notations
	1.1 Newton Gravity Law	1	This is a sheet sheet for IICAAAO
	1.1.1 Gravity Potential Energy: Point Mass	1	This is a cheat sheet for USAAAO
	1.1.2 Gravity Potential Energy: Uniform Ball	1	1 Orbital Dynamics
	1.2 Conservation of Momentum	2	
	1.3 Conservation of Angular Momentum .	2	1.1 Newton Gravity Law
	1.4 Conservation of Energy	$\frac{2}{2}$	CMm
	1.4.1 Orbital Energy	2	$F_g = \frac{GMm}{r^2}$
	1.4.2 Vis-Viva Equation	2	r^{2}
	1.4.3 Viral Theorem	2	This is known as the <i>Inversed-Squared</i> law of gravity.
	1.5 Kepler's Law	2	G is the Gravitational Constant.
		2	G is the Gravitational Constant.
	1.5.2 Second Law	2	1.1.1 Gravity Potential Energy: Point Mass
	1.5.3 Third Law	3	Assuming the potential energy at infinity is zero, by
	1.6 Sidereal Day and Solar Day	3	integrating the gravity law, we have the potential
	Celestial Coordinates and Time	3	energy at R :
	2.1 Trigonometry	3	
	2.1.1 Length of Arc	3	$\int_{L_{1}}^{R}GMm$, GMm
	2.1.2 Law of Cosine	3	$U = \int_{0.0}^{R} \frac{GMm}{r^2} dr = -\frac{GMm}{R}$
	2.1.3 Law of Sine	3	000
	2.2 Spherical Trigonometry	3	Therefore the Sun can be visualized as a $Gravitational$
	2.2.1 Spherical Law of Cosine	3	Well, in which the deeper you get, the less energy
	2.2.2 Spherical Law of Sine	3	you have.
	2.2.3 Area of the Spherical Triangle.	3	
	2.3 Celestial Coordinate	4	1.1.2 Consiter Detential Engage. Uniform
	2.3.1 Circumpolar	4	1.1.2 Gravity Potential Energy: Uniform Ball
3	Telescope & Star Magnitudes	4	A ball with mass M and radius R , assuming uniform
	3.1 Parallax	4	density:
	3.2 The Airy Spot	4	density.
	3.3 Telescope Parameters	4	16
	3.3.1 f number (focal ratio)	4	$\rho = \frac{M}{\frac{4}{3}\pi R^3}$
	3.3.2 Magnification	4	$\frac{4}{3}\pi R^3$
	3.4 The Apparent and Absolute Magnitude	4	
	3.4.1 Magnitude and Flux	5	The potential energy is:
	3.4.2 Absolute Magnitude M	5	
	3.4.3 Extinction	5	$f^R = f^R = CM(r)dm$
			$U = \int_{0}^{R} dU = \int_{0}^{R} -\frac{GM(r)dm}{r}$
4	Special Relativity, Hubble's Law & Red		30 30
	Shift	5	$\int^R G \cdot \frac{4}{3}\pi r^3 \rho \cdot 4\pi r^2 dr \rho$
	4.1 Hertzsprung–Russell diagram	5	$= \int_0^R -\frac{G \cdot \frac{4}{3}\pi r^3 \rho \cdot 4\pi r^2 dr \rho}{r}$
	4.2 $$ Special Relativity and Cosmology	5	
	4.2.1 Mass-Energy Equation	6	$=-rac{3GM^{2}}{R^{6}}\int_{0}^{R}r^{4}dr$
	4.2.2 Lorentz Coefficient	6	- 00
	4.3 Hubble's Law & Red Shift	6	$= -\frac{3}{5} \frac{GM^2}{R}$
	4.3.1 Critical Density of the Universe	7	$-$ 5 \overline{R}
5	MISC	7	Together with <i>viral theorem</i> : $\langle K \rangle = -\frac{1}{2} \langle U \rangle$, one can
-	5.0.1 Signal to Noise Ratio	7	link the observational properties (velocities->kinetic
	5.0.2 Energy of E&M Wave	7	

1.2 Conservation of Momentum

Examples:

Without the effects of *force*, the momentum of the system is conserved:

$$\vec{P} = \sum_{m} \vec{p} = \sum_{m} m \vec{v} = const$$

1.3 Conservation of Angular Momentum

Examples:

Without the effects of *torque*, the angular momentum of the system (referenced at a give point) is conserved

$$\vec{L} = \sum_{m} \vec{l} = \sum_{m} \vec{r} \times m\vec{v} = const$$

1.4 Conservation of Energy

The total energy: Kinetic+Potential is **conserved** for planets:

$$E = K + U = \frac{1}{2}mv^2 - \frac{GMm}{r}$$

For a elipse orbit with semi-major axis a: (Derivation: Conservation of energy at aphelia and perihelia)

$$E = -\frac{GMm}{2a} = \frac{1}{2}mv^2 - \frac{GMm}{r}$$

1.4.1 Orbital Energy

 $E=-\frac{GMm}{2a}$ is known as the $orbital\ energy.$ One immediately notices three properties:

- E is negative for elipse (a > 0), zero for parabola $(a = \infty)$, positive for hyperbola (a < 0)
- Increase in *orbital energy* will increase a until it becomes a parabola, or even hyperbola
- A meteorite is trapped when E < 0, it escapes when E > 0.

1.4.2 Vis-Viva Equation

Due to the conservation of orbital energy, one calculate velocity based on distance r:

$$v = \sqrt{GM\left(\frac{2}{r} - \frac{1}{a}\right)}$$

This is known as the *vis-viva* equation. The *escape* velocity is:

$$v_{excape} = \sqrt{\frac{2GM}{r}}$$

Examples: 2021-Q15

1.4.3 Viral Theorem

In statistical mechanics, people are often interested in the averaged behavior of an ensemble of particles, one of the most important results is the *viral theorem*:

$$\langle K \rangle = -\frac{1}{2} \langle U \rangle$$

And therefore the total energy:

$$\langle E \rangle = \langle K \rangle + \langle U \rangle = -\langle K \rangle = \frac{1}{2} \langle U \rangle$$

Examples: 2021-Q9

1.5 Kepler's Law

Examples: 2023-Q21

1.5.1 First Law

The orbit of a planet is an ellipse with the Sun at one of the two foci.

1.5.2 Second Law

line segment joining a planet and the Sun sweeps out equal areas during equal intervals of time.

This is effectively the Conservation of Angular Momentum, because:

• For a small object orbiting a central star, the *Gravity force* is point towards the star, therefore the change in augular momentum:

$$d\vec{L} = \vec{r} \times \vec{F}_q = 0$$

And the angular momentum:

$$\vec{L} = \vec{r} \times m\vec{v}$$

is conserved.

• Constant \vec{L} is identical to * sweeps out equal areas during equal intervals of time*

$$\vec{r} \times m\vec{v}dt \propto \vec{r} \times \vec{v}dt$$

is the small change in the area

1.5.3 Third Law

The square of a planet's orbital period is proportional to the cube of the length of the semi-major axis of its orbit.

Simple derivation can be inferred from circular orbit, where the **centrifugal force balances the gravity** force $(v\omega = v^2/r = \omega^2 r)$ is known as the **centrifugal** acceleration):

$$\frac{GMm}{a^2} = m\frac{v^2}{a} = m\omega^2 a = m\left(\frac{2\pi}{T}\right)^2 a\frac{GM}{4\pi^2} = \frac{a^3}{T^2}$$

1.6 Sidereal Day and Solar Day

Examples: 2020-Q12;

We denote sidereal day as t_{sid} and Solar Day as t_{sol} , we have:

$$t_{sid} = \frac{2\pi}{\omega_0}$$

$$t_{sol} = \frac{2\pi}{\omega_0 - \omega_1 \cos \theta}$$

where ω_0 is the angular velocity of the planet's rotation, and ω_1 is the angular velocity of orbital revolution, θ is the tilt angle.

2 Celestial Coordinates and Time

Examples: 2023-Q1|17|18; 2022-Q24|25|28|30

2.1 Trigonometry

2.1.1 Length of Arc

Circumfurence: $2\pi r$

Length of Arc: θr

Figure 1: Trigonometry

2.1.2 Law of Cosine

$$a^{2} = b^{2} + c^{2} - 2bc \cos \alpha$$
$$b^{2} = a^{2} + c^{2} - 2ac \cos \beta$$
$$c^{2} = a^{2} + b^{2} - 2bc \cos \gamma$$

Derivation:

$$\overrightarrow{BC} = \overrightarrow{AC} - \overrightarrow{AB}$$

$$|\overrightarrow{BC}|^2 = |\overrightarrow{AC} - \overrightarrow{AB}|^2$$

$$= |\overrightarrow{AC}|^2 + |\overrightarrow{AB}|^2 - 2\overrightarrow{AC} \cdot \overrightarrow{AB}$$

$$a^2 = b^2 + c^2 - 2bc \cos \alpha$$

2.1.3 Law of Sine

$$\frac{a}{\sin \alpha} = \frac{b}{\sin \beta} = \frac{c}{\sin \gamma}$$

2.2 Spherical Trigonometry

2.2.1 Spherical Law of Cosine

 $\cos a = \cos b \cos c + \sin b \sin c \cos A$ $\cos b = \cos c \cos a + \sin c \sin a \cos B$ $\cos c = \cos a \cos b + \sin a \sin b \cos C$

2.2.2 Spherical Law of Sine

$$\frac{\sin A}{\sin a} = \frac{\sin B}{\sin b} = \frac{\sin C}{\sin c}$$

2.2.3 Area of the Spherical Triangle

 $Area\ of\ triangle = A + B + C - \pi Total\ Area = 4\pi$

Figure 2: Spherical Trinometry

2.3 Celestial Coordinate

2.3.1 Circumpolar

$$90 - \delta < \lambda$$

 λ is latitude, δ is declination

3 Telescope & Star Magnitudes

3.1 Parallax

Examples:

One $parsec \approx 3.26 \ ly$ is the parallax of the distant star from a triangle of 1AU and 1 arcsec

Some confusing notations:

• mac: micro-arcsec = $10^{-3} arcsec$

• Mpc: Million-parsec = $10^6 pc$

3.2 The Airy Spot

Examples: 2022-Q6

Due to the diffraction of light, the best-focused spot of light has a limited angular size.

$$\sin \theta \approx \theta \approx 1.22 \frac{\lambda}{d}$$

where λ is the light wavelength, d is the diameter of the lens. To **differentiate** two light source, they have to be θ away from each other.

Figure 3: Circumpolar

3.3 Telescope Parameters

Examples: 2021-Q13, 2023-Q2|Q24

3.3.1 f number (focal ratio)

The focal ratio is the ratio between the focal length f and the diameter of the aperture d:

$$N = \frac{f}{d}$$

This number is usually denoted as f/N.

For example, f/2 means f = 2d, the larger the number, the worse the telescope.

3.3.2 Magnification

The magnification:

$$m = f_o/f_e$$

is the ratio between the focal length of *objective* and *eyepiece* lens.

3.4 The Apparent and Absolute Magnitude

Examples: 2023-Q2|13; 2022-Q8|18|20; 2021-Q22|23; 2020-Q13; 2019-Q13, 2018-Q13|21

Figure 4: Parallax

Figure 5: Airy Pattern

3.4.1 Magnitude and Flux

The ultimate physical carrier of light is the flux of photons (or electric-magnetic field), which follows the *inversed-squared law*. Magnitude is a *representation* of the *relative* amount of flux. The definition is that:

Five unit of magnitude = 100 difference in flux

$$100^{\frac{m_1 - m_2}{5}} = \frac{F_2}{F_1}$$

This can be rewritten in terms of distance (for same type of star):

$$10^{\frac{m_1 - m_2}{5}} = \frac{d_1}{d_2}$$

And in log10 in terms of distance:

$$m_1 - m_2 = 5\log_{10} d_1 - 5\log_{10} d_2$$

3.4.2 Absolute Magnitude M

The apparent magnitude of a star measured at 10pc ($\log_{10}(10pc) = 1$):

$$M = m - 5 \log_{10}(d_{pc}) + 5$$

3.4.3 Extinction

Due to the existence of dust, the light can dim:

$$m - M = 5 * \log(d) - 5 + a_V * d$$

Where a_V is the interstellar extinction in the unit of mag/pc or mag/kpc

Examples: 2021-Q23, 2019-Q13

4 Special Relativity, Hubble's Law & Red Shift

4.1 Hertzsprung–Russell diagram

4.2 Special Relativity and Cosmology

If the velocity is comparable to the speed of light c, the relativity effects can not be ignored.

Figure 6: H-R Diagram

Figure 7: Hubble Sequence

4.2.1 Mass-Energy Equation

Examples: 2023-Q11, 2022-Q12|15, 2021-Q20, 2020-Q15

The mass and energy is equivalent:

$$E = mc^2$$

The loss of mass is identical to the loss of energy. This is the ultimate source of energy in the universe: Fusion in the stars.

4.2.2 Lorentz Coefficient

$$\gamma = \frac{1}{\sqrt{1 - v^2/c^2}}$$

For a moving body, the time flow is slower " $Time\ dilation$ ": (S') is the moving frame)

$$\Delta t' = \gamma \Delta t$$

The "length contraction":

$$\Delta x' = \frac{\Delta x}{\gamma}$$

Examples: 2023-Q15,

4.3 Hubble's Law & Red Shift

Examples: 2023-Q27; 2022-Q29;2021-Q8|12|26

The universe is constantly expanding with a coefficient $H_0 = 70 km/s/Mpc$, the expanding speed is:

$$v = H_0 D$$

The resulting "red-shift velocity" is **defined** to be:

$$v_{rs} = cz$$

where z is the red shift. In low velocity case, this can be related to the real red-shift in observed wavelength using the Fizeau- $Doppler\ Formula$:

$$z = \frac{\lambda_{\rm o}}{\lambda_{\rm e}} - 1 = \sqrt{\frac{1 + \frac{v}{c}}{1 - \frac{v}{c}}} - 1 \approx \frac{v}{c}$$

where λ_o and λ_e is the observed and emitted wavelength. Since the speed of light is constant, this can also be used to calculate the change in frequency:

$$\frac{\nu_e}{\nu_o} = \sqrt{\frac{1 + \frac{v}{c}}{1 - \frac{v}{c}}}$$

4.3.1 Critical Density of the Universe

Replace the escape velocity with the speed of the light from Hubble's expansion:

$$c = H_0 r = \sqrt{\frac{2GM}{r}}$$

We have:

$$\rho = \frac{M}{\frac{4}{3}\pi r^3} = \frac{3H_0^2}{8\pi G} \simeq 9.22 \times 10^{-27} kg \cdot m^{-3}$$

5 MISC

5.0.1 Signal to Noise Ratio

Proportional to \sqrt{N} , where N is the number of measurements or exposure time

Examples: 2022-Q27

5.0.2 Energy of E&M Wave

Poynting Flux:

$$\vec{S} = \vec{E} \times \vec{B}$$

is *independent* of frequency

Notation	Length [m]
pm	10^{-12}
Ä	10^{-10}
nm	10^{-9}
μm	10^{-6}
mm	10^{-3}
cm	10^{-2}
km	10^{3}
Mm	10^{6}

Figure 8: Lengths

6 Constants and Notations

6.1 Constants

- 1. The absolute magnitude of the Sun: 4.83
- $2.\ \, {\rm Age}$ of the Universe: 13.4 Billion years
- 3. Visible wavelength: 310 nm (ultraviolet) 1100 nm (infrared)

6.2 Notations

1. Length: