Math 5604 Homework 1

Jacob Hauck

January 31, 2024

Problem 1.

Consider the IVP

$$y' = 3 + e^{-t} - y, \quad t > 0; \qquad y(0) = 1.$$
 (1)

The code to answer the following questions is found in problem1_calculations.m. The output from running this script is copied into problem1_output.txt.

1.1) Multiplying both sides by the integrating factor e^t gives

$$y'e^t + ye^t = 3e^t + 1. (2)$$

The left-hand side is $(ye^t)'$, so integrating on both sides gives

$$ye^t = 3e^t + t + C, (3)$$

for some constant C, so $y(t) = 3 + (t + C)e^{-t}$. The initial condition y(0) = 1 implies that C = -2, so

$$y(t) = 3 + (t - 2)e^{-t}. (4)$$

1.2) (a) To discretize the IVP on [0,2] using the forward Euler method, we need to have an evenly-spaced set of time samples $\{t_i\}_{i=0}^n$ defined by

$$t_i = \begin{cases} 0 & i = 0 \\ t_{i-1} + k, & i \ge 1, \end{cases} \qquad i = 0, 1, \dots, n.$$
 (5)

The value k is the step size and is chosen so that $t_n = 2$; that is, $k = \frac{2}{n}$. We will attempt to find an approximation $\{y_i\}_{i=0}^n$ of the values $\{y(t_i)\}_{i=0}^n$. To find $\{y_i\}$, we create and solve a system of equations from the ODE by approximating $y'(t_i)$ by the forward difference $y'(t_i) \approx \frac{y(t_{i+1}) - y(t_i)}{k}$, where i < n. Since we know that y(0) = 1 from the initial condition, we are led to the scheme

$$\begin{cases} y_0 = 1\\ \frac{y_{i+1} - y_i}{k} = 3 + e^{-t_i} - y_i, & 0 \le i < n, \end{cases}$$
 (6)

which allows to write an explicit recursive formula for y_i :

$$\begin{cases} y_0 = 1 \\ y_{i+1} = y_i + k(3 + e^{-t_i} - y_i), & 0 \le i < n. \end{cases}$$
 (7)

The code for this scheme can be found in problem1_fe.m.

- (b) According the output from problem1_output.txt, the numerical value of y(2) is 3.012754.
- (c) Below (Figure 1) is the plot generated by problem1_calculations.m.

Figure 1: The exact solution of the ODE and the numerical approximations using the forward Euler method with $k = \frac{1}{16}$ and $k = \frac{1}{64}$.

1.3) (a) To discretize the IVP on [0,2] using the backward Euler method, we need to have an evenly-spaced set of time samples $\{t_i\}_{i=0}^n$ defined by

$$t_i = \begin{cases} 0 & i = 0 \\ t_{i-1} + k, & i \ge 1, \end{cases}, \qquad i = 0, 1, \dots, n.$$
 (8)

The value k is the step size and is chosen so that $t_n = 2$; that is, $k = \frac{2}{n}$. We will attempt to find an approximation $\{y_i\}_{i=0}^n$ of the values $\{y(t_i)\}_{i=0}^n$. To find $\{y_i\}$, we create and solve a system of equations from the ODE by approximating $y'(t_i)$ by the backward difference $y'(t_i) \approx \frac{y(t_i) - y(t_{i-1})}{k}$, where i > 0. Since we know that y(0) = 1 from the initial condition, we are led to the scheme

$$\begin{cases} y_0 = 1\\ \frac{y_i - y_{i-1}}{k} = 3 + e^{-t_i} - y_i, & 0 < i \le n, \end{cases}$$
 (9)

which allows to write an explicit recursive formula for y_i :

$$\begin{cases} y_0 = 1\\ y_i = \frac{y_{i-1} + k(3 + e^{-t_i})}{1 + k}, \quad 0 < i \le n. \end{cases}$$
 (10)

The code for this scheme can be found in problem1_be.m.

- (b) According the output from problem1_output.txt, the numerical value of y(2) is 2.987379.
- (c) Below (Figure 2) is the plot generated by problem1_calculations.m.

Figure 2: The exact solution of the ODE and the numerical approximations using the forward Euler method with $k = \frac{1}{16}$ and $k = \frac{1}{64}$.

1.4) Below (Table 1) are numerical errors at t = 1 for the forward and backward Euler methods at different step sizes.

Problem 2.

Consider the IVP

$$y' = \frac{3t^2 + 10t + 1}{2(y+1)}, \quad t > 0; \qquad y(0) = -2.$$
 (11)

The code to answer the parts of this question can be found in problem2_calculations.m, and the output from running this script has been copied to problem2_output.txt.

2.1) Multiplying both sides by 2(y+1) gives

$$2(y+1)(y+1)' = 3t^2 + 10t + 1. (12)$$

The left-hand side is $((y+1)^2)'$, so integrating on both sides gives

$$(y+1)^2 = t^3 + 5t^2 + t + C (13)$$

for some constant C. The initial condition y(0) = -2 implies that C = 1. Therefore,

$$y(t) = -1 \pm \sqrt{t^3 + 5t^2 + t + 1}. (14)$$

The initial condition forces us to choose a negative sign after taking the square root; thus,

$$y(t) = -1 - \sqrt{t^3 + 5t^2 + t + 1}. (15)$$

$\overline{\text{Time step }(k)}$	Forward Euler error	Backward Euler error
$\overline{1/4}$	0.105516	0.097216
1/8	0.051788	0.049683
1/16	0.025638	0.025109
1/32	0.012754	0.012621
1/64	0.006360	0.006327
1/128	0.003176	0.003168
1/256	0.001587	0.001585
1/512	0.000793	0.000793

Table 1: Numerical errors in t=2; comparison of forward and backward Euler methods

2.2) To discretize the IVP on [0,1] using the backward Euler method, we need to have an evenly-spaced set of time samples $\{t_i\}_{i=0}^n$ defined by

$$t_i = \begin{cases} 0 & i = 0 \\ t_{i-1} + k, & i \ge 1, \end{cases} \qquad i = 0, 1, \dots, n.$$
 (16)

The value k is the step size and is chosen so that $t_n = 1$; that is, $k = \frac{1}{n}$. We will attempt to find an approximation $\{y_i\}_{i=0}^n$ of the values $\{y(t_i)\}_{i=0}^n$. To find $\{y_i\}$, we create and solve a system of equations from the ODE by approximating $y'(t_i)$ by the backward difference $y'(t_i) \approx \frac{y(t_i) - y(t_{i-1})}{k}$, where i > 0. Since we know that y(0) = 1 from the initial condition, we are led to the scheme

$$\begin{cases} y_0 = 1\\ \frac{y_i - y_{i-1}}{k} = \frac{3t_i^2 + 10t_i + 1}{2(y_i + 1)}, & 0 < i \le n, \end{cases}$$
(17)

which allows to write an implicit recursive formula for y_i :

$$\begin{cases} y_0 = 1\\ 2(y_i + 1)(y_i - y_{i-1}) - k(3t_i^2 + 10t_i + 1) = 0, & 0 < i \le n. \end{cases}$$
 (18)

We can solve the implicit equation for y_i numerically using Newton's method. Indeed, if we set

$$f_i(y) = 2(y+1)(y-y_{i-1}) - k(3t_i^2 + 10t_i + 1), \qquad 0 < i < n,$$
 (19)

then finding y_i is equivalent to finding the root of f_i . Newton's method is easy to apply once we note that $f'_i(y) = 2(y - y_{i-1}) + 2(y + 1)$.

The code for this scheme can be found in problem2_be.m, and it refers to the newton.m script to run Newton's method.

- **2.3**) When $k = \frac{1}{16}$ and the numerical tolerance for Newton's method is $\varepsilon = 0.1$, the numerical value of y(1) is -3.812471, according to problem2_output.txt.
- **2.4**) When $k = \frac{1}{16}$ and the numerical tolerance for Newton's method is $\varepsilon = 10^{-8}$, the numerical value of y(1) is -3.772976, according to problem2_output.txt.
- **2.5**) Below (Table 2) are the numerical errors at t = 2 for different step sizes and Newton's method tolerances.

Time step (k)	$\varepsilon = 0.1 \text{ error}$	$\varepsilon = 10^{-3} \text{ error}$	$\varepsilon = 10^{-8} \text{ error}$
$\overline{1/4}$	0.414940	0.417989	0.417989
1/8	0.211888	0.215835	0.215836
1/16	0.101119	0.109862	0.109862
1/32	0.015956	0.055450	0.055451
1/64	0.007944	0.027855	0.027860
1/128	0.003964	0.013964	0.013964
1/256	0.001980	0.006991	0.006991
1/512	0.000989	0.003497	0.003498

Table 2: Numerical errors at t = 1