# Simplicial surfaces in GAP

Markus Baumeister

??.08.2017

2 Edge colouring and group properties

2 Edge colouring and group properties

#### Motivation

Goal: simplicial surfaces (and generalisations) in GAP



→ examples of polygonal complexes

# No embedding

We do not work with embeddings (mostly)

- is very hard to compute
- if often unknown for an abstractly constructed surface
- is different from intrinsic structure
- ⇒ lengths and angles are not important
- → incidence structure is intrinsic

# Incidence structure of polygonal complex

- set of vertices  $\mathcal V$  2 3 5 7 11 • set of edges  $\mathcal E$  6 8 9 10 12 13
- ullet set of faces  ${\cal F}$
- transitive relation  $\subseteq (\mathcal{V} \times \mathcal{E}) \uplus (\mathcal{V} \times \mathcal{F}) \uplus (\mathcal{E} \times \mathcal{F})$



- Every edge has exactly two vertices
- Every face is a polygon
- Every vertex lies in an edge and every edge lies in a face

### Polygonal complexes

A **polygonal complex** is a two–dimensional incidence structure of vertices, edges and faces, such that:

• Every edge has exactly two vertices. 2 • 6

Every face is a polygon.



- Every vertex lies in an edge
- Every edge lies in a face

### Isomorphism testing

Incidence geometry allows "easy" isomorphism testing. Incidence structure can be interpreted as a coloured graph:



∼→ reduce to graph isomorphism problem
Solved by NautyTracesInterface (by Gutsche, Niemeyer, Schweitzer)

#### General properties

Some properties can be computed for all polygonal complexes:

- Connectivity
- Euler-Characteristic

Orientability is **not** one of them. Counterexample:



- ⇒ every edge lies in at most two faces (for well–definedness)
- → ramified polygonal surfaces

# Why ramified?

Typical example of ramified polygonal surface:



 $\Rightarrow$  It is not a surface – there is a *ramification* at the central vertex A **polygonal surface** does not have these ramifications.

2 Edge colouring and group properties

### **Embedding question**

Given: A polygonal complex

- Can it be embedded?
- In how many ways?

#### Simplifications:

- Only polygonal surfaces (surface that is build from polygons)
- All polygons are triangles (simplicial surfaces)
- 3 All triangles are isometric
- → Edge-colouring encodes different lengths



# Colouring as permutation

Consider tetrahedron with edge colouring



 $simplicial \ surface \Rightarrow at \ most \ two \ faces \ at \ each \ edge$ 

- → every edge defines transposition of incident faces
- → every colour class defines permutation of the faces
  - (1,2)(3,4) , (1,3)(2,4) , (1,4)(2,3)
- → group theoretic considerations
  - ► The connected components of the surface correspond to the orbits of  $\langle \sigma_a, \sigma_b, \sigma_c \rangle$  on the faces

# How do faces fit together?

Consider a face of the surface and a neighbouring face The neighbour can be coloured in two ways:



This gives an **mr-assignment** for the edges.

Permutations and mr-assignment uniquely determine the surface.

# Constructing surfaces from groups

A general mr–assignment leads to complicated surfaces. Simplification: edges of same colour have the same type Example



has an rrr-structure

The easiest structure is an mmm-structure.

#### Covering

We want to characterize surfaces where all edges are mirrors.

#### Lemma

A simplicial surface has an mmm—structure iff it covers a single triangle, i. e. there is an incidence—preserving map to the simplicial surface consisting of exactly one face.

#### Consider



- Covering pulls back a colouring of the triangle.
- Colouring defines a map to the triangle.

### Construction from permutations

Start with three involutions  $\sigma_a$ ,  $\sigma_b$ ,  $\sigma_c$  (like generators of a finite group)

#### Lemma

There exists a coloured surface with the given involutions where all edges are mirror edges.

- The faces are the points moved by the involutions
- The edges are the cycles of the involutions
- The vertices are the orbits of  $\langle \sigma_a, \sigma_b \rangle$  on the faces (for all pairs)



#### Construction example

$$\sigma_a = (1, 2)(3, 4)(5, 6)(7, 8)$$

$$\sigma_b = (1,4)(2,3)(5,8)(6,7)$$

 $\sigma_c = (1,5)(2,6)(3,7)(4,8)$ 



2 Edge colouring and group properties