Weekly Challenge 02: Deterministic Finite Automata (DFA)

CS 212 Nature of Computation Habib University Ali Muhammad Asad (aa07190)

Fall 2023

1. The Complement Language

Consider the following finite automata and their languages.

- $M_1 = (Q, \{0, 1\}, \delta, q_o, F)$ and its language, $L_1 = L(M_1)$, and
- $M_2 = (Q, \{0, 1\}, \delta, q_o, Q F)$ and its language, $L_2 = L(M_2)$.

Prove or disprove the following claim,

$$L_1 = L_2'$$

where L' is the set-complement of L.

Solution:

We have the following finite automata and their languages:

- $M_1 = (Q, \{0, 1\}, \delta, q_o, F)$ and its language $L1 = L(M_1)$, and
- $M_2 = (Q, \{0, 1\}, \delta, q_o, Q F)$ and its language $L^2 = L(M_2)$

For both the given finite automata M_1 and M_2 , they have the same set of states Q, alphabet $\{0,1\}$, transition function δ , and starting state q_o . However, they have different set of final states, that is F and Q - F respectively.

Considering the languages L_1 and L_2 , L_1 is the language that leads M_1 to an accepting state, but not M_2 since $F \subseteq Q$, so F and Q - F would be disjoint sets, and by the definition of set complement, F = (Q - F)' or F' = Q - F. Similarly, L_2 is the language that leads M_2 to an accepting state but not M_1 .

Then for any arbitrary string $w \in \{0, 1\}^*$:

- If w is accepted by M_1 , then $w \in L_1$. However, since L_1 contains the strings not accepted by M_2 , we can conclude that $w \notin L_2$ which implies $w \in L'_2$. Thus $w \in L_1 \implies w \in L'_2$. So $L_1 \subseteq L'_2$.
- If w is not accepted by M_2 , then $w \notin L_2 \implies w \in L'_2$. However, $w \in L'_2$ implies that the string w leads M_2 to a rejecting state Q (Q F) which is equal to F. From this we can conclude that the string w would then lead to a state in F which is an accept state for M_1 . Therefore, $L'_2 \subseteq L_1$.

Thus, for any arbitrary string w, we've shown that it either belongs to L_1 and L'_2 , or it does not. In either case, $w \in L_1 \iff w \in L'_2$. Therefore, $L_1 = L'_2$.