Weibull AFT Regression Functions in R

Sarah R. Haile*

February 5, 2014

Weibull accelerated failure time regression can be performed in R using the survreg function. The results are not, however, presented in a form in which the Weibull distribution is usually given. Accelerated failure time models are usually given by

$$\log T = Y = \mu + \boldsymbol{\alpha}^T \mathbf{z} + \sigma W,$$

where \mathbf{z} are set of covariates, and W has the extreme value distribution. Given transformations

$$\gamma = 1/\sigma,$$

$$\lambda = \exp(-\mu/\sigma),$$

$$\beta = -\alpha/\sigma,$$

we have a Weibull model with baseline hazard of

$$h(x|\mathbf{z}) = (\gamma \lambda t^{\gamma - 1}) \exp(\boldsymbol{\beta}^T \mathbf{z}).$$

Further, the surveg function generally gives $\log \sigma$, rather than σ as output. The function WeibullReg (along with ConvertWeibull) solves this problem. Hazard ratios $(\exp(\beta_i))$ are additionally produced.

The function also produces the "event time ratio" (ETR, $\exp{(-\beta_i/\gamma)} = \exp{\alpha_i}$), as discussed in ?. This ratio quantifies the relative difference in time it takes to achieve the pth percentile between two levels of a covariate. The pth percentile of the (covariate-adjusted) Weibull distribution occurs at

$$t_p = \left[\frac{-\log p}{\lambda_e \boldsymbol{\beta}^T \mathbf{z}} \right]^{1/\gamma}.$$

Then the ratio of times for a covariate with value z_1 versus values z_0 , with parameter estimate β , can then be computed as:

$$\frac{t_B}{t_A} = \left[\frac{-\log p}{\lambda e^{\beta z_1}}\right]^{1/\gamma} \left[\frac{\lambda e^{\beta z_0}}{-\log p}\right]^{1/\gamma}$$
$$= \exp\left\{\frac{\beta(z_0 - z_1)}{\gamma}\right\}.$$

Thus, if we are comparing treatment B to treatment A, where the parameter estimate for treatment B is $\beta_{\rm trt}$, then the ETR is $\exp\{-\beta_{\rm trt}/\gamma\}$.

^{*}Kantonsspital St. Gallen, Bedastrasse 1, 9007 St. Gallen (sarah.haile@gmail.com)

For example if the ETR for treatments A vs B is 1.2, then the amount of time it takes for p percent of patients with treatment A to have the event is predicted to be about 20% longer than it takes for the same percentage of patients with treatment B to experience an event. (That is, treatment B is worse.) For this reason, the ETR can also be called an "acceleration factor."

Additionally, a function WeibullDiag has been provided to check the adequacy of the Weibull Model.

1 WeibullReg

The WeibullReg function performs Weibull AFT regression on survival data, returning a list which contains:

formula the regression formula,

factor(stage)2 0.16692694 0.46112943 factor(stage)3 0.66289534 0.35550887 factor(stage)4 1.74502788 0.41476410

0.01973646 0.01424135

coef the coefficient table,

HR a table with the hazard rates (with confidence intervals) for each of the covariates,

ETR a table with the Event Time Ratios (with confidence intervals) for each of the covariates, and

summary the summary table from the original survreg model.

Such tables can also be produced using the streg function in stata with the following options: 1) the nohr option gives coef, 2) without any options gives HR, 3) the tr option gives ETR, and 4) the time option produces summary, the original output from survreg. While proc lifereg in SAS can also perform parametric regression for survival data, its output must also be transformed.

The following example reproduces Tables 12.1 and 12.2 from ?, on the larynx data set.

\$HR

age

```
LB
                     HR.
                                        UB
factor(stage)2 1.181668 1.147988 1.216336
factor(stage)3 1.940402 1.897624 1.984145
factor(stage)4 5.726061 5.579055 5.876941
               1.019933 1.019022 1.020844
age
$ETR
                     ETR
                                 LB
                                           UB
factor(stage)2 0.8626863 0.8409177 0.8850184
factor(stage)3 0.5562383 0.5451897 0.5675108
factor(stage)4 0.2135090 0.2087004 0.2184284
age
               0.9826879 0.9819008 0.9834757
$summary
Call:
survival::survreg(formula = formula, data = data, dist = "weibull")
                 Value Std. Error
                3.5288
                           0.9041 3.903 9.50e-05
(Intercept)
                           0.4076 -0.362 7.17e-01
factor(stage)2 -0.1477
                           0.3199 -1.833 6.68e-02
factor(stage)3 -0.5866
factor(stage)4 -1.5441
                           0.3633 -4.251 2.13e-05
                           0.0128 -1.367 1.72e-01
               -0.0175
Log(scale)
                           0.1225 -0.999 3.18e-01
               -0.1223
Scale= 0.885
Weibull distribution
Loglik(model) = -141.4
                        Loglik(intercept only) = -151.1
        Chisq= 19.37 on 4 degrees of freedom, p= 0.00066
Number of Newton-Raphson Iterations: 5
n = 90
```

The hazard rates produced with the Weibull regression model are similar to what is obtained with Cox proportional hazards regression:

Most of the work of the function is actually performed by ConvertWeibull. These functions require the survival package in R. Formulas for the variance estimates come from (?, Equations 12.2.13-18, with some modifications since R gives $\log \sigma$).

2 WeibullDiag

The WeibullDiag function produces a diagnostic plot for Weibull AFT regression, similar to what is present (?, Figure 12.2). It plots log Time versus the log of the estimated cumulative hazard estimate. If the Weibull model has adequate fit, then the plots for each of the covariates should be roughly linear and parallel. This function requires the survfit object to contain strata, else an error is produced. The WeibullDiag function requires the survival package.

```
> WeibullDiag(Surv(time, death) ~ factor(stage), data = larynx,
+ labels=c("Stage I", "Stage II", "Stage III", "Stage IV"))
```

Weibull Regression Diagnostic Plot

