Power Analysis for Single and Rare Variant Aggregate Association Analyses

Suzanne M. Leal, Ph.D.

Sergievsky Family Professor of Neurological Sciences Director of the Center for Statistical Genetics Columbia University sml3@Columbia.edu

© 2023 Suzanne M. Lea

Why Estimate Sample Sizes and/or Power?

- · To avoid wasting time and money
 - Does not make sense to perform an inadequately powered study for which it is unlikely to to correctly reject the null hypothesis due to inadequate sample size
 - · Collaborations can aid in increasing sample sizes
 - Caveats
 - » Disease definition may not be the same between studies
 - » Study subjects may be drawn for different populations
 - » Processing of genetic material maybe not be consistent
- · Almost always necessary for grant proposals
 - Can be denied funding if unable to demonstrate planned study has adequate nower.
 - Realistic disease models are necessary when performing power calculations
 - Correctly adjust alpha for multiple testing which will be performed
 - e.g., use genome-wide significant level of 5 x 10 °s for GWAS studies

2

Power and Sample Size Estimation for Case-Control Data

- The correct α must be use for sample size estimation/power analysis
- Type I (α) the probability of rejecting the null hypothesis of no association when it is true
- Due to multiple testing a more stringent value than α =0.05 is used in order to control the Family Wise Error Rate

Power and Sample Size Estimation for Case-Control Data

- GWAS of common variants where each variant is test separately
 - $-\alpha$ =5 X10⁻⁸ (Bonferroni Correction for testing 1,000,000 variant sites)
 - Shown to be a good approximation for the effective number of tests
 Valid even when more than 1.000.000 variant sites tested
 - Effective number of tests is dependent of the linkage disequilibrium (LD)
 - structure
- Single variant tests using whole genome sequence data
 - Many more rare variants than common variants
 - Lower levels of LD between rare variants than between common variants
 - The number of effective tests for rare variants is higher than for analysis limited to common variants
 - $\ \alpha$ is yet to be determined for association analysis of whole genome sequence data

3

An Example of Determining Genome-wide Significance Levels for Common Variants

- Using genotypes from the Wellcome Trust Case-Control Consortium
- Dudbridge and Gusnato, Genet Epidemiol 2008
- Estimated a genome-wide significance threshold for the UK European population
- By sub-sampling genotypes at increasing densities and using permutation to estimate the nominal p-value for a 5% familywise error
- · Then extrapolating to infinite density
- The genome wide significance threshold estimate ~7.2X10-8
- Estimate is based on LD structure for Europeans
 - Not sufficiently stringent for populations of African Ancestry

Power and Sample Size Estimation for Aggregate Rare Variant Tests

- For gene-based rare variant aggregate methods a Bonferroni correction for the number of genes/regions tested is used
 - e.g., 20,000 genes significance level α=2.5 x 10⁻⁶
 - Can use a less stringent criteria
 - Not all genes have two or more variants
 » Divide 0.05 by number of genes tested
 - If units other than genes are used
 - A more stringent criteria may be necessary
- For rare variants very low levels of LD between variants in separate genes
 - Therefore, a Bonferroni correction is not overly stringent
 - The number of tests \cong effective number tests
 - This would not be the case for variants in LD

Power and Sample Size Estimation for Replication Studies

- $\bullet~$ For replication studies can base the significance level (a)
- On the number of genes/variants being brought from the discovery (stage I) study
- To replication (stage II)
- For example, if it is hypothesized that 20 genes and 80 independent variants will be brought to stage II (replication)
 - A Bonferroni correct can be made for performing 100 tests
 - An α = 5.0 x 10⁻³ can be used for a family wise error rate of 0.05

Estimating Power/Sample Sizes For Single Variant Tests

- · Can be obtained analytically
- · Information necessary
 - Prevalence
 - Risk allele frequency
 - Effect size (odds ratio-for case control data)
 - Genetic model for the susceptibility variant
 - Recessive (y1=1)
 - Dominant (v2=v1)
 - Additive (v2=2v1-1)
 - Multiplicative (y2=y1²)

Estimating Power/Sample Sizes For Individual Variants

- Usually, information on disease prevalence is known from epidemiological data
- A range of risk allele allele frequencies and effect sizes are used
- · A variety of genetic models can also used
 - Dominant
 - Additive
 - Multiplicative

Armitage Trend Test

- Power and Sample size
 - Calculated under different models
 - Where y is the relative risk
 - Multiplicative
 - Additive
 - » γ₂=2γ₁-1
 - Dominant
 - » γ₂=γ₁ - Recessive
 - » γ₁=1

9 10

Gamma is the Relative Risk not the Odd Ratio

- Most software for power calculations/sample size estimation use the relative risk (γ) and not the odds ratio
- The relative risk only approximates the odds ratio when disease is rare (Prevalence ~< 0.1%)
 - The relative risk is not appropriate for common traits when a case-control

Correspondence Between the Odds Ratio and Relative Risk

Dominant Model Disease Prevalence 1/2* RR=1.5 2/2** RR=1.5 1.51 1.51 0.10 1.59 1.59 0.20 1.71 1.71

Multiplicative Model			
Disease Prevalence	1/2 RR=1.5	2/2 RR=2.25	
0.01	1.51	2.28	
0.10	1.59	2.61	
0.20	1.71	3.25	

Marker minor allele and disease allele frequency 0.01 D' and r²=1

*1/2 genotype – heterozygous (one copy of the alternative allele) **2/2 genotype - homozygous for the alternative allele

Armitage Trend Test - Power Calculations

- Information need
 - Population prevalence
 - Genetic Model
 - Risk allele frequency
- Tools
 - http://ihg.gsf.de/cgi-bin/hw/power2.pl
 - Reference Slager and Schaid 2001

sample size approximations to	r Armitage's test for treng:
Disease prevalence	0.01
High risk allele frequency	0.05
Type 1 error (alpha)	0.00000005
Power (1- beta)	0.8
Gamma 1	2
Gamma 2	2
Cases / (cases + controls)	0.5
Cases necessary =	1502
Controls necessary =	1502
Cases and controls necessary	= 3004
under a dominant model, gamr Adapted from: Slager SL, Schaid DJ: Case-co	jammal = gammal ^2; under a additive model, gammal = 1. = 2 * gammal - 1; alize gammal under a recessive model, gammal = 1. = 2 * gammal - 1; introl studies of genetic markens; introl studies of genetic markens; with IL:

13 14

Genetic Association Study (GAS) Power Calculator

- http://csg.sph.umich.edu/abecasis/cats/gas_power_calculator/index.html
- A one-stage study power calculator
 - Which was derived from CaTs
 - $\bullet \;$ Which is to perform two-stage genome wide association studies
 - Skol et al. 2006
- Cochran Armitage Trend Test
- Displays graphs of the results

15 16

Genetic Power Calculator

- http://zzz.bwh.harvard.edu/gpc/
- S Purcell & P Sham
- Uses the methods described in Sham PC et al. (2000) Am J Hum Genet 66:1616-1630
 - VC QTL linkage for sibships
 - VC QTL association for sibships
 - VC QTL linkage for sibships conditional on the trait
 - TDT for discrete traits
 - Case-Control for discrete traits
 - TDT for quantitative traits
 - Case-Control quantitative traits
- Although input is the relative risk
 - Displays odds ratios

Power Association With Errors (PAWE)

- http://compgen.rutgers.edu/pawe/
- · Implements the linear trend test
- · Four different error models can be used
 - See online documentation for complete explanation
- · Can either perform:
 - Power calculations for a fixed sample size
 - Sample size calculations for a fixed power
- The genotype frequencies can be generated either using a:
 - Genetic model free method or
 - Genetic model-based method

19 20

Quanto

- Provides sample size and power calculations for
- · Genetic and environmental main effects
- Interactions
 - Gene x gene
 - Gene x environment
- Sample & power calculations can be carried for:
 - Case-control
 - Unmatche
 - Matched
 Case-sibling
 - Case-sibiling
 Case-parent (trios)
 - Quantitative
 - Qualitative
 Independent sample of individuals
 - Quantitative traits
 - Assumption sampled from a random population
- Can only be run under windows
 - https://pphs.usc.edu/download-quanto/

Linkage Disequilibrium (LD)

- Power will be reduced if causal variant is not in perfect LD (r²=1) with the tag SNP
- Can adjust sample size when $r^2 \! < \! 1$ to increase power to the same level as when $r^2 \! = \! 1$
- Can estimate sample size when $r^2 \neq 1$
 - N/r²=N'
 - Valid only for multiplicative model
 - (Pritchard and Przeworski, 2001)
- ullet Power calculation almost always assume that $r^2=1$
- For whole genome sequence data this should be the case since usually the causal variant would be included in the data

21 22

Power Analysis for Rare Variant Aggregate Association Tests

- Many unknown parameters must be modeled
 - Allelic architecture within a genetic region
 - Varied across genes and populations
 - Effects of variants within a region
 - Fixed or varied effect sizes of causal variants
 - Bidirectional effect of variants
 - Proportion of non-causal variants
- Power estimated empirically
- Simplified assumptions can be made to obtain analytical estimates
 - All variants have the same effect size
 - No non-causal variants within a region that is analyzed in aggregate

Simplistic Analytical Power Calculation for Rarevariant Aggregate Association Analysis

- Assumption
 - All rare variants are causal and have the same effect size
- Although usual not be correct
 - Provides a gestalt of the power for a given samples or sample size for a given power
- Use aggregate of allele frequencies
 - For example, assume a cumulative allele frequency of 0.025
 - Use an exome-wide significant level e.g., 2.5x10⁻⁶
- Provide disease prevalence and penetrance model
- Perform calculations in the same manner as was described for single variants

Empirical Power Calculations

- A variety of methods can be used to generate variant data to empirically estimate power
- Variant data is generated
 - Based upon a penetrance model samples of cases and controls are generated
 - Or a quantitative trait is generated based upon the genetic variance
- Multiple replicates are generated and analyzed
 - To determine the power

Empirical Power Calculations

- Examples
 - 5,000 replicates are generated each with 20,000 cases and 20,000 controls
 - The power is the proportion of replicates with p-value less than the specified threshold, e.g., 5x10-8
 - For rare-variant aggregate tests all autosomal genes are generated and those genes with more than two rare variants (e.g., predicted loss of function) are analyzed
 - The power is the proportion of genes that were tested with p-value which is below a specified threshold, e.g., 2.5x10⁻⁶

25 26

Generating Exome Sequence Data Sets Forward-time Simulation			
Data	Haplotype Counts	Demographics	
Boyko	105,814*		
Kyrukov	1,800,000*	S5,000 Significant	
Gazave	1,308,000*	576 — 578 — 141 — 6 G	
-"Misse	nse" (1.0 x 10 ⁻⁵ -	o define "variant type" 1.8 x 10 ⁻²⁾ nd frameshiff" (>1.8 x 10 ⁻²)	

Note: Not all methods give a realistic distribution of variants & in particular for face variants

28

SKAT Power Calculator

• R Library

27

- Provides a haplotype matrix
 - 10,000 haplotypes over 200kb region
 - Simulated using a calibrated coalescent model (cosi)
 - Mimicking linkage disequilibrium structure of European ancestry
 - User can also provide haplotype data
- Power and sample size calculations for binary and quantitative traits
- User specify proportion of variants that increase or lower risk

31

33 34

Simulation Studies to Evaluate Power for Rare Variant Association Studies

- It is unknown which genes are important in disease etiology
- Correct allelic architecture is unknown
- Can get a better understanding of power to detect associations by generating variants for the entire exome
- · Use a variety of disease models
 - Odds ratios
 - Proportion of pathogenic variants
- Analyze of all genes
 - e.g., those with 2 or more variant sites
- Determine power as the proportion of genes that meet exome-wide significance (e.g., alpha=2.5x10⁻⁶)

Power Analysis

- For tests of individual variants
 - Power depended on sample size, disease prevalence, minor allele frequency, genetic model and variant effect size
- For rare variants (aggregate association tests)
 - Also dependent on the allelic architecture
 - Cumulative variant frequency within analyzed region
 - Proportion of causal variants
 - How much contamination from non-causal variants
 - Effect sizes the same the same or different across gene regions
 - Effects of variants in the same or different directions
 - » Protective and detrimental for binary traits
 - » Increase and decrease quantitative trait values

Power Analysis Rare Variants (Aggregate Association Tests)

- Power will not only vary between traits greatly
- The power to detect an association will also vary drastically between genes for the same complex trait
 - For some causal genes even with hundreds of thousands of samples power will be low
 - While for other causal genes a few thousand samples may be sufficient

39