Understanding Undesirable Word Embedding Associations

Kawin Ethayarajh, David Duvenaud, Graeme Hirst

University of Toronto

ACL 2019

Background

Do word embedding associations capture social biases?

- Caliskan et al. (2017): According to WEAT, science terms more associated with male attributes; art terms with female ones.
- Bolukbasi et al. (2016): To debias vectors, define a "bias subspace" and subtract from each vector its projection on the subspace.

See also: bias in translation, tagging, etc.

Questions

Undesirable word associations remain poorly understood.

- Ooes the subspace projection method provably debias embeddings?
- Why should WEAT be used to measure word associations?
- 3 What's to blame? Training data, the embedding model, or just noise?

Questions

Undesirable word associations remain poorly understood.

- Ooes the subspace projection method provably debias embeddings?
- Why should WEAT be used to measure word associations?
- 3 What's to blame? Training data, the embedding model, or just noise?

Debiasing via Subspace Projection

How to define unbiasedness?

- Let M be the word-context matrix the embedding model implicitly factorizes: $WC^T = M$
- Word w is unbiased in M wrt word pairs S iff

$$\forall (x,y) \in S, M_{w,x} = M_{w,y}$$

E.g., 'doctor' unbiased wrt $\{('king', 'queen')\}$ iff

$$M_{doctor,king} = M_{doctor,queen}$$

Debiasing via Subspace Projection

Debiasing Theorem If bias subspace $B = \text{span}(\{\vec{x} - \vec{y} \mid (x, y) \in S\})$ for word pairs S, then debiased word vectors $\{w_d\}$ are unbiased wrt S.

- Can swap (w,x) and (w,y) in reconstructed matrix $W_dC^T=M_d$
- \bullet Equivalent to training on a corpus unbiased wrt S.

Lipstick on a Pig?

Gonen and Goldberg (2019): In practice, it is possible to detect gender even after debiasing via subspace projection.

Why?

• Debiasing won't remove all vestiges of gender if either S is non-exhaustive or $B \neq \text{span}(\{\vec{x} - \vec{y} \mid (x, y) \in S\})$.

Questions

Undesirable word associations remain poorly understood.

- Open Does the subspace projection method provably debias embeddings?
- Why should WEAT be used to measure word associations?
- What's to blame? Training data, the embedding model, or just noise?

WEAT

Word Embedding Association Test:

Where relatedness is cosine similarity, are words T_1 more associated with attributes X than Y, relative to T_2 ?

- "flowers" more pleasant than unpleasant, relative to "insects"
- "science" more male then female, relative to "arts"

WEAT

Word Embedding Association Test:

Where relatedness is cosine similarity, are words T_1 more associated with attributes X than Y, relative to T_2 ?

- "flowers" more pleasant than unpleasant, relative to "insects"
- "science" more male then female, relative to "arts"

User determines composition of these word sets!

Problem with Using WEAT

You can cherry-pick the attributes to achieve your desired outcome.

Target Word Sets	Attribute Word Sets	Test Stat	<i>p</i> -val	Outcome
{door} vs. {curtain}	{masculine} vs. {feminine} {girlish} vs. {boyish} {woman} vs. {man}	$0.021 \\ -0.042 \\ 0.071$	0.0 0.5 0.0	male-assoc. inconclusive female-assoc.
{dog} vs. {cat}	{masculine} vs. {feminine} {actress} vs. {actor} {womanly} vs. {manly}	0.063 -0.075 0.001	0.0 0.5 0.0	male-assoc. inconclusive female-assoc.

Problem with Using WEAT

You can cherry-pick the attributes to achieve your desired outcome.

Target Word Sets	Attribute Word Sets	Test Stat	<i>p</i> -val	Outcome	
{door} vs. {curtain}	{masculine} vs. {feminine} {girlish} vs. {boyish} {woman} vs. {man}	0.021 -0.042 0.071	0.0 0.5 0.0	male-assoc. inconclusive female-assoc.	
{dog} vs. {cat}	{masculine} vs. {feminine} {actress} vs. {actor} {womanly} vs. {manly}	0.063 -0.075 0.001	0.0 0.5 0.0	male-assoc. inconclusive female-assoc.	

Can we do better?

RIPA

The **relational inner product association** (RIPA) of a word w wrt relation vector \vec{b} :

$$eta(ec{w};ec{b})=\langleec{w},ec{b}
angle$$

where

- \bullet word pairs S define the association (e.g., ('king', 'queen'))
- $\vec{b} = \text{principal component}(\{\vec{x} \vec{y} \mid (x, y) \in S\})$

RIPA

Advantages of RIPA:

- interpretable when embedding model factorizes word-context matrix
- robust to how \vec{b} is defined
- derived from the subspace projection method of debiasing

Interpreting RIPA

For noiseless SGNS, where $S = \{(x, y)\}$:

$$\beta_{\mathsf{SGNS}}(\vec{w}; \vec{b}) = \frac{1/\sqrt{\lambda}}{\sqrt{-\mathsf{csPMI}(x, y) + \alpha}} \log \frac{p(w|x)}{p(w|y)}$$

- $\beta(\vec{w}; \vec{b}) \rightarrow 0$ the more unrelated x and y are
- $\beta(\vec{w}; \vec{b}) \in [-\|\vec{w}\|, \|\vec{w}\|]$
- if $\vec{x_1} \vec{y_1} = \vec{x_2} \vec{y_2}$, then $\beta(\vec{w}; \vec{b})$ is unchanged

Questions

Undesirable word associations remain poorly understood.

- Open Does the subspace projection method provably debias embeddings?
- Why should WEAT be used to measure word associations?
- What's to blame? Training data, the embedding model, or just noise?

Breaking Down Gender Association

• g: RIPA (i.e., genderedness in embedding space)

$$g(w;x,y) = \frac{\langle \vec{w}, \vec{x} - \vec{y} \rangle}{\|\vec{x} - \vec{y}\|}$$

Breaking Down Gender Association

g: RIPA (i.e., genderedness in embedding space)

$$g(w;x,y) = \frac{\langle \vec{w}, \vec{x} - \vec{y} \rangle}{\|\vec{x} - \vec{y}\|}$$

• \hat{g} : RIPA for noiseless SGNS (i.e., genderedness in corpus)

$$\hat{g}(w; x, y) = \frac{1/\sqrt{\lambda}}{\sqrt{-\mathsf{csPMI}(x, y) + \alpha}} \log \frac{p(w|x)}{p(w|y)}$$

Breaking Down Gender Association

g: RIPA (i.e., genderedness in embedding space)

$$g(w;x,y) = \frac{\langle \vec{w}, \vec{x} - \vec{y} \rangle}{\|\vec{x} - \vec{y}\|}$$

• ĝ: RIPA for noiseless SGNS (i.e., genderedness in corpus)

$$\hat{g}(w;x,y) = \frac{1/\sqrt{\lambda}}{\sqrt{-\mathsf{csPMI}(x,y) + \alpha}} \log \frac{p(w|x)}{p(w|y)}$$

ullet Δ_g : change from corpus o embedding space

$$\Delta_{g}(w;S) = \left| \sum_{(x,y) \in S} \frac{g(w;x,y)}{|S|} \right| - \left| \sum_{(x,y) \in S} \frac{\hat{g}(w;x,y)}{|S|} \right|$$

Breaking down Gender Association

Word Type	Word	Corpus Genderedness	SGNS Genderedness	Δ
Gender-Appropriate $(n=164)$	mom	-0.163	-0.648	0.485
	king	0.058	0.200	0.142
	Avg (abs.)	0.231	0.522	0.291
Gender-Biased $(n = 68)$	nurse	-0.190	-1.047	0.858
	architect	-0.063	0.162	0.099
	Avg (abs.)	0.253	0.450	0.197
Gender-Neutral $(n = 200)$	ballpark	0.254	0.050	-0.204
	speed	0.036	-0.005	-0.031
	Avg (abs.)	0.125	0.119	- 0.006

Debiasing with Supervision

To debias using subspace projection, we need prior knowledge of which words are gender-appropriate.

- ullet 'doctor' is gendered by stereotype o debias!
- 'king' is gendered by definition → don't debias!

Can we debias without such a priori knowledge?

Debiasing without Supervision

Our simple approach: create

- gender-defining relation vector \vec{b}^* (e.g., $\vec{king} q\vec{ueen}$)
- bias-defining relation vector \vec{b}' (e.g., $\vec{doctor} \vec{midwife}$)

and debias a word w iff

$$|eta(ec{w};ec{b}^*)| < |eta(ec{w};ec{b}')|$$

Debiasing without Supervision

Compared to Bolukbasi et al. (2016), our approach is much better at preserving gender-appropriate analogies and precluding gender-biased ones.

Conclusion

Key findings:

- The subspace projection method provably debiases word embeddings under certain conditions.
- WEAT has flaws that cause it to systematically overestimate bias.
- Only gender-specific and gender-biased words are more gendered in SGNS vector spaces than in the corpus.

References

- Tolga Bolukbasi, Kai-Wei Chang, James Y Zou, Venkatesh Saligrama, and Adam T Kalai. 2016. Man is to computer programmer as woman is to homemaker? debiasing word embeddings. In Advances in Neural Information Processing Systems, pages 4349–4357.
- Aylin Caliskan, Joanna J Bryson, and Arvind Narayanan. 2017. Semantics derived automatically from language corpora contain human-like biases. <u>Science</u>, 356(6334):183–186.
- Hila Gonen and Yoav Goldberg. 2019. Lipstick on a pig: Debiasing methods cover up systematic gender biases in word embeddings but do not remove them. arXiv:1903.03862.