Software Engineering

lecture Resource

https://ocw.mit.edu/

https://hbr.org/1963/09/the-abcs-of-the-critical-path-

method

Lecture 1 – Critical Path Methods (CPM)

Eng. Sally Jarkas Eng Aya Joumaa

- Project consists of a collection of well defined tasks (jobs)
- Project ends when all jobs completed
- Jobs may be started and stopped independently of each other within a given sequence

Jobs are ordered

Project Graph

- Each job is drawn on a graph as a circle*
- Connect each job with immediate predecessor(s) unidirectional arrows
 "->"
- Jobs with no predecessor connect to "Start"
- Jobs with no successors connect to "Finish"
- "Start" and "Finish" are pseudo-jobs of length 0
- Total time of each path is the sum of job times
- Path with the longest total time "critical path"
- There can be multiple critical paths
- minimum time to complete project

* or other symbol, see before

CPM 101

- Represent a project (set of task) as a network using graph theory
 - Capture task durations
 - Capture task logic (dependencies)

"B can only start after A is completed"

"B and C do not depend on each other"

11/2/2020

SE: Session 2

Critical Path

- CP is the "bottleneck route"
- Shortening or lengthening tasks on the critical path directly affects project finish
- Duration of "non-critical" tasks is irrelevant
- "Crashing" all jobs is ineffective, focus on the few % of jobs that are on the CP
- Previously non-critical tasks can become critical
- Lengthening of non-critical tasks can also shift the critical path

Some Network Definitions

- All activities on the critical path have zero slack
- Slack defines how long non-critical activities can be delayed without delaying the project
- Slack = the activity's late finish minus its early finish (or its late start minus its early start)
- Earliest Start (ES) = the earliest finish of the immediately preceding activity
- Earliest Finish (EF) = is the ES plus the activity time
- Latest Start (LS) and Latest Finish (LF) = the latest an activity can start (LS) or finish (LF) without delaying the project completion

Critical Path Algorithm

- For large projects there are many paths
- Need a algorithm to identify the CP efficiently
- Develop information about each task in context of the overall project
- Times
 - start time (S)
 - For each job: Earliest Start (ES)
 - Earliest start time of a job if all its predecessors start at ES
 - Job duration: t
 - Earliest Finish (EF)=(ES)+t
 - Finish time (F) earliest finish time of the overall project
- Show algorithm using project graph

- Mark the value of S to left and right of Start
- 2. Consider any new unmarked job, all of whose predecessors have been marked. Mark to the left of the new job the largest number to the right of its immediate predecessors: (ES)
- 3. Add to ES the job time t and mark result to the right (EF)
- Stop when Finish has been reached

- A <u>forward pass</u> performs schedule calculations that identify the early start and finish dates of tasks and the project
- A <u>backward pass</u> performs schedule calculations that identify the late start and finish dates of tasks and the project, as well as total and free float

Critical path method *forward pass*

- A forward pass analysis performs schedule calculations that identify the early start and finish dates of activities and the project
 - Early Start Date (ES). ES represents the theoretically earliest date a activity can start
 - ES = Maximum EF of predecessor activity(-ies)
 - Early Finish Date (EF). EF represents the theoretically earliest date a activity can finish
 - = EF = ES + duration of activity

Simple Example: Job List

Job #	Description	Immediate Predecessors	Time [min]
A	Start		0
В	Get materials for X	Α	10
С	Get materials for Y	Α	20
D	Turn X on lathe	В,С	30
E	Turn Y on lathe	В,С	20
F	Polish Y	E	40
G	Assemble X and Y	D,F	20
Н	Finish	G	0

CP Algorithm – ES EF

CP Algorithm – ES EF

CP

CP Algorithm – ES EF

- A backward pass analysis performs schedule calculations that identify the late start and finish dates of activities and the project, as well as total and free float
 - Late Start Date (LS). LS represents the theoretically latest date a activity can start without delaying the project
 - LS = LF duration of activity
 - Late Finish Date (LF). LF represents the theoretically latest date a activity can finish without delaying the project
 - LF = Minimum LS of successor activity(-i-

CP Algorithm – LS LF

CP Algorithm – Total , Free Slack

- Total Float = LS ES (it is also calculated by LF – EF)
- Free Float = Lowest ES of successors EF

CP Algorithm – Total , Free Slack

Activity	Immediate Predecessors	Time estimate (days)
А	E	30
В	2	15
С	2	25
D	А	3
E	С	7
F	В	1
G	D, F	5
H.	D, F	2
1	E, F	4
J	Н, І	10
К	G, J	8

Notations

ES	EF	ES: Earliest Start	LS: Latest Start	TS: Total Slack
15	i.F	EF: Earliest Finish	LF: Latest Finish	FS: Free Slack

Earliest Start and Earliest Finish

Notations

ES: Earliest Start
EF: Earliest Finish

LS: Latest Start LF: Latest Finish FS: Free Slack

SE: Session 2

Latest Start and Latest Finish

Notations

SE: Session 2 22

TS, FS

Critical Path

Task	Predecessor	Duration
Α		4
В	A	6
С	Α	3
D	В	6
E	D	14
F	С	5
G	E,F	2
Н	G	2
I	G	3
J	H,I	4
K	J	2

ES, EF Network

LS, LF Network

SE: Session 2