Painel / Meus cursos / SC26EL / Aula 14-Projeto de Controladores em Espaço de Estados - Parte 3

/ Questionário sobre Projeto de Controladores em Espaço de Estados - Parte 3

Iniciado em	terça, 27 abr 2021, 12:30
Estado	Finalizada
Concluída em	terça, 27 abr 2021, 15:06
Tempo	2 horas 35 minutos
empregado	
Notas	2,0/2,0
Avaliar	10,0 de um máximo de 10,0(100 %)

Considere o sistema abaixo:

$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \\ \dot{x}_3 \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & -200 & -30 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} u$$

$$y = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$$

Deseja-se que o sistema siga uma referência do tipo degrau com erro nulo tendo os polos de malha fechada $s_{1,2}=-5\pm j3\sqrt{3}$ e $s_3=-50$. Adicionalmente, deseja-se que o sistema em malha fechada rejeite perturbações nos estados e/ou variações paramétricas. Para isso, utiliza-se a estrutura de controle abaixo.

Considerando que o 4º polo do sistema seja $s_4 = -50$, o vetor de ganhos é dado por $\bar{K} = \begin{bmatrix} \kappa & \vdots & k_I \end{bmatrix} = \begin{bmatrix} k_1 & k_2 & k_3 & k_I \end{bmatrix}$. Assim, os ganhos do controlador são:

$$k_1 = \boxed{30200}$$
 \checkmark ,
 $k_2 = \boxed{3352}$
 \checkmark ,
 $k_3 = \boxed{80}$
 \checkmark ,
 $k_1 = \boxed{130000}$
 \checkmark .

Considerando o sistema nominal, a representação do sistema em malha fechada é:

$$\dot{x} = A_{MF}x + B_{MF}r$$
$$y = C_{MF}x$$

A matriz
$$A_{MF}$$
 tem a forma $A_{MF} = \begin{bmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{33} & a_{34} \\ a_{41} & a_{42} & a_{43} & a_{44} \end{bmatrix}$. Assim, os elementos da matriz A_{MF} são:

A matriz B_{MF} tem a forma $B_{MF}=egin{bmatrix} b_{11} \\ b_{21} \\ b_{31} \\ b_{41} \end{bmatrix}$. Assim, os elementos da matriz B_{MF} são:
$b_{11} = \boxed{0}$,
$b_{21} = \boxed{0}$,
$b_{31}=\boxed{lackbox{0}}$,
$b_{41} = \boxed{1}$.
A matriz C_{MF} tem a forma $C_{MF}=[\ c_{11}\ c_{12}\ c_{13}\ c_{14}\]$. Assim, os elementos da matriz C_{MF} são:
$c_{11}=$ 1 \checkmark , $c_{12}=$ 0 \checkmark , $c_{13}=$ 0 \checkmark , $c_{14}=$ 0 \checkmark .
O ganho CC do sistema compensado vale 1 .
O erro em regime permanente para o sistema compensado para uma referência do tipo degrau unitário vale 0 . Logo, a
saída em regime permanente do sistema compensado para uma referência do tipo degrau unitário vale 1
Supondo uma variação paramétrica na matriz C do sistema, isto é, $C = \begin{bmatrix} 0,5 & 0 & 0 \end{bmatrix}$ o erro em regime permanente para o sistema compensado para uma referência do tipo degrau unitário vale $\begin{bmatrix} 0 & & & & & & & & & & & & & & & & & & $

Considere o sistema abaixo:

$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -8 & -4 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u$$

$$y = \begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

Deseja-se que o sistema siga uma referência do tipo degrau com erro nulo tendo os polos de malha fechada $s_{1,2}=-2$. Adicionalmente, deseja-se que o sistema em malha fechada rejeite perturbações nos estados e/ou variações paramétricas. Para isso, utiliza-se a estrutura de controle abaixo.

Considerando que o 3º polo do sistema seja $s_3 = -10$, o vetor de ganhos é dado por $\bar{K} = \begin{bmatrix} \kappa & \vdots & k_I \end{bmatrix} = \begin{bmatrix} k_1 & k_2 & -k_I \end{bmatrix}$. Assim, os ganhos do controlador são:

$$k_1 = \boxed{36}$$

$$k_2 = \boxed{10}$$

$$k_I = \boxed{40}$$

Considerando o sistema nominal, a representação do sistema em malha fechada é:

$$\dot{x} = A_{MF}x + B_{MF}r$$

$$y = C_{MF}x$$

A matriz A_{MF} tem a forma $A_{MF}=\begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix}$. Assim, os elementos da matriz A_{MF} são:

$$a_{11} = 0$$
 \checkmark , $a_{12} = 1$ \checkmark , $a_{13} = 0$ \checkmark , $a_{21} = -44$ \checkmark , $a_{22} = -14$ \checkmark , $a_{23} = 40$ \checkmark , $a_{31} = -1$ \checkmark , $a_{32} = 0$ \checkmark , $a_{33} = 0$

A matriz B_{MF} tem a forma $B_{MF}=egin{bmatrix}b_{11}\b_{21}\b_{31}\end{bmatrix}$. Assim, os elementos da matriz B_{MF} são:

$$b_{11} = \boxed{0}$$
 ,

$$b_{21}=\boxed{0}$$
 ,

$b_{31}=$ 1 \checkmark .		
A matriz C_{MF} tem a forma $C_{MF}=[\ c_{11}\ c_{12}\ c_{13}\]$. Assim, os elementos da matriz C_{MF} são:		
$c_{11}=$ 1 \checkmark , $c_{12}=$ 0 \checkmark .		
O ganho CC do sistema compensado vale 1 .		
O erro em regime permanente para o sistema compensado para uma referência do tipo degrau unitário vale 0 🗸 . Logo, a		
saída em regime permanente do sistema compensado para uma referência do tipo degrau unitário vale 1 .		
Supondo uma variação paramétrica na matriz B do sistema, isto é, $B = \begin{bmatrix} 0 \\ 1, 5 \end{bmatrix}$ o erro em regime permanente para o sistema		
compensado para uma referência do tipo degrau unitário vale 0 . Consequentemente, a saída do sistema em regime		
permanente vale 1 · · · · · · · · · · · · · · · · · ·		

Aula 15 - Observadores de Estado ►

→ Diagrama de blocos - Scilab/Xcos - Planta sem integrador

Seguir para...