Занятие 1

Задача 1.1

Найти максимальное расстояние (модуль разности) между чётными числами в последовательности, так что оба числа окружены нечётными (если крайний элемент, то проверяем только одного соседа).

Задача 1.2

Вычислите, сколько полей на шахматной доске могут быть конечной точкой пути коня за М ходов из заданной точки (её можно задавать случайно).

Задача 1.3

Сгенерируйте M случайных точек на единичной сфере в пространстве относительно равномерного распределения. Вычислите, сколько из них находятся на расстоянии < a (= 0.1) от треугольника, построенного на каких-либо трёх других точках. Как оценивается сложность вашего алгоритма?

Занятие 1

Задача 1.4

Дан массив a длины n. Найдите за один проход по массиву $\max_j \sum_{k=j}^n a[k]$. Ограничение по памяти — O(1).

Задача 1.5

Дан массив a длины n без нулей. Для k-ого подмассива с элементами одного знака (пусть его начальный и конечный индексы $-i_1$ и i_2) обозначим $m_k = \max_j \{S'_j, S''_j\}$, где $S'_j = \sum_{r=i_1}^j (x_r mod \ 5-2)$, а $S''_j = \sum_{r=j}^{i_2} (x_r mod \ 7-3)$. Найти $\max_k \{m_k\}$ Ограничение по времени -O(n), по памяти -O(1).

Задача 1.6

Дан массив a длины n без нулей. Для k-ого подмассива с элементами одного знака (пусть его начальный и конечный индексы — i_1 и i_2) обозначим $m_k = max_j\{S'_j,S''_j\}$, где $S'_j = \sum_{r=i_1}^j x_r$, а $S''_j = \sum_{r=j}^{i_2} x_r$. Найти $min_k\{m_k\}$ Ограничение по времени — O(n), по памяти — O(1).