1 Ordinals and transfinite induction

Definition 1 (The ordinals, Ord) These are defined inductively:

- $0 := \emptyset \in \mathtt{Ord}$
- If $n \in \mathsf{Ord}$ then

$$\mathrm{succ}(n) \coloneqq n \cup \{n\} \in \mathtt{Ord}$$

• If $\mathcal{X} \subseteq \mathsf{Ord}$ is a set, then

$$\sup \mathcal{X} \coloneqq \bigcup \mathcal{X} \in \mathtt{Ord}$$

In other words, an ordinal is the set of all smaller ordinals. In particular, the last definition precludes the ordinals from being a set. Ord is bigger than any set. They form a class. If $\alpha = \operatorname{succ}(n)$ then α is a *successor ordinal*. Otherwise, α is a *limit ordinal*.

Theorem 2 (Ord is well-ordered) Every nonempty class of ordinals contains a least element.

Proof. Let \mathcal{X} be a nonempty class of ordinals. Then it suffices to show

$$I := \inf \mathcal{X} = \bigcap \mathcal{X} \in \mathcal{X}$$

Suppose $I \notin \mathcal{X}$. Then for any $x \in \mathcal{X}$, I < x. Consequently, for any $x \in \mathcal{X}$, $\operatorname{succ}(I) \leq x$. But then $\operatorname{succ}(I) = I$, a contradiction.

Theorem 3 (Transfinite induction) For a logical statement ϕ , if

- 1. $\phi(0)$ holds,
- $2. \ \phi(n) \implies \phi(\operatorname{succ}(n))^{-1}$
- 3. If, for all $n < \alpha$, $\phi(n)$ is true then $\phi(\alpha)$ is true:

$$(\forall n < \alpha)\phi(n) \implies \phi(\alpha)$$

Then ϕ holds for all ordinals.

Proof. Let \mathcal{X} be the class where ϕ does not hold. Suppose $\mathcal{X} \neq \emptyset$. Then let for all ordinals $n < \inf \mathcal{X}$, $\phi(n)$ by hypothesis. Hence, by (3), $\phi(\inf \mathcal{X})$ holds. But then $\inf \mathcal{X} \notin \mathcal{X}$, contradicting theorem 2 (Ord is well-ordered). Therefore, \mathcal{X} is empty.

¹strictly speaking, this follows from (1) and (3) but is usually easier to prove first

Theorem 4 (Ord fixed point theorem) Let (X, \leq) be a complete ordered space. Suppose $F: X \to X$ is nondecreasing. Define

$$F^{0}(x) \coloneqq x$$

 $F^{\operatorname{succ}(n)}(x) \coloneqq F(F^{n}(x))$

If α is a limit ordinal,

$$F^{\alpha}(x) \coloneqq \sup_{\beta < \alpha} F^{\beta}(x)$$

Then for any $x \in X$, $F^{\alpha}(x)$ is eventually the smallest fixed point of F greater than or equal to x.

Proof. Fix x. Then $F^{\square}(x): \mathtt{Ord} \to X$ is nondecreasing by construction. Because \mathtt{Ord} is bigger than any set, $F^{\square}(x)$ cannot be injective. Hence there is some smallest $\alpha \in \mathtt{Ord}$ such that $F^{\alpha}(x) = F^{\gamma}(x)$ with $\gamma > \alpha$. But $\alpha < \mathrm{succ}(\alpha) \leq \beta$, so by monotonicity,

$$F^{\alpha}(x) \le F^{\operatorname{succ}(\alpha)}(x) \le F^{\beta}(x) = F^{\alpha}(x)$$

hence

$$F(F^{\alpha}(x)) = F^{\operatorname{succ}(\alpha)}(x) = F^{\alpha}(x)$$

so F fixes $F^{\alpha}(x)$.

Suppose y is a fixed point and $x \leq y \leq F^{\alpha}(x)$. Then there is some smallest β such that $y \leq F^{\beta}(x)$:

• If $\beta = \operatorname{succ}(\gamma)$, then

$$F^{\gamma}(x) \le y \le f(F^{\gamma}(x)) = F^{\beta}(x)$$

But by monotonicity, $F(F^{\gamma}(x)) \leq f(y) = y$ by assumption y is fixed. Thus $y = F^{\gamma}(x)$ for some $\gamma \leq \alpha$.

• If β is a limit ordinal, then for all $\gamma < \beta$,

$$F^{\gamma}(x) \le y \le F^{\beta}(x) = \sup_{\hat{\gamma} < \beta} F^{\hat{\gamma}}(x) = y$$

so
$$F^{\beta}(x) = y$$
.

By characterizing σ -algebras and λ -systems as fixed points of set functions, this result becomes a powerful tool for proving results about generated σ -algebras and λ -systems.

2 π - λ systems and theorem

Special notation:

- I'll use II to represent disjoint unions,
- Uff to represent *increasing* unions,

• and \supseteq to represent *proper* relative complements: $A \setminus B$ when $B \subseteq A$.

Definition 5 (λ -system aka Dynkin system) $\mathcal D$ is a Dynkin system on Ω iff

- $\Omega \in \mathcal{D}$
- Closure under *proper* relative complements:

$$A \subseteq B \implies B \setminus A \in \mathcal{D}$$

• Closure under increasing σ -unions:

$$A_1 \subseteq A_2 \subseteq \dots \in \mathcal{D} \implies \bigcup \uparrow A_n \in \mathcal{D}$$

Allowing arbitrary complements would give a σ -algebra as

$$(\Omega \setminus A) \setminus B = (A \cup B)^C = A^C \cap B^C$$

allowing arbitrary σ -unions and intersections.

Theorem 6 (Alternative definition of λ -system) Equivalently,

- $\Omega \in \mathcal{D}$
- Closure under global complements:

$$A \in \mathcal{D} \implies A^C \in \mathcal{D}$$

• Closure under disjoint σ -unions:

$${A_i \in \mathcal{D}}, A_i \cap A_j = \varnothing \implies \prod A_i \in \mathcal{D}$$

Proof. Suppose \mathcal{D} meets the criteria of theorem 6 (Alternative definition of λ -system). Then \mathcal{D} contains proper relative complements as $A \supseteq B = (A^C \cup B)^C$:

But by taking proper relative complements, we can convert an ascending σ -union into a disjoint σ -union: if $A_n \uparrow A$, let

$$B_1 = A_1 \in \mathcal{D}$$

$$B_n = A_n \supseteq \bigcup_{i < n} A_i \in \mathcal{D}$$

Then $\{B_n\}$ are pairwise-disjoint and

$$A = \bigcup \uparrow A_n = \coprod_n B_n \in \mathcal{D}$$

proving sufficiency.

For necessity, suppose \mathcal{D} satisfies the criteria of definition 5 (λ -system aka Dynkin system). As $A^C = \Omega \setminus A$, a proper complement, it suffices to show closure under disjoint unions. First, note that it is closed under finite disjoint unions:

$$A \coprod B = ((\Omega \setminus A) \setminus B)^C \in \mathcal{D}$$

because the complements are proper by disjointness. Suppose B_i are pairwise disjoint. Then $B = \coprod B_i \in \mathcal{D}$ by hypothesis.

$$A_1 = B_1 \in \mathcal{D}$$

$$A_n = B_n \coprod A_{n-1} \in \mathcal{D}$$

therefore

$$B = \prod B_n = \bigcup \uparrow A_n \in \mathcal{D}$$

Definition 7 (π -system) A π -system is closed under finite intersections.

Theorem 8 If \mathcal{D} is a π -system and λ -system then it is a σ -algebra.

Proof. First, prove \mathcal{D} is an algebra. Note that \mathcal{D} is closed under binary union as $A \cup B = (A^C \cap B^C)^C$ and $A^C, B^C \in \mathcal{D}$ because \mathcal{D} is a λ -system, so $A^C \cap B^C \in \mathcal{D}$ because it is a π -system, and its complement is in \mathcal{D} by closure under complements. In particular, \mathcal{D} must be closed under *arbitrary* relative complements as

$$A \setminus B = A \setminus (A \cap B)$$

Suppose A_i is a countable sequence of sets in \mathcal{D} . Then let

$$B_1 = A_1$$

$$B_n = A_n \setminus \coprod_{i < n} B_i$$

so B_i are pairwise-disjoint and

$$\bigcup A_n = \prod B_n \in \mathcal{D}$$

proving closure under σ -unions.

Theorem 9 (Dynkin's π - λ theorem) If $P \subseteq \mathcal{D}$ where π is a π -system and \mathcal{D} is a λ -system, then

$$\sigma(P) \subseteq \mathcal{D}$$

Proof. As $\lambda(P)$ is the minimal λ -system containing P,

$$\lambda(P) \subset \mathcal{D}$$

It suffices to show $\lambda(P)$ is a π -system because then it must be a σ -algebra. Let U(X) indicate the set of disjoint σ -unions in X:

$$U(X) := \left\{ \coprod_{i \in \mathbb{N}} A_i : A_i \in X, A_i \cap A_j = \varnothing \right\}$$

Let C(X) indicate the set of complements in X:

$$C(X) := \left\{ A^C : A \in X \right\}$$

And define

$$\Lambda(X) := X \cup U(X) \cup C(X) = U(X) \cup C(X) : (2^{2^{\Omega}}, \subseteq) \to (2^{2^{\Omega}}, \subseteq)$$

By construction, $\Lambda(X) = X$ iff X is a λ -system. By monotonicity $(X \subseteq \Lambda(X))$, the minimum fixed point of Λ containing X is the λ -system generated by X. By theorem 4 (Ord fixed point theorem),

$$\Lambda^{\omega}(P) = \lambda(P)$$

for some $\omega \in \mathsf{Ord}$.

We will show by induction that for any $\alpha \in Ord$, the intersection of any two elements in $\Lambda^{\alpha}(P)$ is in $\Lambda^{3\alpha}(P)$.

- 1. This is trivially true for $\alpha = 0$ by the hypothesis that P is a π -system.
- 2. Any element in $\Lambda^{\operatorname{succ}(\alpha)}(P)$ can be written as A, A^C , or $\coprod A_i$ with $A, A_i \in \Lambda^{\alpha}$. Consider writing an intersection of elements in $\Lambda^{\operatorname{succ}(\alpha)}$ in terms of proper complements and disjoint unions of intersections of elements in $\Lambda^{\alpha}(P)$:

$$A \cap B^{C} = A \supseteq \overbrace{(B \cap A)}^{\in \Lambda^{3\alpha}(P)} \in \Lambda^{3\alpha+1}(P)$$

$$A^{C} \cap B^{C} = (A \cup B)^{C} = ((A \cap B^{C}) \coprod B)^{C} \in \Lambda^{3\alpha+3}(P)$$

$$(\coprod_{i} A_{i}) \cap (\coprod_{j} B_{j}) = \coprod_{i,j} \overbrace{A_{i} \cap B_{j}}^{\in \Lambda^{3\alpha}(P)} \in \Lambda^{3\alpha+1}(P)$$

$$A^{C} \cap \coprod_{j} B_{j} = \coprod_{i,j} \underbrace{A^{C} \cap B_{j}}_{\in \Lambda^{3\alpha+1}(P)} \in \Lambda^{3\alpha+2}(P)$$
which are all in $\Lambda^{3\alpha+3}(P) = \Lambda^{3\operatorname{succ}(\alpha)}(P)$

which are all in $\Lambda^{3\alpha+3}(P) = \Lambda^{3\operatorname{succ}(\alpha)}(P)$.

3. If α is a limit ordinal, then set

$$3\alpha \ge 3\sup_{\beta < \alpha} \beta = \sup_{\beta < \alpha} 3\beta$$

For any two $A, B \in \Lambda^{\alpha}$ there must be some $n_A, n_B < \alpha$ such that $A \in \Lambda^{n_A}(P)$ and $B \in \Lambda^{n_B}(P)$. Hence, if $n = \max(n_A, n_B)$, then $A \cap B \in \Lambda^{3n}(P) \subseteq \Lambda^{3\alpha}(P)$.

But this process terminates at ω , hence $\Lambda^{3\omega}(P) = \Lambda^{\omega}(P) = \lambda(P)$ and $\lambda(P)$ is closed under intersections.