formamos en la excelencia académica y humanística

GUIA DE ESTUDIO No. 1

Docente: Mg. JOSE ALBERTH ROJAS PERDOMO Asignatura: QUÍMICA Periodo: UNO Fecha: 04/02/2021

Curso: OCTAVO

HISTORIA DE LA TABLA PERIÓDICA

La tabla periódica contiene a los elementos químicos, ordenados de acuerdo a su número atómico. Nos permite obtener información importante de cada uno de los elementos químicos, ya sea sus propiedades o estructura interna. A principios del siglo XIX solo se conocían cerca de 33 elementos químicos, a medida que se iban descubriendo nuevos elementos, los científicos se preocuparon en ordenarlos y clasificarlos de acuerdo a diversos criterios. Muchas clasificaciones fueron adoptadas antes de llegar a la tabla periódica que hoy utilizamos. Durante el siglo XIX, los químicos comenzaron a clasificar a los elementos conocidos de acuerdo a sus similitudes de sus propiedades físicas y químicas. El final de aquellos estudios es la Tabla Periódica Moderna

Jhoan Dobereiner

Durante el siglo XIX, los químicos comenzaron a clasificar a los elementos conocidos de acuerdo a sus similitudes de sus propiedades físicas y químicas. El final de aquellos estudios es la Tabla Periódica Moderna.

En 1829, clasificó algunos elementos en grupos de tres, que denominó triadas. Los elementos de cada triada tenían propiedades químicas similares, así como propiedades físicas crecientes.

$$P.A._{(B)} = \frac{P.A._{(A)} + P.A._{(C)}}{Z}$$
 $P.A. = Peso atómico$

Ejemplo:

Triada	Li	Na	K
P.A.	6,9		39,1

$$P.A.(Na) = \frac{6.9 + 39.1}{2} \implies P.A.(Na) = 23 \text{ uma}$$

1780 - 1849

John Newlands

, H	,Li	_в ве	"B	, C	, N	0
F	Na	Mg	AI	Si	P	32
<u>C</u> I	K	<u>C</u> a	<u>C</u> r	T İ	М'n	Fe

En 1863 propuso que los elementos se ordenaran en "octavas", ya que observó, tras ordenar los elementos según el aumento de la masa atómica, que ciertas propiedades se repetían cada ocho elementos.

formamos en la excelencia académica y humanística

Docente: Mg. JOSE ALBERTH ROJAS PERDOMO
Asignatura: QUÍMICA
Periodo: UNO
Curso: OCTAVO
Fecha: 04/02/2021

Dmitri Mendeleev

En 1869 publicó una Tabla de los elementos organizada según la masa atómica de los mismos. Propuso que si el peso atómico de un elemento lo situaba en el grupo incorrecto, entonces el peso atómico debía estar mal medido. Así corrigió las masas de Be, In y U. Estaba tan seguro de la validez de su

Tabla que predijo, a partir de ella, las propiedades físicas de tres elementos que eran desconocidos

Elementos conocidos hasta entonces

Ventajas de la tabla de Mendeléiev						
Tuvo en cuenta elementos desconocidos, por ello, dejaba espacios en blanco y predecía con exactitud apreciable las propiedades físicas y químicas de aquellos. Ejemplos:						
	Según Mendeléiev Nombre actua					
44	EKA - BORO: Eb	Escandio				
68	68 EKA - ALUMINIO: Ea Galio					
72	2 EKA - SILICIO: Es Germanio					
100 EKA - MAGNESIO: Em Tecnecio						

Lothar Meyer

Al mismo tiempo que Mendeleiev, Meyer publicó su propia Tabla Periódica con los elementos ordenados de menor a mayor masa atómica.

Tanto Mendeleiev como Meyer ordenaron los elementos según sus masas atómicas Ambos dejaron espacios vacíos donde deberían encajar algunos elementos entonces desconocidos Tras el descubrimiento de estos tres elementos (Sc, Ga, Ge) entre 1874 y 1885, que demostraron la gran exactitud de las predicciones de Mendeleiev, su Tabla Periódica fué aceptada por la comunidad científica.

Docente: Mg. JOSE ALBERTH ROJAS PERDOMO Asignatura: QUÍMICA

Periodo: UNO Curso: OCTAVO Fecha: 04/02/2021

Henry Moseley

En 1913, mediante estudios de rayos X, determinó la carga nuclear (número atómico) de los elementos. Reagrupó los elementos en orden creciente de número atómico.

Existe en el átomo una cantidad fundamental que se incrementa en pasos regulares de un elemento a otro. Esta cantidad sólo puede ser la carga del núcleo positivo central.

La tabla periódica moderna fue reestructurada por Alfred Werner (1915) al crear una tabla larga para agrupar a los elementos en orden creciente y sucesivo, respecto al número atómico (Z).

Alfred Werner (Diseño la tabla periódica actual)

Químico Suizo, diseño la tabla periódica actual, tomando como base la ley periódica de Moseley, y la distribución electrónica de los elementos y la tabla de Mendeleiev.

El nombre del elemento 114 flevonio (F) proviene de George Flerox, fundador del laboratorio de reacciones nucleares Flerov, mientras el nombre del elemento 116 Livermorio (Lv) proviene de la ciudad Livermore, California, lugar en donde se encuentra el laboratorio donde se descubrió dicho elemento. Los nombres de los elementos 114 y 116 fueron aprobados en el año 2011.

Nombre actual En proceso de sintetización Nombre actual 113 116 Uut Uup Flevorio Ununtrium Ununpeutium Livermorio Nombre anterior 114 (285)(289)Uuq Uuh Ununquadio Ununhexio

formamos en la excelencia académica y humanística

Docente: Mg. JOSE ALBERTH ROJAS PERDOMO

Periodo: UNO

Curso: OCTAVO

Asignatura: QUÍMICA
Fecha: 04/02/2021

ACTIVIDAD EN CASA

1. Realizar una LÍNEA DE TIEMPO con las principales épocas de la historia de la tabla periódica y sus autores

2. Cómo puedes relacionar la ley de las octavas de Newlands con la distribución de los Periodos en la Tabla Moderna?

La tabla periódica esta agrupado por grupos de separaciones de IA,IIA,IIIA,IVA,VA,VIA,VIIA,VIIIA-IB,IIB,IIIB,IVB,VB,VIB,VIIB,VIIIB. En total son 8 agrupaciones, las octavas de Newlands son agrupaciones de 7 en 7 3. Consulta que son los Actínidos y los Lantánidos?

Rta: Los lantánidos y actínidos son grupos de elementos dentro de la tabla periódica. Son los elementos que se enumeran a menudo debajo de la sección principal de la tabla periódica. Hay 30 elementos en total en los lantánidos y actínidos

4	propuso la ley de lasoctavas
	dejo espacios vacíos
Ensutablapa	ra nuevos elementos que se iban a
Descubrir y_	diseña la tabla periódica
U -	udose en la ley periódica de

- a) Newlands, Mendeleiev, Werner
- b) Thomson, Dalton, Bohr
- c) Berzelius, Rutherford, Lavoisier
- d) Joule, Moseley, Pascal
- e) Newton, Moseley, Dalton

Actual basándose en la ley p ______

Rta: la respuesta correcta es A

5. Escribe 10 elementos cuyo símbolo sea de una sola letra, escribe 10 elementos cuyo símbolo sea de dos letras?

- 1. Potasio (P).
- 2. Itrio (Y).
- 3. Yodo (I).
- 4. Wolframio (W).
- 5. Uranio (U).
- 6. Boro (B).
- 7. Carbono (C).
- 8. Nitrógeno (N).
- 9. Oxígeno (O).
- 10. Flúor (F).

Elementos con símbolo de dos letras:

- 11. Neon (Ne)
- 12. Sodio (Na)
- 13. Magnesio (Mg)
- 14. Silice (Si)
- 15. Cloro (Cl)
- 16. Argon (Ar)
- 17. Helio (He)
- 18. Litio (Li)
- 19. Berilio (Be)
- 20.Bromo (Br)
- 6. Averigua un listado de elementos que deban su nombre y símbolo de acuerdo a la siguiente clasificación
- ✓ Elementos que deban su nombre en honor a un país o continente

Magnesia, región de Grecia	Magnesio	Mg	12
Escandinavia	Escandio	Sc	21
Chipre	Cobre	Cu	29
Galia, antiguo nombre de Francia	Galio	Ga	31

Germania, nombre en latín de Alemania	Germanio	Ge	32
Estroncia, localidad de Escocia	Estroncio	Sr	38
	Itrio	Y	39
Ytterby, localidad de Suecia	Indio, de la india Terbio	Tb	65
	Erbio	Er	68
	Iterbio	Yb	70
Rutenia, nombre en latín de Rusia	Rutenio	Ru	44
Tellus, en latín la Tierra	Telurio	Те	52
Europa	Europio	Eu	63
Holmia, nombre en latín de Estocolmo	Holmio	Но	67
Thule (probablemente Noruega)	Tulio	Tm	69
Lutecia, nombre en latín de París	Lutecio	Lu	71
Hafnia, nombre en latín de Copenhague	Hafnio	Hf	72
Rhenus, nombre en latín del Río Rin,	Renio	Re	75
Polonia	Polonio	Po	84
Francia	Francio	Fr	87
América	Americio	Am	95
Berkeley, ciudad de los Estados Unidos	Berkelio	Bk	97
California, estado de los Estados Unidos	Californio	Cf	98
Dubná, ciudad de Rusia	Dubnio	Db	105
Hesse, estado de Alemania	Hassio	Hs	108
Darmstadt, ciudad de Alemania	Darmstadio	Ds	110
Nihon, nombre en japonés de Japón	Nihonio	Nh	113
Laboratorio Nacional Lawrence Livermore, en los Estados Unidos	Livermorio	Lv	116

[✓] Elementos que deban su nombre en honor a un científico

Curio (Cm): en honor de Pierre y Marie Curie. Einstenio (Es): en honor de Albert Einstein. Fermio (Fm): en honor de Enrico Fermi.

Mendelevio (Md): En honor al químico ruso Dmitri Ivánovich Mendeléiev precursor de la actual tabla periódica.

Nobelio (No): en honor de Alfred Nobel. Lawrencio (Lr): en honor de E.O. Lawrence.

Unnilquadium (Unq): Unnilquadium significa 104 (su número atómico) en latín. Los soviéticos propusieron el nombre de Kurchatovium (Ku) en honor de Igor V. Kurchatov, mientras que los estadounidenses preferían el nombre de Rutherfordium (Rf) en honor de Ernest Rutherford. La IUPAC le asignó este nombre temporal en 1980.

Unnilpentium (Unp): en latín unnilpentium equivale a 105 (su número atómico). La IUPAC estableció este nombre frente a las propuestas estadounidenses de llamarlo Hahnio (Ha) en honor de Otto Hahn y de los soviéticos de llamarlo Nielsbohrium en honor de Niels Bohr. (Desde hace un tiempo, la IUPAC utiliza este sistema de nomenclatura para los elementos a partir del 104, hasta que se decida cuales van a ser los nombres definitivos). Gadolinio (Gd): del mineral gadolinita, del químico finlandés Gadolin. Samario (Sm): del mineral samarskita, (en honor del ruso Samarski).

formamos en la excelencia académica y humanística

GUIA DE ESTUDIO No. 1

Docente: Mg. JOSE ALBERTH ROJAS PERDOMO
Asignatura: QUÍMICA
Periodo: UNO
Curso: OCTAVO
Fecha: 04/02/2021

7. Consulta por qué existen elementos cuyo símbolo es de tres letras, Qué significa?

Porque son elementos artificiales creados por el hombre en reacciones de reacciones nucleares y su vida media es tan corta menor a los microsegundos y por ende no se pueden estudiar a fondo ni determinar sus característica además que muchos de los elementos de tres letras son hipotéticos y no se había demostrado su existencia.

Pero muchos de estos elementos hoy en día ya ha sido demostrados y por ende su símbolo de tres letras cambia y se le otorga el nombre del descubridor:

Por ejemplo el elemento 128 con el símbolo(Uuo) ununoctium, que cambio a (Og) oganeson

8. Dibujar el croquis de la tabla periódica

De la siguiente pareja de elementos representados en el siguiente cuadro, determina el nombre del elemento y la de cada pareja que presenta el mayor valor en pesos atómicos

RTA:

1. Calcio=Ca(Z=20)= PESO 40.078 u

2.Helio=He(Z=2)=PESO 4.002602 u

3. Germanio=Ge(Z=32)= PESO 72.64 u

4. Boro=B(Z=5)=PESO 10.811 u

Galio=Ga=(Z=31)=PESO 69.723 u Neón=Ne=(Z=10)=PESO 20.1797 u Arsénico=As=(Z=33)=PESO

Talio=Ti=(Z=81)=PESO 204.3833 u

1																	8
Н	2											3	4	5	6	7	He
Li	Be											В	С	Ν	0	F	Ne
Na	Mg											AI	Si	Р	S	CI	Ar
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Со	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
Rb	Sr	Υ	Zr	Nb	Мо	Тс	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	1	Xe
Cs	Ва	La	Hf	Та	W	Re	Os	Ir	Pt	Au	Hg	TI	Pb	Bi	Ро	At	Rn
Fr	Ra	Ac															

6. Basado en la tabla de grupos de la Tabla Periódica, completa el siguiente cuadro, colocando su símbolo en el paréntesis y luego relacionándolo con su periodo y grupo.

(fe) Z=26	(Ge)Periodo 4 grupo IV A
(ge) Z= 32	(P)Periodo 3 grupo V A
(kr) Z= 36	(V) Periodo 4 grupo V B
(tc) Z= 43	(Cl)Periodo 3 grupo VII A
(p) Z= 15	(Kr)Periodo 4 grupo VIII A
(cl) Z= 17	()Periodo 4 grupo VIII B
(V) Z= 23	(Tc)Periodo 5 grupo VII B

GUIA DE ESTUDIO No. 1

C. Control		
Docente: Mg. JOSE ALB	ERTH ROJAS PERDOMO	Asignatura: QUÍMICA
Periodo: UNO	Curso: OCTAVO	Fecha: 04/02/2021

⁷ En la siguiente tabla periódica se observa las regiones de acuerdo a la configuración electrónica. Consulta el nombre de cada región, y coloréalos

9. A continuación aparece una tabla periódica abreviada en cual se han representado los elementos con símbolos ficticios. Las filas indican los periodos y las columnas los grupos. Intenta averiguar la configuración electrónica, coloca la letra o el símbolo ficticio donde corresponda.

	IA	IIA	IIIA	IVA	VA	VIA	VIIA
2	Α	С	K	Ε	D	S	В
3	Ν	Χ	Υ	М	R	L	W

- ✓ Letra_____(1S²2S²2p⁶3S²3p⁶)
- ✓ Letra $1S^22S^22p^63S^23p^64S^23d^{10}$
- \checkmark Letra \times 1S²2S²2p⁶3S²
- ✓ Letra_____1S²2S²2p⁶3S²3p⁶4S²3d¹⁰4p⁶
- ✓ Letra w 1S²2S²2p⁶3S²3p⁵
- 10. A partir de las siguientes configuraciones electrónicas responda colocando el símbolo del elemento químico al final

	CONFIGURACION ELECTRONICA
S	$1S^2 2S^2 2P^6 3S^2 3P^4$
Mg	$1S^2 2S^2 2P^6 3S^2$
K	$1S^2 2S^2 2P^6 3S^2 3P^6 4S^1$
Ar	$1S^2 2S^2 2P^6 3S^2 3P^6 4S^2$
Ne	$1S^2 2S^2 2P^6$

A. El Periodo al cual pertenece cada elemento es respectivamente?

S=Azufre=periodo 3 Mg=Magnesio=periodo 3 K=Potasio=periodo 4 Ar=Argón=periodo 3

formamos en la excelencia académica y humanística

GUIA DE ESTUDIO No. 1

Docente: Mg. JOSE ALBERTH ROJAS PERDOMO			Asignatura: QUÍMICA
Periodo: UNO	Curso: OCTAVO		Fecha: 04/02/2021

11. Con base a la siguiente tabla de datos, realiza una grafica que muestre el valor de la electronegatividad en función de Z. (plano Cartesiano). Qué relación encuentras entre el número atómico y la masa atómica?

ELEMENTO	ELECTRONEGATIVIDAD	NUMERO ATOMICO (Z)
Li	1	3
Ве	1,5	4
Ве	2	5
С	2,5	6
N	3	7
0	3,5	8
F	4	9

NUMERO ATOMICO VS ELECTRONEGATIVIDAD

12. En la siguiente tabla se muestran los electrones de cuatro elementos de la tabla periódica, en sus respectivos niveles energéticos.

Elemento	Niveles de Energía				
	1	2	3	4	5
Be	2	2			
Mg	2	8	2		
Са	2	8	8	2	
Sr	2	8	18	8	2

Realiza una tabla descriptiva indicando el número de electrones, protones, masa atómica y numero atómico.

ELEMENTO	N° DE ELECTRONES	N° DE PROTONES	N° MASA ATOMICA	N° ATOMICO
Be=Berilio	4	4	9.012182	4
Mg=Magnesio	12	12	24.3050	12
Ca=Calcio	20	20	40.078	20
Sr=Estroncio	38	38	87.62	38