Chapitre 3 Equations différentielles Partie 3

Damerdji Bouharis A. Université des Sciences et de la Technologie Mohamed Boudiaf Faculté des Mathématiques et Informatique.

3.2.5 Equations de Riccati

Définition 3.2.15 Une équation de Riccati est une équation différentielle non linéaire d'ordre 1 de la forme

$$y'(x) = a(x)y^{2}(x) + b(x)y(x) + c(x)$$
(3.32)

où a, b et c sont des fonctions données, continues sur un intervalle I de \mathbb{R} , avec $a(x) \neq 0, b(x) \neq 0$ et $c(x) \neq 0, \forall x \in I$.

Remarque L'équation de Riccati est non linéaire.

Méthode de résolution

La résolution consiste à trouver d'abord une solution particulière de l'équation (3.32) notée s(x) puis faire le changement de variables suivant

$$y(x) = z(x) + s(x) \Rightarrow y'(x) = z'(x) + s'(x)$$
,

ensuite on remplace dans (3.32), d'où

$$z'(x) + s'(x) = a(x)(z(x) + s(x))^{2} + b(x)(z(x) + s(x)) + c(x)$$

$$= a(x)z^{2}(x) + b(x)z(x) + a(x)s^{2}(x) + b(x)s(x) + c(x) + 2a(x)z(x)s(x)$$
(3.33)

et comme s(x) est une solution particulière de (3.32) alors elle vérifie

$$s'(x) = a(x) s^{2}(x) + b(x) s(x) + c(x)$$

donc

$$(3.33) \Leftrightarrow z'(x) = a(x) z^{2}(x) + b(x) z(x) + 2a(x) z(x) s(x)$$

$$= a(x) z^{2}(x) + z(x) [b(x) + 2a(x) s(x)]$$

$$\Leftrightarrow z'(x) - z(x) (b(x) + 2a(x) s(x)) - a(x) z^{2}(x) = 0$$

qui est une équation de Bernoulli, avec $\alpha = 2$.

Exemple 3.2.16 Intégrer l'équation différentielle suivante

$$xy' - y^2 + (2x+1)y - x^2 - 2x = 0$$
, pour $x \neq 0$ (3.34)

Solution

$$(3.34) \Leftrightarrow y' = \frac{1}{x}y^2 - \left(2 + \frac{1}{x}\right)y + x + 2. \tag{3.35}$$

On remarque que l'équation (3.35) admet la fonction s(x) = x comme solution particulière et on fait le changement de variables suivant :

$$y = z + x \Rightarrow y' = z' + 1,$$

puis on remplace dans (3.35), d'où

$$z' + 1 = \frac{1}{x}(z+x)^2 - \left(2 + \frac{1}{x}\right)(z+x) + x + 2$$

Analyse 2 DAMERDJI BOUHARIS A.

ce qui est équivalent à

$$z' - \frac{1}{x}z^2 + \frac{z}{x} = 0 \Leftrightarrow xz' + z - z^2 = 0$$
 (3.36)

qui est une équation de Bernoulli avec $\alpha = 2$.

On divise l'équation (3.36) par z^2 , d'où

$$x\frac{z'}{z^2} + \frac{1}{z} - 1 = 0 (3.37)$$

$$CV: t=z^{-1} \Rightarrow t'=-\frac{z'}{z^2},$$

alors

$$(3.37) \Rightarrow -xt' + t = 1 \tag{3.38}$$

qui est une équation linéaire d'ordre 1 avec second membre.

Equation homogène

$$-xt' + t = 0 \Leftrightarrow \frac{t'}{t} = \frac{1}{x} \Leftrightarrow \frac{dt}{t} = \frac{dx}{x}$$

d'où en intégrant on obtient

$$\ln |t| = \ln |x| + c_1, \ c_1 \in \mathbb{R},
|t| = e^{\ln |x| + c_1} = e^{c_1} e^{\ln |x|},$$

donc

$$t_{\text{hom}}(x) = kx$$
, avec $k = \pm e^{c_1}$.

Variation de la constante

On fait varier la constante k alors t' = k'x + k, d'où

$$(3.38) \Rightarrow k' = -\frac{1}{r^2} \Leftrightarrow dk = -\frac{dx}{r^2}$$

alors en intégrant on obtient

$$k\left(x\right) = \frac{1}{x} + c, \ c \in \mathbb{R},$$

et en remplaçant dans t_{hom} , on obtient

$$t_{gle}(x) = \left(\frac{1}{x} + c\right)x = 1 + cx$$
, avec $c \in \mathbb{R}$,

par conséquent on a

$$z_{gle}(x) = \frac{1}{1+cx}$$
, avec $c \in \mathbb{R}$,

et enfin

$$y_{gle}(x) = z_{gle} + x = \frac{1}{1 + cx} + x$$
, avec $c \in \mathbb{R}$.

DAMERDJI BOUHARIS A. USTO MB

Exemple 3.2.17 Intégrer l'équation différentielle suivante, sachant que la fonction $s(x) = \frac{1}{x}$ est une solution particulière

$$y' + \frac{y}{x} - y^2 = -\frac{1}{x^2},\tag{3.39}$$

Solution On fait le changement de variables suivant :

$$y = z + \frac{1}{x} \Rightarrow y' = z' - \frac{1}{x^2},$$

puis on remplace dans (3.39), d'où

$$z' - \frac{1}{x^2} + \frac{z}{x} + \frac{1}{x^2} - \left(z + \frac{1}{x}\right)^2 = -\frac{1}{x^2},$$

ce qui est équivalent à :

$$z' - \frac{z}{x} - z^2 = 0 (3.40)$$

qui est une équation de Bernoulli avec $\alpha = 2$.

On divise l'équation (3.40) par z^2 , tout en supposant que $z \neq 0$, d'où

$$\frac{z'}{z^2} - \frac{1}{zx} - 1 = 0 ag{3.41}$$

$$CV: t = z^{-1} \Rightarrow t' = -\frac{z'}{z^2},$$

alors

$$(3.41) \Rightarrow -t' - \frac{t}{x} = 1 \tag{3.42}$$

qui est une équation linéaire d'ordre 1 non homogène,

Equation homogène

$$-t' - \frac{t}{x} = 0 \Leftrightarrow \frac{t'}{t} = \frac{-1}{x} \Leftrightarrow \frac{dt}{t} = -\frac{dx}{x}$$

d'où en intégrant on obtient

$$\ln |t| = -\ln |x| + c_1, \ c_1 \in \mathbb{R},
|t| = e^{-\ln |x| + c_1} = e^{c_1} e^{-\ln |x|},$$

donc

$$t_{\text{hom}}(x) = \frac{k}{x}, \text{ avec } k = \pm e^{c_1}.$$

Variation de la constante

On fait varier la constante k alors $t' = \frac{k'}{x} - \frac{k}{x^2}$, d'où

$$(3.42) \Rightarrow k' = -x \Leftrightarrow dk = -xdx$$

alors en intégrant on obtient

$$k\left(x\right) = -\frac{x^2}{2} + c, \ c \in \mathbb{R},$$

Analyse 2 DAMERDJI BOUHARIS A.

et en remplaçant dans t_{Hom} , on obtient :

$$t_{gle}(x) = \frac{1}{x} \left(-\frac{x^2}{2} + c \right) = \frac{-x^2 + 2c}{2x}, \ avec \ c \in \mathbb{R},$$

par conséquent on a

$$z_{gle}(x) = \frac{2x}{-x^2 + 2c}$$
, avec $c \in \mathbb{R}$,

donc

$$y_{gle}(x) = z_{gle} + \frac{1}{x} = \frac{2x}{-x^2 + 2c} + \frac{1}{x}, \text{ avec } c \in \mathbb{R}.$$

et enfin

$$y_{gle}(x) = \frac{x^2 + 2c}{x(-x^2 + 2c)}, \text{ avec } c \in \mathbb{R}.$$

Exemple 3.2.18 Intégrer l'équation différentielle suivante, sachant que la fonction s(x) = x + 1 est une solution particulière

$$y' - 2xy + y^2 = 2 - x^2. (3.43)$$

Solution On remarque que l'équation (3.43) admet comme solution particulière la fonction s(x) = x + 1, et on fait le changement de variables suivant

$$y = z + (x+1) \Rightarrow y' = z' + 1,$$

puis on remplace dans (3.43), d'où

$$z' + 1 - 2x(z + (x + 1)) + (z + (x + 1))^{2} = 2 - x^{2}$$

ce qui est équivalent à

$$z' + 2z + z^2 = 0 (3.44)$$

qui est une équation de Bernoulli avec $\alpha = 2$.

On divise l'équation (3.44) par z^2 tout en supposant que $z \neq 0$, d'où

$$\frac{z'}{z^2} + \frac{2}{z} + 1 = 0$$

$$CV: t=z^{-1} \Rightarrow t'=-\frac{z'}{z^2},$$

alors

$$(3.41) \Rightarrow -t' + 2t = -1 \tag{3.45}$$

qui est une équation linéaire d'ordre 1 avec second membre.

Equation homogène:

$$-t' + 2t = 0 \Leftrightarrow \frac{t'}{t} = 2 \Leftrightarrow \frac{dt}{t} = 2dx$$

DAMERDJI BOUHARIS A. USTO MB

d'où en intégrant on obtient :

$$\ln |t| = 2x + c_1, \ c_1 \in \mathbb{R},$$

 $\Leftrightarrow |t| = e^{2x + c_1} = e^{c_1}.e^{2x}$

donc

$$t_{\text{hom}}(x) = ke^{2x}, \text{ avec } k = \pm e^{c_1}.$$

Variation de la constante

Ensuite on fait varier la constante k alors $t' = e^{2x} (k' + 2k)$, d'où

$$(3.45) \Rightarrow k' = e^{-2x} \Leftrightarrow dk = e^{-2x} dx$$

alors en intégrant on obtient :

$$k(x) = -\frac{1}{2}e^{-2x} + c, \ c \in \mathbb{R},$$

et en remplaçant dans t_{hom} , on obtient :

$$t_{gle}(x) = e^{2x} \left(-\frac{1}{2}e^{-2x} + c \right) = ce^{2x} - \frac{1}{2}, \text{ avec } c \in \mathbb{R},$$

par conséquent on a :

$$z_{gle}\left(x\right) = \frac{2}{2ce^{2x} - 1}, \ avec \ c \in \mathbb{R},$$

donc

$$y_{gle}(x) = z_{gle} + 1 + x = \frac{2}{2ce^{2x} - 1} + 1 + x, \ avec \ c \in \mathbb{R}.$$

et enfin

$$y_{gle}(x) = \frac{1 - x + 2ce^{2x}(x+1)}{2ce^{2x} - 1}, \ avec \ c \in \mathbb{R}.$$

Analyse 2 DAMERDJI BOUHARIS A.