Spring 2018: STA 6448 Advanced Probability and Inference II Lecture 25

Yun Yang

Non-parametric least squares

Example: Kernel ridge regression, continued

Recall the KRR estimator

$$\widehat{f} \in \underset{f \in \mathbb{H}}{\operatorname{argmin}} \left\{ \frac{1}{2n} \sum_{i=1}^{n} (y_i - f(x_i))^2 + \lambda_n \|f\|_{\mathbb{H}}^2 \right\}.$$

▶ Let $\mathcal{K}: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ denote the reproducing kernel associated with the RKHS \mathbb{H} .

Theorem (Representer theorem)

Any solution \widehat{f} of the KRR optimization problem takes the form

$$\widehat{f}(\cdot) = \frac{1}{\sqrt{n}} \sum_{i=1}^{n} \widehat{\alpha}_{i} \mathcal{K}(\cdot, x_{i}).$$

Example: Kernel ridge regression, continued

▶ Define the empirical kernel matrix $K \in \mathbb{R}^{n \times n}$, with $K_{ij} = n^{-1} \mathcal{K}(x_i, x_j)$, and recall

$$\widehat{f}(\cdot) = \frac{1}{\sqrt{n}} \sum_{i=1}^{n} \widehat{\alpha}_{i} \mathcal{K}(\cdot, x_{i}).$$

► Then, we can write

$$(\widehat{f}(x_1),\ldots,\widehat{f}(x_n))^T=\sqrt{n}\,K\,\widehat{\alpha},$$

where $\widehat{\alpha} = (\widehat{\alpha}_1, \dots, \widehat{\alpha}_n)^T$.

Solving the KRR optimization problem is inequivalent to solving the following quadratic programming

$$\widehat{\alpha} \in \operatorname*{argmin}_{\alpha \in \mathbb{R}^n} \left\{ \frac{1}{2n} \| y - \sqrt{n} K \alpha \|_2^2 + \lambda_n \underbrace{\alpha^T K \alpha}_{\| f \|_{xx}^2} \right\}.$$

Example: Convex regression

- Now suppose $f^*: \mathcal{C} \to \mathbb{R}$ is known to be a convex function over its domain \mathcal{C} , where \mathcal{C} is some convex and open subset of \mathbb{R}^d .
- It is natural to consider the least-squares estimator with a convexity constraint,

$$\widehat{f} \in \underset{f \text{ is convex}}{\operatorname{argmin}} \left\{ \frac{1}{2n} \sum_{i=1}^{n} (y_i - f(x_i))^2 \right\}.$$

- Although this optimization problem is infinite-dimensional, we can convert it to an equivalent finite-dimensional problem.
- ▶ The convexity constraint implies there exist sub-gradient vectors $\{\widetilde{z}_i\}_{i=1}^n$, such that for all i = 1, ..., n,

$$f(x) \ge f(x_i) + \langle \widetilde{z}_i, x - x_i \rangle$$
 for all $x \in \mathcal{C}$.

Example: Convex regression

- Since the cost function depends only on the values $\widetilde{y}_i = f(x_i)$, the optimum does not depend on the function behavior elsewhere.
- It suffices to solve the optimization problem

$$\begin{split} \min_{\{(\widetilde{y}_i,\,\widetilde{z}_i)\}_{i=1}^n} \; \frac{1}{2n} \sum_{i=1}^n (y_i - \widetilde{y}_i)^2 \\ \text{such that} \qquad \widetilde{y}_j \geq \widetilde{y}_i + \langle \widetilde{z}_i,\, x_j - x_i \rangle \quad \text{for all } i,j = 1,\ldots,n. \end{split}$$

▶ An optimal solution $\{(\widehat{y}_i, \widehat{z}_i)\}_{i=1}^n$ can be used to define an estimate $\widehat{f}: \mathcal{C} \to \mathbb{R}$ via

$$\widehat{f}(x) = \max_{i=1}^{n} \{\widehat{y}_i + \langle \widehat{z}_i, x - x_i \rangle \}.$$

• \widehat{f} is convex, and by the feasibility of the solution $\{(\widehat{y}_i, \widehat{z}_i)\}_{i=1}^n$, we are guaranteed that $\widehat{f}(x_i) = \widehat{y}_i$.

Statistical error bounds

$$\widehat{f} \in \underset{f \in \mathcal{F}}{\operatorname{argmin}} \left\{ \frac{1}{2n} \sum_{i=1}^{n} (y_i - f(x_i))^2 \right\},$$

- ▶ Question: how well the non-parametric least squares estimate \hat{f} approximates the true regression function f^* .
- ▶ We will bound the error $\|\widehat{f} f^*\|_n$ as measured in the $L^2(\mathbb{P}_n)$ -norm.
- ▶ The difficulty of estimating the function f^* should depend on the complexity of the function class \mathcal{F} .
- ▶ Define the f^* -shifted version of the function class \mathcal{F} ,

$$\mathcal{F}^* := \{ f - f^* \mid f \in \mathcal{F} \}.$$

Localized form of Gaussian complexity

▶ We define a complexity measure of F, locally in a neighborhood around the true regression function f*.

Definition

Local Gaussian complexity For a given radius $\delta>0$, the local Gaussian complexity around f^* at scale δ is given by

$$\mathcal{G}_n(\delta; \mathcal{F}^*) := \mathbb{E}_w \left[\sup_{\substack{g \in \mathcal{F}^* \\ ||g||_n < \delta}} \left| \frac{1}{n} \sum_{i=1}^n w_i g(x_i) \right| \right],$$

where $\{w_i\}_{i=1}^n$ are i.i.d. $\mathcal{N}(0, 1)$ variables.

• A central object in our analysis is the set of positive δ that satisfy the critical inequality

$$\frac{\mathcal{G}_n(\delta;\,\mathcal{F}^*)}{\delta} \leq \frac{\delta}{2\sigma}.$$

Critical radius

We call a set \mathcal{H} star-shaped if for any $h \in \mathcal{H}$ and $\alpha \in [0, 1]$, the rescaled function αh also belongs to \mathcal{H} .

Lemma

If $\mathcal{F}^* := \{f - f^* \mid f \in \mathcal{F}\}$ is star-shaped, then $\frac{\mathcal{G}_n(\delta; \mathcal{F}^*)}{\delta}$ is a non-increasing function of $\delta > 0$.

Definition

When $\mathcal{F}^*:=\left\{f-f^*\,\middle|\, f\in\mathcal{F}\right\}$ is star-shaped, we define the critical radius $\delta_n>0$ as the smallest solution of

$$\frac{\mathcal{G}_n(\delta;\,\mathcal{F}^*)}{\delta} \leq \frac{\delta}{2\sigma}.$$

Heuristic illustration

By the optimality of $\widehat{\theta}$ and the feasibility of θ^* , we have

$$\frac{1}{2n}\sum_{i=1}^{n}(y_i-\widehat{f}(x_i))^2 \leq \frac{1}{2n}\sum_{i=1}^{n}(y_i-f^*(x_i))^2.$$

Recalling $y_i = f^*(x_i) + \sigma w_i$, some simple algebra leads to

(basic inequality):
$$\frac{1}{2}\|\widehat{f} - f^*\|_n^2 \le \frac{\sigma}{n} \sum_{i=1}^n w_i \left(\widehat{f}(x_i) - f^*(x_i)\right).$$

Let $\delta^2 = \|\widehat{f} - f^*\|_n^2$, then we have (this step is heuristic!)

$$\frac{\delta^2}{2} \le \sigma \, \mathcal{G}_n(\delta; \, \mathcal{F}^*), \quad \text{or} \quad \frac{\mathcal{G}_n(\delta; \, \mathcal{F}^*)}{\delta} \ge \frac{\delta}{2\sigma}.$$

By definition of δ_n , this implies $\delta \leq \delta_n$.

Formal statement

$$\begin{split} \mathcal{G}_n(\delta;\,\mathcal{F}^*) := \mathbb{E}_w \bigg[\sup_{\substack{g \in \mathcal{F}^* \\ \|g\|_n \leq \delta}} \Big| \frac{1}{n} \sum_{i=1}^n w_i \, g(x_i) \Big| \bigg], \\ \text{(critical radius)} \quad \frac{\mathcal{G}_n(\delta_n;\,\mathcal{F}^*)}{\delta_n} \leq \frac{\delta_n}{2\sigma}. \end{split}$$

Theorem (Non-parametric least squares error bound)

Suppose that the shifted function class \mathcal{F}^* is star-shaped. Then there are universal positive constants (c_0,c_1,c_2) such that for any $t\geq \delta_n$, the non-parametric least squares estimate \widehat{f}_n satisfies

$$\mathbb{P}\big[\|\widehat{f}_n - f^*\|_n^2 \ge c_0 t \,\delta_n\big] \le c_1 \, e^{-\frac{c_2 n t \,\delta_n}{\sigma^2}}.$$

This theorem implies

$$\|\widehat{f}_n - f^*\|_n^2 = \mathcal{O}_p(\delta_n^2).$$

Bounds via metric entropy

Recall that the localized Gaussian complexity corresponds to expected absolute maximum of a Gaussian process.

Define $\mathbb{B}_n(\delta; \mathcal{F}^*) = \{ f \in \mathcal{F}^* : ||f||_n \leq \delta \}$, and $\mathcal{N}_n(t, \mathbb{B}_n(\delta; \mathcal{F}^*))$ denote the *t*-covering number of $\mathbb{B}_n(\delta; \mathcal{F}^*)$ in the $||\cdot||_n$ norm.

Corollary

The critical radius δ_n is upper bounded by any $\delta \in (0, \sigma]$ such that

$$\frac{32}{\sqrt{n}} \int_{\frac{\delta^2}{2\sigma}}^{\delta} \sqrt{\log \mathcal{N}_n(t, \mathbb{B}_n(\delta; \mathcal{F}^*))} dt \leq \frac{\delta^2}{\sigma}.$$

Proof: Apply Dudley's entropy integral bound.

Example: Bound for linear regression

- ▶ Consider the standard linear model $y_i = \langle x_i, \theta \rangle + w_i$, where $\theta \in \mathbb{R}^d$.
- ► The usual least-squares estimate corresponds to optimizing over the function class

$$\mathcal{F}_{\mathsf{lin}} = \{ f_{\theta}(\cdot) = \langle \cdot, \, \theta \rangle : \, \theta \in \mathbb{R}^d \}.$$

- ▶ Let $X \in \mathbb{R}^{n \times d}$ denote the design matrix. Then $\|f_{\theta}\|_{n} = \frac{\|X\theta\|_{2}}{\sqrt{n}}$.
- ▶ Therefore, we have (r = rank(X)),

$$\log \mathcal{N}_n(t, \, \mathbb{B}_n(\delta; \, \mathcal{F}^*)) \le r \log \left(1 + \frac{c \, \delta}{t}\right),$$

$$\frac{1}{\sqrt{n}} \int_0^{\delta} \sqrt{\log \mathcal{N}_n(t, \, \mathbb{B}_n(\delta; \, \mathcal{F}^*))} \, dt \le c' \, \delta \, \sqrt{\frac{r}{n}}.$$

Finally, we reach that

$$\|\widehat{f}_n - f^*\|_n^2 \le C \sigma^2 \frac{\operatorname{rank}(X)}{n}$$
 w.h.p.

Example: Bounds for Lipschitz functions

Consider the function class

$$\mathcal{F}_{\mathsf{Lip}}(L) = \{ f : [0,1] \to \mathbb{R} : f(0) = 0, f \text{ is } L\text{-Lipschitz.} \}.$$

In our previous lecture, we showed

$$\log \mathcal{N}(t, \mathcal{F}_{\mathsf{Lip}}(L), \|\cdot\|_{\infty}) \leq \frac{2L}{t}.$$

Therefore, we have

$$\frac{1}{\sqrt{n}} \int_{0}^{\delta} \sqrt{\log \mathcal{N}_{n}(t, \mathbb{B}_{n}(\delta; \mathcal{F}^{*}))} dt$$

$$\leq \frac{1}{\sqrt{n}} \int_{0}^{\delta} \sqrt{\log \mathcal{N}(t, \mathcal{F}_{\mathsf{Lip}}(L), \| \cdot \|_{\infty})} dt \leq \frac{c}{\sqrt{n}} \sqrt{L\delta}.$$

Finally, this implies that

$$\|\widehat{f}_n - f^*\|_n^2 \le C \left(\frac{L\sigma^2}{n}\right)^{2/3}$$
 w.h.p.

Example: Bounds for convex regression

► Consider the class of convex 1-Lipschitz functions,

$$\mathcal{F}_{\mathsf{conv}} = \{f: \, [0,1] \to \mathbb{R}: f(0) = 0, \, f \text{ is L-Lipschitz and convex.} \}.$$

It can be shown that

$$\log \mathcal{N}(t, \mathcal{F}_{\mathsf{conv}}, \|\cdot\|_{\infty}) \leq \frac{C}{\sqrt{t}}.$$

Therefore, we have

$$\frac{1}{\sqrt{n}} \int_0^{\delta} \sqrt{\log \mathcal{N}_n(t, \mathbb{B}_n(\delta; \mathcal{F}^*))} dt$$

$$\leq \frac{1}{\sqrt{n}} \int_0^{\delta} \frac{\sqrt{C}}{t^{1/4}} dt \leq \frac{c}{\sqrt{n}} \delta^{3/4}.$$

Finally, this implies that

$$\|\widehat{f}_n - f^*\|_n^2 \le C \left(\frac{\sigma^2}{n}\right)^{4/5}$$
 w.h.p