Resolução - Exercícios - Cálculo IV - Aula 1 - Semana 24/8 - 28/8 Sequências Numéricas I

Exercício 1. Determine se a sequência $\left(\cos\left(\frac{2n+1}{3n+5}\right)\right)$ converge. Se convergir, encontre seu limite.

Solução. Considere a função $f(x) = \cos x, x \in \mathbb{R}$, e a sequência $x_n = \frac{2n+1}{3n+5}$. Como

$$x_n = \frac{2n+1}{3n+5} = \frac{2+1/n}{3+5/n} \to \frac{2}{3}, \text{ com } n \to \infty,$$

e f é contínua em 2/3, segue da Observação 2 da lista de exercícios da Aula 1 que

$$\cos\left(\frac{2n+1}{3n+5}\right) \to \cos\left(\frac{2}{3}\right), \quad \text{com } n \to \infty$$

Portanto, a sequência em questão é convergente e seu limite é $\cos(2/3)$.

Exercício 2. Determine se a sequência $a_n = \left(\frac{n+3}{n+2}\right)^n$ é convergente ou divergente e, caso convergente, determine o seu limite.

Solução. Note

$$\left(\frac{n+3}{n+2}\right)^n = \left(\frac{n+2+1}{n+2}\right)^n$$

$$= \left(1 + \frac{1}{n+2}\right)^n$$

$$= \left(1 + \frac{1}{n+2}\right)^{n+2} \frac{1}{\left(1 + \frac{1}{n+2}\right)^2}$$

De $\lim_{n\to\infty} \left(1+\frac{1}{n}\right)^n = e$, segue que $\lim_{n\to\infty} \left(1+\frac{1}{n+2}\right)^{n+2} = e$. Combinando isto com $\lim_{n\to\infty} \frac{1}{\left(1+\frac{1}{n+2}\right)^2} = 1$, temos

$$\lim_{n \to \infty} \left(\frac{n+3}{n+2} \right)^n = e.$$

Exercício 3. Verifique se existe $\lim_{n\to\infty} a_n$ se

$$a_n = \frac{1}{n} \frac{3.6.9....(3n)}{1.4.7....(3n-2)}, \ n \ge 1.$$

Sugestão: mostre que (a_n) é decrescente e limitada inferiormente.

Solução. Como se trata de uma seqência de termos positivos, para mostrar que (a_n) é decrescente, basta verificar que

$$\frac{a_{n+1}}{a_n} \le 1, \text{ para todo } n \ge 1.$$

De fato,

$$\frac{a_{n+1}}{a_n} = \frac{\frac{1}{n+1} \frac{3.6.9....(3(n+1))}{1.4.7.\cdots.(3(n+1)-2)}}{\frac{1}{n} \frac{3.6.9....(3n)}{1.4.7.\cdots.(3n-2)}} = \frac{\frac{1}{n+1} \frac{3.6.9....(3n).(3(n+1))}{1.4.7.\cdots.(3n-2).(3(n+1)-2)}}{\frac{1}{n} \frac{3.6.9....(3n)}{1.4.7.\cdots.(3n-2)}}$$
$$= \frac{n}{n+1} \frac{3(n+1)}{3(n+1)-2} = \frac{3n}{3n+1} < 1, \ \forall n \ge 1.$$

Portanto, (a_n) é decrescente. Como $a_n > 0$ para todo $n \ge 1$, a sequência é limitada, consequentemente o limite de (a_n) existe.

Exercício 4. Determine se a sequência definida a seguir tem um limite. Em caso afirmativo, encontre o limite.

$$a_1 = \sqrt{a}, \ a_2 = \sqrt{a + \sqrt{a}}, \ a_3 = \sqrt{a + \sqrt{a + \sqrt{a}}}, \dots$$
, onde $a > 0$ um número real fixo.

Solução. Primeiramente, observamos que $a_{n+1} = \sqrt{a + a_{n+1}}$, para todo n. Usaremos o Princípio da Indução Matemática para provar que a sequência é crescente. A afirmação que queremos provar envolvendo um número natural é

$$a_n < a_{n+1}, \ \forall n > 1.$$

O passo base (1) é verdadeiro, pois, como a > 0, temos

$$a_1 = \sqrt{a} < \sqrt{a + \sqrt{a}} = a_2.$$

Para provar o passo indutivo (2), suponha que a afirmação é verdadeira para $n \ge 1$ (isto é, $a_n < a_{n+1}$) e provemos a afirmação é verdadeira para n+1. De fato, como

$$a_{n+2} = \sqrt{a + a_{n+1}}.$$

Pela hipótese de indução, $a_n < a_{n+1}$. Assim,

$$a_{n+2} = \sqrt{a + a_{n+1}} > \sqrt{a + a_n} = a_{n+1},$$

como queríamos provar. Pelo princípio de indução matemática, $a_n < a_{n+1}, \ \forall \ n \geq 1.$

Vamos provar agora que (a_n) é limitada superiormente. De fato, como a sequência é crescente, temos

$$a_n < a_{n+1} = \sqrt{a + a_n}, \ \forall n \ge 1,$$

ou seja,

$$a_n < \sqrt{a + a_n}, \ \forall n > 1.$$

Elevando o quadrado em ambos os lados, temos

$$a_n^2 - a_n - a < 0, \ \forall n \ge 1.$$

Considerando o polinômio quadrático, $p(x) = x^2 - x - a$, vemos que

$$p(x) < 0 \iff \frac{1 - \sqrt{4a + 1}}{2} < x < \frac{1 + \sqrt{4a + 1}}{2}.$$

Portanto,

$$a_n < \frac{1 + \sqrt{4a + 1}}{2}, \ \forall \, n \ge 1.$$

Pelo Teorema da Convergência Monótona, existe $L \in \mathbb{R}$ tal que $L = \lim_{n \to \infty} a_n$. Fazendo $n \to \infty$ na fórmula $a_{n+1} = \sqrt{a + a_n}$, obtemos

$$L = \sqrt{a + L}.$$

Elevando o quadrado em ambos os lados e usando que L > 0 (isto porque $a_1 > 0$ e (a_n) é crescente), obtemos $L = \frac{1 + \sqrt{4a + 1}}{2}$.

Exercício 5. Determine se a sequência definida a seguir tem um limite. Em caso afirmativo, encontre o limite.

$$a_1 = 3, \quad a_n = \sqrt{2a_{n-1}}, \ n = 2, 3, \dots$$

Solução. Usaremos o Princípio da Indução Matemática para provar que a sequência é decrescente. A afirmação que queremos provar envolvendo um número natural é

$$a_{n+1} < a_n, \ \forall n \ge 1.$$

O passo base (1) do Princípio da Indução Matemática é verdadeiro porque

$$a_1 = 3 > \sqrt{6} = \sqrt{2a_1} = a_2.$$

Para provar o passo indutivo (2) do Princípio da Indução Matemática, suponha que a afirmação é verdadeira para $n \ge 1$ (isto é, $a_{n+1} < a_n$) e provemos a afirmação é verdadeira para n+1. De fato, como $a_{n+2} = \sqrt{2a_{n+1}}$. Pela hipótese de indução, $a_{n+1} < a_n$. Assim, $a_{n+2} = \sqrt{2a_{n+1}} < \sqrt{2a_n} = a_{n+1}$, como queríamos provar. Pelo princípio de indução matemática, $a_{n+1} < a_n$, $\forall n \ge 1$.

Vamos provar agora que $a_n > 2$ para todo $n \ge 1$. De fato, para todo $n \ge 1$,

$$a_n > a_{n+1} = \sqrt{2a_n}.$$

Elevando o quadrado em ambos os lados, temos

$$a_n^2 > 2a_n$$
.

Usando que a_n é positivo para todo $n \ge 1$, segue que $a_n > 2$ para todo $n \ge 1$.

Como a sequência é decrescente e limitada inferiormente, pelo Teorema da Convergência Monótona existe $L \in \mathbb{R}$ tal que $L = \lim_{n \to \infty} a_n$. Fazendo $n \to \infty$ na fórmula $a_{n+1} = \sqrt{2a_n}$, obtemos

$$L = \sqrt{2L}$$
.

Elevando o quadrado em ambos os lados e usando que L > 0 (isto porque $a_n > 2$), obtemos L = 2.

Exercício 6. Mostre que se $a_n \to 0$ e a sequência (b_n) é limitada, então $a_n b_n \to 0$. Use isso para mostrar que $e^{-n} \cos \frac{n\pi}{4} \to 0$.

Solução.

Primeiro modo de solução (pela definição de limite): Dado $\epsilon > 0$, queremos mostrar que existe $N \in \mathbb{N}$ tal que

$$n \ge N \quad \Rightarrow \quad |a_n b_n - 0| < \epsilon.$$

De fato, como (b_n) é limitada, existe M > 0 tal que

$$|b_n| < M, \quad \forall n \in \mathbb{N}.$$

Usando que $a_n \to 0$, existe $N \in \mathbb{N}$ tal que

$$n \ge N \quad \Rightarrow \quad |a_n| = |a_n - 0| < \frac{\epsilon}{M}.$$

Portanto, para todo $n \geq N$ temos

$$|a_n b_n - 0| = |a_n b_n| = |a_n||b_n| < \frac{\epsilon}{M}M = \epsilon,$$

como queríamos provar.

Segundo modo de solução (pelo Teorema do Confronto): como (b_n) é limitada, existe M > 0 tal que

$$|b_n| \leq M, \quad \forall n \in \mathbb{N}.$$

Assim,

$$|a_n b_n| \le M|a_n|, \quad \forall n \in \mathbb{N},$$

ou seja,

$$-M|a_n| \le a_n b_n \le M|a_n|, \quad \forall n \in \mathbb{N}.$$

Por hipótese, $a_n \to 0$, que implica $|a_n| \to 0$. Assim, $-M|a_n| \to 0$ e $M|a_n| \to 0$. Consequentemente, pelo Teorema do Confronto, $a_n b_n \to 0$.

Exercício 7. Calcule $\lim_{n\to\infty} x_n$ se

(a)
$$x_n = \sqrt{n} \left(\sqrt{n+a} - \sqrt{n} \right)$$
. (resp.: $a/2$) Solução.

$$x_n = \sqrt{n} \left(\sqrt{n+a} - \sqrt{n} \right) = \sqrt{n} \left(\sqrt{n+a} - \sqrt{n} \right) \frac{\sqrt{n+a} + \sqrt{n}}{\sqrt{n+a} + \sqrt{n}}$$
$$= \sqrt{n} \frac{a}{\sqrt{n+a} + \sqrt{n}} = \sqrt{n} \frac{a}{\sqrt{n} \left(\sqrt{1+a/n} + 1 \right)} = \frac{a}{\sqrt{1+a/n} + 1}$$

Portanto, $x_n \to a/2$, com $n \to \infty$.

(b)
$$x_n = n \left[\left(a + \frac{1}{n} \right)^4 - a^4 \right]$$
. (resp.: $4a^3$)

Solução. Primeiramente, note que

$$A^4 - B^4 = (A - B)(A^3 + A^2B + AB^2 + B^3), \quad \forall A, B \in \mathbb{R}.$$

Aplicando esta identidade para $A = a + \frac{1}{n}$ e B = a, temos

$$x_n = n \left[\left(a + \frac{1}{n} \right)^4 - a^4 \right] = n \frac{1}{n} \left(\left(a + \frac{1}{n} \right)^3 + \left(a + \frac{1}{n} \right)^2 a + \left(a + \frac{1}{n} \right) a^2 + a^3 \right)$$
$$= \left(\left(a + \frac{1}{n} \right)^3 + \left(a + \frac{1}{n} \right)^2 a + \left(a + \frac{1}{n} \right) a^2 + a^3 \right) \to 4a^3, \text{ com } n \to \infty.$$