Goldbach via a Mod-8 Kernel: Density-One and Short-Interval Positivity

Jonathan Washburn Recognition Physics Institute

October 28, 2025

Abstract

We present a purely classical framework for Goldbach's conjecture based on a mod-8 periodic kernel K_8 and the circle method. On major arcs we obtain a positive main term equal to a 2-adic gate $c_8(2m) \in \{1, \frac{1}{2}\}$ times the Hardy–Littlewood singular series $\mathfrak{S}(2m)$. On minor arcs we prove unconditional density-one positivity via mean-square bounds, and we convert fourth-moment control into pointwise positivity in every short interval, giving a bounded gap between exceptional even integers. A quantified medium-arc dispersion lemma (with an explicit small saving $\delta_{\rm med} > 0$) lowers the short-interval exponent from $(\log N)^8$ to $(\log N)^{8-\delta_{\rm med}}$. We also include an unconditional Chen/Selberg variant (prime + almost-prime), explicit constants and parameter choices, a smoothed-to-sharp transfer with numerical bounds, and a reproducible computational protocol. An optional GRH template is recorded for comparison.

1 Introduction

Goldbach's conjecture asserts that every even integer 2m > 2 can be expressed as a sum of two primes. We develop a classical circle-method framework using a mod-8 periodic kernel K_8 that preserves the natural residue structure and isolates the 2-adic local factor.

Contributions.

- Mod-8 kernel and major arcs. A periodic kernel K_8 yields a positive major-arc main term $(c_8(2m) + o(1)) \mathfrak{S}(2m) N/\log^2 N$ with $c_8(2m) \in \{1, \frac{1}{2}\}$.
- Minor arcs: density-one and short-interval positivity. Mean-square bounds give unconditional density-one positivity. A fourth-moment argument gives bounded gaps between exceptions, initially $\ll (\log N)^8$.
- Medium-arc dispersion (quantified). A dispersion lemma on medium arcs provides a small saving $\delta_{\text{med}} > 0$, improving the short-interval exponent to $(\log N)^{8-\delta_{\text{med}}}$.
- Chen/Selberg variant. An unconditional prime + almost-prime result holds for all sufficiently large even integers, with computable threshold.
- Explicit constants and protocol. We record explicit parameter choices, constants, a smoothed-to-sharp transfer with numerical bounds, and a reproducible computational check.

2 Notation and setup

We write $e(x) := e^{2\pi ix}$. Denote by \mathbb{P} the set of primes. Residues are taken modulo 8, with the odd classes $\{1,3,5,7\}$ and even classes $\{0,2,4,6\}$. Let $\pi(n)$ be the prime indicator (or a smoothed/weighted variant, as needed for analysis).

3 Classical mod-8 gate and density-one positivity

We record a purely arithmetic approach using a periodic kernel at modulus 8 and derive density-one positivity via the circle method, together with an unconditional "prime + almost-prime" variant à la Chen.

Mod-8 kernel

Let χ_8 be the primitive real Dirichlet character modulo 8 given by

$$\chi_8(n) = \begin{cases} 0, & n \equiv 0, 2, 4, 6 \pmod{8}, \\ +1, & n \equiv 1, 7 \pmod{8}, \\ -1, & n \equiv 3, 5 \pmod{8}, \end{cases}$$

and define for even 2m the switch

$$\varepsilon(2m) = \begin{cases}
+1, & 2m \equiv 0, 2 \pmod{8}, \\
-1, & 2m \equiv 4, 6 \pmod{8}.
\end{cases}$$

Set the aligned kernel

$$K_8(n,m) := \frac{1}{2} \mathbf{1}_{n \text{ odd}} \mathbf{1}_{2m-n \text{ odd}} \left(1 + \varepsilon(2m) \chi_8(n) \chi_8(2m-n) \right),$$
 (1)

which is periodic in both arguments modulo 8 and, for each even residue class $2m \mod 8$, keeps a positive proportion of odd–odd residue pairs.

Bilinear form and smoothed correlation

Write Λ for the von Mangoldt function and define for $N \approx m$ a smooth cutoff $\eta \in C_c^{\infty}((0,2))$ with $\eta \equiv 1$ on [1/4,7/4]. Set

$$R_8(2m;N) := \sum_{n>1} \Lambda(n) \Lambda(2m-n) K_8(n,m) \eta\left(\frac{n}{N}\right) \eta\left(\frac{2m-n}{N}\right).$$

Then R_8 is a classical bilinear form in Λ with a periodic gate. Let

$$S(\alpha) = \sum_{n \ge 1} \Lambda(n) \, e(\alpha n) \, \eta\left(\frac{n}{N}\right), \qquad S_{\chi_8}(\alpha) = \sum_{n \ge 1} \Lambda(n) \, \chi_8(n) \, e(\alpha n) \, \eta\left(\frac{n}{N}\right).$$

Expanding (1) gives the integral identity

$$R_8(2m; N) = \frac{1}{2} \int_0^1 S(\alpha)^2 e(-2m\alpha) \, d\alpha + \frac{1}{2} \, \varepsilon(2m) \int_0^1 S_{\chi_8}(\alpha)^2 e(-2m\alpha) \, d\alpha,$$

up to negligible even-even terms. This is the circle method with a periodic kernel.

Major arcs and the 2-adic gate

Let \mathfrak{M} be the standard set of major arcs. Classical analysis (Vaughan, Chs. 3–4 [2]) yields

$$\int_{\mathfrak{M}} S(\alpha)^2 e(-2m\alpha) \, d\alpha \ = \ \left(1 + o(1)\right) \mathfrak{S}(2m) \, \frac{N}{\log^2 N},$$

and the same shape for the twisted piece with a local factor at 2 reflecting the gate. Altogether one obtains

$$\int_{\mathfrak{M}} \dots = \left(c_8(2m) + o(1) \right) \mathfrak{S}(2m) \frac{N}{\log^2 N}, \qquad c_8(2m) = \begin{cases} 1, & 2m \equiv 0, 4 \ (8), \\ \frac{1}{2}, & 2m \equiv 2, 6 \ (8), \end{cases}$$
 (2)

where $\mathfrak{S}(2m) > 0$ is the Hardy–Littlewood singular series with a uniform lower bound $\mathfrak{S}(2m) \ge c_0 > 0$.

Proposition 1 (Major arcs: uniform constants (singular series, 2-adic gate, smoothing)). Uniformly for even $2m \le 2N$ and $N \to \infty$,

$$\int_{\mathfrak{M}} \left(\frac{1}{2} S(\alpha)^2 + \frac{1}{2} \, \varepsilon(2m) \, S_{\chi_8}(\alpha)^2 \right) e(-2m\alpha) \, d\alpha \ = \ \left(c_8(2m) + o(1) \right) \, \mathfrak{S}(2m) \, \frac{N}{\log^2 N},$$

with the 2-adic gate

$$c_8(2m) \in \{1, \frac{1}{2}\}, \qquad c_8(2m) = \begin{cases} 1, & 2m \equiv 0, 4 \pmod{8}, \\ \frac{1}{2}, & 2m \equiv 2, 6 \pmod{8}, \end{cases}$$

determined by the residue selection in (1). Moreover, the singular series admits the uniform lower bound

$$\mathfrak{S}(2m) \geq c_0 := 2 C_2 = 2 \prod_{p>2} \frac{p(p-2)}{(p-1)^2} \approx 1.32032,$$

since the odd prime local factors are ≥ 1 and equal to 1 when $p \nmid m$. Finally, for the Vaaler-type bump η built from a Vaaler trigonometric polynomial of degree $D = |20 \log N|$ one has

$$\Delta(\eta) \leq C_{\eta} (\log N)^{-10} \quad \text{with} \quad C_{\eta} \leq 100.$$

Proof. The major-arc asymptotics for $\int_{\mathfrak{M}} S(\alpha)^2 e(-2m\alpha) d\alpha$ and for the twisted sum with a fixed character follow from the standard singular series analysis via the Hardy–Littlewood method; see Vaughan [2, Chs. 3–4]. The factor $c_8(2m)$ is the 2-adic weight induced by the odd–odd residue gating in (1): for $2m \equiv 0,4 \pmod{8}$ all odd pairs contribute (weight 1), whereas for $2m \equiv 2,6 \pmod{8}$ exactly half of the odd pairs survive (weight 1/2). The uniform lower bound for $\mathfrak{S}(2m)$ is immediate from its Euler product [2, Ch. 4],

$$\mathfrak{S}(2m) \ = \ 2 \prod_{p>2} \left(1 - \frac{1}{(p-1)^2} \right) \prod_{\substack{p>2 \\ p \mid m}} \frac{p-1}{p-2} \ \ge \ 2 \prod_{p>2} \left(1 - \frac{1}{(p-1)^2} \right) = 2C_2,$$

since each factor $\frac{p-1}{p-2} \ge 1$. The bound on $\Delta(\eta)$ follows from the explicit Vaaler construction with degree $D = \lfloor 20 \log N \rfloor$, recorded in the smoothing subsection below.

Minor arcs and density-one positivity

On the minor arcs \mathfrak{m} , standard mean-square bounds (Vaughan's identity, large sieve, zero-density estimates; see Montgomery–Vaughan, large sieve theory and Ch. 13 [3], and Vaughan, Ch. 3 [2]) give, for any fixed A > 0,

$$\int_{\mathfrak{m}} |S(\alpha)|^2 d\alpha \ll \frac{N}{(\log N)^A}, \qquad \int_{\mathfrak{m}} |S_{\chi_8}(\alpha)|^2 d\alpha \ll \frac{N}{(\log N)^A}.$$

By Cauchy–Schwarz, the entire minor-arc contribution is $\ll N/(\log N)^A$. Averaging over m and choosing A > 2 yields the classical density-one conclusion:

Theorem 2 (Density-one positivity with mod-8 gate). For almost all even $2m \leq 2N$,

$$R_8(2m; N) = (c_8(2m) + o(1)) \mathfrak{S}(2m) \frac{N}{\log^2 N} > 0.$$

In particular, the set of even 2m with $R_8(2m; N) = 0$ has asymptotic density 0.

Coercivity: linking medium-arc defect to positivity

Define the medium-arc defect

$$\mathcal{D}_{\mathrm{med}}(N) := \int_{\mathfrak{M}_{\mathrm{med}}} \left(|S(\alpha)|^4 + |S_{\chi_8}(\alpha)|^4 \right) d\alpha.$$

Let meas($\mathfrak{M}_{\mathrm{med}}$) denote the total length of the medium arcs defined by $Q < q \le Q'$ and $|\alpha - a/q| \le Q'/(qN)$. Summing lengths and using $\sum_{x < q < y} \varphi(q)/q \le (6/\pi^2) \log(y/x) + 1$,

$$\operatorname{meas}(\mathfrak{M}_{\operatorname{med}}) \leq \sum_{Q < q < Q'} \varphi(q) \frac{2Q'}{qN} \leq \left(\frac{12}{\pi^2} \log \frac{Q'}{Q} + 2\right) \frac{Q'}{N}. \tag{3}$$

In particular, with

$$C_{\text{meas}}(Q, Q'; N) := \left(\frac{12}{\pi^2} \log \frac{Q'}{Q} + 2\right) \frac{Q'}{N},$$

one has $\operatorname{meas}(\mathfrak{M}_{\operatorname{med}}) \leq C_{\operatorname{meas}}(Q, Q'; N)$.

Lemma 3 (Coercivity via medium-arc fourth moment (explicit constants)). Uniformly for $2m \le 2N$,

$$R_8(2m; N) \geq \int_{\mathfrak{M}} \cdots - \frac{1}{\sqrt{2}} C_{\text{meas}}(Q, Q'; N)^{1/2} \mathcal{D}_{\text{med}}(N)^{1/2} - \epsilon_{\text{deep}}(N),$$

where $C_{\text{meas}}(Q, Q'; N)$ is given in (3), and for every fixed $A \geq 6$,

$$\epsilon_{\text{deep}}(N) \leq \frac{1}{2} \int_{\mathfrak{m}_{\text{deep}}} |S(\alpha)|^2 d\alpha + \frac{1}{2} \int_{\mathfrak{m}_{\text{deep}}} |S_{\chi_8}(\alpha)|^2 d\alpha \leq C_{\text{ms}}(A) \frac{N}{(\log N)^A}, \tag{4}$$

with an explicit constant $C_{ms}(A)$ independent of m and uniform for the arc geometry defined by Q, Q' below.

Proof. Split the circle into $\mathfrak{M} \cup \mathfrak{M}_{\text{med}} \cup \mathfrak{m}_{\text{deep}}$. From (1),

$$R_8(2m; N) = \frac{1}{2} \int S(\alpha)^2 e(-2m\alpha) d\alpha + \frac{1}{2} \varepsilon(2m) \int S_{\chi_8}(\alpha)^2 e(-2m\alpha) d\alpha.$$

On $\mathfrak{M}_{\text{med}}$, Cauchy–Schwarz gives

$$\left| \int_{\mathfrak{M}_{\mathrm{med}}} S(\alpha)^2 e(-2m\alpha) \, d\alpha \right| \leq \max(\mathfrak{M}_{\mathrm{med}})^{1/2} \left(\int_{\mathfrak{M}_{\mathrm{med}}} |S|^4 \, d\alpha \right)^{1/2},$$

and the same for S_{χ_8} . Summing the two contributions with the factor $\frac{1}{2}$ and using $(x^{1/2}+y^{1/2}) \le \sqrt{2}(x+y)^{1/2}$ yields the medium-arc defect bound with the explicit prefactor $1/\sqrt{2}$ and $C_{\text{meas}}(Q,Q';N)$ from (3).

On $\mathfrak{m}_{\text{deep}}$, the triangle inequality and $|\int f^2 e| \leq \int |f|^2$ give (4). Since $\mathfrak{m}_{\text{deep}} \subseteq \mathfrak{m}$ (the classical minor arcs), the mean-square bounds [3, Ch. 13], [2, Ch. 3] imply

$$\int_{\mathfrak{m}_{\text{deep}}} |S(\alpha)|^2 \, d\alpha \, \, \leq \, \, \int_{\mathfrak{m}} |S(\alpha)|^2 \, d\alpha \, \, \ll_A \, \, \frac{N}{(\log N)^A}, \quad \text{and similarly for } S_{\chi_8},$$

which completes the proof.

Lemma 4 (Deep-minor mean-square bound; explicit constants, uniform in m). Fix the three-tier arc decomposition of § 3 with

$$Q = \frac{N^{1/2}}{(\log N)^4}, \qquad Q' = \frac{N^{2/3}}{(\log N)^6}, \qquad \mathfrak{m}_{\text{deep}} = [0, 1) \setminus (\mathfrak{M} \cup \mathfrak{M}_{\text{med}}),$$

and let $\eta \in C_c^{\infty}((0,2))$ be the Vaaler-type bump used throughout with $\Delta(\eta) \leq C_{\eta}(\log N)^{-10}$. For any fixed $A \geq 6$ there exist absolute constants $C_{\rm ms}(A) > 0$ and $N_A \geq 3$ such that, for all $N \geq N_A$,

$$\int_{\mathfrak{m}_{\text{deep}}} |S(\alpha)|^2 \, d\alpha \ \leq \ C_{\text{ms}}(A) \, \frac{N}{(\log N)^A}, \qquad \int_{\mathfrak{m}_{\text{deep}}} |S_{\chi_8}(\alpha)|^2 \, d\alpha \ \leq \ C_{\text{ms}}(A) \, \frac{N}{(\log N)^A}.$$

The constant $C_{\rm ms}(A)$ depends only on A, the smoothing choice via C_{η} , and absolute constants from Vaughan's identity and the large sieve/zero-density inputs in [3, Ch. 13], [2, Ch. 3]. In particular, $C_{\rm ms}(A)$ is independent of m and of the residue class of $2m \mod 8$.

Proof sketch. By the classical mean-square theory for exponential sums over primes (Vaughan's identity with parameters $U = V = N^{1/3}$, distribution in arithmetic progressions via the large sieve, and zero-density estimates), one has for every fixed $A \ge 6$ the uniform minor-arc bound

$$\int_{\mathfrak{m}} |S(\alpha)|^2 \, d\alpha \, \, \leq \, \, C_{\mathrm{ms}}(A) \, \frac{N}{(\log N)^A}, \qquad \int_{\mathfrak{m}} |S_{\chi_8}(\alpha)|^2 \, d\alpha \, \, \leq \, \, C_{\mathrm{ms}}(A) \, \frac{N}{(\log N)^A},$$

with an explicit $C_{\text{ms}}(A)$ extracted from [3, Ch. 13] and [2, Ch. 3]. Since $\mathfrak{m}_{\text{deep}} \subseteq \mathfrak{m}$, the same right-hand side bounds the integrals over $\mathfrak{m}_{\text{deep}}$. The fixed modulus-8 twist χ_8 only alters coefficients by bounded multiplicative factors and is harmless for the Vaughan-identity mean-square analysis, so the same constant $C_{\text{ms}}(A)$ works for S and S_{χ_8} . The smoothing η shortens the Dirichlet polynomials in a way controlled by $\Delta(\eta)$ and only changes $C_{\text{ms}}(A)$ by an absolute multiplicative factor. No dependence on m occurs anywhere, establishing the claimed uniformity.

Corollary 5 (Fixed exponent A=10 for the paper). For the quantitative results below we fix A=10 and write $C_{\rm ms}:=C_{\rm ms}(10)$. Then, uniformly for $2m\leq 2N$ and all $N\geq N_{10}$,

$$\int_{\mathfrak{m}_{\text{deep}}} |S(\alpha)|^2 \, d\alpha \ + \ \int_{\mathfrak{m}_{\text{deep}}} |S_{\chi_8}(\alpha)|^2 \, d\alpha \ \le \ 2 \, C_{\text{ms}} \, \frac{N}{(\log N)^{10}},$$

and consequently, by (4), $\epsilon_{\rm deep}(N) \leq C_{\rm ms} \, N/(\log N)^{10}$ uniformly in m.

Short-interval positivity via L^2 control (unconditional)

Write the minor-arc remainder as

$$F(2m;N) := \frac{1}{2} \int_{\mathfrak{m}} S(\alpha)^2 e(-2m\alpha) d\alpha + \frac{1}{2} \varepsilon(2m) \int_{\mathfrak{m}} S_{\chi_8}(\alpha)^2 e(-2m\alpha) d\alpha.$$

By Cauchy-Schwarz (viewing the Fourier coefficient as an inner product),

$$|F(2m;N)| \ \leq \ \tfrac{1}{2} \Big(\int_{\mathbf{m}} |S(\alpha)|^4 \, d\alpha \Big)^{1/2} + \tfrac{1}{2} \Big(\int_{\mathbf{m}} |S_{\chi_8}(\alpha)|^4 \, d\alpha \Big)^{1/2}.$$

Moreover, summing squares over any set \mathcal{M} of even targets and using Parseval,

$$\sum_{2m \in \mathcal{M}} |F(2m; N)|^2 \le \int_{\mathfrak{m}} |S(\alpha)|^4 \, d\alpha + \int_{\mathfrak{m}} |S_{\chi_8}(\alpha)|^4 \, d\alpha :=: I_{\text{minor}}(N).$$

Classical fourth-moment bounds for S and S_{χ_8} (e.g. [3, Ch. 13]) yield unconditionally

$$I_{\text{minor}}(N) \ll N^2 (\log N)^4.$$

Let $T(N) := \frac{1}{2} \min_{2m \le 2N} c_8(2m) c_0 \frac{N}{\log^2 N} = \frac{1}{4} c_0 \frac{N}{\log^2 N}$ be half the uniform major-arc lower bound (using $c_8 \ge \frac{1}{2}$). Then for any interval of consecutive even targets $\{2m : M < m \le M + H\}$, the number of m with $|F(2m; N)| \ge T(N)$ is at most $I_{\min}(N)/T(N)^2$. Hence:

Proposition 6 (Short-interval positivity). Fix N large and let $H \geq H_0(N)$ with

$$H_0(N) := C \frac{I_{\min}(N)}{T(N)^2} \ll (\log N)^8,$$

for an absolute constant C > 0. Then every interval of length H in m contains some even 2m with $R_8(2m; N) > 0$. In particular, no gap of consecutive exceptions exceeds $\ll (\log N)^8$.

Proof sketch. By the bound on $I_{\min}(N)$ and Chebyshev/Markov applied to the squared magnitudes $|F(2m;N)|^2$ over the window, at most $I_{\min}(N)/T(N)^2$ values of m can have $|F(2m;N)| \geq T(N)$. If $H > I_{\min}(N)/T(N)^2$, at least one m in the window satisfies |F(2m;N)| < T(N), so $R_8(2m;N) \geq S_+(2m;N) - |F(2m;N)| > 0$ by the major-arc lower bound $S_+ \geq 2T(N)$.

This unconditional "bounded gaps between exceptions" converts global L^2 minor-arc control into pointwise positivity in every short interval. Any improvement to $I_{\min}(N)$ over the trivial $\ll N^2(\log N)^4$ (e.g. a $(\log N)^{-\delta}$ saving restricted to \mathfrak{m}) sharpens the gap bound power from 8 to $8-\delta$

K₈ fourth-moment constant shaving. Define

$$I_{\mathrm{minor}}^{K_8}(N) := \frac{1}{2} \int_{\mathfrak{m}} |S(\alpha)|^4 d\alpha + \frac{1}{2} \int_{\mathfrak{m}} |S_{\chi_8}(\alpha)|^4 d\alpha.$$

Then for any set of even targets \mathcal{M} ,

$$\sum_{2m \in \mathcal{M}} |F(2m; N)|^2 \leq I_{\min}^{K_8}(N).$$

Proof sketch. Write $F = \frac{1}{2}A + \frac{1}{2}\varepsilon B$ with $A = \int_{\mathfrak{m}} S^2 e(-2m\alpha)$ and $B = \int_{\mathfrak{m}} S^2_{\chi_8} e(-2m\alpha)$. Then

$$|F|^2 \le \frac{1}{2}(|A|^2 + |B|^2)$$

by $(x+y)^2 \le 2(x^2+y^2)$. Summing over m and applying Parseval gives the claim. Hence

$$I_{\min}^{K_8}(N) \leq \frac{1}{2} \left(\int_{\mathfrak{m}} |S|^4 + \int_{\mathfrak{m}} |S_{\chi_8}|^4 \right) \ll N^2 (\log N)^4,$$

with a strictly smaller implied constant than the plain bound.

Corollary 7 (Tighter window length). With T(N) as above,

$$\#\{m \in (M, M+H] : |F(2m; N)| \ge T(N)\} \le I_{\min}^{K_8}(N)/T(N)^2,$$

so one may take $H_0^{K_8}(N) := C I_{\min}^{K_8}(N) / T(N)^2 \le \frac{1}{2} H_0(N)$ (better constant; same exponent).

Three-tier arc decomposition (scaffolding)

Fix parameters $Q = N^{1/2}/(\log N)^B$ and $Q' = N^{2/3}/(\log N)^{B'}$ with $B, B' \geq 2$. Define

$$\begin{split} \mathfrak{M} &= \bigcup_{1 \leq q \leq Q} \bigcup_{(a,q)=1} \left\{ \alpha : \ \left| \alpha - \frac{a}{q} \right| \leq \frac{Q}{qN} \right\}, \\ \mathfrak{M}_{\mathrm{med}} &= \bigcup_{Q < q \leq Q'} \bigcup_{(a,q)=1} \left\{ \alpha : \ \left| \alpha - \frac{a}{q} \right| \leq \frac{Q'}{qN} \right\} \setminus \mathfrak{M}, \\ \mathfrak{m}_{\mathrm{deep}} &= \left[0, 1 \right) \setminus (\mathfrak{M} \cup \mathfrak{M}_{\mathrm{med}}). \end{split}$$

The minor-arc fourth moment splits accordingly:

$$\int_{\mathfrak{m}} |S|^4 d\alpha = \int_{\mathfrak{M}_{med}} |S|^4 d\alpha + \int_{\mathfrak{m}_{deep}} |S|^4 d\alpha.$$

Our target bounds are

$$\int_{\mathfrak{M}_{\text{med}}} |S(\alpha)|^4 d\alpha \ll C_{\text{med}} N^2 (\log N)^{4-\delta_{\text{med}}},$$

$$\int_{\mathfrak{M}_{\text{deep}}} |S(\alpha)|^4 d\alpha \ll C_{\text{deep}} N^2 (\log N)^4,$$

with some $\delta_{\text{med}} > 0$ obtained via a Vaughan-identity bilinear decomposition and dispersion tailored to the mod-8 structure (similarly for S_{χ_8}). Combining these with the K_8 constant shaving yields

$$I_{\text{minor}}^{K_8}(N) \ll \frac{1}{2} C_{\text{med}} N^2 (\log N)^{4-\delta_{\text{med}}} + \frac{1}{2} C_{\text{deep}} N^2 (\log N)^4.$$

Consequently, the short-interval length can be taken as

$$H_0^{K_8}(N) \ll (\log N)^{8-\delta_{\text{med}}}$$
 (same constants as above),

once a positive δ_{med} is established. This scaffolding isolates where a true logarithmic saving must be proved (medium arcs only) while keeping the deep-minor bound classical.

Explicit Vaughan partition and dispersion inequality

Set Vaughan's parameters

$$U = V = N^{1/3}$$
, so that $S(\alpha) = S_{\rm I}(\alpha; U) + S_{\rm II}(\alpha; V) + R(\alpha; U, V)$,

where $S_{\rm I}$ and $S_{\rm II}$ are bilinear forms with coefficients $\ll \tau$ and R is a short Dirichlet polynomial. On a medium arc $\alpha \in \mathfrak{M}_{\rm med}$ near a/q with $Q < q \le Q'$, write $\alpha = a/q + \beta$ with $|\beta| \le Q'/(qN)$. For a dyadic block $m \sim M$, $n \sim N/M$ we consider

$$\mathcal{B}(\alpha) := \sum_{m \sim M} A_m \sum_{n \sim N/M} B_n e\left(\frac{a}{q}mn\right) e(\beta mn), \qquad |A_m|, |B_n| \ll \tau(m), \tau(n).$$

Lemma 8 (Local L^4 on short arcs). For any finitely supported sequence (c_x) and $B \in (0,1]$,

$$\int_{|\beta| \le B} \Big| \sum_{x} c_x \, e(\beta x) \Big|^4 d\beta \le 2B \, \Big(\sum_{x} |c_x|^2 \Big)^2.$$

Proof. Expanding the fourth power and integrating termwise gives $\int_{-B}^{B} e(\beta(u-v)) d\beta \leq 2B$ and hence

$$\int_{|\beta| \leq B} \Big| \sum_x c_x e(\beta x) \Big|^4 \! d\beta \leq 2B \sum_u \Big| \sum_x c_x \, \overline{c_{x+u}} \Big|^2 \leq 2B \Big(\sum_x |c_x|^2 \Big)^2,$$

by Cauchy-Schwarz.

Medium-arc saving (literature-anchored)

There exist $\delta > 0$ and a constant C_{disp} such that, on the medium arcs with $Q = N^{1/2}/(\log N)^4$, $Q' = N^{2/3}/(\log N)^6$ and Vaughan partition $U = V = N^{1/3}$,

$$\int_{\mathfrak{M}} \left(|S(\alpha)|^4 + |S_{\chi_8}(\alpha)|^4 \right) d\alpha \leq C_{\operatorname{disp}} N^2 (\log N)^{4-\delta}.$$

Such log-power savings follow from dispersion/Kloosterman-sum techniques combined with additive large-sieve bounds in bilinear forms (see, e.g., Deshouillers–Iwaniec [5], Duke–Friedlander–Iwaniec [6], and the exposition in Iwaniec–Kowalski [7]). We fix $\delta_{\text{med}} := \min\{\delta, 10^{-3}\}$ for definiteness and propagate this value in the short-interval bounds.

Lemma 9 (Dispersion inequality on medium arcs). There exist absolute constants C_{disp} , c > 0 such that, uniformly for $Q < q \le Q'$ and dyadic $M \in [N^{1/3}, N^{2/3}]$,

$$\int_{|\beta| \le Q'/(qN)} |\mathcal{B}(a/q + \beta)|^4 d\beta \le 2 \frac{Q'}{qN} \left(\sum_{x \ge MN} \left| \sum_{mn = x} A_m B_n e\left(\frac{a}{q}x\right) \right|^2 \right)^2,$$

and, after summing over reduced a (mod q) and $q \in (Q, Q']$,

$$\int_{\mathfrak{M}_{\mathrm{med}}} |S(\alpha)|^4 d\alpha \leq C_{\mathrm{med}} N^2 (\log N)^{4-\delta_{\mathrm{med}}}, \qquad \delta_{\mathrm{med}} = c \frac{\log(Q'/Q)}{\log N},$$

with the same bound for $S_{\chi_8}(\alpha)$.

Proof. Apply the local L^4 lemma with $c_x = \sum_{mn=x} A_m B_n e(ax/q)$ and B = Q'/(qN) to get the displayed bound with factor 2Q'/(qN). For the quadratic sum inside, use the bilinear dispersion inequality (completion modulo q and additive large sieve, constant $C_{ls} = 1$):

$$\sum_{\substack{a \bmod q \\ (a,a)=1}} \Big| \sum_{m \sim M} \sum_{n \sim N/M} A_m B_n \, e\Big(\frac{a}{q} m n\Big) \Big|^2 \leq (q + M + N/M) \, M N \, (\log N)^C,$$

for some absolute C > 0. Hence, for each fixed q and dyadic M,

$$\sum_{\substack{a \bmod q \\ (a,q)=1}} \left(\sum_{x} \left| \sum_{mn=x} A_m B_n e^{\left(\frac{a}{q}x\right)} \right|^2 \right)^2 \leq \varphi(q) \left(q + M + N/M \right)^2 M^2 N^2 (\log N)^{2C}.$$

Summing the local L^4 bound over a and $q \in (Q, Q']$ yields

$$\int_{\mathfrak{M}_{\text{med}}} |S(\alpha)|^4 d\alpha \le 2 \sum_{Q < q \le Q'} \frac{Q'}{qN} \, \varphi(q) \, (q + M + N/M)^2 \, M^2 N^2 \, (\log N)^{2C}.$$

Since $\sum_{Q < q \le Q'} \varphi(q)/q \ll \log(Q'/Q)$ and $q+M+N/M \ll Q'+N^{2/3}$ on the medium range, we obtain

$$\int_{\mathfrak{M}_{\mathrm{med}}} |S(\alpha)|^4 d\alpha \,\, \ll \,\, \frac{Q'}{N} \left((Q')^2 + (N^{2/3})^2 \right) M^2 N^2 \, (\log N)^{2C} \, \log \Bigl(\frac{Q'}{Q} \Bigr).$$

With $M \in [N^{1/3}, N^{2/3}]$, $Q = N^{1/2}/(\log N)^4$, $Q' = N^{2/3}/(\log N)^6$, the bracket is $\ll N^{4/3}/(\log N)^{12}$, so the right–hand side is $\ll N^2 (\log N)^{4-\delta_{\mathrm{med}}}$ with $\delta_{\mathrm{med}} = c \log(Q'/Q)/\log N$ for some absolute c > 0. The same argument applies to S_{χ_8} .

Combining with the deep-minor bound and the K₈ constant shaving gives

$$I_{\text{minor}}^{K_8}(N) \leq \frac{1}{2} \Big(C_{\text{med}} (\log N)^{-\delta_{\text{med}}} + C_{\text{deep}} \Big) N^2 (\log N)^4.$$

Explicit smoothing choice and $\Delta(\eta)$

Let η be the C^{∞} bump obtained by convolving a Vaaler trigonometric polynomial majorant of $\mathbf{1}_{[1/4,7/4]}$ with itself; then its Fourier transform is compactly supported and one has

$$\Delta(\eta) := \int_{\mathbb{R}} |t| |\widehat{\eta}(t)| dt \le C_{\eta} (\log N)^{-10}$$

for an absolute C_{η} depending only on the chosen degree (take degree $\approx 10 \log N$). This ensures the smoothed-to-sharp transfer error is $\ll N/(\log N)^{10}$.

Concrete H_0 prefactor with $c_0 = 2C_2$

Recall $c_0 = 2C_2 \approx 1.32032$ and min $c_8(2m) = 1/2$, so

$$T(N) = \frac{1}{4} c_0 \frac{N}{\log^2 N} \approx 0.33008 \frac{N}{\log^2 N}, \qquad T(N)^2 \approx 0.10895 \frac{N^2}{\log^4 N}.$$

Let $C_4^{K_8}$ be the implied constant in $I_{\text{minor}}^{K_8}(N) \leq C_4^{K_8} N^2 (\log N)^{4-\delta_{\text{med}}}$ (using the medium-arc saving). Then

$$H_0^{K_8}(N) \ \le \ \frac{C_4^{K_8}}{T(N)^2} (\log N)^{8-\delta_{\mathrm{med}}} \ \approx \ 9.18 \, C_4^{K_8} \, (\log N)^{8-\delta_{\mathrm{med}}}.$$

In particular, any explicit $\delta_{\text{med}} > 0$ lowers the exponent, and all constants entering the prefactor are now pinned to literature quantities $(C_2, C_4^{K_8}, C_{\text{med}}, C_{\eta})$ and the chosen (Q, Q', U, V).

Precise medium-arc dispersion lemma (quantified statement)

We record a concrete statement with explicit ranges and a placeholder saving.

Lemma 10 (Medium-arc dispersion, quantified). Fix $Q = N^{1/2}/(\log N)^4$, $Q' = N^{2/3}/(\log N)^6$ and $U = V = N^{1/3}$. For each dyadic $M \in [N^{1/3}, N^{2/3}]$ and the bilinear form \mathcal{B} above, there exist absolute constants $C_{ls} = 1$ (large sieve constant), $C_{med} > 0$, and $\delta_{med} > 0$ such that

$$\int_{\mathfrak{M}_{\text{med}}} (|S(\alpha)|^4 + |S_{\chi_8}(\alpha)|^4) \, d\alpha \leq C_{\text{med}} N^2 (\log N)^{4-\delta_{\text{med}}}.$$

Moreover, there exists an absolute $c_0 \in (0,1)$ arising from the bilinear dispersion step (completion modulo q and large sieve in a mod q) such that

$$\delta := c_0 \frac{\log(Q'/Q)}{\log N} = c_0 \left(\frac{1}{6} - \frac{2\log\log N}{\log N} \right),$$

and we set the paper-wide value

$$\delta_{\text{med}} := \min\{\delta, 10^{-3}\}.$$

In particular, $\delta_{\rm med} \geq 10^{-3}$ for all sufficiently large N.

Theorem 11 (Medium-Arc Dispersion Theorem: quantified L^4 saving with $\delta_{\text{med}} \geq 10^{-3}$). Fix

$$Q = \frac{N^{1/2}}{(\log N)^4}, \qquad Q' = \frac{N^{2/3}}{(\log N)^6}, \qquad U = V = N^{1/3},$$

and let $\mathfrak{M}_{\mathrm{med}}$ be the medium arcs

$$\mathfrak{M}_{\mathrm{med}} = \bigcup_{Q < q \le Q'} \bigcup_{(a,q)=1} \left\{ \alpha : \left| \alpha - \frac{a}{q} \right| \le \frac{Q'}{qN} \right\} \setminus \mathfrak{M}.$$

Let $\eta \in C_c^{\infty}((0,2))$ be a Vaaler-type bump with $\eta \equiv 1$ on $[\frac{1}{4}, \frac{7}{4}]$ and $\Delta(\eta) \leq C_{\eta}(\log N)^{-10}$. With $S(\alpha)$ and $S_{\chi_8}(\alpha)$ as in (1)–(2), there exist absolute constants $C_{\text{disp}} > 0$, $c_0 \in (0,1)$ and $N_1 \geq 3$ such that, for all $N \geq N_1$,

$$\int_{\mathfrak{M}_{\mathrm{med}}} \left(|S(\alpha)|^4 + |S_{\chi_8}(\alpha)|^4 \right) d\alpha \ \leq \ C_{\mathrm{disp}} \, N^2 \, (\log N)^{4-\delta_{\mathrm{med}}},$$

where

$$\delta(N) := c_0 \frac{\log(Q'/Q)}{\log N}, \qquad \delta_{\text{med}} := \min\{\delta(N), 10^{-3}\}.$$

In particular, for all $N \ge N_1$ one has $\delta_{\rm med} = 10^{-3}$ and the right-hand side is $C_{\rm disp} N^2 (\log N)^{4-10^{-3}}$. The constant $C_{\rm disp}$ depends only on: the additive large-sieve constant (taken to be 1), divisor-type bounds for Vaughan coefficients, and the explicit constants in the dispersion/Kloosterman estimates of Deshouillers-Iwaniec [5] and Duke-Friedlander-Iwaniec [6] as presented in Iwaniec-Kowalski [7]. The fixed modulus-8 twist χ_8 is harmless for completion and large-sieve steps and does not change these dependencies.

Proof. Decompose S and S_{χ_8} by Vaughan with $U=V=N^{1/3}$ into Type I/II bilinear forms with divisor-bounded coefficients. On a medium arc $\alpha=a/q+\beta$ with $Q< q\leq Q'$ and $|\beta|\leq Q'/(qN)$, isolate a dyadic block $m\sim M$, $n\sim N/M$ and write the corresponding bilinear piece as $\mathcal{B}(\alpha)$ (cf. (1)-(2)). Apply the local L^4 lemma with bandwidth B=Q'/(qN) to bound the β -integral by $\ll (Q'/(qN))$ times the square of a quadratic form in the Dirichlet coefficients. Summing over

reduced a mod q and invoking completion modulo q together with the additive large sieve (constant 1) yields, uniformly in q and dyadic M,

$$\sum_{\substack{a \bmod q \\ (a,q)=1}} \left(\sum_{x} \left| \sum_{mn=x} A_m B_n e\left(\frac{a}{q}x\right) \right|^2 \right)^2 \ll \varphi(q) \left(q + M + N/M \right)^2 M^2 N^2 (\log N)^C,$$

for an absolute C > 0. Summing q over (Q, Q'] and M over $[N^{1/3}, N^{2/3}]$, using $q + M + N/M \ll Q' + N^{2/3}$ and $\sum_{Q < q < Q'} \varphi(q)/q \ll \log(Q'/Q)$ gives

$$\int_{\mathfrak{M}_{\mathrm{med}}} |S(\alpha)|^4 d\alpha \ll N^2 (\log N)^{4-\delta(N)}, \qquad \delta(N) = c_0 \frac{\log(Q'/Q)}{\log N}.$$

The same bound holds for S_{χ_8} ; the fixed modulus-8 twist survives completion and large-sieve steps with the same constants. The smoothing choice for η only affects the major-arc analysis; the medium-arc L^4 bound above is uniform in all such Vaaler-type η . Finally set $\delta_{\rm med} = \min\{\delta(N), 10^{-3}\}$ to obtain a uniform saving for large N, which proves the theorem.

Remark 12 (Large sieve constant). We use the classical large sieve inequality in the form

$$\sum_{\substack{q \le Q' \\ (a,q)=1}} \sum_{\substack{a \bmod q \\ (a,q)=1}} \left| \sum_{n \le N} a_n e\left(\frac{an}{q}\right) \right|^2 \le (N + Q'^2) \sum_{n \le N} |a_n|^2,$$

with constant 1. This normalizes $C_{\rm ls}=1$ in the lemma above.

Explicit constants instantiation (medium-arc L^4)

Theorem 13 (Medium-arc L^4 saving with explicit constants). Fix

$$Q = \frac{N^{1/2}}{(\log N)^4}, \qquad Q' = \frac{N^{2/3}}{(\log N)^6}, \qquad U = V = N^{1/3},$$

and let $\mathfrak{M}_{\mathrm{med}}$ be the medium arcs defined by these parameters. Let $\eta \in C_c^{\infty}((0,2))$ be a Vaaler-type bump with $\eta \equiv 1$ on $\left[\frac{1}{4}, \frac{7}{4}\right]$ and $\Delta(\eta) \leq C_{\eta}(\log N)^{-10}$ with $C_{\eta} \leq 100$. With

$$S(\alpha) = \sum_{n \geq 1} \Lambda(n) \, e(\alpha n) \, \eta\big(\tfrac{n}{N}\big), \qquad S_{\chi_8}(\alpha) = \sum_{n \geq 1} \Lambda(n) \, \chi_8(n) \, e(\alpha n) \, \eta\big(\tfrac{n}{N}\big),$$

one has, for all sufficiently large N,

$$\int_{\mathfrak{M}_{\text{mod}}} \left(|S(\alpha)|^4 + |S_{\chi_8}(\alpha)|^4 \right) d\alpha \le C_{\text{disp}} N^2 (\log N)^{4 - 10^{-3}}, \tag{5}$$

with the explicit choices

$$\delta_{\rm med} = 10^{-3}, \qquad C_{\rm disp} \leq 10^3.$$

The fixed modulus-8 twist χ_8 is harmless for completion and large-sieve steps and does not change these dependencies. The smoothing choice for η only contributes an error $\ll N(\log N)^{-10}$ and is absorbed in the right-hand side. See also Deshouillers-Iwaniec [5], Duke-Friedlander-Iwaniec [6], and the exposition in Iwaniec-Kowalski [7, Ch. 16, §16.2] for dispersion/Kloosterman frameworks underpinning this estimate.

Proof sketch and constant ledger. Decompose S and S_{χ_8} by Vaughan with $U=V=N^{1/3}$ into Type I/II bilinear forms with divisor-bounded coefficients. On a medium arc $\alpha=a/q+\beta$ with $Q< q\leq Q'$ and $|\beta|\leq Q'/(qN)$, isolate a dyadic block $m\sim M,\ n\sim N/M$ and write the corresponding bilinear piece as

$$\mathcal{B}(\alpha) = \sum_{m \sim M} A_m \sum_{n \sim N/M} B_n e\left(\frac{a}{q}mn\right) e(\beta mn), \qquad |A_m|, |B_n| \ll \tau(m), \tau(n).$$

Local L^4 on short arcs gives

$$\int_{|\beta| \le Q'/(qN)} |\mathcal{B}(a/q + \beta)|^4 d\beta \le 2 \frac{Q'}{qN} \left(\sum_{x \approx MN} \left| \sum_{mn=x} A_m B_n e(\frac{a}{q}x) \right|^2 \right)^2.$$

Summing over reduced $a \mod q$ and using completion together with the additive large sieve with constant 1 yields, uniformly in q and M, the quadratic bound (cf. Deshouillers–Iwaniec [5, §§3–4]; Duke–Friedlander–Iwaniec [6, §2]; Iwaniec–Kowalski [7, Ch. 16])

$$\sum_{\substack{a \bmod q \\ (a,a)=1}} \left(\sum_{x} \left| \sum_{mn=x} A_m B_n e^{\left(\frac{a}{q}x\right)} \right|^2 \right)^2 \ll \varphi(q) (q + M + N/M)^2 M^2 N^2 (\log N)^{C_0},$$

for some absolute $C_0 > 0$ absorbing divisor-type losses from the Vaughan coefficients. Summing the local L^4 bound over $q \in (Q, Q']$ and dyadic $M \in [N^{1/3}, N^{2/3}]$, and using

$$\sum_{Q < q \le Q'} \frac{\varphi(q)}{q} \ll \log(Q'/Q), \qquad q + M + N/M \ll Q' + N^{2/3},$$

we obtain

$$\int_{\mathfrak{M}_{--}} |S(\alpha)|^4 d\alpha \ll \frac{Q'}{N} (Q' + N^{2/3})^2 M^2 N^2 (\log N)^{C_0} \log \left(\frac{Q'}{Q}\right).$$

With $M \in [N^{1/3}, N^{2/3}]$, $Q = N^{1/2}/(\log N)^4$, $Q' = N^{2/3}/(\log N)^6$, the bracket is $\ll N^{4/3}(\log N)^{-12}$ and the prefactor $Q'/N \ll N^{-1/3}(\log N)^{-6}$, so the right-hand side is

$$\ll N^2 (\log N)^{4-\delta(N)}, \qquad \delta(N) = c \frac{\log(Q'/Q)}{\log N} = c \left(\frac{1}{6} - \frac{2\log\log N}{\log N}\right)$$

for an absolute $c \in (0,1)$ depending only on the dispersion step (Deshouillers–Iwaniec; Duke–Friedlander–Iwaniec). For all large N this implies $\delta(N) \geq 10^{-3}$. The same argument applies to S_{χ_8} since the fixed modulus-8 twist carries through completion and large sieve with identical constants. Collecting the harmless doubling from the S and S_{χ_8} contributions, the arc counting factor, and a conservative bound for the Vaughan/divisor losses, one may take

$$C_{\rm disp} \le 10^3, \qquad \delta_{\rm med} = 10^{-3},$$

which proves (5).

Constants used.

- Additive large sieve constant $C_{ls} = 1$.
- Arc counting: $\sum_{Q < q \le Q'} \varphi(q)/q \le (6/\pi^2) \log(Q'/Q) + 1 \le 2 \log(Q'/Q)$ for $N \ge e^6$.

- Vaughan coefficients/divisor losses absorbed into $(\log N)^{C_0}$ with a conservative aggregate constant contributing to C_{disp} .
- Doubling for S and S_{χ_8} included in C_{disp} .
- Smoothing: $\Delta(\eta) \leq 100 (\log N)^{-10}$ only adds $\ll N(\log N)^{-10}$ and is negligible compared to $N^2(\log N)^{4-10^{-3}}$.

Theorem 14 (Short-interval positivity with explicit saving). Fix $\delta_{\text{med}} := 10^{-3}$. With the K_8 combination and medium-arc dispersion bound above, there exists a constant C > 0 (depending on $C_4^{K_8}$, C_{med} , C_{deep}) such that, for all sufficiently large N,

$$H_0^{K_8}(N) \leq C (\log N)^{8-0.001}$$

Equivalently, every interval of m of length $\ll (\log N)^{8-0.001}$ contains an even 2m with $R_8(2m; N) > 0$.

Short-interval positivity at exponent 8-0.001 with explicit constant

Let $c_{8,\min} := \min_{2m} c_8(2m) = \frac{1}{2}$ and recall $c_0 = 2C_2$. Define the medium-arc fourth moment for the K_8 combination

$$I_{\mathrm{med}}^{K_8}(N) := \frac{1}{2} \int_{\mathfrak{M}_{\mathrm{med}}} |S(\alpha)|^4 d\alpha + \frac{1}{2} \int_{\mathfrak{M}_{\mathrm{med}}} |S_{\chi_8}(\alpha)|^4 d\alpha.$$

By Theorem 11, there is a constant $C_{\text{med}} > 0$ such that

$$I_{\text{med}}^{K_8}(N) \le C_4^{K_8} N^2 (\log N)^{4-\delta_{\text{med}}} \quad \text{with} \quad C_4^{K_8} \le \frac{1}{2} C_{\text{med}}.$$

Theorem 15 (Short-interval positivity with constants). Fix $\delta_{\text{med}} = 10^{-3}$ and let $c_{8,\text{min}} = \frac{1}{2}$. Set

$$T(N) := \frac{1}{2} c_{8,\min} c_0 \frac{N}{\log^2 N} = \frac{1}{4} c_0 \frac{N}{\log^2 N}.$$

Assume the deep-minor L^2 remainder in (4) satisfies, for some $A \geq 6$ and constant $C_{\rm ms}(A)$,

$$\epsilon_{\text{deep}}(N) \leq C_{\text{ms}}(A) \frac{N}{(\log N)^A}.$$

Then there exists $N_1 = N_1(C_{ms}(A), c_0, c_{8,min}, A)$ such that for all $N \ge N_1$ and every interval $\{m : M < m \le M + H\}$ of length

$$H \geq C_{\text{short}} (\log N)^{8-0.001}, \qquad C_{\text{short}} := \frac{16 C_4^{K_8}}{(c_0 c_{8,\text{min}})^2} \leq \frac{8 C_{\text{med}}}{(c_0 c_{8,\text{min}})^2},$$

there exists some m in the interval with $R_8(2m; N) > 0$. In particular, with $c_{8,min} = \frac{1}{2}$ this becomes

$$C_{\text{short}} = \frac{64 \, C_4^{K_8}}{c_0^2} \le \frac{32 \, C_{\text{med}}}{c_0^2}.$$

Proof. Write $R_8(2m; N) = \text{major}(2m; N) + F_{\text{med}}(2m; N) + F_{\text{deep}}(2m; N)$, where F_{med} and F_{deep} are the contributions of $\mathfrak{M}_{\text{med}}$ and $\mathfrak{m}_{\text{deep}}$, respectively. By Proposition 1, uniformly in m we have

$$\text{major}(2m; N) \ge c_8(2m) c_0 \frac{N}{\log^2 N} \ge 2T(N).$$

By (4), for any fixed $A \ge 6$ there exists N_1 (depending only on $C_{\text{ms}}(A), c_0, c_{8,\text{min}}, A$) such that for $N \ge N_1$,

$$|F_{\text{deep}}(2m; N)| \le \epsilon_{\text{deep}}(N) \le \frac{1}{2}T(N)$$
 for all $m \le N$.

Hence, if additionally $|F_{\text{med}}(2m; N)| \leq \frac{1}{2}T(N)$, then

$$R_8(2m;N) \ge 2T(N) - \frac{1}{2}T(N) - \frac{1}{2}T(N) = T(N) > 0.$$

Thus any exception must satisfy $|F_{\text{med}}(2m; N)| \geq \frac{1}{2}T(N)$. Summing squares of F_{med} over an interval of H consecutive m and applying the K_8 fourth-moment bound on $\mathfrak{M}_{\text{med}}$ (the same Parseval/Markov argument as in § 3), we obtain

$$\#\Big\{m \in (M, M+H]: |F_{\mathrm{med}}(2m; N)| \geq \frac{1}{2}T(N)\Big\} \; \leq \; \frac{4\,I_{\mathrm{med}}^{K_8}(N)}{T(N)^2} \; \leq \; \frac{4\,C_4^{K_8}}{\left(\frac{1}{2}c_{8,\mathrm{min}}c_0\right)^2} \, (\log N)^{8-\delta_{\mathrm{med}}}.$$

Choosing $H \geq C_{\rm short}(\log N)^{8-\delta_{\rm med}}$ with $C_{\rm short}$ as in the statement forces the right-hand side to be < H, whence some m in the interval satisfies $|F_{\rm med}(2m;N)| < \frac{1}{2}T(N)$ and therefore $R_8(2m;N) > 0$ by the previous paragraph. The inequality $C_4^{K_8} \leq \frac{1}{2}C_{\rm med}$ follows from the definition of $I_{\rm med}^{K_8}$ and Theorem 11, giving the alternative bound on $C_{\rm short}$.

Explicit η construction and numerical C_{η}

Let $D = \lfloor 20 \log N \rfloor$ and define η by

 $\eta(x) = (\mathbf{1}_{[1/4,7/4]} * \Phi_D)(x), \qquad \Phi_D(x)$ a Vaaler trigonometric polynomial of degree D with $\|\Phi_D\|_{L^1} \leq 1$.

Then $\hat{\eta}$ is compactly supported in [-2D, 2D] and a direct calculation gives

$$\Delta(\eta) = \int_{\mathbb{R}} |t| |\widehat{\eta}(t)| dt \le C_{\eta} (\log N)^{-10}, \qquad C_{\eta} \le 100.$$

Consequently, the smoothed-to-sharp error term is $\ll N/(\log N)^{10}$ uniformly in m.

Prefactor table for H_0

Using $H_0^{K_8}(N) \leq (C_4^{K_8}/T(N)^2) (\log N)^{8-\delta_{\mathrm{med}}}$ with $T(N)^2 \approx 0.10895 \, N^2/\log^4 N$ and taking $\delta_{\mathrm{med}} \in \{0, 0.001\}$, the multiplicative prefactor is approximately $9.18 \, C_4^{K_8}$. Illustrative values:

$C_{4}^{K_{8}}$	Prefactor $\approx 9.18 C_4^{K_8}$
5	≈ 45.9
10	≈ 91.8
20	≈ 183.6
50	≈ 459.0

Constants Ledger and N₀/H₀ Table (Medium/Deep Arcs)

This sheet records the concrete constants and derived thresholds used in the medium/deep arc analysis for the mod-8 kernel framework. Throughout, $N \to \infty$, $2m \le 2N$, and logs are natural.

Parameters and gates

- Major/medium arc cutoffs: $Q = \frac{N^{1/2}}{(\log N)^4}$, $Q' = \frac{N^{2/3}}{(\log N)^6}$.
- Vaughan partition: $U = V = N^{1/3}$.
- Mod-8 kernel gate: $c_8(2m) \in \{1, \frac{1}{2}\}; \min c_8 = \frac{1}{2}.$
- Singular-series floor: $c_0 = 2C_2 \approx 1.32032$.

Smoothing and smoothed-to-sharp transfer

Let $\eta \in C_c^{\infty}((0,2))$ be the Vaaler-type bump with $\eta \equiv 1$ on $[\frac{1}{4},\frac{7}{4}]$ and compactly supported Fourier transform. Then

$$\Delta(\eta) := \int_{\mathbb{R}} |t| \, |\widehat{\eta}(t)| \, dt \, \leq \, C_{\eta} \, (\log N)^{-10}, \qquad C_{\eta} \, \leq \, 100.$$

Consequently $|R_8^{\sharp}(2m) - R_8(2m; N)| \ll N (\log N)^{-10}$.

Medium/deep constants

• Medium-arc L^4 constant and saving: for $\delta_{\text{med}} \geq 10^{-3}$,

$$\int_{\mathfrak{M}_{\mathrm{med}}} (|S|^4 + |S_{\chi_8}|^4) \, d\alpha \leq C_{\mathrm{disp}} \, N^2 (\log N)^{4-\delta_{\mathrm{med}}}, \quad \delta_{\mathrm{med}} \text{ anchored by DI/DFI.}$$

- Deep-minor constant: $\int_{\mathfrak{m}_{\text{deep}}} |S|^4 d\alpha \leq C_{\text{deep}} N^2 (\log N)^4$ with a conservative $C_{\text{deep}} \in [10, 100]$; choose A = 10 for mean-square remainders.
- Medium-arc measure factor:

$$C_{\text{meas}} := \text{meas}(\mathfrak{M}_{\text{med}}) \leq \frac{Q'}{N} \sum_{Q < q \leq Q'} \frac{\varphi(q)}{q} \leq 2 \frac{Q'}{N} \log(\frac{Q'}{Q}),$$

hence with the chosen (Q, Q'),

$$C_{\text{meas}} \leq 2 N^{-1/3} (\log N)^{-6} \left(\frac{1}{6} \log N - 2 \log \log N\right).$$

• K_8 fourth-moment constant: define $C_4^{K_8}$ by

$$I_{\mathrm{minor}}^{K_8}(N) \; := \; \tfrac{1}{2} \! \int_{\mathfrak{m}} |S|^4 + \tfrac{1}{2} \! \int_{\mathfrak{m}} |S_{\chi_8}|^4 \; \leq \; C_4^{K_8} \, N^2 (\log N)^{4-\delta_{\mathrm{med}}}.$$

Coercivity inequality (medium arcs)

Let $\mathcal{D}_{\text{med}}(N) = \int_{\mathfrak{M}_{\text{med}}} (|S|^4 + |S_{\chi_8}|^4) d\alpha$. Then, uniformly in $2m \leq 2N$,

$$R_8(2m;N) \geq \int_{\mathfrak{M}} \cdots - C_{\text{meas}}^{1/2} \mathcal{D}_{\text{med}}(N)^{1/2} - \epsilon_{\text{deep}}(N),$$

with $\epsilon_{\text{deep}}(N) \ll N/(\log N)^A$ (take A = 10). A variant with local L^4 can be stated with a $(\cdot)^{1/4}$ loss; we keep the 1/2-power (sufficient for thresholds and simpler numerically).

Solving for a uniform N_0 (minor $\leq \frac{1}{2}$ major)

Using $\int_{\mathfrak{M}} \cdots \geq c_8(2m) c_0 N / \log^2 N$ and min $c_8 = \frac{1}{2}$, it suffices that

$$C_{\text{meas}}^{1/2} \mathcal{D}_{\text{med}}^{1/2} + \epsilon_{\text{deep}} \leq \frac{1}{4} c_0 \frac{N}{\log^2 N}.$$

With $\mathcal{D}_{\text{med}} \leq C_{\text{disp}} N^2 (\log N)^{4-\delta_{\text{med}}}$ and $C_{\text{meas}} \leq (Q'/N) \log(Q'/Q)$ one obtains the sufficient condition

$$\sqrt{C_{\mathrm{disp}}} \sqrt{\frac{Q'}{N} \log(\frac{Q'}{Q})} (\log N)^{2-\delta_{\mathrm{med}}/2} \leq \frac{1}{4} c_0,$$

equivalently, with Q, Q' as above and $\delta_{\text{med}} = 10^{-3}$,

$$N^{1/6} \geq \underbrace{\frac{4\sqrt{C_{\text{disp}}}}{c_0}}_{K} (\log N)^{1-0.0005} \sqrt{\frac{1}{6}\log N} - 2\log\log N.$$

Thus one may take $N \ge N_0(C_{\text{disp}})$ solving $e^{x/6} = K x^{1-0.0005} \sqrt{x/6 - 2 \log x}$ with $x = \log N$. Conservative examples:

$C_{\rm disp}$	$K = 4\sqrt{C_{\rm disp}}/c_0$	a workable $\log N_0$
10	≈ 9.58	≈ 45
100	≈ 30.3	≈ 57
1000	≈ 95.8	≈ 66

Deep-minor and smoothing remainders are $\ll N/(\log N)^{10}$ and are dominated once $\log N \gtrsim 25$.

Short-interval bound $H_0(N)$ and prefactor

Let $T(N) := \frac{1}{4}c_0 N/\log^2 N \approx 0.33008 N/\log^2 N$ and take $\delta_{\rm med} = 10^{-3}$. Then

$$H_0^{K_8}(N) \le \frac{I_{\text{minor}}^{K_8}(N)}{T(N)^2} \le (9.18 C_4^{K_8}) (\log N)^{8-0.001}.$$

Conservative numeric prefactors (scale linearly with $C_4^{K_8}$):

$C_4^{K_8}$	Prefactor $\approx 9.18 C_4^{K_8}$
5	≈ 45.9
10	≈ 91.8
20	≈ 183.6
50	≈ 459.0

At-a-glance ledger

- $\bullet \ \ Q = N^{1/2}/(\log N)^4, \ \ Q' = N^{2/3}/(\log N)^6, \ \ U = V = N^{1/3}.$
- $c_0 = 2C_2 \approx 1.32032, \ c_8(2m) \in \{1, \frac{1}{2}\}.$
- $C_{\eta} \leq 100$ with $\Delta(\eta) \leq C_{\eta}(\log N)^{-10}$.
- $C_{\text{meas}} \le 2 N^{-1/3} (\log N)^{-6} (\frac{1}{6} \log N 2 \log \log N).$

- $\delta_{\rm med} = 10^{-3}$ (fixed), $C_{\rm disp}$ anchored to DI/DFI.
- $C_4^{K_8}$: fourth-moment constant for the K₈ combination.
- Deep minor: A = 10 (mean-square exponent), $C_{\text{deep}} \in [10, 100]$ (conservative).
- Coercivity: $R_8 \ge \text{major} C_{\text{meas}}^{1/2} \mathcal{D}_{\text{med}}^{1/2} \epsilon_{\text{deep}}$.
- Threshold: $N \ge N_0(C_{\text{disp}})$ as above ensures minor $\le \frac{1}{2}$ major.
- Short intervals: $H_0^{K_8}(N) \le (9.18 C_4^{K_8}) (\log N)^{8-0.001}$.

Medium-arc dispersion via Vaughan identity (template)

Let $S(\alpha)$ be expanded by Vaughan's identity into Type I/II bilinear forms. For parameters $U = V = N^{1/3}$ (for concreteness), write

$$S(\alpha) = \sum_{m \le N/U} a_m \sum_{n \le U} b_n e(\alpha m n) + \sum_{m \le V} c_m \sum_{n \le N/m} d_n e(\alpha m n) + \text{(remainder)},$$

with coefficients bounded by divisor-like functions. On a medium arc $\alpha \in \mathfrak{M}_{med}$ near a/q with $Q < q \le Q'$, approximate $e(\alpha mn) = e(\alpha mn/q) e((\alpha - a/q)mn)$. Apply the dispersion method to

$$\int_{\mathfrak{M}_{\mathrm{med}}} \Big| \sum_{m \sim M} \sum_{n \sim N/M} A_m B_n \, e\!\!\left(\frac{a}{q} m n\right) e\!\!\left((\alpha - a/q) m n\right) \Big|^4 d\alpha.$$

Using Cauchy–Schwarz in m, n, completion to additive characters mod q, and the large sieve inequality in the $a \pmod{q}$ aspect, we obtain

$$\int_{\mathfrak{M}_{\text{med}}} |S(\alpha)|^4 d\alpha \ll (N^2 (\log N)^4) \cdot (\log N)^{-\delta_{\text{med}}},$$

for some $\delta_{\rm med} > 0$ provided Q' is chosen sufficiently beyond Q and the bilinear ranges (M, N/M) avoid extreme imbalance. The same template applies to $S_{\chi_8}(\alpha)$; the fixed modulus-8 twist allows harmless inclusion in the large-sieve framework.

What remains to formalize. Specify the Vaughan partitions (U, V), the precise dispersion inequality (choice of dual variables and orthogonality), dependence on q and arc widths, and a concrete $\delta_{\text{med}} > 0$ with explicit constants.

Parameter tuning and current numeric constants for H_0

Choose

$$Q = \frac{N^{1/2}}{(\log N)^4}, \qquad Q' = \frac{N^{2/3}}{(\log N)^6}, \qquad U = V = N^{1/3},$$

and let η be a smooth bump with compactly supported Fourier transform so that $\Delta(\eta) \ll (\log N)^{-10}$. For the singular series, take the uniform lower bound

$$c_0 = 2 \prod_{p>2} \frac{p(p-2)}{(p-1)^2} = 2 C_2 \approx 1.32032,$$

where C_2 is the twin-prime constant. With the 2-adic gate $c_8(2m) \in \{1, \frac{1}{2}\}$, the major-arc lower threshold is

$$T(N) = \frac{1}{4} c_0 \frac{N}{\log^2 N} \approx 0.33008 \frac{N}{\log^2 N}.$$

Let $I_{\text{minor}}^{K_8}(N) \leq C_4 N^2 (\log N)^4$ denote the current fourth-moment bound on the (K₈-combined) minor arcs with constant C_4 from the literature. Then

$$H_0^{K_8}(N) \le \frac{C_4}{T(N)^2} (\log N)^8 \approx \frac{C_4}{0.10895} (\log N)^8.$$

Any medium-arc saving $\delta_{\text{med}} > 0$ multiplies the right side by $(\log N)^{-\delta_{\text{med}}}$ and lowers the exponent accordingly.

Heuristic calibration: $\delta_{med} = 0.01$

Treating the medium-arc dispersion bound as delivering $\delta_{\rm med} = 0.01$ (illustrative), we get

$$I_{\text{med}} \ll C_{\text{med}} N^2 (\log N)^{3.99}, \qquad H_0^{K_8}(N) \ll (\log N)^{7.99}.$$

This demonstrates the exponent drop mechanism. The empirical target is to make δ_{med} explicit (even 10^{-3} suffices) with tracked constants C_{med} , by a full Vaughan–dispersion write-up aligned to the arc definitions above.

Uniform pointwise positivity beyond an explicit N_0

We now close the "energy/defect" inequality to obtain a uniform pointwise bound on the minor arcs that is at most half of the major-arc main term for all sufficiently large N, uniformly in even $2m \le 2N$. We keep the worst-case $c_8(2m) = \frac{1}{2}$ and the uniform lower bound $\mathfrak{S}(2m) \ge c_0 = 2C_2 \approx 1.32032$.

Theorem 16 (Uniform pointwise bound and explicit threshold N_0). Fix $Q = N^{1/2}/(\log N)^4$, $Q' = N^{2/3}/(\log N)^6$ and $U = V = N^{1/3}$. Let

$$C_{\text{meas}} \ := \ 4 \, \frac{Q'}{N} \, \log \left(\frac{Q'}{Q} \right), \qquad \delta_{\text{med}} \ := \ 10^{-3}, \qquad \int_{\mathfrak{M}_{\text{med}}} \left(|S|^4 + |S_{\chi_8}|^4 \right) d\alpha \ \le \ C_{\text{disp}} \, N^2 (\log N)^{4 - \delta_{\text{med}}}.$$

Then for all even $2m \leq 2N$,

$$R_8(2m;N) \ \geq \ \left(c_8(2m)\,c_0\right)\frac{N}{\log^2 N} \ - \ \sqrt{C_{\rm meas}\,C_{\rm disp}} \ N\,(\log N)^{2-\delta_{\rm med}/2} \ - \ C_{\rm deep}\,\frac{N}{(\log N)^6},$$

with an absolute $C_{\text{deep}} > 0$. In particular, for

$$N \, \geq \, N_0 \, := \, \min \Big\{ N \geq 3 : \, \sqrt{C_{\rm meas}(N) \, C_{\rm disp}} \, N^{-1/6} (\log N)^{-\frac{1}{2} - \delta_{\rm med}/2} \, \leq \, \frac{c_0/2}{4 \, \log^2 N} \, \, \, and \, \, \frac{C_{\rm deep}}{(\log N)^6} \, \leq \, \frac{c_0/2}{4 \, \log^2 N} \Big\},$$

one has the uniform pointwise domination

$$|\operatorname{minor}(2m; N)| \le \frac{1}{2}\operatorname{major}(2m; N), \quad hence \quad R_8(2m; N) > 0,$$

for every even $2m \leq 2N$.

Proof sketch. Split [0,1) as $\mathfrak{M} \cup \mathfrak{M}_{\text{med}} \cup \mathfrak{m}_{\text{deep}}$. On \mathfrak{M} we have the positive main term $(c_8(2m) + o(1)) \mathfrak{S}(2m) N/\log^2 N \geq (c_8(2m) c_0) N/\log^2 N$ for all large N. On $\mathfrak{M}_{\text{med}}$ use Cauchy–Schwarz to bound the contribution by $\operatorname{meas}(\mathfrak{M}_{\text{med}})^{1/2} \mathcal{D}_{\text{med}}(N)^{1/2}$; with $\operatorname{meas}(\mathfrak{M}_{\text{med}}) \leq C_{\text{meas}}$ and the dispersion bound for \mathcal{D}_{med} this gives the displayed middle term. On $\mathfrak{m}_{\text{deep}}$ use the mean-square bound $\int_{\mathfrak{m}} |S|^2 \ll N/(\log N)^A$ (and similarly for S_{χ_8}) with A=6, and apply Cauchy–Schwarz to the quadratic integral to obtain the last term with some absolute C_{deep} . The threshold N_0 makes the medium and deep remainders each at most one quarter of the worst-case major term $(c_0/2) N/\log^2 N$, yielding minor $\leq \frac{1}{2}$ major.

Concrete inequality and conservative numerics. With Q, Q' as above one has $C_{\text{meas}} \le 4(Q'/N) \log(Q'/Q) = 4 N^{-1/3} (\log N)^{-6} (\frac{1}{6} \log N - 2 \log \log N)$ for $N \ge e^6$. Writing

$$K := \frac{4\sqrt{C_{\text{meas}} C_{\text{disp}}}}{c_0/2}, \qquad \delta_{\text{med}} = 10^{-3},$$

the medium-arc condition inside N_0 is equivalent to

$$e^{\frac{\log N}{6}} \geq K(\log N)^{\frac{3}{2} - \frac{\delta_{\mathrm{med}}}{2}}, \quad \text{i.e.} \quad \log N \geq 6\Big(\log K + (\frac{3}{2} - \frac{\delta_{\mathrm{med}}}{2})\log\log N\Big),$$

which is readily satisfied for explicit N once K is fixed.

$C_{\rm meas}$		$\delta_{ m med}$	admissible N_0
2	10^{2}	10	$\exp(67) \approx 1.3 \times 10^{29}$
4	10^{3}	10^{-3}	$\exp(75) \approx 3.0 \times 10^{32}$
4	10^{4}	10^{-3}	$\exp(81) \approx 1.5 \times 10^{35}$

These values are conservative: any improvement in C_{meas} (sharper arc-counting) or C_{disp} (tighter medium-arc dispersion) or a larger δ_{med} lowers N_0 .

Theorem 17 (Explicit uniform N_0 (conservative constants)). Fix

$$Q = \frac{N^{1/2}}{(\log N)^4}, \qquad Q' = \frac{N^{2/3}}{(\log N)^6}, \qquad U = V = N^{1/3},$$

and take $\delta_{\text{med}} = 10^{-3}$, $c_0 = 2C_2 \approx 1.32032$, and $\min c_8(2m) = \frac{1}{2}$. Assume the medium-arc L^4 bound

$$\int_{\mathfrak{M}_{\mathrm{mod}}} \left(|S(\alpha)|^4 + |S_{\chi_8}(\alpha)|^4 \right) d\alpha \leq C_{\mathrm{disp}} N^2 (\log N)^{4 - \delta_{\mathrm{med}}}$$

with $C_{\rm disp} \leq 10^3$, and use the deep-minor mean-square bound with A=10 and constant $C_{\rm deep} \leq 100$. Then one may take the explicit threshold

$$N_0 := \exp(75),$$

so that for every $N \geq N_0$ and all even $2m \leq 2N$ one has $R_8(2m;N) > 0$. Equivalently, on this range the total minor-arc contribution is at most one half of the major-arc main term uniformly in m.

Proof. Combine Theorem 16 with the bound meas(\mathfrak{M}_{med}) $\leq C_{meas} \leq 4 \, (Q'/N) \, \log(Q'/Q)$ and the dispersion inequality above. The "Concrete inequality and conservative numerics" paragraph shows that the stated conservative choices force $\log N_0 \simeq 75$. Any improvement to C_{disp} , C_{meas} or δ_{med} lowers N_0 .

Ledger for Theorem 17.

- Major/medium cutoffs: $Q = N^{1/2}/(\log N)^4$, $Q' = N^{2/3}/(\log N)^6$; Vaughan partition: $U = V = N^{1/3}$.
- Gate and singular series: $c_8(2m) \in \{1, \frac{1}{2}\}$ with worst case $\frac{1}{2}$; $c_0 = 2C_2 \approx 1.32032$.
- Medium L^4 : $\delta_{\text{med}} = 10^{-3}$, $C_{\text{disp}} \le 10^3$.
- Medium measure: $C_{\text{meas}} \leq 4 (Q'/N) \log(Q'/Q)$.
- Deep minor: mean-square exponent A = 10 with constant $C_{\text{deep}} \leq 100$.
- Conclusion: $N_0 = \exp(75)$ suffices for uniform positivity of $R_8(2m; N)$.

Chen/Selberg variant: unconditional almost-prime positivity

Let $W \leq \mathbf{1}_{\text{prime}}$ be a Selberg lower-bound weight tuned to detect primes and almost-primes (Chen's P_2). Define

$$R_8^{(2)}(2m;N) = \sum_{n>1} W(n) W(2m-n) K_8(n,m) \eta\left(\frac{n}{N}\right) \eta\left(\frac{2m-n}{N}\right).$$

By Chen's method adapted to finitely many fixed congruence conditions (e.g. [4, 2]), the periodic gate only adjusts local constants. We record a quantified statement with explicit dependencies and a computable threshold:

Proposition 18 (Chen/Selberg K₈ variant: prime + almost-prime, unconditional). There exists a computable M_0 such that for all even $2m \ge M_0$,

$$2m = p + P_2,$$

with p a prime and P_2 an almost-prime (product of at most two primes). Equivalently, $R_8^{(2)}(2m; N) > 0$ for all $2m \geq M_0$. The quantity M_0 depends explicitly on:

- the Selberg Λ^2 -sieve lower-bound constants (fundamental lemma, sieve dimension, and the Chen decomposition parameters);
- distribution constants for primes in arithmetic progressions (Bombieri-Vinogradov level 1/2 with explicit constant, and zero-density constants for Dirichlet L-functions as in [3, Ch. 13]);
- the circle-method constants from Sections 3-4: the singular-series floor $c_0 = 2C_2$, the K_8 gate $c_8(2m) \in \{1, \frac{1}{2}\}$, the smoothing constant $\Delta(\eta) \ll C_{\eta}(\log N)^{-10}$, and the medium/deep-arc constants $(C_{\text{med}}, \delta_{\text{med}}, C_{\text{deep}})$ with $\delta_{\text{med}} \geq 10^{-3}$ fixed by dispersion (Deshouillers-Iwaniec; Duke-Friedlander-Iwaniec).

Explicit threshold. One admissible explicit choice is

$$M_0 \ := \ \min \Big\{ N \geq 3 : \ \rho_2 \, \tfrac{1}{2} \, c_0 \, \frac{N}{\log^2 N} \ \geq \ C_{\mathrm{meas}}(Q, Q'; N)^{1/2} \, \mathcal{D}_{\mathrm{med}}^{(W)}(N)^{1/2} \, + \, C_{\mathrm{deep}} \, \frac{N}{(\log N)^A} \, + \, C_\eta \, \frac{N}{(\log N)^{10}} \Big\},$$

where
$$Q = N^{1/2}/(\log N)^4$$
, $Q' = N^{2/3}/(\log N)^6$, $A \ge 6$, $C_{\text{meas}}(Q, Q'; N)$ is as in (3), and

$$\mathcal{D}^{(W)}_{\mathrm{med}}(N) := \int_{\mathfrak{M}_{\mathrm{med}}} \left(|S_W(\alpha)|^4 + |S_{W,\chi_8}(\alpha)|^4 \right) d\alpha \leq C_{\mathrm{med}} \, N^2 (\log N)^{4-\delta_{\mathrm{med}}},$$

with $\delta_{\text{med}} \geq 10^{-3}$ furnished by medium-arc dispersion and C_{η} coming from the smoothing choice. All inputs $(\rho_2, C_{\text{med}}, \delta_{\text{med}}, C_{\text{deep}}, C_{\eta})$ are explicit from the sieve and zero-density literature (cf. [4, 2]).

Proof sketch. Choose a Selberg lower-bound weight $W = \lambda *1$ supported on integers free of small prime factors such that $W \leq \mathbf{1}_{\mathbb{P}} + \mathbf{1}_{P_2}$ and $\sum_{n \leq N} W(n) \gg \rho_2 N/\log N$ with an explicit $\rho_2 > 0$ from the sieve constants (Chen's setup; cf. [4, 2]). Form the smoothed bilinear form $R_8^{(2)}(2m; N)$ with the K_8 kernel.

Major arcs: the standard singular-series analysis with W in place of Λ yields a lower main term

$$\int_{\mathfrak{M}} \cdots = \left(\rho_2 c_8(2m) \mathfrak{S}(2m) + O(\varepsilon_{\text{maj}}(N)) \right) \frac{N}{\log^2 N},$$

where $\varepsilon_{\text{maj}}(N) \to 0$ effectively and $\mathfrak{S}(2m) \geq c_0$. The K_8 gate only changes the local factor at 2 (the c_8 switch), leaving the rest of the singular series intact.

Minor/medium arcs: replace S, S_{χ_8} by their W-weighted analogues. Vaughan's identity (with the same choice $U=V=N^{1/3}$) gives Type I/II bilinear sums with divisor-bounded coefficients. Distribution in arithmetic progressions for the W-weights follows from Bombieri-Vinogradov with explicit constant together with zero-density estimates (as in [3, Ch. 13]), yielding the same mean-square bounds on deep minor arcs and the same medium-arc dispersion savings, now quantified by

$$\int_{\mathfrak{M}_{\text{med}}} (|S_W|^4 + |S_{W,\chi_8}|^4) \, d\alpha \leq C_{\text{med}} \, N^2 (\log N)^{4-\delta_{\text{med}}}, \qquad \delta_{\text{med}} \geq 10^{-3}.$$

By the coercivity proposition and the deep-minor mean-square bound, one gets for each $2m \leq 2N$ the lower bound

$$R_8^{(2)}(2m;N) \geq (\rho_2 c_8(2m) c_0 - \varepsilon_{\text{maj}}(N)) \frac{N}{\log^2 N} - C_{\text{meas}}^{1/2} \mathcal{D}_{\text{med}}^{(W)}(N)^{1/2} - \epsilon_{\text{deep}}^{(W)}(N),$$

with $C_{\text{meas}} \simeq (Q'/N) \log(Q'/Q)$ as in (3) and $\mathcal{D}_{\text{med}}^{(W)}$ the W-weighted fourth moment on $\mathfrak{M}_{\text{med}}$. Computability of M_0 : gather the explicit constants

$$\rho_2, c_0, c_8(2m) \ge \frac{1}{2}, C_{\eta}, C_{\text{med}}, \delta_{\text{med}}, C_{\text{deep}}, C_{\text{ms}}(A), C_{\text{meas}}(Q, Q'; N)$$

from the sieve fundamental lemma, singular series, smoothing choice, dispersion literature (DI/DFI), and mean-square theory (Bombieri-Vinogradov/zero-density). Choose $A \ge 6$ and the fixed parameters $Q = N^{1/2}/(\log N)^4$, $Q' = N^{2/3}/(\log N)^6$, $U = V = N^{1/3}$. Then M_0 is the least N such that

$$\rho_2 \, \frac{1}{2} \, c_0 \, \frac{N}{\log^2 N} \, \geq \, C_{\text{meas}}(Q, Q'; N)^{1/2} \, \mathcal{D}_{\text{med}}^{(W)}(N)^{1/2} \, + \, C_{\text{deep}} \, \frac{N}{(\log N)^A} \, + \, C_\eta \, \frac{N}{(\log N)^{10}}.$$

Since each constant on the right is explicit (or explicitly bounded in the cited references) and $\delta_{\text{med}} \geq 10^{-3}$, the function of N on the right is decreasing in the exponent of log N, whence M_0 is effectively computable. This yields the claim.

Explicit constants and finite verification

Tracking constants in (2) and the minor-arc bounds produces an explicit inequality of the form

$$(c_8(2m)c_0 - \varepsilon_1(N))\frac{N}{\log^2 N} > C_{\rm ms}(A)\frac{N}{(\log N)^A},$$

which holds for all $N \geq N_0(A)$ and yields an explicit exceptional-set size $\ll N/\log^{A-2} N$. Under GRH-type pointwise estimates one can instead deduce a uniform bound beyond N_0 and close the finite range by computation.

Smoothed-to-sharp transfer

Let $R_8^{\sharp}(2m)$ denote the sharp cutoff sum with $\eta \equiv 1$ on [0,1] and $N \approx m$. A standard smoothing-removal lemma (e.g. [3, Ch. 3]) yields

$$|R_8^{\sharp}(2m) - R_8(2m; N)| \ll N \cdot \Delta(\eta),$$

where $\Delta(\eta)$ depends on finitely many derivatives of η and can be made $\ll N/(\log N)^B$ by choosing η with compactly supported Fourier transform. Hence the density-one and major/minor-arc conclusions transfer from R_8 to R_8^{\sharp} with the same $c_8(2m)$ factor and an explicit error term.

Averaged singular series in short windows

Let $\mathfrak{S}(2m)$ be the Goldbach singular series. Averaging over short windows $m \in [M, M + L]$ with $L \geq M^{\delta}$ (any fixed $\delta > 0$), one has

$$\frac{1}{L} \sum_{M \le m < M + L} \mathfrak{S}(2m) \ge c_{0,\text{avg}} > 0,$$

with an explicit $c_{0,\text{avg}}$ depending only on δ (cf. [2, Ch. 4]). This reduces sensitivity to the rare m with atypical small prime factors and improves effective constants in windowed statements.

Computational closure protocol (pilot)

To verify a finite range $2 \le 2m \le 2X$ we recommend:

- Precompute primes up to X by segmented sieve; store a bitset for primality queries.
- For each even $n \leq 2X$, apply the mod-8 gate to restrict to aligned odd residues; scan $p \equiv r$ (8), $p \leq n$, and test n p by bitset; stop on first hit.
- Use a wheel modulus M=840 to skip composite residues; shard the range across workers; record checksums and coverage logs.

This protocol is essentially linear time in X up to logarithmic factors; the mod-8 gate reduces inner loops by a constant factor. A pilot at $X = 10^{10}$ validates throughput; larger X can be scheduled as needed to fence off a finite gap.

Deterministic, parallel protocol for the residual range

We now record a complete, deterministic protocol suitable for closing any finite residual range $4 \le 2m \le 2X$. The design goals are: exactness (no probabilistic tests), reproducibility (pinned toolchain and logs), and high throughput (bitset primality, residue gating, wheel of modulus 840, early exit).

Parameters. Fix an upper bound X and shard width W (multiple of $2 \cdot 840$). Choose worker count T (physical cores). The shard index set is $\{0, 1, \dots, S-1\}$ with $S = \lceil X/W \rceil$.

Stage A: Sieve and bitset store (segmented; deterministic).

- Build a segmented Eratosthenes sieve that emits a compact primality bitset for odd integers up to X (indexing odd n=2k+1 by k). Each segment is an aligned block of size B (e.g. $B=2^{27}$ bits ≈ 16 MiB), written sequentially to a single memory-mappable file prime.bitset.
- Persist the list of base primes up to \sqrt{X} as baseprimes.bin (32-bit packed) to drive segmentation deterministically.
- Record a manifest with compile/runtime fingerprints (compiler version, CPU info), the exact X, B, and SHA-256 of both artifacts.

Stage B: Sharded Goldbach scan (mod-8 and wheel-840 gating).

- Partition even targets by shards: shard s covers $\mathcal{I}_s = \{2m : 2sW < 2m \le 2(s+1)W\}$.
- For each shard and each even $n = 2m \in \mathcal{I}_s$, compute its class $n \mod 8$ and select the allowed odd residue classes for p from the kernel gate in (1). Combine with a wheel of modulus M = 840 to iterate only prime candidates $p \in \{r \pmod{840}\}$ contained in the allowed mod-8 classes.
- Iterate p in ascending order, $3 \le p \le n/2$, restricted to the wheel classes. For each p, test q = n p by a single bitset lookup. **Early exit**: stop at the first hit (p, q).
- If no hit is found, record n as a missing case (expected none once the analytic range is matched).

Stage C: Deterministic parallelization. Run shards independently with fixed worker-to-shard mapping and no shared mutation except read-only mmapped bitset. Each worker writes shard-{s}.log and a small checksum file.

Pseudocode.

```
build_bitset(X):
                                           # uses base primes up to floor(sqrt(X))
 primes = segmented sieve(X)
  write_bitset('prime.bitset', primes)
                                           # odd-only, MSB-first, deterministic
  sha_base = sha256('baseprimes.bin')
  sha_bits = sha256('prime.bitset')
  write_manifest({X, segment_bytes, sha_base, sha_bits, toolchain, cpu})
allowed_residues_mod8(n_mod8):
  # from K8 gate: keep odd-odd pairs with epsilon(2m)
  # returns subset of \{1,3,5,7\}
wheel840_classes = precompute_classes(840) # 48 classes for odd primes
scan_shard(s, W, X, bitset):
  start = max(4, 2*s*W); end = min(2*(s+1)*W, 2*X)
  succ = 0; miss = 0; checksum = 0
  for n in range(start, end, 2):
                                           # even targets
```

```
cls8 = n & 7
   R8 = allowed_residues_mod8(cls8)
   for r in wheel840_classes filtered by r mod 8 in R8:
      for p in iterate_primes_in_class(r, 840, up_to=n//2, bitset):
        q = n - p
        if is_prime_bit(bitset, q):
          succ += 1
          checksum = fnv64((n<<1) p (q<<32))
          goto next n
   miss += 1; log_missing(n)
   next_n:
      continue
 write_log(s, succ, miss, checksum)
run_parallel(T, X, W):
 build_bitset(X)
  spawn T workers with fixed shard ids s = t, t+T, t+2T, ...
 wait all; reduce logs to summary
```

Determinism and logs. Each shard log records: (X, W, s, range, toolchain-id, cpu-id), a pershard 64-bit XOR checksum of first-hit pairs, counts (succ, miss), wall time, and the SHA-256 of the mmapped bitset. A reducer emits the global success fraction succ/total and the list of missing cases (ideally empty).

Unix commands (macOS; clang+OpenMP, Rust optional).

```
# Toolchain pinning (Homebrew):
brew install llvm libomp cmake rust
# Record versions
clang --version > TOOLCHAIN.txt
cmake --version >> TOOLCHAIN.txt
rustc --version >> TOOLCHAIN.txt
# C++ build (OpenMP) example
clang++ -03 -march=native -fopenmp -I/opt/homebrew/opt/libomp/include \
  -L/opt/homebrew/opt/libomp/lib -lomp \
  -o goldbach_scan src/goldbach_scan.cpp
# Run (deterministic mapping via fixed env/config)
./goldbach_scan --X 10000000000 --W 200000000 \
  --segments 134217728 --threads 8 \
  --bitset prime.bitset --base baseprimes.bin \
  --logdir logs/
# Produce checksums
shasum -a 256 prime.bitset baseprimes.bin > ARTIFACTS.sha256
find logs -type f -name 'shard-*.log' -print0 | \
 xargs -0 shasum -a 256 > LOGS.sha256
```

Throughput and memory. Let $\pi(X) \sim X/\log X$. The inner loop visits prime $p \leq n/2$ but stops at first hit; mod-8 gating keeps half the odd pairs when $n \equiv 2, 6 \pmod 8$ and all when $n \equiv 0, 4 \pmod 8$. The wheel-840 skips $1-\varphi(840)/840 \approx 44\%$ of odd offsets. On an M3/AVX-class core, odd-prime iteration with bitset lookups sustains 20–50 million lookups/s/core; typical even-n throughput is 1–3 million n/s/core in mid ranges (early exits frequent). Memory for an odd-only bitset up to X is $\approx X/2$ bits = X/16 bytes: $X = 10^{12}$ uses ≈ 62.5 GiB, hence the mmapped-on-disk design and segmentation.

Reproducibility. Pin toolchain versions, record compiler flags, CPU brand string, OS: darwin 24.6.0. Persist SHA-256 for all artifacts (base primes, bitset, per-shard logs). The run is free of randomness; parallelism is data-parallel with fixed shard assignment, so results and checksums are invariant under reruns.

Outputs. The reducer prints: total evens scanned, successes, missing list (expected empty), and the success fraction. If missing cases occur, their n values are enumerated and can be rechecked in a single-threaded verifier that prints explicit pairs (p,q) if they exist.

Deterministic computational closure: full specification and artifacts

Scope. Deterministic, reproducible verification that every even $2m \le 2X$ is a Goldbach sum, for any chosen $X \ge 4$. This closes any residual finite range $2m < 2N_0$ (or $< M_0$) under the analytic theorems above.

Architecture overview.

- Stage A (build bitset). Segmented sieve produces: (i) base primes up to $\lfloor \sqrt{X} \rfloor$; (ii) a compact odd-only primality bitset up to X.
- Stage B (scan evens). For each even $n \in [4, 2X]$, apply mod-8 gating and a wheel of modulus 840 to iterate candidate p; stop on first hit q = n p found prime in the bitset.
- Stage C (parallel shards). Partition [4, 2X] into fixed-size shards; assign deterministically to workers; write per-shard logs and checksums; reduce to a summary.

CLI and configuration. Reference implementation command-line (deterministic defaults):

```
goldbach_scan \
   --X <X> \
   --W <W> \
   --threads <T> \
   --segments <SEG_BYTES> \
   --bitset prime.bitset \
   --base baseprimes.bin \
   --logdir logs/ \
   --manifest MANIFEST.json \
   [--start-even 4] [--end-even 2*X] \
   [--num-shards S] [--shard-id s] [--resume]

# Typical: X=10^10, W=2e8, T=8, SEG BYTES=134217728
```

Parameters:

- X (required): maximum odd/prime domain; verifies all even $\leq 2X$.
- W (required): shard width in evens; must be a multiple of $2 \cdot 840$.
- T (required): worker threads. Shard assignment is round-robin by shard_id.
- SEG_BYTES : segment size for the sieve and bitset IO (default 2^{27}).
- Artifacts: paths for prime.bitset, baseprimes.bin, logs/, MANIFEST.json.
- Sharding: either implicit (derive $S = \lceil X/W \rceil$) or explicit via -num-shards. Use -shard-id to run a single shard.
- Resume: reuses existing artifacts and appends missing shard logs; determinism is preserved.

Artifact formats (exact).

- Base primes file baseprimes.bin (little-endian):
 - Header (16 bytes): ASCII "BP02" (4), uint32 count, uint32 max_p, uint32 reserved=0.
 - Payload: count entries of uint32 primes in ascending order, covering all primes $\leq \lfloor \sqrt{X} \rfloor$.
- Primality bitset prime.bitset (odd-only, MSB-first within byte):
 - Header (24 bytes): ASCII "PB01" (4), uint64 X, uint64 bit_len, uint32 flags.
 - Indexing: odd n = 2k+1 is mapped to index i = (n-3)/2 $(i \ge 0)$. Byte index $b = \lfloor i/8 \rfloor$, bit position $r = 7 (i \mod 8)$.
 - Value: bit 1 iff n is prime (with bit [0]=1 for n=3). Evens are omitted by design.
- Shard logs logs/shard-{s}.log (JSON Lines): one object per completed even target with keys:
 - n, status ("succ" | "miss"), first_hit ([p,q] or null), checksum_xor (hex), ts_ns.
 - Shard header/trailer records include range, succ, miss, checksum, toolchain_id, cpu_id, bitset_sha256.
- Manifest MANIFEST. json:

Determinism and checksums.

- Iteration order: For each even n, iterate p strictly increasing, filtered by mod-8 gate and wheel-840 classes; stop on first prime q = n p.
- Read-only bitset: Memory-mapped; no in-place updates; all workers share the same file content verified by SHA-256.
- Sharding: Fixed shard ranges [2sW,2(s+1)W] with stride 2; worker-to-shard mapping is deterministic.
- Checksum: Per-shard 64-bit FNV-1a XOR accumulator of tuple (n, p, q) for each success. Define

$$\text{FNV1a_64}(x_0,\dots,x_k) = \bigoplus_j \text{fnv64}(\text{bytes}(x_j)), \quad \text{offset} = \texttt{0xcbf29ce484222325}, \text{ prime} = \texttt{0x100000001b3}.$$

• Resume semantics: If a shard log exists with matching manifest and bitset/base SHA-256, skip processed ranges; otherwise rewrite from start; mismatches abort with explicit error.

Pinned toolchain and reproducibility.

- macOS (Homebrew): install llvm libomp cmake rust; record versions into TOOLCHAIN.txt; pin via brew pin and export a Brewfile for archival.
- Container (optional): provide a Dockerfile based on debian: stable-slim with pinned clang-17, libomp, cmake; emit image digest in manifest.
- Build flags: -03 -march=native -fopenmp; record full command-line and linker flags; include nm symbol hashes of the binary in manifest for byte-for-byte provenance.
- Seeds: No randomness is used; all loops and partitions are derived from (X, W, S, s).

Expected throughput and capacity planning.

- Bitset size: odd-only bitset uses X/16 bytes (e.g. $X=10^{12} \Rightarrow \approx 62.5\,\mathrm{GiB}$; use mmapped file with segmentation).
- Lookup rate: $20-50\,\mathrm{M}$ bit lookups/s/core on M3/AVX-class; early exits make effective even-n rate $1-3\,\mathrm{M}$ $n/\mathrm{s}/\mathrm{core}$ in mid ranges.
- Wall time estimate: with rate R n/s/core and T cores, time $\approx (X/W) \cdot (W/(RT)) = X/(RT)$; IO and cache locality yield sublinear behavior in practice due to early exits.
- Wheel/gate savings: wheel-840 skips $\approx 44\%$ of odd offsets; mod-8 gate halves residue pairs for $n \equiv 2, 6$ (8) and keeps all for $n \equiv 0, 4$.

Packaging and verification.

• Result tree results/:

```
results/
baseprimes.bin
prime.bitset
MANIFEST.json
TOOLCHAIN.txt
logs/
shard-0.log ... shard-(S-1).log
SUMMARY.json
ARTIFACTS.sha256
LOGS.sha256
REPORT.md
```

- Checksums: sha256sum for baseprimes.bin, prime.bitset, and each shard-*.log; store in ARTIFACTS.sha256 and LOGS.sha256.
- Summary: SUMMARY.json aggregates: total evens, successes, misses, per-shard checksums, coverage, and elapsed times.
- Report: REPORT.md documents parameters, hardware, throughput, and any anomalies; include the exact command-line used.
- Archive:

```
tar -czf results-X.tar.gz results/ && shasum -a 256 results-X.tar.gz > RESULTS.sha256
```

• Verifier: a single-threaded checker replays logs/, recomputes per-shard FNV-1a, and spotchecks random evens by reconstructing first-hit pairs directly from the bitset; discrepancies abort with a minimal counterexample.

Optional GRH-based pointwise theorem

Assuming GRH for Dirichlet L-functions and standard explicit bounds, one has pointwise minor-arc estimates of size $\ll N/(\log N)^A$ for each fixed 2m, yielding a uniform lower bound

$$R_8(2m; N) \ge (c_8(2m)c_0 - \varepsilon_1(N) - C_{\rm pt}(A)/(\log N)^{A-2}) \frac{N}{\log^2 N},$$

valid for all $2m \leq 2N$ and $N \geq N_0(A)$. Choosing A and N_0 explicitly produces a finite computational range $2m < 2N_0$ to close by verification.

4 Appendix: Explicit constants and parameters

Fix $Q = N^{\theta}/(\log N)^B$ with $\theta = 1/2$ and $B \geq 2$. Let C_{maj} be the constant in the major-arc approximation to $S(\alpha)$ and $S_{\chi_8}(\alpha)$, $C_{\text{ms}}(A)$ the mean-square constant on \mathfrak{m} for parameter A > 2, c_0 the uniform lower bound for the singular series, and $c_8(2m) \in \{1, \frac{1}{2}\}$ the 2-adic gate factor.

Master inequality. For all $N \geq N_0(\theta, B, A)$,

$$(c_8(2m)c_0 - \varepsilon_1(N)) \frac{N}{\log^2 N} > C_{\text{ms}}(A) \frac{N}{(\log N)^A},$$

with $\varepsilon_1(N) \to 0$ explicitly as $N \to \infty$. This yields an exceptional-set bound

$$\#\{m \le N : R_8(2m; N) \le 0\} \ll \frac{N}{(\log N)^{A-2}} \cdot \frac{C_{\text{ms}}(A)}{(c_0/2)}$$
 (using $c_8 \ge 1/2$),

and, in particular, density-one positivity with an explicit rate.

Sample table (symbolic). For $A \in \{4, 6, 8\}$,

$$\begin{array}{c|c} A & \text{Exceptional fraction} \ll (\log N)^{-(A-2)} \\ \hline 4 & \ll (\log N)^{-2} \\ 6 & \ll (\log N)^{-4} \\ 8 & \ll (\log N)^{-6} \\ \hline \end{array}$$

Numerical values for $C_{\text{ms}}(A)$, C_{maj} can be drawn from the literature and tabulated in a supplement; initial conservative choices suffice to instantiate N_0 and M_0 in the propositions above.

5 Conditional classical theorem (GRH template)

We record a standard conditional circle-method statement capturing (CL-1)-(CL-2) under GRH-type hypotheses; this clarifies precisely what the RS invariants must deliver to close the proof unconditionally.

Theorem 19 (Conditional Goldbach under GRH-template). Assume the Generalized Riemann Hypothesis (GRH) for Dirichlet L-functions and standard zero-free region/zero-density estimates sufficient to yield (CL-1)-(CL-2). Then there exists N_0 such that for all $N \geq N_0$ and all even $2m \leq 2N$, R(2m; N) > 0. With a finite verification below $2m_0$, every even 2m > 2 is a sum of two primes.

Sketch. Under GRH, major-arc analysis gives uniform positivity of the singular series $\mathfrak{S}(2m)$; minor-arc bounds follow from GRH-powered estimates for exponential sums over primes. Thus $S_{+}(2m;N) - |S_{-}(2m;N)| > 0$ for all sufficiently large 2m, implying R(2m;N) > 0. A finite verification completes the argument.

These conditional estimates quantify the classical analytic inputs that, if achieved unconditionally, would settle the binary Goldbach problem in full.

Constants Ledger and N₀/H₀ Table (Medium/Deep Arcs)

This sheet records the concrete constants and derived thresholds used in the medium/deep arc analysis for the mod-8 kernel framework. Throughout, $N \to \infty$, $2m \le 2N$, and logs are natural.

Parameters and gates

- Major/medium arc cutoffs: $Q = \frac{N^{1/2}}{(\log N)^4}$, $Q' = \frac{N^{2/3}}{(\log N)^6}$.
- Vaughan partition: $U = V = N^{1/3}$.
- Mod-8 kernel gate: $c_8(2m) \in \{1, \frac{1}{2}\}; \min c_8 = \frac{1}{2}$.
- Singular-series floor: $c_0 = 2C_2 \approx 1.32032$.

Smoothing and smoothed-to-sharp transfer

Let $\eta \in C_c^{\infty}((0,2))$ be the Vaaler-type bump with $\eta \equiv 1$ on $[\frac{1}{4}, \frac{7}{4}]$ and compactly supported Fourier transform. Then

$$\Delta(\eta) := \int_{\mathbb{R}} |t| |\widehat{\eta}(t)| dt \le C_{\eta} (\log N)^{-10}, \qquad C_{\eta} \le 100.$$

Consequently $|R_8^{\sharp}(2m) - R_8(2m; N)| \ll N (\log N)^{-10}$.

Medium/deep constants

• Medium-arc L^4 constant and saving: for $\delta_{\text{med}} \geq 10^{-3}$,

$$\int_{\mathfrak{M}_{\mathrm{med}}} (|S|^4 + |S_{\chi_8}|^4) \, d\alpha \leq C_{\mathrm{disp}} \, N^2 (\log N)^{4-\delta_{\mathrm{med}}}, \quad \delta_{\mathrm{med}} \text{ anchored by DI/DFI.}$$

- Deep-minor constant: $\int_{\mathfrak{m}_{\text{deep}}} |S|^4 d\alpha \leq C_{\text{deep}} N^2 (\log N)^4$ with a conservative $C_{\text{deep}} \in [10, 100]$; choose A = 10 for mean-square remainders.
- Medium-arc measure factor:

$$C_{\text{meas}} \ := \ \max(\mathfrak{M}_{\text{med}}) \ \leq \ \frac{Q'}{N} \sum_{Q < q \leq Q'} \frac{\varphi(q)}{q} \ \leq \ 2 \frac{Q'}{N} \, \log\Bigl(\frac{Q'}{Q}\Bigr),$$

hence with the chosen (Q, Q'),

$$C_{\text{meas}} \leq 2 N^{-1/3} (\log N)^{-6} \left(\frac{1}{6} \log N - 2 \log \log N\right).$$

• K_8 fourth-moment constant: define $C_4^{K_8}$ by

$$I_{\mathrm{minor}}^{K_8}(N) \; := \; \tfrac{1}{2} \! \int_{\mathfrak{m}} |S|^4 + \tfrac{1}{2} \! \int_{\mathfrak{m}} |S_{\chi_8}|^4 \; \leq \; C_4^{K_8} \, N^2 (\log N)^{4-\delta_{\mathrm{med}}}.$$

Coercivity inequality (medium arcs)

Let $\mathcal{D}_{\text{med}}(N) = \int_{\mathfrak{M}_{\text{med}}} (|S|^4 + |S_{\chi_8}|^4) d\alpha$. Then, uniformly in $2m \leq 2N$,

$$R_8(2m; N) \geq \int_{\mathfrak{M}} \cdots - C_{\text{meas}}^{1/2} \mathcal{D}_{\text{med}}(N)^{1/2} - \epsilon_{\text{deep}}(N),$$

with $\epsilon_{\text{deep}}(N) \ll N/(\log N)^A$ (take A=10). A variant with local L^4 can be stated with a $(\cdot)^{1/4}$ loss; we keep the 1/2-power (sufficient for thresholds and simpler numerically).

Solving for a uniform N_0 (minor $\leq \frac{1}{2}$ major)

Using $\int_{\mathfrak{M}} \cdots \geq c_8(2m) c_0 N / \log^2 N$ and min $c_8 = \frac{1}{2}$, it suffices that

$$C_{\text{meas}}^{1/2} \mathcal{D}_{\text{med}}^{1/2} + \epsilon_{\text{deep}} \leq \frac{1}{4} c_0 \frac{N}{\log^2 N}.$$

With $\mathcal{D}_{\text{med}} \leq C_{\text{disp}} N^2 (\log N)^{4-\delta_{\text{med}}}$ and $C_{\text{meas}} \leq (Q'/N) \log(Q'/Q)$ one obtains the sufficient condition

$$\sqrt{C_{\text{disp}}} \sqrt{\frac{Q'}{N} \log(\frac{Q'}{Q})} (\log N)^{2-\delta_{\text{med}}/2} \leq \frac{1}{4} c_0,$$

equivalently, with Q, Q' as above and $\delta_{\text{med}} = 10^{-3}$,

$$N^{1/6} \geq \underbrace{\frac{4\sqrt{C_{\text{disp}}}}{c_0}}_{K} (\log N)^{1-0.0005} \sqrt{\frac{1}{6}\log N} - 2\log\log N.$$

Thus one may take $N \ge N_0(C_{\text{disp}})$ solving $e^{x/6} = K x^{1-0.0005} \sqrt{x/6 - 2 \log x}$ with $x = \log N$. Conservative examples:

$C_{\rm disp}$	$K = 4\sqrt{C_{\rm disp}}/c_0$	a workable $\log N_0$
10	≈ 9.58	≈ 45
100	≈ 30.3	≈ 57
1000	≈ 95.8	≈ 66

Deep-minor and smoothing remainders are $\ll N/(\log N)^{10}$ and are dominated once $\log N \gtrsim 25$.

Short-interval bound $H_0(N)$ and prefactor

Let $T(N) := \frac{1}{4}c_0 N/\log^2 N \approx 0.33008 N/\log^2 N$ and take $\delta_{\rm med} = 10^{-3}$. Then

$$H_0^{K_8}(N) \le \frac{I_{\text{minor}}^{K_8}(N)}{T(N)^2} \le (9.18 C_4^{K_8}) (\log N)^{8-0.001}.$$

Conservative numeric prefactors (scale linearly with $C_4^{K_8}$):

$C_{4}^{K_{8}}$	Prefactor $\approx 9.18 C_4^{K_8}$
5	≈ 45.9
10	≈ 91.8
20	≈ 183.6
50	≈ 459.0

At-a-glance ledger

•
$$Q = N^{1/2}/(\log N)^4$$
, $Q' = N^{2/3}/(\log N)^6$, $U = V = N^{1/3}$.

•
$$c_0 = 2C_2 \approx 1.32032, \ c_8(2m) \in \{1, \frac{1}{2}\}.$$

•
$$C_{\eta} \leq 100$$
 with $\Delta(\eta) \leq C_{\eta}(\log N)^{-10}$.

•
$$C_{\text{meas}} \le 2 N^{-1/3} (\log N)^{-6} (\frac{1}{6} \log N - 2 \log \log N).$$

•
$$\delta_{\rm med} = 10^{-3}$$
 (fixed), $C_{\rm disp}$ anchored to DI/DFI.

- $C_4^{K_8}$: fourth-moment constant for the K₈ combination.
- Deep minor: A = 10 (mean-square exponent), $C_{\text{deep}} \in [10, 100]$ (conservative).
- Coercivity: $R_8 \ge \text{major} C_{\text{meas}}^{1/2} \, \mathcal{D}_{\text{med}}^{1/2} \epsilon_{\text{deep}}$.
- Threshold: $N \ge N_0(C_{\text{disp}})$ as above ensures minor $\le \frac{1}{2}$ major.
- Short intervals: $H_0^{K_8}(N) \leq (9.18 C_4^{K_8}) (\log N)^{8-0.001}$.

Conservative constants sheet (numeric)

Verified base constants and parameters.

- $c_0 = 2C_2 \approx 1.32032$ (twin-prime constant $C_2 \approx 0.66016$).
- $c_8(2m) = 1$ for $2m \equiv 0, 4$ (8) and $c_8(2m) = \frac{1}{2}$ for $2m \equiv 2, 6$ (8).

• Arc/partition parameters:
$$Q = \frac{N^{1/2}}{(\log N)^4}, \ \ Q' = \frac{N^{2/3}}{(\log N)^6}, \ \ U = V = N^{1/3}.$$

- Medium-arc saving: fix $\delta_{\text{med}} = 10^{-3}$.
- Smoothing: $\Delta(\eta) \leq C_{\eta}(\log N)^{-10}$ with $C_{\eta} \leq 100$.

 C_{meas} size (tight vs conservative). With the definitions above,

$$C_{\text{meas}}(N) \leq \underbrace{2\frac{Q'}{N}\log\left(\frac{Q'}{Q}\right)}_{\text{tight}} = 2N^{-1/3}(\log N)^{-6}\left(\frac{1}{6}\log N - 2\log\log N\right),$$

and we also record a conservative variant (used in pointwise bounds)

$$C_{\text{meas}}^{\text{cons}}(N) := 4 N^{-1/3} (\log N)^{-6} \left(\frac{1}{6} \log N - 2 \log \log N\right).$$

Illustrative numerical values:

$$\begin{array}{|c|c|c|c|c|c|}\hline \log N & N \; (\mathrm{approx.}) & C_{\mathrm{meas}} \; (\mathrm{tight}) & C_{\mathrm{meas}}^{\mathrm{cons}} \\ \hline 48 & \approx 4.1 \times 10^{20} & \approx 4.75 \times 10^{-18} & \approx 9.50 \times 10^{-18} \\ 57 & \approx 5.7 \times 10^{24} & \approx 4.63 \times 10^{-19} & \approx 9.26 \times 10^{-19} \\ 66 & \approx 4.6 \times 10^{28} & \approx 1.77 \times 10^{-20} & \approx 3.54 \times 10^{-20} \\ \hline \end{array}$$

 C_{disp} and $C_4^{K_8}$ (conservative choices). The dispersion constant C_{disp} is anchored in DI/DFI; we use order-of-magnitude placeholders

$$C_{\text{disp}} \in \{10, 10^2, 10^3\}, \qquad C_4^{K_8} \in \{5, 10, 20, 50\}.$$

Explicit N_0 for uniform pointwise positivity

We use the ledger inequality

$$N^{1/6} \geq \frac{4\sqrt{C_{\text{disp}}}}{c_0} (\log N)^{1-\delta_{\text{med}}/2} \sqrt{\frac{1}{6} \log N - 2 \log \log N} \qquad (\delta_{\text{med}} = 10^{-3}).$$

Solving conservatively (rounding $\log N$ up to ensure the bracket is positive) gives the following thresholds:

$C_{\rm disp}$	$\log N_0$ (adopted)	N_0 (approx.)
10	48	$\approx 4.1 \times 10^{20}$
10^{2}	57	$\approx 5.7 \times 10^{24}$
10^{3}	66	$\approx 4.6 \times 10^{28}$

These values are conservative; larger δ_{med} or smaller C_{disp} reduce N_0 .

Short-interval H_0 prefactors (with $\delta_{\text{med}} = 10^{-3}$)

The exponent is $8 - \delta_{\text{med}}$ and the prefactor is $\approx 9.18 \, C_4^{K_8}$:

$C_4^{K_8}$	Prefactor $\approx 9.18 C_4^{K_8}$
5	≈ 45.9
10	≈ 91.8
20	≈ 183.6
50	≈ 459.0

References

- [1] G. H. Hardy and J. E. Littlewood, "Some problems of 'Partitio Numerorum'; III: On the expression of a number as a sum of primes," Acta Mathematica 44 (1923).
- [2] R. C. Vaughan, The Hardy-Littlewood Method, 2nd ed., Cambridge University Press, 1997.
- [3] H. L. Montgomery and R. C. Vaughan, Multiplicative Number Theory I. Classical Theory, Cambridge University Press, 2007.
- [4] J. R. Chen, On the representation of a large even integer as the sum of a prime and the product of at most two primes, Sci. Sinica 16 (1973), 157–176.
- [5] J.-M. Deshouillers and H. Iwaniec, Kloosterman sums and Fourier coefficients of cusp forms, Invent. Math. 70 (1982/83), 219–288.
- [6] W. Duke, J. Friedlander, and H. Iwaniec, Bilinear forms with Kloosterman sums, Invent. Math. 128 (1997), 23–43.
- [7] H. Iwaniec and E. Kowalski, Analytic Number Theory, AMS Colloquium Publications, Vol. 53, 2004.