Exercises 4

1

- 1. For any topological space X, we think of it as a ringed space, with the structure sheaf $C^0(U) = \{f : U \to \mathbb{R}, continuous\}$ of continuous functions.
 - (a) Show that (X, C^0) is a locally ringed space, and any continuous map $f: X \to Y$ induces a morphism of locally ringed spaces $(f, f^{\#}): (X, C^0) \to (Y, C^0)$
 - (b) Let X = [0, 1] for multiplicative system $S_U = \{ f \in C^0(X), s.t. \forall x \in U, f(x) \neq 0 \}$. Then show that there is an isomorphism $S_U^{-1}C^0(X) \cong C^0(U)$, thus Spm $C^0(X) \cong (X, C^0)$ as locally ringed spaces.
 - (c) Let $X = \mathbb{R}^n, Y = \mathbb{R}^m$ (or more generally differential manifolds), we can define the structure to be $C^{\infty}(U) = \{f : U \to \mathbb{R}, smooth\}$. Show that any smooth map $f : X \to Y$ induces a morphism of locally ringed spaces $(f, f^{\#}) : (X, C^{\infty}) \to (Y, C^{\infty})$
 - (d) Let $X = \mathbb{R}^1, Y = \mathbb{R}^2$, let $f: X \to Y$ be f(t) = (t, |t|). Verify that f only induces morphism between $(X, C^0) \to (Y, C^0)$ rather than $(X, C^\infty) \to (Y, C^\infty)$. (Actually, f is smooth, iff it induces $(f, f^\#): (X, C^\infty) \to (Y, C^\infty)$)
- 2. Let LRS be the category of locally ringed space. And let (X, Γ) be a locally ringed space and R be a ring.
 - (a) Show that there is a canonical map $\operatorname{Hom}_{LRS}(X,\operatorname{Spec} R) \to \operatorname{Hom}_{Ring}(R,\Gamma(X)).$
 - (b) Let $f \in \Gamma(X)$, and let $D(f) = \{x \in X, s.t.f_x \in \Gamma_x \text{ is invertible}\}$. Show that D(f) is open in X.
 - (c) Recall the fact that for local ring A, the $A \setminus \mathfrak{m} = A^*$. Show that $V(f) = \{x \in X, s.t. f_x \in \mathfrak{m}_x \subset \Gamma_x\}$ is closed in X.
 - (d) For $x \in X$, let $I_x = \{f \in \Gamma(X), s.t.f_x \in \mathfrak{m}_x \subset \Gamma_x\}$. Show that I_x is a prime ideal of $\Gamma(X)$. Construct a canonical morphism $i \in \operatorname{Hom}_{LRS}(X, \operatorname{Spec}\Gamma(X))$. (Generally, i is not injective nor surjective)
 - (e) Let $h \in \operatorname{Hom}_{Ring}(R, \Gamma(X))$, and let $\mu(h)(x \in X) = h^{-1}(I_x) \in \operatorname{Spec} R$. Show that $\mu(h)$ induces a morphism $\in \operatorname{Hom}_{LRS}(X, \operatorname{Spec} R)$.
 - (f) Show that there is a bijection $\operatorname{Hom}_{Ring}(R,\Gamma(X)) \cong \operatorname{Hom}_{LRS}(X,\operatorname{Spec} R)$

¹find also these exercises on https://github.com/iamcxds/AG-exercise, you can skip a question with * if it is difficult.