ГЕОМЕТРИЯ ПРОСТРАНСТВ СО СКАЛЯРНЫМ ПРОИЗВЕДЕНИЕМ

ГОСУДАРСТВЕННЫЙ КОМИТЕТ РОССИЙСКОЙ ФЕДЕРАЦИИ ПО ВЫСШЕМУ ОБРАЗОВАНИЮ

НОВОСИБИРСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ Физический факультет

В. А. Александров

ГЕОМЕТРИЯ ПРОСТРАНСТВ СО СКАЛЯРНЫМ ПРОИЗВЕДЕНИЕМ

Методическое пособие

Новосибирск 1995 Изложены первоначальные сведения о пространствах со скалярным произведением, а также приведены задачи, рекомендуемые для решения на практических занятиях по функциональному анализу и теории функций на физическом факультете Новосибирского государственного университета.

Предназначается для студентов и преподавателей физического факультета.

- © Новосибирский государственный университет, 1995
- © В.А. Александров, 2007

Предисловие

Тема "Геометрия пространств со скалярным произведением" излагается на физическом факультете Новосибирского государственного университета в рамках курса "Основы функционального анализа и теории функций" в конце третьего семестра.

В этой теме систематически развивается геометрическая точка зрения в, казалось бы, чисто аналитических ситуациях. Наличие такой точки зрения позволяет работать интуиции и аналогии, чем, видимо, и объясняется широкое использование такой геометрической точки зрения в самых разнообразных разделах математики и физики.

Автор надеется, что изучая эту тему, студенты увидят аналогии, а порой — и явные повторы, с некоторыми изучавшимися ранее темами. Нам остаётся лишь расставлять акценты.

Например, конечномерные линейные пространства и такие связанные с ними понятия, как линейная зависимость векторов, размерность пространства, подпространство подробно изучались в курсе "Линейная алгебра и аналитическая геометрия" в первом семестре. В отличие от этого, наше изложение годится и для бесконечномерных пространств.

Понятия нормы, открытого и замкнутого множеств, фундаментальной последовательности и полноты пространства \mathbb{R}^n знакомы слушателям по курсу математического анализа (второй семестр). Мы вводим эти понятия в бесконечномерной ситуации.

Неравенство Коши—Буняковского, задача о наилучшем приближении или о проектировании на конечномерные подпространства, неравенство Бесселя, равенство Парсеваля, замкнутость ортонормированной системы на другом языке и в более частной ситуации были рассмотрены в рамках темы "Ряды Фурье" настоящего курса в начале третьего семестра.

Материал, вошедший в данное пособие, традиционно входит в учебники по функциональному анализу. Появление этого пособия вызвано стремлением автора облегчить работу студентов, выделить из обилия учебников ту (в общем-то небольшую) минимально необходимую цепочку логически связанных между собой фактов, которые,

с одной стороны, реально излагаются на лекциях (и, тем самым, требуются на экзамене), а с другой — составляют фундамент, без наличия которого невозможно эффективное освоение базовых физических дисциплин.

Коротко прокомментируем книги, использованные при написании настоящего пособия и рекомендуемые для более глубокого ознакомления с предметом.

Наше изложение наиболее близко к принятому в следующем учебнике, давно ставшем классическим:

1. А. Н. Колмогоров, С. В. Фомин. Элементы теории функций и функционального анализа. — Изд. 6-е, испр. — М.: Наука, 1989.

Следующий прекрасный современный учебник, охватывает все разделы данного пособия. Изложение очень сжатое. Местами требует более высого уровня абстракции, чем принят в настоящем курсе. Может использоваться как задачник.

2. А. А. Кириллов, А. Д. Гвишиани. Теоремы и задачи функционального анализа. — Изд. 2-е, перераб. и доп. — М.: Наука, 1988.

Изложение, ориентированное на физиков, и снабжённое физическими примерами, читатель найдёт в книгах:

- 3. М. Рид, Б. Саймон. Методы современной математической физики. Т.1. Функциональный анализ: Пер. с англ. М.: Мир, 1978.
- 4. Р. Рихтмайер. Принципы современной математической физики: Пер. с англ. М.: Мир, 1982.

Следующая книга, написанная для студентов, обучающихся по специальности "Прикладная математика", содержит изложение как основ функционального анализа, так и тех его разделов, которые непосредственно примыкают к прикладным исследованиям. Содержит задачи для самостоятельного решения.

- 5. В. А. Треногин. Функциональный анализ. М.: Наука, 1980.
- В качестве источника задач использовались в основном следующие книги:
- 6. А. Б. Антоневич, П. Н. Князев, Я. В. Радыно. Задачи и упражнения по функциональному анализу. Минск: Вышейшая школа, 1978.

7. Задания к лабораторным работам по курсу "Функциональный анализ и интегральные уравнения" для студентов специальности "математика" /А. Я. Дороговцев, С. Д. Ивасишен, Ю. Г. Кондратьев, А. Ю. Константинов. Киев: Изд-во Киевского ун-та, 1986.

§ 1. Линейные пространства

Непустое множество L элементов x, y, z, \ldots произвольной природы называется *линейным* или *векторным пространством*, если оно удовлетворяет следующим условиям:

- I. Для любых двух элементов $x,y\in L$ однозначно определён третий элемент $z\in L$, называемый их cymmoй и обозначаемый x+y, причем выполняются следующие свойства
 - 1) x + y = y + x [коммутативность];
 - 2) x + (y + z) = (x + y) + z [ассоциативность];
- 3) в L существует такой элемент 0, что x+0=x для всех $x\in L$ [существование нуля];
- 4) для каждого $x \in L$ существует такой элемент -x, что x + (-x) = 0 [существование противоположного элемента].

[Эти четыре свойства можно было высказать короче: в L введена операция сложения, превращающая L в абелеву группу.]

- II. Для любого числа α и любого элемента $x \in L$ определён элемент $\alpha x \in L$, называемый npouseedenuem элемента x на число α , причём выполняются следующие свойства
 - 5) $\alpha(\beta x) = (\alpha \beta) x$;
 - $6) \ 1 \cdot x = x;$
 - 7) $(\alpha + \beta)x = \alpha x + \beta x;$
 - 8) $\alpha(x+y) = \alpha x + \alpha y$.

В зависимости от того, какой запас чисел используется (все комплексные или только действительные), различают комплексные или действительные пространства.

Примеры линейных пространств.

1). Пространства \mathbb{R}^n и \mathbb{C}^n , состоящие из всевозможных (упорядоченных) наборов из n чисел (соответственно — действительных или комплексных). Сложение и умножение определяются формулами

$$(x_1, x_2, \dots, x_n) + (y_1, y_2, \dots, y_n) = (x_1 + y_1, x_2 + y_2, \dots, x_n + y_n),$$

 $\alpha(x_1, x_2, \dots, x_n) = (\alpha x_1, \alpha x_2, \dots, \alpha x_n).$

С этими пространствами вы достаточно хорошо знакомы по курсам алгебры и анализа.

- 2). Непрерывные (действительные или комплексные) функции на некотором отрезке [a,b] с обычными операциями сложения функций и умножения их на числа образуют линейное пространство C[a,b], являющееся одним из важнейших в анализе и уже встречавшееся вам, например, при изучении функциональных рядов.
- 3). Пространство быстроубывающих функций $\mathcal{S}(\mathbb{R}^n)$, с которым вы работали, изучая преобразование Фурье.
- 4). Пространство l_2 , в котором элементами служат последовательности чисел (действительных или комплексных)

$$x = (x_1, x_2, \dots, x_n, \dots),$$

удовлетворяющие условию

$$\sum_{n=1}^{\infty} |x_n|^2 < \infty,\tag{1}$$

с операциями

$$(x_1, x_2, \dots, x_n, \dots) + (y_1, y_2, \dots, y_n, \dots) =$$

$$= (x_1 + y_1, x_2 + y_2, \dots, x_n + y_n, \dots),$$

$$\alpha(x_1, x_2, \dots, x_n, \dots) = (\alpha x_1, \alpha x_2, \dots, \alpha x_n, \dots).$$

является линейным пространством. Тот факт, что сумма двух последовательностей, удовлетворяющих условию (1), также удовлетворяет этому условию, вытекает из элементарного неравенства

$$(a+b)^2 \le 2a^2 + 2b^2.$$

Конечный набор элементов x,y,\ldots,z линейного пространства L называется линейно зависимым, а сами элементы — линейно зависимыми, если существуют такие числа $\alpha,\beta,\ldots,\gamma$, не все равные нулю, что

$$\alpha x + \beta y + \dots + \gamma z = 0.$$

В противном случае эти элементы называются линейно независимыми. Иными словами, элементы x, y, \ldots, z называются линейно независимыми, если из равенства

$$\alpha x + \beta y + \dots + \gamma z = 0$$

вытекает, что $\alpha=\beta=\cdots=\gamma=0$.

Бесконечная система элементов пространства L называется $\mathit{лu}$ - $\mathit{нейно}$ независимой, если любая её конечная подсистема линейно независима.

Если в пространстве L можно найти n линейно независимых элементов, а любые n+1 элементов этого пространства линейно зависимы, то говорят, что L имеет $pasmephocms\ n$. Если же в L можно указать систему из произвольного конечного числи линейно независимых элементов, то говорят, что пространство L бесконечномерно.

Легко понять, что в приведённых выше примерах 2)–4) пространства бесконечномерны, а в примере 1) — имеют размерность n.

Непустое подмножество L' линейного пространства L называется nodnpocmpancmeom, если оно само образует линейное пространство по отношению к опрелелённым в L операциям сложения и умножения на число.

Иначе говоря, $L' \subset L$ есть подпространство, если из $x' \in L'$, $y' \in L'$ следует, что $\alpha x' + \beta y' \in L'$ при любых числах α, β .

Примеры подпространств.

- 1). В любом линейном пространстве L есть два "тривиальных" подпространства: первое состоит из одного нулевого вектора (и поэтому называется нулевым подпространством), второе совпадает со всем L.
- 2). Множество всех многочленов на [a,b] есть подпространство в C[a,b].
- 3). Пространство быстроубывающих функций $\mathcal{S}(\mathbb{R})$ является подпространством в $\mathrm{C}(\mathbb{R})$.

Задачи

- 1. Используя только аксиомы линейного пространства доказать, что в любом линейном пространстве ${\cal L}$
 - а) нулевой элемент единственен;
 - б) для любого $x \in L$ противоположный элемент -x единственен;
- в) для любого $x \in L$ выполняется равенство $-x = (-1) \cdot x$, т. е. противоположный элемент получается из исходного умножением на минус единицу.
- 2. Найти размерность линейного пространства M_{mn} прямоугольных матриц размера $m \times n$.

- 3. Во множестве \mathbb{R}^+ положительных чисел (элементов) введем операции следующим способом. Под "суммой" элементов $x,y\in\mathbb{R}^+$ будем понимать их произведение, а под "произведением" элемента $x\in\mathbb{R}^+$ на вещественное число α будем понимать элемент x^α . Покажите, что при таком определении операций \mathbb{R}^+ превратилось в линейное пространство. Найдите его размерность. Как выглядят в \mathbb{R}^+ "нулевой" и "противоположный" элементы ?
- 4. $\mathit{Кубом}$ в пространстве l_2 будем называть совокупность таких векторов $x = (x_1, x_2, ..., x_n, ...) \in l_2$, каждая координата x_n которых удовлетворяет неравенству $|x_n| < 1$. Доказать, что любой выпуклый многоугольник может быть получен в результате пересечения этого куба с подходящим образом подобранной двумерной плоскостью в l_2 . Можно ли таким же образом получить круг ?

§ 2. Нормированные линейные пространства

Hopmoй в линейном пространстве L называется функционал [т.е. отображение $\|\cdot\|:L\to [0,+\infty)$], удовлетворяющий следующим условиям:

- 1) $\|x\| \ge 0$, причём $\|x\| = 0$, только при x = 0 [положительная определённость нормы];
- 2) $\|x+y\| \le \|x\| + \|y\|$ для любых $x,y \in L$ [неравенство треугольника];
- 3) $\|\alpha x\| = |\alpha| \|x\|$ для любого $x \in L$ и любого числа α [положительная однородность нормы].

Примеры норм.

1). В пространстве \mathbb{R}^n или \mathbb{C}^n любая из следующих формул определяет норму

$$||x|| = \sqrt{\sum_{k=1}^{n} |x_k|^2};$$

$$||x||_1 = \sum_{k=1}^{n} |x_k|;$$

$$||x||_0 = \max_{1 \le k \le n} |x_k|.$$

2). Формула

$$||f|| = \max_{a \le t \le b} |f(t)|$$

задаёт норму в пространстве непрерывных функций C[a,b].

3). В пространстве быстроубывающих функций $\mathcal{S}(\mathbb{R}^n)$ норму можно задать с помощью равенства

$$||f|| = \sqrt{\int_{\mathbb{R}^n} |f(t)|^2 dt}.$$

4). В l_2 норму зададим с помощью равенства

$$||x|| = \sqrt{\sum_{n=1}^{\infty} |x_n|^2}.$$

Говорят, что последовательность точек x_n нормированного линейного пространства L cxodumcs к точке x, если $||x_n - x|| \to 0$ при $n \to \infty$, т. е. если для любого $\varepsilon > 0$ существует номер n_0 такой, что для всех $n > n_0$ выполняется неравенство $||x_n - x|| < \varepsilon$. Обозначение используется обычное: $x_n \to x$.

Точка $x \in L$ называется npedenbhoй точкой множества <math>M, если существует последовательность точек множества M, отличных от x, сходящаяся к x.

3 aмыканием множества M называется объединение множества M и всех его предельных точек.

Множество называется замкнутым, если оно совпадает со своим замыканием. Другими словами, множество M замкнуто, если из того, что последовательность точек x_n множества M сходится к точке x следует, что x принадлежит M.

Множество называется nлоmныm, если его замыкание совпадает со всем пространством.

Пространство называется *сепарабельным*, если в нём существует плотное счётное подмножество. [Напомним, что множество называется *счётным*, если оно допускает взаимно однозначное отображение на множество натуральных чисел (и в этом смысле не очень обширно). Из курса анализа вы знаете, что множество рациональных чисел счётно, а множество вещественных чисел — не счётно.]

До сих пор наше изложение следовало девизу "всё это вы и так знаете, обратите лишь внимание на то, что те же понятия работают и в бесконечномерном случае". Сейчас мы в первый раз столкнёмся с ситуацией, которая не имеет аналогов в конечномерном случае. Другой пример такого рода приведён в задаче 8.

Пример незамкнутого подпространства. Подпространство пространства $C[0,2\pi]$, состоящее из всех многочленов, незамкнуто.

В самом деле, пусть $f(x) = \sin x$. Согласно формуле Тейлора с остаточным членом в форме Лагранжа можем записать

$$f(x) = f(0) + \frac{f'(0)}{1!}x + \dots + \frac{f^{(n)}(0)}{n!}x^n + \frac{f^{(n+1)}(\xi)}{(n+1)!}x^{n+1},$$

где $\xi \in [0, 2\pi]$. Обозначим через $P_n(x)$ сумму первых n+1 членов в правой части этой формулы. Тогда $P_n(x)$ есть многочлен степени n, причём

$$||f - P_n|| = \sup_{x \in [0, 2\pi]} |\sin x - P_n(x)| \le$$

$$\le \sup_{x, \xi \in [0, 2\pi]} \left| \frac{x^{n+1}}{(n+1)!} \frac{d^{n+1}}{d\xi^{n+1}} \sin \xi \right| \le \frac{(2\pi)^{(n+1)}}{(n+1)!} \to 0$$

при $n \to \infty$, т. к. $a^n/n! \to 0$ при $n \to \infty$, для любого a > 0.

Окончательно получаем, что последовательность P_n лежит в подпространстве многочленов, сходится (к функции $\sin x$), но предельная функция не лежит в пространстве многочленов. Следовательно, рассматриваемое подпространство незамкнуто.

Последовательность точек x_n нормированного линейного пространства L называется $\phi y n \partial a m e n m a n b n o v$, если для любого $\varepsilon > 0$ существует номер n_0 такой, что для всех $m, n > n_0$ выполняется неравенство $\|x_m - x_n\| < \varepsilon$.

Несложно показать, что всякая сходящаяся последовательность является фундаментальной. Обратное не всегда верно. В приведённом выше примере последовательность P_n фундаментальна (хотя бы потому, что сходится). Но если бы мы работали в линейном пространстве многочленов, забыв о существовании объемлющего пространства $C[0,2\pi]$, то она не была бы сходящейся: иначе у неё было бы два предела — синус и некоторый многочлен, что невозможно. Причина этого обстоятельства в том, что мы из "хорошего" пространства $C[0,2\pi]$ выбросили часть функций, так что в оставшейся части

образовались "дырки" одной из которых и является синус. Ещё более наглядное представление о пространствах, в которых не всякая фундаментальная последовательность сходится даёт множество рациональных чисел, рассматриваемое как подмножество \mathbb{R}^1 .

"Недырявые" пространства наиболее удобны в работе. Поэтому для них придуман специальный термин: линейное нормированное пространство L называют nonhum, если всякая его фундаментальная последовательность сходится.

Задачи

- 5. Докажите, что в линейном нормированном пространстве всякая сходящаяся последовательность фундаментальна.
- 6. Докажите, что в линейном нормированном пространстве всякая последовательность имеет не более одного предела.
- 7. Докажите, что всякая сходящаяся последовательность ограничена. [*Ограниченным* называется множество, содержащееся в шаре некоторого конечного радиуса.]
- 8. Докажите, что шар единичного радиуса в l_2 содержит бесконечно много попарно непересекающихся открытых шаров радиуса $\sqrt{2}/4$. [Открытым шаром радиуса r с центром в точке x линейного нормированного пространства L называется совокупность тех точек $y \in L$, для которых справедливо неравенство ||x-y|| < r.]
- 9. Рассмотрим пространство всех ограниченных последовательностей $x = (x_1, x_2, \dots, x_n, \dots)$ действительных чисел с операциями

$$(x_1, x_2, \dots, x_n) + (y_1, y_2, \dots, y_n) = (x_1 + y_1, x_2 + y_2, \dots, x_n + y_n),$$

 $\alpha(x_1, x_2, \dots, x_n) = (\alpha x_1, \alpha x_2, \dots, \alpha x_n).$

и нормой

$$||x|| = \sup_{n} |x_n|.$$

Докажите, что оно не является сепарабельным.

§ 3. Лебеговские функциональные пространства

Пусть $X \in \mathbb{R}^n$, $1 \leq p < +\infty$. Лебеговским функциональным пространством $L_p(X)$ называется совокупность всех вещественнозначных (соответственно — комплексно-значных) измеримых по Лебегу функций $f: X \to \mathbb{R}$ (соответственно — $f: X \to \mathbb{C}$), таких, что

 $|f|^p$ интегрируема на X, т.е.

$$\int_X |f(x)|^p \, dx < +\infty.$$

Число

$$||f||_{L_p(X)} = \left\{ \int_X |f(x)|^p \, dx \right\}^{1/p} \tag{2}$$

называется *нормой* функции f в пространстве $L_p(X)$.

Обсудим наиболее важные для последующего изложения свойства лебеговских пространств.

1). (Неравенство Гёльдера). Пусть p > 1, q > 1, 1/p + 1/q = 1 и $f \in L_p(X)$, $g \in L_q(X)$. Тогда $fg \in L_1(X)$ и выполнено неравенство $\|fg\|_{L_1(X)} \le \|f\|_{L_p(X)} \|g\|_{L_q(X)}$, m. e.

$$\int_X |f(x)g(x)| \, dx \le \left\{ \int_X |f(x)|^p \, dx \right\}^{1/p} \left\{ \int_X |g(x)|^q \, dx \right\}^{1/q}.$$

Доказательство неравенства Гёльдера будет дано в следующем параграфе, а здесь мы продолжим перечисление свойств лебеговских пространств.

2). (Неравенство Минковского). Если $p \ge 1$ и $f, g \in L_p(X)$, то $f + g \in L_p(X)$, и имеет место неравенство $||f + g||_{L_p(X)} \le ||f||_{L_p(X)} + ||g||_{L_p(X)}$, т. е.

$$\left\{ \int_X |f(x) + g(x)|^p \, dx \right\}^{1/p} \le \left\{ \int_X |f(x)|^p \, dx \right\}^{1/p} + \left\{ \int_X |g(x)|^p \, dx \right\}^{1/p}.$$

Приступая к доказательству неравенства Минковского, заметим, что при p=1 оно очевидно. Если p>1, то можем написать

$$\int_X |f(x) + g(x)|^p dx \le$$

$$\le \int_X |f(x) + g(x)|^{p-1} |f(x)| dx + \int_X |f(x) + g(x)|^{p-1} |g(x)| dx.$$

Найдём положительное число q из условия 1/p+1/q=1 и применим неравенство Гёльдера к каждому из интегралов, стоящих в

правой части последней формулы. Тогда

$$\int_{X} |f(x) + g(x)|^{p} dx \leq$$

$$\leq \left\{ \int_{X} |f(x) + g(x)|^{q(p-1)} dx \right\}^{1/q} \left\{ \int_{X} |f(x)|^{p} dx \right\}^{1/p} +$$

$$+ \left\{ \int_{X} |f(x) + g(x)|^{q(p-1)} dx \right\}^{1/q} \left\{ \int_{X} |g(x)|^{p} dx \right\}^{1/p} =$$

$$= \left\{ \int_{X} |f(x) + g(x)|^{p} dx \right\}^{1/q} \left[||f||_{L_{p}(X)} + ||g||_{L_{p}(X)} \right].$$

Последнее равенство здесь написано в силу того, что q(p-1) = p.

Разделив начальный и конечный члены полученного неравенства на

$$\left\{ \int_X |f(x) + g(x)|^p \, dx \right\}^{1/q}$$

и учтя, что 1-1/q=1/p, получим

$$\left\{ \int_X |f(x) + g(x)|^p \, dx \right\}^{1 - 1/q} = \|f + g\|_{L_p(X)} \le \|f\|_{L_p(X)} + \|g\|_{L_p(X)},$$

что и завершает доказательство неравенства Минковского.

Следующее свойство лебеговских функциональных пространств существенно опирается на неравенство Минковского:

3). Для любого $p \ge 1$ пространство $L_p(X)$ с введённой выше нормой $\|\cdot\|_{L_p(X)}$ является линейным нормированным пространством.

Для доказательства заметим, что если $f,g \in L_p(X)$, то для любого числа α функция αf лежит в $L_p(X)$ (что очевидно), и f+g лежит в $L_p(X)$ (в соответствии с неравенством Минковского). Неотрицательность нормы $\|\cdot\|_{L_p(X)}$ очевидна. Условие " $\|f\|_{L_p(X)}=0$ только при f=0" выполняется в силу принятого в теории интеграла Лебега соглашения, что функция f равна нулю на множестве X если и только если f(x)=0 для почти всех $x\in X$. Неравенство треугольника для нормы $\|\cdot\|_{L_p(X)}$ выполняется в силу неравенства Минковского. Положительная однородность нормы $\|\cdot\|_{L_p(X)}$ видна непосредственно из определения (2).

Конструкция интеграла Лебега ценна не столько тем, что она позволяет расширить класс интегрируемых функций по сравнению

с интегралом Римана (известны ещё более общие конструкции интеграла), сколько тем, что интеграл Лебега обладает наиболее естественными и удобными свойствами. Одно из них, принимаемое нами без доказательства, таково:

4). (Полнота лебеговских пространств). Для любого $p \ge 1$ линейное нормированное пространство $L_p(X)$ является полным, другими словами — всякая фундаментальная последовательность функций из $L_p(X)$ сходится к некоторой функции из $L_p(X)$ или — , ещё более подробно, если $f_k \in L_p(X)$ и для каждого $\varepsilon > 0$ существует номер n_o такой, что для всех $k, l \ge n_0$ выполняется неравенство $\|f_k - f_l\|_{L_p(X)} < \varepsilon$, то существует функция $f \in L_p(X)$ такая, что $\|f_k - f\|_{L_p(X)} \to 0$ при $k \to \infty$.

В случае, когда X совпадает с отрезком во множестве вещественных чисел, мы неоднократно пользовались следующим свойством при изучении рядов Фурье. Сейчас мы сформулируем его в общем виде без доказательства.

5). (Плотность бесконечно дифференцируемых функций в $L_p(X)$). Для любого $p \ge 1$ множество бесконечно дифференцируемых функций плотно в $L_p(X)$, иными словами — для любой функции $f \in L_p(X)$ и любого $\varepsilon > 0$ найдётся функция $f_\varepsilon \in C^\infty \cap L_p(X)$ такая, что $\|f - f_\varepsilon\|_{L_p(X)} < \varepsilon$.

К свойству 5) тесно примыкает последнее из интересующих нас свойств лебеговских пространств, которое мы также приведём без доказательства:

6). (Сепарабельность лебеговских пространств). Для любого $p \ge 1$ пространство $L_p(X)$ сепарабельно, иначе говоря, в $L_p(X)$ существует счётное плотное множество функций.

Задачи

- 10. Бесконечно дифференцируемую функцию $\omega : \mathbb{R}^n \to \mathbb{R}$ называют ycpedняющим ядром Соболева, если она обладает следующими свойствами:
 - а). $\omega(x) \ge 0$ для всех $x \in \mathbb{R}^n$;
 - б). $\omega(x) = 0$ для всех $x \in \mathbb{R}^n$ таких, что $|x| \ge 1$;
 - B). $\int_{\mathbb{R}^n} \omega(x) \, dx = 1.$

Для функции $f\in L_1(\mathbb{R}^n)$ и положительного числа arepsilon определим

новую функцию $f_{\varepsilon}: \mathbb{R}^n \to \mathbb{R}$ с помощью равенства

$$f_{\varepsilon} = \int_{\mathbb{R}^n} \omega\left(\frac{y-x}{\varepsilon}\right) f(y) \, dy.$$

Докажите, что функция f_{ε} бесконечно дифференцируема и $||f_{\varepsilon} - f||_{L_1(\mathbb{R}^n)} \to 0$ при $\varepsilon \to 0$. Обратите внимание, что тем самым вы доказали плотность бесконечно дифференцируемых функций в пространстве $L_1(\mathbb{R}^n)$.

11. Используя плотность бесконечно дифференцируемых функций в пространстве $L_1([a,b])$ и теорему Вейерштрасса о равномерном приближении непрерывной функции алгебраическими многочленами, докажите, что множество алгебраических многочленов с рациональными коэффициентами плотно в $L_1([a,b])$. Докажите, что множество алгебраических многочленов с рациональными коэффициентами счётно. Обратите внимание, что тем самым вы доказали сепарабельность пространства $L_1([a,b])$.

§ 4. Доказательство неравенства Гёльдера

Сначала докажем одно вспомогательное утверждение.

Лемма. Пусть $p>1,\ q>1\ u\ 1/p+1/q=1.$ Тогда для любых неотрицательных вещественных чисел $a\ u\ b\ cnpase$ дливо неравенство

 $ab \le \frac{a^p}{p} + \frac{b^q}{q}.$

Доказательство. Рассмотрим функцию

$$f(x) = \frac{x^p}{p} + \frac{1}{q} - x,$$

определённую для положительных вещественных значений x. Поскольку $f'(x) = x^{p-1} - 1$, то f' зануляется в единственной точке — x = 1. Учитывая, что

$$\lim_{x \to +0} f(x) = \frac{1}{q} > 0, \quad \lim_{x \to +\infty} f(x) = +\infty,$$

а f(1) = 1/p + 1/q - 1 = 0, находим, что $f(x) \ge 0$ для всех $x \ge 0$. Полагая в последнем неравенстве $x = ab^{-q/p}$, получим

$$f(ab^{-q/p}) = \frac{a^p b^{-q}}{p} + \frac{1}{q} - ab^{-q/p} \ge 0$$

или

$$\frac{a^p}{p} + \frac{b^q}{q} \ge ab^{q-q/p} = ab.$$

Последняя формула, написанная с учётом того, что q-q/p=q-q(1-1/q)=1 и завершает доказательство леммы.

Приступая к доказательству неравенства Гёльдера, введём обозначения

$$A = \left\{ \int_X |f(x)|^p \, dx \right\}^{1/p}, \quad B = \left\{ \int_X |g(x)|^q \, dx \right\}^{1/q}.$$

Как известно, интеграл Лебега от неотрицательной функции равен нулю если и только если эта функция почти всюду равна нулю. Поэтому если A=0, то функция $|f|^p$ (а значит — и f) равняется нулю почти всюду в X. Но тогда и функция fg равняется нулю почти всюду в X, а значит —

$$\int_X f(x)g(x) \, dx = 0.$$

Таким образом, в случае A=0 обе части неравенства Гёльдера обращаются в ноль и поэтому оно справедливо.

Случай B=0 рассматривается аналогично.

Если же $A \neq 0$ и $B \neq 0$, то подставив в неравенство $a^p/p + b^q/q \geq ab$ значения $a = |f(x)|/A, \ b = |g(x)|/B$ и проинтегрировав по X, получим

$$\frac{\int_X |f(x)g(x)| \, dx}{AB} \le \frac{\int_X |f(x)|^p \, dx}{pA^p} + \frac{\int_X |g(x)|^q \, dx}{qB^q} = \frac{1}{p} + \frac{1}{q} = 1,$$

что с точностью до обозначений совпадает с неравенством Гёльдера.

Задача

12. Пусть $p>1,\ q>1$ и 1/p+1/q=1. Докажите, что для любых комплексных чисел x_1,\ldots,x_n и y_1,\ldots,y_n справедливы следующие неравенство Γ ёль дера для сумм

$$\sum_{k=1}^{n} |x_k y_k| \le \left\{ \sum_{k=1}^{n} |x_k|^p \right\}^{1/p} \left\{ \sum_{k=1}^{n} |y_k|^q \right\}^{1/q}$$

и неравенство Минковского для сумм

$$\left\{ \sum_{k=1}^{n} |x_k + y_k|^p \right\}^{1/p} \le \left\{ \sum_{k=1}^{n} |x_k|^p \right\}^{1/p} + \left\{ \sum_{k=1}^{n} |y_k|^p \right\}^{1/p}.$$

§ 5. Линейные пространства со скалярным произведением: евклидовы и унитарные

Cкалярным произведением в линейном пространстве L называется функция (x,y), принимающая числовые значения, определённая для каждой пары элементов $x,y\in L$ и удовлетворяющая следующим условиям:

- 1) для любых трёх элементов x_1 , x_2 и y пространства L и любых чисел α_1, α_2 справедливо равенство $(\alpha_1 x_1 + \alpha_2 x_2, y) = \alpha_1(x_1, y) + \alpha_2(x_2, y)$ [линейность скалярного произведения по первому аргументу];
- 2) для любых $x, y \in L$ справедливо равенство $(x, y) = \overline{(y, x)}$, где черта означает комплексное сопряжение [эрмитова симметричность];
- 3) для любого $x \in L$ имеем $(x, x) \ge 0$, причём (x, x) = 0 только при x = 0 [положительная определённость скалярного произведения].

Действительное линейное пространство со скалярным произведением называется *евклидовым*, комплексное — *унитарным*.

Примеры пространств со скалярным произведением.

1). Формула

$$(x,y) = \sum_{k=1}^{n} x_k \overline{y_k}$$

задаёт скалярное произведение в пространствах \mathbb{R}^n и \mathbb{C}^n .

2). Формула

$$(x,y) = \sum_{k=1}^{+\infty} x_k \overline{y_k}$$

задаёт скалярное произведение в пространстве l_2 .

3). В пространстве $L_2(X)$ скалярное произведение может быть задано по формуле

$$(f,g) = \int_X f(x)\overline{g(x)} dx.$$

Следующая лемма выражает одно из важнейших свойств скалярного произведения.

Лемма (неравенство Коши—Буняковского). Для любых элементов x и y линейного пространства со скалярным произведением выполняется неравенство

$$|(x,y)|^2 \le (x,x)(y,y).$$

Доказательство. Допустим сначала, что x и y таковы, что (x,y) является вещественным числом. Тогда для любого вещественного α получим

$$0 \le (x + \alpha y, x + \alpha y) = (x, x) + 2\alpha(x, y) + \alpha^2(y, y).$$

Следовательно, квадратный трёхчлен от переменной α , стоящий в правой части последней формулы, имеет не более одного вещественного корня. Значит его дискриминант неположителен, т. е. $(x,y)^2 - (x,x)(y,y) \leq 0$, что и доказывает неравенство Коши—Буняковского в рассматриваемом случае.

Пусть теперь (x,y) является комплексным числом. Запишем его в тригонометрическом виде $(x,y)=re^{i\varphi}$ и введём в рассмотрение вспомогательный вектор $\tilde{x}=e^{-i\varphi}x$. Тогда $(\tilde{x},y)=e^{-i\varphi}(x,y)=e^{-i\varphi}e^{i\varphi}r=r$, а значит (\tilde{x},y) является вещественным числом. Поэтому, используя доказанный выше частный случай неравенства Коши—Буняковского и пользуясь тем, что $(\tilde{x},\tilde{x})=e^{-i\varphi}(x,\tilde{x})=e^{-i\varphi}(\bar{x},x)=e^{-i\varphi}e^{i\varphi}(x,x)=(x,x)$, будем иметь

$$|(x,y)|^2 = r^2 = (\tilde{x},y)^2 \le (\tilde{x},\tilde{x})(y,y) = (x,x)(y,y).$$

Лемма доказана.

Следующая лемма показывает, что всякое линейное пространство со скалярным произведением может быть превращено в нормированное.

Лемма. Величина $||x|| = \sqrt{(x,x)}$ обладает свойствами нормы.

Доказательство. Неотрицательность и положительная однородность функционала $||x|| = \sqrt{(x,x)}$ очевидны. Следующие вычисления, существенно использующие неравенство Коши-Буняковского, показывают, что для него выполнено также и неравенство треуголь-

ника:

$$||x + y||^2 = (x + y, x + y) = (x, x) + (y, x) + (x, y) + (y, y) =$$

$$= (x, x) + 2\operatorname{Re}(x, y) + (y, y) \le$$

$$\le (x, x) + 2\sqrt{(x, x)(y, y)} + (y, y) = (||x|| + ||y||)^2.$$

Замечание. Скалярное произведение является функцией непрерывной по первому аргументу, а именно: если $x_n \to x$, то $(x_n, y) \to (x, y)$ для любого вектора y.

Доказательство немедленно вытекает из неравенства Коши-Буняковского: $|(x_n, y) - (x, y)| = |(x_n - x, y)| \le ||x_n - x|| ||y|| \to 0.$

Следующая лемма выражает ещё одно полезное свойство пространств со скалярным произведением.

Лемма (равенство параллелограмма). Если норма в линейном пространстве L порождена скалярным произведением, то для любых $x,y \in L$ выполняется равенство

$$||x + y||^2 + ||x - y||^2 = 2||x||^2 + 2||y||^2,$$
 (3)

называемое равенством параллелограмма.

Доказательство проводится прямым вычислением:

$$||x+y||^2 + ||x-y||^2 = (x+y,x+y) + (x-y,x-y) =$$

$$= (x,x+y) + (y,x+y) + (x,x-y) - (y,x-y) =$$

$$= \overline{(x+y,x)} + \overline{(x+y,y)} + \overline{(x-y,x)} - \overline{(x-y,y)} =$$

$$= \overline{(x,x)} + \overline{(y,x)} + \overline{(x,y)} + \overline{(y,y)} + \overline{(x,x)} - \overline{(y,x)} - \overline{(x,y)} + \overline{(y,y)} =$$

$$= 2||x||^2 + 2||y||^2.$$

Заметим, что в параллелограмме, построенном на векторах $x,y \in L$, диагонали задаются векторами x+y и x-y. Поэтому равенство (3) является бесконечномерным обобщением следующего известного из школьного курса планиметрии факта: сумма квадратов диагоналей параллелограмма равна сумме квадратов длин всех его сторон.

Можно показать, что и наоборот, если в нормированном линейном пространстве выполняется равенство параллелограмма, то в нём можно ввести такое скалярное произведение, что будет справедливо равенство $||x|| = \sqrt{(x,x)}$, т. е. можно ввести скалярное произведение, согласованное с нормой. Интересующиеся могут найти доказа-

тельство этого факта, например, в учебнике А. Н. Колмогорова и С. В. Фомина.

Пространство со скалярным произведением называется $\mathit{гильбер}$ - $\mathit{товым}$, если оно полно относительно нормы $\|x\| = \sqrt{(x,x)}$.

Задачи

13. Докажите, что в унитарном пространстве справедливо равенство

$$(x,y) = \frac{1}{N} \sum_{k=1}^{N} \|x + e^{2\pi i k/N} y\|^2 e^{2\pi i k/N}$$
 при $N \ge 3$.

14. Докажите, что в унитарном пространстве справедливо равенство

$$(x,y) = \frac{1}{2\pi} \int_0^{2\pi} ||x + e^{i\theta}y||^2 e^{i\theta} d\theta.$$

15. Докажите, что в унитарном пространстве справедливо так называемое *поляризационное тождество*

$$(x,y) = \frac{1}{4} [(\|x+y\|^2 - \|x-y\|^2) - i(\|x+iy\|^2 - \|x-iy\|^2)].$$

- 16. Докажите, что в пространстве C[a,b] нельзя ввести скалярное произведение, согласованное с нормой этого пространства.
- 17. Докажите, что в пространстве $L_p[a,b]$ можно ввести скалярное произведение, согласованное с нормой этого пространства, если и только если p=2.

§ 6. Процесс ортогонализации Грама—Шмидта

Векторы x и y пространства со скалярным произведением L называются opmozonaльными, если (x,y)=0. В этом случае пишут $x\bot y$.

Процесс ортогонализации Грама—Шмидта позволяет превратить линейно независимую систему векторов в ортонормированную. Вы уже встречались с ним в курсе линейной алгебры. Это обстоятельство позволяет нам сразу перейти к формальному изложению сути дела.

Теорема. Если $x_1, x_2, \ldots, x_n, \ldots$ — счётная система линейно независимых векторов в линейном пространстве со скалярным про-изведением L, то новые последовательности

$$y_1 = x_1$$
 $z_1 = y_1/||y_1||$
 $y_2 = x_2 - (x_2, z_1)z_1$ $z_2 = y_2/||y_2||$
 \dots
 $y_n = x_n - \sum_{k=1}^{n-1} (x_n, z_k)z_k$ $z_n = y_n/||y_n||$
 \dots

обладают следующими свойствами:

- 1) система $z_1, z_2, \ldots, z_n, \ldots$ ортонормирована, т. е. любые два $e\ddot{e}$ вектора ортогональны и каждый вектор имеет единичную длину;
- 2) для любого $n \in \mathbb{N}$ линейная оболочка векторов z_1, z_2, \ldots, z_n совпадает с линейной оболочкой векторов x_1, x_2, \ldots, x_n .

Доказательство. Поскольку норма каждого из векторов z_n , очевидно, равна единице, то для доказательства первого утверждения достаточно убедиться, что $(z_m, z_n) = 0$ при любых $m \neq n$. Для этого достаточно проверить, что $(y_m, z_n) = 0$ при любых n < m.

Так как $(y_2, z_1) = (x_2 - (x_2, z_1)z_1, z_1) = (x_2, z_1) - (x_2, z_1)(z_1, z_1) = (x_2, z_1) - (x_2, z_1) = 0$, то наше утверждение верно для n = 1, m = 2. Допустим, что оно верно для всех $n < m \le k$, где k — некоторое натуральное число. Убедимся, что оно верно и для всех n < k + 1:

$$(y_{k+1}, z_n) = (x_{k+1} - \sum_{p=1}^k (x_{k+1}, z_p) z_p, z_n) =$$

$$= (x_{k+1}, z_n) - \sum_{p=1}^k (x_{k+1}, z_p) (z_p, z_n) = (x_{k+1}, z_n) - (x_{k+1}, z_n) = 0.$$

В силу метода математической индукции, первое утверждение теоремы доказано.

Приступая к доказательству второго утверждения теоремы, обозначим через $L[w_1,w_2,\ldots,w_k]$, линейную оболочку векторов w_1 , w_2,\ldots,w_k . Поскольку каждый из векторов z_1,z_2,\ldots,z_n является линейной комбинацией векторов x_1,x_2,\ldots,x_n , то, очевидно, $L[z_1,z_2,\ldots,z_n]\subset L[x_1,x_2,\ldots,x_n]$. Противоположное включение докажем с помощью индукции. Базой индукции будет очевидное включение $L[z_1]\supset L[x_1]$. Чтобы сделать шаг индукции, допустим, что для некоторого k справедливо включение $L[z_1,\ldots,z_k]\supset L[x_1,\ldots,x_k]$ и убедимся, что оно же имеет место и для номера k+1. Для этого достаточно проверить, что $x_{k+1}\in L[z_1,\ldots,z_{k+1}]$. Но это непосредственно вытекает из следующей формулы, написанной с учётом предположения индукции:

$$x_{k+1} = y_{k+1} + \sum_{p=1}^{k} (x_{k+1}, z_p) z_p =$$

$$= \|z_{k+1}\| z_{k+1} + \sum_{p=1}^{k} (x_{k+1}, z_p) z_p \in L[z_1, \dots, z_{k+1}].$$

Теорема доказана.

Для ненулевых векторов x и y евклидова пространства введём понятие yгna, как такого числа φ из интервала $[0,\pi]$, для которого выполняется равенство

$$\cos \varphi = \frac{(x,y)}{\|x\| \|y\|}.$$

Ясно, что x и y ортогональны если и только если $\varphi = \pi/2$.

Задачи

- 18. Применяя процесс ортогонализации Грама Шмидта, ортогонализуйте мономы $1, x, x^2$ и x^3 в следующих пространствах:
- а) пространстве функций $f:[0,+\infty) \to \mathbb{R}$ со скалярным произведением

$$(f,g) = \int_{0}^{+\infty} f(x)g(x)e^{-x} dx;$$

б) пространстве функций $f:\mathbb{R} \to \mathbb{R}$ со скалярным произведением

$$(f,g) = \int_{-\infty}^{+\infty} f(x)g(x)e^{-x^2} dx.$$

19. Примените процесс ортогонализации Грама — Шмидта к последовательности мономов $1, z, z^2, \ldots$ в пространствах со следую-

щими скалярными произведениями:

a)
$$(f,g) = \iint_{|z| \le R} f(z) \overline{g(z)} \, dx dy;$$

a)
$$(f,g) = \iint_{|z| \le R} f(z)\overline{g(z)} \, dx dy;$$
 6)
$$(f,g) = \iint_{\mathbb{C}} f(z)\overline{g(z)} e^{-|z|^2} \, dx dy.$$

Здесь подразумевается, что x и y являются соответственно вещественной и мнимой частями комплексного числа z.

20. Предполагая, что $0 < t_1 < t_2 < ... < t_n < 1$, ортонормируйте п кусочно—постоянных функций

$$x_k(t) = \begin{cases} 1, & \text{если } 0 \le t \le t_k; \\ 0, & \text{если } t_k < t \le 1, \end{cases}$$

(k=1,2,...,n) в евклидовом пространстве $L_2[0,1]$.

- Найдите углы треугольника, образованного элементами $x_1(t) \equiv 0, x_2(t) \equiv \sin \pi t, x_3(t) \equiv \cos \pi t$ в евклидовом пространстве $L_2[-1,1].$
- 22. Найдите углы треугольника, образованного векторами $x_1(t) \equiv$ $0, x_2(t) \equiv t, x_3(t) \equiv t^2$ в евклидовом пространстве $L_2[-1, 1]$.
- 23. Следуя Н. Винеру, определим в пространстве $L_2[0,+\infty)$ кривую $\mathbb{R} \ni \alpha \mapsto f_{\alpha} \in L_2[0,+\infty)$, где

$$f_{\alpha}(t) = \begin{cases} 1, & \text{если} \quad 0 \le t \le \alpha; \\ 0, & \text{если} \quad t > \alpha, \end{cases}$$

возникающую при изучении броуновского движения. Найдите углы между двумя хордами кривой f_{α} , если:

- а) хорды имеют общий конец и направлены в разные стороны;
- б) хорды имеют общий конец и направлены в одну сторону.

§ 7. Приближение векторами подпространства и ортогональное проектирование

Если S — подпространство в линейном пространстве со скалярным произведением L, то вектор $x \in S$ называется вектором наилучwero npubnuжehus для вектора $y \in L$ посредством векторов подпространства S, или ближайшим к y вектором подпростарнства S, если для любого вектора $z \in S$ выполнено неравенство $\|y-x\| \leq \|y-z\|$. Другими словами, $x \in S$ называется ближайшим к y вектором, если

$$||y - x|| = \inf_{z \in S} ||y - z||.$$

Лемма. Пусть H — гильбертово пространство, S — его замкнутое подпространство, и пусть $y \in H$. Тогда в S существует единственный вектор x, ближайший κ y.

Доказательство. Пусть

$$d = \inf_{x \in S} \|y - x\|.$$

Выберем последовательность x_1, x_2, \dots векторов из S, такую, что $\|y - x_n\| \to d$.

Применив равенство параллелограмма к векторам $y-x_m$ и $y-x_n,$ получим

$$||x_n - x_m||^2 = ||(y - x_m) - (y - x_n)||^2 =$$

$$= 2||y - x_m||^2 + 2||y - x_n||^2 - ||2y - x_m - x_n||^2.$$
(4)

Так как S является подпространством, то $\frac{1}{2}(x_m + x_n) \in S$, а значит

$$||2y - x_m - x_n||^2 = 4||y - \frac{x_m + x_n}{2}||^2 \ge 4d^2.$$

С другой стороны, если m и n достаточно велики, то $||y-x_m||^2 \le d^2 + \varepsilon$ и $||y-x_n||^2 \le d^2 + \varepsilon$. С учётом трёх последних неравенств, из (4) получаем $||x_n-x_m||^2 \le 4(d^2+\varepsilon)-4d^2=4\varepsilon$.

Таким образом, последовательность x_1, x_2, \ldots фундаментальна. В силу полноты пространства H она сходится к некоторому вектору $x \in H$. Но так как S замкнуто, то x содержится в S. Воспользовавшись известной нам непрерывностью скалярного произведения (а значит и нормы), получим $\|y - x\| = d$. Тем самым существование ближайшего элемента доказано.

Единственность вытекает опять же из равенства параллелограмма. В самом деле, если $x\in S$ и $\widetilde{x}\in S$ таковы, что $d=\|y-x\|=\|y-\widetilde{x}\|,$ то $\|x-\widetilde{x}\|^2=2\|x-y\|^2+2\|\widetilde{x}-y\|^2-\|2y-x-\widetilde{x}\|^2\leq 4d^2-4d^2=0.$ Лемма доказана.

Отметим, что из доказательства очевидно, что утверждение леммы вообще говоря перестаёт быть верным для неполных пространств H и незамкнутых подпространств S.

Если S — подпространство в линейном пространстве со скалярным произведением L, то вектор $x \in S$ называется ортогональной проекцией вектора $y \in L$ на подпространство S, если вектор y - x ортогонален S, т.е. если $y - x \perp z$ для любого $z \in S$.

Следующее утверждение показывает, что ортогональная проекция и вектор наилучшего приближения — это одно и то же.

Лемма. Eсли S — nodnpocmpaнcmво в линейном npocmpaнcmве со скалярным npoussedenuem L u $y \in L$, mo следующие утверждения эквивалетны:

- а) вектор $x \in S$ является ортогональной проекцией вектора y на подпространство S;
- б) $x \in S$ является ближайшим к y вектором подпространства S.

Доказательство основано на вычислении

$$||y - z||^2 = (y - z, y - z) = (y - x + (x - z), y - x + (x - z)) =$$

$$= (y - x, y - x) + (y - x, x - z) + (x - z, y - x) + (x - z, x - z) = (5)$$

$$= ||y - x||^2 + 2\operatorname{Re}(y - x, x - z) + ||x - z||^2,$$

справедливом для любых $x, y, z \in L$.

В самом деле, если $x \in S$ является ортогональной проекцией вектора y на S, то средний член в последней строке равенства (5) равен нулю для всех $z \in S$ и мы получаем $\|y-z\|^2 = \|y-x\|^2 + \|x-z\|^2 \ge \|y-x\|^2$ для всех $z \in S$, т. е. $x \in S$ является ближайшим к y вектором подпространства S.

И наоборот, если $x \in S$ является ближайшим к y вектором подпространства S, то мы знаем, что для любого $z \in S$ функция вещественного переменного t, определённая формулой $f(t) = \|y - x + tz\|^2$, имеет минимум при t = 0. Значит, f'(0) = 0. Но, согласно (5),

$$f'(0) = \lim_{t \to 0} \frac{\|y - x + tz\|^2 - \|y - x\|^2}{t} = 2\operatorname{Re}(y - x, z).$$

Поэтому Re(y-x,z)=0. Заменяя z на iz, получаем Im(y-x,z)=0. Итак, (y-x,z)=0 для всех $z\in S$, т. е. $x\in S$ является ортогональной проекцией вектора y на подпространство S. Лемма доказана.

Если S — подпространство в линейном пространстве со скалярным произведением L, то совокупность всех векторов $x \in L$, орто-

гональных к каждому вектору $y \in S$ обозначают символом S^{\perp} и называют *ортогональным дополнением* к S.

Говорят, что линейное пространство L является npямой cyммой своих подпространств S и T, если любой вектор $x \in L$ может быть, и к тому же единственным образом, представлен в виде суммы векторов $y \in S$ и $z \in T$: x = y + z.

Лемма. Пусть H — гильбертово пространство, S — его замкнутое подпространство. Тогда H есть прямая сумма S и S^{\perp} .

Доказательство. Пусть $y \in H$. Обозначим через x ближайшую к y точку подпространства S. Согласно предыдущей лемме, вектор z = y - x лежит в S^{\perp} , что и доказывает возможность представить произвольный вектор из H в виде суммы векторов из S и S^{\perp} : y = x + z.

Чтобы убедиться в единственности такого разложения, допустим, что $x+z=y=\tilde{x}+\tilde{z}$, где $x,\tilde{x}\in S,\,z,\tilde{z}\in S^\perp$. Тогда левая часть равенства $x-\tilde{x}=z-\tilde{z}$ есть вектор из S, а правая — из S^\perp . Значит, $(x-\tilde{x},x-\tilde{x})=(x-\tilde{x},z-\tilde{z})=0$ и $x=\tilde{x}$. Аналогично убеждаемся, что $z=\tilde{z}$. Единственность разложения доказана.

Задачи

- 24. В пространстве $L_2[-1,1]$ найдите ортогональную проекцию функции e^{-x} на подпространство, состоящее из всех симметричных функций.
- 25. В пространстве $L_2[0,1]$ найдите ортогональные дополнения к следующим подпространствам:
 - а) многочленов от x;
 - б) многочленов от x^2 ;
 - в) многочленов с нулевым свободным членом;
 - г) многочленов с нулевой суммой коэффициентов;
 - д) функций, равных нулю при $x \le 1/2$;
 - е) функций, равных нулю при x = 1/2.
- 26. Пусть L линейное пространство со скалярным произведением и S его подпространство. Докажите, что
 - а) S^{\perp} является замкнутым подпространством в L;
 - б) $(S^{\perp})^{\perp}$ совпадает с замыканием S.

§ 8. Проектирование на конечномерное подпространство. Неравенство Бесселя

Вопросы существования и единственности ортогональной проекции вектора на подпространство исчерпывающим образом рассмотрены в предыдущем параграфе. Однако, если это подпространство конечномерно, то о проекции можно получить дополнительную информацию, что мы и сделаем в этом параграфе.

Пусть S — конечномерное подпространство в линейном пространстве со скалярным произведением L. Обозначим через x_1, x_2, \ldots, x_n ортонормированный базис в S.

Теорема. Для любого вектора $y \in L$ вектор

$$x = \sum_{k=1}^{n} \lambda_k x_k \tag{6}$$

с коэффициентами, вычисленными по формуле $\lambda_k = (y, x_k)$, является ортогональной проекцией вектора у на подпространство S. При этом $||y||^2 = ||x||^2 + ||y - x||^2$.

Доказательство. Любой вектор $z \in S$ может быть разложен по базису x_1, x_2, \ldots, x_n :

$$z = \sum_{k=1}^{n} \alpha_k x_k.$$

Умножая каждую часть последней формулы на x_m и пользуясь ортонормированностью базиса x_1, x_2, \ldots, x_n , получим: $(z, x_m) = \alpha_m$. Кроме того,

$$||z||^{2} = \left(\sum_{j=1}^{n} \alpha_{j} x_{j}, \sum_{k=1}^{n} \alpha_{k} x_{k}\right) =$$

$$= \sum_{j=1}^{n} \alpha_{j} \left(x_{j}, \sum_{k=1}^{n} \alpha_{k} x_{k}\right) = \sum_{j=1}^{n} \alpha_{j} \left(\sum_{k=1}^{n} \alpha_{k} x_{k}, x_{j}\right) =$$

$$= \sum_{j=1}^{n} \alpha_{j} \left[\sum_{k=1}^{n} \overline{\alpha_{k}} (\overline{x_{k}}, x_{j})\right] = \sum_{j=1}^{n} |\alpha_{j}|^{2}.$$

Значит

$$||y - z||^{2} = (y - z, y - z) = (y, y) - (z, y) - (y, z) + (z, z) =$$

$$= ||y||^{2} - \sum_{k=1}^{n} \alpha_{k}(x_{k}, y) - \sum_{k=1}^{n} \overline{\alpha_{k}}(y, x_{k}) + ||z||^{2} =$$

$$= ||y||^{2} - \sum_{k=1}^{n} \alpha_{k} \overline{\alpha_{k}} - \sum_{k=1}^{n} \overline{\alpha_{k}} \alpha_{k} + \sum_{k=1}^{n} |\alpha_{k}|^{2} \pm \sum_{k=1}^{n} |\lambda_{k}|^{2} =$$

$$= \sum_{k=1}^{n} |\alpha_{k} - \lambda_{k}|^{2} + ||y||^{2} - \sum_{k=1}^{n} |\lambda_{k}|^{2}.$$

Последнее выражение будет минимально если и только если первая сумма в нём равна нулю, т. е. если и только если $\alpha_k = \lambda_k$ для всех $k = 1, 2, \ldots, n$. Тем самым разложение (6) доказано. Но тогда

$$||y - x||^2 = ||y||^2 - \sum_{k=1}^n |\lambda_k|^2 = ||y||^2 - ||x||^2.$$

Теорема доказана.

Пусть x_1, \ldots, x_n, \ldots — ортонормированная система в линейном пространстве со скалярным произведением L и $x \in L$. Числа

$$\lambda_k = (x, x_k)$$

называются $\kappa o \Rightarrow \phi \phi u u u e + m a m u \Phi y p \circ e$ вектора x относительно ортонормированной системы x_1, \ldots, x_n, \ldots , а ряд

$$\sum_{k=1}^{\infty} \lambda_k x_k$$

— $pядом \Phi ypbe$ вектора x.

Теорема (неравенство Бесселя). Если x — некоторый вектор линейного пространства со скалярным произведением L и λ_k — его коэффициенты Фурье относительно некоторой ортонормированной системы, то

$$\sum_{k=1}^{\infty} |\lambda_k|^2 \le ||x||^2.$$

Доказательство. Введя обозначение

$$S_n = \sum_{k=1}^n \lambda_k x_k,$$

видим, что на основании предыдущей теоремы S_n является ближайшим к x вектором подпространства, натянутого на векторы x_1, \ldots, x_n , причём $\|x - S_n\|^2 + \|S_n\|^2 = \|x\|^2$. Следовательно, $\|S_n\|^2 \le \|x\|^2$. Используя ортонормированность векторов x_1, \ldots, x_n , вычислим норму вектора S_n и перепишем последнее неравенство в виде

$$\sum_{k=1}^{n} |\lambda_k|^2 \le ||x||^2.$$

Переходя здесь к пределу при $n \to +\infty$, получим требуемое.

Задача

- 27. Среди всех функций подпространства, натянутого на мономы 1, x и x^2 , найдите ближайшую к функции $f(x) = e^x$
 - а) в пространстве $L_2[-1,1]$;
 - б) в пространстве C[-1,1].

§ 9. Полнота ортонормированной системы. Равенство Парсеваля. Замкнутые системы

Говорят, что ортонормированная система векторов $x, x_1, \ldots, x_n, \ldots$ является *пополнением* последовательности x_1, \ldots, x_n, \ldots В свою очередь ортонормированная последовательность x_1, \ldots, x_n, \ldots векторов гильбертова пространства H называется *полной*, если её уже нельзя пополнить, т.е. если её ортогональное дополнение состоит из нуля.

$$(x,y) = \sum_{k=1}^{\infty} \lambda_k \overline{\mu_k},$$

 $\epsilon \partial e \ \lambda_k = (x,x_k) \ u \ \mu_k = (y,x_k)$ являются коэффициентами Фурье

векторов х и у соответственно. В частности

$$||x||^2 = \sum_{k=1}^{\infty} |\lambda_k|^2.$$

Доказательство. Рассмотрим последовательность сумм

$$S_n = \sum_{k=1}^n \lambda_k x_k.$$

Поскольку последовательность x_1,\ldots,x_n,\ldots ортонормирована, то

$$||S_{n+p} - S_n||^2 = \sum_{k=1}^p |\lambda_{n+k}|^2.$$

С другой стороны, из неравенства Бесселя следует, что числовой ряд

$$\sum_{k=1}^{\infty} |\lambda_k|^2$$

сходится. Согласно критерию Коши сходимости числовых рядов это означает, что для любого $\varepsilon>0$ найдётся номер n_0 такой, что для всех $n\geq n_0$ и всех p будет выполнено неравенство

$$\sum_{k=1}^{p} |\lambda_{n+k}|^2 < \varepsilon.$$

Значит, для любого $\varepsilon>0$ найдётся номер n_0 такой, что для всех $n\geq n_0$ и всех p будет выполнено неравенство

$$||S_{n+p} - S_n||^2 < \varepsilon.$$

Но это означает, что последовательность S_n фундаментальна в гильбертовом пространстве H, а следовательно — сходится в силу полноты последнего.

Обозначая предел последовательности S_n через z и используя непрерывность и линейность скалярного произведения, можем для любого k записать

$$(x-z, x_k) = \lim_{n \to \infty} (x - S_n, x_k) = \lambda_k - \lambda_k = 0.$$

Тем самым вектор x-z ортогонален всем x_k , а значит равен нулю в силу полноты системы x_1,\ldots,x_n,\ldots Таким образом, x=z или

$$x = \lim_{n \to \infty} \sum_{k=1}^{n} \lambda_k x_k = \sum_{k=1}^{\infty} \lambda_k x_k.$$
 (7)

Аналогично может быть доказано равенство

$$y = \lim_{n \to \infty} \sum_{k=1}^{n} \mu_k x_k = \sum_{k=1}^{\infty} \mu_k x_k,$$

что с учётом непрерывности скалярного произведения и ортонормированности x_1,\ldots,x_n,\ldots даёт

$$(x,y) = \lim_{n \to \infty} (S_n, y) = \lim_{n \to \infty} \sum_{k=1}^n \lambda_k \overline{\mu_k} = \sum_{k=1}^\infty \lambda_k \overline{\mu_k}.$$

Равенство Парсеваля доказано.

Ортонормированные системы, для которых выполнено равенство Парсеваля, столь важны, что для них введено специальное название. А именно, ортонормированная система векторов x_1, \ldots, x_n, \ldots линейного пространства со скалярным произведением L называется samkhymoй, если для любого вектора $x \in L$ справедливо равенство

$$||x||^2 = \sum_{k=1}^{\infty} |\lambda_k|^2,$$

где $\lambda_k = (x, x_k)$ являются коэффициентами Фурье вектора x.

Задача

28. Пусть x_1, \ldots, x_n, \ldots является замкнутой ортонормированной системой векторов в пространстве со скалярным произведением L. Докажите, что для любых векторов $x \in L$ и $y \in L$ справедливо равенство

$$(x,y) = \sum_{k=1}^{\infty} \lambda_k \overline{\mu_k},$$

где $\lambda_k = (x, x_k)$ и $\mu_k = (y, x_k)$ являются коэффициентами Фурье векторов x и y соответственно.

§ 10. Гильбертов базис. Теорема о существовании гильбертова базиса

Соотношение (7), доказанное нами в предыдущем параграфе в процессе вывода равенства Парсеваля, имеет очень простой и важный смысл: оно означает, что элемент x представляется своим рядом Фурье. Для формулировки этого (уже доказанного в \S 9) утверждения удобно использовать следующее определение.

Ортонормированная система векторов x_1, \ldots, x_n, \ldots линейного пространства L со скалярным произведением называется *гильбертовым базисом*, если любой вектор $x \in L$ может быть записан в виде

$$x = \sum_{k=1}^{\infty} \lambda_k x_k, \quad \lambda_k = (x, x_k).$$

Отметим отличие понятия гильбертова базиса от понятия базиса в конечномерном линейном пространстве: сейчас допускаются бесконечные линейные комбинации, не имеющие смысла с чисто алгебраической точки зрения.

Теорема (о представлении элемента его рядом Фурье). Всякая полная ортонормированная система векторов в гильбертовом пространстве является гильбертовым базисом в нём.

Теорема (о существовании гильбертова базиса). Во всяком сепарабельном гильбертовом пространстве существует гильбертов базис, состоящий из конечного или счётного множества векторов.

Доказательство. Пусть x_1, \ldots, x_n, \ldots — счётное плотное подмножество сепарабельного гильбертова пространства H. Вычеркнем из этого списка вектор x_n если он является линейной комбинацией предыдущих векторов x_1, \ldots, x_{n-1} . Оставшиеся векторы перенумеруем заново: y_1, \ldots, y_n, \ldots [Отметим, что их может быть и конечное число. В таком случае в доказательство потребуется внести очевидные изменения.] Последовательность векторов y_1, \ldots, y_n, \ldots , очевидно, линейно независима. Применив к ней процесс ортогонализации Грама — Шмидта, получим ортонормированную последовательность z_1, \ldots, z_n, \ldots

Выберем произвольный вектор $x \in H$. Поскольку последовательность векторов x_1, \ldots, x_n, \ldots плотна в H, то найдётся некоторая её подпоследовательность x_{n_k} , сходящаяся к x, т. е. для любого $\varepsilon > 0$ найдётся номер k_0 такой, что для всех $k \geq k_0$ выполняется неравен-

ство $||x-x_{n_k}|| < \varepsilon$. Однако каждый из векторов x_n является линейной комбинацией векторов y_1, \ldots, y_n , а значит, найдутся (вообще говоря — не единственным образом) такие числа $\alpha_1(n_k), \ldots, \alpha_{n_k}(n_k)$, что

$$x_{n_k} = \sum_{j=1}^{n_k} \alpha_j(n_k) y_j.$$

Кроме того, каждый из векторов y_n является линейной комбинацией z_1, \ldots, z_n . Следовательно, найдутся (и опять же — не единственным образом) некоторые числа $\beta_1(n_k), \ldots, \beta_{n_k}(n_k)$ такие, что

$$x_{n_k} = \sum_{j=1}^{n_k} \alpha_j(n_k) y_j = \sum_{j=1}^{n_k} \beta_j(n_k) z_j.$$

Полагая $\lambda_j = (x, z_j)$, на основании теоремы о проектировании на конечномерное подпространство, будем иметь

$$||x - \sum_{j=1}^{n_k} \lambda_j z_j|| \le ||x - \sum_{j=1}^{n_k} \beta_j(n_k) z_j|| = ||x - x_{n_k}|| < \varepsilon.$$

Значит,

$$x = \sum_{j=1}^{\infty} \lambda_j z_j$$

и z_1, \ldots, z_n, \ldots является гильбертовым базисом. Теорема доказана.

Задача

29. Проверьте, что разложение вектора по гильбертову базису единственно.

§ 11. Теорема Рисса — Фишера. Изоморфизм сепарабельных гильбертовых пространств

Из неравенства Бесселя следует, что для того, чтобы числа $\lambda_1, \ldots, \lambda_n, \ldots$ служили коэффициентами Фурье какого-либо элемента необходимо, чтобы ряд

$$\sum_{n=1}^{\infty} |\lambda_n|^2 \tag{8}$$

сходился. Оказывается, что в полном пространстве это условие не только необходимо, но и достаточно. Именно, справедлива следующая

Теорема (Рисса — Фишера). Пусть $x_1, ..., x_n, ...$ — произвольная ортонормированная система векторов в гильбертовом пространстве H, и пусть числа $\lambda_1, ..., \lambda_n, ...$ таковы, что ряд (8) сходится. Тогда существует такой вектор $x \in H$, что $\lambda_n = (x, x_n)$ и

$$||x||^2 = \sum_{n=1}^{\infty} |\lambda_n|^2,$$

 $m.\ e.\ makoŭ\ x,\ для\ komoporo\ \lambda_n\ являются\ коэффициентами\ Фурье,$ а норма вычисляется в соответствии с равенством Парсеваля.

Доказательство. Положим

$$S_n = \sum_{k=1}^n \lambda_k x_k.$$

Поскольку последовательность x_1, \ldots, x_n, \ldots ортонормирована, то

$$||S_{n+p} - S_n||^2 = \sum_{k=1}^p |\lambda_{n+k}|^2.$$

С другой стороны, так как числовой ряд (8) сходится, то, согласно критерию Коши сходимости числовых рядов, для любого $\varepsilon > 0$ найдётся номер n_0 такой, что для всех $n \ge n_0$ и всех p будет выполнено неравенство

$$\sum_{k=1}^{p} |\lambda_{n+k}|^2 < \varepsilon.$$

Значит для любого $\varepsilon > 0$ найдётся номер n_0 такой, что для всех $n \ge n_0$ и всех p будет выполнено неравенство

$$||S_{n+p} - S_n||^2 < \varepsilon.$$

Но это означает, что последовательность S_n фундаментальна в гильбертовом пространстве H, а следовательно сходится в силу полноты последнего.

Обозначая предел последовательности S_n через x и используя непрерывность и линейность скалярного произведения, можем для любого k записать

$$(x, x_k) = \lim_{n \to \infty} (S_n, x_k) = \lambda_k,$$

а значит коэффициенты Фурье вектора x равны λ_k , что и требовалось.

Кроме того, по определению x имеем $\|x - S_n\| \to 0$ при $n \to \infty$, в то время как с другой стороны

$$||x - S_n||^2 = (x - S_n, x - S_n) = (x - \sum_{k=1}^n \lambda_k x_k, x - \sum_{k=1}^n \lambda_k x_k) =$$
$$= (x, x) - \sum_{k=1}^n |\lambda_k|^2 = ||x||^2 - \sum_{k=1}^n |\lambda_k|^2,$$

а значит

$$||x||^2 = \lim_{n \to \infty} \sum_{k=1}^n |\lambda_k|^2 = \sum_{k=1}^\infty |\lambda_k|^2.$$

Теорема доказана.

Обратите внимание, что центральная часть теоремы Рисса — Фишера, связанная с существованием вектора x, по сути дела была доказана нами ранее в § 9 при выводе формулы (7).

$$A(\alpha x + \beta y) = \alpha Ax + \beta Ay, \tag{9}$$

$$(x,y) = (Ax, Ay), \tag{10}$$

$$B(\alpha u + \beta v) = \alpha B u + \beta B v, \tag{11}$$

$$(u,v) = (Bu, Bv), (12)$$

$$ABu = u, \quad BAx = x. \tag{13}$$

При этом отображения A и B называются $usop \phi us мами$ пространств L и K.

Соотношения (9) и (11) выражают тот факт, что отбражения A и B сохраняют операции сложения векторов и умножения вектора на число, равенства (10) и (12) — что они сохраняют скалярное произведение, а формулы (13) — что A и B являются обратными друг к другу.

Обратите внимание, что в левой части формулы (x,y) = (Ax,Ay) из (10) стоит скалярное произведение векторов пространства L, а в правой — пространства K. Чтобы подчеркнуть это обстоятельство, мы иногда будем записывать скалярное произведение в L в виде $(x,y)_L$, так что последняя формула будет выглядеть так: $(x,y)_L = (Ax,Ay)_K$.

С интуитивной точки зрения два пространства изоморфны, если одно получается из другого переобозначением: вместо вектора $x \in L$ уславливаются писать вектор $u = Ax \in K$. Равенства (9)–(12) показывают, что при таком переобозначении сохраняются операции сложения векторов, умножения вектора на число и скалярного произведения. Эта процедура напоминает дословный перевод с одного языка на другой. При этом никакая информация не теряется: с помощью отображения B всегда можно сделать "обратный перевод". Поэтому иногда говорят, что изоморфные пространства неразличимы. Тем удивительнее выглядит следующая теорема.

Теорема (об изоморфизме сепарабельных гильбертовых пространств). Любое бесконечномерное комплексное (соответственно — вещественное) сепарабельное гильбертово пространство изоморфно комплексному (соотв. — вещественному) пространству l_2 .

Доказательство. Пусть H — бесконечномерное комплексное сепарабельное гильбертово пространство. Поскольку H сепарбельно и гильбертово, то в нём существует гильбертов базис, состоящий из конечного или счётного множества векторов. Ввиду бесконечномерности H, этот базис содержит именно счётное множество векторов. Обозначим его через x_1, \ldots, x_n, \ldots

В пространстве H зададим отображение A по формуле

$$Ax = (\lambda_1, \dots, \lambda_n, \dots),$$

где $\lambda_n = (x, x_n) \in \mathbb{C}$, т. е. отображение, сопоставляющее каждому вектору $x \in H$ последовательность его коэффициентов Фурье. В силу неравенства Бесселя, ряд

$$\sum_{n=1}^{\infty} |\lambda_n|^2$$

сходится, а значит A отображает H в l_2 .

Линейность отображения A очевидна. Полагая Ay =

 $(\mu_1,\ldots,\mu_n,\ldots),$ будем иметь

$$(x,y)_H = \sum_{n=1}^{\infty} \lambda_n \overline{\mu_n} = (Ax, Ay)_{l_2},$$

где левое равенство представляет из себя равенство Парсеваля, а правое — определение скалярного произведения в l_2 . Таким образом, A сохраняет скалярное произведение.

Отображение $B: l_2 \to H$ построим с помощью теоремы Рисса — Фишера: если $(\lambda_1, \ldots, \lambda_n, \ldots)$ принадлежит l_2 , то ряд

$$\sum_{n=1}^{\infty} |\lambda_n|^2$$

сходится, а значит в H найдётся вектор x для которого числа $\lambda_1, \ldots, \lambda_n, \ldots$ являются коэффициентами Фурье относительно базиса x_1, \ldots, x_n, \ldots Его и сопоставим последовательности чисел $\lambda_1, \ldots, \lambda_n, \ldots$ Короче говоря, мы полагаем

$$B(\lambda_1,\ldots,\lambda_n,\ldots)=x=\sum_{n=1}^{\infty}\lambda_nx_n.$$

Линейность отображения B, сохранение им скалярного произведения, а также свойства $AB(\lambda_1,\ldots,\lambda_n,\ldots)=$ = $(\lambda_1,\ldots,\lambda_n,\ldots),\ BAx=x$ очевидны.

В случае комплексных пространств теорема доказана. Чтобы рассмотреть случай вещественных пространств, в доказательство нужно внести очевидные изменения. Сделать это предоставляем читателю.

Задача

30. Проверьте, что в гильбертовом пространстве сумма внутренних углов любого треугольника равна π .

§ 12. Критерий полноты ортонормированной системы в сепарабельном гильбертовом пространстве

Следующая теорема в определённом смысле подводит итог предпринятому нами изучению полных ортонормированных последовательностей.

Теорема (критерий полноты ортонормированной системы в сепарабельном гильбертовом пространстве). Пусть H — сепарабельное гильбертово пространство и x_1, \ldots, x_n, \ldots — ортонормированная система векторов в нём. Тогда следующие условия эквивалентны:

- 1) $cucme Ma x_1, \ldots, x_n, \ldots no л нa;$
- 2) система x_1, \ldots, x_n, \ldots замкнута;
- 3) для любого вектора $x \in H$ справедливо разложение

$$x = \sum_{n=1}^{\infty} \lambda_n x_n, \tag{14}$$

где $\lambda_n = (x, x_n)$ — коэффициенты Фурье вектора x относительно ортонормированной системы x_1, \dots, x_n, \dots

Доказательство. Импликация $1) \Rightarrow 2)$ следует непосредственно из равенства Парсеваля.

Импликацию $2) \Rightarrow 3$) докажем рассуждая от противного,т. е. допустим, что система x_1, \ldots, x_n, \ldots замкнута, но существует вектор $x \in H$, для которого разложение (14) неверно. Из неравенства Бесселя следует, что если $\lambda_n = (x, x_n)$, то

$$\sum_{n=1}^{\infty} |\lambda_n|^2 \le ||x||^2 < +\infty,$$

а значит, в силу теоремы Рисса—Фишера, ряд

$$\sum_{n=1}^{\infty} \lambda_n x_n$$

сходится в H к некоторому вектору, который мы обозначим через y. Тогда, с одной стороны, $||x-y|| \neq 0$, т.к. мы предположили, что равенство (14) неверно. С другой стороны, все коэффициенты Фурье (обозначаемые далее через μ_n) вектора x-y равны нулю:

$$\mu_n = (x - y, x_n) = \left(x - \sum_{k=1}^{\infty} \lambda_k x_k, x_n\right) =$$
$$= \lambda_n - \sum_{k=1}^{\infty} \lambda_k (x_k, x_n) = \lambda_n - \lambda_n = 0.$$

Пришли к противоречию с замкнутостью системы x_1,\ldots,x_n,\ldots :

$$0 \neq ||x - y||^2 = \sum_{n=1}^{\infty} |\mu_n|^2 = 0,$$

которое и доказывает, что условие 2) влечёт 3).

Импликацию 3) \Rightarrow 1) также будем доказывать от противного, т. е. допустим, что разложение (14) имеет место для всех $x \in H$, но система x_1, \ldots, x_n, \ldots неполна, т. е. существует ненулевой вектор $z \in H$, ортогональный каждому вектору x_n . Тогда все коэффициенты Фурье вектора z равны нулю, и равенство (14) приводит к противоречию:

$$0 \neq z = \sum_{n=1}^{\infty} 0 \cdot x_n = 0.$$

Теорема доказана.

\S 13. Тригонометрическая система функций как пример полной ортонормированной системы в $L_2([-\pi,\pi])$

Как известно, в вещественном пространстве $L_2([-\pi,\pi])$, состоящем из вещественно-значных функций, интегрируемых с квадратом, скалярное произведение вводится с помощью равенства

$$(f,g) = \int_{-\pi}^{\pi} f(t)g(t) dt.$$

При этом последовательность функций

$$\frac{1}{2\sqrt{\pi}}, \frac{1}{\sqrt{\pi}}\sin t, \frac{1}{\sqrt{\pi}}\cos t, \frac{1}{\sqrt{\pi}}\sin 2t, \frac{1}{\sqrt{\pi}}\cos 2t, \dots$$

$$\dots \frac{1}{\sqrt{\pi}}\sin nt, \frac{1}{\sqrt{\pi}}\cos nt, \dots$$
(15)

ортонормирована в пространстве $L_2([-\pi,\pi])$, а коэффициенты Фурье функции f из $L_2([-\pi,\pi])$ вычисляются по формулам

$$\alpha_n = \frac{1}{\sqrt{\pi}} \int_{-\pi}^{\pi} f(t) \cos nt \, dt, \quad n = 0, 1, 2, \dots,$$

$$\beta_n = \frac{1}{\sqrt{\pi}} \int_{-\pi}^{\pi} f(t) \sin nt \, dt, \quad n = 1, 2, \dots.$$
(16)

Равенство Парсеваля, записанное в стиле § 9, выглядит так:

$$\int_{-\pi}^{\pi} f^2(t) dt = \alpha_0^2 + \sum_{n=1}^{\infty} (\alpha_n^2 + \beta_n^2),$$

что лишь обозначениями отличается от равенства Ляпунова

$$\frac{1}{\pi} \int_{-\pi}^{\pi} f^2(t) dt = \frac{a_0^2}{2} + \sum_{n=1}^{\infty} (a_n^2 + b_n^2),$$

известного вам из темы "Ряды Фурье".

Далее, поскольку для системы (15) выполняется равенство Парсеваля, то она полна, а значит любая функция $f \in L_2([-\pi, \pi])$ разлагается в ряд Фурье по ортонормированной последовательности (15):

$$f(t) = \frac{\alpha_0}{2\sqrt{\pi}} + \frac{1}{\sqrt{\pi}} \sum_{n=1}^{\infty} \alpha_n \cos nt + \frac{1}{\sqrt{\pi}} \sum_{n=1}^{\infty} \beta_n \sin nt,$$

что, в совокупности с (16), лишь расстановкой множителей $1/\sqrt{\pi}$ отличается от формул Эйлера и разложения функции в ряд Фурье, знакомого вам по теме "Ряды Фурье":

$$f(t) = \frac{a_0}{2} + \sum_{n=1}^{\infty} (a_n \cos nt + b_n \sin nt),$$

$$a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(t) \cos nt \, dt, \quad n = 0, 1, 2, \dots,$$

$$b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(t) \sin nt \, dt, \quad n = 1, 2, \dots.$$

Аналогично можно проверить, что система функций

$$x_n(t) = \frac{1}{\sqrt{2\pi}}e^{int},$$

где n проберает все целые числа, ортонормированна и полна в комплексном пространстве $L_2([-\pi,\pi])$ со скалярным произведением

$$(f,g) = \int_{-\pi}^{\pi} f(t) \overline{g(t)} dt,$$

а известные по теме "Ряды Фурье" формулы

$$f(t) = \sum_{n = -\infty}^{+\infty} c_n e^{int}, \quad c_n = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(t) e^{-int} dt,$$
$$\frac{1}{2\pi} \int_{-\pi}^{\pi} |f(t)|^2 dt = \sum_{n = -\infty}^{+\infty} |c_n|^2,$$

являются частным случаем рассмотренных в этом пособии. [Напомним, что "двусторонний" ряд

$$\sum_{n=-\infty}^{+\infty} \omega_n \tag{17}$$

называется сходящимся, если сходятся оба ряда

$$\sum_{n=0}^{+\infty} \omega_n \quad \text{и} \quad \sum_{n=1}^{+\infty} \omega_{-n}.$$

При этом суммой ряда (17) называют число

$$\sum_{n=0}^{+\infty} \omega_n + \sum_{n=1}^{+\infty} \omega_{-n},$$

обозначаемое через

$$\sum_{n=-\infty}^{+\infty} \omega_n.]$$

Отметим особо, что вышеизложенное не даёт оснований сожалеть о времени, потраченном на изучение темы "Ряды Фурье". Из общей теории гильбертовых пространств, изложенной в данном пособии, ничего не вытекает о поточечной сходимости рядов Фурье, связи между гладкостью функции и скоростью сходимости её ряда Фурье, явлении Гиббса и тому подобных вещах, рассмотренных в теме "Ряды Фурье".

Предметный указатель

Базис гильбертов 33
Вектор наилучшего приближения 24
— подпространства, ближайший 24
Векторы линейно зависимые 7
— — независимые 7
— ортогональные 21
Дополнение ортогональное 26
Замыкание множества 10
Изоморфизм пространств 36
Коэффициенты Фурье 29
Kyб в пространстве l_2 9
Множество замкнутое 10
— ограниченное 12
— плотное 10
— счётное 11
Неравенство Бесселя 29
— Гёльдера 13
— Гёльдера для сумм 17
— Коши—Буняковского 19
— Минковского 13
— Минковского для сумм 18
Норма вектора 9
— функции в $L_p(X)$ 13
Подпространство 8
Пополнение ортонормированной последовательности 30
Последовательность сходящаяся 10
— фундаментальная 11
Проекция ортогональная 26

Произведение вектора на число 6
— скалярное 18
Пространства изоморфные 36
Пространство бесконечномерное 8
— векторное 6
— гильбертово 21
— евклидово 18
— Лебеговское функциональное $L_p(X)$ 12
— линейное 6
— нормированное 9
— полное 12
— сепарабельное 10
— со скалярным произведением 18
— унитарное 18
Равенство Парсеваля 30
— параллелограмма 20
Размерность пространства 8
Ряд Фурье 29
Система векторов замкнутая 32
— — линейно зависимая, конечная 7
— — линейно независимая, бесконечная 8
— — —, конечная 7
— — ортонормированная 23
— — полная 31
Сумма векторов 6
— прямая 27
Тождество поляризационное 21
Точка предельная 10
У гол между векторами 23
Ш ар открытый 12
Я дро Соболева, усредняющее 15

Содержание