Factory Simulation Software System

Test Results

Aditya Jain - 21BCY10190 Dhruv Gupta -21BCY10178 Sai Kiran Kumar-21BCY10184 Lokesh Pavan Kumar-21BCY10187 Abhinav Shinde - 21BCY10191

Table of Contents

Black Box Testing3	
BBT for Add_Machine3	
BBT for Add_Adjuster4	
BBT for Get_Machine_Details7	
BBT for Get_AdJuster_Details 8	
BBT for Simulation	ç
BBT for Get_Machinewise_Utilisation10	
BBT for Get_Adjusterwise_Utilisation11	
White Box Testing11	
ADD Adjuster Method11	
Simulation Method14	
User Interface Testing17	
Entry and Exit Criteria23	
Unit Testing	
Black Box Phase24	
Black Box Phase25	
System	
Test	

BLACK BOX TESTING:-

It includes testing of all functions used in the system. Boundary Value analysis is done in this testing depending on the values of parameters and variables present in the system.

BBT for Add_Machine

Method Name	Add_Machine
Parameter	Machine_Name,Quantity, Repair_Time,MTTF
Machine_Name	Lathe Machine (Error Message If machine Name already Exists)
Quantity	50 (Error Message if Quantity is more than 1000)
MTTF(Mean Failure Time)	90(in days)
Repair_Time(Time require to repair Machine)	6(in days)

After this method this machine will get added in the factory.

BBT for Add_Adjuster

Method Name	Add_Adjuster
Parameter	Adjuster_Id, Machine_list(Machines in the factory that adjuster can repair) Quantity(Number of Adjusters of this type)
Adjsuter_Id	Group_1
Machine_List	Lathe_Machine, Turning_Machine
Quantity	10 (Error Message if greater than 1000)

After this method this adjuster group will be available to work in the factory.

Test Cases:-

Add Machine method-

Equivalence Class:-

Class 1:Success Message

Machine Name-Lathe

Quantity-50

Repair Time-6

Output-Machine gets added in the factory.

Machine Details			
Machine Type	MTTF(Days)	Repair Time	Quantity
Lathe Machine	90	6	50

Class 1:Error Message

Class :-quantity (>1000 | | <1)

Machine Name-Lathe

Quantity: -1111

Repair Time-6

Output- Error Message.

Boundary Conditions:-

Case 1:-(Quantity < 1000 && quantity >0)

Machine Name-Lathe

Quantity-1000

Repair Time- 45

Output-Machine gets added in the factory.

Machine Details			
Machine Type	MTTF(Days)	Repair Time	Quantity
Lathe	461	45	1000

Case 2:-(Repair Time>0)

Machine Name-Lathe

Quantity-1000

Repair Time- 0

Case 3:-(MTTF>0)

Machine Name-Lathe

Quantity-1000

MTTF- 0

ADD_ADJUSTER Method:-

While Adding an Adjuster Quantity should be positive (quantity>0&& quantity <=1000), otherwise error message appears.

Boundary conditions can be checked for this method also.(quantity=0||quantity=1000)

Adjuster Id Can not Be Null.

BBT for Get_Machine_Details

Method Name	Get_Machine_details
Parameter	Machine_Name
Machine_Name	Lathe_Machine
Quantity	50
MTTF(Mean Failure Time)	90(in days)
Repair_Time(Time require to repair Machine)	6(in days)
Machine_Utilisation_in_ factory	87.67%

After this method machine details and its utilisation percentage obtained as shown in table.

BBT for Get_AdJuster_Details

Method Name	Get_Adjuster_Details
Parameter	Adjuster_Id
Adjsuter_Id	Group_1
Machine_List	Lathe_Machine, Turning_Machine
Quantity	10
Adjuster_Utilisation_in_ Factory	40.82%

After this method adjuster_group details and its utilisation percentage obtained as shown in above table .

BBT for Simulation

Method Name	Siumulation_Function
Parameter	Machine_Array Adjuster_Group_Array Simulation_Time
Simulation TIme Period	1 Year
Average_Adjuster_ Utilisation	Group_1
Average_Machine_ Utilisation	Lathe_Machine, Turning_Machine

Average Machine and Average Adjuster utilisation percentage obtained by using this method.

Field	Percentage Utilisation
-------	------------------------

Average Machine Utilisation Output	86.95%
Average Adjuster Utilisation Output	36.37%

BBT for Get_Machinewise_Utilisation

Method Name	Machine_Utilisation	
Parameter	No Parameter	
Output Obtained	Machine Name Lathe Machine Turning CNG	% Utilisation 87.67% 83.21% 94.52%

BBT for Get_Adjusterwise_Utilisation

Method Name	Adjuster_Utilisation	
Parameter	No Parameter	
Output Obtained	Adjuster Id % Utilisation	

Group-1	40.82%	
Group-2	21.91%	
Group-3	38.16%	

After this methods Machine and adjuster wise utilisation obtained respectively.

White BOX TESTING:-

ADD Adjuster Method:-

```
Void Add_adjuster(String Adjuster_id, Machine_type Machine_list, int
quantity) // 1
{
      if(quantity>=1&&quantity<=1000)
                                               // 2
      {
           Copy quantity
                                   // 3
      }
                                   // 4
      else
      {
            Error message & Re-enter the quantity
                                                            // 5
      }
      if(Adjuster_id!=NULL)
                                   // 6
     {
           Copy id
                             // 7
     }
```

```
else // 8

{

Error message and Re-enter the id // 9
}

for(i=0;i<machine_list_size;i++) // 10
{

Copy machine list in adjuster machines list // 11
}

// 12
```


CFG For Add_Adjuster Function

path-1	1-2-3-6-7-10-11- 10-12	quantity,id and machine list are copied to corresponding adjuster variables
path-2	1-2-4-5-6-7-10-11- 10-12	Quantity entered is out of bound// error message and then quantity is re-entered
path-3	1-2-3-6-8-9-10-11- 10-12	Id is not entered // error message and then id is re-entered
path-4	1-2-4-5-6-8-9-10- 11-10-12	Id and quantity error message// then both are re-entered.

Simulate Method:-

```
void simulate( machine_queue, adjuster_queue, simulation_period) // 1
{
     for(i=0;i<total_no_of_days;i++)// 2
      {
            for(machines in repairing state)// 3
            {
                  if(check whether machine repaired completely =yes)// 4
                  {
                        Update working status of machine// 5
                        Update working status of corresponding adjuster as
                        not working
                  }
                  Else; // 6
            }
            if( for each machine check machine failure=yes)// 7
            {
                  if(machine is not in repairing state=true)// 8
                  {
                        if(check whether adjuster available to repair that
                  machine=yes)// 9
                        {
                              Assign adjuster to repair that machine
                              Update adjuster status
                                                            // 10
                              Status of machine as repairing
                        }
                        Else // 11
```

```
{
                               Machine status-not repairing but failure// 12
                         }
                  }
                  Else;
                                     // 13
            }
            Else
                        // 14
            {
                  Increase the count of machine running days by 1 // 15
            }
            if( for each adjuster check whether he is working =yes) // 16
            {
                  Increase the count of adjuster working days by 1 // 17
            }
      } // 18
}
  // <mark>19</mark>
```


path-1	1-2-3-7-14-15-16-18-2-19	This path gets followed when no machine gets failed in given simulation time
path-2	1-2-3-7-8-9-10-16-18-2-19	This path gets followed when fault appear in any machine first machine

Similarly other paths are also possible.

USER INTERFACE TESTING:-

It has Included testing of GUI which is showing testing of each frame in GUI manually.

After Configure machines and adjusters are get added in the factory by add adjuster and add machines method as shown below.

Add Machine - To add Machine

Add Adjuster- To add Adjuster

Details are entered for machine and for an adjuster.

After clicking on Add Adjuster and on Add Machine button adjuster and machine get added in the respective queue. And queues are shown in GUI.

Simulation Time is Selected accordingly(in Years).

Average Adjuster Utilisation and Average Machine Utilisation percentage obtained after Clicking on Simulate Button.

To get utilisation of particular adjuster group and to get individual utilisation of particular machine Machine Utilisation And Adjuster Utilisation buttons are used.

To get details about particular machine or particular adjuster group respective columns are selected in respective frames and details are obtained by using Details Button.

Entry and Exit Criteria

This section describes the general criteria by which testing commences, temporarily stopped, resumed and completed within each testing phase. Different features/components may have slight variation of their criteria, in which case, those should be mentioned in the feature test plan. The testing phase also maps to the impact level definition when a defect is entered in the bug-tracking phase.

Unit Testing

Unit Testing is done at the source or code level for language-specific programming errors such as bad syntax, logic errors, or to test particular functions or code modules. The unit test cases shall be designed to test the validity of the program correctness.

Black Box Phase

Black box testing typically involves running through every possible input to verify that it results in the right outputs using the software as an end-user would. We will use Error Guessing and Boundary Value Analysis complexity metrics in order to quantifiably determine how many test cases needed to achieve maximum code coverage.

Black Box Entry Criteria

The Black Box Entry Criteria will rely on the component specification, and user interface requirements. Things that must be done on entry to the Black Box stage:

- All functions like Add Machine, Add Adjuster, Get Simulation, Get Individual Machine and Adjuster, etc. must either be coded or stubs written.
- The type of Black Box testing Methods will be determined upon entry.
 We will use Error Guessing, and Boundary Value Analysis.
- Boundary Value Analysis included adding a high number (like 1000) of machines and adjusters simultaneously.

Black Box Exit Criteria

The Black Box Exit Criteria listed below explains what needs to be completed in-order to exit Black Box phase. To exit the Black Box phase 100% success rate must be achieved. Things that must be done upon exiting the Black Box stage:

- The application showed no results in case of garbage string.
- If a Machine ID existing in the Table was entered at the time of adding a new product, an error message shown.
- All code bugs that are exposed were corrected whenever possible.

White Box Phase

The White Box criteria apply for purposes of focusing on internal program structure, and discover all internal program errors. Defects were categorized and the quality of the software was assessed.

White Box Entry Criteria

The White Box Entry Criteria relied on verifying that the major features work separately but not necessarily in combination. The design and human interface were stable. Things that were done on entry to the White Box stage:

- Unit tests were written for as many functions as possible.
- The type of White Box testing Methods that were used were determined upon entry. We used unit testing and test for memory leaks.
- Black Box Testing was in its late stages.

White Box Exit Criteria

The Factory Service Simulation Software in the White Box stage generally had a stable feel to it. White Box testing continued until the Black Box or next milestone criteria were met. To exit the White Box phase 100% success rate was achieved. The following describes the state of the product upon exit from the White Box stage:

- All functions like Add Machine, Add Adjuster, Get Simulation, Get Individual Machine and Adjuster were implemented, operational and tested.
- All test cases were generated. The test cases were generated from the Control Flow diagrams of all functions.
- All code bugs that were exposed were corrected.

System Test

The System Test criteria apply for purposes of categorizing defects and the assessing the quality level of the product. All elements of the Controller and Graphical User Interface were meshed together and tested as a whole. System test focuses on functions and performance, reliability, instillation, behavior during special conditions, and stress testing.