Lingjun Zhao

Email: lingjunz@umich.edu Github: https://github.com/JunShao0104 Phone: (734)358-6915

EDUCATION

Tianjin University Tianjin, China

B.E. in Mechanical Design, Manufacturing and Automation; GPA: 3.85/4.00 Sep 2018 - June 2022

Courses: Mechanical Design and Manufacturing, Mechanics, Control of Mechatronic Systems, Introduction to Robotics, etc

University of Michigan

Ann Arbor, USA

M.S. in Robotics; **GPA**: 4.00/4.00

Aug 2022 - April 2024

Courses: Math for Robotics, Robotics System Lab, Computer Vision, Mobile Robotics, Robot Learning for Planning and Control, etc.

SKILL

• Programming Languages: Python, C/C++, MATLAB

- Frameworks and Tools: PyTorch, MMDetection, OpenCV, Docker, GIT
- Engineering Softwares: SolidWorks, Creo, AutoCAD, ABAQUS, Adams

Research

LiDAR and Radar Fusion Transformer for 3D Object Detection

FCAV, University of Michigan

Directed Research, supervised by Prof. Katherine A. Skinner

Jan 2023 - Present

- o Data Preprocessing: Voxelize and augment raw point clouds from LiDAR and Radar modalities.
- Sensor Fusion: Encode LiDAR and Radar features with VoxelNet and PointPillars respectively and fuse them in the manner of middle fusion to form informative joint feature maps.
- Object Detection: Decode LiDAR-Radar joint features via Transformer architecture to perform 3D object detection.

Micro-manipulation System Design on Ophthalmic Surgical Robot

Tianjin University

Individual Final Year Research, supervised by Prof. Fujun Wang

Dec 2021 - June 2022

- o Origami Mechanism Design: Design a novel origami-based parallelogram RCM mechanism composed of flexure hinges and rigid body as the main structure of the invasive ophthalmic surgical robot.
- o Kinematics Modelling and Simulation: Complete the forward and inverse kinematics modelling and the robot motion simulation using the rigid-flexible coupling method.
- Statics Modelling and Simulation: Establish the input stiffness model and the output flexibility model of the surgical robot, and evaluate its dynamics performance via finite element analysis.
- Parameter Optimization: Optimize the robot's dimension parameters to improve its input and output stiffness.

A Tactile Sensor with Slippage Prediction by Unequal Height Dome Array

Tianjin University

Research Assistant, supervised by Prof. Le Song

Jan 2021 - Aug 2021

- o Tactile Sensor Design: Engage in the design of a high-resolution optical reflective tactile and slip sensor integrated on a manipulator aimed at helping robots ensure safe contact and move objects safely in case of a possible collision.
- o Finite Element Analysis: Utilize finite element analysis method to construct the contact mechanics model and optimize the arrangement law of unequal height dome array.
- Slippage Prediction: Improve the adaptability of the touch and slip sensor to the shape characteristics of the object, and prolong the pre-sliding window period and realized the sliding prediction function of smooth plate.

Project

Loc-NeRF++: An Enhanced Robot Localization using Neural Radience Fields University of Michigan

Course Project, supervised by Prof. Maani Ghaffari

Jan 2023 - Present

- o Monte Carlo Localization with Stronger NeRF: Scale up Monte Carlo localization to larger environments using bigger NeRF models, and leverage faster NeRF rendering to reduce computation time.
- Adaptive Particle Filter: Improve existing particle filter used in Loc-NeRF by applying adaptive techniques to adjust the number of particles to perform more precise and real-time localization.

Depth-aware and Laplacian-steered Instance Style Transfer

University of Michigan Sep 2022 - Dec 2022

Course Project, supervised by Prof. Andrew Owens

o Semantic Segmentation: Perform semantic segmentation using Fully Convolutional Network and SegNet, compare and evaluate them on PASCAL VOC 2012 Dataset.

- o Depth-aware and Laplacian-steered loss: Introduce depth-aware loss and Laplacian-steered loss into neural style transfer to keep the content image with more depth and detailed information.
- Instance Style Transfer: Combine semantic segmentation with neural style transfer to form instance style transfer to stylize specific objects within one natural image using different artistic styles.

Design and Manufacturing of Soft Manipulator with Compound Structure Entrepreneurship Project, supervised by Prof. Fujun Wang

Tianjin University May 2020 - May 2021

- Soft Gripper Design: Design a soft robotic gripper with enhanced stiffness based on the layer interaction theory.
- Finite Element Analysis: Perform finite element analysis on the designed soft robotic gripper to evaluate its statics and dynamics performance.
- o Manufacturing and Grasping: Manufacture a couple of soft robotic grippers utilizing 3D printing technology and teeming skill, and conduct grasping experiments on a variety of objects with different surface characteristics.

Publication

A Tactile Sensor with Slippage Prediction by Unequal Height Dome Array

IEEE SENSORS JOURNAL

Yong Yang, Meirong Zhao, Le Song, Yifan Jia, Lingjun Zhao, Dongji Piao, and Yelong Zheng

 $Under\ Review$

Honor and Award

- National Scholarship (Top0.2%) September, 2021
- \bullet Weichai Power Scholarship of Tianjin University (Top 5%) November, 2020
- Merit Student of Tianjin University 2019, 2020, 2021