MATH 7752 - HOMEWORK 1 DUE FRIDAY 01/28/22 AT 1 P.M.

Convention: All rings considered below will have 1 (but not necessarily commutative, unless stated). Additionally, by an *R*-module we will always mean a left *R*-module.

- (1) Let R be a ring and M an R-module.
 - (a) Prove that for every $m \in M$, the map $r \mapsto rm$ from R to M is a homomorphism of R-modules.
 - (b) Assume that R is commutative and M an R-module. Prove that there is an isomorphism $\operatorname{Hom}_R(R,M) \simeq M$ as R-modules.
- (2) Give an explicit example of a map $f: A \to B$ with the following properties:
 - \bullet A, B are R-modules.
 - f is a group homomorphism.
 - f is not an R-module homomorphism.
- (3) Let R be a ring and M an R-module.
 - (a) Let N be a subset of M. The annihilator of N is defined to be the set

$$\operatorname{Ann}_R(N) := \{ r \in R : rn = 0, \text{ for all } n \in N \}.$$

Prove that $Ann_R(N)$ is a left ideal of R.

- (b) Show that if N is an R-submodule of M, then $\operatorname{Ann}_R(N)$ is an ideal of R (i.e. it is two-sided ideal).
- (c) For a subset I of R the annihilator of I in M is defined to be the set,

$$\operatorname{Ann}_M(I) := \{ m \in M : xm = 0, \text{ for all } x \in I \}.$$

Find a natural condition on I that guarantees that $Ann_M(I)$ is a submodule of M.

- (d) Let R be an integral domain. Prove that every finitely generated torsion Rmodule has a nonzero annihilator.
- (4) In class we obtained a simple characterization of R-modules when $R = \mathbb{Z}$, and R = F[x], with F a field. Imitate the method to find similar characterizations for R-modules in the following cases: (a) $R = \mathbb{Z}/n\mathbb{Z}$, for some $n \geq 2$; (b) $R = \mathbb{Z}[x]$; (c) R = F[x, y].
- (5) An R-module M is called simple (or irreducible) if its only submodules are $\{0\}$ and M. An R-module M is called indecomposable if M is not isomorphic to $N \oplus Q$ for some non-zero submodules N, Q. Show that every simple R-module is indecomposable, but the converse is not true.
- (6) Let R be a ring. An R-module M is called cyclic if it is generated as an R-module by a single element.
 - (a) Prove that every cyclic R-module is of the form R/I for some left ideal I of R.
 - (b) Show that the simple R-modules are precisely the ones which are isomorphic to R/\mathfrak{m} for some maximal left ideal \mathfrak{m} .

- (c) Show that any non-zero homomorphism of simple R-modules is an isomorphism. Deduce that if M is simple, its endomorphism ring $\operatorname{End}_R(M) := \operatorname{Hom}_R(M,M)$ is a division ring. This result is known as Schur 's Lemma .
- (7) Show that \mathbb{Q} is not a free \mathbb{Z} -module, that is \mathbb{Q} is not isomorphic to a direct sum of the form $\bigoplus_{I} \mathbb{Z}$, for any index set I. More generally, let R be a PID which is not a field and $K = \operatorname{frac}(R)$ be its fraction field. Show that K is not a free R-module.
- (8) Let R be a commutative ring. Recall that an ideal I of R is called *nilpotent* if there exists some $n \in \mathbb{N}$ such that $I^n = 0$.
 - (a) Let $i \in I$. Show that the element r = 1 i is invertible in R.
 - (b) Let M, N be R-modules and let $\phi: M \to N$ be an R-module homomorphism. Show that ϕ induces an R-module homomorphism, $\overline{\phi}: M/IM \to N/IN$.
 - (c) Prove that if $\overline{\phi}$ is sujective, then ϕ is itself surjective.

Extra Problem (optional)

- (1) Let G be a finite group and k a field. Consider the group ring k[G].
 - (a) Let M be a k-vector space with a G-action. Show that M becomes a k[G]-module. Conversely, if M is a k[G]-module, show that M is a G-set.
 - (b) Let M, N be two k[G]-modules. Show that $\operatorname{Hom}_k(M, N)$ becomes a k[G]-module with the following G-action: For $g \in G$ and $\phi : M \to N$ a k[G]-homomorphism define

$$(g \cdot \phi)(m) := g\phi(g^{-1}m), \text{ for } m \in M.$$