Linear Regression continued

Example online

- new dataset predict_wage_regression.zip in Resources > Example Problems section
- Exercise: change the example matlab code (grad_descent.m) to work with it

Cost function

- Find \boldsymbol{w} that gives the lowest approximation error given the training data.
 - Minimize the sum of square errors:

$$E(\mathbf{w}) = \frac{1}{2n} \sum_{k=1}^{n} (\mathbf{y}^k - \mathbf{w}' \mathbf{x}^k)^2$$
Same w for all the training instances.

Gradient Descent Algorithm

Initialize at some \mathbf{w}_0

Compute the gradient
$$\nabla_E(\mathbf{w}_t) = -\frac{1}{n} \sum_{k=1}^{n} \mathbf{x}^k (y^k - \mathbf{w}_t' \mathbf{x}^k)$$

Update the weights
$$\mathbf{w}_{t+1} = \mathbf{w}_t - \kappa \nabla_E(\mathbf{w}_t) = \mathbf{w}_t + \kappa \frac{1}{n} \sum_{k=1}^{n} \mathbf{x}^k \left(y^k - \mathbf{w}_t' \mathbf{x}^k \right)$$

Iterate with the next step until \boldsymbol{w} doesn't change too much (or for a fixed number of iterations)

Return final w.

Iterative Method

- Start at some **w**₀; take a step along **steepest slope**.
 - What's the steepest slope?
- Gradient of E:

$$\nabla_{E}(\mathbf{w}) = -\frac{1}{n} \sum_{k=1}^{n} (y^{k} - \mathbf{w}' \mathbf{x}^{k}) \mathbf{x}^{k}$$
Same form as before

Attribute Scaling

4

· In order for Gradient Descent to converge quickly, scale attributes, e.g.

$$f_1' = \frac{f_1 - m_1}{\max_1 - \min_1}$$
 or $f_1' = \frac{f_1 - m_1}{s_1}$

where m_1 is the mean (average) of f_1 , and max₁, min₁, s_1 are the max, min, and stdev of values for f_1 .

Don't scale the all 1's attribute.

9

Learning Rate

- For small learning rate kappa, the value of \boldsymbol{E} should decrease in each iteration.
 - If this doesn't happen, kappa is too big, so decrease kappa.
- However, don't make kappa too small as GD will be slow to converge.
- Practical advise:
- Start with kappa=1, and decrease it if too big.

CANONICAL EQUATIONS THE MATRIX WAY:

∞

Matrix X and vector y

$$\mathbf{X} = \begin{bmatrix} 1 & 90 & 1 \\ 1 & 80 & 3 \\ 1 & 90 & 2 \\ 1 & 70 & 8 \end{bmatrix}$$
 y

$$\mathbf{y} = \begin{bmatrix} 50 \\ 60 \\ 55 \end{bmatrix}$$

The Matrix Way: Canonical Equations

• E will have the smallest value when the gradient is equal to zero.

$$\nabla_{E}(\mathbf{w}) = -\frac{1}{n} \sum_{k=1}^{n} \mathbf{x}^{k} \left(\mathbf{y}^{k} - \mathbf{w}' \mathbf{x}^{k} \right) = \mathbf{0}$$

$$\sum_{k=0}^{n} \mathbf{x}^{k} \left(y^{k} - \mathbf{w}' \mathbf{x}^{k} \right) = \mathbf{0}$$

$$\sum_{k=1}^{n} \left(\mathbf{x}^{k} \mathbf{y}^{k} - \mathbf{x}^{k} \mathbf{w}^{\prime} \mathbf{x}^{k} \right) = \mathbf{0}$$

$$\sum_{k=1}^{n} \mathbf{X}^{k} y^{k} = \sum_{k=1}^{n} \mathbf{X}^{k} \mathbf{w}' \mathbf{X}^{k}$$

$$\sum_{k=1}^{N} X^{*}y^{*} = \sum_{k=1}^{N} X^{*}WX^{*}$$
$$X'y = (XX)^{w}$$
$$(X'X)^{-1}X'y = w$$

• X is the
$$n \times (m+1)$$
 data matrix

– one row of $m+1$ elements for each data instance

- without the y attribute y is the n-vector of class values
- X'X is $(m+1) \times (m+1)$ matrix Good if number m of attributes is not too big.
 - **w** is *m*-vector, i.e. $(m+1) \times 1$ 10

Matlab/Octave

Matlab/Octave

Result (as expected) w =

1.0000

w=pinv(X'*X) *X'*y

1 2]; y=[1.5; 2];

X=[1 1;

Result

86.50000 -0.40000 1.50000

Ξ

12

n training tuplesm attributes

Discussion:

GD vs. canonical equations

Needs to iterate, sometimes a lot.

Need to play with kappa.

Canonical equations
No need to iterate, adjust kappa, or scale attributes.

 $(\mathbf{X}'\mathbf{X})^{-1}$

However, the challenge is to compute:

Method of choice when m is big (>10,000).

Fine for m<10,000, difficult after that. Inverting takes $\sim O(m^3)$ time. result is $(m+1) \times (m+1)$ X'X not a problem;

4

Variants of Grad Descent

- Use the whole dataset to compute the gradient

$$\mathbf{W}_{t+1} = \mathbf{W}_t - K \nabla_E(\mathbf{W}_t) = \mathbf{W}_t + K - \sum_{k=1}^{N} \mathbf{x}^k \left(\mathbf{y}^k - \mathbf{w}_t' \mathbf{x}^k \right)$$

- Mini-Batch
- − Use subsets of the data (e.g. 1...b, b+1...2*b, etc) to compute

radient
$$\mathbf{w}_{t+1} = \mathbf{w}_t - \kappa \nabla_E(\mathbf{w}_t) = \mathbf{w}_t + \kappa \frac{1}{n} \sum_{k=1}^{b} \mathbf{x}^k \left(y^k - \mathbf{w}_t' \mathbf{x}^k \right)$$

- Stochastic Gradient Descent *** Will be on AS 3
- Calculate the gradient using one training example at a time

$$\mathbf{W}_{t+1} = \mathbf{W}_t - K \nabla_E(\mathbf{W}_t) = \mathbf{W}_t + K \left(\mathbf{X}^k \left(\mathbf{y}^k - \mathbf{W}_t' \mathbf{X}^k \right) \right)$$

L2 Regularization

$$E(\mathbf{w}) = \frac{1}{2n} \sum_{k=1}^{n} (y^k - \mathbf{w}' \mathbf{x}^k)^2 + \frac{\lambda}{2} \sum_{i=1}^{p} (\mathbf{w}_i)^2$$
$$= \frac{1}{2n} \sum_{k=1}^{n} (y^k - \mathbf{w}' \mathbf{x}^k)^2 + \frac{\lambda}{2} ||\mathbf{w}||_2^2$$

• We get to take the derivative again!!!

What if X^TX is non-invertible

- Some columns are linearly dependent
 E.g. salary is given in two columns; both in CAD and USD
- Too many attributes, few tuples
- Delete some attributes
- Use regularization (developed later in the course)

Regularization

- Let's say the input data X has dimension n x p
- If there are many parameters to learn, this can lead to overfitting
- E.g. when n < p
- We need a simpler model
- Recall Naïve Bayes params vs the full joint probability
 - Naïve Bayes has O(?) parameters
- The joint probability has O(?) parameters
- How can we make our regression model simpler?
 - Is a model with q << p parameters simpler?
- How can we learn a regression model with fewer parameters?

16

Derivative of the Regularizer

$$\frac{\partial}{\partial \mathbf{w}_j} \left(\frac{\lambda}{2} \sum_{i=1}^p (\mathbf{w}_i)^2 \right) = ?$$

- Exercises:

 1. What's the update for L2 regression using Gradient Descent?

 2. Can you set the derivative to zero and solve for w using this version of the error function?