Crypto Market Forecasting

13기 김창현 14기 김종민 14기 임형우

목차

- 1. 중간 이전 스터디 설명
- 2. 대회소개
- 3. 평가지표
- 4. EDA
- 5. 모델링
- 6. 개선사항 및 추후 일정
- 7. 결론

중간 이전 스터디 내용

- 1차 (21.09.26) : 시계열 데이터 분석 기본, 지수 평활법
- > 2차 (21.10.03) : AR, MA, ARIMA, SARIMA
- ▶ 3차 (21.10.10) : 불균형 데이터 처리, SVM

대회소개

- ➤ G-Research는 런던에 위치한 금융공학 연구소
- 14개의 유명한 암호화폐의 가격을 예측하는 대회

평가지표

- ➤ 대회의 목표는 15분 후 가격을 예측하는 것 (log returns over 15 minutes)
- 암호화폐는 서로의 상관관계가 매우 높음, 따라서 개별 자산의 가격을 예측하기 위해 시장 수익률(weighted average market returns)을 제외하고 예측

Evaluation Metric

Prediction targets and evaluation

This forecasting competition aims to predict returns in the near future for prices P^a , for each asset a. For each row in the dataset, we include the target for prediction, Target is derived from log returns (R^a) over 15 minutes.

$$R^a(t) = log(P^a(t+16) / P^a(t+1))$$

Target

Crypto asset returns are highly correlated, following to a large extend the overall crypto market. As we want to test your ability to predict returns for individual assets, we perform a linear residualization, removing the market signal from individual asset returns when creating the target. In more detail, if M(t) is the weighted average market returns, the target is:

$$M(t) = \frac{\sum_{a} w^{a} R^{a}(t)}{\sum_{a} w^{a}}$$
$$\beta^{a} = \frac{\langle M \cdot R^{a} \rangle}{\langle M^{2} \rangle}$$
$$\text{Target}^{a}(t) = R^{a}(t) - \beta^{a} M(t)$$

where the bracket $\langle . \rangle$ represent the rolling average over time (3750 minute windows), and same asset weights w^a used for the evaluation metric.

EDA

- ▶ 비트코인, 이더리움 등14개의 유명한 암호화폐의 가격을 예측하는 대회
- ▶ 시가총액 등의 요소를 고려하여 자산 별로 가중치를 부과함

G-Research								
Asset_ID	Weight	Asset_Name	weight_percentage					
1	6.779922	Bitcoin	16.584998					
6	5.894403	Ethereum	14.418848					
3	4.406719	Cardano	10.779686					
O	4.304065	Binance Coin	10.528574					
4	3.555348	Dogecoin	8.697068					
2	2.397895	Bitcoin Cash	5.865715					
9	2.397895	Litecoin	5.865715					
7	2.079442	Ethereum Classic	5.086716					
12	2.079442	Stellar	5.086716					
13	1.791759	TRON	4.382990					
11	1.609438	Monero	3.936996					
5	1.386294	EOS.IO	3.391144					
8	1.098612	IOTA	2.687418					
10	1.098612	Maker	2.687418					

EDA

- 대표적인 암호화폐인 비트코인과 이더리움의 가격 변화
- ▶ 가장화폐는 전반적으로 높은 상관관계를 보이고 있음

모델1: ARIMA

- ▶ 자기회귀 누적 이동평균 모델
- ▶ 아래와 같이 종가 예측에 좋은 성능을 나타냄

1 (0, 6 (2, 4 (1,	0) -446.108 1) -445.320 0) -444.145	9464 5513 9700						
			RIMAX Re					
Dep. Variable: close_box No. Observations: Model: SARIMAX(1, 1, 0) Log Likelihood Date: Sun, 26 Dec 2021 AlC Time: 15:16:22 BlC Sample: 01-31-2018 HQIC - 09-30-2021 Covariance Type: opg								
	coef					[0.025	0.975]	
ar.L1 sigma2	0.3821 2.099e-06		2.8 4.8		0.004 0.000	0.121 1.25e-06	0.643 2.95e-06	
Prob(Q): Heteroske	(L1) (Q): dasticity (H two-sided):	1):	0.0 0.9 0.3 0.0	10 Pr 12 Sk	arque-Bera ob(JB): ew: urtosis:	(JB):		3.5 0.1 -0.6 3.5

모델2: Boosting

- XGBRegressor
- ➤ MSE

RandomSearch

```
params = {
        'n_estimators':[50,100],
        'min_child_weight':[4,5],
        'subsample':[i/10.0 for i in range(6,11)],
        'max_depth': [2,3,4,6,7],
        'booster': ['gbtree', 'gblinear'],
        'eval_metric': ['rmse'],
        'eta': [i/10.0 for i in range(3,6)],
}
reg = XGBRegressor(nthread=-1)
```

Mean Square Error

0.004238179249426806 0.0049390172739860305 0.0025165882548923205 0.005079723405628494 0.006558070666150133 0.0029010544120279245 0.005590263647039461 0.005107588600470915 0.004878439869055079 0.005203426527239624 0.004893873597870384 0.009508390497024509 0.005799805105563594 0.009212997343334134

모델:3 LSTM

- 비트코인, 이더리움 등14개의 유명한 암호화폐의 가격을 예측하는 대회
- ▶ 시가총액 등의 요소를 고려하여 자산 별로 가중치를 부과함

Training Loss Plot

Validation Loss Plot

개선 사항 및 추후 계획

- ➤ Feature Engineering을 통해 더 많은 금융 Feature 생성 및 활용
- ▶ WaveNet, ĞRU 등 고성능의 다른 모델링 기법 사용해서 성능 비교

Moving Average

Thank You

