

Data Science Project by Chuck Tucker

Alzheimer's Disease

"Worldwide, 50 million people are living with Alzheimer's and other dementias."

Alzheimer's disease is terminal unlike other dementias

Source: <u>alz.org</u>

Cost of Care

- 15 million family members are providing
 18.2 billion hours of unpaid care
- Economic value of this care is more than \$230 billion

Source: <u>alz.org</u>

Source: Lewin Group Econometric Model of Alzheimer's and Dementia Costs (see: alz.org/trajectory).

Best Outcomes from Early Treatment

Early Treatment Options

- Changes in diet
- Taking supplements and/or antioxidants
- Avoid smoking and alcohol
- Social activities
- Exercising
- Brain stimulating activities

- Symptoms and disease progression are best mitigated with early treatment
- Early treatment options are inexpensive compared to medication costs

Source: <u>alzheimers.net</u>

Primary Goal for this Analysis

- Create tools that can detect or predict Alzheimer's disease to identify high-risk patients
- These patients can be referred for additional tests or begin early treatment

Target Audience

- Medical professionals diagnosing or treating Alzheimer's disease
- Patients or family members of patients suspecting early cognitive impairment

Data Source and Analysis Tools

- Data Source: Alzheimer's Disease Neuroimaging Initiative
 - Cognitive tests and brain scans
- Classical Statistical Methods
 - Threshold values that indicate high-risk
- Machine Learning Algorithms
 - Predict high-risk patients

Provide Patient Recommendations Based on:

Change in Biomarkers Baseline Biomarkers Screening Method Change in biomarkers over Biomarker measurements at a Use only cognitive tests to create a recommendation system to patient's first exam time for a patient refer patients for brain scans Change between first exam Predict Alzheimer's risk using only initial measurements and most recent exam Detect a progression to Alzheimer's disease

Biomarkers = cognitive test results or scan results

Threshold Results

Baseline Biomarkers (first exam)

- Cognitive Test Thresholds:
- Very good detection rates
- Different thresholds for males and females

Biomarker	Threshold	Detection Rate
CDRSB Males	1.48	83 %
CDRSB Females	1.04	85 %
ADAS11 Males	10.46	81 %
ADAS11 Females	8.78	90 %
ADAS13 Males	16.74	86 %
ADAS13 Females	13.79	93 %
MMSE Males	27.37	80 %
MMSE Females	28.00	85 %
RAVLT Immed. Males	29.36	78 %
RAVLT Immed. Females	37.29	91 %

Calculations at 25% false positive rate

^{*} Statistical tests showed males/females had different thresholds for all biomarkers

- Patients that exceed thresholds for one or more baseline cognitive tests
 - Refer patient for brain scans
 - Use the machine learning models (introduced later) to predict if patient is high-risk for Alzheimer's disease
 - Recommend patient begin early treatment as recommended by medical practitioner
 - Suggest continued monitoring of symptoms and regular exams

Baseline Biomarkers (first exam)

- Brain Scan Thresholds:
- Lower detection rates than cognitive tests
- Different thresholds for males and females

Biomarker	Threshold	Detection Rate
Hippocampus Males	6673.01	66 %
Hippocampus Females	6391.04	80 %
Ventricles Males	50797.64	45 %
Ventricles Females	37943.74	40 %
WholeBrain Males	1025582.00	48 %
WholeBrain Females	928774.86	56 %
Entorhinal Males	3474.42	67 %
Entorhinal Females	3152.40	76 %
MidTemp Males	19179.84	57 %
MidTemp Females	17617.11	70 %

Calculations at 25% false positive rate

^{*} Statistical tests showed males/females had different thresholds for all biomarkers

- Patients that exceed thresholds for one or more baseline brain scans
 - Use the machine learning models (introduced later) to predict if patient is high-risk for Alzheimer's disease
 - Recommend patient begin early treatment as recommended by medical practitioner
 - Suggest continued monitoring of symptoms and regular exams

Baseline Thresholds Performance Summary

Change in Biomarkers

Cognitive Test Thresholds: high detection rates & low false positive rates

Biomarker	Threshold	CN to AD Detect Rate	MCI to AD Detect Rate	False Positive Rate
CDRSB	+ 2.07	100 %	95 %	4 %
ADAS11 Males*	+ 1.69	100 %	81 %	15 %
ADAS11 Females*	+ 2.41	100 %	85 %	14 %
ADAS13 Males*	+ 2.13	100 %	80 %	12 %
ADAS13 Females*	+ 0.60	100 %	89 %	19 %
MMSE	- 176.0	100 %	84 %	15 %
RAVLT Immediate	- 281.7	100 %	74 %	23 %

^{*} Statistical ADAS tests showed males/females had different thresholds

⁺ indicates in increase, - indicates a decrease

Change in Cognitive Tests Performance of Thresholds

^{*} Good detection rates and acceptable false positive rates for recommended purpose

- Patients that exceed thresholds for changes in one or more cognitive tests
 - Refer for brain scans
 - Use the machine learning models (introduced later) to predict if patient is high-risk for Alzheimer's disease
 - Recommend patient begin early treatment as recommended by medical practitioner
 - Suggest continued monitoring of symptoms and regular exams

Change in Biomarkers

Brain Scan Thresholds: less accurate than cognitive thresholds

Biomarker	Threshold	CN to AD Detect Rate	MCI to AD Detect Rate	False Positive Rate
Hippocampus	- 1.0	80 %	77 %	26 %
Ventricles Males*	- 772.8	100 %	79 %	19 %
Ventricles Females*	- 684.1	66 %	84 %	24 %
WholeBrain	- 1.9	40 %	73 %	27 %
Entorhinal	+ 4684.0	40 %	73 %	29 %
MidTemp Males*	+ 5764.3	50 %	73 %	22 %
MidTemp Females*	- 21220.4	67 %	82 %	27 %

^{*} Statistical tests for Ventricles and MidTemp showed males/females had different thresholds

⁺ indicates an increase, - indicates a decrease

Change in Brain Scans Performance of Thresholds

^{*} Lower detection rates and higher false positive rates than cognitive tests

- Patients that exceed thresholds for changes in one or more brain scans
 - Use the machine learning models (introduced later) to predict if patient is high-risk for Alzheimer's disease
 - Recommend patient begin early treatment as recommended by medical practitioner
 - Suggest continued monitoring of symptoms and regular exams

Machine Learning and Predictive Modeling Results

Machine Learning Models: Baseline Cognitive Tests

- Support Vector Machines
 - 83% detection and 27% false positive
- Other models inaccurate with no brain scan data

Baseline Cognitive Tests Detection Rates and False Positive Rates by Model

- Patients that are predicted as high-risk using baseline cognitive test SVM model
 - Refer patient for brain scans
 - Recommend patient begin early treatment as recommended by medical practitioner
 - Suggest continued monitoring of symptoms and regular exams

Machine Learning Models: Baseline Biomarkers

(Cognitive tests and brain scans)

- High Value Models
- Over 85% detection rates and less than 20% false positive rates
 - Support Vector Machines
 - Logistic Regression
 - Naïve Bayes
- Every model over 75% detection
- Every model under 20% false positive

Baseline Biomarkers Detection Rates and False Positive Rates by Model

- Patients that are predicted as high-risk by the baseline biomarker models
 - Recommend patient begin early treatment as recommended by medical practitioner
 - Suggest continued monitoring of symptoms and regular exams

Machine Learning Models: Change in Cognitive Tests

- High Value Models
- Detection Rates over 80% and false positive rates 15-17%
 - Support Vector Machines
 - Logistic Regression
- Other models not as accurate

Change in Cognitive Tests Detection Rates and False Positive Rates by Model

- Patients that are predicted as high-risk using change in cognitive test models
 - Refer patient for brain scans
 - Recommend patient begin early treatment as recommended by medical practitioner
 - Suggest continued monitoring of symptoms and regular exams

Machine Learning Models: Change in Biomarkers

(Cognitive tests and brain scans)

- High Value Models
- About 85% detection rates and less than 15% false positive rates
 - Support Vector Machines
 - Logistic Regression
- Other models not as accurate

Change in Biomarkers Detection Rates and False Positive Rates by Model

- Patients predicted as being high-risk by the change in biomarkers models
 - Recommend patient begin all early treatment options as recommended by the patient's medical practitioner
 - Suggest continued monitoring of symptoms and regular exams

Model Tuning

- Hyperparameters were chosen using 5-fold cross validation
- Feature selection tools
 - Built-in attributes of models
 - Feature selector module
 - Principal component analysis
 - Ultimately made little improvement over the basic model
- Ensemble model comprised of the best performing models

Ensemble Models

- Individual models showed high detection rates and low false positive rates
- The best models were combined into ensemble models
 - These were generally 85% or higher detection and 20% or lower false positives
 - Majority voting by individual models decides the prediction for each patient
- Ensemble models should be better at generalizing to new patient data

Ensemble Models

Baseline Biomarkers

- Support Vector Machines (SVM)
- Logistic Regression (LR)
- SVM with 9 principal components
- LR with 9 principal components
- LR omitting 2 features

Change in Biomarkers

- Support Vector Machines
- Logistic Regression
- LR omitting 2 features
 - * Only three models with high enough detection rates

Ensemble Model Performance

Baseline Biomarkers

- 92% detection rate
- 15% false positive rate

Change in Biomarkers

- 85% detection rate
- 14% false positive rate

These are the recommended models to use when there is data for cognitive tests and brain scans

Practical Applications

- High detection rates make the model useful
- Low false positive rates mean not unduly alarming patients
- Early detection -> early treatment -> better outcomes

Baseline First Exam Decision Chart

Continued Monitoring Decision Chart

Final Thought: Better Early than Late

"Although the adage, 'better late than never' certainly applies, waiting for a full blown diagnosis of Alzheimer's disease before making healthy diet and lifestyle changes, is not a very effective prevention plan."

Quote: <u>alzheimers.net</u>