비트 평면

- ▶ 24 비트 (R, G, B) = (8, 8, 8)
 - R, G, B 각각에 대해 256 회색도(Gray Level)
 - 총 몇 컬러?
 - True color (R, G, B 각각을 8비트로 표현하는 규격)
- ▶ 1280 by 1024, 총 512 컬러
 - 프레임 버퍼 용량은?
- Bit plane?

벡터그래픽 장비

- Vector Display, Calligraphic Display, Stroke Display, Random Display
- ▶ 화소개념 없음
 - 무한 해상도 (전자빔의 폭 -> 해상도)
 - 에일리어싱 없음
 - 전자총의 움직임

벡터그래픽 장비

- 프레임 버퍼 없음
- 디스플레이 리스트: 명령어 집합

래스터 장비와 벡터 장비

	래스터 그래픽	벡터 그래픽
에일리어스	발생	없음
채움 다각형	빠른 렌더링	느린 렌더링
래스터 변환	필수적	불필요
메모리	대용량 프레임 버퍼	소용량 디스플레이 리스트

벡터그래픽 장비

- 🔈 빔투과 방식
- ▶ 오실로스코우프, 레이다, 플로터

평판형 디스플레이: LCD

Liquid Crystal Display

- 컬러 = 액정의 배열상태 변화
- 블라인트 커튼

평판형 디스플레이: LCD

	LCD 디스플레이	CRT 디스플레이
무게	경량(CRT의 2/5)	중량(l5kg)
소비전력	높음(CRT의 1/4)	낮음(140Watts)
완전평면	100% 가능	화면테두리 근처 불가능
유해 전자파	없음	있음
가격대	고가	저가
시야각	좁은 각(좌우 50도)	넓은 각
밝기 및 명암대비	약함	강함
색상	부자연스러움	자연적

평판형 디스플레이: PDP

Plasma Display Panel

• 표면방전에 의한 번개 (구름이 플라즈마로, 아래 전자가 땅으로 내려

오면서 번개 발생)

• 형광등 (전자방출=> 내부기체를 이온화 => 자외선방출 => 형광물질 에 부딪쳐 발광)

OLED screens

▶ OLED는 전압을 가하면 자체적으로 빛이 남

- ♪ 유기물로 구성된 LED라 대형, 고해상도에서 굉장한 장점을 가짐.
- ♣ 유기물 층을 유리(glass)층에 증착(방법: 유기물이 담긴 작은 통 가열 → 기체 발생 → 디스플레이 전면의 유리층에 적용) → 이 유리층에는 전자회로(TFT)들이 존재해 전류를 흘림.

▶ OLED은 어떻게 발광하나 ?

OLED는 전류를 가했을 때 이에 반응해 빛을 내는 발광물질 → Cathode와 Anode에서 방출된 전자와 정공(양전하)이 만날 때 빛을 냅

VR HMD

- Oculus Rift,
- Oculus Quest
- HTC Vive
- PlayStation VR
- Samsung Gear VR

Spec) 해상도, FOV(시야각) 응용) FPS 게임, 롤러코스터 놀이기구

VR headset

어지러움?

- (1)는 과 전정기관(평형 담당)간의 정보 불일치
- (2) 눈동자 의 '수렴'과 '원근조절' 이 불일치

원근 조절(accomodation)

다른 멀미 원인

▶ 낮은 해상도 → 고해상도 디스플레이 기술로 해결

국내중소기업제품 '파이맥스 8K': 각 디스플레이 패널은 3840×2160 픽셀을 지원

- ♪ 시간지연(Motion To Photon Latency: 몸 움 직임에서 영상 디스플레이 까지 지연시간) 과 잔영(Motion Blur)
- → 초당 처리 프레임 수 를 늘려야 함. 고속 처리 알고리즘 개발
- → Low Pixel persistence 를 가진 디스플레이 기술 개발 (Pixel persistence: the amount of time per frame that the display is actually lit rather than black) → OLDE display panel 사용

Hologram

- ♣ 빛의 회절, 간섭(2개 이상 파동이 겹치면서 간섭무늬가 생기는 현상) 현상 이용
- ▶ 안경없이 3D 입체 영상 감상
- ▶ Real 홀로그램은 기술적 한계로 상용화 에 시간이 걸리고 있음

Definition of a 3D hologram

A 3D hologram is defined as a **3D projection** that exists freely in space and is visible to everyone without the need for 3D glasses.

▶ Denis Garbor's Holography 기술

- 동일한 파(레이저 파를 사용)의 진로에 물체가 있으면, 파는 물체의 표면에서 반사되어 원래의 빛과 만나 간섭무늬를 만듬 → 이 간섭 무늬의 패턴은 물체 표면에서의 거리에 의하여 결정

아날로그 홀로그램

패널에 특정 패턴 형성 → 백 라이트 빛이 페넡을 동과해 수많은 광선으로 나누고 방향들이 바뀜 → 이들이 공간 상에 서로 만나 간섭

플로팅 홀로그램: 유사 홀로그래램 기술의 하나

- ▶ DLP 프로젝터 로 영상을 재생하고, 재생된 영상은 반사경에 의해 반사되어, 45도 기울어진 투명막(실제, 반투명스크린)에 투사된다. 사람들은 마치 3D 입체 영상이 공중에 떠 있는 느낌을 받음. 기본적으로 빛의 반사 원리 이용
- ▶ K-live: 2014년 동대문에 개설된, 홀로그램을 이용한 K-pop 전용 공연 장

재미로 플로팅 홀로그램 만들어 보기

▶ 스마트폰에서 재생되는 동영상 위에 피라미드형 사각뿔(투명햐여 함)을 거꾸로 올려놓고 홀로그램을 구현하는 것으로 역시 유사 홀로그램 임. 스 마트폰이 DLP 프로젝트 역할.

https://youtu.be/IRrWxp0oABg

장 종료