

# Polar™ HiPerFET™ **Power MOSFET**

## IXFB300N10P

N-Channel Enhancement Mode Avalanche Rated Fast Intrinsic Diode



| V <sub>DSS</sub>    | = | 100V                 |
|---------------------|---|----------------------|
| D25                 | = | 300A                 |
| R <sub>DS(on)</sub> | ≤ | $5.5 \text{m}\Omega$ |
| t <sub>rr</sub>     | ≤ | <b>200ns</b>         |

| Symbol            | Test Conditions                                                                      | Maximum Ratings |      |  |  |
|-------------------|--------------------------------------------------------------------------------------|-----------------|------|--|--|
| V <sub>DSS</sub>  | T <sub>,</sub> = 25°C to 175°C                                                       | 100             | V    |  |  |
| V <sub>DGR</sub>  | $T_J^{\circ} = 25^{\circ}\text{C to } 175^{\circ}\text{C}, R_{gs} = 1\text{M}\Omega$ | 100             | V    |  |  |
| V <sub>GSS</sub>  | Continuous                                                                           | ±20             | V    |  |  |
| V <sub>GSM</sub>  | Transient                                                                            | ±30             | V    |  |  |
| I <sub>D25</sub>  | T <sub>C</sub> = 25°C                                                                | 300             | Α    |  |  |
| ILRMS             | Leads Current Limit, RMS                                                             | 160             | Α    |  |  |
| I <sub>DM</sub>   | $T_{c} = 25^{\circ}C$ , Pulse Width Limited by $T_{JM}$                              | 900             | Α    |  |  |
| I <sub>A</sub>    | T <sub>C</sub> = 25°C                                                                | 100             | A    |  |  |
| É <sub>AS</sub>   | $T_{C}^{\circ} = 25^{\circ}C$                                                        | 3               | J    |  |  |
| dv/dt             | $I_{_{S}} \le I_{_{DM}}, V_{_{DD}} \le V_{_{DSS}}, T_{_{J}} \le 175^{\circ}C$        | 20              | V/ns |  |  |
| P <sub>D</sub>    | T <sub>C</sub> = 25°C                                                                | 1500            | W    |  |  |
| T <sub>J</sub>    |                                                                                      | -55 +175        | °C   |  |  |
| T <sub>JM</sub>   |                                                                                      | 175             | °C   |  |  |
| T <sub>stg</sub>  |                                                                                      | -55 +175        | °C   |  |  |
| T <sub>L</sub>    | Maximum Lead Temperature for Soldering                                               | 300             | °C   |  |  |
| T <sub>SOLD</sub> | 1.6 mm (0.062in.) from Case for 10s                                                  | 260             | °C   |  |  |
| F <sub>c</sub>    | Mounting Force                                                                       | 30120/6.727     | N/lb |  |  |
| Weight            |                                                                                      | 10              | g    |  |  |

| Symbol                | Test Conditions                     |                      |      | ic Values |      |    |
|-----------------------|-------------------------------------|----------------------|------|-----------|------|----|
| $(T_J = 25^{\circ}C,$ | Unless Otherwise Specified)         |                      | Min. | Тур.      | Max. |    |
| BV <sub>DSS</sub>     | $V_{GS} = 0V, I_{D} = 3mA$          |                      | 100  |           |      | V  |
| V <sub>GS(th)</sub>   | $V_{DS} = V_{GS}, I_{D} = 8mA$      |                      | 2.5  |           | 5.0  | V  |
| GSS                   | $V_{GS} = \pm 20V, V_{DS} = 0V$     |                      |      |           | ±200 | nA |
| I <sub>DSS</sub>      | $V_{DS} = V_{DSS}, V_{GS} = 0V$     |                      |      |           | 25   | μΑ |
|                       |                                     | $T_J = 150^{\circ}C$ |      |           | 1.5  | mA |
| R <sub>DS(on)</sub>   | $V_{GS} = 10V, I_{D} = 50A, Note 1$ |                      |      |           | 5.5  | mΩ |

### PLUS264™



$$G = Gate$$
  $D = Drain$   $S = Source$   $Tab = Drain$ 

### **Features**

- Low R<sub>DS(on)</sub> and Q<sub>G</sub>
   Avalanche Rated
- Low Package Inductance
- Fast Intrinsic Diode

### **Advantages**

- High Power Density
- Easy to Mount
- Space Savings

### **Applications**

- DC-DC Coverters
- Battery Chargers
- Switch-Mode and Resonant-Mode **Power Supplies**
- DC Choppers
- AC and DC Motor Drives
- Uninterrupted Power Supplies
- High Speed Power Switching Applications





| •                        |                                                                             | Chara | acteristic Values |      |          |  |
|--------------------------|-----------------------------------------------------------------------------|-------|-------------------|------|----------|--|
| $(T_J = 25^{\circ}C, L)$ | Inless Otherwise Specified)                                                 | Min.  | Тур.              | Max  | <b>.</b> |  |
| g <sub>fs</sub>          | $V_{DS} = 10V, I_{D} = 60A, Note 1$                                         | 55    | 92                |      | S        |  |
| C <sub>iss</sub>         |                                                                             |       | 23                |      | nF       |  |
| C <sub>oss</sub>         | $V_{GS} = 0V, V_{DS} = 25V, f = 1MHz$                                       |       | 6100              |      | pF       |  |
| C <sub>rss</sub>         |                                                                             |       | 417               |      | pF       |  |
| t <sub>d(on)</sub>       | Resistive Switching Times                                                   |       | 36                |      | ns       |  |
| t,                       | $V_{GS} = 10V$ , $V_{DS} = 0.5 \cdot V_{DSS}$ , $I_{D} = 100A$              |       | 35                |      | ns       |  |
| t <sub>d(off)</sub>      | $R_{\rm g} = 10$ (External)                                                 |       | 56                |      | ns       |  |
| t <sub>f</sub>           | G . , ,                                                                     |       | 25                |      | ns       |  |
| $\mathbf{Q}_{g(on)}$     |                                                                             |       | 279               |      | nC       |  |
| Q <sub>gs</sub>          | $V_{GS} = 10V$ , $V_{DS} = 0.5 \cdot V_{DSS}$ , $I_{D} = 0.5 \cdot I_{D25}$ |       | 84                |      | nC       |  |
| $\mathbf{Q}_{gd}$        |                                                                             |       | 107               |      | nC       |  |
| $\mathbf{R}_{thJC}$      |                                                                             |       |                   | 0.10 | °C/W     |  |
| R <sub>thCS</sub>        |                                                                             |       | 0.13              |      | °C/W     |  |

# PLUS264<sup>TM</sup> (IXFB) Outline BACK SIDE 1 - Gate 2,4 - Drain 3 - Source

| MYZ  | INCHES |       | MILLIMETERS |       |  |
|------|--------|-------|-------------|-------|--|
| 2114 | MIN    | MAX   | MIN         | MAX   |  |
| Α    | .185   | .209  | 4.70        | 5.31  |  |
| A1   | .102   | .118  | 2.59        | 3.00  |  |
| b    | .037   | .055  | 0.94        | 1.40  |  |
| Ь1   | .087   | .102  | 2.21        | 2.59  |  |
| b2   | .110   | .126  | 2.79        | 3.20  |  |
| С    | .017   | .029  | 0.43        | 0.74  |  |
| D    | 1.007  | 1.047 | 25,58       | 26,59 |  |
| Е    | .760   | .799  | 19,30       | 20.29 |  |
| е    | .215   | BSC   | 5.46 BSC    |       |  |
| L    | .779   | .842  | 19.79       | 21.39 |  |
| L1   | .087   | .102  | 2.21        | 2.59  |  |
| Q    | .240   | .256  | 6.10        | 6.50  |  |
| Q1   | .330   | .346  | 8.38        | 8.79  |  |
| ØR   | .155   | .187  | 3.94        | 4.75  |  |
| ØR1  | .085   | .093  | 2.16        | 2.36  |  |

### Source-Drain Diode

| Symbol                                                | Symbol Test Conditions Characteristic Value                                  |      |            | Values |               |
|-------------------------------------------------------|------------------------------------------------------------------------------|------|------------|--------|---------------|
| $(T_J = 25^{\circ}C,$                                 | Unless Otherwise Specified)                                                  | Min. | Тур.       | Max.   |               |
| I <sub>s</sub>                                        | $V_{GS} = 0V$                                                                |      |            | 300    | Α             |
| SM                                                    | Repetitive, Pulse Width Limited by $T_{_{\rm JM}}$                           |      |            | 1000   | Α             |
| V <sub>SD</sub>                                       | $I_F = 100A$ , $V_{GS} = 0V$ , Note 1                                        |      |            | 1.3    | V             |
| t <sub>rr</sub><br>Q <sub>RM</sub><br>I <sub>RM</sub> | $\begin{cases} I_{F} = 150A, -di/dt = 100A/\mu s \\ V_{R} = 50V \end{cases}$ |      | 0.71<br>10 | 200    | ns<br>μC<br>A |

Note 1: Pulse test,  $t \le 300 \mu s$ , duty cycle,  $d \le 2\%$ .



Fig. 1. Extended Output Characteristics @ T<sub>J</sub> = 25°C



Fig. 2. Output Characteristics @ T<sub>J</sub> = 150°C



Fig. 3.  $R_{DS(on)}$  Normalized to  $I_D$  = 150A Value vs.



Fig. 4.  $R_{DS(on)}$  Normalized to  $I_D$  = 150A Value vs.



Fig. 5. Maximum Drain Current vs.





# IXFB300N10P















IXYS Reserves the Right to Change Limits, Test Conditions, and Dimensions.

