A Total Variation Minimization Template Library Master Thesis

Pascal Debus *

11. August 2015

1 Introduction

- TV Minimization of Grayscale images (Osher paper)
- RGB, flat and non-flat color models
- generalization: manifold valued data
- Optimization on manifolds, intrinsic geometry, gradient descent versus Newton
- IRLS paper

2 Library

2.1 Capabilities

- Manifolds: Euc, S^n , SO(n), SPD(N), GR(N,P)
- Functionals: Aniso/Iso, first order
- Minimizer: IRLS, PRPT
- Data: 2D, 3D, Various input formats, OpenCV Integration

2.2 Design Concepts

- Goals: Extendable, modularized, templated, fast, easy to use
- C++ techniques: Variadic templates, lambda function, compile time optimization
- Levels of Parallelism: Thread, shared memory, Vectorization, instruction level parallelism
- Diagram of Components, short description of each component

2.3 Usage

- Prerequisites and Installation
- Usage of the library and example cases

*pdebus@student.ethz.ch

3 Theory and Implementation details

3.1 Alogrithms overview

• IRLS, PRPT

3.2 Manifolds

- Short summary of Euclidian, S^n
- Summary of Semi-analytic expressions for derivatives of SPD, SO(n)
- Implementation of Frechet Derivatives for DLog
- Grassmann manifold

3.3 3D generalization

• Data container, functional

4 Numerical experiments

4.1 Applications

- Image denoise: gray, RGB flat and non-flat colormodels
- SON: fingerprint orientation and flowfield calculation
- SOD: DTI images
- Grassmann: Chromatic denoising and maybe something else more interesting

4.2 Performance analysis (optional

• pixel versus time needed, analysis of various metrics cache misses: cpu cycles in which part of the program...

5 Outlook

• further improvements and possible extension,...

