Компьютерные сети. Лаба 5

Сети. Лаба 5.

1. Время распространения $d_{
m p}=rac{10{
m M}}{3*10^8{
m M/c}}=0.03*10^{-6}{
m c}.$

Общее время, необходимое для получения всех объектов при параллельных непостоянных HTTP-соединениях:

$$(rac{3*200}{150}+rac{100000}{150}+4d_p)+(rac{3*200}{15}+rac{100000}{15}+4d_p)pprox 7377+8d_p$$
 c

Общее время для постоянных HTTP-соединений

$$(rac{3*200}{150}+rac{100000}{150}+4d_p)+10*(rac{200}{150}+rac{100000}{150}+2d_p)pprox 7351+24d_p$$
 c

Ускорение примерно на 0.4 процента существенным ускорением не назовешь.

2. Одноранговая модель:

$$N = 10$$

N = 100

N = 1000

Клиент-серверная модель:

N = 10

N = 100

N = 1000

3. а. В случае передачи каждому клиенту данных со скоростью u_s/N .

нужно: $max(NF/u_s, F/d_{min})$.

- б. В случае передачи каждому клиенту данных со скоростью большей, либо равной F/d_{min} .
- в. Каждому клиенту мы выделяем скорость передачи u_i , такую что $\sum u_i \leq u_s$. Очевидно, что без ограничений, накладываемых d_{min} , минимальное время передачи составит $F/(\frac{u_s}{N})$ (то есть каждому клиенту мы выделим u_s/N скорости, если мы кому-нибудь выделим больше этого значения, у другого клиента скорость будет меньше этого значения и время увеличится). Если смотреть только на ограничение от d_{min} получаем, что минимальное время, очевидно, составит F/d_{min} . Объединяя эти два ограничения получим то, что