Procusor organisation

CPU

Combination of procusor unit and control unit

All operations one considered as micro operation

Dota path ! - set of fundronal units that causy out data processing operation. Data path with a control unit make up the could be computer system

Data paths are confeeled using gates.

Methods of organizing processus

- i) bus organization
- ii) seeathoh pad memory
- iii) Accumulatos

i) Bus organisation

es. fi + Fz FR3

MURR - R3 in Bus B

MURR - Board in In scleden Ring, it perform R2+R3 (A+B)

Miltura tunsfu ALU content to Show (olphus)

deceder = Selection R, and tensfu conducts of 5 register to R

Registers in percensus unit can be enclosed within memory location unit called scratchpad memory.

A and B au temp registers

In this memory access operation are more, so it reduces elliciency

RIE PZIR3

Read Re to but A A C M COID B = m (OI) Read R3 to Bon B

Hou result alter performing m (00) T3 -(Assuming it is distinction)

lip

Solution of this is two post memory (modification of scenty Pay)

there 2 spriand address con by read in. I alk eyele

Using me (memory enable) we can choose is as destrouted seguite

baled on value of elk we can choose Read [weite.

The clock pulse control the memory read and write operation through the write which input (we)

R3 E RIFER

Tre Acc & o & clear accumulator

To Acc & Acc+R, tempte conducts of R, & Acc

73 Acc & Acc+R2

ALU

It is a digital criccuit for purposming authorite and logic uperation

New how a no of sclecture lines to sclect a particular operation selection lines are decoded with in ALU so that K relection variouse can specify upto 2k operation

Block diagram of ALU

we need a operand, A and B which are of 4516

Design of authmatic unit

Aximmetre operations

Addition, subtraction, increment, decrement, aummetre shift Posablel adder is used to puration perform these operation

To pulvem n bit addition we ecquire in bull added we not bull added and a half added (become instrally there is no casely so we can pulsem addition ming half added)

perform cont < poualled added < cip = 0 eow & Powalle adde & const und C PA Con 20 Can C PA Cin = 1 Cont = AA = Con = 1 COW PA CON 20 cout C PA Coin = 0 cout PA C Cin = 1 1010165

I'st operand is always A, 2nd operand ratios, 0,1, B,B, so we have to escate a checut which produces there 4 h led as 1/p to FA

	' inpul	46.)	(output
В	€.	\$,	Ē	250	@s1	B20 + B 2 1
o	o	0	\	o	o	o
0	0	1	•	6	4	1
6	ι	٥	•	0	. 0	Ö
0	t	1	4	b	4	1
•	0	0	0	0	O	•
l	ь	`	0	ِ ٥	, C	O
•	t	0	P	1	ò	1
ţ	(1	o	1	U	1

-	0	5,	y
	O	0	0
	•	·	3
	1	0	B
	1	1	Ţ
		12	

Function - table for aeimmetre elecuit

Sclection		input			operation	function	
S,	80	c,0	A		B		
0	0	0	. A		Ó	+ transfer	Fan
0	6	1	· A		O	Increment	f = A11
0	,	o	A		B	andd	FEATB
0	1	,	A A	*	В	add with covery	FEA+B+ 1
1	0	٥	А		<u>-</u>	is subtraction	F = A+B
t	o	(A		Ğ=	2's subtrocking	F= A+B+1
l	ι	0	Ä		f	decrement	F = A-1
ţ	1	(. A		ì	Tronsfer	r. A

Design of logic circuit

function input 9, 5, AitBi OR ø A: (B) KOR Ai . Bi 1 b AND ((A:) NOT Complete design of ALO Cin 1 _) Ci+1 90 one stage of Azimmedic erecuit 92 241

A)

BI

one stage of

Lugic

Crecuit

Status register of a telest register. Four bits are C, Z, S and or They, are set or cleveed as a result of an operation performed in or

Relation	Condition of status 164	· Baleon Buncher
ADB	C=1 and 2=0	۲ ء '
Ne A	e = \	c
r < 8	C = 0	
A LB	C=0 01 2=1	c' +2
A = B	2=(
a t B	2 = 0	2

Shilter !

shift with right by still shift

. Shifter can be implemented with bindirectional shift register,

Difficultres in implementation of shifter wing bidirectional

· clk pulse is needed but the transfer of information to the shelter . as the pulse is needed but shelt operation

· another elle public is needed for moving information from the shift register to destination register

for a single shift opudion à eyeles auc required

Implementation of shifter wing combinational ericuit

The signal. from the to the output but perspaget through gates without need for a elk pulse. Only one clk pulse needed in the processes system for loading data from the but to destination register

Punctio.	Jable .		try in the state of the
ч,		Operation	function
•	o	S ← F	teansfer for Sm
	(S a sha F	shill right F rotus
•	0	s e shl F	ships left 2 70% s
		· · · · · · · · · · · · · · · · · · ·	Tronsfu o's joh s

- estection vousables in a processor unit control i the miceo-
- . selection variable controls.
 - bouce
 - ALU
 - shelte
 - destination register

Block droguen

aniha selection line has circular shift

In this there are to selection variables in the unit and for the line of the contest word

123	4 5 61	7 9 9	10 u 12	13	16 18 16
A	13	0	F	C,0	H

3 bits A = selich a source register but the isput Rinks
3 bits of ALU

side of ALU

3 pip of D -3. solecte gentroopen medlegen

3 bile of Exi Bit "in Cin is select function for ALU

3 bit of 10 - 3, seloch one ogge of shift in one shifte unit

Binary 14 co de No shil 1 (p d ala Input date A+1 , None shell eight le = 0 AABAI R, R. RI smeffelt, les A-B A-B-1 Rr P2 Rz ASI A, (41 o's In oly bus R3 R 3 Ra Ru .. AVB Ru RA Cosculate eight Rs R5 RS Crecilate Rebs R6 RG R. 27 R7 i) A=B=000 thin mun odeds input data (not value ten register)

Function

schection valiables

mrc20 operation of Acu

no destination is selected, proces

shilt aparation of logic shifter.

 $R_1 \leftarrow R_1 - R_2$

food the control word

001 010 001 040 1 000 A 5 0 F Cm, H

Ri - left up of ALO

R2 - Right ip of ALD

A-B is ALO operation

no shell required

Ri destination register

Drigo el accumulator

Hick dagem

Oak Espel

the epitanal inputs to accumulator are the date inputs been is and the context - vousioble, that determine the micro operation. As a the register . The west state of register A is a function of the present state of and the external inputs

Accumulater con also perform dato processing operations. Total of nine operations is considered her for the design of a circuid is considered her for the design of

Control variable	Miceouperation	Nome
Pc	A C A+B	Add
P 2	A <-0	cleat
P _s	A C Ā	mendanced
Pu	A C A A B	AND
19	A C A U B	01
۴	A C A & B	E-0x
Pa	A < she A	-phill eght
Pr	A = shl A	Refl shift
Pa	A C A d (increment
	11 (A20), Phu (2=1)	Chech for reco

4 bit occumulated

,