

What is claimed is:

1. A process for preparing a polar olefin copolymer comprising:
copolymerizing a non-polar olefin and a polar olefin
5 in the presence of a catalyst comprising
 - (A0) a compound of a transition metal selected from Groups 3 to 11 of the periodic table, which is represented by the following formula (1):
$$L_mMX_n \quad (1)$$
10 wherein M is a transition metal atom selected from Groups 3 to 11 of the periodic table,
m is an integer of 1 to 6,
n is a number satisfying a valence of M,
L is a ligand coordinated to M and each ligand L has
15 a feature that when the value obtained by subtracting the total sum of the whole energy, as determined by a density functional method, of the compounds on the left-hand member from the whole energy, as determined by a density functional method, of the compound on the right-hand
20 member in the following chemical formula (2) and the value obtained by the same subtraction in the following chemical formula (3) are defined as coordination energy E_1 of ethylene and coordination energy E_2 of methyl acrylate,
respectively, the difference ΔE ($\Delta E = E_1 - E_2$) between the
25 coordination energy E_1 of ethylene and the coordination

energy E_2 of methyl acrylate is 50 kJ/mol or less,

5 wherein M is the same transition metal atom selected
 from Groups 3 to 11 of the periodic table as M in the
 formula (1), a is an integer of 1 to 3, b is an electric
 charge of the compound in the blankets [] and is 0 or 1,
 and Me is a methyl group,

10 and

 X is a hydrogen atom, a halogen atom, an oxygen atom,
 a hydrocarbon group, an oxygen-containing group, a sulfur-
 containing group, a nitrogen-containing group, a boron-
 containing group, an aluminum-containing group, a
 15 phosphorus-containing group, a halogen-containing group, a
 heterocyclic compound residual group, silicon-containing
 group, a germanium-containing group and a tin-containing
 group, and when n is 2 or greater, plural atoms or groups

indicated by X may be the same or different, and plural groups indicated by X may be bonded to each other to form a ring.

5 2. A process for preparing a polar olefin copolymer comprising copolymerizing a non-polar olefin and a polar olefin in the presence of a catalyst comprising
(A0) a compound of a transition metal selected from Groups 3 to 11 of the periodic table, which is represented
10 by the formula (1) as defined in claim 1, and
(B) at least one compound selected from the group consisting of
(B-1) an organometallic compound,
(B-2) an organoaluminum oxy-compound, and
15 (B-3) a compound which reacts with a transition metal compound (A0) to form an ion pair.

3. The process for preparing a polar olefin copolymer as claimed in Claim 1 or 2, wherein the transition metal
20 compound represented by the general formula (1) is a compound of a transition metal selected from Groups 4, 5, 6 and 11 of the periodic table.

4. A process for producing a polar olefin copolymer comprising copolymerizing a non-polar olefin and a polar olefin in the presence of a catalyst comprising:

5 (A1) a reaction product of
Groups 4, 5, 6 and 11 of the periodic table which is
represented by the following formula (c):

wherein M' is a transition metal atom selected from Groups
10 4, 5, 6 and 11 of the periodic table,
k is a number satisfying a valence of M', and
X is a hydrogen atom, a halogen atom, an oxygen atom,
a hydrocarbon group, an oxygen-containing group, a sulfur-
containing group, a nitrogen-containing group, a boron-
15 containing group, an aluminum-containing group, a
phosphorus-containing group, a halogen-containing group, a
heterocyclic compound residual group, a silicon-containing
group, a germanium-containing group or a tin-containing
group, and when k is 2 or greater, plural atoms or groups
20 indicated by X may be the same or different, and plural
groups indicated by X may be bonded to each other to form
a ring, and

(A-i) a compound represented by the following formula
(I):

wherein A is an oxygen atom, a sulfur atom or a selenium atom, or a nitrogen atom having a substituent R⁶, and

R¹ to R⁶ may be the same or different, they are each

5 a hydrogen atom, a halogen atom, a hydrocarbon group, an oxygen-containing group, a sulfur-containing group, a nitrogen-containing group, a boron-containing group, an aluminum-containing group, a phosphorus-containing group, a heterocyclic compound residual group, a silicon-

10 containing group, a germanium-containing group or a tin-containing group, two or more of them may be bonded to each other to form a ring;

and

(B) at least one compound selected from the group

15 consisting of:

- (B-1) an organometallic compound,
- (B-2) an organoaluminum oxy-compound, and
- (B-3) a compound which reacts with the reaction product (A1) to form an ion pair.

5. A process for producing a polar olefin copolymer comprising copolymerizing a non-polar olefin and a polar olefin in the presence of a catalyst comprising:

(A2) a reaction product of
5 (C) a compound of a transition metal selected from Groups 4, 5, 6 and 11 of the periodic table which is represented by the following formula (c):

wherein M' is a transition metal atom selected from Groups 10 4, 5, 6 and 11 of the periodic table,
k is a number satisfying a valence of M', and
X is a hydrogen atom, a halogen atom, an oxygen atom, a hydrocarbon group, an oxygen-containing group, a sulfur-containing group, a nitrogen-containing group, a boron-containing group, an aluminum-containing group, a phosphorus-containing group, a halogen-containing group, a heterocyclic compound residual group, a silicon-containing group, a germanium-containing group or a tin-containing group, and when k is 2 or greater, plural atoms or groups indicated by X may be the same or different, and plural groups indicated by X may be bonded to each other to form a ring, and

(A-ii) a compound represented by the following formula (II):

wherein D is a nitrogen atom or a phosphorus atom,

Q is a nitrogen atom or a phosphorus atom, or a carbon atom substituted with a substituent R¹³,

5 S is a nitrogen atom or a phosphorus atom, or a carbon atom substituted with a substituent R¹⁴,

T is a nitrogen atom or a phosphorus atom, or a carbon atom substituted with a substituent R¹⁵,

R¹¹ to R¹⁶ may be the same or different, they are each
 10 a hydrogen atom, a halogen atom, a hydrocarbon group, an oxygen-containing group, a sulfur-containing group, a nitrogen-containing group, a boron-containing group, an aluminum-containing group, a phosphorus-containing group, a heterocyclic compound residual group, a silicon-containing group, a germanium-containing group or a tin-containing group, two or more of them may be bonded to each other to form a ring;

and

(B) at least one compound selected from the group
 20 consisting of:

(B-1) an organometallic compound,

(B-2) an organoaluminum oxy-compound, and

(B-3) a compound which reacts with the reaction product (A2) to form an ion pair.

6. A process for producing a polar olefin copolymer comprising copolymerizing a non-polar olefin and a polar olefin in the presence of a catalyst comprising:

(A3) a reaction product of
(C') a compound of a transition metal selected from Groups 3 to 11 of the periodic table, which is represented 10 by the following formula (c'):

wherein M is a transition metal atom selected from Groups 3 to 11 of the periodic table,

15 k is a number satisfying a valence of M, and X is a hydrogen atom, a halogen atom, an oxygen atom, a hydrocarbon group, an oxygen-containing group, a sulfur-containing group, a nitrogen-containing group, a boron-containing group, an aluminum-containing group, a phosphorus-containing group, a halogen-containing group, a 20 heterocyclic compound residual group, a silicon-containing group, a germanium-containing group or a tin-containing group, and when k is 2 or greater, plural atoms or groups indicated by X may be the same or different, and plural groups indicated by X may be bonded to each other to form 25 a ring, and

(A-iii) a compound represented by the following formula (III):

5 wherein A is an oxygen atom, a sulfur atom or a selenium atom, or a nitrogen atom having a substituent R²⁶, and R²¹ to R²⁸ may be the same or different, they are each a hydrogen atom, a halogen atom, a hydrocarbon group, an oxygen-containing group, a sulfur-containing group, a 10 nitrogen-containing group, a boron-containing group, an aluminum-containing group, a phosphorus-containing group, a heterocyclic compound residual group, a silicon-containing group, a germanium-containing group or a tin-containing group, two or more of them may be bonded to 15 each other to form a ring.

7. A process for producing a polar olefin copolymer comprising copolymerizing a non-polar olefin and a polar olefin in the presence of a catalyst comprising:

20 (A3) a reaction product of

(C') a compound of a transition metal selected from Groups 3 to 11 of the periodic table, which is represented by the following formula (c'):

5 wherein M is a transition metal atom selected from Groups
3 to 11 of the periodic table,

k is a number satisfying a valence of M , and

X is a hydrogen atom, a halogen atom, an oxygen atom,
a hydrocarbon group, an oxygen-containing group, a sulfur-
containing group, a nitrogen-containing group, a boron-
containing group, an aluminum-containing group, a
phosphorus-containing group, a halogen-containing group, a
heterocyclic compound residual group, a silicon-containing
group, a germanium-containing group or a tin-containing
group, and when k is 2 or greater, plural atoms or groups
indicated by X may be the same or different, and plural
groups indicated by X may be bonded to each other to form
a ring, and

(A-iii) a compound represented by the following

20 formula (III):

wherein A is an oxygen atom, a sulfur atom or a selenium atom, or a nitrogen atom having a substituent R²⁶, and

R²¹ to R²⁸ may be the same or different, they are each
a hydrogen atom, a halogen atom, a hydrocarbon group, an
5 oxygen-containing group, a sulfur-containing group, a
nitrogen-containing group, a boron-containing group, an
aluminum-containing group, a phosphorus-containing group,
a heterocyclic compound residual group, a silicon-
containing group, a germanium-containing group or a tin-
10 containing group, two or more of them may be bonded to
each other to form a ring;

and

(B) at least one compound selected from the group
consisting of:

15 (B-1) an organometallic compound,
(B-2) an organoaluminum oxy-compound, and
(B-3) a compound which reacts with the transition
metal compound (A3) to form an ion pair.

20 8. The process for producing a polar olefin
copolymer as claimed in claim 6 or 7, wherein the compound
of a transition metal represented by the formula (c') is a
compound of a transition metal selected from Groups 4, 5,
6 and 11 of the periodic table.

9. A process for producing a polar olefin copolymer comprising copolymerizing a non-polar olefin and a polar olefin in the presence of a catalyst comprising:

(A4) a compound of a transition metal selected from Groups 4, 5, 6 and 11 of the periodic table, which is represented by the following formula (IV):

... (IV)

wherein M' is a transition metal atom selected from Groups 4, 5, 6 and 11 of the periodic table,
 m is an integer of 1 to 6,
 A is an oxygen atom, a sulfur atom or a selenium atom,
 or a nitrogen atom having a substituent R⁶,
 R¹ to R⁴ and R⁶ may be the same or different, they
 are each a hydrogen atom, a halogen atom, a hydrocarbon
 group, a heterocyclic compound residual group, an oxygen-
 containing group, a nitrogen-containing group, a boron-
 containing group, an aluminum-containing group, a sulfur-
 containing group, a phosphorus-containing group, a
 silicon-containing group, a germanium-containing group or
 a tin-containing group, two or more of them may be bonded
 to each other to form a ring, and when m is 2 or greater,

one group of R¹ to R⁴ and R⁶ contained in one ligand and one group of R¹ to R⁴ and R⁶ contained in other ligands may be bonded, and R¹s, R²s, R³s, R⁴s or R⁶s may be the same or different,

5 n is a number satisfying a valence of M', and X is a hydrogen atom, a halogen atom, an oxygen atom, a hydrocarbon group, an oxygen-containing group, a sulfur-containing group, a nitrogen-containing group, a boron-containing group, an aluminum-containing group, a phosphorus-containing group, a halogen-containing group, a heterocyclic compound residual group, a silicon-containing group, a germanium-containing group or a tin-containing group, and when n is 2 or greater, plural atoms or groups indicated by X may be the same or different, and plural groups indicated by X may be bonded to each other to form a ring;

10 and

15 (B) at least one compound selected from the group consisting of:

20 (B-1) an organometallic compound,
 (B-2) an organoaluminum oxy-compound, and
 (B-3) a compound which reacts with the transition metal compound (A4) to form an ion pair.

10. A process for producing a polar olefin copolymer comprising copolymerizing a non-polar olefin and a polar olefin in the presence of a catalyst comprising:

(A5) a compound of a transition metal selected from Groups 4, 5, 6 and 11 of the periodic table which is represented by the following formula (V)

wherein M' is a transition metal atom selected from Groups 4, 5, 6 and 11 of the periodic table,

10 m is an integer of 1 to 6,
 D is a nitrogen atom or a phosphorus atom,
 Q is a nitrogen atom or a phosphorus atom, or a carbon atom substituted with a substituent R^{13} ,
 S is a nitrogen atom or a phosphorus atom, or a carbon atom substituted with a substituent R^{14} ,
 15 T is a nitrogen atom or a phosphorus atom, or a carbon atom substituted with a substituent R^{15} ,
 R^{11} to R^{15} may be the same or different, they are each a hydrogen atom, a halogen atom, a hydrocarbon group, an oxygen-containing group, a sulfur-containing group, a nitrogen-containing group, a boron-containing group, an aluminum-containing group, a phosphorus-containing group,

a heterocyclic compound residual group, a silicon-containing group, a germanium-containing group or a tin-containing group, two or more of them may be bonded to each other to form a ring, and when m is 2 or greater, one group of R¹¹ to R¹⁵ contained in one ligand and one group of R¹¹ to R¹⁵ contained in other ligands may be bonded, and R¹¹s, R¹²s, R¹³s, R¹⁴s or R¹⁵s may be the same or different, n is a number satisfying a valence of M', and X is a hydrogen atom, a halogen atom, an oxygen atom,

5 a hydrocarbon group, an oxygen-containing group, a sulfur-containing group, a nitrogen-containing group, a boron-containing group, an aluminum-containing group, a phosphorus-containing group, a halogen-containing group, a heterocyclic compound residual group, a silicon-containing group, a germanium-containing group or a tin-containing group, and when n is 2 or greater, plural atoms or groups indicated by X may be the same or different, and plural groups indicated by X may be bonded to each other to form a ring;

10 and

(B) at least one compound selected from the group consisting of:

(B-1) an organometallic compound,

(B-2) an organoaluminum oxy-compound, and

(B-3) a compound which reacts with the transition metal compound (A5) to form an ion pair.

11. A process for producing a polar olefin copolymer comprising copolymerizing a non-polar olefin and a polar olefin in the presence of a catalyst comprising:

(A6) a compound of a transition metal selected from Groups 3 to 11 of the periodic table, which is represented by the following formula (VI):

10

wherein M is a transition metal atom selected from Groups 3 to 11 of the periodic table,

15 m is an integer of 1 to 6,

A is an oxygen atom, a sulfur atom or a selenium atom, or a nitrogen atom having a substituent R²⁶,

R²¹ to R²⁷ may be the same or different, they are each a hydrogen atom, a halogen atom, a hydrocarbon group, an oxygen-containing group, a sulfur-containing group, a nitrogen-containing group, a boron-containing group, an aluminum-containing group, a phosphorus-containing group,

a heterocyclic compound residual group, a silicon-containing group, a germanium-containing group or a tin-containing group, two or more of them may be bonded to each other to form a ring, and when m is 2 or greater, one

5 group of R²¹ to R²⁷ contained in one ligand and one group of R²¹ to R²⁷ contained in other ligands may be bonded, and R²¹s, R²²s, R²³s, R²⁴s, R²⁵s, R²⁶s or R²⁷s may be the same or different,

n is a number satisfying a valence of M, and

10 X is a hydrogen atom, a halogen atom, an oxygen atom, a hydrocarbon group, an oxygen-containing group, a sulfur-containing group, a nitrogen-containing group, a boron-containing group, an aluminum-containing group, a phosphorus-containing group, a halogen-containing group, a
15 heterocyclic compound residual group, a silicon-containing group, a germanium-containing group or a tin-containing group, and when n is 2 or greater, plural atoms or groups indicated by X may be the same or different, and plural groups indicated by X may be bonded to each other to form
20 a ring.

12. A process for producing a polar olefin copolymer comprising copolymerizing a non-polar olefin and a polar olefin in the presence of a catalyst comprising:

(A6) a compound of a transition metal selected from Groups 3 to 11 of the periodic table, which is represented by the following formula (VI):

5

wherein M is a transition metal atom selected from Groups 3 to 11 of the periodic table,

m is an integer of 1 to 6,

10 A is an oxygen atom, a sulfur atom or a selenium atom, or a nitrogen atom having a substituent R²⁶,

R²¹ to R²⁷ may be the same or different, they are each a hydrogen atom, a halogen atom, a hydrocarbon group, an oxygen-containing group, a sulfur-containing group, a

15 nitrogen-containing group, a boron-containing group, an aluminum-containing group, a phosphorus-containing group, a heterocyclic compound residual group, a silicon-containing group, a germanium-containing group or a tin-containing group, two or more of them may be bonded to

20 each other to form a ring, and when m is 2 or greater, one group of R²¹ to R²⁷ contained in one ligand and one group of R²¹ to R²⁷ contained in other ligands may be bonded, and

$R^{21}s$, $R^{22}s$, $R^{23}s$, $R^{24}s$, $R^{25}s$, $R^{26}s$ or $R^{27}s$ may be the same or different,

n is a number satisfying a valence of M , and

X is a hydrogen atom, a halogen atom, an oxygen atom,

5 a hydrocarbon group, an oxygen-containing group, a sulfur-containing group, a nitrogen-containing group, a boron-containing group, an aluminum-containing group, a phosphorus-containing group, a halogen-containing group, a heterocyclic compound residual group, a silicon-containing
10 group, a germanium-containing group or a tin-containing group, and when n is 2 or greater, plural atoms or groups indicated by X may be the same or different, and plural groups indicated by X may be bonded to each other to form a ring;

15 and

(B) at least one compound selected from the group consisting of:

(B-1) an organometallic compound,
(B-2) an organoaluminum oxy-compound, and
20 (B-3) a compound which reacts with the transition metal compound (A6) to form an ion pair.

13. The process for producing a polar olefin copolymer as claimed in claim 11 or 12, wherein the
25 compound of a transition metal represented by the formula

(VI) is a compound of a transition metal selected from Groups 4, 5, 6 and 11 of the periodic table.

14. A polar olefin copolymer obtained by the process
5 according to any one of claims 1 to 13.