STA732

Statistical Inference

Lecture 14: Basics in large sample theory

Yuansi Chen

Spring 2023

Duke University

https://www2.stat.duke.edu/courses/Spring23/sta732.01/

Recap from Lecture 13

Two more strategies to find minimax estimator

- 1. Least favorable prior sequence
- 2. Submodel restriction

Minimax estimators are not always admissible, but unique minimax estimator is.

Motivation from finite-sample to large-sample theory

- So far, everything has been finite-sample. We often rely on the simple form of the model P (e.g. exponential family) to do exact calculation to prove unbiasedness, Bayes, minimax etc.
- Exact calculation may be intractable when models are more complicated.
- · We may use approximations
- Approximations by Gaussian are often possible as $n\to\infty$. But the asymptotic theory is only interesting for "reasonably" large sample size.

In large-sample i.i.d. case, MLE is approximately optimal!

Let $X_i \overset{\text{i.i.d.}}{\sim} p_\theta$ for $i=1,\dots,n$ for a generic "regular" p_θ . Then MLE is approximately optimal:

- consistent
- asympotically normal
- · asympotically efficient
- · locally asympotically minimax (won't cover)

Similar optimality results hold for tests and confidence intervals based on likelihood

Goal of Lecture 14

- 1. Convergence of random variables
 - · Almost sure convergence
 - Convergence in probability
 - Convergence in distribution
- 2. Calculus for functions of converging random variables
 - · Continuous mapping theorem
 - · Slutsky's theorem
 - Delta method

Chap. 8.1 - 8.2 of Keener or Chap. 1.8, 6.1 of Lehmann and Casella

Convergence of random variables

Convergence in probability

Let $Y_1,Y_2,\ldots\in\mathbb{R}^d$ be a sequence of random variables.

Def. convergence in probability, 8.1 Keener

The sequence $Y_1,Y_2,...$ converges in probability to a random variable Y (denoted as $Y_n \stackrel{p}{\to} Y$) if for every $\epsilon>0$

$$\mathbb{P}\left(|Y_n - Y| > \epsilon\right) \to 0$$

Remark:

In most cases in this course, we only need convergence in probability to a constant \boldsymbol{c}

$$Y_n \stackrel{p}{\to} c$$
.

6

Example: show convergence in probability via Chebyshev

Thm. Chebyshev's inequality. 8.2 in Keener

For any random variable X and any constant a > 0,

$$\mathbb{P}(|X| \ge a) \le \frac{\mathbb{E}[X^2]}{a^2}.$$

Prop. 8.3 in Keener

If
$$\mathbb{E}\left(Y_n-Y\right)^2 \to 0$$
 as $n\to\infty$, then $Y_n\stackrel{p}{\to} Y$.

7

Convergence in distribution

Def. convergence in distribution, 8.9 Keener

The sequence $Y_1,Y_2,...$ converges in distribution to a random variable Y (noted $Y_n\Rightarrow Y$ or $Y_n\stackrel{d}{\to} Y$) if

$$\mathbb{E} f(Y_n) \to \mathbb{E} f(Y)$$

for all bounded continuous function f.

Alternative definition, 8.7 Keener

Let $F_n(y)=\mathbb{P}(Y_n\leq y), F(y)=\mathbb{P}(Y\leq y)$, then $Y_n\Rightarrow X$ iff $F_n(x)\to F(x)$ for all x such that F is continuous at x.

8

Example

When convergence in distribution, cumulative distribution function does not have to converge everywhere.

Let $Y_n\sim \delta_{\frac{1}{n}}, Y\sim \delta_0$, then $Y_n\Rightarrow Y$ (according to the first definition). For the cumulative distribution function

$$F_n(y) = \mathbf{1}_{\frac{1}{n} \le x} \to \mathbf{1}_{0 \le x}$$

except at x = 0.

Convergence in probability vs. convergence in distribution (1)

Convergence in probability implies convergence in distribution

Prop.

If
$$Y_n \overset{p}{\to} Y$$
, then $Y_n \overset{d}{\to} Y$

proof: show the cdf converges at continuous points

Useful lemma to prove the above Prop.

$$\mathbb{P}(Y \leq a) \leq \mathbb{P}(X \leq a + \epsilon) + \mathbb{P}(|Y - X| > \epsilon)$$

Convergence in probability vs. convergence in distribution (2)

Convergence in distribution to a constant implies convergence in probability

Prop.

$$Y_n \overset{p}{\to} c \text{ iff } Y_n \overset{d}{\to} \delta_c$$

Consider
$$f_{\epsilon}(x) = \min\left\{1, \frac{|x-c|}{\epsilon}\right\}$$

Consistency

Def. consistency

Given a sequence of statistical models $\mathscr{P}_n=\left\{P_{n,\theta},\theta\in\Omega\right\}$ with data $X_n\sim P_{n,\theta}$, we say $\delta_n(X_n)$ is consistent for $g(\theta)$ if

$$\delta_n(X_n) \stackrel{p}{\to} g(\theta),$$

that is,

$$\mathbb{P}_{\theta}(|\delta_n(X_n) - g(\theta)| > \epsilon) \to 0$$

We may omit the index n on $P_{n,\theta}$ if it is clear

Sufficient condition for consistency

Let $R(\theta,\delta_n)=\mathbb{E}_{\theta}\left(\delta_n-g(\theta)\right)^2$ is the mean squared error (or risk under squared error loss), by Chebyshev's inequality, if $R(\theta,\delta_n)\to 0$ as $n\to\infty$ for any θ , then δ_n is consistent.

Limit theorems

Let X_1, X_2, \dots be i.i.d. random variables. Let $\bar{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$.

Law of large numbers (LLN)

If
$$\mathbb{E}\left|X_{i}\right|<\infty, \mathbb{E}X_{i}=\mu$$
 , then $\bar{X}_{n}\overset{p}{\to}\mu$

actually $\bar{X}_n \overset{\text{a.s.}}{ o} \mu$ also works

Central limit theorem (CLT)

If
$$\mathbb{E} X_n = \mu$$
, $\operatorname{Var}(X_n) = \Sigma$, then

$$\sqrt{n}(\bar{X}_n - \mu) \Rightarrow \mathcal{N}(0, \Sigma).$$

see Keener 8.12 for proofs and discussions

Calculus for functions of converging

random variables

Continuous mapping theorem

Thm. 8.5 8.11 in Keener

Let g be a continuous function. Y_1, Y_2, \dots random variables.

- If $Y_n \Rightarrow Y$, then $g(Y_n) \Rightarrow g(Y)$
- If $Y_n \overset{p}{\to} c$, then $g(Y_n) \overset{p}{\to} g(c)$

Slutsky's theorem

Thm. Slutsky's theorem, 8.13 in Keener

Assume $X_n \Rightarrow X, Y_n \stackrel{p}{\rightarrow} c$, then

- $X_n + Y_n \Rightarrow X + c$
- $X_n \cdot Y_n \Rightarrow cX$
- $X_n/Y_n \Rightarrow X/c \text{ if } c \neq 0$

proof: show that $X_n\Rightarrow X, Y_n\stackrel{p}{\to}c$ implies $(X_n,Y_n)\Rightarrow (X,c)$, then apply cts mapping

Delta method

Delta method, 8.14 in Keener

Suppose

- $\sqrt{n}(X_n \mu) \Rightarrow \mathcal{N}(0, \sigma^2)$
- $f(\cdot)$ is differentiable at μ

Then

$$\sqrt{n}\left(f(X_n)-f(\mu)\right)\Rightarrow \mathcal{N}(0,[f'(\mu)]^2\sigma^2)$$

Informal statement:

$$X_n \approx \mathcal{N}(\mu, \frac{\sigma^2}{n})$$
 implies $f(X_n) \approx \mathcal{N}(f(\mu), [f'(\mu)]^2 \frac{\sigma^2}{n})$

Small o and big O notation (1)

Def. scale of magnitude for constants, 8.20 Keener

Let a_n and b_n , $n \ge 1$ be constants. Then

- $a_n = o(b_n)$ as $n \to \infty$ means that $a_n/b_n \to 0$ as $n \to \infty$
- $a_n = O(b_n)$ as $n \to \infty$ means that $\limsup_{n \to \infty} |a_n/b_n| < \infty$

Small o and big O notation (2)

Def. scale of magnitude for random variables, 8.21 Keener

Let $X_n,Y_n,n\geq 1$ be random variables, let $b_n,n\geq 1$ be constants. Then

- $X_n = o_p(b_n)$ as $n \to \infty$ means that $X_n/b_n \overset{p}{\to} 0$ as $n \to \infty$
- $X_n = O_p(1)$ as $n \to \infty$ means that

$$\sup_n \mathbb{P}(|X_n| > K) \to 0$$

as $K \to \infty$

 $\bullet \ \, X_n=O_p(b_n) \ {\rm means \ that} \ X_n/b_n=O_p(1) \ {\rm as} \ n\to \infty.$

Prop. 8.24 in Keener

If $X_n=O_p(a_n)$ with $a_n\to 0$, and if $f(\epsilon)=o(\epsilon^\alpha)$ as $\epsilon\to 0$ with $\alpha>0$, then

$$f(X_n) = o_p(a_n^\alpha)$$

proof omitted, go through the definitions

Proof of the Delta method

By the first assumption, $X_n = \mu + O_p(1/\sqrt{n})$ By Taylor expansion, we have

$$f(\mu + \epsilon) = f(\mu) + \epsilon f'(\mu) + o(\epsilon)$$

as $\epsilon \to 0$. Applying Prop. 8.24, we have

$$f(X_n)=f(\mu)+f'(\mu)(X_n-\mu)+o_p(1/\sqrt{n}).$$

Rearraging the terms, we obtain

$$\sqrt{n}\left(f(\bar{X}_n) - f(\mu)\right) = \sqrt{n}\left(\bar{X}_n - \mu\right)f'(\mu) + o_p(1) \Rightarrow \mathcal{N}(0, [f'(\mu)]^2\sigma^2)$$

Picture for the Delta method

Example

 $\label{eq:suppose} \text{Suppose } X_1, \dots X_n \overset{\text{i.i.d.}}{\sim} \mathcal{N}(\mu, \sigma^2), Y_1, \dots, Y_n \overset{\text{i.i.d.}}{\sim} \mathcal{N}(\nu, \tau^2), X_i, Y_i \text{ are independent.}$

- Find the asymptotic distribution of $\left(\bar{X} + \bar{Y} \right)^2$

Extensions of the Delta method

- Multivariate Delta method
- Higher-order Taylor expansion if first derivative is 0:

$$\begin{split} f(X_n) &= f(\mu) + f'(\mu)(X_n - \mu) + \frac{f''(\mu)}{2} \left(X_n - \mu\right)^2 + o_p(1/n). \end{split}$$
 If $f'(\mu) = 0$, then
$$n\left(f(X_n) - f(\mu)\right) &= \frac{f''(\mu)}{2} \left(\sqrt{n}(X_n - \mu)\right)^2 + o_p(1)$$

$$\Rightarrow \frac{f''(\mu)\sigma^2}{2} \chi_1^2 \end{split}$$

Summary

- Convergence in probability vs. convergence in distribution
- Basic strategy to find asympotic distribution:
 - Apply central limit theorem to some X_n
 - Use continuous mapping/Slutsky/Delta method for $f(X_n)$

What is next?

Derive asymptotic distribution of the MLE

Thank you