Major Exam, 18 Nov. 2021, 9:15-11:15 AM.

Material and Energy Balances, CLL111

Time: 2 Hours M. Marks: 50

1. A coal with the following composition (mass %) is burnt with 100 % excess air.

Carbon	51.22
Sulphur	0.37
Oxygen	18.04
Hydrogen .	2.79
Ash	20.58
Moisture	7.00

Calculate

	a. Theoretical oxygen requirement per unit mass of coal	(8)
	b. Wet and Orsat analyses of flue gas	(4,4)
2.	A flue gas has the following composition:	
	CO ₂ : 9.5 %; CO: 0.2 %, O ₂ : 9.6 % and N ₂ : 80.7 %	
	Assuming ideal gas behavior, calculate	
	a. The composition of flue gas by mass	(4)
	b. Volume occupied by 0.5 kg. of flue gas at 30°C and 760 mm. Hg.	(4)
	c. Density of the flue gas in lb/ft ³ at condition of (b).	(4)
3.	Convert the following:	
	a. Superficial mass velocity of 200 lb./h.ft² to kg./s.m²	(4)
	b. 40 psig to psia	(4)
	c. 70 Btu/h.ft ^{2.0} F to cal/s.cm ^{2.0} C	(4)
4.	The C _P of a gas is 10 cal/gmol.K. Determine its value in FPS units.	(3)
5.	Calculate the Heat of Reaction at 750 K and I atm. for the reaction	(7)

$$2 SO_2 + O_2$$
 2 SO₃

Std. Heat of Formation:

SO₂: - 2.97.000 kJ/kmole

SO₃: - 3,95,000 kJ/kmole

Mean molar specific heats:

SO₂: 51.5 kJ/kmole.K

SO₃: 30.98 kJ/kmole.K

O2: 45.67 kJ/kmole.K