Graphical model formalism, factorization properties and conditional independence.

Guillaume Obozinski

Swiss Data Science Center

African Masters of Machine Intelligence, 2018-2019, AIMS, Kigali

Outline

Conditional Independance

② Directed graphical models

Markov random fields

Independence concepts

Independence: $X \perp \!\!\! \perp Y$

We say that X et Y are independents and write $X \perp\!\!\!\perp Y$ ssi:

$$\forall x, y,$$
 $P(X = x, Y = y) = P(X = x) P(Y = y)$

Independence concepts

Independence: $X \perp \!\!\! \perp Y$

We say that X et Y are independents and write $X \perp \!\!\! \perp Y$ ssi:

$$\forall x, y, \qquad P(X = x, Y = y) = P(X = x) P(Y = y)$$

Conditional Independence: $X \perp \!\!\! \perp Y \mid Z$

- On says that X and Y are independent conditionally on Z and
- write $X \perp \!\!\!\perp Y \mid Z$ iff:

$$\forall x, y, z,$$

$$P(X = x, Y = y \mid Z = z) = P(X = x \mid Z = z) P(Y = y \mid Z = z)$$

Conditional Independence exemple

Example of "X-linked recessive inheritance":

Transmission of the gene responsible for hemophilia

Conditional Independence exemple

Example of "X-linked recessive inheritance":

Transmission of the gene responsible for hemophilia

Risk for sons from an unaffected father:

- dependance between the situation of the two brothers.
- conditionally independent given that the mother is a carrier of the gene or not.

Outline

Conditional Independance

2 Directed graphical models

Markov random fields

$$p(a,b,c) = p(a) p(b|a) p(c|b,a)$$

$$p(a,b,c) = p(a) p(b|a) p(c|b,a)$$

$$p(x_1, x_2) = p(x_1)p(x_2)$$

$$p(a,b,c) = p(a) p(b|a) p(c|b,a)$$

$$p(x_1, x_2) = p(x_1)p(x_2)$$

$$\mathbf{x}_1$$
 \mathbf{x}_2

$$p(x_1, x_2, x_3) = p(x_1)p(x_2|x_1)p(x_3|x_2)$$

$$p(a,b,c) = p(a) p(b|a) p(c|b,a)$$

$$p(x_1, x_2) = p(x_1)p(x_2)$$

$$\mathbf{x}_1$$
 \mathbf{x}_2

$$p(x_1, x_2, x_3) = p(x_1)p(x_2|x_1)p(x_3|x_2)$$

$$a \perp \!\!\!\perp b \mid c$$

Factorization according to a directed graph

Let Π_j denote the set of parents of node j.

$$\prod_{j=1}^p p(x_j|x_{\Pi_j})$$

Factorization according to a directed graph

Let Π_j denote the set of parents of node j.

$$\prod_{j=1}^p p(x_j|x_{\Pi_j})$$

$$p(x_1)\prod_{j=2}^M p(x_j|x_{j-1})$$

The Sprinkler

- R = 1: it has rained
- ullet S=1: the sprinkler worked
- \bullet G=1: the grass is wet

The Sprinkler

•
$$R = 1$$
: it has rained

•
$$S = 1$$
: the sprinkler worked

$$\bullet$$
 $G=1$: the grass is wet

$$P(S = 1) = 0.5$$

 $P(R = 1) = 0.2$

P(G=1 S,R)	R=0	R=1
S=0	0.01	8.0
S=1	0.8	0.95

The Sprinkler

$$P(S = 1) = 0.5$$

- R = 1: it has rained
- S = 1: the sprinkler worked
- G = 1: the grass is wet

P(R=1) = 0.2

P(G=1 S,R)	R=0	R=1
S=0	0.01	0.8
S=1	0.8	0.95

 Given that we observe that the grass is wet, are R and S independent?

The Sprinkler II

The Sprinkler II

- R = 1: it has rained
- S = 1: the sprinkler worked
- G = 1: the grass is wet
- P=2: the paws of the dog are wet

$$P(S = 1) = 0.5$$
 $P(R = 1) = 0.2$

P(G=1 S,R)	R=0	R=1
S=0	0.01	0.8
S=1	0.8	0.95

P(P=1 G)	G=0	G=1
	0.2	0.7

Blocking nodes

diverging edges	head-to-tail	converging edges
	a c b	
		$\leftrightarrow \rightarrow$
a 北 b	a ⊭ b	a ⊥L b

Blocking nodes

diverging edges	head-to-tail	converging edges
а <u>Ж</u> b	a ,此 b	<i>↔</i> a ⊥⊥ b
$\leftrightarrow \rightarrow$	$\leftrightarrow\!$	
$a \perp \!\!\! \perp b \mid c$	a⊥Lb c	a 业 b c

The configuration with converging edges is called a v-structure

Factorization and Independence

A factorization imposes independence statements

Proposition

$$\forall x, \ p(x) = \prod_{j=1}^{p} p(x_j | x_{\Pi_j}) \quad \Leftrightarrow \quad \forall j, \ X_j \perp \!\!\! \perp X_{\{1, \dots, j-1\} \setminus \Pi_j} \mid X_{\Pi_j}$$

Factorization and Independence

A factorization imposes independence statements

Proposition

$$\forall x, \ p(x) = \prod_{j=1}^{p} p(x_j | x_{\Pi_j}) \quad \Leftrightarrow \quad \forall j, \ X_j \perp \!\!\! \perp X_{\{1,\ldots,j-1\} \setminus \Pi_j} \mid X_{\Pi_j}$$

Is it possible to read from the graph the (conditional) independence statements that hold given the factorization.

$$X_5 \perp \!\!\! \perp X_2 \mid X_4$$

d-separation

d-separation

Theorem

If A, B and C are three disjoint sets of node, the statement $X_A \perp \!\!\! \perp X_B \mid X_S$ holds if all trails joining A to B go through at least one blocking node.

A node j is blocking a trail

- ullet if the edges of the trails are diverging/following and $j\in S$
- if the edges of the trails are converging (i.e. form a v-structure) and neither j nor any of its descendants is in S

d-separation: Restatement in terms of observed node

d-separation: Restatement in terms of observed node

Theorem

If A, B and C are three disjoint sets of nodes, and we call C the set of observed nodes. Then the statement $X_A \perp \!\!\!\perp X_B \mid X_S$ holds if all trails joining A to B are blocked.

A trail is blocked if none of the regular nodes^a are observed, and if all nodes with a v-structure on the trail are observed themselves or have a descendant which is observed.

- observed themselves
- have a descendant which is observed.

^aA "regular" node is a node without *v*-structure

Conditional independence for non-disjoint sets

Conditional independence for non-disjoint sets

Proposition

If A, B and C are three sets of nodes of a graph G = (V, E). And if X_V satisfies the Markov Property w.r.t. G,

then we have
$$X_A \perp \!\!\! \perp X_B \mid X_S$$
 if $\begin{cases} A \cap B \subset S, \\ X_{A \setminus S} \perp \!\!\! \perp X_{B \setminus S} \mid X_S. \end{cases}$

◆ロ → ←部 → ← 注 → りへで

G. Obozinski

Basic GM theory

 Several graphs can induce the same set of conditional independences .

 Some combinations of conditional independences cannot be faithfully represented by a graphical model

- Some combinations of conditional independences cannot be faithfully represented by a graphical model
 - Ex1: $X \sim \operatorname{Ber}^{\frac{1}{2}}$ $Y \sim \operatorname{Ber}^{\frac{1}{2}}$ $Z = X \oplus Y$.

- Some combinations of conditional independences cannot be faithfully represented by a graphical model
 - Ex1: $X \sim \operatorname{Ber}^{\frac{1}{2}}$ $Y \sim \operatorname{Ber}^{\frac{1}{2}}$ $Z = X \oplus Y$.
 - Ex2: $X \perp \!\!\!\perp Y \mid Z = 1$ but $X \not\perp \!\!\!\perp Y \mid Z = 0$

Outline

Conditional Independance

② Directed graphical models

Markov random fields

Undirected graphical model

Undirected graphical model

Undirected graphical model

$$p(x_1, x_2, ..., x_9) = f_{12}(x_1, x_2) f_{23}(x_2, x_3) f_{34}(x_3, x_4) f_{45}(x_4, x_5) ...$$

$$f_{56}(x_5, x_6) f_{37}(x_3, x_7) f_{678}(x_6, x_7, x_8) f_{9}(x_9)$$

←□ → ←□ → ← = → ← = → へ ○

Clique Set of nodes that are all connected to one another.

Clique Set of nodes that are all connected to one another.

Potential function The potential $\psi_C(x_C) \ge 0$ is associated to clique C.

Clique Set of nodes that are all connected to one another.

Potential function The potential $\psi_C(x_C) \ge 0$ is associated to clique C.

Gibbs distribution

$$p(x) = \frac{1}{Z} \prod_{C} \psi_{C}(x_{C})$$

Clique Set of nodes that are all connected to one another.

Potential function The potential $\psi_C(x_C) \ge 0$ is associated to clique C.

Gibbs distribution

$$p(x) = \frac{1}{Z} \prod_{C} \psi_{C}(x_{C})$$

Partition function: Z

$$Z = \sum_{x} \prod_{C} \psi_{C}(x_{C})$$

Clique Set of nodes that are all connected to one another.

Potential function The potential $\psi_C(x_C) \ge 0$ is associated to clique C.

Gibbs distribution

$$p(x) = \frac{1}{Z} \prod_{C} \psi_{C}(x_{C})$$

$$Z = \sum_{x} \prod_{C} \psi_{C}(x_{C})$$

Writing potential in exponential form $\psi_C(x_C) = \exp\{-E(x_C)\}$. $E(x_C)$ is an *energy*.

This a Boltzmann distribution.

 $X = (X_1, \dots, X_d)$ is a collection of binary variables.

 $X = (X_1, \dots, X_d)$ is a collection of binary variables.

$$p(x_1,...,x_d) = \frac{1}{Z(\eta)} \exp\left(\sum_{i \in V} \eta_i x_i + \sum_{\{i,j\} \in E} \eta_{ij} x_i x_j\right)$$

 $X = (X_1, \dots, X_d)$ is a collection of binary variables.

$$p(x_1, ..., x_d)$$

$$= \frac{1}{Z(\eta)} \exp\left(\sum_{i \in V} \eta_i x_i + \sum_{\{i,j\} \in E} \eta_{ij} x_i x_j\right)$$

$$= \frac{1}{Z(\eta)} \prod_{i \in V} e^{\eta_i x_i} \prod_{\{i,j\} \in E} e^{\eta_{ij} x_i x_j}$$

 $X = (X_1, \dots, X_d)$ is a collection of binary variables.

$$p(x_1, \dots, x_d)$$

$$= \frac{1}{Z(\eta)} \exp\left(\sum_{i \in V} \eta_i x_i + \sum_{\{i,j\} \in E} \eta_{ij} x_i x_j\right)$$

$$= \frac{1}{Z(\eta)} \prod_{i \in V} e^{\eta_i x_i} \prod_{\{i,j\} \in E} e^{\eta_{ij} x_i x_j}$$

$$= \frac{1}{Z(\eta)} \prod_{i \in V} \psi_i(x_i) \prod_{\{i,j\} \in E} \psi_i(x_i, x_j)$$

with $\psi_i(x_i) = e^{\eta_i x_i}$ and $\psi_{ij}(x_i, x_j) = e^{\eta_{ij} x_i x_j}$.

G. Obozinski

Example 2: Directed graphical model

Consider a distribution p that factorizes according to a directed graph G = (V, E), then

$$p(x_1, \dots, x_d) = \prod_{i=1}^d p(x_i \mid x_{\pi_i})$$

$$= \prod_{i=1}^d \psi_{C_i}(x_{C_i}) \quad \text{with} \quad C_i = \{i\} \cup \pi_i$$

Consequence: A distribution that factorizes according to a directed model is a Gibbs distribution for the cliques $C_i = \{i\} \cup \pi_i$. As a consequence, it factorizes according to an undirected graph in which C_i are cliques.

Modeling image structures

Original image

Segmentation

Modeling image structures

Original image

Segmentation

 \rightarrow directed graphical model vs undirected

Global Markov Property or Undirected graphical model

We say that a probability distribution p satisfies the global Markov property for the graph G = (V, E), if for all $A, B, S \subset V$

S separates A from B in the graph $\Rightarrow X_A \perp \!\!\! \perp X_B \mid X_S$

Theorem of Hammersley and Clifford (1971)

A distribution p, which is such that p(x) > 0 for all x satisfies the global Markov property for graph G if and only if it is a Gibbs distribution associated with G.

- Gibbs distribution: $\mathcal{P}_G: p(x) = \frac{1}{Z} \prod_{C \in \mathcal{C}_G} \psi_C(x_C)$
- Global Markov property:

$$\mathcal{P}_M: X_A \perp \!\!\! \perp X_B \mid X_C$$
 if C separated A and B in G

Theorem

We have $\mathcal{P}_G \Rightarrow \mathcal{P}_M$ and (HC): if $\forall x, \ p(x) > 0$, then $\mathcal{P}_M \Rightarrow \mathcal{P}_G$

Definition

The Markov Blanket B of a node i is the smallest set of nodes B such that

$$X_i \perp \!\!\!\perp X_R \mid X_B$$
, with $R = V \setminus (B \cup \{i\})$

Definition

The Markov Blanket B of a node i is the smallest set of nodes B such that

$$X_i \perp \!\!\!\perp X_R \mid X_B$$
, with $R = V \setminus (B \cup \{i\})$

or equivalently such that

$$p(X_i \mid X_{-i}) = p(X_i \mid X_B).$$

Definition

The Markov Blanket B of a node i is the smallest set of nodes B such that

$$X_i \perp \!\!\!\perp X_R \mid X_B$$
, with $R = V \setminus (B \cup \{i\})$

or equivalently such that

$$p(X_i \mid X_{-i}) = p(X_i \mid X_B).$$

• What is the Markov blanket of a node in an undirected graph?

Definition

The Markov Blanket B of a node i is the smallest set of nodes B such that

$$X_i \perp \!\!\!\perp X_R \mid X_B$$
, with $R = V \setminus (B \cup \{i\})$

or equivalently such that

$$p(X_i \mid X_{-i}) = p(X_i \mid X_B).$$

- What is the Markov blanket of a node in an undirected graph?
- Answer:

Definition

The Markov Blanket B of a node i is the smallest set of nodes B such that

$$X_i \perp \!\!\!\perp X_R \mid X_B$$
, with $R = V \setminus (B \cup \{i\})$

or equivalently such that

$$p(X_i \mid X_{-i}) = p(X_i \mid X_B).$$

- What is the Markov blanket of a node in an undirected graph?
- Answer:

Markov Blanket for a directed graph?

What is the Markov Blanket in a directed graph? By definition: the smallest set C of nodes such that conditionally on X_C , j is independent of all the other nodes in the graph?

Markov Blanket for a directed graph?

What is the Markov Blanket in a directed graph? By definition: the smallest set C of nodes such that conditionally on X_C , j is independent of all the other nodes in the graph?

Answer:

Markov Blanket for a directed graph?

What is the Markov Blanket in a directed graph? By definition: the smallest set C of nodes such that conditionally on X_C , j is independent of all the other nodes in the graph?

Answer:

For a given oriented graphical model

• is there an unoriented graphical model which is equivalent?

For a given oriented graphical model

- is there an unoriented graphical model which is equivalent?
- is there a smallest unoriented graphical which contains the oriented graphical model?

For a given oriented graphical model

- is there an unoriented graphical model which is equivalent?
- is there a smallest unoriented graphical which contains the oriented graphical model?

$$p(x) = \frac{1}{Z} \prod_{C} \psi_{C}(x_{C})$$
 vs $\prod_{j=1}^{M} p(x_{j}|x_{\Pi_{j}})$

Given a directed graph G, its moralized graph G_M is obtained by

- For any node *i*, add undirected edges between all its parents
- Remove the orientation of all the oriented edges

Given a directed graph G, its moralized graph G_M is obtained by

- For any node *i*, add undirected edges between all its parents
- Remove the orientation of all the oriented edges

Given a directed graph G, its moralized graph G_M is obtained by

- For any node i, add undirected edges between all its parents
- Remove the orientation of all the oriented edges

Proposition

If a probability distribution factorizes according to a directed graph G then it factorizes according to the undirected graph G_M .

Proof.

Write
$$p(x) := \prod_{i=1}^{n} p(x_i \mid x_{\pi_i}) = \prod_{i=1}^{n} \psi_{C_i}(x_{C_i})$$
 with $\begin{cases} C_i = \pi_i \cup \{i\} \\ \psi_{C_i}(x_{C_i}) = p(x_i \mid x_{\pi_i}). \end{cases}$

Definition: directed tree

A directed tree is a DAG such that each node has at most one parent

Definition: directed tree

A directed tree is a DAG such that each node has at most one parent

Remark: By definition a directed tree has no v-structure.

Definition: directed tree

A directed tree is a DAG such that each node has at most one parent

Remark: By definition a directed tree has no v-structure.

Moralizing trees

- What is the moralized graph for a directed tree?
- The corresponding undirected tree!

Proposition (Equivalence between directed and undirected tree)

A distribution factorizes according to a directed tree if and only if it factorizes according to its undirected version.

Definition: directed tree

A directed tree is a DAG such that each node has at most one parent

Remark: By definition a directed tree has no v-structure.

Moralizing trees

- What is the moralized graph for a directed tree?
- The corresponding undirected tree!

Proposition (Equivalence between directed and undirected tree)

A distribution factorizes according to a directed tree if and only if it factorizes according to its undirected version.

Corollary

All orientations of the edges of a tree that do not create v-structure are equivalent.