Peirong Liu

peirong@cs.unc.edu • (919)-519-8893

Education University of North Carolina at Chapel Hill

Ph.D. Candidate in Computer Science

Shanghai University

Bachelor of Science in Mathematics

■ GPA: 3.94/4.00; Class rank: 1/305

Chapel Hill, U.S. Aug 2018 – Present Shanghai, China Sep 2014 – Jun 2018

Experience

Department of Computer Science, University of North Carolina at Chapel Hill

Research assistant, supervised by Dr. Marc Niethammer

Chapel Hill, U.S. Feb 2019 – Present

- Research on machine learning algorithms for solving PDEs under various boundary conditions, with its application to quantitative analysis of CT/MR perfusion imaging and stroke diagnosis.
- Developed a data-assimilation approach (PIANO) which models the transport of the contrast agent in perfusion imaging by a variable-coefficient advection-diffusion PDEs. [MICCAI-2020]

IDEA Group, University of North Carolina at Chapel Hill

Chapel Hill, U.S.

Research assistant, supervised by Dr. Dinggang Shen and Dr. Pew-Thian Yap Aug 2018 – Dec 2018

- Proposed a graph-convolution-based deep learning architecture that longitudinally predicts infant cortical growth, with spatial-temporal knowledge. [IPMI-2019]
- Researched on geometric deep learning and its application on infant cortical surfaces development.

Department of Mathematics, Shanghai University

Shanghai, China.

Undergraduate researcher, supervised by Dr. Shihui Ying

Sep 2016 - Jun 2018

- Researched on Riemannian spaces of shapes via the diffeomorphism group representation
- Helped teach graduate course *Shape Spaces*

Publications

Peirong Liu, Yueh Z. Lee, Stephen R. Aylward, Marc Niethammer. "PIANO: Perfusion Imaging via Advection-diffusion". *The 23rd International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI)*, 2020. (Early accept, 25% acceptance rate)

Peirong Liu, Zhengwang Wu, Gang Li, Pew-Thian Yap, Dinggang Shen. "Deep Modeling of Growth Trajectories for Longitudinal Prediction of Missing Infant Cortical Surfaces". *The 26th International Conference on Information Processing in Medical Imaging (IPMI)*, 2019. (Oral, 10% acceptance rate)

Honors

IPMI 2019 Scholarship, Hong Kong	2019
Outstanding Graduate Awards, Shanghai	2018
Presidential Scholarship, Shanghai University (Highest honor)	2017
National Scholarship, Shanghai University (Top 1%)	2017
Baogang Outstanding Student Award, Shanghai (Top 4)	2017
Finalist Winner, U.S. Mathematical Contest In Modelling (MCM) (36 out of 8843 teams)	2017
Third Prize, Shanghai Mathematics Competitions (Math Major)	2016
Top Grade Scholarship, <i>Shanghai University (Top 3%)</i>	2015, 2016, 2017
Outstanding Student, Shanghai University	2015, 2016, 2017
Academic Innovation Award, Shanghai University	2016, 2017
Leadership Award, Shanghai University	2016
Public Service Award, Shanghai University	2015

Skills

Computer: Python, MATLAB, C/C++, LATEX, HTML, JAVA, R, MS Office

Libraries: PyTorch, TensorFlow, Theano

OS: Linux (Ubuntu), Mac OSX

Languages:

- Mandarin: Native
- English: TOEFL: 112 (R-29, L-29, S-26, W-28), GRE: 327+4.5 (V-157, Q-170, AW-4.5)

Interests:

- Guzheng: Professional level-10 certificate (passed with 'Excellent'), Duke Music Ensemble member
- Piano; Keyboard
- Hiking; Running; Lifting; Table tennis