

Yimeng Zhang ¹, Yuguang Yao ¹, Jinghan Jia ¹,
Jinfeng Yi ², Mingyi Hong ³, Shiyu Chang ⁴, Sijia Liu ^{1,5}

¹ The OPTML lab, Michigan State University,

² JD AI Research, ³ University of Minnesota, ⁴ UC Santa Barbara, ⁵ MIT-IBM Watson Lab

Introduction

Motivation

- Nearly all existing works ask a defender to perform over white-box ML models. However, the white-box assumption may restrict the defense application in practice.
- Zeroth-Order (ZO) Optimization for high-dimension variables suffers high variance [1].

Overall Performance

- o First-Order (FO) optimization for white-box model.
- o Zeroth-Order (ZO) optimization for black-box model.
- o The number of queries: q
- o Randomized Smoothing (RS) [2].
- o Denoised Smoothing (DS) [3].
- Our method: ZO + AutoEncoder [4] + Denoised
 Smoothing (ZO-AE-DS), where decoder is merged into black box to tackle high-dimension challenge of ZO optimization.

Method

■ **ZO-AE-DS** Model Architecture

■ Random Gradient Estimate (RGE)

$$\hat{\nabla}_{\mathbf{w}} \ell(\mathbf{w}) = \frac{1}{q} \sum_{i=1}^{q} \left[\frac{d}{\mu} \left(\ell(\mathbf{w} + \mu \mathbf{u}_i) - \ell(\mathbf{w}) \right) \mathbf{u}_i \right]$$

■ Coordinate-wise Gradient Estimate (CGE)

$$\hat{\nabla}_{\mathbf{w}} \ell(\mathbf{w}) = \sum_{i=1}^{d} \left[\frac{\ell(\mathbf{w} + \mu \mathbf{e}_i) - \ell(\mathbf{w})}{\mu} \mathbf{e}_i \right]$$

■ ZO gradient estimate of reduced dimension

$$abla_{m{ heta}} \mathcal{R}_{
m new}(f(\mathbf{x})) pprox rac{d\phi_{m{ heta}_{
m Enc}}(D_{m{ heta}}(\mathbf{x}))}{dm{ heta}} |\hat{
abla}_{\mathbf{z}} f'(\mathbf{z})|_{\mathbf{z} = \phi_{m{ heta}_{
m Enc}}(D_{m{ heta}}(\mathbf{x}))}$$

Challenges

- The variance of Random Gradient
 Estimate (RGE) will be ultra-large if
 the query complexity stays low
- The variance-least Coordinate-wise
 Gradient Estimate (CGE) becomes
 impracticable due to the need of ultrahigh querying cost

References

- [1] Liu, Sijia, et al. "A primer on zeroth-order optimization in signal processing and machine learning: Principals, recent advances, and applications." *IEEE Signal Processing Magazine (2020)*
- [2] Cohen, Jeremy, Elan Rosenfeld, and Zico Kolter. "Certified adversarial robustness via randomized smoothing." *ICML 2019*.
- [3] Salman, Hadi, et al. "Denoised smoothing: A provable defense for pretrained classifiers." *NeurIPS 2020*.
- [4] Tu, Chun-Chen, et al. "Autozoom: Autoencoder-based zeroth order optimization method for attacking black-box neural networks." *AAAI 2019*

Results

■ CIFAR10: SA (standard accuracy %) and CA (certified accuracy %) versus different values of ℓ_2 -radius

	FO			ZO-DS			ZO-AE-DS (Ours)			
ℓ_2 -radius r	RS	FO-DS	FO-AE-DS	q = 20 (RGE)	q = 100 (RGE)	q = 192 (RGE)	q = 20 (RGE)	q = 100 (RGE)	q = 192 (RGE)	q = 192 (CGE)
0.00 (SA)	76.44	71.80	75.97	19.50	41.38	44.81	42.72	58.61	63.13	72.23
0.25	60.64	51.74	59.12	3.89	18.05	19.16	29.57	40.96	45.69	54.87
0.50	41.19	30.22	38.50	0.60	4.78	5.06	17.85	24.28	27.84	35.50
0.75	21.11	11.87	18.18	0.03	0.32	0.30	8.52	9.45	10.89	16.37

■ MNIST: Visualization for Image Reconstruction under ℓ_2 PGD attack (Step = 40, ϵ = 1.0)

(a) Ground truth

(b) Standard

(c) FO-DS

(d) ZO-DS

(e) FO-AE-DS

(f) ZO-AE-DS