Analyzing Massive Astrophysical Datasets Can Pig/Hadoop or a relational DBMS help?

Sergey Negrashov

University of Hawaii at Manoa Information & Computer Sciences

Jan 16th 2013

Outline

Introduction Astrophysics Simulation Hadoop Showdown

N-body Problem

N-body problem is the problem of predicting a future state of a gravitational system from initial conditions.

N-Body Problem does not have an analytic solution for N > 3:

Computer science: NP-complete

Math: Galois Theorem

Astrophysics: Numerical Solution

N-body Problem Cont.

N-body simulation parameters:

- ▶ *N*: number of bodies
- $ightharpoonup \Delta t$: simulation timestep
- $ightharpoonup T_{final}$: simulation length
- T_{checkpoint}: checkpoint frequency

N-body simulation workflow:

```
1: t \leftarrow 0
 2: while t < T_{final} do
      for particle p in N do
 3:
          Compute all forces on p
 4:
          Compute position at t + \Delta t
 5:
6: end for
 7: t = t + \Delta t
8: if (t - t_{last}) > T_{checkpoint} then
          Create checkpoint for t
 9:
10:
          t_{last} \leftarrow t
      end if
11:
12: end while
```

Astrophysics Simulation Scale

Name	# of Particles	Snapshot Size
dbtest128g	$4.2 * 10^6$	169 MB
cosmo50	$3.36 * 10^7$	1.4GB
como25	$9.168 * 10^8$	3.6GB

Visible universe contains $\approx 10^{22}$ stars or $\approx 10^{80}$ atoms.

Simultion Analisys

Strategy:

Analyze checkpoint files.

Tools:

- ► IDL
- Python/Perl
- ► C++ libraries

Trend:

- Constraints on CPU IO RAM
- Distributed memory model?

Could we use a Parallel DBMS or MapReduce?

If the problem can be partitioned correctly MapReduce takes care of the parallelism for you.

VS

Parallel DBMS tackle similar problems in data-mining. These systems could be adapted to the Scientific workload.

Hadoop

Hadoop:

- ► An open source MapReduce implementation
- ▶ API for Java, C++, python ...
- ► Pig Programing language
- ► HDFS distributed filesystem

Queries:

Q1: Return all particles whose property X is above a given threshold at step S_1 .

$$\pi_{(iOrder)}\sigma_{(x>T)}(S_1)$$

Q2: Return all particles of type T within distance R of point P.

$$\pi_{(iOrder)}\sigma_{p.x^2+p.y^2+p.z^2>R^2}(S_1)$$

Q3: Return all particles of type T within distance R of point P whose property X is above a threshold computed at timstep S_1 .

$$\pi_{(iOrder)}\sigma_{(p.X>T)\&(p.x^2+p.y^2+p.z^2>R^2)}(S_1)$$

Q4: Return gas particles destroyed between step S_1 and S_2 .

$$\pi_{(iOrder)}\sigma_{p_1.iOrder \notin S_2}(S_1 \times S_2)$$

Q5: Return all particles whose property X changes from S_1 to S_2 .

$$\pi_{(iOrder)}\sigma_{(p_1.iOrder=p_2.iOrder)\&(p_1.X\neq p_2.X)}(S_1\times S_2)$$

Single Node Performance:

Specs:

- ► IDL: 16CPU, 128 GB RAM
- ► DBMS/Hadoop: 8CPU, 16GB RAM.

Notes:

Hadoop and IDL had to read in the snapshot file every time.

DBMS had indexed data available to it.

Single Node Large Dataset:

Multi-Node Performance:

Questions?