

How to reduce effect from electrical fault in 115 kV PEA system to GSP

GSP-Knowledge Sharing Jul 13,2012

สาเหตุหลักที่ทำให้เกิดการลัดวงจรในสายส่งไฟฟ้า

เมื่อเกิด Fault ที่ระบบไฟฟ้า 115 kV ที่ตำแหน่งใดๆ ในสายส่งไฟฟ้าแรงสูง เป็นเรื่องที่อาจ เกิดขึ้นได้ ยิ่งเป็นระบบสายส่ง "Over head line" ยิ่งแล้ว

Common sources of power disturbances

Common sources of power disturbances

Most power outages or disturbances are caused by events beyond the control of a utility. Common sources of disturbances (see illustration) include the following: 1.Lightning

- 2.Insulator flashovers
- 3.Digging on underground lines
- 4. Automobile collisions
- 5.Birds, squirrels and other wildlife
- 6.Trees and vegetation
- 7.Strong winds
- 8. Vandalism
- 9. Equipment failures
- 10. Switching and maintenance

10 สาเหตุหลัก ที่ก่อกวน ระบบไฟฟ้า

กระทบต่อ GSP อย่างไร

ทำไมเมื่อเกิด Fault ในสายส่งของ PEA จึงส่งผลกระทบต่อ GSP

PEA

กระทบต่อ GSP อย่างไร

ทำไมเมื่อเกิด Fault ในสายส่งของ PEA จึงส่งผลกระทบต่อ GSP

PEA

Problem Challenge

้เราสามารถแบ่งความท้าทายในการแก้ไขปัญหาได้เป็น 2 ส่วน คือ

2) GTG ต้องไม่ Trip เนื่องจากการลด Load ไม่ทัน

เราไม่สามารถกำจัดลัดวงจร (Fault) ภายนอกได้ 100% ผลกระทบ

จากกราฟ เราสามารถจำแนกความรุนแรงของการเกิดลัดวงจรได้เป็น 2 ลักษณะ

- Effect Zone

- Non-effect Zone

Zone of Protection – ลำดับการตัดวงจรของอุปกรณ์ป้องกันสายส่งไฟฟ้า

PEA Fault Protection

การตัด Fault ในระบบสายส่งของ กฟก แบ่งออกเป็น 3 ช่วงระยะเวลา ขึ้นอยู่กับ ระยะทางในการเกิดการลัดวงจร ว่า ไกลจากอุปกรณ์ป้องกันแค่ไหน

าารลดผลกระทบ

Non-Effect Zone

ดำเนินการ Review ค่า Setting ของ Protection Relay

- เมื่อเกิด Fault ที่ Zone 1 ของสายส่งหรือระบบไฟฟ้า 22 kV Protection Relay ของ PEA จะต้องสามารถ Clear Fault ได้ โดยที่ Protection ของ GSP ต้องไม่ Trip เป้าหมายต้องไม่ Trip เนื่องจาก NoN EffEct Zone
- <u>จากการศึกษา</u> พบว่า เมื่อเกิด Fault ขึ้นและ Protection Relay สามารถตรวจพบว่าเกิด Reverse Mvar ขึ้นเกิน กว่า 8.16 Mvar PEA จะต้อง Trip ภายในระยะเวลา 140 ms. เพื่อป้องกันไม่ให้ Motor ที่ใช้งานอยู่ Trip ทั้งหมด

New Reverse reactive power protection setting Review the relay setting by considering actual used power. (Not design value.) Before: New: 2.5 Mvar 8.16 Myar 200 mSec. 140 mSec.

การลดผลกระทบ

Effect Zone 📥 ไม่สามารถหลีกเลี่ยงได้!!

• เมื่อเกิด Fault ที่ Zone 2 และ 3 ของสายส่ง Protection Relay ของ กฟภ. จะทำงานในช่วงเวลา 300 – 600 ms. แต่เนื่องจาก Protection ของ GSP ตั้งไว้ที่ 140 ms. จึง Trip

PEA Fault Protection

การตัด Fault ในระบบสายส่งของ กฟภ.
แบ่งออกเป็น 3 ช่วงระยะเวลา ขึ้นอยู่กับ
ระยะทางในการเกิดการลัดวงจร ว่า
ไกลจากอุปกรณ์ป้องกันแค่ไหน

PEA

80% of Line, 0 ms.

120% of Line, 300 ms.

150-180% of Line, 600 ms.

Distance

การป้องกัน

เนื่องจากปัจจุบันระบบจำหน่ายไฟฟ้าอยู่ในอำนาจ หน้าที่ความรับผิดชอบของ กฟภ. แต่ทางกลุ่มบริษัท ในนิคมได้ร้องเรียนและได้ผลตอบรับจาก กฟภ. โดย ตั้งคณะทำงานเพื่อพิจารณาเรื่องนี้อย่างจริงจัง

2.ปัญหา Generator trip เนื่องจากลดกำลังการผลิตไม่ทัน

ผลกระทบที่ได้รับจาก115 kV PEA external Trip

การแก้ไขป้องกัน-(2) ไฟดับทั้งโรงงานจาก GTG Trip ทั้งหมด

PTT GSP is the first plant to implement RB211 low emission design, among in-plant generators in Thailand.

การแก้ไขป้องกัน-(2) ไฟดับทั้งโรงงานจาก GTG Trip ทั้งหมด

ทำไมถึง Trip

เนื่องจาก Load Shedding สั่งตัดการจ่ายไฟฟ้าให้เครื่องจักรขนาดใหญ่ตามลำดับที่ตั้งไว้ ทำให้ Generator ต้อง ลดกำลังการผลิตอย่างกะทันหัน <u>รวม 16.91 MW</u> (เฉลี่ยลดลง Unit ละ <u>5.6 MW</u>) ทำให้ Generator Trip ลง

การแก้ไขป้องกัน-(2) ไฟดับทั้งโรงงานจาก GTG Trip ทั้งหมด

1.ป้องกันโดยปรับปรุง Load shedding priority review

ptt การแก้ไขป้องกัน-(2) GTG Trip เนื่องจากการลดกำลังการผลิต

1.ป้องกันโดยปรับปรุง Load shedding priority review

Load shedding priority review concept.

- 1.Plant operation.
- 2. Production Planning
- 3.Actual load.
- 4. Equipment capability & reliability.

Power System Reliability.

			Load shedding priority change			As of Apr 20'	12
Location	Switch gear No.	Tag No.	Description	Load Shedding Priority	Load Shedding Priority	Actaul Case: ESP @8 GSP6 @840	805 mmSCFD
				Before	After	MW	Mvar
ESP	3228SW203A	3225PG01	GTG1 ESP			21.00	8.00
ESP	3228SW203B	3225PG02	GTG2 ESP			21.20	8.00
Central S/S	3625SW601	3625PG01	GTG1 GSP6			21.20	8.00
Central S/S		3625PG02	GTG2 GSP6				
			Subtotal of GTG Generator				
			Load of ESP				
			Load of GSP6				
			Load of OCS1			0.00	0.00
			Subtotal of Load				
	3629SW102Q0		Power import from PEA 115 kV Grid			21.70	10.10
			Operation mode of 11 kV Switchgear			Normal OP	
			11/0.4 kV Transformers			All in sevice	
ESP	3228SW216A	32011PM002A-SF		1	1		
ESP	3228SW215B	32011PM002B-SI		1	1		
ESP	3228SW219A	32012PM002A-SF	=	1	1		
ESP	3228SW217B	32012PM002B-SI	F	1	1		
ESP	3228SW242A	3206CM001-VSI		1	1		
GSP6	3628SW623A	36011PM002-SF		1	1		
GSP6	3628SW624B	36012PM002-SF		1	1	†	
GSP6	3628SW622A	3607CM001-SF		1	1		
GSP6	3628SW626A	3608PM002-SF1		1	1		
GSP6	3628SW627B	3608PM002-SF2		1	1		
GSP6	3628SW621B	3602CM001-VSD	GSP6 Regen Compressor	1	1	0.624	0.156
GSP6	3628SW622B	3602CM001-TR		1	1		
ESP	3228SW213A	3203CM002	ESP Recycle Gas Compressor	2	3	2.027	0.551
ESP	3228SW209B	3203CM003	GSP2 Gas Booster Compressor	3	4	1	2.474
ESP	3228SW209A	3207CM001	ESP Refrigerant Compressor	4	5		2.237
ESP	3228SW210A	3208PM002A	ESP Hot Oil Circulation Pump	5	6		0.000
ESP	3228SW211B	3208PM002C	ESP Hot Oil Circulation Pump	15	15		0.983
ESP	3228SW242B	3206CM001	ESP Sales Gas Compressor	9	2	17.387	0.000
ESP	3228SW225A		WHRU F001 FD Fan	10	10	0.222	0.191
ESP	3228SW224B		WHRU F001 FD Fan	10		+	0.000
ESP	3228SW218A	32011PM002A	ESP Lean Solvent Circulation Pump	11			0.900
ESP	3228SW216B	32011PM002B	ESP Lean Solvent Circulation Pump	11		•	0.000
ESP	3228SW217A	32011PM002R	ESP Lean Solvent Circulation Pump	11	•		0.939
ESP	3228SW223A	32011PM003	ESP Rich Solvent Pump (AGRU1)	12			0.370
FOR	2000014/0020	20044DH002D	500 0 1 10 11 11 11 11 11	40	1 40	0.000	

Load shedding priority case

Duct Work for Riged Air

Module 04

🍅 ptt การแก้ไขป้องกัน-(2) GTG Trip เนื่องจากการลดกำลังการผลิต

2.ป้องกันโดยปรับปรุงเครื่องยนต์ให้มีความสามารถในการลดกำลังการผลิต

ได้มากขึ้น

After modification, GTG load rejection capability increase from 2 MW to 7 MW. RB211 GT (DLE) Loadstep Capability

10

Initial Power (MW)

Rolls-Royce data-strictly private

Fuel Gas Manifolds

30

25

20

6 ptt การแก้ไขป้องกัน-(2) GTG Trip เนื่องจากการลดกำลังการผลิต

3. ลดปริมาณการรับไฟฟ้าจาก กฟภ. โดยการเพิ่ม Generator

Show Case: Result from relay setting review

1.

115 kV PEA Fault on April 9'12**It did NOT effect to GSP**

Zone 1 distance relay at PEA Banchang S/S was

active within 60 milli-second.

Show Case: Result from Load Shedding daily review

Show case: Result from Load Shedding daily review

115 kV PEA Fault on Apr 25'12
It did LESS EFFECT to GSP*

- Import PEA was tripped by reverse reactive power. (69.81 Mvar, >140 milli-second.)
- 2. Load shedding was activated.
- 3. In-plant generators were not tripped.
- 4. It did not have plant black out.

Load Shedding calculation

LS Priority	Load	MW
Step1	GSP6 Regen. Compressor	0.60
Step2	3206CM001 ESP Sales Gas Compressor	17.35
Step3	3203CM002 ESP Recycle Gas Compressor	2.02
Step4	3203CM003 GSP2 Gas Booster Compressor	4.27

PEA Import = 20.43 MW

Total load @ Step 1-4 = 24.24 MW

Exceed shedded Load = 24.24-20.43 = 3.82 MW

Each GTG decreased MW = 3.82/3 = 1.27 MW (< 2 MW)

We can reduce effect from 115 kV PEA trip. 2 ครั้งที่ผ่านมา Save เงินประมาณ 22 ลบ./ครั้ง

Lesson Learnt

1. Setting for Reverse Reactive Power at interconnecting Point with Grid (PEA).

Lesson Learnt-Load shedding priority

2.Load shedding priority case shall be done and consider all of these effects.

Before

Lesson Learnt-Load shedding priority

2.Load shedding priority case shall be done and consider all of these effects.

After

Lesson Learnt-Fault at PEA transmission line

Thank you

