CHAPITRE 3

CALCULS MATRICIELS

Matrices 3.1

Définitions et exemples

Définition 3.1

Soit n et p deux entiers naturels non nuls.

Une **matrice** $n \times p$ est un tableau à n lignes et p colonnes, que l'on note

$$A = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1p} \\ a_{21} & a_{22} & \cdots & a_{2p} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{np} \end{pmatrix} \quad \text{ou} \quad A = (a_{ij})_{1 \le i \le n; 1 \le j \le p}$$

Le premier indice i désigne la ligne, le deuxième j la colonne.

L'élément a_{ij} est un scalaire appartenant au corps \mathbb{K} qui est soit \mathbb{R} soit \mathbb{C} .

Notation 3.1

L'ensemble des matrices indicées par $[1;n] \times [1;p]$ est noté $\mathcal{M}_{n,p}(\mathbb{K})$.

L'ensemble des matrices $\mathcal{M}_{n,p}(\mathbb{K})$ avec p=n est appelé ensemble des matrices carrées d'ordre n et sera noté $\mathcal{M}_n(\mathbb{K})$.

Exemple 3.1

- \rightarrow La matrice $A = \begin{pmatrix} 1 & 2 & 3 \\ 4 & -5 & 5 \end{pmatrix}$ est une matrice 2×3 à deux lignes et trois colonnes.
- \rightarrow a_{23} est le coefficient situé à l'intersection de la $2^{\text{ième}}$ ligne et de la $3^{\text{ième}}$ colonne, il vaut 5.

Définition 3.2

Soit A une matrice $n \times p$.

- ➤ Si p = 1, A est une matrice colonne : $A = \begin{bmatrix} a_2 \\ \vdots \\ \end{bmatrix}$
- \blacktriangleright Si n=1, A est une matrice ligne: $A=\begin{pmatrix} a_1 & a_2 & \cdots & a_p \end{pmatrix}$

 \triangleright Si n=p, A est une matrice carrée. Les coefficients a_{ij} sont appelés coefficients diagonaux:

$$A = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{pmatrix}$$

 \blacktriangleright La matrice $n \times p$ dont tous les coefficients sont nuls s'appelle la matrice nulle.

Exemple 3.2

- \rightarrow La matrice $M = \begin{pmatrix} \frac{1}{2} \\ 6 \end{pmatrix}$ est une matrice colonne.
- \rightarrow La matrice $N = \begin{pmatrix} 14 & -13 & 12 & -11 \end{pmatrix}$ est une matrice ligne.
- → La matrice $P = \begin{pmatrix} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2 \end{pmatrix}$ est une matrice carrée d'ordre 3.
- → La matrice $O = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$ est une matrice nulle.

3.1.2 Matrices carrées particulières

Soit $A = (a_{ij})$ une matrice carrée de taille n.

— Si $a_{ij} = 0$ dès que i > j, A est appelée matrice **triangulaire supérieure** :

$$A = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ 0 & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & a_{nn} \end{pmatrix}; A = \begin{pmatrix} a_{11} & 0 & \cdots & 0 \\ a_{21} & a_{22} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{np} \end{pmatrix}; A = \begin{pmatrix} a_{11} & 0 & \cdots & 0 \\ 0 & a_{22} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & a_{nn} \end{pmatrix}.$$

- Si $a_{ij} = 0$ dès que i < j, A est appelée matrice **triangulaire inférieure**:
- Si $a_{ij} = 0$ dès que $i \neq j$, A est appelée matrice diagonale :

Exemple 3.3

- <u>semple</u> 3.3

 → Matrice triangulaire supérieure : $A = \begin{pmatrix} 1 & -2 & 3 \\ 0 & -4 & 0 \\ 0 & 0 & 6 \end{pmatrix}$
- → Matrice triangulaire inférieure : $B = \begin{pmatrix} 1 & 0 \\ 2 & 1 \end{pmatrix}$
- → Matrice diagonale : $D = \begin{pmatrix} -1 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & -3 & 0 \\ 0 & 0 & 0 & 4 \end{pmatrix}$

Définition 3.3 (Matrice unité)

La matrice unité d'ordre n notée I_n avec n entier naturel non nul est la matrice carrée d'ordre n diagonale dont tous les termes de la diagonale sont égaux à 1.

Exemple 3.4

$$I_3 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

3.1.3 Opérations sur les matrices

Propriété 3.1 (Egalité de deux matrices)

Les matrices $A = (a_{ij})$ et $B = (b_{ij})$ de dimension $n \times p$ sont **égales** ssi $a_{ij} = b_{ij}$ pour tous i, j.

Propriété 3.2 (Multiplication d'une matrice par un scalaire)

Si $A = (a_{ij})$ et $\lambda \in \mathbb{R}$, on définit λA comme étant la matrice $C = (c_{ij})$ telle que $c_{ij} = \lambda a_{ij}$ pour tous i, j.

Exemple 3.5
On considère la matrice
$$A = \begin{pmatrix} 1 & -2 \\ 0 & -\frac{1}{2} \end{pmatrix}$$
,
$$alors -2A = \begin{pmatrix} -2 \times 1 & -2 \times (-2) \\ -2 \times 0 & -2 \times -\frac{1}{2} \end{pmatrix} = \begin{pmatrix} -2 & 4 \\ 0 & 1 \end{pmatrix}$$

Propriété 3.3 (Somme de deux matrices de même taille)

Si $A = (a_{ij})$ et $B = (b_{ij})$ sont deux matrices $n \times p$, on définit la somme A + B comme étant la matrice $C = (c_{ij})$ de taille $n \times p$ telle que $c_{ij} = a_{ij} + b_{ij}$ pour tous i, j.

Exemple 3.6

Somme de deux matrices 2×3 :

$$\begin{pmatrix} 1 & 0 & -1 \\ 2 & 1 & 4 \end{pmatrix} + \begin{pmatrix} 0 & -1 & -2 \\ -3 & 1 & 5 \end{pmatrix} = \begin{pmatrix} 1+0 & 0-1 & -1-2 \\ 2-3 & 1-1 & 4+5 \end{pmatrix} = \begin{pmatrix} 1 & -1 & -3 \\ -1 & 2 & 9 \end{pmatrix}$$

Propriétés 3.1

A, B et C désignent des matrices ayant le même nombre de lignes et le même nombre de colonnes. k et k' sont deux réels. O la matrice nulle ayant le même nombre de lignes et le même nombre de colonnes. On a :

- A + B = B + A; (A + B) + C = A + (B + C);
- A + O = A; A + (-A) = O;
- k(A+B) = kA + kB; (k+k')A = kA + k'A:
- k(k'A) = (kk')A : 1A = A.

Proposition 3.1

Pour $1 \le k \le n$, $1 \le \ell \le p$, notons $E_{k,\ell} \in \mathcal{M}_{n,p}(\mathbb{K})$ la matrice dont tous les termes sont nuls sauf celui sur la k-ième ligne et la ℓ -ième colonne qui vaut 1.

Alors $\{E_{k\ell}, 1 \le k \le n, 1 \le \ell \le p\}$ est une base de $\mathcal{M}_{n,p}(\mathbb{K})$ appelée base canonique $de \mathcal{M}_{nn}(\mathbb{K}).$

Exemple 3.7

Considérons le cas où n=2, p=3.

$$E_{11} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \quad E_{21} = \begin{pmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix} \quad E_{12} = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

$$E_{22} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix} \quad E_{13} = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix} \quad E_{23} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

Théorème 3.1 (Structure sur $\mathcal{M}_{n,p}(\mathbb{K})$)

 $(\mathcal{M}_{n,p}(\mathbb{K}),+,\cdot)$ est un \mathbb{K} -ev de dimension np.

Propriété 3.4 (Produit de deux matrices)

Soit $A = (a_{ij})$ de taille $n \times p$ et $B = (b_{ik})$ de taille $p \times q$, on définit le produit $A \times B$ (aussi noté AB) comme étant la matrice $C=(c_{ik})$ définie par $c_{ik}=\sum_{i=1}^p a_{ij}b_{jk}$ pour 1 < i < n et 1 < k < q.

Remarque 3.1 Le produit de A par B n'est défini que si le nombre de colonnes de A est égal au nombre de lignes de B.

Illustration

$$\begin{pmatrix} b_{1k} \\ \vdots \\ b_{jk} \\ \vdots \\ b_{pk} \end{pmatrix}$$

$$\begin{pmatrix} a_{i1} \dots a_{ij} \dots a_{ip} \\ \end{pmatrix} \begin{pmatrix} \vdots \\ \vdots \\ \dots & \vdots \\ \dots & \vdots \\ \end{pmatrix}$$

Exemple 3.8

$$\begin{pmatrix} 5 & 2 & 3 \\ 4 & 1 & 4 \\ 6 & 3 & 1 \end{pmatrix} \times \begin{pmatrix} 1 & 7 \\ 2 & 4 \\ 5 & 1 \end{pmatrix} = \begin{pmatrix} 5 \times 1 + 2 \times 2 + 3 \times 5 & 5 \times 7 + 2 \times 4 + 3 \times 1 \\ 4 \times 1 + 2 \times 1 + 4 \times 5 & 4 \times 7 + 4 + 4 \times 1 \\ 6 \times 1 + 3 \times 2 + 1 \times 5 & 6 \times 7 + 3 \times 4 + 1 \times 1 \end{pmatrix} = \begin{pmatrix} 29 & 46 \\ 26 & 36 \\ 17 & 55 \end{pmatrix}$$

Exercice d'application 1 : Produits possibles ?

Calculer lorsqu'ils sont définis les produits AB et BA dans chacun des cas suivants :

$$\mathbf{1.} \qquad A = \left(\begin{array}{cc} 1 & 0 \\ 0 & 0 \end{array} \right), \quad B = \left(\begin{array}{cc} 0 & 0 \\ 0 & 1 \end{array} \right)$$

2.
$$A = \begin{pmatrix} 0 & 2 & 1 \\ 1 & 1 & 0 \\ -1 & -2 & -1 \end{pmatrix}, \quad B = \begin{pmatrix} 2 & 0 & 1 \\ -1 & 1 & 2 \end{pmatrix}$$

3.
$$A = \begin{pmatrix} 1 & 2 \\ 1 & 1 \\ 0 & 3 \end{pmatrix}, B = \begin{pmatrix} -1 & 1 & 0 & 1 \\ 2 & 1 & 0 & 0 \end{pmatrix}$$

Rappel 3.1

Pour que le produit AB soit bien défini, il faut que le nombre de colonnes de A soit égal au nombre de lignes de B.

Solution:

1. Puisque A et B sont deux matrices carrées de même ordre, les deux produits AB et BA sont possibles. On trouve :

$$AB = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}, \quad BA = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}.$$

En particulier, AB = BA = 0 alors que ni A ni B ne sont nulles.

2. Le produit AB n'est pas défini car A a trois colonnes et B deux lignes. Pour BA, on trouve

$$BA = \left(\begin{array}{ccc} -1 & 2 & 1\\ -1 & -5 & -3 \end{array}\right).$$

3. Le produit BA n'est pas défini. En revanche, on a

$$AB = \left(\begin{array}{rrrr} 3 & 3 & 0 & 1 \\ 1 & 2 & 0 & 1 \\ 6 & 3 & 0 & 0 \end{array}\right).$$

Exercice d'application 2 : Produit particulier

Soient
$$A = \begin{pmatrix} 0 & 0 & 1 \\ 1 & 1 & 1 \\ 4 & 2 & 1 \end{pmatrix}$$
 et $B = \begin{pmatrix} 0, 5 & -1 & 0, 5 \\ -1, 5 & 2 & -0, 5 \\ 1 & 0 & 0 \end{pmatrix}$.

Vérifier que $AB = I_3$ et $BA = I_3$.

Propriété 3.5

Soit A une matrice carrée d'ordre n alors $A \times I_n = I_n \times A = A$.

3.1.4 Matrices inversibles

Dans ce paragraphe, on ne considère que des matrices carrées.

Définition 3.4

On dit que $A \in \mathcal{M}_n(\mathbb{K})$ est inversible si il existe $B \in \mathcal{M}_n(\mathbb{K})$ telle que AB = BA = I et dans ce cas on note

 $B = A^{-1}$ appelée matrice inverse de A.

Remarque 3.2 Si B existe, elle est la seule à vérifier cette propriété. En effet, si AB = BA = I et AC = CA = I, on écrit

$$C(AB) = CI = C$$
$$= (CA)B = IB = B$$

et donc B = C.

Théorème 3.2

Soit $A \in \mathcal{M}_n(\mathbb{K})$. Alors

$$(\exists B \in \mathcal{M}_n(\mathbb{K}), AB = I) \iff (\exists B \in \mathcal{M}_n(\mathbb{K}), BA = I)$$

qui équivaut aussi à A inversible (et alors $A^{-1} = B$).

Notation 3.2 On note $\mathcal{GL}_n(\mathbb{K})$ l'ensemble des matrices inversibles de $\mathcal{M}_n(\mathbb{K})$.

Proposition 3.2

Si $A \in \mathcal{GL}_n(\mathbb{K})$, alors $A^{-1} \in \mathcal{GL}_n(\mathbb{K})$ et $(A^{-1})^{-1} = A$. Si en plus $B \in \mathcal{GL}_n(\mathbb{K})$, alors $AB \in \mathcal{GL}_n(\mathbb{K})$ et

$$(AB)^{-1} = B^{-1}A^{-1}.$$

Exemple 3.9

Si
$$A = \begin{pmatrix} 0 & 0 & 1 \\ 1 & 1 & 1 \\ 4 & 2 & 1 \end{pmatrix}$$
 alors A^{-1} existe et vaut : $A^{-1} = \begin{pmatrix} 0, 5 & -1 & 0, 5 \\ -1, 5 & 2 & -0, 5 \\ 1 & 0 & 0 \end{pmatrix}$ car on a déjà vérifié que $AB = I_3$ donc $A^{-1} = B$.

3.1.5 Transposition

Définition 3.5

La transposée d'une matrice $A = (a_{ij})$ de taille $n \times p$ est la matrice $A^t = (a_{ji})$ de taille $p \times n$, obtenue en échangeant les lignes et les colonnes de $A : (A^t)_{ij} = A_{ji}$.

Exemple 3.10
Ainsi, la matrice
$$A = \begin{pmatrix} 1 & 3 \\ 4 & 5 \\ 0 & -1 \end{pmatrix}$$
 a pour transposée $A^t = \begin{pmatrix} 1 & 4 & 0 \\ 3 & 5 & -1 \end{pmatrix}$.

De même, la matrice
$$B = \begin{pmatrix} 3 & 0 & 4 \\ 1 & 2 & 3 \\ 4 & 6 & 8 \end{pmatrix}$$
 a pour transposée $B^t = \begin{pmatrix} 3 & 1 & 4 \\ 0 & 2 & 6 \\ 4 & 3 & 8 \end{pmatrix}$.

Propriétés 3.2

Si A est de dimension (m, n), alors A^t est de dimension (n, m). En particulier, si A est carrée d'ordre n, alors A^t a le même format. La transposée d'une matrice-colonne est une matrice-ligne, et réciproquement. Enfin, $(A^t)^t = A$ pour toute matrice A.

Définition 3.6

Une matrice carrée A est dite symétrique si elle vérifie : $A^t = A$. Si n est l'ordre de A ceci équivaut à : $\forall (i,j) \in [1;n]^2$, $a_{i,j} = a_{j,i}$

Exemple 3.11
$$\begin{pmatrix} 1 & 3 & 4 \\ 3 & 2 & -2 \\ 4 & -2 & 7 \end{pmatrix}$$
 est symétrique. On a $a_{ij} = a_{ji}, \forall (i,j) \in [1;3]^2$.

Définition 3.7

Une matrice carrée A est dite antisymétrique si elle vérifie : $A^t = -A$. Si n est l'ordre de A ceci équivaut à : $\forall (i,j) \in [1;n]^2, a_{i,j} = -a_{j,i}$

Proposition 3.3

- 1. $(A+B)^t = A^t + B^t$; pour toutes matrices A, B de même taille $n \times p$,
- **2.** $(\lambda A)^t = \lambda(A)^t$; pour toute matrice A de taille quelconque $n \times p$;
- **3.** $(A \times B)^t = B^t \times A^t$; pour toute matrice A de taille quelconque $n \times p$ et pour toute matrice B de taille quelconque $p \times m$.

Exercice d'application 3 :

Soit $S_n(\mathbb{R})$ (resp. $A_n(\mathbb{R})$) l'ensemble des matrices symétriques (resp. antisymétriques) de $\mathcal{M}_n(\mathbb{R})$.

- 1. Montrer que $\mathcal{S}_n(R)$ et $\mathcal{A}_n(\mathbb{R})$ sont deux sous-espaces vectoriels de $\mathcal{M}_n(\mathbb{R})$.
- **2.** Montrer que $\mathcal{M}_n(\mathbb{R}) = \mathcal{S}_n(\mathbb{R}) \oplus \mathcal{A}_n(\mathbb{R})$.
- 3. Donner la décomposition sur cette somme directe de $M = \begin{pmatrix} 1 & 5 & -3 \\ -3 & 2 & 3 \\ 1 & -1 & -3 \end{pmatrix}$.

3.2 Matrice et applications linéaires

Définition 3.8 (Matrice de coordonnées d'un vecteur dans une base) Soit $B = \{f_1, ..., f_n\}$ une base d'un espace vectoriel de F de dimension n. Soit $u \in F$, $\exists ! (x_1, ..., x_n) \in \mathbb{K}^n$ tel que : $u = x_1 f_1 + ... + x_n f_n$.

On note
$$mat_B(u) = \begin{pmatrix} x_1 \\ \cdot \\ \cdot \\ \cdot \\ x_n \end{pmatrix} \in \mathcal{M}_{n,1}(\mathbb{K})$$
 la matrice de u dans B .

Définition 3.9 (Matrice d'une famille de vecteurs)

 $Si \ \forall j \in \{1, ..p\}, \ u_j \in F \ et$

Définition 3.10 (Matrice de passage entre deux bases)

On note $mat_B(B')$ la matrice de passage de $B \ à B'$. On la note P.

$$P = mat_B(B')$$

Exemple 3.13

Nous considérons tout au long de cette section (fin de chapitre 3) les exemples suivants :

Exemple 2d - On considère ici
$$E = F = \mathbb{R}^2$$
 et $B_1 = \{e_1, e_2\} = \{(1, 0), (0, 1)\},$ $B'_1 = \{u_1, u_2\} = \{(1, 1), (1, -1)\}.$

Exemple 3d - On considère ici $E = F = \mathbb{R}^3$ et

$$B_{2} = \{i, j, k\} = \{(1, 0, 0), (0, 1, 0), (0, 0, 1)\}, B'_{2} = \{v_{1}, v_{2}, v_{3}\} = \{(1, 1, 1), (0, 1, -1), (0, 0, 2)\}.$$

Déterminons $mat_{B_1}(B_1)$, $mat_{B_2}(B_2)$.

Proposition 3.4 (Coordonnées d'un vecteur dans deux bases)

On note B et B' deux bases de E.

On note $P = mat_B(B') \in \mathcal{M}_n(\mathbb{K})$ la matrice de passage de B à B'.

Soit $u \in E$. On pose $X = mat_B(u)$ et $X' = mat_{B'}(u)$

On obtient la relation:

$$X = PX', (i.e.) \quad mat_B(u) = mat_B(B')mat_{B'}(u)$$

De plus, P est inversible, et son inverse est : $P^{-1} = mat_{B'}(B)$.

Exemple 3.14 (Donnés lors des séances de cours en amphi)

Définition 3.11 (Matrice d'une application linéaire)

Soit $f \in \mathcal{L}(E, F)$.

Soit $B_E = \{e_1, ..., e_p\}$ une base de E et $B_F = \{f_1, ..., f_n\}$ une base de F. Soit M la matrice de f dans B_E, B_F :

$$M = mat_{B_E} R_E(f) = mat_{B_E}(\{f(e_1), ..., f(e_n)\})$$

Le nombre de colonnes de la matrice est défini par la dimension de l'espace de départ p, celui des lignes par la dimension de l'espace d'arrivée n.

Exemple 3.15

Nous considérons les exemples suivants :

- **4.** $f: \mathbb{R}^2 \to \mathbb{R}^2, f(x,y) = (2x 3y, x + y)$
- **5.** $g: \mathbb{R}^2 \to \mathbb{R}^2, g(x,y) = (2x y, -x + \frac{1}{2}y)$
- **6.** $h: \mathbb{R}^3 \to \mathbb{R}^2, h(x, y, z) = (x + y, y \overline{z}).$

Déterminer pour chacune des applications linéaires ci-dessus la matrice associée en considérant les bases canoniques de E et F.

Propriétés 3.3 (Cas Particuliers)

- a) La matrice de l'application nulle $\in \mathcal{L}(E,F)$ est la matrice nulle de $\mathcal{M}_{dim(F),dim(E)}(\mathbb{K})$.
- b) La matrice d'un endomorphisme de E est une matrice carrée d'ordre $\dim(E)$.
- c) La matrice de l'identité est I_n .
- d) La matrice de l'homothétie de rapport k est kI_n .

Proposition 3.5 (Coordonnées de l'image d'un vecteur)

Soient B_E une base de E, B_F une base de F. Soit $u \in E$.

Posons $M = mat_{B_E,B_F}(f), X = mat_{B_E}(u), Y = mat_{B_F}(f(u)).$ Alors :

$$Y = M.X$$
, $mat_{B_F}(f(u)) = mat_{B_E,B_F}(f).mat_{B_E}(u)$

Théorème 3.3

Si f est une application de E dans F tel que $\exists M \in \mathcal{M}_{n,p}$ tel que $\forall u \in E$ on a $mat_{B_F}(f(u)) = M.mat_{B_E}(u)$ est vérifiée, alors f est une application linéaire.

Exemple 3.16 (Donnés lors des séances de cours en amphi)

Proposition 3.6 (Unicité de la matrice, pour les bases fixes)

Soient B_E, B_F des bases de E et de F, avec $\dim(E) = n, \dim(F) = p$. Soit :

$$\varphi: \mathcal{L}(E,F) \to \mathcal{M}_{n,p}(\mathbb{K})$$

$$f \to mat_{B_E,B_F}(f)$$

 φ est une application linéaire bijective. De plus $(f = g) \Leftrightarrow (mat_{B_E,B_F}(f) = mat_{B_E,B_F}(g))$.

Corollaire 3.1 (Matrice d'une combinaison linéaire de deux éléments de L(E,F))

$$\varphi(f + \lambda g) = mat_{B_E, B_F}(f + \lambda g) = mat_{B_E, B_F}(f) + \lambda mat_{B_E, B_F}(g)$$

Proposition 3.7

Soit $f \in \mathcal{L}(E, F)$, B_E , B_F des bases de E et F. Soit $A \in \mathcal{M}_{n,p}(\mathbb{K})$. Soit $x \in E$. Supposons que $X = mat_{B_F}(x)$ et $Y = mat_{B_F}(f(x))$, et qu'on obtient :

$$Y = AX$$
. Alors $A = mat_{B_E, B_F}(f)$.

Définition 3.12 (Composée d'applications linéaires)

Soient E, F, G des espaces vectoriels de dimensions finies, et de bases respectives B_E, B_F, B_G . Soit $f \in \mathcal{L}(E, F), g \in \mathcal{L}(F, G)$. Alors :

$$mat_{B_E,B_G}(gof) = mat_{B_F,B_G}(g) \times mat_{B_E,B_F}(f).$$

Proposition 3.8 (Matrice inversible et isomorphisme - Endomorphisme)

Si f est un isomorphisme de E dans F, alors $mat_{B_E,B_F}(f)$ est inversible et :

$$(mat_{B_E,B_F}(f))^{-1} = mat_{B_F,B_E}(f^{-1}).$$

Si f est un endomorphisme, on a:

$$(mat_{B_E}(f))^n = mat_{B_E}(f^n)$$

où $f^n = fofo \cdots of$ avec la composition est répétée n fois.

Proposition 3.9 (Changement de bases)

Soit $f \in \mathcal{L}(E,F)$. Soient $B_E, B_{E'}$ des bases de E. Soient $B_F, B_{F'}$ des bases de F. On pose : $M = mat_{B_E,B_F}(f)$, $M' = mat_{B_{E'},B_{F'}}(f)$, $P = mat_{B_E}(B_{E'})$, $Q = mat_{B_F}(B_F)$,

alors: $M' = Q^{-1}MP$.

Si f est un endomorphisme (F = E):

$$M' = P^{-1}MP$$

3.3 Rang de vecteurs et de matrices

Définition 3.13 (Rang d'une famille de vecteurs)

Soit F un espace vectoriel de dimension n.

On appelle rang d'une famille $\{u_1, u_2, \ldots, u_k\}$ de vecteurs de F et on note $rg(\{u_1, u_2, \ldots, u_k\})$, la dimension du sous espace vectoriel engendré par cette famille.

$$rg(\{u_1, u_2, \dots, u_k\}) = dim(Vect\{u_1, u_2, \dots, u_k\}).$$

Exemple 3.17 (Donnés lors des séances de cours en amphi)

Proposition 3.10

- $rg(\{u_1,\ldots,u_k\}) \leq k$ avec égalité si et seulement si $\{u_1,\ldots,u_k\}$ est libre.
- $rg(\{u_1,\ldots,u_k\}) \leq n$ avec égalité si et seulement si $\{u_1,\ldots,u_k\}$ est génératrice.

Proposition 3.11

Soit f une application linéaire de E dans F. Soit $\{u_1, \ldots, u_k\} \subset E$. Alors $rg(\{f(u_1), f(u_2), \ldots, f(u_k)\}) \leq rg(\{u_1, \ldots, u_k\})$. En particulier, si f est bijective, l'égalité est vraie.

Rappel 3.2 (Rang d'une application linéaire)

On rappelle que le rang d'une application linéaire f est la dimension du s.e.v Im(f): $rg(f) = \dim \text{Im}(f)$.

Propriétés 3.4

Soit $f \in \mathcal{L}(E, F)$ avec $\dim(E) = p$ et $\dim(F) = n$.

- $rg(f) \le p$ avec égalité si et seulement si f est injective.
- $rg(f) \le n$ avec égalité si et seulement si f est surjective.
- Soit $\lambda \in \mathbb{K}^*$, $rg(\lambda f) = rg(f)$.

Remarque 3.3 Si $f \in \mathcal{L}(E, F)$ avec $\dim(E) = p$ et $\dim(F) = n$ alors $rg(f) \leq \min(p, n)$.

Exemple 3.18 (Donnés lors des séances de cours en amphi)

Définition 3.14 (Rang d'une matrice)

On appelle rang d'une matrice $A \in \mathcal{M}_{m,n}(\mathbb{K})$ et on note rg(A), la dimension du sous espace vectoriel de \mathbb{K}^m engendré par les colonnes de A.

Autrement dit, si $A = (a_{ij})_{ij}$, $C_i = (a_{1i} a_{2i} \dots, a_{ni})^t$ est le *i*-ème vecteur colonne de A et $rg(A) = \dim(Vect(\{C_1, C_2, \dots, C_n\}))$.

Théorème 3.4

- 1. Si $f \in \mathcal{L}(E, F)$ alors rg(f) = rg(M) où $M = mat_{B_E, B_E}(f)$.
- **2.** $rg(A) = rg({}^{t}A)$, c'est à dire si $L_i = (a_{i1} a_{i2} \dots a_{im})$ est le *i*-ème vecteur ligne de A, alors $rg(A) = \dim(Vect(\{L_1, \dots, L_m\}))$.
- 3. Si $M \in \mathcal{M}_n(\mathbb{K}) = mat_{B_E, B_E}(f)$ avec $\dim(E) = \dim(F)$ alors

 $Mest \ inversible \ \Leftrightarrow \operatorname{rg}(M) = n \Leftrightarrow \ \operatorname{les \ colonnes}(\operatorname{resp \ lignes}) \ \operatorname{de \ } Msont \ \operatorname{libres}$

 $\Leftrightarrow \operatorname{Ker}(f) = \{0_E\} \Leftrightarrow \operatorname{Im}(f) = F \Leftrightarrow f \text{ est inj. } \Leftrightarrow f \text{ est surj.} \Leftrightarrow f \text{ est bij.}$

3.4 Matrices de projection et de symétrie

Théorème 3.5

Soit f un endomorphisme d'un \mathbb{K} -espace vectoriel E de dimension finie n, et soit $A \in \mathcal{M}_{n,n}(\mathbb{K})$ la matrice associée à f dans une base donnée de E.

f est une projecteur(donc une projection) vérifiant f of = f si et seulement si $A^2 = A$. f est une involution(donc une symétrie) vérifiant f of = I dE si et seulement si $A^2 = I$ dn.

Corollaire 3.2

En réutilisant les notations du théorème précédent, on a :

- 1. Si $A^2 = A$ alors f est une projection sur $F = \{u \in E, Au = u\} = \text{Im}(f)$ dirigée $par G = \{u \in E, Au = 0\} = \text{Ker}(f).$
- 2. Si $A^2 = \operatorname{Id}_n$ alors f est une symétrie par rapport à $F = \{u \in E, Au = f(u) = u\} = Inv(f)$ dirigée par $G = \{u \in E, Au = f(u) = -u\} = Opp(f)$.