

PATENTAMT

AUSLEGESCHRIFT 1253716

Int. Cl.:

Deutsche Kl.: 12p-5

Nummer:

1 253 716

Aktenzeichen:

B 64170 IV d/12 p

Anmeldetag:

28. September 1961

Auslegetag:

9. November 1967

Für die Reinheit eines polymerisationsfähigen Lactams wird neben anderen Kriterien vor allem die Farbzahl angegeben. Die Bestimmung der Farbzahl nach der Hazenskala erfolgt durch Vergleich der Polylactamschmelze mit Standardlösungen, die durch 5 Lösen einer bestimmten Menge von Kaliumhexachloroplatinat und Kobaltchlorid in wäßriger Salzsäure gewonnen werden. So entspricht der Farbzahl 500 die mit Wasser auf 1000 ml aufgefüllten Lösung von 1,25 g Kaliumhexachloroplatinat-IV, KPtCl₆ (ent- 10 . sprechend 0,500 g Pt), und 1 g Kobaltchlorid, CoCl2 · 6H2O, in 100 ml konzentrierter Salzsäure. Durch entsprechende Verdünnung erhält man die niedrigeren

Als weitere Reinheitskriterien werden die Per- 15 manganatzahl und die Zahl der flüchtigen Basen angeführt. Unter Permanganatzahl wird dabei diejenige Zeit in Sekunden verstanden, die eine Lösung von 1 g Lactam in 100 ml bidestilliertem Wasser, versetzt mit 1 ml n/100-Kaliumpermanganatlösung, 20 braucht, um auf den Farbton einer Lösung abzublassen, die 2 g Kupfersulfat, CuSO₄·5H₂O, und 3 g Kobaltchlorid, CoCl₂·6H₂O, in 100 ml Wasser enthālt. Eine Permanganatzahl ≥ 300 Sekunden wird als sehr gut angesehen. Die Zahl der flüchtigen Basen ist 25 der aus 20 g Lactam durch Wasserdampf herausdestillierbare Anteil an Basen, ausgedrückt in der äquivalenten Menge n/10-Natronlauge, wobei Werte ≤ 0,3 cm³ n/10-Natronlauge für Caprolactam als gut betrachtet werden. Eine kleine Permanganatzahl und 30 eine große Zahl flüchtiger Basen bewirkt eine meist starke Qualitätsminderung der Polymerlactame.

Es sind eine Reihe von Verfahren zur Reinigung von aus cycloaliphatischen Ketoximen durch Umlagerung gewonnenen Lactamen, insbesondere e-Capro- 35 lactam, bekannt. So können Lactame z. B. durch Umkristallisation, durch Behandlung mit Ionenaustauschern, durch katalytische Luftoxydation oder durch Behandlung mit Wasserstoff in Anwesenheit durch Behandlung mit Wasserstoff in Anwesenheit flüssigtes Lactam schon als Lösung angesehen. Im eines Hydrierungskatalysators gereinigt werden. Zur 40 allgemeinen verwendet man 20- bis 80% ige Lösungen. Vermeidung einer Vergilbung bei Lagerung wurde empsohlen, Basen zuzusetzen. Nach einem anderen Reinigungsverfahren wäscht man das Lactam mit salzgesättigter Alkalilauge aus. Es ist ferner bekannt, daß man Lactame in Gegenwart geringer Mengen 45 alkalischer oder saurer Stoffe mit einem Inertgas, z. B. molekularem Wasserstoff, behandelt. Diese Verfahren sind zum Teil teuer, technisch aufwendig, schwer durchführbar und führen vielfach zu großen Lactamverlusten. Darüber hinaus sind diese Ver- 50 fahren zum Teil nicht allgemein anwendbar und besitzen daher nur für bestimmte Lactame bzw. Lac-

Verfahren zur Reinigung von Lactamen

Anmelder:

Badische Anilin- & Soda-Fabrik Aktiengesellschaft, Ludwigshafen/Rhein

Als Erfinder benannt:

Dr. Dieter Weiser,

Dr. Horst Metzger, Ludwigshafen/Rhein

tame bestimmter Herkunft Geltung. Schließlich wird nach einem älteren Vorschlag (Patentanmeldung B 63 014 IVb/12p) eine Reinigung durch Behandlung mit aktiviertem Wasserstoff in Gegenwart basisch wirkender Stoffe vorgenommen.

Es wurde nun gefunden, daß man eine einwandfreie Reinigung von Lactamen durch Behandeln mit Wasserstoff in Gegenwart von Säuren und Destillation erreicht, wenn man das geschmolzene oder in Wasser oder in einem inerten Lösungsmittel gelöste Lactam vor der Destillation des Lactams in Gegenwart von wenigstens 0,05 Gewichtsprozent eines Hydrierungskatalysators, auf Lactam bezogen, mit Wasserstoff behandelt.

Nach diesem Verfahren können die verschiedensten Lactame gereinigt werden, z. B. Pyrrolidon, Valero-, Capro-, Onanth-, Capryl- oder Laurinlactam. Besonders geeignet ist das Verfahren für die Reinigung von Lactamen, die durch katalytische Umlagerung aus cycloaliphatischen Ketoximen oder durch Reaktion von cycloaliphatischen Carbonsäuren mit Nitrosylsulfat in Oleum hergestellt worden sind. Die Lactame sollen in flüssiger Phase vorliegen. Man kann also geschmolzene Lactame als solche oder vorzugsweise Lactame in Lösungen verwenden, wobei der Begriff Lösung sehr weit gefaßt ist, z. B. wird ein durch Zusatz einer geringen Menge eines Lösungsmittels ver-

Die nach dem neuen Verfahren, gegebenenfalls nach Neutralisieren und bzw. oder nach Abfiltrieren von festen Bestandteilen und Destillieren oder Sublimieren praktisch ohne Verluste gereinigten Lactame ergeben bei nachfolgender Polymerisation einwandfrei helle und qualitativ hochwertige Polymerisationsprodukte mit ausgezeichneter Farbzahl. Die monomeren Lactame haben außerordentlich hohe Permanganatzahlen und eine sehr kleine Zahl an flüchtigen Basen. Sie sind auch im monomeren Zustand lagerbeständig.

Nach dem erfindungsgemäßen Verfahren werden als Säuren vor allem Mineralsäuren, wie Schwefel-

709 687/407

säure, Phosphorsäure oder Salzsäure, in Mengen von 0,01 bis 10 Gewichtsprozent (bezogen auf das zu reinigende Lactam) zugesetzt. In gleicher Weise können jedoch auch niedere gesättigte Fettsäuren, wie Ameisensäure, Essigsäure oder Propionsäure, sowie chlorierte Essigsäuren, wie Monochloressigsäure oder Trichloressigsäure, Verwendung finden. Man kann aber auch andere organische Säuren mit vergleichbarer Acidität verwenden. Man wird in einem speziellen Fall der einen oder anderen Säure den Vorzug 10 geben, nachdem man an Hand von Vorversuchen die für den jeweiligen Fall geeignetste Säure festgestellt hat. Bei kontinuierlicher Durchführung der Reinigung wird man bevorzugt eine leicht dosierbare, nichtflüchtige Säure, z. B. Schwefelsäure, verwenden. Die Säure 15 kann vor Aufarbeitung der mit katalytisch aktiviertem Wasserstoff behandelten Lösung neutralisiert werden, wobei man gegebenenfalls durch Vorversuche ermittelt, ob die Neutralisation zweckmäßig oder erforderlich

Der zur Reinigung der Lactame benötigte Wasserstoff muß katalytisch aktiviert sein. Man kann z. B. molekularen Wasserstoff in Gegenwart von Hydrierkatalysatoren auf das zu reinigende Lactam einwirken lassen. Man kann auch Wasserstoff » in statu nascendi « 25 in Gegenwart eines Hydrierkatalysators benutzen.

Als Katalysatoren eignen sich solche Hydrierungskatalysatoren, mit denen unter den gewählten Bedingungen das Lactam selbst nicht oder nur in geringem Umfang hydriert werden kann. Es sind dies die üb- 30 lichen Hydrierkatalysatoren, z. B. Metallkatalysatoren, wie Palladium, Platin, Nickel, Ruthenium, oder Edelmetalloxyde, z. B. Palladiumoxyd oder Platindioxyd, die gewünschtenfalls vor der Verwendung als Katalysator gesondert reduziert werden können.

Die Katalysatoren können sich auf Trägern befinden, z. B. auf Aktivkohle, Bimsstein, Siliciumdioxyd, Aluminiumoxyd, Bariumsulfat, Calciumcarbonat, Ma-

gnesiumsilikat oder Magnesiumoxyd.

Die Katalysatoren können in feinkörnigem Zustand 40 oder in Pulverform in der Lactamlösung suspendiert werden. In diesem Fall wird man vorteilhaft den Katalysator im Anschluß an die Hydrierung von der Lösung, z. B. durch Filtration, abtrennen. Diese Entfernung erübrigt sich, wenn - was bei einer konti- 45 nuierlichen Arbeitsweise vorzuziehen ist - der Katalysator in grobkörnigem Zustand als feststehende Katalysatorschicht im Reaktionsraum angebracht ist, während die Lactamlösung und der Wasserstoff kontinuierlich, gegebenenfalls im Gegenstrom, durch den 50 Reaktionsraum geleitet werden.

Die erforderliche Menge an Hydrierkatalysatoren kann innerhalb weiter Grenzen schwanken. Sie ist auch abhängig vom Katalysator selbst sowie dem Lactam und den gewünschten Umsetzungsbedingungen 55 und kann von Fall zu Fall durch Vorversuche ermittelt werden. Die Menge soll wenigstens 0,05 Gewichtsprozent betragen (bezogen auf eingesetztes Lactam). Mengen über 5 Gewichtsprozent schaden jedoch

Das Verfahren kann sowohl bei Normaldruck als auch unter erhöhtem Druck, z. B. 1 bis 300 at, durchgeführt werden. Verwendet man beispielsweise Palladium-Trägerkatalysatoren oder Nickel auf Kohle, so führt man das Verfahren vorteilhaft unter erhöhtem 65

Man kann die Behandlung mit katalytisch erregtem Wasserstoff bei Raumtemperatur oder erhöhter Tem-

peratur vornehmen. Verwendet man beispielsweise Platin- oder Rutheniumkatalysatoren, so kann man bei erhöhter Temperatur, aber unterhalb des Siedepunktes des Lactams bzw. des Lösungsmittels, die 5 erforderliche Umsetzungszeit erheblich herabsetzen. Im allgemeinen wird man das Verfahren bei Temperaturen zwischen 0 und 120°C durchführen.

Das gegebenenfalls in Wasser oder einem anderen indifferenten Lösungsmittel, z. B. einem niederen Alkohol, wie Methanol oder Äthanol oder Gemischen von Wasser und mit Wasser mischbaren inerten organischen Lösungsmitteln, beispielsweise mit Wasser mischbaren offenen oder cyclischen Äthern, wie Dioxan, Tetrahydrofuran, Glykolmonomethyläther, Diglykoläther, gelöste Lactam wird so lange umgesetzt, bis kein Wasserstoff mehr aufgenommen wird bzw. bis die Geschwindigkeit der Wasserstoffaufnahme stark absinkt. Das Umsetzungsgemisch wird dann, nötigenfalls nach Neutralisation und bzw. oder Filtration und gegebenenfalls nach vorherigem Entfernen des Lösungsmittels, einer Destillation oder Sublimation unterworfen, um so das gereinigte Lactam zu gewinnen.

In den Beispielen bedeuten Teile Gewichtsteile. Gewichts- und Volumteile stehen zueinander im Verhältnis wie Gramm zu Kubikzentimeter.

Beispiel 1

100 Teile eines rohen Caprolactams, das durch Umsetzung von Nitrosylschwefelsäure in Oleum mit Cyclohexancarbonsäure nach dem Verfahren der belgischen Patentschrift 582 793 erhalten wurde, werden in 120 Teilen Wasser gelöst und nach Zusatz von 2 Teilen konzentrierter Schwefelsäure und 0,5 Teilen Platindioxyd 12 Stunden bei 60°C unter 100 at Wasserstoff geschüttelt. Danach wird der Katalysator abfiltriert und das Wasser bei 50°C Badtemperatur und 14 Torr abgedampft. Durch Destillation des Lactams unter vermindertem Druck werden nach 2,5 Teilen weitgehend aus Caprolactam bestehendem Vorlauf 95,3 Teile Hauptfraktion (Siedepunkt 105°C/ 0,5 Torr) erhalten, das sind 95,3% Ausbeute, bezogen auf eingesetztes Lactam; der Rest verbleibt als Rück-

Die Hauptfraktion (Fp. 70°C) wird, versetzt mit 3 Gewichtsprozent Hexamethylendiammoniumadipat. unter Stickstoff in einem Rohr aus Glenaer Glas von 18 mm lichter Weite 6 Stunden auf 260 bis 270°C erwärmt, wobei die Kondensation zum Polycaprolactam erfolgt. Nach beendeter Polymerisation werden die Polymerenfarbzahlen nach der Hazenskala gemessen. Die so erhaltene Polymerenfarbzahl des gereinigten Lactams beträgt 40 bis 60, die Permanganatzahl 66 und die Zahl der flüchtigen Basen 0,28.

In gleicher Weise kann ein Laurinlactam gereinigt werden, das aus Cyclododecancarbonsäure durch Umsetzung mit Nitrosylsulfat in Oleum hergestellt wurde.

Wird das Verfahren unter sonst gleichen Bedin-60 gungen, aber in neutraler Lösung durchgeführt, also ohne Zusatz von Säure, so wird die Farbzahl des Ausgangscaprolactams nicht verbessert, sie beträgt 350. Die Basenzahl liegt bei 2 bis 3, die Permanganatzahl bei 0 bis 10.

Die Ergebnisse weiterer Beispiele sind in Tabelle 1 angegeben. Sie sind mit 50 Teilen Caprolactam in 100 Teilen Wasser unter den angegebenen Bedingungen durchgeführt worden.

Bei- spiel	Teile Katalysator	Teile Säure	Wasser- stoff- druck in ata	Tempe- ratur in °C	Dauer in Stunden	Farbzahl	Per- man- ganat- zahl	Basen- zahl
2	1 Palladium auf Kohle (5%)ig)	2 Schwefelsäure	100	60	2	40 bis 60	490	0,24
3	1 Ruthenium auf Kohle (5% ig)	2 Schwefelsäure	100	20	12	60 bis 80	1008	0,18
4	0,5 Platindioxyd	2 Schwefelsäure	1	60	1,5	40 bis 60	469	0,27
5	1 Ruthenium auf Kohle (5%)ig)	4 konzentrierte Salzsäure	100	60	12	40 bis 60	540	0,21

Beispiel 6

100 Teile eines einmal destillierten Caprolactams, das durch katalytische Umlagerung aus Cyclohexanon- 25 oxim in der Gasphase gewonnen worden ist, werden in 200 Teilen Wasser gelöst und nach Zusatz von 8 Teilen konzentrierter Schwefelsäure und 1,0 Teil vorreduziertem Platindioxyd bei 60°C und Normaldruck mit Wasserstoff geschüttelt. Im Laufe von 30 2 Stunden werden 300 Volumteile Wasserstoff aufgenommen; danach kommt die Wasseraufnahme zum Stillstand. Vom Katalysator wird abfiltriert und das wäßrige Filtrat bei 14 Torr und einer Wasserbadtemwurden beim Destillieren bei 0,5 Torr bei 105°C 97 Teile reines Caprolactam, das sind 97% der Ausbeute, bezogen auf eingesetztes unreines Lactam, erhalten. Die Polymerenfarbzahl des gereinigten Lactams, wie nach Beispiel 1 erhalten, beträgt 40 bis 60, 40 die Permanganatzahl 683 und die Zahl der flüchtigen Basen 0,31.

Mit gleich gutem Erfolg kann ein Capryllactam nach dieser Vorschrift gereinigt werden, das durch katalytische Umlagerung von Cyclooctanonoxim gewonnen wurde.

Durch Hydrieren des einmal destillierten Caprolactams in neutraler Lösung, also ohne Zusatz von Säure, kann die Polymerenfarbzahl des Lactams nicht verbessert werden; sie liegt über 350.

Werden zum Vergleich 100 Teile desselben einmal destillierten Caprolactams, das durch katalytische Umlagerung von Cyclohexanonoxim in der Gasphase erhalten worden ist, mit 2 Teilen Zinkstaub und 2 Teilen konzentrierter Schwefelsäure versetzt und wird peratur von 50°C eingeengt. Aus dem Rückstand 35 dann das Caprolactam ohne Abtrennung des Zinkstaubes oder der Schwefelsäure bei 0,5 Torr und 105°C destilliert, so werden bei Abnahme von 5 Teilen Vorlauf 84 Teile Caprolactam erhalten. Dies hat eine Polymerenfarbzahl von 350.

In Tabelle 2 sind die Ergebnisse weiterer Beispiele angegeben, die mit 100 Teilen Caprolactam in 120 Teilen Wasser durchgeführt wurden.

Tabelle 2

Bei- spiel	Teile Katalysator	Teile Säure	Wasser- stoff- druck in ata	Tem- peratur in °C	Dauer in Stunden	Farbzahl	Per- man- ganat- zahl	Basen- zahi
7	1 Ruthenium auf Kohle (5% jg)	5 Schwefelsäure	100	60	12	60 bis 80	280	0,09
8	1 Palladium auf Kohle (5%ig)	3 Schwefelsäure	100	60	6	40 bis 60	570	0,28
9	1 Platindioxyd	4 Schwefelsäure	1	60	6	40 bis 60	720	0,17
10	1 Ruthenium auf Kohle (5%)ig)	5 Phosphorsäure	100	60	12	60 bis 80	410	0,33

Beispiel 11

Zu 100 Teilen Pyrrolidon der Permanganatzahl 0 mit einem gaschromatographisch bestimmten Gehalt 65 von 85,0% Pyrrolidon werden 2 Teile konzentrierte Schwefelsäure und 1 Teil eines Katalysators, der aus 5% Palladium auf Tierkohle besteht, gegeben. Das Gemisch wird bei 80°C unter Normaldruck mit

8

Wasserstoff geschüttelt. Hierbei werden im Verlauf von 2 Stunden 250 Volumteile Wasserstoff aufgenommen. Dann wird vom Katalysator abfiltriert und durch anschließende Destillation bei 0,1 Torr und 75°C 82 Teile eines reinen Pyrrolidons (entsprechend 96,5%), auf das im Ausgangsmaterial enthaltene Pyrrolidon bezogen) gewonnen. Das so erhaltene Produkt besitzt eine Permanganatzahl von 1100 und ist nach der gaschromatographischen Analyse zu 99,8%/o rein.

Ohne Zusatz von Schwefelsäure wird ein Produkt 10 mit der Permanganatzahl 200 erhalten. Bei Zusatz von nur 2 Teilen Schwefelsäure, ohne gleichzeitig mit Wasserstoff zu behandeln, zeigt das Pyrrolidon nach der Destillation eine Permanganatzahl von 100.

Patentanspruch:

Verfahren zur Reinigung von Lactamen durch Behandeln mit Wasserstoff in Gegenwart von Säuren und Destillation, dadurch gekennzeichnet, daß man das geschmolzene oder in Wasser oder in einem inerten Lösungsmittel gelöste Lactam vor der Destillation des Lactams in Gegenwart von wenigstens 0,05 Gewichtsprozent eines Hydrierungskatalysators, auf Lactam bezogen, mit Wasserstoff behandelt.

In Betracht gezogene Druckschriften: Deutsche Patentschriften Nr. 739 953, 745 224.