# Lecture 12: Design Theory II

### Today's Lecture

- 1. Boyce-Codd Normal Form
  - ACTIVITY
- 2. Decompositions & 3NF
  - ACTIVITY
- 3. MVDs
  - ACTIVITY

## 1. Boyce-Codd Normal Form

### What you will learn about in this section

- 1. Conceptual Design
- 2. Boyce-Codd Normal Form
- 3. The BCNF Decomposition Algorithm
- 4. ACTIVITY

# Conceptual Design طراحی مفہومی

### Back to Conceptual Design

Now that we know how to find FDs, it's a straight-forward process:

- 1. Search for "bad" FDs دنبال وابستگی تابعی های بد میگردیم
- 2. If there are any, then keep decomposing the table into sub-tables until no more bad FDs اگر پیدا کردیم، جدول رو تجزیه می کنیم تا آن وابستگی تابعی های بد حذف شوند بد حذف شوند

Recall: there are several normal forms...

3. When done, the database schema is *normalized – شمای پایگاهدادهی شما* 

### Boyce-Codd Normal Form (BCNF)

• Main idea is that we define "good" and "bad" FDs as follows:

- $X \rightarrow A$  is a "good FD" if X is a (super)key
  - In other words, if A is the set of all attributes
- X → A is a "bad FD" otherwise
- We will try to eliminate the "bad" FDs!
  - سعی می کنیم که وابستگی تابعیهای بد را حذف کنیم.

### Boyce-Codd Normal Form (BCNF)

- Why does this definition of "good" and "bad" FDs make sense?
- If X is *not* a (super)key, it functionally determines *some* of the attributes; therefore, those other attributes can be duplicated
  - Recall: this means there is <u>redundancy</u>
  - And redundancy like this can lead to data anomalies!

| EmpID | Name  | Phone | Position |
|-------|-------|-------|----------|
| E0045 | Smith | 1234  | Clerk    |
| E3542 | Mike  | 9876  | Salesrep |
| E1111 | Smith | 9876  | Salesrep |
| E9999 | Mary  | 1234  | Lawyer   |

### Boyce-Codd Normal Form

BCNF is a simple condition for removing anomalies from relations:

A relation R is in BCNF if:

if  $\{A_1, ..., A_n\} \rightarrow B$  is a non-trivial FD in R

then  $\{A_1, ..., A_n\}$  is a superkey for R

Equivalently:  $\forall$  sets of attributes X, either (X<sup>+</sup> = X) or (X<sup>+</sup> = all attributes)

In other words: there are no "bad" FDs

### Example

| Name | SSN         | PhoneNumber  | City      |
|------|-------------|--------------|-----------|
| Fred | 123-45-6789 | 206-555-1234 | Seattle   |
| Fred | 123-45-6789 | 206-555-6543 | Seattle   |
| Joe  | 987-65-4321 | 908-555-2121 | Westfield |
| Joe  | 987-65-4321 | 908-555-1234 | Westfield |

{SSN} → {Name,City}

This FD is *bad* because it is **not** a superkey

 $\Rightarrow$  **Not** in BCNF

What is the key? {SSN, PhoneNumber}

### Example

| Name | SSN         | City    |
|------|-------------|---------|
| Fred | 123-45-6789 | Seattle |
| Joe  | 987-65-4321 | Madison |

| SSN         | <u>PhoneNumber</u> |
|-------------|--------------------|
| 123-45-6789 | 206-555-1234       |
| 123-45-6789 | 206-555-6543       |
| 987-65-4321 | 908-555-2121       |
| 987-65-4321 | 908-555-1234       |

Now in BCNF!

{SSN} → {Name,City}

This FD is now good because it is the key

Let's check anomalies:

- Redundancy?
- Update?
- Delete ?

| BCNFDecomp(R): |  |  |
|----------------|--|--|
|                |  |  |
|                |  |  |
|                |  |  |
|                |  |  |
|                |  |  |

#### BCNFDecomp(R):

Find a set of attributes X s.t.: X<sup>+</sup> ≠ X and X<sup>+</sup> ≠ [all attributes]

Find a set of attributes X which has non-trivial "bad" FDs, i.e. is not a superkey, using closures

#### BCNFDecomp(R):

Find a set of attributes X s.t.:  $X^+ \neq X$  and  $X^+ \neq X$  [all attributes]

if (not found) then Return R

If no "bad" FDs found, in BCNF!

#### BCNFDecomp(R):

Find a set of attributes X s.t.:  $X^+ \neq X$  and  $X^+ \neq X$  [all attributes]

if (not found) then Return R

let 
$$Y = X^+ - X$$
,  $Z = (X^+)^C$ 

Let Y be the attributes that X functionally determines (+ that are not in X)

And let Z be the complement, the other attributes that it doesn't

#### BCNFDecomp(R):

Find a set of attributes X s.t.:  $X^+ \neq X$  and  $X^+ \neq X$  [all attributes]

if (not found) then Return R

$$\underline{\mathsf{let}}\;\mathsf{Y}=\mathsf{X}^{\scriptscriptstyle{+}}-\mathsf{X},\;\;\mathsf{Z}=(\mathsf{X}^{\scriptscriptstyle{+}})^{\scriptscriptstyle{\complement}}$$

decompose R into  $R_1(X \cup Y)$  and  $R_2(X \cup Z)$ 

Split into one relation (table) with X plus the attributes that X determines (Y)...



#### BCNFDecomp(R):

Find a set of attributes X s.t.:  $X^+ \neq X$  and  $X^+ \neq X$  [all attributes]

if (not found) then Return R

let 
$$Y = X^{+} - X$$
,  $Z = (X^{+})^{C}$ 

decompose R into  $R_1(X \cup Y)$  and  $R_2(X \cup Z)$ 

And one relation with X plus the attributes it *does not* determine (Z)



#### BCNFDecomp(R):

Find a *set of attributes* X s.t.: X<sup>+</sup> ≠ X and X<sup>+</sup> ≠ [all attributes]

if (not found) then Return R

<u>let</u>  $Y = X^+ - X$ ,  $Z = (X^+)^C$ decompose R into  $R_1(X \cup Y)$  and  $R_2(X \cup Z)$ 

**Return** BCNFDecomp(R<sub>1</sub>), BCNFDecomp(R<sub>2</sub>)

Proceed recursively until no more "bad" FDs!

### Example

#### BCNFDecomp(R):

Find a set of attributes X s.t.:  $X^+ \neq X$  and  $X^+ \neq$  [all attributes]

if (not found) then Return R

let 
$$Y = X^+ - X$$
,  $Z = (X^+)^C$   
decompose R into  $R_1(X \cup Y)$  and  $R_2(X \cup Z)$ 

**Return** BCNFDecomp(R<sub>1</sub>), BCNFDecomp(R<sub>2</sub>)



20

# Activity-12-1.ipynb

# 2. Decompositions

### Recap: Decompose to remove redundancies

- 1. We saw that **redundancies** in the data ("bad FDs") can lead to data anomalies
- 2. We developed mechanisms to detect and remove redundancies by decomposing tables into BCNF
  - 1. BCNF decomposition is *standard practice* very powerful & widely used!
- 3. However, sometimes decompositions can lead to **more subtle** unwanted effects...

When does this happen?

### Decompositions in General



 $R_1$  = the *projection* of R on  $A_1$ , ...,  $A_n$ ,  $B_1$ , ...,  $B_m$ 

 $R_2$  = the *projection* of R on  $A_1$ , ...,  $A_n$ ,  $C_1$ , ...,  $C_p$ 

### Theory of Decomposition

| Name     | Price | Category |
|----------|-------|----------|
| Gizmo    | 19.99 | Gadget   |
| OneClick | 24.99 | Camera   |
| Gizmo    | 19.99 | Camera   |

Sometimes a decomposition is "correct"

I.e. it is a <u>Lossless</u> <u>decomposition</u>

| Name     | Price |
|----------|-------|
| Gizmo    | 19.99 |
| OneClick | 24.99 |
| Gizmo    | 19.99 |

| Name     | Category |
|----------|----------|
| Gizmo    | Gadget   |
| OneClick | Camera   |
| Gizmo    | Camera   |

### Lossy Decomposition

| Name     | Price | Category |
|----------|-------|----------|
| Gizmo    | 19.99 | Gadget   |
| OneClick | 24.99 | Camera   |
| Gizmo    | 19.99 | Camera   |

However sometimes it isn't

What's wrong here?



| Name     | Category |
|----------|----------|
| Gizmo    | Gadget   |
| OneClick | Camera   |
| Gizmo    | Camera   |

| Price | Category |
|-------|----------|
| 19.99 | Gadget   |
| 24.99 | Camera   |
| 19.99 | Camera   |

### Lossless Decompositions



What (set) relationship holds between R1 Join R2 and R if lossless?



It's lossless if we have equality!

*Hint: Which tuples of R will be present?* 

### Lossless Decompositions



A decomposition R to (R1, R2) is <u>lossless</u> if R = R1 Join R2

### **Lossless Decompositions**



If 
$$\{A_1, ..., A_n\} \rightarrow \{B_1, ..., B_m\}$$
  
Then the decomposition is lossless

Note: don't need 
$$\{A_1, ..., A_n\} \rightarrow \{C_1, ..., C_p\}$$

BCNF decomposition is always lossless. Why?

### A problem with BCNF

<u>Problem</u>: To enforce a FD, must reconstruct original relation—on each insert!

#### A Problem with BCNF



```
{Unit} → {Company}
{Company, Product} → {Unit}
```

We do a BCNF decomposition
on a "bad" FD:
{Unit}+ = {Unit, Company}

```
{Unit} → {Company}
```

We lose the FD {Company, Product} → {Unit}!!

### So Why is that a Problem?

| <u>Unit</u> | Company |
|-------------|---------|
| Galaga99    | UW      |
| Bingo       | UW      |

| Unit     | Product   |
|----------|-----------|
| Galaga99 | Databases |
| Bingo    | Databases |

No problem so far. All *local* FD's are satisfied.



| Unit     | Company | Product   |
|----------|---------|-----------|
| Galaga99 | UW      | Databases |
| Bingo    | UW      | Databases |

Let's put all the data back into a single table again:

Violates the FD {Company, Product} → {Unit}!!

#### The Problem

- We started with a table R and FDs F
- We decomposed R into BCNF tables  $R_1$ ,  $R_2$ , ... with their own FDs  $F_1$ ,  $F_2$ , ...
- We insert some tuples into each of the relations—which satisfy their local FDs but when reconstruct it violates some FD **across** tables!

<u>Practical Problem</u>: To enforce FD, must reconstruct R—on each insert!

#### Possible Solutions

- Various ways to handle so that decompositions are all lossless / no FDs lost
  - For example 3NF- stop short of full BCNF decompositions. See Bonus Activity!
- Usually a tradeoff between redundancy / data anomalies and FD preservation...

BCNF still most common- with additional steps to keep track of lost FDs...

#### 3NF

- R is in *Third Normal Form (3NF)* if for every nontrivial FD X → A, either:
  - X is a superkey of R, or
  - A is a member of at least one key of R
- Tradeoff:
  - We can check all FD's in the decomposed relation
  - But now we might have redundancy due to FD's
  - Example: (Unit, Company, Product) is in 3NF, but not in BCNF

# وابستگیهای چند مقداری -3. MVDs

# What you will learn about in this section

1. MVDs

2. ACTIVITY

## Multi-Value Dependencies (MVDs)

- A multi-value dependency (MVD) is another type of dependency that could hold in our data, which is not captured by FDs
- Formal definition:
  - Given a relation **R** having attribute set **A**, and two sets of attributes  $X,Y\subseteq A$
  - The *multi-value dependency (MVD) X->> Y* holds on R if
  - for any tuples  $t1,t2 \in R$  s.t. t1[X]=t2[X], there exists a tuple  $t_3$  s.t.:
    - $t_1[X] = t_2[X] = t_3[X]$
    - t<sub>1</sub>[Y] = t<sub>3</sub>[Y]
    - t<sub>2</sub>[A\Y] = t<sub>3</sub>[A\Y]
      - Where A \ B means "elements of set A not in set B"

## Multi-Value Dependencies (MVDs)

- One less formal, literal way to phrase the definition of an MVD:
- The MVD X->> Y holds on R if for any pair of tuples with the same X values, the "swapped" pair of tuples with the same X values, but the other permutations of Y and A\Y values, is also in R

Ex: 
$$X = \{x\}, Y = \{y\}$$
:





| X | У | Z |  |
|---|---|---|--|
| 1 | 0 | 1 |  |
| 1 | 1 | 0 |  |
| 1 | 0 | 0 |  |
| 1 | 1 | 1 |  |

Note the connection to a local *cross-product...* 

# Multi-Value Dependencies (MVDs)

- Another way to understand MVDs, in terms of conditional independence:
- The MVD X→Y holds on R if given X, Y is conditionally independent of A \ Y and vice versa...

Here, given x = 1, we know for ex. that:  $y = 0 \rightarrow z = 1$ 

I.e. z is conditionally *dependent* on y given x

| х | У | z |  |
|---|---|---|--|
| 1 | 0 | 1 |  |
| 1 | 1 | 0 |  |

Here, this is not the case!

I.e. z is conditionally *independent* of y given x

| x | У | z |
|---|---|---|
| 1 | 0 | 1 |
| 1 | 1 | 0 |
| 1 | 0 | 0 |
| 1 | 1 | 1 |

# Multiple Value Dependencies (MVDs)



A "real life" example...

Grad student CA thinks:

"Hmm... what is real life??

Watching a movie over the weekend?"

| Movie_theater | film_name                                          | snack       |
|---------------|----------------------------------------------------|-------------|
| Rains 216     | Star Trek: The Wrath of Kahn                       | Kale Chips  |
| Rains 216     | Star Trek: The Wrath of Kahn                       | Burrito     |
| Rains 216     | Lord of the Rings: Concatenated & Extended Edition | Kale Chips  |
| Rains 216     | Lord of the Rings: Concatenated & Extended Edition | Burrito     |
| Rains 218     | Star Wars: The Boba Fett Prequel                   | Ramen       |
| Rains 218     | Star Wars: The Boba Fett Prequel                   | Plain Pasta |

Are there any functional dependencies that might hold here?

No...

And yet it seems like there is some pattern / dependency...

| Movie_theater | film_name                                          | snack       |
|---------------|----------------------------------------------------|-------------|
| Rains 216     | Star Trek: The Wrath of Kahn                       | Kale Chips  |
| Rains 216     | Star Trek: The Wrath of Kahn                       | Burrito     |
| Rains 216     | Lord of the Rings: Concatenated & Extended Edition | Kale Chips  |
| Rains 216     | Lord of the Rings: Concatenated & Extended Edition | Burrito     |
| Rains 218     | Star Wars: The Boba Fett Prequel                   | Ramen       |
| Rains 218     | Star Wars: The Boba Fett Prequel                   | Plain Pasta |

For a given movie theatre...

| Movie_theater | film_name                                          | snack       |
|---------------|----------------------------------------------------|-------------|
| Rains 216     | Star Trek: The Wrath of Kahn                       | Kale Chips  |
| Rains 216     | Star Trek: The Wrath of Kahn                       | Burrito     |
| Rains 216     | Lord of the Rings: Concatenated & Extended Edition | Kale Chips  |
| Rains 216     | Lord of the Rings: Concatenated & Extended Edition | Burrito     |
| Rains 218     | Star Wars: The Boba Fett Prequel                   | Ramen       |
| Rains 218     | Star Wars: The Boba Fett Prequel                   | Plain Pasta |

For a given movie theatre...

Given a set of movies and snacks...

| Movie_theat | ter film_name                                      | snack       |
|-------------|----------------------------------------------------|-------------|
| Rains 216   | Star Trek: The Wrath of Kahn                       | Kale Chips  |
| Rains 216   | Star Trek: The Wrath of Kahn                       | Burrito     |
| Rains 216   | Lord of the Rings: Concatenated & Extended Edition | Kale Chips  |
| Rains 216   | Lord of the Rings: Concatenated & Extended Edition | Burrito     |
| Rains 218   | Star Wars: The Boba Fett Prequel                   | Ramen       |
| Rains 218   | Star Wars: The Boba Fett Prequel                   | Plain Pasta |

For a given movie theatre...

Given a set of movies and snacks...

Any movie / snack combination is possible!

|                | Movie_theater (A) | film_name (B)                                      | Snack (C)   |
|----------------|-------------------|----------------------------------------------------|-------------|
| $t_1$          | Rains 216         | Star Trek: The Wrath of Kahn                       | Kale Chips  |
|                |                   |                                                    |             |
|                | Rains 216         | Star Trek: The Wrath of Kahn                       | Burrito     |
|                | Rains 216         | Lord of the Rings: Concatenated & Extended Edition | Kale Chips  |
| t <sub>2</sub> | Rains 216         | Lord of the Rings: Concatenated & Extended Edition | Burrito     |
|                | Rains 218         | Star Wars: The Boba Fett Prequel                   | Ramen       |
|                | Rains 218         | Star Wars: The Boba Fett Prequel                   | Plain Pasta |

More formally, we write  $\{A\} \rightarrow \{B\}$  if for any tuples  $t_1, t_2$  s.t.  $t_1[A] = t_2[A]$ 

|                | Movie_theater (A) | film_name (B)                                      | Snack (C)   |
|----------------|-------------------|----------------------------------------------------|-------------|
| $t_1$          | Rains 216         | Star Trek: The Wrath of Kahn                       | Kale Chips  |
| t <sub>3</sub> | Rains 216         | Star Trek: The Wrath of Kahn                       | Burrito     |
|                | Rains 216         | Lord of the Rings: Concatenated & Extended Edition | Kale Chips  |
| t <sub>2</sub> | Rains 216         | Lord of the Rings: Concatenated & Extended Edition | Burrito     |
|                | Rains 218         | Star Wars: The Boba Fett Prequel                   | Ramen       |
|                | Rains 218         | Star Wars: The Boba Fett Prequel                   | Plain Pasta |

More formally, we write  $\{A\} \rightarrow \{B\}$  if for any tuples  $t_1, t_2$  s.t.  $t_1[A] = t_2[A]$  there is a tuple  $t_3$  s.t.
•  $t_3[A] = t_1[A]$ 

|                | Movie_theater (A) | film_name (B)                                      | Snack (C)   |
|----------------|-------------------|----------------------------------------------------|-------------|
| $t_1$          | Rains 216         | Star Trek: The Wrath of Kahn                       | Kale Chips  |
|                |                   |                                                    |             |
| t₃             | Rains 216         | Star Trek: The Wrath of Kahn                       | Burrito     |
| 3              |                   |                                                    |             |
|                | Rains 216         | Lord of the Rings: Concatenated & Extended Edition | Kale Chips  |
| t <sub>2</sub> | Rains 216         | Lord of the Rings: Concatenated & Extended Edition | Burrito     |
|                | Rains 218         | Star Wars: The Boba Fett Prequel                   | Ramen       |
|                | Rains 218         | Star Wars: The Boba Fett Prequel                   | Plain Pasta |

More formally, we write  $\{A\} \rightarrow \{B\}$  if for any tuples  $t_1, t_2$  s.t.  $t_1[A] = t_2[A]$  there is a tuple  $t_3$  s.t.

- $t_3[A] = t_1[A]$
- $t_3[B] = t_1[B]$

|                | Movie_theater (A) | film_name (B)                                      | Snack (C)   |
|----------------|-------------------|----------------------------------------------------|-------------|
| $t_1$          | Rains 216         | Star Trek: The Wrath of Kahn                       | Kale Chips  |
|                |                   |                                                    |             |
| t₃             | Rains 216         | Star Trek: The Wrath of Kahn                       | Burrito     |
| - <b>5</b>     |                   |                                                    |             |
|                | Rains 216         | Lord of the Rings: Concatenated & Extended Edition | Kale Chips  |
| t <sub>2</sub> | Rains 216         | Lord of the Rings: Concatenated & Extended Edition | Burrito     |
|                | Rains 218         | Star Wars: The Boba Fett Prequel                   | Ramen       |
|                | Rains 218         | Star Wars: The Boba Fett Prequel                   | Plain Pasta |

More formally, we write  $\{A\} \rightarrow \{B\}$  if for any tuples  $t_1, t_2$  s.t.  $t_1[A] = t_2[A]$  there is a tuple  $t_3$  s.t.

- $t_3[A] = t_1[A]$
- $t_3[B] = t_1[B]$
- and  $t_3[R\backslash B] = t_2[R\backslash B]$

Where R\B is "R minus B" i.e. the attributes of R not in B



Note this also works!

Remember, an MVD holds over a relation or an instance, so defn. must hold for every applicable pair...



This expresses a sort of dependency (= data redundancy) that we can't express with FDs

\*Actually, it expresses conditional independence (between film and snack given movie theatre)!

# Activity-12-2.ipynb

#### Summary

- Constraints allow one to reason about **redundancy** in the data
- Normal forms describe how to remove this redundancy by decomposing relations
  - Elegant—by representing data appropriately certain errors are essentially impossible
  - For FDs, BCNF is the normal form.
- A tradeoff for insert performance: 3NF