Analiza modela

```
In []: import pandas as pd
import seaborn as sns
from matplotlib import pyplot as plt
```

Prvo čitamo tablicu s podacima o rezultatima naših modelima.

```
In [ ]: df = pd.read_csv('scores.csv')
    df.head()
```

Out[]:		train_sample_size	N	n_components	rho	linreg	pcr	pls
	0	5000.0	500.0	5.0	0.01	0.999997	0.017560	0.999945
	1	5000.0	500.0	50.0	0.01	0.999997	0.103794	0.999997
	2	5000.0	500.0	125.0	0.01	0.999997	0.264234	0.999997
	3	5000.0	500.0	250.0	0.01	0.999997	0.544558	0.999997
	4	2500.0	500.0	5.0	0.01	0.999996	0.019106	0.999126

Za potrebe crtanja grafova pivotirat ćemo tablicu tako da su imena modela vrijednosti stupca *model*, a njihove R2 metrike sve u istom stupcu.

```
In [ ]: df = pd.read_csv('scores.csv')
    df = df.melt(['train_sample_size', 'N', 'n_components', 'rho'], var_name='mc
    df.head()
```

Out[]:		train_sample_size	N	n_components	rho	model	R2
	0	5000.0	500.0	5.0	0.01	linreg	0.999997
	1	5000.0	500.0	50.0	0.01	linreg	0.999997
	2	5000.0	500.0	125.0	0.01	linreg	0.999997
	3	5000.0	500.0	250.0	0.01	linreg	0.999997
	4	2500.0	500.0	5.0	0.01	linreg	0.999996

Potom dodajemo informacije o omjeru dimenzije N naprema veličini training set-a i broju komponenti koje su korištenje u PCR-u i PLS-u u stupce "train_sample_size_N_ratio" i "component_N_ratio" redom.

```
In [ ]: df['train_sample_size_N_ratio'] = df.apply(lambda x: x.train_sample_size / x
    df['component_N_ratio'] = df.apply(lambda x: x.n_components / x.N, axis=1)
    df.head()
```

Out[]:		train_sample_size	N	n_components	rho	model	R2	train_sample_size_N_rat
	0	5000.0	500.0	5.0	0.01	linreg	0.999997	10
	1	5000.0	500.0	50.0	0.01	linreg	0.999997	10
	2	5000.0	500.0	125.0	0.01	linreg	0.999997	10
	3	5000.0	500.0	250.0	0.01	linreg	0.999997	10
	4	2500.0	500.0	5.0	0.01	linreg	0.999996	5

Sad cemo grafički prikazati kako R2 ovisi o gore uvedenim omjerima. Nacrtat cemo po jedan graf za svaku vrijednost kovarijance ρ među kovarijatama.

```
In [ ]: plt.figure(figsize=(20, 20))
         plt_y = 2
         plt x = df.rho.nunique() // plt y + 1
          for idx, rho in enumerate(df.rho.unique()):
              df rho = df[df.rho == rho]
              plt.subplot(plt_x, plt_y, idx+1)
              sns.lineplot(x='component_N_ratio', y='R2', hue='model', data=df_rho)
              plt.title(f"rho = {rho}")
              plt.ylim(-0.1, 1.1)
              plt.xlabel('num components / N')
                             rho = 0.01
                                                                            rho = 0.1
          0.8
         22
                                                        Ş
          0.2
                                                         0.2
                                                         0.0
                    0.1
                                                                   0.1
          1.0
                                                         1.0
          0.6
                                                        Ş
          0.2
                                                         0.2
                                                                          0.2 0.3
num_components / N
rho = 0.99
          0.8
                                                         0.8
In []: plt.figure(figsize=(20, 20))
         plt_x = df.rho.nunique() // plt_y + 1
          for idx, rho in enumerate(df.rho.unique()):
              df rho = df[df.rho == rho]
```

```
plt.subplot(plt_x, plt_y, idx+1)
sns.lineplot(x='train_sample_size_N_ratio', y='R2', hue='model', data=df
plt.title(f"rho = {rho}")
plt.ylim(-0.1, 1.1)
plt.xlabel('train_sample_size / N')
```


Među gornjim grafovima je zanimljivo uočiti kako je u slučaju najviše korelacije $\rho=0.99$ linearna regresija najlošija među metodama ukoliko imamo malen uzorak.

Sljedeći graf prikazuje koliko metode u prosjeku ovise o koeficijentu korelacije ρ . Ovdje se jasno vidi da PCR više ovisi o veličini korelacije nego PLS. Također je zanimljivo da kod najveće razine korelacije $\rho=0.99$ PLS u prosjeku čak mrvu bolje predviđa od linearne regresije.

```
In []: sns.lineplot(x='rho', y='R2', data = df, hue='model')
Out[]: <AxesSubplot: xlabel='rho', ylabel='R2'>
```

