Crib Sheets for ENGR 371

- The number of permutations of n distinct objects taken r objects at a time: $P_r^n = \frac{n!}{(n-r)!}$
- The number of permutations of n objects of which n_1 are of one kind, n_2 are of second kind, ... n_k are of k^{th} kind: $\frac{n!}{n_1! n_2! \cdots n_k!}$, where $n_1 + n_2 + \cdots + n_k = n$.
- The number of combinations of n distinct objects taken r objects at a time: $\binom{n}{r} = \frac{n!}{r!(n-r)!}$
- Multiplication rule: an operation has k steps, and the number of ways for completing step k is n_k , the total number of way for completing the operation is $n_1 \times n_2 \times \cdots \times n_k$
- Probability of a union: $P(A \cup B) = P(A) + P(B) P(A \cap B)$, where A and B are two events
- Conditional probability & Bayes theorem: $P(A|B) = \frac{P(A \cap B)}{P(B)} = \frac{P(B|A)P(A)}{P(B)}$, $P(B) \neq 0$.
- Total probability: the sample space S constitutes a partitions of B₁, B₂ and B₃, the probability of any event A of S, where A is overlapped with parts of B₁, B₂ and B₃,

$$P(A) = P(A \cap B_1) + P(A \cap B_2) + P(A \cap B_3)$$

= $P(A|B_1)P(B_1) + P(A|B_2)P(B_2) + P(A|B_3)P(B_3)$

- Bayes theorem: the sample space S constitutes a partitions of B₁, B₂ and B₃, then for any event A of S, $P(B_k|A) = \frac{P(A|B_k)P(B_k)}{P(A)}$, k=1, 2, or 3
- Independence: P(A|B) = P(A), $P(A \cap B) = P(A)P(B)$
- Cumulative probability distribution: $F(x) = P(X \le x)$, where X is a random variable.
- Mean of a random variable X: $\mu = E(X)$, $E(X) = \sum_{all \ x} xf(x)$ for a discrete random variable, $E(X) = \int_{all} xf(x)dx$ for a continuous random variable, where f(x) is probability density function
- Mean of a random function g(X): $E[g(X)] = \sum_{all \ x} g(x) f(x)$ for a discrete random variable X, $E[g(X)] = \int_{all} g(x) f(x) dx$ for a continuous random variable X.
- Variance of a random variable X: $\sigma^2 = E[(X \mu)^2]$
- Binominal distribution: probability function: $\binom{n}{x} p^x (1-p)^{n-x}$, $\mu = np$ and $\sigma^2 = np(1-p)$, x is the number of successes in n trials

- Negative binominal distribution: probability function: $\binom{x-1}{r-1}p^r(1-p)^{x-r}$, $\mu = r/p$ and $\sigma^2 = r(1-p)/p^2$, x is the number of trials for r successes
- Hypergeometric distribution: probability function $\frac{\binom{K}{x}\binom{N-K}{n-x}}{\binom{N}{n}}$, where N objects contain K objects as success, a random sample of n objects selected from N objects, x is the number of successes $\mu = np$ and $\sigma^2 = np(1-p)\left(\frac{N-n}{N-1}\right)$
- Poisson distribution: $\frac{e^{-\lambda}\lambda^x}{x!}$, $\mu = \lambda$ and $\sigma^2 = \lambda$, x is the number of events
- Normal or Gauss distribution: $\frac{1}{\sigma\sqrt{2\pi}}exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right)$, and standard Normal distribution: $\frac{1}{\sqrt{2\pi}}exp\left(-\frac{x^2}{2}\right)$
- X is a binominal random variable with parameter n and p, the probability of X can be approximated by standard Normal distribution with using $Z = \frac{X np}{\sqrt{np(1-p)}}$
- X is a Poisson random variable with parameter λ , the probability of X can be approximated by standard Normal distribution using $Z = \frac{X \lambda}{\sqrt{\lambda}}$
- Exponential distribution: $f(x) = \begin{cases} \frac{1}{\beta} exp(-\frac{x}{\beta}) & x > 0 \\ 0 & elesewhere \end{cases}$, $\beta > 0$, $\mu = \beta$ and $\sigma^2 = \beta^2$
- Covariance between random variables X and Y: $\sigma_{XY} = E[(X \mu_X)(Y \mu_Y)] = E(XY) \mu_X \mu_Y$
- Correlation between random variables X and Y: $\rho_{XY} = \frac{\sigma_{XY}}{\sigma_X \sigma_Y}$
- Marginal probability function of X and Y: $f_x(X) = \int_{all\ y} f(x,y)dy$ and $f_y(Y) = \int_{all\ x} f(x,y)dx$ for continuous random variables X and Y;
- Marginal probability function of X and Y: $f_x(X) = \sum_{all\ y} f(x, y) \text{ and } f_y(Y) = \sum_{all\ x} f(x, y) \text{ for discrete random variables X and Y}$
- Conditional probability: $f(Y|X) = \frac{f(x,y)}{f_x(x)}$ with $\int f(Y|X)dy = 1$ or $\sum_{all\ Y} f(Y|X) = 1$

- Conditional mean: $E(Y|X) = \int Yf(Y|X)dY$ for continuous random variables
- Independence: f(x, y) = f(x) f(y), or f(Y|X) = f(Y), f(x) and f(y) are marginal probability functions.
- Mean of a function h(x, y), x and y are two random variables, $E[h(x, y)] = \iint h(x, y) f(x, y) dxdy$ or $E[h(x, y)] = \sum_{x} \sum_{y} h(x, y) f(x, y)$
- Multinomial distribution: n trials in total, the success probability of class $1, 2 \dots k$ is $p_1, p_2, p_3 \dots p_k$, the probability function: $\frac{n!}{x_1! x_2! \cdots x_k!} p_1^{x_1} p_2^{x_2} \cdots p_k^{x_k}$, where $x_1, x_2 \dots$ and x_k are the number of trials corresponding to class $1, 2 \dots$ and k.
- Linear combination: Z=aX+bY+C, the mean of Z: E(Z) = aE(X) + bE(Y) + C, the variance of Z: $\sigma_Z^2 = a^2 \sigma_X^2 + b^2 \sigma_Y^2 + 2ab\sigma_{XY}$.
- Sample mean for sample size of n: $\overline{X} = \frac{\sum_{i=1}^{n} X_i}{n}$ 标准mean
- Sample variance: $S^2 = \frac{\sum_{i=0}^{n} (X_i \overline{X})^2}{n-1}$, for n random samples 标准variance
- Test statistic: $Z = \frac{\bar{X} \mu}{\frac{\sigma}{\sqrt{n}}}$ has Normal distribution, for *n* random samples, where μ and σ are the
 - population mean and standard deviation, respectively.
- Test statistic: $T = \frac{\overline{X} \mu}{\frac{S}{\sqrt{n}}}$ has t-distribution with n-1 degrees of freedom,
- Two independent populations with means μ_1 and μ_2 and variances σ_1^2 and σ_2^2 ,

Test statistic $Z = \frac{\overline{X}_1 - \overline{X}_2 - (\mu_1 - \mu_2)}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}}$ has standard Normal distribution, where \overline{X}_1 are \overline{X}_2 are two

- independent sample means from sample size of n_1 and n_2
- An unbiased point estimator $\hat{\Theta}$ for a parameter θ must satisfy $E(\hat{\Theta}) = \theta$.
- If \bar{X} is the sample mean with sample size n from a population with known variance σ^2 , a $(1-\alpha)100\%$ confidence interval of the population mean: $\bar{X} Z_{\alpha/2} \frac{\sigma}{\sqrt{n}} < \mu < \bar{X} + Z_{\alpha/2} \frac{\sigma}{\sqrt{n}}$
 - Note: $(1-\alpha)100\%$ confidence upper bound: $\mu < \overline{X} + Z_{\alpha} \frac{\sigma}{\sqrt{n}}$

$$(1-\alpha)100\%$$
 confidence lower bound: $\mu > \overline{X} - Z_{\alpha} \frac{\sigma}{\sqrt{n}}$

- If \bar{X} is the sample mean with sample size n from a population with unknown variance, a $(1-\alpha)100\%$ confidence interval of the population mean: $\bar{X} - T_{\alpha/2,n-1} \frac{S}{\sqrt{n}} < \mu < \bar{X} + T_{\alpha/2,n-1} \frac{S}{\sqrt{n}}$
 - Note: $(1-\alpha)100\%$ confidence upper bound: $\mu < \overline{X} + T_{\alpha,n-1} \frac{S}{\sqrt{I_n}}$

$$(1-\alpha)100\%$$
 confidence lower bound: $\mu > \overline{X} - T_{\alpha,n-1} \frac{S}{\sqrt{n}}$

If S^2 is the sample variance, a $(1-\alpha)100\%$ confidence interval for the population σ^2 :

$$\frac{(n-1)S^2}{\chi^2_{\frac{\alpha}{2},n-1}} \le \sigma^2 \le \frac{(n-1)S^2}{\chi^2_{1-\frac{\alpha}{2},n-1}}$$
有s2用这个

Note lower bound: $\frac{(n-1)S^2}{\chi^2_{\alpha,n-1}} \le \sigma^2$

upper bound:
$$\sigma^2 \le \frac{(n-1)S^2}{\chi^2_{1-\alpha,n-1}}$$

A $(1-\alpha)100\%$ prediction interval on a single future observation from a Normal distribution:

$$\overline{X} - T_{\alpha/2, n-1} S \sqrt{1 + \frac{1}{n}} < \overline{X}_{n+1} < \overline{X} + T_{\alpha/2, n-1} S \sqrt{1 + \frac{1}{n}}$$

- Probability of type II error: $\beta = \Phi \left[Z_{\frac{\alpha}{2}} \frac{\delta \sqrt{n}}{\sigma} \right] \Phi \left[-Z_{\frac{\alpha}{2}} \frac{\delta \sqrt{n}}{\sigma} \right]$ for two sided hypothesis, $\delta = \mu \mu_0$.
- Probability of type II error: $\beta = \Phi \left| Z_{\frac{\alpha}{2}} \frac{\delta \sqrt{n}}{\sigma} \right|$ for upper sided hypothesis
- Probability of type II error: $\beta = 1 \Phi \left| -Z_{\underline{\alpha}} \frac{\delta \sqrt{n}}{\sigma} \right|$ for lower sided hypothesis
- If the population variance is unknown, calculate β with replacement Z by T with T distribution for the mean hypothesis
- Sample size for a two-sided test: $n \approx \frac{\left(Z_{\frac{\alpha}{2}} + Z_{\beta}\right)^{2} \sigma^{2}}{\sigma^{2}}$
- Hypothesis test for a population variance: test statistic: $\chi^2 = \frac{(n-1)S^2}{\sigma^2}$

$$\Phi(z) = P(Z \le z) = \int_{-\infty}^{z} \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}u^{2}} du$$

$$\Phi(z)$$

Table Cumulative Standard Normal Distribution

Table	Cumulative Standard Normal Distribution									
z	-0.09	-0.08	-0.07	-0.06	-0.05	-0.04	-0.03	-0.02	-0.01	-0.00
-3.9	0.000033	0.000034	0.000036	0.000037	0.000039	0.000041	0.000042	0.000044	0.000046	0.000048
-3.8	0.000050	0.000052	0.000054	0.000057	0.000059	0.000062	0.000064	0.000067	0.000069	0.000072
-3.7	0.000075	0.000078	0.000082	0.000085	0.000088	0.000092	0.000096	0.000100	0.000104	0.000108
-3.6	0.000112	0.000117	0.000121	0.000126	0.000131	0.000136	0.000142	0.000147	0.000153	0.000159
-3.5	0.000165	0.000172	0.000179	0.000185	0.000193	0.000200	0.000208	0.000216	0.000224	0.000233
-3.4	0.000242	0.000251	0.000260	0.000270	0.000280	0.000291	0.000302	0.000313	0.000325	0.000337
-3.3	0.000350	0.000362	0.000376	0.000390	0.000404	0.000419	0.000434	0.000450	0.000467	0.000483
-3.2	0.000501	0.000519	0.000538	0.000557	0.000577	0.000598	0.000619	0.000641	0.000664	0.000687
-3.1	0.000711	0.000736	0.000762	0.000789	0.000816	0.000845	0.000874	0.000904	0.000935	0.000968
-3.0	0.001001	0.001035	0.001070	0.001107	0.001144	0.001183	0.001223	0.001264	0.001306	0.001350
-2.9	0.001395	0.001441	0.001489	0.001538	0.001589	0.001641	0.001695	0.001750	0.001807	0.001866
-2.8	0.001926	0.001988	0.002052	0.002118	0.002186	0.002256	0.002327	0.002401	0.002477	0.002555
-2.7	0.002635	0.002718	0.002803	0.002890	0.002980	0.003072	0.003167	0.003264	0.003364	0.003467
-2.6	0.003573	0.003681	0.003793	0.003907	0.004025	0.004145	0.004269	0.004396	0.004527	0.004661
-2.5	0.004799	0.004940	0.005085	0.005234	0.005386	0.005543	0.005703	0.005868	0.006037	0.006210
-2.4	0.006387	0.006569	0.006756	0.006947	0.007143	0.007344	0.007549	0.007760	0.007976	0.008198
-2.3	0.008424	0.008656	0.008894	0.009137	0.009387	0.009642	0.009903	0.010170	0.010444	0.010724
-2.2	0.011011	0.011304	0.011604	0.011911	0.012224	0.012545	0.012874	0.013209	0.013553	0.013903
-2.1	0.014262	0.014629	0.015003	0.015386	0.015778	0.016177	0.016586	0.017003	0.017429	0.017864
-2.0	0.018309	0.018763	0.019226	0.019699	0.020182	0.020675	0.021178	0.021692	0.022216	0.022750
-1.9	0.023295	0.023852	0.024419	0.024998	0.025588	0.026190	0.026803	0.027429	0.028067	0.028717
-1.8	0.029379	0.030054	0.030742	0.031443	0.032157	0.032884	0.033625	0.034379	0.035148	0.035930
-1.7	0.036727	0.037538	0.038364	0.039204	0.040059	0.040929	0.041815	0.042716	0.043633	0.044565
-1.6	0.045514	0.046479	0.047460	0.048457	0.049471	0.050503	0.051551	0.052616	0.053699	0.054799
-1.5	0.055917	0.057053	0.058208	0.059380	0.060571	0.061780	0.063008	0.064256	0.065522	0.066807
-1.4	0.068112	0.069437	0.070781	0.072145	0.073529	0.074934	0.076359	0.077804	0.079270	0.080757
-1.3	0.082264	0.083793	0.085343	0.086915	0.088508	0.090123	0.091759	0.093418	0.095098	0.096801
-1.2	0.098525	0.100273	0.102042	0.103835	0.105650	0.107488	0.109349	0.111233	0.113140	0.115070
-1.1	0.117023	0.119000	0.121001	0.123024	0.125072	0.127143	0.129238	0.131357	0.133500	0.135666
-1.0	0.137857	0.140071	0.142310	0.144572	0.146859	0.149170	0.151505	0.153864	0.156248	0.158655
-0.9	0.161087	0.163543	0.166023	0.168528	0.171056	0.173609	0.176185	0.178786	0.181411	0.184060
-0.8	0.186733	0.189430	0.192150	0.194894	0.197662	0.200454	0.203269	0.206108	0.208970	0.211855
-0.7	0.214764	0.217695	0.220650	0.223627	0.226627	0.229650	0.232695	0.235762	0.238852	0.241964
-0.6	0.245097	0.248252	0.251429	0.254627	0.257846	0.261086	0.264347	0.267629	0.270931	0.274253
-0.5	0.277595	0.280957	0.284339	0.287740	0.291160	0.294599	0.298056	0.301532	0.305026	0.308538
-0.4	0.312067	0.315614	0.319178	0.322758	0.326355	0.329969	0.333598	0.337243	0.340903	0.344578
-0.3	0.348268	0.351973	0.355691	0.359424	0.363169	0.366928	0.370700	0.374484	0.378281	0.382089
-0.2	0.385908	0.389739	0.393580	0.397432	0.401294	0.405165	0.409046	0.412936	0.416834	0.420740
-0.1	0.424655	0.428576	0.432505	0.436441	0.440382	0.444330	0.448283	0.452242	0.456205	0.460172
0.0	0.464144	0.468119	0.472097	0.476078	0.480061	0.484047	0.488033	0.492022	0.496011	0.500000

$$\Phi(z) = P(Z \le z) = \int_{-\infty}^{z} \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}u^{2}} du$$

Table Cumulative Standard Normal Distribution (continued)

Table	Cumula	Cumulative Standard Normal Distribution (communal)									
z	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09	
0.0	0.500000	0.503989	0.507978	0.511967	0.515953	0.519939	0.532922	0.527903	0.531881	0.535856	
0.1	0.539828	0.543795	0.547758	0.551717	0.555760	0.559618	0.563559	0.567495	0.571424	0.575345	
0.2	0.579260	0.583166	0.587064	0.590954	0.594835	0.598706	0.602568	0.606420	0.610261	0.614092	
0.3	0.617911	0.621719	0.625516	0.629300	0.633072	0.636831	0.640576	0.644309	0.648027	0.651732	
0.4	0.655422	0.659097	0.662757	0.666402	0.670031	0.673645	0.677242	0.680822	0.684386	0.687933	
0.5	0.691462	0.694974	0.698468	0.701944	0.705401	0.708840	0.712260	0.715661	0.719043	0.722405	
0.6	0.725747	0.729069	0.732371	0.735653	0.738914	0.742154	0.745373	0.748571	0.751748	0.754903	
0.7	0.758036	0.761148	0.764238	0.767305	0.770350	0.773373	0.776373	0.779350	0.782305	0.785236	
0.8	0.788145	0.791030	0.793892	0.796731	0.799546	0.802338	0.805106	0.807850	0.810570	0.813267	
0.9	0.815940	0.818589	0.821214	0.823815	0.826391	0.828944	0.831472	0.833977	0.836457	0.838913	
1.0	0.841345	0.843752	0.846136	0.848495	0.850830	0.853141	0.855428	0.857690	0.859929	0.862143	
1.1	0.864334	0.866500	0.868643	0.870762	0.872857	0.874928	0.876976	0.878999	0.881000	0.882977	
1.2	0.884930	0.886860	0.888767	0.890651	0.892512	0.894350	0.896165	0.897958	0.899727	0.901475	
1.3	0.903199	0.904902	0.906582	0.908241	0.909877	0.911492	0.913085	0.914657	0.916207	0.917736	
1.4	0.919243	0.920730	0.922196	0.923641	0.925066	0.926471	0.927855	0.929219	0.930563	0.931888	
1.5	0.933193	0.934478	0.935744	0.936992	0.938220	0.939429	0.940620	0.941792	0.942947	0.944083	
1.6	0.945201	0.946301	0.947384	0.948449	0.949497	0.950529	0.951543	0.952540	0.953521	0.954486	
1.7	0.955435	0.956367	0.957284	0.958185	0.959071	0.959941	0.960796	0.961636	0.962462	0.963273	
1.8	0.964070	0.964852	0.965621	0.966375	0.967116	0.967843	0.968557	0.969258	0.969946	0.970621	
1.9	0.971283	0.971933	0.972571	0.973197	0.973810	0.974412	0.975002	0.975581	0.976148	0.976705	
2.0	0.977250	0.977784	0.978308	0.978822	0.979325	0.979818	0.980301	0.980774	0.981237	0.981691	
2.1	0.982136	0.982571	0.982997	0.983414	0.983823	0.984222	0.984614	0.984997	0.985371	0.985738	
2.2	0.986097	0.986447	0.986791	0.987126	0.987455	0.987776	0.988089	0.988396	0.988696	0.988989	
2.3	0.989276	0.989556	0.989830	0.990097	0.990358	0.990613	0.990863	0.991106	0.991344	0.991576	
2.4	0.991802	0.992024	0.992240	0.992451	0.992656	0.992857	0.993053	0.993244	0.993431	0.993613	
2.5	0.993790	0.993963	0.994132	0.994297	0.994457	0.994614	0.994766	0.994915	0.995060	0.995201	
2.6	0.995339	0.995473	0.995604	0.995731	0.995855	0.995975	0.996093	0.996207	0.996319	0.996427	
2.7	0.996533	0.996636	0.996736	0.996833	0.996928	0.997020	0.997110	0.997197	0.997282	0.997365	
2.8	0.997445	0.997523	0.997599	0.997673	0.997744	0.997814	0.997882	0.997948	0.998012	0.998074	
2.9	0.998134	0.998193	0.998250	0.998305	0.998359	0.998411	0.998462	0.998511	0.998559	0.998605	
3.0	0.998650	0.998694	0.998736	0.998777	0.998817	0.998856	0.998893	0.998930	0.998965	0.998999	
3.1	0.999032	0.999065	0.999096	0.999126	0.999155	0.999184	0.999211	0.999238	0.999264	0.999289	
3.2	0.999313	0.999336	0.999359	0.999381	0.999402	0.999423	0.999443	0.999462	0.999481	0.999499	
3.3	0.999517	0.999533	0.999550	0.999566	0.999581	0.999596	0.999610	0.999624	0.999638	0.999650	
3.4	0.999663	0.999675	0.999687	0.999698	0.999709	0.999720	0.999730	0.999740	0.999749	0.999758	
3.5	0.999767	0.999776	0.999784	0.999792	0.999800	0.999807	0.999815	0.999821	0.999828	0.999835	
3.6	0.999841	0.999847	0.999853	0.999858	0.999864	0.999869	0.999874	0.999879	0.999883	0.999888	
3.7	0.999892	0.999896	0.999900	0.999904	0.999908	0.999912	0.999915	0.999918	0.999922	0.999925	
3.8	0.999928	0.999931	0.999933	0.999936	0.999938	0.999941	0.999943	0.999946	0.999948	0.999950	
3.9	0.999952	0.999954	0.999956	0.999958	0.999959	0.999961	0.999963	0.999964	0.999966	0.999967	

Table Percentage Points $\chi^2_{\alpha,\nu}$ of the Chi-Squared Distribution

		/(α,ν									
να	.995	.990	.975	.950	.900	.500	.100	.050	.025	.010	.005
1	.00+	.00+	.00+	.00+	.02	.45	2.71	3.84	5.02	6.63	7.88
2	.01	.02	.05	.10	.21	1.39	4.61	5.99	7.38	9.21	10.60
3	.07	.11	.22	.35	.58	2.37	6.25	7.81	9.35	11.34	12.84
4	.21	.30	.48	.71	1.06	3.36	7.78	9.49	11.14	13.28	14.86
5	.41	.55	.83	1.15	1.61	4.35	9.24	11.07	12.83	15.09	16.75
6	.68	.87	1.24	1.64	2.20	5.35	10.65	12.59	14.45	16.81	18.55
7	.99	1.24	1.69	2.17	2.83	6.35	12.02	14.07	16.01	18.48	20.28
8	1.34	1.65	2.18	2.73	3.49	7.34	13.36	15.51	17.53	20.09	21.96
9	1.73	2.09	2.70	3.33	4.17	8.34	14.68	16.92	19.02	21.67	23.59
10	2.16	2.56	3.25	3.94	4.87	9.34	15.99	18.31	20.48	23.21	25.19
11	2.60	3.05	3.82	4.57	5.58	10.34	17.28	19.68	21.92	24.72	26.76
12	3.07	3.57	4.40	5.23	6.30	11.34	18.55	21.03	23.34	26.22	28.30
13	3.57	4.11	5.01	5.89	7.04	12.34	19.81	22.36	24.74	27.69	29.82
14	4.07	4.66	5.63	6.57	7.79	13.34	21.06	23.68	26.12	29.14	31.32
15	4.60	5.23	6.27	7.26	8.55	14.34	22.31	25.00	27.49	30.58	32.80
16	5.14	5.81	6.91	7.96	9.31	15.34	23.54	26.30	28.85	32.00	34.27
17	5.70	6.41	7.56	8.67	10.09	16.34	24.77	27.59	30.19	33.41	35.72
18	6.26	7.01	8.23	9.39	10.87	17.34	25.99	28.87	31.53	34.81	37.16
19	6.84	7.63	8.91	10.12	11.65	18.34	27.20	30.14	32.85	36.19	38.58
20	7.43	8.26	9.59	10.85	12.44	19.34	28.41	31.41	34.17	37.57	40.00
21	8.03	8.90	10.28	11.59	13.24	20.34	29.62	32.67	35.48	38.93	41.40
22	8.64	9.54	10.98	12.34	14.04	21.34	30.81	33.92	36.78	40.29	42.80
23	9.26	10.20	11.69	13.09	14.85	22.34	32.01	35.17	38.08	41.64	44.18
24	9.89	10.86	12.40	13.85	15.66	23.34	33.20	36.42	39.36	42.98	45.56
25	10.52	11.52	13.12	14.61	16.47	24.34	34.28	37.65	40.65	44.31	46.93
26	11.16	12.20	13.84	15.38	17.29	25.34	35.56	38.89	41.92	45.64	48.29
27	11.81	12.88	14.57	16.15	18.11	26.34	36.74	40.11	43.19	46.96	49.65
28	12.46	13.57	15.31	16.93	18.94	27.34	37.92	41.34	44.46	48.28	50.99
29	13.12	14.26	16.05	17.71	19.77	28.34	39.09	42.56	45.72	49.59	52.34
30	13.79	14.95	16.79	18.49	20.60	29.34	40.26	43.77	46.98	50.89	53.67
40	20.71	22.16	24.43	26.51	29.05	39.34	51.81	55.76	59.34	63.69	66.77
50	27.99	29.71	32.36	34.76	37.69	49.33	63.17	67.50	71.42	76.15	79.49
60	35.53	37.48	40.48	43.19	46.46	59.33	74.40	79.08	83.30	88.38	91.95
70	43.28	45.44	48.76	51.74	55.33	69.33	85.53	90.53	95.02	100.42	104.22
80	51.17	53.54	57.15	60.39	64.28	79.33	96.58	101.88	106.63	112.33	116.32
90	59.20	61.75	65.65	69.13	73.29	89.33	107.57	113.14	118.14	124.12	128.30
100	67.33	70.06	74.22	77.93	82.36	99.33	118.50	124.34	129.56	135.81	140.17

 $[\]nu$ = degrees of freedom.

Table Percentage Points $t_{\alpha,\nu}$ of the t-Distribution

να	.40	.25	.10	.05	.025	.01	.005	.0025	.001	.0005
1	.325	1.000	3.078	6.314	12.706	31.821	63.657	127.32	318.31	636.62
2	.289	.816	1.886	2.920	4.303	6.965	9.925	14.089	23.326	31.598
3	.277	.765	1.638	2.353	3.182	4.541	5.841	7.453	10.213	12.924
4	.271	.741	1.533	2.132	2.776	3.747	4.604	5.598	7.173	8.610
5	.267	.727	1.476	2.015	2.571	3.365	4.032	4.773	5.893	6.869
6	.265	.718	1.440	1.943	2.447	3.143	3.707	4.317	5.208	5.959
7	.263	.711	1.415	1.895	2.365	2.998	3.499	4.029	4.785	5.408
8	.262	.706	1.397	1.860	2.306	2.896	3.355	3.833	4.501	5.041
9	.261	.703	1.383	1.833	2.262	2.821	3.250	3.690	4.297	4.781
10	.260	.700	1.372	1.812	2.228	2.764	3.169	3.581	4.144	4.587
11	.260	.697	1.363	1.796	2.201	2.718	3.106	3.497	4.025	4.437
12	.259	.695	1.356	1.782	2.179	2.681	3.055	3.428	3.930	4.318
13	.259	.694	1.350	1.771	2.160	2.650	3.012	3.372	3.852	4.221
14	.258	.692	1.345	1.761	2.145	2.624	2.977	3.326	3.787	4.140
15	.258	.691	1.341	1.753	2.131	2.602	2.947	3.286	3.733	4.073
16	.258	.690	1.337	1.746	2.120	2.583	2.921	3.252	3.686	4.015
17	.257	.689	1.333	1.740	2.110	2.567	2.898	3.222	3.646	3.965
18	.257	.688	1.330	1.734	2.101	2.552	2.878	3.197	3.610	3.922
19	.257	.688	1.328	1.729	2.093	2.539	2.861	3.174	3.579	3.883
20	.257	.687	1.325	1.725	2.086	2.528	2.845	3.153	3.552	3.850
21	.257	.686	1.323	1.721	2.080	2.518	2.831	3.135	3.527	3.819
22	.256	.686	1.321	1.717	2.074	2.508	2.819	3.119	3.505	3.792
23	.256	.685	1.319	1.714	2.069	2.500	2.807	3.104	3.485	3.767
24	.256	.685	1.318	1.711	2.064	2.492	2.797	3.091	3.467	3.745
25	.256	.684	1.316	1.708	2.060	2.485	2.787	3.078	3.450	3.725
26	.256	.684	1.315	1.706	2.056	2.479	2.779	3.067	3.435	3.707
27	.256	.684	1.314	1.703	2.052	2.473	2.771	3.057	3.421	3.690
28	.256	.683	1.313	1.701	2.048	2.467	2.763	3.047	3.408	3.674
29	.256	.683	1.311	1.699	2.045	2.462	2.756	3.038	3.396	3.659
30	.256	.683	1.310	1.697	2.042	2.457	2.750	3.030	3.385	3.646
40	.255	.681	1.303	1.684	2.021	2.423	2.704	2.971	3.307	3.551
60	.254	.679	1.296	1.671	2.000	2.390	2.660	2.915	3.232	3.460
120	.254	.677	1.289	1.658	1.980	2.358	2.617	2.860	3.160	3.373
00	.253	.674	1.282	1.645	1.960	2.326	2.576	2.807	3.090	3.291

 $[\]nu$ = degrees of freedom.