Examen final

Inteligencia artificial, período 2017-2.

Profesor: Julio Waissman Vilanova.

	Nombre:	
1.	Responde a los siguientes enunciados como falso o verdadero.	
	(a) Mientras más parámetros tenemos en un algoritmo de aprendizaje su espera que el error en muestra tienda a cero.	pervisado, se
	(b) Mientras más parámetros tenemos en un algoritmo de aprendizaje su espera que el error en muestra se parezca al error fuera de muestra.	pervisado, se
	(c) El aprendizaje supervisado se utiliza principalmente en investigación aplicaciones practicas.	y hay pocas
	(d) Cuando la cantidad de datos es muy grande, los resultados obtenidos s SVM o un método de <i>naive bayes</i> son muy similares.	ıtilizando un
	(e) Cuando la cantidad de datos es muy grande, los resultados obtenidos u red neuronal profunda o un método de <i>naive bayes</i> son muy similares.	ilizando una
	(f) Existen problemas en los cuales el método de <i>naive bayes</i> es el mejo aprendizaje posible, aún mejor que algoritmos muy sofisticados.	r método de
	(g) Las redes bayesianas no son más que una forma gráfica de representar una de probabilidad conjunta de n variables.	distribución
	(h) Los métodos de muestreo para inferencia en redes bayesianas son preferel calculo es más sencillo y el resultado más exacto.	ibles, ya que
	(i) Todo problema modelado como red bayesiana se puede expresar com oculto de Markov (HMM).	o un modelo
	(j) $___$ El profe de la materia de Inteligencia Artificial es el más barco de toda la	Licenciatura.
2.	Asumamos que tenemos un filtro antispam para correos electrónicos basado en naive bayes y bolsa de palabras (BOW). La idea básica es que, sobre un conjunto pre de palabras, se calcula la probabilidad que una palabra w se encuentre en un más veces en alguna parte del texto, si sabemos si es spam o ham $(P[w span respectivamente)$. Igualmente, se calcula la probabilidad a priori de que un corro o ham $(P[spam], P[ham])$. A partir de esto, es posible calcular la probabilidad o	edeterminado correo una o n , $P[w ham]$ ceo sea $spam$

$$P[spam|w_1, w_2, \dots, w_n] = \frac{P[spam] \prod_{i=1}^{n} P[w_i|spam]}{P[spam] \prod_{i=1}^{n} P[w_i|spam] + P[jam] \prod_{i=1}^{n} P[w_i|jam]}.$$

Contesta lo siguiente:

(a) Asumamos la siguiente tabla después del aprendizaje:

sea spam utilizando la simplificadísima ecuación

\overline{w}	mira	viagra	dinero	Cancún	todos
spam	1/6	1/8	1/4	1/4	1/8
ham	1/8	1/3	1/4	1/12	1/12

y recibimos un correo electrónico que dice «mira a todos bailar».

Selecciona los valores de P[spam] para los cuales el correo tiene más probabilidades de ser spam que ham. \Box 0.0 \Box 0.2 \Box 0.4 \Box 0.6 \Box 0.8 \Box 1.0

- (b) Supongamos ahora que solo tenemos 3 correos en el conjunto de aprendizaje:
 - 1. «Gran oportunidad para ganar mucho dinero sin hacer nada.»
 - 2. «Hey, tengo mucho calor, vamos por unas cheves.»
 - 3. «Nos vemos mañana a las 12:00»

A partir de estos, calcula los siguientes parámetros utilizando el modificador de Laplace:

- (a) P[nada|spam] _____
- (b) P[mucho|spam]
- (c) P[cerveza|ham]
- (d) P[ham] _____
- 3. Considere la siguiente red bayesiana:

	P(A D,X)			
+d	+x	+a	0.9	
+d	+x	-a	0.1	
+d	-x	+a	0.8	
+d	-x	-a	0.2	
-d	+x	+a	0.6	
-d	+x	-a	0.4	
-d	-x	+a	0.1	
-d	-x	-a	0.9	

P(.	D)
+d	0.1
-d	0.9

P(X D)		
+d	+x	0.7
+d	-x	0.3
-d	+x	0.8
-d	-x	0.2

P(B D)		
+d	+b	0.7
+d	-b	0.3
-d	+b	0.5
-d	-b	0.5

Responda a las siguientes preguntas:

- (a) P[+d, +a] =_____.
- (b) P[-d, +a] =_____.
- (c) P[+d|+a] =_____.
- (d) P[+d|+b] =_____.
- (e) P[+d] =_____.
- 4. Considere el conjunto de datos siguiente:

	x_1	x_2
$x^{(1)}$	0	0
$x^{(2)}$	-1	2
$x^{(3)}$	-2	1
$x^{(4)}$	-1	-2
$x^{(5)}$	3	3
$x^{(6)}$	1	1

Vamos a probar con dos métdos de *clustering* muy similares: las K-medias y las K-medianas. Existen ds diferencias fundamentales entre las K-medias y las K-medianas, las cuales son las siguientes:

- Las K-medias utiliza a la distancia euclidiana para definir los *clusters*, mientras que las K-medianas se basan en la distancia de *Manhattan*
- La función de acualización de las K-medias es obteniendo la media de los puntos pertenecientes a una clase para calcular el nuevo prototipo, mientras que lara las K-medianas, se calcula la mediana de los elementos pertenecientes a la clase para el nuevo prototipo. Como podrá verse, no se quebraron mucho la cabeza con los nombres.

Ahora asumamos que tenemos dos prototipos (dos *clusters*, o lo que es lo mismo, K = 2). Los clusters están dados por $C_1 = (-3, 0)$ y $C_2 = (2, 2)$.

Contesta las siguientes preguntas:

- (a) ¿Cuáles variables pertenecen a C_1 si estamos utilizando las K-medias? ______.
- (b) Realiza un único paso del algoritmo de las k-medias y escribe el valor de C_1 y de C_2 .
- (c) Con los valores de la tabla, ¿Cuáles variables pertenecen a C_1 si estamos utilizando las K-medianas? ______.
- (d) Realiza un único paso del algoritmo de las k-medianas y escribe el valor de C_1 y de C_2 .
- 5. En la figura siguiente tenemos un grafo, el cual le faltan los sentidos a las aristas para que sea dirigido. Selecciona la dirección de cada una de las aristas, tal que el grafo represente una distribución de probabilidad conjunta tal que:
 - 1. $D \perp \!\!\!\perp G$,
 - $2. D \not\perp \!\!\! \perp A$,
 - 3. $D \perp \!\!\!\perp E$,
 - $4. H \perp \!\!\!\perp F.$

