

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO

Facultad de Ciencias

Plan de estudios de la Licenciatura en Actuaría

Procesos Estocásticos II Área Clave Semestre Créditos 0631 7 u 8 10 Campo de Probabilidad y Estadística conocimiento Etapa Profundización Curso (X) Taller () Lab () Sem () Modalidad Tipo T(X) P() T/P()Obligatorio () Optativo (X) Carácter **Horas** Obligatorio E () Optativo E() Semana Semestre Teóricas **Teóricas** 5 80 **Prácticas** 0 **Prácticas** 0 5 Total 80 Total

Seriación		
	Ninguna ()	
	Obligatoria ()	
Asignatura antecedente		
Asignatura subsecuente		
	Indicativa (X)	
Asignatura antecedente	Procesos Estocásticos I Análisis Matemático I	
Asignatura subsecuente	Optativas del campo de probabilidad y estadística	

Objetivos generales:

- Ser capaz de modelar y simular fenómenos físicos y financieros más complejos, con tiempo continuo, utilizando procesos estocásticos.
- Conocer ejemplos y resultados básicos de la teoría de procesos estocásticos a tiempo continuo.

Objetivos específicos:

- Explicar conceptos básicos, definiciones, ejemplos, resultados y aplicaciones de estos procesos
- Explicar conceptos básicos, definiciones, ejemplos y aplicaciones de los procesos de renovación
- Definir y trabajar con procesos Gaussianos

	Índice temático				
	Tema		Horas		
			semestre		
		Teóricas	Prácticas		
1	Cadenas de Markov en tiempo continuo	30	0		
2	Teoría de Renovación	20	0		
3	Procesos de segundo orden	30	0		
	Tot	al 8	30		

Contenido Temático			
	Tema y subtemas		
1	Cadenas de Markov en tiempo continuo		
	1.1 Introducción		
	1.1 Introducción.1.2 Cadenas de Markov en tiempo continuo.		
	1.3 Procesos de nacimiento y muerte. 1.3.1 Proceso de Poisson.		
	1.3.2 Proceso de Poisson. 1.3.2 Proceso de nacimiento con tasa lineal.		
	1.3.3 Colas M/M/1.		
	1.3.4 Sistema de colas con servidor múltiple exponencial.		
	1.4 Probabilidades de transición, sistemas de ecuaciones de Kolmogorov y		
	su cálculo para cada uno de los ejemplos anteriores.		
	1.5 Probabilidades límite para cada uno de los ejemplos.		
	1.6 Simulación.		
	1.0 Simulation.		
2	Teoría de Renovación		
	1.1 Definiciones elementales, la distribución del proceso de conteo.		
	1.2 Teoremas límite y sus aplicaciones. Enunciar los teoremas de		
	Renovación y el del Límite Central.		
	1.3 Proceso de renovación con premios.		
	1.4 Regeneración.		
	1.5 Aplicaciones.		
3	Procesos de segundo orden		
	2.1 Definition le manual de manual finite		
	3.1 Definición de procesos con segundo momento finito.3.2 Procesos Gaussianos.		
	3.2.1. Matrices de varianza y covarianza.3.2.2. Caracterizaciones de la distribución normal multivariada.		
	3.2.3. Definición de procesos Gaussianos.		
	3.2.4. Ejemplos: browniano, Puente browniano, Ornstein y		
	Uhlenbeck.		
	3.3 Funciones de media y covarianza.		
	3.4 Continuidad de las funciones de media y covarianza.		

3.:	Continuidad de las trayectorias.
3.0	5 Diferenciación.
3.	Integración.
3.3	B Definiciones de estacionariedad y estacionariedad de segundo orden.

Estrategias didácticas	Evaluación del aprendizaje	
Exposición (X)	Exámenes parciales (X)	
Trabajo en equipo ()	Examen final (X)	
Lecturas (X)	Trabajos y tareas (X)	
Trabajo de investigación (X)	Presentación de tema ()	
Prácticas (taller o laboratorio) (X)	Participación en clase (X)	
Prácticas de campo ()	Asistencia ()	
Aprendizaje por proyectos (X)	Rúbricas ()	
Aprendizaje basado en problemas (X)	Portafolios ()	
Casos de enseñanza ()	Listas de cotejo ()	
Otras (especificar)	Otras (especificar)	
Se recomiendan tareas regulares en las cuales el	Se recomiendan de 3 a 4 exámenes parciales y un	
alumno aplique el material visto en clase y esté	examen final, así como la realización de tareas	
obligado a revisar diversas fuentes bibliográficas	sobre los temas vistos en clase para reforzar los	
para que amplíe sus conocimientos con diferentes	conocimientos teóricos adquiridos	
enfoques.	_	

Perfil profesiográfico		
Título o grado	Egresado de alguna de las licenciaturas en Matemáticas, Actuaría o alguna afín,	
_	preferentemente con algún posgrado en el área	
Experiencia docente	Con experiencia docente.	
Otra característica		

Bibliografía básica:

Los Feller y los de Karlin y Taylor, son clásicos:

- William Feller (1968). An introduction to probability theory and its applications. Vol. I (3^a ed.). New York: John Wiley & Sons Inc.
- William Feller (1971). An introduction to probability theory and its applications. Vol. II (2^a ed.). New York: John Wiley & Sons Inc.
- Samuel Karlin and Howard M. Taylor (1975). <u>A first course in stochastic processes</u> (2^a ed.). New York-London: Academia Press [A subsidiary of Harcourt Brace Jovanovich, Publishers].
- Samuel Karlin and Howard M. Taylor (1981). <u>A second course in stochastic processes</u>. New York: Academic Press Inc. [Harcourt Brace Jovanovich Publishers].
- Howard M. Taylor and Samuel Karlin (1994). <u>An introduction to stochastic modeling</u>. Boston, MA: Academic Press Inc.

El libro de Norris para cadenas de Markov:

• J. R. Norris (1998). <u>Markov chains. Cambridge Series in Statistical and Probabilistic Mathematics</u>. Cambridge: Cambridge University Press.

Muchos temas de este programa se basan en capítulos del libro de Ross:

• Sheldon M. Ross (2000). <u>Introduction to probability models</u> (7^a ed.). Burlington, MA: Harcourt/Academic Press.

Otros libros muy reconmendables son los de Resnick:

- Resnick, Sidney I (1992). Adventures in Stochastic Processes. Boston: Birkhauser.
- Resnick, Sidney I (1999). <u>A Probability Path</u>. Boston: Birkhauser.

Bibliografía complementaria:

Zdzis law Brzezniak and Tomasz Zastawniak (1999). <u>Basic stochastic processes</u>. Springer Undergraduate Mathematics Series. London: Springer-Verlag London Ltd.