Databases

Cap. 1. Introduction. Data Storage. DBMS

2020 UPT

Assoc.Prof.Dr. Dan Pescaru

Course organization

1. Course

- Dan Pescaru
- Monday, 14:00-16:00

2. Labs

- Eduard Crisan, Codruta Istin
- B623 / online

3. Evaluation

- Lab mark (1/2)
- Exam (1/2)

Contents

- Introduction. BDMS. Data Storage.
- 2. Data modeling. ER conceptual model. Relational data model.
- 3. Relational algebra. Operators. Normal forms. DB query languages.
- 4. Indexing. DB optimization. DB Dictionary.
- 5. SQL. Using DDL. Constraints. Active queries.
- 6. SQL. Data projection, selection, ordering and joins.
- 7. SQL Subqueries. Data union and difference.
- 8. SQL. Data aggregation.
- 9. SQL Execution plan. Introduction in query optimization.
- 10. Implementing DB clients in Oracle APEX. Forms and reports.
- 11. Implementing Web databases using MySQL and PHP.
- 12. Overview of database administration and security.

Bibliography

 R- Ramakrishnan şi J. Gehrke, "Database Management Systems", 3rd edition, ISBN 007-2465-63-8, McGraw-Hill, 2003

Oracle® 11g Database SQL Language Reference
 http://docs.oracle.com/cd/E11882_01/server.112/e41084/toc.htm

• MySQL 5.6 Reference Manual — SQL Syntax http://dev.mysql.com/doc/refman/5.6/en/sql-syntax.html

Data storage and retrieval

- 1. Basic storing: the file
- 2. Physical data organization: directory structure
- 3. Some advantages:
 - 1. Simplicity
 - 2. Linear access (text) or sequential (binary)
- 4. Some disadvantages:
 - Searching data in files complex application specific algorithms
 - 2. Lack in data protection
 - Security and access control at the OS level

DB and DBMS

- 1. Solution: using a database
- 2. Database (DB)= an data storage alternative for very large, integrated collection of data. Include support for efficient physical organization on external support, advanced searching and retrieval algorithms, data protection, and security mechanisms
- 3. Database Management System (DBMS) = a software system designed for database storage and management

Why DBs are important?

- 1. Wide spread nowadays: almost all people use them every day
 - Most websites are built on DBs
 - 2. Telecom systems (mobile phones calls)
 - 3. Banking systems
 - 4. Merchandising, etc.
- 2. High demand on the employment market for DB specialists (DB administrators, DB analysts and designers, DB App programmers etc.)

DBMS Advantages

- 1. Data independency / multiple applications
- 2. Data access and retrieval efficiency (based on indexes and query optimization)
- 3. Enable RAD techniques
- 4. Support for data integrity
- 5. Support for data security
- Application domain independency for data management
- 7. Scalability

Main DBMS Functions

- 1. Data storage and retrieval
- 2. Index management
- 3. Query processing
- 4. Access control mechanism (users, groups/roles, privileges)
- 5. Data integrity control mechanisms (triggers, constraints, concurrency control)
- 6. Crash recovery mechanisms, replication
- 7. Transactions

Architecture of a DBMS

MARKE HIS

*Ref: Ramakrishnan, Gehrke, "Database Management Systems", McGraw Hill, 2003

Specialized DBMS

- 1. Multimedia databases (video on demand, police fingerprints DB, photo journalism library, etc.)
- 2. ERP (Enterprise Resource Planning)
 - Substantial layer of application-oriented features on top of a DBMS
 - Support a set of customizable enterprise common tasks (e.g., inventory management, human resources planning, financial analysis)
 - SAP, PeopleSoft, Baan, Siebel

Support for massive research projects

- 1. The human genome mapping 1987-2003
 - US Department of Energy's Office of Health and Environmental Research
 - Results: database known as GenBank (http://www.ncbi.nlm.nih.gov/nucleotide)
- 2. SETI (search for extraterrestrial intelligence)
 - University of California, Berkeley, May 1999
 - Over 290,000 computers with 617 teraFLOPS
- 3. NASA's Earth Observation System
 - Global observations of the land surface, biosphere, atmosphere, and oceans of the Earth
 - Collects data from over 23 artificial satellites

History. The hierarchical model

1. The hierarchical model – 1960

• Three structure (1-to-many relationships)

IBM IMS – Information Management System – designed

for the Apollo program, it was used to inventory the very large bill of materials for Saturn V moon rocket and Apollo space vehicle

American Airlines + IBM –SABRE

NASA: http://www.hq.nasa.gov/

History. The network model

1. The network model – 1960

- Generalized graph structure
- Codasyl ("Conference on Data Systems Languages" consortium – COBOL)

IDS (Integrated Data Store) - designed by Charles

Bachman at General Electric

• 1973: Bachman won the

ACM's Turing Award (⇔Nobel Prize) for his work in the database area

Today. The relational model

- 1. The relational model 1970
 - Edgar Codd, at IBM's San Jose
 Research Laboratory
 - He won the Turing Award in 1981

- Navigational systems for Desktops
 - xBase: FoxPro, Clipper, Visual dBase

- Declarative SQL (IBM's System R project)
 - Oracle, IBM DB2, Ms SQL Server, MySQL

The relational model

1. Main characteristics

- Describes Tables and Links between them
- Based on relational algebra
- Powerful query language (SQL)
- De facto standard

2. Ex: Car sales

Salesman

SID	Name	Addr	Tel
31	Dinu Mihai	Lunei 23	23.34.21
84	Vlad Mirela	Lacului 3a	34.21.22

Order

OID	SID	SSN	Val
31	84	1650905454133	8932
84	31	1780607232321	12600

Relational: navigation vs. querying

1. xBase

- Navigational, imperative language
- Low level operations (allows high optimizations)
- Requires low resources (ideal for standalone DB old Desktop PCs)

2. SQL

- Declarative querying language
- Nowadays standard for medium and large size server based databases
- Flexible and efficient

Novel DB models

- 1. The Object Database model 1990
 - Persistency concepts to OO Languages
 - ODMG Object Query Language (OQL) []-]*[]
 - ORION (MCC), Jasmine (Fujitsu), O2, POET, ObjectStore, JADE
 - Compromise solution: object-relational model
- 2. The Post-relational model 2000
 - fast key-value stores and document oriented databases
 - No-SQL (MongoDB, Redis, Apache Cassandra, etc.)

Data and requirement analyzes

- 1. First step in DB design
- 2. Uses a semantic data model
 - Abstract, high-level data model used to describe the data in an enterprise
 - Serves as the starting point for DB modeling and design
- 3. Semantic data models
 - Entity Relationship (ER) pictorially denote entities and the relationships among them (Conceptual modeling)
 - UML more general than ER (Business, System, Conceptual, Physical, Hardware Modeling)

Levels of Abstraction

- 1. The data in a DBMS is described at three levels of abstraction
 - Physical: how the data is stored and where it is stored in database
 - Conceptual: describe the model of data
 - External: simplified domain-specific views

The physical schema

1. Specifies storage details

- How the relations described in the conceptual schema are actually stored
- How data is split into files and records sorting strategy
- What auxiliary data structures are needed (e.g. index files). They are essential for data access efficiency
- Good design imply a deep understanding of how the data is typically accessed

The conceptual schema

1. Known also as the logical schema

- Describes the stored data in terms of the data model of the DBMS
- Contains details about data (e.g. data type)

2. Ex: a relational model for University DB:

Students(sid: string, name: string, birth: date, year: real)

FacultyStaff(fid: string, fname: string, sal: real)

Courses(cid: string, cname: string, credits: integer)

Rooms(no: integer, address: string, capacity: integer)

Enrolled (sid: string, cid: string, grade: string)

Teaches(fid: string, cid: string)

The external schema

- 1. Allow data access to be customized (and authorized) at the level of individual users or groups of users
- 2. Consists of a collection of one or more views and relations from the conceptual schema
- 3. A view is conceptually a relation, but the records in a view are not stored in the DBMS
- 4. The external schema design is guided by end user requirements

Peoples who work with databases

- 1. Database implementers (employed by Oracle, Microsoft, IBM etc.)
 - Build DBMS software
- 2. Database end users from a large variety of fields
 - Accountants, managers, secretaries, etc.
- 3. Database application programmers
 - Develop packages that facilitate data access for end users
- 4. Database administrators
 - Design of the Conceptual and Physical Schemas
 - Manage DB Security and Authorization
 - Are responsible for data availability and crash recovery
 - Perform Database Tuning

Course examples

- 1. Course and lab examples uses
 - Oracle XE 11g, APEX
 - MySQL 5.x
 - Visual dBase Plus v.2.7

- 2. Programming and Querying Languages
 - SQL, xBase
 - Java, Javascript, PHP

Oracle APEX

- 1. Oracle free solution for DB Web application development. Has four components
 - Application Builder
 - SQL Workshop
 - Team Development
 - Administration

APEX Pages

1. Main types: forms and reports

MySQL+PHP

- 1. MySQL Comunity Server free at http://dev.mysql.com/
- 2. Web server e.g. Apache at http://httpd.apache.org/

- 3. PHP module free at http://www.php.net/
- 4. Alternative: the AMP (Apache, MySQL,PHP) solution stacks
 - WAMP (Windows), LAMP (Linux), MAMP (Mac)
 - XAMPP (Cross-platform)
- 5. Any text or HTML editor (or more complex programming environments like Eclipse or ZendStudio)

dBase Plus 2.7

- 1. RAD Environment
- Navigator for project management
- Command –
 xBase Interpreter
 interface
 (commands +
 results)

