実解析第2同演習・演習第11回

2023年1月13日

問 A-1

可測空間 (X,\mathcal{B}) 上の測度 μ と可測写像 $T:(X,\mathcal{B})\to (X,\mathcal{B})$ について, μ が T-不変であるとは,任意の $A\in\mathcal{B}$ に対し

$$\mu(T^{-1}A) = \mu(A)$$

となることである. T-不変な測度 μ について以下を示せ.

(1) 可測関数 $f: X \to \mathbb{R}$ に対し、

$$Uf(x) := f(T(x))$$

で定義される関数 $Uf: X \to \mathbb{R}$ は可測.

(2) 単関数 f について,

$$\int_{X} f d\mu = \int_{X} U f d\mu. \tag{1}$$

- (3) 非負値関数 $f \in L^1(X, \mu)$ についても等式 (1) が成り立つ.
- (4) $1 \le p < \infty$ に対し、 $U: L^p(X,\mu) \to L^p(X,\mu)$ とみることができる.またこのとき U は L^p ノルムを保つ,すなわち任意の $f \in L^p(X,\mu)$ に対し

$$||f||_{L^p} = ||Uf||_{L^p}.$$

問 A-2

コンパクト距離空間 X を考える.

(1) X 上の連続写像全体からなる集合 C(X) について、

$$||f||_{\infty} := \max_{x \in X} |f(x)|$$

と定めると、 $\|\cdot\|_{\infty}$ により C(X) はノルム空間になることを示せ.

(2) 関数列 $f_n \in C(X)$ が $f \in C(X)$ に収束するとき、すなわち

$$\lim_{n \to \infty} ||f_n - f||_{\infty} = 0$$

であるとき, $\sup_n |f_n|$ は有界関数であることを示せ.

(3) X 上の任意の Borel 確率測度 μ に対し、連続写像 $\hat{\mu}: C(X) \to \mathbb{R}$ が

$$\hat{\mu}(f) := \int_X f \mathrm{d}\mu$$

により定義されることを示せ.

問B-1

可測空間 (X, \mathcal{B}) と可測写像 $T: (X, \mathcal{B}) \to (X, \mathcal{B})$ について,X 上の有限測度 μ が T-不変であるとする.このとき,任意の可測集合 $A \in \mathcal{B}$ について以下が成り立つことを示せ:

ほとんど全ての $x \in A$ に対し自然数 $n \in \mathbb{N}$ が存在し、 $T^n(x) \in A$ となる.

ただし, $T^n(x)$ は T の n 回合成を表す.例えば $T^3(x) = T(T(T(x)))$ である.なお,この結果は Poincaré の再帰定理と呼ばれる.

 $(ヒント: \lceil A$ から出発するが Aに戻ってこない点全体の集合」に行き着く集合を考える.)

問 B-2

可測空間 (X,\mathcal{B}) と可測写像 $T:(X,\mathcal{B})\to (X,\mathcal{B})$ について,X 上の確率測度 μ が T-不変であるとする. μ に関して T がエルゴード的であるとは, $T^{-1}B=B$ となる任意の可測集合について $\mu(B)=0$ または $\mu(B)=1$ となることである. μ に関して T がエルゴード的であるとする.このとき, $\mu(A)>0$ となる $A\in\mathcal{B}$ に対し以下を示せ.

(1) 関数

$$n_A(x) := \inf\{n \ge 1 \mid T^n(x) \in A\}$$

はほとんど全ての $x \in A$ に対し定義され, $A_n := \{x \in A \mid n_A(x) = n\} \in \mathcal{B}$ である.また,ほとんど全ての $x \in X$ に対し $k \in \mathbb{N}$ が存在して $T^k(x) \in A$ となる.

(2) T が可逆, すなわち T は全単射で $T^{-1}: X \to X$ も可測であるとき,

$$A_{n,k} := T^k(A_n)$$

 $(k=0,1,\cdots,n-1)$ は互いに素な可測集合の族であり、ほとんど全ての $x\in X$ に対し $k,n\in\mathbb{N}$ が存在して $x\in A_{n,k}$ となる. (ヒント: T^{-1} にも (1) の結果は適用できる.)

(3) *T* が可逆であるとき,

$$\int_{A} n_A(x) \mathrm{d}\mu = 1.$$

(この結果は Kac の補題と呼ばれる.)