Лабораторная работа №2

По курсу «Основы программной инженерии»

«Оценка качества программного продукта»

Цель: изучение основных методов и подходов оценки качества программного продукта.

Залачи:

- изучить основы метрической теории Холстеда;
- для написанных ранее программ произвести расчет количественных характеристик программ;
- сравнить полученные результаты.

Содержание отчета:

- 1. Титульный лист;
- 2. Цель, задачи работы;
- 3. Листинг программ;
- 4. Результат сравнения
- **5.** Вывод

Основные теоретические сведения

Метрики Холстеда предлагают разумный подход к решению следующих задач:

- -предсказание условий, необходимых для программирования по предложенным проектам;
 - -определение норм первоначальных ошибок;
 - -количественная оценка языков программирования и эффекта модульности;
- -обоснование метода измерения различий между программами, написанными специалистами разного уровня.

В основе вычисления метрик Холстеда лежит концепция, согласно которой алгоритм состоит только из операторов и операндов (проверяется рассмотрением простых вычислительных машин с форматом команд, содержащим две части: код операции и адрес операнда). Операнды -переменные или константы, используемые в данной реализации алгоритма.

Операторы-комбинации символов, влияющие на значение или порядок операндов.

В основе вычисляемых свойств алгоритма лежат следующие характеристики:

- $-\eta_1$ -число различных операторов данной реализации;
- $-\eta_2$ -число различных операндов данной реализации;
- -N₁ -общее число всех операторов;
- -N₂ -общее число всех операндов;
- -n2*-число различных входных и выходных операндов.

На основании приведенных выше характеристик вычисляются:

- -словарь $n = \eta_1 + \eta_2$;
- -длина реализации $N = N_1 + N_2$.

Метрики Холстеда включают следующие характеристики:

1) Длина программы: N'= $\eta_1 * \log_2 \eta_1 + \eta_1 * \log_2 \eta_2$

Если программа состоит из нескольких модулей (m -число модулей), то для каждого модуля определяется η_1 среднее ($\eta_{1\text{cp}}$) и η_2 среднее ($\eta_{2\text{cp}}$). В этом случае длина программы

$$N' = m^*(\eta_1 cp^* \log 2(\eta_{1cp}) + \eta_2 cp^* \log 2(\eta_{2cp})).$$

2) Объем программы: $V = N * log2(\eta)$.

Такая интерпретация дает объем программы в битах. Объем зависит от языка программирования, на котором реализован алгоритм.

3) Потенциальный (минимальный) объем: $V^* = (2 + \eta_2^*) * \log 2(2 + \eta_2^*)$.

Минимально возможный объем предполагает существование языка, в котором действия, выполняемые индивидуальным модулем, уже определены или реализованы, возможно, в виде процедуры или функции.

- 4) Граничный объем: $V'' = (2 + (\eta_2')^* \log 2(\eta_2')) * \log 2(2 + \eta_2')$.
- 5) Соотношения между операциями и операндами (зависимость числа операндов n2 от числа операций n1: $A = \eta_2'/(\eta_2'+2) * \log 2(\eta_2'/2)$

$$B = \eta_2' - 2 * A$$

$$\eta_2 = A * \eta_1 + B$$

-это частота использования операндов.

6) Уровень программы: L = V'/V,

где V' -потенциальный объем, V -объем программы.

L=1 для потенциального языка, в котором присутствует любая процедура, которая могла бы понадобиться (число таких процедур близко к бесконечности).

Альтернативное определение уровня L: L' = $(\eta_1') * \eta_2 / (\eta_1 * N2)$, где $\eta_1' = 2$.

7) Интеллектуальное содержание: I = L' * V или: I = 2 * η_2 /(η_1 * N2)*N* $\log 2(\eta)$.

Интеллектуальное содержание - мера того, "сколько было сказано в программе", зависит от сложности задачи. ($I \approx 11-13$).

8) Работа по программированию (общее число элементарных мысленных различий, требуемых для порождения программы): E=V/L или $E=V^2/V'$,где E –общее число элементарных умственных различений, требуемых для порождения программы.

Это умственная работа, затрачиваемая на превращение заранее разработанного алгоритма в фактическую реализацию на языке программирования.

Правильное разбиение на модули уменьшает работу по программированию:

$$E = E1 + E2 + E3 + ...$$

9) Приближенное время программирования: T' = E/S, где S = 18 моментов (различий)/секунд

-постоянная Страуда.

Момент - время, требуемое человеческому мозгу для выполнения элементарных различений. Альтернативное определение времени Т: $T' = \eta_1 * N2*(\eta_1 * \log 2(\eta_1) + \eta_2 * \log 2(\eta_2))/(2*S*\eta_2)$.

10) Уровень языка: $\lambda = L^2 \times V$.

Уровень языка определяет его производительность.

11) Уравнение ошибок:

Число переданных ошибок в программе: B = V/E0,

где $E0 = V' * V' * V' / (A \times A)$ -среднее число элементарных различений между возможными ошибками в программировании.

«Переданные ошибки» -ошибки, остающиеся после отладки модуля.

Выполнение лабораторной работы:

1. Для индивидуального модуля определить характеристики программы

```
(\eta_1, \eta_2, \eta, N1, N2, N, {\eta_2}').
```

- 2. Рассчитать метрики Холстеда по формулам 1-11.
- 3. Оценить качество реализации алгоритма на основании метрик Холстеда.
- 4. Оформить отчет.

Пример:

Ниже представлен листинг программ:

```
\mathbf{C}
                   Pascal
program lab1;
                                               typedef float ary[10];
                                               void swap(float &p,float &q)
  ary = array [1..10] of real;
procedure sort(var a: ary; n: integer);
                                                 float hold = p;
var
  no change: boolean;
                                                 p = q;
  j: integer;
                                                 q = hold;
  procedure swap(var p, q: real);
                                               void sort(ary a, int n)
    hold: real;
  begin
    hold := p_i
                                                 int change;
    p := q;
                                                  do {
    q := hold
                                                      change = 0;
  end;
                                                      for (int j=0; j<="" p="">
begin
  repeat
    no change := true;
                                                           if (a[j] > a[j+1])
    for j := 1 to n - 1 do
    begin
                                                              swap(a[j],a[j+1]);
      if a[j] > a[j + 1] then
                                                              change=1;
         swap(a[j], a[j + 1]);
         no change := false
                                                        }
       end
    end
                                                  while (change);
  until no change
end;
                                               void main()
var
                                               {
  mass: ary;
                                                    ary mass;
  i: integer;
                                                    for (int i=0; i<10; i++) mass[9-i] = i+1;
begin
                                                    sort(mass, 10);
  for i := 1 to 10 do mass[11 - i] :=
                                               }
  sort(mass, 10);
```

end.

Измерение свойств алгоритмов:

Pascal

Операторы			Операнды		
Номер	Оператор	Число	Номер	Оператор	Число
		вхождений	•		вхождений
1	Begin end	5	1	1	6
2	+	2	2	10	3
3	-	2	3	11	1
4	;	17	4	a	5
5	:=	8	5	i	4
6	>	1	6	j	6
7	[]	5	7	n	2
8	for	2	8	p	3
9	if	1	9	q	3
10	program	1	10	true	1
11	repeat	1	11	false	1
12	sort	2	12	no_change	4
13	swap	2	13	mass	3
14	type	1	14	lab1	1
15	array	1	15	hold	3
			16	ary	1
Итог 51				Итог 47	

• C

	Операторы			Операнды		
Номер	Оператор	Число	Номер	Оператор	Число	
1		вхождений	1		вхождений	
1	() или {}	7	1	0	3	
2	+	3	2	1	5	
3	-	2	3	9	1	
4	;	16	4	10	3	
5	=	8	5	i	5	
6	>	1	6	j	7	
7		5	7	q	3	
8	++	2	8	p	3	
9	<	2	9	a	5	
10	do while	1	10	n	2	
11	for	2	11	mass	3	
12	if	1	12	hold	2	
13	main	1	13	change	4	
14	sort	2				
15	swap	2				
16	typedef	1				
17	ary[]	1				
18	&	2	·			
Итог 59			Ит	ог 46		

Расчетные характеристики:

		TCT HDIC	характеристики:
Название	Pasca l	C	Формула
Число уникальных	15	18	
операторов (n1)			
Число уникальных операндов (n2):	16	13	
Общее число	51	59	
операторов (N1):	0.1		
Общее число операндов (N2):	47	46	
словарь программы	31	31	$\eta = \eta_1 + \eta_2$
(n):			
Экспериментальная длина программы (Nэ):	98	105	N ₉ = N ₁ + N ₂
Теоретическая	122.6	123.1	$\ddot{N} = \eta_1 \log_2 \eta_1 + \eta_2 \log_2 \eta_2$
длина программы (N):		6	11 1082111 1 112 1082112
Объём программы	485.5	520.1	$V = N_{\vartheta} \log_2 n$
(V):	1	9	110 1052 11
Потенциальный	15.51	15.51	$V^* = (2_+ \eta_2^*) \log_2(2_+ \eta_2^*) (\eta_2 = 4 -$
объём (V*):			количество параметров)
Граничный объем	25.85	25. 85	22.0 - 22.0 - 22.0 - 22.0 - 22.0
(Vrp)			$N_{zp} = \eta_1^* \log_2 \eta_1^* + \eta_2^* \log_2 \eta_2^* = 2 + \eta_2^* \log_2 \eta_2^*$ $V_{zp} = N_{zp} \log_2 \eta^* = (2 + \eta_2^* \log_2 \eta_2^*) \log_2 (2 + \eta_2^*)$
Уровень программы (L):	0.032	0.03	$L = \frac{\nabla}{\nabla}$
Сложность	31.3	33.54	1
программы (S):	31.3	33.34	$S = \frac{1}{L}$
Оценка уровня	0.045	0.031	$\hat{L} \cong \frac{2}{1} \frac{\eta_2}{\eta_2}$
программы (L^{\wedge}) :			$L \cong \frac{1}{\eta_1} \frac{1}{N_2}$
Интеллект	22.04	16.33	- 2 η ₂
программы (I):			$I = \frac{2}{\eta_1} \frac{\eta_2}{N_2} \times (N_1 + N_2) \log_2(\eta_1 + \eta_2)$
Работа по	15198	17446	V^2
программированию (Е):	10170	17.10	$E = \overline{V}$
Время	1520	1745	E
программирован			$T=\frac{S}{S}$ (S=10 – число страудовских
ия (Т):			«моментов» в секунду)
Ожидание	1338	1943	$\hat{T} = \frac{\eta_1 N_2 (\eta_1 \log_2 \eta_1 + \eta_2 \log_2 \eta_2) \log_2 \eta}{2\eta_2 S}$
времени			$2\eta_2$ S
кодирования			
(T^):			

Уровень языка	0.495	0.462	$\lambda = L^2 \times V^*$
программирован			
ия (λ):			
Ожидаемое	0.16	0.17	B= V / 3000
число ошибок			
(B)			

Контрольные вопросы:

- 1. Где можно использовать метрики Холстеда?
- 2. Чем определяются характеристики программы?
- 3. Как оценить качество реализации алгоритма по метрикам?