Combo 11

July 2, 2024

1 Defina $\Psi^{n,m,\#}_{\mathcal{P}}$

Dado $\mathcal{P} \in \operatorname{Pro}^{\Sigma}$, definamos para cada par $n, m \geq 0$, la funcion $\Psi_{\mathcal{P}}^{n,m,\#}$ de la siguiente manera:

$$D_{\Psi^{n,m,\#}_{\mathcal{P}}} = \{ (\vec{x}, \vec{\alpha}) \in \omega^n \times \Sigma^{*m} : \mathcal{P} \text{ termina, partiendo del} \\ \text{estado } \|x_1, ..., x_n, \alpha_1, ..., \alpha_m\| \}$$

 $\Psi_{\mathcal{P}}^{n,m,\#}(\vec{x},\vec{\alpha}) = \text{valor de N1 en el estado obtenido cuando } \mathcal{P}$ termina, partiendo de $||x_1,...,x_n,\alpha_1,...,\alpha_m||$

2 Defina "f es Σ -computable" y " \mathcal{P} computa a f"

Una funcion Σ -mixta $f: S \subseteq \omega^n \times \Sigma^{*m} \to \omega$ sera llamada Σ -computable si hay un programa \mathcal{P} de \mathcal{S}^{Σ} tal que $f = \Psi^{n,m,\#}_{\mathcal{P}}$. En tal caso diremos que la funcion f es computada por \mathcal{P} y que \mathcal{P} computa a f.

Analogamente una funcion Σ -mixta $f: S \subseteq \omega^n \times \Sigma^{*m} \to \Sigma^*$ sera llamada Σ -computable si hay un programa \mathcal{P} de \mathcal{S}^{Σ} tal que $f = \Psi^{n,m,*}_{\mathcal{P}}$. En tal caso diremos que la funcion f es computada por \mathcal{P} y que \mathcal{P} computa a f.

3 Defina $M^{\leq}(P)$

Supongamos que $\Sigma \neq \emptyset$. Sea \leq un orden total sobre Σ^* . Sea $P: D_P \subseteq \omega^n \times \Sigma^{*m} \times \Sigma^* \to \omega$ un predicado. Cuando $(\vec{x}, \vec{\alpha}) \in \omega^n \times \Sigma^{*m}$ es tal que existe al menos un $\alpha \in \Sigma^*$ tal que $P(\vec{x}, \vec{\alpha}, \alpha) = 1$, usaremos $\min_{\alpha}^{\leq} P(\vec{x}, \vec{\alpha}, \alpha)$ para denotar al menor $\alpha \in \Sigma^*$ tal que $P(\vec{x}, \vec{\alpha}, \alpha) = 1$.

Definimos

$$M^{\leq}(P) = \lambda \vec{x} \vec{\alpha} \left[\min_{\alpha}^{\leq} P(\vec{x}, \vec{\alpha}, \alpha) \right]$$