

CIENCIA DE DATOS

GRADO EN BIOMEDICINA

DR. ARIEL CARIAGA-MARTÍNEZ

CIENCIA DE DATOS Recordatorio

Inteligencia artificial = campo científico multidisciplinar completo.

ML = algoritmos de "aprendizaje" (sin ser programados para ello específicamente).

DL = (parte del ML) <u>funciones matemáticas que colaboran entre sí</u> para generar un

"output".

PUNTOS PARA VERIFICAR

Conceptos para repasar...

Probabilidad →
Variables
aleatorias
(distribuciones,
etc.).

Estadística
descriptiva →
Análisis
exploratorio de
los datos (EDA)

Resumir, entender, detectar patrones, anomalías, suposiciones...

UAX

Las fases de un proyecto de Ciencia de datos

1. Definición del Problema

- Identificación de la pregunta de investigación o el problema empresarial.
- Establecimiento de objetivos claros y de métricas para medir el éxito.

2. Recopilación de Datos

- Recolección de datos relevantes, que pueden provenir de bases de datos, APIs, archivos, u otros.
 - Consideración de la calidad, la disponibilidad y la relevancia de los datos.

3. Preparación de los Datos

- Limpieza de datos: manejo de valores faltantes, duplicados y datos inconsistentes.
- Transformación: normalización, codificación y escalado de datos.
- Ingeniería de características para mejorar el rendimiento del modelo.

4. Análisis Exploratorio de Datos (EDA)

- Análisis inicial para comprender distribuciones, correlaciones y patrones.
- Visualización de datos para detectar tendencias y relaciones clave.

5. Modelado

- Selección de algoritmos y técnicas de modelado adecuados para el problema.
- Entrenamiento y ajuste de modelos con los datos de entrenamiento.
- Validación y selección del modelo óptimo basado en métricas de desempeño.

6. Evaluación del Modelo

- Prueba del modelo en datos de prueba para evaluar su rendimiento.
- Cálculo de métricas de error y ajuste para refinar el modelo, si es necesario.

7. Implementación

- Despliegue del modelo en un entorno de producción para su uso.
- Configuración de un sistema de monitoreo para supervisar el rendimiento.

8. Mantenimiento y Actualización

- Monitoreo del modelo en producción para asegurar su precisión y relevancia.
- Realización de actualizaciones periódicas o reentrenamiento del modelo.

Fase 3-4) EDA → ¿Para qué?

¿Qué?

- Estadística descriptiva → Mínimo
- Descripción de tipos de datos.
- Presencia de NAs / Evaluación de la normalidad → ¿Por qué?
- (Análisis univariante)
 - Presencia de outliers
 - Distribución aproximada de los datos → ¿Por qué?
- Análisis bivariante → ¿Por qué?

UAX

EDA

② Intro-to-R.R x					
⟨□□⟩ ② Filter Q					
*	genotype 🗦	celltype [‡]	replicate [‡]	samplemeans [‡]	age_in_days
sample1	Wt	typeA	1	10.266102	40
sample2	Wt	typeA	2	10.849759	32
sample3	Wt	typeA	3	9.452517	38
sample4	КО	typeA	1	15.833872	35
sample5	КО	typeA	2	15.590184	41
sample6	КО	typeA	3	15.551529	32
sample7	Wt	typeB	1	15.522219	34
sample8	Wt	typeB	2	13.808281	26
sample9	Wt	typeB	3	14.108399	28
sample10	КО	typeB	1	10.743292	28
sample11	КО	typeB	2	10.778318	30
sample12	КО	typeB	3	9.754733	32
Showing 1 to 12 of 12 entries, 5 total columns					

uax.com noviembre de 2024 Confidential & Proprietary

Algunas preguntas respondidas tras un EDA adecuado.

¿Hay valores faltantes? ¿Cómo se distribuyen los datos? ¿Hay normalidad? ¿Hay alguna otra distribución de interés? ¿Hay correlación de variables? ¿Necesito
normalizar/escalar los
datos?
¿Necesito cambiar tipos
de variables?
¿Qué puedo hacer con
los outliers?
¿Qué puedo hacer con
los NAs?

¿QUÉ QUIERO (PUEDO) MODELAR?

Siguiente paso: "Transformar/Visualizar/Modelar"

https://es.r4ds.hadley.nz

OPTIMIZAR LAS MÉTRICAS + PRESENTAR

UAX ERRORES / ENTRENAR

¿Cómo? (HOW?) → "Automágicamente"

ML: ¿Cómo "aprendizaje" sin ser programado para ello específicamente?

Figure 1-1. The traditional approach

Descomponer el problema + "escribir las reglas" (= proponer hipótesis + modelos estadísticos)

El algoritmo (función matemática/estadística + evaluación del "error") recibe datos y va ofreciendo mejores soluciones...

¡YA TENGO EL DATASET LISTO!

ESCOJO LA VARIABLE RESPUESTA → SELECCIONO LAS PREDICTORAS (INGENIERÍA DE VARIABLES) → VERIFICO LOS TIPOS → PROPONGO EL MODELO A UTILIZAR (SEGÚN EL TIPO DE VARIABLE → VISUALIZO RESULTADOS / MÉTRICAS DEL MODELO → REPITO

CADA MODELO TIENE MÉTRICAS DIFERENTES → SE PUEDEN OPTIMIZAR (FINE-TUNING) SEGÚN LA PREGUNTA

PRESENTA TUS DATOS → DATA STORY TELLING → (EN ANEXOS PUEDEN IR LOS SCRIPTS) SOLO IRÁN LOS RESULTADOS CON SUS MÉTRICAS Y BREVES PINCELADAS DEL MODELADO (WEBS DE REPOSITORIOS : GITHUB / GITLAB)

DATOS TABULARES

NO HAY
VARIABLE
RESPUESTA
CONOCIDA →
NUEVA
PERSPECTIVA

GOBERNANZA DEL DATO.

- Políticas y procedimientos: no podemos hacer "lo que queremos como queremos". Documentación legal vinculante.
- Roles y responsabilidades: data owners, data stewards y data users (entre otros).
- Calidad del dato → POLÍTICAS
- Seguridad/privacidad, accesiblidad/disponibilidad.
- Trazabilidad y auditoría. → RESPONSABLES
- CONSIDERACIONES ÉTICAS.

EN DATA SCIENCE TODO POR ESCRITO

GRACIAS

DR. ARIEL CARIAGA-MARTINEZ

CIENCIA DE DATOS

ACARIMAR@UAX.ES