

Fast Fourier Transform

Teoría de Algoritmos I (75.29 / 95.06)

Ing. Víctor Daniel Podberezski

Multiplicación de polinomios

Sean

$$A(x)=a_0+a_1x+a_2x^2+...+a_dx^d$$
 polinomio de grado d

$$B(x)=b_0+b_1x+b_2x^2+...+b_dx^d$$
 polinomio de grado d

Queremos calcular

$$C(x) = A(x) * B(x)$$

Cálculo "naive"

El resultado será un nuevo polinomio de grado 2d

$$C(x)=c_0 + c_1x + c_2x^2 + ... + c_{2d}x^{2d}$$

Debemos calcular

2d coeficientes

Cada coeficiente estará dado por

$$C_k = a_0 b_k + a_1 b_{k-1} + ... + a_k b_0$$
 (con $a_i = 0$, $b_i = 0$ si $i > d$)

$$c_k = \sum_{i=0}^k a_i * b_{k-i}$$

Ejemplo

Si

$$A(x) = 1 + 2x + 3x^2$$

$$B(x) = 2 + x + 4x^2$$

Entonces

A * B =
$$(1 + 2x + 3x^2)$$
 * $(2 + x + 4x^2)$
= $1^*2 + [(1^*x) + (2x * 2)] +$
 $[(1^*4x^2) + (2x^*x) + (2^*3x^2)]$
 $+ [(2x^*4x^2) + (3x^2 * x)] + [3x^2 * 4x^2]$
= $2 + 5x + 12x^2 + 11x^3 + 12x^4$

Análisis de complejidad

El polinomio resultante

Tendrá 2d coeficientes como máximo.

Para cada coeficiente

Se deben realizar O(k) multiplicaciones y O(k) sumas

En total, para un polinomio de grado d

Realizaremos (d+1)*(d+1) multiplicaciones y d² sumas

Tenemos una complejidad de O(d2)

¿PODEMOS HACERLO MEJOR?

Fast Fourier Transform

El método fue propuesto

A James W. Cooley

Por John W. Tukey en 1963

Publicaron en 1965 el paper

An Algorithm for the Machine Calculation of Complex Fourier Series

Luego se supo Gauss propuso un método similar

Aunque por estar escrito en Latín paso desapercibido por muchos años

Representación por valores

Un polinomio de grado d

Esta caracterizado unívocamente por el valor de cualquier d+1 puntos distintos

Ejemplo:

Sean 2 puntos $(x_0,A(x_0))$ $(x_1,A(x_1))$. Los mismos definen una única recta Sean 4 puntos, existe un único polinomio de grado 3 que los contiene

Podemos elegir

Cualquier set de d+1 puntos diferentes y evaluarlos.

Cada evaluación se puede realizar en O(d) mediante el Algoritmo de Horner

Horner Representamos un polinomio mediante d+1 puntos

¿Son equivalentes las representaciones?

Partimos de

$$A(x)=a_0 + a_1x + a_2x^2 + ... + a_dx^d$$

Podemos reescribirlos como una multiplicación escalar de 2 vectores

$$A(x) = (1, x, x^2, ..., x^d) * (a_0, a_1, a_2, ..., a_d)^t$$

Si tomamos d+1 números

$$X_0, X_1, ..., X_{d+1}$$

¿Son equivalentes las representaciones? (cont.)

Podemos expresarlo como el sistema

(Matriz de Vandermonde)

¿Son equivalentes las representaciones? (cont.)

Una matriz de Vandermonde

Es invertible si todos los xi son números diferentes

se puede calcular el inverso M-1 en O(d2)!

Por lo tanto

podemos calcular M-1

Y reescribir nuestro sistema

$$\begin{bmatrix} a_0 \\ a_1 \\ a_2 \\ \dots \\ a_d \end{bmatrix} = M^{-1} * \begin{bmatrix} A(x_0) \\ A(x_1) \\ A(x_2) \\ \dots \\ A(x_d) \end{bmatrix}$$

Partiendo de lo d+1 puntos

Podemos obtener los coeficientes y reconstruir la expresión polinómica

Ventajas de la representación por valores

Usando la representación por coeficientes

Podemos evaluar un A(x) en O(d)

Podemos calcular C(x)=A(x)B(x) en $O(d^2)$

Usando la representación por valores

No podemos calcular directamente $A(x) \leftarrow$ debemos interpolar

(a menos que x sea alguno de los puntos $(x_i,A(x_i))$)

Podemos calcular C(x)=A(x)B(x) en O(d)

Calculo de multiplicación de polinomios en O(d)

Sean

$$A(x)=a_0+a_1x+a_2x^2+...+a_dx^d$$
 polinomio de grado d

$$B(x)=b_0+b_1x+b_2x^2+...+b_dx^d$$
 polinomio de grado d

x₀, x₁, ... x_{2d+1} 2d+1 valores seleccionados (para polinomio de grado 2d)

Representamos A y B por valores

$$A \to (X_0, A(X_0)) (X_1, A(X_1)), \dots, (X_{2d}, A(X_{2d}))$$

$$B \to (x_0, B(x_0)) (x_1, B(x_1)), \dots, (x_{2d}, B(x_{2d}))$$

Calculamos C(x) = A(x)*B(x) como

$$(x_0, A(x_0)^*B(x_0)) (x_1, A(x_1)^*B(x_1)), ..., (x_{2d}, A(x_{2d})B(x_{2d}))$$

2d+1 multiplicaciones

→ O(d)

Ejemplo

Para

$$A(x) = 1 + 2x + 3x^2$$

$$B(x) = 2 + x + 4x^2$$

$$X_i = \{-1, 0, 1, -2, 2\}$$

Representamos los polinomios como

$$A = (-1, 2) (0, 1) (1, 6) (2, 17) (-2, 9)$$

$$B = (-1, 5) (0,2) (1,7) (2,20) (-2,16)$$

Calculamos C(x) = A(x)*B(x) como

$$C = (-1, 2*5) (0, 1*2) (1, 6*7) (2, 17*20) (-2, 9*16) = (-1,10) (0,2) (1,42) ...$$

Sumario

Estrategia

Sean

$$A(x)=a_0+a_1x+a_2x^2+\ldots+a_dx^d \quad \text{polinomio de grado d}$$

$$B(x)=b_0+b_1x+b_2x^2+\ldots+b_dx^d \quad \text{polinomio de grado d}$$

$$Para hallar C(x)=A(x)*B(x) \quad C(x) \text{ de grado 2d}$$

$$Seleccionaremos n=2d+1 \text{ puntos } : x_0, x_1, \ldots x_{n-1}$$

$$Evaluaremos A(xi) \text{ y B(xi) para 0} \le i < n \quad O(n^2)$$

$$Multiplicaremos C(xi) = A(xi) * B(xi) \text{ para 0} \le i < n \quad O(n^2)$$

$$Por interpolación obtendremos C(X) \quad O(n^2)$$

Selección conveniente de puntos

Una elección conveniente de puntos

Puede simplificar considerablemente los cálculos de la evaluacion de A(x)

Si elegimos el par de puntos x_i y -x_i

Entonces el computo de A(x_i) y A(-x_i) comparten cálculos

Todas las potencias pares de de x_i

coinciden con las de -xi

Analicemos...

Para

$$A(x)=a_0 + a_1x + a_2x^2 + ... + a_dx^d$$

(suponemos que d es par. Igualmente se puede desarrollar para impar)

Podemos expresarlo separando los exponentes pares e impares

$$A(x)=(a_0 + a_2x^2 + ... + a_dx^d) + (a_1x + a_3x^3 + ... + a_{d-1}x^{d-1})$$

Y luego agrupando por x la segunda parte

$$A(x) = (a_0 + a_2x^2 + ... + a_dx^d) + x(a_1 + a_3x^2 + ... + a_{d-1}x^{d-2})$$

$$A_p(x^2)$$

$$A_p(x^2)$$

Reducción de los cálculos

Reescribimos

$$A(x) = A_p(x^2) + xA_i(x^2)$$

Si tomamos x_i y -x_i

$$A(x_i) = A_p(x_i^2) + x_i A_i(x_i^2)$$

$$A(-x_i) = A_p(x_i^2) - x_i A_i(x_i^2)$$

Es decir que si utilizamos pares de puntos $\pm x_0,...,\pm x_{n/2}$

Reducimos la cantidad de cálculos de evaluación a la mitad

Y Para cada evaluación dividimos el problema

al cálculo de A_p y A_i (que son polinomios de grado d/2)

División y conquista

No tengo pares de valores positivos – negativos para unir ... excepto si....

"Si la solución no es Real... es Compleja"

Necesitamos que en cada subproblema

Existan pares de números de signo contrario

Podremos lograrlo

Usando números complejos.

Utilizaremos para nuestros puntos

n raíces complejas de la unidad

Que dan solución a la ecuación zn=1

Números Complejos

- Exp. binómica: a+bi
- Exp. Trigonométrica:
 r*(cos θ + i sen θ)

$$r = sqrt (a^2 + b^2)$$

 $θ = arcotg (b/a)$

Exp. exponencial:
 r e^{iθ}

"Si la solución no es Real... es Compleja" (cont.)

Multiplicación compleja

$$(r_1, \theta_1) \times (r_2, \theta_2)$$

$$=$$

$$(r_1, r_2, \theta_1 + \theta_2)$$

• Si r=1 zⁿ=(1, nθ)

"Si la solución no es Real... es Compleja" (cont.)

En nuestro planteo para cada subproblema elevamos al cuadrado los puntos

$$A(x) = A_p(x^2) + xA_i(x^2)$$

Pseudocódigo – Fast Fourier Transform

Entrada:

A(x) polinomio de grado ≤ n-1 (n potencia de 2)

n-esimas raices de la unidad.

```
FFT(A,n)
Si n=1
     retornar A(1) // evaluo A con punto 1
Expresar A(X) de la forma A_p(x^2) + x * A_i(x^2)
W=e^{2\pi/n}
R_p = FFT(A_p, n/2)
R_i = FFT(A_i, n/2)
Sea R vector de n posiciones
Desde j=0 a n/2 -1
     R[j] = R_{D}[j] + w^{j} * R_{i}[j]
     R[j + n/2] = R_{p}[j] - w^{j} * R_{i}[j]
Retornar R
```


Complejidad

Cada subproblema

Se divide en 2 subproblemas de la mitad de puntos (w)

En cada subproblema

Se realizan O(n) cálculos

$$T(n) = 2T(n/2) + O(n)$$

Por teorema maestro tenemos un complejidad de O(nlogn)

```
FFT(A,n)
Si n=1
     retornar A(1) // evaluo A con punto 1
Expresar A(X) de la forma A_n(x^2) + x * A_i(x^2)
W=e^{2\pi/n}
R_p = FFT(A_p, n/2)
R_i = FFT(A_i, n/2)
Sea R vector de n posiciones
Desde j=0 a n/2-1
     R[j] = R_p[j] + w^{j} * R_i[j]
     R[j + n/2] = R_{p}[j] - w^{j} * R_{i}[j]
Retornar R
```


Estrategia recargada

Sean

$$A(x)=a_0+a_1x+a_2x^2+\ldots+a_dx^d \quad \text{polinomio de grado d} \\ B(x)=b_0+b_1x+b_2x^2+\ldots+b_dx^d \quad \text{polinomio de grado d} \\ \textbf{Para hallar C(x)=A(x)*B(x)} \\ \textbf{Seleccionaremos n=2d+1 puntos: } x_0, x_1, \ldots x_{n-1} \\ \textbf{Evaluaremos A(xi) y B(xi) para 0 \le i < n} \\ \textbf{O(nlogn)} \\ \textbf{Multiplicaremos C(xi) = A(xi) * B(xi) para 0 \le i < n} \\ \textbf{O(n)} \\ \textbf{Por interpolación obtendremos C(X)} \\ \textbf{O(??)} \\$$

Interpolación – DFT Matrix

Partimos de la expresión

$$\begin{bmatrix} A(x_0) \\ A(x_1) \\ A(x_2) \\ \dots \\ A(x_{n-1}) \end{bmatrix} = \begin{bmatrix} 1 & x_0 & x_0^2 & \dots & x_0^{n-1} \\ 1 & x_1 & x_1^2 & \dots & x_1^{n-1} \\ 1 & x_2 & x_2^2 & \dots & x_2^{n-1} \\ \dots & \dots & \dots & \dots \\ 1 & x_{n-1} & x_{n-1}^2 & \dots & x_{n-1}^{n-1} \end{bmatrix} * \begin{bmatrix} a_0 \\ a_1 \\ a_2 \\ \dots \\ a_{n-1} \end{bmatrix}$$

Para la resolución utilizamos x_k = w^k

$$\begin{bmatrix} A(w^{0}) \\ A(w^{1}) \\ A(w^{2}) \\ \vdots \\ A(w^{n-1}) \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 & \dots & 1 \\ 1 & w^{1} & w^{2} & \dots & w^{n-1} \\ 1 & w^{2} & w^{4} & \dots & w^{2(n-1)} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 1 & w^{n-1} & w^{2(n-1)} & \dots & w^{(n-1)(n-1)} \end{bmatrix} * \begin{bmatrix} a_{0} \\ a_{1} \\ a_{2} \\ \vdots \\ a_{n-1} \end{bmatrix}$$

Matriz discreta de transformada de Fourier (DFT)

Interpolación - Matriz inversa

Queremos operar de forma eficiente con M-1

$$\begin{bmatrix} a_0 \\ a_1 \\ a_2 \\ \dots \\ a_{n-1} \end{bmatrix} = M^{-1} * \begin{bmatrix} A(w^0) \\ A(w^1) \\ A(w^2) \\ \dots \\ A(w^{n-1}) \end{bmatrix}$$

Invirtiendo M podemos obtener

Similar a la matriz de evaluación (reemplazando cada w por w⁻¹)

Siguen siendo raíces de la unidad

Inverse Fast Fourier Transform

Al ser también raíces de la unidad

Podemos basarnos en el mismo principio que FFT con pocos cambios

Lo llamaremos IFFT

Recibirá por parámetro la representación por valor

Obtendrá en O(nlogn)

La representación por coeficientes

Interpolación

Entrada:

P: n valores (n potencia de 2)

Con
$$P_i = A(w^i)$$

n-esimas raíces de la unidad a utilizar.

Complejidad de O(nlogn)

Por teorema maestro

```
IFFT(P,n)
Si n=1
      retornar P
P<sub>n</sub> puntos pares
P<sub>i</sub> puntos impares
W=(1/n)*e^{-2\pi/n}
R_p = IFFT(A_p, n/2)
R_i = IFFT(A_i, n/2)
Sea R vector de n posiciones
Desde j=0 a n/2 -1
      R[j] = R_{p}[j] + w^{j} * R_{i}[j]
      R[j + n/2] = R_{p}[j] - w^{j} * R_{i}[j]
Retornar R
```


Estrategia Final

Sean

$$A(x)=a_0+a_1x+a_2x^2+...+a_dx^d$$
 polinomio de grado d

$$B(x)=b_0+b_1x+b_2x^2+...+b_dx^d$$
 polinomio de grado d

Para hallar C(x)=A(x)*B(x)

Seleccionaremos n=2d+1 puntos: $x_0, x_1, \dots x_{n-1}$

Evaluaremos A(xi) y B(xi) para 0≤i<n

Multiplicaremos C(xi) = A(xi) * B(xi) para 0≤i<n **O(n)**

Por interpolación obtendremos C(X)

O(nlogn)

O(nlogn)

Presentación realizada en Marzo de 2021