ГЕОМЕТРИЯ В КОМПЬЮТЕРНЫХ ПРИЛОЖЕНИЯХ

Лекция 2: Геометрия кривых и поверхностей

Богачев Николай Владимирович

12 сентября 2018

Московский физико-технический институт, Кафедра дискретной математики, Лаборатория продвинутой комбинаторики и сетевых приложений

Геометрия плоских кривых

Плоские кривые

- Гладкая кривая на \mathbb{R}^2 гладкое отображение $\gamma \colon [0,L] \to \mathbb{R}^2$
- Вектор **скорости** $-\gamma'(s) = (x'(s), y'(s)).$

Дискретные кривые

- · Дискретная кривая на \mathbb{R}^2 кусочно-линейная функция
- \cdot Вектор **скорости** а вот что это?

Касательный вектор

Касательный вектор к кривой γ — это (нормированный) вектор скорости $T(s) := \gamma'(s)/\|\gamma'(s)\|$.

3

Длина дуги кривой. Натуральный параметр

Длина кривой γ —

$$L(\gamma) := L(\gamma)[a,b] := \int_a^b \|\gamma'(t)\| \, dt = \int_a^b \sqrt{(x'(t))^2 + (y'(t))^2} \, dt.$$

Натуральный параметр s: $s-a=L(\gamma)[a,s]$. Тогда $\gamma(s)-$ натуральная параметризация.

Пусть $\dot{\gamma}:=d\gamma/ds$. Ясно, что $\|\dot{\gamma}\|=1$.

Натуральную параметризацию можно найти:

$$s(t) = \int_{a}^{t} \left\| \frac{d\gamma}{dt} \right\| dt.$$

ПРЕДЛОЖЕНИЕ

Длина кривой не меняется при монотонной замене параметра.

Доказательство.

Если
$$t=t(au)$$
, то $\gamma_1:=\gamma\circ t$ и

$$L(\gamma_1) = \int_a^b \left\| \frac{d\gamma_1}{d\tau} \right\| \, d\tau = \int_{t(a)}^{t(b)} \left\| \frac{d\gamma}{dt} \right\| \cdot \left| \frac{dt}{d\tau} \right| \cdot \frac{d\tau}{dt} \, dt = L(\gamma).$$

Касание кривых

Две гладкие кривые касаются в точке P, если они обе проходят через нее и имеют в ней общую касательную.

Вектор нормали

Нормаль к кривой γ — перпендикуляр к касательной.

Направляющий вектор нормали -N(s) := (-y'(s), x'(s)).

Касание порядка k

Гладкие регулярные кривые $r_1(s)$ и $r_2(s)$ имеют в точке 0 касание порядка k, если

$$r_1(0) = r_2(0), \quad \dot{r}_1(0) = \dot{r}_2(0), \quad \dots, \qquad r_1^{(k)}(0) = r_2^{(k)}(0).$$

Лемма о перпендикулярности

Лемма о перпендикулярности

Пусть $a\colon t\mapsto a(t)\in\mathbb{R}^n$ — гладкая вектор-функция, причем $|a(t)|\equiv const.$ Тогда $a'(t)\perp a(t).$

Доказательство.

Продифференцируем
$$(a(t),a(t))=const^2$$
 и получаем $2(a(t),a'(t))=0.$

9

Теорема (о соприкасающейся окружности)

Пусть $\gamma(s)$ — рег. кривая и $\ddot{\gamma}(s_0) \neq 0$. Тогда $\exists !$ окружность, имеющая в точке s_0 касание второго порядка с γ , причем (1) ее центр лежит на нормали в направлении $\ddot{\gamma}(s_0)$, (2) ее радиус равен $|\ddot{\gamma}(s_0)|^{-1}$.

Доказательство.

Натуральная параметризация окружности

$$r(s) = \left(x_0 + R \cdot \cos \frac{s}{R}, y_0 + R \cdot \sin \frac{s}{R}\right).$$

Тогда

$$\ddot{r}(s) = -\frac{1}{R} \left(\cos \frac{s}{R}, \sin \frac{s}{R} \right), \quad |\ddot{r}| = R^{-1}.$$

По лемме о перпендикулярности $\dot{r}(s) \perp \ddot{r}(s)$.

Касание 2-го порядка ⇔ (1) и (2).

Кривизна

Кривизна $-k(s) := \|\ddot{\gamma}(s)\|$

Радиус кривизны — R(s) = 1/k(s)

Эквивалентно: $k(s) = \frac{d}{ds}\theta(s)$!

Геометрия пространственных

кривых

Пространственные кривые

Гладкая кривая в \mathbb{R}^3 — гладкое отображение $\gamma\colon [0,L] o \mathbb{R}^3$

Соприкасающаяся окружность и кривизна

Репер Френе

Репер Френе — ортонормированная тройка $\{T(s),N(s),B(s)\}$, где $T(s)=\dot{\gamma}(s)$ — единичный (касательный) вектор **скорости**, $N(s)=\frac{\ddot{\gamma}(s)}{k(s)}$ — вектор **главной нормали**, $B(s)=[T(s)\times N(s)]$ — вектор **бинормали** к кривой.

Формулы Френе

$$\begin{bmatrix} \dot{T}(s) \\ \dot{N}(s) \\ \dot{B}(s) \end{bmatrix} = \begin{bmatrix} 0 & k(s) & 0 \\ -k(s) & 0 & -\tau(s) \\ 0 & \tau(s) & 0 \end{bmatrix} \begin{bmatrix} T(s) \\ N(s) \\ B(s) \end{bmatrix}$$

Здесь au(s) — кручение.

Геометрия поверхностей

Поверхности

Гладкая поверхность в \mathbb{R}^n — гладкое отображение

 $f \colon U \to \mathbb{R}^n$

Пример

Седло в \mathbb{R}^3

Касательное пространство

Касательное пространство к поверхности — множество всех касательных векторов.

Дифференциал отображения (поверхности)

Дифференциал отображения — это линейное отображение на касательных векторах

Риманова метрика

- Большинство вычислений на многообразиях сводятся к метрическим.
- Это позволяет сделать так называемая риманова метрика
- Абстрактно: положительно определённая билинейная форма, гладко зависящая от точки.

Евклидова риманова метрика, индуцированная вложением

- Обычно поверхность задана вложением $f\colon U \to \mathbb{R}^n$. Как вычислить g(X,Y)?
- Нельзя использовать $\langle \cdot, \cdot \rangle$ на $T_p M$. Почему?
- Индуцированная метрика: $g(X,Y) := \langle df(X), df(Y) \rangle$

Список литературы:

- [1] Keenan Crane Discrete Differential Geometry: An Applied Introduction, 2018.
- [2] А.О. Иванов, А.А. Тужилин Лекции по классической дифференциальной геометрии, 2009, Москва, Логос.

Лекция 1, cmp. 5 – 14

[3] А.И. Шафаревич — Курс лекций по классической дифференциальной геометрии, 2007, Москва, МГУ, Механико-математический факультет. *Лекция 1, стр. 3 – 10*