-760, $\gamma_d = 330$, $\tau = 446s2431$ Confrontation du modèle aux données expérimentales et ajustement des paramètresDoc Start

MODÉLISATION DES NEURONES BIOLOGIQUES

Azami Yahya, Cherkaoui Abdelhamid, Moussinga Ndoumbe François, Ryckewaert Pierre, Saidi Manal, Tnani Mohamed

Azami Yahya. Cherkaoui Abdelhamid, Moussinga Ndoumbe François, Ryckewaert Pierre, Saidi Manal, Tnani Mohamed

ORIGINES BIOLOGIQUES

STRUCTURE D'UN NEURONE

Origines biologiques

- Un neurone est composé d'un corps cellulaire, de dendrites, et d'un axone.
- Les signaux électriques circulent du corps cellulaire vers l'axone.

NEURONE

POTENTIEL D'ACTION (SPIKE)

- Le potentiel d'action est un signal électrique bref déclenché par une stimulation suffisante.
- Il propage le signal tout au long de l'axone jusqu'à la terminaison synaptique.
- À l'arrivée du spike, les canaux calciques s'ouvrent.

POTENTIEL D'ACTION ET RÔLE DU CALCIUM

- Le spike arrive \rightarrow ouverture des canaux calciques \rightarrow entrée de Ca²⁺.
- Variation du calcium selon la fréquence des spikes :
 - Spikes isolés ou faibles \to faible augmentation de Ca^{2+} \to faible libération de neurotransmetteurs.
 - Spikes répétés ou intenses \to accumulation de Ca^{2+} \to forte libération de neurotransmetteurs.
- La concentration et la durée d'élévation de Ca²⁺ codent des informations sur la fréquence et la synchronisation des spikes.

MODÈLE DE GRAUPNER ET BRUNEL

PRÉSENTATION ET EXPLICATION DU MODÈLE

Modèle de Graupner et Brunel

Brunel

- Un seuil de LTD (θ_d) :
 - Si la concentration en calcium est entre θ_d et $\theta_p \to$ dépression de la synapse (baisse de l'efficacité).
- Un seuil de LTP (θ_p) : Si la concentration dépasse $\theta_p \to \text{potentiation}$ (augmentation de l'efficacité).
- Un terme de Bruit:

Reflète l'incertitude et la variabilité naturelle des synapses (facteurs biochimiques ignorés, interactions voisines, fluctuations thermiques...).

PARAMÈTRES DU MODÈLE

$$\tau \frac{d\rho}{dt} = -\frac{\partial U(\rho)}{\partial \rho} + \gamma_p (1 - \rho) \Theta[c(t) - \theta_p] - \gamma_d \rho \Theta[c(t) - \theta_d] + Noise(t)$$

- τ : constante de temps régissant l'évolution de l'efficacité synaptique.
- $\gamma_d,\,\gamma_p$: coefficients d'intensité de la dépression (LTD) et de la potentiation (LTP).
- c(t) : concentration calcique à l'instant t; θ_d et θ_p sont les seuils associés à la LTD et à la LTP.
- Θ : fonction de Heaviside (activation par seuil).

PARAMÈTRES DU MODÈLE

$$Noise(t) = \sigma\sqrt{\tau}\,\Theta\left[c(t) - \min(\theta_d, \theta_p)\right]\eta(t)$$

- σ : amplitude du bruit.
- $\eta(t)$: bruit blanc gaussien (moyenne 0, variance 1).

$$U(\rho) = \frac{1}{4}\rho^2 (1 - \rho)^2$$

Potentiel bistable, avec deux états stables $\rho = 0$ (DOWN) et $\rho = 1$ (UP).

MODÈLE DE C(t) UTILISÉ

$$\frac{dc}{dt} = -\frac{c}{\tau_{\text{Ca}}} + C_{\text{pre}} \sum_{i} \delta(t - t_i - D) + C_{\text{post}} \sum_{j} \delta(t - t_j)$$

- Spike présynaptique \rightarrow saut de calcium de taille C_{pre} , avec un délai D.
- Spike postsynaptique \rightarrow saut immédiat de calcium de taille $C_{\rm post}$.
- En l'absence de spikes \rightarrow décroissance exponentielle vers la valeur de repos $c_0 = 0$, avec une constante de temps τ_{Ca} .

ETUDE MATHÉMATIQUE DU MODÈLE

ETUDE DU BRUIT

Figure – Forme du potentiel

$$\mathbb{E}\{\tau\} \approx \frac{2\pi\tau}{\sqrt{|U''(0)||U''(1)|}} \exp\left(\frac{2*(Umax-Umin)}{\sigma^2}\right)$$

CONDITION SUR γ_p , γ_d , θ_p , θ_d ET C_{post}

FIGURE 2 – Evolution de l'efficacité synaptique au cours du temps

Figure – Evolution de l'efficacité synaptique au cours du temps

ESTIMATION DES PARAMÈTRES PAR UNE MÉTHODE D'OPTIMISATION

FONCTION DE COÛT ET STRATÉGIE D'OPTIMISATION

Estimation des paramètres par une méthode d'optimisation

- Fonction de coût :

$$C(\theta) = \sum_{i=1}^{N} \left(y_i^{exp} - y_i^{mod}(\theta) \right)^2$$

- Méthode:
 - Initialisation aléatoire (distribution uniforme)
 - Descente de gradient stochastique, $\sigma = 50$
 - Rejet des paramètres non biologiquement plausibles
- θ_d , θ_p fixés pour homogénéité.

DONNÉES EXPÉRIMENTALES UTILISÉES

Figure – Données expérimentales de Wittenberg & Wang (haut) et de Sjöström (bas)

RÉSULTATS DE L'OPTIMISATION

Figure – Résultat du fit pour les données de Sjöström

Figure – Résultats du fit pour les données de Wittenberg & Wang

PARAMÈTRES OPTIMAUX ESTIMÉS

Estimation des paramètres par une méthode d'optimisation

Paramètre	Wittenberg	Sjöström
$\tau_{\mathrm{Ca}} \; (\mathrm{ms})$	45.56	30.00
C_{pre}	0.98	0.41
$C_{ m post}$	0.35	1.32
θ_d	1	1
$ heta_p$	1.3	1.3
γ_d	370.24	330.56
γ_p	1233.51	900.21
$ ho_{\star}$	0.5	0.5
D (ms)	16.40	8.40
τ (s)	712.41	450.61

Wittenberg Sjöström 48.8373 22.6936 0.5617539 0.2758651.23964 1.3 1.3 313.0965 331.909 1645.59 725.085 0.5 0.5 18.8008 4.6098 688.355 346.3615

Figure – Paramètres estimés après l'optimisation

Figure – Paramètres du modèle Graupner & Brunel

IMPACT DE σ SUR LES RÉSULTATS

Estimation des paramètres par une méthode d'optimisation

Figure – Effet de différentes valeurs de σ sur la courbe de plasticité

 $\sigma_{Wittenberg} \approx 20$

ROBUSTESSE DE L'OPTIMISATION

Figure – (C_{pre}, C_{post}) optimaux pour les données de Sjöström, Wittenberg et Wang

CONFRONTATION DU MODÈLE AUX DONNÉES EXPÉRIMENTALES ET AJUSTEMENT DES PARAMÈTRES

PARAMÈTRES DE GRAUPNER ET BRUNEL

Confrontation du modèle aux données expérimentales

Paramètre	hippocampal slices	hippocampal cultures	cortical slices	me
	(Wittenberg and Wang 2006)	(Wang et al. 2005)	(Sjöström et al. 2001)	3
$\tau_{\mathrm{Ca}} \; (\mathrm{ms})$	48.8373	11.9536	22.6936	
$C_{ m pre}$	1	0.58156	0.5617539	110
$C_{ m post}$	0.275865	1.76444	1.23964	
θ_d	1	1	1	1
θ_p	1.3	1.3	1.3	1
γ_d	313.0965	61.141	331.909	1
γ_p	1645.59	113.6545	725.085]
σ	9.1844	2.5654	3.3501	1
$\tau \; (\mathrm{sec})$	688.355	33.7596	346.3615]
ρ_{\star}	0.5	0.5	0.5	1
D (ms)	18.8008	10	4.6098	1

Figure – Paramètres de Graupner et Brunel pour différentes expériences

DÉTERMINATION DE D, θ_d , θ_p

Confrontation du modèle aux données expérimentales et ajustement des paramètres

Renormalisation des concentrations en calcium :

$$\theta_d = 1$$

Par convention:

$$\theta_p = 1.3$$

Enfin, d'après les relevés expérimentaux :

$$D = 4.6ms$$

Figure – Expérience : 900 spikes synchronisés

Figure – Concentration en calcium au maximum de la dépression

Figure – $\tau_{ca} = 20ms$

Figure – $\tau_{ca} = 24ms$

Figure – 900 spikes à 20Hz

Figure – $\tau_{ca} = 23ms$

Figure – 900 spikes à 0.1Hz

Figure – Concentration en calcium au maximum de la dépression

Figure – $\tau_{ca} = 23ms$

Figure – $\tau_{ca} = 24ms$

AJUSTEMENT DE γ_p , γ_d , τ

Figure – 15 trains de spikes séparés par 10s

AJUSTEMENT DE γ_p , γ_d , τ

Simulation plasticité calcique (15 bursts à 0.1 Hz. 5 spikes)

Figure –
$$\gamma_p = 660, \gamma_d = 330, \tau = 346s$$

Figure –
$$\gamma_p = 760, \gamma_d = 330, \tau = 346s$$

MODÈLE DE COSTA ET AL.

EXPLICATION DU MODÈLE

- Séparation de l'activité synaptique en trois traces exponentielles qui augmentent de +1 à chaque spike et décroissent entre les spikes :
 - $x^+(t)$: trace présynaptique.
 - $y^+(t)$: trace postsynaptique LTP.
 - $y^-(t)$: trace postsynaptique LTD.
- Deux facteurs de plasticité :
 - P : probabilité de libération présynaptique.
 - -q: amplitude quantale postsynaptique.
- La force synaptique est : $\mathbf{w} = \mathbf{P} \times q$.

MODÉLISATION MATHÉMATIQUE DU MODÈLE

Évolution des traces :

$$\frac{dx^{+}}{dt} = -\frac{x^{+}}{\tau_{x^{+}}} + X(t)$$

$$\frac{dy^{+}}{dt} = -\frac{y^{+}}{\tau_{y^{+}}} + Y(t) \qquad \frac{dy^{-}}{dt} = -\frac{y^{-}}{\tau_{y^{-}}} + Y(t)$$

- X(t) et Y(t): spikes pré- et postsynaptiques (δ -pics).
- Chaque spike ajoute +1, puis la trace décroît exponentiellement.

Mise à jour de q (spike post) :

$$q_{l+1} = q_l + c_+ \cdot x_k^+ \cdot e^{-\frac{\Delta t_{\text{post-pre}}}{\tau_{x^+}}} \cdot y_l^- \cdot e^{-\frac{\Delta t_{\text{post}}}{\tau_{y^-}}}$$

Mise à jour de P (spike pré) :

$$P_{k+1} = P_k - d_- \cdot y_l^- \cdot e^{-\frac{\Delta t_{\text{pre-post}}}{\tau_{y^-}}} \cdot y_l^+ \cdot e^{-\frac{\Delta t_{\text{pre-post}}}{\tau_{y^+}}}$$
$$+ d_+ \cdot x_k^+ \cdot e^{-\frac{\Delta t_{\text{pre}}}{\tau_{x^+}}} \cdot y_l^+ \cdot e^{-\frac{\Delta t_{\text{pre-post}}}{\tau_{y^+}}}$$

avec
$$x_{k+1}^+ = x_k^+ \exp\left(-\frac{\Delta t_{\text{pre}}}{\tau_{x^+}}\right) + 1$$
 (De même pour y^+ et y^-)

COMPARAISON DES DEUX MODÈLES

Figure – STDP des deux modèles à 20 Hz

LIMITES DU MODÈLE DE GRAUPNER ET BRUNEL

Costa et al. (2015) model traces value (a.u.) - v^- (postsyn, LTD) Graupner & Brunel (2012) model [Ca^{2+}] {intra} - A ITD --- A ITP 0.0 1000 2000 3000 4000 5000 Temps (ms)

Figure – Évolution du poids synaptique des deux modèles dans l'expérience de memory saving

Figure – Concentrations des traces dans les deux modèles au cours des phases A-B-A

MERCI POUR VOTRE ATTENTION!

