Step-1

Let A be an m by n matrix

Let r be the rank of A or $r = \dim(C(A))$

(a) Suppose the number of solutions of Ax = b is 0 depending on column b.

That means Ax = b has no solution

So, the number of non zero rows of reduced A < number of non zero rows of reduced augmented matrix [A|b]

Consequently, the columns of A are dependent

In other words, r < m

If the number of solutions Ax = b is 1, that is the non homogeneous system has a unique solution depending on b.

So, r = m = n.

Step-2

(b) If the number of solutions of the non homogeneous system Ax = b is infinite, then we follow that the number of linearly independent rows of A = r = m = number of linearly independent rows of the augmented matrix $[A \mid b]$ and r < n.

Step-3

(c) If the number of solutions of Ax = b is 0, then we follow that the system is inconsistent or has no solution.

Then we observe that number of non zero rows of $A \le$ number of non zero rows of $[A \mid b]$.

If the number of solutions of Ax = b is infinite, then number of non zero rows of A = b is infinite, the number of non zero rows of A = b is infinite, the number of non zero rows of A

That is r = m < n

Step-4

(d) If the number of solutions of Ax = b is unique depending on b, then we can write $x = A^{-1}b$ is that unique solution.

In this case r = m = n