Issue Report

홈네트워크/정보기전 (2011.11)

WPAN기술 표준화 동향

주저자: 윤명현 KEIT 홈네트워크/정보기전 PD

부저자: 장동현 KEIT 홈네트워크/정보기전PD실 선임연구원

< 요약

- □ 본 보고서는 최근에 국제표준화 활동이 활발한 WPAN Working Group을 중심으로 표준화 동향을 조사하여 표준기술개발의 필요성을 파악하고자 함
 - WPAN은 10m 이내의 비교적 단거리에서 사용하는 저전력, 소형, 저가의 개인 무선 네트워크 기술로 유비쿼터스 네트워킹을 위한 핵심 기술임
 - WPAN 전송기술은 초기의 저전력 망 구성을 확보하기 위한 연구에서 신뢰성 확보와 정보의 시의성을 보장하기 위한 방향으로 진화하고 있음
- ☐ IEEE802.15 Working Group Activities
 - 산업 자동화 서비스 및 스마트 그리드에 대한 WPAN 기술 적용이 가시화됨에 따라 표준기술의 선점을 위한 규격 제정이 활발함
 - ㅇ 녹색성장 이슈와 더불어 Smart Utility Network, Smart Grid 관련 시장 활성화가 예상됨에 따라 저전력, 소출력 WPAN 표준 기술 선점 필요
- □ WPAN 표준기술 진화에 따른 대책 마련 필요
 - WPAN 인프라 구축 및 유지비용을 최소화할 수 있는 기술 개발
 - ㅇ 유무선 인터넷 트랙픽의 급격한 증가로 인한 무선 주파수 주파수 부족 문제 및 효율성 제고를 위한 주파수 공유 기술 개발

1. 개요

□ WPAN(Wiress Personal Area Network) 특징

- o WPAN은 10m 이내의 좁은 영역에서 사용하는 저전력, 소형, 저가의 개인 무선 네트워크 기술로 유비쿼터스 네트워킹을 위한 핵심 기술
 - 가정·오피스 내 가전기기, 사무기기 및 각종 정보기기를 근거리에서 배선의 불편 없이 연결할 수 있는 기술
 - 센서 네트워크 구축과 더불어 고속·고품질의 무선인터넷 서비스 이용의 확산을 가능하게 하는 기술
- o '99년 3월 IEEE802.11 WLAN에서 분리하여 IEEE802.15 WPAN WG(Working Group) 탄생
 - '98년 3월 IEEE802.11 WLAN WG에서 저전력 소모와 복잡하고 낮은 POS (Personal Operation Space) 영역에서 무선 접속을 제공할 수 있는 표준의 필요성이 제기되면서 WPAN SG(Study Group) 생성
 - 움직이거나 정지상태에서 사방으로 10m까지 사람의 활동공간인 POS에서 무선 접속을 제공할 수 있도록 물리계층과 데이터 링크계층을 표준화하는 것이 목적
 - WLAN과 비교시 상대적으로 좁은 영역에서 저전력 소모와 간단한 구조이면서 소형, 저가로 서비스 영역과 전송속도에서 차이가 있음

☐ IEEE802.15.1(Bluetooth)

o 최대 전송 속도는 1Mbps이며 2.4GHz의 ISM(Industrial Scientific Medical) 대역의 주파수를 사용하는 기술로 '02년 표준제정이 완료됨

☐ IEEE802.15.3(High Rate WPAN)

o UWB(Ultla WideBand) 기술로 잘 알려져 있으며 멀티미디어 데이터의 QoS를 보장하면서 고속으로 전송할 수 있는 기술이나 관련 업계간 첨예한 대립으로 인해 표준 제정이 중단된 상태임

☐ IEEE802.15.4(Low Rate WPAN)

o 블루투스보다 낮은 20~250kbps의 전송 속도와 매우 저렴한 가격, 매우 긴 배터리수명, 간단한 구조 및 연결성을 제공하는 기술로 '03년 표준제정 완료 후 TG4a, TG4b 등으로 분리되어 운영되다가 '06년 개정됨. 시장 요청 등에 의해 TG4e, TG4f 등 다수의 표준워킹그룹이 계속 운영중에 있음

□ IEEE802.15 표준 Working Group

o 현재 홈네트워크 관련 IEEE 표준 워킹 그룹은 TG4e, TG4g, TG4k, TG4m이며, 이 외의 Task Group은 RFID 또는 WBAN(Wireless Body Area Network) 표준화 그룹임

[그림 2] IEEE802.15 Working Group Activities('11년 11월 기준)

- o TG4e는 2006년 802.15.4 MAC 표준 개선을 목표로 함
- o IEEE802.15.4 기반 SUN(Smart Utility Network) 관련 표준화 워킹 그룹은 TG4g, TG4k로 각각 PHY와 MAC 표준화 추진
 - ※ Smart Utility Network : 전기, 가스, 수도와 같은 유틸리티 관련 정보를 공급자와 사용자 사이에 자유롭게 정보를 교환할 수 있는 저전력/저가격의 근거리 무선 전송기술
- o TG4m은 TV 방송용으로 할당된 주파수 대역에서 지역적으로 미사용 중인 대역을 홈네트워크 서비스로 활용하기 위한 표준화 그룹임
- o 가시광통신인 VLC(Visible Light Communication) 기술은 우리나라 주도로 '11년 7월 국제표준(IEEE802.15.7)으로 확정됨

2. IEEE8O2.15 WPAN 표준화 동향

☐ IEEE802.15.4e : MAC Enhancement

o IEEE802.15.4-2006의 MAC Amendment 규격으로 산업용 시장 및 Chinese WPAN(CWPAN) 호환성을 지원하기 위해 높은 신뢰성, 낮은 전송 지연성, 저전력성을 내용으로 표준화 진행

o 표준화 배경

- 고신뢰성 산업 현장에 저전력 단거리 무선 네트워크를 활용하려는 시장 요청
- 저전력 저가격의 단거리용 무선네트워크로 제안된 IEEE 802.15.4의 한계 개선

[표	1]	IEEE802.15.4의	문제점

문제점	내용
· 전송 지연	·데이터 전달 지연 변이로 인해 동시에 많은 디바이스에 고정 지연과 고정 대역 보장하는데 한계점 노출
· 주파수간섭 취약	· 저전력 단거리용으로 설계된 PHY의 특성상 주변 무선 기기에 의한 주파수 간섭에 취약함에 따라 데이터 전송의 신뢰성이 낮은 문제점
· Peer-to-Peer간 통신의 제한	· multi-hop 네트워크 구성시 노드 간 동기 유지가 어려움 · 네트워크 확장에 제한 · end-to-end 고정 지연을 보장하는데 한계

o 주요 표준안 내용

- 서비스 영역에 따라 복수의 동작 모드를 두어 사용자가 목적에 따라 MAC 모드를 선택해 네트워크를 운용할 수 있도록 함
- 저지연 실시간 보장을 위하여 시분할 MAC, 마치 무선 채널이 항상 켜져 있는 것 같이 저전력으로 작동할 수 있는 비동기 저전력 방식의 MAC
- 향후 추가될 PHY 표준을 지원하기 위한 MAC 프레임 구조

o 표준화 현황

- '08년 3월 IEEE802.15.4-2006 draft의 MAC 개선을 위한 TG 구성
- '11년 7월 Sponsor Ballot 추진, 11월 2차 Recirculation Ballot 진행 중
- '12년 3월 최종 승인 목표

☐ IEEE802.15.4g : SUN PHY

o 스마트그리드와 연계하여 전기, 수도, 가스 등과 같은 유틸리티 공급자와 사용자가 무선 네트워크를 이용하여 상호 정보를 교환함으로써 에너지를 효율적으로 관리할 수 있는 무선 전송 기술에 대한 표준

[그림 3] Smart Utility Network 구성도

o 표준화 배경

- Zigbee 기반의 열악한 유틸리티 네트워크 통신 환경에서 높은 링크 마진 특성을 얻기가 어렵고, Mesh Routing 기술과 연계하는데 한계를 가지고 있어 새로운 국제 표준의 무선 전송기술 개발의 필요성 제기

ZigBee 문제점	SUN 기술 요구 사항
· 통신거리 및 전송속도의 한계	·1Km의 통신거리
·장애물/간섭에 의한 통신품질 저하	· 수십Kbps~1Mbps급 전송 속도
· 음영지역 발생	· 신뢰성 있는 통신
· Mesh Routing 보장의 어려움	· Mesh Routing 보장

[표 2] SUN의 요구사항

o 표준화 현황

- '09.1월에 Call for proposals을 발의하였고, '09.5월부터 PHY 규격 제안서를 받아 표준화 추진
- '10년 4월~'11년 6월까지 5차례 Letter Ballot/Comment Resolution
- '11년 10월에 1st Recirculation Ballot 완료하여 현재 Comment Resolution 진행 중

- o SUN을 지원하기 위한 PHY 요구 조건
- 낮은 가격의 구현 구조, 최소 40Kbps에서 최대 1Mbps 미만의 데이터 전송률
- 1,500Octect 이상의 페이로드(Payload), 최소 3개 이상의 동시 운용 가능한 네트워크
- 혼잡한 주파수에서 성공적인 운용을 보장하기 위한 주파수 공유 기술
- 지하실, 코너와 같은 환경에서 최적의 에너지 효율적인 링크 마진 제공

o 응용 분야

- Smart Grid 응용 서비스 분야: ①가정내 전기, 수도, 가스 등 유틸리티 무선 원격 검침을 기존 통신망을 통해 사업자 서버로 데이터를 전달해 주는 AMR 서비스, ② Advanced Metering Infrastructure, Demand Response, Load Controller, Energy Service Portal 등의 스마트 그리드 서비스
- 홈네트워크 서비스 분야 : 공간 내 무선 네트워크를 구축하여 독거 노인 등 관리 대상자의 활동량 및 위험요소 감지와 통보 등을 특징으로 하는 효율적인 복지 서비스 구현을 위한 시스템
- 센서네트워크 서비스 분야 : 생산시설의 입고, 출고 업무를 무선 네트워크를 이용하여 원격 처리하여 생산제품의 현재 위치와 상태 정보를 관제실에 제공하는 USN 시스템

[그림 4] Smart Grid 응용서비스

☐ IEEE802.15.4k : LECIM(Low Energy Critical Infrastructure Monitoring)

- o LECIM은 옥외 시설물, 환경, 자산 등의 감시와 같이 저전력 운용이 가능한 옥외 중거리 통신기술의 표준화를 목적으로 함
- '10년 3월 회의에서 IG로 승인되었으며, 5월 회의에서 응용 관점에서의 요구사항 및 서비스 영역에 대하여 논의를 거쳐, 7월 SG로 승인됨
- 현재 15.4g가 표방하는 서비스 영역과 일부 중복성이 있으나, 컨테이너 관리, 스마트 수도/가스 검침, 토양 수분 측정 등 모니터링 서비스를 위한 기술 규격에 중점을 두고 있음
- 현재 표준화가 초기 단계이며 예상 응용 서비스에 대한 시장의 관심도 높다는 점에서 현 단계에 적극적인 표준화 참여를 통한 기술 반영 노력이 필요함

[그림 5] LECIM 개요

o 표준화 현황

- '11년 1월 TG4k 승인, 9월 총 17개의 MAC/PHY 제안서 접수
- On-Ramp Wireless 주도, ETRI, Itron, France Telecom, Huawei 등 참여
- 현재 Baseline 채택을 위해 기술별 Merge 작업 중
- '12년 7월 Final Draft, 9월 Letter Ballot 예정

o 응용 분야

- 화재, 산불방지, 홍수, 유해환경 등의 재난 방지 및 관리 시스템
- 계통 모니터링, 이상회로 감지시스템 등 스마트그리드 연관기술 개발
- 각종 환경감시 정보 기반의 M2M 서비스 기술 개발

[그림 6] LECIM기반 서비스 예

☐ IEEE802.15.4m : TVWS(TV White Space)

- o TV 방송용으로 할당된 주파수 대역에서 지역적으로 미사용 중인 대역을 홈네트워크 서비스로 활용하기 위한 기술
 - 국내: 470~698MHz대역(CH14~51, 채널당 6MHz 대역폭)이 TVWS 후보군

o TVWS 표준화 배경

- 현재의 고정적 주파수 할당 체재 하에서는 급격히 증가하고 있는 다양한 무선 서비스가 요구하는 주파수 자원을 원활히 공급하는데 한계
- ※ 전 세계 모바일 인터넷 트래픽 연평균('08~'13년) 성장률 131% (Source: http://mobizen.pe.kr)
- 주파수 부족 문제 및 효율성 제고를 위해 주파수 공유 기술에 대한 연구 필요성 증가
- 동일한 주파수 대역에서 복수의 서비스가 허용되는 주파수 공존 기술로 해결하기 위한 노력

o TVWS WPAN 특징

- 고품질, 고안정성, 효율성, 다양한 네트워크 지원 등으로 스마트 홈네트워킹 구축이 가능한 WPAN 기술

[그림 7] TVWS WPAN의 특징

o 표준화 현황

- '11년 1월 IEEE802.15 TV White Space Study Group(SG-4TV) 첫 회의 후, '11년 9월 TG4m으로 승격
- '11년 9월 TG4m으로 승격·의장단 구성 후 Proposal('12년 5월)을 위한 Technical Guidance Document 작성 중
- VHF/UHF TV band(54MHz~862MHz)에서 운용할 40Kbps~2Mbps급 저속 WPAN 기술을 표준화 범위로 함
- ETRI 주도로 Silver Springs Networks(SSN), NICT, Huawei 등이 참여
- '12년 7월 표준 Baseline 채택, 11월 Final Draft 완료 예정

o 해외 주요국 TVWS 추진 동향

- 주요국 중심으로 기술시장 주도를 위해 TVWS를 활용한 서비스 모델 발굴, 기술 개발, 시범서비스 및 제도 마련 추진에 적극적임

[표 3] TVWS 추진 동향

미국 FCC	· '06년 고정형 TV band device 사용 제안, '08년 기술기준 제정 · '10년 위치 측위 & DB 접속 방식으로 TVWS 사용 허용
영국 Ofcom	· '07년 TVWS 비면허 허용방침에 관한 의견수렴 · 현재 제도 마련 중(전파 측정조사 및 TVWS 산정 실시)
일본 총무성	· '10년 연구개발 및 서비스모델 실증시험을 위해 "White Space 특구" 선행모델 제시 · 향후 연구개발, 제도정비를 통해 '15년부터 통신형, 신기술 기반 서비스 제공 목표

☐ IEEE802.15.7 : VLC(Visible Light Communication)

- o 가시광 무선통신 기술은 백열전구와 형광등과 같은 조명이 디지털 반도체 LED (Light Emitting Diode) 조명으로 교체되는 인프라를 이용하여 무선 통신을 가능하게 하는 기술
 - 반도체가 메모리 및 프로세서에 이어 조명으로도 사용하기 시작하면서 LED 조명 빛을 무선 통신 광원으로 사용할 수 있는 기술로 등장
 - 380nm~780nm의 가시광 파장(Wavelength)을 사용하며 800~900nm를 사용하는 IrDA와 가장 유사한 파장을 사용하지만 조명과 동시에 통신할 수 있는 장점이 있음
- '11.8월 프라운호퍼 연구소가 백색 LED 조명을 이용해 800Mbps로 전송하는데 성공
- o LED 조명 통신 융합 원리
- LED와 PD(Photo Diode)의 깜박임 송수신을 기본 원리로 함
- 전기에서 빛으로 바꾸는 속도가 약 30~250nm로 빠른 스위칭을 통신 모듈레이션 하여 통신할 수 있는데 사람은 초당 100번 이상 깜박이면 깜박임을 인식하지 못하고 계속적으로 켜진 것으로 인식하기 때문에 조명의 기능도 유지됨

[그림 8] LED기반 VLC 구성도

- o 지식경제부는 2015년까지 LED 조명을 30%로 전환하는 1530 프로젝트를 추진 중에 있으며 년 1조 6천억원의 전력절감 효과를 예상함
 - 현재 사용하고 있는 형광등은 유해 물질인 수은이 함유되어 있는 반면 LED는 수은이 없어 보다 친환경적이며 90% 전력절감 및 보다 긴 수명시간을 보장함

o 표준화 현황

- '03년 일본이 자국내에서 VLCC(VLC Consortium)라는 컨소시엄을 결성하여 시작
- '07.11월 IEEE 802.15에서 IG가 발족한 후 '08.3월 SG로 승격되어, '09.1월 TG7로 승격되어 본격적으로 표준화 추진
- 삼성전자, ETRI, 지멘스, 옥스퍼드 대학, 보잉사, NEC, VLCC, 게이오 대학, 보스톤 대학, 인텔, 인터디지털, CSUS 등이 적극적으로 참여
- '11.7월 기술표준으로 확정되었으며 ETRI와 삼성전자가 주도적인 역할을 함에 따라 국내 기술 보호 및 국제 시장 선점 기대

o LED기반 가시광 무선통신 요구사항

- 깜박거림 방지 : 인간의 눈이 감지할 수 있는 광원의 밝기 변화가 없어야 함
- 조명의 밝기 조절 및 최대 밝기 제공 : 디지털 제어를 통해 용이하게 조명의 밝기를 조절할 수 있는 LED조명의 장점이 보장되어야 하며, VLC 기능이 추가되더라도 기능이 없는 기존 조명과 동일한 밝기를 제공하여야 함
- LED광원의 보호 : 긴 수명을 보장하는 LED광원의 주요 장점을 유지해야 함
- 조명의 색 변이 방지 : 조명의 밝기 조절에 따라 조명의 색 변이가 발현되지 않아야 함

o 응용 분야

- GPS정보를 수신할 수 없는 실내 또는 터널 등에서 위치 정보를 제공하는 서비스
- 전자파 간섭최소화, 항공기 경량화 등이 필요한 항공기내 무선 통신 서비스
- 시각 장애인을 위한 LED교통신호등 기반 교통 정보 서비스
- 지역정보제공, 위치에 따른 상품 및 할인정보 제공 등의 고객 맞춤형 서비스 등

[그림 9] VLC 응용 예(전시관)

3. 시시점 및 정책제언

□ WPAN 표준 기술의 진화

- o WPAN 전송기술은 초기의 저전력 망 구성을 확보하기 위한 연구에서 신뢰성 확보와 정보의 시의성을 보장하기 위한 방향으로 진화하고 있음
- o 최근 산업 자동화 서비스 및 스마트 그리드에 대한 WPAN 기술 적용이 가시화됨에 따라 관련 시장 활성화가 예상되고 있으며, 국제 표준 기구에서는 표준기술의 선점을 위해 새로운 규격을 제정하거나 기존의 규격을 개정하고 있음

□ 모바일 이동기기의 보급확산에 따른 WPAN기술의 중요성 지속적 증가

- o 근거리 무선통신이 수백 Kbps~Gbps까지 확산 추세에 있고, 녹색성장 이슈와 더불어 저전력, 소출력 환경에서의 다양한 WPAN 표준 정립 필요
- o Green ICT 실현을 위한 WPAN 기술은 언제, 어디서나, 누구나 정보통신의 혜택을 누릴 수 있는 유비쿼터스 라이프를 구현하기 위한 근거리 네트워킹 기술로서 저전력 /소형/저가격의 특징을 갖는 다양한 표준 기술 개발이 필요함

□ 시장활성화 예상 분야의 적극적인 국제표준 참여 및 R&D 연계

- o 현재 ETRI를 중심으로 국제표준를 선도하고 있는 SUN(IEEE802.15 TG4g 및 TG4e) 기술을 스마트그리드와 연계된 메터링 서비스, 홈네트워크 서비스, 센서네트워크 서비스 등의 다양한 응용 서비스에 적용 필요
- Zigbee의 PHY기술인 IEEE802.15.4에서 제기된 실외 환경에서의 서비스 거리 제약 조건과 한정된 데이터 전송률을 극복할 수 있는 Zigbee의 또 다른 Alt-PHY 기술로 활용될 것으로 기대
- o 서비스 반경이 수 Km이면서 수 천개의 센서 데이터를 최소 인프라 및 최소 유지 비용으로 수집할 수 있는 LECIM 기술은 이동통신 기술과 연계하여 재난 방지 및 관리시스템에 적합한 기술임
 - ※ UNDP(United Nations Development Programme)의 국가 재난 위험도 순위에 따르면 한국은 '06년 131위에서 '12년 30위권 진입 예측
- o 전 세계 모바일 인터넷 트래픽의 연평균 성장률이 131%로 급격히 증가하고 있는 추세이므로 다양한 무선 서비스가 요구하는 주파수 자원을 원활히 공급하기 위해서 주파수 부족 문제 및 효율성 제고를 위한 주파수 공유기술 개발 필요
- o LED 조명 인프라를 이용한 통신 환경을 조성하여 조명 인프라를 통해 사용자에게 다양한 서비스를 제공한다면 경제적 이득효과를 볼 수 있고, 실생활 조명과 함께 하는 통신 융합 멀티미디어 통신 서비스가 가능함

[참고문헌]

- 1. IEEE 802.15.4 Working Group for WPAN, http://www.ieee802.org/15/
- 2. "ICT Standardization Strategy Map 2011", TTA, 2011
- 3. "ICT Standardization Strategy Map 2010", TTA, 2010
- 4. "IEEE 802.15.4g SUN 표준기술 동향", 신철호 외 2, NIPA 주간기술동향, 2011.2.18
- 5. "무선 센서네트워크 전송기술 표준화 동향", 정운철 외 3, ETRI 전자통신동향분석 제25권 4호, 2010.8
- 6. "WPAN 플랫폼 및 서비스", 김인환, TTA Journal No.116, 2008.3
- 7. "LED조명과 결합된 가시광 무선통신 기술동향", 임상규 외 4, ETRI 전자통신동향 분석 제25권 4호, 2010.8

[국내외 주요 기술개발 현황]

연구기관명	프로젝트명	개요	연구기간
한국전자통신 연구원	스마트 유틸리티 네트워크용 무선 전송 기술개발	o Mesh Network 구성이 보장되는 IEEE802.15.4g/4e SUN 표준 기반의 저가격/저전력 무선 전송 시스템 개발	2010.3-2014.2
세종대학교	UWB 통신 기반 휴먼인터페이스 접목 응용기술 개발	0 초광대역 임펄스 무선 기술 기반 저전력/고정밀 무선측위 기술 개발	2003.9-2012.2
국민대학교	LED-ID 기반 홈네트워크 기술개발	o Scalable LED-ID Reader/Tag 및 Detection 기술, VLC 고속 전송 기술 등 LED-ID기반 홈네트워크 기술 개발	2010.3-2015.2
유럽연합	Omega Project	0 LED조명을 이용한 고속 근거리의 가시광 무선통신 PHY 및 MAC 연구 및 표준화 - France Telecom, Siemens, 옥스퍼드 대학 등 참여	2008-2010