Семинар 13. ЗАДАЧА О ПУТЯХ ВО ВЗВЕШЕННЫХ ГРАФАХ

Взвешенные графы

Определение 13.1. Взвешенным (или размеченным) орграфом называют пару $W = (G, \varphi)$, где

$$G = (V, E)$$
 — обычный орграф,

 $\varphi: E \to \mathcal{R}$ — весовая функция (или функция разметки) со значениями в некотором noлукольце

$$\mathcal{R} = (R, +, \cdot, 0, 1)$$

причем $(\forall e \in E)(\varphi(e) \neq 0)$.

Будем говорить, что **орграф размечен над полукольцом** ${\mathcal R}$.

Пусть в орграфе фиксирована некоторая нумерация его вершин. Тогда взвешенный орграф может быть задан матрицей A следующего вида:

$$a_{ij} = \begin{cases} \varphi((i,j)), \text{ если } i \to j, \\ 0, \text{ иначе.} \end{cases}$$

Эту матрицу будем называть матрицей меток дуг.

Решение общей задачи о путях для произвольного замкнутого полукольца \mathcal{R} .

Определение 13.2. Метка пути, ведущего из вершины v_i в вершину v_j , есть произведение в полукольце \mathcal{R} меток входящих в путь дуг в порядке их следования (для пути ненулевой длины) и есть 1 (единица полукольца \mathcal{R}) для пути нулевой длины.

Определение 13.3. Стоимость прохождения из вершины v_i в вершину v_j (или между i-ой и j-ой вершинами) — это cymma в nonykonbue $\mathcal R$ меток всех путей, ведущих из вершины v_i в вершину v_j .

Сумма, определяющая стоимость прохождения, есть "бесконечная сумма" в замкнутом полукольце, т.е. *точная верхняя грань* соответствующей последовательности меток, так как множество всех путей, ведущих из одной вершины графа в другую, конечно или счетно.

Среди задач анализа *орграфов* весьма важными следующие задачи.

- 1) Вычисление для заданного орграфа его *матрицы достижимо-сти*.
- 2) Вычисление наименьших расстояний между всеми парами вершин в орграфе, где каждой дуге орграфа сопоставлена числовая метка расстояние между вершинами, соединяемыми этой дугой.

Эту задачу будем называть **задачей о кратчайших рассто- яниях**.

Вычисление umepaquu A^* mampuqы A дает решение всех сформулированных выше задач, если для каждой задачи выбирать соответствующее полукольцо.

Теорема 13.1. Матрица стоимостей C орграфа G, размеченного над полукольцом с итерацией \mathcal{R} (в частности, над замкнутым полукольцом), равна итерации матрицы A меток дуг, задающей орграф G.

Для вычисления $C=A^*$ можно решить в \mathcal{R} при всех $j=1,\ldots,n$ систему уравнений вида

$$\xi = A\xi + \varepsilon_j,$$

где $\varepsilon_j \in \mathcal{R}^n$ — j-ый единичный вектор, т.е. вектор, все элементы которого, кроме j-ого, равны 0, а j-ый равен 1 полукольца \mathcal{R} .

$$\xi = A^* \varepsilon_j$$

есть j-й столбец матрицы A^* .

Смысл матрицы стоимостей $C=A^*$ для полуколец $\mathcal B$ и $\mathcal R^+$

В полукольце \mathcal{B} метка отдельного пути всегда равна 1 (так как метка дуги в размеченном над полукольцом графе не может, согласно определению, быть нулем полукольца).

Следовательно, стоимость $c_{ij}=1$, если существует хотя бы один путь из i-ой вершины в j-ую, и $c_{ij}=0$ иначе.

Другими словами, для полукольца \mathcal{B} матрица стоимостей совпадает с матрицей достижимости орграфа.

В полукольце \mathcal{R}^+ метка пути — это арифметическая сумма меток его дуг, так как умножение в \mathcal{R}^+ — это обычное арифметическое сложение.

Поскольку сложение в \mathcal{R}^+ — это взятие наименьшего из слагаемых, то стоимость c_{ij} — это наименьшая из меток пути среди всех путей, ведущих из i-ой вершины в j-ую, т.е. это и есть наименьшая длина пути между указанными вершинами.

Таким образом, в полукольце \mathcal{R}^+ матрица стоимостей является матрицей кратчайших расстояний, т.е. наименьших длин путей между всеми парами вершин орграфа.

Задачи

- **13.1.** Для заданных графов решить задачу транзитивного замыкания (в полукольце B) и задачу вычисления кратчайших расстояний (в полукольце R^+) для графов, заданных списком дуг с весами. Каждый элемент списка имеет вид $(v_i, v_j, (\text{вес}))$:
 - (a) (1,2,8), (1,1,2), (1,3,5), (2,1,3), (3,2,2);
 - (6) (1,2,2), (1,4,10), (2,3,3), (3,5,4), (5,4,5), (2,4,7), (4,3,6);
- (B) (1,2,10), (1,4,5), (2,1,6), (2,3,7), (2,4,2), (2,5,9), (3,3,8), (3,4,10), (4,3,5), (4,5,4), (4,2,7), (5,1,8), (5,3,4);
- (Γ) (1,2,2), (1,3,3), (2,3,6), (3,2,5), (2,4,6), (3,5,2), (4,5,3), (5,4,4), (6,4,1), (7,5,5), (6,7,4), (7,2,6);
- (π) (1,2,1), (2,3,3), (3,4,4), (5,4,5), (5,6,1), (6,1,1), (1,7,2), (2,7,1), (4,7,1), (7,3,2), (7,5,1), (7,6,1);

13.2. Не используя интерпретации на графах, доказать, что для любой матрицы A $n \times n$ над полукольцом \mathcal{B} $A^* = \sum_{k=0}^n A^k$.

Рассмотреть A как матрицу смежности некоторого неориентированного графа и дать интерпретацию на графах матриц $A^2,\ A^3,\ A^k$.

Рассмотреть эти матрицы как матрицы бинарных отношений на n-элементном множестве и установить, как связаны эти бинарные отношения с бинарным отношением, задаваемым матрицей A?