DNS: Domain Name System

people: many identifiers:

SSN, name, passport#

Internet hosts, routers:

- IP address (32 bit) used for addressing datagrams
- "name", e.g., cs.umass.edu - used by humans
- Q: how to map between IP address and name, and vice versa?

Domain Name System (DNS):

- distributed database implemented in hierarchy of many name servers
- application-layer protocol: hosts, DNS servers communicate to resolve names (address/name translation)
 - note: core Internet function, implemented as applicationlayer protocol

 Application Layer: 2-1

DNS: services, structure

DNS services:

- hostname-to-IP-address translation
- host aliasing
 - canonical, alias names
- mail server aliasing
- load distribution
 - replicated Web servers: many IP addresses correspond to one name

Q: Why not centralize DNS?

- single point of failure
- traffic volume
- distant centralized database

A:ndaleten'timeale!

- Comcast DNS servers alone: 600B DNS queries/day
- Akamai DNS servers alone: 2.2T DNS queries/day

Thinking about the DNS

humongous distributed database:

~ billion records, each simple

handles many *trillions* of queries/day:

- many more reads than writes
- performance matters: almost every Internet transaction original actionally, physical condeced and the cond
- millions of different organizations responsible for their records bulletproof : reliability, security

DNS: a distributed, hierarchical database

Client wants IP address for www.amazon.com; 1st approximation:

- client queries root server to find .com DNS server
- client queries .com DNS server to get amazon.com DNS server
- client queries amazon.com DNS server to get IP address for www.amazon.com

Application Layer: 2-4

DNS: root name servers

• official, contact-of-last-**Root DNS Servers** resort by name servers that can not resolve name on servers .org DNS servers .edu DNS servers pbs.org nyu.edu umass.edu yahoo.com amazon.com **DNS** servers **DNS** servers **DNS** servers **DNS** servers **DNS** servers

DNS: root name servers

- official, contact-of-lastresort by name servers that can not resolve name
- incredibly important
 Internet function
 - Internet couldn't function without it!
 - DNSSEC provides security (authentication, message integrity)
- ICANN (Internet Corporation for Assigned Names and Numbers) manages root DNS domain

13 logical root name "servers" worldwide each "server" replicated many times (~200 servers in US)

Top-Level Domain, and authoritative servers

Top-Level Domain (TLD) servers:

- responsible for .com, .org, .net, .edu, .aero, .jobs, .museums, and all top-level country domains, e.g.: .cn, .uk, .fr, .ca, .jp
- Network Solutions: authoritative registry for .com, .net TLD

Educause: .edu TLD

authoritative DNS servers:

- organization's own DNS server(s), providing authoritative hostname to IP mappings for organization's named hosts
- can be maintained by organization or service provider

Local DNS name servers

- when host makes DNS query, it is sent to its local DNS server
 - Local DNS server returns reply, answering:
 - from its local cache of recent name-to-address translation pairs (possibly out of date!)
 - forwarding request into DNS hierarchy for resolution
 - each ISP has local DNS name server; to find yours:
 - MacOS: % scutil --dns
 - Windows: >ipconfig /all
 - Linux: cat /etc/resolv.conf
- local DNS server doesn't strictly belong to hierarchy

DNS name resolution: iterated query

Example: host at engineering.nyu.edu wants IP address for gaia.cs.umass.edu

Iterated query:

- contacted server replies with name of server to contact
- "I don't know this name, but ask this server"

root DNS server

DNS name resolution: recursive query

Example: host at engineering.nyu.edu wants IP address for gaia.cs.umass.edu

Recursive query:

- puts burden of name resolution on contacted name server
- heavy load at upper levels of hierarchy?

Caching DNS Information

- once (any) name server learns mapping, it caches mapping, and immediately returns a cached mapping in response to a query
 - caching improves response time
 - cache entries timeout (disappear) after some time (TTL)
 - TLD servers typically cached in local name servers
- cached entries may be out-of-date
 - if named host changes IP address, may not be known Internet-wide until all TTLs expire!
 - best-effort name-to-address translation!

DNS records

DNS: distributed database storing resource records from at: (name, value, type,

type=A

- name is hostname
- value is IP address

type=NS

- name is domain (e.g., foo.com)
- value is hostname of authoritative name server for this domain

type=CNAME

- name is alias name for some "canonical" (the real) name
- www.ibm.com is really servereast.backup2.ibm.com
- value is canonical name

type=MX

value is name of SMTP mail server associated with name

DNS protocol messages

DNS *query* and *reply* messages, both have same

format:

message header:

- identification: 16 bit # for query, reply to query uses same #
- flags:
 - query or reply
 - recursion desired
 - recursion available
 - reply is authoritative

DNS protocol messages

DNS *query* and *reply* messages, both have same

Getting your info into the DNS

example: new startup "Network Utopia"

- register name networkuptopia.com at DNS registrar (e.g., Network Solutions)
 - provide names, IP addresses of authoritative name server (primary and secondary)
 - registrar inserts NS, A RRs into .com TLD server:

```
(networkutopia.com, dns1.networkutopia.com, NS) (dns1.networkutopia.com, 212.212.212.1, A)
```

- create authoritative server locally with IP address 212.212.212.1
 - type A record for www.networkuptopia.com
 - type MX record for networkutopia.com

DNS security

DDoS attacks

- bombard root servers with traffic
 - not successful to date
 - traffic filtering
 - local DNS servers cache IPs of TLD servers, allowing root server bypass
- bombard TLD servers
 - potentially more dangerous

Spoofing attacks

- intercept DNS queries, returning bogus replies
 - DNS cache poisoning
 - RFC 4033: DNSSEC authentication services

Exercizes

- Watch the resolv.conf of you machine (and netplan)
- Use Dig and Host tools
 - Try to operate as a Local Resolver instead of a client
- Which are the IP addresses of Top Italian websites?