Lecture 2: Basics of Probability Theory

Professor Ilias Bilionis

The product rule of probability

The product rule

The product rule (Bayes' rule, Bayes' theorem):

$$p(A, B | I) = p(A | B, I)p(B | I)$$
Other common for of this rule:
$$p(A, B | I) = p(B | A, I) p(A | I)$$

$$p(A, B | I) = p(B | A, I) p(A | I)$$

$$p(A, B | I) = p(B | A, I) p(A | I)$$

$$p(A, B | I) = p(B | A, I) p(B | I)$$

Venn diagram interpretation of Bayes' rule

$$p(A \mid B, I) = \frac{\rho(AB \mid I)}{\rho(B \mid I)} = \frac{\text{area of } AB}{\text{area of } B}$$

Example: Drawing balls from a box without replacement

Let R_2 be the sentence:

The second ball we draw is red.

What is the probability of R_2 given that B_1 is true?

- We had 10 balls, 6 red and 4 blue.
- Since B_1 is true, we now have 6 red and 3 blue balls.
- Therefore: $p(R_2 | B_1, I) =$

Example: Drawing balls from a box without replacement

Let's find the probability that we draw a blue ball in the first draw B_1 and a red ball in the second draw R_2 .

We have to use the **product rule**:

$$p(B_1, R_2 | I) = p(R_2 | B_1, I) p(B_1 | I)$$

= $\frac{6}{9} \cdot 0.4 = 0.26$

