Euclidean Isoperimetry

Sunday, March 2, 2025 8:04 PM

The [KLS, DF] S_1 , S_2 , $S_3 \subseteq K$ Partition of a conex body in $d = d(S_1, S_2) = min$ $||u-v||_2$ D = Diam(K). $u \in S_1$, $v \in S_2$

Then $Vol(S_3) \ni \frac{2}{D} d mingvol(S_1), Vol(S_2)$

Equivalently 4SCKVol_{n-1} (∂S) > $\frac{2}{D}$ min $\frac{1}{2}$ vol (S), $Vol(K \setminus S)$ $\frac{3}{2}$

Tight! D_2 D_2 .

Pf. idea we try to find a "minimal" counterexample.

Suppose $\exists S_1, S_2, S_3$ s.t.

 $|vol(S_1)| > A |vol(S_3)|$ $A = \frac{2d}{D}$ $|vol(S_2)| > A |vol(S_3)|$

(1500-A1500) dx >0 (1500-A1500) dx >0

$$\int I_{s_{1}}(x) - A I_{s_{2}}(x) dx > 0, \quad \int I_{s_{2}}(x) - A I_{s_{3}}(x) dx > 0$$

$$\int f(x) > 0, \quad \int g(x) > 0$$

$$\int f(x) > 0, \quad \int g(x) > 0$$
Suppose f, g are lower some-continuous with ≥ 2 din support.

Ling I halfspace H s.t. $f = \int f$

$$\int f = \int f$$

$$\int f = \int f$$

$$\int f = \int f$$

$$\int f = \int f = \int f$$

$$\int f = \int f = \int f$$

$$\int f = \int f = \int f = \int f$$

$$\int f = \int f =$$

Lema. Supp (K) is one-directional.

Pf its not jee Supp (K) is 200 higher dim,

I rational x & int (K) and we can apply bisaction!

I rational x & int (K) and we can apply bisaction!

So limit is a segment with arbitrarily small widths in other directions
other directions
fig are constant orthograph to [a,b] Consectional area of a corners body. So Fa,b, h st [f(a+t)a+tb) h(t) dt >0 [g()h(t)dt >0
7 - S+c 50,7: (1-t) a + tb & Si3
$\int_{Z_1}^{A} h(t) > h \int_{Z_3}^{A} h(t) \qquad \int_{Z_2}^{A} h(t) > A \int_{Z_3}^{A} h(t)$
h is logion care!
Lema. For any logomene $h: [0,1] \rightarrow \mathbb{R}_+$, and any partition of Z_1Z_2 , Z_3 of $[0,1]$,
$\int_{\mathbb{R}^{3}} h \geq 2 d(\xi_{1}, \xi_{2}) \text{min} \int_{\mathbb{R}^{3}} h \qquad \int_{\mathbb{R}^{3}} h$
For up, d(z1, 22) > d(S1, S2) > d(S1, S2)

For us,
$$d(z_1, z_2) \Rightarrow d(s_1, s_2)$$

 $fa-bl$ $\Rightarrow D$
So $\int_{z_3}^{h} \Rightarrow A$ min $\int_{z_1}^{h} , \int_{z_2}^{h}$
controlation!

Pf (loma) Suffices to prove when Z_1, Z_2, Z_3 are single intervals.

Why? Suffice Z_1 are unions of intervals.

If Z_2 , Z_3 are unions of Z_4 and Z_4 Z_2 Z_3 Z_4 Z_2 Z_4 Z_4 Z_5 Z_5 Z_6 Z_7 Z_8 Z_8

If all of Z, or all of Z_2 is accompled for, done! Else $\exists \ I \in Z_1$, $J \in Z_2$ but then we can accomplet for at least one of them.

Suppose $h(c) \leq h(d)$. Then by uninodality of h (weaker than logiconeantly) $h(c) \geq h(t)$ $\forall t \in Z_1$.

c h(c)

 $\int_{\mathbb{R}^{2}} h \gg |e-d|h(e) \gg \frac{|e-d|}{c} \int_{\mathbb{R}^{2}}^{h}$ > d(z, zz) Sh.

to get the optimal 2 d(81,82), we show that tuncated exponential is the worst distribution.

Lema [socalization] f, g: R -> R lower semi-continuos If pg >0. Then Fa, b & R" and lines frection l: [0,1] -> R, st.

lineus fraction l: [0,1] -> 1K, s-v.

(f((1-t)a+tb) l(t)^{n-1} dt, (g((1-t)a+tb) l(t)^{n-1} dt >0

(be will see other applications!