169. <u>Условие</u>: Скорость ветра, надувающего парус площадью $S = 25 \text{ м}^2$, равна $v_0 = 20$ м/с. Сила, которая при этом действует на парус, имеет вид $^1 F = \alpha S \rho (v_0 - v)^2/2$, где $\alpha = 3$, $\rho = 1.2$ кг/м³ – плотность воздуха², ν – скорость судна. Определить условия, при которых мощность ветра максимальна. Найти работу силы ветра за время t = 60 с.

Решение: Очевидно, условия – это и есть скорость судна. Если скорость судна больше скорости ветра или если судно движется против ветра, то ветер будет тормозить судно, и его мощность будет отрицательна. Пусть скорость судна $v \le v_0$. Тогда мощность ветра $P = Fv = \alpha S \rho v (v_0 - v)^2 / 2$. Для решения задачи необходимо найти максимум этого выражения. Воспользуемся леммой Ферма: в точке экстремума производная равна нулю. Имеем:

$$\frac{dP}{dv} = \frac{\alpha S\rho}{2}((v - v_0)^2 + v \cdot 2(v - v_0)) = \frac{\alpha S\rho}{2}(v - v_0)(3v - v_0) = 0.$$

Это уравнение имеет 2 корня: $v = v_0$ – соответствует минимуму P = 0, и $v = v_0/3$ – соответствует искомому максимуму $P = \frac{\alpha S \rho}{2} \cdot \frac{v_0}{3} \left(v_0 - \frac{v_0}{3}\right)^2 = \frac{2}{27} \alpha S \rho v_0^3 = 53 \text{ кВт. Работа}$ силы ветра $A = Pt = \frac{2}{27} \alpha S \rho v_0^3 t = 3.2$ МДж.

Ответ: v = 6.7 м/с, A = 3.2 МДж.

 $^{^1}$ Нет необходимости в делении на 2, эта двойка входит в коэффициент α . 2 Вообще—то, плотность воздуха при н.у. $\rho=\frac{PM}{RT}=1,29~{\rm KF/M}^3;~P=101325~{\rm \Pi a}$, $M=0.029~{
m Kг/моль}$, $R=8.314~{{
m Дж}\over {
m MOJD}\cdot {
m K}}$, $T=273~{
m K}$, так что разумнее округлять до $1,3~{\rm Kr/m}^3$. При расчетах было использовано значение плотности, как в условии.

130. <u>Условие</u>: Пластинка массой m=0,2 кг лежит на горизонтальном столе. В центре пластинки укреплена легкая пружинка, жесткость которой k=1 кН/м. Какую работу A необходимо совершить, чтобы на пружине поднять пластинку на высоту l=10 см над поверхностью стола?

Решение: Считаем, что пластинку поднимали медленно, так что в пружинке не возникли колебания, которые могли бы послужить источником потери энергии. Рассмотрим состояние пружинки в конечный момент времени. На пластинку действуют силы mg, направленная вертикально вниз, и $F_{\rm np}$ со стороны пружинки, направленная вертикально вверх. Из равновесия пластинки имеем $mg = F_{\rm np}$. Растяжение x пружинки в конечном состоянии находим из закона Гука:

$$x = \frac{F_{\text{np}}}{k} = \frac{mg}{k}$$
.

Во время поднятия пластинки работу совершали против силы тяжести и силы натяжения (силы Гука) со стороны пластинки. Изменение энергии пластинки $\Delta W_{\rm пл} = mgl$, пружинки $\Delta W_{\rm пр} = kx^2/2 = m^2g^2/2k$. Из закона сохранения энергии получаем:

$$A = \Delta W_{\text{пл}} + \Delta W_{\text{пр}} = mgl + \frac{m^2g^2}{2k} = mg\left(l + \frac{mg}{2k}\right) = 0,202 \text{ Дж} \approx 0,2 \text{ Дж}.$$

Так как $l \gg mg/2k$, то можно было пренебречь вкладом жесткости пружинки в работу, т.е. считать пружинку нерастяжимым стержнем.

Ответ: $A = 0.2 \, \text{Дж}.$

219. <u>Условие</u>: Необходимо сжать $V_1 = 1 \cdot 10^{-2} \text{м}^3$ воздуха до объема $V_2 = 2 \cdot 10^{-2} \text{м}^3$. Как выгоднее его сжимать: адиабатно или изотермически?

Решение: Согласно числам в условии, газ не сжимался, а расширялся, что противоречит самому условию. При решении задачи считаем, что газ сжимался от произвольного объема V_1 до объема V_2 , причем $V_1/V_2 = \alpha > 1$ (по условию, $\alpha = 0,5$). Рассмотрим, какую работу необходимо совершить для сжатия газа в обоих случаях.

а) Адиабатное сжатие. Воздух можно считать идеальным двухатомным газом, поэтому количество степеней свободы i=5, тогда показатель адиабаты $\gamma=\frac{i+2}{i}=\frac{7}{5}$. Уравнение процесса сжатия воздуха $PV^{\gamma}=P_0V_1^{\gamma}$ (P,V — давление и объем газа в данный момент времени, P_0 — начальное давление), откуда $P=P_0(V_1/V)^{\gamma}$. Как известно, работа, совершенная для сжатия газа, определяется по формуле³ $A=-\int_{V_1}^{V_2}PdV$. Подставив P, получим:

$$A_1 = -\int_{V_1}^{V_2} P_0 \frac{V_1^{\gamma}}{V^{\gamma}} dV = \frac{P_0 V_1^{\gamma} \left(V_2^{1-\gamma} - V_1^{1-\gamma}\right)}{\gamma - 1}.$$

Эта работа вся идет на нагревание газа.

б) Изотермическое сжатие. Уравнение этого процесса $PV = P_0V_1$, откуда $P = P_0V_1/V$. Аналогично предыдущему случаю, получаем:

$$A_2 = -\int_{V_1}^{V_2} P dV = -\int_{V_1}^{V_2} \frac{P_0 V_1}{V} dV = P_0 V_1 \ln \frac{V_1}{V_2}.$$

Эта работа вся выделяется в виде тепла в окружающую среду.

Чтобы узнать, какая работа меньше, разделим A_1 на A_2 . Имеем:

$$\frac{A_1}{A_2} = \frac{P_0 V_1^{\gamma} \left(V_2^{1-\gamma} - V_1^{1-\gamma}\right)}{(\gamma - 1) P_0 V_1 \ln \frac{V_1}{V_2}} = \frac{\left(\frac{V_1}{V_2}\right)^{\gamma - 1} - 1}{(\gamma - 1) \ln \frac{V_1}{V_2}} = \frac{\alpha^{\gamma - 1} - 1}{(\gamma - 1) \ln \alpha}.$$

Эти же формулы справедливы для любого α . Можно доказать⁴, что эта дробь больше 1 при $\alpha > 1$, и меньше 1 при $\alpha < 1$. При $\alpha = 0,5$ это выражение принимает значение $\approx 0,87$. Но так как при расширении газа он совершает работу, то выгоднее, чтобы эта работа была больше. Тогда при $A_1/A_2 < 1$ выгоднее изотермическое расширение⁵ (да–да, именно расширение!), т.к. работа, совершаемая газом при изотермическом расширении, больше.

С другой стороны, при адиабатном сжатии работа уходит на нагревание газа, а не выделяется в окружающую среду, так что можно будет использовать ее в будущем.

Ответ: изотермически.

³ Это следует из первого начала термодинамики для адиабатного процесса.

 $^{^{4}}$ Это видно, например, из графика $A_{1}/A_{2}(lpha)$.

 $^{^{5}}$ По условию, происходило сжатие, но числа из условия говорят о противоположном.

228. <u>Условие</u>: Смесь газов состоит из $\nu_1=2$ моль одноатомного и $\nu_2=3$ моль двухатомного газов. Определить молярные теплоемкости \mathcal{C}_P и \mathcal{C}_V смеси.

Решение: Как известно, молярные теплоемкости идеального одноатомного газа $C_{P1} = \frac{5}{2}R$ и $C_{V1} = \frac{3}{2}R$; двухатомного $C_{P2} = \frac{7}{2}R$ и $C_{V2} = \frac{5}{2}R$ соответственно $(R = 8,3 \, \text{Дж/(моль · K)} - \text{универсальная газовая постоянная})$. Определим вначале общие теплоемкости dQ_P/dT и dQ_V/dT системы. Из определения молярной теплоемкости имеем:

$$rac{dQ_P}{dT} = C_{P1}
u_1 + C_{P2}
u_2$$
 и $rac{dQ_V}{dT} = C_{V1}
u_1 + C_{V2}
u_2$.

Искомые теплоемкости можно найти по формулам $C_P = \frac{dQ_P/dT}{\nu_1 + \nu_2}$ и $C_V = \frac{dQ_V/dT}{\nu_1 + \nu_2}$. Подставив dQ_P/dT и dQ_V/dT , получим:

$$C_P = \frac{C_{P1}\nu_1 + C_{P2}\nu_2}{\nu_1 + \nu_2} = \frac{\frac{5}{2}R \cdot 2 + \frac{7}{2}R \cdot 3}{2 + 3} = 3,1 R = 26 \frac{\text{Дж}}{\text{моль} \cdot \text{K}};$$

$$C_V = \frac{C_{V1}\nu_1 + C_{V2}\nu_2}{\nu_1 + \nu_2} = \frac{\frac{3}{2}R \cdot 2 + \frac{5}{2}R \cdot 3}{2 + 3} = 2,1 R = 17 \frac{Дж}{\text{моль} \cdot \text{K}}.$$

Ответ: $C_P = 26 \, \text{Дж/(моль · K)}; C_V = 17 \, \text{Дж/(моль · K)}.$

309. Условие: Два положительных точечных заряда Q и 4Q закреплены на расстоянии L=60 см друг от друга. Определить, в какой точке на прямой, проходящей через заряды, нужно поместить третий заряд так, чтобы он находился в равновесии. Определить какой знак должен иметь этот заряд для того, чтобы равновесие было устойчивым,

если перемещения заряда возможны только вдоль прямой, которая проходит через закрепленные заряды.

Решение: Изобразим систему зарядов на рисунке. Пусть подвижный заряд q находится в равновесии на расстоянии x от заряда Q. На подвижный заряд действуют две противоположно направленные силы \vec{F}_1 и \vec{F}_2 со стороны закрепленных зарядов. По закону Кулона:

$$F_1 = \frac{1}{4\pi\varepsilon_0} \frac{Qq}{x^2}; \ F_2 = \frac{1}{4\pi\varepsilon_0} \frac{4Qq}{(L-x)^2},$$

где ε_0 – электрическая постоянная. Чтобы заряд находился в равновесии, необходимо, чтобы выполнялось равенство $F_1 = F_2$. Отсюда получаем $4x^2 = (L-x)^2$. Решая это квадратное уравнение, получаем корни x = L/3 или x = -L (очевидно, второй корень не подходит).

Чтобы равновесие было устойчивым, необходимо, чтобы при небольшом отклонении заряда от равновесия внешнее поле возвращало его обратно. В случае отрицательного заряда это не наблюдается: при небольшом отклонении в сторону какого-л. заряда притяжение к нему возрастет, а притяжение к другому заряду уменьшится. Тогда равнодействующая этих сил будет все более отдалять подвижный заряд от положения равновесия. В случае же положительного заряда все наоборот: при небольшом отклонении в сторону какого-л. заряда отталкивание от него возрастет, а отталкивание от другого уменьшится, в результате чего равнодействующая этих сил вернет подвижный заряд в положение равновесия.

Ответ: на расстоянии 20 см от заряда Q, равновесие устойчиво в случае положительного заряда.

369. <u>Условие</u>: Пять параллельно соединенных конденсаторов емкостями по C=0.1 мкФ заряжены до общей разности потенциалов $U_0=30$ кВ. Определить среднюю мощность разряда, если батарея разряжается за время $t=1.5\cdot 10^{-6}$ с. Остаточное напряжение U=0.5 кВ.

Решение: Так как конденсаторы соединены параллельно, то напряжение на каждом равно общему напряжению батареи. Энергия одного конденсатора определяется по формуле $W = CU^2/2$, где C – емкость конденсатора, U – напряжение на нем. Тогда изменение энергии конденсаторов вследствие разрядки $\Delta W = 5C(U_0^2 - U^2)/2$, которое равно суммарной энергии разряда. Среднюю мощность разряда находим по формуле:

$$\bar{P} = \frac{\Delta W}{t} = \frac{5C(U_0^2 - U^2)}{2t} = 1.5 \cdot 10^8 \text{ Bt.}$$

Ответ: $\bar{P} = 150 \text{ MBT}.$

409. **Условие:** Из вертикально расположенного плоского конденсатора равномерно вытекает керосин, которым был залит конденсатор. При этом в цепи, которая соединяет конденсатор с батареей аккумуляторов, напряжение которой U = 100 В, течет ток $I = 2 \cdot 10^{-11}$ А. С какой скоростью v понижается уровень керосина? Пластины конденсатора квадратные площадью S = 100 см², расстояние между ними d = 1 мм.

Решение: В условии не дана диэлектрическая проницаемость керосина, при расчетах будем использовать значение $\varepsilon = 2,1$. Так как пластина квадратная, то ее размеры $a=b=\sqrt{S}$. Пусть в некоторый момент высота слоя воздуха в конденсаторе равна x. Конденсатор, частично заполненный диэлектриком, можно рассматривать как два параллельно соединенных конденсатора: один пустой, другой с диэлектриком. Емкость первого $C_1 = \varepsilon_0 x \sqrt{S}/d$, второго $C_2 = \varepsilon \varepsilon_0 (\sqrt{S} - x) \sqrt{S}/d$. Пусть прошло малое⁶ время dt. За это время высота слоя воздуха увеличилась на dx = vdt, на столько же уменьшилась высота слоя керосина. Тогда новые емкости конденсаторов $C_1' = \varepsilon_0(x + dx)\sqrt{S}/d$, $C_2' = \varepsilon \varepsilon_0 (\sqrt{S} - x - dx) \sqrt{S}/d;$ а изменение емкостей $dC_1 = C_1' - C_1 = \varepsilon_0 \sqrt{S} dx/d,$ $d\mathcal{C}_2=\mathcal{C}_2{'}-\mathcal{C}_2=-arepsilon arepsilon_0\sqrt{S}dx/d$ (емкость уменьшилась). Полное изменение емкости $dC=dC_1+dC_2=-(\varepsilon-1)\varepsilon_0\sqrt{S}dx/d$. Так как напряжение на обкладках конденсатора поддерживали постоянным, то изменение заряда конденсатора dO = UdC = $=-U(\varepsilon-1)\varepsilon_0\sqrt{S}dx/d$, которое по модулю равно Idt. Подставив dx=vdt, получим:

$$\frac{U(\varepsilon-1)\varepsilon_0\sqrt{S}vdt}{d}=Idt,$$

откуда

$$v = \frac{Id}{U(\varepsilon - 1)\varepsilon_0\sqrt{S}} = 0.21 \text{ mm/c}.$$

Ответ: v = 0.21 мм/с.

-

 $^{^6}$ Так как процесс линейный (т.е. сила тока не зависит от x), то необязательно считать время dt малым.

448. <u>Условие</u>: ЭДС батареи $\varepsilon = 60$ В, ее внутреннее сопротивление r = 4 Ом. Внешняя часть цепи потребляет мощность P = 125 Вт. Определить силу тока I в цепи, напряжение U на внешней части цепи и ее сопротивление R.

Решение: По закону Ома для полной цепи:

$$I = \frac{\varepsilon}{R + r}.$$

Тогда мощность, потребляемая внешней цепью, имеет вид

$$P = I^2 R = \frac{\varepsilon^2 R}{(R+r)^2}.$$

Домножив на $(R+r)^2$ и раскрыв скобки, получаем уравнение:

$$PR^2 + R(2Pr - \varepsilon^2) + Pr^2 = 0,$$

корни которого

$$R_{1,2} = \frac{\varepsilon^2 - 2Pr \pm \sqrt{\varepsilon^4 - 4\varepsilon^2 Pr}}{2P}.$$

Подставив численные значения, получаем $R_1 = 20~{\rm Om},~R_2 = 0.8~{\rm Om}.$ Оба варианта удовлетворяют условию. Рассчитаем силу тока в цепи в обоих случаях:

$$I_1 = \frac{\varepsilon}{R_1 + r} = 2,5 \text{ A}, I_2 = \frac{\varepsilon}{R_2 + r} = 12,5 \text{ A}.$$

По закону Ома, напряжение

$$U = IR = \frac{\varepsilon R}{R + r}.$$

Рассчитаем напряжение на внешней части цепи в обоих случаях:

$$U_1 = \frac{\varepsilon R_1}{R_1 + r} = 50 \text{ B}, \ U_2 = \frac{\varepsilon R_2}{R_2 + r} = 10 \text{ B}.$$

<u>Ответ</u>: $I_1 = 2,5$ A, $U_1 = 50$ B, $R_1 = 20$ Ом; или $I_2 = 12,5$ A, $U_2 = 10$ B, $R_2 = 0,8$ Ом.