C2. ARM Cortex Arch.

Embedded Essentials

Standup

- One thing from last course
- Brief status with setup environment
- GITHUB REPO
- Clarify openocd, gnu arm toolchain, stmlink usb drv,eclipse
- Feature courses schedule
- Q&A from last course

- 1. Finish the toolchain install
- 1. Flash the simple program
- 1. Use gdb to debug
- 1. Important documents used in the course
- 1. The ARM and ARM Cortex M architectures

Toolchain installation

- Install toolchain
- Run the first example
- Debug the first example

Course documentation

- The **DATASHEET** keyword for searching data related to a specific part :)
- Datasheet of STM32F051
- STM32F0 reference manual
- ARM Cortex M0 reference manual

ARM architecture - general

ARM architecture - general

ARM architecture - general

ARM Cortex M

ARM Cortex-M Performance, Power and Area

	90LP (7-track, typical 1.2v, 25C)		40G (9-track, typical 0.9v, 25C)	
	Dynamic power (µW/MHz)	Area mm²	Dynamic power (µW/MHz)	Area mm²
Cortex-M0	16	0.04	4	0.01
Cortex-M0+	9.8	0.035	3	0.009
Cortex-M3	32	0.12	7	0.03
Cortex-M4	33	0.17	8	0.04

Dhrystone (official)	Dhrystone (max options)	CoreMark
DMIPS/MHz	DMIPS/MHz	CoreMark/MHz
0.84	1.21	2.33
0.94	1.31	2.42
1.25	1.89	3.32
1.25	1.95	3.40

Cortex-M0 Base usable configuration includes I IRQ + NMI, excludes debug Cortex-M0+ Base usable configuration includes I IRQ + NMI, excludes debug Cortex-M3 Base usable configuration includes I IRQ + NMI, excludes ETM, MPU and debug Cortex-M4 Base usable configuration includes DSP extensions, I IRQ + NMI, excludes ETM, MPU, FPU and debug

Ultra low power for the performance of a 32 bit processor

Further reading [ARM Cortex M]

Static power <0.7 μW/MHz

^{*} CoreMark data from ARM website & CoreMark.org website

ARM Cortex M

ARM Cortex-M Instruction Set Architecture

ARM Cortex M0

Figure 1. STM32 Cortex-M0 implementation

Thank You!

Name

Position

Email address

Phone number

Website address

George Serea Software Developer George.serea@rinftech.com +407202588930 https://gserea.github.io/

Bucharest, 4 Gara Herastrau Street, Green Court Skanska

Software Development Life Cycle

Design	Develop	Operate
 Customer needs 	 Code development 	 Market releases
 Concept study 	Bug solving	 Maintenance
 Requirements 	 Incremental releases 	Client support
 Product design 	 Integration & testing 	Product phase-out

Further reading [Git Branching]

Software Development

01	General purpose	 Web development Computer graphics Other PC & mobile apps Operating systems & tools
02	Business	 Business intelligence Financial apps CRMs and ERPs
03	Science	 Scientific R&D Big data Machine learning and A.I.

Anatomy of an Embedded System

Process Output Input Sensors Data xchg Software Firmware Hardwired

Anatomy of an Embedded System

Customer needs	Features	Components	
Describe what is the task the product needs to perform.	Describes what characteristics the product needs to possess to do the task.	Describes what actual components need to be present in the product to offer the needed capabilities (features).	

Greenhouse monitor

I need a device that

- Measures temperature in my greenhouse
- Displays average temperature
- Lets me set a threshold temperature
- Gives alarm if temperature drops below threshold
- Monitors and shows total hours of sunlight

Home automation

I need a device that

- Displays the room temperature
- Lets me set desired temperature
- Starts the heater or AC when temperature goes below or above threshold
- Turns on a light after sunset when I enter the front door

Greenhouse monitor

- Measure temperature
- Display various data
- Allows setting parameters
- Measure light intensity
- Gives an alarm (visual? audio?)

Home automation

- Measure temperature
- Display various data
- Allows setting parameters
- Measure light intensity
- Control AC, heater, light

Components

Design an Embedded System

01 Measure Temperature Temperature Sensor 02 **Display Data** Display (user interface) Buttons (user interface) 03 Change Parameters Light Sensor Measure Light Intensity Relays

Control light, heater, AC

Process Output Input Sensors Data xchg Software Firmware Hardwired

Our Embedded System

Anatomy of an Embedded System

Setup the working environment

Open Windows setup - STM32F0Discovery and follow the steps

Open Linux <u>setup - STM32F0Discovery</u> and follow the steps

C Language refresher

- Some C important concepts
- Memory mapping

C toolchain

C Language refresher

Basic hardware notions

- Analog circuits
- Digital circuits

Meet the microcontroller datasheet

Conclusion

- Our selected project
- Microcontroller architecture
- Next steps, homework
- Q & A

