Bài 5: Phân tích cú pháp phụ thuộc

Thông tin giảng viên

- Phd Nguyen Kiem Hieu
- Computer science department, School of Information and Communication Technology, HUST
- Email: hieunk@soict.hust.edu.vn

Content

1. Overview

- Introduction
- Applications
- Properties

2. Approaches

- Transition-based
- Graph-based
- Current approaches

3. Some results

Introduction

- Increasing interest in dependency-based approaches to syntactic parsing in recent years
- Dependency-based methods still less accessible for the majority of researchers and developers than the more widely known constituency-based methods

Dan Jurafsky and James Martin. Speech and Language Processing. PrenticeHall (3rd draft)

Dependency Grammars

 Syntactic structure = lexical items linked by binary asymmetrical relations called dependencies

Example Dependency Parse

Some dependency labels

- nsubj (Nominal subject): chủ ngữ, chủ thể
- dobj (Direct object): tân ngữ trực tiếp
- nmod (Nominal modifier): danh từ bổ nghĩa
- amod (Adjectival modifier): tính từ bổ nghĩa
- nummod (Numeric modifier): số từ bổ nghĩa
- case (dependent of the noun they attach to or introduce)

Some dependency labels

- xcomp (Open clausal component): Mênh đề thành phần mở rộng
- aux (Auxiliary): phụ từ, trợ động từ

See more: http://universaldependencies.org/u/dep/

Applications

Building a knowledge base using relation extraction

Applications

Machine Translation

Properties

- General form: a graph G = (V,A)
 - V vertices: usually one per word in sentence
 - A arcs (set of ordered pairs of vertices): head-dependent relations between elements in V
- Notational conventions (i , j ∈ V):
 - $i \rightarrow j \equiv (i, j) \in E$
 - $i \rightarrow * j \equiv i = j \lor \exists k : i \rightarrow k, k \rightarrow * j$

Properties

- Weakly Connected
 - For every node *i* there is a node *j* such that $i \rightarrow j$ or $j \rightarrow i$.
- Acyclic:
 - If $i \rightarrow j$ then not $j \rightarrow *i$.
- Single head:
 - If $i \rightarrow j$, then not $k \rightarrow j$, for any k != i.

Properties

Projective: There are no crossing dependencies

Projective

Non-Projective

Content

1. Overview

- Introduction
- Applications
- Properties

2. Approaches

- Transition-based
- Graph-based
- Current approaches

3. Some results

Approaches

- Transition-based
 - Nivre algorithm
- Graph-based
- Current approaches
 - End to end learning
 - Joint learning

Transition-based

- Main idea is to base on Transitions (SHIFT, REDUCE, LEFT-ARC, RIGHT-ARC)
- When reading a sentence from left to right, the learning model will decide which transition to perform. This sequence of transitions helps to determine the dependency relationship between the words in the sentence.
- Need training this model

Transition-based

- Parsing algorithm: Nivre, Covington, ...
- Classifying method: SVM, Neural network, ...

Nivre algorithm

- Given: c = (Σ|s, b|B, A), in which
 - Stack Σ stores partially processed tokens
 - Buffer **B** stores unread tokens.
 - Set A stores dependent relations being found
- Transition bases on the current configuration to go to the new configuration, also including these 3 members

Figure 14.5 Basic transition-based parser. The parser examines the top two elements of the stack and selects an action based on consulting an oracle that examines the current configuration.

Nivre algorithm

- 4 transition:
 - \bigcirc SHIFT [(Σ , b| \mathbf{B} , \mathbf{A})] = (Σ |b, \mathbf{B} , \mathbf{A})
 - \bigcirc RIGHT_{Ib} $[(\Sigma | s, b | \mathbf{B}, \mathbf{A})] = (\Sigma | s | b, \mathbf{B}, \mathbf{A} \cup \{s, lb, b\})$
 - \bigcirc LEFT_{lb} [(Σ |s, b| \mathbf{B} , \mathbf{A})] = (Σ , b| \mathbf{B} , $\mathbf{A} \cup \{b, lb, s\}$)
 - O REDUCE $[(\Sigma | S, B, A)] = (\Sigma, B, A)$
- Description:
 - SHIFT: Remove the top word of the buffer and push it onto the stack.
 - RIGHT: Insert the top word of the buffer to the stack, add relation (s, lb, b) to A
 - LEFT: pop the stack, add relation (b, lb, s) to A
 - REDUCE: Pop the stack

 $[root]_S$ [Economic news had little effect on financial markets .] $_Q$

[root Economic] $_{\mathbb{S}}$ [news had little effect on financial markets $.]_{\mathbb{Q}}$

Shift

```
nmod
[root]<sub>S</sub> Economic [news had little effect on financial
```

markets .]QLeft-Arc_{nmod}

.]_QShift

```
[ \begin{tabular}{c} \textbf{nmod} \\ \hline [ \begin{tabular}{c} \textbf{root} & \textbf{Economic} & \textbf{news} ]_{\mathcal{S}} & \textbf{[had little effect on financial markets]} \\ \hline \end{tabular}
```

Left-Arc_{sbj}

```
nmod sbj

[root Economic news had]<sub>S</sub> [little effect on financial markets .]<sub>Q</sub>
```

Right-Arc_{pred}

Shift

Left-Arc_{nmod}

Right-Arcobj

Right-Arc_{nmod}

Shift

Left-Arc_{nmod}

Right-Arc_{pc}

Reduce

Reduce

Reduce

Reduce

Right-Arcp

Nivre algorithm

- Input sentence $W = w_1, w_2, ..., w_n$. (w_i is the word ith in the sentence)
- Initial configuration: c_{init} = (Σ, Β, Α)
 - \circ $\Sigma = \{ROOT\}$
 - \bigcirc **B**: **B** = W₁, W₂, ..., W_n
 - O A: {}
- Terminal configuration: $c_{terminal} = (\Sigma, B, A)$
 - Σ: {ROOT}
 - **B**: {}
 - A: set of dependent relations.

- Input sentence: Tôi ăn cơm ở Bách_Khoa .
- Stack: [
- Buffer:]
- A: {}
- Active: the node is being considered
- Deleted: the node is completely visited, remove from Stack

SHIFT: move 'Tôi' from Buffer to Stack $\mathbf{A} = \{\}$

LEFT_{nsubj}: Delete 'Tôi' from Stack, add (ăn, nsubj, Tôi) into A

A= {(ăn, nsubj, Tôi)}

RIGHT_{root}: Add 'ăn' from bufer to stack, add (Root, root, ăn) to A

A= {(ăn, nsubj, Tôi), (Root, root, ăn)}

RIGHT_{dobj}: Add 'co'm' from buffer to stack, add (ăn, dobj, co'm) to A

A= {(ăn, nsubj, Tôi), (Root, root, ăn), (ăn, dobj, cơm) }

SHIFT: move 'o' from buffer to stack

A= {(ăn, nsubj, Tôi), (Root, root, ăn), (ăn, dobj, cơm) }

REDUCE: REmove 'com' from Stack

A= {(ăn, nsubj, Tôi), (Root, root, ăn), (ăn, dobj, cơm), (Bách_Khoa, case, ở)}

RIGHT_{nmod}: Add 'Bách_Khoa' from buffer to stack, add (ăn, nmod, Bách_Khoa) to A

A= {(ăn, nsubj, Tôi), (Root, root, ăn), (ăn, dobj, cơm), (Bách_Khoa, case, ở), (ăn, nmod, Bách_Khoa) }

REDUCE: Remove 'Bách_Khoa' from Stack

A= {(ăn, nsubj, Tôi), (Root, root, ăn), (ăn, dobj, cơm), (Bách_Khoa, case, ở), (ăn, nmod, Bách_Khoa) }

RIGHT_{punct}: Add '.' from buffer to stack, add (ăn, punct, .) to A

A= {(ăn, nsubj, Tôi), (Root, root, ăn), (ăn, dobj, cơm), (Bách_Khoa, case, ở), (ăn, nmod, Bách_Khoa), (ăn, punct, .) }

REDUCE: Remove '.' from Stack

A= {(ăn, nsubj, Tôi), (Root, root, ăn), (ăn, dobj, cơm), (Bách_Khoa, case, ở), (ăn, nmod, Bách_Khoa), (ăn, punct, .) }

REDUCE: Remove 'ăn' from Stack

Now is the final configuration, Stack = {Root}, Buffer ={}. Return A

Final tree

Approaches

- Transition-based
 - Nivre algorithm
- Graph-based
- Current approaches
 - End to end learning
 - Joint learning

Graph-based Dependency Parsing

- Goal: Find the highest scoring dependency tree T for sentence S
 - If S is unambiguous, T is the correct parse.
 - If S is ambiguous, T is the highest scoring parse.
- Where do scores come from?
 - Weights on dependency edges by machine learning
 - Learned from large dependency treebank
- Where are the grammar rules?
 - Data-driven processing

Graph-based Dependency Parsing

- Map dependency parsing to maximum spanning tree
- Idea:
- Build initial graph: fully connected
 - Nodes: words in sentence to parse
 - Edges: Directed edges between all words
 - + Edges from ROOT to all words
- Identify maximum spanning tree
 - Tree s.t. all nodes are connected
 - Select such tree with highest weight
 - Arc-factored model: Weights depend on end nodes & link
 - Weight of tree is sum of participating arcs

Initial Tree

- Sentence: John saw Mary (McDonald et al, 2005)
 - All words connected; ROOT only has outgoing arcs
- Goal: Remove arcs to create a tree covering all words
 - Resulting tree is dependency parse

Maximum Spanning Tree

- McDonald et al, 2005 use variant of Chu-Liu-Edmonds algorithm for MST (CLE)
- Sketch of algorithm:
 - For each node, greedily select incoming arc with max w
 - If the resulting set of arcs forms a tree, this is the MST.
 - If not, there must be a cycle.
 - "Contract" the cycle: Treat it as a single vertex
 - Recalculate weights into/out of the newvertex
 - Recursively do MST algorithm on resulting graph
- Running time: naïve: O(n³); Tarjan: O(n²)
 - Applicable to non-projective graphs

Initial Tree

CLE: Step 1

Find maximum incoming arcs

- Is the result a tree?
 - No
- Is there a cycle?
 - Yes, John/saw

CLE: Step 2

- Since there's a cycle:
 - Contract cycle & reweight
 - John+saw as single vertex
 - Calculate weights in & out as:
 - Maximum based on internal arcs
 - and original nodes
- Recurse

Calculating Graph

$$s(Mary, C) 11+20 = 31$$

$$s(ROOT, C) 10+30 = 40$$

CLE: Recursive Step

- In new graph, find graph of
 - Max weight incoming arc for each word

- Is it a tree? Yes!
 - MST, but must recover internal arcs
 → parse

CLE: Recovering Graph

- Found maximum spanning tree
 - Need to 'pop' collapsed nodes
- Expand "ROOT → John+saw" = 40
- MST and complete dependency parse

Learning Weights

- Weights for arc-factored model learned from corpus
 - Weights learned for tuple (w_i,w_j,l)
- McDonald et al, 2005 employed discriminative ML
 - Perceptron algorithm or large margin variant
- Operates on vector of local features

Features for Learning Weights

- Simple categorical features for (w_i,L,w_i) including:
 - Identity of w_i (or char 5-gram prefix), POS of w_i
 - Identity of w_j (or char 5-gram prefix), POS of w_j
 - Label of L, direction of L
 - Sequence of POS tags b/t w_i,w_i
 - Number of words b/tw_i,w_i
 - POS tag of w_{i-1},POS tag of w_{i+1}
 - POS tag of w_{j-1}, POS tag of w_{j+1}
- Features conjoined with direction of attachment and distance b/t words

Dependency Parsing

- Dependency grammars:
 - Compactly represent pred-arg structure
 - Lexicalized, localized
 - Natural handling of flexible word order
- Dependency parsing:
 - Conversion to phrase structure trees
 - Graph-based parsing (MST), efficient non-proj O(n²)
 - Transition-based parser
 - MALTparser: very efficient O(n)
 - Optimizes local decisions based on many rich features

Approaches

- Transition-based
 - Nivre algorithm
- Graph-based
- Current approaches
 - End to end learning
 - Joint learning

End-to-end Learning

- Training data: CoNLL Format.
- Labelled information:
 - \circ id
 - word
 - POS tag
 - Head's id
 - Dependency labels

```
Nhưng
                                       CC
có vẻ
                                       advmod
           \overline{\mathsf{I}}\mathsf{N}
                                 mark
như
rất
                                 advmod
nhiều
                                       amod
người
                                       nsubj
                      RB
chưa
                                       neg
biết
                                       ROOT
                                 case
nấm
                                 nmod
Agaricus
                      NNP NNP
                                       10
                                            nmod
                                 <del>1</del>3
                ĪN
                      ΙN
cùng
                                       case
                            \overline{\mathsf{N}}\mathsf{N}
công dụng
                                       10
                                            nmod
                                       13
vươt trôi
                                            amod
              ĪN
                            16
                                 case
           PRP PRP
                                 nmod
                      PUNCT
           PUNCT
                                       8
                                            punct
Nhằm
                                      mark
hưởng ứng
                            VΒ
                                            R00T
chương trình
                                 \overline{\mathsf{N}}\mathsf{N}
                                                  dobj
           PUNCT
                      PUNCT
                                            punct
Hành trình
                                            nmod
               JJ
                                 amod
           PUNCT
                      PUNCT
                                            punct
```

Question

Show the wrong relation (in format (head, dependent, relation)) wrt to the example on the right

```
Nhưng
a/ (biết, nhưng, cc)
                                                          có vẻ
                                                                                   advmod
                                                          như
                                                                                mark
                                                          rất
                                                                                advmod
b/ (nhiều, rất, advmod)
                                                                                    amod
                                                          người
                                                                                   nsubi
c/ (root, biết, ROOT)
                                                                                   neg
                                                          biết
                                                                                   R<sub>0</sub>0T
```

case d/ (Agaricus, nấm, nmod) nấm nmod Agaricus NNP NNP 10 nmod ĪN **1**3 case 10 nmod 13 vươt trôi amod ĪΝ từ case nmod PUNCT

End-to-end Learning

Manually choosing features:

- Need experts
- #feature template is large due to the feature combination
- => Maybe the highest cost for solving this task.

Basic Big-ram Features
p-word, p-pos, c-word, c-pos
p-pos, c-word, c-pos
p-word, c-word, c-pos
p-word, p-pos, c-pos
p-word, p-pos, c-word
p-word, c-word
p-pos, c-pos

End-to-end Learning

- End to end learning for solving this task:
- Idea: training in parallel 2 modules: feature extractor and classifier
- Don't need to choose features manually

End-to-end Learning

- Learning in parallel multi-tasks :
 - The learning tasks need to be related
 - Joint learning has many advantages: the shared parts contain information of several tasks, reducing model's overfitting
- 2 joint learning tasks in dependency parsing: POS Tagging + Dependency Parsing.

- In the figure:
 - 2 tasks: POS tagging and Dependency Parsing share input neural layers.
 - The output of the share input layers is used as the input for each task.
- Recent research use BiLSTMs as input neural layers

VERB Score dobj **Joint Learning** POS MLP Label MLP Arc MLP 000 000 000 000 000 lexicon cơm PUNCT com

- An RNN is used to generate word embedding
- BiLSTM generates input representation for MLP networks of POS Tagging and Dependency Parsing tasks (from vector containing information of characters, words, POS tags)

2 joint learning tasks:

- POS tagging
- Computing edge weights (dependent relations connecting word pairs)
- Determining dependent labels between each word pairs.

Content

1. Overview

- Introduction
- Applications
- Properties

2. Approaches

- Transition-based
- Graph-based
- Current approaches

3. Some results

Some results

- POS Tagging
- Dependency Parsing
- Dataset
- Experimental Results

POS Tagging

- CRFSuite
- jPTDP: tool for joint learning, using Neural Network, joint learns POS Tagging and Dependency Parsing.

Dependency Parsing.

- Malt Parser (Transition based):
 - Dependency parser: Nivre
 - Learning method: SVM
- Yara Parser (Transition based):
 - Dependency parser: Nivre
 - Learning method: Neural Network
 - Improvement: Error Exploration, Beam Search
- BiLSTM Transition-based:
 - Dependency parser: Nivre
 - Learning method: Neural Network
 - End to end learning

Dependency Parsing.

- BiLSTM Graph-based:
 - Dependency parser: Eisner
 - Learning method: Neural Network
 - End to end learning
- jPTDP (Graph-based):
 - Dependency parser: Eisner
 - Learning method: Neural Network
 - End to end learning
 - Joint Learning POS Tagging + Dependency Parsing

Dataset

- Dataset: BK Treebank.
 - 6908 sentences in CoNLL-U Format
 - 4505 sentences for training, 1134 sentences for development, 1269 sentences for testing
- Evaluating measures:
 - POS Tagging: Accuracy.
 - Dependency Parsing: UAS and LAS
 - UAS: Unlabeled Attachment Score
 - LAS: Labeled Attachment Score

Results

Methods	UAS	LAS
Malt Parser	84.4 %	81.4 %
Yara Parser	86.3 %	83.4 %
BiLSTM Transition	86.4 %	82.9 %
BiLSTM Graph	87 %	84.2%

The input text has been assigned with POS tags.

Results

Method	POS Accuracy	UAS	LAS
CRF + Malt Parser	90.66 %	76.7 %	70.2 %
CRF + Yara Parser	90.66 %	79.1 %	72.6 %
CRF + BiLSTM Transition	90.66 %	78.9 %	72.2 %
CRF + BiLSTM Graph	90.66 %	79.7 %	73 %
jPTDP	89.16 %	80.4 %	73 %

The input text has not been assigned with POS tags.

Result

Method	POS Accuracy	UAS	LAS
jPTDP	89.16 %	80.4 %	73 %
jPTDP + Lexicon	91.50 %	82.13 %	75.67 %
jPTDP + Lexicon (Not Character Embed)	91.05%	81.46 %	75.23 %

The input text has not been assigned with POS tags.

References

- [1] Kiem-Hieu Nguyen. BKTreebank: Building a Vietnamese Dependency Treebank
- [2] Yue Zhang and Joakim Nivre. Training Deterministic Parsers with Non-Deterministic Oracles
- [3] Eliyahu Kiperwasser and Yoav Goldberg. Simple and Accurate Dependency Parsing Using Bidirectional LSTM Feature Representations
- [4] Dat Quoc Nguyen, Mark Dras and Mark Johnson. A Novel Neural Network Model for Joint POS Tagging and Graph-based Dependency Parsing

Tài liệu tham khảo.

Deterministic Oracles

- [5] Yuan Zhang and David Weiss. Stack-propagation: Improved Representation Learning for Syntax
- [6] Barbara Plank, Anders Søgaard, Yoav Goldberg. Multilingual Part-of-Speech Tagging with Bidirectional Long Short-Term Memory Models and Auxiliary Loss [7] Ryan McDonald et al. Online Large-Margin Training of Dependency Parsers [8] Yoav Goldberg and Joakim Nivre. Training Deterministic Parsers with Non-