Last Time		
Offline POMDP Algorithms		
PBVI	- , t,to	
SARSOP &[5]	Index - state Numbers - Value of execut; Correspond - T	
. *. \		
$V(b) = \alpha_n^T b$		
This Time		
Formulation Approximations Object Oriented Programming in Juli	a in HW5	
Disappointing Factsi		
Infinite Horizon POMDPs are Undecidable		
Finite Horizon POMPPs a		
Among the hardest problems that can be solved using a polynomial amount of space		
can be solved us	ing a polynomial amount	
of space		
ANT .		
POMDP algorithms (likely) hav	e exponential complexity,	
Numerical Approximation	Formulation Approximations	
Offline Online		
Solve the original problem approximately	Solve an approximate problem exactly	
	or approximately	
	,	

Name	Description ?	Properties	Usefulness
Certainty - Equivalence	control as if the true state is mean of belief	Optimal for LQG	タタタタタ
QMD P	Full observability after I time step	and upper bound for	ARRAR
FIB	Takes 1 observation into account	tighter upper bound than QMDP	本本
Hindsight Opt	state and outcome uncertainty	Looser Upper Bound that RMDP	**
Last kobservati k Markov"	es pretend that lest k observations make up the state and solve map	Great for Atari?	
Open Loop	Choose sequence of actions	Good if Allestony is low, and	***
ho observations		epistenic is hard to reduce	N K K
Most likely obs	Plan assuming $b'=z(b,a,\hat{o}(b))$	No observation branching	AXX

POMDP Objective

Certainty Equivalence

$$\pi_{CE}(b) = \pi_{MDP}(E[s])$$

or median

Optimal for one very special POMDP

LQG

5,~N(40,50) R(5,a)=5TQ5+aTRa

Bayesion Update

$$\sum_{t+1} = A \left(\sum_{t} - \sum_{t} C^{T} (C \sum_{t} C^{T} + W)^{-1} (\sum_{t} A^{T} + V) \right)$$

$$L = A \sum_{t} C^{T} \left(\sum_{t} C^{T} + W \right)^{-1}$$

$$M_{t+1} = A M_{t} + B a + L \left(O_{t} - C M_{t} \right)$$

Solution to LQR MDP

a+ = - Ks+

Solution to LQG POMDP

a+= ~ K M+

Certainty Equivalence Principle

Works pretty well for any problem where belief is unimodal

QMDP

Breakout Rooms

figure out Q(5,a)

$$Q_{MDP}^{*}(1,-1) = 100-1$$
 $Q_{MDP}^{*}(2,-1) = 100-2$

$$Q_{MDP}^{*}\left(1, a\neq 1\right) = worse than -1$$
 $Q_{MDP}^{*}\left(2, a\neq -1\right) = worse than -1$

QMPP is bad at costly information gathering

FIB

$$\pi_{FiB}(b) = argmax \ d_a^Tb$$

1000 \(\alpha^{(k+1)}[5] = R(s,a) + \(\sigma \sigma \alpha \sigma \si

$$\mathcal{T}(6) = \underset{a_{1:\infty}}{\operatorname{argmax}} \frac{1}{m} \sum_{i=1}^{m} y^{+} R(s_{1}^{i}, a_{1}^{i})$$
Hop
$$\underset{a_{1:\infty}}{\operatorname{ai}} = G(s_{1}^{i}, a_{1}^{i}, w_{1}^{i})$$
Subject to $s_{1+1}^{i} = G(s_{1}^{i}, a_{1}^{i}, w_{1}^{i})$

Subject to
$$S_{++1}^{i} = G(S_{+}^{i}, a_{+}^{i}, w_{i})$$
 $a_{+}^{i} = a_{+}^{i} + i_{+}^{i}$