Chap 5³ : Géométrie élémentaire de l'espace

 ${\mathcal E}$ espace affine de dimension 3, de direction $\vec{{\mathcal E}}$

I. Repères cartésiens

Base de $\vec{\mathcal{E}}$: donnée de 3 vecteurs $(\vec{i}, \vec{j}, \vec{k})$ non coplanaires $\Rightarrow \forall \vec{u} \in \vec{\mathcal{E}}, \exists ! (x, y, z) \in \mathbb{R}^3, \vec{u} = x\vec{i} + y\vec{j} + z\vec{k}$ Repère de $\vec{\mathcal{E}}$: donnée d'un point O et d'une base de $\vec{\mathcal{E}}$ $\Re = (O, \vec{i}, \vec{j}, \vec{k})$

II. Produit scalaire

 $\vec{u} \cdot \vec{v} = xx' + yy' + zz'$ Bilinéaire, symétrique, défini positif Norme associée : $||\vec{u}|| = \sqrt{\vec{u} \cdot \vec{u}}$

Base $(\vec{u}, \vec{v}, \vec{w})$ orthogonale si $\vec{u} \cdot \vec{v} = \vec{u} \cdot \vec{w} = \vec{v} \cdot \vec{w} = 0$

Cauchy-Schwartz : $|\vec{u} \cdot \vec{v}| \le |\vec{u}| |\vec{v}| \Rightarrow \text{Inégalité triangulaire } |\vec{u} + \vec{v}| \le |\vec{u}| + |\vec{v}|$

Identité de polarisation : $\|\vec{u} + \vec{v}\|^2 = \|\vec{u}\|^2 + \|v\|^2 + 2\vec{u} \cdot \vec{v}$

Identité du parallélisme logique : $\|\vec{u} + \vec{v}\|^2 + \|\vec{u} - \vec{v}\|^2 = 2(\|\vec{u}\|^2 + \|\vec{v}\|^2)$

 $\vec{u} \cdot \vec{v} = ||\vec{u}||||\vec{v}|| \cos(\vec{u}, \vec{v})$

III. Produit vectoriel

 $\vec{u} \wedge \vec{v} = \begin{vmatrix} x & x' \\ y & y' \end{vmatrix} = \begin{pmatrix} yz' - y'z \\ zx' - z'x \end{pmatrix}$ Bilinéaire, antisymétrique, $\vec{u} \wedge \vec{v} = \vec{0} \Leftrightarrow \vec{u}$ et \vec{v} colinéaires

 $\overrightarrow{e_1} \wedge \overrightarrow{e_2} = +\overrightarrow{e_3}$ BON directe, indirecte si -

 $(\vec{u} \wedge \vec{v}) \perp \vec{u} \qquad (\vec{u} \wedge \vec{v}) \perp \vec{v}$

Preuve : Vrai pour $(O, \vec{i}, \vec{j}, \vec{k})$

 $\|\overrightarrow{e_1} \wedge \overrightarrow{e_2}\|^2 = 1$ $(e_1 \wedge e_2) \cdot e_1 = (e_1 \wedge e_2) \cdot e_2 = 0$

 $\vec{u} \wedge \vec{v} = \|\vec{u}\| \|\vec{v}\| \sin \theta \vec{n}$

IV. Déterminant (ou produit mixte)

 $\det(\vec{u}, \vec{v}, \vec{w}) = (\vec{u} \wedge \vec{v}) \cdot \vec{u} = \begin{vmatrix} x & x' & x'' \\ y & y' & y'' \\ z & z' & z'' \end{vmatrix} = xy'z'' + yz'x'' + zx'y - x''y'z - y''z'x - z''x'y$ (règle de Sarrus)

3-linéaire (à gauche, à droite, et au milieu), Alterné $(\det(\vec{u}, \vec{v}, \vec{w}) = 0$ si 2 sont égaux), Antisymétrique $\det(\vec{u}, \vec{v}, \vec{w}) = 0 \Leftrightarrow \vec{u}, \vec{v}, \vec{w}$ coplanaires

Développement par rapport à une colonne, un ligne... \rightarrow signes alternés

 $|\det(\overrightarrow{AB}, \overrightarrow{AC}, \overrightarrow{AD})| = 6Vol(ABCD)$

V. Plans et droites

Caractérisation d'un plan : Point et vecteur normal : $\overrightarrow{AM} \cdot \overrightarrow{n} = 0$

Point et vecteurs directeurs : $\det(\overrightarrow{AM}, \overrightarrow{u}, \overrightarrow{v}) = 0$ ou $\overrightarrow{n} = \overrightarrow{u} \wedge \overrightarrow{v}$

3 points : se ramener aux vecteurs

Equations paramétriques : $M \in \mathcal{P} \Leftrightarrow \begin{cases} x = x_A + s\alpha + t\alpha' \\ y = y_A + s\beta + t\beta' \\ z = z_A + s\gamma + s\gamma' \end{cases}$

Distance d'un point à un plan : $d(M_0, \mathcal{P}) = \frac{|\overrightarrow{AM_0} \cdot \overrightarrow{n}|}{\|\overrightarrow{n}\|} = \frac{|ax_0 + by_0 + cz_0 - d|}{\sqrt{a^2 + b^2 + c^2}}$

Caractérisation d'une droite : Equations paramétriques : $\begin{cases} x = x_A + \alpha t \\ y = y_A + \beta t \\ z = z_A + \alpha t \end{cases}$

Equations cartésiennes : 2 équations de plans (non uniques)

Distance d'un point à une droite : $d(M_0, D) = \frac{\|\vec{u} \wedge \overline{AM_0}\|}{\|\vec{u}\|}$

Perpendiculaire commune:

D et D' parallèles : même plan P, infinité de perpendiculaires communes

D et D' sécantes : même plan P → perpendiculaire commune : celle à P passant par le point d'intersection

D et D' non coplanaires \rightarrow perpendiculaire coplanaire à $\vec{u} \wedge \vec{v}$ et \vec{u} et à $\vec{u} \wedge \vec{v}$ et \vec{v}

Double produit vectoriel : $\vec{u} \wedge (\vec{v} \wedge \vec{w}) = (\vec{u} \cdot \vec{w}) \vec{v} - (\vec{u} \cdot \vec{v}) \vec{w}$

VI. Sphères

$$\mathbb{S} = \{ M \in \mathcal{E}, M\Omega = R \} = \{ M \in \mathcal{E}, \overrightarrow{MA} \cdot \overrightarrow{MB} = 0 \}$$

Intersection entre $\mathbb S$ sphère de centre Ω et de rayon R avec $\mathfrak D$ droite de $\mathfrak S\mathfrak M$:

$$d(\Omega, \mathfrak{D}) > R \Longrightarrow \mathbb{S} \cap \mathfrak{D} = \emptyset$$

$$d(\Omega, \mathfrak{D}) = R \Rightarrow \mathbb{S} \cap \mathfrak{D} = \{H\}$$
 projeté orth. de Ω sur \mathfrak{D}

$$d(\Omega, \mathfrak{D}) < R \Longrightarrow \mathbb{S} \cap \mathfrak{D} = \{A, B\} \ (A \neq B)$$

Intersection entre \mathbb{S} et \mathcal{P} plan de l'espace : $(d(\Omega, \mathcal{P}) \leq R \text{ idem droite})$

 $d(\Omega, \mathcal{P}) < R \Rightarrow \mathbb{S} \cap \mathcal{P}$ est un cercle de centre H de rayon $\sqrt{R^2 - d(\Omega, \mathcal{P})^2}$ contenu dans \mathcal{P} Intersection entre \mathbb{S}_1 et \mathbb{S}_2 sphères de centre Ω_1 et Ω_2 , de rayon R_1 et R_2 :

$$\Omega_1 \Omega_2 > R_1 + R_2$$
 ou $\Omega_1 \Omega_2 < |R_1 - R_2| \Rightarrow \mathbb{S}_1 \cap \mathbb{S}_2 = \emptyset$

$$\Omega_1\Omega_2=R_1+R_2$$
 ou $\Omega_1\Omega_2=\mid R_1-R_2\mid \Rightarrow$ Les deux sphères sont tangentes

$$R_1+R_2>\Omega_1\Omega_2>\mid R_1-R_2\mid \Rightarrow \mathbb{S}_1\cap \mathbb{S}_2$$
 est un cercle