Série 2016

Procédures de qualification

Planificatrice-électricienne CFC Planificateur-électricien CFC

Connaissances professionnelles écrites

Pos. 4.2 Technique des systèmes électriques

Dossier des expertes et experts

Temps: 90 minutes

Auxiliaires: Règle, équerre, chablon, calculatrice de poche sans transmission de

données et recueil de formules sans exemple de calcul.

Cotation: - Le nombre de points maximum est donné pour chaque exercice.

> - Pour obtenir le maximum de points, les formules et les calculs doivent figurer dans la solution ainsi que les résultats avec leur unité soulignés deux fois.

- Le cheminement de la solution doit être clair et son contrôle doit être aisé.

- Si dans un exercice on demande plusieurs réponses, vous êtes tenu de répondre à chacune d'elles. Les réponses sont évaluées dans l'ordre où elles sont données. Les réponses données en plus ne sont pas évaluées.
- S'il manque de la place, la solution peut être écrite au dos de la feuille et vous devez le mentionner sur l'exercice.

Barème: Nombres de points maximum: 52,0

49,5	-	52,0	Points = Note	6,0
44,5	-	49,0	Points = Note	5,5
39,0	-	44,0	Points = Note	5,0
34,0	-	38,5	Points = Note	4,5
29,0	-	33,5	Points = Note	4,0
23,5	-	28,5	Points = Note	3,5
18,5	-	23,0	Points = Note	3,0
13,0	-	18,0	Points = Note	2,5
8,0	-	12,5	Points = Note	2,0
3,0	-	7,5	Points = Note	1,5
0,0	_	2,5	Points = Note	1,0

Les solutions ne sont pas données pour des raisons didactiques

(Décision de la commission des tâches d'examens du 09.09.2008)

Délai d'attente:	Cette épreuve d'examen ne peut pas être utilisée librement comme
	exercice avant le 1 ^{er} septembre 2017.

Groupe de travail EFA de l'USIE pour la profession de

planificatrice-électricienne CFC / planificateur-électricien CFC

Editeur: CSFO, département procédures de qualification, Berne

Créé par:

Exer	cices				maximal	obtenus
1.	5.1.1 En Suisse, le transport d'énergie électrique se fait pa	ar des rés	seaux triph	asés.	2	
	Nommez deux avantages du réseau triphasé par rap	oport au r	éseau moi	nophasé.		
	Avantage 1:				1	
	Avantage 2:				1	
					'	
	Solution:					
	Avantage 1 Les consommateurs disposent de deux tensions neutre, 400 V entre deux phases)	s (230 V e	entre phas	e et		
	Avantage 2 Le réseau triphasé permet de produire facilement dernier permet l'utilisation de moteur électrique					
2.	5.1.2 Dans quel cas peut-on ne pas relier le conducteur d en étoile? Cochez les réponses justes ou fausses.	e neutre l	ors d'un co	ouplage	2	
	Affirmations	juste	faux			
	Lorsque l'on a un déséquilibre de charge sur les trois conducteurs de phases.				0,5	
	Lorsque le conducteur de phase est chargé avec seulement la moitié du courant de charge habituel.				0,5	
	Lorsque les trois conducteurs de phase ont la même charge.				0,5	
	Le conducteur de neutre doit toujours être raccordé.				0,5	
	Solution:					
	Affirmations	juste	faux			
	Lorsque l'on a un déséquilibre de charge sur les trois conducteurs de phases.		\boxtimes			
	Lorsque le conducteur de phase est chargé avec seulement la moitié du courant de charge habituel.					
	Lorsque les trois conducteurs de phase ont la même charge.	\boxtimes				
	Le conducteur de neutre doit toujours être raccordé.		\boxtimes			

Exer	ces					maximal	obtenus
3.	5.1.7 Un voltmètre numérique, avec affichage L0 précision 0,5 et une imprécision d'affichage 123 V. Quelles sont les valeurs maximales et min Solution: $\Delta U = 0,5 \% \text{ de } 123 \text{ V} = \underline{\pm 0,615 \text{ V}}$ $\Delta U = \pm 0,6 \text{ V} \pm (3 \cdot 0,1 \text{ V}) = \underline{\pm 0,9 \text{ V}}$ $U = 123 \text{ V} \pm 0,9 \text{ V} = \underline{\text{entre } 122,1 \text{ V et } 12}$	e de ± 3 di imales de	igits, indi	que une	tension de	3	
	5.1.4						
4.	Cochez les bonnes réponses.					4	
	Evénement	Dispos cour différe résiduel (DD	ant entiel 30 mA		oncteur 13 A		
		Déclenc	hement	Déclei	nchement		
		Oui	Non	Oui	Non		
	Défaut à la terre entre L et PE					1	
	Défaut d'isolation du conducteur de phase L avec un courant de fuite de 80 mA vers le PE					1	
	Défaut d'isolation du conducteur de neutre N avec un courant de fuite de 10 mA vers le PE					1	
	Défaut d'isolation du conducteur de terre vers le boitier d'un appareil ayant une double isolation.					1	
	Solution:						
	Evénement	Dispos cour différe résiduel (DD	ant entiel 30 mA		oncteur I3 A		
		Déclenc	hement	Décler	nchement		
		Oui	Non	Oui	Non		
	Défaut à la terre entre L et PE	\boxtimes		\boxtimes			
	Défaut d'isolation du conducteur de phase L avec un courant de fuite de 80 mA vers le PE						
	Défaut d'isolation du conducteur de neutre N avec un courant de fuite de 10 mA vers le PE		\boxtimes				
	Défaut d'isolation du conducteur de terre vers le boitier d'un appareil ayant une double isolation.				\boxtimes		

Exer	cices	Nombre o	de points obtenus
5.	5.1.6 Un transformateur monophasé consomme à vide un courant de 3 A sous 400 V. Sur le compteur placé avant le transformateur, on peut lire: 600 impulsions = 1kWh.	3	
	En 90 secondes, le compteur génère 3 impulsions.		
	Calculez:		
	a) la puissance active	1	
	b) la puissance apparente	1	
	c) le facteur de puissance	1	
	Solution:		
	a) $P = \frac{3600 \cdot n}{c \cdot t} = \frac{3600 \frac{s}{h} \cdot 3}{600 \frac{1}{kWh} \cdot 90 s} = \frac{0.2 \text{ kW}}{}$		
	b) $S = U \cdot I = 400 \text{ V} \cdot 3 \text{ A} = \underline{1200 \text{ VA}}$		
	c) $\cos \varphi = \frac{P}{S} = \frac{200 \text{ W}}{1200 \text{ VA}} = \frac{0.17}{1200 \text{ VA}}$		
6.	5.1.9 Que signifie l'abréviation CEM? Solution:	1	
	Compatibilité électromagnétique		
7.	5.2.6 Quelle est la valeur de tension totale U?	1	
	+ Pile - 1.5V Pile - 1.5V + - Pile - 1.5V + - Pile - 1.5V +		
	U		
	Solution:		
	3 V		

	afin d'indique	eut être modifiée r si elle est juste	2	
iuste	T			
,	Faux			
		-	0,5	
		7	0,5	
			0,5	
			0,5	
juste	faux			
		-		
\boxtimes]		
\boxtimes				
	\boxtimes	-		
			1	
de ce circuit			1	
de de diredit			•	
$\frac{6,84 \ \mu F}{0,84 \cdot 10^{-6} \ F} = \frac{4}{5}$	465, 4 Ω			
	pacités de 8 μF	pacités de 8 μF et 47 μF sont	pacités de 8 μF et 47 μF sont couplés en série.	0,5 0,5

rcices	Nombre of maximal	de points obtenus
$5.3.3$ Une résistance de 100 Ω est raccordée à une tension alternative de 230 V / 50 Hz.	3	
Que vaut:		
a) la valeur de la tension efficace?	0,5	
b) la valeur de la tension de crête?	0,5	
c) la valeur du courant efficace?	0,5	
d) la valeur du courant de crête?	0,5	
e) la durée d'une période?	0,5	
f) la pulsation (vitesse angulaire)?	0,5	
Solution:		
$\mathbf{a})\mathbf{U} = \underline{230\mathbf{V}}$		
b) $\hat{\mathbf{u}} = \sqrt{2} \cdot \mathbf{U} = \sqrt{2} \cdot 230 \mathbf{V} = \underline{325 \mathbf{V}}$		
c) $I = \frac{U}{R} = \frac{230 \text{ V}}{100 \Omega} = \frac{2.3 \text{ A}}{100 \Omega}$		
d) $\hat{\mathbf{i}} = \sqrt{2} \cdot \mathbf{I} = \sqrt{2} \cdot 2$, $3 \ \mathbf{A} = 3, 25 \ \mathbf{A}$		
e) $T = \frac{1}{f} = \frac{1}{50 \text{ Hz}} = \underline{0.02 \text{ s} = 20 \text{ ms}}$		
f) $\omega = 2\pi \cdot f = 6,28 \cdot 50 \frac{1}{s} = \underbrace{\frac{1}{s}}_{}$		

Exercices	Nombre maximal	de points obtenus
5.3.3 Un moteur monophasé d'une puissance nominale de 370 W, consomme à charge nominale un courant de 3,75 A. La tension du réseau est de 228 V et le rendement du moteur 71 %.	4	
Calculez:		
a) la puissance électrique absorbée	1	
b) la puissance apparente	1	
c) le facteur de puissance	1	
d) la puissance réactive	1	
Solution:		
a) $P_{abs.} = \frac{P_{utile}}{\eta} = \frac{370 \text{ W}}{0.71} = \frac{521 \text{ W}}{0.71}$		
b) $S = U \cdot I = 228 V \cdot 3,75 A = 855 VA$		
c) $\cos \varphi = \frac{P_{abs.}}{S} = \frac{521 \text{ W}}{855 \text{ VA}} = \underline{0,61}$		
d) $Q = \sqrt{(S)^2 - (P_{abs.})^2} = \sqrt{(855 \text{ VA})^2 - (521 \text{ W})^2} = \underline{677.5 \text{ var}}$		
ou		
$Q = S \cdot \sin \varphi = 855 \text{ VA } \cdot 0,79 = \underbrace{677,5 \text{ var}}_{}$		
ou		
$Q = P_{abs.} \cdot tan\phi = 521 \text{ W} \cdot 1,299 = \underline{\underline{676,8 \text{ var}}}$		

Exer	cices			maximal	obtenus
12.	Quatre lampes à incandescence sont raccordées à une s source de tension dispose de quatre heures d'énergie por Maintenant deux lampes sont défectueuses. Pour chacune des affirmations suivantes, cochez afin d'in ou fausse. (La résistance interne de la source de tension et la résista peuvent être négligées.)	ur ces qua ndiquer si e	tre lampes. elle est juste	2	
	Affirmations	juste	faux		
	Si seulement deux lampes sont allumées, elles brillent avec deux fois plus d'intensité et s'éteignent après un temps plus court.			0,5	
	Si seulement deux lampes sont allumées, elles brillent avec deux fois moins d'intensité.			0,5	
	Si seulement deux lampes sont allumées, elles brillent durant 8 heures.			0,5	
	La lampe qui est plus proche de la batterie brille plus que la 2ème ampoule.			0,5	
	Solution:				
	Affirmations	juste	faux		
	Si seulement deux lampes sont allumées, elles brillent avec deux fois plus d'intensité et s'éteignent après un temps plus court.		\boxtimes		
	Si seulement deux lampes sont allumées, elles brillent avec deux fois moins d'intensité.				
	Si seulement deux lampes sont allumées, elles brillent durant 8 heures.	\boxtimes			
	La lampe qui est plus proche de la batterie brille plus que la 2 ^{ème} ampoule.		\boxtimes		

Exercices	Nombre maximal	de points obtenus
5.3.3 13. Une tension U = 24 V est soumise à un diviseur de tension à vide. Aux bornes de la résistance R_2 = 14 k Ω on mesure une tension U ₂ de 7 V.	2	
Calculez:		
a) le courant l	1	
b) la résistance R ₁	1	
Solution: a) $I = \frac{U_2}{R_2} = \frac{7 \text{ V}}{14 \text{ k}\Omega} = \underline{0.5 \text{ mA}}$ b) $R_1 = \frac{U_1}{I} = \frac{17 \text{ V}}{0.5 \text{ mA}} = \underline{34 \text{ k}\Omega}$		
$U_1 = U - U_2 = 24 V - 7 V = \underline{17 V}$ 5.5.2 14. Nommez quatre éléments différents rencontrés dans un système KNX.	2	
Solution:	2	
Alimentation		
Bus		
Capteur		
Actionneur		
Participants		
Répéteurs		
Dorsale		
Coupleur de ligne ou de zone		
(0,5 point par réponse juste)		

Exer	cices	Nombre of maximal	de points obtenus
15.	5.3.4 Calculez:	3	
15.	Galculez.	3	
	a) le courant l ₂	1	
	b) la tension U ₂	1	
	c) la puissance totale P _{tot} (Charge symétrique)	1	
	U ₁ = 230 V L ₁ I ₁ = 10 A		
	Générateur Récepteur		
	Solution:		
	a) $I_2 = \frac{I_1}{\sqrt{3}} = \frac{10 \text{ A}}{\sqrt{3}} = \frac{5,78 \text{ A}}{}$		
	b) $U_2 = \sqrt{3} \cdot U_1 = \sqrt{3} \cdot 230 \text{ V} = \underbrace{398,4 \text{ V}}_{}$ (400 V aussi OK)		
	c) $P = U_2 \cdot I_1 \cdot \sqrt{3} = 398, 4 \text{ V} \cdot 10 \text{ A} \cdot \sqrt{3} = \underline{\underline{6900 \text{ W}}}$		
16.	5.3.4 a) Calculez les courants dans les conducteurs de phase L ₁ , L ₂ .	2	
	L_1 ————————————————————————————————————		
	L ₃		
	3 x 400/230 V		
	50 Ω 880 W 2,6 A		
	Solution:		
	Courant dans le conducteur de phase L ₁ : $I_1 = \frac{U}{R} = \frac{230 \text{ V}}{50 \Omega} = \underbrace{\frac{4,6 \text{ A}}{50 \Omega}}$	1	
	Courant dans le conducteur de phase L ₂ : $I_2 = \frac{P}{U} = \frac{880 \text{ W}}{230 \text{ V}} = \frac{3.8 \text{ A}}{200 \text{ V}}$	1	

Exer	cices	Nombre maximal	de points obtenus
16.	b) Déterminez graphiquement le courant dans le conducteur de neutre 1 A = 10 mm	2	
	Solution:		
	l_1 l_3 l_3	1	
	I _{N =} 1,8 A (Les réponses correctes vont de 1,6 A à 2 A)	1	
	Echelle et angle corrects pour chaque vecteur, mais mauvaise addition vectorielle 1 point.		

Exer	cices	Nombre of maximal	de points obtenus
17.	5.4.1;5.4.2;5.4.3;5.4.4 Complétez la table de vérité.	2	
	$\begin{bmatrix} 1 \\ 2 \end{bmatrix}$		
	I ₁ I ₂ I ₃ Q	0,5 0,5 0,5 0,5	
	I ₁ I ₂ I ₃ Q		
	0 0 1 0		
	0 1 0 0		
	1 1 0 1		
	1 1 1 1		

cices				Nombre maximal
5.3.6 On effectue dans une boite de jonction, à l'aide d'u mesures A, B et C. Pour chacune des affirmations suivantes, cochez a ou fausse.				2
Connecteur A Connecteur		Vers récep ohmi	teurs	
Affirmations	juste	fausse		
Le courant mesuré par C est plus grand que le courant mesuré par A				0,5
A mesure le courant total				0,5
Le courant mesuré par B est plus grand que le courant mesuré par A				0,5
Le courant mesuré par C moins le courant mesuré par A est égale à 0				0,5
Solution: Affirmations	juste	faux		
Le courant mesuré par C est plus grand que le courant mesuré par A				
A mesure le courant total				
Le courant mesuré par B est plus grand que le courant mesuré par A	1			

xercices			Nombre maximal	de points obtenus
5.2.8 Sur un transfo suivantes:	rmateur de puissance triph	nasé, on trouve les informations	3	
	Puissance nominale	250 kVA		
	Fréquence	50 Hz		
	Tension nominale	20'000 / 400 V		
	Courant nominal	7,2 / 361 A		
	Groupe de commutation	Yz5		
	Tension de court-circuit	4,0 %		
transformateur		ircuit, au secondaire de ce tte signalétique)		
	inal I₂N = 361 A;	3,	1	
Tension de co	ourt-circuit u _k = 4 %		1	
$I_k = \frac{100 \ \% \cdot \ I}{u_k}$	$\frac{2n}{4\%} = \frac{100\% \cdot 361 \text{ A}}{4\%} = \frac{9.0}{4\%}$	025 kA	1	
Chaque lampe La puissance t Déterminer l'ée l'éclairage de 4 (Un facteur de				
$\Phi = \eta_L \cdot P = \frac{6}{2}$	$\frac{0 \text{ lm} \cdot 900 \text{ W}}{\text{W}} = \frac{54000 \text{ lm}}{\text{M}}$	<u>.</u>	0,5	
$\Phi_{N} = \Phi \cdot \eta_{B} =$	$54000 \text{ lm } \cdot 0, 4 = \underline{21600}$	<u>lm</u>	0,5	
$E = \frac{\Phi_N}{A} = \frac{216}{24}$	$\frac{00 \text{ lm}}{\text{lm}^2} = \frac{900 \text{ lx}}{\text{lm}^2}$		1	

Exercices	Nombre de poir	
5.3.9 Un moteur triphasé est raccordé au réseau 3 x 400 / 230 V. Sur sa plaquette signalétique, on peut lire:	3	
Fabricant Moteur 3 ~ Nr Δ/Y 400 / 690 V 10,7 A / 6,18 A 5,5 kW S1 $\cos \varphi = 0,88$ 1450 min ⁻¹ 50 Hz Is. KI. B IP54 DIN VDE 0530		
Calculez: a) la puissance active absorbée b) la puissance des condensateurs pour améliorer le cos φ à 0,95 c) le courant consommé avec la batterie de compensation	1 1 1	
Solution: a) $P_{abs} = \sqrt{3} \cdot U \cdot I \cdot \cos \phi = \sqrt{3} \cdot 400 \ V \cdot 10,7 \ A \cdot 0,88 = \underline{\underline{6,52 \ kW}}$		
$\cos \phi_1 = 0.88 \Rightarrow \phi_1 = 28.36^\circ \Rightarrow \tan \phi_1 = 0.54$ $\cos \phi_2 = 0.95 \Rightarrow \phi_2 = 18.19^\circ \Rightarrow \tan \phi_2 = 0.33$		
b) $Q_c = P \cdot (\tan \phi_1 - \tan \phi_2) = 6,52 \text{ kW} \cdot (0,54-0,33) = \underline{1,369 \text{ kvar}}$		
c) $S_2 = \frac{P_{zu}}{\cos \varphi_2} = \frac{6520 \text{ W}}{0,95} = \underline{6863 \text{ VA}}$ $I_2 = \frac{S_2}{U \cdot \sqrt{3}} = \frac{6863 \text{ VA}}{400 \text{ V} \cdot \sqrt{3}} = \underline{9,9 \text{ A}}$		
Total	52	