1 Modèle déterministe, taille de population infinie.

On s'intéresse à un locus à deux allèles A et B. Dans la population des adultes à la génération t la fréquence de l'allèle A est p_t (celle de B est $q_t = 1 - p_t$). On fait l'hypothèse que la reproduction est panmictique et que l'étape éventuelle de sélection s'opère après la formation des zygotes (sélection post-zygotique).

Comme la sélection est post-zygotique, la fréquence de l'allèle A au stade zygotique de la génération t+1 est :

$$p'_{t+1} = p_t \tag{1}$$

Les valeurs sélectives des trois génotypes sont w_{AA}, w_{AB} et w_{BB} . La valeur sélective moyenne à la génération t+1 au stade de la sélection est :

$$\bar{w}_{t+1} = p_{t+1}^{\prime 2} w_{AA} + 2p_{t+1}^{\prime} q_{t+1}^{\prime} w_{AB} + q_{t+1}^{\prime 2} w_{AA}. \tag{2}$$

Le modèle est résumé dans le tableau ci-dessous :

Génotype	AA	AB	BB
Valeurs sélectives	w_{AA}	w_{AB}	w_{BB}
fréquences génotypiques (zygotes $t+1$)	$p_{t+1}^{\prime 2}$	$2p'_{t+1}q'_{t+1}$	$q_{t+1}^{\prime 2}$
fréquences génotypiques (adultes $t+1$)	$\frac{w_{AA}}{\bar{w}_{t+1}}p_{t+1}^{\prime 2}$	$2\bar{w}_{AB}p'_{t+1}q'_{t+1}$	$\frac{w_{BB}}{\bar{w}_{t+1}}q_{t+1}^{\prime 2}$

La fréquence de l'allèle A chez les adultes de la génération t+1 est donc :

$$p_{t+1} = \frac{p'_{t+1} \left(w_{AA} p'_{t+1} + w_{AB} q'_{t+1} \right)}{p'_{t+1} w_{AA} + 2p'_{t+1} q'_{t+1} w_{AB} + q'_{t+1} w_{AA}}.$$
 (3)

Et la variation de fréquence allèlique entre deux générations successives est :

$$\Delta p_{t+1} = p_{t+1} - p_t. {4}$$

2 Modèle stochastique, taille de population finie.

À la différence du modèle déterministe, le modèle stochastique fait intervenir le hasard au moment de la formation des zygotes. La population est de taille finie et constante N et les fréquences alléliques chez les zygotes de la génération t+1 diffèrent probablement légèrement des fréquences alléliques chez les adultes de la génération t à cause du processus aléatoire d'échantillonnage de 2N gamètes pour former les N individus hétérozygotes composant la population. Le nombre d'allèles A échantillonnés est $K_{t+1} = 2Np'_{t+1}$ et suit une loi Binomiale de paramètres 2N et p_t ,

$$K_{t+1} \sim \mathcal{B}(2N, p_t) \text{ et } p'_{t+1} = \frac{K_{t+1}}{2N}.$$
 (5)

Le modèle stochastique fait donc intervenir une étape aléatoire au moment de la reproduction : l'équation (5) se substitue à l'équation (1), et l'équation (3) demeure inchangée.