Методы оптимизации, Лабораторная работа $N^{0}4$

Кирилл Кадомцев

Май 2025

Содержание

Тестирование	
Результаты тестирования $3.1~~{\rm B}$ зависимости от параметра α (коэффициент остывания) .	
3.2 В зависимости от start_t	
3.4 Общая таблица	
	Результаты тестирования 3.1 В зависимости от параметра α (коэффициент остывания) . 3.2 В зависимости от $start_t$

1 Описание

Был реализован метод симуляции отжига с возможностью выбора различных гиперпараметров

2 Тестирование

В первую очередь, для тестирования были выбраны зашумлённые функции, на которых методы из предыдущих лабораторных банально не смогли вычислить результат, в то время как метод симуляции отжига должен быть устойчив:

Периодическая зашумлённая функция:

$$f(x) = \sin(x) + 0.5 \cdot \sin(3x) + \text{Noise}(x)$$
, где $\sin(x) = 0.1 \cdot \sin(20x) + 0.05 \cdot \mathcal{N}(0, 1)$

Непериодическая зашумлённая функция:

$$f(x) = 0.02x^2 - 0.5x + \underbrace{0.3 \cdot e^{-0.5(x-2)^2} - 0.4 \cdot e^{-0.3(x+3)^2}}_{\text{локальные "бугры}} + \underbrace{0.1 \cdot \mathcal{N}(0,1)}_{\text{шум}}$$

Также, некоторые другие функции, использовавшиеся для тестирования:

- Параболоид: $f(x,y) = x^2 + y^2$
- Функция Розенброка: $f(x,y) = (1-x)^2 + 100 \cdot (y-x^2)^2$
- Квадратичная форма (min3m2): $f(x,y) = (x-3)^2 + (y+2)^2$
- Квадратичная форма (min2m1): f(x, y) = x + y
- Функция Химмельблау: $f(x,y) = (x^2 + y 11)^2 + (x + y^2 7)^2$

3 Результаты тестирования

Важно отметить, что тестирования производилось с ограничением в 100000 итераций. Без привязки к гиперпараметрам, метод отжига "смог справиться"с не поддавшимися предыдущим методам зашумлённым функциям, но работал медленнее на хорошо обусловленных функциях.

3.1 В зависимости от параметра α (коэффициент остывания)

Γ.	Alpha	Best x	Function Value
	0.5	[-2075.733258386746]	-1.143854
	0.9	[-580.2988103253542]	-1.073550
	0.99	[1255.971884522375]	-1.092126

Таблица 1: noisy periodic (start t=1000, final t=0.001)

Alpha	Best x	Function Value
0.5	[12.76986017115421]	-3.027205295394961
0.9	[13.000829261723327]	-3.1884971716494124
0.99	[11.54719088183137]	-2.931912130302153

Таблица 2: noisy nonperiodic (start t=1000, final t=0.001)

В итоге лучшим значением оказалось среднее. В первом случае, скорость остывания была слишком быстрой и функция "застряла во втором - слишком медленной и упёрлась в количество итераций.

3.2 В зависимости от start t

Start t	Best x	Function Value
100	[24.44007420608933]	-1.175309
1000	[-580.2988103253542]	-1.073550

Таблица 3: noisy periodic ($\alpha = 0.9$, final t = 0.001)

Start t	Best x	Function Value
100	[12.774633155205372]	-3.177636
1000	[13.000829261723327]	-3.188497

Таблица 4: noisy nonperiodic ($\alpha = 0.9$, final t = 0.001)

3.3 В зависимости от $final_t$

Final t Best x		Function Value	
1e-3	[-580.2988103253542]	-1.073550	
1e-5	[-220.62114482011734]	-1.043032	

Таблица 5: noisy_periodic ($\alpha = 0.9$, $start_t = 1000$)

	Final t	Best x	Function Value
Г	1e-3	[13.000829261723327]	-3.188497
	1e-5	[12.488401777145537]	-3.113249

Таблица 6: noisy_nonperiodic ($\alpha=0.9,\,start_t=1000)$

Результат ухудшился - алгоритм застревал в локальных минимумах при слишком медленном замораживании

3.4 Общая таблица

Function	Start T	Final T	Alpha	Best x	Function Value
noisy_periodic	1000	0.001	0.50	[-2075.73]	-1.143854
noisy_periodic	1000	0.001	0.90	[-580.30]	-1.073550
noisy_periodic	1000	0.001	0.99	[1255.97]	-1.092126
noisy_nonperiodic	1000	0.001	0.50	[12.77]	-3.027205
noisy_nonperiodic	1000	0.001	0.90	[13.00]	-3.188497
noisy_nonperiodic	1000	0.001	0.99	[11.55]	-2.931912
paraboloid	1000	0.001	0.50	[0.02, 0.09]	0.008774
paraboloid	1000	0.001	0.90	[0.15, -0.10]	0.030674
paraboloid	1000	0.001	0.99	[0.04, -0.18]	0.033848
rosenbrock	1000	0.001	0.50	[1.10, 1.21]	0.011030
rosenbrock	1000	0.001	0.90	[0.99, 0.98]	0.006610
rosenbrock	1000	0.001	0.99	[0.94, 0.89]	0.004692
min3m2	1000	0.001	0.50	[3.11, -1.85]	0.033152
min3m2	1000	0.001	0.90	[2.97, -1.94]	0.005287
min3m2	1000	0.001	0.99	[2.96, -2.10]	0.011137
min2m1	1000	0.001	0.50	[-5190.95, -3618.63]	-8809.579000
min2m1	1000	0.001	0.90	[-532.10, -3055.51]	-3587.618000
min2m1	1000	0.001	0.99	[-2621.85, -2642.55]	-5264.398000
himmelblau	1000	0.001	0.50	[3.00, 1.96]	0.025382
himmelblau	1000	0.001	0.90	[3.00, 2.00]	0.000112
himmelblau	1000	0.001	0.99	[3.00, 1.99]	0.004576

Таблица 7: Результаты метода отжига для разных функций и значений α

4 Метаоптимизация

Метод отжига был применён для оптимизации размера батча для предыдущей лабораторной. При ограничении итераций для линейной регрессии в 100 закономерно выдавался результат 1, данный тест ничего особо не показывает. В то время как при 1000 оптимальным оказался размер батча в 35