

Introduction to Principles of Circuits

Nikolai Poliakov

(polyakov_n_a@itmo.ru)

Nikolay Nikolaev

(nanikolaev@itmo.ru)

Introduction

ITMO

 The course focuses on the analog and digital components of electronic circuits which can be used in control systems area.

Lections 1-7; Practice 1-4; Labs 1-3

Lections 8; Practice 5; Labs 4

Nikolai Poliakov,	Arina Arbuzina	Nikolay Nikolaev,	Olga Kazachek Madina Sinetova
Assoc. Prof.	Assistant Professor	Assoc. Prof.	Assistant Professor
polyakov_n_a@itmo.ru	arbyzina99@gmail.com	nanikolaev@itmo.ru	oakozachek@itmo.ru sinetovamadina@gmail.com
Analog electronic circuits		Digital electronic circuits	

Course structure

Main course topics:

- Semiconductor materials;
- Components of analog electronics (diode, transistors (BJT and FET));
- Components of digital electronics (logic elements, flip-flops, encoders, decoders multiplexers, registers, counters);
- Operational amplifiers;
- Active filter;
- Simple analog and digital circuits design.

In our course you will have:

- Lecture part 9(10);
- Practice part 5;
- Laboratory part 4;
- Control tests 4;
- Final written test.

Course content (Week 1)

Nº Class Type Top		Tonic	Date		Score:
INE	Class Type	Class Type Topic		CS	+-min/+max
1	Lecture 1	Introduction in Principles of Circuits. Semiconductor materials and devices	21.10.2024	21.10.2024	Attendance: Min:+1/ Max:+2;
2	Lecture 2	Transistor circuits basics (BJT transistors, FET transistors, MOSFET transistors)	21.10.2024	21.10.2024	Attendance: Min:+1/ Max:+2;
3	Lab 1	Simple semiconductor device circuits design and simulation	22.10.2024	22.10.2024	Min:+1/ Max:+2;
4	Practice 1 (task)	Simple semiconductor device circuits design			Min:+1/ Max:+2;
5	Lecture 3.1	BJT, JFETs, MOSFET amplifier configurations		25.10.2024	Attendance: Min:+1/ Max:+2;
6	Lecture 3.2			25.10.2024	Attendance: Min:+1/ Max:+2;

Week 2

ітмо

No	Class Type	Class Type Topic —		Date	
142	Class Type			CS	+-min/+max
7	Practice 2 (task)	BJT, JFETs, MOSFET amplifier configuration	28.10.2024	4 28.10.2024 4 28.10.2024	Min:+1/ Max:+2
8	Control test 1	Semiconductor materials and devices. BJT, JFETs, MOSFET amplifier configuration (Comprehension check/theory control test)	10.10.101		Min:+6/ Max:+10;
9	Lecture 4	Operational amplifiers: ideal operational amplifier and its characteristics	29.10.2024	29.10.2024	Attendance: Min:+1/ Max:+2;
9	Lecture 5	Operational amplifiers circuits design basics	29.10.2024	29.10.2024	Attendance: Min:+1/ Max:+2;
11	Lab 2	Operational amplifiers circuits design and simulation	30.10.2024	29.10.2024	Min:+1/ Max:+2;
12	Practice 3 (task)	Operational amplifiers circuits design	21 10 2024	024 30.10.2024	Min:+1/ Max:+2;
13	Control test 2	Operational amplifiers: ideal operational amplifier and its characteristics. Operational amplifiers circuits design basics (Comprehension check/theory control test)	31.10.2024	30.10.2024	Min:+6/ Max:+10;
14	Lecture 6	Filter theory introduction	01.11.2024	01.11.2024	Attendance: Min:+1/ Max:+2;
15	Lecture 7	Active filter circuits design	01.11.2024	01.11.2024	Attendance: Min:+1/ Max:+2;

Week 3

Nº	Class Tyme	Topic —		Date	
INE	Class Type			CS	+-min/+max
16	Lab 3	Active filter circuits design and simulation 04.11.2024		04.11.2024	Min:+1/ Max:+3;
17	Practice 4 (task)	Active filter circuits design	06.11.2024 06.11.20		Min:+1/ Max:+2;
18	Control test 3	Filter theory introduction. Active filter circuits design. (Comprehension check)	06.11.2024	06.11.2024	Min:+6/ Max:+10;

Week 4-6

sek	Nº Class 1		Tonic	Date		Score:
×	NE	Class Type Topic		AT	CS	+-min/+max
4	19	Lecture 8	MOSFET)	115 11 20241		Max:+2;
	20	Lecture 9	Digital circuits design basics. Flip-flops (SR, D, JK), Decoders, Decoders Multiplexers, Registers, Counters	19.11.2024	19.11.2024	Attendance: Min:+1/ Max:+2;
	21	Lab 4	Simple digital circuits design and simulation	18.11.2024	21.11.2024	Min:+1/ Max:+3;
5	22	Practice 5 (task)	Simple digital circuits design			Min:+1/ Max:+2
	23	Control test 4	Digital circuits design basics. Transistor switch logic families (DTL, TTL, ESL, MOSFET). Flip-flops (SR, D, JK), Decoders, Decoders Multiplexers, Registers, Counters (Comprehension check)	20.11.2024 22.11.2024		Min:+6/ Max:+10;
6	24	Final test	Consultation Final written test	25.11.2024	26.11.2024	Min:+12/ Max:+20;

Semiconductor materials and devices

Nikolai Poliakov

(polyakov_n_a@itmo.ru)

Semiconductor materials

- Electrical conduction.
- (a) Electrons moving from left to right give rise to a current directed from right to left.
- **(b)** Holes moving from left to right give rise
- to a current directed from left to right.

Why Silicon is Preferred in Semiconductors?

- The energy band gap is 0.7eV, whereas it is 0.2eV for germanium.
- The thermal pair generation is smaller.
- The formation of SiO2 layer is easy for silicon, which helps in the manufacture of many components along with integration technology.
- Si is easily found in nature than Ge.
- Noise is less in components made up of Si than in Ge.

pn-junction

- N-type material has electrons as majority carriers and few holes as minority carriers.
- P-type material has holes as majority carriers and few electrons as minority carriers.

pn-junction

pn-junction under external voltage

Diode capacitance

Depletion capacitance

Reverse

Forward voltage

Diffusion Capacitance

Forward bias

$$C_D = dQ / dV$$

dQ = Change in number of minority carriers stored outside the depletion region

dV = Change in voltage applied across diode

Diode breakdown

By used material

- Si
- Ge
- GaAs
- etc

By type of p-n junction

- p-n junction
- pin junction
- metal-semiconductor junctions

By purpose

- Rectifying diodes
- Zener Diode
- Schottky Diode
- Tunnel Diode
- Light Emitting Diode (LED)
- Laser Diode (LD)
- Transient Voltage Suppression Diode
- Peltier Diode
- Avalanche Diode
- etc

Zener diode

Main parameters:

Zener Voltage V_Z Breakover Current I_{ZK}

Power Dissipation

Dynamic Impedance

Effect of Temperature on V₇ Voltage

Light-emitting diode

	Typical LED Ch	naracteristics		
Semiconductor Material	Wavelength	Colour	V _F @ 20mA	
GaAs	850-940nm	Infra-Red	1.2v	
GaAsP	630-660nm	Red	1.8.v	
GaAsP	605-620nm	Amber	2.0v	
GaAsP:N	585-595nm	Yellow	2.2v	
AlGaP	550-570nm	Green	3.5v	
SiC	430-505nm	Blue	3.6v	
GaLnN	450nm	White	4.0v	

Comparison of different type PD

	P-N	PIN	APD
PHOTOVOLTAIC	Best	Good	Poor
REVERSE BIASED	Good	Best	Good
LOW LIGHT	Poor	Good	Best
COST	Best	Good	Poor
LOW NOISE	Good	Best	Poor

Optocoupler

ITMO

The Current – Transfer – Ratio (CTR)

$$CTF = \frac{I_C}{I_F} * 100\%$$

were:

 I_F – current flowing through the LED,

 I_C — current flowing through the photosensor

An Optocoupler Can Effectively:

- Remove electrical noise from signals
- Isolate low-voltage devices from high-voltage circuits. The device is able to avoid disruptions from voltage surges (ex: from radio frequency transmissions, lightning strikes, and spikes in a power supply)
- Allow the usage of small digital signals to control larger AC voltages

	Rectifier diode	Zener diode	LED	PD
Forward bias	V	X	$\sqrt{}$	X
Reverse bias	V	V	X	V
Reverse breakdown	X	$\sqrt{}$	X	X

Ideal

- · no offset voltage
- no internal resistance
- lossless

no offset voltage

Voltage limiter

ITMO

The forward diode D_f and reverse diode D_r will be off

$$V_S - R_S i_{\text{out}} < V_Z$$

$$v_{out} \cong V_S$$

$$V_s > V_Z$$

The forward diode D_f will be off while the reverse diode D_r is on

$$V_S - R_S i_{\text{out}} > V_Z$$

$$v_{out} \cong V_Z$$

One-way limiter circuit

 Use the offset diode model with a threshold voltage of 0.6 V to determine the value of v1 for which the diode D will first conduct

$$v_1 = v_D + 0.6 + 2$$
$$v_0 = 2$$

 $v_D = v_1 - 2.6$

AC Voltage:

- ~50 countries 100-127V
- ~200 countries 220-240V
- ~180 countries 50Hz
- ~50 countries 60Hz

ITMO

Transformers!

√ Only AC amplitude changes

√ Very efficient!

Power losses reduces with voltage increase

$$P_{losses} = I^2 * R$$

If
$$P_{total} = UI = P_{load} + P_{losses} = \text{CONST}$$
 and if $U \uparrow$ then $I \downarrow$ and consequently, $\bigvee P_{losses} \downarrow$

Half-Wave Rectifier (HWR)

ITMO

Source voltage $v_s(t)$

$$v_s(t) = V_s \cdot \sin(f \cdot 2\pi \cdot t) = V_s \cdot \sin(\omega \cdot t)$$

$$V_{S_{RMS}} = \frac{V_S}{\sqrt{2}}$$

Voltage on the load resistance R_L

$$v_{R_L}(t) = \begin{cases} 0, & if \quad v_S(t) \le 0 \\ v_S(t), & if \quad v_S(t) > 0 \end{cases}$$

Half-wave rectifier

$$v_{R_L}(t) = \begin{cases} 0, & \text{if } v_S(t) \le 0 \\ v_S(t), & \text{if } v_S(t) > 0 \end{cases}$$

Load voltage is the sum of the DC ($V_{R_{L_{AVG}}}\!)$ and AC ($v_{R_{L_{\sim}}}\left(t\right)$) components

$$v_{R_L}(t) = V_{R_{LAVG}} + v_{R_{L_{\sim}}}(t)$$

Half-Wave Rectifier (HWR)

Source voltage
$$v_s(t)$$

 $v_s(t) = V_s \cdot \sin(f \cdot 2\pi \cdot t) = V_s \cdot \sin(\omega \cdot t)$

Voltage on the load resistance R_{L}

$$v_{R_L}(t) = \begin{cases} 0, & if \quad v_S(t) \le 0 \\ v_S(t), & if \quad v_S(t) > 0 \end{cases}$$

Voltage on the load resistance is $R_{
m L}$ a sum of DC voltage $V_{R_{L_{AVG}}}$ and voltage ripple $v_{R_{L_{\sim}}}$ (t)

$$v_{R_L}(t) = V_{R_{LAVG}} + v_{R_{L_{\sim}}}(t)$$

Average voltage on the load resistance R_L:

$$V_{R_{LAVG}} = \int_0^{2\pi/\omega} V_S \cdot \sin(\omega \cdot t) dt = \int_0^T V_S \cdot \sin(\omega \cdot t) dt = \frac{V_S}{T \cdot \omega} \cos(\omega \cdot t) \Big|_0^{T/2} = \frac{V_S}{\pi} = \frac{\sqrt{2} \cdot V_{S_{RMS}}}{\pi} \approx 0.45 \cdot V_{S_{RMS}}$$

RMS value of the voltage on the load resistance $\boldsymbol{R}_{\boldsymbol{L}}$:

$$V_{R_{L_{\sim}RMS}} = \sqrt{V_{R_{L_{1\sim}RMS}}^{2} + V_{R_{L_{2\sim}RMS}}^{2} + V_{R_{L_{3\sim}RMS}}^{2} + \dots + V_{R_{L_{n\sim}RMS}}^{2}} = \sqrt{V_{R_{L_{RMS}}}^{2} - V_{R_{L_{AVG}}}^{2}}$$
Ripple factor $K_{P} = \frac{V_{R_{L_{\sim}RMS}}}{V_{R_{L_{AVG}}}} = \sqrt{\frac{(V_{R_{L_{RMS}}}^{2} - V_{R_{L_{AVG}}}^{2})}{V_{R_{L_{AVG}}}^{2}}} = \sqrt{\frac{V_{R_{L_{RMS}}}^{2} - 1}{V_{R_{L_{AVG}}}^{2}}} = \sqrt{\frac{(\frac{\pi}{2})^{2} - 1}{V_{R_{L_{AVG}}}^{2}}} = 1.21$

Half-wave rectifier main parameters

Rectifier Main parameters

Average load voltage:

$$V_{R_{LAVG}} = V_{S_{RMS}}$$

RMS value of the variable voltage component

$$V_{R_{L_{\sim}RMS}} = \sqrt{V_{R_{L_{RMS}}}^2 - V_{R_{L_{AVG}}}^2}$$

RMS value of load current

$$I_L = \frac{V_S}{2 R_L} = 0.707 \frac{V_{S_{RMS}}}{R_L}$$

RMS voltage on the load

$$V_{R_{L_{RMS}}}^2 \approx 0.707 V_{S_{RMS}}$$

Average load current

$$I_{L_{AVG}} \approx 0.45 \frac{V_{S_{RMS}}}{R_{I}}$$

Ripple factor

$$K_p = \gamma = \sqrt[2]{\left(\frac{V_{S_{RMS}}}{V_{R_{LAVG}}}\right)^2 - 1} = 1.21$$

Diode Main parameters

Average current flowing through the diode

$$I_{VD_{AVG}} = I_{L_{AVG}} = 0.45 \frac{V_{S_{RMS}}}{R_L}$$

Maximum reverse voltage across the diode

$$V_{VD_{max}} = V_{S}$$

Maximum diode current

$$I_{VD_{max}} = \frac{V_s}{R_L}$$

Half-Wave Rectifier (HWR)

Load parameters:

Average load voltage

$$V_{R_{LAVG}} = \frac{V_s}{\pi} = \frac{\sqrt{2}V_{S_{RMS}}}{\pi} \approx 0.45V_{S_{RMS}}$$

RMS load voltage

$$V_{R_{L RMS}} = \frac{V_{S}}{2} = \frac{V_{S_{RMS}}}{\sqrt{2}} \approx 0.707 V_{S_{RMS}}$$

Average load current

$$I_{L_{AVG}} = \frac{V_{R_{LAVG}}}{R_{L}} = \frac{\sqrt{2}V_{S_{RMS}}}{\pi R_{L}} \approx 0.45 \frac{V_{S_{RMS}}}{R_{L}}$$

RMS load current through diode

$$I_{L_{RMS}} = \frac{V_s}{2R_L} = \frac{V_{S_{RMS}}}{\sqrt{2}R_L} \approx 0.707 \frac{V_{R_{L_{RMS}}}}{R_L}$$

Source voltage
$$v_s(t)$$

 $v_s(t) = V_s \cdot \sin(f \cdot 2\pi \cdot t) = V_s \cdot \sin(\omega \cdot t)$

Voltage on the load resistance R_L

$$v_{R_L}(t) = \begin{cases} 0, & \text{if } v_S(t) \le 0 \\ v_S(t), & \text{if } v_S(t) > 0 \end{cases}$$

Diode parameters:

Average diode current

$$I_{VD_{AVG}} = I_{L_{AVG}} = \frac{\sqrt{2}V_{S_{RMS}}}{\pi R_{L}} \approx 0.45 \frac{V_{S_{RMS}}}{R_{L}}$$

MAX diode current

$$I_{VD_{max}} = \frac{V_S}{R_L}$$

MAX diode reverse voltage

$$V_{VD_{max}} = V_{S}$$

$$v_{R_L}(t) = V_{R_{LAVG}} + v_{R_{L_{\sim}}}(t) \approx V_{R_L}$$
 =const

Diode Voltage

$$v_{VD}(t) = v_{S}(t) - V_{R_{LAVG}}$$

Average diode current

$$v_{VD}(t) = v_S(t) - V_{R_{LAVG}}$$
 $I_{L_{AVG}} = I_{VD_{AVG}} = \frac{1}{T} \sqrt{\int_0^T I_{VD}(t) dt}$

$$I_{L_{AVG}} = \frac{1}{T} \sqrt{\int_{\frac{T}{4}}^{\frac{T}{4}} + \frac{\theta}{(2 \cdot \omega)} \frac{1}{r_{IN}}} (V_S \cdot \sin(\omega \cdot t) - V_{R_{L_{AVG}}})) dt = \frac{V_{R_{L_{AVG}}}}{R_L}$$

diode resistance

where

$$r_{IN} = r_{VD} + r_{Vs}$$

input resistance of the rectifier

 r_{VD}

 $r_{V_{S}}$

 $\theta = \omega \cdot \Delta t = \frac{2\pi}{r} \cdot \Delta t$

 Δt

voltage source resistance

angle of diode open state

diode open state time interval

$$\frac{V_{R_{LAVG}}}{V_S} = \frac{R_L}{\pi r_{IN}} \left(\sin \left(\frac{\theta}{2} \right) - \frac{V_{R_{LAVG}}}{V_S} \frac{\theta}{2} \right)$$

Average diode current

$$I_{L_{AVG}} = \frac{1}{T} \sqrt{\int_{\frac{T}{4} - \theta/(2 \cdot \omega)}^{\frac{T}{4} + \theta/(2 \cdot \omega)} \frac{1}{r_{IN}}} (V_S \cdot \sin(\omega \cdot t) - V_{R_{LAVG}})) dt} = \frac{V_{R_{LAVG}}}{R_L}$$

where

$$r_{IN} = r_{VD} + r_{VS}$$

input resistance of the rectifier

 r_{VD}

diode resistance

 r_{V_S}

voltage source resistance

$$\theta = \omega \cdot \Delta t = \frac{2\pi}{T} \cdot \Delta t$$
 — angle of diode open state

 Δt

diode open state time interval

$$\frac{V_{R_{LAVG}}}{V_{S}} = \frac{R_{L}}{\pi r_{IN}} \left(\sin \left(\frac{\theta}{2} \right) - \frac{V_{R_{LAVG}}}{V_{S}} \frac{\theta}{2} \right)$$

$$V_{VD}\left(\frac{T}{4} \pm \frac{\theta}{2 \cdot \omega}\right) = V_{S}\sin(\omega\left(\frac{T}{4} \pm \frac{\theta}{2 \cdot \omega}\right)) - V_{R_{LAVG}} = 0 \Rightarrow V_{R_{LAVG}} = V_{S}\left(\omega\left(\frac{T}{4} \pm \frac{\theta}{2 \cdot \omega}\right)\right) = V_{S}\sin\left(\frac{\pi}{2} \pm \frac{\theta}{2}\right)$$

$$\frac{V_{R_{LAVG}}}{V_{S}} = \cos\left(\frac{\theta}{2}\right) \Rightarrow \cos\left(\frac{\theta}{2}\right) = \frac{R_{L}}{\pi r_{IN}} \left(\sin\left(\frac{\theta}{2}\right) - \cos\left(\frac{\theta}{2}\right) \cdot \frac{\theta}{2}\right) \Rightarrow \frac{r_{IN}}{R_{L}} = \frac{1}{\pi} \left(\tan\left(\frac{\theta}{2}\right) - \frac{\theta}{2}\right)$$

ITMO

From
$$\frac{r_{IN}}{R_I} = \frac{1}{\pi} \left(\tan \left(\frac{\theta}{2} \right) - \frac{\theta}{2} \right)$$

angle of diode open state θ can be evaluated:

$$\tan\left(\frac{\theta}{2}\right) \approx \frac{\theta}{2} + \frac{1}{3}\left(\frac{\theta}{2}\right)^3 \Rightarrow \theta = 2 \cdot \sqrt[3]{3\pi \frac{r_{IN}}{R_L}}$$

$$V_{R_{LAVG}} = V_S \cos\left(\frac{\theta}{2}\right)$$

$$I_{VD} = \frac{V_S}{R_L} \cos\left(\frac{\theta}{2}\right)$$

$$I_{VD_{max}} = \frac{V_S - V_{R_{LAVG}}}{r_{IN}}$$

Peak (turn on) diode current:

$$I_{VD_{ON}} = \frac{V_S}{r_{IN}}$$

Diode reverse voltage:

$$V_{VD_{max}} = V_S + V_{R_{LAVG}} \approx 2 \cdot V_S$$

From the charge balance condition at

$$\tau_1 < t < \tau_2 = T - \frac{\theta}{\omega}$$

$$\Delta Q = \mathbf{C} \cdot \Delta V_{R_L} = I_C \left(T - \frac{\theta}{\omega} \right) (\mathbf{C})^{\frac{\tau_1 = \theta/\omega}{\omega}}$$

capacitance value depending on the value of the permissible voltage ripple on the load

$$C = \frac{I_C}{2\pi f \cdot \Delta V_{R_I}} (2\pi - \theta) = \frac{I_C}{\omega \cdot \Delta V_{R_I}} (2\pi - \theta) \quad (F)$$

Center-tapped Full Wave Rectifier

Full Wave Bridge Rectifier

(V)

$$V_{R_{L_{AVG}}} = \begin{cases} \frac{V_S}{\pi}, & for \text{ HWR } schemes \\ \frac{2 \cdot V_S}{\pi}, & for \text{ FBR or CTR } schemes \end{cases}$$

$$V_{R_{L_{RMS}}} = \begin{cases} \frac{V_{S}}{2}, & for \text{ HWR } schemes \\ \frac{V_{S}}{\sqrt{2}}, & for \text{ FBR } or \text{ CTR } schemes \end{cases}$$
 (V)

$$V_{R_{L_{RMS}}} = \left\{ \right.$$

$$V_{VD_{max}} = V_{VD_{max}} = \begin{cases} 2V_S, & for CTR schemes \\ V_S, & for HWR and FBR scheme \end{cases}$$
 (V)

$$\frac{V_S}{V_S}$$
, for HWR schemes

$$I_{L_{AVG}} = \frac{v_{R_{LAVG}}}{R_{L}} = \begin{cases} \frac{v_{S}}{\pi R_{L}}, & for \ \text{HWR } schemes \\ \frac{2 \cdot v_{S}}{\pi R_{L}}, & for \ \text{FBR } \text{or } \text{CTR } schemes \end{cases}$$

RMS load current:

$$I_{L_{RMS}} = \frac{V_{R_{L_{RMS}}}}{R_{L}} = \begin{cases} \frac{V_{S}}{\pi R_{L}}, & for FBR or CTR schemes \\ \frac{V_{S}}{2R_{L}}, & for HWR schemes \\ \frac{V_{S}}{\sqrt{2}R_{L}}, & for FBR or CTR schemes \end{cases}$$

ITMO

• Average diode rectified output current:
$$I_{VD} = \begin{cases} I_{L_{AVG}}, & for \ HWR \ schemes \\ \frac{I_{L_{AVG}}}{2}, & for \ FBR \ or \ CTR \ schemes \end{cases}$$
 (A)

Peak repetitive forward output current:

•
$$I_{VD_{max}} = \begin{cases} \frac{V_S}{R_L}, & for HWR schemes \\ \frac{V_S}{2R_L}, & for FBR or CTR schemes \end{cases}$$
 (A)

- Voltage ripple factor:
- Voltage ripple evaluated for the rectifier scheme: $\Delta V_{R_L} = 2 \cdot K_p \cdot V_{R_{LAVC}}$ (V)

 $K_p = \sqrt{\left(\frac{V_{R_{L_{RMS}}}}{V_{R_{L_{AVG}}}}\right)^2 - 1}$

ITMO

• Source output resistance (overcurrent protection): $r_{on} = \frac{V_S}{I_{FSM}}$ (Ω)

• Input rectifier resistance:
$$r_{IN} = \begin{cases} r_{vd} + r_{V_S}, & for \ \text{HWR or CTR } schemes \\ 2 \cdot r_{vd} + r_{V_S}, & for \ \text{FBR } schemes \end{cases}$$
 (Q)

• Diode opening state angle:
$$\theta = \begin{cases} 2 \cdot \sqrt[3]{3 \cdot \pi \cdot \frac{r_{IN}}{R_L}}, & for \ \text{HWR} \ schemes} \\ 2 \cdot \sqrt[3]{\frac{3}{2} \cdot \pi \cdot \frac{r_{IN}}{R_L}}, & for \ \text{FBR} \ \text{or CTR} \ schemes} \end{cases}$$
 (rad)

• Average load voltage
$$V_{R_{LAVG}} = V_S \cdot \cos(\frac{\theta}{2})$$
 (V)

Average load current:
$$I_{L_{AVG}} = \begin{cases} \frac{1}{\pi \cdot r_{IN}} (V_S \cdot \sin\left(\frac{\theta}{2}\right) - V_{R_{L_{AVG}}} \cdot \frac{\theta}{2}), & \text{for HWR schemes} \\ \frac{2}{\pi \cdot r_{IN}} (V_S \cdot \sin\left(\frac{\theta}{2}\right) - V_{R_{L_{AVG}}} \cdot \frac{\theta}{2}), & \text{for FBR or CTR schemes} \end{cases}$$
(A)

Average diode current:
$$I_{VD} = \begin{cases} \frac{V_S}{R_L} \cdot \cos\left(\frac{\theta}{2}\right), & for \ \text{HWR } schemes \\ \frac{V_S}{2 \cdot R_L} \cdot \cos\left(\frac{\theta}{2}\right), & for \ \text{FBR } \text{or } \text{CTR } schemes \end{cases}$$
 (A)

1. Maximum repetitive rectifier scheme diode current:

$$I_{VD_{max}} = \frac{V_S - V_{R_{LAVG}}}{r_{IN}} \tag{A}$$

2.Starting (Non-repetitive) maximum peak surge diode current in rectifier scheme: $I_{VD_{ON}} = \frac{V_S}{r_{IN}}$ (A)

3. Peak repetitive reverse voltage:

$$V_{VD_{max}} = \begin{cases} V_S + V_{R_{LAVG}}, & for \text{ HWR or CTR } schemes \\ \frac{V_S + V_{R_{LAVG}}}{2}, & for \text{ FBR } schemes \end{cases}$$
 (V)

4. Voltage ripple evaluated for the rectifier scheme with C-filter: $\Delta V_{R_L} = 2 \cdot K_p \cdot V_{R_{LAVG}}$ (V)

5. Capacitance evaluation:

$$C = \begin{cases} \frac{I_{L_{AVG}}}{2\pi f \cdot \Delta V_{R_L}} (2\pi - \theta), & for HWR schemes \\ \frac{I_{L_{AVG}}}{2\pi f \cdot \Delta V_{R_L}} (\pi - \theta), & for FBR \text{ or CTR } schemes \end{cases}$$
(F)

6. Voltage ripple:

$$\Delta V_{R_L} = \begin{cases} \frac{I_{L_{AVG}}}{2\pi f \cdot c} (2\pi - \theta), & for \text{ HWR schemes} \\ \frac{I_{L_{AVG}}}{2\pi f \cdot c} (\pi - \theta), & for \text{ FBR or CTR schemes} \end{cases}$$
(V)

Evaluations

	$I_{VD_{AVG}}$	$I_{VD_{max}}$	$V_{VD_{max}}$	r_{IN}
Half – wave rectifier	$=I_{L_{AVG}}$	$\approx 7I_{L_{AVG}}$	$=V_{S} \cdot 2 \approx 3V_{R_{L_{AVG}}}$	$= r_{vd} + r_{V_S}$
Central tap rectifier	$=\frac{I_{L_{AVG}}}{2}$	$\approx 3.5I_{L_{AVG}}$	$=V_{S} \cdot 2 \approx 3V_{R_{L_{AVG}}}$	$= r_{vd} + r_{V_s}$
Full bridge (Graetz) rectifier	$=\frac{I_{L_{AVG}}}{2}$	$\approx 3.5I_{L_{AVG}}$	$=V_S \approx 1.5 V_{R_{L_{AVG}}}$	$=2r_{vd}+r_{V_S}$

Examples

LED -lamp parameters

https://www.tinkercad.com

Voltage doubler (Greinacher multiplier)

Full-wave voltage doubler/

Voltage multiplier

ITMO

$$C = \frac{N^2 + N}{2} \frac{I_L}{f \Delta U_L}$$

$$U_L = NU_{IN_{MAX}} - \frac{I_L(N^3 + \frac{9}{4}N^2 + \frac{1}{2}N)}{12fC}$$

Walton particle accelerator was used during the development of the atomic bomb. Built in 1937 by Philips of Eindhoven it is now in the National Science Museum in London, England.

This Cockcroft-

750 kV Cockcroft-Walton accelerator used as the initial particle injector of the Japanese KEK accelerator, Tsukuba, Japan. The CW generator is on the right, the particle source is on the left.

Ernest Walton

6 October 1903 Abbeyside, Dungarvan, Co. Waterford, Ireland

d 25 June 1995 (aged 91) Belfast, Northern Ireland

Nationality Irish

Alma mater Trinity College Dublin Trinity College, Cambridge

Known for The first disintegration of an atomic nucleus by artificially accelerated protons (*splitting th Awards

atom") Hughes Medal (1938)

Nobel Prize in Physics (1951) Scientific career

Fields Physics
Institutions Trinity College Dublin

University of Cambridge Methodist College Belfast Dublin Institute for Advanced

Studies

Doctoral Ernest Rutherford

advisor

Sir John Cockcroft

Alma mater

orn 27 May 1897 Todmorden, West Riding of Yorkshire, England ed 18 September 1967 (aged 70)

Cambridge, Cambridgeshire England hality British

> Victoria University of Manchester Manchester Municipal College of Technology

St. John's College, Cambridge Splitting the atom Hughes Medal (1938) Commander of the Order of the British Empire (1944) Knight Bachelor (1948) Nobel Prize in Physics (1951) Royal Medal (1954) Faraday Medal (1955)

Order of Merit (1957)
Aloms for Peace Award (1961)
Withelm Exner Medal (1961)
Knight Commander of the Order of the Bath (1963)
Medal of Freedom with golden palms (United States, 1947)
Chevaller de la Legion

d'Honneur (France, 1950) Knight Commander of the Military Order of Christ (Portugal, 1955) Grand Cross of the Order of

Alfonso X (Spain, 1958) Scientific career

Fields Physics
Institutions Atomic Energy Research

Establishment
Thesis On phenomena occurring in

the condensation of molecular streams on surfaces (1928) emic Ernest Rutherford

Academic Ernest advisors

1st Master of Churchill College, Cambridge In office 1959–1967

Succeeded by Sir William Hawthorne

