Measuring the Intrinsic Dimension of Objective Landscapes

Chunyuan Li*, Heerad Farkhoor, Rosanne Liu, and Jason Yosinski

Motivation

- Find the minimum number of trainable parameters for a specific task
- A quantitative metric to compare task difficulty across different domains

Method

- Direct Training: Optimization in the naive parameter space
- Subspace Training: Optimization in a random subspace of lower dim.

As we increase d, we generally observe a transition of network

1d random line search; Hard to find a good solution The entire space is spanned; Any available solutions can be discovered

^{*} Work performed as an intern at Uber Al Labs

increasing the redundancy of the solution set

Are CNNs always better than FC?

D = 44,426

 $d_{int} = 290 < 750$

Occam's Razor

Intrinsic Dimension

Minimum Description Length (MDL)

CNNs are better until the assumption of local structure is broken, after which they're measurably worse

Shuffle-Label

$5K$ $d_{int} = 90,000$ 18 $50K$ $d_{int} = 190,000$ 3.8	Dataset size	>> 750	#Para./label
$\mathbf{d_{int}} = 190, 000$ 3.8	5K	$\mathbf{d}_{\mathrm{int}} = 90, 000$	18
	50K	$\mathbf{d}_{\mathrm{int}} = 190, 000$	3.8

Training on random labels forces the network to set up a base infrastructure to make further memorization more efficient

The low $d_{\rm int}$ suggests why random search and gradient-free methods work