Asíntotas Omicron, Omega, Theta

Facultad de Informática

August 30, 2024

Indice

- Cota superior
 Orden O
 Ejemplos
 Ejemplos
- 2. Cota inferior Omega Ω

Ejemplos

- 3. Orden Exacto
 Theta Θ
 Gráfico
- 4. Resumen Asíntotas

Tabla de contenidos

1. Cota superior

Orden *O* Ejemplos Ejemplos

2. Cota inferior

Ejemplos

3. Orden Exacto

Cráfico

4 Resumen

Resumen asíntotas

Asíntotas Recordar

Orden O (Omicron)

Sea $g: \mathbb{N} \to [0, \infty)$. Se define el conjunto de funciones de orden O de g como:

$$O(g(n)) = \{t : \mathbb{N} \to [0, \infty) | \exists c \in \mathbb{R}, c > 0, \exists n_0 \in \mathbb{N} : t(n) \le c \cdot g(n), \forall n \ge n_0 \}$$

Brassard and Bratley [1988]

Orden Gráfica de Orden

Orden Propiedades

- **1** Para cualquier función f se tiene que $f \in O(f)$.
- $2 f \in O(g) \Rightarrow O(f) \subset O(g).$
- $O(f) = O(g) \Leftrightarrow f \in O(g) \land g \in O(f).$
- 4 Si $f \in O(g) \land g \in O(h) \Rightarrow f \in O(h)$
- **5** Si $f \in O(g) \land f \in O(h) \Rightarrow f \in O(min(g, h))$.
- **6** Regla de la suma: Si $f_1 \in O(g) \land f_2 \in O(h) \Rightarrow f_1 + f_2 \in O(\max(g,h)).$
- Regla del producto: Si
 $f_1 ∈ O(g) \land f_2 ∈ O(h) \Rightarrow f_1 \cdot f_2 ∈ O(g \cdot h).$
- 8 Si existe $\lim_{n\to\infty} \frac{f(n)}{g(n)} = k$ según los valores de k tenemos:
 - 1 si $k \neq 0 \land k < \infty$ entonces O(f) = O(g)
 - 2 si k = 0 entonces $f \in O(g)$, es decir $O(f) \subset O(g)$, pero sin embargo se verifica que $g \notin O(f)$.

Orden

Cómo demostrar un orden

 $T(n) \in O(g(n)) \Leftrightarrow$ Cómo demostrar que una función están en el orden de otra, a partir de la regla del límite:

Sea $f, g : \mathbb{N} \to \mathbb{R}^+$ se cumple que:

- Si $\lim_{n \to \infty} \frac{f(n)}{g(n)} \in \mathbb{R}$ entonces $f(n) \in O(g(n)) \land g(n) \in O(f(n))$
- Si $\lim_{n \to \infty} \frac{f(n)}{g(n)} = 0$ entonces $f(n) \in O(g(n)) \land g(n) \notin O(f(n))$
- Si $\lim_{n\to\infty}\frac{f(n)}{g(n)}=\infty$ entonces $f(n)\notin O(g(n))\land g(n)\in O(f(n))$

Demostraciones

Para demostrar relación entre funciones

En general

- Absurdo: Su negación da lugar a una contradicción matemática.
- Regla del umbral generalizado: Detectar el valor de la constante c que verifique la relación $f(n) \le c \cdot g(n)$ para todos los $n \ge n_0$ (n_0 como 1 en lo posible).
- Regla del límite: Calcular el límite para $\lim_{n\to\infty} \frac{f(n)}{g(n)}$

Asíntotas ^{Orden}

Comprobar

$$f(n)$$
 es $O(g(n)) \Leftrightarrow \exists c \in \mathbb{R}^+, \exists n_0 \in \mathbb{N} : \forall n \in \mathbb{N}, n > n_0,$
 $f(n) \leq c \cdot g(n)$

PROBAR: $(100n + 5) \in O(n^2)$ Probarlo encontrando el valor n_0 y el valor c

Asíntotas ^{Orden}

Comprobar

$$f(n) \text{ es } O(g(n)) \Leftrightarrow \exists \ c \in \mathbb{R}^+, \exists \ n_0 \in \mathbb{N} : \forall n \in \mathbb{N}, n > n_0,$$

$$f(n) \leq c \cdot g(n)$$

PROBAR:
$$(100n + 5) \in O(n^2)$$

$$(100n + 5) \le (100n + n) = 101n \le 101n^2$$
, $\forall n \ge 5$, tomamos $c = 101$, $n_0 = 5$

se cumple que
$$(100n + 5) \le c \cdot n^2$$
, $\forall n \ge 5, c = 101$
 $\Rightarrow (100n + 5) \in O(n^2)$

Orden

Cómo demostrar un orden

Partiendo de la regla del límite:

Sea $f, g: \mathbb{N} \to \mathbb{R}^+$

- Decimos $f(n) \in o(g(n))$, es cierto que
 - La comparación es f(n) < g(n)
 - Si $\lim_{n\to\infty} \frac{f(n)}{g(n)} = 0$
- Decimos $f(n) \in O(g(n))$, es cierto que
 - La comparación es $f(n) \leq g(n)$
 - Si $\lim_{n\to\infty} \frac{f(n)}{g(n)} = 0$ o
 - Si $\lim_{n\to\infty} \frac{\bar{f}(n)}{g(n)} = C$ (constante)

Tabla de contenidos

- 1. Cota superior
 - Orden O

Ejemplos

2. Cota inferior

Omega Ω Ejemplos

Orden Exacto
 Theta Θ

Theta G

4. Resumen

Resumen asíntotas

Omega Definición

Omega Ω

Dada una función f(n), las funciones g(n) que son cota inferior, las denominamos $\Omega(g(n))$ y crecen a lo sumo tan lentamente como f(n).

Dada la cota inferior de un algoritmo podemos asegurar que nunca se utilizará un orden inferior al de la cota.

Omega Formalizando definición

Notación Ω (cota inferior)

$$T(n)$$
 es $\Omega(g(n))$ cuando

$$\exists c \in \mathbb{R}^+, \exists n_0 \in \mathbb{N} : \forall n \geq n_0 \Rightarrow T(n) \geq c \cdot g(n)$$

Formalmente:

$$\Omega(g(n)) = \{t: \mathbb{N} \to [0,\infty) | \exists c \in \mathbb{R}^+, \exists n_0 \in \mathbb{N}: \forall n \geq n_0, t(n) \geq c \cdot g(n) \}$$

Una función $f: \mathbb{N} \to [0, \infty)$ es de orden Ω de g si $f \in \Omega(g(n))$.

Omega Gráfico

Omega Propiedades

- **1** Para cualquier función f se tiene que $f \in \Omega(f)$.
- 2 $f \in \Omega(g) \Rightarrow \Omega(f) \subset \Omega(g)$.
- **4** Si $f \in \Omega(g) \land g \in \Omega(h) \Rightarrow f \in \Omega(h)$
- **5** Si $f \in \Omega(g) \land f \in \Omega(h) \Rightarrow f \in \Omega(\min(g, h))$.
- **6** Regla de la suma: Si $f_1 \in \Omega(g) \land f_2 \in \Omega(h) \Rightarrow f_1 + f_2 \in \Omega(g+h)$.
- **7** Regla del producto: Si $f_1 \in \Omega(g) \land f_2 \in \Omega(h) \Rightarrow f_1 \cdot f_2 \in \Omega(g \cdot h)$.
- 8 Si existe $\lim_{n\to\infty} \frac{f(n)}{g(n)} = k$ según los valores de k tenemos:
 - **1** si $k \neq 0 \land k < \infty$ entonces $\Omega(f) = \Omega(g)$
 - 2 si $k=\infty$.

Omega Ejemplo

Comprobar cota inferior

Se cumple?
$$n^2 \in \Omega(n^3)$$

Sean $f(n) = n^2$ y $g(n) = n^3$
 $\lim_{n \to \infty} \frac{f(n)}{g(n)} = \lim_{n \to \infty} \frac{n^2}{n^3} = \lim_{n \to \infty} \frac{1}{n} \approx 0$
por lo tanto, por propiedad (3) $n^2 \notin \Omega(n^3)$

Ahora probar $n^3 \in \Omega(n^2)$

Omega Ejemplo

Probar cota inferior

$$t(n) \in \Omega(g(n))$$
 cuando $\exists c \in \mathbb{R}^+, \exists n_0 \in \mathbb{N}, t(n) \ge c \cdot g(n)$, $\forall n \ge n_0$

PROBAR:
$$2n^3 \in \Omega(n^2)$$

Probarlo encontrando el valor n_0 y el valor c

- $(2n^3) \ge (2n^2), \forall n \ge 1,$
- tomamos $c = 2, n_0 = 1,$
- se cumple que $2n^3 \ge c \cdot n^2, \forall n \ge n_0$

Levitin [2011]

Omega Ejemplo

Probar que
$$f(x) \in \Omega(g(x)) \Leftrightarrow g(x) \in O(f(x))$$

 $(\to) f(x) \in \Omega(g(x)) \to g(x) \in O(f(x))$
por definición de $\Omega: f(x) \in \Omega(g(x)) \to f(x) \ge c \cdot g(x)$, $c > 0$
 $\Rightarrow f(x) \cdot \frac{1}{c} \ge g(x)$, siendo $\frac{1}{c} = d$
 $\Rightarrow f(x) \cdot d \ge g(x)$, por lo tanto $g(x) \in O(f(x))$
 $(\leftarrow) g(x) \in O(f(x)) \to f(x) \in \Omega(g(x))$
por definición de $0: g(x) \in O(f(x)) \to g(x) \le c.f(x)$, $c > 0$
 $\Rightarrow g(x) \cdot \frac{1}{c} \le f(x)$, siendo $\frac{1}{c} = d$
 $\Rightarrow g(x) \cdot d \le f(x)$, por lo tanto $f(x) \in \Omega(f(x))$

Tabla de contenidos

1. Cota superior

Orden *O*Ejemplos

2 Cota inferior

Omega Ω Ejemplos

3. Orden Exacto

Theta ⊖ Gráfico

4 Resumen

Resumen asíntotas

Theta Definición

Theta Θ

Dada una función f(n), es de orden exacto o está acotada tanto superior como infeirormente, las funciones g(n) que son cota inferior y superior f(n), las denominamos $\Theta(g(n))$.

Se define el conjunto de funciones de orden Θ (Theta) como:

$$\Theta(g(n)) = \{t : \mathbb{N} \to [0, \infty) | \exists c, d \in \mathbb{R}^+; \exists n_0 \in \mathbb{N} : \\ \forall n \ge n_0, c \cdot g(n) \le t(n) \le d \cdot g(n) \}$$

Theta Propiedades

Propiedades de Θ

- **1** Para cualquier función f se tiene que $f \in \Theta(f)$.
- $\Theta(f) = \Theta(g) \Leftrightarrow f \in \Theta(g) \land g \in \Theta(f).$
- **4** Si $f \in \Theta(g) \land g \in \Theta(h) \Rightarrow f \in \Theta(h)$
- **5** Regla de la suma: Si $f_1 \in \Theta(g) \land f_2 \in \Theta(h) \Rightarrow f_1 + f_2 \in \Theta(\max(g,h)).$
- **6** Regla del producto: Si $f_1 \in \Theta(g) \land f_2 \in \Theta(h) \Rightarrow f_1 \cdot f_2 \in \Theta(g \cdot h)$.
- 7 Si existe $\lim_{n\to\infty} \frac{f(n)}{g(n)} = k$ según los valores de k tenemos:
 - **1** $k \neq 0 \land k < \infty$ entonces $\Theta(f) = \Theta(g)$

Theta Gráfico

Theta Ejemplo

<u>Indi</u>car la validez

Se cumple ? $2^n \in \theta(2^{n+1})$

Sean

$$f(n) = 2^n, g(n) = 2^{n+1}$$

$$\lim_{n\to\infty}\frac{f(n)}{g(n)}=\lim_{n\to\infty}\frac{2^n}{2^{n+1}}=\lim_{n\to\infty}\frac{2^n}{2^n.2}=\lim_{n\to\infty}\frac{1}{2}$$

por lo tanto, por propiedad (7) $2^n \in \theta(2^{n+1})$

Tabla de contenidos

1. Cota superior

Orden *O*Ejemplos
Ejemplos

2. Cota inferior

Omega Ω Eiemplos

3. Orden Exacto

Theta C

4. Resumen

Resumen asíntotas

Big O vs little o Diferencias

Big O vs Little o

Si bien ambas son cotas, la diferencia fundamental es que . en cuando uno utiliza O está diciendo la función f(n) no crece más rápido que g(n), en cambio cuando utiliza o está diciendo, la función f(n) crece estrictamente más lento que g(n).

La diferencia es entre ≤ versus <

Ejemplos:

- $n^2 \in O(n^2)$
- $n^2 \in O(n^3)$
- $n^2 \notin o(n^2)$
- $n^2 \in o(n^3)$

Resumen

- $f(n) \in O(g(n))$ (big-o) Indica que f(n) es asintóticamente menor o igual a g(n).
- f(n) = o(g(n)) (little-o) Indica que f(n) es asintóticamente menor que g(n).
- $f(n) = \Omega(g(n))$ (big-omega) Indica que f(n) es asintóticamente mayor o igual a la tasa de a g(n).
- $f(n) = \omega(g(n))$ (little-omega) Indica que f(n) es asintóticamente mas grande que g(n).
- $f(n) = \Theta(g(n))$ (theta) Indica que f(n) es asintóticamente igual a g(n).

Comparativa de Θ , O, Ω Propiedades de Θ , O, Ω

- **1** Para cualquier función f $f \in O(f)$, $f \in \Omega(f)$, $f \in \Theta(f)$.
- 2 $f \in O(g) \Rightarrow O(f) \subset O(g)$.
- $4 f \in \Theta(g) \Rightarrow \Theta(f) \subset \Theta(g).$
- **6** $\Omega(f) = \Omega(g) \Leftrightarrow f \in \Omega(g) \land g \in \Omega(f)$.
- $\Theta(f) = \Theta(g) \Leftrightarrow f \in \Theta(g) \land g \in \Theta(f).$
- 8 Si $f \in O(g) \land g \in O(h) \Rightarrow f \in O(h)$

Comparativa de Θ , O, Ω Propiedades de Θ , O, Ω

- **2** Si $f \in \Omega(g) \land f \in \Omega(h) \Rightarrow f \in \Omega(\min(g,h))$.
- 3 Regla de la suma: Si $f_1 \in O(g) \land f_2 \in O(h) \Rightarrow f_1 + f_2 \in O(\max(g,h)).$
- 4 Regla de la suma: Si $f_1 \in \Omega(g) \land f_2 \in \Omega(h) \Rightarrow f_1 + f_2 \in \Omega(g+h)$.
- **6** Regla de la suma: Si $f_1 ∈ Θ(g) ∧ f_2 ∈ Θ(h) ⇒ f_1 + f_2 ∈ Θ(max(g, h)).$

Comparativa de Θ , O, Ω Propiedades de Θ , O, Ω

Regla del producto:

Si
$$f_1 \in O(g) \land f_2 \in O(h) \Rightarrow f_1 \cdot f_2 \in O(g \cdot h)$$
.

- 2 Si $f_1 \in \Omega(g) \land f_2 \in \Omega(h) \Rightarrow f_1 \cdot f_2 \in \Omega(g \cdot h)$.
- 3 Si $f_1 \in \Theta(g) \land f_2 \in \Theta(h) \Rightarrow f_1 \cdot f_2 \in \Theta(g \cdot h)$.
- 4 Si existe $\lim_{n\to\infty} \frac{f(n)}{g(n)} = k$ según los valores de k tenemos:
 - si $k \neq 0 \land k < \infty$ entonces O(f) = O(g), $\Omega(f) = \Omega(g)$, $\Theta(f) = \Theta(g)$
 - si k = 0 entonces $O(f) \subset O(g)$ $f \in O(g)$, pero $g \notin O(f)$, $g \in \Omega(f)$, $f \notin \Omega(g)$
 - si $k = \infty$ entonces $O(g) \subset O(f)$ $g \in O(f)$, pero $f \notin O(g)$

ática 🚺

Referencias I

G. Brassard and P. Bratley. Algorithmics - Theory and Practice. Englewood Cliffs, NJ: Prentice Hall, 1988.

Anany Levitin. Introduction to the Design and Analysis of Algorithms (3ª edição). Addison-Wesley, 2011.