```
In [1]: import pandas as pd
        import matplotlib.pyplot as plt
        import networkx as nx
        import random
        # the random module will be used to create transaction ID's
In [2]: # data source: https://snap.stanford.edu/data/soc-sign-bitcoin-otc.htm
        trades = pd.read csv("soc-sign-bitcoinotc.csv", names=['SOURCE', 'TARG
        ET', 'RATING', 'TIME'])
In [3]: | print('shape:', trades.shape)
        print('columns:', trades.columns)
        print('basic info:', trades.info())
        shape: (35592, 4)
        columns: Index(['SOURCE', 'TARGET', 'RATING', 'TIME'], dtype='object
        ')
        <class 'pandas.core.frame.DataFrame'>
        RangeIndex: 35592 entries, 0 to 35591
        Data columns (total 4 columns):
        SOURCE
                  35592 non-null int64
                  35592 non-null int64
        TARGET
        RATING
                 35592 non-null int64
        TIME
                  35592 non-null float64
        dtypes: float64(1), int64(3)
        memory usage: 1.1 MB
        basic info: None
In [4]: # create column showing tuples of transactions
        trades['from_to'] = list(trades[['SOURCE', 'TARGET']].itertuples(index
        =False, name=None))
In [5]: trades.shape[0]
Out[5]: 35592
In [6]: # the next few steps will create column with transaction ID's;
        re 8-digits and begin with 4
        draft ids = random.sample(range(1000000, 9999999), trades.shape[0])
In [7]: trades['draft_ids'] = draft_ids
In [8]: trades['fours'] = '4'
```

In [9]: trades['transaction_id'] = trades['fours'] + trades['draft_ids'].map(s
tr)

In [10]: trades.drop(columns=['draft_ids', 'fours'], inplace=True)

In [11]: trades.head(10)

Out[11]:

	SOURCE	TARGET	RATING	TIME	from_to	transaction_id
0	6	2	4	1.289242e+09	(6, 2)	48055522
1	6	5	2	1.289242e+09	(6, 5)	49471633
2	1	15	1	1.289243e+09	(1, 15)	48231001
3	4	3	7	1.289245e+09	(4, 3)	48920200
4	13	16	8	1.289254e+09	(13, 16)	43574706
5	13	10	8	1.289254e+09	(13, 10)	41310084
6	7	5	1	1.289363e+09	(7, 5)	47392475
7	2	21	5	1.289371e+09	(2, 21)	44392015
8	2	20	5	1.289371e+09	(2, 20)	44677124
9	21	2	5	1.289381e+09	(21, 2)	45901069

```
In [14]: d = {}
    ID = []
    for id in trades['transaction_id']:
        d['ID'] = id
        ID.append(d.copy())
```

```
In [15]: trades['ID'] = ID
```

```
In [16]: trades['to_from_ID'] = list(trades[['SOURCE', 'TARGET', 'ID']].itertup
les(index=False, name=None))
```

In [17]: trades.head()

Out[17]:

	SOURCE	TARGET	RATING	TIME	from_to	transaction_id	ID	to
0	6	2	4	1.289242e+09	(6, 2)	48055522	{'ID': '48055522'}	(6, 2 '48(
1	6	5	2	1.289242e+09	(6, 5)	49471633	{'ID': '49471633'}	(6, { '49 ²
2	1	15	1	1.289243e+09	(1, 15)	48231001	{'ID': '48231001'}	(1, ⁻ '482
3	4	3	7	1.289245e+09	(4, 3)	48920200	{'ID': '48920200'}	(4, ('48(
4	13	16	8	1.289254e+09	(13, 16)	43574706	{'ID': '43574706'}	(13, {'ID '43

```
In [24]: plt.figure(figsize=(20, 10))
   pos = nx.spring_layout(G1)
        nx.draw_networkx(G1, pos, arrowsize=20)
        plt.show()
```


In [25]: # let's have a look at the transactions that node 17 sent and received
 in the first hundred transactions:
 df1.query("SOURCE == 17 | TARGET == 17")

Out[25]:

	SOURCE	TARGET	RATING	TIME	from_to	transaction_id	ID	to
14	17	3	5	1.289442e+09	(17, 3)	44542145	{'ID': '44542145'}	(17 '44
15	17	23	1	1.289490e+09	(17, 23)	48268104	{'ID': '48268104'}	(17 {'II '48
32	17	28	1	1.289836e+09	(17, 28)	44807601	{'ID': '44807601'}	(17 {'II '44
33	17	13	2	1.289873e+09	(17, 13)	45032408	{'ID': '45032408'}	(17 {'II '4!
34	13	17	2	1.289874e+09	(13, 17)	45543697	{'ID': '45543697'}	(1: {'II '4:
37	17	20	2	1.290108e+09	(17, 20)	45948372	{'ID': '45948372'}	(17 {'II '4!
52	1	17	9	1.290969e+09	(1, 17)	47284865	{'ID': '47284865'}	(1,
60	17	1	9	1.291218e+09	(17, 1)	49027945	{'ID': '49027945'}	(17 '49
70	23	17	1	1.291624e+09	(23, 17)	49861456	{'ID': '49861456'}	(2({'II '4(

In [26]: # In the diagram it appears that node 3 was on the strictly on the rec
eiving end in the first 100 transactions:
df1.query("SOURCE == 3 | TARGET == 3")

Out[26]:

	SOURCE	TARGET	RATING	TIME	from_to	transaction_id	ID	to
3	4	3	7	1.289245e+09	(4, 3)	48920200	{'ID': '48920200'}	(4, '4{
13	21	3	7	1.289442e+09	(21, 3)	47941408	{'ID': '47941408'}	(2 ⁻
14	17	3	5	1.289442e+09	(17, 3)	44542145	{'ID': '44542145'}	(17 '44
22	10	3	7	1.289556e+09	(10, 3)	49371601	{'ID': '49371601'}	(1('4(
88	7	3	6	1.292200e+09	(7, 3)	48872914	{'ID': '48872914'}	(7, '48

In [27]: # this can also be shown using the following methods:
 print(list(G1.predecessors(3)))
 print(list(G1.successors(3)))

```
[4, 21, 17, 10, 7]
```

- In [30]: G2.add_nodes_from(nodes_list)
- In [31]: G2.add_edges_from(df1['to_from_ID'])
 G2[4]
- Out[31]: AdjacencyView({3: {0: {'ID': '48920200'}}, 26: {0: {'ID': '45604721'}}, 1: {'ID': '42307864'}}, 6: {0: {'ID': '46018265'}, 1: {'ID': '466 26573'}}, 2: {0: {'ID': '45900974'}}, 31: {0: {'ID': '46630109'}, 1: {'ID': '44452342'}}})

In [33]: plt.figure(figsize=(20, 10))
 nx.draw_networkx(G2)

