Homework 3

Problem 1

a. Initial Sate: Empty planar map

Goal State: Colored map such that no two adjacent regions are the same color

Successor Function: Coloring an empty region **Cost Function**: Number of regions colored

b. Initial State: Room with suspended bananas from the ceiling

Goal State: Room with no bananas suspended from the ceiling

Successor Function: Stack crate, move crates, climb on crates, climb off crates,

remove bananas when on crates

Cost Function: Number actions performed

c. Initial State: Unlabeled records

Goal State: Record with "illegal input record" message

Successor Function: Process record

Cost Function: Number of records processed

d. Initial State: Three empty jugs

Goal State: A jug with one gallon of water

Successor Function: Fill jug, empty jug to another, empty jug to the ground

Cost Function: Number of jug actions taken

Problem 2

a. **BFS**: 12, 10, 13, 9, 11, 7, 5, 8, 4, 6, 14, 2, 15, 16, 1, 3, 17, 18, 21, 19, 23, 20, 24, 25, 22, 26, 27, 28, 29, 30

DFS: 12, 10, 9, 7, 5, 4, 6, 2, 1, 3, 21, 19, 20, 22, 24, 23, 25, 26, 28, 30

IDS: 0: 12

1: 12, 10, 13

2: 12, 10, 9, 13, 11

3: 12, 10, 9, 7, 11, 13

4: 12, 10, 9, 7, 5, 8, 11, 13

5: 12, 10, 9, 7, 5, 4, 8, 14, 11, 13

6: 12, 10, 9, 7, 5, 4, 6, 8, 14, 15, 16, 11, 13

7: 12, 10, 9, 7, 5, 4, 6, 2, 8, 14, 15, 16, 17, 18, 11, 13

8: 12, 10, 9, 7, 5, 4, 6, 2, 1, 3, 8, 14, 15, 17, 16, 18, 11, 13

9: 12, 10, 9, 7, 5, 4, 6, 2, 1, 3, 21, 8, 14, 15, 16, 17, 18, 11, 13

```
10: 12, 10, 9, 7, 5, 4, 6, 2, 1, 3, 21, 19, 23, 8, 14, 15, 17, 16, 18, 11, 13
11: 12, 10, 9, 7, 5, 4, 6, 2, 1, 3, 21, 19, 23, 20, 24, 25, 8, 14, 15, 17, 18, 16, 11, 13
12: 12, 10, 9, 7, 5, 4, 6, 2, 1, 3, 21, 19, 20, 24, 25, 22, 26, 27, 8, 14, 15, 17, 18, 16, 11, 13
13: 12, 10, 9, 7, 5, 4, 6, 2, 1, 3, 21, 19, 20, 22, 23, 25, 26, 27, 28, 29, 8, 14, 15, 17, 18, 16, 11, 13
14: 12, 10, 9, 7, 5, 4, 6, 2, 1, 3, 21, 19, 20, 22, 24, 23, 25, 26, 27, 28, 29, 30, end
b. Starting from 12: 12, 10, 13, 9, 11, 7, 5, 8, 4, 6, 14, 2, 15, 16, 1, 3
Starting from 30: 30, 28, 29, 26, 27, 25, 23, 24, 20, 21, 19, 22, 3, 1, 2
They meet at node 1 at depth 7.
```

c. Back of homework packet

d.

a. The heuristic is dismissible because from each cluster the lowest cost path taken is greater than or equal to the heuristic estimate.

Shortest Path Start Node	Shortest Path Length	>=?	Heuristic	T/F
A: 3	7		3	True
B: 6	10		4	True
C: 9	14		5	True
D: 14	12		5	True
F: 23	4		2	True
E(!30): 28	1		1	True
30	0		0	True

b. The heuristic is consistent if for every node N and each successor P of N, the estimated cost of reaching the goal from N is no greater than the step cost of getting to P plus the estimated cost of reaching the goal from P.

i.
$$h(N) \le c(N,P) + h(P)$$

ii.
$$h(G) = 0$$

Check all closest paths, all other paths will have a greater number on right hand side

Cluster A: N=3, P=21 -> h(3) <=?
$$c(3,21) + h(21)$$
 -> 3 <= 1 + 2 **TRUE** Cluster B: N=6, P=2 -> h(6) <=? $c(6,2) + h(2)$ -> 4 <= 1 + 3 **TRUE** Cluster C: N=9, P=7 -> h(9) <=? $c(9,7) + h(7)$ -> 5 <= 1 + 4 **TRUE** Cluster D: N=14, P=8 -> h(14) <=? $c(14,8) + h(8)$ -> 5 <= 1 + 4 **TRUE** Cluster E: N=23, P=25 -> h(23) <=? $c(23,25) + h(25)$ -> 2<= 1 + 1 **TRUE** h(30) = 0 **TRUE**

- c. A* Search Algorithm minimize f(n) = g(n) + h(n)
 - g(n) = length of path from start to n
 - h(n) = heuristic approximation
- d. Back of homework packet

Problem 3:

Back of homework packet

Problem 4:

Back of homework packet

Problem 5

- a. Unbiased estimator for Y|T=1 => $\sum_{i=1}^{N} (T_i * Y_i) / (p)$ Unbiased estimator for Y|T=0 => $\sum_{i=1}^{N} ((1-T_i) * Y_i) / (1-p)$ ATE unbiased estimator = $1/N \left[\sum_{i=1}^{N} (T_i * Y_i) / (p) - \sum_{i=1}^{N} ((1-T_i) * Y_i) / (1-p) \right]$
- $\begin{array}{ll} \text{b.} & p = \mu(X_i) \\ & \text{Unbiased estimator for } Y \big| \, T \! = \! 1 & = \! > \sum_{i=1}^N \big(T_i \!\!\!\!\!^* Y_i \big) / \big(\mu(X_i) \big) \\ & \text{Unbiased estimator for } Y \big| \, T \! = \! 0 & = \! > \sum_{i=1}^N \big((1 \!\!\!\! \! T_i) \!\!\!\!\!^* Y_i \big) \, / \big(1 \!\!\!\! \! \big(\mu(X_i) \big) \big) \\ & \text{ATE unbiased estimator } = 1 / N \left[\sum_{i=1}^N \big(T_i \!\!\!\!\!^* Y_i \big) / \big(\mu(X_i) \big) \sum_{i=1}^N \big((1 \!\!\!\! \! T_i) \!\!\!\!^* Y_i \big) \, / \big(1 \!\!\!\! \! \big(\mu(X_i) \big) \big) \right] \\ \end{aligned}$
- c. The regret bound is the additional errors that a random person would make in comparison to an expert(doctor) when determining what person to give the a prescription to. The regret bound is a function of the number of mistakes an expert will make.