Lecture Notes for **Machine Learning in Python**

Visualization and Dimensionality Reduction

Class Logistics and Agenda

- Dimensionality Reduction
 - · PCA
 - Randomized PCA
 - Images Representation with PCA

Class Overview, by topic

Last time: visualization

Kyle 🚀 🦈 🔪 🦜 @KyleMorgens... · 1d ···· eigenvalues are just the TLDR for a matrix

Curse of Dimensionality

Integers from 1-10

- When dimensionality increases, data becomes increasingly sparse in the space that it occupies
- Definitions of density and distance between points, which is critical for clustering and outlier detection, become less meaningful

Purpose:

- Avoid curse of dimensionality
- Select subsets of independent features
- Reduce amount of time and memory required by data mining algorithms
- Allow data to be more easily visualized
- May help to eliminate irrelevant features or reduce noise

Techniques

- Principle Component Analysis
- Non-linear PCA
- Stochastic Neighbor Embedding

Karl Pearson

Aside: Eigen Vectors are your friend!

Three Blue One Brown:

https://www.youtube.com/watch?v=PFDu9oVAE-g

Goal is to find a projection that captures the largest amount of variation in data

- Find the eigenvectors of the covariance matrix
- keep the "k" largest eigenvectors

E1	E2
0.749	0.662
0.662	-0.749
λ =268.3	λ =1.57

Larson

covariance

151.5	132.4
132.4	118.3

	A1	A2
1	-2.96	-4.82
2	9.03	9.18
3	19.33	15.88
4	- 14.46	- 13.82
5	-1.96	-0.02
6	-8.96	-6. <i>4</i> 2

attribute₂

Transform data using dot product between point and principle component (eigenvector)

Reconstruction error:

attribute₁

difference between projection and original point in 2D space

This projection is called a **Transform** known as the **Karhunen-Loève Transform (KLT)**

Explained Variance

- Each principle component explains a certain amount of variation in the data.
- This explained variation is **encoded** in the **eigenvalues** of each **eigenvector**

sum of q largest eigenvalues

$$r_q = \frac{\sum_{j=1}^q \lambda_j}{\sum_{\forall i} \lambda_i}$$

sum of all eigenvalues

Genetic profiles distilled to 2 components

Iris Biplot

Dimension Reduction

04. Dimension Reduction and Images. ipynb

PCA biplots

Other Tutorials:

http://scikit-learn.org/stable/auto_examples/decomposition/plot_pca_vs_lda.html#example-decomposition-plot-pca-vs-lda-py

http://nbviewer.ipython.org/github/ogrisel/notebooks/blob/master/Labeled%20Faces%20in%20the

Self Test ML2b.1

Principal Components Analysis works well for categorical data by design.

- A. True
- B. False
- C. It doesn't but people do it anyway

Mutual Correspondence Analysis

	Eye Color	Hair Color			Eye Color				air olor	
1	Blue	Blon.		1	1	0	0	1	0	PCΛ
2	Brown	Brown	OHE	2	0	1	0	0	1	FCA
3	Blue	Blon.		3	1	0	0	1	0	
4	Hazel	Brown		4	0	0	1	0	1	
5	Brown	Brown		5	0	1	0	0	1	
6	Brown	Blon.		6	0	1	0	1	0	

	A1	A2
1	0.79	-0.30
2	-0.60	-0.13
3	0.79	-0.30
4	0.24	0.99
5	-0.60	-0.13
6	-0.1	-0.25

Dimensionality Reduction: Randomized PCA

- . **Problem**: PCA on all that data can take a while to compute
 - What if the number of instances is gigantic?
 - . What if the number of dimensions is gigantic?
- . What if we partially construct the covariance matrix with a lower rank matrix?
 - By **transforming** our table data, **A**, with another orthogonal matrix, **Q**, we can **approximate** the **covariance matrix**, but with **lower rank**
 - Gives a matrix with typically good enough precision of actual eigenvectors, like using SVD. $QQ^{T}A$ is surrogate

Example Objective
$$\|\boldsymbol{A} - \boldsymbol{Q}\boldsymbol{Q}^*\boldsymbol{A}\| \leq \left[1 + 11\sqrt{k+p} \cdot \sqrt{\min\{m,n\}}\right] \sigma_{k+1}$$

Halko, et al., (2009) Finding structure with randomness: Stochastic algorithms for constructing approximate matrix decompositions. https://arxiv.org/pdf/0909.4061.pdf

Image Processing and Representation

Our first @ResearchMark meme

Images as data

- an image can be represented in many ways
- most common format is a matrix of pixels
 - each "pixel" is BGR(A)

Image Representation

need a compact representation

grayscale

0.3**R*+0.59**G*+0.11**B*, "luminance"

gray

1	4	2	5	6	9
1	4	2	5	5	9
1	4	2	8	8	7
3	4	3	9	9	8
1	0	2	7	7	9
1	4	3	9	8	6
2	4	2	8	7	9

Numpy Matrix 2 4 2 8 7

image[rows, cols]

		K					
	G	1	4	2	5	6	9
\mathbb{B}	1	4	2	5	6	9	9
1	4	2	5	6	9	9	7
1	4	2	5	5	9	7	8
1	4	2	8	8	7	8	9
3	4	3	9	9	8	9	6
1	0	2	7	7	9	6	9
1	4	3	9	8	6	9	丨
2	4	2	8	7	9		_

Numpy Matrix image[rows, cols, channels]

Image Representation, Features

Problem: need to represent image as table data

need a compact representation

1	4	2	5	6	9
1	4	2	5	5	9
1	4	2	8	8	7
3	4	3	9	9	8
1	0	2	7	7	9
1	4	3	9	8	6
2	4	2	8	7	9

Image Representation, Features

Problem: need to represent image as table data

need a compact representation

Solution: row concatenation (also, vectorizing)

. . .

Row N 9 4 6 8 8 7 4 1 3 9 2 1 1 5 2 1 5 9 1

Self test: 3a-1

- When vectorizing images into table data, each "feature column" corresponds to:
 - a. the value (color) of pixel
 - b. the spatial location of a pixel in the image
 - c. the size of the image
 - d. the spatial location and color channel of a pixel in an image

Dimension Reduction with Images

Demo

Images Representation in PCA and Randomized PCA

04. Dimension Reduction and Images. ipynb

For Next Lecture

- Next Lecture:
 - Finish Dimension Reduction Demo
 - Crash-course Image Feature Extraction