Contributeurs

Première partie

ACT-2001: Introduction à l'actuariat II

1 Notions de base à la modélisation en actuariat

Notation

- *X* Variable aléatoire représentant les pertes pour une "*entité*" pour un (ou plusieurs) "*périls*".
- > Elle peut être continue, discrète ou mixte;
- > "Entité" peut être un individu (ou groupe de), commerce, compagnie, etc.;
- > "Périls" peut être une incendie, du vandalisme, une maladie, du risque opérationnel, etc.;
- > On pose que E[X] < ∞

PP(X) La **prime pure** pour le risque X, PP(X) = E[X].

Fonction quantile

$$F_X^{-1}(u) = \inf\{x \in \mathbb{R}; F_X(x) \ge u\}, \forall u \in (0,1)$$

Théorème de la fonction quantile

Soit:

- \Rightarrow la variable aléatoire X avec fonction de répartition $F_X(x)$ et la fonction quantile $F_X^{-1}(u)$.
- > la variable aléatoire $U \sim Unif(0,1)$.
- $Y = F_X^{-1}(U).$

Alors,
$$F_Y(x) = F_{F_X^{-1}(U)}(x) = F_X(x)$$
 $\forall x \in \mathbb{R}$ et $X = F_X^{-1}(U)$.

C'est-à-dire, on défini Y comme la transformation de la variable aléatoire U via la fonction quantile. Par conséquent, Y se comporte comme X.

Espérance tronquée

On pose que X est une variable aléatoire tel que $E[X] < \infty$.

Notation

 $E[X \times \mathbf{1}_{\{X>d\}}]$ l'espérance tronquée à d.

- > C'est-à-dire, l'espérance des valeurs de la v.a. X qui sont supérieur à *d*.
- > On peut définir l'espérance tronquée avec n'importe quelle indicatrice.

Rappel:

$$\mathbf{1}_{\{X>d\}} = \begin{cases} 1, & X>d\\ 0, & X\leq d \end{cases}$$

Fonction stop-loss

On pose que X est une variable aléatoire tel que $E[X] < \infty$.

Notation

$$\pi_X(d)$$
 Fonction stop-loss de déductible d tel que $\pi_X(d) = \mathbb{E}[\max\{X-d;0\}]$, $\forall d \in \mathbb{R}$.

> C'est-à-dire, l'espérance des montants de perte en excédant de la limite *d*,

Relation:

$$\pi_X(d) = \mathbb{E}[X \times \mathbf{1}_{\{X > d\}}] - d\bar{F}_X(d)$$

Fonction quantile et espérance(s)

$$E[X] = E[F_X^{-1}(U)] = \int_0^1 F_X^{-1}(u) du$$

Relation:

$$\int_{k}^{1} F_{X}^{-1}(u) du = \pi_{x} \left(F_{X}^{-1}(\kappa) \right) + (1 - \kappa) F_{X}^{-1}(\kappa), \quad \forall \kappa \in (0, 1)$$
$$= \mathbb{E} \left[X \times \mathbf{1}_{\{X > F_{X}^{-1}(\kappa)\}} \right] + F_{X}^{-1}(\kappa) \left(F_{X} \left(F_{X}^{-1}(\kappa) \right) - \kappa \right)$$

Fonction convexe

Soit
$$t \in [0,1]$$
 et $x_1, x_2 \in X$.

Alors, $f(tx_1 + (1-t)x_2) \le tf(x_1) + (1-t)f(x_2)$.

Mesures de risque

> La **Value-at-Risk** correspond au $100\alpha^{e}$ pourcentile;

Également, on a la TVaR que l'on peut écrire pour $\kappa \in (0,1)$:

$$TVaR_{\kappa}(X) = \frac{1}{1-\kappa} \int_{\kappa}^{1} VaR_{u}(X)du$$

$$= \frac{1}{1-\kappa} \pi_{X} \left(VaR_{\kappa}(X) \right) + VaR_{\kappa}(X)$$

$$= \frac{1}{1-\kappa} \left[E[X \times \mathbf{1}_{\{X > VaR_{\kappa}(X)\}}] + VaR_{\kappa}(X) \left(F_{X} \left(VaR_{\kappa}(X) \right) - \kappa \right) \right]$$

Pour une variable aléatoire *X* continue, on simplifie :

$$TVaR_{\kappa}(X) = \frac{1}{1-\kappa} \left[E\left[X \times \mathbf{1}_{\{X > VaR_{\kappa}(X)\}} \right] + \underbrace{VaR_{\kappa}(X) \left(F_{X} \left(VaR_{\kappa}(X) \right) - \kappa \right)}_{= 0} \right]$$

$$= \frac{1}{1-\kappa} \left[E\left[X \times \mathbf{1}_{\{X > VaR_{\kappa}(X)\}} \right] \right]$$

$$= \frac{E\left[X \times \mathbf{1}_{\{X > VaR_{\kappa}(X)\}} \right]}{\Pr(X > VaR_{\kappa}(X))}$$

$$= E\left[X | X > VaR_{\kappa}(X) \right]$$

Propriétés désirables d'une mesure de risque

■ Homogénéité

Soit une v.a. X et un scalaire a>0 , la mesure de risque ρ est dite homogène si $\rho(aX)=a\rho(X)$.

Interprétation

Par exemple, on peut poser que a=1.75 est le taux de change entre le dollar canadien et le dollar américain.

Il est alors cohérent que calculer $\rho(1.75X)$ soit équivalent à calculer $1.75\rho(X)$.

■ Invariance à la translation

Soit une v.a. X et un scalaire $a \in \mathbb{R}$, la mesure de risque ρ satisfait la propriété d'invariance à la translation si $\rho(X+a) = \rho(X) + a$.

Interprétation

Par exemple, on peut poser que a=-500\$ est la franchise d'un contrat d'assurance auto; c'est-à-dire, un assuré va payer de sa poche le premier 500\$ d'un accident auto.

Il est alors *cohérent* que calculer $\rho(X-500)$ soit équivalent à calculer $\rho(X)-500$. Par exemple, si on utilise l'espérance comme mesure de risque $(\rho(X)=\mathrm{E}[X])$ alors il devrait nous être familier que $\mathrm{E}[X-500]=\mathrm{E}[X]-500$.

■ Monotonicité

Soit les v.a. X_1 et X_2 tel que $\Pr(X_1 \le X_2) = 1$, la mesure de risque ρ satisfait la propriété de monotonicité si $\rho(X_1) \le \rho(X_2)$ ou si pour un $\kappa \in (0,1)$ fixé, $F_{X_1}^{-1}(\kappa) \le F_{X_2}^{-1}(\kappa)$.

Interprétation

Par exemple, si X_1 est un assuré plus dangereux que X_2 il est *cohérent* que la mesure de risque lui charge plus cher.

■ Sous-additivité

Soit les v.a. X_1 et X_2 , la mesure de risque ρ satisfait la propriété de sous-additivité si $\rho(X_1 + X_2) \le \rho(X_1) + \rho(X_2)$.

Interprétation

On peut raisonner qu'il est cohérent que ce soit moins cher pour une compagnie d'assurance dassurer deux personnes que pour deux compagnies d'assurance dassurer chacune une personne.

≡ Convexité

Soit les v.a. X_1 et X_2 , la mesure de risque ρ satisfait la propriété de convexité si $\rho(\alpha X_1 + (1-\alpha)X_2) \leq \alpha \rho(X_1) + (1-\alpha)\rho(X_2)$.

2 Méthodes de simulation Monte-Carlo

Méthode inverse

Pour j = 1, 2, ..., m,

- 1. On produit une réalisation $U^{(j)}$ d'une loi U(0,1) à partir d'un GNPA (runif en R).
- 2. On simule une réalisation $X^{(j)}$ de X où $X^{(j)} = F_X^{-1}(U^{(j)})$

Simulation d'une fonction d'un nombre fini de variables aléatoires

Pour j = 1, 2, ..., m,

- 1. On simule les réalisations $(X_1^{(j)}, X_2^{(j)}, \dots, X_n^{(j)})$ de (X_1, X_2, \dots, X_n) .
- 2. On évalue $Z^{(j)} = \phi\left(X_1^{(j)}, X_2^{(j)}, \dots, X_n^{(j)}\right)$.

Par exemple, on peut avoir $\phi(x_1, x_2, ..., x_n) = \sum_{i=1}^n x_i$.

Simulation d'une fonction de variables aléatoires définies par un mélange

Pour j = 1, 2, ..., m,

- 1. On simule une réalisation $\Theta^{(j)}$ de Θ .
- 2. On produit une réalisation $X^{(j)}$ de X avec la fonction quantile $F_{X|\Theta=\Theta^{(j)}}$ de la fonction de répartition conditionnelle de $(X|\Theta=\Theta^{(j)})$

Erreur et intervalle de confiance

Soit une v.a. X dont on produit m réalisation $(X^{(1)}, X^{(2)}, \dots, X^{(m)})$.

Soit la fonction intégrale de X, g(X).

On obtient les approximations pour $\theta = E[g(X)]$:

$$\theta = \simeq \hat{\theta}_m = \frac{1}{m} \sum_{j=1}^m g\left(X^{(j)}\right)$$

$$\operatorname{Var}\left(\hat{\theta}_{m}\right) = \frac{1}{m}\operatorname{Var}\left(g(X)\right)$$

$$\widehat{\operatorname{Var}}\left(g(X)\right) = \frac{1}{m-1} \sum_{j=1}^{m} \left(g\left(X^{(j)}\right) - \hat{\theta}_{m}\right)^{2}$$

De plus,

$$heta \in \left[\hat{ heta}_m \pm \sqrt{rac{\mathrm{Var}\left(\hat{ heta}_m
ight)}{m}} \Phi^{-1}\left(1 - rac{lpha}{2}
ight)
ight] pprox \left[\hat{ heta}_m \pm \sqrt{rac{\mathrm{\widehat{Var}}\left(\hat{ heta}_m
ight)}{m}} \Phi^{-1}\left(1 - rac{lpha}{2}
ight)
ight]$$

Également, la fonction de répartition peut être approximée avec m réalisations $(X^{(1)}, X^{(2)}, \dots, X^{(m)})$:

$$F_X^{(m)}(x) \simeq \frac{1}{m} \sum_{j=1}^m \mathbf{1}_{\{X^{(j)} \le x\}}$$

De plus, pour $j_0 = m \times k$ entier :

$$TVaR_{\kappa}(X) \simeq \frac{1}{m-j_0} \left(\frac{1}{m} \sum_{j=j_0+1}^{m} X^{[j]} \right)$$

3 Mutualisation des risques

Terminologie

S Pertes totales

Méthode de Monte-Carlo

Étapes pour simuler

- 1. Produire M réalisations $U^{(1)}, \ldots, U^{(m)}$ de U;
- 2. Approximer θ par $\hat{\theta}_m$ où :

$$\hat{\theta}_m = \frac{1}{m} \sum_{j=1}^m \phi \left(F_X^{-1} \left(U^{(j)} \right) \right)$$
$$= \frac{1}{m} \sum_{j=1}^m \phi \left(X^{(j)} \right)$$

Par la loi des grands nombres, $\hat{\theta}_m \stackrel{P}{\to} \theta$.

Mesures de risque

Capital économique Allocation de surplus de la compagnie;

$$CE(S) = \rho(S) - E[S]$$

Marge de risque associée à une prime P(X);

$$MR(X) = \rho(X) - E[X]$$

 ρ introduit une marge de risque :

positive lorsque $\rho(X) \ge \mathrm{E}[X]$ pour une v.a. X avec $\mathrm{E}[X] < \infty$;

justifiée lorsque $\rho(X) = \rho(a) = a$ pour une v.a. X avec $\Pr(X = a) = 1, \alpha > 0$;

non-excessive lorsque $\rho(X) \le a_{\max}$ pour une v.a. X s'il existe $x_{\max} < \infty$

tel que $Pr(X \le x_{max}) = 1$

4 Modélisation de risques non-vie

Notation

M Variable aléatoire discrète du nombre de sinistres pour un risque;

- B_k Variable aléatoire continue du montant du k^e sinistre.
- > La suite de v.a. positives (iid) $\underline{B} = \{B_k, k \in \mathbb{N}^+\}$ est indépendante de M.

Modèle fréquence-sinistre

On défini la v.a. X comme étant les coûts (pertes) pour un risque tel que $\forall M > 0$:

$$X = \sum_{k=1}^{M} B_k$$

$$\begin{split} E\left[X\right] &= E_{M}\left[E_{B}[X|M]\right] \\ &= E[M] \times E[B] \\ Var(X) &= \underbrace{Var_{M}(E_{B}[X|M])}_{\text{variabilit\'e du } \textit{nombre } \text{de sinistres}} + \underbrace{E_{M}\left[Var_{B}(X|M)\right]}_{\text{variabilit\'e du } \textit{coût } \text{par sinistre}} \\ &= E[M]Var(B) + E^{2}[B]Var(M) \end{split}$$

$$F_X(x) = \Pr(M = 0) + \sum_{k=1}^{\infty} \Pr(M = k) F_{B_1 + \dots + B_k}(x)$$

Par exemple, pour $B_k \sim \Gamma(\alpha, \beta)$:
$$F_X(x) = \Pr(M = 0) + \sum_{k=1}^{\infty} \Pr(M = k) H(x; \alpha k, \beta)$$

$$\mathcal{L}_X(t) = P_M\left(\mathcal{L}_B(t)\right), \quad t > 0$$

$$P_X(t) = P_M\left(P_B(t)\right), \quad t > 0$$

$$\mathrm{E}\left[X \times \mathbf{1}_{\{X > b\}}\right] = \sum_{k=1}^{\infty} \Pr(M = k) \mathrm{E}\left[\left(B_1 + \dots + B_k\right) \times \mathbf{1}_{\{B_1 + \dots + B_k > b\}}\right]$$
Par exemple, pour $B_k \sim \Gamma(\alpha, \beta)$:
$$\mathrm{E}\left[X \times \mathbf{1}_{\{X > b\}}\right] = \sum_{k=1}^{\infty} \Pr(M = k) \frac{k\alpha}{\beta} \overline{H}(b; \alpha k + 1, \beta)$$

Simulation

Simulation de réalisations de X

- 1. Simuler la réalisation $M^{(j)}$ de la v.a. M;
- 2. Si $M^{(j)} = 0$, alors $X^{(j)} = 0$;
- 3. Si $M^{(j)} > 0$, alors :
 - (a) Simuler $M^{(j)}$ réalisations de la v.a. (iid) B pour obtenir $B_1^{(j)}, B_2^{(j)}, \dots, B_{M^{(j)}}^{(j)}$;
 - (b) On pose $X^{(j)} = B_1^{(j)} + B_2^{(j)} + \dots + B_{M^{(j)}}^{(j)}$

Heavy tailed and light tailed

Si la distribution de la v.a. *B* est sub-exponentielle alors :

$$\overline{F}_X(x) = \sum_{k=1}^{\infty} f_M(k) \overline{F}_{B_1 + \dots + B_k}(x) \sim \sum_{k=1}^{\infty} f_M(k) k \overline{F}_B(x) = \mathbb{E}[M] \overline{F}_B(x)$$

Mutualisation

■ Somme de variables aléatoires Poisson composée

Soient les variables aléatoires indépendantes X_1, \ldots, X_n où $X_i \sim PComp(\lambda_i, F_{B_i})$ pour $i = 1, 2, \ldots, n$. Alors, $S = \sum_{i=1}^n X_i \sim PComp(\lambda_s = \sum_{i=1}^n \lambda_i; F_C)$.

Alors,
$$S = \sum_{i=1}^{n} X_i \sim PComp(\lambda_s = \sum_{i=1}^{n} \lambda_i; F_C).$$

 $F_C(x) = \frac{\lambda_1}{\lambda_S} F_{B_1}(x) + \frac{\lambda_2}{\lambda_S} F_{B_2}(x) + \dots + \frac{\lambda_n}{\lambda_S} F_{B_n}(x)$

5 Mutualisation de risques non-vie

Soit les v.a. indépendantes X_1, \ldots, X_n où $X_i \sim \text{PComp}(\lambda_i; F_{B_i})$ pour $i = 1, 2, \ldots, n$. Alors, $S = \sum_{i=1}^n X_i \sim \text{PComp}(\lambda_S; F_C)$ où : $\lambda_S = \sum_{i=1}^n \lambda_i,$ $F_C(s) = \sum_{i=1}^n \frac{\lambda_i}{\lambda_S} F_{B_i}(s)$.

Deuxième partie

ACT-3000 : Théorie du risque

10 Processus de Poisson

Notation T_k Temps d'occurrence de l'événement $k=1,2,\ldots$ > Il s'ensuit que $0 < T_1 < T_2 < \ldots$; > $T_k \sim Erlang(k;\lambda)$. W_k Temps écoulé entre l'événement k-1 et k. > Il s'ensuit que $W_k = T_k - T_{k-1}$; > $W_k \sim W \sim Exp(\lambda)$.

Processus de comptage

Soit le processus de comptage, ou processus de dénombrement, $\underline{N}=\{N(t),t\geq 0\}$ sous les conditions suivantes :

- 1 N(0) = 0.
- 2 $N(t) \ge 0$.
- 3 $N(t) \ge N(s)$ si t > s.
- 4 N(t) N(s) correspond au nombre d'événements encourus durant l'intervalle (s,t] où t > s.

Au lieu de le définir en fonction d'une loi de Poisson, on peut définir $N(t) = \sup\{k \ge 1 : T_k \le t\}$, $\forall t \ge 0$. C'est-à-dire, le dernier événement à se produire à ou avant le temps t.

Processus de Poisson homogène

Notation

 λ Taux, ou intensité, du processus.

 $\Lambda(t)$ Intensité cumulée.

Processus de Poisson

Le processus de comptage $\underline{N}=\{N(t),t\geq 0\}$ est un **processus de Poisson** sous les conditions suivantes :

- 1 N(0) = 0;
- 2 Les accroissements sont indépendants et stationnaires;
- 3 $N(t) \sim Pois(\lambda t)$;
- 4 $N(t+s) N(s) \sim Pois(\lambda t)$.

De cette définition, on trouve que pour $s \ge 0$ et t > 0, N(s,s+t] = N(s+t) - N(s).

\blacksquare Taux (intensité) λ et taux cumulé $\Lambda(t)$

Le paramètre λ d'un processus correspond à son taux ou intensité. On définit l'intensité cumulée par $\Lambda(t)$ où

$$\Lambda(t) = \int_0^t \lambda ds = \lambda t, \quad t > 0$$

Également, pour $s \ge 0$ et t > 0, $\Lambda(s, s + t] = \Lambda(s + t) - \Lambda(s)$.

Avec ces définitions, on trouve que pour $k \in \mathbb{N}$, t > 0, $s \ge 0$

$$\Pr(N(t) = k) = e^{-\lambda t} \frac{(\lambda t)^k}{k!} = \Pr(N(s, s + t) = k)$$
stationnaires

▼ Propriétés d'un processus de Poisson homogène

Soit le processus de Poisson $\underline{N}=\{N(t), t\geq 0\}$ avec les propriétés suivantes :

- 1 N(0) = 0;
- 2 Les accroissements sont indépendants et stationnaires;
- 3 $N(t) \sim Pois(\lambda t)$;
- 4 $N(s,s+t] = N(s+t) N(s) \sim Pois(\lambda t)$;

Pour $h \to 0$ et $o(h) \stackrel{h \to 0}{\to} 0$:

- 5 $Pr(N(t+h) N(t) = 0) = 1 \lambda h + o(h);$
- 6 $Pr(N(t+h) N(t) = 1) = \lambda h + o(h);$
- 7 $\Pr(N(t+h) N(t) \ge 2) = o(h)$.

Propositions

☐ Mélange de processus de Poisson avec une suite de v.a. Bernoulli

Soit:

- > Un processus de Poisson \underline{N} = {N(t), t ≥ 0} de taux λ ;
- > La suite de variables aléatoires (iid) Bernoulli $\underline{I}=\{I_k, k=1,2,\ldots\}$ de paramètre q.

On pose que les processus \underline{N} et \underline{I} sont indépendants, puis obtient que

$$M(t) = egin{cases} \sum_{k=1}^{N(t)} I_k, & N(t) > 0 \ 0, & N(t) = 0 \end{cases}$$

est aussi un processus de Poisson; c'est-à-dire, le processus $\underline{M} = \{M(t), t \ge 0\}$ est un processus de Poisson de taux λq et donc $M(t) \sim Pois(\lambda qt)$.

Soit les processus de Poisson indépendants $\underline{N}_1=\{N_1(t),t\geq 0\}$ et $\underline{N}_2=\{N_2(t),t\geq 0\}$ de taux λ_1 et λ_2 . Alors, $\underline{M}=\{M(t),t\geq 0\}$ est un processus de Poisson de taux $\lambda_1+\lambda_2$ où $M(t)=N_1(t)+N_2(t)$. C'est-à-dire, $\underline{M}(t)\sim Pois(\lambda_1+\lambda_2)$.

Algorithme de Processus de Poisson 1 (PP1)

- 1. On fixe $T_0^{(j)} = 0$;
- 2. Pour i = 1, 2, ..., n,
 - a) On simule $W_i^{(j)}$;
 - b) On calcule $T_i^{(j)} = T_{i-1}^{(j)} + W_i^{(j)}$.

Limitations de l'algorithme PP1

Bien que cet algorithme est simple d'application, il n'est pas toujours efficace pour produire des simulations du processus \underline{N} sur un intervalle fixe (0,t]. On peut trouver *un algorithme plus efficace* en utilisant la *Distribution du temps d'occurrence* conditionnelle au nombre d'événements sur un intervalle.

Distribution du temps d'occurrence

Contexte

On sait que $T_1 \sim \operatorname{Exp}(\lambda)$. Cependant, on cherche à savoir ce qu'est la distribution de $(T_1|N(t)=1)$. C'est-à-dire, la distribution du temps d'occurrence du premier sinistre sachant qu'un sinistre est survenu entre 0 et t.

En développant
$$\Pr(T_1 \leq s|N(t)=1)$$
 pour $s \in (0,t]$, on trouve que $\Pr(T_1 \leq s|N(t)=1) = \frac{s}{t}$ et $f_{T_1|N(t)=1}(s) = \frac{1}{t}$. Bref, $T_1|N(t)=1$ $T_2|N(t)=1$.

Ayant développé l'intuition pour le cas où seulement un événement se réalise sur l'intervalle de temps (0,t], on peut généralise pour n événements et identifier la loi de $(T_1,\ldots,T_n|N(t)=n)$. Puisque T_i représente le temps d'occurrence du $i^{\rm e}$ événement, il s'ensuit que les temps seront en ordre croissant : $0 < s_1 < s_2 < \cdots < s_n \le n$.

En développant, on trouve que $f_{T_1,\dots,T_n|N(t)=n}(s_1,\dots,s_n)=\frac{n!}{t^n}$ (voir la section 10.2 du manuel de référence pour la preuve). L'intuition est qu'il y a n! façons d'organiser les n temps d'occurrence des événements et que chacune a une densité de $\frac{1}{t}$ qui devient $\frac{1}{t^n}$. La page 310 du manuel de Ross (Introduction to Probability Models) explique cette intuition.

La distribution de $(T_1, T_2, ..., T_n | N(t) = n)$ découle du vecteur de statistiques **Processus de Poisson non-homogène** d'ordre:

■ Vecteur de statistiques d'ordre

Soit le vecteur de v.a. continues (iid) (Y_1, Y_2, \dots, Y_n) . On déduit que puisque les v.a. sont identiquement distribuées, $Y_i \sim Y \quad \forall i = 1, 2, ..., n$ ce qui veut dire que la fonction de densité $f_{Y_i} = f_Y$

On définit le vecteur de statistiques d'ordre $(Y_{[1]},Y_{[2]},\ldots,Y_{[n]})$ en posant que $Y \sim U(0,t)$ pour obtenir la fonction de densité conjointe :

$$f_{Y_{[1]},Y_{[2]},...,Y_{[n]}}(y_1,y_2,...,y_n) = n! \times \prod_{i=1}^n f_Y(y_i), \quad y_1 < y_2 < \dots < y_n$$

$$Y \sim U(0,t) \frac{n!}{t^n}, \quad 0 < y_1 < y_2 < \dots < y_n \le t$$

Donc, puisque les temps d'événements conditionnels sont uniformément distribués entre 0 et t, $(T_1, T_2, ..., T_n | N(t) = n) \sim (Y_{[1]}, Y_{[2]}, ..., Y_{[n]})$.

Algorithme de processus de Poisson 2 (PP2)

- 1. On fixe $T_0^{(j)} = 0$;
- 2. On simule la réalisation $N(t)^{(j)}$ de N(t);
- 3. Sachant $N(t) = N(t)^{(j)} > 0$:
 - a) On simule le vecteur de réalisations $\left(U_1^{(j)}, U_2^{(j)}, \dots, U_{N(t)^{(j)}}^{(j)}\right)$ de $(U_1, U_2, \dots, U_{N(t)(j)})$ où $U_i \sim U \sim U(0,1)$;
 - b) On trie ces réalisations pour obtenir le vecteur de statistiques d'ordre $\left(U_{[1]}^{(j)}, U_{[2]}^{(j)}, \dots, U_{[N(t)^{(j)}]}^{(j)}\right)$ où $U_{[1]}^{(j)} < U_{[2]}^{(j)} < \dots < U_{[N(t)^{(j)}]}^{(j)}$;
 - c) On multiplie les réalisations par t pour obtenir des réalisations uniformes sur (0,t) au lieu de (0,1), puis pour $i=1,2,\ldots,N(t)^{(j)}$ on pose que $T_i^{(j)} = t \times U_{[i]}^{(j)}$.

Processus de Poisson non-homogène

 $N = \{N(t), t \ge 0\}$ est un **processus de Poisson non-homogène** de fonction d'intensité $\lambda(t) \geq 0 \ \forall t \geq 0 \ \text{si}$:

- 1) N(0) = 0;
- Les accroissements sont indépendants;
- 3 $\Pr(N(t+h) N(t) = 1) = \lambda(t)h + o(h)$;
- 4 $\Pr(N(t+h) N(t) \ge 2) = o(h)$.

≡ Fonction d'intensité

Soit le processus de Poisson non-homogène $\underline{N} = \{N(t), t \geq 0\}$ avec intensité $\lambda(t)$, alors $\forall t, s \geq 0$ $N(t+s) - N(t) \sim Pois(\Lambda(t+s) - \Lambda(s))$ où la fonction d'intensité cumulée $\Lambda(t) = \int_0^t \lambda(y) dy$.

Avec cette définition, on trouve que pour $k \in \mathbb{N}$, t > 0, $s \ge 0$

$$\Pr(N(t+s) - N(s) = k) = \frac{[m(t+s) - m(s)]^k e^{-[m(t+s) - m(s)]}}{k!}$$

où la suite \underline{W} des v.a. des temps inter-sinistres n'est pas indépendante ni identiquement distribuée.

Exemples de fonctions d'intensité

fonction linéaire $\lambda(t) = a + bt$, a > 0, $b \ge 0$; fonction puissance $\lambda(t) = (\beta t)^{\tau}, \beta, \tau > 0$; fonction log-linéaire $\lambda(t) = e^{\alpha + \beta t}$, $\alpha, \beta \in \mathbb{R}$; **fonction périodique** $\lambda(t) = a + b\cos(2\pi t)$, a > 0, $b \in [0, a]$.

Distributions du temps d'occurrence

On sait que $T_1 = W_1$, donc $F_{W_1}(t) = 1 - e^{-\Lambda(t)}$, $t \ge 0$. De façon plus générale, $F_{W_n|T_{n-1}=s}(t) = 1 - e^{-\Lambda_s(t)}, \quad t \ge 0$

Algorithme de Processus de Poisson non-homogène 1 (PPNH1)

- 1. On fixe $T_0^{(j)} = 0$;
- 2. Pour i = 1, 2, ..., n,
 - a) On simule les réalisations $\left(Z_1^{(j)}, Z_2^{(j)}, \dots, Z_n^{(j)}\right)$ du vecteur de v.a. (iid) avec $Z_i \sim Z \sim Exp(1)$;
 - b) On simule $W_i^{(j)} = \Lambda_{T_{i-1}^{(j)}}^{-1}(Z_i);$
 - c) On calcule $T_i^{(j)} = T_{i-1}^{(j)} + W_i^{(j)}$.
- \rightarrow Cet algorithme est simple d'application si l'expression Λ_s^{-1} est fermée;
- > Cependant, le prochain est plus efficace pour produire des simulations du processus \underline{N} sur un intervalle fixe (0,t].

Pour $0 < s_1 < s_2 < \cdots < s_n < t$:

$$f_{T_1,T_2,...,T_n|N(t)=n}(s_1,s_2,...,s_n) = \frac{n!}{\Lambda(t)^n} \prod_{i=1}^n \lambda(s_i)$$

Les hypothèses au vecteur de v.a. (iid) $\left(V_1,V_2,\ldots,V_{N(t)}^{(j)}\right)$ sont appliquées de la même façon qu'auparavant avec $\left(U_1,U_2,\ldots,U_{N(t)}^{(j)}\right)$.

Algorithme de Processus de Poisson non-homogène 2 (PPNH2)

- 1. On fixe $T_0^{(j)} = 0$
- 2. On simule la réalisation $N(t)^{(j)}$ de $N(t) \sim Pois(\Lambda(t))$.
- 3. Sachant $N(t) = N(t)^{(j)} > 0$:
 - a) On simule le vecteur de réalisations $\left(V_1^{(j)}, V_2^{(j)}, \dots, V_{N(t)^{(j)}}^{(j)}\right)$ du vecteur de v.a. (iid) $\left(V_1, V_2, \dots, V_{N(t)^{(j)}}\right)$;

Note: $V_i \sim V$ avec $f_V(x) = \frac{\lambda(x)}{\Lambda(t)}$ pour 0 < x < t et $\forall i = 1, 2, ..., N(t)^{(j)}$

b) On trie ces réalisations pour obtenir le vecteur de statistiques d'ordre $\left(V_{[1]}^{(j)},V_{[2]}^{(j)},\ldots,V_{[N(t)^{(j)}]}^{(j)}\right)$ où $V_{[1]}^{(j)} < V_{[2]}^{(j)} < \cdots < V_{[N(t)^{(j)}]}^{(j)}$;

c) On calcule $T_i^{(j)} = V_{[i]}^{(j)}$ pour $i = 1, 2, ..., N(t)^{(j)}$.

Note : On pose que $U_i \sim U \sim U(0,1)$.

- 4. Pour i = 1, 2, ..., n,
 - a) On simule les réalisations $\left(Z_1^{(j)},Z_2^{(j)},\ldots,Z_n^{(j)}\right)$ du vecteur de v.a. (iid) avec $Z_i \sim Z \sim Exp(1)$;
 - b) On simule $W_i^{(j)} = \Lambda_{T_{i-1}^{(j)}}^{-1}(Z_i);$
 - c) On calcule $T_i^{(j)} = T_{i-1}^{(j)} + W_i^{(j)}$.
- \rightarrow Cet algorithme est simple d'application si l'expression Λ_s^{-1} est fermée;
- > Cependant, le prochain est plus efficace pour produire des simulations du processus \underline{N} sur un intervalle fixe (0,t].

Processus de Poisson mixte

Processus de Poisson non-homogène

Soit la v.a. positive Λ . Si le processus de dénombrement $\underline{N}=\{N(t), t\geq 0\}$ conditionnel à ce que $\Lambda=\lambda$ est un processus de Poisson d'intensité λ , alors \underline{N} est appelé un **processus de Poisson mixte**.

On obtient que
$$E[N(t)] = tE[\Lambda]$$
 et que $Var(N(t)) = tE[\Lambda] + t^2Var(\Lambda)$.
Puis, pour $r \in [0,1]$, $M_{N(t)}(r) = M_{\Theta}(t(e^r - 1))$.

La particularité des processus de Poisson mixtes est qu'ils possèdent des accroissements stationnaires mais pas indépendants : $\Pr\left(N(t+s)-N(s)=n|N(s)=m\right) \neq \Pr\left(N(t+s)-N(s)=n\right)$, $\forall m,n \in \mathbb{N}$

Algorithme de simulation d'un Processus de Poisson mixte

- 1. On simule la réalisation $\Theta^{(j)}$ de Θ ;
- 2. On simule le j^e parcours de $(\underline{N}|\Theta=\Theta^{(j)})$ avec l'algorithme PP1 pour un processus de Poisson avec intensité $\lambda=\Theta^{(j)}$.

Processus de renouvellement

Contexte

Les processus de renouvellement généralise les processus de dénombrement avec une distribution inter-événement qui n'est pas exponentielle.

La relation fondamentale est $\{N(t) \ge k\} = \{T_k \le t\}$, $t > 0, k \in \mathbb{N}$

Fonction de renouvellement

On dénote le nombre espéré de sinistres sur l'intervalle de temps (0,t] par la *fonction de renouvellement* $m(t) = \mathrm{E}[N(t)]$. L'expression est

$$m(t) = \sum_{k=1}^{\infty} F_{T_k}(t)$$

Pour un processus de Poisson, $m(t) = \lambda t$.

Processus agrégés

Contexte

Les processus agrégés sont utiles pour modéliser l'évolution dans le temps du montant total des sinistres.

Processus agrégé

Soit le processus
$$\underline{S} = \{S(t), t \ge 0\}$$
 où
$$S(t) = \begin{cases} \sum\limits_{k=1}^{N(t)} B_k, & N(t) > 0\\ 0, & N(t) = 0 \end{cases}$$

Les montants de sinistres B_k pour k = 1, 2, ... forment une suite de v.a. positives iid qui sont également indépendantes du processus de dénombrement des sinistres N.

Propositions

Si \underline{N} est un processus de Poisson, alors \underline{S} est appelé un processus de Poisson composé : $S(t) \sim PComp(\lambda t, F_B)$

11 Méthodes récursives d'agrégation

Motivations

Convolution

Rappel: Produit de convolution

Soit les variables aléatoires indépendantes *continues* positives X_1 et X_2 .

On définit
$$S = X_1 + X_2$$
, alors :

$$f_S(x) = \int_0^x f_{X_1}(y) f_{X_2}(x - y) dy = f_{X_1} * f_{X_2}(x)$$

Soit les variables aléatoires indépendantes *discrètes* positives X_1 et X_2 définies sur le support arithmétique $0h, 1h, 2h, \ldots$

- > h est un « pas de discrétisation » positif (h > 0);
- > Par exemple : $10, 20, 30, \ldots = 1h, 2h, 3h, \ldots$ avec h = 10.

On définit $S = X_1 + X_2$, alors pour $k \in \mathbb{N}$:

$$f_S(kh) = \sum_{j=0}^{k} f_{X_1}(jh) f_{X_2}((k-j)h) = f_{X_1} * f_{X_2}(kh)$$

Fonction génératrice de probabilités

Rappel : Fonction de masse de probabilité

La valeur de $f_X(k)$ peut être obtenue de $\mathcal{P}_X(t)$ avec $\boxed{f_X(k) = \frac{1}{k!} \frac{d^k}{dr^k} \mathcal{P}_X(r) }.$

Rappel: Fonction génératrice de probabilités d'une sommation

La valeur de $\mathcal{P}_{S_n}(t)$ peut être obtenue du produit des $\mathcal{P}_{X_i}(t)$ avec $\boxed{\mathcal{P}_{S_n}(t) = \mathcal{P}_{X_1}(t) \times \cdots \times \mathcal{P}_{X_n}(t) \mid \text{pour } r \in [0,1]}.$

Rappel: Propriétés de la fonction génératrice de probabilités multivariée

En développant l'expression de $\mathcal{P}_X(t_1,\ldots,t_n)$, on observe que $\mathcal{P}_X(0,\ldots,0)=f_X(0,\ldots,0)$ et $\mathcal{P}_X(1,\ldots,1)=1$.

Également,
$$\mathcal{P}_{X_i}(t_i) = \mathcal{P}_X(t_1,\ldots,t_n)\Big|_{t_j=1 \forall j=1,2,\ldots,i-1,i+1,\ldots,n}$$
. Finalement, $\mathcal{P}_S(t) = \mathcal{P}_X(t,\ldots,t)$.

Nombres complexes

Note Ne semble pas être dans le cadre du cours pour l'automne 2020.

$$z=\underbrace{x}_{ ext{partie réelle,}}+\underbrace{y}_{ ext{partie imaginaire,}}\times\underbrace{i}_{ ext{Unité imaginaire,}}$$

Propriétés de base

Soit les nombres complexes $z_1 = x_1 + y_1 i$ et $z_2 = x_2 + y_2 i$. Règle de :

addition $z_1 + z_2 = (x_1 + x_2) + (y_1 + y_2)i$; multiplication $z_1 \times z_2 = (x_1x_2 - y_1y_2) + (x_1y_2 + x_2y_1)i$; souttraction $z_1 - z_2 = (x_1 - x_2) + (y_1 - y_2)i$.

▼ Représentation sous la forme polaire

 $z = r(\cos(\theta) + i\sin(\theta))$ où:

> $r = |z| = \sqrt{x^2 + y^2} =$ module de z;

> θ est **l'argument** de z; c'est-à-dire, l'angle du vecteur z dans le plan complexe.

▼ Conjugué d'un nombre complexe

Le conjugué de z = x + yi est : $\overline{z} = \overline{x + yi} = x - yi$.

□ Propriétés de base du conjugué

Soit les nombres complexes $z_1 = x_1 + y_1 i$ et $z_2 = x_2 + y_2 i$. Règle de :

addition $\overline{z_1 + z_2} = \overline{z_1} + \overline{z_2}$;

multiplication $\overline{z_1 \times z_2} = \overline{z_1} \times \overline{z_2}$;

les exposants $\overline{z_1^n} = (\overline{z_1})^n$.

Soit les nombres complexes $z_1 = x_1 + y_1 i$ et $z_2 = x_2 + y_2 i$.

$$\frac{z_1}{z_2} = \frac{z_1 \times \overline{z_2}}{z_2 \times \overline{z_2}} = \frac{(x_1 x_2 + y_1 y_2)}{x_2^2 - y_2^2} + \frac{(x_1 y_2 + x_2 y_1)}{x_2^2 - y_2^2} i$$

▼ Formule d'Euler

$$e^{i\theta} = \cos(\theta) + i\sin(\theta)$$

 \Rightarrow

$$z = re^{i\theta} = r \times (\cos(\theta) + i\sin(\theta))$$

Somme de variables aléatoires discrètes

Notation

 $f_X^{*n}(k)$ n^{e} produit de convolution de f_X avec elle-même. $f_{S_n}(k) = f_{X_1 + \dots + X_n}(k) = f_X^{*n}(k)$

$$f_{S_n}(k) = \sum_{k_1=0}^k \dots \sum_{k_{n-1}=0}^{k_{n-2}} f_{X_1,\dots,X_n} \left(k_1,\dots,k_{n-1}, \left(k - \sum_{j=1}^{n-1} k_j \right) \right)$$

$$\mathcal{P}_{S_n}(t) = P_X(t)^n = \sum_{k=0}^\infty f_{S_n}(k) t^k$$

Algorithme de De Pril

Cet algorithme permet de calculer $f_X^{*n}(k)$ selon la relation récursive suivante pour $k \in \mathbb{N}^+$:

$$f_{S_n}(k) = \frac{1}{f_X(0)} \sum_{j=1}^k \left((n+1) \frac{j}{k} - 1 \right) f_X(j) f_{S_n}(k-j)$$

avec $f_{S_n}(0) = (f_X(0))^n$ comme point de départ.

- 1. On calcule $f_{S_n}(0) = (f_X(0))^n$.
- 2. On calcule $f_{S_n}(1) = \frac{1}{f_X(0)} \left((n+1) \frac{1}{1} 1 \right) f_X(1) f_{S_n}(0)$.
- 3. Avec $f_{S_n}(1)$, on trouve $f_{S_n}(2) = \frac{1}{f_X(0)} \left\{ f_X(1) \left((n+1) \frac{1}{2} 1 \right) f_{S_n}(1) + f_X(2) \left((n+1) \frac{2}{2} 1 \right) f_{S_n}(0) \right\}$.
- 4. Répéter pour $k \in \{3, 4, ...\}$.

Note Voir la section de visualisations pour une visualisation du produit de sommations infinies dans la preuve pour l'algorithme de <u>De Pril</u>.

Somme aléatoire et algorithme de Panjer

Rappel que pour une variable aléatoire composée X:

$$f_X(0) = P_M(f_B(0))$$

$$f_X(k) = \sum_{j=1}^{\infty} f_M(j) f_B^{*j}(k), \quad k \in \mathbb{N}^+$$

\blacksquare Famille (a, b, 0) de lois de fréquence

La distribution d'une v.a. M fait partie de la famille de distributions de fréquence (a,b,0) ssi : $f_M(k)=\left(a+\frac{b}{k}\right)f_M(k-1)$ pour $k\in\mathbb{N}^+$ avec un point de départ $f_M(0)>0$.

Cette famille contient uniquement les distributions suivantes :

Distribution		b	$f_M(0)$
Poisson	0	λ	$e^{-\lambda}$
Binomiale	$-\frac{q}{1-q}$	$\frac{q}{1-q}(n+1)$	$(1-q)^n$
Binomiale négative (r, q)	1-q	(1-q)(r-1)	q^r
Binomiale négative (r, β)	$\frac{\beta}{1+\beta}$	$\frac{\beta}{1+\beta}(r-1)$	$\left(\frac{1}{1+\beta}\right)^r$

■ Relation récursive pour la FGP

$$\mathcal{P}'_{M}(t) = at\mathcal{P}'_{M}(t) + (a+b)\mathcal{P}_{M}(t)$$

Algorithme de Panjer

Soit une variable aléatoire composée X avec une distribution de fréquence M faisant partie de la famille (a,b,0) et une distribution de sévérité B.

Cet algorithme permet de calculer $f_X(k)$ selon la relation récursive suivante pour $k \in \mathbb{N}^+$:

$$f_X(k) = \frac{1}{1 - af_B(0)} \sum_{i=1}^{k} \left(a + b \frac{j}{k} \right) f_B(j) f_X(k-j)$$

avec $f_X(0) = \mathcal{P}_M(f_B(0))$ comme point de départ.

- 1. On calcule $f_{S_n}(0) = (f_X(0))^n$.
- 2. On calcule $f_{S_n}(1) = \frac{1}{f_X(0)} \left((n+1) \frac{1}{1} 1 \right) f_X(1) f_{S_n}(0)$.
- 3. Avec $f_{S_n}(1)$, on trouve $f_{S_n}(2) = \frac{1}{f_X(0)} \left\{ f_X(1) \left((n+1) \frac{1}{2} 1 \right) f_{S_n}(1) + f_X(2) \left((n+1) \frac{2}{2} 1 \right) f_{S_n}(0) \right\}$.
- 4. Répéter pour $k \in \{3, 4, ...\}$.

Pour $k \in \mathbb{N}^+$

$$M \sim Pois(\lambda)$$
: $f_X(k) = \frac{\lambda}{k} \sum_{j=1}^k j \times f_B(j) f_X(k-j)$ avec comme point de départ $f_X(0) = \mathrm{e}^{\lambda(f_B(0)-1)}$.

$$M \sim Bin(n,q)$$
: $f_X(k) = \frac{1}{(1-q)+qf_B(0)} \sum_{j=1}^k \left(-q + q(n+1) \frac{j}{k} \right) f_B(j) f_X(k-j)$ avec comme point de départ $f_X(0) = (1-q+qf_B(0))^n$.

$$M \sim BN(r,q): f_X(k) = \frac{1}{1-(1-q)f_B(0)} \sum_{j=1}^k \left((1-q) + (1-q)(r-1) \frac{j}{k} \right) f_B(j) f_X(k-j)$$

avec comme point de départ $f_X(0) = \left(\frac{q}{1 - (1 - q)f_B(0)}\right)^r$.

Méthodes de discrétisation

Contexte

Soit les v.a. indépendantes continues positives B_1, \ldots, B_n et $S = \sum_{i=1}^n B_i$. Afin d'utiliser les algorithmes récursifs de convolution, on doit approximer la v.a. continue B_i par la v.a. discrète \tilde{B}_i .

Puisque \tilde{B}_i est discrète, elle est définie sur un support discret $A_h = \{0, 1h, 2h, 3h, \ldots\}$ où h > 0 est le *pas de discrétisation*. Il y a plusieurs méthodes qui existent pour approximer \tilde{B} ; dans le cadre du cours, on voit les méthodes « *upper* » et « *lower* ».

Méthodes upper et lower

■ Méthode « *upper* »

On pose que $f_{\tilde{B}}(0) = F_B(h)$, puis : $f_{\tilde{B}}(kh) = \Pr(kh \le B < (k+1)h), \quad k \in \mathbb{N}^+$

Il s'ensuit que :

$$F_{\tilde{B}}(x) = \begin{cases} F_B(h), & 0 \le x < h \\ F_B(2h), & h \le x < 2h \\ F_B(3h), & 2h \le x < 3h \\ \dots \end{cases}$$

■ Méthode « *lower* »

On pose que $f_{\tilde{B}}(0) = 0$, puis : $f_{\tilde{B}}(kh) = \Pr((k-1)h \le B < kh), \quad k \in \mathbb{N}^+$

Il s'ensuit que :

$$F_{\tilde{B}}(x) = \begin{cases} 0, & 0 \le x < h \\ F_B(h), & h \le x < 2h \\ F_B(2h), & 2h \le x < 3h \\ \dots \end{cases}$$

La visualisation de ces méthodes permet de constater qu'elles sont assez intuitives et simples. Si on veut se compliquer la vie, on peut faire un parallèle à l'estimation

d'une fonction continue avec des limites pour définir un intégrale. Sinon, on peut constater que soit on **sur**estime la fonction continue avec la méthode « *upper* » ou on la **sous**-estime avec la méthode « *lower* » :

Note Pour comprendre ce que représente le pas de discrétisation, voir la page 21 des diapositives sur les méthodes d'agrégation pour un excellent visuel.

Méthodes de dispersion de la masse avec espérance préservée

Note Ne semble pas être dans le cadre du cours pour l'automne 2020.

■ Lemme

Soit les scalaires a, b, c, d tels que :

- > *a* < *b*
- $\rightarrow a < d < b$
- \rightarrow $0 \le c < 1$
- $> p_a, p_b \ge 0$

Alors la solution au système de deux équations avec les deux inconnus suivants :

$$p_a + p_b = c$$

$$ap_a + bp_b = d$$
est
$$p_a = \frac{bc - d}{b - a}$$
 et
$$p_b = \frac{d - ac}{b - a}$$

Méthode de dispersion de la masse

$$p_{kh}^{-} = \frac{(k+1)h}{h} \left\{ F_B((k+1)h) - F_B(kh) \right\}$$

$$- \frac{1}{h} \left\{ E[B \times \mathbf{1}_{(-\infty,(k+1)h]}] - E[B \times \mathbf{1}_{(-\infty,kh]}] \right\}$$

$$p_{(k+1)h}^{+} = \frac{1}{h} \left\{ E[B \times \mathbf{1}_{(-\infty,(k+1)h]}] - E[B \times \mathbf{1}_{(-\infty,kh]}] \right\}$$

$$- \frac{kh}{h} \left\{ F_B((k+1)h) - F_B(kh) \right\}$$

Puis on obtient que pour $k \in \mathbb{N}^+$ $f_{\tilde{B}}(kh) = p_{kh}^+ + p_{kh}^-$. C'est-à-dire,

$$f_{\tilde{B}}(kh) = \dots = \frac{1}{h} \left\{ 2E[\min(B; kh)] - E[\min(B; (k-1)h)] - E[\min(B; (k+1)h)] \right\}$$

Avec comme point de départ $f_{\tilde{B}}(0) = 1 - \frac{\mathbb{E}[\min(B;h)]}{h}$

Agrégation et transformée de Fourier rapide

$$\varphi_X(t_j) = \mathbb{E}[e^{it_jX}] = \mathbb{E}[\cos(t_jX)] + i \times \mathbb{E}[\sin(t_jX)]$$
$$= \sum_{u=0}^{n-1} f_X(u)e^{i(2\pi)(j/n)u}$$

où
$$t_j = i2\pi(j/n)$$

Également,
$$f_X(l) = \frac{1}{n} \sum_{j=0}^{n-1} \varphi(2\pi(j/n)) e^{-i2\pi(j/n)l}$$
.

Transformée de Fourier rapide

Somme de deux v.a. discrètes indépendantes

Soit les v.a. discrètes X et Y avec la v.a. S = X + Y.

Pour calculer la fonction de masse de probabilité f_S de la v.a. S, les étapes sont les suivantes :

- 1. Construire les vecteurs \underline{f}_X et \underline{f}_Y .
 - \rightarrow Ils doivent être d'une même longueur 2^m .
 - > Pour faire ceci, on ajoute des 0 aux vecteurs.
- 2. Utiliser la fonction fft pour produire les vecteurs $\underline{\widetilde{f}}_X$ et $\underline{\widetilde{f}}_Y$ de \underline{f}_X et \underline{f}_Y .
- 3. Faire le produit des deux vecteurs pour obtenir $\underline{\widetilde{f}}_S = \underline{\widetilde{f}}_X \times \underline{\widetilde{f}}_Y$.
 - > Ceci équivaut à une multiplication de vecteurs colonnes et donc le i^e élément de $\widetilde{f}_{_Y}$ multiplie le i^e élément de $\widetilde{f}_{_Y}$.
- 4. Utiliser la fonction fft avec inverse = TRUE pour produire le vecteur \underline{f}_S de \widetilde{f}_S .
 - > On utilise la fonction Re pour conserver uniquement la partie réelle du chiffre.
 - > Il faut diviser par 2^m pour obtenir les densités.

Somme de n v.a. discrètes indépendantes

Soit les v.a. discrètes X_1, \ldots, X_n définies sur $\{0, 1h, 2h, \ldots\}$ avec la v.a. $S = \sum_{i=1}^n X_i$.

Pour calculer la fonction de masse de probabilité f_S de la v.a. S, les étapes sont les suivantes :

- 1. Construire les vecteurs $\underline{f}_{X_1}, \dots, \underline{f}_{X_n}$.
 - > Ils doivent être d'une même longueur 2^m .
 - > Pour faire ceci, on ajoute des 0 aux vecteurs.
- 2. Utiliser la fonction fft pour produire les vecteurs $\underline{\widetilde{f}}_{X_1},\ldots,\underline{\widetilde{f}}_{X_n}$ de $\underline{f}_{X_1},\ldots,\underline{f}_{X_n}$.
- 3. Faire le produit des n vecteurs pour obtenir $\underline{\widetilde{f}}_S = \underline{\widetilde{f}}_{X_1} \times \cdots \times \underline{\widetilde{f}}_{X_n}$.
- 4. Utiliser la fonction fft avec inverse = TRUE pour produire le vecteur \underline{f}_S de \widetilde{f}_S en conservant la partie réelle avec Re puis divisant par 2^m .

Somme aléatoire (loi composée)

Soit la v.a. composée X avec $X = B_1 + \cdots + B_M$ si M > 0 ou X = 0 si M = 0 (et les hypothèses habituelles).

On pose que les v.a. B_1, B_2, \ldots sont définies sur $\{0, 1h, 2h, \ldots\}$. Pour calculer la fonction de masse de probabilité f_X de la v.a. X, les étapes sont les suivantes :

- 1. Construire le vecteur f_R .
 - \rightarrow Ajouter des 0 au vecteur pour qu'il soit d'une longueur de 2^m .
- 2. Utiliser la fonction fft pour produire le vecteur $\underline{\widetilde{f}}_B$ de \underline{f}_B .
- 3. Trouver le vecteur $\underline{\widetilde{f}}_X = \mathcal{P}_M(\underline{\widetilde{f}}_B)$.
- 4. Utiliser la fonction fft avec inverse = TRUE pour produire le vecteur \underline{f}_X de \widetilde{f}_X en conservant la partie réelle avec Re puis divisant par 2^m .

Distribution mélange d'Erlang

12 Comparaison des risques et ordres stochastiques

13 Distributions multivariées et agrégation des risques

Contexte

Il est devenu crucial de tenir compte de la dépendance dans les modélisations d'un portefeuille de risques.

- > Il existe pour chaque loi paramétrique (discrète ou continue) plusieurs extensions multivariées.
- > Des lois multivariées peuvent être créées en se basant sur la théorie des copules.
- > Il existe des différentes approches pour construire des modèles multivariés de risque :
 - modèles avec chocs communs,
 - modèles avec mélange commun,
 - etc.

Classes de Fréchet

Soit:

- > Des fonctions de répartition univariées (pas nécessairement identiques) F_1, \ldots, F_n .
- → Le vecteur de v.a. $\underline{X} = (X_1, ..., X_n)$ dont la fonction de répartition est $F_{\underline{X}}$.

\square Classe de Fréchet $\mathcal{CF}(F_1,\ldots,F_n)$

Ensemble de toutes les fonctions de répartition multivariées $F_{\underline{X}}$ ayant pour marginales F_1, \ldots, F_n .

✓ Théorème 13.2

Soit:

- $W(x_1,...,x_n) = \max(\sum_{i=1}^n F_i(x_i) (n-1);0).$
 - Ceci correspond à la borne inférieure de Fréchet et est une fonction de répartition si n = 2.
- $M(x_1,\ldots,x_n) = \min(F_1(x_1);\ldots;F_n(x_n)).$
 - Ceci correspond à la borne supérieure de Fréchet et est une fonction de répartition.

$$F_{\underline{X}} \in \mathcal{CF}(F_1, \dots, F_n).$$
Alors
$$W(x_1, \dots, x_n) \leq F_{\underline{X}}(x_1, \dots, x_n) \leq M(x_1, \dots, x_n)$$

$$(x_1, \dots, x_n) \in \mathbb{R}^n.$$

Notions de dépendance

L'indépendance

La notion de dépendance avec laquelle nous sommes familiers est l'indépendance.

Pour
$$(x_1, x_2, ..., x_n) \in \mathbb{R}^n$$
,
 $F_{X_1, X_2, ..., X_n}(x_1, x_2, ..., x_n) = F_{X_1}(x_1) \times \cdots \times F_{X_n}(x_n)$

Comonotonicité

La comonotonicité est un cas particulier de relation de dépendance. Elle correspond à la relation de dépendance positive parfaite.

Comonotonicité

Le vecteur de v.a. $\underline{X} = (X_1, X_2, ..., X_n)$ est comonotonique ssi il existe une v.a. Z et des fonctions non décroissantes $\phi_1, \phi_2, ..., \phi_n$ telles que :

$$\underline{X} = (X_1, X_2, \dots, X_n) \stackrel{d}{=} \phi_1(Z), \phi_2(Z), \dots, \phi_n(Z)$$

- > C'est à dire, le vecteur est comonotonique ssi ses composantes sont comonotones.
- > Les composante sont comonotones ssi la fonction de répartition conjointe du vecteur est la borne supérieure de Fréchet *M*.

Simulation des réalisations d'un vecteur de v.a. comonotone

Soit le vecteur de v.a. comonotones $\underline{X} = (X_1, X_2, \dots, X_n)$.

- 1. On simule une réalisation $U^{(j)}$ d'une loi U(0,1).
- 2. On calcule le vecteur de réalisations $X_1^{(j)} = F_{X_1}^{-1}(U^{(j)}), \dots, X_n^{(j)} = F_{X_n}^{-1}(U^{(j)}).$

Soit un vecteur de v.a. comonotones $\underline{X} = (X_1, X_2, ..., X_n)$ et $S = \sum_{i=1}^n X_i$. Alors, $S = \sum_{i=1}^n F_{X_i}^{-1}(U) = \phi(U)$.

$$VaR_{\kappa}(S) = \sum_{i=1}^{n} VaR_{\kappa}(X_i)$$

$$TVaR_{\kappa}(S) = \sum_{i=1}^{n} TVaR_{\kappa}(X_i)$$

Et

$$E[S \times \mathbf{1}_{\{S > d\}}] = \sum_{i=1}^{n} \int_{\phi^{-1}(d)}^{1} F_{X_{i}}^{-1}(u) du$$

Antimonotonicité

L'antimonotonicité correspond à la relation de dépendance **négative** parfaite définie pour des paires de v.a.

Antimonotonicité

Les composantes du couple de v.a. $\underline{X}=(X_1,X_2)$ sont antimonotoniques ssi il existe une v.a. Z, une fonctions croissante ϕ_1 et une fonction décroissantes ϕ_2 telles que :

$$(X_1, X_2) \stackrel{d}{=} (\phi_1(Z), \phi_2(Z))$$

> Donc, si la fonction de répartition conjointe est la borne inférieure de Fréchet F_{X_1,X_2}^- .

Simulation des réalisations d'un couple de v.a. antimonotones

Soit le couple de v.a. antimonotones (X_1, X_2) .

- 1. On simule une réalisation $U^{(j)}$ d'une loi U(0,1).
- 2. On calcule le vecteur de réalisations $X_1^{(j)} = F_{X_1}^{-1}(U^{(j)}), X_2^{(j)} = F_{X_2}^{-1}(1 U^{(j)}).$

Notation

Notation

$$(X_1^+, X_2^+) \ \, \text{Couple} \qquad \text{de} \qquad \text{v.a.} \qquad \text{comonotones} \qquad \text{avec} \\ F_{X_1^+, X_2^+}(x_1, x_2) = M(x_1, x_2) = \min \left(F_1(x_1); F_2(x_2) \right) \, . \\ (X_1^-, X_2^-) \ \, \text{Couple} \qquad \text{de} \qquad \text{v.a.} \qquad \text{antimonotones} \qquad \text{avec} \\ F_{X_1^-, X_2^-}(x_1, x_2) = W(x_1, x_2) = \max \left(F_1(x_1) + F_2(x_2) - 1; 0 \right) \, . \\ (X_1^\perp, X_2^\perp) \ \, \text{Couple} \qquad \text{de} \qquad \text{v.a.} \qquad \text{indépendantes} \qquad \text{avec} \\ F_{X_1^\perp, X_2^\perp}(x_1, x_2) = W(x_1, x_2) = F_1(x_1) \times F_2(x_2) \, . \\ \end{array}$$

Notation

$$\Delta_{a_i,b_i} F_{\underline{X}}(\underline{x}) \ F_{\underline{X}}(x_1,\ldots,b_i,\ldots,x_n) - F_{\underline{X}}(x_1,\ldots,a_i,\ldots,x_n).$$
> Pour $n=2$, $\Pr(\underline{a} < X \leq b) = \Delta_{a_1,b_1} \Delta_{a_2,b_2} F_{\underline{X}}(\underline{x}) = F_{\underline{X}}(b_1,b_2) - F_{\underline{X}}(a_1,b_2) - F_{\underline{X}}(b_1,a_2) + F_{\underline{X}}(a_1,a_2).$

Loi multivariées

Loi de Poisson bivariée de Teicher

Soit:

- > Le couple de v.a. (M_1, M_2) où $M_i \sim pois(\lambda_i)$ pour i = 1, 2.
- > Les v.a. indépendantes K_0 , K_1 , K_2 avec $K_i \sim \text{Pois}(\alpha_i)$ pour i = 0, 1, 2 et $\alpha_i = \lambda_i \alpha_0$ pour i = 1, 2 où $0 \le \alpha_0 \le \min(\lambda_1, \lambda_2)$.

On définit $M_i = K_i + K_0$ pour i = 1, 2.

- > K_i représente la fréquence d'un « choc » spécifique à la i^e ligne d'affaires pour i = 1, 2.
- > *K*₀ représente la fréquence d'un « choc » commun aux deux lignes d'affaires.

Donc, $(M_1, M_2) \sim \text{PBivTeicher}(\lambda_1, \lambda_2, \alpha_0)$.

Lois composées multivariées

Covariance totale

$$Cov(X_1, X_2) = E_{M_1, M_2} [Cov(X_1, X_2 | M_1, M_2)] + Cov_{M_1, M_2} (E [X_1 | M_1, M_2] E [X_2 | M_1, M_2])$$

Loi Poisson composée

Soit:

- > Les v.a. indépendantes $K_0, K_1, ..., K_n$ avec :
 - $K_0 \sim \text{Pois}(\alpha_0)$ pour $0 \le \alpha_0 \le \min(\lambda_1; \dots; \lambda_n)$,
 - $K_i \sim \text{Pois}(\alpha_i = \lambda_i \alpha_0)$ pour i = 1, 2, ..., n.
- > Le vecteur de v.a. de fréquence $(M_1, ..., M_n)$ obéit à une loi de Poisson multivariée de Teicher (avec choc commun).
 - Les composantes du vecteur sont définies par $M_i = K_i + K_0$.
 - Alors, $M_i \sim \text{Pois}(\lambda_i)$.
- > Le vecteur de v.a. $(X_1, ..., X_n)$ obéit à une loi de Poisson composée multivariée.

Alors, $S = \sum_{i=1}^{n} X_i \sim \operatorname{PComp}(\lambda_S; F_C)$ où:

- $\lambda_S = \sum_{i=1}^n \lambda_i (n-1)\alpha_0.$
- $F_{C}(x) = \sum_{i=1}^{n} \left\{ \frac{\lambda_{i} \alpha_{0}}{\lambda_{S}} F_{B_{i}}(x) \right\} + \frac{\alpha_{0}}{\lambda_{S}} F_{B_{1} + \dots + B_{n}}(x) .$

14 Théorie des copules

Famille de copules archimédiennes

Une copule C est dite \acute{n} **archimédienne** \dot{z} si elle s'écrit sous la forme $C(u_1,\ldots,u_n)=\psi\left(\psi^{-1}(u_1)+\cdots+\psi^{-1}(u_n)\right)$.

La fonction ψ est appelé \acute{n} *générateur* \dot{z} et satisfait aux propriétés suivantes :

- 1 $\psi: [0, \infty) \to [0, 1]$ avec $\psi(0) = 1$ et $\lim_{x \to \infty} \psi(x) = 0$;
- 2) ψ est une fonction continue;
- Φ est une fonction strictement décroissante sur Φ, Φ);
- **4** ψ^{-1} est la fonction inverse tel que $\psi^{-1} = \inf\{u, \psi(u) \le x\}$.

■ Copule de Clayton

Pour
$$i = 1, 2, u \in [0, 1]$$
 et $\alpha > 0$:

$$C_{\alpha}(u_1, u_2) = (u_1^{-\alpha} + u_2^{-\alpha} - 1)^{-1/\alpha}$$

$$c_{\alpha}(u_1, u_2) = \frac{1 + \alpha}{(u_1 u_2)^{\alpha + 1}} (u_1^{-\alpha} + u_2^{-\alpha} - 1)^{-2 - 1/\alpha}$$

≡ Copule de Gumbel

Pour
$$i = 1, 2, u \in [0, 1]$$
 et $\alpha \ge 1$:
 $C_{\alpha}(u_1, u_2) = \exp\left\{-\left(\left[-\ln(u_1)\right]^{\alpha} + \left[-\ln(u_2)\right]^{\alpha}\right)^{1/\alpha}\right\}$

Troisième partie

Autres

15 Terminologie

 $\arg\max$ Si on pose que $\hat{\theta}=\arg\max L(\theta;X)$ on dit que la valeur maximale de $L(\theta;X)$ est au point $\hat{\theta}$.

Paramètre

de forme Affecte la forme générale de la distribution;

- > « shape parameter »;
- > Il est important de saisir que le paramètre de forme n'a aucune incidence sur l'emplacement de la densité (paramètre de l'emplacement) ni sur l'échelle de la densité (paramètre d'échelle);
- > Par exemple, la distribution Gamma a un paramètre de forme qui impact comment qu'elle est représentée;
- > Par exemple, la distribution exponentielle n'a pas de paramètre de forme et bien que l'échelle de la distribution peut être modifiée, la forme générale est constante.

d'échelle Sert à déterminer la forme et l'emplacement de la distribution en étirant ou compressant la densité;

- > « scale parameter »;
- > Le plus gros le paramètre d'échelle, le plus rependue la distribution;
- > On peut voir ceci visuellement où avec un paramètre d'échelle de 1, la distribution est inchangée :

de fréquence L'interprétation dépend du contexte.

- > « rate parameter » ;
- > Dans le cas d'un processus de Poisson, le paramètre de fréquence décrit le taux auquel les événements se produisent;

- > Souvent, il est défini comme le réciproque du paramètre d'échelle pour indiquer le taux de déclin d'une fonction exponentielle;
- > Des valeurs près de 1 impliquent un déclin lent alors que des valeurs près de 0 impliquent un déclin rapide.

d'emplacement Stipule où la densité est située.

- > « location parameter »;
- > Plus précisément, indique où sur l'axe des *x* la distribution est centrée relatif à la distribution normale standard;
- > Une distribution normale standard est centrée à 0 donc un paramètre d'emplacement de 5 implique que la densité est centrée à x = 5.

Notation

S Les coûts d'un portefeuille.

 $\rho(S)$ Une mesure de risque.

16 Preuves

Preuve du théorème de la fonction quantile

$$F_{F_X^{-1}(U)} = \Pr\left(F_X^{-1}(U) \le x\right)$$

$$\stackrel{?}{=} \Pr\left(U \le F_X(x)\right)$$

$$\stackrel{1}{=} F_X(x)$$

- 1. Pour $U \sim Unif(0,1)$, $F_U(u) = \Pr(U \le u) = u$ alors $F_U(F_X(x)) = F_X(x)$.
- 2. On doit prouver que:

$$\left\{ F_X^{-1}(U) \le x \right\} = \left\{ U \le F_X(x) \right\}$$

Cas 1 : X est une variable aléatoire continue

> Alors, l'équivalence est vraie puisque $\{F_X^{-1}(U) \le x\}$ est la solution unique à $\{U \le F_X(x)\}$ par définition.

Cas 2 : X est une variable aléatoire quelconque

- 1. On fixe $x = F_X^{-1}(u) = \inf\{y \in \mathbb{R}; F_X(y) \ge u\}$;
 - → Donc, ce "x" est une valeur parmi les valeurs "y" qui rencontre la condition $F_X(y) \ge u$;
 - > Il s'ensuit que puisque $u \le F_X(y)$ alors $u \le F_X(x)$

$$\left\{F_X^{-1}(U) \le x\right\} \Rightarrow \left\{U \le F_X(x)\right\}$$

- 2. On fixe $u \leq F_X(x)$;
 - > Puisque la fonction quantile est la plus petite valeur de y tel que $u \le F_X(y)$, il s'ensuit que $F_X^{-1}(u) \le x$.

$$\left\{ U \le F_X(x) \right\} \Rightarrow \left\{ F_X^{-1}(U) \le x \right\}$$

Donc:

$$\left\{F_X^{-1}(U) \le x\right\} = \left\{U \le F_X(x)\right\}$$

Preuve de la fonction Stop-Loss comme la survie

1. Premièrement, on développe l'expression :

$$\pi_X(d) = \mathrm{E}[\max(X - d; 0)]$$

$$= \int_{-\infty}^{\infty} \max(x - d; 0) f_X(x) dx$$

$$= \int_{-\infty}^{d} (0) f_X(x) dx + \int_{d}^{\infty} (x - d) f_X(x) dx$$

$$= \int_{d}^{\infty} (x - d) f_X(x) dx \qquad (1)$$

Pour la prochaine étape, nous avons recours au théorème des accroissements finis :

Théorème des accroissements finis

Soit la fonction *f* qui répond aux critères suivants :

- 1. f(x) est continue sur l'intervalle fermé [a, b];
- 2. f(x) est différentiable sur l'intervalle ouvert (a, b).

Alors, il existe un nombre c tel que a < c < b et $f'(c) = \frac{f(b) - f(a)}{b - a}$.

De plus, nous avons recours à l'intégrale de Riemann-Stieltjes :

Intégrale de Riemann-Stieltjes

Sois les fonctions f et g continues sur l'intervalle [a,b].

- > On divise l'ensemble [a, b] en n sous-intervalles $c_i = [x_{i-1}, x_i]$.
- > Les *n* partitions *P* des sous-intervalles sont aux points $P = \{a = x_0 < x_1 < ... < x_n = b\}.$
- > La norme des partitions est la longueur du plus long sous-intervalle $\|P\|=\max_{1\leq i\leq n}\{|x_i-x_{i-1}|\}.$
- → On dénote le i^e point du sous-intervalle c_i par $t_i \in [x_{i-1}, x_i]$.

On obtient donc l'intégrale de Riemann

$$\lim_{\|P\|\to 0} \sum_{i=1}^{n} f(t_i)(x_i - x_{i-1}) = \int_a^b f(x) dx$$

L'intégrale de Riemann-*Stieltjes* généralise l'intégrale de Riemann avec une fonction g comme mesure de distance entre les points x_{i-1} et x_i ; l'intégrale de Riemann-Stieltjes est donc :

$$\lim_{\|P\|\to 0} \sum_{i=1}^n f(t_i)(g(x_{i-1}) - g(x_i)) = \int_a^b f(x) dg(x).$$

2. On réécrit l'intégrale indéfinie avec une limite afin d'obtenir un intervalle 9. Finalement, on réécrit l'intégrale sous la forme d'un intégrale impropre : borné : $\lim_{n \to \infty} \int_{-\bar{\Gamma}(n)}^{c} dx = \int_{-\bar{\Gamma}(n)}^{\infty} dx$

$$\lim_{c \to \infty} \int_{d}^{c} \bar{F}(x) dx = \int_{d}^{\infty} \bar{F}(x) dx$$

- $\int_{d}^{\infty} (x d)f(x)dx = \lim_{c \to \infty} \int_{d}^{c} (x d)f(x)dx$ (2)
- 3. On réécrit l'intégrale sous la forme de l'intégrale de Riemann :

$$\lim_{c \to \infty} \int_{d}^{c} (x - d) f(x) dx = \lim_{c \to \infty} \lim_{\|P\| \to 0} \sum_{i=1}^{n} (t_i - d) f(t_i) (x_i - x_{i-1})$$

$$= \lim_{c \to \infty} \lim_{\|P\| \to 0} \sum_{i=1}^{n} (t_i - d) \frac{\partial F(t_i)}{\partial x} (x_i - x_{i-1})$$
(3)

4. On applique le théorème des accroissements finis :

$$\lim_{c \to \infty} \lim_{\|P\| \to 0} \sum_{i=1}^{n} (t_i - d) \frac{\partial F(t_i)}{\partial x} (x_i - x_{i-1})$$

$$= \lim_{c \to \infty} \lim_{\|P\| \to 0} \sum_{i=1}^{n} (t_i - d) (F(x_i) - F(x_{i-1}))$$
(4)

5. On réécrit **l'intégrale de Riemann-Stieltjes** sous la forme normale :

$$\lim_{c \to \infty} \lim_{\|P\| \to 0} \sum_{i=1}^{n} (t_i - d) (F(x_i) - F(x_{i-1})) = \lim_{c \to \infty} \int_{d}^{c} (x - d) dF(x)$$
$$= \lim_{c \to \infty} - \int_{d}^{c} (x - d) d\bar{F}(x)$$

6. On sépare en 2 intégrales, puis on simplifie avec $\lim_{c\to\infty} \bar{F}(c) = 0$:

$$\lim_{c \to \infty} -\int_{d}^{c} (x - d) d\bar{F}(x) = \lim_{c \to \infty} -\int_{d}^{c} x d\bar{F}(x) + d\int_{d}^{c} d\bar{F}(x)$$

$$= \lim_{c \to \infty} -\int_{d}^{c} x d\bar{F}(x) + d(\bar{F}(c) - \bar{F}(d))$$

$$= \lim_{c \to \infty} -\int_{d}^{c} x d\bar{F}(x) - d\bar{F}(d)$$

7. On applique la substitution ($\int u dv = uv - \int v du$) avec u = x et $dv = d\bar{F}(x)$:

$$\lim_{c \to \infty} - \int_d^c x d\bar{F}(x) - d\bar{F}(d) = \lim_{c \to \infty} - x\bar{F}(x) \bigg|_d^c + \int_d^c (1)\bar{F}(x) - d\bar{F}(d)$$

8. Lorsque $c \to \infty$, $\bar{F}(c)$ tend vers 0 plus rapidement que c tend vers l'infini. On simplifie donc l'expression :

$$\lim_{c \to \infty} -x \bar{F}(x) \Big|_d^c + \int_d^c (1) \bar{F}(x) dx - d\bar{F}(d)$$

$$= d\bar{F}(d) + \lim_{c \to \infty} \int_d^c \bar{F}(x) dx - d\bar{F}(d)$$

$$= \lim_{c \to \infty} \int_d^c \bar{F}(x) dx$$

17 Visualisations

De Pril

Visuel du produit de sommations infinies :

$$\sum_{i=0}^{\infty} \left\{ f_X(i) \cdot t^i \right\} \sum_{j=0}^{\infty} \left\{ j \cdot f_{S_n}(k) \cdot t^j \right\} = \sum_{k=1}^{\infty} \left\{ t^k \cdot \sum_{l=0}^{j-1} \{ (k-l) \cdot f_{S_n}(k-l) \cdot f_X(l) \} \right\}$$

