Learning Continuous Semantic Representations of Symbolic Expressions Symbols to Vectors to Semantics

Miltiadis Allamanis, Pankajan Chanthirasegaran Pushmeet Kohli and **Charles Sutton**

8 August 2017

Companion Site: http://edin.ac/sutton-icml2017

Great for perceptual data

Efficient reasoning

Abstract reasoning — powerful transfer of knowledge

Can vectors help symbols?

Howhishwoothsystebrodioticsmaentjois/estermeentic equivalence) can we compress into continuous vector?

Want similar continuous vectors —> logically equivalent

Potential Uses

Logical expressions

Continuous vectors (semVecs)

$$\begin{array}{ccc} a \lor (b \Longrightarrow c) \\ a \lor \neg b \lor c \end{array}$$

Symbolic reasoning: search pattern recognition

Theorem Proving

[DeepMath: Irving et al, 2016]

[Zaremba et al, 2014]

Program Synthesis

[Gulwani et al, CACM 2015]

Inductive Logic Programming

[Rocktaschel and Riedel, 2016]

[Rocktaschel and Riedel, arXiv 1705.11040 2017]

Transfer Learning

Desiderata

Syntax directed: Semantics is compositional

Not too much: Small syntax change —> big semantics

"man bites dog" problem

Computing semVecs

$$a \lor (b \implies c) \longrightarrow Architecture$$

Training

Partition training expressions into equivalence classes

Use a supervised max-margin loss

Testing

Use a semVec similarity only. Allows zero-shot learning on equiv classes.

$$a \lor (b \Longrightarrow c)$$
 distance yes,
$$a \lor \neg b \lor c \longrightarrow \text{equivalent}$$

Allows zero-shot learning on equivalence classes.

Recursive NN (TreeNN)

Syntax tree

Network architecture

Problem: Representations mostly syntactic. Too much syntax!

EqNet

Start with TreeNNs

Add:

Moar! Layers!

Normalization

Subexpression AE

Layers and Normalization

For one syntactic parent-child

COMBINE
$$(\mathbf{r}_{c_0}, \dots, \mathbf{r}_{c_k}, \tau_p)$$

$$\bar{l}_0 \leftarrow [\mathbf{r}_{c_0}, \dots, \mathbf{r}_{c_k}]$$

$$\bar{l}_1 \leftarrow \sigma (W_{i,\tau_p} \cdot \bar{l}_0)$$

$$\bar{l}_{out} \leftarrow W_{o0,\tau_p} \cdot \bar{l}_0 + W_{o1,\tau_p} \cdot \bar{l}_1$$

$$\mathbf{return} \ \bar{l}_{out} / \|\bar{l}_{out}\|_2$$

Big impact.

(Turns out you need both residual and normalisation together)

SubexprAE: Motivation

Semantic information is bidirectional

Not only do **children** provide info re **parents**

But parents provide info re children

uncle(?B,?A) :- parent(?Z,?A), brother(?Z,?B).

Unification propagates this info automatically

How to map to continuous space?

SubexprAE Motivation

ensure this prediction problem is "easy" semantic classes will be clustered together

Subexpression Autoencoder

For every node in syntax tree, add regularisation

Denoising autoencoder plus bottleneck on (parent, child1, child2) semVecs

Intention is

Bottleneck — Abstraction

Denoising — Reversibility

Evaluation

Dataset	# Vars	# Equiv Classes	# Exprs	Н
SIMPBOOL8	3	120	39,048	5.6
SIMPBOOL 10^S	3	191	26,304	7.2
BOOL5	3	95	1,239	5.6
BOOL8	3	232	257,784	6.2
$\mathtt{Bool}10^S$	10	256	51,299	8.0
SIMPBOOLL5	10	1,342	10,050	9.9
BOOLL5	10	7,312	36,050	11.8
SIMPPOLY5	3	47	237	5.0
SIMPPOLY8	3	104	3,477	5.8
SIMPPOLY 10	3	195	57,909	6.3
ONEV-POLY10	1	83	1,291	5.4
ONEV-POLY13	1	677	107,725	7.1
POLY5	3	150	516	6.7
POLY8	3	1,102	11,451	9.0

Training / Test Split

Evaluation Metric

Precision and recall

Same equivalence class to query Different equivalence class to query

Seen equivalence classes

Equivalent expressions to the queries were in training set

Unseen equivalence classes

Zero shot learning. No training examples of equivalent expressions.

EqNet performance on seen and unseen is similar!

Learned compositionality?

Test on deeper trees than in training

e.g. train depth <= 5 test depth <= 8

Visualizing polynomials

multivariatePolynomial2vec?

Visualizing boolean expression

booleanExpression2vec?

Learning Continuous Semantic Representations of Symbolic Expressions

Miltiadis Allamanis, Pankajan Chanthirasegaran, Pushmeet Kohli and Charles Sutton

http://edin.ac/sutton-icml2017

