6 旧 正数列 $a_0,a_1,a_2,\cdots,a_n,\cdots$ で条件

(*)
$$a_0 = 1$$
 , $a_n - a_{n+1} = a_{n+2}$ $(n = 0, 1, 2, \cdots)$

を満たすものは一組しかないことを,次の順序で証明せよ.

- (i) $a_n = \left(rac{\sqrt{5}-1}{2}
 ight)^n$ は条件 (*) を満たす .
- (ii) 条件 (*) を満たす任意の数列 $\{a'_n\}$ について,数列 $c_n=(-1)^n(a'_n-a_n)$ $(n=0,1,2,\cdots\cdots)$ は $c_n+c_{n+1}=c_{n+2}$ および $|c_n|\geqq (n-1)|c_1|$ を満たす.
- (iii) (ii) の数列 $\{a'_n\}$ が正数列ならば, $a'_n \leqq 1$,かつ, $a'_n = a_n$ でなければならない.