PROGRAM

```
import tensorflow as tf
from tensorflow.keras import layers, models
from tensorflow.keras.datasets import cifar10
from tensorflow.keras.utils import to categorical
from tensorflow.keras.preprocessing.image import
ImageDataGenerator
(train images, train labels), (test images, test labels) =
cifar10.load data()
train images, test images = train images / 255.0, test images
/ 255.0
train labels = to categorical(train labels, 10)
test labels = to categorical(test labels, 10)
datagen = ImageDataGenerator(
    rotation range=15,
    width shift range=0.1,
    height shift range=0.1,
    horizontal flip=True,
datagen.fit(train images)
model = models.Sequential()
model.add(layers.Flatten(input shape=(32, 32, 3)))
model.add(layers.Dense(512, activation='relu'))
model.add(layers.BatchNormalization())
model.add(layers.Dense(256, activation='relu'))
model.add(layers.BatchNormalization())
model.add(layers.Dense(128, activation='relu'))
model.add(layers.BatchNormalization())
model.add(layers.Dense(10, activation='softmax'))
model.compile(optimizer='adam',
              loss='categorical crossentropy',
              metrics=['accuracy'])
history = model.fit(datagen.flow(train images, train labels,
batch size=64), epochs=30,
               validation data=(test images, test labels))
test loss, test acc = model.evaluate(test images, test labels)
print(f'Test accuracy: {test acc * 100:.2f}%')
model.summary()
history.history.keys()
plt.plot(history.history['accuracy'])
plt.plot(history.history['val accuracy'])
plt.plot(history.history['loss'])
```

```
plt.plot(history.history['val loss'])
plt.title('Training loss and Accuracy')
plt.xlabel('no. of epochs')
plt.ylabel('Accuracy/loss')
plt.legend(['accuracy','val accuracy','loss','val loss'])
plt.show()
import random
import numpy as np
n = random.randint(0,9999)
plt.imshow(test images[n])
plt.show()
predictions = model.predict(test images)
predicted label = np.argmax(predictions)
print(f"Predicted Label: {predicted label}")
import matplotlib.pyplot as plt
plt.plot(history.history['accuracy'], label='Training
Accuracy')
plt.plot(history.history['val accuracy'], label='Validation
Accuracy')
plt.xlabel('Epoch')
plt.ylabel('Accuracy')
plt.legend()
plt.show()
```

OUTPUT

Layer (type)	Output	Shape	Param #
flatten_4 (Flatten)	(None,	3072)	0
dense_16 (Dense)	(None,	512)	1573376
<pre>batch_normalization_9 (Bat chNormalization)</pre>	(None,	512)	2048
dense_17 (Dense)	(None,	256)	131328
batch_normalization_10 (BatchNormalization)	(None,	256)	1024
dense_18 (Dense)	(None,	128)	32896
<pre>batch_normalization_11 (Ba tchNormalization)</pre>	(None,	128)	512
dense_19 (Dense)	(None,	10)	1290

Total params: 1742474 (6.65 MB) Trainable params: 1740682 (6.64 MB) Non-trainable params: 1792 (7.00 KB)

