

Outliers

- An outlier is a data point which is significantly different from the remaining data.
- "An outlier is an observation which deviates so much from the other observations as to arouse suspicions that it was generated by a different mechanism." [D. Hawkins. Identification of Outliers, Chapman and Hall, 1980.]

Algorithms susceptible to outliers

What can we do if we find outliers in our variables?

Ways to engineer outliers

Trimming Missing data Discretisation Censoring

- Removing outliers from the data set
- Treat outliers as missing data and perform missing data imputation
- Any technique in section 4
- Put outliers into lower / upper bins
- Any technique in section 8
- Capping
- Top / Bottom coding
- Winsorization

Ways to engineer outliers

Trimming Missing data Discretisation Censoring

- Removing outliers from the data set
- Treat outliers as missing data and perform missing data imputation
- Any technique in section 4
- Put outliers into lower / upper bins
- Any technique in section 8
- Capping
- Top / Bottom coding
- Winsorization

Ways to engineer outliers

Trimming Removing outliers from the data set Treat outliers as missing data and perform missing Missing data data imputation Any technique in section 4 Put outliers into lower / upper bins Discretisation Any technique in section 8 Capping

Top / Bottom coding

Winsorization

Censoring

Trimming: pros and cons

Capping: pros and cons

Extreme Value Analysis

Detecting outliers

- Gaussian distribution (mean and std)
- Inter-quantal range proximity rule
- Quantiles

 ~99% of the observations of a normally distributed variable lie within the mean ± 3 × standard deviations.

Values outside mean ± 3 ×
 standard deviations are considered outliers

• ~99% of the observations of a normally distributed variable lie within the mean \pm 3 × standard deviations.

Values outside mean ± 3 ×
 standard deviations are considered outliers

Skewed distributions

Skewed distribution

- The general approach is to calculate the quantiles, and then the inter-quantile range (IQR), as follows:
- IQR = 75th Quantile 25th Quantile
- Upper limit = 75^{th} Quantile + IQR × 1.5
- Lower limit = 25th Quantile IQR × 1.5

Note, for extreme outliers, multiply the IQR by 3 instead of 1.5

Skewed distributions

- The general approach is to calculate the quantiles, and then the inter-quantile range (IQR), as follows:
- IQR = 75th Quantile 25th Quantile
- Upper limit = 75^{th} Quantile + IQR × 1.5
- Lower limit = 25^{th} Quantile IQR × 1.5

Note, for extreme outliers, multiply the IQR by 3 instead of 1.5

- \sim 95% of the observations above the 5th quantile
- ~95% of the observations below the 95th quantile
- Values above or below the 95th
 or 5th quantile are considered outliers

- ~95% of the observations above the 5th quantile
- ~95% of the observations below the 95th quantile
- Values above or below the 95th
 or 5th quantile are considered outliers

Accompanying Jupyter Notebook

- Accompanying Jupyter
 Notebook
- How to perform outlier engineering:
 - Gaussian approximation
 - IQR
 - Quantiles
 - Pandas and Feature-engine

THANK YOU

www.trainindata.com