CHEMOINFORMATICS: PRECURSORS FOR "AI IN MATERIALS"

Logan Ward Asst. Computational Scientist Argonne National Laboratory

20 January 2022

Historical Perspective

"The application of informatics methods to solve chemical problems" – T. Engel (2003)

"Chemoinformatics" is "information technology" and chemistry

- Chemistry and computing have a 60+ year history
- Ex: Paper on <u>typing notation for chemicals</u> (1952 Wiswesser)
 - "to sort and list such information with standard tabulating machine or with the new IBM scanning machinery"

• "The notation in fact has made possible the establishment of the Willson Toxicity Registry, a new activity to catalogue and correlate mammalian toxicity data"

Modern uses of AI techniques in materials follow trends in "chemoinformatics"

Molecular Descriptors

Discriminative

Line-notations for structure:

• SMILES (ex: "CC=O")

Figures: docs.chemaxon.com

InChI (ex: InChI=1S/C2H4O/c1-2-3/h2H,1H3)

Descriptive

Extremely Well-Studied

Handbook of Molecular Descriptors

Author(s): Prof. Dr. Roberto Todeschini, Dr. Viviana Consonni

First published: 22 September 2000

Print ISBN: 9783527299133 | Online ISBN: 9783527613106 | DOI: 10.1002/9783527613106

Copyright © 2000 WILEY-VCH Verlag GmbH

Book Series: Methods and Principles in Medicinal Chemistry

Free Access

Bibliography (Pages: 524-667)

First Page | PDF | References | Request permissions

Many types of descriptors:

- Constitutional (ex: "how many Ns?")
- 2. Structural (ex: Solvent-Accessible Surface Area)
- g. Quantum-chemical (ex: partial charges)

Good Ref: T. Le et al. Chem. Rev. (2012), 2889

QSAR: "Quantitative Structure-Activity Relationships"

[CONTRIBUTION FROM THE DEPARTMENT OF CHEMISTRY, POMONA COLLEGE, CLAREMONT, CALIFORNIA]

 $\rho - \sigma - \pi$ Analysis. A Method for the Correlation of Biological Activity and Chemical Structure

By Corwin Hansch and Toshio Fujita¹
Receiver August 19, 1963

Using the substituent constant, σ , and a substituent constant, π , defined as $\pi = \log P_{\rm X} - \log P_{\rm H}$ ($P_{\rm H}$ is the partition coefficient of a parent compound and $P_{\rm X}$ that of a derivative), regression analyses have been made of the effect of substituents on the biological activity of benzoic acids on mosquito larvae, phenols on gram-positive and gram-negative bacteria, phenyl ethyl phosphate insecticides on houseflies, thyroxine derivatives on rodents, diethylaminoethyl benzoates on guinea pigs, and carcinogenic compounds on mice.

Early examples of using "data" + "statistics" date to the 1960s!

General ingredients have not changed:

- 1. Trusted chemical data resource
- 2. <u>Informative</u> chemical descriptors
- 3. <u>Appropriate</u> regression algorithm

$$r^{2} \qquad r \qquad s^{12}$$

$$\log \frac{1}{C} = 0.519\pi + 1.540; 0.955 \quad 0.977 \quad 0.130 \quad (13)$$

QSAR is still a tool you need to know

Science has created better descriptors, better supervised learning algorithms, but the basic idea is still the same.

Figure 5. Scaled MLR coefficients of the most relevant descriptors selected from the pool 67 descriptors.

(Shallow) Machine Learning and QSPR

Table 2c. Melting-Point QSPR for Nitrocyanamide Salts

Eq	N	r ²	q ²	F	s ²	Term	Coefficient	t-test	Descriptor
4	7	0.960	0.894	120	3.71	0 1	$-1.12 \times 10^{2} (\pm 1.03 \times 10^{1})$ $-7.11 (\pm 0.649)$		Intercept HOMO _{subst} : Highest occupied molecular orbital located on the substituent.

Source: Trohalaki, Pachter. QSAR & Comb. Sci. (2005)

Sophisticated methods still useful, but don't discount linear regression!

- Small dataset sizes
- Informative descriptors
- Interpretability
- Limited computational costs

Deep Learning is not Cure-All

Table 3: Summary of performances(test subset): conventional methods versus graph-based methods. Graph-based models outperform conventional methods on 11/17 datasets.

Category	Dataset	\mathbf{Metric}	Best performances -	Best performances -
Category	Dataset	Metric	conventional methods	graph-based methods
	QM7	MAE	KRR(CM): 10.22	DTNN: 8.75
Quantum Mechanics	QM7b	MAE	KRR(CM): 1.05	DTNN: 1.77*
	_	E	Multitask: 0.0150	MPNN: 0.0143
For benchmark problems	s of learnir	ng 🛭	Multitask(CM): 4.35	DTNN: 2.35
fue ne ne ele culeu e	امدم	E	XGBoost: 0.99	MPNN: 0.58
from molecular c	lala,	Έ	XGBoost: 1.74	MPNN: 1.15
conventional ML better f	or 6117 ca	E E	XGBoost: 0.799	GC: 0.655
conventional ML better i	OI O/1/ Cas	-PRC	Logreg: 0.129	GC: 0.136
	MUV	AUC-PRC	Multitask: 0.184	Weave: 0.109
Biophysics	HIV	AUC-ROC	KernelSVM: 0.792	GC: 0.763
	BACE	AUC-ROC	RF: 0.867	Weave: 0.806
	PDBbind(full)	RMSE	RF(grid): 1.25	GC: 1.44
	BBBP	AUC-ROC	KernelSVM: 0.729	GC: 0.690
	Tox21	AUC-ROC	KernelSVM: 0.822	GC: 0.829
Physiology	ToxCast	AUC-ROC	Multitask: 0.702	Weave: 0.742
	SIDER	AUC-ROC	RF: 0.684	GC: 0.638
	ClinTox	AUC-ROC	Bypass: 0.827	Weave: 0.832

^{*} As discussed in section 4.4, DTNN outperforms KRR(CM) on 14/16 tasks in QM7b while the mean-MAE is skewed due to different magnitudes of labels.

Ref: Wu et al. Chem Sci. (2017) 10.1039/C7SC02664A

An Example: Computational Toxicology

https://ntp.niehs.nih.gov/whatwestudy/niceatm/comptox/ct-opera/opera.html

Home » What We Study » NICEATM: Alternative Methods » Computational Toxicology » OPERA

Computational Toxicology

Adverse Outcome Pathways

Computational Models of Chemical Activity

ICE: Integrated Chemical Environment

In Vitro to In Vivo Extrapolation

Integrated Approaches to Testing and Assessment

OPERA

OPERA

Open Structure-activity/property Relationship App

Quantitative structure–activity/property relationship (QSAR/QSPR) models provide predictions of chemical activity that can augment non-animal approaches for predicting toxicity. However, the performance of QSAR models highly depends on the quality of the data and modeling methodologies used.

To provide robust QSAR/QSPR models for chemical properties of environmental interest that can be used for regulatory purposes, <u>EPA NCCT</u> created the Open Structure-activity/property Relationship App (OPERA) (<u>Mansouri et al. 2018</u> ②). OPERA is a free and open-source/open-data suite of QSAR models providing predictions for physicochemical properties, environmental fate parameters, and toxicity endpoints. All OPERA models were built on curated data and QSAR-ready chemical structures standardized using an open-source workflow (<u>Mansouri et al. 2016</u> ☑).

OPERA is an ongoing collaboration between NICEATM and EPA. Recent additions to OPERA include predictions for:

QSAR is not going away any time soon.

PRACTICAL CONSIDERATIONS: WHAT TOOLS ARE OUT THERE?

Chemical Databases Abound

https://www.ebi.ac.uk/chembl/

http://www.chemspider.com/

https://www.ul.com/resources/apps/ul-cheminformatics-tool-kit

Toolkits for Building QSAR Models

https://cdk.github.io/

http://openbabel.org/wiki/Main_Page

https://rdkit.org

https://chm.kode-solutions.net/

Final Note: Chemoinformatics is a Mature Field

There is still a lot materials informatics can learn from

- 60+ years of history
- <u>Textbooks</u>, <u>more textbooks</u>, codes and review papers
- Decades of "lessons learned"

Table 3. Common QSPR modelling pitfalls and methods of avoiding them

pitfall	recommendation to minimize or avoid
use of uninformative descriptors	use descriptors that are related to the molecular structure where possible, use virtual
	screening methods when complex descriptors are necessary, and develop new materials descriptors
overfitting, and grossly	reduce size of descriptor pool before building models, ²⁴ monitor number of fitted parameters
underdetermined systems	(descriptor weights or neural network weights) to ensure they are substantially less than the
	number of experiments, and check that training and test set statistics are similar
descriptor selection and chance correlations	use Topliss criteria ^{22,23} to estimate probability of chance correlations and descriptor
	scrambling; avoid methods where repeated sampling of a larger pool of descriptors is done
	to obtain the optimum subset of descriptors; and use sparse, context-dependent feature-selection methods 17,18
modeling complex, nonlinear	avoid overly complex nonlinear models, compare nonlinear model statistics with linear
structure-property relationships	models, and use regularizing methods that attempt to optimize model complexity 16,17
validating QSPR models	synthesize new materials that models predict to be superior and test if feasible, use independent
	test sets to assess model predictivity otherwise, and employ cross-validation methods with caution 27,28
domain of applicability of models	calculate the range of all descriptors used to develop the model, ²⁹⁻³² avoid extrapolations
	using descriptor space distant from that used in model, and use probabilistic modeling
	methods (e.g., Bayesian regularization 16) that allow estimation of likely prediction error
incorrect handling of outliers	avoid removing outliers wherever possible, check whether outlier lies well within domain
	before removing it, remove outliers sparingly and describe why they were omitted, and retest
	properties for outliers to eliminate measurement of transcription errors

Good Refs: T. Le et al. Chem. Rev. (2012), 2889

Handbook of Molecular Descriptors

Author(s): Prof. Dr. Roberto Todeschini, Dr. Viviana Consonni

First published: 22 September 2000

Print ISBN: 9783527299133 | Online ISBN: 9783527613106 | DOI: 10.1002/9783527

Copyright © 2000 WILEY-VCH Verlag GmbH

Book Series: Methods and Principles in Medicinal Chemistry

Practical Exercises

First for the course!

WardLT/applied-ai-for-materials:molecular-property-prediction/chemoinformatics

Learn how to:

- Manipulate chemical data with RDKit and Pandas
- Train conventional machine learning models with descriptors and fingerprints