LA FONCTION LOGARITHME DÉCIMAL E03

EXERCICE N°1

(Le corrigé)

Résoudre dans \mathbb{R} les équations suivantes :

 $2^{x} = 5$ 1)

2) $3^x = -10$

 $5^{x+1} = 25$ 3)

4)

 $\log(2x+1) = 1$ 5) $\log(3x-1) = 0$

$$2^{x} = 5 \Leftrightarrow \log(2^{x}) = \log(5) \Leftrightarrow x \log(2) = \log(5) \Leftrightarrow x = \frac{\log(5)}{\log(2)}$$

Ainsi, cette équation admet une unique solution : $\frac{\log(5)}{\log(5)}$

$$3^x = -10$$

Cette équation n'admet | aucune solution | (car pour tout réel x, $3^x > 0$)

$$5^{x+1} = 25 \Leftrightarrow \log(5^{x+1}) = \log(25)$$

$$\Leftrightarrow (x+1)\log(5) = \log(5^{2})$$

$$\Leftrightarrow x+1 = \frac{2\log(5)}{\log(5)}$$

$$\Leftrightarrow x = 2-1$$

$$\Leftrightarrow x = 1$$

« Je remarque que $25=5^2$ et j'en déduis que x=1 » me conviendrait très bien aussi sur une

Ainsi, cette équation admet une unique solution : 1

4)

Quand on resoud une équation (ou une inéquation) on le fait quand cela a du sens.

Par exemple, ici $\log(2x+1)$ n'est défini que si $2x+1 > 0 \Leftrightarrow x > -0.5$.

Il faudrait, en toute rigueur, se placer dans]0,5; $+\infty[$ pour résoudre l'équation.

$$\log(2x+1) = 1 \Leftrightarrow 10^{\log(2x+1)} = 10^1 \Leftrightarrow \underbrace{2x+1}_{pardéfinition} \Leftrightarrow 2x = 9 \Leftrightarrow x = 4,5$$

Ainsi, cette équation admet une unique solution : 4,5

Ouf $4.5 \in [0.5 ; +\infty[$

5)

De même ici : On pense à déterminer le *domaine de validité* de l'équation.

Il faut et il suffit que $3x-1 > 0 \Leftrightarrow x > \frac{1}{3}$. On va donc se placer dans $\left|\frac{1}{3}; +\infty\right|$ pour résoudre cette équation.

$$\log(3x-1) = 0 \Leftrightarrow 10^{\log(3x-1)} = 10^0 \Leftrightarrow 3x-1 = 1 \Leftrightarrow 3x = 2 \Leftrightarrow x = \frac{2}{3}$$

Ainsi, cette équation admet une unique solution : $\frac{2}{3}$

Ouf $\frac{2}{3} \in \left| \frac{1}{3} ; +\infty \right|$.