

Introduction to Conagra Brand:

Conagra Brands, Inc. (formerly ConAgra Foods) is an American consumer packaged goods holding company headquartered in Chicago, Illinois. Conagra makes and sells products under various brand names that are available in supermarkets, restaurants, and food service establishments. Based on its 2021 revenue, the company ranked 331st on the 2022 Fortune 500.

BRANDS:

Conagra's iconic brands, such as Birds Eye, Duncan Hines, Healthy Choice, Marie Callender's, Reddi-wip, and Slim Jim, as well as emerging brands, including Angie's BOOMCHICKAPOP, Duke's, Earth Balance, Gardein, and Frontera, offer choices for every occasion.

Table Spread:

Margarine/Table spread is a blend of oils that are mostly unsaturated fat. Butter is made from cream or milk. The type of fat found in animal products, such as cream, is mostly saturated fat. People look for a spread that has the least amount of saturated fat. Margarine often tops butter when it comes to heart health and is slowly replacing it.

Conagra offers table spreads under various brands such as Blue Bonnet, Smart Balance, Earth Balance, Parkay.

Objective: To increase the sales of conagra table spreads.

The market size of table spread in the USA is 29.9 billion USD as per 2023 and theoverall market value is expected to reach 53.2 billion USD by 2033.

The market size is near to doubling in the next ten years. So there is a high scope to capture the target customers. Some of the competitors of Conagra table spreads are Private label, Land O Lakes, Country Crock, Kerry gold, ICBINB, Challenge. We can also target the consumers of Cooking Spray and Cooking & Salad Oils to make conversions to table spreads.

Below are few observations regarding the sales of Conagra products:

- CAG's market share when compared to its competitors is 5.23 %(within food processing business)
- CAG yearly revenue as per 2022 is 12,575.90 million dollars
- The quarter growth rate of Conagra has always been positive
- The growth rate of customers has been positive

So we can conclude that though there is an increasing trend in sales, we need to accelerate the rate.

Conclusions inferred through Market Research:

- Land O Lakes, which has the highest sales is a community focussed company which focuses on only one product butter.
- More products have been given as a trial and tester to the restaurants and stores which will lead to more sales in the long term which can be a strategy which can be implemented for promotion of Conagra products.
- The competitors are accessible and available in all online and offline stores.
- There are few products of Conagra like west coast spray not showing any info on google which indicates that it needs to be advertised and made easily available.
- Most of the competitor brands have focussed on one single product by investing more time and effort in making the product better.
- Conagra has many similar products which are difficult to differentiate like 4-5 spray products, butter products and margarine and plant based table spreads.

 Most of the customers when buying the product go by online reviews and it isobserved the competitor products have better reviews than conagra products.

Analysis:

Attribute Analysis:

1. Region wise Analysis: In most of the regions, we can observe that promotional sales tend to favor table spread over cooking oil and spray. Additionally, we can see that the south central and south east regions have lower unit sales with merchandising for table spreads. Additionally, we can see that the southeast region has the highest promotional sales of cooking spray. Therefore, in the southeast, we can try converting the spray sales to table spread.

		Tablespread		
Geography_1	Unit Sales Any Merch	Unit Sales No Merch	Total Unit sales	Mech%
California	158,962,500	366,876,700	525,839,100	30%
Great Lakes	386,093,500	646,442,600	1,032,536,000	37%
Mid-South	236,098,300	644,788,200	880,886,500	27%
Northeast	435,610,300	841,586,600	1,277,197,000	34%
Plains	177,429,300	312,801,100	490,230,400	36%
South Central	148,048,500	568,659,900	716,708,400	21%
Southeast	255,729,500	755,348,600	1,011,078,000	25%
West	288,197,000	435,226,100	723,423,100	40%

	Co	oking and salad oil		
Geography_1	Unit Sales Any Merch	Unit Sales No Merch	Total Unit sales	Mech%
California	72,634,430	134,363,600	203,284,300	36%
Great Lakes	54,704,560	185,356,000	238,356,300	23%
Mid-South	59,015,000	239,048,800	297,125,700	20%
Northeast	74,654,920	222,140,700	294,201,300	25%
Plains	22,187,850	95,427,320	116,821,000	19%
South Central	75,798,580	259,936,000	333,595,000	23%
Southeast	107,776,900	300,954,900	407,207,300	26%
West	39,781,630	143,524,900	182,458,400	22%

		Cooking spray		
Geography_1	Unit Sales Any Merch	Unit Sales No Merch	Total Unit sales	Mech%
California	9,002,911	37,911,800	46,361,970	19%
Great Lakes	17,284,400	74,726,370	91,595,420	19%
Mid-South	15,870,490	88,685,430	103,922,200	15%
Northeast	19,969,040	97,550,770	116,805,000	17%
Plains	7,773,952	40,923,280	48,347,060	16%
South Central	10,129,740	74,267,710	83,844,050	12%
Southeast	29,390,560	94,285,170	123,161,600	24%
West	11,776,100	55,137,090	66,561,650	18%

2. Seasonal affects Analysis: In general, the sales of butter and margarine may be influenced by seasonal factors such as holidays and weather patterns.

For instance, the demand for butter and margarine may increase during the holiday season like Christmas or winter break when people tend to do more baking and cooking. Additionally, butter sales may increase during colder months when people are more likely to bake pies and pastries, while margarine sales may increase during warmer months when people are more likely to use it as a spread.

However, it is worth nothing that there has been a shift in consumer preferences towards healthier alternatives to butter and margarine, such as cooking oils and sprays, which may have an impact on seasonal sales trends. Overall, the seasonal effect on the sales of Conagra products like butter and margarine would depend on various factors such as the timing of the seasons, consumer preferences, and marketing strategies, price and availability.

We can also above trends from our data as below:

	Tablespread						
Quarter	Unit Sales Any Merch	Unit Sales No Merch	Total Unit sales	% share of quarter			
Q1	897,375,300	2,266,160,000	2,977,527,000	24%			
Q2	887,848,700	2,209,936,000	2,881,574,000	23%			
Q3	761,064,000	2,248,059,000	2,809,515,000	23%			
Q4	1,632,728,000	2,431,097,000	3,797,485,000	30%			

Cooking oil					
Quarter	Unit Sales Any Merch	Unit Sales No Merch	Total Unit sales	% share of quarter	
Q1	116,732,300	399,566,800	512,644,800	25%	
Q2	105,119,300	402,818,200	504,042,500	24%	

Q3	102,603,700	405,697,600	504,915,800	24%
Q4	182,098,600	372,669,800	551,446,400	27%

	Cooking spray						
Quarter	Unit Sales Any Merch	Unit Sales No Merch	Total Unit sales	% share of quarter			
Q1	25,611,150	143,378,000	167,829,900	25%			
Q2	28,592,830	142,440,400	170,058,700	25%			
Q3	20,452,550	143,000,200	162,507,000	24%			
Q4	46,540,670	134,669,000	180,203,400	26%			

Also we can observe that though Q4 quarter has the highest share for all the three products, the difference is high for table spread. So we can try targeting the customers more in the other quarters for possible conversions from cooking spray and oil to tablespread.

3. Buyer Class distribution: Segregating the Conagra vs Non-Conagra products as an average, we found below observations basis the class distribution of consumers

Class Distribution	Conagra	Non-Conagra
Lower (<\$30k 1P + \$5k per add`l Person)	27.20	27.49
Middle (\$30-70k 1P + \$5k per add`l Person)	39.62	39.16
Upper (>=\$70k 1P + \$30k all others)	33.17	37.00

we can observe there is variation in conagra and non-conagra brands for the upper income per capita people. So assuming the upper class looks for premium products, we can try working and promoting the premium products of our brand.

Price Analysis:

4. Price range analysis: One major finding is that the average price per unit is rising as the items are grouped into clusters based on market share, with cluster 1 housing the products with the majority market share. We can therefore conclude that the best sales are for products with moderate price ranges.

cluster	Average price per unit
Cluster 1	3.59
Cluster 2	3.91
Cluster 3	4.65
Cluster 4	5.37
Cluster 5	6.50
Conagra	3.55

5. Category wise analysis: We have checked the correlation between the features to avoid the multi-collinearity problem.

We can see which pairs of variables are highly correlated or no correlation, and which ones have lower or no connections by displaying the correlation matrix. With the aid of this knowledge, we can better comprehend how the various variables in the data connect to one another and spot any multicollinearity problems that might be present. Multicollinearity happens when two or more predictor variables have a strong correlation with one another.

From the above plots, we can observe that incremental units and ACV distribution are correlated. That needs to be taken care of when training the model.

6. Regression Analysis: Upon training a linear regression model on table spread data, we have obtained the below results with an adjusted R-squared value of 35.6%

	coef	std err	t	P> t
Intercept	6.0869	0.094	64.991	0.000
CAGCountValue	-0.0063	0.003	-1.960	0.050
CAGOuncesValue	0.0077	0.002	3.969	0.000
log_price	-0.3991	0.070	-5.675	0.000
A CVWeighted Distribution No Merch	0.1354	0.005	27.839	0.000
${\bf ACVWeighted Distribution Any Merch}$	0.3096	0.021	14.440	0.000
California	0.6014	0.109	5.521	0.000
GreatLakes	0.8172	0.091	8.976	0.000
Mid_South	1.0667	0.091	11.715	0.000
Northeast	1.2558	0.085	14.820	0.000
Plains	0.3276	0.101	3.245	0.001
SouthCentral	0.6321	0.104	6.096	0.000
Southeast	0.8452	0.098	8.638	0.000
West	0.5408	0.101	5.368	0.000
ALLOTHERFORM	1.4644	0.101	14.554	0.000
SPRAY_SQUEEZE	0.3825	0.276	1.386	0.166
STICKS	2.6406	0.089	29.529	0.000
TUBS	1.5994	0.088	18.226	0.000

We can make below conclusions from our model:

- There is an inverse effect with count in each pack for sales.
- With 1% increase in price, sales are decreasing by 0.39%
- Northeast has the highest contribution to total sales in comparison to plains which is the lowest. So we can try increasing the promotions in plains and west regions to increase the overall sales for table spread.
- Sticks are the most popular form of table spread which has highest contribution to sales.

7. Product Attribute Analysis

In this section, we examine the effects of various product features on total sales using metrics like form, tier value, sub-category, count value, and ounces value.

7.1 Trend within the attributes in 2018

Below are the box plots for the attributes in all categories for the year 2018.

Here, the brands are represented by CAG value. Conagra brand sales are shown as 1, while sales of other brands are shown as 0. Sales of competing brands outpace those of Conagra by a wide margin. Mainstream, premium, super premium, and value are the four main categories within tier value. Sales for super premium are higher than for other grades.

Sticks, tubs, spray/squeeze, and all other forms make up the four categories of the form. In every category, sticks have the highest sales, while sprays have lower sales. RFG butter mixes, margarine/spreads, and RFG butter are the subcategories. Compared to the other two sub-categories, RFG butter has stronger sales.

We now run a regression model using sales as the dependent variable and CAG as one of the independent variables. As all of the predictor variables in this model have p-values less than 0.05, they are all considered significant. We can see from the results in Figure 7.1.1 in the Appendix that merchandising has a bigger impact on

sales and that Conagra's overall sales are lower than those of its rivals. By setting the CAG value to 1, the output in Figure 7.1.2 excludes all other brands and only displays the findings for the Conagra brands. Here again, we see a tendency that is similar: merchandising has a bigger impact on sales, whereas price has a less impact.

7.2 CAG Count Value

For the purposes of convenience, we have only used the numbers 1, 2, 3, 5, 8, and 12 and ignored counts higher than 16 because they had less observations. For comparison with different count values, we use a 16 CT base. Figure 7.2.1 in the Appendix illustrates how, when all brands are taken into account, 16CT dominates sales across all categories more than other count values. However, we can clearly observe in the regression model in Figure 7.2.2 in the Appendix that for Conagra items, the 8CT generates greater Sales in comparison to other count values.

7.3 CAG Ounces value

In order to determine which group has the highest number of sales, we have divided the ounces into three categories: 1-16, 17-32, and 32-48, while maintaining 48 ounces or more as the baseline for comparison. The data revealed that the products with values between 1 and 16 ounces sold more than those in the other two bins. Figure 7.3.1 in the Appendix depicts the result. Conagra likewise generates greater sales from table spread goods in the 1-16 ounces category than from the 17-32 and the 32-48 ounces categories, as can be shown in Figure 7.3.2 in the Appendix.

7.4 Sub-category

We can see from the regression output in Figure 7.4.1 in the Appendix that RFG butter sells more than other sub-categories. RFG butter blends have been used as a baseline for comparison with other subcategories. According to the regression analysis, the coefficient for the independent variable "RFG BUTTER" appears to be 0 for Conagra goods. Python's calculating methods may have made mistakes as evidenced by the output in Figure 7.4.2 in the appendix.

7.5 CAG Tier Value

We have chosen 'Value', one of the CAG Tier values, as the baseline to compare with the other tier values from the regression model in Figure 7.5.1 in the Appendix. Sales in the 'Value' tier are generally higher than those in the other tiers. When only the statistics for Conagra brands and the tier 'Value' leads in Conagra products are considered, the results have hardly altered. Figure 7.5.2 in the Appendix depicts the result.

7.6 CAG Form Value

'All Other Forms' is used as the baseline in the regression model to compare other CAG form values. Sales of sticks seem to be higher than those of other kinds. In the appendix's Figure 7.6.1, the results are displayed.

7.7 Combining all Attributes

In our next regression model, we included all the attributes in the model to remove bias and estimate the correct effects of all the attributes on sales. We have done this for all the brands together and for Conagra brands only. The coefficients have slightly changed by combining attributes and we see that the same attributes are contributing for the sales of the products as previously seen. The outputs can be seen in Figures 7.7.1 and 7.7.2 in the Appendix.

7.8 Interactions across Attributes

To compare performance across all categories and gain a general understanding of the array of traits that are working better than the others for both Conagra and other brands, we add the interaction terms in the last section of our research. In order to reduce bias and obtain the coefficients that were the closest to the true ones, we first included only the pertinent characteristic to the regression in an effort to see the individual impacts. Then, we added all the interactions for all the relevant attributes. According to the results shown below, Conagra's sales are higher when using 4Ct than when using 16Ct for other labels. At a 5% significance level, Conagra is also doing better in the 17-32 Ounces category, RFG Butter, and the customer tier of "Value."

CAG	8.786c+05	1.14c+04	77.188	0.000	8.560+05	9.01c+05
1	-2.519c+04	7019.341	-3.589	0.000	-3.9c+04	-1.14c+84
2	-2.338c+04	6934.880	-3.371	0.001	-3.7c+04	-9786.108
3	-1.447c+84	8194.152	-1.766	0.077	-3.05c+04	1585.577
4	-3074.9949	6845.369	-0.449	0.653	-1.65c+04	1.03c+04
5	-1.809c+04	8365.216	-2.163	0.031	-3.45c+04	-1694.569
8	-3.983c+84	8056.347	-4.944	0.000	-5.56c+04	-2.4c+84
12	-1.684c+84	8183.574	-1.968	0.050	-3.21c+04	0.191
CAG * 1	2.12c+05	5733.981	36.964	0.000	2.01c+05	2.23c+05
CAG * 2	2.368c+05	5605,467	42.247	0.000	2.260+05	2.48c+05
CAG * 3	-1.099c-09	1.5e-11	-73.389	0.000	-1.13e-09	-1.07c-09
CAG * 4	1.71c+05	7509.643	22.777	0.000	1.560+05	1.86c+05
CAG * 5	7.897c-11	4.47c-12	17.668	0.000	7.02e-11	8.77e-11
CAG * 8	2.588c+05	1.21c+84	21.372	0.000	2.35e+05	2.83c+05
CAG * 12	-1.535e-10	1.39c-11	-11.060	0.000	-1.81c-10	-1.26c-10
1-16	-1.309c+04	2983.856	-4.386	0.000	-1.89c+04	-7238.969
17-32	-1.175c+04	3119.345	-3.765	0.000	-1.79c+04	-5631.429
32-48	-6090.7489	3063.826	-1.988	0.047	-1.21c+04	-85.650
CAG * (1-16)	-1.878c+84	8198.048	-2.291	0.022	-3.48c+04	-2710.282
CAG * (17-32)	4128.4748	1.13c+04	0.364	0.716	-1.81c+04	2.64c+04
CAG * (32-48)	-2.155c+04	9122.656	-2.362	0.018	-3.94c+04	-3671.483
MARGARINE/SPREADS	-5056.1198	1058.923	-4.775	0.000	-7131.608	-2980.632
RFG BUTTER	1.1c+04	1023.758	10.750	0.000	8998.433	1.3c+84
CAG * Margarine	-3.925c+84	5891.640	-6.663	0.000	-5.08c+04	-2.77c+84
CAG * RFG BUTTER	-4.121c-10	5.04e-12	-81.726	0.000	-4.22e-10	-4.02c-10
MAINSTREAM	-2.004c+04	1239.058	-16.176	0.000	-2.25c+04	-1.76c+84
PREMIUM	-3.207c+04	1375.557	-23.317	0.000	-3.48c+04	-2.94c+84
SUPER PREMIUM	-2.982c+84	1407.227	-20.625	0.000	-3.18c+84	-2.63c+84
CAG * MAINSTREAM	-8511.8169	4271.014	-1.993	0.046	-1.69c+84	-140.630
CAG * RFG PREMIUM	-9642.3025	3896.913	-2.474	0.013	-1.73c+04	-2004.353
CAG * SUPER PREMIUM	1.082c-12	1.14e-14	94.637	0.000	1.06c-12	1.1e-12
SPRAY/SQUEEZE	-3.314c+04	3127.648	-10.597	0.000	-3.93c+04	-2.7c+84
STICKS	-3233.2081	1551.870	-2.083	0.037	-6274.873	-191.543
TUBS	-2386.0335	782.853	-3.048	0.002	-3920.425	-851.642
CAG * SPRAY/SQUEEZE	-1.011c+06	1.11c+84	-91.472	0.000	-1.03c+06	-9.90+05
CAG * STICKS	-1.017c+06	1.25c+04	-81.284	0.000	-1.04c+06	-9.93c+05
CAG * TUBS	-1.049c+06	9580.722	-109.510	0.000	-1.07c+06	-1.03c+06

8. Year wise Regression Analysis:

Below we run regression model for **impact of price** on brands quarterly for each year from 2018-2022.

Year 2018

OLS Regression Results						
Dep. Variable:	у	R-square			0.272	
Model:	OLS	Adj. R-s	quared:	0.268		
Method:	Least Squares	F-statis	tic:		66.91	
Date:	Thu, 27 Apr 2023	Prob (F-	statistic):	2.	.27e-206	
Time:	19:05:07	Log-Like	lihood:		-6414.7	
No. Observations:	3240	AIC:		1.	.287e+04	
Df Residuals:	3221	BIC:		1.	.298e+04	
Df Model:	18					
Covariance Type:	nonrobust					
	coef	std err	t	P> t	[0.025	0.975
const	14.1675	0.291	48.648	0.000	13.596	14.73
Price per Unit	-3.2899	0.254	-12.937	0.000	-3.789	-2.79
Price ^ 2	5.8092	0.434	13.394	0.000	4.959	6.66
Quarter1	0.0683	0.089	0.764	0.445	-0.107	0.24
Quarter2	0.0423	0.088	0.482	0.630	-0.130	0.21
Quarter3	-0.0244	0.086	-0.284	0.777	-0.193	0.14
EARTH BALANCE	-7.8372	0.595	-13.167	0.000	-9.004	-6.67
FLEISCHMANNS	0.8894	1.269	0.701	0.484	-1.599	3.37
MOVE OVER BUTTER	0.4518	33.099	0.014	0.989	-64.446	65.35
NUCOA	-3.9545	6.773	-0.584	0.559	-17.234	9.32
PARKAY	-1.8618	0.408	-4.558	0.000	-2.663	-1.06
SMART BALANCE	-7.3108	0.455	-16.055	0.000	-8.204	-6.41
SMART BEAT	-0.2884	0.052	-5.576	0.000	-0.390	-0.18
Price * EARTH BALANCE	1.9496	0.192	10.178	0.000	1.574	2.32
Price * FLEISCHMANNS	-1.3818	0.520	-2.656	0.008	-2.402	-0.36
Price * MOVE OVER BUT	TER -0.4360	22.529	-0.019	0.985	-44.609	43.73
Price * NUCOA	0.3484	3.087	0.113	0.910	-5.704	6.40
Price * PARKAY	0.2634	0.163	1.615	0.106	-0.056	0.58
Price * SMART BALANCE	1.8963	0.168	11.313	0.000	1.568	2.22
Price * SMART BEAT	-0.8047	0.144	-5.576	0.000	-1.088	-0.52
 Omnibus:	656.992	Durbin-W			0.369	
Prob(Omnibus):	0.000	Jarque-B	era (JB):	1	1878.990	
Skew:	-1.056	Prob(JB)			0.00	
Kurtosis:	6.076	Cond. No			2.98e+17	

The model's R-squared value is 0.272, which means that the predictor variables in the model can account for around 27.2% of the variation in the natural logarithm of sales. With the number of predictor variables in the model taken into account, the adjusted R-squared value is a little lower at 0.268.

When all other predictor variables are held constant, the brand indicator coefficients show the predicted difference in the natural logarithm of sales between each brand and the reference brand (BLUE BONNET). For instance, the coefficient for EARTH BALANCE is -7.8372, which indicates that EARTH BALANCE's estimated natural logarithm of sales is 7.8372 units lower than that of BLUE BONNET.

We would need to look at the coefficients for the price variables and the terms that interact between price and brand indicators to understand the pricing differences between the brands throughout the quarters and their impact on the dependent variable. Given that the p-values for the price variables and the majority of the interaction factors are more than 0.05, it suggests that the impact of price on the natural logarithm of sales is not significant for the majority of the brands. However, there are a few significant coefficients that indicate that changes in price for these brands may have a significant impact on sales, including the coefficients for Price^2 and PARKAY.

However, a \$1 increase in price is linked to a bigger decline in sales for SMART BALANCE than for other brands, according to the positive and significant coefficient for Price * SMART BALANCE. This indicates that the price difference between SMART BALANCE and the reference brand is wider than we may anticipate, indicating that consumers are less ready to pay more for SMART BALANCE than for other brands. This might be the result of several things, like client brand loyalty or perceived quality.

Year 2019

	OLS Regres	sion Resul	ts			
Dep. Variable:	у	R-square	 d:		0.245	
Model:	OLS	Adj. R-s	Adj. R-squared:		0.241	
Method:	Least Squares	F-statis	tic:		59.21	
Date: Th	nu, 27 Apr 2023	Prob (F-	statistic):	6.	.91e-185	
Time:	19:05:37	Log-Like	lihood:		-6544.6	
No. Observations:	3299	AIC:		1.	.313e+04	
Df Residuals:	3280	BIC:		1.	.324e+04	
Df Model:	18					
Covariance Type:	nonrobust					
	coef	std err	t	P> t	[0.025	0.975]
const	13,4074	0.289	46.391	0.000	12.841	13.974
Price per Unit	-2.7828	0.250	-11.144	0.000	-3.272	-2.29
Price ^ 2	4.6578	0.417	11.168	0.000	3.840	5.476
Quarter1	0.1693	0.088	1.928	0.054	-0.003	0.341
Ouarter2	0.0828	0.087	0.948	0.343	-0.089	0.254
Ouarter3	0.0325	0.088	0.372	0.710	-0.139	0.204
EARTH BALANCE	-6.3160	0.591	-10.679	0.000	-7.476	-5.156
FLEISCHMANNS	-1.8769	1.342	-1.398	0.162	-4.509	0.755
MOVE OVER BUTTER	8.6286	11.398	0.757	0.449	-13.720	30.977
NUCOA	-13.9481	20.316	-0.687	0.492	-53.780	25.884
PARKAY	-1.0566	0.413	-2.557	0.011	-1.867	-0.246
SMART BALANCE	-6.6104	0.462	-14.301	0.000	-7.517	-5.704
SMART BEAT	-0.2413	0.059	-4.057	0.000	-0.358	-0.125
Price * EARTH BALANCE	1.6009	0.190	8.432	0.000	1.229	1.973
Price * FLEISCHMANNS	-0.0967	0.552	-0.175	0.861	-1.179	0.986
Price * MOVE OVER BUTTE	R -5.7606	7.494	-0.769	0.442	-20.454	8.933
Price * NUCOA	4.9470	9.044	0.547	0.584	-12.785	22.679
Price * PARKAY	0.0722	0.164	0.442	0.659	-0.248	0.393
Price * SMART BALANCE	1.7479	0.170	10.269	0.000	1.414	2.082
Price * SMART BEAT	-0.6732	0.166	-4.057	0.000	-0.999	-0.348
Omnibus:	620.541	Durbin-W			0.366	
Prob(Omnibus):	0.000		era (JB):	1	1866.390	
Skew:	-0.966	Prob(JB)			0.00	
Kurtosis:	6.137	Cond. No			2.12e+17	

Price * EARTH BALANCE's coefficient is positive and statistically significant, suggesting that the price difference between EARTH BALANCE and the reference brand (Price * BLUE BONNET) is less substantial than first assumed. This implies that although EARTH BALANCE may be more expensive than competing brands, consumers are still willing to pay the higher price for the product as evidenced by the sales numbers.

However, the coefficient for Price * SMART BALANCE is also significant and positive, suggesting that the price difference between SMART BALANCE and the reference brand (BLUE BONNET) is wider than initially thought. This shows that consumers would view SMART BALANCE as having a worse quality product overall than competing brands and be less ready to pay a higher price for it, which would lead to fewer sales.

Conagra can modify their pricing strategy for various brands based on these findings to better match customer opinions and preferences. For instance, a conagra may think about raising the price further if a brand like EARTH BALANCE is doing well in spite of its higher price to extract more value from the product. Alternatively, a business may think about lowering the price to make it more appealing to price-conscious customers if a brand like SMART BALANCE is experiencing lower sales as a result of its perceived lower quality.

Year 2020

	OLS Regres	ssion Resul	lts			
Dep. Variable:		R-square	:=======: .d.		0.206	
Model:	y OLS				0.200	
Method:	Least Squares		Adj. R-squared: F-statistic:		49.87	
	Thu, 27 Apr 2023		statistic):	4	.34e-149	
Time:	19:06:19	Log-Like		1.	-6681.1	
No. Observations:	3289	AIC:	e11nood:	4	.340e+04	
Df Residuals:	3271	BIC:			.351e+04	
Df Model:	17	BIC:		1.	.351e+04	
Covariance Type:	nonrobust					
Covariance Type:						
	coef	std err	t	P> t	[0.025	0.9751
	соет	sta err	τ	PY[T]	[0.025	0.975]
const	12.3341	0.362	34.096	0.000	11.625	13.043
Price per Unit	-1.6031	0.338	-4.743	0.000	-2.266	-0.940
Price ^ 2	2.5176	0.603	4.177	0.000	1.336	3.699
Ouarter1	0.0372	0.003	0.405	0.685	-0.143	0.217
Ouarter2	0.1762	0.092	1.919	0.055	-0.004	0.356
Quarter3	-0.0453	0.092	-0.495	0.621	-0.225	0.134
EARTH BALANCE	-4.6708	0.833	-5.607	0.000	-6.304	-3.037
FLEISCHMANNS	-2.5034	1.043	-2.400	0.016	-4.548	-0.459
MOVE OVER BUTTER	0.7470	23.742	0.031	0.016	-45.803	47.297
NUCOA	-2.8945	4.069	-0.711	0.477	-43.883	5.083
PARKAY	0.0848	0.491	0.173	0.863	-0.879	1.048
SMART BALANCE	-4.7262	0.491	-7.516	0.000	-5.959	-3.493
Price * EARTH BALANCE	0.9630	0.029	3.812	0.000	0.468	1.458
Price * FLEISCHMANNS	0.2257	0.406	0.556	0.578	-0.570	1.430
Price * MOVE OVER BUTT		15.026	-0.043	0.966	-30.110	28.814
Price * NUCOA			0.075			3.686
Price * NUCUA Price * PARKAY	0.1362 -0.2129	1.811		0.940	-3.414 -0.582	0.156
		0.188	-1.130	0.258		
Price * SMART BALANCE	1.0508	0.218	4.824	0.000	0.624	1.478
					0.053	
Omnibus: Prob(Omnibus):	280.891	Durbin-W			0.253	
· /	0.000		Bera (JB):		499.974	
Skew:	-0.603	Prob(JB)			.70e-109	
Kurtosis:	4.482	Cond. No	-		4.39e+03	
=======================================						

The analysis of the coefficient values indicates that the impact of price on sales varies significantly across different brands. The coefficient for Price * EARTH BALANCE is positive (0.9630), implying that a higher price has a greater positive impact on sales of

EARTH BALANCE than the reference category. Similarly, the coefficient for Price * SMART BALANCE is also positive (1.0508), indicating that a higher price has a more positive impact on sales of SMART BALANCE compared to the reference category. However, the coefficient for Price * FLEISCHMANNS is positive (0.2257) but smaller than those of EARTH BALANCE and SMART BALANCE, suggesting that a higher price has a less positive impact on sales of FLEISCHMANNS than the reference category.

Moreover, the coefficient for Price * MOVE OVER BUTTER is negative (-0.6482), indicating that an increase in the price of MOVE OVER BUTTER may lead to a negative impact on sales compared to the reference category. However, the coefficient has a high standard error and a wide confidence interval, which suggests that this result is not statistically significant and requires further analysis.

In conclusion, the effect of price on sales varies significantly among different brands, and an increase in the price of EARTH BALANCE and SMART BALANCE may have a more positive impact on sales compared to the reference category. In contrast, an increase in the price of MOVE OVER BUTTER may have a negative impact on sales, but this finding is not statistically significant and requires further investigation.

Year	2021
------	------

	OLS Regres					
Dep. Variable:	У				0.243	
Model:	OLS				0.239	
	Least Squares				59.46	
	hu, 27 Apr 2023					
Time:	19:06:38		lihood:		-6412.0	
No. Observations:	3160	AIC:			. 286e+04	
Df Residuals:	3142	BIC:		1.	.297e+04	
Df Model:	17					
Covariance Type:	nonrobust					
	coef		t	P> t	[0.025	0.975]
const	11.6442	0.341	34.181	0.000	10.976	12.312
Price per Unit	-1.3251	0.320	-4.145	0.000	-1.952	-0.698
Price ^ 2	2.3993	0.579	4.145	0.000	1.264	3.534
Quarter1	0.0787	0.094	0.833	0.405	-0.106	0.264
Ouarter2	-0.0261	0.095 -0.275		0.784	-0.213	0.166
Quarter3	-0.0717	0.093 -0.769		0.442	-0.254	0.111
EARTH BALANCE	-4.1148	0.822	-5.004	0.000	-5.727	-2.502
FLEISCHMANNS	2.3643	1.182	2.000	0.046	0.047	4.682
MOVE OVER BUTTER	0.4338	6.844	0.063	0.949	-12.985	13.853
NUCOA	-4.2105	2.092	-2.012	0.044	-8.313	-0.108
PARKAY	0.9525	0.490	1.944	0.052	-0.008	1.913
SMART BALANCE	-4.1804	0.613	-6.820	0.000	-5.382	-2.979
Price * EARTH BALANCE	0.6988	0.243	2.877	0.004	0.223	1.179
Price * FLEISCHMANNS	-1.5788	0.447	-3.532	0.000	-2.455	-0.702
Price * MOVE OVER BUTT	ER -0.3818	4.141	-0.092	0.927	-8.502	7.738
Price * NUCOA	0.3731	0.945	0.395	0.693	-1.479	2.226
Price * PARKAY	-0.4949	0.182	-2.714	0.007	-0.853	-0.137
Price * SMART BALANCE		0.207	4.076	0.000	0.437	1.248
Omnibus:	76.903	Durbin-W			0.217	
Prob(Omnibus):	0.000		era (JB):		92.063	
Skew:	-0.322				L.02e-20	
Kurtosis:	3.532	Cond. No			L.35e+03	

The regression output reveals that all butter brand coefficients, except for "MOVE OVER BUTTER," are statistically significant at a 95% confidence level. The intercept (const) coefficient represents the baseline sales when all other variables are at zero. The coefficient for "EARTH BALANCE" is negative, indicating that this brand's sales are

lower than the baseline sales, while "FLEISCHMANNS" has a positive coefficient, indicating that this brand's sales are higher than the baseline sales. Similarly, the coefficient for "NUCOA" is negative, indicating that this brand's sales are also lower than the baseline sales.

Moreover, the coefficient for "PARKAY" is positive, although marginally significant (p-value = 0.052), indicating that this brand's sales may not be significantly different from the baseline. The interaction between price and brand also significantly impacts sales, as demonstrated by the coefficients for "Price * EARTH BALANCE" and "Price * FLEISCHMANNS." The former is positive, indicating that a higher price for "EARTH BALANCE" results in higher sales, while the latter is negative, implying that a higher price for "FLEISCHMANNS" leads to lower sales.

However, the coefficients for the interactions with "MOVE OVER BUTTER" and "NUCOA" are not significant (p-values > 0.05), suggesting that the price of these brands does not significantly impact sales. Furthermore, the coefficient for "Price * PARKAY" is negative, indicating that a higher price for this brand results in lower sales. Lastly, the coefficient for "Price * SMART BALANCE" is positive, indicating that a higher price for this brand leads to higher sales.

In conclusion, the analysis shows that brand plays a significant role in determining sales, with some brands commanding a higher price premium than others. Additionally, the interaction between price and brand can significantly impact sales, with some brands benefiting from higher prices while others suffer from lower prices.

Year 2022

Dep. Variable:	у	R-square			0.300	
Model:	OLS	Adj. R-s	quared:		0.296	
Method:	Least Squares	F-statis	tic:			
Date: Th	u, 27 Apr 2023	Prob (F-	statistic):	6.	39e-207	
Time:	19:06:59	Log-Like	lihood:			
No. Observations:	2878	AIC:		1.		
Df Residuals:	2860	BIC:		1.	168e+04	
Df Model:	17					
Covariance Type:	nonrobust					
	coef	std err	t	P> t	[0.025	0.975
const	13.0057	0.228	57.053	0.000	12.559	13.45
Price per Unit	-2.5177	0.161	-15.616	0.000	-2.834	-2.20
Price ^ 2	4.9807	0.352	14.135	0.000	4.290	5.67
Quarter1	-0.1711	0.100	-1.708	0.088	-0.367	0.02
Quarter2	-0.1435	0.098	-1.457	0.145	-0.337	0.05
Quarter3	-0.1011	0.098	-1.034	0.301	-0.293	0.093
EARTH BALANCE	-8.8772	0.503	-17.642	0.000	-9.864	-7.89
FLEISCHMANNS	-2.6087	1.157	-2.254	0.024	-4.878	-0.33
MOVE OVER BUTTER	-0.9324	3.255	-0.286	0.775	-7.315	5.45
NUCOA	-4.9364	3.374	-1.463	0.144	-11.553	1.68
PARKAY	-1.1911	0.402	-2.963	0.003	-1.979	-0.40
SMART BALANCE	-7.8466	0.426	-18.421	0.000	-8.682	-7.01
Price * EARTH BALANCE	1.7289	0.123	14.012	0.000	1.487	1.97
Price * FLEISCHMANNS	0.2997	0.358	0.838	0.402	-0.401	1.00
Price * MOVE OVER BUTTE	R 0.0461	1.604	0.029	0.977	-3.099	3.19
Price * NUCOA	0.7373	1.212	0.609	0.543	-1.638	3.11
Price * PARKAY	0.3277	0.118	2.782	0.005	0.097	0.559
Price * SMART BALANCE	1.7400	0.115	15.152	0.000	1.515	1.96
Omnibus:	39.833	Durbin-W		========	0.244	
Prob(Omnibus):	0.000	Jarque-B	era (JB):		42.679	
Skew:	-0.259	Prob(JB)	:		.40e-10	
Kurtosis:	3.294	Cond. No			721.	

The regression coefficients reveal that Earth Balance and Smart Balance have a significant negative impact on sales, whereas Fleischmann's and Parkay have a smaller negative impact. Move Over Butter and Nucoa have non-significant coefficients, implying that their effect on sales is not statistically significant.

Furthermore, the coefficients for the interaction terms between price and each brand reveal insights into the relative pricing power of different brands. The Price * Earth Balance coefficient is positive and significant, indicating that higher prices for Earth Balance are associated with higher sales, implying that Earth Balance has a higher perceived value or quality compared to other brands.

The Price * Fleischmann's and Price * Parkay coefficients are both positive and significant but smaller than the Price * Earth Balance coefficient, indicating that these brands have a lower perceived value or quality compared to Earth Balance but still have some pricing power.

Finally, the Price * Move Over Butter and Price * Nucoa coefficients are not significant, suggesting that these brands are more price-sensitive and do not have significant pricing power.

In summary, the regression coefficients reveal that Earth Balance and Smart Balance have a significant negative impact on sales, while Fleischmann's and Parkay have a smaller negative impact. The interaction terms indicate that Earth Balance has a higher perceived value and pricing power compared to other brands, while Move Over Butter and Nucoa are more price sensitive.

9. Cannibalization Analysis:

Cooking oil and cooking sprays produced by Conagra, such as Wesson oil and PAM spray, are commonly used as a substitute for butter and margarine in cooking and baking. These products are often preferred by those who want to reduce their intake of saturated fat and calories.

While cooking oils and sprays can be used in a similar way to butter and margarine, they do not have the same taste and texture. Therefore, they are not considered a complement to table spreads like butter and margarine.

However, some people may use both cooking oils/sprays and butter/margarine in different ways in their cooking and baking. Overall, cooking oils and sprays are often seen as a healthier substitute for butter and margarine.

Conclusions:

We can draw below conclusions on the category **Table spread** and specifically Conagra brands:

- 1. The south central and south-east regions, which have strong potential for table spreads but have less merchandising, can boost their merchandising. With merchandising, we can quantify the 2% of cooking oil and spray sales.
- Compared to the Plains, which contribute the least to total sales, the Northeast Region contributes the most. To enhance the overall sales of table spread, we can attempt expanding the promotions in the plains and west regions.
- 3. Although the sales distribution for cooking oil and cooking spray is essentially consistent across all quarters, the trend for table spread is different. In comparison to other quarters, Q4 sales are high. Therefore, by improving marketing and deals, there is room to increase table spread sales in other areas as well.
- 4. Based on the distribution of classes, we can see that Conagra has a chance to convert sales of non-Conagra items for upper class consumers. To take 4% of that market, we might consider introducing premium products.
- 5. Conagra's product prices are moderate, which is perfect for boosting sales. With a 1% increase in price, sales decreases by 0.39%. So we can continue with the same.
- Sticks are the most popular form of table spread and have the biggest sales contribution. Also, the number of items in each bundle has the opposite effect on sales. So, we can restrict the production of 12 CT and 16 CT products.
- 7. Another strategy we can implement is positioning the conagra products next to pricey products in places like Walmart so that customers will choose them since they are more affordable.
- 8. As another simple way to increase sales, we may also agree to have Conagra items placed at eye level at retail establishments.
- 9. The analysis shows the significant impact of product attributes on sales performance, including merchandising, tier value, form, count value, ounces value, and sub-category. Conagra's overall sales are lower than those of its competitors, however certain attributes, such as the 8CT count value and particular ounces and sub-category ranges, help Conagra goods sell better.

APPENDIX

Buyer Distribution based on Race Demographics

Buyer Distribution based on no of persons in household.

	OLS Regre	ession Resu	lts				
D V:							
Dep. Variable:		/ R-squar			0.376		
Model:		S Adj. R-squared:			0.376		
Method:	Least Squares				4994.		
Date:	Fri, 21 Apr 202		•		0.00		
Time:		2 Log-Lik	elihood:	-8.3			
No. Observations:	66222				668e+06		
Df Residuals:	66213			1.	668e+06		
Df Model:	•	3					
Covariance Type:	nonrobust	t 					
		coef	std err	t	P> t	[0.025	0.975]
const		1.606e+04	2840.646	5.653	0.000	1.05e+04	2.16e+04
Price per Unit			152.051			-2613.069	
ACV Weighted Distri	bution No Merch	4498.7913	33.072	136.031	0.000	4433.971	4563.612
ACV Weighted Distri				57.975	0.000	7942.245	8498.059
Price ^ 2(tablespre		25.9546	2.434	10.665	0.000	21.185	30.724
CAG	,	-1.697e+04	1331.066	-12.753	0.000	-1.96e+04	-1.44e+04
1-16		-1.568e+04	2728.726	-5.744	0.000	-2.1e+04	-1.03e+04
17-32		-1.924e+04	3018.130	-6.373	0.000	-2.52e+04	-1.33e+04
32-48		-2.085e+04	2913.645	-7.157	0.000	-2.66e+04	-1.51e+04
Omnibus:	442700 221	Durbin-	======================================		0.254		
Prob(Omnibus):				1240250	0.254		
Skew:			Bera (JB): \.	1340256	0.00		
Skew: Kurtosis:	698.898	5 Prob(JB	,				
Kurtosis:	698.898	3 Cond. N	0.	4	.41e+03		

Figure 7.1.1

	OLS Regr	ession Resu	lts				
Dep. Variable:		y R-squar	ed:		0.391		
Model:	OL	S Adj. R-	Adj. R-squared:		0.390		
Method:	Least Square	s F-stati	F-statistic:		519.4		
Date:	Sat, 22 Apr 202	3 Prob (F	Prob (F-statistic):		0.00		
Time:	00:34:1	1 Log-Lik	Log-Likelihood:		-43011.		
No. Observations:	324	Ø AIC:	AIC:		603e+04		
Df Residuals:	323	3235 BIC:			606e+04		
Df Model:		4					
Covariance Type:	nonrobus	t					
		coef	std err	t	P> t	[0.025	0.975]
const		1.557e+05	9897.284	15.732	0.000	1.36e+05	1.75e+05
Price per Unit		-8.577e+04	4421.710	-19.396	0.000	-9.44e+04	-7.71e+04
ACV Weighted Distri	bution No Merch	5061.5038	191.160	26.478	0.000	4686.697	5436.310
ACV Weighted Distri	bution Any Merch	5872.4641	1235.566	4.753	0.000	3449.893	8295.035
Price ^ 2(tablespre	ad)	7200.7800	427.323	16.851	0.000	6362.929	8038.631
Omnibus:	4060.47	4 Durbin-	Watson:		0.119		
Prob(Omnibus):	0.00	0 Jarque-	Bera (JB):	665	234.961		
Skew:	6.76	7 Prob(JB):		0.00		
Kurtosis:	71.88	Ø Cond. N	٥.		114.		

Figure 7.1.2

Figure 7.2.1

OLS Regr	ession Resu	lts				
Dep. Variable:	y R-squar	ed:		0.396		
Model: OL	S Adj. R-	squared:		0.395		
Method: Least Square	s F-stati	stic:		302.5		
Date: Sat, 22 Apr 202	3 Prob (F	-statistic):		0.00		
Time: 88:34:1	1 Log-Lik	elihood:		-42998.		
No. Observations: 324	Ø AIC:		8.	601c+04		
Df Residuals: 323	2 BIC:		8.	686c+84		
Df Model:	7					
Covariance Type: nonrobus	t					
	coef	std err	t	P> t	[0.025	0.975]
const	1.347c+05	8463.912	15.989	0.000	1.18c+05	1.51c+05
Price per Unit	-8.695c+04	4458.597	-19.503	0.000	-9.57c+04	-7.82c+84
ACV Weighted Distribution No Merch	5128.9905	193.549	26.500	0.000	4749.500	5508.481
ACV Weighted Distribution Any Merch	5897.6165	1237.103	4.767	0.000	3472.030	8323.203
Price ^ 2(tablespread)	7225.5841	427.788	16.891	0.000	6386.821	8864.348
1	2.155c+04	5571.903	3.868	0.000	1.06c+04	3.25e+84
2	4.787c+04	7432.515	6.440	0.000	3.33c+04	6.24c+84
3	-3.255c-11	1.48c-11	-2.201	0.028	-6.16c-11	-3.55e-12
4	5076.7079	6899.779	0.736	0.462	-8451.677	1.86c+84
5	0	8	nan	nan	0	0
8	6.016c+04	1.58c+04	3.810	0.000	2.92c+04	9.11c+84
12	9	0	nan	nan	0	0
Omnibus: 4878.41	9 Durbin-	Watson:		0.121		
Prob(Omnibus): 0.86	0 Jarque-	Bera (JB):	673	431.950		
Skew: 6.79	4 Prob(JB):		0.00		
Kurtosis: 72.36	9 Cond. N	io.		inf		

Figure 7.2.2

	OLS Regr	ession Resu	lts 				
Dep. Variable:		y R-squar	ed:		0.376		
Model:	OL	OLS Adj. R-s			0.376		
Method:	Least Square	s F-stati	stic:		4994.		
Date:	Fri, 21 Apr 202	3 Prob (F	-statistic):		0.00		
Time:	23:35:5	2 Log-Lik	elihood:	-8.3	384e+05		
No. Observations:	6622	2 AIC:		1.	668e+06		
Df Residuals:	6621	3 BIC:		1.	668e+06		
Df Model:		8					
Covariance Type:	nonrobus	t					
		coef	std err	t	P> t	[0.025	0.975
const		1.606e+04	2840.646	5.653	0.000	1.05e+04	2.16e+0
Price per Unit		-2315.0490	152.051	-15.225	0.000	-2613.069	-2017.02
ACV Weighted Distri	bution No Merch	4498.7913	33.072	136.031	0.000	4433.971	4563.61
ACV Weighted Distri	bution Any Merch	8220.1519	141.789	57.975	0.000	7942.245	8498.05
Price ^ 2(tablespre	ead)	25.9546	2.434	10.665	0.000	21.185	30.72
CAG		-1.697e+04	1331.066	-12.753	0.000	-1.96e+04	-1.44e+0
1-16		-1.568e+04	2728.726	-5.744	0.000	-2.1e+04	-1.03e+0
17-32		-1.924e+04	3018.130	-6.373	0.000	-2.52e+04	-1.33e+0
32-48		-2.085e+04	2913.645	-7.157	0.000	-2.66e+04	-1.51e+0
======================================	 142788.32	======== 5	======= Watson:	=========	0.254		
Prob(Omnibus):	0.00	0 Jarque-	Bera (JB):	1340256	893.847		
Skew:	19.09	6 Prob(JB):		0.00		
Kurtosis:	698.89	8 Cond. N	0.	4	.41e+03		

Figure 7.3.1

	OLS Regres	sion Resu	lts				
Dep. Variable:	У	R-square	ed:		0.375		
Model:	OLS	Adj. R-	squared:		0.375		
Method:	Least Squares	F-stati	stic:		5671.		
Date:	Sat, 22 Apr 2023	Prob (F	-statistic):		0.00		
Time:	00:34:11	Log-Lik	elihood:	-8.3	392e+05		
No. Observations:	66222	AIC:		1.	668e+06		
Df Residuals:	66214	BIC:		1.	668e+06		
Df Model:	7						
Covariance Type:	nonrobust						
		coef	std err	t	P> t	[0.025	0.975]
const	1	.349e+04	2836.967	4.756	0.000	7931.854	1.91e+04
Price per Unit	- 2	235.8664	152.110	-14.699	0.000	-2534.001	-1937.732
ACV Weighted Distri	bution No Merch 4	395.0265	32.094	136.941	0.000	4332.122	4457.931
ACV Weighted Distri	bution Any Merch 8	340.1341	141.649	58.879	0.000	8062.502	8617.766
Price ^ 2(tablespre	ad)	25.2837	2.436	10.379	0.000	20.509	30.058
1-16		-1.4e+04	2728.879	-5.129	0.000	-1.93e+04	-8649.000
17-32	-1	.767e+04	3019.316	-5.853	0.000	-2.36e+04	-1.18e+04
32-48	-1	.975e+04	2915.923	-6.775	0.000	-2.55e+04	-1.4e+04

Figure 7.3.2

Figure 7.4.1

	OLS Regre	ssion Resu	lts				
Dep. Variable:	У	R-squar	ed:		0.392		
Model:	OLS	Adj. R-	squared:		0.391		
Method:	Least Squares	F-stati	stic:		416.3		
Date:	Sat, 22 Apr 2023	Prob (F	-statistic)	:	0.00		
Time:	00:34:11	Log-Lik	elihood:		-43009.		
No. Observations:	3240	AIC:		8	.603e+04		
Df Residuals:	3234	BIC:		8	.607e+04		
Df Model:	5						
Covariance Type:	nonrobust						
		coef	std err	t	P> t	[0.025	0.975]
const		1.763e+05	1.57e+04	11.261	0.000	1.46e+05	2.07e+05
Price per Unit	-	8.612e+04	4425.289	-19.460	0.000	-9.48e+04	-7.74e+04
ACV Weighted Distri	bution No Merch	5091.5580	191.922	26.529	0.000	4715.257	5467.859
ACV Weighted Distri	bution Any Merch	5930.3925	1235.677	4.799	0.000	3507.603	8353.182
Price ^ 2(tablespre	ad)	7249.1321	428.147	16.931	0.000	6409.666	8088.598
MARGARINE/SPREADS	-	2.156e+04	1.27e+04	-1.698	0.090	-4.65e+04	3333.986
RFG BUTTER		0	0	nan	nan	0	0

Figure 7.4.2

		ession Resul	========		======		
Dep. Variable:		y R-square	ed:		0.386		
Model:	OL	S Adj. R-	squared:		0.386		
Method:	Least Square	es F-statistic:			5210.		
Date:	Fri, 21 Apr 202	3 Prob (F	-statistic):		0.00		
Time:	23:49:4	6 Log-Lik	elihood:	-8.3	330e+05		
No. Observations:	6622	2 AIC:		1.	667e+06		
Df Residuals:	6621	BIC:		1.	667e+06		
Df Model:		8					
Covariance Type:	nonrobus	t 					
		coef	std err	t	P> t	[0.025	0.975
const		1.89e+04	1233.490	15.319	0.000	1.65e+04	2.13e+0
Price per Unit		50.1184	165.182	0.303	0.762	-273.638	373.87
ACV Weighted Distri	bution No Merch	4441.6352	33.204	133.769	0.000	4376.556	4506.71
ACV Weighted Distri	bution Any Merch	8672.4461	142.154	61.008	0.000	8393.825	8951.06
Price ^ 2(tablespre	ead)	-3.1146	2.590	-1.203	0.229	-8.191	1.96
CAG		-1.709e+04	1352.117	-12.640	0.000	-1.97e+04	-1.44e+0
MAINSTREAM		-2.194e+04	1213.025	-18.085	0.000	-2.43e+04	-1.96e+0
PREMIUM		-3.754e+04	1300.633	-28.861	0.000	-4.01e+04	-3.5e+0
SUPER PREMIUM		-3.742e+04	1329.465	-28.146	0.000	-4e+04	-3.48e+0
======================================	143014.27	======== 0 Durbin-N	======= Watson:	=========	0.258		
Prob(Omnibus):	0.00	a Jarque-l	Bera (JB):	1384470	653.873		
Skew:	19.15	5 Prob(JB):		0.00		
Kurtosis:	710.31	1 Cond. No	0.	1	.89e+03		

Figure 7.5.1

OLS Regression Results							
Dep. Variable:	لا	R-square	ed:		0.424		
Model:	OLS	Adj. R-	squared:		0.423		
Method:	Least Squares	F-stati	stic:		397.3		
Date:	Sat, 22 Apr 2023	Prob (F	-statistic):	:	0.00		
Time:	00:34:11	Log-Like	elihood:		-42920.		
No. Observations:	3246	AIC:		8.	585e+04		
Df Residuals:	3233	BIC:		8.	590e+04		
Df Model:	6	5					
Covariance Type:	nonrobust	:					
		coef	std err	t	P> t	[0.025	0.975]
const		1.876e+05	1.06e+04	17.720	0.000	1.67e+05	2.08e+05
Price per Unit	-	6.746e+04	5242.166	-12.869	0.000	-7.77e+04	-5.72e+04
ACV Weighted Distribution No Merch		4824.4292	187.215	25.770	0.000	4457.358	5191.500
ACV Weighted Distribution Any Merch		6273.3420	1212.865	5.172	0.000	3895.279	8651.405
Price ^ 2(tablespre	ad)	5761.7709	461.937	12.473	0.000	4856.052	6667.490
MAINSTREAM		-1.01e+05	7441.767	-13.565	0.000	-1.16e+05	-8.64e+04
PREMIUM		-7.93e+04	8144.421	-9.737	0.000	-9.53e+04	-6.33e+04
SUPER PREMIUM		0	0	nan	nan	0	0

Figure 7.5.2

OLS Regression Results

Dep. Variable:	у	R-squared:	0.392				
Model:	OLS	Adj. R-squared:	0.392				
Method:	Least Squares	F-statistic:	5327.				
Date:	Fri, 21 Apr 2023	Prob (F-statistic):	0.00				
Time:	23:58:08	Log-Likelihood:	-8.3302e+05				
No. Observations:	66222	AIC:	1.666e+06				
Df Residuals:	66213	BIC:	1.666e+06				
Df Model:	8						

	coef	std err	t	P> t	[0.025	0.975]
const	754.8367	881.657	0.856	0.392	-973.211	2482.884
Price per Unit	-2814.6079	146.877	-19.163	0.000	-3102.486	-2526.730
ACV Weighted Distribution No Merch	4527.3454	32.904	137.592	0.000	4462.853	4591.838
ACV Weighted Distribution Any Merch	8732.6953	142.413	61.320	0.000	8453.566	9011.824
Price ^ 2(tablespread)	35.4713	2.361	15.022	0.000	30.843	40.099
CAG	-8799.0165	1332.176	-6.605	0.000	-1.14e+04	-6187.951
SPRAY/SQUEEZE	-4.415e+04	2946.901	-14.981	0.000	-4.99e+04	-3.84e+04
STICKS	1.307e+04	747.123	17.494	0.000	1.16e+04	1.45e+04
TUBS	-1.168e+04	754.831	-15.479	0.000	-1.32e+04	-1.02e+04

 Omnibus:
 142942.084
 Durbin-Watson:
 0.260

 Prob(Omnibus):
 0.000
 Jarque-Bera (JB):
 1374857451.239

 Skew:
 19.134
 Prob(JB):
 0.00

 Kurtosis:
 707.846
 Cond. No.
 2.41e+03

Figure 7.6.1

Covariance Type: nonrobust

	coef	std err	t	P> t	[0.025	0.975]
const	7.159e+04	7393.122	9.683	0.000	5.71e+04	8.61e+04
Price per Unit	-2564.0458	198.718	-12.903	0.000	-2953.534	-2174.558
ACV Weighted Distribution No Merch	4516.0953	33.347	135.426	0.000	4450.735	4581.456
ACV Weighted Distribution Any Merch	9333.0192	142.521	65.485	0.000	9053.678	9612.360
Price ^ 2(tablespread)	27.5128	2.874	9.572	0.000	21.879	33.147
CAG	-868.1801	1416.565	-0.613	0.540	-3644.647	1908.287
1	-2.681e+04	7630.497	-3.513	0.000	-4.18e+04	-1.19e+04
2	-2.188e+04	7516.209	-2.911	0.004	-3.66e+04	-7148.944
3	-1.236e+04	8932.209	-1.384	0.166	-2.99e+04	5143.256
4	-4175.1888	7432.888	-0.562	0.574	-1.87e+04	1.04e+04
5	-2.323e+04	9129.309	-2.545	0.011	-4.11e+04	-5339.692
8	-3.462e+04	8563.865	-4.042	0.000	-5.14e+04	-1.78e+04
12	-1.016e+04	8914.124	-1.140	0.254	-2.76e+04	7313.147
1-16	-1.411e+04	3033.662	-4.651	0.000	-2.01e+04	-8164.140
17-32	-1.167e+04	3197.163	-3.652	0.000	-1.79e+04	-5408.487
32-48	-9545.3656	3117.416	-3.062	0.002	-1.57e+04	-3435.230
MARGARINE/SPREADS	-8535.5248	1140.544	-7.484	0.000	-1.08e+04	-6300.058
RFG BUTTER	1.069e+04	1112.954	9.607	0.000	8510.984	1.29e+04
MAINSTREAM	-3.066e+04	1268.348	-24.173	0.000	-3.31e+04	-2.82e+04
PREMIUM	-4.707e+04	1393.112	-33.787	0.000	-4.98e+04	-4.43e+04
SUPER PREMIUM	-4.382e+04	1461.676	-29.979	0.000	-4.67e+04	-4.1e+04
SPRAY/SQUEEZE	-3.503e+04	2932.619	-11.946	0.000	-4.08e+04	-2.93e+04
STICKS	-1.053e+04	1613.560	-6.528	0.000	-1.37e+04	-7370.926
TUBS	-1.032e+04	851.237	-12.119	0.000	-1.2e+04	-8647.384

Figure 7.7.1

					[0.025	_
const	9.766e+05	9651.107	101.188	0.000	9.58e+05	9.96e+05
Price per Unit	-9121.7544	2423.546	-3.764	0.000	-1.39e+04	-4369.907
ACV Weighted Distribution No Merch	2356.8713	72.335	32.583	0.000	2215.044	2498.699
ACV Weighted Distribution Any Merch	5375.8565	447.573	12.011	0.000	4498.300	6253.413
Price ^ 2(tablespread)	719.0593	182.660	3.937	0.000	360.917	1077.202
1	2.393e+05	4629.026	51.694	0.000	2.3e+05	2.48e+05
2	2.405e+05	4543.084	52.933	0.000	2.32e+05	2.49e+05
3	9.38e-10	7.72e-12	121.510	0.000	9.23e-10	9.53e-10
4	2.107e+05	6248.546	33.722	0.000	1.98e+05	2.23e+05
5	3.584e-10	3.57e-12	100.463	0.000	3.51e-10	3.65e-10
8	2.861e+05	9381.323	30.496	0.000	2.68e+05	3.04e+05
12	-8.54e-10	6.43e-12	-132.729	0.000	-8.67e-10	-8.41e-10
1-16	-2.389e+04	6925.949	-3.449	0.001	-3.75e+04	-1.03e+04
17-32	-6400.7779	8651.242	-0.740	0.459	-2.34e+04	1.06e+04
32-48	-1.922e+04	6834.465	-2.813	0.005	-3.26e+04	-5822.067
MARGARINE/SPREADS	-1.234e+04	4704.463	-2.623	0.009	-2.16e+04	-3116.016
RFG BUTTER	1.442e-10	1.44e-12	100.093	0.000	1.41e-10	1.47e-10
MAINSTREAM	-2.582e+04	3500.365	-7.377	0.000	-3.27e+04	-1.9e+04
PREMIUM	-3.647e+04	4475.302	-8.150	0.000	-4.52e+04	-2.77e+04
SUPER PREMIUM	0	0	nan	nan	0	0
SPRAY/SQUEEZE	-1.128e+06	8835.745	-127.719	0.000	-1.15e+06	-1.11e+06
STICKS	-1.117e+06	1.01e+04	-110.374	0.000	-1.14e+06	-1.1e+06
TUBS	-1.142e+06	8091.575	-141.157	0.000	-1.16e+06	-1.13e+06

Figure 7.7.2