RAJALAKSHMI ENGINEERING COLLEGE

RAJALAKSHMI NAGAR, THANDALAM - 602 105

CB23332 SOFTWARE ENGINEERING LAB

Laboratory Record Note Book

Name :
Year / Branch / Section :
Register No.:
Semester:
Academic Year:

Department of CSBS/CB23332

RAJALAKSHMI ENGINEERING COLLEGE (AUTONOMOUS) RAJALAKSHMI NAGAR, THANDALAM – 602-105

BONAFIDE CERTIFICATE

NAME:REGISTE	R NO.:	_
ACADEMIC YEAR: 2024-25 SEMESTER: I	II BRANCH:	_B.E/B.Tech
This Certification is the bonafide record of work	done by the above studer	nt in the
CB23332-SOFTWARE ENGINEERING - Laboratory d	uring the year 2024 – 202	5.
	Signature of Faculty -in –	- Charge
Submitted for the Practical Examination held on		
Internal Examiner	Exter	nal Examiner

Department of CSBS/CB23332

INDEX

S. No.	Name of the Experiment	Expt. Date	Faculty Sign
1.	Preparing Problem Statement		
2.	Software Requirement Specification (SRS)		
3.	Entity-Relational Diagram		
4.	Data Flow Diagram		
5.	Use Case Diagram		
6.	Activity Diagram		
7.	State Chart Diagram		
8.	Sequence Diagram		
9.	Collaboration Diagramt		
10.	Class Diagram		

EX NO:1	
	WRITE THE COMPLETE PROBLEM STATEMENT
DATE	

AIM:

To prepare a PROBLEM STATEMENT for a Home automation system.

ALGORITHM:

- The problem statement is the initial starting point for a project.
- A problem statement describes what needs to be done without describing how.
- It is generally a one-to-three-page document that all project stakeholders agree upon, describing the goals of the project at a high level.
- The problem statement is intended for a broad audience and should be written in non-technical terms.
- It helps both technical and non-technical personnel communicate effectively by providing a clear description of the problem.
- The problem statement does not describe the solution to the problem.

INPUT:

- The input to requirement engineering is the problem statement prepared by the customer.
- It may include an overview of the existing system and the broad expectations from the new system.
- The first phase of requirements engineering begins with requirements elicitation, i.e., gathering information about the requirements.

Here, requirements are identified with the help of the customer and existing system processes.

Problem:

Traditional home management systems often rely on manual control of appliances, leading to inefficiencies, increased energy consumption, and inconvenience. Users must physically interact with devices for tasks such as turning off lights, adjusting thermostats, or securing doors. This approach lacks flexibility and does not optimize resources, especially for individuals with busy schedules or mobility limitations.

Background:

The concept of home automation emerged to address the inefficiencies and limitations of traditional systems. With the advancement of IoT technologies, smart sensors, and actuators, home automation systems now offer enhanced control, energy efficiency, and security. By integrating devices into a centralized system, users can remotely operate appliances, receive alerts, and automate tasks, creating a seamless living experience.

Relevance:

Home automation systems are increasingly relevant as the demand for convenience, energy efficiency, and security grows. They align with the modern trend of digital transformation, enabling smart and sustainable living. These systems empower users to monitor and manage their homes effectively, reducing energy waste and improving quality of life.

Objectives:

The objective of the Home Automation System (HAS) is to provide users with a convenient, efficient, and secure way to manage their homes through centralized control and automation. The system aims to improve energy efficiency, enhance security, and simplify daily tasks.

- 1. Simplify Home Management: Offer a centralized platform to control appliances, lighting, and HVAC systems, either locally or remotely.
- 2. Enhance Energy Efficiency: Provide real-time energy monitoring and analytics to help users reduce consumption and optimize usage.
- 3. Improve Security: Enable integration with surveillance cameras, motion detectors, and smart locks for comprehensive home security.
- 4. **Automation**: Allow users to automate routine tasks, such as scheduling lighting or temperature adjustments, for increased convenience.
- 5. Provide Alerts and Notifications: Notify users of critical events, such as security breaches or system malfunctions, to ensure timely action.
- 6. Support Scalability and Integration: Ensure compatibility with a wide range of IoT devices and future upgrades to meet evolving user needs.

merading	individuals with	modifity of vision	n impairments.		
esult:					

EX NO:2	
DATE	WRITE THE SOFTWARE REQUIREMENT SPECIFICATION DOCUMENT

AIM:

To do requirement analysis and develop Software Requirement Specification Sheet(SRS) for Evoting system.

ALGORITHM:

SRS shall address are the following:

- a) **Functionality.** What is the software supposed to do?
- b) **External interfaces.** How does the software interact with people, the system's hardware, other hardware, and other software?
- c) **Performance.** What is the speed, availability, response time, recovery time of various software functions, etc.?
- d) **Attributes.** What is the portability, correctness, maintainability, security, etc. considerations?
- e) **Design constraints imposed on an implementation.** Are there any required standards in effect, implementation language, policies for database integrity, resource limits, operating environment(s) etc.?

1. Introduction

1.1 Purpose

This Software Requirements Specification (SRS) defines the functional and non-functional requirements for a Home Automation System (HAS). The HAS aims to provide users with centralized control over various smart devices within their homes, enhancing convenience, energy efficiency, and security. The intended audience for this document includes system developers, testers, and project managers.

1.2 Scope

The HAS will encompass the following major functionalities:

- Device Control: Remotely control various smart devices such as lights, thermostats, locks, and appliances.
- Scheduling: Create automated schedules for device actions based on time, events, or environmental conditions.
- Energy Monitoring: Track energy consumption of connected devices to optimize usage and reduce costs.
- System Alerts: Receive notifications for system events, such as security breaches, device failures, or energy usage thresholds.

1.3 Definitions, Acronyms, and Abbreviations

- HAS: Home Automation System
- IoT: Internet of Things

1.4 References

• IEEE Std 830-1998: Software Requirements Specification

2. Overall Description

2.1 Product Perspective

The HAS will integrate with a variety of smart devices through a central hub or directly via Wi-Fi or other IoT protocols. Users will interact with the system through a mobile app or voice commands.

2.2 Product Features

- Device Control: Remotely turn devices on/off, adjust settings (e.g., temperature, brightness), and create custom scenes.
- Scheduling: Set up automated routines for daily tasks, such as waking up, going to sleep, or leaving home.
- Energy Monitoring: Track real-time and historical energy usage, identify areas for optimization, and receive energy-saving tips.
- System Alerts: Receive notifications for security breaches, device failures, or unexpected energy spikes.
- Voice Control: Interact with the system using voice commands to control devices and access information.

2.3 User Classes and Characteristics

- Homeowners: Primary users who control the system and manage devices.
- Guests: Temporary users with limited access to specific devices or functions.

2.4 Operating Environment

- Hardware: Smart devices compatible with the HAS, central hub (if applicable), mobile devices (iOS and Android).
- Software: HAS mobile app, cloud-based backend services.

2.5 Design and Implementation Constraints

- Security: Robust security measures to protect user data and prevent unauthorized access.
- Interoperability: Compatibility with a wide range of smart devices and IoT protocols.
- User Experience: Intuitive and user-friendly interface for seamless control.
- Performance: Real-time response to user commands and efficient data processing.

2.6 Assumptions and Dependencies

- Reliable internet connectivity for cloud-based features.
- Consistent power supply for the central hub and smart devices.
- Timely updates and support from device manufacturers.

3. System Features

3.1 Device Control

- Functional Requirements:
 - o Remotely turn devices on/off.
 - o Adjust device settings (e.g., temperature, brightness, volume).
 - o Create and manage custom scenes (e.g., "Good Morning," "Movie Night").
 - o Control multiple devices simultaneously.
- Non-Functional Requirements:
 - o Real-time response to user commands.
 - Secure communication between the HAS and devices.

3.2 Scheduling

- Functional Requirements:
 - o Create time-based schedules for device actions (e.g., turn on lights at sunset).
 - o Set up event-based schedules (e.g., activate security mode when leaving home).
 - o Use environmental conditions (e.g., temperature, humidity) to trigger actions.
 - o Manage multiple schedules and adjust them as needed.
- Non-Functional Requirements:
 - o Reliable execution of scheduled tasks.
 - o Flexibility to modify schedules.

3.3 Energy Monitoring

- Functional Requirements:
 - o Track real-time energy consumption of individual devices and the entire home.
 - o Generate historical energy usage reports.
 - o Identify energy-saving opportunities and provide recommendations.
 - o Set energy usage alerts and notifications.
- Non-Functional Requirements:
 - o Accurate energy consumption data.
 - o Clear and concise energy usage reports.

3.4 System Alerts

- Functional Requirements:
 - o Receive notifications for security breaches (e.g., unauthorized access, sensor triggers).
 - o Get alerts for device failures or malfunctions.
 - o Receive energy usage alerts (e.g., high energy consumption).
 - o Customize alert preferences and severity levels.
- Non-Functional Requirements: *

Result:

ER DIAGRAM:

EX NO:3			
DATE	DRAW THE ENTITY RELATIONSHIP DIAGRAM		
AIM:			
To Draw the Entity R	elationship Diagram for Home automation system.		
ALGORITHM:			
Step 1: Mapping of Regular I	Entity Types		
Step 2: Mapping of Weak En	tity Types		
Step 3: Mapping of Binary 1:	1 Relation Types		
Step 4: Mapping of Binary 1:	N Relationship Types.		
Step 5: Mapping of Binary M	:N Relationship Types.		
Step 6: Mapping of Multivalu	ned attributes.		
INPUT:			
Entities			
Entity Relationship M	atrix		
Primary Keys			
Attributes			
Mapping of Attributes	s with Entities		
Result:	Result:		

EX NO:4	
DATE	DRAW THE DATA FLOW DIAGRAMS AT LEVEL 0 AND LEVEL 1
AIM:	
To Draw the D	ata Flow Diagram for Home automation system and List the Modules in the
Application.	
ALGORITHM:	
1. Open the Visual Par	adigm to draw DFD (Ex.Lucidchart)
2. Select a data flow di	agram template
3. Name the data flow	diagram
4. Add an external enti	ty that starts the process
5. Add a Process to the	DFD
6. Add a data store to t	he diagram
7. Continue to add iten	ns to the DFD
8. Add data flow to the	DFD
9. Name the data flow	
10. Customize the DFI	O with colours and fonts
11. Add a title and sha	re your data flow diagram
INPUT:	
Processes	
Datastores	
External Entition	es

Result:

SAMPLE OUTPUT: USE CASE DIAGRAM:

EX NO:5			
DATE	DRAW USE CASE DIAGRAM		
AIM:			
To Draw the Use Case	e Diagram for Home automation system.		
ALGORITHM:			
Step 1: Identify Actors			
Step 2: Identify Use Cases			
Step 3: Connect Actors and U	Jse Cases		
Step 4: Add System Boundar	y		
Step 5: Define Relationships			
Step 6: Review and Refine			
Step 7: Validate			
INPUTS:			
Actors			
Use Cases			
Relations			
Result:			

ACTIVITY DIAGRAM:

EX NO:6		
DATE	DRAW ACTIVITY DIAGRAM OF ALL USE CASES.	
AIM:		
To Draw the activity	Diagram for home automation system.	
ALGORITHM:		
Step 1: Identify the Initial Sta	ate and Final States	
Step 2: Identify the Intermedia	ate Activities Needed	
Step 3: Identify the Condition	ns or Constraints	
Step 4: Draw the Diagram wi	th Appropriate Notations	
INPUTS:		
Activities		
Decision Points		
Guards		
Parallel Activities		
Conditions		
Result:		

STATE CHART DIAGRAM:

EX NO:7	
DATE	DRAW STATE CHART DIAGRAM OF ALL USE CASES.
AIM:	
	nart Diagram for Home automation system.
ALGORITHM:	art Diagram for Home automation system.
	nt chiects to be englysed
STEP-1: Identify the importa	nt objects to be analysed.
STEP-2: Identify the states.	
STEP-3: Identify the events.	
INPUTS:	
Objects	
States	
Events	
Result:	

SEQUENCE DIAGRAM:

EX NO:8	
DATE	DRAW SEQUENCE DIAGRAM OF ALL USE CASES.
AIM:	
To Draw the Seq	quence Diagram for Home automation system.
ALGORITHM:	

2. List the Participants

1. Identify the Scenario

- 3. Define Lifelines
- 4. Arrange Lifelines
- 5. Add Activation Bars
- 6. Draw Messages
- 7. Include Return Messages
- 8. Indicate Timing and Order
- 9. Include Conditions and Loops
- 10. Consider Parallel Execution
- 11. Review and Refine
- 12. Add Annotations and Comments
- 13. Document Assumptions and Constraints
- 14. Use a Tool to create a neat sequence diagram

INPUTS:

Objects taking part in the interaction.

Message flows among the objects.

The sequence in which the messages are flowing.

Object organization.

Result:

SAMPLE OUTPUT: COLLABORATION DIGRAM: Server Constraint MySrib, bond below their Unar Denis C 0.00 8. Antoniological and Belowin Services Network 8 Connector-unit

23

EX NO:9 DATE	DRAW COLLABORATION DIAGRAM OF ALL USE CASES
DATE	

AIM:

To Draw the Collaboration Diagram for Home automation system.

ALGORITHM:

Step 1: Identify Objects/Participants

Step 2: Define Interactions

Step 3: Add Messages

Step 4: Consider Relationships

Step 5: Document the collaboration diagram along with any relevant

explanations or annotations.

INPUTS:

Objects taking part in the interaction.

Message flows among the objects.

The sequence in which the messages are flowing.

Object organization.

D a av-14.
Kesuit:

CLASS DIAGRAM:

EX NO:10	
DATE	ASSIGN OBJECTS IN SEQUENCE DIAGRAM TO CLASSES AND MAKE CLASS DIAGRAM.
AIM:	

To Draw the Class Diagram for Home automation system.

ALGORITHM:

- 1. Identify Classes
- 2. List Attributes and Methods
- 3. Identify Relationships
- 4. Create Class Boxes
- 5. Add Attributes and Methods
- 6. Draw Relationships
- 7. Label Relationships
- 8. Review and Refine
- 9. Use Tools for Digital Drawing

INPUTS:

- 1. Class Name
- 2. Attributes
- 3. Methods
- 4. Visibility Notation

RESULT:

OUTPUT:

EX NO:11 MINI PROJECT- HOME AUTOMATION DATE

AIM:

The primary aim of this mini-project is to develop a secure and user-friendly Home Automation system. By utilizing MySQL for robust data storage and Streamlit for a seamless user interface, we aim to streamline home control processes, ensuring convenience, energy efficiency, and enhanced user experience.

ALGORITHM:

- 1. User registers with valid credentials.
- 2. User logs in using their credentials.
- 3. System displays a list of connected smart devices.
- 4. User selects a device to control or monitor.
- 5. User's commands are securely encrypted and transmitted to the device.
- 6. System verifies the successful execution of the command.
- 7. Device state or feedback is securely logged in the database.
- 8. Comprehensive usage reports are published transparently for user review.

PROGRAM:

import streamlit as st

Initialize session state for device management

if 'devices' not in st.session state:

st.session_state.devices = {

'Living Room Light': False,

'Bedroom Light': False,

'Kitchen Light': False,

'Fan': False,

'Air Conditioner': False,


```
'Heater': False,
  }
# Function to set box color based on state
def get_box_style(state):
  color = "green" if state else "red"
  return f"background-color: {color}; color: white; padding: 10px; border-radius: 5px; text-
align: center;"
# Application title
st.title("Home Automation System")
st.write("Control and manage your home appliances with this app.")
# Sidebar Menu
menu = st.sidebar.radio("Menu", ["Control Devices", "Add Device", "Device Summary"])
# Control Devices Section
if menu == "Control Devices":
  st.header("Control Panel")
  for device, state in st.session_state.devices.items():
     col1, col2 = st.columns([3, 1])
     with col1:
       # Display device with dynamic color
       st.markdown(
         f"<div style='{get_box_style(state)}'>{device} is {'ON' if state else 'OFF'}</div>",
          unsafe_allow_html=True,
```


Home Automation System

Control and manage your home appliances with this app.

Add a New Device


```
)
     with col2:
       # Toggle button
       if st.button(f"Toggle {device}", key=f"toggle_{device}"):
          st.session_state.devices[device] = not state
# Add Device Section
elif menu == "Add Device":
  st.header("Add a New Device")
  new_device = st.text_input("Device Name")
  if st.button("Add Device"):
    if new_device and new_device not in st.session_state.devices:
       st.session_state.devices[new_device] = False
       st.success(f"Device '{new_device}' added successfully!")
    elif new_device in st.session_state.devices:
       st.warning(f"Device '{new_device}' already exists.")
     else:
       st.error("Please enter a valid device name.")
# Device Summary Section
elif menu == "Device Summary":
  st.header("Device Summary")
  if st.session_state.devices:
    for device, state in st.session_state.devices.items():
       col1, col2 = st.columns([3, 1])
       with col1:
```



```
st.write(f"{device}")
with col2:
st.write("ON" if state else "OFF")
else:
st.write("No devices found. Add some devices first!")

# Footer
st.markdown("---")
st.markdown("Powered by [Streamlit](https://streamlit.io)")
```

Conclusion:

The Home Automation system offers a secure, efficient, and convenient solution to traditional home management methods. By leveraging technology, it enhances user comfort, optimizes energy usage, and provides seamless control over smart devices. This project demonstrates the potential of technology to transform daily life, promoting a smarter and more sustainable living environment.