Matematik A E2020 Uge 47, Forelæsning 2

Afsnit 13.1-3

Funktioner af flere variable:

Nødvendige og tilstrækkelige betingelser for globale og lokale ekstremumspunkter

Lidt overblik

- I dag: "Ekstremumsbestemmelse" for funktioner af 2 variable
 - Nødvendige førsteordensbetingelser (13.1)
 - Tilstrækkelige anden-ordensbetingelser for lokale ekstremumspunkter (13.3)
 - Tilstrækkelige betingelser for globale ekstremumspunkter (13.2)
 - Vigtige og ofte anvendte resultater!
- Husk prøveeksamen/lynprøve onsdag d. 2. dec!!!
 - Se dokument på Absalon for praktiske detaljer ("Om prøveeksamen/lynprøve" i modulet Kursusinfo mv)
 - Pensum til prøveeksamen: Alt stof fra forelæsningsplanen til og med denne uge (47). Opgaverne til holduv. næste uge er således også relevante for prøveeksamen.

Nødv. førsteordensbet. (13.1)

Betragt funktion f(x,y) defineret på $S \subseteq \mathbb{R}^2$

$$(x_0, y_0) \in S$$
 er et globalt maksimumspunkt for f hvis $f(x_0, y_0) \ge f(x, y)$ for alle $(x, y) \in S$

$$(x_0, y_0) \in S$$
 er et lokalt maksimumspunkt for f hvis $f(x_0, y_0) \ge f(x, y)$ for alle (x, y) i en omegn af (x_0, y_0)

["i omegn af (x_0, y_0) ": I lille cirkelskive med centrum (x_0, y_0)]

Bemærk:

Strengt globalt/lokalt max-pkt, hvis der gælder ">" i definitionen

Et globalt max-pkt er et lokalt max-pkt, men det omvendte gælder ikke nødvendigvis

Globalt/lokalt minimumspunkt defineres tilsvarende

Grafiske eksempler på globale/lokale ekstremumspunkter:

 $(x_0, y_0) = (0, 0)$ er et globalt min-pkt for $f(x, y) = x^2 + y^2$:

$$f(0,0) = 0$$

 $f(x,y) > 0$ for
 $(x,y) \neq (0,0)$

$$(x_0, y_0) = (0, 0)$$
 er et lokalt max-pkt for $f(x, y) = 5e^{-(x^2+y^2)} + x^2 + y^2$:

(0,0) er ikke et globalt max-pkt!

Lad (x_0, y_0) være lokalt maksimumspunkt for f(x, y)(og et "indre pkt" i S)

Betragt følgende funktioner af én variabel:

$$g(x) = f(x, y_0)$$

$$h(y) = f(x_0, y)$$

Da (x_0, y_0) er lokalt max-pkt for f er:

 x_0 lokalt max-pkt for g

 y_0 lokalt max-pkt for h

Derfor:

$$x_0$$
 er kritisk pkt for for g : $g'(x_0) = f'_1(x_0, y_0) = 0$
 y_0 er kritisk pkt for for h : $h'(y_0) = f'_2(x_0, y_0) = 0$

$$h'(y_0) = f_2'(x_0, y_0) = 0$$

(xo, yo) kritish pht"

Altså: (x_0, y_0) er et kritisk punkt for funktionen f

(kaldes også et stationært pkt)

[NB: samme udledning kan laves, hvis (x_0, y_0) er minimumspunkt]

Theorem 13.1.1 (s. 496): Nødvendige førsteordensbetingelser

Lad f(x,y) være en funktion defineret på $S \subseteq \mathbb{R}^2$

Hvis (x_0, y_0) er et indre lokalt ekstremumspunkt (max- eller min-punkt), så er (x_0, y_0) et kritisk punkt, dvs.

$$f_1'(x_0, y_0) = 0$$
 og $f_2'(x_0, y_0) = 0$

(Bemærk: Det antages, at de partielle afledede eksisterer)

Altså: Når vi søger efter indre ekstremumspunkter for f, så kan vi nøjes med at lede blandt de punkter, der opfylder førsteordensbetingelserne (FOCS)

$$f_1'(x,y) = 0$$
 og $f_2'(x,y) = 0$

Kort øvelse:

Vis, at funktionen $f(x,y) = (2x-6)^2 + 3y^4$ har globalt minimumspunkt i (3,0). Check, at dette er et kritisk punkt

$$f(3,0) = 0$$
. $f(x,y) \ge 0$ for alle $(x,y) \in \mathbb{R}^2$.
Dus. $(3,0)$ er et globalt min-pht. $f_1(3,0) = 0$
 $f_1'(x,y) = 2 \cdot 2(2x - 6) = 8x - 24$, $f_2'(x,y) = 12y^3$. $f_2'(3,0) = 0$

$$f_2(x,y) = 12y^3$$
. $f_2(3,0) = 0$

Tilstr. bet. for lokale ekstrem.-pkt (13.3)

For funktioner af én variabel (uge 40, forelæsning 2):

Sætning (8.6.2), s. 308:

Lad $f: I \to \mathbb{R}$ være to gange diff. og c være et indre kritisk pkt.

Hvis f''(c) < 0, så er c et (strengt) lokalt maksimumspunkt.

Hvis f''(c) > 0, så er c et (strengt) lokalt minimumspunkt.

Et lignende (men mere komplekst) resultat gælder for funktioner af to variable!

Vi skal have fat i alle de fire anden-ordens partielle afledede, som jo indgår i Hessematricen:

$$f''(x,y) = \begin{pmatrix} f''_{11}(x,y) & f''_{12}(x,y) \\ f''_{21}(x,y) & f''_{22}(x,y) \end{pmatrix}$$

Men først: Definition af "saddelpunkt" (s. 504)

Lad f(x,y) være funktion defineret på S og (x_0,y_0) et indre pkt i S

At (x_0, y_0) er et kritisk punkt for f, er en nødvendig men ikke tilstrækkelig betingelse for, at (x_0, y_0) er et lokalt ekstremumspunkt for f

Saddelpunkt: Et kritisk punkt, der ikke er et lokalt ekstremumspunkt

Eksempler:

$$f(x,y) = x^{2} - y^{2} + (x,y) = 2x$$

$$(x_{0},y_{0}) = (0,0) + (x_{1},y_{1}) = 2x$$

$$f(x,y) = x^2y$$

 $(x_0,y_0) = (0,0)$ knt. pl.t.

Theorem 13.3.1, s. 505-6:

Anden-ordens test for lokale ekstremumspkt.

Lad f(x,y) være en C^2 -funktion på mængden S.

Lad (x_0, y_0) være et indre kritisk punkt for f.

Definér:

$$A = f_{11}''(x_0, y_0), B = f_{12}''(x_0, y_0) = f_{21}''(x_0, y_0)$$
 og $C = f_{22}''(x_0, y_0)$
Så gælder:

- Hvis A < 0 og $AC B^2 > 0$, så er (x_0, y_0) et (strengt) lokalt maksimumspunkt
- Hvis A > 0 og $AC B^2 > 0$, så er (x_0, y_0) et (strengt) lokalt minimumspunkt
- Hvis $AC B^2 < 0$, så er (x_0, y_0) et saddelpunkt
- Hvis $AC B^2 = 0$, så kan (x_0, y_0) være et lokalt max-pkt, et lokalt min-pkt eller et saddelpunkt

Eksempel/øvelse:
$$f(x,y) = x^3 - 3x^2 + 2y^2$$

Bestem alle kritiske punkter

$$f_1(x,y) = 3x^2 - 6x$$
 $f_2(x,y) = 4y$

Krit. pht:

$$3x^{2}-6x=0$$
 (=> $3x(x-2)=0$ (=> $x=0$ eller $x=2$

$$4y=0$$
 (=> $y=0$ Kritiske plt:
$$(0,0) og(2,0)$$

Prøv for hvert kritisk pkt at afgøre, om det er et lokalt max-pkt,

et lokalt min-pkt eller et saddelpunkt

$$f''_{11}(x,y) = 6x - 6$$
 $f''_{12}(x,y) = 0$ $f''_{22}(x,y) = 4$

$$(0,0): A = -6 < 0 B = 0$$

$$A = -620 \quad 0 = 0$$

C = 9

$$AC - B^{2} = 6.4 - 0^{2} = 2470 =) lok min - pht$$

En smule baggrund for Thm 13.3.1

• Hvis A < 0 og $AC - B^2 > 0$, så er (x_0, y_0) et (strengt) lokalt/maksimumspunkt

"Hvor kommer disse betingelser fra?"

$$=y_0$$
 (x_0,y_0)
 -6
 -4
 -2
 0
 0
 0
 0

$$A = f_{11}''(x_0, y_0) < 0$$
:

Sikrer, at fkt $g(x) = f(x, y_0)$ har lok. max-pkt (x_0, y_0)

 $(A = g''(x_0))$

Dvs. at f betragtet som fkt kun på linien $y = y_0$ har lok. max-pkt i (x_0, y_0)

De to betingelser sikrer tilsammen, at det tilsvarende gælder for f på enhver linie gennem (x_0, y_0)

Og det sikrer endelig, at f(x,y) faktisk har lok. max-pkt i (x_0,y_0)

Tilstr. bet. for glob. ekstrem.-pkt (13.2)

For funktioner af én variabel (uge 40, forelæsning 1):

Lad $f: I \to \mathbb{R}$ og c være et (indre) kritisk pkt.

Hvis f er konkav $(f''(x) \le 0)$, så er c et maksimumspunkt.

Hvis f er konveks $(f''(x) \ge 0)$, så er c et minimumspunkt.

Et lignende resultat gælder for funktioner af to variable! Men det er mere komplekst at checke konkavitet/konveksitet af f

Nyt begreb: Konveks mængde i \mathbb{R}^2 Convex (s. 500)

Theorem 13.2.1, s. 500-1:

Tilstr. betingelser for globale max- og min-pkt Lad f(x,y) være en C^2 -funktion på den konvekse mgd S. Lad (x_0, y_0) være et indre kritisk punkt for f.

• (x_0, y_0) er et globalt max-pkt for f på S, hvis der for alle $(x, y) \in S$ gælder:

$$f_{11}''(x,y) \le 0, \quad f_{22}''(x,y) \le 0 \quad \text{og}$$

 $f_{11}''(x,y)f_{22}''(x,y) - \left[f_{12}''(x,y)\right]^2 \ge 0$

• (x_0, y_0) er et globalt min-pkt for f på S, hvis der for alle $(x, y) \in S$ gælder:

$$f_{11}''(x,y) \ge 0, \quad f_{22}''(x,y) \ge 0 \quad \text{og}$$

 $f_{11}''(x,y)f_{22}''(x,y) - \left[f_{12}''(x,y)\right]^2 \ge 0$

Simpelt eksempel (fra tidligere kort øvelse):

$$f(x,y) = (2x-6)^2 + 3y^4$$
 for alle $(x,y) \in \mathbb{R}^2$

$$f_1'(x,y) = 2(2(2x-6)) = 8x - 24$$
 konveks mgd!

$$f_2'(x,y) = 12y^3$$

$$(x_0, y_0) = (3, 0)$$
 er kritisk punkt

$$f_{11}''(x,y) = 8 \ge 0$$
 $f_{22}''(x,y) = 36y^2 \ge 0$

$$(x_0, y_0) = (3, 0)$$
 er kritisk punkt
$$f_{11}''(x, y) = 8 \ge 0 \qquad f_{22}''(x, y) = 36y^2 \ge 0$$

$$f_{11}''(x, y)f_{22}''(x, y) - \left[f_{12}''(x, y)\right]^2 = 8 \cdot 36y^2 \ge 0$$

$$f_{12}''(x,y) = 0$$

Thm 13.2.1 giver da, at (3,0) er et globalt minimumspunkt