Computación 1

Proyecto de F'isica

Facultad de Ciencias Físico-Matemáticas, Universidad Autónoma de Sinaloa

El objetivo del presente proyecto es el de usar las herramientas de cálculo numérico para resolver una ecuación diferencial. El método a emplear se llama *Runge Kutta de cuarto orden* a programar en FORTRAN. El trabajo consiste en investigar la formulación del método y programarlo en FORTRAN. Algunas soluciones numéricas serán graficadas en Python dependiendo de lo solicitado por el problema.

Enunciado del problema

Estudio de la ecuación asociada los circuitos RL. Los aparatos electrónicos cotidianos constan de diversos componentes. Los más comúnes son las resistencias, capacitores e inductores. Cuando se conectan una resistencia (R) con un inductor (L) a una diferencia de potencial (U), se forma un circuito conocido como RL. Este sistema es caracterizado por una ecuación diferencial, la cual es

$$U = L \frac{dI(t)}{dt} + RI(t) \tag{1}$$

donde I(t) es la corriente que fluye en el circuito conectado en serie y t en segundos. El informe del proyecto debe centrarse en la ecuación diferencial de los circuitos RL y contener los siguientes puntos,

- 1. Escribir un programa en FORTRAN que resuelva, usando el método numérico de Runge Kutta de grado 4, la ecuación (1) y grafique las soluciones en Python para las condiciones,
 - $R = 4.1 \boxtimes$, L = 3.5 H y U = 8.2 V,
 - $R = 2.5 \boxtimes$, L = 5.8 H y U = 3.3 V,
 - $R = 0.2 \boxtimes , L = 1.8 H \vee U = 2.3 V ,$

en el rango $t \ 2 \{0, 20 \ s\}$ tomando para la condición $I(0) = 0 \ A$.

- 2. Consideremos ahora una resitencia variable, es decir, resuelva la ecuación (1) y grafique las soluciones en Python para las condiciones,
 - $R(t) = 3.2 t^2 s^{-2} \boxtimes$, L = 1.7 H y U = 1.4 V,
 - $R(t) = 2.3 t^{1.5} s^{-1.5} \boxtimes , L = 4.5 H y U = 3.9 V ,$
 - $R(t) = 5.9 t^{0.6} s^{-0.6} \boxtimes L = 7.6 H y U = 4.2 V$

en el rango $t \ 2 \{0, 20s\}$ tomando para la condición I(0) = 0 A.

- 3. Supongamos una diferencia de potencial variable, es decir, resuelva la ecuación (1) y grafique las soluciones en Python para las condiciones,
 - $R = 2.6 \boxtimes$, L = 1.2 H y U(t) = 5 sin (4t/s) V,
 - $R = 3.2 \boxtimes$, L = 5.5 H y U(t) = 2.3 t sin (3t/s) V/s,
 - $R = 4.9 \boxtimes$, $L = 5.6 H y U(t) = 1.3 t^2 \cos(0.5 t/s) V/s^2$,

en el rango $t \ 2 \{0, 20s\}$ tomando para la condición I(0) = 1 A.

- 4. Finalmente, consideremos una resistencia variable y una diferencia de potencial variable, es decir, resuelva la ecuación (1) y grafique las soluciones en Python para las condiciones,
 - $R(t) = 1.3 t^2 \ \text{m/s}^2$, $L = 3.4 H y U(t) = 9.2 t \sin(0.25 t/s) V$,
 - $R(t) = 4.7 t \, \text{B/s}, L = 2.3 \, \text{H y U}(t) = 4.2 \sin^2(3 \, t/s) \, \text{V/s},$
 - $R(t) = 5.3 t \mathbb{Z}/s$, $L = 3.9 H y U(t) = 4.1 t^2 \cos(5 t/s) V/s^2$,

en el rango $t \ 2 \{0, 20s\}$ tomando para la condición I(0) = 0 A.