מטלת מנחה 11 – מתמטיקה בדידה

שאלה 1

- א. לא נכון
 - ב. נכון
- ג. לא נכון
 - ד. נכון
- ה. לא נכון
- ו. לא נכון
 - ז. נכון
 - ח. נכון

שאלה 2

. קבוצות A,B,C

בשאלה זו, נניח כי שלושת הקבוצות חלקיות ליקום U

נוכיח:

$$(A \backslash B) \cup (B \backslash C) = (A \cup B) \backslash (B \cap C)$$
 .

 $(A \cup B) \setminus (B \cap C)$ נוכיח על פי זהויות אלגבריות כאשר נקודת המוצא שלנו היא

 $= (A \cup B) \cap (B \cap C)^c$,46 לפי המשפט בעמוד

 $= (A \cup B) \cap (B^c \cup C^c)$ לפי דה-מורגן,

 $= (A \cap (B^c \cup C^c)) \cup (B \cap (B^c \cup C^c))$ לפי פילוג

 $=(A\cap B^c)\cup (A\cap C^c)\cup (B\cap B^c)\cup (B\cap C^c)$ לפי פילוג.

 $= (A \backslash B) \cup (A \backslash C) \cup (B \backslash B) \cup (B \backslash C)$,46 לפי המשפט בעמוד

 $=(A\backslash B)\cup(A\backslash C)\cup\phi\cup(B\backslash C)=(A\backslash B)\cup(A\backslash C)\cup(B\backslash C)$ נפי חוקי הביטול בעמודים 33, 43:

33 נוכיח כי ($A \setminus C$) בעמוד לפי המשפט בעמוד ($A \setminus C$), ולכן ניתן לוותר על איחודי נוכיח כי

 $A \subseteq B$ עבור כל $A \cup B = B$ הקובע כי

 $.\phi \subseteq (A \backslash B) \cup (B \backslash C)$ אז ברור ש A\C = ϕ

 $x \notin C$, $x \in A \leftarrow x \in A \setminus C$ אחרת, יהי

 $x \in (A \backslash B) \cup (B \backslash C) \leftarrow x \in B \backslash C \leftarrow x \in B$ מקרה 1:

 $x \in (A \backslash B) \cup (B \backslash C) \leftarrow x \in A \backslash B \leftarrow x \notin B$:2 מקרה

 $(A \backslash B) \cup (B \backslash C)$ לכן הביטוי שווה ל

$\mathbf{C} = \mathbf{B}$ אז $\mathbf{C} = \mathbf{A}$ או $\mathbf{C} = \mathbf{P}(\mathbf{A}) \cup \mathbf{P}(\mathbf{B})$ ב. אם

(קונטרה-פוזיציה) $P(C) \neq P(A) \cup P(B)$ נניח בשלילה כי $A,B \neq C$ נניח בשלילה כי

. B \nsubseteq C V $C \nsubseteq B$ כמו כן מתקיים .A \nsubseteq C V $C \nsubseteq A$ לכן , $A \neq C$

 $x \notin C$, $x \in A$ לכן קיים A \nsubseteq C :1 מקרה

 $\{x\} \notin P(C), \{x\} \in P(A)$ לכן

לפי המשפט בעמוד 33, $P(C) \cup P(B) \cup P(A) \cup P(B)$, ולכן אינו ב $\{x\} \in P(A) \cup P(B) \cup P(B) \cup P(B) \cup P(B)$ אך אינו ב

 $y\not\in \mathcal{C}\;,y\in \mathcal{B}$ קיים אלכן לכן מקרה ב
 $\mathcal{C}\not\subseteq \mathcal{A}$ וגם לכן לכן מקרה

 $\{y\} \notin P(C), \{y\} \in P(B)$ לכן

ולכן $P(\mathcal{C})$ אך אינו ב $\{y\} \in P(A) \cup P(B) \cup P(B)$, ולכן $P(B) \subseteq P(A) \cup P(B)$ אך אינו ב $\{y\} \in P(A) \cup P(B) \cup P(B) \cup P(B) \cup P(B) \}$ ארך אינו בוצות אינן שוות.

 $b \notin B$, $a \notin A$: $a,b \in C$ מקרה $C \nsubseteq A$, $C \nsubseteq B$:3 מקרה

 $\{a,b\} \in P(C)$ לכן

 $\{a,b\} \nsubseteq A \Leftarrow a \notin A \text{ (c) } \{a,b\} \notin P(A)$

(B, b באופן דומה עבור) $\{a,b\}$ ∉ P(B)ו

. אבל הינו שוות אינן שוות אינן שוות P(C) אבל הינו $\{a,b\} \notin P(A) \cup P(B)$ לכן

$|A\cap B|=1$ אז $|P(A)|=2\cdot |P(Aackslash B)|$ ג. אם A,B סופיות ואם

 $A \setminus B \subseteq A$ לפי המשפט בעמוד 42 מתקיים כי

לכן לפי המשפט בעמוד 29 עבור A סופית מתקיים כי גם A\B לכן לפי המשפט בעמוד

 $|P(A)| = 2 \cdot |P(A \setminus B)|$ לפי ההנחה

,2 $^{|A|}=2\cdot 2^{|A\setminus B|}$ לכן לפי המשפט עבור $A,A\setminus B$ קבוצות סופיות:

 $|A| = 1 + |A \setminus B|$ כלומר

 $:A \setminus B, A \cap B$ לפי המשפט בעמוד 37

 $|(A \backslash B) \cup (A \cap B)| = |A \backslash B| + |A \cap B| - |(A \backslash B) \cap (A \cap B)|$

 $x \notin A \cap B \leftarrow x \notin B$, $x \in A \setminus B$ היא קבוצה ריקה משום שעבור כל ($A \setminus B$) היא קבוצה הקבוצה

, $A \setminus B = A \cap B^c$ 46 משום שלפי המשפט בעמוד A היא הקבוצה ($A \setminus B$) \cup ($A \cap B$) היא

 $.(A \backslash B) \cup (A \cap B) = (A \cap B^c) \cup (A \cap B)$ ולכן

 $A \cap (B \cup B^c)$ לפי פילוג, השוויון לעיל שווה ל

.A ∩ Uלפי המשפט בעמוד 45 עבור B ∪ $B^c = U$:B עבור 45 אניל שווה לפי

 $A \cap U = A$ 45, לפי המשפט בעמוד A ⊆ U, לפי

 $|A|=1+|A\backslash B|$ לכן מתקיים $|A|=|A\backslash B|+|A\cap B|-|\phi|$ וגם

 $|A \cap B| = 1$ ולכן, $|A \setminus B| + |A \cap B| - 0 = 1 + |A \setminus B|$ לכן

שאלה 3

יהיו $A,B,C\subseteq U$ קבוצות.

נוכיח:

$A \cup B^c \neq U$ אז $A \subseteq B$ א.

לפי ההנחה $A \subseteq B \land B \nsubseteq A$, כלומר $A \subseteq B \land B \nsubseteq A$ לכן לפי $A \not \subseteq B$ קיים $A \not \subseteq A$ מ $A \not \subseteq A$ נובע כי $A \not \subseteq A$ נובע כי $A \not \subseteq A \cap A$, כלומר $A \not \subseteq A \cap A \cap A$

 $x \in U$ מתקיים $x \in B$ כמו כן לפי הנתון $A \subseteq U$ מתקיים

. מכאן שהקבוצות בהכרח אינן שוות. $A \cup B^c$ מצאנו איבר השייך ל

A = C אז $A^c \Delta B = B^C \Delta C$ ב.

 $A^c \Delta B = B^c \Delta C$ לפי הנתון $A^c \Delta B = C \Delta B^c$ לפי חילופיות $A^c \Delta B = C \Delta B^c$ נפעיל $\Delta B^c = C \Delta B^c$ מימין ונקבל $\Delta B^c = (C \Delta B^c) \Delta B^c$ מימין ונקבל $A^c \Delta (B \Delta B^c) = C \Delta (B^c \Delta B^c)$ לפי קיבוציות $\Delta B^c = U$ לפי עמוד $\Delta B^c = U$

$A \cap B \subseteq C$ אז $A \cap B \subseteq A \triangle B \triangle C$ ג. אם

A = C ולכן

 $\phi \subseteq C$ אז ברור ש $A \cap B = \phi$ אילו

 $x \in C$ אחרת, יהי $x \in A \cap B$ ונוכיח כי

 $x \in A\Delta B\Delta C$ לכן $A \cap B \subseteq A\Delta B\Delta C$ לפי ההנחה

 $x \in A\Delta B \ xor \ x \in C$ כלומר $x \in (A\Delta B)\Delta C$ לפי קיבוציות

 $x \notin A \Delta B$ ולכן $(x \in A \ xor \ x \in B)$ מאחר ו $(x \in A \ xor \ x \in B)$ א מתקיים, $(x \in A \cap B)$ מאחר ו

 $x \in C \leftarrow x \notin A\Delta B \land (x \in A\Delta B \ xor \ x \in C)$ לכן מתקיים

שאלה 4

-נמצא קבוצות מהסוג A_k השוות ל

$$\bigcup_{k=1}^{\infty}A_{2k}$$
 .א

נראה כי עבור k=2 יתקבל שוויון נכון

$$\bigcup_{k=1}^{\infty} A_{2k} = A_2 \cup A_4 \cup A_6 \cup A_8 \cup ...$$

x=2kn=2(kn) עבור כל $n\in N$ קיים $n\in N$ כך ש $A_{2k}=\{2kn|n\in N\}$ ולכן עבור כל $A_{2k}=\{2kn|n\in N\}$ הקבוצה A_2 המספר הוא טבעי (כפל טבעיים הוא טבעי), מכאן שלפי הגדרת A_2 מתקיים כי A_2 במילים אחרות, כל קבוצה מהצורה A_{2k} היא חלקית לקבוצה A_2

מכאן אנו מסיקים שהביטוי בשאלה הוא איחוד אינסופי של הקבוצה ${
m A}_2$ עם קבוצות החלקיות לה, ולכן הביטוי שווה ${
m A}_2$.

$\bigcap_{k=1}^5 A_k$.ב

$$\bigcap_{k=1}^{5} A_k = A_1 \cap A_2 \cap A_3 \cap A_4 \cap A_5$$

מהגדרות הקבוצות לעיל, ניתן להסיק כי הקבוצה השווה לאיחוד הקבוצות לעיל היא הקבוצה המכילה את הכפולות מהגדרות המשותפות של 1, 2, 3, 4, 5. כלומר, $k=5\cdot 4\cdot 3\cdot 1=60$ (אין צורך לספור את 2 משום שכל כפולה משותפת של 2 עם 4 היא **בהכרח** כפולה של 4).

לכן k=60.

$$\bigcap_{k=1}^{\infty} A_k$$
 . ג

$$\bigcap_{k=1}^{\infty} A_k = A_1 \cap A_2 \cap A_3 \cap A_4 \cap \dots$$

בדומה לסעיף הקודם, עלינו למצוא את הכפולות האי-שליליות המשותפות של **כל** המספרים.

n-1עבור כל $n \in \mathbb{N}$ אז n+1 אם $n \geq 2$, אם $n \in \mathbb{N}$

n=n אחרת, $n+1 \neq 2n$ ו $n+1 \neq n$ אחרת, כאשר $n+1 \neq n$ אחרת, אחרת שום שהמחלקים של n הקרובים ביותר ל n+1 הם n, כאשר ר $n \neq n$ וווא המענה ביותר ל $n \neq n$

קיבלנו שאין אף $N \geq 2$, $n \in N$ השייך לקבוצה. גם 1 לא שייך לקבוצה כי $n \geq 2$, $n \in N$ נשארנו עם הקבוצה הסופית $n \geq 2$, $n \in N$ השייך לקבוצה הסופית. $n \geq 2$, $n \in N$ השייך לקבוצה הסופית. $n \geq 2$, $n \in N$ השייך לקבוצה הסופית $n \geq 2$, $n \in N$ השייך לקבוצה הסופית $n \geq 2$ השייך לקבוצה הסופית השייר הש

A_6 ∪ { $x + 3 \mid x \in A_6$ } . \top

נראה כי עבור k=3 יתקבל שוויון נכון.

שווה ל $\{x+3|x\in A_6\}$ שווה ל $\{x+3|x\in A_6\}$ (כל הכפולות הזוגיות האי-שליליות של 3), והקבוצה $\{x+3|x\in A_6\}$ שווה ל $\{x+3|x\in A_6\}$ (כל הכפולות האי-שליליות האי-זוגיות של 3).

איחוד הכפולות האי-שליליות האי-זוגיות של 3 עם הכפולות האי-שליליות האי-שליליות האי-שליליות האי-זוגיות של 3 ייתן לנו את קבוצת כל הכפולות האי-שליליות של 3, כלומר את הקבוצה A_3 (0,3,6,9,12,15,)