

Probability Distributions: Expectations and Variance

Introduction to Data Science Algorithms

Dirk Grunwald

• Random variables are complex - contain a lot of information

- Random variables are complex contain a lot of information
- If we want to summarize a R.V. by a single value, the *expectation*, or the location of the "central value" would clearly be useful

- Random variables are complex contain a lot of information
- If we want to summarize a R.V. by a single value, the expectation, or the location of the "central value" would clearly be useful
- If we want to use two values to describe a R.V, the variance, or spread from the central value, would be next logical choice.

- Random variables are complex contain a lot of information
- If we want to summarize a R.V. by a single value, the expectation, or the location of the "central value" would clearly be useful
- If we want to use two values to describe a R.V, the variance, or spread from the central value, would be next logical choice.
- You might debate this and prefer robust measures, like median and IQR.

Highlights For Expectation

Suppose X is a R.V's, c is a constant and g is an arbitrary function.

1 def.
$$E[X] = \sum x_i P(X = x_i) = \sum_i x_i p_i$$

- **2** E[c] = c
- E[cX] = cE[X]
- **4** $E[g(X)] = \sum_{i} g(a_i) P(X = a_i)$

Highlights for Variance

Suppose X is a R.V's, c is a constant and g is an arbitrary function.

1 def.
$$Var[X] = E[(X - E[X])^2]$$

- ② Var[c] = 0
- $3 Var[cX + s] = c^2 Var[X]$
- 4 $Var[X] = E[X^2] (E[X])^2$

Expectation of The Mean...

Expected Mean

 The expectation of a discrete R.V. X taking on values x₁, x₂... is the number

$$E[X] = \sum_{k} x_k P[X = x_k] = \sum_{k} x_k p(x_k)$$

- We also call E[X] the expected value or mean of X
- Similar form for continious R.V.

$$E[X] = \int_{k} x_{k} f(x_{k})$$

Expected Mean: Example

 Assume a R.V. X is over only the values {1,2,3} with corresponding probabilities {0.1,0.6,0.3}.

$$E[X] = \sum_{i} x_{i} p_{i}$$

$$= 1 * 0.1 + 2 * 0.6 + 3 * 0.3$$

$$= 0.1 + 1.2 + 0.9$$

$$= 2.2$$

Expectation for Distribution: Bernoulli

Bernouli Distribution with parameter p

$$E[X] = 1 \times p + 0 \times (1-p) = p$$

Expectation for Distribution: Binomial

$$E[X] = \sum_{k=0}^{n} k \binom{n}{k} p^{k} (1-p)^{n-k} = \sum_{k=0}^{k} k \frac{n!}{(n-k)!k!} p^{k} (1-p)^{n-k}$$

$$= np \sum_{k=0}^{n} k \frac{(n-1)!}{((n-1)(k-1))!k!} p^{k-1} (1-p)^{(n-1)-(k-1)}$$

$$= np \sum_{k=1}^{n} \binom{n-1}{k-1} p^{k-1} (1-p)^{(n-1)-(k-1)}$$

$$= np \sum_{l=0}^{n-1} \binom{n-1}{l} p^{l} (1-p)^{(n-1)-l} \qquad l = k-1$$

$$= np \sum_{l=0}^{m} \binom{m}{l} p^{l} (1-p)^{m-l} \qquad m = n-1$$

$$= np (p+(1-p))^{m} \qquad \text{Binomial theorem}$$

$$= np$$

Expectation for Distribution: Binomial Mk. II

Bernoulli is

$$E[X] = 1 \times p + 0 \times (1-p) = p.$$

Binomial is just *n* Bernoulli trails.

Earlier we stated that E[c X] = c E[X]. Let's use that.

$$E[X_{\text{binomial}}] = E[n \times X_{\text{bernoulli}}]$$

= $nE[X_{\text{bernoulli}}]$
= np

$$E[c] = c$$

$$E[c] = c$$

$$E[cX] = \sum_{i} c x_{i} p_{i} = c \sum_{i} x_{i} p_{i} = c E[X]$$

$$E[c] = c$$

$$E[cX] = \sum_{i} c x_{i} p_{i} = c \sum_{i} x_{i} p_{i} = c E[X]$$

This generalizes to a "change of units" (e.g. $F \rightarrow C$)

$$E[rX + s] = \sum_{i} (r x_{i} + s)p_{i} = r \sum_{i} x_{i}p_{i} + \sum_{i} sp_{i} = rE[X] + s$$

$$E[c] = c$$

$$E[cX] = \sum_{i} c x_{i} p_{i} = c \sum_{i} x_{i} p_{i} = c E[X]$$

This generalizes to a "change of units" (e.g. $F \rightarrow C$)

$$E[rX + s] = \sum_{i} (r x_i + s) p_i = r \sum_{i} x_i p_i + \sum_{i} s p_i = rE[X] + s$$

$$E[g(X)] = \sum_{i} g(x_i)p_i = \sum_{i} g(x_i)P(X = x_i)$$

Variance..

Variance

Variance is defined as

$$Var[X] = E[(X - E[X])^2]$$

Variance

Variance is defined as

$$Var[X] = E[(X - E[X])^2]$$

Note that E[X] is a constant; could write it *e.g.* μ .

$$Var[X] = E[(X - \mu)^2]$$

Variance

Variance is defined as

$$Var[X] = E[(X - E[X])^2]$$

Note that E[X] is a constant; could write it *e.g.* μ .

$$Var[X] = E[(X - \mu)^2]$$

Var[X] >= 0 because it's a sum of squares.

Variance is defined as

$$Var[X] = E[(X - E[X])^2]$$

Note that E[X] is a constant; could write it *e.g.* μ .

$$Var[X] = E[(X - \mu)^2]$$

Var[X] >= 0 because it's a sum of squares.

$$SD[X] = \sqrt{Var[X]}$$
 – same units as $E[X]$.

Expected Variance

The variance of a R.V. X is

$$Var(X) = E[(X - E[X])^{2}] = E[(X - \mu)^{2}]$$

$$= E[(X - \mu)(X - \mu])]$$

$$= E[X^{2} - 2X\mu - \mu^{2}]$$

$$= E[X^{2}] - E[2X\mu] + E[\mu^{2}]$$

$$= E[X^{2}] - 2\mu E[X] + \mu^{2}$$

$$= E[X^{2}] - 2\mu^{2} + \mu^{2}$$

$$= E[X^{2}] - E[X]^{2}$$

Expected Variance: Example

The *variance* of a R.V. *X* is $Var(X) = E[(X - E[X])^2] = E[X^2] - E[X]^2$.

Same R.V. X over only the values $\{1,2,3\}$ with corresponding probabilities $\{0.1,0.6,0.3\}$, E[X]=2.2

$$Var[X] = 0.1 \times (1-2.2)^2 + 0.6 \times (2-2.2)^2 + 0.3 \times (3-2.2)^2 = 0.36$$

Expected Variance: Example

The *variance* of a R.V. *X* is $Var(X) = E[(X - E[X])^2] = E[X^2] - E[X]^2$.

Same R.V. X over only the values $\{1,2,3\}$ with corresponding probabilities $\{0.1,0.6,0.3\}$, E[X]=2.2

$$Var[X] = 0.1 \times (1 - 2.2)^2 + 0.6 \times (2 - 2.2)^2 + 0.3 \times (3 - 2.2)^2 = 0.36$$

$$Var[X] = (0.1*1^2 + 0.6*2^2 + 0.6*3^2) - 2.2^2 = 5.20 - 4.84 = 0.36$$

Since the variance is a sum of squares it's always positive

Examples for Distribution

Bernouli Distribution with parameter p

$$E[X] = 1 \times p + 0 \times (1-p) = p$$

$$Var[X] = E[(X-E[X])^{2}]$$

$$= E[X^{2}]-E[X]^{2}$$

$$= p-p^{2}$$

$$= p(1-p)$$

This is because

$$E[X^2] = Pr[X = 1] * 1^2 + P[X = 0] * 0^2$$

= $p + 0 = p$

Change of unit for Variance

$$Var[r X + s] = r^2 Var[X]$$

Change of unit for Variance

$$Var[r X + s] = r^2 Var[X]$$

$$Var[X+s] = E[(X+s)^{2}] - E[X+s]^{2}$$

$$= E[X^{2} + 2sX + s^{2}] - E[X]^{2} - 2sE[X] - s^{2}$$

$$= E[X^{2}] + E[sX] + E[s^{2}] - E[X]^{2} - 2sE[X] - s^{2}$$

$$= E[X^{2}] + sE[X] + s^{2} - E[X]^{2} - 2sE[X] - s^{2}$$

$$= E[X^{2}] - E[X]^{2}$$

$$= Var[X]$$

$$Var[r X + s] = r^2 Var[X]$$

$$Var[X+s] = E[(X+s)^{2}] - E[X+s]^{2}$$

$$= E[X^{2} + 2sX + s^{2}] - E[X]^{2} - 2sE[X] - s^{2}$$

$$= E[X^{2}] + E[sX] + E[s^{2}] - E[X]^{2} - 2sE[X] - s^{2}$$

$$= E[X^{2}] + sE[X] + s^{2} - E[X]^{2} - 2sE[X] - s^{2}$$

$$= E[X^{2}] - E[X]^{2}$$

$$= Var[X]$$

Generalize..

$$Var[rX + s] = r^2 Var[X]$$

Undefined means, COV and a warning..

Undefined Means

- Not every probability distribution will have a defined mean, variance or higher order moment.
- For example Let *X* assume the values $2, 2^2, 2^3, ..., 2^k, ...$ with pmf $p(x_k) = p(2^k) = 1/2^k$ for k = 1, 2, 3, ...

Undefined Means

- Not every probability distribution will have a defined mean, variance or higher order moment.
- For example Let *X* assume the values $2, 2^2, 2^3, ..., 2^k, ...$ with pmf $p(x_k) = p(2^k) = 1/2^k$ for k = 1, 2, 3, ...
- It's a valid probability distribution since..

$$\sum_{k_1}^{\infty} p(x_k) = \sum_{k=1}^{\infty} 1/2^k$$

$$= 1/2 \sum_{k=0}^{\infty} 1/2^k$$

$$= 1/2 * \frac{1}{1-1/2} = 1$$

But the mean is undefined..

$$\sum_{k_1}^{\infty} x_k p(x_k) = \sum_{k=1}^{\infty} 2^k \frac{1}{2^k}$$
$$= 1 + 1 + \dots$$
$$= \infty$$

This is true of the Cauchy distribution and sometimes the Pareto

Squared Coefficient of Variation

 To understand variance relative to E[X], you have to compare two numbers.

Squared Coefficient of Variation

- To understand variance relative to E[X], you have to compare two numbers.
- People are bad at that.

Squared Coefficient of Variation

- To understand variance relative to E[X], you have to compare two numbers.
- · People are bad at that.
- C.O.V. is used to measure the degree of irregularity of a positive random variable (P[X < 0] = 0).

$$C_X^2 = \frac{Var[X]}{E[X]^2}$$

- Or, C.O.V = $\frac{Var[X]}{E[X]^2} = \frac{\sqrt{Var[X]}}{\sqrt{E[X]^2}} = \frac{SD[X]}{|E[X]|}$
- The C.O.V. of an exponential distribution is 1

Don't Trust Just Numbers

Anscombe's Quartet

Each dataset has the same summary statistics (mean, standard deviation, correlation), and the datasets are clearly different, and visually distinct.

Unstructured Quartet

Each dataset here also has the same summary statistics. However, they are not clearly different or visually distinct.

Don't Trust Just Numbers

https://www.autodeskresearch.com/publications/samestats

