

UNIVERSIDADE FEDERAL DO PARÁ GRADUAÇÃO EM ENGENHARIA MECÂNICA GERÊNCIA DE MANUTENÇÃO

Previsão de Demanda

Organização da Apresentação

- Introdução
- Noções básicas de previsão
- Técnicas qualitativas
- Técnicas quantitativas:
 - Previsões baseadas em séries temporais
 - Previsões baseadas em correlações
- Manutenção e monitoramento do modelo
- Resumo
- Referências

 Realizar uma operação de manutenção eficaz requer planejamento eficiente de atividades e recursos de manutenção.

• Exemplos de recursos de manutenção incluem peças de reposição, mão de obra de diferentes habilidades (artesãos), ferramentas, instrumentos, tempo e dinheiro.

- Como o planejamento é realizado para tarefas de manutenção futuras, ele deve ser baseado em boas estimativas da carga de trabalho, a qual possui dois componentes principais:
 - (1) manutenção planejada, incluindo revisões e paradas planejadas; e

• (2) manutenção corretiva.

As estimativas da carga de trabalho são obtidas por previsão.

- Em termos de horizonte de tempo, as previsões são normalmente classificadas em três tipos principais:
 - (1) curto prazo, variando de dias a semanas;
 - (2) médio prazo, variando de semanas a meses; e
 - (3) longo prazo, variando de meses a anos.

Para cada horizonte, diferentes decisões sobre os recursos são consideradas para alterar a capacidade de manutenção do departamento.

 Para cada período de planejamento, as decisões de planejamento de capacidade envolvem o número de funcionários, o nível de backlog, carga de trabalho de horas extras e carga de trabalho de subcontratos.

 A alocação adequada dos vários recursos de manutenção para atender a uma carga de trabalho flutuante é um problema complexo e importante.

Uma variedade de técnicas são usadas para fazer a previsão.

Noções básicas de previsão

- As técnicas de previsão são geralmente classificadas em dois tipos principais:
 - Técnicas qualitativas (subjetivas): são naturalmente usadas na ausência de dados históricos (por exemplo, para novas máquinas ou produtos) e são baseadas em julgamento pessoal ou especializado;

• Técnicas quantitativas (objetivas): são usados dados numéricos existentes (por exemplo, para máquinas e produtos antigos) e são baseadas em métodos matemáticos e estatísticos.

- As técnicas quantitativas podem ser divididas em:
 - (1) modelos de séries temporais, que usam apenas o histórico de dados da variável que está sendo prevista; e

• (2) modelos causais ou de variável preditora, que usam dados de outras variáveis (preditoras) que tenham alguma relação com a demanda da variável de interesse, ou seja, envolvem correlação.

- As seguintes observações sobre previsão de demanda são válidas:
 - (1) as previsões geralmente não são exatas;
 - (2) um intervalo de previsão é melhor do que um único número;
 - (3) previsões agregadas são mais precisas do que previsões de item único, já que em grupo os erros individuais de previsão se minimizam;
 - (4) a precisão das previsões é maior com horizontes de tempo mais curtos; e
 - (5) as previsões não devem ignorar informações conhecidas e relevantes.

- Os principais critérios para escolher uma técnica de previsão incluem:
 - (1) acurácia e custo desejados;
 - Nem sempre a técnica mais acurada e mais cara é a mais indicada.

Itens pouco significativos

- Admitem maior margem de erro
- Técnicas mais simples

- Os principais critérios para escolher uma técnica de previsão incluem:
 - (2) horizonte de tempo para a previsão: sendo que afeta a análise das variações extraordinárias; e

- Os principais critérios para escolher uma técnica de previsão incluem:
 - (3) disponibilidade de dados para a técnica fornecida.

• A previsão qualitativa ou subjetiva é usada em qualquer caso em que as técnicas de previsão quantitativa não são aplicáveis. Tais casos incluem inexistência, indisponibilidade, não confiabilidade e confidencialidade dos dados.

 A previsão qualitativa também é usada quando o horizonte de previsão é muito longo, por exemplo, 20 anos ou mais, de modo que as técnicas de previsão quantitativa se tornam não confiáveis.

 Na ausência de dados numéricos, boas previsões qualitativas ainda podem ser obtidas solicitando sistematicamente as melhores estimativas subjetivas dos especialistas no campo dado.

 Para requisitos de manutenção de novas plantas ou equipamentos, as técnicas de previsão qualitativa incluem benchmarking com plantas semelhantes e referência às instruções de manutenção fornecidas pelos fabricantes do equipamento.

Algumas técnicas qualitativas

- Composição da força de vendas: cada membro da equipe de vendas envia uma previsão para os itens que ele ou ela vendem, e então a gerência consolida.
- Pesquisas com clientes: informações são coletadas diretamente com os clientes, devendo ser cuidadosamente planejadas para encontrar tendências futuras e preferências de mudança.
- Júri de Executivos Essa técnica busca a opinião de pequenos grupos, que normalmente são compostos por executivos de alto nível, sobre uma variável de estudo qualquer que se pretenda prever. Nem sempre o resultado representa consenso e pode ser frágil por permitir viés.
- Analogia histórica Usada para produtos que estão no início de seu ciclo de vida ou para lançamentos. Como o produto não tem um histórico, a previsão é feita através de uma analogia com um produto similar. A técnica se baseia na premissa de que alguns padrões de consumo se repetem em produtos similares.

• Segundo Al-Fares e Duffuaa [1], esta é a técnica mais sofisticada para previsão qualitativa.

Nela, as previsões são obtidas a partir da consulta de especialistas independentes.

• O método Delphi pode ser aplicado em manutenção em várias áreas, incluindo a determinação de padrões de tempo e intervalos de tempo de manutenção preventiva, bem como a estimativa da vida útil restante do equipamento.

 Os especialistas são cuidadosamente selecionados e consultados usando questionários estruturados que são conduzidos em duas ou mais rodadas.

 No final de cada rodada, um resumo anônimo das últimas previsões dos especialistas, bem como as razões que eles forneceram para seus julgamentos, é fornecido aos especialistas por um facilitador.

• Os participantes são encorajados a revisar suas respostas anteriores à luz das respostas de outros membros do grupo.

• Acredita-se que durante esse processo as variações nas respostas diminuirão gradualmente e que o grupo convergirá para um consenso.

• O processo é encerrado após um critério de parada predefinido (por exemplo, número de rodadas - normalmente seis de acordo com Tubino [2], obtenção de consenso e estabilidade dos resultados), sendo que as pontuações médias ou medianas da última rodada determinam as estimativas finais.

- Vantagens:
 - (1) ele alcança um consenso rápido;
 - (2) os participantes podem estar em qualquer lugar do mundo;
 - (3) ele pode cobrir uma ampla gama de conhecimentos;
 - (4) ele evita o pensamento de grupo, pois a troca de ideias é impossível ou impraticável.

- Desvantagens:
 - (1) ele não lida bem com mudanças de paradigma;
 - (2) seu sucesso depende da qualidade dos especialistas.

 Nas técnicas quantitativas (objetivas) são usados dados numéricos existentes (por exemplo, para máquinas e produtos antigos) e são baseadas em métodos matemáticos e estatísticos.

- As técnicas quantitativas podem ser divididas em:
 - (1) modelos de séries temporais, que usam apenas o histórico de dados da variável que está sendo prevista; e

• (2) modelos causais ou de variável preditora, que usam dados de outras variáveis (preditoras) que tenham alguma relação com a demanda da variável de interesse, ou seja, envolvem correlação.

- Para desenvolver um modelo de previsão quantitativa, as etapas abaixo devem ser seguidas:
 - 1. Definir a variável a ser prevista e identificar possíveis relações de causa e efeito e variáveis preditoras associadas;
 - 2. Coletar e validar os dados disponíveis para erros e outliers;
 - 3. Traçar os dados ao longo do tempo e procurar os principais padrões, incluindo estacionariedade, tendências e sazonalidade;
 - 4. Propor vários modelos de previsão e determinar os parâmetros e previsões de cada modelo;
 - 5. Usar a análise de erros para testar e validar os modelos e selecionar o melhor;
 - 6. Refinar o modelo selecionado e tente melhorar seu desempenho;
 - Controlar o modelo.

- Os padrões mais frequentes nesses modelos são os seguintes:
 - 1. Estacionário: nível ou demanda constante;
 - 2. Crescimento ou tendência: padrão de crescimento ou declínio de longo prazo;
 - 3. Sazonalidade: padrão cíclico que se repete em intervalos fixos (Ex: férias escolares, feriados); e
 - 4. Ciclos econômicos: semelhantes à sazonalidade, mas a duração e a magnitude do ciclo podem variar.
 - É válido destacar que variações irregulares na demanda podem acontecer devido fatores excepcionais (greves ou catástrofes climáticas) que não podem ser previstos. Nesse caso, esses dados devem ser retirados da série histórica e substituídos pela média.
 - Excluindo-se todos estes fatores restam as variações randômicas ou aleatórias, que serão tratadas pela média.

Os padrões mais frequentes nesses modelos são os seguintes:

- Em função desses vários fatores que influenciam os dados, a previsão da demanda baseada em séries temporais é dividida em etapas, cada uma relacionada ao dimensionamento de um destes fatores.
- Existem técnicas para tratar:
 - A Média
 - A Tendência
 - A sazonalidade
- A previsão final é o resultado da composição destes fatores.
- A seguir serão mostradas técnicas abordadas por Tubino [2].

Previsões baseadas em séries temporais

Técnicas para previsão da média

- Essas técnicas fazem com que valores historicamente baixos e valores historicamente altos se combinem, gerando uma previsão média com menor variabilidade do que os dados originais.
- Estas técnicas procuram privilegiar os dados mais recentes da série histórica, que normalmente representam melhor a situação atual.
- Essas técnicas funcionam bem quando os dados históricos variam em torno de uma média, mas ainda podem ser usadas quando existem pequenas variações graduais, ou em patamares, no nível de dados.
- As técnicas da Média Móvel e da Média Exponencial Móvel são as mais empregadas.

- A média móvel usa dados de uma quantidade predeterminada de períodos, geralmente os mais recentes, para gerar sua previsão.
- Em cada novo período de previsão o dado mais antigo é substituído pelo mais recente.

$$Mm_n = \frac{\sum_{i=1}^n D_i}{n}$$

- Mm_n = média móvel de n períodos;
- D_i = demanda ocorrida no período i;
- n = número de períodos;
- i = índice do período (i = 1, 2, 3...)

- Características:
 - Simplicidade operacional e facilidade de entendimento;
 - Necessidade de armazenar um grande volume de dados, principalmente, se o número de períodos (n) for grande;
 - Previsão apenas para o período imediatamente posterior, sendo que para os períodos futuros se usaria o mesmo valor;
 - Essa técnica é recomendada quando a demanda apresenta comportamento estável e o produto não é muito relevante.

Para exemplificar podemos considerar a série de demandas a seguir considerando
 24 períodos.

Média Móvel							
Período	D. Real	Mm3	Erro	Mm6	Erro	Mm12	Erro
1	3256						
2	3315						
3	3006						
4	3560	3192	368				
5	3300	3294	6				
6	3051	3289	-238				
7	3425	3304	121	3248	177		
8	3703	3259	444	3276	427		
9	3240	3393	-153	3341	-101		
10	3231	3456	-225	3380	-149		
11	2887	3391	-504	3325	-438		
12	3918	3119	799	3256	662		
13	3271	3345	-74	3401	-130	3324	-53
14	3073	3359	-286	3375	-302	3326	-253
15	3396	3421	-25	3270	126	3305	91
16	3036	3247	-211	3296	-260	3338	-302
17	3196	3168	28	3264	-68	3294	-98
18	4106	3209	897	3315	791	3286	820
19	3449	3446	3	3346	103	3374	76
20	3913	3584	329	3376	537	3376	538
21	3324	3823	-499	3516	-192	3393	-69
22	3277	3562	-285	3504	-227	3400	-123
23	3204	3505	-301	3544	-340	3404	-200
24	4079	3268	811	3546	534	3430	649

- Calculando-se as médias móveis usando 3, 6 e 12 períodos, temos a estrutura ao lado.
- Sempre que se dispõe de um dado novo, se abandona o mais antigo e se introduz o mais recente.
- O número de períodos considerados determina a sensibilidade da média móvel em relação aos dados mais recentes.

Pequenos períodos permitem maior reação a mudanças de demanda.

Como avaliar o melhor número de períodos para utilizar na previsão?

- Pela somatória dos erros, que deve tender a zero.
- Observando os gráficos de controle:
 - Ao fazer a monitoração do modelo de previsão de demanda, os limites superior e inferior dos gráficos de controle correspondem a 4 x MAD(Mean Absolute Deviation), para baixo ou para cima.

$$r = \frac{\sum |D_{\text{atual}} - D_{\text{prevista}}|}{n}$$

 D_{atual} = demanda ocorrida no período; $D_{prevista}$ = demanda prevista no período; n = número de períodos.

Período	D. Real	Mm3	Erro	Mm6	Erro	Mm12	Erro
1	3256						
2	3315						
3	3006						
4	3560	3192	368				
5	3300	3294	6				
6	3051	3289	-238				
7	3425	3304	121	3248	177		
8	3703	3259	444	3276	427		
9	3240	3393	-153	3341	-101		
10	3231	3456	-225	3380	-149		
11	2887	3391	-504	3325	-438		
12	3918	3119	799	3256	662		
13	3271	3345	-74	3401	-130	3324	-53
14	3073	3359	-286	3375	-302	3326	-253
15	3396	3421	-25	3270	126	3305	91
16	3036	3247	-211	3296	-260	3338	-302
17	3196	3168	28	3264	-68	3294	-98
18	4106	3209	897	3315	791	3286	820
19	3449	3446	3	3346	103	3374	76
20	3913	3584	329	3376	537	3376	538
21	3324	3823	-499	3516	-192	3393	-69
22	3277	3562	-285	3504	-227	3400	-123
23	3204	3505	-301	3544	-340	3404	-200
24	4079	3268	811	3546	534	3430	649
Erro	acum. Do 13	ao 24	388)	572		1075
	AD do 13 ao 2		312		301		273
4N	IAD do 13 ao	24	1249		1203		1090

Gráfico de controle para Mm3

- Na média exponencial móvel o peso de cada observação decresce no tempo em progressão geométrica, ou de forma exponencial.
- Em sua forma mais simples, cada nova previsão é obtida com base na previsão anterior, corrigido por um coeficiente de ponderação.

$$M_{t} = M_{t-1} + \alpha (D_{t-1} - M_{t-1})$$

```
M_t = previsão para o período t;

M_{t-1} = previsão para o período t-1;

\alpha = coeficiente de ponderação;

D_{t-1} = demanda do período t-1.
```

- Características:
 - Consegue acompanhar movimentos pequenos de tendência ou de mudança de patamares.
 - Exige a armazenagem de apenas três dados por item (previsão e demanda passadas, e coeficiente de ponderação).
 - Operação é de fácil entendimento.
 - Assim como na média móvel, fornece a previsão apenas para o período imediatamente posterior.

- α é fixado pelo analista numa faixa entre 0 e 1;
- Quanto maior o seu valor, mais rapidamente o modelo reagirá a uma variação real da demanda.
- Se muito pequeno, as previsões poderão ficar defasadas da demanda real.
- Os valores usados normalmente variam de 0,05 a 0,5.
- Considerando a série de demandas do exemplo anterior e α = 0,1, 0,5 e 0,8, chegam-se aos resultados a seguir:

Período	D. Real	a = 0,1	Erro	a = 0,5	Erro	a = 0.8	Erro
1	3256						
2	3315	3256	59	3256	59	3256	59
3	3006	3262	-256	3286	-280	3303	-297
4	3560	3236	324	3146	414	3065	495
5	3300	3269	31	3353	-53	3461	-161
6	3051	3272	-221	3326	-275	3332	-281
7	3425	3250	175	3189	236	3107	318
8	3703	3267	436	3307	396	3361	342
9	3240	3311	-71	3505	-265	3635	-395
10	3231	3304	-73	3372	-141	3319	-88
11	2887	3296	-409	3302	-415	3249	-362
12	3918	3256	662	3094	824	2959	959
13	3271	3322	-51	3506	-235	3726	-455
14	3073	3317	-244	3389	-316	3362	-289
15	3396	3292	104	3231	165	3131	265
16	3036	3303	-267	3313	-277	3343	-307
17	3196	3276	-80	3175	21	3097	99
18	4106	3268	838	3185	921	3176	930
19	3449	3352	97	3646	-197	3920	-471
20	3913	3362	551	3547	366	3543	370
21	3324	3417	-93	3730	-406	3839	-515
22	3277	3407	-130	3527	-250	3427	-150
23	3204	3394	-190	3402	-198	3307	-103
24	4079	3375	704	3303	776	3225	854
	Erro acum	•	1897		870		815
	MAD		264		325		372
	4MAD		1055	0	1302	0	1489

 Uma curva suave não reflete de forma imediata as mudanças na demanda, por um lado pode ser importante para estabilizar um programa de produção, mas pode retardar o movimento em direção a uma nova demanda.

Técnicas para previsão da tendência

- A tendência corresponde ao movimento gradual de longo prazo da demanda.
- Sua estimativa é realizada pela identificação de uma equação que descreva este movimento.
- A plotagem dos dados passados permitirá a identificação desta equação, que pode ser linear ou não linear.
- Devido à facilidade de uso e maior aplicabilidade, se restringirá aqui a analisar a tendência linear.

• Uma equação linear possui o seguinte formato:

$$Y = a + bX$$

Y = previsão da demanda para o período X;

a = ordenada à origem, ou intercessão no eixo dos Y;

b = coeficiente angular;

X = período (partindo de X = 0) para previsão.

• Os valores de "a" e "b" podem ser determinados a partir do Método dos Mínimos Quadrados:

$$a = \frac{\sum x^2 \cdot \sum y - \sum x \cdot \sum x \cdot y}{n \cdot \sum x^2 - \left(\sum x\right)^2}$$

$$b = \frac{n \cdot \sum x \cdot y - \sum x \cdot \sum y}{n \cdot \sum x^2 - \left(\sum x\right)^2}$$

- O valor de R (coeficiente de correlação) pode ser determinado para avaliar a relação entre duas variáveis. Ele varia de -1 a +1.
- Se próximo de -1, as variáveis possuem relação inversa.
- Se próximo de +1, as variáveis possuem relação direta.
- Se R estiver perto de zero, não existe correlação entre as variáveis.

$$r = \frac{n \cdot \sum x \cdot y - \sum x \cdot \sum y}{\sqrt{n \cdot \sum x^2 - \left(\sum x\right)^2 \cdot \left[n \cdot \sum y^2 - \left(\sum y\right)^2\right]}}$$

- O valor de R² (coeficiente de determinação) também pode ser obtido.
- O seu valor varia de 0 a 1.
- Quanto maior o R², mais explicativo é o modelo linear, ou seja, melhor ele se ajusta à amostra.

$$r = \frac{n \cdot \sum x \cdot y - \sum x \cdot \sum y}{\sqrt{n \cdot \sum x^2 - (\sum x)^2} \cdot \left[n \cdot \sum y^2 - (\sum y)^2 \right]}$$

Período	D. Real Y	X^2	X.Y
1	3973	1	3973
2	3531	4	7062
3	3523	9	10569
4	3551	16	14204
5	3524	25	17620
6	3632	36	21792
7	3525	49	24675
8	3620	64	28960
9	3159	81	28431
10	3084	100	30840
11	3204	121	35244
12	2826	144	33912
13	3188	169	41444
14	2991	196	41874
15	2633	225	39495
16	2792	256	44672
17	2779	289	47243
18	2687	324	48366
19	2457	361	46683
20	2361	400	47220
21	2474	441	51954
22	2428	484	53416
23	1965	529	45195
24	1949	576	46776
300	71856	4900	811620

Período	D. Real Y	D. Prev	Erro
1	3973	3860	113
2	3531	3785	-254
3	3523	3709	-186
4	3551	3634	-83
5	3524	3559	-35
6	3632	3483	149
7	3525	3408	117
8	3620	3333	287
9	3159	3258	-99
10	3084	3182	-98
11	3204	3107	97
12	2826	3032	-206
13	3188	2956	232
14	2991	2881	110
15	2633	2806	-173
16	2792	2730	62
17	2779	2655	124
18	2687	2580	107
19	2457	2505	-48
20	2361	2429	-68
21	2474	2354	120
22	2428	2279	149
23	1965	2203	-238
24	1949	2128	-179
	Erro acum.		0
	MAD		139

- Essa técnica pode ser empregada para tratar demandas que apresentem tendência.
- Ela consiste em uma variação da técnica da média exponencial móvel.
- Conforme visto, a média exponencial móvel tem aplicabilidade na previsão de dados médios de demanda com pequenas variações. Mas, caso a demanda apresente tendência, a média exponencial móvel vai demorar para reagir (previsão pode ficar abaixo, no caso de tendência de alta da demanda real, e vice-versa).

- Nesse caso, a previsão é baseada em dois fatores:
 - Na previsão da média exponencial móvel
 - Na estimativa exponencial da tendência

$$P_{t+1} = M_t + T_t$$

$$M_t = P_t + \alpha_1 (D_t - P_t)$$

$$T_{t} = T_{t-1} + \alpha_{2} ((P_{t} - P_{t-1}) - T_{t-1})$$

 P_{t+1} = previsão da demanda para o período t+1;

 P_{t} = previsão da demanda para o período t;

 P_{t-1} = previsão da demanda para o período t-1;

 M_t = previsão da média exponencial móvel da demanda para o período t;

 T_t = previsão da tendência exponencial móvel para o período t;

 T_{t-1} = previsão da tendência para o período t-1;

 α_1 = coeficiente de ponderação da média;

 α_2 = coeficiente de ponderação da tendência;

 $D_t = \text{demanda do período } t$.

Figura 2.9 Demandas real e prevista pelo ajustamento exponencial para a tendência.

Fonte: Tubino [2]

Exercício: Fazer a previsão da demanda para o período 11 considerando o ajustamento exponencial para a tendência. Empregar $\alpha 1 = 0,1$ e $\alpha 2 = 0,2$, considerando a previsão do quarto período sendo igual a sua demanda real, os quatro primeiros períodos para a estimativa inicial da tendência, e a previsão do quinto período como sendo a demanda do quarto período mais a tendência estimada inicial.

Ano t	Demanda	$M_t = P_t + \alpha_1 (D_t - P_t)$	$T_{t} = T_{t-1} + \alpha_{2}((P_{t} - P_{t-1}) - T_{t-1})$	$P_{t+1} = M_t + T_t$
	D			
1	250			
2	230	Estimativa inicial da te	endência = (285-250)/3 = 11,7	
3	270	Estimativa inicial da d	lemanda = 285 + 11,7 = 296,7	285
4	285		11,7	296,7=285+11,7
5	290	296,0=296,7+0,1(290-296,7)	11,7=11,7+0,2((296,7-285)-11,7)	307,7=296,0+11,7
6	287	305,6=307,7+0,1(287-307,7)	11,6=11,7+0,2((307,7-296,7)-11,7)	317,2=305,6+11,6
7	310	316,5=317,2+0,1(310-317,2)	11,2=11,6+0,2((317,2-307,7)-11,6)	327,7=316,5+11,2
8	325	327,4=327,7+0,1(325-327,7)	11,1=11,2+0,2((327,7-317,2)-11,2)	338,5=327,4+11,1
9	320	336,6=338,5+0,1(320-338,5)	11,0=11,1+0,2((338,5-327,7)-11,1)	347,6=336,6+11,0
10	340	346,8=347,6+0,1(340-347,6)	10,6=11,0+0,2((347,6-338,5)-11,0)	357,4=346,8+10,6

Período	D. Real	Mt a=0,1	Tt a=0,2	Pt+1	Erro
1	250				
2	230				
3	270				
4	285		11,7	296,7	
5	290	296,0	11,7	307,7	-6,7
6	287	305,6	11,5	317,1	-20,7
7	310	316,4	11,1	327,5	-7,1
8	325	327,3	11,0	338,3	-2,5
9	320	336,4	10,9	347,4	-18,3
10	340	346,6	10,6	357,2	-7,4

Técnicas para previsão da sazonalidade

- A sazonalidade é caracterizada pela ocorrência de variações de demanda, para cima e para baixo, em intervalos de tempo regulares.
- Deve existir uma razão para sua ocorrência.
- O período de ocorrência pode ser anual, mensal, semanal ou até mesmo diário.
- A sazonalidade é expressa em termos de uma quantidade, ou de uma percentagem, da demanda que se desvia dos valores médios da série. Se houver tendência, ela deve ser considerada.
- O valor aplicado sobre a média, ou a tendência, é chamado de índice de sazonalidade (IS).

Técnicas para previsão da sazonalidade

- De forma simplificada, a sazonalidade pode ser prevista usando o último dado demanda no período sazonal em questão.
- Se houver tendência, ela deverá ser somada ou retirada do valor obtido.
- Porém, a forma mais usual de incluir a sazonalidade nas previsões de demanda consiste em obter o IS para os diversos períodos, empregando a média móvel centrada, e aplicá-los sobre o valor (ou tendência) previsto para o período em questão.

- Nesse caso, o IS é obtido para período da série e aplicado sobre a previsão média em cada um desses períodos.
- O IS é obtido dividindo o valor da demanda no período pela média móvel centrada nesse período.
- O período usado para determinar a média móvel é chamado de ciclo da sazonalidade.
- Quando há dados suficientes, vários índices são calculados para cada período e determina-se uma média.

 Exercício - Os dados na tabela a seguir mostram uma demanda sazonal de um produto. Nesse caso, o ciclo de sazonalidade é de 9 períodos. Realize a previsão de demanda.

Período	D. Real
1	3600
2	3416
3	2682
4	2250
5	2107
6	2352
7	2841
8	3322
9	3720
10	3468
11	3349
12	2745
13	2254
14	2086
15	2400
16	2850
17	3344
18	3564
19	3576
20	3360
21	2745
22	2325
23	1960
24	2400

 Calculando a média móvel centrada, os índices de sazonalidade para cada período e a demanda média, tem-se:

Período	D. Real	MMC	IS
1	3600		
2	3416		
3	2682		
4	2250		
5	2107	2921	0,7213
6	2352	2906	0,8092
7	2841	2899	0,9800
8	3322	2906	1,1432
9	3720	2906	1,2799
10	3468	2904	1,1942
11	3349	2909	1,1511
12	2745	2910	0,9432
13	2254	2913	0,7738
14	2086	2896	0,7204
15	2400	2908	0,8254
16	2850	2909	0,9798
17	3344	2909	1,1496
18	3564	2917	1,2219
19	3576	2903	1,2320
20	3360	2903	1,1576
21	2745		
22	2325		
23	1960		
24	2400		
D. M.	Iédia	2907	

 Como existem dois índices para os períodos de sazonalidade, com exceção dos períodos 3 e 4, o IS médio precisa ser determinado para cada período.

Período	Ciclo 1	Ciclo 2	IS médio
1	1,194169	1,231971	1,2131
2	1,151079	1,157556	1,1543
3	0,943155		0,9432
4	0,773802		0,7738
5	0,720414	0,721301	0,7209
6	0,825436	0,809236	0,8173
7	0,979793	0,979993	0,9799
8	1,149624	1,143152	1,1464
9	1,221943	1,279914	1,2509

• Calculados os IS's, determina-se a previsão da demanda reaplicando o índice sazonal do período a ser previsto sobre a demanda média:

D. Prev. = D. Média + D. Média (IS - 1)

Período	D. Média	IS	D. Prev.	D. Real	Erro
1	2907	1,2131	3527	3600	73
2	2907	1,1543	3356	3416	60
3	2907	0,9432	2742	2682	-60
4	2907	0,7738	2250	2250	0
5	2907	0,7209	2096	2107	11
6	2907	0,8173	2376	2352	-24
7	2907	0,9799	2849	2841	-8
8	2907	1,1464	3333	3322	-11
9	2907	1,2509	3637	3720	83
10	2907	1,2131	3527	3468	-59
11	2907	1,1543	3356	3349	-7
12	2907	0,9432	2742	2745	3
13	2907	0,7738	2250	2254	4
14	2907	0,7209	2096	2086	-10
15	2907	0,8173	2376	2400	24
16	2907	0,9799	2849	2850	1
17	2907	1,1464	3333	3344	11
18	2907	1,2509	3637	3564	-73
19	2907	1,2131	3527	3576	49
20	2907	1,1543	3356	3360	4
21	2907	0,9432	2742	2745	3
22	2907	0,7738	2250	2325	75
23	2907	0,7209	2096	1960	-136
24	2907	0,8173	2376	2400	24
	Err	ro acumula	-		37
		MAD			34
		· · · · · · · · · · · · · · · · · · ·			

- Caso a demanda apresente sazonalidade com tendência, há necessidade de incorporar essas duas características no modelo de previsão. Para isso, os seguintes passos devem ser empregados:
 - 1. Obter os IS's através da MMC;
 - 2. Retirar o componente de sazonalidade da série de dados, dividindo-os pelos respectivos IS's;
 - 3. Com esses dados, obter a equação que representa a tendência;
 - 4. Com a equação em mãos, realizar a previsão de demanda e multiplicá-la pelos IS's.

 Exercício - Os dados na tabela a seguir mostram uma demanda sazonal de um produto. Nesse caso, o ciclo de sazonalidade é de 6 períodos. Realize a previsão de demanda para os períodos 25 e 26.

Período	D. Média
1	1083
2	1460
3	2109
4	2717
5	2801
6	2503
7	2381
8	3154
9	3969
10	4642
11	4892
12	4338
13	3742
14	4839
15	5805
16	6747
17	6880
18	5683
19	5487
20	6194
21	7642
22	8821
23	8469
24	7139

- Sempre que o ciclo de sazonalidade for um número par, o centro do ciclo vai cair no meio de um período.
- Por isso, primeiro é necessário calcular as MMC no meio dos períodos.
- Na sequência, esses valores são corrigidos para que coincidam com os períodos analisados, fazendo a média dos valores descentrados.
- Por exemplo, a MMC e o IS para período 4 foram determinados da seguinte forma:

MMC3,5 =
$$(1.083 + 1.460 + 2.109 + 2.717 + 2.801 + 2.503) / 6 = 2.112 \text{ kg}$$

MMC4,5 = $(1.460 + 2.109 + 2.717 + 2.801 + 2.503 + 2.381) / 6 = 2.329 \text{ kg}$

MMC4 =
$$(2.112 + 2.329) / 2 = 2.220 \text{ kg}$$

IS4 = $2.717 / 2.220 = 1,2237$

 Como existem 3 índices para os períodos de sazonalidade, o IS médio precisa ser determinado para cada período.

Período	Ciclo 1	Ciclo 2	Ciclo 3	IS médio
1	0,772738	0,766005	0,829897	0,7895
2	0,923325	0,925918	0,895486	0,9149
3	1,060356	1,054703	1,065731	1,0603
4	1,157774	1,171066	1,22369	1,1842
5	1,147481	1,142905	1,134161	1,1415
6	0,952012	0,904108	0,904971	0,9204

 Dividindo-se a demanda real pelos IS's, obtém-se os dados com a tendência (sem a sazonalidade).

Período	D. Real	IS	Tend
1	1083	0,7895	1372
2	1460	0,9149	1596
3	2109	1,0603	1989
4	2717	1,1842	2294
5	2801	1,1415	2454
6	2503	0,9204	2720
7	2381	0,7895	3016
8	3154	0,9149	3447
9	3969	1,0603	3743
10	4642	1,1842	3920
11	4892	1,1415	4286
12	4338	0,9204	4713
13	3742	0,7895	4739
14	4839	0,9149	5289
15	5805	1,0603	5475
16	6747	1,1842	5698
17	6880	1,1415	6027
18	5683	0,9204	6175
19	5487	0,7895	6950
20	6194	0,9149	6770
21	7642	1,0603	7208
22	8821	1,1842 7449	
23	8469	1,1415	7419
24	7139	0,9204	7757

- Por fim, reaplica-se o IS do período a ser previsto sobre a previsão da tendência (Dada pela Equação D. Prev.) nesse período.
- E as previsões para os períodos 25 e 26 seriam:

D. Prev. = Tend. + (Tend. * (IS-1))							
Período	Tend	IS	D. Prev.	D. Real	Erro		
1	1395	0,7895	1101	1083	-18		
2	1681	0,9149	1538	1460	-78		
3	1967	1,0603	2086	2109	23		
4	2254	1,1842	2669	2717	48		
5	2540	1,1415	2900	2801	-99		
6	2826	0,9204	2601	2503	-98		
7	3113	0,7895	2458	2381	-77		
8	3399	0,9149	3110	3154	44		
9	3685	1,0603	3908	3969	61		
10	3972	1,1842	4703	4642	-61		
11	4258	1,1415	4861	4892	31		
12	4545	0,9204	4183	4338	155		
13	4831	0,7895	3814	3742	-72		
14	5117	0,9149	4682	4839	157		
15	5404	1,0603	5729	5805	76		
16	5690	1,1842	6738	6747	9		
17	5976	1,1415	6822	6880	58		
18	6263	0,9204	5764	5683	-81		
19	6549	0,7895	5171	5487	316		
20	6835	0,9149	6254	6194	-60		
21	7122	1,0603	7551	7642	91		
22	7408	1,1842	8772	8821	49		
23	7694	1,1415	8783	8469	-314		
24	7981	0,9204	7345	7139	-206		
25	8267	0,7895 🖊	6527				
26	8553	0,9149	7826				
	-44						
MAD					95		

 Nesse caso, busca-se prever a demanda de um determinado produto com base na previsão de outra variável que esteja relacionada com o produto.

Vidros planos e novas casas construídas

Filtros de café e café torrado e moído

 Algumas variáveis podem ser internas da própria empresa. Por exemplo, o número de revisões de motores está relacionado ao número de veículos vendidos pela concessionária.

• O objetivos das previsões baseadas em correlações é estabelecer uma equação capaz de identificar o efeito da variável de previsão sobre a demanda do produto em análise.

- Para isso, é necessário:
 - (1) o histórico da demanda do produto em questão (Var. dependente);
 - (2) o histórico da variável de previsão (Var. independente).

- A equação matemática pode ser obtida por regressão:
 - Quando a correlação entre as variáveis leva a uma equação linear, a regressão é linear;
 - Quando a correlação leva a uma equação curvilínea, utiliza-se regressão nãolinear;
 - Se apenas duas variáveis estão envolvidas a regressão é simples;
 - Se mais de duas variáveis são empregadas, a regressão é múltipla.

• O objetivo é encontrar uma equação linear de previsão de forma que a soma dos quadrados dos erros de previsão (β) seja o mínimo possível. Este método é chamado de "regressão dos mínimos quadrados".

$$a = \frac{\sum x^2 \cdot \sum y - \sum x \cdot \sum x \cdot y}{n \cdot \sum x^2 - \left(\sum x\right)^2}$$

$$b = \frac{n \cdot \sum x \cdot y - \sum x \cdot \sum y}{n \cdot \sum x^2 - \left(\sum x\right)^2}$$

- O valor de R (coeficiente de correlação) pode ser determinado para avaliar a relação entre duas variáveis. Ele varia de -1 a +1.
- Se próximo de -1, as variáveis possuem relação inversa.
- Se próximo de +1, as variáveis possuem relação direta.
- Se R estiver perto de zero, não existe correlação entre as variáveis.

$$r = \frac{n \cdot \sum x \cdot y - \sum x \cdot \sum y}{\sqrt{n \cdot \sum x^2 - \left(\sum x\right)^2 \left[n \cdot \sum y^2 - \left(\sum y\right)^2 \right]}}$$

- O valor de R² (coeficiente de determinação) também pode ser obtido.
- O seu valor varia de 0 a 1.
- Quanto maior o R², mais explicativo é o modelo linear, ou seja, melhor ele se ajusta à amostra.

$$r = \frac{n \cdot \sum x \cdot y - \sum x \cdot \sum y}{\sqrt{n \cdot \sum x^2 - (\sum x)^2} \cdot \left[n \cdot \sum y^2 - (\sum y)^2 \right]}$$

• Exercício: Uma cadeia de fast food verificou que as vendas mensais de refeições em suas 13 casas têm relação com o número de alunos matriculados em escolas situadas num raio de 2 km em torno da casa. Os dados das vendas mensais e número de alunos matriculados num raio de 2 km das 13 casas são mostrados a seguir. A empresa pretende instalar uma nova casa em uma região onde o número de alunos é de 13750. Qual a previsão de demanda para essa casa?

	N 10	Vendas		
	N°	por Casa	V40	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
Casas	alunos X	Y	X^2	XY
1	10000	31560	100000000	315600000
2	12000	38000	144000000	456000000
3	8000	25250	64000000	202000000
4	15000	47200	225000000	708000000
5	6500	22000	42250000	143000000
6	11000	34200	121000000	376200000
7	14500	45100	210250000	653950000
8	10100	32300	102010000	326230000
9	9200	29000	84640000	266800000
10	13400	40900	179560000	548060000
11	12700	40000	161290000	508000000
12	7600	24200	57760000	183920000
13	13100	41000	171610000	537100000
Somatório				
	143100	450710	1663370000	5224860000

- Para 13750 alunos a previsão de demanda será de 42868 refeições.
- Além disso, r = 0,9983, o que indica uma elevada correlação entre as variáveis.

- Definida a técnica de previsão e implantado o modelo, é preciso acompanhar o desempenho das previsões e confirmar sua validade diante dos dados atuais.
- Esse monitoramento é realizado pelo cálculo e acompanhamento do erro da previsão, que é a diferença entre o valor da demanda real e o valor previsto pelo modelo.
- Objetivos da manutenção e monitoramento do modelo são:
 - Verificar a acuracidade dos valores previstos;
 - Identificar, isolar e corrigir variações anormais;
 - Permitir a escolha de técnicas ou parâmetros mais eficientes.

- Para acompanhar o desempenho pode ser verificado o erro acumulado, o qual deve tender a zero, pois é esperado que o modelo gere, aleatoriamente, valores abaixo e acima dos reais, devendo assim se anular.
- Como uma ferramenta mais apurada, pode-se recorrer também ao Gráfico de Controle, cujos limites superior e inferior, normalmente, correspondem a 4xMAD (Mean absolute deviation) para cima e para baixo.

$$r = \frac{\sum |D_{\text{atual}} - D_{\text{prevista}}|}{n}$$

 D_{atual} = demanda ocorrida no período; $D_{prevista}$ = demanda prevista no período; n = número de períodos.

- A cada nova previsão, o erro será plotado no gráfico de controle. Caso exceda esses limites, ações corretivas deverão ser tomadas.
- O valor do erro de previsão servirá de base para o planejamento e dimensionamento dos estoques de segurança do sistema de PCP.

Gráfico de controle para Mm3

- Diferentes fatores podem afetar o desempenho de um modelo de previsão.
 Destaca-se:
 - Uso incorreto da técnica de previsão ou interpretação inadequada;
 - Perda de validade da técnica devido à mudança de uma variável importante ou aparecimento de uma nova variável;
 - Variações irregulares devido greves, formação de estoques temporários, catástrofes naturais;
 - Ações estratégicas da concorrência;
 - Variações aleatórias inerentes aos dados da demanda.

• Um modelo de previsão funciona corretamente quando apenas os erros decorrentes de variações aleatórias ocorrem.

• Os outros tipos de erro devem ter suas causas investigadas para corrigir os problemas.

RESUMO

Técnicas de previsão

Técnicas de previsão

- Para acompanhar o desempenho pode ser verificado o erro acumulado.
- Como uma ferramenta mais apurada, pode-se recorrer também ao Gráfico de Controle, cujos limites, normalmente, correspondem a 4xMAD para cima e para baixo.

$$r = \frac{\sum |D_{\text{atual}} - D_{\text{prevista}}|}{n}$$

 D_{atual} = demanda ocorrida no período; $D_{prevista}$ = demanda prevista no período; n = número de períodos.

Técnica da média móvel

- A média móvel usa dados de uma quantidade predeterminada de períodos, geralmente os mais recentes, para gerar sua previsão.
- Em cada novo período de previsão o dado mais antigo é substituído pelo mais recente.

$$Mm_n = \frac{\sum_{i=1}^n D_i}{n}$$

- Mm_n = média móvel de n períodos;
- D_i = demanda ocorrida no período i;
- n = número de períodos;
- i = índice do período (i = 1, 2, 3...)

 Considerando o histórico de demanda a seguir, determine a previsão para o período 21 utilizando a técnica da média móvel. Comparar os resultados considerando intervalos de 4, 8 e 10 períodos e sugerir um intervalo para utilização.

Período	D. Real	
1	3100	
2	2700	
3	3250	
4	3570	
5	3300	
6	3700	
7	3100	
8	2850	
9	3240	
10	3231	
11	2887	
12	3600	
13	3271	
14	3073	
15	2600	
16	2975	
17	3196	
18	3824	
19	3449	
20	2936	

Técnica da média exponencial móvel

- Em sua forma mais simples, cada nova previsão é obtida com base na previsão anterior, corrigido por um coeficiente de ponderação.
- α é fixado pelo analista numa faixa entre 0 e 1;
- Quanto maior o seu valor, mais rapidamente o modelo reagirá a uma variação real da demanda.

$$M_{t} = M_{t-1} + \alpha (D_{t-1} - M_{t-1})$$

```
M_t = previsão para o período t;

M_{t-1} = previsão para o período t-1;

\alpha = coeficiente de ponderação;

D_{t-1} = demanda do período t-1.
```

- Considerando o histórico de demanda do Exercício 1, determine a previsão para o período 21 utilizando a técnica da média exponencial móvel.
- A) Comparar os resultados considerando α = 0,2, 0,6 e 0,9 e sugerir um α para utilização.
- B) Diante dos resultados dos Exercícios 1 e 2, qual é a técnica mais adequada para a realizar a previsão considerando o histórico de demanda em questão?

Equação linear para a tendência

• Uma equação linear possui o seguinte formato:

$$Y = a + bX$$

Y = previsão da demanda para o período X;

a = ordenada à origem, ou intercessão no eixo dos Y;

b = coeficiente angular;

X = período (partindo de X = 0) para previsão.

Os valores de "a" e "b" podem ser determinados a partir do Método dos Mínimos
 Quadrados:

$$a = \frac{\sum x^2 \cdot \sum y - \sum x \cdot \sum x \cdot y}{n \cdot \sum x^2 - \left(\sum x\right)^2}$$

$$b = \frac{n \cdot \sum x \cdot y - \sum x \cdot \sum y}{n \cdot \sum x^2 - \left(\sum x\right)^2}$$

 Considerando o histórico de demanda a seguir, determine a previsão para o período 21 pelo método dos mínimos quadrados.

-	
Período (X)	D. Real (Y)
1	651
2	632
3	580
4	605
5	550
6	545
7	532
8	480
9	515
10	472
11	460
12	433
13	400
14	426
15	420
16	390
17	350
18	392
19	385
20	346

Ajustamento exponencial para tendência

- Nesse caso, a previsão é baseada em dois fatores:
 - Na previsão da média exponencial móvel
 - Na estimativa exponencial da tendência

$$P_{t+1} = M_t + T_t$$

$$M_t = P_t + \alpha_1 (D_t - P_t)$$

$$T_{t} = T_{t-1} + \alpha_{2} ((P_{t} - P_{t-1}) - T_{t-1})$$

 P_{t+1} = previsão da demanda para o período t+1;

 P_{t} = previsão da demanda para o período t;

 P_{t-1} = previsão da demanda para o período t-1;

 M_t = previsão da média exponencial móvel da demanda para o período t;

 T_t = previsão da tendência exponencial móvel para o período t;

 T_{t-1} = previsão da tendência para o período t-1;

 α_1 = coeficiente de ponderação da média;

 α_2 = coeficiente de ponderação da tendência;

 $D_t = \text{demanda do período } t.$

Considerando o ajustamento exponencial para a tendência, fazer a previsão da demanda para o período 25. Empregar $\alpha 1 = 0.7$ e $\alpha 2 = 0.3$, considerando a previsão do terceiro período sendo igual a sua demanda real, os três primeiros períodos para a estimativa inicial da tendência, e a previsão do quarto período como sendo a demanda do terceiro período mais a tendência estimada inicial.

Período	D. Real Y	
1	3973	
2	3531	
3	3523	
	3551	
<u>4</u> 5	3524	
6	3632	
7	3525	
8	3620	
9	3159	
10	3084	
11	3204	
12	2826	
13	3188	
14	2991	
15	2633	
16	2792	
17	2779	
18	2687	
19	2457	
20	2361	
21	2474	
22	2428	
23	1965	
24	1949	

Sazonalidade simples

- 1 Identificar o tamanho do ciclo de sazonalidade (CS);
- 2 Calcular a média móvel centrada (MMC) considerando o tamanho do CS;
 - Caso o tamanho do CS seja um número par, deve-se primeiro calcular as MMC entre os períodos e, na sequência, fazer a média p/ os períodos descentrados.
- 3 Calcular os índices de sazonalidade (IS) para cada período;
 - IS é obtido dividindo o valor da demanda no período pela média móvel centrada nesse período.
- 4 Se houverem dados p/ diferentes ciclos, valores médios de IS devem ser determinados para cada período.

Sazonalidade simples

- 5 Calcular a demanda média (D. Média) considerando os valores de MMC;
- 6 Determinar a demanda prevista (D. Prev.) reaplicando os IS do período a ser previsto sobre a demanda média:

D. Prev. = D. Média + D. Média (IS - 1)

 Os dados na tabela a seguir mostram uma demanda sazonal. Realize a previsão de demanda para o período 22.

Período	D. Real	
1	1000	
2	1300	
3	1490	
4	1550	
5	1250	
6	1025	
7	1275	
8	1600	
9	1450	
10	1324	
11	1007	
12	1333	
13	1504	
14	1529	
15	1289	
16	999	
17	1200	
18	1400	
19	1550	
20	1294	
21	1070	

Sazonalidade com tendência

- 1 Identificar o tamanho do ciclo de sazonalidade (CS);
- 2 Calcular a média móvel centrada (MMC) considerando o tamanho do CS;
 - Caso o tamanho do CS seja um número par, deve-se primeiro calcular as MMC entre os períodos e, na sequência, fazer a média p/ os períodos descentrados.
- 3 Calcular os índices de sazonalidade (IS) para cada período;
 - IS é obtido dividindo o valor da demanda no período pela média móvel centrada nesse período.
- 4 Se houverem dados p/ diferentes ciclos, valores médios de IS devem ser determinados para cada período.

Sazonalidade com tendência

- 5 Para obter os dados considerando apenas a tendência (sem a sazonalidade), dividir a demanda real pelos IS's.
- 6 Usar estes dados sem sazonalidade (Tend1) para obter a equação que representa a tendência;
- 7 Usando a equação da tendência, determinar os novos valores (Tend2) em função do número de períodos.
 - Os valores de Tend2 minimizam as variações aleatórias, já que são determinados a partir da equação da tendência.

Sazonalidade com tendência

• Por fim, reaplica-se o IS do período a ser previsto sobre a previsão da tendência (Dada pela Equação D. Prev.) nesse período:

D. Prev. = Tend2 +
$$(Tend2 * (IS-1))$$

 Os dados na tabela a seguir mostram uma demanda sazonal com tendência. Realize a previsão de demanda para o período 26.

Período	D. Real
1	1000
2	1300
3	1500
4	1490
5	1550
6	1350
7	1281
8	1594
9	1918
10	2000
11	1913
12	1655
13	1511
14	2000
15	2235
16	2256
17	2294
18	1934
19	1748
20	2100
21	2450
22	2578
23	2495
24	2265
25	2140

- Nesse caso, aplicar o método de "regressão dos mínimos quadrados".
- O valor de R (coeficiente de correlação) pode ser determinado para avaliar a relação entre duas variáveis. Ele varia de -1 a +1.
- O valor de R² (coeficiente de determinação)
 também pode ser obtido. Ele varia de 0 a 1.

$$a = \frac{\sum x^2 \cdot \sum y - \sum x \cdot \sum x \cdot y}{n \cdot \sum x^2 - \left(\sum x\right)^2}$$

$$b = \frac{n \cdot \sum x \cdot y - \sum x \cdot \sum y}{n \cdot \sum x^2 - \left(\sum x\right)^2}$$

$$r = \frac{n \cdot \sum x \cdot y - \sum x \cdot \sum y}{\sqrt{n \cdot \sum x^2 - (\sum x)^2} \cdot \left[n \cdot \sum y^2 - (\sum y)^2 \right]}$$

• Uma empresa verificou que a demanda diária de filtros de café em 20 supermercados têm relação com o número pacotes de café vendidos em uma dada cidade. Os dados das demandas diárias de filtros e caixas de café são mostrados a seguir. A empresa será fornecedora para um novo supermercado, cuja demanda diária por pacotes de café é de 143 unidades em média. Qual a previsão de demanda para esse supermercado?

	Demanda	
	Pacotes de	
Supermercados	café (X)	Caixa c/ Filtros (Y)
1	100	145
2	80	100
3	75	103
4	64	57
5	97	130
6	150	194
7	125	170
8	74	87
9	51	70
10	130	173
11	84	112
12	90	120
13	145	193
14	126	168
15	105	140
16	45	60
17	65	87
18	74	99
19	120	160
20	106	141

Referências

Referências

- [1] Al-Fares, H., Duffuaa, S. (2009). Maintenance Forecasting and Capacity Planning. In: Ben-Daya, M., Duffuaa, S., Raouf, A., Knezevic, J., Ait-Kadi, D. (eds) Handbook of Maintenance Management and Engineering. Springer, London. https://doi.org/10.1007/978-1-84882-472-0_8
- [2] Tubino, D.F. Planejamento e controle da produção: teoria e prática,1ª edição, Atlas, 2007.
- [3] Tubino, D.F. Manual de Planejamento e Controle da Produção. 2 ed. Atlas, 2000.

Dúvidas?