

CHAPTER 3: FREQUENCY-DOMAIN REPRESENTATION OF SIGNALS

Why frequency-domain approach?

- Let us know other characteristics of signals, which are not exhibited on time-domain representation
 - E.g.: some voiced sounds are hardly distinguishable if only timedomain features are used
- Let us know other characteristics of systems, which are not exhibited on time-domain representation
 - Response of a LTI system to a sinusoid is a sinusoid with same frequency but different amplitude and phase
 - Details are presented in next chapter

Basic ideas

- Any signal can be described as a sum or integral of sinusoidal signals
- Exact form of the representation depends on whether
 - signal is continuous-time or discrete-time
 - signal is periodic or aperiodic
- → Clear understanding of sinusoidal signals are essential

Fourier representation of signals

■ Outline:

- 1. Sinusoidal signals and their properties
- 2. Summary of Fourier series and Fourier transforms

Definition

$$x(t) = A\cos(2\pi F_0 t + \theta), \quad -\infty < t < \infty$$

A: amplitude

θ: phase (radians)

F₀: frequency (Hz)

angular frequency (rad/s)

$$\Omega_0 = 2\pi F_0$$

Figure 4.1 Continuous-time sinusoidal signal and its parameters.

Relation with complex exponentials

$$A\cos(\Omega_0 t + \theta) = \frac{A}{2} e^{j\theta} e^{j\Omega_0 t} + \frac{A}{2} e^{-j\theta} e^{-j\Omega_0 t}.$$

- Every sinusoidal signal is a sum of two complex exponentials with the same frequency
- Negative frequencies for mathematical convenience

Properties

- Two sinusoids with different frequencies are different
- Rate of oscillation increases indefinitely w/ increasing frequency

Figure 4.2 For continuous-time sinusoids, $F_1 < F_2$ always implies that $T_1 > T_2$.

Harmonically related complex exponentials

$$s_k(t) = e^{jk\Omega_0 t} = e^{j2\pi kF_0 t}$$
. $k = 0, \pm 1, \pm 2, ...$

- \succ Fundamental frequency: $\Omega_0 = 2\pi/T_0 = 2\pi F_0$
- $ightharpoonup s_k(t)$ is the kth harmonic ("hài bậc k")
- Example of a periodic signal composed of three sinusoids with harmonically related frequencies

$$x_1(t) = \frac{1}{3}\cos(2\pi F_0 t) - \frac{1}{10}\cos(2\pi 3F_0 t) + \frac{1}{20}\cos(2\pi 5F_0 t)$$

Discrete-time sinusoids

Definition

Often obtained by sampling the continuous- time sinusoid

$$x[n] = x(nT) = A\cos(2\pi F_0 nT + \theta) = A\cos\left(2\pi \frac{F_0}{F_s} n + \theta\right)$$

or
$$x[n] = A\cos(2\pi f_0 n + \theta) = A\cos(\omega_0 n + \theta)$$

Normalized frequency:

$$f \triangleq \frac{F}{F_{\rm s}} = FT$$

> Normalized angular frequency: $\omega \triangleq 2\pi f = 2\pi \frac{F}{F_{\rm S}} = \Omega T$

Discrete-time sinusoids

Properties

- $x[n] = A cos(2\pi f_0 n + \theta)$ is periodic if and only if $f_0 = k/N$ (f_0 is a rational number)
 - If k and N are a pair of prime numbers, then N is the fundamental period of x[n]
- \triangleright Sinusoidal sequences with angular frequencies separated by integer multiples of 2π are identical (*Periodicity in frequency*)
- \succ All distinct sinusoidal sequences have frequencies within an interval of 2π radians
 - \rightarrow interested frequency ranges: $-\pi < \omega \le \pi$ or $0 \le \omega < 2\pi$

DT sinusoids Properties

- ► Low frequencies (slow oscillations) at $\sim \omega_0 = k2\pi$
- ► High frequencies (rapid oscillations) at $\sim \omega_0 = \pi + k2\pi$

Discrete-time sinusoids

Harmonically related complex exponentials

$$s_k[n] = A_k e^{j\omega_k n}$$
. $-\infty < n < \infty$

- For $s_k[n]$ to be periodic with fundamental period N, the frequency ω_k should be a rational multiple of 2π , that is, $\omega_k = 2\pi k/N$
- \triangleright Fundamental frequency: $f_0 = 1/N$
- ➤ There are only N distinct harmonics at frequencies $f_k = k/N$ (0≤k≤N-1)

4

Frequency variables and units

■ Outline:

- 1. Sinusoidal signals and their properties
- 2. Summary of Fourier series and Fourier transforms

Basic ideas revisited

- Any signal can be described as a sum or integral of sinusoidal signals
- Exact form of the representation depends on whether
 - signal is continuous-time (CT) or discrete-time (DT)
 - signal is periodic or aperiodic

Continuous-Time Fourier Series (CTFS) pair

Fourier Synthesis Equation

Fourier Analysis Equation

$$x(t) = \sum_{k=-\infty}^{\infty} c_k e^{jk\Omega_0 t} \qquad \xrightarrow{\text{CTFS}} c_k = \frac{1}{T_0} \int_{T_0} x(t) e^{-jk\Omega_0 t} dt.$$

- ightharpoonup Analysis equation: analyzes ("breaks-up") a periodic signal x(t) into a set of harmonic components {c_kexp(jk Ω_0 t)}
- Synthesis equation: synthesizes the signal x(t) from its harmonic components

- Spectrum of CT periodic signals
 - \triangleright {c_k}: Fourier series coefficients (k = 0, ±1, ±2,...)
 - \triangleright Spectrum: the plot of c_k as a function of frequency $F = kF_0$, which constitutes a description of the signal in the frequency-domain

$$c_k = |c_k| \mathrm{e}^{\mathrm{j} \angle c_k}$$

 $|c_k|$: magnitude spectrum of x(t)

 $\angle c_k$: phase spectrum of x(t)

- Spectrum of CT periodic signals (cont.)
 - \triangleright {c_k}: Fourier series coefficients (k = 0, ±1, ±2,...)
 - > Parseval's relation:

$$P_{\text{av}} = \frac{1}{T_0} \int_{T_0} |x(t)|^2 dt = \sum_{k=-\infty}^{\infty} |c_k|^2$$

- \rightarrow $|c_k|^2$: the portion of the average power of signal x(t) that is contributed by the *k*th harmonic component
- \triangleright Power spectrum: the plot of $|c_k|^2$ as a function of frequency $F = kF_0$
 - → the power is distributed at a set of discrete frequencies
 - \rightarrow discrete or line spectra with uniform spacing $F_0 = 1/T_0$

 $(F_0: fundamental frequency of x(t))$

4

Fourier series for CT periodic signals

Example: Spectrum of rectangular pulse train

 $(c_0 = A\tau/T_0)$

Example: Spectrum of rectangular pulse train (cont.)

Figure 4.9 Magnitude and phase spectra of a rectangular pulse train with A=1 and $T_0=5\tau=5(s)$

Continuous-Time Fourier Transform (CTFT) pair

Fourier Synthesis Equation

Fourier Analysis Equation

$$x(t) = \int_{-\infty}^{\infty} X(j2\pi F) e^{j2\pi Ft} dF \xrightarrow{\text{CTFT}} X(j2\pi F) = \int_{-\infty}^{\infty} x(t) e^{-j2\pi Ft} dt$$

or

$$x(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(j\Omega) e^{j\Omega t} d\Omega \xrightarrow{\text{CTFT}} X(j\Omega) = \int_{-\infty}^{\infty} x(t) e^{-j\Omega t} dt$$

- \succ X(j2 π F): spectrum of the aperiodic signal x(t) (called Fourier Transform)
- ightharpoonup CTFT is of the same nature as CTFS with fund. frequency $F_0 = 1/T_0 \rightarrow 0$

Transition from the CTFS to CTFT

 $T_0 c(kF_0)$

CTFS of periodic signal x(t) when $T_0 = 10\tau$

CTFT of aperiodic signal x(t) when $T_0 \rightarrow \infty$

Parseval's relation for aperiodic signals with finite energy

$$\int_{-\infty}^{\infty} |x(t)|^2 dt = \int_{-\infty}^{\infty} |X(j2\pi F)|^2 dF$$

- \rightarrow total energy of x(t) may be obtained either from the signal itself or from its spectrum
- $ightharpoonup |X(j2πF)|^2 ΔF$, for a small ΔF, provides the energy of the signal in a narrow frequency band of width ΔF
- \triangleright Energy-density spectrum: the plot of $|X(j2\pi F)|^2$

Example 1: Spectrum of causal exponential signal

$$x(t) = \begin{cases} e^{-at}, & t > 0 \\ 0, & t < 0 \end{cases}$$

This signal is absolutely integrable if a > 0.

$$X(j2\pi F) = \int_0^\infty e^{-at} e^{-j2\pi Ft} dt = -\frac{1}{a + j2\pi F} e^{-(a+j2\pi F)t} \Big|_0^\infty.$$

Hence,

$$X(j2\pi F) = \frac{1}{a+j2\pi F}$$
 or $X(j\Omega) = \frac{1}{a+j\Omega}$. $a > 0$

Magnitude and phase spectra:

$$|X(j2\pi F)| = \frac{1}{\sqrt{a^2 + (2\pi F)^2}}, \quad \angle X(j2\pi F) = -\tan^{-1}\left(2\pi \frac{F}{a}\right). \quad a > 0$$

Example 1: Spectrum of causal exponential signal (cont.)

Figure 4.15 Fourier transform of the signal $x(t) = e^{-at}u(t)$ for a = 5. (a) Magnitude and (b) phase of $X(j2\pi F)$ in the finite interval -5 < F < 5 (Hz).

x(t) is a real function of $t \rightarrow |X(j2\pi F)|$ has even symmetry, $\angle X(j2\pi F)$ has odd symmetry

Example 2: Spectrum of rectangular pulse signal

$$x(t) = \begin{cases} A, & |t| < \tau/2 \\ 0, & |t| > \tau/2 \end{cases}$$

This signal is absolutely integrable for any finite τ . Its spectrum is computed as

$$X(j2\pi F) = \int_{-\tau/2}^{\tau/2} A e^{-j2\pi Ft} dt = A\tau \frac{\sin(\pi F\tau)}{\pi F\tau}.$$

Discrete-Time Fourier Series (DTFS) pair

Fourier Synthesis Equation Fourier Analysis Equation

$$x[n] = \sum_{k=0}^{N-1} c_k e^{j\frac{2\pi}{N}kn} \qquad \longleftrightarrow \qquad c_k = \frac{1}{N} \sum_{n=0}^{N-1} x[n] e^{-j\frac{2\pi}{N}kn}.$$

- Analysis equation: analyzes ("breaks-up") a periodic signal x[n] into a set of **N** harmonic components $\{c_k \exp(jk\omega_0 n)\}$, where $\omega_0 = 2\pi/N$
- > Synthesis equation: synthesizes the signal x[n] from its N harmonic components
- N: fundamental period of periodic sequence x[n]

Parseval's relation

The average power in one period of x[n] can be expressed

$$P_{\text{av}} = \frac{1}{N} \sum_{n=0}^{N-1} |x[n]|^2 = \sum_{k=0}^{N-1} |c_k|^2.$$

- $ightharpoonup |c_k|^2$: portion of the average power of x[n] that is contributed by its kth harmonic component
- Power spectrum: The graph of $|c_k|^2$ as a function of f = k/N, ω = 2πk/N, or simply k