Constructing (0,1)-matrices with given line sums and certain fixed zeros

Richard A. Brualdi (*University of Wisconsin*) and Geir Dahl (*University of Oslo*)

ILAS 2006, Amsterdam, July 18-21

Outline

- ► Motivation (discrete tomography)
- ► Recall some facts (old and recent)
- New extension
- A generalized Ryser algorithm
- Application

Motivation

Feasible set in the transportation problem:

$$\sum_{j=1}^{n} x_{i,j} = r_i \quad (i \le m)$$

$$\sum_{i=1}^{m} x_{i,j} = s_j \quad (j \le n)$$

$$x_{i,j} \ge 0 \quad (i \le m, j \le n).$$

Feasible iff
$$\sum_i r_i = \sum_j s_j$$
.

Motivation

Feasible set in the transportation problem:

$$\sum_{j=1}^{n} \mathbf{x}_{i,j} = r_{i} \quad (i \leq m)$$

$$\sum_{i=1}^{m} \mathbf{x}_{i,j} = s_{j} \quad (j \leq n)$$

$$\mathbf{x}_{i,j} \geq 0 \quad (i \leq m, j \leq n).$$

Feasible iff $\sum_i r_i = \sum_j s_j$.

More complicated versions:

- ▶ $0 \le x_{ii} \le 1$ or other simple bounds.
- ► $x_{ii} \in \{0, 1\}$
- \triangleright some x_{ii} 's are fixed to zero (in a certain pattern)

Example

(0,1)-matrix with given line sums and a zero block

$$A = \left[\begin{array}{cc} A_1 & A_2 \\ A_3 & O \end{array} \right]$$

where each A_i has fixed size.

Example

(0,1)-matrix with given line sums and a zero block

$$A = \left[\begin{array}{cc} A_1 & A_2 \\ A_3 & O \end{array} \right]$$

where each A_i has fixed size.

$$R = (5,5,5,4,4,3,2,2), S = (5,5,5,3,4,3,3,2), A_1: 5 \times 4.$$

$$\begin{bmatrix} 1 & 1 & 0 & 1 & 0 & 1 & 1 & 0 \\ 1 & 0 & 1 & 0 & 1 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 & 1 & 1 & 0 & 1 \\ 0 & 1 & 1 & 0 & 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 & 1 & 0 & 1 & 0 \\ \hline 1 & 1 & 0 & 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

Motivation/previous work: discrete tomography

- ▶ Discrete tomography: binary images with horizontal and vertical projections.
- ► Fixing zeros (or ones) correspond to known properties/geometry.
- ► Herman, G.T., Kuba, A. (Eds.): Discrete Tomography. Foundations, Algorithms, and Applications, 1999.
- ▶ Del Lungo, A. et al. (Eds.). Special issue on discrete tomography. LAA, **339** (2001).
- ► Chen, W.Y.C.: Integral matrices with given row and column sums. *Journ. of Comb. Theory, Ser. A*, **61**, 153–172 (1992).
- ▶ Brualdi, Anstee (1982, two papers), Fulkerson (1959), ...

Some known results for A(R, S) = ...

ightharpoonup Assume R and S nonincreasing (monotone).

Some known results for A(R, S) = ...

► Assume *R* and *S* nonincreasing (monotone).

Theorem. Equivalent:

- (i) A(R, S) is nonempty.
- (ii) $S \prec R^*$ (Gale-Ryser theorem), i.e.,

$$\sum_{j=1}^{k} s_{j} \leq \sum_{j=1}^{k} r_{j}^{*} \qquad (k \leq n-1)$$

$$\sum_{j=1}^{n} s_{j} = \sum_{j=1}^{n} r_{j}^{*}.$$

(iii) The structure matrix T is nonnegative.

Conjugate vector: $r_j = (R^*)_j = |\{i : r_i \ge k\}|.$

Ryser's structure matrix $T = [t_{kl}]$: for $(0 \le k \le m, 0 \le l \le n)$

$$t_{k,l} = kl + \sum_{i=k+1}^{m} r_i - \sum_{i=1}^{l} s_i$$

4 D > 4 D > 4 D > 4 D >

Extension: zero block; class $A_{p,q}(R,S)$

- Brualdi and Dahl, LAA, Vol. 371 (2003), 191–207.
- ▶ New structure matrix T: For $0 \le k \le p$ and $0 \le l \le q$ let

$$t_{k,l} = \tau + kl - \sum_{i=1}^{k} r_i - \sum_{j=1}^{l} s_j - \sum_{i=p+1}^{m} (r_i - l)^+ - \sum_{j=q+1}^{n} (s_j - k)^+.$$

Here
$$\tau = \sum_{i} r_i = \sum_{i} s_i$$
. T has size $(p+1) \times (q+1)$.

▶ Specializes into Ryser's matrix when p = m, q = n.

Extension: zero block; class $A_{p,q}(R,S)$

- Brualdi and Dahl, LAA, Vol. 371 (2003), 191–207.
- ▶ New structure matrix T: For $0 \le k \le p$ and $0 \le l \le q$ let

$$t_{k,l} = \tau + kl - \sum_{i=1}^{k} r_i - \sum_{j=1}^{l} s_j - \sum_{i=p+1}^{m} (r_i - l)^+ - \sum_{j=q+1}^{n} (s_j - k)^+.$$

Here $\tau = \sum_{i} r_i = \sum_{i} s_i$. T has size $(p+1) \times (q+1)$.

▶ Specializes into Ryser's matrix when p = m, q = n.

Theorem. $A_{m,n}(R,S)$ is nonempty if and only if the structure matrix T is nonnegative.

Extension: zero block; class $A_{p,q}(R,S)$

- Brualdi and Dahl, LAA, Vol. 371 (2003), 191–207.
- New structure matrix T: For $0 \le k \le p$ and $0 \le l \le q$ let

$$t_{k,l} = \tau + kl - \sum_{i=1}^{k} r_i - \sum_{j=1}^{l} s_j - \sum_{i=p+1}^{m} (r_i - l)^+ - \sum_{j=q+1}^{n} (s_j - k)^+.$$

Here $\tau = \sum_{i} r_i = \sum_{j} s_j$. T has size $(p+1) \times (q+1)$.

▶ Specializes into Ryser's matrix when p = m, q = n.

Theorem. $A_{m,n}(R,S)$ is nonempty if and only if the structure matrix T is nonnegative.

- ► May be derived from the maxflow-mincut theorem (bipartite graph) and a "cut reduction".
- ► T has interesting properties ...

Example

Let m = n = 10, p = q = 7, R = (9, 8, 6, 6, 5, 5, 4, 3, 3, 3), and S = (7, 6, 6, 6, 6, 6, 6, 4, 3, 2).

Here $T \geq O$ so $\mathcal{A}_{7,7}(R,S)$ is nonempty.

- Starts with the "maximal matrix" \overline{A} with row sum R and ones left justified, i.e., column sum is R^* .
- ▶ Shift the last 1 in certain rows of \overline{A} to column n in order to achieve the sum s_n .
- ▶ The 1's in column *n* are to appear in those rows in which \overline{A} has the largest row sums, giving preference to the bottommost positions in case of ties.
- ▶ Proceed inductively to construct columns n 1, ..., 2, 1.

This works precisely when $S \prec R^*$.

- Starts with the "maximal matrix" \overline{A} with row sum R and ones left justified, i.e., column sum is R^* .
- ▶ Shift the last 1 in certain rows of \overline{A} to column n in order to achieve the sum s_n .
- ▶ The 1's in column *n* are to appear in those rows in which *A* has the largest row sums, giving preference to the bottommost positions in case of ties.
- ▶ Proceed inductively to construct columns $n-1, \ldots, 2, 1$.

This works precisely when $S \prec R^*$.

- ▶ may be extended to "zero block": construct $A \in \mathcal{A}_{p,q}(R,S)$
- constructs a canonical matrix, 3 times (modified) Ryser

Main question

► Find other patterns *P* for the fixed zeros such that simple algorithms may be used to construct a matrix in that class.

Main question

- ► Find other patterns *P* for the fixed zeros such that simple algorithms may be used to construct a matrix in that class.
- Note that network flow algorithms (maxflow) may be used for any pattern.
- ► So: simpler and faster than these, i.e., avoid augmenting on arbitrary paths.

- ▶ New class $A_P(R, S)$.
- ▶ P_j permitted positions of 1's in column j:

- ▶ New class $A_P(R, S)$.
- \triangleright P_i permitted positions of 1's in column j:

$$P_1 \supseteq P_2 \supseteq \cdots \supseteq P_n$$
.

- ▶ New class $A_P(R, S)$.
- \triangleright P_i permitted positions of 1's in column j:

$$P_1 \supseteq P_2 \supseteq \cdots \supseteq P_n$$
.

▶ Special case (*Young-pattern*): P is specified by a vector $K = (k_1, k_2, ..., k_n)$ satisfying $k_1 \ge k_2 \ge ... \ge k_n$ and for each j < n

$$P_i = \{1, 2, \ldots, k_i\}.$$

- ▶ New class $A_P(R, S)$.
- \triangleright P_i permitted positions of 1's in column j:

$$P_1 \supseteq P_2 \supseteq \cdots \supseteq P_n$$
.

Special case (*Young-pattern*): P is specified by a vector $K = (k_1, k_2, ..., k_n)$ satisfying $k_1 \ge k_2 \ge ... \ge k_n$ and for each $i \le n$

$$P_i = \{1, 2, \dots, k_i\}.$$

Our approach

- 1. Show the existence of a canonical matrix \tilde{A} in the class $\mathcal{A}_{P}(R,S)$.
- 2. Use the special properties of this canonical matrix \tilde{A} to set up an algorithm for finding \tilde{A} column by column.

Some results

Lemma. $A_P(R, S)$ contains a matrix \widehat{A} where the 1's in column n appear in those rows in P_n in which r_i is largest, giving preference to the bottommost positions in case of ties.

Interchange:

$$T_1 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$
 and $T_2 = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$

... gives "last-column canonical matrix"

Some results

Lemma. $A_P(R, S)$ contains a matrix \widehat{A} where the 1's in column n appear in those rows in P_n in which r_i is largest, giving preference to the bottommost positions in case of ties.

Interchange:

$$\mathcal{T}_1 = \left[egin{array}{ccc} 1 & 0 \ 0 & 1 \end{array}
ight] \quad ext{and} \quad \mathcal{T}_2 = \left[egin{array}{ccc} 0 & 1 \ 1 & 0 \end{array}
ight]$$

... gives "last-column canonical matrix"

Theorem. $A_P(R, S)$ contains a unique matrix \widetilde{A} such that for each $k \leq n$ the submatrix A_k consisting of the first k columns of A is a last-column canonical matrix in its class.

Connectivity

Theorem. Let A and B be two given matrices in $A_P(R, S)$. Then there is a sequence of interchanges that transforms A to B with every intermediary matrix in $A_P(R, S)$.

Generalized Ryser algorithm:

- 1. (Initialize) Let k = n and let $\hat{R} = R$.
- 2. (Determine column k) Find the indices in P_k corresponding to the s_k largest positive components of \hat{R} where we prefer largest indices in case of ties. Let the k'th column of \tilde{A} have ones in the s_k positions just found.
- 3. (Update row sum) Let $\hat{R} = R \widetilde{A}(:,k)$ (the row sum vector after the last column has been deleted). If k > 1, reduce k by 1 and go to Step 2.

Example

Let m = 5, n = 8, R = (5, 5, 4, 4, 3), S = (3, 3, 3, 3, 3, 2, 2, 2), and let P correspond to the Young-pattern given by K = (5, 5, 5, 5, 4, 4, 3, 3).

Example

Application: reconstruction (in Discrete Tomography)

▶ When does $A_P(R, S)$ contain a unique matrix?

Application: reconstruction (in Discrete Tomography)

▶ When does $A_P(R, S)$ contain a unique matrix?

Theorem Let $A \in \mathcal{A}_P(R, S)$. Equivalent:

- ▶ A is the unique matrix in $A_P(R, S)$.
- \triangleright a certain graph G_A is acyclic.
- ▶ Starting with *A* and recursively deleting rows and columns of all 0's in positions of *P*, or rows and columns of all 1's in positions in *P* one eventually obtains the empty matrix.

Reconstruction algorithm:

- 1. Initialize A by setting $a_{ij} = 0$ for all $(i, j) \notin P$.
- 2. Find a line in the matrix such that its line sum, together with the fixing outside *P* and the previously determined entries in the algorithm, forces all remaining entries to be all one or all zero.
- 3. Set these entries accordingly, and return to Step 2 until *A* is completely specified.

