computations

immediate

February 7, 2018

Try ($\dot{u} = \mu + u^2 + u^4, \dot{\mu} = \varepsilon(1+u)$), rescale get

$$\partial_{\sigma} v = av + \varphi \rho + \varphi [v^2 + \varepsilon^{2/3} (u_R + v)^4]$$

$$\partial_{\sigma} \rho = \varphi \varepsilon^{1/3} (u_R + v)$$
(0.1)

for $\sigma \geq 0$, look at $\varphi \varepsilon^{2/3} u_R^4$ term, which grows like $\sim \varepsilon^{2/3} e^{3\sigma}$. Suggest weight like $w = \varepsilon^{-2/3} e^{-3\sigma}$, and nonlinear term

$$|\varphi v^2|_w = \sup w\varphi v^2 \sim \varepsilon^{-2/3}e^{-3\sigma}e^{-\sigma}(\varepsilon^{2/3}e^{3\sigma})^2 \sim \varepsilon^{2/3}e^{2\sigma} = \mathcal{O}(1)$$

for $\sigma \leq -\log(\varepsilon)/3$. but we still getting $e^{2\sigma}$