Finding α for the Euler top

yardanjumoorty

June 2022

Consider a system with Hamiltonian $H = J_x x^2 + J_y y^2$. We seek to analytically find the K-complexity growth rate α . We will assume that $J_x > J_y > 0$.

First consider the Hamiltonian. Rewriting the equation we get $y^2 = \frac{H - J_x x^2}{J_y}$

We know (from the 'Euler Top' paper) that $z'(t)=2(J_x-J_y)xy$. Since $x^2+y^2+z^2=1$, we can use our equation for y^2 to get $z'(t)=2(-J_y+H+J_yz)\sqrt{\frac{H-J_x}{J_y}}$. Put $y_E(z)=2(-J_y+H+J_yz)\sqrt{\frac{H-J_x}{J_y}}$

$$z'(t) = 2(-J_y + H + J_y z)\sqrt{\frac{H - J_x}{J_y}}$$
. Put $y_E(z) = 2(-J_y + H + J_y z)\sqrt{\frac{H - J_x}{J_y}}$

We obtain t =
$$\int \frac{1}{(-J_y+H+J_yz)\sqrt{\frac{H-J_x}{J_y}}}dz = \int \frac{1}{y_E(z)}$$

The imaginary part, σ_* , of the singularity closest to the real plane is $\int_{z_0}^{\infty} \frac{1}{iy_E(z)} dz$ where z_0 is the zero of $y_E(z)$ with the largest real part