Structured Learning for Control of Networked Systems: Stability and Steady-State Tracking Guarantees

Wenqi Cui

2023.12.05

Acknowledgements

Prof. Baosen Zhang University of Washington

Dr. Yan Jiang University of Washington

Prof. Yuanyuan Shi University of California San Diego

Prof. Jorge Cortes University of California San Diego

1 Networked Systems

1 Performance metrics

1 Performance metrics

1 Performance metrics

☐ Keep the relative distance

☐ The desired velocity

1 Learning for Control

(a) Example 1: A power grid

(b) Example 2: A vehicle platoon

1 Learning for Control

Transient Optimization

Training neural networks

$$\min_{u} \sum_{t=0}^{T} Transient Cost$$

s.t. dynamics of the system transient stability and output tracking

Provable guarantees for a range of tracking point?

1 Key idea

- Derive structural properties of controllers satisfying performance guarantees
- Enforce the structures in the design of neural networks

2 Power System Transient Dynamics

The swing equation for power system transient dynamics

2 Transient and Steady-state Optimization

Transient performance

$$\min_{u(\omega)} \sum_{i=1}^{n} \sum_{t=0}^{T} J_i \left(\omega_i(t), u_i(\omega_i(t)) \right)$$

s.t. dynamics of the system

$$\underline{a}_i \le a_i (\omega_i(t)) \le \overline{a}_i$$

 $a_i(\omega_i(t))$ is stabilizing

Steady-state performance

□ Frequency Restoration

$$\omega_i^* = 0$$

2 Transient Optimization with RL

- Parameter the controller with neural network controller

2 Hard Constraint on Stability

$$Loss = \sum_{t=0}^{T} \sum_{i=1}^{n} J_i(\omega_i(t), u_i(t))$$

(a) Dynamics for system with generic neural network controllers

2 Hard Constraint on Stability

Current approaches in literature

Option 1 : linearized control law and system dynamics

Option 2 : RL without stability requirement, or simply add soft penalties

2 Lyapunov Approach for a Stabilizing Controller

A local Lyapunov function $V(\delta, \omega)$ for the dynamic system is

$$V(\boldsymbol{\delta}, \boldsymbol{\omega}) = \sum_{(i.j) \in \mathcal{E}} \underbrace{-B_{ij} \cos(\delta_{ij}) + B_{ij} \cos(\delta_{ij}^*) - B_{ij} \sin(\delta_{ij}^*) (\delta_{ij} - \delta_{ij}^*)}_{\text{Potential Energy (Bregman distance of } -B_{ij} \cos(\delta_{ij}))} + \frac{1}{2} \sum_{i=1}^{n} \underbrace{M_i (\omega_i - \omega_i^*)^2}_{\text{Kinetic Energy}}$$

It is a valid Lyapunov function in $\Theta = \left\{ (\boldsymbol{\delta}, \boldsymbol{\omega}) | \delta_{ij} \in \left(-\frac{\pi}{2}, \frac{\pi}{2} \right) \forall i.j \right\}$, where $-B_{ij} \cos(\delta_{ij})$ is convex and therefore $-B_{ij} \cos(\delta_{ij}) \geq \left(-B_{ij} \cos(\delta_{ij}^*) \right) + \left(-\nabla B_{ij} \cos(\delta_{ij}^*) \right) (\delta_{ij} - \delta_{ij}^*)$

with equality holding if and only if $\delta_{ij} = \delta_{ij}^*$.

2 Lyapunov Approach for a Stabilizing Controller

Sufficient condition for asymptotic stability

The condition $\dot{V}(\boldsymbol{\delta}, \boldsymbol{\omega}) \leq 0$ holds if

$$(\omega_i - \omega_i^*)(u_i(\omega_i) - u_i(\omega_i^*)) \ge 0 \quad \forall i = 1, \dots n$$

A unique equilibrium if $u_i(\omega_i)$ is monotonic increasing and cross the origin

2 Structural Property for a Stabilizing Controller

Monotonic increasing functions cross the origin

2 Structured Neural Network Design

ReLU function

$$\sigma(x) = \max(x, 0)$$

$$q\sigma(x+b) = \begin{cases} q(x+b) & \text{if } x > -b & q_i^2 \sigma(\omega_i + b_i^2) \\ 0 & \text{otherwise} & \underline{q_i^1 \sigma(\omega_i)} \end{cases}$$

Explicitly engineer the structure of neural network controllers by stacking the ReLU function

2 Structured Neural Network Design

Structured one-layer neural network for parameterizing controller

$$f_i^+(\omega_i) = \mathbf{q}_i \sigma(\mathbf{1}\omega_i + \mathbf{b}_i)$$
where $\sum_{j=1}^l q_i^j \ge 0$, $\forall l = 1, 2, \cdots, m$
 $b_i^1 = 0, b_i^l \le b_i^{(l-1)}, \quad \forall l = 2, 3, \cdots, m$

We proved that $u_i(\omega_i) = f_i^+(\omega_i) + f_i^-(\omega_i)$ is a universal approximation of any bounded, Lipschitz continuous and monotonically increasing function through the origin.

3 Steady-State Tracking

3 Control theoretic motivations

Output agreement to the required value

Integral Control

$$\dot{s}_i = \overline{y} - y_i$$
 \longrightarrow $s_i(t) = \int_{\tau=0}^t (\overline{y} - y_i(\tau)) d\tau$

3 Generalized PI Controller

$$\dot{s}_i = \omega_i$$

$$u_i(t) = \pi_i^P(\omega_i) + \pi_i^I(s_i(t))$$

Generalized proportional control

Generalized integral control

Check equilibrium: If $\omega_i^* = \overline{y}$, then $\dot{s}_i = 0$

Whether trajectories from any possible initial states

3 Monotonicity → **Convexity**

Define the integral function $L_i(s_i) = \int_0^{s_i} \pi_i^I(z) dz$, which is strictly convex since $\nabla^2 L_i(s_i) =$

 $\frac{d\pi_i^I(s_i)}{ds_i} > 0$ by strictly monotonicity.

A local Lyapunov function $V(\eta, \omega, s)$ for the dynamic system is

$$V(\eta, \omega, s) = \sum_{(i.j) \in \mathcal{E}} -B_{ij} \cos(\delta_{ij}) + B_{ij} \cos(\delta_{ij}^*) - B_{ij} \sin(\delta_{ij}^*) (\delta_{ij} - \delta_{ij}^*) + \frac{1}{2} \sum_{i=1}^n M_i (\omega_i - \omega_i^*)^2$$

$$+ \sum_{i=1}^n \underbrace{L_i(s_i) - L_i(s_i^*) - \nabla L_i(s_i^*)(s_i - s_i^*)}_{\text{Bregman distance with } L_i(s_i)}$$

3 Convergence of ω_i

The time derivative of the energy function is

$$\dot{V}(\eta, \omega, s) = \sum_{i=1}^{n} \frac{\partial V}{\partial \omega_{i}} \dot{\omega}_{i} + \frac{\partial V}{\partial s_{i}} \dot{s}_{i} + \sum_{l=1}^{m} \frac{\partial V}{\partial \eta_{l}} \dot{\eta}_{l}$$

$$\leq \sum_{i=1}^{n} -\rho_{i} (\omega_{i} - \omega_{i}^{*})^{2} + \left(\pi_{i}^{P}(\omega_{i}) - \pi_{i}^{P}(\omega_{i}^{*})\right) (\omega_{i} - \omega_{i}^{*})$$

$$\leq \sum_{i=1}^{n} -\rho_{i} (\omega_{i} - \omega_{i}^{*})^{2} \quad \text{(by monotone of } \pi_{i}^{P})$$

3 Generalized Neural-PI Controller with Guarantees

In summary, the control law given as follows stabilizes the system and also guarantees frequency restoration at the steady state

$$\dot{s}_i = \omega_i$$

$$u_i(\omega_i) = \pi_i^P(\omega_i) + \pi_i^I(s_i)$$

Monotone Neural Network Implementation

3 Case study: Power systems

Case study is conducted on IEEE-39 bus test system.

Compare the proposed Neural-PI controller with

- 1) Linear PI control with the coefficient optimized by training
- 2) Dense neural network

Transient and steady-state cost

3 Case Study

Control Action *u* obtained by different approaches

3 Case study: Power systems

The dynamics after the same step load changes

4 Generalization to More Dynamic Systems

We consider a dynamic system described by

$$\dot{x} = f(x, u), y = h(x),$$

where state $x \in \mathbb{R}^n$, output $y \in \mathbb{R}^m$, control action $u \in \mathbb{R}^m$.

Assumption: Equilibrium-Independent Passivity

The system described by $\dot{x} = f(x, u)$, y = h(x) is strictly equilibrium-independent passive (EIP) if it satisfies:

- (i) for every equilibrium u^* , there exists a unique x^* such that $f(x^*, u^*) = 0$, and
- (ii) there exists a positive definite storage function $S(x, x^*)$ a constant ρ such that

$$S(x^*, x^*) = 0$$
 and $\dot{S}(x, x^*) \le (y - y^*)^T (u - u^*) - \rho ||y - y^*||^2$

4 Generalized PI Controller

The control law is

$$\dot{s} = \overline{y} - y$$
 $u = \underline{\pi^P(\overline{y} - y)} + \underline{\pi^I(s)}$
Proportional control Integral control

Strictly Monotone Functions

Gradient of convex function $\nabla g(z)$ is strictly monotone

Definition: Strictly Monotone Functions

A continuous function $q: \mathbb{R}^m \to \mathbb{R}^m$ is strictly monotone on $D \subset \mathbb{R}^m$ if $(q(\eta) - q(\xi))^T (\eta - \xi) \ge 0$, $\forall \eta, \xi \in D$, with the equality holds if and only if $\eta = \xi$.

4 Stability

Lyapunov function := Storage function + Bregman Distance of Convex Functions

Definition: Bregman Distance

The Bregman Distance of a strictly convex function $g: \mathbb{R}^m \to \mathbb{R}$ at the point s^* is defined as $B(s, s^*) = g(s) - g(s^*) - (\nabla g(s^*))^T (s - s^*)$, which is positive definite with equality holds only when $s = s^*$.

4 Stability

Lyapunov function := Storage function + Bregman Distance of Convex Functions

$$\dot{V} \leq -\rho||\mathbf{y} - \mathbf{y}^*||^2 + (\mathbf{y} - \mathbf{y}^*)^T (\boldsymbol{\pi}^P(\overline{\mathbf{y}} - \mathbf{y}) - \boldsymbol{\pi}^P(\overline{\mathbf{y}} - \mathbf{y}^*))$$

$$\leq 0 \text{ by monotonicity}$$

Definition: Bregman Distance

The Bregman Distance of a strictly convex function $g: \mathbb{R}^m \to \mathbb{R}$ at the point s^* is defined as $B(s, s^*) = g(s) - g(s^*) - (\nabla g(s^*))^T (s - s^*)$, which is positive definite with equality holds only when $s = s^*$.

33

4 Strictly Convex NN → Monotone NN

A strictly convex function $g(z;\theta)$ parameterized by k -layer neural network, with o_l being the output of the l-th layer

$$o_{l+1} = \sigma_l \left(W_l^{(o)} o_l + W_l^{(z)} z + b_l \right), \qquad \text{g(z; } \theta) = o_k$$
Strictly convex and increasing Positive except for $a_0, W_0^{(o)} \equiv 0$

4 Strictly Convex NN - Universal approximation

Convex function

Max of affine function

DenseNN with ReLU

DenseNN with softplus-beta

Universal approximation of any strictly convex functions

$$o_{l+1} = \sigma_l \left(W_l^{(o)} o_l + W_l^{(z)} z + b_l \right),$$

$$g(z; \theta) = o_k$$

when the activation is

$$\sigma_l^{softplus}(x) \coloneqq \frac{1}{\beta} \log(1 + e^{\beta x})$$

4 Case study: Vehicle platooning

Vehicle platooning problem with 20 vehicles Compare the proposed Neural-PI controller with

- 1) Linear PI control with the coefficient optimized by training
- 2) Unstructured dense neural network

(a) Transient and steady-state cost

(b) Velocities under DenseNN

(c) Velocities under Neural-PI

5 Conclusions

- Derive structural properties of controllers satisfying performance guarantees
- Enforce the structures in the design of neural networks

Thank you!

- ☐ Feel free to contact me at <a href="weight:weigh
- Online version and code of the above works can be found in

[1] Wenqi Cui, Yan Jiang, and Baosen Zhang. Reinforcement learning for optimal primary frequency control: A Lyapunov approach. IEEE Transactions on Power Systems, 2022

[2] Wenqi Cui, Yan Jiang, Baosen Zhang and Yuanyuan Shi. Structured Neural-PI Control for Networked Systems: Stability and Steady-State Optimality Guarantees. NeurIPS, 2023.