Creating a model based on MNIST Dataset of Handwritten Digits

· Lets Load our Dataset

```
In [2]: from keras.datasets import mnist
    #Load MNIST Dataset
    (x_train, y_train), (x_test,y_test) = mnist.load_data()
    print(y_train.shape)

Using TensorFlow backend.
    (60000,)
```

Step 2A: Examine the size and image dimensions

- · Check the number of samples, dimensions and whether images are color or gray
- We see that our training data consist of 60000 samples of training data, and 10000 samples of test data
- · Our labels are properly sized as well
- Our Image dimension are 28281 with no color channels.

```
In [3]: # printing number of training samples and test samples
        print("Initial Shape of x_train", str(x_train.shape))
        print("Number of samples in our training dataset:" + str(len(x_train)))
        print("Number of labels in our training dataset:" + str(len(y_train)))
        print("Number of samples in our test dataset:" + str(len(x_test)))
        print("Number of labels in our test dataset:" + str(len(y test)))
        print()
        print("Dimension of x_train:" + str(x_train[0].shape))
        print("Labels in x_train:" + str(y_train.shape))
        print()
        print("Dimension of x_test:" + str(x_test[0].shape))
        print("Labels in x_test:" + str(y_test.shape))
        Initial Shape of x train (60000, 28, 28)
        Number of samples in our training dataset:60000
        Number of labels in our training dataset:60000
        Number of samples in our test dataset:10000
        Number of labels in our test dataset:10000
        Dimension of x train: (28, 28)
        Labels in x train: (60000,)
        Dimension of x test: (28, 28)
        Labels in x_test:(10000,)
```

Step 2B - Let's take a look at some of images in the dataset

- Using OpenCV
- Using Matplotlib

```
In [4]: #using OpenCV
#import OpenCV and numpy
import cv2
import numpy as np

#Using OpenCV to display 6 random images from our dataset

for i in range(0,6):
    random_num = np.random.randint(0, len(x_train))
    img = x_train[random_num]
    window_name = 'Random Sample #' + str(i)
    cv2.imshow(window_name, img)
    cv2.waitKey(0)

cv2.destroyAllWindows()
```

Lets do the same thing using matplotlib to plot 6 images

```
In [4]: #import matplotlib
        import matplotlib.pyplot as plt
        #plt 6 images, subplots arguments are nrows, ncols, index
        #we set the color map to grey since our dataset is grayscale
        plt.subplot(331)
        random num = np.random.randint(0, len(x train))
        plt.imshow(x_train[random_num], cmap=plt.get_cmap('gray'))
        plt.subplot(332)
        random_num = np.random.randint(0, len(x_train))
        plt.imshow(x_train[random_num], cmap=plt.get_cmap('gray'))
        plt.subplot(333)
        random_num = np.random.randint(0, len(x_train))
        plt.imshow(x train[random num], cmap=plt.get cmap('gray'))
        plt.subplot(334)
        random num = np.random.randint(0, len(x train))
        plt.imshow(x_train[random_num], cmap=plt.get_cmap('gray'))
        plt.subplot(335)
        random num = np.random.randint(0, len(x train))
        plt.imshow(x_train[random_num], cmap=plt.get_cmap('gray'))
        plt.subplot(336)
        random_num = np.random.randint(0, len(x_train))
        plt.imshow(x train[random num], cmap=plt.get cmap('gray'))
        #Display out plots
        plt.show()
```


Step 3A - Prepare our dataset for training

```
In [5]: #lets Store the number of rows and columns
        img_rows = x_train[0].shape[0]
        img_cols = x_train[1].shape[0]
        #Creating our data in right 'shape' needed for keras
        #We need to add a 4th dimension to our data which is depth
        our original image shape is (60000,28,28) we will add depth to it (60000,28,28,1#
        x_train = x_train.reshape(x_train.shape[0], img_rows, img_cols,1)
        x_test = x_test.reshape(x_test.shape[0], img_rows, img_cols,1)
        #store the shape of a single image
        #here the input shape is in integer
        #we created image shape for our first layer of convolution (1 because of grayscal
        input_shape = (img_rows, img_cols, 1)
        #Change our image type to float32 data type
        x train = x train.astype('float32')
        x_test = x_test.astype('float32')
        #Normalize our data from a range of (0-255) to (0-1)
        x train /= 255
        x_test /=255
        #Printing our modified data in accordance with keras
        print('x_train shape:', x_train.shape)
        print(x_train.shape[0], 'train samples')
        print(x test.shape[0], 'test samples')
        x train shape: (60000, 28, 28, 1)
        60000 train samples
        10000 test samples
```

Step 3B - Hot Encode our labels(Y)

```
In [6]: from keras.utils import np_utils

#Now we hot one encoded outputs
y_train = np_utils.to_categorical(y_train)
y_test = np_utils.to_categorical(y_test)

#Count the number of columns in our hot encoded matrix
print ('Number of Classes:' + str(y_test.shape[1]))

num_classes = y_test.shape[1]
num_pixels = x_train.shape[1] * x_train.shape[2]
```

Number of Classes:10

Step 4 - Create Our Model

- We're constructing a simple CNN that uses 32 filters of size 3*3
- We'have added a second convolution layer of 64 filters of the same size 3*3

- We downsampled our data to 2x2, here we apply a dropout where p is set to 0.25
- After that we flattened our Max Pool output that is connected to a Dense/FC layer that has an output size of 128
- In the final step 128 output is connected to another FC/Dense layer that outputs to the 10 categorical units
- Note dropout shouldn't be greater than 0.5 preferably

```
In [7]: import keras
        from keras.datasets import mnist
        from keras.models import Sequential
        from keras.layers import Dense, Dropout, Flatten
        from keras.layers import Conv2D, MaxPooling2D
        from keras import backend as K
        from keras.optimizers import SGD
        #Create model
        model = Sequential()
        model.add(Conv2D(32, kernel_size=(3,3),
                        activation='relu',
                        input_shape=input_shape))
        model.add(Conv2D(64,(3,3),activation='relu'))
        model.add(MaxPooling2D(pool_size=(2,2)))
        model.add(Dropout(0.25))
        model.add(Flatten())
        model.add(Dense(128,activation='relu'))
        model.add(Dropout(0.5))
        model.add(Dense(num_classes, activation='softmax'))
        model.compile(loss = 'categorical_crossentropy',
                     optimizer = SGD(0.01),
                     metrics = ['accuracy'])
        print(model.summary())
```

Model: "sequential_1"

Layer (type)	Output	Shape	Param #
	======		========
conv2d_1 (Conv2D)	(None,	26, 26, 32)	320
conv2d_2 (Conv2D)	(None,	24, 24, 64)	18496
max_pooling2d_1 (MaxPooling2	(None,	12, 12, 64)	0
dropout_1 (Dropout)	(None,	12, 12, 64)	0
flatten_1 (Flatten)	(None,	9216)	0
dense_1 (Dense)	(None,	128)	1179776
dropout_2 (Dropout)	(None,	128)	0
dense_2 (Dense)	(None,	10)	1290
Total params: 1,199,882 Trainable params: 1,199,882 Non-trainable params: 0			

None

Step 5 - Train our Model

- we enter our formatted data as inputs and set the batch size, number of epochs
- · we store our models training result for plotting in future
- Then we used keras model evaluation function to output the model's final performance. Here
 we are examining Test Loss and Test Accuracy

```
In [9]: batch_size = 32
       epochs = 10
       history = model.fit(x_train,
                         y train,
                         batch size = batch size,
                         epochs = epochs,
                         verbose = 1,
                                                                      #how much dat
                         validation_data = (x_test, y_test))
       score = model.evaluate(x_test, y_test, verbose = 0)
       print('Test loss:', score[0])
       print('Test accuracy:', score[1])
       Train on 60000 samples, validate on 10000 samples
       Epoch 1/10
       60000/60000 [============ ] - 115s 2ms/step - loss: 0.5812 - a
       ccuracy: 0.8182 - val loss: 0.1976 - val accuracy: 0.9393- accura
       60000/60000 [============ ] - 117s 2ms/step - loss: 0.2949 - a
       ccuracy: 0.9112 - val loss: 0.1417 - val accuracy: 0.9582
       60000/60000 [============] - 119s 2ms/step - loss: 0.2260 - a
       ccuracy: 0.9322 - val loss: 0.1074 - val accuracy: 0.9664
       Epoch 4/10
       60000/60000 [============ ] - 122s 2ms/step - loss: 0.1761 - a
       ccuracy: 0.9474 - val loss: 0.0836 - val accuracy: 0.9745
       Epoch 5/10
       60000/60000 [============= ] - 119s 2ms/step - loss: 0.1461 - a
       ccuracy: 0.9560 - val loss: 0.0702 - val accuracy: 0.9776oss: 0.1462 - accura
       Epoch 6/10
       60000/60000 [============= ] - 119s 2ms/step - loss: 0.1248 - a
       ccuracy: 0.9629 - val loss: 0.0592 - val accuracy: 0.9811
       Epoch 7/10
       60000/60000 [============= ] - 121s 2ms/step - loss: 0.1101 - a
       ccuracy: 0.9677 - val_loss: 0.0537 - val_accuracy: 0.9825
       Epoch 8/10
       60000/60000 [============= ] - 119s 2ms/step - loss: 0.0999 - a
       ccuracy: 0.9695 - val_loss: 0.0501 - val_accuracy: 0.9838
       Epoch 9/10
       60000/60000 [============= ] - 119s 2ms/step - loss: 0.0915 - a
       ccuracy: 0.9726 - val_loss: 0.0452 - val_accuracy: 0.9840
       Epoch 10/10
       60000/60000 [============= ] - 121s 2ms/step - loss: 0.0839 - a
       ccuracy: 0.9745 - val_loss: 0.0438 - val_accuracy: 0.9863
       Test loss: 0.043802500181901266
```

Step 6 - Plotting our Loss and Acuuracy Charts

Test accuracy: 0.986299991607666

```
In [10]: # Plotting our loss Charts
    import matplotlib.pyplot as plt
    history_dict = history_history

loss_values = history_dict['loss']
    val_loss_values = history_dict['val_loss']
    epochs = range(1, len(loss_values) + 1)

line1 = plt.plot(epochs, val_loss_values, label='Validation/Test Loss')
    line2 = plt.plot(epochs, loss_values, label='Training Loss')
    plt.setp(line1, linewidth=2.0, marker = '+', markersize=10.0)
    plt.setp(line2, linewidth=2.0, marker = '4', markersize=10.0)
    plt.xlabel('Epochs')
    plt.ylabel('Loss')
    plt.grid(True)
    plt.legend()
    plt.show()
```



```
In [12]: #plotting accuracy charts
    import matplotlib.pyplot as plt
    history_dict = history.history
    accuracy_values = history_dict['accuracy']
    val_accuracy_values = history_dict['val_accuracy']
    epochs = range(1, len(accuracy_values) +1)

line1 = plt.plot(epochs, val_accuracy_values, label='Validation/TestAccuracy')
    line2 = plt.plot(epochs, accuracy_values, label='Training Accuracy')
    plt.setp(line1, linewidth=2.0, marker = '+', markersize=10.0)
    plt.setp(line2, linewidth=2.0, marker = '4', markersize=10.0)
    plt.xlabel('Epochs')
    plt.ylabel('Accuracy')
    plt.grid(True)
    plt.legend()
    plt.show()
```


Step 7A - Saving our Model

```
In [13]: model.save(r"C:\Users\yrsin\Desktop\git_Hub\tensorflow\sharedwindows10\testfolder
print("model Saved")
```

model Saved

Step 7B - Loading our Model

Step 8 - Lets input some data to test our

classifier

```
In [17]: import cv2
         import numpy as np
         def draw_test(name, pred, input_im):
             BLACK = [0,0,0]
             expanded_image = cv2.copyMakeBorder(input_im, 0,0,0, imageL.shape[0], cv2.BOF
             expanded image = cv2.cvtColor(expanded image, cv2.COLOR GRAY2BGR)
             cv2.putText(expanded_image, str(pred), (152,70), cv2.FONT_HERSHEY_COMPLEX_SM4
             cv2.imshow(name, expanded_image)
         for i in range(0,10):
             rand = np.random.randint(0,len(x_test))
             input_im = x_test[rand]
             imageL = cv2.resize(input_im, None, fx=4, fy=4, interpolation = cv2.INTER_CUE
             input_im = input_im.reshape(1,28,28,1)
             #Get Prediction
             res = str(classifier.predict_classes(input_im,1,verbose = 0)[0])
             draw_test("Prediction", res, imageL)
             cv2.waitKey(0)
         cv2.destroyAllWindows()
```

Predictions of Classifier

Confusion Matrix and classification Report

```
In [19]: from sklearn.metrics import classification_report,confusion_matrix
import numpy as np

y_pred = model.predict_classes(x_test)

print(classification_report(np.argmax(y_test,axis=1), y_pred))
print(confusion_matrix(np.argmax(y_test,axis=1), y_pred))
```

		pre	cisio	n	recal	.1 f:	1-scor	e s	support
	(а	0.9	7	1.6	90	0.9	8	980
	:	1	0.9	9	0.9	9	0.9	9	1135
	:	2	0.9	8	0.9	9	0.9	9	1032
	3	3	0.9	9	0.9	8	0.9	9	1010
	4	4	0.9	9	0.9	9	0.9	9	982
	!	5	0.9	8	0.9	9	0.9	9	892
	(5	0.9	9	0.9	8	0.9	9	958
	-	7	0.9	9	0.9	8	0.9	8	1028
	8	8	0.9	9	0.9	8	0.9	8	974
	9	9	0.9	9	0.9	8	0.9	8	1009
									10000
		_							10000
ighte	ed av	g	0.9	9	0.9	99	0.9	19	10000
976	1	0	0	0	0	1	1	1	0]
0	1127	3	1	0	1	2	0	1	0]
3	2	1022	1	1	0	0	3	0	0]
0	0	3	994	0	8	0	3	2	0]
0	1	1	0	968	0	4	0	2	6]
2	0	0	4	0	882	2	1	1	0]
8	2	0	0	1	4	942	0	1	0]
2	1	10	1	0	0	0	1011	1	2]
7	1	2	1	2	1	1	3	952	4]
5	4	0	2	3	1	0	4	1	989]]
	976 976 0 3 0 2 8 2 7	accuracy macro ave ighted ave 976 1 0 1127 3 2 0 0 1 2 0 8 2 2 1 7 1	0 1 2 3 4 5 6 7 8 9 accuracy macro avg ighted avg 976 1 0 0 1127 3 3 2 1022 0 0 3 0 1 1 2 0 0 8 2 0 2 1 10 7 1 2	0 0.9 1 0.9 2 0.9 3 0.9 4 0.9 5 0.9 6 0.9 7 0.9 8 0.9 9 0.9 accuracy macro avg 0.9 ighted avg 0.9 976 1 0 0 0 1127 3 1 3 2 1022 1 0 0 3 994 0 1 1 0 2 0 0 4 8 2 0 0 2 1 10 1 7 1 2 1	1 0.99 2 0.98 3 0.99 4 0.99 5 0.98 6 0.99 7 0.99 8 0.99 9 0.99 accuracy macro avg 0.99 eighted avg 0.99 976 1 0 0 0 0 1127 3 1 0 3 2 1022 1 1 0 0 3 994 0 0 1 1 0 968 2 0 0 4 0 8 2 0 0 1 2 1 10 1 0 7 1 2 1 2	0 0.97 1.6 1 0.99 0.9 2 0.98 0.9 3 0.99 0.9 4 0.99 0.9 5 0.98 0.9 7 0.99 0.9 8 0.99 0.9 9 0.99 0.9 accuracy macro avg 0.99 0.9 ighted avg 0.99 0.9 976 1 0 0 0 0 0 1127 3 1 0 1 3 2 1022 1 1 0 0 0 3 994 0 8 0 1 1 0 968 0 2 0 0 4 0 882 8 2 0 0 1 4 2 1 10 1 0 0 7 1 2 1 2 1	0 0.97 1.00 1 0.99 0.99 2 0.98 0.99 3 0.99 0.98 4 0.99 0.99 5 0.98 0.99 6 0.99 0.98 7 0.99 0.98 8 0.99 0.98 9 0.99 0.98 accuracy macro avg 0.99 0.98 ighted avg 0.99 0.99 976 1 0 0 0 1 0 1127 3 1 0 1 2 3 2 1022 1 1 0 0 0 0 3 994 0 8 0 0 1 1 0 968 0 4 2 0 0 4 0 882 2 8 2 0 0 1 4 942 2 1 10 1 0 0 0 7 1 2 1 2 1 1	0 0.97 1.00 0.99 1 0.99 0.99 0.99 2 0.98 0.99 0.98 3 0.99 0.98 0.99 5 0.98 0.99 0.98 6 0.99 0.98 0.99 7 0.99 0.98 0.9 8 0.99 0.98 0.9 9 0.99 0.98 0.9 1ghted avg 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99	0 0.97 1.00 0.98 1 0.99 0.99 0.99 2 0.98 0.99 0.99 3 0.99 0.98 0.99 4 0.99 0.99 0.99 5 0.98 0.99 0.99 6 0.99 0.98 0.99 7 0.99 0.98 0.98 8 0.99 0.98 0.98 9 0.99 0.98 0.98 9 0.99 0.98 0.98 accuracy 0.99 0.98 0.98 ghted avg 0.99 0.99 0.99 976 1 0 0 0 0 1 1 1 0 1127 3 1 0 1 2 0 1 3 2 1022 1 1 0 0 3 0 0 0 3 994 0 8 0 3 2 0 1 1 0 968 0 4 0 2 2 0 0 4 0 882 2 1 1 8 2 0 0 1 4 942 0 1 2 1 10 1 0 0 0 1011 1 7 1 2 1 2 1 1 3 952

Displaying our Misclassified Data

```
In [20]: import cv2
         import numpy as np
         from keras.datasets import mnist
         # Loads the MNIST dataset
         (x_train, y_train), (x_test, y_test) = mnist.load_data()
         # Use numpy to create an array that stores a value of 1 when a misclassification
         result = np.absolute(y test - y pred)
         result_indices = np.nonzero(result > 0)
         # Display the indices of mislassifications
         print("Indices of misclassifed data are: \n\n" + str(result_indices))
         Indices of misclassifed data are:
         (array([ 247, 259, 321, 445, 449, 582, 720, 726, 740, 844, 883,
                 938, 947, 965, 1014, 1039, 1112, 1182, 1226, 1232, 1242, 1247,
                1290, 1299, 1319, 1326, 1393, 1522, 1527, 1530, 1549, 1609, 1678,
                1681, 1709, 1717, 1737, 1878, 1901, 2018, 2035, 2043, 2093, 2098,
                2109, 2118, 2130, 2135, 2182, 2272, 2293, 2387, 2406, 2447, 2454,
                2462, 2488, 2607, 2648, 2654, 2896, 2921, 2927, 2939, 2952, 2953,
                3030, 3060, 3289, 3422, 3503, 3520, 3558, 3559, 3597, 3604, 3726,
                3751, 3767, 3780, 3808, 3853, 3906, 3941, 4075, 4078, 4163, 4176,
                4205, 4224, 4238, 4248, 4256, 4265, 4289, 4497, 4500, 4536, 4601,
                4639, 4740, 4761, 4807, 4814, 4823, 4956, 5331, 5642, 5734, 5887,
                5937, 5955, 5973, 6011, 6505, 6555, 6572, 6576, 6597, 6625, 6651,
                6783, 7434, 8325, 8408, 8527, 9009, 9015, 9019, 9024, 9280, 9634,
                9692, 9729, 9770, 9888, 9982], dtype=int64),)
```

Displaying the Misclassification

```
In [21]: import cv2
         #from keras.models import load model
         #classifier = load model('/home/deeplearningcv/DeeplearningCV/Trained Models/mnis
         def draw_test(name, pred, input_im, true_label):
             BLACK = [0,0,0]
             expanded image = cv2.copyMakeBorder(input im, 0, 0, 0, imageL.shape[0]*2 ,cv2
             expanded_image = cv2.cvtColor(expanded_image, cv2.COLOR_GRAY2BGR)
             cv2.putText(expanded_image, str(pred), (152, 70) , cv2.FONT_HERSHEY_COMPLEX_5
             cv2.putText(expanded_image, str(true_label), (250, 70), cv2.FONT_HERSHEY_CON
             cv2.imshow(name, expanded_image)
         for i in range(0,10):
             input_im = x_test[result_indices[0][i]]
             #print(y test[result indices[0][i]])
             imageL = cv2.resize(input_im, None, fx=4, fy=4, interpolation = cv2.INTER_CUE
             input_im = input_im.reshape(1,28,28,1)
             ## Get Prediction
             res = str(model.predict_classes(input_im, 1, verbose = 0)[0])
             draw_test("Prediction", res, imageL, y_test[result_indices[0][i]])
             cv2.waitKey(0)
         cv2.destroyAllWindows()
```

Output of Misclassified data

