HW3 Ch 3, 4, & 5

Due Sep 7 at 11:30pm **Allowed Attempts** 2

Points 25

Questions 21

Time Limit None

Instructions

Read Chapters 3, 4, & 5 in your textbook *Hazard Analysis Techniques for System Safety*, 2nd Edition, Clifton A. Ericson II (2016).

Answer the questions.

You are allowed up to **two** attempts to take the quiz. Your score will be the **average** of your attempts.

This is an individual assignment. Collaboration or sharing answers with other students is considered cheating.

Study Pro Tips:

- Before you attempt the quiz, read the materials once through, highlighting any important concepts, or making annotations in your book or notes.
- · As you complete the quiz, keep your reading open in front of you and refer back during the quiz.
- Refer to your lecture notes and take additional notes as you take the guiz.
- After you take the quiz, make additional notes for future reference and exams.

Take the Quiz Again

Attempt History

	Attempt	Time	Score
LATEST	Attempt 1	1,231 minutes	17.89 out of 25 *

^{*} Some questions not yet graded

(!) Correct answers are hidden.

Score for this attempt: 17.89 out of 25 *

Submitted Sep 6 at 5:30pm

This attempt took 1,231 minutes.

Question 1 1 / 1 pts

Which of the following is NOT a published definition of the term "Risk" in the text?

An expression of the impact and possibility of a mishap in terms of potential mishap severity and probability of occurrence.

To put in danger of loss or injury.

Hazard, peril, or jeopardy.

A combination of the severity of the mishap and the probability that the mishap will occur.

Section 3.2

Section 3.6

Question 3	1 / 1 pts
A hazard has a probability of either 1 or 0 of existing.	
True	
○ False	
Section 3.10	

These are intermediary occurrences that, when fail, aggravate or contribute to an incident scenario. Pivotal Events Threat Outcomes Target Outcomes Initiating Events Section 3.4 & Appendix B

Question 5 1 / 1 pts

There are three points A, B, and C on the risk plane shown in the graph below. Which statement best explains the relationship?

- Risk A > Risk B = Risk C
- Risk A = Risk B > Risk C
- Risk B > Risk A > Risk C
- Risk A = Risk B = Risk C

Ch 3 and lecture notes

Question 6 1 / 1 pts

The ______ is intended to systematically identify and evaluate the hazards of hazardous materials, and propose measures to eliminate or control these hazards through engineering design changes or protective measures to reduce the risk to an acceptable level.

- Human Health Design-HAT
- Operations-HAT
- Conceptual Design-HAT

O System Desig	n-HAT		
Section 4.3.6			

Question 7	1 / 1 pts
analysis involves the use of data in the analysis and provides a more objective and according provided that input data is valid	
 Subjective 	
System Safety	
Quantitative	
O Qualitative	
Section 4.10	

Question 8	1 / 1 pts
What is the difference between a primary and secondary haz analysis technique?	ard
Primary Hats are completed before Secondary HATs.	
Primary HATs are complete, formal methodologies, secondary Has support the primary HAT.	ATs

Secondary HATs always use Primary	
 Secondary HATs fills any holes left by 	the Primary HAT.
Section 4.8	
Question 9	1 / 1 pts
	of the Preliminary Design HAT?
Which of the following is a key element	of the Preliminary Design HAT?
Which of the following is a key element Identify toxic effects of system operate	of the Preliminary Design HAT? ions.
Which of the following is a key element Identify toxic effects of system operate Generate a list of system level hazard Develop detailed Indentured Equipment	of the Preliminary Design HAT? ions. ds. ent Lists.
Generate a list of system level hazard	of the Preliminary Design HAT? ions. ds. ent Lists.
Which of the following is a key element Identify toxic effects of system operate Generate a list of system level hazard Develop detailed Indentured Equipment	of the Preliminary Design HAT? ions. ds. ent Lists.

Question 10	1 / 1 pts
The evaluates the system performan support functions including use, test, maintenance, training, shandling, transportation, and demilitarization or disposal, idel hazards that can be eliminated or mitigated through design for and modified procedures when necessary.	storage, ntifying
○ System Design-HAT	

Operations Design-HAT
O Human Health Design-HAT
Requirements Design-HAT
Section 4.3.5

Hazards resulting from the intrinsic nature of the components, equipment, or processes in the system, such as hazardous materials, energy sources, or safety-critical functions are called timing hazards inherent hazards latent hazards Section 5.5

Question 12 1 / 1 pts Which of the following would be considered a Design Safety Feature? Check all that are correct

☐ Hot Work Permit	
Redundant component	
Portable Fire Extinguisher	
Lock-Out Tagout	
Interlock	
Fail-safe mechanism	
Section 5.2.7	

What is a common mistake that system safety analysts make when starting a hazard analysis process? Jumping into a system and immediately start identifying what they think are hazards, without considering the system architecture. Not identifying root causes Identifying the consequences Not considering budget.

Question 14	1 / 1 pts
What is the main difference between Hazard Analysis and R Analysis? Check all that are correct	doot Cause
RCA looks for causal factors to a known problem.	
HA is reactive.	
HA looks for the potential problem and causal factors involve	ed.
RCA does not assess risk.	
RCA is only used for Incident Investigation.	
Section 5.1	

Question 15	1 / 1 pts
If a system operator is forced into committing errors because confusion in a poorly designed layout of a multitude of switch gauges, and displays, this would be an example of a(n)	
Human System Interface (HSI) hazard	
iming hazard	
inherent hazard	
hardware induced hazard	

Question 16

Not yet graded / 1 pts

Using the method described in 3.12 of your book, write a clear, concise, and descriptive hazard description for the photograph of the backhoe hydraulic lines shown below.

Identify the Hazard Source (HS), Initiating Mechanism (IM), and Target/Threat outcome (TO) in your description.

Your Answer:

The picture illustrates two backhoe hydraulic lines connecting the pipes and two valves. Aging and corrosion on the lines' covering could be observed in this figure, leading to further leakage and could pollute the environment and damage the machine.

Hazard Source (HS): The bolts at the joints of the lines

Initiating Mechanism (IM): Oil leakage

Target/Threat Outcome (TTO): Pollution to the environment and damage on the machine.

Section 3.12

Partial

Question 17

0.89 / 1 pts

Provide the following Acronyms meanings mentioned in Chapter 3. Must be exact for full credit - capitalize the first letter of each word Hazard Causal Fac **HCF** Initiating Event Pivotal Event PΕ Hazard Source **Initiating Mechanisr** Target/Threat Outco TTO Hazardous Element HE Top-Level Mishap **TLM** Safety-Critical Func **SCF** Answer 1: Hazard Causal Factor Answer 2: **Initiating Event** Answer 3: Pivotal Event Answer 4:

Hazard Source Answer 5: **Initiating Mechanism** Answer 6: Target/Threat Outcome Answer 7: Hazardous Element **Answer 8:** Top-Level Mishap Answer 9: Safety-Critical Function Ch3

Question 18 1 / 1 pts

Provide the following Acronyms meanings mentioned in Chapter 4.

Case sensitive - Must be exact for full credit - capitalize the first letter of each word

• OD-HAT

Operations Design

• HD-HAT	Health Design Haza
• RD-HAT	Requirements Desi
• PRA Pro	bbabilistic risk as:
Answer 1:	
Concept	ual Design Hazard Analysis Type
Answer 2:	
Prelimina	ary Design Hazard Analysis Type
Answer 3:	
Detailed	Design Hazard Analysis Type
Answer 4:	
System I	Design Hazard Analysis Type
Answer 5:	
Operatio	ons Design Hazard Analysis Type
Answer 6:	
Health D	esign Hazard Analysis Type
Answer 7:	
Requirer	ments Design Hazard Analysis Type
Answer 8:	
Probabil	istic risk assessment
Ch4	

Describe a real-world example for each of the following categories of hazards:

No credit given for examples listed in text

- 1. Inherent Hazard
- 2. Timing Hazard
- 3. Latent Hazard
- 4. Systemic Hazard
- 5. Common Cause Hazard
- 6. HIS Hazard
- 7. Organizational Hazard
- 8. Operational Hazard

Your Answer:

- 1. Inherent Hazard: Poisonous Chemicals
- 2. Timing Hazard: Electronic Circuit Aging leading to fire hazard
- 3. Latent Hazard: Hazard caused by designs that did not considerate the cultural differences
- 4. Systemic Hazard: Bridge collapsed due to the improper calculation on the wind load
- 5. Common Cause Hazard: Spare circuit fails at the same time due to the heat generated by the current at the same time when operating circuit fail
- 6. HIS Hazard: Unergonomic design like the too high chairs or too short handles for tools.
- 7. Organizational Hazard: Disagreements within the organization lead to estrangement and reduced ability to cooperate.
- 8. Operational Hazard: Operator does not follow the guide by related standards, which caused the incident.

Section 5.5

Question 20 1 / 1 pts

Provide the following Acronyms meanings mentioned in Chapter 5.

Case sensitive - Must be exact for full credit - capitalize the first letter of each word

•	HA	Hazard Analysis	
•	RCA	Root Cause Analys	
•	SMM	System Mishap Mo	
•	TLM	Top-Level Mishap	
•	HRI	Hazard Risk Index	
•	SSR	System Safety Req	
•	нтѕ	Hazard Tracking Sy	
•	SSP	System Safety Proc	
•	SME	Subject Matter Exp	
•	SSW	G System Safety Wor	
•	HRI	Hazard Risk Index	
•	DSF	Design Safety Featı	
•	HSI	Human System Inte	
•	НСР	Hazard Causal Path	
Ans	swer '	1:	
	Haza	ard Analysis	
Ans	swer 2	2:	
	Root	Cause Analysis	
Ans	swer :	3 :	
	Syste	em Mishap Model	
Answer 4:			
	Top-l	Level Mishap	

Answer 5:		
Hazard Risk Index		
Answer 6:		
System Safety Requirement		
Answer 7:		
Hazard Tracking System		
Answer 8:		
System Safety Program		
Answer 9:		
Subject Matter Expert		
Answer 10:		
System Safety Working Group		
Answer 11:		
Hazard Risk Index		
Answer 12:		
Design Safety Feature		
Answer 13:		
Human System Integration		
Answer 14:		
Hazard Causal Pathway		
Ch5		

Consider the photo shown below of a chemical storage tank. Assume the chemical contains flammable and toxic properties.

- a. Write a hazard description for the image. Use the hazard description methodology described in Section 5.4, including HS, IM, and TTO.
- b. Create a System Mishap Model mind map similar to those found in Figures 5.1, thru 5.6 in the book. Identify and label the TLMs, TLCs, TLH, SPF, Hazards, and HCP.

Use electronic means for creating the System Mishap Model mind map.

Hand sketches will not be accepted.

<u>Xinyu Hazard HW3 Ch 3,4,5 Description.docx</u> (https://canvas.okstate.edu/files/15211884/download)

Section 5.4

Quiz Score: 17.89 out of 25