Analysis of sources that support the EGA-Cellular-Reprogramming project.

Abstract

Buriticá et al. (2018) compare deterministic ordinary differential equation (ODE) models and stochastic Gillespie simulations to capture kinetic rates—activation, inactivation, and synthesis—in gene expression. Rodríguez Penas (2017) uses Differential Evolution and Scatter Search to estimate high-dimensional ODE parameters, explicitly enforcing biologically plausible bounds. John and Meza-Chaves (2019) apply genetic algorithms—with elitist selection, diversity control via Hamming distance, and a fitness based on Bayesian posterior probability—to infer gene regulatory interactions in an Arabidopsis system. These studies support an approach in which evolutionary methods optimize parameters in models of gene regulatory networks. They show that fitness functions based on estimation error or posterior probability, combined with constraints such as explicit parameter bounds, can yield simulations that approximate desired gene expression profiles. Together, they provide a cross-disciplinary basis for using computational optimization to calibrate differential equation models in systems biology.

Results Characteristics of Included Studies

Study	Research Focus	Methodology	Key Parameters	Application Domain
Buriticá et al., 2018	Comparison of deterministic and stochastic simulation methods for gene expression	Petri net and Ordinary Differential Equation (ODE) modeling; Gillespie algorithm (first reaction and direct methods); no optimization method applied	Activation inactivation/synthe is rates (λ, μ, ν) ; state variables: inactive gene, active gene, protein	protein synthesis
Rodríguez Penas, 2017	Development of parallel metaheuristics for parameter estimation in systems biology	Differential Evolution (DE), Scatter Search (SS); asynchronous, cooperative, selfadaptive parallel algorithms; nonlinear ODE models	Model parameters for ODEs (number and type not specified; high- dimensional); parameter bounds for biological plausibility	Computational systems biology; parameter estimation in kinetic models; Mixed-Integer Dynamic Optimization (MIDO) problems
John & Meza- Chaves, 2019	Inference of gene interaction networks from time-series data using Genetic Algorithms (GAs)	Genetic Algorithms (traditional and Cross- generational elitist selection, Heterogeneous recombination, and Cataclysmic mutation (CHC)); Bayesian network (Directed Acyclic Graph (DAG)) modeling; fitness based on Bayesian posterior	Network structure (edges), gene interaction sprobabilities; Hamming distance for diversity; parameter bounds	Gene regulatory network (GRN) inference; Arabidopsis

Methodology:

- Deterministic simulation approaches: 2 studies used Ordinary Differential Equation (ODE) modeling.
- Stochastic simulation: 1 study used the Gillespie algorithm.
- Petri net modeling: 1 study used Petri nets.
- Metaheuristics: 1 study used Differential Evolution and Scatter Search.
- Parallel algorithms for parameter estimation: 1 study.
- Genetic Algorithms for network inference: 1 study.
- Bayesian network modeling: 1 study, with fitness based on Bayesian posterior.
- No optimization methods: 1 study.
- Other machine learning/statistical inference: No mention found in these studies.

Key Parameters:

- Kinetic rates and state variables: 1 study estimated these in a gene expression model.
- High-dimensional ODE parameters: 1 study estimated these with biologically plausible bounds.
- Parameter bounds for biological plausibility: 2 studies included these.
- Network structure and gene interaction probabilities: 1 study inferred these.
- Diversity metric (Hamming distance): 1 study used this in parameter search.

Application Domain:

- Simple gene expression system and protein synthesis: 1 study.
- Parameter estimation in kinetic models and MIDO problems: 1 study.
- Gene regulatory network inference in Arabidopsis thaliana: 1 study.
- Other biological systems or diseases: No mention found in these studies.

Thematic Analysis Genetic Algorithm Optimization Approaches

Study	Parameter Optimization	Fitness Function	Biological Constraints
	Strategy	Implementation	Handling
Buriticá et al., 2018	Not applicable (no optimization method applied)	Not applicable	Not applicable
Rodríguez	Differential Evolution and Scatter	Fitness based on parameter	Parameter bounds for
Penas, 2017	7Search; asynchronous, cooperative, self-adaptive parallelization	estimation error (details not specified); focus on solution quality and convergence	biological plausibility; adaptive strategies for robustness
John &	Traditional and CHC Genetic	Fitness: Bayesian posterior	Parameter bounds;
Meza-	Algorithms; population of Directed	probability of model fit to	mutation only when
Chaves,	Acyclic Graphs (DAGs); Hamming	data; multi-run consistency	diversity is lost; avoids
2019	distance for diversity		crossover between
			similar individuals

• Parameter optimization strategies:Reported in 2 of 3 studies; both used evolutionary algorithms (Differential

Evolution, Scatter Search, or Genetic Algorithms). One study used asynchronous, cooperative, self-adaptive

parallelization, and another used diversity strategies such as Hamming distance.

• Fitness function implementation:Described in 2 studies: one used parameter estimation error, and one used

Bayesian posterior probability of model fit to data. No mention found of the fitness function in 1 study.

• Biological constraints handling:Addressed in 2 studies, both using parameter bounds for biological plausibil-

ity. One study also used adaptive strategies for robustness, and another used diversity strategies (mutation

only when diversity is lost, avoiding crossover between similar individuals). No mention found of biological

constraints handling in 1 study.

Mathematical Modeling of Gene Regulatory Networks

Study	ODE System	Dynamic Behavior	Parameter Sensitivity
	Representation	Analysis	
Buriticá et al., 2018	Petri net and Ordinary	Comparison of	Sensitivity analysis via
	Differential Equations	deterministic (ODE) and	l parameter variation;
	(ODEs) for gene	stochastic (Gillespie)	Analysis of Variance
	expression; stochastic	dynamics; analysis of	(ANOVA) for
	simulation via Gillespie	state distributions	significance
	algorithm		
Rodríguez Penas, 2017	Nonlinear ODEs for	Focus on parameter	Adaptive strategies to
	dynamic biological	estimation and model	enhance robustness;
	systems; high	calibration; scalability to	statistical analysis of
	dimensional models	large systems	parameter effects
John & Meza-Chaves,	Bayesian networks	Dynamic inference from	Diversity maintenance
2019	(Directed Acyclic	time-series data; model	in Genetic Algorithm;
	Graphs) for gene	fit assessed via Bayesiar	validation on engineered
	interactions; not ODE-	posterior	and real data
	based		

- ODE System Representation:
- ODE-based models: 2 of 3 studies.
- * Of these, 1 also used Petri nets and stochastic simulation (Gillespie algorithm).
- * 1 used nonlinear, high-dimensional ODEs.
- Non-ODE approach (Bayesian networks/DAGs): 1 of 3 studies.
- Dynamic Behavior Analysis:
- Deterministic vs stochastic comparisons: 1 study.
- State distribution analysis: 1 study.
- Parameter estimation and model calibration: 1 study.
- Scalability analysis: 1 study.
- Dynamic inference from time-series data: 1 study.
- Bayesian model fit assessment: 1 study.
- Parameter Sensitivity:
- Sensitivity analysis via parameter variation: 1 study.
- Analysis of Variance (ANOVA) or other statistical tests for parameter significance: 1 study.
- Adaptive strategies to enhance robustness: 1 study.
- Statistical analysis of parameter effects: 1 study.
- Genetic Algorithm diversity maintenance: 1 study.
- Validation of parameter sensitivity on engineered and real data: 1 study.

No mention found of studies combining all three modeling approaches (ODEs, Petri nets, and Bayesian networks) in a single framework. Each study reported some form of parameter sensitivity analysis, but the specific methods varied.

Biological Applications and Validation

Study	Cell	Model Validation Approach	Biological Relevance of Results	
	Reprogramming			
	Application			
Buriticá et	Not addressed	Comparison with literature (Goss Highlights importance of		
al., 2018		& Peccoud, 1998); sensitivity	stochasticity in gene expression;	
		analysis; Analysis of Variance	deterministic models insufficient	
		(ANOVA)	for population variability	
Rodríguez	Not addressed	Benchmarking on parameter	Demonstrates computational	
Penas, 2017		estimation and Mixed-Integer	feasibility for large-scale	
		Dynamic Optimization (MIDO)	biological models; no mention	
		problems; statistical analysis	found of direct biological insights	
John &	Not directly	Validation on engineered signals	Identifies known and novel gene	
Meza-	addressed, but	and experimental Arabidopsis	interactions in auxin response;	
Chaves,	relevant to gene	data; comparison with known	potential for broader gene	
2019	regulatory network	relationships	regulatory network discovery	
	(GRN) inference			

- Cell reprogramming:Not directly addressed in any of the three studies; two studies did not address it, and one study was relevant to gene regulatory network inference but did not directly address reprogramming.
- Model validation approaches:
- Comparison with literature, sensitivity analysis, and Analysis of Variance (ANOVA): 1 study.
- Benchmarking on parameter estimation and Mixed-Integer Dynamic Optimization (MIDO) problems, with statistical analysis: 1 study.
- Validation on engineered signals and experimental Arabidopsis data, and comparison with known relationships: 1 study.
- Biological relevance:
- Importance of stochasticity in gene expression and the insufficiency of deterministic models for population variability: 1 study.
- Computational feasibility for large-scale biological models, but no mention found of direct biological insights: 1 study.
- Identification of known and novel gene interactions in auxin response, with potential for broader gene regulatory network discovery: 1 study.

Implementation Considerations

Study	Parameter Types	Value Ranges	Biological	Optimization Impact
			Significance	
Buriticá et	Activation,	Not specified;	Reflects gene	Affects simulation
al., 2018	inactivation,	varied in	activation/inactivation	noutcomes; not used for
	synthesis rates	sensitivity	and protein synthesis	optimization
		analysis		
Rodríguez	ODE model	Bounded for	Represents kinetic	Parameter bounds critical
Penas, 201	7parameters	biological	rates, regulatory	for feasible solutions;
	(varied, high-	plausibility	strengths	adaptive strategies improve
	dimensional)			robustness
John &	Network structure	Parameter bounds	Encodes gene-gene	Bounds and diversity
Meza-	(edges),	applied; Hamming	gregulatory	maintenance prevent
Chaves,	interaction	distance for	relationships	overfitting and ensure
2019	probabilities	diversity		biological plausibility

- Parameter Types:
- Kinetic or ODE model parameters (activation/inactivation/synthesis rates, or general ODE parameters): 2 studies.
- Network structure (edges) and interaction probabilities as parameters: 1 study.
- Value Ranges:
- Explicit parameter bounds for biological plausibility: 2 studies (one also used diversity maintenance).
- Parameters varied in sensitivity analysis but no explicit bounds specified: 1 study.
- Optimization Impact:
- Parameter bounds (and, in one case, diversity maintenance) were critical for feasible or robust optimization: 2 studies.
- Parameters not used for optimization, only for simulation and sensitivity analysis: 1 study.
 No mention found of studies using unbounded parameters for optimization. All studies that performed optimization emphasized the importance of parameter bounds or diversity constraints.

References

D. Buriticá, Bárbara Valeria Mejía Bohórquez, Lina Rojas, and Hector Leandro Sáenz Castro.

"Análisis Estocástico de Un Sistema Génico Simple Para La Síntesis de Una Proteína Implementando Los Métodos de Gillespie." Revista Cuarzo, 2018.

David J. John, and Kenneth David Meza-Chaves. "Algoritmos Genéticos Como Mecanismo Para Modelar Interacciones Genéticas Utilizando Información Observada En Distintos Tiempos." Revista Tecnología En Marcha, 2019.

David Rodríguez Penas. "Optimization in Computational Systems Biology via High Performance Computing Techniques," 2017.