Robotics Studio

Step #5: Assembled Robot

Requirements

- Goal: Print and assemble entire robot
- Assemble the robot using all components,
 - bolts, screws cables, and mounts as described in your updated CAD
- Run preliminary walking code on Laptop or Raspberry Pi
- Show photos and videos of robot moving
- Adjust design
 - Accessibility, range

Locomotion

Avoid abrupt velocity changes

Strategies for gait optimization

- Hand coding trial and error, e.g.
 - $\theta_i(t)=a_i+b_i*\sin(\omega t+\phi_i)$ (ω uniform for all legs)
- Machine learning (in simulation)
 - Create a model of robot (e.g. in Bullet or Gazebo)
 - Represent $\theta_i(t) = f(\theta_i(t-1), sensors)$ as a neural network
 - Use Reinforcement Learning or Evolution to optimize network
- Machine learning (in physical reality)
 - Expensive and slow, but possible

Feet

Chair Socks

Feet

Body & Skin

Get creative with lattices

Element Pro

- Surface Topology
- Lattice Structures
- Customizable design workflow

Generate Web

- Surface Topology
- Lattice Structures
- Manufacturing constraint options

CogniCAD

- Surface Topology
- Metamaterials
- Mesostructures
- Multimaterials

\$7.6M Raised

\$0.5M Raised

Photography

Glamour shots

Fake No shadows

