

planetmath.org

Math for the people, by the people.

elementary embedding

Canonical name Elementary Embedding
Date of creation 2013-03-22 13:00:29
Last modified on 2013-03-22 13:00:29

Owner CWoo (3771) Last modified by CWoo (3771)

Numerical id 5

Author CWoo (3771) Entry type Definition Classification msc 03C99

Synonym elementary monomorphism
Defines elementary substructure
Defines elementary extension
Defines elementary chain

Let τ be a signature and \mathcal{A} and \mathcal{B} be two structures for τ such that $f: \mathcal{A} \to \mathcal{B}$ is an embedding. Then f is said to be *elementary* if for every first-order formula $\phi \in F(\tau)$, we have

$$\mathcal{A} \vDash \phi$$
 iff $\mathcal{B} \vDash \phi$.

In the expression above, $\mathcal{A} \vDash \phi$ means: if we write $\phi = \phi(x_1, \ldots, x_n)$ where the free variables of ϕ are all in $\{x_1, \ldots, x_n\}$, then $\phi(a_1, \ldots, a_n)$ holds in \mathcal{A} for any $a_i \in \mathcal{A}$ (the underlying universe of \mathcal{A}).

If \mathcal{A} is a substructure of \mathcal{B} such that the inclusion homomorphism is an elementary embedding, then we say that \mathcal{A} is an elementary substructure of \mathcal{B} , or that \mathcal{B} is an elementary extension of \mathcal{A} .

Remark. A chain $A_1 \subseteq A_2 \subseteq \cdots \subseteq A_n \subseteq \cdots$ of τ -structures is called an *elementary chain* if A_i is an elementary substructure of A_{i+1} for each $i = 1, 2, \ldots$ It can be shown (Tarski and Vaught) that

$$igcup_{i<\omega} \mathcal{A}_i$$

is a τ -structure that is an elementary extension of \mathcal{A}_i for every i.