Assignment-Regression Algorithm

- 1. Problem statement: To predict the insurance charges based on the various parameters and the dataset provided by the client. To develop a model that predicts the insurance charges.
- 2. The dataset consists of 6 columns and 1339 rows with the data available for various parameters such as age, sex, BMI, children, smoker and charges.
- 3. The pre-processing is done for converting the strings to number.

To find the correct machine learning regression method using R² value.

1. Multiple Linear Regression R2_score= 0.7894

2. Support Vector Machine

S. No.	kernel	degree	gamma	Coef0	tol	С	Epsilon	Shrinking	Cache_size	Verbose	Max_iter	R_Score
1	rbf	3	auto	0.0	0.001	1.0	0.1	True	200	False	-1	-0.0897

3. Decision Tree

S. No.	criterion	max_features	splitter	r_score
1.	friedman_mse	sqrt	best	0.7070
2.	squared_error	sqrt	best	0.6969
3.	absolute_error	sqrt	best	0.7025
4.	poisson	sqrt	best	0.5999
5.	friedman_mse	sqrt	random	0.6632
6.	squared_error	sqrt	random	0.6178
7.	absolute_error	sqrt	random	0.6781
8.	poisson	sqrt	random	0.6038
9.	friedman_mse	log2	best	0.7392
10.	squared_error	log2	best	0.7436
11.	absolute_error	log2	best	0.7515
12.	poisson	log2	best	0.6471
13.	friedman_mse	log2	random	0.6677
14.	squared_error	log2	random	0.6704
15.	absolute_error	log2	random	0.6944
16.	poisson	log2	random	0.6588
17.	friedman_mse	auto	best	0.7021

18.	squared_error	auto	best	0.7023
19.	absolute_error	auto	best	0.6817
20.	poisson	auto	best	0.6885
21.	friedman_mse	auto	random	0.6864
22.	squared_error	auto	random	0.7289
23.	absolute_error	auto	random	0.7031
24.	poisson	auto	random	0.6570

4. Random Forest

S. No	n _e sti m at or s	crite rion	ma x_d ept h	rand om_ state	min_s ample s_split	min_s ample s_leaf	min_wei ght_fract ion_leaf	max _feat ures	max_ leaf_ nodes	min_imp urity_de crease	boo tstr ap	oob _sc ore	n _j ob s	ve rb os e	War m_s tart	Ccp _al pha	Max _sa mple s	R_sc or e
1	<mark>10</mark> 0	squa red_ error	<mark>Non</mark> e	Non e	2	1	0.0	1.0	None	0.0	<mark>Tru</mark> e	<mark>Fals</mark> e	N on e	0	<mark>Fals</mark> e	0.0	None	0.8 56 1
2	10 0	absol ute_ error	Non e	int	2	1	0.0	1.0	None	0.0	Tru e	Fals e	N on e	0	Fals e	0.0	None	0.8 54 9
3	10 0	fried man _mse	Non e	int	2	1	0.0	1.0	None	0.0	Tru e	Fals e	N on e	0	Fals e	0.0	None	0.8 55 1
4	10 0	poiss on	Non e	int	2	1	0.0	1.0	None	0.0	Tru e	Fals e	N on e	0	Fals e	0.0	None	0.8 34 8
5	10 0	squa red_ error	Non e	Non e	2	1	0.0	1.0	None	0.0	Tru e	Fals e	N on e	0	Fals e	0.0	None	0.8 55 0
6	10 0	absol ute_ error	Non e	Non e	2	1	0.0	1.0	None	0.0	Tru e	Fals e	N on e	0	Fals e	0.0	None	0.8 54 0
7	10 0	fried man _mse	Non e	Non e	2	1	0.0	1.0	None	0.0	Tru e	Fals e	N on e	0	Fals e	0.0	None	0.8 52 3
8	10 0	poiss on	Non e	Non e	2	1	0.0	1.0	None	0.0	Tru e	Fals e	N on e	0	Fals e	0.0	None	0.8 32 9

The final best model is identified as the **Random Forest regression** based on the parameters mentioned below.

(n_estimators=100, criterion=squared_error, max_depth=none, random_state=none, min_samples_split=2, min_samples_leaf=1.0, min_weight_fraction_leaf=0.0, max_features=1.0, max_leaf_nodes=none, min_impurity_decrease=0.0, bootstrap=True, oob_score=False, n_iobs=none, verbose=0, warm_start=False, Ccp_alpha=0.0, Max_samples=none).

Based on the various parameters this model provides the highest R² value of 0.8561 compared to other models. Hence, this model could be considered as the best model to predict the best insurance charges.