Wissenschaftliches Rechnen - Großübung 1.1

Themen: Skalarprodukt, Zahlen

Ugo & Gabriel

1. November 2022

Aufgabe 1: Skalarprodukt

1.	Was ist ein Skalarprodukt?
	Lösung
	Ein Skalarprodukt ist ganz allgemein eine bivariate Funktion $\langle \cdot, \cdot \rangle : \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}$, welche die folgenden Eigenschaften erfüllt:
	Symmetrie:
	$\langle \mathbf{u}, \mathbf{v} \rangle = \langle \mathbf{v}, \mathbf{u} \rangle$
	Bilinearität (d.h. Linearität in beiden Argumenten):
	$\langle \alpha \mathbf{u}, \mathbf{v} \rangle = \alpha \langle \mathbf{u}, \mathbf{v} \rangle = \langle \mathbf{u}, \alpha \mathbf{v} \rangle$
	$\langle \mathbf{u}, \mathbf{v} + \mathbf{w} angle = \langle \mathbf{u}, \mathbf{v} angle + \langle \mathbf{u}, \mathbf{w} angle$
	$\langle \mathbf{u} + \mathbf{v}, \mathbf{w} \rangle = \langle \mathbf{u}, \mathbf{w} \rangle + \langle \mathbf{v}, \mathbf{w} \rangle$
	Positiv definit:
	$\langle \mathbf{v}, \mathbf{v} \rangle \geq 0$ und $\langle \mathbf{v}, \mathbf{v} \rangle = 0 \Leftrightarrow \mathbf{v} = 0$
	Jede Funktion, die diese Voraussetzungen erfüllt, darf sich Skalarprodukt nennen. Skalarprodukte kann man als Ähnlichkeitsmaß interpretieren.
	Bemerkung: In diesem Kurs verwenden wir ausschließlich das Standardskalarprodukt.
	Lösung Ende
	Wie ist das Standardskalarprodukt definiert? Geben Sie die Definition auch in Matrix-schreibweise an.
	Lösung —
	$\langle\cdot,\cdot angle:\mathbb{R}^n imes\mathbb{R}^n o\mathbb{R}$
	$\langle \mathbf{u}, \mathbf{v} \rangle \mapsto \sum_{i=1}^n u_i v_i = \mathbf{u}^T \mathbf{v}$

— Lösung Ende —

3. Welche geometrische Bedeutung besitzt das Standardskalarprodukt im euklidischen Raum?

Lösung -

Es gilt zunächst:

$$\mathbf{u}^\mathsf{T}\mathbf{v} = \|\mathbf{u}\|\underbrace{\|\mathbf{v}\| \, \cos \sphericalangle(\mathbf{u}, \mathbf{v})}_{\text{Orthogonale Projektion von } \mathbf{v} \text{ auf } \mathbf{u}}$$

Es beschreibt die Länge der orthogonalen Projektion des einen Vektors auf anderen, multipliziert mit der Länge des anderen Vektors. Anschaulich:

Abbildung 1: Das Skalarprodukt beschreibt die lila Fläche.

Bemerkenswerterweise ist diese Operation symmetrisch.

——— Lösung Ende —

4. Gegeben sei ein Vektor $\mathbf{w} \in \mathbb{R}^2$ sowie eine Menge von Punkten. Mit welchen Punkten hat \mathbf{w} ein positives Skalarprodukt, ein negatives Skalarprodukt bzw. ein Skalarprodukt gleich Null?

- Lösung

- Blau markierter Bereich: positives Skalarprodukt
- Orange markierter Bereich: negatives Skalarprodukt
- Schwarze Gerade: Skalarprodukt Null

– Lösung Ende -

5. Berechne die folgenden Skalarprodukte $\mathbf{u}_i^\mathsf{T} \mathbf{v}_i$:

a)
$$\mathbf{u}_1 = \begin{bmatrix} 4 \\ -2 \\ 1 \end{bmatrix}$$
 , $\mathbf{v}_1 = \begin{bmatrix} -2 \\ -3 \\ 1 \end{bmatrix}$

b)
$$\mathbf{u}_2 = \begin{bmatrix} 2 \\ -2 \\ 1 \end{bmatrix}$$
, $\mathbf{v}_2 = \begin{bmatrix} 2 \\ -2 \\ 1 \end{bmatrix}$

c)
$$\mathbf{u}_3 = \begin{bmatrix} 1 \\ -2 \\ 0 \end{bmatrix}$$
, $\mathbf{v}_3 = \begin{bmatrix} -2 \\ -1 \\ 3 \end{bmatrix}$

- Lösung -

- a) -1
- b) 9
- c) 0

—— Lösung Ende —

6. Welche Aussagen lassen sich mithilfe der Skalarprodukte aus der letzten Aufgabe über die Vektoren und deren Verhältnis zueinander treffen?

– Lösung ·

- a) Negativität: Sie befinden sich in unterschiedlichen Halbräumen.
- b) $\langle \mathbf{a}, \mathbf{a} \rangle$: Die Länge bzgl. der euklidischen/ ℓ^2 -Norm des Vektors entspricht der Wurzel des Skalarproduktes mit sich selbst, also 3.
- c) Skalarprodukt von 0: Sie stehen orthogonal.

— Lösung Ende —

7. Gegeben ist ein Vetkor $\mathbf{w} \in \mathbb{R}^2$ sowie fünf Punkte.

Welche der folgenden vier Optionen zeigt die orthogonale Projektion der Punkte in den Raum, der von dem Vektor w aufgespannt wird?

d)
Lösung Ende

8. Wie sieht der Datensatz aus den obigen fünf Punkten aus, falls man sie auf \mathbf{w} und dann mit \mathbf{w} zurück in den \mathbb{R}^2 projiziert (mathematisch entspricht dies dem Ausdruck $\mathbf{w}\mathbf{w}^\mathsf{T}\mathbf{x}_i$)? Zeichnen Sie die mithilfe von \mathbf{w} rekonstruierten Punkte in das Koordinatensystem ein!

- Lösung Ende -

Aufgabe 2: Zahlen

1. Wie viele Stellen benötigt man maximal, um die Summe zweier ganzen Zahlen mit n Stellen korrekt dazustellen?

2. Wie viele Stellen benötigt man maximal, um das Produkt zweier ganzen Zahlen mit n Stellen verlustfrei dazustellen?

3. Gegeben der Definition einer ganzen Zahl $[a,b]\in\mathbb{Z}$ als Paar von natürlichen Zahlen $a,b\in\mathbb{N}$, wie in der Vorlesung eingeführt. Geben Sie zwei weitere Elemente der ganzen Zahlen als Paar von natürlichen Zahlen an, die in der selben Äquivalenzklasse liegen wie [8,9].

Lösung [0,1], [6,7] Lösung Ende -

4. Gegeben der Definition einer rationalen Zahl $[a,b]\in\mathbb{Q}$ als Paar von natürlichen Zahlen $a,b\in\mathbb{N}$, wie in der Vorlesung eingeführt. Geben Sie zwei weitere Elemente der rationalen Zahlen als Paar von natürlichen Zahlen an, die in der selben Äquivalenzklasse liegen wie [6,9].

- 5. Eine abelsche Gruppe ist ein Paar (G,*) bestehend aus einer Menge G sowie einer (abgeschlossenen) Verknüpfung $*: G \times G \to G, (a,b) \mapsto a*b$, die folgende Gesetze erfüllt:
 - (1) Assoziativgesetz: Für alle $a,b,c\in G$ gilt: a*(b*c)=(a*b)*c.
 - (2) Kommutativgesetz: Für alle $a, b \in G$ gilt: a * b = b * a.
 - (3) Neutrales Element: Es gibt ein Element $e \in G$, so dass für alle $a \in G$ gilt: a * e = a.
 - (4) Inverses Element: Zu jedem $a \in G$ gibt es ein $a^{-1} \in G$ mit $a * a^{-1} = e$.

Welche der folgenden Tupel sind eine abelsche Gruppe? Falls nein, welches Gesetz wird gebrochen? Falls ja, welches ist das neutrale Element?

- a) $(\mathbb{R}^{3\times3},\cdot)$, wobei · die gewöhnliche Matrixmultiplikation ist Nein: (2),(4)
- b) $(\mathbb{N}, +)$, wobei + die gewöhnliche Addition auf \mathbb{N} ist Nein: (4)
- c) $(\mathbb{Z},+)$, wobei + die gewöhnliche Addition auf \mathbb{Z} ist Ja, 0 ist das neutrale Element
- d) (\mathbb{Z},\cdot) , wobei · die gewöhnliche Multiplikation auf \mathbb{Z} ist Nein: (4)
- e) (\mathbb{Q},\cdot) , wobei \cdot die gewöhnliche Multiplikation auf \mathbb{Q} ist Nein: (4) $(\mathbb{Q}\setminus\{0\},\cdot)$ wäre aber eine mit neutralem Element 1

- f) $(\mathbb{R} \setminus \{0\}, \cdot)$, wobei · die gewöhnliche Multiplikation auf \mathbb{R} ist Ja, (1)
- 6. Ein Tupel $(K,+,n,\cdot,e)$ mit einer Grundmenge K ist ein Körper, falls folgende Bedingungen erfüllt sind:
 - (1) (K, +) ist eine abelsche Gruppe mit neutralem Element n.
 - (2) $(K \setminus \{n\}, \cdot)$ ist eine abelsche Gruppe mit neutralem Element e.
 - (3) Distributivgesetz: $a \cdot (b+c) = a \cdot b + a \cdot c$ und $(a+b) \cdot c = a \cdot c + b \cdot c$ für alle $a,b,c \in K$.

Ein Beispiel für einen Körper ist $(\mathbb{Q}, +, 0, \cdot, 1)$.

Wir wollen nun einen Körper, der es erlaubt durch 0 zu teilen. Mit anderen Worten ein Tupel $(K,+,n,\cdot,e)$ mit einer Grundmenge K, sodass (K,+) eine abelsche Gruppe mit neutralem Element n und (K,\cdot) eine abelsche Gruppe mit neutralem Element e ist. Zusätzlich soll weiterhin das Distributivgesetz gelten. Überprüfen Sie ob eins der folgenden Tupel diese Bedinnung erfüllt. Wenn nein, welche Gesetze werden gebrochen?

- a) $(\mathbb{Q}_{\geq 0} \cup \{\infty\}, +, 0, \cdot, 1)$ wobei + und \cdot auf $\mathbb{Q}_{\geq 0}$ die gewöhnliche Addition bzw. Multiplikaton darstellt, mit folgenden Erweiterungen:
 - i. $\infty + a = a + \infty = \infty$ für alle $a \in \mathbb{Q}_{\geq 0} \cup \{\infty\}$,
 - ii. $\infty \cdot a = a \cdot \infty = \infty$ für alle $a \in \mathbb{Q}_{>0} \cup \{\infty\}$,
 - iii. $\infty \cdot 0 = 0 \cdot \infty = 1$.
- b) $(\mathbb{Q} \cup \{+\infty, -\infty\}, +, 0, \cdot, 1)$ wobei + und \cdot auf \mathbb{Q} die gewöhnliche Addition bzw. Multiplikaton darstellt, mit folgenden Erweiterungen:
 - i. $(+\infty) + a = a + (+\infty) = +\infty$ für alle $a \in \mathbb{Q} \cup \{+\infty\}$,
 - ii. $(-\infty) + a = a + (-\infty) = -\infty$ für alle $a \in \mathbb{Q} \cup \{-\infty\}$,
 - iii. $(+\infty) + (-\infty) = (-\infty) + (+\infty) = 0$,
 - iv. $(+\infty) \cdot a = a \cdot (+\infty) = +\infty$ für alle $a \in \mathbb{Q}_{>0} \cup \{+\infty\}$,
 - v. $(+\infty) \cdot a = a \cdot (+\infty) = -\infty$ für alle $a \in \mathbb{Q}_{\leq 0} \cup \{-\infty\}$,
 - vi. $(-\infty) \cdot a = a \cdot (-\infty) = -\infty$ für alle $a \in \mathbb{Q}_{>0} \cup \{+\infty\}$,
 - vii. $(-\infty) \cdot a = a \cdot (-\infty) = +\infty$ für alle $a \in \mathbb{Q}_{\leq 0} \cup \{-\infty\}$,
 - viii. $(-\infty) \cdot 0 = 0 \cdot (-\infty) = 1$,
 - ix. $(+\infty) \cdot 0 = 0 \cdot (+\infty) = 1$.
- c) $(\mathbb{Q} \cup \{\infty\}, +, 0, \cdot, 1)$ wobei + und \cdot auf \mathbb{Q} die gewöhnliche Addition bzw. Multiplikaton darstellt, mit folgenden Erweiterungen:
 - i. $\infty + a = a + \infty = \infty$ für alle $a \in \mathbb{Q} \cup \{\infty\}$,
 - ii. $\infty \cdot a = a \cdot \infty = \infty$ für alle $a \in \mathbb{Q} \setminus \{0\} \cup \{\infty\}$,
 - iii. $\infty \cdot 0 = 0 \cdot \infty = 1$.

Lösung -

Die neun Gesetze als Referenz

- (1) (a+b)+c=a+(b+c)
- (2) a + 0 = a
- (3) a + (-a) = 0
- (4) a + b = b + a

- (5) $(a \cdot b) \cdot c = a \cdot (b \cdot c)$
- (6) $a \cdot 1 = a$
- (7) $a \cdot a^{-1} = 1$
- (8) $a \cdot b = b \cdot a$
- (9) $(a+b) \cdot x = a \cdot c + b \cdot c$
- a) Nein,
 - i. (3) keine Inversen für $\mathbb{Q}_{>0}$,
 - ii. (5) $(\infty \cdot \infty) \cdot 0 \neq \infty \cdot (\infty \cdot 0)$,
 - iii. (9) $(0+0) \cdot \infty \neq 0 \cdot \infty + 0 \cdot \infty$
- b) Nein,
 - i. (1) $((+\infty) + (-\infty)) + 1 \neq (+\infty) + ((-\infty) + 1)$,
 - ii. (5) $((+\infty) \cdot (+\infty)) \cdot 0 \neq (+\infty) \cdot ((+\infty) \cdot 0)$,
 - iii. (9) $(0+0) \cdot (+\infty) \neq 0 \cdot (+\infty) + 0 \cdot (+\infty)$
- c) Nein,
 - i. (3) ∞ besitzt kein inverses Element bzgl. +,
 - ii. (5) $(\infty \cdot \infty) \cdot 0 \neq \infty \cdot (\infty \cdot 0)$,
 - iii. (9) $(0+0) \cdot \infty \neq 0 \cdot \infty + 0 \cdot \infty$

Es gibt keinen solchen Körper.

— Lösung Ende —