$12n_{0571} \ (K12n_{0571})$

Ideals for irreducible components² of X_{par}

$$\begin{split} I_1^u &= \langle -u^9 - u^8 + 6u^7 + 4u^6 - 12u^5 - 5u^4 + 7u^3 + 2u^2 + b - u + 1, \\ 3u^9 + 3u^8 - 17u^7 - 12u^6 + 30u^5 + 15u^4 - 11u^3 - 6u^2 + 2a - u - 4, \\ u^{10} + 3u^9 - 3u^8 - 14u^7 + 21u^5 + 7u^4 - 8u^3 - 3u^2 - 2 \rangle \\ I_2^u &= \langle b + 1, \ a^2 + 3u^2 - 3a - u - 6, \ u^3 - 3u - 1 \rangle \\ I_3^u &= \langle b - u + 1, \ 3a + 4u - 3, \ u^2 - 3 \rangle \\ I_4^u &= \langle b + 1, \ a - 2, \ u - 1 \rangle \\ I_5^u &= \langle b + 1, \ a - 1, \ u - 1 \rangle \\ I_6^u &= \langle b, \ a + 1, \ u + 1 \rangle \\ I_7^u &= \langle b + 2, \ a - 3, \ u - 1 \rangle \\ \end{split}$$

* 8 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 23 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

 $^{^2}$ All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

$$I_1^u = \langle -u^9 - u^8 + \dots + b + 1, \ 3u^9 + 3u^8 + \dots + 2a - 4, \ u^{10} + 3u^9 + \dots - 3u^2 - 2 \rangle$$

$$a_{3} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -u^{2} + 1 \\ u^{4} - 2u^{2} \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} -u \\ u \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} u^{6} - 3u^{4} + 1 \\ -u^{6} + 4u^{4} - 3u^{2} \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} u^{9} + u^{8} - 6u^{7} - 4u^{6} + 12u^{5} + 5u^{4} - 7u^{3} - 2u^{2} + u - 1 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} \frac{1}{2}u^{9} + \frac{1}{2}u^{8} + \cdots - u^{2} + \frac{3}{2}u \\ -u^{9} - u^{8} + 5u^{7} + 4u^{6} - 7u^{5} - 5u^{4} + u^{3} + 2u^{2} + 1 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} u^{9} + u^{8} - 5u^{7} - 3u^{6} + 8u^{5} + 2u^{4} - 3u^{3} + u - 1 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} u^{9} - u^{8} + 5u^{7} + 4u^{6} - 7u^{5} - 5u^{4} + u^{3} + 2u^{2} + 1 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -u^{3} + 2u \\ u^{5} - 3u^{3} + u \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = $2u^7 12u^5 + 20u^3 8u + 4$

Crossings	u-Polynomials at each crossing		
c_1,c_{11}	$u^{10} + u^9 + 12u^8 + 5u^7 + 41u^6 + 7u^5 + 39u^4 + 15u^3 + 2u^2 + 4u + 1$		
c_2, c_6, c_7 c_{12}	$u^{10} - u^9 + u^7 + 5u^6 - 3u^5 + u^4 + 3u^3 + 2u^2 - 1$		
$c_3, c_4, c_8 \\ c_9, c_{10}$	$u^{10} + 3u^9 - 3u^8 - 14u^7 + 21u^5 + 7u^4 - 8u^3 - 3u^2 - 2$		
c_5	$u^{10} + 15u^9 + \dots + 340u + 142$		

Crossings	Riley Polynomials at each crossing		
c_1,c_{11}	$y^{10} + 23y^9 + \dots - 12y + 1$		
c_2, c_6, c_7 c_{12}	$y^{10} - y^9 + 12y^8 - 5y^7 + 41y^6 - 7y^5 + 39y^4 - 15y^3 + 2y^2 - 4y + 1$		
c_3, c_4, c_8 c_9, c_{10}	$y^{10} - 15y^9 + \dots + 12y + 4$		
c_5	$y^{10} - 39y^9 + \dots - 13076y + 20164$		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.785856 + 0.428779I		
a = -1.37380 - 0.39872I	2.82913 - 4.20392I	4.59667 + 6.41727I
b = 1.149750 - 0.803732I		
u = -0.785856 - 0.428779I		
a = -1.37380 + 0.39872I	2.82913 + 4.20392I	4.59667 - 6.41727I
b = 1.149750 + 0.803732I		
u = 0.884247		
a = 1.30093	1.75072	5.11200
b = -0.719291		
u = 1.42487 + 0.24108I		
a = -2.18633 - 0.04391I	10.16070 + 6.73545I	5.08933 - 4.78933I
b = 1.60933 + 0.82750I		
u = 1.42487 - 0.24108I		
a = -2.18633 + 0.04391I	10.16070 - 6.73545I	5.08933 + 4.78933I
b = 1.60933 - 0.82750I		
u = 0.129165 + 0.461050I		
a = 0.444664 + 0.542292I	0.055292 + 1.193090I	1.05588 - 5.24459I
b = 0.527577 + 0.512570I		
u = 0.129165 - 0.461050I		
a = 0.444664 - 0.542292I	0.055292 - 1.193090I	1.05588 + 5.24459I
b = 0.527577 - 0.512570I		
u = -1.71307		
a = 1.96680	11.1577	7.60720
b = -1.57906		
u = -1.85377 + 0.06834I		
a = -2.51839 + 0.18104I	-17.0320 - 8.3664I	4.89852 + 3.81014I
b = 1.86251 - 0.75572I		
u = -1.85377 - 0.06834I		
a = -2.51839 - 0.18104I	-17.0320 + 8.3664I	4.89852 - 3.81014I
b = 1.86251 + 0.75572I		

II.
$$I_2^u = \langle b+1, a^2+3u^2-3a-u-6, u^3-3u-1 \rangle$$

$$a_{3} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -2u - 1 \\ 2u - 1 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} -u^{2} + 1 \\ u^{2} + u \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} -u \\ u \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} a \\ -1 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} a \\ -1 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} a \\ -1 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} 2au + u^{2} + au \\ u^{2}a - u^{2} - 1 \end{pmatrix}$$

$$a_{13} = \begin{pmatrix} -2u^{2}a + 2u^{2} + au + 1 \\ u^{2}a - u^{2} - 1 \end{pmatrix}$$

$$a_{14} = \begin{pmatrix} -u - 1 \\ u^{2} + u \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = 6

Crossings	u-Polynomials at each crossing
c_1, c_{11}	$u^6 + 6u^4 + 10u^3 + 9u^2 + 18u + 9$
c_2, c_6, c_7 c_{12}	$u^6 + 2u^3 + 3u^2 - 3$
c_3, c_4, c_8 c_9, c_{10}	$(u^3 - 3u - 1)^2$
c_5	$(u^3 - 6u^2 + 3u + 1)^2$

Crossings	Riley Polynomials at each crossing
c_1,c_{11}	$y^6 + 12y^5 + 54y^4 + 26y^3 - 171y^2 - 162y + 81$
c_2, c_6, c_7 c_{12}	$y^6 + 6y^4 - 10y^3 + 9y^2 - 18y + 9$
c_3, c_4, c_8 c_9, c_{10}	$(y^3 - 6y^2 + 9y - 1)^2$
c_5	$(y^3 - 30y^2 + 21y - 1)^2$

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -1.53209		
a = 1.50000 + 0.56919I	10.4179	6.00000
b = -1.00000		
u = -1.53209		
a = 1.50000 - 0.56919I	10.4179	6.00000
b = -1.00000		
u = -0.347296		
a = -1.24606	-2.74156	6.00000
b = -1.00000		
u = -0.347296		
a = 4.24606	-2.74156	6.00000
b = -1.00000		
u = 1.87939		
a = 1.50000 + 0.68329I	-15.9010	6.00000
b = -1.00000		
u = 1.87939		
a = 1.50000 - 0.68329I	-15.9010	6.00000
b = -1.00000		

III.
$$I_3^u = \langle b - u + 1, 3a + 4u - 3, u^2 - 3 \rangle$$

$$a_{3} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} 1 \\ -3 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} u \\ -2u \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} -2 \\ 3 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} -u \\ u \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} -\frac{4}{3}u + 1 \\ u - 1 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -\frac{1}{3}u + 1 \\ -1 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} \frac{1}{3}u - 1 \\ 1 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} -\frac{1}{3}u + 2 \\ -1 \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = 0

 $a_{11} = \begin{pmatrix} -u \\ u \end{pmatrix}$

Crossings	u-Polynomials at each crossing		
c_1, c_2, c_7 c_{11}	$(u-1)^2$		
$c_3, c_4, c_5 \\ c_8, c_9, c_{10}$	u^2-3		
c_6, c_{12}	$(u+1)^2$		

Crossings	Riley Polynomials at each crossing		
c_1, c_2, c_6 c_7, c_{11}, c_{12}	$(y-1)^2$		
c_3, c_4, c_5 c_8, c_9, c_{10}	$(y-3)^2$		

Solutions to I_3^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 1.73205		
a = -1.30940	9.86960	0
b = 0.732051		
u = -1.73205		
a = 3.30940	9.86960	0
b = -2.73205		

IV.
$$I_4^u = \langle b+1, \ a-2, \ u-1 \rangle$$

$$a_3 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_9 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$a_4 = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_5 = \begin{pmatrix} 0 \\ -1 \end{pmatrix}$$

$$a_8 = \begin{pmatrix} -1 \\ 1 \end{pmatrix}$$

$$a_6 = \begin{pmatrix} -1 \\ 0 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} 2 \\ -1 \end{pmatrix}$$

$$a_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_7 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_2 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = 6

Crossings	u-Polynomials at each crossing		
c_1, c_2, c_6	u		
c_3, c_4, c_7 c_8, c_9, c_{10} c_{12}	u-1		
c_5, c_{11}	u+1		

Crossings	Riley Polynomials at each crossing		
c_1, c_2, c_6	y		
c_3, c_4, c_5 c_7, c_8, c_9 c_{10}, c_{11}, c_{12}	y-1		

Solutions to I_4^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 1.00000		
a = 2.00000	1.64493	6.00000
b = -1.00000		

V.
$$I_5^u = \langle b+1, \ a-1, \ u-1 \rangle$$

$$a_3 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_9 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$a_4 = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_5 = \begin{pmatrix} 0 \\ -1 \end{pmatrix}$$

$$a_8 = \begin{pmatrix} -1 \\ 1 \end{pmatrix}$$

$$a_6 = \begin{pmatrix} -1 \\ 0 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$

$$a_1 = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$

$$a_7 = \begin{pmatrix} -1 \\ 1 \end{pmatrix}$$

$$a_2 = \begin{pmatrix} 1 \\ 2 \\ -1 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = 6

Crossings	u-Polynomials at each crossing		
c_1, c_5	u+1		
c_2, c_3, c_4 c_6, c_8, c_9 c_{10}	u-1		
c_7, c_{11}, c_{12}	u		

Crossings	Riley Polynomials at each crossing		
c_1, c_2, c_3 c_4, c_5, c_6 c_8, c_9, c_{10}	y-1		
c_7, c_{11}, c_{12}	y		

Solutions to I_5^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 1.00000		
a = 1.00000	1.64493	6.00000
b = -1.00000		

VI.
$$I_6^u = \langle b, a+1, u+1 \rangle$$

$$a_3 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_9 = \begin{pmatrix} 0 \\ -1 \end{pmatrix}$$

$$a_4 = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -1\\0 \end{pmatrix}$$

$$a_5 = \begin{pmatrix} 0 \\ -1 \end{pmatrix}$$

$$a_8 = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$

$$a_6 = \begin{pmatrix} -1 \\ 0 \end{pmatrix}$$

$$a_6 = \begin{pmatrix} 0 \\ -1 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} -1\\0 \end{pmatrix}$$

$$a_1 = \begin{pmatrix} 0 \\ -1 \end{pmatrix}$$

$$a_7 = \begin{pmatrix} 0 \\ -1 \end{pmatrix}$$

$$a_2 = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -1 \\ 1 \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = 0

Crossings	u-Polynomials at each crossing	
c_1, c_5, c_6 c_8, c_9, c_{10} c_{11}, c_{12}	u-1	
c_2, c_3, c_4 c_7	u+1	

Crossings	Riley Polynomials at each crossing	
c_1, c_2, c_3 c_4, c_5, c_6 c_7, c_8, c_9 c_{10}, c_{11}, c_{12}	y-1	

Solutions to I_6^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -1.00000		
a = -1.00000	0	0
b = 0		

VII.
$$I_7^u=\langle b+2,\; a-3,\; u-1 \rangle$$

$$a_3 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_9 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$a_4 = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_5 = \begin{pmatrix} 0 \\ -1 \end{pmatrix}$$

$$a_8 = \begin{pmatrix} -1 \\ 1 \end{pmatrix}$$

$$a_6 = \begin{pmatrix} -1 \\ 0 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} 3 \\ -2 \end{pmatrix}$$

$$a_1 = \begin{pmatrix} 2 \\ -1 \end{pmatrix}$$

$$a_7 = \begin{pmatrix} 2 \\ -1 \end{pmatrix}$$

$$a_2 = \begin{pmatrix} 3 \\ 1 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = 0

Crossings	u-Polynomials at each crossing		
c_1, c_3, c_4 c_6, c_{11}, c_{12}	u-1		
c_2, c_5, c_7 c_8, c_9, c_{10}	u+1		

Crossings	Riley Polynomials at each crossing	
c_1, c_2, c_3 c_4, c_5, c_6 c_7, c_8, c_9 c_{10}, c_{11}, c_{12}	y-1	

Solutions to I_7^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 1.00000		
a = 3.00000	0	0
b = -2.00000		

VIII.
$$I_1^v = \langle a, b+1, v+1 \rangle$$

$$a_3 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_9 = \begin{pmatrix} -1 \\ 0 \end{pmatrix}$$

$$a_4 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -1\\0 \end{pmatrix}$$

$$a_5 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_8 = \begin{pmatrix} -1 \\ 0 \end{pmatrix}$$

$$a_6 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} 0 \\ -1 \end{pmatrix}$$

$$a_1 = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$

$$a_7 = \begin{pmatrix} -1\\1 \end{pmatrix}$$

$$a_2 = \begin{pmatrix} 2 \\ -1 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -1 \\ 0 \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = -12

Crossings	u-Polynomials at each crossing		
c_1, c_2, c_7 c_{11}	u-1		
$c_3, c_4, c_5 \\ c_8, c_9, c_{10}$	u		
c_6, c_{12}	u+1		

Crossings	Riley Polynomials at each crossing		
$c_1, c_2, c_6 \\ c_7, c_{11}, c_{12}$	y-1		
c_3, c_4, c_5 c_8, c_9, c_{10}	y		

Solutions to I_1^v	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
v = -1.00000		
a = 0	-3.28987	-12.0000
b = -1.00000		

IX. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1, c_{11}	$u(u-1)^{5}(u+1)(u^{6}+6u^{4}+10u^{3}+9u^{2}+18u+9)$ $\cdot (u^{10}+u^{9}+12u^{8}+5u^{7}+41u^{6}+7u^{5}+39u^{4}+15u^{3}+2u^{2}+4u+1)$
c_2, c_7	$u(u-1)^{4}(u+1)^{2}(u^{6}+2u^{3}+3u^{2}-3)$ $\cdot (u^{10}-u^{9}+u^{7}+5u^{6}-3u^{5}+u^{4}+3u^{3}+2u^{2}-1)$
c_3, c_4, c_8 c_9, c_{10}	$u(u-1)^{3}(u+1)(u^{2}-3)(u^{3}-3u-1)^{2}$ $\cdot (u^{10}+3u^{9}-3u^{8}-14u^{7}+21u^{5}+7u^{4}-8u^{3}-3u^{2}-2)$
c_5	$u(u-1)(u+1)^{3}(u^{2}-3)(u^{3}-6u^{2}+3u+1)^{2}$ $\cdot (u^{10}+15u^{9}+\cdots+340u+142)$
c_6, c_{12}	$u(u-1)^{3}(u+1)^{3}(u^{6}+2u^{3}+3u^{2}-3)$ $\cdot (u^{10}-u^{9}+u^{7}+5u^{6}-3u^{5}+u^{4}+3u^{3}+2u^{2}-1)$

X. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1, c_{11}	$y(y-1)^{6}(y^{6} + 12y^{5} + 54y^{4} + 26y^{3} - 171y^{2} - 162y + 81)$ $\cdot (y^{10} + 23y^{9} + \dots - 12y + 1)$
c_2, c_6, c_7 c_{12}	$y(y-1)^{6}(y^{6}+6y^{4}-10y^{3}+9y^{2}-18y+9)$ $\cdot (y^{10}-y^{9}+12y^{8}-5y^{7}+41y^{6}-7y^{5}+39y^{4}-15y^{3}+2y^{2}-4y+1)$
c_3, c_4, c_8 c_9, c_{10}	$y(y-3)^{2}(y-1)^{4}(y^{3}-6y^{2}+9y-1)^{2}(y^{10}-15y^{9}+\cdots+12y+4)$
c_5	$y(y-3)^{2}(y-1)^{4}(y^{3}-30y^{2}+21y-1)^{2}$ $\cdot (y^{10}-39y^{9}+\cdots-13076y+20164)$