Propagators: An Introduction

George Wilson

Data61/CSIRO

george.wilson@data61.csiro.au

November 3, 2017

What?

Why?

Roots as early as the 1970's at MIT

- Guy L. Steele Jr.
- Gerald J. Sussman
- Richard Stallman

More recently:

Alexey Radul

And then

Edward Kmett

$$y \implies f(x) \le f(y)$$

Propagators

The <i>propagator model</i> is a model of computation	
We model computations as propagator networks	

A propagator network comprises

- cells
- propagators
- connections between cells and propagators

 $y \leftarrow z - x$

Propagators let us express multidirectional relationships!

 $^{\circ}F = ^{\circ}C \times \frac{9}{5} + 32$

$$^{\circ}F = ^{\circ}C \times \frac{9}{5} + 32$$

$$^{\circ}F = ^{\circ}C \times \frac{9}{5} + 32$$

$$^{\circ}F = ^{\circ}C \times \frac{9}{5} + 32$$

$$^{\circ}C = (^{\circ}F - 32) \div \frac{9}{5}$$

$$^{\circ}C = (^{\circ}F - 32) \div \frac{9}{5}$$

$$^{\circ}C = (^{\circ}F - 32) \div \frac{9}{5}$$

$$^{\circ}C = (^{\circ}F - 32) \div \frac{9}{5}$$

What types are the values of the cells?

data	Maybe	a	=	Nothing	Just	a

Partial information!

[1, 5]

$\{True, False\}$

