Chapitre 7

Pourcentages, proportions et taux d'évolutions

Table 7.1 – Objectifs. À fin de ce chapitre 7...

	Po	<u>/</u>	
Je dois connaître/savoir faire	&	•	Ō
pourcentages et proportions			
notions de pourcentages, de proportion (3°)		1, 2, 3	
proportion de proportions (3 ^e)		4	
problèmes et mise en équation	5	6, 7	8
pourcentages et évolutions			
taux d'évolution et coefficient multiplicateur (3e)		9, 10	
problèmes simples à une évolution (3e)		11 à 21	22
évolutions successives et taux global		23, 24	
évolutions successives : problèmes et équations	25	26, 27, 28	
évolution réciproque et taux réciproque		29, 30	
Application 1 : taux d'intérêts simples et composés			
évolutions successives de même taux		31, 32	
évolutions successives : problèmes		33, 34, 35	
Application 2 : taux d'évolution moyen			
taux moyen pour 2 évolutions successives		36, 37, 38	
taux moyen pour 3 évolutions successives		39, 40, 41	
Application 3 : indice de base 100		42	

7.1 Taux d'évolution et coefficient multiplicateur

Définition 7.1 — Le P%. désigne P centièmes = $\frac{P}{100}$.

Définition 7.2 — U de V. désigne $U \times V$.

Définition 7.3 Une évolution est un couple $(V_I; V_F)$ d'une valeur initiale et d'une valeur finale (généralement positifs).

Si $V_F > V_I$ c'est une appréciation, augmentation, ou inflation

Si $V_F < V_I$ c'est une dépréciation, ou réduction.

Définition 7.4 Une évolution de taux TE correspond à une multiplication par CM = 1 + TE.

Coefficient Multiplicateur = 1 + Taux d'Évolution

Valeur Initiale \times CM = Valeur Finale

R Si TE > 0, taux d'évolution positif, il s'agit d'une augmentation CM > 1. Si TE < 0, taux d'évolution négatif, il s'agit d'une diminution CM < 1.

Proposition 7.1 Pour une évolution $V_I \mapsto V_F$ on a :

$$CM = \frac{V_F}{V_I}$$
 et $TE = \frac{V_F - V_I}{V_I}$

$$\times CM = \frac{V_F}{V_I}$$

$$V_I \qquad V_F$$

$$\nearrow TE = \frac{V_F - V_I}{V_I}$$

7.2 Evolutions successives

Théorème 7.2 Plusieurs évolutions successives vont avoir le même effet qu'une seule dont le CM global est le produit des CM des évolutions intermédiaires qui la composent.

■ Exemple 7.1 — Cas de 2 évolutions successives.

$$CM_{\text{global}} = CM_1 \times CM_2$$

 $1 + TE_{\text{global}} = (1 + TE_1) \times (1 + TE_2)$

■ Exemple 7.2 — Cas de 3 évolutions successives.

$$CM_{\text{global}} = CM_1 \times CM_2 \times CM_3$$

 $1 + TE_{\text{global}} = (1 + TE_1) \times (1 + TE_2) \times (1 + TE_3)$

$$TE_{\mathrm{global}} = \dots$$
 $\times CM_{\mathrm{global}} = \dots$
 $V_D = ?$
 $V_I = ?$
 $V_A = ?$
 $\times CM_1 = \dots \times CM_2 = \dots$
 $TE_1 = \dots \quad TE_2 = \dots$

7.2 Evolutions successives 3

■ Exemple 7.3 — Évolutions successives de même TE.

Pour une succession de n évolutions de même TE, le taux d'évolution global est donné par :

$$CM_{\text{global}} = (CM)^n$$

 $1 + TE_{\text{global}} = (1 + TE)^n$

7.2.1 Taux d'évolution réciproque

Définition 7.5 — Évolution réciproque. de l'évolution $V_0 \mapsto V_1$ est l'évolution $V_1 \mapsto V_0$.

Les CM multiplicateurs sont inverses l'un de l'autre.

$$1 = CM \times CM_{\text{reciproque}}$$

$$1 = (1 + TE) \times (1 + TE_{\text{reciproque}})$$

■ Exemple 7.4 Une augmentation de 25% et une diminution de 20% sont des évoluations réciproques.

$$CM_1 = 1 + 25\% = 1,25$$
 $CM_2 = 1 - 20\% = 0,80$ $CM_1 \times CM_2 = 1$

7.2.2 Taux d'évolution moyens

Définition 7.6 Deux évolutions successives de taux d'évolutions TE_1 et TE_2 .

On appelle coefficient multiplicateur moyen et taux d'évolution moyen les nombres :

$$CM_{\text{moyen}}^2 = CM_1 \times CM_2$$

$$(1 + TE_{\text{moyen}})^2 = (1 + TE_1) \times (1 + TE_2)$$

Donc 2 évolutions successives de même taux TE_{moyen} conduisent à une même évolution globale que les deux évolutions successives de TE_1 et TE_2 .

Proposition 7.3 — Cas de 3 évolutions successives.

$$CM_{\text{moyen}}^3 = CM_1 \times CM_2 \times CM_3$$
$$\left(1 + TE_{\text{moyen}}\right)^3 = (1 + TE_1) \times (1 + TE_2) \times (1 + TE_3)$$

■ Exemple 7.5 Est-ce que trois augmentations de 12%, puis 17%, puis 10% correspondent à une augmentation moyenne annuelle d'exactement 13%?

7.3.1 Exercices : pourcentages et proportions

Le % désigne un centième. Ainsi $p\% = \frac{p}{100}$.

Exemple 7.6
$$0.2 = 0.20 = 20\%$$

$$0,025 = 2,5\%$$

$$\frac{4}{15} \approx 0.266 = 26.6\%$$

Exercice 1 — réactivation 3^e. Écrire les nombres suivants sous forme de pourcentages.

« k **de** X » désigne $k \times X$.

■ Exemple 7.7 « $\frac{3}{5}$ de 50 »= $\frac{3}{5} \times 50 = 30$

Exercice 2 — réactivation 3°. Calcule les valeurs demandées en écrivant le calcul à effectuer.

$$\frac{2}{3} \text{ de } 24 = \frac{2}{3} \times 24 = ...$$

$$100\% \text{ de}$$

$$12\% \text{ de } 150 = 0,12 \times 150 = ...$$

$$200\% \text{ de}$$

$$15\% \text{ de } 90 = ...$$

$$105\% \text{ de}$$

$$105\% \text{ de}$$

$$140\% \text{ de}$$

$$\frac{1}{4} \text{ de } 20\%$$

$$23\% \text{ de } 110 = ...$$

$$15\% \text{ de } \frac{1}{2}$$

40% de
$$\frac{3}{5}$$
 de 90 =

La proportion de Y parmi X est la fraction $p = \frac{Y}{X}$. Y est alors égal à p de X (car $pX = \frac{Y}{X}X = Y$).

- Exemple 7.8 La proportion de 12 parmi $15 = \frac{12}{15} = \frac{4}{5} = 0.8 = 80\%$
- Exemple 7.9 Dans une classe de 35 élèves, 9 font du ski.

La proportion d'élèves faisant du ski est $p = \frac{9}{35} \approx 0.257 = 25.7\%$

 \blacksquare Exemple 7.10 Écrire 12 comme un pourcentage de 50 :

La proportion de 12 parmi 50 vaut $\frac{12}{50} = 0.24 = 24\%$. Donc 12 vaut 24% de 50.

■ Exemple 7.11 Y est 25% de 60% de X. Quelle est la proportion de Y parmi X?

$$p = \frac{Y}{X} = \frac{25\% \times 60\% \times X}{X} = 0.25 \times 0.60 = 0.15$$

Exercice 3 — réactivation 3^e. Compléter et choisir la bonne réponse.

- 1. Une salle contient 9 000 places assises et 21 000 places debout. La proportion de places assises dans la salle est (A) $\frac{9000}{21000} \approx 43\%$ (B) $\frac{9000}{21000-9000} \approx 75\%$ (C) $\frac{9000}{21000+9000} \approx 30\%$
- 2. La proportion de 8 parmi 50 est $p = \dots$ On peut dire que 8 vaut \dots % de 50.
- 3. Écrire 2 400 m comme proportion de 5 km
- 5. Écrire 16€ comme pourcentage de 12€.....
- 6. Écrire 24€ comme pourcentage de 8€.....
- 7. Pour chaque figure préciser le pourcentage de la partie grisée.

Exercice 4 — proportion de proportion.

- Dans un club, 25% des adhérents ont moins de 18 ans dont 15% ont moins de 15 ans.
 Déterminer la proportion des moins de 15 ans parmi les adhérents du club.
- 2. 67% des voitures en France sont de marque française, dont 42% sont de marque Citroën. Déterminer la proportion des voitures Citroën parmi l'ensemble des voitures en France.
- 3. 35% des Français sont en surpoids, dont 30% sont obèses. Déterminer la proportion d'obèses parmi la population française.
- 4. Les jeunes de 12 à 16 ans passent 12.5% d'une journée devant un écran. 80% de ce temps est passé devant un téléphone, et le reste devant la télévision. Déterminer la proportion de temps d'une journée passé devant la télévision.

Exercice 5 — réactivation 3^e . Dans chaque cas, écrire une équation vérifiée par x et la résoudre.

- 1. $\frac{1}{5}$ de x vaut 7.....
- 2. $\frac{3}{4}$ de x vaut 18
- 3. $\frac{7}{2}$ de x vaut 49
- **4.** 15% de *x* vaut 24

- 7. 25% de *x* vaut 6.60€.....

Certains ont pris l'habitude d'associer les exercices de proportions, ou de pourcentages, avec les tableaux de proportionnalité et la règle de trois. Cette pratique sous-entend avoir identifié **sans erreur** deux grandeurs **proportionnelles** en rapport avec la question!

On préfère dorénavant l'écriture explicite des relations imposées par l'énoncé.

L'exercice suivant se ramène à une relation de la forme Y = pX.

■ Exemple 7.12 Dans une entreprise, $\frac{5}{6}$ des 720 employés sont des commerciaux. Déterminer le nombre de commerciaux.

solution. Si
$$Y=$$
 nombre de commerciaux, alors on a : $Y=\frac{5}{6}X=\frac{5}{6}(720)=600.$ $X=$ nombre total d'employés

■ Exemple 7.13 Dans une administration, 23 des employés sont des administratifs, soit 15% des employés. Déterminer le nombre total d'employés.

solution. Si
$$Y=$$
 nombre d'administratifs , alors on a : $Y=15\% \times X$ soit $X=\frac{23}{0,15}=160$. $X=$ nombre total d'employés $23=0,15X$

Exercice 6 Déterminer la valeur demandée dans chaque cas.

- Lors de l'achat d'un article coûtant 1625€, il faut verser un acompte de 8%. Déterminer le montant de l'acompte.
- 2. Lors de l'achat d'un article, il faut verser un acompte de 15%. Sachant que l'acompte est de 300€, déterminer le prix de l'article.
- 3. Lors de l'achat d'un article, il faut verser un acompte de 23%. Sachant qu'il reste à payer 3465€, déterminer le prix de l'article.

Exercice 7 Déterminer la valeur demandée dans chaque cas.

- Dans un village, 697 habitants vivent de l'agriculture, ce qui représente 82% de la population.
 Déterminer le nombre d'habitants de ce village.
- 2. Dans une commune, 42% des 1 742 votant ont choisi le candidat perdant. Déterminer le nombre total de voix du candidat perdant.

Exercice 8 — mise en équation.

14 L d'une solution contient 25% d'antigel.

- 1. Écrire la proportion d'antigel parmi le mélange total si l'on ajoute x litres d'antigel.
- 2. Combien de litres d'antigel faut-il ajouter pour que la solution contiennent 37,5% d'antigel?

7.3.2 Exercices : taux d'évolution et coefficient multiplicateur

Exercice 9 — réactivation de 3°. Compléter afin d'associer les TE avec les CM correspondants à l'évolution donnée.

taux d'évolution TE	Augmentation/diminution	coefficient multiplicateur CM
$\frac{1}{5} = 0.2 = 20\%$	augmenter de $\frac{1}{5} = 0.2 = 20\%$	$\times (1 + \frac{1}{5}) = \frac{6}{5} = 1, 2 > 1$
0.07 = +7%	augmenter de 7%	× 1,07
$\frac{-1}{3}$	diminuer de $\frac{1}{3}$	$\times (1 - \frac{1}{3}) = \frac{2}{3} < 1$
-0.07 =		
	augmenter de 70%	
	diminuer de 10%	
	augmenter de 10%	
	augmenter de $\frac{1}{6}$	
	augmenter de 200%	
	diminuer de 4%	
	diminuer de 12%	
	augmenter de $\frac{1}{5}$	
	diminuer de 0,25	
	diminuer de 0,25%	
		× 1,22
-0,72		
0,82		
0,92		
	diminuer de 1%	
	_	× 0,89
	augmenter de 0,1%	
	diminuer de 0,1%	

•	Exemple 7.14 Une multiplication par $CM=1{,}023$ correspond à une évolution de	taux TE =
C	CM - 1 = 1,023 - 1 = 0,023 = 2,3%. C'est une augmentation de 2,3%	

■ Exemple 7.15	Une diminu	tion de 3,2%	correspond	à une évoluti	on de taux	TE = -	-3,2% = -	-0,032.
C'est une mu	ltiplication p	oar $CM = 1$	+TE = 1 - 0	0.032 = 0.968				

Exercice 10	Complétez.
-------------	------------

	1
1.	Une augmentation de 3% est une évolution de taux $TE = \dots$
	Elle correspond à une multiplication par $CM = \ldots + \ldots = \ldots$
2.	Une diminution de 7% est une évolution de taux $TE = -\dots$
	Elle correspond à une multiplication par $CM = \ldots + \ldots = \ldots$
3.	Une diminution de 10% est une évolution de taux $TE = -$
	Elle correspond à une multiplication par $CM = \ldots + \ldots = \ldots$
4.	Multiplier par $CM=1.2$ correspond à une évolution de taux $TE=\dots$

C'est une (augmentation/diminution) de%.

- 6. Multiplier par CM=0.95 correspond à une évolution de taux $TE=\ldots\ldots=\ldots$. C'est une (augmentation/diminution) de $\ldots\ldots$ %.
- 7. Multiplier par CM=0.7 correspond à une évolution de taux $TE=\ldots\ldots=\ldots$. C'est une (augmentation/diminution) de $\ldots\ldots$ %.
- 8. Une évolution de $1.50 \in \text{à } 1.86 \in \text{correspond à une multiplication par } CM = \frac{1.50 \times 1.86 \times 1.86$
- 9. Une évolution de $40 \in$ à $24 \in$ correspond à une multiplication par $CM = \frac{1}{1-1-1} = \frac{1}{1-1-1}$.
- 11. Une évolution de $90 \in$ à $100 \in$ est de taux $TE = \frac{\begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}}{\begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}} = \frac{\begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}}{\begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}} = \frac{\begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}}{\begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}} = \frac{\begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}}{\begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}} = \frac{\begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}}{\begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}} = \frac{\begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}}{\begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}} = \frac{\begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}}{\begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}} = \frac{\begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}}{\begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}} = \frac{\begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}}{\begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}} = \frac{\begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}}{\begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}} = \frac{\begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}}{\begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}} = \frac{\begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}}{\begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}} = \frac{\begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}}{\begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}} = \frac{\begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}}{\begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}} = \frac{\begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}}{\begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}} = \frac{\begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}}{\begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}} = \frac{\begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}}{\begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}} = \frac{\begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}}{\begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}} = \frac{\begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}}{\begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}} = \frac{\begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}}{\begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}} = \frac{\begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}}{\begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}} = \frac{\begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}}{\begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}} = \frac{\begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}}{\begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}} = \frac{\begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}}{\begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}} = \frac{\begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}}{\begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}} = \frac{\begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}}{\begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}} = \frac{\begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}}{\begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}} = \frac{\begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}}{\begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}} = \frac{\begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}}{\begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}} = \frac{\begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}}{\begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}} = \frac{\begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}}{\begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}} = \frac{\begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}}{\begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}} = \frac{\begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}}{\begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}} = \frac{\begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}}{\begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}} = \frac{\begin{bmatrix} 1 & 1 & 1 \\$

Les exercices suivants illustrent des formulations de problèmes d'évolutions.

Exercice 11

Le prix initial est de 80€.

Après augmentation le prix est de 125€.

Quel est le taux d'augmentation?

Exercice 12

Le prix initial est de 16€.

Après réduction le prix est de 12.5€.

Donner le taux de diminution.

Exercice 13

Le montant de la redevance audiovisuel en France est passé de 114.49€ en 2001 à 123€ en 2011.

Quel est le taux d'évolution de cette taxe de 2001 à 2011?

Exercice 14

Le prix initial de 60€ subit une augmentation de 35%.

Sans calculer le montant de l'augmentation retrouver le prix final.

Exercice 15

Le prix initial de 35€ subit une diminution de 60%.

Sans calculer le montant de l'augmentation retrouver le prix final?

Exercice 16

En appliquant une augmentation de 12.5% du prix initial, le prix augmente de 15€.

- 1. Donner une équation vérifiée par le prix initial.
- 2. Déterminer le prix initial

Exercice 17

Après augmentation de 12.5%, le prix final est de 45€.

- 1. Donner une équation vérifiée par le prix initial.
- 2. Déterminer le prix initial

Exercice 18

Après diminution de 12.5%, le prix final est de 80.5€.

 $V_I = V_F = V_F$

TE =

Quel était le prix initial?

Exercice 19

En appliquant une diminution de 15%, le prix final est $100 \in$.

Quel est le montant de la diminution?

$V_I = V_F = V_F = V_F$

 $\times CM =$

Exercice 20

Le prix d'un appareil ménager a augmenté de 15 % en 2 ans.

Il coûte maintenant 460€.

Quel est montant de l'augmentation en deux ans?

Exercice 21

Les prix des aliments ont diminué de 20%.

Un aliment coûte maintenant 240.

Quel est le montant de la diminution?

Exercice 22 — bilan. Compléter le tableau (Variation absolue = Prix final - Prix initial).

Augmentation/diminution	taux d'évolution	Coefficient Multiplicateur	Prix initial	Prix final	Variation absolue
	+100%		98.40€		
	+160%		196.80€		
	+20%		60€		
	-20%		72€		
			72€	54€	
Augmentation de 50%				54€	
Diminution de 50%				54€	
	+20%			54€	
	-20%			54€	
			54€		+54€
		×0,7	40€		
				108€	-27€
		×1,3		91€	
			96€	108€	

Augmentation/diminution	taux d'évolution	Coefficient Multiplicateur	Prix initial	Prix final	Variation absolue
	+1,25%		96€		
	+25%			98.40€	
		×1,007	130€		
			98.40€		-19.68€
	+42%		17€		

7.3.3 Exercices : évolutions successives et réciproques

Exercice 23 Déterminez le taux d'évolution global associé à la succession d'évolutions :

1. augmentation de 8%, suivie d'une augmentation de 10%

$$CM_{
m global} = CM_1 imes CM_2$$

$$TE_{
m global} = \dots$$

$$1 + TE_{
m global} = (1 + TE_1)(1 + TE_2)$$

$$V_D = ?$$

$$V_I = ?$$

$$1 + TE_{
m global} = \dots \times \dots \times \dots = \dots$$

$$TE_1 = \dots \quad TE_2 = \dots$$

L'évolution globale correspond à unededede

2. augmentation de 10% suivie d'une augmentation de 5%

$$1 + TE_{global} = (1 + TE_1)(1 + TE_2)$$

$$1 + TE_{global} = \dots \times \dots = \dots$$

$$TE_{global} = \dots - 1 =$$

L'évolution globale correspond à unedede

3. diminution de 30% suivie d'une diminution de 10%

$$1 + TE_{\text{global}} =$$

$$1 + TE_{\text{global}} = \dots \times \dots = \dots$$

$$TE_{\text{global}} = \dots - 1 =$$

L'évolution globale correspond à unedede

4. diminution de 40% suivie d'une diminution de 10%

L'évolution globale correspond à unedede

5. diminution de 25% suivie d'une diminution de 20%

$$TE_{global} = \dots - 1 =$$

L'évolution globale correspond à unedede

6. augmentation de 25% suivie d'une diminution de 20%

$$TE_{global} =$$

L'évolution globale correspond à unede%

7. augmentation de 25% suivie d'une diminution de 25%

$$TE_{global} =$$

L'évolution globale correspond à unedede

8. diminution de 20% suivie d'une augmentation de 25%

 $TE_{global} =$

L'évolution globale correspond à unedede

9. augmentation de 22% suivie d'une diminution de 15%

 $TE_{\text{global}} = \dots$ V_A V_D $TE_1 = \dots TE_2 = \dots$

$$TE_{global} =$$

L'évolution globale correspond à unede%

Exercice 24 — 3 évolutions successives.

Dans chaque cas, calculer le TE global correspondants aux évolutions successives ci-dessous :

- 1. une diminution de 30% suivie d'une augmentation de 20% suivie d'une diminution de 10%
- 2. une augmentation de 12% suivie de deux baisses successives de 5%
- 3. trois augmentations successives de 10%.
- 4. trois diminutions successives de 5%.

Exercice 25

Une augmentation de 5% suivie d'une augmentation de taux t correspond à une augmentation globale de 17,6%. Montrer que t est solution de l'équation 1,05(1+t)=1,176 et trouver t.

Exercice 26 Une diminution de 15 % suivie d'une diminution de taux t correspond à une diminution globale de 32 %. Déterminer une équation vérifiée par t et la résoudre.

Exercice 27 Après deux augmentations successives de taux t, le prix d'un produit a globalement augmenté de 32,25%. Déterminer une équation vérifiée par t et la résoudre.

Exercice 28 Après une augmentation de taux t suivie d'une baisse de taux t, le prix d'une chemise a diminué de 4%. Déterminer une équation vérifiée par t et la résoudre.

7.3.4 Exercices : taux d'évolution réciproque

- Exemple 7.16 Taux d'évolution réciproque. Pour chacune des évolutions suivantes, donner le taux d'évolution réciproque. Arrondir à 10^{-4} près si nécessaire.
- 1. augmentation de 25%

augmentation de 25%
$$1 = (1+TE)(1+TE_{\rm reciproque})$$

$$1 = (1+0.25)(1+TE_{\rm reciproque})$$

$$V_D$$

$$V_I$$

$$V_A$$

$$TE = +0.25$$

$$TE_{\rm reciproque} = 1 + TE_{\rm reciproque} = 0.8$$

$$TE_{\rm reciproque} = 0.8$$

 $TE_{\text{reciproque}} = 0.8 = 1 = -0.2 = -20\%$

L'évolution réciproque d'une augmentation de 25% est une diminution de 20%.

2. diminution de 25%

$$1 = (1 + TE)(1 + TE_{\text{reciproque}})$$

$$=$$

$$=$$

 $TE_{\text{reciproque}} =$

L'évolution réciproque d'une diminution de 25% est unede%.

Exercice 29

Pour chacune des évolutions suivantes, donner le taux d'évolution réciproque. Arrondir à 10^{-4} près si nécessaire.

- 1. augmentation de 50%
- 3. diminution de 90%
- 5. augmentation de 10%

- 2. diminution de 20%
- 4. augmentation de 300%
- 6. diminution de 10%

Exercice 30

Le prix TTC (toutes taxes comprises) correspond à une augmentation de 20% du prix HT (hors taxes). Quelle évolution appliquer au prix TTC pour retrouver le prix HT?

7.3.5 Exercices : cas particulier d'évolutions de même taux d'évolution

Dans un plan d'épargne, les intérêts sont dit **simples** lorsqu'ils sont calculés chaque année sur la base de la **somme placée au départ**.

■ Exemple 7.17 Un placement $200 \in$ en intérêts **simples** de 3%, rapporte $3\% \times 200$ chaque année.

Au terme de 5 ans, la somme épargnée est $200 + 5 \times 0.03 \times 200 = 200 \times 1.15$

Le montant de départ a été multiplié par $CM_{\text{global}}=1.15$.

C'est une augmentation globale de $TE_{global} = 15\%$.

Dans un plan d'épargne, les intérêts sont dit **composés** lorsqu'ils sont calculés chaque année sur la base de la **somme totale accumulée l'année précédente**. De même, les gains ou pertes sont généralement exprimés en pourcentage par rapport à l'année écoulée.

■ Exemple 7.18 Un placement 200 € en intérêts composés de 3%, augmente de 3% chaque année. Le placement est multiplié par 1.03 chaque année.

Au terme de 5 ans, la somme épargnée est $200 \times 1.03^5 \approx 200 \times 1.159$

Le montant de départ a été multiplié par $CM_{\rm global} \approx 1.159$.

C'est une augmentation globale de $TE_{\text{global}} \approx 16\%$.

Exercice 31 Complétez le tableau.

Placement initial	taux d'intêret	nbr d'années	Calcul	Montant final
2000€	5% composés	6	2000 × 1.05···	
4000€	2% simples	5		
100€	6% simples	10		
4000€	2% composés	8		
3500€	6% composés	10		
10000€	1% composés	11		
			5000×1.07^{14}	
			600×1.1^{8}	

Exercice 32 Entourez les bonnes réponses.

- -	Réponse A	Réponse B	Réponse C
1/ Un placement de 1000€ se déprécie de 7% par	1000 ×	1000×0.07^5	1000×0.93^5
an. Le montant après 5 ans est	0.07×5		
2/ Un placement de 2000 € rapporte 4% d'intérêts	2000 ×	2000×1.04^5	2000×4^{5}
composés par an. Le montant après 5 ans est	1.04×5		
3/ Un placement de 100€ rapporte 8% d'intérêts	$100 \times 1.8 \times 10$	100×1.08^{10}	100×0.8^{10}
composés par an. Le montant après 10 ans est			
4/ Un placement de 100€ rapporte 3.5% d'intérêts	100×0.07	100×1.07^2	107.1225
composés par an. Le montant après 2 ans est			
5/ Un placement de 1000€ se déprécie de 9% par	1000×0.91^{10}	1000×0.9^{10}	1000×1.09^{10}
an. Le montant après 10 ans est			
6/ Un placement de 5000€ se déprécie de 12% par	5000×0.12^{6}	1000×0.88^6	$1000(1-6 \times$
an. Le montant après 6 ans est			0.12)
7/ Un placement de 11000€ rapporte 4% d'inté-	≈12700€	≈1700€	≈1868€
rêts composés par an. Le total des intérêts après 4			
ans est			

Exercice 33

Quark souhaite investir $10000 \in$ sur 10 ans. Le placement A rapporte 4% taux d'intérêts simples. Le placement B rapporte 3.5% d'intérêts composés.

Quel placement est le plus avantageux? Montrer les calculs.

Exercice 34

Une banque propose un placement à intérêts composés. La première année est à 7%, et les suivantes sont à 5%. Quelle est le **taux d**'augmentation globale d'un placement après 3 années?

Exercice 35

Un placement de 1000€ sur 10 ans se déprécie de 4% par an. Calculer le **taux de** diminution globale sur 10 ans.

7.3.6 Exercices : le taux d'évolution moyen

Deux évolutions successives de taux d'évolutions TE_1 et TE_2 .

On appelle coefficient multiplicateur moyen et taux d'évolution moyen les nombres :

$$CM_{\text{moyen}}^2 = CM_1 \times CM_2$$

$$\left(1 + TE_{\text{moyen}}\right)^2 = (1 + TE_1) \times (1 + TE_2)$$

Donc 2 évolutions successives de même taux $TE_{\rm moyen}$ conduisent à une même évolution globale que les deux évolutions successives de TE_1 et TE_2 .

■ Exemple 7.19 Déterminer le taux d'évolution moyen pour une augmentation de 10% suivie d'une augmentation de 35%

solution. On a
$$CM_{\rm moyen}^2=CM_1CM_2=(1+0.1)(1+0.35)=1.485$$

$$\left(1+TE_{\rm moyen}\right)^2=1.485$$

$$1+TE_{\rm moyen}=\sqrt{1.485}\approx 1.218~6$$

$$TE_{\rm moyen}=21.9\%$$

Le taux d'évolution moyen est d'environ 21,9%.

Si le taux d'évolution moyen de 2 évolutions peut être proche de la moyenne des taux.

Exercice 36

Le nombre de nouvelles inscriptions Netflix à augmenté de 21% durant le moi d'octobre, puis de 36% durant le mois de novembre. Calculer le taux évolution mensuel moyen.

Exercice 37

Le prix d'un article augmente de 20% la première année, et diminue de 4% l'année suivante. Calculer le taux d'évolution annuel moyen.

Exercice 38

Le montant d'un placement passe de 2000€ en 2020 à 2142.45€ en 2022. Calculer le taux d'évolution annuel moyen.

Le taux moyen à 3 évolutions de taux TE_1 , TE_2 et TE_3 est donné par :

$$(1 + TE_{\text{moyen}})^3 = (1 + TE_1)(1 + TE_2)(1 + TE_3)$$

$$1 + TE_{\text{moyen}} = \sqrt[3]{(1 + TE_1)(1 + TE_2)(1 + TE_3)}$$

 $b = \sqrt[3]{a}$ est la racine cubique de a, elle vérifie $b^3 = a$.

Le calcul du taux moyen se généralise à n d'évolution avec la racine n-ième : $b = \sqrt[n]{a}$.

Exercice 39

La taxe d'importations de patates-douces égyptiennes a augmenté de 9,75% entre 2020 et 2022. Calculer le taux d'évolution annuel moyen de cette taxe.

Exercice 40

En Juin 2017, Farid achète une voiture pour 12000€. En Juin 2020, sa voiture est évaluée à 8600€.

- 1. Calculer le taux d'évolution annuel moyen.
- 2. Si la voiture se déprécie à ce même taux. Quel est la valeur de la voiture en Juin 2022?

Exercice 41

Une moto achetée 2300 € est revendue 3 ans plus tard à 1300 €. Calculer le taux de dépréciation annuel moyen.

Exercice 42 — Indice de base 100. Le tableau ci-dessous donne le chiffre d'affaire annuel d'une entreprise pour les années comprises entre 2015 et 2021.

Année	2015	2016	2017	2018	2019	2020	2021
Chiffre d'affaire en miliers d'euros	134	138	138.3	135.6	133.2	138.2	140.4
Indice (base 100)	97.1	100					

- 1. Complétez la ligne des indices sachant qu'elle est proportionnelle à celle du chiffre d'affaire.
- 2. Sans calculs supplémentaires donner le taux d'augmentation en % qui permet de passer du chiffre d'affaire de 2016 à celui de 2021.

7.4 Exercices : solutions et éléments de réponse

solution de l'exercice 1.	•
solution de l'exercice 2.	•
solution de l'exercice 3.	•
solution de l'exercice 4.	•
solution de l'exercice 5.	•
solution de l'exercice 6.	•
solution de l'exercice 7.	•
solution de l'exercice 8.	•
solution de l'exercice 9.	•
solution de l'exercice 10.	•
solution de l'exercice 11.	•
solution de l'exercice 12.	•
solution de l'exercice 13.	•
solution de l'exercice 14.	•
solution de l'exercice 15.	•
solution de l'exercice 16.	•
solution de l'exercice 17.	•
solution de l'exercice 18.	
solution de l'exercice 19.	•
solution de l'exercice 20. 20	
solution de l'exercice 21.	

7.4 Exercices : solutions et éléments de réponse	19
solution de l'exercice 22.	
solution de l'exercice 23.	•
solution de l'exercice 24.	•
solution de l'exercice 25. 25	
	•
solution de l'exercice 26.	•
solution de l'exercice 27.	
solution de l'exercice 28.	•
solution de l'exercice 29.	
solution de l'exercice 30. 30	
solution de l'exercice 31.	
solution de l'exercice 32.	
solution de l'exercice 33.	•
solution de l'exercice 34.	
solution de l'exercice 35.	•
solution de l'exercice 36.	
solution de l'exercice 37.	•
solution de l'exercice 38.	•
solution de l'exercice 39.	•
solution de l'exercice 40.	•
solution de l'exercice 41.	•
solution de l'exercice 42.	•

7.5 Club de Maths : Problèmes de proportion et de pourcentages

Problème 1 — compétition européenne de statistiques (Epreuve 1).

Le tableau ci-dessous décrit le salaire annuel net moyen, en euros courants dans le secteur privé selon le sexe en France de 2015 à 2020

		2015	2016	2017	2018	2019	
Revenus	Femmes	23 666	23 888	24 511	25 114	25 827	26 944
	Hommes	28 893	29 015	29 460	30 055	30 587	31 617
Effectifs	% Femmes	41,48%	41,58%	41,48%	41,49%	41,49%	41,52%
	% Hommes	58,52%	58,42%	58,52%	58,51%	58,51%	58,48%

Source : Insee

L'évolution du salaire net moyen ensemble entre 2015 et 2019 est :

(A) 11,50%

(B) 9,13%

(C) 7,06%

(D) 7,50%

Problème 2

W vaut 25% de X. X vaut 45% de Y. Z vaut 60% de Y. Détermine la proportion de W parmi Z.

Problème 3 — le paradoxe de la pomme de terre.

Un agriculteur dispose 100 kg de pommes de terres. Cette spécialité martienne se compose de 99% d'eau. Pour sa préparation de chips, les pommes de terre doivent être déshydratées pour ne contenir plus que 98% d'eau. Quelle est alors le poids total des pommes de terre?

Problème 4 — Vrai ou Faux?. Justifier votre réponse.

« une augmentation de t% suivie d'une diminution de t% est toujours une diminution ».

Problème 5

On aggrandit les côtés d'un carré de 20%, quel est le taux d'agrandissement des aires.

Problème 6

On augmente deux côtés opposés d'un rectangle de 25%, et diminue les deux autres de 22%. L'aire du rectangle a-t-elle augmenté ou diminué?

Problème 7

Le coût du pétrole représente 24% du coût de production de l'essence, qui représente lui-même 35% du prix de l'essence. Si le coût du pétrole augmente de 10%, sans changement du prix des autres composants, quel sera le pourcentage d'augmentation du prix de l'essence.

Problème 8

Après une année d'entrainement, Minnie augmente sa vitesse moyenne au Marathon de Londres de 25%. Quel est le taux de diminution de son temps total?

Problème 9

Coincée dans le trafic, Emilie's met 25% de plus que d'habitude pour arriver chez elle. Quel est le pourcentage de réduction de sa vitesse par rapport à un trajet sans embouteillage.

Problème 10

Si un tapis roulant avançait 10% plus rapidement, alors le trajet prendrait 5 s de moins. Quelle est la durée du trajet?

Problème 11

Deux offres sont proposées pour une bouteille de lessive : 15% de produit en plus, ou 15% de réduction sur le prix. Laquelle choisissez-vous et pourquoi?

indication pour le problème 7. x = prix de l'essence. Quel est le coût du pétrole?

Problème 12

Combien de litres de lait à 4% de matière grasse doit-on ajouter à du lait à 1% de matière grasse pour obtenir 12 litres de lait à 2% de matière grasse?

indication pour le problème 10. Traduire l'énoncé en une équation utilisant l et t la longueur du tapis roulant et le temps normal de trajet.