MA 101 (Mathematics I)

Multivariable Calculus: Practice Problem Set - 2

- 1. Examine whether the following sets are (a) open (b) closed in \mathbb{R}^2 .
 - (a) $\{(x,y) \in \mathbb{R}^2 : 0 < x < y\}$ (b) $\{(x,x) : x \in \mathbb{R}\}$ (c) $\{(x,y) \in \mathbb{R}^2 : y \in \mathbb{Z}\}$ (d) $(0,1) \times \{0\}$
- 2. If $f: \mathbb{R}^m \to \mathbb{R}$ is continuous, then show that
 - (a) $\{\mathbf{x} \in \mathbb{R}^m : f(\mathbf{x}) > 0\}$ is an open set in \mathbb{R}^m .
 - (b) $\{\mathbf{x} \in \mathbb{R}^m : f(\mathbf{x}) \ge 0\}$ and $\{\mathbf{x} \in \mathbb{R}^m : f(\mathbf{x}) = 0\}$ are closed sets in \mathbb{R}^m .
- 3. Using Ex.2 above, show that $\{(x,y,z) \in \mathbb{R}^3 : x^2 + 2z < 3|y|\}$ is an open set in \mathbb{R}^3 and $\{(x,y,z) \in \mathbb{R}^3 : \sin(xyz) = |xy|\}$ is a closed set in \mathbb{R}^3 .
- 4. Let $f: \mathbb{R}^2 \to \mathbb{R}$ be defined by $f(x,y) = \begin{cases} \frac{\sin(xy)}{xy} & \text{if } xy \neq 0, \\ 1 & \text{if } xy = 0. \end{cases}$ Show that f is continuous.
- 5. Let $f: \mathbb{R}^2 \to \mathbb{R}$ be such that $f(x,y) = e^{-\frac{x^2 2xy + y^2}{|x-y|}}$ for all $(x,y) \in \mathbb{R}^2$ with $x \neq y$. If $x \in \mathbb{R}$, then find f(x,x) such that f is continuous on \mathbb{R}^2 .
- 6. Let $f: S \subseteq \mathbb{R}^m \to \mathbb{R}^k$ be continuous and let $g: \mathbb{R}^m \to \mathbb{R}^k$ be such that $g(\mathbf{x}) = f(\mathbf{x})$ for all $\mathbf{x} \in S$.
 - (a) Show that g need not be continuous on S.
 - (b) If S is an open set in \mathbb{R}^m , then show that g is continuous on S.
- 7. Let $S_1 = \{(x, y) \in \mathbb{R}^2 : (x 1)^2 + y^2 < 4\}$ and $S_2 = \{(x, y) \in \mathbb{R}^2 : x^2 + (y 1)^2 < 9\}$. Does there exist a continuous function from S_1 onto S_2 ? Justify.
- 8. If $S = \{\mathbf{x} \in \mathbb{R}^m : ||\mathbf{x}|| < 1\}$, then does there exist a non-constant continuous function $f : \mathbb{R}^m \to \mathbb{R}$ such that $f(\mathbf{x}) = 5$ for all $\mathbf{x} \in S$? Justify.
- 9. Let $\mathbf{x}, \mathbf{y} \in \mathbb{R}^m$ such that $\mathbf{x} \neq \mathbf{y}$. Find a continuous function $f : \mathbb{R}^m \to \mathbb{R}$ such that $f(\mathbf{x}) = 1$, $f(\mathbf{y}) = 0$ and $0 \le f(\mathbf{z}) \le 1$ for all $\mathbf{z} \in \mathbb{R}^m$.
- 10. Let $f: \mathbb{R}^m \to \mathbb{R}$ be continuous such that $\lim_{\|\mathbf{x}\| \to \infty} f(\mathbf{x}) = 1$. Show that f is bounded on \mathbb{R}^m .
- 11. State TRUE or FALSE with justification for each of the following statements.
 - (a) There exists r > 0 such that $\sin(xy) < \cos(xy)$ for all $x, y \in [-r, r]$.
 - (b) There exists a continuous function $f: \mathbb{R} \to \mathbb{R}^2$ such that $f(\cos n) = (n, \frac{1}{n})$ for all $n \in \mathbb{N}$.
 - (c) There exists a continuous function from $\{(x,y) \in \mathbb{R}^2 : x^2 + y^2 \le 1\}$ onto \mathbb{R}^2 .
 - (d) There exists a one-one continuous function from $\{(x,y) \in \mathbb{R}^2 : x^2 + y^2 < 1\}$ onto \mathbb{R}^2 .

- 12. If $f: \mathbb{R}^2 \to \mathbb{R}^2$ is continuous, then does there exist a sequence $((x_n, y_n))$ in \mathbb{R}^2 such that $x_n^2 + y_n^2 = \frac{1}{2}$ and $f(x_n, y_n) = (n, \frac{1}{n})$ for all $n \in \mathbb{N}$? Justify.
- 13. Examine whether the following limits exist (in \mathbb{R}) and find their values if they exist (in \mathbb{R}).

- (a) $\lim_{(x,y)\to(0,0)} \frac{x^3y}{x^4+y^2}$ (b) $\lim_{(x,y)\to(0,0)} \frac{x^3-y^3}{x^2+y^2}$ (c) $\lim_{(x,y)\to(0,0)} \frac{|x|}{y^2} e^{-|x|/y^2}$ (d) $\lim_{(x,y)\to(0,0)} \frac{x^3+y^2}{x^2+y}$ (e) $\lim_{(x,y)\to(0,0)} \frac{\sqrt{x^2y^2+1}-1}{x^2+y^2}$ (f) $\lim_{(x,y)\to(0,0)} \frac{x^3y^2+y^6}{x^6+y^4}$ (g) $\lim_{(x,y,z)\to(0,0,0)} \frac{(x+y+z)^2}{x^2+y^2+z^2}$

- 14. Let $f: \mathbb{R}^2 \to \mathbb{R}$ be defined by $f(x,y) = \begin{cases} x+y & \text{if } x \neq y, \\ 1 & \text{if } x = y. \end{cases}$ Examine whether $\lim_{(x,y)\to(0,0)} f(x,y)$ exists (in \mathbb{R}).
- 15. Let $S \subseteq \mathbb{R}^2$, $(x_0, y_0) \in \mathbb{R}^2$ and r > 0 be such that $(B_r(x_0) \times B_r(y_0)) \setminus \{(x_0, y_0)\} \subseteq S$. Let $\lim_{x\to x_0} f(x,y)$ exist (in \mathbb{R}) for each $y\in B_r(y_0)\setminus\{y_0\}$, $\lim_{y\to y_0} f(x,y)$ exist (in \mathbb{R}) for each $x \in B_r(x_0) \setminus \{x_0\}$ and $\lim_{(x,y)\to(x_0,y_0)} f(x,y) = \ell \in \mathbb{R}$.

Show that $\lim_{x\to x_0} \left(\lim_{y\to y_0} f(x,y)\right) = \lim_{y\to y_0} \left(\lim_{x\to x_0} f(x,y)\right) = \ell.$

 $\left[\lim_{x\to x_0}\left(\lim_{y\to 0}f(x,y)\right)\text{ and }\lim_{x\to x_0}\left(\lim_{y\to 0}f(x,y)\right)\text{ are called the iterated limits of }f\text{ at }(x_0,y_0).\right]$

- 16. Show that $\lim_{x\to 0} \left(\lim_{y\to 0} \frac{x^2}{x^2+y^2}\right) \neq \lim_{y\to 0} \left(\lim_{x\to 0} \frac{x^2}{x^2+y^2}\right)$ and hence conclude that $\lim_{(x,y)\to(0,0)} \frac{x^2}{x^2+y^2}$ does not exist (in \mathbb{R}).
- 17. Show that $\lim_{x\to 0} \left(\lim_{y\to 0} \frac{x^2y^2}{x^2y^2 + (x-y)^2} \right) = 0 = \lim_{y\to 0} \left(\lim_{x\to 0} \frac{x^2y^2}{x^2y^2 + (x-y)^2} \right)$ but that $\lim_{(x,y)\to(0,0)} \frac{x^2y^2}{x^2y^2 + (x-y)^2}$ does not exist (in \mathbb{R}).
- 18. Let $f: \mathbb{R}^2 \to \mathbb{R}$ be defined by $f(x,y) = \begin{cases} x \sin \frac{1}{y} & \text{if } y \neq 0 \\ 0 & \text{if } y = 0. \end{cases}$ Show that $\lim_{(x,y)\to(0,0)} f(x,y) = 0$ and $\lim_{y\to 0} \left(\lim_{x\to 0} f(x,y)\right) = 0$ but that $\lim_{y\to 0} f(x,y)$ does not exist (in \mathbb{R}) if $x \in \mathbb{R} \setminus \{0\}$ and so $\lim_{x \to 0} \left(\lim_{y \to 0} f(x, y) \right) = 0$ is not defined.
- 19. Show that $\lim_{(x,y)\to(0,0)} \frac{1}{3x^2+y^4} = \infty$.
- 20. Let I be an open interval in \mathbb{R} and let $F:I\to\mathbb{R}^m$ be a differentiable function such that $F(t) \cdot F'(t) = 0$ for all $t \in I$. Show that ||F(t)|| is constant for all $t \in I$.