

Universidade do Minho

Escola de Engenharia

Redes de Computadores I ENGENHARIA DE TELECOMUNICAÇÕES E INFORMÁTICA 2020/2021

(Docente: Maria João Mesquita Rodrigues Cunha Nicolau Pinto)

17 de janeiro de 2021

Simulação de LANs Ethernet e redes TCP/IP usando o CORE

Marco António Cerqueira Araújo - <u>a89387@alunos.uminho.pt</u>

Rui Filipe Ribeiro Freitas - <u>a84121@alunos.uminho.pt</u>

Tiago João Pereira Ferreira - <u>a85392@alunos.uminho.pt</u>

Índice

Índice de	figuras	3
Índice de	tabelas	3
Introduçã	ío	4
Desenvol	vimento	5
1. Em	nulação de LANs Ethernet	5
1.1.	Elaboração da topologia da rede	5
1.2.	Testes de conectividade	6
1.3.	Capturas de tráfego no Wireshark	7
2. Int	erligação de LANs e redes IP	8
2.1.	Elaboração da topologia da rede	8
2.2.	Atribuição dos endereços IP	8
2.3.	Tabelas de encaminhamento	10
2.4.	Encaminhamento estático	12
<i>3.</i> DH	ICP — Dynamic Host Configuration Protocol	13
3.1.	Configuração do Protocolo DHCP	13
3.2.	Testes DHCP	14
4. Us	o das camadas de rede e transporte pelas aplicações	15
4.1.	Ativação do servidor HTTP num PC da rede C	15
4.2.	Testes	16
4.3.	Formulário HTTP	17
Conclu	são	18

Índice de figuras

Figura 1 - Topologia da Tede local da Tase 1	
Figura 2 - PING A ₁ -> C ₁	6
Figura 3 - PING D ₂ -> B ₁	6
Figura 4 - Captura de tráfego PC A2.	7
Figura 5 - Captura de tráfego PC B2.	7
Figura 6 - Topologia da rede local da fase 2	8
Figura 7 - Ligações entre os routers.	8
Figura 8 - Esquema para o endereçamento das ligações entre os routers	9
Figura 9 - Configuração zebra Router B	
Figura 10 - Configuração zebra Router A	
Figura 11 - Teste ping entre B2i e E1.	12
Figura 12 - Teste traceroute entre B2i e E1	
Figura 13 - Nova topologia da rede B	13
Figura 14 - Configuração DHCP server	
Figura 15 - Configuração DHCP Client.	
Figura 16 - Wireshark DHCP.	14
Figura 17 - Comando ifconfig	
Figura 18 - Configuração servidor HTTP.	
Figura 19 - Servidor HTTP.	
Figura 20 - Wireshark HTTP.	
Figura 21 - Wireshark Protocolo TCP/IP	
Figura 22 - Formulário HTTP	
Figura 23 - Teste do formulário.	17
Índice de tabelas	
Tabela 1 - Endereçamento das redes.	
Tabela 2 - Endereçamento das ligações entre os routers	
Tabela 3 - Endereçamento de cada ponto da ligação	
Tabela 4 - Encaminhamento Router A	
Tabela 5 - Encaminhamento Router B	
Tabela 6 - Encaminhamento Router C	
Tabela 7 - Encaminhamento Router D.	
Tabela 8 - Encaminhamento Router E	
Tabela 9 - Encaminhamento Router R1	
Tabela 10 - Encaminhamento Router R2	11

Introdução

No âmbito da Unidade Curricular de Redes de Computadores I foi-nos proposto o desenvolvimento de um trabalho com o objetivo de promover a aquisição de competências na área de redes de computadores através de um projeto com base nas tecnologias Ethernet e TCP/IP.

Para a realização deste projeto foram necessários conhecimentos adquiridos nas aulas teóricas e teórico-práticas permitindo estes o desenvolvimento de uma rede de computadores. Para isso foram utilizadas 2 ferramentas, o CORE, um emulador de redes informáticas e o Wireshark, uma ferramenta importante para o diagnóstico do tráfego de rede.

Este trabalho está dividido em 4 fases em que a primeira passa pela construção de uma topologia de uma rede local e pela realização de testes de *ping* e *traceroute* entre esta. Na segunda fase adicionamos routers ao nosso trabalho, criando uma topologia de 5 redes locais interligadas por routers. Para isto tivemos de endereçar tudo manualmente de modo a obter eficácia em todas as conexões. Na fase 3 tivemos de implementar o protocolo DHCP numa das redes para que fosse possível a configuração dos elementos de uma rede de forma automática e dinâmica. Por último, na fase 4 instalamos na rede C o serviço HTTP de modo a que os vários *hosts* das várias redes pudessem utilizar.

De modo a sermos capazes de cumprir com os objetivos pretendidos tivemos de colocar em prática tudo o que aprendemos na unidade curricular de Redes de Computadores I.

Desenvolvimento

1. Emulação de LANs Ethernet

1.1. Elaboração da topologia da rede

Nesta primeira etapa da fase 2 é necessário a elaboração no CORE de uma pequena rede local que permita realizar o diagnóstico de conectividade, capturas e análise de tráfego. Na figura 1 encontra-se a topologia da rede local já realizada no CORE.

Figura 1 - Topologia da rede local da fase 1.

1.2. Testes de conectividade

Para testar a conectividade entre os vários sistemas terminais foi utilizado o comando *ping* como mostra a figura 2 e 3 onde testamos a conectividade entre o PC A_1 e C_1 e entre o D_2 e B_1 respetivamente.

Figura 2 - PING $A_1 \rightarrow C_1$.

O comando ping utilizado pelo nosso grupo consiste no envio de 10 tramas para o PC destino esperando pelo eco das mesmas, sendo a conexão positiva se recebe as tramas e negativa caso contrário. Em ambas as situações reparamos que todas as tramas chegaram bem ao destinatário com um atraso de aproximadamente 0.045 milissegundos.

Figura 3 - PING $D_2 \rightarrow B_1$.

1.3. Capturas de tráfego no Wireshark

Para a captura de tráfego utilizámos o PC A₂ e o PC B₂ com o auxílio do comando ping que envia tramas do PC origem(A₂) para o PC destino(B₂). Na figura 4 e 5 estão presentes os resultados obtidos no Wireshark de ambos os PC's. Esta visualização no Wireshark também permitiu observar as diferenças entre um *Hub* e um *Switch*. No caso do *Hub* envia para todos os sistemas terminais a trama que recebeu enquanto que no *Switch* é enviada uma trama em *broadcast* para todos os sistemas terminais e após receber o endereço MAC do endereço IP respetivo é enviada apenas para esse as tramas respetivas. Podemos observar isto através do protocolo ARP que consiste no envio de uma chamada que procura endereços IP através do seu endereço MAC.

No	. Time	Source	Destination	Protocol	Length Info
	29 17.407726993	fe80::200:ff:feaa:1	ff02::2	ICMPv6	70 Router Solicitation from 00:00:00:aa:00:01
	30 19.247580274	00:00:00_aa:00:07	Broadcast	ARP	42 Who has 10.0.0.21? Tell 10.0.0.27
	31 19.247626666	00:00:00_aa:00:01	00:00:00_aa:00:07	ARP	42 10.0.0.21 is at 00:00:00:aa:00:01
	32 19.247632931		10.0.0.21	ICMP	138 Echo (ping) request id=0x0011, seq=1/256, ttl
		10.0.0.21	10.0.0.27	ICMP	138 Echo (ping) reply id=0x0011, seq=1/256, ttl
		fe80::901f:faff:feb		MDNS	107 Standard query 0x0000 PTR _ippstcp.local, "Q
		fe80::200:ff:feaa:5		ICMPv6	70 Router Solicitation from 00:00:00:aa:00:05
		fe80::6f:1cff:fe1d:		MDNS	107 Standard query 0x0000 PTR _ippstcp.local, "Q
	37 20.033572810	fe80::e48a:ff:fecf:	ff02::fb	MDNS	107 Standard query 0x0000 PTR _ippstcp.local, "Q
		fe80::5c8d:22ff:fe6		MDNS	107 Standard query 0x0000 PTR _ippstcp.local, "Q
		fe80::e48a:ff:fecf:		ICMPv6	70 Router Solicitation from e6:8a:00:cf:ea:06
		fe80::78e2:4cff:fed		ICMPv6	70 Router Solicitation from 7a:e2:4c:d0:82:00
		fe80::5c8d:22ff:fe6		ICMPv6	70 Router Solicitation from 5a:a6:11:7d:ac:68
		fe80::200:ff:feaa:3		ICMPv6	70 Router Solicitation from 00:00:00:aa:00:03
		fe80::4041:45ff:fe6		ICMPv6	70 Router Solicitation from 42:41:45:6a:5c:d9
	44 20 255838746		10.0.0.21	TCMP	138 Echo (nina) request id=0x0011 sea=2/512 ttl
					interface veth6.0.f6, id 0
		:00:00_aa:00:07 (00:0	0:00:aa:00:07), Dst:	Broadcas	t (ff:ff:ff:ff:ff)
7	Address Resolution P				
	Hardware type: Eth				
	Protocol type: IP	/4 (0x0800)			
	Hardware size: 6				
	Protocol size: 4				
	Opcode: request (1	,			
		s: 00:00:00_aa:00:07 (00:00:00:aa:00:07)		
	Sender IP address:				
		s: 00:00:00_00:00:00 (00:00:00:00:00:00)		
	Target IP address:	10.0.0.21			

Figura 4 - Captura de tráfego PC A2.

No.	Time	Source	Destination	Protocol	Length Info
	27 9.119832412	fe80::ccd6:d6ff:fe4	ff02::fb	MDNS	107 Standard query 0x0000 PTR _ippstcp.local, "Q.
	28 9.281394714	fe80::8fd:8ff:fef6:	ff02::fb	MDNS	107 Standard query 0x0000 PTR _ippstcp.local, "Q.
	29 9.438737624	fe80::dc77:86ff:fe8	ff02::fb	MDNS	107 Standard query 0x0000 PTR _ippstcp.local, "Q.
	30 12.021752636	00:00:00_aa:00:07	Broadcast	ARP	42 Who has 10.0.0.21? Tell 10.0.0.27
	31 12.021766309	00:00:00_aa:00:01	00:00:00_aa:00:07	ARP	42 10.0.0.21 is at 00:00:00:aa:00:01
	32 12.021787185	10.0.0.27	10.0.0.21	ICMP	138 Echo (ping) request id=0x0011, seq=1/256, ttl
	33 12.021793212	10.0.0.21	10.0.0.27	ICMP	138 Echo (ping) reply id=0x0011, seq=1/256, ttl
	34 13.021986574	10.0.0.27	10.0.0.21	ICMP	138 Echo (ping) request id=0x0011, seq=2/512, ttl
	35 13.021999982	10.0.0.21	10.0.0.27	ICMP	138 Echo (ping) reply id=0x0011, seq=2/512, ttl
	36 14.046062668	10.0.0.27	10.0.0.21	ICMP	138 Echo (ping) request id=0x0011, seq=3/768, ttl
	37 14.046074937	10.0.0.21	10.0.0.27	ICMP	138 Echo (ping) reply id=0x0011, seq=3/768, ttl
	38 15.070678069	10.0.0.27	10.0.0.21	ICMP	138 Echo (ping) request id=0x0011, seq=4/1024, tt
	39 15.070689200	10.0.0.21	10.0.0.27	ICMP	138 Echo (ping) reply id=0x0011, seq=4/1024, tt
	40 16.094077890	10.0.0.27	10.0.0.21	ICMP	138 Echo (ping) request id=0x0011, seq=5/1280, tt
	41 16.094090033	10.0.0.21	10.0.0.27	ICMP	138 Echo (ping) reply id=0x0011, seq=5/1280, tt
	42 17 117962666		10.0.0.21	TCMP	138 Echo (nina) request id=0x0011 sea=6/1536 tt
					interface veth8.0.f6, id 0
			0:00:aa:00:07), Dst:	Broadcas	t (ff:ff:ff:ff:ff)
	iress Resolution P				
	Hardware type: Eth				
	Protocol type: IPv	4 (0x0800)			
	Hardware size: 6				
1 1	Protocol size: 4	_			
	Opcode: request (1				
		: 00:00:00_aa:00:07 (00:00:00:aa:00:07)		
	Sender IP address:				
		: 00:00:00_00:00:00 (00:00:00:00:00:00)		
	Target IP address:	10.0.0.21			

Figura 5 - Captura de tráfego PC B2.

2. Interligação de LANs e redes IP

2.1. <u>Elaboração da topologia da rede</u>

Figura 6 - Topologia da rede local da fase 2.

2.2. Atribuição dos endereços IP

Partindo do endereço IP 192.168.0.0/24 foram endereçadas as ligações entre os *routers* através de sub-redes com máscara de 30 bits. O facto de ser usado uma máscara de 30 bits é propositado uma vez que para o endereçamento da ligação são necessários apenas 4 endereços, o endereço de rede, de difusão e um endereço para cada nó da ligação. Para 4 endereços são necessários 2 bits fazendo com que os restantes 30 pertençam à sub-rede. Na figura seguinte estão presentes as denominações das ligações utilizadas entre os *routers*.

Figura 7 - Ligações entre os routers.

Na figura 8 demonstramos como chegámos ao endereçamento dos routers. Começamos por calcular a nossa máscara de rede (M = 15+4 = 19), como a máscara do nosso grupo dava 19, tínhamos 13 bits disponíveis para o endereçamento, o que correspondia quantitativamente a 8192 endereços disponíveis. Após isto calculamos o número de endereços a atribuir a cada rede indicados no canto superior esquerdo da figura 8. Finalmente realizámos o endereçamento das ligações apresentado na tabela 1.

Figura 8 - Esquema para o endereçamento das ligações entre os routers.

Tabela 1	-	Endere	camento	das	redes.
----------	---	--------	---------	-----	--------

Rede	Número de endereços	IpRede	IpDifusão	Hosts	IpRouter
Α	4093	10.7.00.0	10.7.15.255	10.7.0.1 - 10.7.15.254	10.7.00.1
B ₁	2048	10.7.16.0	10.7.23.255	10.7.16.1 - 10.7.23.254	10.7.16.1
B ₂	506	10.7.24.0	10.7.25.255	10.7.24.1 - 10.7.25.254	10.7.24.1
С	1021	10.7.28.0	10.7.31.255	10.7.28.1 - 10.7.31.254	10.7.28.1
D	253	10.7.26.0	10.7.26.255	10.7.26.1 - 10.7.26.254	10.7.26.1
E	253	10.7.27.0	10.7.27.255	10.7.27.1 - 10.7.27.254	10.7.27.1

Tabela 2 - Endereçamento das ligações entre os routers.

Ligação	IP Rede	Host	IP Difusão
A ₁ -D ₁	192.168.0.0	192.168.0.1 - 192.168.0.2	192.168.0.3
A ₂ -B ₁	192.168.0.4	192.168.0.5 - 192.168.0.6	192.168.0.7
B ₂ -C ₁	192.168.0.8	192.168.0.9 - 192.168.0.10	192.168.0.11
C ₂ -R2 ₃	192.168.0.12	192.168.0.13 - 192.168.0.14	192.168.0.15
R2 ₁ -R1 ₂	192.168.0.16	192.168.0.17 - 192.168.0.18	192.168.0.19
R2 ₂ -E ₂	192.168.0.20	192.168.0.21 - 192.168.0.22	192.168.0.23
R1 ₁ -D ₂	192.168.0.24	192.168.0.25 - 192.168.0.26	192.168.0.27
D ₃ -E ₁	192.168.0.28	192.168.0.29 - 192.168.0.30	192.168.0.31

Na tabela 2 está presente o endereçamento das ligações entre os routers, onde partimos do endereço IP 192.168.0.0 com máscara 255.255.255.255.252(/30) e preenchemos as ligações tendo em conta que precisávamos de um endereço de rede, um de difusão e 2 para a gama.

Na tabela 3 efetuamos o endereçamento de cada ponto da ligação entre os routers. Para isto utilizamos ambos os endereços da gama onde o primeiro corresponde à saída da ligação e o segundo à entrada no router destino.

Tabela 3 - Endereçamento de cada ponto da ligação.

Ligação	IP
A ₁	192.168.0.1
A_2	192.168.0.5
B ₁	192.168.0.6
B ₂	192.168.0.9
C_1	192.168.0.10
C_2	192.168.0.13
D_1	192.168.0.2
D_2	192.168.0.26
D ₃	192.168.0.29
E ₁	192.168.0.30
E ₂	192.168.0.22
R1 ₁	192.168.0.25
R1 ₂	192.168.0.18
R2 ₁	192.168.0.17
R2 ₂	192.168.0.21
R2 ₃	192.168.0.14

2.3. <u>Tabelas de encaminhamento</u>

Feito o endereçamento dos routers efetuamos as tabelas de encaminhamento de modo a que fosse possível a comunicação entre os routers e os *hosts*. Nas tabelas seguintes são apresentadas estas tabelas para todos os *routers*.

Tabela 4 - Encaminhamento Router A.

ROUTER A				
	Tabela d	e encamin	hamento	
REDE	Rede Destino	Máscara	Interface Saída	Próximo Nó
Α	10.7.00.0	/20	10.7.00.1	Direto
B1	10.7.16.0	/21	192.168.0.5	192.168.0.6
B2	10.7.24.0	/23	192.168.0.5	192.168.0.6
С	10.7.28.0	/22	192.168.0.5	192.168.0.6
D	10.7.26.0	/24	192.168.0.1	192.168.0.2
E	10.7.27.0	/24	192.168.0.1	192.168.0.2

Tabela 5 - Encaminhamento Router B.

ROUTER B				
	Tabela d	e encamin	hamento	
REDE	Rede Destino	Máscara	Interface Saída	Próximo Nó
Α	10.7.00.0	/20	192.168.0.6	192.168.0.5
B1	10.7.16.0	/21	10.7.16.1	Direto
B2	10.7.24.0	/23	10.7.24.1	Direto
С	10.7.28.0	/22	192.168.0.9	192.168.0.10
D	10.7.26.0	/24	192.168.0.6	192.168.0.5
Е	10.7.27.0	/24	192.168.0.9	192.168.0.10

Tabela 6 - Encaminhamento Router C.

ROUTER C				
	Tabela d	e encamin	hamento	
REDE	Rede Destino	Máscara	Interface Saída	Próximo Nó
Α	10.7.00.0	/20	192.168.0.10	192.168.0.9
B1	10.7.16.0	/21	192.168.0.10	192.168.0.9
B2	10.7.24.0	/23	192.168.0.10	192.168.0.9
С	10.7.28.0	/22	10.7.28.1	Direto
D	10.7.26.0	/24	192.168.0.13	192.168.0.14
Е	10.7.27.0	/24	192.168.0.13	192.168.0.14

Tabela 7 - Encaminhamento Router D.

ROUTER D				
	Tabela d	e encamin	hamento	
REDE	Rede Destino	Máscara	Interface Saída	Próximo Nó
Α	10.7.00.0	/20	192.168.0.2	192.168.0.1
B1	10.7.16.0	/21	192.168.0.2	192.168.0.1
B2	10.7.24.0	/23	192.168.0.2	192.168.0.1
С	10.7.28.0	/22	192.168.0.26	192.168.0.25
D	10.7.26.0	/24	10.7.26.1	Direto
Е	10.7.27.0	/24	192.168.0.29	192.168.0.30

Tabela 8 - Encaminhamento Router E.

ROUTER E				
	Tabela d			
REDE	Rede Destino	Máscara	Interface Saída	Próximo Nó
Α	10.7.00.0	/20	192.168.0.30	192.168.0.29
B1	10.7.16.0	/21	192.168.0.22	192.168.0.21
B2	10.7.24.0	/23	192.168.0.22	192.168.0.21
С	10.7.28.0	/22	192.168.0.22	192.168.0.21
D	10.7.26.0	/24	192.168.0.30	192.168.0.29
Е	10.7.27.0	/24	10.7.27.1	Direto

Tabela 9 - Encaminhamento Router R1.

ROUTER R1				
	Tabela d			
REDE	Rede Destino	Máscara	Interface Saída	Próximo Nó
Α	10.7.00.0	/20	192.168.0.25	192.168.0.26
B1	10.7.16.0	/21	192.168.0.25	192.168.0.26
B2	10.7.24.0	/23	192.168.0.25	192.168.0.26
С	10.7.28.0	/22	192.168.0.18	192.168.0.17
D	10.7.26.0	/24	192.168.0.25	192.168.0.26
Е	10.7.27.0	/24	192.168.0.18	192.168.0.17

Tabela 10 - Encaminhamento Router R2.

ROUTER R2				
	Tabela d			
REDE	Rede Destino	Máscara	Interface Saída	Próximo Nó
Α	10.7.00.0	/20	192.168.0.17	192.168.0.18
B1	10.7.16.0	/21	192.168.0.14	192.168.0.13
B2	10.7.24.0	/23	192.168.0.14	192.168.0.13
С	10.7.28.0	/22	192.168.0.14	192.168.0.13
D	10.7.26.0	/24	192.168.0.17	192.168.0.18
Е	10.7.27.0	/24	192.168.0.21	192.168.0.22

2.4. Encaminhamento estático

Após a realização das tabelas descritas anteriormente tivemos de configurar o serviço *zebra* do CORE de modo a efetuar um encaminhamento estático, ou seja, colocar manualmente os caminhos dos *routers*. Nas figuras seguintes apresentamos a configuração *zebra* do router A e do router B como demonstração de exemplo. Através da observação da figura 9 vemos que a interface *eth0* contém 2 endereços, isto deve-se ao facto de a nossa rede B ter 2 sub-redes devido ao seu endereçamento.

Router A interface eth0 ip address 10.7.0.1/20 ! interface eth1 ip address 192.168.0.5/30 ! interface eth2 ip address 192.168.0.1/30 ! ip route 10.7.16.0/21 192.168.0.6 ip route 10.7.24.0/23 192.168.0.6 ip route 10.7.28.0/22 192.168.0.6 ip route 10.7.28.0/24 192.168.0.2 ip route 10.7.27.0/24 192.168.0.2

Figura 10 - Configuração zebra Router A.

Router B

```
interface eth0
   ip address 10.7.16.1/21
   ip address 10.7.24.1/23
!
interface eth1
   ip address 192.168.0.6/30
!
interface eth2
   ip address 192.168.0.9/30
!
ip route 10.7.00.0/20 192.168.0.5
ip route 10.7.28.0/22 192.168.0.10
ip route 10.7.26.0/24 192.168.0.5
ip route 10.7.27.0/24 192.168.0.10
```

Figura 9 - Configuração zebra Router B.

Após alterarmos manualmente as rotas necessárias para garantir a conectividade IPV4 entre todas as redes, realizamos testes de *ping* e *traceroute* para garantir que tudo estava a funcionar corretamente. Como demonstração, nas figuras seguintes apresentamos os testes feitos entre o PC B2i e o PC E1 da figura 6.

Figura 11 - Teste ping entre B2i e E1.

Figura 12 - Teste traceroute entre B2i e E1.

3. DHCP – Dynamic Host Configuration Protocol

3.1. Configuração do Protocolo DHCP

Nesta fase utilizamos o protocolo DHCP na rede B da nossa topologia de modo a observar o seu funcionamento e a forma como o endereçamento é realizado. Através deste protocolo é possível uma configuração automática e dinâmica dos elementos de uma rede. Para que isto fosse possível tivemos de adicionar um *host* que tratava do endereçamento através do protocolo DHCP. Na figura seguinte apresentamos a nova topologia da rede B onde tanto para a sub-rede B1 e B2 adicionamos um servidor, *serverB1* para a sub-rede B1 e *serverB2* para B2.

Figura 13 - Nova topologia da rede B.

De seguida passamos à configuração de todos os *hosts* removendo os IPs dos que iam ser *clients* e configurando os que iam servir como *servers*, na figura 15 está o exemplo do *serverB1*. Para os *clients* também tivemos de habilitar o DHCP *Client* a partir do CORE (Figura 14).

Figura 14 - Configuração DHCP server.

Figura 15 - Configuração DHCP Client.

3.2. Testes DHCP

Depois de feita a configuração do DHCP em todos os elementos da rede B abrimos o Wireshark de modo a observar o funcionamento do protocolo. Na figura 16 apresentamos o resultado. Desta figura retiramos que foi realizado a correta configuração de todos os elementos visto que o protocolo está a funcionar como era suposto. Este começa por enviar um DHCP *Discover* [1] do cliente para o servidor, que responde com um DHCP *Offer* [2]. Após esta troca, o cliente pede um endereço IP ao servidor através do DHCP *Request* [3] que responde com um DHCP *ACK* [4] em que o servidor envia o endereço IP ao cliente.

Figura 16 - Wireshark DHCP.

Após feita a observação no Wireshark utilizamos o comando *ifconfig* para observar os IPs atribuídos aos PCs. Na figura 17 estão presentes as janelas obtidas onde conseguimos ver que foi atribuído ao PC B2i o endereço IP 10.7.24.2 e ao PC B2ii o endereço 10.7.24.3.

```
Terminal

Termin
```

Figura 17 - Comando ifconfig.

4. Uso das camadas de rede e transporte pelas aplicações

4.1. <u>Ativação do servidor HTTP num PC da rede C</u>

Nesta fase começamos por ativar um servidor HTTP no PC C1 configurando-o como mostrado na figura 18. Após isso realizamos o teste para ver se estava tudo a funcionar corretamente através do comando *wget* (Figura 19). Para isto utilizamos o PC E1 para enviar e o PC C1, cujo servidor tinha sido configurado previamente, para receber.

Figura 18 - Configuração servidor HTTP.

```
oot@E1:/tmp/pycore.40353/E1.conf# wget -S 10.7.28.2
 -2021-01-14 23:42:59-- http://10.7.28.2/
Connecting to 10.7.28.2:80... connected.
HTTP request sent, awaiting response...
 HTTP/1.1 200 OK
  Date: Thu, 14 Jan 2021 23:42:59 GMT
 Server: Apache/2.4.41 (Ubuntu)
Last-Modified: Thu, 14 Jan 2021 23:42:42 GMT
  ETag: "102-5b8e4cfdbc9a0"
  Accept-Ranges: bytes
  Content-Length: 258
 Keep-Alive: timeout=5, max=100
Connection: Keep-Alive
 ength: 258
Saving to: 'index.html'
index.html
                     100%[==========]
                                                       258 --.-KB/s
                                                                          in 0s
2021-01-14 23:42:59 (48,6 MB/s) - 'index.html' saved [258/258]
root@E1:/tmp/pycore.40353/E1.conf# 🗌
```

Figura 19 - Servidor HTTP.

4.2. Testes

Após ter sido feito o teste para ver se estava tudo a correr como desejado decidimos passar para o Wireshark de modo a observar a captura de tráfego no PC C1. Na figura 20 visualizamos essa mesma captura onde conseguimos visualizar 2 linhas relativas ao HTTP, em que a primeira corresponde ao envio de um pedido HTTP pelo host origem e a segunda a sua devida resposta pelo host destino. Na figura 21 temos a observação da conexão TCP.

Figura 20 - Wireshark HTTP.

Figura 21 - Wireshark Protocolo TCP/IP.

4.3. Formulário HTTP

Nesta fase opcional do projeto tivemos de criar um formulário http (Figura 22) e adicionamos ao servidor de modo a que todos os *hosts* pudessem aceder a este. Após isso realizamos testes através de vários sistemas terminais, no entanto sem sucesso visto que o *host* recebia um formulário, mas não o que nós tínhamos criado, recebia sim um formulário *default* como observado na figura 23.

Figura 22 - Formulário HTTP.

Figura 23 - Teste do formulário.

Conclusão

Com a realização deste trabalho ficamos a conhecer novas ferramentas de simulação de redes como o CORE bem como na análise e captura de tráfego entre sistemas como o Wireshark. Este trabalho serviu também para um estudo mais aprofundado através de exemplos práticos do endereçamento de redes e da utilização de protocolos como o TCP e IP, o DHCP e o ARP.

Pensamos ter sido bem-sucedidos na elaboração do trabalho, no entanto em relação à sua parte opcional, a parte da criação do formulário HTTP tivemos bastantes questões e não conseguimos executar nem cumprir na totalidade com o que era desejado.