Musterlösungen Testate Mathematik

Daniel Winz, Ervin Mazlagic, Adrian Imboden

6. Dezember 2012

Über diese Arbeit

Dies ist das Ergebnis einer Zusammenarbeit auf Basis freier Texte erstellt von Studierenden der Fachhochschule Luzern.

Dieses Schriftstück ist lizenziert unter der GPLv2 und der T_EX - bzw. LAT $_EX$ -Code ist auf github.com/daniw/fosamath hinterlegt.

Inhaltsverzeichnis

1	Test	tat 1 - Vektorgeometrie	7
2	Test	tat 2 - Folgen und Reihen	9
3	Test	tat 3 - Differenzialrechnung	11
	3.1	Polynomfunktion	12
	3.2	Kettenlinie	12
	3.3	Maximale Fläche	14
	3.4	Statue	16
	3.5	Implizites Ableiten	17
4	Testat 4 - Integralrechnung		
	4.1	Stammfunktion	20
	4.2	Autofahrt	20
	4.3	Schwimmbecken	20
	4.4	Fläche durch Tangente	20
	4.5	Eingeschlossener Flächeninhalt	21
	4.6	Horizontale Linie	21
	4.7	Vase	22
	4.8	Zykloide	23
	49	Fahrzeug	23

Testat 1 - Vektorgeometrie

Testat 2 - Folgen und Reihen

Testat 3 -Differenzialrechnung

3.1 Polynomfunktion

Punkt mit lokalem Extremwert: (e, g)Punkt mit Wendepunkt: (h, i)

$$f(x) = a \cdot x^3 + b \cdot x^2 + c \cdot x + d$$

$$f'(x) = 3 \cdot a \cdot x^2 + 2 \cdot b \cdot x + c$$

$$f''(x) = 6 \cdot a \cdot x + 2 \cdot b$$

$$f'''(x) = 6 \cdot a$$

$$f(e) = g$$

$$f'(e) = 0$$

$$f''(e) \neq 0$$

$$f(h) = i$$

$$f''(h) = 0$$

$$f'''(h) \neq 0$$

Solve mit TR:

solve
$$\begin{pmatrix} a \cdot e^{3} + b \cdot e^{2} + c \cdot e + d = g \\ 3 \cdot a \cdot e^{2} + 2 \cdot b \cdot e + c = 0 \\ 6 \cdot a \cdot e + 2 \cdot b \neq 0 \\ a \cdot h^{3} + b \cdot h^{2} + c \cdot h + d = i \\ 6 \cdot a \cdot x + 2 \cdot b \\ 6 \cdot a \neq 0 \end{pmatrix}$$

$$f(x) = a \cdot x^3 + b \cdot x^2 + c \cdot x + d$$

3.2 Kettenlinie

Aufgabenstellung:

$$y(x) = a \cdot \cosh\left(\frac{x}{c}\right) + b$$

a)
$$h = H - y(x) = y(\ell) - y(x)$$

$$h = a \cosh\left(\frac{\ell}{c}\right) + b - \left(a \cosh\left(\frac{x}{c}\right) + b\right)$$

$$h = a \cdot \cosh\left(\frac{\ell}{c}\right) - a \cdot \frac{\cosh\left(\frac{x}{c}\right)}{1}$$

$$\to x = 0$$

$$\Rightarrow h_{max} = a \cdot \cosh\left(\frac{\ell}{c}\right) - a$$

3.2. KETTENLINIE

13

$$h(\ell) = a \cosh\left(\frac{\ell}{c}\right) - a$$

b)

$$h(\ell_1) = a \cdot \cosh\left(\frac{\ell}{c}\right) - a$$

$$\cosh\left(\frac{\ell}{c}\right) = \frac{h(\ell_1 + a)}{a}$$

$$\Rightarrow \underbrace{\operatorname{arccosh}\left(\frac{h(\ell_1 + a)}{a}\right) \cdot a}_{}$$

c)

$$m(\ell) = h'(\ell) = \sinh\left(\frac{\ell}{c}\right)$$

$$m(\ell) = \tan(\beta)$$

$$\Rightarrow \alpha = \frac{\pi}{2} - \beta = \frac{\pi}{2} - \arctan(m(\ell)) = \frac{\pi}{2} - \arctan\left(\sinh\left(\frac{\ell}{c}\right)\right)$$

3.3 Maximale Fläche

Aufgabenstellung:

$$a \cdot x^2 + b \cdot y^2 = c$$

Lösung:

$$A = 4 \cdot A_1$$

$$A_1 = x \cdot f(x)$$

$$\Rightarrow A = 4 \cdot x \cdot f(x)$$

$$c = a \cdot x^2 + b \cdot y^2$$

$$\Rightarrow y = \left(\frac{c - a \cdot x^2}{b}\right)^{\frac{1}{2}}$$

$$A = 4 \cdot x \cdot \left(\frac{c - a \cdot x^2}{b}\right)^{\frac{1}{2}}$$

Wo ist A_1 maximal?

 \rightarrow Dort wo die Ableitung 0 ergibt.

$$A' \stackrel{!}{=} 0$$

$$A' = 4\left(\frac{c-a\cdot x^2}{b}\right)^{\frac{1}{2}} + 4\cdot x\left(\frac{1}{2}\cdot \left(\frac{c-a\cdot x^2}{b}\right)^{-\frac{1}{2}}\cdot \left(\frac{-2\cdot a\cdot x}{b}\right)\right) = 0$$

$$A' = \left(\frac{c - a \cdot x^2}{b}\right)^{\frac{1}{2}} + x \cdot \left(\frac{1 \cdot \left(\frac{-2ax}{b}\right)}{2 \cdot \left(\frac{c - ax^2}{b}\right)^{\frac{1}{2}}}\right) = 0 \quad \left| \text{mit } \left(\frac{c - ax^2}{b}\right)^{\frac{1}{2}} \right| \text{ erweitern}$$

$$A' = \frac{c - ax^2}{b} + x \cdot \frac{-ax}{b} = 0$$

$$A' = c - ax^{2} - ax^{2} = c - 2(ax^{2}) = 0$$

$$c = 2\left(ax^2\right)$$

$$x = \pm \sqrt{\frac{c}{2a}}$$

 \rightarrow Weil die Fläche nur positiv sein kann, gilt nur $x \leq 0$

$$\Rightarrow A = 4x \cdot f(x) = 4x \left(\frac{c - ax^2}{b}\right)^{\frac{1}{2}}$$

$$A = 4\sqrt{\frac{c}{2a}} \left(\frac{c - a\sqrt{\frac{c}{2a}}^2}{b}\right)^{\frac{1}{2}}$$

$$A = 4\sqrt{\frac{c}{2a} \left(\frac{c - a\frac{c}{2a}}{b}\right)}$$

$$\underline{A=2\sqrt{\frac{c^2}{ab}}=\frac{2c}{\sqrt{ab}}}$$

3.4 Statue

Aufgabenstellung:

b =Erde zu Statuenfuss

a =Satuenfuss zu Statuenkopf

 $d={\rm Statue}$ zu Betrachter

 $\alpha = \mbox{Winkel}$ von Statuenkopf zu Statuenfuss

Wo ist der Winkel α maximal? Dort wo die Ableitung der Funktion $\alpha(d)$ Null ergibt also $\alpha'(d)=0$ ist. Um dies zu bestimmen muss α definiert werden. Da dies auf Anhieb nicht möglich ist, kann man sich folgende Überlegung machen:

 $\beta = \text{Winkel Betrachter zu Statuenboden}$

 $\gamma = \text{Winkel Betrachter zu Statuenkopf}$

 $\Rightarrow \gamma = \alpha + \beta$

3.5. IMPLIZITES ABLEITEN

17

$$tan(\gamma) = tan(\alpha + \beta) = \left(\frac{a+b}{d}\right)$$

 $\Rightarrow \alpha + \beta = arctan\left(\frac{a+b}{d}\right)$

Nun haben wir eine neue Unbekannte β . Diese muss eliminiert bzw. substituiert werden durch etwas bekanntes oder gesuchtes.

$$\tan(\beta) = \left(\frac{b}{d}\right) \to \beta = \arctan\left(\frac{b}{d}\right)$$

$$\Rightarrow \alpha = \arctan\left(\frac{a+b}{d}\right) - \beta = \arctan\left(\frac{a+b}{d}\right) - \arctan\left(\frac{b}{d}\right)$$

$$\alpha' \stackrel{!}{=} 0 \to \alpha' = \frac{-(a+b)}{d^2 + (a+b)^2} + \frac{b}{d^2 + b^2} = 0$$

$$\Rightarrow d = \sqrt{ab+b^2}$$

3.5 Implizites Ableiten

$$x^3 + y^3 - a \cdot x \cdot y = 0$$

a)

x und y in gegebene Formel einsetzen. Diese muss 0 werden, damit der entsprechende Punkt auf der Kurve liegt. b)

$$x^{3} + y^{3} - axy = 0$$

 $y = y(x)$ y mit $y(x)$ substituieren
 $\rightarrow x^{3} + y(x)^{3} - axy(x) = 0$

Ableiten mit Kettenregel. y(x) ist jeweils die innere Ableitung.

$$\frac{dy}{dx} = 3x^2 + 3y(x)^2 \cdot y'(x) - a(y(x) + x \cdot y'(x)) = 0$$

$$3x^2 + 3y(x)^2 \cdot y'(x) - a \cdot y(x) - a \cdot x \cdot y'(x) = 0$$

$$3y(x)^2 \cdot y'(x) - a \cdot x \cdot y'(x) = -3x^2 + a \cdot y(x) \quad |-3x^2 + a \cdot y(x)|$$

$$y'(x) \cdot (3y(x)^2 \cdot -a \cdot x) = a \cdot y(x) - 3x^2 \quad |y'(x)| \text{ ausklammern}$$

$$y'(x) = \frac{a \cdot y(x) - 3x^2}{3y(x)^2 \cdot -a \cdot x} \quad |: 3y(x)^2 \cdot -a \cdot x|$$

$$y' = \frac{a \cdot y - 3x^2}{3y^2 \cdot -a \cdot x} \quad |y(x) = y$$

$$T(x) = f'(x) \cdot (x - x_0) - f(x_0)$$

$$T(x) = \frac{a \cdot y_0 - 3x_0^2}{3y_0^2 \cdot -a \cdot x_0} \cdot (x - x_0) - (x_0^3 + y_0^3 - a \cdot x_0 \cdot y_0)$$

 \boldsymbol{x}_0 und \boldsymbol{y}_0 aus Aufgabenstellung einsetzen.

Achtung! Fehler in Lösung. Wenn du den Fehler findest: Mail an: daniw

$$f'(0) = 0$$

$$\Rightarrow \frac{a \cdot y - 3x^2}{3y^2 \cdot -a \cdot x} = 0$$

$$x^3 + y^3 - a \cdot x \cdot y = 0$$

2 Gleichungen, 2 Unbekannte: Solve mit TR.

$$\Rightarrow x = a \cdot \frac{\sqrt[3]{2}}{3}$$
$$\Rightarrow y = a \cdot \frac{\sqrt[3]{2^2}}{3}$$

Testat 4 - Integralrechnung

4.1 Stammfunktion

a)

x < 0: Steigung negativ

x = 0: Steigung null

x < 0 Steigung positiv

b)

 e^x ist abgeleitet sich selbst. e^{-x} ist abgeleitet $-e^{-x}$.

4.2 Autofahrt

$$v(t) = at^3 - bt^2 + ct$$

$$s(t) = \int (v(t))dt = \frac{at^4}{4} - \frac{bt^3}{3} + \frac{ct^2}{2}$$

4.3 Schwimmbecken

4.4 Fläche durch Tangente

$$f(x) = x^3 + x^2$$

$$f'(x) = 3x^2 + 2x$$

$$T(x) = f'(x_0)(x - x_0) + f(x_0)$$

$$T(x) = (3x_0^3 + 2x_0)(x - x_0) + x_0^3 + x_0^2$$

$$T(x) = 3xx_0^2 - 3x_0^3 + 2xx_0 - 2x_0^2 + x_0^3 + x_0^2$$

$$T(x) = 3xx_0^2 - 2x_0^3 + 2xx_0 - x_0^2$$

$$T(x) = x(3x_0^2 + 2x_0) - (2x_0^3 + x_0^2)$$

$$T(x) = 0$$

$$x_1 = \frac{2x_0^3 + x_0^2}{3x_0^2 + 2x_0}$$

$$A = A_{Gesamt} - A_{\Delta}$$

$$A_{\Delta} = \frac{(x_0 - x_1) \cdot f(x_0)}{2} = \frac{(x_0 - x_1) \cdot (x_0^3 + x_0^2)}{2}$$

$$A_{Gesamt} = \int_0^{x_0} (x^3 + x^2) dx = \frac{x^4}{4} + \frac{x^3}{3} \Big|_0^{x_0} = \frac{x_0^4}{a} + \frac{x_0^3}{3}$$

$$A = A_{Gesamt} - A_{\Delta} = \frac{{x_0}^4}{\frac{4}{3}} + \frac{{x_0}^3}{\frac{3}{3}} - \frac{(x_0 - x_1) \cdot (x_0^3 + {x_0}^2)}{\frac{2}{3}} = -\frac{{x_0}^4}{4} + \frac{5{x_0}^3}{6} - \frac{x_1({x_0}^3 + {x_0}^2)}{2}$$

4.5 Eingeschlossener Flächeninhalt

Aufgabenstellung:

$$f(x) = ax^{2} - bax$$
$$g(x) = ax$$
$$a < 0$$

Lösung:

$$f(x_0) = g(x_0) \quad x_0 \neq 0$$

$$ax_0^2 - bax_0 = ax_0$$

$$ax_0^2 - (b+1)ax_0 = 0$$

$$x_{0_{1,2}} = \frac{(b+1)a \pm \sqrt{(b+1)^2 a^2}}{2a} = \frac{b+1)a \pm (b+1)a}{2a} = \frac{(b+1) \pm (b+1)}{2}$$

$$x_{0_1} = \frac{2(b+1)}{2} = b+1$$

$$x_{0_2} = \frac{0}{2} = 0 \quad \Rightarrow \text{ keine L\"osung}$$

$$F(x) = \int_0^{x_0} (ax^2 - (b+1)ax) dx = \frac{ax^3}{3} - \frac{b(a+1)x^2}{2} \Big|_0^{x_0} = \frac{ax_0^3}{3} - \frac{(b+1)ax_0^2}{2}$$

$$= \frac{a(b+1)^3}{3} - \frac{a(b+1)^3}{2} = \frac{2a(b+1)^3}{6} - \frac{3a(b+1)^3}{6} = -\frac{a(b+1)^3}{6}$$

$$\Rightarrow \underline{a} = -\frac{6F}{(b+1)^3}$$

4.6 Horizontale Linie

$$f(x) = x^{2}$$

$$g(x) = y_{0}$$

$$f^{-1}(y) = \sqrt{y}$$

$$F_{1} = \int_{y_{1}}^{y_{0}} f^{-1}(y) dy = \int_{y_{1}}^{y_{0}} (\sqrt{y}) dy = \frac{2}{3} y^{\frac{3}{2}} \Big|_{y_{1}}^{y_{0}} = \frac{2}{3} y_{0}^{\frac{3}{2}} - \frac{2}{3} y_{1}^{\frac{3}{2}}$$

$$F_{2} = \int_{0}^{y_{1}} f^{-1}(y) dy = \int_{0}^{y_{1}} (\sqrt{y}) dy = \frac{2}{3} y^{\frac{3}{2}} \Big|_{0}^{y_{1}} = \frac{2}{3} y_{1}^{\frac{3}{2}}$$

$$F_{1} = F_{2}$$

$$\frac{2}{3} y_{0}^{\frac{3}{2}} - \frac{2}{3} y_{1}^{\frac{3}{2}} = \frac{2}{3} y_{1}^{\frac{3}{2}}$$

$$\frac{2}{3} y_{0}^{\frac{3}{2}} = \frac{4}{3} y_{1}^{\frac{3}{2}}$$

$$y_{0}^{\frac{3}{2}} = 2 \cdot y_{1}^{\frac{3}{2}}$$

$$y_{1} = \frac{y_{0}}{2^{\frac{3}{2}}} \approx \frac{y_{0}}{1.5874}$$

4.7 Vase

$$f(x) = \sqrt{x + a}$$

$$g(x) = \sqrt{x - b}$$

$$V(x) = \pi \int_{0}^{h} f(x)^{2} dx - \pi \int_{b}^{h} g(x)^{2} dx = \pi \left(\int_{0}^{h} (x + a) dx - \int_{b}^{h} (x - b) dx \right)$$
a)
$$V(x) = \pi \left(\frac{h^{2}}{2} + ah \Big|_{0}^{h} - \left(\frac{x^{2}}{2} - bx \Big|_{b}^{h} \right) \right) = \pi \left(\frac{h^{2}}{2} + ah - \left(\frac{h^{2}}{2} - bh - \frac{b^{2}}{b} + b^{2} \right) \right)$$

$$= \pi \left(\frac{h^{2}}{2} + ah - \frac{h^{2}}{2} + bh + \frac{b^{2}}{2} - b^{2} \right) = \pi \left(ah + bh + \frac{b^{2}}{2} - b^{2} \right)$$

$$V(x) = \pi \left(ah + bh - b^{2} \right)$$

$$\Rightarrow m = V \cdot \rho = \pi \cdot \rho \cdot \left(ah + bh - \frac{b^{2}}{2} \right)$$
b)
$$A_{M_{x}} = 2\pi \int_{0}^{h} f(x) \sqrt{1 + f'(x)^{2}} dx$$

$$A_{M_{x}} = 2\pi \int_{0}^{h} \sqrt{x + a} \cdot \sqrt{1 + \left(\frac{1}{2\sqrt{x + a}} \right)^{2}} dx$$

$$A_{M_{x}} = 2\pi \int_{0}^{h} \sqrt{x + a} \cdot \left(1 + \frac{1}{4(x + a)} \right) dx$$

$$A_{M_{x}} = 2\pi \int_{0}^{h} \sqrt{x + a + \frac{1}{4}} dx$$

$$A_{M_{x}} = 2\pi \int_{0}^{h} \frac{1}{2} \sqrt{4x + 4a + 1} dx$$

$$A_{M_{x}} = 2\pi \int_{0}^{h} \frac{1}{2} \sqrt{4x + 4a + 1} dx$$

$$A_{M_{x}} = 2\pi \int_{0}^{h} \frac{1}{2} \sqrt{4x + 4a + 1} dx$$

$$A_{M_{x}} = \frac{1}{6}\pi \left((4h + 4a + 1)^{\frac{3}{2}} \right) \left(\frac{1}{4} \right)^{\frac{h}{2}}$$

$$A_{H_{x}} = \frac{1}{6}\pi \left((4h + 4a + 1)^{\frac{3}{2}} - (4a + 1)^{\frac{3}{2}} \right)$$

$$A_{B} = f(0)^{2} \cdot \pi = a\pi$$

$$A_{D} = f(h)^{2} \cdot \pi - g(h)^{2} \cdot \pi = \pi \left(f(h)^{2} - g(h)^{2} \right) = \pi \left(h + a - h + b \right) = \pi \left(a + b \right)$$

$$A = A_{M_{x}} + A_{B} + A_{D} = \frac{1}{6}\pi \left((4h + 4a + 1)^{\frac{3}{2}} - (4a + 1)^{\frac{3}{2}} \right) + a\pi + \pi \left(a + b \right)$$

$$A = A_{M_{x}} + A_{B} + A_{D} = \pi \left(\frac{1}{6} \left((4h + 4a + 1)^{\frac{3}{2}} - (4a + 1)^{\frac{3}{2}} \right) + a + (a + b) \right)$$

$$A = A_{M_{x}} + A_{B} + A_{D} = \pi \left(\frac{1}{6} \left((4h + 4a + 1)^{\frac{3}{2}} - (4a + 1)^{\frac{3}{2}} \right) + a + (a + b) \right)$$

$$A = A_{M_{x}} + A_{B} + A_{D} = \pi \left(\frac{1}{6} \left((4h + 4a + 1)^{\frac{3}{2}} - (4a + 1)^{\frac{3}{2}} \right) + 2a + b \right)$$

4.8. ZYKLOIDE 23

- 4.8 Zykloide
- 4.9 Fahrzeug