US Patent & Trademark Office Patent Public Search | Text View

United States Patent Application Publication

Kind Code

August 07, 2025

Inventor(s)

20250255190

August 07, 2025

PENG; Tai-Yen et al.

INTEGRATED CIRCUIT

Abstract

An integrated circuit structure includes an interlayer dielectric (ILD) layer, first and second metal structures, first and second bottom electrode vias, first and second resistance switching structures, and a dielectric layer. The first and second metal structures are embedded in the ILD layer. The first and second bottom electrode vias are over the first and second metal structures, respectively. The first and second resistance switching structures are over the first and second bottom electrode vias, respectively. The dielectric layer laterally surrounds the first bottom electrode via and the second bottom electrode via. The dielectric layer has a stepped surface profile extending between the first bottom electrode via and the second bottom electrode via.

Inventors: PENG; Tai-Yen (Hsinchu City, TW), HUANG; Chien-Chung (Taichung City,

TW), CHEN; Yu-Shu (Hsinchu City, TW), YANG; Sin-Yi (Taichung City, TW), WANG; Chen-Jung (Hsinchu, TW), LIN; Han-Ting (Hsinchu, TW), TING; Chih-Yuan (Taipei City, TW), SHIEH; Jyu-Horng (Hsinchu City, TW), WEI;

Hui-Hsien (Taoyuan City, TW)

Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD. (Hsinchu, TW)

Family ID: 69946236

Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD. (Hsinchu, TW)

Appl. No.: 19/189710

Filed: April 25, 2025

Related U.S. Application Data

parent US continuation 18361373 20230728 parent-grant-document US 12317751 child US 19189710

parent US continuation 17688370 20220307 parent-grant-document US 11800812 child US 18361373

parent US division 16866114 20200504 parent-grant-document US 11271150 child US 17688370

parent US division 16194124 20181116 parent-grant-document US 10651373 child US 16866114 us-provisional-application US 62737928 20180928

Publication Classification

Int. Cl.: H10N50/01 (20230101); H10B61/00 (20230101); H10N50/80 (20230101)

U.S. Cl.:

CPC **H10N50/01** (20230201); **H10B61/10** (20230201); **H10B61/22** (20230201); H10B61/00

(20230201); H10N50/80 (20230201)

Background/Summary

PRIORITY CLAIM AND CROSS-REFERENCE [0001] This application is a continuation of U.S. patent application Ser. No. 18/361,373, filed Jul. 28, 2023, which is a continuation of U.S. patent application Ser. No. 17/688,370, filed Mar. 7, 2022, now U.S. Pat. No. 11,800,812, issued Oct. 24, 2023, which is a divisional application of U.S. patent application Ser. No. 16/866,114, filed May 4, 2020, now U.S. Pat. No. 11,271,150, issued Mar. 8, 2022, which is a divisional application of U.S. patent application Ser. No. 16/194,124, filed Nov. 16, 2018, now U.S. Pat. No. 10,651,373, issued May 12, 2020, which claims priority to U.S. Provisional Application Ser. No. 62/737,928, filed Sep. 28, 2018, all of which are herein incorporated by reference in their entireties.

BACKGROUND

[0002] Semiconductor memories are used in integrated circuits for electronic applications, including radios, televisions, cell phones, and personal computing devices, as examples. One type of semiconductor memory device involves spin electronics, which combines semiconductor technology and magnetic materials and devices. The spins of electrons, through their magnetic moments, rather than the charge of the electrons, are used to indicate a bit.

[0003] One such spin electronic device is magnetoresistive random access memory (MRAM) array, which includes conductive lines (word lines and bit lines) positioned in different directions, e.g., perpendicular to each other in different metal layers. The conductive lines sandwich a magnetic

Description

BRIEF DESCRIPTION OF THE DRAWINGS

tunnel junction (MTJ), which functions as a magnetic memory cell.

[0004] Aspects of the present disclosure are best understood from the following detailed description when read with the accompanying figures. It is noted that, in accordance with the standard practice in the industry, various features are not drawn to scale. In fact, the dimensions of the various features may be arbitrarily increased or reduced for clarity of discussion.

[0005] FIGS. **1**A-**1**K are cross-sectional views of an integrated circuit at various intermediate stages of manufacture according to various embodiments of the present disclosure.

[0006] FIG. **2** is a cross-sectional view of an integrated circuit according to various embodiments of the present disclosure.

[0007] FIGS. **3**A-**3**G are cross-sectional views of an integrated circuit at various intermediate stages of manufacture according to various embodiments of the present disclosure.

[0008] FIG. **4** is a cross-sectional view of an integrated circuit according to various embodiments of the present disclosure.

- [0009] FIGS. **5**A-**5**H are cross-sectional views of an integrated circuit at various intermediate stages of manufacture according to various embodiments of the present disclosure.
- [0010] FIG. **6** is a cross-sectional view of an integrated circuit according to various embodiments of the present disclosure.
- [0011] FIGS. 7A-7H are cross-sectional views of an integrated circuit at various intermediate stages of manufacture according to various embodiments of the present disclosure.
- [0012] FIG. **8** is a cross-sectional view of an integrated circuit according to various embodiments of the present disclosure.
- [0013] FIG. **9** illustrates an integrated circuit including memory devices and logic devices. DETAILED DESCRIPTION

[0014] The following disclosure provides many different embodiments, or examples, for implementing different features of the provided subject matter. Specific examples of components and arrangements are described below to simplify the present disclosure. These are, of course, merely examples and are not intended to be limiting. For example, the formation of a first feature over or on a second feature in the description that follows may include embodiments in which the first and second features are formed in direct contact, and may also include embodiments in which additional features may be formed between the first and second features, such that the first and second features may not be in direct contact. In addition, the present disclosure may repeat reference numerals and/or letters in the various examples. This repetition is for the purpose of simplicity and clarity and does not in itself dictate a relationship between the various embodiments and/or configurations discussed.

[0015] Further, spatially relative terms, such as "beneath," "below," "lower," "above," "upper" and the like, may be used herein for ease of description to describe one element or feature's relationship to another element(s) or feature(s) as illustrated in the figures. The spatially relative terms are intended to encompass different orientations of the device in use or operation in addition to the orientation depicted in the figures. The apparatus may be otherwise oriented (rotated 90 degrees or at other orientations) and the spatially relative descriptors used herein may likewise be interpreted accordingly.

[0016] According to some embodiments of this disclosure, a magnetoresistive random access memory (MRAM) device is formed. The MRAM device includes a magnetic tunnel junction (MTJ) stack. The MTJ stack includes a tunnel barrier layer formed between a ferromagnetic pinned layer and a ferromagnetic free layer. The tunnel barrier layer is thin enough (such a few nanometers) to permit electrons to tunnel from one ferromagnetic layer to the other. A resistance of the MTJ stack is adjusted by changing a direction of a magnetic moment of the ferromagnetic free layer with respect to that of the ferromagnetic pinned layer. When the magnetic moment of the ferromagnetic free layer is parallel to that of the ferromagnetic pinned layer, the resistance of the MTJ stack is in a lower resistive state, corresponding to a digital signal "0". When the magnetic moment of the ferromagnetic free layer is anti-parallel to that of the ferromagnetic pinned layer, the resistance of the MTJ stack is in a higher resistive state, corresponding to a digital signal "1". The MTJ stack is coupled between top and bottom electrode and an electric current flowing through the MTJ stack (tunneling through the tunnel barrier layer) from one electrode to the other is detected to determine the resistance and the digital signal state of the MTJ stack.

[0017] According to some embodiments of this disclosure, the MRAM device is formed within a chip region of a substrate. A plurality of semiconductor chip regions is marked on the substrate by scribe lines between the chip regions. The substrate will go through a variety of cleaning, layering, patterning, etching and doping steps to form the MRAM devices. The term "substrate" herein generally refers to a bulk substrate on which various layers and device elements are formed. In some embodiments, the bulk substrate includes silicon or a compound semiconductor, such as GaAs, InP, SiGe, or SiC. Examples of the layers include dielectric layers, doped layers, polysilicon layers or conductive layers. Examples of the device elements include transistors, resistors, and/or

capacitors, which may be interconnected through an interconnect layer to additional integrated circuits.

[0018] FIGS. **1**A-IK are cross-sectional views of an integrated circuit at various intermediate stages of manufacture according to various embodiments of the present disclosure. The illustration is merely exemplary and is not intended to be limiting beyond what is specifically recited in the claims that follow. It is understood that additional operations may be provided before, during, and after the operations shown by FIGS. **1**A-**1**I, and some of the operations described below can be replaced or eliminated for additional embodiments of the method. The order of the operations/processes may be interchangeable.

[0019] FIG. **1**A illustrates a semiconductor substrate having transistors and one or more metal/dielectric layers **110** over the transistors. The semiconductor substrate has a cell region CR where memory devices are to be formed, a logic region LR where logic circuits are to be formed, a peripheral region RR between the logic region LR and the cell region CR, and a mark region MR where alignment or overlay marks are to be formed.

[0020] The metal/dielectric layers **110** includes an interlayer dielectric (ILD) layer or inter-metal dielectric (IMD) layer **112** with a metallization pattern **114** over the logic region LR and the cell region CR. For example, the metallization pattern **114** includes plural conductive features **114***a* and **114***b* in the logic region LR and the cell region CR, respectively. The ILD layer **112** may be silicon oxide, fluorinated silica glass (FSG), carbon doped silicon oxide, tetra-ethyl-ortho-silicate (TEOS) oxide, phosphosilicate glass (PSG), borophosphosilicate glass (BPSG), Black Diamond® (Applied Materials of Santa Clara, Calif.), amorphous fluorinated carbon, low-k dielectric material, the like or combinations thereof. The metallization pattern **114** may be aluminum, aluminum alloy, copper, copper alloy, titanium, titanium nitride, tantalum, tantalum nitride, tungsten, cobalt, the like, and/or combinations thereof. Formation of the metallization pattern **114** and the ILD layer **112** may be a dual-damascene process and/or a single-damascene process. In some embodiments, the peripheral region RR is free of the metallization pattern **114**. In some embodiments, the metal/dielectric layers **110** may further include an etch stop layer **116** underlying the ILD layer **112**, in which the etch stop layer **116** has a different material than the ILD layer **112** and may stop an etching process during forming the metallization pattern **114**. The substrate may also include active and passive devices, for example, underlying the etch stop layer **116**. These further components are omitted from the figures for clarity.

[0021] Referring to FIG. **1**B, an etch stop layer **120**, a protective layer **130**, and a dielectric layer **140** are formed over the logic region LR, the peripheral region RR, the cell region CR, and the mark region MR on the metal/dielectric layers **110** in a sequence. The etch stop layer **120** may have a high etch resistance to one or more subsequent etching processes. The etch stop layer **120** may be formed of dielectric material different from the underlying ILD layer **112**. For example, the ILD layer **112** may be a silicon oxide layer, and the etch stop layer **120** may be a silicon nitride layer or a silicon carbide layer.

[0022] The protective layer **130** may be formed of dielectric material different from the etch stop layer **120** and the dielectric layer **140**. In some embodiments, the protective layer **130** is an aluminum-based layer (Al-based layer). For example, the protective layer **130** is made from AlO.sub.x, AlN, AlN.sub.yO.sub.x, other suitable material, or the combination thereof. In some other embodiments, the protective layer **130** may be a metal oxide layer containing other metals. By way of example, the protective layer **130** is a titanium oxide layer. In some embodiments, the protective layer **130** can be a single layer or a multi-layered structure.

[0023] The dielectric layer **140** in some embodiments is silicon carbide (SiC), silicon oxynitride (SiON), silicon nitride (SiN), silicon dioxide, the like, and/or combinations thereof. The dielectric layer **140** may be a single-layered structure or a multi-layered structure. The dielectric layer **140** may be formed by acceptable deposition techniques, such as chemical vapor deposition (CVD), atomic layer deposition (ALD), physical vapor deposition (PVD), the like, and/or a combination

thereof.

layer **130**, and the dielectric layer **140** in the cell region CR. In some embodiments, at least one of the BEVAs **150** is a multi-layered structure and includes, for example, a diffusion barrier layer **152** and a filling metal **154** filling a recess in the diffusion barrier layer **152**. An exemplary formation method of the BEVAs **150** includes etching openings in the layers **120-140**, forming in sequence the diffusion barrier layer 152 and the filling metal 154 into the openings, and performing a planarization process, such as a chemical-mechanical polish (CMP) process, to remove excess materials of the filling metal **154** and the diffusion barrier layer **152** outside the openings. The remaining diffusion barrier layer **152** and the remaining filling metal **154** in the openings can serve as the BEVAs **150**. In some embodiments, the BEVAs **150** are electrically connected to an underlying electrical component, such as a transistor, through the metallization pattern **114**. [0025] In some embodiments, the diffusion barrier layer **152** is a titanium nitride (TiN) layer or a tantalum nitride (TaN) layer, which can act as a suitable barrier to prevent metal diffusion. Formation of the diffusion barrier layer **152** may be exemplarily performed using CVD, PVD, ALD, the like, and/or a combination thereof. In some embodiments, the filling metal **154** is titanium (Ti), tantalum (Ta), platinum (Pt), ruthenium (Ru), tungsten (W), aluminum (Al), copper (Cu), TiN, TaN, the like, and/or combinations thereof. Formation of the filling metal **154** may be exemplarily performed using CVD, PVD, ALD, the like, and/or a combination thereof. [0026] A blanket bottom electrode layer **160** is then formed over the BEVAs **150** and over the dielectric layer **140**, so that the bottom electrode layer **160** extends along top surfaces of the BEVAs **150** and a top surface of the dielectric layer **140**. The bottom electrode layer **160** can be a single-layered structure or a multi-layered structure. The bottom electrode layer **160** includes a material the same as the filling metal **154** in some embodiments. In some other embodiments, the bottom electrode layer **160** includes a material different from the filling metal **154**. In some embodiments, the bottom electrode layer **160** is titanium (Ti), tantalum (Ta), platinum (Pt), ruthenium (Ru), tungsten (W), aluminum (Al), copper (Cu), TiN, TaN, the like, and/or a combination thereof. Formation of the bottom electrode layer **160** may be exemplarily performed using CVD, PVD, ALD, the like, and/or a combination thereof. [0027] A buffer layer **170** is then formed over the bottom electrode layer **160**. The buffer layer **170** may include a non-magnetic material. For example, the buffer layer **170** may include tantalum, aluminum, titanium, TiN, TaN, or the combination thereof. The buffer layer **170** may be deposited by PVD, ALD, CVD, or MOCVD (metal-organic chemical vapor deposition). Alternatively, the buffer layer **170** is deposited by an electroless plating process or other suitable process. [0028] In some embodiments, portions of the bottom electrode layer **160** and the buffer layer **170** in the mark region MR are removed by suitable etching processes, and then openings MO are etched in the layers **120-140** in the mark region MR. The openings MO may serve as alignment mark used in mask aligning in the subsequent lithography processes. In some embodiments, the openings MO further extend into the metal/dielectric layers **110**. [0029] A resistance switching layer **180** is formed over the bottom electrode layer **160** and the buffer layer **170**. In some embodiments, the resistance switching layer **180** may be a magnetic

[0024] Bottom electrode vias (BEVA) **150** are formed within the etch stop layer **120**, the protective

buffer layer **170**. In some embodiments, the resistance switching layer **180** may be a magnetic tunnel junction (MTJ) structure. To be specific, the resistance switching layer **180** includes at least a first magnetic layer, a tunnel barrier layer and a second magnetic layer are formed in sequence over the bottom electrode layer **160**. In some embodiments, the resistance switching layer **180** may be conformally in the openings MO in the mark region MR.

[0030] In some embodiments, the first magnetic layer includes an anti-ferromagnetic material (AFM) layer over the bottom electrode layer **160** and a ferromagnetic pinned layer over the AFM layer. In the anti-ferromagnetic material (AFM) layer, magnetic moments of atoms (or molecules) align in a regular pattern with magnetic moments of neighboring atoms (or molecules) in opposite directions. A net magnetic moment of the AFM layer is zero. In certain embodiments, the AFM

layer includes platinum manganese (PtMn). In some embodiments, the AFM layer includes iridium manganese (IrMn), rhodium manganese (RhMn), iron manganese (FeMn), or OsMn. An exemplary formation method of the AFM layer includes sputtering, PVD, ALD, e-beam or thermal evaporation, or the like.

[0031] The ferromagnetic pinned layer in the first magnetic layer forms a permanent magnet and exhibits strong interactions with magnets. A direction of a magnetic moment of the ferromagnetic pinned layer can be pinned by an anti-ferromagnetic material (AFM) layer and is not changed during operation of a resulting resistance switching element (e.g. a MTJ stack) fabricated from the resistance switching layer **180**. In certain embodiments, the ferromagnetic pinned layer includes cobalt-iron-boron (CoFeB). In some embodiments, the ferromagnetic pinned layer includes CoFeTa, NiFe, Co, CoFe, CoPt, or the alloy of Ni, Co and Fe. An exemplary formation method of the ferromagnetic pinned layer includes sputtering, PVD, ALD, e-beam or thermal evaparation, or the like. In some embodiments, the ferromagnetic pinned layer includes a multilayer structure. [0032] The tunnel barrier layer is formed over the first magnetic layer. The tunnel barrier layer can also be referred to as a tunneling layer, which is thin enough that electrons are able to tunnel through the tunnel barrier layer when a biasing voltage is applied to a resulting resistance switching element (e.g. a MTJ stack) fabricated from the resistance switching layer **180**. In certain embodiments, the tunnel barrier layer includes magnesium oxide (MgO), aluminum oxide (Al.sub.2O.sub.3), aluminum nitride (AlN), aluminum oxynitride (AlON), hafnium oxide (HfO.sub.2) or zirconium oxide (ZrO.sub.2). An exemplary formation method of the tunnel barrier layer includes sputtering, PVD, ALD, e-beam or thermal evaporation, or the like. [0033] The second magnetic layer is formed over the tunnel barrier layer. The second magnetic layer is a ferromagnetic free layer in some embodiments. A direction of a magnetic moment of the second magnetic layer is not pinned because there is no anti-ferromagnetic material in the second magnetic layer. Therefore, the magnetic orientation of this layer is adjustable, thus the layer is referred to as a free layer. In some embodiments, the direction of the magnetic moment of the second magnetic layer is free to rotate parallel or anti-parallel to the pinned direction of the magnetic moment of the ferromagnetic pinned layer in the first magnetic layer. The second magnetic layer may include a ferromagnetic material similar to the material in the ferromagnetic pinned layer in the first magnetic layer. Since the second magnetic layer has no anti-ferromagnetic material while the first magnetic layer has an anti-ferromagnetic material therein, the first and second magnetic layers and have different materials. In certain embodiments, the second magnetic layer includes cobalt, nickel, iron or boron. An exemplary formation method of the second magnetic layer includes sputtering, PVD, ALD, e-beam or thermal evaporation, or the like. [0034] In some embodiments where resistive random access memory (RRAM) cells are to be formed on the wafer, the resistance switching layer **180** may include a RRAM dielectric layer such as metal oxide composite, such as hafnium oxide (HfO.sub.x), zirconium oxide (ZrO.sub.x), aluminum oxide (AlO.sub.x), nickel oxide (NiO.sub.x), tantalum oxide (TaO.sub.x), or titanium oxide (TiO.sub.x) as in its relative high resistance state and a metal such as titanium (Ti), hafnium (Hf), platinum (Pt), ruthenium (Ru), and/or aluminum (Al) as in its relative low resistance state. [0035] A top electrode layer **190** is formed over the resistance switching layer **180**. The top electrode layer **190** includes a conductive material. In some embodiments, the top electrode layer **190** is similar to the bottom electrode layer **160** in terms of composition. In some embodiments, the top electrode layer **190** includes titanium (Ti), tantalum (Ta), platinum (Pt), ruthenium (Ru), tungsten (W), aluminum (Al), copper (Cu), TiN, TaN, the like or combinations thereof. An exemplary formation method of the top electrode layer 190 includes sputtering, PVD, ALD, e-beam or thermal evaporation, or the like. In some embodiments, the top electrode layer **190** may referred to as a hard mask layer.

[0036] An oxide mask layer OM is subsequently formed over the top electrode layer **190**. In some embodiments, the oxide mask layer OM includes oxide. For example, the oxide mask layer OM

may include tetra-ethyl-ortho-silicate (TEOS) oxide, SiO.sub.x, ashing removable dielectric (ARD), amorphous Si, SiOC, materials of a nitrogen free anti-reflection layer (NFARL), the like or combinations thereof. An exemplary formation method of the oxide mask layer OM includes PVD or thermal evaporation, or the like.

[0037] Referring to FIG. 1C, a resist mask PR1 is formed over the oxide mask layer OM in sequence. In some embodiments, the resist mask PR1 is a photoresist. In some embodiments, the patterned resist mask PR1 is an ashing removable dielectric (ARD), which is a photoresist-like material generally having generally the properties of a photoresist and amendable to etching and patterning like a photoresist. An exemplary photolithography process may include photoresist coating (e.g., spin-on coating), soft baking, mask aligning (e.g., aligning a mask with respect to the openings MO), exposure, post-exposure baking, developing the photoresist, rinsing, drying (e.g., hard baking), other suitable processes, or combinations thereof. In some embodiments of the present disclosure, the resist mask PR1 covers the peripheral region RR, the logic region LR, and the mark region MR, but expose the cell region CR. For better illustration, it is noted that the oxide mask layer OM has a portion OM1 uncovered by the resist mask PR1 and a portion OM2 covered by the resist mask PR1.

[0038] Reference is made to FIG. 1D. The portion OM1 of the oxide mask layer OM (referring to FIG. 1C) exposed by the resist mask PR1 is thinned by a suitable etching process. The etching process is performed to remove an upper part of the portion OM1 of the oxide mask layer OM, and the etching process stops before removing a lower part of the portion OM1. After the etching process, the remaining lower part of the portion OM1 is referred to as the portion OM1'. In some embodiments, the resist mask PR1 (referring to FIG. 1C) have a higher etch resistance to the etching process than that of the oxide mask layer OM. By the protection of the resist mask PR1 (referring to FIG. 1C), the portion OM2 remains substantially intact after the etching process. For example, a thickness T1 of the portion OM1' is less than a thickness T2 of the portion OM2. After the etching process, the resist mask PR1 (referring to FIG. 1C) may be removed using, for example, an ash process, after the etching process.

[0039] Reference is made to FIG. 1E. A tri-layer photoresist PR2 may be formed over the oxide mask layer OM. The tri-layer photoresist PR2 includes a photoresist layer PR21 as the top or uppermost portion, a middle layer PR22, and a bottom layer PR23. The middle layer PR22 may include anti-reflective layers or backside anti-reflective layers to aid in the exposure and focus of the photoresist processing. The bottom layer PR23 may be a hard mask material, for example, a nitride. The photoresist layer PR21 is patterned using a mask, exposure to radiation, such as light or an excimer laser, for example, a bake or cure operation to harden the resist, and use of a developer to remove either the exposed or unexposed portions of the resist, depending on whether a positive resist or a negative resist is used, to form the pattern from the mask in the photoresist layer PR21. This photoresist layer PR21 is then used to etch the underlying middle layer PR22 and bottom layer PR23 to form an etch mask for the target layer, for example, herein, the oxide mask layer OM. The oxide mask layer OM may have a higher etch resistance to the etching process than that of the bottom layer PR**23**, such that the etching process stops when reaching the oxide mask layer OM. In some other embodiments, the middle layer PR22 and the bottom layer PR23 can be omitted. That is, the photoresist PR2 is a single-layer photoresist. Prior to patterning the photoresist layer PR21, a mask in an exposure tool may be aligned with respect to the alignment mark (e.g., the openings MO).

[0040] Reference is made to FIG. **1**F. One or more etching processes are performed to pattern the oxide mask layer OM. Herein, the photoresist PR**2** may have higher etch resistance to the etching processes than that of the oxide mask layer OM, and may serve as an etch mask during etching the oxide mask layer OM. Through the configuration, after the etching process, parts of the portions OM**1**′ and OM**2** exposed by the photoresist PR**2** are etched, and the other parts of the portions OM**1**′ and OM**2** covered by the photoresist PR**2** remain intact. Herein, the etching process may be

controlled such that while the parts of the portion OM1' exposed by the photoresist PR2 are removed, the part of the portion OM2 exposed by the photoresist PR2 is thinned and remains over the peripheral region RR and the logic region LR. The thinned part of the portion OM2 is referred to as an extending part EP hereinafter. For example, the etching process may stop when the underlying top electrode layer **190** in the cell region CR is exposed, and due to the thickness difference between the portions OM1' and OM2 (referring to FIG. 1E), the portion OM2 has the extending part EP over the top electrode layer 190. In some embodiments, the top electrode layer **190** in the cell region CR may be slightly consumed during the etching process. [0041] In the present embodiments, the etching processes includes a dry etch, a wet etch, or a combination of dry etch and wet etch. The dry etching process may implement suitable etching gas (e.g., CF.sub.4, SF.sub.6, CH.sub.2F.sub.2, CHF.sub.3, N.sub.2, H.sub.2, He, CH.sub.xF.sub.y, NF.sub.3, SF.sub.6, C.sub.4F.sub.6, CH.sub.4, BCl.sub.3, Cl.sub.2 and/or HBr, oxygen-containing gas, iodine-containing gas, other suitable gases and/or plasmas, or combinations thereof. The etching process may include a multiple-step etching to gain etch selectivity, flexibility and desired etch profile. In some embodiments, the portion OM2 of the oxide mask layer OM in the mark region MR is further etched by additional etching processes, such that parts of the portion OM2 exposed by the photoresist PR2 in the mark region MR is removed to expose the underlying top electrode layer **190** in the mark region MR. After the etching processes, portions of the photoresist PR2 (e.g., the photoresist layer PR21 and the middle layer PR22 in FIG. 1E) may be removed, and portions of the photoresist PR2 (e.g., the bottom layer PR23 in FIG. 1E) may remain. [0042] Reference is made to FIG. 1G. One or more etching processes are performed to pattern the top electrode layer **190** (referring to FIG. **1**F). The etching process may include a dry etch, a wet etch, or a combination of dry etch and wet etch. The etching gas including Cl.sub.2, CH.sub.4, N.sub.2, Ar, He, HBr, BCl.sub.3, CF.sub.4, CH.sub.xF.sub.y, O.sub.2, SF.sub.6, NF.sub.3, and other suitable gas. In some embodiments, the etching process is performed with a transformer coupled plasma (TCP) source in a range from about 50 Volts to about 1200 Volts and a bias voltage in a range from about 60 Volts to about 1000 Volts. Herein, the patterned oxide mask layer OM (referring to FIG. **1**F) may have a higher etch resistance to the etching process than that of the top electrode layer **190**. That is, an etching rate of the patterned oxide mask layer OM is lower than an etching rate of the top electrode layer **190** in the etching process. For example, the etch selectivity ratio of the etching rate of the top electrode layer **190** to the etching rate of the patterned oxide mask layer OM is greater than about 1. For example, the etch selectivity ratio is greater than about 6.

[0043] During the etching processes, the patterned oxide mask layer OM may serve as an etch mask, and portions of the top electrode layer **190** exposed by the patterned oxide mask layer OM are removed. After the etching process, portions of the top electrode layer **190** protected by the patterned oxide mask layer OM in the region CR may be referred to as top electrodes **192**, and portions of the top electrode layer **190** protected by the patterned oxide mask layer OM in the mark region MR may be referred to as top electrodes **196**. The top electrodes **192** may be over the BEVAs **150** respectively.

[0044] Herein, the etching process may be controlled such that while the portions of the top electrode layer **190** in the region CR exposed by the patterned oxide mask layer OM are removed, a portion of the top electrode layer **190** under the extending part EP (referring to FIG. **1**F) is thinned and remains over the peripheral region RR and the logic region LR. For example, the etching process may initially remove the extending part EP (referring to FIG. **1**F), and then removing an upper part of the top electrode layer **190** under the extending part EP. The etching process may stop when the underlying resistance switching layer **180** in the cell region CR is exposed, such that a bottom part of the top electrode layer **190** remains in the peripheral region RR and the logic region LR and referred to as the extending portion **194**.

[0045] Through the configuration, the extending portion **194** is thinner than the top electrodes **192**.

For example, the extending portion **194** has a thickness in a range of about 10 nanometers to about 30 nanometers, and the top electrodes **192** herein have a thickness in a range of about 50 nanometers to about 120 nanometers. After the etching process, the photoresist layer PR2 may be removed, and the height of the patterned oxide mask layer OM is reduced. [0046] Reference is then made to FIG. **1**H. One or more etching processes are performed to pattern the resistance switching layer 180, the buffer layer 170, and the bottom electrode layer 160 (referring to FIG. 1G). The etching processes may include a dry etch, a wet etch, or a combination of dry etch and wet etch. For example, the etching process includes a reactive ion etch (RIE), an ion-beam etching (IBE) process, and other suitable process. In some embodiments, the top electrode layer **190** (referring to FIG. **1**G) may have an etch resistance to the etching process similar to that of the layers **160-180** (referring to FIG. **1**G). That is, in some embodiments, an etching rate of the patterned top electrode layer **190** (referring to FIG. **1**G) is substantially equal to an etching rate of the layers **160-180** (referring to FIG. **1**G) in the etching process. The top electrode layer 190 is designed with suitable thickness for protecting portions of the layers 160-180 (referring to FIG. 1G) while etching another portions of the layers 160-180 exposed by the top electrode layer **190**. For example, the top electrodes **192** in FIG. **1**G have a thickness in a range of about 50 nanometers to about 120 nanometers, which is greater than a thickness of the layers 160-**180**. Therefore, the etching process can remove upper parts of the top electrodes **192** and stop when bottom parts of the top electrodes **192** remain. In some other embodiments, the top electrode layer **190** (referring to FIG. **1**G) may have an etch resistance to the etching process higher than that of the layers **160-180** (referring to FIG. **1**G). That is, the etching rate of the patterned top electrode layer **190** (referring to FIG. **1**G) may be lower than the etching rate of the layers **160-180** (referring to FIG. **1**G) in the etching process. [0047] Through the etching process, the resistance switching layer (referring to FIG. 1G) is patterned to form at least one resistance switching element 182 in the cell region CR and a resistance switching element **184** in the mark region MR. The buffer layer **170** (referring to FIG. **1**G) is patterned to form at least one buffer **172** in the cell region CR and buffer residues **174** in the mark region MR. The bottom electrode layer **160** (referring to FIG. **1**G) is patterned to form at least one bottom electrode **162** in the cell region CR and bottom electrode residues **164** in the mark region MR. In some embodiments, memory devices MD are formed in the cell region CR. For example, each of the memory device MD includes the top electrode 192, the resistance switching element **182**, the buffer **172**, the bottom electrode **162**, and the BEVA **150**. In some embodiments, alignment marks AM are formed in the mark region MR. For example, each of the alignment marks AM includes the top electrode **196** and the resistance switching element **184**. [0048] In some embodiments, byproducts of the etching process may settle as re-deposited films around the sidewalls of memory device MD, and the re-deposited films may act as leakage paths along the sidewalls, thereby reducing the magnetic resistance (MR) ratio of the memory device MD. Directional etching process, such as IBE process, may be implemented for reducing the effects of re-deposited films. The IBE process may comprise an etchant gas such as a CHF series (e.g., CHF.sub.2, CHF.sub.3, CF.sub.4, CH.sub.xF.sub.y, or CH.sub.3OH), Kr, Ne, Ar, O, N, the like, or a combination thereof. The angle of incidence of the ions during the IBE process may be controlled and modified to remove the re-deposited films. The IBE process generates a neutralization species as the etchant and will not damage and/or oxidize the top electrode **192** and **196** and the sidewalls of the memory device MD. The IBE process may be performed in a chamber with a rotatable stage or substrate table with more than one axis of rotation. This rotation allows a more uniform etch profile and allows control of the angle of incidence of the ion beam.

[0049] The dielectric layer **140** (referring to FIG. **1**G) not protected by the patterned top electrode layer **190** may be etched during the etching processes in forming the memory device MD and the directional etching process, such that recesses **142**R are formed in a portion **142** of the dielectric layer **140**' in the cell region CR, in which the etched dielectric layer **140** is referred to as the

dielectric layer **140**′. In some embodiments, the amount of the re-deposition film is less when the recesses **142**R get deeper. However, due to the presence of the memory devices MD, the cell region CR is more dense than that of the logic region LR and the peripheral region RR, which in turn will result in that the dielectric layer **140** in the regions LR and RR is etched more than the dielectric layer **140** in the cell region CR. In absence of the extending part EP (referring to FIG. **1F**) and the extending portion **194** (referring to FIG. **1G**), when the recesses CR is etched deeper for reducing the amount of the re-deposition film, the dielectric layer **140**, the protective layer **130**, and the etch stop layer **120** in the regions LR and RR may be punched through, and exposing the underlying metallization pattern **114**.

[0050] In some embodiments of the present disclosure, through the configuration of the extending

portion **194** (referring to FIG. **1**G), the layers **160-180** (referring to FIG. **1**G) under the extending portion **194** (referring to FIG. **1**G) are etched later than etching the layers **160-180** in the cell region CR exposed by the top electrodes 192 (referring to FIG. 1G), such that the dielectric layer 140 under the extending portion **194** (referring to FIG. **1**G) is etched less than the dielectric layer **140** in the cell region CR exposed by the top electrodes 192. The etching processes in forming the memory device MD and the directional etching process may be controlled such that the layers 160-**180** exposed by the patterned top electrode layer **190** (referring to FIG. **1**G) are removed, and a portion of the dielectric layer **140** in the peripheral region RR and the logic region LR is slightly etched or not etched. For example, the etching process may remove the extending portion **194** (referring to FIG. 1G), but not remove the dielectric layers 140 under the extending portion 194 (referring to FIG. 1G). In some examples, the etching process may remove the extending portion **194** (referring to FIG. **1**G) and an upper part of the dielectric layers **140** under the extending portion **194** (referring to FIG. **1**G). After the etching process, the dielectric layers **140** has the extending portion **144** in the peripheral region RR and the logic region LR. [0051] Herein, the top electrodes **192** (referring to FIG. **1**G) may have a higher etch resistance to the etching process than that of the dielectric layer **140** (referring to FIG. **1**G), and may serve as an etch mask during the etching processes. That is, an etching rate of the patterned top electrode layer **190** (referring to FIG. **1**G) is lower than an etching rate of the dielectric layer **140** (referring to FIG. **1**G) in the etching process in forming the memory device MD and the directional etching process. For example, the etch selectivity ratio of the etching rate of the dielectric layer **140** to the etching rate of the top electrodes **192** or the extending portion **194** (referring to FIG. **1**G) is greater than 1. For example, the etch selectivity ratio is about 2. In some embodiments, a thickness of the extending portion **194** (referring to FIG. **1**G) is designed according to the etch selectivity ratio between the dielectric layer **140** and the top electrode layer **190**. In some examples where the etch selectivity ratio is about 2, the thickness of the extending portion **194** is designed to be less than or equal to half the total thickness of the protective layer **130** and the dielectric layer **140**. Through the configuration, the extending portion **194** may be removed when the recesses **142**R are formed in the portion **142** of the dielectric layer **140**′. [0052] Herein, the portion **142** of the dielectric layer **140**′ includes bottom parts **142***a* and side parts

142*b*. The side parts **142***b* are thicker than the bottom parts **142***a* and surround the BEVAs **150** respectively. In some embodiments, the extending portion **144** of the dielectric layer **140**′ is thicker than the bottom part **142***a* of the portion **142**. In the present embodiments, one of the bottom parts **142***a* of the portion **142** of the dielectric layers **140** adjacent the peripheral region RR may have the same thickness as another of the bottom parts **142***a* of the portion **142** between the memory devices MD. In some embodiments where the dielectric layer **140** under the extending portion **194** (referring to FIG. **1**G) may also be etched, a top surface of the portion **144** is at a position lower than that of the side part **142***b* of the portion **142**. In some embodiments where the dielectric layer **140** under the extending portion **194** (referring to FIG. **1**G) is not etched, the top surface of the portion **144** is at a position substantially level with that of the side part **142***b* of the portion **142** of the dielectric layer **140**.

[0053] In the present embodiments, the thickness of the portion **144** of the dielectric layer **140**′ may be calculated from the etch selectivity between the top electrode layer **190** and the resistance switching layer **180**, the etch selectivity between the top electrode layer **190** and the dielectric layer **140** during IBE etching, and the etch selectivity between the top electrode layer **190** and oxide mask layer OM during patterning the top electrode layer **190**. After the etching processes, the patterned oxide mask layer OM′ may be removed, and the height of the top electrodes **192** may be reduced.

[0054] Reference is made to FIG. 1I. An ILD layer 210 is formed over the structure of FIG. 1H. In some embodiments, the ILD layer 210 may have the same material as the ILD layer 112. In some other embodiments, the ILD layer 210 may have a different material than that of the ILD layer 112. In some embodiments, the ILD layer 210 includes silicon oxide, fluorinated silica glass (FSG), carbon doped silicon oxide, tetra-ethyl-ortho-silicate (TEOS) oxide, phosphosilicate glass (PSG), borophosphosilicate glass (BPSG), Black Diamond® (Applied Materials of Santa Clara, Calif.), amorphous fluorinated carbon, low-k dielectric material, the like or combinations thereof. An anti-reflection layer, for example, a nitrogen-free anti-reflection layer (NFARL) is optionally formed over the ILD layer 210.

[0055] Subsequently, a resist mask RM may be formed over the ILD layer **112**. The resist mask RM is formed by patterning a resist layer (e.g., a photoresist layer) using a suitable photolithography process. The resist mask RM may cover the regions CR and MR and exposes the regions RR and LR.

[0056] Reference is then made to FIG. 1J. A first etch process is performed to remove the dielectric layers in the peripheral region RR and the logic region LR. In some embodiments where the ILD layer 210 and the dielectric layer 140′ are silicon oxide, the etchant used in the first etch process can be dilute hydrofluoric acid (HF), HF vapor, CF.sub.4, C4F.sub.8, CH.sub.xF.sub.y, C.sub.xF.sub.y, SF.sub.6, or NF.sub.3, Ar, N.sub.2, O.sub.2, Ne, CO, CO.sub.2, gas for removing the ILD layer 210 and the dielectric layer 140′. In some embodiments, the protective layer 130 may has a higher etch resistance to the first etch process than that of the ILD layer 210 and the dielectric layer 140′, such that the first etch process may stop at the protective layer 130 and not damage the underlying etch stop layer 120.

[0057] A second etch process is performed to remove the protective layer **130** in the peripheral region RR and the logic region LR. The second etch process may dry etching, atomic layer etching (ALE), wet etching, or the combination thereof. In some embodiments, the etch stop layer **120** may has a higher etch resistance to the second etch process than that of the protective layer **130**, such that the second etch process may stop at the etch stop layer **120** and not damage the underlying metallization pattern **114**. After the removal, the protective layer **130** is not in the regions RR and LR.

[0058] Reference is then made to FIG. 1K. An ILD layer 220 is formed over the logic region LR and the peripheral region RR of the structure of FIG. 1J, and then a metallization pattern 232 is formed in the ILD layer 220 and connected to the metallization pattern 114 in the logic region. The metallization pattern 232 may be plural metal vias. For example, the formation of the metallization pattern 232 may include etching openings O1 in the ILD layer 220, etching openings O2 in the etch stop layer 120, and overfilling the openings O1 and O2 with a metal material. The etch stop layer 120 may have a higher etch resistance to etching the openings O1 in the ILD layer 220 than that of the ILD layer 220. In some embodiments, a polish process, such as chemical-mechanical polish process may be performed to remove an excess portion of the metal material outside the openings O1 of the ILD layer 220.

[0059] In some embodiments, the ILD layer **220** may have the same material as the ILD layers **210** and **112**. In some other embodiments, the ILD layer **220** may have a different material than the ILD layers **210** or **112**. In some embodiments, the ILD layer **2420** includes silicon oxide, fluorinated silica glass (FSG), carbon doped silicon oxide, tetra-ethyl-ortho-silicate (TEOS) glass oxide,

phosphosilicate (PSG), borophosphosilicate glass (BPSG), Black Diamond® (Applied Materials of Santa Clara, Calif.), amorphous fluorinated carbon, low-k dielectric material, the like or combinations thereof. Herein, since the ILD layers **210** and **220** are formed at different operations, there is a clear interface between the ILD layers **210** and **220**. Also, since the ILD layer **220** and the dielectric layer **140**′ are formed at different operations, there is a clear interface between the ILD layer **220** and the dielectric layer **140**′.

[0060] Subsequently, an ILD layer **240** is formed over the cell region CR, the logic region LR, and the peripheral region RR, and then metallization patterns **252** and **254** are formed in the ILD layer **220**. The metallization patterns **252** and **254** are connected to the memory device MD in the cell region CR and the metallization pattern 232 in the logic region LR, respectively. For example, the formation of the metallization patterns **252** and **254** may include etching openings **O3** in the ILD layer **240**, overfilling the openings O**3** with a metal material, and removing an excess portion of the metal material outside the openings O3 of the ILD layer 240. In present embodiments, a height of the metallization pattern **232** may be equal to a height of the memory device MD. The metallization pattern **232** serves a M.sub.x metal layer, the metallization pattern **114** serves a M.sub.x-1 metal layer, and the metallization patterns **252** and **254** serves a M.sub.x+1 metal layer. [0061] FIG. **2** is a cross-sectional view of an integrated circuit according to various embodiments of the present disclosure. The present embodiments are similar to those of FIG. 1K, and the difference between the present embodiments and the embodiments of FIG. **1**K is that a metallization pattern **230** including metal vias **232** and metal lines **234** is formed in the ILD layer **220** before the formation of the ILD **240** and the metallization patterns **252** and **254**. In some examples, a height of the metallization pattern **230** may be equal to a height of the memory device MD. The metallization pattern **230** serves a M.sub.x metal layer, the metallization pattern **114** serves a M.sub.x-1 metal layer, and the metallization pattern **254** serves a M.sub.x+1 metal layer. [0062] FIGS. 3A-3G are cross-sectional views of an integrated circuit at various intermediate stages of manufacture according to various embodiments of the present disclosure. The embodiments of FIGS. **3**A-**3**G are similar to that of FIGS. **1**A-**1**K, and at least one difference between the embodiments of FIGS. 3A-3G and the embodiments of FIGS. 1A-1K is that: the cell region CR has an operable cell region OCR where the memory devices are to be formed and a dummy cell region DCR where dummy devices are to be formed, and the portion 144 of the dielectric layer **140** (referring to FIG. **1**I) further extends to the dummy cell region DCR. The illustration is merely exemplary and is not intended to be limiting beyond what is specifically recited in the claims that follow. It is understood that additional operations may be provided before, during, and after the operations shown by FIGS. **3**A-**3**G, and some of the operations described below can be replaced or eliminated for additional embodiments of the method. The order of the operations/processes may be interchangeable.

[0063] FIG. **3**A illustrates a substrate having a metal/dielectric layers **110** and plural layers thereon. The substrate having the metal/dielectric layers **110** has a logic region LR, a peripheral region RR, a cell region CR, and a mark region MR. In the present embodiments, the cell region CR may further have an operable cell region OCR and a dummy cell region DCR adjacent the operable cell region OCR. The etch stop layer **120**, the protective layer **130**, the dielectric layer **140**, the BEVAs **150**, the blanket bottom electrode layer **160**, the buffer layer **170**, the resistance switching layer **180**, the top electrode layer **190**, the oxide mask layer OM, and the resist mask PR**1** are formed over the metal/dielectric layers **110**.

[0064] In the present embodiments, the resist mask PR1 covers the peripheral region RR, the logic region LR, the mark region MR, and the dummy cell region DCR, but exposes the operable cell region OCR. The oxide mask layer OM has a portion OM1 uncovered by the resist mask PR1 and a portion OM2 covered by the resist mask PR1. In this context, portions of the BEVAs 150 in the dummy cell region DCR may be referred to as dummy BEVAs. In some other embodiment, portions of the BEVAs 150 and portions of the metallization pattern 114 in the dummy cell region

DCR may be omitted. That is, the resulted memory device MD (referring to FIG. **3**G) in the dummy cell region DCR may not locate on the BEVAs **150** and the metallization pattern **114**. Other details of the present embodiments are similar to those aforementioned, and not repeated herein. [0065] Reference is made to FIG. **3**B. The portion OM**1** of the oxide mask layer OM exposed by the resist mask PR**1** is thinned by an etching process. The etching process is performed to remove an upper part of the portion OM**1** of the oxide mask layer OM, and the etching process stops before removing a lower part of the portion OM**1**. After the etching process, the remaining lower part of the portion OM**1** is referred to as the portion OM**1**'. A thickness T**1** of the portion OM**1**' is less than a thickness T**2** of the portion OM**2** of the oxide mask layer OM covered by the resist mask PR**1**. After the etching process, the resist mask PR**1** may be removed using, for example, an ash process, after the etching process.

[0066] Reference is made to FIG. **3**C. A lithography process for patterning the oxide mask layer OM is performed. As aforementioned, a photoresist PR**2** may be used. One or more etching processes are performed to pattern the oxide mask layer OM. Through the etching process, parts of the portion OM**1**′ uncovered by the photoresist PR**2** are removed, and the underlying top electrode layer **190** in the cell region CR is exposed. In the present embodiments, due to the thickness difference between the portions OM**1**′ and OM**2** of the oxide mask layer OM (referring to FIG. **3**B), the etching process may be controlled such that while parts of the portion OM**1**′ uncovered by the photoresist PR**2** are removed, an extending part EP of the portion OM**2** uncovered by the photoresist PR**2** is thinned and remains over the dummy cell region DCR, the peripheral region RR, the logic region LR.

[0067] Reference is made to FIG. **3**D. The top electrode layer **190** (referring to FIG. **3**C) is etched to form at least one top electrode **192** in the operable cell region OCR, at least one dummy top electrode **198** in the dummy cell region DCR, and at least one top electrode **196** in the mark region MR. The patterned oxide mask layer OM may be used as mask in the etching process. Due to the presence of the extending part EP in the regions DCR, RR, and LR (referring to FIG. **3**C), when parts of the top electrode layer **190** (referring to FIG. **3**C) in the operable cell region OCR is etched to expose the underlying resistance switching layer **180**, the top electrode layer **190** has an extending portion **194** over the regions DCR, RR, and LR. In the present embodiments, the extending portion **194** may connect the dummy top electrodes **198**.

[0068] Reference is made to FIG. 3E. The resistance switching layer **180**, the buffer layer **170**, the bottom electrode layer **160**, and the dielectric layer **140** (referring to FIG. 3D) are etched to form resistance switching element **182-186**, at least one buffers **172**, **176** and buffer residues **174**, at least one bottom electrodes **162**, **166**. and bottom electrode residues **164**, and a dielectric layer **140**'. The etching process may include a dry etch, a wet etch, or a combination of dry etch and wet etch. Through the etching process, the dielectric layer **140** has a portion **142** in the operable cell region OCR and an extending portion **144** in the dummy cell region DCR, the peripheral region RR, and the logic region LR after the etching process. For example, the portion **144** is thicker than a bottom part **142***a* of the portion **142**. In some embodiments, the dielectric layer **140** under the extending portion **194** (referring to FIG. **3**D) may also be etched, such that a top surface of the portion **144** is at a position lower than that of the side part **142***b* of the portion **142**. In some embodiments, the dielectric layer **140** under the extending portion **194** (referring to FIG. **3**D) is not etched, such that the top surface of the portion **144** is at a position level with that of the side part **142***b* of the portion **142** of the dielectric layer **140**. After the etching process, the patterned oxide mask layer OM' may be removed, and the height of the top electrodes **192** and **198** may be reduced.

[0069] In some embodiments, the memory device MD is formed in the operable cell region OCR, and dummy memory devices MD' are formed in the dummy cell region DCR. For example, the memory device MD includes the top electrode **192**, the resistance switching element **182**, the buffer **172**, the bottom electrode **162**, and the BEVA **150** in the operable cell region OCR. Each of the dummy memory device MD' may include the top electrode **198**, the resistance switching element

186, the buffer **176**, the bottom electrode **166**, and the BEVA **150** in the dummy cell region DCR. In some embodiments, as mentioned previously, the BEVA **150** of the dummy memory device MD' may be omitted. In some embodiments, portions of the metallization pattern **114** under the dummy memory device MD' may be omitted. In some embodiments, alignment marks AM are formed in the mark region MR. For example, each of the alignment marks AM includes the top electrode **196**, the resistance switching element **184**, and the opening MO. [0070] Reference is made to FIG. **3**F. An ILD layer **210** is formed over the structure of FIG. **3**E, and a first etch process is performed to remove the dielectric layers in the peripheral region RR, the logic region LR, and the mark region MR, and a second etch process is performed to remove the protective layer **130** in the peripheral region RR and the logic region LR, as illustrated in FIG. **1**J. In some embodiments, the protective layer **130** may has a higher etch resistance to the first etch process than that of the ILD layer **210** and the dielectric layer **140**′, such that the first etch process may stop at the protective layer **130** and not damage the underlying etch stop layer **120**. In some embodiments, the etch stop layer **120** may has a higher etch resistance to the second etch process than that of the protective layer **130**, such that the second etch process may stop at the etch stop layer **120** and not damage the underlying metallization pattern **114**. After the removal, the protective layer **130** is not in the peripheral region RR and the logic region LR. [0071] Reference is made to FIG. **3**G. An ILD layer **220** is formed over the logic region LR and the peripheral region RR of the structure of FIG. 1J, and then a metallization pattern 232 is formed in the ILD layer **220** and connected to the metallization pattern **114** in the logic region. The metallization pattern **232** may be plural metal vias. Subsequently, an ILD layer **240** is formed thereon, and then metallization patterns **252** and **254** is formed in the ILD layer **220**. The metallization patterns 252 and 254 are connected to memory device MD in the operable cell region OCR and the metallization pattern 232 in the logic region LR. For example, the formation of the metallization patterns **252** and **254** may include etching openings O**3** in the ILD layer **240**, overfilling the openings O3 with a metal material, and removing an excess portion of the metal material outside the openings O3 of the ILD layer 240. The metallization pattern 252 and 254 may not be connected to dummy memory devices MD' in the dummy cell region DCR. Other details of the present embodiments are similar to those aforementioned and not repeated herein. [0072] FIG. **4** is a cross-sectional view of an integrated circuit according to various embodiments of the present disclosure. The present embodiments are similar to those of FIG. 3G, and the difference between the present embodiments and the embodiments of FIG. **3**G is that a metallization pattern 230 including metal vias 232 and metal lines 234 is formed in the ILD layer **220** before the formation of the ILD **240** and the metallization patterns **252** and **254**. In some examples, a height of the metallization pattern **230** may be equal to a height of the memory device MD. The metallization pattern **230** serves a M.sub.x metal layer, the metallization pattern **114** serves a M.sub.x-1 metal layer, and the metallization pattern **254** serves a M.sub.x+1 metal layer. [0073] FIGS. 5A-5H are cross-sectional views of an integrated circuit at various intermediate stages of manufacture according to various embodiments of the present disclosure. The embodiments of FIGS. 5A-5H are similar to that of FIGS. 1A-1K, and at least one difference between the embodiments of FIGS. **5**A-**5**H and the embodiments of FIGS. **1**A-**1**K is that deeper recesses are formed in the peripheral region RR. The illustration is merely exemplary and is not intended to be limiting beyond what is specifically recited in the claims that follow. It is understood that additional operations may be provided before, during, and after the operations shown by FIGS. **5**A-**5**H, and some of the operations described below can be replaced or eliminated for additional embodiments of the method. The order of the operations/processes may be interchangeable. [0074] FIG. **5**A illustrates a substrate having a metal/dielectric layers **110** and plural layers thereon. The substrate having the metal/dielectric layers **110** has a logic region LR, a peripheral region RR, a cell region CR, and a mark region MR. The peripheral region RR is free of the metallization pattern **114**. As aforementioned, the etch stop layer **120**, the protective layer **130**, the dielectric

layer **140**, the BEVAs **150**, the blanket bottom electrode layer **160**, the buffer layer **170**, the resistance switching layer **180**, the top electrode layer **190**, the oxide mask layer OM, and the resist mask PR are formed over the metal/dielectric layers **110**. In the present embodiments, the resist mask PR**1** covers the logic region LR and the mark region MR, but exposes the cell region CR and the peripheral region RR. The oxide mask layer OM has a portion OM**1** uncovered by the resist mask PR**1** and a portion OM**2** covered by the resist mask PR**1**. Other details of the present embodiments are similar to those aforementioned, and not repeated herein.

[0075] Reference is made to FIG. **5**B. A portion OM**1** of the oxide mask layer OM exposed by the resist mask PR**1** is thinned by an etching process. The etching process is performed to remove an upper part of the portion OM**1** of the oxide mask layer OM, and the etching process stops before removing a lower part of the portion OM**1**. After the etching process, the remaining lower part of the portion OM**1** is referred to as the portion OM**1**'. A thickness T**1** of the portion OM**1**' is less than a thickness T**2** of a portion OM**2** of the oxide mask layer OM covered by the resist mask PR**1**. After the etching process, the resist mask PR**1** may be removed using, for example, an ash process, after the etching process.

[0076] Reference is made to FIG. **5**C. A lithography process for patterning the oxide mask layer OM is performed. As aforementioned, a photoresist PR**2** may be used. One or more etching processes are performed to pattern the oxide mask layer OM. Through the etching process, parts of the portion OM**1**′ uncovered by the photoresist PR**2** are removed, and the underlying top electrode layer **190** in the cell region CR is exposed. In the present embodiments, due to the thickness difference between the portions OM**1**′ and OM**2** of the oxide mask layer OM, the etching process may be controlled such that while parts of the portion OM**1**′ uncovered by the photoresist PR**2** are removed, an extending part EP of the portion OM**2** uncovered by the photoresist PR**2** is thinned and remains over the logic region LR.

[0077] Reference is made to FIG. **5**D. The top electrode layer **190** (referring to FIG. **5**C) is etched to form at least one top electrode **192** in the cell region CR and at least one top electrode **196** in the mark region MR. The patterned oxide mask layer OM may be used as mask in the etching process. Due to the presence of the extending part EP in the region LR (referring to FIG. **5**C), when parts of the top electrode layer **190** (referring to FIG. **5**C) in the cell region CR and the peripheral region RR are etched and exposing the underlying resistance switching layer **180**, the top electrode layer **190** has an extending portion **194** over the region LR.

[0078] Reference is made to FIG. **5**E. The resistance switching layer **180**, the buffer layer **170**, the bottom electrode layer **160**, and the dielectric layer **140** (referring to FIG. **1**F) are etched to form resistance switching element **182** and **184**, at least one buffer **172**, at least one bottom electrode **162**, and a dielectric layer **140**′. The etching process may include a dry etch, a wet etch, or a combination of dry etch and wet etch. Through the configuration, the dielectric layer **140** has a portion **142** in the cell region CR and an extending portion **144** in the logic region LR after the etching process. For example, the portion **144** is thicker than a bottom part **142***a* of the portion **142**. [0079] In some embodiments, without the protection of the extending portion **194** (referring to FIG. 5D), during the etching processes in forming the memory device MD and the directional etching process, the layers **120-140** in the region RR may be punched through, and exposing the underlying metal/dielectric layers **110**. For example, the layer **120-140** may be further etched, such that a recess R1 may penetrate the layers 120-140 in the peripheral region RR and further be formed into the ILD layer **112** and. Similarly, in some embodiments, a recess R**2** may be formed in the layers **120-140** in the mark region MR. Since the regions RR and MR are free of the metallization pattern **114**, the recesses R**1** and R**2** would not damage the circuit. The recesses R**1** and R2 may have a curve front. After the etching process, the patterned oxide mask layer OM' may be removed, and the height of the top electrodes **192** may be reduced.

[0080] Reference is made to FIG. **5**F. An ILD layer **210** is formed over the structure of FIG. **5**E. The ILD layer **210** may have a material the same as or different than that the ILD layer **112**. The

material of the ILD layer **210** are similar to those aforementioned, and not repeated herein. The ILD layer **210** may fills the recesses R**1** and R**2**. Subsequently, a resist mask RM may be formed over the ILD layer **112**. The resist mask RM is forming by patterning a resist layer (e.g., a photoresist layer) using a suitable photolithography process. The resist mask RM covers the regions CR and MR and exposes the regions RR and LR.

[0081] Reference is made to FIG. 5G. Etching processes are performed to remove the dielectric layers and the protective layer 130 underlying the dielectric layers in the peripheral region RR and the logic region LR, as illustrated in FIG. 1J. For example, a first etch process is performed to remove the dielectric portion 144 of the dielectric layer 140′ and the ILD layer 210 in the regions RR and LR, and the protective layer 130 may has a higher etch resistance to the first etch process than that of the ILD layer 210 and the dielectric layer 140′, such that the first etch process may stop at the protective layer 130 and not damage the underlying etch stop layer 120. A second etch process is performed to remove the protective layer 130 in the peripheral region RR and the logic region LR, and the etch stop layer 120 may has a higher etch resistance to the second etch process than that of the protective layer 130, such that the second etch process may stop at the etch stop layer 120 and not damage the underlying metallization pattern 114. After the etching process, a portion of the ILD layer 210 is in the recess R1. Other detail of the etching processes are similar to those aforementioned, and not repeated herein.

[0082] Reference is made to FIG. 5H. An ILD layer 220 is formed over the logic region LR and the peripheral region RR of the structure of FIG. 5G. Then, a metallization pattern 232 is formed in the ILD layer 220 and connected to the metallization pattern 114 in the logic region LR. The metallization pattern 232 may be plural metal vias. Subsequently, an ILD layer 240 is formed over thereon, and then metallization patterns 252 and 254 is formed in the ILD layer 220. The metallization patterns 252 and 254 are connected to memory device MD in the cell region CR and the metallization pattern 232 in the logic region LR respectively. Other details of the present embodiments are similar to those aforementioned and not repeated herein.

[0083] FIG. **6** is a cross-sectional view of an integrated circuit according to various embodiments of the present disclosure. The present embodiments are similar to those of FIG. 5H, and the difference between the present embodiments and the embodiments of FIG. 5H is that a metallization pattern 230 including metal vias 232 and metal lines 234 is formed in the ILD layer **220** before the formation of the ILD **240** and the metallization patterns **252** and **254**. In some examples, a height of the metallization pattern 230 may be equal to a height of the memory device MD. The metallization pattern **230** serves a M.sub.x metal layer, the metallization pattern **114** serves a M.sub.x-1 metal layer, and the metallization pattern **254** serves a M.sub.x+1 metal layer. [0084] FIGS. 7A-7H are cross-sectional views of an integrated circuit at various intermediate stages of manufacture according to various embodiments of the present disclosure. The embodiments of FIGS. 7A-7H are similar to that of FIGS. 5A-5H, and at least one difference between the embodiments of FIGS. 7A-7H and the embodiments of FIGS. 5A-5H is that a resistor **400** is formed in the peripheral region RR. The illustration is merely exemplary and is not intended to be limiting beyond what is specifically recited in the claims that follow. It is understood that additional operations may be provided before, during, and after the operations shown by FIGS. 5A-**5**H, and some of the operations described below can be replaced or eliminated for additional embodiments of the method. The order of the operations/processes may be interchangeable. [0085] Referring to FIG. 7A, as aforementioned, the etch stop layer **120**, the protective layer **130**, the dielectric layer **140**, the BEVAs **150**, the blanket bottom electrode layer **160**, the buffer layer **170**, the resistance switching layer **180**, the top electrode layer **190**, the oxide mask layer OM, and the resist mask PR1 are formed over the metal/dielectric layers 110. In the present embodiments, the resist mask PR1 covers the oxide mask layer OM in the regions RR, LR and MR, but exposes a portion OM1 of the oxide mask layer OM in the cell region CR. Other details of the present embodiments are similar to those aforementioned, and not repeated herein.

[0086] Reference is made to FIG. 7B. An etching process is performed to thin the portion OM1 of the oxide mask layer OM (referring to FIG. 7A). The etching process is performed to remove an upper part of the portion OM1 of the oxide mask layer OM, and the etching process stops before removing a lower part of the portion OM1. After the etching process, the remaining lower part of the portion OM1 is referred to as the portion OM1'. After the etching process, the resist mask PR1 may be removed using, for example, an ash process, after the etching process. [0087] Reference is made to FIG. 7C. A resist mask PR1' is formed over the oxide mask layer OM. The material of the resist mask PR1' is similar to that of the resist mask PR1 in FIG. 7A, and not repeated herein. The resist mask PR1' covers a portion OM2 of the oxide mask layer OM in the peripheral region RR and the portion OM1 in the cell region CR, but exposes a portion OM3 of the oxide mask layer OM in the logic region LR and the mark region MR. Other details of the present embodiments are similar to those aforementioned, and not repeated herein. [0088] Reference is made to FIG. 7D. An etching process is performed to thin the portion OM3 of the oxide mask layer OM (referring to FIG. 7C). The etching process is performed to remove an upper part of the portion OM3 of the oxide mask layer OM, and the etching process stops before removing a lower part of the portion OM3. After the etching process, the remaining lower part of the portion OM3 is referred to as the portion OM3'. A thickness T3 of the portion OM3' is less than a thickness T2 of the portion OM2 of the oxide mask layer OM covered by the resist mask PR1', but greater than a thickness T1 of the portion OM1'. After the etching process, the resist mask PR1' may be removed using, for example, an ash process, after the etching process. [0089] Reference is made to FIG. 7E, a lithography process for patterning the oxide mask layer OM is performed. As aforementioned, a photoresist PR2 may be used. One or more etching the portion OM1' uncovered by the photoresist PR2 are removed, and the underlying top electrode layer **190** in the cell region CR is exposed. In the present embodiments, due to the thickness difference between the portions OM1', OM2, and OM3' of the oxide mask layer OM (referring to FIG. **3**B), the etching process may be controlled such that while parts of the portion OM**1**′

processes are performed to pattern the oxide mask layer OM. Through the etching process, parts of uncovered by the photoresist PR2 are removed, the portion OM2 and an extending portion of the portion OM3' uncovered by the photoresist PR2 are thinned and remains over the peripheral region RR and the logic region LR.

[0090] Referring FIG. 7F, the top electrode layer **190** is patterned using the patterned oxide mask layer OM as a mask. In the present embodiments, through the thickness difference between the portions OM2 and OM3' of the patterned oxide mask layer OM (referring to FIG. 7E), when the patterned top electrode layer **190** is etched to form the top electrodes **192** and **196**, the patterned top electrode layer **190** has an extending portion **194***a* in the region RR and an extending portion **194***b* in the region LR, and the extending portion **194***a* is thicker than the extending portion **194***b*. [0091] Referring FIG. 7G, the layers **160-180** are patterned through one or more etching processes, and a resistor **400** may be formed during the etching processes. In some embodiments, due to the thickness difference between the extending portions **194***a* and **194***b* (referring to FIG. 7F), after the etching process, portions of the layers **160-180** in the region RR remains, and portions of the layers **160-180** in the region LR are removed. For example, the top electrode layer **190** is patterned into top electrodes **192** and **196**. The resistance switching layer **180** is patterned into a resistance switching element **182** and a resistor element **188**. The buffer layer **170** is patterned into a buffer **172** and a resistor element **178**. The bottom electrode layer **160** is patterned into a bottom electrode 162 and a resistor element 168. The resistor 400 includes the resistor elements 168, 178, and 188. Other details of the patterning process are similar to those aforementioned, and not repeated herein. [0092] Reference is made to FIG. 7H. An ILD layer **210** is formed over the structure of FIG. 7G, and the metallization pattern 232 and 232' are formed in the ILD layer 210 and connected with the metallization pattern **114** in the logic region LR and the resistor **400** respectively. The metallization pattern 232 and 232' may include plural metal vias. Herein, openings are formed in the etch stop

```
formed in the openings. For example, metallization pattern 230 is formed in the openings O4 are
formed in the protective layer 130. Subsequently, an ILD layer 240 is formed thereon, and then
metallization patterns 252-256 are formed in the ILD layer 240. The metallization patterns 252 and
254 are connected to memory device MD in the cell region CR and the metallization pattern 230 in
the logic region LR respectively. The metallization pattern 256 is connected to the resistor 400
through the metallization pattern 232′. A high-resistance circuit is provided herein. Other details of
the present embodiments are similar to those aforementioned and not repeated herein.
[0093] FIG. 8 is a cross-sectional view of an integrated circuit according to various embodiments
of the present disclosure. The present embodiments are similar to those of FIG. 7G, and the
difference between the present embodiments and the embodiments of FIG. 7G is that a
metallization pattern 230 including metal vias 232 and metal lines 234 and a metallization pattern
230′ including metal vias 232′ and metal lines 234 is formed in the ILD layer 210 before the
formation of the ILD 240 and the metallization patterns 252 and 254. In some examples, a height of
the metallization pattern 230 may be equal to a height of the memory device MD. The metallization
pattern 230 serves a M.sub.x metal layer, the metallization pattern 114 serves a M.sub.x-1 metal
layer, and the metallization pattern 254 serves a M.sub.x+1 metal layer.
[0094] FIG. 9 illustrates an integrated circuit including MRAM devices and logic devices. The
integrated circuit includes a logic region 900 and a MRAM region 910. Logic region 900 may
include circuitry, such as the exemplary transistor 902, for processing information received from
MRAM devices 920 in the MRAM region 910 and for controlling reading and writing functions of
MRAM devices 920. In some embodiments, the MRAM device 920 includes a resistance switching
element 922, a top electrode 924 over the resistance switching element 922, and a bottom electrode
925 under the resistance switching element 922, and a BEVA 926 under the bottom electrode 925
and in an etch stop layer 930, a protective layer 940, and a dielectric layer 950. The etch stop layer
930 extends across the logic region 900 and the MRAM region 910. The protective layer 940 is in
the MRAM region 910 and terminates before reaching the logic region 900. The dielectric layer
950 is in the MRAM region 910 and terminates before reaching the logic region 900.
[0095] As depicted, the integrated circuit is fabricated using five metallization layers, labeled as
M1 through M5, with five layers of metallization vias or interconnects, labeled as V1 through V5.
Other embodiments may contain more or fewer metallization layers and a corresponding more or
fewer number of vias. Logic region 900 includes a full metallization stack, including a portion of
each of metallization layers M1-M5 connected by interconnects V2-V5, with V1 connecting the
stack to a source/drain contact of logic transistor 902. The MRAM region 910 includes a full
metallization stack connecting MRAM devices 920 to transistors 912 in the MRAM region 910,
and a partial metallization stack connecting a source line to transistors 912 in the MRAM region
910. MRAM devices 920 are depicted as being fabricated in between the top of the M4 layer and
the bottom the M5 layer. In some embodiments, MRAM devices 920 may be with the same height
of M5+V5, and thus the M5 layer is absent from the MRAM region 910. Also included in
integrated circuit is a plurality of ILD layers. Six ILD layers, identified as ILD0 through ILD5 are
depicted in FIG. 9 as spanning the logic region 900 and the MRAM region 910. The ILD layers
may provide electrical insulation as well as structural support for the various features of the
integrated circuit during many fabrication process steps.
[0096] Based on the above discussions, it can be seen that the present disclosure offers advantages.
It is understood, however, that other embodiments may offer additional advantages, and not all
advantages are necessarily disclosed herein, and that no particular advantage is required for all
```

embodiments. One advantage is that the dielectric layer in the logic region is thickened by designing plural layers above the dielectric layer with suitable thickness based on an etching

selectivity between the top electrodes and the dielectric layer, an etching selectivity between the top electrodes and the oxide mask, and an etching selectivity between the top electrodes and the MTJ

layer **120**, the protective layer **130**, and the dielectric layer **140**, and the metallization pattern **230** is

stack, such that the dielectric layer may protect the underlying metallization pattern during etching the MTJ stack, and thereby preventing the punching through issue. Another advantage is that the process is low cost since the memory devices are formed with an oxide dielectric layer for protecting logic region. Still another advantage is that a high-resistance circuit is formed with the memory devices, thereby enlarging the application field.

[0097] According to some embodiments of the present disclosure, an integrated circuit includes a metallization pattern having first and second conductive features, an etch stop layer over the metallization pattern, a memory device, a bottom electrode via, a third conductive feature, and a dielectric feature. The etch stop layer has first and second portions over the first and second conductive features, respectively. The bottom electrode via is in the first portion of the etch stop layer and electrically connecting the memory device over the first portion of the etch stop layer to the first conductive feature. The third conductive feature is in the second portion of the etch stop layer and electrically connected to the second conductive feature. The dielectric feature is between the first and second portions of the etch stop layer and in contact with sidewalls of the first and second portions of the etch stop layer.

[0098] According to some embodiments of the present disclosure, an integrated circuit includes a metallization pattern, an etch stop layer, a memory device, a bottom electrode via, and a third conductive feature. The metallization pattern has a first conductive feature and a second conductive feature. The etch stop layer is over the metallization pattern. The etch stop layer has a first portion over the first conductive feature and a second portion over the second conductive feature. The first portion of the etch stop layer is spaced apart from the second portion of the etch stop layer in a cross-sectional view. The memory device is over the first portion of the etch stop layer. The bottom electrode via is at least partially in the first portion of the etch stop layer and electrically connecting the memory device to the first conductive feature. The third conductive feature is at least partially in the second portion of the etch stop layer and electrically connected to the second conductive feature.

[0099] According to some embodiments of the present disclosure, an integrated circuit includes a metallization pattern, an etch stop layer, a memory device, a bottom electrode via, a third conductive feature, an interlayer dielectric layer, and a dielectric feature. The metallization layer has a first conductive feature, a second conductive feature, and a dielectric layer surrounding the first and second conductive features. The etch stop layer is over the metallization pattern. The etch stop layer has a first portion over the first conductive feature and a second portion over the second conductive feature. The memory device is over the first portion of the etch stop layer. The bottom electrode via is at least partially in the first portion of the etch stop layer and electrically connecting the memory device to the first conductive feature. The third conductive feature is at least partially in the second portion of the etch stop layer and electrically connected to the second conductive feature. The interlayer dielectric layer surrounds the third conductive feature. The dielectric feature is between the first and second portions of the etch stop layer. The dielectric feature is in contact with the interlayer dielectric layer and the dielectric layer of the metallization layer. [0100] The foregoing outlines features of several embodiments so that those skilled in the art may better understand the aspects of the present disclosure. Those skilled in the art should appreciate that they may readily use the present disclosure as a basis for designing or modifying other processes and structures for carrying out the same purposes and/or achieving the same advantages of the embodiments introduced herein. Those skilled in the art should also realize that such equivalent constructions do not depart from the spirit and scope of the present disclosure, and that they may make various changes, substitutions, and alterations herein without departing from the spirit and scope of the present disclosure.

Claims

- 1. An integrated circuit (IC) structure comprising: an interlayer dielectric (ILD) layer; a first metal structure and a second metal structure embedded in the ILD layer; a first bottom electrode via and a second bottom electrode via over the first metal structure and the second metal structure, respectively; a first resistance switching structure and a second resistance switching structure over the first bottom electrode via and the second bottom electrode via, respectively; and a dielectric layer laterally surrounding the first bottom electrode via and the second bottom electrode via, the dielectric layer having a stepped surface profile extending between the first bottom electrode via and the second bottom electrode via.
- **2.** The IC structure of claim 1, wherein the stepped surface profile of the dielectric layer comprises a lower step extending in a lateral direction, an upper step extending in the lateral direction, and a step rise extending upwards from the lower step to the upper step.
- **3.** The IC structure of claim 2, wherein the lower step of the stepped surface profile of the dielectric layer is at a higher level than a bottom surface of the first bottom electrode via.
- **4.** The IC structure of claim 2, wherein the upper step of the stepped surface profile of the dielectric layer is at a lower level than a top surface of the first bottom electrode via.
- **5.** The IC structure of claim 2, wherein the step rise of the stepped surface profile of the dielectric layer is non-parallel with a sidewall of the first bottom electrode via.
- **6.** The IC structure of claim 2, wherein the step rise of the stepped surface profile of the dielectric layer is non-parallel with a sidewall of the first resistance switching structure.
- **7**. The IC structure of claim 2, wherein a first distance from the upper step of the stepped surface profile of the dielectric layer to a logic region is less than a second distance from the lower step of the stepped surface profile of the dielectric layer to the logic region.
- **8.** The IC structure of claim 1, further comprising: an interconnect layer comprising a plurality of metallization patterns over the first and second resistance switching structures, wherein the first resistance switching structure is electrically connected to one of the plurality of metallization patterns, and the second resistance switching structure is electrically isolated from all of the plurality of metallization patterns.
- **9.** The IC structure of claim 8, wherein the stepped surface profile of the dielectric layer comprises a lower step, an upper step, and a step rise extending upwards from the lower step to the upper step, wherein a first distance from the first resistance switching structure to the lower step is less than a second distance from the first resistance switching structure to the upper step.
- **10**. An IC structure comprising: an interlayer dielectric (ILD) layer; a first bottom electrode via and a second bottom electrode via over the ILD layer; a first magnetic tunnel junction (MTJ) structure and a second MTJ structure over the first bottom electrode via and the second bottom electrode via, respectively; and a dielectric layer over the ILD layer and in contact with sidewalls of the first bottom electrode via and sidewalls of the second bottom electrode via, wherein the dielectric layer comprises a first recessed region and a second recessed region between the first bottom electrode via and the second bottom electrode via, and the second recessed region is recessed from a bottom of the first recessed region.
- **11**. The IC structure of claim 10, wherein in a cross-sectional view, the first recessed region in the dielectric layer is laterally between the second recessed region in the dielectric layer and a logic region.
- **12**. The IC structure of claim 10, wherein the bottom of the first recessed region is lower than a top surface of the first bottom electrode via.
- **13**. The IC structure of claim 10, wherein the second recessed region has a bottom higher than a bottom surface of the first bottom electrode via.
- **14.** The IC structure of claim 10, wherein the dielectric layer has a bottom surface higher than a bottom surface of the first bottom electrode via.
- **15.** The IC structure of claim 10, wherein the dielectric layer further comprises a third recessed

region disposed laterally outside an interval defined between the first and second bottom electrode vias.

- **16**. The IC structure of claim 15, wherein a bottom of the third recessed region is higher than a bottom of the second recessed region.
- **17**. The IC structure of claim 15, wherein a bottom of the third recessed region is lower than the bottom of the first recessed region.
- **18**. An IC structure comprising: a first bottom electrode via, a second bottom electrode via, and a third bottom electrode via over an interlayer dielectric (ILD) layer; a first magnetic tunnel junction (MTJ) structure, a second MTJ structure, and a third MTJ structure over the first bottom electrode via, the second bottom electrode via, and the third bottom electrode via, respectively; and a dielectric layer having a bottommost position higher than a bottom surface of the first bottom electrode via and a topmost position lower than a top surface of the first MTJ structure, wherein the dielectric layer has a first surface profile between the first bottom electrode via and the second bottom electrode via, and a second surface profile between the second bottom electrode via and the third bottom electrode via has a different shape than the second surface profile between the second bottom electrode via and the third bottom electrode via in a cross-sectional view.
- **19.** The IC structure of claim 18, wherein the first surface profile of the dielectric layer between the first and second bottom electrode vias is a stepped profile.
- **20.** The IC structure of claim 19, wherein a bottommost point of the stepped profile is lower than a bottommost point of the second surface profile between the second and third bottom electrode vias.