DMA1 Proofs

Closure Lemma

Lemma

A functional dependency $X \to Y$ is in the armstrong-extended F if and only if Y is determined by X.

$$X o Y \in F^A \quad <=> \quad Y \subseteq X^+$$

& Hint

Obviously, $X \to Y$ needs to belong to F before belonging to F^A . $Y \subseteq X^+$ is equal to saying that the dependency is in F.

Proof

"=>" - If
$$X o Y$$
 is in F^A then $Y \subseteq X^+$

⚠ Warning

The premise here is that $X \to Y$ is in F^A .

1. By decomposition rule, we obtain:

$$X o K \in F^A \quad orall K \in Y$$

2. Knowing the definition of X^+ , we also obtain that:

$$K \in X^+ \quad orall K \in Y$$

& Hint

I guess that the definition of X^+ implies this equivalence:

$$X o K \in F^A \quad == \quad K \in X^+$$

3. Which means that:

$$Y \subseteq X^+$$

:≡ Example

$$X o BC\in F^A$$

$$X
ightarrow B \in F^A \quad ext{and} \quad X
ightarrow C \in F^A$$
 $B \in X^+ \quad ext{and} \quad C \in X^+$ $BC \subseteq X^+$

"<=" - If $Y\subseteq X^+$ then X o Y is in F^A

Marning

The premise here is that Y is contained in X^+

1. Since $Y \subseteq X^+$, it holds that:

$$X o K \in F^A \quad orall K \in Y$$

2. Wich, by union rule, implies that:

$$X o Y \in F^A$$

∃ Example

$$BC \subseteq X^+$$
 $X o B \in F^A \quad ext{and} \quad X o C \in F^A$ $X o BC \in F^A$

Closure inclusion Lemma

Lemma

If F is dontained in G^+ , then F^+ is also contained in G^+ .

$$\text{If} \quad F \subseteq G^+ \quad \text{then} \quad F^+ \subseteq G^+$$

Proof

The premise is that we know that $F \subseteq G^+$ is True.

Let F' be a set of functional dependencies derived by F through the axioms. We indicate this process of deriving by:

$$F
ightarrow^A F'$$

1. It holds that F' can be derived through the axioms from F if and only if F' is in F^+ .

$$F
ightarrow^A F'$$
 iff $F \subset F^+$

& Hint

Since F^+ contains all possible derivate dependencies of F, if F' was derived from F, it must be a subset of F^+ .

2. This implies that F^+ can be derived from F through the axioms.

$$F
ightarrow^A F^+$$

3. Now we have demonstrated that we can get F^+ from F. If we can get F from G, then we know that we can get F^+ from G.

$$F\subseteq G^+ \quad ext{iff} \quad G o^A F o^A F^+$$

& Hint

The premise here is that $F \subseteq G^+$ is True, so $G \to^A F \to^A F^+$ is also True.

4. $G \to^A F \to^A F^+$ being true means that we can get F^+ from G, and so G^+ also contains F^+ .

$$F^+ \subseteq G^+$$

$$F^A = F^+$$

Theorem

 F^+ is equal to F^A .

Proof (By double inclusion)

$$F^A \subseteq F^+$$

Base case(n=0):

We don't use any axiom, $X \to Y$ already belongs to F and also to F^+ .

හ Hint

Are there dependencies in F^A that we can obtain with 0 applications of the axioms? YES! The ones in F.

Induction case:

Here we are assuming that the dependencies obtained with n applications of the axioms are already in both F^A and F^+ .

What we are trying to do is apply the axioms another time(n+1) and prove that the resulting dependencies are in F^+ .

Reflexivity

We are obtaining $X \to Y \in F^A$ because Y is part of X.

& Hint

We know for sure that the dependency is in F^A , because we obtained i through axioms, now we gotta demonstrate that it's also in F^+ .

We know that the dependencies in F^+ need to satisfy every legal instance of R, so we need to ensure that by using a random dependency.

 $X \rightarrow Y$ is legal in R if:

$$t_1[x]=t_2[x]
ightarrow t_1[y]=t_2[y]$$

In the case of reflexivity, this is always true, because Y is part of X.