1) Напишите разложение вектора \overline{x} по векторам $\overline{e}_1, \ \overline{e}_2, \ \overline{e}_3,$ если это возможно:

a)
$$\overline{x}(5, -2, 10), \overline{e}_1(1, -1, 2), \overline{e}_2(-1, 3, -2), \overline{e}_3(3, -2, 6);$$

6)
$$\overline{x}(3, 2, 5)$$
, $\overline{e}_1(1, 2, 1)$, $\overline{e}_2(1, -1, 4)$, $\overline{e}_3(1, 1, 2)$;

B)
$$\overline{x}(-3, 7, 4), \overline{e}_1(-2, 2, 1), \overline{e}_2(2, 0, 1), \overline{e}_3(1, 1, 1).$$

Сделайте вывод о расположении векторов \overline{x} , \overline{e}_{1} , \overline{e}_{2} , \overline{e}_{3} .

2) Коллинеарны ли векторы \bar{p} и \bar{q} ?

a)
$$\bar{p} = 3\bar{a} - 2\bar{b}$$
, $\bar{q} = -\bar{a} + 2\bar{b}$, $\bar{a}(2, 1, -2)$, $\bar{b}(1, -1, 1)$;

6)
$$\overline{p} = -\overline{a} + 2\overline{b}$$
, $\overline{q} = 2\overline{a} - 4\overline{b}$, $\overline{a}(1, 12, 0)$, $\overline{b}(-1, -2, 3)$.

- 3)Докажите, что векторы $\bar{e}_1(2,2,-1)$, $\bar{e}_2(0,4,8)$, $\bar{e}_3(-1,-1,3)$ образуют базис геометрического векторного пространства V^3 и найдите координаты вектора $\bar{a}(1,1,2)$ в этом базисе.
- 4)Даны векторы $\overline{a} = 5\overline{m} 8\overline{n}$, $\overline{b} = -2\overline{m} + 3\overline{n}$, где $|\overline{m}| = 4$, $|\overline{n}| = 3$, $\varphi = \angle(\overline{m}, \overline{n}) = \frac{4\pi}{3}$. Найдите: a) $(2\overline{a} 3\overline{b}) \cdot (\overline{a} + 2\overline{b})$; б) $|\overline{a}|$; в) пр $_{\overline{b}}(2\overline{a} 3\overline{b})$; г) $\cos \angle(\overline{a}, \overline{b})$.
- 5)Даны векторы $\overline{a}(-1,2,-1)$ и $\overline{b}(3,2,-2)$ в ортонормированном базисе $e=(\overline{e}_1, \overline{e}_2, \overline{e}_3)$ геометрического векторного пространства V^3 . Найдите: а) $|\overline{a}|$ и $|\overline{b}|$; б) $\overline{a} \cdot \overline{b}$; в) пр $_{\overline{b}}(\overline{a}-2\overline{b})$; г) $\cos \angle (\overline{a}+\overline{b}, 3\overline{b}-2\overline{a})$.
- 6)Докажите, что множество $L^1 = \left\{ \alpha \overline{a} \,\middle|\, \overline{a} \in V^3, \ \overline{a} \neq \overline{0} \ \text{и} \ \forall \alpha \in R \right\}$ является

векторным подпространством геометрического векторного пространства V^3 .

7)Пусть a – прямая, которой параллелен вектор $\overline{a} \neq \overline{0}$. Докажите, что множество $L^1 = \left\{ \alpha \overline{a} \,\middle|\, \overline{a} \in V^3, \ \overline{a} \neq \overline{0} \ \text{и} \ \forall \alpha \in R \right\}$ – это множество всех тех и только тех векторов геометрического векторного пространства V^3 , которые параллельны прямой a.

8) Проверьте векторы \bar{a}, \bar{b} на коллинеарность:

a)
$$\bar{a}(2,-2)$$
, $\bar{b}(-6,-1)$;

6)
$$\bar{a}(-4,7)$$
, $\bar{b}(-1,\frac{7}{4})$.

9)Докажите, что векторы $\overline{a}(1,1)$, $\overline{b}(3,4)$ образуют базис в векторной плоскости L^2 и найдите координаты вектора $\overline{c}(-2,1)$ в этом базисе.

10)Пусть точки A(2,3), B(-2,-2), C(1,12), заданы своими координатами в о/н репере $(O,\overline{e}_1,\overline{e}_2)$. Найдите: а) $|\overline{AB}|$ и $|\overline{AC}|$; б) $\overline{AB} \cdot \overline{BC}$; в) пр $_{\overline{AC}} (3\overline{AB} - 2\overline{BC})$; г) $\cos \angle (2\overline{AB},\overline{AC} - \overline{BC})$.

11) Пусть даны базисы $e=\left(\overline{e}_1,\ \overline{e}_2\right)$ и $e'=\left(\overline{e}_1',\ \overline{e}_2'\right)$ такие, что $e=\left(\overline{e}_1,\ \overline{e}_2\right)$ – правый, а $\begin{cases} \overline{e}_1'=-2\overline{e}_1+\overline{e}_2,\\ \overline{e}_2'=-\overline{e}_1+\overline{e}_2. \end{cases}$

Выясните: а) базисы e и e' ориентированы одинаково или противоположно; б) ориентацию базисов e и e'.

12) Определите ориентацию базисов из векторной плоскости L^2 , используя правило правой и левой рук.

