Cartan MASAs and Exact Sequences of Inverse Semigroups

Adam H. Fuller (University of Nebraska - Lincoln) joint work with Allan P. Donsig and David R. Pitts

NIFAS Nov. 2014, Des Moines, Iowa

Cartan MASAs

Let $\mathcal M$ be a von Neumann algebra. A maximal abelian subalgebra (MASA) $\mathcal D$ in $\mathcal M$ is a *Cartan MASA* if

- the unitaries $U \in \mathcal{M}$ such that $U\mathcal{D}U^* = U^*\mathcal{D}U = \mathcal{D}$ span a weak-* dense subset in \mathcal{M} ;
- ② there is a normal, faithful conditional expectation $E: \mathcal{M} \to \mathcal{D}$.

Cartan MASAs

Let $\mathcal M$ be a von Neumann algebra. A maximal abelian subalgebra (MASA) $\mathcal D$ in $\mathcal M$ is a *Cartan MASA* if

- the unitaries $U \in \mathcal{M}$ such that $U\mathcal{D}U^* = U^*\mathcal{D}U = \mathcal{D}$ span a weak-* dense subset in \mathcal{M} ;
- **2** there is a normal, faithful conditional expectation $E: \mathcal{M} \to \mathcal{D}$.

Alternatively

- **1** the partial isometries $V \in \mathcal{M}$ such that $V\mathcal{D}V^*$, $V^*\mathcal{D}V \subseteq \mathcal{D}$ span a weak-* dense subset in \mathcal{M} ;
- ② there is a normal, faithful conditional expectation $E : \mathcal{M} \to \mathcal{D}$.

Cartan MASAs

Let $\mathcal M$ be a von Neumann algebra. A maximal abelian subalgebra (MASA) $\mathcal D$ in $\mathcal M$ is a *Cartan MASA* if

- the unitaries $U \in \mathcal{M}$ such that $U\mathcal{D}U^* = U^*\mathcal{D}U = \mathcal{D}$ span a weak-* dense subset in \mathcal{M} ;
- ② there is a normal, faithful conditional expectation $E: \mathcal{M} \to \mathcal{D}$.

Alternatively

- **1** the partial isometries $V \in \mathcal{M}$ such that $V\mathcal{D}V^*$, $V^*\mathcal{D}V \subseteq \mathcal{D}$ span a weak-* dense subset in \mathcal{M} ;
- **2** there is a normal, faithful conditional expectation $E: \mathcal{M} \to \mathcal{D}$.

We will call the pair $(\mathcal{M}, \mathcal{D})$ a *Cartan pair*. We call the normalizing partial isometries *groupoid normalizers*, written $\mathcal{G}_{\mathcal{M}}(\mathcal{D})$.

Examples of Cartan Pairs

Example

Let M_n be the $n \times n$ complex matrices, and let D_n be the diagonal $n \times n$ matrices. Then (M_n, D_n) is a Cartan pair:

- **1** the matrix units normalize D_n and generate M_n ;
- 2 The map

$$E: [a_{ij}] \mapsto \operatorname{diag}[a_{11}, \ldots, a_{nn}]$$

gives a faithful normal conditional expectation.

Examples of Cartan Pairs

Example

Let M_n be the $n \times n$ complex matrices, and let D_n be the diagonal $n \times n$ matrices. Then (M_n, D_n) is a Cartan pair:

- ① the matrix units normalize D_n and generate M_n ;
- 2 The map

$$E: [a_{ij}] \mapsto \operatorname{diag}[a_{11}, \ldots, a_{nn}]$$

gives a faithful normal conditional expectation.

Example

Let $\mathcal{D} = L^{\infty}(\mathbb{T})$ and let α be an action of \mathbb{Z} on \mathbb{T} by irrational rotation. Then $L^{\infty}(\mathbb{T})$ is a Cartan MASA in $L^{\infty}(\mathbb{T}) \rtimes_{\alpha} \mathbb{Z}$.

Examples of Cartan Pairs

Example

Let

$$G = \left\{ \begin{pmatrix} a & b \\ 0 & 1 \end{pmatrix} : a, b \in \mathbb{R}, \ a \neq 0 \right\},$$

and let

$$H = \left\{ \begin{pmatrix} 1 & b \\ 0 & 1 \end{pmatrix} : b \in \mathbb{R} \right\}.$$

Then H is a normal subgroup of G and L(H) is Cartan MASA in L(G).

Feldman & Moore approach

Feldman and Moore (1977) explored Cartan pairs $(\mathcal{M}, \mathcal{D})$ where \mathcal{M}_* is separable and $\mathcal{D} = L^{\infty}(X, \mu)$. They showed:

1 there is a measurable equivalence relation R on X with countable equivalence classes and a 2-cocycle σ on R s.t.

$$\mathcal{M} \simeq \mathbf{M}(R, \sigma)$$
 and $\mathcal{D} \simeq \mathbf{A}(R, \sigma)$,

where $\mathbf{M}(R, \sigma)$ are "functions on R" and $\mathbf{A}(R, \sigma)$ are the "functions" supported on diag. $\{(x, x) : x \in X\}$;

 $oldsymbol{2}$ every sep. acting pair $(\mathcal{M},\mathcal{D})$ arises this way.

A simple example

Consider the Cartan pair (M_3, D_3) . Let $\mathcal{G} = \mathcal{G}_{M_3}(D_3)$. E.g., an element of \mathcal{G} could look like

$$V = \begin{bmatrix} 0 & \lambda & 0 \\ \mu & 0 & 0 \\ 0 & 0 & \gamma \end{bmatrix},$$

with $\lambda, \mu, \gamma \in \mathbb{T}$.

Let $\mathcal{P} = \mathcal{G} \cap D_n$. And let $\mathcal{S} = \mathcal{G}/\mathcal{P}$. So elements of \mathcal{S} are of the form

$$S = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}.$$

From (M_n, D_n) we have 3 semigroups: \mathcal{P} , \mathcal{G} and \mathcal{S} .

A simple example: continued

Conversely, starting with S, we can construct P: P is all the continuous functions from the idempotents of S into \mathbb{T} . From S and P we can construct G, since every element of G is the product of an element in S and an element in P. From G we can construct (M_n, D_n) as the span of G.

Our Objective: Give an alternative approach using algebraic rather than measure theoretic tools which

- conceptually simpler;
- applies to the non-separably acting case.

Inverse Semigroups

A semigroup S is an *inverse semigroup* if for each $s \in S$ there is a unique "inverse" element s^{\dagger} such that

$$ss^{\dagger}s = s$$
 and $s^{\dagger}ss^{\dagger} = s^{\dagger}$.

We denote the idempotents in an inverse semigroup S by $\mathcal{E}(S)$. The idempotents form an abelian semigroup. For any element $s \in S$, $ss^{\dagger} \in \mathcal{E}(S)$.

Inverse Semigroups

A semigroup S is an *inverse semigroup* if for each $s \in S$ there is a unique "inverse" element s^{\dagger} such that

$$ss^{\dagger}s = s$$
 and $s^{\dagger}ss^{\dagger} = s^{\dagger}$.

We denote the idempotents in an inverse semigroup S by $\mathcal{E}(S)$. The idempotents form an abelian semigroup. For any element $s \in S$, $ss^{\dagger} \in \mathcal{E}(S)$.

An inverse semigroup ${\mathcal S}$ has a natural partial order defined by

$$s \le t$$
 if and only if $s = te$

for some idempotent $e \in \mathcal{E}(S)$.

Example

Consider the Cartan pair (M_n, D_n) again. Again, let

$$G = \mathcal{G}_{M_n}(D_n)$$

= {partial isometries $V \in M_n \colon VD_nV^* \subseteq D_n, \ V^*D_nV \subseteq D_n$ }.

Then G is an inverse semigroup:

• if $V, W \in G$ then

$$(VW)D_n(VW)^* = V(WD_nW^*)V^* \subseteq D_n,$$

so $VW \in G$;

Example

Consider the Cartan pair (M_n, D_n) again. Again, let

$$G = \mathcal{G}_{M_n}(D_n)$$
= {partial isometries $V \in M_n \colon VD_nV^* \subseteq D_n, \ V^*D_nV \subseteq D_n$ }.

Then G is an inverse semigroup:

• if $V, W \in G$ then

$$(VW)D_n(VW)^* = V(WD_nW^*)V^* \subseteq D_n,$$

so $VW \in G$;

• the "inverse" of V is V^* ;

Example

Consider the Cartan pair (M_n, D_n) again. Again, let

$$G = \mathcal{G}_{M_n}(D_n)$$

= {partial isometries $V \in M_n \colon VD_nV^* \subseteq D_n, \ V^*D_nV \subseteq D_n$ }.

Then G is an inverse semigroup:

• if $V, W \in G$ then

$$(VW)D_n(VW)^* = V(WD_nW^*)V^* \subseteq D_n,$$

so $VW \in G$;

- the "inverse" of V is V*;
- the idempotents are the projections in D_n ;

Example

Consider the Cartan pair (M_n, D_n) again. Again, let

$$G = \mathcal{G}_{M_n}(D_n)$$

= {partial isometries $V \in M_n \colon VD_nV^* \subseteq D_n, \ V^*D_nV \subseteq D_n$ }.

Then G is an inverse semigroup:

• if $V, W \in G$ then

$$(VW)D_n(VW)^* = V(WD_nW^*)V^* \subseteq D_n,$$

so $VW \in G$;

- the "inverse" of V is V*;
- the idempotents are the projections in D_n ;
- $V \leq W$ if V = WP for some projection $P \in D_n$.

Bigger Matrix example

More generally...

Example

Let $(\mathcal{M}, \mathcal{D})$ be a Cartan pair. Then the groupoid normalizers $\mathcal{G}_M(\mathcal{D})$ form an inverse semigroup.

• if $V, W \in \mathcal{G}_M(\mathcal{D})$ then

$$(VW)\mathcal{D}(VW)^* = V(W\mathcal{D}W^*)V^* \subseteq \mathcal{D},$$

so
$$VW \in \mathcal{G}_M(\mathcal{D})$$
;

- the "inverse" of V is V^* ;
- the idempotents are the projections in \mathcal{D} ;
- $V \leq W$ if V = WP for some projection $P \in D$.

Extensions of Inverse Semigroups

Let S and P be inverse semigroups. And let

$$\pi\colon P\to S$$
,

be a surjective homomorphism such that $\pi|_{\mathcal{E}(P)}$ is an isomorphism from $\mathcal{E}(P)$ to $\mathcal{E}(S)$.

An idempotent separating extension of S by P is an inverse semigroup G with

$$P \xrightarrow{\iota} G \xrightarrow{q} S$$

and

- ι is an injective homomorphism;
- q is a surjective homomorphism;
- $q(g) \in \mathcal{E}(S)$ if and only if $g = \iota(p)$ for some $p \in P$;
- $q \circ \iota = \pi$.

Note that $\mathcal{E}(P) \cong \mathcal{E}(G) \cong \mathcal{E}(S)$.

The Munn Congruence

Let G be an inverse semigroup. Define an equivalence relation (the Munn congruence) \sim on G by

$$s \sim t \text{ if } ses^{\dagger} = tet^{\dagger} \text{ for all } e \in \mathcal{E}(G).$$

The Munn Congruence

Let G be an inverse semigroup. Define an equivalence relation (the Munn congruence) \sim on G by

$$s \sim t \text{ if } ses^{\dagger} = tet^{\dagger} \text{ for all } e \in \mathcal{E}(G).$$

If $s \sim t$ and $u \sim v$ then

$$su \sim tv$$
.

Thus $S = G/\sim$ is an inverse semigroup.

The Munn Congruence

Let G be an inverse semigroup. Define an equivalence relation (the Munn congruence) \sim on G by

$$s \sim t \text{ if } ses^{\dagger} = tet^{\dagger} \text{ for all } e \in \mathcal{E}(G).$$

If $s \sim t$ and $u \sim v$ then

$$su \sim tv$$
.

Thus $S = G/\sim$ is an inverse semigroup.

Let $P = \{v \in G : v \sim e \text{ for some } e \in \mathcal{E}(G)\}$. Then P is an inverse semigroup.

And G is an extension of S by P:

$$P \hookrightarrow G \rightarrow S$$
.

From Cartan Pairs to Extensions of Inverse Semigroups

Let $(\mathcal{M}, \mathcal{D})$ be a Cartan pair. Let

$$G = \mathcal{G}_{\mathcal{M}}(\mathcal{D})$$

= $\{v \in \mathcal{M} \text{ a partial isometry} : v\mathcal{D}v^* \subseteq \mathcal{D} \text{ and } v^*\mathcal{D}v \subseteq \mathcal{D}\}.$

From Cartan Pairs to Extensions of Inverse Semigroups

Let $(\mathcal{M}, \mathcal{D})$ be a Cartan pair. Let

$$\begin{split} G &= \mathcal{G}_{\mathcal{M}}(\mathcal{D}) \\ &= \{ v \in \mathcal{M} \text{ a partial isometry: } v\mathcal{D}v^* \subseteq \mathcal{D} \text{ and } v^*\mathcal{D}v \subseteq \mathcal{D} \}. \end{split}$$

Let $S=G/\sim$, where \sim is the Munn congruence on G and let

$$P = \{ V \in G \colon V \sim P, P \in \text{Proj}(\mathcal{D}) \}.$$

Definition

We call the extension

$$P \hookrightarrow G \rightarrow S$$
,

the extension associated to the Cartan pair $(\mathcal{M}, \mathcal{D})$.

Properties of associated extensions

Let $(\mathcal{M}, \mathcal{D})$ be a Cartan pair, and let

$$P \hookrightarrow G \rightarrow S$$
,

be the associated extension.

Then $P = \mathcal{G}_{\mathcal{M}}(\mathcal{D}) \cap \mathcal{D}$, i.e. P is simply the partial isometries in \mathcal{D} .

Properties of associated extensions

Let $(\mathcal{M}, \mathcal{D})$ be a Cartan pair, and let

$$P \hookrightarrow G \rightarrow S$$
,

be the associated extension.

Then $P = \mathcal{G}_{\mathcal{M}}(\mathcal{D}) \cap \mathcal{D}$, i.e. P is simply the partial isometries in \mathcal{D} . The inverse semigroup S has the following properties

- **1** S is fundamental: $\mathcal{E}(S)$ is maximal abelian in S;
- $\mathcal{E}(S)$ is a hyperstonean boolean algebra, i.e. the idempotents are the projection lattice of an abelian W^* -algebra;
- **4** for every pairwise orthogonal family $\mathcal{F} \subseteq S$, $\bigvee \mathcal{F}$ exists in S.
- S contains 1 and 0.

Properties of associated extensions

Let $(\mathcal{M}, \mathcal{D})$ be a Cartan pair, and let

$$P \hookrightarrow G \rightarrow S$$
,

be the associated extension.

Then $P = \mathcal{G}_{\mathcal{M}}(\mathcal{D}) \cap \mathcal{D}$, i.e. P is simply the partial isometries in \mathcal{D} . The inverse semigroup S has the following properties

- **1** S is fundamental: $\mathcal{E}(S)$ is maximal abelian in S;
- $\mathcal{E}(S)$ is a hyperstonean boolean algebra, i.e. the idempotents are the projection lattice of an abelian W^* -algebra;
- **4** for every pairwise orthogonal family $\mathcal{F} \subseteq S$, $\bigvee \mathcal{F}$ exists in S.
- **5** S contains 1 and 0.

Definition

An inverse semigroup S, satisfying the conditions above is called a *Cartan inverse monoid*.

Example

In the matrix example (M_n, D_n) , the semigroups P, G and S are the semigroups discussed earlier:

- **①** *G* is the partial isometries *V* such that VD_nV^* , $V^*D_nV \subseteq D_n$;
- ② P is the partial isometries in D_n ;

Equivalent Extensions of Cartan Inverse monoid

Let $\alpha \colon \mathcal{S}_1 \to \mathcal{S}_2$ be an isomorphism of Cartan inverse monoids. Then $\mathcal{E}(\mathcal{S}_i)$ is the lattice of projections for a W^* -algebra, $\mathcal{D}_i = \mathcal{C}(\widehat{\mathcal{E}(\mathcal{S}_i)})$. The isomorphism α induces an isomorphism $\widetilde{\alpha}$ from \mathcal{D}_1 to \mathcal{D}_2 .

Equivalent Extensions of Cartan Inverse monoid

Let $\alpha \colon S_1 \to S_2$ be an isomorphism of Cartan inverse monoids. Then $\mathcal{E}(S_i)$ is the lattice of projections for a W^* -algebra, $\mathcal{D}_i = C(\widehat{\mathcal{E}(S_i)})$. The isomorphism α induces an isomorphism $\widetilde{\alpha}$ from \mathcal{D}_1 to \mathcal{D}_2 .

Definition

Let S_1 and S_2 be isomorphic Cartan inverse monoids. Let P_i be the partial isometries in \mathcal{D}_i . Extensions G_i of S_i by P_i are equivalent if there is an isomorphism $\underline{\alpha} \colon G_1 \to G_2$ such that

$$P_1 \xrightarrow{\iota_1} G_1 \xrightarrow{q_1} S_1$$

$$\widetilde{\alpha} \downarrow \qquad \qquad \underline{\alpha} \downarrow \qquad \qquad \alpha \downarrow$$

$$P_2 \xrightarrow{\iota_2} G_2 \xrightarrow{q_2} S_2.$$

commutes.

More on Extensions of Inverse Monoids

It was shown by Laush (1975) that there is one-to-one correspondence between extensions of S by P and the second cohomology group $H^2(S,P)$.

It is also shown that every extension of S by P is determined by cocycle function $\sigma \colon S \times S \to P$.

Uniqueness of Extension

Theorem

Let $(\mathcal{M}_1, \mathcal{D}_1)$ and (M_2, \mathcal{D}_2) be two Cartan pairs with associated extensions

$$P_i \hookrightarrow G_i \rightarrow S_i$$

for i = 1, 2.

There is a normal isomorphism $\theta \colon \mathcal{M}_1 \to \mathcal{M}_2$ such $\theta(\mathcal{D}_1) = \mathcal{D}_2$ if and only if the two associated extensions are equivalent.

Going in the other direction

Let S be a Cartan inverse monoid. Let $\mathcal{D} = C(\mathcal{E}(S))$, and let P be the partial isometries in \mathcal{D} . Given an extension

$$P \hookrightarrow G \rightarrow S$$

we want to construct a Cartan pair $(\mathcal{M}, \mathcal{D})$ with associated extension (equivalent to) $P \hookrightarrow G \to S$.

A \mathcal{D} -valued Reproducing kernel space

Let j be an order-preserving map, $j \colon S \to G$ such that $j \circ q = \mathrm{id}$. That is $j(s) \leq j(t)$ when $s \leq t$ and $j \colon \mathcal{E}(S) \to \mathcal{E}(G)$ is an isomorphism.

A \mathcal{D} -valued Reproducing kernel space

Let j be an order-preserving map, $j \colon S \to G$ such that $j \circ q = \mathrm{id}$. That is $j(s) \leq j(t)$ when $s \leq t$ and $j \colon \mathcal{E}(S) \to \mathcal{E}(G)$ is an isomorphism.

Define a map

$$K \colon S \times S \to \mathcal{D}$$

by
$$K(s,t)=j(s^{\dagger}t\wedge 1)$$
.

A \mathcal{D} -valued Reproducing kernel space

Let j be an order-preserving map, $j \colon S \to G$ such that $j \circ q = \mathrm{id}$. That is $j(s) \leq j(t)$ when $s \leq t$ and $j \colon \mathcal{E}(S) \to \mathcal{E}(G)$ is an isomorphism.

Define a map

$$K \colon S \times S \to \mathcal{D}$$

by $K(s,t) = j(s^{\dagger}t \wedge 1)$.

The idempotent $s^\dagger t \wedge 1$ is the minimal idempotent e such that

$$se = te = s \wedge t$$
.

Thus K(s,t) is the idempotent in G defining $j(s) \wedge j(t)$.

A \mathcal{D} -valued Reproducing kernel space

Let j be an order-preserving map, $j \colon S \to G$ such that $j \circ q = \mathrm{id}$. That is $j(s) \leq j(t)$ when $s \leq t$ and $j \colon \mathcal{E}(S) \to \mathcal{E}(G)$ is an isomorphism.

Define a map

$$K \colon S \times S \to \mathcal{D}$$

by $K(s,t) = j(s^{\dagger}t \wedge 1)$.

The idempotent $s^\dagger t \wedge 1$ is the minimal idempotent e such that

$$se = te = s \wedge t$$
.

Thus K(s,t) is the idempotent in G defining $j(s) \wedge j(t)$. The map K is positive: that is for $c_1, \ldots, c_k \in \mathbb{C}$ and $s_1, \ldots, s_k \in S$

$$\sum_{i,j} \overline{c_i} c_j K(s_i, s_j) \geq 0.$$

A \mathcal{D} -valued Reproducing kernel space

For each $s \in S$ define a "kernel-map" $k_s \colon S \to \mathcal{D}$ by

$$k_s(t) = K(t,s).$$

Let $\mathfrak{A}_0 = \operatorname{span}\{k_s \colon s \in S\}$. The positivity of K shows that the

$$\langle \sum c_i k_{s_i}, \sum d_j k_{t_j} \rangle = \sum_{i,j} \overline{c_i} d_j K(s_i, t_j)$$

defines a \mathcal{D} -valued inner product on \mathfrak{A}_0 . Let \mathfrak{A} be completion of \mathfrak{A}_0 .

Thus ${\mathfrak A}$ is a reproducing kernel Hilbert ${\mathcal D}$ -module of functions from S into ${\mathcal D}$.

A left representation of *G*

For $g \in G$ define an adjointable operator $\lambda(g)$ on ${\mathfrak A}$ by

$$\lambda(g)k_s=k_{q(g)s}\sigma(g,s),$$

where $\sigma \colon G \times S \to P$ is a "cocycle-like" function (related to the cocycles of Lausch). This is determined by the equation

$$gj(s) = j(q(g)s)\sigma(g,s),$$

i.e. elements of the form gj(s) can be factored into the product of an element in j(S) by an element in P.

A left representation of *G*

For $g \in G$ define an adjointable operator $\lambda(g)$ on ${\mathfrak A}$ by

$$\lambda(g)k_s=k_{q(g)s}\sigma(g,s),$$

where $\sigma \colon G \times S \to P$ is a "cocycle-like" function (related to the cocycles of Lausch). This is determined by the equation

$$gj(s) = j(q(g)s)\sigma(g,s),$$

i.e. elements of the form gj(s) can be factored into the product of an element in j(S) by an element in P. The mapping

$$\lambda \colon G \to L(\mathfrak{A})$$

is a representation of G by partial isometries.

A left representation of G on a Hilbert space

Let π be a faithful representation of $\mathcal D$ on a Hilbert space $\mathcal H$. We can form a Hilbert space $\mathfrak A\otimes_\pi\mathcal H$ by completing $\mathfrak A\otimes\mathcal H$ with respect to the inner product

$$\langle a \otimes h, b \otimes k \rangle := \langle h, \pi(\langle a, b \rangle) k \rangle.$$

A left representation of G on a Hilbert space

Let π be a faithful representation of $\mathcal D$ on a Hilbert space $\mathcal H$. We can form a Hilbert space $\mathfrak A\otimes_\pi\mathcal H$ by completing $\mathfrak A\otimes\mathcal H$ with respect to the inner product

$$\langle a \otimes h, b \otimes k \rangle := \langle h, \pi(\langle a, b \rangle)k \rangle.$$

Then π determines a faithful representation $\hat{\pi}$ of $L(\mathfrak{A})$ on the Hilbert space $\mathfrak{A} \otimes_{\pi} \mathcal{H}$ by

$$\hat{\pi}(T)(a\otimes h)=(Ta)\otimes h.$$

A left representation of G on a Hilbert space

Let π be a faithful representation of $\mathcal D$ on a Hilbert space $\mathcal H$. We can form a Hilbert space $\mathfrak A\otimes_\pi\mathcal H$ by completing $\mathfrak A\otimes\mathcal H$ with respect to the inner product

$$\langle a \otimes h, b \otimes k \rangle := \langle h, \pi(\langle a, b \rangle)k \rangle.$$

Then π determines a faithful representation $\hat{\pi}$ of $L(\mathfrak{A})$ on the Hilbert space $\mathfrak{A} \otimes_{\pi} \mathcal{H}$ by

$$\hat{\pi}(T)(a\otimes h)=(Ta)\otimes h.$$

Thus, we have a faithful representation of G on the hilbert space $\mathfrak{A} \otimes_{\pi} \mathcal{H}$ by

$$\lambda_{\pi} \colon g \mapsto \hat{\pi}(\lambda(g)).$$

Let $\mathcal{M}_q = \lambda(G)''$, and $\mathcal{D}_q = \lambda(\mathcal{E}(S))''$. Then $(\mathcal{M}_q, \mathcal{D}_q)$ is a Cartan pair such that

1 The pair $(\mathcal{M}_q, \mathcal{D}_q)$ is independent of choice of j and π ;

Let $\mathcal{M}_q = \lambda(G)''$, and $\mathcal{D}_q = \lambda(\mathcal{E}(S))''$. Then $(\mathcal{M}_q, \mathcal{D}_q)$ is a Cartan pair such that

- **①** The pair $(\mathcal{M}_q, \mathcal{D}_q)$ is independent of choice of j and π ;
- 2 \mathcal{D}_q is isomorphic to $\mathcal{D} = C(\widehat{\mathcal{E}(S)})$;

Let $\mathcal{M}_q = \lambda(G)''$, and $\mathcal{D}_q = \lambda(\mathcal{E}(S))''$. Then $(\mathcal{M}_q, \mathcal{D}_q)$ is a Cartan pair such that

- **①** The pair $(\mathcal{M}_q, \mathcal{D}_q)$ is independent of choice of j and π ;
- ② \mathcal{D}_q is isomorphic to $\mathcal{D} = C(\widehat{\mathcal{E}}(\widehat{S}))$;
- **3** The conditional expectation $E \colon \mathcal{M}_q \to \mathcal{D}_q$ is induced from the map

$$S \to \mathcal{E}(S)$$

 $s \mapsto s \wedge 1.$

Let $\mathcal{M}_q = \lambda(G)''$, and $\mathcal{D}_q = \lambda(\mathcal{E}(S))''$. Then $(\mathcal{M}_q, \mathcal{D}_q)$ is a Cartan pair such that

- **1** The pair $(\mathcal{M}_q, \mathcal{D}_q)$ is independent of choice of j and π ;
- ② \mathcal{D}_q is isomorphic to $\mathcal{D} = C(\widehat{\mathcal{E}(S)})$;
- $oldsymbol{3}$ The conditional expectation $E\colon \mathcal{M}_q o \mathcal{D}_q$ is induced from the map

$$S \to \mathcal{E}(S)$$

 $s \mapsto s \wedge 1.$

4 The extension associated to $(\mathcal{M}_q, \mathcal{D}_q)$ is equivalent to

$$P \hookrightarrow G \xrightarrow{q} S$$

(the extension we started with).

Main Theorem

Theorem (Feldman-Moore; Donsig-F-Pitts)

- If S is a Cartan inverse monoid and $P \hookrightarrow G \xrightarrow{q} S$ is an extension of S by $P := p.i.(C^*(\mathcal{E}(S)))$, then the extension determines a Cartan pair $(\mathcal{M}, \mathcal{D})$ which is unique up to isomorphism. Equivalent extensions determine isomorphic Cartan pairs.
- Every Cartan pair $(\mathcal{M}, \mathcal{D})$ determines uniquely an extension of a Cartan inverse semigroup S by $P, P \hookrightarrow G \stackrel{q}{\to} S$.