Estadística Inferencial

Capítulo X - Ejercicio 02

Aaric Llerena Medina

Se seleccionó una muestra aleatoria de tamaño 36 de una población con media μ para realizar la prueba de la hipótesis: $H_0: \mu = 100$, contra $H_1: \mu \neq 100$. De tal muestra se obtuvo la media 108 y la desviación estándar 24.

- a) Describa la regla de decisión en \bar{X} si el nivel de significación es 0.05.
- b) ¿Cuál es la decisión con respecto a H_0 , en el nivel dado?
- c) Halle el valor de P. De su comentario sobre este valor.

Solución:

a) Dado que la prueba es bilateral (porque $H_1: \mu \neq 100$), el nivel de significación $\alpha = 0.05$ se divide en dos colas, cada una con $\alpha/2 = 0.025$. Para calcular el valor crítico $Z_{\alpha/2}$ se obtiene de la tabla de distribución normal estándar:

La regla de decisión es rechazar H_0 si:

$$\bar{X} < \mu_0 - Z_{\alpha/2} \cdot \frac{\sigma}{\sqrt{n}}$$
 o $\bar{X} > \mu_0 + Z_{\alpha/2} \cdot \frac{\sigma}{\sqrt{n}}$

Como $\mu_0 = 100$, $\sigma = 24$ y n = 36, por lo que reemplazando, se obtienen los límites:

- Límite superior: $100 1.96 \cdot \frac{24}{\sqrt{36}} = 92.16$
- Límite inferior: $100 + 1.96 \cdot \frac{24}{\sqrt{36}} = 107.84$

Por lo tanto, se rechaza H_0 si $\bar{X} \leq 92.16$ o $\bar{X} \geq 107.84$.

b) Como el valor de la media (\bar{X}) es 108 y esta es se encuentra en la zona de rechazo de H_0 porque $\bar{X} \ge 107.84$. Por lo tanto, rechazamos H_0 .

Asimismo, se puede visualizar gráficamente en la curva de normalidad, por lo que primero debemos calcular el estadístico Z cuando la media de la muestra es 108:

$$Z_c = \frac{108 - 100}{\frac{24}{\sqrt{36}}} = \frac{8}{4} = 2$$

De forma visual, se aprecia como sigue la curva de normalidad:

Por lo tanto, queda comprobado que se rechaza H_0 , ya que $Z_c = 2$ es mayor que 1.96.

c) Para hallar el valor de P, se requiere el valor Z previamente ya calculado con el valor de 2 y esta en una distribución normal estándar tiene el valor de:

$$P(Z > 2) = 1 - P(Z \le 2) = 1 - 0.9772 = 0.0228$$

Como es una prueba bilateral, multiplicamos por 2:

$$\bar{P} = 2 \times 0.0228 = 0.0456$$

 \therefore Existe una probabilidad del 4.56% de obtener una media muestral de 108. Como $P=0.0456<\alpha=0.05$, hay evidencia suficiente para rechazar H_0 .