Дисперсионный анализ неполных данных на основе блок-схем с приложениями в медицине

Положиев Роман, группа 18.Б04-мм

Санкт-Петербургский государственный университет Прикладная математика и информатика Вычислительная стохастика и статистические модели

Научный руководитель: к.ф.-м.н., доцент Алексеева Н.П.

Введение

Дисперсионный анализ применяется для исследования влияния качественных переменных (факторов) на одну зависимую количественную переменную.

Полный факторный эксперимент — эксперимент, в котором реализуются все возможные сочетания уровней факторов, что трудоёмко либо невозможно.

Используемые данные

Больные COVID-19. Всего 242 пациента. Зависимая переменная — процент поражения легких. Факторы:

- Возраст (а уровней)
- Сатурация (*b* уровней)

Присутствует проблема трудоёмкости и/или невозможности проведения всех $a \times b$ групп испытаний.

В качестве решения этой проблемы предлагается использование дизайнов.

Дизайн

Дизайн $D(v,b,r,k,\lambda)$ — размещение v элементов (методов обработки) по b блокам размера k, что каждый элемент встречается r раз, а каждая пара λ раз.

Симметричный дизайн $D(v,k,\lambda)$ — случай v=b, r=k.

Пример

Фактор возраст имеет 6 уровней b_j , а фактор сатурация 4 уровня v_i . Возраст соответствует блоку, а сатурация методу обработки. Данные в соответствии с дизайном D(4,6,3,2,1) отмечены синим:

$\overline{v_i b_j}$	< 54	54–60	61–67	68–74	75–82	≥ 82
< 88	12	8	10	10	0	0
88-91	0	6	9	6	7	0
92-94	9	11	15	11	9	7
95–100	20	11	8	13	11	12

Цели работы

- Методы построения блок-схем;
- Дисперсионный анализ на блок-схемах с одним наблюдением в ячейке;
- Дисперсионный анализ для одинакового количества наблюдений в каждой ячейке.

Методы построения блок-схем

В рамках работы были рассмотрены три метода построения блок-схем, изложенных в (Дюге, 1972):

- С помощью построения проективной геометрии над полем Галуа;
- С помощью евклидовой геометрии над полем Галуа;
- С помощью абелевой группы.

Были построены следующие блок-схемы:

- D(7,3,1) с помощью PG(2,2);
- \bullet D(4,6,3,2,1) с помощью EG(2,2);
- D(9, 12, 4, 3, 1) с помощью G_3 .

Известные результаты. Модель дисперсионного анализа

Модель двухфакторного дисперсионного анализа на блок-схемах с одним наблюдением в ячейке (Дюге, 1972):

$$x_{ij} = \mu + v_i + b_j + \varepsilon_{ij}, \ \varepsilon_{ij} \sim N(0, \sigma).$$

- ullet μ генеральное среднее,
- ullet v_i дифференциальный эффект фактора v,
- ullet b_j дифференциальный эффект фактора b_j
- ε_{ij} независимые случайные ошибки.

Известные результаты. Суммы квадратов

В (Дюге, 1972) было показано:

Источник вариации	Сумма квадратов	Степени свободы		
Фактор <i>v</i>	$SS_{v} = \frac{k}{\lambda v} \sum_{i=1}^{v} \left(V_{i} - \frac{1}{k} T_{i} \right)^{2}$	$df_{v}=v-1$		
Фактор <i>b</i>	$SS_b = k \sum_{j=1}^b \left(\frac{B_j}{k} - \hat{\mu}^2 \right)^2$	$df_b = b - 1$		
Остаток (ошибка)	$SS_E = \sum_{ij} \left(x_{ij} - \hat{\mathbf{v}}_i + \frac{1}{k} \sum_i \eta_{ij} \hat{\mathbf{v}}_i - \frac{B_i}{k} \right)^2$	$df_E = bk - bv + 1$		
Общая	$SS_{\mathcal{T}} = \sum_{ij} (x_{ij} - \hat{\mu})^2$	$df_T = bk - 1$		

$$\bullet \ \hat{\mu} = \frac{\sum_{ij} x_{ij}}{bk},$$

•
$$\hat{\mathbf{v}}_i = \frac{kV_i - T_i}{\lambda \mathbf{v}}$$
,

$$oldsymbol{\eta}_{ij} = egin{cases} 1, & ext{если } x_{ij} ext{ существует} \ 0, & ext{иначе} \end{cases}$$

$$\bullet V_i = \sum_{j=1}^b x_{ij},$$

$$\bullet \ B_j = \sum_{i=1}^v x_{ij},$$

$$\bullet T_i = \sum_{j=1}^b \eta_{ij} B_j.$$

Известные результаты. Проверка гипотез

Нулевая гипотеза:

- Нет эффекта фактора v, то есть H_0 : $v_i = 0$,
- Нет эффекта фактора b, то есть H_0 : $b_i = 0$.

Статистические критерии:

$$F = \frac{SS_v/df_v}{SS_E/df_E} \sim F(df_v, df_E),$$

$$F = \frac{SS_b/df_b}{SS_E/df_E} \sim F(df_b, df_E).$$

Применение

Рассмотрим данные больных COVID-19.

Из переменной возраста и сатурации сделаем факторы с шестью и четырьмя уровнями соответственно.

Для каждой из получившихся 24 групп посчитаем среднее значение.

$v_i b_j$	1	2	3	4	5	6
1	66.00	62.00	67.46	73.85	69.38	53.67
2	58.33	55.64	67.22	51.67	51.18	45.56
3	26.38	32.50	42.00	49.75	50.60	34.78
4	34.75	33.56	67.46 67.22 42.00 51.50	40.00	61.33	44.90

Применим дизайн D(4,6,3,2,1). Заметим, что можно использовать различные подстановки данных.

Применение

Применим дисперсионный анализ на дизайне D(4,6,3,2,1), используя всевозможные подстановки данных.

Распределение p-value по фактору сатурации и возраста:

Вывод: сложно судить о наличии влияния факторов.

Полученные результаты. Модель

Модель дисперсионного анализа с T наблюдениями в каждой ячейке:

$$x_{ijt} = \mu + v_i + b_j + \varepsilon_{ijt}, \quad \varepsilon_{ijt} \sim N(0, \sigma),$$

где x_{ijt} — значение переменной x полученной при t-ом повторении эксперимента.

Оценим параметры модели по методу наименьших квадратов:

$$L = \sum_{ijt} (x_{ijt} - \mu - v_i - b_j)^2 \to \min.$$

Требуя, чтобы:

$$\sum_{i}\hat{v}_{i}=0,\quad\sum_{j}\hat{b}_{j}=0.$$

Полученные результаты. Оценка параметров

Находя

$$\frac{\partial L}{\partial \mu} = 0, \ \frac{\partial L}{\partial v_i} = 0, \ \frac{\partial L}{\partial b_j} = 0.$$

Получаем оценку параметров:

$$\hat{\mu} = \frac{\sum_{ijt} x_{ijt}}{bkT}, \ \hat{v}_i = \frac{kV_i - T_i}{\lambda v}, \ \hat{b}_j = \frac{1}{k}(B_j - \sum_{(j)} \hat{v}_e) - \hat{\mu}.$$

$$\sum\limits_{(i)} \hat{b_l}$$
 — сумма $\hat{b_l}$ по блокам содержащих i -ый метод обработки,

$$\sum\limits_{(j)} \hat{v_e}$$
 — сумма $\hat{v_e}$ по всем методам, встречающимся в j -ом блоке,

$$V_i = \sum_{(i)} \overline{x_{ij*}}, \ B_j = \sum_{(j)} \overline{x_{ij*}}, \ T_i = \sum_{(i)} B_j.$$

Полученные результаты. Разложение суммы квадратов

Утверждение,

$$\sum_{iit} (x_{ijt} - \hat{\mu})^2 = S_e^2 + S_v^2 + S_b^2,$$

где

$$S_{e}^{2} = \sum_{ijt} \left(x_{ijt} - (\hat{v}_{i} - \frac{1}{k} \sum_{i} \hat{v}_{e}) - \frac{B_{j}}{k} \right)^{2}, \qquad df_{e} = bkT - v - b + 1,$$

$$S_{v}^{2} = \frac{\lambda vT}{k} \sum_{i} \hat{v}_{i}^{2}, \qquad df_{v} = v - 1,$$

$$S_{b}^{2} = kT \sum_{i} \left(\frac{B_{i}}{k} - \hat{\mu} \right)^{2}, \qquad df_{b} = b - 1.$$

Статистические критерии:

$$F = rac{S_v/df_v}{S_e/df_e} \sim F(df_v, df_e),$$
 $F = rac{S_b/df_b}{S_e/df_e} \sim F(df_b, df_e).$

Новые результаты. Применение

Рассмотрим данных о лечении больных от COVID-19. Возьмем следующие уровни факторов.

$v_i b_j$	< 54	54–60	61–67	68–74	75–82	≥ 82
< 88	12	8	10	10	3	4
88-91	4	6	9	6	7	5
92-94	9	11	15	11	9	7
95–100	20	11	8	13	11	12

Удалим наблюдения выделенные красным цветом.

Случайным образом выкинем наблюдения из ячейки, если их больше 6.

Проведем дисперсионный анализ на блок-схеме D(4,6,3,2,1) с 6 наблюдениями в каждой ячейке по всевозможным подстановкам данных.

Новые результаты. Применение

Проведем такую процедуру N=100 раз, беря каждый раз среднее значение p-value. Получившееся распределение средних p-value по каждому фактору:

Вывод: снизился разброс значений.

Заключение

Результаты работы:

- Изучены методы построения блок-схем и построены блок-схемы тремя методами;
- Изучен и применен дисперсионный анализ на блок-схемах с одним наблюдением в ячейке;
- Построена и применена модель дисперсионного анализа для одинакового количества наблюдений в каждой ячейке;
- Реализовано применение дисперсионного анализа на блок-схемах в языке программирования R.