Mata Kuliah : Sistem Operasi

Kode MK : IT-011325 / AK-045333

Pengantar Sistem Operasi

Diadopsi dari: Tim Teaching Grant Mata Kuliah Sistem Operasi

Perangkat lunak yang bertindak sebagai perantara antara pemakai komputer dan perangkat keras

- 1. Hardware menyediakan "basic computing resources" (CPU, memory, I/O devices).
- Operating system mengendalikan/mengkoordinasikan penggunaan hardware diantara berbagai aplikasi/program dari user.
- Applications programs menggunakan sistem resource yang digunakan untuk menyelesaikan masalah komputasi dari user (compilers, database systems, video games, business programs).
- 4. Users (people, machines, other computers).

Komponen Sistem Komputer, Tanenbaum, 2001

Banking system	Airline reservation	Web browser				
Compilers	Editors	Command interpreter				
Operating system						
Machine language						
Microarchitecture						
Physical devices						

Application programs

System programs

Hardware

Seputar Definisi Sistem Operasi

- Belum ada definisi yang diterima secara universal
- Beberapa tinjauan : letaknya terhadap sistem komputer; fungsi; tujuan
- Sebuah program / kumpulan program :
 - Mengatur kerja hardware
 - Menyediakan landasan untuk aplikasi di atasnya
 - Bertindak sebagai penghubung antara user dengan hardware
 - Sebagai kernel, yaitu program yang terus-menerus running selama komputer dihidupkan.

Definisi Sistem Operasi

- Resource allocator
 - mengatur resource
 - mengalokasikan dan mengontrol pemakaian resources dari berbagai program/aplikasi.
- Control program
 - Mengendalikan eksekusi user program dan pemakaian sistem resource (contoh : operasi pada I/O device) => handal, reliable, terlindung.
- Kernel
 - Sistem program yang berjalan ("ada) terus menerus selama komputer aktif`.
 - Kontras dengan aplikasi yang di "load", eksekusi dan terminasi.

Fungsi Sistem Operasi

- Resource Allocator / Resource Manager, mengelola sumber daya sistem komputer secara efisien
 - Mengatur penjadwalan sumber daya (setiap program mendapatkan waktu dan ruang terhadap sumber daya)
- Control Program / Program Pengendali
 - Mengatur eksekusi aplikasi dan operasi dari alat I/O untuk mencegah terjadinya kesalahan dan penggunaan yang tidak semestinya
- Extended Machine / Virtual Machine, menyediakan sekumpulan layanan yang disebut system call
 - Menyembunyikan kerumitan pemrograman hardware
 - Sebagai landasan/basis untuk program aplikasi lain

- Membuat komputer lebih mudah dan nyaman digunakan (convenient) untuk menjalankan aplikasi dan menyelesaikan masalah user
- Membuat penggunaan sumber-daya komputer yang terbatas secara efisien

Sejarah Perkembangan Sistem Komputer dan Sistem Operasi

- Generasi ke-1: 1945 1955
- Generasi ke-2 : 1955 1965
- Generasi ke-3: 1965 1980
- Generasi ke-4: 1980 1990
- Generasi ke-5: 1990 sekarang

Generasi ke-1 (1945-1955)

- Komponen Utama : Vacuum Tubes
 - Analytical Engine (Charles Babbage)
 - Electric Tabulation System (Herman Hollerith)
 - Mark I (Howard Aiken)
 - ENIAC (J.P Eckert)
- Operasi komputer menggunakan plugboards
- Hanya bisa digunakan untuk menghitung (*, +, -)
- Belum ada bahasa pemrograman
- Belum ada sistem operasi
- Pengenalan punched card

Generasi ke – 2 (1955 – 1965)

- Komponen utama : transistor
- Pemisahan fungsi personil :
 - Designer
 - Operator
 - Programmer
- Pengenalan job (program atau seperangkat program)
- Penggunaan bahasa FORTRAN, Assembler
- Penerapan Batch System
- Pengoperasian Off-Line
- Penggunaan mesin-mesin besar untuk kalkulasi sains dan engineering
- Typical operating system : FMS (Fortran Monitor System) dan IBSYS (sistem operasi untuk IBM 7094)

History of Operating Systems (1)

Early batch system

- bring cards to 1401
- read cards to tape
- put tape on 7094 which does computing
- put tape on 1401 which prints output

History of Operating Systems (3)

Structure of a typical FMS job – 2nd generation,

Generasi ke-3 (1965 – 1980)

- Komponen utama : IC
- Mengenalkan multiprogramming (menerapkan partisi memori dengan job-job yang berbeda pada setiap partisi)
- Mengenalkan multiprocessing (satu job dikerjakan oleh banyak prosesor, berguna untuk meningkatkan utilitas)
- Mengenalkan SPOOLING (Simultaneous Peripheral Operation On Line)
- Mengenalkan Time Sharing (berbagi waktu)
- Device independence
- Real time system

History of Operating Systems (4)

- Multiprogramming system
 - three jobs in memory 3rd generation

Generasi ke-4 (1980 – 1990)

- Pengembangan LSI dan VLSI melahirkan PC dan Workstation
- Softwarenya 'user friendly'
- Dua sistem operasi yang dominan :
 - MS-DOS (pada IBM-PC dengan CPU Intel 8088, 80286, 80386, 80486)
 - UNIX (pada Non-Intel computer dan workstation)
- RISC Chips
- Network Operating System
- Distributed Operating System

- Pengembangan VLSI an ULSI melahirkan PC yang berbasis Pentium untuk server maupun workstation
- Pengembangan sistem operasi windows
- Pengembangan internet dan multimedia
- Pengembangan aplikasi yang berbasis Web atau WWW
- dll.

Perkembangan Sistem Operasi

- Open shop
- Operator driven shop
- Online operation
- Offline operation
- Buffer operation
- Multiprogramming system
- Time sharing system
- Multiprocessing system
- Real time system
- Distributed system

Batch system

Evolusi Sistem Operasi

- OS sederhana
 - Program tunggal, satu user, satu mesin komputer (CPU): komputer generasi pertama, awal mesin PCs, controller: lift, Playstation etc.
 - No problems, no bad people, no bad programs => interaksi sederhana
 - Problem: terbatas pemakaiannya;

Simple Batch System

- Memakai seorang operator
 - User ≠ operator
- Menambahkan card reader
- Mengurangi waktu setup: batch jobs yang mirip/sama
- Automatic job sequencing secara otomatis kontrol akan di transfer dari satu job ke job yang lain.
 - Bentuk OS primitif
- Resident monitor
 - Fungsi monitor: awal (initial) melakukan kontrol
 - Transfer control ke job (pertama)
 - Setelah job selesai, control kembali ke monitor
- Control cards: mengatur batch jobs

Semua job sejenis dikumpulkan menjadi satu

Online operation

Offline operation

Multiprogrammed Batch Systems

Beberapa jobs disimpan di **memori** pada saat bersamaan, dan CPU melakukan multiplexing ke jobs-jobs tersebut

Fitur OS yang Dibutuhkan dalam Multiprogramming

- I/O rutin dikendalikan dan diatur oleh sistim
- Memory management sistim harus mengalokasikan memori untuk beberapa jobssekaligus
- CPU scheduling sistim harus memilih jobs mana yang telah siap akan dijalankan
- Alokasi dari I/O devices untuk jobs dan proteksi bagi I/O devices tersebut

Sistim menjadi => complex

 Bagaimana kalau program "loops terus menerus",going mad etc. => proteksi

- Meletakkan lebih dari satu program/job dalam memori utama
- Membagi memori menjadi beberapa partisi

Proses	Burst Time (ms)
P1	10
P2	4
P3	6
P4	3

Memori Utama

Sistem Operasi
P1
P2
P3
P4

	P1	P2	P3	P	4
0	1	0 1	4	20	23

Time-Sharing Systems – Interactive Computing

- CPU melakukan multiplex pada beberapa jobs yang berada di memory (dan disk)
- CPU hanya dialokasikan kepada jobs yang telah siap dan berada di memori
- Besar memori masih sangat terbatas:
 - Pada job dilakukan swapped in dan out dari memory ke disk.
- Komunikasi on-line (interaktif) antara user dan sistim: jika OS telah selesai mengeksekusi satu perintah, menunggu perintah berikut bukan dari "card reader", tapi dari terminal user
 - On-line system harus tersedia bagi user yang akan mengakses data dan kode

Time Sharing System

- Disebut juga multitasking
- Waktu proses untuk setiap program sama dan dibatasi
- Keuntungan : tingkat kebersamaannya tinggi
- Kerugian : swicthing time besar, utilitas rendah

P1	P2	Р3	P4	P1	P2	Р3	P4	P1	Р3	P1	P1
											1 2

- Personal computers sistim komputer yang dirancang khusus untuk single user
- I/O devices keyboards, mice, display screens, small printers.
- User mendapatkan kemudahan dalam penyesuaian.
- Fungsi dasar mirip (adopsi) dari OS pada sistim yang besar
 - Sederhana: tidak terlalu fokus pada utilisasi CPU dan proteksi
 - Contoh: MS-DOS untuk PC banyak mengambil features dari UNIX, minus proteksi dan CPU scheduler yang rumit.

Parallel Systems

- Sistim multiprosesor: lebih dari satu CPU yang terhubung secara dekat satu sama lain
- Symmetric multiprocessing (SMP)
 - Setiap prosesor menjalankan "identical copy" dari OS
 - Banyak proses dapat berjalan serentak murni dengan menggunakan resources pada masingmasing CPU
 - Banyak modern operating systems mendukung SMP

Parallel Systems (Cont.)

- Asymmetric multiprocessing
 - Setiap prosesor telah ditentukan untuk menjalankan task tertentu
 - Master processor mengontrol, menjadwalkan dan mengalokasikan task ke slave processors
 - Banyak digunakan oleh sistemyang besar (main-frame)

Symmetric

 P1
 P4

 P2
 P3

 0
 4

 10
 13

Multiprocessing dengan 2 CPU

Real-Time Systems

- Digunakan sebagai control device untuk aplikasi khusus (misalkan medical imaging systems, industrial control process dll).
- Kemampuan untuk beroperasi, response dalam batasan "waktu tertentu" => OS harus sederhana, cepat, dan dapat memenuhi jadwal task (scheduling dll).

Real Time System

- Digunakan jika operasi memerlukan ketepatan waktu dari prosesor atau aliran data
- Sering digunakan sebagai pengontrol terhadap aplikasi-aplikasi tertentu
 - Embedded application (programmable thermostats, pengontrol peralatan rumah tangga, mobile telephones)
 - Industri robot
 - Industri operasi pengendali (pengendalian peluru kendali, reservasi tempat duduk di pesawat terbang)

Hard real-time system.

- Secondary storage sangat terbatas atau tidak ada (menggunakan ROM, flash RAM).
- Task dapat diprediksi/ditentukan: waktu selesai dan response.
- Soft real-time system
 - Lebih leluasa batasan waktu dari "hard realtime system".
 - Lebih umum digunakan di industri, aplikasi multimedia (video streaming, virtual reality).

Distributed Systems

 Distribusikan kemampuan komputasi dan "resources" ke berbagai komputer di jaringan.

- Loosely coupled system
 - Setiap prosessor memiliki lokal memori
 - Komunikasi prosessor satu dengan yang lain melalui beragam jalur komunikasi, contoh : highspeed buses dan jalur telepon.

Distributed Systems (cont)

- Manfaat distributed systems.
 - Resources Sharing
 - Waktu komputasi cepat

 load sharing
 - Reliability
 - Komunikasi
- Membutuhkan Infrastruktur jaringan.
- Local Area Networks (LAN) atau Wide Area Networks (WAN)
- Sistem bisa berbentuk client-server atau peer-topeer.

Struktur Umum Client-Server

- Clustering memungkinkan dua atau lebih sistem melakukan share strorage
- Memiliki realibilitas yang tinggi.
- Asymmetric clustering: satu sertver menjalankan aplikasi sementara server lain dalam keadaan standby.
- Symmetric clustering: semual N host menjalankan aplikasi.

Handheld Systems

- Personal Digital Assistants (PDAs)
- Telepon seluler
- Issues:
 - Memori yang terbatas
 - Prosessor yang lambat
 - Display screen yang kecil.

Migrasi Sistem Operasi vs. Sistem Komputer

Lingkungan Komputasi

- Komputasi Tradisional
- Komputasi berbasi Web (Web-Based Computing)
- Komputasi pada Embedded System (Embedded Computing)