Trade-offs of Local SGD at Scale: An Empirical Study

Facebook AI Montreal

Jose Javier Gonzalez Ortiz

Nicolas Ballas

Mike Rabbat

Ari Morcos

Jonathan Frankle

Overview

- First comprehensive empirical study of local SGD and post-local SGD on ImageNet.
- We find several trade-offs that impact the scalability of these methods, a departure from smaller-scale experiments in prior work

 We study the effect of learning rate and momentum, hinting at future directions to improve the trade-offs

1 - Preliminaries

Algorithms

- Distributed Data Paralellism (DDP) synchronizes gradients every step by averaging
- Local SGD instead averages the parameters every K steps
- PostLocal SGD does DDP for a while then switches to Local SGD

Experimental Setup

All Experiments are on:

- Dataset: ImageNet
- Models: ResNet50 & ResNet 101 (with Goyal init)
- Optimizer: SGD + Momentum(.9) + Nesterov
 - Momentum Correction
 - $\eta = N \cdot B \cdot 4 \times 10^{-4}$

• Training:

- 90 Epochs
- LR drop by 10 at epochs 30, 60, 80
- Linear Warmup for 5 epochs

2 – Benefits of (Post-)Local SGD

Local SGD reduces communication overhead

8 Nvidia V100 per node over 10Gb/s Ethernet interconnect

Local SGD scales to large distributed settings

Post-local SGD is limited by the synchronous phase

For post-local SGD we get Ahmdal's law behaviour

3 – Trade-offs of (Post-)Local SGD

Increasing the number of workers (K)

Reducing averaging frequency (H)

Towards a unified trade-off

Trade-off is better expressed as $H \cdot K$. I.e. number of local model updates between synchronizations

The switching point poses another trade-off

Post-local SGD behavior depends on the task scale

Departure from Lin et al (2018) results for ResNet-20 on CIFAR-10 (Improved Acc as H or K increases)

4 – Expanding the design space: Learning Rate & Momentum

Post-local SGD depends on learning rate schedule

• Half Cosine Schedule

Post-local SGD depends on learning rate schedule

Local SGD as a regularizer

Switching to Local SGD is beneficial in the short term but it's detrimental to final model accuracy

Local SGD as a regularizer

The amount of regularization effect is related to Local SGD

Improving accuracy with slow momentum

SlowMo consistently improves accuracy, specially for early switch points

Conclusion

- (Post-)Local SGD has several **trade-offs** that impact its **scalability** (# workers, averaging frequency, switching point)
- Switching to Local-SGD has a regularization effect, beneficial in the short term but detrimental to final model accuracy
- Post-local SGD viability heavily relies on the LR schedule
- Slow Momentum improves accuracy for Post-local SGD, achieving a better trade-off

Questions?