Analysis of Algorithms CS 477/677

Instructor: Monica Nicolescu Lecture 22

Scheduling to Minimizing Lateness

- Single resource processes one job at a time
- Job j requires t_j units of processing time, is due at time d_i
- If j starts at time s_j, it finishes at time f_j = s_j + t_j
- Lateness: $\square_j = \max \{ 0, f_j d_j \}$
- Goal: schedule all jobs to minimize **maximum** lateness L = max \square . 1 2 3 4 5 6
- Example:

14

Greedy Algorithms

- Greedy strategy: consider jobs in some order
 - [Shortest processing time first] Consider jobs in ascending order of processing time t_j
 counterexample

	1	2
t _j	1	10
d_{j}	100	10

Choosing
$$t_1$$
 first: $l_2 = 1$
Choosing t_2 first: $l_2 = l_1 = 0$

 [Smallest slack] Consider jobs in ascending order of slack d_j - t_j

Choosing
$$t_2$$
 first: $l_1 = 9$
Choosing t_1 first: $l_1 = 0$ and $l_2 = 1$

Greedy Algorithm

Greedy choice: earliest deadline first

```
t = 0
for j = 1 to n
   Assign job j to interval [t, t + t<sub>j</sub>]
   s<sub>i</sub> = t, f<sub>i</sub> = t + t<sub>i</sub>
```

Sort n jobs by deadline so that $d_1 < d_2 < ... < d_n$

 $t = t + t_j$ output intervals $[s_j, f_j]$

Minimizing Lateness: No Idle Time

- Observation: The greedy schedule has no idle time
- Observation: There exists an optimal schedule with no idle time

Minimizing Lateness: Inversions

 An inversion in schedule S is a pair of jobs i and j such that: d_i < d_j but j scheduled before i

Observation: greedy schedule has no inversions

- Optimal solution: d_i < d_j but j scheduled before i
- Greedy solution: i scheduled before j
 - Job i finishes sooner, no increase in latency Lateness(Job j)_{GREEDY} = $f_i - d_j$

$$\leq$$

☐ No increase in latency

Lateness(Job i)_{OPT} =
$$f_i - d_i$$

Greedy Analysis Strategies

Exchange argument

 Gradually transform any solution to the one found by the greedy algorithm without hurting its quality

Structural

 Discover a simple "structural" bound asserting that every possible solution must have a certain value, then show that your algorithm always achieves this bound

Greedy algorithm stays ahead

 Show that after each step of the greedy algorithm, its solution is at least as good as any other algorithm's

Coin Changing

Given currency denominations: 1, 5, 10, 25, 100, devise a method to pay amount to customer using fewest number of coins

• Ex: 34¢

Ex: \$2.89

Greedy Algorithm

 Greedy strategy: at each iteration, add coin of the largest value that does not take us past the amount to be paid

```
Sort coins denominations by value: c<sub>1</sub> < c<sub>2</sub> < ... < c<sub>n</sub>.

coins selected

S = {}
while (x > 0) {
  let k be largest integer such that c<sub>k</sub> <= x
  if (k = 0)
     return "no solution found"
  x = x - c<sub>k</sub>
  S = S U {k}
}
return S
```

- Algorithm is optimal for U.S. coinage: 1, 5, 10, 25, 100
 Change = D * 100 + Q * 25 + D * 10 + N * 5 + P
 - Consider optimal way to change $c_k \le x \le c_{k+1}$: greedy takes coin
 k
 - We claim that any optimal solution must also take coin k
 - If not, it needs enough coins of type c_1 , ..., c_{k-1} to add up to x
 - Problem reduces to coin-changing $x c_k$ cents, which, by induction, is optimally solved by greedy algorithm

 Algorithm is optimal for U.S. coinage: 1, 5, 10, 25, 100

Change = DI *
$$100 + Q * 25 + D * 10 + N * 5 + P$$

- Optimal solution: Dl Q D N P
- Greedy solution: Dl' Q' D' N' P'
- 1. Value < 5
 - Both optimal and greedy use the same # of coins
- 2. 10(D) > Value > 5(N)
 - Greedy uses one N and then pennies after that
 - If OPT does not use N, then it should use pennies for the entire amount => could replace 5 P for 1 N

Change = DI * 100 + Q * 25 + D * 10 + N * 5 + P

- Optimal solution: DI Q D N P
- Greedy solution: Dl' Q' D' N' P'
- 3. 25(Q) > Value > 10(D)
 - Greedy uses dimes (D's)
 - If OPT does not use D's, it needs to use either 2 coins (2 N), or 6 coins (1 N and 5 P) or 10 coins (10 P) to cover 10 cents
 - Could replace those with 1 D for a better solution

Change = DI * 100 + Q * 25 + D * 10 + N * 5 + P

- Optimal solution: Dl Q D N P
- Greedy solution: Dl' Q' D' N' P'
- 4. 100 (DI) > Value > 25 (Q)
 - Greedy picks at least one quarter (Q), OPT does not
 - If OPT has no Ds: take all the Ns and Ps and replace 25 cents into one quarter (Q)
 - If OPT has 2 or fewer dimes: it uses at least 3 coins to cover one quarter, so we can replace 25 cents with 1 Q
 - If OPT has 3 or more dimes (e.g., 40 cents: with 4 Ds):
 take the first 3 Ds and replace them with 1 Q and 1 N

Coin-Changing US Postal Denominations

- Observation: greedy algorithm is sub-optimal for US postal denominations:
 - \$.01, .02, .03, .04, .05, .10, .20, .32, .40, .44, .50, .64, .65, .75, .79, .80, .85, .98
 - **-** \$1, \$1.05, \$2, \$4.95, \$5, \$5.15, \$18.30, \$18.95
- Counterexample: 160¢
 - Greedy: 105, 50, 5
 - Optimal: 80, 80

Selecting Breakpoints

- Road trip from Princeton to Palo Alto along fixed route
- Refueling stations at certain points along the way (red marks)
- Fuel capacity = C
- Goal:
 - makes as few refueling stops as possible
- Greedy strategy:
 - go as far as you can before refueling

Greedy Algorithm

```
Sort breakpoints so that: 0 = b_0 < b_1 < b_2 < \dots < b_n = L
S = \{0\}
           breakpoints selected
              current location
x = 0
while (x < b_n)
   let p be largest integer such that b_0 <= x + C
   if (b_p = x)
       return "no solution"
   x = b_p
   S = S \cup \{p\}
return S
```

- Implementation: O(n log n)
 - Use binary search to select each breakpoint p

- Let $0 = g_0 < g_1 < ... < g_p = L$ denote set of breakpoints chosen by the greedy
- Let $0 = f_0 < f_1 < \ldots < f_q = L$ denote set of breakpoints in an optimal solution with $f_0 = g_0$, $f_1 = g_1, \ldots, f_r = g_r$
- Note: $g_{r+1} > f_{r+1}$ by greedy choice of algorithm

Problem – Buying Licenses

- Your company needs to buy licenses for n pieces of software
- Licenses can be bought only one per month
- Each license currently sells for \$100, but becomes more expensive each month
 - The price increases by a factor $r_i > 1$ each month
 - License j will cost 100*r_i^t if bought t months from now
 - $-r_i < r_j$ for license i < j
- In which order should the company buy the licenses, to minimize the amount of money spent?

Solution

Greedy choice:

- Buy licenses in decreasing order of rate r_i
- $-r_1>r_2>r_3...$

Proof of greedy choice property

- Optimal solution: $r_i r_j$ $r_i < r_j$
- Greedy solution: r_j r_i.....
- Cost by optimal solution:
- Cost by greedy solution:

$$CG - CO = 100 * (r_j^t + r_i^{t+1} - r_i^t - r_j^{t+1}) < 0$$

$$r_i^{t+1} - r_i^t < r_j^{t+1} - r_j^t$$

 $r_i^t(r_i - 1) < r_i^t(r_i - 1)$

OK! (because $r_i < r_j$)

 $100* r_i^t + 100* r_i^{t+1}$

 $100* r_i^t + 100* r_i^{t+1}$

Graphs

 Applications that involve not only a set of items, but also the connections between them

Maps

Schedules

Computer networks

Hypertext

Circuits

Graphs - Background

Graphs = a set of nodes (vertices) with edges (links) between them.

Notations:

- G = (V, E) graph
- V = set of vertices (size of V = n)
- E = set of edges

(size of E = m)

Directed graph

Undirected graph

Acyclic graph

Other Types of Graphs

 A graph is connected if there is a path between every two vertices

Connected

Not connected

• A **bipartite graph** is an undirected graph G = (V, E) in which $V = V_1 + V_2$ and there are edges only between vertices in V_1 and V_2

Graph Representation

- Adjacency list representation of G = (V, E)
 - An array of n lists, one for each vertex in V
 - Each list Adj[u] contains all the vertices v such that there is an edge between u and v
 - Adj[u] contains the vertices adjacent to u (in arbitrary order)
 - Can be used for both directed and undirected graphs

Undirected graph

Properties of Adjacency List Representation

- Sum of the lengths of all the adjacency lists
 - Directed graph: size of E (m)
 - Edge (u, v) appears only once in u's list
 - Undirected graph: 2* size of E (2E)
 - u and v appear in each other's adjacency lists: edge (u, v) appears twice

Directed graph

Undirected graph

Properties of Adjacency List Representation

- Memory required
 - $-\Theta(m+n)$
- Preferred when
 - the graph is sparse: m << n²
- Disadvantage
 - no quick way to determine whether there is an edge between node u and v
- Time to list all vertices adjacent to u:
 - Θ(degree(u))
- Time to determine if (u, v) exists:
 - O(degree(u))

Undirected graph

Directed graph

Graph Representation

Adjacency matrix representation of G = (V, E)

- Assume vertices are numbered 1, 2, ... n
- The representation consists of a matrix A_{nxn}

$$-a_{ij} = \begin{cases} 1 & \text{if (i, j) belongs to E} \\ 0 & \text{otherwise} \end{cases}$$

4

5

Undirected graph

0	1	0	0	1
1	0	1	1	1
0	1	0	1	0
0	1	1	0	1
1	1	0	1	0

For undirected graphs matrix A is symmetric:

$$a_{ij} = a_{ji}$$

 $A = A^T$

Properties of Adjacency Matrix <u>Representation</u>

- Memory required
 - $-\Theta(n^2)$, independent on the number of edges in G
- Preferred when
 - The graph is dense: m is close to n²
 - We need to quickly determine if there is an edge between two vertices
- Time to list all vertices adjacent to u:
 - $-\Theta(n)$
- Time to determine if (u, v) belongs to E:
 - $-\Theta(1)$

Weighted Graphs

 Weighted graphs = graphs for which each edge has an associated weight w(u, v)

w: *E* -> R, weight function

- Storing the weights of a graph
 - Adjacency list:
 - Store w(u,v) along with vertex v in u's adjacency list
 - Adjacency matrix:
 - Store w(u, v) at location (u, v) in the matrix

Searching in a Graph

- Graph searching = systematically follow the edges of the graph so as to visit the vertices of the graph
- Two basic graph searching algorithms:
 - Breadth-first search
 - Depth-first search
- The difference between them is in the order in which they explore the unvisited edges of the graph
- Graph algorithms are typically elaborations of the basic graph-searching algorithms

Readings

- For this lecture
 - Chapter 15
 - Coming next
 - Chapter 20