

Using Technology to Save Lives

Dr Geetha Manjunath Founder, CEO and CTO NIRAMAI Health Analytix

Breast cancer - leading cause of cancer deaths in women

1 in 17

Women develop a breast abnormality in their lifetime

500,000

Deaths per year

Survival rates in India and many developing countries is just 50%

Early Detection is key to survival!

There are Several Hurdles for Early Detection today

Thermography can detect cancer much earlier than any other modality

Thermography measures infra-red radiation from the body generated due to heat

>500

Thermography clinics in US

Limitation of Manual Thermography:

- Interpretation errors
- Subjective Analysis
- Cognitive Overload(400,000 color pixels of 2000 shades)

Thermalytix® by NIRAMAI

A Novel Fusion of Machine Intelligence + Thermography

9 US patents granted More patents pending

- ✓ Highly Sensitive
- ✓ Early Detection

- ✓ Portable
- ✓ Safe
- ✓ Non-invasive

NIRAMAI Software

- ✓ Automated
- ✓ Real time
- Affordable
- ✓ Accurate

Instead of looking for lumps, we look for cancer.

NIRAMAI Solution

Privacy-Aware, Early Stage Breast Cancer Detection

- Can detect cancer long before a lump is felt
- Non-contact, Non-invasive, Privacy Aware
- No Radiation
- Works for women of all ages, and men too!
- Affordable
- Portable, light, small screening device

Powered by Machine Learning

Corporate Camps

500+ Outreach Camps

Watch this video on here

Thermo-Mammography Report

GENERAL DETAILS

Age: 57 Gender: Female

Scan Date: 08/09/2018 Centre:

CLINICAL DETAILS

Menopause: Age at 46 years.

Menopause:

Number of children breast-fed: 2 Lactating: Pregnant:

Patient Complaints: None.

Cancer History: No patient cancer history. No family cancer history.

Surgeries: None.

Hormone Therapy: None.

THERMAL ANALYSIS

Thermobiological Score: 0.25

Body Temperature: 34.59 °C to 26.54 °C

Symmetry Score: 0 % Areolar Score: 0.66 Vascular Score: 0.75

FINAL IMPRESSION

Breast Thermal Impression

Right Breast: No significant thermal pattern is seen.

Left Breast: Focal thermal pattern is noted. Thermal increase is seen near areolar region. Slightly distorted and

smooth margins are observed. Asymmetrical thermal pattern is observed.

THERMAL PARAMETERS	RIGHT BREAST	LEFT BREAST
Number of Hotspots	0	1
Extent	N/A	Hot spots seen in 0.0198% of region of interest.
Hotspot Shape	N/A	0.65 irregular, 579µ distorted
Temperature	N/A	1.87°C increase wrt surrounding region
Areolar Hotspot Detected	No	Yes
Lump Detected	N/A	N/A

Realtime Automated Screening

THERMAL ANALYSIS

Thermobiological Score: 0.61

Follow up with U/S recommended in left breast

Body Temperature: 35.07 °C to 23.73 °C

Symmetry Score: 0 %

Areolar Score: 0

Vascular Score: 0.64

Our ML Journey ...

Early Version of the Tool Set (2015)

- 1. Captured Thermal Video Images
- 2. Obtained isotherms and localize temperature boundaries.
- 3. Used by Radiologists to identify hot areas
- 4. Correlate with Mammogram findings.
- 5. Understand corresponding thermal patterns

Early Version of the Tool Set (2015)

A 3-D heat map of the skin temperature (intensity)

The asymmetry in the heat map, with a very warm area evident in the upper right quadrant of right breast.

Studied Thermographic patterns in different subject categories

Thermal profiling & examination of suspicious regions

Detected lump b/w 10 to 12 O'clock position. Matches with clinical findings, mammogram and sonomammogram findings.

Thermographic Features Extracted (as presented at EMBC 2016)

Non-Vascular Features

- Boundary Features: Deviation from Circle and Ellipse, Irregularity and Fractal Dimensionality, Shape Symmetry
- Contralateral-side comparison: Mirror Overlap, Thermal Distribution Ratio and Area Difference.
- Relative Temperature to surrounding tissues.
- Warm and hot patches:: Number, Size, Location

Vascular Features

- Tortuosity
- Vessel Length,
- Mean Temperature
- Vessel width
- No. of branches, mean branch length
- Symmetry of vessels.

Clinical Features

- Age
- Past Cancer History, Family cancer history and degree of relationship,
- Presence of lumps
- Menarche age
- Menopause
- Lactating
- Past surgery.

The Core Innovation

Ability to differentiate malignancy from benign conditions

Normal Lady

A Lady with Breast Cancer

A Lady with a Cyst

9 US patents granted, more pending

Machine Learning and Computer Vision Algorithms to detect early stage cancer

Demography Data

Asymmetric Patterns

Thermal Distribution

Vascularity Analysis

Hotspot Boundary

Hotspot Shape Characteristics

Use of AI/ML in the Solution

Machine Learning enabled

+ Risk Models, Population Anal, etc

ROI Segmentation with Image Processing

- Though reasonably good results are achieved when imaging protocol is followed, testing on a real-world scenario resulted in
 - ❖ 75% accuracy in tagging the views.
 - ❖ 70% dice similarity with the actual manual segmentation.
- Results were highly dependent of imaging protocol due to the use of low-level features.

Modified Approach with CNN

Segmentation with V-Net

Results with DNNs

- View Independent
- Robust to position errors
- ➤ Highly precise segmentation boundaries
- > 99.5% accuracy in Tagging
- ➤ 0.92 Dice similarity for segmentation.

heuristic based

DNN segmentation

Granted US Patent and Applications

	Patent ID	Title	Grant Date
1	US-9486146-B2	Detecting tumorous breast tissue in a thermal image	08-11-2016
2	US-9622698-B2	System and method for detecting cancerous tissue from a thermal image	18-04-2017
3	US-9865052-B2	Contour-based determination of malignant tissue in a thermal image	09-01-2018
4	US-9898817-B2	Software tool for breast cancer screening	20-02-2018
5	US-10055542-B2	Software interface tool for breast cancer screening	21-08-2018
6	US-10068330-B2	Automatic segmentation of breast tissue in a thermographic image	04-09-2018
7	US-10198670-B2	Blood vessel extraction in two-dimensional thermography	05-02-2019
8	US-10307141-B2	Thermography-based breast cancer screening using a measure of symmetry	04-06-2019
9	US-10368846-B2	Classifying hormone receptor status of malignant tumorous tissue from breast thermographic images	06-08-2019
10	US-2017245762-A1	Privacy booth for breast cancer screening	Pending Grant in US
11	New Application	System and Method for Adaptive Positioning of a subject for capturing thermal image	Pending
12	New Application	System and Method for Identifying errors in Positioning of a subject for capturing thermal image	Pending

Clinical Validation

16000+ patients tested so far...

5 International Clinical Trial Publications

27% better Accuracy than Mammography

70% better predictive value than manual Thermography

Identified all cancer patients without lumps

Effective in 32% more patients than Mammography

Results Published in ASCO Breakthrough Summit, Oct 2019

Abstract Title: Al for early stage breast cancer screening.

Breakthrough: A Global Summit for Oncology Innovators (October 11-13, 2019) in Bangkok

Dataset Description

- Out of 769 subjects, 185 subjects were concluded to have a breast malignancy by the radiologists at the respective sites.
- 100 out of these 185 were histopathologically confirmed malignancies.

	Normal	Malignant
Symptomatic	360	174
Asymptomatic	224	11

Beyond Breast Cancer

Creating a Whole New Way of Detecting abnormalities in the body

Pain Management

Head and Neck Cancer

Diabetic Foot

Breast Health

Breast Cancer Screening

Thermalytix for River Blindness - Onchocerciasis

Thermalytix enables a Non-invasive way of detecting Live Parasitic Worms

Awards and Media Mentions

BILL & MELINDA GATES foundation

Winner of Al Award Healthcare

Gold Prize Winner

Graham Bell Award in Data Science

BNP Best Preventive Insurance Idea

All, 68, 2007 @ 1015 AM 3,624 49

These Four Indian Startups Are Revolutionizing How To Detect

Cancer

≡ Forbes

AI healthcare startup Niramai raises \$6M Series A funding led by Dream Incubator YOURSTORY

Philips HealthWorks bets on 4 Indian startups for its accelerator programme

Amazon Al Awards 2017: Recognising the future of Al

HEALTH TECH

Fighting breast cancer with AI & ML

Niramai's Thermalytix screens patients for breast cancer, overcoming the limitations posed by mammography or ultrasound

SANDHYA MICHU

RENGALURU-BASED NIRAMAI'S hreak-

was the funds needet tual property since the oped by uswhen wew previous organisations seed round within the to ensure that Niram Manjunath recalls.

Dr. Sudhakar, bro HCG, a leading canc chain which uses N diagnosis of breas patients, sees imme

10 Leading AI Startups India 2018

.....

'Our breast cancer solution addresses cultural issues'

2019 AI 100: Startups outside the United States

Saving Many Lives ...

THANK YOU

Geetha Manjunath
geetha@niramai.com

http://www.niramai.com

