Max Kotas

max@maxkotas.com | (469) 601-3652 | maxkotas.com | github.com/maxkotas

Professional Summary

Electrical Engineering graduate with hands-on experience in analog/digital circuit design, embedded systems, FPGA programming, and motor control systems. Adept at creating efficient hardware solutions and passionate about automation, robotics, and power electronics.

Education

Bachelor of Science in Electrical Engineering (Minor in Mathematics)

Texas A&M University

Graduation: December 2024

Relevant Coursework: Digital System Design, Circuit Design, DSP, Operational Amplifiers, Microwave Systems, Electric Energy Conversion, Security of Embedded Systems, DSP-Based Motion Control

Technical Skills

Core Skills: Embedded Systems, Circuit Design (Analog/Digital), Control Systems, Motor Control, Power Electronics, DSP, RF Design

Programming: Embedded C/C++, Python, MATLAB, Verilog/VHDL

Tools: Code Composer Studio, Altium Designer, KiCad, MATLAB, Arduino IDE, Git

Platforms: TMS320 (Delfino), MSP430, ESP32, Raspberry Pi, Xilinx FPGAs

Notable Projects

For full project details, visit: maxkotas.com.

FPGA-Accelerated Embedded Neural Network

Spring 2025

Skills: FPGA Acceleration, Neural Networks, HLS4ML, TensorFlow, QKeras

- Built an **FPGA-based neural network accelerator**, balancing low-latency inference with power efficiency.
- Developed a full pipeline: data preprocessing, training in TensorFlow, and quantization with QKeras.
- Used **HLS4ML** to generate synthesizable Verilog directly from the quantized model, enabling rapid hardware deployment.

BLDC Motor Control System

Fall 2025

Skills: Embedded Systems, Real-Time Motor Control, DSP, Power Electronics

- Implemented six-step commutation for BLDC motor using the TMS320F2837xD in Code Composer Studio.
- Controlled H-bridges via **bitwise GPIO logic** and Hall-effect sensor feedback, ensuring accurate rotor position tracking.
- Designed custom digital logic for phase switching with optimal torque generation and PI speed control.

Spherical Rolling Robot PCB Project

Spring 2025

Skills: PCB Design, Embedded Systems, Signal Integrity, Power Management, Control Systems

- Designed a custom multilayer PCB for a spherical rolling robot using advanced KiCad layout techniques.
- Integrated ESP32, TB6612FNG dual H-bridge, and MPU6050 IMU, enabling motor control and inertial sensing via UART and I2C buses.
- Optimized layout with careful trace routing, decoupling, and ground plane management to ensure signal integrity and noise immunity.

Professional Interests

Analog and Digital Circuit Design, Embedded System Development, Power Management ICs, Motor Control Systems, FPGA Implementation, Automation and Robotics

Community Engagement

Volunteer, Bryan Food Bank

2024 - Present

Collaborate in sorting, packing, and distributing resources to support community food distribution initiatives.