F(O)MG Few-shot Music Generation

Ben, Suhail & Anand

University of British Columbia

April 5, 2018

Introduction

Generate music matching styles of individual artists with few-shot meta learning.

Number of songs per artist is limited.

Introduction

Music Generation

Music generation is a hard problem

- ▶ Long sequences / concept of time
- Relatively large vocabulary
- Not all generated sequence produces music

Introduction

Text - Drive Man Car Blue

Music - Gon To.2 Doff Aoff Fon To.1

- A random jumbo of words still conveys meaning
- ► A random MIDI sequence is usually senseless

Data Processing MIDI and Vocabulary

To generate a single note, must set velocity, turn note $\mathrm{ON},$ time-shift, and turn note $\mathrm{OFF}.$

Our MIDI format contains,

- ▶ 16 instruments
- ON / OFF for each of 128 pitches per instrument
- 32 velocity levels per instrument
- ▶ 100 time-shift controls
- ▶ 4710 controls in total

Model-Agnostic Meta-Learning (MAML)¹

- ► Learn a good initial guess
- Converge to any solution in a few iterations

Figure: Illustration of Meta-learning

¹https://arxiv.org/pdf/1703.03400.pdf

Figure: Overview of MAML

Music Generation Model

The meta_net and learner_net models.

Figure: Auto-Regressive Model

Experiment

Dataset and Environment

Dataset obtained from freemidi²

- ► Training/Validation/Testing 296 / 53 / 53 artists
- ▶ 15 songs from each artist
- Divided into support set of 10, and query set of 5
- ► Each input sequence is truncated to 150

Training is done on Ubuntu 16.04 with GTX 1080 Ti.

- ▶ Baseline 6 to 7 Hours
- ▶ MAML $-\sim 70$ hours

²https://freemidi.org

Experiment

Training

Training MAML

- meta_net picks 3 random artists at a time
- ▶ learner_net trains on support set for 10 iterations
- Return loss on query set to meta_net
- 10 epochs in total

Training Baseline

- Baseline model is exactly same as learner_net
- Trained only on the support set of artists

Now we'll play some generated songs...

Loss Comparison

Figure: Evaluation loss comparison for three different artists.

Results

Analysis & Discussion

Some general observations,

- MAML converges faster than Baseline
- Convergence behaviour is more smooth
- MAML often starts at a higher loss, but converges to a lower minimum

Conclusion

Lessons Learned

We attempted and learned,

- ➤ SNAIL³ Simple neural attentive meta learner. We couldn't adapt to fit our task.
- Music and text generation is waaaay different.
- Meta-learning rocks!

Conclusion

Few things we want to try,

- ► MIDI-GLoVe⁴ word2vec for MIDI
- Reptile⁵ Modified MAML with smaller computation and memory footprint

F(O)MG

⁴https://github.com/brangerbriz/midi-glove

⁵https://blog.openai.com/reptile/

Conclusion

Thank you!

References

https://github.com/brangerbriz/midi-glove.

Reptile: A Scalable Meta-Learning Algorithm. https://blog.openai.com/reptile/.

C. Finn, P. Abbeel, and S. Levine.

Model-agnostic meta-learning for fast adaptation of deep networks.

CoRR, abs/1703.03400, 2017.