Course Code: CSE-4107
Course Title: Digital Signal Processing

Lectuer-02
Analog to Digital Conversion

Rakhi Rani Paul Lecturer Dept. of CSE, BAUET

Topics For Previous Class

In the last Class:

- Definitions:
 - Signal
 - Amplitude
 - ☐ Frequency
- ☐ Digital Signal processing (DSP):
 - Applications of DSP
 - ☐ Advantages & Disadvantages of DSP

Today's Topic

- ☐ Analog to Digital Conversion
 - 1). Sampling
 - (a). Nyquist Sampling Theorem
 - 2). Quantization
 - 3). Coding
- ☐ Home work

Analog to Digital Conversion

An analog-to-digital conversion is the process that converts analog signals (continuous quantity) into digital signals (discrete time digital representation).

Figure 1: Analog to Digital (ADC) Conversion

Analog to Digital Conversion

Analog to Digital Conversion has three (03) steps:

Figure 2: Block diagram of Analog to Digital (A/D) Conversion

1). Sampling

- Sampling is the process to take finite number of information from infinite number of information
- Conversion form continuous-time, continuous valued signal to discrete time, continuous valued signal
- Sampling Interval *T* and Sampling Frequency *fs*

1). Sampling

☐ Nyquist Sampling Theorem:

The sampling theorem guarantees that an analog signal can be perfectly recovered as long as the sampling rate is at **least twice** as large as the highest-frequency component of the analog signal to be sampled.

$$F_s \ge 2F_{\max}$$

- **■** What is sampling Frequency?
- ☐ Can you explain Nyquist Sampling Theorem?
- ☐ Draw a time domain signal that has frequency of 5Hz

2). Quantization

☐ Quantization:

Conversion from discrete-time, continuous valued signal to discrete-time, discrete-valued signal

- \Box Number of levels of quantizer is equal to $L = 2^N$
- \square Resolution $\Delta = R/2^N$

- **□** What is Quantization?
- ☐ Can you say some thing about resolution?

3). Coding

☐ Coding:

Conversion from a discrete-time, discrete-valued signal to an efficient digital data format

Topics for Next Class

- ☐ Aliasing Effect
- ☐ Sampling Effect in Time Domain
- ☐ Time & Frequency Domains
- ☐ Filtering

Home Work

- 1. Consider a voice signal containing frequencies up to 4KHz. Find the sampling frequency of that signal.
- 2. If a sampling interval of a voice signal is $T=125 \mu S$, then find the sampling frequency of that signal. (Hints: Fs = 1/T)

THANK YOU!

Any Questions/Suggestion Please?