Target1: Calculation of the following integral by sympy library and compare result with numpy numerical integral result.

$$\int_0^4 (x^2 + e^3 \sin(x) + 2) \, dx$$

Description:

- 1) Write the equation by using sympy library and calculate real result of it
- 2) Write the equation as function.
- 3) Create a list between boundaries which include 25 members
- 4) Calculate the numerical integral of the function by using numpy.trapz(y, x)
- 5) Print sympy output and numpy output

Target 2: Creating functions which include diagonal, upper triangular, lower triangular, band and transpose of the matrix.

Description:

Define 5 functions.

1) **diagonal:** It gets a matrix and output type as an input and returns diagonal of the matrix. **Use FOR loop to generate output, Do not use np.diag()**.

Example Input	Example Output
[[0.99 0.41 0.77 0.92 0.64]	List type: [0.99, 0.89, 0.27, 0.05, 0.97] Matrix type: [[0.99 0. 0. 0. 0.] [0. 0.89 0. 0. 0.] [0. 0. 0.27 0. 0.] [0. 0. 0.05 0.] [0. 0. 0. 0.05 0.]

2) **upper:** It gets a matrix as input and returns upside of the diagonal of input matrix. **Use FOR loop to generate output, Do not use np.triu()**

```
Example Input
                                                 Example Output
                                          [[0.99 0.41 0.77 0.92 0.64]
[[0.99 0.41 0.77 0.92 0.64]
                                           [0.
                                                0.89 0.7 0.25 0.38]
[0.2 0.89 0.7 0.25 0.38]
                                           [0.
                                                0. 0.27 0.38 0.34]
[0.71 0.55 0.27 0.38 0.34]
                                                0. 0. 0.05 0.45]
                                           [0.
[0.04 0.3 0.5 0.05 0.45]
                                           [0.
                                                Θ.
                                                     Θ.
                                                          Θ.
                                                               0.97]
[0.69 0.32 0.89 0.42 0.97]]
```

3) **lower:** It gets a matrix as input and returns downside of the diagonal of input matrix. **Use FOR loop to generate output, Do not use np.tril()**

Example Input	Example Output
[[0.99 0.41 0.77 0.92 0.64]	[0.99 0. 0. 0. 0.]
[0.2 0.89 0.7 0.25 0.38]	[0.2 0.89 0. 0. 0.]
[0.71 0.55 0.27 0.38 0.34]	[0.71 0.55 0.27 0. 0.]
[0.04 0.3 0.5 0.05 0.45]	[0.04 0.3 0.5 0.05 0.]
[0.69 0.32 0.89 0.42 0.97]]	[0.69 0.32 0.89 0.42 0.97]]

4) band: It gets a matrix and bandwidth as input and returns a matrix only includes the bandwidth diagonal element of the input matrix. **Use FOR loop to generate output,**

```
Example Input
                                              Example Output
                                         [[0.99 0.41 0.
                                                         Θ.
[[0.99 0.41 0.77 0.92 0.64]
                                         [0.2 0.89 0.7 0.
                                                             0. ]
[0.2 0.89 0.7 0.25 0.38]
                                               0.55 0.27 0.38 0. ]
                                         [0.
[0.71 0.55 0.27 0.38 0.34]
                                         [0.
                                               0. 0.5 0.05 0.45]
[0.04 0.3 0.5 0.05 0.45]
                                                         0.42 0.97]]
                                         [0.
                                                    Θ.
                                               Θ.
[0.69 0.32 0.89 0.42 0.97]]
                                 Bandwidth:3
```

4) Transpose: It gets a matrix and returns transpose of the matrix. **Use FOR loop to generate output, Do not use np.transpose()**

Example Input	Example Output
[0.12 0.3 0.54 0.75 0.47]	[[0.12 0.4 0.45 0.2 0.82]
[0.4 0.97 0.89 0.22 0.71]	[0.3 0.97 0.92 0.93 0.41]
[0.45 0.92 0.51 0.12 0.95]	[0.54 0.89 0.51 0.31 0.03]
[0.2 0.93 0.31 0.15 0.05]	[0.75 0.22 0.12 0.15 0.6]
[0.82 0.41 0.03 0.6 0.35]]	[0.47 0.71 0.95 0.05 0.35]]

Important Note:

- Matrixes need to be square matrix, please handle this by using try except
- Band width needs to be odd number, please handle it.
- Add comment line to the each line and put description to all functions by using """
 Description""
- Call the functions for random matrix (np.random)