IFT 615 – Intelligence Artificielle Hiver 2022

Raisonnement probabiliste

Inférences avec une distribution conjointe et classifieur bayésien naïf

Professeur: Froduald Kabanza

Assistants: D'Jeff Nkashama & Jean-Charles Verdier

Motivation

Détection de pourriels Classification de documents

Assurance de dommages

Localisation robotique

Utility-based agents

Théorie des probabilités en IA

- Permet de modéliser la vraisemblance d'événements
 - ◆ l'information sur la vraisemblance est dérivée
 - » des croyances/certitudes d'un agent, ou
 - » d'observations empiriques de ces événements
- Donne un cadre théorique pour mettre à jour la vraisemblance d'événements après l'acquisition d'observations
- Facilite la modélisation en permettant de considérer l'influence de phénomènes complexes comme du « bruit »

Decision-Theoretic Agent

function DT-AGENT(percept) **returns** an action

persistent: belief_state, probabilistic beliefs about the current state of the world action, the agent's action

update belief_state based on action and percept calculate outcome probabilities for actions, given action descriptions and current belief_state select action with highest expected utility given probabilities of outcomes and utility information return action

Figure 12.1 A decision-theoretic agent that selects rational actions.

Sujets couverts

- Inférence probabiliste avec une distribution conjointe
- Classifieur bayésien naïf

Exemple – Détection de pourriels

- On souhaite raisonner sur la possibilité qu'un courriel soit un pourriel tenant compte de l'incertitude associée à une telle classification
- Pour ce faire, notre modèle (« base de connaissances ») est une distribution conjointe des probabilités de variables aléatoires
 - Inconnu : l'adresse de l'expéditeur n'est pas connue du destinataire
 - ◆ *Sensible* : le courriel contient un mot sensible
 - Pourriel : le courriel est un pourriel

	Inconnu = vrai		Inconnu =	faux
Sens	ible = vrai	Sensible = faux	Sensible = vrai Se	ensible = faux
Pourriel = vrai Pourriel = faux	0.108 0.016	0.012 0.064	0.072 0.144	0.008 0.576

Distribution de probabilités

 Distribution de probabilités : l'énumération des probabilités pour toutes les valeurs possibles de variables aléatoires

Sensible = vrai Sensible = faux Sensible = vrai Sensible = fa	
Pourriel = vrai 0.108 0.012 0.072 0.062 Pourriel = faux 0.016 0.064 0.144 0.57	

- Exemples :
 - ◆ **P**(Pourriel, Inconnu, Sensible)

- Toutes ces probabilités somment à 1
- ◆ P(Pourriel) = [P(Pourriel=faux), P(Pourriel=vrai)] = [0.8, 0.2]
- P(Pourriel, Inconnu)
 - = [[Pourriel= faux, Inconnu=faux), [Pourriel= vrai, Inconnu=faux)], [Pourriel= faux, Inconnu=vrai), [Pourriel= vrai, Inconnu=vrai)]]
- La somme est toujours égale à 1
- J'utilise le symbole P pour les distributions et P pour les probabilités
 - ◆ P(Pourriel) désignera la probabilité P(Pourriel=x) pour une valeur x non-spécifiée

Probabilité conjointe

 Probabilité conjointe : probabilité d'une assignation de valeurs à toutes la variables

- ◆ P(Inconnu=vrai, Sensible=vrai, Pourriel=vrai) = 0.108 (10.8%)
- → P(Inconnu=faux, Sensible=faux, Pourriel=vrai) = 0.008 (0.8%)

	Inconnu = vrai		Inconnu =	faux
Sen	sible = vrai	Sensible = faux	Sensible = vrai Se	ensible = faux
Pourriel = vrai Pourriel = faux	0.108 0.016	0.012 0.064	0.072 0.144	0.008

Probabilité marginale

- Probabilité marginale : probabilité sur un sous-ensemble des variables
 - $P(Y) = \Sigma_{r} P(Y, Z = z)$ Pour n'importe quelle ensemble de variable Y et Z
 - ◆ P(Inconnu=vrai, Pourriel=vrai)
 - = P(Inconnu=vrai, Sensible=vrai, Pourriel=vrai) + P(Inconnu=vrai, Sensible=faux, Pourriel=vrai)
 - = $\Sigma_{z \in \{vrai, faux\}}$ P(Inconnu=vrai, Sensible=z, Pourriel=vrai) = 0.108 + 0.012 =**0.12**

	Inconnu = vrai		Inconnu	= faux
Sen	sible = vrai	Sensible = faux	Sensible = vrai	Sensible = faux
Pourriel = vrai Pourriel = faux	0.108	0.012	0.072 0.144	0.008 0.576

Probabilité marginale

- Probabilité marginale : probabilité sur un sous-ensemble des variables
 - P(Pourriel=vrai)
 - $= \sum_{x \in \{vrai, faux\}} \sum_{y \in \{vrai, faux\}} P(Pourriel = vrai, Inconnu = x, Sensible = y, Pourriel = vrai)$
 - = 0.108 + 0.012 + 0.072 + 0.008 = 0.2

Probabilité d'un événement arbitraire

- Probabilité de disjonction (« ou ») d'événements :
 - → P(Pourriel=vrai ou Inconnu=faux) Six états (mondes) possibles
 = 0.108 + 0.012 +0.072 + 0.008 + 0.144 + 0.576
 = 0.92
 - ◆ P(Pourriel=vrai ou Inconnu=faux) Une autre façon de le calculer = P(Pourriel=vrai) + P(Inconnu=faux) - P(Pourriel=vrai, Inconnu=faux) = 1 - P(Pourriel=faux, Inconnu=vrai) = 1 - 0.016 - 0.064 = 0.92

```
Inconnu = vrai & Inconnu = faux \\ Sensible = vrai & Sensible = faux & Sensible = vrai & Sensible = faux \\ Pourriel = vrai & 0.108 & 0.012 & 0.072 & 0.008 \\ Pourriel = faux & 0.016 & 0.064 & 0.144 & 0.576 \\ \hline
```

Probabilité d'un événement arbitraire

- On peut calculer la probabilité d'événements arbitrairement complexes
 - il suffit d'additionner les probabilités des événements élémentaires associés
 - → P((Pourriel=vrai, Inconnu=faux) ou (Sensible=faux, Pourriel=faux)) = 0.072 + 0.008 + 0.064 + 0.576 = 0.72

	Inconnu = vrai		Inconnu =	faux
Sens	ible = vrai	Sensible = faux	Sensible = vrai Se	nsible = faux
Pourriel = vrai Pourriel = faux	0.108 0.016	0.012	0.072 0.144	0.008

Probabilité conditionnelle

Probabilité conditionnelle :

- \rightarrow P(X|Y) = P(X,Y) / P(Y) si P(Y) ≠ 0
- ◆ P(Pourriel=faux | Inconnu=vrai)
 = P(Pourriel=faux, Inconnu=vrai) / P(Inconnu=vrai)
 = (0.016 + 0.064) / (0.016 + 0.064 + 0.108 + 0.012) = **0.4**

	Incor	nnu = vrai	Inconnu =	faux
Sen	sible = vrai	Sensible = faux	Sensible = vrai Se	ensible = faux
Pourriel = vrai Pourriel = faux	0.108 0.016	0.012 0.064	0.072 0.144	0.008 0.576

- On a vu que $P(Y) = \Sigma_z P(Y, Z=z)$
- On peut en déduire: $P(Y) = \sum_{z} P(Y|Z)P(Z=z)$

	Inconnu = vrai		Inconnu	= faux
Sens	sible = vrai	Sensible = faux	Sensible = vrai S	Sensible = faux
Pourriel = vrai Pourriel = faux	0.108 0.016	0.012 0.064	0.072 0.144	0.008 0.576

Exemple :

- ◆ P(Pourriel | Inconnu=faux) = [P(Pourriel=faux | Inconnu=faux), P(Pourriel=vrai | Inconnu=faux)] = [0.9, 0.1]
- ◆ **P**(Pourriel | Inconnu)

 - = [0.9, 0.1], somme à 1 [0.4, 0.6] somme à 1
- Chaque sous-ensemble de probabilités associé aux mêmes valeurs des variables sur lesquelles on conditionne somme à 1
- P(Pourriel | Inconnu) contient deux distributions de probabilités sur la variable Pourriel : une dans le cas où Inconnu=faux, l'autre lorsque Inconnu=vrai

 Une distribution conditionnelle peut être vue comme une distribution renormalisée afin de satisfaire les conditions de sommation à 1

$$P(X|e) = \alpha \Sigma_y P(X,e,y)$$

- Une distribution conditionnelle peut être vue comme une distribution renormalisée afin de satisfaire les conditions de sommation à 1
- Exemple :

```
    P(Pourriel | Inconnu=vrai)
    = α P(Pourriel, Inconnu=vrai)
    = α [0.08, 0.12]
    = (1/ (0.08 + 0.12)) [0.08, 0.12]
    = [ 0.4, 0.6 ]
```

	Inconnu = vrai		Inconnu = f	^F aux
Sens	ible = vrai	Sensible = faux	Sensible = vrai Sei	nsible = faux
Pourriel = vrai Pourriel = faux	0.108 0.016	0.012 0.064	0.072 0.144	0.008 0.576

P(Pourriel | Inconnu)
 = [α_{faux} P(Pourriel, Inconnu=faux), α_{vrai} P(Pourriel, Inconnu=vrai)]
 = [[0.72, 0.08] / (0.72 + 0.08), [0.08, 0.12] / (0.08 + 0.12)]
 = [[0.9, 0.1], [0.4, 0.6]]

Règle du produit

- Règle du produit :
 - \rightarrow P(X,Y)=P(X|Y)P(Y)
 - P(Pourriel=faux, Inconnu=vrai)
 = P(Pourriel=faux | Inconnu=vrai) P(
 - = P(Pourriel=faux | Inconnu=vrai) P(Inconnu=vrai)
 - = P(Inconnu=vrai | Pourriel=faux) P(Pourriel=faux)
 - En général :
 P(Pourriel, Inconnu) = P(Pourriel | Inconnu) P(Inconnu)
 = P(Inconnu | Pourriel) P(Pourriel)

Règle de chaînage

- Règle du produit :
 - \rightarrow P(X,Y)=P(X|Y)P(Y)

• Règle de chaînage (*chain rule*) pour n variables $X_1 \dots X_n$:

$$P(X_{1}, ..., X_{n}) = P(X_{1}, ..., X_{n-1}) P(X_{n} \mid X_{1}, ..., X_{n-1})$$

$$= P(X_{1}, ..., X_{n-2}) P(X_{n-1} \mid X_{1}, ..., X_{n-2}) P(X_{n} \mid X_{1}, ..., X_{n-1})$$

$$= ...$$

$$= \prod_{i=1, n} P(X_{i} \mid X_{1}, ..., X_{i-1})$$

Règle de chaînage

- La règle du chaînage est vraie, quelle que soit la distribution de $X_1 \dots X_n$
- Plutôt que de spécifier toutes les probabilités jointes $P(X_1, ..., X_n)$, on pourrait plutôt spécifier $P(X_1)$, $P(X_2|X_1)$, $P(X_3|X_1, X_2)$, ..., $P(X_n|X_1,...,X_{n-1})$
- Exemple, on aurait pu spécifier :
 - → P(Pourriel=faux) = 0.8, P(Pourriel=vrai) = 0.2
 - → P(Inconnu=faux | Pourriel=faux) = 0.9 , P(Inconnu=vrai | Pourriel=faux) = 0.1 P(Inconnu=faux | Pourriel=vrai) = 0.4, P(Inconnu=vrai | Pourriel=vrai) = 0.6
- On aurait tous les ingrédients pour calculer les P(Pourriel, Inconnu) :
 - → P(Pourriel=faux, Inconnu=vrai) = P(Inconnu=vrai | Pourriel=faux) P(Pourriel=faux) = 0.1 * 0.8 = 0.08
 - → P(Pourriel=vrai, Inconnu=vrai) = P(Inconnu=vrai | Pourriel=vrai) P(Pourriel=vrai) = 0.6 * 0.2 = 0.12

Règle de Bayes

- P(X|Y) = P(Y|X)P(X)/P(Y)
- Donne une probabilité diagnostique à partir d'une probabilité causale :
 - ◆ P(Cause | Effect) = P(Effect | Cause) P(Cause) / P(Effect)

Règle de Bayes

- P(X|Y) = P(Y|X)P(X)/P(Y)
- Donne une probabilité diagnostique à partir d'une probabilité causale :
 - ◆ P(Cause | Effet) = P(Effet | Cause) P(Cause) / P(Effet)
- On pourrait calculer P(Pourriel=faux | Inconnu=vrai):
 - ♦ $P(\neg pourriel \mid inconnu)$ = $P(\neg pourriel, inconnu) / P(inconnu)$ = $P(\neg pourriel, inconnu) / (P(inconnu, \neg pourriel) + P(inconnu, pourriel))$ = $\alpha P(inconnu \mid \neg pourriel) P(\neg pourriel)$
 - = 0.08 / (0.08 + 0.12) =**0.4**

 $Pourriel = faux \Leftrightarrow \neg pourriel$ $Pourriel = vrai \Leftrightarrow pourriel$

- On appelle P(Pourriel) une probabilité a priori
 - c'est notre croyance p/r à la présence d'une Pourriel avant toute observation
- On appelle P(Pourriel | Inconnu) une probabilité a posteriori
 - c'est notre croyance mise à jour après avoir observé Inconnu
- La règle de Bayes lie ces deux probabilités ensemble
 - ♦ $P(\neg pourriel \mid inconnu) = \alpha P(inconnu \mid \neg pourriel) P(\neg pourriel)$

Indépendance

- Soit les variables A et B, elles sont indépendantes si et seulement si
 - ightharpoonup P(A | B) = P(A) ou
 - ightharpoonup P(B|A) = P(B) ou
 - ightharpoonup P(A, B) = P(A) P(B)

Indépendance

- Soit les variables A et B, elles sont indépendantes si et seulement si
 - \rightarrow $P(A \mid B) = P(A)$ ou
 - ightharpoonup P(B|A) = P(B) ou
 - ightharpoonup P(A, B) = P(A) P(B)
- Exemple : P(Pluie, Pourriel) = P(Pluie) P(Pourriel)

P(Pluie = vrai) = 0.3	vrai	
P(Plule = Vral) = 0.3	vrai	
P(Pourriel = vrai) = 0.1	faux	
	faux	

Pluie	Pourriel	Probabilité
vrai	vrai	0.03
vrai	faux	0.27
faux	vrai	0.07
faux	faux	0.63

=
$$P(pluie) P(Pourriel) = 0.3 * 0.1$$

= $P(pluie) P(\neg Pourriel) = 0.3 * 0.9$
= $P(\neg pluie) P(Pourriel) = 0.7 * 0.1$

=
$$P(\neg pluie) P(\neg Pourriel) = 0.7 * 0.9$$

Indépendance

- L'indépendance totale est puissante mais rare
- L'indépendance entre les variables permet de réduire la taille de la distribution de probabilités et rendre les inférences plus efficaces
 - dans l'exemple précédent, on n'a qu'à stocker en mémoire
 P(Pluie = vrai) = 0.3 et P(Pourriel = vrai) = 0.1, plutôt que la table au complet
- Mais il est rare d'être dans une situation où toutes les variables sont réellement indépendantes

Pluie	Pourriel	Probabilité
vrai	vrai	0.03
vrai	faux	0.27
faux	vrai	0.07
faux	faux	0.63

Indépendance conditionnelle

- Si je sais déjà que le courriel est un pourriel, ma croyance (probabilité) qu'il contienne un mot sensible ne dépend plus du fait que l'expéditeur me soit inconnu ou non :
 - → P(Sensible | Inconnu, Pourriel=vrai) = P(Sensible | Pourriel=vrai)
- On dit que Sensible est conditionnellement indépendante de Inconnu étant donné Pourriel, puisque :
 - → P(Sensible | Inconnu, Pourriel) = P(Sensible | Pourriel)
- Formulations équivalentes :
 - P(Inconnu | Sensible , Pourriel) = P(Inconnu | Pourriel)
 - ◆ P(Inconnu, Sensible | Pourriel) = P(Inconnu | Pourriel) P(Sensible | Pourriel)

Indépendance conditionnelle

Réécrivons la distribution conjointe en utilisant la règle de chaînage (chain rule):

```
P(Inconnu, Sensible, Pourriel)
= P(Inconnu | Sensible, Pourriel) P(Sensible, Pourriel)
= P(Inconnu | Sensible, Pourriel) P(Sensible | Pourriel) P(Pourriel)
= P(Inconnu | Pourriel) P(Sensible | Pourriel) P(Pourriel)
```

- C-à-d., 2 + 2 + 1 = 5 paramètres individuels/distincts
- Dans des cas idéals, l'exploitation de l'indépendance conditionnelle réduit la complexité de représentation de la distribution conjointe de exponentielle (O(2ⁿ)) en linéaire (O(n))

En bref

- Probabilité jointe : P(X₁, ...,X_n)
- Probabilité marginale : $P(X_i)$, $P(X_i, X_i)$, etc.
- Probabilité conditionnelle : $P(X_1, ..., X_k | X_{k+1}, ..., X_n) = P(X_1, ..., X_k, X_{k+1}, ..., X_n)$ $P(X_{k+1}, ..., X_n)$
- Régle de chaînage : $P(X_1, ..., X_n) = \prod_{i=1...n} P(X_i \mid X_1, ..., X_{i-1})$
- Indépendance : X_i et X_j sont indépendantes si $P(X_i, X_j) = P(X_i) P(X_j)$, ou $P(X_i | X_j) = P(X_i)$ ou $P(X_j | X_i) = P(X_j)$
- Indépendance conditionnelle : X_i et X_j sont indépendante sachant X_k si $P(X_i, X_j | X_k) = P(X_i | X_k) P(X_j | X_k) \text{ ou } P(X_i | X_j, X_k) = P(X_i | X_k) \text{ ou } P(X_j | X_i, X_k) = P(X_j | X_k)$
- Règle de Bayes : $P(X_1, ..., X_k \mid X_{k+1}, ..., X_n) = P(X_{k+1}, ..., X_n \mid X_1, ..., X_k) P(X_1, ..., X_k)$ $P(X_{k+1}, ..., X_n)$

Autres types de variables aléatoires

- On s'est concentré sur des variables aléatoires Booléennes ou binaires
 - le domaine, c.-à-d. l'ensemble des valeurs possibles de la variable, était toujours {vrai, faux}
- On pourrait avoir d'autres types de variables, avec des domaines différents :
 - Discrètes : le domaine est énumérable
 - » Météo ∈ {soleil, pluie, nuageux, neige}
 - » lorsqu'on marginalise, on doit sommer sur toutes les valeurs : $P(Temp\'erature) = \sum_{x \in \{soleil, pluie, nuageux, neige\}} P(Temp\'erature, M\'et\'eo=x)$
 - Continues : le domaine est continu (par exemple, l'ensemble des réels)
 - » exemple : PositionX = 4.2
 - » le calcul des probabilités marginales nécessite des intégrales

Classifieur bayésien naïf

Le classifieur (modèle) bayésien naïf est définit comme suit

$$P(Cause, Effet_1, ..., Effet_n) = P(Cause) = \prod_{i=1..n} P(Effet_i \mid Cause)$$

 Naïf parce qu'on suppose l'Independence conditionnel. Mais fonctionne dans beaucoup d'applications

Classifieur bayésien naïf

Le modèle (Classifieur) bayésien naïf est définit comme suit

$$P(Cause, Effet_1, ..., Effet_n) = P(Cause) \prod_{i=1..n} P(Effet_i \mid Cause)$$

- Pour l'appliquer, en général, on observe des effets (e) et on veut diagnostiquer la cause.
- Noton **E=e** les effets observés. On a vu que $P(Cause | e) = \alpha \Sigma_y P(Cause, e, y)$
- On a donc:

$$P(\text{Cause} \mid e) = \alpha \Sigma_y P(\text{Cause}) P(y \mid \text{Cause}) \prod_{j=1..n} P(e_i \mid \text{Cause})$$

= $\alpha P(\text{Cause}) \prod_{j=1..n} P(e_i \mid \text{Cause}) \Sigma_y P(y \mid \text{Cause})$
= $\alpha P(\text{Cause}) \prod_{j=1..n} P(e_i \mid \text{Cause})$

Classifieur bayésien naïf

$$P(Cause | e) = \alpha P(Cause) \prod_{i=1..n} P(e_i | Cause)$$

- Classification de documents: étant donné un document texte, déterminer dans laquelle des catégories prédéfinie il appartient (ex: sport, économie)
- Exemples de textes (documents):
 - ◆ Apple a fait état jeudi d'un chiffre d'affaires et d'un bénéfice net supérieur aux attentes pour le trimestre allant d'octobre à décembre l'année dernière, la forte hausse des ventes d'iPhone, notamment en Chine, ayant plus que compensé les difficultés des chaînes d'approvisionnement ... (*Tiré de Radio Canada / Économie 2022-01-08*)
 - ◆ Le Canada s'est rapproché davantage de son objectif en défaisant le Honduras 2-0, jeudi, en match de qualification pour la Coupe du monde au Qatar (*Tiré de Radio Canada / Sport – 2022-01-08*)

Classifieur bayésien naïf

$$P(Cause | e) = \alpha P(Cause) \prod_{j=1..n} P(e_i | Cause)$$

- Étant donné un document, déterminer dans laquelle des catégories prédéfinie il appartient (e.g., sport, politique, économie, etc.)
 - ◆ Cause correspond à la catégorie (classe) des documents (sport, politique, etc.)
 - e_i correspond à la présence ou absence de certains mots clés, keyWord_i.
 - ◆ Donc $e = \{keyWord_1, ..., keyWord_n\}, c.-à-.d, les mots-clés observés$

 $P(Class | keyWord_1, ..., keyWord_n) = \alpha P(Class) \prod_{i=1...n} P(keyWorld_i | Class)$

 Le modèle bayésien naïf consiste des probabilités à priori P(Class) et des probabilités conditionnelles P(KeyWorld; | Class).

 $P(Category | ObservedKeyWords) = \alpha P(Catgeory) \prod_{j=1..n} P(HasWorld_i | Category)$

- Le modèle bayésien naïf consiste des probabilités à priori *P(Category)* et des probabilités conditionnelles *P(HasWorld_i | Category)*.
- Pour classifier un document
 - On vérifie quels mots clés apparaissent dans le document, ce qui donne ObservedKeywords
 - On applique ensuite l'équation pour obtenir la distribution des probabilités à postériori des catégories, c.-a.-d., P(Category | ObservedKeyWords)
 - On choisit finalement argmax_c P(Category = c | ObservedKeyWords), c.-à-d., la catégorie avec la probabilité à postériori la plus elevée.

 $P(Category | ObservedKeywords) = \alpha P(Catgeory) \prod_{j=1..n} P(HasWorld_i | Category)$

- Le modèle bayésien naïf consiste des probabilités à priori *P(Category)* et des probabilités conditionnelles *P(HasWorld_i | Category)*.
- Pour apprendre le modèle:
 - P(Category = c) est la fraction des documents de cette catégorie vue jusqu'à présent.
 - → P(HasWord_i | Category = c) est la fraction de documents de catégorie c de la catégorie qui contient le mot Word_i.

Sujets couverts par le cours

Concepts et algorithmes

Applications

Vous devriez être capable de...

- À partir d'une distribution conjointe ou des distributions conditionnelles et a priori nécessaires :
 - calculer une probabilité conjointe
 - calculer une probabilité marginale
 - déterminer si deux variables sont indépendantes
 - déterminer si deux variables sont conditionnellement indépendantes sachant une troisième
 - Appliquer la règle du chainage
 - Appliquer la règle de Bayes

```
En bref

• Probabilité juine: \mathbb{P}(x_1,...,x_k), \mathbb{P}(x_1,...,x_k) etc.
• Probabilité auguleuir: \mathbb{P}(x_1,...,x_k), \mathbb{P}(x_1,...,x_k) etc.
• Probabilité auguleuir: \mathbb{P}(x_1,...,x_k), \mathbb{P}(x_1,...,x_k) = \mathbb{P}(x_1,...,x_k), \mathbb{P}(x_1,...,x_k).
• Régi de challeque: \mathbb{P}(x_1,...,x_k) = \mathbb{P}(x_1,...,x_k) = \mathbb{P}(x_1,...,x_k) = \mathbb{P}(x_1,...,x_k) = \mathbb{P}(x_1,...,x_k), \mathbb{P}(x_1,...,x_k) = \mathbb{P}(x_1,...,x_k) = \mathbb{P}(x_1,...,x_k), \mathbb{P}(x_1,...,x_k) = \mathbb{P}(x_1,...,x_k), \mathbb{P}(x_1,...,x_k
```

Le monde des Wumpus

Problème: calculer la probabilité que [1,3], [2,2] et [3,1] contienne une fosse

- Identifier l'ensemble de variables aléatoires nécessaires:
 - P_{ij}=true ssi il y a une fosse dans [i,j] (Pij=0.2 partout sauf dans [1,1]).
 - ◆ B_{ij}=true ssi il y a une brise dans [i,j]

Inclure seulement les variables observées B_{11} , B_{12} , B_{21} dans la distribution des probabilités (modèle).

1,4	2,4	3,4	4,4
1,3	2,3	P).	33 4,
1,2 B OK	2,2	Σ.	4,2
1,1	2,1 B	3,1	4,1
OK	ок		

Spécifier la distribution des probabilités

2. Spécifier la distribution conjointe ($P(P_{1,1}, ..., P_{4,4}, B_{1,1}, B_{1,2}, B_{2,1})$)

- ♦ appliquer la règle du produit : $P(B_{1,1}, B_{1,2}, B_{2,1} | P_{1,1}, ..., P_{4,4})$ $P(P_{1,1}, ..., P_{4,4})$ (on spécifie une forme P(Effect | Cause))
- premier terme : $P(B_{1,1}, B_{1,2}, B_{2,1} | P_{1,1}, ..., P_{4,4})$
 - » probabilité conditionnelle d'une configuration/état de brises, étant donnée une configuration de fosses
 - » 1 si les fosses sont adjacentes aux brises, 0 sinon
- \diamond second terme : $P(P_{1,1},...,P_{4,4})$
 - » probabilité a priori des configurations des fosses
 - » les fosses sont placées aléatoirement, avec une probabilité de 0.2 par chambre
 - » si $P_{1,1}$,..., $P_{4,4}$ sont telles qu'il y a exactement n fosses, on aura $\mathbf{P}(P_{1,1},...,P_{4,4}) = \prod_{(i,j)=(1,1)...(4,4)} \mathbf{P}(P_{i,j}) = 0.2^n *0.8^{16-n}$

Observations et requête

3. Identifier les observations

on sait ce qui suit :

$$b = \neg b_{1,1} \land b_{1,2} \land b_{2,1}$$

»
$$known = \neg p_{1,1} \land \neg p_{1,2} \land \neg p_{2,1}$$

4. Identifier les variables de requête

- y a-t-il une fosse à la position 1,3?
- \bullet **P**($P_{1,3} \mid known, b$)?

3. Identifier les variables cachées

 $lack on définit Unknown comme étant l'ensemble des variables <math>P_{i,j}$ autres que celles qui sont connues (known) et la variable de requête $P_{1,3}$

Observations et requête

6. Faire l'inférence

avec l'inférence par énumération, on obtient :

$$\mathbf{P}(P_{1,3} | known, b) =$$
 $\alpha \sum_{unknown} \mathbf{P}(P_{1,3}, unknown, known, b)$

- croît exponentiellement avec le nombre de chambres!
 - » avec 12 chambres unknown: 2¹²=4096 termes

Utiliser l'indépendance conditionnelle

- Idée de base: les observations sont conditionnellement indépendantes des chambres cachées étant données les chambres adjacentes.
 - C.-à-d., les autres chambres ne sont pas pertinentes.

- Définir *Unknown = Fringe ∪ Other*
- $P(b|P_{1.3}, known, Unknown) = P(b|P_{1,3}, known, Fringe, Other)$
- Réécrire la probabilité d'interrogation P(P_{1,3} | known, b) pour exploiter cette indépendance.

Utiliser l'indépendance conditionnelle

```
\begin{split} \mathbf{P}(P_{1,3} | \ known, b) &= \alpha \ \Sigma_{unknown} \ \mathbf{P}(P_{1,3}, \ unknown, known, b) \\ &= \alpha \ \Sigma_{unknown} \ \mathbf{P}(b | P_{1,3}, known, unknown) \ \mathbf{P}(P_{1,3}, known, unknown) \\ &= \alpha \ \Sigma_{frontier} \ \Sigma_{other} \ \mathbf{P}(b | \ known, P_{1,3}, frontier, other) \ \mathbf{P}(P_{1,3}, known, frontier, other) \\ &= \alpha \ \Sigma_{frontier} \ \Sigma_{other} \ \mathbf{P}(b | \ known, P_{1,3}, frontier) \ \mathbf{P}(P_{1,3}, known, frontier, other) \\ &= \alpha \ \Sigma_{frontier} \ \mathbf{P}(b | \ known, P_{1,3}, frontier) \ \Sigma_{other} \ \mathbf{P}(P_{1,3}, known, frontier, other) \\ &= \alpha \ \Sigma_{frontier} \ \mathbf{P}(b | \ known, P_{1,3}, frontier) \ \Sigma_{other} \ \mathbf{P}(P_{1,3}) \ P(known) \ P(frontier) \ P(other) \\ &= \alpha \ P(known) \ \mathbf{P}(P_{1,3}) \ \Sigma_{frontier} \ \mathbf{P}(b | \ known, P_{1,3}, frontier) \ P(frontier) \ \Sigma_{other} \ P(other) \\ &= \alpha' \ \mathbf{P}(P_{1,3}) \ \Sigma_{frontier} \ \mathbf{P}(b | \ known, P_{1,3}, frontier) \ P(frontier) \end{split}
```

Utiliser l'indépendance conditionnelle

- Événements cohérents pour les variables $P_{2,2}$ et $P_{3,1}$, montrant **P**(frontier)
- Pour chaque événement :
 - a) 3 événements avec $P_{1,3}$ = vrai, montrant 2 ou 3 fosses.
 - b) 2 événements avec $P_{1,3}$ = faux, montrant 1 ou 2 fosses.

$$P(P_{1,3}|known, b) = \alpha' < 0.2(0.04+0.16+0.16), 0.8(0.04+0.16) >$$

 $\approx < 0.31, 0.69 >$

Classification de documents

Soit les deux documents (question d'examen) suivants:

« Dessinez la partie de l'espace d'états qui serait explorée par l'algorithme alpha-beta pruning, en supposant qu'il explore l'espace d'états de la gauche vers la droite. » « En utilisant l'algorithme d'apprentissage du perceptron et un pas d'apprentissage de 0.3, donnez la sortie et les poids des connexions à la fin de la deuxième itération. »

Laquelle est une question d'examen final, en IFT 615?

Classification de documents

Soit les deux documents (question d'examen) suivants:

« d'états d'états de qui explore qu'il explorée gauche l'algorithme pruning, l'espace par en Dessinez alpha-beta droite. la la supposant l'espace partie serait la de vers »

« un pas de l'algorithme fin sortie de perceptron donnez la deuxième En à poids du et et des d'apprentissage connexions les itération. la la d'apprentissage utilisant 0.3, »

Laquelle est une question d'examen final, en IFT 615?

Classification de documents

- Les mots individuels sont très informatifs du sujet (catégorie) d'une document
- L'ordre des mots n'est souvent pas utile
 - l'ordre reflète surtout la syntaxe d'une langue
 - on suppose que la catégorie n'influence que la probabilité d'observer un mot dans un document
- Ignorer l'ordre des mots va permettre de simplifier le système, sans trop compromettre sa précision
- On va formaliser ces hypothèses à l'aide d'un modèle bayésien

W₁ a une distribution conditionnelle multinomiale

C	intra	final
$P(W_1 = \text{``de "} C)$	0.01	0.01
$P(W_1 = \text{``qui ``} C)$	0.02	0.02
$P(W_1 = \text{w perceptron } \text{w} C)$	10 ⁻⁶	0.002

 W_2 est le deuxième mot d'un document, contenant d mots

W₂ a **la même** une distribution conditionnelle multinomiale

C	intra	final
$P(W_2 = \text{``de "} C)$	0.01	0.01
$P(W_2 = \text{``qui ``} C)$	0.02	0.02
$P(W_2 = \text{``perceptron'}) C)$	10 ⁻⁶	0.002

 En général la probabilité conjointe d'un document [W₁,...,W_d] ayant d mots et de sa catégorie C:

$$P([W_1,...,W_d], C) = P(C) \prod_i P(W_i \mid C)$$

Exemple:

C	intra	final
<i>P</i> (<i>C</i>)	0.5	0.5

С	intra	final
$P(W_i = \ll, \gg C)$	0.01	0.01
$P(W_i = \ll un \gg C)$	0.02	0.02
$P(W_i = \ll d' \gg C)$	0.01	0.02
$P(W_i = \text{``Perceptron ``} C)$	10-6	0.002
$P(W_i = \text{``algorithme "} C)$	0.005	0.005
$P(W_i = \text{``apprentissage "} C)$	10 ⁻⁵	0.001
$P(W_i = «.» C)$	0.03	0.03
	•••	•••

 $P(\text{``em} P(\text{``em} P(\text{`em} P(\text{``em} P(\text{`em} P(\text{``em} P(\text{`e$

P(« Perceptron, un algorithme d'apprentissage. », C = final) = $0.5 * 0.002 * 0.01 * 0.02 * 0.005 * 0.02 * 0.001 * 0.03 = 6 * <math>10^{-16}$

Décision de la catégorie d'un document

• Pour classifier un document contenant les mots $[w_1,...,w_d]$, on choisit la classe c ayant la plus grande **probabilité a posteriori** $P(C=c \mid [w_1,...,w_d])$

Décision de la catégorie d'un document

- Pour classifier un document fait des mots $[w_1,...,w_d]$, on choisit la classe cayant la plus grande **probabilité a posteriori** $P(C=c \mid [w_1,...,w_d])$
- Exemple:

Apprentissage du modèle

- Comment obtient-on les distributions P(C) et $P(W_i \mid C)$?
 - on les obtient à partir de vraies données
 - \diamond on choisit P(C) et $P(W_i \mid C)$ pour quelles reflètent les statistiques de ces données
- Soit un **corpus**, c.-à-d. un ensemble de T documents $\{D_t, C_t\}$
 - chaque document D_t est une liste de mots $[w_1^t,...,w_d^t]$ de taille variable
 - C_t est la catégorie de D_t

$$P(C=c)$$
 = (nb. de documents de la catégorie c) / (nb. de documents total) = $|\{t \mid C_t = c\}|$ / T

$$P(W_i = w \mid C = c)$$
 = nb. de fois que w apparaît dans les documents de la catégorie c nb. de mots total dans les documents de la catégorie c = $\sum_{t \mid Ct = c}$ freq (w, D_t) $\sum_{t \mid Ct = c}$ $|D_t|$

Lissage du modèle

- Selon la formule pour P(W_i = w | C=c), un mot w aura une probabilité de 0 s'il n'apparaît jamais dans notre corpus
- Si un seul des $P(W_i = w \mid C = c) = 0$, alors tout $P(C = c, [w_1, ..., w_d]) = 0$!
 - les mots rares vont beaucoup faire varier $P(C=c,[w_1,...,w_d])$ en général
- Pour éviter cette instabilité, deux trucs afin de lisser la distribution P(w|c)
 - on détermine un vocabulaire V de taille fixe, et on associe les mots qui ne sont pas dans ce vocabulaire au symbole OOV (out of vocabulary)
 - **lissage δ**: on ajoute une constante δ au numérateur, pour chaque mot

$$P(W_i = w \mid C = c) = \frac{\delta + \sum_{t \mid Ct = c} freq(w, D_t)}{\delta (|V| + 1) + \sum_{t \mid Ct = c} |D_t|}$$

Lissage du modèle

- Exemple: soit le vocabulaire
 V = { « Perceptron », « , », « un », « apprentissage »}
- La phrase

« Perceptron, un algorithme d'apprentissage. »

sera représentée par la liste de mots

```
[ « Perceptron », « , », « un », « OOV », « OOV », « apprentissage », « OOV » ]
w_1 \qquad w_2 \qquad w_3 \qquad w_4 \qquad w_5 \qquad w_6 \qquad w_7
```

- Les statistiques sont calculées à partir de cette représentation
 - on pourrait aussi enlever les mots « OOV » et les ignorer

Prétraitement des données

- Si, parmi tous les intra des années dernières (corpus de 426 mots)
 - « Perceptron » apparaît 0 fois
 - « , » apparaît 15 fois
 - « un » apparaît 10 fois
 - « apprentissage » apparaît 1 fois
 - « OOV » (tous les autres mots) apparaissent 400 fois
- Si on utilisait $\delta = 1$, alors

```
\bullet P(« Perceptron » | C=intra ) = (1 + 0) / (1 (4+1) + 426) = 1 / 431
```

$$\bullet$$
 $P(\text{``}, \text{``} \mid C = intra') = (1 + 15) / (1 (4+1) + 426) = 16 / 431$

$$\bullet$$
 P(« un » | C=intra) = (1 + 10) / (1 (4+1) + 426) = 11 / 431

$$\bullet$$
 P(« apprentissage » | C=intra) = (1 + 1) / (1 (4+1) + 426) = 2 / 431

$$\bullet$$
 $P(\text{``COOV'}) | C=intra') = (1 + 400) / (1 (4+1) + 426) = 401 / 431$

somme à 1

Prétraitement des données

- Comment choisir V
 - ne garder que les mots les plus fréquents (ex.: apparaissent au moins 10 fois)
 - ne pas garder les mots trop communs
 - » ne pas inclure la ponctuation
 - » ne pas inclure les déterminants (« un », « des », etc.)
 - » ne pas inclure les conjonction (« mais », « ou », etc.)
 - » ne pas inclure les pronoms (« je », « tu », etc.)
 - » ne pas inclure les verbes communs (« être », « avoir », « faire », etc.)
 - » etc.
 - utiliser une forme normalisée des mots (fusion de mots différents en un seul)
 - » enlever les majuscules (« Perceptron » → « perceptron »)
 - » lemmatiser les mots (« marchons » → « marcher », « suis » → « être », « est » → « être »)
- Il n'y a pas de recette universelle, le meilleure choix de V varie d'une application à l'autre

Probabilités

- Les assertions probabilistes facilitent la modélisation :
 - des faits et de règles complexes : comparée aux règles de production, l'approche est moins sensible à l'impossibilité d'énumérer toutes les exceptions, antécédents ou conséquences de règles
 - de l'ignorance : l'approche est moins sensible à l'omission/oubli des faits, de prémisses ou des conditions initiales à un raisonnement

Probabilités

- Perspective subjective/bayésienne des probabilités :
 - les probabilités expriment le degré de croyance d'un agent dans des propositions/faits
 - » exemple : $P(A_{25} \mid \text{aucun accident rapporté}) = 0.06$
 - les probabilités ne sont pas des assertions sur ce qui est vrai de façon absolue
 - n'expriment pas forcément des tendances/fréquences d'une situation, mais pourraient être apprises automatiquement à partir d'expériences
 - les probabilités des propositions changent avec l'acquisition de nouvelles informations
 - » exemple : $P(A_{25} \mid \text{aucun accident rapporté}, 5h du matin) = 0.15$
- À l'opposée, il y a la perspective objective/fréquentiste des probabilités
 - les probabilités expriment des faits/propriétés sur des objets
 - on peut estimer ces probabilités en observant ces objets à plusieurs reprises
 - les physiciens diront que les phénomènes quantiques sont objectivement probabilistes

Axiomes de la théorie des probabilités : Axiomes de Kolmogorov

- Pour toute propositions a, b
 - \bullet $0 \le P(a) \le 1$
 - ightharpoonup P(vrai) = 1 et P(faux) = 0
 - $P(a \lor b) = P(a) + P(b) P(a \land b)$

True

Prise de décisions avec incertitude

Supposons que je crois ceci :

```
♦ P(A_{25} \text{ me permet d'arriver à temps } | ...) = 0.04
```

- ♦ $P(A_{90} \text{ me permet d'arriver à temps } | ...) = 0.70$
- $ightharpoonup P(A_{120} \text{ me permet d'arriver à temps } | ...) = 0.95$
- $ightharpoonup P(A_{240} \text{ me permet d'arriver à temps } | ...) = 0.999$
- \rightarrow $P(A_{1440} \text{ me permet d'arriver à temps } | ...) = 0.9999$
- Quelle action devrais-je choisir?
 - cela dépend de mes préférences : manquer l'avion vs. trop d'attente
- La théorie de l'utilité est utilisée pour modéliser et inférer avec des préférences
 - une préférence exprime le degré d'utilité d'une action/situation
- Théorie de la décision = théorie des probabilités + théorie de l'utilité

Probabilités : traitement général

- On commence avec un ensemble Ω appelé univers
 - $\omega \in \Omega$ est un événement élémentaire
- Un **modèle de probabilités** est une distribution de probabilité $P(\omega)$ pour chaque élément $\omega \in \Omega$, telle que
 - \bullet 0 \leq $P(\omega) \leq 1$
 - \bullet $\Sigma_{\omega \in \Omega} P(\omega) = 1$
- Un **événement** est un sous-ensemble de Ω
 - probabilité d'un événement A : $P(A) = \sum_{\{\omega \in A\}} P(\omega)$
- Exemple d'un dé :
 - \bullet $\Omega = \{1,2,3,4,5,6\}$ et P(1)=P(2)=P(3)=P(4)=P(5)=P(6)=1/6
- Événement A = « Dé est < 4 » :
 - $P(A) = P(\omega=1) P(\omega=2) + P(\omega=3) = 1/6 + 1/6 + 1/6 = 1/2$

Variable aléatoire

- Une variable aléatoire est une variable décrivant une partie des connaissances incertaines (on la note avec une première lettre majuscule)
 - c'est une « fenêtre » sur l'univers
- Chaque variable a un domaine de valeurs qu'elle peut prendre
- Types de variables aléatoires :
 - ◆ **Booléennes** : le domaine est {*vrai, faux*}
 - » exemple : Pourriel ∈ {vrai, faux} (ai-je la Pourriel?)
 - ◆ **Discrètes** : le domaine est énumérable
 - » Météo ∈ {soleil, pluie, nuageux, neige}
 - Continues : le domaine est continu (par exemple, l'ensemble des réels)
 - » exemple : X = 4.0, *PositionX* ≤ 10.0, Speed ≤ 20.5

Variable aléatoire

- On peut voir une variable aléatoire X comme une fonction $X(\omega)$ donnant une valeur à chaque événement élémentaire ω possible
 - sauf si nécessaire, on va écrire X plutôt que $X(\omega)$
- P induit une distribution de probabilités pour chaque variable aléatoire X
 - ♦ la probabilité qu'une variable X ait la valeur x_i est la somme des probabilités d'événements élémentaires ω qui sont tels que X(ω) = x

$$P(X=x_i) = \sum_{\{\omega : X(\omega)=xi\}} P(\omega)$$

- Exemple du dé :
 - ightharpoonup P(NombreImpaire = vrai) = P(1)+P(3)+P(5) = 1/6+1/6+1/6=1/2

Propositions

- Une proposition est une assertion de ce qui est vrai, c.-à-d., une assertion sur la valeur d'une ou plusieurs variables
 - en d'autres mots, un événement (ensemble d'échantillons ou d'événements atomiques) pour lequel la proposition est vraie
 - » exemple : Pourriel = vrai (noté parfois Pourriel) ou Pourriel = faux (\neg Pourriel)
- Étant données deux variables booléennes A et B :
 - l'événement a est l'ensemble d'échantillons ω pour lesquels A = vrai
 - l'événement \neg a est l'ensemble d'échantillons ω pour lesquels A = faux
 - l'événement $a \wedge b$ est l'ensemble des ω pour lesquels A=vrai et B=vrai
 - lacktriangle l'événement $a \lor b$ est l'ensemble des ω pour lesquels A=vrai ou B=vrai

Propositions

- Souvent nous aurons plusieurs variables aléatoires
 - toutes les variables aléatoires tiennent leur valeur d'un même échantillon ω
 - pour des variables distinctes, l'espace d'échantillonnage est alors le produit cartésien des domaines des variables aléatoires
- Un événement atomique est donc une spécification complète de l'état du « monde » pour lequel un agent est incertain
 - par exemple, si le « monde » de l'agent est décrit par seulement deux variables aléatoires booléennes (*Pourriel* et *Inconnu*), il y a exactement quatre états / événements atomiques possibles :
 - \rightarrow Pourriel = faux ∧ Inconnu = faux
 - » Pourriel = faux ∧ Inconnu = vrai
 - » Pourriel = vrai ∧ Inconnu = faux
 - » Pourriel = vrai ∧ Inconnu = vrai
 - » on a donc Ω = { <*vrai*,*vrai*>, <*vrai*,*faux*>, <*faux*,*vrai*>, <*faux*, *faux*>}
- Les événements atomiques sont exhaustifs et mutuellement exclusifs

Syntaxe des propositions

- Élément de base : variable aléatoire
- Similaire à la logique propositionnelle
- Variables aléatoires booléenne
 - exemple : Pourriel = vrai
- Variables aléatoires discrètes (domaines finis or infinis)
 - \diamond exemple : $M\acute{e}t\acute{e}o = v$, avec $v \in \{ soleil, pluie, nuageux, neige \}$
- Variables aléatoires continues (bornées ou non bornées)
 - exemple : Temp=21.6 (la variable Temp a exactement la valeur 21.6)
 - exemple : Temp < 22.0 (la variable Temp a une valeur inférieure à 22)</p>

Syntaxe des propositions

- En général, les propositions élémentaires sont définies en assignant une valeur ou un intervalle de valeurs aux variables
 - ◆ exemple : Météo = soleil, Pourriel = faux (notée aussi ¬Pourriel)
- Les propositions complexes sont définies par des combinaisons booléennes
 - exemple : (Météo = soleil) \(\times \) (Pourriel = faux)

Variable aléatoire

Variables aléatoires :

◆ Inconnu : l'adresse de l'expéditeur n'est pas connue du destinataire

◆ **Sensible**: le courriel contient un mot sensible

◆ *Pourriel* : le courriel est un pourriel

	Inconnu = vrai		Inconnu = faux	
Sens	ible = vrai	Sensible = faux	Sensible = vrai Se	ensible = faux
Pourriel = vrai	0.108	0.012	0.072	0.008
Pourriel = faux	0.016	0.064	0.144	0.576