Devoir à la maison n°17

- Le devoir devra être rédigé sur des copies doubles.
- Les copies ne devront comporter ni rature, ni renvoi, ni trace d'effaceur.
- Toute copie ne satisfaisant pas à ces exigences devra être intégralement récrite.

Problème 1 – D'après E3A MP 2015

Pour tout nombre réel R > 0, on note D(0, R) le disque ouvert de centre 0 et de rayon R. Dans tout le problème, on note f la fonction définie sur \mathbb{C} par

$$f(z) = \begin{cases} \frac{e^z - 1}{z} & \text{si } z \neq 0\\ 1 & \text{si } z = 0 \end{cases}$$

I Inverse d'une série entière

On considère une série entière $\sum_{n\in\mathbb{N}}a_nz^n$ de rayon de convergence R non nul (possiblement infini) et de $+\infty$

somme
$$S(z) = \sum_{n=0}^{+\infty} a_n z^n$$
. On suppose $a_0 = 1$.

On se propose de montrer qu'il existe un réel R' tel que $0 < R' \le R$ et une série entière $\sum_{n \in \mathbb{N}} b_n z^n$ de rayon de

convergence supérieur ou égal à R' telle qu'en posant $T(z) = \sum_{n=0}^{+\infty} b_n z^n$:

$$\forall z \in D(0, R'), S(z)T(z) = 1$$

Soit ρ un nombre réel tell que $0 < \rho < R$.

- 1 Justifier que la suite $(a_n \rho^n)_{n \in \mathbb{N}}$ est bornée.
- $\boxed{2}$ En déduire qu'il existe un nombre réel K > 0 tel que

$$\forall n \in \mathbb{N}^*, |a_n| \le \left(\frac{\mathbf{K}}{\rho}\right)^n$$

On considère la suite $(b_n)_{n\in\mathbb{N}}$ définie par récurrence par :

$$b_0 = 1$$
 et $\forall n \in \mathbb{N}^*$, $b_n = -\sum_{j=1}^n a_j b_{n-j}$

3 Démontrer que

$$\forall n \in \mathbb{N}, |b_n| \le \left(\frac{2K}{\rho}\right)^n$$

1

En déduire que la série entière $\sum_{n\in\mathbb{N}} b_n z^n$ a un rayon de convergence non nul.

On pose alors
$$T(z) = \sum_{n=0}^{+\infty} b_n z^n$$
.

© Laurent Garcin MP Dumont d'Urville

Soit R' le minimum des rayons de convergence des séries entières $\sum_{n\in\mathbb{N}} a_n z^n$ et $\sum_{n\in\mathbb{N}} b_n z^n$. Justifier que ST est développable en série entière sur D(0, R') et expliciter les coefficients de cette série entière.

6 Conclure.

II Rationnalité des nombres de Bernoulli

- **7** Résoudre l'équation f(z) = 0 sur \mathbb{C} .
- **8** Justifier qu'il existe une fonction g définie sur le disque $D(0, 2\pi)$ définie par :

$$\forall z \in D(0, 2\pi), \ g(z) = \frac{1}{f(z)}$$

- **9** Justifier que f est la somme d'une série entière de rayon de convergence infini et préciser les coefficients de cette série entière.
- Justifier qu'il existe R > 0 telle que g soit développable en série entière sur D(0, R).

 On notera $g(z) = \sum_{n=0}^{+\infty} \gamma_n z^n$ pour $z \in D(0, R)$.
- 11 Démontrer que la fonction G définie par :

$$\forall t \in]-R, R[, G(t) = t + 2g(t)$$

est une fonction paire. Que peut-on en déduire sur les coefficients γ_n du développement en série entière de g?

Dans toute la suite de cette partie, on admet que la série entière $\sum_{n\in\mathbb{N}} \gamma_n z^n$ admet un rayon de convergence égal à 2π . Ainsi

$$\forall z \in D(0, 2\pi), \ g(z) = \sum_{n=0}^{+\infty} \gamma_n z^n$$

- **12** Expliciter γ_0 , γ_1 , γ_2 et γ_3 . On pourra utiliser un développement limité de g.
- 13 Montrer que

$$\forall n \in \mathbb{N}^*, \ \sum_{k=0}^n \frac{\gamma_k}{(n-k+1)!} = 0$$

14 Justifier que, pour tout entier naturel n, γ_n est un nombre rationnel.

III Expression des nombres de Bernoulli

On note h la fonction définie sur \mathbb{R} par $h(t) = 1 - e^t$.

15 Expliciter un intervalle ouvert I de \mathbb{R} , centré en 0 tel que

$$\forall t \in I, |e^t - 1| < 1$$

- Soit $\sum_{n\in\mathbb{N}} a_n z^n$ une série entière de rayon de convergence au moins égal à 1. On note $S(z) = \sum_{n=0}^{+\infty} a_n z^n$. Montrer que $S \circ h$ est de classe C^{∞} sur I.
- Démontrer que pour tout $t \in I$, $g(t) = \sum_{k=0}^{+\infty} \frac{(1-e^t)^k}{k+1}$. On justifiera la convergence de cette série.

- **18.** Soit $k \in \mathbb{N}$. Déterminer un équivalent de h^k en 0 et en déduire que $(h^k)^{(n)}(0) = 0$ pour tout entier naturel n < k.
 - **18.b** De manière plus générale, montrer que pour toute fonction H de classe \mathcal{C}^{∞} sur I et tous entiers naturels n, k tels que k > n, $(Hh^k)^{(n)}(0) = 0$.
 - 18.c En déduire que

$$g^{(n)}(0) = \sum_{k=0}^{n} \frac{(h^k)^{(n)}(0)}{k+1}$$

On pourra décomposer g(t) pour $t \in I$ sous la forme

$$g(t) = \sum_{k=0}^{n} \frac{h(t)^{k}}{k+1} + h(t)^{n+1} H(t)$$

avec H une fonction de classe \mathcal{C}^{∞} sur I.

19 19.a Démontrer que pour tous entiers naturels n et k

$$(h^k)^{(n)}(0) = \sum_{j=0}^k (-1)^j \binom{k}{j} j^n$$

19.b Quelle expression de γ_n peut-on en déduire pour tout entier naturel n?