Learning Physics-Based Models from Data: Perspectives from Inverse Problems and Model Reduction (Ghattas, O. & Willcox, K. (2021))

OUARDI Ahlam

The UM6P Vanguard Center

May 29, 2025

Workflow to Learn Physics-Based Models from Data

1. Decide on the Problem

Clearly define the physical system and the questions to be answered.

2. Curate Data

Gather, clean, and preprocess relevant experimental or simulated data.

3. Design an Architecture

Choose a model structure: purely data-driven, physics-informed, or hybrid.

4. Craft a Loss Function

Define a metric to quantify mismatch between predictions and data, while incorporating physical constraints.

5. Employ Optimization

Minimize the loss function to learn model parameters using suitable algorithms.

Outline

- 1 Inverse Problems
- 2 Model Reduction
- 3 Discussions

- 1 Inverse Problems
- 2 Model Reduction
- 3 Discussions

Introduction

The inverse problem consists of finding m for a given u:

$$\mathcal{F}(m) = u. \tag{1}$$

Introduction

The inverse problem consists of finding m for a given u:

$$\mathcal{F}(m) = u. \tag{1}$$

Hadamard (1923) postulated three conditions for problem (1) to be well-posed.

- (i) Existence. For all $u \in Y$, there exists at least one $m \in X$ such that F(m) = u.
- (ii) Uniqueness. For all $u \in Y$, there is at most one $m \in X$ such that F(m) = u.
- (iii) Stability. The parameter m depends on u continuously.

Poisson's Equation in Electrostatics

The Poisson equation describes the electric potential $u(\mathbf{x})$ in the presence of a charge density $\rho(\mathbf{x})$:

$$-\nabla^2 u = \frac{\rho}{\varepsilon_0}, \quad \mathbf{x} \in \Omega. \tag{2}$$

Example: A thin charged plate $(x \in [0, L])$ with a charge density $\rho(x)$ obeys:

$$-\frac{d^2u}{dx^2} = \frac{\rho(x)}{\varepsilon_0}, \quad 0 < x < L. \tag{3}$$

where:

- $\triangleright u(\mathbf{x})$ is the electric potential at position \mathbf{x} .
- $ightharpoonup
 ho(\mathbf{x})$ is the charge density.
- \triangleright ε_0 is the permittivity of free space.

The solution $u(\mathbf{x})$ describes how the electric potential spreads due to a given charge distribution $\rho(\mathbf{x})$.

Poisson's Equation and Inverse Problem

Let's consider the following Poisson equation:

$$-k\frac{\partial^2 u}{\partial x^2} = m(x), \quad 0 < x < L,$$

$$u(0) = u(L) = 0.$$
(4)

where k > 0 is a constant. We define the operator \mathcal{A} as follows:

$$\mathcal{A}: u \mapsto -k \frac{\partial^2 u}{\partial x^2}$$

u is the state variable.

Remark

The equation (4) admits a unique solution $u \in H_0^1$ for all $m \in H^{-1}$, i.e., the operator \mathcal{A} is bijective.

Spectral Properties of the Operator

The operator $\mathcal{F} := \mathcal{A}^{-1}$ is well-defined and self-adjoint, thanks to the self-adjointness of A. Its eigenvalues are real, and its eigenfunctions $v_i(x)$, $j=1,2,\ldots,\infty$, are given by:

$$v_j(x) = \sin\left(\frac{j\pi x}{L}\right).$$

with associated eigenvalues:

$$\lambda_j(\mathcal{F}) \approx \frac{1}{k} \left(\frac{L}{j\pi}\right)^2.$$

As $j \to \infty$, we have $\lambda_j \to 0$, thus \mathcal{F} is a compact operator.

Spectral Properties of the Operator

Figure: Spectrum of the continuous operator ${\mathcal F}$ (blue) versus that of the discretized operator ${\mathcal F}$

Solving for the Source m(x)

Given u(x), we attempt to solve for the source m(x):

$$\mathcal{F}(m) = u \Longrightarrow m = \mathcal{F}^{-1}u.$$

Using the spectral decomposition of \mathcal{F} , we obtain:

$$m = \mathcal{F}^{-1}u = \sum_{j=1}^{\infty} \frac{\langle v_j, u \rangle}{\lambda_j} v_j.$$

where the inner product is:

$$\langle v_j, u \rangle = \int_0^L v_j u dx.$$

For a solution m to exist, the Fourier coefficients of the data, $\langle v_j, u \rangle$, must decay to zero faster than the eigenvalues λ_j .

Solving for the source m(x)

We assume, in the following, that there exists additive noise η that represents the discrepancy between the data and the model output for the 'true' parameter $m_{\rm true}$:

$$\mathcal{F}\left(m_{\mathsf{true}}\right) + \eta = u$$

In this case, we can write

$$m = m_{\mathsf{true}} \ + \sum_{j=1}^{\infty} rac{\langle v_j, \eta
angle}{\lambda_j} v_j$$

Then the error in inferring the source is given by

$$\|m - m_{\mathsf{true}}\|^2 = \sum_{j=1}^{\infty} \frac{\eta_j^2}{\lambda_j^2}$$

where $\eta_j = \langle \nu_j, \eta \rangle$ are the Fourier components of the noise.

III-posed Problems and Regularization

In inverse problems, solving for $m(\boldsymbol{x})$ from noisy data is an ill-posed problem.

Regularization of Tikhonov is a method to stabilize the solution:

$$\min_{m} \left\{ \|F(m) - d\|^2 + \beta \|m\|^2 \right\} \tag{5}$$

where:

- ightharpoonup F(m) is the forward operator (e.g., solving Poisson's equation).
- d is noisy data.
- $\triangleright \beta$ is the regularization parameter.

Regularization of Tikhonov

This regularization parameter is chosen based on the Morozov discrepancy principle: select largest β^* such that

$$||F(m_{\beta^*}) - u|| \le \delta,$$

where δ is the noise level and m_{β^*} is the solution to the regularized problem. In practice, we don't know the noise expression explicitly i.e. δ is unknowable.

Choosing the Regularization Parameter

We consider the Tikhonov-regularized inverse problem:

$$m_{\beta} = \arg\min_{m \in X} \left(\frac{1}{2} ||F(m) - u||^2 + \frac{\beta}{2} ||m||^2 \right).$$

The Morozov discrepancy principle corresponds to finding:

$$\min_{m \in X} \frac{1}{2} \|m\|^2 \quad \text{subject to } \|F(m) - u\|^2 = \delta^2.$$

To solve this, we introduce the Lagrangian:

$$\mathcal{L}(m,\mu) = \frac{1}{2} ||m||^2 + \mu \left(||F(m) - u||^2 - \delta^2 \right).$$

the Lagrange multiplier μ^* at the optimum is related to the regularization parameter β^* by

$$\beta^* = \frac{1}{2\mu^*}.$$

1D Poisson equation

Let's apply this to the example (4), using conjugate gradient to solve the optimization problem (5):

Figure: Recovered source term in the Poisson equation from a noisy data using Tikhonov regularization method.

- 1 Inverse Problems
- 2 Model Reduction
- 3 Discussions

Reduced Order Modelling

Projection-Based Model Reduction

Consider the linear PDE with appropriate boundary and initial conditions:

$$\frac{\partial u}{\partial t} = \mathcal{A}(u) \quad \text{in } \Omega \times (0, t_f),$$

$$(6)$$

$$\mathbf{FOM}$$

$$u \in \mathcal{U}$$

$$\hat{\mathbf{u}} \in \mathcal{U}_r \subset \mathcal{U}$$

Define r basis vectors $v_1(x), \ldots, v_r(x)$ that span \mathcal{U}_r and that form an orthonormal set, i.e. $\langle v_i, v_j \rangle = \delta_{ij}$. Then

$$u(x,t) \approx \sum_{j=1}^{r} v_j(x)\hat{u}_j(t) = V^T \hat{u}$$
(7)

where $\hat{u}_j, j = 1, \dots, r$ are the reduced model's coefficients of expansion in the basis v_j .

Galerkin projection

Substituting the approximation (7) into the governing equation (6) yields the residual

$$r(x,t) = \sum_{j=1}^{r} v_j \frac{\mathrm{d}\hat{u}_j}{\mathrm{d}t} - \sum_{j=1}^{r} \mathcal{A}(v_j) \,\hat{u}_j.$$

▶ Galerkin projection: $\langle r, v_i \rangle = 0, i = 1, \dots, r$.

This yields the reduced model

$$\langle r, v_i \rangle = 0 \Rightarrow \frac{\mathrm{d}\hat{u}_i}{\mathrm{d}t} = \sum_{j=1}^r \hat{\mathcal{A}}_{ij} \hat{u}_j, \quad i = 1, \dots, r,$$

where $\hat{\mathcal{A}}_{ij} = \langle v_i, \mathcal{A} (v_j) \rangle$ is the reduced linear operator, which can be precomputed once the basis is defined.

Proper orthogonal decomposition

Steps:

- ightharpoonup Given a set of snapshots $\{u_1,\ldots,u_m\}$ in \mathbb{R}^n , define the snapshot matrix $U=[u_1\ldots u_m]$.
- ightharpoonup Compute the correlation matrix: $C = UU^T \in \mathbb{R}^{n \times n}$.
- ► Solve the eigenproblem: $C\phi_i = \lambda_i \phi_i$.
- ▶ Select the first r modes $V = [\phi_1 \dots \phi_r]$ associated with the largest λ_i .

Energy Criterion: Choose r such that:

$$\frac{\sum_{i=1}^{r} \lambda_i}{\sum_{i=1}^{n} \lambda_i} \ge \kappa \quad \text{(e.g., } \kappa = 0.99\text{)}$$

POD minimizes projection error in Frobenius norm.

Model Reduction using POD: Setup

We illustrate the use of Proper Orthogonal Decomposition (POD) to reduce the order of a linear dynamical system.

We start from the semi-discretized heat equation:

$$\frac{dx}{dt} = Ax + Bu(t), \quad y = Cx$$

- $ightharpoonup A \in \mathbb{R}^{n \times n}$: 1D Laplacian with Dirichlet BCs
- $ightharpoonup B \in \mathbb{R}^{n \times 1}$, $C \in \mathbb{R}^{1 \times n}$: input/output coupling
- ▶ Domain: n=100, L=1, $\alpha=0.01$, $\Delta x=\frac{L}{n+1}$
- lnput: $u(t) = \sin(2\pi t)$

Discretization and POD Method

Matrix A has the structure:

$$A = \frac{\alpha}{\Delta x^2} \begin{bmatrix} -2 & 1 & 0 & \cdots & 0\\ 1 & -2 & 1 & \cdots & 0\\ 0 & 1 & -2 & \cdots & 0\\ \vdots & \vdots & \ddots & \ddots & \vdots\\ 0 & \cdots & 0 & 1 & -2 \end{bmatrix}$$

Simulation over [0,5] with 300 time steps.

- $lackbox{\ }$ Collect snapshots $x(t) \in \mathbb{R}^n$ into matrix $X \in \mathbb{R}^{n \times m}$
- ► Apply SVD: $X = U\Sigma V^T$
- ▶ Reduced basis: U_r (first r = 3 columns)

Reduced-order model:

$$\frac{dz}{dt} = A_r z + B_r u(t), \quad y_r = C_r z$$

with:

$$A_r = U_r^T A U_r, \quad B_r = U_r^T B, \quad C_r = C U_r$$

FOM vs ROM Output

Figure: Output response of FOM and ROM (POD, r = 3)

- ▶ The reduced model closely matches the full model
- ► Stability is preserved under POD reduction

Error and Stability Analysis

Figure: $\|y_{\mathsf{fom}} - y_{\mathsf{rom}}\|_2$ as a function of r

Error and Stability Analysis

Model	Max Real Part of Eigenvalues	Execution time
Full-order (FOM)	-0.9869403481356569 < 0	29.401416301727295
Reduced-order (ROM)	-0.9920437792538935 < 0	0.03446221351623535

Table: Comparison of stability (all poles in left half-plane), and time of the programs' execution.

- ► All poles remain in left half-plane ⇒ stability preserved
- Significant reduction in computation time

Remark

The results depends on the number m of snapshots.

- 1 Inverse Problems
- 2 Model Reduction
- 3 Discussions

Model Reduction of Port-Hamiltonian Systems

We consider the port-Hamiltonian (pH) system:

$$\begin{cases} \dot{x}(t) = (J - R)\nabla_x H(x(t)) + Bu(t) \\ y(t) = B^{\top} \nabla_x H(x(t)) \end{cases}$$

where $J = -J^{\top}$, $R = R^{\top} \ge 0$, H(x): Hamiltonian (energy)

Dissipation inequality:

$$\frac{dH}{dt} = \nabla_{\mathbf{x}} H(\mathbf{x}(t))^{\top} \cdot \frac{dx}{dt} \le y(t)^{\top} u(t)$$

▶ Galerkin projection using basis $V \in \mathbb{R}^{n \times r}$ yields:

$$\dot{\hat{x}} = (J_r - R_r) \nabla_{\hat{x}} \hat{H}(\hat{x}) + B_r u(t)$$

where
$$\hat{H}(\hat{x}) = H(V\hat{x})$$

⇒ Structure-preserving reduced system satisfies same dissipation inequality.

Stability Preservation under Galerkin Projection

▶ Original system: $\dot{x} = Ax$, where all eigenvalues of A have strictly negative real parts (i.e. A Hurwitz)

$$\Rightarrow \exists P>0 \quad \text{ s.t. } A^\top P + PA = -Q, \quad \text{for any } Q=Q^\top>0$$

▶ Projection with $V \in \mathbb{R}^{n \times r}$, $V^{\top}V = I$:

$$\dot{\hat{x}} = \hat{A}\hat{x}, \quad \hat{A} = V^{\top}AV$$

Reduced Lyapunov equation:

$$\hat{A}^{\top}\hat{P} + \hat{P}\hat{A} = -\hat{Q}, \quad \hat{P} = V^{\top}PV > 0$$

 $ightharpoonup \Rightarrow \hat{A}$ is Hurwitz \Rightarrow Reduced system is asymptotically stable.

References

Ghattas, O. & Willcox, K. (2021). Learning physics-based models from data: perspectives from inverse problems and model reduction.

Benning, M., & Burger, M. (2018). *Modern regularization methods for inverse problems. Acta numerica*, 27, 1-111.

Benner, P., Gugercin, S., & Willcox, K. (2015). A Survey of Projection-Based Model Reduction Methods.

Bui-Thanh, T., Willcox, K., & Ghattas, O. (2008). Model Reduction for Large-Scale Systems with Parametric Input.

Yuezheng Gonga, Qi Wangb, , Zhu Wangb, (2016). Structure-preserving Galerkin POD reduced-order modeling of Hamiltonian systems.

Mark S. Gockenbach, (2011). Partial Differential Equations: Analytical and Numerical Methodes.

Questions & Answers

Thank you :)