1 Probabilistic Proofs of Existence

1.1 Introduction

Constructions can have different nature.

Sometimes explicit construction of mathematical objects is very challenging. In these cases, we can construct an approximating object, which may not have all the *good* properties we want, but which at least lacks all the *bad* ones we want to avoid.

1.2 Introduction to the Ramsey Theory

Suppose that a complete graph is given with n edges. Let's choose a subgraph with k nodes and colour its nodes red or blue. If we choose a subgraph randomly, then the probability that it is coloured is $2^{\frac{k(k-1)}{2}}2$. If we look at the total probability, without any regard for which subgraph we choose, we get $\binom{n}{k}2^{1-\frac{k(k-1)}{2}}$. The upper bound is thus $n^k2^{1-\frac{k(k-1)}{2}}$. Can we do better?

1.3 Markov's Inequality

Suppose that a random variable X is given. We define the expected value of X as $\mathbb{E}(X) = \sum x_i \Pr(x_i)$.

Theorem 1.1 (Markov's Inequality) Suppose $X \ge 0$. Then $\Pr(X \ge a) \le \frac{\mathbb{E}(X)}{a}$.

Why does it hold? It is easier to see if we substitute X for Y, where $Y \leq X$, and $Y = \begin{cases} 0, X < a \\ a, X \geq a \end{cases}.$

We define variance as $Var(X) = \mathbb{E}(X - \mathbb{E}(X))^2 = \sigma^2$.

Theorem 1.2 (Chebyshev's Inequality)

$$\Pr\left(\frac{\left|X - \mathbb{E}(X)\right|}{\sigma} \ge a\right) \le \frac{1}{a^2},$$

Theorem 1.3 (Chernov's Inequality)

Suppose that X_1, \ldots, X_n are independent random variables such that $X_1, \ldots, X_n \in \{0,1\}$. Let $X = \sum_j X_j$, and take $\delta > 0$. Then

$$\Pr(X > (1+\delta)\mathbb{E}(X)) \le e^{\frac{-\delta \log(1+\delta)\mathbb{E}(X)}{2}}$$

1.4 Error-Correcting Codes

Suppose that we code an n-bit word with m bits which is transmitted via a channel introducing d errors.

Note that in this case $\sum_{j=0}^d \binom{m}{j} \ge \binom{m}{d} \ge \frac{(m-d)^d}{d!}$, and thus we can write $2^n \frac{(m-d)^d}{d!} \le 2^m$.