Linear Regression Model

· Understanding Linuar Regression
Linear hegression is used to predict the value of one variable based on the other variable
→ The value we want to predict is called dependent variable → The value we know and are using to predict other variable is called independent variable
is called independent variable

•	Examp	او

Suppose we have student data with their study time and exam score

Linear regression tries to find a line which fits this points the best

we basically have to minimize the error

w	hav	ı te	de	finu	α	etru	-	unc	tion	firs'	
SO	hour that	w	(M)	'mìn	im	ize it	t'			•	·
				l	→ U	rith	Ur	-adie	nt ()es(e	nt
								····	~~~		~~
γω	M										

Error function is defined as follows

$$E = \frac{1}{n} \sum_{i=0}^{n} (y_i - \hat{y}_i)^2$$

y; - predicted point we have

yi= point we want

$$E = \frac{1}{n} \sum_{i=0}^{n} (y_i - (m \cdot x_i + b))^2$$

this is called the mean squared error function

· Error Function - Mean Squared Error

$$E = \frac{1}{n} \sum_{i=0}^{n} (y_i - (m \cdot x_i + b))^2$$

so for each point () we will take the difference of

actual y value (y;) and predicted y value (m·x; +b)

and we square that difference

then we

take all thus errors and divide by total number of points (1/n)

· Finding Lowest possible E

now the only thing we can influence is m & b in

we want to find m and b so that we can minimize E

$$\frac{E}{n} = \frac{1}{i=0} \left(y_i - (m \cdot x_i + b) \right)^2$$
how can we do that?

taking partial derivative with respect to m and b because that gives us the direction of the steepest ascend with m and b

· Gradient Descent

Taking partial derivative of error function wit to mob

$$\frac{\partial E}{\partial m} = \frac{1}{n} \underbrace{\begin{cases} \sum_{i=0}^{n} 2(y_i - (mx_i + b)) \cdot (-x_i) \\ \sum_{i=0}^{n} (y_i - mx_i + b)(x_i) \end{cases}}_{= -2}$$

similarly wrt b

$$\frac{\partial E}{\partial b} = -\frac{2}{n} \sum_{i=0}^{n} (y_i - (m \cdot x_i + i))$$

So now to improve m and to what we need to do for every iteration is:

where L = learning rate

how large are the steps

we take towards improvement