

Universidade do Minho

Departamento de Informática Mestrado integrado em Engenharia Biomédica

N°	
Nome	

Programação em Lógica, Conhecimento e Raciocínio 4° Ano, 1° Semestre Ano letivo 2020/2021

Prova escrita (demo) 4 de janeiro de 2021

GRUPO 1

(X valores)

RESPONDA ÀS QUESTÕES DESTE GRUPO EM FOLHA DE TESTE SEPARADA.

QUESTÃO 1

Considere os dados descritos na Tabela 1, onde se dão exemplos de informação relacionada com medicamentos e produtos de saúde.

Tabela 1 Informação medicamentosa.

DESIGNAÇÃO	PRINCÍPIO ATIVO	APRESENTAÇÃO	UNIDADE	APLICAÇÃO
Bromexina	Ambroxol	Xarope	200	Mucolítico
Broncoliber	Ambroxol	Solução e Xarope	250	Mucolítico
Ben-u-ron	Paracetamol	Supositório e Cápsula	20	Analgésico e Antipirético
Nunex		Fralda	36	Higiene
Fraldox	Óxido de zinco	{ Spray,Pomada }	100	Higiene
Hirudoid	Mucopolissacárido	Pomada	{ 150,250 }	Inflamação
Xanax	Alprazolam	Comprimido	#002	#007
Strepfen	Flurbiprofeno	Rebuçado	[5,12]	#009
Elmetacin	{ Exdometacina }	Spray	100	Anti-inflamatório
@003	Anti-aids	Injeção	@004	@005

Os átomos '#DDD' representam conhecimento incerto, as expressões $\{x_1, x_2, ...\}$ e $[x_{MF}, x_{SUF}]$ designam, respetivamente, conjuntos e intervalos na identificação de conhecimento impreciso, e os átomos '@DDD' identificam conhecimento interdito.

- a) Defina e descreva o(s) predicado(s) a usar para representar o conhecimento dado na Tabela 1;
- b) Represente o conhecimento em termos das extensões dos predicados definidos em a);
- c) Apresente o(s) invariante(s) que impede(m) a assimilação de conhecimento repetido;
- d) Apresente o invariante que impede a remoção de conhecimento com apresentação em 'spray';
- e) Para um sistema de inferência dado na forma:

demo: Questão, Resposta \rightarrow { V, \mathbb{F} }

em que Questão pode ser dada pela conjunção e/ou pela disjunção de termos, apresente a extensão do(s) predicado(s) que permite(m) fazer o cálculo da Resposta $\in \{ \mathbb{V}, \mathbb{F}, \mathbb{D} \}$.

QUESTÃO 2

Considere um sistema suportado pela extensão à programação em lógica, em que a evolução dada ao conhecimento é representada segundo um eixo temporal (Figura 1), onde ' x ', ' y ' e ' z ' são constantes do problema, o símbolo ' \bot ' denota conhecimento incerto, a expressão $\{ \dots \}$ representa conhecimento impreciso e o símbolo ' \lnot ' designa a negação forte.

Figura 1:

Eixo temporal em que ocorre a representação do conhecimento.

Tendo em conta um cenário como o apresentado, descreva como o sistema de inferência realizará a resolução de uma questão.

GRUPO 2

(X valores)

RESPONDA ÀS QUESTÕES DESTE GRUPO EM FOLHA SEPARADA.

QUESTÃO 1

profissional.

Considere os dados constantes na Tabela 1, onde se apresenta um conjunto de elementos respeitantes a um grupo de indivíduos, tais como formação académica e atividade profissional.

Tabela 1
Informação sobre formação académica e atividade

PESSOA	FORMAÇÃO	FUNÇÃO	VENCIMENTO
Andreia	Licenciatura		
Belmiro		Médico	1.500
Carlos		Enfermeiro	750
Carlos		Terapeuta	[1.000,10.000]
Davide	Bacharel	Limpeza	500
Eduardo	{ Licenciatura, Mestrado }		
Fernando	Doutoramento	Diretor	<u>variável</u>
Guilherme		Administrador	@
Hélder	Básica	{ Limpeza,Cozinha,Manutenção }	990
lvo	<u>formado</u>		

Para além da informação da tabela, sabe-se que a formação do Belmiro não é doutoramento.

Atenda a que $\{x_1, x_2, ...\}$ designa conjuntos de dados e que $[x_{NF}, x_{SUP}]$ designa intervalos de valores na identificação de valores nulos do tipo impreciso. Os átomos '<u>variável</u>' e '<u>formado</u>' denotam valores nulos do tipo incerto. O símbolo ' @ ' representa um valor nulo do tipo interdito.

- a) Defina o(s) predicado(s) a utilizar para a representação do conhecimento tal como caracterizado na Tabela 1;
- Represente o conhecimento descrito em termos das extensões dos predicados definidos anteriormente;
- c) Para um sistema de inferência dado na forma:

em que Questão pode ser dada pela conjunção e/ou pela disjunção de termos, apresente a extensão do(s) predicado(s) que permite(m) fazer o cálculo da Resposta $\in \{ \mathbb{V}, \mathbb{F}, \mathbb{D} \}$.

QUESTÃO 2

Num sistema de Representação de Conhecimento Imperfeito, a problemática da evolução do sistema deve considerar a assimilação de conhecimento perfeito e imperfeito.

Explique que procedimentos deverão ser tomados em consideração para implementar estes mecanismos de evolução de conhecimento.

GRUPO 3 (X valores)		Comente as afirmações seguintes, assinalando a sua veracidade (V) ou falsidade (F), justificando a resposta EXCLUSIVAMENTE no espaço disponibilizado.
		NÃO SÃO CONSIDERADAS respostas para as quais não exista justificação expressa.
	QUESTÃO 1	Na linguagem de programação em lógica PROLOG, o predicado is(Termo, Expressão) realiza a operação aritmética dada em Expressão, unificando o seu resultado com Termo.
	QUESTÃO 2	Na linguagem de programação em lógica PROLOG, o termo '[]'é equivalente ao termo '[[] []]', por ambos serem representações admissíveis de lista vazia.
	QUESTÃO 3	No contexto da programação em lógica estendida, as expressões ' não P ' e ' ¬P ', em que ' não ' designa a negação por falha na prova e ' ¬ ' denota a negação forte, são equivalentes.
	QUESTÃO 4	Na programação em lógica estendida não é possível distinguir entre o que é falso e o que é não verdadeiro.
	QUESTÃO 5	No que respeita à representação de conhecimento imperfeito, valores nulos do tipo interdito representam conhecimento perfeito e positivo, mas cuja concretização nunca poderá ser admitida no que concerne à evolução do conhecimento no sistema.
	QUESTÃO 6	Em termos da representação de conhecimento imperfeito, é possível que um valor nulo do tipo impreciso identifique um conjunto infinito de valores.
_	QUESTÃO 7	Na representação de conhecimento imperfeito, o uso de valores nulos surge como uma estratégia para a distinção entre situações conhecidas e desconhecidas.
	QUESTÃO 8	A Teoria dos Modelos considera a geração de fórmulas lógicas a partir de outras fórmulas lógicas.

QUESTÃO 9	A programação em lógica usa a inferência para representar conhecimento e a lógica para manipular o conhecimento.
QUESTÃO 10	O uso de invariantes para representar conhecimento só é admissível na representação de conhecimento imperfeito do tipo interdito.
QUESTÃO 11	O objetivo de introduzir a negação forte '¬' na extensão à programação em lógica é o de
	permitir a representação de conhecimento negativo de forma explícita.
QUESTÃO 12	A Teoria da Prova considera a geração de fórmulas lógicas a partir de outras fórmulas lógicas.
QUESTÃO 13	Na linguagem de programação em lógica PROLOG, a questão '?- x is x+1' resulta com sucesso no incremento da variável x de 1 unidade, quando x é uma variável unificada.
QUESTÃO 14	A extensão de um programa em lógica adota a representação explícita de conhecimento negativo pela utilização do Pressuposto do Mundo Fechado.
QUESTÃO 15	O recurso a invariantes não é feito para representar conhecimento.
QUESTÃO 16	O objetivo de introduzir a negação forte '¬' na extensão à programação em lógica é o de permitir a representação de conhecimento imperfeito.

N°			
----	--	--	--

(X valores)

RESPONDA ÀS QUESTÕES DESTE GRUPO NO ESPAÇO RESERVADO.

QUESTÃO 1 Considere o seguinte excerto de um predicado em PROLOG:

```
predicado( x,x,x ).
predicado( X,Y,R ) :-
    X > Y, Z is X-Y, predicado( Z,Y,R ).
 \begin{array}{c} \text{predicado( X,Y,R ) :-} \\ \text{X < Y, Z is Y-X, predicado( X,Z,R ).} \end{array}
```

- a) Qual o problema a que o predicado pretende dar solução?
- b) Qual o resultado encontrado pelo predicado para as seguintes questões:
 - i. ?- predicado(3,2,1).
 - ii. ?- predicado(4,2,1).
 - iii. ?- predicado(4,2,2).
 - iv. ?- predicado(3,6,X).
 - v. ?- predicado(3,X,1).
 - vi. ?- predicado(-3,6,X).
- c) Apresente a correção do predicado:

predicado(x,x,x).

predicado(X,Y,R) :-

predicado(X,Y,R) :-

N°			
----	--	--	--

(X valores)

RESPONDA ÀS QUESTÕES DESTE GRUPO NO ESPAÇO RESERVADO.

QUESTÃO 1 Considere o seguinte excerto de PROLOG:

```
predicado( X,Y,Z ) :-
    0 is X mod 2,
    Y is X+2, Z is X+4.

predicado( X,Y,Z ) :-
    1 is X mod 2,
    Y is X-2, Z is X-4.
```

e assuma que todos os valores de ' X ' são tais que $X \in \mathbb{R}$.

- a) Qual o problema a que o predicado pretende dar solução?
- b) Qual o resultado encontrado pelo predicado para as seguintes questões:
 - i. ?- predicado(2,4,6).
 - ii. ?- predicado(1,2,3).
 - iii. ?- predicado(4,Y,Z).
 - iv. ?- predicado(5,Y,Z).
 - v. ?- predicado(X,2,4).
 - vi. ?- predicado(3.5,Y,Z).

Apresente a correção do predicado:

predicado(X,Y,Z) :-

predicado(X,Y,Z) :-

ou explique por que não está incorreto:

N°			
----	--	--	--

(X valores)

RESPONDA ÀS QUESTÕES DESTE GRUPO NO ESPAÇO RESERVADO NESTA MESMA FOLHA.

QUESTÃO 1 Considere a extensão dos seguintes predicados em PROLOG:

$$\begin{array}{ll} \text{primeiro}(\ X,[X|T],T\). & \text{segundo}(\ X,[X],[]\). \\ \\ \text{primeiro}(\ X,[H|T],[H|R]\):- & \text{segundo}(\ X,[H|T],[H|R]\):- \\ \\ \text{primeiro}(\ X,T,R\). & \text{segundo}(\ X,T,R\). \end{array}$$

PARA CADA UMA DESTAS AFIRMAÇÕES, ASSINALE A VERACIDADE (V) OU A FALSIDADE (F).

	O predicado primeiro/3 e o predicado segundo/3 implementam a mesma funcionalidade.
	O primeiro argumento do predicado primeiro/3 nunca pode ser uma lista.

O primeiro argumento do predicado segundo/3 nunca pode ser uma lista.

A extensão do predicado primeiro/3 está errada porque falta uma cláusula de paragem para quando a lista é vazia no segundo argumento.

A extensão do predicado **segundo/3** está errada porque falta uma cláusula de paragem para quando a lista é vazia no segundo argumento.

A invocação de uma questão com o predicado primeiro/3, que identifique uma lista vazia no segundo argumento, nunca sucede.

A invocação de uma questão com o predicado **segundo/3**, que identifique uma lista vazia no segundo argumento, nunca sucede.

QUESTÃO 2 Considere a extensão dos predicados definidos atrás.

- a) Qual a funcionalidade apresentada pelo predicado primeiro/3?
- b) Qual a funcionalidade apresentada pelo predicado segundo/3?
- c) Qual o resultado encontrado para as seguintes questões:
 - i ?- primeiro(a,[a,b,c],L).
 - i. ?- primeiro(c,[a,b,c],L).
 - ii. ?- primeiro([],[a,b,c],L).
 - iv. ?- primeiro([],[[]],L).
 - v. ?- segundo(a,[a,b,c],L).
 - vi. ?- segundo(c,[a,b,c],L).
 - vii. ?- segundo([],[a,b,c],L).
 - viii. ?- segundo([],[[]],L).

Ν°			

QUESTÃO 1

(X valores)

COMPLETE AS AFIRMAÇÕES <u>PREENCHENDO OS ESPAÇOS</u> COM AS EXPRESSÕES CORRETAS.

a)	Regras de produção são declarações na forma
	que admitem a conjunção e a disjunção de termos,
	mas não
b)	Regras de produção, como formalismo de representação de conhecimento, permitem a distinção
	entre conhecimento e
c)	Em sistemas de representação de conhecimento baseados em regras de produção, a opção por
	um mecanismo de procura de soluções ou
	não influencia a capacidade de resolução de problemas.
d)	No contexto das regras de produção para inferência estatística, possível
	representar conhecimento falso