Moving Beyond Linearity

The truth is never linear! Or almost never!

But often the linearity assumption is good enough.

When its not ...

- polynomials,
- step functions,
- splines,
- local regression, and
- generalized additive models

offer a lot of flexibility, without losing the ease and interpretability of linear models.

Polynomial Regression

$$y_i = \beta_0 + \beta_1 x_i + \beta_2 x_i^2 + \beta_3 x_i^3 + \ldots + \beta_d x_i^d + \epsilon_i$$

Degree-4 Polynomial

Details

- Create new variables $X_1 = X$, $X_2 = X^2$, etc and then treat as multiple linear regression.
- Not really interested in the coefficients; more interested in the fitted function values at any value x_0 :

$$\hat{f}(x_0) = \hat{\beta}_0 + \hat{\beta}_1 x_0 + \hat{\beta}_2 x_0^2 + \hat{\beta}_3 x_0^3 + \hat{\beta}_4 x_0^4.$$

- Since $\hat{f}(x_0)$ is a linear function of the $\hat{\beta}_{\ell}$, can get a simple expression for *pointwise-variances* $\operatorname{Var}[\hat{f}(x_0)]$ at any value x_0 . In the figure we have computed the fit and pointwise standard errors on a grid of values for x_0 . We show $\hat{f}(x_0) \pm 2 \cdot \operatorname{se}[\hat{f}(x_0)]$.
- We either fix the degree d at some reasonably low value, else use cross-validation to choose d.

Details continued

 Logistic regression follows naturally. For example, in figure we model

$$\Pr(y_i > 250 | x_i) = \frac{\exp(\beta_0 + \beta_1 x_i + \beta_2 x_i^2 + \dots + \beta_d x_i^d)}{1 + \exp(\beta_0 + \beta_1 x_i + \beta_2 x_i^2 + \dots + \beta_d x_i^d)}.$$

- To get confidence intervals, compute upper and lower bounds on on the logit scale, and then invert to get on probability scale.
- Can do separately on several variables—just stack the variables into one matrix, and separate out the pieces afterwards (see GAMs later).
- Caveat: polynomials have notorious tail behavior very bad for extrapolation.

Step Functions

Another way of creating transformations of a variable — cut the variable into distinct regions.

$$C_1(X) = I(X < 35), \quad C_2(X) = I(35 \le X < 50), \dots, C_3(X) = I(X \ge 65)$$

Piecewise Constant

Step functions continued

- Easy to work with. Creates a series of dummy variables representing each group.
- Useful way of creating interactions that are easy to interpret. For example, interaction effect of Year and Age:

$$I({\tt Year} < 2005) \cdot {\tt Age}, \quad I({\tt Year} \geq 2005) \cdot {\tt Age}$$

would allow for different linear functions in each age category.

• Choice of cutpoints or *knots* can be problematic. For creating nonlinearities, smoother alternatives such as *splines* are available.

Piecewise Polynomials

 Instead of a single polynomial in X over its whole domain, we can rather use different polynomials in regions defined by knots. E.g. (see figure)

$$y_i = \begin{cases} \beta_{01} + \beta_{11}x_i + \beta_{21}x_i^2 + \beta_{31}x_i^3 + \epsilon_i & \text{if } x_i < c; \\ \beta_{02} + \beta_{12}x_i + \beta_{22}x_i^2 + \beta_{32}x_i^3 + \epsilon_i & \text{if } x_i \ge c. \end{cases}$$

- Better to add constraints to the polynomials, e.g. continuity.
- Splines have the "maximum" amount of continuity.

Linear Splines

A linear spline with knots at ξ_k , k = 1, ..., K is a piecewise linear polynomial continuous at each knot.

We can represent this model as

$$y_i = \beta_0 + \beta_1 b_1(x_i) + \beta_2 b_2(x_i) + \dots + \beta_{K+3} b_{K+3}(x_i) + \epsilon_i,$$

where the b_k are basis functions.

$$b_1(x_i) = x_i$$

 $b_{k+1}(x_i) = (x_i - \xi_k)_+, \quad k = 1, \dots, K$

Here the $()_+$ means positive part; i.e.

$$(x_i - \xi_k)_+ = \begin{cases} x_i - \xi_k & \text{if } x_i > \xi_k \\ 0 & \text{otherwise} \end{cases}$$

Cubic Splines

A cubic spline with knots at ξ_k , k = 1, ..., K is a piecewise cubic polynomial with continuous derivatives up to order 2 at each knot.

Again we can represent this model with truncated power basis functions

$$y_{i} = \beta_{0} + \beta_{1}b_{1}(x_{i}) + \beta_{2}b_{2}(x_{i}) + \dots + \beta_{K+3}b_{K+3}(x_{i}) + \epsilon_{i},$$

$$b_{1}(x_{i}) = x_{i}$$

$$b_{2}(x_{i}) = x_{i}^{2}$$

$$b_{3}(x_{i}) = x_{i}^{3}$$

$$b_{k+3}(x_{i}) = (x_{i} - \xi_{k})_{+}^{3}, \quad k = 1, \dots, K$$

where

$$(x_i - \xi_k)_+^3 = \begin{cases} (x_i - \xi_k)^3 & \text{if } x_i > \xi_k \\ 0 & \text{otherwise} \end{cases}$$

Natural Cubic Splines

A natural cubic spline extrapolates linearly beyond the boundary knots. This adds $4=2\times 2$ extra constraints, and allows us to put more internal knots for the same degrees of freedom as a regular cubic spline.

Knot placement

- One strategy is to decide K, the number of knots, and then place them at appropriate quantiles of the observed X.
- A cubic spline with K knots has K+4 parameters or degrees of freedom.
- A natural spline with K knots has K degrees of freedom.

Comparison of a degree-14 polynomial and a natural cubic spline, each with 15df.

Smoothing Splines

This section is a little bit mathematical

Consider this criterion for fitting a smooth function g(x) to some data:

$$\underset{g \in \mathcal{S}}{\text{minimize}} \sum_{i=1}^{n} (y_i - g(x_i))^2 + \lambda \int g''(t)^2 dt$$

- The first term is RSS, and tries to make g(x) match the data at each x_i .
- The second term is a roughness penalty and controls how wiggly g(x) is. It is modulated by the tuning parameter $\lambda > 0$.
 - The smaller λ , the more wiggly the function, eventually interpolating y_i when $\lambda = 0$.
 - As $\lambda \to \infty$, the function g(x) becomes linear.

Smoothing Splines continued

The solution is a natural cubic spline, with a knot at every unique value of x_i . The roughness penalty still controls the roughness via λ .

Some details

- Smoothing splines avoid the knot-selection issue, leaving a single λ to be chosen.
- The algorithmic details are too complex to describe here.

- The vector of n fitted values can be written as $\hat{\mathbf{g}}_{\lambda} = \mathbf{S}_{\lambda} \mathbf{y}$, where \mathbf{S}_{λ} is a $n \times n$ matrix (determined by the x_i and λ).
- The effective degrees of freedom are given by

$$df_{\lambda} = \sum_{i=1}^{n} {\{\mathbf{S}_{\lambda}\}_{ii}}.$$

Smoothing Splines continued — choosing λ

- We can specify df rather than λ !
- The leave-one-out (LOO) cross-validated error is given by

$$RSS_{cv}(\lambda) = \sum_{i=1}^{n} (y_i - \hat{g}_{\lambda}^{(-i)}(x_i))^2 = \sum_{i=1}^{n} \left[\frac{y_i - \hat{g}_{\lambda}(x_i)}{1 - \{\mathbf{S}_{\lambda}\}_{ii}} \right]^2.$$

Smoothing Spline

Local Regression

Local Regression

With a sliding weight function, we fit separate linear fits over the range of X by weighted least squares.

See text for more details, and loess() function in R.

Generalized Additive Models

Allows for flexible nonlinearities in several variables, but retains the additive structure of linear models.

$$y_i = \beta_0 + f_1(x_{i1}) + f_2(x_{i2}) + \cdots + f_p(x_{ip}) + \epsilon_i.$$

GAMs for classification

$$\log\left(\frac{p(X)}{1-p(X)}\right) = \beta_0 + f_1(X_1) + f_2(X_2) + \dots + f_p(X_p).$$

