Recall: $\binom{n}{k} = \# \text{ of set postitions of [n] into k blocks.}$ Example: $\binom{n}{k} = \binom{n}{k} = \binom{n}{k} = 1$ (Stirling numbers of 2^{nd} kind.

~ k	0	١	<u>234</u>
D	١	0	
ι	0	1	
2		1	12
3		15	3/1
4		1	<u></u> → ⊕ 6 1

Property: - For I < K < n, we have

where
$$\begin{cases} n \\ k \end{cases} = \begin{cases} n-1 \\ k-1 \end{cases} + k \begin{cases} n-1 \\ k \end{cases}$$
where $\begin{cases} n \\ k \end{cases} = \begin{cases} n-1 \\ k-1 \end{cases} + k \begin{cases} n-1 \\ k \end{cases}$

for $n > 1$

or, etherwise

Proof: - For any set postition S, look at $n \cdot If$ it is a singleton. The rest is a set postition of (n-1) into (k-1) blacks.

If not consider a set postition of [n-i] into k blocks and add n to $\underline{[n-i]}$, \underline{k} . blocks into the min in k ways to obtain a set postition of [n] into k blocks.

Every set postition is obtained in this way and there are no repeats. This gives $k \binom{r-1}{k}$

Property: The # of surjective functions from $[n] \rightarrow [k]$ is $k \mid \begin{cases} n \\ k \end{cases}$

Proof: - Each black in a set postition of [n] denotes the

KI is the set of works of seasonging the Macks.

Corollary: - Let X be a formal indeterminate, then $\sum_{k=0}^{\infty} \sum_{k=0}^{\infty} x^{k} = x^{n} \text{ for all } n \in \mathbb{N}$

 $= X_{3}$ $= X_{3} + 3X_{5} - 3X_{5} + X_{5} - 3X_{5} + 5X_{5}$ = X + 3(X)(X-1) + X(X-1)(X-1) = X + 3(X)(X-1) + X(X-1)(X-1) $= X_{5} + 3(X)(X-1) + X(X-1)(X-1)$ $= X_{5} + 1 \cdot X_{5} + 1 \cdot X_{5}$

Proof: - Both sides are polynomials in X of degree n.

It suffices to prove the equality too n+1 values of X. We will prove that this helds $\forall x \in \mathbb{N} > 0$ RHS counts the number of functions from $[n] \rightarrow [x]$.

Consider these functions according to the size of their image. It the image has size k, the function

restricted to that subset is subjective. The # of all possible images is $\binom{x}{k}$ and for each charce, there are $k \mid \binom{x}{k}$ subjections by the previous property.

Since this is bijective, the # of functions is

 $\sum_{k=0}^{k=0} \binom{k}{x} Fi \binom{k}{u} = \frac{(x-r)i}{x^{i}} = X_{\overline{k}}$

Def'n: The # of set postitions of [n] is called the n^{th} Bell number, denoted by $B_n = \sum_{k=0}^{\infty} \{\tilde{n}_k\}$

The sequence starts 1,2,5, 15,52,...

Exercise: $B_{n+1} = \sum_{i=0}^{n} {n \choose i} B_i$; Note that this is not a securence.

Permutations as cycles:

 $S_n \rightarrow set$ of permutations of [n]Recall the cycle notation for $x \in S_n$.

/ TT = C1. C2 Ck

where each $C_i = (C_{i,1}, C_{i,2}, \ldots, C_{i,len(C_i)})$ Useful Convention skip singletons. $\pi = \pi_1 \pi_2 \ldots \pi_k$, where each $\pi_i = C_i$

Proof: Consider thi, Π_j , ..., Π_j , ..., Π_j .

If any of them equals j, we are done.

If not, by PHP, $\exists 1 \leq k \leq k \leq n$ st $\Pi_j^{k-1} = \Pi_j^{k}$.

Now apply $\Pi_j^{-1} = k$ times $\exists j \in \Pi_j^{k-1} = m_j^{k-1}$.

Note that the cycle notation is not connomical.

Example: - T = 6754132 and j=7.

Nation for cycles: - , a, Each cycle has its smallest element first.

,b, Arrange cycles in increasing order of the smallest element.

Exomple: - The (13) (2)(4)(56)(7)