Two Three Examples on Computer Proofs of Combinatorial Identities Results

Lin JIU

Dalhousie University

Oct. 17th, 2018

Outline

Example 1

Example 2

Example 3

Question

Question

$$1^{2} + 2^{2} + \dots + n^{2} = \sum_{k=1}^{n} k^{2} = \frac{1}{6} n(n+1)(2n+1). \quad (*)$$

Question

$$1^{2} + 2^{2} + \dots + n^{2} = \sum_{k=1}^{n} k^{2} = \frac{1}{6} n(n+1)(2n+1). \quad (*)$$

1. Induction;

Question

$$1^{2} + 2^{2} + \dots + n^{2} = \sum_{k=1}^{n} k^{2} = \frac{1}{6} n(n+1)(2n+1). \quad (*)$$

- 1. Induction;
 - ightharpoonup n=1:

Question

$$1^{2} + 2^{2} + \dots + n^{2} = \sum_{k=1}^{n} k^{2} = \frac{1}{6} n(n+1)(2n+1). \quad (*)$$

1. Induction;

$$ightharpoonup$$
 $n=1$:

LHS =
$$1 = \frac{1 \cdot (1+1) \cdot (2+1)}{6} = RHS;$$

Question

$$1^{2} + 2^{2} + \dots + n^{2} = \sum_{k=1}^{n} k^{2} = \frac{1}{6} n(n+1)(2n+1). \quad (*)$$

- 1. Induction;
 - ightharpoonup n=1:

$$\textit{LHS} = 1 = \frac{1 \cdot (1+1) \cdot (2+1)}{6} = \textit{RHS};$$

Question

$$1^{2} + 2^{2} + \dots + n^{2} = \sum_{k=1}^{n} k^{2} = \frac{1}{6} n(n+1)(2n+1). \quad (*)$$

- 1. Induction;
 - n = 1:

LHS =
$$1 = \frac{1 \cdot (1+1) \cdot (2+1)}{6} = RHS;$$

LHS =
$$1^2 + 2^2 + \dots + n^2 + (n+1)^2$$

Question

$$1^{2} + 2^{2} + \dots + n^{2} = \sum_{k=1}^{n} k^{2} = \frac{1}{6} n(n+1)(2n+1). \quad (*)$$

- 1. Induction;
 - n = 1:

LHS =
$$1 = \frac{1 \cdot (1+1) \cdot (2+1)}{6} = RHS;$$

LHS =
$$1^2 + 2^2 + \dots + n^2 + (n+1)^2$$

= $\frac{1}{6}n(n+1)(2n+1) + (n+1)^2$

Question

$$1^{2} + 2^{2} + \dots + n^{2} = \sum_{k=1}^{n} k^{2} = \frac{1}{6} n(n+1)(2n+1). \quad (*)$$

- 1. Induction;
 - n = 1:

LHS =
$$1 = \frac{1 \cdot (1+1) \cdot (2+1)}{6} = RHS;$$

LHS =
$$1^2 + 2^2 + \dots + n^2 + (n+1)^2$$

= $\frac{1}{6}n(n+1)(2n+1) + (n+1)^2$
= \dots

Question

$$1^{2} + 2^{2} + \dots + n^{2} = \sum_{k=1}^{n} k^{2} = \frac{1}{6} n(n+1)(2n+1). \quad (*)$$

- 1. Induction;
 - n = 1:

LHS =
$$1 = \frac{1 \cdot (1+1) \cdot (2+1)}{6} = RHS;$$

LHS =
$$1^2 + 2^2 + \dots + n^2 + (n+1)^2$$

= $\frac{1}{6}n(n+1)(2n+1) + (n+1)^2$
= $\dots = \frac{1}{6}(n+1)(n+2)(2n+3) = RHS$.

Question

$$1^2 + 2^2 + \dots + n^2 = \sum_{k=1}^{n} k^2 = ?$$
 (*)

Question

$$1^2 + 2^2 + \dots + n^2 = \sum_{k=1}^{n} k^2 = ?$$
 (*)

$$n^3 - (n-1)^3 = 3n^2 - 3n + 1;$$

Question

$$1^2 + 2^2 + \dots + n^2 = \sum_{k=1}^{n} k^2 = ?$$
 (*)

- $n^3 (n-1)^3 = 3n^2 3n + 1;$
- $(n-1)^3 (n-2)^3 = 3(n-1)^2 3(n-1) + 1;$

Question

$$1^2 + 2^2 + \dots + n^2 = \sum_{k=1}^{n} k^2 = ? \quad (*)$$

- $n^3 (n-1)^3 = 3n^2 3n + 1;$
- $(n-1)^3 (n-2)^3 = 3(n-1)^2 3(n-1) + 1;$
- **...**

Question

$$1^2 + 2^2 + \dots + n^2 = \sum_{k=1}^{n} k^2 = ?$$
 (*)

- $n^3 (n-1)^3 = 3n^2 3n + 1;$
- $(n-1)^3 (n-2)^3 = 3(n-1)^2 3(n-1) + 1;$
- **.** . .
- \triangleright 2³ 1³ = 3 · 2² 3 · 2 + 1(= 7)

Question

$$1^2 + 2^2 + \dots + n^2 = \sum_{k=1}^{n} k^2 = ? \quad (*)$$

$$n^3 - (n-1)^3 = 3n^2 - 3n + 1;$$

$$(n-1)^3 - (n-2)^3 = 3(n-1)^2 - 3(n-1) + 1;$$

$$ightharpoonup 2^3 - 1^3 = 3 \cdot 2^2 - 3 \cdot 2 + 1 (= 7)$$
 and

$$1^3 - 0^3 = 3 \cdot 1^2 - 3 \cdot 1 + 1.$$

$$n^{3} = 3\sum_{k=1}^{n} k^{2} + \sum_{k=1}^{n} k + n = 3\sum_{k=1}^{n} k^{2} + \frac{n(n+1)}{2} + n.$$

$$\Rightarrow \sum_{k=1}^{n} k^{2} = \frac{n(n+1)(2n+1)}{6}$$

Question

$$1^2 + 2^2 + \dots + n^2 = \sum_{k=1}^{n} k^2 = ?$$
 (*)

- $n^3 (n-1)^3 = 3n^2 3n + 1;$
- $(n-1)^3 (n-2)^3 = 3(n-1)^2 3(n-1) + 1;$
- **...**
- \triangleright $\cancel{2}^{3} \cancel{1}^{3} = 3 \cdot 2^{2} 3 \cdot 2 + 1 (= 7)$ and

Question

$$1^2 + 2^2 + \dots + n^2 = \sum_{k=1}^{n} k^2 = ?$$
 (*)

$$n^3 - (n-1)^3 = 3n^2 - 3n + 1;$$

$$(n-1)^3 - (n-2)^3 = 3(n-1)^2 - 3(n-1) + 1;$$

$$\triangleright$$
 $\cancel{2}^{3} - \cancel{1}^{3} = 3 \cdot 2^{2} - 3 \cdot 2 + 1 (= 7)$ and

$$n^3 = 3\sum_{k=1}^n k^2 - 3\sum_{k=1}^n k + n$$

Question

$$1^2 + 2^2 + \dots + n^2 = \sum_{k=1}^{n} k^2 = ?$$
 (*)

$$n^3 - (n-1)^3 = 3n^2 - 3n + 1;$$

$$(n-1)^3 - (n-2)^3 = 3(n-1)^2 - 3(n-1) + 1;$$

$$\triangleright 2^{3} - 1^{3} = 3 \cdot 2^{2} - 3 \cdot 2 + 1 (= 7)$$
 and

$$n^{3} = 3\sum_{k=1}^{n} k^{2} - 3\sum_{k=1}^{n} k + n = 3\sum_{k=1}^{n} k^{2} - \frac{3n(n+1)}{2} + n.$$

Question

$$1^2 + 2^2 + \dots + n^2 = \sum_{k=1}^{n} k^2 = ?$$
 (*)

$$n^3 - (n-1)^3 = 3n^2 - 3n + 1;$$

$$(n-1)^3 - (n-2)^3 = 3(n-1)^2 - 3(n-1) + 1;$$

$$\triangleright$$
 $2^{\cancel{3}} - \cancel{1}^{\cancel{3}} = 3 \cdot 2^2 - 3 \cdot 2 + 1 (= 7)$ and

$$n^{3} = 3\sum_{k=1}^{n} k^{2} - 3\sum_{k=1}^{n} k + n = 3\sum_{k=1}^{n} k^{2} - \frac{3n(n+1)}{2} + n.$$

$$\Rightarrow \sum_{k=1}^{n} k^{2} = \frac{n(n+1)(2n+1)}{6}$$

Question

$$1^2 + 2^2 + \dots + n^2 = \sum_{k=1}^{n} k^2 = ?$$
 (*)

$$n^3 - (n-1)^3 = 3n^2 - 3n + 1;$$

$$(n-1)^3 - (n-2)^3 = 3(n-1)^2 - 3(n-1) + 1;$$

$$\triangleright$$
 $2^{\cancel{3}} - \cancel{1}^{\cancel{3}} = 3 \cdot 2^2 - 3 \cdot 2 + 1 (= 7)$ and

$$n^{3} = 3\sum_{k=1}^{n} k^{2} - 3\sum_{k=1}^{n} k + n = 3\sum_{k=1}^{n} k^{2} - \frac{3n(n+1)}{2} + n.$$

$$\Rightarrow \sum_{k=1}^{n} k^{2} = \frac{n(n+1)(2n+1)}{6}$$

Question

$$1^{2} + 2^{2} + \dots + n^{2} = \sum_{k=1}^{n} k^{2} = \frac{1}{6} n(n+1)(2n+1). \quad (*)$$

Question

$$1^{2} + 2^{2} + \dots + n^{2} = \sum_{k=1}^{n} k^{2} = \frac{1}{6} n(n+1)(2n+1). \quad (*)$$

▶
$$n = 1$$
: $LHS = 1 = RHS$;

Question

$$1^{2} + 2^{2} + \dots + n^{2} = \sum_{k=1}^{n} k^{2} = \frac{1}{6} n(n+1)(2n+1). \quad (*)$$

- ▶ n = 1: LHS = 1 = RHS;
- ▶ n = 2: LHS = 5 = RHS;

Question

$$1^{2} + 2^{2} + \dots + n^{2} = \sum_{k=1}^{n} k^{2} = \frac{1}{6} n(n+1)(2n+1). \quad (*)$$

- ▶ n = 1: LHS = 1 = RHS;
- ▶ n = 2: LHS = 5 = RHS;
- ightharpoonup n = 3: *LHS* = 14 = *RHS*;

Question

$$1^{2} + 2^{2} + \dots + n^{2} = \sum_{k=1}^{n} k^{2} = \frac{1}{6} n(n+1)(2n+1). \quad (*)$$

- ightharpoonup n = 1: *LHS* = 1 = *RHS*;
- ▶ n = 2: LHS = 5 = RHS;
- ightharpoonup n = 3: *LHS* = 14 = *RHS*;
- ightharpoonup n = 4: LHS = 30 = RHS;

Question

$$1^{2} + 2^{2} + \dots + n^{2} = \sum_{k=1}^{n} k^{2} = \frac{1}{6} n(n+1)(2n+1). \quad (*)$$

3. Proof.

- ightharpoonup n = 1: *LHS* = 1 = *RHS*;
- ightharpoonup n = 2: *LHS* = 5 = *RHS*;
- ightharpoonup n = 3: LHS = 14 = RHS;
- ightharpoonup n = 4: LHS = 30 = RHS;

Question

$$1^{2} + 2^{2} + \dots + n^{2} = \sum_{k=1}^{n} k^{2} = \frac{1}{6} n(n+1)(2n+1). \quad (*)$$

3. Proof.

- ightharpoonup n = 1: *LHS* = 1 = *RHS*;
- ightharpoonup n = 2: *LHS* = 5 = *RHS*;
- ightharpoonup n = 3: LHS = 14 = RHS;

$$ightharpoonup n = 4$$
: LHS = 30 = RHS:

Theorem. For any positive integer n,

$$f(n) = 1^2 + 2^2 + \dots + n^2$$

is a polynomial in variable n, of degree 3.

Question

$$1^{2} + 2^{2} + \dots + n^{2} = \sum_{k=1}^{n} k^{2} = \frac{1}{6} n(n+1)(2n+1). \quad (*)$$

3. Proof.

▶
$$n = 1$$
: $LHS = 1 = RHS$;

▶
$$n = 2$$
: LHS = $5 = RHS$;

$$ightharpoonup n = 3$$
: LHS = 14 = RHS;

$$ightharpoonup n = 4$$
: LHS = 30 = RHS;

Theorem. For any positive integer n,

$$f(n) = 1^2 + 2^2 + \dots + n^2$$

is a polynomial in variable n, of degree 3. Namely,

$$f(n) = 1^2 + 2^2 + \dots + n^2 = \alpha n^3 + \beta n^2 + \gamma n + \delta$$

Question

$$1^{2} + 2^{2} + \dots + n^{2} = \sum_{k=1}^{n} k^{2} = \frac{1}{6} n(n+1)(2n+1). \quad (*)$$

3. Proof.

- ightharpoonup n = 1: *LHS* = 1 = *RHS*;
- ▶ n = 2: LHS = 5 = RHS;
- ightharpoonup n = 3: LHS = 14 = RHS;

$$ightharpoonup n = 4$$
: LHS = 30 = RHS;

Theorem. For any positive integer n,

$$f(n) = 1^2 + 2^2 + \dots + n^2$$

is a polynomial in variable n, of degree 3. Namely,

$$f(n) = 1^2 + 2^2 + \dots + n^2 = \alpha n^3 + \beta n^2 + \gamma n + \delta \stackrel{?}{=} \frac{1}{3}n^3 + \frac{1}{6}n^2 + \frac{1}{2}n.$$

$$\begin{cases} \alpha + \beta + \gamma + \delta &= 1 \\ 8\alpha + 4\beta + 2\gamma + \delta &= 5 \\ 27\alpha + 9\beta + 3\gamma + \delta &= 14 \\ 64\alpha + 16\beta + 4\gamma + \delta &= 30 \end{cases} \Rightarrow \begin{cases} \alpha = 1/3 \\ \beta = 1/6 \\ \gamma = 1/2 \\ \delta = 0 \end{cases}$$

$$\begin{cases} \alpha + \beta + \gamma + \delta &= 1\\ 8\alpha + 4\beta + 2\gamma + \delta &= 5\\ 27\alpha + 9\beta + 3\gamma + \delta &= 14\\ 64\alpha + 16\beta + 4\gamma + \delta &= 30 \end{cases} \Rightarrow \begin{cases} \alpha = 1/3\\ \beta = 1/6\\ \gamma = 1/2\\ \delta = 0 \end{cases}$$

Proof of the Theorem.

$$n^3 = 3\sum_{k=1}^n k^2 - 3\sum_{k=1}^n k + n.$$

$$\begin{cases} \alpha + \beta + \gamma + \delta &= 1 \\ 8\alpha + 4\beta + 2\gamma + \delta &= 5 \\ 27\alpha + 9\beta + 3\gamma + \delta &= 14 \\ 64\alpha + 16\beta + 4\gamma + \delta &= 30 \end{cases} \Rightarrow \begin{cases} \alpha = 1/3 \\ \beta = 1/6 \\ \gamma = 1/2 \\ \delta = 0 \end{cases}$$

Proof of the Theorem.

$$n^3 = 3\sum_{k=1}^{n} k^2 - 3\sum_{k=1}^{n} k + n.$$

Theorem. For any positive integers d and n,

$$Q(n) := 1^d + 2^d + \dots + n^d = \sum_{k=1}^n k^d$$

is a polynomial in variable n of degree d + 1.

$$\begin{cases} \alpha + \beta + \gamma + \delta &= 1 \\ 8\alpha + 4\beta + 2\gamma + \delta &= 5 \\ 27\alpha + 9\beta + 3\gamma + \delta &= 14 \\ 64\alpha + 16\beta + 4\gamma + \delta &= 30 \end{cases} \Rightarrow \begin{cases} \alpha = 1/3 \\ \beta = 1/6 \\ \gamma = 1/2 \\ \delta = 0 \end{cases}$$

Proof of the Theorem.

$$n^3 = 3\sum_{k=1}^{n} k^2 - 3\sum_{k=1}^{n} k + n.$$

Theorem. For any positive integers d and n,

$$Q(n) := 1^d + 2^d + \dots + n^d = \sum_{k=1}^n k^d$$

is a polynomial in variable n of degree d+1.

$$Q(n) = \alpha_{d+1}n^{d+1} + \alpha_d n^d + \dots + \alpha_1 d + \alpha_0.$$

Theorem. Let $P_d(x)$ be a polynomial of degree d. Define

$$Q(n) := P_d(1) + P_d(2) + \cdots + P_d(n) = \sum_{k=1}^n P_d(k).$$

Then, Q(n) is a polynomial in variable n of degree d + 1.

Theorem. Let $P_d(x)$ be a polynomial of degree d. Define

$$Q(n) := P_d(1) + P_d(2) + \cdots + P_d(n) = \sum_{k=1}^n P_d(k).$$

Then, Q(n) is a polynomial in variable n of degree d+1. **Remark**.

$$1+2+\cdots+n=\frac{n(n+1)}{2}$$

Theorem. Let $P_d(x)$ be a polynomial of degree d. Define

$$Q(n) := P_d(1) + P_d(2) + \cdots + P_d(n) = \sum_{k=1}^n P_d(k).$$

Then, Q(n) is a polynomial in variable n of degree d+1. **Remark**.

$$1+2+\cdots+n=\frac{n(n+1)}{2}$$

$$1^3 + 2^3 + \dots + n^3 = \left(\frac{n(n+1)}{2}\right)^2$$

Question

$$\sum_{k=0}^{n} \binom{n}{k}^2 = \binom{2n}{n}. \quad (**)$$

Question

$$\sum_{k=0}^{n} \binom{n}{k}^{2} = \binom{2n}{n}. \quad (**)$$

Combinatorial proof.

Question

$$\sum_{k=0}^{n} \binom{n}{k}^{2} = \binom{2n}{n}. \quad (**)$$

Combinatorial proof.

$$LHS = \sum_{k=0}^{n} \binom{n}{k} \binom{n}{n-k}.$$

Question

$$\sum_{k=0}^{n} \binom{n}{k}^2 = \binom{2n}{n}. \quad (**)$$

Combinatorial proof.

$$LHS = \sum_{k=0}^{n} \binom{n}{k} \binom{n}{n-k}.$$

Generating function proof.

Question

$$\sum_{k=0}^{n} \binom{n}{k}^2 = \binom{2n}{n}. \quad (**)$$

Combinatorial proof.

$$LHS = \sum_{k=0}^{n} \binom{n}{k} \binom{n}{n-k}.$$

Generating function proof. Recall

$$(1+x)^n = \sum_{j=0}^n \binom{n}{j} x^j.$$

Question

$$\sum_{k=0}^{n} \binom{n}{k}^2 = \binom{2n}{n}. \quad (**)$$

Combinatorial proof.

$$LHS = \sum_{k=0}^{n} \binom{n}{k} \binom{n}{n-k}.$$

Generating function proof. Recall

$$(1+x)^n = \sum_{j=0}^n \binom{n}{j} x^j.$$

$$\sum_{j=0}^{2n} \binom{2n}{j} x^j = \underbrace{(1+x)^{2n} = (1+x)^n \cdot (1+x)^n}_{j=1} = \sum_{j=0}^{2n} \sum_{k=0}^{j} \binom{n}{k} \binom{n}{j-k} x^j$$

Question

$$\sum_{k=0}^{n} \binom{n}{k}^2 = \binom{2n}{n}. \quad (**)$$

Combinatorial proof.

$$LHS = \sum_{k=0}^{n} \binom{n}{k} \binom{n}{n-k}.$$

Generating function proof. Recall

$$(1+x)^n = \sum_{j=0}^n \binom{n}{j} x^j.$$

$$\sum_{i=0}^{2n} \binom{2n}{j} x^j = (1+x)^{2n} = (1+x)^n \cdot (1+x)^n = \sum_{i=0}^{2n} \sum_{k=0}^{j} \binom{n}{k} \binom{n}{j-k} x^j$$

Consider the term of j=n (the coefficients of x^n on both sides)

Question

$$\sum_{k=0}^{n} \binom{n}{k}^{2} = \binom{2n}{n}. \quad (**)$$

Question

$$\sum_{k=0}^{n} {n \choose k}^2 = {2n \choose n}. \quad (**)$$

$$f(n) := \sum_{k=0}^{n} F(n, k)$$

Question

$$\sum_{k=0}^{n} {n \choose k}^2 = {2n \choose n}. \quad (**)$$

$$f(n) := \sum_{k=0}^{n} F(n, k)$$

Find G(n, k) such that

$$F(n+1,k) - F(n,k) = G(n,k+1) - G(n,k)$$

Question

$$\sum_{k=0}^{n} \binom{n}{k}^{2} = \binom{2n}{n}. \quad (**)$$

$$f(n) := \sum_{k=0}^{n} F(n, k)$$

Find G(n, k) such that

$$F(n+1,k) - F(n,k) = G(n,k+1) - G(n,k)$$

Recall in Question 1

$$k^{2} = \left[\frac{(k+1)^{3} - \frac{3}{2}(k+1)^{2} + \frac{k+1}{2}}{3} \right] - \left[\frac{k^{3} - \frac{3}{2}k^{2} + \frac{k}{2}}{3} \right]$$

Question

$$\sum_{k=0}^{n} \binom{n}{k}^2 = \binom{2n}{n}. \quad (**)$$

Question

$$\sum_{k=0}^{n} \binom{n}{k}^2 = \binom{2n}{n}. \quad (**)$$

Remarks.

Question

$$\sum_{k=0}^{n} \binom{n}{k}^2 = \binom{2n}{n}. \quad (**)$$

Remarks.

► Since $\binom{n}{k} = 0$ when k < 0 or k > n,

Question

$$\sum_{k=0}^{n} \binom{n}{k}^2 = \binom{2n}{n}. \quad (**)$$

Remarks.

▶ Since $\binom{n}{k} = 0$ when k < 0 or k > n,

$$\sum_{k\in\mathbb{Z}} \binom{n}{k}^2$$

Question

$$\sum_{k=0}^{n} \binom{n}{k}^{2} = \binom{2n}{n}. \quad (**)$$

Remarks.

▶ Since $\binom{n}{k} = 0$ when k < 0 or k > n,

$$\sum_{k\in\mathbb{Z}}\binom{n}{k}^2\Rightarrow F(n+1,k)-F(n,k)=G(n,k+1)-G(n,k)$$

Question

$$\sum_{k=0}^{n} \binom{n}{k}^{2} = \binom{2n}{n}. \quad (**)$$

Remarks.

▶ Since $\binom{n}{k} = 0$ when k < 0 or k > n,

$$\sum_{k\in\mathbb{Z}} \binom{n}{k}^2 \Rightarrow F(n+1,k) - F(n,k) = G(n,k+1) - G(n,k)$$

We can simply sum for $k \in \mathbb{Z}$ so that the left hand side becomes

$$f(n+1)-f(n).$$

Question

$$\sum_{k=0}^{n} \binom{n}{k}^{2} = \binom{2n}{n}. \quad (**)$$

Remarks.

▶ Since $\binom{n}{k} = 0$ when k < 0 or k > n,

$$\sum_{k\in\mathbb{Z}} \binom{n}{k}^2 \Rightarrow F(n+1,k) - F(n,k) = G(n,k+1) - G(n,k)$$

We can simply sum for $k \in \mathbb{Z}$ so that the left hand side becomes

$$f(n+1)-f(n).$$

Other wise, we need to sum for k from 0 to n + 1, giving

$$f(n+1) - [f(n) + F(n, n+1)].$$

Question

$$\sum_{k=0}^{n} \binom{n}{k}^2 = \binom{2n}{n}. \quad (**)$$

Remarks.

$$F(n+1,k) - F(n,k) = G(n,k+1) - G(n,k)$$

Question

$$\sum_{k=0}^{n} \binom{n}{k}^{2} = \binom{2n}{n}. \quad (**)$$

Remarks.

$$F(n+1,k) - F(n,k) = G(n,k+1) - G(n,k)$$

▶ What about

$$\lim_{k \to -\infty} G(n, k)$$
 and $\lim_{k \to +\infty} G(n, k)$?

Question

$$\sum_{k=0}^{n} \binom{n}{k}^{2} = \binom{2n}{n}. \quad (**)$$

Remarks.

$$F(n+1,k) - F(n,k) = G(n,k+1) - G(n,k)$$

► What about

$$\lim_{k \to -\infty} G(n, k)$$
 and $\lim_{k \to +\infty} G(n, k)$?

$$G(n, k) = F(n, k)R(n, k)$$

Question

$$\sum_{k=0}^{n} \binom{n}{k}^2 = \binom{2n}{n}. \quad (**)$$

Remarks.

$$F(n+1,k) - F(n,k) = G(n,k+1) - G(n,k)$$

▶ What about

$$\lim_{k\to -\infty} G(n,k) \quad \text{and} \quad \lim_{k\to +\infty} G(n,k)?$$

$$G(n,k) = F(n,k)R(n,k) = F(n,k) \cdot \frac{P(n,k)}{Q(n,k)}$$
 for polynomials $P \& Q$.

Question

$$\sum_{k=0}^{n} \binom{n}{k}^{2} = \binom{2n}{n}. \quad (**)$$

Question

$$\sum_{k=0}^{n} \binom{n}{k}^{2} = \binom{2n}{n}. \quad (**)$$

Step 1.

$$\sum_{k=0}^{n} \frac{\binom{n}{k}^2}{\binom{2n}{n}} = 1$$

Question

$$\sum_{k=0}^{n} \binom{n}{k}^2 = \binom{2n}{n}. \quad (**)$$

Step 1.

$$\sum_{k=0}^{n} \frac{\binom{n}{k}^{2}}{\binom{2n}{n}} = 1 = \sum_{k \in \mathbb{Z}} \frac{(n!)^{4}}{(k!)^{2} ((n-k)!)^{2} (2n)!}.$$

Question

$$\sum_{k=0}^{n} \binom{n}{k}^2 = \binom{2n}{n}. \quad (**)$$

Step 1.

$$\sum_{k=0}^{n} \frac{\binom{n}{k}^{2}}{\binom{2n}{n}} = 1 = \sum_{k \in \mathbb{Z}} \frac{(n!)^{4}}{(k!)^{2} ((n-k)!)^{2} (2n)!}.$$

$$F(n,k) = \frac{(n!)^{4}}{(k!)^{2} ((n-k)!)^{2} (2n)!}.$$

Question

$$\sum_{k=0}^{n} \binom{n}{k}^{2} = \binom{2n}{n}. \quad (**)$$

Step 1.

$$\sum_{k=0}^{n} \frac{\binom{n}{k}^{2}}{\binom{2n}{n}} = 1 = \sum_{k \in \mathbb{Z}} \frac{(n!)^{4}}{(k!)^{2} ((n-k)!)^{2} (2n)!}.$$

$$F(n,k) = \frac{(n!)^4}{(k!)^2 ((n-k)!)^2 (2n)!}.$$

Step 2. Find R(n, k)

Question

$$\sum_{k=0}^{n} \binom{n}{k}^{2} = \binom{2n}{n}. \quad (**)$$

Step 1.

$$\sum_{k=0}^{n} \frac{\binom{n}{k}^{2}}{\binom{2n}{n}} = 1 = \sum_{k \in \mathbb{Z}} \frac{(n!)^{4}}{(k!)^{2} ((n-k)!)^{2} (2n)!}.$$

$$F(n,k) = \frac{(n!)^4}{(k!)^2 ((n-k)!)^2 (2n)!}.$$

Step 2. Find R(n, k)

$$R(n,k) = \frac{(2k-3n-3)k^2}{2(n+1-k)^2(2n+1)}$$

$$F(n,k) = \frac{(n!)^4}{(k!)^2 ((n-k)!)^2 (2n)!} \text{ and } R(n,k) = \frac{(2k-3n-3) k^2}{2(n+1-k)^2 (2n+1)}$$

$$F(n,k) = \frac{(n!)^4}{(k!)^2 ((n-k)!)^2 (2n)!} \text{ and } R(n,k) = \frac{(2k-3n-3) k^2}{2(n+1-k)^2 (2n+1)}$$

$$F(n+1,k)-F(n,k)$$

$$F(n,k) = \frac{(n!)^4}{(k!)^2 ((n-k)!)^2 (2n)!} \text{ and } R(n,k) = \frac{(2k-3n-3) k^2}{2(n+1-k)^2 (2n+1)}$$

$$= \frac{F(n+1,k) - F(n,k)}{(k!)^2 ((n+1-k)!)^2 (2n+2)!} - \frac{(n!)^4}{(k!)^2 ((n-k)!)^2 (2n)!}$$

$$F(n,k) = \frac{(n!)^4}{(k!)^2 ((n-k)!)^2 (2n)!} \text{ and } R(n,k) = \frac{(2k-3n-3) k^2}{2(n+1-k)^2 (2n+1)}$$

$$F(n+1,k) - F(n,k)$$

$$= \frac{((n+1)!)^4}{(k!)^2 ((n+1-k)!)^2 (2n+2)!} - \frac{(n!)^4}{(k!)^2 ((n-k)!)^2 (2n)!}$$

$$= \frac{(n!)^4}{(k!)^2 ((n-k)!)^2 (2n)!}$$

$$F(n,k) = \frac{(n!)^4}{(k!)^2 ((n-k)!)^2 (2n)!} \text{ and } R(n,k) = \frac{(2k-3n-3) k^2}{2(n+1-k)^2 (2n+1)}$$

$$= \frac{F(n+1,k) - F(n,k)}{((n+1)!)^4} - \frac{(n!)^4}{(k!)^2 ((n+1-k)!)^2 (2n+2)!} - \frac{(n!)^4}{(k!)^2 ((n-k)!)^2 (2n)!}$$

$$= \frac{(n!)^4}{(k!)^2 ((n-k)!)^2 (2n)!} \left[\frac{(n+1)^4}{(n+1-k)^2 (2n+2) (2n+1)} - 1 \right]$$

$$F(n,k) = \frac{(n!)^4}{(k!)^2 ((n-k)!)^2 (2n)!} \text{ and } R(n,k) = \frac{(2k-3n-3) k^2}{2(n+1-k)^2 (2n+1)}$$

$$F(n+1,k) - F(n,k)$$

$$= \frac{((n+1)!)^4}{(k!)^2((n+1-k)!)^2(2n+2)!} - \frac{(n!)^4}{(k!)^2((n-k)!)^2(2n)!}$$

$$= \frac{(n!)^4}{(k!)^2((n-k)!)^2(2n)!} \left[\frac{(n+1)^4}{(n+1-k)^2(2n+2)(2n+1)} - 1 \right]$$

$$= F(n,k) \frac{3n^3 + (7-8k)n^2 + (2k^2+5)n + 2k^2 - 4k + 1}{2(n+1-k)^2(2n+2)}$$

$$F(n,k) = \frac{(n!)^4}{(k!)^2 ((n-k)!)^2 (2n)!} \text{ and } R(n,k) = \frac{(2k-3n-3) k^2}{2(n+1-k)^2 (2n+1)}$$

$$F(n,k) = \frac{(n!)^4}{(k!)^2 ((n-k)!)^2 (2n)!} \text{ and } R(n,k) = \frac{(2k-3n-3) k^2}{2(n+1-k)^2 (2n+1)}$$

$$G(n,k+1) - G(n,k)$$

$$F(n,k) = \frac{(n!)^4}{(k!)^2 ((n-k)!)^2 (2n)!} \text{ and } R(n,k) = \frac{(2k-3n-3) k^2}{2(n+1-k)^2 (2n+1)}$$

$$G(n,k+1) - G(n,k)$$

$$= F(n,k+1)R(n,k+1) - F(n,k)R(n,k)$$

$$F(n,k) = \frac{(n!)^4}{(k!)^2 ((n-k)!)^2 (2n)!} \text{ and } R(n,k) = \frac{(2k-3n-3)k^2}{2(n+1-k)^2 (2n+1)}$$

$$G(n,k+1) - G(n,k)$$

$$= F(n,k+1)R(n,k+1) - F(n,k)R(n,k)$$

$$= F(n,k) \left[\frac{k^2 (3n+3-2k)}{2(n+1-k)^2 (2n+1)} - \frac{(3n+1-2k)}{2(2n+1)} \right]$$

$$F(n,k) = \frac{(n!)^4}{(k!)^2 ((n-k)!)^2 (2n)!} \text{ and } R(n,k) = \frac{(2k-3n-3)k^2}{2(n+1-k)^2 (2n+1)}$$

$$G(n,k+1) - G(n,k)$$

$$= F(n,k+1)R(n,k+1) - F(n,k)R(n,k)$$

$$= F(n,k) \left[\frac{k^2 (3n+3-2k)}{2(n+1-k)^2 (2n+1)} - \frac{(3n+1-2k)}{2(2n+1)} \right]$$

$$= F(n,k) \frac{3n^3 + (7-8k)n^2 + (2k^2+5)n + 2k^2 - 4k + 1}{2(n+1-k)^2 (2n+2)}$$

$$F(n,k) = \frac{(n!)^4}{(k!)^2 ((n-k)!)^2 (2n)!} \text{ and } R(n,k) = \frac{(2k-3n-3)k^2}{2(n+1-k)^2 (2n+1)}$$

$$G(n,k+1) - G(n,k)$$

$$= F(n,k+1)R(n,k+1) - F(n,k)R(n,k)$$

$$= F(n,k) \left[\frac{k^2 (3n+3-2k)}{2(n+1-k)^2 (2n+1)} - \frac{(3n+1-2k)}{2(2n+1)} \right]$$

$$= F(n,k) \frac{3n^3 + (7-8k)n^2 + (2k^2+5)n + 2k^2 - 4k + 1}{2(n+1-k)^2 (2n+2)}$$

$$F(n+1,k) - F(n,k) = G(n,k+1) - G(n,k)$$

$$G(n,k) = F(n,k)R(n,k) = \frac{(2k-3n-3)k^2}{2(n+1-k)^2(2n+1)} \cdot \frac{\binom{n}{k}^2}{\binom{2n}{n}}$$

$$G(n,k) = F(n,k)R(n,k) = \frac{(2k-3n-3)k^2}{2(n+1-k)^2(2n+1)} \cdot \frac{\binom{n}{k}^2}{\binom{2n}{n}}$$
$$\lim_{k \to -\infty} G(n,k) = 0 = \lim_{k \to +\infty} G(n,k)$$

$$G(n,k) = F(n,k)R(n,k) = \frac{(2k-3n-3)k^2}{2(n+1-k)^2(2n+1)} \cdot \frac{\binom{n}{k}^2}{\binom{2n}{n}}$$

$$\lim_{k \to -\infty} G(n,k) = 0 = \lim_{k \to +\infty} G(n,k)$$

$$F(n+1,k) - F(n,k) = G(n,k+1) - G(n,k)$$

$$G(n,k) = F(n,k)R(n,k) = \frac{(2k-3n-3)k^2}{2(n+1-k)^2(2n+1)} \cdot \frac{\binom{n}{k}^2}{\binom{2n}{n}}$$

$$\lim_{k \to -\infty} G(n,k) = 0 = \lim_{k \to +\infty} G(n,k)$$

$$F(n+1,k) - F(n,k) = G(n,k+1) - G(n,k)$$

$$f(n+1) - f(n) = 0$$

$$G(n,k) = F(n,k)R(n,k) = \frac{(2k-3n-3)k^2}{2(n+1-k)^2(2n+1)} \cdot \frac{\binom{n}{k}^2}{\binom{2n}{n}}$$

$$\lim_{k \to -\infty} G(n,k) = 0 = \lim_{k \to +\infty} G(n,k)$$

$$F(n+1,k) - F(n,k) = G(n,k+1) - G(n,k)$$

$$f(n+1) - f(n) = 0$$

$$f(n) = \sum_{k=0}^{n} \frac{\binom{n}{k}^2}{\binom{2n}{n}}$$

$$G(n,k) = F(n,k)R(n,k) = \frac{(2k-3n-3)k^2}{2(n+1-k)^2(2n+1)} \cdot \frac{\binom{n}{k}^2}{\binom{2n}{n}}$$

$$\lim_{k \to -\infty} G(n,k) = 0 = \lim_{k \to +\infty} G(n,k)$$

$$F(n+1,k) - F(n,k) = G(n,k+1) - G(n,k)$$

$$f(n+1) - f(n) = 0$$

$$f(n) = \sum_{k=0}^{n} \frac{\binom{n}{k}^2}{\binom{2n}{n}} = f(0)$$

$$G(n,k) = F(n,k)R(n,k) = \frac{(2k-3n-3)k^2}{2(n+1-k)^2(2n+1)} \cdot \frac{\binom{n}{k}^2}{\binom{2n}{n}}$$

$$\lim_{k \to -\infty} G(n,k) = 0 = \lim_{k \to +\infty} G(n,k)$$

$$F(n+1,k) - F(n,k) = G(n,k+1) - G(n,k)$$

$$f(n+1) - f(n) = 0$$

$$f(n) = \sum_{k=0}^{n} \frac{\binom{n}{k}^2}{\binom{2n}{n}} = f(0) = \frac{\binom{0}{0}^2}{\binom{0}{0}} = 1$$

$$G(n,k) = F(n,k)R(n,k) = \frac{(2k-3n-3)k^2}{2(n+1-k)^2(2n+1)} \cdot \frac{\binom{n}{k}^2}{\binom{2n}{n}}$$

$$\lim_{k \to -\infty} G(n,k) = 0 = \lim_{k \to +\infty} G(n,k)$$

$$F(n+1,k) - F(n,k) = G(n,k+1) - G(n,k)$$

$$f(n+1) - f(n) = 0$$

$$f(n) = \sum_{k=0}^{n} \frac{\binom{n}{k}^2}{\binom{2n}{n}} = f(0) = \frac{\binom{0}{0}^2}{\binom{0}{0}} = 1$$

$$\sum_{k=0}^{n} \binom{n}{k}^2 = \binom{2n}{n}$$

$$F(n,k) = \frac{\binom{n}{k}^2}{\binom{2n}{n}} \quad \text{and} \quad R(n,k) = \frac{(2k-3n-3)k^2}{2(n+1-k)^2(2n+1)}$$

$$F(n,k) = \frac{\binom{n}{k}^2}{\binom{2n}{n}}$$
 and $R(n,k) = \frac{(2k-3n-3)k^2}{2(n+1-k)^2(2n+1)}$

R(n, k) is called WZ proof certificate

$$F(n,k) = \frac{\binom{n}{k}^2}{\binom{2n}{n}} \quad \text{and} \quad R(n,k) = \frac{(2k-3n-3)k^2}{2(n+1-k)^2(2n+1)}$$

R(n, k) is called WZ proof certificate (Wilf–Zeilberger)

$$F(n,k) = \frac{\binom{n}{k}^2}{\binom{2n}{n}}$$
 and $R(n,k) = \frac{(2k-3n-3)k^2}{2(n+1-k)^2(2n+1)}$

R(n, k) is called WZ proof certificate (Wilf–Zeilberger)

$$\frac{F(n+1,k)}{F(n,k)} = \frac{(n+1)^4}{(n+1-k)^2 (2n+2) (2n+1)}
\frac{F(n,k+1)}{F(n,k)} = \frac{(n-k)^2}{(k+1)^2}$$
 rational in $n \& k$.

$$F(n,k) = \frac{\binom{n}{k}^2}{\binom{2n}{n}}$$
 and $R(n,k) = \frac{(2k-3n-3)k^2}{2(n+1-k)^2(2n+1)}$

R(n, k) is called WZ proof certificate (Wilf–Zeilberger)

$$\frac{F(n+1,k)}{F(n,k)} = \frac{(n+1)^4}{(n+1-k)^2 (2n+2) (2n+1)}$$

$$\frac{F(n,k+1)}{F(n,k)} = \frac{(n-k)^2}{(k+1)^2}$$
 rational in $n \& k$.

6.3 How the algorithm works

The creative telescoping algorithm is for the fast discovery of the recurrence for a proper hypergeometric term, in the telescoped form (6.1.3). The algorithmic implementation makes strong use of the existence, but not of the method of proof used in the existence theorem.

More precisely, what we do is this. We now know that a recurrence (6.1.3) exists. On the left side of the recurrence there are unknown coefficients a_0, \dots, a_J ; on the right side there is an unknown function G; and the order J of the recurrence is unknown, except that bounds for it were established in the Fundamental Theorem (Theorem 4.4.1 on page 65).

We begin by fixing the assumed order J of the recurrence. We will then look for a recurrence of that order, and if none exists, we'll look for one of the next higher order.

For that fixed J, let's denote the left side of (6.1.3) by t_k , so that

$$t_k = a_0 F(n, k) + a_1 F(n + 1, k) + \cdots + a_J F(n + J, k).$$
 (6.3.1)

6.3 How the algorithm works Then we have for the term ratio $\frac{t_{k+1}}{t_k} = \frac{\sum_{j=0}^{J} a_j F(n+j, k+1) / F(n, k+1)}{\sum_{j=0}^{J} a_j F(n+j, k) / F(n, k)} \frac{F(n, k+1)}{F(n, k)}.$ (6.3.2)The second member on the right is a rational function of n, k, say $\frac{F(n, k + 1)}{F(n, k)} = \frac{r_1(n, k)}{r_2(n, k)}$ where the r's are polynomials, and also say, where the s's are polynomials. Then $\frac{F(n + j, k)}{F(n, k)} - \prod_{i=1}^{j-1} \frac{F(n + j - i, k)}{F(n + j - i - 1, k)} - \prod_{i=1}^{j-1} \frac{s_1(n + j - i, k)}{s_2(n + j - i, k)}$ It follows that $= \frac{\sum_{j=0}^{j} a_j \left\{ \prod_{i=0}^{j-1} s_1(n+j-i,k+1) \prod_{i=j+1}^{j} s_2(n+r,k+1) \right\}}{\sum_{j=0}^{j} a_j \left\{ \prod_{i=0}^{j-1} s_1(n+j-i,k) \prod_{i=j+1}^{j} s_2(n+r,k) \right\}}$ (6.3.4) $\times \frac{r_1(n, k)}{r_2(n, k)} \frac{\prod_{r=1}^{J} s_2(n + r, k)}{\prod_{r=1}^{J} s_2(n + r, k + 1)}$ Thus we have $\frac{t_{k+1}}{t_k} = \frac{p_0(k+1)}{p_0(k)} \frac{r(k)}{s(k)}$ (6.3.5)where $p_0(k) = \sum_{i=0}^{J} a_j \left\{ \prod_{i=0}^{j-1} s_1(n+j-i, k) \prod_{r=i+1}^{J} s_2(n+r, k) \right\},$ (6.3.6) $r(k) = r_1(n, k) \prod^{J} s_2(n + r, k),$ (6.3.7) Zeilberger's Algorithm

$$s(k) = r_2(n, k) \prod_{j=1}^{d} s_2(n + r, k + 1).$$
 (6.3.8)

Note that the assumed coefficients a_j do not appear in r(k) or in s(k), but only in $p_0(k)$. Next, by Theorem 5.3.1, we can write r(k)/s(k) in the canonical form

$$\frac{r(k)}{s(k)} = \frac{p_1(k+1)p_2(k)}{p_1(k)},$$
(6.3.9)

in which the numerator and denominator on the right are coprime, and

$$gcd(p_2(k), p_3(k + j)) = 1$$
 $(j = 0, 1, 2, ...)$

Hence if we put $p(k) = p_0(k)p_1(k)$ then from eqs. (6.3.5) and (6.3.9), we obtain

$$\frac{t_{k+1}}{t_k} = \frac{p(k+1) p_2(k)}{p(k) p_2(k)}.$$
(6.3.10)

This is now a standard setup for Gosper's algorithm (compare it with the discussion on page 76), and we see that t_k will be an indefinitely summable hypergeometric term if and only if the recurrence (commare a.(5.2.61))

$$p_2(k)b(k + 1) - p_3(k - 1)b(k) = p(k)$$
 (6.3.11)

has a polynomial solution b(k).

The remarkable feature of this equation (6.3.11) is that the $coefficients p_{\ell}(k)$ and $p_{\ell}(k)$ are independent of the subnorms $(a_{\ell})^{L}_{\ell}$, and the right size k/k depends on them invarily. Now watch what happens as a result. We look for a polynomial solution to (6.3.11) by fine, as in Gosper's algorithm, finding an upper bound on the degree, say Δ_{ℓ} of such a solution. Next we assume k/k as a general polynomial of that degree, say

$$b(k) = \sum_{l=1}^{\Delta} \beta_l k^l$$
,

with all of its coefficients to be determined. We substitute this expression for b(k)in (6.3.11), and we find a system of simultaneous linear equations in the $\Delta+J+2$ unknowns

$$a_0, a_1, ..., a_J, \beta_0, ..., \beta_{\Delta}$$
.

The linearity of this system is directly traceable to the italicized remark above.

We then solve the system, if possible, for the a_j 's and the β_i 's. If no solution exists, then there is no recurrence of telescoped form (6.1.3) and of the assumed order J. In such a case we would next seek such a recurrence of order J+1. If on the other 6.4 Examples 109

hand a polynomial solution b(k) of equation (6.3.11) does exist, then we will have found all of the a_j 's of our assumed recurrence (6.1.3), and, by eq. (5.2.5) we will also have found the G(n,k) on the right hand side, as

$$G(n,k) = \frac{p_3(k-1)}{p(k)}b(k)t_k.$$
(6.3.12)

See Koornwinder [Koor93] for further discussion and a q-analogue.

6.4 Examples 109

hand a polynomial solution b(k) of equation (6.3.11) does exist, then we will have found all of the a_j 's of our assumed recurrence (6.1.3), and, by eq. (5.2.5) we will also have found the G(n,k) on the right hand side, as

$$G(n,k) = \frac{p_3(k-1)}{p(k)}b(k)t_k.$$
(6.3.12)

See Koornwinder [Koor93] for further discussion and a q-analogue.

6.4 Examples 109

hand a polynomial solution b(k) of equation (6.3.11) does exist, then we will have found all of the a_j 's of our assumed recurrence (6.1.3), and, by eq. (5.2.5) we will also have found the G(n,k) on the right hand side, as

$$G(n,k) = \frac{p_3(k-1)}{p(k)}b(k)t_k. \tag{6.3.12}$$

See Koornwinder [Koor93] for further discussion and a q-analogue.

https://www.math.upenn.edu/~wilf/AeqB.html

Home Page for the Book "A=B"

by Marko Petkovsek, Herbert Wilf and Doron Zeilberger with a Foreword by Donald E. Knuth (read it below)

YOU CAN NOW DOWNLOAD THE ENTIRE BOOK!!

About the Book

"A-B" is about identifies in general, and hypergeometric identifies in particular, with emphasis on computer methods of discovery and proof. The book describes a nut between tasks, and we intend to maintain the latest versions of the programs that carry out these algorithms on this page. So be sure to consult this page from time to time, versions of the programs.

In addition to programs, we will post here other items of interest relating to the book, such as the current errata sheet (see below). The other side of the coin is that we content of the book, the programs, any errors that you may discover, or whatever. You can send us your comments by e-mail if you wish.

The book is a selection of the Library of Science

A Japanese translation of A=B, by Toppan Co., Ltd., appeared in November of 1997

what s new:

Journal of Mathematical Analysis and Applications The unimodality of a polynomial coming from a rational integral. Back to the original proof Tewodros Amdelserhan, Atul Dixit, Xiao Guan, Lin Jiu, Victor H. Moll* Article Statery: Beneived 30 April 2013 Available online 10 June 2014 Salmatited by E.C. Brendt A sequence of coefficients that appeared in the evaluation of a rational integral has been shown to be unimodal. An alternative people is presented. © 2014 Elavoire Inc. All rights reserved. Arguerda: Hyprogrametric function Unimedal polymentals Monotonicity 1. Introduction The polynomial $P_m(a) = \sum^m d_\ell(m) a^\ell$ with made its appearance in [1] in the evaluation of the quartic integral

* Corresponding ordans.

E.mai alderson in michel Vitaine oda (T. Ansfelvehan), aliai Ottaine oda (A. Dail), ngunal Ottaine oda (X. Cam), Uritaines oda (A. Dail), ngunal Ottaines oda (X. Cam), Uritaines oda (A. Dail), michelane oda (Y.H. Mell),

histo / Mai oda ng/13.1886), jenes 311.48.088

802.2873(X. Ottail Serveit te M. Highel senerod.

Journal of Mathematical Analysis and Applications The unimodality of a polynomial coming from a rational integral. Back to the original proof Towodros Amdeberhan, Atul Dixit, Xiao Guan, Lin Jiu, Victor H. Moll 1 Introduction The polynomial made its appearance in [1] in the evaluation of the quartic integra-

The sequence

$$d_{\ell}(m) := \sum_{k=\ell}^{m} 2^{k-2m} {2m-2k \choose m-k} {m+k \choose m} {k \choose \ell}$$

satisfies that there exists an index $j \ge 0$, such that

$$d_0(m) \leq d_1(m) \leq \cdots \leq d_j(m)$$

and

$$d_j(m) \geq d_{j+1}(m) \geq \cdots$$

The sequence

$$d_{\ell}(m) := \sum_{k=\ell}^{m} 2^{k-2m} {2m-2k \choose m-k} {m+k \choose m} {k \choose \ell}$$

satisfies that there exists an index $j \geq 0$, such that

$$d_0(m) \leq d_1(m) \leq \cdots \leq d_j(m)$$

and

$$d_j(m) \geq d_{j+1}(m) \geq \cdots$$

► The sequence

$$d_{\ell}(m) := \sum_{k=\ell}^{m} 2^{k-2m} {2m-2k \choose m-k} {m+k \choose m} {k \choose \ell}$$

satisfies that there exists an index $j \ge 0$, such that

$$d_0(m) \leq d_1(m) \leq \cdots \leq d_j(m)$$

and

$$d_j(m) \geq d_{j+1}(m) \geq \cdots$$

► The last step requires the sequence

$$T_n := \sum_{k=2}^{n+1} {2k \choose k} {n+1 \choose k} \frac{k-1}{2^k {4n \choose k}}$$

to be monotonic increasing.

► The sequence

$$d_{\ell}(m) := \sum_{k=\ell}^{m} 2^{k-2m} {2m-2k \choose m-k} {m+k \choose m} {k \choose \ell}$$

satisfies that there exists an index $j \ge 0$, such that

$$d_0(m) \leq d_1(m) \leq \cdots \leq d_i(m)$$

and

$$d_j(m) \geq d_{j+1}(m) \geq \cdots$$

► The last step requires the sequence

$$T_n := \sum_{k=2}^{n+1} {2k \choose k} {n+1 \choose k} \frac{k-1}{2^k {4n \choose k}}$$

to be monotonic increasing. ($T_n < 1$ with $\lim_{n \to \infty} T_n = 1, -1/\sqrt{2}$.)

$$T_n := \sum_{k=2}^{n+1} {2k \choose k} {n+1 \choose k} \frac{k-1}{2^k {4n \choose k}}$$

$$T_{n} := \sum_{k=2}^{n+1} {2k \choose k} {n+1 \choose k} \frac{k-1}{2^{k} {4n \choose k}}$$

$$\Rightarrow a_{n} T_{n} - b_{n} T_{n+1} + c_{n} T_{n+2} + d_{n} = 0,$$

$$T_{n} := \sum_{k=2}^{n+1} {2k \choose k} {n+1 \choose k} \frac{k-1}{2^{k} {4n \choose k}}$$

$$\Rightarrow a_{n} T_{n} - b_{n} T_{n+1} + c_{n} T_{n+2} + d_{n} = 0,$$

where

$$\begin{aligned} a_n = & -7195230 + 87693273n + 448856568n^2 + 1263033897n^3 + 2147597568n^4 \\ & + 2279791176n^5 + 1502157312n^6 + 586779648n^7 + 121208832n^8 + 9732096n^9 \\ c_n = & 3265920 + 41472576n + 217055232n^2 + 618806528n^3 + 1062162432n^4 \\ & + 1139030016n^5 + 762052608n^6 + 305528832n^7 + 66060288n^8 + 5767168n^9 \\ d_n = & -799470 - 5607945n - 14906040n^2 - 16808745n^3 - 2987520n^4 \\ & + 9906360n^5 + 8025600n^6 + 1858560n^7 \end{aligned}$$

$$T_{n} := \sum_{k=2}^{n+1} {2k \choose k} {n+1 \choose k} \frac{k-1}{2^{k} {4n \choose k}}$$

$$\Rightarrow a_{n} T_{n} - b_{n} T_{n+1} + c_{n} T_{n+2} + d_{n} = 0,$$

where

$$\begin{split} a_n = & -7195230 + 87693273n + 448856568n^2 + 1263033897n^3 + 2147597568n^4 \\ & + 2279791176n^5 + 1502157312n^6 + 586779648n^7 + 121208832n^8 + 9732096n^9 \\ c_n = & 3265920 + 41472576n + 217055232n^2 + 618806528n^3 + 1062162432n^4 \\ & + 1139030016n^5 + 762052608n^6 + 305528832n^7 + 66060288n^8 + 5767168n^9 \\ d_n = & -799470 - 5607945n - 14906040n^2 - 16808745n^3 - 2987520n^4 \\ & + 9906360n^5 + 8025600n^6 + 1858560n^7 \end{split}$$

 $b_n = a_n + c_n + d_n$

$$T_n := \sum_{k=2}^{n+1} {2k \choose k} {n+1 \choose k} \frac{k-1}{2^k {4n \choose k}}$$

$$T_n := \sum_{k=2}^{n+1} {2k \choose k} {n+1 \choose k} \frac{k-1}{2^k {4n \choose k}}$$

$$\Rightarrow$$
 $a_n T_n - (a_n + c_n + d_n) T_{n+1} + c_n T_{n+2} + d_n = 0$

$$T_n := \sum_{k=2}^{n+1} {2k \choose k} {n+1 \choose k} \frac{k-1}{2^k {4n \choose k}}$$

$$\Rightarrow a_n T_n - (a_n + c_n + d_n) T_{n+1} + c_n T_{n+2} + d_n = 0$$

$$\Rightarrow a_n (T_n - T_{n-1}) + d_n (1 - T_{n+1}) = c_n (T_{n+1} - T_{n+2}).$$

$$T_n := \sum_{k=2}^{n+1} {2k \choose k} {n+1 \choose k} \frac{k-1}{2^k {4n \choose k}}$$

$$\Rightarrow a_n T_n - (a_n + c_n + d_n) T_{n+1} + c_n T_{n+2} + d_n = 0$$

$$\Rightarrow a_n (T_n - T_{n-1}) + d_n (1 - T_{n+1}) = c_n (T_{n+1} - T_{n+2}).$$

Recall that $T_n < 1$ with $\lim_{n \to \infty} T_n = 1 - 1/\sqrt{2}$.

$$T_{n} := \sum_{k=2}^{n+1} {2k \choose k} {n+1 \choose k} \frac{k-1}{2^{k} {4n \choose k}}$$

$$a_{n}T_{n} - (a_{n} + c_{n} + d_{n}) T_{n+1} + c_{n}T_{n+2} + d_{n} = 0$$

$$a_{n}(T_{n} - T_{n-1}) + d_{n}(1 - T_{n+1}) = c_{n}(T_{n+1} - T_{n+2}).$$

Recall that
$$T_n < 1$$
 with $\lim_{n \to \infty} T_n = 1 - 1/\sqrt{2}$. Thus,

$$a_n(T_n-T_{n-1}) < c_n(T_{n+1}-T_{n+2})$$

$$T_n := \sum_{k=2}^{n+1} {2k \choose k} {n+1 \choose k} \frac{k-1}{2^k {4n \choose k}}$$

$$\Rightarrow a_n T_n - (a_n + c_n + d_n) T_{n+1} + c_n T_{n+2} + d_n = 0$$

$$\Rightarrow a_n (T_n - T_{n-1}) + d_n (1 - T_{n+1}) = c_n (T_{n+1} - T_{n+2}).$$

Recall that $T_n < 1$ with $\lim_{n \to \infty} T_n = 1 - 1/\sqrt{2}$. Thus,

$$a_n (T_n - T_{n-1}) < c_n (T_{n+1} - T_{n+2})$$

Suppose T_n is not monotonic increasing. Let N be the smallest positive integer such that

$$T_N > T_{N+1}$$

$$T_n := \sum_{k=2}^{n+1} {2k \choose k} {n+1 \choose k} \frac{k-1}{2^k {4n \choose k}}$$

$$\Rightarrow a_n T_n - (a_n + c_n + d_n) T_{n+1} + c_n T_{n+2} + d_n = 0$$

$$\Rightarrow a_n (T_n - T_{n-1}) + d_n (1 - T_{n+1}) = c_n (T_{n+1} - T_{n+2}).$$

Recall that $T_n < 1$ with $\lim_{n \to \infty} T_n = 1 - 1/\sqrt{2}$. Thus,

$$a_n(T_n - T_{n-1}) < c_n(T_{n+1} - T_{n+2})$$

Suppose T_n is not monotonic increasing. Let N be the smallest positive integer such that

$$T_N > T_{N+1}$$
 i.e., $\delta_N := T_N - T_{N+1} > 0$.

$$T_n := \sum_{k=2}^{n+1} {2k \choose k} {n+1 \choose k} \frac{k-1}{2^k {4n \choose k}}$$

$$\Rightarrow a_n T_n - (a_n + c_n + d_n) T_{n+1} + c_n T_{n+2} + d_n = 0$$

$$\Rightarrow a_n (T_n - T_{n-1}) + d_n (1 - T_{n+1}) = c_n (T_{n+1} - T_{n+2}).$$

Recall that $T_n < 1$ with $\lim_{n \to \infty} T_n = 1 - 1/\sqrt{2}$. Thus,

$$a_n(T_n-T_{n-1}) < c_n(T_{n+1}-T_{n+2})$$

Suppose T_n is not monotonic increasing. Let N be the smallest positive integer such that

$$T_N > T_{N+1}$$
 i.e., $\delta_N := T_N - T_{N+1} > 0$.

We have

$$T_{N+1}-T_{N+2}>\frac{a_N}{c_N}\delta_N.$$

$$T_n := \sum_{k=2}^{n+1} {2k \choose k} {n+1 \choose k} \frac{k-1}{2^k {4n \choose k}}$$

$$\Rightarrow a_n T_n - (a_n + c_n + d_n) T_{n+1} + c_n T_{n+2} + d_n = 0$$

$$\Rightarrow a_n (T_n - T_{n-1}) + d_n (1 - T_{n+1}) = c_n (T_{n+1} - T_{n+2}).$$

Recall that $T_n < 1$ with $\lim_{n \to \infty} T_n = 1 - 1/\sqrt{2}$. Thus,

$$a_n(T_n - T_{n-1}) < c_n(T_{n+1} - T_{n+2})$$

Suppose T_n is not monotonic increasing. Let N be the smallest positive integer such that

$$T_N > T_{N+1}$$
 i.e., $\delta_N := T_N - T_{N+1} > 0$.

We have

$$T_{N+1}-T_{N+2}>\frac{a_N}{c_N}\delta_N.$$

Iteration produces for any positive integer p,

$$T_{N+p} - T_{N+p+1} > \delta_N \prod_{j=0}^{p-1} \frac{a_{N+j}}{c_{N+j}}.$$

$$T_{n} := \sum_{k=2}^{n+1} {2k \choose k} {n+1 \choose k} \frac{k-1}{2^{k} {4n \choose k}} \Longrightarrow \lim_{n \to \infty} T_{n} = 1 - \frac{1}{\sqrt{2}}.$$

$$a_{n} (T_{n} - T_{n-1}) < c_{n} (T_{n+1} - T_{n+2})$$

where

$$a_n = 7195230 + 87693273n + 448856568n^2 + 1263033897n^3 + 2147597568n^4$$

$$+ 2279791176n^5 + 1502157312n^6 + 586779648n^7 + 121208832n^8 + 9732096n^9$$

$$c_n = 3265920 + 41472576n + 217055232n^2 + 618806528n^3 + 1062162432n^4$$

$$+ 1139030016n^5 + 762052608n^6 + 305528832n^7 + 66060288n^8 + 5767168n^9$$

For any positive integer p,

$$T_{N+p} - T_{N+p+1} > \delta_N \prod_{j=0}^{p-1} \frac{a_{N+j}}{c_{N+j}}.$$

$$T_{n} := \sum_{k=2}^{n+1} {2k \choose k} {n+1 \choose k} \frac{k-1}{2^{k} {4n \choose k}} \Longrightarrow \lim_{n \to \infty} T_{n} = 1 - \frac{1}{\sqrt{2}}.$$

$$a_{n} (T_{n} - T_{n-1}) < c_{n} (T_{n+1} - T_{n+2})$$

where

$$a_n = 7195230 + 87693273n + 448856568n^2 + 1263033897n^3 + 2147597568n^4$$

$$+ 2279791176n^5 + 1502157312n^6 + 586779648n^7 + 121208832n^8 + 9732096n^9$$

$$c_n = 3265920 + 41472576n + 217055232n^2 + 618806528n^3 + 1062162432n^4$$

$$+ 1139030016n^5 + 762052608n^6 + 305528832n^7 + 66060288n^8 + 5767168n^9$$

For any positive integer p,

$$T_{N+p} - T_{N+p+1} > \delta_N \prod_{j=0}^{p-1} \frac{a_{N+j}}{c_{N+j}}.$$

Letting $p \to \infty$:

$$T_{n} := \sum_{k=2}^{n+1} {2k \choose k} {n+1 \choose k} \frac{k-1}{2^{k} {4n \choose k}} \Longrightarrow \lim_{n \to \infty} T_{n} = 1 - \frac{1}{\sqrt{2}}.$$

$$a_{n} (T_{n} - T_{n-1}) < c_{n} (T_{n+1} - T_{n+2})$$

where

$$a_n = 7195230 + 87693273n + 448856568n^2 + 1263033897n^3 + 2147597568n^4$$

$$+ 2279791176n^5 + 1502157312n^6 + 586779648n^7 + 121208832n^8 + 9732096n^9$$

$$c_n = 3265920 + 41472576n + 217055232n^2 + 618806528n^3 + 1062162432n^4$$

$$+ 1139030016n^5 + 762052608n^6 + 305528832n^7 + 66060288n^8 + 5767168n^9$$

For any positive integer p,

$$T_{N+p} - T_{N+p+1} > \delta_N \prod_{j=0}^{p-1} \frac{a_{N+j}}{c_{N+j}}.$$

Letting $p \to \infty$: LHS $\to 0$

$$T_{n} := \sum_{k=2}^{n+1} {2k \choose k} {n+1 \choose k} \frac{k-1}{2^{k} {4n \choose k}} \Longrightarrow \lim_{n \to \infty} T_{n} = 1 - \frac{1}{\sqrt{2}}.$$

$$a_{n} (T_{n} - T_{n-1}) < c_{n} (T_{n+1} - T_{n+2})$$

where

$$a_n = 7195230 + 87693273n + 448856568n^2 + 1263033897n^3 + 2147597568n^4$$

$$+ 2279791176n^5 + 1502157312n^6 + 586779648n^7 + 121208832n^8 + 9732096n^9$$

$$c_n = 3265920 + 41472576n + 217055232n^2 + 618806528n^3 + 1062162432n^4$$

$$+ 1139030016n^5 + 762052608n^6 + 305528832n^7 + 66060288n^8 + 5767168n^9$$

For any positive integer p,

$$T_{N+p} - T_{N+p+1} > \delta_N \prod_{j=0}^{p-1} \frac{a_{N+j}}{c_{N+j}}.$$

Letting $p \to \infty$: LHS $\to 0$ while $\lim_{n \to \infty} \frac{a_n}{c_n} = \frac{27}{16}$.

► There are several books:

- ► There are several books:
 - ► "A=B"

- ► There are several books:
 - ► "A=B"

"The Concrete Tetrahedron"

- ► There are several books:
 - ► "A=B"

► "The Concrete Tetrahedron"

- ► There are several books:
 - ► "A=B"

- ► "The Concrete Tetrahedron"
- ▶ There are several softwares: Sage, Maple, Mathematica, ...

- ► There are several books:
 - ► "A=B"

- ► "The Concrete Tetrahedron"
- ▶ There are several softwares: Sage, Maple, Mathematica, ...

Thank you!