COMP30080 – Assignment 5

Jack Duffy - 13363475 Owen Phelan - 13437591 Matt Condon - 13523107

Part 1: Truth Table for the Control Unit of the Processor:

Operation	MemRead	MemWrite	RegWrite	ALUControl	MemToReg	RegDst	ALUSRC
Lw 00	1	0	1	01	1	0	1
Sw 01	0	1	0	01	0	0	1
Add 11	0	0	1	01	0	1	0
Addi 10	0	0	1	01	0	0	1

Control Circuit Implementation (representation of Truth Table):

Part 2:

Structure of instructions:

```
# 00 01 10 01 = 0x18
 lw $t1, 0($t0)
 addi $t0, $t0, 04
                       # 10 01 01 01 = 0x95 (01 added for circuit)
                       # 00 01 11 00 = 0x1C
 lw $t2, 0($t0)
 add $t2, $t1, $t2
                       # 11 10 11 11 = 0xEF
 addi $t0, $t0, 04
                       # 10 01 01 01 = 0x95
                       # 00 01 10 01 = 0x18
 lw $t1, 0($t0)
 add $t2, $t1, $t2
                       # 11 10 11 11 = 0xFF
 addi $t0, $t0, 04
                       # 10 01 01 01 = 0x95
 lw $t1, 0($t0)
                       # 00 01 10 01 = 0x18
 add $t2, $t1, $t2
                       # 11 10 11 11 = 0xEF
                      # 10 01 01 01 = 0x95
 addi $t0, $t0, 04
 lw $t1, 0($t0)
                       # 00 01 10 01 = 0x18
 add $t2, $t1, $t2
                       # 11 10 11 11 = 0xEF
 addi $t0, $t0, 04
                       # 10 01 01 01 = 0x95
                       # 00 01 10 01 = 0x18
 lw $t1, 0($t0)
 add $t2, $t1, $t2
                       # 11 10 11 11 = 0xFF
                       # 10 01 01 01 = 0x95
 addi $t0, $t0, 04
 lw $t1, 0($t0)
                       # 00 01 10 01 = 0x18
                       # 11 10 11 11 = 0xFF
 add $t2, $t1, $t2
                      # 10 01 01 01 = 0x95
 addi $t0, $t0, 04
 lw $t1, 0($t0)
                       # 00 01 10 00 = 0x18
 add $t2, $t1, $t2
                        # 11 10 11 11 = 0xFF
addi $t0, $t0, 04 # 10 01 01 01 = 0x95
 sw $t2, 0($t0)
                        # 01 01 11 00 = 0x5C
```

Each instruction altered to 8 bit binary representation, then represented in hex format. These hex values were then stored in Program RAM.

Functional units from previous assignment integrated into single functional processor:

Examples with Student Numbers:

13523107:

Gives result: 16 (22 when converted from hex to decimal)

Compared to MIPS:

☐ Data Segment								
Address	Value (+0)	Value (+4)	Value (+8)	Value (+12)	Value (+16)	Value (+20)	Value (+24)	Value (+28)
268500992	1	. 3	5	2	3	1	0	7 -
268501024	22	0	0	0	0	0	0	0
200501050				0	_	0	0	0

13363475:

Gives result: 20 (32 when converted from hex to decimal)

Compared to MIPS:

☐ Data Segment										
Address	Value (+0)	Value (+4)	Value (+8)	Value (+12)	Value (+16)	Value (+20)	Value (
268500992	_1	3	3	6	3	4				
268501024	32	0	0	0	0	0				
		_	_			_				