These slides are by courtesy of Prof. 李稻葵 and Prof. 郑捷.

Chapter Twenty-Eight

Oligopoly

What Is Oligopoly?

- A monopoly is an industry consisting a single firm.
- A duopoly is an industry consisting of two firms.
- An oligopoly is an industry consisting of a few firms.

Cournot: Quantity Competition

- Assume that firms compete by choosing output levels.
- Suppose firm 1 takes firm 2's output level choice y₂ as given. Then firm 1 sees its profit function as

$$\Pi_1(y_1;y_2) = p(y_1 + y_2)y_1 - c_1(y_1).$$

• Given y₂, what output level y₁ maximizes firm 1's profit?

Quantity Competition

Generally, given firm 2's chosen output level y_2 , firm 1' maximizes its profit

$$\Pi_1(y_1;y_2) = p(y_1 + y_2)y_1 - c_1(y_1)$$

by choosing y_1 . FOC:

$$\frac{\partial \Pi_1}{\partial y_1} = p(y_1 + y_2) + y_1 \frac{\partial p(y_1 + y_2)}{\partial y_1} - c_1'(y_1) = 0.$$

The solution, $y_1 = R_1(y_2)$, is firm 1's Cournot-Nash reaction to y_2 .

Quantity Competition

Similarly, given firm 1's chosen output level y₁, firm 2' maximizes its profit

$$\Pi_2(y_2;y_1) = p(y_1 + y_2)y_2 - c_2(y_2)$$

by choosing y_2 . FOC:

$$\frac{\partial \Pi_2}{\partial y_2} = p(y_1 + y_2) + y_2 \frac{\partial p(y_1 + y_2)}{\partial y_2} - c_2'(y_2) = 0.$$

The solution, $y_2 = R_2(y_1)$, is firm 2's Cournot-Nash reaction to y_1 .

Quantity Competition

Quantity Competition; An Example

- The market inverse demand function is $p = 60 y_T$. The firms' cost functions are $c_1(y_1) = y_1^2$ and $c_2(y_2) = 15y_2 + y_2^2$.
- Reaction function

$$y_1 = R_1(y_2) = \frac{60 - y_2}{4}$$
 $y_2 = R_2(y_1) = \frac{45 - y_1}{4}$

Quantity Competition; An Example

• Solution: $y_1^* = 13, y_2^* = 8$

A Symmetric Example with n Firms

- Suppose there are n firms, whose MC is constant at c. No fixed or quasi-fixed cost.
- Market inverse demand: p = a bQ
- Taking y₂, y₃, ..., y_n as given, Firm 1 chooses y₁ to maximize

$$[a-b(y_1+y_2+\cdots+y_n)]y_1-cy_1$$

• FOC: $a - b \sum_{j \neq 1} y_j - 2by_1 - c = 0$

A Symmetric Example with n Firms

• Symmetrically, Firm i chooses y_i to maximize

$$[a - b(y_1 + y_2 + \cdots + y_n)]y_i - cy_i$$

- FOC: $a b \sum_{j \neq i} y_j 2by_i c = 0$
- Therefore, the unique Cournot-Nash equilibrium is $y_i = \frac{a-c}{b(n+1)}$ for all i, and the equilibrium price is

$$p = c + \frac{a - c}{n + 1}$$

y₂ Increasing profit for firm 2.

 y_2

Firm 2's reaction curve passes through the "tops" of firm 2's iso-profit curves.

 $y_2 = R_2(y_1)$

Equilibrium

- So there are incentives for both firms to "cooperate" by lowering their output levels.
- Such cooperation is called collusion.
- Firms that collude are said to have formed a cartel.
- If firms form a cartel, how should they do it?

 Suppose the two firms want to maximize their total profit and divide it between them. Their goal is to choose cooperatively output levels y₁ and y₂ that maximize

$$\Pi^{\mathbf{m}}(y_1,y_2) = p(y_1 + y_2)(y_1 + y_2) - c_1(y_1) - c_2(y_2).$$

- Is such a collusion "stable"?
- Does one firm have an incentive to cheat on the other?
 - -Suppose they agree on producing y_1^m and y_2^m . If firm 1 comply with their agreement to produce y_1^m units, does firm 2 have incentive to deviate from producing y_2^m units?

• Firm 2's profit-maximizing response to $y_1 = y_1^m$ is $y_2 = R_2(y_1^m)$.

- Firm 2's profit-maximizing response to $y_1 = y_1^m$ is $y_2 = R_2(y_1^m) > y_2^m$.
- Firm 2's profit increases if it cheats on firm 1 by increasing its output level from y_2^m to $R_2(y_1^m)$.

• Similarly, firm 1's profit increases if it cheats on firm 2 by increasing its output level from y_1^m to $R_1(y_2^m)$.

- So a profit-maximizing cartel in which firms cooperatively set their output levels tend to be unstable.
- In reality, oligopolists tends to find ways to sustain collusion, which may raise anti-trust concerns.

The Order of Play

- So far it has been assumed that firms choose their output levels simultaneously.
 - -Simultaneous move games

The Order of Play

- What if firm 1 chooses its output level first and then firm 2 responds to this choice?
 - Sequential games, a.k.a. Stackelberg games
- Firm 1 is then a leader. Firm 2 is a follower.

Stackelberg Games

- Backward induction:
 - -Observing firm 1's decision y_1 , the best response that firm 2 can make is to choose $y_2 = R_2(y_1)$.
 - -Firm 1 expect this reaction, and therefore choose y₁ to maximize

$$\Pi_1^s(y_1) = p(y_1 + R_2(y_1))y_1 - c_1(y_1).$$

Stackelberg Games

 Q: Will the leader make a profit at least as large as its Cournot-Nash equilibrium profit?

Stackelberg Games

- A: Yes. A feasible strategy for the leader is to choose its Cournot-Nash output level, which will lead to the follower also choosing its Cournot-Nash output level.
- The leader may do even better than that.

Leader's (Firm 1) Problem **y**₂ (y₁*,y₂*) is the Cournot-Nash equilibrium. (y_1^S, y_2^S) is the Stackelberg equilibrium. **y**₂* **y**₂s Firm 2's best response

Stackelberg Games; An Example

- The market inverse demand function is $p = 60 y_T$. The firms' cost functions are $c_1(y_1) = y_1^2$ and $c_2(y_2) = 15y_2 + y_2^2$.
- Firm 2 is the follower. Its reaction function is

$$y_2 = R_2(y_1) = \frac{45 - y_1}{4}$$
.

Stackelberg Games; An Example

The leader's profit function is therefore

$$\Pi_{1}^{s}(y_{1}) = (60 - y_{1} - R_{2}(y_{1}))y_{1} - y_{1}^{2}$$

$$= (60 - y_{1} - \frac{45 - y_{1}}{4})y_{1} - y_{1}^{2}$$

$$= \frac{195}{4}y_{1} - \frac{7}{4}y_{1}^{2}.$$

For a profit-maximum, $y_1^s = 13.9$

Stackelberg Games; An Example

Q: What is firm 2's response to the leader's choice $y_1^s = 13.9$

A:
$$y_2^s = R_2(y_1^s) = \frac{45-13.9}{4} = 7.8$$

Recall that the C-N output levels are (y_1^*, y_2^*) = (13,8)

Price Competition

- What if firms compete by simultaneously setting price instead of quantity?
 - -Bertrand games.

Bertrand Duopoly

- Two firms simultaneously set their prices.
- Assume that both firms' MC is constant at c.

 Equilibrium is unique: both firms set their prices equal to the marginal cost c.

Cournot vs. Bertrand

- According to Cournot model of oligopoly, equilibrium price will gradually converge to MC as the number of firms increases.
- But in Bertrand model, two firms are sufficient to bring the price down to MC.

Sequential Price Competition

- Suppose firm 1 sets p₁, observed by firm 2, and then firm 2 sets p₂.
- Again assume that both firms' MC is constant at c.
- Same equilibrium as Bertrand.
- Varian's book assumes that the follower must follow the price set by the leader, which leads to different results.

Game Theory

- Gibbons, Robert S. Game theory for applied economists. Princeton University Press, 1992.
- Fudenberg, Drew, and Jean Tirole. *Game theory*. MIT press, 1991.
- Maschler, Michael, Shmuel Zamir, and Eilon Solan. Game theory.
 Cambridge University Press, 2020.

Summary

- Key concept
 - Equilibrium in Cournot,
 Stackelberg, and Bertrand model.

- Key technique
 - -Reaction functions.