

Lógica Matemática

Prof. Julio Silveira

Tema 04

Implicações Lógicas; Equivalências Lógicas

Lógica Matemática

- Implicações Lógicas
- Equivalências Lógicas

Exemplo

- Se sabemos que Paulo tem carro e moto, podemos concluir que ele tem carro?
- Se sabemos que Paulo tem carro, podemos concluir que ele tem carro e moto?

Exemplo

p: Paulo tem carro

q: Paulo tem moto

P: $p \land q$ Paulo tem carro e moto

Q: p \times q Paulo tem carro ou moto

Sempre que v(P) = V, podemos concluir que v(Q) = V?

Sim! Vamos conferir na tabela-verdade?

• Exemplo (5.1)

P: p∧q

 $Q: p \vee q$

Sempre	que	$\nu(P) = V$	/,
vemos	que	v(Q) = V	/

 p
 q
 p ∧ q
 p ∨ q

 V
 V
 V

 V
 F
 F
 V

 F
 V
 F
 F

 F
 F
 F
 F

Dizemos então que P implica (logicamente) Q

Ou, de forma simbólica:

$$P \Rightarrow Q$$

• Exemplo (5.1)

 $P: p \wedge q$

 $Q: p \vee q$

	•	Р	Q	Р	\rightarrow	Q ,
р	q	p∧q	$p \vee q$	$p \wedge q$	\rightarrow	$p \vee q$
V	V	V	V		V	
V	F	F	V		V	
F	٧	F	V		V	
F	F	F	F		V	

P ⇒ Q ocorre **exatamente** quando a condicional

 $P \rightarrow Q$

é tautológica

- Para P e Q quaisquer:
 - Sempre que v(P) = V, teremos v(Q) = V?
 - Então dizemos que P implica (logicamente) Q
 - Notando $P \Rightarrow Q$
 - Em outras palavras
 - Podemos deduzir Q de P; ou
 - Que Q sempre é Verdadeira quando P também for V.

- $P \Rightarrow Q$
 - Dizer que P \Rightarrow Q é o mesmo que dizer que
 - A condicional P → Q é tautológica
 - Observe que ⇒ não é operador!
 - Não definimos uma tabela-verdade com vários possíveis valores para ⇒

• Exemplo (511)

P: p \ q

 $Q: p \vee q$

Q	\Rightarrow	Р	ŗ

NÃO

 $Q \rightarrow P$ não é **tautológica**

		Р	Q	$Q \rightarrow P$
р	q	p∧q	p∨q	$p \vee q \to p \wedge q$
V	V	V ←	- V	V
V	F	F ←	- V	F
F	V	F +	- V	F
F	F	F	F	V

- Exemplo (5.4)
 - Concluindo
 - Temos p ∧ q ⇒ p ∨ q
 Se soubermos que Paulo tem carro e moto, podemos deduzir que ele tem carro ou moto
 - Mas não p ∨ q ⇒ p ∧ q
 Se soubermos que Paulo tem carro ou moto, não podemos deduzir que ele tem carro e moto

• Exemplo (5.2)

$$Q: p \leftrightarrow q$$

$$p \land q \Rightarrow p \leftrightarrow q$$
?

$$p \leftrightarrow q \Rightarrow p \land q$$
?

		P	Q	•	
р	q	$p \wedge q$	$p \leftrightarrow q$	$P \rightarrow Q$	$Q \rightarrow P$
V	V	V	V	V	V
V	F	F	F	V	V
F	V	F	F	V	V
F	F	F	V	V	F

$$P \Rightarrow Q$$
? SIM! $p \land q \rightarrow (p \leftrightarrow q)$ é uma tautologia.

$$Q \Rightarrow P$$
? NÃO! $(p \leftrightarrow q) \rightarrow p \land q$ não é tautológica.

• Exemplo (5.3)

$$P = p \leftrightarrow q$$

 $Q = p \rightarrow q$
 $R = q \rightarrow p$

	1	P	Q	R	i 1	İ	I 1
р	q	$p \leftrightarrow q$	$p \rightarrow q$	$q \rightarrow p$	$P \rightarrow Q$	$P \rightarrow R$	$Q \rightarrow R$
V	>	V	V	V	\	V	V
V	F	F	F	V	V	V	V
F	>	F	V	F	>	V	F
F	F	V	V	V	V	V	V

$$P \Rightarrow Q ? SIM!$$

 $P \Rightarrow R ? SIM!$
 $Q \Rightarrow R ? NÃO!$

Exemplo (5.4)
 (p ∨ q) ∧ ~p ⇒ q?

р	q	p∨q	~p	(p∨q)∧~p	$(p \lor q) \land ^{\sim}p \to q$
V	>	V	F	F	V
٧	F	V	F	F	V
F	V	V	V	V	V
F	F	F	V	F	V

SIM! $(p \lor q) \land p \to q \text{ é uma tautologia.}$

Exemplo

p: Paulo tem carro

q: Paulo tem moto

P: \sim (p \wedge q) Paulo não tem carro e moto

Q: ~p ∨ ~q Paulo não tem carro ou não tem moto

P e Q são equivalentes ? Sim! $P \Rightarrow Q$ Q $\Rightarrow P$ $P \Leftrightarrow Q$

Vamos conferir na tabela-verdade?

• Exemplo (5.5)

P: $^{\sim}(p \land q) P \Rightarrow Q ? SIM!$

Q: q $Q \Rightarrow P$? SIM!

P → Q é tautologia

Q → P é tautologia

P ↔ Q é tautologia

 $P \Leftrightarrow Q$

		Complete	Р	Q			
р	q		~(p ∧ q)	~p ∨ ~q	$P \rightarrow Q$	$Q \rightarrow P$	$P \leftrightarrow Q$
V	٧		F	F	V	V	V
V	F		V	V	V	V	V
F	V		V	V	>	V	V
F	F		V	V	V	V	V

Sejam X e Y tais que

```
X \Rightarrow Y X \rightarrow Y é tautológica
e
Y \Rightarrow X Y \rightarrow X é tautológica
```

- Neste caso, dizemos que
 - X e Y são (logicamente) equivalentes
- Notação: X ⇔ Y

• Exemplo (5.7)

р	
V	
F	

• Exemplo (5.8)

$$p \rightarrow p \Leftrightarrow p$$
?

р	
٧	
F	

• Exemplo (5.9)

$$p \rightarrow p \land q \Leftrightarrow p \rightarrow q$$
?

р	q	
V	>	
V	F	
F	>	
F	F	

• Exemplo (7)

Forma Normal da Condicional

$$p \rightarrow q \Leftrightarrow p \lor q$$

р	q	
٧	٧	
٧	F	
F	٧	
F	F	

- Proposições associadas à condicional $P \rightarrow Q$
 - Recíproca

$$Q \rightarrow P$$

Contrária

$$^{P} \rightarrow ^{Q}$$

Verifique que

Contrapositiva ~Q → ~P

$$P \rightarrow Q \Leftrightarrow ^{\sim}Q \rightarrow ^{\sim}P$$

 $Q \rightarrow P \Leftrightarrow ^{\sim}P \rightarrow ^{\sim}Q$

р	q
V	V
V	F
F	V
F	F

- EXERCÍCIO: Livro-texto, pág 61:
 - (5) Determine:
 - a) A contrapositiva da contrapositiva de p \rightarrow q
 - b) A contrapositiva da recíproca de p \rightarrow q
 - c) A contrapositiva da contrária de p \rightarrow q

Ver resposta no TEXTO DE APOIO

- EXERCÍCIO: Livro-texto, pág 64:
 - 2. Exprimir a bicondicional

$$p \leftrightarrow q$$

em função dos conectivos ~ ^ \

Ver resposta no TEXTO DE APOIO

Lógica Matemática

Dúvidas?

Obrigado!

UNICARIOCA.EDU.BR