

20 Changwondaehak-ro, Changwon, Gyeongnam, 51140, Republic of Korea

□ (+82) 10-9763-3022 | ■ yjeong@changwon.ac.kr | ★ 52-208 | □ youngung | ₩ youngung.jeong

Education

POSTECH, Graduate Institute of Ferrous Technology

Pohang, Republic of Korea

PHD

Mar. 2010 - Feb. 2014

POSTECH, Graduate Institute of Ferrous Technology

Pohana, Republic of Korea

MS

Mar. 2008 - Feb. 2010

Hanyang University, Materials Science and Engineering

Seoul, Republic of Korea

BS

Mar. 2001 - Feb. 2008

Experience

Changwon National University

Changwon, Republic of Korea

ASSISTANT PROFESSOR

Mar. 2017, - present

POSTECH Pohang, Republic of Korea

POST DOCTORATE RESEARCHER

Dec. 2016, - Feb. 2017

• Crystal plasticity modeling and simulations to predict bauschinger effects

Clemson University

Greenville, SC, USA Mar. 2016, - Nov. 2016

RESEARCH SCIENTIST

· Formability predictions using VPSC-FLD

· Abaqus UMAT development

Gaithersburg, MD, USA

POST DOCTORATE RESEARCHER

Jan. 2014, - Feb. 2016

- · Conducted a series of experiments to obtain multiaxial constitutive behavior of an interstitial-free steel
- Measured multiaxial flow stress using X-ray diffraction for metal sheets subjected to various multiaxial loading conditions (DiffStress package)
- · Performed the strain analysis using digital image correlation technique to determine the forming limit diagram of the IF steel
- · Developed the VPSC-FLD model to predict forming limit diagram of engineering metal sheets (VPSC-FLD package)
- Developed VPSC-based model to link with continuum-scale phenomenological model (VPSC-RGVB-YLD forked from VPSC-FLD)

Los Alamos National Laboratory

Los Alamos, NM, USA

RESEARCH AFFILIATE

Apr. 2012. - Sep. 2012

Leading role in implementing a phase transformation kinetics model into Elasto-ViscoPlastic Self-Consistent crystal plasticity model

National Institute of Standards and Technology

National Institute of Standards and Technology

Gaithersburg, MD, USA

GUEST RESEARCHER

June. 2011, - Dec. 2011

Conducted experiments to obtain multiaxial stress-strain measurements using digital image correlation and in-situ X-ray technique

Skills_

JUNE 5, 2017

Programming Python, Fortran, Bash script, C/C++, LaTeX, Matlab

Languages

Korean, English

Experimental Mechanics

Uniaxial tension, shear, hydraulic bulge test, biaxial tests using cruciform piece and Marciniak

Digital Image Correlation (DIC)

VIC3D

Diffraction experiments

Pole figure, crystallographic texture, phase fraction, residual stress measurements

Computer skills

Linux, Git, Abaqus (UMAT and Python script), Parallel computation

Constutitive modelling

Macro-mechanical description for anisotropic metals using anisotropic yield functions

Crystal plasticity Viscoplastic self-consistent (VPSC) and Elasto-viscoplastic self-consistent crystal plasticity models

Journal Articles

A comparative study between micro- and macro-mechanical constitutive models developed for complex loading scenarios

Y. JEONG*, F. BARLAT, C. TOMÉ, W. WEN

International Journal of Plasticity

Vol. 93 p212-228, 2017

Uncertainty in flow stress measurements using X-ray diffraction for sheet metals subjected to large plastic deformations

Y. Jeong*, T. Gnäupel-Herold, M. Iadicola, A. Creuziger

Journal of Applied Crystallography

Vol. 49 p1991-2004, 2016

Texture-based forming limit prediction for Mg sheet alloys ZE10 and AZ31

D. Steglich, Y. Jeong*

International Journal of Mechanical Sciences

Vol. 117 p102-114, 2016

Forming limit prediction using a self-consistent crystal plasticity framework: a case study for BCC fiber textures

 $\underline{\text{Y. Jeong}}^*$, M.-S. Pham, M. Iadicola, A. Creuziger, T. Foecke

Modelling and Simulation in Materials Science and Engineering

Vol. 24(5), 055002 (21 pp), 2016

Multiaxial constitutive behavior of an interstitial-free steel: measurements through X-ray and digital image correlation

 $\underline{\mathsf{Y.Jeong}}^*$, M. Iadicola, T. Gnäupel-Herold, A. Creuziger

Acta Materialia

Vol. 112 p84-93, 2016

Effect of martensitic phase transformation on the behavior of 304 austenitic stainless steel under tension

H. Wang*, Y. Jeong, B. Clausen, Y. Liu, R. J. McCabe, F. Barlat, C. N. Tomé

Materials Science and Engineering A

Vol. 649 p174-183, 2016

Evaluation of biaxial flow stress based on Elasto-Viscoplastic Self-Consistent analysis of X-ray Diffraction Measurements

Y. Jeong, T. Gnäupel-Herold, F. Barlat, M. Iadicola, A. Creuziger, M.-G. Lee*

International Journal of Plasticity

Vol. 66 p103-118, 2015

Application of crystal plasticity to an austenitic stainless steel

Y. Jeong*, F. Barlat, M.-G. Lee

Modelling and Simulation in Materials Science and Engineering

Vol. 20 p024009, 2012

Biaxial Deformation Behavior of AZ31 Magnesium Alloy: Crystal-Plasticity-Based Prediction and Experimental Validation

D. Steglich*, Y. Jeong, M. O. Andar, T. Kuwabara

International Journal of Solids and Structure

Vol. 49(25) p3551-3561, 2012

Conference proceedings_

Advances in Constitutive Modeling of Plasticity for Forming Applications

F. Barlat, <u>Y. Jeong</u>, J. Ha, C Tomé, Myoung-Gyu Lee, W. Wen

Key Engineering Materials

Vol. 725, p3-14, 2017

Validation of Homogeneous Anisotropic Hardening Approach Based on Crystal Plasticity

Y. Jeong, F. Barlat, C. Tomé, W. Wen

AIP Conference Proceedings

Vol. 1769, 160001, 2016

Forming limit predictions using a self-consistent crystal plasticity model: a parametric study

Y. JEONG, M.-S. PHAM, M. IADICOLA, A. CREUZIGER

Key Engineering Materials

Vol. 651 p193-198, 2015

Microstructural and crystallographic aspects of yield surface evolution

Y. JEONG, F. BARLAT, M.-G. LEE

Materials Science Forum

Vol. 702 p224-228, 2011

Y. JEONG, F. BARLAT, M.-G. LEE

Vol. 702 p204-207, 2011