Schema Refinement: Other Dependencies and Higher Normal Forms Spring 2018

School of Computer Science University of Waterloo

Databases CS348

Outline

- 1 Multivalued Dependencies
 - Reasoning about MVDs
 - Lossless-Join Decompositions
 - Fourth Normal Form

2 Other Dependencies

Beyond Functional Dependencies

There exist anomalies/redundancies in relational schemas that cannot be captured by FDs.

Example: consider the following table:

Course	T eacher	Book
Math	Smith	Algebra
Math	Smith	Calculus
Math	Jones	Algebra
Math	Jones	Calculus
Advanced Math	Smith	Calculus
Physics	Black	Mechanics
Physics	Black	Optics

There are no (non-trivial) FDs that hold on this scheme; therefore the scheme (Course, Set-of-teachers, Set-of-books) is in BCNF.

Outline

- 1 Multivalued Dependencies
- 2 Other Dependencies

Multivalued Dependencies (MVD)

CTB table contains redundant information because:

whenever
$$(c,t_1,b_1)\in CTB$$
 and $(c,t_2,b_2)\in CTB$ then also $(c,t_1,b_2)\in CTB$ and, by symmetry, $(c,t_2,b_1)\in CTB$

we say that a multivalued dependency (MVD)

$$C \longrightarrow T$$
 (and $C \longrightarrow B$ as well) holds on CTB .

given a course, the set of teachers and the set of books are uniquely determined and independent.

Another Example

Course	T eacher	H our	Room	Student	Grade
CS101	Jones	M-9	2222	Smith	Α
CS101	Jones	W-9	3333	Smith	Α
CS101	Jones	F-9	2222	Smith	Α
CS101	Jones	M-9	2222	Black	В
CS101	Jones	W-9	3333	Black	В
CS101	Jones	F-9	2222	Black	В

FDs:

$$C \rightarrow T$$
, $CS \rightarrow G$, $HR \rightarrow C$, $HT \rightarrow R$, and $HS \rightarrow R$

MVDs:

Axioms for MVDs

- $X \longrightarrow Y \Rightarrow X \longrightarrow (R Y)$ (complementation)
- $X \rightarrow Y \Rightarrow XZ \rightarrow YZ$ (augmentation)
- 4 $X \rightarrow Y, Y \rightarrow Z \Rightarrow X \rightarrow (Z Y)$ (transitivity)
- 5 $X \rightarrow Y \Rightarrow X \rightarrow Y$ (conversion)
- **6** $X \rightarrow Y, XY \rightarrow Z \Rightarrow X \rightarrow (Z Y)$ (interaction)

Theorem:

Axioms for FDs (1)-(6) are sound and complete for logical implication of FDs and MVDs.

Example

In the CTHRSG schema, $C \rightarrow SG$ can be derived as follows:

- 1 $C \rightarrow HR$
- $C \longrightarrow T \text{ (from } C \rightarrow T)$
- $oxed{3}$ $C \longrightarrow CTSG$ (complementation of (1))
- 4 $C \rightarrow CT$ (augmentation of (2) by C)
- 5 $CT \rightarrow CTSG$ (augmentation of (3) by T)
- 6 $C \rightarrow SG$ (transitivity on (4) and (5))

Dependency Basis

Definition:

A **dependency basis** for X with respect to a set of FDs and MVDs F is a partition of R-X to sets Y_1, \ldots, Y_k such that $F \models X \rightarrow Z$ if and only if Z-X is a union of some of the Y_i s.

- unlike for FDs we can't split right-hand sides of MVDs to single attributes (cf. minimal cover).
- the dependency basis of X w.r.t. F can be computed in PTIME [Beeri80].
- The dependency basis of *CTHRSG* with respect to *C* is [*T*, *HR*, *SG*]

Lossless-Join Decomposition

- similarly to the FD case we want to decompose the schema to avoid anomalies
 - \Rightarrow a lossless-join decomposition (R_1, R_2) of R with respect to a set of **MVDs** F:

$$F \models (R_1 \cap R_2) \rightarrow (R_1 - R_2)$$

or, by symmetry

$$F \models (R_1 \cap R_2) \rightarrow (R_2 - R_1)$$

 \blacksquare this condition implies the one for FDs (in only FDs appear in F).

Fourth Normal Form (4NF)

Definition:

Let R be a relation schema and F a set of FDs and MVDs. Schema R is in **4NF** if and only if

whenever $(X \rightarrow Y) \in F^+$ and $XY \subseteq R$, then either

- \blacksquare $(X \rightarrow Y)$ is trivial $(Y \subseteq X \text{ or } XY = R)$, or
- X is a superkey of R

A database schema $\{R_1, \ldots, R_n\}$ is in 4NF if each relation schema R_i is in 4NF.

 \Rightarrow use BCNF-like decomposition procedure to obtain a lossless-join decomposition into 4NF.

Example

The *CTB* schema can be decomposed to 4NF (using $C \rightarrow T$) as follows:

Course	Teacher
Math	Smith
Math	Jones
Physics	Black
Advanced Math	Smith

Course	Book
Math	Algebra
Math	Calculus
Physics	Mechanics
Physics	Optics
Advanced Math	Calculus

⇒ no FDs here!

Outline

- Multivalued Dependencies
- 2 Other Dependencies

Other Dependencies

■ Join Dependency on R

- $\Rightarrow \bowtie [R_1, \ldots, R_k] \text{ holds if } I = \pi_{R_1}(I) \bowtie \ldots \bowtie \pi_{R_k}(I)$
- \Rightarrow generalization of an MVD $X \rightarrow Y$ is the same as $\bowtie [XY, X(R-Y)]$
- ⇒ cannot be simulated by MVDs
- ⇒ no axiomatization exists
- ⇒ Project-Join NF (5NF) \bowtie [$R_1, ..., R_k$] implies R_i is a key.

Inclusion Dependency on R and S

- \Rightarrow $R[X] \subseteq S[Y]$ holds if $\pi_X(I_R) \subseteq \pi_Y(I_S)$
- ⇒ relates two relations foreign-key relationships