- 7.1 પ્રસ્તાવના
- 7.2 ઉષ્માવહન
- 7.3 ઉષ્માનયન
- 7.4 विडिरश
- 7.5 સંપૂર્ણ કાળો પદાર્થ અને તેમાંથી ઉત્સર્જન પામતાં વિકિરણો
- 7.6 કિર્ચોફનો નિયમ
- 7.7 વીનનો સ્થળાંતરનો નિયમ
- 7.8 સ્ટિફન બોલ્ટ્ઝમેનનો નિયમ
- 7.9 ન્યૂટનનો શીતનનો નિયમ
- 7.10 ગ્રીનહાઉસ અસર
 - સારાંશ
 - સ્વાધ્યાય

7.1 પ્રસ્તાવના (Introduction)

વિદ્યાર્થીમિત્રો, આપશે ઉષ્મા વિશેના પાયાના ખ્યાલોનો અભ્યાસ અગાઉ કર્યો છે. બે અસમાન તાપમાન ધરાવતા પદાર્થીને એકબીજાના સંપર્કમાં લાવતાં વધુ તાપમાનવાળા પદાર્થમાંથી ઉષ્માવહન ઓછા તાપમાનવાળા પદાર્થ તરફ થાય છે, પણ એક જ ઘન પદાર્થના બે અસમાન તાપમાનવાળા ભાગ વચ્ચે ઉષ્માનું પ્રસરણ રીતે થાય છે ? સૂર્યમાં પેદા થતી વિપુલ ઉષ્મા-ઊર્જાનો થોડો અંશ પૃથ્વી સુધી કેવી રીતે પહોંચે છે ? સૌર-ઊર્જાનો ઉપયોગ કરીને સોલરકુકરમાં દાળ-ભાત રાંધી શકીએ છીએ, તો બિરબલ તેની ખીચડી કેમ (ઇરાદાપૂર્વક !!!) પકવી શક્યો નહિ ? ગરમ પદાર્થને ખુલ્લો રાખતાં થોડા સમય પછી કેમ ઠંડો પડે છે ? વગેરે પ્રશ્નોના જવાબ તમે કદાચ આ પ્રકરણના અંતે આપી શકશો.

7.2 ઉષ્માવહન (Thermal Conduction)

પદાર્થના પાસપાસેના ભાગો વચ્ચે તાપમાનના તફાવતને કારણે થતા ઉષ્માના વહનને ઉષ્માવહન કહે છે. ઘન પદાર્થોમાં તેના બંધારણીય કર્ણો (અશુઓ, પરમાશુઓ કે આયનો) પદાર્થના તાપમાનને અનુસાર યોગ્ય કંપવિસ્તારથી પોતાની સંતુલન-સ્થિતિની આસપાસ દોલનો કરે છે. પદાર્થનું તાપમાન વધતાં આ કર્ણોનાં દોલનોનો કંપવિસ્તાર પણ વધે છે. આમ, ઘન પદાર્થને ઉષ્મા આપતાં તેનાં દોલનોની ગતિ-ઊર્જામાં વધારો થાય છે. વળી, આ કર્ણો વચ્ચે ખાસ પ્રકારનાં આંતર અશુબળો પણ લાગતાં હોય છે. આ બળો કર્ણોની વધેલી દોલનગતિ ઊર્જાની અસર બાજુમાં રહેલા અન્ય કર્ણોને પહોંચાડે છે, જેને કારણે હવે 'પાડોશી' કર્ણોનો પણ કંપવિસ્તાર વધે છે અને આ રીતે ઘન પદાર્થને આપેલ ઉષ્મા-ઊર્જાનું પદાર્થમાં પ્રસરણ થાય છે. આ રીતે ઘન પદાર્થને આપેલ ઉષ્માઊર્જાનું પદાર્થમાં પ્રસરણ થાય છે. આ રીતે ઘન પદાર્થને આપેલ ઉષ્માઊર્જાનું પદાર્થમાં પ્રસરણ થાય છે. આ રીતે ઘન પદાર્થને આપેલ ઉષ્મા-ઊર્જાનું પદાર્થમાં પ્રસરણ થાય છે. આ રીતે ઘન પદાર્થમાં શતા ઉષ્મા-ઊર્જાના વહનને 'ઉષ્માવહન'ની ઘટના કહે છે. ધાતુતત્ત્વોમાં મુક્ત ઇલેક્ટ્રૉન ઉષ્મા-ઊર્જાના પ્રસરણમાં મુખ્ય ભાગ ભજવે છે.

આકૃતિ 7.1માં દર્શાવ્યા પ્રમાણે કોઈ ઘન પદાર્થના નિયમિત આડછેદ A વાળા ચોસલાને ધ્યાનમાં લો. આ લંબઘનના એક છેડાથી x અને $x + \Delta x$ અંતરે આવેલા બે સમતલો ABCD અને EFGH નાં તાપમાન અનુક્રમે $T + \Delta T$ અને T છે. એટલે કે Δx અંતર માટે તાપમાનનો તફાવત ΔT છે. $\frac{\Delta T}{\Delta x}$ ને તાપમાન-પ્રચલન (Temperature gradient) કહે છે. Δx અને

 ΔT નાં નાનાં મૂલ્યો માટે બે સમતલો વચ્ચેથી સમતલોને લંબરૂપે Δt સમયમાં પસાર થતો ઉષ્માનો જથ્થો ΔQ . સમય Δt તાપમાન-પ્રચલન $\frac{\Delta T}{\Delta x}$ અને આડછેદના ક્ષેત્રફળ Δt ના સમપ્રમાણમાં હોય છે. એટલે કે,

$$\Delta Q \propto A \frac{\Delta T}{\Delta x} \Delta t$$

$$\therefore \Delta Q = -kA \frac{\Delta T}{\Delta x} \Delta t$$

$$\therefore \frac{\Delta Q}{\Delta t} = -kA \frac{\Delta T}{\Delta x} \qquad (7.2.1)$$

અહીં, k સપ્રમાણતા અચળાંક છે અને તેને આપેલ પદાર્થની ઉષ્માવાહકતા (Thermal conductivity) કહે છે. તેનું મૂલ્ય દ્રવ્યના પ્રકાર અને અમુક અંશે તાપમાન પર આધારિત છે. ઉષ્માના સુવાહકોની ઉષ્માવાહકતાનું મૂલ્ય મોટું હોય છે. સામાન્ય સંજોગોમાં પદાર્થના જુદા જુદા ભાગોના તાપમાન વચ્ચેનો તફાવત બહુ મોટો ન હોય, તો આપેલ પદાર્થ માટે ઉષ્માવાહકતાને અચળ ગણી શકાય..

ઉપર્યુક્ત સમીકરણોમાં આવતી ઋણ નિશાની તમને ખટકતી નથી ? ખટકે, પણ તે અનિવાર્ય છે, કેમકે જેમ x વધે છે, તેમ T ઘટે છે, તેથી $\frac{\Delta T}{\Delta x}$ ઋણ મળે પણ $\frac{\Delta Q}{\Delta t}$ ધન હોવાથી ઉપર્યુક્ત સમીકરણોમાં ઋણ નિશાની '–' મૂકેલી છે.

જો બે ક્રમિક સ્તર વચ્ચેનું અંતર ખૂબ ઓછું હોય તો Δt નું મૂલ્ય પણ ખૂબ જ નાનું મળે તેથી સમીકરણ (7.2.1)માં $\Delta x \to 0$ અને $\Delta t \to 0$ લેતાં સમીકરણને નીચે મુજબ લખી શકાય :

$$\frac{dQ}{dt} = -kA \frac{dT}{dt}$$
 (7.2.2)

$$\therefore H = -kA \frac{dT}{dx}$$
 (7.2.3)

અહીં $\frac{d\mathbf{Q}}{dt}=\mathbf{H}$ ઉષ્માપ્રવાહ ઓળખાય છે. ઉષ્માપ્રવાહ એટલે કોઈ આડછેદમાંથી એકમ સમયમાં પસાર થતી ઉષ્મા-ઉર્જા.

સમીકરણ (7.2.1)માં જો $A = 1m^2$ તથા $\frac{dT}{dx} = -1 \ km^{-1}$, હોય, તો $\frac{dQ}{dt} = k$ થાય. એટલે કે "પદાર્થના એકમ આડછેદવાળા એકમ તાપમાન-પ્રચલન ધરાવતા સમતલમાંથી સમતલને લંબરૂપે ઉષ્માપ્રવાહના મૂલ્યને તે પદાર્થની આપેલા તાપમાને ઉષ્માવાહકતા કહે છે."

ઉષ્માવાહકતાનો એકમ cal s^{-1} m^{-1} k^{-1} અથવા watt m^{-1} k^{-1} છે.

સળિયામાં ઉષ્માવહન (Thermal Conduction in a Bar) : આકૃતિ 7.2 માં એક ઉષ્મીય રીતે અલગ કરેલી બાજુઓવાળો (એટલે કે બે છેડા સિવાય લંબાઈને સમાંતર સપાટીમાંથી ઉષ્માની આપ-લે ન થતી હોય તેવા) L લંબાઈનો સળિયો દર્શાવેલ છે. તેનો નિયમિત આડછેદ A છે. બે છેડાનાં તાપમાન T_1 અને T_2 અચળ છે. $(T_1 > T_2)$. t = 0 સમયે સળિયાના x = 0 આગળના છેડા પાસે T_1 તાપમાનવાળુ ઉષ્માપ્રાપ્તિસ્થાન મૂકતાં ધીરેધીરે ઉષ્માવહનને લીધે સળિયાના દરેક ભાગનું તાપમાન વધવા લાગે છે. સળિયાના જુદા જુદા ભાગનાં તાપમાન સમય સાથે કેવી રીતે

અમુક સમય બાદ (વધારે સચોટતા સાથે કહીએ તો $t=\infty$ સમયે) સિળયાના દરેક ભાગનાં તાપમાનો સમય સાથે અચળ થઈ જાય છે. આ અચળ થઈ ગયેલાં તાપમાનો ગરમ છેડાથી શરૂ કરી ઠંડા છેડા તરફ ક્રમશઃ ઘટતા મૂલ્યનાં હોય છે. આ સ્થિતિમાં ગરમ છેડા દ્વારા સિળયો જેટલા સમયમાં જેટલી ઉષ્મા મેળવે છે, તેટલા સમયમાં તેટલી જ ઉષ્મા ઠંડા છેડા પાસેથી ગુમાવે છે. સિળયાની બાજુઓ ઉષ્મીય રીતે અલગ કરી હોવાથી બાજુઓ પરથી ઉષ્માનો વ્યય થતો નથી. આથી, સિળયાનો દરેક વિભાગ પોતાની પાસેના ગરમ વિભાગ પાસેથી જેટલા સમયમાં જેટલી ઉષ્મા મેળવે છે તેટલા જ સમયમાં તેટલી જ ઉષ્મા પોતાની પાસેના ઓછા તાપમાનવાળા વિભાગને આપી દે છે. આમ, આ સ્થિતિમાં સિળયાના દરેક આડછેદ માટે ઉષ્માપ્રવાહ $\frac{dQ}{dt}$ સમગ્ર સિળયા પર લંબાઈની દિશામાં એકમૂલ્ય હોય છે. ઉપરાંત સમગ્ર સિળયાની લંબાઈ પર $\frac{dT}{dt}$ પણ એકમૂલ્ય

હોય છે. વળી, $\frac{dQ}{dt}$ અને $\frac{dT}{dx}$ નાં મૂલ્યો હવે સમય સાથે અચળ રહે છે. આવી સ્થિતિને સળિયાની સ્થાયી ઉપ્મા-અવસ્થા (Thermal Steady State) કહે છે.

અત્રે, સ્થાયી ઉષ્મા-અવસ્થામાં સળિયાના છેડાનાં તાપમાનો અનુક્રમે $\mathbf{T_1}$ અને $\mathbf{T_2}$ છે. અહીં $\mathbf{T_1} > \mathbf{T_2}$ છે. હવે $\frac{d\mathbf{T}}{dx}$ સમગ્ર લંબાઈ પર એકમૂલ્ય હોવાથી,

$$\frac{d\mathbf{T}}{dx} = -\left[\frac{\mathbf{T}_1 - \mathbf{T}_2}{\mathbf{L}}\right] \tag{7.2.4}$$

આથી, આ કિસ્સામાં સમીકરણ (7.2.2) નીચે પ્રમાણે લખાશે :

$$\frac{dQ}{dt} = kA \left[\frac{T_1 - T_2}{L} \right]$$
 (7.2.5)

અહીં $\dfrac{d\mathbf{Q}}{dt}$ સમય સાથે અચળ હોવાથી તેને $\dfrac{\mathbf{Q}}{t}$ લઈ શકાય.

$$\therefore \frac{Q}{t} = kA \left[\frac{T_1 - T_2}{L} \right]$$

$$\therefore Q = kA \left[\frac{T_1 - T_2}{L} \right] t \qquad (7.2.6)$$

સમીકરણ (7.2.6) સ્થાયી ઉષ્મા-અવસ્થામાં, સળિયામાંથી t સમયમાં પસાર થતો ઉષ્માનો જથ્થો આપે છે.

ટેબલ : 7.1 કેટલાક પદાર્થોની ઉષ્માવાહકતા (માત્ર જાણકારી માટે)

પદાર્થ	ઉષ્માવાહકતા W <i>m</i> ⁻¹ K ⁻¹
ચાંદી	406
તાંબું	385
એલ્યુમિનિયમ	205
પિત્તળ	109
લોખંડ	50.2
સીસું	34.7
પારો	8.3
કાચ	0.8
પાણી	0.8
લાકડું	0.12-0.04
શરીરમાંની ચરબી	0.2
હાઇડ્રોજન વાયુ	0.14
હવા	0.024

ઉપર્યુક્ત ટેબલમાં દર્શાવેલ માહિતી દર્શાવે છે કે મોટા ભાગનાં ધાતુઓ ઉષ્માની સુવાહક છે. આ ધાતુઓ વિદ્યુત માટે પણ સુવાહક છે. આ બન્ને પ્રકારની સુવાહકતા માટે તેમાં રહેલા મુક્ત ઇલેકટ્રૉન જવાબદાર છે.

ઉષ્મીય અવરોધ (Thermal Resistance) સમીકરણ (7.2.5) પરથી

$$H = kA \left[\begin{array}{c} T_1 - T_2 \\ \hline L \end{array} \right]$$

$$\therefore H = \left[\begin{array}{c} \frac{T_1 - T_2}{L/kA} \end{array} \right]$$

આ સમીકરણને વિદ્યુતપ્રવાહ માટેના સમીકરણ $I = \frac{V}{R} \ \text{સાથે સરખાવતાં} \ I \ \text{વિદ્યુતપ્રવાહ છે, તો } \ H \ \text{ઉખ્ખા}$ પ્રવાહ છે. V વિદ્યુતસ્થિતિમાનનો તફાવત છે, તો $T_1 - T_2$ તાપમાનનો તફાવત છે, તો L/kA પદ ઉખીય

અવરોધ દર્શાવે છે, તેમ કહી શકાય. આમ, ઉષ્મીય અવરોધ ($R_{_{
m H}}$) નીચેના સૂત્રથી મળે છે. $R_{_{
m H}}=L\ /\ kA$

ઉષ્મીય અવરોધ (R_H) નો એકમ કૅલ્વિન/વૉટ છે. તેનું પારિમાણિક સૂત્ર $M^{-1}L^{-2}T^3K$ થાય.

ઉષ્મીય વાંહકોને શ્રેશી અને સમાંતર જોડાણમાં જોડતાં મળતાં સમતુલ્ય ઉષ્મીય અવરોધનાં સૂત્રો પણ, વિદ્યુતનાં અવરોધનાં સૂત્રોને મળતાં જ આવે છે. એટલે કે,

$$(R_{H})_{s} = (R_{H})_{1} + (R_{H})_{2}$$
 અને $\frac{1}{(R_{H})_{P}} = \frac{1}{(R_{H})_{1}} + \frac{1}{(R_{H})_{2}}$ (જાતે ચકાસી જુઓ.)

અહીં $(R_H)_s$ શ્રેણીજોડાણ માટે અને $(R_H)_p$ સમાંતર જોડાણ માટેનો સમતુલ્ય ઉપ્મીય અવરોધ છે.

ઉપર્યુક્ત ચર્ચામાં એક મુદ્દો એ પણ ઉમેરી શકાય કે જેમ વિદ્યુતપ્રવાહ માટે વિદ્યુતસ્થિતિમાનનો તફાવત જરૂરી છે, તેમ ઉષ્મીય પ્રવાહ માટે તાપમાનનો તફાવત પણ જરૂરી છે.

માત્ર જાણકારી માટે :

નોંધ : કેટલાંક પુસ્તકોમાં ઔદ્યોગિક હેતુ માટે ઉષ્મીય અવરોધ $R=\frac{l}{k}$ તરીકે પણ વ્યાખ્યાયિત કરેલ છે, જે R—value તરીકે પણ ઓળખાય છે. R—value બિલ્ડિંગ મટિરિયલનો ઉષ્મીય અવરોધ દર્શાવવા માટે વપરાય છે.

ઉદાહરણ 1: 1.5 cm² આડછેદનું ક્ષેત્રફળ ધરાવતા તેમજ 25 cm લંબાઈના એક સળિયાનો એક છેડો 100 °C તાપમાન ધરાવતી વરાળ અને બીજો છેડો 0 °C તાપમાનવાળા બરફમાં રાખેલ છે. સ્થાયી ઉષ્મા-અવસ્થામાં (1) સળિયા પરનું તાપમાન-પ્રચલન (2) ઉષ્માવહનનો દર અને (3) ઊંચા તાપમાનવાળા છેડાથી 18 cm આવેલા સળિયા પરના બિંદુએ તાપમાન ગણો. (સળિયાની ઉષ્માવહનતો k = 0.9 cal s⁻¹ cm⁻¹ °C⁻¹ છે.)

ઉકેલ :

$$A = 1.5 \text{ cm}^2$$
 $T_1 = 100 \text{ °C}$ $\frac{dT}{dx} = ?$

$$L = 25 \text{ cm}$$
 $T_2 = 0 \text{ }^{\circ}\text{C}$ $\frac{dQ}{dt} = ?$

(1) તાપમાન-પ્રચલન
$$\frac{d\mathbf{T}}{dx} = -\left[\frac{\mathbf{T_1} - \mathbf{T_2}}{\mathbf{L}}\right]$$

$$=-\left[\frac{100-0}{25}\right]=-4$$
 °C cm⁻¹

(2) ઉષ્માવહનનો દર
$$\frac{d\mathbf{Q}}{dt} = \mathbf{k}\mathbf{A} \left[\frac{\mathbf{T_1} - \mathbf{T_2}}{\mathbf{L}} \right]$$

$$= 0.9 \times 1.5 \times \left[\frac{100 - 0}{25} \right]$$

$$\therefore \frac{dQ}{dt} = 5.4 \text{ cal s}^{-1}$$

(3) ઊંચા તાપમાનવાળા છેડાથી $l=18~{
m cm}$ દૂર આવેલા સળિયા પરના બિંદુએ તાપમાન ધારો કે ${
m T}_l$ છે.

 $rac{d ext{T}}{dx}$ સમગ્ર સળિયા પર અચળ હોવાથી $ext{T}_1$ તાપમાન-વાળા છેડાથી l અંતરે તાપમાન,

$$T_l = T_1 + \left(\frac{dT}{dx}\right)l$$

$$= 100 - 4 \times 18 = 28 \text{ °C}$$
 અથવા

દર સેમી અંતરે તાપમાન 4 °C ઘટે છે. (1) પરથી

∴ 18 cm અંતરે તાપમાન 72 °C ઘટે.

∴ માંગેલ તાપમા
$$= 100 - 72 = 28$$
 °C

ઉદાહરણ 2: એક સંયુક્ત ચોસલું અનુક્રમે L_1 અને L_2 જાડાઈના k_1 અને k_2 ઉષ્માવાહકતાવાળા તેમજ સમાન આડછેદ $(A_1=A_2=A)$ ના બે ઘટક ચોસલાનું બનેલું છે. જો સંયુક્ત ચોસલાની છેડાની સપાટીઓનાં તાપમાન અનુક્રમે T_1 અને T_2 હોય તેમજ બંને ઘટક ચોસલાની સંપર્કસપાટીનું તાપમાન T_x હોય, તો સ્થાયી ઉષ્મા-અવસ્થામાં સંપર્કસપાટીનું તાપમાન

$$T_x = rac{rac{L_2 T_1}{k_2} \ + \ rac{L_1 T_2}{k_1}}{rac{L_1}{k_1} \ + \ rac{L_2}{k_2}}$$
 અને ઉષ્માપ્રવાહ

$$\frac{dQ}{dt} = \frac{A(T_1 - T_2)}{\frac{L_1}{k_1} + \frac{L_2}{k_2}}$$

છે તેમ સાબિત કરો. (ઉષ્માવ્યયને અવગણો.) ઉકેલ:

ચોસલા (1) માટે ઉષ્મીય અવરોધ

$$R_1 = \frac{L_1}{k_1 A}$$
 અને

ચોસલા (2) માટે ઉષ્મીય અવરોધ

$$R_2 = \frac{L_2}{k_2 A}$$

આકૃતિ 7.3

ચોસલાંઓ શ્રેશીમાં હોવાથી કુલ અવરોધ $R = R_{_1} + R_{_2}$

$$\therefore \frac{dQ}{dt} = \frac{T_1 - T_2}{R}$$
$$= \frac{T_1 - T_2}{R_1 + R_2}$$

$$\therefore \frac{dQ}{dt} = \frac{\frac{T_1 - T_2}{L_1}}{\frac{L_1}{k_1 A} + \frac{L_2}{k_2 A}}$$

154 ભૌતિકવિશાન

$$= \frac{A(T_1 - T_2)}{\frac{L_1}{k_1} + \frac{L_2}{k_2}}$$

સંપર્કસપાટીનું તાપમાન,

$$T_{x} = T_{1} - \frac{dQ}{dt} \times R_{1}$$

$$= T_{1} - \frac{(T_{1} - T_{2})}{(R_{1} + R_{2})} R_{1}$$

$$= \frac{T_{1}R_{2} + T_{2}R_{1}}{R_{1} + R_{2}}$$

$$= \frac{\frac{L_{2}T_{1}}{k_{2}A} + \frac{L_{1}T_{2}}{k_{1}A}}{\frac{L_{1}}{k_{1}A} + \frac{L_{2}}{k_{2}A}}$$

$$\therefore T_{x} = \frac{\frac{L_{2}T_{1}}{k_{2}} + \frac{L_{1}T_{2}}{k_{1}}}{\frac{L_{1}}{k_{1}} + \frac{L_{2}}{k_{1}}}$$

ઉદાહરણ 3 : એક થર્માકોલના બનેલા ગોળાકાર પાત્રમાં 5 kg બરફ છે. પાત્રની દીવાલની જાડાઈ 23.14 cm છે. પાત્રની અંદરની ત્રિજ્યા 20 cm છે. જો 1 kg બરફને પિગળાવવા માટે 335 k J ઉષ્મા ઊર્જા જરૂરી હોય તો 1 દિવસમાં કેટલો બરફ પિગળે ? બહારનું તાપમાન 30 °C છે. થર્મીકોલની ઉષ્માવાહકતા 0.0275 SI એકમ છે. પાત્રની દીવાલ ઉષ્માની સ્થાયી અવસ્થામાં છે.

ગોળાકાર કવચની સ્થાયી ઉષ્મા અવસ્થા માટે ઉષ્માપ્રવાહના મૂલ્ય માટેનું સૂત્ર :

$$\frac{Q}{t} = \frac{4\pi k r_1 r_2 (T_1 - T_2)}{r_1 - r_2}$$

જ્યાં T_1 અને T_2 પાત્રની અંદરની સપાટી અને બહારની સપાટીના તાપમાન છે. r_1 અને r_2 અંદરની અને બહારની ત્રિજ્યા છે.

આકૃતિ 7.4

ઉકેલ : ધારો કે 1 દિવસમાં *m* kg બરફ ઓગળે છે.

1 kg બરફને પિગળવા માટે 335×10^3 J ઉખ્ખા ઊર્જા જરૂરી હોવાથી m kg માટે જરૂરી ઉખ્ખા

$$Q = m \times 335 \times 10^3 \text{ J}$$

હવે
$$\frac{Q}{t} = \frac{4\pi k r_1 r_2 (T_1 - T_2)}{r_1 - r_2}$$

$$\therefore \frac{m \times 335 \times 10^3}{24 \times 3600} =$$

 $\frac{4 \times 3.14 \times 0.0275 \times 20 \times 10^{-2} \times 23.14 \times 10^{-2} \times (30 - 0)}{3.14 \times 10^{-2}}$

 $\therefore \mathbf{m} = \frac{4 \times 0.0275 \times 20 \times 10^{-2} \times 23.14 \times 30 \times 24 \times 3600}{335 \times 10^{3}}$

= 3.939 kg

નોંધ : r_1 અને r_2 બહારની અને અંદરની ત્રિજ્યા હોય તેવા નળાકાર કવચ માટે સ્થાયી ઉષ્મા અવસ્થા માટે ઉષ્માપ્રવાહનું સૂત્ર :

$$\frac{Q}{t} = \frac{2\pi k L (T_1 - T_2)}{\ln r_1 - \ln r_2}$$

L લંબાઈ અને T_1 અને T_2 અંદરનું અને બહારનું તાપમાન છે.

ઉદાહરણ 4: સમાન લંબાઈ અને સમાન આડછેદ ધરાવતા લોખંડ અને ઍલ્યુમિનિયમના સળિયાના છેડાઓને એકબીજા સાથે જોડેલા છે. લોખંડના મુક્ત છેડાને 100 °C અને ઍલ્યુમિનિયમના મુક્ત છેડાને 0 °C તાપમાને રાખવામાં આવે છે. જો ઍલ્યુમિનિયમની ઉષ્માવાહકતા લોખંડની ઉષ્માવાહકતા કરતાં ચાર ગણી હોય, તો સ્થાયી ઉષ્મા-અવસ્થામાં બંને સળિયાની સંપર્કસપાટીનું તાપમાન શોધો.

ઉકેલ : ધારો કે બંને સળિયાની લંબાઈ L અને આડછેદનું ક્ષેત્રફળ A છે.

ધારો કે, લોખંડની ઉષ્માવાહકતા k છે.

∴ ઍલ્યુમિનિયમની ઉષ્માવાહકતા 4k થશે.

ધારો કે, બંને સળિયાની સંપર્કસપાટીનું તાપમાન $\mathbf{T}_{\mathbf{x}}$ છે.

સંયુક્ત સળિયાની સ્થાયી ઉષ્મા-અવસ્થા માટે,

$$\left(\frac{dQ}{dt}\right)_{\text{eigivis}} = \left(\frac{dQ}{dt}\right)_{\text{ifeyalay}}$$

$$\therefore \frac{kA(100 - T_x)}{L} = \frac{4kA(T_x - 0)}{L}$$

$$\vdots 100 - T_x = 4T_x$$

$$\therefore 100 - T_x = 4T_x$$

$$\therefore 100 = 5T_r$$

$$\therefore$$
 T_{*} = 20 °C

ઉદાહરણ 5 : એક સળિયાના આડછેદનું ક્ષેત્રફળ 12.56 cm⁻² છે. આ સળિયાના એક છેડાને વરાળપાત્રમાં રાખવામાં આવેલ છે. સળિયા પર એકબીજાથી 13 cm દૂર ગોઠવવામાં આવેલાં થરમોમિટરમાં તાપમાન અનુક્રમે 56 °C અને 45 °C છે. સળિયાના બીજા છેડે વીંટાળેલ તાંબાની નળીમાં દાખલ થતા અને બહાર આવતા પાણીના તાપમાનનો તફાવત 30 °C હોય અને 3 મિનિટમાં 800 g પાણી વહેતું હોય, તો સળિયાના દ્રવ્યની ઉષ્માવાહકતા શોધો.

(પાણીની વિશિષ્ટ ઉષ્મા = 1 cal g^{-1} °C⁻¹)

ઉકેલ :

A = 12.56 cm²
$$m = 800 \text{ g}$$

L = 13 cm $\theta_2 - \theta_1 = 30 \text{ °C}$
 $T_1 = 56 \text{ °C}$ $t = 3 \text{ min} = 180 \text{ s}$
 $T_2 = 45 \text{ °C}$ $\therefore T_1 - T_2 = 11 \text{ °C}$
 $\therefore Q = mc\Delta\theta \text{ set } Q = \frac{kA(T_1 - T_2)t}{L}$
 $k = \frac{mc(\theta_1 - \theta_2)L}{A(T_1 - T_2)t}$
 $= \frac{800 \times 1 \times 30 \times 13}{12.56 \times 11 \times 180}$
 $= 12.54 \text{ cal s}^{-1} \text{ cm}^{-1} \text{ °C}^{-1}$

ઉદાહરણ 6: વાતાવરણના દબાણે સ્થાયી ઉષ્મા-અવસ્થામાં રહેલા 1 m લંબાઈના ધાતુના સિળયાના એક છેડાને $100\,^{\circ}\mathrm{C}$ તાપમાનવાળા પાણીમાં અને બીજા છેડાને $0\,^{\circ}\mathrm{C}$ તાપમાનવાળા બરફમાં મૂકેલ છે. હવે, $2000\,^{\circ}\mathrm{C}$ તાપમાનવાળી જયોતને સિળયાના ગરમ છેડાથી કેટલા અંતરે મૂકવી જોઈએ કે જેથી $100\,^{\circ}\mathrm{C}$ તાપમાનવાળા સિળયાને છેડે સમાન દરથી અનુક્રમે પાણીની વરાળ અને બરફનું પાણી બને. પાણીની ઉત્કલનગુપત ઉષ્મા $540\,^{\circ}\mathrm{C}$ લો g^{-1} અને બરફની ગલનગુપત ઉષ્મા $80\,^{\circ}\mathrm{Cal}\,\mathrm{g}^{-1}$. (સૂચન: જો પદાર્થના તાપમાનમાં ફેરફાર થાય તો વિનીમય પામતી ઉષ્માઊર્જા $\Delta \mathrm{Q} = m\mathrm{C}\Delta \mathrm{T}$ થાય, જ્યાં $\mathrm{C}\,\mathrm{G}$ શિષ્ટ ઉષ્મા છે અને જો અચળ તાપમાન પદાર્થની ભૌતિક અવસ્થા બદલાય તો વિનીમય પામતી ઉષ્માઊર્જા $\Delta \mathrm{Q} = m\mathrm{L}$ જયાં $\mathrm{L}\,\mathrm{Q}$ પત ઉષ્મા છે.)

ઉકેલ : ધારો કે જ્યોતને ગરમ છેડાથી x અંતરે મૂકવી પડે છે.

ધારો કે 1 s માં m દળના પાણીની વરાળ બને છે અને એટલા જ દળના બરફનું પાણી બને છે.

$$\therefore m(540) = kA \left[\frac{2000 - 100}{x} \right]$$
$$= \frac{1900kA}{x} \tag{1}$$

અને
$$m(80) = kA \left[\frac{2000 - 0}{100 - x} \right]$$
$$= \frac{2000kA}{100 - x} \tag{2}$$

સમીકરણ (1) અને (2) નો ગુણોત્તર લેતાં,

$$\frac{540}{80} = \frac{1900(\ 100 - x\)}{2000(\ x\)}$$

$$\therefore \frac{27}{4} = \frac{19}{20} \left(\frac{100 - x}{x} \right)$$

$$\therefore 540x = 7600 - 76x$$

$$\therefore 616x = 7600$$

$$x = 12.33 \text{ cm}$$

7.3 ઉષ્માનયન (Convection)

ઉષ્માવહનની ઘટનામાં ઘન પદાર્થના ઘટકકણો પોતપોતાના મધ્યમાન સ્થાનની આસપાસ દોલનો કરતા હોય છે અને તેમની વચ્ચે લાગતા આંતર-અણુ બળો દ્વારા ઉષ્માનું પ્રસરણ થાય છે. જ્યારે ઉષ્માનયનમાં દ્રવ્યના ઘટકકણો ખરેખર ગતિ કરીને એક સ્થાનથી બીજા સ્થાને જાય છે. આ બાબત પરથી સમજી શકાય કે ઉષ્માનયનની ઘટના માત્ર તરલ પદાર્થો (પ્રવાહી અને વાયુ)માં જ એટલે કે તરલોમાં જ જોવા મળે, ઘનપદાર્થોમાં નહિ. વળી, એ પણ એટલું સાચું છે કે તરલમાં પણ ઉષ્મા-પ્રસરણમાં બહુ થોડા અંશે ઉષ્માવહન પણ ભાગ ભજવે છે.

સામાન્ય રીતે ઉષ્માનયનમાં નીચેના ભાગમાં રહેલ તરલ ગરમ થવાથી તેનું કદ વધે છે અને તેની ઘનતા ઘટે છે. આથી ઉત્પ્લાવક બળની અસર હેઠળ આ હળવું તરલ ઉપર જાય છે અને ગુરુત્વાકર્ષણની અસર હેઠળ ઉપરનું વધુ ઘનતાવાળું ભારે તરલ નીચેના ભાગમાં આવે છે. આ પ્રકારની સતત ચાલતી પ્રક્રિયાથી તરલ ગરમ થાય છે. કોઈ પણ દવાવાળાની દુકાનેથી પોટૅશિયમ પરમૅગેનેટ લાવીને ફ્લાસ્ક્રમાં પાણી ગરમ કરતી વેળા આ પોટૅશિયમ પરમૅગેનેટ નાખીને આ ઘટના તાદેશ કરી શકાય.

ઉષ્માનયન પ્રાકૃતિક (Natural) અથવા પ્રેરીત (Breezes) હોઈ શકે છે. જો દ્રવ્યની ગતિ ઘનતાના તફાવતને કારણે થતી હોય તો તેને પ્રાકૃતિક ઉષ્માનયન કહે છે. સમુદ્રકિનારે જોવા મળતી ઠંડી લહેરો (Cool current)ની ઘટના તપાસીએ. સૂર્ય કિરણો દ્વારા જમીન ગરમ થતાં તેના સંપર્કમાં રહેલી હવા ગરમ થતાં તેનું કદ વધે છે અને ઘનતા ઘટે છે. પરિણામે તે ઉપરની તરફ ગતિ કરે છે. હવે જમીનની સપાટી પાસે હવાનું દબાણ ઘટતાં સમુદ્ર તરફથી ઠંડી હવા જમીન તરફ ગતિ કરે છે અને આમ શીત લહેરોનું નિર્માણ થાય છે. રાત્રી દરમિયાન આવા વિસ્તારમાં શું થતું હશે ? (જાતે વિચારો)

પ્રેરિત ઉષ્માનયનમાં કોઈ સાધન જેમકે, પંપ, ભેળક કે અન્ય કોઈ સાધન વડે તરલના દ્રવ્યની ગતિ કરાવવામાં 156 ભૌતિકવિજ્ઞાન

આવે છે. મનષ્યુના શરીરમાં રહેલ નાનકડું (મુક્રી જેટલા કદનું) હૃદય પંપ તરીકે કામ કરીને શરીરના વિવિધ ભાગોમાં રુધિર ભ્રમણ ચાલુ રાખીને પ્રેરિત ઉષ્માનયન વડે શરીરનું તાપમાન જાળવી રાખે છે.

પાશીનું તાપમાન 4°C to 0°C કરતાં તેનું કદ ઘટવાને બદલે વધે છે. આને પાણીનું અનિયમિત પ્રસરણ કહે છે. પરિશામસ્વરૂપ 4°C તાપમાને પાણીની ઘનતા મહત્તમ હોય છે. પ્રાકૃતિક ઉષ્માનયન અને પાણીના અનિયમિત પ્રસરણના કારણે તો માછલીઓ જેવાં જળચરોનું જીવન સંભવી શકે છે. શિયાળામાં વાતાવરણનું તાપમાન ઘટતાં સપાટી નજીકનું પાણી ઠંડું થતાં ઘનતા વઘવાથી તે નીચે જાય છે. તળિયે રહેલ ઓછું ઠંડું પાણી સપાટી પર આવીને વધુ ઠંડું થાય છે. આ રીતે ઉષ્માનયનની પ્રક્રિયા દ્વારા પાણીના સમગ્ર જથ્થાનું તાપમાન 4°C સુધી ઘટે છે. હવે સપાટી પર રહેલ 4°C વાળું પાણી વધું ઠંડું થતાં તેનું કદ સંકોચાવાને બદલે વધે છે અને પરિણામે તેની ઘનતા ઘટે છે. આથી તે સપાટી પર જ રહી વધુ ઠંડું થતું જાય છે અને 0℃ તાપમાને બરફમાં રૂપાંતરિત થાય છે. આમ થયા પછી હવે બરફની નીચે રહેલ પાણી માત્ર ઉષ્માવહનની પ્રક્રિયા દ્વારા ઉષ્મા ગુમાવે છે. બરફની ઉષ્માવાહકતાનું મૂલ્ય ઘણું જ ઓછું હોઈને હવે પછી વધુ ઠારણ થવાની ક્રિયા ઘણી જ ધીમી પડી જાય છે. પરિશામસ્વરૂપ તળિયે રહેલ પાશીનું તાપમાન ઘણા લાંબા સમય સુધી આશરે 4°C જેટલું જળવાઈ રહે છે અને સામાન્ય સંજોગોમાં આટલા સમયમાં તો વાતાવરણના તાપમાનમાં પણ વધારો થતો હોઈને જળચર પ્રાણીઓ બચી જાય છે.

7.4 विडि२श (Radiation)

ઉષ્માવહન અને ઉષ્માનયનની ઘટનામાં માધ્યમના કશો ખૂબ જ સક્રિય ભાગ ભજવે છે. સૂર્યથી પૃથ્વી સુધીના વિસ્તારમાં મહદ્દ અંશે શૂન્યાવકાશ (માધ્યમની ગેરહાજરી) છે. તો સૂર્યથી પૃથ્વી સુધી સૂર્યમાં ઉત્પન્ન થતી ઊર્જા કેવી રીતે પહોંચે છે ? શિયાળામાં તાપણું કરતી વેળા તાપણાથી દૂર ઊભા રહીને પણ ગરમી અનુભવી શકાય છે. સૂર્યમાંથી ઉષ્માનું પૃથ્વી સુધી પહોંચવા માટે અને તાપણામાં ઉત્પન્ન થતી ઉષ્મા આપણા સુધી પહોંચવા માટે ઉષ્મા-પ્રસરણનો ત્રીજો પ્રકાર કારણભૂત છે. આ પ્રકાર ઉષ્મીય વિકિરણ છે.

દરેક પદાર્થ પોતાના તાપમાનને અનુરૂપ અમુક ચોક્કસ આવૃત્તિઓવાળા વિદ્યુતચુંબકીય તરંગોનું ઉત્સર્જન કરે છે. આ વિકિરણ ઉષ્મીય વિકિરણ (Thermal radiation) કહેવાય છે. ઉષ્મીય વિકિરણ વિદ્યુતચુંબકીય વિકિરણ છે. આ વિકિરણમાં રહેલા વિદ્યુતચુંબકીય તરંગો સાથે સંકળાયેલી ઊર્જાને વિકિરણ-ઊર્જા (Radiant—energy) કહે છે.

પ્રિવોસ્ટ (Prevost) નામના વિજ્ઞાનીના મતે દરેક પદાર્થ કોઈ પણ તાપમાને ઉષ્મીય વિકિરણનું ઉત્સર્જન કરતો જ હોય છે. તાપમાન વધતાં સાથે ઉત્સર્જનનો દર પણ વધે છે અને સાથે-સાથે કોઈ પણ પદાર્થ તેના પર આપાત થતાં અન્ય વિકિરણોનું શોષણ પણ કરે છે. જો

કોઈ પદાર્થમાં શોષાતા ઉષ્મીય વિકિરણનો દર ઉત્સર્જાતા વિકિરણના દરથી વધુ હોય, તો તે પદાર્થના તાપમાનમાં વધારો નોંધાય છે, અને જો પદાર્થ દ્વારા શોષાતા ઉષ્મીય વિકિરણનો દર ઉત્સર્જાતા વિકિરણના દરથી ઓછો હોય તો તે પદાર્થના તાપમાનમાં ઘટાડો નોંધાય છે. જયારે કોઈ પદાર્થનું તાપમાન પરિસરના તાપમાન જેટલું થાય ત્યારે તે પદાર્થ માટે વિકિરણ-ઉત્સર્જન અને વિકિરણ-શોષણના દર સમાન હોય છે.

પદાર્થ દ્વારા ઉત્સર્જાતાં ઉષ્મીય વિકિરણોમાં રહેલા વિદ્યુતચુંબકીય તરંગોની આવૃત્તિઓનું પ્રમાણ વિકિરણનું ઉત્સર્જન કરતી સપાટીના પ્રકાર અને તાપમાન પર છે. ઉદાહરણ તરીકે મીણબત્તી અથવા બન્શન બર્નરની જ્યોતમાં સૌથી અંદરના ભાગમાંથી બહારની તરફ જતાં તાપમાન વધતું જાય છે, તેથી સૌથી બહારના ભાગનું તાપમાન વધુ હોવાથી તે ભૂરા કે જાંબલી રંગનો દેખાય છે.

7.5 સંપૂર્ણ કાળો પદાર્થ અને તેમાંથી ઉત્સર્જન પામતાં વિકિરણો (Perfect Black Body and Black Body Radiation)

જે પદાર્થ પોતાના પર આપાત થતી બધી જ વિકિરણ-ઊર્જાનું શોષણ કરે તેને સંપૂર્ણ કાળો પદાર્થ કહે છે. વ્યવહારમાં વધુમાં વધુ કાળો પદાર્થ દીવાની

આકૃતિ 7.5

મેશ (Lamp black or soot) છે. તે તેના પર આપાત થતી વિકિરણ-ઊર્જાના લગભગ 98 % ટકાનું શોષણ કરે છે. એટલે કે તે 98 % સંપૂર્ણ કાળો પદાર્થ ગણાય. આ અર્થમાં ચાંદી 2 % સંપૂર્ણ કાળો પદાર્થ છે. વ્યવહારમાં 100 % સંપૂર્ણ કાળો પદાર્થ મેળવવો અશક્ય છે. યાદ રાખો કે સંપૂર્ણ કાળા પદાર્થને કાળા રંગ સાથે કોઈ જ સંબંધ નથી.

તો પછી સંપૂર્ણ કાળા પદાર્થમાંથી ઉત્સર્જન પામતાં વિકિરણોનો અભ્યાસ કઈ રીતે કરવો ? આ માટે આકૃતિમાં દર્શાવેલ એક પાત્ર વિચારો. આ પાત્ર અંદરના ભાગે ખરબચડી, કાળા રંગે રંગેલી દીવાલવાળું છે અને આ પાત્રમાં એક નાનકડું (પાત્રનાં પરિમાણોને સાપેક્ષ) છિદ્ર છે. આ છિદ્ર પર આપાત થતું વિકિરણ અંદરની દીવાલો વડે અનેક પરાવર્તનો અનુભવે છે અને દરેક પરાવર્તન વખતે તેનું અંશતઃ શોષણ અને અંશતઃ પરાવર્તન થાય છે અને તે

છિદ્રમાંથી પાછા બહાર નીકળવાની સ્થિતિમાં આવે ત્યાં સુધી તેની પાસે લગભગ કોઈ ઊર્જા રહે નહીં અને પરિસ્થિતિનું નિર્માણ થવાની શક્યતા પણ નહિવત્ છે. છિદ્રની બરાબર સામે અંદરનો ભાગ એવો છે, જેથી કાણામાંથી આપાત થતું વિકરણ ત્યાંથી જ પરાવર્તન પામીને તરત જ પાછું છિદ્રબહાર ન નીકળી શકે. આ સંદર્ભમાં આવા સૂક્ષ્મ છિન્દ્રને સંપૂર્ણ કાળો પદાર્થ કહેવાય. આ પાત્રને સમાંગ રીતે બહારથી ગરમ કરતાં છિદ્રમાંથી બહાર આવતાં વિકિરણો સંપૂર્ણ કાળા પદાર્થમાંથી ઉત્સર્જિત વિકિરણ કહેવાય. તેને કેવિટી (બખોલ) વિકિરણ (Cavity radiations) પણ કહે છે.

સૂર્યમાંથી મળતાં વિકિરણોમાં બધી જ તરંગલંબાઈઓ પર સતત રીતે પથરાયેલું વિદ્યુતચુંબકીય વિકિરણ મળતાં હોવાથી સૂર્યને સંપૂર્ણ કાળો પદાર્થ કહી શકાય. વળી, સૂર્યની સપાટીનું તાપમાન આશરે 5800 K છે. આ તાપમાને રાખેલ સંપૂર્ણ કાળા પદાર્થમાંથી અને સૂર્યમાંથી મળતાં વિકિરણો લગભગ સમાન છે. આમ સૂર્ય 5800 K તાપમાનવાળા સંપૂર્ણ કાળા પદાર્થ તરીકે વર્તે છે તેમ કહી શકાય. હવે સમજાયુંને કે કાળા પદાર્થને કાળા રંગ સાથે કોઈ ખાસ સગપણ નથી !

કોઈ પણ પદાર્થમાંથી ઉત્સર્જિત વિકિરણના ગુણધર્મો તે પદાર્થની સપાટીના તાપમાન અને પદાર્થની સપાટીની જાત પર આધારિત છે, જ્યારે સંપૂર્ણ કાળા પદાર્થનાં વિકિરણોના ગુણધર્મો ફક્ત તેના તાપમાન પર આધારિત છે. આ સંદર્ભમાં સંપૂર્ણ કાળા પદાર્થનાં વિકિરણો એક સાર્વત્રિક ગુણધર્મ ધરાવે છે તેમ કહી શકાય. આ હકીકત સંપૂર્ણ કાળા પદાર્થના વિકિરણના અભ્યાસનું મહત્ત્વ દર્શાવે છે.

7.6 डिर्ચोइनो नियम (Kirchoff's Law)

સપાટીનું ક્ષેત્રફળ સમાન હોય તેવા સમાન દ્રવ્યના બે ગોળાઓ A અને B એક ઓરડામાં લટકાવેલ છે. ગોળા A ની સપાટી પૉલીશ કરેલી છે અને B ની સપાટી કાળી છે. તેમની ઉપર એકસરખી વિકિરણ-ઊર્જા આપાત થાય છે. અહીં સ્પષ્ટ છે કે ગોળા A ની સપાટી પૉલિશ કરેલી હોવાથી તે મોટા ભાગની ઊર્જાનું પરાવર્તન કરશે. જ્યારે ગોળા B ની સપાટી કાળી હોવાથી મોટા ભાગની વિકિરણ-ઊર્જાનું શોષણ કરશે. પણ બન્ને ગોળાનાં તાપમાન સમાન (ઓરડાના તાપમાન જેટલાં) જોવા મળે છે, તેથી ગોળા A માંથી ઊર્જાનું ઉત્સર્જન (તાપમાનને અનુલક્ષીને થતું ઉત્સર્જન) ઓછા દરથી થતું હોવું જોઈએ અને ગોળા B માં આ ઉત્સર્જનનો દર વધુ હોવો જોઈએ. આમ કહી શકાય કે જે સપાટી સારી શોષક હોય તે સપાટી સારી ઉત્સર્જક પણ હોય છે. આજ હકીકત કિર્ચોફ્રનો વિકિરણ અંગેનો નિયમ રજૂ કરે છે. પરંતુ તે સમજતાં પહેલાં કેટલીક વ્યાખ્યાઓ સ્પષ્ટ કરી લઈએ.

શોષકતા (Absorptivity) : આપેલ તાપમાને કોઈ સપાટી પર વિકિરણ આપાત થતાં, શોષાતી વિકિરણ-ઊર્જા અને આપાત થતી વિકિરણ-ઊર્જાના ગુણોત્તરને તે સપાટીની શોષકતા (a) કહે છે.

 $\therefore \ a = \frac{\text{શોષાતી વિકિરણ - 30 m/m}}{\text{આપાત થતી વિકિરણ - 30 m/m}}$

સંપૂર્ણ કાળા પદાર્થ માટે a=1.

કુલ ઉત્સર્જન પાવર (Total emissive power): નિયત તાપમાને આપેલ પદાર્થની એકમ ક્ષેત્રફળવાળી સપાટીમાંથી દર સેકન્ડે ઉત્સર્જાતી વિકિરણ-ઊર્જાને આપેલ સપાટીનો કુલ ઉત્સર્જન-પાવર (W) કહે છે.

કુલ ઉત્સર્જન-પાવરની વ્યાખ્યામાં ઉત્સર્જન પામતા દરેક આવૃત્તિના વિકિરણનો સમાવેશ થઈ જાય છે.

સ્પેક્ટ્રલ ઉત્સર્જન-પાવર (Spectral emissive power): કુલ ઉત્સર્જન-પાવરમાં ઉત્સર્જાતી બધી જ આવૃત્તિઓવાળા વિકિરણની ઊર્જા લેવામાં આવે છે. આપણે દરેક આવૃત્તિવાળા વિકિરણની ઊર્જાના સંદર્ભમાં, આવૃત્તિને અનુરૂપ ઉત્સર્જન-પાવરની વ્યાખ્યા આપી શકીએ છીએ. આ રીતે વ્યાખ્યાયિત થતા ઉત્સર્જન-પાવરને સ્પેક્ટ્રલ ઉત્સર્જન-પાવર (W) કહે છે.

''નિયત તાપમાને આપેલ પદાર્થની એકમ ક્ષેત્રફળવાળી સપાટીમાંથી દર સેકન્ડે ઉત્સર્જાતી, આપેલ આવૃત્તિ (f) પાસેના આવૃત્તિના એકમ-ગાળાવાળા વિકિરણની ઊર્જાને તે આવૃત્તિને અનુરૂપ તે સપાટીનો તે તાપમાને સ્પેક્ટ્રલ ઉત્સર્જન-પાવર (\mathbf{W}_p) કહે છે."

જો આવૃત્તિને બદલે તરંગલંબાઈ (λ) વાપરવાનું પસંદ કરીએ તો \mathbf{W}_f ને બદલે \mathbf{W}_λ સંજ્ઞા વાપરવી જોઈએ. અહીં, f એ λ તરંગલંબાઈને અનુરૂપ આવૃત્તિ છે.

વળી એ પણ સ્પષ્ટ છે કે સ્પેક્ટ્રલ ઉત્સર્જન-પાવરનો સરવાળો કરવાથી કુલ ઉત્સર્જન-પાવર મળે છે.

$$\therefore \mathbf{W} = \sum_{f} \mathbf{W}_{f}$$

 \mathbf{W}_f નું મૂલ્ય સપાટીનાં તાપમાન, જાત અને આવૃત્તિ f પર આધાર રાખે છે.

ઉત્સર્જકતા (Emissivity) : આપેલ સપાટીના કુલ ઉત્સર્જન-પાવર અને તે જ સંજોગોમાં રહેલ સંપૂર્ણ કાળા પદાર્થની સપાટીના કુલ ઉત્સર્જન-પાવરના ગુણોત્તરને આપેલ સપાટીની ઉત્સર્જકતા (e) કહે છે. સિલ્વર માટે e નું મૂલ્ય 0.02 થી 0.03 જેટલું હોય છે.

સંપૂર્ણ કાળા પદાર્થની સપાટી માટે e=1 છે.

કિર્ચોફનો નિયમ (Kirchhoff's law) : "કોઈ પણ સપાટી માટે શોષકતા અને ઉત્સર્જકતાનાં મૂલ્યો સમાન હોય છે."

$$\therefore a = e$$

આમ, આ નિયમ પરથી સ્પષ્ટ છે કે સપાટી સારી શોષક હોવાની, તે સારી ઉત્સર્જક પણ હોવાની જ અને જે સપાટી સારી પરાવર્તક (એટલે કે ઓછી શોષક) હોવાની 158 ભૌતિકવિજ્ઞાન

તે ઓછી ઉત્સર્જક પણ હોવાની. આથી હવે તમે સમજી શકશો કે થરમૉસ ફ્લાસ્કની કાચની બૉટલની સપાટી શા માટે ચકચકિત (અરીસા જેવી) રાખવામાં આવે છે.

7.7 વીનનો સ્થળાંતરનો નિયમ

(Wien's Displacement Law)

કોઈ પણ સપાટી વડે ઉત્સર્જિત ઉષ્મીય વિકિરણમાં જુદી જુદી તરંગલંબાઈ (આવૃત્તિ)વાળા વિદ્યુતચુંબકીય તરંગો હોય છે અને આ તરંગોની તરંગલંબાઈ સતત હોય છે. પરંતુ આમાંથી અમુક જ તરંગલંબાઈવાળા વિદ્યુતચુંબકીય તરંગોનું પ્રમાણ વધુ હોય છે. જેમકે ઓરડાના તાપમાને (300 K) રહેલા કાળા પદાર્થમાંથી ઉત્સર્જિત વિકિરણમાં 95,550 Å તરંગલંબાઈવાળા વિદ્યુતચુંબકીય તરંગો (કે જેને ઇન્ફ્રારેડ તરંગો કહે છે)નું પ્રમાણ સૌથી વધુ હોય છે. પદાર્થનું તાપમાન વધારતાં આના કરતાં ઓછી તરંગલંબાઈવાળા તરંગોનું પ્રમાણ વધે છે. આશરે 1100 K જેટલા તાપમાને રાતા રંગની તરંગલંબાઈને અનુરૂપ તરંગોનું પ્રમાણ વધતાં તે પદાર્થ રાતો દેખાય છે.

કાળા પદાર્થમાંથી ઉત્સર્જિત ઉષ્મીય વિકિરણમાં જુદી-જુદી તરંગલંબાઈઓનું સાપેક્ષ પ્રમાણ જાણવા માટે આકૃતિ 7.6 જુઓ કે જેમાં સ્પેક્ટ્રલ ઉત્સર્જન-પાવર \mathbf{W}_{λ} વિરુદ્ધ તરંગલંબાઈનો આલેખ દોરેલ છે. આ આલેખ પરથી જોઈ શકાય છે કે તાપમાનના વધવા સાથે મહત્તમ \mathbf{W}_{λ} ને અનુરૂપ તરંગલંબાઈ (λ_m) માં ઘટાડો થાય છે. વીન (Wien) નામના ભૌતિકવિજ્ઞાનીએ દર્શાવ્યું કે આ તરંગલંબાઈ એ ઉત્સર્જક સપાટીના નિરપેક્ષ તાપમાનના વ્યસ્ત પ્રમાણમાં હોય છે, અર્થાત્

$$\lambda_m$$
 $T = અચળ$ (7.7.1)

આ સમીકરણ વીનના સ્થળાંતરના નિયમનું ગાણિતિક સ્વરૂપ કહે છે. સૂત્રમાં આવતા અચળાંકને વીનનો અચળાંક કહે છે અને તેનું મૂલ્ય 2.9×10^{-3} mK જેટલું મળે છે.

7.8 સ્ટિકન બોલ્ટ્ઝમેનનો નિયમ (Stefan – Bottzmann's Law)

ઈ.સ. 1879માં સ્ટિકન નામના વિજ્ઞાનીએ પ્રાયોગિક માહિતીના આધારે અને ઈ.સ. 1884 માં બોલ્ટ્ઝમેન નામના વિજ્ઞાનીએ સૈદ્ધાંતિક રીતે દર્શાવ્યું કે, "પદાર્થની સપાટીમાંથી એકમ ક્ષેત્રફળ દીઠ દર સેકન્ડે ઉત્સર્જતી વિકરણ-ઊર્જા એટલે કે કુલ ઉત્સર્જન-પાવર W તેના નિરપેક્ષ તાપમાનના ચર્તુઘાતના સમપ્રમાણમાં હોય છે." આ વિધાનને સ્ટિફન બોલ્ટ્ઝમેનનો નિયમ કહે છે.

$$\therefore W = \sigma e T^4 \tag{7.8.1}$$

અહીં T નિરપેક્ષ તાપમાન દર્શાવે છે. e સપાટીની ઉત્સર્જકતા છે અને σ એ અચળાંક છે, જેને સ્ટિફ્ન-બોલ્ટ્ઝમેનનો અચળાંક કહે છે. તેનું મૂલ્ય $\sigma=5.67\times 10^{-8}~{\rm Wm^{-2}K^{-4}}$ છે.

જો T તાપમાનવાળો પદાર્થ T_{s} ($T > T_{s}$) તાપમાનવાળા પરિસરમાં મૂકેલ હોય તો સમીકરણ (7.8.1) ને આધારે એવું સાબિત કરી શકાય કે પદાર્થનો ઊર્જા ગુમાવવાનો ચોખ્ખો દર

$$\frac{dQ}{dt} = e \sigma A \left(T^4 - T_s^4 \right) \tag{7.8.2}$$

જ્યાં A પદાર્થની સપાટીનું ક્ષેત્રફળ છે. (આ પરિણામ 7.8.1 પરથી કેવી રીતે મેળવી શકાય, જાતે વિચારો.)

7.9 ન્યૂટનનો શીતનનો નિયમ

(Newton's Law of Cooling)

જો કોઈ એક વસ્તુનું તાપમાન T°C અને તેના પરિસરનું તાપમાન T_ş°C હોય તેમજ T > T_ş હોય, તો સમય જતાં તે વસ્તુ ઉષ્મા ગુમાવે છે અને પરિણામે તેના તાપમાનમાં ઘટાડો થાય છે. સમયાંતરે પ્રેરિત ઉષ્માનયન દ્વારા વસ્તુના તાપમાનમાં કેટલો ઘટાડો થશે તે સમજાવવા ન્યૂટને આપેલા નિયમને ન્યૂટનના શીતનના નિયમ તરીકે ઓળખવામાં આવે છે.

ગરમ પદાર્થનો ઉષ્મા ગુમાવવાનો દર અને તેથી તાપમાનમાં થતા ઘટાડાનો દર (એટલે પદાર્થના શિતનનો દર) પદાર્થના તાપમાન અને આસપાસના તાપમાનના તફાવતના સમપ્રમાણમાં હોય છે.

આપણે જાણીએ છીએ કે m દળના, c વિશિષ્ટ ઉખ્મા ધરાવતા પદાર્થના તાપમાનમાં ΔT જેટલા ફેરફાર માટે જરૂરી ઉષ્માનો જથ્થો,

 $\Delta Q = mc\Delta T$

તેથી, પદાર્થનો ઉષ્મા ગુમાવવાનો દર,

$$\frac{dQ}{dt} = -mc\frac{dT}{dt} \tag{7.9.1}$$

ન્યૂટનના નિયમ અનુસાર, પદાર્થનો ઉષ્મા ગુમાવવાનો દર પદાર્થ અને તેની આસપાસના પરિસરના તાપમાનના તફાવત (T-T)ના સમપ્રમાણમાં હોય છે.

$$\therefore \frac{dQ}{dt} = -mc\frac{dT}{dt} \alpha (T - T_s) \qquad (7.9.2)$$

$$\therefore \frac{d\mathbf{T}}{dt} = -k'(\mathbf{T} - \mathbf{T}_{s}) \tag{7.9.3}$$

અહીં, $\frac{dT}{dt}$ એ T તાપમાને રહેલ પદાર્થના તાપમાનના ઘટાડાનો દર છે. સમીકરણ (7.9.3) એ ન્યૂટનનો શીતનનો નિયમ છે. k' અચળાંક છે અને તે ઠંડા પડી રહેલ પદાર્થના દળ અને વિશિષ્ટ ઉષ્મા પર આધાર રાખે છે. અહીં ઋણ નિશાની દર્શાવે છે કે ઉષ્મા ગુમાવવાથી સમય સાથે તાપમાનમાં ઘટાડો થાય છે. "પદાર્થનો ઉષ્મા ગુમાવવાનો દર અને તેથી તાપમાનના ઘટાડાનો દર (એટલે કે પદાર્થના ઠંડા પડવાનો દર) એ પદાર્થના અને તેના પરિસરના તાપમાનના તફાવતના સમપ્રમાણમાં હોય છે."

અહીં નોંધો કે ન્યૂટનનો શીતનનો નિયમ એ પદાર્થ અને પરિસર વચ્ચેના તાપમાનના તફાવતના નાના ગાળા માટે જ સાચો છે. જોકે વિકિરણ દ્વારા ગુમાવાતી ઉષ્માનો જથ્થો ખૂબ જ ઓછો હોય, તો આ નિયમ તાપમાનના મોટા તફાવત માટે પણ સાચો છે. વળી, જ્યારે પ્રેરિત ઉષ્માનયન દ્વારા વસ્તુ ઠંડી થતી હોય, ત્યારે જ આ નિયમનો ઉપયોગ કરવામાં આવે છે.

પ્રાકૃતિક ઉષ્માનયનના સંદર્ભમાં લૅગમૂર-લૉરેન્ટ્ઝે નીચે મુજબ શીતનનો નિયમ આપેલ છે :

$$-\frac{dT}{dt} \propto (T - T_s)^{\frac{5}{4}}$$
 (7.9.4)

ઉદાહરણ 7: 80 °C તાપમાને રહેલી કોઈ એક વસ્તુ 5 મિનિટમાં 64 °C તાપમાન સુધી ઠંડી પડે છે. અને 10 મિનિટમાં 52 °C તાપમાન સુધી ઠંડી પડે છે, તો 20 મિનિટ બાદ વસ્તુનું તાપમાન કેટલું થશે ? પરિસરનું તાપમાન કેટલું હશે ?

ઉકેલ: પ્રથમ 5 મિનિટનો તબક્કો

$$\Delta T = T_2 - T_1 = 64 - 80 = -16$$
 ਅਜੇ $\Delta t = 5$

$$\therefore \frac{+16}{5} = +k' \left(\frac{80 + 64}{2} - T_s \right)$$
 (1)

અત્રે આપણે પદાર્થના તાપમાન તરીકે પ્રારંભિક અને અંતિમ તાપમાનની સરેરાશ લીધેલ છે. હવે આ જ રીતે બીજી 5 મિનિટના તબક્કા માટે,

$$\Delta T = 52 - 64 = -12$$

$$\therefore \frac{12}{5} = k' \left(\frac{52 + 64}{2} - T_s \right)$$
 (2)

સમીકરણ (1) ને સમીકરણ (2) વડે ભાગતાં,

$$\frac{16}{5} \times \frac{5}{12} = \frac{72 - T_s}{58 - T_s}$$

$$\therefore 52 - T = \frac{4}{7} \left(\frac{32 + 1 - 32}{2} \right)$$

$$\therefore 52 - T = \frac{2}{7}(20 + T)$$

$$\therefore$$
 364 - 7T = 40 + 2T

$$364 - 40 = 9T$$

$$T = \frac{324}{9} = 36 \, ^{\circ}\text{C}$$

7.10 ગ્રીનહાઉસ અસર (Greenhouse Effect)

ગ્રીનહાઉસ એ વનસ્પતિના નાના છોડ (રોપા) યોગ્ય અને ઝડપી વિકાસ માટે ઉપયોગમાં લેવાતી, કાચની કે પ્લાસ્ટિક જેવા પારદર્શક પદાર્થની છત અને દીવાલો ધરાવતું માળખું છે. આ દીવાલો અને છતમાંથી આવતાં સૌર વિકિરણોની ઊર્જા તેમાં રહેલ વનસ્પતિ અને માટી દ્વારા શોષાય છે. વનસ્પતિ અને માટી આ ઊર્જાને ઇન્ફ્રારેડ વિકિરણો (તરંગલંબાઈ 8000A° થી 20,000A°)ના સ્વરૂપમાં પુનઃઉત્સર્જિત કરે છે. આ ઇન્ફ્રારેડ વિકિરણો માટે ગ્રીનહાઉસની છત અને દીવાલ અંશતઃ અપારદર્શી છે. તેથી આ વિકિરણોનો મોટો ભાગ ગ્રીનહાઉસના માળખામાં રહેલી હવામાં જળવાઈ રહે છે અને આમ અંદરની હવામાં એક પ્રકારે 'ગરમાવો' (Warmth) ઉત્પન્ન થાય છે.

આ દર્ષ્ટિએ આપણી પૃથ્વી અને તેની આસપાસનું વાતાવરણ પણ એક ગ્રીનહાઉસની માફક વર્તે છે. સૌર વિકિરણો UV, V, NrIR તરંગલંબાઈઓ ધરાવે છે. આપણું વાતાવરણ દશ્યપ્રકાશનું પારગમન થવા દે છે. દિવસ દરમિયાન પૃથ્વીની સપાટી અને અન્ય પદાર્થો ગરમ થાય અને ત્યાર બાદ ઇન્ફ્રારેડ વિકિરણોને ઉત્સર્જિત કરે છે. આ ઇન્ફ્રારેડ વિકિરણો વાતાવરણને ભેદીને બહાર નીકળી શકતા નથી. વાતાવરણમાં રહેલા CO_2 અને H_2O જેવા અણુઓ આ વિકિરણોનું શોષણ કરે છે અને પુનઃ ઉત્સર્જન કરે છે. જેમાંથી થોડો ભાગ પૃથ્વીની સપાટી પર પાછો ફરે છે. આ રીતે, પૃથ્વીના વાતાવરણના નીચેના ભાગમાં ઉષ્મા-ઊર્જાનો થોડો ભાગ 'સપડાઈ' જાય છે અને તેના પરિણામે તેનું તાપમાન જળવાઈ રહે છે. આ ઘટનાને ગ્રીનહાઉસ અસર કહે છે. ઇન્ફ્રારેડ કિરણો ગરમીની અસર પેદા કરવા માટે જવાબદાર હોઈ 'ઉષ્માકિરણો' પણ કહેવાય છે. આ જ કારણે રાત્રી દરમિયાન પણ 'ગરમાવો' જળવાઈ રહે છે.

કેટલાક પ્રદૂષક વાયુઓ આ ગ્રીનહાઉસ અસરમાં વધારો કરે છે. જો ગ્રીનહાઉસ અસર ન હોત તો વાતાવરણના નીચેના ભાગનું સરેરાશ તાપમાન ખૂબ નીચું હોત અને રાત્રી અને દિવસના તાપમાનમાં બહુ મોટો તફાવત પણ હોત (શું જીવન શક્ય બની શક્યું હોત ?) એટલે બધી જ ચીજવસ્તુની જેમ ગ્રીનહાઉસ અસર પણ પ્રમાણસરની હોય તો સારી ! ગ્રીનહાઉસ અસર, પ્રદૂષકોને કારણે વધવાથી ઠંડા પ્રદેશોનો બરફ પીગળવાથી, સમુદ્રની સપાટી પણ ઊંચી આવવાથી ભૂચર પ્રાણીના વસવાટ માટે જમીન ઓછી થવાની શક્યતા છે, તેથી પ્રદૂષકો ઓછા થાય તેવું કંઈક કરવું જોઈએ.

।। अति सर्वत्र वर्जयेत ।।

સારાંશ

- 1. ઉષ્મા-પ્રસરણ ત્રણ રીતે થાય :
 - (1) ઉષ્માવહન (2) ઉષ્માનયન (3) વિકિરણ
- 2. ઉષ્માવહન સામાન્ય રીતે ઘન પદાર્થોમાં જોવા મળે છે. અહીં પાસપાસેના ભાગોના તાપમાનના તફાવતને કારણે ઉષ્માનું પ્રસરણ થાય છે. જો પાસપાસે જ x=0 અને $x=x+\Delta x$ અંતરે આવેલા ભાગોનાં તાપમાન $T+\Delta T$ અને T હોય, તો ઉષ્માપ્રવાહ (H) નીચેના સૂત્રથી મળે :

$$H = \frac{\Delta Q}{\Delta t} = -kA \frac{\Delta T}{\Delta x}$$

અહીં A આડછેદનું ક્ષેત્રફળ છે. k પદાર્થની ઉષ્માવાહકતા છે.

- 3. $\frac{\Delta T}{\Delta x}$ તાપમાન પ્રચલન તરીકે ઓળખાય છે.
- 4. પદાર્થની ઉખ્યાવાહકતા પદાર્થની જાત અને કંઈક અંશે તાપમાન આધારિત છે. તેનો એકમ $Wm^{-1}k^{-1}$ છે.
- 5. કોઈ પદાર્થથી ઉષ્માવહન થવા છતાં જો દરેક ભાગનું તાપમાન અચળ રહેતું હોય, તો તે પદાર્થ સ્થાયી ઉષ્મા-અવસ્થામાં છે. તેમ કહેવાય. સ્થાયી ઉષ્મા-અવસ્થામાં

$$H = \frac{Q}{t} = \frac{kA(T_1 - T_2)}{L}$$
 $(T_1 > T_2)$

- 6. વિદ્યુતના સુવાહકો ઉષ્માના પણ સારા વાહકો છે.
- 7. ઉષ્મીય અવરોધ $(R_H) = \frac{L}{kA}$
- 8. ઉષ્મીય અવરોધ શ્રેણીજોડાણ અને સમાંતર-જોડાણના નિયમોનું પાલન કરે છે.
- 9. ઉષ્માવહનમાં પદાર્થના ઘટકકર્ણાનું કુલ સ્થાનાંતર શૂન્ય હોય છે અને ઉત્તમ વહન માટે આંતરઅશુબળો ખૂબ જ મહત્ત્વનો ભાગ ભજવે છે.
- 10. ઉષ્માનયનમાં તરલના ઘટકક્શો ખરેખર ગતિ કરીને એક સ્થાનથી બીજા સ્થાને જાય છે, તેથી ઉષ્માનયન માત્ર તરલોમાં શક્ય છે.
- 11. ઉષ્માનયન બે પ્રકારે થઈ શકે : (1) પ્રાકૃતિક ઉષ્માનયન અને (2) પ્રેરિત ઉષ્માનયન.
- 12. ઉષ્માનયન ઠંડા પ્રદેશોમાં જળચર પ્રાણીની જિંદગી બચાવવામાં અગત્યનો ભાગ ભજવે છે.
- 13. ઉષ્માના વિકિરણ દ્વારા થતાં પ્રસરણ માટે માધ્યમ જરૂરી નથી.

- 14. દરેક પદાર્થ પોતાના તાપમાનને વિદ્યુતચુંબકીય અનુરૂપ વિકિરણોનું ઉત્સર્જન કરે છે.
- 15. પદાર્થનું તાપમાન વધુ હોય, તો વિકિરણ-ઊર્જાનો દર વધુ હોય.
- 16. જે પદાર્થ દરેક પ્રકારનાં વિકિરણોનું શોષણ કે ઉત્સર્જન કરી શકે તે પદાર્થને સંપૂર્ણ કાળો પદાર્થ કહે છે.
- 17. કુદરતી સંપૂર્ણ કાળો પદાર્થ પૃથ્વી પર મળવો શક્ય નથી. સૂર્ય લગભગ 5800° K તાપમાનવાળો સંપૂર્ણ કાળો પદાર્થ છે.
- 18. **શોષકતા**: આપેલ તાપમાને કોઈ સપાટી પર વિકિરણ આપાત થતાં શોષાતી વિકિરણ-ઊર્જા અને આપાત થતી વિકિરણ-ઊર્જાના ગુણોત્તરને પદાર્થની શોષકતા (a) કહે છે.
- 19. **કુલ ઉત્સર્જન-પાવર :** નિયત તાપમાને આપેલ પદાર્થની એકમક્ષેત્રફળવાળી સપાટીમાંથી દર સેકન્ડે ઉત્સર્જાતી વિકિરણ-ઊર્જાને આપેલ સપાટીનો કુલ ઉત્સર્જન-પાવર (W) કહે છે.
- 20. સ્પેક્ટ્રલ ઉત્સર્જન-પાવર : નિયત તાપમાને આપેલ પદાર્થની એકમ ક્ષેત્રફળવાળી સપાટીમાંથી દર સેકન્ડે ઉત્સર્જાતી આપેલ આવૃત્તિ (f) પાસેના આવૃત્તિના એકમગાળાવાળા વિકિરણની ઊર્જાને તે આવૃત્તિને અનુરૂપ તે સપાટીનો તે તાપમાને સ્પેક્ટ્રલ ઉત્સર્જન-પાવર કહેવાય. જો સ્પેક્ટ્રલ ઉત્સર્જન-પાવર (W_{ρ}) હોય, તો કુલ ઉત્સર્જન પાવર

$$W = \sum_{f} W_{f}$$

- 21. **ઉત્સર્જકતા**: આપેલ સપાટીના કુલ ઉત્સર્જન-પાવર અને તે જ સંજોગોમાં રહેલ સંપૂર્ણ કાળા પદાર્થની સપાટીના કુલ ઉત્સર્જન-પાવરના ગુણોત્તરને સપાટીની ઉત્સર્જકતા (*e*) કહે છે.
- 22. **કિર્ચોફનો નિયમ** : કોઈ પણ સપાટી માટે શોષકતા અને ઉત્સર્જકતાનાં મૂલ્યો સમાન હોય છે. એટલે કે a=e સંપૂર્ણ કાળા પદાર્થ માટે a=e=1
- 23. **વીનનો સ્થળાંતરનો નિયમ** : કાળા પદાર્થમાં ઉષ્મીય વિકિરણમાં જે તરંગલંબાઈના વિકિરણ માટે સ્પેક્ટ્રલ ઉત્સર્જન-પાવર મહત્તમ હોય તે તરંગલંબાઈ અને ઉત્સર્જક સપાટીના નિરપેક્ષ તાપમાનનો ગુણાકાર અચળ હોય છે. λ_m T = અચળ આ અચળની કિંમત 2.9×10^{-3} m K છે.
- 24. સ્ટિફન બોલ્ટ્ઝમેનનો નિયમ : પદાર્થની સપાટીમાંથી એકમ ક્ષેત્રફળ દીઠ દર સેકન્ડે ઉત્સર્જિત વિકિરણ-ઊર્જા એટલે કે કુલ ઉત્સર્જન-પાવર તેના નિરપેક્ષ તાપમાનના ચતુર્ઘાતના સમપ્રમાણમાં હોય છે. $W = \sigma e T^4$
 - σ સ્ટિકન બોલ્ટ્ઝમેનનો અચળાંક છે, જેનું મૂલ્ય $5.67 \times 10^{-8} Wm^{-2} K^4$.
- 25. <mark>ન્યૂટનનો શિતનનો નિયમ</mark> : ગરમ પદાર્થમાં પ્રેરિત ઉખ્માનયન તાપમાનમાં ઘટાડાનો દર પદાર્થના તાપમાન અને પરિસરના તાપમાનના તફાવતના સમપ્રમાણમાં હોય છે.

$$\frac{dQ}{dt} \propto (T - T_s)$$

26. **લૅંગમૂર-લૉરેન્ટ્ઝનો નિયમ** : ગરમ પદાર્થમાં પ્રાકૃતિક ઉષ્માનયન દ્વારા તાપમાનમાં ઘટાડાનો દર પદાર્થના તાપમાન અને પરિસરના તાપમાનના $\left(\frac{5}{4}\right)^{\text{th}}$ ઘાતના સમપ્રમાણમાં હોય છે.

સ્વાધ્યાય

નીચેનાં વિધાનો માટે આપેલા વિકલ્પોમાંથી યોગ્ય વિકલ્પ પસંદ કરો :

- 1. ધાતુના એક સળિયાનો એક છેડો ઊકળતા પાણીમાં અને બીજો છેડો પીગળતાં બરફમાં મૂકેલો છે, તો
 - (A) સળિયાના બધા વિભાગો એકબીજા સાથે ઉષ્મીય સંતુલનમાં છે.
 - (B) સળિયાને કોઈ એક તાપમાન હોવાનું કહી શકાય છે.
 - (C) સળિયો જ્યારે સ્થાયી ઉષ્મા-અવસ્થા પ્રાપ્ત કરે ત્યારે તેને કોઈ એક તાપમાન હોવાનું કહી શકાય છે.
 - (D) સ્થાયી ઉષ્મા-અવસ્થા પ્રાપ્ત કર્યા બાદ સળિયાની ઉષ્મીય અવસ્થા બદલાતી નથી.

2.	ચોસલાંઓની ઉષ્માવાહક	ક સ્લેબ બે જુદાં-જુદાં દ્રવ્યોના સમાન જાડાઈનાં બે ચોસલાંઓનો બનેલ છે. જો આ સલાંઓની ઉષ્માવાહકતા અનુક્રમે k _, અને k ₂ હોય અને તેમના આડછેદનાં ક્ષેત્રફળ સમાન ય, તો સમતુલ્ય ઉષ્માવાહકતા હોય. (શ્રેણી જોડાણ ગણો.)				
	(A) $k_1 + k_2$		(B) $\frac{k_1 - k_2}{2}$			
	(C) $\frac{k_1 + k_2}{k_1 k_2}$		(D) $\frac{2k_1 k_2}{k_1 + k_2}$			
3.	એક સંપૂર્શ કાળો પદાર્થ T K તાપમાને 1 m² ક્ષેત્રફળ દીઠ, 1 s માં E જેટલી વિકિરણ-ઊર્જાનું ઉત્સર્જન કરે છે. જો તેનું તાપમાન અડધું કરવામાં આવે, તો વિકરણ-ઊર્જાનું મૂલ્ય થાય.					
	(A) $\frac{E}{16}$	(B) $\frac{E}{4}$	(C) $\frac{\mathbf{E}}{2}$	(D) 2E		
4.	સ્થાયી ઉષ્મા-અવસ્થામાં એક મીટરપટ્ટી (સળિયાના)ના છેડાનાં તાપમાનો 30 °C અને 20 °C છે, તો ગરમ છેડાથી 60 cm અંતરે તાપમાન છે.					
5.	(A) 25 °C (B) 24 °C (C) 23 °C (D) 22 °C લોખંડના એક બ્લૉકનું તાપમાન t_1 સમયમાં 100 °C થી 90 °C, t_2 સમયમાં 90 °Cથી 80 °C અને t_3 સમયમાં 80 °Cથી 70 °C થાય છે, તો,					
	(A) $t_1 < t_2 < t_3$		(B) $t_1 > t_2 > t_3$			
	(C) $t_1 = t_2 = t_3$		(D) $t_3 = \frac{t_1 + t_2}{2}$			
6.	વિકિરણ-ઉત્સર્જન કરતાં કાળા પદાર્થો A અને B માટે મહત્તમ તીવ્રતા (સ્પેક્ટ્રલ ઉત્સર્જન-પાવર)ને અનુરૂપ તરંગલંબાઈઓ અનુક્રમે 11×10^{-5} cm અને 5.5×10^{-5} cm છે,					
	$\mbox{d} \ \frac{T_A}{T_B} = . \label{eq:tau_A}$					
	(A) 2	(B) 4	(C) $\frac{1}{2}$	(D) 1		
7.	જેમના ઉષ્મીય અવરોધો \mathbf{R}_1 અને \mathbf{R}_2 છે, તેવા બે સળિયાને સમાંતરમાં જોડતાં સમતુલ્ય ઉષ્મીય અવરોધ છે.					
	(A) $\frac{R_1 R_2}{R_1 + R_2}$		(B) $\frac{R_1 + R_2}{R_1 R_2}$			
	(C) $R_1 + R_2$		(D) ઉપરમાંથી એક પ	ણ નહિ.		
8.	કાચનો એક મોટો ટુકડો ગરમ કરીને ઠંડો પાડવામાં આવે છે. તે ઠંડો પડે છે, ત્યારે તેમાં તિરાડ પડે છે. આમ થવાનું એક શક્ય કારણ છે.					
	(A) ઓછી ઉષ્માવાહકત (C) વધ વિશિષ્ટ ઉષ્મા	LL	(B) વધુ ઉષ્માવાહકતા (D) ઊંચે ગલનહિંદ			
9.	સ્ટીલના એક ગોળાને અ	(C) વધુ વિશિષ્ટ ઉષ્મા (D) ઊંચું ગલનબિંદુ સ્ટીલના એક ગોળાને અને એક બીજા તેવા જ લાકડાના ગોળાને અડકતાં તેઓ નીચેનામાંથી				
	તાપમાને સમાન (A) 98.4 °C	ો ઠડા કે ગરમ લાગશે	(B) 98.4 K			
	(C) 98.4 °F		(D) ઓરડાના તાપમા ં	ન		
10.	નીચેના પૈકી સૌથી વધુ	કાળા પદાર્થ (Black b	` '			
	(A) બ્લૅકબોર્ડનો પેઇન્ટ		(B) લીલું પર્શ			
	(C) દીવાની મેશ		(D) બ્લૅક હોલ			

11.	એક જ પ્રકારના દ્રવ્ય ધરાવતા બે ગોળાની ત્રિજ્યાઓ 1 m અને 4 m છે અને તેમની સપાટીનાં
	તાપમાન 4000 K અને 2000 K છે. તો એકમસમયમાં ઉત્સર્જાતી વિકિરણ-ઊર્જાની કિંમતનો
	પહેલા અને બીજા ગોળા માટે ગુણોત્તર છે.

- (A) 1 : 1
- (B) 16:1
- (C) 4:1
- (D) 1:9
- $oxed{12.}$ ન્યૂટનના શીતનના નિયમ મુજબ શીતનદર $(\Delta \mathrm{T})^n$ પર આધારિત છે. $\Delta \mathrm{T}$ તાપમાનનો પદાર્થના તાપમાન અને વાતાવરણના તાપમાનનો તફાવત છે, તો $n=\dots$.

- 13. સૂર્યનું તાપમાન T થી વધીને 2T થાય અને તેની ત્રિજ્યા R થી 2R થાય. તો પૃથ્વી પર પ્રાપ્ત થતી વિકિરણ સૌર-ઊર્જાનો પહેલા મળતી સૌર-ઊર્જા સાથેનો ગુણોત્તર થાય.
- (B) 16
- (C) 32
- 14. ત્રણ સમાન પરિમાણવાળા સળિયાને આકૃતિમાં દર્શાવ્યા મુજબ જોડ્યા છે. તેમની ઉષ્મા-વાહકતા 5k, 3k અને 2k હોય તો જંકશન O નું તાપમાન છે.

- 15. એક ગોળો, સમઘન અને પાતળી વર્તળાુકાર તકતી સમાન દળ અને સમાન દ્રવ્ય પ્રકારનું ધરાવે છે. જો તેઓની સપાટીનું તાપમાન સમાન હોય, તો નીચેના પૈકી કયું સૌથી ઓછી ઝડપથી ઠંડું પડશે ? (A) વર્તુળાકાર તકતી (B) ગોળો (C) સમઘન (D) ત્રણેય
- 16. એક પદાર્થને 1000
 m Kતાપમાન સુધી ગરમ કરેલ છે. તેની સપાટીનું ક્ષેત્રફળ $10
 m cm^2$ છે. જો તે 340.2 J ઊર્જા પ્રતિ મિનિટ ઉત્સર્જિત કરે, તો તેની ઉત્સર્જકતામાં છે.

 $(\sigma = 5.67 \times 10^{-8} \text{ W m}^{-2} \text{ K}^{-4})$

- (A) 0.1
- (B) 0.02
- (C) 0.01
- (D) 0.2

17. k અને 2k ઉષ્માવાહકતા અને x અને 4x જાડાઈ ધરાવતા બે બ્લૉકના બનેલાં સંયુક્ત ચોસલાં બે છેડાનાં તાપમાન T_2 અને T_1 ($T_2 > T_1$) છે. તો આ સ્લેબમાંથી પસાર થતી ઊર્જાનો

આકૃતિ 7.8

દર
$$\frac{A(T_2 - T_1)k}{x} f$$
 હોય તો, $f = \dots$.

- (B) $\frac{1}{2}$ (C) $\frac{2}{3}$
- $oxed{18.} \quad r_{_1}$ અને $r_{_2}$ ત્રિજ્યા ધરાવતાં બે સમકેન્દ્રી ગોલીય કવચોનાં તાપમાન $T_{_1}$ અને $T_{_2}$ છે. $(r_1 < r_2)$ આ બે કવચ વચ્ચેના પદાર્થમાંથી પસાર થતી ઉષ્માનો ના સમપ્રમાણમાં હશે.
 - (A) $\frac{(r_2 r_1)}{r_1 r_2}$

(B) $ln\left(\begin{array}{c} \frac{r_2}{r_1} \end{array}\right)$

(C) $\frac{r_1 r_2}{(r_2 - r_1)}$

(D) $r_2 - r_1$

164 ભૌતિકવિજ્ઞાન

જવાબો

1. (D)	2. (D)	3. (A)	4. (B)	5. (A)	6. (C)
7. (A)	8. (A)	9. (C)	10. (C)	11. (A)	12. (D)
13 (D)	14 (A)	15 (A)	16 (A)	17. (D)	18 (C)

નીચેના પ્રશ્નોના ટુંકમાં જવાબ આપો :

- 1. ઉષ્માવહન એટલે શું ?
- 2. તાપમાન-પ્રચલનનું પારિમાણિક સૂત્ર આપો.
- 3. ઉષ્માપ્રવાહનો SI એકમ જણાવો.
- 4. ઉષ્માપ્રવાહ જેવો જ એકમ ધરાવતી ભૌતિક રાશિ જણાવો.
- 5. ઉષ્માવાહકતાનું પારિમાણિક સૂત્ર આપો.
- 6. ઉષ્મીય-અવરોધ એટલે શું ?
- 7. પ્રેરિત ઉષ્માનયન શું છે ?
- 8. ઉષ્મીય વિકિરણની આવૃતિ કઈ બાબતો પર આધાર રાખે છે ?
- 9. સૂર્યનું તાપમાન 5800 K છે, તો સૂર્ય માટે કઈ તરંગલંબાઈનું વિકિરણ મહત્તમ સ્પેક્ટ્લ ઉત્સર્જન પાવર ધરાવે ?
- 10. ઉત્સર્જકતાનો એકમ જણાવો.
- 11. 27 °C તાપમાન ધરાવતા પદાર્થના ઉષ્મીય વિકિરણોમાં કઇ તરંગલંબાઇનું વિકિરણ મહત્તમ સ્પેક્ટ્લ ઉત્સર્જન પાવર ધરાવે છે ?
- 12. વીનના સ્થાનાંતરના નિયમ મુજબ f_m αઅહીં f_m મહત્તમ સ્પેક્ટ્લ ઉત્સર્જન પાવર ધરાવતા વિકિરણની આવૃતિ છે.
- 13. 0 °C તાપમાને કુલ ઉત્સર્જન-પાવર \mathbf{W}_1 છે, તો 546 °C તાપમાને કુલ ઉત્સર્જન-પાવર કેટલો હોય ?
- 14. ન્યુટનના શીતનના નિયમમાં આવતો અચળાંક k' શાના પર આધારિત છે ?

નીચેના પ્રશ્નોના જવાબ આપો :

- 1. વાહકના પાસપાસેના ભાગોમાંથી લંબ રૂપે પસાર થતી ઉષ્મા-ઊર્જા કઈ બાબતો પર આધાર રાખે છે, તેની ચર્ચા કરો અને તે પરથી ઉષ્માપ્રવાહનું સમીકરણ મેળવો.
- 2. યોગ્ય ઉદાહરણની મદદથી સ્થાયી ઉષ્મા-અવસ્થા સમજાવો.
- 3. તરલોમાં ઉષ્માનયન સમજાવો.
- શોષકતા અને ઉત્સર્જકતાની વ્યાખ્યા આપો અને તે પરથી કિર્ચોફ્રનો નિયમ સમજાવો.
- 5. કેવિટી અને કેવિટી વિકિરણોની સમજૂતી આપો.
- 6. કુલ ઉત્સર્જન-પાવર અને સ્પેક્ટ્લ ઉત્સર્જન-પાવરની સમજૂતી આપો.
- 7. વીનનો સ્થાનાંતરનો નિયમ લખો અને સમજાવો.
- 8. ન્યૂટનનો શીતનનો નિયમ લખો અને તેનું સૂત્ર મેળવો.

નીચેના દાખલાઓ ગણો :

1. A અને B સમાન લંબાઈના જુદાં-જુદાં દ્રવ્યના સળિયાઓ છે. દરેક સળિયાના બે છેડાઓનાં તાપમાન \mathbf{T}_1 અને \mathbf{T}_2 છે. જો આ બંનેમાંથી ઉષ્માવહનનો દર એકસરખો જોઈતો હોય, તો કઈ શરત પળાવી જોઈએ ?

$$[\text{Valoe}: \frac{K_A}{K_B} = \frac{A_B}{A_A}]$$

2. એક રૂમના ધાબાનાં પરિમાણ $4 \text{ m} \times 4 \text{ m} \times 10 \text{ cm}$ છે. આ ધાબાના ક્રૉકિટની ઉષ્માવાહકતા $1.26 \text{ W m}^{-1} \, {}^{\circ}\text{C}^{-1}$ છે. કોઈ એક સમયે રૂમની બહાર અને અંદરનાં તાપમાનો અનુક્રમે $46 \, {}^{\circ}\text{C}$ અને $32 \, {}^{\circ}\text{C}$ છે, તો (i) ધાબામાંથી $1 \, {}^{\circ}\text{sh}$ વહન પામતી ઉષ્માનો જથ્થો શોધો. (ii) જેમની ઉષ્માવાહકતા $0.65 \, \text{W m}^{-1} \, {}^{\circ}\text{C}^{-1}$ છે, તેવી $7.5 \, {}^{\circ}\text{cm}$ જાડાઈની ઈંટોનું એક સ્તર ધાબા ઉપર કરવામાં આવે, તો હવે ઉષ્માવહનનો નવો દર શોધો.

[**જવાબ**: (1) 2822 J (2) 1150 W]