Model driswer paper and Marking Scheme

Internal Assessment Test I Date Jexam:

Applied Physics I 18/09/2018

Marks: 15

9.1
9) Data:Silver has FCC structure 9=1.414 Å

Jo find:d(200) = ? d(111) = ?

Formula: - 1 \rangle $n = \frac{\alpha}{2\sqrt{2}}$. - $\frac{1}{2}M$ $\frac{2}{3}$ $\frac{1}{3}$ $\frac{1$

Solution:

:. a = 9×252 = 3.99 A

Now, $d(200) = \frac{3.99}{\sqrt{(2)^2 + (6)^2 + (6)^2}}$ = 1.99 Å -1/2 M $d(111) = \frac{3.99}{\sqrt{(1)^2 + (1)^2 + (1)^2}}$ = 2.303 Å -1/2 M

Bata:-
$$d = 0.282 \text{ nm}$$

$$0 = 8.58^{\circ}$$

$$n = 1$$

$$3 \circ \text{ find}:$$

$$\lambda = ?$$

$$3 \circ \text{ sino} = n \lambda$$

$$4 \circ \text{ sino} = n \lambda$$

$$2 \circ \text{ sino} = n \lambda$$

$$3 \circ \text{ sino} = n \lambda$$

$$3 \circ \text{ sino} = n \lambda$$

$$4 \circ \text{ sino} = n \lambda$$

$$4 \circ \text{ sino} = n \lambda$$

$$5 \circ \text{ sino} = n \lambda$$

$$5 \circ \text{ sino} = n \lambda$$

$$5 \circ \text{ sino} = n \lambda$$

$$6 \circ \text{ sino} = n \lambda$$

$$1 \circ \text{ sino} = n \lambda$$

Data:f=1MHz=1×10°Hz 8=2.65 × 103 kg/m3 Y= 8×100 N/m2 Jo Find: -Thickness (t) = ? Formula: f = 1 1/8 -1/2M Solution: f= 1/2t. 1/18 t= 1/8 $= \frac{1}{2 \times 1 \times 10^{6}} \sqrt{\frac{8 \times 10^{10}}{2.65 \times 10^{3}}} - \frac{1}{2}$ = 2.747×10-3 m t = 2.747 mm ____IM

e. Data: -9=2180 Kg/m3 Na=23 3 Nacl CL= 35.5] = 58.5 FCC > n=4 Formula: - To find: -8= nM a=? Solution > $a = \left(\frac{nM}{NR}\right)^{1/3} - \frac{1}{2}M$ $= \left(\frac{4 \times 58.5}{6.023 \times 10^{26} \times 2180}\right)^{1/3}$ a = 5.62 A - 1/2M. Dist. Hw two adjacent atoms d=a/2 = 2.81Å -1/2

9.2	
a) Draw the unit cell of HCP —	- 2M
Co-ordination Number —	112 M
Atomic Radies -	1/2 M
No. of atoms per unit cell -	1/2 M
Explanation of Diagram f explanation on co-ordination no, atomic radius f no. of atoms per unit cell.	11/2M
b) Bragg's Law- Diagram — IM Explanation — IM	
Derivation $(\Delta = BC +)$ $-1/21$ $\Delta = 2dsino$	1
$\Delta = n\lambda - 1/2M$	
$2dsino=n\lambda$ — M	

- a) What is Piezoelectric Effect IN Diagram — IM
 - Construction of Working $f = \frac{1}{2t} \sqrt{\frac{Y}{g}} \qquad f' = \frac{1}{2\pi \sqrt{LC}} \qquad 2$
 - f= f1
- 6) Magnetostriction Oscillator IM Dragram — IM
 - Working as a ultrasound generator 2M.