Control system of a rotating double pendulum

D37.

Yiting Li & Annelouk van Mierlo

Introduction

Introduction

System modelling in state space and linearization

- not a perfect fit
- similarities between linear and non-linear model

White box estimation

- 1. taking measurements of the pendulum.
- 2. optimizing the cost function to find the parameters.
- lock these variables and move on to the beam.
- 4. making the beam rotate at a constant speed for the measurements.
- 5. optimizing this cost function as well to find all the remaining parameters.

White box estimation: Pendulum

- measuring data of the pendulum drop
- holding the beam still to avoid backlash
- cost function optimization

- Amplitude range [-2, 2]
- keep error between sin(x) and xless than 2%
- keep the SNR large than 50
- Frequency range [0 30] Hz
- avoid backlash

- Model: Box-Jenkins ([7, 5, 5, 7, 0])
- For Pendulum:
- roughly follows the data
- only 50.34% accuracy
- average validation accuracy 35%

- Model: Box-Jenkins ([7, 5, 5, 7, 0])
- For Beam:
- nice fit and 90% accuracy
- average validation accuracy 85%

Observer design

- compare output setup with output from the observer
- poles for the observer are [-202,-203,-204,-205,-220]

Observer design

Controller 1: PID

- PID applied on linear model
- recovering from a distribution

-

- internal:
- [Kp, Ki, Kd] = [-10, 0, -0.02]
- Ts = 0.25 s

_

- external:
- [Kp, Ki, Kd] = [-0.5, 0, -0.02]
- Ts = 0.35 s

Controller 1: PID

- PID applied on non-linear model
- recovering from a distribution
- internal:
- Ts = 0.15 s

_

- external:
- Ts = 0.15 s

- Pole placement
- LQR

- Check the impulse response of the system
- larger poles result to a decrease in rise time and overshoot

- No quite satisfying yet

non-linear impulse response

finding a value for the cost matrix where
x1 and x2 go to the reference as fast as
possible.

smaller Q

larger Q

simulation output Pole placement

simulation output LQR

♦ Remarks

Remarks

- unwrapping the signal gave some problems
- There is blind spot
- backlash

Thank you!

•••

Questions?