

Clavis Stereometriae :

OR, A

K E Y
To the ART of
G A U G I N G ,

With a
S Y N O P S I S
OF THE
L A W S o f E X C I S E .

By W. Hunt, Phylomath.

Bonum quo communius eò melius

Licensed June the 26th 1691.
Robert Midgley.

L O N D O N :

Printed by Benj. Motte for the Author
and are to be sold at the Blue Ball on the
back side of S. Thomas Apostle's. 1691.

G.9—45

10448

Case A.A.

N. 15.

Barnley

compl
etc

food 3.25
apples

* 6122 C. 25

CLAVIS STEREOMETRIA

Clavis Stereometriae:
OR, A
K E Y
To the ART of
G A U G I N G,
With a
S Y N O P S I S
OF THE
L A W S o f E X C I S E.

By W. HUNT, Phylomath.

Bonum quo communius cò melius

Licensed June the 26th 1691.
Robert Midgley.

L O N D O N
Printed by Benj. Motte for the Author
and are to be sold at the Blue Ball on the
back side of S. Thomas Apostle's. 1691.

A
B
A
B
A
B

XIII

mplissimis, prudentissimisque

VIRIS

Henrico Ashhurst, } Baronettis.
Johanni Morden, }

Samueli Dashwood, }
Humphrido Edwin, } Militibus.
Stephano Evance, }

Guilelmo Strong, }
Johanni Foche, } Armigeris.
Francisco Parry, }

cetigalium ex Cerevisia, &c, PRAEFACTIS,
Sub auspiciis Augustiss. Monarch.

GUILELMI & MARIAE

HANCCE

CLAVEM Stereometricam

Observantiae & Gratitudinis ergo

Summa cum Humilitate, D. D. D.

G. H.

To my BRETHREN the
OFFICERS of *Excise*
Throughout
England and Wales.

THE Humors and Interests in this critical Age oblige every Author to Circum-spection, the least slip of the Pen being a sufficient Warrant to condemn a whole Book, and an Encouragement for every ignorant Pretender to claim the privilege of a *Last*.

I question not, but this small Tract (which may serve an expert Gauger for a Pocket-Companion) will be variously censured, and some perhaps may expect an Apology for its Publication.

I shall only say thus much, that as I dare not justify it to be free from all exception, so I am not sensible of any fundamental Error, but what Faults may have escaped (which are not unusual in Books of this nature) I desire you kindly to correct.

The Theorems are express in Symbols, which neither burden the Memory, nor wrack the Fancy, but plainly represent to the Eye, in a little room, the whole process of the Operation.

That this Clavis may prove a true Key to unlock the Mysteries of this most useful Art, is the bearty desire of

Your Loving Brother,

W. H.

DECIMAL ARITHMETICK.

Notation.

A Decimal Fraction hath its Numerator only expressed, the Denominator being always an Unit, Circles of Proportion, Pag. 127. with as many Cyphers postpon'd as there are places in the Numerator; and is separated from the Integer by a Point or Comma; as, the Denominator of .5 is 10; of .15 is 100; of .015 is 1000; and so on every Figure or Cypher prepon'd decreasing its value in a Decuple proportion.

Addition and Subtraction.

Place every Figure under that of the like value, and add or subtract, as if all were Integers.

To 32.256	from 37
Add { 7.07	subtr. .104
Sum-40.026	Refts--36.896

Multiplication.

Multiply the Factors as if all were Integers, and the Decimals in the Product must be equal to those in both the Factors; if they are not, supply the defect by preponing Cyphers. Dr. Wallis's Opus Arith. p. 142.

Factors { 1.305	.0375
6.3	.75
3915	1875
7830	2625
Product--8.2215	.028125

Division.

Having postpon'd Cyphers to the Dividend (if need be) divide as if all were Integers; and the first Figure in the Quotient must be of the same Denomination with that Figure in the Dividend, which at the first demand stands exactly over the place of Units in the Divisor. Dr. Wallis's Opus Arith. p. 163.

Of the Square-Root.

Or, the Decimals in the Divisor and Quotient must be equal to those in the Dividend; if they are not, supply the defect by prepending Cyphers to the Quotient.

Divisor. Dividend. Quotient.

47.3764) 78.0000000 (1.646

3062360

2197760

3027040

184456

Reduction.

A vulgar Fraction is reduced to a Decimal, by postponing Cyphers to the Numerator, and dividing it by the Denominator.

Hence you may make a Factor equal to any Divisor, &c. &c.

For if the Divisor be an Integer, divide an Unit with Cyphers by it; if a vulgar Fraction, divide the Denominator by the Numerator, and the Quotient is the Factor.

A Decimal Fraction is reduced to a Vulgar, by multiplying continually by the next lower Denominator of the Integer, keeping the places of Decimals.

Extraction of the Square-Root.

1. Divide the Number into Periods, by pointing the Units place, and so successively every second Figure; because the Square of a single Digit never exceeds two places.

But in Decimals you must point from the Units place towards the Right, and if the places are odd, postpone a Cypher to make them even.

Roots	1	2	3	4	5	6	7	8	9
Squares	1	4	9	16	25	36	49	64	81
Cubes	1	8	27	64	125	216	343	512	729

2. From the first Period towards the Left subtract the greatest Square, and place its Root in the Quotient; to the Remainder postpone the next Period, and call it the Resolvent.

3. Double the Quotient for a Divisor, and find how often it is contained in all the Figures of the Resolvent, except the last, place the Answer in the Quotient, and after the Divisor, and multiply the Divisor with the Figure last added

Of the Cube-Root.

ded by the last Figure in the Quotient, subtracting the Product from the Resolvend; to the Remainder postpone the next Period for a new Resolvend, and proceed therewith as with the first, repeating this Rule till the whole Extraction is ended.

$$\begin{array}{r} 3549456 \text{ (1884 = Root} \\ 28) 254 \\ 368) 3994 \\ 3764) 15056 \\ \dots\dots \end{array}$$

When the Number is not an exact Square, or Cube, postpone Pairs, or Ternaries of Cyphers, and work thus, and you may have what Decimals you please.

When the present Divisor exceeds its Resolvend, place a Cypher in the Quotient, and after the Divisor, but in the Cube place two Cyphers after the Divisor, and postponing the next Period, proceed as before.

Demonstration.

Let AB 12 be cut into two parts, viz. AC 2 and CB 10, then:

$$\begin{array}{rcl} CBq & = & HE = 100 \\ AC \times CB & = & CI = 20 \\ AG \times GD & = & HP = 29 \\ ACq & = & AH = 4 \end{array}$$

Fig. 4

The Sum is the entire Square AE = 144

Extraction of the Cube-Root,

1. Divide the Number into Periods, by pointing the Units place, and so successively every third Figure, because the Cube of a single Digit never exceeds three places.

2. From the first Period towards the Left, subtract the greatest Cube, and place its Root in the Quotient; to the Remainder postpone the next Period and call it the Resolvend.

3. To thrice the Square of the Quotient add thrice the Quotient for a Divisor, and find how often it is contained in all the Figures of the Resolvend except the last, place the Answer in the Quotient, and multiply thrice the Square of the first Figure by the last, setting the Product two grades short of the Units place;

Next multiply thrice the Square of the last Figure by the first, and set the Product one grade short of the Units place.

Then Cube the last Figure, and set it under the Units place.

A 4

The

Of the Cube-Root.

Oughtred's
Clavis,
Chap. 14.
The Sum of these Products is the Subducend, which taken from the Resolvend, to the Remainder postpone the next Period for a new Resolvend, and proceed therewith as with the first, repeating this Rule till the whole Extraction is finished.

$3aa = 27 \dots$	48627125	$(365 = \text{Root.}$
$3a = 9.$	27	aaa
Divisor = 279.)	21627	Resolvend.
	162..	3aae
$3aa = 3888 \dots$	324..	3ace
$3a = 108.$	216	eee
	19656	Subducend.
Divisor = 38988.)	1971125	Resolvend.
	19440..	3ace
	2700..	3ace
	125	eee
	1971125	Subducend.

Ritter's
Geometry.
p. 266.

Demonstration.

Fig. II. Let AB $\equiv 2$ be cut into two parts, viz. AC $\equiv 10$ and CB $\equiv 2$.

$$\begin{array}{rcl} ACCub. & \overline{\overline{AD}} & 1000 \\ 3AC^2 \times CB & \equiv GH + AE + BF & \equiv .600 \\ 3CB^2 \times AC & \equiv GN + HC + BD & \equiv .120 \\ CB Cub. & \overline{\overline{CN}} & ..8 \end{array}$$

Sum is the entire Cube = 1728

Mr. Raph-
son's An-
alysis & Equa-
tions.

Or by a new Method of Converging Series.

Let the Cube of (a) be equal to (c)

In Numbers $aaa = 48627125$

Supposing the unknown Quantity or Root to be divided into two parts, viz. $g + x = a$.

Put (g) equal to any Number greater or less than (a) which you may guess at by pointing the given Number, and considering the Root of the first Member.

And the Theor. will be $\frac{c - g^3}{3gg} + x$.

Then add or subtract (x) the Converging part of the second Member to or from (g), according to the Signs + or -

with

Of the Cube-Root.

with which work according to this *Theorem*, and from this new Operation a new (*g*) will arise, and if you repeat this Work, (*g*) the Number first taken, will at last Converge to a true Root, but the answer in the Fourth Operation will be exact enough in most Cases.

$300 = g$. 1 Operation.

$$\begin{array}{r} 300 \\ \hline 90000 = gg \\ 300 \\ \hline 27000000 = ggg \\ 48627125 = c \end{array}$$

$3gg = 270000 + 21627125 (+80)$

300

$380 = g$ 2 Operation.

$$\begin{array}{r} 380 \\ \hline 144400 = gg \\ 380 \\ \hline 54872000 = ggg \\ 48627125 = c \\ 3gg = 433200 - 6244875 (-13 \\ 380 \\ \hline 367 \end{array}$$

367 = g 3. Operation

$$\begin{array}{r} 367 \\ \hline 134689 = gg \\ 367 \\ \hline 49430863 = ggg \\ 48627125 = c \end{array}$$

$3gg = 404067 - 803736.000 (1.989$

367.

$365.011 = g$ 4. Op.

365.011

$$\begin{array}{r} 133233.030121 = gg \\ 365.011 \end{array}$$

$$\begin{array}{r} 48631521.5574966331 = ggg \\ 48627125. = c \end{array}$$

$3gg = 399499.090363) - 4396.5574966331 (-011$

365.011

A 4

365 = a To

Geometrical Definitions.

To extract the Root of

The Square.

$$\text{Theor. } \frac{aa - b}{2g} = x. \quad \text{Byquadrat. } \frac{aaaa - d}{4gg} = x. \quad \text{5th. Power. } \frac{aaaaa - f}{5ggs} = x.$$

Of the three Forms of Quadratick Equations.

$$\text{1. } aa + ba - c \\ \text{Theor. } \frac{c - gg - bg}{2g + b} = x. \quad \text{2. } aa - ba - c \\ \frac{c + bg - gg}{2g - b} = x. \quad \text{3. } ba - aa - c \\ \frac{c + gg - bg}{b - 2g} = x.$$

Of the three Forms of Cubick Equations.

$$\text{1. } aaa + ba - d \\ \text{Theor. } \frac{d - ggg - bg}{3gg + b} = x. \quad \text{2. } aaa - ba - d \\ \frac{d + bg - ggg}{3gg - b} = x. \quad \text{3. } ba - aaa - d \\ \frac{d + ggg - bg}{b - 3gg} = x.$$

In Geometry there are three kinds of Magnitude,

viz. $\left\{ \begin{array}{l} \text{Lines,} \\ \text{Surfaces,} \\ \text{Solids} \end{array} \right\}$ having $\left\{ \begin{array}{l} \text{length only.} \\ \text{length and breadth.} \\ \text{length, breadth, and depth.} \end{array} \right\}$

*Meter.
Prob.
Geometry.
P. 125.*

Each of which is measured by some known kind of Magnitude that is like to it; as a Line is measured by a Line, a Surface by a Surface, and a Solid by a Solid; so when you have found how many *Lineal* Inches are in a *Line*, or how many *Square* Inches are in a *Surface*, or how many *Cube* Inches are in a *Solid*, then is the Content of either of these Magnitudes known.

Now the common Measure for *Ganging* is the *Gallon*, of which there are three sorts, viz. the *Ale-gallon* containing 282 Cube-Inches, the *Wine* 231, and the *Corn* 272.25.

Thiometry, p. 289. Dr. *Wybard* after a very diligent enquiry, concludes the *Wine-gallon* to contain but 224 or 225 Inches at most.

And by a late Experiment of Mr. *Walker's*, who caused a brazen Vessel to be made by an accurate Workman in form of a rectangular Parallelepipedon, whose Base was 4 Inches square, and Depth 14 Inches (as Mr. *Gunton* had done that for the *Ale-gallon*) it was found to contain only 224 Inches, for the Liquor in this Vessel exactly filled the *Standard Gallon in Guild-Hall, L O N D O N* (which is generally agreed to be the most ancient and true measure) in the presence of Mr. *Flemsteed*, Mr. *Halley*, and several other learned and worthy Gentlemen.

This

Of a Square, Oblong, Triangle, &c.

18

This settled by a Law, would improve the Revenue
some Thousands per Ann.

Mensuration of Surfaces and Solids.

I. Prob. By AB, and BC: to find the Area of ABCD. Fig. III. IV.

A Square is a Figure contained under four Right-Angles and four Sides.

An Oblong under four Right-Angles and four Sides, any two of which being opposite are parallel and equal.

282) $ABg\ 144 (.5106 A.G. Or AB \times BC \times .0035461.$ 33 2 1.

II. Prob. By AC, and BP: to find the Area of ABC. Fig. V.

A plain Triangle is a Figure bounded by three Right Lines including three Angles.

364) $AC \times BP 168 (.2979 A.G. Or AC \times BP \times .00177355$ 41 2 1.

For a Triangle is $\frac{1}{2}$ its circumscribing Parallelogram. Gingers Magaz. Pt. 132.

Note, All manner of irregular right lined Figures may be reduced into Triangles, and thus measured.

III. Prob. By AB: to find the Perifery ABCD, & cont. Fig. VI.

A Circle is a Figure contained under one Line, called the Perifery, Circumference or Perimeter as ACBD.

The Centre is a Point in the middle, from whence all right Lines drawn to the Perifery are equal.

A Diameter, as AB is a right Line drawn thro the Centre crossing the Perifery, and dividing the Circle into two equal parts.

A Chord or Subtense, as CD is a right Line crossing the Perifery, and dividing the Circle into two unequal parts. D. Newton's Infis. p. 45.

A Versed Sine, as AE is a part of the Diameter comprehended between an Arch of the Perifery and its Chord. Math. Infis. p. 42.

A Sector, as ACKD is a part of a Circle contained by an Arch of the Perifery, and two Semi-diameters drawn from the Centre.

A Segment, as CAD is a part of a Circle bounded on one side by a Chord, and on the other by an Arch of the Perifery.

IV. Prob. By AB, or ACBD: to find the Area, & cont.

$$Dg : ABg :: \odot D : \odot AB.$$

$$z : 841 :: .0027851 : 2.3423 A.G.$$

$$Or, Pg : ACBDg :: \odot P : \odot ACBD.$$

$$z : 8300.3 :: .00028239 : 2.3423 A.G.$$

Fox

12 Of a Circle and its Segment.

For the Areas of all Circles are in proportion as the Squares of their Diameters, or Peripheries.

$$\text{And } \sqrt{2.3423 \times 359.054} = AB 29$$

$$\sqrt{2.3423 \times 3543.7163} = ACBD 91.106$$

	Of the D. I.	Of the C. I.	Of the P. I.	Of the C. I.
Inch.	.785398	1.273239	.0795775	12.566337
A.G.	.0027851	359.054	.00028219	3543.7163
W.G.	.0034	294.118	.00024449	2902.8315

D 1 : AB 29 :: Perif. of D 3.14159 : Perif. of AB 91.106
Or P 1 : ACBD 91.106 :: Diam. of P 31831 : Di. of ACBD 29

For the Peripheries of all Circles are proportional to their Diameters.

Note., All the Quotations from Archimedes are according to the Commentary of Franciscus Maurolycus, Printed at Panorma, Anno 1685.

Fig. VI. V. Prob. By AB, and AE : to find the Area of CAD.

Logar. compl. Arithm. CK 14.5 — 8.838632

Logar. co-versed Sine EK 6 — 0.778151

Co-Sine of the Angle EKC $65^{\circ}.56$ — 9.616783

Mr. Collins's Or, As the Sum of Hypotenuse, and half the greater Side Plain Scale, is to the lesser Side :

So is 85.9437 deg. ($\frac{3}{4}$ of D. of a \odot whose P. is 360 deg.) to the Angle opposite to the lesser Side.

$CK + \frac{1}{2} EC : EK ::$ Stat. N° : Angle ECK

21.1 : 6 :: 85.9437 : 24.44
whose Compl. to 90 degr. is the Angle EKC $65^{\circ}.56$

Perif. : Angle CKD :: \odot AB : Sector ACKD.

360 : 131.12 :: 660.52 : 240.57

Then ED 13.2 \times EK 6 = Triangle CKD 79.2

And ACKD — CKD = Segment CAD

240.57 — 79.2 = 161.37 Inches

Or by Segments of a Circle.

AB : Radius :: AE : VS = Segment.

29 : 100 :: 8.5 : .2931 = .2443

And Area $660.52 \times .2443$ = CAD 161.37

Or, \odot AB : Radius :: CAD : Segment = V. S.

$660.52 : 16000 :: 161.37 : .2443 = .2931$

And Diameter AB 29 $\times .2931$ = AE 8.5.

Gauger's Magazine, No. 34.

VI. Prob.

Of an Ellipsis and Parabola.

13

Prob. By AB, and CD: to find the Perifery ACBD. Fig. VII.

Ellipsis, as ACBD, is a Section of a Cone cut by a Plane through both sides of the Triangle under the Vertex. 3. Mydor. I.
Defin. tertia.

: Radius :: CD : Axe = Perif. Sir Jonas Moore's

: 100 :: 28.37 : .3532 = 2.2508 Fortificatio-

Axe AB 80.31 X 2.2508 = ACBD 180.762 p. t.

L. Prob. By AB, and ACBD: to find the Conjugate Fig. VII.
Diameter CD.

: Radius :: ACBD : Perif. = Axe

: 100 :: 180.762 : 2.2508 = .3532

Axe AB 80.31 X .3532 = CD 28.37

Prob. By AB, and CD: to find the Area of ACRD. Fig. VII.

: AB x CD :: CD : @ACBD. 8 Archim.
de Conicis.

: 80.31 x 28.37 :: .0027851 : 6.345 A. G. Spheroid. I.

Area $\sqrt{AB \times CD} =$ Diam. whose Area is = Ellipsis.

Prob. By AB, CD, and AG: to find the Area of EAF. Fig. VII.

PR Chord of the Circle APBR = 65.1 Van Scooten's

B : CD :: PAR : EAF Miscellan.

.31 : 28.37 :: 2.354 : 0.832 A. G. P. 312.

Or by Segments of a Circle.

AB : Radius :: AG : V.S = Segment

.31 : 100 :: 15.17 : .1889 = .1311

Area 6.345 X .1311 = EAF 0.832 A. G.

Prob. By AB, CD, and CE: to find the Area of HCL Fig. VIII.

FG Chord of the Circle CFDG = 26.4 Van Scooten's

D : AB :: FCG : HCL Miscellan.

.37 : 80.31 :: 0.548 : 1.551 A. G. P. 312.

Prob. By AB, and VP: to find the Area of AVB. Fig. IX.

Parabola as AVB is a Section of a Cone cut by a Plain parallel to the side of the Triangle. 3. Mydor. I.
Defin. tertia.

B 29 X $\frac{2}{3}$ VP 44.925 = AVB 1302.825

or a Parabola is $\frac{2}{3}$ of its circumscribing Parallelogram. Archim. de quadr. Par.

Prob. By AB, VP, and AE: to find the Area of AEF. Fig. IX.

AB_q : 6AB - 4AE X VP :: AE_q : AEF M. Hodges's

.3523 : 174 - 40 X 67.388 :: 100 : 359.91 Gauging.

Of a Prism and Pyramid.

Fig. IX. No XIII. Prob. By AB, CD, and VP: to find the Area of CVD.

$$\begin{array}{l} AB \text{ Cub.} : CD \text{ Cub.} :: AVB : CVD \\ 24389 : 12167 :: 1302.825 : 649.95 \end{array}$$

Fig. X. XIV. Prob. By AB, and EP: to find the Solidity of ABCD.

A Prism is a Solid contained under several Plains, whose Bases, whether Triangular, Quadrangular, or Multangular, are equal, parallel, and alike situate.

Fig. XI. A Cylinder as ABCD is a circular Prism made by the conversion of the rectangle Parallelogram APED about the Side EP, abiding fixed till the motion end where it began.

$$AB \times \text{Factor} \times EP = \text{Frustum.}$$

$$841 \times .0027851 \times 50 = 117.114 \text{ A.G.}$$

If the Base be an Oblong, or an Ellipsis, take the rectangle of the Conjugates in the Base.

Area of a Prism the Diam. or Side 1.		Dg or Sq of a Prism the Area 1.	
	Inches.		Ale Gall.
Cyl.	.785398	.0027851	1.273239
III.	.433013	.0015355	2.309401
IV.	1.000000	.0035461	1.000000
V.	1.720478	.0061010	.581234
VI.	2.596075	.0092130	.384900
VII.	3.633931	.0128863	.275184
VIII.	4.828428	.0171221	.207104

Fig. XI. XV. Prob. By AB, and ZP: to find the Solidity of AZB.

Fig. XII. A Pyramid is a Solid contained under divers Plains, and from a Triangular, Quadrangular, or Multangular Base decreases equally till it end in a Point at the Vertex.

Fig. XII. A Cone, as AZB is a circular Pyramid made by the conversion of the Triangle AZP about its Perpendicular ZP, remaining fixed till the motion end where it began.

$$ZP \quad \text{Axe of the Cone} \quad \left\{ \begin{array}{l} AZB = 120.8333 \\ CZD = 95.8333 \end{array} \right.$$

$$AB \quad \text{Diameters of the Frustum} \quad \left\{ \begin{array}{l} 29. \\ 23. \end{array} \right.$$

$$EP \quad \text{Height of the Frustum.} \quad \left\{ \begin{array}{l} ABCD = 25. \\ CDnV = 13. \end{array} \right.$$

$$EV \quad \text{Diameter at that distance} = 26.12$$

$$\text{Difference of Areas in Ale Gall.} = .8690$$

Z Sun
X Diff
ABg
841
Or ○
For

Cone
III.
IV.
V.
VI.
VII.
VIII.

XVL Pr
ZP C
1764
Or AB
243
And A
94.34

ZP
120.8333
And A
Or AZB
94.34
And A

XVII. Pr
120.8
And Z
95.83

XVIII. P
AB -

Of a Pyramid or Cone.

15

Z Sum 52 } S Semi-Sum 26 } of Diam. of the
 X Difference 6 } N Semi-Difference 3 } Frust. ABCD.

ABg × Factor × ZP = AZB

841 × .00092837 × 120.8333 = 94.3417

Or ⊙ AB $2.3423 \times \frac{1}{3} ZP 40.278 = AZB = 94.3417$

For every Pyramid is $= \frac{1}{3}$ of its circumscribing Prism. 10 : 12.

Factors.			Divisors.		
	Inches.	Ale Gall.		Inches.	Ale Gall.
Cone	.261799	.00092837		3.819717	1077.161
III.	.144338	.00051184		6.928203	1953.753
IV.	.333333	.00118203		1.000000	846.000
V.	.573493	.00203366		1.743702	491.724
VI.	.866025	.00371000		1.154700	325.626
VII.	1.211310	.00429543		.825552	232.806
VIII.	1.6094761	.00570737		.621321	175.212

XVI. Prob. By AB, ZP, and ZE: to find the Solidity of CZD. Fig. XI.

ZP Cub. : ZE Cub. :: AZB : CZD

1764249 : 880135 :: 94.3417 : 47.0645 A.G. 8 : 12.

Or AB Cub. : CD Cub. :: AZB : CZD 12 : 12.

24389 : 12167 :: 94.3417 : 47.0645 A.G.

And AZB : CZD :: ZP Cub. : ZE Cub.

94.3417 : 47.0645 :: 1764249 : 880135.

¶ Or by Segments of a Cone.

ZP : Radius :: ZE : S.A = Segm.

120.8333 : 100 :: 95.8333 : .7931 = .4989

And Content 94.3417 × .4989 = CZD 47.0645 A.G.

Or AZB : Radius :: CZD : Segment = S.A.

94.3417 : 10000 :: 47.0645 : .4989 = .7931

And Axe AB 120.8333 × .7931 = ZE 95.8333

XVII. Prob. By ZP, ZE, and AB: to find CD, &c cont.

Fig. XD

ZP : ZE :: AB : CD

4 : 6.

120.8333 : 95.8333 :: 29 : 23

And ZE : ZP :: CD : AB

95.8333 : 120.8333 :: 23 : 29

XVIII. Prob. By AB, CD, and EP: to find ZP, &c cont.

Fig. XL

AB - CD : AB :: EP : ZP

11 : 5.

6 : 29 :: 25 : 120.8333

B 2

And

16 Of the Frustum of a Pyramid or Cone.

$$\text{And } AB : AB - CD :: ZP : ZE \\ 29 : 6 :: 120.8333 : 95.8333$$

Fig. XL. XIX. Prob. By AB, CD, EP, and RP: to find nV.

$$EP : RP :: AB - CD : AB - nV.$$

$$25 : 12 :: 6 : 2.88$$

$$\text{And } AB 29 - 2.88 = nV 26.12$$

Or EP) AB - CD (D Addend or Subducent.

$$25) \quad 6 \quad (.24$$

$$\text{And } AB - D \times RP = nV. \quad \text{Or } CD + D \times ER = nV.$$

$$29 - 2.88 = 26.12 \quad 23 + 3.12 = 26.12$$

Fig. XI. XX. Prob. By AR,CD, and EP: to find the Solidity of ABCD.

$$\text{Mr. Day's 1077) } Zg - AB \times CD \times EP = ABCD. \\ \text{Missell. } 2704 - 667 \times 25 = 47.28 \text{ A.G.}$$

P. 41.

$$\text{Mr. Anders 359) } AB \times CD + \frac{1}{3} Zg \times EP = \text{Frustum} \\ \text{from Stereom. } 667 + 12 \times 25 = 47.28 \text{ A.G.} \\ \text{Prop. p. 3.}$$

$$\text{Merius's } \odot S + \frac{1}{3} \odot N \times EP = \text{Frustum.}$$

$$\text{Pratt. Geom. } 1.8827 + .0084 \times 25 = 47.28 \text{ Ale Gall.} \\ \text{P. 196.}$$

$$\text{Or } \odot AB - \frac{1}{3} \odot AB - \odot CD - \frac{1}{6} \odot x \times EP = \text{Frustum.} \\ 2.3423 - .4345 - .0167 \times 25 = 47.28$$

$$\text{Or } \odot CD + \frac{1}{2} \odot AB - \odot CD - \frac{1}{6} \odot x \times EP = ABCD \\ 1.4733 + .4345 - .0167 \times 25 = 47.28$$

$$\text{Or Against 6 the Difference of Diameters stands 3.06} \\ \text{And } 23 + 3.06 = 26.06 = 1.8911 \times 25 = 47.28 \text{ A.G.}$$

Frustum of a Cone.

D.D.	.0	.1	.2	.3	.4	.5	.6	.7	.8	.9
1	0.50	0.55	0.60	0.65	0.70	0.75	0.80	0.85	0.91	0.96
2	1.01	1.06	1.11	1.16	1.21	1.26	1.31	1.36	1.41	1.46
3	1.52	1.57	1.62	1.67	1.72	1.77	1.82	1.87	1.92	1.98
4	2.03	2.08	2.13	2.18	2.23	2.28	2.33	2.39	2.44	2.49
5	2.54	2.59	2.64	2.70	2.75	2.80	2.85	2.90	2.95	3.01
6	3.06	3.11	3.16	3.21	3.27	3.32	3.37	3.42	3.47	3.53
7	3.58	3.63	3.68	3.73	3.78	3.83	3.89	3.94	3.99	4.05
8	4.10	4.15	4.20	4.26	4.31	4.36	4.41	4.46	4.52	4.57
9	4.62	4.68	4.73	4.78	4.83	4.89	4.94	4.99	5.04	5.10
10	5.15	5.20	5.25	5.31	5.36	5.41	5.47	5.52	5.57	5.62

Of the Frustum of a Pyramid or Cone. 17

To find the Solidity at any Depth, as at RP.

By Prob. 19. if is $27.56 - 2.1155 \times RP_{12} = ABVn25.39 A.G.$

Or by Segments of the Frustum of a Cone.

CD) AB (Tab. N°

23 29.00 1.26 against it stands (4) which Note,

EP : Radius :: ER : S. A = Segmt. under (4)

25 : 100 :: 13 : .52 = .4628

And Content $47.28 \times .4628 = CVnD 21.88 A.G.$

ABCD: Radius :: CVnD : Segment = S. A.

Or $47.28 : 10000 :: 21.88 : 4628 = .52$

And Height EP 25 $\times .52 = ER 13.$

1.08	1
1.14	2
1.20	3
1.26	4

	I. Frust.	I. Diff.	2. Dif.	3. D.	
1	2.3229	2.2845	.0381		
2	4.6074	2.2464	.0378	.003	
3	6.8538	2.2086	.0375	.003	
4	9.0624	2.1711	.0372	.003	
5	11.2335	2.1339	.0369	.003	
6	13.3674	2.0970	.0366	.003	
7	15.4644	2.0604	.0363	.003	
8	17.5248	2.0241	.0360	.003	
9	19.5489	1.9881	.0357	.003	
10	21.5370	1.9524	.0354	.003	
11	23.4894	1.9170	.0351	.003	
12	25.4064	1.8819	.0348	.003	
13	27.2883	1.8471	.0345	.003	
14	29.1354	1.8126	.0342	.003	
15	30.9480	1.7784	.0339	.003	
16	32.7264	1.7445	.0336	.003	
17	34.4709	1.7109	.0333	.003	
18	36.1818	1.6776	.0330	.003	
19	37.8594	1.6446	.0327	.003	
20	39.5046	1.6119	.0324	.003	
21	+1.1155	1.5795	.0321	.003	
22	+2.6954	1.5479	.0318	.003	
23	+4.2428	1.5156	.0315	.003	
24	+5.7584	1.4841			
25	+7.2425				

Thus to find the Content upon every Inch, you need only the four first Frustums; for the third Differences being equal, the rest are found by an easie Collection, as in the preceding Table.

And this will hold in the Frustum of any regular polygonal Pyramidal Tun.

But most Tuns having some irregularity in their Sides, and leaning a little when fixed for conveniency of Cleansing, A practical way is to measure in so much Liquor as will just

18 Of the Frustum of a Pyramid or Cone.

Fig. XIII. cover the Bottom or *Hoof CēD*: Then make $CF = cB$, and take the *Diameters* in the middle of every 10 Inches of *combe*. Mr. Thomas take the *Diameters* in the middle of every 10 Inches of the Frustum *FCēB*, so will (*im*) be the first 5 Inches from the top (*no*) the second 15 Inches from the top; now (*gD*) the Height of the *Hoof* being 3 Inches, the next Frustum will be 2, in the middle of which, *viz.* at 6 Inches from (*go*) take the *mean Diameter pr*, set them down with their proper *Areas*, and removing the Points one place forwards, by *Addition* you have the Content of *FCēB*, to which add the Liquor in the *Hoof CēD*, the Sum is the Content of *FCBD*.

If you take the *Diameters* in the *side Line* (as is usual) you must allow for the Difference between the *Perpendicular* and *slant Height* in every Segment.

Lastly, If from the whole Content you take the mean Area of the first 10 Inches ten times, and from the Remainder the mean Area of the second 10 Inches ten times, and from this last Remainder the mean Area of the next Frustum, till you wear out the Depth, you will make a Table shewing what Gallons are in the Tun at any number of dry Inches.

XXL. Prob. *By BD, FG, and GH: to find the Solidity of FGB, or GDB.*

Mr. Abrab. 1077BD-FG) BDx $\sqrt{BD \times FG}$ -FG in FGxFT FGB
 Sharp. 6462 29x 25.8263 - 529 in 575 (19.57 A.G.
 1077BD-FG) BDq-FG x $\sqrt{BD \times FG}$ in BDxGH (GDB
 6462) 841-23x 25.8263 in 725 27.71

Mr. Dury's 1077) $FG_g + \frac{1}{2} FG \times BD \times FT$ (FGB
 Geiger. 129 + 133.5 x 25 20.02 A.G.

$$1077 \left(\frac{BDg + \frac{1}{2}FG \times BD \times GH}{841 + 333.5 \times 25} \right) GBD$$

XXII. Prob. By BD, FG, GH, and EI, or FS: to find the
Solidity of EKD, or FLM.

By Prob. 18. ZC Axe of the Cone ZBD is 120.8333
Mr. Abram. By Prob. 19. EP Diam. at top of the Segment is 26.12
Sect.

$$\sqrt{BH_4 + GH_4} = GB \quad \left\{ \begin{array}{l} \text{Transv. Diameter of the Li-} \\ \text{quors Surface.} \end{array} \right.$$

GH 25 : BD 29 :: EI 12 : DK 13.92

GH 25 : GB 36.069 :: EI 12 : EK 17.313

FG 23 : EP 26.12 :: GB 36.069 : EN 40.962

Circle

Place this between pag. 13 and 19.

Of the Frustum of a Pyramid or Cone. 19

Circles Segment $\{ BD_{29} \}$ & vers'd $\{ DK \ 13.92 \}$ is $313.417 = S$
 whose Diam. is $\{ EN_{40.962} \}$ Sine $\{ EK \ 17.313 \}$ is $529.63 = T$

$$S = \frac{T \times EP \times \sqrt{BD \times FG} \times \frac{1}{3} ZC}{GBg} = EDK$$

$$313.417 - 274.619 : \times 40.278 = 1562.71$$

Again $ZC - GH = ZO$ Axe of the Cone $ZFG \ 95.8333$

By Prob. 19. MR Diam. at top of the Segment is 25.4

$$GH \ 25 : FG \ 23 :: FS \ 10 : FL \ 9.2$$

$$GH \ 25 : GB \ 36.069 :: FS \ 10 : ML \ 14.428$$

$$BD \ 29 : MR \ 25.4 :: GB \ 36.069 : MV \ 31.6$$

Circles Segment $\{ FG_{23} \}$ & vers'd $\{ FL \ 9.2 \}$ is $155.17 = R$
 whose Diam. is $\{ MV_{31.6} \}$ Sine $\{ ML \ 14.428 \}$ is $349.76 = N$

$$N \times MR \times \sqrt{BD \times FG} - K : \times \frac{1}{3} ZO = FLM$$

$$GBg$$

$$175.85 - 155.17 : \times 31.944 = 660.6$$

XXIII. Prob. By $\{ AB_{38.4} : KN_{32} \}$ Rectangular Below, Fig. XVI.
 $\{ CD_{30.} : HI_{25} \}$ Conjugates Above,
 and Depth EP 25: to find the Solidity of the Elliptick Frus-
 tum ABeCDe.

$$1077) : AB + CD \times NK + CD \times HI : \times EP \quad \text{Frustum} \quad \text{Mr. Abrab. Sharp.}$$

$$68.4 \times 32 + 750 : \times 25 = 68.22 \quad A. G.$$

Or find two Geometrical Means between the Conju-
 gates above and below, and the Operation is the same as
 in Prob. 20.

XXIV. Prob. By AB, CD, RE, and AL: to find ALN. Fig. XIV.

By Prob. 18. ZE the Cone's Axe is 120.8333.

Mr. Hodge-
son's Gaug-
ing, p. 114.

$$\sqrt{EP_{210.25} - LE_{36}} = LP.$$

$$6AB_{174}) PK_{\text{cub.}} 18399.744 (105.746 \text{ which call } (N)$$

Segment APLK when AB is 29 and AL 8.5 is 161.37

$$APLK - N \times \frac{1}{3} ZE = AIN$$

$$161.37 - 105.746 \times 40.278 = 2240.42$$

XXV. Prob. By AB, CD, RE, and AL: to find the Solidity Fig. XV.
 of ALT, or ALND.

Divide AL by AB, and DN by DC, with the Quotients Mr. Abrab.
 enter the Table under V. S. the Numbers found against Sharp.
 them call T and Z.

Segment APLK when AB is 29, and AL 8.5 is 161.37

$$N) APLK \times AL \times T \times RE \quad ALT$$

$$3) 161.37 \times 8.5 \times .369822 \times 25 = 4227.204$$

And

Of a Prismoid.

And Segment DaNb when DC is 23 and DN 5.5 is 76.28
 $N) APLK \times AL \times T - DaNb \times DN \times Z \times RE(ALDN$
 $3) 161.37 \times 8.5 \times .369822 - 76.28 \times 5.5 \times .376659 \times 25 = 2910.34$
 (i.e.) 10.34 A.G.

V.S.	T.	V.S.	T.	V.S.	T.	V.S.	T.
.0	.400000	.13	.388483	.26	.374104	.39	.355306
.1	.399192	.14	.387493	.27	.372843	.40	.353595
.2	.398373	.15	.386486	.28	.371555	.41	.351845
.3	.397543	.16	.385461	.29	.370239	.42	.350042
.4	.396701	.17	.384418	.30	.368894	.43	.348186
.5	.395846	.18	.383356	.31	.367520	.44	.346274
.6	.394978	.19	.382274	.32	.366116	.45	.344305
.7	.394196	.20	.381172	.33	.364680	.46	.342265
.8	.393299	.21	.380049	.34	.363211	.47	.340157
.9	.392286	.22	.378905	.35	.361707	.48	.337972
.10	.391358	.23	.377740	.36	.360166	.49	.335701
.11	.390415	.24	.376552	.37	.358587	.50	.333333
.12	.389457	.25	.375340	.38	.356968		

Or you may find ALDN or LBCN by Segments of a Circle propè verum.

From or to AL or LB; subtract or add the Semi-Difference of the Greater and Mean Diameter, which Note, and say :

M.D : Radius :: Noted N° : V.S = Segm.	GD 29
26.06 : 100 :: 7.03 : .2698 = .2176	M.D 26.06
And Cont. $47.28 \times .2176 = ALDN 10.29 A.G.$	2.94
	AL 1.47
	8.5
	7.03

Fig. XVII. XXVI. Prob. By $\{ AB:CD = 3:8 \}$ Rectangular Below,
 $\{ IF:GH = 2:4 \}$ Conjugates Above,
 and Depth EP 50: to find the Solidity.

A Prismoid is a Solid contained under several Plains, whose Bases are rectangular Parallelograms, parallel and alike situate.

(i.e.) IF is directly opposite to AB, and GH to CD.

*Mr Dary's Gauger, When the Bases are Circular or Elliptical, then it is called F. 19. a Cylindroid.

* 1077 $\frac{1}{2} (AB + IF) \times CD + \frac{1}{2} (IF + GH) \times EP$ Frustum
 $\frac{1}{3} (8 + 14) \times 30 + \frac{1}{3} (8 + 19) \times 24 \times 50 = 124.76 A.G.$

Note

Of a Parabolick Conoid.

21

Note, By this Prob. you may find the Solidity of any Tun, whose parallel Bases are rectangular Parallelograms or Ellipses whether they are Alike or Unlike. Proportional or Disproportional, Alike situate or Inverted.

XXVII. Prob. By AB, and VP: to find the Solidity of AVB. Fig. XVIII.

AVB is a Parabolick Conoid made by the rotation of the 4. Archim. Semi-Parabola, AVP about its Axe VP remaining fixed de Conoid & Spheroid. till the motion end where it began.

VP		AVB	67.388
VL	Axe of the Conoid	CVD	42.388
AB	Diameters of the Frustum		29.
CD			23.
LP	Height of the Frustum	ABCD	25.
EP		ABOR	12.
RO	Diameter at that distance		26.3
AG	Versed Sine		8.5
DF	Versed Sine ($= AG + DL - AP$)		5.5
X	Difference		6
S	Semi-Sum { of Diamet. of the Frust. ABCD		26
N	N Semi-Differ.		3
Difference of Areas in Ale Gallons			.8690

$$\text{AB} \times \frac{\text{Radius}}{4\pi} \times .0013925 \times 67.388 = 78.92 \quad \{ \text{A. G.}$$

$$\text{Or } \odot \text{AB } 2.3423 \times \frac{1}{2} \text{ VP } 33.694 = 78.92$$

For every Parabolick Conoid is $\frac{1}{2}$ its circumscribing Cylinder.

	Factors.	Divisors.
Inch	.392699	254.648
A. G.	.0013925	718.106
W. G.	.0017	588.236

11. Archim.
de Conoid &
Spheroid. 2.

XXVIII. Prob. By AB, VP, and VL: to find the Solidity Fig. XVIII. of CVD.

$$\begin{array}{lclclcl} VP_g & : & VL_g & :: & AVB & : & CVD \\ 4541.14 & : & 1796.74 & :: & 78.92 & : & 31.228 \quad \{ \text{A. G.} \\ \text{Or } AVB & : & CVD & :: & VP_g & : & VL_g \\ 78.92 & : & 31.228 & :: & 4541.14 & : & 1796.74 \end{array} \quad \begin{array}{l} 15. \text{ Archim.} \\ \text{de Conoid &} \\ \text{Spheroid. 2.} \end{array}$$

Or by Segments of a Parabolick Conoid.

$$VP : \text{Radius} :: VL : \text{S.A.} = \text{Segment.}$$

$$67.388 : 100 :: 42.388 : .629 = .3957$$

$$\text{And Content } 78.92 \times .3957 = \text{CVD } 31.228 \quad \{ \text{A. G.}$$

Or

22 Of the Frustum of a Parabolick Conoid.

Or $AVB : \text{Radius} :: CVD : \text{Segment} = S.A.$
 $78.92 : 10000 :: 31.228 : .3957 = .629$
 And $Axe VP 67.388 \times .629 = VL 42.387.$

Fig.XVIII. XXIX. Prob. By AB, VP, and VL: to find CD, & cont.

2. *Mit der J.* $VP : VL :: ABq : CDq$
 $67.388 : 42.388 :: 841 : 529$
 Or $VL : VP :: CDq : ABq$
 $42.388 : 67.388 :: 529 : 841$

Fig.XVIII. XXX. Prob. By AB, CD, and LP: to find VP, & cont.

Mr. Anders- $ABq - CDq : ABq :: LP : VP$
 son's $312 : 841 :: 25 : 67.388$
 Stereomet. Prop. p.72. Or $ABq : ABq - CDq :: VP : LP$
 $841 : 312 :: 67.388 : 25$

Fig.XVIII. ~~to~~ XXXI. Prob. By AB, CD, LP, and EP: to find RO.

$$LP : EP :: ABq - CDq : ABq - ROq$$

$$25 : 12 :: 312 : 149.76$$

And $\sqrt{ABq} 841 - 149.76 = RO 26.3$
 $LP 25) \underline{ABq - CDq} \underline{312} \quad (D 12.45 \text{ Mittend. or Subducend.}$

$$\checkmark ABq - D \times EP = RO \quad \text{Or } \checkmark CDq + D \times LP = RO$$

$$841 - 149.76 = 26.3 \quad 523 + 162.24 = 26.3$$

Fig.XVIII. XXXII. Prob. By AB, CD, and LP: to find the Solidity of ABCD.

$$\odot AB - \frac{1}{2} \odot CD + \frac{1}{2} \odot x \times LP = ABCD$$

$$1.4733 + 4345 \times 25 = 47.695 \text{ A.G.}$$

$$\checkmark \text{ Or } AB \times CD + \frac{1}{2} xq \times \text{Factor} \times LP = \text{Frustum}$$

$$667 + 18 \times .0027851 \times 25 = 47.695$$

$$\checkmark \text{ Or } \odot S + \odot N \times LP = ABCD$$

$$1.8827 + .0251 \times 25 = 47.695 \text{ A.G.}$$

$$\checkmark \text{ Against 6 the Difference of Diameters stands } 3.17 \\ \text{ and } 23 + 3.17 \text{ is } 26.17 = 1.9074 \times 25 = 47.695 \text{ A.G.}$$

Frustum

Frustum of a Parabolick Conoid.

D.D.	.0	.1	.2	.3	.4	.5	.6	.7	.8	.9
1	0.51	0.56	0.61	0.66	0.71	0.76	0.81	0.86	0.92	0.97
2	1.02	1.07	1.13	1.18	1.23	1.28	1.33	1.39	1.44	1.49
3	1.55	1.60	1.65	1.71	1.76	1.81	1.86	1.92	1.97	2.03
4	2.08	2.13	2.19	2.24	2.30	2.35	2.41	2.46	2.52	2.57
5	2.62	2.68	2.73	2.79	2.84	2.90	2.95	3.01	3.06	3.12
6	3.17	3.23	3.28	3.34	3.40	3.45	3.51	3.56	3.62	3.67
7	3.73	3.79	3.84	3.90	3.96	4.01	4.07	4.12	4.18	4.24
8	4.29	4.35	4.41	4.46	4.52	4.58	4.64	4.69	4.75	4.81
9	4.86	4.92	4.98	5.04	5.10	5.15	5.21	5.27	5.33	5.38
10	5.44	5.50	5.56	5.62	5.68	5.73	5.79	5.85	5.91	5.97

To find the Content at any Depth, as at EP.

Fig.XVIII.

$$LP : EP :: \frac{1}{2} \overline{\odot AB - \odot CD} : \frac{1}{2} \overline{\odot AB - \odot RO}$$

$$25 : 12 :: .4345 : .2086$$

 And $\odot AB \cdot 3423 - .2086 \times EP 12 = RABO 25.604$ A.G.

$$LP \left(\frac{1}{2} \overline{\odot AB - \odot CD} \right) D \text{ Addend or Subducent}$$

$$25 \quad .4345 \quad .01738$$

 And $\odot AB - D \times EP \times EP = RABO$

$$2.3423 - .2086 \times 12 = 25.604$$
 A.G.

 Or $\odot CD + D \times LE \times LE = DROC$

$$1.4733 + .2259 \times 13 = 22.090$$
 A.G.

But the Second Differences being equal, the rest after the three first, are found by an easy Collection, as in the following Table.

3. Frustum.

24 Of the Frustum of a Parabolick Conoid.

	1. Frust.	1. Diff.	2. Di.
1	2.3249	2.2901	.0348
2	4.6150	2.2553	.0348
3	6.8703	2.2205	.0348
4	9.0908	2.1857	.0348
5	11.2765	2.1509	.0348
6	13.4274	2.1161	.0348
7	15.5435	2.0813	.0348
8	17.6248	2.0465	.0348
9	19.6713	2.0117	.0348
10	21.6830	1.9769	.0348
11	23.6599	1.9421	.0348
12	25.6020	1.9073	.0348
13	27.5093	1.8725	.0348
14	29.3818	1.8377	.0348
15	31.2195	1.8029	.0348
16	33.0224	1.7681	.0348
17	34.7905	1.7333	.0348
18	36.5238	1.6985	.0348
19	38.2223	1.6637	.0348
20	39.8860	1.6289	.0348
21	41.5149	1.5941	.0348
22	43.1090	1.5593	.0348
23	44.6683	1.5245	.0348
24	46.1918	1.4897	.0348
25	47.6825		

Vig.XVIII. XXXIII. Prob. By AB, CD, LP, and AG: to find the Solidity of AGFD.

By Prob. 30. VP Axe of the Conoid AVB is 67.388

By Prob. 5. Segm. AIGK when AB is 29 and AG 8.5 is 161.37

AP : GP :: 2GP : EB And AB - EB = AE

14.5 : 6 :: 12 : 4.965 29 - 4.965 = 24.035

Segment AmEN when AB is 29 and AE 24.035 = 585.42

$$8 \text{ AIGK} - \text{AmEN} \times 12 \text{ VP} = \text{AGH}$$

$$1290.96 - 585.12 \times 5.616 = 3962.31$$

Again Segm. DbFd when DC is 23 and DF 5.5 is 76.28

DL : FL :: 2FL : SC And DC - SC = DS

11.5 : 6 :: 12 : 6.261 23 - 6.261 = 16.739

Mr. Newton
in Gager's
Mater.
P. 372.

Segment

Of the Frustum of a Parabolick Conoid. 25

Segment DTS_z, when DC is 23 and DS 16.739 = 323.94

$$8D6Fd - DTS_z \times 12 VL = DfH$$

$$610.24 - 323.94 \times 3.532 = 1011.21$$

And AGH = DfH = AGFD

$$3962.31 - 1011.21 = 2951.1 \text{ (i.e.) } 10.46 \text{ A.G.}$$

¶ Or by Segm. of a Circle quam proximè.

From or to AG, or GB, subtract or add the Semi-Difference between the Greater and Mean Diameter, which reserve and say:

M.D. : Rad. :: refer. N° : V.S. = Segment
26.17 : 100 :: 7.085 : .2707 = .2186

G.D. 29

M.D. 26.17

2.83

1.415

8.5

7.085

And Content 47.695 × .2186 = AGFD 10.44 A.G.

Suppose this had been the Frustum of a Cone cut by a Plain parallel to the Axe.

If you put Z = Sum of the Squares of AB and CD, then

$$3Z : 2Z + 2AB \times CD :: \text{Conoid} : \text{Cone}$$

$$4110 : 2740 + 1334 :: 10.46 : 10.36 \text{ A.G.}$$

Mr. Hedges
son's Gang-
ing, p. 93.

XXXIV. Prob. By $\left\{ \begin{array}{l} AB 38.4 : KN 32 \\ CD 30. : HI 25 \end{array} \right\}$ Rectang. $\left\{ \begin{array}{l} Below, \\ Conjug. \end{array} \right\}$ Below, Fig. XVII.
 $\left\{ \begin{array}{l} Above, \\ and Depth EP 25 : to find the Solidity of \\ the Elliptick Frustum AB_bCD_bA. \end{array} \right\}$

$$AB \times KN + CD \times HI \times \text{Factor} \times EP = ABCD$$

$$1228.8 + 750 \times .0013925 \times 25 = 68.89 \text{ A.G.}$$

Or find two Geometrical Means between the Conjugates Above and Below, and the Operation is the same as in Prob. 32.

XXXV. Prob. By AB, and CD : to find the Solidity of ACBD. Fig. XIX.

ACBD is a Parabolick Spindle generated by the rotation of the Parabola ACB about its double Ordinate AB, remaining fixed till the motion end where it began.

Dr. Wallis
de Calculo,
Cent. Grav.
Cap. 5.
Part 2.

$$AB \text{ Axe or double Ordinate} \quad 109.924$$

$$AE \left\{ \begin{array}{l} \text{Height of the Frustum} \\ EB \end{array} \right\} \text{Height of the Frustum} \quad \left\{ \begin{array}{l} HAI \\ HBI \end{array} \right\} \quad 29.962$$

$$EP \text{ Length of the middle Frustum HSSI} \quad 79.962$$

$$HI \left\{ \begin{array}{l} \text{Diameters of that Frustum} \\ CD \end{array} \right\} \quad 50.$$

$$CD \quad 23.$$

$$RK \text{ Distance from CD} \quad 29.$$

$$12.$$

C

NL Diam.

Of a Parabolick Spindle.

NL Diameter at that Distance _____ 27.6176
 & Difference of Diameters _____ 6.
 Difference of Areas in A. G. _____ .8690
 $CD \times AB \times \text{Factor} = ACBD$
 $841 \times 109.924 \times .0014854 = 137.31$
 Or $\odot CD 2.3423 \times \frac{3}{15} AB 58.624 = 137.31 \}$ A. G.

Circumf. Diam. Quer. P. 282.	For every Parabolick Spindle is $\frac{3}{15}$ of its Circumscribing Cylinder.	Factors		Devisors	
		Inch.	A.G.	W.G.	2.387323 673.2193 .551.4807
		.4188792	.0014854	.0018133	

Fig. XIX. $\frac{15}{10}$ -XXXVI. Prob. By AB, CD, and AE: to find HI, & contra.

$$\begin{array}{lcl} AK_q : AE \times EB & :: & CD : HI \\ 3020.833 : 2395.823 & :: & 29 : 23 \\ \text{And } AE \times EB : AK_q & :: & HI : CD \\ 2395.823 : 3020.833 & :: & 23 : 29 \end{array}$$

Fig. XIX. $\frac{15}{10}$ -XXXVII. Prob. By AB, CD, and AE: to find the Solidity of HAI by Segments of a Parabolick Spindle.

$$\begin{array}{lcl} AB : \text{Radius} & :: & AE : \text{S. A.} = \text{Segm.} \\ 109.24 : 100 & :: & 29.962 : .2726 = .1287 \\ \text{And Content } 137.31 \times .1287 = \text{HAI } 17.671 \text{ A. G.} \\ \text{Or } ACBD : \text{Radius} & :: & \text{HAI} : \text{Segment} = \text{S. A.} \\ 137.31 : 10000 & :: & 17.671 : .1287 = .2726 \\ \text{And Area AB } 109.924 \times .2726 = \text{AE } 29.965 \end{array}$$

Fig. XIX. $\frac{15}{10}$ -XXXVIII. Pr. By CD, HI, and EP: to find AB, & contr.

$$\begin{array}{lcl} CD - HI : CD & :: & EK_q : AK_q \\ 6 : 29 & :: & 625 : 3020.833 \\ \text{And } CD : CD - HI & :: & AK_q : EK_q \\ 29 : 6 & :: & 3020.833 : 625 \end{array}$$

Fig. XIX. $\frac{15}{10}$ -XXXIX. Prob. By CD, HI, EP, and RK: to find NL.

$$\begin{array}{lcl} EK_q : RK_q & :: & CD - HI : CD - NL \\ 625 : 144 & :: & 6 : 1.3824 \\ \text{And } CD 29 - 1.3824 = NL 27.6176 \\ \text{Or } EK_q (CD - HI) \text{ D Sividucend} \\ 625 : 6 (.0096) \end{array}$$

$$\text{And } CD 29 - D \times RK_q 1.3824 = NL 27.6176.$$

Mr. Hodges
Son's Geog-
raphy, P. 100.

$$\begin{array}{lcl} \text{Or } EK_q : ER \times RP & :: & CD - HI : NL - HI \\ 625 : 481 & :: & 6 : 4.6176 \\ \text{And } HI 23 + 4.6176 = NL 27.6176. \end{array}$$

$\frac{15}{10}$ -XL.

Of a Parabolick Spindle.

27

$\text{Fig. XL. Prob. By } CD, HI, \text{ and EP: to find the Solidity Fig. XIX. of HSSL.}$

$$\textcircled{O} CD - \frac{1}{3} \textcircled{O} CD - \textcircled{O} HI - \frac{2}{15} \textcircled{O} x : x EP = \text{Frustum}$$

$$2.3423 - .2896 - .0134 : x 50 = 101.965 \text{ A.G.}$$

$$\textcircled{O} CD_2 + \frac{1}{2} HI_2 - \frac{1}{3} x_2 \times \text{Factor} \times EP = \text{HSSl}$$

$$841 + 264.5 - 7.2 \times .0018567 \times 50 = 101.96$$

Mr. Abraham Sharp.

$\text{Fig. Against 6 the Difference of Diameters stands 4.06}$
 $\text{and } 23 \times 4.06 = 27.06 = 2.0393 \times 50 = 101.965 \text{ A.G.}$

Frustum of a Parabolick Spindle.										
D.D.	.0	.1	.2	.3	.4	.5	.6	.7	.8	.9
1	0.67	0.74	0.80	0.87	0.94	1.00	1.07	1.14	1.21	1.27
2	1.34	1.41	1.47	1.54	1.61	1.68	1.75	1.81	1.88	1.95
3	2.02	2.08	2.15	2.22	2.28	2.35	2.42	2.49	2.56	2.63
4	2.70	2.76	2.83	2.90	2.97	3.04	3.10	3.17	3.24	3.31
5	3.38	3.44	3.51	3.58	3.65	3.72	3.78	3.85	3.92	3.99
6	4.06	4.13	4.20	4.26	4.33	4.40	4.47	4.54	4.61	4.68
7	4.75	4.81	4.88	4.95	5.02	5.09	5.16	5.23	5.25	5.36
8	5.43	5.50	5.57	5.64	5.71	5.78	5.85	5.92	5.95	6.05
9	6.12	6.19	6.26	6.33	6.40	6.47	6.54	6.61	6.68	6.75
10	6.82	6.89	6.95	7.02	7.09	7.16	7.23	7.30	7.37	7.44

$\text{Fig. To find the Solidity at any Depth, as at RK.}$

Fig. XIX.

$$EK_2 : RK_2 :: \frac{1}{3} \textcircled{O} CD - \textcircled{O} HI + \frac{2}{15} \textcircled{O} x : D$$

$$625 : 144 :: .2896 + .0134 : .0698$$

And $\textcircled{O} CD 2.3423 - .0698 \times RK_{12} = NCDL 27.27 \text{ A.G.}$

$$EK_2 \left(\frac{1}{3} \textcircled{O} CD - \textcircled{O} HI + \frac{2}{15} \textcircled{O} x \right) \text{ D Subductd}$$

$$625 \cdot .2896 + .0134 \cdot .0004849$$

And $\textcircled{O} CD - D \times RK_2 : x 12 = \text{Frustum}$

$$2.3423 - .0698 : x 12 = 27.27 \text{ A.G.}$$

But the Third Differences being equal, the rest after the four first are found by an easie Collection; as in the following Table.

C 2

I. Frust.

Of a Parabolick Spindle.

	I. Frust.	I. Diff.	2. Dif.	3. D.
1	2.3418	2.3389	.0058	
2	4.6807	2.3331	.0087	.029
3	7.0138	2.3244	.0116	.029
4	9.3382	2.3128	.0145	.029
5	11.6510	2.2983	.0174	.029
6	13.9493	2.2809	.0203	.029
7	16.2302	2.2606	.0232	.029
8	18.4908	2.2374	.0261	.029
9	20.1282	2.2113	.0290	.029
10	22.9395	2.1823	.0319	.029
11	25.1218	2.1504	.0348	.029
12	27.2722	2.1156	.0377	.029
13	29.3878	2.0779	.0406	.029
14	31.4657	2.0373	.0435	.029
15	33.5030	1.9938	.0464	.029
16	35.4968	1.9474	.0493	.029
17	37.4442	1.8981	.0522	.029
18	39.3423	1.8459	.0551	.099
19	41.1882	1.7908	.0580	.029
20	42.9790	1.7328	.0609	.029
21	44.7118	1.6719	.0638	.029
22	46.3837	1.6081	.0667	.029
23	47.9918	1.5414	.0696	.029
24	49.5332	1.4718		
25	51.0050			

Fig. XX. $\frac{1}{2}$ XLI. Prob. By AB, CD, and CG: to find HI, & cont.

$$\begin{aligned}
 CK_9 : CG \times GD &:: AB : HI \\
 210.25 : 174.25 &:: 109.924 : 91.102 \\
 \text{And } CG \times GD : CK_9 &:: HI : AB \\
 174.25 &: 210.25 :: 91.102 : 109.924
 \end{aligned}$$

Fig. XX. XLII. Prob. By AB, CD, and CG: to find the Solidity of HCL

$\frac{1}{2}$ XLIII. Prob.

XLIII. Prob. By CD, SS, EP, and CG: to find the Fig. XX.
Solidity of hSCSs, by Segments of a Circle, propè verum.

From or to CG, or GD, subtract or add the
Semi-Difference of the Big and Mean
Diameter, which reserve and say:

B.D. 29
M.D 27.06
1.94
Half .97
CG 8.5
7.53

M.D : Radius :: resd. N° : V.S = Segm.
27.06 : 100 :: 7.53 : 2783 = 2272

And Cont. 101.965 X.2272 = bSCSs 23.166 A.G.

XLIV. Prob. By AB: to find the Solidity of ACBD, & cont. Fig. XXX.

ACBD is a Sphere made by the rotation of the Semi-Circle ACB about its Axe AB remaining fixed till the motion end where it began.

AB Axe or Diameter	82.09
AE Height of the Frustum -	CAD 16.045
EB	CBD 66.045
EK Distance from the Centre	25.
CD Diameter at that distance	65.1
DCub. : AB, X AB :: Solid. D : Solid. ACBD	
i. : 6738.768 82.09 :: .00185673 = 1027.116	
Or ○AB 18.7681 X $\frac{2}{3}$ AB 54.727 = 1027.116	

For every Sphere is	Solid. D. I.	De Sol. I.	Archim. Sphe. & Cylin. Pr. 38.
= $\frac{2}{3}$ of its circumscribing Cylinder.	Inch. .5235988	1.909859	
	A. G. .00185673	538.5803	
	W. G. .00226667	41.1775	

And the Solidities of all Spheres are in proportion as the Cubes of their Diameters or Axes.

And $\sqrt{(3)} \text{ Solid. ACBD} \times \text{ D-Cub.} = AB$
1027.116 X 538.5803 = 82.09

Archim. Lib. Proprietas Prop. 38.

XLV. Pr. AB, CD, AE, By any two of these: to find the other. Fig. XXX.

$$\begin{aligned} \checkmark AE \times FB = ED & \quad \text{Or } \checkmark KDq - EKq = ED \\ 1059.692 = 32.55 & \quad 1684.692 - .625 = 32.55 \\ AE EDq & \quad EB \text{ And } EB + AE = AB \\ 16.045) 1059.692 (66.045 & \quad 66.045 + 16.045 = 82.09 \\ \checkmark KDq - EDq = EK & \quad \text{And } AK - EK = AE \\ 1684.692 - 1059.692 = 25. & \quad 41.045 - 25 = 16.045 \\ \text{By this Prob. you may also find the Chord, Diameter, and } & \quad \text{N.B.} \\ \text{Yerfed Sine of a Circle.} & \end{aligned}$$

Fig. XXL XLVL Prob. By AB, CD, and AE: to find the Solidity of CAD.

Mr. Andersens Stereom. EB : $\frac{1}{3}EB + \frac{1}{6}AE :: \odot CD \times AE : CAD$
Prop. p. 36. 66.045 : 35.6967 :: 189.384 : 102.36 A.G.

And this will hold if it were the Frustum of a Spheroid.

Or $EB + AK \times \frac{4}{3} AEg \times \text{Factor} = CAD$

$$107.09 \times 343.256 \times .0027851 = 102.37 \text{ A.G.}$$

Arah. Or $4AEg \times AK - \frac{1}{3} AE \times \text{Factor} = CAD$

$$1029.768 \times 35.697 \times .0027851 = 102.37 \text{ A.G.}$$

Dary's Or $CDg + \frac{4}{3} AEg \times \text{Factor} \times \frac{1}{2} AE = CAD$

$$4238.01 + 343.256 \times .0027851 \times 8.0225 = 102.37 \text{ A.G.}$$

And this will hold if it were the Frustum of a Spheroid, if you take the Rectangle of the Conjugates in the Base.

Or by Segments of a Sphere.

AB : Radius :: AE : S.A = Segment

$$82.09 : 100 :: 16.045 : .1954 = .0997$$

And Content $1027.116 \times .0997 = CAD 102.37 \text{ A.G.}$

Or ACBD : Radius :: CAD : Segment = S.A.

$$1027.116 : 10000 :: 102.37 : .0997 = .1954$$

And $Ax AB 82.09 \times .1954 = AE 16.045$

Fig. XXII. XLVII. Prob. By AB, and CD: to find the Solidity of ACBD.

Archim. de Conoido & Spherido. Ellipsis ACB about its Axis AB remaining fixed till the motion end where it began.

AB Spheroid's Axe _____ 82.09

AE } Height of the Frust. _____ { HAI - 16.045

EB } _____ { HBI - 66.045

EP Length of the middle Frustum HRSI - 50.

HI } Diameters of that Frustum { 23.

CD } _____ { 29.

RK Distance from CD _____ 12.

NO Diameter at that Distance _____ 27.74

Difference of Areas in A.G. _____ .8690

ABg : CDg :: AFBG : ACBD

$$6738.7681 : 841 :: 1027.116 : 128.18 \text{ A.G.}$$

CDg \times AB \times Factor = ACBD

$$841 \times 82.09 \times .00185673 = 128.18$$

Or $\odot CD 2.3423 \times \frac{2}{3} AB 54.727 = 128.18 \text{ A.G.}$

For every Spheroid is $= \frac{2}{3}$ of its Circumscribing Cylinder.

Of a Spheroid.

31

XLVIII. Prob. By AB, CD, and AE: to find HI, & cont. Fig. XXII.

$$AK_q : AE \times EB :: CD_q : HI_q$$

$$1684.692 : 1059.692 :: 841 : 529 \quad \text{S. Hydrog. 1.}$$

$$\text{And } AE \times EB : AK_q :: HI_q : CD_q$$

$$1059.692 : 1684.692 :: 529 : 841$$

$$\text{Or } AK : \sqrt{AE \times EB} :: CD : HI$$

$$41.045 : 32.55 :: 29 : 23$$

XLIX. Prob. By AB, HI, and AE: to find the Solidity Fig. XXII. of HAL.

$$EB : EB + RK :: \odot HI \times \frac{1}{3} AE : HAI$$

$$66.045 : 107.09 :: 7.88 : 12.775 \quad \text{A.G. de Compend. Spheroid, 2.}$$

And this will hold if it were the Frustum of a Sphere.

$$\text{Or } AB_q : CD_q :: FAG : HAI$$

$$6738.7681 : 841 :: 102.37 : 12.775 \quad \text{A.G.}$$

$\text{Or by Segments of a Sphere.}$

$$AB : \text{Radius} :: AE : \text{S.A. - Segment}$$

$$82.09 : 100 :: 16.045 : .1954 = .0997$$

And Content $128.18 \times .0997 = HAI 12.775$ A.G.

$$\text{Or } ACBD : \text{Radius} :: HAI : \text{Segment - S.A.}$$

$$128.18 : 10000 :: 12.775 : .0997 = .1954$$

And Axis AB $82.09 \times .1954 = AE 16.045$

L. Prob. By CD, HI, and EP: to find AB, & cont. Fig. XXII.

$$CD_q - HI_q : CD_q :: EK_q : AK_q$$

$$312 : 841 :: 625 : 1684.692$$

$$\text{And } CD_q : CD_q - HI_q :: AK_q : EK_q$$

$$841 : 312 :: 1684.692 : 625$$

$$\text{Or } \sqrt{CD_q - HI_q} : CD :: EK : AK$$

$$17.6635 : 29 :: 25 : 41.045$$

LI. Prob. By CD, HI, EP, and RK: to find NO.

$$EK_q : RK_q :: CD_q - HI_q : CD_q - NO_q$$

$$625 : 144 :: 312 : 71.88$$

And $\sqrt{CD_q - 841 - 71.88} = NO 27.74$

Or $EK_q : CD_q - HI_q$ (D Subducend)

$$625 : 312 = .04992$$

And $\sqrt{CD_q - 841 - D \times RK_q - 71.88} = NO 27.74$

Or $EK_q : ER \times RP :: CD_q - HI_q : NO_q - HI_q$ Maj. John

$$625 : 481 :: 312 : 240.12 \quad \text{FATIGUE.}$$

And $\sqrt{HI_q - 529 + 240.12} = NO 27.74$

Mr. Anderson's Stereo.
Prop. p. 71.

Fig. XXII.

Ginger's
Magaz.
p. 222.

LLL.

Of the Frustum of a Spheroid.

XXXIII. LII. Prob. Let $CbAbGNbBbD$ represent the first Form of Casks, viz. the Middle Frustum of a Spheroid : to find the Solidity.

$$\begin{aligned} ABq + \frac{1}{2} CDq &\times \text{Factor} \times EP = \text{Frustum} \\ 841 + 264.5 &\times .0018567 \times 50 = 102.63 \text{ A. G.} \\ \bullet CD + \frac{2}{3} \bullet AB - \bullet CD \} &\times EP = \text{Frustum} \\ \bullet AB - \frac{1}{3} \bullet AB - \bullet CD \} & \\ 2.3423 - .2896 &\times 50 = 102.63 \text{ A. G.} \end{aligned}$$

Mr. Day's
Gauge
P. 56.

To find the Solidity at any Depth, as at RK.

$$\begin{aligned} EKq : RKq &:: \frac{1}{3} \bullet AB - \bullet CD : \frac{1}{3} \bullet AB - \bullet CD \\ 625 : 144 &:: .2896 : .0667 \\ \text{And } \bullet AB 2.3423 - .0667 \times RK 12 &= bABb 27.31 \text{ A. G.} \end{aligned}$$

$$\text{Or } EKq \left(\frac{1}{3} \bullet AB - \bullet CD \right) D \text{ Subducend} \\ 625 \quad .2896 \quad .0004634$$

$$\text{And } \bullet AB - D \times RKq : \times RK = \text{Frustum} \\ 2.3423 - .0667 : \times 12 = 27.31 \text{ A. G.}$$

But the Third Differences being equal, the rest after the first Four are found by an easy Collection, as in the following Table.

Of the Frustum of a Spheroid.

33

	1. Frust.	1. Diff.	2. Di.	3. D.
1	2.3418	2.3390	.0056	.028
2	4.6808	2.3334	.0084	.028
3	7.0142	2.3250	.0112	.028
4	9.3392	2.3138	.0140	.028
5	11.6530	2.2998	.0168	.028
6	13.9528	2.2830	.0196	.028
7	16.2358	2.2634	.0224	.028
8	18.4992	2.2410	.0252	.028
9	20.7402	2.2158	.0280	.028
10	22.9506	2.1878	.0308	.028
11	25.1438	2.1570	.0336	.028
12	27.3008	2.1234	.0364	.028
13	29.4242	2.0870	.0392	.028
14	31.5112	2.0478	.0420	.028
15	33.5590	2.0058	.0448	.028
16	35.5648	1.9610	.0476	.028
17	37.5258	1.9134	.0504	.028
18	39.4392	1.8630	.0532	.028
19	41.3022	1.8098	.0560	.028
20	43.1120	1.7538	.0588	.028
21	44.8658	1.6950	.0616	.028
22	46.5608	1.6334	.0644	.028
23	48.1942	1.5650	.0672	.028
24	49.7632	1.5018		
25	51.2650			

Or by Segments of the Frustum of a Spheroid.

Fig. XXIII.

CD)AB(No

23 29 1.26 Against it stands (4) which Note.

EP : Radius :: ER : S.A = Segment under (4)

50 : 100 :: 13 : .26 = .234

And Content $102.63 \times .234 = bCD^6 24.0154 A.G.$

Or Content : Radius :: bCD^6 : Segm. = S.A. $\begin{array}{|c|c|} \hline 1.08 & 1 \\ \hline 1.14 & 2 \\ \hline 1.20 & 3 \\ \hline 1.26 & 4 \\ \hline \end{array}$

102.63 : 1000 :: 24.0154 : .234 = .26

And Height EP 50 $\times .26 = ER 13.$

*LIII. Prob. Let CdAdGndBdD represent the second Fig. XXIII.
Form of Casks, viz. when nearest the middle Frustum of a
Spheroid: to find the Solidity.*

○AB - $\frac{1}{18} ○AB - ○CD \times EP =$ Frustum

3.3423 - .3379 \times 50 = 100.22 A.G.

Fig. 23

Of the Frustum of a Spheroid.

M° To find the Solidity at any Depth, as at RK.

$$\text{E.K. } \left(\frac{7}{9} \right) \frac{\text{OAB} - \text{OCD}}{625} \text{ D Subducend}$$

$$\frac{.3379}{.0005407}$$

$$\text{And } \text{OAB} - \text{D} \times \text{RK}_q : \times \text{RK} = d\text{ABd}$$

$$2.3423 - .0779 : \times 12 = 27.173 \text{ A.G.}$$

Pig. XXIII. M^o LIV. Prob. Let CeAeGNeBeD represent the third Forms of Casks, viz. when wear off the middle Frustum of two Parabolick Conoids: to find the Solidity.

$$\text{OAB} - \frac{4}{9} \text{OAB} - \text{OCD} \times \text{EP} = \text{Frustum}$$

$$2.3423 - .3862 \times 50 = 97.80 \text{ A.G.}$$

M° To find the Solidity at any Depth, as at RK.

$$\text{E.K. } \left(\frac{4}{9} \right) \frac{\text{OAB} - \text{OCD}}{625} \text{ D Subducend}$$

$$\frac{.3862}{.0006179}$$

$$\text{And } \text{OAB} - \text{D} \times \text{RK}_q : \text{RK} = e\text{ABe}$$

$$2.3423 - .0890 : \times 12 = 27.040 \text{ A.G.}$$

To make this Treatise more compleat, I have added the following Tables for finding a Mean Diameter according to the three precedent Forms; so the Gauger may use either, or both, as he thinks fit.

A Table for the first Form of Casks.

D.D.	.0	.1	.2	.3	.4	.5	.6	.7	.8	.9
1	0.68	0.74	0.81	0.87	0.94	1.01	1.08	1.15	1.21	1.28
2	1.35	1.42	1.49	1.56	1.63	1.70	1.76	1.83	1.90	1.97
3	2.04	2.11	2.18	2.25	2.32	2.39	2.46	2.53	2.60	2.67
4	2.74	2.81	2.88	2.95	3.02	3.09	3.16	3.23	3.30	3.37
5	3.44	3.51	3.58	3.65	3.72	3.79	3.86	3.93	4.00	4.08
6	4.15	4.22	4.29	4.36	4.43	4.50	4.58	4.65	4.72	4.79
7	4.86	4.93	5.01	5.08	5.15	5.22	5.29	5.37	5.44	5.51
8	5.58	5.66	5.73	5.80	5.87	5.94	6.02	6.09	6.16	6.24
9	6.31	6.38	6.45	6.53	6.60	6.67	6.75	6.82	6.89	6.96
10	7.04	7.11	7.19	7.26	7.33	7.41	7.48	7.55	7.63	7.70

A Table

A Table for the second Form of Casks.

D.D.	.0	.1	.2	.3	.4	.5	.6	.7	.8	.9
1	0.62	0.68	0.74	0.80	0.86	0.93	0.99	1.05	1.12	1.18
2	1.24	1.30	1.37	1.43	1.49	1.56	1.62	1.68	1.75	1.81
3	1.88	1.94	2.01	2.07	2.13	2.20	2.26	2.33	2.39	2.45
4	2.52	2.58	2.65	2.71	2.78	2.84	2.91	2.97	3.04	3.10
5	3.17	3.23	3.30	3.37	3.43	3.50	3.56	3.63	3.69	3.76
6	3.83	3.89	3.96	4.03	4.09	4.16	4.23	4.29	4.36	4.42
7	4.49	4.56	4.62	4.69	4.76	4.82	4.89	4.95	5.03	5.09
8	5.16	5.23	5.29	5.36	5.43	5.50	5.57	5.63	5.70	5.77
9	5.83	5.90	5.97	6.04	6.11	6.18	6.24	6.31	6.38	6.45
10	6.52	6.59	6.65	6.72	6.79	6.86	6.93	7.00	7.06	7.13

A Table for the third Form of Casks.

D.D.	.0	.1	.2	.3	.4	.5	.6	.7	.8	.9
1	0.56	0.62	0.67	0.73	0.79	0.84	0.90	0.96	1.02	1.07
2	1.13	1.19	1.25	1.30	1.36	1.42	1.48	1.54	1.60	1.65
3	1.71	1.77	1.83	1.89	1.95	2.01	2.06	2.12	2.18	2.24
4	2.30	2.36	2.42	2.48	2.54	2.60	2.66	2.72	2.78	2.84
5	2.90	2.96	3.02	3.08	3.14	3.20	3.26	3.32	3.38	3.44
6	3.50	3.56	3.62	3.68	3.75	3.81	3.87	3.93	3.99	4.05
7	4.11	4.17	4.24	4.30	4.36	4.42	4.48	4.55	4.61	4.67
8	4.73	4.79	4.86	4.92	4.98	5.04	5.10	5.17	5.23	5.29
9	5.35	5.42	5.48	5.54	5.61	5.67	5.73	5.79	5.85	5.92
10	5.98	6.05	6.11	6.17	6.24	6.30	6.37	6.43	6.49	6.56

The Use of the aforesaid Tables.

A.G.

Against 6 Differ.
of Diameter under
(o) in the anfwer-
able Square stands

4.15 which ad.
3.83 ded to 23
3.50 the Head

27.75 = 2.0527
26.83 = 2.0044
26.5 = 1.9561

Differ.

These drawn severally into
so, the Length give the Con-
tents in A.G.
Content as two Parabolick Conoids

102.64	2.42
100.22	2.42
97.80	2.42
95.38	

Here you see the Differences are all equal, so less room
left for Error.

Hence

Of the Frustum of a Spheroid.

Hence I conclude, that these are the most genuine ways of *Cask-Gauging* yet extant, and as exact as need be, considering their uncertain Form; for by knowldg only of Dr Wybord's the *Diameters* and *Length*, the true *Contents* of all *Casks* Volume. p. cannot be found by one *General Rule*, because it's possible for two *Casks* to have the same *Dimensions*, and yet the *space* between the *Bung* and *Head* may be more *Circular* in one than in the other, and consequently more capacious; and since we must necessarily wander from *Truth*, 'tis better done in a plain and easie way, than in such tedious ones as some of our *latest Writers* have laid down.

Fig. XXIII. LV. Prob. FB, EP, BC, By any two of these: to find the other.

$$\begin{aligned}
 & 47^{\circ} L. \quad \sqrt{CF_9\ 625} + FB_9\ 676 = BC\ 36.07 \text{ Diagonal.} \\
 & \sqrt{BC_9\ 1301} - FB_9\ 676 = CF\ 25 \quad \text{Semi-Length} \\
 & \sqrt{BC_9\ 1301} - CF_9\ 625 = FB\ 26 \quad \text{Semi-Sum of Diam.} \\
 & \text{And } 2FB - AB = CD \quad \text{Or } 2FB - CD = AB \\
 & \qquad \qquad \qquad 52 - 29 = 23 \qquad \qquad \qquad 52 - 23 = 29
 \end{aligned}$$

Fig. XXIV. LVI. Prob. By AB, CD, and CG: to find HI, & cont.

$$\begin{aligned}
 & R. Wyb. L. \quad CK_9 : CG \times GD :: AB_9 : HI_9 \\
 & 210.25 : 174.25 :: 6738.7681 : 5584.92 \\
 & \text{And } CG \times GD : CK_9 :: HI_9 : AB_9 \\
 & 174.25 : 210.25 :: 5584.92 : 6738.7681 \\
 & \text{Or } CK : \sqrt{CG \times GD} :: AB : HI \\
 & 14.5 : 13.2 :: 82.09 : 74.73
 \end{aligned}$$

Fig. XXV. LVII. Prob. By AB, CD, and CG: to find the Solidity of HCl.

$$\begin{aligned}
 & Dr. Wallis's \quad CD_9 \times CD : CD_9 \times AB :: PCV : HCl \\
 & \text{Mech.} \quad 24389 : 69037.69 :: 9.37 : 26.58 A.G. \\
 & \text{Phil. Ch. S.} \quad \text{Or by Segments of a Sphere.}
 \end{aligned}$$

CD : Radius :: CG : S.A = Segment.

$$29 : 100 :: 8.5 : .2931 = .2074$$

And Content $128.18 \times .2074 = HCl\ 26.58$ A.G.

Or ACBD : Radius :: HCl : Segment = S. A.

$$128.18 : 1000 :: 26.58 : .2074 = .2931$$

Fig. XXVI. LVIII. Prob. By CD, EE, LO, and CG: to find the Solidity of hECRPp.

Mr. Hodge. By Prob. 50. AB the Spheroid's Axe is — 82.09
for's Gang. By Prob. 56. dn Axe in the middle of the Frustum is 80.31
Fig. p. 112. By 47 Eucl. I. eS the Conjugate Diameter is 28.37

By Prob. 8. the Area of this Ellipsis is 6.345 A.G.

By Prob. 9. the Area of the Ellipsis Segment when the Axe
dn is 80.31, and Versed Sine Kn 15.18 is 0.833 A.G.

And

Of a Mash-Tun and Copper.

37

And the *Area* of the whole *Ellipsis* 6.345 less twice the *Area* of the *Ellipsis Segment* 1.666 is 4.679, which drawn into GK, the *Heights* 6 gives the *Solidity* of Lbpo 28.074, this taken from the *Semi-Content* 51.315, leaves the *vacans Frustum* bECRp 23.241 A.G.

15^o Or by *Segments of a Circle* propè verum.

From or to CG, or GD the *Dry or Wet* inches, subtract or add the *Semi-Difference* of the *Bung and Mean Diameter*, which reserve and say :

M.D : Radius :: ref. No. V.S.—Segment 27.15 : 100 :: 7.575 : .279 = .228

And *Contents* 102.63 x .228 = 23.399 A.G.

When the *less than* } *Semi-Diff.* of *curstot*
Dry inches } *more than* } *Diam.* the Li } *curs*
are } *equal to* } *quors Surface* } *touches* } *the*
NB. } } } *Heads.*

LIX. Prob. By the Dimensions : to find the Content of a Mash-Tun.

To the *Area* of the *Mean Diameter* of the Goods *safally* wet add *two Tenths* of the same, the *Sum* drawn into the *Depth*, produces the *Content*.

But the *Supervisor* must alter the *Addend* according to the *Country Malt*, for his *Experience* in this case will be the best *Director*.

LX. Prob. By the Dimensions : to find the Content of a Copper. Fig. XXV.

Quarter it, and take the *Diameters* in the *middle* of every 6 *Inches*, as also of the remaining *Frustum* (if any) viz. *fg*, *hi*, *kl*, then enter against each *Diameter* its proper *Area*, and multiply them severally by 6; the *Total* of the *Products* more the *Liquor* lying about the *Crown* is the *whole Content*.

15^o And taking CDNP as the *Frustum* of a *Parabolick* Mr. Ward. *Conoid*, and PVN as the *Frustum* of a *Sphere* then:

CD - $\frac{4}{3}$ VS $\times \frac{1}{2}$ V.S = Liquor about the Crown.

Circles Area in Ale-Gallons.

Diam.	0	1	2	3	4	Diam.
1	0.0028	0.0034	0.0040	0.0047	0.0055	1
2	0.0111	0.0123	0.0135	0.0147	0.0160	2
3	0.0251	0.0268	0.0285	0.0303	0.0322	3
4	0.0446	0.0468	0.0491	0.0515	0.0539	4
5	0.0696	0.0724	0.0753	0.0782	0.0812	5
6	0.1003	0.1036	0.1071	0.1105	0.1141	6
7	0.1365	0.1404	0.1444	0.1484	0.1525	7
8	0.1782	0.1827	0.1873	0.1919	0.1965	8
9	0.2256	0.2306	0.2357	0.2409	0.2461	9
10	0.2785	0.2841	0.2898	0.2955	0.3012	10
11	0.3370	0.3432	0.3494	0.3556	0.3620	11
12	0.4011	0.4078	0.4145	0.4214	0.4282	12
13	0.4707	0.4780	0.4853	0.4927	0.5001	13
14	0.5459	0.5537	0.5616	0.5695	0.5775	14
15	0.6266	0.6350	0.6435	0.6520	0.6605	15
16	0.7130	0.7219	0.7309	0.7400	0.7491	16
17	0.8049	0.8144	0.8239	0.8336	0.8432	17
18	0.9024	0.9124	0.9225	0.9327	0.9429	18
19	1.0054	1.0160	1.0267	1.0374	1.0482	19
20	1.1140	1.1251	1.1364	1.1477	1.1590	20
21	1.2282	1.2400	1.2517	1.2636	1.2755	21
22	1.3480	1.3603	1.3726	1.3850	1.3975	22
23	1.4733	1.4862	1.4991	1.5120	1.5250	23
24	1.6042	1.6176	1.6311	1.6446	1.6581	24
25	1.7407	1.7546	1.7686	1.7827	1.7968	25
26	1.8827	1.8972	1.9118	1.9264	1.9411	26
27	2.0303	2.0454	2.0605	2.0757	2.0909	27
28	2.1835	2.1991	2.2148	2.2306	2.2464	28
29	2.3423	2.3585	2.3747	2.3910	2.4073	29
30	2.5066	2.5233	2.5401	2.5570	2.5739	30

Circles Areas in Ale-Gallons.

Diam.	5	6	7	8	9
1	0.0063	0.0071	0.0080	0.0090	0.0101
2	0.0174	0.0188	0.0203	0.0218	0.0234
3	0.0341	0.0361	0.0381	0.0402	0.0424
4	0.0564	0.0589	0.0615	0.0642	0.0669
5	0.0842	0.0873	0.0905	0.0937	0.0969
6	0.1177	0.1213	0.1250	0.1288	0.1326
7	0.1567	0.1609	0.1651	0.1694	0.1738
8	0.2012	0.2060	0.2108	0.2157	0.2206
9	0.2514	0.2567	0.2621	0.2675	0.2730
10	0.3071	0.3129	0.3189	0.3249	0.3309
11	0.3683	0.3748	0.3813	0.3878	0.3944
12	0.4352	0.4422	0.4492	0.4563	0.4635
13	0.5076	0.5151	0.5227	0.5304	0.5381
14	0.5856	0.5937	0.6018	0.6100	0.6183
15	0.6691	0.6778	0.6865	0.6953	0.7041
16	0.7582	0.7675	0.7767	0.7861	0.7955
17	0.8529	0.8627	0.8725	0.8824	0.8924
18	0.9532	0.9635	0.9739	0.9884	0.9949
19	1.0590	1.0699	1.0808	1.0919	1.1029
20	1.1704	1.1819	1.1934	1.2049	1.2166
21	1.2874	1.2994	1.3115	1.3236	1.3358
22	1.4100	1.4225	1.4351	1.4478	1.4605
23	1.5381	1.5512	1.5644	1.5776	1.5909
24	1.6718	1.6854	1.6992	1.7129	1.7268
25	1.8110	1.8252	1.8395	1.8539	1.8683
26	1.9558	1.9706	1.9855	2.0004	2.0153
27	2.1062	2.1216	2.1370	2.1524	2.1679
28	2.2622	2.2781	2.2941	2.3101	2.3261
29	2.4237	2.4492	2.4567	2.4733	2.4899
30	2.5908	2.6079	2.6249	2.6421	2.6592

Circles Areas in Ale-Gallons.

Dia.	0	1	2	3	4
31	2.6765	2.6938	2.7111	2.7285	2.7460
32	2.8519	2.8698	2.8877	2.9057	2.9237
33	3.0330	3.0514	3.0698	3.0884	3.1069
34	3.2196	3.2385	3.2576	3.2766	3.2958
35	3.4117	3.4313	3.4509	3.4705	3.4902
36	3.6095	3.6296	3.6497	3.6699	3.6901
37	3.8128	3.8334	3.8541	3.8749	3.8957
38	4.0217	4.0429	4.0641	4.0854	4.1068
39	4.2361	4.2579	4.2797	4.3016	4.3235
40	4.4562	4.4785	4.5008	4.5233	4.5457
41	4.6818	4.7046	4.7275	4.7505	4.7735
42	4.9129	4.9363	4.9598	4.9834	5.0069
43	5.1456	5.1736	5.1977	5.2218	5.2459
44	5.3920	5.4165	5.4411	5.4657	5.4904
45	5.6398	5.6649	5.6901	5.7153	5.7405
46	5.8933	5.9189	5.9446	5.9704	5.9962
47	6.1523	6.1785	6.2048	6.2311	6.2575
48	6.4169	6.4436	6.4705	6.4973	6.5243
49	6.6870	6.7143	6.7417	6.7692	6.7966
50	6.9628	6.9906	7.0186	7.0466	7.0746
51	7.2440	7.2725	7.3010	7.3295	7.3581
52	7.5309	7.5599	7.5890	7.6181	7.6472
53	7.8233	7.8529	7.8825	7.9122	7.9419
54	8.1214	8.1515	8.1816	8.2118	8.2421
55	8.4249	8.4556	8.4863	8.5171	8.5479
56	8.7341	8.7653	8.7966	8.8279	8.8593
57	9.0488	9.0806	9.1124	9.1443	9.1762
58	9.3691	9.4014	9.4338	9.4662	9.4988
59	9.6949	9.7278	9.7608	9.7938	9.8268
60	10.0264	10.0598	10.0933	10.1269	10.1609

Circles Areas in Ale-Gallons.

Dia.	5	6	7	8	9
31	2.7635	2.7811	2.7987	2.8164	2.8341
32	2.9418	2.9599	2.9781	2.9963	3.0146
33	3.1256	3.1443	3.1630	3.1818	3.2007
34	3.3150	3.3342	3.3535	3.3729	3.3923
35	3.5099	3.5297	3.5496	3.5695	3.5895
36	3.7104	3.7308	3.7512	3.7717	3.7922
37	3.9165	3.9375	3.9584	3.9795	4.0005
38	4.1282	4.1497	4.1712	4.1928	4.2144
39	4.3455	4.3675	4.3896	4.4117	4.4339
40	4.5683	4.5908	4.6135	4.6362	4.6589
41	4.7966	4.8198	4.8430	4.8662	4.8895
42	5.0306	5.0543	5.0780	5.1019	5.1257
43	5.2701	5.2944	5.3187	5.3430	5.3675
44	5.5152	5.5400	5.5649	5.5898	5.6148
45	5.7659	5.7912	5.8167	5.8421	5.8677
46	6.0221	6.0480	6.0750	6.1000	6.1261
47	6.2839	6.3104	6.3369	6.3635	6.3902
48	6.5513	6.5783	6.6054	6.6325	6.6598
49	6.8242	6.8518	6.8794	6.9072	6.9349
50	7.1027	7.1309	7.1591	7.1873	7.2157
51	7.3868	7.4155	7.4443	7.4731	7.5020
52	7.6764	7.7057	7.7350	7.7644	7.7939
53	7.9717	8.0015	8.0314	8.0613	8.0913
54	8.2724	8.3028	8.3333	8.3638	8.3943
55	8.5788	8.6097	8.6407	8.6718	8.7029
56	8.8907	8.9222	8.9538	8.9854	9.0171
57	9.2082	9.2403	9.2724	9.3046	9.3368
58	9.5313	9.5639	9.5966	9.6293	9.6621
59	9.8600	9.8931	9.9263	9.9596	9.9930
60	10.1942	10.2279	10.2617	10.2955	10.3294

Circles Areas in Wine-Gallons.

Diam.	0	1	2	3	4
1	0.0034	0.0041	0.0049	0.0057	0.0067
2	0.0136	0.0150	0.0165	0.0180	0.0196
3	0.0306	0.0327	0.0348	0.0370	0.0393
4	0.0544	0.0572	0.0600	0.0629	0.0658
5	0.0850	0.0884	0.0919	0.0955	0.0991
6	0.1224	0.1265	0.1307	0.1349	0.1393
7	0.1666	0.1714	0.1763	0.1812	0.1862
8	0.2176	0.2231	0.2286	0.2342	0.2399
9	0.2754	0.2816	0.2878	0.2941	0.3004
10	0.3400	0.3468	0.3537	0.3607	0.3677
11	0.4114	0.4189	0.4265	0.4341	0.4419
12	0.4896	0.4978	0.5061	0.5144	0.5228
13	0.5746	0.5835	0.5924	0.6014	0.6105
14	0.6664	0.6760	0.6856	0.6953	0.7050
15	0.7650	0.7752	0.7855	0.7959	0.8063
16	0.8704	0.8813	0.8923	0.9033	0.9145
17	0.9826	0.9942	1.0059	1.0176	1.0294
18	1.1016	1.1139	1.1262	1.1386	1.1511
19	1.2274	1.2404	1.2534	1.2665	1.2796
20	1.3600	1.3730	1.3837	1.4011	1.4149
21	1.4994	1.5137	1.5281	1.5425	1.5571
22	1.6456	1.6606	1.6757	1.6908	1.7060
23	1.7986	1.8143	1.8300	1.8458	1.8617
24	1.9584	1.9748	1.9912	2.0077	2.0242
25	2.1250	2.1420	2.1591	2.1763	2.1935
26	2.2984	2.3161	2.3339	2.3517	2.3697
27	2.4786	2.4970	2.5155	2.5340	2.5526
28	2.6656	2.6847	2.7038	2.7230	2.7423
29	2.8594	2.8792	2.8990	2.9189	2.9388
30	3.0600	3.0804	3.1009	3.1215	3.1421

Circles Areas in Wine-Gallons.

Diam.	5	6	3	.4	9
1	0.0077	0.0087	0.0098	0.0110	0.0123
2	0.0213	0.0230	0.0248	0.0267	0.0286
3	0.0417	0.0441	0.0465	0.0491	0.0517
4	0.0689	0.0719	0.0751	0.0781	0.0816
5	0.1029	0.1066	0.1105	0.1144	0.1184
6	0.1437	0.1481	0.1526	0.1572	0.1619
7	0.1913	0.1964	0.2016	0.2069	0.2122
8	0.2457	0.2515	0.2573	0.2633	0.2693
9	0.3069	0.3133	0.3199	0.3265	0.3332
10	0.3749	0.3820	0.3893	0.3966	0.4040
11	0.4497	0.4575	0.4654	0.4734	0.4815
12	0.5313	0.5398	0.5484	0.5571	0.5658
13	0.6197	0.6289	0.6381	0.6475	0.6569
14	0.7149	0.7247	0.7347	0.7447	0.7548
15	0.8169	0.8274	0.8381	0.8488	0.8596
16	0.9257	0.9369	0.9442	0.9596	0.9711
17	1.0413	1.0532	1.0652	1.0773	1.0894
18	1.1637	1.1763	1.1889	1.2017	1.2145
19	1.2929	1.3061	1.3195	1.3329	1.3464
20	1.4289	1.4428	1.4569	1.4710	1.4852
21	1.5717	1.5863	1.6010	1.6158	1.6307
22	1.7213	1.7366	1.7520	1.7675	1.7830
23	1.8777	1.8937	1.9097	1.9259	1.9421
24	2.0409	2.0575	2.0743	2.0911	2.1080
25	2.2109	2.2282	2.2457	2.2632	2.2808
26	2.3877	2.4057	2.4238	2.4420	2.4603
27	2.5713	2.5900	2.6088	2.6277	2.6466
28	2.7617	2.7811	2.8005	2.8201	2.8396
29	2.9589	2.9789	2.9991	3.0193	3.0396
30	3.1629	3.1836	3.2045	3.2254	3.2464

Circles Areas in Wine-Gallons.

Di.	0	1	2	3	4
31	3.2674	3.2885	3.3097	3.3309	3.3523
32	3.4816	3.5034	3.5253	3.5472	3.5692
33	3.7026	3.7251	3.7476	3.7702	3.7929
34	3.9304	3.9536	3.9768	4.0001	4.0234
35	4.1650	4.1888	4.2127	4.2367	4.2607
36	4.4064	4.4309	4.4555	4.4801	4.5049
37	4.6546	4.6798	4.7051	4.7304	4.7558
38	4.9096	4.9355	4.9614	4.9874	5.0135
39	5.1714	5.1980	5.2246	5.2513	5.2780
40	5.4400	5.4672	5.4945	5.5219	5.5493
41	5.7154	5.7433	5.7713	5.7993	5.8275
42	5.9976	6.0262	6.0549	6.0836	6.1124
43	6.2866	6.3159	6.3452	6.3746	6.4041
44	6.5824	6.6124	6.6424	6.6725	6.7026
45	6.8850	6.9156	6.9463	6.9771	7.0079
46	7.1944	7.2257	7.2571	7.2885	7.3201
47	7.5106	7.5426	7.5747	7.6068	7.6390
48	7.8336	7.8663	7.8990	7.9318	7.9647
49	8.1634	8.1968	8.2302	8.2637	8.2972
50	8.5000	8.5340	8.5681	8.6023	8.6365
51	8.8434	8.8781	8.9129	8.9477	8.9827
52	9.1936	9.2290	9.2645	9.3000	9.3356
53	9.5506	9.5867	9.6228	9.6590	9.6953
54	9.9144	9.9512	9.9880	10.0249	10.0618
55	10.2850	10.3224	10.3599	11.3975	10.4351
56	10.6624	10.7005	10.7387	10.7769	10.8153
57	11.0466	11.0854	11.1243	11.1632	11.2022
58	11.4376	11.4771	11.5166	11.5562	11.5959
59	11.8354	11.8756	11.9158	11.9561	11.9964
60	12.2400	12.2808	12.3217	12.3627	12.4037

Circles Areas in Wine-Gallons.

Dia.	5	6	7	8	9
523					
692	3.3737	3.3951	3.4166	3.4382	3.4599
929	3.5913	3.6134	3.6356	3.6579	3.6802
234	3.8157	3.8385	3.8613	3.8843	3.9073
607	4.0469	4.0703	4.0939	4.1175	4.1412
	4.2849	4.3090	4.3333	4.3576	4.3820
049					
558	4.5297	4.5545	4.5794	4.6044	4.6295
135	4.7813	4.8068	4.8324	4.8585	4.8838
780	5.0397	5.0659	5.0921	5.1185	5.1449
493	5.3049	5.3317	5.3587	5.3857	5.4128
	5.5769	5.6044	5.6321	5.6598	5.6876
275					
124	5.8557	5.8839	5.9122	5.9406	5.9691
041	6.1413	6.1702	6.1992	6.2283	6.2574
026	6.4337	6.4633	6.4929	6.5227	6.5525
079	6.7329	6.7631	6.7935	6.8239	6.8544
	7.0389	7.0698	7.1009	7.1320	7.1632
201					
390	7.3517	7.3833	7.4150	7.4468	7.4787
447	7.6713	7.7036	7.7360	7.7685	7.8010
72	7.9977	8.0307	8.0637	8.0969	8.1301
65	8.3309	8.3645	8.3983	8.4321	8.4660
	8.6709	8.7052	8.7397	8.7742	8.8088
127					
56	9.0177	9.0527	9.0878	9.1230	9.1583
53	9.3713	9.4070	9.4428	9.4787	9.5146
18	9.7317	9.7681	9.8045	9.8411	9.8777
51	10.0989	10.1359	10.1731	10.2103	10.2476
	10.4729	10.5106	10.5485	10.5864	10.6244
53					
22	10.8537	10.8921	10.9306	10.9692	11.0079
59	11.2413	11.2804	11.3196	11.3589	11.3982
64	11.6357	11.6755	11.7153	11.7553	11.7953
37	12.0369	12.0773	12.1179	12.1585	12.1992
	12.4449	12.4860	12.5273	12.5686	12.6100

S E G M E N T S
Of a
C I R C L E,

Whose DIAMETER 1.128379 is divided by parallel *Chord-Lines* into 100 equal parts, and the *Area* 1.0000.

Calculated by Sybrand Hans.

V. S.	Segm.						
.1	.0017	.26	.2066	.51	.5127	.76	.8155
.2	.0048	.27	.2178	.52	.5255	.77	.8262
.3	.0087	.28	.2292	.53	.5382	.78	.8369
.4	.0134	.29	.2407	.54	.5509	.79	.8473
.5	.0187	.30	.2523	.55	.5636	.80	.8576
.6	.0245	.31	.2640	.56	.5762	.81	.8677
.7	.0308	.32	.2759	.57	.5888	.82	.8776
.8	.0375	.33	.2878	.58	.6014	.83	.8873
.9	.0446	.34	.2998	.59	.6140	.84	.8967
.10	.0520	.35	.3119	.60	.6265	.85	.9053
.11	.0598	.36	.3241	.61	.6385	.86	.9149
.12	.0680	.37	.3364	.62	.6513	.87	.9236
.13	.0764	.38	.3487	.63	.6636	.88	.9320
.14	.0851	.39	.3611	.64	.6755	.89	.9402
.15	.0941	.40	.3735	.65	.6881	.90	.9480
.16	.1033	.41	.3860	.66	.7002	.91	.9554
.17	.1127	.42	.3986	.67	.7122	.92	.9625
.18	.1224	.43	.4112	.68	.7241	.93	.9692
.19	.1323	.44	.4238	.69	.7360	.94	.9755
.20	.1424	.45	.4364	.70	.7477	.95	.9813
.21	.1527	.46	.4491	.71	.7593	.96	.9865
.22	.1631	.47	.4618	.72	.7708	.97	.9913
.23	.1738	.48	.4745	.73	.7822	.98	.9952
.24	.1845	.49	.4873	.74	.7934	.99	.9983
.25	.1955	.50	.5000	.75	.8045	1.00	1.0000

A T A B L E for finding the
P E R I F E R Y
 Of an
E L L I P S I S.

Calculated by Sir Jonas Moore.

Axe	Perif.	Axe	Perif.	Axe	Perif.	Axe	Perif.
.1	2.0012	.26	2.1561	.51	2.4342	.76	2.7745
.2	2.0028	.27	2.1658	.52	2.4467	.77	2.7891
.3	2.0048	.28	2.1756	.53	2.4594	.78	2.8038
.4	2.0072	.29	2.1856	.54	2.4723	.79	2.8186
.5	2.0100	.30	2.1956	.55	2.4852	.80	2.8334
.6	2.0133	.31	2.2057	.56	2.4983	.81	2.8482
.7	2.0170	.32	2.2160	.57	2.5114	.82	2.8630
.8	2.0213	.33	2.2264	.58	2.5245	.83	2.8779
.9	2.0261	.34	2.2368	.59	2.5377	.84	2.8929
.10	2.0314	.35	2.2474	.60	2.5510	.85	2.9080
.11	2.0370	.36	2.2581	.61	2.5644	.86	2.9231
.12	2.0432	.37	2.2692	.62	2.5779	.87	2.9382
.13	2.0496	.38	2.2803	.63	2.5915	.88	2.9534
.14	2.0564	.39	2.2915	.64	2.6052	.89	2.9686
.15	2.0634	.40	2.3028	.65	2.6189	.90	2.9839
.16	2.0708	.41	2.3142	.66	2.6327	.91	2.9993
.17	2.0784	.42	2.3256	.67	2.6465	.92	3.0147
.18	2.0862	.43	2.3371	.68	2.6604	.93	3.0302
.19	2.0944	.44	2.3488	.69	2.6744	.94	3.0458
.20	2.1024	.45	2.3607	.70	2.6884	.95	3.0614
.21	2.1106	.46	2.3726	.71	2.7025	.96	3.0771
.22	2.1192	.47	2.3848	.72	2.7166	.97	3.0928
.23	2.1281	.48	2.3970	.73	2.7309	.98	3.1086
.24	2.1373	.49	2.4094	.74	2.7453	.99	3.1244
.25	2.1467	.50	2.4218	.75	2.7599	1.00	3.1402

S E G M E N T S
Of a
C O N E,

Whose A X E is divided by *Planes* parallel to the
Base into 100 equal parts, and the Solid Content
1.0000.

S.A.	Segm.	S.A.	Segm.	S.A.	Segm.	S.A.	Segm.
.1	.0002	.26	.0177	.51	.1327	.76	.4390
.2	.0003	.27	.0198	.52	.1407	.77	.4565
.3	.0003	.28	.0221	.53	.1489	.78	.4746
.4	.0004	.29	.0245	.54	.1575	.79	.4930
.5	.0004	.30	.0271	.55	.1664	.80	.5120
.6	.0005	.31	.0299	.56	.1757	.81	.5314
.7	.0006	.32	.0329	.57	.1852	.82	.5514
.8	.0008	.33	.0360	.58	.1951	.83	.5718
.9	.0010	.34	.0394	.59	.2054	.84	.5927
.10	.0012	.35	.0430	.60	.2160	.85	.6141
.11	.0016	.36	.0467	.61	.2270	.86	.6361
.12	.0020	.37	.0507	.62	.2384	.87	.6585
.13	.0024	.38	.0550	.63	.2501	.88	.6815
.14	.0030	.39	.0594	.64	.2622	.89	.7050
.15	.0036	.40	.0641	.65	.2746	.90	.7290
.16	.0043	.41	.0690	.66	.2875	.91	.7536
.17	.0051	.42	.0742	.67	.3008	.92	.7787
.18	.0060	.43	.0796	.68	.3144	.93	.8041
.19	.0070	.44	.0852	.69	.3285	.94	.8306
.20	.0082	.45	.0912	.70	.3430	.95	.8574
.21	.0094	.46	.0974	.71	.3575	.96	.8847
.22	.0108	.47	.1039	.72	.3733	.97	.9127
.23	.0123	.48	.1106	.73	.3890	.98	.9412
.24	.0140	.49	.1177	.74	.4052	.99	.9703
.25	.0158	.50	.1250	.75	.4219	1.00	1.0000

S E G M E N T S
Of a
Parabolick-CONOID

Whose A X E is divided by *Planes* parallel to the
B A S E into 100 equal Parts, and the *Solid*
Content 1.0000.

S.A.	Segm.	S.A.	Segm.	S.A.	Segm.	S.A.	Segm.
.1	.0001	.26	.0676	.51	.2601	.76	.5776
.2	.0004	.27	.0729	.52	.2704	.77	.5929
.3	.0009	.28	.0784	.53	.2809	.78	.6084
.4	.0016	.29	.0841	.54	.2916	.79	.6241
.5	.0025	.30	.0900	.55	.3025	.80	.6400
.6	.0036	.31	.0961	.56	.3136	.81	.6561
.7	.0049	.32	.1024	.57	.3249	.82	.6724
.8	.0064	.33	.1089	.58	.3364	.83	.6889
.9	.0081	.34	.1156	.59	.3481	.84	.7056
.10	.0100	.35	.1225	.60	.3600	.85	.7225
.11	.0121	.36	.1296	.61	.3721	.86	.7396
.12	.0144	.37	.1365	.62	.3844	.87	.7569
.13	.0169	.38	.1444	.63	.3969	.88	.7744
.14	.0196	.39	.1521	.64	.4096	.89	.7921
.15	.0225	.40	.1600	.65	.4225	.90	.8100
.16	.0256	.41	.1681	.66	.4356	.91	.8281
.17	.0289	.42	.1764	.67	.4489	.92	.8464
.18	.0324	.43	.1849	.68	.4624	.93	.8649
.19	.0361	.44	.1936	.69	.4761	.94	.8836
.20	.0400	.45	.2025	.70	.4900	.95	.9025
.21	.0441	.46	.2116	.71	.5041	.96	.9216
.22	.0481	.47	.2209	.72	.5184	.97	.9409
.23	.0529	.48	.2304	.73	.5329	.98	.9604
.24	.0576	.49	.2401	.74	.5476	.99	.9801
.25	.0625	.50	.2500	.75	.5625	1.00	1.0000

SEGMENTS

Of the *Frustum* of a

C O N E,

Whose AXE is divided by *Planes* parallel to the
B A s s into 100 equal parts, and the *Solid Content* 1.0000.

Calculated by Mr. Rich. Collier.

S.A.	1	2	3	4	S.A.	1	2	3	4
.1	0092	0087	0083	0078	.21	1973	1886	1804	1728
.2	0185	0175	0165	0157	.22	2069	1979	1894	1815
.3	0278	0263	0249	0236	.23	2165	2071	1984	1903
.4	0371	0351	0332	0315	.24	2261	2164	2074	1990
.5	0464	0439	0416	0395	.25	2357	2258	2165	2079
.6	0557	0528	0500	0475	.26	2453	2351	2256	2167
.7	0650	0617	0585	0556	.27	2549	2445	2348	2256
.8	0744	0706	0670	0637	.28	2646	2539	2439	2346
.9	0838	0795	0755	0718	.29	2743	2633	2531	2436
.10	0932	0884	0841	0800	.30	2839	2728	2624	2526
.11	1025	0974	0927	0882	.31	2936	2823	2717	2616
.12	1120	1064	1013	0965	.32	3033	2918	2810	2708
.13	1214	1155	1100	1048	.33	3131	3013	2903	2800
.14	1308	1245	1186	1132	.34	3228	3109	2997	2892
.15	1403	1336	1274	1216	.35	3326	3205	3091	2985
.16	1498	1427	1361	1300	.36	3423	3301	3186	3078
.17	1592	1518	1449	1385	.37	3521	3397	3281	3171
.18	1687	1610	1538	1417	.38	3619	3494	3376	3265
.19	1783	1702	1626	1556	.39	3718	3591	3472	3360
.20	1878	1794	1715	1642	.40	3816	3688	3567	3454

Segments of the Frustum of a Cone.

S.A.	1	2	3	4	S.A.	1	2	3	4	
.41	3914	3785	3664	3550	.71	6941	6829	6722	6621	
.42	4013	3883	3760	3645	.72	7044	6934	6830	6730	
.43	4112	3981	3857	3742	.73	7148	7040	6938	6841	
.44	4211	4079	3954	3838	.74	7251	7146	7046	6951	
.45	4310	4177	4053	3935	.75	7355	7252	7155	7063	
.46	4409	4276	4151	4033	.76	7459	7359	7264	7174	
.47	4509	4375	4249	4131	.77	7563	7466	7374	7286	
.48	4608	4474	4348	4229	.78	7667	7573	7484	7398	
.49	4708	4574	4447	4328	.79	7771	7681	7594	7512	
.50	4808	4673	4547	4427	.80	7876	7788	7705	7625	
1728	.51	4908	4773	4647	4527	.81	7981	7896	7816	7739
1815	.52	5008	4874	4748	4628	.82	8086	8004	7927	7854
1903	.53	5108	4974	4848	4728	.83	8191	8113	8039	7969
1990	.54	5209	5075	4949	4829	.84	8296	8222	8151	8084
2079	.55	5309	5176	5050	4931	.85	8401	8331	8264	8200
2167	.56	5410	5277	5152	5033	.86	8507	8440	8377	8317
2256	.57	5511	5379	5254	5136	.87	8612	8550	8490	8434
2346	.58	5612	5481	5356	5239	.88	8718	8660	8604	8551
2436	.59	5714	5583	5459	5342	.89	8824	8770	8718	8669
2526	.60	5815	5685	5562	5445	.90	8930	8880	8833	8788
2616	.61	5917	5783	5665	5550	.91	9036	8991	8948	8906
2708	.62	6018	5891	5770	5655	.92	9143	9102	9063	9026
2800	.63	6120	5994	5874	5761	.93	9249	9213	9179	9147
2892	.64	6222	6097	5979	5867	.94	9356	9325	9295	9266
2985	.65	6324	6201	6084	5973	.95	9463	9437	9412	9387
3078	.66	6427	6305	6189	6080	.96	9570	9549	9528	9502
3171	.67	6529	6409	6295	6187	.97	9677	9661	9646	9631
3265	.68	6632	6513	6401	6295	.98	9785	9774	9763	9753
3360	.69	6735	6618	6508	6403	.99	9892	9887	9882	9876
3454	.70	6838	6723	6615	6512	1.00	1.0000	1.0000	1.0000	1.0000

 SEGMENTS
 Of a
Parabolick SPINDLE,
 Whose AXE is divided by *Planes parallel to the BUNG-DIAMETER* into 100 equal parts, and
 the Solid Content 1.0000.

S.A.	Segm.	S.A.	Segm.	S.A.	Segm.	S.A.	Segm.
.1	.0000	.25	.1143	.51	.5188	.76	.9067
.2	.0001	.27	.1257	.52	.5375	.77	.9164
.3	.0003	.28	.1376	.53	.5561	.78	.9255
.4	.0006	.29	.1501	.54	.5747	.79	.9340
.5	.0012	.30	.1630	.55	.5931	.80	.9420
.6	.0020	.31	.1765	.56	.6114	.81	.9494
.7	.0031	.32	.1905	.57	.6296	.82	.9563
.8	.0046	.33	.2049	.58	.6475	.83	.9626
.9	.0064	.34	.2198	.59	.6651	.84	.9683
.10	.0086	.35	.2352	.60	.6826	.85	.9734
.11	.0113	.36	.2509	.61	.6997	.86	.9780
.12	.0144	.37	.2670	.62	.7165	.87	.9821
.13	.0179	.38	.2835	.63	.7330	.88	.9856
.14	.0220	.39	.3003	.64	.7491	.89	.9887
.15	.0266	.40	.3174	.55	.7648	.90	.9914
.16	.0317	.41	.3349	.66	.7802	.91	.9936
.17	.0374	.42	.3525	.67	.7951	.92	.9951
.18	.0437	.43	.3704	.68	.8095	.93	.9965
.19	.0506	.44	.3886	.65	.8235	.94	.9983
.20	.0580	.45	.4069	.70	.8370	.95	.9988
.21	.0660	.46	.4253	.71	.8499	.96	.9994
.22	.0745	.47	.4439	.72	.8624	.97	.9997
.23	.0836	.48	.4625	.73	.8743	.98	.9999
.24	.0933	.49	.4812	.74	.8857	.99	.0000
.25	.1035	.50	.5000	.75	.8965		

S E G M E N T S
Of a
S P H E R E,

Whose AXE 1.240695 is divided by parallel *Planes*
into 100 equal parts, and the *Solid Content*
1.0000.

E,
the
and

S.A.	Segm.	S.A.	Segm.	S.A.	Segm.	S.A.	Segm.
.0067	.0003	.26	.1677	.51	.5150	.76	.8548
.0164	.0012	.27	.1793	.52	.5300	.77	.8656
.0255	.0027	.28	.1913	.53	.5449	.78	.8761
.0340	.0047	.29	.2036	.54	.5599	.79	.8862
.0420	.0073	.30	.2161	.55	.5747	.80	.8960
.0494	.0104	.31	.2287	.56	.5896	.81	.9054
.0563	.0140	.32	.2417	.57	.6043	.82	.9145
.0626	.0182	.33	.2548	.58	.6190	.83	.9231
.0683	.0228	.34	.2682	.59	.6335	.84	.9314
.0734	.0280	.35	.2818	.60	.6480	.85	.9392
.0780	.0336	.36	.2955	.61	.6623	.86	.9467
.0821	.0397	.37	.3094	.62	.6765	.87	.9537
.0856	.0463	.38	.3235	.63	.6906	.88	.9603
.0887	.0533	.39	.3377	.64	.7045	.89	.9664
.0914	.0603	.40	.3520	.65	.7182	.90	.9720
.0935	.0686	.41	.3665	.66	.7318	.91	.9772
.0955	.0769	.42	.3810	.67	.7452	.92	.9818
.0965	.0855	.43	.3957	.68	.7583	.93	.9860
.0983	.0946	.44	.4104	.69	.7713	.94	.9896
.0988	.1040	.45	.4253	.70	.7839	.95	.9927
.999	.1138	.46	.4401	.71	.7964	.96	.9953
.999	.1239	.47	.4551	.72	.8087	.97	.9973
.999	.1344	.48	.4700	.73	.8207	.98	.9988
.000	.1452	.49	.4850	.74	.8323	.99	.9997
.000	.1563	.50	.5000	.75	.8437	1.00	1.0000

SEGMENTS

Of the *middle Frustum* of a

SPHEROID.

Whose AXE is divided by Planes parallel to the
BUNG-DIAMETER into 100 equal parts, and
the Solid Content 1.0000.

Calculated by Mr. Rich. Colton.

S.A.	1	2	3	4	S.A.	1	2	3	4
.1	0090	0084	0078	0073	.21	2004	1940	1882	1829
.2	0181	0169	0157	0147	.22	2104	2040	1982	1930
.3	0273	0254	0238	0223	.23	2205	2141	2083	2031
.4	0365	0341	0320	0301	.24	2305	2242	2185	2133
.5	0457	0429	0403	0380	.25	2406	2344	2287	2236
.	—	—	—	—	.	—	—	—	—
.6	0550	0517	0487	0460	.26	2508	2446	2391	2340
.7	0644	0607	0573	0542	.27	2609	2549	2494	2445
.8	0738	0697	0660	0626	.28	2711	2652	2599	2550
.9	0833	0788	0748	0711	.29	2814	2756	2704	2657
.10	0928	0880	0837	0797	.30	2916	2860	2810	2764
.	—	—	—	—	.	—	—	—	—
.11	1024	0973	0927	0885	.31	3019	2965	2916	2871
.12	1120	1066	1018	0974	.32	3122	3070	3022	2980
.13	1216	1161	1110	1064	.33	3225	3175	3130	3088
.14	1313	1256	1203	1156	.34	3328	3280	3237	3198
.15	1411	1351	1298	1249	.35	3432	3386	3345	3308
.	—	—	—	—	.	—	—	—	—
.16	1509	1448	1393	1343	.36	3536	3492	3454	3418
.17	1607	1545	1489	1438	.37	3639	3599	3563	3529
.18	1706	1643	1586	1534	.38	3744	3706	3672	3641
.19	1805	1741	1684	1631	.39	3848	3813	3781	3753
.20	1904	1840	1782	1730	.40	3952	3920	3891	3865

Segm. of the middle Frustum of a Spberoid.

S.A.	1	2	3	4	S.A.	1	2	3	4
.41	4057	4027	4001	3978	.71	7186	7244	7296	7343
.42	4161	4135	4112	4090	.72	7289	7348	7401	7450
.43	4266	4243	4222	4203	.73	7391	7451	7506	7555
.44	4370	4351	4333	4317	.74	7492	7554	7609	7660
.45	4475	4459	4444	4430	.75	7594	7656	7713	7764
.46	4580	4567	4555	4544	.76	7695	7758	7815	7867
.47	4685	4675	4666	4658	.77	7795	7859	7917	7969
.48	4790	4783	4777	4772	.78	7896	7960	8018	8070
.49	4895	4891	4889	4886	.79	7996	8060	8118	8171
.50	5000	5000	5000	5000	.80	8096	8160	8218	8270
.51	5105	5109	5111	5114	.81	8195	8259	8316	8369
.52	5210	5217	5223	5228	.82	8294	8357	8414	8466
.53	5315	5325	5334	5342	.83	8393	8455	8511	8562
.54	5420	5433	5445	5456	.84	8491	8552	8607	8657
.55	5525	5541	5556	5570	.85	8589	8649	8702	8750
.56	5630	5649	5667	5683	.86	8687	8744	8797	8844
.57	5734	5757	5778	5797	.87	8784	8839	8890	8936
.58	5839	5865	5888	5910	.88	8880	8934	8982	9026
.59	5943	5973	5999	6022	.89	8976	9027	9073	9115
.60	6048	6080	6109	6135	.90	9072	9120	9163	9203
.61	6152	6187	6219	6247	.91	9167	9212	9252	9289
.62	6256	6294	6328	6359	.92	9262	9303	9340	9374
.63	6361	6401	6437	6471	.93	9356	9393	9427	9458
.64	6464	6508	6546	6582	.94	9450	9483	9513	9540
.65	6568	6614	6655	6692	.95	9543	9571	9597	9620
.66	6672	6720	6763	6802	.96	9635	9659	9680	9695
.67	6775	6825	6870	6912	.97	9727	9746	9762	9777
.68	6878	6930	6978	7020	.98	9819	9831	9843	9853
.69	6981	7035	7084	7129	.99	9910	9916	9922	9927
.70	7084	7140	7190	7236	1.00	1.0000	1.0000	1.0000	1.0000

Excise for Brewers ex Londino, &c. at 4s. per Barr. the Allowances being 2 $\frac{1}{2}$ Bar. in every 23.

Bar.	O	$\frac{1}{4}$	$\frac{1}{2}$	$\frac{3}{4}$
	L. s. d. g. 23			
0	0.00.10.2.18	0.01.09.1.13	0.02.08.0.08	
1	0.03.05.3.03	0.04.05.1.21	0.05.04.0.16	0.06.02.3.11
2	0.07.01.2.06	0.08.00.1.01	0.08.10.3.19	0.09.09.2.14
3	0.10.08.1.09	0.11.07.0.04	0.12.05.2.22	0.13.04.1.17
4	0.14.03.0.12	0.15.01.3.07	0.16.02.0.02	0.16.11.0.20
5	0.17.09.3.15	0.18.08.2.10	0.19.07.1.05	1.00.06.0.00
6	1.01.04.2.18	1.02.03.1.13	1.03.02.0.08	1.04.00.3.03
7	1.04.11.1.21	1.05.10.0.16	1.06.08.3.11	1.07.07.2.06
8	1.08.06.1.01	1.09.04.3.19	1.10.03.2.14	1.11.02.1.09
9	1.12.01.0.04	1.12.11.2.22	1.13.10.1.17	1.14.09.0.12
10	1.15.07.3.07	1.16.06.2.02	1.17.05.0.20	1.18.03.3.15
11	1.19.02.2.10	2.00.01.1.05	2.01.00.0.00	2.01.10.2.18
12	2.02.09.1.13	2.03.08.0.08	2.04.06.3.03	2.05.05.1.21
13	2.06.04.0.16	2.07.02.3.11	2.08.01.2.06	2.09.00.1.01
	2.09.10.3.19	2.10.09.2.14	2.11.08.1.09	2.12.07.0.04
15	2.13.05.2.22	2.14.04.1.17	2.15.03.0.12	2.16.01.3.07
16	2.17.00.2.02	2.17.11.0.20	2.18.09.3.15	2.19.08.2.10
17	3.00.07.1.05	3.01.06.0.00	3.02.04.2.18	3.03.03.1.13
18	3.04.02.0.08	3.05.00.3.03	3.05.11.1.21	3.06.10.0.16
19	3.07.08.3.11	3.08.07.2.06	3.09.06.1.01	3.10.04.3.19
20	3.11.03.2.14	3.12.02.1.09	3.13.01.0.04	3.13.11.2.22
21	3.14.10.1.17	3.15.09.0.12	3.16.07.3.07	3.17.06.2.02
22	3.18.05.0.20	3.19.03.3.15	4.00.02.2.10	4.01.01.1.05
23	4.02.00.0.00	4.02.10.2.18	4.03.09.1.13	4.04.08.0.08
24	4.05.06.3.03	4.06.05.1.21	4.07.04.0.16	4.08.02.3.11
25	4.09.01.2.06	4.10.00.1.01	4.10.10.3.19	4.11.09.2.14
26	4.12.08.1.09	4.13.07.0.04	4.14.05.2.22	4.15.04.1.17
27	4.16.03.0.12	4.17.01.3.07	4.18.00.2.02	4.18.11.0.20
28	4.19.09.3.15	5.00.08.2.10	5.01.07.1.05	5.02.06.0.00
29	5.03.04.2.18	5.04.03.1.13	5.05.02.0.08	5.06.00.3.03
30	5.06.11.1.21	5.07.10.0.16	5.08.08.3.11	5.09.07.2.00

E X C I S E
F O R
B R E W E R S ex Londino, &c.
at 4s. per Barrel.

The Allowances being $2\frac{1}{2}$ Bar. in every 23.

Bar.	l. s. d. q. 23	Bar.	l. s. d. q. 23	Bar.	l. s. d. q. 23
30	05.06.11.1.21	930	155.15.07.3.07	1830	326.04.04.9.16
60	10.13.10.3.19	960	171.02.07.1.25	1860	331.11.03.2.14
90	16.00.10.1.17	990	176.09.06.3.03	1890	336.18.03.0.12
120	21.07.09.3.15	1020	181.10.06.1.01	1920	342.05.02.2.10
150	26.14.09.1.13	1050	187.03.05.2.22	1950	347.12.02.0.08
180	32.01.08.3.11	1080	193.10.05.0.20	1980	352.19.01.2.06
210	37.08.03.1.09	1110	197.17.04.2.18	2010	358.06.01.0.04
240	42.15.07.3.07	1140	203.04.04.0.16	2040	363.13.00.2.02
270	48.02.07.1.05	1170	208.11.03.2.14	2070	369.00.00.0.00
300	53.09.06.3.03	1200	213.18.03.0.12	2100	374.06.11.1.21
330	58.16.06.1.01	1230	219.05.02.2.10	2200	392.03.05.2.12
360	64.03.05.2.22	1260	224.12.02.0.08	2300	410.00.00.0.00
390	69.13.05.0.20	1290	229.19.01.2.06	2400	427.16.06.3.01
420	74.17.04.2.18	1320	235.06.01.0.04	2500	445.13.00.2.02
450	80.04.04.0.16	1350	240.13.00.2.02	2600	463.09.06.3.03
480	85.11.03.2.14	1380	246.00.00.0.00	2700	481.06.01.0.04
510	90.18.03.0.12	1410	251.06.11.1.21	2800	499.03.07.1.05
540	96.05.02.2.10	1440	256.13.10.3.19	2900	516.19.01.2.06
570	101.12.02.0.08	1470	262.00.10.1.17	3000	534.15.07.3.07
600	106.19.01.2.06	1500	267.07.09.3.15	4000	713.00.10.1.17
630	112.06.01.0.04	1530	272.14.09.1.13	5000	891.06.01.0.04
660	117.13.00.2.02	1560	278.01.08.3.11	6000	1069.11.03.2.14
690	123.00.00.0.03	1590	283.08.08.1.09	7000	1247.16.06.1.01
720	128.06.11.1.21	1620	288.15.07.3.07	8000	1426.01.08.3.11
750	133.13.10.3.19	1650	294.02.07.1.05	9000	1604.06.11.1.21
780	139.03.10.1.17	1680	299.09.06.3.03	10000	1782.12.02.0.08
810	144.07.09.3.15	1710	304.16.06.1.01	20000	3565.04.04.0.16
840	149.14.09.1.13	1740	310.03.05.2.22	30000	5347.16.06.1.01
870	155.01.08.3.11	1770	315.10.05.0.20	40000	713.00.08.1.09
900	160.08.08.1.09	1800	320.17.04.2.18	50000	8913.00.10.1.17

Excise for Brewers ex Londino, &c. at 1s. per Bar. the Allowances being 2½ Bar. in every 23.

Ba.	O	1/4	1/2	3/4
	l. s. d. q. 23			
0		0.00.02.2.16	0.00.05.1.09	0.00.08.0.02
1	0.00.10.2.18	0.01.01.1.11	0.01.04.0.04	0.01.06.2.20
2	0.01.09.1.13	0.02.00.0.06	0.02.02.2.22	0.02.05.1.15
3	0.02.08.0.08	0.02.10.3.01	0.03.01.1.17	0.03.04.0.10
4	0.03.06.3.03	0.03.09.1.19	0.04.00.0.12	0.04.02.3.05
5	0.04.05.1.21	0.04.08.0.14	0.04.10.3.07	0.05.01.2.00
6	0.05.04.0.16	0.05.06.3.09	0.05.09.2.02	0.06.00.0.18
7	0.06.02.3.11	0.06.05.2.04	0.06.08.0.20	0.06.10.3.13
8	0.07.01.2.06	0.07.04.0.22	0.07.06.3.15	0.07.09.2.08
9	0.08.00.1.01	0.08.02.3.17	0.08.05.2.10	0.08.08.1.03
10	0.08.10.3.19	0.09.01.2.12	0.09.04.1.05	0.09.06.3.21
11	0.09.09.2.14	0.10.00.1.07	0.10.03.0.00	0.10.05.2.16
12	0.10.08.1.09	0.10.11.0.02	0.11.01.2.18	0.11.04.1.11
13	0.11.07.0.04	0.11.09.2.20	0.12.00.1.13	0.12.03.0.06
14	0.12.05.2.22	0.12.08.1.15	0.12.11.0.08	0.13.01.3.01
15	0.13.04.1.17	0.13.07.0.10	0.13.09.3.03	0.14.00.1.19
16	0.14.03.0.12	0.14.05.3.05	0.14.08.1.21	0.14.11.0.14
17	0.15.01.3.07	0.15.04.2.00	0.15.07.0.16	0.15.09.3.09
18	0.16.00.2.02	0.16.03.0.18	0.16.05.3.11	0.16.08.2.04
19	0.16.11.0.20	0.17.01.3.13	0.17.04.2.06	0.17.07.0.22
20	0.17.09.3.15	0.18.00.2.08	0.18.03.1.01	0.18.05.3.17
21	0.18.08.2.10	0.18.11.1.03	0.19.01.3.19	0.19.04.2.12
22	0.19.07.1.05	0.19.09.3.21	0.20.00.2.14	0.20.03.1.07
23	0.20.06.0.00	0.20.08.2.16	0.20.11.1.09	0.20.02.0.02
24	0.21.04.2.18	0.21.07.1.11	0.21.10.0.04	0.20.00.2.20
25	0.22.03.1.13	0.22.06.0.06	0.22.08.2.22	0.20.11.1.15
26	1.03.02.0.08	1.03.04.3.01	1.03.07.1.17	1.03.10.0.10
27	1.04.00.3.03	1.04.03.1.19	1.04.06.0.12	1.04.08.3.05
28	1.04.11.1.21	1.05.02.0.14	1.05.04.3.07	1.05.07.2.00
29	1.05.10.0.16	1.06.00.3.09	1.06.03.2.02	1.06.06.0.18
30	1.06.08.3.11	1.06.11.2.04	1.07.02.0.20	1.07.04.3.13

EXCISE FOR

BREWERS ex Londino, &c.
at 1s. per Barrel.

The Allowances being $2\frac{1}{2}$ Bar. in every 23.

Bar.	l. s. d. g. 23	Bar.	l. s. d. g. 23	Bar.	l. s. d. g. 23
30	01.06.08.3.17	930	41.08.10.3.19	1830	81.11.01.0.04
60	02.13.05.2.12	960	42.15.07.3.07	1860	82.17.09.3.15
90	04.00.02.2.10	990	44.02.04.2.18	1890	84.04.06.3.03
120	05.06.11.1.21	1020	45.09.01.2.06	1920	85.11.03.2.14
150	06.13.08.1.09	1050	46.15.10.1.17	1950	86.18.00.2.02
180	08.00.05.0.20	1080	48.02.07.1.09	1980	88.04.09.1.13
210	09.07.02.0.08	1110	49.09.04.0.16	2010	89.11.06.1.01
240	10.13.10.3.19	1140	50.16.01.0.04	2040	90.18.03.0.12
270	12.00.07.3.07	1170	52.02.09.3.15	2070	92.05.00.0.00
300	13.07.04.2.18	1200	53.09.06.3.03	2100	93.11.08.3.11
330	14.14.01.2.06	1230	54.16.03.2.14	2130	98.00.10.1.17
360	16.00.10.1.17	1260	56.03.00.2.03	2160	102.10.00.0.00
390	17.07.07.1.05	1290	57.09.09.1.13	2190	106.19.01.2.05
420	18.14.04.0.16	1320	58.16.06.1.01	2220	111.08.03.0.12
450	20.01.01.0.00	1350	60.03.03.0.12	2250	115.17.04.2.18
480	21.07.09.3.19	1380	61.10.00.0.00	2280	120.06.06.1.01
510	22.14.06.3.09	1410	62.16.08.3.12	2310	124.19.07.3.09
540	24.01.03.2.14	1440	64.03.05.2.22	2340	129.04.09.1.13
570	25.08.00.2.02	1470	65.10.02.2.10	2370	133.13.10.3.19
600	26.14.09.1.13	1500	66.16.11.1.21	2400	138.05.02.2.10
630	28.01.06.1.01	1530	68.03.08.1.09	2500	132.16.06.1.01
660	29.08.03.0.12	1560	69.10.05.0.20	2600	137.07.09.3.15
690	30.15.00.0.00	1590	70.17.02.0.08	2700	141.19.01.2.06
720	32.07.08.3.11	1620	72.03.10.3.19	2800	135.10.05.0.20
750	33.08.05.2.22	1650	73.10.07.3.07	2900	140.01.08.3.11
780	34.15.02.2.10	1680	74.17.04.2.18	30000	445.12.00.2.02
810	36.07.11.1.21	1710	76.04.01.2.06	30000	391.06.01.0.04
840	37.08.08.1.09	1740	77.10.10.1.17	30000	433.19.01.2.06
870	38.15.05.0.20	1770	78.17.07.1.05	40000	178.12.03.0.08
900	40.02.02.0.08	1800	80.04.04.0.16	30000	222.05.02.2.10

A T A B L E to convert Barrels, &c. into Gallons,
& cont:

B.	O	$\frac{1}{4}$	$\frac{1}{2}$	$\frac{3}{4}$	B.	O	$\frac{1}{4}$	$\frac{1}{2}$	$\frac{3}{4}$
1	34	42.5	51	59.5	31	1054	1062.5	1071	1079.5
2	68	76.5	85	93.5	32	1088	1096.5	1105	1113.5
3	102	110.5	119	127.5	33	1122	1130.5	1139	1147.5
4	136	144.5	153	161.5	34	1156	1164.5	1173	1181.5
5	170	178.5	187	195.5	35	1190	1198.5	1207	1215.5
6	204	212.5	221	229.5	36	1224	1232.5	1241	1249.5
7	238	246.5	255	263.5	37	1258	1266.5	1275	1283.5
8	272	280.5	289	297.5	38	1292	1300.5	1309	1317.5
9	306	314.5	323	331.5	39	1326	1334.5	1343	1351.5
10	340	348.5	357	365.5	40	1360	1368.5	1377	1385.5
11	374	382.5	391	399.5	41	1394	1402.5	1411	1419.5
12	408	416.5	425	433.5	42	1428	1436.5	1445	1453.5
13	442	450.5	459	467.5	43	1462	1470.5	1479	1487.5
14	476	484.5	493	501.5	44	1496	1504.5	1513	1521.5
15	510	518.5	527	535.5	45	1530	1538.5	1547	1555.5
16	544	552.5	561	569.5	46	1564	1572.5	1581	1589.5
17	578	586.5	595	603.5	47	1598	1606.5	1615	1623.5
18	612	620.5	629	647.5	48	1632	1640.5	1649	1657.5
19	646	654.5	663	671.5	49	1666	1674.5	1683	1691.5
20	680	688.5	697	705.5	50	1700	1708.5	1717	1725.5
21	714	722.5	731	739.5	51	1734	1742.5	1751	1759.5
22	748	756.5	765	773.5	52	1768	1776.5	1785	1793.5
23	782	790.5	799	807.5	53	1802	1810.5	1819	1827.5
24	816	824.5	833	841.5	54	1836	1844.5	1853	1861.5
25	850	858.5	867	875.5	55	1870	1878.5	1887	1895.5
26	884	892.5	901	909.5	56	1904	1912.5	1921	1929.5
27	918	926.5	935	943.5	57	1938	1946.5	1955	1963.5
28	952	960.5	969	977.5	58	1972	1980.5	1989	1997.5
29	986	994.5	1003	1011.5	59	2006	2014.5	2023	2031.5
30	1020	1028.5	1037	1045.5	60	2040	2048.5	2057	2065.5

A S Y N O P S I S
Of the
Laws of Excise.

BY several Acts of Parliament made in the Reigns of Their Majesties *C H A R L E S* the Second, and *W I L L I A M* and *M A R Y*, the Rates of Excise are as follow, viz..

	S.	D.	I.	S.	B.	
Beer or Ale above 6 s. per Barrel	—	2	: 6	—	0	: 4 : 0
From Nov. 17. 1691. for 4 Years	—	1	: 6	—	0	Mar.
Beer or Ale at 6s. per Bar. or under	—	0	: 6	—	0	: 1 : 0
From Novemb. 17. 1691. —	—	0	: 6	—	0	Mar.
Syder or Perry per Hogshead	—	—	2	: 6	—	: 5 : 0
From Novemb. 17. 1691. —	—	—	2	: 6	—	Mar.
Metheglin or Mead per Gallon	—	0	: 1	—	0	: 7
From Novemb. 17. 1691. —	—	0	: 6	—	0	Mar.
Vineager made of Beer per Barrel	—	1	: 0	—	0	: 4 : 0
From Novemb. 17. 1691. —	—	3	: 0	—	0	Mar.
Vineager made of English Materials other than from Beer	—	—	—	—	0	: 3 : 0
Vineager made or mixed with Forreign Materials, or that hath passed through the Rape per Barrel	—	—	—	—	0	: 8 : 0
Strong-Water or Aqua-Vitæ per Gallon	—	—	—	0	0	: 2 12. Car. II.
Low-Wines from Wafb, Tilts, or other English Materials, except Drink brewed of Malted Corn, Perry, and Syder per Gallon	—	—	—	0	1	: 0 2. Gal. &c Mar.
Low-Wines from Foreign, or any mixture with foreign Materials per Gallon	—	—	—	—	0	: 0 : 8
Low-Wines from Syder, Perry, or any mixture therewith per Gallon	—	—	—	—	0	: 0 : 3.

A Synopsis of the

Low-Wines from Drink made of malted Corn } o : o : 1
per Gallon ——————

Note, the Duty of Syder and Perry is to be paid by the Retailer, all other Liquors by the Maker.

Liquors imported from beyond the Seas.

	I. S. D.	I. S. D.
12. Car. II. 2. Gal. & Mar.	Beer, Ale, or Mum per Barrel — o : 6 o	o : 12 : 0
From the 17th. of Novemb. 1691. — o : 6 o		
Sherr or Perry per Tun —————— o : 16 : 0		8 : 10 : 0
From the 17th. of Novemb. 1691. 8 : 05 : 0		
Single Brandy or Spirits per Gallon o : 00 : 4		o : 04 : 4
From November the 17th. 1691. o : 04 : 0		
Brandy or Spirits above Proof per G. o : 00 : 8		o : 08 : 8
From the 17th. of Novemb. 1691 o : 08 : 0		
Spirit-Waters, Brandy, or Spirits brought from Guernsey, Jersey, Sark and Al- derney per Gallon —————— o : 08 : 0		

Note, that the Duty of all imported Liquors is to be paid by the Merchant, or Importer before Landing.

Note, that a Barrel of Vineager Beer is to contain 34 Ale or Beer-Gallons.

Artib. III. Chap. 13. A Barrel of Vineager made of Syder, or any foreign Materials, or mixture therewith, or that hath run through the Rape, 31 $\frac{1}{2}$ Gallons.

And a Hogshead of Syder 63 Wine-Gallons.

Note, that the Additional Act for Excise upon Beer, Ale, &c. Anno 1. Gen. & Mar. granted for three years, commenced the 24th. of July, 1689. therefore the Rates therein given must be added to the aforesaid Rates from the 17th. of November, 1691. to the 24th. of July 1692. the said Act not till then expiring.

Appeals

12. Car. II. — from Chief Commissioners to be determined by Commissioners of Appeals, p. 18. 63.

— from Sub-Commissioners by the Justices at their next Quarter Sessions, whose Judgment shall be final, p. 19. 64.

3d. Car. II. — not to be admitted till the single Duty be deposited with the Sub-Commissioners, and Security given for the Fine, if the Judgment be not reversed. p. 100.

— in

— in London &c. to be brought within two Months, in the Country within four Months next after the first Judgment, and notice left at the Offenders House, p. 104.

Brewers.

— to enter weekly what Drink they brewed within 12. car. II. that time, or forfeit for every Neglect 15l. p. 56. 51. 52.

— to pay within a Week after Entry, or forfeit double Duty, p. 7. 52.

— to enter, and pay at the next Market-Town, p. 7. 53.

— to permit the Gauger Entrance into their Brew-Houses, &c. to Gauge, &c. or forfeit 15l. and double the Duty of the Drink delivered out, p. 9. 55.

— convicted of false Entries lose their Allowances six Months, p. 33. 58.

— not to keep a private Storehouse, Tun, Back, Copper, &c. Penalty 50l. If in another's House he also shall pay 50l. and the Vessels and Drink delivered to the Overseers for the Poors Use, p. 78. 151.

— to rectifie their Entries according to the Gauger's Returns within a Week, or otherwise discharge themselves, p. 84.

— not to carry out any Drink (without acquainting the Officer) from March the 25th. to September the 29th. but between Three in the Morning and Nine at Night. And from September the 29th. to March the 25th. but from Five in the Morning till Seven at Night, p. 89.

Not to mix any small Drink or Worts with strong (without notice) after Gauge taken: nor conceal any Beer, Ale or Worts ungauged; Penalty in either Case 20s. per Barrel, p. 91. 152.

— Allowances for Waste by filling and Leakage within the Bills of Mortality are 3 in 23 Barrels of Beer, and 2 in 22 of Ale; out of the said Bills are 2 $\frac{1}{2}$ in every 23 whether strong or small, p. 144.

— not to claim any Benefit of a Proviso in 15. car. II. for rectifying their Entries (within a Week) according to the Gauger's Return, if they do not (*bona fide*) shew the Gauger all the Beer, Ale and Worts of every Guile for such time as the Copy of the Return was given, or if any other Act was done to defraud their Majesties of the Duty, p. 150, 151.

— not to use any Molasses, coarse Sugar, Honey, &c. on pain of forfeiting 100l. and the Goods, p. 157.

A Synopsis of the Barrel.

1. Sec. &c. — of Beer within the Bills of Mortality is to contain
 Mar. 36 Gallons, of Ale 32, of Beer or Ale out of the said
 Bills 34 Gallons, according to the Ale-Quart in the Ex-
 12. Cor. 2. chequer.

All other Liquors according to the Wine-Gallon in Guild-
 Hall, Lond. p. 11. 56. 143, 144.

Brewing Vessels

23. Sec. II. — to be Gauged by two *Arriffs* upon Oath, p. 84.
 — not to be erected, altered or enlarged by Brewer
 or Retailer, and made use of, without notice given to
 the next Office of Excise, or to the Commissioners on
 pain of sol. a Vessel, p. 77.

— by what Title soever claimed, or into whose hands
 soever they come are lyable to the Duty due from the
 Person who used them, and also to all Penalties by
 him incur'd, p. 92.

Bribes not to be given or taken, Penalty 10*l.*
 apiece, p. 95, 96.

32. Cor. II. **Chief Commissioners** to determine Offences in
 London, and within 10 Miles, p. 18. 63.

Certiorari not to supersede Execution of Justices
 Orders about Excise, p. 26. 72.

15. Cor. II. **Colleges and Wal's** which brewed their own
 Drunk, in their own Precincts, and sized it out there be-
 fore the Acts of Excise not lyable to this Duty, p. 101.

Commissioners or Sub-Commissioners

12. Cor. II. — may Depute Gaugers, p. 8. 53.
 — may Compound with Retailers, &c. p. 15. 60.
 — may (if the Justices neglect 14 Days) determine
 Offences in the Country, p. 19. 64.

Commissioners, Justices, and Sub- Commissioners

— upon any Complaint or Information to Summon
 the Offender, and upon his Appearance or Contempt
 to examine the matter of Fact, and upon Proof either
 by confession of the Party, or Oath of one or more
 credible Witnesses, to give Judgment, and issue out
 Warrants for Distress, which may be sold, if not redeem-
 ed in 14 dayes, rendering the overplus, and for want of
 sufficient

sufficient Distress to imprison the Offender till Satisfaction be made, p. 19. 6s.

—may mitigate Fines at discretion, but not less than ^{12. Gal. & Mar.} double Duty, besides reasonable Charges, p. 21. 6s. 12o.

—upon complaint made by a Brewer or Retailer of an Overcharge to examine the Witnesses upon Oath on both sides, and upon due Proof to acquit him of so much as shall be made out, p. 153.

Compounders, brewing for other Persons, or suffering it to be brewed in their Offices (without acquainting the Commissioners of the Quantity and Quality to be brewed, and for whom, and paying down the Excise) forfeit both Parties 5*l.* apiece, p. 93, 94.

Distillers

—lyable to the same Penalties for Non-entry, Non-payment, or Denial of Entrance as Retailers, p. 6. 7. 51. 52.

—not to remove Low-Wines after Gauge taken without distilling them a second time, Penalty for every Gallon 5*s.* p. 141.

—denying the Gauger Entrance lyable to the Penalties in the former Acts tho Sale cannot be proved, p. 148.

—who draw Low-Wines, Spirits, or Brandy from malted Corn shall first brew it into clean and wholesome Drink, and not mix it with other Materials, on pain of being charged with 1*sd.* per Gallon, p.

—who draw Low-Wines, &c. from Corn shall not prepare, nor receive from any Person Wash, Molasses, or other Materials, until he has distilled all his Liquor prepared from Corn, Penalty for every Barrel so found undistilled 5*l.* p.

—may ship off as Merchandise Spirits, or Brandy drawn from malted Corn (upon Oath made before two Commissioners of Excise, or Justices for that County or Place whence it is to be exported, that it is such, and not mixed with other Materials, or with Low-Wines, Spirits, or Brandy drawn from other Materials, and that the Duty is paid; and that they are to be exported as Merchandise) and upon a Certificate from the Gauger of the Quantity shipt off, and that it was done in his Presence; the Distiller shall draw back from the Commissioners or Collector 3*d.* per Gallon, p.

—not to set their Stills, nor deliver out any Low-Wines, Spirits, or *Aqua Vita*, in Cask, or by the Gallon,

A Synopsis of the

(without notice given to the Gauger for that Place or Division) from the 25th. of March to the 29th. of September but between Three in the Morning and Nine at Night, and from the 29th. of Septemb. to the 25th. of March, but from five in the Morning till Eight at Night, Penalty for every Offence 10 l. p.

Exported excisable Liquors (as

Beer, Ale, Syder, Mum)

*1. Gul. &
Mar.*

— may be shipt off as Merchandise at the common Keys, within Excise-Hours, and in the presence of a Gauger, paying Custom 12d. per Tun, the Excise whereof is to be repaid by the Collector within a Month after Exportation, deducting 3d. per Tun for the Officer's Charges, p.

— not to be relanded, or put into any other Ship in these Dominions, on pain of forfeiting the Goods, and 50l. for every Cask, p.

— Custom-House Officers to charge the Master with so much Beer as the Ships Company may spend in their Voyage, p.

Mum imported to have no Defalcation upon Exportation, p. 115.

*12. Car. II.
16 & 17.
Gul. II.*

Fair Workshops to pay the Duty before Sale, p. 14. 59.

Farmers may exercise all the Powers of Sub-Commissioners, except the judicial, p. 109.

Fines against

— 12. Car. 2. are three Parts to the King, and one to the Informer, p. 21, 22. 67.

— 15. Car. 2. are one Part to the King, one to the poor of the Parish, and one to the Informer. p. 163.

— 2. Gul. & Mar. are half to their Majesties, and half to the Informer. p. 157.

Gaugers

12. Car. II.

— to enter by day alone, and by Night with any lawful Officer to Gauge all Beer, Ale, &c. p. 8. 54.

— Return to the Commissioners shall be a Charge on the Brewer or Retailer respectively, p. 9. 54.

— upon Denial of Entrance to forbid the Brewer or Retailer to sell or deliver out any more Drink, p. 10. 55.

*12. & 13.
Car. II.*

— to deliver to Brewers, or to some of their Servants Copies of their Charges weekly, after they have, or ought

ought to have made their Entries, Penalty for every neglect 40 s. p. 9. 83.

— to take the Oath of their Office, and Oath of Obedience before the Justices, or one of the Barons of the Exchequer, which Oaths the Justices are to certifie to the next Quarter - Sessions there to be recorded, p. 23. 69.

— sued may plead the general Issue, and give this Act in Evidence, p. 26. 71.

— to take the Oaths, and Certificates thereof to be entred with the Auditor of Excise, on pain of 50l a Month, p. 105.

— missing any Worts, or finding that they are not Let fairly down, may charge so much Beer or Ale as such Worts would reasonably have made, p. 146.

— to return and charge warm Worts, allowing the Brewer or Retailer one tenth Part for Wash and Waft, p. 146.

— to leave Notes in writing with the Brewer or Retailer of the Quantity and Quality of their last Gauges, Penalty for every neglect 40s. p. 153.

— to certifie the Quantity of exported Liquors to the Commissioners, p.

— to keep an Account of all Liquors, Worts and Drink drawn from malted Corn, for making of Low-Wines, &c. and if they find any mixed with other Materials, to charge the Low-Wines with 12d. per Gallon, p.

— to take an Account of all Wash, and other Materials in any Back or Cask for making of Low-Wines, and also of all Low-Wines, Spirits, or strong-Waters in the Houses or Cellars of any maker of Low-Wines, &c. p.

— making Returns of Low - Wines from malted Corn, when drawn from other Materials shall lose their Employments, and forfeit for every Gallon so returned 10s. p.

Information or Complaint

— to be heard in the County, or Riding where the Offence was committed, p. 102.

— to be laid within three Months after the Offence done, and notice given to the Offender in writing, or left at his House, within a Week after it is laid, p. 156.

— against a Brewer for Non-entry, wilful false Entry, or Non-Payment, if by the Evidence it shall appear that

12. Car. II.
1. Gal. &
Mar.

12. Car. III.
13. Car. III.

1. Gal. &
Mar.

1. Gal. &
Mar.

A Synopsis of the Laws, &c.

that any fraudulent Practices were used against their Majesties Duty, then he shall incur all the Penalties inflicted by the 12. and 15. Car. 2. p. 151.

Inn-keepers, Victuallers and other Retailers

12. Car. II. — to enter Monthly what Beer or Ale they brewed within that time on pain of 10*l.* per Month for Inn-keepers, and 4*os.* for Victuallers, p. 6. 51.

— to pay within a Month after Entry, or forfeit double Duty, p. 7. 52.

— to suffer the Gauger to enter, or forfeit 1*l.* and double the Duty of the Drink carried out, p. 9. 55.

15. Car. II. **1. Gul. & Mar.** — not to keep any private Store-house, Tun, &c. Penalty 5*l.* and if in any other Person's house, He shall pay 5*l.* and the Vessels and Drink given to the poor. p. 78. 151.

Nor to mix any small Drink or Worts with strong (without notice) after Gauge taken, nor conceal any Drink or Worts not Gauged, Penalty in either Case, 20*s.* per Barrel, p. 91. 152.

— using any Molasses, Coarse Sugars, Honey, &c. forfeit 100*l.* and the Goods, p. 157.

Imported excisable Liquors

12. Car. II. — not to be Landed till the Duty be paid, p. 5. 50.
15. Car. II. — not to be Landed before Entry, the Duty paid, and Warrant for Landing signed by the Gauger, or else Landed in his Presence on pain of forfeiting the Goods, p. 98.

— coming by Coast-Cocquet, Transire, or Certificate, (except Beer, Ale, Cyder, Perry and Metheglin) not to be Landed before Entry, Penalty double the value of the Liquors, p. 99.

2. Gul. & Mar. — brought from Guernsey, Jersey, Sark or Aldernay, not particularly charged with any Duty, to pay the same as the like Liquors made in England, the Duty of all to be paid to the Collector, or Officer of Excise upon Entry, and before Landing, and Oath to be made by the Owner or Importer before the Collector of the Customs for the Port where they are to be Landed, that they are of the growth of the said Islands, and not made, or mixed with foreign Materials; otherwise they shall be taken as the Growth of France, and destroyed, and all Persons concerned in the Importation or Sale shall be liable to the Penalties in the Act An. 1. Gul. & Mar. prohibiting all Trade and Commerce with France, p. 151.

Judges

Justices of the Peace to meet monthly, or oftner 15. *car. II.*
if occasion to hear and determine Offences against the
Laws of Excise, p. 103.

Office

— to be held in *London*, or within ten Miles, to 11. *car. II.*
which all others are accountable, p. 24. 69.

— to be kept in every Market-Town on every Mar- 15. *car. II.*
ket-Day from Nine to Twelve, and from Two till Five,
Penalty for every neglect 10*l.* p. 87, 88.

Summons left at the Offender's House, or usual
place of Residence, or with his Wife, Child, or menial
Servant, shall be accounted as good a Summons as if it
had been delivered to his own hands, p. 107.

The Salisbury Case:

At the Court at Whitehall the 23d. of April, 1669.

PRESENT

The KING'S most excellent Majesty,

Hi Ro al High.	Duke of York	Lord Arlington
His Highness	Prince Rogers	Lord Newport
	Lord Keeper	Lord Berkly
	Duke of Ormond	Lord Asbey
	Marq. of Dorchester	Mr. Treasurer
	Lord Chamberlain	Mr. Vice-Chamberlain
	Earl of Bridgewater	Mr. Secr. Trevor
	Earl of Bath	Mr. Chanc. of Dutely
	Earl of Craven	Sir John Duncombe.
	Earl of Lauderdale	

THE Cause upon the Complaint of the Farmer of
his Majesty's Duty of Excise in the County of *Wiltshire*
against several Justices of the Peace of the City
of *New Sarum* having been heard before the Right Honourable the Lords Commissioners of his Majesty's Treasury, and by their Lordships reported to this Board: And according to order both sides with their Council learned attended this day, and the whole Matter being heard at large, it did appear that divers Complaints having been made to the said Justices by the Officers of Excise against several

The Salisbury Case.

several Brewers for false Entries and other fraudulent Practices against his Majesty's said Duty, the said Justices neither regarding the Returns of the sworn Gauger; nor the Entries of the Brewers did give many erroneous Judgments not agreeable to Justice, or the Laws of Excise, by which Practice the King's said Revenue was very much damaged, and the Farmers and Officers discouraged: Upon consideration whereof, and upon reading the humble Petition of the said Justices acknowledging their Offences, imploring his Majesty's Mercy and Pardon, and alledging their said Errors to have proceeded from want of well understanding the Acts of Excise, and not from any Corruption or dissatisfaction to his Majesty's Service, and promising all due Obedience and Conformity to such Rules concerning Excise as by this Board, or by his Majesty's Council learned should be communicated to them in that behalf; It was therefore thought fit, and ordered accordingly (his Majesty present in Council) that the Right Honourable the Lord Keeper of the great Seal of England do (upon Application of the said Farmer) issue out a Commission of Association in usual Form under the great Seal of England to such of his Majesty's Justices of the Peace of the said County, as his Lordship shall conceive most proper and fit, to have equal Jurisdiction with the Justices of the said Corporation: And to prevent such erroneous Judgments and Proceedings in this Branch of his Majesty's Revenue for the future the Justices are to observe the Rules and Directions following, *wz.*

I. That when any matter of difficulty occurs to them in the Practice or exposition of the Acts concerning Excise, they represent the same to the Lords Commissioners of his Majesty's Treasury, or advise with some of his Majesty's learned Council, that so they may not preingage themselves, nor prepossess the Country with any Opinion contrary to his Majesties Interest, and the true meaning of the Acts of Parliament.

II. That upon Information against a Brewer for any Default, the Gaugers are not only sufficient, but the most proper Witnesses for the King, and especially in those things where they depose as Gaugers; for their Return is such a Charge upon a Brewer both for Quantity and Quality as is in all Particulars binding, and not to be varied from:

And

The Salisbury Case.

71

And the Justices of Peace ought in all Cases where Forfeitures are imposed by the Act, to give Judgment and Sentence upon the Gauger's Evidence.

III. That Brewers ought not to make any mixture of Drink, after an Account hath been taken by the Gauger, unless it be in his Presence, or upon notice given him, if they do they incur a positive Forfeiture by the Act; and if the Brewer make not his Entry that Week wherein he hath brewed, he incurs a Penalty by default: And if his Entry be not rectified according to the Return of the Gauger, within one Week after the Delivery of the Copy of the said Return, he also incurs another Penalty by the Act; and no subsequent Entries, nor Payment of Duty excuses from any of the Forfeitures.

IV. The Gauger may go into any Brewhouse at any time by day without a Constable, and by night with a Constable, and any Refusal or Delay or Excuse equivalent to a Refusal is punishable, and no Entry or Payment after such Refusal exempts from the several Forfeitures of Fifteen Pounds, and Twenty Shillings for every Barrel he hides from the Gauger's sight: And in these Cases it will become the Farmer, and his Officers to be very watchful, and the Justices Countenance to them will be very requisite, for a little time will serve men who design Fraud for great Advantage.

V. All Fines levied by the Justices upon Complaint for matters concerning Excise must be paid immediately to the Farmer, or Prosecutor, and on the King's behalf, (except such part as is by Law proportioned, and allowed to the poor) and he, and not they, is the proper Accountant to the King: neither is it in their Power in the Case of Forfeitures to omit Judgment according to the Letter of the Act, nor is any thing of Equity in their Power, otherwise than to mitigate some Fines in which the Act gives particular Direction.

VI. That the Justices inform themselves thoroughly of the Acts of Excise, that so they may with the more ease to themselves, and Satisfaction to his Majesty administer Justice indifferently both to the Farmer and Brewers, and that his Majesty's Farmers and Officers have all due encouragement and Countenance.

VII. The Allowances given to the Brewers by the Acts are to be made out of the Quantities and Qualities in the Gauger's Returns, and not in the Brewers Entries, unless agreeing with the Gauger's Returns. Which

The Salisbury Cal.

Which Rules and Directions being read at the Board (his Majesty present in Council) were allowed of and approved, and it was ordered that as well his Majesty's Justices of the Peace of the City of New Sarum in the County of Wilts, as all other Justices of the Peace within the Kingdom of England, Dominion of Wales, and Town of Berwick upon Tweed, do truly and punctually observe the same.

And it was further ordered, that the Clerk of the Council attending do from time to time issue out Transcripts of this Order under the Council-Seal to such of the Farmers of the Excise as shall desire the same, who are required to deliver them to the Justices of the Peace in the respective Counties and Places in order to the better management of his Majesty's said Revenue, and prevention of all Inconveniences by misunderstanding the said Acts of Excise.

FINIS.

ERRATA.

P^Age 8. line 14. read $\frac{3}{4}aae$.
p. 10. l. 2. r. $aaaaa-d$.

$d - \frac{5}{4}ee$

p. 13. at the end of Prob. X. insert

\overline{d} Or by Segments of a Circle.

CD : Radius :: CE : V.S = Segm.

28.37 : 100 :: 8.5 : .2933 = .2443

And Area $6.345 \times .2443 = HCl 1.551 A.G.$

p. 16. l. 2. r. 25. in the Table of the Frustums of a Cone, put three Cyphers before the 3d. Diff.

In that for the Frustum of a Parabolick Spindle and Spheroid place two Cyphers before the 3d. Diff.

p. 24. L 35. r. 585.42

p. 31. at the end of Prob. XLVIII. insert

And $\sqrt{AE \times EB} : AK :: HI : CD$

$32.55 : 41.045 :: 23 : 29$

p. 36. l. 34. And Diameter $CD 29 \times .2933 = CG 8.5$

rd
nd
y's
he
h-
nd
lly

the
an-
he
are
in
ter
en-
aid

one,
roid