MATH5665: Algebraic Topology (2015,S1) Problem Set 1 1

This problem set covers material from lectures 1-3 and also has some revision material concerning abelian groups.

1. Recall that free abelian group with generators σ_i , $i \in I$ denoted

$$\bigoplus_{i} \mathbb{Z} \, \sigma_i =: F$$

consists of all formal finite linear combinations of the σ_i . If $I = \{1, \ldots, r\}$ we write this as $\mathbb{Z} \sigma_1 \oplus \ldots \oplus \mathbb{Z} \sigma_r$. Show that in this case $F \simeq \mathbb{Z}^r$.

2. Given an abelian group A and $a_1, \ldots, a_s \in A$. We denote the *subgroup* generated by a_1, \ldots, a_s by $\mathbb{Z} a_1 + \ldots + \mathbb{Z} a_s$. Let $A = \mathbb{Z} \sigma_1 \oplus \ldots \oplus \mathbb{Z} \sigma_r$ and $B = \mathbb{Z}(\sigma_1 - \sigma_2) + \ldots + \mathbb{Z}(\sigma_{r-1} - \sigma_r)$. Show that $B \cap \mathbb{Z} \sigma_1 = 0$ and that $B = \sum_{i,j=1}^r \mathbb{Z}(\sigma_i - \sigma_j)$.

3. Show that the span of a_0, \ldots, a_n is their convex hull.

4. Find a labelled surface diagram for the Klein bottle.

5. Is the following a labelled surface diagram for the real projective plane?

¹by Daniel Chan