Examenul de bacalaureat național 2020 Proba E. c) Matematică *M_mate-info*

BAREM DE EVALUARE ȘI DE NOTARE

Test 11

Filiera teoretică, profilul real, specializarea matematică-informatică Filiera vocațională, profilul militar, specializarea matematică-informatică

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea la 10 a punctajului total acordat pentru lucrare.

SUBIECTUL I (30 de puncte)

1.	$\sqrt{7}(\sqrt{6}+1) - \sqrt{6}(\sqrt{7}+1) = \sqrt{42} + \sqrt{7} - \sqrt{42} - \sqrt{6} = \sqrt{7} - \sqrt{6}$	2p
	Cum $\frac{1}{\sqrt{7} + \sqrt{6}} = \frac{\sqrt{7} - \sqrt{6}}{\sqrt{7}^2 - \sqrt{6}^2} = \sqrt{7} - \sqrt{6}$, obținem că $\sqrt{7} \left(\sqrt{6} + 1 \right) - \sqrt{6} \left(\sqrt{7} + 1 \right) = \frac{1}{\sqrt{7} + \sqrt{6}}$	3 p
2.	$f(x+1)-f(x) = (x+1)^2 + (x+1)+1-(x^2+x+1) =$	2p
	$= x^2 + 2x + 1 + x + 1 + 1 - x^2 - x - 1 = 2x + 2 = g(x)$, pentru orice număr real x	3 p
3.	$x-1=x^2-2x-1 \Rightarrow x^2-3x=0$	3 p
	x = 0, care nu convine, sau $x = 3$, care convine	2 p
4.	Numărul de submulțimi ale lui M , cu cel puțin trei elemente, este egal cu $C_5^3 + C_5^4 + C_5^5 =$	3 p
	=10+5+1=16	2p
5.	$M(-1,2)$, unde M este mijlocul segmentului AD , $m_{AB} = 1$	3 p
	Cum MN este paralelă cu AB, ecuația dreptei MN este $y-2=x+1$, deci $y=x+3$	2 p
6.	$4\sin^{2} x + 4\sin x \cos x + \cos^{2} x = 2 + 3\sin^{2} x \Leftrightarrow 4\sin x \cos x = 2 - \left(\sin^{2} x + \cos^{2} x\right)$	3 p
	$2\sin 2x = 2 - 1$, deci $\sin 2x = \frac{1}{2}$	2p

SUBIECTUL al II-lea (30 de puncte)

1.a)	$A(0) = \begin{pmatrix} 1 & 0 & 2 \\ 0 & i & 0 \\ -1 & 0 & -1 \end{pmatrix} \Rightarrow \det(A(0)) = \begin{vmatrix} 1 & 0 & 2 \\ 0 & i & 0 \\ -1 & 0 & -1 \end{vmatrix} = $ $= -i + 0 + 0 - (-2i) - 0 - 0 = i$	2p
b)	· /	3p
	$\det(A(a)) = \begin{vmatrix} 1 & a & 2 \\ a & i & a \\ -1 & a & -1 \end{vmatrix} = a^2 + i, \text{ pentru orice număr real } a$	2p
	Cum, pentru orice număr real a , $a^2 + i \neq 0$, obținem că $\det(A(a)) \neq 0$, deci, pentru orice număr real a , matricea $A(a)$ este inversabilă	3 p
c)	$A(0) \cdot A(0) = \begin{pmatrix} -1 & 0 & 0 \\ 0 & i^2 & 0 \\ 0 & 0 & -1 \end{pmatrix} = -I_3$	2p
	$\underbrace{A(0) \cdot A(0) \cdot A(0) \cdot \dots \cdot A(0)}_{\text{de 2020 ori } A(0)} = \underbrace{(-I_3) \cdot (-I_3) \cdot (-I_3) \cdot \dots \cdot (-I_3)}_{\text{de 1010 ori } (-I_3)} = I_3$	3p

2.a)	$x*1=3^{x+1}-3^{x+1}-3^{1+1}+12=$	3 p
	=-9+12=3, pentru orice număr real x	2 p
b)	$0 * x = 3^{0+x} - 3^{0+1} - 3^{x+1} + 12 = 3^x - 3^{x+1} + 9$, deci $3^{x+1} - 3^x = 18$	3 p
	$3^{x}(3-1)=18 \Leftrightarrow 3^{x}=9$, deci $x=2$	2p
c)	$x * y = 3 \Leftrightarrow 3^{x+y} - 3^{x+1} - 3^{y+1} + 9 = 0 \Leftrightarrow 3^x (3^y - 3) - 3(3^y - 3) = 0 \Leftrightarrow (3^x - 3)(3^y - 3) = 0$	3р
	$3^{x} - 3 = 0$ sau $3^{y} - 3 = 0$, deci $x = 1$ sau $y = 1$, de unde obținem $(x - 1)(y - 1) = 0$	2p

SUBIECTUL al III-lea

(30 de puncte)

1.a)	$f'(x) = 2x - \frac{2x}{x}$	2
	$f'(x) = 2x - \frac{2x}{x^2 + 1} =$	3 p
	$=\frac{2x^3+2x-2x}{x^2+1}=\frac{2x^3}{x^2+1}, \ x \in \mathbb{R}$	2p
b)	Ecuația tangentei la graficul funcției f în $A(a, f(a))$ este $y - f(a) = f'(a)(x - a)$, deci	
	axa Ox , de ecuație $y = 0$, este tangentă la graficul funcției f dacă și numai dacă există	3 p
	numărul real a astfel încât $f'(a) = 0$ și $f(a) = 0$	
	Cum $f'(0) = 0$ și $f(0) = 0$, obținem că axa Ox este tangentă graficului funcției f	2 p
c)	$\lim_{x \to -\infty} f(x) = +\infty \text{ si } \lim_{x \to +\infty} f(x) = +\infty$	2p
	f este continuă pe \mathbb{R} , $f'(x) < 0$, pentru orice $x \in (-\infty, 0) \Rightarrow f$ este strict descrescătoare	
	pe $(-\infty,0)$, $f(0)=0$ și $f'(x)>0$, pentru orice $x \in (0,+\infty) \Rightarrow f$ este strict crescătoare pe	3 p
	$(0,+\infty)$, deci, pentru orice număr natural nenul n , ecuația $f(x) = n$ are două soluții reale	Эp
	distincte	
2.a)	$\int_{1}^{e} \frac{f(x)}{e^{x}} dx = \int_{1}^{e} \frac{1}{x} dx = \ln x \Big _{1}^{e} =$	3 p
	$= \ln e - \ln 1 = 1$	2p
b)	$\int_{1}^{2} x^{3} f(x^{2}) dx = \int_{1}^{2} x e^{x^{2}} dx = \frac{1}{2} e^{x^{2}} \Big _{1}^{2} =$	3 p
	$= \frac{e^4 - e}{2} = \frac{e(e-1)(e^2 + e + 1)}{2}$	2p
c)	$\int_{1}^{e} \frac{e^{x}}{x} dx + \int_{1}^{e} e^{x} \ln x dx = \int_{1}^{e} (\ln x)' e^{x} dx + \int_{1}^{e} e^{x} \ln x dx = e^{x} \ln x \bigg _{1}^{e} - \int_{1}^{e} e^{x} \ln x dx + \int_{1}^{e} e^{x} \ln x dx = \int_{1}^{e} (\ln x)' e^{x} dx + \int_{1}^{e} e^{x} \ln x dx = \int_{1}^{e} (\ln x)' e^{x} dx + \int_{1}^{e} e^{x} \ln x dx = \int_{1}^{e} (\ln x)' e^{x} dx + \int_{1}^{e} e^{x} \ln x dx = \int_{1}^{e} (\ln x)' e^{x} dx + \int_{1}^{e} e^{x} \ln x dx = \int_{1}^{e} (\ln x)' e^{x} dx + \int_{1}^{e} e^{x} \ln x dx = \int_{1}^{e} (\ln x)' e^{x} dx + \int_{1}^{e} e^{x} \ln x dx = \int_{1}^{e} (\ln x)' e^{x} dx + \int_{1}^{e} e^{x} \ln x dx = \int_{1}^{e} (\ln x)' e^{x} dx + \int_{1}^{e} e^{x} \ln x dx = \int_{1}^{e} (\ln x)' e^{x} dx + \int_{1}^{e} e^{x} \ln x dx = \int_{1}^{e} (\ln x)' e^{x} dx + \int_{1}^{e} e^{x} \ln x dx = \int_{1}^{e} (\ln x)' e^{x} dx + \int_{1}^{e} (\ln x)' e^{$	3 p
	$=e^e \ln e - e^1 \ln 1 = e^e$	2p