Regression

CISC 7026: Introduction to Deep Learning

University of Macau

Today, we will learn about linear regression

Today, we will learn about linear regression

Probably the oldest method for machine learning (Gauss and Legendre)

Today, we will learn about linear regression

Probably the oldest method for machine learning (Gauss and Legendre)

ML

Many problems in ML can be reduced to **regression** or **classification**

Regression asks how many

Regression asks how many

• How much money will I make?

Regression asks how many

- How much money will I make?
- How much rain will there be tomorrow?

Regression asks how many

- How much money will I make?
- How much rain will there be tomorrow?
- How far away is this object?

Regression asks how many

- How much money will I make?
- How much rain will there be tomorrow?
- How far away is this object?

Classification asks which one

ML

Many problems in ML can be reduced to **regression** or **classification**

Regression asks how many

- How much money will I make?
- How much rain will there be tomorrow?
- How far away is this object?

Classification asks which one

• Is this a dog or muffin?

ML

Many problems in ML can be reduced to **regression** or **classification**

Regression asks how many

- How much money will I make?
- How much rain will there be tomorrow?
- How far away is this object?

Classification asks which one

- Is this a dog or muffin?
- Will it rain tomorrow? Yes or no?

Regression asks how many

- How much money will I make?
- How much rain will there be tomorrow?
- How far away is this object?

Classification asks which one

- Is this a dog or muffin?
- Will it rain tomorrow? Yes or no?
- What color is this object?

Regression asks how many

- How much money will I make?
- How much rain will there be tomorrow?
- How far away is this object?

Classification asks which one

- Is this a dog or muffin?
- Will it rain tomorrow? Yes or no?
- What color is this object?

Let us start with regression

Today, we will come up with a regression problem and then solve it!

Today, we will come up with a regression problem and then solve it!

1. Define an example problem

Today, we will come up with a regression problem and then solve it!

- 1. Define an example problem
- 2. Define our machine learning model *f*

Today, we will come up with a regression problem and then solve it!

- 1. Define an example problem
- 2. Define our machine learning model f
- 3. Define a loss function \mathcal{L}

Today, we will come up with a regression problem and then solve it!

- 1. Define an example problem
- 2. Define our machine learning model f
- 3. Define a loss function \mathcal{L}
- 4. Use \mathcal{L} to learn the parameters θ of f

- 1. Define an example problem
- 2. Define our machine learning model f
- 3. Define a loss function \mathcal{L}
- 4. Use \mathcal{L} to learn the parameters θ of f

The World Health Organization (WHO) has collected data on life expectancy

The World Health Organization (WHO) has collected data on life expectancy

 $Available\ for\ free\ at\ https://www.who.int/data/gho/data/themes/mortality-and-global-health-estimates/ghe-life-expectancy-and-healthy-life-expectancy$

The WHO collected data from roughly 3,000 people from 193 countries

The WHO collected data from roughly 3,000 people from 193 countries

For each person, they recorded:

The WHO collected data from roughly 3,000 people from 193 countries

For each person, they recorded:

Home country

The WHO collected data from roughly 3,000 people from 193 countries

For each person, they recorded:

- Home country
- Alcohol consumption

The WHO collected data from roughly 3,000 people from 193 countries

For each person, they recorded:

- Home country
- Alcohol consumption
- Education

The WHO collected data from roughly 3,000 people from 193 countries

For each person, they recorded:

- Home country
- Alcohol consumption
- Education
- Gross domestic product (GDP) of the country

The WHO collected data from roughly 3,000 people from 193 countries

For each person, they recorded:

- Home country
- Alcohol consumption
- Education
- Gross domestic product (GDP) of the country
- Immunizations for Measles and Hepatitis B

The WHO collected data from roughly 3,000 people from 193 countries

For each person, they recorded:

- Home country
- Alcohol consumption
- Education
- Gross domestic product (GDP) of the country
- Immunizations for Measles and Hepatitis B
- How long this person lived

The WHO collected data from roughly 3,000 people from 193 countries

For each person, they recorded:

- Home country
- Alcohol consumption
- Education
- Gross domestic product (GDP) of the country
- Immunizations for Measles and Hepatitis B
- How long this person lived

We can use this data to make future predictions

Since everyone here is very educated, we will focus on how education affects life expectancy

Since everyone here is very educated, we will focus on how education affects life expectancy

There are studies showing a causal effect on education on health

Since everyone here is very educated, we will focus on how education affects life expectancy

There are studies showing a causal effect on education on health

• The causal effects of education on health outcomes in the UK Biobank. Davies et al Nature Human Behaviour

Since everyone here is very educated, we will focus on how education affects life expectancy

There are studies showing a causal effect on education on health

- The causal effects of education on health outcomes in the UK Biobank. Davies et al Nature Human Behaviour
- By staying in school, you are likely to live longer

Task: Given your education, predict your life expectancy

Task: Given your education, predict your life expectancy

 $X \in \mathbb{R}_+$: Years in school

Task: Given your education, predict your life expectancy

 $X \in \mathbb{R}_+$: Years in school

 $Y \in \mathbb{R}_+$: Age of death

Task: Given your education, predict your life expectancy

 $X \in \mathbb{R}_+$: Years in school

 $Y \in \mathbb{R}_{+}$: Age of death

Approach: Learn the parameters θ such that

$$f(x,\theta) = y; \quad x \in X, y \in Y$$

Task: Given your education, predict your life expectancy

 $X \in \mathbb{R}_+$: Years in school

 $Y \in \mathbb{R}_{+}$: Age of death

Approach: Learn the parameters θ such that

$$f(x,\theta) = y; \quad x \in X, y \in Y$$

Goal: Given someone's education, predict how long they will live

- 1. Define an example problem
- 2. Define our machine learning model f
- 3. Define a loss function \mathcal{L}
- 4. Use \mathcal{L} to learn the parameters θ of f

Lecture 1: Introduction

- 1. Define an example problem
- 2. Define our machine learning model f
- 3. Define a loss function \mathcal{L}
- 4. Use \mathcal{L} to learn the parameters θ of f

Soon, f will be a deep neural network

Soon, f will be a deep neural network

For now, it is easier if we make f a **linear function**

Soon, f will be a deep neural network

For now, it is easier if we make f a **linear function**

$$f(x, \boldsymbol{\theta}) = f\left(x, \begin{bmatrix} \theta_1 \\ \theta_0 \end{bmatrix}\right) = \theta_1 x + \theta_0$$

Soon, f will be a deep neural network

For now, it is easier if we make f a **linear function**

$$f(x, \boldsymbol{\theta}) = f\left(x, \begin{bmatrix} \theta_1 \\ \theta_0 \end{bmatrix}\right) = \theta_1 x + \theta_0$$

Now, we need to find the parameters $m{ heta} = egin{bmatrix} heta_1 \\ heta_0 \end{bmatrix}$ that makes $f(x, m{ heta}) = y$

- 1. Define an example problem
- 2. Define our machine learning model f
- 3. Define a loss function \mathcal{L}
- 4. Use \mathcal{L} to learn the parameters θ of f

- 1. Define an example problem
- 2. Define our machine learning model f
- 3. Define a loss function \mathcal{L}
- 4. Use \mathcal{L} to learn the parameters θ of f

Lecture 1: Introduction

Now, we need to find the parameters
$$\pmb{\theta} = \begin{bmatrix} \theta_1 \\ \theta_0 \end{bmatrix}$$
 that make $f(x,\pmb{\theta}) = y$

Now, we need to find the parameters $\pmb{\theta} = \begin{vmatrix} \theta_1 \\ \theta_0 \end{vmatrix}$ that make $f(x, \pmb{\theta}) = y$

Question: How do we find θ ? (Hint: We want $f(x, \theta) = y$)

Now, we need to find the parameters $\pmb{\theta} = \left| \begin{smallmatrix} \theta_1 \\ \theta_0 \end{smallmatrix} \right|$ that make $f(x,\pmb{\theta}) = y$

Question: How do we find θ ? (Hint: We want $f(x, \theta) = y$)

Answer: We will minimize the **loss** (error) between $f(x, \theta)$ and y, for all

$$x \in X, y \in Y$$

We compute the loss using the **loss function** $\mathcal{L}: X \times Y \times \Theta \mapsto \mathbb{R}$

We compute the loss using the **loss function** $\mathcal{L}: X \times Y \times \Theta \mapsto \mathbb{R}$

$$\mathcal{L}(x,y,\boldsymbol{\theta})$$

We compute the loss using the **loss function** $\mathcal{L}: X \times Y \times \Theta \mapsto \mathbb{R}$

$$\mathcal{L}(x, y, \boldsymbol{\theta})$$

The loss function tells us how close $f(x, \theta)$ is to y

We compute the loss using the **loss function** $\mathcal{L}: X \times Y \times \Theta \mapsto \mathbb{R}$

$$\mathcal{L}(x, y, \boldsymbol{\theta})$$

The loss function tells us how close $f(x, \theta)$ is to y

By **minimizing** the loss function, we make $f(x, \theta) = y$

We compute the loss using the **loss function** $\mathcal{L}: X \times Y \times \Theta \mapsto \mathbb{R}$

$$\mathcal{L}(x, y, \boldsymbol{\theta})$$

The loss function tells us how close $f(x, \theta)$ is to y

By **minimizing** the loss function, we make $f(x, \theta) = y$

There are many possible loss functions, but for regression we often use the **square error**

We compute the loss using the **loss function** $\mathcal{L}: X \times Y \times \Theta \mapsto \mathbb{R}$

$$\mathcal{L}(x, y, \boldsymbol{\theta})$$

The loss function tells us how close $f(x, \theta)$ is to y

By **minimizing** the loss function, we make $f(x, \theta) = y$

There are many possible loss functions, but for regression we often use the **square error**

$$\operatorname{error}(y, \hat{y}) = (y - \hat{y})^2$$

Let's derive the error function

Let's derive the error function

$$f(x, \boldsymbol{\theta}) = y$$

f(x) should predict y

Lecture 1: Introduction

Let's derive the error function

$$f(x, \boldsymbol{\theta}) = y$$

$$f(x, \boldsymbol{\theta}) - y = 0$$

f(x) should predict y

Move y to LHS

Let's derive the error function

$$f(x, \boldsymbol{\theta}) = y$$

$$f(x, \boldsymbol{\theta}) - y = 0$$

$$(f(x, \boldsymbol{\theta}) - y)^2 = 0$$

f(x) should predict y

Move y to LHS

Square for minimization

Let's derive the error function

$$f(x, \boldsymbol{\theta}) = y$$

$$f(x, \boldsymbol{\theta}) - y = 0$$

$$\left(f(x,\boldsymbol{\theta}) - y\right)^2 = 0$$

$$\operatorname{error}(f(x, \boldsymbol{\theta}), y) = (f(x, \boldsymbol{\theta}) - y)^2$$

f(x) should predict y

Move y to LHS

Square for minimization

We can write the loss function for a single datapoint x_i, y_i as

$$\mathcal{L}(x_i, y_i, \boldsymbol{\theta}) = \text{error}(f(x_i, \boldsymbol{\theta}), y_i) = \left(f(x_i, \boldsymbol{\theta}) - y_i\right)^2$$

We can write the loss function for a single datapoint x_i, y_i as

$$\mathcal{L}(x_i, y_i, \boldsymbol{\theta}) = \operatorname{error}(f(x_i, \boldsymbol{\theta}), y_i) = \left(f(x_i, \boldsymbol{\theta}) - y_i\right)^2$$

We want to find the parameters $oldsymbol{ heta}$ that minimize \mathcal{L}

We can write the loss function for a single datapoint x_i, y_i as

$$\mathcal{L}(x_i, y_i, \boldsymbol{\theta}) = \operatorname{error}(f(x_i, \boldsymbol{\theta}), y_i) = \left(f(x_i, \boldsymbol{\theta}) - y_i\right)^2$$

We want to find the parameters $oldsymbol{ heta}$ that minimize \mathcal{L}

$$\mathop{\arg\min}_{\pmb{\theta}} \mathcal{L}(x_i, y_i, \pmb{\theta}) = \mathop{\arg\min}_{\pmb{\theta}} \mathop{\mathrm{error}}(f(x_i, \pmb{\theta}), y_i) = \mathop{\arg\min}_{\pmb{\theta}} \left(f(x_i, \pmb{\theta}) - y_i\right)^2$$

We can write the loss function for a single datapoint x_i, y_i as

$$\mathcal{L}(x_i, y_i, \boldsymbol{\theta}) = \text{error}(f(x_i, \boldsymbol{\theta}), y_i) = \left(f(x_i, \boldsymbol{\theta}) - y_i\right)^2$$

We want to find the parameters $oldsymbol{ heta}$ that minimize \mathcal{L}

$$\mathop{\arg\min}_{\pmb{\theta}} \mathcal{L}(x_i, y_i, \pmb{\theta}) = \mathop{\arg\min}_{\pmb{\theta}} \mathop{\mathrm{error}}(f(x_i, \pmb{\theta}), y_i) = \mathop{\arg\min}_{\pmb{\theta}} \left(f(x_i, \pmb{\theta}) - y_i\right)^2$$

Question: Any issues with \mathcal{L} ? Will it give us a good prediction for all x?

We can write the loss function for a single datapoint x_i, y_i as

$$\mathcal{L}(x_i, y_i, \boldsymbol{\theta}) = \operatorname{error}(f(x_i, \boldsymbol{\theta}), y_i) = \left(f(x_i, \boldsymbol{\theta}) - y_i\right)^2$$

We want to find the parameters $oldsymbol{ heta}$ that minimize \mathcal{L}

$$\mathop{\arg\min}_{\pmb{\theta}} \mathcal{L}(x_i, y_i, \pmb{\theta}) = \mathop{\arg\min}_{\pmb{\theta}} \mathop{\mathrm{error}}(f(x_i, \pmb{\theta}), y_i) = \mathop{\arg\min}_{\pmb{\theta}} \left(f(x_i, \pmb{\theta}) - y_i\right)^2$$

Question: Any issues with \mathcal{L} ? Will it give us a good prediction for all x?

Answer: We only consider a single datapoint! We want to learn $\boldsymbol{\theta}$ for the entire dataset

For a single x_i, y_i :

$$\mathop{\arg\min}_{\pmb{\theta}} \mathcal{L}(x_i, y_i, \pmb{\theta}) = \mathop{\arg\min}_{\pmb{\theta}} \mathop{\mathrm{error}}(f(x_i, \pmb{\theta}), y_i) = \mathop{\arg\min}_{\pmb{\theta}} \left(f(x_i, \pmb{\theta}) - y_i\right)^2$$

For a single x_i, y_i :

$$\mathop{\arg\min}_{\pmb{\theta}} \mathcal{L}(x_i, y_i, \pmb{\theta}) = \mathop{\arg\min}_{\pmb{\theta}} \mathop{\mathrm{error}}(f(x_i, \pmb{\theta}), y_i) = \mathop{\arg\min}_{\pmb{\theta}} \left(f(x_i, \pmb{\theta}) - y_i\right)^2$$

For the entire dataset:

$$oldsymbol{x} = \begin{bmatrix} x_1 & x_2 & ... & x_n \end{bmatrix}^ op, oldsymbol{y} = \begin{bmatrix} y_1 & y_2 & ... & y_n \end{bmatrix}^ op$$

$$\mathop{\operatorname{rg\,min}}_{\pmb{\theta}} \mathcal{L}(\pmb{x}, \pmb{y}, \pmb{\theta}) = \mathop{\operatorname{arg\,min}}_{\pmb{\theta}} \sum_{i=1}^n \mathop{\operatorname{error}}(f(x_i, \pmb{\theta}), y_i) = \mathop{\operatorname{arg\,min}}_{\pmb{\theta}} \sum_{i=1}^n \left(f(x_i, \pmb{\theta}) - y_i\right)$$

For a single x_i, y_i :

$$\mathop{\arg\min}_{\pmb{\theta}} \mathcal{L}(x_i, y_i, \pmb{\theta}) = \mathop{\arg\min}_{\pmb{\theta}} \mathop{\mathrm{error}}(f(x_i, \pmb{\theta}), y_i) = \mathop{\arg\min}_{\pmb{\theta}} \left(f(x_i, \pmb{\theta}) - y_i\right)^2$$

For the entire dataset:

$$oldsymbol{x} = \begin{bmatrix} x_1 & x_2 & ... & x_n \end{bmatrix}^{ op}, oldsymbol{y} = \begin{bmatrix} y_1 & y_2 & ... & y_n \end{bmatrix}^{ op}$$

$$\mathop{\operatorname{rg\,min}}_{\pmb{\theta}} \mathcal{L}(\pmb{x}, \pmb{y}, \pmb{\theta}) = \mathop{\operatorname{arg\,min}}_{\pmb{\theta}} \sum_{i=1}^n \mathop{\operatorname{error}}(f(x_i, \pmb{\theta}), y_i) = \mathop{\operatorname{arg\,min}}_{\pmb{\theta}} \sum_{i=1}^n \left(f(x_i, \pmb{\theta}) - y_i\right)$$

Minimizing this loss function will give us the optimal parameters!

- 1. Define an example problem
- 2. Define our machine learning model f
- 3. Define a loss function \mathcal{L}
- 4. Use \mathcal{L} to learn the parameters θ of f

Lecture 1: Introduction

- 1. Define an example problem
- 2. Define our machine learning model f
- 3. Define a loss function \mathcal{L}
- 4. Use \mathcal{L} to learn the parameters θ of f

Lecture 1: Introduction

Question: How do we minimize:

$$\begin{split} \arg\min_{\boldsymbol{\theta}} \mathcal{L}(x_i, y_i, \boldsymbol{\theta}) &= \arg\min_{\boldsymbol{\theta}} \sum_{i=1}^n \operatorname{error}(f(x_i, \boldsymbol{\theta}), y_i) \\ &= \arg\min_{\boldsymbol{\theta}} \sum_{i=1}^n \left(f(x_i, \boldsymbol{\theta}) - y_i\right)^2 \end{split}$$

Question: How do we minimize:

$$\begin{split} \arg\min_{\pmb{\theta}} \mathcal{L}(x_i, y_i, \pmb{\theta}) &= \arg\min_{\pmb{\theta}} \sum_{i=1}^n \operatorname{error}(f(x_i, \pmb{\theta}), y_i) \\ &= \arg\min_{\pmb{\theta}} \sum_{i=1}^n \left(f(x_i, \pmb{\theta}) - y_i\right)^2 \end{split}$$

Answer: For now, magic! We need more knowledge before we can derive this.

First, we will construct a $\operatorname{\mathbf{design}}$ $\operatorname{\mathbf{matrix}}$ X_D containing input data x

First, we will construct a $\operatorname{\mathbf{design}}$ $\operatorname{\mathbf{matrix}}$ \boldsymbol{X}_D containing input data x

$$m{X}_D = egin{bmatrix} x_1 & 1 \ x_2 & 1 \ dots & dots \ x_n & 1 \end{bmatrix}$$

We add the column of ones so that we can multiply $X_D^ op$ with heta to get a linear function $\theta_1 x + \theta_0$ evaluated at each data point

$$m{X}_Dm{ heta} = egin{bmatrix} x_1 & 1 \ x_2 & 1 \ dots & dots \ x_n & 1 \end{bmatrix} egin{bmatrix} heta_1 \ heta_0 \ heta_1 \end{bmatrix} = egin{bmatrix} heta_1x_1 + heta_0 \ heta_1x_2 + heta_0 \ dots \ heta_1x_n + heta_0 \end{bmatrix}$$

With our design matrix X_D and desired output y,

$$oldsymbol{X}_D = egin{bmatrix} x_1 & 1 \ x_2 & 1 \ dots & dots \ x_n & 1 \end{bmatrix}, oldsymbol{y} = egin{bmatrix} y_1 \ y_2 \ dots \ y_n \end{bmatrix}$$

and our parameters θ ,

$$oldsymbol{ heta} = egin{bmatrix} heta_1 \ heta_0 \end{bmatrix},$$

$$oldsymbol{ heta} = ig(oldsymbol{X}_D^ op oldsymbol{X}_D^ op ig)^{-1} oldsymbol{X}_D^ op oldsymbol{y}$$

We can find the parameters that minimize \mathcal{L}

- 1. Define an example problem
- 2. Define our machine learning model f
- 3. Define a loss function \mathcal{L}
- 4. Use \mathcal{L} to learn the parameters θ of f

- 1. Define an example problem
- 2. Define our machine learning model f
- 3. Define a loss function \mathcal{L}
- 4. Use \mathcal{L} to learn the parameters θ of f

Back to the example...

Back to the example...

Task: Given your education, predict your life expectancy

Back to the example...

Task: Given your education, predict your life expectancy

 $X \in \mathbb{R}_+$: Years in school

Back to the example...

Task: Given your education, predict your life expectancy

 $X \in \mathbb{R}_+$: Years in school

 $Y \in \mathbb{R}_+$: Age of death

Back to the example...

Task: Given your education, predict your life expectancy

 $X \in \mathbb{R}_+$: Years in school

 $Y \in \mathbb{R}_+$: Age of death

Approach: Learn the parameters θ such that

$$f(x,\theta) = y; \quad x \in X, y \in Y$$

Back to the example...

Task: Given your education, predict your life expectancy

 $X \in \mathbb{R}_+$: Years in school

 $Y \in \mathbb{R}_+$: Age of death

Approach: Learn the parameters θ such that

$$f(x,\theta) = y; \quad x \in X, y \in Y$$

Goal: Given someone's education, predict how long they will live

Back to the example...

Task: Given your education, predict your life expectancy

 $X \in \mathbb{R}_+$: Years in school

 $Y \in \mathbb{R}_{+}$: Age of death

Approach: Learn the parameters θ such that

$$f(x,\theta) = y; \quad x \in X, y \in Y$$

Goal: Given someone's education, predict how long they will live

You will be doing this in your first assignment!

Tips for assignment 1

```
Tips for assignment 1
def f(theta, design):
  # Linear function
  return design @ theta
```

Tips for assignment 1 def f(theta, design): # Linear function return design @ theta

Not all matrices can be inverted! Ensure the matrices are square and the condition number is low

```
A.shape
cond = jax.numpy.linalg.cond(A)
```

Tips for assignment 1 def f(theta, design): # Linear function return design @ theta

Not all matrices can be inverted! Ensure the matrices are square and the condition number is low

```
A.shape
cond = jax.numpy.linalg.cond(A)
```

Everything you need is in the lecture notes

- 1. Define an example problem
- 2. Define our machine learning model f
- 3. Define a loss function \mathcal{L}
- 4. Use \mathcal{L} to learn the parameters θ of f

Relax

Task: Given your education, predict your life expectancy

Task: Given your education, predict your life expectancy

Plot the datapoints $(x_1, y_1), (x_2, y_2), \dots$

Task: Given your education, predict your life expectancy

Plot the datapoints $(x_1, y_1), (x_2, y_2), \dots$

Plot the curve $f(x, \theta) = \theta_1 x + \theta_0$; $x \in [0, 25]$

Task: Given your education, predict your life expectancy

Plot the datapoints $(x_1, y_1), (x_2, y_2), \dots$

Plot the curve $f(x, \theta) = \theta_1 x + \theta_0$; $x \in [0, 25]$

Task: Given your education, predict your life expectancy

Plot the datapoints $(x_1, y_1), (x_2, y_2), \dots$

Plot the curve $f(x, \theta) = \theta_1 x + \theta_0$; $x \in [0, 25]$

We figured out linear regression!

We figured out linear regression!

But can we do better?

1. Beyond linear functions

- 1. Beyond linear functions
- 2. Overfitting

- 1. Beyond linear functions
- 2. Overfitting
- 3. Outliers

- 1. Beyond linear functions
- 2. Overfitting
- 3. Outliers
- 4. Regularization

- 1. Beyond linear functions
- 2. Overfitting
- 3. Outliers
- 4. Regularization

Question:

Question:

Does the data look linear?

Question:

Does the data look linear?

Question:

Does the data look linear?

Or maybe more logarithmic?

Question:

Does the data look linear?

Or maybe more logarithmic?

Question:

Does the data look linear?

Or maybe more logarithmic?

However, linear regression must be linear!

Answer: The function $f(x, \theta)$ is a linear function of x

Lecture 1: Introduction

Answer: The function $f(x, \theta)$ is a linear function of x

Trick: Change of variables to make f nonlinear: $x_{\text{new}} = \log(1 + x_{\text{data}})$

Lecture 1: Introduction

Answer: The function $f(x,\theta)$ is a linear function of x

Trick: Change of variables to make f nonlinear: $x_{\text{new}} = \log(1 + x_{\text{data}})$

$$egin{aligned} oldsymbol{X}_D = egin{bmatrix} x_1 & 1 \ x_2 & 1 \ dots & dots \ x_n & 1 \end{bmatrix} \Rightarrow oldsymbol{X}_D = egin{bmatrix} \log(1+x_1) & 1 \ \log(1+x_2) & 1 \ dots & dots \ \log(1+x_n) & 1 \end{bmatrix} \end{aligned}$$

Now, f is a linear function of log(1+x) – a nonlinear function of x!

New design matrix...

$$\boldsymbol{X}_{D} = \begin{bmatrix} \log(1 + x_{1}) & 1 \\ \log(1 + x_{2}) & 1 \\ \vdots & \vdots \\ \log(1 + x_{n}) & 1 \end{bmatrix}$$

New function...

$$f\left(x, \begin{bmatrix} \theta_1 \\ \theta_0 \end{bmatrix}\right) = \theta_1 \log(1+x) + \theta_0$$

New design matrix...

$$\boldsymbol{X}_D = \begin{bmatrix} \log(1+x_1) & 1 \\ \log(1+x_2) & 1 \\ \vdots & \vdots \\ \log(1+x_n) & 1 \end{bmatrix}$$

New function...

Same solution...

$$f\!\left(x, \begin{bmatrix} \theta_1 \\ \theta_0 \end{bmatrix}\right) = \theta_1 \log(1+x) + \theta_0 \qquad \qquad \boldsymbol{\theta} = \left(\boldsymbol{X}_D^\top \boldsymbol{X}_D\right)^{-1} \boldsymbol{X}_D^\top \boldsymbol{y}$$

Better, but still not perfect

Better, but still not perfect Can we do even better?

$$f(x) = ax^n + bx^{n-1} + \dots + cx + d$$

$$f(x) = ax^n + bx^{n-1} + \dots + cx + d$$

Polynomials can approximate **any** function (universal function approximator)

$$f(x) = ax^{n} + bx^{n-1} + \dots + cx + d$$

Polynomials can approximate **any** function (universal function approximator)

Can we extend linear regression to polynomials?

Expand x to a multi-dimensional input space...

Expand x to a multi-dimensional input space...

$$m{X}_D = egin{bmatrix} x_1 & 1 \ x_2 & 1 \ dots & dots \ x_n & 1 \end{bmatrix} \Rightarrow m{X}_D = egin{bmatrix} x_1^n & x_1^{n-1} & \dots & x_1 & 1 \ x_2^n & x_2^{n-1} & \dots & x_2 & 1 \ dots & dots & \ddots & \ x_n & x_n^{n-1} & \dots & x_n & 1 \end{bmatrix}$$

And add some new parameters...

$$\boldsymbol{\theta} = \begin{bmatrix} \theta_1 & \theta_0 \end{bmatrix}^\top \Rightarrow \boldsymbol{\theta} = \begin{bmatrix} \theta_n & \theta_{n-1} & \dots & \theta_1 & \theta_0 \end{bmatrix}^\top$$

$$\boldsymbol{X}_{D}\boldsymbol{\theta} = \begin{bmatrix} x_{1}^{n} & x_{1}^{n-1} & \dots & x_{1} & 1 \\ x_{2}^{n} & x_{2}^{n-1} & \dots & x_{2} & 1 \\ \vdots & \vdots & \ddots & & \vdots \\ x_{n} & x_{n}^{n-1} & \dots & x_{n} & 1 \end{bmatrix} \begin{bmatrix} \theta_{n} \\ \theta_{n-1} \\ \vdots \\ \theta_{0} \end{bmatrix} = \begin{bmatrix} \theta_{n}x_{1}^{n} + \theta_{n-1}x_{1}^{n-1} + \dots + \theta_{0} \\ \theta_{n}x_{2} + \theta_{n-1}x_{2}^{n-1} + \dots + \theta_{0} \\ \vdots \\ \theta_{n}x_{n}^{n} + \theta_{n-1}x_{n}^{n-1} + \dots + \theta_{0} \end{bmatrix}$$

$$\boldsymbol{X}_{D}\boldsymbol{\theta} = \begin{bmatrix} x_{1}^{n} & x_{1}^{n-1} & \dots & x_{1} & 1 \\ x_{2}^{n} & x_{2}^{n-1} & \dots & x_{2} & 1 \\ \vdots & \vdots & \ddots & & \vdots \\ x_{n} & x_{n}^{n-1} & \dots & x_{n} & 1 \end{bmatrix} \begin{bmatrix} \theta_{n} \\ \theta_{n-1} \\ \vdots \\ \theta_{0} \end{bmatrix} = \begin{bmatrix} \theta_{n}x_{1}^{n} + \theta_{n-1}x_{1}^{n-1} + \dots + \theta_{0} \\ \theta_{n}x_{2} + \theta_{n-1}x_{2}^{n-1} + \dots + \theta_{0} \\ \vdots \\ \theta_{n}x_{n}^{n} + \theta_{n-1}x_{n}^{n-1} + \dots + \theta_{0} \end{bmatrix}$$

New function...

$$f(x, \theta) = \theta_n x^n + \theta_{n-1} x^{n-1}, ..., \theta_1 + x^1 + \theta_0$$

$$\boldsymbol{X}_{D}\boldsymbol{\theta} = \begin{bmatrix} x_{1}^{n} & x_{1}^{n-1} & \dots & x_{1} & 1 \\ x_{2}^{n} & x_{2}^{n-1} & \dots & x_{2} & 1 \\ \vdots & \vdots & \ddots & & \vdots \\ x_{n} & x_{n}^{n-1} & \dots & x_{n} & 1 \end{bmatrix} \begin{bmatrix} \theta_{n} \\ \theta_{n-1} \\ \vdots \\ \theta_{0} \end{bmatrix} = \begin{bmatrix} \theta_{n}x_{1}^{n} + \theta_{n-1}x_{1}^{n-1} + \dots + \theta_{0} \\ \theta_{n}x_{2} + \theta_{n-1}x_{2}^{n-1} + \dots + \theta_{0} \\ \vdots \\ \theta_{n}x_{n}^{n} + \theta_{n-1}x_{n}^{n-1} + \dots + \theta_{0} \end{bmatrix}$$

New function...

$$f(x, \theta) = \theta_n x^n + \theta_{n-1} x^{n-1}, ..., \theta_1 + x^1 + \theta_0$$

Same solution...

$$oldsymbol{ heta} = ig(oldsymbol{X}_D^ op oldsymbol{X}_D^ opig)^{-1} oldsymbol{X}_D^ op oldsymbol{y}$$

$$f(x, \theta) = \theta_n x^n + \theta_{n-1} x^{n-1}, ..., \theta_1 + x^1 + \theta_0$$

$$f(x, \theta) = \theta_n x^n + \theta_{n-1} x^{n-1}, ..., \theta_1 + x^1 + \theta_0$$

Summary: By changing the input space, we can fit a polynomial to the data using a linear fit!

- 1. Beyond linear functions
- 2. Overfitting
- 3. Outliers
- 4. Regularization

Lecture 1: Introduction

- 1. Beyond linear functions
- 2. Overfitting
- 3. Outliers
- 4. Regularization

$$f(x, \theta) = \theta_n x^n + \theta_{n-1} x^{n-1}, ..., \theta_1 + x^1 + \theta_0$$

$$f(x, \theta) = \theta_n x^n + \theta_{n-1} x^{n-1}, ..., \theta_1 + x^1 + \theta_0$$

How do we choose n (polynomial order) that provides the best fit?

$$f(x, \theta) = \theta_n x^n + \theta_{n-1} x^{n-1}, ..., \theta_1 + x^1 + \theta_0$$

How do we choose n (polynomial order) that provides the best fit?

How do we choose n (polynomial order) that provides the best fit?

Pick the n with the smallest loss

$$\operatorname*{arg\ min}_{\boldsymbol{\theta},n} \mathcal{L}(\boldsymbol{x},\boldsymbol{y},(\boldsymbol{\theta},n))$$

Question: Which n do you think has the smallest loss?

Question: Which n do you think has the smallest loss?

Answer: n = 5, but intuitively, n = 5 does not seem very good...

More specifically, n=5 will not generalize to new data

More specifically, n = 5 will not generalize to new data

We will only use our model for new data (we already have the y for a known x)!

More specifically, n = 5 will not generalize to new data

We will only use our model for new data (we already have the y for a known x)!

When our model has a small loss but does not generalize to new data, we call it **overfitting**

Lecture 1: Introduction

When our model has a small loss but does not generalize to new data, we call it **overfitting**

The model has fit too closely to the sampled data points, rather than the trend

Lecture 1: Introduction

When our model has a small loss but does not generalize to new data, we call it **overfitting**

The model has fit too closely to the sampled data points, rather than the trend

Models that overfit are not useful for making predictions

When our model has a small loss but does not generalize to new data, we call it **overfitting**

The model has fit too closely to the sampled data points, rather than the trend

Models that overfit are not useful for making predictions

Back to the question...

When our model has a small loss but does not generalize to new data, we call it **overfitting**

The model has fit too closely to the sampled data points, rather than the trend

Models that overfit are not useful for making predictions

Back to the question...

Question: How do we choose n such that our polynomial model works for unseen/new data?

When our model has a small loss but does not generalize to new data, we call it **overfitting**

The model has fit too closely to the sampled data points, rather than the trend

Models that overfit are not useful for making predictions

Back to the question...

Question: How do we choose n such that our polynomial model works for unseen/new data?

Answer: Compute the loss on unseen data!

To compute the loss on unseen data, we will need unseen data

To compute the loss on unseen data, we will need unseen data

Let us create some unseen data!

To compute the loss on unseen data, we will need unseen data

Let us create some unseen data!

Question: How do we choose the training and testing datasets?

Question: How do we choose the training and testing datasets?

Option 1:
$$\boldsymbol{x}_{\text{train}} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \boldsymbol{y}_{\text{train}} = \begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix}; \quad \boldsymbol{x}_{\text{test}} = \begin{bmatrix} x_4 \\ x_5 \end{bmatrix}; \boldsymbol{y}_{\text{test}} = \begin{bmatrix} y_4 \\ y_5 \end{bmatrix}$$

Question: How do we choose the training and testing datasets?

Option 1:
$$m{x}_{ ext{train}} = egin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} m{y}_{ ext{train}} = egin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix}; \quad m{x}_{ ext{test}} = m{bmatrix}_4 \\ x_5 \end{bmatrix}; m{y}_{ ext{test}} = m{bmatrix}_4 \\ y_5 \end{bmatrix}$$

Option 2:
$$m{x}_{\text{train}} = egin{bmatrix} x_4 \\ x_1 \\ x_3 \end{bmatrix} m{y}_{\text{train}} = egin{bmatrix} y_4 \\ y_1 \\ y_3 \end{bmatrix}; \quad m{x}_{\text{test}} = m{\begin{bmatrix}} x_2 \\ x_5 \end{bmatrix}; m{y}_{\text{test}} = m{\begin{bmatrix}} y_2 \\ y_5 \end{bmatrix}$$

Question: How do we choose the training and testing datasets?

Option 1:
$$m{x}_{ ext{train}} = egin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} m{y}_{ ext{train}} = egin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix}; \quad m{x}_{ ext{test}} = m{bmatrix}_4 \\ x_5 \end{bmatrix}; m{y}_{ ext{test}} = m{bmatrix}_4 \\ y_5 \end{bmatrix}$$

Option 2:
$$m{x}_{ ext{train}} = egin{bmatrix} x_4 \\ x_1 \\ x_3 \end{bmatrix} m{y}_{ ext{train}} = egin{bmatrix} y_4 \\ y_1 \\ y_3 \end{bmatrix}; \quad m{x}_{ ext{test}} = m{bmatrix}_2 \\ x_5 \end{bmatrix}; m{y}_{ ext{test}} = m{bmatrix}_y \end{bmatrix}$$

Answer: Always shuffle the data

Question: How do we choose the training and testing datasets?

Option 1:
$$m{x}_{\text{train}} = egin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} m{y}_{\text{train}} = egin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix}; \quad m{x}_{\text{test}} = m{x}_4 \\ x_5 \end{bmatrix}; m{y}_{\text{test}} = m{y}_4 \\ y_5 \end{bmatrix}$$

Option 2:
$$m{x}_{ ext{train}} = egin{bmatrix} x_4 \\ x_1 \\ x_3 \end{bmatrix} m{y}_{ ext{train}} = egin{bmatrix} y_4 \\ y_1 \\ y_3 \end{bmatrix}; \quad m{x}_{ ext{test}} = m{bmatrix}_2 \\ x_5 \end{bmatrix}; m{y}_{ ext{test}} = m{bmatrix}_y \end{bmatrix}$$

Answer: Always shuffle the data

Note: The model must never see the testing dataset during training. This is very important!

We can now measure how the model generalizes to new data

We can now measure how the model generalizes to new data

Learn parameters from the train dataset, evaluate on the test dataset

We can now measure how the model generalizes to new data

Learn parameters from the train dataset, evaluate on the test dataset

$$\mathcal{L}(oldsymbol{X}_{ ext{train}}, oldsymbol{y}_{ ext{train}}, oldsymbol{ heta})$$

$$\mathcal{L}(oldsymbol{X}_{ ext{test}}, oldsymbol{y}_{ ext{test}}, oldsymbol{ heta})$$

We use separate training and testing datasets on **all** machine learning models, not just linear regression

We use separate training and testing datasets on all machine learning models, not just linear regression