Chapter 1, Part 2: Propositional Equivalences

The Foundations: Logic and Proofs

Propositional Logic Summary

- Logical Equivalences
 - Important Equivalences
 - Showing Equivalence
 - Satisfiability

Propositional Equivalences

Section 1.3

Section Summary

- Tautologies, Contradictions, and Contingencies.
- Logical Equivalence
 - Important Logical Equivalences
 - Showing Logical Equivalence
- Normal Forms (optional, covered in exercises in text)
 - Disjunctive Normal Form
 - Conjunctive Normal Form

Tautologies, Contradictions, and Contingencies

- A **tautology** is a proposition which is always true.
 - Example: $p \lor \neg p = T$
- A **contradiction** is a proposition which is always false.
 - Example: $p \land \neg p = F$
- A **contingency** is a proposition which is neither a tautology nor a contradiction, such as p

P	$\neg p$	$p \lor \neg p$	$p \land \neg p$
T	F	T	F
F	T	T	F

Logical Equivalences

- Compound propositions that have the same truth values in all possible cases are called logically equivalent.
- Two compound propositions p and q are logically equivalent if $p \leftrightarrow q$ is a tautology.
- We write this as $p \Leftrightarrow q$ or as $p \equiv q$ where p and q are compound propositions.
- Two compound propositions p and q are equivalent if and only if the columns in a truth table giving their truth values agree.
- This truth table show $\neg p \lor q$ is equivalent to $p \to q$.

p	q	$\neg p$	$\neg p \lor q$	$p \rightarrow q$
T	T	F	T	T
T	F	F	F	F
F	T	T	T	T
F	F	T	T	T

De Morgan's Laws

Augustus De Morgan: 1806-1871

This truth table shows that De Morgan's Second Law holds.

The following example follows that $\neg(p \lor q) \leftrightarrow (\neg p \land \neg q)$ is a tautology and that these compound propositions are logically equivalent.

p	q	$\neg p$	$\neg q$	(pvq)	$\neg(p \lor q)$	$\neg p \land \neg q$
T	T	F	F	T	F	F
T	F	F	T	T	F	F
F	T	Т	F	T	F	F
F	F	T	T	F	T	T

Construct truth table and show that conditional statements is a tautology

- $\neg (p \rightarrow q) \rightarrow p$

Conditional Disjunction Equivalence

- Replace conditional statements with negations and disjunctions.
- Show that $\mathbf{p} \to \mathbf{q}$ and $\neg \mathbf{p} \ \mathbf{V}$ \mathbf{q} are logically equivalent. (This is known as the **conditional disjunction equivalence.**)
- Construct truth table:

Distributive Law of Disjunction over Conjunction

 $p \lor (q \land r) \text{ and } (p \lor q) \land (p \lor r)$

Construct Truth Table

Equivalence Proofs

Example: Show that $\neg(p \lor (\neg p \land q))$ is logically equivalent to $\neg p \land \neg q$ and is a tautology.

Example: Show that $(p \land q) \rightarrow (p \lor q)$ is a tautology.

Example

Show that following statement is a **tautology**:

$$(P \to Q) \lor (Q \to P)$$

Р	Q	P o Q	$Q \rightarrow P$	$(P \to Q) \lor (Q \to P)$
Т	Т	Т	Т	Т
Т	F	F	Т	Т
F	Т	Т	F	Т
F	F	Т	Т	Т

Equivalence	Name
$p \wedge \mathbf{T} \equiv p$ $p \vee \mathbf{F} \equiv p$	Identity laws
$p \lor \mathbf{T} \equiv \mathbf{T}$ $p \land \mathbf{F} \equiv \mathbf{F}$	Domination laws
$p \lor p \equiv p$ $p \land p \equiv p$	Idempotent laws
$\neg(\neg p) \equiv p$	Double negation law
$p \lor q \equiv q \lor p$ $p \land q \equiv q \land p$	Commutative laws
$(p \lor q) \lor r \equiv p \lor (q \lor r)$ $(p \land q) \land r \equiv p \land (q \land r)$	Associative laws
$p \lor (q \land r) \equiv (p \lor q) \land (p \lor r)$ $p \land (q \lor r) \equiv (p \land q) \lor (p \land r)$	Distributive laws
$\neg(p \land q) \equiv \neg p \lor \neg q$ $\neg(p \lor q) \equiv \neg p \land \neg q$	De Morgan's laws
$p \lor (p \land q) \equiv p$ $p \land (p \lor q) \equiv p$	Absorption laws
$p \lor \neg p \equiv \mathbf{T}$ $p \land \neg p \equiv \mathbf{F}$	Negation laws

More Logical Equivalences (conditional and bi-conditional)

TABLE 7 Logical Equivalences Involving Conditional Statements.

$$p \to q \equiv \neg p \lor q$$

$$p \to q \equiv \neg q \to \neg p$$

$$p \lor q \equiv \neg p \to q$$

$$p \land q \equiv \neg (p \to \neg q)$$

$$\neg (p \to q) \equiv p \land \neg q$$

$$(p \to q) \land (p \to r) \equiv p \to (q \land r)$$

$$(p \to r) \land (q \to r) \equiv (p \lor q) \to r$$

$$(p \to q) \lor (p \to r) \equiv p \to (q \lor r)$$

$$(p \to r) \lor (q \to r) \equiv (p \land q) \to r$$

$$(p \to r) \lor (q \to r) \equiv (p \land q) \to r$$

TABLE 8 Logical Equivalences Involving Biconditional Statements.

$$p \leftrightarrow q \equiv (p \to q) \land (q \to p)$$

$$p \leftrightarrow q \equiv \neg p \leftrightarrow \neg q$$

$$p \leftrightarrow q \equiv (p \land q) \lor (\neg p \land \neg q)$$

$$\neg (p \leftrightarrow q) \equiv p \leftrightarrow \neg q$$

Constructing New Logical Equivalences

- Show that $\neg(p \rightarrow q)$ and $p \land \neg q$ are logically equivalent.
- 1. $\neg(p \rightarrow q) \equiv \neg(\neg p \lor q)$ by the conditional-disjunction equivalence
- 2. $\equiv \neg(\neg p) \land \neg q$ by the second De Morgan law
- 3. $\equiv p \land \neg q$ by the double negation law

$$(p \rightarrow q) \land (p \rightarrow r) \equiv p \rightarrow (q \land r)$$

$$(p \to q) \land (p \to r) \equiv (\neg p \lor q) \land (\neg p \lor r)$$
 Substitution for \to , twice
$$\equiv \neg p \lor (q \land r)$$
 Distribution law
$$\equiv p \to (q \land r)$$
 Substitution for \to

Constructing New Logical Equivalences

Show that Show that $\neg(p \lor (\neg p \land q))$ and $\neg p \land \neg q$ are logically equivalent by developing a series of logical equivalences

```
1. \neg (p \lor (\neg p \land q)) \equiv \neg p \land \neg (\neg p \land q)
                                                                   by the second De Morgan
      law
2.
                            \equiv \neg p \land [\neg (\neg p) \lor \neg q]
                                                             by the first De Morgan law
3.
                            \equiv \neg p \land (p \lor \neg q)
                                                             by the double negation law
4.
                            \equiv (\neg p \land p) \lor (\neg p \land \neg q) by the second distributive law
                            \equiv \mathbf{F} \vee (\neg p \wedge \neg q)
                                                             because \neg p \land p \equiv F
                            \equiv (\neg p \land \neg q) \lor F
                                                             by the commutative law for
      disjunction
                                                             by the identity law for F
                            = ¬p ∧ ¬q
```

$$(p \land q) \Rightarrow (p \lor q) \equiv T$$

Example

Show that $(p \land q) \rightarrow (p \lor q)$ is a tautology.

Equivalence Proofs

- Using logic equivalence laws:
- a. Show that $\neg(p \leftrightarrow q)$ and $p \leftrightarrow \neg q$ are logically equivalent.
- b. Show that $\neg p \leftrightarrow q$ and $p \leftrightarrow \neg q$ are logically equivalent.
- c. Show that $(p \rightarrow q) \land (p \rightarrow r)$ and $p \rightarrow (q \land r)$ are logically equivalent.
- d. Show that $(p \rightarrow r) \lor (q \rightarrow r)$ and $(p \land q) \rightarrow r$ are logically equivalent.

Prove that: $[\neg p \land (p \lor q)] \rightarrow q$ is a tautology.

- By using truth table.
- By using logic equivalence laws.

Prove that: $[(p \rightarrow q) \land (q \rightarrow r)] \rightarrow [p \rightarrow r]$ is a tautology.

- By using truth table.
- By using logic equivalence laws