BLOC 3. Forces intermoleculars i estats d'agregació

- **3.1** Per cada un dels compostos moleculars següents, determina el tipus de força intermolecular que es produeix (dipol-dipol, pont d'hidrogen, dispersió o iònic):
 - a) Amoníac; b) òxid de carboni (II); c) òxid de carboni (IV); d) àcid clorhídric;
 - e) clorur de sofre; f) clorur de sofre (VI); g) aigua.
- **3.2** Indiqueu el tipus de força intermolecular predominant (dipol, pont d'hidrogen, dispersió o iònic) per a cadascun dels compostos següents:
 - a) C_2H_2 ; b) Br_2 ; c) V_2O_5 ; d) CH_3NH_2 ; e) HO-OH; f) CCl_4 ; g) $InCl_3$; h) Xe; i) N_2 ; j) $N(CH_3)_3$; k) CH_3 -O- CH_3 ; l) CH_3 -F.
- **3.3** Ordena els compostos químics següents segons el seu punt d'ebullició (en ordre decreixent): I₂, F₂, Cl₂ i Br₂.
- **3.4** Ordena els compostos químics següents segons el seu punt d'ebullició (en ordre decreixent): Ar, He, Ne i Xe.
- **3.5** Per què l'HI té un punt d'ebullició més alt que l'HBr?
- 3.6 Per què l'aigua oxigenada (H₂O₂) té un punt de fusió més alt que el C₃H₈?
- 3.7 Per què el Br₂ té un punt de fusió més baix que el NaBr?
- **3.8** Per què l'H₂O té un punt d'ebullició més alt que l'H₂Te?
- **3.9** L'àcid desoxiribonucleic (DNA) està format per dos llargs polímers units per ponts d'hidrogen. Concretament ,els ponts d'hidrogen tenen lloc entre les anomenades parells de bases dels nucleòtids. Identifica a l'esquema següent del DNA els ponts d'hidrogen que hi ha entre les dues cadenes de DNA.

