EECS240 – Spring 2010

Lecture 16: Multistage Amplifiers

Elad Alon Dept. of EECS

Why use Multi-Stage Amplifiers?

- Single-stage amplifier:
 - Generally have to trade between swing and gain
 - (Need cascodes and/or large V_{min} for current sources)
- Multi-stage amplifier:
 - Higher gain without sacrificing swing
 - (Gain-boosted cascode is multi-stage amplifier in disguise)
- Challenge: stability!

Stability for Simple 2-Stage Amp

• Two closely spaced poles - is this circuit stable?

EECS240 Lecture 16

2-Stage Stability cont'd

Compensation Techniques

- Many options best one depends on situation at hand
- Look at a few general categories:
 - Narrowbanding
 - Wideband input stage (pre-amp)
 - Miller

EECS240 Lecture 16

Narrowbanding

- Narrowbanding
 - Lower one of the poles
 - · Or introduce a new one
- Stability OK, but (feedback) bandwidth low
 - Example: offset cancellation

Pre-amp

- Build a pre-amp with bandwidth much higher than 2nd stage
 - Usually limits achievable pre-amp gain

EECS240 Lecture 16 7

Miller Compensation

- Very common form of compensation
 - Why is this "pole splitting" good?

Miller Compensated Poles/Zeros

EECS240 Lecture 16

Phase Margin Engineering

$$\omega_u \approx F \frac{g_{m1}}{C_c}$$

$$\omega_u \approx F \frac{g_{m1}}{C_c}$$
 $|p_2|, z >> \omega_u \text{ of } T(s)$

choose $|p_2| \ge K\omega_u$ • Higher K \rightarrow higher C_c

$$C_c \ge KFC_2 \frac{g_{m1}}{g_{m2}}$$

 $C_c \ge KFC_2 \frac{g_{m1}}{g_{m2}}$ • For fixed C_c , larger $C_L = C_2$ lowers phase margin

$$\frac{z}{\omega_{u}} = \frac{1}{F} \frac{g_{m2}}{g_{m1}}$$
• Zero can add significant phase lag
• Unless $g_{m2} >> Fg_{m1}$

EECS240 Lecture 16 10

Nulling Resistor

$$z \to \frac{1}{\left(\frac{1}{g_{m2}} - R_Z\right)C_c}$$

$$p_3 \approx -\frac{1}{R_z C_1}$$

- $z \rightarrow \frac{1}{\left(\frac{1}{g_{m2}} R_Z\right)C_c}$ $p_1, p_2 : \text{ no change}$ $p_3 \approx -\frac{1}{R_zC_1}$ R_z limits feedforward current at high frequency
 Pushes feedforward zero to higher frequency
 Adds new pole p₃

EECS240 Lecture 16 11

Nulling Resistor Implementation

EECS240 Lecture 16 12

Cascode Compensation (Ahuja)

- No RHP zero
- But cost in power can be high
 - (I₂ needs to slew C_c)

EECS240 Lecture 16 13

Cascode Compensation (Ribner)

Noise Analysis

• Need a simplified model:

EECS240 Lecture 16 15

Noise Analysis cont'd

$$v_{o} = \frac{1}{Fg_{m1}} \frac{1}{1 + \frac{s}{\omega_{o}Q} + \frac{s^{2}}{\omega_{o}^{2}}} \left(i_{n1} - i_{n2} \frac{sC_{c}}{g_{m2}} \right)$$
with
$$\omega_{o}^{2} = \frac{Fg_{m1}g_{m2}}{C_{c}(C_{c} + C_{L})}$$

$$\omega_{o}Q = \frac{Fg_{m1}}{C_{c}}$$

Total Noise at Output

$$\overline{v_{oT}^2} = \frac{k_B T}{C_c} \frac{\gamma}{F} + \frac{k_B T}{\left(C_c + C_L\right)} \gamma$$

$$\overline{v_{oT}^2} = \frac{k_B T}{C_c} \frac{\gamma}{F} \left(1 + \frac{FC_c}{C_c + C_L} \right)$$

- Noise from first stage dominates
- Noise capacitor: C_c (NOT $C_L!$)

EECS240 Lecture 16 17

2-Stage CMFB

