DISTRIBUIRANI ALGORITMI I SISTEMI

Konsenzus sa vizantijskim otkazima

- □ Koliko procesora je potrebno da se reši konsenzus kad je f = 1 ?
- □ Predpost. n = 2. Ako p_0 ima ulaz 0 a p_1 ima 1, jedan mora da promeni vred, ali ne oba. Šta ako je jedan proc u otkazu? Kako drugi to može znati?
- □ Predpost. n = 3. ako p_0 ima ulaz 0, p_1 ima ulaz 1, i p_2 je u otkazu, onda je potreban arbitar, ali p_2 može delovati zlonamerno

Donja granica za procesore za f = 1

Teorema (10.7): Svaki algoritam konsenzusa zal vizantijski otkaz mora imati bar 4 procesora

Dokaz: Predpost. radi kontradikcije da postoji algoritam konsenzusa $\mathcal{A} = (A,B,C)$ za 3 procesora i 1 vizantijski otkaz

Specificiranje ponašanja otkaza

Razmotrimo prsten sa 6 ispravnih procesora koji izvršavaju komponente od \mathcal{A} na ovaj način:

Specificiranje ponašanja otkaza

Razmotrimo prsten sa 6 ispravnih procesora koji izvršavaju komponente od \mathcal{A} na ovaj način:

- \square Ovo izvršenje β možda (ne) rešava konsenzus (ne mora da uspe)
- Ali procesori rade nešto to ponašanje se koristi za specifikaciju ponašanja procesora u otkazu u izvršenju A u trouglu

Specificiranje ponašanja otkaza

Razmotrimo prsten sa 6 ispravnih procesora koji izvršavaju komponente od \mathcal{A} na ovaj način:

- $lue{}$ Ovo izvršenje eta možda (ne) rešava konsenzus (ne mora da uspe)
- Ali procesori rade nešto to ponašanje se koristi za specifikaciju ponašanja procesora u otkazu u izvršenju A u trouglu

 \square Neka je α_0 ovo izvršenje:

 p_1 i p_2 moraju da odluče 0

 \square Neka je γ ovo izvršenje:

 \square Neka je γ ovo izvršenje:

 \square Neka je γ ovo izvršenje:

 \square Neka je γ ovo izvršenje:

Šta p_0 i p_2 odlučuju?

 \square Neka je γ ovo izvršenje:

Šta p_0 i p_2 odlučuju?

pogled p_0 u γ = pogled p_0 u β = pogled p_0 u $\alpha_1 \Rightarrow p_0$ odlučuje 1

 \square Neka je γ ovo izvršenje:

Šta p_0 i p_2 odlučuju?

pogled p_0 u γ = pogled p_0 u β = pogled p_0 u $\alpha_1 \Rightarrow p_0$ odlučuje 1

pogled p_2 u γ = pogled p_5 u β = pogled p_2 u $\alpha_0 \Rightarrow p_2$ odlučuje 0

B

C

Donja granica broja procesora za bilo koje f

Teorema 10.8: Bilo koji algoritam konsenzusa za f vizantijskih otkaza mora imati bar 3f+1 procesora

Dokaz: Koristi redukciju na 3:1 slučaj

- □ Predpost. radi kontradickije da postoji algoritam \mathcal{A} za f > 1 otkaza i n = 3f procesora
- Koristimo A kao podprogram za konstruisanje algoritma za 1 otkaz i 3 procesora, što dovodi do kontradikcije

Redukcija

- □ Podelimo $n \le 3f$ procesora u 3 skupa, P_0 , P_1 , i P_2 , svaki veličine najviše f
- □ U slučaju n = 3, neka procesori:
 - \square p_0 simulira P_0
 - \square p_1 simulira P_1
 - \square p_2 simulira P_2
- Ako je 1 procesor u otkazu u sistemu sa n = 3, onda je najviše f procesora u otkazu u simuliranom sistemu
- Zato je simulirani sistem korektan
- Neka procesori u sistemu sa n = 3 odluče isto kao simulirani procesori, i njihove odluke će takođe biti korektne

Algoritam eksponencijalnog stabla

- Ovaj algoritam koristi:
 - $\Box f + 1$ rudni (optimalan)
 - n = 3f + 1 procesora (optimalan)
 - eksponencijalnu veličinu poruka (suboptimalan)
- Svaki procesor održava stablo u svom lokalnom stanju
- \square Vrednosti u stablu se popunjavaju tokom f+1 rundi
- Na kraju, vrednosti u stablu se koriste za odluku

Lokalno stablo

- Svaki čvor stabla je označen sa sekvencom jedinstvenih indeksa procesora
- \square Labela korena je prazna sekve. λ ; koren ima nivo 0
- □ Koren ima n potomaka, označenih sa 0 do n-1
- □ Čvor potomak označen sa i ima n − 1 potomaka, označenih sa i : 0 do i : n−1 (izostavlja se i : i)
- Čvor na nivou d označen sa v ima n d potomaka, označenih sa v : 0 do v : n-1 (izostavljajući bilo koji indeks koji se pojavljuje u v)
- \Box Čvorovi na nivou f + 1 su listovi

Primer lokalnog stabla

Popunjavanje čvorova stabla

- Inicijalno stavi svoj ulaz u koren (nivo 0)
- □ Runda 1:
 - šalji svima nivo 0 svog stabla
 - stavi vred x primljenu od svakog p_j u čvoru stabla označe. sa j (nivo 1); ako je potrebno, koristi podra. vred. (default)
 - \square " p_i mi je rekao da je ulaz od p_i bio x"
- □ Runda 2:
 - šalji svima nivo 1 svog stabla
 - stavi vred x primljenu od svakog p_j za svaki čvor stabla k u čvoru označe. sa k : j (nivo 2); ili podrazumevanu vred.
 - \square " p_i mi je rekao da je p_k rekao p_i da je ulaz od p_k bio x"
- \square Nastavi za f + 1 rundi

Odlučivanje

- □ U rundi f + 1, svaki procesor koristi vred u svom stablu da izračuna svoju odluku
- Rekurzivno računaj vred "rešenja" za koren stabla, resolve(λ), na osnovu vred "rešenja" za druge čvorove stabla:

resolve(
$$\pi$$
) =
$$\begin{cases} \text{vred u čvoru označe. sa } \pi \text{ ako je to list} \\ \text{majority}\{\text{resolve}(\pi ') : \pi' \text{ je potomak od } \pi\} \text{ inače (koristi podraz. vr. ako nema većine)} \end{cases}$$

Primer vrednosti rešenja

Primer vrednosti rešenja

Primer vrednosti rešenja

Vrednosti rešenja su konzistentne

Lema (10.9): Ako su p_i i p_j ispravni, onda je p_i -jeva vred. <u>rešenja</u> za svoj čvor stabla označe. π' j (šta p_j kaže p_i —ju za čvor π') jednak onome što je p_j stavio u svoj čvor π'

deo stabla od p_i

deo stabla od p_i

Vrednosti rešenja su konzistentne

Ideje za dokaz:

- Po indukciji na visinu čvora stabla
- Induktivna hipoteza da se zna da su vred.
 rešenja za potomke čvora, koji odgovaraju ispravnim proc, konzistentne
- □ Koristi činjenicu da n > 3f i činjenicu da svaki čvor ima bar n f potomaka da bi se znalo da je većina potomaka ispravna

Validnost

- Predpost. da su svi ulazi v
- Ispravan proc. p_i odlučuje $resolve(\lambda)$, što je većinska vred između resolve(j), $0 \le j \le n-1$, na osnovu stabla od p_i
- □ Pošto su vrednosti rešenja konzistente, resolve(j) (u p_i) je vred smeštena u koren stabla od p_j , što je ulazna vred od p_j ako je p_j ispravan
- □ Pošto postoji većina ispravnih procesora, p; odlučuje v

Zajednički čvorovi

 \Box Čvor stabla π je **zajednički** ako svi ispravni proc. dobiju istu vrednost za $resolve(\pi)$

deo stabla od p_i

deo stabla od p_i

Zajedničke granice

 \square Čvor stabla π ima **zajedničku granicu** ako svaka putanja iz π do lista sadrži neki zajednički čvor

Zajednički čvorovi i granice

Lema (10.10): Ako π ima zajedničku granicu, onda je π zajednički

Ideje za dokaz: Po indukciji na visinu π . Koristiti činjenicu da je funkcija resolve definisana na osnovu većinske vrednosti

Dogovor

- Čvorovi na svakoj putanji od potomka korena do lista potiču od f + 1 različitih proc.
- Pošto postoji najviše f procesora u otkazu, bar 1 takav čvor odgovara ispravnom procesoru
- Ovaj čvor je zajednički (po lemi o konzistentnosti vrednosti rešenja)
- Zato koren ima zajedničku granicu
- □ Zato je koren zajednički (po predhodnoj lemi)

Složenost

Algoritam eksponencijalnog stabla koristi

- \square n > 3f procesora
- $\Box f + 1$ rundi
- poruke eksponencijalne veličine:
 - svaka poruka u rundi r sadrži: n(n-1)(n-2)...(n-(r-2)) vrednosti
 - Kad je r = f + 1, ta veličina je eksponencijalna ako je f više od konstante u odnosu na n

Jedan polinomijalan algoritam

- Veličina por se može redukovati na polinomijalnu pomoću jednog jednostavnog algoritma
- □ Broj procesora se povećava na

Broj rundi se povećava na

$$2(f + 1)$$

 \square Koristi se f+1 faza, svaka uzima dve runde

Algoritam Kralj (Faze)

```
Kod za svaki procesor p;:
pref := moj ulaz
prva runda faze k, 1 \le k \le f+1:
   šalji svima pref
   primi pref vrednosti od drugih
   neka je maj vred koja se pojavila > n/2 puta (0 ako takve nema)
   neka je mult broj pojava od maj
druga runda faze k:
   if i = k then šalji svima maj // Ja sam kralj faze
   primi tie-breaker (arbitražnu vred) od p_{\nu} (0 ako je nema)
   if mult > n/2 + f
         then pref := maj
         else pref := tie-breaker
   if k = f + 1 then odluči pref
```

Lema anonimne faze

Lema (10.12): Ako svi ispravni procesori postave pref na v na početku faze k, onda će svi to uraditi i na kraju faze k

Dokaz:

- □ U prvoj rundi faze k, svaki ispravan proc. prima v bar (n f) puta
- □ Pošto je n > 4f, sledi da je n f > n/2 + f
- 🗆 Tako svaki ispravan proc. i dalje preferira v

Validnost kralja (faze)

Lema anonimne faze implicira validnost:

- Predpost. da svi proc. imaju ulaz v
- Onda na početku faze 1, svi isp. proc. preferiraju v
- Isto tako na kraju faze 1
- Isto tako na početku faze 2
- Isto tako na kraju faze 2
- □ ...
- □ Na kraju faze f + 1, svi isp. proc. preferiraju v i odlučuju v

Lema ispravnog kralja

Lema (10.13): Ako je kralj faze k ispravan, onda svi ispravni proc imaju istu preferencu na kraju faze k

Dokaz: Neka su p_i i p_j ispravni

Sluč. 1: p_i i p_j koriste tie-breaker od p_k . Pošto je p_k ispravan, oni oba imaju istu preferencu

Lema ispravnog kralja

- Sluč. 2: p_i koristi svoju većinsku vred v a p_j koristi kraljev tie-breaker
- \square Onda p_i prima više od n/2 + f preferenci za v
- \square Zato p_k prima više od n/2 + f preferenci za v
- \square Zato je tie-breaker od p_k jednak v

Lema ispravnog kralja

- $Sluč. 3: p_i i p_i$ koriste svako svoju većinsku vred.
- Predpost. da je većinska vred od p; jednaka v
- \square Onda p_i prima više od n/2 + f preferenci za v
- \square Zato p_i prima više od n/2 + f preferenci za v
- □ Zato je većinska vrednost od p_j takođe jednaka v

Dogovor

Pomoću predhodne 2 leme dokazujemo dogovor:

- Pošto postoji f + 1 faza, bar jedna ima ispravnog kralja
- Lema ispravnog kralja implicira da na kraju te faze,
 svi ispravni procesori imaju istu preferencu
- Lema anonimne faze implicira da od te faze na dalje,
 svi ispravni procesori imaju istu preferencu
- Zati svi ispravni proc odlučuju isto

Mere složenosti

- \square broj procesora n > 4f
- \square 2(f + 1) rundi
- \square O($n^2 f$) poruka, svaka veličine log |V|