a) Aus Kennfeld, Bild
$$9-15$$
 für $H_x = 35$ m bei $\dot{V}_x = 50$ m $^3/h$ notwendig $D_{2,(a)} = 175$ mm erreicht $\eta_{e,x} = 0,675$

b)
$$P_{e,x} = \frac{g \cdot \dot{V}_{x} \cdot g \cdot H_{x}}{\eta_{e,x}} = \frac{10^{3} \cdot 50 \cdot 9.81 \cdot 35}{3600 \cdot 0.675} \left[\frac{kg \cdot m^{3} \cdot m \cdot m}{m^{3} \cdot s \cdot s^{2}} \right]$$

$$P_{e,x} = 7064.8 \text{ W} \approx 7 \text{ kW}$$

$$\Delta Y \sim n^2$$
 $\dot{V} \sim n$ und $P \sim n^3$

Da Drehzahlhalbierung (von 2900 auf 1450 min⁻¹) werden:

$$H_{x,1450} = H_{x,2900}/4 = 35/4 = 8,75 \text{ m}$$
 $\dot{V}_{x,1450} = \dot{V}_{x,2900}/2 = 50/2 = 25 \text{ m}^3/\text{h}$
 $P_{e,x,1450} = P_{e,x,2900}/8 = 7/8 = 0,88 \text{ kW}$