Traveling Salesperson Problem (TSP) Using Dynamic Programming

Problem:

Apply DP approach to solve the travelling salesperson problem starting from node "I" for the graph represented as the following cost adjacency matrix.

Node	1	2	3	4
1	0	10	15	20
2	5	0	9	10
3	6	13	0	12
4	8	8	9	0

Paris Page 1

Solution

Let,

 c_{ii} be the cost from node i to node j and

g(i,S) be the length of a shortest path starting at vertex i, going through all vertices in S, and terminating at vertex I(Source/Destination Vertex).

Thus,

$$g(2, \Phi) = c_{21} = 5;$$
 $g(3, \Phi) = c_{31} = 6;$ $g(4, \Phi) = c_{41} = 8.$

$$g(2, \{3\}) = \mathbf{c_{23}} + g(3, \Phi) = 9 + 6 = 15;$$
 $g(2, \{4\}) = \mathbf{c_{24}} + g(4, \Phi) = 10 + 8 = 8.$ $g(3, \{2\}) = \mathbf{c_{32}} + g(2, \Phi) = 13 + 5 = 18;$ $g(3, \{4\}) = \mathbf{c_{34}} + g(4, \Phi) = 12 + 8 = 20.$ $g(4, \{2\}) = \mathbf{c_{42}} + g(2, \Phi) = 8 + 5 = 13;$ $g(4, \{3\}) = \mathbf{c_{43}} + g(3, \Phi) = 9 + 6 = 15.$

g (2, {3, 4}) = min{
$$\mathbf{c_{23}} + \mathbf{g}$$
 (3, {4}), $\mathbf{c_{24}} + \mathbf{g}$ (4, {3})}
= min{ $9 + 20$, $10 + 15$ }
= min{ 29 , 25 }
= 25

$$g(3, \{2, 4\}) = \min\{ c_{32} + g(2, \{4\}), c_{34} + g(4, \{2\}) \}$$

= $\min\{ 13 + 18, 12 + 13 \}$
= $\min\{ 31, 25 \}$
= 25

$$g(4, \{2, 3\}) = \min\{ c_{42} + g(2, \{3\}), c_{43} + g(3, \{2\}) \}$$

= $\min\{ 8 + 15, 9 + 18 \}$
= $\min\{ 23, 27 \}$
= 23

$$g(1, \{2, 3, 4\}) = \min\{ \mathbf{c_{12}} + \mathbf{g}(2, \{3, 4\}), \mathbf{c_{13}} + \mathbf{g}(3, \{2, 4\}), \mathbf{c_{14}} + \mathbf{g}(4, \{2, 3\}) \}$$

$$= \min\{ 10 + 25, 15 + 25, 20 + 23 \}$$

$$= \min\{ 35, 40, 43 \}$$

$$= 35$$

So,

An optimal tour of the graph has length 35 and Optimal tour is: $1 \rightarrow 2 \rightarrow 4 \rightarrow 3 \rightarrow 1$.

Paris Page 2