Mathematical Operations

- Base 2: the native base for computer systems
- Glyphs: 0, 1
- On a computer, we are limited to a certain number of digits.
- Recall, the results are summarized via the use of status flags.
 - For unsigned operations:
 - the final value is Zero (Z)
 - the calculation resulted in final carry (C)
 - For signed values
 - the final value is Negative (S)
 - the calculation resulted in an overflow (V)

Binary Addition:

- We have only two digits
 - 0 + 0 = 0
 - 0 + 1 = 1
 - 0 1 + 0 = 1
 - o 1+1=?
- What do we do in base 10

Base 2

Dase 2				
		E	3	
+		0	1	
٨	0	0	1	
Α	1	1	?	

Base 10

+	0	1	2	3	4	5	6	7	8	9
0	0	1	2	3	4	5	6	7	8	9
1	1	2	3	4	5	6	7	8	9/	10
2	2	3	4	5	6	7	8	9/	10	n
3	3	4	5	6	7	8	9	10	M	12
4	4	5	6	7	8	9	10	И	12	13
5	5	6	7	8	9	10	M	12	13	14
6	6	7	8	9	10	M	12	13	14	15
7	7	8	9	10	И	12	13	14	15	16
8	8	9/	10	И	12	13	14	15	16	17
9	9	10	И	12	13	14	15	16	17	18

Binary Addition (1-digit):

We have only two digits

$$0 + 0 = 0$$

What do we do in base 10

Base 2

Half Adder

A	В	С	s	
0	0	0	0	
0	1	0	1	
1	0	0	1	
1	1	1	0	

Base 10

			•		_	_	_	_	_	
+	0	1	2	3	4	5	6	7	8	9
0	0	1	2	3	4	5	6	7	8	9
1	1	2	3	4	5	6	7	8	9	10
2	2	3	4	5	6	7	8	9	10	11
3	3	4	5	6	7	8	9	10	11	12
4	4	5	6	7	8	9	10	11	12	13
5	5	6	7	8	9	10	11	12	13	14
6	6	7	8	9	10	11	12	13	14	15
7	7	8	9	10	11	12	13	14	15	16
8	8	9	10	11	12	13	14	15	16	17
9	9	10	11	12	13	14	15	16	17	18

In Binary (before)

_ C ·	+ A	+ B	= C	, S
С	A	В	С	S
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0

С	+ A	+ B	= C	, S
С	A	В	С	S
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

In Binary (after)

		0	0 0	0
0 1 0		0	1 0	0
+ 0 0 1 1	+	1 (0 1	1
0 ? ? 0 1 0 0 1	0 ? ? 0	1	1 1	1
C V S Z	C V S Z			
1 1 1 0	1	1 1	0	0
1 1 0 1		1 0	1	1
+ 0 0 1 1	+	0 1	1	0
1 ? ? 1 0 0 0 0	1 1 ? 0	0 0	0	1
C V S Z	C V S Z			

Binary Addition: Practice

C	+ A	+ B	= C	, S
С	A	В	С	S
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0

Binary Subtraction (via Borrow)

- Traditional Method ⇒
 - Notice the extra squares
 - Notice the extra bookkeeping
 - 0 10 6 = 4

- Recall Method of Complements
 - o allows us to leverage binary addition
 - need a method to encode negative numbers

,	4	В	V
0	0	0	0
0	0	1	х
0	1	0	1
0	1	1	0
1	0	0	x
1	0	1	1
1	1	0	х
1	1	1	х

Binary Subtraction (via Borrow)

- Traditional Method ⇒
 - Notice the extra squares
 - Notice the extra bookkeeping
 - 0 10 6 = 4

- Recall Method of Complements
 - o allows us to leverage binary addition
 - need a method to encode negative numbers

A	A	В	V
0	0	0	0
0	0	1	х
0	1	0	1
0	1	1	0
1	0	0	х
1	0	1	1
1	1	0	х
1	1	1	х

Recall: Method of Complements

V	~V
0	1
1	0

- A technique to encode both positive and negative numbers
 - uses the same algorithm to perform addition
 - subtraction perform my addition of complements
- Complement: a thing that completes or brings to perfection
- Radix 10: (the radix or base is the number of unique digits to represent a number)
 - 10's complement

7 + x = 10

46 + y = 100

9's complement

7 + a = 9

46 + b = 99

: x is the 10s complements of 7

: y is the 10s complements of 46

: a is the 9s complements of 7

: b is the 9s complements of 46

x = 3

v = 54

a = 2

b = 53

The math:

2nd Grade
45
<u>- 11</u>
34

9's complement

Method of Complements

A technique to encode both positive and negative numbers

- MSB used to denote the sign bit (0 positive, 1 negative)
- Table assumes a 4-bit represent

Use 1's complement to represent negative numbers

- Divide the number range in half Encode a positive and a negative value for each number
- Pros/cons:
 - ease to compute
 - positive and negative representations of zero

1's Complement

1 0 00mpromork				
	Positive	Negative		
0	0000	1111	>-1	
1	0001	1110	1	
2	0010	1101	-1	
3	0011	1100		
4	0100	1011		
5	0101	1010		
6	0110	1001		
7	0111	1000		
8				

Method of Complements

A technique to encode both positive and negative numbers

- MSB used to denote the sign bit (0 positive, 1 negative)
- Table assumes a 4-bit represent

Use 1's complement to represent negative numbers

- Divide the number range in half
- Encode a positive and a negative value for each number
- Pros/cons:
 - ease to compute
 - positive and negative representations of zero

Use 2's complete to represent negative numbers

- Hold Zero as special
- Fold the resulting range to assign values
- Pros/cons:

 - Not symmetric: extra negative number

 Need to flip all bits and add one to form the negative number_
 - Consider then the predecessor of -8: -8, -7, -6, ... 0, 1, ... 7

	Positive	Negative	
0		0000	
1	0001	1110 + 1 = 1111	
2	0010	1101 + 1 = 1110	
3	0011	1100 + 1 = 1101	
4	0100	1011 + 1 = 1100	
5	0101	1010 + 1 = 1011	
6	0110	1001 + 1 = 1010	
7	0111	1000 + 1 = 1001	
8	V	1000	

Comparison of 1's and 2's Complement Encodings

1's Complement

	Positive	Negative
0	0000	1111
1	0001	1110
2	0010	1101
3	0011	1100
4	0100	1011
5	0101	1010
6	0110	1001
7	0111	1000

2's Complement

	Positive	Negative
0	0000	
1	0001	1110 + 1 = 1111
2	0010	1101 + 1 = 1110
3	0011	1100 + 1 = 1101
4	0100	1 011 + 1 = 1100
5	0101	1010 + 1 = 1011
6	0110	1001 + 1 = 1010
7	0111	1000 + 1 = 1001
8		1000

Status Flags Explained!

Example: $13 - 9 \Rightarrow 01101 + 10111$

* 9: 01001 -- -9: 10110 + 1 = 10111

- C: Carry Flag
 - the last step resulted in a carry value of 1
- V: Overflow Flag
 - the next to the last step resulted in a carry value of 1
- S: Sign Flag
 - o the MSB in the result is set (i.e., a 1)
- Z: Zero Flag
 - o all bits in the result are cleared (i.e., 0)

Algorithm: Subtraction via 1's Complements

Example: $13 - 9 \Rightarrow 0013 + -0009$

- 1. Convert 13 and 9 into binary (01101 & 01001)
- 2. Take the **1's complement** of the subtrahend (9)
 - \circ 01001 \rightarrow 10110
- 3. Add the complement to the minuend
- 4. Drop the leading "1"
- 5. Add 1
- Optimization: introduce initial carry in

Algorithm: Subtraction via 2's Complement

Example: $13 - 9 \Rightarrow 00013 + -0009$

- 1. Encode 13 and 9 into binary (01101 & 01001)
- 2. Take the 2's complement of the subtrahend (9)
 - \circ 01001 \rightarrow 10110 + 1 = 10111
- 3. Add the complement to the minuend
- 4. Drop the leading "1", i.e., the carry bit.

Providing the answer:

Optimization: Addition of adding one is baked in!

Algorithm: Subtraction via 2's Complement

Example: $13 - 9 \Rightarrow 0013 + -0009$

- 1. Encode 13 and 9 into binary (01101 & 01001)
- 2. Take the 2's complement of the subtrahend (9)
 - o 01001 -> 10110 + 1 = 10111
- 3. Add the complement to the minuend
- 4. Drop the leading "1", i.e., the carry bit.

Providing the answer: 4

Optimization: Addition of adding one is baked in!

1 1 1 0 C V S Z

- 1. transform the operation to addition
- 2. convert abs(X) to binary
- 3. encode both numbers in 2's complement
- 4. perform binary addition
- 5. convert result to decimal
 - o if negative result: compute 2's complement first

$$\bullet$$
 8 + 9 = 17

$$-5 + 2 = -3$$

$$\bullet$$
 -16 - 3 = -19

$$\bullet$$
 -25 - 4 = -29 => (-25) + (-4)

Steps:

- 1. transform the operation to addition
- 2. convert abs(X) to binary
- 3. encode both numbers in 2's complement
- 4. perform binary addition
- 5. convert result to decimal
 - o if negative result: compute 2's complement first

$$>$$
 8 + 9 = 17

- \bullet 7 4 = 3
- \bullet -5 + 2 = -3
- \bullet -16 3 = -19

3.

- 1. transform the operation to addition
- 2. convert abs(X) to binary
- 3. encode both numbers in 2's complement
- 4. perform binary addition
- 5. convert result to decimal
 - if negative result: compute 2's complement first

$$7 - 4 = 3$$

$$\bullet$$
 -5 + 2 = -3

$$\bullet$$
 -16 - 3 = -19

3.
$$-4$$
: $111011+1 \Rightarrow 111100$

- 1. transform the operation to addition
- 2. convert abs(X) to binary
- 3. encode both numbers in 2's complement
- 4. perform binary addition
- 5. convert result to decimal
 - if negative result: compute 2's complement first

$$\bullet$$
 8 + 9 = 17

$$\bullet$$
 7 - 4 = 3

$$>$$
 -5 + 2 = -3

$$\bullet$$
 -16 - 3 = -19

3.
$$-5$$
: 111010+1 \Rightarrow 111011

5.
$$000010+1 \Rightarrow 000011 = -3$$

0

- 1. transform the operation to addition
- 2. convert abs(X) to binary
- 3. encode both numbers in 2's complement
- 4. perform binary addition
- 5. convert result to decimal
 - if negative result: compute 2's complement first

$$>$$
 -16 - 3 = -19

5.
$$010010+1 \Rightarrow 010011 = -19$$

Recal: Algorithm: Multiplication

- Problem: 109 x 13 = 1417
- Approach: Successive Additions
 - o Consider: 9 + 9 + 9 .. + 9 (13 times) = ?
 - What is carry value for the 10's column?

Approach: Long Multiplication

Requires (at worst) 10^N additions

Algorithm for Multiplication

```
sum = 0;
for (d = 0; d < 4; d ++) {
    sum += A * B[d];
   A = A * 10; // Shift to the left
// B[0] = 9
// B[1] = 0
// B[2] = 1
```

rofrom or

```
reframe:

013 (A)

* 109 (B)

-----

117 (A*1) *9

+ 000 (A*10) *0

-----

117

01300 (A*100)*1

-----

1417
```

original:

```
013 (A)

* 109 (B)

-----

117 (A*9)*1

+ 000 (A*0)*10

-----

117

01300 (A*1)*100

-----

1417
```

Algorithm for Binary Multiplication

```
sum = 0;
for (d = 0; d < 4; d ++) {
    if (B[d] == 1) {
        sum += A * B[d];
    }
    A = A * 2; // Shift to the left
    A << 1;
}</pre>
```

reframe:

```
010 (A = 2)

* 101 (B = 5)

-----

010 (A*1) *1

+ 0000 (A*2) *0

----

0010

01000 (A*4) *1

-----

01010 (A*B = 10)
```

original:

```
010 (A = 2)

* 101 (B = 5)

-----

010 (A*1)*1

+ 0000 (A*0)*2

-----

0010

01000 (A*1)*4

-----

01010 (A*B = 10)
```

Requires word_size additions