

#### Universidade Federal da Bahia SISTEMA INTEGRADO DE GESTÃO DE ATIVIDADES **ACADÊMICAS**



EMITIDO EM 23/10/2025 14:59

Componente Curricular: ENGC36 - DISPOSITIVOS DE CONVERSÃO ELETROMECÂNICA I

Carga Horária: 60 horas

Unidade Responsável: DEPARTAMENTO DE ENGENHARIA ELÉTRICA E DE COMPUTAÇÃO/POLI

Tipo do Componente: DISCIPLINA

Sistemas e circuitos eletromagnéticos: indução de tensão, força eletromagnética, circuito equivalente magnético, energia armazenada no campo, indutância, histerese e perdas térmicas, excitação senoidal. Conversão eletromecância da energia: força e torque eletromagnético, tensões induzidas, sistemas eletromagnéticos lineares, máquinas rotacionais de pólos lisos e máquinas rotacionais cilíndricas. Transformadores: transformadores ideal e real, circuito

**Ementa:** equivalente, regulação de voltagem e rendimento, autotransformador, transformadores trifásicos, harmônicos em transformadores trifásicos, sistema por unidade. Máquinas de corrente contínua: aspectos construtivos, equacionamento matemático em regime permanente, curva de magnetização, geradores com excitação em separado e auto-excitado, motores shunt e em série, partida. Máquinas síncronas: aspectos construtivos, geradores e motores, circuito equivalente, características de torque e de potência, curva de capacidade, controle de fator de potência.

Modalidade: Presencial

### **Dados do Programa**

Ano-Período: 2025.2

#### **Objetivos:**

**OBJETIVO GERAL** 

Dominar e aplicar os conceitos e fundamentos da conversão eletromecânica de energia.

## **OBJETIVOS ESPECÍFICOS**

Fazer com que os estudantes tenham conhecimento dos princípios básicos de conversão eletromecânica da energia. Desenvolver o conceito de circuito magnético. Apresentar o indutor e o seu circuito equivalente como o elemento básico para construção e análise de dispositivos eletromagnéticos para a conversão de energia. Apresentar o transformador ideal e real. Apresentar os transformadores trifásicos. Apresentar os aspectos relacionados à dissipação térmica. Fazer aplicações de circuitos. Apresentar as máquinas de corrente contínua e de corrente alternada do tipo síncrona.

# Conteúdo:

1. Sistemas e circuitos eletromagnéticos Indução de tensão. Força eletromagnética. Circuito equivalente magnético. Energia armazenada no campo. Indutância, histerese e perdas térmicas. Excitação senoidal.

2. Transformadores

Transformador monofásico ideal e real.

Sistema Por Unidade.

Circuito equivalente do transformador.

Regulação de tensão e rendimento do transformador.

Auto-transformador.

Transformadores trifásicos.

Sistema Por Unidade para transformadores trifásicos.

Operação em paralelo de transformadores.

Harmônicos em transformadores trifásicos.

Ensaios em vazio e em curto-circuito do transformador.

Determinação dos parâmetros do circuito equivalente do transformador.

Transformador trifásico de 03 enrolamentos.

3. Conversão eletromecânica da energia

Força e torque eletromagnético.

Tensões induzidas.

Sistemas eletromagnéticos lineares.

Máquinas rotacionais de polos lisos. Máquinas rotacionais de polos salientes.

## 4. Máquinas síncronas trifásica

Aspectos construtivos.

Geradores e motores síncronos.

Circuito equivalente.

Características de torque e de potência.

Máquinas síncronas de polos lisos.

Máquinas síncronas de polos salientes. Teoria das reatâncias de eixo D e Q.

Operação em paralelo de geradores síncronos.

Curva de capacidade.

Controle de fator de potência com motores síncronos.

#### 5. Máquinas de Corrente Contínua

Aspectos construtivos.

Equacionamento matemático em regime permanente.

Curva de magnetização.

Geradores CC com excitação em separado e auto-excitado.

Motores CC ligação shunt, série e composta.

Partida de motores CC.

| Tipo de material | Descrição                                             |  |
|------------------|-------------------------------------------------------|--|
| Artigo           | Fundamentos de máquinas elétricas                     |  |
| Artigo           | Principles of Electric Machines and Power Electronics |  |
| Artigo           | Máquinas elétricas de Fitzgerald e Kingsley           |  |

| SIGAA   STI/SUPAC   Copyright © 2006-2025 - UF | 3A |
|------------------------------------------------|----|