Learning to map between ferns with differentiable binary embedding networks

Maximilian Blendowski & Mattias P. Heinrich

Institute of Medical Informatics

University of Lübeck

Short paper @ MIDL 2020

Random Fern Basics

Ozuysal, Mustafa, et al. "Fast keypoint recognition using random ferns." *IEEE transactions on pattern analysis and machine intelligence* 32.3 (2009): 448-461.

Dim	0	1	2	3	4	5
feature f	+4	-2	+10	-6	+8	+1

depth $m = 2$	Dimension $\left(d_1^{Fern_k},, d_m^{Fern_k}\right)$	Threshold $\left(t_1^{Fern_k},,t_m^{Fern_k}\right)$	binary code $\mathit{Fern}_k(\pmb{f})$	
$Fern_1$	(1,2)	(-3,1)	-2 < -3?, $+10 < 1$?	00
$Fern_2$	(5,0)	(2,0)	+1 < +2 ?, +4 < 0?	10
$Fern_3$	(4,3)	(3, -1)	+8 < +3?, -6 < -3?	01

$$P(f|A) = 0.5 * 0.25 * 0.5 = 0.0625$$

 $P(f|B) = 0.25 * 0.4 * 0.125 = 0.0125$

$$P(f|A) > P(f|B) \rightarrow classify f \text{ as } A$$

Standard convolution

Drop-in replacement

Evaluation

Input Patches	Architecture	# Params	Energy consumption	Accuracy
[3]	$XNOR net^{[2]}$	$\approx 80 \mathrm{k}$	$2.45~\mu J$	82.66%
	Vanilla net	$\approx 80 \mathrm{k}$	$65.5~\mu J$	84.23 %
	Fern net (ours)	$pprox 40 \mathrm{k}$	1.01 μJ	83.97%

^[1] Hubara, Itay, et al. "Binarized neural networks." *Advances in neural information processing systems*. 2016.

^[2] Rastegari, Mohammad, et al. "Xnor-net: Imagenet classification using binary convolutional neural networks." *European conference on computer vision*. Springer, Cham, 2016.

^[3]Veta, Mitko, et al. "Predicting breast tumor proliferation from whole-slide images: the TUPAC16 challenge." *Medical image analysis* 54 (2019): 111-121.