Характер группоида

А. А. Владимиров

16.06.2022

Задача

Дан функтор $\varkappa = (\varkappa_1, \varkappa_2) : \mathbf{Cat}(\Gamma) \to \mathbf{Vec}$. Найти $\varkappa_2 : (f : \Gamma_1 \to \Gamma_2) \mapsto (A_f : \varkappa_1(\Gamma_1) \to \varkappa_1(\Gamma_2))$, если известно, что $\varkappa_1 : \Gamma \mapsto V$, где V – пространство характеров, т.е. $V = \{\chi : \operatorname{Hom}\Gamma \to \mathbb{C} : \chi(\psi \circ \varphi) = \chi(\psi) + \chi(\varphi)\}$.

Таким образом задача сводится к нахождению линейного оператора A_f на коммутативной диаграмме

Рис. 1: постановка задачи

Решение

Содержание

0.1	Струг	ктура группоида	2
0.2	Прост	ранство характеров	6
	i.	Группоид	6
	ii.	Простой группоид	6
	iii.	Группа	7
	iv.	Абелева группа	3
	v.	Итог	9
0.3	Преобразование характеров		0
	i.	Что дальше?	0

0.1 Структура группоида

Перед тем, как ислледовать характеры, обсудим сперва саму структуру группоида $^{1}. \,$

Определение 1. [1] *Группоидом* назывется категория, любая стрелка которой обратима.

Рис. 2: группоид

Попытаемся найти в группоиде "что-то вроде базиса". В некотором группоиде Γ выберем произвольную вершину a и рассмотрим её группу петель G и веер стрелок (e,f,g,\ldots) .

Определение 2. Веером стрелок вершины a группоида Γ назовем множество стрелок $V = \{e = \mathrm{id}_a : a \to a, f : a \to b, g : a \to b, \ldots\}$, исходящих из вершины a по одной в каждую из вершин группоида, причем $e : a \to a$ есть тождественная стрелка.

Рис. 3: веер

Возникает вопрос: как соотносятся с выделенным "базисом" остальные стрелки группоида? Ответ на него дает следующая простая лемма.

¹здесь и далее под группоидами подразумеваются связные группоиды

Пемма 1. Для любой стрелки $v:b\to c$ группоида Γ существуют, и притом единственные $f,g\in V$ и $h\in G$, такие что

$$v = ghf^{-1}. (1)$$

Доказательство. Действительно, поскольку $v:b\to c$, и $h:a\to a$, стрелки g и f обязаны действовать из a в c, и из a в b соответственно, а таковые имеются в V в единственном экземпляре.

Раз теперь известны v, g и f, существование и единственность стрелки $h \in G$ следует напрямую алгебраически из выражения (1), а именно $h = g^{-1}vf$.

Иными словами, мы построили биекцию

$$\iota: Arr(\Gamma) \to V \times G \times V$$
 (2)

— между стрелками и множеством троек вида ghf^{-1} .

Располагая таким построением, мы опустим кавычки говоря о (G, V) как о базисе группоида Γ , а под разложением по этому базису стрелки или множества стрелок с математической точки зрения будем подразумевать образ соответствующего множества при отображении ι .

Перебирая и фиксируя различные пары (g, f) можно получить разложение группоида по базису (G, V), о чем и говорит

Следствие 1. (о представлении hom-множеств)

- a. $hom(b, c) = gGf^{-1}$
- b. $hom(a, b) = fGe^{-1} = fG$,
- c. $hom(b, a) = eGf^{-1} = Gf^{-1}$,
- d. $hom(b, b) = fGf^{-1}, ^{2}$
- e. $hom(a, a) = eGe^{-1} = G$,

где $f: a \to b, g: a \to c, G = \text{hom}(a, a)$.

Полезно также отедельно выделить частный случай.

Определение 3. *Простым группоидом* назовем группоид, фундаментальная группа которого тривиальна.

Для которого, ввиду $G = \{ id_a \}$ следствие 1 принимает вид:

Следствие 2. В простом группоиде любая стрелка $v:b\to c$, раскладывается в базисе V как

$$v = qf^{-1},$$

где $f: a \to b, g: a \to c$.

Рис. 4: фактор-группоид

Вернемся к группоиду Γ и перерисуем диаграмму 2 с учетом следствия 1 (рис. 4). Диаграмма 4 напоминает некую "факторизацию", и действительно, если под стрелками на диаграмме понимать не hom-множества, а просто стрелки, то мы получим диаграмму фактор-группоида Γ/Φ_{Γ}^{3} по фундаментальной группе Φ_{Γ} , где названия стрелок соответствуют прообразам факторизации. Мы не будем здесь строго вводить понятие фактор-группоида, ибо в нашем случае он предствляет из себя всегонавсего простой группоид с тем же набором объектов что и исходный.

При виде диаграммы 4 кажется само собой разумееющимся

Утверждение 1 (о разложении группоида).

$$\Gamma \simeq \Gamma/\Phi_{\Gamma} \times \Phi_{\Gamma}. \tag{3}$$

Перед доказательством утверждения 1 напомним тот факт, что группа является категорией — частным случаем группоида с одним объектом, и

Определение 4. [1] *Произведением* двух данных категорий B и C, называется категория $B \times C$, объекты которой — пары (b,c) объектов b из B и c из C; стрелки $(b,c) \to (b',c')$ — пары (f,g) стрелок $f:b\to b'$ и $g:c\to c'$, а композиция двух таких стрелок

$$(b,c) \xrightarrow{(f,g)} (b',c') \xrightarrow{(f',g')} (b'',c'')$$

определяется в терминах композиции в категориях B и C по формуле

$$(f',g')\circ (f,g)=(f'\circ f,g'\circ g).$$

 $^{^2}$ Это классическое утверждение об изоморфности всех групп петель в группоиде (которое и позволяет ввести такой объект как фундаментальная группа)

³Пользуясь стандартным определением факторизации категории[1], естественным образом, подобно тому как это делается в обыкновенных группах, можно ввести факторизацию группоида по любой нормальной подгруппе фундаментальной группы, в том числе и по ней самой.

Доказательство. Построим явно изоморфизм — функтор $i:\Gamma \to \Gamma/\Phi_\Gamma \times \Phi_\Gamma.$

Для этого выделим некоторый базис (G = hom(a, a), V - веер a) группоида Γ , и для удобства отождествим Φ_{Γ} с G, а веер вершины a в Γ/Φ_{Γ} с V.

Тогда i зададим следующим образом:

на объектах: $i: d \mapsto (d, \theta)$;

на стрелках: $i: v \mapsto (gf^{-1}, h)$, где $(g, h, f^{-1}) = \iota(v)$.

Биективность и функторность i очевидна вследствие определения биекции ι , леммы 1 и ее следствий. Впрочем, в этом также можно наглядно убедится взглянув на схему, изображенную на рис. 5.

Рис. 5: изоморфизм

Теперь мы готовы перейти к обсуждению характера.

0.2 Пространство характеров

Через $X(\Gamma)$ будем обозначать векторное пространство характеров, заданных на некотором группоиде Γ .

і. Группоид

Нам потребуется следующая очевидная

Лемма 2. Для любых двух группоидов Γ_1 и Γ_2 справедливо

$$X(\Gamma_1 \times \Gamma_2) \simeq X(\Gamma_1) \oplus X(\Gamma_2).$$

Доказательство. В самом деле, для любого $\chi:\Gamma_1\times\Gamma_2\to\mathbb{C},$ существуют единственные $\chi_1:\Gamma_1\to\mathbb{C},$ $\chi_2:\Gamma_2\to\mathbb{C}$ такие, что диаграмма (рис. 6) коммутативна.

Рис. 6

Доказанная лемма вместе с утверждением 1 дают важное

Утверждение 2 (о разложении характера группоида).

$$X(\Gamma) \simeq X(\Gamma/\Phi_{\Gamma}) \oplus X(\Phi_{\Gamma}).$$

Которое позволяет нам вместо рассмотрения характера на группоиде целиком, отдельно изучить случаи простого группоида (Γ/Φ_{Γ}) и группы (Φ_{Γ}).

Первый из них достаточно тривиален.

іі. Простой группоид

Напомним некоторые свойства характера:

a.
$$\chi(fg) = \chi(f) + \chi(g)$$

b.
$$\chi(f^{-1}) = -\chi(f)$$

c.
$$\chi(id) = 0$$

Как было показано (следствие 2) все стрелки простого группоида можно однозначно разложить $v=gf^{-1}$ по некоторому вееру V, а из свойств а.-с.: $\chi(v)=\chi(g)-\chi(f)$.

Отсюда ясно, что характер простого группоида однозначно определен $n-1^4$ числом — его значениями на стрелках некоторого веера. Иначе говоря справедливо

Утверждение 3. Для простого группоида Г

$$X(\Gamma) \simeq \mathbb{C}^{n-1}$$
,

 $ho de \ n \ - \ uucлo \ oбъектов \ \Gamma.$

Разобравшись с первой состовляющей характера группоида (характером простого группоида), перейдем ко второй — характеру группы.

ііі. Группа

Рассмотрим некоторую группу G, ее фактор-группу G/G' по коммутанту G' и следующую диаграмму

Рис. 7

Здесь $\tau: g \mapsto gG'$ — канонический гомоморфизм; χ, χ_{ab} — характеры групп G и G/G' соответственно.

Оказывается, что

Лемма 3. Для любых $f,g\in G$, таких что $f=g\mod G'$

$$\chi(f) = \chi(g).$$

Доказательство. Действительно, в условиях леммы существует $h \in G'$, такой что f = gh, но по определению коммутанта существуют такие a и b, что $h = aba^{-1}b^{-1}$, откуда $f = gaba^{-1}b^{-1}$, и

$$\chi(f) = \chi(gaba^{-1}b^{-1}) = \chi(g) + \chi(a) + \chi(b) - \chi(a) - \chi(b) = \chi(g).$$

⁴значение на тождественной стрелке автоматически задано нулем

Иными словами доказано, что факторизация группы по коммутанту G' разбивает ее на области постоянства характера (рис. 8). А значит вместо рассмотрения характера χ на всей группе, достаточно пронаблюдать лишь за его «действием с точностью до G'», т.е. за некоторым характером χ_{ab} на G/G'.

Рис. 8

Так, введем, очевидно инъективный, гомоморфизм $t: X(G/G') \to X(G)$ пространств характеров:

$$t: \chi_{ab} \mapsto \chi_{ab} \circ \tau = \chi. \tag{4}$$

Его сюръективность вытекает напрямую из леммы 3, ибо для любого $\chi:G\to\mathbb{C}$ корректно задан χ_{ab} :

$$\chi_{ab}(gG') = \chi(g),$$

который удовлетворяет

$$\chi_{ab} \circ \tau = \chi.$$

Тем самым доказано

Утверждение 4.

$$X(G) \simeq X(G/G'),$$

Позволяющее задавать характер не на самой группе, а на ее абелизации, что и приводит нас к следующему параграфу.

iv. Абелева группа

Итак, пусть некоторая группа A — абелева. Известно, что для конечнопорожденных абелевых групп справедливо разложение ([2] гл.9 §1)

$$A = |A| \oplus \operatorname{Tor} A,\tag{5}$$

где $\lfloor A \rfloor \simeq \mathbb{Z}^n - c$ вободная подгруппа, $\operatorname{Tor} A - \operatorname{nod}$ группа кручения, т.е.

$$\operatorname{Tor} A \doteqdot \{a \in A : ma = 0 \text{ для некоторого } m \in \mathbb{Z}, m \neq 0\}. \tag{6}$$

Из разложения (5) и леммы 2 следует, что

$$X(A) \simeq X(|A|) \oplus X(\operatorname{Tor} A).$$
 (7)

Но из определения группы кручения (6) и свойств характера вытекает, что $X(\operatorname{Tor} A)$ тривиальна. Таким образом получим

Утверждение 5. Для конечно-порожденной абелевой группы

$$X(A) \simeq X(\lfloor A \rfloor) \simeq \mathbb{C}^m$$
,

 $r\partial e \ m = \dim |A|.$

v. Итог

Объединаяя результаты предыдущих параграфов получаем

Теорема 1. (о характере группои ∂a)

$$X(\Gamma) \simeq X(\Gamma/\Phi_{\Gamma}) \oplus X(|\Phi_{\Gamma}/\Phi'_{\Gamma}|) \simeq \mathbb{C}^{(n-1)+m},$$

εθε $n = |\operatorname{Obj} \Gamma|, m = \dim [\Phi_{\Gamma}/\Phi'_{\Gamma}].$

0.3 Преобразование характеров

і. Что дальше?

Список литературы

- [1] Маклейн С. «Категории для работающего математика». Изд-во ФизМатЛит, Москва, 2004.
- [2] Винберг Э. Б. «Курс алгебры». Изд-во МЦНМО, Москва, 2014.