03.13 스터디

CNN을 이용한 자율주행차 조향 제어

Steering Control of an Autonomous Vehicle Using CNN

- 황광복·박진현, 2020
- KCI등재
- https://scienceon.kisti.re.kr/srch/selectPORSrchArticle.do? cn=JAKO202005653790242&SITE=CLICK

요약

CNN을 활용하여 카메라 영상에서 소실점과 좌우 소실점 라인을 예측하고, 이를 기반으로 자율주행 조향 제어기를 설계함. 기존 소실점 기반 제어 방식은 차선이 없거나 가려진 경우 한계가 있지만, CNN 적용 시 차선 유무와 관계없이 도로 중심을 효과적으로 추종하며, 기존 방식보다 우수한 조향 성능을 보임.

* **조향 제어(Steering Control)**는 자동차, 로봇, 드론 등의 이동체가 주어진 경로를 따라가 기 위해 조향을 조절하는 과정

I. 서 론

- 자율주행차 개요
 - 자율주행차는 지도, GPS, 각종 센서를 이용해 자동으로 주행하며, 2020년부터 부분 자율주행(레벨 3) 기준이 도입됨.
 - 안전한 주행을 위해 주변 환경 인식, 주행 조건 판단, 차량 제어 단계가 필수적임.

		< 참고 > 자원	율주행 기술	단계(Lv.)	* 레벨3부8	더 자율주행차로
	Lv.0	Lv.1	Lv.2	Lv.3	Lv.4	Lv.5
레벨 구분	-			**	-	-
명 칭	無 자율주행 (No Automation)	운전자 지원 (Driver Assistance)	부분 자동화 (Partial Automation)	조건부 자동화 (Conditional Automation)	고도 자동화 (High Automation)	완전 자동화 (Full Automation)
운전주시	항시 필수	항시 필수	창시 필수 (조향텐들을 상시 잡고 있어야 함)	시스템 요청시 (조항편들 잡을 필요 X, 비상시에만 운전자가 운전)	작동구간 내 불필요 (비상시에도시스템이 대응)	전 구간 불필요
자동화 구간	-	특정구간	특정구간	특정구간 (예 : 고속도로, 자동차 전용도로 등)	특정구간	전 구간
예시	사각지대 경고	조향 또는 감가속 중 하나	조향 및 감가속 동시작동	고속도로 혼잡구간 주행지원시스템	지역(Local) 무인택시	운전자 없는 완전자율주행

- 기존 조향 제어 방식과 한계점
 - 시각 센서 기반의 자율주행은 가장 일반적인 기술이며, 캐니 필터(Canny Filter), 허프 변환(Hough Transform)을 이용한 차선 검출 방법이 보편적임.
 - 그러나 차선이 없거나 가려진 경우 소실점 검출이 어렵고, 많은 전처리 과정이 필요
 하여 실시간 적용이 어려움.

* 캐니 엣지 검출 (Canny Edge Detection)

이미지에서 가장자리를 감지하는 알고리즘

노이즈 제거 → 기울기 계산 → 엣지 검출의

가우시안 필터: 가우시안 함수를 기반으로 한 커널을 사용하여 이미지를 흐리게 만듦 대상 점의 값이 가장 크고, 대상 점에서 멀어질수록 값이 작아짐

$$G(x,y)=rac{1}{2\pi\sigma^2}e^{-rac{x^2+y^2}{2\sigma^2}}$$

0.003	0.013	0.022	0.013	0.003
0.013	0.060	0.098	0.060	0.013
0.022	0.098	0.162	0.098	0.022
0.013	0.060	0.098	0.060	0.013
0.003	0.013	0.022	0.013	0.003

5x5, σ =1

소벨 필터: 이미지의 기울기를 계산하여 엣지를 감지

$$G_x = egin{bmatrix} -1 & 0 & 1 \ -2 & 0 & 2 \ -1 & 0 & 1 \end{bmatrix}$$

$$G_y = egin{bmatrix} -1 & -2 & -1 \ 0 & 0 & 0 \ 1 & 2 & 1 \end{bmatrix}$$

* 허프 변환

: 이미지에서 직선 또는 원과 같은 특정 형태를 검출하는 알고리즘

- 1. 검출된 엣지 픽셀을 허프 공간에 매핑 하여 직선 후보 생성
- 극좌표계 변환 ρ=xcosθ+ysinθ
- 2. 각 엣지 픽셀이 여러 개의 (ρ, θ) 값에 기여하며, 누적 행렬에 투표
- 3. 허프 공간에서 가장 많은 투표를 받은 (ρ, θ) 를 직선으로 판단.
- CNN(합성곱 신경망)의 활용 가능성

- CNN은 영상 인식 분야에서 강력한 성능을 보이지만, 자율주행 조향 제어(회귀 문제)에는 적용 연구가 부족한 상황.
- CNN을 이용하면 차선이 불명확한 경우에도 특징을 학습하여 조향 제어 성능을 개선할 수 있음.

• 논문의 연구 내용

- CNN을 활용해 도로의 소실점과 좌우 소실점 라인을 예측하고 이를 기반으로 조향 제어기를 설계.
- Unity3D 시뮬레이션을 통해 기존 소실점 기반 조향 제어 방식과 CNN 기반 방법을 비교.
- 실험 결과, CNN 기반 방법이 차선 유무와 관계없이 도로 중심을 정확히 추종하며
 기존 방법보다 우수한 성능을 보임.

II. 소실점 검출 및 자율주행 제어

소실점 검출

- 소실점은 기하학적 모델링을 통해 도로의 평행한 차선들이 한 점으로 수렴하는 지점으로 정의됨.
- 차량 내부 카메라의 자세가 고정되어 있다고 가정하면, **차선의 소실점은 항상 수평면 위 에 존재**함.

• 기존 소실점 검출 방식:

。 ROI 설정 후 이미지 전처리와 허프 변환을 활용하여 차선을 검출.

• 문제점:

○ 조도, 장애물, 차선 소실 등 외부 환경 요인에 따라 소실점 검출이 어려움.

소실점 검출, 소실점 검출 실패 예시

Fig. 1 Vanishing point detection

소실점을 이용한 자율주행 제어

- 소실점을 이용한 차량 제어 방법
 - 소실점의 위치와 차선 중심을 **자율주행차의 중심과 일치하도록 조향각을 조정**.
 - o 차체 중심제어와 소실점 제어를 결합하여 조향각을 결정.
- 조향각 계산 방법
 - 그림 3과 같이 **좌우 차선을 검출한 후 소실점 좌표를 구함**.

Fig. 3 Steering control of an Autonomous Vehicle

○ 조향각은 소실점 기반 조향각과 차량 중심 기반 조향각을 각각 가중치를 두어 조합

$$\theta_s(t) = \alpha \,\theta_v(t) + \beta \,\theta_c(t), \begin{cases} \theta_v(t) = atan2(c,h) \\ \theta_c(t) = atan2(d,h) \end{cases} \tag{1}$$

* c는 차의 중심과 소실점까지의 x축 거리, d는 차의 중심과 도로 중심까지의 x축 거리

• PID 제어기 적용

○ 도로 중심과 차량 중심의 오차를 기반으로 PID 제어기(수식 2) 를 구성.

$$e_c(t) = v_{cx}(t) - r_{cx}(t)$$

。 최종 조향 제어각(θt(t))은 소실점 제어각과 PID 보정각의 합(수식 3)으로 결정됨.

$$\theta_e(t) = K_p e_c(t) + K_i \int_0^t e_c(\tau) d\tau + K_d \dot{e_c}(t)$$
 (2)

$$\theta_t(t) = \theta_s(t) + \theta_e(t) \tag{3}$$

*PID제어기: Proportional(비례), Integral(적분), Derivative(미분) 제어하고자 하는 대상의 출력값을 측정하여 이를 원하고자 하는 참조값 혹은 설정값과 비교하여 오차를 계산하고, 이 오차값을 이용하여 제어에 필요한 제어값을 계산하는 구조

III. 자율주행을 위한 CNN 제어기 설계

CNN 개요

- CNN은 다층구조의 신경망으로, 이미지 인식, 음성 처리 등 다양한 분야에서 활용됨.
- LeCun(1990년대) 이래 이미지 인식에서 강력한 성능을 보이며, 자율주행에도 적용 가능.
- CNN은 기본적으로 특징 추출(합성곱, 풀링) + 회귀 분석(FC) 의 구조로 이루어짐.
- 기존의 회귀 기반 제어 시스템과 다르게, CNN은 비선형 데이터를 처리하고 이미지 기반 조향 제어를 학습할 수 있음.

CNN 제어기 설계

- 기존 소실점 기반 조향 제어는 차선이 소실되면 문제가 발생하는 단순하고 직관적인 방식.
- 이를 보완하기 위해 CNN을 활용하여 차선이 없어도 도로 중심과 소실점을 예측하도록 설계.
- CNN은 입력 영상에서 소실점을 예측하고, 차량의 조향각을 결정하는 역할을 수행.
- 좌우 소실점 라인의 x좌표 값을 CNN이 직접 예측하고, 이를 바탕으로 차량의 조향 중심을 결정.
- 도로 중심을 측정하는 추가 센서 없이 카메라 영상만으로 차량의 조향을 제어할 수 있도록 설계.
- 최종적으로 PID 제어기와 결합하여 차량이 도로 중심을 정확히 추종하도록 개선.

Fig. 4 Control of an autonomous vehicle using CNN

CNN출력

• plx : 좌측 소실점 x좌표

• pvx : 도로 중심 소실점 x좌표

• prx : 우측 소실점 x좌표

출력된 좌표를 기반으로 차량의 조향각을 결정

CNN 구조

Type	Structure
Input	3×36×64 image
Conv	kernel:32×3×3 stride:1 pad:same ReLU
Pool	Average, kernel 2×2
Conv	kernel 48×3×3 stride:1 pad:same ReLU
Pool	Average, kernel 2×2
Conv	kernel 64×3×3 stride:1 pad:same ReLU
Pool	Average, kernel 2×2
Conv	kernel 64×3×3 stride:1 pad:same ReLU
Pool	Average, kernel 2×2
FC	48 neurons, Sigmoid
Dropout	20%
FC	16 neurons, Sigmoid
FC	3, Sigmoid

IV. 모의실험 환경 및 학습 데이터

학습 데이터 - 주행 경로

ROAD	Environment
Road 1	Only solid lane
Road 2	A Solid lane with big trees around it
Road 3	A Solid lane with small trees and grass around it
Road 4	A lane without solid lines with big trees around it

Unity를 활용한 가상 블랙박스 이미지(320×180픽셀)

V. 모의실험 및 결과

환경설정(Environment settings)

Car speed [km/s]		50			
Time step [sec]		0.045			
Max. steering angle [degree]		25			
PID Gains	K_{p}	0.03			
	K_{I}	0.001			
	K_d	0.005			
Test road	Test road 1	A Solid lane with big trees and grass around it			
	Test road 2	A lane with solid and dotted lines with small trees and grass around it			
	Test road 3	A lane without solid lines with big tree around it			

V. 모의실험 및 결과

테스트 결과1

Test Road 1 - 실선 차선이 있는 도로

- 소실점 기반 제어: 실선 차선이 있는 경우 소실점 검출이 가능했지만, 큰 나무가 있는 구간에서 차선 검출이 어려워 조향 성능 저하.
- CNN 기반 제어: 차선이 가려진 구간에서도 도로 중심을 잘 추종.
- 평균 오차:
 - 。 소실점 제어: 96,270.43 mm
 - o CNN 제어: 86,592.80 mm

테스트 결과2

Test Road 2 - 차선이 혼합된 도로 (실선+점선+가려진 차선 포함)

- 소실점 기반 제어:
 - 차선이 없거나 가려진 구간에서 **정확한 소실점 검출 실패**.
 - 특정 구간(57.855초~105.966초)에서 도로 중심을 추종하지 못함.
 - 。 일부 구간에서 차량이 차선을 이탈하고, 큰 변곡점에서 차량이 탈출하는 문제 발생.
- CNN 기반 제어:
 - 실선 차선이 없는 경우에도 **도로 중심을 잘 추종**하며 안정적인 성능 유지.
- 평균 중심 오차:
 - 。 CNN 제어: 123,954.74 mm

테스트 결과3

Test Road 3 - 실선 차선이 없는 도로

- 소실점 기반 제어:
 - 차량 출발 시 차선 검출이 어려워 도로 중심을 벗어나고 차량이 탈출.
 - 실선 차선이 없으면 변환 후에도 소실점과 도로 중심을 추정하지 못함.
- CNN 기반 제어:
 - 학습된 모델이 실선 차선이 없는 환경에서도 도로 중심을 잘 추종.
 - 영상 데이터를 통해 소실점과 좌우 소실점 라인의 특징을 잘 학습하여 효과적인 제어 가능.

• 평균 중심 오차:

。 CNN 제어: 96,673.13 mm

VI. 결 론

- 자율주행 시스템은 차량 주변 환경을 정확히 인식해야 하며, 이를 위해 ADAS 기능이 활용됨.
- 기존 소실점 기반 조향 방식은 가장 단순하고 편리하지만, 차선이 없거나 소실되면 검출 이 어려운 한계가 있음.

- 본 논문에서는 CNN을 활용하여 소실점 및 좌우 소실점 라인을 예측하고 이를 기반으로 조향 제어기를 설계.
- 실험 결과, CNN 기반 방식이 차선 유무와 관계없이 도로 중심을 효과적으로 추종할 수 있음을 확인.
- CNN을 적용한 조향 제어가 기존 소실점 기반 제어보다 뛰어난 성능을 보임.

