Lecture 21 - PIVOTING

OBJECTIVE:

Pure Gaussian elimination is unstable.

But this instability can be controlled by permuting the rows of $\bf A$ as we proceed; this process is called *pivoting*. Pivoting has been a standard feature of Gaussian elimination computations since the 1950s.

♦ PIVOTS

At step k of Gaussian elimination, multiples of row k are subtracted from rows $k+1,k+2,\ldots,m$ of the working matrix \mathbf{X} in order to zero out the elements below the diagonal.

In this operation, row k, column k, and especially x_{kk} play special roles.

We call x_{kk} the pivot.

From every entry in the submatrix $\mathbf{X}(k+1:m,k:m)$ we subtract the product of a number in row k and a number in column k, divided by x_{kk} .

But there is no inherent reason to eliminate against the k^{th} row.

 \rightarrow we could just as easily zero out other entries against row $i \ (k < i \leq m).$

In this case, x_{ik} would be the pivot.

e.g.,
$$k = 2, i = 4$$

Similarly, we could zero out the entries in column j instead of k $(k < j \le m)$.

e.g.,
$$k = 2$$
, $i = 4$, $j = 3$

Basically, we can choose any entry of $\mathbf{X}(k:m,k:m)$ as the pivot, as long as it is not zero.

This flexibility is good because $x_{kk} = 0$ is possible even in exact arithmetic!

In a floating-point number system, x_{kk} may be "numerically" zero.

For stability, we choose as pivot the element with the largest magnitude among the pivot candidates.

Pivoting in this crazy (but smart!) fashion can be confusing.

 \rightarrow It is easy to lose track of what has been zeroed and what still needs to be zeroed.

Instead of leaving x_{ij} in place after it is chosen as pivot (as illustrated above) we interchange rows and columns of the matrix so that x_{ij} takes the position of x_{kk} .

This interchange of rows and/or columns is what is commonly referred to as *pivoting*.

 \rightarrow we maintain the look of pure Gaussian elimination in this way.

Note 1. Elements may or may not actually be swapped in practice!

We may just keep a list of the positions of the swapped elements.

♦ PARTIAL PIVOTING

If we consider every element in $\mathbf{X}(k:m,k:m)$ as a possible pivot at step k, then we must examine $(m-k+1)^2$ elements to see which is largest.

:. total number of elements examined =

$$\sum_{k=1}^{m} (m-k+1)^2 = \mathcal{O}(m^3) \qquad \text{(verify!)}$$

→ this adds significantly to the overall cost of Gaussian elimination.

(This strategy is called *complete pivoting*)

In practice, pivots of essentially the same quality can be found by searching far fewer entries

→ this is know as partial pivoting

We only allow row interchanges

 \leftrightarrow we only search the elements in column k for the largest one.

So now we only search (m-k+1) elements for a total number =

$$\sum_{k=1}^{m} (m-k+1) = \mathcal{O}(m^2) \qquad \text{(verify!)}$$

→ this does not add significantly to the overall cost of

Gaussian elimination (why?).

The act of swapping rows can be viewed as left multiplication by a permutation matrix \mathbf{P} .

A permutation matrix is simply an identity matrix with its rows or columns permuted.

e.g.,

$$\mathbf{P} = \left[\begin{array}{rrr} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{array} \right]$$

The permutations required to get from ${\bf I}$ to ${\bf P}$ tell you what permutations ${\bf P}$ performs.

e.g., with the above ${f P}$

$$\mathbf{PA} = (\mathbf{A} \text{ with 2nd and 3rd rows permuted})$$

 $\mathbf{AP} = (\mathbf{A} \text{ with 2nd and 3rd columns permuted})$
 $(\textit{verify!})$

We also saw in the last lecture that the elimination at step k corresponds to left-multiplication by an elementary lower-triangular matrix \mathbf{L}_k .

So the k^{th} step of Gaussian elimination with partial pivoting can be summed up as

After m-1 steps, ${\bf A}$ is transformed into an upper-triangular matrix ${\bf U}$:

$$\mathbf{L}_{m-1}\mathbf{P}_{m-1}\dots\mathbf{L}_2\mathbf{P}_2\mathbf{L}_1\mathbf{P}_1\mathbf{A}=\mathbf{U}$$

Example: Recall our friend

$$\left[\begin{array}{ccccc}
2 & 1 & 1 & 0 \\
4 & 3 & 3 & 1 \\
8 & 7 & 9 & 5 \\
6 & 7 & 9 & 8
\end{array}\right]$$

To do Gaussian elimination with partial pivoting proceeds as follows:

Interchange the 1st and 3rd rows (left-multiplication by \mathbf{P}_1):

$$\begin{bmatrix} & & 1 & \\ & 1 & \\ & 1 & \\ & & & 1 \end{bmatrix} \begin{bmatrix} 2 & 1 & 1 & 0 \\ 4 & 3 & 3 & 1 \\ 8 & 7 & 9 & 5 \\ 6 & 7 & 9 & 8 \end{bmatrix} = \begin{bmatrix} 8 & 7 & 9 & 5 \\ 4 & 3 & 3 & 1 \\ 2 & 1 & 1 & 0 \\ 6 & 7 & 9 & 8 \end{bmatrix}$$

The first elimination step now looks like this (left-multiplication by L_1):

$$\begin{bmatrix} 1 & & & & \\ -\frac{1}{2} & 1 & & & \\ -\frac{1}{4} & & 1 & & \\ -\frac{3}{4} & & & 1 \end{bmatrix} \begin{bmatrix} 8 & 7 & 9 & 5 \\ 4 & 3 & 3 & 1 \\ 2 & 1 & 1 & 0 \\ 6 & 7 & 9 & 8 \end{bmatrix}$$

$$= \begin{bmatrix} 8 & 7 & 9 & 5 \\ -\frac{1}{2} & -\frac{3}{2} & -\frac{3}{2} \\ -\frac{3}{4} & -\frac{5}{4} & -\frac{5}{4} \\ \frac{7}{4} & \frac{9}{4} & \frac{17}{4} \end{bmatrix}$$

Now the 2nd and 4th rows are interchanged (multiplication by \mathbf{P}_2):

$$\begin{bmatrix} 1 & & & & \\ & & & 1 \\ & & & 1 \end{bmatrix} \begin{bmatrix} 8 & 7 & 9 & 5 \\ & -\frac{1}{2} & -\frac{3}{2} & -\frac{3}{2} \\ & -\frac{3}{4} & -\frac{5}{4} & -\frac{5}{4} \\ & \frac{7}{4} & \frac{9}{4} & \frac{17}{4} \end{bmatrix}$$

$$= \begin{bmatrix} 8 & 7 & 9 & 5 \\ & \frac{7}{4} & \frac{9}{4} & \frac{17}{4} \\ & \frac{3}{4} & -\frac{5}{4} & -\frac{5}{4} \\ & -\frac{1}{2} & -\frac{3}{2} & -\frac{3}{2} \end{bmatrix}$$

The second elimination step then looks like this (multiplication by L_2):

$$\begin{bmatrix} 1 & & & & \\ & 1 & & & \\ & \frac{3}{7} & 1 & \\ & \frac{2}{7} & & 1 \end{bmatrix} \begin{bmatrix} 8 & 7 & 9 & 5 \\ & \frac{7}{4} & \frac{9}{4} & \frac{17}{4} \\ & -\frac{3}{4} & -\frac{5}{4} & -\frac{5}{4} \\ & -\frac{1}{2} & -\frac{3}{2} & -\frac{3}{2} \end{bmatrix}$$

$$= \begin{bmatrix} 8 & 7 & 9 & 5 \\ & \frac{7}{4} & \frac{9}{4} & \frac{17}{4} \\ & & -\frac{2}{7} & \frac{4}{7} \\ & & -\frac{6}{7} & -\frac{2}{7} \end{bmatrix}$$

Now the 3rd and 4th rows are interchanged (multiplication by \mathbf{P}_3)

$$\begin{bmatrix} 1 & & & \\ & 1 & & \\ & & 1 \end{bmatrix} \begin{bmatrix} 8 & 7 & 9 & 5 \\ & \frac{7}{4} & \frac{9}{4} & \frac{17}{4} \\ & & -\frac{2}{7} & \frac{4}{7} \\ & & -\frac{6}{7} & -\frac{2}{7} \end{bmatrix}$$

$$= \begin{bmatrix} 8 & 7 & 9 & 5 \\ & \frac{7}{4} & \frac{9}{4} & \frac{17}{4} \\ & & -\frac{6}{7} & -\frac{2}{7} \\ & & & -\frac{2}{7} & \frac{4}{7} \end{bmatrix}$$

The final elimination step looks like this (multiplication by L_3):

$$\begin{bmatrix} 1 & & & \\ & 1 & & \\ & & 1 & \\ & & -\frac{1}{3} & 1 \end{bmatrix} \begin{bmatrix} 8 & 7 & 9 & 5 \\ & \frac{7}{4} & \frac{9}{4} & \frac{17}{4} \\ & & -\frac{6}{7} & -\frac{2}{7} \\ & & -\frac{2}{7} & \frac{4}{7} \end{bmatrix}$$

$$= \begin{bmatrix} 8 & 7 & 9 & 5 \\ & \frac{7}{4} & \frac{9}{4} & \frac{17}{4} \\ & & -\frac{6}{7} & -\frac{2}{7} \\ & & \frac{2}{3} \end{bmatrix}$$

\Diamond $\mathbf{PA} = \mathbf{LU}$ AND A THIRD STROKE OF LUCK

Notice that if you form ${\bf L}$ and then ${\bf L}{\bf U}$ from the previous example, you don't get ${\bf L}{\bf U}={\bf A}!$

But you will notice that you <u>almost</u> get A...you get a permuted version of A.

(This should be understandable since we have been messing around with pivots.)

In fact,

$$LU = PA$$

where

$$\begin{bmatrix} 1 \\ \frac{3}{4} & 1 \\ \frac{1}{2} & -\frac{3}{7} & 1 \\ \frac{1}{4} & -\frac{3}{7} & \frac{1}{3} & 1 \end{bmatrix} \begin{bmatrix} 8 & 7 & 9 & 5 \\ \frac{7}{4} & \frac{9}{4} & \frac{17}{4} \\ -\frac{6}{7} & -\frac{2}{7} \\ \frac{2}{3} \end{bmatrix}$$

$$= \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 2 & 1 & 1 & 0 \\ 4 & 3 & 3 & 1 \\ 8 & 7 & 9 & 5 \\ 6 & 7 & 9 & 8 \end{bmatrix}$$

Note 2. **IMPORTANT**

The entries of L all satisfy $|l_{ij}| \leq 1$.

This is a consequence of pivoting (\leftrightarrow eliminating against $|x_{kk}| = \max_{j} |x_{jk}|$).

But given the way the permutations were introduced, it is not obvious as to why all of them can be lumped into one big \mathbf{P} .

i.e.,

$$\mathbf{L}_{3}\mathbf{P}_{3}\mathbf{L}_{2}\mathbf{P}_{2}\mathbf{L}_{1}\mathbf{P}_{1}\mathbf{A} = \mathbf{U}$$

Here is where we use a third stroke of good luck:

These (elementary) operations can be reordered as follows:

$$\mathbf{L}_{3}\mathbf{P}_{3}\mathbf{L}_{2}\mathbf{P}_{2}\mathbf{L}_{1}\mathbf{P}_{1} = \mathbf{L}_{3}'\mathbf{L}_{2}'\mathbf{L}_{1}'\mathbf{P}_{3}\mathbf{P}_{2}\mathbf{P}_{1}$$

where $\mathbf{L}'_k = (\mathbf{L}_k \text{ with subdiagonal entries permuted})$.

To be precise,

$$\mathbf{L}_{3}' = \mathbf{L}_{3}$$
 $\mathbf{L}_{2}' = \mathbf{P}_{3}\mathbf{L}_{2}\mathbf{P}_{3}^{-1}$
 $\mathbf{L}_{1}' = \mathbf{P}_{3}\mathbf{P}_{2}\mathbf{L}_{1}\mathbf{P}_{2}^{-1}\mathbf{P}_{3}^{-1}$

Note 3. Each
$$\mathbf{P}_j$$
 has $j > k$ for \mathbf{L}_k $\to \mathbf{L}'_k$ has the same structure of \mathbf{L}_k (verify!)

Thus

$$\begin{array}{lcl} \mathbf{L}_{3}'\mathbf{L}_{2}'\mathbf{L}_{1}'\mathbf{P}_{3}\mathbf{P}_{2}\mathbf{P}_{1} & = & \mathbf{L}_{3}(\mathbf{P}_{3}\mathbf{L}_{2}\mathbf{P}_{3}^{-1})(\mathbf{P}_{3}\mathbf{P}_{2}\mathbf{L}_{1}\mathbf{P}_{2}^{-1}\mathbf{P}_{3}^{-1})\mathbf{P}_{3}\mathbf{P}_{2}\mathbf{P}_{1} \\ & = & \mathbf{L}_{3}\mathbf{P}_{3}\mathbf{L}_{2}\mathbf{P}_{2}\mathbf{L}_{1}\mathbf{P}_{1} \end{array}$$

In the general $m \times m$ case, Gaussian elimination with partial pivoting can be written as

$$(\mathbf{L}'_{m-1}\dots\mathbf{L}'_2\mathbf{L}'_1)(\mathbf{P}_{m-1}\dots\mathbf{P}_2\mathbf{P}_1)\mathbf{A} = \mathbf{U}$$

where

$$\mathbf{L}_k' = \mathbf{P}_{m-1} \dots \mathbf{P}_{k+1} \mathbf{L}_k \mathbf{P}_{k+1}^{-1} \dots \mathbf{P}_{m-1}^{-1}$$

Now we write

$$\mathbf{L} = (\mathbf{L}'_{m-1} \dots \mathbf{L}'_2 \mathbf{L}'_1)^{-1}$$

and

$$\mathbf{P} = (\mathbf{P}_{m-1} \dots \mathbf{P}_2 \mathbf{P}_1)$$

to get

$$PA = LU$$
.

Note 4. In general, any square matrix (whether non-singular or not) has a factorization $\mathbf{PA} = \mathbf{LU}$, where \mathbf{P} is a permutation matrix, \mathbf{L} is unit lower-triangular and whose elements satisfy $|l_{ij}| \leq 1$, and \mathbf{U} is upper-triangular.

Despite this being a bit of an abuse of notation, this factorization is really what is meant by the LU factorization of A.

The formula $\mathbf{PA} = \mathbf{LU}$ has another great interpretation:

If you could permute A ahead of time using matrix P, then you could apply Gaussian elimination to A and

you would not need pivoting!

Of course, this cannot be done in practice because \mathbf{P} is not known a priori.

ALGORITHM 21.1: GAUSSIAN ELIMINATION WITH PARTIAL PIVOTING

```
\begin{array}{l} \mathbf{U} = \mathbf{A} \\ \mathbf{L} = \mathbf{I} \\ \mathbf{P} = \mathbf{I} \\ \text{for } k = 1 \text{ to } m-1 \text{ do} \\ \text{ select } i \geq k \text{ to maximize } |u_{ik}| \\ u(k,k:m) \longleftrightarrow u(i,k:m) \\ l(k,1:k-1) \longleftrightarrow l(i,1:k-1) \\ p(k,:) \longleftrightarrow p(i,:) \\ \text{for } j=k+1 \text{ to } m \text{ do} \\ l(j,k) = u(j,k)/u(k,k) \\ u(j,k:m) = u(j,k:m) - l(j,k) * u(k,k:m) \\ \text{ end for} \\ \text{end for} \end{array}
```

To leading order, this has complexity $\sim \frac{2}{3}m^3$, just like pure Gaussian elimination.

In the above algorithm, storage could be saved by

overwriting L and U into A.

P is never stored as a full matrix, but rather as a vector of indices.

For the example in this lecture, $\mathbf{p} = (3, 4, 2, 1)$.

♦ COMPLETE PIVOTING

In theory, this is more stable than partial pivoting, but the improvements realized in practice are usually marginal.

Formally, the algorithm proceeds as follows

$$\mathbf{L}_{m-1}\mathbf{P}_{m-1}\dots\mathbf{L}_2\mathbf{P}_2\mathbf{L}_1\mathbf{P}_1\mathbf{A}\mathbf{Q}_1\mathbf{Q}_2\dots\mathbf{Q}_{m-1}=\mathbf{U}$$

where the matrices \mathbf{Q}_k (potentially) permute the columns.

Once again we write this as

$$(\mathbf{L}'_{m-1}\dots\mathbf{L}'_2\mathbf{L}'_1)(\mathbf{P}_{m-1}\dots\mathbf{P}_2\mathbf{P}_1)\mathbf{A}(\mathbf{Q}_1\mathbf{Q}_2\dots\mathbf{Q}_{m-1})=\mathbf{U}$$

leading to

$$PAQ = LU$$
.