Report14

胡琦浩 PB21000235

一、问题

以 $x_{n+1} = \lambda sin(\pi x_n)$ 为迭代方程进行迭代:

- (1)画出系统状态随参数\\ 的变化图,要求在图中体现出定值状态、倍周期分叉和混沌状态;
- (2)列出各个倍周期分叉处的 λ 值,求相应的 Feigenbaum 常数。

二、方法

3.1 系统状态随参数 λ 的变化图

主要采用迭代法计算:

图1: 算法流程图

如图所示,只要计算了 $0 < \lambda < 1$ 的情况,一共取了400个值,并定义了初始x = 0.5

3.2 求倍周期分叉处的 λ 值和 Feigenbaum 常数

求倍周期分叉处的 λ 值的算法流程:

- (1) 根据得到的倍周期图将 λ 分为[0.71, 0.73], [0.83, 0.84], [0.85, 0.87], 每隔 10^{-5} 取值(这些范围是倍周期转变点,由下面得到的图可以清晰看出)
- (2) 对应每个 λ 值迭代5000次,在最后500次得到的x值储存到values列表中(认为迭代多次后结果已经稳定)
- (3) 将这values列表经过如下操作:

```
1 | period = len(set(np.round(values, decimals=8)))
```

np.round(values, decimals=4) 是将values中的所有元素四舍五入到小数点后8位,set则是一个集合(其中的元素具有唯一性),故可以清晰地得到次 λ 值对应的周期数为多少

(4) 最后记录period从 $1 \rightarrow 2, 2 \rightarrow 4, 4 \rightarrow 8$ 等的 λ 值即可

求 α 的算法流程:

- (1) 根据画出的图将 λ 的范围定为[0.77,0.87],由于图中只能清晰看得到 $T\leq 8$ 时的图案,故不求 T=16及以后的值
- (2) 和上面算法类似,当set(np.round(values, decimals=8))集合内出现一个元素值于0.50的差值小于0.001,则将这个集合储存到字典 my_dict 中,且methappikey=methappik
- (3) 最后输出 my_dict ,然后根据图像的相对位置关系得出得出 d_m 即可

三、实验结果

3.1 系统状态随参数 λ 的变化图

图2: 定值状态、倍周期分叉和混沌状态

图中可以清晰的可以看出: $0 < \lambda < 0.318$ 时, x序列都收敛于0; $0.318 < \lambda < 0.717$ 时, 系统处于定值状态; $0.717 < \lambda < 1$ 时, 系统处于分别倍周期分叉和混沌状态。

图3: 放大后的倍周期和混沌状态

图中可以清晰得看到T=2,4,8的分叉点,而T=16并无法清晰看出

3.2 求倍周期分叉处的 λ 值和 Feigenbaum 常数

由:
$$\lambda_{\infty}-\lambda_{m}=A\delta^{-m}$$
, $(m>>1)$ 则 $\delta=rac{\lambda_{m}-\lambda_{m-1}}{\lambda_{m+1}-\lambda_{m}}$

表1: 横轴方向倍周期分岔中的标度行为

m	Т	λ_m	δ
1	1→2	0.71909	
2	2->4	0.83292	4.424
3	4→8	0.85865	4.721
4	8→16	0.86410	4.658
5	16→32	0.86527	4.680
6	32→64	0.86552	5.000
7	64→128	0.86557	

最后得到的 δ 值需要舍去,因为我的 λ 值精确到 10^{-5} ,而m=6,7时, λ 值差就在最后一位,故误差较大需舍去

而由图表可以看出与理论值 $\delta=0.669$ 的值相差不大,在其附近跳动

$$lpha = d_m/d_{m+1}$$

表2: 纵轴方向倍周期分岔中的标度行为

m	Т	d_m	α
1	2	0.27943	
2	4	0.10887	2.56664
3	8	0.04138	2.63098

可以看出结果较接近于理论值 $\alpha=2.50291$

四、总结

利用迭代法得到 $x_{n+1}=\lambda sin(\pi x_n)$ 得到系统状态随 λ 图,清晰地看出了定值态,倍周期分叉态和混沌态

最后还验证了Feigenbaum 常数是一个与迭代方程无关的普适常数