Рекурсивные языки и неразрешимость

Теория формальных языков $2022 \ z$.

Неэквивалентность представлений

Известно, что:

- детерминированные конечные автоматы
- недетерминированные конечные автоматы
- регулярные выражения

описывают один и тот же класс языков. Насколько отличаются способы записи этих языков с точки зрения сложности статического анализа?

Неэквивалентность представлений

Известно, что:

- детерминированные конечные автоматы
- недетерминированные конечные автоматы
- регулярные выражения

описывают один и тот же класс языков. Насколько отличаются способы записи этих языков с точки зрения сложности статического анализа?

- минимизация детерминированных конечных автоматов наивный алгоритм $O(n^2)$;
- минимизация недетерминированных конечных автоматов PSPACE-полная проблема;
- поиск минимальной звёздной высоты пока что лучший алгоритм в 2EXP-SPACE.

Модели рекурсивных машин

- Машины Тьюринга («автоматы»);
- Рекурсивные функции (µ-оператор);
- Алгорифмы Маркова (грамматики);
- λ-исчисление (HOF)...

Что в них общего и почему они порождают один и тот же класс языков?

λ-исчисление

- Две операции: абстракция по переменной и применение функции к аргументу.
- Бестиповая версия эквивалентна ТМ. Типизированные (ограниченные) версии в простейшем случае обладают свойством всюду завершаемости (т.е. можно по типу функции понять, что в любых сочетаниях с другими типизированными функциями она будет завершаться). В более сложных случаях — завершаемость с дополнительными условиями (по модулю более сложных упрощающих процедур, чем простое применение).

Формальный СТТ (Derschowitz et al, 2008)

Аксиомы эффективности

Пусть модель вычислений С удовлетворяет критериям:

- Последовательное время: задано начальное множество состояний + функция перехода.
- Абстрактность состояний: состояние описывается конечным термом.
- Конечность пространства перебора: на каждом шаге вычислений существует лишь конечное множество термов, которые видны функции перехода.
- Инициальность. Множество начальных состояний свободная алгебра, элементы которой можно записать с помощью конечной кодировки.

Тогда С вычисляет только функции, вычислимые по Тьюрингу.

Автоматизация работы с кодом

- Анализ программ (теорема Райса): если предикат не является тривиальным (т.е. выполняется хотя бы для одной МТ и не выполняется хотя бы для одной МТ), то он неразрешим для МТ.
- Генерация программ: дано описание f(x) в языке \mathcal{L} . Построить МТ, вычисляющую f(x). Насколько сильно эта задача зависит от \mathcal{L} ?

Формальная арифметика и монстры

В арифметике существуют доказуемые утверждения, которые невозможно доказать внутри неё самой.

Гидра Гудстейна

Рассмотрим q(N, k) — экспоненциальное представление числа N в алфавите $\{1, ..., k\}$. Пример: $q(11, 2) = 2^{(2+1)} + 2 + 1$. Рассмотрим G(N, m), где N записана в виде g(N, m + 1). Формально заменим все m + 1 на m + 2 в этом представлении, а затем вычтем из результата 1. Будем шаг за шагом применять к результату преобразование G, увеличивая т. Доказуемо, что $\forall N \exists m (G(G(...G(N, 2)...), m) = 0)$. Однако это нельзя доказать в стандартной арифметике Пеано.

А если взять индукцию посильнее?

Теоремы о неполноте

Любая непротиворечивая теория, в которой выразима натуральная арифметика со сложением и умножением (а также принципом математической индукции), содержит утверждения, которые нельзя ни доказать, ни опровергнуть. Прежде всего, утверждение о её непротиворечивости.

Недоказушка из мира диофантовых уравнений

Для всех m, е существует N такое, что для всех a, b есть c, d, A, X такие что для всех x, y есть B, C, F, f, g, h, i, j, k, l, n, s, p, q $(x(y+f-x)(A+m+f-y)((A+f-d)^2+(dg+g-c+A)^2+$

$$(k-c+C)^2 + (B+l+1-C)^2 + (C+n-N)^2 + (F+s-b(B+C^2))^2 + (bp(B+C^2)+p-a+F)^2 + ((F-X)^2-qe)^2) = 0$$
.

 $(B+h-dx)^2+(dxi+i-c+B)^2+(C+j-dy)^2+(dyk+i)^2$

Теорема о неполноте и Колмогоровская сложность

- Каков бы ни был язык \mathscr{L} , существует константа Mтакая, что для всех x утверждение $K_{\varphi}(x) > M$ неразрешимо.
- Идея доказательства: обозначим утверждение $K_{\mathscr{L}}(x) > C$ как $A_C(x)$. Если оно разрешимо, то напишем тупой алгоритм Р_С, перебирающий все программы длиной до С и проверяющий, возвращают ли они формальный вывод $A_{C}(x)$ для какого-нибудь x. В случае, если возвращают, он печатает х, иначе продолжает работу. Среди достаточно больших С' найдётся какой-нибудь C' такой, что длина $P_{C'}$ меньше C'. Но тогда, если $P_{C'}$ остановится на некотором x, получится, что K(x) < C'.

Три кита анализа программ

- Теорема о существовании универсальной функции (самоинтерпретация);
- S-m-n теорема;
- Вторая теорема Клини о рекурсии.

Неразрешимые задачи в анализе программ различаются для разных моделей вычислений.

S-m-п теорема Клини

Пусть e — обозначение (геделевского) 1 кода e, а [e] — функция, которую он вычисляет.

Теорема

Существует вычислимая функция S_n^m такая, что $\forall p, x_i, y_i(\llbracket p \rrbracket(x_1, \dots, x_m, y_1 \dots, y_n) = \llbracket \llbracket S_n^m \rrbracket(p, x_1, \dots, x_m) \rrbracket(y_1, \dots, y_n)).$

¹Вообще любого кода, допускающего интерпретацию универсальной

S-m-п теорема Клини

Пусть e — обозначение исходного кода e, а [e] — функция, которую он вычисляет.

Теорема

Существует вычислимая функция S_n^m (специализатор, частичный вычислитель) такая, что

$$\forall p, x_i, y_i([p](x_1, ..., x_m, y_1 ..., y_n) = [[S_n^m](p, x_1, ..., x_m)](y_1, ..., y_n).$$

- Доказательство Рефал-стиль! Захардкодим x_i в р.
- Существуют S₁¹-функции, превращающие алгоритм наивного поиска подстроки в строке в KMP после специализации по подстроке.

Пусть e — обозначение кода e, а [e] — функция, которую он вычисляет.

Теорема

Существует вычислимая функция S_n^m (специализатор, частичный вычислитель) такая, что $\forall p, x_i, y_i(\llbracket p \rrbracket(x_1, \ldots, x_m, y_1 \ldots, y_n) = \llbracket \llbracket S_n^m \rrbracket(p, x_1, \ldots, x_m) \rrbracket(y_1, \ldots, y_n)).$

- Доказательство Рефал-стиль! Захардкодим х_і в р.
- Существуют S₁¹-функции, превращающие алгоритм наивного поиска подстроки в строке в KMP после специализации по подстроке.
- Генератор компиляторов также S_1^1 -случай. Достаточно взять текст интерпретатора L_1 в качестве y_1 для языка L_2 , а программу перенести в x_1 .

Вторая теорема Клини о рекурсии

Здесь также р, q — исходные коды программ.

Теорема

$$\forall p \exists q \forall d(\llbracket q \rrbracket(d) = \llbracket p \rrbracket(q,d)).$$

Вторая теорема Клини о рекурсии

Здесь также р, q — исходные коды программ.

Теорема

В любом достаточно мощном языке программирования программа может менять себя во время исполнения (рефлексивное программирование):

$$\forall p \exists q \forall d(\llbracket q \rrbracket(d) = \llbracket p \rrbracket(q, d)).$$

- Средства снятия/навешивания функциональности: quote/unquote/eval, mu-функция, метаинтерпретация в прологе, etc.
- В компилируемых языках модификация байт-кода.

Лемма о генеричности

Лемма

Пусть M, N — термы λ -исчисления, причем вычисление M не завершается, а N имеет н.ф. Тогда для любого контекста $C[\]$

$$C[M] =_{\beta} N \Rightarrow \forall L(C[L] =_{\beta} N)$$

13 / 25

Лемма о генеричности

Лемма

Пусть M, N — термы λ -исчисления, причем вычисление M не завершается, а N имеет н.ф. Тогда для любого контекста $C[\]$

$$C[M] =_{\beta} N \Rightarrow \forall L(C[L] =_{\beta} N)$$

Неформально: чтобы отличить терм от других, его нужно (частично) вычислить.

13 / 25

Следствие леммы о генеричности

Возможно ли сравнивать текстовые представления термов в чистом \(\lambda\)-исчислении?

Следствие леммы о генеричности

Возможно ли сравнивать *текстовые представления термов в чистом* λ-исчислении?

Пусть существует комбинатор λx у. Е, который возвращает T, если буквальные представления x и у совпадают (в каком-либо смысле), и F иначе. Положим $\Omega = (\lambda x.(x\ x))\ \lambda x.(x\ x), I = \lambda x.x.$

Тогда Е Ω I = F, E I I = T, но лемма о генеричности влечет, что \forall N(E N I) = F.

Следовательно, Е не определим в чистом λ-исчислении.

14/25

Анализ функций высших порядков

Здесь unit = () (аналог void).

Рассмотрим функцию

isAlwaysTrue :: ((unit \rightarrow bool) \rightarrow bool) \rightarrow bool со следующей семантикой:

- True, если аргумент всегда возвращает True;
- False, если аргумент хотя бы на одном значении возвращает False.

Анализ функций высших порядков

Здесь unit = () (аналог void).

Рассмотрим функцию

isAlwaysTrue :: ((unit \rightarrow bool) \rightarrow bool) \rightarrow bool со следующей семантикой:

- True, если аргумент всегда возвращает True;
- False, если аргумент хотя бы на одном значении возвращает False.

Записать в λ -термах тривиально, потому что существуют только две нормальные формы, имеющие тип unit \rightarrow bool:

isAlwaysTrue p = p (λ ().True)& p (λ ().False).

Анализ функций высших порядков

Здесь unit = () (аналог void).

Рассмотрим функцию

isAlwaysTrue :: ((unit o bool)o bool)o bool со следующей семантикой:

- True, если аргумент всегда возвращает True;
- False, если аргумент хотя бы на одном значении возвращает False.

Записать в λ -термах тривиально, потому что существуют только две нормальные формы, имеющие тип unit \to bool:

isAlwaysTrue p = p (λ ().True)& p (λ ().False).

• Peaлизовать isAlwaysTrue в терминах машин Тьюринга нельзя.

Опять формальный СТТ

Аксиомы эффективности

Пусть модель вычислений С удовлетворяет критериям:

- Последовательное время: задано начальное множество состояний + функция перехода.
- Абстрактность состояний: состояние описывается конечным термом.
- Конечность пространства перебора: на каждом шаге вычислений существует лишь конечное множество термов, которые видны функции перехода.
- Инициальность. Множество начальных состояний свободная алгебра, элементы которой можно записать с помощью конечной кодировки.

Тогда $\mathcal C$ вычисляет функции $\mathbb N \to \mathbb N$, вычислимые на TM.

Вероятностные вычисления

pr(S) — вероятность события S. Определим язык L, распознаваемый вероятностной $TM\ M$, следующим образом: $w \in L \Rightarrow pr(accept(M, w)) \geqslant 1 - 1/3$.

Вероятностные вычисления

pr(S) — вероятность события S. Определим язык L, распознаваемый вероятностной $TM\ M$, следующим образом: $w \in L \Rightarrow pr(accept(M,w)) \geqslant 1-1/3$.

- Вероятностные ТМ эквивалентны стандартным ТМ;
- Выигрыш на уровне сложности: см. определение простоты числа $\mathfrak n$ по Миллеру–Рабину (в Bounded Probabilistic Polytime, $\mathcal O(\mathfrak n^3)$) vs. Aggraval–Kayal–Saxena (в Polytime, $\mathcal O(\mathfrak n^6)$ с очень большой мультипликативной константой).

Релятивистские вычисления

Что будет, если разрешить бесконечные вычисления?

Определим красно-зелёную ТМ (rgTM) как ТМ без конечных состояний, состояния которой поделены на два непересекающихся множества. Скажем, что слово w принимается rgTM \mathcal{M} , если $\mathcal{M}(w)$ стабилизируется в зелёных состояниях.

Релятивистские вычисления

Что будет, если разрешить бесконечные вычисления?

Определим красно-зелёную ТМ (rgTM) как ТМ без конечных состояний, состояния которой поделены на два непересекающихся множества. Скажем, что слово w принимается rgTM \mathcal{M} , если $\mathcal{M}(w)$ стабилизируется в зелёных состояниях.

Решим проблему останова с помощью rgTM. Рассмотрим стандартную TM $\mathcal M$ и слово w. Объявим зелёными состояния, в которых $\mathcal M$ остановилась за x шагов.

- запускаем $\mathcal{M}(w)$;
- перешли в красное ⇒ увеличиваем х, переходим в зелёное состояние и начинаем вычисление заново.

МТ с оракулами

Объявим оракулом предикат P(L, w) такой, что $P(L, w) = True \Leftrightarrow w \in L.$

МТ с оракулами

Объявим оракулом предикат P(L, w) такой, что $P(L, w) = True \Leftrightarrow w \in L$.

Тьюринг-сводимость

Скажем, что язык L_A Тьюринг–сводится к языку L_B ($L_A \geqslant_\mathsf{T} L_B$), если TM с оракулом для L_B разрешает принадлежность к L_A .

Определим кванторную сложность предиката P как количество перемен кванторов в его предварённой форме. Скажем, что $P \in \Sigma^0_n$, если P начинается $c \exists$ и имеет сложность n, и $P \in \Pi^0_n$, если P начинается $c \forall$ и имеет сложность n.

• $P(z) = \forall x, y (x \geqslant z \& y < x \& x * y = z \Rightarrow y = 1)$ на \mathbb{N} ?

Определим кванторную сложность предиката P как количество перемен кванторов в его предварённой форме. Скажем, что $P \in \Sigma^0_n$, если P начинается $c \exists$ и имеет сложность n, и $P \in \Pi^0_n$, если P начинается $c \forall$ и имеет сложность n.

• $P(z) = \forall x, y (x \geqslant z \& y < x \& x * y = z \Rightarrow y = 1)$ на \mathbb{N} ? Уровень Π_0^0 — ограниченные кванторы.

Определим кванторную сложность предиката P как количество перемен кванторов в его предварённой форме. Скажем, что $P \in \Sigma^0_n$, если P начинается $c \exists$ и имеет сложность n, и $P \in \Pi^0_n$, если P начинается $c \forall$ и имеет сложность n.

- $P(z) = \forall x, y (x \geqslant z \& y < x \& x * y = z \Rightarrow y = 1)$ на \mathbb{N} ? Уровень Π_0^0 ограниченные кванторы.
- $A_M(w) = \exists t(accept(M, w, t)),$ где accept(M, w, t) это «M принимает слово w за t шагов». Уровень Σ_1^0 (проблема останова) перечислимые множества.

Определим кванторную сложность предиката P как количество перемен кванторов в его предварённой форме. Скажем, что $P \in \Sigma^0_n$, если P начинается $c \exists$ и имеет сложность n, и $P \in \Pi^0_n$, если P начинается $c \forall$ и имеет сложность n.

- $P(z) = \forall x, y (x \geqslant z \& y < x \& x * y = z \Rightarrow y = 1)$ на \mathbb{N} ? Уровень Π_0^0 ограниченные кванторы.
- $A_M(w) = \exists t(accept(M, w, t))$, где accept(M, w, t) это «M принимает слово w за t шагов». Уровень Σ_1^0 (проблема останова) перечислимые множества.

Все предикаты под кванторами — разрешимые! Задача разрешения Р (поиска точной позиции проблемы в арифметической иерархии) связана с поиском ограниченных кванторов в логической спецификации Р.

- Уровни Σ_n^0 и Π_n^0 не сводятся друг к другу ни при каком $n \neq 0$.
- $\Sigma_n^0 \subset \Sigma_{n+1}^0$, $\Pi_n^0 \subset \Pi_{n+1}^0$, причём включение строгое $(\Sigma_{n+1}^0$ решает проблему останова для Σ_n^0).

- Уровни Σ_n^0 и Π_n^0 не сводятся друг к другу ни при каком $n \neq 0$.
- $\Sigma_n^0 \subset \Sigma_{n+1}^0$, $\Pi_n^0 \subset \Pi_{n+1}^0$, причём включение строгое (Σ_{n+1}^0 решает проблему останова для Σ_n^0).
- Пустота: EMPTY(M) = $\forall w$, $t(\neg accept(M, w, t))$ уровень Π_1^0 . (что, если заменить TM M на PDA?)

- Уровни Σ_n^0 и Π_n^0 не сводятся друг к другу ни при каком $n \neq 0$.
- $\Sigma_n^0 \subset \Sigma_{n+1}^0$, $\Pi_n^0 \subset \Pi_{n+1}^0$, причём включение строгое $(\Sigma_{n+1}^0$ решает проблему останова для Σ_n^0).
- Пустота: EMPTY(M) = $\forall w$, $t(\neg accept(M, w, t))$ уровень Π_1^0 . (что, если заменить TM M на PDA?)
- Завершаемость: $TOTAL(M) = \forall w \exists t (accept(M, w, t))$ уровень Π_2^0 (монстры, т.е. сложно анализируемые TRS, появляются из-за неоднородности анализа).
- FINITE(M) = $\exists n \forall w, t(|w| \leqslant n \lor \neg accept(M, w, t))$ на Σ_2^0 .
- Поиск накачек:

- Уровни Σ_n^0 и Π_n^0 не сводятся друг к другу ни при каком $n \neq 0$.
- $\Sigma_n^0 \subset \Sigma_{n+1}^0$, $\Pi_n^0 \subset \Pi_{n+1}^0$, причём включение строгое $(\Sigma_{n+1}^0$ решает проблему останова для Σ_n^0).
- Пустота: EMPTY(M) = $\forall w$, $t(\neg accept(M, w, t))$ уровень Π_1^0 . (что, если заменить TM M на PDA?)
- Завершаемость: $TOTAL(M) = \forall w \exists t (accept(M, w, t))$ уровень Π_2^0 (монстры, т.е. сложно анализируемые TRS, появляются из-за неоднородности анализа).
- FINITE(M) = $\exists n \forall w, t(|w| \leqslant n \lor \neg accept(M, w, t))$ на Σ_2^0 .
- Поиск накачек: $PUMP(M) = \exists p \forall w \exists x_1, x_2, y_1, y_2, z \forall i \exists t (|w| \geqslant p \Rightarrow w = x_1y_1zy_2x_2 \& |y_1zy_2| \leqslant p \& accept(M, x_1y_1^izy_2^ix_2, t))$

- Уровни Σ_n^0 и Π_n^0 не сводятся друг к другу ни при каком $n \neq 0$.
- $\Sigma_n^0 \subset \Sigma_{n+1}^0$, $\Pi_n^0 \subset \Pi_{n+1}^0$, причём включение строгое $(\Sigma_{n+1}^0$ решает проблему останова для Σ_n^0).
- Пустота: EMPTY(M) = $\forall w$, t(\neg accept(M, w, t)) уровень Π_1^0 . (что, если заменить TM M на PDA?)
- Завершаемость: $TOTAL(M) = \forall w \exists t (accept(M, w, t))$ уровень Π_2^0 (монстры, т.е. сложно анализируемые TRS, появляются из-за неоднородности анализа).
- FINITE(M) = $\exists n \forall w, t(|w| \leq n \vee \neg accept(M, w, t))$ Ha Σ_2^0 .
- Поиск накачек: $PUMP(M) = \exists p \forall w \exists x_1, x_2, y_1, y_2, z \forall i \exists t (|w| \geqslant p \Rightarrow w = x_1y_1zy_2x_2 \& |y_1zy_2| \leqslant p \& accept(M, x_1y_1^izy_2^ix_2, t)) \Sigma_3^0$ (разбиение ограниченное). CFG(M) также задача уровня Σ_3^0 .

Оракулы и иерархия

Ещё раз вернёмся к задаче определения завершаемости. Положим $TOTAL(M) = \forall w A_M(w)$). Тогда TOTAL(M) — это Π^0_1 с оракулом в Σ^0_1 .

Оракулы и иерархия

Ещё раз вернёмся к задаче определения завершаемости. Положим $TOTAL(M) = \forall w A_M(w)$). Тогда TOTAL(M) — это Π_1^0 с оракулом в Σ_1^0 .

Общий принцип: применяя оракул уровня $\mathfrak n$ к MT , получаем перечислимость уровня $\mathfrak n+1$ (или её дополнение).

Оракулы и иерархия

Ещё раз вернёмся к задаче определения завершаемости. Положим $TOTAL(M) = \forall w A_M(w)$). Тогда TOTAL(M) — это Π^0_1 с оракулом в Σ^0_1 .

Общий принцип: применяя оракул уровня $\mathfrak n$ к MT, получаем перечислимость уровня $\mathfrak n+1$ (или её дополнение). rgTM распознают языки на уровнях Σ_2^0 , Π_2^0 арифметической иерархии (имея оракулы в Σ_0^1 , Π_1^0).

Неразрешимость и формальные языки

- Релятивистские вычисления не избавляют от неразрешимых задач. Разрешение проблемы останова в любой модели (в т.ч. более мощной, чем ТМ) задача, неразрешимая в рамках самой этой модели.
- Эквивалентность по Тьюрингу–Чёрчу касается только интерпретации (прямого динамического анализа программ). На уровне метаинтерпретации (использования преобразований высшего порядка) модели существенно различаются.
- Сведение семантического анализа к синтаксическому (переход от динамического анализа к статическому) удаляет как минимум один уровень сложности в арифметической иерархии (замена неограниченного квантора ограниченным).

Горячие области применения ТФЯ

- Проверка правильности моделей программ;
- Встроенная статическая оптимизация программ;
- Статическая типизация и статический анализ как метод управления проектами;
- Формальное(!!) обучение формальных языков;
- Применение формальных языков для порождения корректных датасетов и преобразования датасетов;
- Автоматы для бесконечных языков и автоматы, моделирующие игровое поведение;
- Алгебраические представления формальных языков.

Благодарность

Посвящается всем студентам ИУ51Б и ИУ52Б, кто:

- вовремя и хорошо сдавал лабораторные;
- активно решал задачи и готовился к рубежным контролям;
- разбирался в теории, читал статьи и строил оптимальные алгоритмы...

Спасибо за ваш труд! Вы соавторы этого курса.

