

[RE] Explanations based on the Missing: Towards
Contrastive Explanations with Pertinent Negatives

CEM #1

Mattijs Blankesteijn, Stefan Klut, Thomas van Osch & Tim Ottens

The original paper

- Explanations based on the Missing: Towards Contrastive Explanations with Pertinent Negatives by Dhurandhar et. al (2018)
- Proposed method
- Problem definition and space (transparency)

Targets

- Are the definitions and experimental setup given in the paper sufficiently explained for the method to be implemented?
- Are the reported results for the MNIST dataset replicable?
- Does the CEM also generalize to Fashion-MNIST?

Contrastive Explanations Method Intuition.

- Finding pertinent positives (PP) and pertinent negatives (PN)
- PP: minimal amount of features in the input that are sufficient in themselves to yield the same classification
- PN: minimal amount of features that should be absent in the input to classify it as any other class

Algorithm 1 Contrastive Explanations Method (CEM)

Input: example (x_0, t_0) , neural network model \mathcal{N} and (optionally $(\gamma > 0)$) an autoencoder AE

1) Solve (1) and obtain.

 $\delta^{\text{neg}} \leftarrow \operatorname{argmin}_{\delta \in \mathcal{X}/\mathbf{x}_0} c \cdot f_{\kappa}^{\text{neg}}(\mathbf{x}_0, \boldsymbol{\delta}) + \beta \|\boldsymbol{\delta}\|_1 + \|\boldsymbol{\delta}\|_2^2 + \gamma \|\mathbf{x}_0 + \boldsymbol{\delta} - \operatorname{AE}(\mathbf{x}_0 + \boldsymbol{\delta})\|_2^2.$ 2) Solve (3) and obtain.

 $\boldsymbol{\delta}^{\mathrm{pos}} \leftarrow \mathrm{argmin}_{\boldsymbol{\delta} \in \mathcal{X} \cap \mathbf{x}_0} \ c \cdot f_{\boldsymbol{\rho}}^{\mathrm{pos}}(\mathbf{x}_0, \boldsymbol{\delta}) + \beta \|\boldsymbol{\delta}\|_1 + \|\boldsymbol{\delta}\|_2^2 + \gamma \|\boldsymbol{\delta} - \mathrm{AE}(\boldsymbol{\delta})\|_2^2.$ return $\boldsymbol{\delta}^{\mathrm{pos}}$ and $\boldsymbol{\delta}^{\mathrm{neg}}$. (Our Explanation: Input x_0 is classified as class t_0 because features $\boldsymbol{\delta}^{\mathrm{pos}}$ are present and because features $\boldsymbol{\delta}^{\mathrm{neg}}$ are absent. Code at https://github.com/IBM/Contrastive-Explanation-Method }

Figure: CEM pseudocode.

Contrastive Explanations Method

The Explanation Optimization.

Given sample (\mathbf{x}_0, t_0) , classifier $\mathscr{P}(\cdot)$, $\mathbf{I} = \delta$ if PP and $\mathbf{I} = \mathbf{x}_0 + \delta$ if PN, optimize:

CEM subject to $f(t_0, I, \kappa) = 0$

$$\min_{\delta} c \cdot f(t_0, I, \kappa) + \beta ||\delta||_1 + ||\delta||_2^2 + \gamma ||AE(I) - I||_2^2$$
 (1)

$$f^{\text{PP}}(t_0, \mathbf{I}, \kappa) = \max \left(\kappa + \max_{i \neq t_0} \left[\mathscr{P}(\mathbf{I}) \right]_i - \left[\mathscr{P}(\mathbf{I}) \right]_{t_0}, 0 \right)$$
 (2)

$$f^{PN}(t_0, \mathbf{I}, \kappa) = \max \left(\kappa + [\mathscr{P}(\mathbf{I})]_{t_0} - \max_{i \neq t_0} [\mathscr{P}(\mathbf{I})]_i, 0 \right)$$
(3)

Optimization

- FISTA is used to optimize the loss of an ℓ_1 regularized function
- ullet The perturbation δ is updated every iteration of the algorithm by a slack variable
- The slack variable is also updated with an SGD optimizer and FISTA
- The best δ^* is chosen based on $f(t_0, I, \kappa) = 0$ and the lowest elastic net loss

Experimental Setup

- MNIST and Fashion-MNIST dataset.
- Tensorflow → PyTorch
- Convolution Neural Network Classifier (99.4% / 90.8%)
- Convolutional Autoencoder (restrict search space)

Results MNIST

Figure: Results of Dhurandhar et al.

Figure: Our results. *Top row* Classified: 9. PP: 9. PN 4. *Bottom row* Classified: 5. PP: 5. PN: 3.

Results Fashion-MNIST

Figure: Classified: Sandal. PP: Sandal. PN: Shoe

Figure: Classified: Shirt. PP: Shirt. PN: T-shirt/Top, Top: $\kappa = 10$, Bottom: $\kappa = 100$

Discussion

- MNIST comparison dependent on unreported thresholding
- Fashion-MNIST less interpretable, exploiting bias
- No guarantees for latent dimension of autoencoder
- FISTA prerequisites seem to be violated by applying CEM
- CEM needs to backpropagate through the 'black box'

Conclusion

Targets

- The method is implementable (with original code)
- The results on MNIST are replicable, despite some inconsistencies between original paper and code and unclear parameter configurations
- Extension to Fashion-MNIST turns out to be difficult

Broader Implications:

- Discover algorithmic biases
- CEM can guide human interventions