AERO 422: Active Controls for Aerospace Vehicles

Basic Feedback Analysis & Design

Raktim Bhattacharya

Laboratory For Uncertainty Quantification Aerospace Engineering, Texas A&M University.

Stabilizing Controller

Given characteristic equation

$$D_G(s) = s^n + a_1 s^{n-1} + \dots + a_{n-1} s + a_n,$$

How to determine stability? (without using MATLAB :)

- Necessary condition:
 - ▶ All coefficients of characteristic polynomial be positive, i.e. $a_i > 0$.
 - \blacktriangleright Any coefficient missing (= 0) or negative, then poles are outside LHP.
- Necessary and Sufficient condition:
 - System is stable iff all the elements in the first column of Routh array are positive

Routh Array

where

$$b_{1} = -\frac{\det \begin{bmatrix} 1 & a_{2} \\ a_{1} & a_{3} \end{bmatrix}}{a_{1}} \qquad b_{2} = -\frac{\det \begin{bmatrix} 1 & a_{4} \\ a_{1} & a_{5} \end{bmatrix}}{a_{1}}$$

$$c_{1} = -\frac{\det \begin{bmatrix} a_{1} & a_{3} \\ b_{1} & b_{2} \end{bmatrix}}{b_{1}} \qquad c_{2} = -\frac{\det \begin{bmatrix} a_{1} & a_{5} \\ b_{1} & b_{3} \end{bmatrix}}{b_{1}}$$

There are two special cases! See web-appendix of textbook

Stabilizing Gain

Example 1 – One parameter

Given
$$P(s) = \frac{s+1}{s(s-1)(s+6)}$$
 and $C(s) = K$

Characteristic Equation Numerator of 1 + PC No pole zero cancellation

$$s^3 + 5s^2 + (K - 6)s + K = 0$$

Routh's Table

Stabilizing Gains

$$\frac{4K - 30}{5} > 0, \ K > 0$$
$$K > 7.5, \ K > 0$$

Stabilizing Gain

Example 2 – Two parameters

Characteristic Equation Numerator of 1 + PC No pole zero cancellation

$$s^3 + 3s^2 + (2+K)s + K_I = 0$$

Routh's Table

Stabilizing Gains $K > K_I/3 - 2$, $K_I > 0$.

Stabilizing Gain

Example 1 – Two parameters (contd.)

Stabilizing Gains $K > K_I/3 - 2$, $K_I > 0$.

What about performance?

Step Response

Time Domain Performance Specification

Second Order System: poles =
$$\sigma \pm j\omega_d$$
, $\omega_n = \sqrt{\sigma^2 + \omega_d^2}$, $\zeta = \sigma/\omega_n$

$$M_p = e^{-\pi\zeta/\sqrt{1-\zeta^2}}$$
 $t_r = \frac{1.8}{\omega_r}$ $t_s = \frac{4.6}{\sigma}$

Step Response

Time Domain Performance Specification – Second Order Systems

Desired Location of Poles

$$M_p = e^{-\pi\zeta/\sqrt{1-\zeta^2}}$$
 $t_r = \frac{1.8}{\omega_n}$ $t_s = \frac{4.6}{\sigma}$

$$\omega_n \ge 1.8/t_r$$
 $\zeta \ge \zeta(M_p)$ $\sigma \ge 4.6/t_s$

- \blacksquare Adjust K, K_I to satisfy additional performance related constraints
- Controller gain tuning

Conditions that ensure Re $p_i < -\alpha$, for $\alpha > 0$

Given polynomial

$$s^{n} + a_{1}s^{n-1} + \dots + a_{n-1}s + a_{n} = 0$$

Modify Routh's stability criterion to ensure

Re
$$p_i < -\alpha$$
, for $\alpha > 0$.

Replace $s := q - \alpha$ and substitute in polynomial to get

$$q^{n} + b_{1}q^{n-1} + \dots + b_{n-1}q + b_{n} = 0$$

Apply Routh's criterion to the polynomial in q

Example

- Given $P(s) = \frac{1}{s^2 + 4s + 1}$ and controller $C(s) = K_1 + K_2/s$.
- Find range of values for K_1, K_2 such that all poles are left of $-\alpha$.

Characteristic equation:

$$s^3 + 4s^2 + (K_1 + 1)s + K_2$$

Substitute $s := q - \alpha$, with $\alpha = 1$

$$q^3 + q^2 + (K_1 - 4)q - K_1 + K_2 + 2$$

Apply Routh's criterion

Department of Aerospace Engineering

Example (contd.)

Polynomial in q

$$q^3 + q^2 + (K_1 - 4)q - K_1 + K_2 + 2$$

Routh's Table

Inequalities

$$2K_1 - K_2 - 6 > 0$$
, $K_2 - K_1 + 2 > 0$.

Example (contd.)

(a)
$$2K_1 - K_2 - 6 > 0, K_2 - K_1 + 2 > 0$$
, Poles left of -1 .

(a)
$$2K_1-K_2-6>0, K_2-K_1+2>0$$
, (b) $K_1-K_2/4+1>0, K_2>0$, Poles Poles left of -1 .

Disturbance Rejection

- \blacksquare Let $P(s):=\frac{A}{(s/p_1+1)(s/p_2+1)}$, and C(s):=K
- Total response

$$\begin{split} Y(s) &= \frac{PC}{1 + PC}R(s) + \frac{P}{1 + PC}D(s) \\ &= \frac{AK}{(s/p_1 + 1)(s/p_2 + 1) + AK}R(s) + \frac{A}{(s/p_1 + 1)(s/p_2 + 1) + AK}D(s) \end{split}$$

■ Steady state value with feedback

$$\lim_{s \to 0} sY(s) = \frac{AK}{1 + AK} \left(\lim_{s \to 0} sR(s) \right) + \frac{A}{1 + AK} \left(\lim_{s \to 0} sD(s) \right)$$

Robustness to Plant Uncertainty

Transfer function from reference to output

$$G_{yr}(s) = \frac{PC}{1 + PC} = \frac{AK}{(s/p_1 + 1)(s/p_2 + 1) + AK}$$

- Suppose $A \rightarrow A + \delta A$
- What is the effect on $T(s) = G_{yr}(s)$? steady state gain

Robustness to Plant Uncertainty (contd.)

$$T_{ss} = \frac{AK}{1 + AK}$$

$$\delta T_{ss} = \frac{dT_{ss}}{dA} \delta A$$

$$= \frac{K}{(1 + AK)^2} \delta A$$

$$= \left(\frac{AK}{1 + AK}\right) \left(\frac{1}{1 + AK}\right) \frac{\delta A}{A}$$

$$\implies \frac{\delta T_{ss}}{T_{ss}} = \frac{1}{1 + AK} \frac{\delta A}{A}$$

System Type

System Type

Analysis of Steady State Error

$$E(s) = \frac{1}{1 + PC} R(s)$$

$$\implies e_{ss} = \lim_{s \to 0} s \frac{1}{1 + L(s)} \frac{1}{s^{k+1}}$$

$$= \lim_{s \to 0} \frac{1}{1 + L(s)} \frac{1}{s^k}$$

Investigate $e_{ss} \to 0$ for various values of k

	$Value\;of\;k$	r(t)	System Type
_	0	1(t)	$e_{ss} = {\sf constant} \implies {\sf Type} \ {\sf 0}$
	1	t	$e_{ss} = {\sf constant} \implies {\sf Type\ I}$
	2	$t^2/2!$	$e_{ss} = constant \implies Type II$

Type Zero

Type 0 System

■ Constant steady state error to step reference k = 0.

$$e_{ss} = \lim_{s \to 0} \frac{1}{1 + L(s)} \frac{1}{s^k}$$
$$= \lim_{s \to 0} \frac{1}{1 + L(s)} = \frac{1}{1 + K_p}$$

Position Error Constant K_n

$$K_p = \lim_{s \to 0} L(s)$$

Type One

Type 1 System

■ Constant steady state error to ramp reference k=1.

$$e_{ss} = \lim_{s \to 0} \frac{1}{1 + L(s)} \frac{1}{s^k}$$

$$= \lim_{s \to 0} \frac{1}{1 + L(s)} \frac{1}{s} = \lim_{s \to 0} \frac{1}{sL(s)} = \frac{1}{K_v}$$

Velocity Error Constant K_v

$$K_v = \lim_{s \to 0} sL(s)$$

Type Two

Type 2 System

• Constant steady state error to parabolic reference k=2.

$$e_{ss} = \lim_{s \to 0} \frac{1}{1 + L(s)} \frac{1}{s^k}$$

$$= \lim_{s \to 0} \frac{1}{1 + L(s)} \frac{1}{s^2} = \lim_{s \to 0} \frac{1}{s^2 L(s)} = \frac{1}{K_a}$$

Acceleration Error Constant K_a

$$K_a = \lim_{s \to 0} s^2 L(s)$$

Summary

Various Constants

$$K_p = \lim_{s \to 0} L(s)$$
 $K_v = \lim_{s \to 0} sL(s)$ $K_a = \lim_{s \to 0} s^2 L(s)$

Steady State Errors

	Step	Ramp	Parabola
Type 0	$\frac{1}{1+K_p}$	∞	∞
Type I	0	$\frac{1}{K_v}$	∞
Type II	0	0	$\frac{1}{K_a}$

Summary (contd.)

- Quickly identify ability to track polynomials
- Robustness property higher type tracks lower order polynomials
- lacktriangle Can be extended to study G_{yd} and other transfer functions

■ Let $T(s) := G_{ur}(s)$ be given by

$$T(s) = K \frac{\prod_{i=1}^{m} (s - z_i)}{\prod_{i=1}^{n} (s - p_i)}.$$

- \blacksquare Most common case: e_{ss} to step is zero \Longrightarrow Type I system
- DC gain $\lim_{s\to 0} T(s) = 1$
- System error E(s) = R(s)(1 T(s))
- System error due to ramp

$$e_{ss} = \lim_{s \to 0} sE(s) = \lim_{s \to 0} s(1 - T(s)) \frac{1}{s^2} = \lim_{s \to 0} \frac{1 - T(s)}{s}$$

■ Using L'Hopital's rule

$$e_{ss} = -\lim_{s o 0} rac{dT}{ds} = rac{1}{K_v}$$
 for type I systems

Contd.

■ Let $T(s) := G_{ur}(s)$ be given by

$$T(s) = K \frac{\prod_{i=1}^{m} (s - z_i)}{\prod_{i=1}^{n} (s - p_i)}.$$

■ Using L'Hopital's rule

$$e_{ss} = -\lim_{s o 0} rac{dT}{ds} = rac{1}{K_v}$$
 for type I systems

 \blacksquare $\frac{1}{\kappa}$ is related to the slope of T(s) at origin

Contd.

■ Let $T(s) := G_{ur}(s)$ be given by

$$T(s) = K \frac{\prod_{i=1}^{m} (s - z_i)}{\prod_{i=1}^{n} (s - p_i)}.$$

Rewrite

$$e_{ss} = -\lim_{s \to 0} \frac{dT}{ds} \frac{1}{T} \qquad T(0) = 1$$

$$= -\lim_{s \to 0} \frac{d}{ds} \log T(s)$$

$$= -\lim_{s \to 0} \frac{d}{ds} \left(\log(K) + \sum_{i=1}^{m} \log(s - z_i) - \sum_{i=1}^{n} \log(s - p_i) \right)$$

Truxal's Formula

$$\frac{1}{K_v} = \sum_{i=1}^m \frac{1}{z_i} - \sum_{i=1}^n \frac{1}{p_i}$$

Design Implication

$$\frac{1}{K_v} = \sum_{i=1}^m \frac{1}{z_i} - \sum_{i=1}^n \frac{1}{p_i}$$

- Observe effect of pole/zero location on $1/K_v$
- Useful for design of dynamic compensators

Example

- Third order type I system has closed-loop poles $-2 \pm 2j$, -0.1.
- The system has one zero. Where should it be for $K_v = 10$?