·So how do we solve it? (Hartley & Zisserman Solution)

Lets do,
$$E = U \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix} V^T$$
 and break Σ into Z and W .

$$Z = \begin{bmatrix} 0 & 1 & 0 \\ -1 & 0 & 0 \end{bmatrix} \quad W = \begin{bmatrix} 0 & -1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Skew $ZW = \Sigma$ > Rotation

Another point/contraint we can mention is that U is a rotation matrix, meaning $U^TU=I$, is identity matrix. We can substitute this all into E.

We can use variations of Z and W to get multiple solutions. $E_1 = UZU^TUWV^T$

 \times Note, in book computer vision; alogoriths and applications (I read the second ed. Leaft) chapter 11.3, he talks about the spoint algorith. There he breaks down $\not \sqsubseteq$ into $[t]_x$ and R. $[t]_x = U \Sigma W_{qo} U^T$ and $R = \pm U W_{qo} V^T$.

It puts two solutions very concisely.

We generate 4 points and keep 2 that have det(R)=1.