

Dynamic Programming

Foundations of AlgorithmsGuven

Reading Assignment

• Cormen, Chapter 15.1, 15.3

Dynamic Programming Outline

- Dynamic Programming
- Memoization
- Longest Common Subsequence
- Sequence Alignment

Dynamic Programming

- "Those who cannot remember the past are condemned to repeat it"
- Not about writing code
 - The term was coined in 1950s when programming was an esoteric activity
- Dynamic optimization
 - Not greedy
- A general solution method for problems which have the following properties
 - Optimal substructure
 - Overlapping subproblems

Dynamic Programming (DP)

- Divide and conquer ←→ Hadoop MapReduce
 - Partition problem to disjoint problems
 - Solve them recursively
 - Combine solutions
- Dynamic Programming ←→ Linux diff
 - Subproblems overlap
 - Recursively define the subproblem
 - Find optimal solutions to subproblems
 - Solve the problem using computed optimal solutions

Fibonacci Numbers

- $F_0=0$, $F_1=1$, and $F_n=F_{n-1}+F_{n-2} \forall n \ge 2$
 - (0, 1, 1, 2, 3, 5, 8, 13, 21, ..)

A recursive solution

```
def fibr(n):
   if n < 2:
      return n
   else:
      return fibr(n-1)+fibr(n-2)</pre>
```

- Time complexity: O(2ⁿ)
 - Recurrence: T(n)=T(n-1)+T(n-2)+O(1)

Memoization

- Memo(r)ization: Remember everything
 - fibr (n) re-computes the same values repeatedly
- A memoized solution

```
F={}
def fibm(n):
    if n<2:
        return n
    elif n not in F:
        F[n] = fibm(n-1)+fibm(n-2)
    return F[n]</pre>
```

Time complexity: O(n)

Principle of Optimality

- Independent of the initial state, remaining decisions must be optimal with regard the state following from the first decision
- Definition: A problem is said to satisfy the Principle of Optimality if the sub-solutions of an optimal solution of the problem are themselves optimal solutions for their sub-problems
- Necessary condition for dynamic programming

Dynamic Programmed Fibonacci

```
def fibdp(n):
   F[0]=0
   F[1]=1
   for i in range(2,n+1):
      F[i]=F[i-1]+F[i-2]
   return F[n]
```

O(n) time and O(n) space complexity

Improved DP Fibonacci

Do not maintain the entire F [i]

```
def fibdp2(n):
    prev=1
    curr=0
    for i in range(1,n+1):
        next=curr+prev
        prev=curr
        curr=next
    return curr
```

O(n) time and O(1) space complexity

Discussion

- The practical time complexity of fibdp2 () is not O(n)
 - F[n] grows exponentially
 Storing a particular F[n] requires Ω(n) time
- We cannot perform arbitrary-precision arithmetic in constant time
- Practically time complexity of improved DP fibdp2 (n) is O(n²)

Sequence Definitions

- Given a sequence $X = \langle x_1, x_2, ..., x_m \rangle$
 - The sequence $Z = \langle z_1, z_2, ..., z_k \rangle$ is a **subsequence** of X if there exists strictly increasing sequence $\langle i_1, i_2, ..., i_k \rangle$ of indices of X such that $\forall j=1,2,...,k$ we have $x_{i_j}=z_j$
- Example
 - X = ABAZDC, Z = BAC is a subsequence with indices
 (2,3,6)
- Given two sequences X and Y, the sequence Z is a common subsequence of X and Y if Z is a subsequence of both

Longest Increasing Subsequence

- Given a sequence of numbers find the longest increasing subsequence
- Example (consecutive):
 - \(\((1,2,5,3,9,5,3,3,2,1,5,7,8,9,0,1\)
 - LIS= $\langle 1,5,7,8,9 \rangle$
 - |LIS|=5
- Example (non-consecutive, permitting insertions)
- LIS= $\langle 1,2,3,3,3,5,7,8,9 \rangle$

Length of LIS

```
def LIS(prev, A[1..n]):
# Find the longest consecutive subsequence length
# Call with LIS (MIN INTEGER, A)
  if n==0:
    return 0
  else:
    max=LIS(prev, A[2..n]) # A[1] not in solution
    if A[1]>prev: # Check if A[1] can be added
      L = 1 + LIS(A[1], A[2..n])
      if I>max:
        max = I_{i}
  return max
```

Longest Common Subsequence

- Bioinformatics main application:
 - Comparing two DNA sequences
 DNA as a string built from the alphabet {A,C,G,T}
- Example:
 - X = ABAZDC
 - Y = BACBAD
 - Longest Common Subsequence (LCS) = ABAD

Brute Force LCS

- Enumerate all subsequences of X and check each subsequence is also a subsequence of Y
 - Each subsequence of X corresponds to the indices
 \(\(i_1, i_2, ..., i_m\)\)
- Number of possible subsequences:
 - Binary encode the presence of an index, e.g. (0,1,1,0,0,...,1,1)
 - There are 2^m subsequences \rightarrow exponential

Optimal Substructure of LCS

- "Prefixes"
 - Define the ith prefix of X as $X_i = \langle x_1, x_2, ..., x_i \rangle$
 - X_o is empty sequence
- Let $X=\langle x_1,x_2,...,x_m\rangle$, $Y=\langle y_1,y_2,...,y_n\rangle$ and let $Z=\langle z_1,z_2,...,z_k\rangle$ be any LCS of X and Y
 - 1. If $x_m = y_n$, then $z_k = x_m = y_n$ and Z_{k-1} is an LCS of X_{m-1} and Y_{n-1}
 - 2. If $x_m \neq y_n$, then $z_k \neq x_m$ implies that Z is an LCS of X_{m-1} and Y
 - 3. If $x_m \neq y_n$, then $z_k \neq y_n$ implies that Z is an LCS of X and Y_{n-1}

LCS DP Implementation

$$c[i,j] = \begin{cases} 0 & \text{if } i = 0 \text{ or } j = 0 \\ c[i-1,j-1] + 1 & \text{if } i,j > 0 \text{ and } x_i = y_j \\ \max[c[i,j-1], c[i-1,j]) & \text{if } i,j > 0 \text{ and } x_i \neq y_j \end{cases}$$

- b[.] is used to store the LCS using SKIPX (←), SKIPY (↑) and ADDXY (<)
 - Also called backtracking
- Boundary conditions are marked with SKIPX (←) and SKIPY (1)
- c[.] is used for memoization

Implementation

```
def LCS (x[1..m], y[1..n]):
  c = Matrix(m,n)
  for i in range(m+1):
    c[i,0]=0; b[i,0]=SKIPX
  for j in range(n+1):
    c[0, 1] = 0; b[0, 1] = SKIPY
  for i in range (1, m+1):
    for j in range (1, n+1):
      if x[i] == y[j]:
        c[i,j] = c[i-1,j-1]+1  # take X[i] and Y[j] for LCS
        b[i,j] = ADDXY
      elif c[i-1,j] >= c[i,j-1]:
        c[i,j] = c[i-1,j]
        b[i,j] = SKIPY
      else:
        c[i,j] = c[i,j-1]
        b[i,j] = SKIPX
  return c, b
```

Example

- X=(B,A,C,D,B), Y=(B,D,C,B)
 - LCS=(B,C,B) or LCS=(B,D,B)
- BACDB| | |BDC-B
- BACD-B| | |B--DCB
- Two tied solutions can be generated with the preference of SKIPX or SKIPY consistently
- Insertion, deletion or mismatch have zero penalty

		В	A	С	D	В
	0	0	0	0	0	0
В	0					
D	0					
С	0					
В	0					

		В	A	U	D	В
	0	0	0	0	0	0
В	0	15				
D	0					
С	0					
В	0					

		В	A	U	D	В
	0	0	0	0	0	0
В	0	15	1←			
D	0					
С	0					
В	0					

		В	A	U	D	В
	0	0	0	0	0	0
В	0	15	1←	1←		
D	0					
С	0					
В	0					

		В	A	U	D	В
	0	0	0	0	0	0
В	0	15	1←	1←	1←	
D	0					
С	0					
В	0					

		В	Α	С	D	В
	0	0	0	0	0	0
В	0	15	1←	1←	1←	15
D	0					
С	0					
В	0					

		В	Α	U	D	В
	0	0	0	0	0	0
В	0	15	1←	1←	1←	15
D	0	11	1←	1←	25	2←
С	0					
В	0					

		В	Α	С	D	В
	0	0	0	0	0	0
В	0	15	1←	1←	1←	15
D	0	11	1←	1←	25	2←
С	0	11	1←	25	2←	2←
В	0					

		В	Α	С	D	В
	0	0	0	0	0	0
В	0	15	1←	1←	1←	15
D	0	11	1←	1←	25	2←
С	0	11	1←	25	2←	2←
В	0	15	1←	21	2←	35

- Locate the max value |LCS|=3 and backtrack
- Follow the backtrack arrows from (4,5) to (1,1) to build the LCS
- ADDXY (\(\sigma\)) are the matched elements

		В	A	С	D	В
	0	0	0	0	0	0
В	0	15	1←	1←	1←	15
D	0	11	1←	1←	25	2←
С	0	11	1←	25	2←	2←
В	0	15	1←	21	2←	35

 Tie-breaker (1) will find the other LCS

		В	Α	С	D	В
	0	0	0	0	0	0
В	0	15	1←	1←	1←	15
D	0	11	11	11	25	2←
С	0	11	11	25	21	2←
В	0	15	11	21	21	35

Sequence Alignment

- Local alignment
- Global alignment
 - End-to-end
- Alignment can be scored by the edit distance

•
$$S(i,j)=\max \begin{cases} S(i-1,j-1)+\sigma(x_i,y_j) \\ S(i-1,j)+\sigma(x_i,-) \\ S(i,j-1)+\sigma(-,y_j) \end{cases}$$

Sequence Alignment

Example global alignment

Example local alignment

```
. . . ACGTAGGTATTTATGCTAGAT . . .
       ACGTATCTATGCT-GAT
```

Implementation

```
def local align(x[1..m], y[1..n], score):
 A=Matrix(m,n) # zero filled
 best=0
  optloc=(0,0)
  for i in range (1, m+1):
    for j in range (1, n+1):
      A[i][j] = max( # local alignment recurrence rule
        A[i][j-1] + score.qap, # insertion
        A[i-1][j] + score.gap, # deletion
        A[i-1][j-1] +
         (score.match if x[i] == v[j] else score.mismatch),
        0) # local alignment
      if A[i][j] >= best: # track the matrix cell with the highest score
        best = A[i][j]
        optloc = (i,j)
  return best, optloc
```

LCS versus Alignments

- A more general recurrence rule than LCS
- To calculate cell[i,j], take the max of {cell[i-1,j], cell[i-1,j-1], cell[i,j-1]}
- Algorithm is same except for the recurrence rule
- Considers insertions (←), deletions (↑), matches (√)
 and mismatches (√) with reward and penalty scores

Local to Global Alignment

- Recurrence rule change
 - Remove "0" argument from the max operator
 - Negative values can take over due to insertions, deletions and mismatches
- Local Align score = max(Global Align score, 0)
- Global alignment is end to end
 - i.e. corner to corner on the alignment matrix
- Local alignment can start (or end) at any (i, j)