

Page 1 of 29

# APPLICATION CERTIFICATION On Behalf of Ho Lee Co., Ltd.

Dog Trainer Model No.: GDG4-1, GDG4-JR

FCC ID: Y4T-GDG4-1

Prepared for : Ho Lee Co., Ltd.

Address : 27th FL., No. 29-3, Sec. 2, Chung Cheng E RD, Tamshui

District, New Taipei City, Taiwan

Prepared by : ACCURATE TECHNOLOGY CO., LTD

Address : F1, Bldg. A, Changyuan New Material Port, Keyuan Rd.

Science & Industry Park, Nanshan, Shenzhen, Guangdong

P.R. China

Tel: (0755) 26503290 Fax: (0755) 26503396

Report Number : ATE20152131
Date of Test : Oct 9-27, 2015
Date of Report : Oct 28,2015





Page 2 of 29

## TABLE OF CONTENTS

Description Page

# **Test Report Certification**

| 1. G  | ENERAL INFORMATION                                                         | 4  |
|-------|----------------------------------------------------------------------------|----|
| 1.1.  | Description of Device (EUT)                                                | 4  |
| 1.2.  | Description of Test Facility                                               | 5  |
| 1.3.  | Measurement Uncertainty                                                    | 5  |
| 2. M  | EASURING DEVICE AND TEST EQUIPMENT                                         | 6  |
| 3. SU | JMMARY OF TEST RESULTS                                                     | 7  |
| 4. TI | HE FIELD STRENGTH OF RADIATION EMISSION                                    | 8  |
| 4.1.  | Block Diagram of Test Setup                                                | 8  |
| 4.2.  | The Field Strength of Radiation Emission Measurement Limits                | 9  |
| 4.3.  | Configuration of EUT on Measurement                                        |    |
| 4.4.  | Operating Condition of EUT                                                 | 9  |
| 4.5.  | Test Procedure                                                             | 10 |
| 4.6.  | The Field Strength of Radiation Emission Measurement Results               | 11 |
| 5. 20 | DB OCCUPIED BANDWIDTH                                                      | 13 |
| 5.1.  | Block Diagram of Test Setup                                                | 13 |
| 5.2.  | The Bandwidth of Emission Limit According To FCC Part 15 Section 15.231(c) | 13 |
| 5.3.  | EUT Configuration on Measurement                                           |    |
| 5.4.  | Operating Condition of EUT                                                 | 14 |
| 5.5.  | Test Procedure                                                             |    |
| 5.6.  | Measurement Result                                                         |    |
| 6. RI | ELEASE TIME MEASUREMENT                                                    | 15 |
| 6.1.  | Block Diagram of Test Setup                                                | 15 |
| 6.2.  | Release Time Measurement According To FCC Part 15 Section 15.231(a)        |    |
| 6.3.  | EUT Configuration on Measurement                                           |    |
| 6.4.  | Operating Condition of EUT                                                 |    |
| 6.5.  | Test Procedure                                                             |    |
| 6.6.  | Measurement Result                                                         |    |
| 7. A  | VERAGE FACTOR MEASUREMENT                                                  | 17 |
| 7.1.  | Block Diagram of Test Setup                                                |    |
| 7.2.  | Average factor Measurement according to ANSI C63.10-2013                   | 17 |
| 7.3.  | EUT Configuration on Measurement                                           |    |
| 7.4.  | Operating Condition of EUT                                                 |    |
| 7.5.  | Test Procedure                                                             |    |
| 7.6.  | Measurement Result                                                         |    |
| 8. Al | NTENNA REQUIREMENT                                                         | 19 |
| 8.1.  | The Requirement                                                            | 19 |
| 8.2.  | Antenna Construction                                                       | 19 |



Page 3 of 29

## **Test Report Certification**

Applicant : Ho Lee Co., Ltd.

Manufacturer : Ho Lee Co., Ltd.

EUT Description : Dog Trainer

(A) MODEL NO.: GDG4-1

(B) SERIAL NO.: N/A

(C) POWER SUPPLY: DC 3V (Battery 2x AAA)

Measurement Procedure Used:

# FCC Rules and Regulations Part 15 Subpart C Section 15.231a ANSI C63.10-2013

The device described above is tested by ACCURATE TECHNOLOGY CO., LTD to determine the maximum emission levels emanating from the device. The maximum emission levels are compared to the FCC Part 15 Subpart C Section 15.231a. The measurement results are contained in this test report and ACCURATE TECHNOLOGY CO., LTD is assumed full responsibility for the accuracy and completeness of these measurements. Also, this report shows that the Equipment Under Test (EUT) is to be technically compliant with the FCC requirements.

This report applies to above tested sample only. This report shall not be reproduced in part without written approval of ACCURATE TECHNOLOGY CO., LTD.

| Date of Test:                  | Oct 9-27, 2015        |
|--------------------------------|-----------------------|
| Date of Report :               | Oct 28, 2015          |
| Prepared by :                  | Mark Ther             |
|                                | (Mark Chen, Engineer) |
| Approved & Authorized Signer : | Lemb                  |
|                                | ( Sean Liu, Manager)  |





Page 4 of 29

## 1. GENERAL INFORMATION

1.1.Description of Device (EUT)

EUT : Dog Trainer

Model Number : GDG4-1, GDG4-GR

(Note: The internal structure is the same, The structure size is different.

So we prepare GDG4-1 for test only.)

Power Supply : DC 3V (battery 2x AAA)

Modulation: : ASK

Operation Frequency : 315MHz

Applicant : Ho Lee Co., Ltd.

Address : 27th FL., No. 29-3, Sec. 2, Chung Cheng E RD, Tamshui

District, New Taipei City, Taiwan

Manufacturer : Ho Lee Co., Ltd.

: Oct 9, 2015

Address : 27th FL., No. 29-3, Sec. 2, Chung Cheng E RD, Tamshui

District, New Taipei City, Taiwan

Date of sample

received

Date of Test : Oct 9-28, 2015



Page 5 of 29

## 1.2.Description of Test Facility

EMC Lab : Accredited by TUV Rheinland Shenzhen

Listed by FCC

The Registration Number is 752051

Listed by Industry Canada

The Registration Number is 5077A-2

Accredited by China National Accreditation Committee

for Laboratories

The Certificate Registration Number is L3193

Name of Firm : ACCURATE TECHNOLOGY CO., LTD

Site Location : F1, Bldg. A, Changyuan New Material Port, Keyuan Rd.

Science & Industry Park, Nanshan, Shenzhen, Guangdong

P.R. China

## 1.3. Measurement Uncertainty

Conducted Emission Expanded Uncertainty = 2.23dB, k=2

Radiated emission expanded uncertainty = 3.08dB, k=2

(9kHz-30MHz)

Radiated emission expanded uncertainty = 4.42dB, k=2

(30MHz-1000MHz)

Radiated emission expanded uncertainty = 4.06dB, k=2

(Above 1GHz)





## 2. MEASURING DEVICE AND TEST EQUIPMENT

**Table 1: List of Test and Measurement Equipment** 

| Kind of equipment  | Manufacturer              | Туре                                    | S/N        | Calibrated dates | Cal. Interval |
|--------------------|---------------------------|-----------------------------------------|------------|------------------|---------------|
| EMI Test Receiver  | Rohde&Schwarz             | ESCS30                                  | 100307     | Jan. 10, 2015    | One Year      |
| EMI Test Receiver  | Rohde&Schwarz             | ESPI3                                   | 101526/003 | Jan. 10, 2015    | One Year      |
| Spectrum Analyzer  | Agilent                   | E7405A                                  | MY45115511 | Jan. 10, 2015    | One Year      |
| Pre-Amplifier      | Rohde&Schwarz             | CBLU118354<br>0-01                      | 3791       | Jan. 10, 2015    | One Year      |
| Loop Antenna       | Schwarzbeck               | FMZB1516                                | 1516131    | Jan. 15, 2015    | One Year      |
| Bilog Antenna      | Schwarzbeck               | VULB9163                                | 9163-323   | Jan. 15, 2015    | One Year      |
| Horn Antenna       | Schwarzbeck               | BBHA9120D                               | 9120D-655  | Jan. 15, 2015    | One Year      |
| Horn Antenna       | Schwarzbeck               | BBHA9120D                               | 9120D-1067 | Jan. 15, 2015    | One Year      |
| LISN               | Rohde&Schwarz             | ESH3-Z5                                 | 100305     | Jan. 10, 2015    | One Year      |
| LISN               | Schwarzbeck               | NSLK8126                                | 8126431    | Jan. 10, 2015    | One Year      |
| Highpass Filter    | Wainwright<br>Instruments | WHKX3.6/18<br>G-10SS                    | N/A        | Jan. 10, 2015    | One Year      |
| Band Reject Filter | Wainwright<br>Instruments | WRCG2400/2<br>485-2375/2510<br>-60/11SS | N/A        | Jan. 10, 2015    | One Year      |





Page 7 of 29

## 3. SUMMARY OF TEST RESULTS

| FCC Rules            | <b>Description of Test</b>  | Result    |
|----------------------|-----------------------------|-----------|
| Section 15.207       | Conducted Emission          | N/A       |
| Section 15.231(b)    | Radiated Emission           | Compliant |
| Section 15.231(c)    | 20dB Bandwidth              | Compliant |
| Section 15.231(a)(1) | Release Time<br>Measurement | Compliant |
| Section 15.203       | Antenna Requirement         | Compliant |

The product is a manually operated transmitter.

Section 15.231 (a) (2), (3), (4) and (5) are not applicable.

All normal using modes of the normal function were tested but only the worst test data of the worst mode is recorded by this report.





## 4. THE FIELD STRENGTH OF RADIATION EMISSION

## 4.1.Block Diagram of Test Setup

4.1.1.Block diagram of connection between the EUT and simulators



(EUT: Dog Trainer)

4.1.2.Semi-Anechoic Chamber Test Setup Diagram

#### ANTENNA ELEVATION VARIES FROM 1 TO 4 METERS



(EUT: Dog Trainer)



Page 9 of 29

#### 4.2. The Field Strength of Radiation Emission Measurement Limits

4.2.1. Radiation Emission Measurement Limits According to FCC Part 15 Section 15.231(b)

| Frequency Range of Fundamental [MHz] | Field Strength of Fundamental Emission [Average] [µV/m] | Field Strength of Spurious Emission [Average] [µV/m] |
|--------------------------------------|---------------------------------------------------------|------------------------------------------------------|
| 40.66-40.70                          | 2250                                                    | 225                                                  |
| 70-130                               | 1250                                                    | 125                                                  |
| 130-174                              | 1250-3750                                               | 125-375                                              |
| 174-260                              | 3750                                                    | 375                                                  |
| 260-470                              | 3750-12500                                              | 375-1250                                             |
| Above 470                            | 12500                                                   | 1250                                                 |

Where F is the frequency in MHz, the formulas for calculating the maximum permitted fundamental field strengths are as follows: for the band 130-174 MHz, uV/m at 3 meters = 56.81818(F) - 6136.3636; for the band 260-470 MHz, uV/m at 3 meters = 41.6667(F) - 7083.3333. The maximum permitted unwanted emission level is 20 dB below the maximum permitted fundamental level.

4.2.2. Restricted Band Radiation Emission Measurement Limits According to FCC part 15 Section 15.205 and Section15.209.

## 4.3. Configuration of EUT on Measurement

The following equipment is installed on Radiated Emission Measurement to meet the commission requirements and operating regulations in a manner which tends to maximize its emission characteristics in normal application.

#### 4.3.1. Dog Trainer (EUT)

Model Number : GDG4-1 Serial Number : N/A

Manufacturer : Ho Lee Co., Ltd.

## 4.4. Operating Condition of EUT

- 4.4.1. Setup the EUT and simulator as shown as Section 4.1.
- 4.4.2. Turn on the power of all equipment.
- 4.4.3. Let the EUT work in TX mode measure it.



Page 10 of 29



4.5.Test Procedure

The EUT and its simulators are placed on a turntable, which is 0.8 meter high above ground(Below 1GHz). The EUT and its simulators are placed on a turntable, which is 1.5 meter high above ground(Above 1GHz). The turntable can rotate 360 degrees to determine the position of the maximum emission level. EUT is set 3.0 meters away from the receiving antenna, which is mounted on an antenna tower. The antenna can be moved up and down between 1.0 meter and 4 meters to find out the maximum emission level. Broadband antenna (calibrated bi-log antenna) is used as receiving antenna. Both horizontal and vertical polarizations of the antenna are set on measurement. In order to find the maximum emission levels, all of the EUT location must be manipulated according to ANSI C63.10:2013 on radiated emission measurement. The EUT was tested in 3 orthogonal planes.

The bandwidth of test receiver is set at 120 kHz in 30-1000 MHz, and 1 MHz in 1000-4000 MHz.

The frequency range from 30 MHz to 4000 MHz is checked.



Report No.: ATE20152131 Page 11 of 29

4.6. The Field Strength of Radiation Emission Measurement Results **PASS.** 

The frequency range 30MHz to 4000MHz is investigated.

| EUT:       | Dog Trainer |                |       |
|------------|-------------|----------------|-------|
| Model No.: | GDG4-1      | Power Supply:  | DC 3V |
| Test Mode: | TX          | Test Engineer: | Star  |

| Frequency | Reading  | Factor | Average | Result( | dBμV/m) | Limit(d | dBμV/m) | Margi  | n(dB)  | Polarization |
|-----------|----------|--------|---------|---------|---------|---------|---------|--------|--------|--------------|
| (MHz)     | (dBµV/m) | Corr.  | Factor  |         |         |         |         |        |        |              |
|           | PEAK     | (dB)   | (dB)    | AV      | PEAK    | AV      | PEAK    | AV     | PEAK   |              |
| 315       | 90.87    | -17.53 | -5.65   | 67.69   | 73.34   | 75.62   | 95.62   | -7.93  | -22.28 |              |
| 630       | 53.23    | -11.05 | -5.65   | 36.53   | 42.18   | 55.62   | 75.62   | -19.09 | -33.44 |              |
| 945       | 46.80    | -5.45  | -5.65   | 35.7    | 41.35   | 55.62   | 75.62   | 19.92  | -34.27 | Horizontal   |
| 1252      | 63.74    | -12.40 | -5.65   | 45.69   | 51.34   | 55.62   | 75.62   | -9.93  | -24.28 |              |
| 1711      | 57.73    | -10.24 | -5.65   | 34.09   | 39.74   | 55.62   | 75.62   | -21.53 | -35.88 |              |
| 1875      | 60.76    | -9.60  | -5.65   | 45.51   | 51.16   | 55.62   | 75.62   | -10.11 | -24.46 |              |
| 315       | 80.09    | -17.53 | -5.65   | 56.91   | 62.56   | 75.62   | 95.62   | -18.71 | -33.06 |              |
| 630       | 47.92    | -11.05 | -5.65   | 31.22   | 36.87   | 55.62   | 75.62   | -24.4  | -38.75 |              |
| 945       | 47.45    | 5.45   | -5.65   | 36.35   | 42.00   | 55.62   | 75.62   | -19.27 | -33.62 | Vertical     |
| 1252      | 59.60    | -12.40 | -5.65   | 41.55   | 47.20   | 55.62   | 75.62   | -14.07 | -28.42 |              |
| 1876      | 59.55    | -9.60  | -5.65   | 44.30   | 49.95   | 55.62   | 75.62   | -11.32 | -25.67 |              |
| 2500      | 54.26    | -7.40  | -5.65   | 41.21   | 46.86   | 55.62   | 75.62   | -14.41 | -28.76 |              |

#### Note:

- 1. Emissions attenuated more than 20 dB below the permissible value are not reported.
- 2. The field strength is calculated by adding the antenna factor, high pass filter loss(if used) and cable loss, and subtracting the amplifier gain(if any)from the measured reading. The basic equation calculation is as follows:

Result = Reading + Corrected Factor

Where Corrected Factor = Antenna Factor + Cable Loss + High Pass Filter Loss - Amplifier Gain

- 3. FCC Limit for Average Measurement =  $41.6667(315)-7083.3333 = 6041.6772 \,\mu\text{V/m} = 75.62 \,\mu\text{V/m}$
- 4. The spectral diagrams in appendix I display the measurement of peak values.
- 5. Average value= PK value + Average Factor (duty factor)
- 6. If the peak-detected amplitude can be shown to comply with the average limit, then it is not necessary to perform a separate average measurement.



Page 12 of 29

7. The EUT is tested radiation emission in three axes(X,Y,Z). The worst emissions are reported in three axes.

8. Pulse Desensitization Correction Factor

Pulse Width (PW) = 1.8ms

2/PW = 2/1.8ms = 1.11kHz

RBW (100 kHz) > 2/PW (1.11 kHz)

Therefore PDCF is not needed





Page 13 of 29

#### 5. 20DB OCCUPIED BANDWIDTH

## 5.1.Block Diagram of Test Setup

5.1.1.Block diagram of connection between the EUT and simulators



(EUT: Dog Trainer)

5.1.2.Semi-Anechoic Chamber Test Setup Diagram

#### ANTENNA ELEVATION VARIES FROM 1 TO 4 METERS



(EUT: Dog Trainer)

## 5.2. The Bandwidth of Emission Limit According To FCC Part 15 Section

## 15.231(c)

The bandwidth of emission shall be no wider than 0.25% of the center frequency. Therefore, the bandwidth of the emission limit is  $315 \text{ MHz} \times 0.25\% = 787.5 \text{ kHz}$ . Bandwidth is determined at the two points 20 dB down from the top of modulated carrier.



Page 14 of 29

#### 5.3.EUT Configuration on Measurement

The following equipment are installed on the bandwidth of emission Measurement to meet the commission requirements and operating regulations in a manner which tends to maximize its emission characteristics in normal application.

#### 5.3.1.Dog Trainer (EUT)

Model Number : GDG4-1 Serial Number : N/A

Manufacturer : Ho Lee Co., Ltd.

## 5.4. Operating Condition of EUT

- 5.4.1. Setup the EUT and simulator as shown as Section 5.1.
- 5.4.2. Turn on the power of all equipment.
- 5.4.3.Let the EUT work in TX mode measure it.

#### 5.5.Test Procedure

- 5.5.1.Set SPA Center Frequency = Fundamental frequency, RBW = 10 kHz, VBW = 30 kHz, Span = 1MHz.
- 5.5.2.Set SPA Max hold, Mark peak, -20 dB.

#### 5.6.Measurement Result

#### The EUT does meet the FCC requirement.

-20 dB bandwidth = 48 kHz < 787.5 kHz.

The spectral diagrams in appendix I.





Page 15 of 29

#### 6. RELEASE TIME MEASUREMENT

## 6.1.Block Diagram of Test Setup

6.1.1.Block diagram of connection between the EUT and simulators



(EUT: Dog Trainer)

6.1.2.Semi-Anechoic Chamber Test Setup Diagram

#### ANTENNA ELEVATION VARIES FROM 1 TO 4 METERS



(EUT: Dog Trainer)

## 6.2. Release Time Measurement According To FCC Part 15 Section 15.231(a)

Section 15.231(a) (1) A manually operated transmitter shall employ a switch that will automatically deactivate the transmitter within not more than 5 seconds of being released.



Page 16 of 29

#### 6.3.EUT Configuration on Measurement

The following equipment are installed on Release Time Measurement to meet the commission requirements and operating regulations in a manner which tends to maximize its emission characteristics in normal application.

#### 6.3.1. Dog Trainer (EUT)

Model Number : GDG4-1 Serial Number : N/A

Manufacturer : Ho Lee Co., Ltd.

## 6.4. Operating Condition of EUT

- 6.4.1. Setup the EUT and simulator as shown as Section 6.1.
- 6.4.2. Turn on the power of all equipment.
- 6.4.3.Let the EUT work in TX mode measure it.

#### 6.5. Test Procedure

- 6.5.1.Set SPA Center Frequency = Fundamental frequency, RBW = 100 kHz, VBW = 300 kHz, Span = 0 Hz. Sweep time = 10 s.
- 6.5.2.Set EUT as normal operation and press Transmitter button.
- 6.5.3.Set SPA View. Delta Mark time.

#### 6.6. Measurement Result

#### The release time less than 5 seconds.

Release Time = 1.48ms

The spectral diagrams in appendix I.



Page 17 of 29



7. AVERAGE FACTOR MEASUREMENT

#### 7.1.Block Diagram of Test Setup

7.1.1.Block diagram of connection between the EUT and simulators

EUT

(EUT: Dog Trainer)

7.1.2.Semi-Anechoic Chamber Test Setup Diagram

#### ANTENNA ELEVATION VARIES FROM 1 TO 4 METERS



#### 7.2. Average factor Measurement according to ANSI C63.10-2013

ANSI C63.10-2013 Section 7.5 Unless otherwise specified, when the radiated emission limits are expressed in terms of the average value of the emission, and pulsed operation is employed, the measurement field strength shall be determined by averaging over one complete pulse train, including blanking intervals, as long as the pulse train does not exceed 0.1 s (100 ms). In cases where the pulse train exceeds 0.1 s, the measured field strength shall be determined during a 0.1 s interval.64 The following procedure is an example of how the average value may be determined. The average field strength may be found by measuring the peak pulse amplitude (in log equivalent units) and determining the duty cycle correction factor (in dB) associated with the pulse modulation as shown in Equation (10):

Average factor in  $dB = 20 \log (duty \text{ cycle})$ 



Page 18 of 29

## 7.3.EUT Configuration on Measurement

The following equipment are installed on average factor Measurement to meet the commission requirements and operating regulations in a manner which tends to maximize its emission characteristics in normal application.

#### 7.3.1. Dog Trainer (EUT)

Model Number : GDG4-1 Serial Number : N/A

Manufacturer : Ho Lee Co., Ltd.

## 7.4. Operating Condition of EUT

- 7.4.1. Setup the EUT and simulator as shown as Section 7.1.
- 7.4.2. Turn on the power of all equipment.
- 7.4.3.Let the EUT work in TX mode measure it.

#### 7.5.Test Procedure

- 7.5.1.The time period over which the duty cycle is measured is 100 milliseconds, or the repetition cycle, whichever is a shorter time frame. The worst case (highest percentage on) duty cycle is used for the calculation.
- 7.5.2.Set SPA Center Frequency = Fundamental frequency, RBW = 100 kHz, VBW = 300 kHz, Span = 0 Hz.
- 7.5.3.Set EUT as normal operation.
- 7.5.4.Set SPA View. Delta Mark time.

#### 7.6. Measurement Result

#### The duty cycle is simply the on time divided by the period:

The duration of one cycle = 100ms

Effective period of the cycle =  $27.6 + (4.6 \times 3) + (1.8 \times 6)$ ms = 52.2 ms

DC =52.2ms/100ms=0.522

#### Therefore, the average factor is found by 20log0.522= -5.65dB

The spectral diagrams in appendix I.





8. ANTENNA REQUIREMENT

## 8.1. The Requirement

According to Section 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

#### 8.2. Antenna Construction

Device is equipped with permanent attached antenna, which isn't displaced by other antenna. The Antenna gain of EUT is 0dBi. Therefore, the equipment complies with the antenna requirement of Section 15.203.



Antenna





APPENDIX I (Test Curves)







#### **ACCURATE TECHNOLOGY CO., LTD.**

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 1# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: RICKY2015 #1

Standard: FCC Class B 3M Radiated

Test item: Radiation Test

Temp.( C)/Hum.(%) 25 C / 55 %

EUT: Dog Trainer

Mode: TX

Model: GDG4-1

Manufacturer: Ho Lee Co.,LTD

Note: Report NO.:ATE20152131

Polarization: Horizontal Power Source: DC 3V

Date: 2015/10/13 Time: 14:25:51

Engineer Signature: Ricky

Distance: 3m

| 70<br>60 |                |                     |                        |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ |           |                | 1 1                          | 1 1            |
|----------|----------------|---------------------|------------------------|-------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|-----------|----------------|------------------------------|----------------|
|          |                |                     |                        |                               | £                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                       |           |                |                              |                |
| 50       |                |                     |                        |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |           |                |                              |                |
| - 1      |                |                     |                        |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |           |                |                              |                |
| 40       |                |                     |                        |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                                     |           |                | 2<br>X                       | 3<br>X         |
| 30       |                | -                   |                        |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |           |                |                              |                |
| 20       | WAR WAR        | Manneyman           | man and have been been | appropriate and some state of | when the walk of the same of t | ال<br>المسلمانية                      | Janhadian | molyderiande   | reference and the second and | Actor Marketin |
| 30.      | .000 40        | 50 60 70            | 80                     |                               | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 300                                   | 400       | 500            | 600 70                       | 00 1000.0 MHz  |
|          | Freq.<br>(MHz) | Reading<br>(dBuV/m) | Factor<br>(dB)         | Result<br>(dBuV/m)            | Limit<br>(dBuV/m)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Margin<br>(dB)                        | Detector  | Height<br>(cm) | Degree<br>(deg.)             | Remark         |
|          | 315.0000       | 90.87               | -17.53                 | 73.34                         | 95.62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -22.28                                | peak      |                |                              |                |



Site: 1# Chamber



Page 22 of 29



## ACCURATE TECHNOLOGY CO., LTD.

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China

an Rd, Tel:+86-0755-26503290 R.China Fax:+86-0755-26503396

Job No.: RICKY2015 #2 Polarization: Vertical Standard: FCC Class B 3M Radiated Power Source: DC 3V Test item: Radiation Test Date: 2015/10/13

Temp.( C)/Hum.(%) 25 C / 55 % Time: 14:26:52

EUT: Dog Trainer Engineer Signature: Ricky

Mode: TX Distance: 3m Model: GDG4-1

Manufacturer: Ho Lee Co.,LTD

Note: Report NO.:ATE20152131





Page 23 of 29



#### ACCURATE TECHNOLOGY CO., LTD.

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 1# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: RICKY2015#3

Standard: FCC Class B 3M Radiated

Test item: Radiation Test

Temp.( C)/Hum.(%) 25 C / 55 %

EUT: Dog Trainer

Mode: TX
Model: GDG4-1

Manufacturer: Ho Lee Co.,LTD

Note: Report NO.:ATE20152131

Polarization: Horizontal Power Source: DC 3V

Date: 2015/10/13 Time: 14:39:34

Engineer Signature: Ricky

Distance: 3m





Page 24 of 29



#### ACCURATE TECHNOLOGY CO., LTD.

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 1# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: RICKY2015#4

Standard: FCC Class B 3M Radiated

Test item: Radiation Test

Temp.( C)/Hum.(%) 25 C / 55 %

EUT: Dog Trainer

Mode: TX

Model: GDG4-1

Manufacturer: Ho Lee Co.,LTD

Note: Report NO.:ATE20152131

Polarization: Vertical Power Source: DC 3V

Date: 2015/10/13 Time: 14:40:34

Engineer Signature: Ricky

Distance: 3m









Date: 26.Oct.2015 15:26:33



Page 26 of 29



26.Oct.2015 15:34:47 Date:

Release Time = 1.48ms





The graph shows the pattern of coding during the signal transmission.



Date: 26.Oct.2015 15:10:52

ATC

26.Oct.2015 15:12:32

Date:



The graph shows the duration of 'on' signal. From marker 1 to marker 2, duration is 27.6ms.



Date: 26.0ct.2015 15:13:08

The graph shows the duration of 'on' signal. From marker 1 to marker 2, duration is 1.8ms.







Date: 26.Oct.2015 15:13:38

The graph shows the duration of 'on' signal. From marker 1 to marker 2, duration is 4.6ms.