The smallest grammar problem

Edgar Dorausch 05. Juli 2019

Motivation und Anwendung

Motivation und Anwendung

• Kompression

Motivation und Anwendung

- Kompression
- Mustererkennung
 - z.B. DNA-Analyse, NLP

Kontextfreie Grammatik

Quadrupel $(\Sigma, \Gamma, S, \Delta)$ mit

- Σ Terminalalphabet
- Γ Nichtterminalalphabet
- S Startsymbol
- Δ Menge von Regeln der Form $T \to \alpha$ $T \in \Gamma$; $\alpha \in (\Sigma \cup \Gamma)^*$

Besonderheit:

Grammatiken sollen nur ein Wort erzeugen (straight-line grammar)

- Grammatik azyklisch
- Für jedes $T \in \Gamma$ existiert nur eine Regel

Expansion eines Strings $\boldsymbol{\alpha}$

Erschöpfendes Anwenden der Regeln

Notation: $\langle \alpha \rangle$

Expansion eines Strings α

Erschöpfendes Anwenden der Regeln

Notation: $\langle \alpha \rangle$

Größe einer Grammatik G

Anzahl der Zeichen in den rechten Seiten der Grammatikregeln

Notation:
$$\mathbf{m} = |G| = \sum_{(T \to \alpha) \in \Delta} |\alpha|$$

4

Expansion eines Strings α

Erschöpfendes Anwenden der Regeln

Notation: $\langle \alpha \rangle$

Größe einer Grammatik G

Anzahl der Zeichen in den rechten Seiten der Grammatikregeln

Notation:
$$\mathbf{m} = |G| = \sum_{(T \to \alpha) \in \Delta} |\alpha|$$

Größe der kleinsten Grammatik G

Notation: m*

Beispiel

$$G \colon \left\{ egin{aligned} S &
ightarrow rha Tber \ T
ightarrow bar \end{aligned}
ight\}$$

 $\langle S \rangle = rhabarber_barbara$

Beispiel

$$G: \left\{ egin{aligned} S
ightarrow rha Tber \ T
ightarrow bar \end{aligned}
ight\}$$

$$\langle S
angle =$$
 rhabarber_barbara $|\langle S
angle | = 17$

Beispiel

$$G: \left\{ egin{aligned} S
ightarrow rha Tber \ T
ightarrow bar \end{aligned}
ight\}$$

$$\langle \mathcal{S}
angle = rhabarber_barbara$$

 $|\langle \mathcal{S}
angle| = 17$
 $|\mathcal{G}| = 11$

Approximation Ratio

$$a(n) = \max_{\alpha \in \Sigma^n} \frac{\text{m für } \alpha}{m^* \text{ für } \alpha}$$

Approximation Ratio

$$a(n) = \max_{\alpha \in \Sigma^n} \frac{\text{m für } \alpha}{m^* \text{ für } \alpha}$$

Worstcase!

Tabelle 1: Landau Notation

$$\begin{array}{ccc} f \in o(g) & "f < g" \\ \text{(Upper bound)} \ f \in \mathcal{O}(g) & "f \leq g" \\ f \in \Theta(g) & "f = g" \\ \text{(Lower bound)} \ f \in \Omega(g) & "f \geq g" \\ f \in \omega(g) & "f > g" \end{array}$$

• Vertex Cover auf SGP reduzieren

- Vertex Cover auf SGP reduzieren
- Approximationsschranke für polynomielle Algorithmen

- Vertex Cover auf SGP reduzieren
- Approximationsschranke für polynomielle Algorithmen
- Zusammenhang mit Addition Chains (nicht im Vortrag)

Vertex Cover

(Minimale) Menge von Knoten, sodass jede Kante mindestens einen dieser Knoten enthält.

Vertex Cover

(Minimale) Menge von Knoten, sodass jede Kante mindestens einen dieser Knoten enthält.

9

Vertex Cover

(Minimale) Menge von Knoten, sodass jede Kante mindestens einen dieser Knoten enthält.

(Kein Vertex Cover!)

Vertex Cover

(Minimale) Menge von Knoten, sodass jede Kante mindestens einen dieser Knoten enthält.

NP-härte

• Graphen mit maximalen Knoten-Grad 3

NP-härte

- Graphen mit maximalen Knoten-Grad 3
- Graph als Wort (Unbeschränktes Alphabet)

NP-härte

- Graphen mit maximalen Knoten-Grad 3
- Graph als Wort (Unbeschränktes Alphabet)
- Kleinsete Grammatik → Vertex Cover

NP-härte

- Graphen mit maximalen Knoten-Grad 3
- Graph als Wort (Unbeschränktes Alphabet)
- Kleinsete Grammatik → Vertex Cover
- Upper bound für effiziente Approximation (außer P = NP)

Beispiel Graph

$$V = \{a, b, c, d\}$$
$$E = \{\{a, b\}, \{a, c\}, \{b, c\}, \{b, d\}\}$$

hen zu String überführen

$$\alpha = \prod_{\mathbf{v}_i \in \mathbf{V}} (\#\mathbf{v}_i \ddagger \mathbf{v}_i \# \ddagger)^2 \prod_{\mathbf{v}_i \in \mathbf{V}} (\#\mathbf{v}_i \# \ddagger) \prod_{\{\mathbf{v}_i, \mathbf{v}_j\} \in \mathbf{E}} (\#\mathbf{v}_i \# \mathbf{v}_j \# \ddagger)$$

phen zu String überführen

$$\alpha = \prod_{v_i \in V} (\#v_i \ddagger v_i \# \ddagger)^2 \prod_{v_i \in V} (\#v_i \# \ddagger) \prod_{\{v_i, v_j\} \in E} (\#v_i \# v_j \# \ddagger)$$

$$V = \{a, b, c, d\}; E = \Big\{ \{a, b\}, \{a, c\}, \{b, c\}, \{b, d\} \Big\}$$

$$\alpha_{Beispiel} = (\#a \ddagger a \# \ddagger)^2 (\#b \ddagger b \# \ddagger)^2 (\#c \ddagger c \# \ddagger)^2 (\#d \ddagger d \# \ddagger)^2$$

$$\#a \# \ddagger \#b \# \ddagger \#c \# \ddagger \#d \# \ddagger$$

$$\#a \# b \# \ddagger \#a \# c \# \ddagger \#b \# c \# \ddagger \#b \#d \# \ddagger$$

```
\alpha_{Beispiel} = (\#a \ddagger a \#\ddagger)^2 (\#b \ddagger b \#\ddagger)^2 (\#c \ddagger c \#\ddagger)^2 (\#d \ddagger d \#\ddagger)^2
\#a \# \ddagger \#b \# \ddagger \#c \# \ddagger \#d \#\ddagger
\#a \#b \# \ddagger \#a \#c \# \ddagger \#b \#c \# \ddagger \#b \#d \#\ddagger
```

Eigenschaften der kleinsten Grammatik

• Jedes Nichtterminal expandiert zu $\#v_i$, $v_i\#$ oder $\#v_i\#$

```
\alpha_{Beispiel} = (\#a \ddagger a \#\ddagger)^2 (\#b \ddagger b \#\ddagger)^2 (\#c \ddagger c \#\ddagger)^2 (\#d \ddagger d \#\ddagger)^2
\#a \# \ddagger \#b \# \ddagger \#c \# \ddagger \#d \#\ddagger
\#a \#b \# \ddagger \#a \#c \# \ddagger \#b \#c \# \ddagger \#b \#d \#\ddagger
```

Eigenschaften der kleinsten Grammatik

- Jedes Nichtterminal expandiert zu $\#v_i$, $v_i\#$ oder $\#v_i\#$
- Enthält Regeln der Form $T_j \to \#v_i$ und $T_j \to v_i \#v_j$

```
\alpha_{Beispiel} = (\#a \ddagger a \#\ddagger)^2 (\#b \ddagger b \#\ddagger)^2 (\#c \ddagger c \#\ddagger)^2 (\#d \ddagger d \#\ddagger)^2
\#a \# \ddagger \#b \# \ddagger \#c \# \ddagger \#d \#\ddagger
\#a \#b \# \ddagger \#a \#c \# \ddagger \#b \#c \# \ddagger \#b \#d \#\ddagger
```

Eigenschaften der kleinsten Grammatik

- Jedes Nichtterminal expandiert zu $\#v_i$, $v_i\#$ oder $\#v_i\#$
- ullet Enthält Regeln der Form $T_j o \# v_i$ und $T_j o v_i \#$
- $C = \{v_i \in V | \exists T_j \to \#v_i \#\}$ ist (minimale) Vertex Cover

```
\alpha_{Beispiel} = (\#a \pm a \# \pm)^2 (\#b \pm b \# \pm)^2 (\#c \pm c \# \pm)^2 (\#d \pm d \# \pm)^2
               \#a\# \pm \#b\# \pm \#c\# \pm \#d\# \pm
               #a#b# ! #a#c# ! #b#c# ! #b#d#!
```

Eigenschaften der kleinsten Grammatik

- Jedes Nichtterminal expandiert zu $\#v_i$, $v_i\#$ oder $\#v_i\#$
- Enthält Regeln der Form $T_i \to \#v_i$ und $T_i \to v_i \#v_i$
- $C = \{v_i \in V | \exists T_i \rightarrow \#v_i \#\}$ ist (minimale) Vertex Cover

13

Approximation Ratio

•
$$m^* = 15|V| + 3|E| + |C|$$

- $m^* = 15|V| + 3|E| + |C|$
- Vertex Cover kleiner als $\frac{145}{144} \cdot |C|$ finden ist (*NP*) hart $(\frac{145}{144} \approx 1,006944...)$

- $m^* = 15|V| + 3|E| + |C|$
- Vertex Cover kleiner als $\frac{145}{144} \cdot |C|$ finden ist (*NP*) hart $(\frac{145}{144} \approx 1,006944...)$
- $\frac{3}{2}|V| \ge |E| \& \frac{1}{3}|V| \le |C|$

- $m^* = 15|V| + 3|E| + |C|$
- Vertex Cover kleiner als $\frac{145}{144} \cdot |C|$ finden ist (*NP*) hart $(\frac{145}{144} \approx 1,006944...)$
- $\frac{3}{2}|V| \ge |E| \& \frac{1}{3}|V| \le |C|$

$$a(n) = \max_{\alpha \in \Sigma^n} \frac{m}{m^*}$$

- $m^* = 15|V| + 3|E| + |C|$
- Vertex Cover kleiner als $\frac{145}{144}\cdot |C|$ finden ist (*NP*) hart $(\frac{145}{144}\approx 1,006944...)$
- $\frac{3}{2}|V| \ge |E| \& \frac{1}{3}|V| \le |C|$

$$a(n) = \max_{\alpha \in \Sigma^n} \frac{m}{15|V| + 3|E| + |C|}$$

- $m^* = 15|V| + 3|E| + |C|$
- Vertex Cover kleiner als $\frac{145}{144} \cdot |C|$ finden ist (*NP*) hart $(\frac{145}{144} \approx 1,006944...)$
- $\frac{3}{2}|V| \ge |E| \& \frac{1}{3}|V| \le |C|$

$$a(n) \ge \max_{\alpha \in \Sigma^n} \frac{15|V| + 3|E| + \frac{145}{144}|C|}{15|V| + 3|E| + |C|}$$

- $m^* = 15|V| + 3|E| + |C|$
- Vertex Cover kleiner als $\frac{145}{144} \cdot |C|$ finden ist (*NP*) hart $(\frac{145}{144} \approx 1,006944...)$
- $\frac{3}{2}|V| \ge |E| \& \frac{1}{3}|V| \le |C|$

$$a(n) \ge \max_{\alpha \in \Sigma^n} \frac{15|V| + 3 \cdot \frac{3}{2}|V| + \frac{145}{144} (\frac{1}{3}|V|)}{15|V| + 3 \cdot \frac{3}{2}|V| + \frac{1}{3}|V|}$$

- $m^* = 15|V| + 3|E| + |C|$
- Vertex Cover kleiner als $\frac{145}{144}\cdot |C|$ finden ist (*NP*) hart $(\frac{145}{144}\approx 1,006944...)$
- $\frac{3}{2}|V| \ge |E| \& \frac{1}{3}|V| \le |C|$

$$a(n) \ge \max_{\alpha \in \Sigma^n} \frac{8569}{8568}$$

- $m^* = 15|V| + 3|E| + |C|$
- Vertex Cover kleiner als $\frac{145}{144} \cdot |C|$ finden ist (*NP*) hart $(\frac{145}{144} \approx 1,006944...)$
- $\frac{3}{2}|V| \ge |E| \& \frac{1}{3}|V| \le |C|$

$$a(n) \ge \frac{8569}{8568} \approx 1,0001167...$$

• LZ78

- LZ78
- Bisection

- LZ78
- Bisection
- Sequential

- LZ78
- Bisection
- Sequential
- Global algorithms

- LZ78
- Bisection
- Sequential
- Global algorithms
 - Longest Match

- LZ78
- Bisection
- Sequential
- Global algorithms
 - Longest Match
 - Greedy

- LZ78
- Bisection
- Sequential
- Global algorithms
 - Longest Match
 - Greedy
 - Re-Pair

LZ78

• Gänginger Kompressionsalgorithmus

LZ78

- Gänginger Kompressionsalgorithmus
- Abraham Lempel & Jacob Ziv (1978)

LZ78

- Gänginger Kompressionsalgorithmus
- Abraham Lempel & Jacob Ziv (1978)
 Verwendung GIF & TIFF

LZ78 - Datenstrukturen

• Strings \rightarrow Sequenzen von Paaren (i, c)i...Index eines Vorgänger-Paares oder 0; $c \in \Sigma$

$$(0,\underline{a})$$
 (1,b) $(0,\underline{b})$ (2,a) (3,a) (2,€)
1 2 3 4 5 6

LZ78 - Datenstrukturen

Strings → Sequenzen von Paaren (i, c)
 i...Index eines Vorgänger-Paares oder 0; c ∈ Σ

LZ78 - Datenstrukturen

- Strings → Sequenzen von Paaren (i, c)
 i...Index eines Vorgänger-Paares oder 0; c ∈ Σ
- Paar $\hat{=}$ Substring

LZ78 - Datenstrukturen

- Strings → Sequenzen von Paaren (i, c)
 i...Index eines Vorgänger-Paares oder 0; c ∈ Σ
- Paar $\hat{=}$ Substring
- Wenn i gleich 0 dann ist dieser Substring gleich c
- Andernfalls ist der Substring des i-ten Paares gefolgt von c

LZ78 - Datenstrukturen

- Strings → Sequenzen von Paaren (i, c)
 i...Index eines Vorgänger-Paares oder 0; c ∈ Σ
- Paar $\hat{=}$ Substring
- Wenn i gleich 0 dann ist dieser Substring gleich c
- Andernfalls ist der Substring des i-ten Paares gefolgt von c

LZ78 - Grammatiken

• Paar $\hat{=}$ Nichterminal

LZ78 - Grammatiken

$$\bullet \ \begin{cases} X_j \to c, & i = 0 \\ X_j \to X_i c, & \text{sonst} \end{cases}$$

LZ78 - Grammatiken

$$\begin{cases} X_j \to c, & i = 0 \\ X_j \to X_i c, & \text{sonst} \end{cases}$$

$$\bullet \ \ S \to X_1 ... X_k$$

LZ78 - Grammatiken

- Paar $\hat{=}$ Nichterminal
- $\bullet \begin{cases} X_j \to c, & i = 0 \\ X_j \to X_j c, & \text{sonst} \end{cases}$
- $S \rightarrow X_1...X_k$

$$S \to X_1 X_2 X_3 X_4 X_5 X_6$$
 (0,a) (1,b) (0,b) (2,a) (3,a) (2,€)
 $X_1 \to a; X_2 \to X_1 b; X_3 \to b$ a ab b aba ba ab€
 $X_4 \to X_2 a; X_5 \to X_3 a; X_4 \to X_6 \in$

LZ78 - Algorithmus

• String sequenziell (von links nach rechts) übersetzt

- String sequenziell (von links nach rechts) übersetzt
- ullet Iteration: finde kürzestes Präfix γ des in Strings das nicht Expansion eines bereits erzeugten Paars ist

- String sequenziell (von links nach rechts) übersetzt
- ullet Iteration: finde kürzestes Präfix γ des in Strings das nicht Expansion eines bereits erzeugten Paars ist
- Übersetzungsvorschrift:

- String sequenziell (von links nach rechts) übersetzt
- ullet Iteration: finde kürzestes Präfix γ des in Strings das nicht Expansion eines bereits erzeugten Paars ist
- Übersetzungsvorschrift:
 - 1. Wenn $|\gamma| = 1 \Rightarrow (0, \gamma)$

- String sequenziell (von links nach rechts) übersetzt
- ullet Iteration: finde kürzestes Präfix γ des in Strings das nicht Expansion eines bereits erzeugten Paars ist
- Übersetzungsvorschrift:
 - 1. Wenn $|\gamma| = 1 \Rightarrow (0, \gamma)$
 - 2. Andernfalls ist $\gamma = \alpha c$.
 - α ... Expansion eines Paars mit dem Index i_{α}
 - \Rightarrow Paar: (i, c)

Beispiel

aabbababaab€

Beispiel

aabbababaab€

$$(0, a)$$
 abbababaab \in

Beispiel

aabbababaab€
$$\underbrace{(0,a)}_{a} \text{ abbababaab} \in$$

$$\underbrace{(0,a)}_{a} \underbrace{(1,b)}_{ab} \text{ bababaab} \in$$

$$\underbrace{(0,a)}_{a} \underbrace{(1,b)}_{ab} \underbrace{(0,b)}_{b} \text{ ababaab} \in$$

aabbababaab€
$$\underbrace{(0,a)}_{a} \text{ abbababaab} \in$$

$$\underbrace{(0,a)}_{a} \underbrace{(1,b)}_{ab} \text{ bababaab} \in$$

$$\underbrace{(0,a)}_{a} \underbrace{(1,b)}_{ab} \underbrace{(0,b)}_{b} \text{ ababaab} \in$$

$$\underbrace{(0,a)}_{a} \underbrace{(1,b)}_{ab} \underbrace{(0,b)}_{b} \underbrace{(2,a)}_{aba} \text{ baab} \in$$

aabbabababe

$$\underbrace{(0,a)}_{a} \text{ abbababaab} \in$$

$$\underbrace{(0,a)}_{a} \underbrace{(1,b)}_{ab} \text{ bababaab} \in$$

$$\underbrace{(0,a)}_{a} \underbrace{(1,b)}_{ab} \underbrace{(0,b)}_{b} \text{ ababaab} \in$$

$$\underbrace{(0,a)}_{a} \underbrace{(1,b)}_{ab} \underbrace{(0,b)}_{b} \underbrace{(2,a)}_{aba} \text{ baab} \in$$

$$\underbrace{(0,a)}_{a} \underbrace{(1,b)}_{ab} \underbrace{(0,b)}_{b} \underbrace{(2,a)}_{aba} \underbrace{(3,a)}_{ba} \text{ ab} \in$$

aabbababab€
$$\underbrace{(0,a)}_{a} \text{ abbababab} \in$$

$$\underbrace{(0,a)}_{a} \underbrace{(1,b)}_{ab} \text{ bababaab} \in$$

$$\underbrace{(0,a)}_{a} \underbrace{(1,b)}_{ab} \underbrace{(0,b)}_{b} \text{ ababaab} \in$$

$$\underbrace{(0,a)}_{a} \underbrace{(1,b)}_{ab} \underbrace{(0,b)}_{b} \underbrace{(2,a)}_{aba} \underbrace{(3,a)}_{ba} \text{ ab} \in$$

$$\underbrace{(0,a)}_{a} \underbrace{(1,b)}_{ab} \underbrace{(0,b)}_{b} \underbrace{(2,a)}_{aba} \underbrace{(3,a)}_{ba} \underbrace{(2,€)}_{ab€}$$

Lower Bound

• Definiere α_k (n = $|\alpha_k|$)

Lower Bound

• Bestimme upper bound von m^* $m^* \in \mathcal{O}(f_u(n))$

Lower Bound

- Bestimme upper bound von m^* $m^* \in \mathcal{O}(f_u(n))$
- Bestimme lower bound von m $m \in \Omega(f_l(n))$

Lower Bound

- Definiere α_k (n = $|\alpha_k|$)
- Bestimme upper bound von m* $m^* \in \mathcal{O}(f_u(n))$
- Bestimme lower bound von m $m \in \Omega(f_I(n))$

$$\Rightarrow a(n) \in \Omega(\frac{f_1(n)}{f_u(n)})$$

$$\alpha_k = a^1 a^2 \dots a^k \underbrace{b a^k \dots b a^k}_{(k+1)^2}$$

$$\alpha_k = a^1 a^2 \dots a^k \underbrace{ba^k \dots ba^k}_{(k+1)^2}$$

$$\alpha_k = a^{k(k+1)/2} (ba^k)^{(k+1)^2}$$

$$\alpha_k = a^1 a^2 \dots a^k \underbrace{b a^k \dots b a^k}_{(k+1)^2}$$

$$\alpha_k = a^{k(k+1)/2} (ba^k)^{(k+1)^2}$$

•
$$|\alpha_k| = k \frac{k+1}{2} + (1+k)(k+1)^2$$

$$\alpha_k = a^1 a^2 \dots a^k \underbrace{b a^k \dots b a^k}_{(k+1)^2}$$

$$\alpha_k = a^{k(k+1)/2} (ba^k)^{(k+1)^2}$$

$$\bullet \ |\alpha_k| = k^3 + \frac{7}{2}k^2 + \frac{7}{2}k + 1$$

$$\alpha_k = a^1 a^2 \dots a^k \underbrace{ba^k \dots ba^k}_{(k+1)^2}$$

$$\alpha_k = a^{k(k+1)/2} (ba^k)^{(k+1)^2}$$

- $\bullet \ |\alpha_k| = k^3 + \frac{7}{2}k^2 + \frac{7}{2}k + 1$
- $n = |\alpha_k| \in \Theta(k^3)$

Lower Bound (2/4)

$$\alpha_k = a^1 a^2 \dots a^k \underbrace{b a^k \dots b a^k}_{(k+1)^2}$$

$$\alpha_k = a^{k(k+1)/2} (b a^k)^{(k+1)^2}$$

$$\mathcal{O}(\underbrace{1 + \log(\frac{k^2 + k}{2})}_{a^{k(k+1)/2}} + \underbrace{\log((k+1)^2) + 1 + 1 + \log(k)}_{(ba^k)^{(k+1)^2}})$$

Lower Bound (2/4)

$$\alpha_k = a^1 a^2 ... a^k \underbrace{ba^k ... ba^k}_{(k+1)^2}$$
 $\alpha_k = a^{k(k+1)/2} (ba^k)^{(k+1)^2}$

$$\mathcal{O}(\underbrace{1 + \log(\frac{k^2 + k}{2})}_{a^{k(k+1)/2}} + \underbrace{\log((k+1)^2) + 1 + 1 + \log(k))}_{(ba^k)^{(k+1)^2}})$$

•
$$m^* \in \mathcal{O}(1 + \log(\frac{k^2 + k}{2}) + \log((k+1)^2) + 1 + 1 + \log(k))$$

Lower Bound (2/4)

$$\alpha_k = a^1 a^2 \dots a^k \underbrace{ba^k \dots ba^k}_{(k+1)^2}$$

$$\alpha_k = a^{k(k+1)/2} (ba^k)^{(k+1)^2}$$

$$\mathcal{O}(\underbrace{1 + \log(\frac{k^2 + k}{2})}_{a^{k(k+1)/2}} + \underbrace{\log((k+1)^2) + 1 + 1 + \log(k)}_{(ba^k)^{(k+1)^2}})$$

•
$$m^* \in \mathcal{O}(\log(\frac{k^2+k}{2}) + \log((k+1)^2) + \log(k))$$

Lower Bound (2/4)

$$\alpha_k = a^1 a^2 \dots a^k \underbrace{b a^k \dots b a^k}_{(k+1)^2}$$

$$\alpha_k = a^{k(k+1)/2} (b a^k)^{(k+1)^2}$$

• Es existiert Grammatik mit Größe: (Lemmma 1...3)

$$\mathcal{O}(\underbrace{1 + \log(\frac{k^2 + k}{2})}_{a^{k(k+1)/2}} + \underbrace{\log((k+1)^2) + 1 + 1 + \log(k)}_{(ba^k)^{(k+1)^2}})$$

• $m^* \in \mathcal{O}(2\log(k) + 2\log(k) + \log(k))$

Lower Bound (2/4)

$$\alpha_k = a^1 a^2 \dots a^k \underbrace{b a^k \dots b a^k}_{(k+1)^2}$$

$$\alpha_k = a^{k(k+1)/2} (b a^k)^{(k+1)^2}$$

• Es existiert Grammatik mit Größe: (Lemmma 1...3)

$$\mathcal{O}(\underbrace{1 + \log(\frac{k^2 + k}{2})}_{a^{k(k+1)/2}} + \underbrace{\log((k+1)^2) + 1 + 1 + \log(k)}_{(ba^k)^{(k+1)^2}})$$

• $m^* \in \mathcal{O}(\log(k))$

Lower Bound (2/4)

$$\alpha_k = a^1 a^2 \dots a^k \underbrace{ba^k \dots ba^k}_{(k+1)^2}$$

$$\alpha_k = a^{k(k+1)/2} (ba^k)^{(k+1)^2}$$

$$\mathcal{O}(\underbrace{1 + \log(\frac{k^2 + k}{2})}_{a^{k(k+1)/2}} + \underbrace{\log((k+1)^2) + 1 + 1 + \log(k)}_{(ba^k)^{(k+1)^2}})$$

- $m^* \in \mathcal{O}(\log(k))$
- $m^* \in \mathcal{O}(\log(n^{\frac{1}{3}})) \ n \in \Theta(k^3)$

Lower Bound (2/4)

$$\alpha_k = a^1 a^2 ... a^k \underbrace{ba^k ... ba^k}_{(k+1)^2}$$

 $\alpha_k = a^{k(k+1)/2} (ba^k)^{(k+1)^2}$

• Es existiert Grammatik mit Größe: (Lemmma 1...3) $\mathcal{O}(\underbrace{1 + log(\frac{k^2 + k}{2})}_{a^{k(k+1)/2}} + \underbrace{log((k+1)^2) + 1 + 1 + log(k)}_{(ba^k)^{(k+1)^2}})$

- $m^* \in \mathcal{O}(\log(k))$
- $m^* \in \mathcal{O}(\log(n^{\frac{1}{3}})) \ n \in \Theta(k^3)$
- $m^* \in \mathcal{O}(\log(n))$

Lower Bound (3/4)

$$\alpha_k = a^1 a^2 ... a^k \underbrace{b a^k ... b a^k}_{(k+1)^2}$$

$$\alpha_k = a^{k(k+1)/2} (b a^k)^{(k+1)^2}$$

String wird in zwei Phasen in eine Paar-Sequenz übersetzt

$$\alpha_k = a^1 a^2 \dots a^k \underbrace{b a^k \dots b a^k}_{(k+1)^2}$$

$$\alpha_k = a^{k(k+1)/2} (b a^k)^{(k+1)^2}$$

- String wird in zwei Phasen in eine Paar-Sequenz übersetzt
- Erste Phase: alle Strings a...ak zu Paaren übersetzt

$$\alpha_k = a^1 a^2 \dots a^k \underbrace{b a^k \dots b a^k}_{(k+1)^2}$$

$$\alpha_k = a^{k(k+1)/2} (b a^k)^{(k+1)^2}$$

- String wird in zwei Phasen in eine Paar-Sequenz übersetzt
- Erste Phase: alle Strings a...ak zu Paaren übersetzt
- Zweite Phase: a^iba^j für alle $i,j \in [0,k]$ wird ein Paar erstellt

$$\alpha_k = a^1 a^2 \dots a^k \underbrace{ba^k \dots ba^k}_{(k+1)^2}$$

$$\alpha_k = a^{k(k+1)/2} (ba^k)^{(k+1)^2}$$

- String wird in zwei Phasen in eine Paar-Sequenz übersetzt
- Erste Phase: alle Strings a...ak zu Paaren übersetzt
- Zweite Phase: a^iba^j für alle $i,j \in [0,k]$ wird ein Paar erstellt
- $m \in \Omega(\sum_{z=1}^{k} z + (k+1)^2) = \Omega(k^2)$

$$\alpha_k = a^1 a^2 \dots a^k \underbrace{b a^k \dots b a^k}_{(k+1)^2}$$

$$\alpha_k = a^{k(k+1)/2} (b a^k)^{(k+1)^2}$$

- String wird in zwei Phasen in eine Paar-Sequenz übersetzt
- Erste Phase: alle Strings a...a^k zu Paaren übersetzt
- Zweite Phase: a^iba^j für alle $i,j \in [0,k]$ wird ein Paar erstellt
- $m \in \Omega(\sum_{z=1}^{k} z + (k+1)^2) = \Omega(k^2)$
- $m \in \Omega(n^{2/3})$

$$\alpha_k = a^1 a^2 ... a^k \underbrace{b a^k ... b a^k}_{(k+1)^2}$$

$$\alpha_k = a^{k(k+1)/2} (b a^k)^{(k+1)^2}$$

$$m^* \in \mathcal{O}(\log n)$$

$$m \in \Omega(n^{2/3})$$

Lower Bound (4/4)

 $m^* \in \mathcal{O}(\log n)$

$$\alpha_k = a^1 a^2 ... a^k \underbrace{b a^k ... b a^k}_{(k+1)^2}$$

$$\alpha_k = a^{k(k+1)/2} (b a^k)^{(k+1)^2}$$

$$a(n) \in \Omega(\frac{n^{2/3}}{\log n})$$

 $m \in \Omega(n^{2/3})$

Upper bound

• m proportional zu zu Anzahl der Nichterminale

- m proportional zu zu Anzahl der Nichterminale
- Nichterminale in Gruppen zerlegt

- m proportional zu zu Anzahl der Nichterminale
- Nichterminale in Gruppen zerlegt
- Abhängigkeit Anzahl Nichterminal und Anzahl Gruppen

- m proportional zu zu Anzahl der Nichterminale
- Nichterminale in Gruppen zerlegt
- Abhängigkeit Anzahl Nichterminal und Anzahl Gruppen
- Abschätzung der Gruppenanzahl

- m proportional zu zu Anzahl der Nichterminale
- Nichterminale in Gruppen zerlegt
- Abhängigkeit Anzahl Nichterminal und Anzahl Gruppen
- Abschätzung der Gruppenanzahl
- *m* bestimmen

Upper bound (1/4)

Approximationsalgorithmen - Global Algorithms

Global Algorithms

• Klasse von Algorithmen

Global Algorithms

- Klasse von Algorithmen
- Haben alle ein upper bound von $\mathcal{O}((\frac{n}{\log(n)})^{\frac{2}{3}})$

Global Algorithms

- Klasse von Algorithmen
- Haben alle ein upper bound von $\mathcal{O}((\frac{n}{\log(n)})^{\frac{2}{3}})$
- · Lower bounds sind sehr schlecht

Global Algorithms - Verfahren

Grammatik schrittweise verbessert

- Grammatik schrittweise verbessert
- Initialisiere Grammatik mit $S \to \alpha$

- Grammatik schrittweise verbessert
- Initialisiere Grammatik mit $S \to \alpha$
- ullet Wähle einen String γ

- Grammatik schrittweise verbessert
- Initialisiere Grammatik mit $S \to \alpha$
- ullet Wähle einen String γ
- Füge $T \rightarrow \gamma$ (T... neues Nichtterminal)

- Grammatik schrittweise verbessert
- Initialisiere Grammatik mit $S \to \alpha$
- ullet Wähle einen String γ
- Füge $T \rightarrow \gamma$ (T... neues Nichtterminal)

Auswahl von γ

• $|\gamma| \ge 2$

Auswahl von γ

- $|\gamma| \geq 2$
- \bullet γ kommst mind. zwei mal in Grammatik vor (ohne Überschneidung)

Auswahl von γ

- $|\gamma| \geq 2$
- \bullet γ kommst mind. zwei mal in Grammatik vor (ohne Überschneidung)
- $\bullet\,$ Alle Strings länger als γ kommen seltener vor

Upper Bound

• Ähnlich upper bound von LZ78

Upper Bound

- Ähnlich upper bound von LZ78
- Auflistung von Substrings der Länge 2

Upper Bound

- Ähnlich upper bound von LZ78
- Auflistung von Substrings der Länge 2
- Einordnung in Gruppen

Upper Bound

- Ähnlich upper bound von LZ78
- Auflistung von Substrings der Länge 2
- Einordnung in Gruppen
- Abschätzen der Gesamt-Expansionslänge der Gruppen

Upper Bound (1/4)

• Wähle $\frac{2}{9}m$ Substrings der Länge 2 (ohne Überschneidung)

- Wähle ²/₉ m Substrings der Länge 2 (ohne Überschneidung)
- ist immer möglich

Upper Bound (2/4)

• Sortiere Substrings aufsteigend nach deren Expansionslänge

- Sortiere Substrings aufsteigend nach deren Expansionslänge
- Füge die ersten 2m* Substrings der ersten Gruppe hinzu

- Sortiere Substrings aufsteigend nach deren Expansionslänge
- Füge die ersten 2m* Substrings der ersten Gruppe hinzu
- Füge die nächsten 3m* Substrings der zweiten Gruppe hinzu

- Sortiere Substrings aufsteigend nach deren Expansionslänge
- Füge die ersten 2m* Substrings der ersten Gruppe hinzu
- Füge die nächsten 3m* Substrings der zweiten Gruppe hinzu
- usw. ...(bis zur Gruppe mit gm^* Elementen)

- Sortiere Substrings aufsteigend nach deren Expansionslänge
- Füge die ersten 2m* Substrings der ersten Gruppe hinzu
- Füge die nächsten 3m* Substrings der zweiten Gruppe hinzu
- usw. ...(bis zur Gruppe mit gm^* Elementen)
- $2m^* + 3m^* + ... + gm^*(g+1)m^* > \frac{2}{9}m$

- Sortiere Substrings aufsteigend nach deren Expansionslänge
- Füge die ersten 2m* Substrings der ersten Gruppe hinzu
- ullet Füge die nächsten $3m^*$ Substrings der zweiten Gruppe hinzu
- usw. ...(bis zur Gruppe mit gm^* Elementen)
- $2m^* + 3m^* + ... + gm^*(g+1)m^* > \frac{2}{9}m$
- $m^* \sum_{k=2}^{g+1} k = m^* (\frac{g^2}{2} + \frac{3g}{2}) > \frac{2}{9} m$

- Sortiere Substrings aufsteigend nach deren Expansionslänge
- Füge die ersten 2m* Substrings der ersten Gruppe hinzu
- Füge die nächsten 3m* Substrings der zweiten Gruppe hinzu
- usw. ...(bis zur Gruppe mit gm^* Elementen)
- $2m^* + 3m^* + ... + gm^*(g+1)m^* > \frac{2}{9}m$
- $m^* \sum_{k=2}^{g+1} k = m^* (\frac{g^2}{2} + \frac{3g}{2}) > \frac{2}{9} m$
- $m \in \mathcal{O}(g^2m^*)$

Upper Bound (3/4)

ullet Sei $\sigma=$ "Gesamt-Expansionslänge"

- Sei $\sigma =$ "Gesamt-Expansionslänge"
- Für jedes α in i-ten Gruppen gilt: $|\langle \alpha \rangle| \ge i + 1$ (mk-Lemma)

- Sei $\sigma =$ "Gesamt-Expansionslänge"
- Für jedes α in i-ten Gruppen gilt: $|\langle \alpha \rangle| \ge i + 1$ (mk-Lemma)
- $2^2m^* + 3^2m^* + ... + g^2m^* \le \sigma$

- Sei $\sigma =$ "Gesamt-Expansionslänge"
- Für jedes α in i-ten Gruppen gilt: $|\langle \alpha \rangle| \ge i + 1$ (mk-Lemma)
- $2^2m^* + 3^2m^* + ... + g^2m^* \le \sigma$
- $\sigma \leq 2n$

- Sei $\sigma =$ "Gesamt-Expansionslänge"
- Für jedes α in i-ten Gruppen gilt: $|\langle \alpha \rangle| \ge i + 1$ (mk-Lemma)
- $2^2m^* + 3^2m^* + ... + g^2m^* \le \sigma$
- $\sigma \leq 2n$
- $2^2m^* + 3^2m^* + \dots + g^2m^* \le 2n$

- Sei $\sigma =$ "Gesamt-Expansionslänge"
- Für jedes α in i-ten Gruppen gilt: $|\langle \alpha \rangle| \ge i + 1$ (mk-Lemma)
- $2^2m^* + 3^2m^* + ... + g^2m^* \le \sigma$
- $\sigma \leq 2n$
- $2^2m^* + 3^2m^* + ... + g^2m^* \le 2n$
- $m^* \sum_{k=2}^g k^2 = m^* (\frac{g^3}{3} + \frac{g^2}{2} + \frac{g}{6} 1) \le 2n$

- Sei $\sigma =$ "Gesamt-Expansionslänge"
- Für jedes α in i-ten Gruppen gilt: $|\langle \alpha \rangle| \ge i + 1$ (mk-Lemma)

•
$$2^2m^* + 3^2m^* + ... + g^2m^* \le \sigma$$

- $\sigma \leq 2n$
- $2^2m^* + 3^2m^* + ... + g^2m^* \le 2n$
- $m^* \sum_{k=2}^{g} k^2 = m^* (\frac{g^3}{3} + \frac{g^2}{2} + \frac{g}{6} 1) \le 2n$
- $g^3 \in \mathcal{O}(\frac{n}{m^*}) \Rightarrow g \in \mathcal{O}((\frac{n}{m^*})^{\frac{1}{3}})$

•
$$m \in \mathcal{O}(g^2m^*)$$
 und $g \in \mathcal{O}((\frac{n}{m^*})^{\frac{1}{3}})$

- $m \in \mathcal{O}(g^2m^*)$ und $g \in \mathcal{O}((\frac{n}{m^*})^{\frac{1}{3}})$
- $m \in \mathcal{O}((\frac{n}{m^*})^{\frac{2}{3}}m^*) = \mathcal{O}((\frac{n}{\log(n)})^{\frac{2}{3}}m^*)$

•
$$m \in \mathcal{O}(g^2m^*)$$
 und $g \in \mathcal{O}((\frac{n}{m^*})^{\frac{1}{3}})$

•
$$m \in \mathcal{O}((\frac{n}{m^*})^{\frac{2}{3}}m^*) = \mathcal{O}((\frac{n}{\log(n)})^{\frac{2}{3}}m^*)$$

•
$$a(n) = \max_{\alpha \in \Sigma^n} \frac{m}{m^*} \in \mathcal{O}((\frac{n}{\log(n)})^{\frac{2}{3}})$$

Greedy

In jeder Iteration wird das γ gewählt welches die Größe der Grammatik am meisten senkt.

• interessant für Kompression und Musterkennung (NLP)

- interessant für Kompression und Musterkennung (NLP)
- Optimale Lösen ist NP-hart

- interessant für Kompression und Musterkennung (NLP)
- Optimale Lösen ist NP-hart
- Mit bekannten Verfahren lassen sich Approximation generieren (zB LZ78)

- interessant für Kompression und Musterkennung (NLP)
- Optimale Lösen ist NP-hart
- Mit bekannten Verfahren lassen sich Approximation generieren (zB LZ78)
- Approximationen können sehr gut sein ("LZ77 Variant")