Analysis: Reversort Engineering

Test Set 1

The solution to the problem is a permutation of the numbers from 1 to ${\bf N}$. The cost of each permutation can be calculated by simulating the Reversort algorithm as described in the <u>analysis of the Reversort problem</u> in $O({\bf N}^2)$ time complexity. There are ${\bf N}!$ distinct permutations of size ${\bf N}$, containing the numbers from 1 to ${\bf N}$ exactly once each. The cost of each permutation can be calculated and the answer is any permutation that has a cost equal to ${\bf C}$. If there is no such permutation, output <code>IMPOSSIBLE</code>. The time complexity of the overall solution is $O({\bf N}! \cdot {\bf N}^2)$.

Test set 2

As ${f N}$ is large for Test Set 2, we cannot generate every possible permutation. The major observation here is that the range of valid costs for a given ${f N}$ lies between ${f N}-1$ (when the cost of each reverse operation is the minimum possible, which is 1) and $\frac{{f N}\cdot({f N}+1)}{2}-1$ (when the cost of each reverse operation is the maximum possible, which is ${f N}-i$. Cost = ${f N}-1$ when the array is already sorted.

All costs in between those two limits are possible, as we shall see. Hence, if $\mathbf C$ is not in the valid range for given $\mathbf N$, output <code>IMPOSSIBLE</code>. Otherwise, we perform the following construction by recursion, which also serves as proof that the costs in range are indeed possible. The first iteration costs between 1 and $\mathbf N$, so we should choose a cost x for it such that $\mathbf C - x$, fits in the possible range for a permutation of size $\mathbf N - 1$. You can check that this is always possible, and even compute the full range of x values that work by solving the system of inequalities.

Now, recursively generate a permutation P of size $\mathbb{N}-1$ and cost $\mathbb{C}-x$. Then, add 1 to all integers in P and insert 1 at its left end, getting a new permutation of integers between 1 and \mathbb{N} . Then, reverse the prefix of P of length x as the cost of the initial iteration should be x. The non-recursive steps take $O(\mathbb{N})$ to adjust P. Since we perform those for each index, the overall complexity of the solution is $O(\mathbb{N}^2)$.