Lab 8: Rotary Dial and PWM Signals

National Chiao Tung University Chun-Jen Tsai 11/20/2015

Lab 8: Rotary Dial and PWM Signals

- ☐ In this lab, you will design a circuit to control the brightness of the LEDs through the rotary dial
- ☐ You will demo the design to your TA during the lab hours on 11/30

Control of LED Brightness

- □ The LED device in the Spartan-3e Starter Board can only be fully lit (full power) or turned off (zero power), you can not set it to different levels of brightness
- □ To trick your eyes to see different levels of brightness, you can send a Pulse Width Modulation (PWM) signal to its power input
 - The PWM signal will turn the LED on-an-off quickly such that the persistence of human visions will not see any flickering but different levels of brightness

A PWM Signal

□ A PWM signal is simply a square wave signal:

- □ Duty-cycle: the percentage of one cycle of PWM that is in "on" state (i.e., $(a/b) \times 100\%$ in the figure)
 - 50% duty-cycle means the signal is "on" half of the time

PWM Control of Brightness

- □ Persistence of visions make most people do not see flickering when the LCD is switching faster than 60 Hz
- □ We can use a 60 Hz (or higher) PWM signal to control the brightness of an LED
 - The PWM duty cycle determines the brightness of the LED
 - If you see flickering, raise the frequency to, say, 120Hz

Rotary Dial Control

□ There is a rotary dial on the Spartan-3e board:

Rotary Controller

□ A rotary controller module will be provided to you:

Rotary Controller Waveform Examples

Rotary Controller Specification

☐ The controller module has five ports:

```
module Rotation_direction(
input CLK,
input ROT_A,
input ROT_B,
output reg rotary_event,
output reg rotary_right);
```

- CLK is the 50MHz system clock
- ROT_A and ROT_B are the two ports connect to the rotary pins
- rotary_event == 1 means the user is turning the rotary
- rotary_right == 1 means turning right, 0 means turning left

What You Need to Do for Lab 8

- □ Design a circuit to read the rotary input and use it to control the duty cycle of the PWM signal that feed to LED 4
 - At reset, the duty cycle set to 0%
 - Turn rotary right increase the duty cycle (hence the brightness)
 - Turn rotary left decrease the duty cycle
 - The duty cycle falls between 0% to 100%
- □ You must make your brightness control as smooth as possible

References

- □ Ken Chapman, Rotary Encoder Interface for Spartan-3E Starter Kit, Feb. 2006:
 - http://www.xilinx.com/products/boards/s3estarter/files/s3esk_ro tary_encoder_interface.pdf