

Numerical Algorithms (COMP 3371)

Session VII: Truncation errors, stability and consistency Dr. Weinzierl

Michaelmas term 2019

Recapitulation

- Can you explain the idea of explicit Euler at hands of a Taylor series?
- ▶ Is the explicit Euler stable w.r.t. rounding errors?
- ▶ What is the definition of machine precision?
- What is the difference between the local round-off error and the global round-off error?

Outline

Consistency Stability Consistency and convergence

Playing around with explicit Euler

Consistency of explicit Euler (1/2)

$$y'(t) = F(y, t)$$

- ► The smaller *h*, the better our scheme approximates the real solution
- Intuitively clear, as we used Taylor and did truncate it
- Can we show it?

Consistency of explicit Euler (1/2)

$$y'(t) = F(y, t)$$

- ▶ The smaller *h*, the better our scheme approximates the real solution
- Intuitively clear, as we used Taylor and did truncate it
- Can we show it?
- Exact solution:

$$y(t + \Delta t) = \sum_{i=0}^{\infty} \frac{\Delta t^{i}}{i!} y^{(i)}(t)$$

Our approximation:

$$y_h(t + \Delta t) = y_h(t) + \underbrace{\Delta t \cdot y_h'(t)}_{plug \ F \ into} + \underbrace{\sum_{i=2}^{\infty} \frac{\Delta t^i}{i!} y^{(i)}(t)}_{cut \ off/truncate}$$

Subscript *h* used as $h = \Delta t$ very often denotes discretisation of continuum (time)

Consistency of explicit Euler (2/2)

Error equals truncated terms:

$$y_h(t+\Delta t)-y(t+\Delta t)=-\sum_{i=2}^{\infty}\frac{\Delta t^{(i)}}{i!}y^{(i)}(t)$$

Reiterate definition:

Consistency: A scheme is consistent if

$$\lim_{h\mapsto 0}y_h(t)=y(t)$$

and y(t) is the analytical solution.

▶ Study error for $\Delta t \mapsto 0$ (from the right side):

$$\lim_{\Delta t \mapsto 0^+} y_h(t + \Delta t) - y(t + \Delta t) = \lim_{\Delta t \mapsto 0^+} - \sum_{i=2}^{\infty} \frac{\Delta t^i}{i!} y^{(i)}(t)$$

Trivially goes to zero as long as derivatives are well-behaved

Consistency and truncation error

$$y'(t) = F(y, t)$$

Consistency: A scheme is consistent if

$$\lim_{h\mapsto 0}y_h(t)=y(t)$$

and y(t) is the analytical solution.

- Explicit Euler is trivially consistent, as we simple cut the Taylor at $\mathcal{O}(h^2)$
- Consistency means we solve the right problem (in the limit)
- ▶ The $\mathcal{O}(h^2)$ is the truncation error
- ▶ Consistent scheme = truncation error goes to zero with $h \mapsto 0$

We now switch from Δt to h forth and back!

Concept of building block

- Content
 - Introduce term consistency
 - Define truncation error
- Expected learning outcomes
 - ▶ The student knows definition of introduced terms
 - ► The student can explain what consistency means ("solve right problem")

Outline

Consistency Stability Consistency and convergence

Recap

- We know that the round-off error does not make our algorithm explode (if F is well-behaved)
- ▶ We know that our system is consistent, i.e. solved (in the limit) the right problem
- ⇒ what could possibly go wrong?

Explicit Euler with error measurements

Durham University
Department of Computer Science

for the test equation

Explicit Euler: For the test equation, we know the analytical solution and thus can directly compute the error. This does not work for more complex problems.

$$y'(t) = \lambda y(t) \quad \text{with } y(t=0) = y_0$$

$$y_h(t+h) = y_h(t) + h \cdot y_h'(t) = y_h(t) + h\lambda y_h(t) = (1+h\lambda)y_h(t)$$

$$y(t) = y_0 \cdot e^{\lambda t}$$

Writing down the (pseudo-) code

Results for $\lambda = -1.0$:

- ► h=0.001: t=2.001,y=0.540259,e=-0.000541161
- ► h=0.002: t=2,y=0.540258,e=-0.00108304
- h=0.004: t=2,y=0.539174,e=-0.00216681
- ▶ h=0.032: t=2.016,y=0.515475,e=-0.0172737
- ► h=0.256: t=2.048,y=0.375529,e=-0.140442
- ⇒ Please validate yourself (bottom-up)!

Observations:

- ▶ Some round-off error in t for h=0.001
- ▶ Halving *h* roughly reduces error by factor of two, i.e.
- error decreases if we reduce h (consistency)
- Every run here gives us some meaningful result (subject to errors)
- ⇒ Confirms our assumption that everything is fine

Another "material" parameter

With $\lambda = -10.0$:

- ▶ dt=0.001: h=2.001, y=7.38048e-09, e=-7.82103e-10
- ► h=0.002: t=2,y=6.73187e-09,e=-1.51275e-09
- ► h=0.256:

```
 t = 0.256, y = -6.24, e = -6.54922 \\ t = 0.512, y = 9.7344, e = 9.7105 \\ t = 0.768, y = -15.1857, e = -15.1875 \\ t = 1.024, y = 23.6896, e = 23.6895 \\ t = 1.28, y = -36.9558, e = -36.9558 \\ t = 1.536, y = 57.6511, e = 57.6511 \\ t = 1.792, y = -89.9357, e = -89.93571 \\ t = 2.048, y = 140.3, e = 140.3
```

Overshooting of explicit Euler

Stability (1/2)

- Stability typically is studied at hands of Dahlquist test equation $\partial_t y = \lambda y$ with fixed time step size $\Delta t = h$
- \blacktriangleright We know analytical solution, and can construct stable and unstable solutions due to the choice of λ
- Explicit Euler (on step):

$$y_h(nh) = (1 + h\lambda)y_h((n-1)h)$$

- ► Apply recursion/induction to derive global scheme for test equation
- Global scheme:

$$y_h(nh) = (1 + h\lambda)^n y_h(0)$$

- \Rightarrow We can now determine the *n*th approximation directly without any recursion.
- \Rightarrow We know for λ < 0 that it should go towards 0 (attractive/stable critical point).
- \Rightarrow Does it do so?

Stability (2/2)

$$\begin{aligned} y_h(nh) &= (1+h\lambda)^n y_h(0) \\ \lim_{n \mapsto \infty} y_h(nh) &= 0 \quad \Leftrightarrow \quad |1+h\lambda| < 1 \end{aligned}$$

- We see stability for $|(1 + h\lambda)| < 1$, i.e. $0 < h < -2/\lambda$ \Rightarrow consistency is trivial but stability not
- We now have a formal criterion for oscillations of error in the test equation
- For another ODE, we have to redo these steps

Flavours of stability

Round-off stability: ... (covered that one)

Zero stability: Small perturbations of input data do not make the truncation error explode as $h \mapsto 0$.

- Clear/trivial for explicit Euler
- Necessary for a consistent scheme
- Kind of generic for explicit Euler

Absolute (A) stability: Small perturbations of input data do not make the truncation error explode.

- For every λ , we can construct h such that explicit Euler breaks
- Necessary for a consistent scheme
- Depends on problem

Concept of building block

- Content
 - Discuss when explicit Euler fails and how
 - Write down global iteration scheme
 - Derive stability criteria
 - Sketch proper time step choice for explicit Euler
- Expected learning outcomes
 - Student knows formalisation of convergence analysis
 - Student can explain formally and at hands of sketches why and where explicit Euler becomes unstable
 - Student can analyse any time stepping scheme w.r.t. stability
- Revision for exam
 - Experiment with different time step sizes for the two-body problem from the coursework (collision)

Outline

Consistency Stability Consistency and convergence

Convergence

Lax Equivalence Theorem: An algorithm converges iff it is consistent and stable.

- ► These are the schemes we are searching for
- ► We can "rely" our computer simulation's outcome

Error analysis with Taylor for Euler's method (1/2)

$$y' = F(t, y)$$

Local error: The local error is the error we make in one step.

- ► Taylor series: $y(t + h) = y(t) + hy'(t, y) + h^2/2y''(t, y) + h^3/6y'''(t, y) + \dots$
- Explicit Euler: $y_h(t+h) = y_h(t) + hy'(t, y_h(t))$
- From: $e(t) = y_h(t) y(t)$

First time step:

$$e(h) = y_h(h) - y(h)$$

Error analysis with Taylor for Euler's method (1/2)

$$y' = F(t, y)$$

Local error: The local error is the error we make in one step.

- ► Taylor series: $y(t + h) = y(t) + hy'(t, y) + h^2/2y''(t, y) + h^3/6y'''(t, y) + \dots$
- Explicit Euler: $y_h(t + h) = y_h(t) + hy'(t, y_h(t))$

First time step:

$$e(h) = y_h(h) - y(h) = \underbrace{y_h(0) - y(0)}_{=0} + h \cdot \underbrace{F(0, y_h(0)) - F(0, y(0))}_{=0} + \dots$$

- ► Error is $h \cdot (f'(t, y) f'(t, y_h(t))) + \mathcal{O}(h^2) = \mathcal{O}(h^2)$ as the y' are exact as well.
- Scheme is second order.

Error analysis with Taylor for Euler's method (2/2)

Global error: The global error is the error between the numerical solution and the true solution (with multiple local steps inbetween) at a given point.

⇒ Is the global error just the sum of all the local errors?

First time step:

- ► Error is $h \cdot (y'(t, y) y'(t, y_h(t))) + \mathcal{O}(h^2) = \mathcal{O}(h^2)$ as y'_h is exact.
- Scheme is second order.

Second time step:

- There is an additional error that is propagated.
- lt results from the fact that $y'(t, y) y'(t, y_h(t)) \neq 0$.
- This reduces the scheme to first order, i.e. the inaccurate derivatives pollute the solution.

Convergence order

Convergence order p: An algorithm converges with order p if

$$|y_h(t)-y(t)|\leq C\cdot h^p.$$

- Global property (not only single time step)
- ightharpoonup p = 1 for explicit Euler (as we do not write t = h)

Convergence (rephrased): An algorithm converges if

$$\forall t: \lim_{h\to 0} \|y_h(t)-y(t)\|=0.$$

Remark: We "only" need zero-stability though in practice A-stability might be more important.

Plotting convergence

Nice. But the motivation behind the whole course is that we don't know the answer and thus can't compute e!

Measuring convergence

Error for one *h*:

$$e_h(t) = (y_h - y)(t)$$

Let's drop the t parameter. We always measure things at one point in time

Error for more accurate simulation:

$$e_{h/2} = y_{h/2} - y$$

Plug into each other:

$$e_h - e_{h/2} = y_h - h - y_{h/2} + y = y_h - y_{h/2}$$

We still do not know the error, but we know how the error has changed:

$$e \in \mathcal{O}(h^p) \Leftrightarrow e = Ce^p$$

$$e_h - e_{h/2} = \underbrace{y_h - y_{h/2}}_{measure} = Ch^p - C(h/2)^p = C(1 - \frac{1}{2^p})h^p$$

Now continue with $y_h - y_{h/4}$, and $y_h - y_{h/8}$, and . . .

Example

Concept of building block

- Content
 - Define convergence
 - Study local and global error
 - Convergence order
 - Discuss measurements
- Expected learning outcomes
 - ► The student *knows* definition of introduced terms
 - The student can *compute* convergence order for model problems
 - ► The student can *experimentally determine* convergence orders
- Revision for exam
 - Run some numerical experiments (for test equation and with coursework, e.g.) and determine convergence order; this also works for other pieces of coursework

Summary, outlook & homework

Concepts discussed:

We have done all of our explicit Euler homework

Next:

- We study ways how to choose proper time step sizes
- ▶ We continue our search for a better scheme which is more stable all the time
- We start to construct more accurate schemes

Preparation:

Solve the problem Stiff problems from the worksheet