(19)日本国特許庁 (JP)

(12) 公表特許公報(A)

(11)特許出願公表番号

特表平11-506123

(全 183 頁) 最終頁に続く

(51) Int.Cl. ⁵	識別配号	FΙ		
C 0 7 D 401/04	241	C 0 7 D 401/04	241	
A 6 1 K 31/495	AED	A 6 1 K 31/495	AED	
31/505	AAM	31/505	AAM	
31/535	AAB	31/535	AAB	
C 0 7 D 401/14	2 4 1	C 0 7 D 401/14	2 4 1	

審査請求 有

(21) 班縣子 (86) (22) 山縣日 (85) 顯常大选出日 (85) 顯常大选出日 (86) 國際比閩鄉子 (87) 國際公開書号 (87) 國際公開日 (37) 國際公開日 (37) 與保祉主縣等 (87) 國際公開日 (37) 夏(22) 長衛王 (38) 夏(24) 王 (38) 夏(24) 夏(24) 王 (38) 夏(24) 夏(24

イギリス (GB)

予備審査請求 有 (全 18 (71)出願人 ファイザー・インク

> アメリカ合衆国ニューヨーク州10017, ニ ューヨーク, イースト・フォーティセカン

ド・ストリート 235 (72)発明者 プル、デーヴィッド・ジョン

イギリス関 ケント シーティー13・9エ ヌジェイ, サンドウィッチ, ラムズゲー ト・ロード, ファイザー・セントラル・リ

サーチ

(74)代理人 弁理士 社本 一夫 (外5名)

最終頁に続く

(54) [発明の名称] キノキサリンジオン類

(57) 【要約】

(33)優先権主張国

本発明は、式(I)(式中、Rは、3個または4個の窒 素ヘテロ原子を有する5員環ヘテロアリール基であっ て、環炭素または窒素原子によってキノキサリンジオン **景に対して結合している基であるかまたは、1~3個の** 窒素ヘテロ原子を有する6員環ヘテロアリール基であっ て、環炭素原子によってキノキサリンジオン環に対して 結合している基であり、前記基はどちらも、場合により ペンゾ縮合していて且つ場合により、ペンゾ縮合部分中 を含めて、 $C_1 - C_4$ アルキル、 $C_2 - C_4$ アルケニル、Cルコキシ、Ca - Crシクロアルキルオキシ、- COO H、 $C_1 - C_4$ アルコキシカルポニル、 $- CONR^3 R^4$ 、 -NR3R4, -S (O) , (C1-C4PN+N), -S O2 NR®R®、アリール、アリールオキシ、アリール (Co-Co) アルコキシおよびhetからそれぞれ独立 して選択される1個または2個の置換基で置換されてい て、前記 $C_1 - C_4$ アルキルは、場合により、 $C_8 - C_7$ シ クロアルキル、ハロ、ヒドロキシ、C:-C4アルコキ シ、ハロ (C1-C1) アルコキシ、C1-C1 (O)

。(C1-C4アルキル)、-SO2(アリール)、-SO 2 NR3R4、モルホリノ、アリール、アリールオキシ、 アリール (C1-C4) アルコキシまたはhetで置換さ れていて、そして前記C2-C1アルケニルは、場合によ り、アリールで置換されていて; R1 およびR1 は、それ ぞれ独立して、H、フルオロ、クロロ、プロモ、Ci-C₄アルキルおよびハロ (C₁ - C₄) アルキルから選択 され:R*およびR*は、それぞれ独立してHおよびC: - C₁アルキルから選択されるかまたは、一緒になった 場合、C₁-C₇アルキレンであり:pは0、1または2 である)を有する化合物およびそれらの薬学的に許容し うる塩を、このような化合物の製造、それらを含有する 組成物、それらの使用並びにそれらの合成で用いられる 中間体と一緒に提供する。該化合物は、急性神経変性障 害および慢性神経障害を治療するためのNMDA受容体 アンタゴニストとして有用である。

【特許請求の範囲】

1. 式

(式中、Rは、3個または4個の窒素へテロ原子を有する5員環へテロアリール 基であって、環炭素または窒素原子によってキノキサリンジオン環に対して結合 している基であるかまたは、1~3個の窓素へテロ原子を有する6量環へテロア リール基であって、環炭素原子によってキノキサリンジオン環に対して結合して いる基であり、前記基はどちらも、場合によりベンゾ縮合していて且つ場合によ り、ベンゾ縮合部分中を含めて、C₁-C₄アルキル、C₂-C₄アルケニル、C₃ $-C_1$ シクロアルキル、ハロ、ヒドロキシ、 C_1-C_4 アルコキシ、 C_3-C_7 シク ロアルキルオキシ、-COOH、C₁-C₄アルコキシカルボニル、-CONR R', -NR'R', -S(O), $(C_1-C_4T\nu+\nu)$, $-SO_2NR'R'$, TUール、アリールオキシ、アリール(C₁ - C₄)アルコキシおよびhetからそれ ぞれ独立して選択される1個または2個の置換基で置換されていて、前記C1-C₁ アルキルは、場合により、C₁ - C₁ シクロアルキル、ハロ、ヒドロキシ、C₁ $-C_4$ P ν 1 P ν 2 P ν 3 P ν 4 P ν 5 P ν 7 P ν \mathcal{L} \mathcal{L} ルコキシカルボニル、-CONR R、-NR NR、-S (O)。(C1-C4 アルキル)、-SO2(アリール)、-SO2NR R、モルホリノ、アリール、 アリールオキシ、アリール (C₁-C₄) アルコキシまたはhetで置換されてい て、そして前記Co-Coアルケニルは、場合により、アリールで置換されていて

R およびR は、それぞれ独立して、H、フルオロ、クロロ、ブロモ、 $C_1 - C_2$ アルキルおよびハロ($C_1 - C_3$)アルキルから選択され;

R およびR は、それぞれ独立してHおよび $C_1 - C_i$ アルキルから選択されるかまたは、一緒になった場合、 $C_1 - C_i$ アルキレンであり:

pは0、1または2であり;

Rおよび「het」の定義で用いられる「アリール」は、フェニルまたはナフ テルを意味し、それぞれ場合により、 C_1-C_4 アルキル、 C_1-C_4 アルコキシ、 ヒドロキシ、ハロ、ハロ(C_1-C_4)アルキルおよび-NR³ R からそれぞれ独 立して選択される1個または2個の置換基で置換され:

Rの定義で用いられる「hetiは、フリル、チエニル、ピロリル、ピラゾリ ル、イミダゾリル、トリアゾリル、テトラゾリル、オキサゾリル、イソキサゾリ ル、チアゾリル、イソチアゾリル、オキサジアゾリル、チアジアゾリル、ピリジ ニル、ピリダジニル、ピリミジニルまたはピラジニルを意味し、それぞれ、場合 によりベンゾ縮合していて且つ場合により、ベンゾ縮合部分中を含めて、C₁-C₄アルキル、C₅ - C₇シクロアルキル、C₁ - C₄アルコキシ、ハロ、ヒドロキ シ、-COOH、C₁-C₄アルコキシカルボニル、アリルオキシカルボニル、-CONR R \cdot -NR R \cdot -S (O) \cdot (C₁-C₁ $\tau \nu + \nu$) \cdot -SO₂NR R^{\prime} , $\Lambda D \left(C_1 - C_4 \right) P \mathcal{V} + \mathcal{V}$, $E F D + \mathcal{V} \left(C_1 - C_4 \right) P \mathcal{V} + \mathcal{V}$, $C_1 - C_4$ アルコキシ (C: -C1) アルキル、R R NCO (C1-C1) アルキル、アリー ル、アリールアルキル、het およびhet (CI-Ca) アルキルからそれぞ れ独立して選択される1個または2個の置換基で、および/または「hetlが ピリジニル基、ピリダジニル基、ピリミジニル基またはピラジニル基を含む場合 、環窓素へテロ原子上にオキシド債換基で置換されていて:そして「hetiの 定義で用いられる「het」は、フリル、チエニル、ピロリル、ピラゾリル、 イミダブリル、トリアブリル、テトラブリル、オキサブリル、イソキサブリル、 チアゾリル、イソチアゾリル、オキサジアゾリル、チアジアゾリル、ピリジニル 、ピリダジニル、ピリミジニルまたはピラジニルを意味し、それぞれ、場合によ り1個または2個のC₁ - C₄アルキル置換基で置換される)

を有する化合物またはその薬学的に許容しうる塩。

2. Rが、トリアグリルまたはテトラグリルであり、それぞれ、 $C_1 - C_4$ アルキル、 $C_2 - C_4$ アルケニル、 $C_3 - C_7$ シクロアルキル、ハロ、ヒドロキシ、 $C_1 - C_4$ アルコキシカルボニル、アリールおよび $1 - C_4$ アルコキシカルボニル、アリールおよび $1 - C_4$ アルコキシカルボニル、アリールおよび $1 - C_4$ アルコキシカルボニル、アリールおよび $1 - C_4$ アルキルは、場合によさ10年または2個の置換基で置換され、前記 $1 - C_4$ アルキルは、場合によりになる。

- り、ハロ、ヒドロキシ、 C_1-C_1 アルコキシ、ハロ(C_1-C_4)アルコキシ、 C_3-C_7 シクロアルキル(C_1-C_4)アルコキシ、-COOH、 C_1-C_4 アルコキシカルボニル、 NR^3R^4 、 $-SO_8$ (アリール)、モルホリノ、アリール、アリールオキシ、アリール(C_1-C_4)アルコキシまたは1e1 に記載の化合物。
- 3. Rが、1, 2, 3ートリアゾールー4ーイル、1, 2, 4ートリアゾールー3ーイル、1, 2, 4ートリアゾールー4ーイルまたはテトラゾールー5ーイルであり、それぞれ、 C_1-C_4 アルキル、 C_1-C_4 アルケニル、 C_1-C_4 アルウニル、 C_1-C_4 アルウニル、 C_1-C_4 アルウニル、 C_1-C_4 アルウニル、 C_1-C_4 アルコキシカルボニル、アリールおよび he tからそれぞれ独立して選択される 1 個または 2 個の懺換基で置換され、前記 C_1-C_4 アルコキシ、ハロ、ヒドロキシ、 C_1-C_4 アルコキシ、ハロ(C_1-C_4)アルコキシ、ハロ(C_1-C_4)アルコキシ、ハロ(C_1-C_4)アルコキシカルボニル、 $-NN^3$ R、 $-SO_1$ (アリール)、モルホリノ、アリール、アリールオキシ、アリール(C_1-C_4)アルコキシまたは he tで置換されていて;或いはビリジンー2ーイル、ビリジンー3ーイル、ビリジンー4ーイル、ビリジンー2ーイルまたはビリミジンー5ーイルである請求項1または 2 に記載の化合物。
- 4. R およびR が、それぞれ独立して、HおよびC₁-C₄アルキルから選択される請求項1~3のいずれか1項に配載の化合物。
- 5. 「アリール」が、メチル、メトキシ、ヒドロキシ、クロロ、トリフルオ ロメチルおよびジメチルアミノからそれぞれ独立して選択される1個または2個 の置換基で場合により置換されたフェニルを意味する請求項1~4のいずれか1 項に影動の化合物。
- 6. 「het」が、チエニル、ピロリル、ピラゾリル、イミダゾリル、トリアゾリル、チアゾリル、イソチアゾリル、オキサジアゾリル、チアジアブリル、ピリジニル、ピリミジニルまたはピラジニルを意味し、それぞれ、場合によりベング縮合していて且つ場合により、C₁ーC₄アルキル、ーCOO H、一NR ³R およびフェニルからそれぞれ独立して選択される1個または2個の置換基で、および/または前配ピリジニル基、ピリダジニル基、ピリミジニル

たはピラジニル基の環窒素ヘテロ原子上にオキシド置換基で置換されている請求 項1~5のいずれか1項に記載の化合物。

7. Rが、1, 2, 3-トリアゾール-4-イル、1, 2, 4-トリアゾー ルー3ーイル、1、2、4ートリアゾールー4ーイルまたはテトラゾールー5ー イルであり、それぞれ、メチル、エチル、プロピル、アリル、シクロプロビル、 シクロヘキシル、ブロモ、ヒドロキシ、エトキシカルボニル、2-クロロフェニ ル、3-クロロフェニル、4-クロロフェニル、4-ジメチルアミノフェニル、 2-ヒドロキシフェニル、2-メトキシフェニル、3-メトキシフェニル、4-メトキシフェニル、2-メチルフェニル、フェニル、4-トリフルオロメチルフ ェニル、2-アミノ-1、3、4-オキサジアゾール-5-イル、2-カルボキ シピリジン-5-イル、1、5-ジメチル-1H-ピラゾール-3-イル、1H ーイミダゾールー1ーイル、1ーメチルイミダゾールー2ーイル、1ーメチルイ ミダゾールー4ーイル、1ーメチルイミダゾールー5ーイル、3ーメチルイソチ アゾール-4-イル、4-メチル-1H-イミダゾール-5-イル、3-メチル -1、2、4-オキサジアゾールー5-イル、1-メチルー1H-ピラゾールー 4-イル、5-メチル-1H-ピラゾール-3-イル、1-メチル-1H-ピラ ゾール-5-イル、1-オキシドピリジン-3-イル、2-メチルピリジン-3 ーイル、2ーメチルピリジン-5ーイル、1ーフェニルイミダゾールー4ーイル 、5-フェニルピリジン-3-イル、2-フェニルピリジン-5-イル、1-メ チルピロールー2ーイル、4ーメチルー1、2、3ーチアジアゾールー5ーイル 、2-メチルチアゾールー4ーイル、1-メチルー1H-1, 2, 4ートリアゾ ールー5-イル、3-(プロプー1-イル)-1H-ピラゾールー5-イル、ピ ラジン-2-イル、1H-ピラゾール-4-イル、ピリダジン-4-イル、ピリ ジンー2ーイル、ピリジンー3ーイル、ピリジンー4ーイル、ピリミジンー2ー 1, 2, 3-トリアゾール-5-イル、キノリン-3-イルおよびキノリン-6 ーイルからそれぞれ独立して選択される1個または2個の置換基で置換され、前 記メチル、エチルまたはプロビルは、場合により、フルオロ、ヒドロキシ、メトキシ、エトキシ、2, 2, 2ートリフルオロエトキシ、シクロヘキシルメトキシ 、シク

ロベンチルメトキシ、-COOH、メトキシカルボニル、ジメチルアミノ、4 - クロロフェニルスルホニル、モルホリノ、フェニル、フェノキシ、ベンジルオキシ、ピリジン-2-イル、ピリジン-3-イルまたはピリジン-4-イルで置換されていて;或いはピリジン-2-イル、ピリジン-3-イル、ピリジン-3-イル、ピリジン-4-イル、ピリミジン-2-イルまたはピリミジン-5-イルである請求項 $1\sim6$ のいずれか1項に記載の化合物。

8. Rが、

1- (2-ヒドロキシエチル) -5-フェニル-1, 2, 3-トリアゾール-4-イル、

1-(2-ヒドロキシエチル)-4-フェニル-1, 2, 3-トリアゾール-5-イル、

2-(2-ヒドロキシエチル)-5-フェニル-1, 2, 3-トリアゾール-4-イル.

1-メチル-5-フェニル-1、2、3-トリアゾール-4-イル、

1-メチル-4-フェニル-1、2、3-トリアゾール-5-イル、

2-メチル-5-フェニル-1, 2, 3-トリアゾール-4-イル、

5-フェニル-1H-1, 2, 3-トリアゾール-4-イル、

1 - メチル - 1 H - 1, 2, 4 -トリアゾール - 3 -イル、

2-メチル-2H-1, 2, 4-トリアゾール-3-イル、

4-(2-ヒドロキシエチル)-4H-1, 2, 4-トリアゾール-3-イル

4 - x + y - 4H - 1, 2, 4 - y + y - y - y - 3 - 4y,

3-(2-アミノ-1, 3, 4-オキサジアゾール-5-イル) -5-メチル -4H-1, 2, 4-トリアゾール-4-イル、

3-ベンジル-5-(ピリジン-3-イル)-4H-1, 2, 4-トリアゾー

ルー4ーイル、

3 ーベンジルオキシメチルー5 - (ピリジン-3-イル) -4H-1, 2, 4 - トリアゾール-4-イル.

3 - プロモー5 - (ピリジン-3 - イル) - 4 H - 1, 2, 4 - トリアソール - 4 - イル、

3 - (3- カルボキシプロプ - 1- イル) - 5- (ピリジン - 3- イル) - 4 H - 1 , 2 , 4- トリアゾール - 4- イル、

3-(2-カルボキシピリジン-5-イル)-5-メトキシメチル-4H-12、4-トリアゾール-4-イル、

3- (2-クロロフェニル) -5-メトキシメチル-4H-1, 2, 4-トリアゾール-4-イル、

3- (2-クロロフェニル) -5-メチル-4H-1, 2, 4-トリアゾール -4-イル、

3- (4-クロロフェニル) -5-メチル-4H-1, 2, 4-トリアゾール -4-イル、

3 - (4-クロロフェニルスルホニルメチル) - 5-メチル - 4H-1, 2, 4-トリアゾール - 4-イル、

3-シクロヘキシルメトキシメチル-5-(ピリジン-3-イル)-4H-1

, 2, 4ートリアゾールー4ーイル、

3-シクロペンチルメトキシメチル-5-(ピリジン<math>-3-イル) -4H-1

2、4ートリアゾールー4ーイル、

3 ーシクロプロピルー 5 ーメチルー 4 H - 1 , 2 , 4 - トリアゾールー 4 - イル、

3, 5-ジ (メトキシメチル) -4H-1, 2, 4-トリアゾール-4-イル

3- (N, N-ジメチルアミノメチル) -5-エチル-4H-1, 2, 4-ト

リアゾールー4ーイル、

3- (N, N-ジメチルアミノメチル) -5- (ピリジン-3-イル) -4H -1、2、4-トリアゾール-4-イル、

3-(4-y)メチルアミノフェニル)-5-yチルー4H-1, 2, 4-トリアゾールー4-イル、

 $3 - (1, 5 - \forall x + \nu - 1 + \mu - \forall y + \nu - 3 - 4\nu) - 5 - x + x + y + \mu - 4 + \mu - 1, 2, 4 - y + \nu - 4 - 4\nu$

3-(1,5-ジメチル-1H-ピラゾール-3-イル)-5-メチル-4H -1,2,4-トリアゾール-4-イル、

3, 5-ジメチル-4H-1, 2, 4-トリアゾール-4-イル、

3, 5-ジフェニル-4H-1, 2, 4-トリアゾール-4-イル、

3-(2-xトキシエチル) $-5-(ピリジン-3-4 \mu) -4 H-1$, 2, 4-トリアゾール-4-4ーイル、

3-xトキシメテル-5- (ピリジン-3-イル) -4H-1, 2, 4-トリアゾール-4-イル、

3-エトキシカルボニル-4 H-1, 2, 4-トリアゾール-4-イル、

3-xチルー5-(2-クロロフェニル)-4 H-1, 2, 4-トリアゾール -4 -イル、

3 ーエチルー5 - (2 - $\cancel{3}$ トキシフェニル) -4 \mathbf{H} - $\mathbf{1}$, 2 , 4 - + $\mathbf{1}$ $\mathbf{7}$ $\mathbf{7}$ $\mathbf{7}$ $\mathbf{7}$ $\mathbf{1}$ $\mathbf{7}$ $\mathbf{7}$

3-エチル-5-(1-メチルピラゾール-5-イル)-4H-1, 2, 4-トリアゾール-4-イル、

3-x+y-5-y+y-4H-1, 2, 4-y-y-y-y-y-1

3-エチルー5-モルホリノメチルー4H-1, 2, 4-トリアゾールー4ー イル、

3-エチル-5- (ピリジン-3-イル) -4H-1, 2, 4-トリアゾール -4-イル、

3-エチル-4H-1, 2, 4-トリアゾール-4-イル、

3- (2-Eドロキシエチル) -5-メチル-4H-1, 2, 4-トリアゾール-4-イル、

3-ヒドロキシメチル-5-メチル-4H-1, 2, 4-トリアゾール-4-イル、

3ーヒドロキシメチルー5ーフェニルー4H-1, 2, 4ートリアゾールー4 $\dot{}$ $\dot{\dot{}}$ $\dot{\dot{}$ $\dot{\dot{}}$ $\dot{\dot{}}$ $\dot{\dot{}}$ $\dot{\dot{}}$ $\dot{\dot{}}$ $\dot{\dot{}}$ $\dot{\dot{}}$ $\dot{\dot{}}$ $\dot{\dot{}}$ $\dot{\dot{}$ $\dot{$

3-ヒドロキシメチルー5- (ピリジン-3-イル) -4H-1, 2, 4-ト リアゾール-4-イル、

3-ヒドロキシメチル-4H-1, 2, 4-トリアゾール-4-イル、

3-ヒドロキシ-5-メチル-4H-1, 2, 4-トリアゾール-4-イル、

3- (2-ヒドロキシフェニル) - 5-メチル-4H-1, 2, 4-トリアゾール-4-4ル.

3 - (1H-イミダゾール-1-イル) - 5 - メチルー4H-1, 2, 4 - トリアゾール-4 - イル、

3-(2-)トキシエチル)-5-(ピリジン-3-1) -4H-1, 2, 4-トリアゾール-4-1ル、

3-メトキシメチル-5- (1-メチル-1H-ピラゾール-5-イル)-4H-1, 2, 4-トリアゾール-4-イル、

3-メトキシメチル-5- (2-メチルビリジン-5-イル)-4H-1, 2

3-メトキシメチル-5-(2-メチルチアゾール-4-イル)-4H-1,

2, 4-トリアゾール-4-イル、

3- メトキシメチル- 5- (1- オキシドピリジン- 3- イル)-4 H- 1,

2, 4-トリアゾール-4-イル、

3-メトキシメチルー5-(1-フェニルイミダゾールー4-イル)-4 H-

1, 2, 4ートリアゾールー4ーイル、

3-メトキシメチル-5-(5-フェニルピリジン-3-イル)-4H-1,

2, 4ートリアゾールー4ーイル、

3-メトキシメチルー5-(2-フェニルピリジンー5-イル)-4H-1,

2, 4-トリアゾールー4-イル、

3-メトキシメチル-5-(ピリジン-3-イル)-4H-1, 2, 4-トリアゾール-4-イル、

3-メトキシメチルー5- (ピリジンー3-イルメチル) -4 H-1, 2, 4 -トリアゾールー4-イル、

3-メトキシメチル-5-(キノリン-3-イル)-4+-1, 2, 4-トリアゾール-4-4-イル、

3-メトキシメチルー5- (キノリンー6-イル) -4 H-1, 2, 4-トリ

アゾールー4ーイル、

3- (2-メトキシフェニル) -5-メチル-4H-1, 2, 4-トリアゾール-4- ℓ

3- (3-xトキシフェニル) -5-xチル-4H-1, 2, 4-トリアゾール-4-1ル、

3-(4-x)トキシフェニル) -5-xチルー4H-1, 2, 4-yアゾールー4-4ル、

3-メチルー5- (1-メチルイミダゾールー4-イル)-4H-1, 2, 4 - トリアゾールー4-イル.

3-メチル-5-(1-メチルイミダゾール-5-イル)-4 H-1, 2, 4 -トリアゾール-4-イル、

4-トリアゾール-4-イル、

3-メチル-5-(4-メチル-1H-イミダゾール-5-イル)-4H-1 、2、4-トリアゾール-4-イル、

3-メチル-5-(3-メチル-1, 2, 4-オキサジアゾール-5-イル)-4 H-1, 2, 4-トリアゾール-4-イル、

3-メチル-5-(2-メチルピリジン-3-イル)-4 H-1, 2, 4ート

リアゾールー4ーイル、

3-メチルー5- (2-メチルピリジンー5-イル)-4 H- 1 , 2 , 4-ト

リアゾールー4ーイル、

3-メチル-5-(1-メチルビラゾール-5-イル)-4H-1, 2, 4-トリアゾール-4-イル、

3-メチル-5-(5-メチル-1 H-ピラゾール-3-イル) -4 H-1,

2、4-トリアゾール-4-イル、

3-メチル-5- (2-メチルフェニル)-4H-1, 2, 4-トリアゾール-4-イル、

3-メチル-5- (1-メチルピロール-2-イル)-4 H-1,2,4-トリアゾール-4-イル,

3-メチル-5-(4-メチル-1, 2, 3-チアジアゾール-5-イル) -4H-1, 2, 4-トリアゾール-4-イル、

3-メテル-5-(2-メチルチアゾール-4-イル)-4+1, 2, 4-トリアゾール-4-4-4-4-7+0,

3-メチル-5- (1-メチル-1H-1, 2, 4-トリアゾール-5-イル

3-メチル-5-(1-メチル-1 H-ピラゾール-4-イル)-4 H-1,

2, 4-トリアゾール-4-イル、

3-(3-メチル-1, 2, 4-オキサジアゾール-5-イル) -5-(ピリ

ジン-3-イル) -4H-1, 2, 4-トリアゾール-4-イル、

3-メチル-5-フェニル-4H-1, 2, 4-トリアゾール-4-イル、

3-メチルー5-(3-[プロプー1-イル] -1 H-ピラゾールー5-イル

) -4H-1, 2, 4-トリアゾール-4-イル、

3-メチルー5-(ピラジンー2-イル)-4 H-1, 2, 4-トリアゾール -4 -イル、

3-メチル-5-(1H-ピラゾール-4-イル)-4H-1, 2, 4-トリ

アゾールー4ーイル、

3-メチル-5-(ピリジン-2-イル)-4H-1, 2, 4-トリアゾール -4-イル、

3-メチル-5-(ピリジン-3-イル)-4H-1,2,4-トリアゾール -4-イル、

3-メチルー5-(ピリジン-4-イル)-4H-1, 2, 4-トリアゾール -4-イル、

3-メチルー5-(ピリジン-2-イルメチル)-4H-1, 2, 4-トリア ゾール-4-イル、

3-メチルー5-(ピリジン-3-イルメチル)-4H-1, 2, 4-トリア ゾール-4-イル、

3-メチル-5-(ピリジン-4-イルメチル)-4H-1, 2, 4-トリア ゾール-4-イル

3-メチル-5-(ピリダジン-4-イル)-4H-1, 2, 4-トリアゾール-4-イル、

3-メチル-5-(ピリミジン-2-イル)-4 H-1 , 2 , 4-トリアゾール-4-イル、

3-メチルー5-(チエンー2-イル)-4H-1, 2, 4-トリアゾールー 4-イル、

3-x+n-4H-1, 2, 4-y+n-4-4n

3-メチル-5-(1H-1, 2, 3-トリアゾール-5-イル) -4 H-1

, 2, 4-トリアゾール-4-イル、

3-メチル-5- (1H-1, 2, 4-トリアゾール-5-イル)-4H-1

, 2, 4ートリアゾールー4ーイル、

3 -モルホリノメチル-5- (ピリジン-3-イル) -4H-1, 2, 4-トリアゾール-4-イル、

3-7ェノキシメチル-5- (ピリジン-3-イル) -4 H-1, 2, 4-トリアゾール-4-イル.

3-(2-フェニルエチル) -5-(ピリジン-3-イル) -4H-1, 2,

4-トリアゾール-4-イル、

3- (ピリジン-3-イル) -5- (2, 2, 2-トリフルオロエトキシ) メ

チルー4H-1, 2, 4-トリアゾールー4ーイル、

 $3 - (""")^2 - 3 - 4 - 1, 2, 4 - 1 - 1, 2 - 4 - 4 - 4 - 4,$

3-メチル-5- (4-トリフルオロメチルフェニル) -4H-1, 2, 4-

トリアゾール-4-イル、

1-アリルテトラゾール-5-イル、

1-ベンジルテトラゾール-5-イル、

1-カルボキシメチルテトラゾール-5-イル、

1-シクロヘキシルテトラゾール-5-イル、

1-エチルテトラゾール-5-イル、

1-(2-ヒドロキシエチル)テトラゾール-5-イル、

1-(3-ヒドロキシプロピル)テトラゾール-5-イル、

1-メトキシカルボニルメチルテトラゾール-5-イル、

1-(2-メトキシエチル) テトラゾール-5-イル.

1-メチルテトラゾール-5-イル、

1-(2-フェニルエチル) テトラゾール-5-イル

1-フェニルテトラゾール-5-イル、

1-(プロプー2-イル)テトラゾール-5-イル

1-(2, 2, 2-トリフルオロエチル) テトラゾールー5ーイル。

ピリジンー2ーイル、

ピリジンー3ーイル、

ピリジンー4ーイル、

ピリミジン-2-イルまたは

ピリミジン-5-イル

である請求項1~7のいずれか1項に記載の化合物。

9. Rが、

1-(3-ヒドロキシプロピル) テトラゾール-5-イル、

4-メチル-4H-1, 2, 4-トリアゾール-3-イル、

1- (2-ヒドロキシエチル) -5-フェニル-1, 2, 3-トリアゾール-4-イル、

3 - メチルー5 - (ピリジンー3 - イル) - 4 H - 1, 2, 4 - トリアゾール - 4 - イル、

3-メチル-5-(ピリジン-3-イルメチル)-4H-1,2,4-トリア ゾール-4-イル、

3-メトキシメチル-5-(ピリジン-3-イル)-4H-1, 2, 4-トリアゾール-4-イル、

3-x++vx+-5-(+7)-3-4v) -4H-1, 2, 4-+y

3-メトキシメチルー5- (キノリンー6-イル) -4 H-1 , 2 , 4-トリ

アゾールー4-イルまたは

3 - (1, 5-ジメチルー1Hーピラゾール-3-イル) -5-メチル-4H -1, 2, 4-トリアゾール-4-イル

である請求項1に記載の化合物。

- 10. R およびR が、それぞれ独立して、クロロおよびC: C(アルキルから選択される請求項1~9のいずれか1項に記載の化合物。
- 11. R およびR がそれぞれクロロである請求項 $1\sim10$ のいずれか1項に 記載の化合物。
- 12. (i) $R \dot{m} 1 (3 E \dot{n} + E \dot{n} + E \dot{n})$ $F \dot{n} = E \dot{n}$ $E \dot$
- (ii) $R^{m}4-y+v-4H-1$, 2, 4-y+v-y+v-3-4v (ii) $R^{m}4-y+v-3-4v$ (iii) $R^{m}4-y+v-3-4v$ (iii) $R^{m}4-y+v-3-4v$
- (iii) Rが1-(2-ヒドロキシエチル) -5-フェニル-1, 2, 3-トリアゾール-4-イルであり、R がクロロであり、そしてR がクロロである;
 - (iv) Rが3-メチル-5-(ピリジン-3-イル)-4H-1, 2, 4-ト

- リアゾールー4ーイルであり、R^¹がクロロであり、そしてR^²がクロロである;
- (v) Rが3-メチル-5-(ピリジン-3-イルメチル) -4H-1, 2, 4-トリアゾール-4-イルであり、R 1 がクロロであり、そしてR 2 がクロロである:
- (vi) Rが 3 x + + 2 x + x
- (vii) Rが3- (1, 5-ジメチル-1H-ピラゾール-3-イル) -5-メチル-4H-1, 2, 4-トリアゾール-4-イルであり、R がクロロであ り、そしてR がクロロである;
- (viii) Rが3 メトキシメチル- 5 (ピリジン- 3 4H 1, 2, 4 トリアゾール- 4 4 4 4 7 μ であり、 R^{1} がクロロであり、そして R^{2} がメチルである:
 - (ix) $R \vec{n} \ 3 \vec{x} \ + \hat{x} \ + \hat{y} \ + \hat{y} \ + \hat{y} 5 (\vec{y} \ \vec{y} \ \vec{y} \ 3 \vec{y} \ 4 \ H 1, 2$

4-トリアゾール- 4-イルであり、R 1 がメチルであり、そしてR 2 がクロロである:

- (xi) Rが3-メトキシメチル-5-(キノリン-6-イル) -4H-1, 2 $4-トリアゾール-4-イルであり、<math>R^{^{\dagger}}$ がクロロであり、そして $R^{^{\dagger}}$ がクロロである請求項1に記載の化合物:または

そのいずれかの個々の立体異性体若しくは薬学的に許容しうる塩。

13. R-(-)-6, 7-ジクロロー5-[3-メトキシメチルー5-(3-ビリジル)-4H-1, 2, 4-トリアゾールー4-イル]-2, 3(1H,4H)-キノキサリンジオンまたはその薬学的に許容しうる塩である請求項1に記載の化合物。

- 14. R-(-)-6, 7-ジクロロ-5-[3-メトキシメチル-5-(3-ビリジル)-4H-1, 2, 4-トリアゾール-4-イル]-2, 3 (1 H, 4 H)-キノキサリンジオンナトリウム塩である請求項1に記載の化合物。
- 15. 請求項1~14のいずれか1項に記載の式(I)を有する化合物または その薬学的に許容しうる塩を、薬学的に許容しうる希釈剤または担体と一緒に含 む医薬組成物。
- 16. 薬剤として用いるための、請求項1~14のいずれか1項および請求項 15それぞれに記載の式(I)を有する化合物またはその薬学的に許容しうる塩 若しくは組成物。
- 17. NMDA受容体で拮抗作用を生じることによる疾患の治療用薬剤の製造のための、請求項1~14のいずれか1項および請求項15それぞれに配載の式(I)を有する化合物またはその薬学的に許容しうる塩若しくは組成物の使用。
- 18. 疾患が急性神経変性障害または慢性神経障害である請求項17に配載の 使用。
- 19. 発作、一過性脳虚血発作、手術時虚血または外傷性頭部損傷の治療用薬 剤の製造のための、請求項1~14のいずれか1項および請求項15それぞれに
- 記載の式(I)を有する化合物またはその薬学的に許容しうる塩若しくは組成物の使用。
- 20. NMDA受容体で拮抗作用を生じることによって疾患を治療する哺乳動物の治療方法であって、該哺乳動物を、有効量の請求項1~14のいずれか1項および請求項15それぞれに記載の式(I)を有する化合物でまたはその薬学的に許容しうる塩差しくは組成物で治療することを含む上記方法。
- 21. 疾患が急性神経変性障害または慢性神経障害である請求項20に記載の 方法。
- 22. 発作、一過性脳虚血発作、手術時虚血または外傷性頭部損傷を治療する 哺乳動物の治療方法であって、該哺乳動物を、有効量の請求項1~14のいずれ か1項および請求項15それぞれに記載の式(I)を有する化合物でまたはその 薬学的に許容しうる塩若しくは組成物で治療することを含む上記方法。

(式中、R、R およびR は、請求項1に記載の式(I)の化合物について定義の通りであり、そしてR およびR は、単独の場合かまたは一緒になった場合、 酸性または塩基性条件下で加水分解によって開裂して請求項1に記載の式(I) を有する化合物を与えることができる1個または複数の基である) を有する化合物。

24. R^* および R^* が、それぞれ独立して、 C_1-C_4 アルキルおよびベンジルであって、場合により、 C_1-C_4 アルキル、 C_1-C_4 アルコキシ、ハロ、ニトロおよびトリフルオロメチルからそれぞれ独立して選択される $1\sim3$ 個の置換基で環置換されたものから選択されるかまたは、一緒になった場合、 C_1-C_6 アルキレン、CH(フェニル)、CH(4-メトキシフェニル)または<math>CH(3,4-2) ジメトキシフェニル)である諸東項 2 3 に記載の化合物。

25、R、R およびR が請求項1に定義の通りである請求項1に記載の式

(I) を有する化合物の製造方法であって、式

(式中、R、R¹およびR²は、この請求項で式(I)の化合物について定義の通りであり、そしてR²およびR²は、単独の場合かまたは一緒になった場合、酸性または塩基性条件下で加水分解によって開裂して式(I)を有する化合物を与えることができる1個または複数の基である)

を有する化合物の酸性または塩基性加水分解を含み、場合により、引続き式(I)の化合物をその薬学的に許容しうる塩へ変換する上記方法。

23. 式

26. R^* および R^* が、それぞれ独立して、 $C_1 - C_4$ アルキルおよびベンジルであって、場合により、 $C_1 - C_4$ アルキル、 $C_1 - C_4$ アルコキシ、ハロ、ニトロおよびトリフルオロメチルからそれぞれ独立して選択される $1 \sim 3$ 個の置換基で環置換されたものから選択されるかまたは、一緒になった場合、 $C_1 - C_6$ アルキレン、CH(フェニル)、CH(4 - 4 -

27. 反応を、式(II)を有する化合物の酸性加水分解によって行う請求項2 5または26に記載の方法。

28. Rが、3個または4個の窒素へテロ原子を有する5員環へテロアリール基であって、環膜素または窒素原子によってキノキサリンジオン環に対して結合している基であるかまたは、 $1\sim3$ 個の窒素へテロ原子を有する6員環へテロアリール基であって、環膜素原子によってキノキサリンジオン環に対して結合している基であり、前記基はどちらも、場合によりベンゾ縮合していて且つ場合により、ベンゾ縮合部分中を含めて、 C_1-C_4 アルキル、 C_2-C_4 アルケール、 C_3-C_7 0アルキル、ハロ、ヒドロキシ、 C_1-C_4 アルコキシ、 C_5-C_7 0アルキルオキシ、 C_7 0の。 C_7 0アルキルオ・シ、 C_7 0の。 C_7 0、 C_7 0 C_7 0

」−C₄アルキルから選択され;

R^{*}およびR^{*}が、それぞれ独立してHおよびC₁-C₄アルキルから選択される

かまたは、一緒になった場合、 C_s-C_7 アルキレンであり;

pが0、1または2であり;

Rおよび「het」の定義で用いられる「アリール」が、フェニルまたはナフチルを意味し、それぞれ場合により、 C_1-C_4 アルキル、 C_1-C_4 アルコキシ、ヒドロキシ、ハロ、ハロ(C_1-C_4)アルキルおよび $-NR^3$ R からそれぞれ独立して選択される1個または2個の置換基で置換され;

Rの定義で用いられる「het」が、フリル、チエニル、ピロリル、ピラブリル、イミダゾリル、トリアゾリル、テトラゾリル、オキサゾリル、イソキサゾリル、チアゾリル、イソチアゾリル、オキサジアゾリル、オキサゾリル、イソキサゾリル、チアゾリル、イソチアゾリル、オキサジアゾリル、チアジアゾリル、ピリジニル、ピリダジニル、ピリミジニルまたはピラジニルを意味し、それぞれ、場合により、 C_1-C_4 アルキル、 C_5-C_6 アルキンカルボニル、アリルオキシカルボニル、 C_5-C_6 00 C_6 1 C_6 2 C_6 2 C_6 3 C_6 4 C_6 7 C_6 7 C

イソキサゾリル、チアゾリル、イソチアソリル、オキサジアゾリル、チアジアゾ リル、ピリジニル、ピリダジニル、ピリミジニルまたはピラジニルを意味し、そ れぞれ、場合により1個または2個のC₁-C₄アルキル置換基で置換される請求 項1に記載の化合物。

【発明の詳細な説明】

キノキサリンジオン類

本発明は、NーメチルーDーアスパラギン酸受容体の選択的アンタゴニストで ある2,3 (1H,4H)ーキノキサリンジオン誘導体に関する。更に詳しくは 、本発明は、5ーヘテロアリールー2,3 (1H,4H)ーキノキサリンジオン 誘導体、およびこのような誘導体の製造、それらを含有する組成物、それらの使 用およびそれらの合成で用いられる中間体に関する。

Lーグルタミン酸は、興奮性アミノ酸系神経伝達物質であり、脳におけるその生理学的役割は4個の受容体との相互作用を伴い、それらの内3個は、選択的アゴニストに関してNMDA(NーメチルーDーアスパラギン酸)、AMPA(2ーアミノー3ーヒドロキシー5ーメチルー4ーイソキサゾールプロピオン酸)およびカイネートと称される。第四の受容体は、代謝調節型受容体と称される。グルタミン酸の結合部位の他に、NMDA受容体は、解離性麻酔薬(例えば、ケタミン)、ポリアミン(例えば、スペルミン)、グリシンおよび若干の金属イオン(例えば、Mg 、Zn) に対する高親和性結合部位を有する。NMDA受容体は、活性化するのにグリシンを結合する絶対的必要条件を有するので、グリシンアンタゴニストは機能性NMDAアンタゴニストとして作用しちる。

脳梗塞部位において、無酸素は、例えば、異常に高い濃度のグルタミン酸を放出させる。これは、NMDA受容体の過刺激をもたらし、ニューロンの変性および死を引き起こす。このように、NMDA受容体アンタゴニストは、in vitroおよび in vivo でグルタミン酸の神経毒作用を阻止することが示されており、NMDA受容体活性化が重要であると考えられるいずれの病理学的状態の治療および/または予防においても有用でありうる。このような状態の例には、発作、一過性脳虚血発作、手術時虚血、完全虚血(心停止後)および脳または脊髄に対する外傷性頭部損傷などの結果による急性神経変性障害が含まれる。更に、NMDAアンタゴニストは、老年痴呆、パーキンソン病およびアルツハイマー病などの若干の慢性神経障害を治療する場合に用いることができる。それらは、網膜お

よび黄斑変性のように末梢神経機能が損なわれた状態においても用いることがで

きる。

更に、NMDAアンタゴニストは、鎮痙薬および杭不安薬活性を有することが示されており、したがって、癲癇および不安を治療するのに用いることができる。 NMDAアンタゴニストは、アルコールに身体的に依存した動物の禁断症状の作用を滅衰させることもでき (K.A.グラント (Grant) ら, J.Pharm. Exp. Ther., 260, 1017(1992)) 、したがって、NMDAアンタゴニストは、アルコール嗜癖および痛みの治療においても用いることができる。 NMDAアンタゴニストは、聴覚障害 (例えば、耳鳴)、片頭痛および精神医学的障害の治療においても有用でありうる。

EP-A-0572852号は、神経変性疾患および中枢神経系の神経毒性障害の治療に有用なピロールー1ーイル置換2,3 (1H,4H)ーキノキサリンジオン誘導体を影動している。

EP-A-0556393号は、グルタミン酸受容体拮抗活性、特に、NMDA-グリシン 受容体およびAMPA受容体拮抗活性を有するイミダゾリルーまたはトリアゾリ ル置換2,3 (1H,4H)ーキノキサリンジオン誘導体を特に記載している。 しかしながら、そこには、5ートリアゾリル置換化合物は具体的に記載されてい ない。

本化合物は、NMDA(グリシン部位)受容体の強力なアンタゴニストである。 更に、それらは、それらが観和性を有するとしても僅かしかないAMPA受容体に対するのと比較して、NMDA(グリシン部位)受容体に対して極めて選択的なアンタゴニストである。

本発明は、式

$$R^1$$
 R^2
 R^3
 R^4
 R^3
 R^4
 R^4
 R^4
 R^4
 R^4

(式中、Rは、3個または4個の窒素へテロ原子を有する5員環へテロアリール 基であって、環炭素または窒素原子によってキノキサリンジオン環に対して結合 している基であるかまたは、1~3個の窒素へテロ原子を有する6量環へテロア リール基であって、環炭素原子によってキノキサリンジオン環に対して結合して いる基であり、これらの基はどちらも、場合によりベンゾ縮合していて且つ場合 により、ベンゾ縮合部分中を含めて、 $C_1 - C_4$ アルキル、 $C_2 - C_4$ アルケニル、 クロアルキルオキシ、-COOH、C₁-C₄アルコキシカルボニル、-CONR $R \setminus -NRR \setminus -S(O)$, $(C_1 - C_1 T \nu + \nu) \setminus -SO_2 NRR \setminus T U$ ール、アリールオキシ、アリール(C1-C1)アルコキシおよびhetからそれ ぞれ独立して選択される1個または2個の置換基で置換されていて、前記C₁-Caアルキルは、場合により、Ca-Crシクロアルキル、ハロ、ヒドロキシ、Cr −C₁アルコキシ、ハロ(C₁−C₁)アルコキシ、C₃−C₁シクロアルキルオキ シ、 $C_3 - C_7$ シクロアルキル ($C_1 - C_4$) アルコキシ、-COOH、 $C_1 - C_4$ ア ルコキシカルボニル、-CONR R、-NR R、-S(O)。(C1-C1ア ルキル)、-SO2(アリール)、-SO2NRR、モルホリノ、アリール、ア リールオキシ、アリール $(C_1 - C_1)$ アルコキシまたはhetで置換されていて 、そして前記C2-C1アルケニルは、場合により、アリールで置換されていて; R およびR は、それぞれ独立して、H、フルオロ、クロロ、プロモ、C:- C_1 アルキルおよびハロ $(C_1 - C_1)$ アルキルから選択され;

R およびR は、それぞれ独立してHおよび C_1 $-C_1$ アルキルから遊択されるかまたは、一緒になった場合、 C_1 $-C_1$ アルキレンであり:

pは0、1または2であり;

Rおよび「 het_J 」の定義で用いられる「rリール」は、フェニルまたはナフ チルを意味し、それぞれ場合により、 $C_1 - C_4$ アルキル、 $C_1 - C_4$ アルコキシ、 ヒドロキシ、ハロ、ハロ($C_1 - C_4$)アルキルおよび $-NR^3$ R^4 からそれぞれ独 立して選択される1個または2個の置換基で置換され;

Rの定義で用いられる「het」は、フリル、チエニル、ピロリル、ピラゾリル、イミダゾリル、トリアゾリル、テトラゾリル、オキサゾリル、イソキサゾリル、チアブリル、インチアゾリル、オキサジアゾリル、チアジアゾリル、ピリジニル、ピリダジニル、ピリミジニルまたはピラジニルを意味し、それぞれ、場合

によりベンゾ縮合していて且つ場合により、ベンゾ縮合部分中を含めて、 C_1-C_1 アルキル、 C_3-C_7 シクロアルキル、 C_1-C_4 アルコキシ、ハロ、ヒドロキシ、 $-C_0$ アルコトンカルボニル、アリルオキシカルボニル、 $-C_0$ ONR 3R 4 、-NR 3R 4 、 $-S_0$ (0)。 (C_1-C_4) アルキル、 C_1-C_4 アルキル、 C_1-C_4 アルキル、 C_1-C_4 アルキル、ヒドロキシ (C_1-C_4) アルキル、ヒドロキシ (C_1-C_4) アルキル、アリール、アリールアルキル、 C_1 $-C_4$ アルキル、 C_1 $-C_4$ アルキル、 C_2 $-C_4$ アルキル、 C_3 $-C_4$ アルキル、 C_4 $-C_4$ アルキル、 C_4 $-C_4$ アルキル、 C_5 $-C_6$ アルキル、 C_6 $-C_6$ アルキル、 C_7 $-C_8$ アルキル、 C_7 $-C_8$ $-C_$

を有する化合物またはその薬学的に許容しうる塩に関する。

上の定義において、「ハロ」は、フルオロ、クロロ、プロモまたはヨードを意 味し、そして3個またはそれ以上の炭素原子を有するアルキル基、アルコキシ基 およびアルキレン基、および4個またはそれ以上の炭素原子を有するアルケニル 基は、直鎖または今岐状鎖でありうる。

「C₁ - C₄ アルキル」という定義は、メチル基、エチル基、n - プロピル基、 イソプロピル基、n - プチル基、第二プテル基および第三プチル基を包含する。 「C₁ - C₄ アルコキシ」という定義は、対応するアルコキシ基を包含する。

Rが5員環へテロアリール基である場合、この定義は、1, 2, 3-トリアゾ リル、1, 2, 4-トリアゾリルおよびテトラゾリルを包含する。

Rが6員環へテロアリール基である場合、この定義は、特に、2-、3-および4-ピリジニル、3-または4-ピリダジニル、2-、4-または5-ピリミジニルおよび2-ピラジニルを包含する。

「het」がベンゾ縮合へテロアリール基である場合、これは、そのヘテロア

リールによってまたは「het」基のベンソ縮合部分によって分子の残りの部分 に対して結合していてよい。

更に好ましくは、Rは、1, 2, 3ートリアゾールー4ーイル、1, 2, 4ートリアゾールー3ーイル、1, 2, 4ートリアゾールー3ーイル、1, 2, 4ートリアゾールー4ーイルまたはテトラゾールー5ーイルであり、それぞれ、 C_1-C_4 アルキル、 C_2-C_4 アルケニル、 C_3-C_4 アルキル、ハロ、ヒドロキシ、 C_1-C_4 アルコキシカルボニル、アリールおよびhe tからそれぞれ独立して選択される1個または2個の置換基で置換され、前配 C_1-C_4 アルコキシ、ハロ、ヒドロキシ、 C_1-C_4 アルコキシ、ハロ(C_1-C_4)アルコキシ、C3ー C_7 シクロアルキル(C_1-C_4)アルコキシ、ハロ(C_1-C_4)アルコキシ、アリール(C_1-C_4)アルコキシ、アリール(C_1-C_4)アルコキシ、アリール(C_1-C_4)アルコキシ、アリール(C_1-C_4)アルコキシまたはhe tで置換されていて;或いはピリジンー2ーイル、ピリジンー3ーイル、ピリジンー4ーイル、ピリミジンー2ーイルまたはピリミジンー5ーイルである。

なお一層好ましくは、Rは、1,2,3-トリアゾールー4ーイル、1,2,4-トリアゾールー3ーイル、1,2,4-トリアゾールー3ーイルまたはテトラゾールー5ーイルであり、それぞれ、メチル、エチル、プロピル、アリル、シクロプロピル、シクロヘキシル、プロモ、ヒドロキシ、エトキシカルボニル、2ークロロフェニル、3ークロロフェニル、4ージメチルアミノフェニル、2ーヒドロキシフェニル、2ーメトキシフェニル、3ーメトキシ

フェニル、4ーメトキシフェニル、2ーメチルフェニル、フェニル、4ートリフ ルオロメチルフェニル、2-アミノ-1、3、4-オキサジアゾール-5-イル 、2-カルボキシピリジン-5-イル、1, 5-ジメチル-1 H-ピラゾール-3-イル、1H-イミダゾール-1-イル、1-メチルイミダゾール-2-イル 、1ーメチルイミダゾールー4ーイル、1ーメチルイミダゾールー5ーイル、3 ーメチルイソチアゾールー4ーイル、4ーメチルー1Hーイミダゾールー5ーイ ル、3-メチル-1, 2, 4-オキサジアゾール-5-イル、1-メチル-1H ーピラゾールー4ーイル、5ーメチルー1Hーピラゾールー3ーイル、1ーメチ ルー1H-ピラゾールー5-イル、1-オキシドピリジン-3-イル、2-メチ ルピリジン-3-イル、2-メチルピリジン-5-イル、1-フェニルイミダゾ ールー4-イル、5-フェニルピリジン-3-イル、2-フェニルピリジン-5 ーイル、1ーメチルピロールー2ーイル、4ーメチルー1,2,3ーチアジアゾ , 4-トリアゾールー5-イル、3-(プロプー1-イル)-1H-ピラゾール -5-イル、ピラジン-2-イル、1H-ピラゾール-4-イル、ピリダジン-4ーイル、ピリジンー2ーイル、ピリジン-3ーイル、ピリジン-4ーイル、ピ リミジン-2-イル、チエン-2-イル、1H-1,2,4-トリアゾール-5 -イル、1H-1, 2, 3-トリアゾール-5-イル、キノリン-3-イルおよ びキノリンー6-イルからそれぞれ独立して選択される1個または2個の置換基 で置換され、前記メチル、エチルまたはプロピルは、場合により、フルオロ、ヒ ドロキシ、メトキシ、エトキシ、2,2,2-トリフルオロエトキシ、シクロへ キシルメトキシ、シクロペンチルメトキシ、-COOH、メトキシカルボニル、 ジメチルアミノ、4-クロロフェニルスルホニル、モルホリノ、フェニル、フェ ノキシ、ベンジルオキシ、ピリジン-2-イル、ピリジン-3-イルまたはピリ ジン-4-イルで置換されていて:或いはピリジン-2-イル、ピリジン-3-イル、ピリジン-4-イル、ピリミジン-2-イルまたはピリミジン-5-イル である。

Rの例には、

1-(2-ヒドロキシエチル)-5-フェニル-1,2,3-トリアゾールー

4-イル、

1- (2-ヒドロキシエチル) - 4-フェニル- 1 , 2 , 3-トリアゾール- 5-イル、

2- (2-ヒドロキシエチル) -5-フェニル-1, 2, 3-トリアゾールー4-イル、

1-メチル-5-フェニル-1, 2, 3-トリアゾール-4-イル、

1-メチル-4-フェニル-1,2,3-トリアゾール-5-イル、

2-メチル-5-フェニル-1, 2, 3-トリアゾール-4-イル、

5-フェニル-1H-1, 2, 3-トリアゾール-4-イル、

1 - x + y - 1 + 1 + 1, 2, 4 - y + y + y - y - 1 + 3 - 4y,

2-メチル-2H-1, 2, 4-トリアゾール-3-イル、

4-(2-ヒドロキシエチル)-4H-1, 2, 4-トリアゾール-3-イル

4-メチル-4H-1, 2, 4-トリアゾール-3-イル、

3-(2-アミノ-1, 3, 4-オキサジアゾール-5-イル) -5-メチル -4H-1, 2, 4-トリアゾール-4-イル、

3-ベンジル-5-(ピリジン-3-イル)-4H-1, 2, 4-トリアゾール-4-イル、

3 - ベンジルオキシメチル-5-(ピリジン-3-イル)-4H-1,2,4 -トリアゾール-4-イル、

3-プロモー5- (ピリジン-3-イル) -4 H-1, 2, 4-トリアゾール -4-イル、

3- (3-カルボキシブロブー1-イル) -5- (ピリジン-3-イル) -4 H-1, 2, 4-トリアゾール-4-イル、

3 - (2 - カルボキシピリジン-5 - イル) - 5 - メトキシメチル-4H-12、4 - トリアゾール-4 - イル、

3- (2-クロロフェニル) -5-メトキシメチル-4H-1, 2, 4-トリアゾール-4-イル、

3-(2-クロロフェニル)-5-メチル-4H-1, 2, 4-トリアゾール -4-イル、

3- (3-クロロフェニル) -5-メチル-4H-1, 2, 4-トリアゾール

-4-イル、

3- (4-クロロフェニル) -5-メチル-4H-1, 2, 4-トリアゾール -4-イル、

3- $(4-\rho$ ロロフェニルスルホニルメチル) - 5-メチル-4H-1, 2, 4-トリアゾール-4-1ル、

3-シクロヘキシルメトキシメチルー5-(ピリジンー3-イル)-4 H-1

, 2, 4ートリアゾールー4ーイル、

3-シクロペンチルメトキシメチル-5-(ピリジン-3-イル)-4H-1

, 2, 4ートリアゾールー4ーイル、

3-シクロプロピル-5-メチル-4H-1, 2, 4-トリアゾール-4-イル、

3, 5-ジ (メトキシメチル) - 4H-1, 2, 4-トリアゾール-4-イル

3- (N, N-ジメチルアミノメチル)-5-エチル-4H-1, 2, 4-トリアゾール-4- ℓ

3- (N, N-ジメチルアミノメチル) -5- (ピリジン-3-イル) -4H -1. 2. 4-トリアゾール-4-イル.

3- (4-ジメチルアミノフェニル) - 5-メチル-4H-1, 2, 4-トリアゾール-4-4ル、

3 - (1, 5-ジメチル-1H-ピラゾール-3-4ル)-5-4トキシメチル-4H-1, 2, 4-トリアゾール-4-4ル、

3-(1,5-ジメチル-1H-ピラゾール-3-イル)-5-メチル-4H-1,2,4-トリアゾール-4-イル、

3, 5-) <math>) <math>) x=-) -<math>) -<math>) -1

3-xトキシメチル-5-(ピリジン-3-4ル)-4H-1, 2, 4-トリアゾール<math>-4-4ル、

3-xトキシカルボニル-4H-1, 2, 4-トリアゾール-4-イル、

3-エチルー5- (2-クロロフェニル)-4H-1, 2, 4-トリアゾール-4-イル、

3-エチルー5- (2-メトキシフェニル)-4 H-1, 2, 4-トリアゾールー4-イル、

3-エチル-5-(1-メチルビラゾール-5-イル)-4H-1, 2, 4-トリアゾール-4-イル、

3-x+y-5-y+y-4H-1, 2, 4-y+y-y-y-y-y-1

3-エチルー5-モルホリノメチルー4H-1, 2, 4-トリアゾール-4-イル

3-エチル-5-(ピリジン-3-イル)-4H-1, 2, 4-トリアゾール -4-イル、

3-エチル-4H-1, 2, 4-トリアゾール-4-イル、

3- (2-ヒドロキシエチル) -5-メチル-4H-1, 2, 4-トリアゾール-4-4ーイル、

3-ヒドロキシメチルー5-メチルー4H-1, 2, 4-トリアゾールー4-イル、

3ーヒドロキシメチルー5ーフェニルー4H-1, 2, 4ートリアゾールー4ーイル.

3-ヒドロキシメチルー5- (ピリジン-3-イル) -4H-1, 2, 4-ト リアゾール-4-イル、

3-ヒドロキシメチル-4H-1.2.4-トリアゾール-4-イル、

3-ヒドロキシ-5-メチル-4H-1, 2, 4-トリアゾール-4-イル、

3-(2-ビドロキシフェニル)-5-メチル-4H-1, 2, 4-トリアゾ

ールー4ーイル、

3- (1H-イミダゾール-1-イル) - 5 - メチル-4H-1, 2, 4-トリアゾール-4 - イル、

3-(2-)トキシエチル)-5-(ピリジン-3-1) -4 H-1, 2, 4-トリアゾール-4 -1 -1 -1

3-メトキシメチルー5-(1-メチルー1H-ピラゾールー5-イル) -4

H-1, 2, 4-1

3 - メトキシメチル-5-(2-メチルビリジン-5-イル)-4H-1, 2 ,4-トリアゾール-4-イル、

3-メトキシメチル-5- (2-メチルチアゾール-4-イル)-4H-1,

2, 4-トリアゾール-4-イル、

3-メトキシメチル- 5- (1-オキシドピリジン- 3-イル)-4H-1,

2, 4-トリアゾール-4-イル、

3-メトキシメチル-5- (1-フェニルイミダゾール-4-イル) -4H-1, 2, 4-トリアゾール-4-イル、

3-メトキシメチル-5-(5-フェニルピリジン-3-イル)-4H-1,

2, 4-トリアゾールー4-イル、

3 - メトキシメチル-5-(2-フェニルピリジン-5-イル)-4H-1, 2.4-トリアゾール-4-イル.

3-メトキシメチルー5- (ピリジン-3-イル) -4H-1, 2, 4-トリ アゾール-4-イル、

3-メトキシメチル-5- (ピリジン-3-イルメチル) -4 H-1, 2, 4 -トリアゾール-4ーイル.

3-x++vx+n-5-(+y+v-3-4n)-4H-1, 2, 4-+y 7y-n-4-4n.

3-メトキシメチル-5-(キノリン-6-イル)-4H-1, 2, 4-トリアゾール-4-4-4 π 、

3-(2-メトキシフェニル)-5-メチル-4H-1, 2, 4-トリアゾー

ルー4ーイル、

 $-4-1\nu$.

3- (3-メトキシフェニル) - 5-メチル-4 H-1, 2, 4-トリアゾール-4-イル,

3-メチル-5-(1-メチルイミダゾール-2-イル)-4 H-1, 2, 4 -トリアゾール-4-イル、

3-メチルー5- (1-メチルイミダゾールー4-イル)-4 H-1, 2, 4-トリアゾールー4-イル,

3-メチルー5-(1-メチルイミダゾールー5-イル)-4 H-1, 2, 4 -トリアゾールー4-イル、

3 - メチルー5 - (4 -メチルー1 H - 1 H - 1 S ダゾールー5 - イル) - 4 H - 1 $2 \cdot 4 -$ トリアゾールー4 - イル \cdot

3-メチル-5-(3-メチル-1, 2, 4-オキサジアゾール-5-イル) -4H-1, 2, 4-トリアゾール-4-イル、

3-メチルー5- (2-メチルピリジン-3-イル)-4+-1,2,4-トリアゾール-4-イル,

3-メチル-5- (2-メチルピリジン-5-イル)-4 H-1 , 2 ,4-トリアゾール-4-イル.

3-メチル-5-(1-メチルピラゾール-5-イル)-4H-1,2,4-トリアゾール-4-イル、

3-メチル-5- (5-メチル-1 H-ピラゾール-3-イル)-4 H-1, 2. 4-トリアゾール-4-イル.

3-メチル-5-(2-メチルフェニル)-4H-1, 2, 4-トリアゾール

3-x+v-5-(1-x+v+v+v+v-2-4v)-4H-1. 2, 4-1

リアゾール-4-イル、

3-メチル-5-(4-メチル-1,2,3-チアジアゾール-5-イル)-

4H-1, 2, 4-トリアゾール-4-イル、

3-メチル-5-(2-メチルチアゾール-4-イル)-4 H-1 , 2 , 4-

トリアゾールー4ーイル、

3-メチル-5-(1-メチル-1H-1, 2, 4-トリアゾール-5-イル

) -4H-1, 2, 4-トリアゾール-4-イル、

3 - x + y - 5 - (1 - x + y - 1 + 1 + 1 + 2 + 2 + y - y - 4 - 4 - 4 + 1) - 4 + 1

2, 4-トリアゾールー4-イル、

3- (3-メチル-1, 2, 4-オキサジアゾール-5-イル) -5- (ピリ ジン-3-イル) -4H-1, 2, 4-トリアゾール-4-イル、

3-メチル-5-フェニル-4H-1, 2, 4-トリアゾール-4-イル、

3-メチル-5- (3-[プロプ-1-イル]-1 H-ピラゾール-5-イル

) -4H-1, 2, 4-トリアゾール-4-イル、

3-メチルー5-(ピラジンー2-イル)-4 H-1, 2, 4-トリアゾール -4 -イル、

3-メチルー5- (1H-ピラゾールー4-イル)-4H-1, 2, 4-トリアゾールー4-イル、

3-メチル-5- (ピリジン-2-イル) -4H-1, 2, 4-トリアゾール -4-イル、

3 - メチルー5 - (ピリジンー3 - イル) - 4 H - 1, 2, 4 - トリアゾール - 4 - イル、

3-x チルー5-(ビリジンー4-イル)-4 H- 1, 2, 4-トリアゾール - 4-イル、

3-メチルー5-(ピリジンー2-イルメチル)-4 H-1 , 2 , 4-トリア ゾールー4-イル、

3-メチルー5- (ピリジンー3-イルメチル) -4 H-1, 2, 4-トリア ゾールー4-イル、

3-メチルー5- (ビリジン-4-イルメチル) -4 H-1, 2, 4-トリア ゾール-4-イル、

3-メチル-5-(ピリダジン-4-イル)-4H-1, 2, 4-トリアゾール-4-イル、

3-メチルー5- (ピリミジンー2-イル) -4 H-1, 2, 4-トリアゾールー4-イル、

3-メチルー5-(チエンー2-イル)-4 H-1, 2, 4-トリアゾールー 4-イル、

3-メチル-4H-1, 2, 4-トリアゾール-4-イル、

 $3-x \neq \nu-5-(1H-1, 2, 3-y \neq \nu-5-4\nu)-4H-1$, 2, $4-y \neq \nu-4-4\nu$

 $3-\cancel{y}+\cancel{v}-5-(1H-1, 2, 4-\cancel{y}-\cancel{v}-\cancel{v}-5-\cancel{v})-4H-1$. 2. $4-\cancel{y}-\cancel{v}-\cancel{v}-4-\cancel{v}$.

3-モルホリノメチルー5- (ピリジン-3-イル) -4H-1, 2, 4-トリアゾール-4-イル、

3-フェノキシメチルー5-(ピリジン-3-イル)-4H-1, 2, 4-トリアゾール-4-イル

3-(2-フェニルエチル)-5-(ピリジン-3-イル)-4H-1, 2, 4-トリアゾール-4-イル

3- (ピリジン-3-イル) -5- (2, 2, 2-トリフルオロエトキシ) メ チル-4H-1, 2, 4-トリアゾール-4-イル、

3- ($^{\mu}$) $^{\nu}$ $^{\nu}$

トリアゾールー4ーイル、

 $1 - \mathcal{V} \cup \mathcal{V$

1-ベンジルテトラゾール-5-イル、

1-カルボキシメチルテトラゾール-5-イル、

1-シクロヘキシルテトラゾール-5-イル、

1-エチルテトラゾール-5-イル、

1-(2-ヒドロキシエチル)テトラゾール-5-イル、

1- (3-ヒドロキシプロピル) テトラゾール-5-イル、

1-メトキシカルボニルメチルテトラゾール-5-イル、

1-(2-メトキシエチル) テトラゾール-5-イル、

1-メチルテトラゾール-5-イル、

1-(2-フェニルエチル) テトラゾール-5-イル、

1-フェニルテトラゾール-5-イル、

1- (プロプー2-イル) テトラゾールー5-イル、

1-(2, 2, 2-トリフルオロエチル) テトラゾール-5-イル、

ピリジンー2ーイル、

ピリジンー3-イル、

ピリジンー4ーイル、

ピリミジンー2-イルおよび

ピリミジン-5-イルが含まれる。

最も好ましくは、Rは、

1-(3-ヒドロキシプロピル)テトラゾール-5-イル、

 $4 - \lambda + \mu - 4H - 1$, 2, $4 - \mu + \mu - 3 - 4\mu$

1- (2-ヒドロキシエチル) -5-フェニル-1, 2, 3-トリアゾール-4-イル、

3-メチルー5-(ピリジン-3-イル)-4H-1,2,4-トリアゾール -4-イル、

3-メチル-5-(ピリジン-3-イルメチル)-4H-1, 2, 4-トリア ゾール-4-イル、

3-メトキシメチル-5- (キノリン-6-イル) -4H-1, 2, 4-トリアゾール-4-イルまたは

3-(1,5-ジメチル-1H-ピラゾール-3-イル)-5-メチル-4H -1,2,4-トリアゾール-4-イルである。

好ましくは、R およびR は、それぞれ独立して、クロロおよび $C_1 - C_4$ アルキル、具体的にはメチルまたはエチルから選択される。

最も好ましくは、R およびR はそれぞれクロロである。

好ましくは、R²およびR⁴は、それぞれ独立して、HおよびC₁-C₃アルキルから選択される。最も好ましくは、R²およびR⁴はそれぞれメチルである。

好ましくは、「アリール」は、メチル、メトキシ、ヒドロキシ、クロロ、トリ フルオロメチルおよびジメチルアミノからそれぞれ独立して選択される1個また

は2個の置換基で場合により置換されたフェニルを意味する。

「アリール」の例には、2 ークロロフェニル、3 ークロロフェニル、4 ークロロフェニル、4 ージメチルアミノフェニル、2 ーとドロキシフェニル、2 ーメトキシフェニル、3 ーメトキシフェニル、4 ーメトキシフェニル、2 ーメチルフェニル、フェニルおよび4 ートリフルオロメチルフェニルが含まれる。

好ましくは、「het」は、チエニル、ピロリル、ピラゾリル、イミダゾリル、トリアゾリル、チアゾリル、イソチアソリル、オキサジアゾリル、チアジアゾリル、ピリダジニル、ピリミジニルまたはピラジニルを意味し、それぞれ、場合によりベンゾ縮合していて且つ場合により、C,一C,アルキル、一COOH、-NR²R⁴およびフェニルからそれぞれ独立して選択される1個または2個の置換基で、および/または前記ピリジニル基、ピリダジニル基、ピリジニル基、ピリジニル基で置換されている。

「het」の例には、チエン-2-イル、1-メチルピロール-2-イル、1 H-ピラゾール-4-イル、1-メチル-1H-ピラゾール-4-イル、5-メ チル-1H-ピラゾール-3-イル、1-メチル-1H-ピラゾール-5-イル 、1、5-ジメチル-1H-ピラゾール-3-イル、3-(プロブ-1-イル) -1 H - L = -2 J - L - 2 J - 2 J - L - 2 J - 2 J - L - 2 J - 2 J - L - 2 J

ル、ピリミジン-2-イル、ピラジン-2-イル、キノリン-3-イルおよびキ ノリン-6-イルが含まれる。

式(I)を有する化合物の薬学的に許容しうる塩には、それらの酸付加塩および塩基塩が含まれる。

適当な酸付加塩は、無毒性塩を形成する酸から形成され、そして例は、塩酸塩 、臭化水素酸塩、ヨウ化水素酸塩、硫酸塩、硫酸水素塩、硝酸塩、リン酸塩、リ ン酸水素塩、酢酸塩、マレイン酸塩、フマル酸塩、乳酸塩、酒石酸塩、クエン酸 塩、グルコン酸塩、コハク酸塩、安息香酸塩、メタンスルホン酸塩、ベンゼンス ルホン酸塩およびpートルエンスルホン酸塩である。

適当な塩基塩は、無毒性塩を形成する塩基から形成され、そして例は、カルシ ウム塩、リチウム塩、マグネシウム塩、カリウム塩、ナトリウム塩、亜鉛塩、エ タノールアミン塩、ジエタノールアミン塩およびトリエタノールアミン塩である

適当な塩の給評については、ベルゲ (Berge) ら, J. Pharm. Sci., 66, 1-19(1977))を参照されたい。

式(I)を有する化合物は、1個またはそれ以上の不斉炭素原子を有すること があり、したがって、2種類またはそれ以上の立体異性体で存在しうるし、また はそれは互変異性体として存在しうる。本発明は、式(I)を有する化合物の個 々の立体異性体および互変異性体並びにそれらの混合物を包含する。

ジアステレオ異性体の分離は、慣用的な技法によって、例えば、式(I)の化合物またはその適当な塩若しくは誘導体の立体異性体混合物の分別結晶、クロマトグラフィーまたは高性能液体クロマトグラフィーによって行うことができる。式(I)の化合物の個々の鏡像異性体は、対応する光学的に純粋な中間体から、または適当なキラル支持体を用いる対応するラセミ体の高性能液体クロマトグラフィーまたは対応するラセミ体と適当な光学活性酸若しくは塩基との反応によって形成されたジアステレオ異性体塩の分別結晶などによる分割によって製造することもできる。

式(I)を有する若干の化合物は、アトロプ異性体として知られる特別な立体 異性体の形で存在しうる。アトロプ異性体は、単結合での回転が妨げられるかま たは極めて遅くなるためにのみ分離することができる異性体である ("Advanced

Organic Chemistry",第3版、ジェリー・マーチ (Jerry March),ジョン・ウィリー・アンド・サンズ (John Wiley and Sons) (1985)を参照されたい)。それらは、前の段落で記載されたような慣用法によって分離することができる。本発明は、式(1)を有する化合物の個々のアトロブ異性体およびそれらの混合物を包含する。

- 式(I)を有する化合物の好ましい例は、
- (i) $R^{ij}1 (3 t^{ij}t^{ij}t^{ij}t^{ij})$ テトラゾールー $5 t^{ij}t^{ij}t^{ij}t^{ij}$ がクロロであり、そして $R^{ij}t^$
- (ii) $R^{m}4 x + y 4H 1$, 2, 4 y y y 3 4 + y 3
- (iii) Rが1- (2-ヒドロキシエチル) -5-フェニル-1, 2, 3-トリアゾール-4-イルであり、 $R^{^{1}}$ がクロロであり、そして $R^{^{2}}$ がクロロである;
 - (iv) Rが3-メチル-5- (ピリジン-3-イル) -4H-1, 2, 4-ト

- リアゾール-4-イルであり、R がクロロであり、そしてR がクロロである;
- (v) Rが3-メチル-5- (ピリジン-3-イルメチル) -4H-1, 2, 4-トリアゾール-4-イルであり、 $R^{^{1}}$ がクロロであり、そして $R^{^{2}}$ がクロロである:
- (vi) Rが3-メトキシメチル-5- (ピリジン-3-イル) -4H-1, 2 , 4-トリアゾール-4-イルであり、R がクロロであり、そしてR がクロロである;
- (viii) Rが3 x トキシメチル- 5 (ピリジン- 3 4 1 4 + 1, 2, 4 トリアゾール- 4 イルであり、R がクロロであり、そして R^2 がメチルである:
- (x) Rが3-メトキシメチル-5-(キノリン-3-イル) -4H-1, 2 , 4-トリアゾール-4-イルであり、R がクロロであり、そしてR がクロロである:または
- (xi) $R \vec{m} \, 3 \vec{x} + \hat{x} \rightarrow \hat{y} + \hat{y} \rightarrow 0$ $+ \hat{y} \rightarrow 0$ +
- それらのいずれかの個々の立体異性体若しくは薬学的に許容しうる塩である。
 - 式(I)を有する特に好ましい化合物は、
- (i) R-(-)-6, 7-ジクロロ-5-[3-メトキンメチル-5-(3-ビリジル)-4H-1, 2, 4-トリアゾール-4-イル]-2, 3 (1H,4H)-キノキサリンジオンまたはその薬学的に許容しうる塩および
 - (ii) R-(-)-6, 7-ジクロロ-5-[3-メトキシメチル-5-(3

ビリジル) -4H-1, 2, 4-トリアゾール-4-イル] -2, 3 (1H, 4H) -キノキサリンジオンナトリウム塩である。

式(I)の化合物は全て、式

$$\begin{array}{c} R \\ R^{1} \\ N \end{array} \begin{array}{c} N \\ OR^{5} \end{array} \hspace{0.5cm} \text{(ii)}$$

(式中、R、R²およびR⁶は、式(I)の化合物について前に定義の通りであり、そしてR⁶およびR⁶は、単独の場合かまたは一緒になった場合、酸性または塩 基性条件下で加水分解によって開裂して式(I)を有するキノキサリンジオンを 与えることができる1個または複数の基である)

を有する化合物の酸性または塩基性加水分解によって製造することができる。こ のような1個または複数の基は慣用的であり、そして適当な例は当業者に周知で あろう。

好ましくは、R[°]およびR[°]は、それぞれ独立して、C₁ーC₁アルキル(好ましくは、メチルまたはエチル)およびベンジルであって、場合により、C₁ーC₁アルキル、C₁ーC₁アルコキシ、ハロ、ニトロおよびトリフルオロメチルからそれ

ぞれ独立して選択される $1 \sim 3$ 個の置換基で環置換されたものから選択されるかまたは、一緒になった場合、 $C_1 - C_0$ アルキレン、CH (7 = L)、CH (4 = L) またはCH (3 = L) である。

好ましくは、その反応は、式 (II) を有する化合物の酸性加水分解によって行 われる。

典型的な手順では、式(II) の化合物を、適当な酸、例えば、塩酸などの鉱酸 の水溶液で、場合により適当な有機補助溶剤、例えば、1,4-ジオキサンの存 在下において処理する。その反応は、通常、その混合物を1種類または複数の溶 媒の遷流温度まで加熱することによって行われる。

式(II)を有する中間体は、例えば、下記のような種々の慣用法によって製造することができる。

(a) Rが置換テトラゾール-5-イル基である式(II) を有する化合物は、 スキーム I で示された経路によって製造することができる。

スキームI

$$\begin{array}{c} R^{2} \\ R^{2} \\ \end{array} \begin{array}{c} N \\ N \\ \end{array} \begin{array}{c} OR^{5} \\ OR^{4} \\ \end{array} \begin{array}{c} R^{2} \\ \end{array} \begin{array}{c} N \\ N \\ \end{array} \begin{array}{c} OR^{5} \\ R^{2} \\ \end{array} \begin{array}{c} N \\ N \\ \end{array} \begin{array}{c} OR^{5} \\ R^{2} \\ \end{array} \begin{array}{c} N \\ N \\ OR^{4} \\ \end{array} \begin{array}{c} N \\ OR^{5} \\ R^{2} \\ \end{array} \begin{array}{c} N \\ OR^{5} \\ R^{2} \\ \end{array} \begin{array}{c} N \\ OR^{5} \\ OR^{6} \\ \end{array} \begin{array}{c} N \\ OR^{5} \\ OR^{5} \\ OR^{5} \\ \end{array} \begin{array}{c} N \\ OR^{5} \\ OR^{5} \\ \end{array} \begin{array}{c} N \\ OR^{5} \\ OR^{5} \\ OR^{5} \\ \end{array} \begin{array}{c} N \\ OR^{5} \\ OR^{5}$$

式中、 R^1 、 R^2 、 R^2 および R^2 は、式 (II) の化合物について前に定義の通りであり、そして R^2 は、式 (I) の化合物のRについて前に定義の適当な置換基である。

典型的な手順において、式 (III) の化合物を、適当な溶媒: 例えば、テトラ

ヒドロフラン中において適当な塩基、例えば、リチウムジインプロピルアミドで 最初に脱プロトン化した後、得られたカルボアニオンを二酸化炭素で処理する。 得られた式 (IV) を有するカルボン酸を、適当な溶媒、例えば、ジクロロメタン 中において塩化オキサリルおよび触媒量のN, Nージメチルホルムアミドを用い て対応する酸塩化物に変換した後、これを、式

R NH2

を有するアミンを用いる現場での処理によって式 (V) を有する第二アミドに変 換する。

式 (V) を有するアミドを、最初に適当な溶媒、例えば、トルエン中において 五塩化リンで処理し、そして得られた中間体をアジ化トリメチルシリルと現場で 反応させて、式 (IIA) を有する化合物を与える。 (b) Rが、場合によりベング縮合した/置換された5員または6員環へテロ アリール基であって、環炭素原子によってキノキサリン環に結合している基であ る式 (II) を有する化合物は、スキームIIで示された経路によって製造すること ができる。

$$\longrightarrow \begin{array}{c} R^{3} \\ R^{2} \\ R^{3} \\ \end{array} \qquad \begin{array}{c} R^{0} \\ R^{3} \\ \\ R^{3} \\ \end{array}$$

(IIB)

式中、R¹、R²、R² およびR²は、式 (II) の化合物について前に定義の通りで あり、そしてR²は、式 (I) の化合物のRについて前に定義のように、場合に

よりベンゾ縮合した/置換された5員または6員環へテロアリール基であって、 環炭素原子によってキノキサリン環に結合している基である。

典型的な手順において、式 (III) の化合物を、上の方法 (a) で記載のよう に最初に脱プロトン化した後、ホウ酸トリメチルを用いて現場で処理し、続いて 処理中に酸加水分解して、式 (VI) を有するホウ酸を与える。次に、これを式 R[®] X

(式中、Xは、プロモ、ヨードまたはトリフルオロメチルスルホニルオキシであり、そしてR[®] は上に定義の通りである)

を有する化合物と、適当な触媒、例えば、テトラキス(トリフェニルホスフィン) パラジウム(O)の存在下および適当な条件下で反応させて、式(IIB)を有する化合物を与える。

- (c) Rが、場合により4ー置換された4H-1, 2, 4ートリアゾールー3 ーイル基である式(II)を有する化合物は、式(V)を有する化合物を、適当な 溶媒、例えば、トルエン中において五塩化リンで最初に処理した後、適当な塩基 、例えば、トリエテルアミンの存在下においてホルミルヒドラジンを用いて現場 で得られる中間体の反応によって製造することができる。
- (d) Rが、1-または2- (場合により置換されたC₁-C₄アルキル)ー置換-1,2,4-トリアゾールー3-イル基である式(II)を有する化合物は、R⁵がHである式(V)を有する化合物を、N,N-ジ(C₁-C₄アルキル)ホルムアミドジ(C₁-C₄アルキル)アセタール、好ましくは、N,N-ジメチルホルムアミドジメチルアセタールで処理し、得られた中間体ホルムアミジンととドラジンとを、適当な酸、例えば、酢酸の存在下において反応させた後、得られた5-(1H-および2H-1,2,4-トリアゾールー3-イル)ー置換キノキサリンの互変異性体混合物を、適当な溶媒、例えば、N,N-ジメチルホルムアミド中において最初に適当な塩基、例えば、水素化ナトリウムで処理し、続いて適当な場合により置換されたC₁-C₄アルキルハライド(例えば、N-メチル電換生成物を与えるヨードメタン)で処理することによって製造することができる。

得られた1-および2- (場合により置換された C_1-C_4 アルキル) -置換-

- 1, 2, 4ートリアゾールー3ーイル生成物の混合物は、慣用法、例えば、クロマトグラフィーによって分離することができる。
- (e) Rが、場合により置換された1, 2, 4-トリアゾール-4-イル基で ある式(II) を有する化合物は、スキームIIIで示された経路によって製造する ことができる。

スキームIII

$$\begin{array}{c} \text{NHCOR}^{A} \\ \text{R}^{1} \\ \text{(VII)} \\ \text{OR}^{1} \\ \text{OR}^{1} \\ \text{(VIII)} \\ \end{array}$$

$$\begin{array}{c} \text{NHCOR}^{A} \\ \text{R}^{1} \\ \text{(VIII)} \\ \text{(VIII)} \\ \text{(VIII)} \\ \end{array}$$

$$\begin{array}{c} \text{NHCOR}^{A} \\ \text{R}^{1} \\ \text{(VIII)} \\ \text{(VIII)} \\ \text{(VIII)} \\ \end{array}$$

$$\begin{array}{c} \text{NHCOR}^{A} \\ \text{R}^{1} \\ \text{(VIII)} \\ \text{(VIII)} \\ \text{(VIII)} \\ \end{array}$$

$$\begin{array}{c} \text{NHCOR}^{A} \\ \text{(VIII)} \\ \text$$

式中、 R^1 、 R^2 、 R^5 および R^6 は、式 (II) の化合物について前に定義の通りであり、そして R^6 および R^8 は、それそれ独立して、Hまたは式 (I) の化合物の Rについて前に定義の適当な憧険基である。

典型的な手順において、式 (VII) を有する5-アミノキノキサリンと、式 R COX 1

(式中、X は適当な脱離基、例えば、クロロまたはブロモである)

を有する化合物とを、適当な溶媒、例えば、トルエンまたはジクロロメタン中に おいて、場合により適当な酸受容体、例えば、ピリジンの存在下において反応さ せて、式 (VIII) を有するアミドを与える。

式 (VIII) を有するアミドは、適当な溶媒、例えば、トルエンまたはテトラヒドロフラン中において 2, 4ーピス (4ーメトキシフェニル) -1, 3ージチア-2, 4ージホスフェタン-2, 4ージスルフィド (ローソン (Lawesson's) 試

薬)を用いる処理によって式 (IX) を有するチオアミドに変換することができる

式 (IX) を有するチオアミドは、酸化水銀 (II) 、場合により乾燥剤、例えば 、4 Aモレキュラーシープおよび適当な溶媒、例えば、n ーブタノールの存在下 において、式

R CONHNH2

を有する化合物を用いる処理によって式 (IIC) を有する化合物に変換すること ができる。

(f) Rが、場合によりベング縮合した/置換された5員または6員環へテロ アリール基であって、環炭素原子によってキノキサリン環に結合している基であ る式(II)を有する化合物は、式

$$R^1$$
 N
 OR^5
 R^2
 N
 OR^6

(式中、 $R^{^{1}}$ 、 $R^{^{2}}$ 、 $R^{^{5}}$ および $R^{^{6}}$ は、式(II)の化合物について前に定義の通りである)

を有する化合物を、適当な条件下において適当な触媒、例えば、テトラキス (ト リフェニルホスフィン) パラジウム (O) の存在下で、式

$$R^{E}X^{2}$$

(式中、 X^{\dagger} は、Sn (C_1-C_4 アルキル) $_3$ 、ZnC1、ZnBr、ZnIまたは $_1-B$ (OH) $_3$ であり、そして R^{\dagger} は、Rについてこの方法に定義の通りである)を有する化合物とカップリングさせることによって製造することができる。

(g) Rが、場合により置換された1, 2, 3-トリアゾールー4-イル基で ある式 (II) を有する化合物は、スキームIVで示された経路によって製造するこ とができる。

スキームIV

式中、R¹、R²、R²およびR⁶は、式(II)の化合物について前に定義の通りで あり、そしてR²はHであるし、またはR²およびR⁶は、それそれ独立して、式 (I) の化合物のRについて前に定義の適当な置換基である。

典型的な手順では、式(X)を有する5-ヨードキノキサリンを、例えば、塩 化ピス(トリフェニルホスフィン)パラジウム(II)、ヨウ化銅(II)およびト リエチルアミンを用いる適当な条件下において、式

を有するアセチレンとカップリングさせる。次に、製造された式(XI)を有する化合物をアジ化トリメチルシリルと反応させて、式(IID)を有する化合物を与え、これは、慣用法によって、例えば、R⁶ がC₁ - C₁アルキルである場合、適当な塩基、例えば、水素化ナトリウムを用いて式(IID)の化合物を最初に脱プロトン化した後、C₁ - C₁アルキルハライド、例えば、ヨードメタンと反応させることによって式(IIE)を有する化合物に変換することができる。式(IIE)を有する化合物の1-、2-および3-置換-1,2,3-トリアゾールー4-イル異性体の混合物が得られたところで、これらを慣用法、例えば、クロマトグラフィーによって分離できる。

式(I)または(II)を有する若干の化合物を、慣用法によって、例えば、官

能基相互変換技術によって式(I)または(II)を有するもう一方の化合物にそれぞれ変換できることは理解されるであろう。

上の反応および前述の方法で用いられる新規出発物質の製造はいずれも慣用的 であり、そしてそれらの性能または製造に適当な試薬および反応条件、並びに所 望の生成物を単離する手順は、文献前例、およびその実施例および製造例に関し て当業者に原知であろう。

式 (I) を有する化合物の薬学的に許容しうる酸付加塩または塩基塩は、式 (I) を有する化合物および適宜、所望の酸または塩基の溶液を一緒に混合することによって容易に製造できる。その塩は、溶液から沈澱し且つ濾過によって集めることができるしまたは溶媒の蒸発によって回収できる。

NMDA受容体のグリシン部位に対する式 (I) の化合物およびそれらの塩の結合観和性は、Brit. J. Pharm., 104, 74(1991) で記載のように、ラット脳膜からの選択的グリシン部位放射性リガンドを置換するそれらの能力を試験することによって測定できる。この方法の変法において、充分に洗浄された膜タンパク質を、トリスー酢酸緩衝液 (p H 7. 4) を用いて [H] ー L ー 689, 560 (Mol. Pharma col., 41, 923(1992)) と一緒に90分間インキュペートする。放射性リガンドの置換は、一定範囲の試験化合物濃度を用いて、I Cs (50%阻害濃度) 値を導くのに用いられる。

機能的 in vitro グリシン拮抗作用は、J. Med. Chem., 33,789 (1990) および Bri t. J. Pharm., 84,381 (1985) で記載されたのと同様の方法により、NMDAによっ て誘導されたラット皮質切片における脱分極を阻害する化合物の能力によって示 される。その変法において、標準濃度のNMDAに対する応答は、一定範囲の試 験化合物濃度の存在下で測定され、そしてその得られた結果を用いてECso (5 0%有効濃度) 値を遵く。

AMPA受容体に対する本発明の化合物の結合親和性は、ラット脳膜からの放射性リガンド[¹H] -AMPAを置換するそれらの能力を試験することによって測定できる。膜ホモジネートを、種々の濃度の試験化合物の存在下または不存在下において放射性リガンド(10nM)と一緒に4℃で45分間インキュペートする。遊離のおよび結合した放射性標識を急速濾過によって分離し、そして被

体シンチレーション計数によって放射能を測定する。

式(1)を有する化合物およびそれらの塩は、治療される対象に対して単独で 投与できるが、概して、予定の投与経路および標準的な薬事慣例に関して選択さ れた薬学的に許容しうる希釈剤または担体との混合物で投与されるであろう。例 えば、それらは、舌下を含めた経口によって、デンプンまたはラクトースのよう な臓形剤を含有する錠剤の形で、または単独でかまたは臓形剤との混合物でのカ プセル剤または小卵剤で、或いは着香剤または着色剤を含有するエリキシル剤、 液剤または懸濁剤の形で投与できる。それらは、非経口によって、例えば、静脈 内、筋肉内または皮下に注射できる。非経口投与用には、それらは、他の物質、 例えば、その溶液を血液と等張にさせるのに充分な塩類またはグルコースを含有 しうる滅菌水溶液の形で最もよく用いられる。

それら化合物は、胃腸管を介する吸収が可能であり、したがって、徐放製剤に よる投与も可能である。

概して、式 (1) を有する化合物およびそれらの塩の治療的に有効な1日経口用量は、治療される対象の体重につき0. $1\sim100\,\mathrm{mg/kg}$ 、好ましくは、 $1\sim20\,\mathrm{mg/kg}$ であると考えられ、そして静脈内1日量は、治療される対象の体重につき0. $01\sim20\,\mathrm{mg/kg}$ 、好ましくは、0. $1\sim20\,\mathrm{mg/kg}$ であると考えられる。式 (I) を有する化合物およびそれらの塩は、静脈内注入によっても、0. $01\sim10\,\mathrm{mg/kg}$ /時であると考えられる用量で投与できる。

それら化合物の錠剤またはカプセル剤は、適宜、1個だけでまたは一度に2個 若しくはそれ以上で投与できる。

担当医師は、個々の患者に最も適した実際の投与量を決定するであろうが、それは、特定の患者の年齢、体重および応答によって異なるであろう。上の投与量は、平均的な場合を代表するものである。当然ながら、更に高いまたは更に低い 用量範囲に価値がある別々の場合がありうるが、それらは本発明の範囲内である

或いは、式(I)を有する化合物は、吸入によってまたは坐剤若しくはペッサ リーの形で投与できるし、またはそれらは、ローション剤、液剤、クリーム剤、 軟膏剤または散布剤の形で局所に適用しうる。別の経皮投与手段は、皮膚パッチ

の使用による。例えば、それらは、ボリエチレングリコールまたは流動パラフィンの水性エマルジョンから成るクリーム中に配合することができる。それらは、 白色ろうまたは白色ワセリン基剤から成る軟膏中に、必要とされうる安定剤および保存剤と一緒に1~10重量%の濃度で配合することもできる。

治療の意味が、予防並びに疾患の慢性症状の緩和を含むということは理解され るはずである。

したがって、本発明は、

- (i)式(I)を有する化合物またはその薬学的に許容しうる塩を、薬学的に 許容しうる希釈剤または相体と一緒に含む医薬組成物:
- (ii) 薬剤として用いるための式 (I) を有する化合物またはその薬学的に許 容しうる填若しくは組成物:
- (iii) NMDA受容体で拮抗作用を生じることによる疾患の治療用薬剤の製造のための式(I)を有する化合物またはその薬学的に許容しうる塩若しくは組成物の使用;
- (iv) 疾患が急性神経変性障害または慢性神経障害である (iii) の場合の使用:
- (v) NMDA受容体で拮抗作用を生じることによって疾患を治療する哺乳動物の治療方法であって、該哺乳動物を有効量の式(I) を有する化合物でまたは その薬学的に許容しうる塩苦しくは組成物で治療することを含む上記方法:
- (vi) 疾患が急性神経変性障害または慢性神経障害である (v) の場合の方法;および
 - (vii) 式 (II) を有する化合物

を提供する。

次の実施例および製造例は、式(I)を有する化合物の製造を、それらの合成で用いられる中間体と一緒に詳しく説明する。

融点は、ガラス毛管中でパチ (Buchi) 装置を用いて測定されたが、補正されていない。低分解質量分析 (LRMS) データは、フィソンズ・トリオ (Fisons

Trio) 1000 マススペクトロメーターで記録された(担体として水性メタノール中で酢酸アンモニウムを用いるサーモスプレー、または担体として97.5:2

5 容量のメタノール: 酢酸および気体窒素を用いる大気圧化学イオン化(APCI))。NMRデータは、ブルカー(Bruker)AC300 またはパリアン・ユニティ(Varian Unity)300 NMR装置(両方とも300MHz)またはユニティ・イノバ(Unity Inova)400(400MHz)装置で記録され、そして与えられた標造と一致した。フラッュクロマトグラフィーは、E.メルック(Merck),ダルムシュタットからのキーゼルゲル(Kieselgel)60(230~400メッシュ)で行われた。E.メルックからのキーゼルゲル60Fzx、ブレートは、薄層クロマトグラフィー(TLC)に用いられ、そして化合物は、紫外線またはクロロ白金酸/ヨウ化カリウム溶液で可視化された。化合物が水和物として分析された場合、水の存在は、ブロトンNMRスペクトルにおいて水のために増大したビークによって示された。化合物の純度は、分析用TLCおよびプロトンNMR(300MHz)を用いて慎重に評価され、そして後者の技術は、溶媒和試料中の溶媒の量を計算するのに用いられた。多段階順序で、中間体の純度および構造は、プロトンNMRによる分光法によって示された。プロトンNMRシフトは、テトラメチルシランからのppmがウンフィールドで引用される。

当業者が熱知しているいくつかの略語が、実施例および製造例で用いられた。 実施例1

6, 7-ジクロロ-5-(4-ピリジル)-2, 3 (1H, 4H)-キノキサリンジオン

6, 7-ジクロロ-2, 3-ジメトキシ-5-(4-ピリジル) キノキサリン

(製造例2, 110mg, 0. 327ミリモル)、2M塩酸水溶液(1mL) および1, 4ージオキサン(7mL)の混合物を還流下で2時間加熱し、冷却し、そして減圧下で濃縮した。固体残留物を水で研和し、濾過によって集め、そして水およびジエチルエーテルで洗浄して、標期化合物(17mg, 17%)を白色

固体, mp>300℃として与えた。 m/z (サーモスプレー) 308 (MH^{*})。

<u>元素分析(%)</u>: 実測値: C, 49.58; H, 2.36; N, 12.93。
Cn H, Cl₂N₃O₂.0.5H₂O計算値: C, 49.24; H, 2.54; N, 13.25。

実施例2~107

一般式

を有する次の表で示された実施例を、実施例1の場合と同様の方法によって、指示された対応する2,3ージメトキシキノキサリン誘導体、およびTLCによる 出発物質の完全な消費にほぼ対応した反応時間を用いて製造した。実施例8、8 2および84においては、付随するエステル加水分解が起こったが、実施例10 4~106では、トリチル基を開裂させる。

研和溶媒 (3)メンテルエーテル (0)メテルエーテル (3)メラール (3)メンテル (1)メインアロビルエーテル (1)ダインアロビルエーテル (3)ダロコメラン	æ	a続いてb	件配1	Q e
世発物質 製造例番号	en .	4	വ	8
分がデータ: 元素分析 (実謝値 (計算値) %) または"H.NMR (390 MH z., DM S O - d ₆ (特に断らない限り)) またはLRMS (m/z)	C ₂₃ H ₂ OL ₃ N ₃ O ₂ C, 49.74; H, 2.01; N, 12.93 0.3H ₂ O (C, 49.80; H, 2.44; N, 13.40) (ザーをスプレー) 308 (MH [†]).	C ₂ P ₄ C ₂ N ₄ C ₂ , C ₅ 458.4; 1.86; N,17.85 0.25H ₂ O 8 = 7.40 (1H.s), 7.57 (1H.L.J=5H2), 8,922 (2H.d.J=5H2), 11.25 (1H.S.), 12.1 (1H.S.).	8=7.40 (1H, s), 8.72 (2H, s), 9.28 (1H, s), 11.33 (1H, s), 12.12 (1H, s). (サーモスプレー) 326 (MNH, [†]).	C, 39.42; H, 2.40; N, 25.08 (C, 39.05; H, 2.17; N, 24.78) (8 = 3.80 (3H.8), 7.50 (1H.8), 11.64 (1H.br.s), 12.26 (1H.br.s).
分子式	C ₁₃ H ₇ Cl ₂ N ₃ O ₂ . 0.3H ₂ O	C ₁₂ H ₆ Cl ₂ N ₄ O ₂ . 0.25H ₂ O	C ₁₂ H ₆ Cl ₂ N ₄ O ₂	C ₁₀ H ₆ Cl ₂ N ₆ O ₂ . 0.25 1,4- ジオキサン
mp (°C)	>300	>300	>300	>300
æ	Z Z	$\left\langle \begin{array}{c} z \\ -z \end{array} \right\rangle$	z	N=N N-CH,
実例号施蒂	77	m	4	ro .

æ	æ	æ	ro	ru
6	10	=	12	13
>300 C ₁₈ H ₁₄ CJ ₂ N ₈ O ₂ 5=1.24 (3H, m), 1.60 (1H, M), 1.78 (H, m), 2.00 (2H, m), 1.78 (H, m), 7.50 (2H, M), 1.70 (1H, br.s), 12.76 (1H, br.s), 12.7	5 = 3.10 (2H, m), 4.42 (2H, m), 7.18 (5H, m), 7.46 (1H, s), 11.56 (1H, br s), 12.14 (1H, br s), (サーモスプレー) 403 (MH [†]).	C, 35.64; H, 2.02; N, 21.74 (C, 35.66; H, 2.31; N, 21.89)	C, 41.68; H, 2.62; N, 23.67 (C, 41.69; H, 2.94; N, 23.89) 8 = 1.48 (6H,d, J=8Hz), 4.94 (1H,m), 7.48 (1H,s), 11.78 (1H,br,s), 12.24 (1H,br,s).	C, 41.19: H, 2.62: N, 23.67 (C, 41.28: H, 3.06; N, 24.31) (サーモスプレー) 327 (MH [*]).
C ₁₅ H ₁₄ CL ₂ N ₆ O ₂	C ₁ ,H ₁₂ Cl ₂ N ₆ O ₂	C ₁₁ H ₆ C <u>L</u> N ₆ O ₄ . H ₂ O. 0.1 1,4- ՚՚Ջ֏ՔԷՆ	Cr2H ₁₀ Cl ₂ N ₆ O ₂ . 0.25 H ₂ O	C ₁₁ H ₆ C <u>1</u> N ₆ O ₂ . 0.25 1,4- ジオキサン
>300	×300	286- 287	>300	>300
	Z Z = Z Z	H OO Z	N N N N N N N N N N N N N N N N N N N	N N N N N N N N N N N N N N N N N N N
w	2	œ	5	0

>300 G ₁₆ H ₁₀ G ₁₅ M ₆ Q ₂ δ = 5.46 (2H, m), 7.10 (2H, m), 7.20 (3H, m), 7.42 (H, s), 11.66 (1H, br s), 12.16 (1H, br s). (4+-εχ7L-) 389 (MH ³).	G ₁₂ H ₄₆ Ci½N ₆ C, 40.62; H, 3.01; N, 22.70 15 a O ₂ , 0.11,4 (C, 40.70; H, 2.97; N, 22.90) ジオキサン	C ₁₅ H ₆ C ₁ N ₀ O ₂ b = 7.42 (H; s), 7.50 (SH m), 16 a (H; br s), 12.16 (MH ²),	C ₁₁ H ₂ O[√s,N ₄ O ₂ , b = 5.36 (Ht, m), 5.62 (Ht, m), 17 a 1.75 (Ht, bir.s), 1.30 (Ht, bir.s), 1.24 (Ht, bir.s), 1.224 (Ht, bir.s), (9 → ₹.x7 \times \to 3.388 (MMH ₁)).	C _{1,t} H ₆ Cl _t M _{0,2} 28 = 4.88 (2H ₁ d, J = 8H ₂), 5.20 19 a (H ₁ m), 5.88 (1H m), 7.50 (H ₁ s), 1.166 (H ₁ br s), 12.16 (H ₁ kr s).
>300 C ₁₆ H ₁₀ C	294 C ₁₂ H ₁₀ C 295 O ₃ 0.1 ジオキサ	>300 C ₁₅ H ₈ C	297 C ₁₁ H ₅ C	>300 C ₁₂ H ₆ C
Z Z Z	N=N N=N N=N	Z-Z = Z - Z	Z-Z	HO Z
Ξ	12	13	4	15

æ	œ	f, 连記2	æ	æ
20	21	22	23	25 異性体1
C _{v2} H ₁₀ Ct _{Nb} C, 38.73; H, 3.43; N, 22.64 O ₃ , H ₂ O (C, 38.41; H, 3.22; N, 22.40)	5 = 3.70 (2H, m), 4.14 (1H, m), 4.34 (1H, m), 4.76 (1H, m), 7.48 (1H, s), 11.38 (1H, br.s), 12.16 (1H, br.s). (Φ—εχΤν—) 343 (MH [†]).	C, 39.77; H, 3.06; N, 19.08 (C, 40.02; H, 3.08; N, 19.45) (サーモスプレー) 342 (MH [*]).	C, 41.00; H, 2.78; N, 21.56 (C, 41.14; H, 2.51; N, 21.81) 8 = 3.42 (3H,s), 7.46 (1H,s), 8.67 (1H,s), 11.33 (1H,br,s), 12.15 (1H,br,s).	C, 39.76; H, 2.62; N, 21.27 (C, 40.02; H, 2.75; N, 21.21) 8 = 36.7(34)s), 7.46 (H,s), 11.48 (H,s), 11.48 (H,br.s), 12.16 (H,br.s).
C ₁₂ H ₁₀ Cl ₂ N ₆ O ₃ . H ₂ O	C,H,Cl,N ₆	C ₁₂ H ₃ Cl ₂ N ₅ O ₃ . H ₂ O	C,1H,Cl ₂ Ns O ₂ . 0.5H ₂ O	C ₁₁ H ₂ Cl ₂ N ₅ O ₂ . H ₂ O
303-	221	>300	>300	>300
HO N N N N N N N N N N N N N N N N N N N	HO NIN NIN NIN NIN NIN NIN NIN NIN NIN NI	N N N N N N N N N N N N N N N N N N N	N N N N N N N N N N N N N N N N N N N	N CH,
16	17	18	19	20

æ	р	- q	q	b, c, e
25 異性体2	27	28	59	30
>300 C ₁₁ H ₂ C ₂ M ₃ C, 40.55; H, 2.32; N, 21.57 · O ₂ , 0.75 (C, 40.57; H, 2.63; N, 21.51) H ₂ O (S, 237 (341s), 7.40 (141s), 8.71 (141s), 11.14 (114,br.8), 12.08 (114br.8).	C ₁₇ H ₁₀ Cl ₃ N ₈ C, 40.68; H, 3.17; N, 13.96 C ₂ , HCt (C, 40.50; H, 3.20; N, 13.89) 2.5H ₂ O	C ₁₇ H ₂ Cl ₂ M ₆ C, 42.06; H, 3.16; N, 17.10 C ₂ . 2HCl. (C, 42.09; H, 3.12; N, 17.32) 0.5H ₂ O	C ₁₃ H ₁₁ Cl ₂ N ₃ 8 (CD ₃ OD) = 1.37 (3H, 1, J=7Hz), O ₂ 2.50 (3H, s), 1.43 (2H, q, J=7Hz), 6.35 (1H, s). (4 - € x7 \tau -) 340 (MH [†]).	C, 47.71; H, 3.46; N, 14.48 (C, 47.68; H, 3.60; N, 14.63)
C ₁₁ H ₂ Cl ₂ N ₅ O ₂ , 0.75 H ₂ O	C ₁₇ H ₁₀ Cl ₃ N ₅ O ₂ . HCl. 2.5H ₂ O	C ₁₇ H ₁₂ Cl ₂ N ₆ O ₂ . 2HCl. 0.5H ₂ O	C ₁₃ H ₁₁ Cl ₂ N ₅ O ₂	C ₁₉ H ₁₆ Cl ₂ N ₅ O ₃ . HCl. 0.55H ₂ O
>300	272-274	268- 270	>315	236-
cHO N	CH ₂ N-N CI	Z	CH, N-N	CII3 N-N CII3
21	22	23	24	25

. c, f	p'c	۵	ച	q
31	32	33	34	35
CGH2CBN C, 46.08; H, 3.50; N, 13.79 O ₂ , HG. (C, 46.13; H, 3.47; N, 13.79) 0.515, O. (2.56) C. (2.57) C.	C, 37.93, H, 3.17, N, 18.19 (C, 37.96; H, 3.16; N, 18.44) (サーモスプレー) 326 (MH*).	C ₁₆ H ₃ CL ₃ N, δ = 1.18 (3H, t, J=6Hz), 2.47 (2H, O ₂ m, 不野蟹), 4.18 (3H, s), 5.85 (1H, s), 7.34 (1H, s), 7.43 (1H, s), 1.2.14 (2H, br s), (サーモスプレー), 405.5 (MH ³).	C, 3445; H, 3.40; N, 15.55 (C, 34.66; H, 3.24; N, 15.95) (サーモスプレー) 383 (MH [*]).	C ₁₇ H ₈ Cl ₂ N ₈ C, 37.68; H, 4.24; N, 15.37 O ₃ , 24O. (C, 37.59, H, 4.64; N, 15.47) 2.5H ₂ O
C ₁₀ H ₁₂ Cl ₃ N ₅ O ₂ . HCl. 0.5H ₂ O. 0.25 ジインプロピル エーデル	C ₁₂ H ₉ CkN ₅ O ₂ . HCi. 0.95H ₂ O	C ₁₆ H ₁₃ CbN, O ₂	C ₁₈ H ₁₆ C½N ₆ O ₂ . HCl. 5H ₂ O. 0.2CH ₂ Cl ₂	C ₁₇ H ₁₈ Cl ₂ N ₆ O ₃ , 2HCl. 2,5H ₂ O
264 (3187)	>315	>300	西奶杏茯酱	273-276
N-N-N-HO	N-N N-N	CH, N-N CH, CH, CH, S	CH ₂ , NICH ₃ ,	N - N - N - N - N - N - N - N - N - N -
56	27	28	29	30

ca	ď	a, d	a, b	a
36	37	38	33 8	40
C ₁₆ H ₀ Cl ₂ N ₆ C, 37.39; H, 3.37; N, 16.50 O ₂ . 2HCl. (C, 37.23; H, 3.52; N, 16.28) 3H ₂ O	C ₁₆ H ₁₀ Cl ₂ N ₀ C, 47.03; H, 3.11; N, 20.34 · O ₂ . H ₂ O (c, 47.19; H, 2.97; N, 20.64) (φ-ε _λ γν-) 389 (MH ³).	C, 42.28; H, 2.70; N, 22.69 (C, 42.27; H, 3.07; N, 23.00) (サーモスプレー) 390 (MH*).	C, 43.40; H, 2.57; N, 23.20 (C, 43.37; H, 2.86; N, 23.60) (₱ − ₹スプレ−) 390 (MH³).	C, 44.58; H, 2.79; N, 19.55 (C, 44.52; H, 2.72; N, 19.47) (サーモスプレー) 389 (MH [*]).
C ₁₆ H ₁₀ Cl ₂ N ₆ O ₂ . 2HCl. 3H ₂ O	C ₁₆ H ₁₀ Cl ₂ N ₆ O ₂ . H ₂ O	C,144,C12N, O2, 2H2O	C ₁₅ H ₉ Cl ₂ N, O ₂ . 1.4H ₂ O	C ₁₆ H ₁₀ Cl ₂ N ₆ O ₂ . HCl. 0.33H ₂ O
284 (分解)	>300	>300	>300	>300
N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-	N-1-X N-1-X	N-N N-N N-N N-N Sign	Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z	N=N-K-FIO
31	32	33	34	35

C _{0.4} H _{0.0} C _M , C _{0.3} S _{1.9} S; H _{1.2.9S} ; N, 17.75 (0.5.4), M, 17.86) 0.1M6OH, 0.74 + 2.74 + 2.94; N, 17.86) 0.44 + 2.74 + 2.95; N, 17.86) 0.44 + 2.74 + 3.88 (3H, 8), 4.2 0.44 + 2.74 + 3.87 (1H, m), 6.88 0.47 + 2.74 + 3.77 (1H, 3), 2.87 (1H, 4), 4.2 0.47 + 2.74 + 2.74 + 3.97 (1H, 4), 4.36 (3H, 8), 4.2 0.50 + 2.74 + 2.74 + 3.97 (1H, 8), 2.85 (3H, 8), 4.4 0.50 + 2.74 + 2.74 + 3.97 (1H, 8), 2.85 (3H, 8), 4.4 0.50 + 2.74 + 2.74 (1H, 8), 2.85 (3H, 8), 4.4 0.50 + 2.74 + 2.74 (1H, 8), 2.85 (3H, 8), 4.4 0.50 + 2.74 + 2.74 (1H, 8), 2.85 (3H, 8), 4.4 0.50 + 2.74 + 2.74 (3H, 8), 2.85 (3H, 8), 4.4 0.50 + 2.74 + 2.74 (3H, 8), 2.85 (3H, 8), 4.4 0.50 + 2.74 + 2.74 + 3.74 (3H, 8), 2.85 (3H, 8					
Cut, N Cot, 279-282 Cut, N Cot, 33.18; H, 2.98; N, 17.76 Cut, N Cot, 2.95; N, 17.80 Cut, N Cot, 2.95; N, 17.80 Cut, N Cot, N Cot	p ซ์ q์	o 'e	เช	a, c	Ð
CHI, N-N CH, 279-282 CigH ₀ Cb ₂ N ₈ Ch ₁ N ₆ Cb ₂ N ₈ Ch ₁ N ₆ Ch ₁	1.	42	43	44	54
CII, N N CII, 279-282 CII, N N N CII, 279-282 CII, N N N CIII, N CIIII, N CIIII, N CIII, N C	C, 38.16; H, 2.94; N, 17.76 (C) 38.96; H, 2.94; N, 17.86)	5 = 2.10 (3H, s), 3.88 (3H, s), 5.64 (1H, m), 5.87 (1H, m), 6.88 (1H, m), 7.43 (1H, s), 12.10 (1H, s), 12.15 (1H, s), (θ-εχ7ν-) 391 (MH').	C, 39.16; H, 3.90; N, 19.61 (C, 39.10; H, 4.12; N, 19.70) ¸	5 = 2.15 (3H, s), 2.65 (3H, s), 7.40 (1H, s), 8.59 (1H, s), 12.12 (1H, s), 12.23 (1H, s). (サーモスプレー) 409 (MH [†]).	δ = 2.17 (3H, s), 4.20 (2H, s), 7.39 (3H, m), 7.46 (1H, s), 7.87 (1H, t, J=4Hz), 8.44 (1H, s). 12.22 (1H, s). (Φ − € π 7 ν −) 403.4 (MH [†]).
CH, N N N CH, 279-282 CH, N N N CH,	C ₁₅ H ₁₀ Cl ₂ N ₆ O ₂ S. 0.1MeOH. 0.04 1,4- ジオキサン. HCl. H ₂ O	C ₁₆ H ₁₂ C ₁₂ N ₆ O ₂	G _{is} HgCl ₂ N ₇ O ₂ . 0.3 1,4- ジオキサン. 4.5H ₂ O	C ₁₆ H ₁₀ Cl ₂ N ₆ O ₂ S	C ₁₇ H ₁₂ Ck _k N ₆ O ₂
	279-282	252-256 (分解)	284-292 (3)#F)	263-265 (分解)	286
37 37 37 37	SULU SULU SULU SULU SULU SULU SULU SULU	OH, N-N,	N-N-HO	CH3, CH3,	N-N N-N N-N N-N
	36	37	38	30	40

٩	Ф	۵	Ф	a a
46	47	84	49	90
C ₁₇ H ₂ Ct ₂ N ₆ C, 37.85; H, 3.81; N, 15.20 O ₂ , 2HCi. (C, 37.55; H 3.99; N, 18.46) 3.78H ₂ O	C ₁ .H ₂ Cl ₃ N ₆ C, 38.60; H, 3.79; N, 15.51 O ₂ . 2HCl. (C, 38.51; H, 3.80; N, 15.85) 3H ₂ O	$C_{13}H_{11}C_{2}N_{1}$, $\delta = 2.17$ (3H, s), 2.18 (3H, s), $C_{14}H_{11}$, $C_{15}H_{12}$, $C_{15}H_{12}$, $C_{15}H_{12}$, $C_{15}H_{15}$,	C, 35.90; H, 2.64; N, 20.59 (C, 35.91; H, 2.67; N, 20.94) (サーモスプレー) 409 (MH*).	290.294 C ₁₇ H ₁₀ Cl ₃ N ₃ δ = 2.19 (3H. S), 7.21 (2H, m), O ₂ 1.28 (1H, S), 7.40 (1H, d, J=4Hz), 7.50 (1H, d, J=4Hz), 12.10 (2H, S), (Φ+Φ×7 ν-) 421.6 (MH)).
C ₁₇ H ₁₂ Cl ₂ N ₆ O ₂ , 2HCl. 3.75H ₂ O	C ₁₇ H ₁₂ Cl ₂ N ₆ O ₂ . 2HCl. 3H ₂ O	C ₁₈ H ₁₁ Cl ₂ N ₇ O ₂	1 C14 HgCl2N7 O2S. HCl. 1.5H2O	C ₁₇ H ₁₀ Cl ₃ N ₅ O ₂
280	297	>300	>300	290-294
Z - X - X - X - X - X - X - X - X - X -	Z- L- Z- Z- HD	HN N N N N N N N N N N N N N N N N N N	Z N N N N N N N N N N N N N N N N N N N	N N N N N N N N N N N N N N N N N N N
4	45	43	<u>A</u>	4.5

۵	a	۵	Ð	Q
51	52	53	.54	55
磁形をは対象 C ₁ d ¹ _{1,} C ₁ U ₂ U ₃	C ₁₇ H ₁₂ Cl ₁ N ₆ C, 38.20; H, 3.72; N, 15.09 O ₂ , HCi. (C, 37.87; H, 3.83; N, 15.59) 3.5H ₂ O	$C_{10}H_{13}CL_{1}N_{5}$ δ = 2.21 (3H, s), 3.42 (3H, s), O_{3} (3H, m), 7.41 (3H, m), 12.20 (1H, s), 12.20 (1H, s), (7-\pi \pi \pi \pi \pi \pi \pi \pi \pi \pi	歴紀社状態 C ₁ ,4 ¹ ,1,C ₂ N, δ = 2.17 (3H, s), 2.40 (3H, s), C ₂ C ₃ H, c ₃ C ₄ C ₄ H, c ₃), 7.74 (1H, s), 7.2.86 (2H, br s), (2H, br s), (4P - € スプレー) 391.9 (MH [†]).	C ₀ H ₂ C ₀ N, C, 42.78; H, 4.02; N, 18.13 O ₂ . HCi. (C, 42.92; H, 3.60; N, 17.67) 2H ₂ O
C ₁₆ H ₁₃ Cl ₂ N ₅ O ₂	C ₁₁ H ₁₂ Cl ₂ N ₆ O ₂ . HCl. 3.5H ₂ O	C ₁₈ H ₁₃ Cl ₂ N ₅ O ₃	C ₁₅ H ₁₁ Cl ₂ N ₇ O ₂	C ₁₇ H ₁₂ Cl ₂ N ₆ O ₂ . HCl. 2H ₂ O
因形构状物	290-293	274-277	固形治状物	273-279
OH; N-N	N N N N N N N N N N N N N N N N N N N	OCH, NOCH,	N N N N N N N N N N N N N N N N N N N	CII, IN CII,
46	47	48	49	90

Ω	_	Ð	a .	٩
56	57	58	59	09
285-286 G,H ₁ ,Gt _N b, G,44.28; H, 3.76; N, 13.87 O ₃ , HCi (C,44.06; H, 3.76; N, 14.27) 2H ₂ O	C ₁₆ H ₁₃ Cl ₂ N ₃ , δ = 2.00 (3H, s), 2.12 (3H, s), O ₂ (4H, s), 12.15 (2H, s), 7.48 (1H, s), 12.15 (2H, br.s). (4 - ₹ π γ ν - 1) 406.4 (MH).	C, 43.58; H, 2.78; N, 13.80 (C, 43.25; H, 2.38; N, 14.01) (サーモスプレー) 456 (MH*).	5 = 0.83 (3H, t, J=8Hz), 1.55 (2H, m), 2.16 (3H, s), 2.50 (2H, t, 7:95 (1H, s), 7.48 (1H, s), 12.20 (1H, s), 14.20 (1H, s), 15.20 (1H, s),	C.gHeChNo C. 4149: H. 3.96: N. 15.08 O., 2HCL (C. 41.21; H. 4.28; N. 15.18) 0.75H,O (♥─モスブレー) 431 (MH).
G leH13Cl2N5 O3, HCI. 2H2O	G ₁₆ H ₁₃ Cl ₂ N ₇ O ₂	C ₁₈ H ₁₀ N ₅ O ₂ Cl ₂ F ₃ . HCl. 0.4H ₂ O	C _{1,} H _{1,S} N ₂ O ₂ Cl ₂	C ₁₉ H ₁₆ Cl ₂ N ₆ O ₂ . 2HCl. 0.75H ₂ O
285-286	218 (分解)	>300	274-278	>300
CH, N-N	CH ₂ N CH ₃	CH, N-N	OH, N-N	CII, NICHJ,
51	52	53	54	55

q	q	q	Q	Q	đ
61	62	63	64	65	99
C, 41.50; H, 2.87; N, 22.26 (C, 41.59; H, 2.91; N, 22.63) (サーモスプレー) 392 (MH ⁺).	C, 35.12; H, 3.66; N, 18.98 (C, 35.01; H, 3.62; N, 19.05)	C, 36.08; H, 3.31; N, 19.59 (C, 35.95; H, 3.42; N, 19.56) (APCI) 392 (MH*).	C, 34.66; H, 2.86; N, 22.31 (C, 34.46; H, 2.96; N, 22.45) (サーモスプレー) 379 (MH ⁺).	C, 38.90, H, 3.22; N, 20.65 (C, 38.62; H, 3.50; N, 21.02) (サーモスプレー) 392 (MH [*]).	C, 39.01; H, 2.91; N, 12.20 (C, 39.25; H, 2.85; N, 12.36)
C ₁₆ H ₁₁ Cl ₂ N ₇ O ₂ . HCl. 0.25H ₂ O	G ₁₅ H ₁₁ Cl ₂ N ₇ O ₂ , 2HCl. 2.75H ₂ O	C ₁₅ H ₁₁ Cl ₂ N ₇ O ₂ . 2HCl. 2H ₂ O	C ₁₃ H ₈ Cl ₂ N ₈ O 2. 2HCl. 2H ₂ O	C ₁₈ H ₁₁ Cl ₂ N ₇ O ₂ . HCl. 0.33 1,4- 37 ± \$7. H ₂ O	C ₁₀ H ₁₂ Cl ₃ N ₅ O ₄ S. HCl. 0.13 1.4- ジオキサン. H ₂ O
>300	272-275	>300	>300	>300	257 (分解)
CIT, N-N-CH,	N N N N N N N N N N N N N N N N N N N	CH, N N CH,	HZ N N N N N N N N N N N N N N N N N N N	N N N N N N N N N N N N N N N N N N N	CH, N-N
999	22	58	29	09	19

Q	q .	.а	d, b	
69	70	71	72	73
C ₁₉ H ₁ C ₂ M ₂ O ₂ , C, 39.25; H, 3.13; N, 21.20 HCi, 1.5H ₂ O (C, 39.54; H, 3.32; N, 21.52) (⊕ - ₹ x 7 \rdot -) 392 (MH [†]).	C, 37.76; H, 2.70; N, 25.17 (C, 37.56; H, 2.93; N, 25.03) (サーモスプレー) 393 (MH [*]).	C ₁ H ₂ CH ₂ O ₂ O ₃ C 23 465; H, 246; N, 2463 3H ₂ O (C, 34.76; H, 3.14; N, 2454) 8 = 2.16 (3H ₂ S), 7.44 (1H ₃ S), 7.92 (1H ₃ D ₂ S), 10.36 (1H ₃ D ₂ S), 11.97 (1H ₃ D ₂ S), 12.18 (1H ₃ D ₂ S), 14.18	C, 41.18; H, 3.03; N, 21.37 (C, 41.09; H, 3.23; N, 20.96) 8 = 2.12 (3H.9), 7.57 (1H.8), 7.78 (2H.8), 12.12 (1H.br.8), 12.22 (1H.br.8).	C, 42.32; H, 2.54; N, 16.05 (C, 41.83; H, 2.34; N, 16.26) 5 = 2.12 (3H, s), 6.90 (1H, d, 1.34Hz), 6.95 (1H, m), 7.50 (1H, s), 7.62 (1H, d, 1.44Hz), 12.35 (1H, s), 12.37 (1H, s).
C ₁₅ H ₁₁ Cl ₂ N ₇ O ₂ . HCl. 1.5H ₂ O	C ₁₄ H ₁₀ Cl ₂ N ₆ O ₂ . HCl. H ₂ O	C ₁₃ H ₆ Cl ₂ N ₆ O ₃ . 3H ₂ O		Ğı _s H _g Cı ₂ N _s O ₂ S. HCI
>300	>300	>300	. 300	>300
Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z	N N N N N N N N N N N N N N N N N N N	CH, H-N	CII, N-N	N N N N N N N N N N N N N N N N N N N
62	63	64	65	99

æ.	a, h	a, c, h	O	q 'o
74	75	92	77	78
273-275 C ₀ H ₁ ·C ₁ M ₂ S ₂ , C, 45.79; H, 2.78; N, 15.86 · GS# ₂ O (C, 45.87; H, 2.83; N, 15.73)	C ₁₇ H ₁₀ C ₃ N ₂ O ₂ . C, 43.45; H, 2.34; N, 14.98 HCl. 0.5H ₂ O (C, 43.82; H, 2.58; N, 14.98) (\$→ ₹ χ ブ ل → 422 (MH [†]).	282-284 C ₁₆ M ₁₃ C ₁₂ N ₆ O ₃ , C, 47.11; H, 2.85; N, 14.78 (分解) HCl. 0.4H ₂ O (C, 46.81; H, 3.23; N, 15.16)	>310 $C_{12}H_9Cl_1N_5O_2$ $\delta = 2.21$ (6H, s), 7.54 (1H, s), 12.33 (1H, s), (2.04 (1H, s), 12.33 (1H, s). ($\Phi - E \times T U - $) 326 (MH [†]).	C ₁₁ H ₂ Cl ₂ N ₆ O ₂ C, 36.90; H, 2.74; N, 19.02 HCi. (C, 36.76; H, 2.58; N, 19.49) 0.4H ₂ O (Φ−₹-χ-Σ-) 312 (MH ³).
C ₁₇ H ₁₁ Cl ₂ N ₃ O ₃ . HCl. 0.25H ₂ O	C ₁₇ H ₁₀ Cl ₃ N ₅ O ₂ . HCl. 0.5H ₂ O	C ₁₆ H ₁₃ Cl ₂ N ₅ O ₃ . HCl. 0.4H ₂ O	C ₁₂ H ₉ Cl ₂ N ₅ O ₂	C ₁₁ H ₂ Cl ₂ N ₅ O ₂ . HCl. 0.4H ₂ O
273-275 (分解)	>300		>310	>310
CII, N-N	OH, N-N	CII, N-N	CEI CII3	N—N N—N
29	88	69	70	17

6, (υ	h, d		
		Δ.	Q.	o.
C ₁ M ₁ C ₂ N ₂ O ₂ , C ₁ 42.41; H, 3.19; N, 17.76. HCl. C ₂ 42.29; H, 330; N, 17.61) C ₃ 5H ₂ O ₂	80	81	82	83
C, 42.41 (C, 42.28	274-276 C _{P,} H _{1,} O _{P,} N ₅ O ₂ C, 46.12; H, 3.45; N, 15.22 HOI. (C, 45.75; H, 3.25; N, 15.69)	δ = 1.84 (3H, s), 7.38 (1H, s), 11.55 (1H, s), 12.27 (1H, s), 12.31 (1H, s). (サーモスプレ→) 345 (ΜΝΗ, *).	C ₁ H ₁₆ Cl ₁ N ₁ O ₃ , C ₄ 4.26; H, 3.88; N, 20.27 (C, 43.86; H, 4.06; N, 20.57) 2メキサン (サーモスプレー) 436 (MI ⁴). 1.75H ₂ O	C ₁₆ H ₂ Cl ₅ N _S O ₃
C ₁₄ H ₁₁ Cl ₂ N ₅ O ₂ . HCl. 0.5H ₂ O	C ₁₂ H ₁₁ Cl ₂ N ₅ O ₂ . HCl. 1.2H ₂ O	C ₁₁ H,Cl ₂ N ₆ O ₃	C ₁ ,H ₁ ,Cl ₂ N ₇ O ₃ . 0.1 1,4- ジオキサン. 1.75H ₂ O	C ₁₆ H ₁₂ Cl ₃ N ₅ O ₃
260 (分解)	274-276	>310	固形泡状物	175 (AMR)
CII,	CII	N—N N—N N—N N—N	CII,O W N N CII,	CII,0 N-N CI
72	73	72	75	76

Q	٩	C)	၁ ရ	q
	885	98	87	88
C ₁₈ H ₄ C ¹ N ₀ O ₃ , C, 39.86; H, 3.72; N, 15.52. 2HCl 2H ₂ O (C, 39.87; H, 3.72; N, 15.50)	C ₁₀ H ₁ (C) ₁ N ₀ O ₂ , C, 41.24; H, 4.31; N, 13.98 ZHOI, ZH ₂ O. (C, 41.51; H, 4.30; N, 14.24) 0.4.1.4. (APCI) 433 (MH ²). ZH ± Σ ₁ O ₂ (APCI) 433 (MH ²).	C ₁₆ H ₁₀ Cl ₂ N ₁ O ₃ δ = 3.18 (3H, s), 4.16 (3H, s), 4.40 (2H, m), 5.96 (1H, s), 7.38 (1H, s), 7.50 (1H, s), 1.210 (1H, s), 1.2.6 (1H b s), (4-εχ7-μ) 422 (MH),	302-304 C _{r4} H ₁₃ Cl ₁ N ₅ O ₄ δ = 3.10 (6H, s), 4.30 (4H, m), 7.42 (1H, s), 11.84 (1H, br s), 12.14 (1H br s), (APCI) 386 (MH ³).	210-212 C ₁₆ H ₁ CO ₂ N ₆ O ₃ 5 = 2.42 (3H, S), 3.14 (3H, S), S = 2.42 (3H, S), 3.14 (3H, S), 780 (1H, S), 780 (1H, S), 7.20 (1H, S), 12.20 (1H, br S),
C ₁₈ H ₁₄ Cl ₂ N ₆ O ₃ . 2HCl. 2H ₂ O	C ₁₀ H ₁₄ Cl ₂ N ₆ O ₃ . 2HCl. 2H ₂ O. 0.4 1.4- ジオキサン,0.2 ジェチルエーテル	C ₁₆ H ₁₃ Cl ₂ N ₇ O ₃	C ₁₄ IH ₁₃ Cl ₂ N ₅ O ₄	C ₁₆ H ₁₂ Cl ₂ N ₆ O ₃ S
241 (分解)	234	200(分解)	302-304	210-212
N-N 0,110	CH,O,CH,O	CH ₃ O CH ₃ O	CH ₃ O N-N OCH ₃	GI,50 N-N
77	78	92	ස	81

a, b	æ	æ	- t0	æ
80	06	91	92	95
263-254 C ₀ H ¹ ₂ C ₁ M ₂ O ₂ , C ₂ 40.21; H, 3.65; N, 15.58 HGL 2H ₂ O (C, 40.36; H, 3.20; N, 15.69)	C ₁₈ H ₄ Ci ₂ N ₆ O ₃ , C, 41.02; H, 3.51; N, 15.78 2HCl. H ₂ O (C, 41.24; H, 3.46; N, 16.03) (APCl) 433 (MH ³).	C ₁₉ H ₄ Cl ₂ N ₆ O ₄ C, 45.51; H, 3.10; N, 16.50 HCl (C, 45.85; H, 3.04; N, 16.89) (サーモスプレー) 461 (MH [*]).	C ₁₈ H ₂ G ₂ N ₆ Q ₄ , C', 40.18; H, 2.86; N, 18.01 H ₂ O (C, 40.23; H, 2.86; N, 18.04) · (++-₹¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬	C _{Zz} H ₃ Cl ₂ M ₃ O ₂ , C, 56.30; H, 4.07; N, 12.16 H ₂ O. 1,4- (C, 56.11; H, 4.16; N, 12.59) 34++∀ ∴ (4−€x,7∪−) 450 (MH ³).
C ₁₈ H ₁₂ Cl ₂ N ₆ O ₅ . HCl. 2H ₂ O	C ₁₈ H ₁₄ Cl ₂ N ₆ O ₃ . 2HCl. H ₂ O	C ₁₉ H ₁₄ Cl ₂ N ₆ O ₄ . HCl	C ₁₃ M ₀ Cl ₂ N ₆ O ₄ . H ₂ O	C ₂₂ H ₁₃ Cl ₂ N ₅ O ₂ . H ₂ O. 1,4- ジオキサン
253-254	>306	>305	>300	>305
CII,O W CO,H	CII,O	N-N D'O'I	N-N 	
82	83	84	85	98

cc	۵	a, d	£	ग्रांशिस्
96	97	. 86	SS	100
C, 41.59; H, 2.74; N, 21.15 (C, 41.52; H, 2.71; N, 21.52)	C, 37.67; H, 2.76; N, 21.52 (C, 37.48; H, 2.70; N, 20.85)	C, 40.65; H, 2.81; N, 18.87 (C, 40.24; H, 2.92;N, 18.70)	C ₁₈ H,BrCl ₂ N ₆ O ₂ . C, 38.06; H, 2.53; N, 10.45 2.5H ₂ O (C, 38.10; H, 2.42; N, 16.83) (サーモスプレー) 453 (MH [*]).	8 = 2.12 (3H, s), 7.49 (1H, s). 7.63 (2H, s), 9.02 (1H, s). 12.18 (1H, br s), 14.25 (1H, br s).
268-270 C ₁₈ H ₁₀ Cl ₂ N ₈ O ₃ . HCI. 1.5H ₂ O	С ₁₄ Н ₆ СІ _В N ₁ О ₃ . НСІ. Н ₂ О	277-279 C ₁₆ H ₆ Cl ₂ N ₆ C ₂ . HCl. 2H ₂ O	C ₁₆ H,BrCl ₂ N ₆ O ₂ . 2.5H ₂ O	197-199 G ₁₄ H ₆ Cb _N ₇ O ₂ (分解)
268-270	225-228	277-279	>330	197-199
CH ₃ -N-N-N-HO	N N N N N N N N N N N N N N N N N N N	Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z	Z Z Z Z	N
87	88	8	06	94

		(68)		特別
d, a	ď	a, b	e G	U
101	102	103	104	105
284-285 C ₁₆ H ₁₀ C ₁₂ N ₀ O ₅ C, 38.84; H,3.62; N, 16.27 · HCl. 3.5H ₂ O (C, 38.77; H, 3.59; N, 16.65)	$C_{r_2}H_9C_9N_8O_3$ $\delta = 2.06 (3H, s), 4.32 (2H, m), 5.05 (Hi, br s), 7.43 (1H, s), 11.93 (1H, br s), 12.11 (1H, br s), 8), 69 - \epsilon_{XZZ}\nu_{-}) 342 (MH4).$	C ₁₈ H ₁₆ CkN ₂ O ₂ C, 40.11; H3.88; N, 18.43 2HCl. 2H ₂ O (C, 39.94; H, 3.91; N, 18.11)	268-270 C _{Ck} H ₁₂ C _k Nt _O _s , C, 41.70; H, 4.01; N. 16.80 2HG; 2H ₅ O (C, 41.32; H, 3.97; N, 16.81)	C,FH,CJN,O ₅ C, 49.41; H, 2.93; N, 16.95) 0.5H ₂ O (C, 49.41; H, 2.93; N, 16.95)
284-285 C ₁₆	>315 C ₁₂	264-265 C ₁₈	268-270 C ₂₀	260 C ₁₇
N N N OII	CII, N-N	N-N-N-K(II)	Z Z Z → Z Z → Z Z → Z Z	N N N N N N N N N N N N N N N N N N N
95	93	94	95	98

æ	2033	æ	a	æ
106	107	109	110	111 異性体1
C ₁₁ H ₂ Cl ₂ N ₆ O ₃ , C, 38.10; H, 2.51; N, 20.53 H ₂ O (C, 38.17; H, 2.62; N, 20.23) (Φ - ₹スプレ→) 328 (MH ³).	8 = 2.25 (3H, s), 2.69 (2H, m), 3.63 (2H, m), 7.58 (1H, s), 11.90 (1H, br s), 12.24 (1H, br s), (Φ-εχ7υ—) 356 (MH [†]).	C, 41.21; H, 2.85; N, 10.90 (C, 41.02; H, 3.18; N, 11.04) 8 = 7.48 (14.8), 8.02 (14.m), 8.30 (14.m), 8.84 (14.8), 8.96 (141.m), 11.20 (14.br.s), 12.26 (14.br.s).	C, 48,93; H, 2.78; N, 18,15 (C, 49,00; H, 2.83; N, 17,86) S = 7,39 (SH,m), 742 (1H,s), 11,20 (H,br,s), 12,11 (14,br,s), 15,34 (1H,br,s).	C ₁₇ H ₁₇ G ₂ M ₂ O ₂ . C, 50.86; H, 3.06; N, 17.11 0.78H ₂ O (c, 50.83; H, 3.14; N, 17.43) 8 = 4.23 (3H,8), 7.37 (5H,m), 7.44 (1H,8), 11.14 (1H,br,s), 12.06 (1H,br,s).
C ₁₁ H ₂ Cl ₂ N ₅ O ₃ . H ₂ O	C ₁₃ H ₁₁ Cl ₂ N ₅ O ₃	C ₁₃ H ₇ Cl ₂ N ₃ O ₂ HCl. 2H ₂ O	C ₁₆ H ₉ Cl ₂ N ₅ O ₂ . H ₂ O	C _{I7} H ₁₁ Cl ₂ N ₅ O ₂ . 0.75H ₂ O
>300	>300	>300	>300	>300
N N N N N N N N N N N N N N N N N N N	N-N N-N N-N	× ×	N-WII	10 N
26	86	66	100	101

	>300	C17H11C12N5C2-	C ₁₇ H ₁₁ Cl ₂ N ₅ O ₂ C, 48.70; H, 3.04; N, 16.51	=	æ
		1.75H ₂ 0	(C, 48.65; H, 3.48; N, 16.68)	聚粧体2	
			δ = 3.79 (3H,s), 7.31 (3H,m),		
			7.42 (2H,m), 7.55 (1H,s), 11.54		
			(1H,br,s), 12.15 (1H,br,s).		
Α	>300	C17H11Cl2N5O2.	C17H1,C1,N5O2. C, 51.55; H, 3.33; N, 16.02	111	æ
		0.5H ₂ O	(C, 51.62; H, 3.46; N, 16.43)	联节体3	
			s = 4.00 (3H,s), 7.39 (6H,m),		
			11.00 (1H,br,s), 12.01		
			(1H,br,s).		
ζ,	>300	C ₁₆ H ₁₃ Cl ₂ N ₅ O ₃ .	C18H13Cl2N5O3. C, 50.07; H, 3.46; N, 15.79	112	œ
		0.75H ₂ O	(C, 50.08; H, 3.39; N, 16.22)	異性体1	
			δ = 3.98 (2H,m), 4.53 (2H,m),		
			4.80 (1H,br,s), 7.37 (6H,m),		
			10.93 (1H,br,s), 12.04		
			(1H,br,s).		
ž	>300	C16H13CI2N5O3.	C18H13Cl2NsO3. C, 47.13; H, 3.13; N, 14.78	112	ca
		HCI.0.33H,O.	(C, 47.21; H, 3.37; N, 14.96)	単件体の	
		0.1 ジエチル	8 = 3.65 (2H,m), 4.01 (1H,m),		-2
		エーテル	4.16 (1H,m), 7.27 (3H,m), 7.41		
			(2H,m), 7.51 (1H,s), 11.26		
			(1H,br.s), 12,14 (1H,br.s),		-

œ	q
112 異性体3	井西 4
5:300 G ₁₆ H ₁₃ CF ₁ N ₂ O ₂ = 3.84 (Pl, m), 4.33 (Pl, m), 7.36 (Fl, μ), 2.21 (Hl, s), 10.82 (Hl, μ's), 11.98 (Hl, μ's), 11.88 (Θ+−π × 2 ν −) − 418 (MH*).	291-293 C ₁₃ H ₃ N ₆ O ₂ C ₁₂ C,36.05; H,2.55; N,25.73 · (分解) HCI, H ₂ O (C,36.01; H,2.56; N,25.84).
C ₁₈ H ₁₃ Cl ₂ N ₅ O ₃	C ₁₃ H ₆ N ₆ O ₂ Cl ₂ . HCl. H ₂ O
>300	291-293 (分解)
N=N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N	TIN N N N N N N N N N N N N N N N N N N
106	107

95:5容量のジクロロメタン:メタノールに続いて80:20:1容量のジクロロメタン:メタノール:酢酸で溶離 50℃で9時間行われた。粗生成物は、シリカゲル上において (1) 反応は、実施例1について記載の通りであるが、

(2) 得られた固体を熱水 (4mL) 中に落解させ、0°Cまで冷却し、そして濾過によって集めた。 するフラッシュクロマトグラフィーによって精製された。

(3) 生成物は橙色油状物として得られ、これを蒸留水(4mL)中に溶解させ、そして凍結乾燥させた。

(4) 出発物質は、製造例27の場合と同様の方法によって、そしてヒドラジド中間体は、製造例117の場合と同様 の方法によって製造された。

実施例108

ル)-2,3(1H,4H)-キノキサリンジオン

6, 7-ジクロロー5 - (1-カルボキシメチルテトラゾールー5 - (1-3) ー 2, (1+3) 4 H) ーキノキサリンジオン(実施例8, (1+3) 4 2 mg, (1+3) 0. (1+3) 4 2 mg, (1+3) 0. (1+3) 9 世紀)の飽和メタノール性塩化水素((1+3) 5 mL)中溶液を、窒素下の還流下で2 日間加熱した。その反応混合物を減圧下で濃縮し、そしてその残留物を水((1+3) 10 mL)とジクロロメタン((1+3) 10 mL)とに分配した。水性相を分離し且つジクロロメタン((1+3) 2 x 2 5 mL)で抽出した。合わせた有機抽出物を乾燥させ((1+3) 1 Mg S O4)且つ減圧下で濃縮した。その残留物をジエチルエーアルで研和し且つ濾過して、標題化合物((1+3) 2 x 3 %として与えた。

<u>H-NMR</u> (300MHz, DMSO-d_s): δ = 3. 60 (3H, s), 5 32 (2H, m), 7. 44 (1H, s), 11. 60 (1H, br s), 12. 12 (1H, br s)。 m/z (ψ —∓zzV-) 371 (MH).

実施例109

6-クロロ-7-メチル-5- [5-メトキシメチル-3- (3-ビリジル) -4H-1, 2, 4-トリアゾール-4-イル] -2, 3 (1H, 4H) -キノキ サリンジオン

元素分析(%): 実測値: C, 51. 33; H, 4. 16; N, 19. 99。
C₁₈ H₁₈ C l N₄ O₃. 0. 25 H₂ O 計算値: C, 51. 31; H, 4. 19; N, 19. 95。

実施例110

7-クロロー6-メチルー5- [5-メトキシメチルー3- (3-ピリジル) -4H-1, 2, 4-トリアゾールー4-イル] -2, 3 (1H, 4H) ーキノキ サリンジオン

標題化合物を、実施例1の方法によって、7-クロロ-2, 3-ジメトキシー6-メチルー5-[5-メトキシメチルー3-(3-ピリジル)-4H-1, 2, 4-トリアゾールー4-イル]キノキサリン(製造例115)を6, 7-ジクロロ-2, 3-ジメトキシー5-(4-ピリジル)キノキサリンの代りに用いて製造した。反応混合物を濃縮することで得られた残留物を1M水酸化ナトリウム水溶液中に溶解させ、その溶液を2M塩酸水溶液でpH6に調整し、そして0℃まで冷却した。生成された固体を濾過によって集め且つ水で洗浄して、淡黄色固体、mp>300℃を与えた。

m/z (サーモスプレー) 399 (MH)。

<u>元素分析(%)</u>: 実測値: C, 5 2. 6 0; H, 3. 9 1; N, 2 0. 3 4。
C₁₈ H₁₈ C 1 N₄ O₃. 0. 7 5 H₂ O 計算値: C, 5 2. 4 3; H, 4. 0 3; N, 2 0. 3 8。

実施例111

(±) -、(-) -および (+) -6, 7-ジクロロ-5- [3-メトキシメゲ $\nu-5-$ (3-ピリジル) -4H-1, 2, 4-トリアゾール-4-イル] -2, 3 (1H, 4H) -キノキサリンジオン

(a) 塩化メトキシアセチル (27.3 mL, 32.4 g, 0.30モル)を、5-アミノー6,7-ジクロロー2,3-ジメトキシキノキサリン (製造例26,73.8 g,0.27モル) およびピリジン (26.4 mL,25.8 g,0.33モル) のジクロロメタン (1.2 L) 中撹拌混合物に対して窒素下において室温で加えた。室温で18時間撹拌した後、その混合物を2M塩酸水溶液で、続いてブラインで洗浄した後、乾燥させ (MgSO₁)、そして減圧下で濃縮した。その残留物をメタノールで研和し且つ濾過して、6,7-ジクロロー2,3-ジメトキシー5-メトキシアセトアミドキノキサリン (82.0 g,88%)をオフホワイト固体、mp171~173℃として与えた。

元素分析(%): 実測値: C, 44.97; H, 3.75; N, 12.03。
Cn Hn Cl: NaO4計算値: C, 45.11; H, 3.79; N, 12.14

(b) 2, 4ービス (4ーメトキシフェニル) -1, 3ージチア-2, 4ージホスフェタン-2, 4ージスルフィド (ローソン試業) (19.5g, 48.2 ミリモル) を、6, 7ージクロロ-2, 3ージメトキシー5ーメトキシアセトアミドキノキサリン (27g, 78ミリモル) のテトラヒドロフラン (480mL) 中溶液に対して加え、そしてその混合物を室温で18時間撹拌した後、減圧下で蒸発させた。その残留物を、シリカゲル上において溶離剤としてヘキサン:ジクロロメタン (1:1~1:4容量まで変化する)を用いる勾配溶離によるフラッシュクロマトグラフィーによって精製して、6, 7ージクロロ-2, 3ージメトキシー5ーメトキシチオアセトアミドキノキサリン (29.1g, >100%)を、少量の不純物を含有する白色固体、mp198~200℃として与えた。元素分析 (%):実測値:C, 43.06;H, 3.65;N, 11.59。Ca Ha C1:NaO,S計算値:C, 43.11;H, 3.62;N, 11.60。

(c) 6, 7-ジクロロー2, 3-ジメトキシー5-メトキシチオアセトアミドキノキサリン(25.3g,69.9ミリモル)、ニコチン酸ヒドラジド(19.3g,140.8ミリモル)、酸化水銀(II)(15.1g,69.7ミリモル)および1,4-ジオキサン(600mL)の混合物を、還流下で18時間加熱した。冷却後、その混合物をアーボセル(ARBOCEL)(商標)濾過助剤を介

して濾過し、そしてその残留物をジクロロメタンで洗浄した。その濾液を減圧下で濃縮して淡褐色固体を与え、これを酢酸エチルと 2 M塩酸水溶液とに分配した。層を分離し、そして水性層をジクロロメタン (2 x 5 0 0 mL, 4 x 1 0 0 m L) で抽出した。合わせたジクロロメタン抽出物を乾燥させ (Mg S O4) 且つ減圧下で濃縮した。その残留物を酢酸エチル/メタノールから結晶化させて、(土) -6, 7-ジクロロ-2, 3-ジメトキシ-5-[3-メトキシメチル-5-(3-ビリジル)-4 H-1, 2, 4-トリアゾール-4-イル)] キノキサ

リン (11.6g, 37%) を淡黄色固体, mp189~191℃として与えた

<u>元素分析(%)</u>: 実測値: C, 50. 10; H, 3. 57; N, 18. 53。
C₁; H₁; C₁; N₂O₃. 0. 5H₂O計算値: C, 50. 01; H, 3. 76; N, 18. 42。

(d) (土) -6, 7 - 9 7 - 9 7 - 9

元素分析(%): 実測値: C, 46.23; H, 2.93; N, 19.00。
C: H: Cl: N: O: 1.25 H: O計算値: C, 46.22; H, 3.31;
N.19.02。

(e) (i) (一) ーNーメチルエフェドリン (0.88g, 4.9ミリモル) に続いてメタノール (66mL) を、(土) ー6,7ージクロロー5ー[3ーメトキシメチルー5ー(3ーピリジル)ー4Hー1,2,4ートリアゾールー4ー1ル]ー2,3(1H,4H)ーキノキサリンジオン(1.9g,4.3ミリモル)の酢酸エチル(400mL)中撹拌懸濁液に対して室温で加えた。その混合

物をその沸点まで加熱した。その混合物を濾過し、その濾液をその容量の4分の 3まで濃縮した後、室温まで冷却した。得られた固体を濾過によって集め且つ酢 酸エチルで洗浄した。その固体を酢酸エチル/メタノールから結晶化して、キノ キサリンジオン出発物質の1種類のジアステレオ異性体を (-) - N-メチルエ フェドリン塩 (1. 28g, 43%), mp162~164℃として与えた。 <u>元素分析(%)</u>:実測値: C, 55. 74; H, 5. 38; N, 14. 38。 C₂₈ H₂₈ C l₂ N₇ O₄. C H₃ C O₂ C₂ H₃ 計算値: C, 55. 98; H, 5. 4 3: N. 14. 28.

- $[\alpha]$ $[\alpha]$ [-135] [C=0.1, x/9/-1/1)

元素分析 (%): 実測値: C, 45. 49; H, 3. 21; N, 18. 72。
C: H: Cl: N: O: 1. 5H: O計算値: C, 45. 76; H, 3. 39; N, 18. 83。

- $[\alpha]^{2} 214^{\circ} (C=0.1, \pm 9/-\nu)$
- (iii) (e) (i) 部分からの合わせた濾液を濃縮乾固させ、その残留物を水(20mL)中に溶解させ、濃塩酸でpH3まで酸性にし、そして得られた固体を濾過によって集め、水で洗浄し且つ乾燥させた。 (+) -N-メテルエフェドリン (0.37g, 2.06ミリモル)に続いてメタノール(28mL)を、この固体 (0.80g, 1.87ミリモル)の酢酸エチル(170mL)中撹拌懸濁液に対して室温で加え、そしてその混合物をその沸点まで加熱した。その混合物を濾過し、その容量の4分の3まで濃縮した後、室温まで冷却した。得られた固体を濾過によって集め且つ酢酸エチルで洗浄した。その固体を酢酸エチル/メタノールから結晶化して、キノキサリンジオン出発物質の1種類のジアステ

オ異性体を (+) -N-メチルエフェドリン塩 (0.93g,32%) として自 色固体、mp165~167℃として与えた。