Fisher's Exact Test

If the contingency table 15 2 x 2, it is also possible to (test independence) (or equality of proportions) using Fisher's exact test.

The listing is done exactly as for the chi-square test,) and the test statistic is the value in the (1,1) cell or some equivalent test statistic.

Here the test can be sne-sided, unlike for the

Ex: In a game against South Florida in 2010, Corey
Tisher made I other-point shot and missed 3, while
Corey Stokes made 3 and missed 3. Find the preduces
for @ a two-rided test and @ a one-sided test where
the alternative is that Stokes succeeds more often.

りっいららんばっょっ

$$\begin{pmatrix} 0 & 4 \\ 4 & 2 \end{pmatrix} \begin{pmatrix} 1 & 3 \\ 3 & 3 \end{pmatrix} \begin{pmatrix} 2 & 2 \\ 2 & 2 \end{pmatrix} \begin{pmatrix} 3 & 1 \\ 1 & 5 \end{pmatrix} \begin{pmatrix} 4 & 0 \\ 0 & 6 \end{pmatrix}$$

$$\frac{\binom{4}{6}\binom{6}{4}}{\binom{10}{4}} \frac{\binom{4}{1}\binom{5}{2}}{\binom{10}{4}} \frac{\binom{4}{1}\binom{5}{2}}{\binom{10}{4}} \frac{\binom{4}{1}\binom{5}{2}}{\binom{10}{4}} \frac{\binom{4}{1}\binom{5}{2}}{\binom{10}{4}}$$

$$\frac{10^{10}}{10^{10}} = \frac{80}{210} = \frac{90}{210} = \frac{24}{210} = \frac{1}{210}$$

(a) add all but
$$\frac{90}{210}$$
 to get $\frac{15+80+24+1}{212} \cong \boxed{0.57}$

then the

observed

table

6) add the observed prob. and those to the left to get
$$\frac{50+15}{210} \cong \boxed{0.45}$$

Fisher's Exact Test Example (1)

Virity our results for this example in R.

Note: The way we conguted the two-toiled p-value

1s valid in general, but in symmetric situations

It reduces to doubling the shorter of the

two one-tailed p-values

sofiavones in Distary Sources

More on Regression (1)
Recall that the standard multiple linear regression
model 75 predictor variables $ \varphi = \beta + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_p x_p + \Xi, \text{ where} $
Yesponse $Z \sim M(0, 600)$.
Assumptions: (1) Linearity, or correct form for the model

(2) Independent ever terms (5: 20 N(0, 62))

- (3) Normally distributed errors
- (4) Equal variances (homoscadastristy)

More on Regnession II
Kernel regression (from last time) is a way to dead address Violations of the linearity assumption
address Violations of the linearity assumption
Today we'll think about methods for addressing
department for the normal errors arrumption.
Two passibilities: 1 Theil's method for Kitting a
like in Simple linear regression.
to aging and number of intensy.

12 trabust regression, where outliers (as con according with non-normal data) are automotically downweighted.

Theil's Hethod Model: 72 - X+ BXi+ Ex, 2=1,2,-, n, where the Xi values are known and the Ei values are ital ul median o. 7-12 B nomal & ass Q: How does this differ from the usual model? Ai No assumption of normality! We can find a distribution - tree contidence retend Gr B (slope parameter) by building on

Say foods and cancer

Kendall's text of Independence.

	Theil's Method I
We get	the CIs by Thursting a test.
	Ho: B=Bo Vs Ha: B & Bo.
Procedure:	Compute D= - 12-12-1 n.
Unda	or Ho, the Di values are independent of the
	XI values. This is since

Now test for a exidence against Hoby

testing for an association between Xi and Di.

Testing Example:

Exi Test the theory that the slope is B= 5, using level d= .06. Note that using the critical values -0.73 + 0.73 for I gres a level - .056 two-tailed test. # concordent pairs 75 (0 45 1.5+0+0+0+0.5 $\frac{1}{2} = 2\left(\frac{2}{\binom{2}{2}}\right) - 1$ $=\frac{4}{15}-1=-0.73$ Traject Ho!

Theil's Confidence Internal for B

The 100 (1-0)% (I Contains all values Bo such that Ho: B=Bo 15 not réjected when we do a two-sided level-contest.

a: How can we compute this Interval?

A: Compute (all pairwise) slopes of put them in order. It towns out that I to constant on the intervals between these pairwise slopes. Thus, the CI will go from the charmanter pairwise slope to the character pairwise slope for appropriate of

Small Example

Ex. Verify that the claim about 2 is valid for These data: X Concordant _ unless pairs 3 concordent 2 concordent boins = benz

Bryger Example

assume i Indp 22d WE BAY 21 & dist family

Ex: Find a 94% CI for B. Use the feet that Kendall's test rejects at level . 056 (this toiled) The # of concordant or discordant pairs 75 two or fewer.

Smallest: 1, 2.5, 3.67 } | The 94.4% (I 15 | Verify
The 94.4% (I 15 | V

Robust Regression (I)
Trist let's think about estimations the center M
of a distribution (universate) given a
random sample X, Xz, -, Xn.
One estimator: Choose My to be the value
that minimizes $L_1(c) = \leq (x_1 - c)^2$.
Here M, 15 the sample mean,
Another: Chouse fix to be the value that
minimites (c) = \(\frac{1}{2}\)\(\lambda_1 - c\)
Here is the sample median (actually any sample median).

Rabust Restersion II
Athord: Chase Miz to minimise
$L_3(z) = \Xi_p(x_i - c)$, where
$P(x) = \int x^2 / x \leq \lambda$
$P(x) = \begin{cases} x^2, & x \leq d, \\ d^3, & x > d. \end{cases}$
De GELCIZE UPEZITA GIOTISTA (A).
Pretures:
Coronary ha artsdiseess 13
Intuition about Lz: Once XI-c exceeds 2, there's
no further penalty, mouning that
L375 outlier - yesistant.

Applying This To Regression

We estimate the parameters in a regression model

by minimizing the criterion

Elp(ei/s), where e== 7/1-7/1 is the

its residual and & is a robust scale estimate like

5= median (e; - madian (e;)) approximately

0.6745

unbiased for 6

Examples: Using p(x) = x2 gives regular least squares regression, Using p(x) = (x) gives L'- norm regression.

Some p Options in R (r/m)

2) Hampel's: This has quadratis linear, and Constant pieces.

Now try out some examples in R! Verity that robust regression handles outliers in a reasonable way.

Wald Versus Agresti- (oull

Recall that the Wald CI for a proportion

performs, poorly, while the A-C CI performs well.

Verify this claim in R is two ways.

1 Monte Corlo simulation w/ p close to 0 or 1.

2) Actually computing the coverage probability of each interval for different values of h & p.

For simplicity, let's focus on 95% (Is.

Computing the Coverage Probability.

Suppose that when the # of successes (out of n) is i,
the bounds are Li and Ui.

To the for upper

The coverage probability for a particular true proportion p

 $(P(p) = \sum_{\lambda=0}^{n} (\frac{h}{\lambda})_{p^{\lambda}} (1-p)^{n-\lambda}. T(L_{\lambda} \leq p \leq U_{\lambda}).$ $P_{rob.} \leq f_{\lambda}$

SUCCASIES

Indicator for p being
In the interval
for i successes