Lab # 3 Monte Carlo Simulation & Confidence Intervals

For the questions of lab n°3 under Linux, even if it is simpler to use rand() for a first test (or more precisely (double) rand() / (double) RAND_MAX using stdlib), you now know that for scientific applications the default system random number generators are often very old and statistically weak. Such generators have to be banned for modern scientific programming. It is far better to use a generator such as Mersenne Twister proposed by Matsumoto and discovered in lab 2. For a quick start work in a single file, then, if you can, prefer using separate compiling with the Matsumoto source code on the one side, and on the other side your simulation code with the main program (only one main of course). Respect the original MT initialization and use the function proposed to draw pseudo-random numbers between 0 and 1 (included). Implementations for this lab should be in C.

- 1) Propose a function simPi to Compute π with the Monte Carlo method. This function will accept in input the number of points used for the estimation. Test your code with 1 000 points, 1 000 000 points and lastly 1 000 000 points. Each point in R^2 needs two random numbers: (x_r, y_r) . For this case study let see how many drawings you may need to get a precision below 10^{-2} (at least 3.14), below 10^{-3} and then below 10^{-4} (at least 3.1415). Remember that the convergence rate of this method is very slow: sqrt (of the total numbers of points drawn); but like a peasant tractor this method "goes everywhere". In this question, you do not have to make replicates (independent experiments) this comes in the next question.
- 2) Computing independent experiments and obtaining the mean. Launching ie drawing the "dice" many times, means calling many times the function which estimates PI (and this function needs many drawings). When simulating a dice rolling, we needed only one random number for an experiment. When we loop on the dice rolling, we have many simulations (independent experiments). When we estimate PI we launch the simPi function (with a specified number of points: nbPoints, and each point needs two random numbers). In order to compute 'n' independent experiments (replicates) of this simulation, first initialize the random number generator, then propose a loop, which will call 'n' times the estimation of PI with "nbPoints". The independence is simply achieved if we do not reinitialize the pseudo-random number generator between two experiments (replicates). This can be done by keeping the proper and original initialization found in Makoto's web site. When we run the loop calling the PI simulation function, we can store all the results of the 'n' experiments (replicates) in an array (of numbers in double precision). We can then propose the mean of all the 'estimated PIs' (arithmetic mean). Run 10 to 40 experiments with: 1 000, 1000 000 and 1 000 000 000 points, compute the difference between you meanPI and M_PI as an absolute error. If you divide by M_PI you will also obtain the relative error. The M_PI constant should be taken directly from the <math. h> include file.
- 3) Computing of confidence intervals around the simulated mean. The user inputs the number of replicates (experiments) he wants to perform before computing a confidence interval at 95% (α =0.05) to do so use the technique & table given in the appendix of this lab. See whether the number of replicates improves your results and decreases the confidence radius (comparison with M_PI). The number of random drawings (sampling) for each individual replicate (each experiment) is a sensitive parameter. Be careful when you do this comparison. We have very few significant numbers in a float variable (only 7 significant decimal digits for floats), use double instead. It is preferred for scientific computing. When you have an estimation of the standard deviation, you can also see how to compute the 'standard error' of the sample mean.

The Monte Carlo method needs a lot of random sampling to increase its precision (remember the slow convergence rate – square root of the number of points). However, the Monte Carlo method is the only method to compute hyper-volumes in hyper-spaces or to achieve evenly distributed space filling in large dimensions where accurate mathematical methods are often intractable or non-existing. Uniformity is guaranteed up to 623 dimensions for the Mersenne Twister, this is particularly useful when exploring the hyperspace of parameters for sensitivity analysis (100 parameters = 100 dimensions to explore).

Appendix: Computing confidence Intervals for a sample of results (we don't have the full population)

<u>Introduction</u>: If X is a simulation result, $(X_1, ..., X_n)$ is the set obtained with n independent replications (experiments) of this stochastic simulation. This means that each independent stochastic simulation experiment is run (under the same conditions) but with a different (and independent) random stream. Usually the computing of confidence intervals is achieved on the observed arithmetical means.

$$\overline{X}(n) = \sum_{i=1}^{n} X_i / n$$

The computing of a confidence interval is simple when we consider that the X_i variables (simulation results) have identical independent Gaussian distributions.

<u>Principle:</u> The confidence interval is centered on the arithmetical mean, so we just compute what is called the confidence radius (error margin). Here is the theoretical statistical hypothesis that is used to obtain this radius. If X_i have identical independent Gaussian distributions with a theoretical mean μ and a variance of σ^2 , then the following random variable :

 $T(n) = \frac{\overline{X}(n) - \mu}{\sqrt{S^2(n)/n}}$ is distributed according to a Student law with *n-1* degrees of liberty.

$$S^{2}(n) = \frac{\sum_{i=1}^{n} \left[X_{i} - \overline{X}(n) \right]^{2}}{n-1}$$

 $S^2(n)$ is an estimate without bias of the σ^2 variance. Since we don't know the <u>theoretical</u> standard deviation σ , we estimate the variance with the results we have and thus use this approximation. We compute $S^2(n)$ and use it in the following formula below to obtain the confidence radius (error margin) at the 1- α level:

$$R = t_{n-1,1-\alpha/2} \times \sqrt{\frac{S^2(n)}{n}}$$

William Sealy Gosset introduced the Student to correct the fact that we only use an estimate of σ and not its true value. The table below give the values $t_{n-1,1-\alpha/2}$ for a student law with $\alpha=0.05$.

If $\alpha=0.05$, the confidence interval is said at 95%. The computing of R gives the following interval $\left[\overline{X}-R,\overline{X}+R\right]$, with a 1- α confidence (95%).

Table 1: Values of $t_{n-1,1-\frac{\alpha}{2}}$ of a Student law starting with $\alpha=0.05$ depending on n experiments.

1≤n≤10	$t_{n-1,1-\alpha/2}$	11≤n≤20	$t_{n-1,1-\frac{\alpha}{2}}$	21≤n≤30	$t_{n-1,1-\frac{\alpha}{2}}$	n>30	$t_{n-1,1-\frac{\alpha}{2}}$
1	12.706	11	2.201	21	2.080	40	2.021
2	4.303	12	2.179	22	2.074	80	2.000
3	3.182	13	2.160	23	2.069	120	1.980
4	2.776	14	2.145	24	2.064	+∞	1.960
5	2.571	15	2.131	25	2.060		
6	2.447	16	2.120	26	2.056		
7	2.365	17	2.110	27	2.052		
8	2.308	18	2.101	28	2.048		
9	2.262	19	2.093	29	2.045		
10	2.228	20	2.086	30	2.042		

The Central Limit Theorem (CLT) says that for non-normal data, the distribution of the sample means has an approximate normal distribution, no matter what the distribution of the original data looks like, as long as the sample size is large enough (usually at least 30) and all samples have the same size. This is true not only for the sample mean but also for other sample statistics. Advanced students will also study $\alpha = 0.01$.