CTAT and Bandgap Voltage Reference Derivation

1. CTAT Voltage: Base-Emitter Voltage of a BJT

The base-emitter voltage (V_{BE}) of a BJT biased with a constant collector current I_C decreases with temperature. It is modeled as:

$$V_{BE}(T) = V_G(0) - \eta \cdot \frac{kT}{q} \ln \left(\frac{T^3}{I_C}\right)$$

Simplifying for a rough model, it is often approximated as:

$$V_{BE}(T) \approx V_{BE}(T_0) - \alpha (T - T_0)$$

where:

- $V_G(0)$ is the bandgap of silicon at 0 K, typically about 1.205 V,
- α is the negative temperature coefficient (typically $2 \,\mathrm{mV} \,\mathrm{K}^{-1}$),
- k is Boltzmann's constant,
- \bullet q is the elementary charge,
- T is the absolute temperature,
- T_0 is the nominal reference temperature (e.g., 300 K).

Thus, $V_{BE}(T)$ exhibits a **CTAT** behavior — Complementary To Absolute Temperature.

2. PTAT Voltage: Thermal Voltage Difference Between Two BJTs

If two BJTs operate at different current densities J_1 and J_2 , the difference in their V_{BE} voltages is:

$$\Delta V_{BE} = V_{BE1} - V_{BE2} = \frac{kT}{q} \ln \left(\frac{J_1}{J_2}\right)$$

Since $\Delta V_{BE} \propto T$, this is a **PTAT** (Proportional To Absolute Temperature) voltage.

3. Bandgap Voltage Reference: Combining CTAT and PTAT

To achieve a temperature-independent voltage reference:

$$V_{\text{REF}} = V_{BE} + K \cdot \Delta V_{BE}$$

Where K is a scaling factor (set by resistor ratio in the circuit). This gives:

$$V_{\text{REF}} = V_{BE} + K \cdot \frac{kT}{q} \ln \left(\frac{J_1}{J_2} \right)$$

Choosing K such that the positive temperature coefficient of the PTAT term cancels the negative coefficient of the CTAT term yields:

$$\frac{dV_{\rm REF}}{dT} \approx 0$$

4. Typical Result

The resulting bandgap voltage is:

$$V_{\rm REF} \approx 1.2 \, {\rm V}$$

Which is relatively constant over temperature for first-order effects.

1 PTAT Behavior (Proportional to Absolute Temperature)

Starting with the Diode Equation

The current through a diode (or base-emitter junction of a BJT) is given by:

$$I = I_S \cdot \exp\left(\frac{V_{BE}}{V_T}\right)$$

Solving for V_{BE} , we get:

$$V_{BE} = V_T \cdot \ln\left(\frac{I}{I_S}\right)$$

Where:

- $V_T = \frac{kT}{q}$ is the thermal voltage.
- I_S is the saturation current of the diode.
- \bullet k is Boltzmann's constant.
- \bullet q is the elementary charge.

Generating PTAT Using Diode Current Ratios

If two identical diodes (or BJTs) are operated at different current densities, or if n diodes are connected in parallel, the effective current through each diode is scaled.

Let:

Single diode:
$$V_1 = V_T \cdot \ln \left(\frac{I_0}{I_S} \right)$$

n parallel diodes:
$$V_2 = V_T \cdot \ln \left(\frac{I_0}{nI_S} \right)$$

Now, subtract the two voltages:

$$\Delta V = V_1 - V_2 = V_T \cdot \ln(n)$$

This voltage is proportional to $V_T = \frac{kT}{q}$, which is directly proportional to absolute temperature T.

Hence, $\Delta V = \frac{kT}{q} \cdot \ln(n)$ is a *PTAT* voltage.

Temperature Derivative of PTAT Voltage

$$\Delta V = \frac{kT}{q} \cdot \ln(n)$$

Differentiate with respect to temperature T:

$$\frac{d(\Delta V)}{dT} = \frac{k}{q} \cdot \ln(n)$$

Assuming $ln(n) = ln(8) \approx 2.079$, and using constants:

$$\frac{k}{a} = 8.617 \times 10^{-5} \text{ V/K}$$

Then,

$$\frac{d(\Delta V)}{dT} = 8.617 \times 10^{-5} \cdot 2.079 = 1.791 \times 10^{-4} \text{ V/K} = 179.1 \text{ µV/°C}$$

If instead $ln(n) = ln(2) \approx 0.693$, then:

$$\frac{d(\Delta V)}{dT} = 8.617 \times 10^{-5} \cdot 0.693 \approx 59.7 \, \mu \text{V/}^{\circ}\text{C}$$

For the commonly used value where:

$$\frac{d(\Delta V)}{dT} \approx 86.25 \; \mu \text{V/}^{\circ}\text{C}$$

this corresponds to:

$$\ln(n) \approx \frac{86.25 \times 10^{-6}}{8.617 \times 10^{-5}} \approx 1.000 \implies n \approx e^1 \approx 2.718$$

Conclusion:

$$\Delta V = V_T \cdot \ln(n)$$
 is a PTAT voltage

$$\frac{d(\Delta V)}{dT} \approx 86.25 \,\mu\text{V}/^{\circ}\text{C}$$
 for $\ln(n) \approx 1$

This PTAT behavior is combined with the CTAT V_{BE} to generate a temperature-independent reference voltage in Bandgap circuits.

Figure 1: CIRCUIT

Figure 2: CTAT NATURE

Figure 3: PTAT NATURE

Figure 4: Final Result