Equations différentielles

Jérémy Meynier

Exercice 1

Résoudre $(x-1)y' + xy = \sin(x)$

Exercice 2

Soit (E): 4xy'' + 2y' - y = 0. Résoudre (E) sur \mathbb{R}^{+*} en utilisant le changement de varibale $t = \sqrt{x}$. (Chercher une solution de la forme $y(x) = z(\sqrt{x})$)

Exercice 3

Résoudre $y'' + 3y' + 2y = e^x$

Exercice 4

Trouver les fonctions $f \in C^0(\mathbb{R}, \mathbb{R}) / \forall x \in \mathbb{R} \ f(x) + \int_0^x (x - t) f(t) dt = 1$

Exercice 5

Soit
$$(E) = x^2 y''(x) + y(x) = 0$$

- 1. Résoudre (E) sur \mathbb{R}^{+*} en posant $x=e^t$
- 2. Résoudre (E) sur \mathbb{R}^{-*}
- 3. Donner les solutions sur \mathbb{R}

Exercice 6

Résoudre (1+x)y'' - 2y' + (1-x)y = 0 en posant $y(x) = e^x z(x)$

Exercice 7

Résoudre sur \mathbb{R}^+ $x \ln(x) y' = (1 + 3 \ln(x)) y$