Introduction to CN

Monday, January 17, 2022 8:28 AM

Computer Network Ly Desktop/Leptop

Smart phone

Smart worth

Host

Node

=> Desktop APP web APP MOD APP

Network: -

1 Intranet:

2. Intuned: - Network of Network

network ing vaice { Rovtus Switches mac Add IP Add HUB ISP

protocol: - Set of rules

- Http / Https - DNS - tcl1 opp (Secure)

- FTP

- Telact

=> https://amazon.in - URL

Boowses >

email dient >

what call =>

Remote alless ?

> Cybes security

-> Information sawity -> encrytion) decrytion

+ God of Network :-

-> Computy Network 3 -

Lab: --- 100 Host

client Serves Client- Sewes :-

) vey

peer-to-feer :-(Blockchain)

Simlex: -

Half-Deflex: -

- Walkie-tulkie

Full - Duplex :-

BUS

(3)

Mesh T. > No of device - N no of port = N-1 of every perice TO NO. of POST = N x N-1

TO NO of LMK = (N x N-1)/2

*OSI - Theoritically / Reference moderny -> Tel/IP - model - Implement

UNIT	1	Page 5

.

Networking Addressing

Friday, January 21, 2022 8:19 AM

~ NIQUE SIP Address; — Logical Add MAC Address (media Address control) (Hardware Add) VI Physical Add

MAC Address: - size - 48 bit (6 byte)

Represent - $\Rightarrow AB - D2 - 13 - 12 - B6 - 23$ 46it

command - IPconfig/au

 $\frac{1P + dd \text{ ress:}}{=} \frac{32 \text{ Git (size)}}{=} \stackrel{\text{IP.4}}{=} \frac{32}{2}$

12.1.2.3 => 000001100 000001 0000001

MAX RAMPE => 0.0.0.0 => 255.255.255.255.255 10-256-3.4 (Not valid)

192.168.43.131...my computer IP address FROM CMD...PRIVATE IP ADDRESS

157.34.31.34 From google....PUBLIC IP ADDRESS

10-1 1-1

- 1- private Add (6 IP Address)
- 2. Public Add -> www. VIt Bhopal. 4 (-in
 - www. faecbook.com
 - -> www amozon in
- 3. Route :- Uses -> VILBhopal. ac-in

onday, January 31, 2022 8:46 AM		800 900
	2	888
		0,1,2 500 2000
~	200 º	0,1,2 100 200 300 2000 <u>T</u> <u>T</u> <u>T</u>
		Chelepornl

The period of a signal is 100 ms. What is its frequency in kilohertz?

$$f = \frac{1}{T}$$
 $T = 100 \text{ M}$
 $f = \frac{1}{T}$ $T = 100 \text{ M}$
 $f = \frac{1}{100 \text{ M}}$ $T = 100 \text{ M}$
 $f = \frac{1}{100 \text{ M}}$ $T = 100 \text{ M}$
 $T = 100 \text{ M}$

A sine wave is offset 1/6 cycle with respect to time 0. What is its phase in degrees and radians?

$$= \frac{1}{6} \times 360^{\circ} = 60^{\circ}$$

$$= 60 \times \frac{27}{360}$$

$$= \frac{1}{3} \text{ and}$$

$$= \frac{1}{3} \text{ and}$$

8:18 AM

Delay-Toursmission True

Propogation Time

c= processing Time

Queueng Time

TEO + 3 Tp + Ten + 3 Tm

+ Date tourbu True

+ TEO + 3 Tp

Sataword - 1001 Sandes (ceyan of air isor -1) divisor - 1011 XOR X1000 KOR Codeword [100/110] J 1001110 X 0101 Receiver:_ 1011 [00] destavore Second bit

(01)

1101110

is corrested

X1101 1011 X (100 discard dates Questrun: date word - 110101111/ divisor - 10011 (Generator) CRC - ? Codeword - ? polynomial Representation dataword 8 -101100001100011 divisor - 10100010001 OR data words - $\Rightarrow x_{|a} \leftarrow 1$ + 1.X0

sender Receives Checksum:-7 11 (7,11,1210,6,36) 12 Checksum = 36 12 accepted 7 IJ 11 11 (7,11,12,0,6,-36) 12 6 SLM = 36 Chausum = -36 (complement) 21

Flow control and error control

Friday, February 18, 2022 8:35 AM

Solution =

PKL [11]1]/

(1 pck) delay = >> Nglegible

= Tidate + Tp+ Ta + Tproc + Tinck + Tp

= Tidate + 2Tp + Tinck = 0

 $T_t = \frac{L}{B}$

$$\sqrt{Tr} = \frac{d}{S}$$

Total time Tz +2Tp (Ohe pkt)

n (efficiency) = Useful fime

Total time

$$= \frac{Tt}{Tt + 2Tp}$$

where a= It

Ex

m Hm P RTT=2TP

$$n = \frac{1}{1+29} = \frac{1}{1+2*Tp}$$

$$= \frac{1}{72}$$

The Imp

The Imp

$$\eta = \frac{1}{1+24} = \frac{9}{3}$$

The Imp

$$\eta = \frac{1}{1+2} = \frac{9}{3}$$

The Imp

$$\eta = \frac{1}{1+2} = \frac{9}{3}$$

The Imp

$$\eta = \frac{1}{3}$$

ex
$$N > 50\%$$

$$\frac{Tt}{7t+2Tp} > \frac{1}{2}$$

$$2Tt > Tt + 2Tp$$

$$2Tt > 2 \times Tp$$

$$\frac{L}{B} > 2 \times Tp \times B$$

$$\frac{L}{B} > 2 \times Tp \times B$$

Throughut -
$$N \times B$$
 $B = 4 \text{ mbps}$
 $N = 36 \text{ y}$

Throughut = $L_2 \times L_3$
 $L_3 \times L_4$
 $L_4 \times L_5$

"No of bils we are

actually able to

throughput = xfu per sec using

S&w protocos."

S\$ w protoco 1.

$$= \frac{L/\beta \times \beta}{T_{\xi} + 2T\rho}$$

$$= \frac{T_{\xi} \times \beta}{T_{\xi} + 2T\rho}$$

$$= \frac{L}{1 + 2T\rho} \times \beta$$

$$= \frac{L}{1 + 2T\rho} \times \beta$$

$$= \frac{L}{1 + 2T\rho} \times \beta$$

If the bandwidth of the line is 1.5 Mbps, RTT is 45 msec and packet size is 1 KB, then find the link utilization in stop and wait

B, then find the link utilization in stop and wait

$$B = 1.5 \text{ mbps}$$

$$RTT = 45 \text{ msec}$$

$$L = (KB)(2^{10} \times 86i\%s)$$

$$N = ? \frac{1}{1+2\times TP}$$

$$T = (Toansmission Delay) = \frac{L}{B} = \frac{(KB)}{1.5 \text{ mbps}}$$

$$= \frac{2^{10} \times 8}{1.5 \times 10^6}$$

$$= 5.461 \text{ ms}$$

TP (Propagation dday)
$$\Rightarrow$$
 RTT = 2TP
$$TP = 45/2 = 22.5 \text{ ms}$$

$$n = \frac{1}{1 + 2 \times TP} + \frac{1}{tt}$$

$$= \frac{1}{1 + 2 \times 22.5} = \frac{10.8 \%}{5.461}$$

$$= \frac{10.8 \%}{1 + 2 \times 22.5} = \frac{10.8 \%}{1 + 2$$

A channel has a bit rate of 4 Kbps and one way propagation delay of 20 msec. The channel uses stop and wait protocol. The transmission time of the acknowledgement frame is negligible. To get a channel efficiency of at least 50%, the minimum frame size should be:

$$B = 4 \times bps$$

$$Tp = 20 \text{ msec}$$

$$\Rightarrow \frac{1}{1+29} \quad 7/50\%$$

$$L = ?$$

$$\Rightarrow \frac{1}{1+29} \quad 7/\frac{1}{2}$$

$$2 \Rightarrow 1+29$$

$$1 \Rightarrow 29$$

$$1/2 \Rightarrow 9$$

$$1/2 \Rightarrow 9$$

$$1/2 \Rightarrow 9$$

$$1/2 \Rightarrow 1/2$$

$$1/2 \Rightarrow 1$$

Consider a MAN with average source and destination 20 Km apart and one way delay of 100 μ sec. At what data rate does the round trip delay equals the transmission delay for a 1 KB packet?

TP= 100 MSec =
$$(100 \times 10^{-6} \text{s})$$
 \Rightarrow RTT = 1+
 $L = 1 \text{ KB}$

$$2 \times 100 \times 10^{-6} = \frac{L}{B}$$

$$2 \times 100 \times 10^{-6} \times B = 1 \text{ KB}$$

$$B = \frac{2^{10} \times 10^{6}}{2 \times 100 \times 10^{6}} \Rightarrow 5 \cdot 12 \text{ MBP S}$$

$$\Rightarrow 40 \cdot 96 \text{ Mbps}$$

SSW ARQ 9206 1 ems ? . send = 10 pkt, every 4th pkt is lost How many total no of pxt sender send?

301-13 62-5 79-12 22-12

$$T_{t}$$
 sec -1 P_{t} P_{t}

$$Tt + 2TP - Tt + 2TP pkt$$

$$Tt = 1 + 2q pkt \Rightarrow uthre TP = 9$$

$$= 1 + 2q pkt \Rightarrow Tt$$

$$n = \frac{1}{4}$$

window

Stidity window

protocol

Go Back N Protocol

3: Sective Repeat Protocol

$$W = | + 24$$

= $| + 2 \times | \cdot | \cdot |$
= $| + 2 \times | \cdot | \cdot |$
= $| + 2 \times | \cdot | \cdot |$

Monday, February 28, 2022 8:57 AM

Go Back N

protocol: - GB 10

Tp= 49.5 mg

$$n = ?$$

$$n = \frac{1}{1+29} (SBW)$$

$$n = \frac{N}{1+29} (GBN)$$

$$N = \frac{10}{1+99} = \frac{10}{100} = \frac{10\%}{100}$$

Th =
$$n \times B \Rightarrow \frac{ro}{100} \times 40$$

Receiver Widow SIZE - 1

disconded =

protocol -9B3 every 5th is Lost Send = 10 ptt

Total transmission is Req = ?

a protocol-GBT

every 6th pxt is lost

total pkt = 10

How many toursmission = ?

Jose

D Ack:-

commulative

independent-

· / -

advi- lesstoutic

dis - less Redibble

adv: _ more Reliable

dis - more traffic

Unit 2 Page 29

Selective Repeat Protocol

Wednesday, March 2, 2022 9:17 AM

(1) Sendes window Size: - WS = N (N>1)

$$T_{2} = 1 ms$$
, $T_{p} = 49.5 ms$, $w_{5} = 50$, $g = 4 mbps$
 $N = \frac{N}{1+29} = \frac{50}{100} = \frac{1}{2}$, $T_{h} = N \times B = 2 m6ps$

(2) Recever window size = Sender window size

deta [1,2,1,5,1]

2,5,6,1

1,2/3,4,56

Q. WS=3, 10 PACK, 5th packet is lost, SR transmission = ?

Short cut method :-

(5) ACK is Independent