Análisis Matemático II

Lic. en Ciencias de la Computación

Práctico 6 - 2017

- 1. Calcular las siguientes integrales sobre regiones rectangulares.
 - a) $\iint_{\mathcal{R}} (x^2 + y^2) dA$, donde R es el rectángulo $0 \le x \le 2$, $0 \le y \le 5$.
 - b) $\iint_R (\operatorname{sen} x + \operatorname{cos} y) dA$, donde R es el rectángulo $0 \le x \le \pi/2$, $0 \le y \le \pi/2$.
- 2. Dibujar el dominio de integración y calcular las siguientes integrales.

a)
$$\int_0^1 \int_0^y (xy + y^2) dx dy$$

b)
$$\int_0^{\pi} \int_{-x}^{x} \cos y \, dy \, dx$$

$$c) \int_0^2 dy \int_0^y y^2 e^{xy} dx$$

- d) $\iint_T (x-3y) dA$, donde T es el triángulo de vértices (0,0), (a,0) y (0,b).
- e) $\iint_R xy^2 dA$, donde R es la región en el primer cuadrante acotada por $y = x^2$ y $x = y^2$.
- f) $\iint_D x \cos y \, dx \, dy$, donde D es la región en el primer cuadrante acotada por $y = 1 x^2$ y los ejes.
- g) $\iint_D \ln x \, dx \, dy$, donde D es la región en el primer cuadrante acotada por 2x + 2y = 5 y xy = 1.
- h) $\iint_Q y \, dA$, donde Q es la región acotada por $x^2 + y^2 = 4$.