	UPC/FME/Grau de Matemàtiques 200 121 Topologia Problemes resolts XGS 2020/04/30 Tema 5. Connexió
5.1	Proveu que $C = \bigcup_{i \in I} C_i$ és connex. Recordem que un espai topològic X és no connex quan es pot escriure $X = U \sqcup V$, unió disjunta d'oberts no buits. En primer lloc, podem suposar que I no és buit (altrament $C = \varnothing$, que és connex). Suposem que podem escriure el conjunt C com $C = U \sqcup V$, unió disjunta d'oberts de C . Provarem que un d'ells és buit.
	Cada C_i és un subespai de C , i amb la descomposició anterior es pot escriure $C_i = (C_i \cap U) \sqcup (C_i \cap V)$, unió disjunta d'oberts de C_i . Com que C_i és connex, un d'aquests conjunts ha de ser buit, l'altre el total. En deduïm que cada C_i es troba contingut bé en U , bé en V . Suposem que, per a un cert índex i_{\circ} , tenim $C_{i_{\circ}} \subset U$. Per hipòtesi, per a qualsevol índex i tenim $C_{i_{\circ}} \cap C_i \neq \emptyset$, i a més $C_{i_{\circ}} \cap C_i \subset U$. En deduïm que C_i talla U , i, per l'observació prèvia, $C_i \subset U$. Així doncs $C \subset U$, de manera que $V = \emptyset$.
2	Hem provat, doncs, que C és connex. Sigui $(C_n)_{n\geq 1}$ una successió de subconjunts connexos tals que $C_n\cap C_{n+1}\neq\varnothing$ per a tot n . Proveu que $\cup_{n\geq 1}C_n$ és connex. Segons el problema anterior, $C_1\cup C_2$ és connex, i procedint per inducció $(C_1\cup C_2)\cup C_3$ també ho és, etc.
	Així doncs els conjunts $D_n=C_1\cup\ldots\cup C_n$ són connexos. Òbviament dos qualssevol d'aquests conjunts D_m,D_n són no disjunts; de fet, un està contingut dins de l'altre. Aplicant de nou el problema anterior (o bé que la unió de conjunts connexos amb intersecció no buida és connex), deduïm que $\bigcup_{n\geq 1}D_n=\bigcup_{n\geq 1}C_n$ és connex.
.3	Siguin $A \subset B \subset \overline{A}$ subconjunts d'un espai topològic X . Si A és connex, B també. Suposarem que B no és connex, i en deduïrem que A tampoc no ho és. Si B no és connex, podem trobar oberts $U, V \subset X$ tals que $B \subset U \cup V$, $B \cap U \neq \emptyset$, $B \cap V \neq \emptyset$, $B \cap U \cap V = \emptyset$. Ara bé, tots els punts de B són adherents a A . Recordem que si $x \in \overline{A}$, tot obert que contingui x talla A . Per tant $A \cap U \neq \emptyset$, $A \cap V \neq \emptyset$.
.4	Com que $A\subset B$, en deduïm $A\subset U\cup V, A\cap U\neq\varnothing, A\cap V\neq\varnothing, A\cap U\cap V=\varnothing,$ i doncs A no és connex. Això implica en particular que: Si $A\subset X$ és connex, també \overline{A} és connex. Si $A\subset X$ és connex, també ho són el seu interior i la seva frontera?
	 És fàcil pensar contraexemples en els dos casos. • A = {(x, y ∈ R² xy ≥ 0} és la unió del primer i el tercer quadrants tancats del pla, i és connex (els dos quadrants són connexos i tenen intersecció no buida). El seu interior és la unió (disjunta) dels mateixos quadrants però oberts. • A = [0,1] ⊂ R és connex per ser un interval de R; la seva frontera és ∂A = {0,1}, que no és connex.
5.5	 Si Ā és connex, també ho és A? No necessàriament. • A = R - {0} ⊂ R no és connex, però Ā = R sí. Sigui C ⊂ X un subconjunt d'un espai topològic. Es considera la condició següent: per a tot parell d'oberts U, V ⊂ X que siguin disjunts i recobreireir C espá C O U espai d'C O V espai de Control d'approprie d'ap
	xin C , o bé $C \cap U = \emptyset$, o bé $C \cap V = \emptyset$. Aquesta condició implica que C és connex? No. Notem la crucial diferència amb la definició de connexió per a C , on es requereix que per a tot parell d'oberts $U, V \subset X$ tals que $C \cap U$ i $C \cap V$ $siguin$ $disjunts$ El problema que ens podem trobar és que l'espai X no tingui prou oberts disjunts per separar punts, però tanmateix sí que en tingui quan veiem aquests oberts en un subespai.
	 Aquí en tenim un exemple: Sigui X un espai topològic infinit amb la topologia cofinita. Recordem que els seus conjunts tancats són X i els conjunts finits. Notem que: – Un subespai C ⊂ X també té la topologia cofinita. – Si C és finit, la topologia cofinita és la discreta, i per tant és connex sii C és buit o un singletó. És possible trobar oberts U, V ⊂ X disjunts no buits? No. U ∩ V és obert i doncs buit o cofinit.
	Però en un conjunt infinit la intersecció de dos subconjunts cofinits és cofinit, no pas buit. Dit altrament: donats dos oberts disjunts $U, V \subset X$, un d'ells ha de ser buit. Així doncs, la presumpta condició de connexió de l'enunciat es compleix trivialment sigui quin sigui C . Però si C és finit amb més d'un element, C no és connex. $ Remarca $
5.6	Sigui $A\subset X$ un subconjunt d'un espai topològic. Demostreu que si un subconjunt connex $C\subset X$ talla A i el seu complementari $A^{\rm c}$, també talla la frontera ∂A . Recordem que $X=A^{\circ}\sqcup\partial A\sqcup (A^{\rm c})^{\circ}.$ També tenim $A\subset A^{\circ}\sqcup\partial A, A^{\rm c}\subset (A^{\rm c})^{\circ}\sqcup\partial A.$ Suposem que C no tallés ∂A . Aleshores
.7	$C\subset A^\circ\sqcup (A^\circ)^\circ$ i C estaria dins la unió d'oberts disjunts tallant-los tots dos, en contradicció amb la hipòtesi de ser connex. Un espai topològic és connex sii no existeix una aplicació contínua suprajectiva $f\colon X\to \{0,1\}$ (espai discret de dos punts). Altrament: X no es connex sii existeix una aplicació contínua suprajectiva $f\colon X\to \{0,1\}$. Si X no és connex i $X=U\cup V$ amb U,V oberts no buits disjunts, es defineix $f\colon X\to \{0,1\}$ posant
9	$f _U=0, f _V=1,$ que és trivialment contínua i suprajectiva. Recíprocament, donada f amb aquestes condicions, $X=f^{-1}(0)\sqcup f^{-1}(1)$ és una separació de X . La intersecció d'una successió decreixent de conjunts connexos no és necessàriament connexa. (Agafeu una escala infinita i aneu traient-ne esglaons.) Notem que la intersecció d'una successió decreixent <i>finita</i> de con-
	junts connexos és òbviament connexa. Seguint la indicació, construïm dins de \mathbf{R}^2 una $escala$ infinita $X = B_0 \cup B_1 \cup (\cup_{n \geq 0} E_n),$ amb «barres» i «esglaons» $B_0 = \{0\} \times [0, +\infty[\;,\; B_1 = \{1\} \times [0, +\infty[\;,\; E_n = [0, 1] \times \{n\}\;.$
	Llavors definim $X_N = B_0 \cup B_1 \cup (\cup_{n \geq N} E_n) ,$ traient-ne els esglaons inferiors. Els conjunts $X = X_0 \supset X_1 \supset X_2 \supset \dots$ són òbviament connexos, però la seva intesecció $\cap_{N \geq 0} X_N = B_0 \cup B_1$ no ho és.
10	Siguin X un espai topològic, R una relació d'equivalència en X , i $Q=X/R$ l'espai quocient. Si X és connex, aleshores Q també ho és? És immediat: Q és la imatge contínua de X per la projecció canònica $\pi\colon X\to Q=X/R$. Demostreu que: si Q és un espai connex
	si Q és un espai connex i cada classe d'equivalència [x] ⊂ X és un subconjunt connex, aleshores X també és connex. Algunes observacions prèvies sobre relacions d'equivalència. Un subconjunt A ⊂ X es diu saturat per R quan x ∈ A, y Rx, impliquen y ∈ A. Les tres propietats següents són equivalents: • A és saturat; • A és unió de classes d'equivalència;
	 A és unió de classes d'equivalència; A = π⁻¹(π(A)). Tenim dues observacions: Si A, B ⊂ X són conjunts saturats disjunts, π(A), π(B) ⊂ Q també son disjunts. Tenint en compte la definició de la topologia quocient, U ⊂ X obert saturat ⇒ π(U) ⊂ X/R obert. Dit això, tornem a l'enunciat a demostrar.
	Dit això, tornem a l'enunciat a demostrar. Suposem que X no és connex: $X = U \sqcup V,$ unió disjunta d'oberts no buits. Si $[x] \subset X$ és una classe d'equivalència, pel fet de ser connexa ha d'estar continguda en U o en V ; altrament la fórmula $[x] = ([x] \cap U) \sqcup ([x] \cap V)$ provaria que $[x]$ no és connexa. Concloem doncs que els oberts U i V han de ser saturats.
11	Concloem doncs que els oberts U i V han de ser saturats. Per l'observació anterior, $\pi(U)$ i $\pi(V)$ són oberts disjunts i $Q = \pi(U) \sqcup \pi(V),$ unió disjunta d'oberts no buits, de manera que Q no seria connex. Demostreu que els espais topològics $\mathbf{S}^1,\mathbf{R}^2,I\subset\mathbf{R}\mbox{ (interval qualsevol)}$ no són homeomorfs dos a dos. Ens basarem en dos fets:
	 Si dos espais topològics són homeomorfs, tenen el mateix nombre de components connexos. Si f: X → Y és un homeomorfisme i A ⊂ X és qualsevol subespai, l'aplicació «birestringida» f A: A → f(A) és un homeomorfisme. Prenent de manera adequada subespais del tipus A = X - {x}, etc, provarem que un homeomorfisme entre els espais de l'enunciat no pot existir. La idea és que l'eliminació de subconjunts apropiats de X en canviï el nombre de components connexos. Els intervals degenerats (buit, un punt) són òbviament no homeomorfs ni entre ells ni als altres. Tots els espais de l'enunciat són connexos; tanmateix: S¹: si en traiem un punt qualsevol, el que queda continua sent connex (és homeomorf a R); si en traiem dos punts qualssevol, el que queda té dos components connexos. R²: si en traiem un o dos punts, continua sent connex. Un interval no-degenerat: I obert: si en traiem un punt qualsevol, el que queda té dos components connexos. I semiobert [a, b[: si en traiem el punt a continua connex; si
	 en traiem qualsevol altre punt, té dos components. - I interval tancat [a, b]: si en traiem qualsevol dels dos punts extrems continua connex; si en traiem qualsevol altre punt, té dos components. Podem sistematitzar millor la darrera anàlisi. Si X és un espai connex i x ∈ X, diem que x és un punt de tall quan X - {x} no és connex. Òbviament un homeomorfisme preserva els punts de tall (o no tall).
5.12	 Com hem vist, la circumferència no té cap punt de tall, i en un interval no degenerat tots els punts són de tall si és obert, tots menys un si és semiobert, i tots menys dos si és tancat. Proveu que aquests dos subespais de R² no són homeomorfs: X: la reunió dels segments que uneixen el punt (0,1) amb els punts (1/n,0) (n ≥ 1). Y: la reunió de les semicircumferències que uneixen el punt (0,0) amb els punts (1/n,0) (n ≥ 1).
	Y $Els dos espais són connexos:$ $són unió de conjunts connexos \cong [0,1] amb un punt comú.$ Analitzem-ne els respectius punts de tall.
	És clar que tots els punts «interiors» dels segments o circumferències són de tall. Una observació atenta també demostra que els punts $(0,1) \in X$ i $(0,0) \in Y$ són punts de tall. (Si esborrem aquests punts dels seus respectius espais, és fàcil establir una separació dels espais resultants.) En ambdós casos concloem que el conjunt de punts de $\operatorname{\textit{no tall}}$ és $E = \{(1/n,0) \mid n \geq 1\}$. Un homeomorfisme $f \colon X \to Y$ necessàriament ha de complir que
13	$f(E)=E.$ Ara bé: • el subespai $E\subset X$ és tancat; • $E\subset Y$ no és tancat, ja que el punt $(0,0)$ n'és adherent. Per tant no pot existir tal homeomorfisme. Digueu si són arcconnexos els conjunts següents:
	L'adherència d'un conjunt arcconnex. No. L'exemple més senzill ve donat pel $sinus$ $dels$ $topòlegs$. Sigui $S \subset \mathbf{R}^2$ el graf de la funció $y = \sin\frac{1}{x}$ per a $0 < x \le 1$. Aquest conjunt és òbviament arcconnex, i doncs connex. La seva adherència $\overline{S} \subset \mathbf{R}^2$ s'obté afegint-hi el segment vertical $L = \{0\} \times [-1,1]$. \overline{S} és un conjunt connex però no arcconnex (problema 5.16).
	Un altre exemple ve donat per la $pinta$ i la $puça$, que és el subespai $P \subset \mathbf{R}^2$ unió de la «pinta» $[0,1] \times \{0\} \cup \left(\bigcup_n \{\frac{1}{n}\} \times [0,1]\right)$ i la «puça» $(0,1)$. La pinta és òbviament arcconnexa, i la pinta i la puça és connexa però no arcconnexa (vist a teoria). Per tant, $com\ a\ subespai\ de\ P$, l'adherència de la pinta no és
	arcconnexa. P $0,1)$ W
	El producte cartesià de dos conjunts arcconnexos. Sí. Si $X = \prod_i X_i, \ a,b \in X, \ i \ \gamma_i \colon [0,1] \to X_i \ \text{uneix} \ a_i \ \text{amb} \ b_i, \ \text{aleshores}$ $\gamma = (\gamma_i)_{i \in I} \colon [0,1] \to \prod_i X_i = X$ uneix a amb b . La reunió de conjunts arcconnexos amb un punt comú. Sí. La reunió de conjunts arcconnexos tals que dos d'ells tenen intersecció no buida. Sí. Siguin $a,b \in C = \cup C_i$, suposem que $a \in C_{i_1}, \ b \in C_{i_2}$, i sigui $z \in C_{i_1} \cap C_{i_2}$. Aleshores hi ha: • un camí $\gamma_1 \colon [0,1] \to C_{i_1} \subset C$ que uneix a amb z , i • un camí $\gamma_2 \colon [0,1] \to C_{i_2} \subset C$ que uneix z amb z .
14	Aleshores la $juxtaposició$ $\gamma = \gamma_1 * \gamma_2$ dels dos camins és un camí $\gamma \colon [0,1] \to C$, $\gamma(t) = \gamma_1(2t) \text{ si } 0 \le t \le 1/2 \text{ ,}$ $\gamma(t) = \gamma_2(2t-1) \text{ si } 1/2 \le t \le 1 \text{ ,}$ en C que uneix a amb b . Sigui $A \subset X$ un subconjunt. Tot camí que comenci en A i acabi fora de A passa per la frontera. És conseqüència del problema 5.6, tenint en compte que
15	la imatge d'un camí és sempre un conjunt connex. Digueu si els espais següents són, o no, connexos o arcconnexos: 1. Esfera n-dimensional: S ⁿ . És arcconnex per a n ≥ 1. En efecte, és la unió dels hemisferis nord i sud tancats: • són arcconnexos per ser homeomorfs a discos tancats; • la seva intersecció no és buida (és l'equador de l'esfera). Si n = 0 l'esfera 0-dimensional és S ⁰ = {-1,1}, no connex. 2. Complementari de l'esfera n-dimensional: R ⁿ⁺¹ - S ⁿ .
	 No és connex. En efecte, és la unió disjunta de dos oberts no buits: la bola euclidiana x < 1, i el seu exterior. Si n ≥ 1, aquests són els components connexos del conjunt. Si n = 0, R - S⁰ té tres components. 3. Punts de Rⁿ amb totes les coordenades racionals: Qⁿ ⊂ Rⁿ. No és connex (n ≥ 1).
	De fet, els components connexos de \mathbf{Q}^n són els singletons (\mathbf{Q}^n és totalment desconnex.) Vegem-ho en el cas de $n=1$. Un subespai $C\subset \mathbf{Q}$ és connex sii ho és com a subespai de \mathbf{R} , però això només passa quan C és un interval. Els únics intervals de \mathbf{R} continguts en \mathbf{Q} són degenerats (ja que tot interval no-degenerat de \mathbf{R} conté nombres irracionals). Per tant els subconjunts connexos maximals de \mathbf{Q} són els punts. També podem raonar-ho en termes de descomposicions en clopens. Si $S\subset \mathbf{Q}$ conté dos elements, no pot ser connex. En efecte: Suposem per exemple que $a< b$ són de S , i sigui z un irracional tal que $a< z< b$. Aleshores la descomposició
	$S = (S \cap \{x \mid x < z\}) \cup (S \cap \{x \mid x > z\})$ prova que S no és connex. Aquest mateix argument lleugerament modificat serveix per a \mathbf{Q}^n . 4. Punts de \mathbf{R}^n amb alguna coordenada irracional: $\mathbf{R}^n - \mathbf{Q}^n$. És arcconnex. Vegem-ho en el cas de $n = 2$ (el cas general segueix la mateixa idea). Sigui $X = \mathbf{R}^2 - \mathbf{Q}^2$.
	Fixem-ne un punt amb les dues coordenades irracionals, sigui (x_{\circ}, y_{\circ}) . Podem unir-lo amb qualsevol altre punt $(a, b) \in X$ de la manera següent: si a és irracional (per exemple), la recta $y = y_{\circ}$ ens permet anar de (x_{\circ}, y_{\circ}) a (a, y_{\circ}) , i després la recta $x = a$ ens permet anar de (a, y_{\circ}) a (a, b) , sense sortir de X .
	A partir d'això és clar que dos punts qualssevol es poden connectar per un camí dins de X. 5. Recta real amb la topologia del límit inferior: \mathbf{R}_{li} . No és connex. Recordem que és la topologia generada pels intervals $[a, b[$, i és més fina que la topologia euclidiana. Llavors tenim
	$\mathbf{R}_{\mathrm{li}} =]-\infty, a[\ \cup \ [a, +\infty[\ ,$ unió disjunta d'oberts no buits. Aquesta fórmula també prova que dos punts diferents pertanyen a components connexos diferents. Per tant, els components connexos són reduïts a un punt $(\mathbf{R}_{\mathrm{li}} \text{ és } totalment \ desconnex).$ $6. \text{ Espiral } \{(0,0)\} \cup \{\frac{1}{t}(\cos t, \sin t) \mid t>0\}.$ És arcconnex. En efecte, és la imatge de l'aplicació contínua $\gamma \colon [0, +\infty[\ \to \mathbf{R}^2] $ definida per $\gamma(0) = (0,0) , \gamma(t) = (t\cos(1/t), t\sin(1/t)) \text{ si } t>0 .$
	7. El pla menys un conjunt numerable: ${\bf R}^2-N,N$ numerable. És arcconnex. Sigui $A={\bf R}^2-N,$ i siguin $p,q\in A$ dos punts diferents.
16	 [0,1], o bé és un conjunt finit, de manera que per la injectivitat γ⁻¹(T) ⊂ [0,1] és finit. En qualsevol cas γ⁻¹(T) és tancat. Donats dos punts qualssevol a, b ∈ R_{cf} - {0}, és fàcil construir una aplicació injectiva γ: [0,1] → R_{cf} - {0} tal que γ(0) = a, γ(1) = b. D'aquí es dedueix que R_{cf} - {0} és arcconnex. 9. El subespai R_{cf} - Q de la recta amb la topologia cofinita, R_{cf}. Mateix argument, tenint en compte que els conjunts [0,1] i R - Q són equipotents. El sinus dels topòlegs
	El subespai $X=S\cup L\subset \mathbf{R}^2$ unió de $S=\left\{\left(x,\sin\frac{1}{x}\right)\mid x>0\right\}\;, L=\left\{0\right\}\times\left[-1,1\right],$ és connex però no arcconnex. $y \longrightarrow y = \sin\frac{1}{x}$ $L \longrightarrow S$ El subespai S és òbviament arcconnex perquè és la imatge contínua d'un interval. Per tant també és connex.
	L'adherència \overline{S} de S dins de \mathbf{R}^2 és precisament $X=S\cup L$, i per tant també és un conjunt connex, ja que l'adherència d'un conjunt connex és connex. Tanmateix, X no és arcconnex. De fet, els components arcconnexos de X són S i L . Sigui $\gamma\colon [0,1]\to X$ un camí. Suposem que comença en un punt de L . Provarem que necessàriament $\gamma([0,1])\subset L$. Escriurem per més comoditat $\gamma(t)=(x(t),y(t))$. Llavors $\gamma(t)\in L$ significa $x(t)=0$. Considerem el conjunt
	$J = \{t \in [0,1] \mid x(t) = 0\}.$ El nostre propòsit és provar que $J = [0,1].$ • J no és buit, ja que $x(0) = 0.$ • J és tancat, ja que $J = x^{-1}(0)$ i x és contínua. • J és obert (dins de $[0,1]$). Sigui $t_{\circ} \in J$. Per continuïtat de γ , donada $\varepsilon > 0$, existeix $\delta > 0$ tal que $t \in [0,1], t-t_{\circ} < \delta$ implica $ x(t) < \varepsilon, y(t)-y(t_{\circ}) < \varepsilon.$ Prenem una t_1 d'aquest interval, per exemple $t_{\circ} < t_1 < t_{\circ} + \delta,$ i suposem que $x(t_1) \neq 0$. Pel teorema del valor intermedi, $x _{[t_{\circ},t_1]}$ pren tots els valors
5.17	Pel teorema del valor intermedi, $x _{[t_o,t_1]}$ pren tots els valors entre $x(t_o)=0$ i $x(t_1)\neq 0$, i en particular els valors $\frac{1}{2k\pi\pm\pi/2}$ per a k enters prou grans. Això implica que $y _{[t_o,t_1]}$ pren els valors $\sin(2k\pi\pm\pi/2)=\pm 1$. Això contradiu $ y(t)-y(t_o) <\varepsilon$ si per exemple prenem $\varepsilon=1/3$. Concloem doncs que $x(t)=0$ per als t tals que $ t-t_o <\delta$, de manera que t_o és un punt interior de J .
	 Com que [0, 1] es connex, en deduim que J = [0, 1], i γ([0, 1]) ∈ L. Hem vist doncs que és impossible unir un punt de L amb un punt de S amb un camí, de manera que X no és arcconnex. Determineu els components connexos i arcconnexos dels espais topològics següents. 1. Q i R − Q Són subespais de R, i un subespai de Q o R − Q només pot ser connex si ho és com a subespai de R. Els subespais connexos de R són els intervals, i aquests, si són no degenerats, contenen tant nombres racionals com irracionals. Per tant els subconjunts connexos de Q o R − Q són el buit i els singletons.
	Hem vist al problema 5.16 que és connex i té dos components arcconnexos. 4. R amb la topologia del límit inferior. S'ha vist al problema 5.15 que és totalment desconnex. 5. El subespai $\left(\{0\} \cup \left\{\frac{1}{n} \mid n \geq 1\right\}\right) \times [0,1] \subset \mathbf{R}^2$. Cadascun dels segments verticals $\{x\} \times [0,1]$ amb els $x=1/n$ o $x=0$ és arcconnex, i doncs connex. Tanmateix, no hi ha conjunts connexos més grans. En efecte, dos qualssevol d'aquests segments es poden separar per semiplans oberts del pla.
	6. El subespai anterior afegint-hi el segment $[0,1] \times \{0\}$. Aquest espai és arcconnex i doncs té un únic component. 7. El subespai de \mathbf{R}^2 $K \times [0,1] \cup (-K) \times [-1,0] \cup [0,1] \times (-K) \cup [-1,0] \times K$, on $K = \{1/n \mid n \geq 1\}$.
	 Els components arcconnexos són els segments, ja que dos punts en segments diferents no es poden connectar amb un camí. Però l'espai sencer X és connex. En efecte, suposem que es pot escriure X = U □ V amb U, V oberts disjunts. Si L és un segment dels que formen X, per ser connex, necessàriament ha d'estar contingut dins d'un dels oberts, diguem U. En particular, l'extrem del segment que pertany a un dels semieixos està dins de U, i per tant U talla una infinitat dels segments paral·lels a aquest semieix, i doncs també els conté.
23	 segments paral·lels a aquest semieix, i doncs també els conté. Seguint amb aquest argument, veiem que U conté tots els segments que formen X, de manera que la descomposició X = U \(\subseteq U \) és trivial. Connexió i arcconnexió locals Un espai topològic es diu localment (arc)connex si tot punt té una base de veïnats (arc)connexos. Doneu exemples d'espais connexos que no siguin localment connexos i d'espais localment connexos que no siguin connexos. El mateix canviant connex per arcconnex.
	 El mateix canviant connex per arcconnex. A partir de la definició, és clar que Tot espai localment arcconnex és localment connex. Si X és un espai localment (arc)connex i Y ⊂ X un subespai obert, llavors Y també és localment (arc)connex. Els exemples demanats: Rⁿ és localment arcconnex (ja que les boles B(x; r) són arcconnexes). Per tant, qualsevol subespai obert no (arc)connex Y ⊂ Rⁿ és un exemple d'espai localment (arc)connex no (arc)connex.
	• Considerem la «pinta tancada» $X = [0,1] \times \{0\} \ \bigcup \ \left(\{0\} \cup \left\{\frac{1}{n} \mid n \geq 1\right\}\right) \times [0,1] .$ És un espai arcconnex, però cap dels punts $(0,y)$ $(0 < y \leq 1)$ no té una base de veïnats connexos, de manera que no és localment connex.
26	Sigui X localment connex amb components $C_i \subset X$. Sigui $f \colon X \to Y$ una aplicació. Aleshores f és contínua sii cada restricció $f _{C_i} \colon C_i \to Y$ és contínua.