# Entrega 1 PI - Teoria da Computação e Linguagens Formais

Tema: Sistema de Monitoramento e Automação para Sala Maker

## 1. Introdução

Um Autômato Finito Determinístico (AFD) é definido como uma 5-tupla:

 $M=(Q,\Sigma,\delta,q0,F)M=(Q,\Sigma,\delta,q_0,F)M=(Q,\Sigma,\delta,q0,F)$ 

Onde:

| • | Q:          | conjunto |    |           | finito    | to de |   |    |               | estados  |        |  |
|---|-------------|----------|----|-----------|-----------|-------|---|----|---------------|----------|--------|--|
| • | Σ:          | alfabeto |    |           | (símbolos |       |   | de |               | entrada) |        |  |
| • | δ:          | função   | de | transição | (Q×Σ→0    | Q)(Q  | × | Σ  | $\rightarrow$ | Q)(Q×Σ-  | →Q)    |  |
| • | <b>q0</b> : |          |    |           | estado    |       |   |    |               | in       | nicial |  |
| • | F:          | conjunto |    | de        | estados   |       |   | de |               | aceita   | ação   |  |

Neste documento, aplicamos AFDs para modelar o comportamento do sistema de monitoramento e automação da sala maker.

# 2. Autômato – Itens da Sala (ex.: Kit Arduino, Multímetro, Impressora 3D)

#### **Definição Formal**

$$M1=(Q,\Sigma,\delta,q0,F)M_1=(Q,\Sigma,\delta,q_0,F)M1=(Q,\Sigma,\delta,q0,F)$$

#### Função de Transição (δ)

Estado Atual Símbolo de Entrada Próximo Estado

No Lugar retirar Retirado

Retirado devolver No\_Lugar

Retirado tempo\_excedido Em\_Alerta

Em Alerta devolver No Lugar

## **Diagrama Simplificado**

[No\_Lugar] --(retirar)--> [Retirado] --(devolver)--> [No\_Lugar] [Retirado] --(tempo\_excedido)--> [Em\_Alerta] --(devolver)--> [No\_Lugar]

# 3. Autômato - Dispositivos (Luzes, Projetor, TV, Tomadas)

# **Definição Formal**

 $M2=(Q, \Sigma, \delta, q0, F)M_2 = (Q, \Sigma, \delta, q_0, F)M2=(Q, \Sigma, \delta, q0, F)$ 

• Q = {Ligado, Desligado}

•  $\Sigma$  = {ligar, desligar}

• q0 = Desligado

• F = {Ligado, Desligado}

# Função de Transição (δ)

#### Estado Atual Símbolo de Entrada Próximo Estado

Desligado ligar Ligado

Ligado desligar Desligado

## **Diagrama Simplificado**

[Desligado] --(ligar)--> [Ligado] [Ligado] --(desligar)--> [Desligado]

# 4. Autômato - Modos de Operação da Sala

## **Definição Formal**

M3=(Q , $\Sigma$ ,  $\delta$ , q0, F)

• Q = {Aula, Apresentação, Encerramento}

• Σ = {ativar\_aula, ativar\_apresentação, ativar\_encerramento}

• q0 = Encerramento

• F = {Aula, Apresentação, Encerramento}

# Função de Transição (δ)

| Estado Atual | Símbolo de Entrada  | Próximo Estado |  |  |  |
|--------------|---------------------|----------------|--|--|--|
| AULA         | ativar_apresentação | Apresentação   |  |  |  |
| AULA         | ativar_encerramento | ENCERRAMENTO   |  |  |  |
| Apresentação | ativar_aula         | AULA           |  |  |  |
| Apresentação | ativar_encerramento | ENCERRAMENTO   |  |  |  |
| ENCERRAMENTO | ativar_aula         | AULA           |  |  |  |
| ENCERRAMENTO | ativar_apresentação | Apresentação   |  |  |  |

# Diagrama Simplificado



#### 5. Resultados

• Os itens seguem um ciclo que permite verificar se estão no lugar, retirados ou em alerta.

- Os dispositivos têm comportamento simples de ligar/desligar, modelados por dois estados.
- Os modos de operação permitem alternar entre Aula, Apresentação e Encerramento de forma controlada.

Esses autômatos formalizam o comportamento do sistema, facilitam análise, testes e garantem que a modelagem teórica esteja alinhada ao funcionamento real.