

S. Rockel, D. Klimentjew {rockel, klimentjew}@informatik.uni-hamburg.de



University of Hamburg

Faculty of Mathematics, Informatics and Natural Sciences Department of Informatics

Technical Aspects of Multimodal Systems



February 29, 2012







## Outline

#### Software Environment

Prerequisites

Simulator 3D Restaurant

### **Grasping Constraints**

Reasons

Difficult Objects

#### Issues

Issues





## Outline

#### Software Environment

### Prerequisites



## Prerequisites

Software Environment - Prerequisites

#### See the RACE wiki

http://race.informatik.unihamburg.de/wordpress/wiki/index.php/Main\_Page

- ▶ Ubuntu (32bit), 10.10 (Maverick) or 11.10 (Oneiric)¹
- ► ROS (Electric)<sup>2</sup>
- ► PR2 Electric PR2 Simulation Package<sup>3</sup>
- ▶ further questions: please ask





<sup>&</sup>lt;sup>1</sup>http://www.ubuntu.com/download

<sup>&</sup>lt;sup>2</sup>http://www.ros.org/wiki/electric/Installation/Ubuntu

<sup>&</sup>lt;sup>3</sup>http://www.ros.org/wiki/Robots/PR2/electric

RACE - Simulation and Grasping

## Outline

### Software Environment

Prerequisites

#### Simulator 3D Restaurant

### **Grasping Constraints**

Reasons

Difficult Objects

#### Issues

Issues



## Simulator 3D Restaurant



# Software Environment - Simulator 3D Restaurant Simulator 3D Restaurant





#### Pro

to support seamless transition between virtual and real world (the rooms and tables setup matches the UHAM/TAMS floor)

Software Environment - Simulator 3D Restaurant

## Simulator 3D Restaurant





#### Pro

to support seamless transition between virtual and real world (the rooms and tables setup matches the UHAM/TAMS floor)

## Sensor Model

UHI





## Simulated Objects

Software Environment - Simulator 3D Restaurant

- static
  - walls, tables, chairs
- dynamic
  - chairs, dishes, humans (simulated humans/PR2s)
  - physical properties (weight, center of mass, friction)

## Outline

#### Software Environment

Prerequisites

Simulator 3D Restaurant

### **Grasping Constraints**

Reasons

Difficult Objects

#### Issues

Issues



Grasping Constraints - Reasons

# Grasping Constraints PR2

- grasping is constrained by
  - sensor resolution and noise (better sensors, Kinect?, basically fixed)
  - physical Manipulator dimensions and moving accuracy (fixed within Project)



## Outline

## **Grasping Constraints**

Difficult Objects



# Difficult Objects

- ▶ thin objects, e.g. spoon, knife, fork
  - ▶ to be at least 3 cm above table top
  - ▶ to be at least 1.7 cm wide (horizontal diameter)



- ► fragile objects, e.g. thin glass
  - ▶ grasp force leads partially to breaking the glass (more sensitive grasp checking in advance?) → plastic glasses



- ▶ thin objects, e.g. spoon, knife, fork
  - ▶ to be at least 3 cm above table top
  - ▶ to be at least 1.7 cm wide (horizontal diameter)



- fragile objects, e.g. thin glass
  - ▶ grasp force leads partially to breaking the glass (more sensitive grasp checking in advance?) → plastic glasses





Grasping Constraints - Difficult Object

## Difficult Objects (cont'd)

- dinner tray (mobile or to carry?)
- cart pushing stack<sup>4</sup>



<sup>&</sup>lt;sup>4</sup>http://voutu.be/-VsHH4HaA9c



## Difficult Objects (cont'd)

- dinner tray (mobile or to carry?)
- cart pushing stack<sup>4</sup>







- ▶ flat objects, e.g. plate
  - problem: not detectable (colored plates?), not graspable due to no grasp point (higher plates, support block underneath?)





# Impossible Objects (cont'd)

- wide objects (wider than gripper max), e.g. bowl
  - ▶ robot must not grasp from above due to hygiene reasons (detect and grasp bail)



RACE - Simulation and Grasping



## Examples





DomoCasa Lab, Peccioli, Italy, Feb 2012

RACE - Simulation and Grasping

## Outline

Prerequisites

#### Issues

Issues



RACE - Simulation and Graspins

## Issues

- which data to provide? (abstraction, sensors, kind)
- ▶ how and to which module (partner) shall it be delivered?
- how to make partner communication more efficient (via mail,
- how to organize/create ROS Stack for simulator (3D)
- organization of the restaurant environment? (objects, multiple
- ► human robot interaction (touch interface → touchpad)

- which data to provide? (abstraction, sensors, kind)
- how and to which module (partner) shall it be delivered? (architecture)
- how to make partner communication more efficient (via mail, wiki etc.)?
- how to organize/create ROS Stack for simulator (3D restaurant)?
- organization of the restaurant environment? (objects, multiple rooms?, multiple guests? etc.)
- ▶ human robot interaction (touch interface → touchpad)

- which data to provide? (abstraction, sensors, kind)
- how and to which module (partner) shall it be delivered? (architecture)
- how to make partner communication more efficient (via mail, wiki etc.)?
- how to organize/create ROS Stack for simulator (3D restaurant)?
- organization of the restaurant environment? (objects, multiple rooms?, multiple guests? etc.)
- ► human robot interaction (touch interface → touchpad)

- which data to provide? (abstraction, sensors, kind)
- how and to which module (partner) shall it be delivered? (architecture)
- how to make partner communication more efficient (via mail, wiki etc.)?
- how to organize/create ROS Stack for simulator (3D restaurant)?
- organization of the restaurant environment? (objects, multiple rooms?, multiple guests? etc.)
- ▶ human robot interaction (touch interface → touchpad)

- which data to provide? (abstraction, sensors, kind)
- how and to which module (partner) shall it be delivered? (architecture)
- how to make partner communication more efficient (via mail, wiki etc.)?
- how to organize/create ROS Stack for simulator (3D restaurant)?
- organization of the restaurant environment? (objects, multiple rooms?, multiple guests? etc.)
- ▶ human robot interaction (touch interface → touchpad)

- which data to provide? (abstraction, sensors, kind)
  - how and to which module (partner) shall it be delivered? (architecture)
  - how to make partner communication more efficient (via mail, wiki etc.)?
  - how to organize/create ROS Stack for simulator (3D) restaurant)?
  - organization of the restaurant environment? (objects, multiple rooms?, multiple guests? etc.)
- ▶ human robot interaction (touch interface → touchpad)

## Thank You!

Any questions?







RACE - Simulation and Graspins

## WP5 Plan

Appendix - WP5 Plan

|      | WP/Task                                              |      |  | 2 | 3 | 4 | 5 | 6 | 7 | 8      | 9 | 10 | 11     | 12 |
|------|------------------------------------------------------|------|--|---|---|---|---|---|---|--------|---|----|--------|----|
| WP5  | Comparative evaluation of competence-enhanced robots | UHAM |  |   | П | П | П | П | П | П      |   | M1 | П      | M2 |
| T5.1 | Robot control software architecture for evaluation   | UHAM |  |   |   |   |   |   |   |        | D |    | $\neg$ |    |
| T5.2 | Simulation infrastructure                            | UHAM |  |   |   |   |   | П |   |        | D |    |        |    |
| T5.3 | Sensor data acquisition                              | UHAM |  |   |   |   |   |   |   |        | D |    |        |    |
| T5.4 | Demonstrators                                        | UHAM |  |   |   | П | Т | П |   | $\neg$ |   |    | D      |    |
| T5.5 | Benchmarking and evaluation                          | ORU  |  |   |   |   |   |   |   |        | D |    |        | D  |

| Milestone<br>number | Milestone name         | Work<br>package(s)<br>involved | Expected date | Means of verification                                                                                                        |  |  |  |  |  |  |
|---------------------|------------------------|--------------------------------|---------------|------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| MS1                 | Simulator              | WP5                            | M10           | Basic simulation infrastructure<br>generates robot motion and sensing<br>information as a basis for simulated<br>experiences |  |  |  |  |  |  |
| MS2                 | Year-1<br>Demonstrator | WP1-WP5                        | M12           | Successful demonstration of robot<br>platform executing simple activities and<br>recording experiences in basic              |  |  |  |  |  |  |

- ▶ D5.1 Robot control software architecture and interfaces. (M9)
- D5.2.1 Basic simulator with simple static environment that enables Year-1 demonstration. (M9)
- ▶ D5.4.1 Year-1 demonstrator. (M11)
- ▶ D5.5.1 Suite of scenarios, benchmark and evaluation metrics. (M9)
- D5.5.2 Experiment data Year-1 demonstrator. (M12)

## **ROS Workshop Topics**

- understand stack and learn how to modify (e.g. tabletop)
- ▶ debugging + error detection + tracing
- installation of other stacks on PR2
- how to create own stack?
- how are singularities handled?
- combination (chaining of stacks?
- compiling/tool chain, how to use/how does it work?
- optimization of rosbag

## Further Reading



