RBF Networks

Intuition

Retours sur l'apprentissage « par cœur »

Intuition

Retours sur l'apprentissage « par cœur »

Conserver les exemples et attribuer une 'zone d'influence'

Régression RBF Naïf:

$$output(x) = \sum_{n=1}^{N} w_n e^{-\gamma ||X - X_n||^2}$$

Classification RBF Naïf:

$$output(x) = sign(\sum_{n=1}^{N} w_n e^{-\gamma ||X - X_n||^2})$$

Régression RBF Naïf:

$$output(x) = \sum_{n=1}^{N} w_n e^{-\gamma ||X - X_n||^2}$$

Classification RBF Naïf:

$$output(x) = sign(\sum_{n=1}^{N} w_n e^{-\gamma ||X - X_n||^2})$$

Régression RBF Naïf:

Classification RBF Naïf:

Trouver W pour un RBF na $\ddot{i}f$:

Soit
$$\phi = \begin{bmatrix} e^{-\gamma ||X_1 - X_1||^2} & \dots & e^{-\gamma ||X_1 - X_N||^2} \\ \vdots & \ddots & \vdots \\ e^{-\gamma ||X_N - X_1||^2} & \dots & e^{-\gamma ||X_N - X_N||^2} \end{bmatrix} \text{ et } Y = \begin{bmatrix} Y_1 \\ \vdots \\ Y_N \end{bmatrix}$$

Alors
$$W = \phi^{-1}Y$$

Impact du choix de Gamma:

 $\gamma = 0.1$

$$\gamma = 0.01$$

Plus on a d'exemples à disposition, mieux c'est?

Plus on a d'exemples à disposition, mieux c'est?

Nombre de w_i = nombre d'exemples!

Plus on a d'exemples à disposition, mieux c'est?

Nombre de w_i = nombre d'exemples!

Mauvais signe pour la généralisation.

Intuition

Ne pas prendre tous les exemples!

Intuition

Ne pas prendre tous les exemples!

Elire des 'représentants'

k-Means

Méthode exacte : NP-Difficile !

Algorithme de LLoyd

Répéter:

1:
$$\mu_k = \frac{1}{|S_k|} \sum_{x_n \in S_k} X_n$$

2:
$$S_k = \{X_n tq \ \forall l, ||X_n - \mu_k|| \le ||X_n - \mu_l||\}$$

RBF utilisant K centres

Trouver W pour un RBF utilisant K Centres:

Soit
$$\phi = \begin{bmatrix} e^{-\gamma ||x_1 - \mu_1||^2} & \dots & e^{-\gamma ||x_1 - \mu_K||^2} \\ \vdots & \ddots & \vdots \\ e^{-\gamma ||x_N - \mu_1||^2} & \dots & e^{-\gamma ||x_N - \mu_K||^2} \end{bmatrix} \text{ et } Y = \begin{bmatrix} y_1 \\ \vdots \\ y_N \end{bmatrix}$$

Alors
$$W = (\phi^T \phi)^{-1} \phi^T Y$$

SVM

Séparation(s) linéaire(s)

Plusieurs (une infinité) de séparations linéaires possibles ...

Séparation(s) linéaire(s)

Y en a-t-il une meilleure?

Y en a-t-il une meilleure?

Y en a-t-il une meilleure?

Nouveau problème : trouver les W qui maximisent la marge !

Nouveau problème : trouver les W qui maximisent la marge !

C.à.D.: Trouver les vecteurs supports:

Minimiser:

$$\frac{1}{2}\alpha^T \begin{bmatrix} y_1 y_1 X_1^T X_1 & \cdots & y_1 y_N X_1^T X_N \\ \vdots & \ddots & \vdots \\ y_N y_1 X_N^T X_1 & \cdots & y_N y_N X_N^T X_N \end{bmatrix} \alpha + [-1 \quad \dots \quad -1]\alpha$$

Sous contraintes:

$$Y^T \alpha = 0$$

Avec:

$$\alpha \geq 0$$

Une fois α obtenu, on peut retrouyer W:

$$W = \sum_{n=1}^{N} \alpha_n y_n X_n$$

Une fois α obtenu, on peut retrouver W:

$$W = \sum_{n=1}^{N} \alpha_n y_n X_n$$

Attention, il nous manque w_0 !

Pour trouver w_0 :

1 – Choisir un X_n tq $\alpha_n > 0$ c.à.d un Vecteur Support!

2 – Sachant que
$$y_n(W^TX_n + w_0) = 1$$

3 – Cela nous donne:

$$w_0 = \frac{1}{y_n} - \sum_i w_i X_{n_i}$$

Une fois α obtenu, on peut retrouver W:

$$W = \sum_{n=1}^{N} \alpha_n y_n X_n$$

N examples => N paramètres ?

Une fois α obtenu, on peut retrouver W:

$$W = \sum_{n=1}^{N} \alpha_n y_n X_n$$

N examples => N paramètres ?

Si X_i n'est pas un vecteur support, alors $\alpha_i=0$!

Une fois α obtenu, on peut retrouver W:

$$W = \sum_{n=1}^{N} \alpha_n y_n X_n$$

N examples => N paramètres ?

Si X_i n'est pas un vecteur support, alors $\alpha_i = 0$!

Ainsi, nous avons autant de paramètres dans notre modèle que de vecteur support => bonne généralisation !

Machine à noyaux

Retour sur les SVMs

Si nos exemples sont de grande dimension,

$$\begin{bmatrix} y_1 y_1 X_1^T X_1 & \cdots & y_1 y_N X_1^T X_N \\ \vdots & \ddots & \vdots \\ y_N y_1 X_N^T X_1 & \cdots & y_N y_N X_N^T X_N \end{bmatrix}$$

Sera difficile à calculer!

Retour sur les SVMs

Projection des entrées dans un autre espace (le retour) :

$$\begin{bmatrix} y_1 y_1 z_1^T z_1 & \cdots & y_1 y_N z_1^T z_N \\ \vdots & \ddots & \vdots \\ y_N y_1 z_N^T z_1 & \cdots & y_N y_N z_N^T z_N \end{bmatrix}$$

Si l'espace est de dimension supérieure à l'espace de départ, cela devrait être encore pire!

Retour su

Projection des

art, cela

Retour sur les SVMs

Projection des entrées dans un autre espace (le retour) :

$$\begin{bmatrix} y_1 y_1 z_1^T z_1 & \cdots & y_1 y_N z_1^T z_N \\ \vdots & \ddots & \vdots \\ y_N y_1 z_N^T z_1 & \cdots & y_N y_N z_N^T z_N \end{bmatrix}$$

Si l'espace est de dimension supérieure à l'espace de départ, cela devrait être encore pire!

Cela dépend du type de transformation!

Retour sur les SVMs

Cela dépend du type de transformation!

Nous n'avons besoin que de l'existence de la possibilité d'effectuer produit scalaire dans le nouvel espace!

$$\begin{bmatrix} y_1 y_1 K(X_1, X_1) & \cdots & y_1 y_N K(X_1, X_N) \\ \vdots & \ddots & \vdots \\ y_N y_1 K(X_N, X_1) & \cdots & y_N y_N K(X_N, X_N) \end{bmatrix}$$

Différents noyaux :

Noyau Polynomial de degré Q:

$$K(x_n, x_m) = (1 + x_n^T x_m)^Q$$

Noyau à Base Radiale :

$$K(x_n, x_m) = e^{-x_n^2} e^{-x_m^2} e^{2x_n x_m}$$

vaux:

Equivalent à une projection dans un espace de dimension infinie!

egré Q:

$$K(x_n, x_m) = (1 + x_n^T x_n)$$

Sans augmentation du nombre de paramètres!

Noyau à Base Radiale :

$$K(x_n, x_m) = e^{-x_n^2} e^{-x_m^2} e^{2x_n x_m}$$