Pràctica 2. RESOLUCIÓ D'UN PROBLEMA DE DISSENY DE XARXES PER DE-SCOMPOSICIÓ DE BENDERS

La descomposició de Benders pot aplicar-se a problemes de programació lineal i lineal entera mixta amb aquesta estructura:

$$\begin{aligned} Min_{\,x,\,y} & \quad c^\top x + f^\top y \\ s.t: & \quad Dx + Fy = d \\ & \quad x \geq 0, \\ \text{(P)} & \quad y \in Y \end{aligned}$$

on les variables x són continues i les variables y (variables de vincle) poden ser continues o bé discretes $(Y \text{ pot ser un poliedre } P \subset \mathbb{R}^p \text{ o bé } Y = P \cap \mathbb{Z}^p).$

Suposem que es fixen les variables y a un valor determinat \bar{y} . Llavors el problema queda reduït a un problema de programación lineal:

$$\begin{array}{cccc} Min_{\;x} & z_P = c^\top x \\ & s.t: & Dx = d - F\bar{y} & \Leftrightarrow & Max_{\;u} & z_D = (d - F\bar{y})^\top u \\ \text{(PRIMAL)} & x \geq 0 & \text{(DUAL)} & D^\top u \leq c \end{array}$$

Si s'han generat una col·lecció de vèrtexos \hat{v}^i , $i=1,2,...\mu$ i de raigs \overrightarrow{w}^j , $j=1,2,...\nu$ del poliedre sobre el que es defineix el problema (DUAL) llavors el problema inicial (P) pot aproximar-se pel següent problema:

$$\begin{aligned} Min_{\ z,\,y} & z\\ s.t: & \ f^\top y + (d-Fy)^\top \hat{v}^i - z \leq 0, \quad i=1,2,...,\mu\\ & \ (d-Fy)^\top \overrightarrow{w}^j \leq 0, \qquad \qquad j=1,2,...,\nu \end{aligned}$$
 (PROBLEMA MESTRE) $\ y \in Y$

En ser resolt, el problema mestre proporciona una aproximació al valor òptim de la f. objectiu del problema original (P), \bar{z} , i un valor \bar{y} per les variables de vincle. Aquest valor per les variables de vincle \bar{y} poden usar-se per resoldre el problema (DUAL) o subproblema, el qual generarà nous vèrtexos i raigs \hat{v} , \overline{w} , que serviran per afegir noves constriccions al problema mestre etc.

En la iteració ℓ :

- 1. Resoldre el problema mestre $\to \bar{z}, \bar{y}$.
- 2. Resoldre el subproblema:
 - (a) El subproblema DUAL no te solució ja que $D^{\top}u \leq c$ representa un poliedre buit; En aquest cas STOP ja que el problema (P) no te solució o bé no és acotat.
 - (b) El subproblema DUAL sí te solució;
 - i. $z_D = \infty$. Llavors s'ha generat al usar el símplex, un raig \overline{w}^* t.q. $(d Fy)^{\top} \overline{w}^* > 0$. <u>Per tant</u>, cal afegir la constricció $(d - Fy)^{\top} \overline{w}^* \leq 0$ a la definició del *problema mestre* i tornar a resoldre'l en una nova iteració.
 - ii. $z_D < \infty$. Per tant es generarà un vèrtex \hat{v}^* .
 - A.) Es verifica $f^{\top}y + (d Fy)^{\top}\hat{v}^* z \leq 0$. LLavors STOP. (En aquest cas es verifica que $\bar{z} \geq f^{\top}y + (d Fy)^{\top}\hat{v}^* \geq f^{\top}y + (d Fy)^{\top}\hat{v}^{\ell}$, $1 \leq \ell \leq \mu$. També es verificarà $(d Fy)^{\top}w^p \leq 0$, $1 \leq p \leq \nu$.) Optim del problema f. objectiu $= \bar{z}$, variables de vincle $= \bar{y}$, variables duals $= \hat{v}^*$.

Com criteri pràctic d'aturada pot adoptar-se $f^{\top}y + (d - Fy)^{\top}\hat{v}^* - \bar{z} \leq \epsilon$

B.) Es verifica $f^{\top}y + (d - Fy)^{\top}\hat{v}^* - z > 0$. Per tant, cal afegir la constricció $f^{\top}y + (d - Fy)^{\top}\hat{v}^* - z \leq 0$ a la definició del problema mestre i tornar a resoldre'l en una nova iteració.

L'esquema anterior s'extén sense cap dificultat al cas en que les variables y són enteres. La única particularitat és que el $problema\ mestre\$ esdevé un problema de programació lineal entera.

Disseny de xarxes. Descripció de la pràctica

Considereu el problema de decidir quins arcs d'una xarxa de transports o de transmissions, són necessaris o no en termes econòmics. Suposem que una xarxa presenta una configuració inicial G' = (N, A') i que es considera la possibilitat de ampliar-la amb un nou conjunt d'arcs \hat{A} , de forma que la xarxa final pugui arribar a ser G = (N, A) amb $A = A' \cup \hat{A}$. La qüestió és ara quins dels arcs de \hat{A} convindrà afegir de forma que el cost total sigui mínim. Aquest cost està format per dues components:

- a) per una part la incorporació de cada nou arc $a \in \hat{A}$ presenta un cost fix f_a (compra+instal.lació).
- b) un cop en funcionament, un arc $a \in \hat{A}$ presentarà un cost per cada unitat de flux que es transporti durant un periode d'amortització de la inversió. Suposarem a més a més que aquest cost unitari depen de l'origen dins de la xarxa del que provingui el flux.

D'aquesta forma, si K dessigna el conjunt d'origens dins la xarxa, el cost al llarg de tot aquest periode d'amortització pot formular-se com:

$$\text{cost total} = \sum_{\ell \in K} \sum_{a \in A} c_a^{\ell} x_a^{\ell} + \sum_{a \in \hat{A}} f_a y_a$$

essent les variables $y_a=1$ si s'afageix l'arc $a\in \hat{A}$ a la xarxa i 0 altrament.

Formularem ara el problema en forma matricial. Sigui B la matriu d'incidències nusos-arcs de la xarxa, x^{ℓ} el vector de fluxes que s'originen a $\ell \in K$, Suposem que g_{ℓ} és el flux total que surt de l'origen $\ell \in K$ i que si $D(\ell)$ és el conjunt de destinacions corresponents a l'origen ℓ , llavors $g_{\ell,j}$ és el flux que arriba a $j \in D(\ell)$, de forma que:

$$g_{\ell} = \sum_{j \in D(\ell)} g_{\ell,j}$$

Sigui el vector t^{ℓ} amb tantes components com nusos. La component t_i^{ℓ} corresponent al nus $i \in N$ és: $t_i^{\ell} = -g_{\ell,i}$ si $i \neq \ell$ i $t_i^{\ell} = g_{\ell}$ si el nus i és precisament l'origen ℓ .

D'aquesta forma els fluxes x^{ℓ} obeeixen a les equacions:

$$Bx^{\ell} = t^{\ell}, \ x^{\ell} \ge 0$$

Vegeu-ne un exemple a la pàgina final.

El problema de dissenv de la xarxa pot formular-se matricialment segons:

$$Min_{x,y} \quad \sum_{\ell \in K} c^{\ell \top} x^{\ell} + f^{\top} y$$

$$(1) \qquad Bx^{\ell} = t^{\ell}, \quad \ell \in K$$

$$(2) \qquad x_a^{\ell} \leq \rho y_a, \quad \ell \in K, \quad a \in \hat{A}$$

$$(3) \qquad x^{\ell} \geq 0$$

$$y \in \{0, 1\}^{|\hat{A}|}$$

De forma escalar:

$$\begin{array}{ll} Min \; _{x,y} & \sum_{\ell \in K} \sum_{a \in A} c_a^\ell x_a^\ell + \sum_{a \in \hat{A}} f_a y_a \\ & \sum_{r \in I(i)} x_{r,i}^\ell - \sum_{s \in E(i)} x_{i,s}^\ell = t_i^\ell, \quad i \in N, \; \ell \in K \\ & x_a^\ell \leq \rho \, y_a, & a \in \hat{A}, \; \ell \in K \\ & x_a^\ell \geq 0, & a \in A, \; \ell \in K \\ & y_a \in \{0,1\}, & a \in \hat{A} \end{array}$$

La constant ρ ha de triar-se prou gran de forma que si $y_a=1$ llavors el màxim valor que pugui pendre x_a^ℓ sigui inferior a ρ . Pot pendre's $\rho>\sum_{\ell\in K}g_\ell$.

Per tal d'escriure el *problema mestre* podem expressar les constriccions (1), (2) de la forma matricial segons (1'), (2'):

$$(1'), (2') \quad \begin{pmatrix} \mathcal{B} & 0 & \dots & 0 & | & -F \\ 0 & \mathcal{B} & \dots & 0 & | & -F \\ \vdots & \vdots & \ddots & \vdots & | & -F \\ 0 & 0 & \dots & \mathcal{B} & | & -F \end{pmatrix} \begin{pmatrix} \mathbf{x}^{\ell_1} \\ \mathbf{x}^{\ell_2} \\ \vdots \\ \frac{\mathbf{x}^{\ell_{|K|}}}{y} \end{pmatrix} = \begin{pmatrix} \mathcal{T}^{\ell_1} \\ \mathcal{T}^{\ell_2} \\ \vdots \\ \mathcal{T}^{\ell_{|K|}} \end{pmatrix}, \quad \mathbf{x}^{\ell} \ge 0, \ \ell \in K$$

essent:

$$\mathcal{B} = \left(\begin{array}{c|c} B & 0 \\ \hline I_{\hat{A}} & I_{\hat{A}} \end{array}\right), \ \ \mathbf{x}^{\ell} = \left(\begin{array}{c|c} x^{\ell} \\ \hline \sigma^{\ell} \end{array}\right), \mathcal{T}^{\ell} = \left(\begin{array}{c|c} t^{\ell} \\ \hline 0 \end{array}\right), \ F = \rho \left(\begin{array}{c|c} 0 \\ \hline I_{\hat{A}} \end{array}\right)$$

En les anteriors expressions $I_{\hat{A}}$ denota la matriu identitat de grandària $|\hat{A}|$. Escrivim ara les constriccions (1') bloc a bloc i les variables duals θ^{ℓ} que comporten:

$$\mathcal{B}\mathbf{x}^{\ell} - F\mathbf{y} = \mathcal{T}^{\ell} \mid \theta^{\ell}$$

equivalentment:

$$\left(\begin{array}{c|c} B & 0 \\ \hline I_{\hat{A}} | 0 & I_{\hat{A}} \end{array}\right) \left(\begin{array}{c} x^{\ell} \\ \hline \sigma^{\ell} \end{array}\right) - \rho \left(\begin{array}{c} 0 \\ \hline I_{\hat{A}} \end{array}\right) = \left(\begin{array}{c} t^{\ell} \\ \hline 0 \end{array}\right) \ \left| \ \left(\begin{array}{c} u^{\ell} \\ \hline \tau^{\ell} \end{array}\right) (= \theta^{\ell}) \ , \ \ell \, \in \, K$$

De forma escalar:

$$Bx^{\ell} = t^{\ell} |u^{\ell}|$$

$$x_a^{\ell} + \sigma_a^{\ell} - \rho y_a = 0 |\tau_a^{\ell}|$$

Si es pren $\rho > \sum_{\ell \in K} g_{\ell}$, llavors, per \bar{y} fixat, el subproblema descomposa en |K| subproblemes:

$$\begin{array}{cccc} \operatorname{Min}_{x,y} & c^{\ell \, \top} x^{\ell} \\ & \operatorname{B} x^{\ell} = t^{\ell}, & |u^{\ell} \\ & (\operatorname{SUBP} \, \ell) & x_a^{\ell} \leq \rho \, \bar{y}_a, & |\tau_a^{\ell-}, \ a \in \hat{A} \\ & x^{\ell} > 0, & |\tau^{\ell+} \end{array} \rightarrow \begin{array}{c} (\hat{x}^{\ell}, \hat{u}^{\ell}, \hat{\tau}^{\ell+}, \hat{\tau}^{\ell-}) \end{array}$$

La seva solució verificarà, pel arc $a = (i, j) \in A$:

$$c_a^{\ell} = \hat{u}_i^{\ell} - \hat{u}_j^{\ell} + \tau_a^{\ell+} - \tau_a^{\ell-}$$

Per determinar els valors dels multiplicadors τ cal tenir present lo següent. Donada una solució del master problem per les variables de decisió $\bar{y}_a,\ a\in\hat{A}$, la resolució del SUBP ℓ es faria eliminant els arcs $a\in\hat{A}$ pels que $\bar{y}_a=0$. Llavors, és clar que:

- Si $a = (i, j) \notin \hat{A}, \, \hat{\tau}_a^{\ell-} = 0.$
- Si $a=(i,j)\in \hat{A}$ i a més a més $\bar{y}_a>0$, llavors $\tau_a^{\ell-}=0$, mentre que $\tau^{\ell+}$ pot ser nul o positiu. En tot cas es tindrà que: $\hat{\tau}_a^{\ell+}=c_a^{\ell}-(\hat{u}_i^{\ell}-\hat{u}_j^{\ell})$
- Si $a = (i, j) \in \hat{A}$ i a més a més $\bar{y}_a = 0$:
 - Si $c_a^{\ell} (\hat{u}_i^{\ell} \hat{u}_j^{\ell}) < 0$ llavors: $\hat{\tau}_a^{\ell+} = 0$, $\hat{\tau}_a^{\ell-} = -c_a^{\ell} + (\hat{u}_i^{\ell} \hat{u}_j^{\ell})$ (> 0). (en aquest cas si s'afegis l'arc $a \in \hat{A}$ entraria amb flux > 0 per l'article ℓ)
 - Si $c_a^{\ell} (\hat{u}_i^{\ell} \hat{u}_j^{\ell}) \ge 0$ llavors: $\hat{\tau}_a^{\ell-} = 0$, $\hat{\tau}_a^{\ell+} = c_a^{\ell} (\hat{u}_i^{\ell} \hat{u}_j^{\ell})$ (> 0). (en aquest cas si s'afegis l'arc $a \in \hat{A}$ entraria amb flux 0 per l'article ℓ)

Per tant, en aquest cas en que $\bar{y}_a = 0$ l'expressió per τ_a^{ℓ} és:

$$\tau_a^{\ell-} = \max\{\ 0,\ (\hat{u}_i^{\ell} - \hat{u}_j^{\ell}) - c_a^{\ell}\ \}$$

Estructura final del Master Problem:

Tenint en compta la formulació compacta (1'), (2') i que el subproblema mai proporcionarà raigs llavors, la estructura del master problem en la iteració M serà:

$$\begin{aligned} & Min_{y,z} \quad z \\ & s.t: \quad & z \geq f^\top y + \sum_{\ell \in K} (\mathcal{T}^\ell + Fy)^\top \hat{\theta}^{\ell,s}, \ s = 1, 2, 3, ...M \\ & y \in Y = \{0, 1\}^{|\hat{A}|} \end{aligned}$$

Queda per tant, aclarir ara quina serà l'expressió del terme $(\mathcal{T}^{\ell} + Fy)^{\top} \hat{\theta}^{\ell}$: (s'omet el superíndex s)

$$(\mathcal{T}^{\ell} + Fy)^{\top} \hat{\theta}^{\ell} = \left(\begin{pmatrix} t^{\ell} \\ 0 \end{pmatrix} + \rho \begin{pmatrix} 0 \\ y \end{pmatrix} \right)^{\top} \begin{pmatrix} \hat{u}^{\ell} \\ \hat{\tau}^{\ell-} \end{pmatrix} = t^{\ell \top} \hat{u}^{\ell} + \rho \sum_{\substack{a \in \hat{A} \\ \bar{u}_a = 0}} \hat{\tau}_a^{\ell-} y_a$$

Finalment cal destacar que el subproblema també pot triar-se de resoldre en la forma (PRIMAL) i, per dualitat, $c^{\ell \, \top} \hat{x}^\ell = t^\ell \hat{u}^\ell$

XARXES MULTIARTICLE

Flujo total: $x = x^1 + x^2$

EXERCICI DE DISSENY DE XARXES USANT DESCOMPOSICIÓ DE BENDERS

- Els arcs en vermell són els que opcionalment poden afegir-se o no.
- Assignar a cada nus coordinades (x,y) segons la quadricula.
- Orígens nusos A, B.
- Els nusos en blau-grana són les destinacions.

Adoptar com costs c dels arcs: 150+quadrat de les distàncies euclidianes entre els nusos d'acord amb les seves coordinades (x,y) assignades.

Adoptar com a número de viatges de cada origen a cada destinació =10 Adoptar com costs d'inversió f dels arcs en veremell el valor 10*distància euclidiana