Digitaltechnik

Gatter

Function	Boolean Algebra ⁽¹⁾	IEC 60617-12 since 1997	US ANSI 91 1984
AND	A & B	_&	- D-
OR	A#B	≥1-	\Rightarrow
Buffer	А	-[1]-	→
XOR	A\$B	=1-	$\!$
NOT	!A	-1	->>-
NAND	!(A & B)	&_~	⊐⊳
NOR	!(A#B)	≥1 ►	⇒>-
XNOR	!(A \$ B)	=1	$\!$

N Eingänge: 2^N Möglichkeiten

=> Um aus einer Wahrheitstabelle ein Schaltplan zu zeichnen, bildet man die **DNF** $(A \land B) \lor ... von den Werten die true ergeben im Resultat$

Kombinatorische Logik

⇒ System ohne Speicher (Ausgänge ändern sich nur in Abhängigkeit von den Eingängen)

1-Bit Halb-Addierer

• Addition von zwei 1-Bit Inputs

1-Bit Voll-Addierer

Addition mit Carry-In

Sequentielle Logik

Flipflop

- Flanken-getriggertes Speicher-Element
- Bei jedem 1 Takt-Signal wird der Speicher aktualisiert

Das D-Flip-Flop nimmt einen Input D und gibt diesen beim nächsten Takt an Q aus.

Typische Schaltungen

- Zähler
 - o Neuer Zustand ist vorgegeben durch jetzigen Zustand
- Zustandsautomaten / Finite State Machine
 - o Speicherzellen stellen den Systemzustand dar
- Schieberegister
 - Mehrere in Reihe geschaltete Flip-Flops

Ampel-Steuerung

Zahlensysteme

Binär- und Hexsystem

Dillar and recoystern						
Name	Basis	Bereich	Beispiel			
Dezimal	10er	0123456789	$0D123=1*10^2+2*10^1+3*10^0$			
Binär	2er	01	$0B1110=1*2^3+1*2^2+1*2^1+0*2^0=14d$			
Hex	16er	0123456789ABCDEF	$0X5b = 5 * 16^1 + b * 16^0 = 91$			

Binäre Addition und Subtraktion

Erster Summand			1	0	1	1.	1	b
Zweiter Summand	+		1	1	0	1.	0	b
Übertrag		1	1	1	1			
Resultat		1	1	0	0	0.	1	b

Binäre Multiplikation Binäre Division

Beispiel: 5 * 14

		1	0	1	b	X	1	1	1	0	b
							1	1	1	0	
	+					0	0	0	0		
	+				1	1	1	0			
Übertrag					1	1					
Resultat				1	0	0	0	1	1	0	b

Beispiel: 54 : 10 = 5 Rest 4

Hornerschema

Dezimal zu Binär

10-er ins 2-er System Wir wollen nun noch sehen, wie Zahlen mit Kommastellen unzuw sind. Wir wählen den Wert 26.6875_d. Diesen Wert zerlegen wir:

$$26.6875_d = 26_d + 0.6875_d$$

Zuerst wandeln wir den ganzzahligen Teil um:

$$26_d = 11010_b$$

Das Horner-Schema für die Nachkommastellen geht so:

Hier lesen wir die Spalte ganz rechts von oben nach unten aus:

$$0.6875_d = 0.1011_b$$

Es folgt das Resultat:

 $26.6875_d = 11010.1011_b$

+ 2 → -2

Dezimal zu Hex

$$100_d \div 16 = 6 \text{ Rest } 4$$

 $6_d \div 16 = 0 \text{ Rest } 6$

Es folgt:

$$100_d = 64_h$$

Das Resultat können wir leicht überprüfen:

$$64_h = 6 \cdot 16_d^1 + 4 \cdot 16_d^0 = 100_d$$

Negative Zahlen Überlauf

- 2 → +2 1111110 00000001 00000001 00000010

- Integer: ganze Zahlen Z -> Overflow
- Unsigned: natürliche Zahlen N -> Carry
- => Overflow / Underflow, dort wo das MSB seinen Wechsel macht

Informationstheorie

Information

⇒ Je seltener ein Ereignis, desto grösser ist die Entropie (durchschnittlicher Informationsgehalt)

Entropie: Anzahl Bits / Symbol für eine optimale binäre Codierung (=> 0 Redundanz)

Discrete Memoryless Source (DMS)

• Symbole sind (statistisch) unabhängig voneinander

Binary Memoryless Source (BMS)

• DMS, die nur zwei verschiedene Ereignisse liefert

Formeln

Beschreibung	Abkürzung	Einheit	Formel
Anzahl mögliche Fälle	N		
Anzahl Ereignisse	K		
Absolute Häufigkeit	$k(x_n)$		$P(x_n) = \frac{k(x_n)}{K}$
Information	I	Bit	$I(x_n) = \log_2 \frac{1}{P(x_n)}$
Wahrscheinlichkeit	D		
Doppelsymbole	Р		P(AA) = P(A) * P(A)
Entropie		,	$\sum_{i=1}^{N-1}$ 1
(Mittlerer Informationsgehalt)	H(X)	Bit / Symbol	$H(X) = \sum_{n=0}^{\infty} P(x_n) \cdot \log_2 \frac{1}{P(x_n)}$
Entropie BMS (2 Symbole)		Bit / Symbol	$H(X) = \sum_{n=0}^{N-1} P(x_n) \cdot \log_2 \frac{1}{P(x_n)}$ $H_{BMS} = p \cdot \log_2 \frac{1}{p} + (1-p) \cdot \log_2 \frac{1}{1-p}$
Entropie max.		Dit / Cumb of	$H_{max} = \log_2 N$
(<u>identische</u> Wahrscheinlichk.)		Bit / Symbol	
Codewortlänge	L	Bit	
Mittlere Codewortlänge		Bit / Symbol	$L = \sum_{n=0}^{N-1} P(x_n) * l_n$
Coderate	R		$R = \frac{K}{N} = \frac{durschnittliche Codewortlänge}{N}$
Redundanz	R	Bit / Symbol	L-H(x)

Codes unterschiedlicher Länge

Voraussetzung: Präfixfreiheit!

Symbol	Code	Codewortlänge
x_0	$\underline{c}_0 = (10)$	$\ell_0 = 2$ Bit
x_1	$\underline{c}_1 = (110)$	$\ell_1 = 3$ Bit
x_2	$\underline{c}_2 = (1110)$	$\ell_2 = 4$ Bit

Verlustlose Quellencodierung

⇒ Redundanzreduktion (Anteil in einer Codierung, der keine Information trägt => mehr Bits als nötig pro Codewort)

Original:

Verlustlose Komprimierung: Redundanz eines Codes > 0 Verlustbehaftete Komprimierung: Redundanz eines Codes < 0

Lauflängencodierung RLE

- Marker = seltenes Zeichen
- Token = [Marker, Anzahl, Zeichen]
- Einzelne Zeichen ohne Marke
- ...TERRRRRRRRMAUIIIIIIIIIIIIIIIIWQCSSSSSSSSSL...
- RLE komprimiert:
- Ausnahme: Code = Marker => z.B. A01A ... TEA09RMA01AUA17IWQCA10SL...
- Bit / Token: Marker-Bits + Zählerbreite + Zeichen -Bits
 - O Zählerbreite: Beispiel 4-Bit Zähler => 1..16 als Zählerbreite möglich

Huffman

Häufige Symbole erhalten kurze Codes; **Seltene Symbole erhalten lange Codes**

- ⇒ Automatisch präfixfrei, optimal
- 1. Reihenfolge nach P aufsteigend ordnen
- 2. Kleinste Werte addieren
- 3. Codes «ablesen»

LZ77

- 1. Länge Übereinstimmung mit dem Vorschau-Buffer im Such-Buffer suchen
- 2. Verschieben um Übereinstimmung + nächstes Zeichen

Encoder Decoder

5 Token à 16 Bit (5+5+8)

Bit 8 Bit

Wertebereich: 0..31 <u>0..7</u> 0..255 — ASC 1

13 Zeichen

à 8 Bit

Token-Bits: 5 Bit

Maximale Länge eines Tokens: Vorschau-Buffer Länge - 1 = Anzahl Token * Bits pro Token Anzahl Zeichen * Bit pro Zeichen

LZW (Dictionary)

- 1. Zeichen-Kette im Wörterbuch suchen
- 2. Neuer-Eintrag im Wörterbuch

Token = Verweis

String = Zeichenkette (Verweis + nächstes Zeichen)

Index = Wörterbuch-Identifikator

Kompressionsrate = = Anzahl Tokens (ohne Vorinitialisierung) * Bits pro Token (Wörterbuch-Index) Anzahl Zeichen * Bit pro Zeichen

A M A M M M A A A M M M T A A T ...

Index	String	Token	Index	String	Token
			258	AMM	(256)
65	A		259	MM	(77)
			260	MAA	(257)
77	M		261	AA	(65)
			262	AMMM	(258)
84	T		263	MT	(77)
			264	TA	(84)
255	?		265	AAT	(261)
256	AM	(65)			
257	MA	(77)			

Beispiel: (87), (69), (73), (83), (69), (32), (82), (257), (259), (78), (68)

) (seispiei: (67), (69), (73), (63), (69), (32), (62), (237), (239), (76), (66).								
	Index	Eintrag	Fortsetzung →→→	Input (Token)	Index	Eintrag	Output (String)		
	32			(₹3)	256	WE	W		
	33	!	<	(69)	257	FЬ	F		
	44	,	Vori	(} 3)	258	ا کے	1		
	68	D	<u> </u>	(8)	259	S듄	S		
	69	E	: =	(62)	260	Eر	Ē		
	73	- 1	25	(32)	261	∪ R	٢		
	76	L	27 <u>0</u>	(62)	262	RE	R		
	78	N	Ž	(523)	263	EIS	EI		
	82	R	ng	(572)	264	SEN	SE		
	83	S	_	(70)	265	00	N		
	87	W		((8)	266	(<u>G</u> 0	0		
						Olid	lat cooliect		

Letztes Zeichen wird nicht empfangen!

Verlustbehaftete Quellencodierung

⇒ Irrelevante Informationen, die der Empfänger nicht braucht, entfernen = weniger Informationen

JPEG

Das Auge ist viel empfindlicher auf kleine Helligkeitsunterschiede als auf kleine Farbunterschiede

- ⇒ Farbinformationen höher komprimieren.
- ⇒ Vorbereitung für Datenkompression = reversibel

2. Downsampling der beiden Chrominanz-Komponenten

Signifikanter Informationsanteil wird reduziert. Farbkanal ist weniger wichtig wie die Luminanz (⇒ menschliches Auge).

⇒ Auflösung der Chrominanz (Farbkanäle) wird reduziert

3. Pixel-Gruppierung der Farbkomponenten in 8x8 Blöcke

4. Diskrete Cosinus Transformation

Transformation in den Frequenzbereich

5. Quantisierung einzelner Frequenzkomponenten

Frequenzkomponenten mit viel bzw. wenig Bildinformation werden fein bzw. grob quantisiert => Irrelevanzreduktion = Informationsverlust

6. Entropy-Coding der quantisierten Frequenzkomponenten

verlustlos, Kombination von RLE und Huffman-Encoding

⇒ Lauflängencodierung bis zum End-Of-Block (alles Nullen) ⇒ Zick-Zack-Scan der AC-Koeffizienten

RLE: (DC-Wert)(Anzahl Nullen, Koeffizient)...(EOB)

7. Erstellen von Header mit JPEG-Parameter

DCT-Basisfunktion

- F(0,0) = DC-Wert (durchschnittliche Helligkeit)
- Restliche = AC-Werte (Amplituden der Ortsfrequenzen)

Audiocodierung

Filterung

Hohe und tiefe Frequenzen werden entfernt

Abtastung

Abtastung des Signals mit dem Abtasttheorem:

$$F_{abtast} > 2 * f_{max}$$

⇒ Ab der halben Abtastfrequenz gibt es eine Spiegelung (falsch interpretiert!

Abtastfrequenz = Samples pro Sekunde

= Anzahl Stützstellen pro Sekunde * Anzahl Kanäle

Quantisierung des Analogsignals

Quantisierungsrauschen: Differenz Quantisierung <-> Signal

⇒ Wird kleiner bei einer grösseren Anzahl Bits (-6dB pro Bit)

Anzahl Stützstellen = Samplingrate / Frequenz

Quantisierungsrauschabstand gegenüber einem Signal mit maximaler Amplitude: 6 * Auflösung [bit]

Codierung

Grösse der Audiodatei: Abtastfrequenz [Hz] * Auflösung [Byte] * Anzahl Känäle * Dauer [s] = [Byte]

Schalldruckpegel SPL

• Logarithmische Grösse in Dezibel [dB] zur Beschreibung der Stärke eines Schallereignisses

Schallpegel L = $20 * \log_{10} \left(\frac{p}{p_0}\right)$

p: Effektiver Schalldruck [Pa]

 p_{θ} : Bezugsschalldruck

(Hörschwelle $p_0 = 0.00002 \text{ Pa}$)

Eine Verdoppelung des SPL entspricht ca. +6 dB:

$$20 * log_{10}(2) = 6.02dB$$

und 6 dB ca. einem Faktor 2:

$$10^{\frac{6\ dB}{20}} = 1.995$$

Verlustbehaftete Audio Codierung (MPEG)

- 1. Ausnutzung der menschlichen Hörschwelle
- 2. Ausnutzung des Maskierung-Effekts
 - a. Zeitliche Maskierung
 - b. Spektrale Maskierung

Sub-Band Coding

- Frequenz-Spektrum wird in Sub-Bänder unterteilt
- Nur so viele Bits zum Quantisieren wie nötig
 - o verbessert Kompression, Quantisierungsrauschen wird allerdings erhöht
 - O Ziel: Quantisierungsrauschen gerade unter die Maskierungsschwelle

Kanalcodierung

BSC

• Fehlerwahrscheinlichkeit ε ist unabhängig vom Eingangssymbol

Mit der BER ε kann man die Wahrscheinlichkeit $P_{0,N}$ ausrechnen, mit der eine Sequenz von N Datenbits korrekt (d.h. mit 0 Bitfehlern) übertragen wird.

- $\bullet \quad \text{Erfolgswahrscheinlichkeit: } P_{0,N} = \frac{{\it A}_N}{{\it A}} = (1-\varepsilon)^N$
- Fehlerwahrscheinlichkeit auf N Datenbits: $1 P_{0,N} = 1 (1 \varepsilon)^N$

Die Wahrscheinlichkeit, PF,N dass in einer Sequenz von N Datenbits genau F Bitfehler auftreten ist:

$$P_{F,N} = \binom{N}{F} \cdot \varepsilon^F \cdot (1 - \varepsilon)^{N-F}$$

Legende

- $\binom{N}{F}$ Anzahl Möglichkeiten genau F fehlerhafte Bits in N zu haben.
- ε^F Wahrscheinlichkeit, dass F Bits fehlerhaft übertragen werden
- $(1-\varepsilon)^{N-F}$ Wahrscheinlichkeit, dass die restlichen N-F Bits korrekt übertragen werden

Maximal F Fehler bei einer Übertragung mit N Datenbits: $P_{\leq F,N} = \sum_{t=0}^{F} \binom{N}{t} \cdot \varepsilon^t \cdot (1-\varepsilon)^{N-t}$

Mehr als F Fehler bei einer Übertragung mit N Datenbits: $P_{>F,N} = 1 - P_{\leq F,N}$

Hamming-Distanz

- ⇒ Anzahl wechselnde Bits
- Fehler-Erkennung möglich ab: $d_H \ge 2$
- Fehler-Korrektur möglich ab: $d_{min} \ge 3$
- Erkennbare Fehler: $d_{min} 1$

Systematisch

Systematischer (N,K)-Blockcode:

Die K Informationsbits erscheinen im Codewort am einem Stück

Systematische Blockcodes lassen sich besonders einfach decodieren:

Bes müssen lediglich die Fehlerschutzbits entfernt werden.

Hamming-Gewicht

- ⇒ Anzahl Einsen
- $d_H = (c_j, c_k) = w_H(c_j X O R c_k)$

Zyklisch

 Zyklische Verschiebung (Rotation) -> gültiges Codewort

Perfekt

• Alle Codwörter haben die gleiche Hamming-Distanz

Linear

- $c_i XORc_i$ -> gültiges Codewort
- Null-Codewort ist zwingend
- $d_{min}(C) = \min_{j \neq 0} w_h(c_j)$

Sobald ein Code eine <u>Generatormatrix</u> hat, ist er <u>automatisch linear!</u>

Kanalkapazität [bit / bit]

• Maximale Kanalkapazität = 1 Bit / Symbol

• Entropie der Störquelle =
$$H_b(\varepsilon)$$

$$= \varepsilon \cdot \log_2 \frac{1}{\varepsilon} + (1 - \varepsilon) \cdot \log_2 \frac{1}{1 - \varepsilon}$$

• Nutzbare Kanalkapazität = $C_{BSC}(\varepsilon) = 1 - \frac{H_b(\varepsilon)}{2}$

Wahrscheinlichkeiten eines BSC (Ein-/Ausgang)

$$P(y_1) = P(x_1) \cdot (1 - \varepsilon) + P(x_0) \cdot \varepsilon = 1$$
$$= P(x_1)_{Fehlerfrei} + P(x_0)_{Fehlerhaft} = 1$$

$$P(x_1)$$
 $x_1 = 1$ $P(x_1) \cdot (1 - \varepsilon)$ $y_1 = 1$ $P(y_1)$ $P(x_0) \cdot \varepsilon$ $y_0 = 0$ $P(y_0)$ $P(x_0) \cdot (1 - \varepsilon)$ $P(x_0) \cdot (1 - \varepsilon)$

Entropien eines BSC (Ein-/Ausgang)

$$H(Y) = P(y_0) \cdot \log_2 \frac{1}{P(y_0)} + P(y_1) \cdot \log_2 \frac{1}{P(y_1)}$$
$$= P(y_0) \cdot I(y_0) + P(y_1) \cdot I(y_1)$$

Kanalcodierungstheorem

Die Restfehlerwahrscheinlichkeit soll beliebig klein gemacht werden, so muss R < C sein!

R Coderate [Bit / Bit]

• C Kanalkapazität [Bit / Bit]

Coderate R:

$$R=\frac{K}{N}$$

Fehlerkennung, CRC

- 2^N mögliche Codewörter
- 2^K gültige Codewörter

1-Bit Arithmetik

- Addition r = a + b (XOR)
- Multiplikation $r = a \cdot b \ (AND)$

		()			
	b				
0	0	0	0	0	0
0	1	1	0	1	0
1	0	1	1	0	0
1	1	0	1	1	1

Multiplikation $r = a \cdot h \text{ (AND)}$

Addition $r = a \oplus h (XOR)$

1-Bit Polynom-Arithmetik

Bei CRC werden einzelne Bits als Koeffizienten eines Polynoms aufgefasst.

Das binäre Datenwort u = (101001) wird zum Polynom U(z)

•
$$U(z) = \mathbf{1} \cdot \mathbf{z}^5 + 0 \cdot z^4 + \mathbf{1} \cdot \mathbf{z}^3 + 0 \cdot z^2 + 0 \cdot z^1 + \mathbf{1} \cdot \mathbf{z}^0$$

•
$$U(z) = z^5 + z^3 + 1$$

Multiplikation

•
$$(z^2 + z + 1) \cdot (z + 1) = (z^3 + z^2) + (z^2 + z) + (z + 1) = z^3 + 1$$

Cyclic Redundancy Check CRC

- 1-Bit Arithmetik!
- Ein Bitfehler soll sich auf möglichst viele Bits der Prüfsumme auswirken

Generator-Polynom

$$X^4 + X + 1 = 1 \cdot X^4 + 0 \cdot X^3 + 0 \cdot X^2 + 1 \cdot X^1 + 1 \cdot X^0$$
 entspricht 10011b

Voraussetzungen

- · Generatorpolynom vom Grad m
- Polynom p (Nachricht der Länge K)

Anzahl Prüfbits = m -1

Encoder

- 1. m Nullen anhängen $f = p \cdot z^m$
- 2. Polynomdivision $f: g \rightarrow Rest \ r = CRC$
- 3. m Nullen ersetzen f + r = h

Decoder

- 1. Polynomdivision
- 2. Prüfbits abschneiden $p = h : z^m$

 $h: g \rightarrow Rest r$

<u>Beispiel</u>

- Generatorpolynom $g = z^4 + z + 1 = 10011$ (m = 4)
- Daten-Polynom $p = z^6 + z = 1000010 \quad (k = 6)$

Encoding

- 1. $f = p \cdot z^m = (z^6 + z) \cdot z^4 = z^{10} + z^5 = 10000100000$
- 2. $f: g \to Rest r = 10000100000 : 10011 \to Rest r = 0001$

3. f + r = h = 10000100001

Decoding

- 1. $h: g \rightarrow Rest r = 10000100001:10011 \rightarrow Rest r = 0000 \rightarrow Kein Fehler!$
- 2. $p = h : z^m = (z^{10} + z^5 + 1) : z^4 = z^6 + z = 1000010$

Fehlerkorrektur, Hamming-Codes, Matrix

Lineare Blockcodes

Ein Blockcode der Länge *n* besteht aus *k* Datenbits und *p* Prüfbits.

K Datenbit

- n = Länge
- k = Datenbits
- p = Prüfbits

Matrizen Übersicht

- P = Paritäts-Matrix
- / = Einheits-Matrix
- *G* = Generator-Matrix
- H = Paritäts-Prüf-Matrix

Hamming Codes

Codes mit d_{min} = 3 und p = $\log_2(N+1)$ besitzen genau die minimale Anzahl benötigter Prüfbits um einen Fehler zu korrigieren.

p = N-K Prüfbit

- Erkennbare Fehler = $d_{min} 1$
- Korrigierbare Fehler = $(d_{min} 1) : 2$

Generatormatrix

Eine Generatormatrix G setzt sich zusammen aus

- $P = Paritätsmatrix (n k) \cdot k$
- $I = Einheitsmatrix (k \cdot k)$

Ob die Einheitsmatrix rechts oder links ist macht keinen Unterschied. Jedoch muss darauf geachtet werden, dass die Paritätsprüf-Matrix entsprechend erstellt wird.

- $G_r = (P \ I) \rightarrow H_l(I \ P^T)$
- $G_l = (I \quad P) \rightarrow H_r(P^T \quad I)$

Ist die Einheitsmatrix I in der Generator-Matrix G_r auf der rechten Seite, so ist sie in der Paritätsprüfmatrix H_l auf der linken Seiten.

⇒ Jede Zeile der Generatormatrix entspricht einem gültigen Codewort!

Bildung der Prüfmatrix

- ⇒ Zeilen bei der im Codewort eine 1 steht addieren
- ⇒ Gerade Anzahl 1 = 0
- ⇒ Ungerade Anzahl 1 = 1

Encoder

Durch die Multiplikation des Datenvektors *u* mit der Generatormatrix *G* entsteht ein Codewort *c*. Das Codewort *c* besteht aus

- k Datenbits
- p Prüfbits (p = n k)

Das generierte Codewort c resp. c_{10} kann nun übertragen werden. Bei dieser Übertragung können Fehler auftreten.

Fehler können mit einem Fehlervektor e beschrieben werden.

Das empfangene Codewort \tilde{c} ist die Summe aus Fehlervektor e und dem gesendeten Codewort c_{10} . $\tilde{c}=c_{10}+e$

1 1 0 0 1 1 1

Daten u

0 1 0 1

Decoder

Durch die Multiplikation des empfangenen Codeworts c mit der Prüfmatrix H^T wird das Syndrom s bestimmt.

Syndrom

Das Syndrom s ist gleich dem Produkt von Fehlervektor e und Paritätsprüfmatrix H^T . Jedes gültige Codewort c_j multipliziert mit der Prüfmatrix H^T ergibt 0.

Das Syndrom s ist ein Vektor der Länge n-k. Anzahl Syndrome = 2^{n-k} . Um 1 Bitfehler zu korrigieren, braucht es aber nur n + 1 Syndrome (+1 da das 0-Syndrom noch dazu gezählt wird).

Anzahl Syndrome, um alle Fehler bis zu einer bestimmten Anzahl zu korrigieren:

Beispiel mit 2 korrigierbaren Fehlern:
$$\binom{N}{2} + \binom{N}{1} + \binom{N}{0}$$

Faltungscodes

Eigenschaften

- Lineare Codes
- Leicht und preiswert in HW realisierbar
- Streaming Code (Beliebig langer Eingangs-Vektor)

Gedächtnislänge m = Anzahl Flip-Flops (= Anzahl Tailbits)

Einflusslänge L = m + 1

Generatoren $\gamma =$ Gewichtungsvektoren (= Impulsantworten)

 $u = \delta$ (Länge L) Impulsfunktion (Eingang)

m	$\gamma = 2$ Generatoren					
2	$(101_b, 111_b)$	$(5_o, 7_o)$	5			
3	$(1101_b, 1111_b)$	$(15_o, 17_o)$	6			
4	$(10011_b, 11101_b)$	$(23_o, 35_o)$	7			
5	$(101011_b, 111101_b)$	$(53_o, 75_o)$	8			
6	$(1011011_b, 1111001_b)$	(133 _o , 171 _o)	10			
7	$(10100111_b, 11111001_b)$	(247 _o , 371 _o)	10			
8	$(101110001_b, 111101011_b)$	(561 _o , 753 _o)	12			

Freie Distanz

- $d_{min} \rightarrow d_{free} = w_{min}$
- $d_{free} \rightarrow$ Korrigierbare Fehler pro «Abschnitt»

Coderate

- $R = \frac{K}{N} = \frac{K}{2 \cdot (K+m)}$ $K \gg m \to R \approx \frac{1}{2}$

Hardware

- Gedächtnislänge m= 2
- Einflusslänge L
- $c_{2k} = u_k \oplus u_{k-1} \oplus u_{k-2}$
- $c_{2k+1} = u_k \oplus u_{k-2}$
- $g1 = 111 \rightarrow G_1 = z^2 + z + 1$ $g2 = 101 \rightarrow G_2 = z^2 + 1$

Beispiel Encoderlauf

- $u = 1011 \rightarrow u^+ = u + (m = 2 \text{ Tailbits}) = 101100$
- Ausgangspolynom: $C_x = G_x \cdot U$
- $C_1 = G_1 \cdot U = (z^2 + z + 1) \cdot (z^3 + z + 1) = z^5 + z^4 + 1 = 110001$
- $C_2 = G_2 \cdot U = (z^2 + 1) \cdot (z^3 + z + 1) = z^5 + z^2 + z + 1 = 100111$
- Kombination von C_1 und $C_2 \rightarrow c = 11 \ 10 \ 00 \ 01 \ 01 \ 11$

Takt	Eingang	Zustand		Au	sgang
k	u_k^+	u_{k-1}^+	u_{k-2}^+	c_{2k}	c_{2k+1}
0	1	0	0	1	1
1	0	1	0	1	0
2	1	0	1	0	0
3	1	1	0	0	1
4	<u>0</u>	1	1	0	1
5	<u>0</u>	<u>0</u>	1	1	1
0		<u>0</u>	0		

Zustandsdiagramm

 $c = 11\ 10\ 00\ 01\ 01\ 11$

Trellis-Diagramm

- 1. Zustände mit Code vergleichen
- 2. Fehler eintragen
- 3. Verbindung einzeichnen (kleinster Fehler)
- 4. Bits wechseln $00\ 10\ 00\ 01\ 01\ 11 \rightarrow 11\ 10\ 00\ 01\ 01\ 11$

Tailbits: Anzahl Stellen zum Nullzustand

Bildung der Codeworte mit dem Trellis-Diagramm (Decodierung)

$$u_k = 110100$$

Viterbi-Decoder

- ⇒ Effiziente Methode, um die wahrscheinlichste gesendete Bitfolge zu ermitteln
- ⇒ Wahrscheinlichster Pfad = Pfad mit den kleinsten Kosten-Metriken (Fehlern)