Assignment-12-Naive-Bayes

In [1]:

```
import pandas as pd
import numpy as np
from sklearn.feature_extraction.text import CountVectorizer, TfidfVectorizer
from sklearn.preprocessing import StandardScaler

from sklearn import svm
from sklearn.svm import SVC
from sklearn.model_selection import GridSearchCV
from sklearn.metrics import classification_report

from sklearn.metrics import accuracy_score, confusion_matrix
from sklearn.model_selection import train_test_split, cross_val_score
```

In [2]:

```
# Import dataset
df_train = pd.read_csv('C:/Users/LENOVO/Documents/Custom Office Templates/SalaryData_Train.
df_train.head()
```

Out[2]:

	age	workclass	education	educationno	maritalstatus	occupation	relationship	race	s
0	39	State-gov	Bachelors	13	Never- married	Adm- clerical	Not-in-family	White	Ma
1	50	Self-emp- not-inc	Bachelors	13	Married-civ- spouse	Exec- managerial	Husband	White	Mŧ
2	38	Private	HS-grad	9	Divorced	Handlers- cleaners	Not-in-family	White	Mŧ
3	53	Private	11th	7	Married-civ- spouse	Handlers- cleaners	Husband	Black	Ma
4	28	Private	Bachelors	13	Married-civ- spouse	Prof- specialty	Wife	Black	Fema
4									•

In [3]:

df_test = pd.read_csv('C:/Users/LENOVO/Documents/Custom Office Templates/SalaryData_Test.cs
df_test.head()

Out[3]:

_		age	workclass	education	educationno	maritalstatus	occupation	relationship	race	sex
	0	25	Private	11th	7	Never- married	Machine- op-inspct	Own-child	Black	Male
	1	38	Private	HS-grad	9	Married-civ- spouse	Farming- fishing	Husband	White	Male
	2	28	Local-gov	Assoc- acdm	12	Married-civ- spouse	Protective- serv	Husband	White	Male
	3	44	Private	Some- college	10	Married-civ- spouse	Machine- op-inspct	Husband	Black	Male
	4	34	Private	10th	6	Never- married	Other- service	Not-in-family	White	Male

EDA & Data Preprocessing

In [4]:

#Check datatypes
df_train.dtypes

Out[4]:

age	int64
workclass	object
education	object
educationno	int64
maritalstatus	object
occupation	object
relationship	object
race	object
sex	object
capitalgain	int64
capitalloss	int64
hoursperweek	int64
native	object
Salary	object
dtype: object	

In [5]:

df_train.shape

Out[5]:

(30161, 14)

In [6]:

```
df_train.isnull().sum()
```

Out[6]:

0 age workclass 0 education 0 educationno 0 maritalstatus 0 occupation relationship 0 race 0 0 sex capitalgain 0 capitalloss 0 hoursperweek 0 native 0 0 Salary dtype: int64

No null values in salary_train dataset

In [7]:

```
df_train.value_counts('Salary')
```

Out[7]:

Salary <=50K

<=50K 22653 >50K 7508 dtype: int64

In [8]:

```
# frequency for categorical fields
category_col =['workclass', 'education', 'maritalstatus', 'occupation', 'relationship', 'rac
for c in category_col:
    print (c)
    print (df_train[c].value_counts())
    print('\n')
workclass
Private
                     22285
Self-emp-not-inc
                       2499
Local-gov
                       2067
State-gov
                       1279
Self-emp-inc
                      1074
Federal-gov
                       943
                        14
Without-pay
Name: workclass, dtype: int64
education
HS-grad
                 9840
Some-college
                 6677
Bachelors
                 5044
Masters
                 1627
Assoc-voc
                 1307
                 1048
 11th
Assoc-acdm
                 1008
```

Visualization

In [9]:

```
import seaborn as sns
sns.heatmap(df_train.isnull())
```

Out[9]:

<AxesSubplot:>

In [10]:

```
sns.countplot(df_train["Salary"])
```

C:\Users\LENOVO\anaconda3\lib\site-packages\seaborn_decorators.py:36: Futur eWarning: Pass the following variable as a keyword arg: x. From version 0.1 2, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterpretati on.

warnings.warn(

Out[10]:

<AxesSubplot:xlabel='Salary', ylabel='count'>

In [11]:

```
# countplot for all categorical columns
import matplotlib.pyplot as plt
import seaborn as sns
sns.set(rc={'figure.figsize':(9,8)})
cat_col = ['workclass', 'education', 'maritalstatus', 'occupation', 'relationship', 'race',
for col in cat_col:
    plt.figure() #this creates a new figure on which your plot will appear
    sns.countplot(x = col, data = df_train, palette = 'Set3');
```


Printing unique values from each categorical columns

In [12]:

```
print('workclass',df_train.workclass.unique())
print('education',df_train.education.unique())
print('maritalstatus',df_train['maritalstatus'].unique())
print('occupation',df_train.occupation.unique())
print('relationship',df_train.relationship.unique())
print('race',df_train.race.unique())
print('sex',df_train.sex.unique())
print('native',df_train['native'].unique())
print('Salary',df_train.Salary.unique())
workclass [' State-gov' ' Self-emp-not-inc' ' Private' ' Federal-gov' ' Loca
1-gov'
 ' Self-emp-inc' ' Without-pay']
education [' Bachelors' ' HS-grad' ' 11th' ' Masters' ' 9th' ' Some-college'
 'Assoc-acdm' '7th-8th' 'Doctorate' 'Assoc-voc' 'Prof-school'
 ' 5th-6th' ' 10th' ' Preschool' ' 12th' ' 1st-4th']
maritalstatus [' Never-married' ' Married-civ-spouse' ' Divorced'
 ' Married-spouse-absent' ' Separated' ' Married-AF-spouse' ' Widowed']
occupation [' Adm-clerical' ' Exec-managerial' ' Handlers-cleaners' ' Prof-s
pecialty'
 'Other-service' 'Sales' 'Transport-moving' 'Farming-fishing'
 ' Machine-op-inspct' ' Tech-support' ' Craft-repair' ' Protective-serv'
 ' Armed-Forces' ' Priv-house-serv']
relationship [' Not-in-family' ' Husband' ' Wife' ' Own-child' ' Unmarried'
' Other-relative']
race ['White' 'Black' 'Asian-Pac-Islander' 'Amer-Indian-Eskimo' 'Othe
sex [' Male' ' Female']
native [' United-States' ' Cuba' ' Jamaica' ' India' ' Mexico' ' Puerto-Ric
0'
 ' Honduras' ' England' ' Canada' ' Germany' ' Iran' ' Philippines'
 ' Poland' ' Columbia' ' Cambodia' ' Thailand' ' Ecuador' ' Laos'
' Taiwan' ' Haiti' ' Portugal' ' Dominican-Republic' ' El-Salvador'
'France' 'Guatemala' 'Italy' 'China' 'South' 'Japan' 'Yugoslavia'
 'Peru' 'Outlying-US(Guam-USVI-etc)' 'Scotland' 'Trinadad&Tobago'
 'Greece' 'Nicaragua' 'Vietnam' 'Hong' 'Ireland' 'Hungary']
Salary [' <=50K' ' >50K']
In [13]:
df train[['Salary', 'age']].groupby(['Salary'], as index=False).mean().sort values(by='age'
Out[13]:
   Salary
              age
    >50K 43.959110
0 <=50K 36.608264
```

In [14]:

Out[14]:

```
<AxesSubplot:xlabel='race', ylabel='prop'>
```


Feature encoding

```
In [15]:
```

from sklearn.preprocessing import LabelEncoder

In [16]:

```
df_train = df_train.apply(LabelEncoder().fit_transform)
df_train.head()
```

Out[16]:

	age	workclass	education	educationno	maritalstatus	occupation	relationship	race	sex
0	22	5	9	12	4	0	1	4	1
1	33	4	9	12	2	3	0	4	1
2	21	2	11	8	0	5	1	4	1
3	36	2	1	6	2	5	0	2	1
4	11	2	9	12	2	9	5	2	0
4									>

In [17]:

```
df_test = df_test.apply(LabelEncoder().fit_transform)
df_test.head()
```

Out[17]:

	age	workclass	education	educationno	maritalstatus	occupation	relationship	race	sex
0	8	2	1	6	4	6	3	2	1
1	21	2	11	8	2	4	0	4	1
2	11	1	7	11	2	10	0	4	1
3	27	2	15	9	2	6	0	2	1
4	17	2	0	5	4	7	1	4	1
4									•

Test-Train-Split

```
In [18]:
```

```
drop_elements = ['education', 'native', 'Salary']
X = df_train.drop(drop_elements, axis=1)
```

```
In [19]:
```

```
y = df_train['Salary']
```

```
In [20]:
```

```
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.33, random_state=42)
```

Building Multinomial Naive Bays Model

```
In [21]:
```

```
# Preparing a naive bayes model on training data set
from sklearn.naive_bayes import MultinomialNB as MB

# Multinomial Naive Bayes
classifier_mb = MB()
classifier_mb.fit(X_train, y_train)
```

Out[21]:

MultinomialNB()

In [22]:

```
score_multinomial_train = classifier_mb.score(X_train,y_train)
print('The accuracy of Gaussian Naive Bayes is', score_multinomial_train)
```

The accuracy of Gaussian Naive Bayes is 0.7788390161825111

In [23]:

```
score_multinomial = classifier_mb.score(X_test,y_test)
print('The accuracy of Gaussian Naive Bayes is', score_multinomial)
```

The accuracy of Gaussian Naive Bayes is 0.7796865581675708

Testing Multinomial Naive Bayes model on SalaryData_Test.csv

```
In [24]:
```

```
from sklearn import metrics

drop_elements = ['education', 'native', 'Salary']
X_new = df_test.drop(drop_elements, axis=1)

y_new = df_test['Salary']
```

In [25]:

```
# make predictions
new_prediction = classifier_mb.predict(X_new)
# summarize the fit of the model
print(metrics.classification_report(y_new, new_prediction))
print(metrics.confusion_matrix(y_new, new_prediction))

print("Accuracy:",metrics.accuracy_score(y_new, new_prediction))
print("Precision:",metrics.precision_score(y_new, new_prediction))
print("Recall:",metrics.recall_score(y_new, new_prediction))
```

	precision	recall	f1-score	support
0 1	0.80 0.61	0.94 0.30	0.87 0.40	11360 3700
accuracy macro avg weighted avg	0.71 0.76	0.62 0.78	0.78 0.63 0.75	15060 15060 15060

[[10648 712] [2587 1113]]

Accuracy: 0.7809428950863214 Precision: 0.6098630136986302 Recall: 0.3008108108108

Building Gaussian Naive Bayes Model

```
In [26]:
```

```
# Gaussian Naive Bayes
from sklearn.naive_bayes import GaussianNB as GB

classifier_gb = GB()
classifier_gb.fit(X_train, y_train)
```

Out[26]:

GaussianNB()

In [27]:

```
score_gaussian_train = classifier_gb.score(X_train,y_train)
print('The accuracy of Gaussian Naive Bayes is', score_gaussian_train)
```

The accuracy of Gaussian Naive Bayes is 0.8108576235957836

In [28]:

```
score_gaussian = classifier_gb.score(X_test,y_test)
print('The accuracy of Gaussian Naive Bayes is', score_gaussian)
```

The accuracy of Gaussian Naive Bayes is 0.812035362668274

Testing Gaussian Naive Bays model on SalaryData_Test.csv

In [29]:

```
# make predictions
new_prediction = classifier_gb.predict(X_new)
# summarize the fit of the model
print(metrics.classification_report(y_new, new_prediction))
print(metrics.confusion_matrix(y_new, new_prediction))

print("Accuracy:",metrics.accuracy_score(y_new, new_prediction))
print("Precision:",metrics.precision_score(y_new, new_prediction))
print("Recall:",metrics.recall_score(y_new, new_prediction))
```

	precision	recall	f1-score	support
0 1	0.84 0.69	0.93 0.45	0.88 0.54	11360 3700
accuracy macro avg weighted avg	0.76 0.80	0.69 0.81	0.81 0.71 0.80	15060 15060 15060

[[10604 756] [2038 1662]]

Accuracy: 0.8144754316069057 Precision: 0.6873449131513648 Recall: 0.4491891891892

Compare train and test accuracy

The training-set accuracy score is 0.8108 while the test-set accuracy to be 0.8120.

These two values are quite comparable. So, there is no sign of overfitting

k-Fold Cross Validation

In [31]:

In [32]:

```
# Applying 10-Fold Cross Validation
from sklearn.model_selection import cross_val_score
scores = cross_val_score(classifier_gb, X_train, y_train, cv = 10, scoring='accuracy')
print('Cross-validation scores:{}'.format(scores))

Cross-validation scores:[0.80554181 0.81840673 0.80999505 0.81296388 0.81642
751 0.80356259
    0.79020287 0.82178218 0.80643564 0.81683168]
```

```
# compute Average cross-validation score
print('Average cross-validation score: {:.4f}'.format(scores.mean()))
```

Average cross-validation score: 0.8102

In []:			