1. Let (X,d) and (Y,ρ) be connected metric spaces, and give the product $X\times Y$ the metric

$$D((x,y),(x',y')) = d(x,x') + \rho(y,y').$$

Prove the metric space $X \times Y$ is connected.

Solution

Suppose $X \times Y$ is not connected. Then there exists nonempty sets A, B such that $X \times Y = A \cup B$ with $A \cap \overline{B} = \overline{A} \cap B = \emptyset$. For $x \in X$, define

$$P_x = \{(x, y) \in X \times Y \mid y \in Y\}.$$

Then P_x is isomorphic to Y; it follows that $A \cap P_x$ and $B \cap P_x$ form separated sets of P_x , thus, as Y is connected, either $A \cap P_x$ or $B \cap P_x$ is empty. Thus P_x is completely contained within either A or B for all $x \in X$. Likewise, if we define

$$Q_y = \{(x, y) \in X \times Y \mid x \in X\}$$

for $x \in X$, Q_y is completely contained in either A or B for every $y \in Y$.

Now A and B are both nonempty, hence there exists some $x_A, x_B \in X$ such that $P_{x_A} \subset A$ and $P_{x_B} \subset B$. Likewise, there exists some $y_A, y_B \in Y$ such that $Q_{y_A} \subset A$ and $Q_{y_B} \subset B$. Thus $(x_A, y_B) \in A \cap B = \emptyset$, a contradiction. It follows that $X \times Y$ is connected.

2. Let X and Y be Banach spaces and let $T: X \to Y$ be a linear map such that there are constants $0 < c < C < \infty$ such that for all $x \in X$,

$$c||x||_X \le ||T(x)||_Y \le C||x||_X.$$

Prove that the range $T(X) = \{y \in Y : y = T(x), \text{ some } x \in X\}$ is a closed subset of Y. Note: You cannot assume T maps X onto Y.

Solution

Let $\{y_n\}_{n=1}^{\infty}$ be a Cauchy sequence in Y. Then for each y_n , there exists some x_n such that $T(x_n) = y_n$. Thus

$$||x_n - x_m||_X \le \frac{1}{c}||T(x_n) - T(x_m)||_Y = \frac{1}{c}||y_n - y_m||_Y,$$

from which it follows that $\{x_n\}_{n=1}^{\infty}$ is a Cauchy sequence (in X) as well. Since X is a Banach space, there exists some x^* such that $x_n \to x^*$ as $n \to \infty$. Set $y^* = T(x^*)$. Then

$$||y^* - y_n||_Y \le ||T(x^*) - T(x_n)||_Y \le C||x^* - x_n||_X,$$

from which it follows that $y_n \to y^*$ as $n \to \infty$. Therefore Y is closed.

3. Give an example of a function $F: \mathbb{R}^2 \to \mathbb{R}$ such that the partial derivatives D_1F and D_2F exist and are continuous, and such that the mixed partials derivatives $D_{1,2}F(0,0)$ and $D_{2,1}F(0,0)$ exist, but

$$D_{1,2}(0,0) \neq D_{2,1}F(0,0).$$

Solution

Define F(0,0) = 0 and

$$F(x,y) = \frac{xy(x^2 - y^2)}{x^2 + y^2}.$$

4. Let $U \subset \mathbb{R}^2$ be open and let $f: U \to \mathbb{R}$ a function such that each partial derivative

$$\frac{\partial f}{\partial x_j} = \lim_{h \to 0} \frac{f(x + he_j) - f(x)}{h}$$

exists and is continuous in U. Prove $f \in C^1(U)$. Note: (Above e_j denotes the j^{th} unit vector in \mathbb{R}^n .)

Solution

Without loss of generality, let $0 \in U$; we show that f is differentiable at 0, from which the argument can be extended to show that f is differentiable on all of U.

Let $x = \sum_{i=1}^{n} x_i e_i$ in some open ball of 0 contained in U. Set $y_0 = 0$ and

$$y_j = \sum_{i=1}^j x_i e_i$$

for j = 1, ..., n. Multiple applications of the Mean Value Theorem yields points y'_j between y_{j-1} and y_j such that

$$f(y_1) - f(y_0) = \frac{\partial f}{\partial x_1}(y_1')(x_1 - 0),$$

$$f(y_2) - f(y_1) = \frac{\partial f}{\partial x_2}(y_2')(x_2 - 0),$$

:

$$f(y_n) - f(y_{n-1}) = \frac{\partial f}{\partial x_n}(y'_n)(x_n - 0).$$

Since $y_0 = 0$ and $y_n = x$, we see that

$$f(x) - f(0) = \sum_{i=1}^{n} \frac{\partial f}{\partial x_i}(y_i')x_i.$$

Since each $\frac{\partial f}{\partial x_i}$ is continuous in U, we can further restrict x to a neighborhood of 0 such that, given any $\epsilon > 0$,

$$\left| \frac{\partial f}{\partial x_i}(z) - \frac{\partial f}{\partial x_i}(0) \right| < \epsilon$$

for all z in this neighborhood. Thus

$$\lim_{x \to 0} \frac{\left| f(x) - f(0) - \sum_i \frac{\partial f}{\partial x_i}(0) x_i \right|}{\|x\|} \leq \lim_{x \to 0} \sum_i \left| \frac{\partial f}{\partial x_i}(y_i') - \frac{\partial f}{\partial x_i}(0) \right| \frac{|x_i|}{\|x\|} < \epsilon \lim_{x \to 0} \sum_i \frac{|x_i|}{\|x\|} < n\epsilon,$$

and since ϵ was arbitrary, we conclude that

$$f'(0)x = \sum_{i} \frac{\partial f}{\partial x_i}(0)x_i$$

and, in general, for $t \in U$,

$$f'(t)x = \sum_{i} \frac{\partial f}{\partial x_i}(t)x_i.$$

The continuity of f' follows from the above equality and the continuity of the partials.

5. Let f(x) be a bounded real function on the interval [0,1] such that f has a finite set of discontinuities. Prove that f is integrable on [0,1].

Solution

Enumerate the discontinuities of f on [0,1] by x_i , i = 1, ..., n. Since f is bounded, there exists an M such that |f| < M on [0,1].

Let $\epsilon > 0$ be given. Choose δ such that $\delta < \epsilon/8Mn$ and the closures of the intervals $(x_i - \delta, x_i + \delta)$ are disjoint (possible since there are finitely many x_i 's). Set

$$E = [0, 1] \setminus \bigcup_{i} (x_i - \delta, x_i + \delta),$$

which is evidently a finite union of closed intervals, on each of which f is continuous. Then there exists a partition P of E such that

$$U(P, f|_E) - L(P, f|_E) < \frac{\epsilon}{2}.$$

Let $P' = P \cup \{0,1\}$ be viewed now as a partition of [0,1], and set m_i and M_i to be the infimum and supremum of f over $[x_i - \delta, x_i + \delta] \cap [0,1]$. Then $M_i - m_i < 2M$, hence

$$U(P',f) - L(P',f) < \frac{\epsilon}{2} + \sum_{i} (M_i - m_i) 2\delta < \frac{\epsilon}{2} + 4Mn\delta < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon,$$

and it follows that f is Riemann integrable.

6. Assume $a_n \ge a_{n+1} \ge 0$ and $\lim a_n = 0$. Prove the series

$$\sum_{n=1}^{\infty} (-1)^n a_n$$

converges to a real number S, and prove that the partial sums

$$S_N = \sum_{n=1}^{N} (-1)^n a_n$$

satisfy

$$|S_N - S| \le |a_{N+1}|.$$

Solution

Consider

$$S_{n+k} - S_n = \sum_{i=n+1}^{n+k} (-1)^i a_i = (-1)^{n+1} \left(a_{n+1} - a_{n+2} + \dots + (-1)^{k-1} a_{n+k} \right).$$

Suppose first that k is odd. Then

$$\begin{array}{rcl} d & = & a_{n+1} - a_{n+2} + \dots + (-1)^{k-1} a_{n+k} \\ & = & a_{n+1} - (a_{n+2} - a_{n+3}) - (a_{n+4} - a_{n+5}) - \dots - (a_{n+k-1} - a_{n+k}) & \leq & a_{n+1} \end{array}$$

since $a_i \geq a_{i+1}$. But also

$$d = (a_{n+1} - a_{n+2}) + (a_{n+3} - a_{n+4}) + \dots + (a_{n+k-2} - a_{n+k-1}) + a_{n+k} \ge a_{n+k} \ge 0.$$

Similarly, for k even,

$$d = a_{n+1} - (a_{n+2} - a_{n+3}) - (a_{n+4} - a_{n+5}) - \dots - (a_{n+k-2} - a_{n+k-1}) - a_{n+k} \le a_{n+1},$$

and

$$d = (a_{n+1} - a_{n+2}) + (a_{n+3} - a_{n+4}) + \dots + (a_{n+k-1} - a_{n+k}) \ge 0.$$

Hence

$$|S_{n+k} - S_n| \le a_{n+1}.$$

Since $a_n \to 0$, it follows that $\{S_n\}_{n=1}^{\infty}$ is a Cauchy sequence in \mathbb{R} , hence has some limit S. By letting $k \to \infty$ in the above inequality, we arrive at

$$|S - S_n| \le a_{n+1}.$$

7. Let $x = (x_1, x_2, \dots, x_n), y = (y_1, y_2, \dots, y_n)$ be two points in \mathbb{R}^n . Prove the Cauchy-Schwarz inequality

$$\left| \sum_{j=1}^{n} x_j y_j \right| \le \left(\sum x_j^2 \right)^{\frac{1}{2}} \left(\sum y_j^2 \right)^{\frac{1}{2}},$$

and show that equality holds in this inequality if and only if x and y are linearly dependent.

Solution

For all $\lambda \in \mathbb{R}$,

$$0 \le ||x - \lambda y||^2 = ||x||^2 + \lambda^2 ||y||^2 - 2\lambda (x \cdot y).$$

Now if y=0, the claim is trivial, so suppose $y\neq 0$. Set $\lambda=(x\cdot y)/\|y\|^2$. Then

$$0 \le ||x||^2 + \frac{(x \cdot y)^2}{||y||^2} - 2\frac{(x \cdot y)}{||y||^2} = ||x||^2 - \frac{(x \cdot y)^2}{||y||^2},$$

from which the claim follows immediately. Equality is evidently achieved if and only if $x = \lambda y$.