Corrigé - Colle 3 (Sujet 1)

MPSI2 Année 2021-2022

5 octobre 2021

Question de cours. Énoncer et démontrer l'inégalité triangulaire.

Exercice 1. On considère la fonction f définie sur \mathbb{R} par

$$f(x) = \cos(3x)\cos(x)^3.$$

- 1. Pour $x \in \mathbb{R}$, exprimer f(-x) et $f(x+\pi)$ en fonction de f(x). Sur quel intervalle I peut-on se contenter d'étudier f?
- 2. Vérifier que f'(x) est du signe de $-\sin(4x)$ et en déduire le sens de variation de f sur I.
- 3. Tracer la courbe représentative de f.

Solution de l'exercice 1. 1. On a

$$f(-x) = \cos(-3x)(\cos(-x))^3 = \cos(3x)\cos(x)^3 = f(x).$$

La fonction f est donc paire. De plus,

$$f(x+\pi) = \cos(3x+3\pi)\cos(x+\pi)^3 = -\cos(3x)(-\cos(x))^3 = f(x).$$

f est donc π -périodique. Finalement, on peut se contenter d'étudier f sur l'intervalle $I = \left[0, \frac{\pi}{2}\right]$. On obtiendra alors la courbe de f sur $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ par parité. Cet intervalle est de longueur π et la fonction est π -périodique. On va donc déduire le reste de la courbe par des translations de vecteur $k\pi \bar{i}, k \in \mathbb{Z}$.

2. f est dérivable sur I et pour tout $x \in I$, on a

$$f'(x) = -3\sin(3x)\cos(x)^3 - 3\cos(3x)\sin(x)\cos(x)^2 = -3\cos(x)^2(\sin(3x)\cos(x) + \sin(x)\cos(3x))$$

et donc

$$f'(x) = -3\cos(x)^2\sin(4x).$$

Puisque $\cos(x)^2 \geqslant 0$, f' est bien du signe de $-\sin(4x)$ sur l'intervalle $\left[0, \frac{\pi}{2}\right]$. En particulier, si $x \in \left[0, \frac{\pi}{4}\right]$, $f'(x) \leqslant 0$ et f est décroissante et si $x \in \left[\frac{\pi}{4}, \frac{\pi}{2}\right]$, $f'(x) \geqslant 0$ et f est croissante.

3. On obtient le dessin suivant :

Exercice 2. Discuter, selon les valeurs de $a \in \mathbb{R}$, le nombre de solutions de l'équation

$$\frac{1}{x-1} + \frac{1}{2} \ln \left| \frac{1+x}{1-x} \right| = a.$$

Solution de l'exercice 2. Posons, pour $x \neq \pm 1$,

$$f(x) = \frac{1}{x-1} + \frac{1}{2} \ln \left| \frac{1+x}{1-x} \right| - a.$$

La fonction f est dérivable sur $\mathbb{R} \setminus \{\pm 1\}$. De plus, sa dérivée (qui ne dépend pas du signe de la quantité à l'intérieur de la valeur absolue dans le logarithme) est égale, après mise au même dénominateur, à

$$f'(x) = \frac{-2x}{(1-x)^2(1+x)}.$$

On en déduit le tableau de variations suivant pour la fonction (le calcul des limites ne pose pas de difficultés particulières; en particulier, il n'y a pas de formes indéterminées) :

x	$-\infty$ –	-1 0	1	+∞
f'(x)	_	+ 0	_	_
f(x)	$-a$ $-\infty$	$-a$ $-\infty$	1 -∞	$+\infty$ $-a$

Par continuité de f, en utilisant de plus sa stricte monotonie sur les intervalles $]-\infty,-1[,]-1,0[,]0,1[$ et $]1,+\infty[$, on discute le nombre de solutions suivant la valeur de a:

- Si a = 0, l'équation n'admet pas de solutions.
- Si a > 0, l'équation admet une unique solution qui est située dans l'intervalle $]1, +\infty[$.
- Si $a \in]-1,0[$, l'équation admet une unique solution qui est située dans l'intervalle $]-\infty,-1[$.
- Si a=-1, l'équation admet deux solutions. L'une de ces solutions est 0, l'autre est située dans l'intervalle $]-\infty,-1[$.

• Si a < -1, l'équation admet exactement trois solutions. L'une est située dans l'intervalle] $-\infty$, -1[, la seconde dans l'intervalle] -1, 0[et la troisième dans l'intervalle]0, 1[.

Exercice 3. Soit $g: \mathbb{R}^+ \to \mathbb{R}$ définie par $g(x) = (x-2)e^x + (x+2)$. Démontrer que g est positive ou nulle sur \mathbb{R}^+ .

Solution de l'exercice 3. On va étudier g. Pour cela, il faut aller jusqu'à la dérivée seconde! En effet, g est de classe C^{∞} sur \mathbb{R}^+ , avec $g'(x) = (x-1)e^x+1$. Il ne semble pas facile d'étudier directement le signe de g'. On va donc calculer la dérivée de g', qui est $g''(x) = xe^x$, $x \in \mathbb{R}^+$. g'' est positive sur \mathbb{R}^+ , donc g' est croissante sur cet intervalle. De plus, g'(0) = 0 donc g' est positive sur \mathbb{R}^+ . Ainsi, g est croissante sur \mathbb{R}^+ et comme g(0) = 0, g est positive sur \mathbb{R}^+ .

Exercice 4. Soit $p \ge 2$ un entier et $0 < a_1 < \cdots < a_p$ des nombres réels positifs.

1. Montrer que, pour tout $a > a_p$, l'équation

$$a_1^x + \dots + a_n^x = a^x$$

admet une unique racine x_a .

- 2. Étudier le sens de variation de $a \mapsto x_a$.
- 3. Déterminer l'existence et calculer

$$\lim_{a \to +\infty} x_a \quad \text{et} \quad \lim_{a \to +\infty} x_a \ln(a).$$

Solution de l'exercice 4. 1. On introduit la fonction

$$f_a(x) = \left(\frac{a_1}{a}\right)^x + \dots + \left(\frac{a_1}{a}\right)^x = \sum_{k=1}^p e^{x \ln\left(\frac{a_k}{a}\right)}.$$

Puisque $\ln\left(\frac{a_k}{a}\right) < 0$, $x \mapsto x \ln\left(\frac{a_k}{a}\right)$ est strictement décroissante, et donc f_a est strictement décroissante. Or, $f_a(0) = p$ et

$$\lim_{x \to +\infty} f_a(x) = 0.$$

L'équation $f_a(x) = 1$ admet donc une unique racine $x_a > 0$.

- 2. Soit a < b. En reprenant la notation de la question précédente, pour tout x > 0, on a $f_a(x) \ge f_b(x)$. En particulier $f_b(x_b) = f_a(x_a) = 1 \ge f_b(x_a)$. Par décroissance de f_b , on en déduit que $x_a \ge x_b$ et donc $a \mapsto x_a$ est décroissante.
- 3. Puisque $a \mapsto x_a$ est décroissante et minorée par 0, elle admet une limite $\ell \geqslant 0$ en $+\infty$. Supposons $\ell > 0$. Alors, en passant à la limite dans

$$a_1^{x_a} + \dots + a_p^{x_a} = a^{x_a},$$

on trouve

$$a_1^\ell + \dots + a_p^\ell = +\infty,$$

une contradiction. Donc $\ell=0.$ Ainsi, il vient également

$$x_a \ln(a) = \ln\left(a_1^{x_a} + \dots + a_p^{x_a}\right),\,$$

ce qui prouve que $x_a \ln(a)$ tend vers $\ln(p)$.