THIS REPORT HAS BEEN DELIMITED AND CLEARED FOR PUBLIC RELEASE UNDER DOD DIRECTIVE 5200.20 AND NO RESTRICTIONS ARE IMPOSED UPON ITS USE AND DISCLOSURE.

DISTRIBUTION STATEMENT A

APPROVED FOR PUBLIC RELEASE;
DISTRIBUTION UNLIMITED.

SECURITY MARKING

The classified or limited status of this report applies to each page, unless otherwise marked.

Separate page printouts MUST be marked accordingly.

THIS DOCUMENT CONTAINS INFORMATION AFFECTING THE NATIONAL DEFENSE OF THE UNITED STATES WITHIN THE MEANING OF THE ESPIONAGE LAWS, TITLE 18, U.S.C., SECTIONS 793 AND 794. THE TRANSMISSION OR THE REVELATION OF ITS CONTENTS IN ANY MANNER TO AN UNAUTHORIZED PERSON IS PROHIBITED BY LAW.

NOTICE: When government or other drawings, specifications or other data are used for any purpose other than in connection with a definitely related government procurement operation, the U. S. Government thereby incurs no responsibility, nor any obligation whatsoever; and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use or sell any patented invention that may in any way be related thereto.

9 Technical publication.

(B) N123/60530/9602

(B) N0TS TP-3293

(C) Rmm0421004 216 1 F008 f08 following the impedance match and description and theory of hydrodynamic implicit. The impedance match and description is a discussion of basic shock wave equations and theory of hydrodynamic implicit. The impedance match and description is a discussion of basic shock wave equations and theory of hydrodynamic implicit.

ABSTRACT. This compilation is a discussion of basic shock wave equations and theory of hydrodynamic impact. The impedance match method for determining Hugoniots is outlined. Empirical data from the Hugoniot can be used to calculate temperatures associated with the passage of shock waves. The bases for these calculations are described. A number of empirical equations, some of which are useful for computer calculations and others for graphical description are tabulated.

It has been found that in most instances, a linear relationship exists between shock and particle velocities. Constants appearing in this relationship are listed for a large number of materials.

The bulk of the compilation consists of graphs and tables of shock velocity, particle velocity, pressure, relative volume and temperature associated with shocks. For almost all materials, shock velocity is plotted against pressure and pressure against relative volume. In some instances where shock velocity is not linearly related to particle velocity, graphs relating the two have been drawn.

The final section is a reasonably complete bibliography listing the papers, reports, and books which contain dynamic equation of state data.

Qualified requestors may obtain copies of this report direct from DDC.

U.S. NAVAL ORDNANCE TEST STATION

China Lake, California

11) May \$65, (2) 330p.

mb

U. S. NAVAL ORDNANCE TEST STATION

AN ACTIVITY OF THE BUREAU OF NAVAL WEAPOMS

J. I. HARDY, CAPT., USN Commander

WM. B. McLEAN, PH.D. Technical Director

FOREWORD

This report is a compilation that discusses the basic shock wave equations and theory of hydrodynamic impact. It is part of an applied research program that was conducted in earth and rock mechanics in support of explosive ordnance problems at the U.S. Naval Ordnance Test Station.

This publication is a facsimile of the report prepared by Rinehart and Associates. It is issued as a Station technical publication to facilitate distribution to other interested agencies.

This work was accomplished by Rinehart and Associates under U. S. Naval Ordnance Test Station Contract N123-60530~9602 and supported by Bureau of Naval Weapons Task Assignment RMMO 42-004/216-1/F008-08-06.

Released by JOHN PEARSON, Head, Detonation Physics Group 9 March 1965 Under authority of HUGH W. HUNTER, Head, Research Department

NOTS Technical Publication 3798

Published by
Collation
First printing
Security classification

THIS PAPER IS CHEMICALLY TREATED, NO CARBON PAPER IS REQUIRED	II ST BBG/						
LASSIFICATION	ORIGINATING AGENCY ENCLOSURE (REPORT TITL	BUILD THE TIPE					
UNCLASSIFIED WHEN FNCLOSURE IS REMOVED	Compiletion Nata for Sol	of Dynamic Equa. ids and Liquids	ion of atei	COG. BUWEPS CODE (For use in bUWEPS only)			
ONCENSE! TES MILE THEESONE 13 REMOVES			CONTRACT/PROJECT/WE	PTASK NUMBER			
<u>-</u>	-1		The a permitty	/2.6-1/2008-08			
TO Administrator Detense Documentation Center fo	or Scientific		SECURITY CLASSIFICA	TION UNCLAS CON 1. SECR			
and Technical Information (DI Bldg #5, Cameron Station			REPCRT				
Alexandria, Viiginia 22314 L			TITLE OR SUBJECT				
			ABSTRA^T OR SUMMARY				
closure is forwarded for distribution subjec	ct to limitations chi	ecked below Request A	D number be insert	ed in space above, on			
py of this letter be returned to or ginating	g activity if shown	below, and two copies b	e sent to Uniei, i	Suivau of Marai Heapon.			
Qualified requesters may obtain copid direct from DDC	es or this report	direct from DDC O	ther qualified DDC	copies of this report, users should request			
Qualified requesters may obtain copie	es of this report	through no source users)	(Not available	to non-Government DDC			
d.rect from DDC Foreign announcement of this report by DDC is not authorized.	and dissemination						
U.S. Government Agencies may obtain copi	es of this report	U.S. Military Ag	gencies may obtain	copies of this report Clusers should request			
direct from DDC Other qualified DDC use	rs should request	through no source.	(Not available	e to non-military DDC			
through the Chief, Bureau of Naval Wea D C 20360.		users)					
U.S. Military Agencies may obtain copi direct from DDC. Other qualified DDC use	rs should request	All distribution of	of this report is request through	controlled Qualified the Chief, Bureau of			
through the Chief, Bureau of Naval Weap D (20360	ons, Washington,	Naval Weapons, Was	shington, D.C. 203	60			
Γ.,	·· 7						
			Ï				
L	٦		Ì				
			i				
			نـ				
		,					
		·					
- UNATUR		TITLE					
		Head, Head	ribution , te				
г	٦		7500/a	DATE 20 OCT C)			
Chief, Bureau of Naval Weapon	•		CLASSIFICATION	i a vec es			
Navy Department Washington, D 4 20360							
L	٦						
			UNGLASSIE ISS	. N. (Lei gener in terri			
			A CONCLASSIBLED AND	IN LICELUCIUSE IS DEIMOVE			

ţ

CONTENTS

	Page
Introduction	1-3
Basic Shock Wave Equations	4-8
Theory of Hydrodynamic Impact	9-16
Impedance Match Method for Determining Hugoniots	17-23
Calculation of Temperature Associated with Passage of Shock Waves	24-25
Empirical Equations	26 -34
Summary of Data and Calculations for Metals at 3,500 kilotars	35
Constants relating Shock Velocity to Particle Velocity	36-41
Tables and Graphs: Shock Velocity, Particle Velocity, Pressure, Relative Volume, and Temperature (Listed alphabetically below)	42-321
Bibliography	322 -3 29
Tables and Graphs (* indicates temperature data)	
Alluvium, Dry Desert	43-44
Alluvium, Nevada	45-48
Aluminum: 24ST, 2S#	49-56
Andesite	57 - 58
Antimony*	59-62

	Page
Avcoite	63 - 65
Basalt	66-68
Beryll1um*	69 - 72
Bismuth*	73-78
Brass*	79-83
Cadmium*	84-88
Chromium*	89-92
Cobalt*	93-96
Copper#	97-101
Dolomite	102-103
Gold*	104-107
Granite	108-109
Granite, Shoal	110-111
Graphite, Pyrolytic	112-113
Halides*	114-161
Cesium Bromide Cesium Chloride Cesium Iodide Lithium Bromide Lithium Chloride Lithium Fluoride Lithium Fodide Sodium Sodium Chloride: (Rock Salt; Single crystal) Sodium Iodide Sodium Iodide Sodium Iodide Sodium Iodide Sodium Iodide	
Indium*	162-165
Iron*	166-171
Kel-F	172-173
Lead*	174-177
Limestone	178-179

		Page
Liquids	180-198	
Acetone Benzene Bromoethane Carbon Disulfide Carbon Tetrachloride Ethyl Ether Ethyl Alcohol Glycerine	Hexane Mercury Methanol Mononitrotoluene N-Amyl Alcohol Toluene Water	
Magnesium*		199-202
Marble: Dark, Light, USSR		203-204
Molybdenum*		205-208
Nickel*		209-212
Niobium*		213-216
Nylon		217-218
Oil-Sand		219-220
Oil-Shale: Dry, Wet	221-222	
Palladium*		223-226
Paraffin		227
Phenolic: AVCO Phenolic F G E Phenolic Fi Chopped Nylon P Tape Wound Nylon	228-233	
Platinum*		234-237
Playa		238-239
Plexiglas	240-241	
Polyethylene	242-243	
Polystyrene	244-245	
Quartz: Crystalline, Fuse	246-255	
RAD 58B	256-257	
Refrasil, Oblique Tape Wou	258-259	

	Page
Resins, Series 124	260-261
Rhodium*	262 -26 5
Sand: Dry Silica (porosity 22%, 41%) Water Saturated (porosity 41%)	266 -26 9
Silver*	270-273
Steel, Low Carbon	274-275
Taconite	276-278
Tantalum*	2 79- 282
Teflon	283-284
Thallium*	285-288
Thorium*	289-292
Tin*	29 3- 296
Titanium#	29 7-3 00
Tuff: Dry Volcanic, Wet Volcanic	301-304
Tungsten*	3 05 -3 08
Vanadium*	309 - 312
Zine*	313-317
71 maantum#	318-321

Compilation of Dynamic Equation of State Data for Solids and Liquids

INTRODUCTION

There has been a rapid accumulation of data pertaining to the behavior of materials, metals, plastics, liquids, and ionic compounds, subjected to intense, dynamic loading. Much of these data relate to the volume changes occurring under compression, known as dynamic equation of state information or Hugoniot data. The experimental results have provided the constants needed to fix in a quantitative fashion, the thermodynamic parameters associated with dynamic compression. These data have been widely scattered and not readily accessible to the numerous investigators who have use for them. compilation brings all of the available data together in one place in an easily usable form. It contains discussions of the essentials of shock wave theory, numerous tables and graphs, empirical equations, and a comprehensive bibliography.

Most of the empirical data used in determining
Hugoniot curves have been obtained by making velocity
measurements. In most of the early work, shock velocity
and particle velocity were measured simultaneously and the
conservation equations were used to compute pressurevolume relationships and other thermodynamic constants.

Later, after Hugoniots had been well established for some
materials, the impedance match method became more popular

.

since it involved only the determination of shock velocity.

Some attempts have been made to measure density changes directly using flash X ray techniques, but, in general, these have not given very accurate results. Direct measurements of pressure are being made successfully at present using piezoelectric quartz crystals, although the upper limit of pressure by this technique is only about forty kilobars.

Several methods have been used to generate shocks. In the early tests, an explosive charge was detonated in intimate contact with the material under study using explosive plane wave generators. A severe limitation of this technique was the fact that a wide variation of shock pressure could not be achieved. An important later modification of the method was the introduction of an impactor plate which was propelled by the explosive charge so as to strike the specimen. By judicious choice of impactor plate material, and explosive charge size, a very wide range of pressures were possible.

More recently, a number of laboratories have developed gun impactor devices for generating shocks. These devices have the big advantage of accurately preselecting and controlling initial conditions. With guns, extremely high pressures, several thousand kilobars, are possible.

Pin contactors to measure free surface velocity gave the first quantitative data on particle velocity, the assumption being made that free surface velocity was just twice that of particle velocity. The technology of the pin contactor has reached an exceedingly high level of development although other techniques are gradually replacing this one. One such technique utilizes the fact that argon becomes luminescent when subjected to high intensity shock, making it possible to measure times of arrival by observing, with a streak camera, onsets of luminosity. In another technique, surface velocity is monitored continuously by means of a resistance wire. Condenser techniques have also been found useful.

No attempt has been made in this compilation to delineatedetailed experimental methods used in obtaining data. It is felt that anyone interested in full descriptions of experimental methods can obtain these best by going to the original source.

Easic shock wave equations

A shock wave is in essence a moving discontinuity in pressure, temperature, particle velocity, density, and internal energy. For all practical purposes, the shock wave converts instantaneously a fluid of low density, temperature, and pressure to one of high density, temperature and pressure. The following equations, which can be readily derived on the basis of Newton's laws of motion and the conservation laws, (Cole, 1948; Duvall, 1961) describe fully the progress of the shock wave and the conditions ahead of and behind a shock moving through a material which is initially at rest.

Conservation of mass:
$$\rho(U-u) = \rho_0 U$$
 (1)

Conservation of momentum:
$$P - P_0 = e_0 u U$$
 (2)

Concervation of energy:
$$Pu = {c_0 U (E - E_0 + u^2 / 2)}$$
 (3)

where U is the velocity with which the shock front is moving; u is the translational particle velocity, the velocity with which a point in the compressed material behind the shock front is moving in the direction of motion of the front; ρ_0 and ρ_0 are the respective densities of the material in front of the shock and behind it; and ρ_0 and E are the respective energies of the material before and after compression.

A most useful equation, from a thermodynamic point of

view, is obtained if equations (1) and (2) are combined, giving the relationship

$$E - E_0 = 1/2 (P + P_0) \left[(1/\rho_0) - (1/\rho) \right].$$
 (4)

This relationship is frequently called the Rankine-Hugoniot relation.

These four equations containing as they do five parameters, are not adequate to determine uniquely the four parameters. Another equation is required, an equation of state which, when combined with equation (4), results in a relation between e and e where e = 1/e, known as the Hugoniot e-e relation, or simply, the Hugoniot. This Hugoniot relation defines the locus of all points that will be reached by a shock transition from the initial state e

Solving equations (1) and (2) for shock velocity and particle velocity in terms of the pressure and density behind the front yields

$$U = \left[(\varrho/\varrho_0) (P - P_0) / (\varrho - \varrho_0) \right]^{\frac{3}{2}}$$
 (5)

and

$$u = \left[(\varrho - \varrho_o) / \varrho \right] U \qquad (6)$$

Equations (5) and (6) are useful in calculating shock velocity and particle velocity as a function of pressure when the equation of state is known.

It is also apparent from equations (5) and (6), particularly equation (6), that a simultaneous experimental determination of shock velocity and particle velocity is sufficient to establish a point on the Hugoniot ?-v curve and that a series of such measurements will define the entire curve.

Extensive single Hugoniot measurements on a large number of substances (Al*tchuler, Krupnikov and Brazhnik, 1958) indicate that for almost all substances, shock velocity and particle velocity are linearly related. The reason for this linear relationship:

$$U = a + b u \tag{?}$$

where a and b are constants characteristic of the material, is not understood. It holds, however, for ionic, molecular, and metallic crystals and includes liquids as well as solids and alloys. Sand (Bass, Hawk and Chabai, 1963) is a notable exception. A specific linear relation holds only for a single phase. When a material undergoes a phase change, the slope changes at the pressure where the phase change occurs. This fact is used to discover and to locate more precisely where phase transitions occur. Such transitions have been observed in bismuth (Walsh, Rice, McQueen and Yarger, 1957; Al'tshuler, Krupnikov and Brazhnik, 1958), granite (Alder, 1963; Grine, 1960; and Lombard, 1961), iron and steel (Minshall, 1955), marble (Lombard, 1961; Dremin and Adadurov, 1959), playa (Bass, Hawk and Chabai, 1963), pyrolytic graphite (Wagner,

Waldorf and Louie, 1962), taconite (Lombard, 1961), and tuff (Lombard, 1961; Bass, Hawk and Chabai, 1963)

when shock velocity and particle velocity are linearly related, the equation of state can be written explicitly in terms of the constants a and b of equation (7). Substituting in equation (2) the expression for U of equation (7) yields

$$P = \rho_0 u (a + b u)$$
 (8)

when P_0 , usually equal to one atmosphere, is considered negligibly small compared to P. Equation (6) can then be written in the form

$$v / v_0 = [a + (b - 1) u] / (a + b u)$$
 (9)

Eliminating u between equations (8) and (9) gives

$$P = \rho_0 a^2 \eta / (1 - b \eta_1)^2$$
 (10)

where

$$\uparrow = 1-v / v_0 .$$

The equation of state, expressed by equation (10) is extremely useful in computing thermodynamic quantities. It should be noted, however, that equation (10) is applicable only when shock velocity and particle velocity are linearly related.

Numerous investigators (Al'tshuler, Krupnikov and Brazhnik,

1958; Wagner, Waldorf and Louie, 1962) have expressed their
experimental results in the form of equation (10) although
other more empirical equations of state are often given.

The Los Alamos group (Walsh, Rice, McQueen and Yarger, 1957)
for instance, have published much of their equation of state
data in the purely empirical and analytic form

$$P = A\mu + B\mu^2 + C\mu^3$$

where

$$\mu = (e/e_0) - 1$$

and A. E. and C are material dependent constants.

Theory of Hydrodynamic Impact

Consider the hypothetical case of two semi-infinite bodies colliding along a plane interface, one body, medium 1, moving with velocity, V, in a direction perpendicular to the interface (see figure); the other, medium 2, is stationary. Plane shocks will be propagated from the interface into both colliding bodies as indicated in the second figure. For most practical as well as theoretical purposes, each shock front may be considered a zone of infinitesimal width across which there is a discontinuous jump of pressure and velocity of the medium.

The following relationships have been derived for the changes across the shock front, propagated into a body at rest, from the laws of conservation of mass, momentum, and energy:

$$U e_0 = (U - u)e$$
 (1)

$$P = \rho_0 U u \tag{2}$$

and

$$E = P / 2 (1 / \rho_0 - 1 / \rho)$$
 (3)

where U is shock velocity; u is particle velocity behind the shock front; Q is the initial density; Q is the density behind the shock front; P is the change in pressure across the shock front; and E is the change in internal energy across the shock front. These conditions must hold at all

times during the course of the impact.

Two boundary conditions further connect the shocks in the two bodies: because the two bodies must remain in contact during the collision, the velocities of the two materials on both sides of the interface must be the same, which is the boundary condition of continuity of particle velocity; and secondly, from Newton's third law, action equals reaction, the pressures in the two shocks must be equal -

 $P_1 = P_2$ (continuity of pressure).

Viewed from coordinates fixed with reference to the interface, MN, the particle velocity between the two shocks is zero: the material on each side of the interface appears to an observer, riding on the interface, to be at rest, with shock fronts, AB and CD, moving out into each respective medium at a velocity determined by momentum considerations. In homogeneous media, the shock velocities will remain constant.

Consider now what happens to the several planes: AB, the front of the shock moving upward into medium 1; MN, the plane of common contact between medium 1 and 2; and CD, the front of the shock moving downward into medium 2. EF is a fixed plane of reference, at impact being coincident with MN. After unit time, MN will have moved down from EF a distance u, u being the particle velocity in the shock waves; CD will have moved a distance u2 into medium 2 from EF and will be a distance u3 from MN, u4 being the velocity of the shock

in medium 2; and AB will have moved a distance U_1 into medium 1 and will lie at a distance $(U_1 - v)$ upward from EF where U_1 is the shock velocity in medium 1. AB will lie a distance $(U_1 - V) + u$ from MN.

Look now at the compression of the two bodies:

$$\delta_1 = (e_1 - e_{10}) / e_1 = (v_{10} - v) / v_{10}$$
 (4a)

$$\delta_2 = (\rho_2 - \rho_{20}) / \rho_2 = (v_{20} - v_2) / v_{20}$$
 (4b)

where δ_1 is the compression of medium 1; δ_2 is the compression of medium 2; ρ_{10} and ρ_{20} are the original densities of mediums 1 and 2, respectively; ρ_1 and ρ_2 are densities of compressed mediums 1 and 2, respectively; and the v's are specific volumes.

The mass, m_{10} of medium 1 which before impact was contained in the volume U_1 , after unit time resides in volume $(U_1 - V + u)$; and the mass, m_2 , of medium 2, originally residing in the volume U_2 , now resides in volume $(U_2 - u)$. Thus, since by definition

$$Q_1 = m_1 / (U_1 - V + u)$$
; $Q_{10} = m_1 / U_1$

$$\varrho_2 = m_2 / (U_2 - u)$$
; $\varrho_{20} = m_2 / U_2$.

equations (4 a and b) lead to

$$\delta_{1} = \left[m_{1} / (U_{1} - v + u) - m_{1} / U_{1} \right] / \left[m_{1} / (U_{1} - v + u) \right]$$

$$\delta_{2} = \left[m_{2} / (U_{2} - u) - m_{2} / U_{2} \right] / \left[m_{2} / (U_{2} - u) \right]$$

which reduce to

$$U_1 = (V - u) / \delta_1 \tag{5}$$

and

$$U_2 = u / \delta_2 \qquad . \tag{6}$$

From conservation of momentum

$$m_1 V = u (m_1 + m_2)$$

so that

$$m_2 = m_1 (7 - u) / u$$
 (7)

By definition and substitution from equations (5) and (6) it follows that

$$m_1 = U_1 \rho_{10} = (V - u) \rho_{10} / \delta_1$$
 (8)

and

$$m_2 = y_2 \rho_{20} = u \rho_{20} / \delta_2$$
 (9)

Combining equations (7), (8), and (9) and solving for V yields

to the committee part of the an amount in a committee of the committee o

$$v = u \left[1 + (\rho_{20} \delta_1 / \rho_{10} \delta_2)^{\frac{1}{2}} \right]$$

and as u cannot exceed V under compression, only the positive root has physical significance. Solving for u gives

$$u = v / \left[1 + (\varrho_{20} \delta_1 / \varrho_{10} \delta_2)^{\frac{1}{2}} \right]$$
 (10)

and using equation (6) gives

$$u_2 = v / \delta_2 \left[1 + (\varrho_{20} \delta_1 / \varrho_{10} \delta_2)^{\frac{1}{2}} \right].$$
 (11)

Now from equation (2)

$$P_2 = \rho_{20} U_2 U_2$$
 (2a)

where u_2 and U_2 are, respectively, particle and shock velocities measured with respect to the unshocked material. In the original frame of reference, medium 2 is initially at rest so that u_2 equals u_1 , the velocity with which the interface between the two mediums moves, and equation (2a) becomes

$$P = e_{20} u_2 u$$

since $P_2 = \Gamma_1 = P$. Note, however, that it is not true that particle velocity, v_1 , in medium 1, measured with respect to the unshocked medium, is equal to u. Rather

$$u_i = V - u$$

and

$$P = e_{10} U_1 U_1 = e_{10} U_1 (V - u)$$
.

Use of equation (La) leads finally to

$$P = (\varrho_{20} / \delta_2) \left\{ v / \left[1 + (\varrho_{20} \delta_1 / \varrho_{10} \delta_2)^2 \right] \right\}^2$$

which becomes

$$P = \left\{ v / \left[(\delta_2 / \rho_{20})^{\frac{3}{2}} + (\delta_1 / \rho_{10})^{\frac{3}{2}} \right] \right\}^2 . (12)$$

Equations (11) and (12) permit calculations of shock velocity U2 and contact pressure P for a given impact velocity V, provided the respective equations of state of the two mediums are known.

On the other hand, by measuring V, the velocity of impact, u, particle velocity at the interface, and U_2 , the velocity of the shock in the impacted medium, equations (11) and (12) contain only two unknowns, δ_1 and δ_2 , hence can be used to compute an equation of state.

If the impact is between two like materials, then from equation (10)

$$u = V / 2$$

では、100mmので

that is, particle velocity or interface velocity is exactly one half the velocity of impact and equation (12) becomes

$$P = (\rho_{20} / \delta_2) (v / 2)^2$$

or

$$F = (1 / v_{20}) \left[1 - (v / v_{20}) \right] (v / 2)^2$$
.

Now employing the condition

$$P = \rho_{20} u u_2 = \rho_{10} u_1 u_1 = \rho_{10} (v - u) u_1$$

where u_1 is the particle velocity in medium 1 behind the shock and U_1 is the shock velocity in medium 1, both velocities relative to unshocked medium 1, that is $u_1 = V - u$, it can be shown by substitution that

$$v = u_1 \left[1 + (\rho_{10} \delta_2 / \rho_{20} \delta_1)^{\frac{1}{2}} \right]$$

and

$$v = \delta_1 U_1 \left[1 + (\rho_{10} \delta_2 / \rho_{20} \delta_1)^{\frac{1}{2}} \right]. \quad (13)$$

Impedance match Method for determining Maganist

When a shock mave encounters an interface between two dissimilar materials, as indicated in the figure, two new waves will be generated, a transmitted shock wave and a reflected wave. The relative intensities of these new waves are governed by the respective compressibilities and densities of the two interacting materials. This fact has been used extensively by emperimental investigators to establish Hugoniot curves. (Duvall, 1961; Al*tshuler, Krupnikov and Drazhnik, 1958; Walsh, Rice, Mchueen and Yarger, 1957; However and Marsh, 1960) Themethod is known as an impedance match method. The butic atrutagem is to generate a shock of known or measurable strength in a material whose Hugoniot curve is well established, allow the shock to be reflected at an interface between the "lano.m" natorial (medium I in figure) and the material for which the Hugoniot is being sought (medica II in figure), and then measure the velocity of the transmitted shock. This procedure is repeated for shocks of several strengths in order to obtain the points needed to trace a full Pyroniot curve.

The basis of the method lies in judicious application of the concervation equations and appreciation of the boundary conditions. At the interface, two boundary conditions must be met: continuity of pressure, and continuity of carticle velocity. The system of reflected and transmitted phochs which develops after the shocks can be interface in

Impedance match method for determining Hygoniot

When a shock wave encounters an interface between two dissimilar materials, as indicated in the figure, two new waves will be generated, a transmitted shock wave and a reflected wave. The relative intensities of these new waves are governed by the respective compressibilities and densities of the two interacting materials. This fact has been used extensively by emerinental investigators to establish Hugoniot curves. (Duvall, 1961; Al tshuler, Krupnikov and Brazhnik, 1958; Walsh, Rice, Holueen and Yarger, 1957; Mc ueen and Marsh, 1960) Themethod is known as an impedance match method. The basic atratagem is to generate a shock of known or measurable strength in a material whose Hugoniot curve is well established, allow the shock to be reflected at an interface between the "lmoim" material (medium I in figure) and the material for which the Hugoniot is being sought (medium It in figure), and then measure the velocity of the transmitted shock. This procedure is repeated for shocks of several strengths in order to obtain the points needed to trace a full I goniot curve.

The basis of the method lies in judicious application of the conservation equations and appreciation of the boundary conditions. At the interface, two boundary conditions must be met: continuity of pressure, and continuity of particle velocity. The system of reflected and transmitted chocks which develops after the shock reaches the interface is

二十六 なるこれない

illustrated in the figure. The pressure, Fg, at the interface is the pressure of the transmitted shock and at the same time represents the sum of the pressure, P,, of the incident wave and Γ_1^* , the pressure of the reflected wave. The pressure, 1, may be either positive or negative, depending upon the impedance match between the two materials. The cituation at the interface can be defined by the point (P2, u2) on a pressure versus particle velocity diagram. Each shock of a different strength locates a new point and the locus of all such points defines the unknown Hugoniot. The problem is to locate each of the (P_2, u_2) points. Three pieces of information are sufficient to establish any one point such as M in the figure: the pressure, P1, of the incident shock, the Hugoniot curve for medium I, and the velocity of the shock transmitted into medium II. The pressure, P, the Hugoniot, and conservation equations fix the point 3 which has the coordinates F_1 and u_1 . A curve, the reflection Hugoniot or cross curve, is drawn through S. This curve is a mirror image about the point S of the P-u curve or Hugoniot for medium I, which is assumed known, and portrays on the P-u diagram possible states of material I with respect to the state (P_1, u_1) . The point E representing the state (P_2, u_2) must lie on this curve. The point H must also lie on the line

The state of the s

where U_2 is the velocity of the shock transmitted in medium II.

Particle Velocity — u

This relationship follows 1.70m application of the conservation equations. With e_0 and e_2 both known, the line can be drawn and its intersection with the reflection Hugoniot locates M.

One of the best established Hugoniots is that for 24 ST aluminum (Rice, McQueen and Marsh, 1958). A number of cross curves for this material are given in the accompanying table.

いくこうられ、これはまではあるないまでもあるとなっていますと、これはないないないないないできましていることにはいいますがあるというできます。

Carlot and the second

Pressure versus particle velocity curves for 24 ST aluminum*

P	Particle velocity								
0	1.17	1.66	2.10	2.53	2.35	3.38	3.63	_	
100	<u>0.58</u>	1.08	1.78	1.96	2.35	2.75	3.08	3.45	-
150	0.34	0.83	1.29	1.71	2.10	2.49	2.83	3.19	3.61
200	0.12	0.61	1.06	1.48	1.88	2.26	2.61	2.96	3.3 8
250	-	0.40	0.85	1.27	1.66	2.04	2.39	2.74	3.13
30 0	•	0.20	0.65	1.07	1.47	1.34	2.20	0.54	1.95
350	-	0.01	0.47	0.88	1.28	1.65	2.01	2.35	2.69
400	-	-	0.29	0.70	1.11	1.47	1.93	2.18	2.51
450	•	•	0.12	0.53	0.24	1.30	1.66	2.00	2.34
500	460	-	~	0.36	C.77	1.14	1.50	1.84	2.15

Source: Rice, Mc. con and Walsh, 1958

[#] Each underlined number is a particle velocity in an asce for the corresponding shock pressure in hilobars. Remaining numbers in a given column trace out associated cross curves.

Calculation of temperatures associated with passage of shock wave

The temperature behind the shock, $T_{\rm H}$, is calculated from the equation

$$T_{H} = T_{o} \exp^{-\frac{1}{2}(1-v_{1}/v_{0})} + \exp^{-\frac{1}{2}(v_{1}/v_{0})} \left\{ (1/2) \left[-\frac{(dP/dv)(v_{0}-v)}{(v_{0}-v)} + P \right] \exp^{-\frac{1}{2}(v_{0}/v_{0})/(v_{0})} \right\} \frac{dv}{HUG}.$$

where Y is Grdneisen's constant given by

$$\forall = (dP / dT)_{v} (v_{o} / C_{v})$$

The integration is performed numerically along the Hugoniot curve.

The equation is exact but the variation of $C_{\mathbf{v}}$ and $(\partial P/\partial T)_{\mathbf{v}}$ with volume is not known. In most calculations these are assumed constant. When the Debye temperature is low, as it is for alkali halides, the assumption of constant specific heat, $C_{\mathbf{v}}$, is reasonable.

The calculation of the residual or final temperature, T_A , after passage of the shock is made utilizing the relationship

$$T_{A} = T_{H} \exp (\partial P/\partial T)_{V} (1/c_{V}) (v_{H}-v) = T_{H} \exp \left[(v_{H}/v_{O}) - (v/v_{O}) \right]$$

where $T_{\rm H}$ and $v_{\rm H}$ are the known conditions at any point, takes here

as the Hugoniot point. To fix the final temperature and volume, the known relation

$$(v - v_0)$$
 $p = 0$ $= v_0 \wedge (T - T_0)$ $p = 0$

along the P=0 isobar is used. Here T_0 and v_0 refer to the temperature and specific volume and \triangle is an average value of the thermal coefficient of volume expansion.

Source: Walsh and Christian, 1955

Empirical equations

Much of the Hugoniot data can be summarized in the form of empirical equations and several of the investigators have done this. The equations which they give are extremely useful in making thermodynamic computations. Some, such as the analytical form used by the Los Alamos group (Rice, McLueen and Walsh, 1958) are particularly adaptable to computer calculations. Others (Wagner, Waldorf and Louie, 1960; Al'tshuler, Krupnikov and Erazhnik, 1958) have a more theoretical basis, their derivation depending upon the empirical linear relationship between shock velocity and particle velocity.

A number of these empirical relationships plus appropriate constants are given on the following pages.

Empirical equation

Aluminum

Relationship: Pressure versus volume change

Material: 6061-T6 aluminum

Source: Lundergan, 1961a

Equation:

$$P = 1046.8 \left[1 - (v / v_0) \right]$$
 kilobarc $P < 6.3$

$$P = 795.5 - 794.0 (v / v_0)$$
 kilobars 6.3 < P < 31

Relationship: Pressure as function of free surface velocity

Material: 24 ST aluminum

Source: Walsh and Rice, 1957

Equation:

$$U = 5.190 + 20.77 \log_{10} \left[(u_{fs} + 10.895) / 10.895 \right]$$

where ufs is free surface velocity. Velocities are in kilometers per second. Equation is applicable in pressure range 30 to 500 kilobars.

Empirical equation Metals

Relationship: Pressure versus volume change

Materials: Several metals and Lucite

Sources: Rice, McQueen and Walsh, 1958; Walsh, Rice, McQueen

and Yarger, 1957

Equation: Analytical fits of Hugoniot curves having form

$$P = A\mu + B\mu^2 + c\mu^3$$

where $\mu = (e/e_0) - 1$ and A, B, and C are constants. Actually this is a two parameter fit of data since the ratio B/A is determined by theory.

Table: Values of constants. Pressure range in which fit has been made is up to about 500 kilobars.

Metal	A	В	O
Beryllium	1182	1382	0
Cadmium	479	1087	2829
Chronium	2070	2236	7029
Cobalt	1954	3889	1728
Copper	1407	2871	2335
Gold	1727	5267	0
Lead	417	1159	1010
Magnesium	370	540	186
Molybdenum	2686	4243	733
Nickel	1963	3750	0
Silver	1088	2687	2520

AND THE RESIDENCE OF THE PARTY OF THE PARTY

Table: continued

The state of the s

lietal	A	В	C
Thorium	572	646	8 5 5
Tin	432	878	1935
Titanium	990	1158	1246
Zinc	662	1577	1242
24 ST aluminum	765	1659	428
Prass	1037	2177	3275
Indium	496	1163	0
Niobium	1658	2786	0
Falladium	1744	3801	15230
Flatinum	2760	7260	0
Rhodium	2842	6452	0
Tantalum	1790	3023	0
Thallium	317	938	1485
/iroonium	934	720	0
Lucite	83	163	322

Empirical equation

Metals

Relationship: Pressure versus volume change

Materials: Several metals

Source: Al'tshuler, Krupnikov and Brazhni:, 1958

Equation:

$$P = a^{2} (v_{o} - v) / (b - 1)^{2} v^{2} \left\{ \left[b / (b - 1) \right] - v_{o} / v \right\}^{2}$$

where a and b are constants in relationship

$$U = a + b u$$

between shock velocity U and particle velocity u. Equation is applicable in range 300 to 3000 kilobars

Table: Values of constants

Material	(mm/usec)	ъ	9 00
Copper	3.90	1.46	8.93
Zinc	3.20	1.45	7.14
Silver	3.30	1.54	10.49
Cadmium	2.65	1.48	8.64
Gold	3.15	1.47	19.30
Lead	2.30	1.27	11.34
Fixauth	2.00	1.34	9.80
Iron	3.80	1.58	7.80

Empirical equation Plastics

Relationship: Pressure versus density change

Materials: Plastics and plastic composites

Source: Wagner, Waldorf and Louie, 1962

Equation:

The state of the s

$$P = A (\eta - 1) \eta / (K - \eta)^2$$
 kilobars

where $h = e/e_0$, and A and K are constants given in table. Table: Values of constants

Material	A	K	Pressure range (kilobars)
Chopped Nylon Phenolic	59.1	2.24	39-274
Series 124 Resin	46.3	1.96	45-147
Avcoat	56.1	2.29	14-150
AVCO Phenolic Fiberglass	2,530	7.44	0-180
Tape Wound Nylon Phenolic	1.020	3.38	20-86
GE Phenolic Fiberglass	60,200	13.0	28-111
Oblique Tape Wound Refrasil	322,000	94.6	20-84
RAD 58B	184	-2.17	5-46
Avcoite Pyrolytic Graphite Kel-F Polyethylene	33.6 40.8 170.2 11.9		34-118 50-470 32-97 2-65
Nylon	154	2.60	4-80
Plexiglas	217	2.80	17-160
Polystyrene	2 3 0	2.66	4-59
Teflon	45•1	2.08	10-76

Empirical equation

Rocks

Relationship: Pressure versus volume change

Materials: Tuff, sand, and shale

Source: Anderson, Fisher, McDowell and Weidermann, 1963.

Data taken from Lombard, 1961

Equation:

$$P = C \left[\left(v_{o} / v \right)^{n} - 1 \right] / \left[\mu - \left(v_{o} / v \right) \right]$$

where C, μ , and n are constants, values of which are given in table below; v_0 is specific volume of zero pressure; and v is the volume of the same mass at pressure P.

Table: Values of constants

Material	jù	n	C (kb)	v _o	Approx. pressure range of original data (kilobars)
Tuff, Wet Volcanic Tuff, Dry Volcanic Sand (wet) Oil shale (wet) Oil shale (dry)	4 4 4 4 4	24222	260 26 317 180 400	0.535 0.588 0.523 0.663 0.607	31-202 90-26 110-164

Ampirical equation Granite

Relationship: Pressure versus volume change

Material: Granite

Source: Lombard and Adelman, 1961

Equation:

$$P = 194 (\Delta v / v_0) / [1 - 1.42 (\Delta v / v_0)]^2$$
 kilobars

where
$$\Delta v = v - v_0$$

Empirical equation Marble

Relationship: Pressure versus density change

Haterial: Harble, light gray with an initial density of

2.70 gm/cc

Source: Dremin and Adadurov, 1959

Dquations:

$$P = 42.6 \left[(e/e_0)^{7.23} - 1 \right]$$
 kilobars $0 < P < 147$

and

$$P = 106 \left[(e/e_0)^{4.1} - 1 \right]$$
 kilobars 156 < F < 500

Phase change occurs between 147 and 156 kilobars

Summary of data and calculations for metals at 3,500 kilobars

c	Relative ompression t 3,500 kb	Gram a volu		Ratio of gram atomic volume
a	6 J,500 RD	zero pressure	3,500 kb	at zero pressure to gram atomic volume at 3,500 kb
Iron Copper Zinc Silver Cadmium		7.12 7.11 9.16 10.28 13.01	4.26 4.18 4.84 6.01 6.72	1.7 1.7 1.9 1.7
Tin Gold Lead Bismuth	2.16 1.59 2.21 2.27	16.30 10.22 18.27 21.32	7.54 6.43 8.25 9.39	2.2 1.6 2.2 2.3
Metal	1	k velocity		Ratio of shock velocity at 3,500 kb to shock
	zero pressure	3,500 kb		velocity at zero pressure
Iron Copper Zinc Silver Cadmium	4.63 3.95 2.92 3.08 2.34	10.53 9.75 10.19 8.96 9.15		2.3 2.5 3.5 2.9 3.9
Tin Gold Lead Bismuth	2.64 2.98 1.91 1.85	9.44 6.99 7.5 7.99		3.6 2.4 3.9 4.3

Source: Aletshuler, Krupnikov and Brazhnik, 1958

CONSTANTS RELATING SHOCK VELOCITY, U, TO

PARTICLE VELOCITY, U, IN LINEAR RELATIONSHIP

U = a + b u

Material	a (mm/µsec)	b	Pressure range (kilobars)	Reference
Alluvium, Dry Desert	1.80	1.11	38-351	(1)
Alluvium, Nevada	1.3	1.35	39-502	(2)
Aluminum, 24 ST	5.30	1.43	42-209	(3)
Aluminum, 2S	5.26	0.70	141-333	(4)
Andesite	4.08	1.54	42-115	(5)
Antimony	2.06	1.61	248-1175	(6)
Avcoat	1.75	1.78	14-150	(7)
Avcoite	3.01	5.53	34-118	(7)
Basalt	5.24 2.58	-0.39 1.64	40-234 2 34- 769	(1);(5)
Beryllium	7.98	1.09	142-283	(8);(9)
Bismuth	2.12 1.26	1.31	185-446 446-3450	(8);(10)
Brass	3.47	1.69	221-473	(8)
Cadmium	2.44	1.67	228 -34 90	(6);(8);(10)
Chromium	5.22	1.47	235-1379	(6);(8)
Cobalt	4.75	1.33	244-1603	(6);(8)
Copper	3.99	1.50	216-3800	(6);(8);(10)
Dolomite	6.64	0.47	223-417	(5)
Gold	3.11	1.50	273-5130	(6);(8);(10)
Granite	5.41 2.61	0.18 1.41	68-337 337 - 884	(5);(11);(12)
Granite, Shoal	4.30	0.87	160-285	(1)

IJ	=	\mathbf{a}	+	b	u
----	---	--------------	---	---	---

Control of the second of the s

À

Material	a (mm/psec)	ъ	Pressure range (kilobars)	Reference
Graphite, Pyrolytic	2.80 4.75 4.06 4.31	4.66 1.72 1.76 1.69	85-116 30-470	(7) (7) (13) (14)
Halides: Cesium Bromide (single crystal) Cesium Chloride Cesium Iodide (single crystal) Lithium Bromide Lithium Chloride	2.10 2.14 1.80 2.80 4.15	1.36 1.50 1.38 1.27 1.25	60-318 140-324 136-300 121-263	(5);(15)
Lithium Fluoride Lithium Iodide Potassium Bromide	5.00 2.89 1.50	1.50 0.89 1.75	205-320	
Potassium Chloride Potassium Fluoride Potassium Iodide	1.92 2.44 1.55	1.75 1.60 1.50	117-266	
Rubidium Bromiie Rubidium Chloride	1.52	1.55	112 - 286 109 - 268	
Rubidium Iodide Sodium Bromide Sodium Chloride (rock salt; single	1.33 2.59 3.60	1.50 1.33 1.27	117 - 279 58 -3 05 52 - 882	
crystal) Sodium Iodide Indium Iron	2.15 4.85 3.8	1.38	134-312 213-405	(8):(10)
Kel-F	1.73	1.58	358-4000 32 - 97	(8);(10) (7)

U = a + b u

Naterial	a (mm/µsec)	ъ	Pressure range (kilobars)	Reference
Lead	2.03 2.30	1.52 1.27	203 -13 83 390 -3 700	(6);(8) (10)
Limestone	1.30 3.92 1.11	3.33 0.95 2.07	53-130 130-420 420-817	(5) (5) (5)
Liquids: Acetone	1.88	1.39	46-106	(16)
Benzene	1.98	1.53	52-121	
Bromoethane	1.54	1.37	68-157	
Carbon Disulfide	2.02	0.95	59 -13 0	
Carbon Tetrachloride	1.56	1.47	74-171	
Ethyl Ether	1.65	1.47	42-96	
Ethyl Alchol	1.68	1.38	47-110	
Glycerine	2.41	1.63	76 -169	
Hexane	1.87	1.42	42-96	
lleroury	1.58	1.96	226-463	
Me thanol	1.73	1.50	47-110	
Mononitrotoluene	2.17	1.50	66-152	
N-Amyl Alcohol	1.98	1.55	51-115	
Toluene	1.72	1.66	52-122	
Water	2.20	1.33	32-419	
Magnesium	4.49	1.27	116	(8);(9)
Marble (dark)	1.66 6.36		156-296 296 -4 68	(5)
Harble (light)	5.41 6.63		171 - 297 297 - 418	(5)
Marble (USSR)	3.43 4.03		49-146 146-529	(17)

U = a + b u

Na teri al	(mm/µsec)	ď	Pressure range (kilobars)	Reference
Molybdenum	5.16	1.24	254-1633	(6);(8)
Nickel	4.65	1.45	235-1490	(6);(8)
Niobium	4.45	1.21	245-482	(8);(9)
Nylon	2.29	1.63	5-80	(7)
Oil-Sand	2.98	1.17	98 -63 4	(5)
Oil-Shale (dry) High grade Medium grade Low grade	3.15 4.23 3.55	1.38 1.01 1.43	96-219 119-279 117-286	(5)
Oil-Shale (wet)	3.34	0.68	110-164	(5)
Palladium	3.76	1.99	263-531	(8)
Phenolic, AVCO Phenoli Fiberglass	c 2.29 1.31	0.37 2.00	50-180 0-50	(7)
Phenolic, G E Phenolic Fiberglass	3.27	1.06	28-111	(7)
Phenolic, Chopped Hylon Fhenolic	1.80	1.81	J9 - 274	(7)
Phenolic, Tape Wound Nylon Phenolic	3.17	1.35	20 - 86	(7)
Platinum	3.67	1.41	295-868	(8);(9)
Playa	0.49 2.50	2.00 0.76		(1)
Plexiglas	2.38	1.56	17-160	(7)
Folyethylene	1.57	2.38	2-65	(7)
Polystyrene	2.82	1.60	4-59	(7)
RAD 58B	1.20	0.69	5-4 6	(7)
Refrasil, Oblique Tape Wound	2.45	1.01	20-84	(7)
Resins, Series 124	2.02	2.04	45-147	(7)

The state of the s

· Downer of Branch

U = a + b u

Material	(mm/µsec)	b	Pressure range (kilobars)	Reference
Rhodium	4.68	1.65	278-551	(8);(9)
Sand, Dry Silica (porosity 22%)	Is not a straight line.		58-153	(1)
Sand, Dry Silica (porosity 41%)	See		75-197	(1)
Sand, Water Saturated (porosity 41%)	supple- mentary curves.	,	90-216	(1)
Silver	3.27	1.54	216-4010	(6);(8);(10)
Steel, Low Carbon	indetermi	nable	121-305	(3)
Taconite Iron Rock	3.58 2.80	1.18 1.16	126-1140 74-679	(5)
Tantalum	3.13	1.56	272-547	(8)
Teflon	1.34	1.93	10-76	(7)
Thallium	1.86	1.52	213-1517	(6);(8)
Thorium	2.13	1.28	203-1405	(6);(8)
Tin	2.66	1.47	175-3100	(6);(8);(10)
Titanium	4.78	1.09	168-1060	(6);(8)
Tuff, Dry Volcanic	0.60 2.28	0.52 0.38	31-8 2 82 - 2 9 2	(1);(5)
Tuff, Wet Volcanic	2.21 4.13	1.38 0.50	5 3- 188 188 - 270	(1);(5)
Tungsten	4.01	1.27	395-2074	(6)
Vanadium	5.11	1.21	204-1241	(6)
Zine	3.71	1.45	186-3260	(6);(8);(10)
Zirconium	3.95	0.78	208-407	(8)

References

- (1) Bass, Hawk and Chabai, 1963
- (2) McQueen and Marsh, 1961
- (3) Katz, Doran and Curran, 1959
- (4) Walsh and Christian, 1955
- (5) Lombard, 1961
- (6) McQueen and Marsh, 1960
- (7) Wagner, Waldorf and Louie, 1962
- (8) Walsh, Rice, McQueen and Yarger, 1957
- (9) Rice, MuQueen and Walsh, 1958
- (10) Al'tshuler, Krupnikov and Brazhnik, 1958
- (11) Alder, 1963
- (12) Grine, 1960
- (13) Coleburn, Drimmer and Liddiard, 1962
- (14) Doran, 1963
- (15) Christian, 1957
- (16) Walsh and Rice, 1957
- (17) Dremin and Adadurov, 1959

TABLES AND GRAPHS

Shock velocity, particle velocity, pressure, relative volume, and temperature

DRY DESERT ALLIVIUM*

Shock	Particle	Pressure	Relative Volume
(mm/usec)	Velocity (mm/µsec)	(kilobars)	AOTame
2.66	1.00	38 44	0.624
2.90 3.41	0.97 1.58	83	0.666 0.5 3 7
3.65	1.57	86	0.570
3.70	1.52	96	0.589
4.35	2.45	156	0.437
4.36	2.39	171	0.462
5.25 5.89	3.27	2 37 351	0.377 0.428
2.07	3.37	101	0.720

 $e_0 = 1.38 - 1.77$

Source: Bass, Hawk and Chabai (1963)

* Nevada Test Site Area 3

DESERT DRY ALLUVIUM

NEVADA ALLUVIUM

Shock Velocity (mm/usec)	Particle Velocity (mm/usec)	Pressure (kilobars)	Relative Volume
Fine particles			
2.363 2.892 3.656	1.074 1.340 1.770	39.1 59.7 99.7	0.545 0.537 0.516
4.47 6.274 7.042	2.737 3.815 4.068	188.4 368.6 441.1	0.388 0.392 0.422
e o = 1.54			

Coarse particles

2.553	1.026	47.1	0.598
3.131	1.274	71.8	0.593
3.882	1.678	117.2	0.568
4.597	2.613	216.0	0.432
6.300	3.651	414.0	0.420
7.226	3.859	501.7	0.466

P = 1.8

Source: McQueen and Marsh (1961)

NEVADA ALLUVIUM — Fine Particles

NEVADA ALLUVIUM — Coarse Particles

NEVADA ALLUVIUM — coarse particles

NEVADA ALLUVIUM—fine particles

24ST ALUMINUM

Shock Velocity (mm/µsec)	Particle Velocity (mm/µsec)	Pressure (kilobars)	Relative Volume
(mm) asco,	(11111)/010007	,	
5.70	0.266	42.27	0.953
5.72	0.291	46.41	0.949
5.78	0.317	51.04	0.945
5.81	0.341	52.32	0.941
5.86	0.368	60.12	0.937
5.91	0.393	64.75	0.934
5.94	0.423	70.05	0.929
6.00	0.455	76.11	0.924
6.06	0.492	83.21	0.919
6.12	0.531	90.77	0.913
6.17	0.582	100.1	0.906
6.30	0.667	117.2	0.894
6.36	0.781	138.6	0.877
6.43	1.267	209.3	0.818

€ o = 2.785

Source: Katz, Doran and Curran (1959)

24ST ALUMINUM

Shock Velocity (mm/µsec)	Particle Velocity (mm/µsec)	Pressure (kilobars)	Relative Volume
6.125	0.571	100	0.9043
6.305	0.712	125	0.8873
6.475	0.831	150	0.8716
6.640	0.947	175	0.8573
6.793	1.057	200	0.8441
6.940	1.165	225	0.8322
7.082	1.267	250	0.8210
7.220	1.368	275	0.8104
7.350	1.465	30 0	0.8008
7.476	1.561	3 25	0.7912
7.598	1.654	350	0.7824
7.718	1.744	375	0.7740
7.836	1.832	400	0.7661
7.950	1.920	425	0.7585
8.062	2.003	450	0.7513
8.171	2.082	4 7 5	0.7445
8.276	2.170	500	0.7380

90 = 2.785

Source: Walsh, Rice, McQueen and Yarger (1957)

Note: The data presented above is <u>not</u> experimental data, but it is calculated from a great wealth of data run on 24ST aluminum, and is probably the most accurate data available.

24ST ALUMINUM

Shock Velocity (mm/usec)	Particle Velocity (mm/usec)	Pressure (kilobars)	Relative Volume
6.28	0.765	133.9	0.878
6.32	0.761	134.1	0.880
6.34	0.775	136.8	0.878
6.86	1.140	218.0	0.834
7.12	1.304	258.6	0.817
7.12	1.276	253.2	0.821
7.14	1.282	254.9	0.820
7.27	1.396	282.9	0.808
7.26	1.427	288.7	0.804
7.41	1.546	318.9	0.791
7.47 7,46	1.570 1.556	326.6 323.3 328.4	0.790 0.791 0.789
7.52	1.625	340.2	0.784
7.53	1.646	347.0	0.780

e o = 2.785

こうかいしているのではなったいからなられています。

Source: Walsh and Christian (1955)

2S ALUMINUM

Shock Velocity (mm/usec)	Particle Velocity (mm/,csec)	Pressure (kilobars)	Relative Volume
6.42	1.627	141.3	0.873
6.94	2.355	221.3	0.830
7.44	2.931	295.0	0.803
7.58	3.250	333.3	0.786

Source: Walsh and Christian (1955)

24ST ALUMINUM

2S ALUMINUM

Source: Lundergm, 1961a

Temperatures associated with shock

Aluminum

Pressure (Eilobars)	Temperature behind shock (co)	Res idual tempe rat ure (C ⁰)
0 100 150 200 250	20 94 153 223 30 8	
300 350 400 450 500	405 513 677 770 909	

Source: Rice, Molumen and Walsh, 1953

ALUMINUM

ANDESITE*

Shock Velocity (mm/usec)	Particle Velocity (mm/usec)	Pressure (kilobars)	Rela tiv e Volume
2.70	0.51	42	0.815
5.038	0.619	83	0.877
5.344	0.82	115	0.846

Qo = 2.64

Source: Lombard (1961)

^{*} Quarried in Marin County, California

ANDESITE

ANTIMONY

Shock Velocity (mm/usec)	Particle Velocity (mm/usec)	Pressure (kilobars)	Relative Volume
3.61	1.03	248	0.716
3.59	1.03	248	0.713
3.63	1.02	249	0.720
4.30	1.39	400	0.678
4.33	1.38	401	0.681
5.12	1.96	673	0.617
5.06	1.88	637	0.629
5.64	2.19	828	0.611
5.72	2.19	839	0.618
5.71	2.20	843	0.614
6.31	2.70	1142	0.572
6.34	2.73	1158	0.569
6.43	2.73	1175	0.576

00 = 6.6

Source: McQueen and Marsh)1960)

ANTIMONY

Temperatures associated with shock

Antimony

Pressure (kilobars)	Temperature behind shock (C ^O)	Residual temperature (C ^O)
0 250 500	20 577 1827	
750 1000 1250	4727 842 7 1282 7	

Source: McQueen and Marsh, 1960

Pressure - Kilobars

ANTIMONY

AVCOAT

Shock Velocity (mm/µsec)	Particle Velocity (mm/p sec)	Pressure (kilobars)	Relative Volume
2.59	0.477	13.6	0.816
2.83	0.614	19.1	0.784
3.39	0.954	35.6	0.719
4.48	1.46	71.9	0.674
5.82	2.33	149.0	0.600

eo = 1.10

Source: Wagner, Waldorf and Louie (1962)

AVCOITE

Shock Velocity (mm/µsec)	Particle Velocity (mm/µsec)	Pressure (kilobars)	Relative Volume
4.15	0.345	33.9	0.916
4.64	0.434	47.7	0.906
5.38	0.667	85.0	0.876
5.94	0.841	118.0	0.858

Q o = 2.37

Source: Wagner, Waldorf and Louis (1962)

Relative Volume - V/V_o

AVCOAT

AVCOITE

のできた。 1975年 1985年 198

EASALT*

Shock Velocity (mm///sec)	Particle Velocity (mm/ecec)	Fressure (kilobars)	Relative Volume
5.24 4.85 6.80 6.85	0.29 1.02 2.58 2.57	40 127 468 470	0.840 0.621 0.625

e o = 2.67

Source: Bass, Hawk and Chabai (1963)

* Buckboard hole no. 3, 36 ft, 40-mile Canyon, Nevada Test Site

BASALT+

Shock Velocity (mm/usec)	Farticle Velocity (mm/usec)	Pressure (kilobars)	Relative Volume
4.867	0.794	103	0.837
5.24	1.63	234	0.689
7.97	3.29	684	0.578
8.588	3.71	769	0.524

 $e_0 = 2.67$

Source: Lombard (1961)

+ Nevada Test Site, Area 18. The Hugoniot elastic limit 40 kb and elastic precursor velocity 5.24 mm/msec

Particle Velocity (mm/µ sec)

BASALT

BERYLLIUM

Shock	Particle	Pressure	Relative Volume
Velocity (mm/usec)	Velocity (mm/usec)	(kilobars)	AOTUME
8.934	0.865	142.6	0.9032
9.044	0.847	141.3 199.9	0.9063 0.8659
9.112 9.332	1.189 1.221	210.2	0.8692
9.633	1.592	282.9	0.8347
9.832	1.609	291.9	0.8364
9.851	1.730	314.4	0.8244

 $e_0 = 1.845$

Source: Walsh, Rice, McLueen and Yarger (1957)

BERYLLIUM

Temperatures associated with shock

Beryllium

Pressure (kilobars)	Temperature behind shock (C ^O)	Residual temperature (C ^O)
0 100 150 200	20 50 70 97	
250 300 350	127 168 213	

Source: Rice, Acqueen and Walsh, 1958

BERYLLIUM

Shock	Particle	Pressure	Relative
Velocity	Velocity		Volume
(mm/usec)	(mm//usec)	(kilobars)	V
2.696	0.718	189.5	0.7337
2.585	0.676	171 .1	0.7385
3.075	0.914	2 75. 2	0.7028
3.084	0.922	278.4	0.7010
3.682	1.212	436.9	0.6708
3.659	1.122	437.7	0.6660

e = 9.80

Source: Walsh, Rice, McQueen and Yarger (1957)

BISMUTH

Shock Velocity (mm/usec)	Particle Velocity (mm/usec)	Pressure (kilobars)	Relative Volume
3.37	1.05	350	0.690
6.36	2.47	1300	0.539
7.94	4.45	3450	0.439

 $\rho_{\Lambda} = 9.80$

Source: Al'Tshuler, Krupnikov and Brazhnik (1958)

Shock Velocity (mm/µsec)	Particle Velocity (mm, usec)	Pressure (kilobars)	Relative Volume
3.67	1.23	444	0.665
3.64	1.23	443	0.661
4.44	1.80	786	0.596
4.42	1.79	781	0.594
4.46	1.79	787	0.599
4.75	1.97	923	0.585
4.66	2.06	945	0.558
4.73	2.00	931	0.577
5.33	2.47	1299	0.536
5.36	2.47	1 3 03	0.540
5.51	2.51	1360	0.545
5.49	2.48	1344	0.548
5.49	2.47	1335	0.551

e c = 9.80 Source: Mogueen and Marsh (1960)

Relative Volume V/Vo

BISMUTH

Temperatures associated with shock

Bismuth

Pressure (Lilobars)	Temperature behind shock (C ^O)	Resid al temperature (C ^O)
0 500 750	20 2527 6027	
1000 1250 1500	10627 16 32 7 22827	

Source: McQueen and Marsh, 1960

Pressure - Kilobars

BRASS

Shock	Particle	Pressure	Relative
Velocity	Velocity		Volume
(mm/usec)	(mm/µsec)	(kilobars)	
4.446	0.590	220.7	0.8673
4.440	0.571	213.3	0.8714
4.731	0.791	314.8	0.8328
4.726	0.770	306. ?	0.8 37 1
5.2 3 6	1.085	478.0	0.7928
5.220	1.077	473.0	0.7937

e o = 8.6

Source: Walsh, Rice, Mclueen and Yarger (1957)

BRASS

Cu/Zn/Pb/Fe : 6:.5/36.0/2.5/c0.05

Shock Velocity	Particle Velocity	Pressure	Relative
(mm/prec)	(mm//sec)	(kilobars)	Volume
4.38	0.45	167	0.897
4.41	0.45	168	0.898
4.50	0.50	192	0.888
4.51	0.50	191	0.889
4.54	0.56	214	0.877
4.56	0.59	229	0.869
4.77	0.70	282	0.853
4.79	0.70	284	0.853
5.10	0.91	3 91	0.822
5.14	0.90	389	0.826
5.15	0.96	415	0.814
5.15	0.91	394	0.824
5.17	0.94	411	0.819
5.19	0.94	412	0.819
6.22	1.72	906	0.723
6.29	1.78	947	0.717
6.39	1.82	985	0.715
6.59	1.99	1108	0.698
6.92	2.24	1308	0.677
6.97	2.28	1342	0.673
7.04	2.26	1348	0.679
7.05	2.29	1365	0.675
7.17	2.34	1420	0.674
7.54	2.66	1594	0.648
7.57	2.66	1702	0.649
7.77	2.69	1764	0.654

e • • 8 • 6

Source: McQueen and Marsh (1960)

81

Temperatures associated with shock

Ernss

Tress tre (kilobars)	Temperature behind shock (C ^O)	Residual tennerature (C ^O)
0 100 150 200 250	20 89 129 175 2 3 5	
300 350 400 450 500	305 382 467 557 651	

Source: Rice, McQueen and Walsh, 1958

BRASS

CADMIUM

Shock Velocity	Particle Velocity	Pressure	Relative
(mm/msec)	(mm/msec)	(kilobars)	Volume
5.66	1.96	957	0.654
5.78 5.77	1.96 1.96	9 7 6 980	0.662 0.663
5.77 6.45	1.97 1.98	982 986	0.558 0.657
6.48 6.48	2.40 2.40	1339	0.628
6.39 6.43	2.43	1345 1339 1351	0.629 0.620
0.1,5	~ ~ ~ /	וכנו	0.622

ec = 8.64

Source: Modueen and Marsh (1960)

CADMIUM

Shock Velocity (mm/esec)	Particle Velocity (mm/msec)	Pressure (kilobars)	Relative Volume
3.599 3.421 3.918	0.690 0.619 0.850	214.5 182.9 287.6	0.8083 0.8191
4.450 4.324	1.190 1.120	457.3 418.2	0.7830 0.7326 0.7410

eo = 8.64

Source: Walsh, Rice, McQueen and Yarger (1957)

CADMIUM

Shock Velocity (mm/_sec)	Particle Velocity (mm/usec)	Pressure (kilobars)	Relative Volume
4.10	1.02	360	0.751
6.32	2.44	1330	0.612
9.14	4.42	4390	0.515

% = 8.64

Source: Al'tshuler, Krupnikov and Brazhnik (1958)

Temperatures associated with shock Cadmium

Pressure (kilobars)	Temperature behind shock (C ^O)	Residual temperature (C ^O)
0	20	20
100	161	55
200	401	157
300	722	283
40 0	980	321
500	1339	377
600	1974	533
700	2710	687
800	3535	836
900	4431	9 7 9
1000 1100 1200 1300 1400	5383 6379 7408 8 453 9503	1117

Source: McQueen and Marsh, 1960

CADMIUM

CHROMIUM

Shock Velocity	Particle Velocity	Pressure	Relative Volume
(mm/µsec)	(mm/M3ec)	(kilobars)	AOTMIG
7.63	1.71	924	0.777
7.59 8.44	1.71	922	0.775
8.57	2.25 2.27	1 <i>3</i> 47 1 <i>3</i> 82	0.734
8.63	2.25	1379	0.735 0.739

e = 7.10

Source: McQueen and Marsh (1960)

CHROMIUM

Shock	Particle	Pressure	Relative
Velocity (mm/µ3ec)	Velocity (mm//wsec)	(kilobars)	Volume
6.043	0.5448	234.5	0.9098
5.923 6.381	0.5395 0.7436	2 33 3 3 8	0.9089 0.8835
6.370	0.7449	338	0.8831
6.355	0.7407	336	0.8834
6.357	0.7403	336 478	0.8835
6.660 6.674	1.007 1.008	479	0.8488 0.8490

e o = 7.13

Source: Walsh, Rice, McQueen and Yarger (1957)

CHROMIUM

Temperatures associated with shock Chronium

Pressure (kilobars)	Temperature behind shock (C ^O)	Residual temperature (C ^O)
0	20	20
100	41	2 3
200	73	39
300	123	71
400	194	119
500	285	182
600	396	258
700	523	345
800	666	4 3 9
900	820	5 3 9
1000	983	643
1100	1151	746
1200	1319	846
1 <i>3</i> 00	1482	938
1400	1641	1024

Source: McQueen and Marsh, 1960

CHROMIUM

COBALT

Shock Velocity (mm/wsec)	Particle Velocity (mm, usec)	Pressure (kilobars)	Relative Volume
7.15	1.79	1121	0.750
7.15	1.80	1137	0.748
7.12	1.83	1148	0.743
7.50	2.06	1362	0.726
7.45	2.07	1358	0.723
7.43	2.07	1357	0.721
7.81	2.30	1584	0.706
7.79	2.30	1581	0.705
7.77	2.30	1577	0.703
7.88	2.31	1603	0.707
7.83	2.32	1603	0.703

(° = 8.82

Source: McQueen and Marsh (1960)

COBALT

Shock Velocity (mm, wsec)	Particle Velocity (mm, usec)	Pressure (kilobars)	Relative Volume
5.445	0.502	241.1	0.9078
5.696	0.683	343.2	0.8801
5.632	0.653	324.4	0.8841
6.019	0.901	478.1	0.8503
6.052	0.955	309.8	0.8422

eo = 8.82

Source: Walsh, Rice, McQueen and Yarger (1957)

94

Temperatures associated with shock

Cobalt

Tressure (kilobars)	Temperature behind shock (30)	Residual temperature (C)
0	20	20
100	48	22
200	81	34
30 0	127	58
400	190	94
500	270	141
600	368	198
700	431	262
800	609	331
900	749	404
1000	900	430
1100	1059	557
1200	1023	635
1300	1396	711
1400	1571	786
1 <i>5</i> 00	1748	860
1 6 00	1926	9 3 0

Source: McQueen and March, 1960

The state of the s

COBALT

COPPER

Shock Velocity (mm/µsec)	Particle Velocity (mm/µsec)	Pressure (kilcbars)	Relative Volume
6.33	1.57	883	0.752
6.23	1.58	875	0.746
6.26	1.57	877	0.749
7.26	2.20	1424	0.697
7.29	2.21	1430	0.698
7.32	2.22	1444	0.697

% = 8.90

Source: McQueen and Harsh (1960)

COFFER

Shock Velocity (mm/usec)	Farticle Velocity (mm/psec)	Pressure (%ilobars)	Relative Volume
4.744	0.511	215.8	0.8923
4.768	0.570	241.9	0.8804
5.070	0.711	320.8	0.8598
5.015	0.731	326.3	0.8542
5.508	1.0 3 2	505.9	0.8126

e. = 8.90

Source: Walsh, Rice, Mc Mucen and Yarger (1957)

COPPER

Shock	Particle	Pressure	Relative
Velocity (mm/usec)	Velocity (mm/µsec)	(kilobars)	Volume
5 .3 6	0.94	450	0.826
7.13 10.16	2.29 4.19	1460 3800	0.681 0.588

e o = 8.93

Source: Al'tshuler, Krupnikov and Brazhnik (1958)

COPPER

Shock Velocity (mm/usec)	Particle Velocity (mm,/esec)	Pressure (kilobars)	Relative Volume
4.556	0.460	186.6	0.899
4.525	0.460	185.1	0.898
4.768	0.547	232.1	0.8853
4.769	0.550	233.4	0.8847
4.94	0.672	295.3	0.864
4.913	0.684	299.0	0.848
5.258	0.823	356.1	0.848
5.128	0.780	385.0	0.844
5.240	0.835	389.5	0.841
5.285	0.855	402.3	0.838
5.391	0.964	462.0	0.821
5.397	0.969	465.4	0.821

es = 8.903

Source: Walsh and Christian (1955)

Temperatures associated with shock

Copper

Pressure (Hilobars)	Temperature behind shock (C ^O)	Residual temperature (C ^O)
0	20	20
100	61	25
200	118	46
300	199	87
400	3 09	144
500	446	214
600	608	295
700	795	383
800	1004	478
900	1233	576
1000 1100 1200 1 30 0 1400 1500	1482 1747 2028 2323 2629 2769	677 780 883 984 1083

Source: Mc lueen and Harsh, 1960

Pressure-Kilobars

COPPER

DOLOMITE*

Shock Velocity (mm/usec)	Particle Velocity (mm//wsec)	Pressure (kilobars)	Relative Volume
7.14	1.10	22 3	0.846
7.546	1.935	41 7	0.7436

P = 2.84

Source: Lombard (1961)

* from surface, Nevada Test Site 12

DOLOMITE

GOLD

Shock Velocity (mm/µsec)	Particle Velocity (mm/µsec)	Pressure (kilobars)	Relative Volume
3.679	0.380	269.0	0.3967
3.864	0.505	375.4	0.8693
4.130	0.666	529.2	0.8389

 $e_0 = 19.24$

Source: Walsh, Rice, McQueen and Yarger (1957)

GOLD

Shock Velocity	Particle	Pressure	Relative
(mm/usec)	Velocity (mm/msec)	(kilobars)	Volume
4.27	0.71	590	0.834
5.70 8.06	1.78 3. 3 0	1950 51 3 0	0.690 0.592

Po = 19.00

Source: Al'tshuler, Krupnikov and Brazhnik (1958)

GOLD

Shock Velocity (mm/usec)	Particle Velocity (mm/wsec)	Pressure (kilobars)	Relative Volume
5.25	1.37	1387	0.739
5.21	1.41	1410	0.730
5.80	1.73	1932	0.702
5.78	1.74	1931	0.700
5.78	1.74	1936	0.699
5.79	1.74	1942	0.699

eo = 19.24

Source: McQueen and Marsh (1960)

GOLD

THE PROPERTY OF THE PROPERTY O

an contains and the second of the second

Temperatures associated with shock Gold

Pressure (hilobars)	Temperatures behind shock (C ^O)	Residual temperature (C ^O)
0	20	20
100	74	24
200	146	44
300	246	82
400	378	1 3 6
500	543	2 0 1
600	741	2 77
700	970	3 5 9
800	1230	4 47
900	1518	5 3 9
1000	1834	632
1100	2175	727
1200	2539	821
1 <i>3</i> 00	2926	915
1400	3334	1007
1500 1600 1700 1300 1900 2000	3693 3951 4216 4487 4764 5257	1063 1063 1063 1063 1063

Source: McQueen and Marsh, 1960

GOLD

GRANITE

Shock	Particle	Pressure	Relative
Velocity	Velocity		Volume
(mm/usec)	(mm/wsec)	(kilobars)	\$
5.383	0.485	0.068	0.915 (1)
5.37	1.31	0.182	0.756 (1)
5.825	2.220	0.337	0.6189(1)
5.71	0.490	0.0743	0.914 (2)
5.58	0.822	0.123	0.853 (2)
5.48 5.506 5.658 5.64 5.61	0.960 1.15 1.63 1.625 1.715	0.143 0.148 0.246 0.247 0.2565	0.826 (3) 0.791 (4) 0.712 (3) 0.693 (4)
6.31	2.63	0.446	0.584 (3)
7.64	3.35	0.680	0.558 (4)
8.27	4.00	0.884	0.516 (2)

Po = 2.61

Source: Lombard (1961)

- (1) Pink quartz monzonite, surface, Nevada Test Site Area 15
- (2) Origin undetermined
- (3) Stanford Research Institute exploratory core, 1005 ft, Nevada Test Site Area 15
- (4) Gray grandiorite, surface, Nevada Test Site Area 15

GRANITE

SHOAL GRANITE

Shock Velocity (mm/µsec)	Particle Velocity (mm/usec)	Pressure (kilobars)	Relative Volume
5.98	1.80	285	0.699
6.15	2.36	386	0.616
6.60	2.38	416	0.639
6.57	2.60	453	0.604
6.81	2.58	466	0.621
7.16	3.02	573	0.578
6.86	3.42	622	0.501
7.04	3.45	644 .	0.510
0.493	0.98	128	0.859
0.500	1.22	160	0.800

 $e_0 = 2.65$

Source: Bass, Hawk and Chabai (1963)

SHOAL GRANITE

PYROLYTIC GRAPHITE

Shock Velocity (mm/µsec)	Particle Velocity (mm/usec)	Pressure (kilobars)	Relative Volume
4.93	0.461	50.1	0.929
5.88	0.663	85.8	0.904
6.20	0.852	116	0.883

eo = 2.20

Source: Wagner, Waldorf and Louie (1962)

PYROLYTIC GRAPHITE

Shock	Particle	Pressure	Relative
Velocity	Velocity		Volume
(mm/µsec)	(mm/usec)	(kilobars)	VOZume
5.59	0.807	98	0.858
5.91	0.963	12 3	0.842
5.98	0.961	117	0.8 5 1
5.95	0.967	122	0.844
6.65	1.33	193	0.8 0 2
7.19	1.78	281	0.7 5 2

% = 2.20

Source: Doran (1963)

Relative Volume V/V_o

PYROLYTIC GRAPHITE

HALIDEU

Shock Velocity (mn/msec)	Particle Velocity (mm/Wsec)	Pressure (kilobars)	Relative Volume
Cesium Promide	(single crysta	1)	
3.41 3.33 4.15 4.38	0.97 1.25 1.52 1.69	146 213 280 328	0.716 0.672 0.632 0.614
Po = 4.414			
Cecima Chlorid	<u>'E</u>		
2.92 3.75 3.350 4.47	0.51 1.04 1.13 1.23 1.74	60 154 170 270 318	0.825 0.723 0.707 0.958
4.70	1 • (=	516	0.6 3 6
e = 3.960	/ Au 7 - amun da 7	\	
	(cingle crystal	140	0.680
3.12 3.51 3.94 4.19	1.23 1.55 1.71	195 274 324	0.649 0.608 0.590
Ro = 4.481			

HALIDES (cont)

Shock Velocity (mm/µsec)	Particle Velocity (mm/usec)	Pressure (kilobars)	Relative Volume
Lithium Bromid	<u>e</u>		
4.12 4.51 4.96 4.97	1.02 1.36 1.63 1.805	136 194 267 3 00	0.752 0.712 0.672 0.637
C o = 3.30			
Lithium Chlori	<u>de</u>		
5.49 5.80 6.32 6.57	1.087 1.415 1.780 1.941	121 170 2 30 26 3	0.802 0.756 0.720 0.704
% = 2.06			•
Lithium Fluori	de (single cry	stel)	e
6.40 6.61 7.28 7.47	0.927 1.071 1.487 1.680	155 185 282 328	0.855 0.838 0.796 0.775
% = 2.614			
•	(single crysta	1)	
4.01 4.24 4.47	1.270 1.575 1.780	205 268 3 20	0.683 0.628 0.602
% = 4.016			

HALIDES (cont)

Shock Velocity (mm/usec)	Particle Velocity (mm/µwec)	Fressure (kilobars)	Relative Volume	
Potassium Bro	nide (single c	rystal)		
3.52 4.36 4.58 4.88	1.16 1.46 1.74 1.97	112 161 218 264	0.670 0.641 0.618 0.596	
% = 2.73				
Potassium Chle	oride			
2.30 4.04# 4.64	0.67 1.21 1.57	40 97 144	0.77 0.698 0.661	
5•19# 5•51 5•54*	1.88 2.13 2.08	194 2 3 2 229	0.636 0.613 0.624	
<pre>% = 1.950 * Single crystal</pre>				
Fotassium Flu	oride			
4.23 4.69 5.24 5.54	1.11 1.43 1.78 1.94	117 168 2 3 2 266	0.738 0.695 0.661 0.650	
% = 2.435				
Potassium Iodide				
3.28 3.70 4.22 4.47	1.10 1.40 1.72 1.99	110 16: 227 278	0.668 0.624 0.594 0.555	

HALIDES (cont)

Shock Velocity (mm/usec)	Particle Velocity (mm/usec)	Pressure (kilobars)	Relative Volume
Rubidium Eromi	de		,
3.16 3.62 4.16 4.44	1.08 1.38 1.73 1.96	112 163 237 286	0.659 0.621 0.585 0.559
Po = 3.285			
Rubidium Chlor	<u>1de</u>		
3.43 3.91 4.48 4.87	1.16 1.44 1.82 2.04	109 151 222 268	0.663 0.632 0.594 0.581
e = 2.752			
Rubidium Iodid	<u>le</u>		
3.01 3.44 3.95 4.24	1.11 1.37 1.73 1.91	117 163 235 279	0.633 0.601 0.554 0.522

HALIDES (cont)

Shock Velocity	Pa rticle Veloc it y	Pressure	Relative Volume
(mm/µsec)	(mm/µsec)	(kilobars)	V 0 2 0 11 0
Sodium Bromi	.de		
3.38 3.34	0.55 0.54	58 57	0.838 0.839
4.00	1.06	1 3 3	0.736
4.29	1.30	177	0.697
4.38	1.36	189	0.689
4.79	1.63	247	0.659
5.10	1.83	293	0.641
5.06	1.35	295	0.635
5.10	1.89	3 05	0.630
0 - 7 165			
€ o = 3.165			
Sodium Chlos	nda lean cance	ota tahlasi	

Sodium Chloride (sec separate tables)

Sodium I	<u>iodide</u> (single crys	tal)	
3.58 4.03 4.39	1.02 1.35 1.61	1 34 • 202 2 59	0.714 0.657 0.634
4.58	1.86	31 2	0 .5 93

Co = 3.64
Source: Christian (1957)

ROCK SALT

Shock Velocity (mm/usec)	Particle Velocity (mm/µsec)	Pressure (kilobars)	Relative Volume
4.652	0.891	89	0.809 (1)
5.018	1.170	126	0.767 (2)
5.382	1.392	161	0.741 (2)
5.325	1.377	162	0.755 (2)
5.511	1.400	166	0.746 (2)
5.874	1.747	220	0.7026(2)
5.870	1.79	226	0.695 (1)
6.07	1.99	2 5 8	0.672 (2)
6.122	1.98	260	0.677 (2)
6.088	1.996	262	0.672 (2)
7.07	2.87	437	0.594 (2)
7.10	2.85	436	0.599 (2)
7.17	2.96	45 7	0.587 (2)
7.465	2.98	47 9	0.601 (2)
8.24	3.49	620	0.677 (1)
8.425	3.90	7 09	0.537 (1)
8.73	3.92	73 5	0.551 (2)
9.118	4.445	856	0.5089(2)
9.157	4.596	865	0.498 (3)
9.025	4.54	882	0.497 (3)

Po = 2.15

Source: Lombard (1961)

- (1) Louisiana dome salt: Carey Mine
- (2) Origin undetermined
- (3) New Mexico red potash ore

and accompany to the party of t

SODI'M! CHLORIDE (SINGLE CRYSTALS)

hook Velocity (nm/weec)	Particle Velocity (mm//sec)	Pressure (kilobars)	Relative Volume
5,66 5,96 6,13 7,85 8,91	1.71 1.85 2.07 3.24 4.10	209 236 276 547 790	0.699 0.689 0.666 0.588 0.541

(o = 2.16

Bource: Al'tshuler, Kuleshova and Pavlowskii (1960)

SODIUM CHLORIDE (SINGLE CRYSTALS)

Shock Velocity (mm/wsec)	Particle Velocity (mm//sec)	Pressure (kilobars)	Rela tiv e Volume	
Crystal ori	entation to shoc	k front: 100		
5.066	1.099	120	0.783	
5.860	1.76	22 3	0.700	
5.937	1.73	22 4	0.710	
6.064	1.860	2 43	0.693	
6.237	1.963	2 65 5	0.6853	
6.24	2.05	277	0.671	
6.34	2.28	313	0.640	
6.36	2.35	321	0.613	
6.45	2.537	352	0.607	
7.22	3.00	473	0.585	
7.72	3•32	550	0.570	
7.83	3•27	548	0.582	
8.624	3•90	725	0.547	
8.47	3•98	747	0.530	
Crystal orientation to shock front: 111				
5.875	1.88	2 38	0.680	
5.980	2.012	2 60	0.664	
5.999	2.029	264 5	0.6618	
6.04	2.09	2 7 2	0.656	
6.25	2.27	3 08	0.637	
8.66	3. 92	73 0	0.547	

Q 0 = 2.15

Source: Mapublished data: LRL

CESIUM BROMIDE

CESIUM

IODIDE

LITHIUM BROMIDE

LITHIUM CHLORIDE

LITHIUM FLUORIDE

the district ...

Relative Volume V/V

LITHIUM IODIDE

Pressure - Kilobars

SODIUM IODIDE

ROCK SALT

Temperatures associated with shock Halides

Pressure (kilobars)	Temperature behind shock (C ^O)	Residual temperature (C ^O)
Cesium brom	lde	
0	20	20
146	950	425
213	1620	645 (M-2%)
280	2600	645 (M-80%)
328	3200	850 (L)
Cesium chlor	ride	
0	20	20
60	265	100
154	910	34 0
172	1075	390
270	2100	560 (T)
318	2700	650 (T, M-50%)
Cesium iodi	de	
0	20	20
140	1400	490
195	2 3 00	630 (M-30%)
274	3800	750 (L)
324	4 7 00	900 (L)

Source: Christian, 1957

- (M- %) indicates the final state is at the "melting point" with % liquid
- (L) indicates the liquid state
- (T) indicates a transition is assumed to occur in the rarefaction only

Temperatures associated with shock

Halides

Pressure (kilobars)	Temperature behind shock (C ^O)	Residual temperature (C ^O)
Lithium bro	mide	
0 136 194 267 300	20 425 695 1080 1645	20 170 290 435 520
Lithium chl	oride	
0 121 170 230 263	20 235 425 635 805	20 74 170 290 400
Lithium flu	oride	
0 155 185 282 3 28	20 134 175 315 410	20 62 80 155 200

Source: Christian, 1957

Temperatures associated with shock

Halides

Pressure (kilobars)	Temperature behind shock (C ^o)	Residual temperature (C ^O)	
Potascium bi	rom1de		
0	20	20	
112	1000	540	
161	1600	630	
218	2400	750 (L)	
264	3100	900 (L)	
Totassium ch	aloride		
0	20	20	
40	160	50	
97	600	320	
144	1060	620	
194	1640	750 (11-45%)	
232	2110	750 (11-70%)	
229	2080	750 (11-70%)	
Petassium fl	Lu ori de		
0	20	20	
117	400	235	
168	600	335	
2 3 2	1100	630	
2 6 6	1400	750	
Potassium iodide			
0	20	20	
1 10	1100	400	
161	1950	600	
22 7	3200	900 (L)	
2 7 8	4400	1000 (L)	

Source: Christian, 1957

(L) indicates the liquid phase

⁽M- %) indicates the final state is at the "melting point" with % liquid

Temperatures associated with shock
Halides

Pressure (kilobars)	Temperature behind shock (C ^O)	Residual temperature (C ^O)
Rubidium br	om1de	
0 112 163 237 286	20 1240 2040 3200 4100	20 695 (N-40%) 810 (L) 1200 (L) 1400 (L)
Rubidium ch	loride	
0 109 151 222 268	20 1080 1600 2700 3400	20 700 725 (1!-75%) 1050 (L) 1100 (L)
Rubidium 10	dide	
0 117 163 235 279	20 1500 2600 4200 5150	20 670 (L) 1050 (L) 1450 (L) 1850 (L)

Source: Christian, 1957

- (E- %) indicates the final state is at the "melting point" with % liquid
- (L) indicates the liquid state

Temperatures associated with shock Halides

Pressure (kilobars)	Temperature behind shock (°°)	Residual temperature (C ^O)		
Sodium brom	ide			
0	20	20		
58	150	95		
57	145	95		
133	475	215		
177	750	33 0		
189	830	365		
247	1290	550		
293	1725	725		
295	1725	735		
3 05	1825	775		
Sodium chloride				
0	20	20		
52	120	60		
118	345	155		
120	320	1 3 0		
119	345	155		
120	340	150		
120	330	140		
126	395	180		
161	520	240		
223	745	345		
224	720	320		
237	960	410		
243	880	370		
238	960	410		
260	1100	470		
259	1000	435		
264	1 6 60	450		
270	980	410		
26 4	1100	470		

Pressure (kilobars)	Temperature behind shock (C ^O)	Residual temperature (C)
Sodium iodi	de	
0 134 202 259 312	20 750 1350 2000 2675	20 340 650 665 (X-30%) 665 (4-85%)

Source: Christian, 1957

(M- %) indicates the final state is at the "melting point" with % liquid

CESIUM BROMIDE

CESIUM CHLORIDE

CESIUM IODIDE

LITHIUM BROMIDE

LITHIUM CHLORIDE

Pressure - Kilobars

LITHIUM FLUORIDE

POTASSIUM BROMIDE

POTASSIUM CHLORIDE

POTASSIUM FLUORIDE

Pressure - Kilobars

POTASSIUM IODIDE

RUBIDIUM BROMIDE

RUBIDIUM CHLORIDE

RUBIDIUM IODIDE

SODIUM BROMIDE

一般の ところ こうかん

SODIUM CHLORIDE

1, "NOTE 18 10" " . . .

こととなっていると

SODIUM IODIDE

INDIUM

Shock Velocity (mm/wsec)	Particle Velocity (mm/usec)	Pressure (kilobars)	Relative Volume
3. 745	0.7837	21 3. 5	0.7907
3.965	0.9812	28 3	0.7525
4.348	1.281	405	0.7054

e o = 7.27

Source: Walsh, Rice, McQueen and Yarger (1957)

Market Co. Co.

INDIUM

Temperatures associated with shock

Indium

Pressure (kilobars)	Temperature behind shock (CO)	Residual temperature (C ^O)
0 100 150 200 250	20 153 260 397 561	
300 350 400 450 500	74 5 950 117 9 1439 1710	

Source: Rice, McQueen and Walsh, 1958

Pressure - Kilobars

INDIUM

IRON

Shock Velocity	Particle Velocity	Pressure	Relative Volume
(mm/msec)	(mm/usec)	(kilobars)	
5.30	0.97	400 422	
5.38 5.54	1.00 1.14	500	
7.27	2.26	1290	
7.54	2 .3 8	1410	
8.89	3.25	2270	
9.36	3.56	2620	
9.98	3.83 4.20	3 000 3440	
10.45 10.67	4.20 4.32	3620	
10.01	4 6 70	J 00	
11.10	4.59	4000	
11.32	4.33	4290	
12.00	5.17	4870	•

e a = 7.85

Source: Al'tshuler, Krupnikov and Brazhnik (1958)

IRON

Shock Velocity (mm/µsec)	Farticle Velocity (mm//sec)	Iressure (kilobars)	Relative Volume
5.438	0.994	423.8	0.8172
5.458	0.993	424.9	0.8181
5.474	1.013	434.7	0.3149
5.652	1.083	480.8	0.8080

Source: Walsh, Rice, Mc. ueen and Yarger (1957)

・ナン アスケー大変をでなるといりをあるとうなられな

IRON

Shock Velocity (mm/µsec)	Particle Velocity (mm/µsec)	Pressure (kilobars)	Relative Volume
5.57	1.09	477	0.804
6.54	1.64	843	0.749
6.57	1.66	857	0.748
6.65	1.74	911	0.738
6.71	1.79	943	0.733
6.63	1.86	968	0.720
6.89	1.89	1024	0.726
6.95	1.89	1033	0.728
7.42	2.17	12 67	0.707
7.42	2.19	1276	0.705
7.66	2.32	1397	0.697
7.58	2.34	1393	0.692
8.00	2.57	1618	0.679
8.22	2.68	1728	0.675
8.20	2.68	1730	0.673

Po = 7.8

本語のは、 これのでは、 これのでは、 これのでは、 は、 これのでは、 は、 これのでは、 これ

Source: Mc.ucen and Marsh (1960)

IRON

Temperatures associated with shock

Iron

Pressure (Filobars)	Tenperature behind shock (C)	Residual temperature (CO)
0 250 500 750	20 227 527 1027	
1000 1250 1500 1750	1477 1927 2 377 3127	

Source: McQueen and Harsh, 1960

IRON

一個なるないのではないないという かんしゅう

KEL-F

Shock Velocity (mm/µsec)	Particle Velocity (mm/µsec)	Pressure (kilobars)	Relative Volume
2.60	0.580	31.7	0.776
2.68	0.565	31.8	0.790
3.61	1.10	83.0	0.697
3.64	1.27	96.8	0.651

 $e_0 = 2.1$

Source: Wagner, Waldorf and Louie (1962)

LEAD

Shock Velocity (mm/µsec)	Particle Velocity (mm/usec)	Pressure (kilobars)	Relative Volume
2.914	0.590	194.8	0.7975
3.266	0.819	303.2	0.7494
3.250	0.802	295.3	0.7532
3.724	1.118	471.7	0.6998

Po = 11.34

Source: Walsh, Rice, McQueen and Yarger (1957)

LEAD

Shock Velocity (mm/usec)	Particle Velocity (mm/usec)	Pressure (kilobars)	Relative Volume
3.52	0.97	390	0.724
5.33	2. 3 4	1410	0.563
7.65	4.26	3700	0.443

eo = 11.74

Source: Al*tshuler, Krupnikov and Brazhnik (1958)

LEAD

Shock	Particle	Pressure	Relative Volume
Velocity (mm/usec)	Velocity (mm/usec)	(kilobers)	VOIMME
4.52	1.64	838	0.638
4.52 5.44	1.64 2.25	8 37 1 3 88	0.638 0.587
5.42	2.25	1383	0.585

 $e_0 = 11.34$

Source: McQueen and Marsh (1960)

Temperatures associated with shock
Lead

Pressure (kilobars)	Temperature behind shock (CO)	Residual temperature (C ^O)
0	20	20
100	131	69
200	628	214
30 0	1070	32 7
400	1589	429
500	2449	624
600	3466	818
700	4631	1007
800	5937	1192
900	7378	1369
1000 1100 1200 1300 1400	8945 10637 12447 14367 16397	1540 1703 -

Source: Mcqueen and Marsh, 1960

The state of the s

LEAD

LIMESTONE*

Shock Velocity (mm/µsec)	Particle Velocity (mm/msec)	Pressure (kilolars)	Relative Volume
3.707	0.570	53	0.846
4.927	1.055	130	0.786
5.83	2.01	294	0.655
6.56	2.64	459	0.598
8.05	3.31	692	0.589
8.60	3.67	817	0.573

Po = 2.50 - 2.59

Source: Lombard (1961)

^{*} From third fragmented formation, Pony Creek No. 2 core, Richfield Oil Co., Alberta, Canada

LIQUIDS

Shock Velocity (mm/µsec)	Particle Velocity (mm/µsec)	Pressure (kilobars)	Relative Volume
Acetone			
5•37 3•97	2.510 1.495	105 . 8 46 . 4	0.533 0.623
e o = 0.78			
Benzene			
5.66 4.10	2.470 1.448	121.0 52.4	0.564 0.647
e = 0.87			
Bromosthane			
4.68 3.40	2.300 1.363	157.1 68.0	0.508 0.599
ço = 1.46			
Carbon Disulf	100		
4.32 3.37	2.412 1.415	129 • 5 58• 5	0.441 0.580
e o = 1.23			
Carbon Tetrac	hloride		
4.85 3.51	2.235 1.325	171.0 73.9	0.539 0.622
(o = 1.58			
Ethyl Ether		•	_
5.40 3.88	2.550 1.517	96.1 41.8	0.528 0.609

公路 / 海波 中心 アライディ

LIQUIDS (cont)

Shock Velocity (mm/µsec)	Particle Velocity (mm/µsec)	Pressure (kilobars)	Relative Volume
Ethyl Alcohol			
5.63 4.03	2.500 1.487	110.4 47.3	0.556 0.631
eo = 0.79			
Glycerine			
6.07 4.58	2.240 1.328	170.3 76.6	0.631 0.710
e o = 1.25 Hexane			
5.54	2.590	95.7	0.533
4.02	1.517	95•7 41•5	0.622
e o = 0.68			
Meroury			
2.752 3.101	0.608 0.772	226.4 324.0	0.779 0.751
3.504	0.978	463.7	0.721
$e_0 = 13.5$			
Me thanol			
5.51 3.95	2.525 1.483	109.5 46.6	0.542 0.625
J ♥ J J	14707	40.0	0,023
$p_0 = 0.79$			

- 新学校の教育を発生しています。

LIQUIDS (cont)

Shock Velocity (mm/usec)	Particle Velocity (mm/µsec)	Pressure (kilobars)	Relative Volume
Mononitrotol	uene		
5.64 4.20	2.300 1.340	151 .5 65 . 8	0.592 0.681
e o = 1.17			
N-Amyl Alcoh	<u>01</u>		
5.81 4.26	2.465 1.466	115.9 50.9	0.576 0.656
Po = 0.81			
<u>Toluene</u>			
5.73 4.12	2.412 1.443	121.5 52.1	0.579 0.650
0 - 0 88			

eo = 0.88

<u>Water</u> (see separate table)

Source: Walsh and Rice (1957)

ACETONE

BENZENE

CARBON DISULFIDE

CARBON TETRACHLORIDE

一心,而你来此为意情

GLYCERINE

MONONITROTOLUENE

TOLUENE

WATER

Shock Velocity (mm/µsec)	Particle Velocity (mm/µsec)	Pressure (kilobars)	Relative Volume
3•354	0.952	31.8	0.716
4•093	1.392	56.8	0.660
4•126	1.411	58.2	0.658
4•536	1.655	74.9	0.635
4.813	1.829	87.8	0.620
4.777	1.806	86.1	0.622
4.757	1.798	85.4	0.622
5.626	2.385	133.9	0.576
5.604	2.370	132.5	0.577
5.601	2.335	130.5	0.583
8.07	4.13	333.0	0.488
8.07	4.24	342.0	0.475
8.45	4.60	388.0	0.456
8.49	4.72	400.0	0.444
8.59	4.72	405.0	0.450
8.74	4.81	419.0	0.450

Co = 1.0 Source: Walsh and Rice (1957)

WATER

MAGNESIUM

Shock Velocity (mm/usec)	Particle Velocity (mm/usec)	Pressure (kilobars)	Relative Volume
5.987	1.121	116.4	0.9128
7.082	2.078	260.4	0.7066

Po = 1.735

Source: Walsh, Rice, McQueen and Yarger (1957)

Temperatures associated with shock

Hagnesium

ressure (hilobars)	Temperature behind shock (U ^O)	Rosidnal temporature (C ^O)
0 100 150	20 174 313	
200 250 300	427 691 923	

Scurce: Rice, Hequeen and Walsh, 1958

MAGNESIUM

MARBLE*

Shock Velocity	Particle	Pressure	Relative
(mm/usec)	Velocity (mm/µsec)	(kilobars)	Volume
	Light	Marble	
6.620 7.347 7.658	0.913 1.422 1.93	171 297 418	0.862 0.806 0.748
	Dark	Marble	
5.464 7.304 7.737	0.983 1.425 2.13	156 296 468	0.820 0.805 0.725

90 = 2.84 - 2.90

Source: Lombard (1961)

* From surface, Nevada Test Site Area 15

MARBLE

Shock Velocity (mm/usec)	Particle Velocity (mm/us.cc)	Pressure (kilobars)	Relative Volume
4.26	0.43	50	0.901
4.51	.0.56	68	0.877
4.70	*0.64	80	0.862
4.92	0.77	102.5	0.846
5.18	0.90	125	0.826
5.26	0.92	131	0.825
5.47	1.125	166	0.794
5.51	1.17	174	0.786
5.66	1.26	19 3	0.781
5.76	1.33	108	0.763
6.04	1.56	252	0.741
6.27	1.72	291	0.725
6.47	1.85	325	0.715
7.35	2.56	508	0.653

eo = 2.70

Source: Dremin and Adadurov (1959)

MOLYBDENUM

Shook	Particle	Pressure	Relative
Velocity (mm/usec)	Velocity (mm/µsec)	(kilobars)	Volume
5.699	0.437	254.0	0.9233
5.647	0.44½	255.2	0.9214
5.955	0.591	359.0	0.9008
5.861	0.606	362.3	0.8966
6.210	0 . 8 50	538.4	0.8631
6.124	0.792	494.7	0.8707

eo = 10.20

Source: Walsh, Rice, McQueen and Yarger (1957)

MOLYEDENUM

Shock Velocity (mm/µsec)	Particle Velocity (mm/µsec)	Pressure (kilobars)	Relative Volume
7.29	1.69	1256	0.769
7.20	1.70	12 4 5	0.764
7.29	1.68	1250	0.770
7.65	2.06	1604	0.731
7.71	2.06	1618	0.733
7.75	2.07	1633	0.733

 $e_0 = 10.20$

Source: McQueen and Marsh (1960)

Temperatures associated with shock Molyndenum

Pressure (kilobars)	Temperature behind shock (C ^O)	Residual temperature (6°)
0	20	20
100	37	22
200	62	3 2
300	99	5 4
400	153	90
500	226	139
600	313	202
700	429	276
800	559	362
900	707	457
1000	871	560
1100	1051	670
1200	1244	736
1 30 0	1449	905
1400	1665	1 027
1500	1888	1149
1600	2116	1270
1700	2 3 47	1387

Source: McAueen and Marsh, 1960

MOLYBDENUM

NICKEL

Shock Velocity (mm/usec)	Particle Velocity (mm/µsec)	Pressure (kilobars)	Relative Volume
5.417	0. 49 0	235.0	0.9095
5.653	0. 67 8	339.4	0.8801
5.620	0. 68 7	341.8	0.8778
6.031	0.957	511.0	0.8413
5.969	0.982	519.0	0.8355
5.952	0.887	467.4	0.8510

% = 8.86

Source: Walsh, Rice, McQueen and Yarger (1957)

NICKEL

Shock	Particle	Pressure	Relative Volume
Velocity (mm/µsec)	Velocity (mm/seec)	(kilobars)	AOTAMe
6.95	1.64 1.64	1009	0.764
6.99 7.11	1.64 1.62	1014 1022	0.766 0.772
7.78	2.15	1478 1491	0.724 0.721
7.78 7.76 7.80	2.17 2.16	1490	0.723

e = 8.86

Source: McQueen and Marsh (1960)

NICKEL

かっていて、 これのはないないできませんのできません

Temperatures associated with shock

Michel

Pressure (hilobars)	Temperature behind shock (c°)	Residual temperature (C ^O)
0	20	20
100	48	22
200	8 3	34
300	132	57
400	198	92
500	281	137
600	301	191
700	495	252
800	624	319
900	767	391
1000	922	466
1100	1087	544
1200	1263	623
1300	1447	703
1400	1640	734
1500	1837	864

Source: McQueen and Harsh, 1960

Pressure-Kilobars

NICKEL

NIOBIUM

Shock Velocity (mm/usec)	Particle Velocity (mm/usec)	Pressure (kilobars)	Relative Volume
5.177	0.5489	244 。5	0.9040
5.311	0.7434	34 1	0.8606
5.642	0.9929	482	0.8240

e = 8.604

Source: Walsh, Rice, McQueen and Yarger (1957)

Tenperatures associated with shock

Niobium

Pressure (kilobars)	Temperature behind shock (C ^O)	Residual temperature (C ^O)
0 100 150 200 250	20 49 73 97 133	
300 350 400 450 500	177 227 284 351 427	

Source: Rice, McQueen and Walsh, 1958

NIOBIUM

NYLON

Shock Velocity (mm/µsec)	Particle Velocity (mm/µsec)	Pressure (kilobars)	Relative Volume
2.38	0.135	4.50	0.945
2.40	0.165	3.64	0.930
3.51	0.505	26.6	0.856
3.52	0.665	20.2	0.810
4.56	1.55	80.2	0.661

 $Q_0 = 1.14$

MARTINE OF THE STATE OF THE STA

Source: Wagner, Waldorf and Louie (1962)

Pressure-Kilobars

NYLON

OIL SAND#

Shock Velocity	Farticle Velocity	Pressure	Relative
(mm/µsec)	(majuseo)	(kilobars)	Volume
4.37 2 5 . 69	1.215 2.21	98	0 .7 22
5.48	2.26	242 231	0.612 0.588
7.45 7.31	3.80 3. 78	540 546	0.490
7.79	4.25	546 634	0.483 0.455

 $e_0 = 1.84 - 1.98$

Source: Lombard (1961)

* McMurray formation, Pony Creek No. 2 core, Richfield Oil Co., Alberta, Canada

OIL SHALE*

Shock	Particle	Pressure	Relative
Velocity (mm/µsec)	Velocity (mm/µsec)	(kilobars)	Yolume
<i>y</i>	7		
	Ore Grade# -	High	
4.86	1.27	96	0.739
5.33 5.96	1.59 1.97	135 189	0.701 0.669
6.23	2.26	219	0.637
	Ore Grade - M	ed1um	
F 70			0 704
5.30 6.27	1.09 1.43	119 170	0.794 0.729
6.09 6.29	1.75	242 279	0.713 0.682
0.29	2,00	219	0.002
	Ore Grade	- Low	
5.08	1.09	130	0.765
5.36 6.04	1.40 1.75	175 241	0.738 0.710
6.41	1.98	286	0.691
	011 Shale	- Wet	
4.43 5.16	1.64	110	0.630
7 - 111	2.68	222	0.507

Po = High - 1.6; Medium - 2.2 - 2.3; Iow - 2.3; Wet - 1.51 Source: Lombard (1961)

^{*} Pony Creek No. 2 core, Richfield Oil Co., Alberta, Canada

[#] Ore grade - a qualitative term denoting the relative
oil yield per unit volume of rock

222

OIL SHALE

PALLADIUM

Shock Velocity (mm/usec)	Particle Velocity (mm/msec)	Pressure (kilobars)	Relative Volume
4.673	0.4728	262.5	0.8988
5.004	0.6200	372	0.8761
5.374	0.8219	531	0.8471

Po = 11.95

Source: Walsh, Rice, McQueen and Yarger (1957)

PALLADIUM

Temperatures associated with shock

Palladium

Pressure (kilobars)	Temperature behind shock (C ^O)	Residual temperature (C ^O)
0 100 150 200 250	20 65 97 135 180	
300 350 400 450 500	231 289 3 53 423 497	,

Source: Rice, McQueen and Marsh, 1958

PALLADIUM

Source: Los Alamos (private communication)

AVCO PHENOLIC PIBERGLASS

Shock Velocity	Particle	Fressure	Relative
(mm/msac)	Velocity (mm/usec)	(kilobars)	Volume
2.19	0.444	18.5	0.797
2.43	0.568	26.2	0.766
3.03	0.866	49.9	0.716
3.32	1.38	86.8	0.586
4.28	2.19	178.0	0.488

e = 1.90

Source: Wagner, Waldorf and Louie (1962)

G E PHENOLIC FIBERGLASS

Shock Velocity	Particle Velocity	Pressure	Relative Volume
(mm/µ sec)	(mm/µsec)	(kilobars)	
3.69	0.385	27.5	0.896
3,80 4,09	0.500	36.9 62.7	0.868 0.306
4.36	0.791 1.01	85.7	0.768
4.59	1.25	111.0	0.728

Po = 1.94

Source: Wagner, Waldorf and Louie (1962)

AVCO PHENOLIC FIBERGLASS

G.E. PHENOLIC FIBERGLASS

CHOPPED NYLON PHENOLIC

Shock Velocity (mm/µsec)	Particle Velocity (mm/usec)	Pressure (kilobars)	Relative Volume
3.47	0.928	38.6	0.732
6.03	2.33	169	0.614
7.38	3.09	274	0.581

 $e_0 = 1.20$

Source: Wagner, Waldorf and Louie (1962)

TAPE WOUND NYLON PHENOLIC

Shock Velocity	Particle Velocity	Pressure	Relative Volume
(mm/pasec)	(mm/msec)	(kilobars)	ACTUME
3.83	0.433	20.2	0.889
3.97	0.562	27.2	0.859
4.22	0.891	45.8	0.790
4.64	1.13	64.0	0.755
5.12	1.38	86.1	0.731

 $e_0 = 1.22$

Source: Wagner, Waldorf and Louis (1962)

CHOPPED NYLON PHENOLIC

The second of th

TAPE WOUND NYLON PHENOLIC

PLATINUM

Shock Velocity (mm/wsec)	Particle Velocity (mm/µsec)	Pressure (kilobars)	Rela tiv e Volume
4.199	0.329	295	0.9238
4.306	0.4550	416.5	0.8943
4.495	0.6102	586	0.8642

 $e_0 = 21.37$

Source: Walsh, Rice, McQueen and Yarger (1957)

PLATINUM

Temperatures associated with shock

Platinum

Pressure (kilobars)	Temperature behind shock (C ^O)	Residual temperature (C ^O)
0 100 150 200 250	20 46 60 77 95	
300 350 400 450 500	117 144 174 207 244	

Source: Rice, McQueen and Walsh, 1958

PLATINUM

ALTERNATION IN

PLAYA*

Shock Velocity (mm/psec)	Particle Velocity (mm/wsec)	Pressure (kilobars)	Relative Volume
2.70	1.04	40	0.615
4.40	2.48	148	0.436
3.00	1.08	48	0.640
2.58	1.04	39	0.597
3.69	1.60	87	0.566
4.47	2.52	165	0.436
4.36	2.50	160	0.427
5.07	3.54	26 4	0.302
5.24	3.52	271	0.328

Po = 1.41 - 1.47

Source: Bass, Hawk and Chabai (1963)

^{*} Samples from 100 ft depth, Nevada Test Site Area 5

PLAYA

こうしょう まいい というとう かいかん あいかん かんしゅう

PLEXIGLAS

Shock Velocity (mm/usec)	Particle Velocity (mm/µsec)	Pressure (kilobars)	Relative Volume
3.16	0.454	16.9	
3.26	0.590	22.7	
3.85	0.916	41.6	
4.17	1.17	57.6	
4.52	1.43	76.5	
5.97	2.28	160	

Po = 1.18

Source: Wagner, Waldorf and Louie (1962)

POLYETHYLENE

Shock Velocity (mm/µsec)	Particle Velocity (mm/psec)	Pressure (kilobars)	Relative Volume
1.86	0.115	1.96	0.9 3 8
1.90	0.170	2.95	0.910
3.14	0.625	18.1	0.800
4.30	1.33	58.8	0.723
4.88	1.44	64.5	0.706

 $e_0 = 0.92$

Source: Wagner, Waldorf and Louie (1962)

Pressure-Kilobars

Relative Volume V/Vo POLYETHYLENE

POLYSTYRENE

Shock	Particle	Pressure	Relative
Velocity (mm/usec)	Velocity (mm/Msec)	(kilobars)	Volume
2.74	0.140	4.07	0.948
3.72	0.320	12.5	0.914
3.73	0.460	17.9	0.877
4.56	1.24	59.3	0.729

e = 1.05

Source: Wagner, Waldorf and Louie (1962)

CRYSTALLINE QUARTZ

Shock Velocity (mm/usec)	Particle Velocity (mm/usec)	Pressure (kilobars)	Relative Volume
2.88	0.43	56	0.900
4.74	0.67	94	0.809
4.74	0.71	99	0.863
5.14	0.82	116	0.847
4.85	0.86	126	0.841
4.88	0.86	126	0.843
5.11	0.83	126	0.842
5.18	0.87	132	0.837
5.24	0.92	135	0.829
5.64 5.61 5.47 4.71 5.68 5.61	1.24 1.21 1.25 1.23 1.30 1.26	189 184 190 196 198 200	0.785 0.788 0.783 0.783 0.773
5.61	1.71	263	0.705
5.69	1.69	269	0.707
5.76	1.82	2 77	0.690
6.12	2.55	414	0.585
6.29	2.70	430	0.571
6.66	2.70	511	0.566
6.95	3.03	558	0.564
7.76	3.42	703	0.589
7.70	3.52	708	0.539
7.75	3.52	714	0.548
7.76	3.49	718	0.550
7.75	3.52	723	0.548

6° = 5°9

Source: Wackerle (1962)

CRYSTALLINE QUARTZ

Source: Wackerle (1962)

FUSED QUARTZ

Shock Velocity	Particle	Pressure	Relative
(mm/usec)	Velocity (mm/µsec)	(kilobars)	Volume
4.52	1.04	117	0.791
4.67	1.40	153	0.717
4.70	1.41	157	0.716
4.97	1.90	211	0.624
4.96	1.95	217	0.614
5.53	2.76	337	0.501
5.62	2.76	342	0.509
5.62	2.78	346	0.512
6.43	3.25	460	0.495
6.44	3.33	482	0.484
7.28	3.81	611	0.477
7.30	3.87	623	0.470

 $ext{0} = 2.204$

Source: Wackerle (1962)

FUSED QUARTZ

FUSED QUARTZ

Temperatures associated with shock
Crystalline quartz

Pressure (kilobars)	Temperature behind shock (C ^O)	Residual temperature (0°)
0	20	20
50	36	20
100	117	81
144	203	151
150	206	156
200	238	168
250 262 300 350 383	282 336 398 454	190 214 248 282
400	640	465
450	1125	780
500	1630	1160
600	2650	1920
700	3665	2670

Source: Wackerle, 1962

THE PERSON NAMED IN THE PARTY OF THE PARTY O

CRYSTALLINE QUARTZ

Temperatures associated with shock
Fused quartz

Pressure (kilobars)	Temperature behind shock (CO)	Recidual temperature (C ^O)
50 100 144 150 200	1 2 - 3 4	0 0
250 262 300 350 383	5 5 495 1185	0 0 470 1155
400 450 500 600 700	1895 2560 3390 4890	1860 2610 3310 4790

Source: Wackerle, 1962

de la companya della companya della companya de la companya della companya della

Pressure - Kilobars

FUSED QUARTZ

RAD 58B

Shock Velocity	Particle	Pressure	Relative
(mm/µsec)	Velocity (mm/msec)	(kilobars)	Volume
1.43 1.54	0.298	5.39	0.794
1.60	0.503 0.654	9.77 13.2	0.674 0.591
1.92	1.02	24.7	0.467
2.13 2.28	1.31 1.61	35.1 46.3	0.388 0.296

e = 1.26

Source: Wagner, Waldorf and Louie (1962)

The state of the s

OBLIQUE TAPE WOUND REFRASIL

Shock Velocity	Particle Velocity	Pressure	R elativ e Volume
(mm/usec)	(mm/µsec)	(kilobars)	
2.87	0.436	19.6	0.849
3.00	0.565	26.6	0.811
3.41	0.882	47.2	0.742
3.59	1.13	63.9	0.684
3.82	1.39	83.6	0,635

Po = 1.57

Source: Wagner, Waldorf and Louie (1962)

OBLIQUE TAPE WOL D REFRASIL

THIS PAGE IS MISSING IN ORIGINAL DOCUMENT

124 RESINS

RHODIUM

Shock Velocity (mm/µsec)	Particle Velocity (mm/µsec)	Pressure (kilobars)	Rela tive Volume
5.476	o.4100	278 . 5	0.9250
5.865	0.7566	551	0.8710

 $e^{0} = 12.42$

Source: Walsh, Rice, McQueen and Yarger (1957)

RHODIUM

Temperatures associated with shock

Rhodium

Pressure (kilobars)	Temperature behind shock (C ^O)	Residual temperature (C ^O)
0 100 150 200 250	20 42 54 69 85	
300 350 400 450 500	104 127 153 181 218	

Source: Rice, McQueen and Walsh, 1958

RHODIUM

SILICA SAND*

Shock Velocity (mm/µsec)	Particle Velocity (mm/wsec)	Pressure (kilobars)	Relative Volume
(mm/) Bec)	(mm/wsec)	(ritonare)	
	Dry Silica Sand	- Porosity 41%	
3.13	1.17	58	0.626
3.23 3.42	1.16 1.61	59 88	0.641 0.529
3.47 4.26	1.70 2.25	93 150	0.510
4.24	2.23	153	0.472 0.474
	•		,
	Dry Silica Sand	- Porosity 22%	
3.45	1.07	7 5	0.690
3.70	1.46	116	0.605
4.78	2.03	197	0.575
Wate	r-Saturated Silic	a Sand - Porosit	y 41%
4.53	0.98	90	0.784
5.00	1.45	143	0.710
5.63 5.50	1.94	21 3 216	0.655
5 •5 9	1.93	610	0.655

co = Dry (porosity 41%) - 1.6; Dry (porosity 22%) - 2.0; Wet - 2.0
Source: Bass, Hawk and Chabai (1963)

^{*} Fine, pure silica sand, called oven furnace sand, composed of particles 80% of which have diameters less than 75 microns. Maximum particle size 150 microns. Grain density 2.65 gm/cm³, the same as that of crystalline quartz.

Dry Silica Sand — Porosity = 41 %

Dry Silica Sand --- Porosity = 22 %

WATER SATURATED SILICA SAND

	SILVER	•	
Shock Velocity	Particle Velocity	Pressure	Relative Volume
(mm/usec)	(mm/Msec)	(kilobars)	7030
4.065	0.504	214.9	0.8760
4.113	0.527	227.4	0.8719
4.378 4.846	0.717 0.985	329.3 500.7	0.8362 0.7967
4.848	1.010	513.6	0.7917

 $e^{0} = 10.94$

Source: Walsh, Rice, McQueen and Yarger (1957)

SILVER

Shock Velocity (mm//usec)	Particle Velocity (mm/wsec)	Pressure (kilobars)	Relative Volume
4.69	0.93	460	0.800
6.76	2.19	1550	0.675
9.45	4.05	4010	0.572

e = 10.94

Source: Al'tshuler, Krupnikov and Brazhnik (1958)

SILVER .

Shock Velocity (mm/µsec)	Particle Velocity (mm/wsec)	Pressure (kilobars)	Relative Volume
5.98	1.77	1107	0.705
5.96	1.78	1109	0.702
6.73	2.14	1512	0.681
6.63	2.17	1509	0.673
6.68	2.16	1510	0.677
6.72	2.17	15 3 0	0.677

Po = 10.94 Source: McQueen and Marsh (1960)

Pressure - Kilobars

SILVER

Temperatures associated with shock
Silver

Pressure (%11obars)	Temperature behind shock (C ^O)	Residual temperature (C ^O)
0	20	20
100	85	3 0
200	179	71
300	320	143
400	510	2 3 8
500	748	349
600	1029	470
700	1348	596
800	1701	725
900	2083	853
1000	2460	960
1100	2682	960
1200	2903	960
1300	3198	992
1400	3725	1117
1500	4285	1241
1600	4875	1 3 64

Source: McQueen and Marsh, 1960

SILVER

LOW CARBON STEEL

Shock Velocity (mm/µsec)	Particle Velocity (mm/µsec)	Pressure	Relative Volume
		(kilobars)	
5.15	0.300	120.8	0.9418
5.16	0.305	123.5	0.9408
5.14	0.311	125.4	0.9394
5.15	0.316	127.7	0.9386
5.14	0.322	129 . 9	0.9373
5.155	0.329	132 . 9	0.9362
5.15	0.338	136 . 7	0.9343

Po = 7.8

Source: Katz, Dorran and Curran (1959)

LOW CARBON STEEL

TACONITE

これには、それに、これというとはないないというないのないできませんというないというないできません

Shock Velocity (mm/µsec)	Particle Velocity (mm/µsec)	Pressure (kilobars)	Relative Volume
4.36 5.33	0.68 1.61	126 2 4 6	0.843 0.657
7.51 7.98	3.02 3.25	940 1140	0.229 (?) 0.593
Ro = 4.15	- 4.38		
Rock			
4.29 4.23	0.95	74 200	0.780 0.624
7.41	1.59 4.05	679	0.453

Po = 1.82 - 2.41

Source: Lombard (1961)

*Banded Mesabi Range, Erie formation. The banding was of the same dimensions as the sample, hence the "iron" samples are almost pure iron while the "rock" samples contain little iron.

TACONITE

TACONITE

TANTALUM

Shock Velocity (mm/usec)	Particle Velocity (mm/µsec)	Pressure (kilobars)	Rela tiv e Volume
3.811	0.4327	271.5	0.8865
4.010	0.5800	383	0.8554
4.323	0.7685	547	0.8222

Qo = 16.46

The second of the states as a second of the second of the

Source: Walsh, Rice, McQueen and Yarger (1957)

TANTALUM

Temperatures associated with shock

Tantalum

Pressure (kilobars)	Temperature behind shock (C ^O)	Residual temperature (C ^O)
0 100 150 200 250	20 47 69 92 121	
300 350 400 450 500	160 207 260 315 379	

Source: Rice, McQueen and Walsh, 1958

TANTALUM

TEFLON

Shock	Particle	Pressure	Relative
Velocity (mm/usec)	Velocity (mm/usec)	(kilobars)	Volume
1.85	0.263	10.5	0.859
2.08	0.410	18.4	0.803
2.49	0.578	31.1	0.767
3.03	0.837	54. 8	0.723
3.32	1.06	76.4	0.679

eo = 2.16

Source: Wagner, Waldorf and Louie (1962)

Pressure-Kilobars

TEFLON

THALLIUM

Shock Velocity (mm/usec)	Particle Velocity (mm/µsec)	Pressure (kilobars)	Relative Volume
2.804	0.6416	213	0.7712
2.817	0.6386	213	0.7733
3.120	0.8446	312	0.7293
3.145	0.8406	313	0.7327
3.538	1.090	456.5	0.6919
3.541	1.089	456.5	0.6925

Q₀ = 11.84

Source: Walsh, Rice, McQueen and Yarger (1957)

THALLIUM

Shock Velocity	Particle Velocity	Pressure (kilobars)	Relative Volume
(mm/usec)	(mm/µsec)	(R.IIO DAI S)	
4.42	1.65	864	0.627
4.41	1.65	862	0.626
4.41	1.65	862	0.626
5.13	2.15	1306	0.581
5.39	2.37	1515	0.560
5.40	2.37	1516	0.561
5.40	ે • 37	1517	0.561

eo = 11.84

Source: McQueen and Marsh (1960)

なるいいというよう

THALLIUM

Temperatures associated with shock
Thallium

Pressure (kilobars)	Temperature behind shock (C ^o)	Residual temperature (C ^O)
0 100 200 300 400	20 211 587 857 1 50 3	20 78 245 303 502
500 600 700 800 900	2374 3412 4614 5988 7552	723 940 1 148 1 345
1000 1100 1200 1300 1400 1500	9340 11417 13897 17067 21607 30627	- - - -

Source: Mcqueen and Marsh, 1960

Pressure - Kilobars

THALLIUM

THORIUM

Shock Velocity (mm//wsec)	Particle Velocity (mm/wsec)	Pressure (kilobars)	Relative Volume
3.497	1.043	426.0	0.7017
3.192	0.812	302.7	0.7456
2.954	0.620	213.9	0.7901
2.900	0.571	193.4	0.8031

eo = 11.68

Source: Walsh, Rice, McQueen and Yarger (1957)

THORIUM

Shock Velocity	Particle	Pressure	Relative
(mm/wsec)	Velocity (mm/wsec)	(kilobars)	Volume
4.51	1.90	1003	0.578
4.53	1.94	1026	0.572
5.16	2.32	1 4 00	0.550
5.11	2.31	1378	0.548
5.09	2.33	1384	0.543
5.10	2.36	1405	0.538

eo = 11.68

Source: McQueen and Marsh (1960)

Temperatures associated with shock

Thorium

Pressure (hilobars)	Temperature behind shock (C ^O)	Residual temperature (C ^O)
0	20	20
100	129	67
200	394	238
300	801	491
400	1304	781
500	1849	1079
600	2435	1366
700	30 09	1632
800	33 86	1750
900	3855	1895
1000	4818	2285
1100	5956	267 7
1200	6966	3071
1300	8145	3464
1400	9393	3855
1500	10707	4243

Source: McQueen and March, 1960

Pressure - Kilobars

THORIUM

TIN

Shock Velocity (mm/µsec)	Particle Velocity (mm/psec)	Pressure (kilobars)	Relative Volume
4.555	1.290	427.8	0.7168
4.435	1.190	384.2	0.7317
4.004	0.925	269.6	0.7690
3.557	0.705	182.6	0.8018
3.524	0.670	171.9	0.8098

Po = 7.28

Source: Walsh, Rice, McQueen and Yarger (1957)

TIN

Shock Velocity (mm/µsec)	Particle Velocity (mm/µsec)	Pressure (kilobars)	Relative Volume
4.20	1.08	330	0.741
6.36	2.59	1200	0.833
9.02	4.73	3100	0.476

eo = 7.28

Source: Al*tshuler, Krupnikov and Brazhnik (1958)

TIN

Shock Velocity (mm/usec)	Particle Velocity (mm/wsec)	Pressure (kilobars)	Relative Volume
5.57	1.95	790	0.651
6.71	2.80	1364	0.583
6.80	2.78	1377	0.591
6.75	2.81	1378	0.584

 $e_0 = 7.28$

Source: McQueen and Marsh (1960)

TIN

Temperatures associated with shock

Tin

Fressure (kilobars)	Temperature behind shock (C ^O)	Residual temperature (6°)
0	20	20
100	162	63
200	436	198
300	598	232
400	924	341
500	1556	565
600	2312	795
700	3182	1025
800	4169	12 5 2
900	5182	1 4 76
1000 1100 1200 1300 1400	6357 7637 9017 10487 12047	1697 1921 2147 -

Source: McQueen and Marsh, 1960

TIN

TITANIUM

Shock Velocity (mm/wsec)	Particle Velocity (mm/psec)	Pressure (kilobars)	Relative Volume
6.329	1.370	390.8	0.7835
5.790	0.980	255.7	0.8307
5.501	0.723	179.3	0.8686
5.469	0.684	168.6	0.8749

 $\rho_0 = 4.51$

Source: Walsh, Rice, McQueen and Yarger (1957)

TITANIUM

Shock Velocity	Particle Velocity	Pressure	Relative Volume
(mm/µsec)	(mm/µsec)	(kilobars)	772
7.35 7.40	2 .3 0	762 76 4	0.687
	2.29	• •	0.691
7.34	2.29	758	0.689
7.94	2.97	1063	0.626
7.92	2.97	1060	0.625

 $Q_0 = 4.51$

Source: McQueen and Marsh (1960)

TITANIUM

Temperatures associated with shock

Titanium

Pressure (kilobars)	Temperature behind shock (C ^O)	Residual temperature (C ^O)
0	20	20
100	30	29
200	133	73
300	262	154
400	441	268
500	664	406
600	926	561
700	1217	727
800	1503	877
900	1721	957
1000	2115	1154
1100	2550	1363

Source: Mothern and Marsh, 1960

Pressure - Kilobars

TITANIUM

VOLCANIC TUFF

Shock Velocity (mm/µsec)	Particle Velocity (mm/µsec)	Pressure (kilobars)	Relative Volume
	Volcanic T	uff - Dry	
2. 6 27	0.869	39	0.6695(1)
3.33	1.340	7 ¹ +	0.598 (2)
3.433	1.329	77	0.613 (2)
3.78	1.73	105	0.542 (2)
3.71	1.72	109	0.536 (2)
4.299	1.626	1 3 2	0.6218(1)
4.76	2.31	181	0.515 (2)
	Volcanic T	uff - Wet	
4.05	1.236	94	0.695 (2)
4.13	1.27	95	0.692 (2)
4.09	1.230	96	0.699 (3)
4.411	1.61	130	0.635 (2)
4.40	1.60	133	0.636 (2)
4.61	1.59	136	0.655 (2)
5.01	2.02	171	0.597 (2)
4.79	2.24	197	0.542 (2)
5.23	2.25	224	0.570 (2)

Co = Dry - 1.60 - 1.88; Wet - 1.79 - 1.90
Source: Lombard (1961)

- (1) Tunnel U12A, Nevada Test Site
- (2) Tunnel U12B, Nevada Test Site, mined near Rainier
- (3) Origin undetermined

VOLCANIC TUFF

Shock	Particle	Pressure	Relative Volume
Velocity (mm/usec)	Velocity (mm/µsec)	(kilobars)	volume
, s	Dry Volcar	nic Tuff	
2.24 3.70 4.28 4.20 4.78	0.95 1.58 2.28 2.50 2.90	31 85 143 153 202	0.576 (5) 0.573 (5) 0.467 (5) 0.405 (5) 0.393 (5)
2.68 3.56 4.03 4.24	1.00 1.57 2.50 2.46	39 82 147 152	0.627 (4) 0.566 (4) 0.380 (4) 0.420 (4)
•	Water-Saturated	Volcanic Tuff	
3.42 4.26 5.49	0.90 1.45 2.81	53 108 270	0.737 (4) 0.660 (4) 0.488 (5)

0 = Dry - 1.46; Water-saturated - 1.74

Source: Bass, Hawk and Chabai (1963)

- (4) Hevada Test Site Area 16
- (5) Nevada Test Site Area 3

VOLCANIC TUFF - DRY

The state of the s

VOLCANIC TUFF-WET

Tungsten

Shock	Particle	Pressure	Relative
Velocity (mm/µsec)	Velocity (mm/µsec)	(matobars)	Volume
4.56	0.45	3 95	0.901
4.55 4.78	0.45	794	0.901
4.82	0.64 0.64	587 590	0.866 0.868
5.47	1.17	1225	0.786
5.49	1.17	1227	0.788
6.21	1.73	2061	0.721
6.19	1.73	2054	0.721
6.24	1,73	2074	0.723

e o = 19.17

Source: McQueen and Marsh (1960)

Temperatures associated with shock

Tungsten

Tressure (kilobars)	Temperature behind shock (C ^O)	Residual temperature (C ^O)
0	20	20
100	35	21
200	56	30
3 00	89	48
400	136	79
500	199	121
600	279	176
700	3 75	241
800	488	316
900	617	401
1000	761	494
1100	920	594
1200	1092	700
1 3 00	1277	802
1400	1474	928
1500	1681	1048
1600	1898	1170
1700	2123	1295
1800	2356	1421
1900	2596	1 <i>5</i> 47
2000	2841	1674
2100	3 090	1800

Source: McQueen and Marsh, 1960

TUNGSTEN

VANADIUM

Shock Velocity (mm/wsec)	Particle Velocity (mm/usec)	Pressure (kilobars)	Relative Volume
5.78	0.58	204	0.900
5.73	0.58	203	0.898
6.16	0.80	301	0.870
6.07	0.81	301	0.866
6.08	0.81	302	0.866
6.05	0.82	301	0.865
6.08	0.81	301	0.866
6.49	1.12	441	0.828
6.50	1.11	441	0.829
6.46	1.12	441	0.827
7.29	1.86	825	0.746
7.28	1.86	825	0.745
7.32	1.85	828	0.747
7.34	1.85	829	0.748
8.20	2.59	1244	0.697
8.17	2.49	1241	0.695

Po = 6.1

Source: McQueen and Marsh (1960)

VANADIUM

Temperatures associated with shock

Vanadium

Tressure (kilubars)	Temperature behind shock (CO)	Residual temperature (C ^O)
0	20	20
100	4 5	24
200	8 7	44
30 0	155	84
400	251	144
500	374	222
600	523	314
700	697	419
800	892	5 33
900	1106	655
1000	1338	783
1100	1584	913
1200	1841	1046
1 30 0	2109	1178

Source: McQueen and Marsh, 1960

Pressure - Kilobars

VANADIUM

ZINC

Shock Velocity (mm/usec)	Particle Velocity (mm/µsec)	Pressure (kilobars)	Relative Volume
4.019	0.673	193.0	0.833
3.850	0.615	169.1	0.840
4.418	0.842	265.6	0.809
4.663	1.008	335.6	0.784
4.684	1.043	348.7	0.777
4.791	1.121	383.5	0.766
4.792	1.172	401.0	0.755
4,815	1.197	411.5	0.751

 $e_0 = 7.14$

Source: Walsh and Christian (1955)

SINC

Shock Velocity (nm/wsec)	Particle Velocity (mm/µsec)	Pressure (kilobars)	Relative Volume
5.81	1.80	745	0.690
5.82	1.80	747	0.691
5.78	1.80	743	0.688
7.22	2.71	1394	0.625
7.34	2.71	1416	0.631
7.30	2.69	1403	0.631

 $e_0 = 7.14$

The second second

Source: Mckueen and Marsh (1960)

ZINC

Particle Velocity	Pressure	Relative Volume
(mm/µsec)	(kilobars)	V = 0.111
1.250	447	0.7507
	•	0.7556 0.8036
0.894	283.9	0.7991
0.650	188	0.8396
		0.8370 0.8434
	Velocity (mm/µsec) 1.250 1.190 0.88 0.894	Velocity (mm/µsec) (kilobars) 1.250

 $e_0 = 7.135$

Source: Walsh, Rice, McQueen and Yarger (1957)

ZINC

Shock Velocity (mm/µsec)	Particle Velocity (mm/µsec)	Pressure (kilobars)	Relative Volume
4.70	1.04	35 0	0.781
6.85	2.54	1240	0.629
9.90	4.61	3260	0.535

 $e^{-7.14}$

Source: Al'tshuler, Krupnikov and Brazhnik (1958)

Temperatures associated with shock

Zinc

Pressure (kilobars)	Temperature behind shock (C ^O)	Res id ual tenperature (C ^O)
0	20	20
100	122	37
200	274	101
300	495	197
400	780	310
500	1102	419
600	1223	419
700	1 3 63	426
800	1810	544
900	2 30 5	660
1000 1100 1200 1300 1400 1500	2846 3431 4060 4734 5454 6225	774 885 - -

Source: McQueen and Harsh, 1960

ZINC

ZIRCONIUM

Shock Velocity (mm/usec)	Particle Velocity (mm/µsec)	Pressure (kilobars)	Relative Volume
4.494	0.7117	20 7. 5	0.8416
4.674	0.9563	290	0.7954
4.920	1.275	407	0.7408

? o = 6.49

Source: Walsh, Rice, McQueen and Yarger (1957)

THE PROPERTY OF THE

Temperatures associated with shock

Sirconium

Pressure (kilobars)	Temperature behind shock (C ^O)	Residual temperature (C ^O)
0 100 150 200 250	20 55 92 143 214	
300 350 400 450 500	298 3 95 503 616 7 3 7	

Source: Rice, McQueen and Walsh, 1958

ZIRCONIUM

BIBLIOGRAPHY

- B. J. Alder, Physics experiments with strong pressure pulses, in Solids under pressure, ed. by W. Paul and D. M. Warshauer, McGraw-Hill, New York, 1963*
- B. J. Alder and R. H. Christian, The behavior of strongly shocked carbon, Phys. Rev. Letters, 7, 367-369, 1961
- L. V. Al'tshuler, K. K. Krupnikov and M. T. Brazhnik,
 Dynamic compressibility of metals under pressures from
 400,000 to 4,000,000 atmospheres, Soviet Physics, JETP,
 Eng. trans., 34 (7), 614-619, 1958
- L. V. Al'tshuler, K. K. Krupnikov, B. N. Ledenev, V. I. Zhuchikhil and M. I. Brazhnik, Dynamic compressibility and equation of state of iron under high pressure, Soviet Physics, JETP, Eng. trans., 34 (7), 606-614, 1958
- L. V. Al'tshuler, L. V. Kuleshova and M. N. Pavlowskii,
 The dynamic compressibility, equation of state, and electrical conductivity of NaCl at high pressures, Soviet Physics,
 JETP, Eng. trans., 12, 10-15, Jan. 1960
- D. C. Anderson, R. D. Fisher, E. L. McDowell and A. H. Weidermann, Close-in effects from nuclear explosions, AFSWC-TDR-63-53, May 1963

- E. I. Andriankin and V. F. Koryavov, Shock wave in variable compacting medium, Dokl. Akad. Narek, SSSR, 128, 257, 1959
- D. Bancroft, E. L. Peterson and F. S. Minshall, Polymorphism of iron at high pressure, J. Appl. Phys., 27, 291, 1956
- R. C. Bass, H. L. Hawk and A. J. Chabai, Hugoniot data for some geologic materials, SC-4903(RR), Sandia Corp., June 1963
- J. Berger and S. Joigneau, Au sujet de la relation linéaire existant entre la vitesse matérielle et la vitesse de l'onde de choc se propageant dans un metal, Compt. rend., 249, 2506, 1959
- P. J. Blewett, Plane collisions of Murnaghan plastics, AFSWC-TN-61-32, Aug. 1961
- J. S. Buchanan, H. J. James and G. W. Teague, The dynamic compression of Perspax, Phil. Mag., 3, 1432, 1958
- R. H. Christian, The equation of state of the alkali halides at high pressure, UCRL 4900, May 1957. Doctor's dissertation
- R. H. Cole, <u>Underwater explosions</u>, Princeton University Press, Princeton, N. J., 1948

- N. L. Coleburn, B. E. Drimmer and T. P. Liddiard, Compressibility of pyrolytic graphite, Bull. Am. Phys. Soc., 7, 500, 1962
- R. D. Dick, Shock compression of liquid carbon tetrachloride and benzene, Abstract, Bull. Am. Phys. Soc., 2, 547, 1964
- D. G. Doran, Hugoniot equation of state of pyrolytic graphite to 300 K bars, J. Appl. Phys., 34, No. 4, 844-851, 1963
- D. G. Doran, G. R. Fowles and G. A. Peterson, Shock wave compression of aluminum, Phys. Rev. Letters, 1, 402, 1958
- A. N. Dremin and G. A. Adadurov, Shock adiabatic for marble, Dokl. Akad. Narek, SSSR, 128, 261-264, 1959
- G. E. Duvall, Entropic equations of state and their applications to shock wave phenomena in solids, J. Acoust. Soc. of Am., 27, 1054, 1955
- G. E. Duvall, Pressure-volume relations in solids, Am. J. of Phys., 26, 235, 1958
- G. E. Duvall, Shock waves in solids, Science and Technology, April 1963

G. E. Duvall, Some properties and applications of shock waves, in Response of metals to high velocity deformation, ed. by P. G. Shewman and V. F. Zackay, Interscience, New York, 1961*

- G. R. Fowles, Shock wave compression of hardened and annealed 2024 aluminum. Poulter Labs. Tech. report 011-60, SRI, 1960
- G. R. Fowles, Shock wave compression of quartz, Poulter Labs. Tech. report 003-61, SRI, 1960
- W. Goranson, D. Bancroft, B. L. Burton, T. Blechar, E. E. Houston, E. F. Gittings and S. A. Landeen, Dynamic determination of the compressibility of metals, J. Appl. Phys., 26, 1472, 1955
- R. A. Graham, Piezoelectric behavior of impacted quartz, J. Appl. Phys., 32, 555, 1961
- R. A. Graham, G. E. Ingram and W. D. Ingram, Performance of a high-velocity propellent gun for controlled impacts, SC-4652(RR), Sandia Corp., 1961
- D. R. Grine, Dynamic strength of rocks, paper presented to the 29th Shock and vibration Symposium, sponsored by the Office of Naval Research in Oakland, Calif., Nov. 1960

ALCHEMENT STATE OF THE

- A. H. Guenther, Production of strong shocks in plastics by ultra-short impulsive loading, in Proc. of Symposium on Dynamic behavior of materials, ASTM Special Tech. Publ., 336, 1963
- D. S. Hughes and R. G. McQueen, Density of basic rocks at very high pressures, Trans. Am. Geophys. Union, 39, 959, 1958
- D. S. Hughes, L. E. Gourley and H. F. Gourley, Shock-wave compression of iron and bismuth, J. Appl. Phys., 32, No. 4, 624-629, 1961
- S. Katz, D. G. Doran and D. R. Curran, Hugoniot equation of state of aluminum and steel from oblique measurements,

 J. Appl. Phys., 30, 568, 1959
- D. B. Lombard, The Hugoniot equation of state of rocks, UCRL, 6311, 1961
- D. B. Lombard and F. L. Adelman, The Hugoniot equation of state of granite, UOPK 61-4 (UCRL informal report) 1961
- C. D. Lundergan, The Hugoniot equation of state of 6061-T6 aluminum at low pressures, SC-4637(RR), Sandia Corp., 1961a

- C. D. Lundergan, A method of measuring (1) the parameters of impact between two surfaces and (2) the properties of the plane shock waves produced, SC4421(RR), Sandia Corp., 1961b
- H. D. Mallory, Propagation of shock waves in aluminum, J. Appl. Phys., 26, No. 5, 555-559, 1955
- D. J. McCloskey, An analytic formulation of equations of state, Rand Corp. Memo. RM-3905-PR, Feb. 1964*
- R. G. McQueen and S. P. Marsh, Equation of state of Nevada alluvium, Los Alamos Scientific Lab., Los Alamos, N. M., LAMS-2760, Nov. 1961
- R. G. McQueen and S. P. Marsh, Equation of state of nineteen metallic elements from shock wave measurements to two megabars, J. Appl. Phys., 31, No. 7, 1253-1269, 1960
- R. G. McQueen, J. N. Fritz and S. P. Marsh, On the equation of state of stishovite, J. Geophys. Res., 68, 2319-2322, 1963
- R. G. McQueen, E. Zukas and S. P. Marsh, Residual temperatures of shock-loaded iron, in Proc. of Symposium on Dynamic behavior of materials, ASTN Special Tech. Publ., 336, 1963
- F. S. Minshall, Properties of elastic and plastic waves determined by pin contactors and crystals, J. Appl. Phys., 26, 463, 1955

- D. C. Pack, W. M. Evans and H. J. James, The propagation of shock waves in steel and lead, Phys. Soc. Proc. (London) 60, 1, 1948
- W. Paul and D. M. Warshauer, Solids under pressure, McGraw-Hill, New York, 1963
- M. H. Rice, R. G. McQueen and J. M. Walsh, Compression of solids by strong shock waves, in Solid state physics, wol. 6, ed. by F. Seitz and D. Turball, Academic Press Inc., New York, 1958*
- P. G. Shewman and V. F. Zackay, Response of metals to high velocity deformation, p. 165-205, Interscience, New York, 1961
- J. Wackerle, Shock wave compression of quartz, J. Appl. Phys., 33, No. 3, 922-937, 1962
- M. H. Wagner, W. F. Waldorf, Jr., and N. A. Louie, Determination of Hugoniot equations of state for polymers and reentry vehicle materials and investigations of fracture phenomena, AFSW2-TDR-62-66, 2 vols., Aerojet-General Corp., 1962
- J. M. Walsh and R. H. Christian, Equation of state of metals from shock wave measurements, Phys. Rev., <u>97</u>, No. 6, 1544-1556, 1955

J. M. Walsh and M. H. Rice, Dynamic compression of liquids from measurements on strong shock waves, J. Chem. Phys., 26, 1957

J. M. Walsh, M. H. Rice, R. G. McQueen and F. L. Yarger,
Shock-wave compressions of twenty-seven metals. Equations
of state of metals, Phys. Rev., 108, 196, 1957

*Survey articles

THE RESERVE THE PARTY OF THE PA