HW3 solutions

1

Exercises.

Solution to Question 1.

A. If

$$a_1f_1 + a_2f_2 + a_3f_3 = 0$$

then

$$\begin{bmatrix} f_1(x_1) & f_2(x_1) & f_3(x_1) \\ f_1(x_2) & f_2(x_2) & f_3(x_2) \\ f_1(x_3) & f_2(x_3) & f_3(x_3) \end{bmatrix} \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}.$$

If the columns of the matrix $[f_i(x_i)]$ are linearly independent in \mathbb{R}^3 , then

$$\begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}.$$

So f_1 , f_2 , f_3 are linearly independent in $Fun(\mathbb{R}, \mathbb{R})$.

B. We may take, for example $x_1 = 0$, $x_2 = 1$ and $x_3 = 2$, then

$$\det\begin{bmatrix} f_1(x_1) & f_2(x_1) & f_3(x_1) \\ f_1(x_2) & f_2(x_2) & f_3(x_2) \\ f_1(x_3) & f_2(x_3) & f_3(x_3) \end{bmatrix} = \det\begin{bmatrix} 1 & 0 & 1 \\ e^{-1} & 1 & e \\ e^{-2} & 2 & e^2 \end{bmatrix} = e^2 - 2e + 2e^{-1} - e^{-2} = (e - e^{-1})(e - 2 + e^{-1}) \neq 0.$$

By part A., f_1, f_2, f_3 are linearly independent in Fun(\mathbb{R}, \mathbb{R}).

C. We may take, for example $x_1=0$, $x_2=\pi/2$ and $x_3=2\pi$, then

$$\det\begin{bmatrix} f_1(x_1) & f_2(x_1) & f_3(x_1) \\ f_1(x_2) & f_2(x_2) & f_3(x_2) \\ f_1(x_3) & f_2(x_3) & f_3(x_3) \end{bmatrix} = \det\begin{bmatrix} 1 & 0 & 1 \\ e^{-\pi/2} & 1 & 0 \\ e^{-\pi} & 0 & 1 \end{bmatrix} = 1 - e^{-\pi} \neq 0.$$

By part A., f_1 , f_2 , f_3 are linearly independent in $Fun(\mathbb{R}, \mathbb{R})$.

Answer to Question 2.

Assume that $\dim U=\mathfrak{m}$, and that $(\mathfrak{u}_1,\ldots,\mathfrak{u}_\mathfrak{m})$ is a basis for U, then $\mathfrak{u}_i\in V$ for all $i=1,\ldots,\mathfrak{m}$ and $\mathfrak{u}_1,\ldots,\mathfrak{u}_\mathfrak{m}$ are linearly independent. So $\dim V\geq \mathfrak{m}$.

If (u_1, \ldots, u_m) spans V, then V = U. So dim V = dim U.

If $U \neq V$, then exists a vector $w \in V - U$. Let $U' = \text{span}\{u_1, \dots, u_m, w\}$. Then $\dim U' = m + 1$ and $U' \subseteq V$. So $\dim V \geq m + 1 > m$.

Math 4310 (Fall 2019)

HW3 solutions

3

Solution to Question 3.

(a) If $p(x) \in V$ satisfies p(1) = p(2) = 0, then p(x) is divisible by q(x) := (x-1)(x-2). So

$$U = \{ p(x) \in V \mid p(1) = p(2) = 0 \}$$

= \{ (ax^2 + bx + c)q(x) \ | a, b, c \in \mathbb{R} \}.

We may choose $(u_1, u_2, u_3) := (q(x), xq(x), x^2q(x))$ as a basis for U.

(b) We know that $(1, x, x^2, x^3, x^4)$ is a basis for V, so dim V = 5. By part (a), dim U = 3. Therefore, if we want to extend this basis to a basis for V, we need 2 more vectors. Let $(x_1, x_2, ..., x_5) = (1, 2, 3, 4, 5)$. If $(w_1, w_2, u_1, u_2, u_3)$ is a basis for V, then by Problem 1 A., the columns of

$$\begin{bmatrix} w_1(x_1) & w_2(x_1) & u_1(x_1) & u_2(x_1) & u_3(x_1) \\ w_1(x_2) & w_2(x_2) & u_1(x_2) & u_2(x_2) & u_3(x_2) \\ w_1(x_3) & w_2(x_3) & u_1(x_3) & u_2(x_3) & u_3(x_3) \\ w_1(x_4) & w_2(x_4) & u_1(x_4) & u_2(x_4) & u_3(x_4) \\ w_1(x_5) & w_2(x_5) & u_1(x_5) & u_2(x_5) & u_3(x_5) \end{bmatrix} = \begin{bmatrix} w_1(x_1) & w_2(x_1) & 0 & 0 & 0 \\ w_1(x_2) & w_2(x_2) & 0 & 0 & 0 \\ w_1(x_3) & w_2(x_3) & u_1(x_3) & u_2(x_3) & u_3(x_3) \\ w_1(x_4) & w_2(x_4) & u_1(x_4) & u_2(x_4) & u_3(x_4) \\ w_1(x_5) & w_2(x_5) & u_1(x_5) & u_2(x_5) & u_3(x_5) \end{bmatrix}$$

must be linearly independent. Therefore, the left top 2×2 square

$$\begin{bmatrix} w_1(x_1) & w_2(x_1) \\ w_1(x_2) & w_2(x_2) \end{bmatrix} = \begin{bmatrix} w_1(1) & w_2(1) \\ w_1(2) & w_2(2) \end{bmatrix}$$

must be invertible. If we take $w_1 = x - 1$ and $w_2 = x - 2$, then

$$\begin{bmatrix} w_1(1) & w_2(1) \\ w_1(2) & w_2(2) \end{bmatrix} = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$$

is invertible. Hence $(w_1, w_2, u_1, u_2, u_3)$ is a basis for V if we take $w_1 = x - 1$ and $w_2 = x - 2$.

(c) Take $w_1 = x - 1$ and $w_2 = x - 2$ as in part (b) and let $W = \text{span } \{w_1, w_2\}$. Then $W \cap U = \{0\}$ and W + U = V. Hence $V = U \oplus W$.

Solution to Question 4.

(a) We only need to show v_1, \ldots, v_n are linearly independent. Because $\dim V = n$, so we may assume that (u_1, \ldots, u_n) is a basis for V. Because (v_1, \ldots, v_n) spans V, so there exists a $n \times n$ matrix A such that

$$(u_1,\ldots,u_n)=(v_1,\ldots,v_n)A.$$

On the other hand, (u_1, \dots, u_n) is a basis of V, so there exists a $n \times n$ matrix B such that

$$(v_1, \ldots, v_n) = (u_1, \ldots, u_n) B.$$

Therefore,

$$(u_1,\ldots,u_n)=(u_1,\ldots,u_n)BA,$$

which implies $BA = I_n$. Hence B is invertible. If there exists $a_1, \ldots, a_n \in \mathbb{F}$ such that

$$(v_1,\ldots,v_n)$$
 $\begin{pmatrix} a_1 \\ \vdots \\ a_n \end{pmatrix} = 0,$

then it is equivalent to

$$(u_1, \dots, u_n) B \begin{pmatrix} a_1 \\ \vdots \\ a_n \end{pmatrix} = 0 \iff B \begin{pmatrix} a_1 \\ \vdots \\ a_n \end{pmatrix} = \begin{pmatrix} 0 \\ \vdots \\ 0 \end{pmatrix} \iff \begin{pmatrix} a_1 \\ \vdots \\ a_n \end{pmatrix} = \begin{pmatrix} 0 \\ \vdots \\ 0 \end{pmatrix}.$$

Hence v_1, \ldots, v_n are linearly independent.

(b) We only need to show (v_1, \ldots, v_n) spans V. Because dim V = n, so we may assume that (u_1, \ldots, u_n) is a basis for V, then there exists a $n \times n$ matrix B such that

$$(v_1,\ldots,v_n)=(u_1,\ldots,u_n)B.$$

Because (v_1, \ldots, v_n) is linearly independent, so

$$(v_1,\ldots,v_n)$$
 $\begin{pmatrix} a_1 \\ \vdots \\ a_n \end{pmatrix} = 0 \implies \begin{pmatrix} a_1 \\ \vdots \\ a_n \end{pmatrix} = \begin{pmatrix} 0 \\ \vdots \\ 0 \end{pmatrix},$

which is equivalent to say

$$B\begin{pmatrix} a_1 \\ \vdots \\ a_n \end{pmatrix} = \begin{pmatrix} 0 \\ \vdots \\ 0 \end{pmatrix} \implies \begin{pmatrix} a_1 \\ \vdots \\ a_n \end{pmatrix} = \begin{pmatrix} 0 \\ \vdots \\ 0 \end{pmatrix}.$$

Therefore, B is invertible and

$$(u_1, \ldots, u_n) = (v_1, \ldots, v_n)B^{-1}.$$

For any $v \in V$, it can be written as

$$\nu = (u_1, \dots, u_n) \begin{pmatrix} b_1 \\ \vdots \\ b_n \end{pmatrix} = (\nu_1, \dots, \nu_n) B^{-1} \begin{pmatrix} b_1 \\ \vdots \\ b_n \end{pmatrix} = (\nu_1, \dots, \nu_n) \begin{pmatrix} c_1 \\ \vdots \\ c_n \end{pmatrix}.$$

Hence (v_1, \ldots, v_n) spans V.

Math 4310 (Fall 2019)

HW3 solutions

6

Solution to Question 5.

(a) Because $U \cap W = 0$, so $U + W = U \oplus W$.

If $(u_1, ..., u_n)$ is a basis for U and $(w_1, ..., w_m)$ is a basis for W, then $(u_1, ..., u_n, w_1, ..., w_m)$ is a basis for U \oplus W.

So dim $U + W = \dim U \oplus W = \dim U + \dim W$ if $U \cap W = 0$.

(b) Let $Y := U \cap W$. Then $Y \subseteq U$ is a subspace. So we may find a complement U' such that $U = Y \oplus U'$. Similarly, we may find a complement W' such that $W = Y \oplus W'$. Now assume that (y_1, \ldots, y_s) is a basis for Y, (u_1, \ldots, u_r) is that for U' and (w_1, \ldots, w_t) for W'. It is that $(y_1, \ldots, y_s, u_1, \ldots, u_r, w_1, \ldots, w_t)$ spans U + W. We need to prove that it is linearly independent. Assume that

$$ay + bu + cw = a_1y_1 + \cdots + a_sy_s + b_1u_1 + \cdots + b_ru_r + c_1w_1 + \cdots + c_tw_t = 0.$$

Then $\mathbf{bu} + \mathbf{cw} = -\mathbf{ay} \in \mathbb{U} \cap W \implies \mathbf{bu}, \mathbf{cw} \in \mathbb{U} \cap W$. But $\mathbf{bu} \in \mathbb{U}'$ and $\mathbf{cw} \in W'$, hence $\mathbf{bu} = \mathbf{cw} = 0$. Because \mathbf{u} is a basis for \mathbb{U}' and \mathbf{w} is a basis for \mathbb{W}' , so $\mathbf{b} = \mathbf{c} = 0$.

Therefore, $(y_1, \ldots, y_s, u_1, \ldots, u_r, w_1, \ldots, w_t)$ is a basis for U + W and

$$\dim(U+W) = \dim U' + \dim Y + \dim W' = \dim U + \dim W - \dim Y.$$

(c) By part (b),

$$\dim(U+W+X) = \dim U + W + \dim X - \dim(U+W) \cap X$$
$$= \dim U + \dim W + \dim X - \dim U \cap W - \dim(U+W) \cap X.$$

So we only need to find an example such that

$$\dim(U+W) \cap X \neq \dim U \cap X + \dim W \cap X - \dim U \cap W \cap X$$
.

Take
$$\mathbb{F} = \mathbb{R}$$
 and $V = \mathbb{R}^2$. Let $U = \text{span} \left\{ \begin{pmatrix} 1 \\ 0 \end{pmatrix} \right\}$, $W = \text{span} \left\{ \begin{pmatrix} 0 \\ 1 \end{pmatrix} \right\}$ and $X = \text{span} \left\{ \begin{pmatrix} 1 \\ 1 \end{pmatrix} \right\}$. Then $U + W = V$, so $(U + W) \cap X = X$. And $U \cap X = W \cap X = U \cap W \cap X = 0$. Therefore,

$$1 = \dim(U + W) \cap X \neq \dim U \cap X + \dim W \cap X - \dim U \cap W \cap X = 0.$$

Extended Glossary.

For any set X, a **relation** on X is a set R consisting of some ordered pairs in X, in other words, a subset of $X \times X$. We may say αRb , or $\alpha \sim_R b$, if $(\alpha, b) \in R$. For simplicity, sometimes we just write $\alpha \sim b$ if there is no ambiguity.

Definition 1. An **equivalence equation** R is a relation on a set X satisfying the following conditions:

- (a) For all $x \in X$, $(x, x) \in R$.
- (b) For any $x, y \in X$, if $(x, y) \in R$, then $(y, x) \in R$.
- (c) For any $x, y, z \in X$, if $(x, y) \in R$ and $(y, z) \in R$, then $(x, z) \in R$.

If R is an equivalence relation, and $(x, y) \in R$, we may also say x and y are equivalent with respect to R.

We give an example of equivalence relation:

Example 1. The = is an equivalence relation on \mathbb{R} . We may check the 3 conditions:

- (a) For all $x \in \mathbb{R}$, x = x.
- (b) For any $x, y \in \mathbb{R}$, x = y implies y = x.
- (c) For any $x, y, z \in \mathbb{R}$, x = y and y = z implies x = z.

In this example, $R = \{(x, x) \in X \times X \mid x \in X\}.$

Not all relations are equivalence relations. Here is an example of a relation that is not equivalence relation:

Example 2. The \neq is NOT an equivalence relation on \mathbb{R} , because $x \neq x$ is false. Moreover, pay attention in this example that $x \neq y \neq z$ does NOT imply $x \neq z$.

For equivalence relations, there is an important theorem:

Theorem 1. Let X be a set and R be a equivalent relation on X. Then X may be divided into disjoint union of subsets, each of which consists of equivalent elements with respect to R.

Proof. We only need to show that any two such subsets are either disjoint or identical. For any $u, v \in X$, let

$$U := \{x \in X: x \sim u\},\$$

and

$$V := \{ y \in X : y \sim v \}.$$

If $U \cap V = \emptyset$, then they are disjoint.

Otherwise, take $w \in U \cap V$. Then by definition, $w \sim u$ and $w \sim v$, so $u \sim v$. Hence U = V.