

Spring Term 23 - 8,860,1.00 CS Machine Learning

Lab 01 – Introduction to Co-Lab

Linus, Hamed, and Shijun

Lab Teaching Assistants (TAs)

Linus Scheibenreif
ICS-HSG, Room: 61-502
<u>linus.scheibenreif@unisg.ch</u>
+41 71 224 26 98
(Course Coding Challenge)

Hamed Hemati
ICS-HSG, Room: 61-500
hamed.hemati@unisg.ch
+41 71 224 27 09

(Main Contact, Communication)

Shijun Wang
ICS-HSG, Room: 61-513

shijun.wang@unisg.ch
+41 71 224 73 70

(Main Contact, Communication)

Weekly Office hours: Thursdays 02:00 - 03:00 PM CEST (in-person and/or virtual)

Lab Objectives

- Thorough, Supplementary and Detailed
 - Learn and understand how to write and debug Python code.
 - Design, train and evaluate your own machine learning models.
- Practical and State of the Art
 - Demystify the theoretical concepts of the lecture.
 - Look at state of the art software tools, e.g., Jupyter notebooks.
- Research and Fun
 - Some materials cover new research of the past 1-3 years.
 - Coding is fun ... this is a hands-on lab setup.

Source: https://openai.com/dall-e-2/

ChatGPT: Optimizing Language Models for Dialogue

We've trained a model called ChatGPT which interacts in a conversational way. The dialogue format makes it possible for ChatGPT to answer followup questions, admit its mistakes, challenge incorrect premises, and reject inappropriate requests. ChatGPT is a sibling model to InstructGPT, which is trained to follow an instruction in a prompt and provide a detailed response.

Source: https://openai.com/blog/chatgpt/

How to Contact Us

- Course Website on Canvas: https://learning.unisg.ch
 - For all course materials, slides, notebooks, etc.
- Course Discussion Forum:
 - Use this for most communication with course staff.
 - Ask questions about the assignments, grading, logistics, etc.
 - Communicate with your fellow students.
- E-Mail: aiml-teaching.ics@unisg.ch
 - Use this to schedule meetings with course staff.
 - Use this in case of private matters.

Course Participants Survey

We have participants with a variety of different (technical) backgrounds this semester. Therefore, we launched a course survey that provides us, the ML teaching team, insights into your interests and level of technical knowledge.

We are happy to read your feedback!

Available via the CANVAS course page:

https://learning.unisg.ch/courses/16612/quizzes/24234

Due date: Monday, March 6th

Machine Learning - Course Participants Survey

Quiz Instructions

Dear ML course participants!

During the first lecture last Monday, we noticed that we have participants with a variety of different (technical) backgrounds this semester.

Some of you already exhibit extensive programming and machine learning skills, whereas other participants are new to those topics.

Therefore, we prepared a <u>Course Participants Survey</u> accessible via the <u>Cuizzes</u> section of the <u>CANVAS</u> course page. The (mostly) <u>multiple-choice survey</u> provides us, the <u>ML</u> teaching team, insights into your interests and level of technical knowledge. The feedback gained by this questionnaire will help us shape the lectures and, in particular, the tutorials of the <u>Machine Learning</u> course.

We would be happy to receive your feedback by Monday, March 6th. Please note that the survey is anonymous and voluntary – if you do not feel comfortable answering the questions, no problem!

The aggregated survey results will be presented during one of the upcoming course labs/lectures

Happy Coding!

Course Logistics Updates

Weekly Updates and Questions

Course Labs and Challenge Roadmap

Event Type	Date	Description	Teaching Assistant	CC Phase	
Lab 1	20 Feb 2023	Co-Lab Introduction	Shijun	Introduction	
Lab 2	27 Feb 2023	Support Vector Machine (SVM)	Shijun	Ramp-Up Phase	
CC 1	06 Mar 2023	Coding Challenge - Kick-Off	Linus	Coding Phase	
Lab 3	13 Mar 2023	Fully Connected Neural Networks	Hamed	Ramp-Up Phase	
Lab 4	20 Mar 2023	Convolutional Neural Networks (CNNS)	Hamed	Ramp-Up Phase	
Lab 5	27 Mar 2023	Long short-term memory (LSTM)	Hamed	Ramp-Up Phase	
Semester Break - Happy Easter!					

Course Labs and Challenge Roadmap

Event Type	Date	Description	Teaching Assistant	CC Phase
CC 2	17 Apr 2023	Coding Challenge - Mid-Term	Linus	Coding Phase
Lab 6	24 Apr 2023	Attention	Shijun	Coding Phase
Lab 7	01 May 2023	K-Means, EM Clustering	Shijun	Coding Phase
Lab 8	08 May 2023	Autoencoder Anomaly Detection	Hamed / Marco	Coding Phase
Lab 9	15 May 2023	Transfer Learning / Self-Supervised Learning	Shijun / Linus	Finalization Phase
CC 3	22 Mar 2023	Coding Challenge - Submission	Linus	Finalization Phase

Lab Environment

Python, Jupyter, Colab, Binder etc.

Let's jump into the lab notebook...

Accessing the Lab Notebooks

Course Code Repository

• Repository URL:

https://github.com/HSG-AIML-Teaching/ML2023-Lab

- "GoTo" page for all course code examples!
- New lab notebooks will be published on a weekly basis as the lab evolves.
- Don't hesitate to start, open code issues or submit a pull requests ©

Accessing the Lab Notebooks

Code Labs & Notebooks

Lab courses take place approximately every Monday, 16:15 to 17:45 CEST in-person in the same room as the lecture.

Please note, that all course Jupyter Notebooks can be obtained from the course GitHub code repository. and will run in the Binder. Colab cloud. Alternatively, Notebooks can also be run locally on your own computer.

Event Type	Date	Topic Area	Description	Slides and Notebooks
Lab 1	20 th Feb. 2023	Introduction	Python and Jupyter Notebook Setup Jupyter Notebook introduction (Lab 101) Python, Numpy, Pillow introduction (Lab 102) Pandas, Pillow, Matplotlib introduction (Lab 103)	Test and Introduction Notebooks on GitHub: https://github.com/HSG-AIML-Teaching/ML2023-Lab □ (see Lab 101, 102, and 103)
Lab 2	27 th Feb. 2023	Support Vector Machines	Support Vector Machines (SVM) Separating Hyperplanes HoG Features Iris and MNIST Dataset	Slides: TBA Notebook: Support Vector Machines Notebook [Colab] [Binder]

Lab Github Repo of Code & Notebooks: https://github.com/HSG-AIML-Teaching/ML2023-Lab

Happy Coding!

CS Machine Learning Class of Spring 2023

Chair of Artificial Intelligence and Machine Learning [AI:ML] Rosenbergstrasse 30, CH-9000 St. Gallen aiml-teaching.ics@unisg.ch

