

Christina Imdahl

Schedule of Second Part

Monday	Tuesday	Wednesday	Thursday	Friday
Oct 4	Oct 5	Oct 6	Oct 7	Oct 8
	Introduction to ML			Case Study Descriptives and Orientation
Oct 11	Oct 12	Oct 13	Oct 14	Oct 15
	Reinforcement Learning – Key Concept			(Homework: Implement RL) Momentum
Oct 18	Oct 19	Oct 20	Oct 21	Oct 22
	Inventory Management - Heuristics			Case Study Implement a Benchmark
Oct 25	Oct 26	Oct 27	Oct 28	Oct 29
	Wrap-up / Case Study			
Nov 1	Nov 2	Nov 3	Nov 4	Nov 5
		Case Presentation		

Objectives of Today

- Understand how neural nets can be used for prediction/function approximation
- First glance to Deep Reinforcement Learning
- Understand the difference between backlog and lost-sales inventory problems

Agenda

1.	Neural Nets	4
II.	DQN	14
III.	In Short: Policy Gradient & Actor-Critic	21
IV.	Sneak Peak	25
V.	Multi-period inventory system with backlog	29
VI.	Multi-period inventory system with lost sales	35

Neural Nets

- Neural nets are a supervised machine learning method
- Neural nets consist of:
 - Input Layers: intitial data for the NN
 - Hidden Layers: intermediate layer between input & output layer
 - *Output Layer*: produces the results for given inputs
- Based on given data, the goal is to predict a certain outcome as best as possible.
- The neural network is trained by minimzing the loss on the training data.

Example: Recognizing Digits

Neural nets propagates signals over the different layers

Neural Nets - Weights

$$\phi(w_{11}x_1 + w_{12}x_2 + w_{13}x_3 + \dots + w_{1n}x_n + b_1)$$

$$\phi(w_{21}x_1 + w_{22}x_2 + w_{23}x_3 + \dots + w_{2n}x_n + b_2)$$

$$\vdots$$

$$\phi(w_{m1}x_1 + w_{m2}x_2 + w_{m3}x_3 + \dots + w_{mn}x_n + b_m)$$

$$\phi \begin{pmatrix} \begin{pmatrix} w_{11} & \cdots & w_{1n} \\ w_{21} & \cdots & w_{2n} \\ \vdots & \ddots & \vdots \\ w_{m1} & \cdots & w_{mn} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} + \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{pmatrix} \right)$$

Activation functions

Hidden Layer

(non-linear, differentiable functions, same for all hidden layers)

Output Layer

(dependent on prediction/estimation task)

$$f(x) = \frac{e^{x_i}}{\sum_i e^{x_i}}$$

Softmax

How to estimate the weights?

Trained examples:

$$0:(0.01-0)^2=0.0001$$

$$1:(0.03-0)^2=0.0009$$

$$2:(0.01-0)^2=0.0001$$

$$3:(0.80-1)^2=0.04$$

$$4:(0.04-0)^2=0.0016$$

$$5:(0.31-0)^2=0.0961$$

$$6:(0.01-0)^2=0.0001$$

$$7:(0.08-0)^2=0.0064$$

$$8:(0.06-0)^2=0.0036$$

$$9:(0.02-0)^2=0.0004$$

Training Objective: $C(w^1, ..., w^L, b^1, ..., b^L) = \min(\frac{1}{n}\sum_i(\hat{y} - y)^2)$ (also consider binomial loss, but MSE more relevant for later)

Weights are updated using backpropagation

Training Objective : $min((\hat{y} - y)^2)$

$$\mathbf{a}^{\mathbf{L}} = \phi(w_{11}^{L} a_{1}^{L-1} + w_{12}^{L} a_{2}^{L-1} + w_{13}^{L} a_{3}^{L-1} + \dots + w_{1n}^{L} a_{4}^{L-1} + \mathbf{b}_{1})$$

$$\frac{\partial C_0}{\partial w^L} = \frac{\partial z^L}{\partial w^L} \frac{\partial a^L}{\partial z^L} \frac{\partial C_0}{\partial a^L} = a^{L-1} \cdot \phi'(z^L) \cdot 2(a^L - y)$$

Weights are updated using backpropagation

Training Objective : $min((\hat{y} - y)^2)$

$$w^{L-1} \qquad \frac{a^{L-2}}{\partial w^L} = \frac{\partial C_0}{\partial w^L} = \frac{\partial z^L}{\partial z^L} \frac{\partial a^L}{\partial a^L} \qquad = a^{L-1} \cdot \phi'(z^L) \cdot 2(a^L - y)$$

$$w^L \qquad \frac{\partial C_0}{\partial b^L} = \frac{\partial z^L}{\partial b^L} \frac{\partial a^L}{\partial z^L} \frac{\partial C_0}{\partial a^L} \qquad = 1 \cdot \phi'(z^L) \cdot 2(a^L - y)$$

$$z^L = w^L a^{L-1} + b^L \qquad \frac{\partial C_0}{\partial a^{L-1}} = \frac{\partial z^L}{\partial a^{L-1}} \frac{\partial a^L}{\partial z^L} \frac{\partial C_0}{\partial a^L} \qquad = w^L \cdot \phi'(z^L) \cdot 2(a^L - y)$$

$$a^L = \phi(z^L)$$

$$C_0 = (a^L - y)^2$$

Steepest gradient descent

$$\nabla C(w^1, \dots, w^L, b^1, \dots, b^L) = \begin{pmatrix} \frac{\partial C}{\partial w^1} \\ \vdots \\ \frac{\partial C}{\partial w^L} \\ \frac{\partial C}{\partial b^1} \\ \vdots \\ \frac{\partial C}{\partial w^L} \end{pmatrix}$$

The gradient gives the direction of the steepest increase.

The negative gradient gives the direction of the steepest decline.

Steepest gradient descient:

- 1. Compute ∇C
- 2. Take step in ∇C direction $(w_{new}, b_{new}) = (w_{old}, b_{old}) \alpha \nabla C$
- 3. Repeat

Agenda

	Neural Nets	4
II.	DQN	14
	In Short: Policy Gradient & Actor-Critic	21
IV.	Sneak Peak	25
	Multi-period inventory system with backlog	29
	Multi-period inventory system with lost sales	35

DQN - Overview

How to receive the labeled Q-values? (for supervised learning)

How to train the network stable?

Q-Learning and DQN

Q-Learning

$$Q(S_t, A_t) \leftarrow Q(s_t, a_t) + \alpha(R_{t+1} + \gamma \max_{\alpha' \in A(s_t)} Q(s_{t+1}, \alpha') - Q(s_t, a_t))$$

Experience

Expectation

DQN

Target:
$$y = R_{t+1} + \gamma \max_{a' \in A(s_t)} Q(s_{t+1}, a')$$

Estimate:
$$\hat{y} = Q(s_t, a_t)$$

Memory replay

Target Net

Hyperparameters

- Network architecture (layers, units per layer, activation)
- Learning rate
- Memory size (max, min), batch size
- Loss function
- Target network update frequency
- Discount factor
- Exploration rate

Walking the Cliff

-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1
-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1
-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1
Ť	-100	-100	-100	-100	-100	-100	-100	-100	-100	-100	+10

Agenda

1.	Neural Nets	4
II.	DQN	14
III.	In Short: Policy Gradient & Actor-Critic	21
IV.	Sneak Peak	25
V.	Multi-period inventory system with backlog	29
VI.	Multi-period inventory system with lost sales	35

Overview of ML Algorithms (incomplete)

REINFORCE (1)

REINFORCE (2)

Update the policy network in the direction of steepest incline:

Objective:
$$\max J(\theta) = \mathbb{E}(\sum_{t=0}^{T-1} \gamma^t r_{t+1} | \pi_{\theta})$$

Update Rule:
$$\theta \leftarrow \theta + \alpha \frac{\partial J(\theta)}{\partial \theta}$$

Gradient:
$$\nabla_{\theta} J(\theta) = \sum_{t=0}^{T-1} \nabla_{\theta} \log \pi_{\theta}(a_t | s_t) (\sum_{t'=t+1}^{T} \gamma^{t'-t-1} r_{t'})$$

Make action more likely under Weight of trajectories by the current policy "how good they were"

More: https://medium.com/@thechrisyoon/deriving-policy-gradients-and-implementing-reinforce-f887949bd63

Actor-Critic Methods

- Include Value Function in Reinforce $Q(s_t, a_t) \sim \mathbb{E}(\sum_t r^t)$
- Reduces noisyness in estimation
- Critic: Estimates the value function (Q value or state value)
- Actor: updates policy distribution in the direction suggested by the Crtic

Agenda

	Neural Nets	4
	DQN	14
	In Short: Policy Gradient & Actor-Critic	21
IV.	Sneak Peak	25
IV.	Sneak Peak Multi-period inventory system with backlog	25 29

Generative Adversarial Nets (GAN)

$$\min_{G} \max_{D} V(D,G)$$

$$V(D,G) = \mathbb{E}_{x \sim p_{data}(x)}[\log D(x)] + \mathbb{E}_{z \sim p_z(z)}[\log(1 - D(G(z)))]$$

Imitation Learning

- Inspired by how humans learn
- Used in situations, when rewards are unkown
- Experts state-actions (s_0, a_0^*) , (s_1, a_1^*) are used for supervised training
- Learn π_{θ} by minimizing the loss function $L(a^*, \pi_{\theta}(s))$

Interactive learning

Interactive Reinforcement Learning: User in the loop

Thomaz, A. L., Hoffman, G., and Breazeal, C. (2005). Real-time interactive reinforcement learning for robots. In AAAI 2005 workshop on human comprehensible machine learning.

Agenda

	Neural Nets	4
	DQN	14
	In Short: Policy Gradient & Actor-Critic	21
IV.	Sneak Peak	25
V.	Multi-period inventory system with backlog	29
	Multi-period inventory system with lost sales	35

Multi-Period Inventory System with Backlog

- I_{net} On-hand inventory
- B Backorders
- $I = I_{net} B$ Inventory level
- $T = (T_1, ..., T_{L-1})$ Pipeline inventory
- $IP = I + \sum T$ Inventory position
- S Basestock level
- D Demand
- D_L Demand over the lead time

Inventory Dynamics

Inventory Dynamics

Solving for the optimal basestock level

$$C(S) = h \cdot \mathbb{E}(Left - over) + b \cdot \mathbb{E}(Backlog)$$

$$C(S) = h \cdot \int_0^S p(D_L = x) \cdot (S - x) dx + b \cdot \int_S^\infty p(D_L = x) \cdot (x - S) dx$$

Trick: Use

$$b \cdot \int_{S}^{\infty} p(D_{L} = x) \cdot (x - S) dx = b \cdot \int_{0}^{\infty} p(D_{L} = x) \cdot (x - S) dx - b \cdot \int_{0}^{S} p(D_{L} = x) \cdot (x - S) dx$$
$$\int_{0}^{S} p(D_{L} = x) \cdot (x - S) dx = -\int_{0}^{S} p(D_{L} = x) \cdot (S - x) dx$$

Integration by parts

Set derivative to zero (when no integrals are left)

You get

$$S = F_L^{-1} \left(\frac{b}{b+h} \right)$$

Base-Stock as Service Level

Cumulative Density Function

What is the probability that the demand over the lead time exceeds the base-stock level/inventory (probability of stocking out)?

Cumulative demand over several periods

Assume the weekly demand is normally distributed with mean μ and standard deviation σ .

Then, the demand over L weeks is normally distributed with mean $L\mu$ and standard deviation $\sigma\sqrt{L}$.

Agenda

VI.	Multi-period inventory system with lost sales	35
V.	Multi-period inventory system with backlog	29
IV.	Sneak Peak	25
III.	In Short: Policy Gradient & Actor-Critic	21
II.	DQN	14
l.	Neural Nets	4

Inventory Dynamics

Benchmarking

- Relate to similar problems
- Optimize within a policy class
- Myopic policies
- Approximative policies
- Performance bounds
- Robust policies
- Clearvoyant approach

Myopic policy

The **myopic policy** selects the order quantity Q such that the immediate expected rewards are minimized (one-period costs). The period is typically the period in which the order arrives.

For the lost-sales systems:

$$\mathbb{P}(I_{t+L} - D_{t+L}) \le \frac{c+h}{b+h}$$

"Clearvoyant" approach

- With this approach the best possible outcome given the demand realization is evaluated
- "What should I have ordered, would I have known the demand?"
- The achieved solution is better than optimal
- The approach can be used, when no other suitable benchmarks are available.

