Úvod do komplexní analýzy

doc. RNDr. Roman Lávička, Ph.D.

8. října 2020

Obsah

1	Zavedení základních pojmů					
2	Lineární zobrazení					
3	Diferencovatelnost					
4	Elementární funkce v $\mathbb C$					
	4.1 Exponenciála					
	4.2 Logaritmus	5				
	4.3 Obecná mocnina					
	4.4 Hyperbolické funkce	7				
	4.5 Goniometrické funkce	7				
5	Křivkový integrál	7				

1 Zavedení základních pojmů

 \mathbb{R}^2 je reálný vektorový prostor dimenze 2. Definujeme v něm Euklidovskou normu a metriku:

- $|z| = \sqrt{x^2 + y^2}, z = (x, y) \in \mathbb{R}^2$
- $\rho(z,w) := |z-w|, z,w \in \mathbb{R}^2$

Definice 1.1. Prostor \mathbb{C} je prostor \mathbb{R}^2 , v němž definujeme navíc:

- násobení (x,y).(u,v) = (xu yv, xv + yu)
- ztotožňujeme $(x,0)\cong$, neboli $\mathbb{R}\subset\mathbb{C}$
- značíme i = (0,1)

Vlastnosti 1.2.

Vlastnosti \mathbb{C} . Necht $z = (x, y) \in \mathbb{C}$.

- Potom z = x + iy a $(\pm i)^2 = -1$.
- Násobení v $\mathbb C$ zahrnuje násobení v $\mathbb R$ i násobení skalárem v $\mathbb R^2.$

Značení 1.3. Nechť z = x + iy, kde $x, y \in \mathbb{R}$. Potom

- $\overline{z} := x iy$ je komplexně sdružená část k z,
- Re(z) := x je reálná část z, Im(z) := y je imaginární část z,
- $|z| = \sqrt{x^2 + y^2}$ je modul nebo absolutní hodnota z.

Dále platí

- $\bullet \ \ |z|^2=z\overline{z}, \ \overline{zw}=\overline{z}.\overline{w}, \ |zw|=|z|.|w|, \ z+\overline{z}=2.Re(z), \ z-\overline{z}=2i.Im(z),$
- $\frac{1}{z} = \frac{\overline{z}}{|z|^2}$, je-li $z \neq 0$,
- C je těleso.

Pozor, \mathbb{C} nelze $rozumn\check{e}$ upořádat!

- $i > 0 \implies -1 = i^2 > 0$,
- $i < 0 \implies -1 = i^2 > 0$.

2 Lineární zobrazení

Definice 2.1. \mathbb{R}^2 je reálný vektorový prostor dimenze 2, jeho báze je $((1,0)^T,(0,1)^T)$. Obecné \mathbb{R} -lineární zobrazení $L:\mathbb{R}^2\to\mathbb{R}^2$ má tvar

$$\begin{pmatrix} x \\ y \end{pmatrix} \longmapsto \begin{pmatrix} a & c \\ b & d \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}, \tag{1}$$

kde $a, b, c, d \in \mathbb{R}$.

 \mathbb{C} je komplexní vektorový prostor dimenze 1, jeho báze je 1. Obecné \mathbb{C} -lineární zobrazení $L: \mathbb{C} \to \mathbb{C}$ má tvar $Lz = wz, z \in \mathbb{C}$, kde $w \in \mathbb{C}$. Necht z = (a+ib)(x+iy) = (ax-by,bx+ay) =

$$= \begin{pmatrix} a & -b \\ b & a \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$$

Pozorování 2.2. \mathbb{R} -lineární zobrazení (1) je \mathbb{C} -lineární, právě když d=a, c=-b.

Poznámka 2.3. C-lineární zobrazení jsou velmi specifická R-lineární zobrazení.

Úmluva 2.4. Nebude-li řečeno něco jiného, funkce znamená komplexnou funkci komplexné proměnné. Na $f: \mathbb{C} \to \mathbb{C}$ se můžeme vždy dívat jako na $f: \mathbb{R}^2 \to \mathbb{R}^2$, protože $\mathbb{C} \approx \mathbb{R}^2$. Nechť f je funkce z \mathbb{C} do \mathbb{C} . Spojitost a limita se definuje stejně jako v základním kurzu matematické analýzy.

Definice 2.5. Pro $z_0 \in \mathbb{C}, \delta > 0$ značíme $U(z_0, \delta) := \{z \in \mathbb{C} : |z - z_0| < \delta\}$ a nazýváme ji okolí z_0 . Dále $P(z_0, \delta) := U(z_0, \delta) \setminus \{z_0\}$ nazýváme prstencové okolí. Pokud δ není důležité, budeme často psát jen $U(z_0), P(z_0)$.

Potom definujeme

- $\lim_{z\to x_0} f(z) = L$, pokud $\forall \epsilon > 0 \exists \delta > 0 : z \in P(x_0, \delta) \implies f(z) \in U(L, \epsilon)$
- f je spojitá v x_0 , pokud $\lim_{x\to x_0} f(x) = f(x_0)$.

3 Diferencovatelnost

Definice 3.1. Funkce f je v x_0 \mathbb{R} -diferencovatelná, pokud existuje \mathbb{R} -lineární zobrazení $L: \mathbb{R}^2 \to \mathbb{R}^2$ takové, že

$$\lim_{h \to 0} \frac{f(x_0 + h) - f(x_0) - L(h)}{|h|} = 0.$$

Poznámka 3.2. Potom $df(x_0) := L$ je tzv. totální diferenciál <math>f v x_0 a platí, že

$$df(x_0)h := \begin{pmatrix} \frac{\partial f_1}{\partial x}(x_0) & \frac{\partial f_1}{\partial y}(x_0) \\ \frac{\partial f_2}{\partial x}(x_0) & \frac{\partial f_2}{\partial y}(x_0) \end{pmatrix} h, h \in \mathbb{R}^2$$

kde $f(x,y) = (f_1(x,y), f_2(x,y))$. (Ta matice se nazývá Jacobiho matice.)

Definice 3.3. Řekneme, že funkce f je v x_0 \mathbb{C} -diferencovatelná, pokud existuje konečná limita

$$f'(x_0) := \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h}.$$

Číslo $f'(x_0)$ nazýváme komplexní derivací $f \vee x_0$.

Poznámka 3.4. Jako pro reálnou funkci reálné proměnné platí $(f \pm g)', (f \cdot g)', (f \cdot g)', (f \circ g)'$

Příklad 3.5. •
$$(z^n)' = n.z^{n-1}, z \in \mathbb{C} \text{ a } n \in \mathbb{N}$$

• $f(z)=\overline{z}$ není nikde v $\mathbb C$ $\mathbb C$ -diferencovatelná, ale f(x,y)=(x,-y) je všude $\mathbb R$ -diferencovatelná. Skutečně, máme

$$\lim_{h\to 0} \frac{f(x_0+h) - f(x_0)}{h} = \lim_{h\to 0} \frac{\overline{h}}{h}$$

Avšak poslední limita neexistuje.

Věta 3.6 (Cauchy-Riemannova). Nechť f je funkce diferencovatelná na okolí $x_0 \in \mathbb{C}$. Pak následující je ekvivalentní:

- 1. Existuje $f'(x_0)$
- 2. Existuje $df(x_0)$ a $df(x_0)$ je \mathbb{C} -lineární
- 3. Existuje $df(x_0)$ a v z_0 platí tvrzení Cauchy-Riemannových podmínek.

Cauchy-Riemannovy podmínky:

$$\frac{\partial f_1}{\partial x} = \frac{\partial f_2}{\partial y}$$
$$\frac{\partial f_1}{\partial y} = -\frac{\partial f_2}{\partial x}$$

 $zde \ f(x,y) = (f_1(x,y), f_2(x,y))$

 $D\mathring{u}kaz$. (2. \iff 3.) plyne z pozorování pro lineární zobrazení (1. \iff 2.) Z definice $w = f'(z_0)$ znamená, že

$$0 = \lim_{h \to 0} \frac{f(x_0 + h) - f(z_0) - wh}{h} \tag{2}$$

Po vynásobení výrazu v limitě h/|h| dostaneme, že

$$0 = \lim_{h \to 0} \frac{f(z_0 + h) - f(z_0) - wh}{|h|}$$
(3)

což je ekvivalentní tomu, že $df(z_0)h = wh, h \in \mathbb{C}$. Z (3) plyne (2) vynásobením |h|/h.

Poznámka 3.7. • Existuje-li $f'(z_0)$, potom $df(z_0)h = f'(z_0)h, h \in \mathbb{C}$ a $f'(z_0) = \frac{\partial f}{\partial x}(z_0)$

• Platí, že $(CR) \iff \frac{\partial f}{\partial x} = -i \frac{\partial f}{\partial y}$

 $D\mathring{u}kaz.$ • $df(x_0)1 = \frac{\partial f_1}{\partial x}(x_0) + i\frac{\partial f_2}{\partial x}(x_0) =: \frac{\partial f}{\partial x}(x_0)$

• zřejmé

Příklad 3.8. Necht $f(z) = \overline{z}$, pak f'(x,y) = (x,-y). Dále

$$\frac{\partial f_1}{\partial x} = 1, \frac{\partial f_1}{\partial y} = 0, \frac{\partial f_2}{\partial x} = 0, \frac{\partial f_2}{\partial y} = -1.$$

Máme, že $f \in C^{\infty}(\mathbb{R}^2)$, ale v žádném $z \in \mathbb{C}$ nesplňuje (CR), proto není nikde \mathbb{C} -diferencovatelná.

Definice 3.9. Nechť $\mathbb C$ je otevřené a $f: G \to \mathbb C$. Potom říkáme, že f je na G holomorfní, pokud f je $\mathbb C$ -diferencovatelná v každém $z \in G$. Značíme $\mathcal H(G)$ prostor všech holomorfních $f: G \to \mathbb C$. Říkáme, že funkce F je celá, pokud $F \in \mathcal H(G)$.

Příklad 3.10. • Polynom $p(z) = a_0 z^n + a_1 z^{n-1} + ... + a_n, \ z \in \mathbb{C}$ je celá funkce.

• Necht R=P/Q, kde P,Q jsou polynomy, které nemají společné kořeny a $Q\not\equiv 0$. Potom racionalita funkce R je holomorfní na $\mathbb{C}\setminus\mathbb{Q}^{-1}(\alpha\circ\varphi)$ konečné.

4 Elementární funkce v $\mathbb C$

4.1 Exponenciála

Definice 4.1. $\exp(t)$: $= e^x(\cos y + i\sin y), z = x + iy \in \mathbb{C}$

Vlastnosti 4.2.

- $\exp \mid_{\mathbb{R}}$ je reálná exponenciála
- $\exp(z+w) = \exp(z)\exp(w)$
- $\exp'(z) = \exp(z), z \in \mathbb{C}$ $f(z) = \exp(z), f_1(x,y) = e^x \cos y, f_2(x,y) = e^x \sin y,$ $\frac{\partial f_1}{\partial x} = e^x \cos y = \frac{\partial f_2}{\partial y}, \frac{\partial f_2}{\partial x} = e^x \sin y = -\frac{\partial f_1}{\partial y}$ $\operatorname{Tedy} f \in \mathcal{C}^{\infty}(\mathbb{R}^2)$ a (CR) platí všude $\mathbb{R}^2 \cong \mathbb{C}$ z CR-věty máme $f'(z) = \exp(z), z \in \mathbb{C}$
- $\exp(z) = \sum_{n=0}^{\infty} \frac{z^n}{n!}, z \in \mathbb{C}$

Polární tvar komplexního čísla $x = r\cos\varphi$, $y = r\sin\varphi$, z = x + i, $y = r(\cos\varphi + i\sin\varphi) = |z|e^{i\varphi}$, kde r = |z| a φ je argument z.

Značení 4.3. Nechť $z \in \mathbb{C} \setminus \{0\}$. Potom položme $Arg(z) := \{\varphi \in \mathbb{R} \mid z = |z|e^{i\varphi}\}$ Je-li $Arg(z) \cap (\pi, \pi] = \{\varphi_0\}$, potom $arg(z) := \varphi_0$ je tzv. hlavní hodnota argumentu z.

Platí:

- $-Arg(z) := \{arg(z) + 2k\pi \mid k \in \mathbb{Z}\},\$
- funkce $arg: \mathbb{C} \setminus \{0\} \to (\pi,\pi]$, kde arg je surjektivní a konstantní na polopřímkách vycházejících z 0. Navíc je arg spojitá na $\mathbb{C} \setminus (-\infty,0]$, ale není spojitá v žádném $z \in (-\infty,0]$
- $\exp(\mathbb{C}) = \mathbb{C} \setminus \{0\}$
- exp není prostá na \mathbb{C} , je $2\pi i$ -periodická a platí dokonce: $\exp(z) = \exp(w) \iff \exists k \in \mathbb{Z} \colon w = 2k\pi i$
- Necht $P := \{z \in \mathbb{C} \mid Imz \in (\pi, \pi]\}$. Potom exp $|_P$ je prostá a $\exp(P) = \mathbb{C} \setminus \{0\}$.

4.2 Logaritmus

Pro dané $z \in \mathbb{C}$ řešíme $e^w = z$. Pro z = 0 nemáme řešení. Pro $z \neq 0$ je $z = |z|e^{iarg(z)} = e^{\log|z| + iarg(z)} = e^w \iff \exists \ k \in \mathbb{Z} \colon w = \log|z| + iarg(z) + 2k\pi i$.

Definice 4.4. Nechť $z \in \mathbb{C} \setminus \{0\}$. Položme

- Log z: = $\{w \in \mathbb{C} \mid e^w = z\}$
- $\log z$: $= \log |z| + i \operatorname{arg} z \dots$ tzv. hlavní hodnota logaritmu z.

Vlastnosti 4.5.

Necht $z \in \mathbb{C} \setminus \{0\}$.

- $Log z = \{ \log z + 2k\pi i \mid k \in \mathbb{Z} \}$ a $\log = (\exp |_p)^{-1}$
- log není spojitá v žádném $z\in(-\infty,0]$, ale log $\in\mathcal{H}(\mathbb{C}\setminus(-\infty,0])$. Navíc log' $z=\frac{1}{z},\ z\in\mathbb{C}\setminus(-\infty,0]$.

•
$$\log(1-z) = \sum_{n=1}^{\infty} \frac{z^n}{n}, |z| < 1$$

Pozor na počítání s logaritmem!

- $\exp(\log z) = z$, $\log(\exp zi) \neq z$, z toho, že je to $2\pi i$ -periodické
- $\log(zw) \neq \log(z) + \log(w)$

např.
$$0 = \log 1 = \log((-1)(-1)) \neq 2\log(-1) = 2\pi i$$

4.3 Obecná mocnina

Definice 4.6. Necht $z \in \mathbb{C} \setminus \{0\}$ a $\alpha \in \mathbb{C}$. Potom hlavní hodnota α -té mocniny z definujeme z^{α} : $= \exp(\alpha \log z)$. Položme $m_{\alpha}(z)$: $= \{\exp(\alpha w) \mid w \in Logz\}$.

Vlastnosti 4.7.

- $e^z = \exp(z \log e) = \exp(z)$
- Je-li z > 0 a $\alpha \in \mathbb{R}$, potom z^{α} je v souladu s MA.
- $m_{\alpha}(z) = \{z^{\alpha}e^{2k\pi i\alpha} \mid k \in \mathbb{Z}\}, z \neq 0$ $w \in Logz \iff w = \log z + 2k\pi i$
- $(z^{\alpha})' = \alpha z^{\alpha-1}, z \in \mathbb{C} \setminus (-\infty, 0])$ a $\alpha \in \mathbb{C}$
- $(1+z)^{\alpha} = \sum_{n=0}^{\infty} {n \choose n} z^n$, |z| < 1, kde ${n \choose n} := \frac{\alpha(\alpha-1)\cdots(\alpha-n+1)}{n!}$.

Příklad 4.8. Nechť $z \in \mathbb{C} \setminus \{0\}$.

- Necht $\alpha \in \mathbb{Z}$. Potom $m_{\alpha}(z) = \{z^{\alpha}\}.$
- Nechť $\alpha \in \mathbb{Q}$ a $\alpha = p \mid_q$, kde $q \in \mathbb{Q}$, $p \in \mathbb{Z}$ a p,q jsou nesoudělná. Potom $m_{\frac{p}{q}}(z) = \{z^{\frac{p}{q}}e^{2K\frac{p}{q}\pi i} \mid K = \{0,1,\cdots,q-1\}\}$ tvoří vrcholy pravidelného q-úhelníku vepsaného do kružnice o středu 0
- Nechť $\alpha \in \mathbb{C} \setminus \mathbb{Q}$. Potom je $m_{\alpha}(z)$ nekonečné.

Příklad 4.9. •
$$\sqrt{-1} = e^{\frac{pii}{2}} = i, m_{\frac{1}{3}}(-1) = \{\pm i\}$$

- $\sqrt[3]{-1} = e^{\frac{\pi i}{3}}$ (nesouhlasí s MA!), $m_{\frac{1}{3}}(-1) = \{e^{\frac{\pi i}{3}}, e^{\frac{-\pi i}{3}}, -1\}$
- $i^i = e^{\frac{-\pi}{2}}, m_i(i) = \{e^{\frac{-\pi}{2} + 2k\pi} \mid k \in \mathbb{Z}\}$

Pozor na počítání s mocninami!

$$(zw)^{\alpha} \neq z^{\alpha}w^{\alpha}$$

např. $1 = \sqrt{1} = \sqrt{(-1)(-1)} \neq \sqrt{-1}\sqrt{-1} = i^2 = -1$

Poznámka 4.10. Je-li $f: \mathbb{C} \to \mathbb{C}$, potom $f(z) = \frac{f(z) + f(-z)}{2} + \frac{f(z) - f(-z)}{2} = \text{sudá část} + \text{lichá část}$.

4.4 Hyperbolické funkce

 $e^z = \cosh(z) + \sinh(z)$, kde

Definice 4.11.

$$\cosh(z) \colon = \frac{e^z + e^{-z}}{2}, z \in \mathbb{C}$$

$$\sinh(z) := \frac{e^z - e^{-z}}{2}, z \in \mathbb{C}$$

Vlastnosti 4.12.

- $\cosh' z = \sinh z$, $\sinh' z = \cosh z$
- $\cosh z = \sum_{n=0}^{\infty} \frac{z^2 n}{(2n)!}$, $\sinh z = \sum_{n=0}^{\infty} \frac{z^{2n+1}}{(2n+1)!}$

4.5 Goniometrické funkce

$$e^{iz} = \cos(z) + i\sin(z)$$
, kde

Definice 4.13.

$$cos(z)$$
: $=\frac{e^{iz}+e^{-iz}}{2}, z \in \mathbb{C}$

$$sin(z)$$
: $=\frac{e^{iz}-e^{-iz}}{2i}, z \in \mathbb{C}$

Vlastnosti 4.14. • cos a sin jsou rozšířením příslušných reálných funkcí z \mathbb{R} do \mathbb{C} .

- $\sin'(z) = \cos(z)$, $\cos'(z) = -\sin(z)$
- sin i cos jsou 2π -periodické, ale nejsou omezené na \mathbb{C} . Platí, že $\sin(\mathbb{C}) = \mathbb{C} = \cos(\mathbb{C})$
- i na $\mathbb C$ platí součtové vzorce, atd.
- $\sin(z) = \sum_{n=0}^{\infty} (-1)^n \frac{z^{2n+1}}{(2n+1)!}, \cos(z) = \sum_{n=0}^{\infty} (-1)^n \frac{z^{2n}}{(2n)!}$

5 Křivkový integrál

Definice 5.1. Necht $\varphi : [\alpha, \beta] \to \mathbb{C}$. Potom

- 1. φ je *křivka*, pokud je φ spojitá
- 2. φ je regulární křivka, pokud je φ po částech spojitě diferencovatelná, tzn. φ je spojitá na $[\alpha, \beta]$ a existuje dělení $\alpha = t_0 < t_1 < \dots < t_n = \beta$ takové, že $\varphi \Big|_{[t_i, t_{i+1}]}$ je spojitě diferencovatelné pro každé $i = 0, \dots, n-1$ $(x^n + y^n = z^n$

Definice 5.2 (Úsečka). Nechť $a,b \in \mathbb{C}$. Potom $\varphi(t) := a + t(b-a), t \in [0,1]$ je úsečka z a do b. Značíme [a,b].

Definice 5.4 (Lomenná čára). Řekneme, že regulární křivka φ je lomenná čára v \mathbb{C} , existují-li $z_1, z_2, \dots, z_k \in \mathbb{C}$ taková, že $\varphi = [z_1, z_2] \dotplus [z_2, z_3] \dotplus \dots \dotplus [z_{k-1}, z_k]$.

Definice 5.5 (Kružnice). Nechť $z_0 \in \mathbb{C}$ a r > 0. Potom $\varphi(t) := z_0 + re^{it}$, $t \in [0, 2\pi]$ je kružnice probíhaná v kladném směru (proti směru hodinových ručiček).

Poznámka 5.6. Pro křivku φ může být její graf $\langle \varphi \rangle := \varphi([\alpha, \beta])$ například čtverec (Peanova křivka).

Úmluva 5.7. Pokud neřekneme něco jiného, $k\check{r}ivkou$ budeme rozumět regulárni $k\check{r}ivku$ v \mathbb{C} .

Připomenutí 5.8. Jako v MA definujeme

1. Vše po složkách, například.

$$\varphi'(t) = \varphi'_1(t) + i\varphi'_2(t),$$
$$\int_{\alpha}^{\beta} \varphi(t) dt = \int_{\alpha}^{\beta} \varphi_1(t) dt + i \int_{\alpha}^{\beta} \varphi_2(t) dt,$$

mají-li pravé strany smysl. Zde $\varphi(t) = \big(\varphi_1(t), \varphi_2(t)\big) = \varphi_1(t) + i\varphi_2(t)$

2. Délka křivky:

$$V(\varphi) := \int_{\alpha}^{\beta} |\varphi'(t)| \, \mathrm{d}t,$$

je-li φ regulární.

Definice 5.9. Nechť $\varphi: [\alpha, \beta] \to \mathbb{C}$ je regulární křivka a $f: \langle \varphi \rangle \to \mathbb{C}$ je spojitá. Potom definujeme

$$\int_{\varphi} f := \int_{\alpha}^{\beta} f(\varphi(t)) \varphi'(t) dt \tag{4}$$

Poznámka 5.10.

- 1. Křivkový integrál (4) existuje vždy jako Riemannův.
- 2. Píšeme také $\int_{\varphi} f(z) dz$

Základní vlastnosti 5.11.

1. Je-li φ křivka, f a g jsou spojité funkce na $\langle \varphi \rangle$ a $A, B \in \mathbb{C}$, potom

$$\int_{\varphi} (Af + Bg) = A \int_{\varphi} f + B \int_{\varphi} g.$$

2. Je-li φ křivka a fje spojitá funkce na $\langle \varphi \rangle,$ potom $\left| \int_{\varphi} f \right| \leq \max_{\langle \varphi \rangle} |f| \cdot V(\varphi).$

 $D\mathring{u}kaz$. Označíme $M:=\max_{\langle \varphi \rangle} |f|$. Potom máme

$$\left| \int_{\varphi} f \right| = \left| \int_{\alpha}^{\beta} f(\varphi(t)) \varphi'(t) \, \mathrm{d}t \right| \le \int_{\alpha}^{\beta} \left| f(\varphi(t)) \right| \left| \varphi'(t) \right| \, \mathrm{d}t$$

$$\le \int_{\alpha}^{\beta} M \left| \varphi'(t) \right| \, \mathrm{d}t = M \int_{\alpha}^{\beta} \left| \varphi'(t) \right| \, \mathrm{d}t = M \cdot V(\varphi)$$

3. Nechť $\varphi: [\alpha, \beta] \to \mathbb{C}, \ \psi: [\gamma, \delta], \to \mathbb{C}$ jsou křivky a $\varphi(\beta) = \psi(\gamma)$. Potom

$$\int_{\varphi \dotplus \psi} f = \int_{\varphi} f + \int_{\psi} f$$
 a
$$\int_{\dot{-}\varphi} f = -\int_{\varphi} f,$$

kde $(-\varphi)(t) := \varphi(-t), t \in [-\beta, -\alpha]$ je opačná křivka k φ .

4. Křivková integrál nezávisí na parametrizaci křivky. Nechť $\varphi: [\alpha, \beta] \to \mathbb{C}$ je křivka, $\omega: [\gamma, \delta] \xrightarrow{\mathrm{na}} [\alpha, \beta]$ je spojitě diferencovatelné s $\omega' > 0$ a $\psi := \varphi \circ \omega$. Potom

$$\int_{\varphi} f = \int_{\psi} f$$

.

Důkaz.

$$\int_{\psi} f = \int_{\gamma}^{\delta} f(\varphi(\omega(t))) \varphi'(\omega(t)) \omega'(t) dt$$

$$= \int_{\gamma}^{\delta} f(\varphi(\omega(t))) \psi'(t) dt \stackrel{\text{subst.}}{=} \int_{\alpha}^{\beta} f(\varphi(\tau)) \varphi'(\tau) d\tau = \int_{\varphi} f(\varphi(\tau)) \psi'(\tau) d\tau = \int_{\varphi} f(\varphi(\tau))$$

٦

Definice 5.12. Řekneme, že funkce f má na otevřené $G\subset \mathbb{C}$ primitivní funkci F, pokud F'=f na G

Příklad 5.13.
$$\frac{z^{n+1}}{n+1}$$
 je primitivní funkcí k z^n $\begin{cases} \text{na } \mathbb{C} & \text{pro } n=0,1,2,3,\cdots \\ \text{na } \mathbb{C} \setminus \{0\} & \text{pro } n=-2,-3,-4,\cdots \end{cases}$

Věta 5.14 (O výpočtu křivkového integrálu pomocí PF). Nechť $G \subset \mathbb{C}$ je otevřená a f má na G primitivní funkci F. Nechť $\varphi : [\alpha, \beta] \to G$ je křivka a f je spojitá (*) na $\langle \varphi \rangle$. Potom

1.
$$\int_{\varphi} f = F(\varphi(\beta)) - F(\varphi(\alpha))$$

2.
$$\int_{\varphi}f=0,\; je\text{-}li\; \varphi$$
uzavřená, $tzn. \; \varphi(\alpha)=\varphi(\beta)$

Poznámka 5.15. $^{(*)}$ Ukážeme si později, že funkce f, která má na G primitivní funkci je na G holomorfní, tudíž i spojitá.

Důkaz. Z Cauchy-Riemannovy věty plyne, že

$$\frac{\mathrm{d}}{\mathrm{d}t}\Big(F\big(\varphi(t)\big)\Big) = \frac{\partial F}{\partial x}\varphi_1' + \frac{\partial F}{\partial y}\varphi_2' = F'\varphi_1' + iF'\varphi_2' = F'\big(\varphi(t)\big)\varphi'(t).$$

Tato rovnost platí až na konečně mnoho $t \in [\alpha \beta]$, neboli $F \circ \varphi$ je zobecnění PF k integrandu. Máme tedy

$$\int_{\mathcal{C}} f = \int_{\alpha}^{\beta} f(\varphi(t)) \varphi'(t) dt = \int_{\alpha}^{\beta} \frac{d}{dt} (F(\varphi(t))) dt = F(\varphi(\beta)) - F(\varphi(\alpha)).$$

Příklad 5.16.

• $\frac{1}{z}$ je holomorfní na $\mathbb{C}\setminus\{0\}$, ale na $\mathbb{C}\setminus\{0\}$ nemá primitivní funkci, neboť víme

$$\int_{\varphi} \frac{\mathrm{d}z}{z} = 2\pi i \neq 0 \text{ pro } \varphi(t) = e^{it}, \ t \in [0, 2\pi].$$

• $\frac{1}{z}$ má na $\mathbb{C} \setminus (-\infty, 0]$ primitivní funkci $\log(z)$.

$$\log'(z) = \frac{1}{z}.$$

Připomenutí 5.17 (Souvislost). Nechť $G \subset \mathbb{C}(\mathbb{R}^n)$ otevřená. Následující tvrzení jsou ekvivalentní:

- (a) G je souvislá, tj. G je oblast.
- (b) G je $k\check{r}ivkov\check{e}$ souvislá, tzn. pro každé $z_1, z_2 \in G$ existuje spojitá křivka $\varphi : [\alpha, \beta] \to G$ taková, že $\varphi(\alpha) = z_1$ a $\varphi(\beta) = z_2$.
- (c) Pro každé $z_1, z_2 \in G$ existuje lomenná čára $\varphi : [\alpha, \beta] \to G$ taková, že $\varphi(\alpha) = z_1$ a $\varphi(\beta) = z_2$.

 $D\mathring{u}kaz.$ $(a) \Leftrightarrow (b)$: víte z MA; $(c) \Rightarrow (b)$: jasné; $(a) \Rightarrow (c)$: ukáže se podobně jako $(a) \Rightarrow (b)$

Věta 5.18. Funkce f je konstatní na oblasti $G \subset \mathbb{C}$, právě když f' = 0 na G.

 $D\mathring{u}kaz. \Rightarrow Jasn\acute{e}.$

 \Leftarrow Nechť $z,w\in G$ a φ je lomenná čára v G spojující z a w. Potom $f(w)-f(z)=\int_{\varphi}f'=0$, protože f je primitivní funkcí k f' na G.

Důsledek 5.19. *Jsou-li* F_1, F_2 *primitivní* funkce k f na oblasti $G \subset \mathbb{C}$, potom existuje $c \in \mathbb{C}$ tak, že $F_2 = F_1 + c$.

Důkaz.

$$(F_2 - F_1)' = F_2' - F_1' = f - f = 0.$$

Věta 5.20 (O existenci PF). Necht $G \subset \mathbb{C}$ je oblast a f je spojitá na G. NTJE:

- 1. f má na G primitivní funkci.
- 2. $\int_{\mathcal{Q}} f = 0$ pro každou uzavřenou křivku φ v G.
- 3. $\int_{\varphi} f$ nezávisí v G na křivce φ , tzn. pro každé dvě křivky $\varphi: [\alpha, \beta] \to G$, $\psi: [\gamma, \delta] \to G$ takové, $\check{z}e$ $\varphi(\alpha) = \psi(\gamma)$ a $\varphi(\beta) = \psi(\delta)$, plati $\int_{\varphi} f = \int_{\psi} f$.

Poznámka 5.21. Přípomíná větu o potenciálu z MA ?

 $D\mathring{u}kaz$.

- $1. \Rightarrow 2$. Víme z věty o výpočtu integrálu pomocí PF
- $2. \Rightarrow 3.$ Položme $\tau := \varphi \dotplus (\dot{-} \psi).$ Potom je τ uzavřená a z 2. dostaneme

$$0 = \int_{\mathcal{T}} f = \int_{\mathcal{Q}} f - \int_{\psi} f.$$

 $3. \Rightarrow 1.$ Volme $z_0 \in G$ pevně. Pro každé $z \in G$ najděme lomenou čáru φ_z v G, která začíná v z_0 a končí v z. Definujeme $F(z) := \int_{\varphi_z} f, \ z \in G$. Definice F je korektní, nezávislá na volbě φ_z ,

protože předpokládáme 3. Ukážeme, že F je hledaná PF k f na G. Necht $z_1 \in G$. Dokážeme, že $F'(z_1) = f(z_1)$. Volme r > 0, aby $U(z_1, r) \subset G$. Je-li |h| < r, potom

$$F(z_1 + h) - F(z_1) \stackrel{3}{=} \int_{\varphi_{z_1} + u} f - \int_{\varphi_{z_1}} f = \int_u f,$$

kde $u=[z_1,z_1+h]$ je *úsečka*, tzn. $u(t)=z_1+t\cdot h,\,t\in[0,1].$ Tedy

$$F(z_1+h)-F(z_1) = \int_u f = \int_0^1 f(z_1+th)h \,dt,$$

tudíž

$$\frac{F(z_1+h)-F(z_1)}{g}-f(z_1)=\int_0^1 \left(f(z_1+th)-f(z_1)\right)\mathrm{d}t.$$

To se blíží k nule pro $h \to 0$, protože

$$\left| \int_0^1 \left(f(z_1 + th) - f(z_1) \right) dt \right| \le \max_{z \in [z_1, z_1 + h]} |f(z) - f(z_1)| \xrightarrow{h \to 0} 0$$

ze spojitosti f v z_1 . Máme, že $F'(z_1) = f(z_1)$.

Značení 5.22.

1. Řekneme, že $m \subset \mathbb{C}$ je $hv\check{e}zdovit\acute{a}$, pokud existuje $z_0 \in M$ (tzv. $st\check{r}ed\ hv\check{e}zdovitosti$), pro který $[z_0,z] \subset M$ pro každý $z \in M$.

Poznámka. Konvexní ⊊ hvězdicovitá.

2. Řekneme, že $\triangle \subset \mathbb{C}$ je trojúhelník s vrcholy $a,b,c \in \mathbb{C}$, pokud

$$\triangle := \{ \alpha a + \beta b + \gamma c \mid \alpha, \beta, \gamma \ge 0, \alpha + \beta + \gamma = 1 \}$$

 $(konvexni\ obal\ a,b,c)$ a značíme $\partial \triangle := [a,b] \dotplus [b,c] \dotplus [c,a]$. Připouštíme i degenerované \triangle , tzn. a,b,c mohou ležet na jedné přímce nebo body a,b,c mohou splývat...

Dodatek 5.23. Nechť f je spojitá funkce na hvězdicovité oblasti $G \subset \mathbb{C}$. Je-li

$$\int_{\partial \wedge} f = 0,\tag{5}$$

pro každý trojúhelník $\triangle \subset G$, potom f má na G primitivní funkci.

 $D\mathring{u}kaz$. Nechť z_0 je střed hvězdovitosti G, Pro každé $z \in G$ položme $\varphi_z := [z_0, z]$ a $F(z) := \int_{\varphi_z} f$. Rozmyslíme si, že důkaz F' = f na G je zcela analogický $\mathfrak{T} \Rightarrow \mathfrak{T}$ předchozí věty, když místo \mathfrak{T} uvažujeme (5).

Poděkování:

Tyto poznámky byly vytexány společnou prací několika studentů 3. ročníku bakalářského studia obecné matematiky. Bez jejich iniciativy by tyto poznámky nevznikly.

Stanislav Mosný, Tereza Poláková, Viktor Procházka a Petr Sedláček