STAT430 Homework #4: Due Friday, March 1, 2019.

Name:

- 0. Remember that there is no class or office hour on Monday, February 25. We start Chapter 8 in this homework, with some additional problems related to the end of Chapter 7. Read Sections 8.1-8.4 on estimation. We have the first midterm February 22. Be sure you are strong so far on distribution of maximum and minimum order statistic; expectation, variance and covariance calculations; normal probability computations; the "origin stories" of the χ^2 , t, and F distributions; and the Central Limit Theorem and its applications and extensions (normal approximation for sample mean and sample total; normal approximation to the binomial; delta method; bias and mean squared error). This homework has some good review problems and is worth working on prior to the exam.
- 1. Let $Y \sim \text{Binomial}(n, p)$. The "odds of success" are defined as

$$\frac{\text{probability of success}}{\text{probability of failure}} = \frac{p}{1-p}$$

and the log-odds are

$$\lambda = \ln\left(\frac{p}{1-p}\right).$$

The standard, unbiased estimator of p is $\hat{p} = Y/n$. Plugging in this estimator, we have the estimated log-odds

$$\hat{\lambda} = \ln\left(\frac{\hat{p}}{1 - \hat{p}}\right).$$

Use the delta method as described in class to determine the approximate distribution of $\hat{\lambda}$ for large n. For p = 0.3 and n = 100, verify that the variance of your approximate distribution is 1/21.

Answer:

2. Suppose Y_1, \ldots, Y_{40} denote a random sample of measurements on the proportion of impurities in iron ore samples. Let each Y_i have probability density function given by

$$f(y) = \begin{cases} 3y^2, & 0 \le y \le 1, \\ 0, & \text{elsewhere.} \end{cases}$$

The ore is to be rejected by the potential buyers if \bar{Y} exceeds 0.7. Find the approximate probability that $P(\bar{Y} > 0.7)$ for the sample of size n = 40.

Answer:

3. Let Y_1, \ldots, Y_n denote a random sample from a population whose density is given by

$$f(y) = \begin{cases} \alpha y^{\alpha - 1} / \theta^{\alpha}, & 0 \le y \le \theta, \\ 0, & \text{elsewhere,} \end{cases}$$

where $\alpha > 0$ is a known, fixed value, but θ is unknown. Consider the estimator $\hat{\theta} = \max(Y_1, \dots, Y_n)$. (a). Show that $\hat{\theta}$ is a biased estimator for θ .

Answer:		
. ,	bias, variance and MSE of $\hat{\theta}$ as functions of $n, \alpha,$ as the integrals.) Use R to evaluate your expressions num	`
Answer:		
$\alpha = 2$ and $\theta = 5$ and compu	e to simulate 10000 random samples of size $n=6$ from the $\hat{\theta}$ for each random sample. Then approximate the ar(theta_hat), and the MSE by mean((theta_hat) and (b).	bias by mean(theta_hat)
<pre>rsim <- function(n, alp) u <- runif(n) Y <- theta * u ^ (1 / return(Y) } nreps <- 10000 n <- 6 alpha <- 2 theta <- 5 set.seed(4302019) Y <- rsim(n * nreps, alpha <- range) YY <- matrix(Y, n, nreps)</pre>	alpha) pha = 2, theta = 5) # simulate 10,000 random	samples of size 6 th random sample in each column
Answer:		
4. Complete Exercise 8	.2 of the text.	
Answer:		
5. Complete Exercise 8 if σ_2^2 is much smaller t	.6 of the text. If σ_2^2 is much larger than σ_1^2 , does your than σ_1^2 ?	answer make sense? What
Answer:		
estimator. You can u	3.8 of the text, giving an explicit expression for the use the result of Exercise 6.81 : if Y_1, Y_2, \ldots, Y_n a, then $\min(Y_1, Y_2, \ldots, Y_n)$ has an exponential distribu	re iid exponential random

Answer:

7. Assess your results in problem 6 above via simulation, using $\theta = 10$. Check your theoretical variance expressions against the empirical variances from simulation, and compare the estimators using side-by-side boxplots of their values. Use the following code to get started:

[1] 49.48804

abline(h = theta, lwd = 3, col = "red")

Side-by-side boxplots to compare estimators (you can add more estimators, separated by commas):
boxplot(theta_hat1, theta_hat2, col = "LightBlue", names = c(expression(hat(theta)[1]), expression(hat(

Answer: