Práctica 3

Ejercicio 1.

Dada la siguiente secuencia de fbfs de L

- a. $((\neg p) \rightarrow (\neg (q \rightarrow r))) \rightarrow ((q \rightarrow r) \rightarrow p)$
- b. $((\neg p) \rightarrow (\neg (q \rightarrow r))$
- c. $((q \rightarrow r) \rightarrow p)$

Analizar si se trata de una demostración en L de la forma $\Gamma \vdash L A$ para algún conjunto Γ de fbfs y alguna fbf A. En ese caso:

i. Describir al conjunto Γ y a la fbf A y explicar cada paso de la secuencia (es decir, axiomas y reglas de inferencia).

$$\Gamma = \{ ((\neg p) \rightarrow (\neg (q \rightarrow r))) \}$$
$$A = ((q \rightarrow r) \rightarrow p)$$

1. $((\neg p) \rightarrow (\neg (q \rightarrow r))) \rightarrow ((q \rightarrow r) \rightarrow p)$

Instancia de L3.

2. $((\neg p) \rightarrow (\neg (q \rightarrow r)))$

Hipótesis.

3. $((q \rightarrow r) \rightarrow p)$

Aplicación MP entre a y b.

ii. Decir si A es un teorema de L

No es un teorema de L ya que no se parte de un Γ vacio.

iii. Decir si A es tautología

Como L es correcto y completo, si una fbf es un teorema entonces es una tautología y viceversa. Como A no es un teorema de L, entonces no es una tautología.

Ejercicio 2.

Sean A, By C tres fórmulas bien formadas (fbfs) del sistema formal L. Dar una demostración sintáctica en L de los siguientes teoremas. Justificar cada paso en la derivación, indicando cuales son los axiomas instanciados y las reglas de inferencia utilizadas. Intente resolverlos sin usar el metateorema de la deducción y luego usándolo.

i.
$$\vdash L ((\neg A \rightarrow A) \rightarrow A)$$

Demostracion sin el metateorema: muy difícil por ahí en algún momento la haga por ahí no.

Demostracion con el metateorema:

Ad (b):
$$(1) \quad (\sim \mathcal{A} \rightarrow \mathcal{A}) \qquad \text{hipótesis}$$

$$(2) \quad (\sim \mathcal{A} \rightarrow (\sim \sim (\sim \mathcal{A} \rightarrow \mathcal{A}) \rightarrow \sim \mathcal{A})) \qquad (L1)$$

$$(3) \quad (\sim \sim (\sim \mathcal{A} \rightarrow \mathcal{A}) \rightarrow \sim \mathcal{A}) \rightarrow (\mathcal{A} \rightarrow \sim (\sim \mathcal{A} \rightarrow \mathcal{A})) \qquad (L3)$$

$$(4) \quad (\sim \mathcal{A} \rightarrow (\mathcal{A} \rightarrow \sim (\sim \mathcal{A} \rightarrow \mathcal{A}))) \qquad (2), (3) SH$$

$$(5) \quad (\sim \mathcal{A} \rightarrow (\mathcal{A} \rightarrow \sim (\sim \mathcal{A} \rightarrow \mathcal{A}))) \rightarrow ((\sim \mathcal{A} \rightarrow \mathcal{A}) \rightarrow \mathcal{A}) \rightarrow (\sim \mathcal{A} \rightarrow \sim (\sim \mathcal{A} \rightarrow \mathcal{A}))) \qquad (L2)$$

$$(6) \quad (\sim \mathcal{A} \rightarrow \mathcal{A}) \rightarrow (\sim \mathcal{A} \rightarrow \mathcal{A})) \qquad (4), (5)MP$$

$$(7) \quad (\sim \mathcal{A} \rightarrow \sim (\sim \mathcal{A} \rightarrow \mathcal{A})) \rightarrow (\sim \mathcal{A} \rightarrow \mathcal{A}) \rightarrow \mathcal{A}) \qquad (L3)$$

$$(9) \quad (\sim \mathcal{A} \rightarrow \mathcal{A}) \rightarrow \mathcal{A} \qquad (L3)$$

$$(9) \quad (\sim \mathcal{A} \rightarrow \mathcal{A}) \rightarrow \mathcal{A} \qquad (L3)$$

$$(10) \quad \mathcal{A} \qquad (1), (9)MP$$

Como se llegó a ($\neg A \rightarrow A$) $\vdash L A$, por el metateorema de deducción $\vdash L$ (($\neg A \rightarrow A$) $\rightarrow A$)

ii.
$$\vdash L ((A \rightarrow B) \rightarrow (\neg B \rightarrow \neg A))$$

Demostración sin el metateorema: muy difícil por ahí en algún momento la haga por ahí no.

Demostración con el metateorema:

1) $(A \rightarrow B)$ Hipótesis.

2) $(A \rightarrow B) \rightarrow (\neg B \rightarrow \neg A)$ Instanciación de L3.

3) $(\neg B \rightarrow \neg A)$ Aplicación MP entre 1 y 2.

Como se llegó a (A
$$\rightarrow$$
 B) \vdash L (\neg B \rightarrow \neg A), por el metateorema de deducción \vdash L ((A \rightarrow B) \rightarrow (\neg B \rightarrow \neg A))

Ejercicio 3.

Sean A, By C tres fórmulas bien formadas (fbfs) del sistema formal L. Dar una demostración sintáctica en L de las siguientes deducciones. Justificar cada paso en la derivación, indicando cuales son los axiomas instanciados y las reglas de inferencia utilizadas.

i.
$$\{((A \rightarrow B) \rightarrow C), B\} \vdash L(A \rightarrow C)$$

Demostración:

1. $B \rightarrow (A \rightarrow B)$ Instanciación de L1

2. B Hipótesis

3. $(A \rightarrow B)$ Aplicación MP entre 1 y 2.

4. $(A \rightarrow B) \rightarrow C$ Hipótesis.

5. C Aplicación MP entre 3 y 4.

6. $C \rightarrow (A \rightarrow C)$ Instanciación de L1.

7. $(A \rightarrow C)$ Aplicación MP entre 5 y 6.

A partir de $\{(A \rightarrow B) \rightarrow C)$, B $\}$ se derivó $(A \rightarrow C)$

Ejercicio 4.

Sea Γ un conjunto de fbfs del C. de Enunciados. Se sabe que $\Gamma \vdash LA$. ¿Es cierto que para todo Γ i tal que Γ i $\subset \Gamma$, Γ i $\vdash LA$?. Fundar.

No, no se puede.

Demostración con contraejemplo:

Sea:

- Γi = Ø.
- Γ = { p }.
- A = p.

• $\emptyset \subset \{p\}$.

Es posible $\Gamma \vdash L A$, es decir p $\vdash L p$, y se puede realizar en un paso:

1. p Hipótesis.

Pero no es posible Γ i \vdash L A, es decir \emptyset \vdash L p, ya que \emptyset y p no se puede derivar a partir del vacío, por lo que no se cumple Γ i \vdash L A para todo Γ i tal que Γ i \subset Γ .

Ejercicio 5.

Sean Γ y Γ 0 conjuntos de fbfs del C. de Enunciados. ¿Es cierto que para todo Γ existe algún Γ 0 \subseteq Γ tal que si Γ \vdash L A entonces Γ 0 \vdash L A?. Fundar.

Si, es cierto.

Demostración: Como $\Gamma 0 \subseteq \Gamma$ existe un $\Gamma 0 = \Gamma$ y por hipótesis si $\Gamma \vdash L$ A entonces también sucederá que $\Gamma 0 \vdash L$ A puesto que $\Gamma 0$ es igual a Γ .

Ejercicio 6.

Sean A , B y C fbfs del C. de Enunciados. Sea Γ un conjunto de fbfs del C. de Enunciados. Se sabe que $\Gamma \cup \{A, B\} \vdash L C$ y también se sabe que $\Gamma \vdash L A$.

i. ¿Es cierto que $\Gamma \vdash L (C \rightarrow B)$?. Fundar.

No es cierto.

Contraejemplo:

Sea:

- \circ $\Gamma = \{p\}$
- \circ B = q.
- \circ A = p.
- o C = p.

Se cumple $\Gamma \cup \{A, B\} \vdash L C$ y también se cumple $\Gamma \vdash L A$ pero no se cumple $\Gamma \vdash L$ $(C \rightarrow B)$

ii. ¿Es cierto que \vdash L (A)?. Fundar.

No es cierto.

Contraejemplo:

Sea:

- \circ $\Gamma = \{p\}$
- \circ B = q.
- \circ A = p.
- C = p.

Se cumple $\Gamma \cup \{A, B\} \vdash L C$ y también se cumple $\Gamma \vdash L A$, pero no se cumple $\vdash L$ (A), debido a que p no es una tautología.