PSYCH 260-BBH 203 Exam 1

February 16, 2016

	Answer the questions using the Scantron form.	
.		

1 Main

- 1. Identify the structure
 - A. Frontal lobe
 - B. Parietal lobe
 - C. Occipital lobe
 - D. Temporal lobe
- 2. Identify the structure
 - A. Forebrain
 - B. Midbrain
 - C. Hindbrain
 - D. Spinal cord
- 3. Identify the structure
 - A. 4th ventricle
 - B. Medulla
 - C. Cerebellum
 - D. Pons
- 4. Identify the structure
 - A. 4th ventricle
 - B. Medulla
 - C. Cerebellum
 - D. Pons

- 5. Identify the structure
 - A. 4th ventricle
 - B. Medulla
 - C. Cerebellum
 - D. Pons
- 6. Identify the structure
 - A. Frontal lobe
 - B. Parietal lobe
 - C. Occipital lobe
 - D. Temporal lobe
- 7. Identify the structure
 - A. Frontal lobe
 - B. Parietal lobe
 - C. Occipital lobe
 - D. Temporal lobe
- 8. Natural philosophers in the middle ages thought that fluid from these structures inflated the muscles.
 - A. Astrocytes
 - B. Meninges
 - C. Cerebral ventricles
 - D. Circle of Willis

- 9. What plane of section is represented in the left panel?
 - A. Coronal
 - B. Sagittal
 - C. Axial/horizontal
 - D. Dorsal
- 10. What plane of section is represented in the middle panel?
 - A. Coronal
 - B. Sagittal
 - C. Axial/horizontal
 - D. Dorsal
- 11. What plane of section is represented in the right panel?
 - A. Coronal
 - B. Sagittal
 - C. Axial/horizontal
 - D. Dorsal
- 12. What fissure or sulcus is represented in the figures?
 - A. Superior temporal sulcus
 - B. Central sulcus
 - C. Longitudinal fissure
 - D. Lateral fissure
- 13. Primary motor cortex is found in the _____.
 - A. Temporal lobe
 - B. Frontal lobe
 - C. Hypothalamus
 - D. Basal ganglia
 - E. Parietal lobe

14.	Primary auditory cortex is found in the
	A. Temporal lobe
	B. Frontal lobe
	C. Hypothalamus
	D. Basal ganglia
	E. Parietal lobe
15.	The pituitary gland is connected with the
	A. Temporal lobe
	B. Frontal lobe
	C. Hypothalamus
	D. Basal ganglia
	E. Parietal lobe
16.	The caudate nucleus is part of the
	A. Temporal lobe
	B. Frontal lobe
	C. Hypothalamus
	D. Basal ganglia
	E. Parietal lobe
17.	The typical flow of information in neurons begins with input on theand ends with output from the
	A. axon; dendrites.
	B. soma; dendrites.
	C. dendrites; terminal button.
	D. terminal button; soma.
18.	Which of the following statements about neurons is <i>incorrect</i> ?
	A. Neurons have very long lives.
	B. Neurons can extend over long distances.
	C. Neurons are the only cells that have negative resting potentials.
	D. Neurons use both electrical and chemical mechanisms to communicate.
19.	Your grandmother has a stroke. The neurologist chooses use an X-ray-based structural brain imaging method that gives decent spatial resolution. What method is that?
	A. Computed tomography (CT).
	B. functional MRI.
	C. Positron Emission Tomography (PET).
	D. Anterograde tract tracers.

20.	The first scan is inconclusive, so the neurologist orders a second scan that gives much higher spatial resolution of the gray and white matter and does not involve any ionizing radiation. That method is
	A. electroencephalography (EEG).
	B. hemodynamic response imaging.
	C. structural MRI.
	D. Computed Tomography (CT).
21.	Theis/are especially thin around the area postrema in the brainstem, and neurons here are specialized for detecting
	A. astrocytes; glutamate.
	B. myelin sheath; Na+ ions.
	C. Circle of Willis; blood loss.
	D. blood/brain barrier; toxins.
22.	How many neurons are there in the human brain?
	A. About 86 billion.
	B. About 86 million.
	C. Too many to count in multiple lifetimes.
	D. Both A. and C.
23.	This type of glial cell plays a central role in cleaning up dead or diseased brain tissue.
	A. Schwann cells
	B. Oligodendrocytes
	C. Microglia
	D. Purkinje cells
24.	The hypothalamus plays a central role in
	A. Sexual behavior
	B. Metabolic, physical support of neurons
	C. Sensory relay
	D. Memory storage and retrieval
	E. CNS protection

- 25. The dura mater is crucial for
 - A. Metabolic, physical support of neurons
 - B. Sensory relay
 - C. Preparation for action
 - D. Memory storage and retrieval
 - E. CNS protection
- 26. One of the functions of the thalamus is to serve
 - A. Sexual behavior
 - B. Metabolic, physical support of neurons
 - C. Sensory relay
 - D. Preparation for action
 - E. Memory storage and retrieval
- 27. The hippocampus plays a central role in
 - A. Sexual behavior
 - B. Metabolic, physical support of neurons
 - C. Sensory relay
 - D. Preparation for action
 - E. Memory storage and retrieval
- 28. The sympathetic nervous system is crucial for
 - A. Sexual behavior
 - B. Metabolic, physical support of neurons
 - C. Sensory relay
 - D. Preparation for action
 - E. Memory storage and retrieval
- 29. You're having trouble sleeping, so your physician orders a sleep study using polysomnography. You spend a night in the hospital with electrodes on your scalp. This is an example use case for ______.
 - A. electroencephalograpy (EEG).
 - B. Multi-unit recording.
 - C. transcranial magnetic stimulation.
 - D. optical imaging.
- 30. _______, a type of glial cell, help regulate local blood oxygen levels in response to neuronal activity. These cells thus contribute to the signal measured by ______.
 - A. oligodendrocytes; MEG
 - B. Schwann cells; structural MRI
 - C. astrocytes; functional MRI
 - D. microglia; structural and functional MRI
- 31. The neurotransmitters dopamine, norepinephrine, and serotonin originate from nuclei clustered in which midbrain region?
 - A. Basal ganglia
 - B. Lateral geniculate nucleus
 - C. Tegmentum
 - D. Medial frontal cortex

32.	The hypo	othalamus is NOT responsible for which of the following functions?
	A.	Fleeing
	В.	Feeding
	С.	Fighting
	D.	Falling
33.	Which of	the following marks the posterior boundary of the frontal lobe?
	A.	Lateral fissure
	В.	Longitudinal fissure
	С.	Central sulcus
	D.	Inferior temporal gyrus
34.	This type	e of myelinating cell, found in the, ensheaths many neurons at once.
	A.	Astrocytes; PNS
	В.	Oligodendrocytes; CNS
	С.	Schwann cells; CNS
	D.	Schwann cells; PNS
35.	Nodes of	Ranvier, or gaps in the myelination of an axon, serve which purpose?
	Α.	Increase the speed of propagation
	В.	Allow space in the axon for neurotransmitter release
	С.	Provide structural support to the neuron
	D.	Combine input from different dendrites
36.	When a cell?	neuron is "at rest," which of the following ions are more heavily concentrated outside of the
	Α.	Na+ and Cl-
	В.	K+ and $A-$
	С.	Na+ and K+
	D.	Cl- and A-

37.	When a r	neuron's membrane potential reaches threshold
	A.	voltage-gated K+ channels close
	В.	voltage-gated Na+ channels close and inactivate
	С.	the Na/K pump works even harder to keep the concentration balance.
	D.	voltage-gated Na+ channels open
38.	This part input.	of the cell functions as the neuron's "antennae" by serving as the primary place for receiving
	A.	Axon
	В.	Soma
	C.	Dendrites
	D.	Terminal Buttons
39.	During th	ne rising phase of the action potential,channels
	A.	Ligand-gated K+; close
	В.	Voltage-gated Na+; close
	С.	Voltage-gated Na+; open
	D.	Voltage-gated K+; close
40.	Neurons e	ensheathed in myelin conduct action potentialsthan those without myelin.
	A.	more slowly
	В.	more quickly
	С.	more slowly and efficiently
	D.	more quickly, but less efficiently

2 Bonus

41.	During th	he falling phase of the action potential,ions	
	Α.	K+; flow out	
	В.	Na+; flow out	
	С.	K+; flow in	
	D.	Na+; flow in	
42.	Which of	the following is a characteristic of a neuron's relative refractory period?	
	A.	Na+ channels are either open or inactive	
	В.	Very strong stimulation is required to generate an action potential	
	С.	All types of ions are able to flow freely across the post-synaptic membrane	
	D.	Action potentials generated during this time vary in size	
43.		eal neuron near or slightly above its resting potential chloride (Cl-) ions would flowentration gradient. This would move the neuronits firing threshold.	_following
	Α.	Inward; farther from	
	В.	Inward; closer to	
	С.	Outward; farther from	
	D.	Outward; closer to	
44.		found in Japanese pufferfish blocks voltage-gated Na+ channels. Applying such a toxin to would have what effect?	
	A.	Slower falling phase of the action potential.	
	В.	Increasing the concentration of Na+ inside the cell.	
	С.	K+ ions would accelerate their flow to compensate.	
	D.	Action potentials would be abolished.	