

Lecture 03 이진 정수의 연산

이진 정수의 논리 연산

- n-비트 이진수의 논리연산은 비트 단위로 주어진 논리연 산을 적용함
 - NOT, AND, OR, NOR, NAND, XOR, XNOR
- C 언어는 NOT, AND, OR, XOR를 지원함
 - ~, &, |, ^
 - 피연산자는 정수 타입이어야 함

이진 정수의 시프트(shift) 연산

- 주어진 n-비트 이진수의 모든 비트를 주어진 회수만큼 주어진 방향 (오른쪽 또는 왼쪽)으로 이동시키는 연산
 - $x\gg m:n$ -비트 이진수 x를 m 비트만큼 왼쪽으로 시프트하는 연산
 - $x \ll m$: n-비트 이진수 x = m 비트만큼 오른쪽으로 시프트하는 연산
 - 논리 시프트(logical shift)와 산술 시프트(arithmetic shift)가 있음
 - 논리 시프트와 산술 시프트의 구분은 첨자 L과 A를 붙여 표시

$$10011101_2 \gg_L 3 = 00010011_2$$

$$10011101_2 \ll_L 3 = 11101000_2$$

$$10011101_2 \gg_A 3 = 11110011_2$$

$$10011101_2 \ll_A 3 = 11101000_2$$

시프트 연산과 곱셈

- 부호 없는 수나 2의 보수 표현에서 어떤 수 x를 왼쪽으로 m 비트 시프트 하는 것은 x에 2^m 을 곱하는 것과 동일
- 부호 없는 수

$$00001101_2(13_{10}) \ll 3 = 01101000_2(104_{10})$$

• 2의 보수 표현

$$11111101_2(-3_{10}) \ll 3 = 11101000_2(-24_{10})$$

시프트 연산과 나눗셈

• n-비트 부호 없는 수의 표현에서 어떤 수 x를 오른쪽으로 m 비트 논리 시프트나 산술 시프트 하는 것은 x를 2^m 으로 나누어 몫을 취하는 것과 동일

$$1111101_2(29_{10}) \gg 3 = 00000011_2(3_{10})$$

- 2의 보수 표현에서는 $x \ge 0$ 일 경우, x를 오른쪽으로 m 비트 산술 시 프트 하는 것은 부호 없는 수와 마찬가지로 x를 2^m 으로 나누어 몫을 취하는 것과 같음
 - 하지만, x < 0일 경우는 $x = 2^m$ 으로 나누어 몫을 취하는 것과 다름

$$11111001_2(-7_{10}) \gg 2 = 111111110_2(-2_{10})$$

C 언어의 시프트 연산

- 오른쪽 시프트와 왼쪽 시프트 연산을 지원
- n-비트 수 x의 오른쪽 m-비트 시프트는 $x\gg m$ 으로 표현하고, 왼쪽 m-비트 시프트는 $x\ll m$ 으로 표현
- C99 표준은 음수에 대한 오른쪽 시프트를 정의하지 않음
 - 동작은 C 컴파일러의 구현에 따라 다름
 - 즉, 오른쪽 시프트가 논리 시프트인지 산술 시프트인지는 컴파일러의 구현에 따라 다름

부호 확장(sign extension)

- n-비트 2의 보수 표현을 같은 값을 가지는 (n + k)-비트 2의 보수 표현으로 변환할 때 필요
- 하위 n 비트는 원래의 n-비트 2의 보수 표현
- 원래의 부호 비트로 나머지 k 개의 비트를 모두 채움

부호 없는 이진 정수의 덧셈

- 십진수의 덧셈과 비슷
- 어떤 연산의 결과로 나온 값이 표현할 수 있는 값의 범위를 넘어가서 표현할 수 없을 경우를 오버플로우(overflow)라고 함
 - n-비트 부호 없는 수의 덧셈을 수행할 때 MSB에서 나오는 받아올림이 1 일 경우

받아올림	0	0	0	1			받아올림	1	1	1	1		
		1	0	0	1	(9 ₁₀)			1	0	1	1	(11 ₁₀)
+		0	1	0	1	(5 ₁₀)	+		0	1	1	1	(7 ₁₀)
	0	1	1	1	0	(14 ₁₀)		1	0	0	1	0	(18 ₁₀)

부호 없는 이진 정수의 덧셈

- modulo 2^n 덧셈을 수행하는 것과 같음
 - 덧셈 결과로 나온 n + 1개의 비트 중 하위 n 개의 비트를 취하고 MSB를 무시
- $0 \le x + y < 2^n$
 - $(x + y) \mod 2^n = x + y$
- $2^n \le x + y \le 2^{n+1} 2$: 오버플로우
 - $(x + y) \mod 2^n = (x + y) 2^n$

$$x +_{U}^{n} y = (x + y) \mod 2^{n}$$

$$= \begin{cases} x + y, & 0 \le x + y < 2^{n} \\ x + y - 2^{n}, & 2^{n} \le x + y \le 2^{n+1} - 2 \ (오버플로우) \end{cases}$$

- 두 정수 x와 y를 n-비트 2의 보수 표현으로 나타내었을 때
 - $b_x = x_{n-1}x_{n-2} \cdots x_0$ $b_y = y_{n-1}y_{n-2} \cdots y_0$
- $x +_C^n y$
 - b_x 와 b_y 를 부호 없는 이진 표현으로 취급하여 모듈로- 2^n 덧셈을 수행한 다음, 그 결과를 다시 2의 보수 표현으로 해석하는 것
- $f_{U2C}^n(x)$
 - x를 부호 없는 이진수로 나타내었을 때의 이진 표현 $x_{n-1}x_{n-2}\cdots x_0$ 을 2의 보수 표현으로 해석하였을 때의 값

$$x +_{C}^{n} y = f_{U2C}^{n} \left(f_{B2U}^{n}(b_{x}) +_{U}^{n} f_{B2U}^{n}(b_{y}) \right)$$

10

$$f_{U2C}^{n}(x) = x - x_{n-1} \cdot 2^{n} = \begin{cases} x, & 0 \le x \le 2^{n-1} - 1\\ x - 2^{n}, & 2^{n-1} \le x \le 2^{n} - 1 \end{cases}$$

$$x +_{C}^{n} y = f_{U2C}^{n} \left(f_{B2U}^{n}(b_{x}) +_{U}^{n} f_{B2U}^{n}(b_{y}) \right)$$

$$= f_{U2C}^{n} \left(\left(f_{B2U}^{n}(b_{x}) + f_{B2U}^{n}(b_{y}) \right) \mod 2^{n} \right)$$

$$= f_{U2C}^{n} \left(\left(f_{B2C}^{n}(b_{x}) + x_{n-1} \cdot 2^{n} + f_{B2C}^{n}(b_{y}) + y_{n-1} \cdot 2^{n} \right) \mod 2^{n} \right)$$

$$= f_{U2C}^{n} \left(\left(f_{B2C}^{n}(b_{x}) + f_{B2C}^{n}(b_{y}) \right) \mod 2^{n} \right)$$

$$= f_{U2C}^{n} \left(\left(x + y \right) \mod 2^{n} \right)$$

- 오버플로우가 일어날 수 있음
 - 더하는 과정에서 MSB로 들어가는 받아올림이 MSB에서 나오는 받아올림과 다르면 오버플로우

		MSB				
받아 올림	0	1	1	1		
		0	1	1	1	(7 ₁₀)
+		0	1	1	1	(7 ₁₀)
		1	1	1	0	

MSB로 들어가는 받아올림	<i>x</i> 의 부호 비트	<i>y</i> 의 부호비트	결과의 부호 비트	MSB에서 나오는 받아올림
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

12

$$x +_{C}^{n} y = f_{U2C}^{n}(f_{B2U}^{n}(b_{x}) +_{U}^{n} f_{B2U}^{n}(b_{y}))$$

$$= \begin{cases} x + y - 2^{n}, & 2^{n-1} \leq x + y \ (\text{오버플로우}) \\ x + y, & -2^{n-1} \leq x + y < 2^{n-1} \\ x + y + 2^{n}, & x + y < -2^{n-1} \ (\text{오버플로우}) \end{cases}$$

© Jaeiin Lee

전가산기와 반가산기

- 반가산기
 - 두 개의 비트 x와 y를 더하여 그 합 s와 받아올림(carry) c를 출력
- 전가산기
 - 세 개의 비트 x, y, c_{in} 을 입력으로 받아들여 이들의 합을 한 개의 비트 s와 받아올림 c_{out} 으로 출력

Х	У	C _{in}	S	C _{out}
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

부호 없는 수의 덧셈 하드웨어

- *n*-비트 가산기(adder)
- ullet 전가산기 n-1 개와 한 개의 반가산기를 연결하여 두 개 의 n-비트 부호 없는 이진수 $x = x_{n-1}x_{n-2} \cdots x_0$ 와 y = $y_{n-1}y_{n-2} \cdots y_0$ 의 덧셈 $x +_{II}^n y$ 을 수행하여 결과로 s = $S_{n-1}S_{n-2}\cdots S_0$ 를 출력
 - c_n이 1 이면 오버플로우

2의 보수 표현의 덧셈 하드웨어

- 부호 없는 이진수의 덧셈 $+_{ii}^{n}$ 을 이용
 - 오버플로우 감지만 다름

이진 정수의 뺄셈

- 부호 없는 수
 - 십진수의 뺄셈과 그 방식이 같음
- 2의 보수 표현
 - 2의 보수 표현으로 표현된 두 정수 x와 y 뺄셈 x y는 x y =x + (-y) 이므로 감수(減數) y의 2의 보수를 취하여 덧셈으로 변 경

Lecture 03: 이진 정수의 연산

• x + (-y) = x + y' + 1

반가산기와 전감산기

- 반감산기(半減算器, half subtractor)
 - 두 개의 비트 x와 y를 입력으로 받아들여 x y을 계산한 결과를 차 d와 받아내림(borrow) b로 출력
- 전감산기(全減算器, full subtractor)
 - 세 개의 비트 x, y, b_{in} 을 입력으로 받아들여 $x y b_{in}$ 을 계산 한 결과를 한 개의 비트 d와 받아내림 b_{out} 으로 출력

X	У	d	b
0	0	0	0
0	1	1	1
1	0	1	0
1	1	0	0

X	y	b _{in}	d	b _{out}
0	0	0	0	0
0	0	1	1	1
0	1	0	1	1
0	1	1	0	1
1	0	0	1	0
1	0	1	0	0
1	1	0	0	0
1	1	1	1	1

부호 없는 수의 뺄셈 하드웨어

- n-1 개의 전감산기와 한 개의 반감산기를 이용하여 구 혂
- x < y 이면 b_{n-1} 이 1 이 되고, 결과가 n-비트 부호 없는 이 진수로 표현할 수 없는 음수가 되어 오버플로우가 일어남

2의 보수 표현의 뺄셈 하드웨어

- Subtract=0, 덧셈 수행
- Subtract=1, 뺄셈 수행

부호 없는 수의 곱셈

• 십진수의 곱셈과 그 원리가 같음

					x_3	x_2	x_1	x_0
×					y_3	y_2	y_1	y_0
					$x_3 \cdot y_0$	$x_2 \cdot y_0$	$x_1 \cdot y_0$	$x_0 \cdot y_0$
+				$x_3 \cdot y_1$	$x_2 \cdot y_1$	$x_1 \cdot y_1$	$x_0 \cdot y_1$	
+			$x_3 \cdot y_2$	$x_2 \cdot y_2$	$x_1 \cdot y_2$	$x_0 \cdot y_2$		
+		$x_3 \cdot y_3$	$x_2 \cdot y_3$	$x_1 \cdot y_3$	$x_0 \cdot y_3$			
	p_7	p_6	p_{5}	p_4	p_3	p_2	p_1	p_0

부호 없는 수의 곱셈

하드웨어는 (n-1)² 개의 전가산기(FA)와 n-1 개의 반가산기(HA)를 이용

© Jaejin Lee

$$x \cdot y = \left(\left(-x_3 2^3 + \sum_{i=0}^2 x_i \cdot 2^i \right) \times \left(-y_3 2^3 + \sum_{i=0}^2 y_i \cdot 2^i \right) \right)$$

$$(-x_3 2^3 + x_2 2^2 + x_1 2^1 + x_0 2^0) \times (-y_3 2^3 + y_2 2^2 + y_1 2^1 + y_0 2^0)$$

$$= (-x_3 \cdot y_0 \cdot 2^3 + x_2 \cdot y_0 \cdot 2^2 + x_1 \cdot y_0 \cdot 2^1 + x_0 \cdot y_0 \cdot 2^0)$$

$$+ (-x_3 \cdot y_1 \cdot 2^4 + x_2 \cdot y_1 \cdot 2^3 + x_1 \cdot y_1 \cdot 2^2 + x_0 \cdot y_1 \cdot 2^1)$$

$$+ (-x_3 \cdot y_2 \cdot 2^5 + x_2 \cdot y_2 \cdot 2^4 + x_1 \cdot y_2 \cdot 2^3 + x_0 \cdot y_2 \cdot 2^2)$$

$$- (-x_3 \cdot y_3 \cdot 2^6 + x_2 \cdot y_3 \cdot 2^5 + x_1 \cdot y_3 \cdot 2^4 + x_0 \cdot y_3 \cdot 2^3)$$

• 부분적인 곱셈 결과를 나타내기 위해 부호확장이 필요

1						x_3	x_2	x_1	x_0	
2	×					y_3	y_2	y_1	y_0	
3		$x_3 \cdot y_0$	$x_2 \cdot y_0$	$x_1 \cdot y_0$	$x_0 \cdot y_0$					
4	+	$x_3 \cdot y_1$	$x_3 \cdot y_1$	$x_3 \cdot y_1$	$x_3 \cdot y_1$	$x_2 \cdot y_1$	$x_1 \cdot y_1$	$x_0 \cdot y_1$	0	
5	+	$x_3 \cdot y_2$	$x_3 \cdot y_2$	$x_3 \cdot y_2$	$x_2 \cdot y_2$	$x_1 \cdot y_2$	$x_0 \cdot y_2$	0	0	
6	_	$x_3 \cdot y_3$	$x_3 \cdot y_3$	$x_2 \cdot y_3$	$x_1 \cdot y_3$	$x_0 \cdot y_3$	0	0	0	
7		p_7	p_6	p_5	p_4	p_3	p_2	p_1	p_0	

1						x_3	x_2	x_1	x_0
2	×					y_3	y_2	y_1	y_0
3		$x_3 \cdot y_0$	$x_2 \cdot y_0$	$x_1 \cdot y_0$	$x_0 \cdot y_0$				
4	+	$x_3 \cdot y_1$	$x_3 \cdot y_1$	$x_3 \cdot y_1$	$x_3 \cdot y_1$	$x_2 \cdot y_1$	$x_1 \cdot y_1$	$x_0 \cdot y_1$	0
5	+	$x_3 \cdot y_2$	$x_3 \cdot y_2$	$x_3 \cdot y_2$	$x_2 \cdot y_2$	$x_1 \cdot y_2$	$x_0 \cdot y_2$	0	0
6	+	$\sim (x_3 \cdot y_3)$	$\sim (x_3 \cdot y_3)$	$\sim (x_2 \cdot y_3)$	$\sim (x_1 \cdot y_3)$	$\sim (x_0 \cdot y_3)$	1	1	1
7	+	0	0	0	0	0	0	0	1
8		p_7	p_6	p_5	p_4	p_3	p_2	p_1	p_0

2의 보수 표현의 곱셈 하드웨어

1						x_3	x_2	x_1	x_0	
2	×					y_3	y_2	y_1	y_0	
3		$x_3 \cdot y_0$	$x_2 \cdot y_0$	$x_1 \cdot y_0$	$x_0 \cdot y_0$					
4	+	$x_3 \cdot y_1$	$x_3 \cdot y_1$	$x_3 \cdot y_1$	$x_3 \cdot y_1$	$x_2 \cdot y_1$	$x_1 \cdot y_1$	$x_0 \cdot y_1$	0	
5	+	$x_3 \cdot y_2$	$x_3 \cdot y_2$	$x_3 \cdot y_2$	$x_2 \cdot y_2$	$x_1 \cdot y_2$	$x_0 \cdot y_2$	0	0	
6	+	$\sim (x_3 \cdot y_3)$	$\sim (x_3 \cdot y_3)$	$\sim (x_2 \cdot y_3)$	$\sim (x_1 \cdot y_3)$	$\sim (x_0 \cdot y_3)$	1	1	1	
7	+	0	0	0	0	0	0	0	1	
8		p_7	p_6	p_5	p_4	p_3	p_2	p_1	p_0	
1						x_3	x_2	x_1	x_0	
2	×					y_3	y_2	y_1	y_0	
3		$x_3 \cdot y_0$	$x_2 \cdot y_0$	$x_1 \cdot y_0$	$x_0 \cdot y_0$					
4	+	$x_3 \cdot y_1$	$x_3 \cdot y_1$	$x_3 \cdot y_1$	$x_3 \cdot y_1$	$x_2 \cdot y_1$	$x_1 \cdot y_1$	$x_0 \cdot y_1$	0	
5	+	$x_3 \cdot y_2$	$x_3 \cdot y_2$	$x_3 \cdot y_2$	$x_2 \cdot y_2$	$x_1 \cdot y_2$	$x_0 \cdot y_2$	0	0	
6	+	$\sim (x_3 \cdot y_3)$	$\sim (x_3 \cdot y_3)$	$\sim (x_2 \cdot y_3)$	$\sim (x_1 \cdot y_3)$	$\sim (x_0 \cdot y_3)$	0	0	0	
7	+	0	0	0	0	1	0	0	0	
8		p_7	p_6	p_5	p_4	p_3	p_2	p_1	p_0	

2의 보수 표현의 곱셈 하드웨어

부호 없는 이진수의 나눗셈

- 십진수의 나눗셈과 원리가 같음
- 기본적으로 연속적인 뺄셈을 수행하여 제수가 피제수에 몇 개(몫) 들어 있는가를 알아내는 과정

Lecture 03: 이진 정수의 연산

27

부호 없는 이진수의 나눗셈

- n-비트 부호 없는 이진수 x를 y로 나누어 몫 q와 나머지 r을 구하는 과정은 $R_0=x$ 로 놓은 후 매 단계 마다 부분적인 나머지(partial remainder) R_i $(1 \le i \le n)$ 를 계산하는 과정
 - $R_i = R_{i-1} q_{n-i} \cdot y \cdot 2^{n-i}$
- $q_{n-i}=1$ 을 가정하고 R_i 를 계산하여 $R_i\geq 0$ 이면 $q_{n-i}=1$ 로 확정하고, 그렇지 않으면 $q_{n-i}=0$ 과 $R_i=R_{i-1}$ 로 놓음

									q_3	q_2	q_1	q_0	
	y_3	y_2	y_1	y_0					0	0	1	1	$q = 3_{10}$
$y = 4_{10}$	0	1	0	0		0	0	0	1	1	0	1	$R_0 = x = 13_{10}$
					_	q_30	$q_{3}1$	q_30	q_30	0	0	0	$q_3 \cdot y \cdot 2^3$
						1	1	θ	0				$R_{\frac{1}{2}} = R - y \cdot 2^{\frac{3}{2}}$
						0	0	0	1	1	0	1	$R_1 = R_0$
					_		q_20	q_21	q_20	q_20	0	0	$q_2 \cdot y \cdot 2^2$
							1	1	1	1			$R_2 = R_1 - y \cdot 2^2$
							0	0	1	1	0	1	$R_2 = R_1$
					_			q_10	q_11	q_10	q_10	0	$q_1 \cdot y \cdot 2^1$
								0	0	1	0	1	$R_3 = R_2 - y \cdot 2^1$
					_				q_00	q_01	q_00	q_00	$q_0 \cdot y \cdot 2^0$
									0	0	0	1	$R_4 = R_3 - y \cdot 2^0$
									r_3	r_2	r_1	r_0	

부호 없는 이진수의 나눗셈 하드웨어

- 2의 보수 표현에서 정수 $x = y \neq 0$ 로 나는 몫 q와 나머 지 r을 구하려면
 - 우선 |x|를 |y|로 나눈 몫 q'과 나머지 r'을 부호 없는 수의 나눗셈을 이용하여 구함
 - 그런 다음 x와 y의 부호가 다르면 q = -q'로 놓고, 같으면 q = q'로 놓음
 - x < 0 이면 r = -r'로, $x \ge 0$ 이면 r = r'로 놓음

- r = x로 놓고 피제수 x와 제수 y의 부호에 따라 |y|가 |x|에 들어 있는 개수 q'을 계산
 - $x \ge 0$, $y \ge 0$: $r \ge 0$ 일 동안 y = r에서 연속적으로 빼서
 - $x \ge 0$, y < 0: $r \ge 0$ 일 동안 y = x에 연속적으로 더하여
 - x < 0, $y \ge 0$: $r \le 0$ 일 동안 y = x에 연속적으로 더하여
 - x < 0, y < 0 : $r \le 0$ 일 동안 y = x에서 연속적으로 빼서
- x와 y의 부호가 다를 때는 q=-q', 그렇지 않으면 q=q'

31

- n-비트 2의 보수 표현인 $x_{n-1}x_{n-2}\cdots x_0$ 와 $y_{n-1}y_{n-2}\cdots y_0$ 로 표현된 이진수 x와 y가 주어졌을 때, x를 y로 나누어 몫 q와 나머지 r을 구하는 과정은, $R_0=x$ 로 놓은 다음 매단계 마다 부분적인 나머지 R_i $(1 \le i \le n)$ 를 계산하는 과정
 - $R_i = R_{i-1} (-1)^{x_{n-1}} \cdot (-1)^{y_{n-1}} \cdot q'_{n-i} \cdot y \cdot 2^{n-i}$
- $q_{n-i}=1$ 로 가정하여 R_i 를 계산한 다음, R_{i-1} 과 R_i 의 부호가 같거나 $R_i=0$ 이면 $q_{n-i}=1$ 로 확정하고, 그렇지 않으면 $q_{n-i}=0$ 과 $R_i=R_{i-1}$ 로 놓음
 - y가 R_{i-1} 에 2^{n-i} 개 들어 있는가를 확인하는 과정

									${q'}_3$	${q'}_2$	${q'}_1$	${q'}_0$	
	y_3	y_2	y_1	y_0					0	0	1	0	$q = 2_{10}$
$y = 3_{10}$	0	0	1	1		1	1	1	1	0	0	1	$R_0 = x = -7_{10}$
					+	q'_30	q'_30	q'_31	q'_31	0	0	0	$q'_3 \cdot y \cdot 2^3$
						0	θ	1	θ	θ	θ	1	$R_4 = R_0 + y \cdot 2^3$
						1	1	1	1	0	0	1	$R_1 = R_0$
					+	q'_20	q'_20	q'_20	q'_21	q'_21	0	0	$q'_2 \cdot y \cdot 2^2$
						θ	θ	θ	θ	1	θ	1	$R_2 = R_1 + y \cdot 2^2$
						1	1	1	1	0	0	1	$R_2 = R_1$
					+	q'_10	q'_10	q'_10	q'_10	q'_11	q'_11	0	$q'_1 \cdot y \cdot 2^1$
						1	1	1	1	1	1	1	$R_3 = R_2 + 2^1$
					+	q'_00	q'_00	q'_00	q'_00	q'_00	q'_01	q'_01	$q'_0 \cdot y \cdot 2^0$
						θ	θ	θ	θ	θ	1	θ	$R_4 = R_3 + y \cdot 2^0$
						1	1	1	1	1	1	1	$R_4 = R_3$
									r_3	r_2	r_1	r_0	

2의 보수 표현의 나눗셈 하드웨어

© Jaejin Lee