

软件工程 TSEG Software Engineering Telecommunications Software Engineering Group

第一章 软件工程概述

黄海 hhuang@bupt.edu.cn

- **◆** 计算机软件
- ◆ 软件的发展和软件危机
- ◆ 软件工程
- ◆ 软件工程知识体系

1. 软件的定义

软件是计算机系统中与硬件相互依存的另一部分,它 是包括程序,数据及其相关文档的完整集合。

其中:

- 程序是按事先设计的功能和性能要求执行的指令序列;
- > 数据是使程序能正常操纵信息的数据结构;
- 文档是与程序开发,维护和使用有关的图文材料。

2. 软件的特点

- (1)软件是一种逻辑实体,具有抽象性,无法看到 具体的形态,必须通过观察、分析、思考或 运行,才能了解软件的功能和性能。
- (2)软件的开发是一种逻辑思维成熟的过程,无明显制造过程。对软件的质量控制,必须和软件的研制过程交织在一起。
- (3)在软件的运行和使用期间,没有硬件那样的机械磨损,老化问题,但却存在退化问题。

§ 1.1 计算机软件

计算机硬件和软件的失效率曲线

- (4)软件的开发依然很原始,至今尚未完全摆脱手工艺的开发方式。软件产品大多是"定制"的,无法完全使软件开发过程自动化。
- (5)软件是高度复杂的逻辑体。软件的复杂性可能来自它所反映的实际问题的复杂性,也可能来自程序逻辑结构的复杂性。
- (6)软件的开发和运行常常受到计算机系统的限制,对计算机系统有着不同程度的依赖性。 在软件开发中要尽量提高软件的可移植性。

(7) 软件成本相当昂贵。软件的研制工作需要投入大量的、复杂的、高强度的脑力劳动,它的成本是比较高的。

(8) 相当多的软件工作涉及到社会因素。许多软件的开发和运行涉及机构、体制及管理方式等问题,甚至涉及到人的观念和人们的心理

0

3. 软件的分类

- (1) 按软件完成功能所处的层次划分:
- ·系统软件

能与计算机硬件紧密配合在一起,使计算机系统各个部件、相关的软件和数据协调、高效地工作的软件。例如,操作系统、数据库管理系统、设备驱动程序以及通信处理程序等。

·中间件软件

中间件是位于平台(硬件和系统软件)和应用软件之间的通用服务,用来管理分布式计算资源和网络通信,这些服务具有标准的程序接口和协议。针对不同的操作系统和硬件平台,它们可以有符合接口和协议规范的多种实现。

应用软件

是在特定领域内开发,为特定目的服务的一类软件。

§ 1.1 计算机软件

(2) 按软件服务对象的范围划分:

·通用软件

由软件开发组织开发,面向市场用户公开销售的独立运行系统,满足大规模用户的普遍共性需求。例如,操作系统、数据库管理系统、字处理软件、绘图软件包和项目管理工具等。

·定制软件

由某个特定客户委托,软件开发组织在合同的约束下开发的软件,满足用户个性化需求。例如,企业资源规划系统、卫星控制系统和空中交通指挥系统等。

·可配置软件

软件本身具备完善功能,在某个客户使用时,按照企业自身的业务特点,对系统进行配置后再使用。软件使用过程中,可随时重新配置满足新的需求,从而降低开发成本,延长软件使用寿命。例如,云计算模式的企业SaaS软件。

(3)按照软件使用方式划分:

·单机软件

安装在计算机内部,只使用本地计算机资源,不与其他计算机或网络设备通信的软件。如,计算器、记事本等。

·服务器软件

运行在网络中,能够向其他程序提供某些服务的软件。如门户网站、搜索引擎、即时通讯、邮件服务器、音乐服务器等。目前将"软件以服务的方式"提供(SaaS),已成为趋势。

·客户端软件

运行在客户计算机中,与服务器进行通信,向客户提供服务结果的软件。如聊天工具、浏览器、邮件收发工具、音乐播放器等。

(4)按照软件功能划分:

- ·办公软件
- ·网络软件
- ·系统工具软件
- ·系统安全软件
- ·多媒体软件
- ·设计与开发软件
- 游戏软件
- ·家庭应用软件
- ·行业软件

(5) 按软件规模进行划分:

类别₽	参加人员数₽	研制期限₽	产品规模(源程序行数)
微型₽	1₽	1~4 周₽	0.5k₽
小型₽	1₽	1~6月₽	1k~2k₽
中型₽	2~5₽	1~2年₽	5k~50k₽
大型₽	5~20₽	2~3年₽	50k~100k₽
甚大型₽	100~1000₽	4~5年₽	1M(=1000k)₽
极大型↩	2000~5000₽	5~10年₽	1M~10M₽

(6) 按软件工作方式划分:

·实时处理软件

指在事件或数据产生时,立即予以处理,并及时反馈信号,控制过程执行的软件。主要包括数据采集、分析处理、控制输出三部分。

·分时软件

允许多个联机用户同时使用计算机。

·交互式软件 能实现人机通信的软件。

·批处理软件

把一组输入作业或一批数据以成批处理的方式一次运行,按顺序逐个处理完的软件。

- ◆ 计算机软件
- ◆ <u>软件的发展和软件危机</u>
- ◆ 软件工程
- ◆ 软件工程知识体系

1. 软件发展阶段

20世纪40年代中出现了世界上第一台通用计算机以后,就有了程序的概念,可以认为它是软件的前身。其后至今,计算机软件经历了4个发展阶段:

·程序设计阶段: 20世纪50至60年代

·程序系统阶段: 20世纪60至70年代

·软件工程阶段: 20世纪70年代以后,可细分为

传统软件工程阶段: 20世纪70~90年代

现代软件工程阶段: 20世纪90年代至今

软件所指 程序 程序及说明书 程序、文档和数据 主要程序设计语言 汇编及机器语言 高级语言 软件语言 软件工作范围 程序编写 包括设计和测试 软件生存期 需求者 程序设计本人 少数用户 市场用户 开发软件的组织 个人 开发小组 开发小组及大中型软件发机构 软件规模 小型 中小型 大中小型 决定质量的因素 个人程序技术 小组技术水平 管理水平 数据库、开发工具、开	
言 九辆及机器语言 高级语言 软件语言 软件工作范围 程序编写 包括设计和测试 软件生存期 需求者 程序设计本人 少数用户 市场用户 开发软件的组织 个人 开发小组 开发小组及大中型软件发机构 软件规模 小型 中小型 大中小型 决定质量的因素 个人程序技术 小组技术水平 管理水平	
需求者 程序设计本人 少数用户 市场用户 开发软件的组织 个人 开发小组 开发小组及大中型软件发机构 软件规模 小型 中小型 大中小型 决定质量的因素 个人程序技术 小组技术水平 管理水平	
开发软件的组织 个人 开发小组 开发小组及大中型软件发机构 软件规模 小型 中小型 大中小型 决定质量的因素 个人程序技术 小组技术水平 管理水平	
开发软件的组织 个人 开发小组 发机构 软件规模 小型 中小型 大中小型 决定质量的因素 个人程序技术 小组技术水平 管理水平	
决定质量的因素	·开
数据库、开发工具、开	
开发技术和手段 子程序/程序库 结构化程序设计 标准和规范、网络及分式开发、工程化开发方法	布
维护责任者 程序设计者 开发小组 专职维护人员	
硬件特征	[型
软件技术的发展不能 开发技术有进步,但未 软件特征 完全不受重视 满足需求,出现软件 突破性进展,价高,未 危机 脱软件危机	

© 2008 BUPT TSEG

北京邮电大学 通信软件工程中心

1960年,所谓"开发软件"就是IBM公司的那种形式,满满一屋子人,他们都戴着牛角质眼镜架,系着细细黑黑的领带,勤勉地埋头写代码,每人每天可完成十行。

到了1980年, "开发软件"变成了8到10人的一个小组, 他们穿着牛仔裤上班, 在VT100终端上打字。

现在"开发软件"则是一个软件组织的不同人随性地穿着各种服装,坐在通过网络连接的任何地方,面对N个屏幕,或是一人捧一台笔记本或Pad, duang, duang~地写一夜代码,当没事发生过,突然觉得这才叫生活。

软件发展几十年来最根本的变化体现在:

(1)人们对软件有了新的认识

程序从个人按自己意图创造的"艺术品"转变为能为广大用户接受的工程化产品。

(2) 软件需求是软件发展的动力

程序开发从自给自足转变到需要在市场上流通以满足用户需要。

(3) 软件工作的范围从只考虑程序的编写扩展到 涉及整个软件生存期

2. 软件危机

软件技术发展第二阶段(60~70年代),随着硬件技术的进步,计算机应用范围扩大,但软件技术一直未能满足形式发展的要求,软件开发的高成本与软件产品的低质量之间的尖锐矛盾,导致软件危机问题出现。

软件危机(Software Crisis):指由于落后的软件生产方式无法满足迅速增长的计算机软件需求,从而导致软件开发与维护过程中出现一系列严重问题的现象。

软件危机主要有以下几方面的表现:

- (1) 软件开发计划难以制订。
- (2) 软件开发费用和进度失控。
- (3) 软件产品无法让用户满意。
- (4) 软件产品的质量难以保证。
- (5) 软件通常没有适当的文档资料。
- (6) 软件通常是不可维护的。
- (7) 软件成本在计算机系统总成本中所占比例逐年 上升。

3. 软件危机的解决途径

- (1)软件危机产生的内在原因
 - 一方面是软件生产本身存在着复杂性,另一方面是与 软件开发和维护所使用的方法不合理。
- (2)软件开发需要对程序设计方法等问题进行研究, 也需要对软件的需求、设计、测试、维护和管理 等方法进行研究。人们逐渐感到采用工程化的原 则和方法从事软件开发过程研究的必要性。"软 件工程"应运而生。

- ◆ 计算机软件
- ◆ 软件的发展和软件危机
- ◆ 软件工程
- ◆ 软件工程知识体系

1. 软件工程定义

- Fritz Bauer: "软件工程是为了经济地获得能够在实际机器 上有效运行的可靠软件而建立和使用的一系列完善的工程化 原则。"
- Boehm: "运用现代科学技术知识来设计并构造计算机程序 及为开发、运行和维护这些程序所必需的相关文件资料"
- Fairley: "软件工程学是为在成本限额以内按时完成开发和 修改软件产品所需的系统生产和维护的技术和管理的学科"
- 1983年IEEE: "软件工程是开发、运行、维护和修复软件的系统方法",其中,"软件"的定义为:计算机程序、方法、规则、相关的文档资料以及在计算机上运行时所必需的数据
- 主要思想:按照工程化的原理、原则和方法开发、运行、维护软件。

Margaret Hamilton

让阿波罗成功登陆月球的代码!

软件工程包括以下两方面的重要内容

(1) 软件工程是工程概念在软件领域里的一个特定应用。

工程:将科学及数学原理运用于实际用途的应用手段,如:设计、制造、机器操纵、构架、系统等。

(2)软件工程涉及软件产品的所有环节。

2. 软件工程三要素

- 软件工程方法为软件开发提供了"如何做"的技术。它包括了多方面的任务,如项目计划与估算、软件系统需求分析、数据结构、系统总体结构的设计、算法过程的设计、编码、测试以及维护等。
- > 软件工具为软件工程方法提供了自动的或半自动的软件支撑 环境。 (CASE: 计算机辅助软件工程)
- > 软件工程的过程则是将软件工程的方法和工具综合起来以达到合理、及时地进行计算机软件开发的目的。过程定义了方法使用的顺序、要求交付的文档资料、为保证质量和协调变化所需要的管理、及软件开发各个阶段完成的里程碑。

3. 软件工程的目标

在给定成本、进度的前提下,开发出满足用户需求且具有 可修改性、有效性、可靠性、可理解性、可维护性、可重用性、可适应性、可移植性、可追踪性和可互操作性 的软件产品。

4. 软件工程研究内容

》 软件开发技术 软件开发方法学、开发过程模型、开发工具和软件工程 环境。

软件工程管理 软件管理学、软件工程经济学、软件心理学等。

5. 软件工程四条基本原则

- 选取适宜的开发模型。
- 采用合适的设计方法。
- 提供高质量的工程支持。
- 重视开发过程的管理。

6. 软件工程原理

(1) 软件工程一般原理:

- > 抽象
- > 信息隐藏
- > 模块化
- > 局部化
- > 确定性
- > 一致性
- > 完备性
- > 可验证性

(2) 软件工程基本原理

美国著名的软件工程专家 Boehm, 于1983年提出了软件工程的七条基本原理:

(1) 用分阶段的生命周期计划严格管理

重要的管理计划包括:项目概要计划、里程碑 计划、项目控制计划、产品控制计划、验证计 划、运行维护计划

- (2) 坚持进行阶段评审, 尽早发现并排除错误
- (3) 实行严格的产品控制:控制需求变动的影响

- (4) 采用现代程序设计技术,提高开发和维护效率
- (5) 结果应能清楚地审查
 - 软件产品是逻辑产品,看不见摸不着;
 - 软件开发过程进展的可见性差;
 - 如何提高可见性?
- (6) 开发小组的人员少而精(素质与数量)
- (7) 承认不断改进软件工程实践的必要性
 - 积极主动采纳新技术;
 - 不断总结经验教训,总结过程中的度量数据 ,进行分析,评估软件技术的效果。

- ◆ 计算机软件
- ◆ 软件的发展和软件危机
- ◆ 软件工程
- ◆ <u>软件工程知识体系</u>

1. 软件工程知识体系指南

软件工程知识体系指南(Guide to Software Engineering Body of Knowledge, 简称SWEBOK指南)是IEEE计算机学会(IEEE Computer Society)的职业实践委员会(Professional Practices Committee)主持的一个项目。

该项目期望描述软件工程知识体系的哪些部分已经被普遍接受,将这些部分组织起来,提供一个使用它们的主题。

§ 1.5 软件工程知识体系

建立软件工程知识体系的5个目的

- > 促进世界范围内对软件工程的一致观点
- 阐明软件工程相对其它学科(如计算机科学、项目管理、计算机工程和数学等)的关系,并确立它们的界线
- > 确定软件工程学科的内容
- 确定软件工程本体知识的各个专题
- 为相应的课程和职业资格认证材料的编写奠定基础

§ 1.5 软件工程知识体系

2. 软件工程知识体系知识域

软件需求	Software Requirements
软件设计	Software Design
软件构造	Software Construction
软件测试	Software Testing
软件维护	Software Maintenance
软件配置管理	Software Configuration Management
软件工程管理	Software Engineering Management
软件工程过程	Software Engineering Process
软件工程工具和方法	Software Engineering Tools and Methods
软件质量	Software Quality