PREDICTING HOUSING PRICES WITH PYTHON

Ben Moss

Data Science Immersive Program

General Assembly

January, 2024

INTRODUCTION

- Two Datasets; train.csv and test.csv
- Objective: Effectively utilize Data Munging, EDA, and modeling techniques to predict the house sales prices from an unknown dataset.
- Identify key variables that play the biggest role in predicting housing prices.
- Provide recommendations to those considering their first time home purchase.

MODELING PIPELINE

- Data Munge; filling NaNs with median values.
- EDA: Heatmaps, histograms, pairplots to discover:
 - Which numerical variables were correlated closely with sales price?
 - Which numerical variables were normally distributed?
 - Which numerical variables had a linear correlation with minimal heteroscedastacity?
- Created Dummy variables and Feature variables that based on commonplace parameters that affected sale price (exterior condition, year build and remodeled etc.)

HEATMAP:

Correlation Heatmap

	Correlation Heatinap												
Year Remod/Add -	1	0.25	0.63	0.24	0.31	0.63	0.44	0.4	0.32	0.63	0.39	0.58	0.55
Kitchen Qual_Ex -	0.25	1	0.23	0.37	0.36	0.31	0.29	0.32	0.34	0.39	0.41	0.45	0.55
Year Built -	0.63	0.23	1	0.32	0.41	0.63	0.54	0.49	0.26	0.65	0.42	0.6	0.57
1st Flr SF -	0.24	0.37	0.32	1	0.81	0.34	0.44	0.5	0.56	0.4	0.61	0.48	0.62
Total Bsmt SF -	0.31	0.36	0.41	0.81	1	0.41	0.43	0.49	0.45	0.47	0.56	0.55	0.63
Exter Qual -	0.63	0.31	0.63	0.34	0.41	1	0.5	0.47	0.41	0.98	0.49	0.69	0.63
Garage Cars -	0.44	0.29	0.54	0.44	0.43	0.5	1	0.89	0.49	0.54	0.75	0.59	0.65
Garage Area -	0.4	0.32	0.49	0.5	0.49	0.47	0.89	1	0.49	0.52	0.85	0.56	0.65
Gr Liv Area -	0.32	0.34	0.26	0.56	0.45	0.41	0.49	0.49	1	0.45	0.81	0.57	0.7
Quality Factor -	0.63	0.39	0.65	0.4	0.47	0.98	0.54	0.52	0.45	1	0.55	0.77	0.71
Gr Liv Area Times Garage Area -	0.39	0.41	0.42	0.61	0.56	0.49	0.75	0.85	0.81	0.55	1	0.62	0.75
Overall Qual -	0.58	0.45	0.6	0.48	0.55	0.69	0.59	0.56	0.57	0.77	0.62	1	0.8
SalePrice -	0.55	0.55	0.57	0.62	0.63	0.63	0.65	0.65	0.7	0.71	0.75	0.8	1
	Year Remod/Add -	Kitchen Qual_Ex -	Year Built -	1st Fir SF -	Total Bsmt SF -	Exter Qual -	Garage Cars -	Garage Area -	Gr Liv Area -	Quality Factor -	Area Times Garage Area -	Overall Qual -	SalePrice -

NORMALLY DISTRIBUTED VARIABLES

Training Data Histograms

LINEARITY

TRAIN-TEST-SPLIT

- Small trial and error with training size.
- Feature variables were the best fit correlations, the dummy columns, and feature columns.
- Rescale for uniformity.
- Try Linear, Lasso, Ridge.
- Utilize Polynomial Features for better R^2 and less error.
- Achieved \mathbb{R}^2 less than $\sim 2\%$ difference between test and train.
- *RMSE* a little over a tenth of the expected mean (181k)

CHARACTERISTIC (POLYNOMIAL) EQUATION

- Second Order Polynomial with units m³ as leading coefficient of order-2 term.
- Form : $y = ax^2 + bx + c$
- Why did we choose Ridge?
 - Great with multicollinearity
 - Reducing Complexity
- What if hundreds or thousands of variables?
- Big risk of overfitting
- Force simpler model, often defined as smaller and "more regular" (less varying) coefficients... small Euclidean norm (2D distance formula)

ERROR DISCUSSION

- Extremely high $R^2 \approx 1$, very close between train and test, (less than 0.1% difference) and low RMSE error achieved with suitable choice of parameters.
- For this we used Lasso to achieve a low RMSE and high Kaggle score: 23322.66654

RECOMMENDATIONS

- Biggest predictors of Sales Price:
 - Area-based variables
 - Overall and other quality factors.
 - Neighborhoods also played a role.
- Year built and renovations (remodeling), namely after the year 2000, were also a significant factor.

CONCLUSION

- Utilized training-test-split techniques
- Handled a complex multilinear regression model with a variety of regressions
- Worked with fundamental fitting methods
- Effectively predicted housing prices from an unknown dataset.

SOURCES

- Chance, Beth L. Rossman, Allan J. *Investigating Statistical Concepts, Applications, and Methods (Third Edition)* August 2015 Beth Chance and Allan Rossman San Luis Obispo, California
- Craven, Mark and Page, David *Regression*,, Computer Sciences 760 Spring 2018, www.biostat.wisc.edu/∼craven/cs760
- Kuiper, Shonda Introduction to Multiple Regression: How Much Is Your Car Worth? (2008), Journal of Statistics Education, 16:3, ,
 DOI: 10.1080/10691898.2008.11889579
- Pardoe, Iain Modeling Home Prices Using Realtor Data, Lundquist College of Business, University of Oregon, Journal of Statistics
 Education Volume 16, Number 2 (2008), www.amstat.org/publications/jse/v16n2/pardoe.html

