

Foundations of Audio Signal Processing

§2 Complex Numbers

Prof. Dr. Frank Kurth

LECTURE AT INSTITUT FÜR INFORMATIK, UNIVERSITÄT BONN
WINTER TERM

Foundations of Audio Signal Processing

• ... are an indispensible tool in Signal Processing.

- ... are an indispensible tool in Signal Processing.
- ... often simplify both the specification and the analysis of signals.

- ... are an indispensible tool in Signal Processing.
- ... often simplify both the specification and the analysis of signals.
- ... help to uncover close connections between fundamental signals.

- ... are an indispensible tool in Signal Processing.
- ... often simplify both the specification and the analysis of signals.
- ... help to uncover close connections between fundamental signals.

Number systems:

- ... are an indispensible tool in Signal Processing.
- ... often simplify both the specification and the analysis of signals.
- ... help to uncover close connections between fundamental signals.

Number systems:

Foundations of Audio Signal Processing

- ... are an indispensible tool in Signal Processing.
- ... often simplify both the specification and the analysis of signals.
- ... help to uncover close connections between fundamental signals.

Number systems:

lacksquare N set of all natural numbers $1,2,3,\ldots$

- ... are an indispensible tool in Signal Processing.
- ... often simplify both the specification and the analysis of signals.
- ... help to uncover close connections between fundamental signals.

Number systems:

- lacksquare N set of all natural numbers $1,2,3,\ldots$

- ... are an indispensible tool in Signal Processing.
- ... often simplify both the specification and the analysis of signals.
- ... help to uncover close connections between fundamental signals.

Number systems:

- \blacksquare N set of all natural numbers $1, 2, 3, \dots$
- \blacksquare Z set of all integers $0, \pm 1, \pm 2, \pm 3, \dots$

- ... are an indispensible tool in Signal Processing.
- ... often simplify both the specification and the analysis of signals.
- ... help to uncover close connections between fundamental signals.

Number systems:

- \blacksquare N set of all natural numbers $1, 2, 3, \dots$
- \blacksquare Z set of all integers $0, \pm 1, \pm 2, \pm 3, \dots$

- ... are an indispensible tool in Signal Processing.
- ... often simplify both the specification and the analysis of signals.
- ... help to uncover close connections between fundamental signals.

Number systems:

- \blacksquare N set of all natural numbers $1, 2, 3, \dots$
- \blacksquare Z set of all integers $0, \pm 1, \pm 2, \pm 3, \dots$
- \blacksquare $\mathbb Q$ set of all rational numbers $rac{p}{q}$, $p,q\in\mathbb Z$, q
 eq 0

- ... are an indispensible tool in Signal Processing.
- ... often simplify both the specification and the analysis of signals.
- ... help to uncover close connections between fundamental signals.

Number systems:

- \blacksquare N set of all natural numbers $1, 2, 3, \dots$
- \blacksquare Z set of all integers $0, \pm 1, \pm 2, \pm 3, \dots$
- \blacksquare \mathbb{Q} set of all rational numbers $\frac{p}{q}$, $p,q\in\mathbb{Z}$, $q\neq 0$

- ... are an indispensible tool in Signal Processing.
- ... often simplify both the specification and the analysis of signals.
- ... help to uncover close connections between fundamental signals.

Number systems:

- lacksquare N set of all natural numbers $1, 2, 3, \dots$
- \blacksquare Z set of all integers $0, \pm 1, \pm 2, \pm 3, \dots$
- \blacksquare \mathbb{Q} set of all rational numbers $\frac{p}{q}$, $p,q\in\mathbb{Z}$, $q\neq 0$
- \blacksquare R set of all real numbers

- ... are an indispensible tool in Signal Processing.
- ... often simplify both the specification and the analysis of signals.
- ... help to uncover close connections between fundamental signals.

Number systems:

- \blacksquare N set of all natural numbers $1, 2, 3, \dots$
- \blacksquare Z set of all integers $0, \pm 1, \pm 2, \pm 3, \dots$
- \blacksquare \mathbb{Q} set of all rational numbers $\frac{p}{q}$, $p,q\in\mathbb{Z}$, $q\neq 0$
- \blacksquare R set of all real numbers

- ... are an indispensible tool in Signal Processing.
- ... often simplify both the specification and the analysis of signals.
- ... help to uncover close connections between fundamental signals.

Number systems:

- \blacksquare N set of all natural numbers $1, 2, 3, \dots$
- \blacksquare Z set of all integers $0, \pm 1, \pm 2, \pm 3, \dots$
- \blacksquare $\mathbb Q$ set of all rational numbers $rac{p}{q}$, $p,q\in\mathbb Z$, q
 eq 0
- \blacksquare R set of all real numbers
- \blacksquare \mathbb{C} set of all complex numbers

- ... are an indispensible tool in Signal Processing.
- ... often simplify both the specification and the analysis of signals.
- ... help to uncover close connections between fundamental signals.

Number systems:

- \blacksquare N set of all natural numbers $1, 2, 3, \dots$
- \blacksquare Z set of all integers $0, \pm 1, \pm 2, \pm 3, \dots$
- \blacksquare \mathbb{Q} set of all rational numbers $\frac{p}{q}$, $p,q\in\mathbb{Z}$, $q\neq 0$
- \blacksquare R set of all real numbers
- \blacksquare \mathbb{C} set of all complex numbers
- Important inclusions:

- ... are an indispensible tool in Signal Processing.
- ... often simplify both the specification and the analysis of signals.
- ... help to uncover close connections between fundamental signals.

Number systems:

- \blacksquare N set of all natural numbers $1, 2, 3, \dots$
- \blacksquare Z set of all integers $0, \pm 1, \pm 2, \pm 3, \dots$
- \blacksquare \mathbb{Q} set of all rational numbers $\frac{p}{q}$, $p,q\in\mathbb{Z}$, $q\neq 0$
- \blacksquare R set of all real numbers
- \blacksquare \mathbb{C} set of all complex numbers
- Important inclusions: $\mathbb{N} \subset \mathbb{Z}$

- ... are an indispensible tool in Signal Processing.
- ... often simplify both the specification and the analysis of signals.
- ... help to uncover close connections between fundamental signals.

Number systems:

- lacksquare N set of all natural numbers $1, 2, 3, \dots$
- \blacksquare Z set of all integers $0, \pm 1, \pm 2, \pm 3, \dots$
- \blacksquare \mathbb{Q} set of all rational numbers $\frac{p}{q}$, $p,q\in\mathbb{Z}$, $q\neq 0$
- \blacksquare R set of all real numbers
- \blacksquare \mathbb{C} set of all complex numbers
- Important inclusions: $\mathbb{N} \subset \mathbb{Z} \subset \mathbb{Q}$

- ... are an indispensible tool in Signal Processing.
- ... often simplify both the specification and the analysis of signals.
- ... help to uncover close connections between fundamental signals.

Number systems:

- \blacksquare N set of all natural numbers $1, 2, 3, \dots$
- \blacksquare Z set of all integers $0, \pm 1, \pm 2, \pm 3, \dots$
- \blacksquare \mathbb{Q} set of all rational numbers $\frac{p}{q}$, $p,q\in\mathbb{Z}$, $q\neq 0$
- \blacksquare R set of all real numbers
- \blacksquare \mathbb{C} set of all complex numbers
- Important inclusions: $\mathbb{N} \subset \mathbb{Z} \subset \mathbb{Q} \subset \mathbb{R}$

- ... are an indispensible tool in Signal Processing.
- ... often simplify both the specification and the analysis of signals.
- ... help to uncover close connections between fundamental signals.

Number systems:

- \blacksquare N set of all natural numbers $1, 2, 3, \dots$
- \blacksquare Z set of all integers $0, \pm 1, \pm 2, \pm 3, \dots$
- \blacksquare \mathbb{Q} set of all rational numbers $\frac{p}{q}$, $p,q\in\mathbb{Z}$, $q\neq 0$
- \blacksquare R set of all real numbers
- \blacksquare \mathbb{C} set of all complex numbers
- Important inclusions: $\mathbb{N} \subset \mathbb{Z} \subset \mathbb{Q} \subset \mathbb{R} \subset \mathbb{C}$

There are different ways to introduce complex numbers . . .

There are different ways to introduce complex numbers . . .

■ in Cartesian coordinates as pairs of real numbers:

There are different ways to introduce complex numbers . . .

in Cartesian coordinates as pairs of real numbers: $\mathbb{C}:=\{(a,b)|a,b\in\mathbb{R}\}$

There are different ways to introduce complex numbers . . .

- in Cartesian coordinates as pairs of real numbers: $\mathbb{C} := \{(a,b)|a,b \in \mathbb{R}\}$
- \blacksquare with the imaginary unit i

There are different ways to introduce complex numbers . . .

- in Cartesian coordinates as pairs of real numbers: $\mathbb{C} := \{(a,b)|a,b \in \mathbb{R}\}$
- with the imaginary unit i (satisfying $i^2 = -1$) as:

There are different ways to introduce complex numbers . . .

- in Cartesian coordinates as pairs of real numbers: $\mathbb{C} := \{(a,b)|a,b \in \mathbb{R}\}$
- with the imaginary unit i (satisfying $i^2 = -1$) as: $\mathbb{C} := \{a + ib | a, b \in \mathbb{R}\}$

There are different ways to introduce complex numbers . . .

- in Cartesian coordinates as pairs of real numbers: $\mathbb{C} := \{(a,b)|a,b \in \mathbb{R}\}$
- with the imaginary unit i (satisfying $i^2 = -1$) as: $\mathbb{C} := \{a + ib | a, b \in \mathbb{R}\}$
- \blacksquare as 2×2 matrices:

There are different ways to introduce complex numbers . . .

- in Cartesian coordinates as pairs of real numbers: $\mathbb{C} := \{(a,b)|a,b \in \mathbb{R}\}$
- with the imaginary unit i (satisfying $i^2 = -1$) as: $\mathbb{C} := \{a + ib | a, b \in \mathbb{R}\}$
- \blacksquare as 2×2 matrices:

$$\mathbb{C} := \left\{ \begin{pmatrix} a & -b \\ b & a \end{pmatrix} \middle| a, b \in \mathbb{R} \right\}$$

There are different ways to introduce complex numbers . . .

- in Cartesian coordinates as pairs of real numbers: $\mathbb{C} := \{(a,b)|a,b \in \mathbb{R}\}$
- with the imaginary unit i (satisfying $i^2 = -1$) as: $\mathbb{C} := \{a + ib | a, b \in \mathbb{R}\}$
- \blacksquare as 2×2 matrices:

$$\mathbb{C} := \left\{ \left(\begin{array}{cc} a & -b \\ b & a \end{array} \right) | a, b \in \mathbb{R} \right\}$$

Identifications:

There are different ways to introduce complex numbers . . .

- in Cartesian coordinates as pairs of real numbers: $\mathbb{C} := \{(a,b)|a,b \in \mathbb{R}\}$
- with the imaginary unit i (satisfying $i^2 = -1$) as: $\mathbb{C} := \{a + ib | a, b \in \mathbb{R}\}$
- \blacksquare as 2×2 matrices:

$$\mathbb{C} := \left\{ \left(\begin{array}{cc} a & -b \\ b & a \end{array} \right) | a, b \in \mathbb{R} \right\}$$

Identifications:

$$z \in \mathbb{C}$$
:

There are different ways to introduce complex numbers . . .

- in Cartesian coordinates as pairs of real numbers: $\mathbb{C} := \{(a,b)|a,b \in \mathbb{R}\}$
- with the imaginary unit i (satisfying $i^2 = -1$) as: $\mathbb{C} := \{a + ib | a, b \in \mathbb{R}\}$
- \blacksquare as 2×2 matrices:

$$\mathbb{C} := \left\{ \left(\begin{array}{cc} a & -b \\ b & a \end{array} \right) | a, b \in \mathbb{R} \right\}$$

Identifications:

$$z \in \mathbb{C}: (a, b)$$

There are different ways to introduce complex numbers . . .

- in Cartesian coordinates as pairs of real numbers: $\mathbb{C} := \{(a,b)|a,b \in \mathbb{R}\}$
- with the imaginary unit i (satisfying $i^2 = -1$) as: $\mathbb{C} := \{a + ib | a, b \in \mathbb{R}\}$
- \blacksquare as 2×2 matrices:

$$\mathbb{C} := \left\{ \left(\begin{array}{cc} a & -b \\ b & a \end{array} \right) | a, b \in \mathbb{R} \right\}$$

Identifications:

$$z \in \mathbb{C}: (a, \mathbf{b}) \leftrightarrow a + i\mathbf{b}$$

There are different ways to introduce complex numbers . . .

- in Cartesian coordinates as pairs of real numbers: $\mathbb{C} := \{(a,b)|a,b \in \mathbb{R}\}$
- with the imaginary unit i (satisfying $i^2 = -1$) as: $\mathbb{C} := \{a + ib | a, b \in \mathbb{R}\}$
- \blacksquare as 2×2 matrices:

$$\mathbb{C} := \left\{ \begin{pmatrix} a & -b \\ b & a \end{pmatrix} \middle| a, b \in \mathbb{R} \right\}$$

Identifications:

$$z \in \mathbb{C}: \quad (a, b) \quad \leftrightarrow \quad a + i b \quad \leftrightarrow \quad \left(egin{array}{ccc} a & -b \ b & a \end{array}
ight)$$

There are different ways to introduce complex numbers . . .

- in Cartesian coordinates as pairs of real numbers: $\mathbb{C} := \{(a,b)|a,b \in \mathbb{R}\}$
- with the imaginary unit i (satisfying $i^2 = -1$) as: $\mathbb{C} := \{a + ib | a, b \in \mathbb{R}\}$
- \blacksquare as 2×2 matrices:

$$\mathbb{C} := \left\{ \begin{pmatrix} a & -b \\ b & a \end{pmatrix} \middle| a, b \in \mathbb{R} \right\}$$

Identifications:

$$z \in \mathbb{C}: \quad (a, b) \quad \leftrightarrow \quad a + ib \quad \leftrightarrow \quad \left(egin{array}{ccc} a & -b \ b & a \end{array}
ight)$$

$$Re(z) := a$$

Complex Numbers: Definition

There are different ways to introduce complex numbers . . .

- in Cartesian coordinates as pairs of real numbers: $\mathbb{C} := \{(a,b)|a,b \in \mathbb{R}\}$
- with the imaginary unit i (satisfying $i^2 = -1$) as: $\mathbb{C} := \{a + ib | a, b \in \mathbb{R}\}$
- \blacksquare as 2×2 matrices:

$$\mathbb{C} := \left\{ \left(\begin{array}{cc} a & -b \\ b & a \end{array} \right) | a, b \in \mathbb{R} \right\}$$

Identifications:

$$z \in \mathbb{C}: \quad (a, b) \quad \leftrightarrow \quad a + ib \quad \leftrightarrow \quad \left(egin{array}{ccc} a & -b \ b & a \end{array}
ight)$$

Re(z) := a is called the **real part** of z

Complex Numbers: Definition

There are different ways to introduce complex numbers . . .

- in Cartesian coordinates as pairs of real numbers: $\mathbb{C} := \{(a,b)|a,b \in \mathbb{R}\}$
- with the imaginary unit i (satisfying $i^2 = -1$) as: $\mathbb{C} := \{a + ib | a, b \in \mathbb{R}\}$
- \blacksquare as 2×2 matrices:

$$\mathbb{C} := \left\{ \left(\begin{array}{cc} a & -b \\ b & a \end{array} \right) | a, b \in \mathbb{R} \right\}$$

Identifications:

$$z \in \mathbb{C}: \quad (a, \frac{b}{b}) \quad \leftrightarrow \quad a + i \frac{b}{b} \quad \leftrightarrow \quad \left(\begin{array}{cc} a & -b \\ b & a \end{array} \right)$$

Re(z) := a is called the **real part** of z

$$\operatorname{Im}(z) := \mathbf{b}$$

Complex Numbers: Definition

There are different ways to introduce complex numbers . . .

- in Cartesian coordinates as pairs of real numbers: $\mathbb{C} := \{(a,b)|a,b \in \mathbb{R}\}$
- with the imaginary unit i (satisfying $i^2 = -1$) as: $\mathbb{C} := \{a + ib | a, b \in \mathbb{R}\}$
- \blacksquare as 2×2 matrices:

$$\mathbb{C} := \left\{ \begin{pmatrix} a & -b \\ b & a \end{pmatrix} \middle| a, b \in \mathbb{R} \right\}$$

Identifications:

$$z \in \mathbb{C}: \quad (a, \frac{b}{b}) \quad \leftrightarrow \quad a + i \frac{b}{b} \quad \leftrightarrow \quad \left(\begin{array}{cc} a & -b \\ b & a \end{array} \right)$$

Re(z) := a is called the **real part** of z

 $\operatorname{Im}(z) := \mathbf{b}$ is called the **imaginary part** of z

Complex numbers are visualized in the **complex plane**:

Complex numbers are visualized in the **complex plane**:

Foundations of Audio Signal Processing

Complex numbers are visualized in the **complex plane**:

 \blacksquare The x-axis is called the **real axis**,

Complex numbers are visualized in the **complex plane**:

The x-axis is called the **real axis**, whereas the y-axis is called the **imaginary axis**.

Complex numbers are visualized in the **complex plane**:

- The x-axis is called the **real axis**, whereas the y-axis is called the **imaginary axis**.
- \blacksquare The elements on the x-axis are the **real numbers**,

Foundations of Audio Signal Processing

Complex numbers are visualized in the **complex plane**:

- The x-axis is called the **real axis**, whereas the y-axis is called the **imaginary axis**.
- The elements on the x-axis are the **real numbers**, and those on the y-axis are the **purely imaginary numbers**.

Complex numbers are visualized in the **complex plane**:

- The x-axis is called the **real axis**, whereas the y-axis is called the **imaginary axis**.
- The elements on the x-axis are the **real numbers**, and those on the y-axis are the **purely imaginary numbers**.
- The number $z^* = \overline{z} := a bi$

Complex numbers are visualized in the **complex plane**:

- The x-axis is called the **real axis**, whereas the y-axis is called the **imaginary axis**.
- The elements on the x-axis are the **real numbers**, and those on the y-axis are the **purely imaginary numbers**.
- The number $z^* = \overline{z} := a bi$ is the **conjugate** of z = a + bi.

Complex numbers are visualized in the **complex plane**:

- The x-axis is called the **real axis**, whereas the y-axis is called the **imaginary axis**.
- The elements on the x-axis are the **real numbers**, and those on the y-axis are the **purely imaginary numbers**.
- The number $z^* = \overline{z} := a bi$ is the **conjugate** of z = a + bi. Complex conjugation corresponds to reflection at the x-axis.

The polar coordinates (indicated in the last figure by the parameters r and ϕ)

The polar coordinates (indicated in the last figure by the parameters r and ϕ) constitute yet another important way to represent complex numbers.

The polar coordinates (indicated in the last figure by the parameters r and ϕ) constitute yet another important way to represent complex numbers.

 $Arr r=|z|:=\sqrt{a^2+b^2}$ is called **absolute value** of z=a+bi.

The polar coordinates (indicated in the last figure by the parameters r and ϕ) constitute yet another important way to represent complex numbers.

- $Arr r=|z|:=\sqrt{a^2+b^2}$ is called **absolute value** of z=a+bi.
- \blacksquare The absolute value of z is the euclidean distance between 0 and z.

The polar coordinates (indicated in the last figure by the parameters r and ϕ) constitute yet another important way to represent complex numbers.

- $Arr r=|z|:=\sqrt{a^2+b^2}$ is called **absolute value** of z=a+bi.
- \blacksquare The absolute value of z is the euclidean distance between 0 and z.
- The set of all complex numbers of absolute value 1 forms the **unit circle**.

The polar coordinates (indicated in the last figure by the parameters r and ϕ) constitute yet another important way to represent complex numbers.

- $Arr r=|z|:=\sqrt{a^2+b^2}$ is called **absolute value** of z=a+bi.
- \blacksquare The absolute value of z is the euclidean distance between 0 and z.
- The set of all complex numbers of absolute value 1 forms the **unit circle**. The number w := z/|z| is of absolute value 1.

The polar coordinates (indicated in the last figure by the parameters r and ϕ) constitute yet another important way to represent complex numbers.

- $Arr r=|z|:=\sqrt{a^2+b^2}$ is called **absolute value** of z=a+bi.
- \blacksquare The absolute value of z is the euclidean distance between 0 and z.
- The set of all complex numbers of absolute value 1 forms the **unit circle**. The number w := z/|z| is of absolute value 1.
- To every element w of the unit circle, there is a unique real number $\phi \in [0, 2\pi)$ satisfying

The polar coordinates (indicated in the last figure by the parameters r and ϕ) constitute yet another important way to represent complex numbers.

- $Arr r=|z|:=\sqrt{a^2+b^2}$ is called **absolute value** of z=a+bi.
- \blacksquare The absolute value of z is the euclidean distance between 0 and z.
- The set of all complex numbers of absolute value 1 forms the **unit circle**. The number w := z/|z| is of absolute value 1.
- To every element w of the unit circle, there is a unique real number $\phi \in [0, 2\pi)$ satisfying

$$w = \cos \phi + i \sin \phi.$$

The polar coordinates (indicated in the last figure by the parameters r and ϕ) constitute yet another important way to represent complex numbers.

- $Arr r=|z|:=\sqrt{a^2+b^2}$ is called **absolute value** of z=a+bi.
- \blacksquare The absolute value of z is the euclidean distance between 0 and z.
- The set of all complex numbers of absolute value 1 forms the **unit circle**. The number w := z/|z| is of absolute value 1.
- To every element w of the unit circle, there is a unique real number $\phi \in [0, 2\pi)$ satisfying

$$w = \cos \phi + i \sin \phi$$
.

■ This number ϕ , the **argument** of w and of z,

The polar coordinates (indicated in the last figure by the parameters r and ϕ) constitute yet another important way to represent complex numbers.

- $Arr r=|z|:=\sqrt{a^2+b^2}$ is called **absolute value** of z=a+bi.
- \blacksquare The absolute value of z is the euclidean distance between 0 and z.
- The set of all complex numbers of absolute value 1 forms the **unit circle**. The number w := z/|z| is of absolute value 1.
- To every element w of the unit circle, there is a unique real number $\phi \in [0,2\pi)$ satisfying

$$w = \cos \phi + i \sin \phi.$$

This number ϕ , the **argument** of w and of z, is denoted by $\arg(z) = \arg(w) := \phi$.

The polar coordinates (indicated in the last figure by the parameters r and ϕ) constitute yet another important way to represent complex numbers.

- $Arr r=|z|:=\sqrt{a^2+b^2}$ is called **absolute value** of z=a+bi.
- \blacksquare The absolute value of z is the euclidean distance between 0 and z.
- The set of all complex numbers of absolute value 1 forms the **unit circle**. The number w := z/|z| is of absolute value 1.
- To every element w of the unit circle, there is a unique real number $\phi \in [0, 2\pi)$ satisfying

$$w = \cos \phi + i \sin \phi.$$

- This number ϕ , the **argument** of w and of z, is denoted by $\arg(z) = \arg(w) := \phi$.
- In general, $(|z|, \arg(z))$ is the representation of a non-zero complex number z in **polar** coordinates.

For complex numbers z = (a, b) and w = (c, d),

For complex numbers z=(a,b) and w=(c,d), their **sum** z+w is defined componentwise

For complex numbers z=(a,b) and w=(c,d), their **sum** z+w is defined componentwise

$$z + w = (a, b) + (c, d)$$

For complex numbers z=(a,b) and w=(c,d), their **sum** z+w is defined componentwise

$$z + w = (a, b) + (c, d) := (a + c, b + d).$$

For complex numbers z=(a,b) and w=(c,d), their **sum** z+w is defined componentwise

$$z + w = (a, b) + (c, d) := (a + c, b + d).$$

Similarly, if z = a + ib and w = c + id,

For complex numbers z=(a,b) and w=(c,d), their **sum** z+w is defined componentwise

$$z + w = (a, b) + (c, d) := (a + c, b + d).$$

Similarly, if z = a + ib and w = c + id, then

$$z + w = (a + ib) + (c + id) := (a + c) + i(b + d).$$

For complex numbers z=(a,b) and w=(c,d), their **sum** z+w is defined componentwise

$$z + w = (a, b) + (c, d) := (a + c, b + d).$$

Similarly, if z = a + ib and w = c + id, then

$$z + w = (a + ib) + (c + id) := (a + c) + i(b + d).$$

The addition of complex numbers, represented as 2×2 matrices,

For complex numbers z=(a,b) and w=(c,d), their **sum** z+w is defined componentwise

$$z + w = (a, b) + (c, d) := (a + c, b + d).$$

Similarly, if z = a + ib and w = c + id, then

$$z + w = (a + ib) + (c + id) := (a + c) + i(b + d).$$

The addition of complex numbers, represented as 2×2 matrices, is also defined componentwise:

For complex numbers z=(a,b) and w=(c,d), their **sum** z+w is defined componentwise

$$z + w = (a, b) + (c, d) := (a + c, b + d).$$

Similarly, if z = a + ib and w = c + id, then

$$z + w = (a + ib) + (c + id) := (a + c) + i(b + d).$$

The addition of complex numbers, represented as 2×2 matrices, is also defined componentwise:

$$\begin{pmatrix} a & -b \\ b & a \end{pmatrix} + \begin{pmatrix} c & -d \\ d & c \end{pmatrix}$$

For complex numbers z=(a,b) and w=(c,d), their **sum** z+w is defined componentwise

$$z + w = (a, b) + (c, d) := (a + c, b + d).$$

Similarly, if z = a + ib and w = c + id, then

$$z + w = (a + ib) + (c + id) := (a + c) + i(b + d).$$

The addition of complex numbers, represented as 2×2 matrices, is also defined componentwise:

$$\left(\begin{array}{cc} a & -b \\ b & a \end{array}\right) + \left(\begin{array}{cc} c & -d \\ d & c \end{array}\right) := \left(\begin{array}{cc} a+c & -(b+d) \\ b+d & a+c \end{array}\right).$$

Complex Numbers: Addition

For complex numbers z=(a,b) and w=(c,d), their **sum** z+w is defined componentwise

$$z + w = (a, b) + (c, d) := (a + c, b + d).$$

Similarly, if z = a + ib and w = c + id, then

$$z + w = (a + ib) + (c + id) := (a + c) + i(b + d).$$

The addition of complex numbers, represented as 2×2 matrices, is also defined componentwise:

$$\left(\begin{array}{cc} a & -b \\ b & a \end{array}\right) + \left(\begin{array}{cc} c & -d \\ d & c \end{array}\right) := \left(\begin{array}{cc} a+c & -(b+d) \\ b+d & a+c \end{array}\right).$$

Thus addition in the complex plane is just vector addition (parallelogram).

Complex Numbers: Addition

For complex numbers z=(a,b) and w=(c,d), their **sum** z+w is defined componentwise

$$z + w = (a, b) + (c, d) := (a + c, b + d).$$

Similarly, if z = a + ib and w = c + id, then

$$z + w = (a + ib) + (c + id) := (a + c) + i(b + d).$$

The addition of complex numbers, represented as 2×2 matrices, is also defined componentwise:

$$\left(\begin{array}{cc} a & -b \\ b & a \end{array}\right) + \left(\begin{array}{cc} c & -d \\ d & c \end{array}\right) := \left(\begin{array}{cc} a+c & -(b+d) \\ b+d & a+c \end{array}\right).$$

Thus addition in the complex plane is just vector addition (parallelogram).

Note that the above identifications are compatible with addition.

For complex numbers z = (a, b) and w = (c, d),

For complex numbers z=(a,b) and w=(c,d), their **product** zw is defined by

$$zw = (a,b) \cdot (c,d) := (ac - bd, ad + bc).$$

For complex numbers z=(a,b) and w=(c,d), their **product** zw is defined by

$$zw = (a,b) \cdot (c,d) := (ac - bd, ad + bc).$$

This definition is motivated by the second representation z = a + ib and w = c + id:

For complex numbers z=(a,b) and w=(c,d), their **product** zw is defined by

$$zw = (a,b) \cdot (c,d) := (ac - bd, ad + bc).$$

This definition is motivated by the second representation z=a+ib and w=c+id: using $i^2=-1$ and assuming the distributivity law yields

For complex numbers z=(a,b) and w=(c,d), their **product** zw is defined by

$$zw = (a,b) \cdot (c,d) := (ac - bd, ad + bc).$$

This definition is motivated by the second representation z=a+ib and w=c+id: using $i^2=-1$ and assuming the distributivity law yields

$$zw = (a+ib) \cdot (c+id)$$

For complex numbers z=(a,b) and w=(c,d), their **product** zw is defined by

$$zw = (a,b) \cdot (c,d) := (ac - bd, ad + bc).$$

This definition is motivated by the second representation z=a+ib and w=c+id: using $i^2=-1$ and assuming the distributivity law yields

$$zw = (a+ib) \cdot (c+id) := (ac-bd) + i(ad+bc).$$

For complex numbers z=(a,b) and w=(c,d), their **product** zw is defined by

$$zw = (a,b) \cdot (c,d) := (ac - bd, ad + bc).$$

This definition is motivated by the second representation z=a+ib and w=c+id: using $i^2=-1$ and assuming the distributivity law yields

$$zw = (a+ib) \cdot (c+id) := (ac-bd) + i(ad+bc).$$

The multiplication of complex numbers, represented as 2×2 matrices,

For complex numbers z=(a,b) and w=(c,d), their **product** zw is defined by

$$zw = (a,b) \cdot (c,d) := (ac - bd, ad + bc).$$

This definition is motivated by the second representation z=a+ib and w=c+id: using $i^2=-1$ and assuming the distributivity law yields

$$zw = (a+ib) \cdot (c+id) := (ac-bd) + i(ad+bc).$$

The multiplication of complex numbers, represented as 2×2 matrices, is ordinary matrix multiplication:

For complex numbers z=(a,b) and w=(c,d), their **product** zw is defined by

$$zw = (a,b) \cdot (c,d) := (ac - bd, ad + bc).$$

This definition is motivated by the second representation z=a+ib and w=c+id: using $i^2=-1$ and assuming the distributivity law yields

$$zw = (a+ib) \cdot (c+id) := (ac-bd) + i(ad+bc).$$

The multiplication of complex numbers, represented as 2×2 matrices, is ordinary matrix multiplication:

$$\left(\begin{array}{cc} a & -b \\ b & a \end{array}\right) \cdot \left(\begin{array}{cc} c & -d \\ d & c \end{array}\right)$$

For complex numbers z=(a,b) and w=(c,d), their **product** zw is defined by

$$zw = (a,b) \cdot (c,d) := (ac - bd, ad + bc).$$

This definition is motivated by the second representation z=a+ib and w=c+id: using $i^2=-1$ and assuming the distributivity law yields

$$zw = (a+ib) \cdot (c+id) := (ac-bd) + i(ad+bc).$$

The multiplication of complex numbers, represented as 2×2 matrices, is ordinary matrix multiplication:

$$\left(\begin{array}{cc} a & -b \\ b & a \end{array}\right) \cdot \left(\begin{array}{cc} c & -d \\ d & c \end{array}\right) := \left(\begin{array}{cc} ac - bd & -(ad + bc) \\ ad + bc & ac - bd \end{array}\right).$$

For complex numbers z=(a,b) and w=(c,d), their **product** zw is defined by

$$zw = (a,b) \cdot (c,d) := (ac - bd, ad + bc).$$

This definition is motivated by the second representation z=a+ib and w=c+id: using $i^2=-1$ and assuming the distributivity law yields

$$zw = (a+ib) \cdot (c+id) := (ac-bd) + i(ad+bc).$$

The multiplication of complex numbers, represented as 2×2 matrices, is ordinary matrix multiplication:

$$\left(\begin{array}{cc} a & -b \\ b & a \end{array}\right) \cdot \left(\begin{array}{cc} c & -d \\ d & c \end{array}\right) := \left(\begin{array}{cc} ac - bd & -(ad + bc) \\ ad + bc & ac - bd \end{array}\right).$$

The geometry behind multiplication of complex numbers will be illustrated below.

For complex numbers z=(a,b) and w=(c,d), their **product** zw is defined by

$$zw = (a,b) \cdot (c,d) := (ac - bd, ad + bc).$$

This definition is motivated by the second representation z=a+ib and w=c+id: using $i^2=-1$ and assuming the distributivity law yields

$$zw = (a+ib) \cdot (c+id) := (ac-bd) + i(ad+bc).$$

The multiplication of complex numbers, represented as 2×2 matrices, is ordinary matrix multiplication:

$$\begin{pmatrix} a & -b \\ b & a \end{pmatrix} \cdot \begin{pmatrix} c & -d \\ d & c \end{pmatrix} := \begin{pmatrix} ac - bd & -(ad + bc) \\ ad + bc & ac - bd \end{pmatrix}.$$

The geometry behind multiplication of complex numbers will be illustrated below.

Note that the above identifications are compatible with multiplication.

Every complex number $z = (a, b) \neq (0, 0)$

Every complex number $z=(a,b)\neq (0,0)$ has a unique (multiplicative) inverse z^{-1}

Every complex number $z=(a,b)\neq (0,0)$ has a unique (multiplicative) **inverse** z^{-1} satisfying $zz^{-1}=z^{-1}z=1$.

Every complex number $z=(a,b)\neq (0,0)$ has a unique (multiplicative) **inverse** z^{-1} satisfying $zz^{-1}=z^{-1}z=1$. This inverse is given by

Every complex number $z=(a,b)\neq (0,0)$ has a unique (multiplicative) **inverse** z^{-1} satisfying $zz^{-1}=z^{-1}z=1$. This inverse is given by

$$z^{-1} = \left(\frac{a}{a^2 + b^2}, \frac{-b}{a^2 + b^2}\right).$$

Every complex number $z=(a,b)\neq (0,0)$ has a unique (multiplicative) **inverse** z^{-1} satisfying $zz^{-1}=z^{-1}z=1$. This inverse is given by

$$z^{-1} = \left(\frac{a}{a^2 + b^2}, \frac{-b}{a^2 + b^2}\right).$$

The inversion of a complex number, represented as a 2×2 matrix,

Every complex number $z=(a,b)\neq (0,0)$ has a unique (multiplicative) **inverse** z^{-1} satisfying $zz^{-1}=z^{-1}z=1$. This inverse is given by

$$z^{-1} = \left(\frac{a}{a^2 + b^2}, \frac{-b}{a^2 + b^2}\right).$$

The inversion of a complex number, represented as a 2×2 matrix, is ordinary matrix inversion:

Every complex number $z=(a,b)\neq (0,0)$ has a unique (multiplicative) **inverse** z^{-1} satisfying $zz^{-1}=z^{-1}z=1$. This inverse is given by

$$z^{-1} = \left(\frac{a}{a^2 + b^2}, \frac{-b}{a^2 + b^2}\right).$$

The inversion of a complex number, represented as a 2×2 matrix, is ordinary matrix inversion:

$$\begin{pmatrix} a & -b \\ b & a \end{pmatrix}^{-1}$$

Every complex number $z=(a,b)\neq (0,0)$ has a unique (multiplicative) **inverse** z^{-1} satisfying $zz^{-1}=z^{-1}z=1$. This inverse is given by

$$z^{-1} = \left(\frac{a}{a^2 + b^2}, \frac{-b}{a^2 + b^2}\right).$$

The inversion of a complex number, represented as a 2×2 matrix, is ordinary matrix inversion:

$$\begin{pmatrix} a & -b \\ b & a \end{pmatrix}^{-1} = \frac{1}{a^2 + b^2} \begin{pmatrix} a & b \\ -b & a \end{pmatrix}.$$

Every complex number $z=(a,b)\neq (0,0)$ has a unique (multiplicative) **inverse** z^{-1} satisfying $zz^{-1}=z^{-1}z=1$. This inverse is given by

$$z^{-1} = \left(\frac{a}{a^2 + b^2}, \frac{-b}{a^2 + b^2}\right).$$

The inversion of a complex number, represented as a 2×2 matrix, is ordinary matrix inversion:

$$\begin{pmatrix} a & -b \\ b & a \end{pmatrix}^{-1} = \frac{1}{a^2 + b^2} \begin{pmatrix} a & b \\ -b & a \end{pmatrix}.$$

The geometry behind inversion of complex numbers will be illustrated below.

Every complex number $z=(a,b)\neq (0,0)$ has a unique (multiplicative) **inverse** z^{-1} satisfying $zz^{-1}=z^{-1}z=1$. This inverse is given by

$$z^{-1} = \left(\frac{a}{a^2 + b^2}, \frac{-b}{a^2 + b^2}\right).$$

The inversion of a complex number, represented as a 2×2 matrix, is ordinary matrix inversion:

$$\begin{pmatrix} a & -b \\ b & a \end{pmatrix}^{-1} = \frac{1}{a^2 + b^2} \begin{pmatrix} a & b \\ -b & a \end{pmatrix}.$$

The geometry behind inversion of complex numbers will be illustrated below.

Note that the above identifications are compatible with inversion.

If z=(a,b) denotes a complex number, its **absolute value** (or **modulus** or **magnitude**) |z|

If z = (a, b) denotes a complex number, its **absolute value** (or **modulus** or **magnitude**) |z| is defined as the length of the straight line between the origin (0, 0) and z = (a, b).

If z=(a,b) denotes a complex number, its **absolute value** (or **modulus** or **magnitude**) |z| is defined as the length of the straight line between the origin (0,0) and z=(a,b). To make this more precise, we need

If z=(a,b) denotes a complex number, its **absolute value** (or **modulus** or **magnitude**) |z| is defined as the length of the straight line between the origin (0,0) and z=(a,b). To make this more precise, we need

Pythagoras' Theorem

If z=(a,b) denotes a complex number, its **absolute value** (or **modulus** or **magnitude**) |z| is defined as the length of the straight line between the origin (0,0) and z=(a,b). To make this more precise, we need

Pythagoras' Theorem

The square of the hypotenuse of a right triangle

If z=(a,b) denotes a complex number, its **absolute value** (or **modulus** or **magnitude**) |z| is defined as the length of the straight line between the origin (0,0) and z=(a,b). To make this more precise, we need

Pythagoras' Theorem

The square of the hypotenuse of a right triangle is equal to the sum of the squares on the other two sides:

If z=(a,b) denotes a complex number, its **absolute value** (or **modulus** or **magnitude**) |z| is defined as the length of the straight line between the origin (0,0) and z=(a,b). To make this more precise, we need

Pythagoras' Theorem

The square of the hypotenuse of a right triangle is equal to the sum of the squares on the other two sides:

$$c^2 = a^2 + b^2.$$

If z=(a,b) denotes a complex number, its **absolute value** (or **modulus** or **magnitude**) |z| is defined as the length of the straight line between the origin (0,0) and z=(a,b). To make this more precise, we need

Pythagoras' Theorem

The square of the hypotenuse of a right triangle is equal to the sum of the squares on the other two sides:

$$c^2 = a^2 + b^2.$$

Hence

If z=(a,b) denotes a complex number, its **absolute value** (or **modulus** or **magnitude**) |z| is defined as the length of the straight line between the origin (0,0) and z=(a,b). To make this more precise, we need

Pythagoras' Theorem

The square of the hypotenuse of a right triangle is equal to the sum of the squares on the other two sides:

$$c^2 = a^2 + b^2.$$

Hence

$$|z| := \sqrt{a^2 + b^2}.$$

If z = (a, b) denotes a complex number, its **absolute value** (or **modulus** or **magnitude**) |z| is defined as the length of the straight line between the origin (0,0) and z=(a,b). To make this more precise, we need

Pythagoras' Theorem

The square of the hypotenuse of a right triangle is equal to the sum of the squares on the other two sides:

$$c^2 = a^2 + b^2$$
.

Hence

$$|z| := \sqrt{a^2 + b^2}.$$

The **unit circle** \mathbb{S}^1 consists of all complex numbers of absolute value 1:

If z=(a,b) denotes a complex number, its **absolute value** (or **modulus** or **magnitude**) |z| is defined as the length of the straight line between the origin (0,0) and z=(a,b). To make this more precise, we need

Pythagoras' Theorem

The square of the hypotenuse of a right triangle is equal to the sum of the squares on the other two sides:

$$c^2 = a^2 + b^2.$$

Hence

$$|z| := \sqrt{a^2 + b^2}.$$

The **unit circle** \mathbb{S}^1 consists of all complex numbers of absolute value 1:

$$\mathbb{S}^1 := \{ z \in \mathbb{C} : |z| = 1 \}.$$

If z=(a,b) denotes a complex number, its **absolute value** (or **modulus** or **magnitude**) |z| is defined as the length of the straight line between the origin (0,0) and z=(a,b). To make this more precise, we need

Pythagoras' Theorem

The square of the hypotenuse of a right triangle is equal to the sum of the squares on the other two sides:

$$c^2 = a^2 + b^2.$$

Hence

$$|z| := \sqrt{a^2 + b^2}.$$

The **unit circle** \mathbb{S}^1 consists of all complex numbers of absolute value 1:

$$\mathbb{S}^1 := \{ z \in \mathbb{C} : |z| = 1 \}.$$

The unit circle is of great importance in Signal Processing.

If z=(a,b) and w=(c,d) denote complex numbers and $w\neq (0,0)$,

If z=(a,b) and w=(c,d) denote complex numbers and $w\neq (0,0)$, then the inverse w^{-1} of w is well-defined

If z=(a,b) and w=(c,d) denote complex numbers and $w\neq (0,0)$, then the inverse w^{-1} of w is well-defined and

z/w

If z=(a,b) and w=(c,d) denote complex numbers and $w\neq (0,0)$, then the inverse w^{-1} of w is well-defined and

$$z/w = \frac{z}{w}$$

If z=(a,b) and w=(c,d) denote complex numbers and $w\neq (0,0)$, then the inverse w^{-1} of w is well-defined and

$$z/w = \frac{z}{w} := zw^{-1}$$

If z=(a,b) and w=(c,d) denote complex numbers and $w\neq (0,0)$, then the inverse w^{-1} of w is well-defined and

$$z/w = \frac{z}{w} := zw^{-1}$$

is the **quotient** z divided by w.

If z=(a,b) and w=(c,d) denote complex numbers and $w\neq (0,0)$, then the inverse w^{-1} of w is well-defined and

$$z/w = \frac{z}{w} := zw^{-1}$$

is the **quotient** z divided by w.

In cartesian coordinates, the division is given by the formula

If z=(a,b) and w=(c,d) denote complex numbers and $w\neq (0,0)$, then the inverse w^{-1} of w is well-defined and

$$z/w = \frac{z}{w} := zw^{-1}$$

is the **quotient** z divided by w.

In cartesian coordinates, the division is given by the formula

$$\frac{a+ib}{c+id} = \frac{ac+bd}{c^2+d^2} + i\frac{bc-ad}{c^2+d^2}.$$

For complex numbers v, w, z the following laws hold:

For complex numbers v, w, z the following laws hold:

Associativity: v + (w + z) = (v + w) + z

For complex numbers v, w, z the following laws hold:

Associativity: v + (w + z) = (v + w) + z

Commutativity: w + z = z + w

For complex numbers v, w, z the following laws hold:

- **Associativity**: v + (w + z) = (v + w) + z
- **Commutativity**: w + z = z + w
- Additive identity: (0,0) + z = z + (0,0) = z

For complex numbers v, w, z the following laws hold:

- **Associativity**: v + (w + z) = (v + w) + z
- **Commutativity**: w + z = z + w
- Additive identity: (0,0) + z = z + (0,0) = z
- **Additive inverse**: if z = (a, b), then -z := (-a, -b) satisfies:

For complex numbers v, w, z the following laws hold:

- **Associativity**: v + (w + z) = (v + w) + z
- **Commutativity**: w + z = z + w
- Additive identity: (0,0) + z = z + (0,0) = z
- Additive inverse: if z = (a, b), then -z := (-a, -b) satisfies:

$$z + (-z) = (0,0) =: 0$$

For complex numbers v, w, z the following laws hold:

- **Associativity**: v + (w + z) = (v + w) + z
- **Commutativity**: w + z = z + w
- Additive identity: (0,0) + z = z + (0,0) = z
- Additive inverse: if z = (a, b), then -z := (-a, -b) satisfies:

$$z + (-z) = (0,0) =: 0 = (-z) + z.$$

For complex numbers v, w, z the following laws hold:

- **Associativity**: v + (w + z) = (v + w) + z
- **Commutativity**: w + z = z + w
- Additive identity: (0,0) + z = z + (0,0) = z
- Additive inverse: if z = (a, b), then -z := (-a, -b) satisfies:

$$z + (-z) = (0,0) =: 0 = (-z) + z.$$

z-w:=z+(-w) is called the **difference**

For complex numbers v, w, z the following laws hold:

- **Associativity**: v + (w + z) = (v + w) + z
- **Commutativity**: w + z = z + w
- Additive identity: (0,0) + z = z + (0,0) = z
- **Additive inverse**: if z = (a, b), then -z := (-a, -b) satisfies:

$$z + (-z) = (0,0) =: 0 = (-z) + z.$$

z-w:=z+(-w) is called the **difference** of the complex numbers z and w.

For complex numbers v, w, z the following laws hold:

- **Associativity**: v + (w + z) = (v + w) + z
- **Commutativity**: w + z = z + w
- Additive identity: (0,0) + z = z + (0,0) = z
- **Additive inverse**: if z = (a, b), then -z := (-a, -b) satisfies:

$$z + (-z) = (0,0) =: 0 = (-z) + z.$$

§2 Complex Numbers – 11 / 22

z-w:=z+(-w) is called the **difference** of the complex numbers z and w.

The operation $(z, w) \mapsto z - w$ is called **subtraction**.

Foundations of Audio Signal Processing

For complex numbers v, w, z the following laws hold:

For complex numbers v, w, z the following laws hold:

Associativity: v(wz) = (vw)z

For complex numbers v, w, z the following laws hold:

Associativity: v(wz) = (vw)z

Commutativity: wz = zw

For complex numbers v, w, z the following laws hold:

Associativity: v(wz) = (vw)z

Commutativity: wz = zw

■ Multiplicative identity: (1,0)z = z(1,0) = z

For complex numbers v, w, z the following laws hold:

- **Associativity**: v(wz) = (vw)z
- Commutativity: wz = zw
- Multiplicative identity: (1,0)z = z(1,0) = z
- Multiplicative inverse: if $z = (a, b) \neq (0, 0)$, then

$$z^{-1} := \left(\frac{a}{a^2 + b^2}, \frac{-b}{a^2 + b^2}\right)$$

For complex numbers v, w, z the following laws hold:

- **Associativity**: v(wz) = (vw)z
- Commutativity: wz = zw
- Multiplicative identity: (1,0)z = z(1,0) = z
- Multiplicative inverse: if $z = (a, b) \neq (0, 0)$, then

$$z^{-1} := \left(\frac{a}{a^2 + b^2}, \frac{-b}{a^2 + b^2}\right)$$

satisfies:

For complex numbers v, w, z the following laws hold:

- **Associativity**: v(wz) = (vw)z
- Commutativity: wz = zw
- Multiplicative identity: (1,0)z = z(1,0) = z
- Multiplicative inverse: if $z = (a, b) \neq (0, 0)$, then

$$z^{-1} := \left(\frac{a}{a^2 + b^2}, \frac{-b}{a^2 + b^2}\right)$$

satisfies:

$$zz^{-1} = z^{-1}z = (1,0) =: 1.$$

For complex numbers v, w, z the following laws hold:

- **Associativity**: v(wz) = (vw)z
- Commutativity: wz = zw
- Multiplicative identity: (1,0)z = z(1,0) = z
- Multiplicative inverse: if $z = (a, b) \neq (0, 0)$, then

$$z^{-1} := \left(\frac{a}{a^2 + b^2}, \frac{-b}{a^2 + b^2}\right)$$

satisfies:

$$zz^{-1} = z^{-1}z = (1,0) =: 1.$$

Moreover, addition and multiplication are compatible:

For complex numbers v, w, z the following laws hold:

- **Associativity**: v(wz) = (vw)z
- Commutativity: wz = zw
- Multiplicative identity: (1,0)z = z(1,0) = z
- Multiplicative inverse: if $z = (a, b) \neq (0, 0)$, then

$$z^{-1} := \left(\frac{a}{a^2 + b^2}, \frac{-b}{a^2 + b^2}\right)$$

satisfies:

$$zz^{-1} = z^{-1}z = (1,0) =: 1.$$

Moreover, addition and multiplication are compatible:

■ Distributivity: (v+w)z = (vz) + (wz) =: vz + wz.

For complex numbers v, w, z the following laws hold:

- **Associativity**: v(wz) = (vw)z
- Commutativity: wz = zw
- Multiplicative identity: (1,0)z = z(1,0) = z
- Multiplicative inverse: if $z = (a, b) \neq (0, 0)$, then

$$z^{-1} := \left(\frac{a}{a^2 + b^2}, \frac{-b}{a^2 + b^2}\right)$$

satisfies:

$$zz^{-1} = z^{-1}z = (1,0) =: 1.$$

Moreover, addition and multiplication are compatible:

■ Distributivity: (v+w)z = (vz) + (wz) =: vz + wz.

Complex Numbers: Laws of Magnitude

For complex numbers w, z the following holds:

For complex numbers w, z the following holds:

■ Non-negativity:

For complex numbers w, z the following holds:

Non-negativity: $|z| \ge 0$, and |z| = 0 iff z = 0.

For complex numbers w, z the following holds:

- Non-negativity: $|z| \ge 0$, and |z| = 0 iff z = 0.
- **■** Triangle inequality:

For complex numbers w, z the following holds:

- Non-negativity: $|z| \ge 0$, and |z| = 0 iff z = 0.
- Triangle inequality: $|w+z| \le |w| + |z|$

For complex numbers w, z the following holds:

- Non-negativity: $|z| \ge 0$, and |z| = 0 iff z = 0.
- Triangle inequality: $|w+z| \le |w| + |z|$
- Multiplicativity:

For complex numbers w, z the following holds:

- Non-negativity: $|z| \ge 0$, and |z| = 0 iff z = 0.
- Triangle inequality: $|w+z| \le |w| + |z|$
- **Multiplicativity**: $|w \cdot z| = |w| \cdot |z|$

For complex numbers w, z the following holds:

- Non-negativity: $|z| \ge 0$, and |z| = 0 iff z = 0.
- Triangle inequality: $|w+z| \le |w| + |z|$
- **Multiplicativity**: $|w \cdot z| = |w| \cdot |z|$
- Conjugation invariance:

For complex numbers w, z the following holds:

- Non-negativity: $|z| \ge 0$, and |z| = 0 iff z = 0.
- Triangle inequality: $|w+z| \le |w| + |z|$
- Multiplicativity: $|w \cdot z| = |w| \cdot |z|$
- Conjugation invariance: $|\overline{z}| = |z|$.

For complex numbers w, z the following holds:

For complex numbers w, z the following holds:

For complex numbers w, z the following holds:

$$\blacksquare \quad \overline{w \cdot z} = \overline{w} \cdot \overline{z}$$

For complex numbers w, z the following holds:

$$\blacksquare \quad \overline{w+z} = \overline{w} + \overline{z}$$

$$\blacksquare \quad \overline{w \cdot z} = \overline{w} \cdot \overline{z}$$

For complex numbers w,z the following holds:

$$\blacksquare \quad \overline{w+z} = \overline{w} + \overline{z}$$

$$\overline{w \cdot z} = \overline{w} \cdot \overline{z}$$

$$\overline{\overline{z}} = z$$

For complex numbers w, z the following holds:

$$\blacksquare \quad \overline{w \cdot z} = \overline{w} \cdot \overline{z}$$

$$\overline{\overline{z}} = z$$

$$\overline{z} = z$$
 iff z is real

For complex numbers w, z the following holds:

$$\overline{w+z} = \overline{w} + \overline{z}$$

$$\blacksquare \quad \overline{w \cdot z} = \overline{w} \cdot \overline{z}$$

$$\overline{w/z} = \overline{w}/\overline{z}$$

$$\overline{\overline{z}} = z$$

$$\overline{z} = z$$
 iff z is real

 $\overline{z} = -z$ iff z is purely imaginary

For complex numbers w, z the following holds:

$$\overline{w+z} = \overline{w} + \overline{z}$$

$$\blacksquare \quad \overline{w \cdot z} = \overline{w} \cdot \overline{z}$$

$$\overline{\overline{z}} = z$$

$$\overline{z} = z$$
 iff z is real

$$\overline{z} = -z$$
 iff z is purely imaginary

For complex numbers w, z the following holds:

$$\overline{w+z} = \overline{w} + \overline{z}$$

$$\blacksquare \quad \overline{w \cdot z} = \overline{w} \cdot \overline{z}$$

$$\overline{w}/\overline{z} = \overline{w}/\overline{z}$$

$$\overline{\overline{z}} = z$$

$$\overline{z} = z$$
 iff z is real

$$\overline{z} = -z$$
 iff z is purely imaginary

If
$$z \neq 0$$
 then $z^{-1} = \frac{\overline{z}}{|z|^2}$.

Foundations of Audio Signal Processing

Signals are functions.

Signals are functions. So let us recall this notion.

Signals are functions. So let us recall this notion.

A function (or a mapping) f is specified by three items:

Signals are functions. So let us recall this notion.

A function (or a mapping) f is specified by three items:

 \blacksquare a non-empty set D, called the **domain** of f,

Signals are functions. So let us recall this notion.

A function (or a mapping) f is specified by three items:

- \blacksquare a non-empty set D, called the **domain** of f,
- \blacksquare a non-empty set R, called the **range** of f,

Signals are functions. So let us recall this notion.

A function (or a mapping) f is specified by three items:

- \blacksquare a non-empty set D, called the **domain** of f,
- \blacksquare a non-empty set R, called the **range** of f,
- **a** subset $G \subseteq D \times R$, called the **graph** of f

Signals are functions. So let us recall this notion.

A function (or a mapping) f is specified by three items:

- \blacksquare a non-empty set D, called the **domain** of f,
- \blacksquare a non-empty set R, called the **range** of f,
- **a** subset $G \subseteq D \times R$, called the **graph** of f with the following **functorial property**:

Signals are functions. So let us recall this notion.

A function (or a mapping) f is specified by three items:

- lacktriangle a non-empty set D, called the **domain** of f,
- \blacksquare a non-empty set R, called the **range** of f,
- a subset $G \subseteq D \times R$, called the **graph** of f with the following **functorial property**: For every $x \in D$ there exists exactly one $y \in R$ such that $(x, y) \in G$.

Signals are functions. So let us recall this notion.

A function (or a mapping) f is specified by three items:

- \blacksquare a non-empty set D, called the **domain** of f,
- \blacksquare a non-empty set R, called the **range** of f,
- a subset $G \subseteq D \times R$, called the **graph** of f with the following **functorial property**: For every $x \in D$ there exists exactly one $y \in R$ such that $(x, y) \in G$.

One often uses the shorthand $f:D\to R$ and $f:x\mapsto y$ or f(x)=y in case $(x,y)\in G$.

One of the most important functions (=signals) is the exponential function.

One of the most important functions (=signals) is the exponential function.

 $\exp: \mathbb{C} \to \mathbb{C}$ is defined for every $z \in \mathbb{C}$ by an infinite series:

One of the most important functions (=signals) is the exponential function.

 $\exp: \mathbb{C} \to \mathbb{C}$ is defined for every $z \in \mathbb{C}$ by an infinite series:

$$\exp(z) = e^z$$

One of the most important functions (=signals) is the exponential function.

 $\exp: \mathbb{C} \to \mathbb{C}$ is defined for every $z \in \mathbb{C}$ by an infinite series:

$$\exp(z) = e^z := \sum_{n=0}^{\infty} \frac{z^n}{n!}$$

One of the most important functions (=signals) is the exponential function.

 $\exp:\mathbb{C}\to\mathbb{C}$ is defined for every $z\in\mathbb{C}$ by an infinite series:

$$\exp(z) = e^z := \sum_{n=0}^{\infty} \frac{z^n}{n!} = 1 + z + \frac{z^2}{1 \cdot 2} + \frac{z^3}{1 \cdot 2 \cdot 3} + \dots$$

One of the most important functions (=signals) is the exponential function.

 $\exp: \mathbb{C} \to \mathbb{C}$ is defined for every $z \in \mathbb{C}$ by an infinite series:

$$\exp(z) = e^z := \sum_{n=0}^{\infty} \frac{z^n}{n!} = 1 + z + \frac{z^2}{1 \cdot 2} + \frac{z^3}{1 \cdot 2 \cdot 3} + \dots$$

Theorem.

The Exponential Function

One of the most important functions (=signals) is the exponential function.

 $\exp: \mathbb{C} \to \mathbb{C}$ is defined for every $z \in \mathbb{C}$ by an infinite series:

$$\exp(z) = e^z := \sum_{n=0}^{\infty} \frac{z^n}{n!} = 1 + z + \frac{z^2}{1 \cdot 2} + \frac{z^3}{1 \cdot 2 \cdot 3} + \dots$$

Theorem. The exponential function satisfies the following identities:

The Exponential Function

One of the most important functions (=signals) is the exponential function.

 $\exp: \mathbb{C} \to \mathbb{C}$ is defined for every $z \in \mathbb{C}$ by an infinite series:

$$\exp(z) = e^z := \sum_{n=0}^{\infty} \frac{z^n}{n!} = 1 + z + \frac{z^2}{1 \cdot 2} + \frac{z^3}{1 \cdot 2 \cdot 3} + \dots$$

Theorem. The exponential function satisfies the following identities:

(1)
$$\exp(1) =: e = \lim_{n \to \infty} (1 + \frac{1}{n})^n \approx 2.71828.$$

The Exponential Function

One of the most important functions (=signals) is the exponential function.

 $\exp: \mathbb{C} \to \mathbb{C}$ is defined for every $z \in \mathbb{C}$ by an infinite series:

$$\exp(z) = e^z := \sum_{n=0}^{\infty} \frac{z^n}{n!} = 1 + z + \frac{z^2}{1 \cdot 2} + \frac{z^3}{1 \cdot 2 \cdot 3} + \dots$$

Theorem. The exponential function satisfies the following identities:

- (1) $\exp(1) =: e = \lim_{n \to \infty} (1 + \frac{1}{n})^n \approx 2.71828.$
- (2) $\exp(w+z) = \exp(w) \cdot \exp(z)$, for all $w, z \in C$.

The trigonometric functions **sine** and **cosine** are of great importance in DSP.

The trigonometric functions **sine** and **cosine** are of great importance in DSP. For arbitrary complex z, these functions are defined by the following power series:

The trigonometric functions **sine** and **cosine** are of great importance in DSP. For arbitrary complex z, these functions are defined by the following power series:

 $\sin(z)$

The trigonometric functions **sine** and **cosine** are of great importance in DSP. For arbitrary complex z, these functions are defined by the following power series:

$$\sin(z) := \sum_{n\geq 0} \frac{(-1)^n z^{2n+1}}{(2n+1)!}$$

The trigonometric functions **sine** and **cosine** are of great importance in DSP. For arbitrary complex z, these functions are defined by the following power series:

$$\sin(z) := \sum_{n>0} \frac{(-1)^n z^{2n+1}}{(2n+1)!} = z - \frac{z^3}{3!} + \frac{z^5}{5!} - \frac{z^7}{7!} + \dots$$

The trigonometric functions **sine** and **cosine** are of great importance in DSP. For arbitrary complex z, these functions are defined by the following power series:

$$\sin(z) := \sum_{n \ge 0} \frac{(-1)^n z^{2n+1}}{(2n+1)!} = z - \frac{z^3}{3!} + \frac{z^5}{5!} - \frac{z^7}{7!} + \dots$$

$$\cos(z)$$

The trigonometric functions **sine** and **cosine** are of great importance in DSP. For arbitrary complex z, these functions are defined by the following power series:

$$\sin(z) := \sum_{n\geq 0} \frac{(-1)^n z^{2n+1}}{(2n+1)!} = z - \frac{z^3}{3!} + \frac{z^5}{5!} - \frac{z^7}{7!} + \dots$$

$$\cos(z) := \sum_{n\geq 0} \frac{(-1)^n z^{2n}}{(2n)!}$$

The trigonometric functions **sine** and **cosine** are of great importance in DSP. For arbitrary complex z, these functions are defined by the following power series:

$$\sin(z) := \sum_{n \ge 0} \frac{(-1)^n z^{2n+1}}{(2n+1)!} = z - \frac{z^3}{3!} + \frac{z^5}{5!} - \frac{z^7}{7!} + \dots$$

$$\cos(z) := \sum_{n \ge 0} \frac{(-1)^n z^{2n}}{(2n)!} = 1 - \frac{z^2}{2!} + \frac{z^4}{4!} - \frac{z^6}{6!} + \dots$$

The trigonometric functions **sine** and **cosine** are of great importance in DSP. For arbitrary complex z, these functions are defined by the following power series:

$$\sin(z) := \sum_{n \ge 0} \frac{(-1)^n z^{2n+1}}{(2n+1)!} = z - \frac{z^3}{3!} + \frac{z^5}{5!} - \frac{z^7}{7!} + \dots$$

$$\cos(z) := \sum_{n \ge 0} \frac{(-1)^n z^{2n}}{(2n)!} = 1 - \frac{z^2}{2!} + \frac{z^4}{4!} - \frac{z^6}{6!} + \dots$$

The functions $\mathbb{R} \ni x \mapsto \sin(x)$ and $\mathbb{R} \ni x \mapsto \cos(x)$ are both 2π -periodic.

The trigonometric functions **sine** and **cosine** are of great importance in DSP. For arbitrary complex z, these functions are defined by the following power series:

$$\sin(z) := \sum_{n>0} \frac{(-1)^n z^{2n+1}}{(2n+1)!} = z - \frac{z^3}{3!} + \frac{z^5}{5!} - \frac{z^7}{7!} + \dots$$

$$\cos(z) := \sum_{n>0} \frac{(-1)^n z^{2n}}{(2n)!} = 1 - \frac{z^2}{2!} + \frac{z^4}{4!} - \frac{z^6}{6!} + \dots$$

The functions $\mathbb{R} \ni x \mapsto \sin(x)$ and $\mathbb{R} \ni x \mapsto \cos(x)$ are both 2π -periodic. Their graphs are shown in the next figure:

The trigonometric functions **sine** and **cosine** are of great importance in DSP. For arbitrary complex z, these functions are defined by the following power series:

$$\sin(z) := \sum_{n \ge 0} \frac{(-1)^n z^{2n+1}}{(2n+1)!} = z - \frac{z^3}{3!} + \frac{z^5}{5!} - \frac{z^7}{7!} + \dots$$

$$\cos(z) := \sum_{n>0} \frac{(-1)^n z^{2n}}{(2n)!} = 1 - \frac{z^2}{2!} + \frac{z^4}{4!} - \frac{z^6}{6!} + \dots$$

The functions $\mathbb{R} \ni x \mapsto \sin(x)$ and $\mathbb{R} \ni x \mapsto \cos(x)$ are both 2π -periodic. Their graphs are shown in the next figure:

Theorem.

Theorem. For all $z \in \mathbb{C}$ the following holds:

Theorem. For all $z \in \mathbb{C}$ the following holds:

(1)
$$\sin(z) = \frac{1}{2i}(e^{iz} - e^{-iz}).$$

Theorem. For all $z \in \mathbb{C}$ the following holds:

(1)
$$\sin(z) = \frac{1}{2i}(e^{iz} - e^{-iz}).$$

(1)
$$\sin(z) = \frac{1}{2i}(e^{iz} - e^{-iz}).$$

(2) $\cos(z) = \frac{1}{2}(e^{iz} + e^{-iz}).$

Theorem. For all $z \in \mathbb{C}$ the following holds:

- (1) $\sin(z) = \frac{1}{2i}(e^{iz} e^{-iz}).$ (2) $\cos(z) = \frac{1}{2}(e^{iz} + e^{-iz}).$
- $(3) \quad e^{iz} = \cos(z) + i\sin(z)$

Theorem. For all $z \in \mathbb{C}$ the following holds:

- (1) $\sin(z) = \frac{1}{2i}(e^{iz} e^{-iz}).$ (2) $\cos(z) = \frac{1}{2}(e^{iz} + e^{-iz}).$
- (3) $e^{iz} = \cos(z) + i\sin(z)$ (Euler's formula).

Theorem. For all $z \in \mathbb{C}$ the following holds:

- (1) $\sin(z) = \frac{1}{2i}(e^{iz} e^{-iz}).$ (2) $\cos(z) = \frac{1}{2}(e^{iz} + e^{-iz}).$
- (3) $e^{iz} = \cos(z) + i\sin(z)$ (Euler's formula).
- (4) $\sin(z)^2 + \cos(z)^2 = 1$.

Theorem. For all $z \in \mathbb{C}$ the following holds:

- (1) $\sin(z) = \frac{1}{2i}(e^{iz} e^{-iz}).$ (2) $\cos(z) = \frac{1}{2}(e^{iz} + e^{-iz}).$
- (3) $e^{iz} = \cos(z) + i\sin(z)$ (Euler's formula).
- (4) $\sin(z)^2 + \cos(z)^2 = 1$.

Proof.

Theorem. For all $z \in \mathbb{C}$ the following holds:

- (1) $\sin(z) = \frac{1}{2i}(e^{iz} e^{-iz}).$ (2) $\cos(z) = \frac{1}{2}(e^{iz} + e^{-iz}).$
- (3) $e^{iz} = \cos(z) + i\sin(z)$ (Euler's formula).
- (4) $\sin(z)^2 + \cos(z)^2 = 1$.

Proof. (1):

Theorem. For all $z \in \mathbb{C}$ the following holds:

- (1) $\sin(z) = \frac{1}{2i}(e^{iz} e^{-iz}).$
- (2) $\cos(z) = \frac{1}{2}(e^{iz} + e^{-iz}).$
- (3) $e^{iz} = \cos(z) + i\sin(z)$ (Euler's formula).
- (4) $\sin(z)^2 + \cos(z)^2 = 1$.

Proof. (1): Separating even and odd indices and using $i^2 = -1$, we obtain

Theorem. For all $z \in \mathbb{C}$ the following holds:

- (1) $\sin(z) = \frac{1}{2i}(e^{iz} e^{-iz}).$
- (2) $\cos(z) = \frac{1}{2}(e^{iz} + e^{-iz}).$
- (3) $e^{iz} = \cos(z) + i\sin(z)$ (Euler's formula).
- (4) $\sin(z)^2 + \cos(z)^2 = 1$.

Proof. (1): Separating even and odd indices and using $i^2 = -1$, we obtain

$$\frac{1}{2i}(e^{iz} - e^{-iz}) =$$

Theorem. For all $z \in \mathbb{C}$ the following holds:

- (1) $\sin(z) = \frac{1}{2i}(e^{iz} e^{-iz}).$
- (2) $\cos(z) = \frac{1}{2}(e^{iz} + e^{-iz}).$
- (3) $e^{iz} = \cos(z) + i\sin(z)$ (Euler's formula).
- (4) $\sin(z)^2 + \cos(z)^2 = 1$.

Proof. (1): Separating even and odd indices and using $i^2 = -1$, we obtain

$$\frac{1}{2i}(e^{iz} - e^{-iz}) = \frac{1}{2i} \sum_{n \ge 0} \frac{(iz)^{2n}}{(2n)!} + \frac{1}{2i} \sum_{n \ge 0} \frac{(iz)^{2n+1}}{(2n+1)!} - \frac{1}{2i} \sum_{n \ge 0} \frac{(-iz)^{2n}}{(2n)!} - \frac{1}{2i} \sum_{n \ge 0} \frac{(-iz)^{2n+1}}{(2n+1)!}.$$

Theorem. For all $z \in \mathbb{C}$ the following holds:

- (1) $\sin(z) = \frac{1}{2i}(e^{iz} e^{-iz}).$
- (2) $\cos(z) = \frac{1}{2}(e^{iz} + e^{-iz}).$
- (3) $e^{iz} = \cos(z) + i\sin(z)$ (Euler's formula).
- (4) $\sin(z)^2 + \cos(z)^2 = 1$.

Proof. (1): Separating even and odd indices and using $i^2 = -1$, we obtain

$$\frac{1}{2i}(e^{iz} - e^{-iz}) = \underbrace{\frac{1}{2i} \sum_{n \ge 0} \frac{(iz)^{2n}}{(2n)!} + \frac{1}{2i} \sum_{n \ge 0} \frac{(iz)^{2n+1}}{(2n+1)!} - \frac{1}{2i} \sum_{n \ge 0} \frac{(-iz)^{2n}}{(2n)!} - \frac{1}{2i} \sum_{n \ge 0} \frac{(-iz)^{2n+1}}{(2n+1)!}}_{=:A} = :C = :D$$

Hence (1) follows from A=C and B=-D

Theorem. For all $z \in \mathbb{C}$ the following holds:

- (1) $\sin(z) = \frac{1}{2i}(e^{iz} e^{-iz}).$
- (2) $\cos(z) = \frac{1}{2}(e^{iz} + e^{-iz}).$
- (3) $e^{iz} = \cos(z) + i\sin(z)$ (Euler's formula).
- (4) $\sin(z)^2 + \cos(z)^2 = 1$.

Proof. (1): Separating even and odd indices and using $i^2 = -1$, we obtain

$$\frac{1}{2i}(e^{iz} - e^{-iz}) = \underbrace{\frac{1}{2i} \sum_{n \ge 0} \frac{(iz)^{2n}}{(2n)!} + \frac{1}{2i} \sum_{n \ge 0} \frac{(iz)^{2n+1}}{(2n+1)!} - \frac{1}{2i} \sum_{n \ge 0} \frac{(-iz)^{2n}}{(2n)!} - \frac{1}{2i} \sum_{n \ge 0} \frac{(-iz)^{2n+1}}{(2n+1)!}}_{=:A} = :C = :D$$

Hence (1) follows from A = C and $B = -D = i \cdot \sum_{n \ge 0} \frac{(-1)^n z^{2n+1}}{(2n+1)!}$

Theorem. For all $z \in \mathbb{C}$ the following holds:

- (1) $\sin(z) = \frac{1}{2i}(e^{iz} e^{-iz}).$
- (2) $\cos(z) = \frac{1}{2}(e^{iz} + e^{-iz}).$
- (3) $e^{iz} = \cos(z) + i\sin(z)$ (Euler's formula).
- (4) $\sin(z)^2 + \cos(z)^2 = 1$.

Proof. (1): Separating even and odd indices and using $i^2 = -1$, we obtain

$$\frac{1}{2i}(e^{iz} - e^{-iz}) = \underbrace{\frac{1}{2i} \sum_{n \ge 0} \frac{(iz)^{2n}}{(2n)!} + \frac{1}{2i} \sum_{n \ge 0} \frac{(iz)^{2n+1}}{(2n+1)!} - \frac{1}{2i} \sum_{n \ge 0} \frac{(-iz)^{2n}}{(2n)!} - \frac{1}{2i} \sum_{n \ge 0} \frac{(-iz)^{2n+1}}{(2n+1)!}}_{=:R}.$$

Hence (1) follows from A = C and $B = -D = i \cdot \sum_{n \ge 0} \frac{(-1)^n z^{2n+1}}{(2n+1)!} = i \sin(z)$.

Theorem. For all $z \in \mathbb{C}$ the following holds:

- (1) $\sin(z) = \frac{1}{2i}(e^{iz} e^{-iz}).$
- (2) $\cos(z) = \frac{1}{2}(e^{iz} + e^{-iz}).$
- (3) $e^{iz} = \cos(z) + i\sin(z)$ (Euler's formula).
- (4) $\sin(z)^2 + \cos(z)^2 = 1$.

Proof. (1): Separating even and odd indices and using $i^2 = -1$, we obtain

$$\frac{1}{2i}(e^{iz} - e^{-iz}) = \underbrace{\frac{1}{2i} \sum_{n \ge 0} \frac{(iz)^{2n}}{(2n)!} + \frac{1}{2i} \sum_{n \ge 0} \frac{(iz)^{2n+1}}{(2n+1)!} - \frac{1}{2i} \sum_{n \ge 0} \frac{(-iz)^{2n}}{(2n)!} - \frac{1}{2i} \sum_{n \ge 0} \frac{(-iz)^{2n+1}}{(2n+1)!}}_{=:A} = :C = :D$$

Hence (1) follows from A = C and $B = -D = i \cdot \sum_{n \ge 0} \frac{(-1)^n z^{2n+1}}{(2n+1)!} = i \sin(z)$.

The proof of (2) is similar to that of (1).

Theorem. For all $z \in \mathbb{C}$ the following holds:

- (1) $\sin(z) = \frac{1}{2i}(e^{iz} e^{-iz}).$
- (2) $\cos(z) = \frac{1}{2}(e^{iz} + e^{-iz}).$
- (3) $e^{iz} = \cos(z) + i\sin(z)$ (Euler's formula).
- (4) $\sin(z)^2 + \cos(z)^2 = 1$.

Proof. (1): Separating even and odd indices and using $i^2 = -1$, we obtain

$$\frac{1}{2i}(e^{iz} - e^{-iz}) = \underbrace{\frac{1}{2i} \sum_{n \ge 0} \frac{(iz)^{2n}}{(2n)!} + \frac{1}{2i} \sum_{n \ge 0} \frac{(iz)^{2n+1}}{(2n+1)!} - \frac{1}{2i} \sum_{n \ge 0} \frac{(-iz)^{2n}}{(2n)!} - \frac{1}{2i} \sum_{n \ge 0} \frac{(-iz)^{2n+1}}{(2n+1)!}}_{=:A} = :C = :D$$

Hence (1) follows from A = C and $B = -D = i \cdot \sum_{n \ge 0} \frac{(-1)^n z^{2n+1}}{(2n+1)!} = i \sin(z)$.

The proof of (2) is similar to that of (1). (3) & (4) follow from (1) & (2).

Euler's Formula at the Unit Circle

Euler's Formula at the Unit Circle

If z is real,

Euler's Formula at the Unit Circle

If z is real, $\sin(z)$ and $\cos(z)$ are real as well.

If z is real, $\sin(z)$ and $\cos(z)$ are real as well. Hence Euler's Formula $e^{iz} = \cos(z) + i\sin(z)$

If z is real, $\sin(z)$ and $\cos(z)$ are real as well. Hence Euler's Formula $e^{iz} = \cos(z) + i\sin(z)$ tells us that $\cos(z)$ is the real part of e^{iz} , whereas $\sin(z)$ is the imaginary part of e^{iz} .

If z is real, $\sin(z)$ and $\cos(z)$ are real as well. Hence Euler's Formula $e^{iz}=\cos(z)+i\sin(z)$ tells us that $\cos(z)$ is the real part of e^{iz} , whereas $\sin(z)$ is the imaginary part of e^{iz} . This combined with $\sin(z)^2+\cos(z)^2=1$

If z is real, $\sin(z)$ and $\cos(z)$ are real as well. Hence Euler's Formula $e^{iz} = \cos(z) + i\sin(z)$ tells us that $\cos(z)$ is the real part of e^{iz} , whereas $\sin(z)$ is the imaginary part of e^{iz} . This combined with $\sin(z)^2 + \cos(z)^2 = 1$ proves the following fundamental result.

If z is real, $\sin(z)$ and $\cos(z)$ are real as well. Hence Euler's Formula $e^{iz}=\cos(z)+i\sin(z)$ tells us that $\cos(z)$ is the real part of e^{iz} , whereas $\sin(z)$ is the imaginary part of e^{iz} . This combined with $\sin(z)^2+\cos(z)^2=1$ proves the following fundamental result.

Theorem.

If z is real, $\sin(z)$ and $\cos(z)$ are real as well. Hence Euler's Formula $e^{iz} = \cos(z) + i\sin(z)$ tells us that $\cos(z)$ is the real part of e^{iz} , whereas $\sin(z)$ is the imaginary part of e^{iz} . This combined with $\sin(z)^2 + \cos(z)^2 = 1$ proves the following fundamental result.

Theorem. For all $t \in \mathbb{R}$

$$e^{it} = \cos(t) + i\sin(t)$$

If z is real, $\sin(z)$ and $\cos(z)$ are real as well. Hence Euler's Formula $e^{iz} = \cos(z) + i\sin(z)$ tells us that $\cos(z)$ is the real part of e^{iz} , whereas $\sin(z)$ is the imaginary part of e^{iz} . This combined with $\sin(z)^2 + \cos(z)^2 = 1$ proves the following fundamental result.

Theorem. For all $t \in \mathbb{R}$

$$e^{it} = \cos(t) + i\sin(t)$$

is an element of the unit circle with real part equal to cos(t) and imaginary part equal to sin(t).

If z is real, $\sin(z)$ and $\cos(z)$ are real as well. Hence Euler's Formula $e^{iz} = \cos(z) + i\sin(z)$ tells us that $\cos(z)$ is the real part of e^{iz} , whereas $\sin(z)$ is the imaginary part of e^{iz} . This combined with $\sin(z)^2 + \cos(z)^2 = 1$ proves the following fundamental result.

Theorem. For all $t \in \mathbb{R}$

$$e^{it} = \cos(t) + i\sin(t)$$

is an element of the unit circle with real part equal to cos(t) and imaginary part equal to sin(t). Moreover, $arg(e^{it}) = t$.

If z is real, $\sin(z)$ and $\cos(z)$ are real as well. Hence Euler's Formula $e^{iz} = \cos(z) + i\sin(z)$ tells us that $\cos(z)$ is the real part of e^{iz} , whereas $\sin(z)$ is the imaginary part of e^{iz} . This combined with $\sin(z)^2 + \cos(z)^2 = 1$ proves the following fundamental result.

Theorem. For all $t \in \mathbb{R}$

$$e^{it} = \cos(t) + i\sin(t)$$

is an element of the unit circle with real part equal to $\cos(t)$ and imaginary part equal to $\sin(t)$. Moreover, $\arg(e^{it})=t$. Hence every non-zero complex number z of absolute value r=|z| and argument $\arg(z)=\phi$

If z is real, $\sin(z)$ and $\cos(z)$ are real as well. Hence Euler's Formula $e^{iz} = \cos(z) + i\sin(z)$ tells us that $\cos(z)$ is the real part of e^{iz} , whereas $\sin(z)$ is the imaginary part of e^{iz} . This combined with $\sin(z)^2 + \cos(z)^2 = 1$ proves the following fundamental result.

Theorem. For all $t \in \mathbb{R}$

$$e^{it} = \cos(t) + i\sin(t)$$

is an element of the unit circle with real part equal to $\cos(t)$ and imaginary part equal to $\sin(t)$. Moreover, $\arg(e^{it}) = t$. Hence every non-zero complex number z of absolute value r = |z| and argument $\arg(z) = \phi$ can be written as

$$z = |z| \cdot e^{i\arg(z)} = re^{i\phi} = r \cdot (\cos(\phi) + i\sin(\phi)).$$

Euler's Formula for real t

Euler's Formula for real t

$$e^{it} = \cos(t) + i\sin(t)$$

Euler's Formula for real t

$$e^{it} = \cos(t) + i\sin(t)$$

yields an easy proof of the

Euler's Formula for real t

$$e^{it} = \cos(t) + i\sin(t)$$

yields an easy proof of the

Addition Theorem.

Euler's Formula for real t

$$e^{it} = \cos(t) + i\sin(t)$$

yields an easy proof of the

Addition Theorem. For real α and β the following addition and subtraction formulae hold:

Euler's Formula for real t

$$e^{it} = \cos(t) + i\sin(t)$$

yields an easy proof of the

Addition Theorem. For real α and β the following addition and subtraction formulae hold:

(1)
$$\sin(\alpha \pm \beta) = \sin(\alpha)\cos(\beta) \pm \cos(\alpha)\sin(\beta)$$
.

Euler's Formula for real t

$$e^{it} = \cos(t) + i\sin(t)$$

yields an easy proof of the

Addition Theorem. For real α and β the following addition and subtraction formulae hold:

- (1) $\sin(\alpha \pm \beta) = \sin(\alpha)\cos(\beta) \pm \cos(\alpha)\sin(\beta)$.
- (2) $\cos(\alpha \pm \beta) = \cos(\alpha)\cos(\beta) \mp \sin(\alpha)\sin(\beta)$.

Euler's Formula for real t

$$e^{it} = \cos(t) + i\sin(t)$$

yields an easy proof of the

Addition Theorem. For real α and β the following addition and subtraction formulae hold:

- (1) $\sin(\alpha \pm \beta) = \sin(\alpha)\cos(\beta) \pm \cos(\alpha)\sin(\beta)$.
- (2) $\cos(\alpha \pm \beta) = \cos(\alpha)\cos(\beta) \mp \sin(\alpha)\sin(\beta)$.

Proof.

Euler's Formula for real t

$$e^{it} = \cos(t) + i\sin(t)$$

yields an easy proof of the

Addition Theorem. For real α and β the following addition and subtraction formulae hold:

- (1) $\sin(\alpha \pm \beta) = \sin(\alpha)\cos(\beta) \pm \cos(\alpha)\sin(\beta)$.
- (2) $\cos(\alpha \pm \beta) = \cos(\alpha)\cos(\beta) \mp \sin(\alpha)\sin(\beta)$.

Proof. By Euler's Formula,

Euler's Formula for real t

$$e^{it} = \cos(t) + i\sin(t)$$

yields an easy proof of the

Addition Theorem. For real α and β the following addition and subtraction formulae hold:

- (1) $\sin(\alpha \pm \beta) = \sin(\alpha)\cos(\beta) \pm \cos(\alpha)\sin(\beta)$.
- (2) $\cos(\alpha \pm \beta) = \cos(\alpha)\cos(\beta) \mp \sin(\alpha)\sin(\beta)$.

Proof. By Euler's Formula, the functional equation for exp,

Euler's Formula for real t

$$e^{it} = \cos(t) + i\sin(t)$$

yields an easy proof of the

Addition Theorem. For real α and β the following addition and subtraction formulae hold:

- (1) $\sin(\alpha \pm \beta) = \sin(\alpha)\cos(\beta) \pm \cos(\alpha)\sin(\beta)$.
- (2) $\cos(\alpha \pm \beta) = \cos(\alpha)\cos(\beta) \mp \sin(\alpha)\sin(\beta)$.

Proof. By Euler's Formula, the functional equation for exp, and the fact that sine and cosine are odd and even functions, respectively,

Euler's Formula for real t

$$e^{it} = \cos(t) + i\sin(t)$$

yields an easy proof of the

Addition Theorem. For real α and β the following addition and subtraction formulae hold:

- (1) $\sin(\alpha \pm \beta) = \sin(\alpha)\cos(\beta) \pm \cos(\alpha)\sin(\beta)$.
- (2) $\cos(\alpha \pm \beta) = \cos(\alpha)\cos(\beta) \mp \sin(\alpha)\sin(\beta)$.

Proof. By Euler's Formula, the functional equation for exp, and the fact that sine and cosine are odd and even functions, respectively, we obtain

Euler's Formula for real t

$$e^{it} = \cos(t) + i\sin(t)$$

yields an easy proof of the

Addition Theorem. For real α and β the following addition and subtraction formulae hold:

- (1) $\sin(\alpha \pm \beta) = \sin(\alpha)\cos(\beta) \pm \cos(\alpha)\sin(\beta)$.
- (2) $\cos(\alpha \pm \beta) = \cos(\alpha)\cos(\beta) \mp \sin(\alpha)\sin(\beta)$.

Proof. By Euler's Formula, the functional equation for exp, and the fact that sine and cosine are odd and even functions, respectively, we obtain

$$e^{i(\alpha \pm \beta)} = e^{i\alpha} \cdot e^{\pm i\beta}$$

Euler's Formula for real t

$$e^{it} = \cos(t) + i\sin(t)$$

yields an easy proof of the

Addition Theorem. For real α and β the following addition and subtraction formulae hold:

- (1) $\sin(\alpha \pm \beta) = \sin(\alpha)\cos(\beta) \pm \cos(\alpha)\sin(\beta)$.
- (2) $\cos(\alpha \pm \beta) = \cos(\alpha)\cos(\beta) \mp \sin(\alpha)\sin(\beta)$.

Proof. By Euler's Formula, the functional equation for exp, and the fact that sine and cosine are odd and even functions, respectively, we obtain

$$e^{i(\alpha \pm \beta)} = e^{i\alpha} \cdot e^{\pm i\beta} = (\cos(\alpha) + i\sin(\alpha)) \cdot (\cos(\beta) \pm i\sin(\beta))$$

Euler's Formula for real t

$$e^{it} = \cos(t) + i\sin(t)$$

yields an easy proof of the

Addition Theorem. For real α and β the following addition and subtraction formulae hold:

- (1) $\sin(\alpha \pm \beta) = \sin(\alpha)\cos(\beta) \pm \cos(\alpha)\sin(\beta)$.
- (2) $\cos(\alpha \pm \beta) = \cos(\alpha)\cos(\beta) \mp \sin(\alpha)\sin(\beta)$.

Proof. By Euler's Formula, the functional equation for exp, and the fact that sine and cosine are odd and even functions, respectively, we obtain

$$e^{i(\alpha \pm \beta)} = e^{i\alpha} \cdot e^{\pm i\beta} = (\cos(\alpha) + i\sin(\alpha)) \cdot (\cos(\beta) \pm i\sin(\beta))$$
$$= (\cos(\alpha)\cos(\beta) \mp \sin(\alpha)\sin(\beta)) + i(\sin(\alpha)\cos(\beta) \pm \cos(\alpha)\sin(\beta)).$$

Euler's Formula for real t

$$e^{it} = \cos(t) + i\sin(t)$$

yields an easy proof of the

Addition Theorem. For real α and β the following addition and subtraction formulae hold:

- (1) $\sin(\alpha \pm \beta) = \sin(\alpha)\cos(\beta) \pm \cos(\alpha)\sin(\beta)$.
- (2) $\cos(\alpha \pm \beta) = \cos(\alpha)\cos(\beta) \mp \sin(\alpha)\sin(\beta)$.

Proof. By Euler's Formula, the functional equation for exp, and the fact that sine and cosine are odd and even functions, respectively, we obtain

$$e^{i(\alpha \pm \beta)} = e^{i\alpha} \cdot e^{\pm i\beta} = (\cos(\alpha) + i\sin(\alpha)) \cdot (\cos(\beta) \pm i\sin(\beta))$$
$$= (\cos(\alpha)\cos(\beta) \mp \sin(\alpha)\sin(\beta)) + i(\sin(\alpha)\cos(\beta) \pm \cos(\alpha)\sin(\beta)).$$

An alternative formula is $e^{i(\alpha \pm \beta)} = \cos(\alpha \pm \beta) + i\sin(\alpha \pm \beta)$.

Euler's Formula for real t

$$e^{it} = \cos(t) + i\sin(t)$$

yields an easy proof of the

Addition Theorem. For real α and β the following addition and subtraction formulae hold:

- (1) $\sin(\alpha \pm \beta) = \sin(\alpha)\cos(\beta) \pm \cos(\alpha)\sin(\beta)$.
- (2) $\cos(\alpha \pm \beta) = \cos(\alpha)\cos(\beta) \mp \sin(\alpha)\sin(\beta)$.

Proof. By Euler's Formula, the functional equation for exp, and the fact that sine and cosine are odd and even functions, respectively, we obtain

$$e^{i(\alpha \pm \beta)} = e^{i\alpha} \cdot e^{\pm i\beta} = (\cos(\alpha) + i\sin(\alpha)) \cdot (\cos(\beta) \pm i\sin(\beta))$$
$$= (\cos(\alpha)\cos(\beta) \mp \sin(\alpha)\sin(\beta)) + i(\sin(\alpha)\cos(\beta) \pm \cos(\alpha)\sin(\beta)).$$

An alternative formula is $e^{i(\alpha\pm\beta)}=\cos(\alpha\pm\beta)+i\sin(\alpha\pm\beta)$. Comparing real and imaginary parts, our claims follow.

Theorem.

Theorem. If $z = |z| \cdot e^{i \arg(z)}$

Theorem. If $z = |z| \cdot e^{i \operatorname{arg}(z)}$ and $w = |w| \cdot e^{i \operatorname{arg}(w)}$

Theorem. If $z = |z| \cdot e^{i\arg(z)}$ and $w = |w| \cdot e^{i\arg(w)}$ are two complex numbers, then their product zw has absolute value $|z| \cdot |w|$ and argument $(\arg(z) + \arg(w)) \mod 2\pi$:

Theorem. If $z = |z| \cdot e^{i\arg(z)}$ and $w = |w| \cdot e^{i\arg(w)}$ are two complex numbers, then their product zw has absolute value $|z| \cdot |w|$ and argument $(\arg(z) + \arg(w)) \mod 2\pi$:

$$zw = |z| \cdot |w| \cdot e^{i((\arg(z) + \arg(w)) \bmod 2\pi)}.$$

Theorem. If $z = |z| \cdot e^{i\arg(z)}$ and $w = |w| \cdot e^{i\arg(w)}$ are two complex numbers, then their product zw has absolute value $|z| \cdot |w|$ and argument $(\arg(z) + \arg(w)) \mod 2\pi$:

$$zw = |z| \cdot |w| \cdot e^{i((\arg(z) + \arg(w)) \bmod 2\pi)}.$$

In other words:

Theorem. If $z = |z| \cdot e^{i\arg(z)}$ and $w = |w| \cdot e^{i\arg(w)}$ are two complex numbers, then their product zw has absolute value $|z| \cdot |w|$ and argument $(\arg(z) + \arg(w)) \mod 2\pi$:

$$zw = |z| \cdot |w| \cdot e^{i((\arg(z) + \arg(w)) \mod 2\pi)}.$$

In other words: The product of two complex numbers is obtained by multiplying their lengths and adding their arguments.

Theorem. If $z = |z| \cdot e^{i\arg(z)}$ and $w = |w| \cdot e^{i\arg(w)}$ are two complex numbers, then their product zw has absolute value $|z| \cdot |w|$ and argument $(\arg(z) + \arg(w)) \mod 2\pi$:

$$zw = |z| \cdot |w| \cdot e^{i((\arg(z) + \arg(w)) \bmod 2\pi)}.$$

In other words: The product of two complex numbers is obtained by multiplying their lengths and adding their arguments.

Proof.

Theorem. If $z = |z| \cdot e^{i \operatorname{arg}(z)}$ and $w = |w| \cdot e^{i \operatorname{arg}(w)}$ are two complex numbers, then their product zw has absolute value $|z| \cdot |w|$ and argument $(\operatorname{arg}(z) + \operatorname{arg}(w)) \operatorname{mod} 2\pi$:

$$zw = |z| \cdot |w| \cdot e^{i((\arg(z) + \arg(w)) \bmod 2\pi)}.$$

In other words: The product of two complex numbers is obtained by multiplying their lengths and adding their arguments.

Proof. The claim follows from the functional equation for the exponential function. \Box

Theorem. If $z = |z| \cdot e^{i\arg(z)}$ and $w = |w| \cdot e^{i\arg(w)}$ are two complex numbers, then their product zw has absolute value $|z| \cdot |w|$ and argument $(\arg(z) + \arg(w)) \mod 2\pi$:

$$zw = |z| \cdot |w| \cdot e^{i((\arg(z) + \arg(w)) \bmod 2\pi)}.$$

In other words: The product of two complex numbers is obtained by multiplying their lengths and adding their arguments.

Proof. The claim follows from the functional equation for the exponential function. \Box

In other words:

Theorem. If $z = |z| \cdot e^{i\arg(z)}$ and $w = |w| \cdot e^{i\arg(w)}$ are two complex numbers, then their product zw has absolute value $|z| \cdot |w|$ and argument $(\arg(z) + \arg(w)) \mod 2\pi$:

$$zw = |z| \cdot |w| \cdot e^{i((\arg(z) + \arg(w)) \bmod 2\pi)}.$$

In other words: The product of two complex numbers is obtained by multiplying their lengths and adding their arguments.

Proof. The claim follows from the functional equation for the exponential function.

In other words: If (r,ϕ) and (s,ψ) are the polar representations of two non-zero complex numbers , then their product has the polar representation

$$(rs, (\phi + \psi) \operatorname{mod} 2\pi).$$

Let n be a positive integer.

Let n be a positive integer. A complex number Ω is called

Let n be a positive integer. A complex number Ω is called

■ an *n*-th root of unity

Let n be a positive integer. A complex number Ω is called

lacksquare an n-th root of unity iff $\Omega^n=1$,

Let n be a positive integer. A complex number Ω is called

- lacksquare an n-th root of unity iff $\Omega^n=1$,
- a primitive *n*-th root of unity

Let n be a positive integer. A complex number Ω is called

- \blacksquare an n-th root of unity iff $\Omega^n = 1$,
- **a primitive** n-th root of unity iff $\Omega^n = 1$ and $\Omega^m \neq 1$ for all $m \in [1:n-1]$.

Let n be a positive integer. A complex number Ω is called

- lacksquare an n-th root of unity iff $\Omega^n=1$,
- **a primitive** n-th root of unity iff $\Omega^n = 1$ and $\Omega^m \neq 1$ for all $m \in [1:n-1]$.

If C_n denotes the set of all n-th root of unity,

Let n be a positive integer. A complex number Ω is called

- lacksquare an n-th root of unity iff $\Omega^n=1$,
- **a primitive** n-th root of unity iff $\Omega^n = 1$ and $\Omega^m \neq 1$ for all $m \in [1:n-1]$.

If C_n denotes the set of all n-th root of unity, then the following is true:

- lacksquare C_n contains a primitive n-th root of unity Ω_n , e.g., $\Omega_n=e^{\pm 2\pi i/n}$.
- $C_n = \{\Omega_n^m | m \in [0:n-1]\},$

Let n be a positive integer. A complex number Ω is called

- \blacksquare an n-th root of unity iff $\Omega^n = 1$,
- a primitive n-th root of unity iff $\Omega^n = 1$ and $\Omega^m \neq 1$ for all $m \in [1:n-1]$.

If C_n denotes the set of all n-th root of unity, then the following is true:

- lacksquare C_n contains a primitive n-th root of unity Ω_n , e.g., $\Omega_n=e^{\pm 2\pi i/n}$.
- $C_n = \{\Omega_n^m | m \in [0:n-1]\}$, i.e., C_n consists of all powers of a primitive n-th root of unity.

Let n be a positive integer. A complex number Ω is called

- \blacksquare an n-th root of unity iff $\Omega^n = 1$,
- **a primitive** n-th root of unity iff $\Omega^n = 1$ and $\Omega^m \neq 1$ for all $m \in [1:n-1]$.

If C_n denotes the set of all n-th root of unity, then the following is true:

- lacksquare C_n contains a primitive n-th root of unity Ω_n , e.g., $\Omega_n=e^{\pm 2\pi i/n}$
- $C_n = {\Omega_n^m | m \in [0:n-1]}$, i.e., C_n consists of all powers of a primitive n-th root of unity.
- lacksquare Ω^k_n is a primitive n-th root of unity iff $\mathrm{GCD}(k,n)=1$.

Examples:

Let n be a positive integer. A complex number Ω is called

- \blacksquare an n-th root of unity iff $\Omega^n = 1$,
- **a primitive** n-th root of unity iff $\Omega^n = 1$ and $\Omega^m \neq 1$ for all $m \in [1:n-1]$.

If C_n denotes the set of all n-th root of unity, then the following is true:

- lacksquare C_n contains a primitive n-th root of unity Ω_n , e.g., $\Omega_n=e^{\pm 2\pi i/n}$
- $C_n = {\Omega_n^m | m \in [0:n-1]}$, i.e., C_n consists of all powers of a primitive n-th root of unity.
- lacksquare Ω_n^k is a primitive n-th root of unity iff GCD(k,n)=1.

Examples:

 $C_1 = \{1\},$

Let n be a positive integer. A complex number Ω is called

- \blacksquare an n-th root of unity iff $\Omega^n = 1$,
- **a primitive** n-th root of unity iff $\Omega^n = 1$ and $\Omega^m \neq 1$ for all $m \in [1:n-1]$.

If C_n denotes the set of all n-th root of unity, then the following is true:

- lacksquare C_n contains a primitive n-th root of unity Ω_n , e.g., $\Omega_n=e^{\pm 2\pi i/n}$
- $lackbox{$\square$} C_n = \{\Omega_n^m | m \in [0:n-1]\}$, i.e., C_n consists of all powers of a primitive n-th root of unity.
- lacksquare Ω_n^k is a primitive n-th root of unity iff GCD(k,n)=1.

Examples:

 $C_1 = \{1\}, \ \Omega_1 = 1,$

Let n be a positive integer. A complex number Ω is called

- \blacksquare an n-th root of unity iff $\Omega^n = 1$,
- **a primitive** n-th root of unity iff $\Omega^n = 1$ and $\Omega^m \neq 1$ for all $m \in [1:n-1]$.

If C_n denotes the set of all n-th root of unity, then the following is true:

- lacksquare C_n contains a primitive n-th root of unity Ω_n , e.g., $\Omega_n=e^{\pm 2\pi i/n}$
- $lackbox{$\square$} C_n = \{\Omega_n^m | m \in [0:n-1]\}$, i.e., C_n consists of all powers of a primitive n-th root of unity.
- lacksquare Ω_n^k is a primitive n-th root of unity iff GCD(k,n)=1.

Examples:

- $C_1 = \{1\}, \ \Omega_1 = 1,$
- $C_2 = \{1, -1\},$

Let n be a positive integer. A complex number Ω is called

- \blacksquare an n-th root of unity iff $\Omega^n = 1$,
- **a primitive** n-th root of unity iff $\Omega^n = 1$ and $\Omega^m \neq 1$ for all $m \in [1:n-1]$.

If C_n denotes the set of all n-th root of unity, then the following is true:

- lacksquare C_n contains a primitive n-th root of unity Ω_n , e.g., $\Omega_n=e^{\pm 2\pi i/n}$
- $lackbox{$\square$} C_n = \{\Omega_n^m | m \in [0:n-1]\}$, i.e., C_n consists of all powers of a primitive n-th root of unity.
- lacksquare Ω_n^k is a primitive n-th root of unity iff GCD(k,n)=1.

Examples:

- $C_1 = \{1\}, \ \Omega_1 = 1,$
- $C_2 = \{1, -1\}, \Omega_2 = -1,$

Let n be a positive integer. A complex number Ω is called

- \blacksquare an n-th root of unity iff $\Omega^n = 1$,
- **a primitive** n-th root of unity iff $\Omega^n = 1$ and $\Omega^m \neq 1$ for all $m \in [1:n-1]$.

If C_n denotes the set of all n-th root of unity, then the following is true:

- lacksquare C_n contains a primitive n-th root of unity Ω_n , e.g., $\Omega_n=e^{\pm 2\pi i/n}$
- $lackbox{\blacksquare} C_n = \{\Omega_n^m | m \in [0:n-1]\}$, i.e., C_n consists of all powers of a primitive n-th root of unity.
- lacksquare Ω_n^k is a primitive n-th root of unity iff GCD(k,n)=1.

Examples:

- $C_1 = \{1\}, \ \Omega_1 = 1,$
- $C_2 = \{1, -1\}, \Omega_2 = -1,$
- $C_4 = \{1, i, -1, -i\},$

Let n be a positive integer. A complex number Ω is called

- \blacksquare an n-th root of unity iff $\Omega^n = 1$,
- **a primitive** n-th root of unity iff $\Omega^n = 1$ and $\Omega^m \neq 1$ for all $m \in [1:n-1]$.

If C_n denotes the set of all n-th root of unity, then the following is true:

- lacksquare C_n contains a primitive n-th root of unity Ω_n , e.g., $\Omega_n=e^{\pm 2\pi i/n}$
- $C_n = \{\Omega_n^m | m \in [0:n-1]\}$, i.e., C_n consists of all powers of a primitive n-th root of unity.
- lacksquare Ω_n^k is a primitive n-th root of unity iff GCD(k,n)=1.

Examples:

- $C_1 = \{1\}, \ \Omega_1 = 1,$
- $C_2 = \{1, -1\}, \Omega_2 = -1,$
- $C_4 = \{1, i, -1, -i\}$, here, $\Omega_4 = i$ or $\Omega_4 = -i$.