Automates et langages : TD3

Exercice 1

Sujet

Pour chacun des automates suivants, répondre aux questions :

- 1. Quel est le langage reconnu par l'automate suivant?
- 2. Cet automate est-il déterministe ? Sinon, donner un automate déterministe équivalent.

Résolution

Question 1

Automate 1 : $L=(a+b)^*bb$

Automate 2: Méthode du Lemme d'Arden

L	Equation		
L	L_0		
L_0	aL_1+bL_3		
L_1	bL_2		
L_2	$aL_5 + \epsilon L_0$		
L_3	cL_4		
L_4	$aL_5 + \epsilon L_0$		
L_5	ϵ		

- ullet 1 avec 2 et 4: $L_0=abL_2+bcL_4$
- **5** avec **6** : $L_4 = a + L_0$

• **3** avec **6** :
$$L_2 = a + L_0$$

$$\Rightarrow L_0 = (ab+bc)^*(ab+bc)a$$

Question 2

Automate 1: non, car à l'état q_0 , il y a deux transitions possibles pour le symbole b.

• Déterminisation :

I/F	états	a	b	
l	q_0	q_0	q_0,q_1	
/	q_{01}	q_0	q_0,q_1,q_2	
F	q_{012}	q_0	q_0,q_1,q_2	

• Représentation de l'automate déterministe :

Automate 2: non, car il y a des ϵ -transitions.

• Déterminisation :

I/F	états	a	b	c
ı	q_0	q_1	q_3	Ø
/	q_1	Ø	q_2	Ø
/	q_3	Ø	Ø	q_4
/	q_2	q_1,q_5	q_3	Ø
/	q_4	q_1,q_5	q_3	Ø
F	q_{15}	Ø	q_2	Ø

• Représentation de l'automate déterministe :

Exercice 2

Sujet

Soient l'alphabet $\Sigma=\{a,b\}$, et les langages $L_1=a(ba)^*$ et $L_2=b(ab)^*$.

- 1. Donner deux automates A_1 qui reconnaît L_1 et A_2 qui reconnaît L_2 .
- 2. Peut-on trouver un automate à états fini qui reconnaisse le langage $L_3=\{w\in \Sigma^*|\exists u\in L1, \exists v\in L2, w=u.v\}$? Pourquoi ? Si oui, donner un automate à états fini qui reconnait le langage L_3 .
- 3. Peut-on trouver un automate à états fini qui reconnaisse le langage $L_4=\{w\in\Sigma*|w\in L1 \text{ ou } w\in L2\}$? Pourquoi ? Si oui, donner un automate à états fini qui reconnait le langage L4.

Résolution

Question 1

 A_1 :

 A_2 :

Question 2

- Oui, car le produit de deux langages réguliers est régulier.
- Automate:

Question 3

- Oui, car l'union de deux langages réguliers est régulier.
- Automate:

Exercice 3

Sujet

Donner un automate déterministe permettant de vérifier qu'un horaire, entré au clavier pour remplir un formulaire par exemple, est bien écrit selon le format HH:MM.

- 1. **version 1**: on suppose que seuls le caractère : et ceux du clavier numérique peuvent être utilisés (uniquement des chiffres)
- 2. **version 2**: on gère la possibilité d'entrer des caractères autres que des chiffres, et la possibilité de supprimer un caractère. On représentera les caractères autres que les chiffres par le symbole X et la touche de suppression par le symbole E.

Résolution

Question 1

Question 2

FAUX

