

Universidade do Minho

DEPARTAMENTO DE INFORMÁTICA

Engenharia de Serviços em Rede Trabalho Prático nº 1

Nível Aplicacional: Conceitos Introdutórios Grupo Nº 1

> Ariana Lousada (PG47034) Carlos Gomes (PG47083) Tiago Sousa (PG47684)

> > 2 de maio de 2022

Conteúdo

1	Questões e Respostas	3
2	Fontes Utilizadas	8

Capítulo 1

Questões e Respostas

Para a resolução deste trabalho, foram-nos propostas várias questões, as quais vamos passar a responder neste capítulo:

- 1. As aplicações em rede assentam normalmente em paradigmas clienteservidor ou peer-to-peer.
 - a) Explique em que se diferenciam ambos os modelos, salientando o papel das principais entidades envolvidas.

Como foi referido, as aplicações em rede assentam normalmente em paradigmas cliente-servidor ou peer-to-peer. Esses paradigmas têm um papel importante, uma vez que permitem as aplicações comunicar umas com as outras. No entanto, existem diferenças entre ambos: no cliente-servidor, as aplicações requerem um serviço (como por exemplo um pedido de um ficheiro) do servidor, que o fornece ao cliente. Enquanto isto, no peer-to-peer não existem clientes ou servidores. Neste paradigma todos os nodos podem interagir com a rede como cliente e servidor, isto é, cada nodo pode pedir e fornecer serviços.

b) Enuncie vantagens e desvantagens de cada paradigma e casos de aplicação.

	Cliente-Servidor	Peer-to-Peer
Segurança	Mais estável e seguro	Menos instável
Custo	Pode ser considerado custoso implementar	Considerado mais barato pois não se implementa servidor central
Backup	Possível, realizado apenas no servidor central	Possível, mas realizado em todos os nodos
Centralização	Centralizado	Descentralizado
Fiabilidade	Caso servidor falhe, os serviços não são garantidos	Fiável, uma vez que existem bastantes nodos
Tempo de espera	Pode ser longo	Não é longo, uma vez que há existência de vários nodos
Acessibilidade	Acessível em toda a network	Não é garantida a acessibilidade remota

Figura 1.1: Vantagens e desvantagens dos paradigmas cliente-servidor e $peerto-peer\ (P2P)$

Diante cada paradigma existem diversas vantagens e desvantagens.

- 1. Segurança: O paradigma cliente-servidor é considerado mais seguro e estável do que peer-to-peer, uma vez que em P2P todos os nodos da rede executam tarefas tanto como clientes como servidores, ao contrário de um modelo cliente-servidor, no qual apenas os servidores são responsáveis pelas tarefas que lhes pertencem.
- 2. Custo: Enquanto o cliente-servidor pode ser caro de se implementar, o peer-to-peer não requer hardware extra (neste caso um servidor central) para a sua implementação. Também são necessários técnicos para manter os servidores, o que aumenta o custo de manutenção.
- 3. Backup e Recuperação: Numa rede cliente-servidor todos os dados são armazenados no servidor, o que permite uma fácil e rápida backup da informação. Caso parte dos dados seja perdida, é possível recuperar a informação facilmente. Enquanto isto, em P2P é necessário criar uma backup em cada nodo, o que torna o restauro de dados mais complexo.
- 4. Centralização: Os servidores auxiliam a administração de toda a rede, uma vez que são responsáveis pelas permissões e alocação de recursos. O P2P consiste numa rede descentralizada, na qual cada nodo é igualmente responsável pelo tráfego.
- 5. Fiabilidade: Em caso de falha de uma rede P2P os serviços continuam a ser garantidos, uma vez que existem vários nodos na rede

- capazes de os disponibilizar. Numa rede cliente-servidor podem falhar os serviços caso o servidor falhe.
- 6. Acessibilidade: Numa rede cliente-servidor o servidor pode ser acedido remotamente por qualquer ponto da rede. Em P2P para alcançar um nodo em específico pode ser mais difícil, especialmente se o nodo tiver a uma "distância" considerável do nodo em questão.
- 2. A Tabela 1 identifica tipos de aplicações amplamente usadas na Internet. Essas aplicações ou serviços apresentam diferente sensibilidade ao comportamento e desempenho da rede em si. Para cada tipo de aplicação (ou serviço), identifique qualitativamente os seus requisitos em termos de débito (throughput) necessário, atraso e suas variações (time sensitive) e perda de dados (loss sensitive). Dê exemplo concreto de aplicações da sua preferência que encaixem em cada tipo. Complemente a resposta quantificando os parâmetros em análise (referencie as suas fontes de informação¹).

Tipo de aplicações	Débito(throughput)	Atraso e/ou Jitter	Perda de dados	Aplicações
Web browsing	Elástico	Pode existir	Não há perda de dados	Torch
Multimedia Streaming	No minimo 1.5 Mbps	Pode existir	Pode existir perda de dados	Hulu
IP Telephony (VoIP)	100 Kbps por cada chamada	Pode existir, afeta a qualidade de áudio	Pode existir perda de dados	Cloudtalk
File transfer/sharing	Elastico	Pode existir	Sem perda de dados	Dropbox
Interactive Games	50 kbps	Pode existir	Pode existir perda de dados	Rocket League
Video Conferencing	No minimo 50 Kbps	40ms ou menos é recomendado	Pode existir perda de dados	Zoom

Figura 1.2: Tabela 1

¹Consultar capítulo 2: Fontes Utilizadas

3. Considere a topologia da Figura 1 onde será distribuído um ficheiro de tamanho X Gbits entre N nodos (hosts), Assuma que os débitos de download e upload do nodo i. são respetivamente di e ui. Assuma ainda que: (i) os hosts estão dedicados à distribuição do ficheiro, i.e. não realizam outras tarefas; e (ii) o núcleo da rede (core) não apresenta qualquer estrangulamento (bottleneck) em termos de largura de banda, i.e., qualquer eventual limitação existe nas redes de acesso dos vários ni. O valor de X deve ser indexado ao identificador de cada grupo de trabalho, i.e., X=IDGrupo/10.

Figura 1 - Distribuição do ficheiro F [Kurose, and Ross, 2016].

Sabendo que o servidor tem um débito de upload us=1Gbps, e que di=100Mbps, calcule, justificando, o tempo mínimo de distribuição de F pelos N nodos quando N=10, N=100 e N=1000, e para débitos de upload ui de: a) 1Mbps; b) 5Mbps e c) 10Mbps, usando os modelos de distribuição: (i) cliente-servidor e (ii) peer-to-peer.

Apresente os resultados numa tabela comparativa, bem como o processo de cálculo. Que conclusões pode tirar?

Note que: 1kbits de dados a transmitir são 1024 bits e um débito de 1kbps são 1000 bits por segundo.

Para um ficheiro (F) de 0.1 Gbits, $u_s = 1$ Gbps, $d_i = 100$ Mbps temos os seguintes resultados.

Tempo de distribuição de um ficheiro num modelo cliente-servidor é dado por:

 $D_{C-S} \ge \max \{ NF/u_s, F/d_{min} \}$

 F/d_{min} é um valor constante de 11.264.

N	10	100	1000
D_{C-S}	11.264	112.64	1126.4

Tabela 1.1: Tempo de distribuição Cliente-Servidor

Tempo de distribuição de um ficheiro num modelo peer-to-peer é dado por:

 $D_{P2P} \ge \max \{F/u_s, F/d_{min}, NF/(u_s + \sum u_i)\}$

 ${\cal F}/u_s, \; {\cal F}/d_{min}$ são ambos valores constantes 1.1264 e 11.264, respetivamente.

ſ	$u_i \setminus N$	10	100	1000
ſ	1	1024	1115.2475	1125.2747
ſ	5	220.9627	224.8303	225.2349
ſ	10	111.5248	112.5274	112.6287

Tabela 1.2: Tempo de distribuição P2P

Com base nos resultados obtidos podemos concluir que uma rede P2P apresenta benefícios claros para a distribuição de dados. Como se pôde verificar, a escalabilidade de um serviço cliente-servidor é muito reduzida, visto que a *performance* do serviço deteriora muito rapidamente em função do número (N) de nodos presentes na rede. Enquanto isto uma rede P2P demonstra uma capacidade de escalabilidade elevada, uma vez que a performance da rede pouco é afetada pelo número crescente de nodos.

Uma rede com N nodos de u_i individual de 1 Mbps é muito ineficiente, sendo que, neste caso de estudo, o serviço cliente/servidor seria mais eficaz para uploads dessa ordem de grandeza.

Desta forma, podemos concluir que não será apenas o número (N) de nodos presentes na rede que afeta a performance desta; as características individuais de cada nodo (upload/download) também têm um peso significativo no tráfego da mesma.

Capítulo 2

Fontes Utilizadas

- https://www.idc-online.com/technical_references/pdfs/data_communications/Client_Server_Network_Advantages_and_Disadvantages.pdf
- https://pediaa.com/difference-between-peer-to-peer-and-client-server-network/
- https://digitalthinkerhelp.com/advantages-disadvantages-characteristics-of-peer-to-pe
- Web browsing: https://www.topattack.com/list/best-internet-browsers-review/
- Multimedia Streaming: https://support.rocketleague.com/hc/en-us/articles/360015564973-Performance-and-Network-Graphs-Steam-Only-
- VoIP: https://www.cloudtalk.io/blog/voip-call-quality-7-best-ways-for-improving-perfo
- File Transfer/sharing: Kurose, Ross, "Computer Networking: A Top-Down Approach", 7th Ed.
- Interactive Games: Kurose, Ross, "Computer Networking: A Top-Down Approach", 7th Ed.
- Video conferencing: https://support.zoom.us/hc/en-us/articles/201362023

https://support.zoom.us/hc/en-us/articles/202920719-Meeting-and-phone-statistics