Parallel Execution of Workflows Driven by a Distributed Database Management System

Renan Souza1, Vítor Silva1, Daniel de Oliveira², Patrick Valduriez³, Alexandre A. B. Lima1, Marta Mattoso1 Federal University of Rio de Janeiro, Brazil - ²Fluminense Federal University, Brazil - ³INRIA, France {renanfs,silva,assis,marta}@cos.ufrj.br, danielcmo@ic.uff.br, patrick.valduriez@inria.fr

1. INTRODUCTION

SC15

SCENARIO

- Large-scale scientific simulations are complex Huge amounts of data are manipulated Executions take long time HPC is required
- Simulations are composed of chained applications with a dataflow in
- Workflow Management System (SWfMS) Modeled as data-centric workflows . Managed by a Scientific
- > Large solution space is explored by varying parameters (Parameter Each computation of parameters is represented by a task • Many Task
- Computing (MTC) parallelism DATA MANAGEMENT
- Runtime data analyses are extremely important Data management is
- Three types of data are expected to be managed by a SWfMS: ✓ Provenance Data • Performance Data • Domain-specific Data
- Storing these data using a Database Management System (DBMS) at MOTIVATION
- runtime enables powerful runtime analytical capabilities ✓ Execution Monitoring • Anticipated result analyses • User steering

•

 $\langle \phi \rangle$

SciCumulus SciCumulus

We ran the experiments on

DDBMS, was utilized

provenance at runtime MySQL Cluster, an in-memory uses a Centralized DBMS to store We modified the architecture of

SciCumulus (SCC), a SWfMS that

tasks to be executed ve feedback about executed tasks ute tasks' status to "FINISHED" save provenance

Relying on a Centralized DBMS + MPI

Relying on a DDBMS only

* Grid'5000

. SCHEDULING COMPARISON

2. PROBLEM & OBJECTIVE

Slv 6. 1.

equest work eceive tasks

- SWfMS that use a DBMS at runtime rely on a Centralized DBMS,
- Trade-off: Analytical capabilities vs. Performance in a large scenario jeopardizing performance
- Our objective is to deliver good performance without abdicating runtime analytical capabilities in large-scale simulations

passing

Application code needs message DBMS being used to mainly store

DDBMS being used support parallelism a Application code is complexity is outsourced

ed to both and store simpler,

120

240 Cores

480

960

22 min

cores).

(<u>E</u> 4.1 SQL update L' sou select next K

te retrieved tasks tasks' status to "FINISHED"

144 min(2h 24min)

average each)

Execution Time -d-SCC -Ideal

(ready tasks s' status to "RUNNING

3. RESEARCH DESIGN & METHODOLOGY **SOLUTION:** Parallel Execution Driven by a Distributed DBMS (DDBMS)

Performance issues: Centralized Data Management

- C. DBMS struggles when dealing with simultaneous requests (mainly writes) from many clients
- A central (master) node is needed so it will only node able to access the database be the
- Contention at the DBMS is alleviated, but not at the
- The master is responsible for scheduling among all slaves via message passing

handling concurrency issues Application code becomes

- more complex for tasks master node database) slave
- Utilization of a DDBMS to support both parallel execution management and runtime provenance data gathering
- Specialized in distributed concurrency control in the presence of multiple simultaneous requests
- A central node for tasks scheduling is no longer necessary
- Such responsibility is transferred to the DDBMS

(§

- Application code related to message passing is reduced and mostly outsourced to a specialized system
- Regarding provenance data gathering during execution, DDBMS have the same abilities as centralized DBMS, maintaining analytical capabilities at runtime

analytical capabilities at runtime

S S

Scan it!

6. CONCLUSIONS

Utilization of an in-memory DDBMS to support parallel execution and runtime provenance gathering in workflow systems

D-SCC Architecture

- Good performance on a 1,000-cores cluster maintaining enhanced analytical capabilities at runtime
- Over 80% of efficiency and 90% of gains comparing with an architecture that relies on a Centralized DBMS.
- FUTURE WORK

Fine-tuning of d-SCC exploring core

- Improve load balance and hardware

5. EXPERIMENTAL EVALUATION Time (min) 100 **Execution Time Comparison** ■d-SCC SCC of gains for 1s More than 90% 1008 cores in 30k tasks relation to SCC tasks cost on average in

REFERENCES

ACKNOWLEDGMENTS

Work partially funded by CNPq, FAPERJ and Inria (MUSIC and HOSCAR projects) and performed for P. Valduriez) in the context of the Computational Biology Institute (WWW.IDC-montpeller.ft). Experiments were carried out using the Grid'5000

