Mathematics in R Markdown:: CHEAT SHEET

Thank you for reading the new cheatsheets about mathematics for R! These cheatsheets have an important job:

equation: $e^{i\pi} = 0$

equation block: \$\$E = mc^{2}\$\$

equation: $e^{i\pi}+1=0$ equation block:

 $E = mc^2$

Vector

Mod

\vec{a} $ec{a}$

 $f(\mathbf{x})$

a \equiv b \pmod n

 $f(\mathbf{x})$

 $a \equiv b \pmod{n}$

Calculus

 $x \cdot prime$ \int f(x) dx

 $\left(\int_{0}^{\infty} f(x)f(y)dxdy \right)$

 $\int \int dx$

\int_0^1 x dx \nabla J

\frac{\part f}{\part x}

$\int_{0}^{x} f(x)dx$
$\iint f(x)f(y)dxdy$
$\oint f(x)dx$
$\int_0^1 x dx$
abla J
$rac{\partial f}{\partial x}$

Limit

 $\lim_{n\to\infty} a_n$

 $\lim_{n o +\infty} a_n$

Arrows

\rightarrow \rightarrow \uparrow \leftarrow \leftarrow \downarrow \leftrightarrow \updownarrow **\Rightarrow** \Rightarrow \Uparrow 介 **\Downarrow \Leftarrow** \Leftarrow 1 \Leftrightarrow **\Updownarrow**

 \mapsto

 \rightarrow

 \rightleftharpoons

Space

a\! b

ab

ab

ab

a\, b

ab

a\: b

ab

a\; b

a b

a\quad b

a\qquad\b

a b

\longrightarrow
\longleftarrow
\longleftrightarrow
\Longrightarrow
\Longleftarrow
\Longleftrightarrow
\mapsto
\longmapsto
\hookleftarrow
\hookrightarrow
\rightharpoonup
\leftharpoondown
\rightleftharpoons
\leftharpoonup
\rightharpoondown
\leadsto
\nearrow
\searrow
\swarrow
\nwarrow

Logistics

\because \therefore \forall \exist

∴ ∀ ∃

\vee \wedge \bigvee \bigwedge

Trigonometric

 \sin \sin cos \cos tan\tan cot \cot sec \sec CSC \csc \perp \bot _ \angle 45° 45^\circ

$\ln a + b$ $\ln a + b$ $\log_a b$

Log

 $\lg\{a+b\}$ $\lg a+b$

Set

Ø \emptyset Ø \varnothing \in \in \ni \ni ∉ \notin \subset \subset \supset \supset $\not\subset$ \not\subset \subseteq \subseteq \subsetneq \supseteq \supsetea \cup \cup \bigcup \cap \cap \bigcap \uplus \forall \forall \biguplus \sqsubset \sqsupset \sqcap \sqsubseteq \Box \sqsupseteq \vee \vee \wedge Λ

\setminus

\neg

Relation

\leq \leq \geq \equiv \models \models \prec \prec \succ \sim \sim \perp \perp \leq \preceq \succeq \simeq \simeq \mid]]/ \ll >> \gg \asymp \asymp \parallel \approx \approx \cong \cong \neq \neq \doteq $\dot{=}$ \propto \propto \bowtie \bowtie \Join \bowtie \smile \frown \vdash

Operator

\pm

\mp

\div

\times

* \ast \star \mid \nmid \circ 0 \bullet \cdot \wr \Diamond \diamond \Diamond **\Diamond** Δ \triangle \triangle \bigtriangleup ∇ \bigtriangledown \triangleleft \triangleleft \triangleright \triangleright \triangleleft \lhd \triangleright \rhd \leq \unlhd \geq \unrhd 0 \circ \bigcirc \odot \bigcirc \odot \odot \bigodot 0 \oslash \ominus \otimes \ominus \otimes \otimes \bigotimes \oplus \oplus \oplus \bigoplus \dagger \ddagger ‡

 \pm

干

 \times

÷

Others
\aleph
\hbar
\imath
\jmath

X

 \hbar

 \imath

J

 ℓ

Ø

R

I

 Ω

Т

 \perp

ڄ

 \Diamond

 \Diamond

R Studio

\imath
\jmath
\ell
\wp
\Re
\Im
\mho
\surd
\top
\bot
\flat
\natural

\sharp

\Box

\backslash

\clubsuit

\heartsuit

\spadesuit

\diamondsuit

Sum & Prod

 $\sum_{i=0}^{n} x_i$

\prod_{i = 0}^{n}x_i

 $\prod_{i=0}^n x_i$

Sqrt

\amalg

 $\sqrt{a + b}$ $\sqrt[n]{a + b}$

П

 $\sqrt{a+b}$

 $\sqrt[n]{a+b}$

\dashv

 \dashv

Mathematics in R Markdown:: CHEAT SHEET

R Studio

Multiple lines

y =
\begin{cases}
-x, \quad x\leq 0 \\
x, \quad x > 0
\end{cases}

$$y = \left\{ egin{array}{ll} -x, & x \leq 0 \ x, & x > 0 \end{array}
ight.$$

$\label{left} $$ \left\{ \begin{array}{l} \left\{ 11\right\} x_{11} + a_{12}x_{12} + a_{13}x_{13} = b_1 \right\} \\ a_{11}x_{11} + a_{12}x_{12} + a_{13}x_{13} = b_1 \\ a_{21}x_{21} + a_{22}x_{22} + a_{23}x_{23} = b_2 \\ a_{31}x_{31} + a_{32}x_{32} + a_{33}x_{33} = b_3 \\ \left\{ a_{11}x_{13} + a_{12}x_{13} + a_{13}x_{13} + a_{13}x_$

$$\left\{egin{array}{l} a_{11}x_{11}+a_{12}x_{12}+a_{13}x_{13}=b_1\ a_{21}x_{21}+a_{22}x_{22}+a_{23}x_{23}=b_2\ a_{31}x_{31}+a_{32}x_{32}+a_{33}x_{33}=b_3 \end{array}
ight.$$

\left\{
\begin{aligned}
2x+3y&=34\\
x+4y&=25
\end{aligned}
\right.

$$\begin{cases} 2x + 3y = 34 \\ x + 4y = 25 \end{cases}$$

 $\boxed{a^2+b^2 = c^2}$

$$a^2 + b^2 = c^2$$

$$\mathop{\arg\max}_{x \in S \subseteq X} f(x) := \{x \mid x \in S \land \forall y \in S : f(y) \leq f(x)\}.$$

Matrix

\begin{matrix}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 9
\end{matrix}

\left(
\begin{matrix}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 9
\end{matrix}
\right)

\left[
\begin{matrix}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 9
\end{matrix}
\right]

\left\{
\begin{matrix}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 9
\end{matrix}
\right\}

\left(
\begin{array}{c|cc}
1 & 2 & 3 \\ \hline
4 & 5 & 6 \\
7 & 8 & 9
\end{array}
\right)

Parenthese

 $$$ \left(\frac{1}{x}\right) [\frac{1}{x}] \left(\frac{1}{x} \right) \left(\frac$

$$(\frac{1}{x})[\frac{1}{x}]\left(\frac{1}{x}\right)\left[\frac{1}{x}\right]\langle,\rangle|,|\parallel,\parallel\{,\}$$

 $\Bigg(\Big(\Big(\Big(\Big)\Big)\Bigg)\Bigg)$

$$\left(\left(\left(\left((x)\right)\right)\right)\right)$$

Frac

\frac{a}{b}

 $\frac{a}{b}$

 $x = a_0 + cfrac\{1^2\}\{a_1 + cfrac\{2^2\}\{a_2 + cfrac\{3^2\}\{a_3 + cdots\}\}\}$

$$x = a_0 + \frac{1^2}{a_1 + \frac{2^2}{a_2 + \frac{3^2}{a_3 + \dots}}}$$

Matrix

\left(
\begin{matrix}
a_{11} & a_{12} & \cdots & a_{1n}\\
a_{21} & a_{22} & \cdots & a_{2n}\\
\vdots & \vdots & \ddots & \vdots \\
a_{n1} & a_{n2} & \cdots & a_{nn}\\
\end{matrix}
\right)

Greek

			WANTED THE PROPERTY OF
\Alpha	A	\alpha	α
\Beta	В	\beta	β
\Gamma	Γ	\gamma	γ
\Delta	Δ	\delta	δ
\Epsilon	${f E}$	\epsilon	ϵ
		\varepsilon	ε
∖Zeta	\mathbf{Z}	\zeta	ζ
\Eta	\mathbf{H}	\eta	η
\Theta	Θ	\theta	θ
\lota	I	\iota	ι
\Kappa	\mathbf{K}	\kappa	κ
\Lambda	Λ	\lambda	λ
\Mu	\mathbf{M}	\mu	μ
\Nu	\mathbf{N}	\nu	ν
\Xi	Ξ	\xi	ξ
\Omicron	O	\omicron	0
\Pi	Π	\pi	π
\Rho	P	\rho	ρ
\Sigma	Σ	\sigma	σ
\Tau	\mathbf{T}	\tau	au
\Upsilon	Υ	\upsilon	v
\Phi	Φ	\phi	ϕ
		\varphi	φ
\Chi	\mathbf{X}	\Chi	X
\Psi	Ψ	\Psi	Ψ
\Omega	Ω	\Omega	Ω

Superscribe Subscribe

a_{i}	a_i	\check{a}	\check{a}
a^{i}	a^i	\breve{a}	$reve{a}$
\bar{a}	\bar{a}	\tilde{a}	$ ilde{a}$
\acute{a}	$cute{a}$	\vec{a}	$ec{a}$
\breve{a}	$reve{a}$	\overrightarrow{x}	\overrightarrow{x}
\grave{a}	\grave{a}	\overline{x+y}	$\overline{x+y}$
\dot{a}	\dot{a}	\underline{x+y}	x + y
\ddot{a}	\ddot{a}		∞ + 9
$\det {\det x}$	$\dot{\dot{x}}$	\overbrace{x+y}	$\widehat{x+y}$
\hat{a}	\hat{a}	\underbrace{x+y}	x + y
\widehat{xy}	\widehat{xy}		