International TOR Rectifier

2N7632UC IRHLUC7670Z4

RADIATION HARDENED 60V, Combination 1N-1P-CHANNEL LOGIC LEVEL POWER MOSFET TECHNOLOGY SURFACE MOUNT (LCC-6)

Product Summary

· · · · · · · · · · · · · · · · · · ·					
Part Number	Radiation Level	R _{DS(on)}	I _D	CHANNEL	
IRHLUC7670Z4	100K Rads (Si)	0.75Ω	0.89A	N	
INFLUC/6/024	TOUR Haus (SI)	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Р		
IRHLUC7630Z4	300K Rads (Si)	0.75Ω	0.89A	N	
INI ILUG/03024	Sour haus (SI)	1.60Ω	-0.65A	Р	

International Rectifier's R7TM Logic Level Power MOSFETs provide simple solution to interfacing CMOS and TTL control circuits to power devices in space and other radiation environments. The threshold voltage remains within acceptable operating limits over the full operating temperature and post radiation. This is achieved while maintaining single event gate rupture and single event burnout immunity.

The device is ideal when used to interface directly with most logic gates, linear IC's, micro-controllers, and other device types that operate from a 3.3-5V source. It may also be used to increase the output current of a PWM, voltage comparator or an operational amplifier where the logic level drive signal is available.

Features:

- 5V CMOS and TTL Compatible
- Low RDS(on)
- Fast Switching
- Single Event Effect (SEE) Hardened
- Low Total Gate Charge
- Simple Drive Requirements
- Ease of ParallelingHermetically Sealed
- Light Weight

Absolute Maximum Ratings (Per Die)

Pre-Irradiation

	Parameter	N-Channel	P-Channel	Units
ID@ VGS = ±4.5V, TC= 25°C	Continuous Drain Current	0.89	-0.65	
ID@ VGS = ±4.5V, TC=100°C	Continuous Drain Current	0.56	-0.41	Α
IDM	Pulsed Drain Current ①	3.56	-2.6	
P _D @ T _C = 25°C	Max. Power Dissipation	1.0	1.0	W
	Linear Derating Factor	0.01	0.01	W/°C
VGS	Gate-to-Source Voltage	±10	±10	V
EAS	EAS Single Pulse Avalanche Energy		34 ⑦	mJ
IAR	Avalanche Current ①	0.89	-0.65	Α
EAR	Repetitive Avalanche Energy ①	0.1	0.1	mJ
dv/dt	Peak Diode Recovery dv/dt	4.7 ③	-5.6 ®	V/ns
TJ	Operating Junction	-55 to	150	
TSTG	Storage Temperature Range			°C
	Pckg. Mounting Surface Temp.	300 (fc		
	Weight	0.2 (Ty	g	

Electrical Characteristics For N-Channel Die @Tj = 25°C (Unless Otherwise specified)

	Parameter	Min	Тур	Max	Units	Test Conditions
BVDSS	Drain-to-Source Breakdown Voltage	60	_	_	V	VGS = 0V, ID = 250μA
ΔBV _{DSS} /ΔT _J	Temperature Coefficient of Breakdown Voltage	_	0.07	_	V/°C	Reference to 25°C, I _D = 1.0mA
RDS(on)	Static Drain-to-Source On-State Resistance	_	_	0.75	Ω	VGS = 4.5V, ID = 0.56A
VGS(th)	Gate Threshold Voltage	1.0	_	2.0	V	V _{DS} = V _{GS} , I _D = 250μA
ΔVGS(th)/ΔTJ	Gate Threshold Voltage Coefficient	_	-4.5	l —	mV/°C	
9fs	Forward Transconductance	0.25	_	_	S	V _{DS} = 10V, I _{DS} = 0.56A ④
IDSS	Zero Gate Voltage Drain Current	_	_	1.0		V _{DS} = 48V ,V _{GS} = 0V
		_	_	10	μА	V _{DS} = 48V, V _{GS} = 0V, T _J =125°C
IGSS	Gate-to-Source Leakage Forward	_	_	100		V _{GS} = 10V
IGSS	Gate-to-Source Leakage Reverse	_	_	-100	nA	Vgs = -10V
Qg	Total Gate Charge	_	_	3.6		Vgs = 4.5V, ID = 0.89A
Qgs	Gate-to-Source Charge	_	_	1.5	nC	VDS = 30V
Q _{gd}	Gate-to-Drain ('Miller') Charge	_	_	1.8		
^t d(on)	Turn-On Delay Time	_	_	8.0		$V_{DD} = 30V, I_{D} = 0.89A,$
t _r	Rise Time	_	_	15	ns	$V_{GS} = 5.0V$, $R_{G} = 24\Omega$
[†] d(off)	Turn-Off Delay Time		_	30		
tf	Fall Time	_	_	12		
Ls+Lp	Total Inductance	_	33	_	nH	Measured from the center of drain pad to center of source pad
C _{iss}	Input Capacitance	_	145	_		VGS = 0V, VDS = 25V
Coss	Output Capacitance	_	43	_	pF	f = 1.0MHz
C _{rss}	Reverse Transfer Capacitance	_	2.5	_		
Rg	Gate Resistance	_	8.2		Ω	f = 1.0MHz, open drain

Source-Drain Diode Ratings and Characteristics (Per N Channel Die)

	Parameter		Min	Тур	Max	Units	Test Conditions
Is	Continuous Source Current (Body Diode)		_	_	0.89	_	
ISM	Pulse Source Current (Body Diode) ①		_	_	3.56	Α	
VSD	Diode Forward Voltage		_	_	1.2	V	$T_j = 25^{\circ}C$, $I_S = 0.89A$, $V_{GS} = 0V$ 4
t _{rr}	Reverse Recovery Time		_	_	65	ns	$T_j = 25^{\circ}C$, $I_F = 0.89A$, $di/dt \le 100A/\mu s$
QRR	Reverse Recovery Charge				V _{DD} ≤ 25V ④		
ton	Forward Turn-On Time	Intrinsic turn-on time is negligible. Turn-on speed is substantially controlled by $L_{\mbox{\scriptsize S}}$ + $L_{\mbox{\scriptsize D}}$.					

Thermal Resistance (Per N Channel Die)

	Parameter	Min	Тур	Max	Units	Test Conditions
RthJA	Junction-to-Ambient	_	_	125	°C/W	Typical socket mount

Note: Corresponding Spice and Saber models are available on International Rectifier Website. For footnotes refer to the last page

Pre-Irradiation

Electrical Characteristics For P-Channel Die @Tj = 25°C (Unless Otherwise specified)

	Parameter	Min	Тур	Max	Units	Test Conditions
BVDSS	Drain-to-Source Breakdown Voltage	-60	_	_	V	VGS = 0V, ID = -250μA
ΔBV _{DSS} /ΔT _J	Temperature Coefficient of Breakdown Voltage	_	-0.06	_	V/°C	Reference to 25°C, I _D = -1.0mA
RDS(on)	Static Drain-to-Source On-State Resistance	_	_	1.60	Ω	VGS = -4.5V, ID = -0.41A
VGS(th)	Gate Threshold Voltage	-1.0	_	-2.0	V	$V_{DS} = V_{GS}$, $I_{D} = -250\mu A$
ΔVGS(th)/ΔTJ	Gate Threshold Voltage Coefficient	_	3.6	_	mV/°C	
9fs	Forward Transconductance	0.5	_	_	S	V _{DS} = -10V, I _{DS} = -0.41A 4
IDSS	Zero Gate Voltage Drain Current	_	_	-1.0		V _{DS} = -48V ,V _{GS} = 0V
		_	—	-10	μΑ	$V_{DS} = -48V$,
						$V_{GS} = 0V$, $T_{J} = 125$ °C
IGSS	Gate-to-Source Leakage Forward	_	_	-100		VGS = -10V
IGSS	Gate-to-Source Leakage Reverse	_	_	100	nA	VGS = 10V
Qg	Total Gate Charge	_	_	3.6		Vgs = -4.5V, ID = -0.65A
Qgs	Gate-to-Source Charge		_	1.5	nC	$V_{DS} = -30V$
Q _{gd}	Gate-to-Drain ('Miller') Charge	_	—	1.8		
^t d(on)	Turn-On Delay Time	_	_	23		$V_{DD} = -30V$, $I_{D} = -0.65A$,
t _r	Rise Time	_	_	22	ns	$V_{GS} = -5.0V, R_{G} = 24\Omega$
^t d(off)	Turn-Off Delay Time	_	_	32		
tf	Fall Time	_	_	26		
Ls+LD	Total Inductance	_	33	_	nH	Measured from the center of drain pad to center of source pad
C _{iss}	Input Capacitance	_	147	_		VGS = 0V, VDS = -25V
Coss	Output Capacitance	_	46	_	pF	f = 1.0MHz
C _{rss}	Reverse Transfer Capacitance	_	8.1	_		
Rg	Gate Resistance	_	52	_	Ω	f = 1.0MHz, open drain

Source-Drain Diode Ratings and Characteristics (Per P Channel Die)

	Parameter		Min	Тур	Max	Units	Test Conditions
Is	Continuous Source Current (Body Diode)			_	-0.65		
ISM	Pulse Source Current (Body Diode) ①		_	_	-2.6	Α	
V _{SD}	Diode Forward Voltage		_	_	-5.0	V	$T_j = 25^{\circ}C$, $I_S = -0.65A$, $V_{GS} = 0V$ @
t _{rr}	Reverse Recovery Time		_	_	35	ns	Tj = 25°C, IF = -0.65A, di/dt ≤ -100A/μs
QRR	Reverse Recovery Charge		9.8 nC V _{DD} ≤ -25V ④			V _{DD} ≤ -25V ④	
ton	Forward Turn-On Time	ntrinsic turn-on time is negligible. Turn-on speed is substantially controlled by LS + LD.					

Thermal Resistance (Per P Channel Die)

	Parameter	Min	Тур	Max	Units	Test Conditions
R _{th} JA	Junction-to-Ambient	_	_	125	°C/W	Typical socket mount

Note: Corresponding Spice and Saber models are available on International Rectifier Website.

For footnotes refer to the last page

IRHLUC7670Z4, 2N7632UC

International Rectifier Radiation Hardened MOSFETs are tested to verify their radiation hardness capability. The hardness assurance program at International Rectifier is comprised of two radiation environments. Every manufacturing lot is tested for total ionizing dose (per notes 5 and 6) using the TO-39 package. Both pre- and post-irradiation performance are tested and specified using the same drive circuitry and test conditions in order to provide a direct comparison.

Table 1. Electrical Characteristics For N-Channel Device @Tj = 25°C, Post Total Dose Irradiation 56

	Parameter	Upto 300k	K Rads (Si)1	Units	Test Conditions
		Min	Max		
BV _{DSS}	Drain-to-Source Breakdown Voltage	60	_	V	$V_{GS} = 0V, I_{D} = 250\mu A$
V _{GS(th)}	Gate Threshold Voltage	1.0	2.0		$V_{GS} = V_{DS}, I_{D} = 250 \mu A$
IGSS	Gate-to-Source Leakage Forward		100	nA	V _{GS} = 10V
IGSS	Gate-to-Source Leakage Reverse	_	-100		V _{GS} = -10V
IDSS	Zero Gate Voltage Drain Current	_	1.0	μA	V _{DS} = 48V, V _{GS} = 0V
R _{DS(on)}	Static Drain-to-Source 4				
	On-State Resistance (TO-39)	_	0.60	Ω	$V_{GS} = 4.5V, I_{D} = 0.56A$
R _{DS(on)}	Static Drain-to-Source On-state 4 Resistance (LCC-6)	_	0.75	Ω	Vgs = 4.5V, I _D = 0.56A
V _{SD}	Diode Forward Voltage 4	_	1.2	V	$V_{GS} = 0V, I_{D} = 0.89A$

^{1.} Part numbers IRHLUC7670Z4, IRHLUC7630Z4

International Rectifier radiation hardened MOSFETs have been characterized in heavy ion environment for Single Event Effects (SEE). Single Event Effects characterization is illustrated in Fig. a and Table 2.

Table 2. Typical Single Event Effect Safe Operating Area

LET	Energy	Range	VDS (V)						
(MeV/(mg/cm ²))	(MeV)	(µm)	@VGS= 0V	@VGS= -2V	@VGS= -4V	@VGS= -5V	@VGS= -6V	@VGS= -7V	
38 ± 5%	300 ± 7.5%	38 ± 7.5%	60	60	60	60	60	35	
62 ± 5%	355 ± 7.5%	33 ± 7.5%	60	60	60	60	30	-	
85 ± 5%	380 ± 7.5%	29 ± 7.5%	60	60	60	40	-	-	

Fig a. Typical Single Event Effect, Safe Operating Area

For footnotes refer to the last page

International Rectifier Radiation Hardened MOSFETs are tested to verify their radiation hardness capability. The hardness assurance program at International Rectifier is comprised of two radiation environments. Every manufacturing lot is tested for total ionizing dose (per notes 5 and 6) using the TO-39 package. Both pre- and post-irradiation performance are tested and specified using the same drive circuitry and test conditions in order to provide a direct comparison.

Table 1. Electrical Characteristics For P-Channel Device @Tj = 25°C, Post Total Dose Irradiation ®®

	Parameter	Upto 300k	Rads (Si)1	Units	Test Conditions
		Min	Max		
BV _{DSS}	Drain-to-Source Breakdown Voltage	-60		V	$V_{GS} = 0V, I_{D} = -250\mu A$
V _{GS(th)}	Gate Threshold Voltage	-1.0	-2.0		$V_{GS} = V_{DS}, I_{D} = -250 \mu A$
IGSS	Gate-to-Source Leakage Forward	_	-100	nA	V _{GS} = -10V
IGSS	Gate-to-Source Leakage Reverse	_	100		V _{GS} = 10V
IDSS	Zero Gate Voltage Drain Current	_	-1.0	μΑ	V _{DS} = -48V, V _{GS} = 0V
R _{DS(on)}	Static Drain-to-Source 4				
	On-State Resistance (TO-39)	_	1.40	Ω	$VGS = -4.5V, I_D = -0.41A$
R _{DS(on)}	Static Drain-to-Source On-state 4 Resistance (LCC-6)	_	1.60	Ω	VGS = -4.5V, I _D = -0.41A
V _{SD}	Diode Forward Voltage 4	_	-5.0	V	$V_{GS} = 0V, I_{D} = -0.65A$

^{1.} Part numbers IRHLUC7670Z4, IRHLUC7630Z4

International Rectifier radiation hardened MOSFETs have been characterized in heavy ion environment for Single Event Effects (SEE). Single Event Effects characterization is illustrated in Fig. a and Table 2.

Table 2. Typical Single Event Effect Safe Operating Area

LET	Energy	Range		VDS (V)						
(MeV/(mg/cm ²))	(MeV)	(µm)	@VGS= 0V	@VGS= 2V	@VGS= 4V	@VGS= 5V	@VGS= 6V	@VGS= 7V		
38 ± 5%	300 ± 7.5%	38 ± 7.5%	-60	-60	-60	-60	-60	-50		
62 ± 5%	355 ± 7.5%	33 ± 7.5%	-60	-60	-60	-60	-60	-		
85 ± 5%	380 ± 7.5%	29 ± 7.5%	-60	-60	-60	-60	=	-		

Fig a. Typical Single Event Effect, Safe Operating Area

For footnotes refer to the last page

Fig 1. Typical Output Characteristics

Fig 2. Typical Output Characteristics

Fig 3. Typical Transfer Characteristics

Fig 4. Normalized On-Resistance Vs. Temperature

6

Fig 5. Typical On-Resistance Vs Gate Voltage

Fig 6. Typical On-Resistance Vs Drain Current

Fig 7. Typical Drain-to-Source Breakdown Voltage Vs Temperature

Fig 8. Typical Threshold Voltage Vs Temperature

Fig 9. Typical Capacitance Vs. Drain-to-Source Voltage

Fig 11. Typical Source-to-Drain Diode Forward Voltage

 $V_{\mbox{SD}}$, Source-to-Drain Voltage (V)

Fig 10. Typical Gate Charge Vs. Gate-to-Source Voltage

Fig 12. Maximum Drain Current Vs. Case Temperature

48 E_{AS} , Single Pulse Avalanche Energy (mJ) Р TOP 0.40A 40 0.56A воттом 0.89A 32 24 16 8 0 75 25 50 100 150 Starting T_J , Junction Temperature (°C)

Fig 13. Maximum Safe Operating Area

Fig 14. Maximum Avalanche Energy Vs. Drain Current

Fig 15. Maximum Effective Transient Thermal Impedance, Junction-to-Ambient

IRHLUC7670Z4, 2N7632UC

N-Channel Die 1

 $V_{(BR)DSS}$ IAS

Fig 16a. Unclamped Inductive Test Circuit

Fig 16b. Unclamped Inductive Waveforms

Fig 17a. Basic Gate Charge Waveform

Fig 17b. Gate Charge Test Circuit

Fig 18a. Switching Time Test Circuit

Fig 18b. Switching Time Waveforms

10

Fig 19. Typical Output Characteristics

Fig 20. Typical Output Characteristics

Fig 21. Typical Transfer Characteristics

Fig 22. Normalized On-Resistance Vs. Temperature

Fig 23. Typical On-Resistance Vs Gate Voltage

Fig 25. Typical Drain-to-Source Breakdown Voltage Vs Temperature

Fig 24. Typical On-Resistance Vs Drain Current

Fig 26. Typical Threshold Voltage Vs Temperature

12

Fig 27. Typical Capacitance Vs.Drain-to-Source Voltage

Fig 29. Typical Source-Drain Diode Forward Voltage

Fig 28. Typical Gate Charge Vs. Gate-to-Source Voltage

Fig 30. Maximum Drain Current Vs. Case Temperature

80 E_{AS} , Single Pulse Avalanche Energy (mJ) Р 70 TOP -0.29A -0.41A 60 воттом -0.65A 50 40 30 20 10 0 25 100 75 125 150 Starting T_{.J} , Junction Temperature (°C)

Fig 31. Maximum Safe Operating Area

Fig 32. Maximum Avalanche Energy Vs. Drain Current

Fig 33. Maximum Effective Transient Thermal Impedance, Junction-to-Ambient

IAS V(BR)DSS

Fig 34a. Unclamped Inductive Test Circuit

Fig 34b. Unclamped Inductive Waveforms

Current Regulator
Same Type as D.U.T.

12V 30KΩ

D.U.T.

VGS

-3mA

-3m

Fig 35a. Basic Gate Charge Waveform

Fig 35b. Gate Charge Test Circuit

Fig 36a. Switching Time Test Circuit

Fig 36b. Switching Time Waveforms

IRHLUC7670Z4, 2N7632UC

Pre-Irradiation

Footnotes:

- Repetitive Rating; Pulse width limited by maximum junction temperature.
- ② $V_{DD} = 25V$, starting $T_{J} = 25$ °C, L = 50.4mH, Peak $I_{L} = 0.89$ A, $V_{GS} = 10V$
- $\label{eq:local_spin_spin} \begin{array}{ll} \text{ (3)} & \text{ISD} \leq \text{0.89A, di/dt} \leq \text{200A/}\mu\text{s,} \\ & \text{VDD} \leq \text{60V, TJ} \leq \text{150°C} \\ \end{array}$
- 4 Pulse width \leq 300 μ s; Duty Cycle \leq 2%

- **⑤** Total Dose Irradiation with VGS Bias.
- ±10 volt VGS applied and VDS = 0 during irradiation per MIL-STD-750, method 1019, condition A
- 6 Total Dose Irradiation with Vps Bias.
- ±48 volt V_{DS} applied and V_{GS} = 0 during irradiation per MIL-STD-750, method 1019, condition A
- ⑦ $V_{DD} = -25V$, starting $T_{J} = 25^{\circ}C$, L = 161mH, Peak $I_{L} = -0.65A$, $V_{GS} = -10V$
- $\label{eq:bounds} \$ \mbox{ ISD} \le \mbox{ -0.65A, di/dt} \le -150A/\mu s, \\ \mbox{ VDD} \le -60V, \mbox{ TJ} \le 150^{\circ} \mbox{ C}$

Case Outline and Dimensions — LCC-6

NOTES:

- 1. OUTLINE CONFORMS TO MIL-PRF-19500/255L
- 2. ALL DIMENSIONS ARE SHOWN IN MILLIMETERS (INCHES).
- 3. CONTROLLING DIMENSION: INCH.

DIE 1 (N Ch) DIE 2 (P Ch)

PIN NAME PIN# PIN# PIN NAME DRAIN - 1 DRAIN - 4 - 5 GATE - 2 GATE SOURCE - 6 SOURCE - 3

IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 IR LEOMINSTER: 205 Crawford St., Leominster, Massachusetts 01453, USA Tel: (978) 534-5776

TAC Fax: (310) 252-7903

Visit us at www.irf.com for sales contact information.

Data and specifications subject to change without notice. 10/2010