질문	답변
운영체제의 핵심 기능에 대해 설명해보세요.	운영체제는 컴퓨터 하드웨어와 소프트웨어를 연결하여 사용자에게 편리한 환경을 제공하는 소프트웨어 계층입니다. 추상화를 통해 하드웨어 복잡성을 숨기고, 여러 프로그램이 동시에 실행되는 것을 가능하게 합니다.
운영체제의 추상화가 무엇인가요?	운영체제의 추상화는 하드웨어와 응용 프로그램 사이의 인터페이스를 제공 하여 하드웨어의 복잡성을 숨기고 , 사용자 및 응용 프로그램이 편리하게 자원 을 사용할 수 있도록 하는 개념입니다. 이는 하드웨어의 세부적인 동작을 숨기고, 응용 프로그램이 운영체제가 제공하는 인터페이스를 통해 자원을 요청 하고 사용할 수 있게 합니다. 추상화를 통해 사용자가 자원을 요청하는 방법과 자원이 제공되는 방식을 단순화 하여, 복잡한 하드웨어 구조를 이해하지 않아도 되게끔 합니다. 이를 통해 다양한 응용 프로그램이 효율적으로 하드웨어 자원을 활용할 수 있습니다.
운영체제의 목적은 무엇인가요?	- 컴퓨터 시스템을 편리하게 사용할 수 있는 환경 제공 - 컴퓨터 시스템의 자원 효율적 관리 (CPU, 메모리, I/O 장치 등의 효율적 관리) - 한정된 메모리에서 동시에 프로그램이 돌아가면 얼만큼씩 할당할 것인가 메모리 적절히 분배 주어진 자원으로 최대한의 성능을 내도록 => 효율성
	특정 / 사용자 프로그램의 지나친 불이익 발생하지 않도록 => 형평성 효율성 극대화가 가장 중요한 목표 > 그렇지 불이익 발생은 No
멀티태스킹을 가능하게 하는 운영체제의 주요 기능은 무엇인 가요?	운영체제는 CPU 스케줄링을 통해 멀티태스킹을 관리합니다. 이를 통해 여러 프로그램이 동시에 실행되는 것처럼 보이도록 하고, 각 프로그램에 적절한 CPU 자원을 할당하여 효율적으로 프로그램이 작동하게 합니다.
CPU 스케줄링에 대해 자세히 설명해주세요.	CPU 스케줄링은 운영체제가 CPU 자원을 관리하는 방법을 말합니다. 프로세스가 CPU를 사용할 수 있는 시간을 할당하고, 이를 통해 프로그램들이 공정하게 실행되도록 합니다.
디스크 스케줄링의 목적과 그 중요성은 무엇인가요?	디스크 스케줄링은 디스크 I/O 작업을 관리 하는 것으로, 디스크의 효율적인 활용 을 목적으로 합니다. 이는 프로그램이 디스크 작업을 기다리는 동안 CPU가 다른 작업을 처리 할 수 있도록 하여 전체적인 시스템 성능을 향상 시킵니다.
캐싱과 인터럽트가 운영체제에서 어떻게 사용되며, 어떤 역할을 하는지 설명해주세요.	캐싱은 메모리를 이용하여 중간 데이터를 보관하는 것으로, 빠른 CPU의 속도와 느린 I/O 장치 간의 속도 차이를 극복하는 데 사용됩니다. (목적:빠른 CPU와 느린 I/O 장치간 속도차 극복) 인터럽트는 CPU가 프로그램을 실행하다가 예외 상황이 발생했을 때 CPU에게 알려 처리를 요청하는 메커니즘입니다.

프로세스 상태와 프로세스 간 전환에 대해 설명해보세요.	프로세스 상태는 CPU에서 실행 중인 프로세스의 상태를 말하고 준비/실행/대기/종료 4단계로 나눠질 수 있습니다. 프로세스 간 전환이 발생할 때는 현재 CPU에서 실행 중인 프로세스를 다른 프로세스로 바꿔야 할 때 발생합니다.
운영체제가 없다면 컴퓨터 시스템이 어떻게 작동할까요?	운영체제가 없다면 사용자가 직접 하드웨어를 제어 하고 프로그램을 실행 해야 하며, 자원 관리와 프로세스 간의 충돌 을 직접 해결해야 할 것입니다.
다양한 운영체제 중에서 각각의 장단점을 언급해볼 수 있나 요 ?	Windows는 사용 편의성 과 광범위한 호환성 이 장점이지만, 안정성과 보안 측면에서 취약점이 있을 수 있습니다. Linux는 안정성 과 커스터마이징 가능성이 높지만, 사용자 친화적이지 않을 수 있습니다. macOS는 사용자 친화적이고 안정적이지만, 높은 가격과 제한된 하드웨어 호환성 이 단점일 수 있습니다.