Mixtures of Gaussians

Sargur Srihari srihari@cedar.buffalo.edu

9. Mixture Models and EM

- Mixture Models Overview
- 1. K-Means Clustering
- 2. Mixtures of Gaussians
- 3. An Alternative View of EM
- 4. The EM Algorithm in General

Topics in Mixtures of Gaussians

- Goal of Gaussian Mixture Modeling
- Latent Variables
- Maximum Likelihood
- EM for Gaussian Mixtures

Goal of Gaussian Mixture Modeling Srihari

A linear superposition of Gaussians in the form

$$\left| p(oldsymbol{x}) = \sum_{k=1}^K oldsymbol{\pi}_k N(oldsymbol{x} \mid oldsymbol{\mu}_k, oldsymbol{\Sigma}_k)
ight|$$

- Goal of Modeling:
 - Find maximum likelihood parameters π_k , μ_k , Σ_k
 - Examples of data sets and models

Each data point is associated with a subclass k with probability π_k

GMMs and Latent Variables

- A GMM is a linear superposition of Gaussian components
 - Provides a richer class of density models than the single Gaussian
- We formulate a GMM in terms of discrete latent variables
 - This provides deeper insight into this distribution
 - Serves to motivate the EM algorithm
 - Which gives a maximum likelihood solution to no. of components and their means/covariances

Latent Variable Representation

Linear superposition of K Gaussians:

$$p(\boldsymbol{x}) = \sum_{k=1}^{K} \boldsymbol{\pi}_{k} N(\boldsymbol{x} \mid \boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k})$$

- Introduce a K-dimensional binary variable \boldsymbol{z}
 - Use 1-of-K representation (one-hot vector)
 - Let $z = z_1,...,z_K$ whose elements are

$$z_k \in \{0,1\} \text{ and } \sum z_k = 1$$

• K possible states of z corresponding to K components

Joint Distribution

 Define joint distribution of latent variable and observed variable

$$-p(\boldsymbol{x},\boldsymbol{z})=p(\boldsymbol{x}|\boldsymbol{z}) \bullet p(\boldsymbol{z})$$

- -x is observed variable
- -z is the hidden or missing variable
- Marginal distribution p(z)
- Conditional distribution $p(\boldsymbol{x}|\boldsymbol{z})$

Graphical Representation of Mixture Model

• The joint distribution p(x,z) is represented in the form p(z)p(x|z)

Latent variable $z=[z_1,...z_K]$ represents subclass

Observed variable x

- We now specify marginal p(z) and conditional p(x|z)
 - Using them we specify p(x) in terms of observed and latent variables

Specifying the marginal p(z)

- Associate a probability with each component z_k
 - Denote $p(z_k=1)=\pi_k$ where parameters $\{\pi_k\}$ satisfy $0 \le \pi_k \le 1$ and $\sum \pi_k = 1$
- Because z uses 1-of-K it follows that

- since $z_k \in \{0,1\}$ and components of z are mutually exclusive and hence are independent

With one component $p(z_1) = \pi_1^{z_1}$

With two components $p(z_1, z_2) = \pi_1^{z_1} \pi_2^{z_2}$

Specifying the Conditional $p(\boldsymbol{x}|\boldsymbol{z})$

- For a particular component (value of z) $p(\boldsymbol{x} \mid z_k = 1) = N(\boldsymbol{x} \mid \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)$
- Thus $p(\boldsymbol{x}|\boldsymbol{z})$ can be written in the form

$$p(\boldsymbol{x} \mid \boldsymbol{z}) = \prod_{k=1}^{K} N(\boldsymbol{x} \mid \boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k})^{z_{k}}$$

– Due to the exponent z_k all product terms except for one equal one

Marginal distribution p(x)

- The joint distribution p(x,z) is given by p(z)p(x|z)
- Thus marginal distribution of x is obtained by summing over all possible states of z to give

$$p(\boldsymbol{x}) = \sum_{\boldsymbol{z}} p(\boldsymbol{z}) p(\boldsymbol{x} \mid \boldsymbol{z}) = \sum_{\boldsymbol{z}} \prod_{k=1}^K \boldsymbol{\pi}^{z_k} N \left(\boldsymbol{x} \mid \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k \right)^{z_k} = \sum_{k=1}^K \boldsymbol{\pi}_k N \left(\boldsymbol{x} \mid \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k \right)$$

- Since z_k ∈ {0,1}
- This is the standard form of a Gaussian mixture

Value of Introducing Latent Variable

- If we have observations $\boldsymbol{x}_1,...,\boldsymbol{x}_N$
- Because marginal distribution is in the form

$$p(\boldsymbol{x}) = \sum_{\boldsymbol{z}} p(\boldsymbol{x}, \boldsymbol{z})$$

- It follows that for every observed data point x_n there is a corresponding latent vector z_n , i.e., its sub-class
- Thus we have found a formulation of Gaussian mixture involving an explicit latent variable
 - We are now able to work with joint distribution $p(\boldsymbol{x}, \boldsymbol{z})$ instead of marginal $p(\boldsymbol{x})$
- Leads to significant simplification through introduction of expectation maximization

12

Another conditional probability (Responsibility)

- In EM p(z | x) plays a role
- The probability $p(z_k=1|\mathbf{x})$ is denoted $\gamma(z_k)$
- From Bayes theorem

$$\begin{split} \gamma(z_k) &\equiv p(z_k = 1 \mid \boldsymbol{x}) = \frac{p(z_k = 1)p(\boldsymbol{x} \mid z_k = 1)}{\displaystyle\sum_{j=1}^{K} p(z_j = 1)p(\boldsymbol{x} \mid z_j = 1)} \\ &= \frac{\pi_k N(\boldsymbol{x} \mid \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)}{\displaystyle\sum_{j=1}^{K} \pi_j N(\boldsymbol{x} \mid \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_j)} \end{split}$$

• View $p(z_k = 1) = \pi_k$ as prior probability of component k $\gamma(z_k) = p(z_k = 1 \mid x)$ as the posterior probability it is also the responsibility that component k takes for explaining the observation x

13

Plan of Discussion

- Next we look at
 - 1. How to get data from a mixture model synthetically and then
 - 2. Given a data set $\{x_1,...x_N\}$ how to model the data using a mixture of Gaussians

Synthesizing data from mixture

Use ancestral sampling

Start with lowest numbered node and draw a sample,

• Generate sample of z, called \hat{z}

 move to successor node and draw a sample given the parent value, etc.

• Then generate a value for \boldsymbol{x} from conditional $p(\boldsymbol{x}|\hat{\boldsymbol{z}})$

• Samples from p(x,z) are plotted according to value of x and colored with value of z

• Samples from marginal p(x) obtained by ignoring values of z

15

Illustration of responsibilities

- Evaluate for every data point
 - Posterior probability of each component

- Responsibility $\gamma(z_{nk})$ is associated with data point ${m x}_n$
- Color using proportion of red, blue and green ink
 - If for a data point $\gamma(z_{n1}) = 1$ it is colored red
 - If for another point $\gamma(z_{n2}) = \gamma(z_{n3}) = 0.5$ it has equal blue and green and will appear as cyan

Maximum Likelihood for GMM

- We wish to model data set $\{x_1,...x_N\}$ using a mixture of Gaussians (N items each of dimension D)
- Represent by $N \times D$ matrix X
 - n^{th} row is given by $oldsymbol{x}_n{}^T$

$$X = \left[egin{array}{c} oldsymbol{x}_1 \ oldsymbol{x}_2 \ oldsymbol{x}_N \end{array}
ight]$$

- Represent N latent variables with N x K matrix Z
 - n^{th} row is given by \boldsymbol{z}_n^T

$$Z = \left[\begin{array}{c} \mathbf{z}_1 \\ \mathbf{z}_2 \\ \mathbf{z}_{\mathrm{N}} \end{array} \right]$$

- Goal is to state the likelihood function
 - so as to estimate the three sets of parameters
 - by maximizing the likelihood

Graphical representation of GMM

- For a set of i.i.d. data points $\{x_n\}$ with corresponding latent points $\{z_n\}$ where n=1,...,N
- Bayesian Network for p(X,Z) using plate notation
 - -NxD matrix X
 - -NxKmatrix Z

Likelihood Function for GMM

Mixture density function is

$$p(\mathbf{x}) = \sum_{\mathbf{z}} p(\mathbf{z}) p(\mathbf{x} \mid \mathbf{z}) = \sum_{k=1}^{K} \pi_k N(\mathbf{x} \mid \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k) \quad \text{Since z has values } \{z_k\} \quad \text{with probabilities } \{\pi_k\}$$

with probabilities $\{\pi_k\}$

Therefore Likelihood function is

$$p(X \mid \boldsymbol{\pi}, \boldsymbol{\mu}, \boldsymbol{\Sigma}) = \prod_{n=1}^{N} \left\{ \sum_{k=1}^{K} \ \boldsymbol{\pi}_{k} N(\boldsymbol{x}_{n} \mid \boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k}) \right\} \quad \text{Product is over the } N \text{ i.i.d. samples}$$

Therefore log-likelihood function is

$$\ln p(X \mid \boldsymbol{\pi}, \boldsymbol{\mu}, \boldsymbol{\Sigma}) = \sum_{n=1}^{N} \ln \left\{ \sum_{k=1}^{K} \boldsymbol{\pi}_{k} N(\boldsymbol{x}_{n} \mid \boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k}) \right\}$$

Which we wish to maximize

A more difficult problem than for a single Gaussian

Maximization of Log-Likelihood

$$\ln p(X \mid \boldsymbol{\pi}, \boldsymbol{\mu}, \boldsymbol{\Sigma}) = \sum_{n=1}^{N} \ln \left\{ \sum_{k=1}^{K} \boldsymbol{\pi}_{k} N(\boldsymbol{x}_{n} \mid \boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k}) \right\}$$

Goal is to estimate the three sets of parameters

$$\pi_{_k}$$
 , $\mu_{_k}$, $\Sigma_{_k}$

- By taking derivatives in turn w.r.t each while keeping others constant
- But there are no closed-form solutions
 - Task is not straightforward since summation appears in Gaussian and logarithm does not operate on Gaussian
- While a gradient-based optimization is possible,
 we consider the iterative EM algorithm

Some issues with GMM m.l.e.

- Before proceeding with the m.l.e. briefly mention two technical issues:
 - 1. Problem of singularities with Gaussian mixtures
 - 2. Problem of Identifiability of mixtures

Problem of Singularities with Gaussian mixtures

- Consider Gaussian mixture
 - components with covariance matrices $\Sigma_k = \sigma_k^{2} I^{p(x)}$
- Data point that falls on a mean $\mu_j = x_n$ will contribute to the likelihood function

$$N(x_n | x_n, \sigma_j^2 I) = \frac{1}{(2\pi)^{1/2}} \frac{1}{\sigma_j}$$
 since $\exp(x_n - \mu_j)^2 = 1$

- As $\sigma_j \rightarrow 0$ term goes to infinity
- Therefore maximization of log-likelihood

$$\ln p(X \mid \boldsymbol{\pi}, \boldsymbol{\mu}, \boldsymbol{\Sigma}) = \sum_{n=1}^{N} \ln \left\{ \sum_{k=1}^{K} \boldsymbol{\pi}_{k} N(\boldsymbol{x}_{n} \mid \boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k}) \right\}$$
 is not well-posed

- Does not happen with a single Gaussian
 - Multiplicative factors go to zero
- Does not happen in the Bayesian approach
- Problem is avoided using heuristics
 - Resetting mean or covariance

One component assigns finite values and other to large value

Multiplicative values Take it to zero

Problem of Identifiability

A density $p(x \mid \theta)$ is identifiable if $\theta \neq \theta'$ then there is an x for which $p(x \mid \theta) \neq p(x \mid \theta')$

A *K*-component mixture will have a total of *K*! equivalent solutions

- Corresponding to K! ways of assigning K sets of parameters to K components
 - E.g., for K=3 K!=6: 123, 132, 213, 231, 312, 321
- For any given point in the space of parameter values there will be a further K!-1 additional points all giving exactly same distribution
- However any of the equivalent solutions is as good as the other

Two ways of labeling three Gaussian subclasses

EM for Gaussian Mixtures

- EM is a method for finding maximum likelihood solutions for models with latent variables
- Begin with log-likelihood function

$$\ln p(X \mid \boldsymbol{\pi}, \boldsymbol{\mu}, \boldsymbol{\Sigma}) = \sum_{n=1}^{N} \ln \left\{ \sum_{k=1}^{K} \boldsymbol{\pi}_{k} N(\boldsymbol{x}_{n} \mid \boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k}) \right\}$$

- We wish to find π,μ,Σ that maximize this quantity
- Task is not straightforward since summation appears in Gaussian and logarithm does not operate on Gaussian
- Take derivatives in turn w.r.t
 - Means μ_k and set to zero
 - covariance matrices Σ_k and set to zero
 - mixing coefficients $\, oldsymbol{\pi}_{k} \,$ and set to zero

EM for GMM: Derivative wrt μ_k

Begin with log-likelihood function

$$\ln p(X \mid \boldsymbol{\pi}, \boldsymbol{\mu}, \boldsymbol{\Sigma}) = \sum_{n=1}^{N} \ln \left\{ \sum_{k=1}^{K} \boldsymbol{\pi}_{k} N(\boldsymbol{x}_{n} \mid \boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k}) \right\}$$

- Take derivative w.r.t the means μ_k and set to zero
 - Making use of exponential form of Gaussian
 - Use formulas: $\frac{d}{dx} \ln u = \frac{u'}{u}$ and $\frac{d}{dx} e^u = e^u u'$
 - We get

$$0 = \sum_{n=1}^{N} \frac{\pi_{k} N(\boldsymbol{x}_{n} \mid \boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k})}{\sum_{j} \pi_{j} N(\boldsymbol{x}_{n} \mid \boldsymbol{\mu}_{j}, \boldsymbol{\Sigma}_{j})} \sum_{k=1}^{N} (\boldsymbol{x}_{n} - \boldsymbol{\mu}_{k})$$
Inverse of covariance matrix

 $\gamma(z_{nk})$ the posterior probabilities

M.L.E. solution for Means

• Multiplying by Σ_k (assuming non-singularity)

$$\boldsymbol{\mu}_{k} = \frac{1}{N_{k}} \sum_{n=1}^{N} \boldsymbol{\gamma}(z_{nk}) \boldsymbol{x}_{n}$$

Where we have defined

Mean of kth Gaussian component is the weighted mean of <u>all</u> the points in the data set:

where data point x_n is weighted by the posterior probability that component k was responsible for

generating x_n

$$N_k = \sum_{n=1}^N \gamma(z_{nk})$$

 Which is the effective number of points assigned to cluster k

M.L.E. solution for Covariance

- Set derivative wrt Σ_k to zero
 - Making use of mle solution for covariance matrix of single Gaussian

$$\Sigma_k = \frac{1}{N_k} \sum_{n=1}^N \gamma(z_{nk}) (\boldsymbol{x}_n - \boldsymbol{\mu}_k) (\boldsymbol{x}_n - \boldsymbol{\mu}_k)^T$$

- Similar to result for a single Gaussian for the data set but each data point weighted by the corresponding posterior probability
- Denominator is effective no of points in component

M.L.E. solution for Mixing Coefficients

- Maximize $\ln p(X \mid \pi, \mu, \Sigma)$ w.r.t. π_k
 - Must take into account that mixing coefficients sum to one
 - Achieved using Lagrange multiplier and maximizing

$$\ln p(X \mid \pi, \mu, \Sigma) + \lambda \left(\sum_{k=1}^{K} \pi_k - 1 \right)$$

– Setting derivative wrt π_k to zero and solving gives

$$\pi_k = \frac{N_k}{N}$$

Summary of m.l.e. expressions

GMM maximum likelihood parameter estimates

Means

$$\mu_k = \frac{1}{N_k} \sum_{n=1}^N \gamma(z_{nk}) \mathbf{x}_n$$

Covariance matrices

$$\Sigma_k = \frac{1}{N_k} \sum_{n=1}^N \gamma(z_{nk}) (\mathbf{x}_n - \boldsymbol{\mu}_k) (\mathbf{x}_n - \boldsymbol{\mu}_k)^T$$

Mixing Coefficients

$$\pi_k = \frac{N_k}{N} \qquad N_k = \sum_{n=1}^N \gamma(z_{nk})$$

- All three are in terms of responsibilities
- and so we have not completely solved the problem

EM Formulation

- The results for μ_k, Σ_k, π_k are not closed form solutions for the parameters
 - Since $\gamma(z_{nk})$ the responsibilities depend on those parameters in a complex way
- Results suggest an iterative solution
- An instance of EM algorithm for the particular case of GMM

Informal EM for GMM

- First choose initial values for means, covariances and mixing coefficients
- Alternate between following two updates
 - Called E step and M step
- In E step use current value of parameters to evaluate posterior probabilities, or responsibilities
- In the M step use these posterior probabilities to to reestimate means, covariances and mixing coefficients

EM using Old Faithful

Data points and Initial mixture model

Initial E step
Determine
responsibilities

After first M step Re-evaluate Parameters

After 2 cycles

After 5 cycles

After 20 cycles

Comparison with K-Means

K-means result

E-M result

Animation of EM for Old Faithful Data

http://en.wikipedia.org/wiki/
 File:Em old faithful.gif

Code in R

```
#initial parameter estimates (chosen to be deliberately bad) theta <- list( tau=c(0.5,0.5), tau=c(
```

Practical Issues with EM

- Takes many more iterations than K-means
 - Each cycle requires significantly more comparison
- Common to run K-means first in order to find suitable initialization
- Covariance matrices can be initialized to covariances of clusters found by K-means
- EM is not guaranteed to find global maximum of log likelihood function

Summary of EM for GMM

- Given a Gaussian mixture model
- Goal is to maximize the likelihood function w.r.t. the parameters (means, covariances and mixing coefficients)

Step1: Initialize the means μ_k covariances Σ_k and mixing coefficients π_k and evaluate initial value of log-likelihood

EM continued

 Step 2: E step: Evaluate responsibilities using current parameter values

$$\gamma(z_{_{k}}) = \frac{\pi_{_{k}}N(\boldsymbol{x}_{_{n}} \mid \boldsymbol{\mu}_{_{k}}, \boldsymbol{\Sigma}_{_{k}})}{\sum\limits_{_{j=1}^{K}}^{K} \pi_{_{j}}N(\boldsymbol{x}_{_{n}} \mid \boldsymbol{\mu}_{_{j}}, \boldsymbol{\Sigma}_{_{j}}))}$$

Step 3: M Step: Re-estimate parameters using current responsibilities

$$oxed{\mu_k^{ ext{new}} = rac{1}{N_k} \sum_{n=1}^{N} \gamma(z_{nk}) \mathbf{x}_n}$$

$$\sum_{k}^{\text{new}} = \frac{1}{N_k} \sum_{n=1}^{N} \gamma(z_{nk}) (\mathbf{x}_n - \boldsymbol{\mu}_k^{\text{new}}) (\mathbf{x}_n - \boldsymbol{\mu}_k^{\text{new}})^T$$

$$oxed{\pi_k^{
m new} = rac{N_k}{N}} \hspace{1cm} ext{where} \hspace{1cm} N_k = \sum_{n=1}^N oldsymbol{\gamma}(z_{nk})$$

EM Continued

Step 4: Evaluate the log likelihood

$$\ln p(X \mid \boldsymbol{\pi}, \boldsymbol{\mu}, \boldsymbol{\Sigma}) = \sum_{n=1}^{N} \ln \left\{ \sum_{k=1}^{K} \boldsymbol{\pi}_{k} N(\mathbf{x}_{n} \mid \boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k}) \right\}$$

- And check for convergence of either parameters or log likelihood
- If convergence not satisfied return to Step 2