CIS 575. Introduction to Algorithm Analysis Remarks on Assignment #3, Spring 2014

Question 1

- 1. Observe that each while loop is iterated n times. Thus Q.RemoveFirst is called n times, with each call taking constant time; hence the total time used for such calls is in $\mathbf{O}(\mathbf{n})$.
- 2. For P.Insert, observe that in the *i*th iteration, the size of the priority queue will grow from i-1 to i. Our assumptions thus entail that there exists $f \in O(\lg(i))$ such that the *i*'th iteration takes time f(i). There are now at least two ways to proceed:
 - We may apply *Howell's* Theorem 3.28, which is applicable since $\lg(i)$ is a smooth function (as $\lg(2i) = \lg(i) + 1 \le 2\lg(i)$ for $i \ge 2$), to infer that the total running time for P.INSERT is in $\mathbf{O}(\mathbf{n} \cdot \lg(\mathbf{n}))$.
 - We may approximate the total running time for P.Insert as (with c such that $f(i) < c \lg(i)$)

$$\sum_{i=1}^{n} f(i) \le \sum_{i=1}^{n} c \lg(i) = c \sum_{i=1}^{n} \lg(i) = c \lg(\prod_{i=1}^{n} i) = c \lg(n!) \le c \lg(n^n) = cn \lg(n) \in \mathbf{O}(\mathbf{n} \lg(\mathbf{n}))$$

(one may remark that the bound is tight as one can show that $n \lg(n) \in O(\lg(n!))$).

- 3. The case for P.Removemin is similar to the previous case, except that it is now the *first* iterations that are the most expensive (as the priority queue gets smaller and smaller); there exists $g \in O(\lg(i))$ such that the *i*th *last* iteration takes time g(i). But clearly, reversing the order doesn't affect the total time. We therefore infer that also P.Removemin has a total running time in $\mathbf{O}(\mathbf{n} \cdot \lg(\mathbf{n}))$.
- 4. The total running time is composed of:
 - (a) the time spent in Q.RemoveFirst, which we saw is in O(n);
 - (b) the time spent in P.INSERT, which we saw is in $O(n \lg(n))$;
 - (c) the time spent in P.RemoveMin, which we saw is in $O(n \lg(n))$;
 - (d) the time spent in Q.INSERTLAST, which is easily seen to be in O(n);
 - (e) the time spent on running the while loops, excluding the calls in the bodies but including loop test evaluation, which is easily seen to be in O(n).

Using a general property of big-O, that if $f_1 \in O(g_1)$ and $f_2 \in O(g_2)$ then $f_1 + f_2 \in O(\max(g_1, g_2))$, we infer that the total running time of SORT is in $\mathbf{O}(\mathbf{n} \lg(\mathbf{n}))$.

Question 2 For (a), the outer loop iterates 5n times with the *i*th iteration taking time in $\Theta(i)$. Since *i* is a smooth function, we can infer that the total running time is in $\Theta((5n) \cdot (5n)) = \Theta(\mathbf{n}^2)$.

Alternatively, one can give a tight estimate of $\sum_{i=1}^{5n} \frac{i}{2}$.

For (b), the outer loop iterates n^2 times with the *i*th iteration taking time in $\Theta(\log i)$. Since $\log i$ is a smooth function, we can infer that the total running time is in $\Theta(n^2 \log n^2) = \Theta(\mathbf{n}^2 \log \mathbf{n})$.

For (c), the outer loop iterates approximately $\lg n$ times: for the first iteration, the inner loop iterates n times; for the second iteration, the inner loop iterates n/2 times, etc. Since $n + n/2 + n/4 + n/8 \ldots \le 2n$, we infer that the total running time is in $\Theta(\mathbf{n})$.