PLAN

<u>INTRODUCTION</u>	<u> 2</u>
Analyse et conception	
Modélisation du système d'information	
Les étapes du projet.	2
Les règles de gestion	
Dictionnaire des données	<u></u> 4
Le modèle Conceptuel de données	
Les entités	<u> 5</u>
Les cardinalités	6
Contraintes d'intégrité fonctionnelles :	
Schema du Modèle Conceptuel des Données (MCD)	
Le Modèle Logique de Données (MLD)	
Le Modèle Physique des Données (MPD)	
· · · · · · · · · · · · · · · · · · ·	
Conclusion	

INTRODUCTION

L'étude de notre programme d'application consiste à faire éclaircir le projet en identifiant ses entités et en élaborant le modèle conceptuel de données ainsi qu'à transformer le modèle conceptuel de données en modèle logique de données puis en modèle physique de données à partir d'une démarche de travail déjà existant.

Ce rapport est un travail demandé dans le cadre de formation Merise et nous a permis de comprendre, d'assimiler le cours Merise et de réaliser les tâches. A cet effet, nous avons utilisés les outils gratuits tels que Lucichart pour les modèles de données du projet et SQL serveur pour son implémentation.

Analyse et conception

Pour mieux comprendre le projet, nous nous sommes basés sur le cahier de charge qui nous a été présenté par la Société El-Massar et nous avons réfléchis sur l'ensemble d'organisation que nous devons mettre en place ainsi nous somme à la phase de conception qui nécessite des méthodes permettant de mettre en place un modèle sur lequel nous allons nous appuyer.

Modélisation du système d'information

La modélisation de ce système consiste à créer des représentations virtuelles d'une réalité de telle sorte à faire ressortir les différents points qui nous intéressent. A cet effet, nous utilisons la méthode Merise pour réaliser les de différents modèles et son implémentation.

Les étapes du projet

Les règles de gestion

Dans cette partie nous cherchons à définir l'ensemble des règles à respecter pour les actions.

- ✓ Un client réserve un ou plusieurs garages ;
- ✓ Un client réserve un ou plusieurs appartements ;
- ✓ un garage peut être référé à un et un seul client;
- ✓ un garage n'appartient qu'à une et une seule catégorie de garage ;
- ✓ une catégorie de garage appartient à un ou plusieurs garages ;
- ✓ un appartement peut-être réservé par un et un seul client
- ✓ un appartement a une et une seule résidence ;
- ✓ une résidence peut avoir un ou plusieurs appartement ;
- ✓ un étage peut avoir un ou plusieurs appartements ;
- ✓ un appartement est dans un et un seul étage ;
- ✓ un appartement dispose un et un seul type d'appartement ;
- ✓ un type d'appartement est disposé par un ou plusieurs appartement ;

- ✓ un étage est déterminé (mètre carré) par un ou plusieurs résidences ;
- ✓ une résidence détermine (mètre carré) par un ou plusieurs étages ;
- ✓ une résidence détermine (prix) un ou plusieurs catégorie de garage ;
- ✓ une catégorie de garage est déterminée (prix) une ou plusieurs résidence ;
- ✓ un garage est référencé une et une seule fois par le type de garage ;
- √ un agent commercial peut faire référence à un ou plusieurs appartements ;
- ✓ un appartement est référencé par un et un seul agent commercial ;
- √ un agent commercial peut faire référence à un ou plusieurs garages ;
- √ un garage est référencé par un et un seul agent commercial;

Association	Entité	Identification	Cardinalité
Client	Appartement		1.n
Appartement	Client		1.1
Appartement	Type_appartement		1.1
Type_appartement	Appartement		1.n
Client	Garage		1.n
Garage	Client		1.1
Garage	Type_garage		1.1
Type_garage	Garage		1.n
Appartement	Agent_commercial		1.1
Agent commercial	Appartement		1.n
Garage	Agent_commercial		1.1
Agent_commercial	Garage		1.n
Appartement	Etage		1.1
Appartement	Résidence		1.1
Etage	Appartement		1.n
Etage	Résidence		1.n
Résidence	Etage		1.n
Résidence	Garage		1.n
Résidence	Catégorie_garage		1.n
Catégorie_garage	Résidence		1.n
Catégorie_garage	Garage		1.n
Garage	Catégorie_Garage		1.1

Dictionnaire des données

Champs	Signification	Type	Taille
Id_client	Numéro d'identification du client		
Nom_client	Nom du client		
Adresse_client	Adresse du client		
Type_client	Type du client		
Email_client	Adresse mail du client		
Tel_client	Numéro de téléphone du client		
Id_agent	Numéro d'identification du client		
Nom_agent	Nom de l'agent commercial		
Adresse_agent	Adresse de l'agent		
Id_appartement	Numéro d'identification de l'appartement		
Addresse	Adresse Appartement, résidence		
Id_résidence	Numéro d'identification de la résidence		
Id_etage	Numéro d'identification de l'étage		
Libelle_etage	Libellé de l'étage		
Id_cat_garage	Identifiant de catégorie garage		
Prix_garage	Prix du garage		
Id_type_garage	Identifiant du type de garage		
Outils	Outils que contient le garage		
Id_type_appartement	Identifiant du type d'appartement		
Type_meuble	Le type du meuble qu'appartenant l'appartement		

Le modèle Conceptuel de données

Ce modèle nous permet d'établir de façon plus claire la représentation de données du système et de définir les dépendances fonctionnelles de ces données entre elles.

Les entités

Ce sont les représentations d'élément matériel ou immatériel du projet qui ont un rôle dans le système que nous allons décrire. Ci-dessous sont nos différentes entités que nous avons représentées :

Etage	client	type_apparteme	ent type_appartement	
id_etage	id_client	id_type_appar	t id_type_appart	
libelllé_etage	nom_client	type_meuble	type_meuble	
	address_client			
	type_client			
	email_client			
	tel_client	J		
residence	appartement	agent_commercial	categorie_garage	
id_residence	id_residence	id_agent	id_cat_garage	
addresse	addresse	nom_agent	prix_garage	
		addresse_agent		
garage	type_garage			
id_garage	id_type_garage	•		
status_garage	outils			
parking				

Les cardinalités

Les cardinalités nous permettent de caractériser le lien qui existe entre une entité et la relation à laquelle elle est reliée. :

E 0,1 A	Pour chaque occurrence de E, le modèle admet : - soit l'absence de lien
	- soit la présence d'un seul lien
E 1,1 A	Pour chaque occurrence de E le modèle admet la présence d'un et un seul lien
E 1, n A	Pour chaque occurrence de E le modèle admet la présence d'un seul ou de plusieurs liens
E 0, n A	Pour chaque occurrence de E le modèle admet : - soit l'absence de lien - soit la présence de plusieurs liens

Contraintes d'intégrité fonctionnelles :

Une contrainte d'intégrité fonctionnelle est une relation non porteuse de données, elle nous indique une dépendance obligatoire.

Schema du Modèle Conceptuel des Données (MCD)

Le Modèle Logique de Données (MLD)

Etage (<u>id etage</u>, libellé)

Résidence (<u>id_residence</u>, adresse)

Categorie_Garage (<u>id_categoie_garage</u>, prix_garage)

Type_Appartement (<u>id_type_appartement</u>, type_immeuble)

Appartement (<u>id_appartement</u>, prix_par_mettre_carre, #id_etage, #id residence, #id type app, #id agent, #id client)

Client (id_client, nom_client, adresse_client, type_client, email_client, tel_client,
#id_agent)

Agent Commercial (id agent com, nom agent com, adresse agent com)

Type_Garage (id_type_garage, outils)

Etage_Residence (id_etage_residence, # id_etage, #id_residence)

Categorie_Residence (<u>id_categorie_residence</u>, #id_categorie_garage, #id_residence)

Le Modèle Physique des Données (MPD)

Conclusion

L'étude des formes normales permet d'éviter certains pièges de conception risquant d'impacter la future base de données. La solution actuelle se concrétise au moyen de la méthode *Merise* qui est une méthode formelle d'analyse et conception des systèmes informatiques.