Droites et plans de l'espace vectoriel, produit scalaire et produit vectoriel

Droites et plans de l'espace vectoriel

Exercice 1 : Déterminer une équation cartésienne et une paramétrisation

- 1. de la droite vectorielle de \mathbb{R}^2 de vecteur directeur $u = \begin{pmatrix} -2 \\ 3 \end{pmatrix}$;
- 2. de la droite vectorielle de \mathbb{R}^2 de vecteur directeur \overrightarrow{AB} avec les points A(1,1) et B(-1,2);
- 3. du plan vectoriel de \mathbb{R}^3 engendré par les vecteurs $u=\begin{pmatrix}1\\1\\1\end{pmatrix}$ et $v=\begin{pmatrix}0\\2\\-3\end{pmatrix}$.

Exercice 2:

1. Trouver une paramétrisation de la droite $D \subset \mathbb{R}^3$ définie par les équations:

$$\begin{cases} 3x + y - z = 0 \\ x + y = 0. \end{cases}$$

- 2. Trouver une paramétrisation du plan P défini par l'équation x + 2y + 3z = 0.
- 3. La droite D est-elle incluse dans le plan P?
- 4. Existe-t-il un plan vectoriel P' parallèle à P qui contienne la droite D?
- 5. Donner une équation d'un plan vectoriel P_1 qui contienne la droite D.
- 6. Déterminer l'intersection des plans P et P_1 .

Exercice 3:

- 1. Discuter suivant les valeurs du paramètre $a \in \mathbb{R}$ l'intersection des plans $P \subset \mathbb{R}^3$ d'équation x+y+z=0 et $P' \subset \mathbb{R}^3$ dont une paramétrisation est donnée par $\left\{ \begin{array}{l} x=t \\ y=s \\ z=-at-s. \end{array} \right.$
- 2. Déterminer selon la valeur du paramètre $a \in \mathbb{R}$ l'intersection de la droite $D \subset \mathbb{R}^3$ d'équations:

$$\left\{ \begin{array}{l} x-2z=0\\ y+az=0 \end{array} \right.$$

avec le plan d'équation x + 2y = 0.

Produit scalaire et produit vectoriel

Exercice 4: On munit \mathbb{R}^3 du produit scalaire canonique. Soient v = (-3, 5, 8) et w = (1, -4, 9) deux vecteurs de \mathbb{R}^3 .

- 1. Calculer les longueurs de v et w.
- 2. Calculer l'angle non-orienté entre v et w.
- 3. Calculer le résultat de la projection orthogonale de v sur la droite engendrée par w.
- 4. Trouver une base orthonormée du plan engendré par les deux vecteurs v et w.
- 5. Trouver un vecteur orthogonal aux deux vecteurs v et w.

Exercice 5 : On considère \mathbb{R}^3 muni du produit scalaire canonique. Orthonormaliser en suivant le procédé de Gram-Schmidt la base constituée des vecteurs $u_1 = (1, 1, 1)$, $u_1 = (-1, 0, -1)$, et $u_3 = (-1, 2, 3)$.

Exercice 6:

- 1. Donner l'équation (cartésienne) de la droite vectorielle de \mathbb{R}^2 orthogonale au vecteur (1, 2).
- 2. Donner l'équation (cartésienne) du plan vectoriel P_1 de \mathbb{R}^3 orthogonal au vecteur $n_1 = (1, 2, 3)$.
- 3. Trouver un vecteur n_2 normal (= orthogonal) au plan vectoriel P_2 de \mathbb{R}^3 engendré par les vecteurs (1, 1, -1) et (2, 0, 1).
- 4. Calculer $n_1 \wedge n_2$, et montrer que ce vecteur appartient à $P_1 \cap P_2$. En déduire une équation de $P_1 \cap P_2$. Quelle est l'interprétation géométrique de ce résultat ?

Exercice 7 : Soit K l'octaèdre centré en O=(0,0,0), et de sommets $\stackrel{-}{+}A$, $\stackrel{-}{+}B$, $\stackrel{-}{+}C$, où A=(1,0,0), B=(0,1,0) et C=(0,0,1). On définit les vecteurs $v_1=\overrightarrow{AB}$ et $v_2=\overrightarrow{AC}$.

- 1. Calculer les longueurs des côtés et les angles aux sommets du triangle ABC.
- 2. Calculer $v_1 \wedge v_2$, et en déduire l'aire du triangle ABC. Quelle est l'aire de la surface de K?

Exercices pour aller plus loin

Exercice 8: On considère \mathbb{R}^3 muni du produit scalaire canonique. Soit F le sous-espace vectoriel

$$F = \{(x, y, z) \in \mathbb{R}^3 : x + y + z = 0\}.$$

- 1. Déterminer une base orthonormée de F.
- 2. Déterminer la projection orthogonale p_F sur F .

Exercice 9 : Soient A = (1, 1, 1) et B = (-1, -1, 1) deux sommets d'un tétraèdre régulier centré en O = (0, 0, 0).

- 1. Calculer l'angle α entre les vecteurs $v_1 = \overrightarrow{OA}$ et $v_2 = \overrightarrow{OB}$.
- 2. Le tétraèdre peut être inscrit dans un cube, dont trois sommets sont A, B et C=(-1,1,1). Montrer que l'angle entre \overrightarrow{AO} et \overrightarrow{AC} est égal à $\frac{alpha}{2}$.

Exercices complémentaires

Exercice 10 : Dans \mathbb{R}^3 , considérons les plans P et P' d'équations respectives x-y+z=0 et x+2y+3z=0.

- 1. Montrer que l'intersection de P et P' est une droite D dont on donnera une paramétrisation.
- 2. Donner une équation du plan vectoriel $P^{\prime\prime}$ perpendiculaire à D.
- 3. Calculer l'intersection de P, P' et P''.

Exercice 11:

- 1. Déterminer une paramétrisation du plan P engendré par les vecteurs $u = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$ et $v = \begin{pmatrix} 3 \\ -1 \\ 0 \end{pmatrix}$.
- 2. Soit Q le plan d'équation cartésienne:

$$x + 2y + z = 0.$$

Déterminer la droite L obtenue par l'intersection de P et Q. On en donnera des équations paramétriques et cartésiennes.