

Introduction to Machine Learning

Acting under uncertainty: Bayesian decision theory

Prof. Andreas Krause
Learning and Adaptive Systems (<u>las.ethz.ch</u>)

Acting under uncertainty

- So far, have seen how we can interpret supervised learning as fitting probabilistic models of the data
- Next, we'll see how we can use the estimated models to make decisions

Acting under uncertainty

- Suppose we have estimated a logistic regression model (say, for spam filtering), and obtain $P(Y=spam \mid X) = \emptyset$
- Further suppose we have three actions:Spam, NotSpam, and AskUser

Actions 7-span Ynot span Action (P=0.2) Which should we pick? P=0.8 S $.2 \times 0 + 18.10 = 8$ $.8 \times 0 + .2.10 = 2$ N $.2 \times 1 + .8.0 = 2$ $.8 \times 1 + 0.2.0 = .8$ A .5 5

Bayesian decision theory

Given:

- e.g. {+1,-1}, {1,-,c}, R
- ullet Conditional distribution over labels $\ P(y \mid \mathbf{x})$, $\ y \in \mathcal{Y}$
- Set of actions $A = g_1 = A = \{s, N, A\}$ $A \neq Y$
- ullet Cost function $C:\mathcal{Y} imes\mathcal{A} o\mathbb{R}$
- Bayesian Decision Theory recommends to pick the action that minimizes the expected cost

$$a^* = \arg\min_{a \in \mathcal{A}} \mathbb{E}_y[C(y, a) \mid \mathbf{x}]$$

- If we had access to the **true distribution** $P(y \mid \mathbf{x})$ this decision implements the Bayesian optimal decision
- In practice, can only estimate it, e.g., (logistic) regression

Recall: Logistic regression

Learning:

Find optimal weights by minimizing logistic loss + regularizer

$$\hat{\mathbf{w}} = \arg\min_{\mathbf{w}} \sum_{i=1}^{n} \log \left(1 + \exp(-y_i \mathbf{w}^T \mathbf{x}_i) \right) + \lambda ||\mathbf{w}||_2^2$$

$$= \arg\max_{\mathbf{w}} P(\mathbf{w} \mid \mathbf{x}_1, \dots, \mathbf{x}_n, y_1, \dots, y_n)$$

• Classification:

Use conditional distribution

$$P(y \mid \mathbf{x}, \hat{\mathbf{w}}) = \frac{1}{1 + \exp(-y\hat{\mathbf{w}}^T\mathbf{x})}$$

Optimal decisions for logistic regression

- Est. cond. dist.: $\hat{P}(y \mid \mathbf{x}) = \text{Ber}(y; \sigma(\hat{\mathbf{w}}^T \mathbf{x}))$
- Action set: $A = \{+1, -1\}$
- Cost function: $C(y,a) = \underbrace{[y \neq a]}_{\text{o}} \underbrace{\{ y \neq a \}}_{\text{o}}$
- Then the action that minimizes the expected cost

$$a^* = \arg\min_{a \in \mathcal{A}} \mathbb{E}_y[C(y, a) \mid \mathbf{x}] = \sum_{\mathbf{y}} P(\mathbf{y} \mid \mathbf{x})[\mathbf{y} \neq \mathbf{a}]$$
ost likely class:

is the most likely class:

$$a^* = \arg\max_{y} \hat{P}(y \mid \mathbf{x}) = \operatorname{sign}(\mathbf{w}^T \mathbf{x})$$

$$= \arg\max_{a} \frac{\hat{P}(y \mid \mathbf{x})}{1 + \exp(a \cdot \mathbf{w}^T \mathbf{x})}$$

$$= \arg\max_{a} \frac{\operatorname{max}}{1 + \exp(a \cdot \mathbf{w}^T \mathbf{x})}$$

$$= \arg\max_{a} \frac{\operatorname{max}}{\operatorname{max}} \frac{\operatorname{max}}{\operatorname{$$

Asymmetric costs

• Est. cond. dist.:
$$\hat{P}(y \mid \mathbf{x}) = \text{Ber}(y; \sigma(\hat{\mathbf{w}}^T \mathbf{x}))$$

• Action set:
$$\mathcal{A} = \{+1, -1\}$$

• Costs: $C(y,a) = \begin{cases} c_{FP} & \text{if } y = -1 \text{ and } a = +1 \\ c_{FN} & \text{if } y = +1 \text{ and } a = -1 \\ 0 & \text{otherwise} \end{cases}$

Then the action that minimizes the expected cost is

$$C_{+} = \mathbb{E}_{Y}[C(y,+1)|X] = P(y=-1|X) \cdot C_{FP} + P(y=+1|X) \cdot O$$

$$= (1-p) \cdot C_{FP}$$

$$= (1-p) \cdot C_{FN} + (1-p) \cdot O = P \cdot C_{FN}$$

$$= P \cdot C_{FN} + (1-p) \cdot O = P \cdot C_{FN}$$

Demo: Asymmetric costs

"Doubtful" logistic regression

- Est. cond. dist.: $\hat{P}(y \mid \mathbf{x}) = \mathrm{Ber}(y; \sigma(\hat{\mathbf{w}}^T\mathbf{x}))$ Action set: $\mathcal{A} = \{+1, -1, D\}$ Cost function: $C(y, a) = \begin{cases} [y \neq a] & \text{if } a \in \{+1, -1\} \\ c & \text{if } a = D \end{cases}$
- Then the action that minimizes the expected cost

$$a^* = \arg\min_{a \in \mathcal{A}} \mathbb{E}_y[C(y, a) \mid \mathbf{x}]$$

is given by:

$$a^* = \begin{cases} y & \text{if } \hat{P}(y \mid \mathbf{x}) \ge 1 - c \\ D & \text{otherwise} \end{cases}$$

I.e., pick most likely class only if confident enough!

Demo: Doubtful Logistic Regression

Optimal decisions for LS regression

- Est. cond. dist.: $\hat{P}(y \mid \mathbf{x}) = \mathcal{N}(y; \hat{\mathbf{w}}^T \mathbf{x}, \sigma^2)$
- ullet Action set: $\mathcal{A} = \mathbb{R}$
- Cost function: $C(y,a) = (y-a)^2$
- Then the action that minimizes the expected cost

$$a^* = \arg\min_{a \in \mathcal{A}} \mathbb{E}_y[C(y,a) \mid \mathbf{x}] \leq \mathbb{E}_y[(y-a)^2] \times \int$$
is the conditional mean:
$$a^* = \mathbb{E}_y[y \mid \mathbf{x}] = \int \hat{P}(y \mid \mathbf{x}) dy \qquad \Rightarrow \qquad \mathbf{a}^* = \mathbf{w}^T \mathbf{x}$$

$$= \hat{\mathbf{w}}^T \mathbf{x}$$

Example: Asymmetric cost for regression

- Est. cond. dist.: $\hat{P}(y \mid \mathbf{x}) = \mathcal{N}(y; \hat{\mathbf{w}}^T \mathbf{x}, \sigma^2)$ Action set: $\mathcal{A} = \mathbb{R}$
- Cost: $C(y,a) = c_1 \max(y-a,0) + c_2 \max(a-y,0)$ overestimato. underestimation
- Then the action that minimizes the expected cost

$$a^* = \arg\min_{a \in \mathcal{A}} \mathbb{E}_y[C(y, a) \mid \mathbf{x}]$$

$$a^* = \hat{\mathbf{w}}^T \mathbf{x} + \sigma \cdot \Phi^{-1} \left(\frac{c_1}{c_1 + c_2} \right)$$
werse Gaussian CDF

Demo: Asymmetric cost for regression

Outlook: Active learning

- Labels are expensive (need to ask expert)
- Want to minimize the number of labels

Uncertainty sampling

 Simple strategy: Always pick the example that we are most uncertain about

- Given
$$D = \{(x_i, y_i)\}_{i=1}^n$$
 estimate $\hat{P}(y|x)$

- For every unlabeled instance x_j
 $\hat{P}(y_j = +1 \mid x_j) = P$

- Uncertainty score, U_j

- $j^* = avg max U_j$
 $Example : LogReg$
 $U_j = -|W_x_j|$

15

Uncertainty sampling

- ullet Given: Pool of unlabeled examples $D_X = \{\mathbf{x}_1, \dots, \mathbf{x}_n\}$
- Also maintain labeled data set D, initially empty
- For *t=1,2,3,...*
 - ullet Estimate $\hat{P}(Y_i \mid \mathbf{x}_i)$ given current data \mathcal{D}
 - Pick unlabeled example that we are most uncertain about

$$i_t \in \arg\min_i |0.5 - \hat{P}(Y_i \mid \mathbf{x}_i)|$$

ullet Query label y_{i_t} and set $D \leftarrow D \cup \{(\mathbf{x}_{i_t}, y_{i_t})\}$

Demo: Uncertainty sampling

Further comments

- Active learning violates i.i.d. assumption!
- Can get stuck with bad models
- More advanced selection criteria available
 - E.g.: query point that reduces uncertainty of other points as much as possible

Deriving decision rules

- Bayesian decision theory provides a principled way to derive decision rules from conditional distributions P(Y(X))
- Standard rules arise as special cases:
 - Linear regression: $\hat{\mathbf{w}}^T\mathbf{x}$
 - Logistic regression: $\operatorname{sign}(\hat{\mathbf{w}}^T\mathbf{x})$
- Can accommodate more complex settings
 - "Doubt" (i.e., requiring sufficient confidence)
 - Asymmetric losses
 - Active learning
 - ...

Summary: Learning through MAP inference

- Start with statistical assumptions on data:
 Data points modeled as iid (can be relaxed)
- Choose likelihood function
 - Examples: Gaussian, student-t, logistic, exponential, ...
 - → loss function
- Choose prior
 - Examples: Gaussian, Laplace, exponential, ...
 - → regularizer
- Optimize for MAP parameters
- Choose hyperparameters (i.e., variance, etc.) through cross-validation
- Make predictions via Bayesian Decision Theory

What you should be able to do

- Understand and apply logistic regression and its variants
- Relate logistic regression and Perceptron/SVM
- Derive MAP estimation problems for different priors and likelihood functions
- Solve resulting optimization problems by applying gradient descent
- Derive decision rules from cost functions via Bayesian decision theory
- Apply uncertainty sampling for binary classification

Introduction to Machine Learning

Discriminative vs. Generative Modeling

Prof. Andreas Krause
Learning and Adaptive Systems (las.ethz.ch)

Motivating example: Logistic regression

- What will logistic regression predict for data point x?
- Logistic regression can be overconfident about labels for outliers

Discriminative modeling

 So far, we have considered learning methods that estimate conditional distributions

$$P(y \mid \mathbf{x})$$

- Examples: Linear regression, logistic regression, etc.
- ullet Such models *do not* attempt to model $\,P({f x})$
- Thus, they will not be able to detect outliers
 (i.e., "unusual" points for which P(x) is very small)

Discriminative vs. Generative models

Discriminative models aim to estimate

$$P(y \mid \mathbf{x})$$

Generative models aim to estimate joint distribution

$$P(y, \mathbf{x})$$

 Can derive conditional from joint distribution, but not vice versa!

$$P(y,x) \longrightarrow P(y|x) = \frac{P(x,y)}{P(x)}$$
Ly $\sum_{y'} P(x,y')$

Typical approach to generative modeling

- Estimate prior on labels P(y) P(x,y) = P(x|y) P(y)=P(ylx)P(x)
- Estimate conditional distribution for each class y

Obtain predictive distribution using Bayes' rule:

$$P(y \mid \mathbf{x}) = \frac{1}{Z} P(y) P(\mathbf{x} \mid y)$$

A note on generative modeling

- Generative modeling attempts to infer the process, according to which examples are generated
- ullet First generate class label P(y)
- ullet Then, generate features given class $\ P(\mathbf{x} \mid y)$

Example: Naive Bayes Model

Model class label as generated from categorical variable

$$P(Y=y)=p_y$$
 $y\in\mathcal{Y}=\{1,\ldots,c\}$ $\forall y=1,\ldots,c$ $\forall y=1,\ldots,c$

Model features as conditionally independent given Y

$$P(X_1, \dots, X_d \mid Y) = \prod_{i=1}^d P(X_i \mid Y)$$

$$P(X_i = \chi_1, \dots, \chi_{d^2} \chi_d \mid Y = \mathcal{Y}) = \prod_{i=1}^d P(\chi_i = \chi_i \mid Y = \mathcal{Y})$$

- I.e., given class label, each feature is "generated" independently of the other features.
- ullet Need to still specify feature distributions $\ P(X_i \mid Y)$

Example: Gaussian Naive Bayes classifiers

Model class label as generated from categorical variable

$$P(Y=y) = p_y \qquad y \in \mathcal{Y} = \{1, \dots, c\}$$

Model features by (conditionally) independent Gaussians

$$P(x_i \mid y) = \mathcal{N}(x_i \mid \mu_{y,i}, \sigma_{y,i}^2)$$
 depend on class y and feature i $i \in \{1, \cdots, d\}$

• How do we estimate the parameters?