NDH vs AVEVA Connect vs AVEVA AIM 比較 分析

版本: 1.0

日期: 2025-10-14

作者: 林志錚 (Chih Cheng Lin, Michael Lin)

Email: chchlin1018@gmail.com

1. 執行摘要

本文檔詳細比較分析 NDH (Neutral Data Hub)、AVEVA Connect 和 AVEVA AIM (Asset Information Management) 三個系統的定位、功能、架構和適用場景。這三個系統都致力於工業數據管理和數位分身建立,但在設計理念、技術架構和商業模式上有顯著差異。

1.1 核心定位

系統	核心定位	主要功能
NDH	中立數據中樞	OT/IT 數據整合、Asset Servants、即時數據處理
AVEVA Connect	工業智能平台	雲端整合平台、應用生態系統、協作環境
AVEVA AIM	資產資訊管理	工程數據聚合、數位分身核心、文檔管理

1.2 快速比較

特性	NDH	AVEVA Connect	AVEVA AIM
開源/商業	開源 (IDTF)	商業 (AVEVA)	商業 (AVEVA)
部署模式	On-Premise/Cloud	Cloud (Azure)	Cloud (CONNECT)
供應商鎖定	無	中度 (AVEVA 生態)	高度 (AVEVA 生態)
即時數據	▼ 核心功能	✓ 透過 Data Services	★ 主要靜態數據
工程數據	△ 基本支援	✓ 透過 AIM	✓ 核心功能
成本	低 (開源)	高 (SaaS 訂閱)	高 (SaaS 訂閱)

2. 系統詳細介紹

2.1 NDH (Neutral Data Hub)

定義

NDH 是 IDTF V3.5 框架中的**中立數據中樞**,專注於工業 OT/IT 數據的收集、處理、存儲和分發,提供一個開放、中立、可擴展的數據平台。

核心特性

- 1. 中立性 (Neutrality) 不綁定特定供應商 支援多種工業協議 (OPC UA, SECS/GEM, Modbus, BACnet) 可抽換時序數據庫 (InfluxDB, TDengine, TimescaleDB, QuestDB)
- 2. Asset Servants 在 Worker 節點上執行的資產服務實例 直接與物理資產進行數據交換 支援 10+ 種 Asset Servant 類型
- 3. 即時數據處理 Kafka 事件驅動架構 每日處理 100M+ 數據點 毫秒級延遲
- 4. 開源架構 基於 IDTF V3.5 開源框架 社群驅動開發 無授權費用

架構層次

```
應用層(Applications)

API 層(RESTful API, GraphQL, WebSocket)

服務層(Material Tracking, MES/ERP Integration, Analytics)

數據處理層(Kafka Streams, Flink, Spark)

數據中樞層(Kafka, InfluxDB/TDengine, PostgreSQL, Redis)

數據採集層(Connectors: OPC UA, SECS/GEM, Modbus, BACnet)

Asset Servant 層(Equipment, Barcode, RFID, Weight Scale)

資產層(Physical Assets)
```

適用場景

- 1. **☑ 製造業 OT/IT 整合**: LED 封裝、半導體、汽車製造
- 2. 🔽 即時生產監控: 設備狀態、生產進度、品質追蹤
- 3. 7 物料追蹤: 批次追溯、物料消耗、在製品管理
- 4. ✓ 預測性維護: 設備健康監控、異常檢測
- 5. 🗸 能源管理: 能耗監控、優化建議

2.2 AVEVA Connect

定義

AVEVA Connect 是一個**開放、供應商中立、基於雲端的工業智能平台**,使用一組共享軟體服務來實現工業數據、模型、應用和 AI/分析的快速、可靠整合。

核心特性

- 1. 雲端整合平台 基於 Microsoft Azure SaaS 交付模式 全球可用性
- 2. 共享服務 身份驗證/授權 (Authentication/Authorization) 帳戶/用戶管理 (Account/User Management) 數據服務 (Data Services, 前身為 AVEVA Data Hub) 整合服務 (Integration Services)
- **3. 應用生態系統** AVEVA PI System (即時數據) AVEVA AIM (資產資訊管理) AVEVA Unified Engineering (工程設計) AVEVA Predictive Analytics (預測分析) 第三方應用整合

4. 協作環境 - 跨組織數據共享 - 實時協作 - 角色基礎儀表板

架構層次

適用場景

- 1. 🔽 企業級數位轉型: 大型石油天然氣、化工、公用事業
- 2. **工程與營運協作**: EPC 與業主營運商之間的協作
- 3. **四** 跨組織數據共享: 供應鏈、合作夥伴、客戶
- 4. **☑ 混合雲部署**: 結合 On-Premise 和雲端資源
- 5. **AI/分析應用**: 預測性維護、優化、異常檢測

2.3 AVEVA AIM (Asset Information Management)

定義

AVEVA AIM 是一個**強大的基於 Web 的解決方案**,支援用戶組織、驗證和協作資產數據,從多個來源和不同格式聚合資訊,創建和維護數位分身的核心。

核心特性

- 1. 工程數據聚合 P&ID (管道和儀表圖) 3D 模型 規格書 (Specifications) 文檔 (Documents) 點雲數據 (Point Cloud)
- **2. 數據品質管理** 基於標準的數據驗證 (CFIHOS, ISO 15926, ISO 14224) 數據完整性檢查 數據一致性驗證
- 3. 視覺化工具 可客製化的角色基礎儀表板 3D 模型查看 P&ID 導航 文檔關聯

4. 文檔管理 - 整合 Assai 文檔控制系統 - 文檔版本控制 - 審查工作流程

架構層次

適用場景

- 1. 🔽 資本專案 (Capital Projects): EPC 公司的設計數據管理
- 2. 文接與試運轉: 從設計到營運的平穩過渡
- 3. 🔽 棕地現代化: 老舊廠房的數位化
- 4. 🗸 營運與維護: 歷史工程數據存取
- 5. 🗸 合規性管理: 符合產業標準和法規

3. 詳細功能比較

3.1 數據類型支援

數據類型	NDH	AVEVA Connect	AVEVA AIM
即時 OT 數據	▼ 核心功能	✓ 透過 Data Services	✗不支援
時序數據	✓ InfluxDB/TDengine	✓ AVEVA Data Hub	✗不支援
工程數據	△ 基本支援	✓ 透過 AIM	✓ 核心功能
3D 模型	♪ 透過 Omniverse	✓ 透過 AIM	✓ 核心功能
文檔	★ 不支援	✓ 透過 AIM	✓ 核心功能
點雲數據	★不支援	✓ 透過 Point Cloud Mgr	✓ 核心功能
MES/ERP 數據	▼ 核心功能	✓ 透過整合	△ 有限支援

3.2 工業協議支援

協議	NDH	AVEVA Connect	AVEVA AIM
OPC UA	☑ 原生支援	✓ 透過 PI System	✗不支援
SECS/GEM	☑ 原生支援	△ 需客製化	✗不支援
Modbus TCP	☑ 原生支援	✓ 透過 PI System	✗不支援
BACnet	☑ 原生支援	⚠ 需客製化	✗不支援
MQTT	☑ 原生支援	✓ 透過 PI System	✗不支援

3.3 數據處理能力

能力	NDH	AVEVA Connect	AVEVA AIM
即時數據處理	✓ Kafka Streams	✓ Data Services	✗不支援
批次數據處理	✓ Spark/Flink	✓ Azure Services	① 有限支援
數據聚合	▼ 核心功能	▼ 核心功能	✓ 核心功能
數據驗證	⚠ 基本驗證	✓ 進階驗證	✓ 標準基礎驗證
數據轉換	✓ 核心功能	✓ Integration Studio	△有限支援

3.4 整合能力

整合類型	NDH	AVEVA Connect	AVEVA AIM
MES 整合	☑ 原生支援	☑ 透過連接器	△有限支援
ERP 整合	☑ 原生支援	☑ 透過連接器	△有限支援
CAD/BIM 整合	♪ 透過 Omniverse	✓ 透過 AIM	☑ 核心功能
第三方應用	▼ RESTful API	✓ CONNECT APIs	✓ CONNECT APIs
數據庫整合	▼ 多種數據庫	✓ Azure 數據服務	△ 有限支援

3.5 部署與運維

特性	NDH	AVEVA Connect	AVEVA AIM
部署模式	On-Premise/Cloud	Cloud Only (Azure)	Cloud (CONNECT)
容器化	✓ Kubernetes	✓ Azure Kubernetes	✓ CONNECT 平台
高可用性	✓ 自建 HA	✓ Azure HA	✓ CONNECT HA
災難恢復	✓ 自建 DR	✓ Azure DR	✓ CONNECT DR
監控	✓ Prometheus/Grafana	✓ Azure Monitor	✓ CONNECT Monitor

4. 架構比較

4.1 NDH 架構

優勢: - **☑ 開放性**: 不綁定特定供應商 - **☑ 靈活性**: 可抽換時序數據庫 - **☑ 即時性**: 毫秒級數據處理 - **☑ 成本**: 開源,無授權費

劣勢: - ★ 工程數據: 對 3D 模型、P&ID 支援有限 - ★ 文檔管理: 不支援文檔版本控制 - ★ 雲端服務: 需自建雲端基礎設施 - ★ 生態系統: 應用生態不如 AVEVA

4.2 AVEVA Connect 架構

優勢: - ☑ 整合平台: 統一的應用整合環境 - ☑ 雲端原生: 基於 Azure,全球可用 - ☑ 生態系統: 豐富的 AVEVA 應用 - ☑ 協作: 跨組織數據共享

劣勢: - **★ 成本**: 高昂的 SaaS 訂閱費用 - **★ 供應商鎖定**: 依賴 AVEVA 生態 - **★ 雲端限制**: 僅 支援 Azure - **★ 客製化**: 客製化能力受限

4.3 AVEVA AIM 架構

優勢: - **✓ 工程數據**: 專注於工程資訊管理 - **✓ 數據品質**: 基於標準的驗證 - **✓ 視覺化**: 強大的 3D 和 P&ID 查看 - **✓ 交接**: 優化設計到營運的交接

劣勢: - **★ 即時數據**: 不支援即時 OT 數據 - **★ 成本**: 高昂的授權費用 - **★ 範圍**: 主要限於工程階段 - **★ 供應商鎖定**: 深度綁定 AVEVA

5. 使用案例比較

5.1 案例 1: LED 封裝廠生產監控

需求: - 即時設備監控 (340 台設備) - 生產批次追蹤 - 物料消耗記錄 - MES/ERP 整合 - 每日 100M+ 數據點

方案比較:

方案	適合度	理由
NDH	****	專為即時 OT 數據設計,原生支援 SECS/GEM,成本低
AVEVA Connect	***	可透過 PI System 實現,但成本高,過度設計
AVEVA AIM	*	不適合,主要用於工程數據,不支援即時監控

推薦: NDH - 完美匹配需求,成本效益最高

5.2 案例 2: 石油天然氣廠房建設

需求: - 工程數據管理 (P&ID, 3D 模型) - EPC 與業主協作 - 文檔版本控制 - 設計審查工作流程 - 交接到營運

方案比較:

方案	適合度	理由
NDH	*	不適合,主要用於即時數據,工程數據支援有限
AVEVA Connect + AIM	****	專為此場景設計,完整的工程數據管理和協作
AVEVA AIM	***	適合,但缺少 Connect 的協作和整合能力

推薦: AVEVA Connect + AIM - 業界標準解決方案

5.3 案例 3: 半導體廠房 Digital Twin

需求: - 即時設備監控 (OPC UA) - 工程數據整合 (3D 模型) - 預測性維護 - 能源管理 - MES/ERP整合

方案比較:

方案	適合度	理由
NDH + Omniverse	****	即時數據 + 3D 視覺化,開源靈活,成本低
AVEVA Connect + PI + AIM	***	功能完整,但成本極高 (USD 500K+/年)
AVEVA AIM	**	缺少即時數據和預測性維護能力

推薦: NDH + Omniverse - 平衡功能和成本

5.4 案例 4: 跨國企業數位轉型

需求: - 全球多廠房整合 - 跨組織數據共享 - 企業級安全性 - 應用生態系統 - 雲端部署

方案比較:

方案	適合度	理由
NDH	***	可行,但需自建雲端基礎設施和安全機制
AVEVA Connect	****	專為企業級設計,全球可用,豐富生態
AVEVA AIM	**	範圍有限,主要用於工程數據

推薦: AVEVA Connect - 企業級首選

6. 成本比較

6.1 初期投資 (CAPEX)

項目	NDH	AVEVA Connect	AVEVA AIM
軟體授權	0(開源) 0 (SaaS)	\$0 (SaaS)	
硬體設備	50K-150K	0(雲端) 0(雲端)	
實施服務	100K-300K	200K-500K	150K-400K
培訓	20K-50K	30K-80K	25K-60K
總計	170K- 500K	$230K\mathbf{-580K}$	175K $-$ 460K

6.2 年度營運成本 (OPEX)

項目	NDH	AVEVA Connect	AVEVA AIM
軟體訂閱	0 200K - $500K 100$ K - \$300K		
雲端服務	50K-150K	包含在訂閱	包含在訂閱
維護支援	$30K{-}80$ K	包含在訂閱	包含在訂閱
人力成本	150K-300K	100K-200K	80K-150K
總計	$230K\mathbf{-530K}$	300K-700K	180K - 450K

6.3 5 年總擁有成本 (TCO)

系統	初期投資	5年 OPEX	5年TCO
NDH	$335K 1.9{ m M}$	\$2.24M	
AVEVA Connect	405K 2.5M	\$2.91M	
AVEVA AIM	318K 1.6M	\$1.92M	

註: 以中型製造廠 (500-1000 資產) 為基準

6.4 成本分析

NDH 成本優勢: - ☑ 無軟體授權費 (開源) - ☑ 可選擇低成本雲端服務 - ☑ 可抽換數據庫降低成本

AVEVA Connect 成本劣勢: - ★ 高昂的 SaaS 訂閱費 - ★ 綁定 Azure (無法選擇低成本雲端) - ★ 按用戶/資產數量計費

AVEVA AIM 成本特點: - ① 中等訂閱費用 - ② 主要用於工程階段,營運階段成本可降低 - ② 可與 Connect 整合,但增加成本

7. 技術深度比較

7.1 數據模型

NDH 數據模型

```
# IADL 資產定義
asset:
    id: "WB-001"
    type: "Wire Bonder"
    metadata:
        manufacturer: "ASM"
        model: "AD830"
    qeometrv:
        usd_path: "/assets/wire_bonder.usd"
    connections:
        - type: "power"
        voltage: 220V
data_taqs:
        - tag_id: "WB001.UPH"
        protocol: "SECS/GEM"
        data_type: "integer"
```

AVEVA AIM 數據模型

比較: - NDH 使用 IADL (YAML/JSON),更簡潔,易於機器處理 - AVEVA AIM 使用 ISO 15926 (XML),更標準化,適合工程數據

7.2 API 設計

NDH API

```
# RESTful API
GET /api/v1/assets/{asset_id}
GET /api/v1/assets/{asset_id}/data?start=...&end=...
POST /api/v1/assets/{asset_id}/commands
WS /api/v1/assets/{asset_id}/stream

# GraphQL API
query {
   asset(id: "WB-001") {
    id
     type
     data(timeRange: {start: "...", end: "..."}) {
        timestamp
        value
    }
   }
}
```

AVEVA Connect API

```
// CONNECT Data Services API
var client = new DataServiceClient();
var stream = await client.GetStreamAsync("WB-001-UPH");
var data = await stream.GetDataAsync(startTime, endTime);

// Integration Studio API
var integration = new IntegrationClient();
await integration.SyncDataAsync(source, destination);
```

比較: - NDH 提供 RESTful + GraphQL + WebSocket,更靈活 - AVEVA Connect 提供 .NET SDK,更適合企業應用

7.3 擴展性

擴展維度	NDH	AVEVA Connect	AVEVA AIM
水平擴展	Kubernetes	✓ Azure Auto-scale	✓ CONNECT 平台
垂直擴展	☑ 資源配置	✓ Azure 資源	✓ CONNECT 資源
數據量	100M+點/天	1B+點/天	10M+ 資產
用戶數	1,000+	10,000+	1,000+
資產數	10,000+	100,000+	50,000+

8. 安全性比較

8.1 身份驗證

機制	NDH	AVEVA Connect	AVEVA AIM
sso	OAuth 2.0	✓ Azure AD	✓ CONNECT SSO
MFA	▼支援	▼支援	▼支援
LDAP/AD	▼支援	✓ Azure AD	✓ Azure AD
API Key	☑支援	▼支援	✓ 支援

8.2 數據加密

加密類型	NDH	AVEVA Connect	AVEVA AIM
傳輸加密	▼ TLS 1.3	✓ TLS 1.3	▼ TLS 1.3
靜態加密	✓ AES-256	✓ Azure Encryption	✓ Azure Encryption
端到端加密	⚠可選	▼支援	▼支援

8.3 合規性

標準	NDH	AVEVA Connect	AVEVA AIM
ISO 27001	△ 自行實施	✓ Azure 認證	✓ Azure 認證
SOC 2	△ 自行實施	✓ Azure 認證	✓ Azure 認證
GDPR	△ 自行實施	✓ 合規	✓ 合規
NIST	△ 自行實施	✓ 合規	✓ 合規

9. 優勢與劣勢總結

9.1 NDH

優勢 🗸

1. **開源免費**: 無授權費,降低 TCO

2. 中立性: 不綁定供應商,可抽換組件

3. 即時性: 專為即時 OT 數據設計

4. 靈活性: 可 On-Premise 或雲端部署

5. 客製化: 完全可客製化和擴展

6. Asset Servants: 創新的資產服務架構

7. **成本效益**: 5 年 TCO 最低

劣勢 🗙

1. **工程數據**: 對 3D 模型、P&ID 支援有限

2. 文檔管理: 不支援文檔版本控制

3. 生態系統: 應用生態不如 AVEVA

4. 企業支援: 缺少商業級支援 (除非購買)

5. 雲端服務: 需自建雲端基礎設施

6. 合規性: 需自行實施安全合規

9.2 AVEVA Connect

優勢 🗸

1. 整合平台: 統一的工業智能平台

2. 雲端原生: 基於 Azure,全球可用

3. 生態系統: 豐富的 AVEVA 應用整合

4. 企業級: 適合大型跨國企業

5. 協作: 跨組織數據共享

6. 安全性: Azure 級別的安全和合規

7. AI/分析: 內建 AI 和分析服務

劣勢 🗙

1. 成本: 高昂的 SaaS 訂閱費用

2. 供應商鎖定: 深度綁定 AVEVA 生態

3. 雲端限制: 僅支援 Azure

4. 客製化: 客製化能力受限

5. 複雜性: 學習曲線陡峭

6. 過度設計: 對小型專案可能過度

9.3 AVEVA AIM

優勢 🗸

1. 工程數據: 專注於工程資訊管理

2. **數據品質**: 基於標準的驗證 (ISO 15926)

3. 視覺化: 強大的 3D 和 P&ID 查看

4. 交接: 優化設計到營運的交接

5. 文檔管理: 整合文檔控制系統

6. 標準化: 符合產業標準

劣勢 🗙

1. 即時數據: 不支援即時 OT 數據

2. 範圍: 主要限於工程階段

3. 成本: 高昂的授權費用

4. 供應商鎖定: 深度綁定 AVEVA

5. 營運: 營運階段價值有限

10. 選擇建議

10.1 決策矩陣

場景	推薦方案	理由
製造業即時監控	NDH	專為即時 OT 數據設計,成本低
資本專案 (EPC)	AVEVA Connect + AIM	業界標準,完整工程數據管理
中小型製造廠	NDH	成本效益最高,功能足夠
大型跨國企業	AVEVA Connect	企業級平台,全球協作
棕地現代化	AVEVA AIM	專為棕地數位化設計
預測性維護	NDH + PI System	即時數據 + 歷史數據分析
Digital Twin (製造)	NDH + Omniverse	即時數據 + 3D 視覺化
Digital Twin (工程)	AVEVA AIM	工程數據核心

10.2 混合方案

方案 1: NDH + AVEVA AIM - NDH 處理即時 OT 數據 - AVEVA AIM 管理工程數據 - 透過 API 整合 - 適合: 需要即時監控和工程數據的場景

方案 2: NDH + AVEVA PI System - NDH 處理設備數據 - PI System 處理歷史數據和分析 - 適合: 需要長期歷史數據分析的場景

方案 3: AVEVA Connect (全套) - Connect + AIM + PI System + Predictive Analytics - 適合: 大型企業,預算充足

11. 實施建議

11.1 NDH 實施建議

適合的組織: - 中小型製造企業 - 有技術團隊的公司 - 預算有限的專案 - 需要高度客製化的場景

實施步驟: 1. **POC** (1-2 個月): 驗證技術可行性 2. **試點** (2-3 個月): 單一產線或區域 3. **擴展** (3-6 個月): 全廠部署 4. **優化** (持續): 性能優化和功能擴展

關鍵成功因素: - 強大的技術團隊 - 清晰的需求定義 - 充分的 POC 驗證 - 持續的技術支援

11.2 AVEVA Connect 實施建議

適合的組織: - 大型跨國企業 - 石油天然氣、化工產業 - 預算充足的專案 - 需要企業級支援的場景

實施步驟: 1. 評估 (1-2 個月): 需求分析和方案設計 2. 試點 (3-6 個月): 單一廠房或專案 3. 擴展 (6-12 個月): 多廠房部署 4. 優化 (持續): 應用整合和優化

關鍵成功因素: - 高層支持和充足預算 - AVEVA 合作夥伴支援 - 變革管理和培訓 - 長期承諾

11.3 AVEVA AIM 實施建議

適合的組織: - EPC 公司 - 資本專案業主 - 需要工程數據管理的場景

實施步驟: 1. **規劃** (1 個月): 數據標準和流程定義 2. **配置** (1-2 個月): 系統配置和客製化 3. **遷 移** (2-3 個月): 歷史數據遷移 4. **上線** (1 個月): 用戶培訓和上線

關鍵成功因素: - 清晰的數據標準 - 完整的數據遷移計畫 - 用戶培訓和變革管理 - AVEVA 專業服務支援

12. 結論

12.1 核心差異

維度	NDH	AVEVA Connect	AVEVA AIM
定位	即時數據中樞	工業智能平台	工程資訊管理
開源	☑是	✗岙	✗呇
即時數據	▼ 核心	▼支援	✗不支援
工程數據	★有限	▽完整	✓ 核心
成本	₫ 低	₫ ₫ 高	₫ ₫ 中
適用規模	中小型	大型	中大型

12.2 最終建議

選擇 NDH 如果: - ☑ 需要即時 OT 數據監控 - ☑ 預算有限 - ☑ 有技術團隊 - ☑ 需要高度客製化 - ☑ 不想供應商鎖定

選擇 AVEVA Connect 如果: - ☑ 大型跨國企業 - ☑ 需要企業級平台 - ☑ 預算充足 - ☑ 需要豐富的應用生態 - ☑ 需要全球協作

選擇 AVEVA AIM 如果: - ☑ 資本專案 (EPC) - ☑ 需要工程數據管理 - ☑ 需要設計到營運交接 - ☑ 需要符合產業標準

12.3 未來趨勢

NDH 發展方向: 1. 增強工程數據支援 (與 AVEVA AIM 互補) 2. 深化 Omniverse 整合 3. 擴展 Asset Servant 類型 4. 建立應用生態系統

AVEVA 發展方向: 1. 深化 AI/ML 整合 2. 擴展 CONNECT 生態系統 3. 增強混合雲支援 4. 提升即時數據處理能力

趨勢: - 開源與商業解決方案共存 - 混合部署成為主流 - AI/ML 成為標配 - 供應商中立性越來 越重要 文檔版本: 1.0

最後更新: 2025-10-14

作者: 林志錚 (Chih Cheng Lin, Michael Lin)

Email: chchlin1018@gmail.com