Algebraic Theory I

Thomas Fleming

October 18, 2021

Contents

Lecture 22: Free Groups (5)

Fri 15 Oct 2021 11:21

Recall. Let G, H be groups with presentations $\varepsilon : F \to G$ and $\delta : F \to H$ for some free group F, If every relator of G is also a relator for H, then there is a surjective homomorphism $\varphi : G \to H$, $\varepsilon(x) \mapsto \delta(x)$.

Definition 0.1 (Reduced Word). We define a word w to be **reduced** if no string xx^{-1} or $x^{-1}x$ occurs within w for any $x \in X$. We find any word is equivalent to some reduced word by applying our relations.

Theorem 0.1. Every word is equivalent to a unique reduced word.

Proof. We proceed fancily (he really said this). Let R be the set of reduced words on the alphabet X. For each $m \in X$, define a map

$$m':R\to R,\ x_1^{\varepsilon_1}\dots x_\ell^{\varepsilon_\ell}\mapsto \left\{\begin{array}{ll} mx_1^{\varepsilon_1}\dots x_\ell^{\varepsilon_\ell}, & m\neq x_1^{-\varepsilon_1}\\ x_2^{\varepsilon_2}\dots x_\ell^{\varepsilon_\ell}, & m=x_1^{-\varepsilon_1} \end{array}\right.$$

We see m' is a bijection as $(m^{-1})' = m'^{-1}$. Hence, m' is simply a permutation of the set R.

Now, using the universal mapping property on F(X), we define a homomorphism

$$\theta: F(X) \longrightarrow \operatorname{Sym}(R)$$
 $[m] \longmapsto m'$

where $\operatorname{Sym}(R)$ is simply the set of all permutations of R. Now, suppose $w=x_1^{\varepsilon_1}\dots x_\ell^{\varepsilon_\ell}$ and $w'=y_1^{\delta_1}\dots y_s^{\delta_s}$ are two reduced words that are equivalent, that is [w]=[w']. Then, we have $\theta([w])=(x_1')^{\varepsilon_1}\dots (x_\ell')^{\varepsilon_\ell}$. Then, we see $\theta([w])(1)=w$. Hence, $\theta([w'])=\theta([w])=y_1^{\delta_1}\dots y_s^{\delta_s}$. Hence, we see $x_1^{\varepsilon_1}\dots x_\ell^{\varepsilon_\ell}=y_1^{\delta_1}\dots y_s^{\delta_s}$ as words. Hence, there is at most one distinct reduced word in [w]. And, as there is always at least 1 reduced word, we see this completes the proof.

Remark. We define $x^n = \underbrace{x \dots x}_{n \text{ times}}$ and $x^{-n} = \underbrace{x^{-1}x^{-1} \dots x^{-1}}_{n \text{ times}}$. Then, we see any reduced word has the form $x_1^{\ell_1} \dots x_s^{\ell_s}$ with $\ell_i \in \mathbb{Z} \setminus \{0\}$ and $x_i \neq x_{i-1}$ for all

 $1 \le i \le s$. This is called the normal form of a word.

Definition 0.2. With the normal form of a word, we define a multiplicity **function**. For $x \in X$ and a word $w = x_1^{\ell_1} \dots x_s^{\ell_s}$ we define $V_x(w) =$ $\sum_{x_j=x} \ell_j$.

We note that if $w \sim w'$, we have $V_x(w) = V_x(w')$ for all $x \in X$. Furthermore, $V_x(w) = V_x(v^{-1}wv)$ for all $x \in X$ and words v, w. Moreover, $V_x(wv) =$ $V_{x}\left(v\right)+V_{x}\left(v\right)$, so its a homormophism from $F\left(X\right)\to\mathbb{Z}$.

Definition 0.3 (Rank). Recall that if |X| = |Y|, we had $F(X) \simeq F(Y)$. We define (F(X)) = |X|. We have yet to show this is well defined, but the next theorem will take care of this.

Theorem 0.2. If X and Y are sets with $F(X) \simeq F(Y)$, then |X| = |Y|.

We will prove this claim next class.

Lecture 23 Mon 18 Oct 2021 11:26