Organização de Computadores

Memória Semicondutora

Organização

Prof. José Paulo G. de Oliveira Engenharia da Computação, UPE

Resumo

- Organização de Memórias Semicondutoras
- Novas Tecnologias (RAM)
- Códigos de Detecção e Correção de Erros

Organização de Memórias Semicondutoras

Organização

- Arranjo físico dos bits em palavras
- Nem sempre é óbvio

- Uma memória de 16Mb pode ser organizada como 1M palavras de 16 bits
- Um sistema de bits por chip pode possuir 16 chips de 1Mb com o bit 1 de cada palavra no chip 1 e assim por diante (associação de memórias)

Exemplos:

- OU:
- Um chip de 16Mb pode ser organizado como uma matriz 2048 x
 2048 x 4 bits
 - Redução do número de pinos de endereço
 - Multiplexação do endereçamento de linha e de coluna
 - 11 pinos para endereçamento (2¹¹ = 2048)
 - Adição de mais um pino duplica a faixa de valores de endereços, portanto, quadruplica a capacidade

DRAM de 16Mb (4M x 4)

		İ
Vcc — 1	24	Vss
D1 -1 - 2	23	→ D4
D2 - 1 - 3	22	→ D3
WE → 4	21	CAS
RAS — 5	20	OE
NC → 6	19	A9
A10 7	18	A8
A0 → 8	17	
A1 → 9	16	A6
A2 — 10	15	A5
A3 — 11	14	A4
Vcc12	13	Vss
		T .

Temporização de leitura de DRAM simplificada

Refrescamento

Circuito de refrescamento incluído no chip

- Periodicamente
 - Desabilita o chip
 - Percorre as linhas
 - Lê os valores e escreve novamente
 - Toma um tempo razoável
 - Faz o desempenho aparente da memória cair

Conexão da memória ao barramento

- 1. Ajustar o número de bits da palavra:
 - Exemplo: Organização desejada: 2k x 8
 - Memória disponível: 2k x 4
- 2. Ajustar o número de palavras (endereços):
 - Exemplo: Organização desejada: 4k x 8
 - Memória disponível: 2k x 8

1. Ajustar o número de bits da palavra:

Relembrando...

CS = Chip Select

2. Ajustar o número de palavras (endereços):

2. Ajustar o número de palavras (endereços):

Quando A3 = 0

2. Ajustar o número de palavras (endereços):

Quando A3 = 1

Ex.: Organização do Módulo

Cada chip:

256 k posições x 1 bit (512 x 512) x 1 bit

Objetivo:

256 kbytes = 256 k posições x 8 bits

Cada chip:

256 k posições x 1 bit (512 x 512) x 1 bit

Objetivo:

1 Mbytes = 1 M posições x 8 bits

Cada chip:

256 k posições x 1 bit (512 x 512) x 1 bit

Objetivo:

1 Mbytes = 1 M posições x 8 bits

Cada chip:

256 k posições x 1 bit (512 x 512) x 1 bit

Objetivo:

1 Mbytes = 1 M posições x 8 bits =

 $= 4 \times 256 \text{ kB}$

Decodificador de endereços

Intercalada – 1 Mbytes = $8x2^{20}$

Intercalada – 1 Mbytes = $8x2^{20}$

Ex.: Se end. = 01 000000000 000000010

Módulos

Novas Tecnologias de Memórias RAM

 As memórias DRAM se mantêm praticamente as mesmas dos chips RAM

 Porém, algumas melhorias foram apresentadas para resolver a discrepância entre a evolução dos processadores a velocidade de operação das memórias

Relembrando...

Novas Tecnologias RAM

Por exemplo:

- Enhanced DRAM
 - Contém uma pequena memória SRAM
 - SRAM armazena a última linha lida
 - Funciona como uma pequena cache
- Cache DRAM
 - Componente SRAM razoavelmente maior
 - Utilizada como uma cache ou para dar suporte ao acesso sequencial (por ex., arquivos)

Novas Tecnologias RAM

- Synchronous DRAM (SDRAM)
 - Empregada em memórias comerciais:
 - SDRAM: Transferências em uma única borda do relógio
 - DDR SDRAM: Transferências nas duas bordas do relógio
 - O acesso é sincronizado com um relógio externo

DDR – Double Data Rate

- Funcionamento (SDRAM)
 - O endereço é apresentado à RAM
 - A RAM encontra o dado
 - Em uma DRAM convencional a CPU espera

Novas Tecnologias RAM

- Funcionamento (SDRAM)
 - Uma vez que a SDRAM manipula dados em sincronismo com o clock, a CPU "sabe" quando os dados estarão prontos
 - A CPU não precisa ficar esperando: ela pode fazer outra coisa
 - O modo burst (transferência de dados em sequência) elimina o tempo necessário para obter o endereço e para carregar os endereços de linha e coluna

SDRAM

SDRAM

Programmable Mode Register

Ex.: SDRAM Hynix

Crucial® DDR4

Novas tecnologias

Novas tecnologias

WHAT IS INTEL® OPTANE™ MEMORY?

3D XPOINT™ MEMORY MEDIA

STANDARD M.2 CONNECTOR MODULAR FORM FACTOR

PCIe* Gen 3.0x2 M.2 2280 Single-sided

INTEL® RAPID STORAGE TECHNOLOGY

The two physical devices are paired into a single volume

Files needed for important tasks are immediately recognized and accelerated

Over time, frequently used files and applications are monitored and accelerated as well INTEL® OPTANE™ MEMORY

M.2 2280

16GB 32GB

FOR 7TH GEN INTEL® CORE™ PLATFORM

Scalability

Cross Point Structure

High

Performance

Breakthrough Material Advances

Detecção e Correção de Erro

Classificação de Erro

- Hard Failure
 - Defeito permanente
- Soft Error
 - Aleatório e não-destrutivo
 - Sem danos permanentes para a memória
 - Detectado/corrigido usando um código corretor de erros
 - Ex.: Hamming

Função do Código Corretor de Erros

Paridade

- Bit de Paridade
- "Conta" o número de bits "1"
 - Se PAR => P = 0
 - Se ÍMPAR => P = 1
- Funciona como detector de ERRO
 - Apenas erros em 1 bit da sequência!
 - Sem correção

- Richard Hamming
 - Bell Labs 1940s
 - Bell Model V

Ex.: 0 1 1 0

Bits de paridade	Bits totais	Bits de dados	Nome	Taxa
2	3	1	Hamming(3,1)	1/3 ≈ 0.333
3	7	4	Hamming(7,4)	4/7 ≈ 0.571
4	15	11	Hamming(15,11)	11/15 ≈ 0.733
5	31	26	Hamming(31,26)	26/31 ≈ 0.839
m	2m - 1	2m - m - 1		1 - m/(2m - 1)

Ex.: 0 1 1 0

Ex.: 0 1 1 0

