coursera

Q

Evaluating a Learning Algorithm

Bias vs. Variance

Learning Curves | Coursera

- Video: Diagnosing Bias vs.
 Variance
 7 min
- Reading: Diagnosing Bias vs. Variance
 3 min
- Video: Regularization and Bias/Variance
 11 min
- Reading: Regularization and Bias/Variance
 3 min
- Video: Learning Curves
 11 min
- Reading: Learning Curves 3 min
- Video: Deciding What to Do
 Next Revisited
 6 min
- Reading: Deciding What to do Next Revisited

 3 min

Review

Building a Spam Classifier
Handling Skewed Data
Using Large Data Sets
Review

Learning Curves

Training an algorithm on a very few number of data points (such as 1, 2 or 3) will easily have 0 errors because we can always find a quadratic curve that touches exactly those number of points. Hence:

- As the training set gets larger, the error for a quadratic function increases.
- The error value will plateau out after a certain m, or training set size.

Experiencing high bias:

Low training set size: causes $J_{train}(\Theta)$ to be low and $J_{CV}(\Theta)$ to be high.

Large training set size: causes both $J_{train}(\Theta)$ and $J_{CV}(\Theta)$ to be high with $J_{train}(\Theta) \approx J_{CV}(\Theta)$.

If a learning algorithm is suffering from **high bias**, getting more training data will not **(by itself)** help much.

Experiencing high variance:

Low training set size: $J_{train}(\Theta)$ will be low and $J_{CV}(\Theta)$ will be high.