腳

诚信应考,考试作弊将带来严重后果!

华南理工大学本科生期末考试

《工科数学分析(二)》

2016-2017 学年第二学期期末考试试卷 B 卷

注意事项: 1. 开考前请将密封线内各项信息填写清楚:

- 2. 所有答案请直接答在试卷上;
- 3. 考试形式: 闭卷;
- 4. 本试卷共6大题,满分100分,考试时间120分钟。

题 号	_	<u> </u>	111	四	五	六	总分
得 分							

得分

一、 填空题: 共5题, 每题2分, 共10分.

- 1. 由方程 $xyz+\sqrt{x^2+y^2+z^2} = \sqrt{2}$ 所确定的函数 z=z(x,y) 在点 (1,0,-1) 的全微分 dz= :

- 4. 初值问题 $\begin{cases} y' + \frac{3}{x}y = \frac{2}{x^3} \\ y|_{x=1} = 1 \end{cases}$;
- 5. 设周期为 2π 的函数f(x)在区间 $(-\pi,\pi]$ 的表达式为 $f(x) = \pi x + x^2, -\pi < x \leq \pi$. 若其 傅里叶(Fourier)级数为 $\frac{a_0}{2} + \sum_{n=1}^{\infty} (a_n \cos nx + b_n \sin nx)$,则其中系数 $b_2 = \underline{\hspace{1cm}}$.

二、 单选题 (每题只有一个正确选项): 共5题,每题2分,共10分.

- 1、二元函数 f(x,y) 在点 (a,b) 处的两个偏导数 $\frac{\partial f}{\partial x}(a,b)$ 和 $\frac{\partial f}{\partial y}(a,b)$ 存在,则();
 - A. f(x,y) 在点(a,b) 处连续

- B. f(x,y) 在点(a,b)处可微
- C. $\lim_{x\to a} f(x,b)$ 和 $\lim_{y\to b} f(a,y)$ 都存在 D. $\lim_{(x,y)\to(a,b)} f(x,y)$ 存在
- 2、已知曲面 $z = 4 x^2 y^2$ 上点 P 处的切平面平行于平面 2x + 2y + z = 1,则 P 点的坐标是 ();

- A. (1,-1,2) B. (-1,1,2) C. (1,1,2) D. (-1,-1,2)
- 3、一个均匀物体由曲面 $z = x^2 + y^2$ 及 z = 1 围成,则该物体的质心坐标为(
 - A. $\left(\frac{2}{3}, \frac{2}{3}, \frac{2}{3}\right)$ B. $\left(0, 0, \frac{2}{3}\right)$ C. $\left(0, 0, 1\right)$ D. $\left(\frac{2}{3}, 0, 0\right)$

- 4、关于未知函数 y 的微分方程 $(y-\ln x)dx + xdy = 0$ 是 ();
 - A. 可分离变量方程

B. 一阶非齐次线性方程

C. 一阶齐次线性方程

- D. 非线性方程
- 5、下列级数条件收敛的是().

 - A. $\sum_{n=1}^{\infty} \frac{(-1)^n}{n^2}$ B. $\sum_{n=1}^{\infty} \left(1 \cos \frac{1}{n}\right)$ C. $\sum_{n=1}^{\infty} \frac{n!}{n^n}$ D. $\sum_{n=1}^{\infty} \frac{(-1)^n}{n}$

三、 计算题: 共4题, 每题7分, 共28分.

1. 设函数
$$u(x,y) = yf\left(\frac{x}{y}\right) + xg\left(\frac{y}{x}\right)$$
, 其中 f 和 g 具有连续的二阶导数, 计算 $x\frac{\partial^2 u}{\partial x^2} + y\frac{\partial^2 u}{\partial x \partial y}$.

2. 计算二重积分 $\iint_{D} \frac{1-x^2-y^2}{1+x^2+y^2} dxdy$ 其中 D 是区域 $x^2+y^2 \leqslant 1, x \geqslant 0, y \geqslant 0$.

3. 计算三重积分 $\iint\limits_{\Omega}z^2\mathrm{d}x\mathrm{d}y\mathrm{d}z$, 其中 Ω 是平面 x+y+z=1 与三个坐标面围成的区域.

4. 计算第一类曲面积分 $\iint_{\Sigma} (x+y+z) dS$,其中 Σ 为平面 y+z=5 被柱面 $x^2+y^2=25$ 所截得的部分.

四、 解答题: 共4题, 每题8分, 共32分.

1. 求方程 y"+4y'+3y=0的一个解 y=y(x),使其图像在点(0,2)处与直线 x-y+2=0相切.

2. 求圆柱面 $x^2 + y^2 = 4$, $x \ge 0$, $y \ge 0$ 介于 Oxy 平面和曲面 z = xy 之间的部分的面积.

3. 设 Σ 是锥面 $z=\sqrt{x^2+y^2}$ 被平面 z=0 及 z=1 截下的部分的下侧,计算第二类曲面积分 $\iint\limits_\Sigma x \mathrm{d}y \mathrm{d}z + y \mathrm{d}z \mathrm{d}x + (z^2-2z) \mathrm{d}x \mathrm{d}y \,.$

4. 求幂级数 $\sum_{n=1}^{\infty} \frac{x^n}{n}$ 的收敛域,并在收敛域上求其和函数.

五、证明题: 共2题, 每题6分, 共12分.

1. 证明: 曲面 $z = xe^{\frac{y}{x}}$ 上所有点处的切平面都过一定点.

2. 证明:函数项级数 $\sum_{n=0}^{\infty} x^n$ 在区间(0,1)上点态收敛,但不一致收敛.

得分

六、应用题: 共1题, 共8分.

从斜边长为l的直角三角形中,求周长最大的直角三角形.