买数连续性命题

实数连续性命题(一)(确界存在定理)

有上界的非空教集必有属于民的最小上界,即有有限的上确界

有下界的非空数集必有属于R的最大下界,即有有限的下确界

实数连续性命题(二)(单调收敛原理)

单调增有上界的数列必收敛 . 单调减有下界的数列必收敛 .

由(=)证明(-). proof;设ACR是一个任意的有上界的非空数集

:: A C R L B A + O :: MER :: MER

·· A有上界 ·· ∃MER, s.t. xt∀xeA, 有 x≤M

.. m∈A .. m < M

若M∈A, R! supA = M∈R.

 $\#M \notin A$ 见了: $m \leq M$, $m \in A$, $M \notin A$: $m \neq M$: m < M

: $M-m \in \mathbb{R}_{>0}$: [m,M]中有A中的数(比如meA)

将 [m,M]等分为两个闭区间 $[m,\frac{m+M}{2}]$, $[\frac{m+M}{2},M]$

若 $[\frac{m+M}{2}]$, M]中有A中的数, 则o $a_1 = \frac{m+M}{2}$, $b_1 = M$

若[m+M]中没有A中的数,则[m, m+M]中必有A中的数.此时令

 $a_1 = m$, $b_1 = \frac{m+M}{2}$

 $...b_1$ 是A的上界, $[a_1,b_1]$ 中有A中的数 $,b_1-a_1=\frac{M-m}{2}\in\mathbb{R}_{>0}$

将[a,b,]等分为两个闭区间[a,a+b][a][a,b]

若[att], b,]中有A中的数,则令~2= a1th, b2=b, 若[~1th, b,]中没有A中的数,则[a,, ~1th]中必有A中的数.此时令 $\alpha_2 = \alpha_1$, $b_2 = \frac{\alpha_1 + b_1}{2}$:. b_2 是A的上界, $[a_2, b_2]$ 中有A中的数 , $b_2-a_2=\frac{1}{2}(b_1-a_1)=\frac{M-m}{2^2}\in \mathbb{R}>0$, $a_1 \leqslant a_2$, $b_1 \gg b_2$ 将[az, bz]等分为两个闭区间[az, az+bz], [az+bz], bz] 若[$\frac{a_2+b_2}{2}$, b_2]中有A中的数,则令 $a_3 = \frac{a_2+b_2}{2}$, $b_3 = b_2$ 若[~~+/2]中没有A中的数,则[~2,~2+/2]中必有A中的数比时令 $a_3 = a_2$, $b_3 = \frac{a_2 + b_2}{2}$.. b3是A的上界,[a3,b3]中有A中的数 , b3-a3= $\frac{1}{2}(b2-a2) = \frac{M-m}{3^3} \in \mathbb{R}_{>0}$, $a_2 \leq a_3$, $b_2 \geqslant b_3$ 净[az, bz] 黔为两个胜闻[az, az+bz], [az+bz, bz] 若[~3+63, b]中没有A中的数,则[as, ~9+62]中必有A中的数。此时令 $a_4 = a_3$, $b_4 = \frac{a_3 + b_3}{2}$: b4是A的上界, [a4,64]中有A中的数, b4-a4==1(b3-a3)=M-m=R>0, az ≤ a4, b3 > b4 将上述过程继续下去,得到3两个R中的数列[an],[bn],满足: ①又批N∈Z浏,bn是A的上界

②对Yn∈ZN, [an, bn]中有A中的数

Scanned with CamScanner

- ⊕ fany是单调增数列, Elan)是单调减数●列
- S xt ∀ n ∈ Zn, ~ n ≤ M, 即数列 [m] 有上界 xt ∀ n ∈ Zn, bn > m, 即数列 [ln] 有下界.

·· {bn}是单调减有限的数列 ·· {bn}收敛 ·· limbn∈R

: lim an = lim bn ER. 2 \ = lim an = lim bn ER.

假设入不是A的上界,则于XEA, s.t. X>入

- ··又甘YneIn, bn是A的上界 ··又甘YneIn, 又≤bn
- $\|\cdot\|_{A} \leq \lim_{n \to \infty} \int_{A} = \lambda$ $\|\cdot\|_{A} \leq \lambda \leq \lambda$. The $\|\cdot\|_{A} \gtrsim A \leq \lambda \leq \lambda$

 $zty z \in \mathbb{R}_{>0}$, $\lim_{n \to \infty} a_n = \lambda$ $\exists N \in \mathbb{Z}_{>1}$, $zty n \in \mathbb{Z}_{>1} \perp n > N$, \underline{a} :

- .. xtyn∈Zz1且n>N,有: >-E<an
- : xtVn∈ZzI An>N, ∃ dn∈A, s.t. dn∈[an, bn]
- $\therefore \text{2} \forall n \in \mathbb{Z}_{\geq 1} \perp n > N, \exists A \in A, \text{ s.t. } \lambda 2 < \alpha_n \leq \alpha_n$
- \therefore 入是A的上确界 \therefore SupA = $\lambda \in \mathbb{R}$.