YOLOv3: An Incremental Improvement

Joseph Redmon Ali Farhadi

- I. Paper보다 Tech Report
- Ⅱ. YOLOv2에서 약간의 변형.
- Ⅲ. 속도에 강점을 둠.
- IV. Metric 방식에 대한 비판.
- V. 기술 윤리에 대한 의견.

- COCO Metric으로는 320x320 22ms, 28.2 mAP로 SSD보다 세배 빠름.
- .5 IOU mAP(AP₅₀)으로는 57.9로 57.5, 198ms의 RetinaNet보다 더 정확하며 3.8배 더 빠름.
- 공식 코드: https://pjreddie.com/darknet/yolo/

Bounding Box Prediction

- 전체적으로 YOLO9000의 시스템의 Bounding Box prediction 방법을 따름(Dimension clusters as Anchor boxes).
- Anchor 박스의 중심점이 (C_x, C_y)로 처음에 주어 졌을 때, (C_x, C_y)에서 1칸 내에서 중심점이 이동함.
 -> (t_x, t_y)를 구해서 시그모이드를 취하면 0과 1 사이가됨.
- Anchor 박스의 원래 크기가 (P_w, P_h) 로 주어졌을 때, Ground Truth 박스의 크기에 맞게 Anchor의 크기 변경. -> (t_w, t_h) 를 구해서 Exponential를 취해서 Anchor 박스의 너비와 높이에 곱해서 구함.
- 훈련 간 Box prediction과 관련된 손실은 GT와 Predicted box간의 제곱 오차의 합으로 계산함. -> b와 관련된 식을 거꾸로 전개하면 t값들을 계산할 수 있는데 GT와 Predicted box의 t값들을 계산함.

Bounding Box Prediction

- Bounding box가 얼마나 객체를 포함하고 있는가를 나타내는 Objectness score를 각 Bounding box마다 Logistic regression으로 계산함.
- 어떤 박스가 다른 박스보다 가장 Ground Truth 박스와 많이 겹친다면 Objectness score가 1이 됨.
- 어떤 박스가 Ground Truth와 가장 많이 겹치지는 않지만 Threshold보다 많이 겹칠 때, 이 박스는 무시됨(저자들은 0.5 threshold 값 적용).
- 각 Ground Truth마다 1개의 Anchor 박스만 할당함. 그래서 어떤 박스가 Ground Truth에 할당되지 않는다면 Objectness 손실만 계산하고 Coordinate나 Class와 관련된 손실은 계산하지 않음.

Class Prediction

- 각 box마다 Multilabel classification을 수행 시에 Softmax대신에 각 클래스마다 Logistic regression 수행.
- => 데이터 마다 클래스가 동시에 존재하는 경우가 있는데(Woman and Person) Softmax는 각 객체가 정확히 1개의 클래스만 가진다는 것을 전제하므로 맞지 않음. 따라서 각 클래스마다 Logistic regression을 수행해서 여러 개의 클래스를 가질 수 있도록 함.
- Class 예측과 관련된 손실은 Binary cross-entropy로 계산함.

Predictions Across Scales

3 Boxes with 3 Scales

- 3가지 Scale별로 3개의 Anchor 박스가 할당됨.
- Grid의 각 Cell마다 3개의 박스에 대한 Coordinates, Objectness score, Class scores를 예측하므로 N x N x (3 x (4 + 1 + # of Classes))
- 크기가 다른 두 Feature map을 Concatenate하기 위해서 Up sampling 수행.
- => Meaningful semantic information + Finer-grained information

Occoncatenation Addition Residual Block Detection Layer Upsampling Layer Further Layers YOLO v3 network Architecture

Anchor boxes

- 도메인 데이터의 Ground Truth 박스 정보에 대해서 K-means clustering을 수행하여 9개의 Anchor 박스를 추출해냄.
- 9개의 박스를 3개의 Scale에 균등하게 할당. (10×13),(16×30),(33×23), (30×61),(62×45),(59×119), (116×90),(156 × 198),(373 × 326).
- # of Bounding Boxes
- 1. YOLOv1 98 boxes(7x7 grid cells, 2 boxes per cell, 448 x 448)
- 2. YOLOv2 845 boxes(13x13 grid cells, 5 anchor boxes)
- 3. YOLOv3 10,647 boxes(416 x 416)

Feature Extractor

Backbone	Top-1	Top-5	Bn Ops	BFLOP/s	FPS
Darknet-19 [15]	74.1	91.8	7.29	1246	171
ResNet-101[5]	77.1	93.7	19.7	1039	53
ResNet-152 [5]	77.6	93.8	29.4	1090	37
Darknet-53	77.2	93.8	18.7	1457	78

- 저자들이 새로 제안한 Darknet-53은 ResNet-152와 정확도는 비슷하면서 속도는 2배 이상 빠름.
- ResNet-152보다 연산 량이 적으며 초당 연산 계산 량이 더 많음. 이는 Darknet-53이 GPU를 훨씬 더 잘 이용하도록 고안되었기 때문이라고 함.
- 저자들은 Crop, Warp를 적용하지 않은 전체 이미지로 훈련을 수행했고 Hard negative mining을 수행하지 적용하지 않음. (어떤 박스가 Ground Truth와 가장 많이 겹치지는 않지만 Threshold보다 많이 겹칠 때, 이 박스는 무시됨(저자들은 0.5 threshold 값 적용, 각 Ground Truth마다 1개의 Anchor 박스만 할당함 => Objectness score로 Background 부분을 버림.)
- Data augmentation, Batch normalization, Multi-scale training

	Туре	Filters	Size	Output
	Convolutional	32	3×3	256×256
	Convolutional	64	$3 \times 3 / 2$	128 × 128
	Convolutional	32	1 × 1	
1×	Convolutional	64	3×3	
	Residual			128 × 128
,	Convolutional	128	$3 \times 3/2$	64 × 64
	Convolutional	64	1 × 1	
2×	Convolutional	128	3×3	
	Residual			64 × 64
,	Convolutional	256	$3 \times 3/2$	32 × 32
	Convolutional	128	1 × 1	
8×	Convolutional	256	3×3	
	Residual			32×32
,	Convolutional	512	$3 \times 3/2$	16 × 16
	Convolutional	256	1 × 1	
8×	Convolutional	512	3×3	
	Residual			16 × 16
	Convolutional	1024	$3 \times 3/2$	8 × 8
	Convolutional	512	1 × 1	
4×	Convolutional	1024	3×3	
	Residual			8 × 8
	Avgpool		Global	
	Connected		1000	
	Softmax			

Feature Extractor 61 Concatenation Scale 1 Addition Stride: 32 Residual Block Scale 2 Detection Layer 94 Stride: 16 Upsampling Layer Further Layers Scale 3 106 Stride: 8 YOLO v3 network Architecture

Experiments Result

	backbone	AP	AP ₅₀	AP ₇₅	AP_S	AP_M	AP_L
Two-stage methods							
Faster R-CNN+++ [5]	ResNet-101-C4	34.9	55.7	37.4	15.6	38.7	50.9
Faster R-CNN w FPN [8]	ResNet-101-FPN	36.2	59.1	39.0	18.2	39.0	48.2
Faster R-CNN by G-RMI [6]	Inception-ResNet-v2 [21]	34.7	55.5	36.7	13.5	38.1	52.0
Faster R-CNN w TDM [20]	Inception-ResNet-v2-TDM	36.8	57.7	39.2	16.2	39.8	52.1
One-stage methods							
YOLOv2 [15]	DarkNet-19 [15]	21.6	44.0	19.2	5.0	22.4	35.5
SSD513 [11, 3]	ResNet-101-SSD	31.2	50.4	33.3	10.2	34.5	49.8
DSSD513 [3]	ResNet-101-DSSD	33.2	53.3	35.2	13.0	35.4	51.1
RetinaNet [9]	ResNet-101-FPN	39.1	59.1	42.3	21.8	42.7	50.2
RetinaNet [9]	ResNeXt-101-FPN	40.8	61.1	44.1	24.1	44.2	51.2
YOLOv3 608 × 608	Darknet-53	33.0	57.9	34.4	18.3	35.4	41.9

- COCO Average mean AP metric으로 평가했을 때 정확도는 SSD 계열 모델과 비슷하지만 속도는 약 3배 더 빠름.
- COCO metric으로 평가하면 RetinaNet, Faster R-CNN 계열 모델들보다 정확도가 더 떨어짐.
- 그러나 COCO 이전의 Metric으로 평가하면(IOU= .5, AP $_{50}$) RetinaNet 모델과 정확도가 유사하면서 속도는 더 빠름. 저자들이 인정하길, YOLOv3는 완벽하게 GT 박스에 맞는 박스를 만들어 내는데는 어려움을 겪는다고 함. 그러나 Russakovsky 등의 연구를 인용하면서 사람조차 IOU of $.3 \sim .5$ 의 박스를 구별하는데 어려움을 겪는다고 하면서 .5식 IOU 올려가며 모델 정확도를 측정하는 COCO Metric 방식에 의문을 제기함.
- 기존 YOLO과 비교했을 때, 비교적 작은 물체에 대한 탐지 성능(AP_S)는 더 좋아졌지만 중간, 큰 물체에 대한 탐지 성능은 오히려 떨어졌다고 함(AP_M , AP_I). 이에 대한 추가적인 연구 필요.

Things They Tried But Didn't Work

$$\hat{G}_x = P_w d_x(P) + P_x \tag{1}$$

$$\hat{G}_x = P_w d_x(P) + P_x \tag{1}$$

$$\hat{G}_y = P_h d_y(P) + P_y \tag{2}$$

$$\hat{G}_w = P_w \exp(d_w(P)) \tag{3}$$

$$\hat{G}_h = P_h \exp(d_h(P)). \tag{4}$$

- Linear x, y predictions instead of logistic: 선형 변환으로 좌표 값을 직접적으로 예측하는 방법을 적용.
- ⇒ 모델 mAP를 떨어트림.
- Focal loss: Focal loss를 적용.
- ⇒ 모델 mAP를 2 포인트 떨어트림.
- ⇒ 저자들이 추측하길 YOLOv3는 이미 Objectness prediction과 Conditional class prediction으로 Focal loss가 해결하려는 문제에 대해 서 이미 Robust하기 때문이라고 함.
- Dual IOU thresholds and truth assignment: Faster R-CNN과 같이 두개의 IOU threshold를 적용하는 방법을 써봄. IOU가 .7이상이면 Positive, [.3 ~ .7]는 무시, .3 이하는 Negative.
- ⇒ 그다지 성능 개선이 일어나지 않음.

What This All Means

- YOLOv3가 Old metric으로는 성능이 좋다며, Russakovsky의 연구를 인용하며 COCO Metric에 대한 의문을 제기. 저자들에 의하면 COCO mAP로 평가했을 때 옆의 두 모델의 탐지 결과는 같다고 함.
- 기술 윤리적으로 기술의 진보가 군사 분야나 개인 정보 침해와 같이 악용되어서는 안된다고 함.

