# Алгебраические свойства квазигрупп, порождаемых правильными семействами булевых функций

II Международная научная конференция «Актуальные вопросы математики и физики»

К. Д. Царегородцев

МГУ им. М.В. Ломоносова

24.09.2025, Волгоград

#### Квазигруппа

Множество Q с заданной на нём бинарной операцией  $\circ: Q \times Q \to Q$ , со следующим свойством: для любых  $a,b \in Q$  существуют единственные  $x,y \in Q$ , такие что:

$$a \circ x = b, \qquad y \circ a = b.$$

Denes и Keedwell, Latin squares and their applications (2nd edition); Белоусов, Основы теории квазигрупп и луп.



#### Криптография на квазигруппах: примеры

 $\blacksquare$  Симметричные примитивы: шифры<sup>1</sup>, хэш-функции<sup>2</sup>.

 $<sup>^1</sup>$ Gligoroski, Markovski и Knapskog, «The stream cipher Edon80»; Tiwari и др., «INRU: A Quasigroup Based Lightweight Block Cipher».

 $<sup>^2</sup>$ Gligoroski, Markovski и Kocarev, «Edon-R, An Infinite Family of Cryptographic Hash Functions»; Gligoroski, Ødegård, Mihova и др., «Cryptographic hash function Edon-R'».

<sup>&</sup>lt;sup>3</sup>Катышев, Виктор Тимофеевич Марков и Александр Александрович Нечаев, «Использование неассоциативных группоидов для реализации процедуры открытого распределения ключей».

<sup>&</sup>lt;sup>4</sup>Gribov, Zolotykh и Mikhalev, «A construction of algebraic cryptosystem over the quasigroup ring»; В. Т. Марков, Михалёв и Кислицын, «Неассоциативные структуры в гомоморфной криптографии».

<sup>&</sup>lt;sup>5</sup>Chen, Knapskog и Gligoroski, «Multivariate quadratic quasigroups (MQQs): Construction, bounds and complexity»; Gligoroski, Markovski и Knapskog, «A public key block cipher based on multivariate quadratic quasigroups»; Gligoroski, Ødegård, Jensen и др «MQQ-SIG: An ultra-fast and provably CMA resistant digital signature scheme».

## Криптография на квазигруппах: примеры

- $\blacksquare$  Симметричные примитивы: шифры $^1$ , хэш-функции $^2$ .
- Асимметричные примитивы: аналоги протокола Диффи-Хеллмана<sup>3</sup>, гомоморфное шифрование<sup>4</sup>, шифрование с лазейкой<sup>5</sup> и многое другое.

 $<sup>^1</sup>$ Gligoroski, Markovski и Knapskog, «The stream cipher Edon80»; Tiwari и др., «INRU: A Quasigroup Based Lightweight Block Cipher».

 $<sup>^2</sup>$ Gligoroski, Markovski и Kocarev, «Edon-R, An Infinite Family of Cryptographic Hash Functions»; Gligoroski, Ødegård, Mihova и др., «Cryptographic hash function Edon-R'».

<sup>&</sup>lt;sup>3</sup>Катышев, Виктор Тимофеевич Марков и Александр Александрович Нечаев, «Использование неассоциативных группоидов для реализации процедуры открытого распределения ключей».

<sup>&</sup>lt;sup>4</sup>Gribov, Zolotykh и Mikhalev, «A construction of algebraic cryptosystem over the quasigroup ring»; В. Т. Марков, Михалёв и Кислицын, «Неассоциативные структуры в гомоморфной криптографии».

<sup>&</sup>lt;sup>5</sup>Chen, Knapskog и Gligoroski, «Multivariate quadratic quasigroups (MQQs): Construction, bounds and complexity»; Gligoroski, Markovski и Knapskog, «A public key block cipher based on multivariate quadratic quasigroups»; Gligoroski, Ødegård, Jensen и др «MQQ-SIG: An ultra-fast and provably CMA resistant digital signature scheme».

## Криптографически релевантные свойства квазигрупп

 $\blacksquare$  Малое число a(Q) ассоциативных троек

$$a(Q) = |\{(a, b, c) \in Q^3 \mid (a \circ b) \circ c = a \circ (b \circ c)\}|$$



## Криптографически релевантные свойства квазигрупп

 $\blacksquare$  Малое число a(Q) ассоциативных троек

$$a(Q) = |\{(a, b, c) \in Q^3 \mid (a \circ b) \circ c = a \circ (b \circ c)\}|$$

Полиномиальная полнота квазигрупп (любое отображение  $f: Q^n \to Q$  задается с помощью композиции констант и операции умножения).



## Криптографически релевантные свойства квазигрупп

■ Малое число a(Q) ассоциативных троек

$$a(Q) = |\{(a, b, c) \in Q^3 \mid (a \circ b) \circ c = a \circ (b \circ c)\}|$$

- Полиномиальная полнота квазигрупп (любое отображение  $f: Q^n \to Q$  задается с помощью композиции констант и операции умножения).
- Отсутствие подквазигрупп, т.е. подмножеств  $Q' \subset Q$ , которые замкнуты относительно умножения.



В общем случае квазигруппа над множеством Q задается таблицей умножения размера  $|Q| \times |Q|$ ; для практических приложений  $|Q| \approx 2^{64}$ , это много.



<sup>&</sup>lt;sup>6</sup>Chen, Knapskog и Gligoroski, «Multivariate quadratic quasigroups (MQQs): Construction, bounds and complexity»; Gligoroski, Markovski и Knapskog, «A public key block cipher based on multivariate quadratic quasigroups».

 $<sup>^7</sup>$ Gligoroski, Ødegård, Mihova и др., «Cryptographic hash function Edon-R'»; Грибов, «Алгебраические неассоциативные структуры и их приложения в криптографии».

 $<sup>^{8}</sup>$ В. Т. Марков, Михалёв и А. А. Нечаев, «Неассоциативные алгебраические структуры в криптографии и кодировании»

 $<sup>^9{\</sup>rm Sn}$ ášel и др., «Hash functions based on large quasigroups».

- В общем случае квазигруппа над множеством Q задается таблицей умножения размера  $|Q| \times |Q|$ ; для практических приложений  $|Q| \approx 2^{64}$ , это много.
- Случайная генерация (поиск + отсев) квазигрупп из некоторого узкого, компактно задаваемого класса $^6$ .



<sup>&</sup>lt;sup>6</sup>Chen, Knapskog и Gligoroski, «Multivariate quadratic quasigroups (MQQs): Construction, bounds and complexity»; Gligoroski, Markovski и Knapskog. «A public key block cipher based on multivariate quadratic quasigroups».

 $<sup>^7</sup>$ Gligoroski, Ødegård, Mihova и др., «Стурtographic hash function Edon-R'»; Грибов, «Алгебраические неассоциативные структуры и их приложения в криптографии».

 $<sup>^{8}</sup>$ В. Т. Марков, Михалёв и А. А. Нечаев, «Неассоциативные алгебраические структуры в криптографии и кодировании».

 $<sup>^9</sup>$ Snášel и др., «Hash functions based on large quasigroups».

- В общем случае квазигруппа над множеством Q задается таблицей умножения размера  $|Q| \times |Q|$ ; для практических приложений  $|Q| \approx 2^{64}$ , это много.
- Случайная генерация (поиск + отсев) квазигрупп из некоторого узкого, компактно задаваемого класса $^6$ .
- Итеративное построение из более «маленьких» (конструкции наподобие прямых произведений)<sup>7</sup>.



<sup>&</sup>lt;sup>6</sup>Chen, Knapskog и Gligoroski, «Multivariate quadratic quasigroups (MQQs): Construction, bounds and complexity»; Gligoroski, Markovski и Knapskog, «A public key block cipher based on multivariate quadratic quasigroups».

 $<sup>^7</sup>$ Gligoroski, Ødegård, Mihova и др., «Cryptographic hash function Edon-R'»; Грибов, «Алгебраические неассоциативные структуры и их приложения в криптографии».

 $<sup>^{8}</sup>$ В. Т. Марков, Михалёв и А. А. Нечаев, «Неассоциативные алгебраические структуры в криптографии и кодировании».

 $<sup>^9 \</sup>mathrm{Sn}$ ášel и др., «Hash functions based on large quasigroups».

- В общем случае квазигруппа над множеством Q задается таблицей умножения размера  $|Q| \times |Q|$ ; для практических приложений  $|Q| \approx 2^{64}$ , это много.
- Случайная генерация (поиск + отсев) квазигрупп из некоторого узкого, компактно задаваемого класса $^6$ .
- Итеративное построение из более «маленьких» (конструкции наподобие прямых произведений)<sup>7</sup>.
- Изотопы некоторых «хорошо изученных» групп (например, изотоп группы точек эллиптической кривой<sup>8</sup>, модульное вычитание<sup>9</sup>).



<sup>&</sup>lt;sup>6</sup>Chen, Knapskog и Gligoroski, «Multivariate quadratic quasigroups (MQQs): Construction, bounds and complexity»; Gligoroski, Markovski и Knapskog, «A public key block cipher based on multivariate quadratic quasigroups».

 $<sup>^7</sup>$ Gligoroski, Ødegård, Mihova и др., «Cryptographic hash function Edon-R'»; Грибов, «Алгебраические неассоциативные структуры и их приложения в криптографии».

 $<sup>^{8}</sup>$ В. Т. Марков, Михалёв и А. А. Нечаев, «Неассоциативные алгебраические структуры в криптографии и кодировании»

<sup>&</sup>lt;sup>9</sup>Snášel и др., «Hash functions based on large quasigroups».

- В общем случае квазигруппа над множеством Q задается таблицей умножения размера  $|Q| \times |Q|$ ; для практических приложений  $|Q| \approx 2^{64}$ , это много.
- Случайная генерация (поиск + отсев) квазигрупп из некоторого узкого, компактно задаваемого класса $^6$ .
- Итеративное построение из более «маленьких» (конструкции наподобие прямых произведений)<sup>7</sup>.
- Изотопы некоторых «хорошо изученных» групп (например, изотоп группы точек эллиптической кривой<sup>8</sup>, модульное вычитание<sup>9</sup>).
- Различные способы функционального задания квазигруппы.



<sup>&</sup>lt;sup>6</sup>Chen, Knapskog и Gligoroski, «Multivariate quadratic quasigroups (MQQs): Construction, bounds and complexity»; Gligoroski, Markovski и Knapskog, «A public key block cipher based on multivariate quadratic quasigroups».

 $<sup>^7</sup>$ Gligoroski, Ødegård, Mihova и др., «Cryptographic hash function Edon-R'»; Грибов, «Алгебраические неассоциативные структуры и их приложения в криптографии».

 $<sup>^{8}</sup>$ В. Т. Марков, Михалёв и А. А. Нечаев, «Неассоциативные алгебраические структуры в криптографии и кодировании».

<sup>&</sup>lt;sup>9</sup>Snášel и др., «Hash functions based on large quasigroups».

#### Правильное семейство

Семейство функций

$$f_i \colon Q^n \to Q, \quad 1 \le i \le n,$$

называется правильным, если для любых двух наборов  $x \neq y$  найдется такая координата i, что  $x_i \neq y_i$ , но  $f_i(x) = f_i(y)$ .

Galatenko, Nosov и Pankratiev, «Latin squares over quasigroups»; Носов, «Критерий регулярности булевского навтономного автомата с разделенным входом», «Построение классов латинских квадратов в булевой базе данных»; Носов и Панкратьев, «Латинские квадраты над абелевыми группами».



#### Правильное семейство

Семейство функций

$$f_i \colon Q^n \to Q, \quad 1 \le i \le n,$$

называется правильным, если для любых двух наборов  $x \neq y$  найдется такая координата i, что  $x_i \neq y_i$ , но  $f_i(x) = f_i(y)$ .

Galatenko, Nosov и Pankratiev, «Latin squares over quasigroups»; Носов, «Критерий регулярности булевского навтономного автомата с разделенным входом», «Построение классов латинских квадратов в булевой базе данных»; Носов и Панкратьев, «Латинские квадраты над абелевыми группами».

При росте n число булевых правильных семейств растет достаточно быстро.

| Размер $n$ | Число булевых правильных семейств |
|------------|-----------------------------------|
| n = 2      | $\approx 2^{3.58}$                |
| n = 3      | $pprox 2^{9.54}$                  |
| n = 4      | $\approx 2^{22.4}$                |
| n = 5      | $\approx 2^{49.18}$               |



Пусть  $\mathcal{F}$ ,  $\mathcal{G}$  — два правильных семейства функций размера n над группой  $(G^n, +)$ . Для  $\mathbf{x}, \mathbf{y} \in G^n$  зададим операцию  $\circ$  следующим образом:

$$\mathbf{x} \circ \mathbf{y} = \mathbf{x} + \mathcal{F}(\mathbf{x}) + \mathbf{y} + \mathcal{G}(\mathbf{y}).$$



Пусть  $\mathcal{F}, \mathcal{G}$  — два правильных семейства функций размера n над группой  $(G^n, +)$ . Для  $\mathbf{x}, \mathbf{y} \in G^n$  зададим операцию  $\circ$  следующим образом:

$$\mathbf{x} \circ \mathbf{y} = \mathbf{x} + \mathcal{F}(\mathbf{x}) + \mathbf{y} + \mathcal{G}(\mathbf{y}).$$

#### Об индексах ассоциативности

- Операция о является квазигрупповой.
- Индексы ассоциативности квазигрупп, построенных по паре  $(\mathcal{F}, \mathcal{G})$  и по паре  $(\mathcal{G}, \mathcal{F})$ , совпадают.
- Для  $G = \mathbb{Z}_2$  индексы ассоциативности квазигрупп, построенных по паре  $(\mathcal{F}, \mathcal{G})$ и по паре ( $\mathcal{F} \oplus \alpha, \mathcal{G} \oplus \alpha$ ), совпадают.
- Для  $G = \mathbb{Z}_2$  количество ассоциативных троек в квазигруппе, построенной по паре правильных булевых семейств  $(\mathcal{F}, \mathcal{G})$ , четно.



#### Aссоциативность, n=2

$$\mathbf{x}, \mathbf{y} \in \mathbb{Z}_2^n \quad \mathbf{x} \circ \mathbf{y} = \mathbf{x} \oplus \mathcal{F}(\mathbf{x}) \oplus \mathbf{y} \oplus \mathcal{G}(\mathbf{y}).$$

| a(Q) | Кол-во $Q$ |
|------|------------|
| 16   | 32         |
| 32   | 96         |
| 64   | 16         |



#### Aссоциативность, n=3

$$\mathbf{x}, \mathbf{y} \in \mathbb{Z}_2^n \quad \mathbf{x} \circ \mathbf{y} = \mathbf{x} \oplus \mathcal{F}(\mathbf{x}) \oplus \mathbf{y} \oplus \mathcal{G}(\mathbf{y}).$$

| a(Q) | Кол-во $Q$ | a(Q) | Кол-во $Q$ |
|------|------------|------|------------|
| 64   | 27648      | 144  | 3072       |
| 80   | 103424     | 160  | 84480      |
| 88   | 18432      | 176  | 6144       |
| 96   | 82944      | 192  | 18432      |
| 104  | 33792      | 208  | 3072       |
| 112  | 21504      | 256  | 10368      |
| 120  | 21504      | 320  | 2304       |
| 128  | 116352     | 512  | 64         |



#### Aссоциативность, n=4







## Подстановки, порождаемые правильными семействами

Пусть  $\mathcal{F}\colon Q^n\to Q^n$  — правильное,  $(Q,\circ)$  — квазигруппа. Тогда отображение

$$\sigma_{\mathcal{F}}(x) \colon x \to x \circ \mathcal{F}(x), \quad \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix} \to \begin{bmatrix} x_1 \circ f_1(x_1, \dots, x_n) \\ \vdots \\ x_n \circ f_n(x_1, \dots, x_n) \end{bmatrix}$$

является подстановкой:  $\sigma_{\mathcal{F}} \in Perm(Q^n)$ .



Пусть  $\mathcal{F}: Q^n \to Q^n$  — правильное. Рассмотрим  $\sigma_{\mathcal{F}}^{-1} \in Perm(Q^n)$ .

#### Обратимость «правильных подстановок»

Если (Q,+) — группа (т.е., операция + ассоциативна), то семейство  $\mathcal{G}\colon Q^n\to Q^n$ , определенное равенством

$$\mathcal{G}(x) = (-x) + \sigma_{\mathcal{F}}^{-1}(x)$$

также является правильным.



Пусть  $\mathcal{F}: Q^n \to Q^n$  — правильное. Рассмотрим  $\sigma_{\mathcal{F}}^{-1} \in Perm(Q^n)$ .

#### Обратимость «правильных подстановок»

Если (Q,+) — группа (т.е., операция + ассоциативна), то семейство  $\mathcal{G}\colon Q^n\to Q^n$ , определенное равенством

$$\mathcal{G}(x) = (-x) + \sigma_{\mathcal{F}}^{-1}(x)$$

также является правильным.

T.e., если  $\mathcal{F}-$  правильное, то существует правильное семейство  $\mathcal{G}$  со свойством

$$\sigma_{\mathcal{F}}^{-1}(x) = \sigma_{\mathcal{G}}(x).$$



Пусть  $\mathcal{F}: Q^n \to Q^n$  — правильное. Рассмотрим  $\sigma_{\mathcal{F}}^{-1} \in Perm(Q^n)$ .

#### Обратимость «правильных подстановок»

Если (Q, +) — группа (т.е., операция + ассоциативна), то семейство  $\mathcal{G} \colon Q^n \to Q^n$ , определенное равенством

$$\mathcal{G}(x) = (-x) + \sigma_{\mathcal{F}}^{-1}(x)$$

также является правильным.

T.e., если  $\mathcal{F}-$  правильное, то существует правильное семейство  $\mathcal{G}$  со свойством

$$\sigma_{\mathcal{F}}^{-1}(x) = \sigma_{\mathcal{G}}(x).$$

Таким образом, множество «правильных подстановок» замкнуто относительно взятия обратного элемента (в случае, когда Q — группа).



Множество «правильных подстановок» $\mathcal{S}^{\mathsf{prop}}$  не является подгруппой  $Perm(Q^n)$ .



Множество «правильных подстановок» $\mathcal{S}^{\mathsf{prop}}$  не является подгруппой  $Perm(Q^n)$ .

#### Транзитивность действия

Замыкание  $S^{\mathsf{prop}}$  действует транзитивно на  $Q^n$  (любой элемент из  $Q^n$  можно перевести в любой другой с помощью композиции некоторого количества  $\sigma_F$ ).



Множество «правильных подстановок» $\mathcal{S}^{\mathsf{prop}}$  не является подгруппой  $Perm(Q^n)$ .

#### Транзитивность действия

Замыкание  $\mathcal{S}^{\mathsf{prop}}$  действует транзитивно на  $Q^n$  (любой элемент из  $Q^n$  можно перевести в любой другой с помощью композиции некоторого количества  $\sigma_F$ ).

#### Булев случай

При  $Q = \mathbb{E}_2$  замыкание  $\sigma_{\mathcal{F}}$  порождает все множество подстановок  $Perm(\mathbb{E}_2^n)$ .

Schurr, «Unique sink orientations of cubes».



Пусть  $\mathcal{F}$  — правильное семейство булевых функций.

#### Четность числа элементов в прообразе

Для любого  $\alpha \in \{0,1\}^n$  число решений уравнения  $\mathcal{F}(x) = \alpha$  всегда четно.



Пусть  $\mathcal{F}$  — правильное семейство булевых функций.

#### Четность числа элементов в прообразе

Для любого  $\alpha \in \{0,1\}^n$  число решений уравнения  $\mathcal{F}(x) = \alpha$  всегда четно.

#### Количество неподвижных точек $\sigma_{\mathcal{F}}$

У подстановки  $\sigma_{\mathcal{F}}(x) = x \oplus \mathcal{F}(x)$  чётное число неподвижных точек.



## Простота и неаффинность, n=2

$$\mathbf{x}, \mathbf{y} \in \mathbb{Z}_2^n \quad \mathbf{x} \circ \mathbf{y} = \mathbf{x} \oplus \mathcal{F}(\mathbf{x}) \oplus \mathbf{y} \oplus \mathcal{G}(\mathbf{y}).$$

| Свойства   | Афинная | Неаффинная |
|------------|---------|------------|
| Не простая | 112     | 0          |
| Простая    | 32      | 0          |



## Простота и неаффинность, n=3

$$\mathbf{x}, \mathbf{y} \in \mathbb{Z}_2^n \quad \mathbf{x} \circ \mathbf{y} = \mathbf{x} \oplus \mathcal{F}(\mathbf{x}) \oplus \mathbf{y} \oplus \mathcal{G}(\mathbf{y}).$$

| Свойства   | Афинная | Неаффинная |
|------------|---------|------------|
| Не простая | 30784   | 231936     |
| Простая    | 9216    | 281600     |



#### Резюме

 Рассмотрены некоторые релевантные с точки зрения криптографии свойства квазигрупп, порождаемых правильными семействами.



#### Резюме

- Рассмотрены некоторые релевантные с точки зрения криптографии свойства квазигрупп, порождаемых правильными семействами.
- Доказан ряд утверждений про индекс ассоциативности получаемых квазигрупп, проведен вычислительный эксперимент для n=2,3,4.



#### Резюме

- Рассмотрены некоторые релевантные с точки зрения криптографии свойства квазигрупп, порождаемых правильными семействами.
- Доказан ряд утверждений про индекс ассоциативности получаемых квазигрупп, проведен вычислительный эксперимент для n=2,3,4.
- Доказан ряд утверждений про подстановки, порождаемые правильными семействами функций; проведен вычислительный эксперимент для проверки простоты и неаффинности для n=2,3.



## Спасибо за внимание!



## Список литературы I

- © Chen, Y., S. J. Knapskog и D. Gligoroski. «Multivariate quadratic quasigroups (MQQs): Construction, bounds and complexity». Англ. В: Submitted to ISIT 2010 (2010), с. 14.
- Denes, J. и A. Keedwell. Latin squares and their applications (2nd edition). Англ. Elsevier, 2015.
- Galatenko, A. V., V. A. Nosov и A. E. Pankratiev. «Latin squares over quasigroups». Англ. В: Lobachevskii Journal of Mathematics 41.2 (2020), с. 194—203.
- Gligoroski, D., S. Markovski и S. J. Knapskog. «A public key block cipher based on multivariate quadratic quasigroups». Англ. В: arXiv preprint arXiv:0808.0247 (2008).
- .«The stream cipher Edon80». Англ. В: New stream cipher designs. Springer, 2008, с. 152—169.
- Gligoroski, D., S. Markovski и L. Kocarev. «Edon-R, An Infinite Family of Cryptographic Hash Functions». Англ. В: International Journal of Security and Networks 8.3 (2009), с. 293—300.



## Список литературы II

- Gligoroski, D., R. S. Ødegård, R. E. Jensen и др. «MQQ-SIG: An ultra-fast and provably CMA resistant digital signature scheme». Англ. В: *International Conference on Trusted Systems*. Springer. 2011, c. 184—203.
- Gligoroski, D., R. S. Ødegård, M. Mihova и др. «Cryptographic hash function Edon-R'». Англ. В: 2009 Proceedings of the 1st International Workshop on Security and Communication Networks. IEEE. 2009, с. 1—9.
- Gribov, Aleksei Viktorovich, Pavel Andreevich Zolotykh 
  Aleksandr Vasil'evich Mikhalev. «A construction of algebraic cryptosystem over the quasigroup ring». B: Matematicheskie Voprosy Kriptografii [Mathematical Aspects of Cryptography] 1.4 (2010), c. 23—32.
- Schurr, I. «Unique sink orientations of cubes». Англ. Дис. . . . док. ETH Zurich, 2004.
  - Snášel, V. и др. «Hash functions based on large quasigroups». Англ. В: Computational Science—ICCS 2009: 9th International Conference Baton Rouge, LA, USA, May 25-27, 2009 Proceedings, Part I 9. Springer. 2009, c. 521—529.

## Список литературы III

- Tiwari, S. K. и др. «INRU: A Quasigroup Based Lightweight Block Cipher». Англ. В: arXiv preprint arXiv:2112.07411 (2021).
- Белоусов, В. Д. Основы теории квазигрупп и луп. М.: Наука, 1967.
- Грибов, А. В. «Алгебраические неассоциативные структуры и их приложения в криптографии». Дис. . . . док. Московский государственный университет им. М. В. Ломоносова, 2015.
- Катышев, Сергей Юрьевич, Виктор Тимофеевич Марков и Александр Александрович Нечаев. «Использование неассоциативных группоидов для реализации процедуры открытого распределения ключей». В: Дискретная математика 26.3 (2014), с. 45—64.
- Марков, В. Т., А. В. Михалёв и Е. С. Кислицын. «Неассоциативные структуры в гомоморфной криптографии». В: Фундаментальная и прикладная математика 23.2 (2020), с. 209—215.



## Список литературы IV

- Марков, В. Т., А. В. Михалёв и А. А. Нечаев. «Неассоциативные алгебраические структуры в криптографии и кодировании». В: Фундаментальная и прикладная математика 21.4 (2016), с. 99—124.
- Носов, В. А. «Критерий регулярности булевского неавтономного автомата с разделенным входом». В: Интеллектуальные системы. Теория и приложения 3.3-4 (1998), с. 269—280.
- .«Построение классов латинских квадратов в булевой базе данных». В: Интеллектуальные системы. Теория и приложения 4.3-4 (1999), с. 307—320. ISSN: 2075-9460; 2411-4448.
- Носов, В. А. и А. Е. Панкратьев. «Латинские квадраты над абелевыми группами». В: Фундаментальная и прикладная математика 12.3 (2006), с. 65—71.

