AJUSTE DE CURVAS

Contenido

- Preliminares
 - Definiciones
- Métodos de Ajuste de Curvas
 - Rectas de Regresión en Mínimos Cuadrados
 - El Ajuste Potencial $y = Ax^M$
 - El Ajuste Exponencial $y = Ce^{Ax}$
 - Combinaciones Lineales en Mínimos Cuadrados

Contenido

- Preliminares
 - Definiciones
- Métodos de Ajuste de Curvas
 - Rectas de Regresión en Mínimos Cuadrados
 - El Ajuste Potencial $y = Ax^M$
 - El Ajuste Exponencial $y = Ce^{Ax}$
 - Combinaciones Lineales en Mínimos Cuadrados

- En ciencias e ingeniería es frecuente que un experimento produzca un conjunto de datos $(x_1, y_1), ..., (x_N, y_N)$, siendo las abcisas $\{x_k\}$ distintas entre sí.
- Uno de los objetivos del cálculo numérico es la determinación de una fórmula y = f(x) que relacione las variables (ajustar una curva a datos experimentales).
- Normalmente se dispone de una serie de fórmulas previamente establecidas, y lo que hay que hallar son los valores más adecuados de unos coeficientes o unos parámetros para estas fórmulas.

- En ciencias e ingeniería es frecuente que un experimento produzca un conjunto de datos $(x_1, y_1), ..., (x_N, y_N)$, siendo las abcisas $\{x_k\}$ distintas entre sí.
- Uno de los objetivos del cálculo numérico es la determinación de una fórmula y = f(x) que relacione las variables (ajustar una curva a datos experimentales).
- Normalmente se dispone de una serie de fórmulas previamente establecidas, y lo que hay que hallar son los valores más adecuados de unos coeficientes o unos parámetros para estas fórmulas.

- En ciencias e ingeniería es frecuente que un experimento produzca un conjunto de datos $(x_1, y_1), ..., (x_N, y_N)$, siendo las abcisas $\{x_k\}$ distintas entre sí.
- Uno de los objetivos del cálculo numérico es la determinación de una fórmula y = f(x) que relacione las variables (ajustar una curva a datos experimentales).
- Normalmente se dispone de una serie de fórmulas previamente establecidas, y lo que hay que hallar son los valores más adecuados de unos coeficientes o unos parámetros para estas fórmulas.

Definición

Se definen los errores o desviaciones o residuos así:

$$e_k = f(x_k) - y_k$$
; $1 \le k \le N$.

Se definen las siguientes normas que se pueden usar con los residuos para medir la distancia entre la curva y = f(x) y los datos:

Error Máximo:

$$E_{\infty}(f) = \max\{|f(x_k) - y_k|: 1 \le k \le N\},\$$

Error Medio:

$$E_1(f) = \frac{1}{N} \sum_{k=1}^{N} |f(x_k) - y_k|,$$

Error Cuadrático Medio:

$$E_2(f) = \left(\frac{1}{N} \sum_{k=1}^{N} |f(x_k) - y_k|^2\right)^{1/2}.$$
 (1)

Contenido

- Preliminares
 - Definiciones
- Métodos de Ajuste de Curvas
 - Rectas de Regresión en Mínimos Cuadrados
 - El Ajuste Potencial $y = Ax^M$
 - El Ajuste Exponencial $y = Ce^{Ax}$
 - Combinaciones Lineales en Mínimos Cuadrados

Rectas de Regresión en Mínimos Cuadrados

Definición

Sea $\{(x_k, y_k)\}_{k=1}^N$ un conjunto de N puntos cuyas abcisas $\{x_k\}$ son todas distintas. La *recta de regresión* o *recta óptima en (el sentido de los) mínimos cuadrados* es la recta de ecuación y = f(x) = Ax + B que minimiza el error cuadrático medio $E_2(f)$.

Rectas de Regresión en Mínimos Cuadrados

De (1), notar que $E_2(f)$ será mínima sii lo es

$$N(E_2(f))^2 = \sum_{k=1}^{N} (Ax_k + B - y_k)^2.$$

Geométricamente es la suma de los cuadrados de las distancias verticales desde los puntos $\{(x_k, y_k)\}$ hasta la recta y = Ax + B.

Rectas de Regresión en Mínimos Cuadrados

Teorema: Recta de Regresión en Mínimos Cuadrados

Sean $\{(x_k, y_k)\}_{k=1}^N$ N puntos cuyas abcisas $\{x_k\}_{k=1}^N$ son distintas. Entonces, los coeficientes de la recta de regresión

$$y = Ax + B$$

son la solución del siguiente sistema lineal, conocido como las ecuaciones normales de Gauss:

$$\left(\sum_{k=1}^{N} x_k^2\right) A + \left(\sum_{k=1}^{N} x_k\right) B = \sum_{k=1}^{N} x_k y_k,$$

$$\left(\sum_{k=1}^{N} x_k\right) A + NB = \sum_{k=1}^{N} y_k.$$

Contenido

- Preliminares
 - Definiciones
- Métodos de Ajuste de Curvas
 - Rectas de Regresión en Mínimos Cuadrados
 - El Ajuste Potencial $y = Ax^M$
 - El Ajuste Exponencial $y = Ce^{Ax}$
 - Combinaciones Lineales en Mínimos Cuadrados

El Ajuste Potencial $y = Ax^M$

Algunas situaciones se modelan mediante una función del tipo $f(x) = Ax^M$, donde M es una constante conocida. En estos casos solo hay que determinar un parámetro.

El Ajuste Potencial $y = Ax^M$

Teorema: Ajuste Potencial

Supongamos que tenemos N puntos $\{(x_k, y_k)\}_{k=1}^N$ cuyas abcisas son distintas. Entonces, el coeficiente A de la curva potencial óptima en mínimos cuadrados $y = Ax^M$ viene dado por

$$A = \frac{\left(\sum_{k=1}^{N} x_k^M y_k\right)}{\left(\sum_{k=1}^{N} x_k^{2M}\right)}.$$

Contenido

- Preliminares
 - Definiciones
- Métodos de Ajuste de Curvas
 - Rectas de Regresión en Mínimos Cuadrados
 - El Ajuste Potencial $y = Ax^M$
 - El Ajuste Exponencial $y = Ce^{Ax}$
 - Combinaciones Lineales en Mínimos Cuadrados

El Ajuste Exponencial $y = Ce^{Ax}$

Se desea ajustar una curva exponencial de la forma

$$y = Ce^{Ax} (2)$$

a un conjunto de puntos $\{(x_k, y_k)\}_{k=1}^N$ dado de antemano.

Tomando logaritmos en (2):

$$\ln(y) = Ax + \ln(C).$$

Haciendo un cambio de variables (y de constante):

$$Y = \ln(y), X = x, B = \ln(C),$$

se obtiene una relación lineal entre las nuevas variables X y Y:

$$Y = AX + B. (3)$$

Tomando logaritmos en (2):

$$ln(y) = Ax + ln(C).$$

Haciendo un cambio de variables (y de constante):

$$Y = ln(y), X = x, B = ln(C),$$

se obtiene una relación lineal entre las nuevas variables X y Y:

$$Y = AX + B. (3)$$

Tomando logaritmos en (2):

$$ln(y) = Ax + ln(C).$$

Haciendo un cambio de variables (y de constante):

$$Y = \ln(y), X = x, B = \ln(C),$$

se obtiene una relación lineal entre las nuevas variables X y Y:

$$Y = AX + B. (3)$$

Ahora se calcula la recta de regresión (3) para los puntos $\{(X_k, Y_k)\}$, para lo que planteamos las correspondientes ecuaciones normales de Gauss

$$\left(\sum_{k=1}^{N} X_k^2\right) A + \left(\sum_{k=1}^{N} X_k\right) B = \sum_{k=1}^{N} X_k Y_k,$$
$$\left(\sum_{k=1}^{N} X_k\right) A + NB = \sum_{k=1}^{N} Y_k,$$

que constituyen un sistema de ecuaciones *lineales* para las incógnitas A y C. Una vez calculados A y B, hallamos el parámetro C de (2): $C = e^B$.

Se debe hallar el mínimo de la función

$$E(A,C) = \sum_{k=1}^{N} \left(Ce^{Ax_k} - y_k \right)^2.$$

Para ello, hallamos las derivadas parciales

$$\begin{array}{lcl} \frac{\partial E}{\partial A} & = & 2\sum_{k=1}^{N} \left(Ce^{Ax_k} - y_k\right) Cx_k e^{Ax_k}, \\ \frac{\partial E}{\partial C} & = & 2\sum_{k=1}^{N} \left(Ce^{Ax_k} - y_k\right) e^{Ax_k}. \end{array}$$

Se debe hallar el mínimo de la función

$$E(A,C) = \sum_{k=1}^{N} \left(Ce^{Ax_k} - y_k \right)^2.$$

Para ello, hallamos las derivadas parciales

$$\frac{\partial E}{\partial A} = 2\sum_{k=1}^{N} \left(Ce^{Ax_k} - y_k \right) Cx_k e^{Ax_k},$$

$$\frac{\partial E}{\partial C} = 2\sum_{k=1}^{N} \left(Ce^{Ax_k} - y_k \right) e^{Ax_k}.$$

Igualando a cero obtenemos las ecuaciones normales

$$C \sum_{k=1}^{N} x_k e^{2Ax_k} - \sum_{k=1}^{N} x_k y_k e^{Ax_k} = 0,$$

$$C \sum_{k=1}^{N} e^{2Ax_k} - \sum_{k=1}^{N} y_k e^{Ax_k} = 0,$$

que es un sistema de ecuaciones *no lineales* para las incógnitas A y C.

- Se puede resolver este sistema con el método iterativo de Newton-Raphson.
- Se pueden utilizar métodos para minimizar funciones de varias variables, para hallar el mínimo de la función E(A, C) directamente. Por ejemplo, el de Nelder-Mead. En este caso, no se necesita calcular las derivadas parciales.

- Se puede resolver este sistema con el método iterativo de Newton-Raphson.
- Se pueden utilizar métodos para minimizar funciones de varias variables, para hallar el mínimo de la función E(A, C) directamente. Por ejemplo, el de Nelder-Mead. En este caso, no se necesita calcular las derivadas parciales.

Contenido

- Preliminares
 - Definiciones
- Métodos de Ajuste de Curvas
 - Rectas de Regresión en Mínimos Cuadrados
 - El Ajuste Potencial $y = Ax^M$
 - El Ajuste Exponencial $y = Ce^{Ax}$
 - Combinaciones Lineales en Mínimos Cuadrados

Combinaciones Lineales en Mínimos Cuadrados

Este problema se formula así: Dados N puntos $\{(x_k, y_k)\}$ y un conjunto de M funciones linealmente independientes $\{f_j(x)\}$, encontrar M coeficientes $\{c_j\}$ tales que la función f(x) definida como la combinación lineal

$$f(x) = \sum_{j=1}^{M} c_j f_j(x)$$

minimice la suma de los cuadrados de los errores

$$E(C_1, C_2, ..., C_M) = \sum_{k=1}^{N} (f(x_k) - y_k)^2 = \sum_{k=1}^{N} \left(\left(\sum_{j=1}^{M} c_j f_j(x_k) \right) - y_k \right)^2.$$

Combinaciones Lineales en Mínimos Cuadrados

Para que E alcance un mínimo en un punto, $\{c_j\}$ debe ser la solución del sistema de ecuaciones lineales:

$$\frac{\partial E}{\partial C_{i}} = \sum_{k=1}^{N} \left(\left(\sum_{j=1}^{M} c_{j} f_{j}(x_{k}) \right) - y_{k} \right) (f_{i}(x_{k})) = 0; i = 1, 2, ..., M$$

$$\Rightarrow \sum_{j=1}^{M} \left(\sum_{k=1}^{N} f_{i}(x_{k}) f_{j}(x_{k}) \right) c_{j} = \sum_{k=1}^{N} f_{i}(x_{k}) y_{k}; i = 1, 2, ..., M, \tag{4}$$

llamadas ecuaciones normales de Gauss. Es un sistema de ecuaciones lineales de orden M x M. Las incógnitas son los coeficientes $\{c_i\}$.

Formulación Matricial

Si se define

$$\mathbf{F} = \begin{bmatrix} f_1\left(x_1\right) & f_2\left(x_1\right) & \dots & f_M\left(x_1\right) \\ f_1\left(x_2\right) & f_2\left(x_2\right) & \dots & f_M\left(x_2\right) \\ f_1\left(x_3\right) & f_2\left(x_3\right) & \dots & f_M\left(x_3\right) \\ \dots & \dots & \dots & \dots & \dots \\ f_1\left(x_N\right) & f_2\left(x_N\right) & \dots & f_M\left(x_N\right) \end{bmatrix}, \ \mathbf{F}' = \begin{bmatrix} f_1\left(x_1\right) & f_1\left(x_2\right) & f_1\left(x_3\right) & \dots & f_1\left(x_N\right) \\ f_2\left(x_1\right) & f_2\left(x_2\right) & f_2\left(x_3\right) & \dots & f_2\left(x_N\right) \\ \dots & \dots & \dots & \dots & \dots \\ f_M\left(x_1\right) & f_M\left(x_2\right) & f_M\left(x_3\right) & \dots & f_M\left(x_N\right) \end{bmatrix},$$

$$\mathbf{C} = \begin{bmatrix} c_1 \\ c_2 \\ \dots \\ c_M \end{bmatrix}, \ \mathbf{Y} = \begin{bmatrix} y_1 \\ y_2 \\ \dots \\ y_N \end{bmatrix},$$

entonces (4) se puede escribir como

$$\mathbf{F}'\mathbf{FC} = \mathbf{F}'\mathbf{Y},$$

cuya incógnita es C.

Ajuste Polinomial

Cuando el método que se acaba de describir se aplica al caso en el que se tienen M+1 funciones dadas por $\{f_j(x) = x^{j-1}\}$, la función f(x) será un polinomio de grado <= M:

$$f(x) = c_1 + c_2 x + c_3 x^2 + ... + c_{M+1} x^M.$$

Ajuste Polinomial

Teorema: Parábola óptima en mínimos cuadrados

Suponer que se tienen N puntos $\{(x_k, y_k)\}_{k=1}^N$ cuyas abcisas son todas distintas. Los coeficientes de la parábola de ecuación

$$y = f(x) = Ax^2 + Bx + C$$

que mejor se ajusta a dichos puntos en el sentido de los mínimos cuadrados son las soluciones A, B y C del sistema de ecuaciones lineales

Ajuste Polinomial

$$\begin{split} \left(\sum_{k=1}^{N} x_{k}^{4}\right) A + \left(\sum_{k=1}^{N} x_{k}^{3}\right) B + \left(\sum_{k=1}^{N} x_{k}^{2}\right) C &= \sum_{k=1}^{N} y_{k} x_{k}^{2}, \\ \left(\sum_{k=1}^{N} x_{k}^{3}\right) A + \left(\sum_{k=1}^{N} x_{k}^{2}\right) B + \left(\sum_{k=1}^{N} x_{k}\right) C &= \sum_{k=1}^{N} y_{k} x_{k}, \\ \left(\sum_{k=1}^{N} x_{k}^{2}\right) A + \left(\sum_{k=1}^{N} x_{k}\right) B + NC &= \sum_{k=1}^{N} y_{k}. \end{split}$$

Bibliografía

MATHEWS, John; KURTIS, Fink. Métodos Numéricos con MATLAB. Prentice Hall, 2000.