Contextualisation automatique de Tweets à partir de Wikipédia

Romain Deveaud¹ – Florian Boudin²

¹ LIA – Université d'Avignon

² LINA –Université de Nantes

- Twitter, un des vecteurs de diffusion d'information
 - messages courts, limités à 140 caractères
 - souvent des pointeurs vers des pages externes

- comment savoir de quoi parle un Tweet sans cliquer sur les liens?
 - contexte thématique

- Twitter est une mine d'information en temps réel (mais aussi beaucoup de bruit)
 - les Tweets comme réponses à une requête? (TREC Microblog track)
 - encore faut-il les comprendre...

- représentation de ce contexte par un ensemble de phrases
 - résumé du contexte thématique

iTunes TV @iTunesTV

13 Feb 12

What are your favorite shocking moments of @WalkingDead_AMC so far? @AMC_TV #TheWalkingDead tw.itunes.com/JLg Expand

AMC chaîne TV américaine

The Walking Dead : série (science-fiction)

moments choquants de cette série...

- problématique actuelle, mettant en œuvre différents champs de recherche
 - recherche et extraction d'information, résumé automatique

- dans une limite de 500 mots
- scénario mobile où un utilisateur lit sur son smartphone
- INEX Tweet Contextualization

- une vision partielle de la contextualisation
 - estimation de la signification globale d'un Tweet
 - réduction, jusqu'à n'avoir que les informations liées les plus représentatives

Pré-traitements

Pré-traitements


```
iTunes TV @iTunesTV
```

13 Feb 12

What are your favorite shocking moments of @WalkingDead_AMC so far? @AMC_TV #TheWalkingDead tw.itunes.com/JLg

Expand

$$H_{\mathcal{T}}$$
 = "the walking dead" $\$ \mathcal{T} = "favorite shocking moments walking dead" $\$ <description>

parallèle avec les topics TREC

Recherche d'articles Wikipédia

- approche par modèle de langue
 - "Tweet likelihood"

$$P(\mathcal{T}|\theta_D) = \prod_{t \in \mathcal{T}} f_T(t, D)$$

lissage standard de Dirichlet

$$f_T(t,D) = \frac{c(t,D) + \mu \cdot P(t|C)}{|D| + \mu}$$

Recherche d'articles Wikipédia

- l'adjacence de deux mots dans un Tweet peut être importante
 - Markov Random Fields (MRF) [Metzler & Croft, SIGIR'05]

 $\lambda_T = 0.85, \, \lambda_O = 0.10 \text{ et } \lambda_U = 0.05$

Intégration de hashtags

- étiquettes définies manuellement
 - simplification du Tweet
 - expression des informations les plus importantes

$$s(\mathcal{T}, H_{\mathcal{T}}, D) = \alpha \underbrace{s_{MRF}(H_{\mathcal{T}}, D)}_{\text{uniquement les } \textit{hashtags}} + (1 - \alpha) \underbrace{s_{MRF}(\mathcal{T}, D)}_{\text{tout le texte du Tweet}}$$

« U Just Heard "Hard To Believe" by @andydavis on the @mtv Teen Mom 2 Finale go 2 http://t.co/iwb2JuL8 for info #ihearditonMTV »

Intégration de hashtags

- importance contextuelle des hashtags
 - estimation de leur pouvoir discriminant
 - score de clarté [Cronen-Townsend,HLT'02]

$$\alpha = \sum_{w \in V} P(w|H_{\mathcal{T}}) \log \frac{P(w|H_{\mathcal{T}})}{P(w|\mathcal{C})}$$

 modèle de langue des hashtags estimé par retour de pertinence simulé

Formation du contexte

- entrée : un ensemble d'articles Wikipédia liés à un Tweet
 - on choisit empiriquement les 5 mieux classés
 - résumé multi-document

- attribuer un score à chaque phrase
 - utilisation de différentes caractéristiques
 - les mieux classées constituent le contexte (dans une limite de 500 mots)

Formation du contexte

- quatre catégories de caractéristiques
 - importance de la phrase candidate dans le document dont elle provient (1) [Mihalcea,ACL'04]
 - pertinence de la phrase par rapport au Tweet (4)
 - pertinence de la phrase par rapport au contenu d'une page web dont l'URL est dans le Tweet (4)
 - pertinence du document dont provient la phrase (1)

score final d'une phrase : combinaison linéaire

- collection de test de la tâche Tweet
 Contextualization d'INEX
 - version de Wikipédia : Novembre 2011
 - 1126 Tweets à contextualiser (63 évalués)

- indexation de Wikipédia avec Indri
 - suppression des mots outils
 - racinisation légère de Krovetz

3 approches évaluées

- QL: "Tweet Likelihood"
 - pas de hashtags, pas de dépendances entre les mots
- MRF: Markov Random Fields, sans hashtags
- MRFH: MRF avec hashtags, et influence calculée automatiquement

- les plus petits scores sont les meilleurs
- aucune différence significative entre les approches
 - peu dépendantes de la sélection des documents

- MRFH sensiblement meilleure que MRF
 - mais seulement 23% de Tweets possèdent des hashtags

- biais dans l(a métrique d)'évaluation?
 - plus d'informations dans la présentation suivante?

- pooling et jugements des 10 premières phrases
 - lisibilité et cohérence : les phrases + informatives ne se trouvent pas forcément en premier

- la métrique d'évaluation ne considère que des phrases jugées pertinentes
 - pas de références de phrases non-pertinentes
 - augmenter la diversité des phrases peut augmenter les scores

régression logistique sur les caractéristiques

Caractéristique	Nom	Valeur	Significativité
c1	TextRank	8.996	$p < 2^{-16}$
c2	Recouvrement Tweet	2.496	$p = 2.38^{-6}$
c3	Cosine Tweet	5.849	$p = 4^{-15}$
c4	Recouvrement hashtags	-2.051	p = 0.1368
c5	Cosine hashtags	0.671	p = 0.3074
c6	Recouvrement titre URL	1.373	p = 0.2719
c7	Cosine titre URL	0.788	p = 0.6287
c8	Recouvrement page URL	0.543	p = 0.4337
c9	Cosine page URL	10.374	p = 0.0195
c10	Score document	0.782	$p < 2^{-16}$

Conclusion

 les hashtags d'un Tweet semblent apporter des informations contextuelles (sous réserve...)

approche favorisant les Tweets factuels, news

Conclusion

- une phrase contextuellement importante...
 - ... apparaît dans un document bien classé
 - ... contient les mêmes mots que le Tweet
 - ... fait partie des phrases centrales du document dont elle est extraite
- reconnaissance d'entités nommées
 - entity linking avec Wikipédia
- détection des concepts implicites exprimés

merci de votre attention