Chapter 19

Carrying Out an Empirical Project

Carrying Out an Empirical Project (1 of 23)

Goal of this chapter

Learn how to complete a term project/write a term paper.

Posing a question

- Knowing precisely what question you want to answer is essential.
- You can only collect your data if you exactly know your question.
- You can only know whether you can complete your project in the allotted time if you know whether the necessary data is available.
- You can only know if your research question is of interest to someone if you can precisely state it and discuss it with your class mates/instructor.

Carrying Out an Empirical Project (2 of 23)

- Finding interesting research questions
- Choose the area of economics/social sciences you are interested in.
- Examples for typical research questions
 - Labor Economics: Explaining wage differentials
 - Public Economics: Effect of taxes on economic activity
 - Education Economics: Effect of spending on school performance
 - Macroeconomics: Effect of investment on GNP growth
- Look for published papers on the chosen topic using tools such as EconLit, Google Scholar, the Journal of Economic Literature (JEL) etc.

Carrying Out an Empirical Project (3 of 23)

Your research project should add something new

- Add a new variable whose influence has not been studied before
- Expand economic questions to include factors from other sciences
- Study an existing question for more recent data (may be boring)
- Use a new data set or study a question for a different country
- Try out new/alternative methods to study an old question
- Find a completely new question (hard but possible)
- It helps if your research question is policy relevant or of local interest

Carrying Out an Empirical Project (4 of 23)

Literature review

- A literature review is important to place your paper into context.
- Use online search services to systematically search for literature.
- When searching, think of related topics that may also be relevant.
- A literature review can be part of the introduction or a separate section.

Data collection

Most questions can be addressed using alternative types of data (pure cross-sections, repeated cross-sections, time series, panels).

Carrying Out an Empirical Project (5 of 23)

Deciding on the appropriate data set

- Many questions can in principle be studied using a single cross-section
- But for a reasonable ceteris paribus analysis one needs enough controls
- Panel data provides more possibilities for convincing ceteris paribus analyses as one can control for time-invariant unobserved effects
- Examples for panel data sets: PSID (individuals), Compustat (firms)
- Panel data for cities, counties, states etc. are often publicly available
- Data sets are often available online, in journal archives, or from authors

Carrying Out an Empirical Project (6 of 23)

Entering and storing your data

- Data formats: 1) printed, 2) ASCII, 3) spreadsheet, 4) software specific
- Important identifiers: 1) observational unit, 2) time period
- Time series must be ordered according to time period
- Panel data are conveniently ordered as blocks of individual data
- It is always important to correctly identify and handle missing values
- Nonnummerical data also have to be handled with great care
- Software specific formats often provide good ways of documentation

Carrying Out an Empirical Project (7 of 23)

Inspecting, cleaning, and summarizing your data

- It is extremely important to become familiar with your data set.
- Even data sets that were used before may contain problems/errors.
- Look at individual entries/try to understand the structure of your data.
- Understand how missing values are coded; if they are coded as "999" or "-1", this can be extremely dangerous for your analysis.
- It is better to use nonnummerical values for missing values.
- Understand the units of measurement of your variables.

Carrying Out an Empirical Project (8 of 23)

Inspecting, cleaning, and summarizing your data

- Know whether your data is real/nominal, seasonally adjusted/unadjusted
- Check if means, std.dev., mins, and maxs of your data are plausible
- Clean your data of implausible values and obvious coding errors
- When making data transformations (differencing, growth rates) make sure your data is correctly ordered and no wrong operations result
- For example, in a panel data set, be aware that the first observation of each cross-sectional unit has no predecessor

Carrying Out an Empirical Project (9 of 23)

Econometric Analysis

• Given your research question and the data available, you have to decide on the appropriate econometric methods to use.

Some general guidelines

- OLS is still the most widely used method and often appropriate.
- Make sure the key assumptions are satisfied in your model.
- Always check for possible problems of omitted variables, self-selection, measurement error, and simultaneity.

Carrying Out an Empirical Project (10 of 23)

Some general guidelines

- Carefully choose functional form specifications (logs, squares etc.).
- Beginners mistake: do not include variables that are listed as numerical values but have no quantitative meaning (e.g., 3-digit occupations).
- Transform such variables to dummy variables representing categories.
- Handle ordinal regressors in a similar way (e.g., job satisfaction).
- For ordinal dependent variables, there are ordered logit/probit models.
- One can also reduce ordered variables to binary variables.

Carrying Out an Empirical Project (11 of 23)

Some general guidelines

- Think of secondary complications such as heteroskedasticity.
- Specific problems in time series regressions: 1) levels vs. differences, 2) trends and seasonality, 3) unit roots and cointegration
- Carry out misspecification tests and think about possible biases.
- Sensitivity analysis: look at variations of your specification/method.
- Hopefully, results do not change in a substantial way.
- Are there problems with outliers/influential observations?

Carrying Out an Empirical Project (12 of 23)

- Specific aspects to think of when using panel data
- Key assumptions
 - Random effects: regressors unrelated to individual specific effects
 - Fixed effects: regressors related to individual specific effects
 - The fixed effects assumption is often more convincing
 - Contemporaneous exogeneity: idiosyncratic errors are uncorrelated with the explanatory variables of the same time period
 - Strict exogeneity: idiosyncratic errors are uncorrelated with the explanatory variables of all time periods (often problematic)

Carrying Out an Empirical Project (13 of 23)

- Specific aspects to think of when using panel data
- Methods for panel data
 - Pooled OLS: random effects assumption, serial correlation of error terms, needs only contemporaneous exogeneity.
 - Random effects estimation: random effects assumption, more efficient than pooled OLS, needs strict exogeneity.
 - Fixed effects estimation: fixed effects assumption, problem with time invariant regressors, needs strict exogeneity.
 - First differencing: similar to fixed effects, good for longer time series.

Carrying Out an Empirical Project (14 of 23)

Data mining/specification searches

- The process of looking for the best model is called specification search.
- Often, one starts with a general model and drops insignificant variables.
- If the specification search entails many steps, this is problematic.
- Our assumptions actually require that the model is only estimated once.
- If one sequentially estimates a number of models on the same data, the resulting test statistics and p-values cannot be interpreted anymore.
- This (difficult) problem is often ignored in practice.
- One should keep the number of specification steps to a minimum.

Carrying Out an Empirical Project (15 of 23)

Writing an empirical paper

• A successful empirical paper combines a careful, convincing data analysis with good explanations and a clear exposition.

Introduction

- State basic objectives and explain why the topic is important.
- Literature review: What has been done? How do you add to this?
- Grab the reader's attention by presenting simple statistics, paradoxical evidence, topical examples, or challenges to common wisdom.
- One may give a short summary of results in the introduction.

Carrying Out an Empirical Project (16 of 23)

Conceptual (or theoretical) framework

- Description of general approach to answering your research question.
- You may delevop/use a formal economic model for this.
- For example, setting up a utility maximization model of criminal activity clarifies the factors that matter for explaining criminal activity.
- However, often common economic sense suffices to discuss the main mechanisms and control variables that have to be taken into account.
- As one is in most cases interested in answering a causal question, a convincing discussion of what variables to control for is essential.

Carrying Out an Empirical Project (17 of 23)

- Econometric models and estimation methods
 - Specify the population model you have in mind
 - Example: Effects of alcohol consumption on college GPA

$$colGPA = \beta_0 + \beta_1 alcohol + \beta_2 hsGPA + \beta_3 SAT + \beta_4 female + u$$

• Example: Time series model of city-level car thefts

$$thefts_t = \beta_0 + \beta_1 unem_t + \beta_2 unem_{t-1} + \beta_3 cars_t + \beta_4 convrate_t + \beta_5 convrate_{t-1} + u_t$$

Explain your functional form choices

Carrying Out an Empirical Project (18 of 23)

Econometric models and estimation methods

- After specifying a population model, discuss estimation methods.
- Describe how you measure the variables in your population model.
- When using OLS: Discuss why exogeneity assumptions hold, and how you deal with heteroskedasticity, serial correlation, and the like.
- When using IV/2SLS: Explain why your instrumental variables fulfill the assumptions: 1) exclusion, 2) exogeneity, 3) partial correlation.
- When using panel methods: Explain what the unobserved individual specific effects stand for, and how they are removed/accounted for.

Carrying Out an Empirical Project (19 of 23)

Data

- Carefully describe the data used in your empirical analysis.
- Name the sources of your data and how they can be obtained.
- Time series data and short data sets may be listed in the appendix.
- If your data is self-collected, include a copy of the questionnaire.
- Discuss the units of measurement of the variables of interest.
- Present summary statistics for the variables used in the analysis.
- For trending variables, growth rates or graphs are more appropriate.
- Always state how many observations you use for different estimations.

Carrying Out an Empirical Project (20 of 23)

Results

- Present estimated equations, or, if there are too many, present tables.
- Always include things like R-squared and the number of observations.
- Are your estimated coefficients statistically significant?
- Are they economically significant? What is their magnitude?
- If coefficients do not have the expected signs, this may indicate there is a specification problem, for example, omitted variables.
- Relate differences between the results from different methods to the differences in the assumptions underlying these methods.

Carrying Out an Empirical Project (21 of 23)

Conclusion

- Summarize main results and conclusions from them
- Discuss caveats to the conclusions drawn
- Suggest directions for further research

Style hints

- Choose a title that is exciting and reflects the paper's topic
- Papers should be typed and double-spaced
- Number equations, graphs, and tables
- Refer to papers by author and date, for example, White (1980)

Carrying Out an Empirical Project (22 of 23)

Style hints

- When you introduce an equation, describe important variables
- In order to focus on a particular variable you may write something like

$$GPA = \beta_0 + \beta_1 alcohol + \mathbf{x}\boldsymbol{\delta} + u$$
 Shorthand for several other explanatory variables

Presenting results in equation form:

$$salary = 830.63 + .0163 \ sales + 19.63 \ roe$$
 (223.90) (.0089) (11.08) $n = 209, R^2 = .029$ State near the first equation that standard errors are in parentheses

Carrying Out an Empirical Project (23 of 23)

Style hints

TABLE 19.1 OLS Results. I	Dependent Variable: Pa	articipation Rate	
Independent Variables	(1)	(2)	(3)
mrate	.156	.239	.218
	(.012)	(.042)	(.342)
mrate ²	_	087 (.043)	096 (.073)
log(emp)	112	112	098
	(.014)	(.014)	(.111)
$\log(emp)^2$.0057	.0057	.0052
	(.0009)	(.0009)	(.0007)
age	.0060	.0059	.0050
	(.0010)	(.0010)	(.0021)
age ²	00007	00007	00006
	(.00002)	(.00002)	(.00002)
sole	0001	.0008	.0006
	(.0058)	(.0058)	(.0061)
constant	1.213	.198	.085
	(.051)	(.052)	(.041)
industry dummies?	no	no	yes
Observations R- squared	3,784	3,784	3,784
	.143	.152	.162

Note: The quantities in parentheses below the estimates are the standard errors.

- Reporting results in tabular form:
- Clearly indicate dependent and independent variables.
- Limit the number of digits reported after the decimal point.
- You may also think of rescaling your variables so that coefficients are not too large or too small.