EXPERIMENT 4: Single phase rectifiers

Name -

 Mehul Kavdia
 (2018A8PS0860P)

 Yash Raj Agarwal
 (2018A8PS0782P)

 Pranamya Jain
 (2018A8PS0769P)

 Jash Shah
 (2018A8PS0507P)

Sec No. - 4 Group No. - 10

Date - 17/03/21

Objective - To study load voltage and current waveforms of single-phase full wave rectifiers under:

- a) Controlled rectification
- b) Uncontrolled rectification
- c) Midpoint rectification

for firing angles $\alpha = 45$, 60 and 90 deg respectively.

Software tool: MATLAB Simulink, Simscape toolbox (power GUI)

Components used:

Detailed thyristor; Diode; AC source; Step-down transformer; Pulse generator; Resistor, inductor and constant dc-side voltages as load; Voltage and current sensors; Display; Scope

1. Single phase full wave controlled rectifier - R load(100 ohms)

1(a) α = 45° Vrms = 15.27V, Vavg = 8.597V

1(b) $\alpha = 60^{\circ}$ Vrms = 14.45V, Vavg = 7.6V

1(c) α = 90° Vrms = 11.34V, Vavg = 5V

2. Single phase full wave controlled rectifier RL load(100 ohms, $150 \mathrm{uH}$)

2(a) α = 45° Vrms = 15.26V, Vavg = 8.596V

2(b) $\alpha = 60^{\circ}$ Vrms = 14.43V, Vavg = 7.6V

2(c) $\alpha = 90^{\circ}$ Vrms = 11.33V, Vavg = 5V

3. Single phase full wave controlled rectifier RLE load(100 ohms, $150\mathrm{uH}, 2\mathrm{V})$

1-phase fullwave controlled rectifier(RLE-45degree)

3(a) α = 45° Vrms = 15.36V, Vavg = 9.882V

3(b) $\alpha = 60^{\circ}$ Vrms = 14.53V, Vavg = 8.95V

3(c) $\alpha = 90^{\circ}$ Vrms = 11.45V, Vavg = 6.54V

Controlled Full wave rectifier table:

Componen ts	a		Output Voltage (Vd)
		Practically	Theoretically
R			
	45°	21.59	18.475
	60°	20.4	16.234
	90°	15.99	10.82
RL			
	45°	21.60	18.475
	60°	20.41	16.234
	90°	15.99	10.82
RLE			
	45°	21.61	18.475

60°	20.44	16.234
90°	16.06	10.82

4. Single phase full wave uncontrolled rectifier R load(100 ohms)

Vrms = 22.57V, Vavg = 19.96V

5. Single phase full wave uncontrolled rectifier RL load(100 ohms, $150 \mathrm{uH}$)

1-phase fullwave uncontrolled rectifier (RL)

Vrms = 22.57V, Vavg = 19.95V

6. Single phase full wave uncontrolled rectifier RLE load(100 ohms, $150\mathrm{uH}, 2\mathrm{V})$

1-phase fullwave uncontrolled rectifier(RLE)

Vrms = 22.56V, Vavg = 20.06V

Uncontrolled Full wave rectifier table:

Components	Output Voltage (Vd)		
1	Practicall y	Theoretical ly	
R	22.56	21.645	

RL	22.57	21.645
RLE	22.57	21.645

7. Single phase mid point full wave rectifier R load(100 ohms)

1-phase mid point fullwave rectifier(R-45degree)

7(a)
$$\alpha = 45^{\circ}$$

Vrms = 10.77V, Vavg = 8.6V

7(b) $\alpha = 60^{\circ}$ Vrms = 10.17V, Vavg = 7.59V

8. Single phase mid point full wave rectifier RL load(100 ohms, 150 mH)

1-phase mid point fullwave rectifier(R-45degree)

8(a) $\alpha = 45^{\circ}$ Vrms = 10.92V, Vavg = 8.097V

8(b) $\alpha = 60^{\circ}$ Vrms = 10.35V, Vavg = 7.035V

8(c) $\alpha = 90^{\circ}$ Vrms = 8.149V, Vavg = 4.48V

Calculation Table

	Uncont rolled	Contr olled	Mid-Point
Average output voltage	21.645V	15.31V	146.4225V

RMS output voltage	24.042V	24.04V	162.634V
Peak load current	0.2404A	0.24A	1.626A
Average load current	0.21645 A	34V	0.146A
Peak inverter voltage	34V	0.15A	230V
Power delivered to load	7.357W	5.77W	23.744W
Ripple voltage	10.462V	10.46V	70.771V
Ripple factor	0.482	0.482	0.482
Form factor	1.11	1.57	1.11