

CS100 #14

Operating Systems

Vadim Surov

What is an OS?

- OS is an interface between your hardware and software.
- It acts as a resource manager

Why we need to study OS?

- OS is a key part of a computer system
- Understand how computers work under the hood
- Combine language, hardware, data structures, and algorithms.
- Write better code
- Write an OS

Recap Computer Architecture

Example Running A Simple Program

Want to add values of variables a and b
 (assumed to be in memory), and put the result in variable c in memory

- Instructions in program
 - Load a into register r1
 - Load b into register r3
 - \circ r2 \leftarrow r1 + r3
 - Store r2 in c

Program execution

- So how does a program execute?
- Naïve answer:
 - load the program into memory and point the PC to the start of the program.

Loading a Program

- Need a program called a loader
 - Able to read the executable format
 - Copy the text and data segments into the correct memory addresses.
 - Allocate space for Stack and heap for the new running program
 - Set the Program Counter value to the address of the starting instruction of the loaded program.
 - The newly loaded program runs

Layout of an executable

Loader

- Chicken and egg problem
- Who loads the loader?
- Need to talk about the boot sequence

- 1. Power-On
- 2. Run BIOS
 - The processor is pre-programmed to always look at the same place in the system BIOS ROM for the start of the BIOS boot program located at FFFFFF0h
 - Performs "power-on self test"
 - Initialize peripherals (video card, etc)
 - Search through the secondary storages i.e., hard disks for bootable drive

- Power-On
- 2. Run BIOS
- 3. Bios load and run MBR
 - a. Look for Master Boot Record
 - b. Located at 1'st sector of the hard disk
 - c. Small 512 bytes

- 1. Power-On
- 2. Run BIOS
- 3. Bios load and run MBR
- 4. MBR loads an OS boot loader program that in turns loads the rest of the OS

- Power-On
- 2. Run BIOS
- 3. Bios load and run MBR
- 4. MBR loads an OS boot loader
- Load and Run OS

What does an OS do?

- Interface/Abstraction
 - API for programmers
 - Remove need for low-level details
- Portability
- Resource Management
 - Virtualization
- Security

OS Types

- There are several architectures which all require a different OS:
 - Desktop PCs
 - Parallel Systems
 - Distributed Systems
 - Clustered Systems
 - Real-time Systems
 - Embedded Systems

Desktop Systems

- Personal Computers computer system dedicated to a single user.
- I/O devices keyboards, mice, display screens, small printers.
- User convenience and responsiveness.
- Can adopt technology developed for larger operating system
- Often individuals have sole use of computer and do not need advanced CPU utilization of protection features.
- May run several different types of operating systems (Windows, MacOS, UNIX, Linux)

Parallel Systems

- Multiprocessor systems with more than one CPU in close communication.
- Tightly coupled system processors share memory and the internal clock; communication usually takes place through the shared memory.
- Advantages of parallel system:
 - Increased throughput (productivity)
 - Economical
 - Increased reliability
 - graceful degradation
 - fail-soft systems

Parallel Systems

- Symmetric multiprocessing (SMP)
 - Each processor runs an identical copy of the operating system.
 - The OS code is usually shared.
 - Many processes can run at once without performance deterioration.
 - Most modern operating systems have SMP support.
 - OS has to cater for protection of data.

Parallel Systems

- Asymmetric multiprocessing
 - Each processor is assigned a specific task; master processor schedules and farms work to slave processors.
 - More common in extremely large systems like mainframes with hundreds of processors.

Distributed Systems

- Distribute the computation among several physical processors.
- Loosely coupled system each processor has its own local memory; processors communicate with one another through various communications lines, such as high-speed buses or network communication.

Distributed Systems

- Advantages of distributed systems.
 - Resources Sharing
 - Computation speed up load balancing
 - Scalability
 - Reliability
 - Fail-Safe
 - Communications
- May make use of commodity platforms.
- OS has to cater for resource sharing.
- May be either client-server or peer-to-peer systems.

Clustered Systems

- Clustering allows two or more systems to share storage.
- Provides high reliability.
- Asymmetric clustering: one server runs the application while other servers standby.
- Symmetric clustering: all N hosts are running the application.
- Used mainly for database applications where a file server exists.

Real-Time Systems

- Often used as a control device in a dedicated application such as controlling scientific experiments, medical imaging systems, industrial control systems, and some display systems.
- Well-defined fixed-time constraints.

Embedded Systems

- Personal Digital Assistants (PDAs)
- Cellular telephones
- Issues:
 - Limited memory
 - Slow processors
 - Small display screens.
- Usually most features of typical OS's are not included at the expense of the developer.
- Emphasis is on I/O operations.
- Memory Management and Protection features are usually absent.