Term 1 Week 8 Handout

Problems

- 1) Find the ratio between the areas of a square and an octagon that are both inscribed in the same circle.
- 2) A circle of radius 9/2 circumscribes a triangle ABC such that one of the triangle's sides passes through the centre of the circle; let this side be AB. If the arc length of BC is 3π , find the area of the triangle.
- 3) Given a rational number x/y, where x and y are positive integers, we define its size to be x+y. Find the rational number with smallest size that equals π to six decimal places.
- 4) (This problem requires calculus.) Now you will become Euler and prove the famous identity

$$\frac{\pi^2}{6} = \frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} + \frac{1}{4^2} + \cdots$$
 (1)

a) By instead considering the sum

$$1 + \frac{1}{1} \cdot \frac{1}{2} + \frac{1}{2} \cdot \frac{1}{3} + \frac{1}{3} \cdot \frac{1}{4} + \cdots$$

show that the infinite sum on the RHS of (1) converges to a finite value less than 2.

b) Assume that $\sin x$ can be written as an infinite polynomial:

$$\sin x = a_0 + a_1 x + a_2 x^2 + a_3 x^3 + a_4 x^4 + a_5 x^5 + \cdots$$

Substitute in x = 0 and we get $a_0 = 0$. Differentiating both sides yields

$$\cos x = a_1 + 2a_2x + 3a_3x^2 + 4a_4x^3 + 5a_5x^4 + \cdots$$

Put in x=0 again and we have $a_1=1$. Repeat this process to find that $a_3=-1/3!$, $a_4=0$, $a_5=1/5!$, $a_6=0$, $a_6=-1/7!$ and so on. Hence show that

$$\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \cdots$$
 (2)

c) Divide both sides of (2) by x to get

$$\frac{\sin x}{x} = 1 - \frac{x^2}{3!} + \frac{x^4}{5!} - \frac{x^6}{7!} + \cdots$$
 (3)

The key thing to realise in (3) is that the coefficient of the x^2 term is -1/3! = -1/6.

Note that the roots of $\sin x/x$ are the same as $\sin x$ except that x=0 is excluded. Hence the roots of the LHS of (3) are $x=\pm\pi,\pm2\pi,\pm3\pi,\ldots$ We know with normal polynomials that we can express them as a product of their

roots with a scaling factor. Let's do the same with $\sin x/x$; we get the infinite product

$$\frac{\sin x}{x} = a(x^2 - \pi^2)(x^2 - 4\pi^2)(x^2 - 9\pi^2)(x^2 - 16\pi^2)\cdots$$

Now we just need to know what the scaling factor a is.

As with normal polynomials, we can find the scaling factor by plugging in another point that is not one of the roots. Let's choose x=0. Obviously the LHS is undefined, but we can use a interesting trick that is generally not allowed when we are dealing with finite polynomials. Graphing $\sin x/x$, perhaps using Desmos, we see that

$$\lim_{x \to 0} \frac{\sin x}{x} = 1.$$

(This might be the most important limit in calculus.) Use this limit to find a and hence show that

$$\frac{\sin x}{x} = \left(1 - \frac{x^2}{\pi^2}\right) \left(1 - \frac{x^2}{4\pi^2}\right) \left(1 - \frac{x^2}{9\pi^2}\right) \cdots$$

d) If we expand the first two terms, we get

$$\left(1 - \frac{x^2}{\pi^2}\right)\left(1 - \frac{x^2}{4\pi^2}\right) = 1 - \left(\frac{1}{\pi^2} + \frac{1}{4\pi^2}\right)x^2 + \frac{x^4}{4\pi^4}.$$

Keep expanding the product until you notice a pattern.

- e) Comparing coefficients with (3), complete Euler's proof of the Basel Problem.
- 5) For this problem, we definite a particular function $\zeta(s)$ to be

$$\zeta(s) = \frac{1}{1^s} + \frac{1}{2^s} + \frac{1}{3^s} + \frac{1}{4^s} + \frac{1}{5^s} + \cdots$$

a) Show that

$$\left(1 - \frac{1}{2^s}\right) \left(1 - \frac{1}{3^s}\right) \left(1 - \frac{1}{5^s}\right) \left(1 - \frac{1}{7^s}\right) \cdots \zeta(s) = 1.$$

b) Hence show that

$$\frac{1}{\left(1 - \frac{1}{2^2}\right)\left(1 - \frac{1}{3^2}\right)\left(1 - \frac{1}{5^2}\right)\left(1 - \frac{1}{7^2}\right)\dots} = \frac{\pi^2}{6}.$$

- c) Finally, prove that the probability of two randomly chosen integers being coprime to each other is $6/\pi^2$.
- d) What is the probability that four randomly chosen integers are all coprime? (Here we mean that the GCD of the four numbers is 1; we don't mean that every pair of those four integers is coprime.)