Elementary Particle Physics from the context of the courses PHY 493: Elementary Particle Physics

Kaedon Cleland-Host

February 8, 2023

Contents

	0.1 The SI System	1
1	Fundamental Particles 1.1 Fermions and Bosons	2
2	Interactions 2.1 Forces	4
	2.2 Feynman Diagrams	4 5 5
3	Relativity 3.1 4-Vector Coordinates	6
4	Symmetry 4.1 Angular Momentum	7
5	Bound States	8

0.1 The SI System

In physics it's often important to have precisely defined units for the purposes of making very accurate measurements or simply having a coherent unit system. It's possible to derive all necessary units from five measurements of **length**, mass, time, current, and temperature. The standard SI units for these properties are listed bellow:

Type	Unit	Definition
Length	Meter(m)	Length of distance light in a vacuum travels in $\frac{1}{299792458}$ seconds
Mass	Kilogram(kg)	Defined by fixing the Planck's constant $h = 6.62607015 \times 10^{-34} kg \ m^2 s^{-1}$
Time	Second(s)	Defined by fixing the ground-state hyperfine transition frequency of the caesium-133
		atom, to be $9192631770s^{-1}$
Current	Ampere(A)	Defined by fixing the charge of an electron as $1.602176634 \times 10^{-19} A \cdot s$
Temperature	$\operatorname{Kelvin}(K)$	Defined by fixing the value of the Boltzmann constant k to $1.380649 \times 10^{-23} kg \cdot m^2 s^{-2} K^{-1}$

Common prefixes are listed bellow:

Prefix	Symbol	Definition
mega	M	10^{6}
kilo	k	10^{3}
milli	m	10^{-3}
micro	μ	10^{-6}
nano	n	10^{-9}
pico	p	10^{-12}
femto	f	10^{-15}

Additionally, the following are defined constants:

Symbol	Definition
\hbar	$h = \frac{h}{2\pi} \approx 1.0546 \times 10^{-34} kg \ m^2 s^{-1}$

Fundamental Particles

1.1 Fermions and Bosons

Definition 1.1.1. A **fermion** is a particle with half integer spin.

Definition 1.1.2. The **color** of a particle is a quantum number that can be in 7 possibles states: colorless, red, green, blue, anti-red, anti-green, and anti-blue.

Definition 1.1.3. A quark is a fermion with color charge and an anti-quark is a fermion with anti color charge.

Table 1.1.4. Quarks and Anti-Quarks Table of quarks and anti-quarks and there corresponding properties.

Name	Sym.	S	Q	B_a	T_3	I_3	C	S	T	B_o	${\rm Mass}~({\rm MeV/c^2})$
Up	u	1/2	2/3	1/3	1/2	1/2					2.3
Anti-Up	\overline{u}	1/2	-2/3	-1/3	-1/2	-1/2					2.3
Down	d	1/2	-1/3	1/3	-1/2	-1/2					4.8
Anti-Down	\overline{d}	1/2	1/3	-1/3	1/2	1/2					4.8
Charm	c	1/2	2/3	1/3	1/2		1				1.275×10^{3}
Anti-Charm	\overline{c}	1/2	-2/3	-1/3	-1/2		-1				1.275×10^{3}
Strange	s	1/2	-1/3	1/3	-1/2			-1			1.01×10^{2}
Anti-Strange	\overline{s}	1/2	1/3	-1/3	1/2			1			1.01×10^2
Top	t	1/2	2/3	1/3	1/2				1		1.72×10^{5}
Anti-Top	\overline{t}	1/2	-2/3	-1/3	-1/2				-1		1.72×10^{5}
Bottom	b	1/2	-1/3	1/3	-1/2					-1	4.19×10^{3}
Anti-Bottom	\overline{b}	1/2	1/3	-1/3	1/2					1	4.19×10^{3}

S is spin (\hbar) , Q is electric charge (e), B_a is baryon number, I_3 is strong isospin, T_3 is weak isospin, C is charmness, S is strangeness, T is topness, B_o is bottomness.

Definition 1.1.5. a **lepton** or an **anti-lepton** is a fermion with no color charge.

Table 1.1.6. Leptons and Anti-Leptons Table of leptons and anti-leptons and their corresponding properties.

Name	Sym.	S	Q	L_e	L_{μ}	$L_{ au}$	T_3	$Mass (MeV/c^2)$
Electron	e	1/2	-1	1			-1/2	5.10998×10^{-1}
Anti-Electron	\overline{e}	1/2	1	-1			1/2	5.10998×10^{-1}
Muon	μ	1/2	-1		1		-1/2	1.0565×10^{2}
Anti-Muon	$\overline{\mu}$	1/2	1		-1		1/2	1.0565×10^{2}
Tau	τ	1/2	-1			1	-1/2	1.776×10^{3}
Anti-Tau	$\overline{ au}$	1/2	1			-1	1/2	1.776×10^{3}
Electron Neutrino	e	1/2		1			1/2	< 0.0000022
Electron Anti-Neutrino	\overline{e}	1/2		-1			-1/2	< 0.0000022
Muon Neutrino	ν_{μ}	1/2			1		1/2	< 0.17
Muon Anti-Neutrino	$\overline{\nu} - \mu$	1/2			-1		-1/2	< 0.17
Tau Neutrino	au	1/2				1	1/2	< 15.5
Tau Anti-Neutrino	$\overline{ au}$	1/2				-1	-1/2	< 15.5

S is spin (\hbar) , Q is electric charge (e), L_e is lepton electron number, L_e is lepton electron number, L_μ is lepton muon number, L_τ is lepton tau number, and T_3 is weak isospin.

Definition 1.1.7. A **Boson** is a particle with integer spin.

Table 1.1.8. Bosons Table of bosons and their corresponding properties.

Name	Sym.	S	Q	T_3
Photon	γ	1		or 1
Positive Weak	W^+	1	1	1
Neutral Weak	Z^0	1		or 1
Negative Weak	W-	1	-1	-1
Gluon	g	1		
Higgs	H^0			

S is spin ($\hbar),\,Q$ is electric charge (e), and T_3 is weak isospin.

Interactions

2.1 Forces

Definition 2.1.1. The **electromagnetic force** is the fundamental force of nature mediated by γ boson (photon).

Definition 2.1.2. The weak force is the fundamental force of nature mediated by W^+ , Z^0 , and W^- bosons.

Definition 2.1.3. The **strong force** is the fundamental force of nature mediated by q boson.

Theorem 2.1.4. Heisenburg's Uncertainty Principle states that the product of the uncertainty ΔE of energy and the uncertainty Δt of time is greater than $\hbar/2$.

$$\Delta E \Delta t \ge \hbar/2 \tag{2.1.4}$$

Definition 2.1.5. The **range of a forces** is the maximum distance that a force can act determined by the uncertainty principle and the mass of the particles mediating the force.

$$r \le \tau \times c = \frac{\hbar c}{2mc^2} \tag{2.1.5}$$

2.2 Feynman Diagrams

Definition 2.2.1. A **Feynman diagram** is a pictorial representation of and interaction between particles. Diagrams are drawn with lines representing particles connected points of interaction between those particles. The x-axis represents time and the y axis represents space.

2.3 Probability of Interaction

Definition 2.3.1. A leading order interaction is an interaction with a Feynman diagram with 2 vertices.

Definition 2.3.2. An **nth order interaction** is an interaction with a Feynman diagram with 2n vertices.

Definition 2.3.3. The **probability of interaction** denoted σ is the probability of an interaction.

Proposition 2.3.4. The probability of interaction is proportional to g^n where n is the order of the interaction.

$$\sigma \propto g^n \tag{2.3.4}$$

Proposition 2.3.5. The probability of interaction is proportional to $|M_{TOT}|^2$ where M_TOT is the total matrix probability.

$$M_{TOT} = M_1 + M_2 + \dots (2.3.5)$$

Theorem 2.3.6. Particles can decay into other particles if the follow applies:

- 1. The particle must decay into a lower energy/mass final state.
- 2. The conservation rules must be held for the mediator of the decay.

Definition 2.3.7. The **decay constant** denoted Γ is the rate at which a particle decays where N(t) is the number of particles at time t.

$$N(t) = N(0)e^{-\Gamma t} \tag{2.3.7}$$

Definition 2.3.8. The natural life time denoted τ is the reciprocal of the decay constant $\tau = 1/\Gamma$.

Theorem 2.3.9. The decay rate depends on the square of the matrix element M and the mass of the particle m.

$$\Gamma = \frac{1}{2m}|M|^2\tag{2.3.9}$$

2.4 Rutherford Scattering

Definition 2.4.1. The **Rutherford scattering experiment** was an early experiment that demonstrated the approximate size of the nucleus. The scattering of electrons off a charged nucleus can be approximated with

$$N = \frac{N_i n L Z^2 k^2 e^4}{4r^2 E^2 \sin^4(\theta/2)}$$
 (2.4.1)

where N is the rate of detected α particles, N_i is the rate of incoming α particles, n is atoms per unit volume, L is thickness of the target, Z is the atomic number, r is the distance from the target, E is the kinetic energy, and θ is the scattering angle.

Relativity

3.1 4-Vector Coordinates

Definition 3.1.1. The space-time coordinate is a vector in \mathbb{R}^4 that represents a time and position in a reference frame.

$$(ct, x, y, z) \tag{3.1.1}$$

Definition 3.1.2. The **energy-momentum coordinate** is a vector in \mathbb{R}^4 that represents an energy and momentum in a reference frame.

$$(E/c^2, p_x, p_y, p_z)$$
 (3.1.2)

Definition 3.1.3. The **Lorentz factor** denoted γ is the quantity expressing how much the time dilation and space contraction affects an object in a reference frame and β is the frame of the speed of light that an object is moving in a reference frame.

$$\gamma = \frac{1}{\sqrt{1 - \beta^2}}, \quad \beta = \frac{v}{c} \tag{3.1.3}$$

Theorem 3.1.4. The **Lorentz transformation** is the transformation of space-time coordinates into a reference frame moving with velocity v in the x direction.

$$L = \begin{pmatrix} \gamma & -\beta\gamma & 0 & 0 \\ -\beta\gamma & \gamma & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$
 (3.1.4)

Proposition 3.1.5. The effect on an object due to length contraction L' and time dilation t' is determined by the γ of the object in a reference frame.

$$L' = L_0/\gamma, \quad t' = \gamma t_0 \tag{3.1.5}$$

Proposition 3.1.6. The velocity sum of two objects at velocities v_A and a_B

Definition 3.1.7. The position invariant p and the momentum invariant s are defined as

$$p^2 = c^2 t^2 - x^2 - y^2 - z^2 (3.1.7)$$

$$s^{2} = E^{2}/c^{4} - p_{x}^{2} - p_{y}^{2} - p_{z}^{2}$$
(3.1.7)

Proposition 3.1.8. The invariants s and p are the same for all reference frames.

3.2 Inner Product Space

Symmetry

4.1 Angular Momentum

Bound States

34. CLEBSCH-GORDAN COEFFICIENTS, SPHERICAL HARMONICS,

Figure 34.1: The sign convention is that of Wigner (*Group Theory*, Academic Press, New York, 1959), also used by Condon and Shortley (*The Theory of Atomic Spectra*, Cambridge Univ. Press, New York, 1953), Rose (*Elementary Theory of Angular Momentum*, Wiley, New York, 1957), and Cohen (*Tables of the Clebsch-Gordan Coefficients*, North American Rockwell Science Center, Thousand Oaks, Calif., 1974). The coefficients here have been calculated using computer programs written independently by Cohen and at LBNL.