\$ 81

Решение. Составим схему с единственным делением. При этом будем иметь четыре столбца свободных членов (таблица 17). Заметим, что элементы строк обратной матрицы получаются в обратном порядке.

Таблица 17

Вычисление обратной матрицы методом Гаусса

x1j	x _{2j}	x_{8j}	x ₄ ;	j=1	j=2	j=3	j=4	Σ
1,8 0,7 7,3 1,9	-3,8 2,1 8,1 -4,3	0,7 -2,6 1,7 -4,9	-3,7 -2,8 -4,9 -4,7	1 0 0 0	0 1 0 0	0 0 1 0	0 0 0 1	-4,0 -1,6 13,2 -11,0
1	-2,11111	0,38889	-2,05556	0,55556	0	0	0	-2,22223
	23,51110	-1,13890	10,10559	-0,38885 -4,05551 -1,05554	1 0 0	0 1 0	0 0 1	-0,04440 29,42228 -6,77776
	1	-0,80279	-0,38043	-0,10868	0,27950	0	0	-0,01241
		17,73557 -5,87081	19,04992 -0,90434	-1,50032 -1,08694	-6,57135 0,08074	1 0	0	29,71405 -6,78134
		1	1,07411	-0,08459	-0,37108	0,05638	0	1,67539
			5,40155	-1,58355	-2,09780	0,33100	1	3,05456
			1	-0,29316	-0,38837	0,06128	0,18513	0,56540
1	1	1		0,23030 -0,03533 -0,21121			-0,08920	1,06809 1,06013 0,76266

На основании результатов таблицы 17 получаем:

$$A^{-1} = \begin{bmatrix} -0.21121 & -0.46003 & 0.16284 & 0.26956 \\ -0.03533 & 0.16873 & 0.01573 & -0.08920 \\ 0.23030 & 0.04607 & -0.00944 & -0.19885 \\ -0.29316 & -0.38837 & 0.06128 & 0.18513 \end{bmatrix}.$$

Для проверки составим произведение

$$AA^{-1} = \begin{bmatrix} 1.8 - 3.8 & 0.7 & -3.7 \\ 0.7 & 2.1 & -2.6 & -2.8 \\ 7.3 & 8.1 & 1.7 & -4.9 \\ 1.9 & -4.3 & -4.9 & -4.7 \end{bmatrix} \begin{bmatrix} -0.21121 & -0.46003 & 0.16284 & 0.26956 \\ -0.03533 & 0.16873 & 0.01573 & -0.08920 \\ 0.23030 & 0.04607 & -0.00944 & -0.19885 \\ -0.29316 & -0.38837 & 0.06128 & 0.18513 \end{bmatrix} = \\ = \begin{bmatrix} 0.99997 & 0.00000 & -0.00001 & 0.00000 \\ -0.00025 & 0.99997 & -0.00002 & -0.00039 \\ -0.00808 & -0.01017 & 0.99982 & 0.00009 \\ 0.00000 & 0.00000 & 1.00048 \end{bmatrix} = \\ = E - 10^{-3} \cdot \begin{bmatrix} 0.03 & 0.00 & 0.01 & 0.00 \\ 0.25 & 0.03 & 0.02 & 0.39 \\ 8.08 & 10.17 & 0.18 & -0.09 \\ 0.00 & 0.00 & 0.00 & -0.48 \end{bmatrix}.$$

Мы видим, что благодаря округлению обратная матрица получилась не вполне точной. Ниже мы укажем (см. § 15) метод исправления элементов приближенной обратной матрицы.

§ 8. Метод квадратных корней

Пусть дана линейная система

$$Ax = b, (1)$$

где $A = [a_{ij}]$ — симметрическая матрица, т. е. $A' = [a_{ji}] = A$. Тогда матрицу A можно представить в виде произведения двух транспонированных между собой треугольных матриц

$$A = T'T, (2)$$

где

$$T = \begin{bmatrix} t_{11} & t_{12} & \dots & t_{1n} \\ 0 & t_{22} & \dots & t_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & t_{nn} \end{bmatrix} \quad \text{if} \quad T' = \begin{bmatrix} t_{11} & 0 & \dots & 0 \\ t_{12} & t_{22} & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ t_{1n} & t_{2n} & \dots & t_{nn} \end{bmatrix}.$$

Производя перемножение матриц T' и T, для определения элементов $t_{t_{\ell}}$ матрицы T получим следующие уравнения:

$$\begin{cases} t_{1i}t_{1j} + t_{2i}t_{2j} + \dots + t_{ii}t_{ij} = a_{ij} & (i < j), \\ t_{ij}^2 + t_{2j}^2 + \dots + t_{ii}^2 = a_{ii}. \end{cases}$$

§ 8]

Отсюда последовательно находим:

$$t_{11} = \sqrt{a_{11}}, \quad t_{1j} = \frac{a_{1j}}{t_{11}} \qquad (j > 1),$$

$$t_{ii} = \sqrt{a_{ii} - \sum_{k=1}^{l-1} t_{kl}^2} \qquad (1 < i \le n),$$

$$t_{ij} = \frac{a_{ij} - \sum_{k=1}^{l-1} t_{ki} t_{kj}}{t_{ii}} \qquad (i < j),$$

$$t_{ij} = 0 \quad \text{при} \quad i > j.$$

$$(3)$$

Система (1) имеет определенное единственное решение, если $t_{ii} \neq 0$ $(i=1,\ 2,\ \dots,\ n)$, так как тогда

$$\det A = \det T' \cdot \det T = (\det T)^2 = (t_{11}t_{22} \dots t_{nn})^2 \neq 0.$$

Коэффициенты матрицы T будут действительны, если $t_{ii}^2 > 0$. В дальнейшем мы, вообще говоря, не будем предполагать это последнее условие выполненным.

При наличии соотношения (2) уравнение (1) эквивалентно двум уравнениям:

$$T'y = b$$
 и $Tx = y$,

или в раскрытом виде

$$\begin{cases}
 t_{11}y_1 = b_1, \\
 t_{12}y_1 + t_{22}y_2 = b_2, \\
 \vdots \\
 t_{1n}y_1 + t_{2n}y_2 + \dots + t_{nn}y_n = b_n
 \end{cases}$$
(4)

И

$$t_{11}x_{1} + t_{12}x_{2} + \dots + t_{1n}x_{n} = y_{1}, t_{22}x_{2} + \dots + t_{2n}x_{n} = y_{2}, t_{nn}x_{n} = y_{n}.$$
 (5)

Отсюда последовательно находим:

$$y_{1} = \frac{b_{1}}{t_{11}},$$

$$y_{i} = \frac{\sum_{k=1}^{i-1} t_{ki} y_{k}}{t_{ii}} \qquad (i > 1)$$

$$(6)$$

 $x_{n} = \frac{y_{n}}{t_{nn}},$ $x_{i} = \frac{y_{i} - \sum_{k=i+1}^{n} t_{ik}x_{k}}{t_{ii}} \qquad (i < n).$ (7)

Изложенный способ решения линейной системы носит название метода квадратных корней. Так как матрица A—симметрическая, а матрица T—верхняя треугольная, то в вычислительной схеме можно записывать только $\frac{n}{2}$ (n+1) верхних коэффициентов a_{ij} и t_{ij} $(i \geqslant j)$. При вычислениях применяется обычный контроль с помощью сумм, причем при составлении суммы учитываются все коэффициенты соответствующей строки.

Заметим, что если для некоторой s-й строки имеем $t_{ss}^2 < 0$, то соответствующие элементы t_{sf} будут мнимыми. Метод формально применим и в этом случае.

При практическом применении метода квадратных корней *прямым ходом* с помощью формул (3) и (6) последовательно вычисляются коэффициенты t_{ij} и y_i ($i=1,\ 2,\ \ldots,\ n$), а затем *обратным ходом* с помощью формулы (7) находятся неизвестные x_i ($i=n,\ n-1,\ \ldots,\ 1$).

Пример. Методом квадратных корней решить систему уравнений

$$\begin{array}{c} x_1 + 3x_2 - 2x_3 & -2x_5 = 0.5; \\ 3x_1 + 4x_2 - 5x_3 + & x_4 - 3x_5 = 5.4; \\ -2x_1 - 5x_2 + 3x_3 - 2x_4 + 2x_5 = 5.0; \\ & x_2 - 2x_3 + 5x_4 + 3x_5 = 7.5; \\ -2x_1 - 3x_2 + 2x_3 + 3x_4 + 4x_5 = 3.3. \end{array}$$

Решение. Записываем коэффициенты a_{ij} и свободные члены b_i данной системы в начальный раздел A таблицы (таблица 18) и подсчитываем столбец \sum . Применяя формулы (3) и (6), последовательно переходя от строки к строке, вычисляем коэффициенты t_{ij} и новые свободные члены y_i и, таким образом, заполняем раздел B таблицы. Например,

$$t_{35} = \frac{a_{35} - t_{13}t_{15} - t_{23}t_{25}}{t_{33}} = \frac{2 - (-2)(-2) - (-0.4472i)(-1.3416i)}{0.8944i} = 1,5653i.$$

Для контроля подсчитываем столбец \sum . На основании формул (7) находим значения неизвестных x_i и контрольные величины

10 Б. П. Демидович и И. А. Марон

Таблица 18 Решение линейной системы методом квадратных корней

aii	a_{i_2}	a_{i3}	a ₁₄	a_{i5}	bi	Σ	Разделы схемы
1 3 -2 0 -2	3 4 —5 1 —3	-2 -5 3 -2 2	0 1 -2 5 3	-2 -3 2 3 4	0,5 5,4 5,0 7,5 3,3	0,5 5,4 1,0 14,5 7,3	. A
tii	t_{i_2}	tia	tis	tis	y _i	Σ	
1 0	3 2,2361 <i>i</i>	$ \begin{array}{c} -2 \\ -0,4472i \\ \underline{0,8944}i \end{array} $	$0\\ -0,4472i\\ 2,0125i\\ 3,0414$		-7,5803i $-2,2928$	-3,1081i2,9679	Б
-6,0978 -5,0973	$\begin{bmatrix} -2,2016 \\ -1,2017 \end{bmatrix}$	$\begin{bmatrix} -6,8011 \\ -5,8004 \end{bmatrix}$	-0,8996 0,1007	0,1998 1,1992	andre la	$\frac{x_i}{x_i}$	В

 $\overline{x}_i = x_i + 1$, помещая их в разделе B. Например,

$$x_3 = \frac{y_3 - t_{35}x_5 - t_{34}x_4}{t_{33}} = \frac{-7,5803i - 1,5652i \cdot 0,1998 - 2,0125i \cdot (-0,8996)}{0,8944i} = -6,8011.$$

§ 9. Схема Халецкого

Для удобства рассуждений систему линейных уравнений запишем в матричном виде Ax = b, (1)

где $A = [a_{ij}]$ — квадратная матрица порядка n и

— векторы-столбцы. Представим матрицу A в виде произведения нижней треугольной матрицы $B = [b_{ij}]$ и верхней треугольной матрицы $C = [c_{ij}]$ с единичной диагональю, т. е.

$$A = BC, \tag{2}$$

где

§ 9]

$$B = \begin{bmatrix} b_{11} & 0 & \dots & 0 \\ b_{21} & b_{22} & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ b_{n1} & b_{n2} & \dots & b_{nn} \end{bmatrix} \quad \text{if} \quad C = \begin{bmatrix} 1 & c_{12} & \dots & c_{1n} \\ 0 & 1 & \dots & c_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & 1 \end{bmatrix}.$$

Тогда элементы b_{ij} и c_{ij} определяются по формулам

$$\begin{vmatrix}
b_{i1} = a_{i1}, \\
b_{ij} = a_{ij} - \sum_{k=1}^{j-1} b_{ik} c_{kj} & (i \ge j > 1)
\end{vmatrix}$$
(3)

$$c_{1j} = \frac{a_{1j}}{b_{11}},$$

$$c_{ij} = \frac{1}{b_{ii}} \left(a_{ij} - \sum_{k=1}^{i-1} b_{ik} c_{kj} \right) \qquad (1 < i < j).$$

$$(4)$$

Отсюда искомый вектор $oldsymbol{x}$ может быть вычислен из цепи уравнений

$$By = b, \qquad Cx = y. \tag{5}$$

Так как матрицы B и C—треугольные, то системы (5) легко решаются, а именно:

$$y_{1} = \frac{a_{1, n+1}}{b_{11}},$$

$$y_{i} = \frac{1}{b_{ii}} \left(a_{i, n+1} - \sum_{k=1}^{i-1} b_{ik} y_{k} \right) \qquad (i > 1)$$

$$(6)$$

И

$$x_{n} = y_{n},$$

$$x_{i} = y_{i} - \sum_{k=i+1}^{n} c_{ik} x_{k} (i < n).$$

$$(7)$$

Из формул (6) видно, что числа y_i выгодно вычислять вместе с коэффициентами c_{ij} . Этот метод получил название схемы Халецкого. В схеме применяется обычный контроль с помощью сумм.

Заметим, что если матрица A — симметрическая, т. е. $a_{ij} = a_{ji}$, то

$$c_{ij} = \frac{b_{ji}}{b_{ii}} \qquad (i < j).$$

Схема Халецкого удобна для работы на вычислительных машинах, так как в этом случае операции «накопления» (3) и (4) можно проводить без записи промежуточных результатов.