Dummy Fill Insertion

Outline

- Chemical-Mechanical Polishing (CMP)
- Filling Problem in fixed-dissection regime
- LP and Monte-Carlo (MC) approaches
- MC approach with Min-Fill objective
- Iterated MC method
- Computational experience
- Summary

Chemical Mechanical Polishing

- For wafer surface planarization before adding next level of features
- Chemical Mechanical Polishing (CMP)
 - Chemically: abrasive slurry dissolves the wafer layer

 Mechanically: a dynamic polishing head presses pad and wafer

CMP and Interlevel Dielectric Thickness

- Post CMP interlevel-dielectric (ILD) thickness is proportional to feature density
- Uneven features cause polishing pad to deform
- May insert dummy features to reduce variation

Objectives of Density Control

- Want to
 - minimize density variation to optimize post-CMP topography
 - minimize amount of fill to minimize impact on circuit performance
- Difficult to optimize both objectives simultaneously, so minimize one while keeping the other in check
- Objective for Manufacturability (i.e., Min-Var) minimize window density variation subject to upper bound on window density
- Objective for Design Performance (i.e., Min-Fill)
 minimize total amount of added fill features
 subject to upper bound on window density variation

Filling Problem

- Given
 - \odot rule-correct layout in $n \times n$ region
 - window size = $w \times w$
 - window density upper bound *U*
- Fill layout with Min-Var or Min-Fill objective such that no fill is added
 - within buffer distance B of any layout feature
 - into any overfilled window that has density ≥ U

Fixed-Dissection Regime

- Monitor only a fixed set of w x w windows
 "offset" = w/r (example shown: w = 4, r = 4)
- Partition n x n layout with nr/w × nr/w fixed dissections
- Each $w \times w$ window is partitioned into r^2 tiles

Layout Density Models

- Spatial Density Model
 window density ≈ sum of tiles' feature area
- Effective Density Model (more accurate)
 window density ≈ weighted sum of of tiles's feature area

 elliptical weights decrease from window center to boundaries

Linear Programming Approach

- Min-Var Objective
 - [Kahng+TCAD99]
 - Maximize: M
 - Subject to:

For any tile T $0 \le p[T] \le slack[T]$

For any window W

$$\sum_{T \in W} (p[T] + area[T]) \le U$$

$$M \le \sum_{T \in W} (p[T] + area[T])$$

$$p[T] = \text{fill area of tile } T$$

spatial density model

Min-Fill Objective

[Tian+ DAC00]

• Minimize:

Fill amount = $\sum p[T]$

Subject to:

For any tile T

$$0 \le p[T] \le slack[T]$$

LowerB $\leq \rho_0(T) \leq UpperB$

UpperB - LowerB $\leq \varepsilon$

 $\rho_0(T)$ = effective density for tile T

effective density model

Monte-Carlo Approach with Min-Var Objective [Chen+ ASPDAC00]

- Fill layout randomly
 - Pick the tile for next filling geometry probabilistically
 - Higher priority of a tile ⇒ higher probability to be filled (i.e., Monte-Carlo)
 - Lock a tile if any containing window is overfilled
- Different schemes for setting tile priorities
 - Slack of the tile: will fill uniformly randomly
 - U max density of any window containing the tile: tend to fill region as much as possible at the end
 - U min density of any window containing the tile: will fill most underfilled window first (outperforms the other two schemes experimentally)

Monte-Carlo Approach with Min-Var Objective

- Different schemes for amount of fill geometry added per iteration
 - Insert a single filling geometry into a tile (better results)
 - Insert maximum possible filling geometries into a tile (faster)
- 2 possibilities for updating priorities after each iteration
 - Update priorities of all affected tiles (slightly better results)
 - Update priorities only of tiles which belong to any newly locked window (faster)

Monte Carlo-based Filling Algorithm

```
1. For each tile T initialize
    insert_in(T) = 0
     priority(T) = f(U, slack(T), MaxWin(T))
4. While the sum of tile priorities is positive Do
     Select a random tile T according to priorities
     insert\_in(T) = insert\_in(T) + 1; slack(T) = slack(T) - unit\_fill
7. If slack(T) < unit_fill Then priority(T) = 0
    Else priority(T) = priority(T) - unit_fill
For each window W containing T Do
      area(W) = area(W) + unit_fill
10.
11. For each tile T' \in W Do
          Update priority(T') according to area(W)
12.
13. For each tile T Do
14. Randomly perturb sequence of grid positions: random(i) = 1, ..., slack(T)/unit_fill
15. For i = 1, ..., insert\_in(T) Do
       Insert a unit-fill geometry into the random(i)^{th} grid position
16.
17. Output the filled layout
```

LP vs. Monte-Carlo

• LP

- large runtime for large layouts
- r-dissection solution may be suboptimal for 2r dissections
- essential rounding error for small tiles
- Monte-Carlo
 - very efficient: O((nr/w)log(nr/w)) time
 - scalability: handle large values of r
 - accuracy: reasonably high comparing with LP
 - drawback: excessive amount of fill features for Min-Var
- Remark: If we always choose the tile with the highest priority for filling instead, we get a greedy algorithm instead of MC. MC performs better than greedy on average.

Monte-Carlo Approach with Min-Fill Objective [Chen+ DAC00]

- Delete excessive fill
- Delete as much fill as possible while maintaining min window density ≥ L

Monte-Carlo Approach with Min-Fill Objective

 Priority: min density of any window containing the tile - L

Input: $n \times n$ filled layout, fixed r-dissection, $w \times w$ window, lower bound on window density LOutput: Filled layout with minimized amount of inserted fill area While there exist an unlocked tile do Choose an unlocked tile T_{ij} randomly, according to its priority Delete a filling geometry from T_{ij} Update priorities of tiles Output resulting layout

Iterated Monte-Carlo Approach

- Repeat forever [Chen+ DAC00]
 - run Min-Var Monte-Carlo with maximum window density *U*
 - exit if no change in minimum window density
 - run Min-Fill Monte-Carlo Algorithm with minimum window density M

Computational Experience

Testbed

- GDSII input
- hierarchical polygon database
- C++ under Solaris
- open-source code

Testcases Metal layers from industry standard-cell layouts

Test Case	L1	L2	L1x4	L2x4
layout size	125,000	112,000	250,000	224,000
#rectangles	49,506	76,423	198,024	305,692

Computational Experience

	Orig D	ensity	L	P	M	С	IM	C			
Spatial Density Model											
Test case	Max	Min	Min	CPU	Min	CPU	Min	CPU			
L1/32/8	0.21447	0.10414	0.19864	41.5	0.19221	17.3	0.19871	24.8			
L2/32/8	0.22648	0.07039	0.14467	43	0.13565	24.4	0.14463	68.6			
L1x4/32/8	0.21693	0.09657	0.18643	255.7	0.18282	72.3	0.18648	111.9			
L2x4/32/8	0.22226	0.05776	0.14647	532.6	0.13824	117.7	0.14655	469.7			
Effective Density Model											
L1/32/8	0.41625	0.16255	0.3197	32.4	0.31994	22.3	0.31994	23.9			
L2/32/8	0.53585	0.07249	0.34777	66.8	0.31153	38.3	0.33858	68.9			
L1x4/32/8	0.4327	0.14665	0.28487	171.5	0.28505	90.7	0.28505	100.9			
L2x4/32/8	0.52179	0.04467	0.34176	637.4	0.30799	165.6	0.33524	435.9			

 Iterated Monte-Carlo (IMC) approach is more accurate than standard MC approach and faster than LP approach

Extension

- Multi-layer
 - minimize overlay between adjacent layers to reduce coupling capacitance

References

- [Kahng+ TCAD99] Filling Algorithms and Analyses for Layout Density Control
- [Tian+ DAC00] Model-Based Dummy Feature Placement for Oxide Chemical-Mechanical Polishing Manufacturability
- [Chen+ ASPDAC00] Monte-Carlo Algorithms for Layout Density Control
- [Chen+ DAC00] Practical Iterated Fill Synthesis for CMP
- [Lin+ DAC15] High Performance Dummy Fill Insertion with Coupling and Uniformity Constraints