Lecture 1: Introduction to Analytic Number Theory

Lanling King

University of HOK

April 2025

About These Slides

- I'll try to make the slides self-contained.
- A prior course in complex analysis is helpful, but not absolutely necessary — I'll review tools as we go.
- Suggested texts:
 - Tom M. Apostol Introduction to Analytic Number Theory
 - M. Ram Murty Problems in Analytic Number Theory
 - H. Iwaniec & E. Kowalski Analytic Number Theory (advanced)

What is Analytic Number Theory?

- It's a branch of mathematics where we study properties of whole numbers using tools from calculus.
- Questions often involve primes for example: "How many primes are less than a million?"
- We'll use ideas like limits, infinite series, and functions to explore these patterns.
- It turns out that some of the deepest results in number theory come from this approach.
- Many problems in analytic number theory are incredibly easy to state
 but surprisingly difficult to solve.

The Riemann Zeta Function and Riemann Hypothesis

• The Riemann zeta function is defined (for $\Re(s) > 1$) by the infinite series:

$$\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s}$$

The Riemann Zeta Function and Riemann Hypothesis

• The Riemann zeta function is defined (for $\Re(s) > 1$) by the infinite series:

$$\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s}$$

• The Riemann hypothesis states that all nontrivial zeros of the Riemann zeta function lie on the critical line $\Re(s) = \frac{1}{2}$.

The Riemann Zeta Function and Riemann Hypothesis

• The Riemann zeta function is defined (for $\Re(s) > 1$) by the infinite series:

$$\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s}$$

- The Riemann hypothesis states that all nontrivial zeros of the Riemann zeta function lie on the critical line $\Re(s) = \frac{1}{2}$.
- The Riemann Hypothesis remains unsolved it is one of the 7 Clay Millennium Prize Problems, with a \$1,000,000 reward.

• The Twin Prime Conjecture states that there are infinitely many primes p such that p+2 is also prime.

- The Twin Prime Conjecture states that there are infinitely many primes p such that p+2 is also prime.
- It is easy to state, but remains unsolved after more than 2000 years.

- The Twin Prime Conjecture states that there are infinitely many primes p such that p+2 is also prime.
- It is easy to state, but remains unsolved after more than 2000 years.
- In 2005, Goldston-Pintz-Yıldırım (GPY) developed a method showing primes often come unusually close together.

- The Twin Prime Conjecture states that there are infinitely many primes p such that p+2 is also prime.
- It is easy to state, but remains unsolved after more than 2000 years.
- In 2005, Goldston–Pintz–Yıldırım (GPY) developed a method showing primes often come unusually close together.
- In 2013, Yitang Zhang proved that there are infinitely many pairs of primes less than 70,000,000 apart — the first bounded gap!

- The Twin Prime Conjecture states that there are infinitely many primes p such that p + 2 is also prime.
- It is easy to state, but remains unsolved after more than 2000 years.
- In 2005, Goldston–Pintz–Yıldırım (GPY) developed a method showing primes often come unusually close together.
- In 2013, Yitang Zhang proved that there are infinitely many pairs of primes less than 70,000,000 apart — the first bounded gap!
- Soon after, James Maynard simplified the method and improved the bound; Tao helped lead a massive online project (Polymath8) that brought it under 250.

- The Twin Prime Conjecture states that there are infinitely many primes p such that p + 2 is also prime.
- It is easy to state, but remains unsolved after more than 2000 years.
- In 2005, Goldston–Pintz–Yıldırım (GPY) developed a method showing primes often come unusually close together.
- In 2013, Yitang Zhang proved that there are infinitely many pairs of primes less than 70,000,000 apart — the first bounded gap!
- Soon after, James Maynard simplified the method and improved the bound; Tao helped lead a massive online project (Polymath8) that brought it under 250.
- The conjecture remains open, but these results showed that primes are much more clustered than we once knew.

There are infinitely many prime numbers.

There are infinitely many prime numbers.

Proof. Assume that there are only finitely many primes p_1, p_2, \ldots, p_n .

There are infinitely many prime numbers.

Proof. Assume that there are only finitely many primes p_1, p_2, \ldots, p_n . Consider the number:

$$m = p_1 \cdot p_2 \cdots p_n + 1$$

There are infinitely many prime numbers.

Proof. Assume that there are only finitely many primes p_1, p_2, \ldots, p_n . Consider the number:

$$m = p_1 \cdot p_2 \cdots p_n + 1$$

Then m must be divisible by some prime p_k from our list (since every integer has a prime factor).

There are infinitely many prime numbers.

Proof. Assume that there are only finitely many primes p_1, p_2, \ldots, p_n . Consider the number:

$$m = p_1 \cdot p_2 \cdots p_n + 1$$

Then m must be divisible by some prime p_k from our list (since every integer has a prime factor). But then $p_k \mid m$ and $p_k \mid p_1 \cdot \dots \cdot p_n$, so:

$$p_k \mid m - p_1 \cdots p_n = 1$$

There are infinitely many prime numbers.

Proof. Assume that there are only finitely many primes p_1, p_2, \ldots, p_n . Consider the number:

$$m = p_1 \cdot p_2 \cdots p_n + 1$$

Then m must be divisible by some prime p_k from our list (since every integer has a prime factor). But then $p_k \mid m$ and $p_k \mid p_1 \cdot \dots \cdot p_n$, so:

$$p_k \mid m - p_1 \cdots p_n = 1$$

This is a contradiction — no prime divides 1.

There are infinitely many prime numbers.

Proof. Assume that there are only finitely many primes p_1, p_2, \ldots, p_n . Consider the number:

$$m = p_1 \cdot p_2 \cdots p_n + 1$$

Then m must be divisible by some prime p_k from our list (since every integer has a prime factor). But then $p_k \mid m$ and $p_k \mid p_1 \cdot \dots \cdot p_n$, so:

$$p_k \mid m - p_1 \cdots p_n = 1$$

This is a contradiction — no prime divides 1. Therefore, there must be infinitely many primes. \Box

Theorem 2: Bounding the *k*th Prime

Definition. Let $\pi(x)$ be the number of primes $\leq x$.

Theorem 2: Bounding the kth Prime

Definition. Let $\pi(x)$ be the number of primes $\leq x$. **Theorem 2.**

$$p_k \le 2^{2^k}$$
 for all $k \ge 1$

Theorem 2: Bounding the kth Prime

Definition. Let $\pi(x)$ be the number of primes $\leq x$.

Theorem 2.

$$p_k \le 2^{2^k}$$
 for all $k \ge 1$

Idea: We adapt Euclid's proof to build increasingly large primes, using induction.

Base case: k = 1

$$p_1 = 2 \le 2^2 = 4$$

Base case: k = 1

$$p_1 = 2 \le 2^2 = 4$$

Inductive step: Assume $p_j \le 2^{2^j}$ for all $1 \le j < k$

Base case: k = 1

$$p_1 = 2 \le 2^2 = 4$$

Inductive step: Assume $p_j \le 2^{2^j}$ for all $1 \le j < k$

Then by Euclid's idea:

$$p_k \leq p_1 \cdots p_{k-1} + 1$$

Base case: k = 1

$$p_1 = 2 \le 2^2 = 4$$

Inductive step: Assume $p_j \le 2^{2^j}$ for all $1 \le j < k$

Then by Euclid's idea:

$$p_k \leq p_1 \cdots p_{k-1} + 1$$

Using the inductive bounds:

$$p_k \leq 2^{2^1} \cdot 2^{2^2} \cdots 2^{2^{k-1}} + 1 = 2^{2^1 + 2^2 + \dots + 2^{k-1}} + 1$$

Base case: k = 1

$$p_1 = 2 \le 2^2 = 4$$

Inductive step: Assume $p_j \le 2^{2^j}$ for all $1 \le j < k$

Then by Euclid's idea:

$$p_k \leq p_1 \cdots p_{k-1} + 1$$

Using the inductive bounds:

$$p_k \le 2^{2^1} \cdot 2^{2^2} \cdot \dots \cdot 2^{2^{k-1}} + 1 = 2^{2^1 + 2^2 + \dots + 2^{k-1}} + 1$$

But $2^1 + 2^2 + \dots + 2^{k-1} = 2^k - 2$, so:

$$p_k \le 2^{2^k - 2} + 1 \le 2^{2^k}$$

∴ The bound holds. □

Theorem. For $x \ge 2$, we have:

$$\pi(x) \ge \log \log x$$

Theorem. For $x \ge 2$, we have:

$$\pi(x) \ge \log \log x$$

Proof.

• First, check that the inequality holds for $2 \le x \le 4$ (e.g., $\pi(4) = 2 \ge \log \log 4 \approx 0.83$).

Theorem. For $x \ge 2$, we have:

$$\pi(x) \ge \log \log x$$

Proof.

- First, check that the inequality holds for $2 \le x \le 4$ (e.g., $\pi(4) = 2 \ge \log \log 4 \approx 0.83$).
- Now let x > 4, and choose $s \in \mathbb{N}$ such that:

$$2^{2^s} \le x < 2^{2^{s+1}}$$

Theorem. For $x \ge 2$, we have:

$$\pi(x) \ge \log \log x$$

Proof.

- First, check that the inequality holds for $2 \le x \le 4$ (e.g., $\pi(4) = 2 \ge \log \log 4 \approx 0.83$).
- Now let x > 4, and choose $s \in \mathbb{N}$ such that:

$$2^{2^s} \le x < 2^{2^{s+1}}$$

• By Theorem 2, $x \ge 2^{2^s} \Rightarrow \pi(x) \ge s$.

Theorem. For $x \ge 2$, we have:

$$\pi(x) \ge \log \log x$$

Proof.

- First, check that the inequality holds for $2 \le x \le 4$ (e.g., $\pi(4) = 2 \ge \log \log 4 \approx 0.83$).
- Now let x > 4, and choose $s \in \mathbb{N}$ such that:

$$2^{2^s} \le x < 2^{2^{s+1}}$$

- By Theorem 2, $x \ge 2^{2^s} \Rightarrow \pi(x) \ge s$.
- Taking logs twice:

$$x < 2^{2^{s+1}} \Rightarrow \log x < 2^{s+1} \log 2 \Rightarrow \frac{\log \log x}{\log 2} < s+1$$

Theorem. For $x \ge 2$, we have:

$$\pi(x) \ge \log \log x$$

Proof.

- First, check that the inequality holds for $2 \le x \le 4$ (e.g., $\pi(4) = 2 \ge \log \log 4 \approx 0.83$).
- Now let x > 4, and choose $s \in \mathbb{N}$ such that:

$$2^{2^s} \le x < 2^{2^{s+1}}$$

- By Theorem 2, $x \ge 2^{2^s} \Rightarrow \pi(x) \ge s$.
- Taking logs twice:

$$x < 2^{2^{s+1}} \Rightarrow \log x < 2^{s+1} \log 2 \Rightarrow \frac{\log \log x}{\log 2} < s+1$$

Thus:

$$\pi(x) \ge s > \frac{\log \log x}{\log 2} - 1 > \log \log x \quad \text{for } x > 4.$$

Theorem. For $x \ge 2$, we have:

$$\pi(x) \ge \log \log x$$

Proof.

- First, check that the inequality holds for $2 \le x \le 4$ (e.g., $\pi(4) = 2 \ge \log \log 4 \approx 0.83$).
- Now let x > 4, and choose $s \in \mathbb{N}$ such that:

$$2^{2^s} \le x < 2^{2^{s+1}}$$

- By Theorem 2, $x \ge 2^{2^s} \Rightarrow \pi(x) \ge s$.
- Taking logs twice:

$$x < 2^{2^{s+1}} \Rightarrow \log x < 2^{s+1} \log 2 \Rightarrow \frac{\log \log x}{\log 2} < s+1$$

Thus:

$$\pi(x) \ge s > \frac{\log \log x}{\log 2} - 1 > \log \log x \quad \text{for } x > 4.$$

Theorem. For $x \ge 2$, we have:

$$\pi(x) \ge \log \log x$$

Proof.

- First, check that the inequality holds for $2 \le x \le 4$ (e.g., $\pi(4) = 2 \ge \log \log 4 \approx 0.83$).
- Now let x > 4, and choose $s \in \mathbb{N}$ such that:

$$2^{2^s} \le x < 2^{2^{s+1}}$$

- By Theorem 2, $x \ge 2^{2^s} \Rightarrow \pi(x) \ge s$.
- Taking logs twice:

$$x < 2^{2^{s+1}} \Rightarrow \log x < 2^{s+1} \log 2 \Rightarrow \frac{\log \log x}{\log 2} < s+1$$

Thus:

$$\pi(x) \ge s > \frac{\log\log x}{\log 2} - 1 > \log\log x \quad \text{for } x > 4.$$

 \therefore The inequality holds for all $x \geq 2$. \square

Fermat Primes

Definition. The *n*th **Fermat number** is defined as:

$$F_n=2^{2^n}+1$$

Definition. The *n*th **Fermat number** is defined as:

$$F_n=2^{2^n}+1$$

Examples:

$$F_0 = 3$$

$$F_1 = 5$$

$$F_2 = 17$$

$$F_3 = 257$$

$$F_4 = 65537$$

Definition. The *n*th **Fermat number** is defined as:

$$F_n=2^{2^n}+1$$

Examples:

$$F_0 = 3$$

 $F_1 = 5$
 $F_2 = 17$
 $F_3 = 257$
 $F_4 = 65537$

These five numbers are all prime — they are known as the **Fermat primes**.

Definition. The *n*th **Fermat number** is defined as:

$$F_n=2^{2^n}+1$$

Examples:

$$F_0 = 3$$

 $F_1 = 5$
 $F_2 = 17$
 $F_3 = 257$
 $F_4 = 65537$

These five numbers are all prime — they are known as the **Fermat primes**. However, it is conjectured that no other Fermat numbers are prime.

Definition. The *n*th **Fermat number** is defined as:

$$F_n=2^{2^n}+1$$

Examples:

$$F_0 = 3$$

 $F_1 = 5$
 $F_2 = 17$
 $F_3 = 257$
 $F_4 = 65537$

These five numbers are all prime — they are known as the **Fermat primes**. However, it is conjectured that no other Fermat numbers are prime. In fact, it is known that F_n is composite for $5 \le n \le 32$ (and beyond!).

Definition. The *n*th **Fermat number** is defined as:

$$F_n=2^{2^n}+1$$

Examples:

$$F_0 = 3$$

 $F_1 = 5$
 $F_2 = 17$
 $F_3 = 257$
 $F_4 = 65537$

These five numbers are all prime — they are known as the **Fermat primes**. However, it is conjectured that no other Fermat numbers are prime. In fact, it is known that F_n is composite for $5 \le n \le 32$ (and beyond!). Fermat originally believed that all F_n would be prime — Euler disproved this by showing F_5 is divisible by 641.

Theorem. If *n* and *m* are integers with $1 \le n < m$, then:

$$gcd(F_n, F_m) = 1$$
 where $F_k = 2^{2^k} + 1$

Theorem. If *n* and *m* are integers with $1 \le n < m$, then:

$$gcd(F_n, F_m) = 1$$
 where $F_k = 2^{2^k} + 1$

Proof.

• Let m = n + k for some $k \ge 1$.

Theorem. If n and m are integers with $1 \le n < m$, then:

$$gcd(F_n, F_m) = 1$$
 where $F_k = 2^{2^k} + 1$

Proof.

- Let m = n + k for some $k \ge 1$.
- We will show that $F_n \mid F_m 2$.

Theorem. If n and m are integers with $1 \le n < m$, then:

$$gcd(F_n, F_m) = 1$$
 where $F_k = 2^{2^k} + 1$

Proof.

- Let m = n + k for some $k \ge 1$.
- We will show that $F_n \mid F_m 2$.
- Note: $F_m 2 = 2^{2^m} 1$

Theorem. If n and m are integers with $1 \le n < m$, then:

$$gcd(F_n, F_m) = 1$$
 where $F_k = 2^{2^k} + 1$

Proof.

- Let m = n + k for some $k \ge 1$.
- We will show that $F_n \mid F_m 2$.
- Note: $F_m 2 = 2^{2^m} 1$
- Let $x = 2^{2^n}$. Then:

$$F_n = x + 1, \quad F_m - 2 = x^{2^k} - 1$$

Theorem. If n and m are integers with $1 \le n < m$, then:

$$gcd(F_n, F_m) = 1$$
 where $F_k = 2^{2^k} + 1$

Proof.

- Let m = n + k for some $k \ge 1$.
- We will show that $F_n \mid F_m 2$.
- Note: $F_m 2 = 2^{2^m} 1$
- Let $x = 2^{2^n}$. Then:

$$F_n = x + 1, \quad F_m - 2 = x^{2^k} - 1$$

$$\frac{F_m-2}{F_n}=\frac{x^{2^k}-1}{x+1}\in\mathbb{Z}\Rightarrow F_n\mid F_m-2$$

Theorem. If n and m are integers with $1 \le n < m$, then:

$$gcd(F_n, F_m) = 1$$
 where $F_k = 2^{2^k} + 1$

Proof.

- Let m = n + k for some $k \ge 1$.
- We will show that $F_n \mid F_m 2$.
- Note: $F_m 2 = 2^{2^m} 1$
- Let $x = 2^{2^n}$. Then:

$$F_n = x + 1, \quad F_m - 2 = x^{2^k} - 1$$

So:

$$\frac{F_m-2}{F_n}=\frac{x^{2^k}-1}{x+1}\in\mathbb{Z}\Rightarrow F_n\mid F_m-2$$

• If $d \mid F_n$ and $d \mid F_m$, then $d \mid 2$.

Theorem. If n and m are integers with $1 \le n < m$, then:

$$gcd(F_n, F_m) = 1$$
 where $F_k = 2^{2^k} + 1$

Proof.

- Let m = n + k for some $k \ge 1$.
- We will show that $F_n \mid F_m 2$.
- Note: $F_m 2 = 2^{2^m} 1$
- Let $x = 2^{2^n}$. Then:

$$F_n = x + 1, \quad F_m - 2 = x^{2^k} - 1$$

$$\frac{F_m-2}{F_n}=\frac{x^{2^k}-1}{x+1}\in\mathbb{Z}\Rightarrow F_n\mid F_m-2$$

- If $d \mid F_n$ and $d \mid F_m$, then $d \mid 2$.
- But all Fermat numbers are odd, so d = 1.

Theorem. If n and m are integers with $1 \le n < m$, then:

$$gcd(F_n, F_m) = 1$$
 where $F_k = 2^{2^k} + 1$

Proof.

- Let m = n + k for some $k \ge 1$.
- We will show that $F_n \mid F_m 2$.
- Note: $F_m 2 = 2^{2^m} 1$
- Let $x = 2^{2^n}$. Then:

$$F_n = x + 1, \quad F_m - 2 = x^{2^k} - 1$$

$$\frac{F_m-2}{F_n}=\frac{x^{2^k}-1}{x+1}\in\mathbb{Z}\Rightarrow F_n\mid F_m-2$$

- If $d \mid F_n$ and $d \mid F_m$, then $d \mid 2$.
- But all Fermat numbers are odd, so d = 1.

Theorem. If n and m are integers with $1 \le n < m$, then:

$$gcd(F_n, F_m) = 1$$
 where $F_k = 2^{2^k} + 1$

Proof.

- Let m = n + k for some k > 1.
 - We will show that $F_n \mid F_m 2$.
 - Note: $F_m 2 = 2^{2^m} 1$
 - Let $x = 2^{2^n}$. Then:

$$F_n = x + 1, \quad F_m - 2 = x^{2^k} - 1$$

$$\frac{F_m-2}{F_m}=\frac{x^{2^k}-1}{x+1}\in\mathbb{Z}\Rightarrow F_n\mid F_m-2$$

- If $d \mid F_n$ and $d \mid F_m$, then $d \mid 2$.
- But all Fermat numbers are odd, so d = 1.
- \therefore gcd $(F_n, F_m) = 1$. \square