Naive Bayes and Decision Trees

Alipio Jorge (DCC-FCUP)

November 2020

Classification

The credit office of the bank now has to decide whether to give the loan or not to a specific client. Management feels that the current credit decision procedure is not efficient and that the bank can make more money and secure more good clients with a better process The bank has an historical record of loans. Some were conceded and went well. Other were not conceded or had a bad outcome.

- What is the business problem?
- The machine learning problem?
- What kind of task is it?

Classification: types

- Decide if a new case belongs to a set of known classes
- a type of supervised learning
- Binary classification
 - Bank credit
 - Has cancer
 - This email is spam
 - Is the market going up or down tomorrow?
- Multiclass
 - Which disease does the patient have
 - Which folder for this email
 - What is the type of galaxy in this image

Classification: process

- The Process (simplified CRISP)
 - Define problem
 - Prepare data
 - Build model (classifier) by applying a learning algorithm
 - Evaluate model
 - Deploy

Classification: setup

- The data (most common setup)
 - **Examples** are pairs $\langle x, y \rangle$, also called **tuples**
 - $\langle x, y \rangle \in D$ where D is the **dataset**
 - x_i is one row of of a $n \times m$ table X
 - The dimensions / columns of X are the attributes
 - y_i is the class of x_i
 - $y_i \in Y = Classes = \{C_1, C_2, \dots, C_k\}$
 - y_i also called **labels**

Classification: aim

- The aim of classification
 - **Given** a dataset D of pairs $\langle x, y \rangle$
 - Obtain
 - a function $\hat{f}: X \to Classes$
 - such that \hat{f} approximates an unknown function f(x) that assigns labels to objects

Classification: the Bayesian view

- How can $\hat{f}(x)$ be found?
- Suppose
 - we have a **new case** x to classify
- We want the class C_{max} that maximises $P(C_j \mid x)$
 - so, all we have to do is **estimate** $P(C_i \mid x)$ for each class
- How?
 - lots of different ways
- A simple and principled one?
 - Naive Bayes

Naive Bayes

Bayes theorem:

$$P(C_j \mid x) = \frac{P(x \mid C_j).P(C_j)}{P(x)}$$

- The class C_{max} that maximises this is the **maximum posteriori** hypothesis
- How is this calculated?
 - we assume that P(x) is **constant**
 - we estimate $P(C_j) = \frac{|x_i \in C_j|}{|D|}$ from the data
 - and estimate $P(x \mid C_i)$ this is **trickier**

The Naive Bayes trick

- In general estimating $P(x \mid C_i)$ is **hard**
 - data is sparse
 - approximations can be computationally expensive
- The trick is ti naïvely assume
 - the attributes are class-conditional independent

$$P(A_i \mid C, A_j) = P(A_i \mid C)$$

The Naive Bayes trick

- This assumption is not realistic
 - but it is good enough to make the approach useful
- This assumption greatly simplifies the computation

$$P(x \mid C_j) = \prod_{i=1}^n P(x_i \mid C_j)$$

- Now, each $P(x_i \mid C_j)$ is easy to estimate - Besides, it is **well founded** - driven from **first principles** - not **ad hoc**

How Naive Bayes works

- Estimate the probabilities of $P(x_{i,A}|C)$ from example i and attribute A
 - A is categorical:
 - the number of tuples of class C with value $x_{i,A}$ in A
 - divided by the size of class C
 - A is continuous:
 - assume a Gaussian distribution
 - \bullet estimate mean and standard deviation from sample of each A for each class

- The german_credit_data.csv in kaggle (adapted from UCI)
- predict Risk (classes good and bad)

```
import pandas as pd
d=pd.read_csv('../Dados/german_credit_data.csv')
d[['Age','Sex','Risk']]
```

```
Age
             Sex
                   Risk
0
      67
            male good
      22
          female
                    bad
2
      49
            male good
3
      45
            male good
4
      53
            male
                    bad
5
      35
            male good
6
      53
            male
                   good
      35
            male
                   good
8
      61
            male
                   good
```

```
• P(Sex = male | Risk = good)
freq_male_good=len(d[(d['Sex']=='male') & (d['Risk']=='good')]
freq_good=len(d[d['Risk']=='good'])
prob_male_good=freq_male_good/freq_good
prob_male_good
```

0.7128571428571429

```
• P(Age = 22 \mid Risk = good)
import numpy as np
mean_age_good=np.mean(d.loc[d['Risk']=='good',['Age']])
std_age_good=np.std(d.loc[d['Risk']=='good',['Age']])
from scipy.stats import norm
prob_22_good=norm.pdf((22-mean_age_good)/std_age_good)
prob 22 good
array([ 0.18248811])
```

- $P(Age = 22 \mid Risk = good) \times P(Sex = male \mid Risk = good)$ • which is proportional to $P(Risk = good \mid x)$
- prob_male_good*prob_22_good

array([0.13008795])

• Exercise: write a python program that classifies any new case of this problem using Naive Bayes (without a predefined NB learner)

Naive Bayes: implementations

- SciKitLearn
 - GaussianNB for continuous predictors
 - CategoricalNBfor categorical ones
 - and others...
- Mixed variables
 - MixedNB from mixed-naive-bayes library
 - not direct
 - other not so straight solutions
- One can always
 - Discretize continuous

Does Naive Bayes have good results?

- If assumptions hold NB is optimal in theory
 - If we have **enough data** for good estimations
- If not
 - it can have comparatively good results in some domains
 - useful in high dimensional domains
 - there are methods that can easily beat NB

Naive Bayes: further notes

- NB has little hyperparameters
- What if one of the probabilities iz zero?
 - we can smooth probabilities using the correction of Laplace

$$P_{Laplace}(E) = \frac{E + \lambda}{N + k \cdot \lambda}$$

- λ typically is 1, and k is the number of values of E
 - it is like always having one artificial observation per category
- A simple version of NB is easy to implement
 - see https://towardsdatascience.com/introduction-to-na%C3%AFve-bayes-classifier-fa59e3e24aaf

Classification: Decision Trees

Where we are

- We have seen how to approach regression problems using linear regression and the k-Nearest Neighbours (kNN) approach
- We have seen how to approach classification using kNN and naive Bayes

Next

- we will study Decision Trees
 - versatile method
 - handles classification but can be adapted to regression
 - deals with different types of data
 - use a search procedure

Decision Trees

ullet The classification function \hat{f} can be implemented as a decision tree

Example Decision Tree: Animal Classification

Decision Trees

• We can obtain one for the iris classification problem

Decision Trees: the golf example

How are DT obtained?

- The idea is
 - start with all the examples
 - try to divide them in two or more groups where classes are as separated as possible
 - repeat the process recursively for each group
 - until all classes are separated in small groups
 - or the groups are too small
- This is called **TDIDT**: Top Down Induction of Decistion Trees

Let's try to do this with the golf data

```
golf=pd.read_csv('../Dados/golf_df.csv')
golf
```

```
Outlook Temperature Humidity
                                     Windy Play
0
                      hot
                              high
                                     False
       sunny
                                             no
1
                      hot
                              high
                                      True
       sunny
                                             no
2
    overcast
                      hot
                              high
                                     False
                                            yes
3
       rainy
                     mild
                              high
                                     False
                                            yes
4
       rainy
                     cool
                            normal
                                     False
                                            yes
5
       rainy
                     cool
                            normal
                                      True
                                             nο
6
                     cool
                            normal
                                      True
    overcast
                                            yes
                     mild
                              high
                                     False
       sunny
                                             no
8
                     cool
                            normal
                                     False
       sunny
                                            yes
9
                     mild
                                     False
       rainv
                            normal
                                            yes
10
                     mild
                                      True
       sunny
                            normal
                                            yes
11
                     mild
                              high
                                      True
    overcast
                                            yes
```

- Looking at all the examples we have
 - 5 of class no and 9 of class yes
 - this is already a decision tree (with root only)
 - the majority class wins
- The separation of the classe is not very good, though

- Consider now splitting the group according to Outlook
 - Outlook has three values
 - **sunny**: (3 no,2 yes)
 - rainy: (2,3)
 - overcast: (0,4)
 - this gives one pure group
 - better than before
 - if overcast we go play

- Is Outlook the best attribute for splitting?
 - we have to check with all the attributes
- for now, we will believe it is

- Now we try to refine each of the not pure nodes of the tree
 - Outlook=sunny
 - Humidity=normal: (0,2)
 - Humidity=high: (3,0)
 - Outlook=rainy
 - Windy=True: (2,0)
 - Windy=False: (0,3)
 - And we end up with a tree that completely separates the classes
 - all leaves are pure (one class only)

- From the tree we can obtain the rules
 - IF Outlook = overcast THEN Play=yes
 - IF Outlook = sunny AND Hum = normal THEN Play=yes
 - IF Outlook = sunny AND Hum = high THEN Play=no
 - IF Outlook = rainy AND Windy = True THEN Play=no
 - IF Outlook = rainy AND Windy = False THEN Play=yes
 - Each rule corresponds to a branch of the tree

- In the real world
 - leaves are not pure
 - datasets have continuous attributes as well
- However, Decision Trees
 - can be useful with real data
 - are human readable
 - can be combined in ensembles with success

Top Down Induction of Decision Trees

- Selecting the best split for each node
- Given attribute A with values v_1, \ldots, v_m
 - Calculate **Information Gain** of A
 - measure inspired in information theory

TDIDT: selecting attributes

- How many bits do we need to represent the classes of the examples in a data set D?
 - we have k classes
 - if they are uniformly distributes, Entropy is the highest
 - if all the cases are on one class, Entropy is zero

$$Entropy(D) = -\sum_{i=1}^{k} p_i \log_2(p_i)$$

- Suppose we have 4 classes
 - then we need **two bits** to transmit the label of each example
 - $-0.25 \times \log_2(0.25) = 0.5$
 - $0.5 \times 4 = 2$

TDIDT: selecting attributes

- Now we choose the attribute that minimizes Entropy
- How do we measure it after a split?
 - we sum the entropies of each resulting group

$$Entropy_A(D) = \sum_{j=1}^m \frac{|D_j|}{|D|} \times Entropy(D_j)$$

TDIDT: selecting attributes

The best attribute is the one that maximizes the Information Gain

$$Gain(A) = Entropy(D) - Entropy_A(D)$$

TDIDT: Gain Ratio and the Gini Index

- Information Gain favours attributes with many values
 - Dividing in more groups leads more easily to pure groups
 - the solution is to use the Gain Ratio instead
 - this ratio "discounts" the existence of many values
- Another measure of Attribute split quality
 - the Gini Index
 - can be used instead of the information gain

Continuous attributes

- A categorial attribute has natural splits
 - Overcast=sunny, Overcast=rainy, Overcast=overcast
- What are the splits of a continuous attribute ?
 - Age<30, Age<44

Age	Risk
23	good
25	good
35	bad
43	bad
45	good
49	good

Tree Pruning

- Trees can easily overfit
 - imagine a tree with one example in each leave
- It is often a good idea to prune the tree
 - cut some extremities of the branches
- Prepruning
 - stop growing the tree
 - if the complexity of the tree is too high
- Post pruning
 - grow the tree and then cut

Other common parameters

- Tree depth
 - controls overfitting but is uninformed
- Min Split: Minimum number of cases to have a split
 - controls overfitting
 - we need enough cases for estimating entropy
- Min Bucket: Minimum number of cases in a node
 - controls overfitting
 - we need enough cases to decide for a class

Decision tree induction complexity

- If we have N data points what is the computational complexity of computing a split for a regression problem?
 - O(N)
- And for multilevel trees?
 - tree has maximum depth $d: O(N \cdot d)$
 - assuming the splits tend to be in the middle : $O(N \cdot log_2(N))$
 - in the case of unbalanced splits : $O(N^2)$
- What is the computational complexity if we have p variables?
 - $O(p \cdot N \cdot log_2(N))$
- But remember we have to **sort** the data

Decision trees and search

- The best tree is not found analytically
- We search for the tree
 - We start with the root (first node)
 - We choose the best split
 - We commit to that choice
 - Until we find a satisfactory solution
- This is a greedy search procedure
 - we may find a local optimum
 - but it is efficient

References

- Books
 - Han, Kamber & Pei, Data Mining Concepts and Techniques, Morgan Kaufman.
- Data
 - https://www.kaggle.com/uciml/german-credit
 - https://www.kaggle.com/priy998/golf-play-dataset
- Blog articles -https://towardsdatascience.com/introduction-to-na%C3%AFve-bayes-classifier-fa59e3e24aaf