INTELIGÊNCIA COMPUTACIONAL

PROF. JOSENALDE OLIVEIRA

josenalde.oliveira@ufrn.br https://github.com/josenalde/ic

ANÁLISE E DESENVOLVIMENTO DE SISTEMAS - UFRN

UM POUCO SOBRE APRENDIZAGEM DE MÁQUINA Machine Learning - ML

Ser humano estabelece conexões para lidar com coisas novas Similaridade pode ser óbvio para o humano, mas não para computadores Máquinas operam sobre tarefas frequentes, com alto volume e velocidade Desafio: máquinas serem ensinadas e depois aprenderem 'sozinhas'

UM POUCO SOBRE APRENDIZAGEM DE MÁQUINA Machine Learning - ML

Como uma criança aprende que ambos são dinossauros?

E aqui?

https://www.serpro.gov.br/menu/noticias/noticias-2019/democratizando-a-inteligencia-artificial

Área da Inteligência Artificial que investiga o desenvolvimento de algoritmos que são capazes de aprender a partir dos dados, adquirindo conhecimento de forma automática

Principais atividades de AM É como as crianças aprendem,.. Aprendizado Indutivo Aprendizado Não Aprendizado Supervisionado Supervisionado Classificação Regressão Agrupamento Associação

Principais atividades de AM

DATASETS

- Bases de dados para algoritmos de aprendizado de máquina são formadas por amostras do domínio que se deseja aprender
- Variáveis numéricas, categóricas (uni, bi, poli)
- Variáveis categóricas normalmente codificadas para AM (encoder)

Id.	Nome	Idade	Sexo	Peso	Manchas	Temp.	# Int.	Est.	Diagnóstico
4201	João	28	M	79	Concentradas	38,0	2	SP	Doente
3217	Maria	18	\mathbf{F}	67	Inexistentes	39,5	4	MG	Doente
4039	Luiz	49	M	92	Espalhadas	38,0	2	RS	Saudável
1920	José	18	M	43	Inexistentes	38,5	8	MG	Doente
4340	Cláudia	21	\mathbf{F}	52	Uniformes	37,6	1	PE	Saudável
2301	Ana	22	F	72	Inexistentes	38,0	3	RJ	Doente
1322	Marta	19	F	87	Espalhadas	39,0	6	AM	Doente
3027	Paulo	34	M	67	Uniformes	38,4	2	GO	Saudável

DATASETS

- As amostras são comumente chamadas de exemplos ou padrões
- Em geral, eles são representados por um vetor de características que os descreve, cambém denominados de atributos, campos, features (ou variáveis de decisão)
 - Cada amostra corresponde a uma ocorrência/observação/registro na base de dados
 - Cada atributo está associado a uma propriedade da amostra
 - Quais atributos são relevantes/significativos? (significância estatística, multicolinearidade, podem ser agrupados/reduzidos? (pca)?
 - Feature selection

- Classificação de padrões é o processo de atribuição de rótulos discretos, também chamados de classes, a amostras de um domínio
- A classificação de padrões dá-se em duas fases distintas: fase de aprendizagem e fase de reconhecimento

Orquidea

Flor do Deserto

Orquídea ou Flor do deserto?

ASPECTOS DE MACHINE LEARNING

Classificação: supervisionado – conjuntos de treino / teste, métricas de avaliação mais bem definidas, por comparar com o ground truth, matriz de confusão etc.

Métodos mais comuns: KNN, SVM, Árvore de Decisão, Redes Neurais

https://github.com/josenalde/datascience/blob/main/notebooks/nb_knn1.ipynb

https://github.com/josenalde/datascience/blob/main/notebooks/nb_svm1.ipynb

ASPECTOS DE MACHINE LEARNING

Classificação: supervisionado – conjuntos de treino / teste, métricas de avaliação mais bem definidas, por comparar com o ground truth, matriz de confusão etc.

Métodos mais comuns: KNN, SVM, Árvore de Decisão, Redes Neurais

https://www.datacamp.com/community/tutorials/decision-tree-classification-python

REGRESSÃO

- A tarefa de regressão, também chamada de predição ou estimação, ocorre quando o atributo alvo da base de dados que se deseja aprender possui valor contínuo, como o preço de uma casa ou o lucro de uma empresa
- Nesse caso, o algoritmo de aprendizado de máquina deve encontrar um modelo matemático (equação) capaz de mapear as entradas numa saída esperada

ASPECTOS DE MACHINE LEARNING

- > Um bom projeto de ML tem boa capacidade preditiva
- > Acurácia nas decisões (acertos)
- Performance preditiva! Nem sempre a interpretação do processo é simples (pois decisões envolvem processos complexos)
- Em Inferência (regressão por exemplo), a relação entre as variáveis é melhor interpretável, mas usualmente pior performance preditiva

Regressão/Inferência: target quantitativo Classificação: target qualitativo Regressão logística: target quantitativo é probabilidade de um evento ocorrer como função de outros fatores.

REGRESSÃO

Bedrooms	Sq. feet	Neighborhood	Sale price
3	2000	Normaltown	\$250,000
2	800	Hipsterton	\$300,000
2	850	Normaltown	\$150,000
1	550	Normaltown	\$78,000
4	2000	Skid Row	\$150,000

Bedrooms	Sq. feet	Neighborhood	Sale price
3	2000	Hipsterton	???

REGRESSÃO E CLASSIFICAÇÃO

AGRUPAMENTO

A tarefa de agrupamento busca reunir os exemplos por similaridade, criando grupos que serão posteriormente rotulados pelo cientista de dados

 No exemplo a seguir espera-se que o algoritmo consiga criar N grupos de notícias por similaridade de conteúdo

ASPECTOS DE MACHINE LEARNING

 Agrupamentos: não supervisionado – maximizar semelhanças (minimizar distâncias) dentro do cluster e maximizar diferenças (maximizar distâncias) entre clusters

Método K-means (incluindo Fuzzy c-means) é o mais usado

Mas existem vários outros métodos e variantes: Hierarquicos, aglomerativos, incremental etc.

https://github.com/josenalde/datascience/blob/main/notebooks/nb kmeans1.ipynb

ASSOCIAÇÃO

transações

TID	Items
1	pão, leite
2	pão, fralda, cerveja, ovos
3	leite, fraldas, cerveja, coca
4	pão, leite, fraldas, cerveja
5	pão, leite, fraldas, coca

Exemplos de regras de associação

```
\{fraldas\} \rightarrow \{cerveja\},\
\{leite, pão\} \rightarrow \{ovos, coca\},\
\{cerveja, pão\} \rightarrow \{leite\},\
```


Implicação significa co-ocorrência, e não causa!!!

- Também chamado de mineração de regras de associação
- Essa tarefa busca identificar padrões nos dados analisados, como ocorrências de valores juntos em um mesmo exemplo da base
- No exemplo a seguir, espera-se que o algoritmo encontre os itens que normalmente são adquiridos juntos

EXEMPLOS SUPERVISIONADOS

- Estimar o preço de uma casa
 - · Atributos: tamanho, posição geográfica, material
 - Classe: Preço (regressão)
- Determinar se uma pessoa tem câncer benigno ou maligno
 - Atributos: Tamanho do tumor, formato do tumor, idade do paciente
 - Classe: Benigno ou maligno (classificação)

EXEMPLOS NÃO SUPERVISIONADOS

- Identificar padrões de compras dos clientes de um supermercado (Associação)
- Identificar padrões de navegação em sites (Associação)
- Agrupar notícias semelhantes publicadas em várias fontes (Agrupamento)
- Numa rede social, identificar subgrupos de pessoas (Agrupamento)
- Identificar aves macho e fêmea em lotes mistos de frangos de corte em aviários, a partir de medidas de peso coletados por balança automática (Agrupamento)