עקומים אלגבריים – הרצאה רביעית

יחסי אוילר

אזי ,k אזי מדרגה $f\in\mathbb{C}\left[x,y,z
ight]$ אם

$$x\frac{\partial f}{\partial x} + y \cdot \frac{\partial f}{\partial y} + z \cdot \frac{\partial f}{\partial z} = k \cdot f$$

מספיק להוכיח זאת עבור מנומים. יהי $m=x^ay^bz^c$ אזי נקבל

$$ax^ay^bz^c + bx^ay^bz^c + cx^ay^bz^c = (a+b+c)m$$

לכן, $\frac{\partial f}{\partial z}$ ו $\frac{\partial f}{\partial y}$ קובעים את לכן, לכן,

$$f\in\mathbb{C}\left[x,y,z\right]$$

הומוגני ו

$$g(x,y) = f(x,y,1)$$

אם ורק אם ורק אם (a,b) סינגולרי ב $[a:b:1]\in \mathbb{P}^2_2\left(\mathbb{C}\right)$

$$\frac{\partial g}{\partial x}\left(a,b\right) = \frac{\partial g}{\partial y}\left(a,b\right) = 0 \iff \frac{\partial f}{\partial x}\left(p\right) = \frac{\partial f}{\partial y}\left(p\right) = \frac{\partial f}{\partial z}\left(p\right) = 0$$

באופן יותר כללי, אם $p\in\mathbb{P}^n\left(\mathbb{C}\right)$ הומוגניים, $f_1\dots,f_m\in\mathbb{C}\left[x_0,\dots,x_m\right]$ כך שp=1 נכתוב תליים ליניארית, זהו משטח מרוכב באזור $\nabla f_i\left(p\right)$ ו p=1 ווען באזור ליניארית, דהו משטח מרוכב באזור ליניארית. ווען

$$\left(\frac{\partial f_1}{\partial x_0}(p), \dots, \frac{\partial f_1}{\partial x_n}(p)\right), \dots \left(\frac{\partial f_m}{\partial x_0}(p), \dots, \frac{\partial f_m}{\partial x_n}(p)\right)$$

בלתי תלויים ליניארית אם ורק אם

$$\left(\frac{\partial f_1}{\partial x_1}(p), \dots, \frac{\partial f_1}{\partial x_n}(p)\right), \dots \left(\frac{\partial f_m}{\partial x_1}(p), \dots, \frac{\partial f_m}{\partial x_n}(p)\right)$$

 $f_i\left(1,x_1,\ldots,x_n
ight)$ בלתי תלויים ליניארית, וזה אם ורק אם מתקיים תנאי היעקוביאן עבור (בתי תלויים ליניארית, וזה אם ורק אם ורק אם מתקיים תנאי היעקוביאן עבור ($Z\left(f_i\right)\cap\mathbb{P}_0^n\left(\mathbb{C}\right)$).

המישור של עקומים פרוייקטיבים מדרגה d היא ההשלמה הפרוייקטיבית של כל הפולינומים המישור של עקומים פרוייקטיבים מדרגה x,y,z, וזה בעצם $\mathbb{P}^{\binom{d+2}{2}-1}$. לכן כעת נוכיח את המשפט הבא, שאומר בעצם ש"רוב העקומים הפרוייקטיבים הם לא סינגולריים".

משפט 0.1 הקבוצה

הוכחה: נתבונן בקבוצה הבאה:

$$\left\{ f \in \mathbb{P}^{\left(\frac{d+2}{2}\right)-1} \mid Z\left(f\right) \text{ is non singular} \right\}$$

. (כלומר, זה משלים של קבוצה אלגברית) $\mathbb{P}^{{d+2\choose 2}}-1$ בוצה אלגברית).

$$X = \left\{ (f, p) \in \mathbb{P}^{\binom{d+2}{2} - 1} \times \mathbb{P}^2 \mid f(p) = 0, \ \nabla f(p) = 0 \right\}$$

נטיל את זה על $\mathbb{P}^{{d+2\choose 2}-1}$ ונטען כי X היא קבוצה אלגברית. זאת מכיוון שנגדיר

$$f = [f_{d,0,0}: f_{d-1,0,0}: \dots : f_{0,0,d}]$$

המתאים לפולינום

$$f_{d,0,0}x^d + f_{d-1,0,0}x^{d-1}y + \dots + d_{0,0,d}z^d$$

$$p = [p_x, p_y, p_z]$$

היחס היחס הוא הוא $f\left(p\right) =0$

$$f_{d,0,0}p_x^d + f_{d-1,0,0}p_x^{d-1}p_y + \dots + d_{0,0,d}p_z^d = 0$$

הוא פולינום הומוגני. באופן דומה,

$$\frac{\partial f}{\partial x}(p) = 0$$

מסקנה 0.2 $\pi\left(X\right)$ היא קוסנטרוקטיבית.

הוכחה: מכיוון ש (\mathbb{C}) הוא קומפקטי, X קומפקטי, ולכן $\pi(X)$ סגור בטופולוגיה הרגילה על \mathbb{C}^n . לכן ל $\pi(X)$ יש פנים (interior) ריק (בטופלוגיה הרגילה על $\pi(X)$) או ש עקום לא ש עקום להראות שהפנים ריק. לכן מספיק להוכיח שיש עקום לא $\pi(X)=\mathbb{P}^n\left(\mathbb{C}\right)$. נרצה להראות שהפנים ריק. לכן מספיק להוכיח שיש עקום לא סינגולרי יחיד. ניקח את העקום $\pi(X)=\pi(X)$ ונסמן פולינום זה ב $\pi(X)$ אזי

$$\nabla f = \left(dX^{d-1}, dY^{d-1}, dZ^{d-1}\right)$$

ולכן

$$\nabla f(p) = 0 \Rightarrow x = y = z = 0$$

 \mathbb{P}^2 וזוהי לא נקודה ב