Mastering Data Structures and Algorithms Homework 1

Yiying Peng (Christine)

January 29, 2019

Problem 1.1

Order the following functions by growth rate: N, \sqrt{N} , $N^{1.5}$, N^2 , $N \log N$, $N \log \log N$, $N \log^2 N$, $N \log(N^2)$, $\frac{2}{N}$, 2^N , $2^{N/2}$, 37, $N^2 \log N$, N^3 . Indicate which functions grow at the same rate.

Sol. In terms of Big-Oh notation, the functions can be ordered as follows.

$$\begin{split} \frac{2}{N} < 37 < N \log \log N < N \log N = N \log(N^2) \\ < N \log^2 N < N^{1.5} < N^2 < N^2 \log N < N^3 < 2^{N/2} < 2^N \end{split}$$

Problem 1.2

For each of the following six program fragments:

- a. Give an analysis of the running time (Big-Oh will do).
- b. Implement the code in the language of your choice, and give the running time for several values of N.
- c. Compare your analysis with the actual running times.

```
(5) sum = 0;
  for( i = 0; i < n; ++i )
    for( j = 0; j < i * i; ++j )
        for( k = 0; k < j; ++k )
        ++sum;

(6) sum = 0;
  for( i = 1; i < n; ++i )
    for( j = 1; j < i * i; ++j )
        if( j % i == 0 )
        for( k = 0; k < j; ++k )
        ++sum;</pre>
```

Sol. The answer to three sub-problems for each of six program fragments are listed as follows.

(1) a. O(n)

	N	Elapsed Time	Ratio
	8	0.000003	
b.	16	0.000004	1.4381
	32	0.000006	1.6689
	64	0.000011	1.8492
	128	0.000021	1.8906
	256	0.000045	2.1283
	512	0.000083	1.8565
	1024	0.000175	2.1040
	2048	0.000342	1.9574
	4096	0.000750	2.1943
	8192	0.001612	2.1490
	16384	0.002903	1.8011
	32768	0.004810	1.6571
	65536	0.009743	2.0254
	131072	0.017759	1.8228
	262144	0.035810	2.0165
	524288	0.071837	2.0060
	1048576	0.144966	2.0180

c. The running time for this algorithm is O(n). At each new row we have doubled the input size, so we would expect the experimental growth rate to approach 2, which it does.

(2) a. $O(n^2)$

	N	Elapsed Time	Ratio
	8	0.000012	
	16	0.000038	3.1431
	32	0.000140	3.7116
b.	64	0.000526	3.7633
	128	0.002140	4.0648
	256	0.008538	3.9894
	512	0.034538	4.0452
	1024	0.137729	3.9878

c. The running time for this algorithm is $O(n^2)$. At each new row we have doubled the input size, so we would expect the experimental growth rate to approach 2^2 , which it does.

(3) a.
$$O(n^3)$$

	N	Elapsed Time	Ratio
b.	8	0.000072	
	16	0.000516	7.1304
	32	0.004387	8.4967
	64	0.034894	7.9543
	128	0.282396	8.0930

c. The running time for this algorithm is $O(n^3)$. At each new row we have doubled the input size, so we would expect the experimental growth rate to approach 2^3 , which it does.

(4) a. $O(n^2)$

	N	Elapsed Time	Ratio
	8	0.000008	
	16	0.000022	2.9175
	32	0.000074	3.3678
b.	64	0.000269	3.6468
	128	0.001134	4.2133
	256	0.004339	3.8272
	512	0.017111	3.9434
	1024	0.068113	3.9805

c. The running time for this algorithm is $O(n^2)$. At each new row we have doubled the input size, so we would expect the experimental growth rate to approach 2^2 , which it does.

(5) a. $O(n^5)$

b.	N	Elapsed Time	Ratio
	8	0.000378	
	16	0.012082	31.9388
	32	0.398985	33.0220

c. The running time for this algorithm is $O(n^5)$. At each new row we have doubled the input size, so we would expect the experimental growth rate to approach 2^5 , which it does.

(6) a. $O(n^4)$

	Ν	Elapsed Time	Ratio
	8	0.000092	
b.	16	0.001228	13.3491
	32	0.017747	14.4536
	64	0.279686	15.7593

c. The running time for this algorithm is $O(n^4)$. At each new row we have doubled the input size, so we would expect the experimental growth rate to approach 2^4 , which it does.

Problem 1.3

An algorithm takes 0.5 ms for input size 100. How long will it take for input size 500 if the running time is the following (assume low-order terms are negligible)?

- a. linear
- b. $O(N \log N)$
- c. quadratic

d. cubic

Sol. The corresponding answers are as below.

```
a. linear: 0.5 \text{ ms} \times \frac{500}{100} = 2.5 \text{ ms}
b. O(N \log N): 0.5 \text{ ms} \times \frac{500 \log 500}{100 \log 100} \approx 3.37 \text{ ms}
c. quadratic: 0.5 \text{ ms} \times \frac{500^2}{100^2} = 12.5 \text{ ms}
d. cubic: 0.5 \text{ ms} \times \frac{500^3}{100^3} = 62.5 \text{ ms}
```

Problem 1.4

Give an efficient algorithm to determine if there exists an integer i such that $A_i = i$ in an array of integers $A_1 < A_2 < A_3 < \cdots < A_N$. What is the running time of your algorithm?

Sol. Since it is an ascending order array, we can use binary search to find the integer. A snapshot of Python implementation is as following.

```
def binary_search(input_array, value):
    l = 0
    r = len(input_array) - 1
    while l < r:
        m = ( l + r) / 2
        if input_array[m] < value:
            l = m + 1
        elif input_array[m] > value:
            r = m
        else:
            return m
    return -1
```

It is noticeable that this algorithm each time could eliminate half of the remaining elements, thus the overall time complexity is $O(\log n)$.

Problem 1.5

Programs A and B are analyzed and found to have worst-case running times no greater than $150N \log_2 N$ and N^2 , respectively. Answer the following questions, if possible:

- a. Which program has the better guarantee on the running time for large values of N (N > 10,000)?
- b. Which program has the better guarantee on the running time for small values of N (N < 100)?
- c. Which program will run faster on average for N = 1,000?
- d. Is it possible that program B will run faster than program A on all possible inputs?

Sol. The corresponding answers are as below.

a. Program A.

If N=100000. We can get the time complexity of program A is around 172693881, which is faster than programs B's 10000000000.

b. Program B.

If N=10. We can get the time complexity of program A is 3453, which is slower than program B's 100.

c. Program B.

When N=1000. We can get the time complexity of program A is 1036163, which is slower than program B's 1000000.

d. No

Program B only run faster than program A in smaller inputs.