Rotation Equivariant Deforestation Segmentation and Driver Classification

Joshua Mitton¹, Roderick Mur<u>ray-Smith¹</u>

Deforestation

- Deforestation is a driver for climate change. ¹
- Tropical deforestation contributed roughly 10% of annual greenhouse gas emissions.²
- A quarter of of global forest loss is for commodities.

¹ Global Consequences of Land Use. Science 2005

² Framing and Context. IPPC 2019

³ Classifying Drivers of Global Forest Loss. Science 2018

Data

- The dataset consists of three main components ¹².
 - Forest images.
 - Deforestation segmentation maps.
 - Deforestation driver classes.

Plantation

¹ What Causes Deforestation in Indonesia? Environmental Research Letters 2019

² Forestnet: Classifying Drivers of Deforestation in Indonesia Using Deep Learning on Satellite Imagery. NeurIPS 2020

Symmetries

- A convolutional layer is translation equivariant.
 - A translated image creates a translated feature map.
- We require translation and rotation equivariance.
 - A rotated image creates a rotated feature map.
- This is a useful inductive bias for a model that makes predictions on images with rotational symmetries.

Equivariance

The feature space:

 A c-dimensional vector is linked to each point in the base space.

The transformation law:

 The layer is equipped with a transformation law, characterised by a group representation, which specifies how the channels of the feature vector mix under a transformation. 12

 $[\]pi_1(g)$

¹ Steerable CNNs ICLR 2017

² General E(2)-Equivariant Steerable CNNs. NeurIPS 2019

Model

- Rotation Equivariant U-Net model.
- Stable generation of segmentation maps under rotation.
- Improved segmentation and classification accuracy.

Results

Model	Train	Validation	Test	Rotated Test	Model	Train	Validation	Test	Rotated Test
UNET - CNN	90.3	60.6	57.9	56.3	UNET - CNN	72.9	68.7	67.8	67.9
UNET - C8 Equivariant	82.7	67.1	63.0	64.3	UNET - C8 Equivariant	84.1	71.3	72.3	72.3

Classification Accuracy

Segmentation Accuracy

UNET - CNN

UNET - C8 Equivariant

Conclusion

- Improved weight sharing in the model.
- Improved segmentation accuracy by 7%
- Improved classification accuracy by 9%.
- Segmentation maps are stable under rotation.

Acknowledgements

Joshua Mitton is supported by a University of Glasgow Lord Kelvin Adam Smith Studentship. Roderick Murray-Smith acknowledges funding from the QuantIC project funded by the EPSRC Quantum Technology Programme (grant EP/MO1326X/1) and the iCAIRD project, funded by Innovate UK (project number 104690). Roderick Murray-Smith acknowledges funding support from EPSRC grant EP/R018634/1, Closed-loop Data Science.