FEATURE EXTRACTION FROM LABELED BLOBS

JONABEL ELEANOR BALDRES

WFY-FX-2

The outputs presented in the succeeding pages are created using MATLAB. Moreover, the codes are uploaded in <u>Github</u>.

FEATURE EXTRACTION

ACTIVITY

Objectives:

• Extract features from four different objects using regionprops in MATLAB

Figure 1. Original images used for the activity. From left to right: beads, coins, dice, rice grains

Figure 2. Grayscale images of the reference image.

Figure 3. Histogram of the grayscale images.

After analyzing the histograms of the images used in the experiment, I applied thresholding by setting appropriate ranges for each image. Specifically, I set the threshold for the beads image starting from 225, for the dice image from 181, for the coins image from 170, and for the rice grains starting 190. from The image thresholding resulted to grayscale images with artifacts and holes in the desired region of interest. With that, there is need for further a enhancement of the images. This was using morphological implemented operations.

Figure 4. Thresholded grayscale images

Figure 5. Cleaned thresholded grayscale images

Figure the shows cleaned version of the thresholded grayscale images. I used different morphological operations to arrive with the best segmentation. Specifically, I used imclose, imopen, imfill, imerode, and bwmorph with varying operations.

Figure 6. Labeled images using bwlabel

Figure 6 shows the labeled images using bwlabel. The bwlabel is important before using regionprops it since assigns labels unique to connected components, enabling accurate analysis of properties for each individual region. I then used regionprops to get the eccentricity, bounding box, and centroid of the images. The succeeding slides show the result.

Table 1. Properties of the beads

	Area	Centroid BoundingBox				31	26	175.8077	670.4231	172.5000	666.5000	6	7	62	21	275	748	272.5000	745.5000	5	5
1	175	57.1486 841.4457	48.5000 833.5000	17	16	32	29	178.6207	258.9310	174.5000	256.5000	8	5	63	26	277.0769	142.5385	274.5000	138.5000	5	7
2	21	54.4762 338.2857	50.5000 336.5000	8	4	33	16	179.1875	777.5000	176.5000	775.5000	5	4	64	36	281.0833	736.1111	276.5000	733.5000	9	5
3	14	54.1429 353.0714	51.5000 351.5000	5	3	34	12	184.5000	371.5000	182.5000	369.5000	4	4	65	19	282.2632	750.1579	279.5000	747.5000	5	5
4	12	77.3333 542.6667	75.5000 540.5000	4	4	35	47	187.9787	780.7234	184.5000	775.5000	6	11	66	75	290.3867	858.0667	285.5000	848.5000	11	17
5	29	85 545.5172	81.5000 542.5000	7	6	36	18	188.5556	365.8333	185.5000	363.5000	6	4	67	18	291.7222	845.8333	289.5000	843.5000	5	5
6	47	90.2553 550.4468	84.5000 544.5000	10	10	37	48	192.6458	359.4583	186.5000	356.5000	12	7	68	65	299.6000	851.6923	293.5000	846.5000	12	10
7	65	93.5077 700.4154	85.5000 697.5000	15	7	38	21	202	289	199.5000	286.5000	5	5	69	29	300.8966	426.7586	297.5000	422.5000	7	8
8	36	91.0278 707.1667	86.5000 704.5000	9	5	39	35	207.4286	296	203.5000	292.5000	8	7	70	2	300.5000	863.5000	299.5000	862.5000	2	2
9	30	93.9333 714.8333	90.5000 712.5000	7	5	40	53	210.3396	284.9811	204.5000	280.5000	10	9	71	94	309.1702	583.9894	302.5000	575.5000	13	17
10	16	99.8125 169.1875	97.5000 166.5000	4	5	41	35	210.6286	721.1714	204.5000	716.5000	11	8	72	5	303.6000	862.2000	302.5000	860.5000	2	3
11	43	107.1860 169.2558	103.5000 165.5000	8	7	42	245	217.1918	963.8980	207.5000	953.5000	20	20	73	14	305.6429	427.1429	303.5000	424.5000	4	5
12	13	108.3846 175.6154	106.5000 173.5000	4	4	43	29	219.4483	783.7931	215.5000	781.5000	8	5	74	53	311.4717	431.4717	304.5000	425.5000	12	10
13	67	116.4179 634.4030	112.5000 628.5000	9	12	44	45	225.4889	793.3333	219.5000	789.5000	10	7	75	20	308.1000	856.0500	305.5000	853.5000	5	5
14	66	126.0303 636.4848	121.5000 627.5000	8	16	45	11	226.4545	785.8182	224.5000	783.5000	4	4	76	237	316.4641	449.2068	306.5000	439.5000	20	19
15	243	146.5679 266.7202	136.5000 256.5000	20	20	46	140	236	849.1071	225.5000	841.5000	17	18	77	4	312.5000	419	311.5000	417.5000	2	3
16	60	143.6667 527.6000	137.5000 523.5000	12	8	47	19	229.0526	851.2105	226.5000	848.5000	5	5	78	12	315.5000	420.1667	313.5000	417.5000	4	5
17	7	140.5714 515.7143	139.5000 513.5000	2	4	48	2	228.5000	856.5000	227.5000	855.5000	2	2	79	33	319.8788	315.1515	316.5000	310.5000	7	9
18	286	151.0734 109.3322	140.5000 99.5000	21	23	49	16	232.2500	279.8750	230.5000	276.5000	4	6	80	19	319.1579	424.1579	316.5000	421.5000	5	5
19	7	144.2857 514	142.5000 512.5000	3	3	50	21	234	287	231.5000	284.5000	5	5	81	21	321	579	318.5000	576.5000	5	5
20	21	146.6190 592.5714	143.5000 590.5000	6	4	51	20	237.1000	275.9500	234.5000	273.5000	5	5	82	5	326.6000	320.2000	325.5000	318.5000	2	3
21	7	146 518.2857	144.5000 516.5000	3	3	52	247	247.6316	408.5749	237.5000	398.5000	20	22	83	17	327.7647	816.1765	325.5000	813.5000	5	5
22	25	147.0800 824.2400	144.5000 820.5000	6	6	53	21	245	276	242.5000	273.5000	5	5	84	56	334.1000	322.3000	328.5000	315.5000	10	13
23	44	151.5682 603.9545	146.5000 599.5000	9	8	54	21	245.0476	284.7143	242.5000	281.5000	5	6	86	36	334.3214	819.1429	328.5000	813.5000	12	11
24	16	150.3125 679.6250	148.5000 676.5000	4	6	55	24	251.9583	993.3333	249.5000	989.5000	5	7	87	38	333.8696	810.9130	330.5000	807.5000	6	
25	32	153.4375 834.5000	148.5000 830.5000	8	7	56	188	262.4947	995.7553	253.5000	986.5000	17	18	88	293	339.2632	823.4211	334.5000	818.5000	10	9
26	32	152.4688 593.3125	149.5000 589.5000	6	8	57	22	260.8182	159.3182	258.5000	155.5000	5	7	89		351.2014	308.4437	340.5000	297.5000	23	21
27	33	157.5152 681.9697	153.5000 678.5000	8	7	58	12	267.2500	153.2500	263.5000	151.5000	6	4	90	187	349.6154	110.7692	346.5000	106.5000	17	8
28	40	164.2750 686.1250	159.5000 681.5000	9	9	59	21	269	495	266.5000	492.5000	5	5	91	107	360.4385	658.8503	351.5000	650.5000	17	17
29	231	173.6623 248.2641	164.5000 238.5000	19	20	60	151	276.9205	504.3576	266.5000	491.5000	18	20	92	37	357.0455	112.2727	352.5000	107.5000	9	10
30	17	166.8824 663.6471	164.5000 660.5000	5	6	61	26	273.4615	159.1538	270.5000	155.5000	6	7	32	37	357.5676	428.8378	354.5000	423.5000	6	10

The table above displays the properties of the individual beads in the image. Based on the results, it is evident that the area of the beads varies within a certain range. This variation could be attributed to the small size of the beads, which may introduce distortions in the image. Additionally, this variability in area could be influenced by the morphological operations employed to separate the beads from the background.

Table 2. Properties of the coins

	Area	Centro	oid	BoundingBox					
1	17151	91.0457	716.2047	16.5000	642.5000	149	147		
2	38832	138.5847	351.9339	27.5000	240.5000	223	222		
3	17578	168.8718	900.7984	93.5000	825.5000	151	150		
4	11059	166.7646	94.0199	106.5000	34.5000	120	119		
5	30332	345.9953	770.2590	247.5000	672.5000	197	196		
6	26865	410.3280	300.7135	317.5000	208.5000	186	184		
7	10701	494.9831	897.7025	436.5000	839.5000	117	116		
8	21857	612.3477	639.8447	528.5000	556.5000	168	167		
9	10823	622.7763	122.8148	563.5000	64.5000	118	117		
10	17274	726.3596	283.9344	652.5000	209.5000	148	149		
11	12045	802.2771	511.2585	740.5000	449.5000	124	124		
12	25022	862.0335	915.4658	772.5000	825.5000	179	179		
13	17516	981.1424	730.8846	906.5000	656.5000	150	149		
14	17314	995.2172	207.3548	920.5000	133.5000	150	148		

Table 3. Properties of the dice

	Area	Centro	oid	BoundingBox				
1	16969	193.1782	265.9649	116.5000	191.5000	153	148	
2	13002	216.9487	750.9502	140.5000	693.5000	154	119	
3	12758	534.2554	212.9570	477.5000	155.5000	114	115	
4	4997	533.2045	545.2594	483.5000	502.5000	101	114	
5	18991	603.7937	912.3840	520.5000	834.5000	166	157	
6	12264	827.6353	325.8425	748.5000	266.5000	157	117	
7	13574	887.5958	725.0038	816.5000	661.5000	133	142	

Table 4. Properties of the rice grains

	Area	Centro	oid	BoundingBox				
1	443	31.0293 194.422		19.5000	173.5000	25	41	
2	516	43.8740	735.1124	36.5000	711.5000	14	47	
3	453	68.7837	267.2141	52.5000	251.5000	30	35	
4	383	71.2898	633.2428	62.5000	613.5000	17	39	
5	456	94.9079	129.8333	74.5000	120.5000	42	20	
6	438	84.5274	196.8014	77.5000	172.5000	14	47	
7	569	106.6415	926.0475	83.5000	916.5000	48	19	
8	521	116.4741	62.3474	91.5000	55.5000	49	14	
9	336	106.3065	793.2649	96.5000	774.5000	20	37	
10	503	118.4553	389.7694	103.5000	368.5000	28	42	
11	160	114.9750	544.4250	108.5000	534.5000	15	18	
12	514	155.6187	210.7977	130.5000	197.5000	46	26	
13	470	148.5128	301.7106	138.5000	278.5000	20	44	
14	458	165.2074	677.0218	144.5000	665.5000	42	22	
15	454	163.2048	465.5286	146.5000	449.5000	37	30	
16	444	175.5766	437.7477	151.5000	428.5000	45	18	
17	459	178.2941	557.3573	165.5000	537.5000	28	39	
18	492	190.7073	83.5183	167.5000	76.5000	48	13	
19	490	180.7429	289.9612	173.5000	266.5000	15	46	
20	498	203.7550	885.2169	181.5000	876.5000	44	19	
21	455	199.6462	618.6352	184.5000	601.5000	33	33	
22	475	211.1495	714.7474	194.5000	695.5000	32	36	
23	285	207.1789	812.9579	195.5000	801.5000	24	24	
24	467	233.6360	200.6702	213.5000	186.5000	41	26	
25	474	228.7595	126.5612	214.5000	111.5000	33	34	
26	440	236.0341	388.6705	226.5000	367.5000	21	43	
27	411	237.8345	531.0560	228.5000	511.5000	18	44	
28	415	242.1904	325.0964	235.5000	301.5000	14	44	
29	469	270.9851	456.6546	256.5000	436.5000	31	37	
30	444	268.0788	542.8041	258.5000	521.5000	19	42	

Tables 2, 3, and 4 present the area, centroid, and bounding box properties for the coins, dice, and rice grain images, respectively. Table 2 highlights the variation in coin areas, enabling the identification of coins belonging to the same denomination. In contrast, table 3 illustrates the distinct difference between the segmented image and the triangular-shaped dice. This difference can be attributed to the reflective nature of the dice rather than the applied morphological operations. Finally, table 4 showcases the variability in rice grain sizes.

Area Statistics:

Mean: 63.3185

Standard Deviation: 73.629

Perimeter Statistics:

Mean: 27.9395

Standard Deviation: 22.3761

Eccentricity Statistics:

Mean: 0.70272

Standard Deviation: 0.23476

Area Statistics:

Mean: 13222.1429

Standard Deviation: 4402.2221

Perimeter Statistics:

Mean: 437.1339

Standard Deviation: 41.825 Eccentricity Statistics:

Mean: 0.4129

Standard Deviation: 0.26573

Area Statistics:

Mean: 19597.7857

Standard Deviation: 8244.5217

Perimeter Statistics:

Mean: 484.6009

Standard Deviation: 100.3123

Eccentricity Statistics:

Mean: 0.12118

Standard Deviation: 0.027241

Area Statistics:

Mean: 455.0625

Standard Deviation: 76.1278

Perimeter Statistics:

Mean: 98.3675

Standard Deviation: 12.6493

Eccentricity Statistics:

Mean: 0.95751

Standard Deviation: 0.012901

Figure 7. Summary statistics of beads (top left), coins (top right), dice (bottom left), and rice grains (bottom right)

Figure 8. Bounding box (top) and centroid (bottom) properties of the cleaned images

Figure 8. Limiting properties in the cleaned coin image.

I successfully generated binary images that isolate objects or regions based on specific criteria or ranges. In the coins image, the leftmost image segmentated the 25-cent coins, the center image segmentated the 20peso coin, and the last image segmentated the 5-cent coins.

REFLECTION

RATING: 100 / 100

The most challenging part of this activity is making sure that the images that I will analyze are cleaned properly. This is to remove any artifacts that may change the desired results. Overall, I enjoyed creating this activity starting from gathering data to understanding the data. I believe familiarizing this activity will be an important step in understanding machine learning that I am eager to learn more. I'd give myself 100/100 since I was able to meet the required objectives for this experiment.

Keterences

https://www.mathworks.com/help/images/morphological-filtering.html

https://www.mathworks.com/help/images/ref/bwmorph.html

https://towardsdatascience.com/understanding-morphological-image-processing-and-its-operations-7bcfled11756