第六章测定金属的电阻率

实验原理

- 3. 电阻率的测定原理
- (1)把金属丝接入电路中,用伏安法测金属丝的电阻, $R_x = \frac{U}{I}$,

电路原理如图所示。

- (2) 用毫米刻度尺测金属丝接入电路部分的长度l, 用螺旋测微器测得金属丝的直径d, 算出横截面积 $S = \frac{1}{4}\pi d^2$ 。
- 器测得金属丝的直径d, 算出横截面积 $S = \frac{1}{4}\pi d^2$ 。
 (3) 根据电阻定律 $R = \rho \frac{l}{S}$,得金属丝电阻率 $\rho = \frac{RS}{l}$ 。

实验步骤

一、实验步骤

1. 直径测定

用螺旋测微器在被测金属丝上的三个不同位置各测一次直径,求出其平均值d,计算出金属丝的横截面积 $S = \frac{\pi d^2}{4}$ 。

3. 长度测量

用毫米刻度尺测量接入电路中的被测金属丝的有效长度,反复测量3次,求出其平均值*l*。

4. U、I测量

把滑动变阻器的滑片调节到使接入电路中的电阻值最大的位置,电路经检查确认无误后,闭合开关S,改变滑动变阻器滑片的位置,读出几组相应的电流表、电压表的示数I和U的值,记入表格内,断开开关S。

U			
Ι			
R_x			

5. 拆除实验线路,整理好实验器材。

记录数据

三次测量的数据,保存为ch6.xlsx

ch6.xlsx	
----------	--

金属丝直径d/mm	金属丝长度 I/mm	电压U	电流A
0.28	500	0.5	0.078
0.278	490	0.8	0.118
0.282	510	1	0.146

读取文件,并输出数据,查看描述性统计情况:

金属	或丝直径d/mm	金属丝长度	₹1/mm 电反	EU 电流A		
0	0.280	500 0.5				
1	0.278	490 0.8	0.118			
2	0.282	510 1.0	0.146			
	金属丝直径d/	/mm 金属丝	坐长度1/mm	电压ប	电流≬	
count	3.000	3.0	3.000000	3.000000		
mean	0.280	500.0	0.766667	0.114000		
std	0.002	10.0	0.251661	0.034176		
min	0.278	490.0	0.500000	0.07		
25%	0.279	495.0	0.650000	0.09	6-	
50%	0.280	500.0	0.800000	0.11	Name and Address of the Owner, where	
75%	0.281	505.0		0.13	To you	
max	0.282	510.0	1.000000	0.14		
				-		
					100	

数据处理

• 计算电阻值 $R = \frac{U}{I}$

• 计算金属丝横截面积 $S = \frac{1}{4} * \pi * d^2$

数据处理

• 提取金属丝长度L

• 计算电阻率,并保存到df的新一列: $\rho = \frac{RS}{L}$

	金属丝直径d/mm	金属丝长度I/mm	电压U	电流A	电阻率
0	0.280	500	0.5	0.078	0.002819
1	0.278	490	8.0	0.118	0.003021
2	0.282	510	1.0	0.146	0.002975

数据处理

计算均值

- 首先新建变量保存df的均值
- 然后获取该变量的电阻率列,

就是该列的均值

电阻率均值是0.0029382875861929006

