

计算机与软件工程概论

Dr 林育蓓
yupilin@scut.edu.cn
软件学院
2019

主要内容

- 计算机的数制
- 数据的存储与表示
- 数据运算

计算机的数制

- 数值按预定形式在计算机中表达和存储,并 按预定的规则进行运算。
 - 日常生活: 十进制记数法
 - 计算机领域: 二进制、八进制和十六进制记数 法

十进制记数法

• 数码:

- 规则: 逢10进1
- 展开:

$$1024 = 1 \times 10^3 + 0 \times 10^2 \times 2 \times 10^1 + 4 \times 10^0$$

十进制记数法是进位记数制的一种 如何定义进制记数制?

进位记数制

• 基数: 某种数制中使用的数码的个数

- 十进制: 10 0 1 2 3 4 5 6 7 8 9

- 二进制: 2 **0** 1

一人进制: 8 0 1 2 3 4 5 6 7

- 十六进制: 16

0	1	2	3
4	5	6	7
8	9	A	В
С	D	E	F

 $(2048)_{10}$ $(110)_2$ $(1024)_8$ $(10AD)_{16}$

进位记数制

· 例 2-1 任意给定一个二进制数(11011.101)₂, 这个数的各位权表示如下:

$$1 \times 2^{4} + 1 \times 2^{3} + 0 \times 2^{2} + 1 \times 2^{1} + 1 \times 2^{0}$$

$$+ 1 \times 2^{-1} \times 2^{-2} + 1 \times 2^{-3}$$

数制之间的转换

- 用户编程与书写:
 - 十进制、十六进制和八进制
- 计算机中存储和处理的数据通常为二进制数

 $(400)_{16}$ $(2000)_8$ $(1024)_{10}$

 $(10000001)_2$

将R进制转换成十进制

- 将R进制数按位权展开,再按十进制运算规则运算即可。
- **例 2-2** 将二进制数(11011.101)₂转换为十进制数。
- $(11011.101)_2$ = $1 \times 2^4 + 1 \times 2^3 + 0 \times 2^2 + 1 \times 2^1 + 1 \times 2^0 + 1 \times 2^{-1} + 0 \times 2^{-2} + 1 \times 2^{-3} = (27.875)_{10}$
- 问题: (101.11), 和(1000000000),?

将十进制转换成R进制

- 整数部分和小数部分分别按不同规则转换
- 整数部分转换:
- 除基取余: 采用逐次除以基数R取余数的方法 其步骤如下:
- (1) 将给定的十进制整数除以R, 余数作为R进制数的最低位。
- (2)将前一步的商再除以R,余数作为次低位。
- (3) 重复(2)步骤,记下余数,直至最后商为0,最后的余数即为R进制的最高位。

*	*	*	•	*	*	*
3	2	1	0	1	2	3
_	高位				低位	
M^3	M^2	M^1	M^0	M^{-1}	M^{-2}	M^{-3}

将十进制转换成R进制

- 小数部分转换
 - 乘基取整:将逐次乘以基数R取整数的方法

其步骤如下:

- (1) 将给定的十进制数的纯小数部分乘以R, 取乘积的整数部分作为R进制的最高位。
- (2) 将前一步的乘积的小数部分继续乘以R,取乘积的整数部分作为R进制的次高位。
- (3) 重复(2)步骤,记下整数,直至最后乘积为0或达到一定的精度为止。

将十进制转换成二进制

• **例 2-5** 把十进制数(69.8125)₁₀转换为二进制数。

$$(69)_{10} = (1000101)_2$$
 $(0.8125)_{10} = (0.1101)_2$
 $(69.8125)_{10} = (1000101.1101)_2$

• 问题: (69.6)10?

将十进制转换成二进制

• 例把十进制数(0.243)10转换为二进制数。

Fraction: 0.486 0.972 1.944 1.888 1.776 1.552 1.104 ...

Binary: 0. 0 0 1 1 1 1 ...

▶存储单元的位数,决定二进制的精度!

数值类型

- 常用的数值类型
 - 整数和实数
- 整数
 - 无符号整数: 0~+∞
 - -有符号整数: -∞ ~+∞
- 为了有效地利用计算机的存储空间, 无符号整数和有符号整数在计算机中 的存储与表示方式是不同的

存储无符号整数

- N位: 计算机分配用于存储与表示一个无符号整数的二进制位数,即存储单元大小为N
 - 范围: $0 \sim (2^N 1)$
- 在计算机中存储无符号整数需要两个步骤。
 - -(1)首先将整数变成二进制数。
 - -(2)如果二进制位数不足N位,则在二进制整数的左边补0,使它的总位数为N位。

存储无符号整数

• 例2-13 将7存储在8位存储单元中

$(7)_{10}$							
	$(111)_2$						
?	?	?	?	?	1	1	1
0	0	0	0	0	1	1	1
7	6	5	4	3	2	1	0

译解无符号整数

- 将计算机内存中位模式的无符号整数,并将 之转换为一个十进制数,这个过程称为无符 号整数的译解
- 例子: N=8

7	6	5	4	3	2	1	0	
0	0	1	0	1	0	1	1	
	$(101011)_2$							
$(43)_{10}$								

无符号整数的溢出

- N位存储单元: 0~(2^N 1)
- 当存储超出范围的最大整数时,会发生溢出 -溢出的影响?
- 假设N=4, 范围: 0~(2⁴ 1)即0~15, 如果存储(16)₁₀?

		$(16)_{10}$					
	$(10000)_2$						
1	0	0	0	0			
4	3	2	1	0			

• 溢出发生; 译解时, 得到(0)10

无符号整数的溢出

• 如果N=4,那么

无符号整数的应用

- 因为不必存储整数的符号,所有分配单元都可以用来存储数字,所以无符号整数表示法可以提高存储的效率。
- 只要没有负整数的应用,就可以使用无符号整数表示法。
- 常见的应用有计数、寻址等。

存储有符号整数

• 给定N位存储单元,如何存储符号与数值?

有符号整数				
±	12358			
符号	数值部分			

- 为了区别符号和数值,同时又便于计算,人们对有符号整数进行了合理的编码。常见的有原码、反码和补码三种编码方式。
 - 给定一个数(二进制或者十进制)可求其原码、反码和补码
- 参考材料[1]和[2]

二进制补码系统

- 现在计算机中普遍采用补码表示有符号整数
- 二进制整数的补码运算有两种实现:
 - -(1) 先对二进制整数序列从右边复制,直到有1 被复制,然后对其余各位取反。
 - -(2) 按位取反,并在最低位加1。

二进制整数补码运算

- 例2-18 取整数10110110的补码。
 - 原模式: 10110110
 - 进行补码运算: 11001010
- 例2-19 对整数00110110进行两次补码运算。
 - 原模式: 00110110
 - 第一次补码运算: 11001010
 - 第二次补码运算: 00110110
- 可见,对一个整数进行两次补码运算,就可以得到原先的整数。

以补码存储整数

- N位存储单元
 - 范围: $-(2^{N-1})\sim 0\sim +(2^{N-1}-1)$ (256个)
 - 非负数: 存储其二进制编码的原码
 - 负数:存储其二进制编码的补码
 - 0补码1个
- 假设N=8,

-128	1	0	0	0	0	0	0	0
-127	1	0	0	0	0	0	0	1
••• •••		••• •••						
-2	1	1	1	1	1	1	1	0
-1	1	1	1	1	1	1	1	1
<u>±</u> 0	0	0	0	0	0	0	0	0
+1	0	0	0	0	0	0	0	1
•••	··· ···							
+127	0	1	1	1	1	1	1	1

译解补码

- 以二进制补码格式还原整数
 - -(1)如果最左位是1,取其补码,如果最左位是0,不操作。
 - -(2)将该整数转换为十进制。
 - (3) 添加符号。

译解补码

- · 例2-23 用二进制补码表示法将存储在8位存储单元中的11101010 还原成整数。
 - 最左位是1,因此符号为负。该整数需要在转换 为十进制前进行补码运算。
 - 最左位是1,符号为负: 11101010
 - 进行补码运算: 00010110
 - 转换为十进制: 22
 - 加上符号: -22
 - 即(11101010)_济=(-22)₁₀
- 问题: 00001110?

补码的优点

- 用补码表示有符号整数具有两个突出的优点。
 - -(1)对任意的正、负整数,可以不加区分地进行机械式的加法运算。
 - -(2) 可以用减法转化为加法,减去一个数等同于加上这个数的相反数。

实数的存储与表示

- 实数: 符号、整数部分和小数部分
- 两种表示方法
 - 定点表示法: 小数点固定在一个位置
 - 浮点表示法: 小数点位置浮动

• 计算机常用浮点表示法表示实数

- 浮点表示法允许小数点浮动,即可以在小数点的左右有不同数量的数码
- 一个数字(十进制或二进制)由三部分组成:
 - -符号:可正可负
 - 小数点位置固定的定点表示法
 - 小数点应该左右移动构成实际数字的位移量

符号 位移量 定点数

- 十进制科学计数法中,定点部分在小数点左 边只有一个数码,并且位移量是10的幂次。
- 例2-25 用科学记数法表示
 - -0.0000000000316
 - 实际数字: -0.0000000000316
 - 十进制科学记数法: -3.16×10⁻¹²
 - 在这个例子中,这个数字的三个部分分别是:符号(-)、位移量(-12)、定点部分(3.16)。

• 规范化

- 为了使表示法的固定部分统一,十进制科学记数法和浮点表示法(即二进制科学记数法)都在小数点左边使用了唯一的非零数码,这称为规范化。十进制系统中的这位非零数码可能是1~9,而二进制系统中该数码是1。则定点部分的表示方法都可以规范为以下形式:
- 二进制 ±1.yyyyyyyyyyy 注意: 每个y是0 或1。

- 符号、指数和尾数
 - 在一个二进制数用浮点法表示并规范化之后,可以 只存储该数的三部分信息: 符号S、指数E和尾数M (小数点右边的位)
- **例如**,+(1000111.0101)₂规范化后变成为: + 1.0001110101×2⁶。

可以只存储以下三部分以表示这个数。

符号S: +

指数E: 6(通常用余码表示: 偏移量)

尾数M: 0001110101

问题: 使用多少位存储E和M? 标准?

余码

- 对N位的存储单元,选取一个"魔数" (magic number, M)为2^{N-1}或者2^{N-1}-1
 - N=8,M=128,余128码: -128~0~+127
 - N=8,M=127,余127码: -127~0~+128

用余码表示整数

- 整数表示为余码:
 - 1. 整数值加上魔数M
 - 2. 将(1)的结果转换成二进制,如果不足N位, 左边补0
- 余码译码为整数
 - 1. 将余码(二进制)转换成十进制数
 - 2. 将(1)的结果减去魔数M

Decimal	Excess_127	Excess_128
+25	1001 1000	1001 1001
-25	0110 0100	0110 0101

IEEE标准浮点数

• 美国电气和电子工程师协会(IEEE)定义了几 种存储浮点数的标准。最常用的是单精度和 双精度两种类型。

IEEE标准浮点数

- 一个十进制实数可以通过以下步骤存储为 IEEE标准浮点数格式。
 - -(1)在符号位S中存储符号(0或1)。
 - -(2)将数字转换为二进制。
 - (3) 规范化。
 - -(4) 计算指数E和尾数M的值。
 - (5) 连接符号位S、指数E和尾数M,即为IEEE标准浮点数存储格式。

IEEE标准浮点数

- · 例2-28 写出十进制数5.75的单精度(余127码) 表示法。
 - (1) 符号为正, 所以S=0
 - (2) 十进制转换为二进制: 5.75=(101.11)₂
 - (3) 规范化: $(101.11)_2 = (1.0111)_2 \times 2^2$
 - (4) E=2+127=129=(10000001)₂
 - (5) M=0111。需要在M的右边增加19个0使之成为23位

S[1]	E[8]	M[23]
0	1000001	011100000000000000000000000000000000000