Analysis - PMA 19 -

KYB

Thrn, it's a Fact mathrnfact@gmail.com

March 30, 2022

Overview

Integration of Differential Forms

Integration

Primitive Mappings

Partitions of Unity

Change of Variables

Exercises

Integration

Definition

Suppose I^k is a k-cell in \mathbb{R}^k , consisting of all

$$\mathbf{x}=(x_1,\cdots,x_k)$$

such that

$$a_i \le x_i \le b_i \quad i = 1, \cdots, k.$$

 I^j is the j-cell in \mathbb{R}^j defined by the first j inequalities, $a_i \leq x_i \leq b_i$, and f is a real continuous function on I^k . Put $f = f_k$, and define f_{k-1} on I^{k-1} by

$$f_{k-1}(x_1,\dots,x_{k-1}) = \int_{a_k}^{b_k} f_k(x_1,\dots,x_k) dx_k.$$

The uniform continuity of f_k on I^k shows that f_{k-1} is continuous on I^{k-1} . Hence we can repeat this process and obtain functions f_j , continuous on I^j , such that f_{j-1} is the integral of f_j with respect to x_j , over $[a_j, b_j]$. After k steps we arrive at a number f_0 , which we call the *integral of f over* I^k , we write it in the form

$$\int_{I^k} f(\mathbf{x}) \ d\mathbf{x} \quad \text{or} \quad \int_{I^k} f.$$

Write L(f) for the integral in the previous definition, and L'(f) for the result obtained by carrying out the k integrations in some other order.

Theorem (10.2)

For every $f \in \mathscr{C}(I^k)$, L(f) = L'(f).

Proof.

If $h(\mathbf{x}) = h_1(x_1) \cdots h_k(x_k)$, where $h_j \in \mathscr{C}([a_j, b_j])$, then

$$L(h) = \prod_{i=1}^{k} \int_{a_i}^{b_i} h_i(x_i) \ dx_i = L'(h).$$

If \mathscr{A} is the set of all finite sums of such functions h, it follows that L(g) = L'(g) for all $g \in \mathscr{A}$. Also, \mathscr{A} is an algebra of functions on I^k to which the Stone-Weierstrass theorem applies.

Put $V = \prod_{1}^{k} (b_i - a_i)$. If $f \in \mathcal{C}(I^k)$ and $\epsilon > 0$, there exists $g \in \mathcal{A}$ such that $||f - g|| < \epsilon/V$, where ||f|| is defined as $\max |f(\mathbf{x})|$ ($\mathbf{x} \in I^k$). Then $|L(f - g)| < \epsilon$, $|L'(f - g)| < \epsilon$, and since

$$L(f) - L'(f) = L(f - g) + L'(g - f)$$

we conclude that $|L(f) - L'(f)| < 2\epsilon$.

Definition

- The *support* of a (real or complex) function f on \mathbb{R}^k is the closure of the set of all points $\mathbf{x} \in \mathbb{R}^k$ at which $f(\mathbf{x}) \neq 0$.
- ▶ If f is a continuous function with compact support, let I^k be any k-cell which contains the support of f, and define

$$\int_{\mathbb{R}^k} f = \int_{I^k} f.$$

Integration

Example

Let Q^k be the k-simplex which consists of all points $\mathbf{x}=(x_1,\cdots,x_k)$ in \mathbb{R}^k for which $x_1+\cdots+x_k\leq 1$ and $x_i\geq 0$ for $i=1,\cdots,k$. If $f\in\mathscr{C}(Q^k)$, extend f to a function on I^k by setting $f(\mathbf{x})=0$ off Q^k , and define

$$\int_{Q^k} f = \int_{I^k} f.$$

Here I^k is the "unit cube" defined by $0 \le x_i \le 1$ ($1 \le i \le k$). Since f may by discontinuous on I^k , the existence of the integral $\int_{I^k} f$ needs proof.

Our next goal is the change of variables.

Definition

▶ If G maps on open set $E \subset \mathbb{R}^n$ into \mathbb{R}^n , and if there is an integer m and a real function g with domain E such that

$$\mathbf{G}(\mathbf{x}) = \sum_{i \neq m} x_i \mathbf{e}_i + g(\mathbf{x}) \mathbf{e}_m \quad (\mathbf{x} \in E),$$

then we call G primitive. In this case, we can also write

$$\mathbf{G}(\mathbf{x}) = \mathbf{x} + [g(\mathbf{x}) - x_m]\mathbf{e}_m.$$

▶ If g is differentiable at some point $\mathbf{a} \in E$, so is \mathbf{G} . The matrix $[\alpha_{ij}]$ of the operator $\mathbf{G}'(\mathbf{a})$ has

$$(D_1g)(\mathbf{a}), \cdots, (D_mg)(\mathbf{a}), \cdots, (D_ng)(\mathbf{a})$$

at its mth row. For $j \neq m$, we have $\alpha_{jj} = 1$ and $\alpha_{ij} = 0$ if $i \neq j$. The Jacobian of ${\bf G}$ at ${\bf a}$ is thus given by

$$J_{\mathbf{G}}(\mathbf{a}) = \det[\mathbf{G}'(\mathbf{a})] = (D_m g)(\mathbf{a}),$$

and $G'(\mathbf{a})$ is invertible if and only if $(D_m g)(\mathbf{a}) \neq 0$.

Definition

A linear operator B on \mathbb{R}^n that interchanges some pair of members of the standard basis and leaves the other fixed will be called a *flip*.

For example,

$$B(x_1\mathbf{e}_1 + x_2\mathbf{e}_2 + x_3\mathbf{e}_3 + x_4\mathbf{e}_4) = x_1\mathbf{e}_1 + x_2\mathbf{e}_4 + x_3\mathbf{e}_3 + x_4\mathbf{e}_2$$

interchanges e_2 and e_4 , and thus is a flip.

In the proof that follows, we shall use the projections P_0, \cdots, P_n in \mathbb{R}^n defined by $P_0\mathbf{x} = \mathbf{0}$ and

$$P_m \mathbf{x} = x_1 \mathbf{e}_1 + \cdots x_m \mathbf{e}_m$$

for $1 \le m \le n$. Thus P_m is the projections whose range an null space are spanned by $\{e_1, \cdots, e_m\}$ and $\{e_{m+1}, \cdots, e_n\}$, respectively.

Theorem (10.7)

Suppose \mathbf{F} is a \mathscr{C}' -mapping of an open set $E \subset \mathbb{R}^n$ into \mathbb{R}^n , $\mathbf{0} \in E$, $\mathbf{F}(\mathbf{0}) = \mathbf{0}$, and $\mathbf{F}'(\mathbf{0})$ is invertible. Then there is a neighborhood of $\mathbf{0}$ in \mathbb{R}^n in which representation

$$\mathbf{F}(\mathbf{x}) = B_1 \cdots B_{n-1} \mathbf{G}_n \circ \cdots \circ \mathbf{G}_1(\mathbf{x})$$

is valid, where each G_i is a primitive \mathscr{C}' -mapping in some neighborhood of $G_i(0) = 0$, $G_i'(0) = 0$, is invertible, and each G_i is either a flip or the identity operator.

Primitive Mappings

Proof, Step1

Put $\mathbf{F} = \mathbf{F}_1$. Assume $1 \le m \le n-1$, and make the following induction hypothesis;

 V_m is a neighborhood of ${\bf 0}$, ${\bf F}_m\in \mathscr{C}'(V_m)$, ${\bf F}_m({\bf 0})={\bf 0}$, ${\bf F}'_m({\bf 0})$ is invertible, and

$$P_{m-1}\mathbf{F}_m(\mathbf{x}) = P_{m-1}\mathbf{x} \quad \mathbf{x} \in V_m.$$

Then,

$$\mathbf{F}_m(\mathbf{x}) = P_{m-1}\mathbf{x} + \sum_{i=m}^n \alpha_i(\mathbf{x})\mathbf{e}_i,$$

where $\alpha_m, \dots, \alpha_n$ are real \mathscr{C}' -functions in V_m .

Hence

$$\mathbf{F}'_m(\mathbf{0})\mathbf{e}_m = \sum_{i=m}^n (F_m \alpha_i)(\mathbf{0})\mathbf{e}_i.$$

Since $\mathbf{F}'_m(\mathbf{0})$ is invertible, the left side is not $\mathbf{0}$, and therefore there is a k such that $m \leq k \leq n$ and $(D_m \alpha)(\mathbf{0}) \neq 0$.

Proof, Step1

Put $\mathbf{F} = \mathbf{F}_1$. Assume $1 \le m \le n-1$, and make the following induction hypothesis;

 V_m is a neighborhood of ${\bf 0}$, ${\bf F}_m\in \mathscr{C}'(V_m)$, ${\bf F}_m({\bf 0})={\bf 0}$, ${\bf F}'_m({\bf 0})$ is invertible, and

$$P_{m-1}\mathbf{F}_m(\mathbf{x}) = P_{m-1}\mathbf{x} \quad \mathbf{x} \in V_m.$$

Let B_m be the flip that interchanges m and this k (if k=m, B_m is the identity) and define

$$\mathbf{G}_m(\mathbf{x}) = \mathbf{x} + [\alpha_k(\mathbf{x}) - x_k]\mathbf{e}_m \quad \mathbf{x} \in V_m.$$

Then $G_m \in \mathscr{C}'(V_m)$, G_m is primitive, and $G'_m(\mathbf{0})$ is invertible, since $(D_m \alpha_k)(\mathbf{0}) \neq 0$.

Proof, Step1

Put $\mathbf{F} = \mathbf{F}_1$. Assume $1 \le m \le n-1$, and make the following induction hypothesis;

 V_m is a neighborhood of $\mathbf{0}$, $\mathbf{F}_m \in \mathscr{C}'(V_m)$, $\mathbf{F}_m(\mathbf{0}) = \mathbf{0}$, $\mathbf{F}'_m(\mathbf{0})$ is invertible, and

$$P_{m-1}\mathbf{F}_m(\mathbf{x}) = P_{m-1}\mathbf{x} \quad \mathbf{x} \in V_m.$$

The inverse function theorem shows therefore that there is an open set U_m , with $\mathbf{0} \in U_m \subset V_m$, such that \mathbf{G}_m is a 1-1 mapping of U_m onto a neighborhood V_{m+1} of $\mathbf{0}$, in which \mathbf{G}_m^{-1} is continuously differentiable.

Define \mathbf{F}_{m+1} by

$$\mathbf{F}_{m+1}(\mathbf{y}) = B_m \mathbf{F}_m \circ \mathbf{G}_m^{-1}(\mathbf{y}) \quad \mathbf{y} \in V_{m+1}.$$

Then $\mathbf{F}_{m+1} \in \mathscr{C}'(V_{m+1})$, $\mathbf{F}_{m+1}(\mathbf{0}) = \mathbf{0}$, and $\mathbf{F}'_{m+1}(\mathbf{0})$ is invertible. Also, for $\mathbf{x} \in U_m$,

$$P_m \mathbf{F}_{m+1}(\mathbf{G}_m(\mathbf{x})) = P_m B_m \mathbf{F}_m(\mathbf{x}) = \dots = P_m \mathbf{G}_m(\mathbf{x}),$$

so that

$$P_m \mathbf{F}_{m+1}(\mathbf{y}) = P_m \mathbf{y} \quad \mathbf{y} \in V_{m+1}.$$

Primitive Mappings

Proof, Step2

Since $B_m B_m = I$, with $\mathbf{y} = \mathbf{G}_m(\mathbf{x})$, $\mathbf{F}_{m+1}(\mathbf{y}) = B_m \mathbf{F}_m \circ \mathbf{G}_m^{-1}(\mathbf{y})$ is equivalent to

$$\mathbf{F}_m(\mathbf{x}) = B_m \mathbf{F}_{m+1}(\mathbf{G}_m(\mathbf{x})) \quad \mathbf{x} \in U_m.$$

If we apply this with $m=1,\cdots,n-1$, we successively obtain

$$\mathbf{F} = \mathbf{F}_1 = B_1 \mathbf{F}_2 \circ \mathbf{G}_1$$

$$= B_1 B_2 \mathbf{F}_3 \circ \mathbf{G}_2 \circ \mathbf{G}_1 = \cdots$$

$$= B_1 \cdots B_{n-1} \mathbf{F}_n \circ \mathbf{G}_{n-1} \circ \cdots \circ \mathbf{G}_1$$

in some neighborhood of $\mathbf{0}$. By Step1, \mathbf{F}_n is primitive.

Partitions of Unity

Theorem (10.8)

Suppose K is a compact subset of \mathbb{R}^n , and $\{V_\alpha\}$ is an open cover of K. Then there exist functions $\psi_1, \dots, \psi_s \in \mathscr{C}(\mathbb{R}^n)$ such that

- (a) $0 \le \psi_i \le 1$ for $1 \le i \le s$;
- (b) each ψ_i has its support in some V_{α} , and
- (c) $\psi_1(\mathbf{x}) + \cdots + \psi_s(\mathbf{x}) = 1$ for every $\mathbf{x} \in K$.

Because of (c), $\{\psi_i\}$ is called a partition of unity, and (b) is sometimes expressed by saying that $\{\psi_i\}$ is subordinate to the cover $\{V_\alpha\}$.

Corollary

If $f \in \mathscr{C}(\mathbb{R}^n)$ and the support of f lies in K, then

$$f = \sum_{i=1}^{s} \psi_i f.$$

Each $\psi_i f$ has its support in some V_{α} .

Change of Variables

Theorem (10.9)

Suppose T is a 1-1 \mathscr{C}' -mapping of an open set $E \subset \mathbb{R}^k$ into \mathbb{R}^k such that $J_T(\mathbf{x}) \neq 0$ for all $\mathbf{x} \in E$. If f is a continuous function on \mathbb{R}^k whose support is compact and lines in T(E), then

$$\int_{\mathbb{R}^k} f(\mathbf{y}) \ d\mathbf{y} = \int_{\mathbb{R}^k} f(T(\mathbf{x})) |J_T(\mathbf{x})| \ d\mathbf{x}. \quad \cdots (*)$$

Proof

- \triangleright If T is a primitive \mathscr{C}' -mapping, or if T is a linear mapping which merely interchanges two coordinates, we are done.
- ▶ If the theorem is true for transformation P, Q, and if $S(\mathbf{x}) = P(Q(\mathbf{x}))$, then

$$\int f(\mathbf{z}) d\mathbf{z} = \dots = \int f(S(\mathbf{x}))|J_S(\mathbf{x})| d\mathbf{x}.$$

Thus the theorem is also true for S.

(continued)

Change of Variables

Theorem (10.9)

Suppose T is a 1-1 \mathscr{C}' -mapping of an open set $E \subset \mathbb{R}^k$ into \mathbb{R}^k such that $J_T(\mathbf{x}) \neq 0$ for all $\mathbf{x} \in E$. If f is a continuous function on \mathbb{R}^k whose support is compact and lines in T(E), then

$$\int_{\mathbb{R}^k} f(\mathbf{y}) \ d\mathbf{y} = \int_{\mathbb{R}^k} f(T(\mathbf{x})) |J_T(\mathbf{x})| \ d\mathbf{x}. \quad \cdots (*)$$

Proof

▶ Each point $a \in E$ has a neighborhood $U \subset E$ in which

$$T(\mathbf{x}) = T(\mathbf{a}) + B_1 \cdots B_{k-1} \mathbf{G}_k \circ \mathbf{G}_{k-1} \circ \cdots \circ \mathbf{G}_1(\mathbf{x} - \mathbf{a}),$$

where G_i and B_i are as in Theorem 10.7. Setting V = T(U), it follows that (*) holds if the support of f lies in V. Thus: Each point $\mathbf{y} \in T(E)$ lies in an open set $V_{\mathbf{y}} \subset T(E)$ such that (*) holds for all continuous functions whose support lies in $V_{\mathbf{y}}$.

Now let f be a continuous function with compact support $K \subset T(E)$. Since $\{V_{\mathbf{y}}\}$ covers K, $f = \sum \psi_i f$ where each ψ_i is continuous, and each ψ_i has its support in some $V_{\mathbf{y}}$. Thus (*) holds for each $\psi_i f$, and hence also for their sum f.

Ex 10.2

For $i=1,2,3,\cdots$, let $\varphi_i\in\mathscr{C}(\mathbb{R})$ have support in $(2^{-i},2^{1-i})$, such that $\int \varphi_i=1$. Put

$$f(x,y) = \sum_{i=1}^{\infty} [\varphi_i(x) - \varphi_{i+1}(x)]\varphi_i(y).$$

Then

- ightharpoonup f has compact support in \mathbb{R}^2
- ightharpoonup f is continuous except at (0,0)
- and

$$\int dy \int f(x,y) \ dx = 0 \quad \text{but} \quad \int dx \int f(x,y) \ dy = 1.$$

ightharpoonup Obseve that f is unbounded in every neighborhood of (0,0).

Exercises

Ex 10.3

(a) If \mathbf{F} is as in Theorem 10.7, put $\mathbf{A} = \mathbf{F}'(\mathbf{0})$, $\mathbf{F}_1(\mathbf{x}) = \mathbf{A}^{-1}\mathbf{F}(\mathbf{x})$. Then $\mathbf{F}'_1(\mathbf{0}) = \mathbf{I}$. Show that

$$\mathbf{F}_1(\mathbf{x}) = \mathbf{G}_n \circ \mathbf{G}_{n-1} \circ \cdots \circ \mathbf{G}_1(\mathbf{x})$$

in some neighborhood of 0. This gives another version of Theorem 10.7:

$$\mathbf{F}(\mathbf{x}) = \mathbf{F}'(\mathbf{0})\mathbf{G}_n \circ \mathbf{G}_{n-1} \circ \cdots \circ \mathbf{G}_1(\mathbf{x}).$$

(b) Prove that the mapping $(x,y) \to (y,x)$ of \mathbb{R}^2 onto \mathbb{R}^2 is not the composition of any two primitive mappings, in any neighborhood of the origin.

Ex 10.4

For $(x,y) \in \mathbb{R}^2$, define

$$\mathbf{F}(x,y) = (e^x \cos y - 1, e^x \sin y).$$

Prove that $\mathbf{F} = \mathbf{G}_2 \circ \mathbf{G}_1$, where

$$\mathbf{G}_1(x,y) = (e^x \cos y - 1, y)$$

$$\mathbf{G}_2(u,v) = (u, (1+u) \tan v)$$

are primitive in some neighborhood of (0,0).

Compute the Jacobians of G_1 , G_2 , F at (0,0). Define

$$\mathbf{H}_2(x,y) = (x, e^x \sin y)$$

and find

$$\mathbf{H}_1(u,v) = (h(u,v),v)$$

so that $\mathbf{F} = \mathbf{H}_1 \circ \mathbf{H}_2$ is some neighborhood of (0,0).

Integration
Primitive Mappings
Partitions of Unity
Change of Variables
Exercises

Exercises

Ex 10.5

Formulate and prove an analogue of Theorem 10.8, in which K is a compact subset of an arbitrary metric space.

Ex 10.6

Strengthen the conclusion of Theorem 10.8 by showing that the functions ψ_i can be made differentiable, and even infinitely differentiable.

Exercises

Ex 10.8

Let H be the parallelogram in \mathbb{R}^2 whose vertices are (1,1), (3,2), (4,5), (2,4). Find the affine map T which sends (0,0) to (1,1), (1,0) to (3,2), (0,1) to (2,4). Show that $J_T=5$. Use T to convert the integral

$$\alpha = \int_{H} e^{x-y} dx dy$$

to an integral over I^2 and thus compute α .

Exercises

Ex 10.12

▶ Let I^k be the set of all $\mathbf{u} = (u_1, \dots, u_k) \in \mathbb{R}^k$ with $0 \le u_k \le 1$ for all i; let Q^k be the set of all $\mathbf{x} = (x_1, \dots, x_k) \in \mathbb{R}^k$ with $x_i \geq 0$, $\sum x_i \leq 1$. Define $\mathbf{x} = T\mathbf{u}$ by

$$x_1 = u_1$$

 $x_2 = (1 - u_1)u_2$
...
 $x_k = (1 - u_1) \cdots (1 - u_{k-1})u_k$.

Show that

$$\sum_{i=1}^{k} x_i = 1 - \prod_{i=1}^{k} (1 - u_i).$$

Ex 10.12

Show that T maps I^k onto Q^k , that T is 1-1 in the interior of I^k , and that its inverse S is defined in the interior of Q^k by $u_1 = x_1$ and

$$u_i = \frac{x_i}{1 - x_1 - \dots - x_{i-1}}$$

for $i=2,\cdots,k$. Show that

$$J_T(\mathbf{u}) = (1 - u_1)^{k-1} (1 - u_2)^{k-2} \cdots (1 - u_{k-1}),$$

and

$$J_S(\mathbf{x}) = [(1 - x_1)(1 - x_1 - x_2) \cdots (1 - x_1 - \cdots - x_{k-1})]^{-1}.$$

Ex 10.13

Let r_1, \dots, r_k be nonnegative integers, and prove that

$$\int_{Q^k} x_1^{r_1} \cdots x_k^{r_k} dx = \frac{r_1! \cdots r_k!}{(k + r_1 + \dots + r_k)!}$$

The End