Formation of the first low-mass stars from cosmological initial conditions

C. Safranek-Shrader, M. Milosavljevic, V. Bromm 2014

Modern Star Formation

Molecular clouds with supersonic turbulence SF dominated by shock compression → Jeans unstable

Fragmentation governed by:

Turbulence, rotational, magnetic field support

Complex rel. between heating and cooling

Star Formation peaks at $\sim 0.1 - 0.5$ Msun

Early Star Formation is Different

Pop III stars:

Formed from pristine $(Z \sim 0)$ gas

H₂ Cooling essential (and inefficient)

CMB temperature sets cooling floor

Typical star more massive (maybe ~ 100Msun)

Produced the first metals that affect future SF

How did Pop III → Pop I

Dust and metals change the game completely Not clear which is dominant effect....

Possible observables:

- 1) Nature of reionization
- 2) Still alive today in metal poor regions
- 3) Observed directly at high z with JWST

Simulating the first metal stars

Perform a cut-out simulation of previous work

Cosmological simulation

Large (million solar mass halo)

Initially pristine, populated with metals

Evolved to "star" formation

Resolution limited

Want to resolve fragmentation at all scales

All of the fancy physics

FLASH – grid based, AMR hydro code High resolution (n ~ 10^7 - 10^{13} cm⁻³) Sink particle formation for stars Include:

Non-eq primordial chemical network (12 species)

Populate metal chemistry (C,C+, Si, Si+, O,O+)

Coupling between dust and gas (cooling and heating)

Optically thick to line cooling

Coupling between dust and gas causes cooling

Adiabatic Evolution of Gas

Filamentary Star Formation

Sink particle formation in filament

Supersonic, colliding flow of gas

Filament fragmentation

Discy structures → Sites of SF

With / without dust heating:

37 vs 46 sink particles

15 vs 16 total solar masses

Collapse and Star Formation

Forming in Filamentary Flows

Zooming in on the SF filament

Formation in Discy Flows

Star forming discs at the core of the flow

Sink Mass Function

Sink Accretion over Time

Summary

Explored to high resolution the first stages of star formation of the first metal stars

Sink IMF is tentatively consistent with UDF galaxies

Dust heating affects low mass fragmentation

What to do from here....

Characterization of role of turbulence

Inclusion of magnetic field support (MHD)

More realistic metal population model (explore inhomogeneities)

With much more computing power...

Higher resolution to resolve ALL fragmentation

Run simulation much longer

Requires larger box (boundary conditions problems)

higher resolution

Would need to worry about SF feedback

Currently unfeasible:

Full box simulation down to current res, not cut out