CHAPTER 2 Information Gathering and Vulnerability Scanning

Episode 2.01 - Scanning and Enumeration

Objective 2.2 Given a scenario, perform active reconnaissance

PENTEST+ EXAM DOMAINS

DOMAIN	PERCENTAGE OF EXAM
1.0 Planning and Scoping	14%
2.0 Information Gathering and Vulnerability Scanning	22%
3.0 Attacks and Exploits	30%
4.0 Reporting and Communication	18%
5.0 Tools and Code Analysis	16%
TOTAL	100%

INFORMATION GATHERING

Scanning

- Process of looking at some number of "things" to determine characteristics
- Commonly used in pen testing to uncover target vulnerabilities
- Many types of scan targets
 - Networks
 - Network devices
 - Computers
 - Applications/services

ENUMERATION

- Counting the detected instances of some target class
- Pen testing target classes
 - Hosts
 - Networks
 - Domains
 - Users
 - Groups
 - Network shares

- Web pages
- Applications
- Services
- Tokens
- Social networking sites

QUICK REVIEW

- Scanning helps to determine what is "out there"
- Don't just scan for computers look for all devices and services
- Start collecting and classifying target information
- Use more than just utilities that scan networks

Episode 2.02 - Scanning and Demo

Objective

2.3 Given a scenario, analyze the results of a reconnaissance exercise

2.4 Given a scenario, perform vulnerability scanning

SCANNING AND ENUMERATION DEMO – NMAP AND WHOIS

- Nmap demo
- Whois demo

QUICK REVIEW

- nmap is the most common tool you'll see on the exam
- Know how to use nmap and what the main options do
- Be able to explain nmap output

Episode 2.03 - Packet Investigation

Objective

2.2 Given a scenario, perform active reconnaissance

2.3 Given a scenario, analyze the results of a reconnaissance exercise

PACKET INVESTIGATION

- Packet crafting
 - Creating specific network packets to gather information or carry out attacks
 - Tools netcat, nc, ncat, hping
- Packet inspection
 - Capturing and analyzing network packets
 - Wireshark

INSPECTING TARGETS

- Fingerprinting
 - Determining OS type and version a target is running
- Cryptography
 - Inspecting certificates

EAVESDROPPING

- RF communication monitoring
- Sniffing
 - Intercepting packets and inspecting their contents
 - Wired
 - Wireshark and tcpdump
 - Wireless
 - Aircrack-ng

QUICK REVIEW

- netcat, nc, ncat, and hping can all help craft packets
- Constructed packets can help determine what a target is
- Wireshark is a common packet capture and inspection tool
- Fingerprinting tells you what operating systems your targets are running

Episode 2.04 - Packet Inspection Demo

Objective 2.2 Given a scenario, perform active reconnaissance

PACKET INSPECTION DEMO

• Wireshark Demo

QUICK REVIEW

- Wireshark allows you to inspect network traffic
- Useful to see what is being sent between nodes
- Practice examining network traffic in your lab

Objective (none)

Lab: Introducing Labtainers

- Labtainers overview
 - https://nps.edu/web/c3o/labtainers
- Installing Virtualbox
 - https://www.virtualbox.org/
- Downloading Labtainers appliance
- Installing Labtainers
- Configuring/updating Labtainers
 - https://nps.edu/web/c3o/support1
- Launching Labtainers

Episode 2.06 – Labtainers Lab (Wireshark)

Objective 2.2 Given a scenario, perform active reconnaissance

Episode 2.07 - Application and Open-Source Resources

Objective 2.1 Given a scenario, perform passive reconnaissance

DECOMPILATION

- Compiler translates source code into executable instructions
- Decomompiler –
 attempts to convert
 executable instructions
 back into source code
 - Output is generally awkward to read at best
- Sometimes target is not a direct executable (i.e. Java)

DEBUGGING

- Running an executable in a controlled manner
- Debuggers make it easy to stop and examine memory at will
- Can reveal a program's secrets and weaknesses
- Tools windbg

OPEN SOURCE INTELLIGENCE GATHERING

- Open Source Intelligence Gathering (OSINT)
- Sources of research
 - CERT (Computer Emergency Response Team) https://www.us-cert.gov/
 - NIST (National Institute of Standards and Technology) https://csrc.nist.gov/
 - JPCERT (Japan's CERT) https://www.jpcert.or.jp/english/vh/project.html

OPEN SOURCE INTELLIGENCE GATHERING, cont'd

- More sources of research
 - CAPEC (Common Attack Pattern Enumeration & Classification) https://capec.mitre.org/
 - Full disclosure Popular mailing list from the folks who brought us nmap http://seclists.org/fulldisclosure/
 - CVE (Common Vulnerabilities and Exposures) https://cve.mitre.org/
 - CWE (Common Weakness Enumeration) https://cwe.mitre.org/

QUICK REVIEW

- Decompilers and debuggers can help to see what a program is doing
- Lots of useful attack information is available online
- Use scan output to determine target vulnerabilities
- Efficient penetration testing depends on correlated information

Episode 2.08 –Passive Reconnaissance

Objective 2.1 Given a scenario, perform passive reconnaissance

- Cloud vs. self-hosted
- Social media scraping
- Cryptographic flaws
 - Secure Sockets Layer (SSL) certificates
 - https://gbhackers.com/testssl-sh-tls-ssl-vulnerabilities/
 - Revocation
 - Learn how and why tokens are revoked
 - Avoid allowing revocation of tokens used in tests

- Data
 - Password dumps
 - https://haveibeenpwned.com/
 - File metadata
 - Location/date/time/additional info
 - Strategic search engine analysis and enumeration
 - Shodan
 - https://www.shodan.io/
 - Censys
 - https://censys.io/

- Data
 - Web site archiving and caching
 - https://www.exploit-db.com/google-hacking-database
 - Waybackmachine
 - https://archive.org/

- Data
 - Public source code repositories
 - GitHub
 - https://github.com/
 - Sourceforge
 - https://sourceforge.net/
 - Bitbucket
 - https://bitbucket.org/

OPEN-SOURCE INTELLIGENCE (OSINT)

- Tools
 - Recon-ng
 - https://www.kali.org/tools/recon-ng/
 - ThreatPinchLookup
 - https://github.com/cloudtracer/ThreatPinchLookup
 - vFeed
 - https://github.com/toolswatch/vFeed
 - Vulnix
 - https://github.com/flyingcircusio/vulnix
 - Great list of OSINT tools
 - https://securitytrails.com/blog/osint-tools

OPEN-SOURCE INTELLIGENCE (OSINT)

- Sources
 - National Vulnerability Database (NVD)
 - https://nvd.nist.gov/
 - CVE versus NVD?
 - https://cve.mitre.org/about/cve and nvd relationship.
 html

QUICK REVIEW

- Passive reconnaissance collects information without announcing attention
- Tactics include collecting external data
- Published information and social media are common sources

Episode 2.09 Active Reconnaissance

Objective 2.2 - Given a scenario, perform active reconnaissance

- Defense detection
 - Load balancer detection
 - Web application firewall (WAF) detection
 - WafWoof (Python tool)
 - https://github.com/sandrogauci/wafwoof
 - http-waf-detect nmap script
 - https://nmap.org/nsedoc/scripts/http-waf-detect.html

PERFORM ACTIVE RECONNAISSANCE

- Defense detection
 - Antivirus
 - Examine e-mail headers and footers
 - BeEF / mitmf (Kali)
 - https://securityonline.info/detect-antivirus-software-victim-machine-without-user-interaction/
 - Firewall
 - Firewalk (Kali)
 - https://www.kali.org/tools/firewalk/

PERFORM ACTIVE RECONNAISSANCE

- Wardriving
 - Great overview/resource
 - https://www.geeksforgeeks.org/wardrivingintroduction/
- Cloud asset discovery
 - CloudBrute (Kali)
 - https://www.kali.org/tools/cloudbrute/
 - OWASP Amass
 - https://github.com/OWASP/Amass

PERFORM ACTIVE RECONNAISSANCE

- Third-party hosted services
 - Similar approach to cloud asset discovery
 - Often more restrictions (external)
- Detection avoidance
 - Passive reconnaissance presents the lowest risk of detection
 - Active reconnaissance options may be noisy and more likely to trigger alarms
 - Determine the level of stealth desired

QUICK REVIEW

- Active reconnaissance collects information directly from a target's environment
- Easier to detect than passive techniques
- Often returns more detailed information
- Useful in identifying targets and developing specific attacks

Episode 2.10 - Vulnerability Scanning

Objective 2.4 Given a scenario, perform vulnerability scanning

VULNERABILITY SCAN

- Structured approach to examining targets to identify known weaknesses
- Many different types
- Determine if any known weaknesses exist

CREDENTIALED VS. NON-CREDENTIALED

- Credentialed (authenticated) accessing resources using valid credentials
 - More detailed, accurate information
- Non-credentialed (non-authenticated) anonymous access to exposed resources
 - Fewer details, often used in early phases of attacks/tests

TYPES OF SCANS

- Discovery scan used to find potential targets
 - Identity/info gathering early on
 - nmap ping sweep
 - nmap –sP target

TYPES OF SCANS

- Full scan scans ports, services, and vulnerabilities
 - Full scan with fingerprinting
 - nmap –A <target>
 - Not stealthy
 - perl nikto.pl -h <target>
 - OpenVAS
 - Open-source version of Nessus
- Port scan
 - nmap -p <ports> <target>v

TYPES OF SCANS

- Stealth scan attempt to avoid tripping defensive control thresholds
 - nmap -sS <target>
- Compliance scan for specific known vulnerabilities that would make a system noncompliant

QUICK REVIEW

- Structured approach to discovering target vulnerabilities
- Correlates known vulnerabilities with target characteristics
- Scans can be general (find any weaknesses) or targeted (see if specific weaknesses exist)
- Scans can range from quiet to very noisy

Episode 2.11 - Vulnerability Scanning Demo

Objective 2.4 Given a scenario, perform vulnerability scanning

Scanning Demo

- Nmap
- Nikto
- OpenVAS

QUICK REVIEW

- Practice with various nmap scan options
- Use Nikto to perform your own scans in the lab environment
- Try using OpenVAS to perform different scans in your lab

Episode 2.12 Labtainers Lab (Network Basics)

Objective 2.2 Given a scenario, perform active reconnaissance

Lab – Networking: network-basics

• Intro lab

Episode 2.13 Labtainers Lab (Nmap Discovery)

Objective 2.4 Given a scenario, perform vulnerability scanning

Lab – Networking: nmap-discovery

Show ssh

Episode 2.14 - Target Considerations

Objective 2.4 Given a scenario, perform vulnerability scanning

CONTAINER

- Lightweight instance of a VM
 - Runs on top of host OS
- Docker, Puppet, Vagrant

APPLICATION SCAN

- Dynamic analysis
 - Target environment is running and responds to queries
- Static analysis
 - Collect artifacts for post-execution analysis

SCANNING CONSIDERATIONS

- Time to run scans
 - Approved schedule (planning)
- Protocols used
 - Largely dependent on target selection
- Network topology
 - Network layout (diagram) of test targets
- Bandwidth limitations
 - Tolerance to impact (affects availability)

SCANNING CONSIDERATIONS

- Query throttling
 - Slow down test iterations to avoid exceeding bandwidth
 - nmap -T
- Fragile systems/nontraditional assets
 - How to avoid impacting fragile mission critical systems?

ANALYZE SCAN RESULTS

- Asset categorization
 - Identify and rank assets by relative value
 - Vulnerable assets with little value could be a waste of time
- Adjudication
 - Determine which results are valid
 - False positives
 - Filter out false positives

ANALYZE SCAN RESULTS, cont'd

- Prioritization of vulnerabilities
 - Highest impact vulnerabilities ease of exploit vs. payoff
- Common themes
 - Vulnerabilities
 - Observations
 - Lack of best practices

QUICK REVIEW

- Know how to determine if targets are physical machines or are virtualized (i.e. footprinting)
- Be aware of client restrictions when running scans (i.e. bandwidth use, schedule, etc.)
- Don't waste time on results that have little value focus on the most meaningful results
- Prioritize the highest impact vulnerabilities

Episode 2.15 Analyzing Scan Output

Objective 2.3 Given a scenario, analyze the results of a reconnaissance exercise

- DNS lookups
 - Nslookup
 - Whois
 - https://www.whois.com/whois/

- Crawling websites
 - Netcat
 - W3af
 - http://w3af.org/
 - Burp Suite (Kali)
 - https://www.kali.org/tools/burpsuite/
 - Crawlergo
 - https://hacker-gadgets.com/blog/2021/10/15/crawlergo-a-powerful-browser-crawler-for-web-vulnerability-scanners/
 - OWASP zaproxy (Kali)
 - https://www.kali.org/tools/zaproxy/

- Network traffic
 - Wireshark
 - https://www.wireshark.org/
- Address Resolution Protocol (ARP) traffic
 - Wireshark
 - https://www.wireshark.org/

- Nmap scans
- Web logs
 - IIS
 - https://www.sumologic.com/blog/iis-logs/
 - Apache
 - https://linuxconfig.org/how-to-analyze-and-interpret-apache-webserver-log

QUICK REVIEW

- Different tools provide different levels of details
- Analyzing tool output identifies important information
- Provides input for building an attack plan

Episode 2.16 – Nmap Scoping and Output Options

Objective 2.4 Given a scenario, perform vulnerability scanning

NMAP

- nmap (Network Mapper)
 - One of the most common and most useful tools for reconnaissance
 - nmap -A does much of what we're about to see

SYN SCAN vs. FULL CONNECT SCAN

- SYN (stealth) scan
 - nmap –sS target
 - Sends SYN packet and examines response (SYN/ACK means the port is open)
 - If SYN/ACK received, nmap sends RST to terminate the connection request
- Full connect scan
 - nmap –sT target
 - Completes the handshake steps to establish a connection (more reliable)

PORT SELECTION (-p)

- Scans a range of ports
 nmap-p <range of
 ports> target
 - -p 21
 - -p 1-10000
 - -p U:53,137,161T:21-37,80,8080
 - OR –exclude-port <range of ports>

SERVICE IDENTIFICATION (-sV)

- Service identification (-sV)
 - nmap -sV <target>
 - Attempts to determine service and version info
 - --version-intensity<level>, where levelcan be o (light) to 9(execute all probes)

TIMING (-T)

- Changes how long
 nmap waits for a
 response (default is –
 T 3)
 - Values range from o (Paranoid, slow) to 5 (Insane, fast)

OUTPUT PARAMETERS

- -oA Combined format
 - Normal .txt, XML .xml, and grepable .txt
- -oN
 - Normal output file (.nmap)
- -oG
 - Grepable output file (.gnmap)
- -oX
 - XML output format (.xml)

GATHERING INFORMATION WITH NMAP

- OS fingerprinting (-O)
 - Detects target OS
 - nmap -O <target>
- Disabling ping (-Pn)
 - Skips host discovery (assumes all are online)
 - nmap -Pn <target>

GATHERING INFORMATION WITH NMAP

- Target input file (-iL)
 - Uses a text file that contains a list of targets
 - nmap -iL <inputFileName>
 - Can also exclude targets from a range
 - nmap –excludefile <excludeFileName>

QUICK REVIEW

- Stealth scans (nmap -sS <target>) create fewer network packets than full connect scans (nmap -sT <target>)
- Nmap service identification (nmap -sV <target>) attempts to identify the service and version monitoring each port
- Nmap returns results faster if targets aren't pinged and are just assumed they're alive (nmap -Pn <targets>)
- To avoid detection, use the nmap timing option with a lower number (nmap -T0 <target> or nmap -T1 <target>)

Episode 2.17 - Nmap Timing and Performance Options

Objective 2.4 Given a scenario, perform vulnerability scanning

Scanning demo

• Nmap demo

QUICK REVIEW

- Understand the nmap timing option values (-T 0-5)
- Be able to explain what actions nmap -A performs
- Show how to restrict nmap scans to specific ports

Episode 2.18 - Prioritization of Vulnerabilities

Objective 2.4 Given a scenario, perform vulnerability scanning

LEVERAGE INFORMATION

- Leveraging information to prepare for exploitation
- Map vulnerabilities to potential exploits
 - Look up vulnerabilities found for possible exploits
 - Nmap vulners and vulscan scripts
 - Metasploit (search vulnerability)

LEVERAGE INFORMATION

- Prioritize activities in preparation for penetration test
 - Will standard exploits work?
 - Will exploits need to be 'tweaked'?
 - Additional steps to prepare test?

Demo

• Demo

QUICK REVIEW

- A key step in pen test planning is to map vulnerabilities to potential exploits
- Use nmap scripts (vulners and vulscan) to find exploits for detected vulnerabilities
- Use Metasploit to search for exploits

Episode 2.19 - Common Attack Techniques

Objective 2.4 Given a scenario, perform vulnerability scanning

COMMON ATTACK TECHNIQUES

- Some Windows
 exploits can be run in
 Linux
- Cross-compiling code
 - Compile exploit for another OS
 - https://www.hackingtutor
 ials.org/exploit tutorials/mingw-w64 how-to-compile-windows exploits-on-kali-linux/

COMMON ATTACK TECHNIQUES

- Exploit modification
 - May need to modify for success of evasion
- Exploit chaining
 - Compromise one device/system to gain access to another
- Proof-of-concept development
 - Exploit development

COMMON ATTACK TECHNIQUES

- Social engineering
 - Help me
 - Urgent
 - Deceptive
- Credential brute forcing
- Enlightened attacks
 - Dictionary
 - Rainbow table

QUICK REVIEW

- Some exploits may need "tweaking" to work in your tests
- Be able to recognize exploit chaining
- Many exploits involve some social engineering
- Credential attacks are time consuming and are rarely carried out as pure brute force attacks

Episode 2.20 Automating Vulnerability Scans

Objective 2.4 Given a scenario, perform vulnerability scanning

AUTOMATION

- Repeatability
- Minimal interaction
- Exception-only notification
- Must handle multiple environments
 - Multi-OS
 - Cloud, on-premises, and third-party

VULNERABILITY TOOLS AND AUTOMATION

- Command-line tools are easy to automate
 - Scripts
 - Schedulers
 - Analysis to minimize false positives

QUICK REVIEW

- Automation makes actions repeatable
- Increases speed and quality
- Easier to carry out multiple actions with minimal interaction

Objective (none)

Demo – Password cracking

- Demo Hydra
- Bad usernames and passwords
 - Daniel Miessler's SecLists https://github.com/danielmiessler/SecLists/tree/m aster/Passwords

QUICK REVIEW

- Most credential attacks depend on good dictionaries
- Each pen tester must maintain username and password lists for credential attacks
- Start with good online resources, and modify for your own purposes

Episode 2.22 - Labtainers Lab (Password Cracking)

Objective 2.1 Given a scenario, perform passive reconnaissance

Lab Systems Security & Operations: passcrack

• Intro lab

Episode 2.23 - Labtainers Lab (Secure Socket Layers)

Objective 2.1 Given a scenario, perform passive reconnaissance

Lab – Crypto Labs: ssl

- Intro purpose of lab
 - SSL demo
 - Wireshark

Episode 2.24 - Labtainers Lab (Routing Basics)

Objective 2.1 Given a scenario, perform passive reconnaissance

Lab – Networking: routing-basics

• Intro lab