HEC MONTREAL

3 mars 2021

Contenu

- Mise en contexte
- Modèle de régression logistique
- Interprétation des paramètres
- Tests d'hypothèses
- Calcul de prévision

Top 10 Algorithms & Methods used by Data Scientists

4.1 Introduction

Mise en contexte : L'exemple d'une pharmacie

4.1 Introduction

Post-campagne sur les cosmétiques

Envoi d'un courriel aux clients OR

 « 20% de rabais durant 3 jours sur les cosmétiques »
 N=6000 clients ciblés

Campagne

2500 clients viennent acheter des cosmétiques et bénéficient du rabais de 20%.

Post-campagne

Quelles sont les caractéristiques qui distinguent les clients qui ont bénéficié de l'offre de ceux qui n'ont pas bénéficié de l'offre?

Explicatif?

Prédictif?

4.1 Introduction

Déterminer la meilleure offre pour un client

Offres promotionnelles

Le client recevra une offre parmi 3 offres possibles.

N=6000 clients ciblés

Probabilité de profiter de l'offre

Calculer la probabilité pour chaque client de profiter de chacune des 3 offres.

Campagne

Envoi d'un courriel avec l'offre la plus pertinente pour chacun des clients.

Produits pour bébé

Cosmétiques

Produits nettoyants

Explicatif? Prédictif?

HEC MONTREAL

4.2 Modèle de régression logistique

Rappel: Régression linéaire

Caractéristiques :

- La formule de la régression est l'équation d'une droite linéaire.
- Cette droite varie entre -l'infini et +l'infini
- Cette méthode est appropriée pour modéliser une variable sur une échelle continue.

Que se passe-t-il si notre cible est plutôt une variable binaire (oui / non)?

4.2 Modèle de régression logistique

Comment modéliser une variable cible binaire?

Cible

ID	Sexe	Age	Intérêt	Probabilité de quitt
1	Femme	35	oui	40%
2	Femme	43	oui	60%
3	Homme	28	non	30%
4	Homme	62	non	70%
5	Homme	46	oui	40%

• Le but est de pouvoir modéliser p en fonction de plusieurs variables indépendantes X_i

Cependant, p varie entre 0 et 1.

La probabilité (p) varie entre 0 et 1

4.4 Exemple du PRCA

• Choix de la catégorie de référence :

X1:Quel genre d'emploi occupez-vous?	Proportion de y=1
1=à la maison	59%
2=employé	45%
3=ventes/services	51%
4=professionnel	33%
5=agriculture/ferme	56%

```
Dproc logistic data=multi.logit1 ;
class x1(ref=last) / param=ref;
model y(ref='0') = x1 / clparm=pl clodds=pl expb;
run;
```

La catégorie de référence est 5= agriculture/ferme

	Analysis of Maximum Likelihood Estimates						
Parameter		DF	Estimate	Standard Error	Wald Chi-Square	Pr > ChiSq	Exp(Est)
Intercept		1	0.2549	0.2393	1.1347	0.2868	1.290
x1	1	1	0.0899	0.3972	0.0513	0.8208	1.094
x1	2	1	-0.4406	0.3076	2.0518	0.1520	0.644
x1	3	1	-0.2226	0.2992	0.5536	0.4568	0.800
x1	4	1	-0.9480	0.2934	10.4366	0.0012	0.388

3 mars 2021

4.4 Exemple du PRCA

• Choix de la catégorie de référence :

X1:Quel genre d'emploi occupez-vous?	Proportion de y=1
1=à la maison	59%
2=employé	45%
3=ventes/services	51%
4=professionnel	33%
5=agriculture/ferme	56%

La catégorie de référence est 4= professionnel

	Analysis of Maximum Likelihood Estimates							
Parameter		DF	Estimate	Standard Error	Wald Chi-Square	Pr > ChiSq	Exp(Est)	
Intercept		1	-0.6931	0.1698	16.6523	<.0001	0.500	
x1	1	1	1.0379	0.3596	8.3291	0.0039	2.823	
x1	2	1	0.5073	0.2573	3.8881	0.0486	1.661	
x1	3	1	0.7253	0.2472	8.6088	0.0033	2.065	
x1	5	1	0.9480	0.2934	10.4366	0.0012	2.580	

3 mars 2021

4.4.5 Test du rapport de vraisemblance

Modèle complet : X1 X2 X3 X5 X5 X6

Model Fit Statistics					
Criterion	Intercept Only	Intercept a			
AIC	691.270		544.196		
SC	695.485		603.201		
-2 Log L	689.270		516.196		

Modèle partiel: X1 X2 X3 X5 X5

Model Fit Statistics					
Criterion Intercept Only Covariat					
AIC	691.270		590.447		
SC	695.485		641.022		
-2 Log L	689.270		566.447		

566.447 – 516.196 = 49.487

Nombre de degrés de liberté = 2

 Il s'agit du nombre de paramètres de plus qui sont estimés dans le modèle complet par rapport au modèle partiel.

4.5 Classification (prévision)

 Pour classifier des observations, il suffit de choisir un point de coupure (souvent 0,5 mais pas toujours).

	Response Value	Estimated Probability		
0	1	0.4008266813	_ ^ 1	^ .
0	1	0.5077519353	$\rightarrow y = 1 \ car$	p > 0,5
0	1	0.4008266813		1
1	1	0.5077519353		
1	1	0.5077519353	_ ^ ^	^ ^
0	1	0.4008266813	$\rightarrow v = 0 \ car$	p < 0.5
0	1	0.4008266813		1
0	1	0.5077519353		
1	1	0.5077519353		
0	1	0.5077519353		
1	1	0.5077519353		
0	1	0.4008266813		
1	1	0.5077519353		
1	1	0.4008266813		
0	1	0.5077519353		
	0 0 1 1	0 1 0 1 0 1 1 1 1	0 1 0.4008266813 0 1 0.5077519353 0 1 0.4008266813 1 1 0.5077519353 1 1 0.5077519353 0 1 0.4008266813 0 1 0.4008266813 0 1 0.5077519353 1 1 0.5077519353 0 1 0.5077519353 1 1 0.5077519353 0 1 0.4008266813 1 1 0.5077519353 1 1 0.4008266813 1 1 0.4008266813 1 1 0.4008266813	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

4.5 Classification (prévision)

Taux de bons classements

Discrimination parfaite (impossible en pratique)

Situation observée

