机器学习第二次作业

姓名: 刘文晨

学号: 202222280328

1. 下列数据时水泥释放的热量与其成分的关系: 求其线性 依赖关系

у	x1	x2	х3	х4
78.5	7	26	6	60
74.3	1	29	15	52
104.3	11	56	8	20
87.6	11	31	8	47
95.9	7	52	6	33
109.2	11	55	9	22
102.7	3	71	17	6
72.5	1	31	22	44
93.1	2	54	18	22
115.9	21	47	4	26
83.8	1	40	23	34
113.3	11	66	9	12
109.4	10	68	8	12

将上述数据用excel保存,命名为data.xlsx。

编写Python代码:

```
import pandas as pd
import statsmodels.api as sm

data = pd.read_excel('data.xlsx')
data.columns = ['y', 'x1', 'x2', 'x3', 'x4']
# 生成自变量
x = sm.add_constant(data.iloc[:, 1:])
# 生成因变量
y = data['y']
# 生成模型
model = sm.OLS(y, x)
# 模型拟合
result = model.fit()
```

运行结果:

Dep. Variab	le:		У	R-squa	red:		0.982
Model:			OLS	Adj. R	-squared:		0.974
Method:		Least Squa	ıres	F-stat	istic:		111.5
Date:		Tue, 11 Oct 2	2022	Prob (F-statistic):	4.76e-07
Time:		21:24	1:03	Log-Li	kelihood:		-26.918
No. Observat	tions:		13	AIC:			63.84
Df Residuals	5:		8	BIC:			66.66
<pre>Df Model:</pre>			4				
Covariance Type:							
		std err					
const	62.4054	70.071	0	.891	0.399	-99.179	223.989
x1	1.5511	0.745	2	.083	0.071	-0.166	3.269
x2	0.5102	0.724	0	.705	0.501	-1.159	2.179
x3	0.1019	0.755	0	.135	0.896	-1.638	1.842
x4	-0.1441	0.709	-0	.203	0.844	-1.779	1.491
omnibus:		0.	165	 Durbin	======= n-Watson:		2.053
Prob(Omnibus	s):	0.	921	Jarque	e-Bera (JB):		0.320
Skew:		0.	201	Prob(J	B):		0.852
Kurtosis:		2.	345	Cond.	No.		6.06e+03

- specified.
- [2] The condition number is large, 6.06e+03. This might indicate that there are strong multicollinearity or other numerical problems.

从上述结果描述,我们得到回归模型:

 $y = 62.4054 + 1.5511x_1 + 0.5102x_2 + 0.1019x_3 - 0.1441x_4$

从结果中还可以看出,Prob (F-statistic)为4.76e-07,其接近于零,说明我们的多元线性方程是显著的, 也就是y与 x_1 、 x_2 、 x_3 、 x_4 有着显著的线性关系,而R-squared是0.982,也说明这个线性关系比较显 著。

2. 经研究发现,学生用于购买书籍及课外读物的支出与本 人受教育年限和其家庭收入水平有关,对18名学生进行调 查的统计资料如下表所示, 求其回归模型

у	x1	x2
450.5	4	171.2

у	x1	x2
507.7	4	174.2
613.9	5	204.3
563.4	4	218.7
501.5	4	219.4
781.5	7	240.4
541.8	4	273.5
611.1	5	294.8
1222.1	10	330.2
793.2	7	333.1
660.8	5	366
792.7	6	350.9
580.8	4	357.9
612.7	5	359
890.8	7	371.9
1121	9	435.3
1094.2	8	523.9
1253	10	604.1

将上述数据用excel保存,命名为data.xlsx。

编写Python代码:

```
import pandas as pd
import statsmodels.api as sm

data = pd.read_excel('data.xlsx')
data.columns = ['y', 'x1', 'x2']
# 生成自变量
x = sm.add_constant(data.iloc[:, 1:])
# 生成因变量
y = data['y']
# 生成模型
model = sm.OLS(y, x)
# 模型拟合
result = model.fit()
# 模型描述
print(result.summary())
```

运行结果:

Dep. Varia	ble:		У	R-squa	red:		0.980
Model:			OLS	Adj. R	-squared:		0.977
Method:		Least Squa	res	F-stat	istic:		362.4
Date:	Т	ue, 11 Oct 2	022	Prob (F-statistic	:):	2.00e-13
Time:		22:22	:18	Log-Li	kelihood:		-89.942
No. Observ	ations:		18	AIC:			185.9
Df Residua	ls:		15	BIC:			188.6
<pre>Df Model:</pre>			2				
Covariance	Type:	nonrob	ust				
=======			=====				=======
		std err					
		30.322					
x1	104.3146	6.409	16	.276	0.000	90.654	117.975
x2	0.4022	0.116	3	.457	0.004	0.154	0.650
Omnibus:		0.	====: 776	===== Durbin			 2.561
Prob(Omnib	us):	0.	678	Jarque	-Bera (JB):		0.728
skew:		-0.	230	Prob(J	B):		0.695
Kurtosis:		2.	128	Cond.	No.		1.13e+03

Notes:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 1.13e+03. This might indicate that there are strong multicollinearity or other numerical problems.

从上述结果描述,我们得到回归模型: $y=-0.9756+104.3146x_1+0.4022x_2$

从结果中还可以看出,Prob (F-statistic)为2.00e-13,其接近于零,说明我们的多元线性方程是显著的,也就是y与 x_1 、 x_2 有着显著的线性关系,而R-squared是0.980,也说明这个线性关系比较显著。