結合深度學習預測站點供需量之 共享單車再配送路徑問題

Sharing Bicycle Redistribution Routing Problem Integrating Station Demand Forecasting Using Deep Learning

專題組員:顏語、鄭志權、謝惠喻、江詠筑

共享單車系統(Bicycle Sharing System, BSS)

提供單車租借服務

給予平台**租借費用**

使用者

成果

創造 最大 效益

- 1. 簡單租車手續
- 2. 不用受制於在店家定時定點交車、還車
- 3. 可利用物聯網確認租車相關即時資訊

- 1. 大量單車的停放、維護等問題。
- 2. 易出現沒車可租用或沒停車樁可停的情況。
- 3. 創建初期需投入大量資金成本

共享單車數量失衡問題之原因

地理位置:火車站出入口

• 尖峰時段:上下班時間流量難以平衡

• 天氣情況:壞、好天氣下單車供需難以平衡

解決辦法

貨車再配送 + 共享單車需求預測 (Vehicle Redistribution) (Demand Forecasting)

共享單車系統之貨車再配送(Vehicle redistribution)

研究問題

收送貨車輛途程問題 VRPPD

(Vehicle Routing Problem with Pickups and Deliveries)

共享單車需求之單車需求預測問題

(Bicycles Demand forecasting in Bicycle Sharing Systems)

研究問題

共享單車需求預測

(Bicycle-Sharing Demand Forecasting)

研究動機

過去 研究 1. 共享單車站點需求預測 🛅

問題

· 無法實際**調整**站點共享單車數量

2. 共享單車配送路徑規劃

問題

僅依照歷史資料進行路徑最佳化

過去環境≠未來環境

舊有的最佳化路徑無法套用

本篇 研究 需求 預測

再配送 路徑規劃

整合性系統

研究目的

最佳化目標

共享單車需求預測<mark>下之</mark>最佳化再配送路徑

大量歷史資料(大數據)

作業研究為基礎

架構數學模型

建立深度學習預測模型

運用基因演算法求解

有效提早解決各站點共享單車數量不平衡問題

站點內共享單車數量需求預測、共享單車最佳化再配送路徑文獻比較

	文獻 (作者及年分)	共享單車問題研究	重新定位 (靜態/動態)	考量外部因素 (站點、地理)	研究方法
	Nicolas et al. (2015)	預測站點中單車狀態概率 (單車不足 or 過多)			Queueing Model
需	Yuting et al. (2018)	預測站點中單車租賃數量			Multiple linear regression cision Tree · Random Forest
求 預	Bo et al. (2018)	預測站點中可用單車數量			LSTM · GRU Random Forest
測	Xu et al. (2019)	預測站點中可用單車數量		<u>(~)</u>	LSTM
規	Benchi,M et al. (2011)	最小距離再配送路徑規劃	靜態		Operation Research approximation algorithm
劃路	Hu et al. (2021)	營運成本與滿意度再平衡策略	動態		Aulti-objective optimization Genetic Algorithm
徑	Qin, M et al. (2021)	最小碳排放再配送路徑規劃	靜態		Tabu Search Algorithm
	Brink,J. et al. (2020)	共享單車最佳化再配送路徑	動態	— Approx	Inventory routing kimate dynamic programming
	本研究(2022)	站點單車供需預測下之 +最小距離和碳排放再平衡策略	動態	✓	Genetic Algorithm Back Propagation Network

排隊 理論

機器學習

數學 規劃

啟發式演算法

結合需求預測之共享單車再配送問題設定

Step 1 預測站點再配送調整之單車數量

Input:

任意時空條件下 某站點的資料

租借站點、時間、星期

單車入站數量 預測模型

單車出站數量 預測模型

(詳見研究方法)

Output:

- 1. 該時空條件下特定站點的 **單車預測入站數**量
- 2. 該時空條件下特定站點的 **單車預測出站數量**

(扣除)

站點	Α	В	С	D
單車預測 入站數量	10	7	3	4
單車預測 出站數量	5	14	3	6

站點所需調整之
單車數量
(移入 or 移出)移出
5台
7台
3台
3号
3号
3号
3号
3号
3号
3号
3号
3号
3号
3号
3号
3号
3号
3号
3号
3号
3号
3号
3号
3号
3号
3号
3号
3号
3号
3号
3号
3号
3号
3号
3号
3号
3号
3号
3号
3号
3号
3号
3号
3号
3号
3号
3号
3号
3号
3号
3号
3号
3号
3号
3号
3号
3号
3号
3号
3号
3号
3号
3号
3号
3号
3号
3号
3号
3号
3号
3号
3号
3号
3号
3号
3号
3号
3号
3号
3号
3号
3号
3号
3号
3号
3号
3号
3号
3号
3号
3号
3号
3号
3号
3号
3号
3号
3号
3号
3号
3号
3号
3号
3号
3号
3号
3号
3号
3号
3号
3号
3号
3号
3号
3号
3号
3号
3号
3号
3号
3号
3号
3号
3号
3号
3号
3号
3号
3号
3号
3号
3号
3号
3号
3号
3号
3号
3号
3号
3号
3号
3号
3号
3号
3号
3号
3号
3号
3号
3号
3号
3号
3号
3号
3号
3号
3号
3号
3号
3号
3号
3号
3号
3号
3号
3号
3号
3号
3号
3号
3号
3号
3号
3号
3号
3号
3号
3号
3号
3号
3号
3号
3号
3号
3号
3号
3号
3号
3号
3号
3号
3号
3号
3号
3号
3号
3号
3号
3号
3号
3号
3号
3号
3号
3号
3号
3号
3号
3号
3号
3号
3号
3号
3号
3号
3号
3号
3号
3号
3号
3号
3号
3号
3号
3号
3号
3号
3号
3号
3号
3号
3号
3号
3号
3号
3号
3号
3号
3号
3号
3号
3号
3号
3号
3号
3号
3号
3号
3号
3号
3号
3号
3号
3号
3号
3号
3号
3号
3号
3号
3号
3号
3号
3号
3号
3号
3号
3号
3号
3号
3号
3号
3号
3号
3号
3号
3号
3号
3号
3号
3号
3号
3号
3

收送貨車輛途程VRPPD問題設定

研究假設

研究假設:

- 1. 本研究由多輛貨車共同進行物流作業。
- 2. 貨車由調度中心(倉庫)出發,最後回到調度中心(倉庫)。
- 3. 本研究假設運送單車之貨車有容量上限,且是我們後續實驗的可調因素。
- 4. 研究對象為華盛頓特區 (Washington DC)的單車租借狀況,並篩選單車租賃 量前20大的站點個別進行模型建立及預測。
- 5. 各個站點在每隔1小時做一次預測及規劃,且此時間內可配送完成。

研究方法1/2:深度學習模型預測共享單車需求量

共享單車租賃資料分析:

時間區段和共享單車租借筆數(圖1)

月份和共享單車租借筆數(圖2)

年份和共享單車租借筆數(圖3)

,時間和月份是會影響共享單車租借狀況的特徵

特徵

星期,(額外新增的特徵)

使用One-Hot Encoding 的編碼方式

標籤

單車出站/進站數量(本研究分成出站/進站兩種預測模型)

研究方法1/2:深度學習模型預測共享單車需求量

使用兩種遞迴神經網路進行預測:LSTM、GRU

研究方向: 收送貨車輛途程問題 VRPPD (Vehicle Routing Problem with Pickups and Deliveries)

研究方法: 啟發式演算法 — 基因演算法 GA (Genetic Algorithm)

Input:

各站點所需調整的共享單車數量 (移入 or 移出)

站點	Α	В	С	D
站點所需 調整之 單車數量	移出 5台	移入 7台	無須調整	移出 2台

Output:

共享單車之貨車再配送路徑

目標式

Minimize
$$Z = \alpha z_1 + \beta z_2$$

 $x_{ij} = 1$ 若貨車從站點 i 行駛到站點 j $x_{ij} = 0$ 若貨車並未從站點 i 行駛到站點 j y_{ij} 站點 i 到站點j 貨車上的共享單車數量 d_{ij} 站點 i 到站點 j 的距離

$$= \alpha \times (\sum_{i=0}^{n} \sum_{j=0}^{n} X_{ij} d_{ij})$$

運輸成本

貨車可以承載的最大單車數量

$$+\beta \times (\sum_{i=1}^{n} \sum_{j=1}^{n} y_{ij} \times [(F^* - F)/Q] \times d_{ij} \times X_{ij})$$

碳排放成本

貨車滿載時的CO2排放因子 貨車空載時的CO2排放因子

限制式(1/2)

$$(1) s_i = p_i - y_i \ \forall i \in V$$

(2)
$$\sum_{i=0}^{n} x_{ij} = 1, \forall j \in V \setminus \{0\}$$

(3)
$$\sum_{j=0, i\neq j}^{n} x_{ij} = 1, \forall i \in V \setminus \{0\}$$

(4)
$$\sum_{i=0}^{n} x_{ip} = \sum_{i=0}^{n} x_{pj} \ i \neq p, j \neq p, \forall p \in V \setminus \{0\}$$
 每輛貨車到達某站點次數 = 離開次數

(5)
$$g_{ij} \in \mathbb{Z}^+$$
 and $g_{ij} \leq Q \times X_{ij} \quad \forall i, j \in V, i \neq j$

表示每輛貨車只會離開某站點一次

限制式(2/2)

(6)
$$\sum_{i=0}^{n} g_{ji} + p_{i} = \sum_{i=0}^{n} g_{ij} + q_{i}, \forall i \in V \setminus \{0\}$$

(7)
$$y_i = \begin{cases} min(q_i - p_i, y_{ij}), & if p_i - q_i < 0 \\ p_i - q_i, & if p_i - q_i > 0 \end{cases}, \forall i, j \in V$$
 若欲調整的單車超過空位數量,則只移動空位數量的單車

單車數量守恆

(8)
$$X_{ij} = \{0,1\}$$
 x 只能為 0 或 1

(10)
$$s_i \ge 0$$
, integer $\forall i \in V$ 某站點調整後單車數量須為正整數

預測模型架構(使用Keras的LSTM、GRU模型)

架構1 二層LSTM 一層Dropout (防止過擬和) 二層全連接層

損失函數:均方誤差 優化函數:Adam Epoch: 20 架構3 二層GRU 一層Dropout (防止過擬和) 二層全連接層

參數設定:

架構1:兩層LSTM

進站 模型 6 4 2

16

出站 模型

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

架構2:四層LSTM

架構3:兩層GRU

(X軸:20個不同站點、Y軸:MSE

架構1:兩層LSTM

進站 模型

出站 模型

架構2:四層LSTM

架構3:兩層GRU

(X軸:20個不同站點、Y軸:MAE

預測模型效能總結:

- 就預測能力而言,LSTM和GRU並未有過多差異
- · 就訓練模型的速度而言,GRU比LSTM相對較快

GRU	LSTM
2563.419477 秒	2693.252037 秒

• 隨著站點編號的增加發現預測誤差有遞減趨勢 (站點編號以單車進出總量由大到小排序)

實驗結果2/2:基因演算法模型

參數	n	f_c	F	η_p	α	g	$\theta_{\scriptscriptstyle S}$	Q	Q_0	С	F
值	20	10	0.7725	0.9	0.5	9.8	4.25	30	15	3	1.1017

- ightharpoonup對**四組**不同的 P_c 和 P_m 組合的參數設定進行收斂 速度分析
- ightharpoonup 當 $P_c = 0.8$ 和 $P_m = 0.1$ 時,可得最佳解

- $\mathbf{P}_c = 0.8 \mathbf{n} P_m = 0.1$ 時,最佳適應度值和平均適應度值的走向
- ■基因演算法應用於解決本研究問題時,可確實 收斂,且收斂速度非常快

實驗結果 2 / 2:基因演算法模型

• 設定1:

貨車最大載重Q	貨車初始載重 Q_0	貨車數量C	倉庫數量V
10	5	3, 4, 5	1

- 當共享單車再配送貨車最大載重量為10
- 初始載重量為5 (為最大載重量的50%)
- 我們推薦總距離最低之下碳排放最少的較理想共享單車系統規劃:
 - 貨車數量越少越好,其總距離越短,且碳排放越少
 - 在貨車最大載重量較少時,約7個站點分配一台貨車

設定1最佳值

Q	Q_0	С	P_{C}	P_m	Best distance
10	5	3	0.8	0.1	20.173188
10	5	4	0.8	0.1	20.792860
10	5	5	0.8	0.1	23.210680

實驗結果2/2:基因演算法模型

• 設定2:

貨車最大載重Q	貨車初始載重 Q_0	貨車數量C	倉庫數量V
20	5, 10, 15	3, 4, 5	1

- 當共享單車再配送貨車最大載重量為20
- 初始載重量為5、10和15 (為最大載重量的25%、50%和75%)
- 我們推薦總距離最低之下碳排放最少的較理想共享單車系統規劃:
 - 初始載重量之於最大載重量比例設置為50%~75%。
 - 平均4~7個站點分配一台貨車

Q	Q_0	С	P_c	P_m	Best distance
20	5	3	0.8	0.1	21.254345
20	5	4	0.8	0.1	20.270460
20	5	5	0.8	0.1	21.232755
20	10	3	0.8	0.1	17.383286
20	10	4	0.8	0.1	17.294051
20	10	5	0.8	0.1	18.457814
20	15	3	0.8	0.1	17.699186
20	15	4	0.8	0.1	19.660896
20	15	5	0.8	0.1	17.167029

實驗結果2/2:基因演算法模型

• 設定3:

貨車最大載重Q	貨車初始載重 Q_0	貨車數量C	倉庫數量V
30	10, 15, 20	3, 4, 5	1

- 當共享單車再配送貨車最大載重量為30
- 初始載重量為10、15和20 (為最大載重量的25%、50%和75%)
- 我們推薦總距離最低之下碳排放最少的較理想共享單車系統規劃:
 - 初始載重佔最大載重量的比例幾乎不影響適應度的值。
 - 平均5~7個站點分配一台貨車

設定3最佳值

Q	Q_0	С	P_{c}	P_m	Best distance
30	10	3	0.8	0.1	17.777345
30	10	4	0.8	0.1	18.580679
30	10	5	0.8	0.1	18.874622
30	15	3	0.8	0.1	17.189376
30	15	4	0.8	0.1	18.255538
30	15	5	0.8	0.1	18.255538
30	20	3	0.8	0.1	<u> 17.777345</u>
30	20	4	0.8	0.1	17.189376
30	20	5	0.8	0.1	18.457814

實驗結果 2/2: 基因演算法模型

實驗結果分析得知:

- 貨車載重量越大時,平均總距離越低,有助於漸少碳排放。
 - 1. 當貨車載重量=30,貨車數量越少越好。
 - 2. 當貨車載重量=20,初始載重量應 ≥ 10 ,且貨車數量不影響適應度的值。
 - 3. 當貨車載重量=10,初始載重量及貨車數量不影響適應度的值。
- 本研究能有效為共享單車系統縮短約36%的總距離,進而減少碳排放。

未來展望

● 共享單車站點供需量預測方面

- 未來可加入天氣或其他特徵來改善預測正確率。
- 期望未來能擴大可預測站點數量,增加系統可實用性規模。

● 再配送路徑方面

- 考量貨車到各站點路線之時間窗問題。
- 結合UI/UX前端網頁設計技術,將實際地圖及配送路線的功能視覺化。

