

Early Journal Content on JSTOR, Free to Anyone in the World

This article is one of nearly 500,000 scholarly works digitized and made freely available to everyone in the world by JSTOR.

Known as the Early Journal Content, this set of works include research articles, news, letters, and other writings published in more than 200 of the oldest leading academic journals. The works date from the mid-seventeenth to the early twentieth centuries.

We encourage people to read and share the Early Journal Content openly and to tell others that this resource exists. People may post this content online or redistribute in any way for non-commercial purposes.

Read more about Early Journal Content at http://about.jstor.org/participate-jstor/individuals/early-journal-content.

JSTOR is a digital library of academic journals, books, and primary source objects. JSTOR helps people discover, use, and build upon a wide range of content through a powerful research and teaching platform, and preserves this content for future generations. JSTOR is part of ITHAKA, a not-for-profit organization that also includes Ithaka S+R and Portico. For more information about JSTOR, please contact support@jstor.org.

- 174. Proposed by J. M. HOWIE, Professor of Mathematics, The Nebraska State Normal School, Peru, Neb.

 Describe a circle which shall pass through a given point and be tangent to two given circles.
- *** Solutions of these problems should be sent to B. F. Finkel not later than Nov. 10.

CALCULUS.

135. Proposed by COOPER D. SCHMITT, M. A., Professor of Mathematics, University of Tennessee, Knoxville, Tenn.

To find the equation of the evolute of the common catenary

$$y=(\frac{1}{2}c)(e^{c/x}+e^{-c/x}).$$

136. Proposed by G. B. M. ZERR, A. M., Ph. D., Professor of Chemistry and Physics, The Temple College, Philadelphia, Pa.

Evaluate the definite integral

$$\int_0^1 \int_0^1 \frac{v^{l-1}u^{m-1}(1-v^n)^{p-1}(1-u^s)^{r-1}dvdu}{\lceil bv^n+c(1-v^n)\rceil^{p+l/n}(u^s+a)^{r+m/s}}.$$

137. Proposed by F. P. MATZ, Sc. D., Ph. D., Professor of Mathematics and Astronomy in Defiance College, Defiance, Ohio.

Develop the equation of the curve assumed by the inextensible and revolving skipping rope.

*** Solutions of these problems should be sent to J. M. Colaw not later than Nov. 10.

MECHANICS.

124. Proposed by F. P. MATZ, Sc. D., Ph. D., Professor of Mathematics and Astronomy in Defiance College, Defiance, Ohio.

A pendulum-bob, weight=w, is suspended by a perfectly elastic cord, length l. This pendulum makes n vibrations up and down, through a space of 2m inches while it makes a complete vibration in an arc of 2^{l} . Determine the nature of the curve described by the center of the pendulum-bob in making one complete vibration in arc.

- 125. Proposed by THOMAS U. TAYLOR, C. E., Professor of Civil Engineering, University of Texas, Austin, Texas.
- (1) If a parabola is described on the verticle face of a reservoir wall, axis vertical and in the surface, and P(h, b) be any point on the curve, and B the foot of the perpendicular from P on the axis, find c. p. on area OBP.
- (2) If A is point where horizontal through P cuts vertical axis (OY), find c. p. on area OAP.
- ** Solutions of these problem should be sent to B. F. Finkel not later than Nov. 10.

DIOPHANTINE ANALYSIS.

89. Proposed by JOSIAH H. DRUMMOND, LL. D., Portland, Me.

Show that in
$$2x^2 + 2y^2 - z^2 = \square \dots (1)$$
,
 $2x^2 + 2z^2 - y^2 = \square \dots (2)$,
 $2y^2 + 2z^2 - x^2 = \square \dots (3)$,

any two numbers and their sum and difference will satisfy the conditions.