Classification of log Calabi-Yau pairs

Eduardo Alvez da Silva Institut de Mathématiques d'Orsay

Contents

l	Introduction	1
2	Classification of log CY pairs in dimension 2	2
3	(Partial) Classification in dimension 3	3
Į.	Sketch	5

1 Introduction

Definition. A *log Calabi-Yau* pair is a lc pair (X, D) consisting of a normal projective variety X and a reduced Weil divisor D such that $K_X + D \sim_{\mathbb{Z}} 0$.

Remark. Let $n = \dim X$. (X, D) CY pair $\implies \exists \omega := \omega_{X,D} \in \Omega_x^n$, unique up to nonzero scaling such that $\operatorname{div}(\omega) + D = 0$. We call ω the *volume form*.

$$(X,D) \\ minimal \ model \\ \underset{log \ MMP}{\longleftarrow} (X,D) \ CY \ pair \overset{Classical}{\overset{MMP/X}{\longrightarrow}} \ Mori \ fibered \ space$$

• (X, D) CY pair,

$$K_X + D \sim 0 \implies -K_X = D \geqslant 0$$

 $\implies K_X$ is not pseudo effective
 $\stackrel{*}{\implies} X$ is uniruled
 $\implies K(X) = -\infty$
 $\implies T$ he output of the MMP over X is Mori fibered space

where * means BDPP theorem.

• (X, D) is a minimal model for the log MMP since $K_X + D$ is nef.

Example (content...).

Definition. Let $f:(X,D_X) \xrightarrow{bir} (Y,D_Y)$ be a birational map of CY pairs. f is *volume preserving* if $f^*\omega_{Y,D_Y}$, for some $\lambda \in \mathbb{C}^*$.

Remark. $Bir^{up}(X, D_X) \subset Bir(X)$ =group of all volume-preserving maps.

Definition (Other equivalent definitions).

- (i) f *preserves discrepancies*, i.e. for a divisor E over X and Y we have $a(E, X, D_X) = a(E, Y, D_Y)$.
- (ii) f admits a log resolution

Warning D_Z does not need to be effective. Ex. look at my PhD thesis in section 5.4.

Notation. Volume preserving equivalence, or crepant birrational,

$$(X, D_X) \cong_{\mathrm{vp}} (Y, D_Y)$$

$$(X,D_X)\cong_{cbir}(Y,D_Y)$$

Because volume-preserving maps are also called crepant maps.

Problem (Very hard!) Classification of log CY pairs up to volume-preserving equivalence.

The most important invariant to attack this problem is the following:

Definition. The *corregularity* of a log CY pair (X, D_X) , coreg (X, D_X) , is defined to be the dimension of a minimal lc center in a dlt modification

$$f:(X^{dlt},D_{X^{dlt}}) \rightarrow (X,D_X)$$

Remark. $c := \operatorname{coreg}(X, D_X), 0 \le c \le \dim X, c = \dim X \iff X \text{ is CY and } D_X = 0.$

2 Classification of log CY pairs in dimension 2

After a minimal resolution of singularities, it follows that a surface log CY pair (X, D_X) is agiven by one of the following:

• c = 2: X is an abelian surface or a K3 surface, and $D_X = 0$.

- c = 1:
 - (i) X is rational and $D_X \in |-K_X|$ is a nonsingular elliptic curve.
 - (ii) $\pi: X \to E$ (not necessarily minimal) ruled surface over a nonsingular elliptic curve E, and $D_X = D_1 + D_\alpha \in |-K_X|$ is the sum of two disjoint sections of π .
- c = 0: X is rational and D_X is a (possible reducible) nodal curve of arithmetic genus 1.

Example. $X = \mathbb{P}^2$. Three lines, conic + line, nodal cubic, nonsingular cubic. Their corregularities are zero except for the last one, which is 1.

Definition. A log CY pair (X, D_X) has a *toric model* if $(X, D_X) \cong_{vp} (T, D_T)$ (where D_T is the reduced sum of all torus invariant divisors).

Theorem (Gross-Hacking-Keel). Every surface log CY pair (X, D_X) of log coregularity 0 has a toric model.

Remark. Its false in dimension ≥ 3 .

3 (Partial) Classification in dimension 3

Theorem (Ducat, 2023). Let (\mathbb{P}^3 , D) be a log CY pair with corregularity $c \le 1$. Then there exists a volume-preserving map

$$\phi:(\mathbb{P}^3,D)\stackrel{\text{bir}}{\longrightarrow}(\mathbb{P}^1\times\mathbb{P}^1,D')$$

where

$$\mathsf{D}' = (\{0\} \times \mathbb{P}^1) + (\mathbb{P}^1 + \mathsf{E}) + (\{\infty\} \times \mathbb{P}^2) \in |-\mathsf{K}_{\mathbb{P}^4 \times \mathbb{P}^2}|$$

for a plane cubic $E\subset \mathbb{P}^2_{(x:y:z)}$ such that

- 1. $c = 1 \iff E$ is non singular.
- 2. If c=0, then $E=\{xyz=0\}$. In particular D' is the toric boundary of $(\mathbb{P}^1\times\mathbb{P}^2)$ and thus (\mathbb{P}^3,D) has a toric model.
- 3. c=2 (The missing case) Fact: $c=2 \iff D$ is an irreducible normal quantic surface having canonical singularities, i.e., D is either nonsingular or has ADE singularities \iff the pair is canonical

Example (Oguiso's example). He constructed two nonsingular isomorphic quartic surfaces $D, D' \subset \mathbb{P}^3$ (as abstract varieties) such that there exists $\phi \in Bir(\mathbb{P}^3)$ mapping D birrationally onto $D' \Longrightarrow (\mathbb{P}^3, D) \not\cong_{vp} (\mathbb{P}^3, D')$.

Thinking in terms of coarse moduli spaces, we have a natural map

$$m^{c=2}_{(\mathbb{P}^3,D)} \longrightarrow m^{can}_{K3}$$

 $[(\mathbb{P}^3,D)] \longmapsto [D]$

and Oguiso's example implies that this is not injective.

Conjecture (Trichotomy).

$coreg(\mathbb{P}^3, D)$	0	0	?
$\dim \mathcal{M}^{\mathbf{c}}_{(\mathbb{P}^3,\mathbf{D})}$	0	1	?
Bir ^{vp}	monstruous	?	Dec(D)
g	0	1	≥ 2
$\dim m_{\mathrm{g}}$	0	1	3g - 3
Bir = Aut	$PGL(2,\mathbb{C})$ infinite	$C \rtimes \mathbb{Z}_d$	$\#Aut(C) \leq 84(q-1)$ finite

D very gen. D is nonsingular,

$$\begin{split} \phi: (\mathbb{P}^3, D) & \stackrel{v.p,bir}{\longrightarrow} (\mathbb{P}^3, D) \\ & \Longrightarrow \phi|_D D \stackrel{\cong}{\longrightarrow} D \end{split}$$

X projective variety, $Y \subset X$ irreducible subvarieties,

$$Bir(Y, X) = \{ f \in Bir(X) | f|_Y : Y \xrightarrow{bir} Y \}$$

Conjecture (Shokuroo). Every 3-fold rational log CY pair (X, D_X) of coregularity 0 has a toric model.

Ducat's Theorem implies it is tru for $X = \mathbb{P}^3$.

Definition. (X, D_X) CY pair, $D_X = D_1 + ... + D_r$. The *complexity* of this CY pair is the non-negative number

$$c(X, D_X) := \dim X + rk(Cl(X)_{\mathbb{Q}}) - r$$

Fact $c(X, D_X) = 0 \implies (X, D_X)$ has a toric model (Brown, Mckenan, Lvald, Long, 2018).

Definition. (X, D_X) CY pair. The *birrational complexity* is

$$c_{bir}(X, D_X) := min\{c(Y, D_Y) | (Y, D_Y) \cong_{vp} (X, D_X)\}$$

Theorem (Mauri, Moraga, 2023). $c_{bir}(X, D_X) = 0 \iff (X, D_X)$ has a toric model.

Definition. A log CY pair (X, D_X) is *cluster type* if there exists a volume-preserving map

$$\varphi: (\mathbb{P}^n, H_0 + \ldots + H_{n+1} \xrightarrow{bir} (X, D_X)$$

such that $\text{codim}_{\mathbb{C}^n_M}(\text{Ex}(\phi)\cap\mathbb{C}^n_\mathfrak{m})\geqslant 2\iff \mathbb{C}^n_\mathfrak{m}\hookrightarrow X\setminus D_X.$

Theorem (—,Figueroa, Moraga, 2024). (\mathbb{P}^3 , D) log CY pair of coregularity 0. Assume D general in its deformation class. Then (\mathbb{P}^3 , D) is cluster type unless one of the following happens:

- (i) D reducible, D = H + C (plane cubic, resp.) such that $H \cap C$ is a nodal plane cubic.
- (ii) D irreducible and has double points along a line.

4 Sketch

$$\begin{split} (\mathbb{P}^3,D) \text{is cluster type} &\iff (\mathbb{P}^3,D) \text{ is cluster type over} \mathbb{P}^1 \\ &\iff \exists \text{ some dlt modification } (X,D_X) \\ \text{of } \mathbb{P}^3 \text{ such that } \exists \text{ a crepant contraction} \\ \text{onto } (\mathbb{P}^4,\{C\}+\{\infty\}). \end{split}$$