Name: MARKING	- SCHEME	Class: Adm.No
232/1 PHYSICS THEORY		Candidate's Signature:
Paper 1		
June 2022		
Time: 2 hours		

KASSU JOINT EXAMINATION

JUNE 2022

Kenya Certificate of Secondary Education PHYSICS PAPER 1

Instructions to Candidates

- Write your name, admission number, class and signature in the spaces provided at the top
 of the page. This paper consists of two sections; A and B.
- Answer ALL the questions in the spaces provided.
- Mathematical tables and electronic calculator may be used.
- All working MUST be clearly shown.
- This paper consists of 11 printed pages.
- Candidates should answer the questions in English and check to ensure that no question(s) is missing.

FOR EXAMINER'S USE ONLY

SECTION	QUESTIONS	MAXIMUM SCORE	CANDIDATE'S SCORE
A	1 – 10	25	
В	11	10	
	12	11	
	13	13	
	14	09	
	15	07	
	16	05	
	TOTAL SCORE		
		80	

Page 1 of 11

SECTION A (25 MARKS)

Attempt all the questions in the spaces provided.

- 1. Define mechanics as used in Physics

 Study of motion of bodies under the

 Mfluence of force
- 2. The mass of an empty density bottle is 15g and 60g when full of oil of density 0.8gcm⁻³. Determine volume of water that would fill the density bottle completely.

Mass of oil = 60g-15g= 45g Volume = 56.25cm V

Volume = m= 45g V

3. Give the molecular explanation of surface tension

(2 marks)

Deep in the liquid, molecules have a net force of Zero. While molecules of the surface have fewer molecules on vapour side hence experience inward force cousing tension.

The diagram below shows a flask with common salt and water. The adjacent

diagram below shows a flask with common sait and water. The adjacent diagram shows the same flask after it has been shaken and the salt has dissolved.

State the purpose of experiment and explain what is observed. (2 marks)

@2022 KASSU Joint Examination

Physics P1

Page 2 of 11

	The experiment shows that, matter is made liny mal particles matter is particulate volume of liquid is not constituent. b) A drop of milk when carefully put in a glass of water turns the water white after sometimes, explain this observation The particulate of milk spread throughout water by diffusion
5.	
	Hot water was poured in both glasses. State and explain what observed. (2 marks) Thick one will break, this is because of unequal expansion, orland glass is a poor conductor of heat hence heaf does not reach outer parts. The diagram below shows a heater immersed in water in a test tube coated with
	apoor conductor of heal hence hear goes
6.	The diagram below shows a heater immersed in water in a test tube coated with
	uniform layer of candle wax
	wax

a) State a	and explain the	he observation top will	after the s melt	switch is clos duと fo	sed. (2 heat tra	marks) tns.fer	
bu cor	vection	while the	wax	downt	to tube	doesnot	
melt	because	water	is a	poor	condu	ctor of hea	t
				1		1	

Page **3 of 11**

b) What observable changes would be made if water was replaced with mercury. (IMK) Off with a shorter time than that of Water

8. The figure below shows two light sheets of paper arranged as

Explain the observation made when air is blown at the same speed at the same time

at point A and B. apart. Increase in velocity at Pushes them apart.

9. The figure below shows a graph of Force against extension of two springs made

from different materials

a) Compare the spring constants of the springs above Spring B has a higher spring constant b) State two ways in which the Spring constant can

22 KASSU Joint Examination

Physics P1

Physics P1

Page 4 of 11 be increased - less number of turns per unit length -- Smaller diameter of the spring -- Larger diameter of the wire used -- Smaller length of the spring.

SECTION B (55 MARKS)

Attempt all the questions in the spaces provided.

11. a) The figure below shows part of a scale of a vernier caliper with an error of 0.03cm. What is the actual reading? (2 marks)

- Reading 5.0 + 8x0.01 | Artual reading = 5.08 5.05 cm | 5.05 cm |
- b) In an experiment to estimate the thickness of an oil drop of diameter 0.1cm spread onto a circular patch of diameter 10cm.
- i) Determine the volume of the oil drop $V = \frac{4\pi r^3}{2\pi 4 \times 3^{-1} 4 \times (0.05)^3}$ $V = 0.00052367 \text{ cm}^3$ (2marks) $V = \frac{4\pi r^3}{3\pi 4 \times (0.05)^3}$ $V = 5.24 \times 10^{-4} \text{ cm}^3$
- ii) Calculate the area covered by the oil patch $A = \pi r^{2} / A = 78.5 \text{ cm}^{2}$ $= 3.142 \times 5^{2} / A = 78.5 \text{ cm}^{2}$
- iv) State one assumptions made in c(iii) above (1mark)

 The oil patch is one molecule thick (motorolayer)

 The oil drop is a perfect sphere.
- v) State one possible sources of errors in this experiment (1mark)

 Measurement of diameter of oil dop)

 Measurement of diameter of patth)
- 12. a) State Pascal's Principle of transmission of pressure in liquids (1 mark)

 fressure applied at one part in liquids is made Transmittee
 equally to all other parts of the enclosed liquid.

Page **6 of 11**

b) The figure below shows an instrument used to measure atmospheric pressure State with a reason the modification that would be required in a similar set-up if mercury was to be replaced with water (2marks)

A longer tube would be required Atmospheric pressure supports a long column of water due to its lower density.
Almosphenic pressure supports a long column
of Water due to its lower gensory.
c)The barometric height of a town is 640mmHg. Given that the standard
atmospheric pressure is 70cmHg and density of mercury is 13.6gcm ⁻³ , determine the
altitude of the town in metres (density of air = 1.3kgm³) (3marks)
hfg = hfg
6 X13600X10 = h X 1.3 X10
$h = \frac{816}{1.3}$
c) i) State two factors that affect the moment of a force (2marks)
- Magnitude of force applied - Perpendicular distance between the force is plusted

ii) An aluminum beam 5.0m long and whose mass is 200g is suspended by a steel cable from a concrete beam and pivoted on a stool pole as shown below

@2022 KASSU Joint Examination

Page 7 of 11

	Calculate the tension T in the steel cable C M = A C M	(3marks)
	$ \begin{array}{ccc} C \cdot M &= A \cdot C \cdot M \\ \left(T \times 3 \right) = \left(\frac{5}{100} \times \frac{200}{1000} \times 10 \right) \end{array} $	
	100 / 1000	
	$T = \frac{2 \times 0.5}{3}$	
12	a) Define displacement and state its SI Unit	(2marks)
13.	a) Define displacement and state its SI Unit Distance covered in specified d	line chion
	SI unit metre (m)	
	b) A body is projected horizontally at a velocity of 120cms ⁻¹ from a cl	
	Draw a displacement-time graph to show the motion	(1mark)
	braw a displacement-time graph to show the motion	•
	Displacement (m)	
	c) Calculate	
		(2marks)
	i) The time taken to hit the ground $S = \frac{1}{2} \frac{9t}{4} \qquad 90 = 5 \frac{t^2}{4}$ $90 = \frac{1}{2} \times 10 \times t^2 \qquad t^2 = 18 \qquad t = 4 \cdot 24$	-S
	ii) The horizontal range.	(2marks)
	R = ut	
	R = 120 x 4.25	
	R = 508.8 M	

d) A stone is whirled with a uniform speed in horizontal circle having a r	adius of
12cm. It takes the stone 9seconds to describe an arc of length 6cm. Ca	lculate:
The angular and the	marks)
The aligular velocity $\omega = \frac{6}{12 \times 9}$ $\omega = \frac{6}{12 \times 9}$ $\omega = 0.05556 \text{ rad s}$ $\omega = 5.556 \times 10^{2} \text{ rad s}$	
$\omega = 0.05556 \text{rads}$	
$r = 5.556 \times 10^{2} \text{ rad } s$	
II. Linear velocity of the stone (2	marks)
$V = \omega r$	
V = 0.05556 x 1250	
V = 0.006667mls	
	marks)
$T = 2\pi$ $T = 113.15$	
w	
(W) = 2 × 3·142 = 2 × 3·142 • 05556	
14 (a) State Newton's 2nd Law of Motion	mark)
The law states that the rate of change	of Momentum
14. (a) State Newton's 2nd Law of Motion The law states that the rate of change Of a body is directly proportional to recultant for conducing the dailer place in	= the
recultant, force and takes place in	the direction
(b) A bus of mass 2000kg initially moving at 20ms-1 is brought to rest ove	ra
msiance of 40m. Determine the force require	Bmarks)
$v^{2} = u^{2} + 2as$ $b^{2} = (a)^{2} + a \times a \times 40 F = ma$	
$b^2 = (a_0)^2 + a \times a \times 40 F = ma$	
$0 = 400 + 80a \qquad F = 2000 \times (-5)$ $-86a = 400 \qquad F = -10000 N$	······································
-86a = 400 $F = -10000N$	
-80 -80	
$\alpha = -5m/s^2$ (c) A mason uses six wheel pulley system to raise stones to a storey build	ing for
construction. He raises a weight of 3000N through a vertical height of	5m using
the machine. If the mason pulls using an effort of 500N, calculate;	mark)
V.2 - 6 VI	

ii) The work done by the mason.	(2 marks)
Distance Moved by the office - am v 6 =	30M/
Work done Z Effort X Effort distance	
$=500\times30=15,000T_{\odot}$	
	(2marks)
iii) The useful work done by the pulley system. USUFUL WOR done = Load X distance	
=5×3000 V1	
=15,000J	
15 6 3 6 a substances can be	raised(2marks)
15. (a) State two ways in which the melting point of a substances can be	
The character of the presture	
-Increasing the pressure -Adding of impurities	
- Adding of Impurition	af nower
(b)A 200g mass of ice at -20°C was slowly heated by an element near	er of power
30W. The figure below shows the graph of temperature against time.	
100 B B B B B B B B B B B B B B B B B B	
Use the values given below to calculate the time in minutes corresponding to the line QR in the graph (specific latent heat of fusion is 357000 $P+=mL$ $=mL$ $= 0.2 \times 357000$	0Jkg-1) (3marks)
@2022 KASSU Joint Examination $+ = 2380 \text{ S}$ Physics P1	Page 10 of 11

¥	ii) The line RS in the graph hence label the time axes with suitable values and
	units (specific heat capacity of water is 4050Jkg-1k-1) (1mark)
	Ot - wood O
	30t = 012 × 42 00× 100 20 Square.
	$30t = 0.2 \times 4200 \times 100$ $t = 84000$ $t = 27005$ $c) Calculate the specific heat capacity of ice (1mark)$
	(1mark)
	c) Calculate the specific heat capacity of ice $\sim 2.0 \times 2.0 \times 2.0$
	$30 \times 140 \times 3 = 0.2 \times c \times 20$
	$C = \frac{12.600}{4}$ $C = \frac{3150 \text{ J/kg/k}}{4}$ (1mark)
16	5. a) State the law of floatation. A floating object displaces its own weight on the fluid in which it floats on.
	A floating object displaces us busy
	on the fluid in which it troots
	b) A colid of mass 100g and density 2.5g/cm ³ weighs 0.5N when totally
	in a liquid. Determine the density of the liquid.
	$Vol = \frac{m}{p}$ $Vol = \frac{m}{p}$ $= \frac{m}{2.5}$ $\int \frac{d^{2}}{d^{2}} = \frac{m}{2.5} \int \frac{d^{2}}{d^{2}} $
	$Vol = \frac{1}{\rho}$ $Vol = \frac{1}{\rho}$ $Vol = \frac{1}{\rho}$
	0 - 100
	2.5 J = V = 1.25 gt cm / 1250kg/m
	(c) The figure below shows a burning candle, weighted, dripton (c) The figure below shows a burning candle, weighted, dripton (c) The figure below shows a burning candle, weighted, dripton (c) The figure below shows a burning candle, weighted, dripton (c) The figure below shows a burning candle, weighted, dripton (c) The figure below shows a burning candle, weighted, dripton (c) The figure below shows a burning candle, weighted, dripton (c) The figure below shows a burning candle, weighted, dripton (c) The figure below shows a burning candle, weighted, dripton (c) The figure below shows a burning candle, weighted, dripton (c) The figure below shows a burning candle, weighted, dripton (c) The figure below shows a burning candle, weighted, dripton (c) The figure below shows a burning candle, weighted, dripton (c) The figure below shows a burning candle, weighted, dripton (c) The figure below shows a burning candle, weighted, dripton (c) The figure below shows a burning candle, weighted (c) The figure below shows a burning candle (c) The figure below shows a burning conduction (c) The figure below shows a burning candle (c) The figure below shows a burning candle (c) The figure below shows a bu
	Λ
	Candle
	Water
	As candle burns, its weight reduces weight hence weight displaced reduces (vothnust
	10.00 soleight displaced reduces (vothnist
	roduces),

THIS IS THE LAST PRINTED PAGE

@2022 KASSU Joint Examination

Physics P1

Page **11 of 11**