Solid Isotropic Material with Penalisation (S.I.M.P.)

$$E_e(x_e) = E_{\min} + x_e^p (E_0 - E_{\min})$$

 E_{\min} is a small positive number so stiffness matrix doesn't become singular

For our purpose we will assume

$$E_0 = 1$$
 $E_{\min} = 0.0001$

Solid Isotropic Material with Penalisation (S.I.M.P.)

$$\min_{\mathbf{x}} c(\mathbf{x}) = \mathbf{U}^{\mathrm{T}} \mathbf{K} \mathbf{U} = \sum_{e=1}^{N} E_{e}(x_{e}) \mathbf{u}_{e}^{\mathrm{T}} \mathbf{k}_{0} \mathbf{u}_{e}$$

Subject to

$$\frac{V(\mathbf{x})}{V_0} = f$$

$$\mathbf{KU} = \mathbf{F}$$

$$\mathbf{0} \le \mathbf{x} \le \mathbf{1}$$

$$c = E_{\min} + x_e^p (E_0 - E_{\min}) \mathbf{u}_e^{\mathrm{T}} \mathbf{k}_0 \mathbf{u}_e$$

$$\frac{\partial c}{\partial x_e} = -px_e^{p-1} (E_0 - E_{\min}) \mathbf{u}_e^{\mathrm{T}} \mathbf{k}_0 \mathbf{u}_e$$

Algorithm pseudocode – Part 1

Input n_x , n_y ,	$V_f, r_{\min}, p, v,$	Emax, E min
-----------------------	------------------------	---------------

Initialize $\mathbf{x} = V_f 1$,	size $[n_y, n_x]$
Initialize $\mathbf{dc} = 0$, size $[n_y, n_x]$	size $[n_y, n_x]$
$Set n_{DOF} = 2(n_x + 1)(n_y + 1)$	1
Derive $K_e = \frac{lk}{E_{max}}, v$	size [8,8]
Derive $e_{DOF,mat} = edofMatFun(E_{max}, v)$	size [<i>m</i> , 8]
Define global Force vector, $oldsymbol{F} = oldsymbol{0}$	Size $[n_{ ext{DOF}}, 1]$
Define free and fixed dofs	

Algorithm pseudocode – Part 2

Input n_x , n_y , V_f , r_{\min} , p, v, $E \max$, $E \min$

While change > 0.05 and counter < max_iteration	
Derive DOF displacement $\boldsymbol{U} = \text{FE} (n_x, n_y, x, p, K_e, e_{dof,Mat}, F, freeDOF, fixedDOF)$	Size $[n_{DOF}, 1]$
Set compliance $c=0$	1
Loop through $\mathbf{n}_{\mathbf{y}}$	Size [8,8]
Loop through n_χ	Size [<i>m</i> , 8]
Find row in e _{DOF,mat} that correspond to the current element	Size [1,8]
Find $\boldsymbol{U_e}$ from \boldsymbol{U} that correspond to the current element using above	Size [8,1]
Calculate c_e compliance per element $c_e = \mathbf{x}_e^p \mathbf{u}_e^T \mathbf{K}_e \mathbf{u}_e$	1
Calculate $-\frac{dc_e}{dx_e} = -p\mathbf{x}_e^{p-1}\mathbf{u}_e^T\mathbf{K}_e\mathbf{u}_e$	size $[n_y, n_x]$

Algorithm pseudocode – Part 3

Exit the element loop but not the iteration loop

Apply filter function $\frac{dc_e}{dx_e} = \text{sFilter}\left(n_x, n_y, x, \frac{dc_e}{dx_e}, r_{\min}\right)$	size $[n_y, n_x]$
Calculate new x by $x_{\text{new}} = \text{oc}\left(n_x, n_y, x, \frac{dc_e}{dx_e}, V_f, E_{\text{min}}, E_{\text{max}}\right)$	size $[n_y, n_x]$
Calculate $Change = \max(\mathbf{x} - \mathbf{x}_{old})$	1

K matrix for E = 1, v = 0.3

0.494505490.17857143-0.3021978-0.0137363-0.2472528-0.17857140.054945050.013736260.178571430.494505490.013736260.05494505-0.1785714-0.2472528-0.0137363-0.3021978-0.30219780.013736260.49450549-0.17857140.05494505-0.0137363-0.24725280.17857143-0.01373630.05494505-0.17857140.494505490.01373626-0.30219780.17857143-0.2472528-0.2472528-0.17857140.054945050.013736260.494505490.17857143-0.3021978-0.0137363-0.1785714-0.2472528-0.0137363-0.30219780.178571430.494505490.013736260.49450549-0.17857140.014-0.30219780.17857143-0.2472528-0.0137363-0.2472528-0.01373630.05494505-0.17857140.49450549

assemble the global stiffness matrix (edofMatFun)

0	1	2	3	4	5	6	7	Local	
0	1	8	9	10	11	2	3	Elem	0
2	3	10	11	12	13	4	5	Elem	1
4	5	12	13	14	15	6	7	Elem	2
8	9	16	17	18	19	10	11	Elem	3
10	11	18	19	20	21	12	13	Elem	4
12	13	20	21	22	23	14	15	Elem	5
16	17	24	25	26	27	18	19	Elem	6
18	19	26	27	28	29	20	21	Elem	7
20	21	28	29	30	31	22	23	Elem	8
24	25	32	33	34	35	26	27	Elem	9
26	27	34	35	36	37	28	29	Elem	10
28	29	36	37	38	39	30	31	Elem	11

Finite element analysis FE()

 $\mathbf{Input}\ n_x, n_y, x, p, K_e, e_{dof,mat}, F, freeDOF, fixedDOF$

Initialize $K = 0$	size $[n_{DOF}, n_{DOF}]$
$\mathbf{R} = \mathbf{C}$	$Size[n_{DOF}, n_{DOF}]$

Initialize U = 0 size $[n_{DOF}, 1]$

Loop through each element (ny, and within each ny, loop through nx)

Assemble **K** by getting the row in $e_{dof,mat}$ size [8,1]

corresponding to the element, called id

$$K[id, id] = K[id, id] + x_e^p (E_{max} - E_{min}) K_e$$

Solve for $\mathbf{U}_{free} = K_{free,free} \backslash \mathbf{F}_{free}$

Return **U**

Optimality Criteria

$$c = x_e^p (E_0 - E_{\min}) \mathbf{u}_e^{\mathrm{T}} \mathbf{k}_0 \mathbf{u}_e$$

$$\frac{\partial c}{\partial x_e} = -px_e^{p-1} (E_0 - E_{\min}) \mathbf{u}_e^{\mathrm{T}} \mathbf{k}_0 \mathbf{u}_e$$

$$x_e^{new} = \begin{cases} \max(0, x_e - m) & \text{if } x_e B_e^{\eta} \le \max(0, x_e - m) \\ \min(0, x_e - m) & \text{if } x_e B_e^{\eta} \ge \min(0, x_e - m) \\ x_e B_e^{\eta} & \text{otherwise} \end{cases}$$

m > 0 (e.g. 0.2)

$$B_e = -\frac{\frac{\partial c}{\partial x_e}}{\lambda \frac{\partial V}{\partial x_e}}$$

$$\frac{\partial V}{\partial x_e} = 1$$

$$B_e = -\frac{1}{\lambda} \frac{\partial c}{\partial x_e}$$

Optimality Criteria

 $\mathbf{Input}\ n_x, n_y, x, p, K_e, e_{dof,mat}, F, freeDOF, fixedDOF$

Initialize $\mathbf{K} = 0$	size $[n_{DOF}, n_{DOF}]$

Initialize U = 0 size $[n_{DOF}, 1]$

Loop through each element (ny, and within each ny, loop through nx)

Assemble **K** by getting the row in $e_{dof,mat}$ size [8,1]

corresponding to the element, called id

$$K[id, id] = K[id, id] + x_e^p (E_{max} - E_{min}) K_e$$

Solve for $\mathbf{U}_{free} = K_{free,free} \backslash \mathbf{F}_{free}$

Return **U**

Optimality Criteria, pseudo code 1

Input
$$n_x$$
, n_y , $\frac{\partial c}{\partial x_e}$, x_e

set
$$\lambda_L = \mathbf{0}$$
, $\lambda_H = 10^9$, m = 0.2

While $\lambda_H - \lambda_L \geq 10^{-4}$

$$\lambda_M = \frac{1}{2}(\lambda_H + \lambda_L)$$

calculate
$$B_e^{\eta} = \frac{1}{\lambda_M} \left(-\frac{\partial c}{\partial x_e} \right)^{\frac{1}{2}}$$

for i_x in n_x :

for i_{ν} in n_{ν} :

if
$$x_e[i_y, i_x]B_e^{\eta}[i_y, i_x] \le \max(E_{min}, x_e[i_y, i_x] - m)$$

$$x_e^{new}[i_y, i_x] = \max(E_{min}, x_e[i_y, i_x] - m)$$

$$\operatorname{elif} x_e \big[i_y, i_x \big] B_e^{\eta} \big[i_x, i_y \big] \ge \min \big(E_{max}, x_e \big[i_y, i_x \big] + m \big)$$

$$x_e^{new}\big[i_y,i_x\big] \text{=} \min\big(E_{max},x_e\big[i_y,i_x\big] + m\big)$$

else

$$x_e^{new}\big[i_y,i_x\big] {=} x_e\big[i_y,i_x\big] B_e^{\eta}\big[i_y,i_x\big]$$

Optimality Criteria, pseudo code 2

Input
$$n_x$$
, n_y , $\frac{\partial c}{\partial x_e}$, x_e

While $\lambda_{H} - \lambda_{L} \geq 10^{-4}$

... (see page 1

 $\text{if } \operatorname{sum}(x_e^{new}) - frac \cdot n_x \cdot n_y > 0$

$$\lambda_L = \lambda_M$$

else

$$\lambda_H = \lambda_M$$

Sensitivity filter

function sFilter(n_x , n_y , x_e , $\frac{dc_e}{dx_e}$, r_{\min})

$$\operatorname{Set} \frac{dc_e^{\text{new}}}{dx_e} = 0 \qquad \left[n_{\text{y}}, n_{\text{x}} \right]$$

for i_x from 0 to n_x

for i_y from 0 to n_y

$$H_f = 0$$

$x_{\min} = \max(i_x - floor(r_{\min}), 0)$ Int

$$x_{max} = min(i_x + floor(r_{min}) + 1, n_x)$$
 Integer 1

$$y_{\min} = \max(i_{y} - \text{floor}(r_{\min}), 0)$$
 Integer 1

$$y_{max} = min(i_y + floor(r_{min}) + 1, n_y)$$
 Integer 1

for k from x_{min} to x_{max}

for I from y_{min} to y_{max}

dist =
$$r_{\min} - \sqrt{(i_x - k)^2 + (i_y - l)^2}$$

$$H_f += max(0, dist)$$

$$\sum_{f=1}^{N} \left(H_f x_f \frac{\partial c}{\partial x_f} \right)$$

$$\frac{dc_e^{\text{new}}}{dx_e} [i_y, i_x] += \max(0, \text{dist}) \cdot x_e [i_y, i_x] \cdot \frac{dc_e}{dx_e} [i_y, i_x]$$

$$\frac{dc_e}{dx_e}^{\text{new}} \left[i_y, i_x \right] = \frac{1}{x_e \left[i_y, i_x \right] \cdot H_f} \cdot \frac{dc_e}{dx_e}^{\text{new}} \left[i_y, i_x \right]$$

return $\frac{dc_e}{dx_e}^{\text{new}}$

$$\frac{\partial c}{\partial x_e} = \frac{1}{x_e \sum_{f=1}^{N} H_f} \sum_{f=1}^{N} \left(H_f x_f \frac{\partial c}{\partial x_f} \right)$$

Sensitivity filter

$$\frac{\partial c}{\partial x_e} = \frac{1}{x_e \sum_{f=1}^{N} H_f} \sum_{f=1}^{N} \left(H_f x_f \frac{\partial c}{\partial x_f} \right)$$

The convolution operator (weight factor)

$$H_f = r_{\min} - \operatorname{dist}(e, f)$$

For f

$$\{f \in N \mid dist(e, f) \le r_{min}\}$$

In all
$$e = 1, ..., N$$

Sensitivity filter

Input n_x , n_y , x, dc, r_{min}

Initialize $dc_{new} = 0$

size $[n_v, n_x]$

Loop through each element $(n_y$, and within each n_y , loop thru. n_x)

Loop through each elem f within r_{min} around current elem e

$$H_f += \max(0, r_{min} - dist(e, f))$$

$$\mathbf{dc}_{\text{new,e}} = \max(0, r_{min} - dist(e, f)) x_f dc$$

$$\frac{\partial c}{\partial x_e} = \frac{1}{x_e \sum_{f=1}^{N} H_f} \sum_{f=1}^{N} \left(H_f x_f \frac{\partial c}{\partial x_f} \right)$$

Now calculate $\mathbf{dc}_{\text{new,e}} = \frac{\mathbf{dc}_{\text{new,e}}}{x_e H_f}$

Return dc_{new}

