<u>Notes</u>

<u>Course</u>

<u>Dates</u>

<u>Help</u>

sandipan_dey ~

<u>Calendar</u>

☆ Course / Unit 4: Matrices and Linearization / Lecture 13: Matrices

(1)

Next > Previous

Discussion

4. Matrices and Rotation

Progress

□ Bookmark this page

Lecture due Sep 15, 2021 20:30 IST

Explore

Matrix Multiplication

2:06 / 4:18 66 X CC 2.0x

v1 plus a number of times v2 for the first component

and a number of times v1 plus a number times

v2 for the second component.

If you're on the lookout for that, you'll see it a lot.

This is a little bit of a rigged example, but there is an example on the board.

Where do we see over here?

So pick your favorite angle, theta pi

This is a number of times v1 plus a number of times v2.

That's the first component, a number of times

v1 plus a number times v2.

So that's a matrix.

Whenever we see that, we know that __

Video

Download video file

Transcripts

Download SubRip (.srt) file Download Text (.txt) file

Matrices and Rotation

There is a matrix hiding in this rotation problem! Can you spot it? Let's review 2×2 matrix multiplication. To multiply a matrix

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \tag{5.10}$$

by a vector

$$\begin{pmatrix} v_1 \\ v_2 \end{pmatrix}$$
, (5.11)

we perform the operation,

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} v_1 \\ v_2 \end{pmatrix} = \begin{pmatrix} av_1 + bv_2 \\ cv_1 + dv_2 \end{pmatrix}. \tag{5.12}$$

Notice that the result in this case is a vector with x-component av_1+bv_2 and y-component cv_1+dv_2 .

Take a look at the form of the components. When we see an expression of the form a \square Calculator \square Hide Notes

of a matrix multiplication. These types of expressions come up a lot in science and engineering. One example is the rotation of a vector! The vector $ec{w}=egin{pmatrix} w_1 \ w_2 \end{pmatrix}$ obtained from rotating $ec{v}$ can be written as the following matrix equation:

$$\begin{pmatrix} w_1 \\ w_2 \end{pmatrix} = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix} \begin{pmatrix} v_1 \\ v_2 \end{pmatrix}. \tag{5.13}$$

Clockwise 1

2/2 points (graded)

Given a vector $ec{v}=\left(egin{array}{c} a \\ b \end{array}
ight)$ let $ec{u}$ be the vector obtained by rotating $ec{v}$ clockwise by an angle t.

Find the coordinates of $ec{u}=inom{u_1}{u_2}.$ Your answer will contain a,b, and t.

$$oldsymbol{u_1} = oldsymbol{oldsymbol{a_{tos}(t) + b*sin(t)}}$$

$$u_2 =$$
 -a*sin(t) + b*cos(t)

? INPUT HELP

Submit

You have used 2 of 3 attempts

Correct (2/2 points)

Clockwise 2

1/1 point (graded)

As in the previous problem, let $ec{u}$ be the vector obtained by rotating $ec{v}=\left(egin{array}{c}a\\b\end{array}
ight)$ clockwise by an angle t.

There is a 2×2 matrix M such that $\vec{u} = M\vec{v}$. Find M.

Your answer will contain t.

(Enter a matrix using notation such as [[a,b],[c,d]] .)

$$M = \begin{bmatrix} [[\cos(t), \sin(t)], [-\sin(t), \cos(t)] \end{bmatrix}$$
 Answer: $[[\cos(t), \sin(t)], [-\sin(t), \cos(t)]]$

Solution:

We found in the previous problem that

$$u_1 = a\cos(t) + b\sin(t) \tag{5.14}$$

$$u_2 = -a\sin(t) + b\cos(t) \tag{5.15}$$

The first row is "a number times a" plus "a number times b". The two numbers are $\cos{(t)}$ and $\sin{(t)}$. Therefore, the first row of the matrix is $\cos(t)$, $\sin(t)$. Similarly we obtain the second row of the matrix.

Submit

You have used 1 of 3 attempts

1 Answers are displayed within the problem 4. Matrices and Rotation **Hide Discussion** Topic: Unit 4: Matrices and Linearization / 4. Matrices and Rotation Add a Post **≺** All Posts [Staff] Trig Identities in the First Problem discussion posted about 14 hours ago by alan_driscoll We may simplify further using the formulas $\sin{(-t)} = -\sin{(t)}$ and $\cos{(-t)} = -\cos{(t)}$. The second identity should be $\cos{(-t)} = +\cos{(t)}$, right? This post is visible to everyone. 1 response Add a Response jfrench (Staff) + about 14 hours ago Yup!! Add a comment Showing all responses Add a response: Preview **Submit** Previous Next >

© All Rights Reserved

edX

About

Affiliates

edX for Business

Open edX

Careers

<u>News</u>

Legal

Terms of Service & Honor Code

Privacy Policy

Accessibility Policy

Trademark Policy

<u>Sitemap</u>

Connect

<u>Blog</u>

Contact Us

Help Center

Media Kit

Donate

© 2021 edX Inc. All rights reserved.

深圳市恒宇博科技有限公司 <u>粤ICP备17044299号-2</u>