Name:	Nicht bestanden: □
Vorname:	
Matrikelnummer:	Endnote:

Fakultät Agrarwissenschaften und Landschaftsarchitektur (AuL)

Klausurfragen Bio Data Science

für Pflichtmodule

im 1. & 2. Semester B.Sc./M.Sc.

(Prüfungsleistung der Wahlpflichtmodule ist eine Portfolioprüfung)

Prüfer: Prof. Dr. Jochen Kruppa-Scheetz Fakultät für Agrarwissenschaften und Landschaftsarchitektur j.kruppa@hs-osnabrueck.de

Wintersemester 2024/25

"The test of a student is not how much he knows, but how much he wants to know." — Alice W. Rollins

1

Erlaubte Hilfsmittel

- Normaler Taschenrechner ohne Möglichkeit der Kommunikation mit anderen Geräten! Ausdrücklich kein Handy!
- Eine DIN A4-Seite als beidseitig, selbstgeschriebene, handschriftliche Formelsammlung. Keine digitalen Ausdrucke!
- Die Verwendung eines roten Farbstiftes ist nicht gestattet! Korrekturfarbe!
- You can answer the questions in English without any consequences.

Endnote

_____ von 20 Punkten sind aus den Multiple Choice Aufgaben erreicht.

_____ von 85 Punkten sind aus den Rechen- und Textaufgaben erreicht.

_____ von 105 Punkten in Summe.

Es wird folgender Notenschlüssel angewendet.

Punkte	Note
100.5 - 105	1,0
95.0 - 10.0	1,3
90.0 - 94.5	1,7
84.5 - 89.5	2,0
79.5 - 84.0	2,3
74.5 - 79.0	2,7
69.0 - 74.0	3,0
64.0 - 68.5	3,3
58.5 - 63.5	3,7
52.5 - 58.0	4,0

Es ergibt sich eine Endnote von _____.

Multiple Choice Aufgaben

- Pro Multipe Choice Frage ist *genau* eine Antwort richtig.
- Übertragen Sie Ihre Kreuze in die Tabelle auf dieser Seite.

	A	В	С	D	E	✓
Aufgabe 1						
Aufgabe 2						
Aufgabe 3						
Aufgabe 4						
Aufgabe 5						
Aufgabe 6						
Aufgabe 7						
Aufgabe 8						
Aufgabe 9						
Aufgabe 10						

• Es sind ____ von 20 Punkten erreicht worden.

Rechen- und Textaufgaben

Aufgabe	11	12	13	14	15	16	17
Punkte	10	20	11	12	12	10	10

• Es sind ____ von 85 Punkten erreicht worden.

Multiple Choice Aufgaben

Die Multiple Choice Aufgaben unterliegen dem Zufall. Die Reihenfolge der Antworten ist zufällig. Die Fragen und Antworten sind semantisch zufällig und haben somit verschiedene Textvarianten. Insbesondere die reinen Textaufgaben haben verschiedene Textvarianten. Die Semeantik mag sich unterscheiden, die Inhalte sind aber gleich.

ANOVA

1. Aufgabe (2 Punkte)

Sie führen einen Versuch mit einer Behandlung und drei Faktorleveln durch. Danach rechnen Sie eine einfaktorielle ANOVA und es ergibt sich ein $\eta^2 = 0.31$. Welche Aussage ist richtig?

- **A** \square Die Berechnung von η^2 ist ein Wert für die Interaktion.
- **B** \square Das n^2 wird genutzt um zu erfahren welchen Anteil der Varianz die Behandlungsbedingungen erklären.
- **C** \square Das η^2 ist die Korrelation der ANOVA. Mit der Ausnahme, dass 0 der beste Wert ist.
- **D** \square Das η^2 ist ein Wert für die Güte der ANOVA. Je kleiner desto besser. Ein η^2 von 0 bedeutet ein perfektes Modell mit keiner Abweichung. Die Varianz ist null.
- **E** \square Das η^2 beschreibt den Anteil der Varianz, der von den Behandlungsbedingungen nicht erklärt wird. Somit der Rest an nicht erklärbarer Varianz.

2. Aufgabe (2 Punkte)

Sie führen ein Feldexperiment durch um das Gewicht von Brokoli zu steigern. Die Pflanzen wachsen unter einer Kontrolle und zwei verschiedenen Behandlungsbedingungen. Nach der Berechnung einer einfaktoriellen ANOVA ergibt sich ein $\eta^2 = 0.3$. Welche Aussage ist richtig?

- **A** \square Das η^2 beschreibt den Anteil der Varianz, der von den Umweltbedingungen erklärt wird. Daher werden 30% der Varianz durch die Umweltbedingungen erklärt. Der Anteil der Varianz durch die Behandlungsgruppen ist dann 70%.
- **B** \square Mit dem η^2 lässt sich auf die Qualität der Randomisierung und damit der Strukturgleichheit zwischen der Grundgesamtheit und der Stichprobe schließen. Es gilt dabei die Regel, dass ein η^2 -Wert von 1 zu bevorzugen ist.
- ${f C} \ \square$ Das η^2 beschreibt den Anteil der Varianz, der von den Behandlungsbedingungen erklärt wird. Daher werden 30% der Varianz erklärt.
- **D** \square Es werden 70% der Varianz durch die Behandlung erklärt. Das η^2 beschreibt den Anteil der Varianz, der von den unterschiedlichen Behandlungsbedingungen nicht erklärt wird.
- **E** \square Es werden 30% der Varianz durch den Versuch erklärt. Das η^2 beschreibt den Anteil der Varianz, der durch Fehler in der Versuchsdurchführung entsteht.

3. Aufgabe (2 Punkte)

Die einfaktorielle ANOVA ist ein Standardverfahren in der agrawissenschaftlichen Forschung wenn es um den Vergleich von Behandlungsgruppen geht. Welche der folgenden Aussage zu der Berechnung der Teststatistik der einfaktoriellen ANOVA ist richtig?

- **A** □ Die ANOVA berechnt die F-Statistik aus den SS Behandlung geteilt durch die SS Fehler.
- **B** □ Die ANOVA berechnet die F-Statistik indem die MS des Fehlers durch die MS der Behandlung geteilt werden. Wenn die F-Statistik sich der 0 annähert kann die Nullhypothese abgelehnt werden.
- C □ Die ANOVA berechnet die F-Statistik indem die MS des Fehlers durch die MS der Behandlung geteilt werden. Wenn die F-Statistik sich der 1 annähert kann die Nullhypothese nicht abgelehnt werden.

- D □ Die ANOVA berechnet die T-Statistik aus der Multiplikation der MS Behandlung mit der MS der Fehler. Wenn die F-Statistik genau 0 ist, kann die Nullhypothese nicht abgelehnt werden.
- **E** □ Die ANOVA berechnet die F-Statistik indem die MS der Behandlung durch die MS des Fehlers geteilt werden. Wenn die F-Statistik sich der 0 annähert kann die Nullhypothese nicht abgelehnt werden.

Viele statistische Verfahren nutzen eine Teststatistik um eine Aussage über den Zusammenhang zwischen der Grundgesamthat und der Stichprobe abzubilden. Ein statistisches Testwerkzeug ist hierbei die ANOVA. Die ANOVA rechnet dabei...

- **A** □ ... den Unterschied zwischen der F-Statistik anhand der Varianz der Gruppen. Wenn die F-Statistik exakt 0 ist, kann die Nullhypothese abgelehnt werden.
- **B** □ ... den Unterschied zwischen der Varianz über alle Behandlungsgruppen und der Varianz aus verschiedenen Behandlungsguppen. Wenn die ANOVA signifikant ist, muss ein Posthoc-Test angeschlossen werden.
- $\mathbf{C} \square$... den Unterschied zwischen der Varianz durch verschiedene Behandlungsguppen unter der Varianz über alle Behandlungsgruppen. Wenn die ANOVA signifikant ist, kann kein Effekt η^2 bestimmt werden.
- **D** □ ... den Unterschied zwischen mehreren Varianzen aus verschiedenen Behandlungsguppen. Wenn die ANOVA signifikant ist, ist nicht bekannt welcher Vergleich konkret unterschiedlich ist.
- **E** □ ... den Unterschied zwischen der Mittelwerte und der Varianz aus verschiedenen Behandlungsguppen. Wenn die ANOVA signifikant ist, ist bekannt welcher Vergleich konkret unterschiedlich ist.

5. Aufgabe (2 Punkte)

In einer Studie zur Bewertung der Wirkung von Vitamin C auf das Zahnwachstum bei Hasen entstand folgende Abbildung. Der Versuch wurde an 57 Tieren durchgeführt, wobei jedes Tier eine von drei Vitamin-C-Dosen (0.5, 1 und 1.5 mg/Tag) über eine von zwei Verabreichungsmethoden erhielt. Welche Aussage ist im Bezug auf eine zweifaktorielle ANOVA richtig?

- **A** \square Eine mittlere bis starke Interaktion liegt vor $(p \le 0.05)$
- **B** \square Das Bestimmtheitsmaß R^2 ist groß.
- **C** \square Keine Interaktion liegt vor $(p \le 0.05)$.
- **D** \square Eine negative Interaction liegt vor ($\rho \ge 0.5$).
- **E** \square Die Koeffizienten sind negativ ($\beta_0 < 0$; $\beta_1 < 0$).

Deskriptive Statistik & Explorative Datenanalyse

6. Aufgabe (2 Punkte) Gegeben ist y mit 1, 19, 4, 4 und 13. Berechnen Sie den Mittelwert und Standardabweichung. **A** □ Sie erhalten 8.2 +/- 2.74 **B** □ Es ergibt sich 8.2 +/- 7.53 **C** □ Es berechnet sich 8.2 +/- 56.7 **D** ☐ Sie erhalten 8.2 +/- 3.765 **E** □ Es ergibt sich 7.2 +/- 28.35 7. Aufgabe (2 Punkte) Gegeben ist y mit 14, 23, 3, 10, 10, 24, 15, 35, 13, 15 und 42. Berechnen Sie den Median, das 1^{st} Quartile sowie das 3rd Quartile. **A** □ Sie erhalten 15 [8; 22] **B** □ Es ergibt sich 19 +/- 10 **C** □ Es berechnet sich 19 [11; 25] **D** □ Es ergibt sich 15 [10; 24] **E** □ Es berechnet sich 16 [11; 23] 8. Aufgabe (2 Punkte) Sie überlegen Ihre Daten mit einem Histogramm zu visualisieren. Was ist die minimale Anzahl an Beobachtungen pro Gruppe? **A** □ Wir sollten eine Beobachtung mindestens pro Gruppe vorliegen haben. **B** □ erhalten, sollten wir mindestens zwanzig Beobachtungen haben. C □ Die opimale Anzahl ist größer als hundert Beobachtungen, wobei es gerne sehr viel mehr sein können. **D** □ 2-5 Beobachtungen. **E** □ Die Mindestanzahl liegt bei fünf Beobachtungen. 9. Aufgabe (2 Punkte) Um die Varianz zu berechnen müssen wir folgende Rechenoperationen durchführen. A 🗆 Wir berechnen erst den Mittelwert und dann die absoluten Abstände zu dem Mittelwert. Diese guadratischen Abstände summieren wir auf und teilen am Ende durch die Fallzahl. B 🗆 Als erstes berechnen wir den Mittelwert. Dann bilden wir die Summe der quadratischen Abstände zu dem Mittelwert. Abschließend subtrahieren wir die Fallzahl. C □ Den Mittelwert berechen, dann die guadratischen Abstände zum Mittelwert aufsummieren und durch die Fallzahl teilen.

D ☐ Wir berechnen erst den Mittelwert und dann die quadratischen Abstände zu dem Mittelwert. Diese quadratischen Abstände summieren wir auf und teilen am Ende durch die Fallzahl. Als letzten Schritt

E □ Den Mittelwert berechen, dann die absoluten Abstände zum Mittelwert aufsummieren

ziehen wir die quadratische Wurzel.

Der Boxplot stellt folgende statistische Maßzahlen in einer Abbildung dar. Damit gehört der Boxplot zu einem der am meisten genutzten statistischen Verfahren zur Visualisierung von Daten.

- **A** □ Der Boxplot stellt die Mittelwerte und die Varianz dar.
- **B** □ Den Median und die Quartile.
- **C** □ Der Boxplot stellt den Median und die Streuung dar.
- **D** □ Durch die Abbildung des Boxplot erhalten wir die Informationen über den Median und die Standardabweichung.
- **E** □ Durch die Abbildung des Boxplot erhalten wir die Informationen über die Mittelwerte und die Standardabweichung.

11. Aufgabe (2 Punkte)

Nachdem Sie in einem Feldexperiment zu Leistungssteigerung von Maiss durchgeführt haben, berechnen Sie den Mittelwert und den Median. Der Mittelwert \bar{y} und der Median \hat{y} unterscheiden sich. Welche Aussage ist richtig?

- **A** ☐ Wenn sich der Mittelwert und der Median nicht unterscheiden, liegen vermutlich Outlier in den Daten vor.
- **B** □ Der Mittelwert und der Median sollten gleich sein, wenn Outlier in den Daten vorliegen.
- **C** □ Wenn sich der Mittelwert und der Median nicht unterscheiden, liegen vermutlich keine Outlier in den Daten vor.
- **D** □ Der Mittelwert und der Median sollten gleich sein, wenn keine Outlier in den Daten vorliegen.
- **E** □ Da sich der Mittelwert und der Median unterscheiden, ist der Datensatz nicht zu verwenden. Mittelwert und Median müssen gleich sein.

12. Aufgabe (2 Punkte)

Sie wollen eine ANOVA im Anschluss an Ihr Feldexperiment rechnen. Dafür muss Ihr gemessener Endpunkt die Annahme einer Normalverteilung genügen. Zur Überprüfung können Sie folgende Visualisierung nutzen. Welche entsprechende Regel zur Abschätzung der Annahme einer Normalverteilung kommt zur Anwendung?

- **A** □ Einen Violinplot. Der Bauch der Violine muss hierbei einen höhren Wert annehmen als der Steg der Violine. Dann kann die Annahme einer Normalverteilung angenommen werden.
- **B** □ Einen Boxplot. Der Median, dargestellt als Linie, muss in der Mitte des IQR, dargestellt durch die Box, liegen.
- **C** □ Wir erstellen uns für jede Behandlung einen Dotplot und schauen, ob die Dots und damit die Varianz für jede Behandlung gleich groß sind.
- **D** □ Wir erstellen uns für jede Behandlung einen Boxplot und schauen, ob die Box und damit das IQR für jede Behandlung gleich groß ist.
- **E** □ Nach dem Einlesen der Daten nutzen wir einen Barplot um zu schauen, ob alle Mittelwerte über alle Behandlungen in etwa gleich groß sind. Damit ist dann auch die Varianz in allen Behandlungen in etwa gleich.

In der Statistik müssen wir häufig überprüfen, ob unser Outcome einer bestimmten Verteilung folgt. Meistens überprüfen wir, ob eine Normalverteilung vorliegt. Folgende drei Abbildungen eigenen sich im Besonderen für die Überprüfung einer Verteilungsannahme an eine Variable.

- **A** □ Histogramm, Densityplot, Dotplot
- **B** □ Boxplot, Violinplot, Mosaicplot
- C ☐ Violinplot, Scatterplot, Barplot
- **D** □ Boxplot, Densityplot, Violinplot
- **E** □ Histogramm, Scatterplot, Boxplot

14. Aufgabe (2 Punkte)

Sie haben n = 190 Pflanzen geerntet und wollen sich nun die Verteilung der Pflanzen einmal in einem Histogramm anschauen. Welche Verteilung ist dargestellt?

- **A** □ In dem Histogramm ist eine Ordinalverteilung dargestellt.
- **B** □ In dem Histogramm ist eine Normalverteilung dargestellt.
- **C** □ Eine multivariate Normalverteilung.
- **D** □ Eine Standardnormalverteilung.
- **E** □ Dem Histogramm entnehmen wir eine Possion-Verteilung.

Lineare Regression & Korrelation

15. Aufgabe (2 Punkte)

Im Allgemeinen gibt es zwei mögliche Ziele für ein Regressionsmodell. Wir können eine Vorhersagemodell oder ein kausales Modell rechnen. Welche Aussage ist für ein prädiktives Modell richtig?

- **A** □ Ein prädiktives Modell basiert auf einem Traingsdatensatz und einem Testdatensatz. Auf dem Trainingsdatensatz wird das Modell trainiert und auf dem Testdatensatz validiert.
- **B** □ Wir modellieren den Zusammenhang zwischen X und Y wenn ein prädiktives Modell rerechnet wird. Dabei kann nicht der gesamte Datensatz genutzt werden. Es wird ein Trainingsdatensatz zum Trainieren des Modells benötigt.
- C □ Ein prädiktives Modell benötigt mindestens eine Fallzahl von über 100 Beobachtungen und darf keine fehlenden Werte beinhalten. Die Varianzkomponenten müssen homogen sein.
- **D** □ Wenn ein prädiktives Modell gerechnet werden soll, dann muss zum einen ein Traingsdatensatz sowie ein Testdatensatz definiert werden. Dabei ist der Trainingsdatensatz meist 1/10 und der Testdatensatz 1/3 der Fallzahl groß. Der Testdatensatz dient zur Validierung.
- $\mathbf{E} \square$ Wir modellieren den Zusammenhang zwischen X und Y wenn ein prädiktives Modell rerechnet wird. Dabei kann der gesamte Datensatz genutzt werden. Eine Aufteilung wie in einem prädiktiven Modell ist nicht notwendig.

Nach der Modellierung einer Regression stellt sich die Frage, ob die Residuen approximativ einer Normalverteilung folgen. Sie können einen QQ-Plot für die visuelle Überprüfung der Annahme an die Residuen nutzen. Welche Aussage ist richtig?

- **A** □ Wir betrachten die Gerade und dabei insbesondere die beiden Enden der Gerade. Hier sollten die Punkte auf der Geraden liegen, dann ist die Annahme an die Normalverteilung der Residuen erfüllt.
- **B** □ Die Annahme der normalverteilten Residuen ist erfüllt. Die Punkte liegen zum überwiegenden Teil nicht auf der Geraden.
- C □ Die Annahme der normalverteilten Residuen ist nicht erfüllt. Die Punkte liegen zum überwiegenden Teil nicht auf der Geraden.
- **D** □ Die Annahme der normalverteilten Residuen ist nicht erfüllt. Die Punkte liegen zum überwiegenden Teil nicht auf der Geraden.
- **E** □ Die Annahme der normalverteilten Residuen ist nicht erfüllt. Die Punkte liegen zum überwiegenden Teil auf der Geraden.

17. Aufgabe (2 Punkte)

Nach einer Regressions sollten die Residuen (.resid) gleichmäßig um die Gerade verortet sein. Was bei einer simplen Regression noch relativ einfach visuell in einem Scatterplot zu überprüfen ist. Für komplexere Modell liefert der Residual Plot die notwendigen Informationen. Welche Aussage ist richtig?

- **A** □ Die Punkte müssen gleichmäßig in dem positiven Bereich liegen. Dies ist hier klar nicht der Fall. Einzelne Ausreißer können beobachtet werden. Die Analyse ist gescheitert.
- **B** Die Annahme der normalverteilten Residuen ist nicht erfüllt. Es ist kein Muster zu erkennen.

C 🗆 Die Annahme der normalverteilten Residuen ist erfüllt. Kein Muster ist zu erkennen und keine Outlier zu beobachten. D 🗆 Wenn wir die Nulllinie betrachten so liegen die Punkte nicht gleichmäßig über und unter der Nulllinie. Unser Modell erfüllt nicht die Annahme von normalverteilten Residuen mit einem Mittelwert von 0 und einer Streuung von s^2 . E □ Wenn wir die Nulllinie betrachten so müssen die Punkte gleichmäßig unter der Nulllinie liegen. Unser Modell erfüllt somit nicht die Annahme von normalverteilten Residuen mit einem Mittelwert von > 0 und einer Streuung von s. 18. Aufgabe (2 Punkte) Welche Aussage über den Korrelationskoeffizienten ρ ist richtig? **A** □ Der Korrelationskoeffizienten ρ zeigt keinen Zusammenhang zwischen zwei Variablen x und y bei einem Wert von 0. Einen negativen Zusammenhang Richtung -1 und somit auch einen positiven Zusammenhang Richtung 1. Je größer die Zahl allgemein, desto stärker der Effekt. **B** □ Der Korrelationskoeffizienten ρ ist eine standardisierte, statistische Maßzahl, die zwischen 0 und 1 liegt. Dabei ist Korrelationskoeffizienten ρ einheitslos. Eine Signifikanz kann nicht nachgewiesen werden. $\mathbf{C} \square$ Der Korrelationskoeffizienten ρ ist eine veraltete Darstellungsform von Effekten in der linearen Regression und wird wie das η^2 aus der ANOVA interpretiert. Der Korrelationskoeffizienten ρ beschreibt den Anteil an erklärter Varianz durch die Regression. **D** \square Korrelationskoeffizienten ρ liegt zwischen 0 und 1. Darüber hinaus ist der Korrelationskoeffizienten ρ einheitslos und kann als Standardisierung verstanden werden. **E** □ Der Korrelationskoeffizienten ρ zeigt keinen Zusammenhang zwischen zwei Variablen x und y bei einem Wert von 0. Einen maximalen negativen Zusammenhang bei -1 und somit auch einen maximalen positiven Zusammenhang bei 1. Korrelationskoeffizienten ρ ist einheitslos. 19. Aufgabe (2 Punkte) Nach einer simplen linearen Regression zur Untersuchung vom Einfluss der NO_3 -Konzentration in $[\mu g]$ im Wasser auf das Wachstum von Spitzkohl in [kg] erhalten Sie einen β_{NO_3} Koeffizienten von 1.1×10^{-5} und einen hoch signifikanten p-Wert mit 0.00051. Warum sehen Sie so einen kleinen Effekt bei einer so deutlichen Signifikanz? **A** □ Manchmal ist die Einheit der Einflussvariable *X* zu groß gewählt, so dass der Ansteig von 1 Einheit in X zu einer zu großen Änderung in y führt. Daher kann der Effekt eta_{NO_3} sehr klein wirken, da der p-Wert wird auf einer einheitslosen Teststatistik bestimmt wird. B 🗆 Die Fallzahl ist zu klein angesetzt. Je kleiner die Fallzahl ist, desto höher ist die Teststatsitik und damit auch der p-Wert kleiner. Wir brauchen also mehr Fallzahl um den geringen Effekt noch signifikant zu kriaen. **C** \square Wenn der Effekt β_{NO_3} winzig ist, dann kann es an einer falsch gewählten Einheit liegen. Der Anstieg von einer Einheit in X führt ja zu einer Änderung von β_{NO_3} in X. Wir müssen daher die Einheit von Yentsprechend anpassen. D □ Manchmal ist die Einheit der Einflussvariable X zu klein gewählt, so dass der Ansteig von 1 Einheit in X zu einer zu kleinen Änderung in y führt. Daher kann der Effekt eta_{NO_3} sehr klein wirken, aber auf einer anderen Einheit sehr viel größer sein. Der p-Wert wird auf einer einheitslosen Teststatistik bestimmt. **E** \square Das Gewicht und die NO_3 -Konzentration korrelieren sehr stark, deshalb wird der β_{NO_3} Koeffizient sehr klein. Mit einer ANOVA kann für die Korrelation korrigiert werden und der Effektschätzer passt dann

zum p-Wert.

Neben der klassischen Regression kann die Funktion lm() in Rauch für welche andere Art von Anwendung genutzt werden?

- **A** \square Ist die Einflussvariable X ein Faktor so werden die Gruppenmittelwerte geschätzt und eine anschließende ANOVA sowie multipler Gruppenvergleich mit {emmeans} ist möglich. Dennoch muss zuerst ein lineares Modell mit der Funktion lm() in \mathbf{R} gerechnet werden.
- **B** □ Die Funktion lm() berechnet die Varianzstruktur für eine ANOVA. Dannach kann dann über eine explorative Datenalayse nochmal eine Signifikanz berechnet werden. Sollte vor der Verwendung der Funktion lm() schon eine EDA gerechnet worden sein, so ist die Analyse wertlos.
- **C** □ Ist die Einflussvariable *X* numerisch so werden die Gruppenmittelwerte geschätzt und eine anschließende ANOVA sowie multipler Gruppenvergleich mit {emmeans} ist möglich.
- D □ Die Funktion lm() in ist der letzte Schritt für einen Gruppenvergleich. Vorher kann eine ANOVA oder aber ein multipler Vergleich in {emmeans} gerechnet werden. In der Funktion lm() werden die Gruppenvarianzen bestimmt.
- **E** \square Die Funktion lm() in \P wird klassischerweise für die nicht-lineare Regression genutzt. Ist die Einflussvariable X numerisch so werden die Gruppenmittelwerte geschätzt.

21. Aufgabe (2 Punkte)

In Ihrer Abschlussarbeit haben Sie neben den klassischen normalverteilten Endpunkte, wie Trockgewicht und Wuchshöhe noch den Infektionsstatus und Zähldaten erhoben. Um diese nicht normalverteilten Endpunkte auszuwerten nutzen Sie das *generalisierte lineare Modell (GLM)*. Welche Aussage ist richtig?

- $\mathbf{A} \square$ Das generalisierte lineare Modell (GLM) erlaubt auch weitere Verteilungsgruppen für das X bzw. die Einflussvariablen in einer linearen Regression zu wählen.
- **B** □ Das GLM ist eine Vereinfachung des LM in R. Mit dem GLM lassen sich polygonale Regressionen rechnen. Somit stehen neben der Normalverteilung noch weitere Verteilungen zu Verfügung.
- C □ In ist mit dem *generalisierten linearen Modell (GLM)* eine Modellierung implementiert, die die Poissonverteilung für Zähldaten oder die Binomialverteilung für 0/1-Daten modellieren kann. Weitere Modellierungen sind in auch mit zusätzlich geladenen Paketen nicht möglich.
- **D** □ Dank dem *generalisierten linearen Modell (GLM)* können auch andere Verteilungsfamilien als die Normalverteilung mit einer linearen Regression modelliert werden.
- **E** □ Das GLM ist eine allgemeine Erweiterung der linearen Regression auf die Normalverteilung.

Vermischte Themen

22. Aufgabe (2 Punkte)

Die Randomisierung von Beobachtungen zu den Versuchseinheiten ist bedeutend in der Versuchsplanung. Welche der folgenden Aussagen ist richtig?

- **A** □ Randomisierung erlaubt erst die Varianzen zu schätzen. Ohne eine Randomisierung ist die Berechnung von Mittelwerten und Varianzen nicht möglich. Dadurch lässt sich erst ein Experiment auswerten.
- **B** □ Strukturgleichheit ist durch Randomisierung gegeben. Leider hilft die Randomisierung noch nicht um von der Stichprobe auf die Grundgesamtheit zu schließen. Deshalb wurde das Falsifikationsprinzip entwickelt.
- **C** □ Randomisierung ist die direkte Folge von Strukturgleichheit. Die Strukturgleichheit erlaubt es erst von der Stichprobe auf die Grundgesamtheit zurückzuschliessen.
- **D** □ Strukturgleichheit ist durch Randomisierung gegeben. Somit kann von der Stichprobe auf die Grundgesamtheit geschlossen werden
- **E** □ Randomisierung bringt starke Unstrukturiertheit in das Experiment und erlaubt erst von der Stichprobe auf die Grundgesamtheit zurückzuschliessen.

Sie wollen Ihren Datensatz in Reinlesen und stehen nun vor einem Problem. Sie stellen fest, dass die Hilfeseiten alle in englischer Sprache verfasst sind. Warum mag die Nutzung von Deutsch problematisch sein?

- **A** ☐ Es gibt keinen Grund nicht auch deutsche Wörter zu verwenden. Es ist ein Stilmittel.
- **B** □ Programmiersprachen können nur englische Begriffe verarbeiten. Zusätzliche Pakete können zwar geladen werden, aber meist funktionieren diese Pakete nicht richtig. Deutsch ist International nicht bedeutend genug.
- C ☐ Im Allgemeinen haben Programmiersprachen Probleme mit Umlauten und Sonderzeichen, die in der deutschen Sprache vorkommen. Eine Nutzung der englischen Sprache umgeht dieses Problem auf einfache Art.
- **D** □ **R** Pakete sind nur in englischer Sprache verfasst. Es macht keinen Sinn **R** daher in Deutsch zu bedienen.

24. Aufgabe (2 Punkte)

Nachdem Sie Ihr Feldexperiment als Vorversuch für Ihre Abschlussarbeit abgeschlossen haben, wollen Sie in einer explorativen Datenanalyse (EDA) in einmal schauen, ob Sie überhaupt Effekte der Behandlung vorliegen haben. Welche Reihenfolge von Schritten müssen Sie in durchführen, damit Sie eine EDA rechnen können?

- A ☐ Für eine explorativen Datenanalyse (EDA) in müssen wir als erstes die Daten über read_excel() einlesen. Danach müssen wir schauen, dass wir die Zeilen richtig über mutate() transformiert haben. Insbesondere müssen Variablen mit kontinuierlichen Werten in einen Faktor umgewandelt werden. Am Ende nutzen wir die Funktion ggplot() für die eigentlich EDA.
- **B** □ Wir lesen die Daten über eine generische Funktion read() ein und müssen dann die Funktion ggplot() nur noch installieren. Dann haben wir die Abbildungen als *.png vorliegen.
- C □ Für eine explorativen Datenanalyse (EDA) in R müssen wir als erstes die Daten über read_excel() einlesen. Danach müssen wir schauen, dass wir die Spalten richtig über mutate() transformiert haben. Insbesondere müssen Variablen mit Kategorien in einen Faktor umgewandelt werden. Am Ende nutzen wir die Funktion ggplot() für die eigentlich EDA.
- **D** □ Wir lesen die Daten ein und mutieren die Daten. Dabei ist wichtig, dass wir nicht das Paket tidyverse nutzen, da dieses Paket veraltet ist. über die Funktion library(tidyverse) entfernen wir das Paket von der Analyse.
- **E** □ Wir transformieren die Spalten über mutate() in ein tibble und können dann über ggplot() uns die Abbildungen erstellen lassen. Dabei beachten wir das wir keine Faktoren in den Daten haben.

25. Aufgabe (2 Punkte)

Gegeben ist das Modell $Y \sim X$. Welche Aussage über $s_1^2 = s_2^2$ ist richtig?

- **A** □ Es handelt sich um abhängige Beobachtungen.
- **B** □ Es liegt Varianzhetrogenität vor.
- **C** □ Es liegt Varianzhomogenität vor.
- **D** □ Es handelt sich um ein balanciertes Design.
- **E** □ Es handelt sich um ein unbalanciertes Design.

Im Rahmen Ihrer Abschlussarbeit werten Sie ein Experiment mit Ferkel aus. Es geht um die Leistungssteigerung der Ferkelproduktion. Sie messen jeweils die Gewichtszunahme der Ferkel. Die Ferkel einer Muttersau sind dabei...

- **A** □ Abhängig von der Stallanlage und des Experiments können die Ferkel abhängig oder unabhängig sein. Allgmein gilt, dass Ferkel von unterschiedlichen Sauen näher miteinander verwandt sind als Ferkel von gleichen Sauen. Das Fisher-Axiom.
- **B** □ Je nach Stallanlage kommt eine andere Analyse in Betracht. Eine allgemeine Aussage über Ferkel und Sauen lässt sich statistisch nicht treffen.
- C □ Untereinander abhängig. Die Ferkel stammen von einem Muttertier und haben vermutliche eine ähnliche Varianzstruktur.
- **D** □ Untereinander unabhängig. Die Ferkel sind eigenständig und benötigen keine zusätzliche Behandlung.
- **E** □ Untereinander unabhängig. Sollten die Mütter verwandt sein, so ist die Varianzstruktur ähnlich und muss modelliert werden.

27. Aufgabe (2 Punkte)

In einer Studie wollen Sie den Effektschätzer Odds ratio berechnen. Sie finden in Ihrem Experiment zur Behandlung von Klaueninfektionen bei Schafe in 6 Tieren Erkrankung der Klauen vor. 7 Tiere sind gesund. Welche Aussage ist richtig?

- **A** □ Das Verhältnis der Anteile Odds ratio ergibt ein Anteilsverhältnis von 0.46. Wir sind am Anteil der Kranken interessiert.
- **B** □ Es ergibt sich ein Odds ratio von 0.86, da es sich um eine Chancenverhältnis handelt
- **C** □ Es ergibt sich ein Odds ratio von 0.86, da es sich um ein Anteil handelt.
- **D** □ Es ergibt sich ein Odds ratio von 1.17, da es sich um ein Anteil handelt.
- **E** □ Es ergibt sich ein Odds ratio von 0.46, da es sich um eine Chancenverhältnis handelt.

28. Aufgabe (2 Punkte)

Historisch gesehen ergibt sich ein Problem, wenn Sie mit sehr großen Datensätzen, wie in der Bio Data Sience üblich, rechnen. Warum ist es ein Problem, wenn Ihre Datensätze sehr groß werden hinsichtlich der Bewertung anhand der Signifikanz?

- **A** \square Riesige Datensätz haben mehr Fallzahl was zur α -Inflation führt. Durch eine Adjustoerung kann dem Problem entgegengewirkt werden.
- **B** \square Relevanz und Signifikanz haben nichts miteinander zu tun. Daher gibt es auch keinen Zusammenhang zwischen hoher Fahlzahl (n > 10000) und einem signifikanten Test. Ein Effekt ist immer relevant und somit signifikant.
- **C** □ Aktuell werden immer größere Datensätze erhoben. Dadurch wird auch die Varianz immer höher was automatisch zu mehr signifikanten Ergebnissen führt.
- **D** □ Aktuell werden zu grosse Datensätze für die gänigige Statistik gemessen. Daher wendet man maschinelle Lernverfahren für kausale Modelle an. Hier ist die Relevanz gleich Signifikanz.
- **E** □ Aktuell werden immer größere Datensätze erhoben. Eine erhöhte Fallzahl führt automatisch auch zu mehr signifikanten Ergebnissen, selbst wenn die eigentlichen Effekte nicht relevant sind.

Multiple Gruppenvergleiche

29. Aufgabe (2 Punkte)

Sie haben folgende unadjustierten p-Werte gegeben: 0.03, 0.02, 0.34, 0.21, 0.001 und 0.01. Sie adjustieren die p-Werte nach Bonferroni. Welche Aussage ist richtig?

- **A** \square Nach der Bonferroni-Adjustierung ergeben sich die adjustierten p-Werte von 0.005, 0.0033, 0.0567, 0.035, 2e-04 und 0.0017. Die adjustierten p-Werte werden zu einem α -Niveau von 0.83% verglichen.
- **B** \square Nach der Bonferroni-Adjustierung ergeben sich die adjustierten p-Werte von 0.005, 0.0033, 0.0567, 0.035, 2e-04 und 0.0017. Die adjustierten p-Werte werden zu einem α -Niveau von 5% verglichen.
- **C** \square Nach der Bonferroni-Adjustierung ergeben sich die adjustierten p-Werte von 0.18, 0.12, 1, 1, 0.006 und 0.06. Die adjustierten p-Werte werden zu einem α -Niveau von 5% verglichen.
- **D** \square Nach der Bonferroni-Adjustierung ergeben sich die adjustierten p-Werte von 0.18, 0.12, 2.04, 1.26, 0.006 und 0.06. Die adjustierten p-Werte werden zu einem α -Niveau von 5% verglichen.
- **E** \square Nach der Bonferroni-Adjustierung ergeben sich die adjustierten p-Werte von 0.18, 0.12, 1, 1, 0.006 und 0.06. Die adjustierten p-Werte werden zu einem α -Niveau von 0.83% verglichen.

30. Aufgabe (2 Punkte)

Die Abkürzung *CLD* steht für welches statistische Verfahren? Welche folgende Beschreibung der Interpretation ist korrekt?

- **A** □ Compact letter display. Gleichheit in den Behandlungen wird durch den gleichen Buchstaben oder Symbol dargestellt. Teilweise ist die Interpretation des CLD herausfordernd, da wir ja nach dem Unterschied suchen.
- **B** □ Contrast letter display. Unterschiede in den Behandlungen werden durch den gleichen Buchstaben oder Symbol dargestellt. Die Interpretation des CLD führt häufig in die Irre.
- C ☐ Compound letter display. Gleichheit in dem Outcomes wird durch den gleichen Buchstaben oder Symbol dargestellt. Teilweise ist die Interpretation des Verbunds (eng. compound) herausfordernd, da wir ja nach dem Unterschied suchen.
- **D** ☐ Compact letter detection. Gleichheit in den Behandlungen wird durch den gleichen Buchstaben oder Symbol dargestellt.
- **E** □ Compact letter display. Gleiche Buchstaben bedeuten, dass sich die Behandlungen unterscheiden. Daher ist das CLD sehr unintuitiv. Es wäre besser, wenn gleiche Buchstaben Gleichheit anzeigen würden. Dies ist aber leider in der statistischen Testtheorie nicht möglich.

31. Aufgabe (2 Punkte)

Der multiple Vergleich als Posthoc-Test nach einer ANOVA ist in den Agrarwissenschaften heutzutage Standard. Welches R Paket wird häufig für den multiplen Vergleich genutzt? Welche Beschreibung der Eigenschaften ist korrekt?

- **A** □ Sie nutzen das R Paket {emmeans} für die Berechnung des multipnen Gruppenvergleichs. Die Ausgabe der Funktion emmeans() erlaubt zügig über {ggplot} einen Barplot zu erstellen und dann auch das CLD zu berechnen. Sie haben alles sofort zusammen.
- **B** □ Das R Paket {Im}. Das Paket {Im} erstellt selbstständig Konfidenzintervalle und entsprechende p-Werte. Da wir in dem Paket nicht adjustieren müssen, ist es bei Anwendern sehr beliebt.
- C □ Das R Paket {ggplot}. Wir erhalten hier sofort eine Visualisierung der Daten. Anhand der Visualisierung lässt sich eine explorative Datenanalyse durchführen, die gleichwertig zu einem Posthoc-Test ist.
- D □ Das R Paket {emmeans} erlaubt die Durchführung eines multiplen Gruppenvergleichs. Aus einem emmeans Objekt lässt sich leider kein CLD erstellen. Dennoch ist das Paket einfach zu bedienen und wird deshalb genutzt. Die Interpretation der statistischen Auswertung wird über einen Barplot abgebildet.
- **E** □ Das R Paket {hmisc} erlaubt die Durchführung eines multiplen Gruppenvergleichs aus verschiedenen Modellen heraus. Aus einem hmisc Objekt lässt sich recht einfach das CLD erstellen und so über Barplots eine schnelle Interpration der statistischen Auswertung durchführen.

In den Humanwissenschaften werden multiple Vergleiche häufig anders behandelt als in den Agrarwissenschaften. In beiden Bereichen tritt jedoch das gleiche Phänomen bei multiplen Testen auf. Wie muss mit dem Phänomen umgegangen werden und wie ist es benannt?

- **A** \square Das globale Signifikanzniveau liegt nicht mehr bei 5% sondern sehr viel höher. Es kommt zu einer α -Inflation. Dagegen kann mit der Adjustierung der p-Werte nach Bonferroni vorgegangen werden.
- **B** \square Beim multiplen Testen kann es zu einer β-Inflation kommen. Das globale Signifikanzniveau liegt nicht mehr bei 20%. Daher müssen die p-Werte entsprechend adjustiert werden. Hierfür gibt es verschiedene Verfahren, wobei das Verfahren zur Adjustierung der p-Werte nach Bonferroni das bekanneste Verfahren ist.
- $\mathbf{C} \square$ Beim multiplen Testen kann es zu einer α -Deflation kommen. Das globale Signifikanzniveau liegt nicht mehr bei 5% sondern weit darunter. Daher müssen die p-Werte entsprechend adjustiert werden. Hierfür gibt es verschiedene Verfahren, wobei das Verfahren zur Adjustierung der p-Werte nach Bonferroni das bekanneste Verfahren ist. Die p-Werte werden durch die Anzahl an Vergleichen geteilt
- **D** □ Beim multiplen Testen kann es zu Varianzheterogenität kommen. Das globale Signifikanzniveau liegt nicht mehr bei 5%. Daher müssen die p-Werte entsprechend adjustiert werden. Das Verfahren nach Welch, bekannt aus dem t-Test, ist hier häufig anzuwenden.
- **E** \square Das globale Signifikanzniveau liegt nicht mehr bei 5% sondern sehr viel niedriger, bei ca. 1%. Es kommt zu einer α -Hyperinflation. Dagegen kann mit der Adjustierung der p-Werte nach Bonferroni vorgegangen werden.

33. Aufgabe (2 Punkte)

In einem Feldversuch haben Sie einen Behandlungsfaktor mit mehreren Leveln vorliegen. Sie rechnen einen multiplen Vergleich. Vorher hatten Sie eine einfaktorielle ANOVA mit einem signifikanten Ergebnis vorliegen. Welche Aussage ist richtig?

- **A** \square Wenn ein multipler Test gerechnet wird, dann muss der Effekt Δ adjustiert werden im Gegensatz zu den p-Werten.
- **B** Beim multiplen Testen werden die Effekte der paarweisen Vergleiche ignoriert. Der Nachteil des multiplen Testens ist ja auch, dass wir am Ende keine Effekte mehr vorliegen haben. Eine ANOVA liefert hier bessere Informationen.
- ${f C}$ Wenn ein multipler Test gerechnet wird, dann muss der Effekt Δ nach Bonferroni adjustiert werden. Dafür wird der Effekt mit der Anzahl an Vergleichen k multipliziert. Dies geschiet analog zu den p-Werten.
- ${f D} \ \square$ Beim multiplen Testen muss der Effekt, hier der Mittelwertsunterschied Δ aus den paarweisen t-Tests, nicht adjusiert werden.
- **E** \square Wenn ein multipler Test gerechnet wird, dann muss der Effekt Δ nicht adjustiert werden. Bei einem Effekt im multiplen Testen handelt es sich um eine Wahrscheinlichkeit für das Auftreten der Nullhypothese.

Statistische Testtheorie

34. Aufgabe (2 Punkte)

Sie haben den mathematischen Ausdruck $Pr(D|H_0)$ vorliegen, welche Aussage ist richtig?

- **A** □ Die Wahrscheinlichkeit der Daten unter der Nullhypothese in der Grundgesamtheit.
- $\mathbf{B} \square Pr(D|H_0)$ ist die Wahrscheinlichkeit die Daten D zu beobachten, wenn die Nullhypothese wahr ist.
- **C** □ Die Wahrscheinlichkeit für die Nullhypothese, wenn die Daten wahr sind.
- **D** □ Die Inverse der Wahrscheinlichkeit unter der die Nullhypothese nicht mehr die Alternativehypothese überdeckt.
- $\mathbf{E} \square Pr(D|H_0)$ ist die Wahrscheinlichkeit nicht die Daten D zu beobachten sondern die Nullhypothese, wenn diese wahr ist.

Das statistische Testen basiert auf dem Falsifikationsprinzip. Es besagt,

- **A** □ ... dass ein minderwertes Modell durch ein weniger minderwertiges Modell ersetzt wird. Es gilt das Falsifikationsprinzip nach Karl Popper.
- **B** □ ... dass Fehlerterme in statistischen Modellen nicht verifiziert werden können.
- **C** □ ... dass ein schlechtes Modell durch das Falsifikationsprinzip durch ein noch schlechteres Modell ersetzt wird. Die Wissenschaft lehnt ab und verifiziert nicht.
- **D** ... dass in der Wissenschaft immer etwas falsch sein muss. Sonst gebe es keinen Fortschritt.
- **E** □ ... dass Modelle meist falsch sind und selten richtig.

36. Aufgabe (2 Punkte)

Das Signifikanzniveau α wird auch Fehler 1. Art genannt und liegt bei 5%. Warum wurde der Grenzwert von 5% als Signifikanzschwelle gewählt?

- **A** \square Als Kulturkonstante hat $\alpha = 5\%$ den Rang einer Naturkonstante und wurde nach langer Diskussion in der UN im Jahre 1983 festgesetzt. Damals auch schon mit der Zustimmung der UdSSR.
- **B** \square Im Rahmen eines langen Disputs zwischen Neyman und Fischer wurde $\alpha = 5\%$ festgelegt. Leider werden die Randbedingungen und Voraussetzungen an statistsiche Modelle heute immer wieder ignoriert.
- **C** □ Der Begründer der modernen Statistik, R. Fischer, hat die Grenze simuliert und berechnet. Dadurch ergibt sich dieser optimale Cut-Off.
- **D** □ Auf einer Statistikkonferenz in Genf im Jahre 1942 wurde dieser Cut-Off nach langen Diskussionen festgelegt. Bis heute ist der Cut Off aber umstritten, da wegen dem 2. Weltkrieg viele Wissenschaftler nicht teilnehmen konnten.
- **E** \square Die Festlegung von $\alpha = 5\%$ ist eine Kulturkonstante. Wissenschaftler benötigt eine Schwelle für eine statistische Testentscheidung, der Wert von α wurde aber historisch mehr zufällig gewählt.

37. Aufgabe (2 Punkte)

Betrachten wir die Teststatistik aus einem abstrakteren Blickwinkel. Beim statistischen Testen wird das "signal" mit dem "noise" aus den Daten D zu einer Teststatistik T_D verrechnet. Welche der Formel berechnet korrekt die Teststatistik T_D ?

A □ Es gilt
$$T_D = \frac{signal}{noise}$$

B
$$\square$$
 Es gilt $T_D = signal \cdot noise$

C □ Es gilt
$$T_D = \frac{noise}{signal}$$

D □ Es gilt
$$T_D = \frac{signal}{noise^2}$$

E
$$\square$$
 Es gilt $T_D = (signal \cdot noise)^2$

Eine Analogie kann helfen einen Sachverhalt besser zu verstehen. Wie kann folgende Aussage richtig in die Analogie der statistischen Testtheorie gesetzt werden?

H₀ ablehnen obwohl die H₀ gilt

- **A** \square *Fire without alarm*, dem β -Fehler als Analogie eines Rauchmelders.
- ${\bf B} \;\square\;$ In die Analogie eines Rauchmelders: *Alarm with fire*.
- **C** \square Dem β -Fehler mit der Analogie eines brennenden Hauses: *Fire without alarm*.
- **D** \square *Alarm with fire*, dem α -Fehler in der Analogie von Feuer.
- **E** \square In die Analogie eines Rauchmelders: *Alarm without fire*, dem α -Fehler.

39. Aufgabe (2 Punkte)

Welche statistische Maßzahl erlaubt es Relevanz mit Signifikanz zu verbinden? Welche Aussage ist richtig?

- **A** \square Einem Konfidenzintervall. Das Konfidenzinterval bringt durch eine Visualisierung und drei Intervallgrenzen die Möglichkeit mit, eine Relevanzschwelle neben der Signifikanzschwelle und der α -Schwelle zu definieren.
- **B** □ Das OR. Als Chancenverhältnis gibt es das Verhältnis von Relevanz und Signifikanz wieder.
- C □ Das Konfidenzintervall. Durch die Visualizierung des Konfidenzintervals kann eine Relevanzschwelle vom Anwender definiert werden. Zusätzlich erlaubt das Konfidenzinterval auch eine Entscheidung über die Signifikanz.
- **D** \square Der p-Wert. Durch den Vergleich mit α lässt sich über die Signifikanz entscheiden und der β -Fehler erlaubt über die Power eine Einschätzung der Relevanz.
- $\mathbf{E} \square$ Das Δ . Durch die Effektstärke haben wir einen Wert für die Relevanz, die vom Anwender bewertet werden muss. Da Δ antiproportional zum p-Wert ist, bedeutet auch ein hohes Δ ein sehr kleinen p-Wert.

40. Aufgabe (2 Punkte)

Welche Aussage über den p-Wert und dem Signifikanzniveau α gleich 5% ist richtig?

- **A** □ Wir vergleichen die Effekte des *p*-Wertes mit den Effekten der Signifikanzschwelle unter der Annahme der Nullhypothese. Dabei gilt, dass wir die Nullhypothese nur ablehnen können anhand des Falsifikationsprinzips.
- **B** \square Wir machen ein Aussage über die Flächen und der Kurve der Teststatistik, wenn die H_0 gilt. Dabei werden Wahrscheinlichkeiten vergleichen, die durch die Flächen unter der Kurve repräsentiert werden.
- $\mathbf{C} \square$ Wir machen eine Aussage über die indivduelle Wahrscheinlichkeit des Eintretens der Nullhypothese H_0 . Der p-Wert wird mit dem Signifikanzniveau verglichen und bewertet.
- **D** \square Wir machen ein Aussage über die Flächen und zwischen den Kurve der Teststatistiken der Hypothesen H_0 und H_A , wenn die H_0 gilt. Dabei werden Wahrscheinlichkeiten vergleichen, die durch die Flächen unter der Kurve repräsentiert werden.
- **E** \square Wir vergleichen mit dem *p*-Wert und dem Signifikanzniveau α Wahrscheinlichkeiten und damit die absoluten Werte auf einem Zahlenstrahl, wenn die H_0 gilt.

Um die Testtheorie besser zu verstehen, mag es manchmal sinnvoll sein ein Beispiel aus dem Alltag zu wählen. Die Ergebnisse der Analyse durch einen statistischen Test können auch in grobe Analogie zur Wettervorhersage gebracht werden. Welche Aussage trifft am ehesten zu?

- **A** □ In der Analogie der Regenwahrscheinlichkeit in einem bestimmten Gebiet: ein statistischer Test gibt die Wahrscheinlichkeit für ein Ereignis in einem Experiment mit den Daten *D* wieder und lässt sich kaum verallgemeinern.
- **B** □ In der Analogie der Durchschnittstemperatur: Wie oft tritt ein Effekt durchschnittlich ein? Wir erhalten eine Wahrscheinlichkeit für die Effekte. Zum Beispiel, wie hoch ist die Wahrscheinlichkeit für einen Mittelwert als Durchschnitt.
- **C** □ In der Analogie der Sonnenscheindauer: Wie lange kann mit einem entsprechenden Effekt gerechnet werden? Die Wahrscheinlichkeit für den Effekt gibt der statistische Test wieder.
- **D** □ In der Analogie der Wahrscheinlichkeit für Regen: ein statistischer Test erlaubt die Wahrscheinlichkeit für ein Ereignis abzuschätzen. Die Stärke des Effektes können wir nicht bestimmen.
- **E** □ In der Analogie des Niederschlags oder Regenmenge: ein statistischer Test gibt die Stärke eines Effektes wieder. Zum Beispiel, wie hoch ist der Mittelwertsunterschied.

42. Aufgabe (2 Punkte)

In Ihrer Forschungsarbeit wollen Sie eine Aussage über ein untersuchtes Individuum treffen. Dazu nutzen Sie eine ANOVA als statistischen Test. Erhalten Sie eine valide Aussage aus einem statistischen Test?

- **A** □ Nein, wir können ein untersuchtes Individuum nicht mit einer ANOVA auswerten. Wir erhalten keine Aussage zum Individuum.
- **B** □ Ja, wir erhalten eine Aussage. Müssen aber das Individuum im Kontext der Population adjustieren.
- C □ Ja, wir können ein untersuchtes Individuum nicht mit einer ANOVA auswerten. Wir erhalten keine Aussage zum Individuum. Wir können aber den Test adjustieren und so die Auswertung ermöglichen.
- **D** □ Ja, wir können ein untersuchtes Individuum mit einer ANOVA auswerten. Wir erhalten eine Aussage zum Individuum.
- **E** □ Ja, wir erhalten nur eine Aussage zu zwei Individuen. Ein statistischer Test liefert Informationen zu einem Individuum im Vergleich zu einem anderen Individuum.

43. Aufgabe (2 Punkte)

Welche Aussage über die Power ist richtig?

- **A** \square Die Power $1-\beta$ wird auf 80% gesetzt. Damit liegt die Wahrscheinlichkeit für die H_0 bei 20%.
- **B** \square Es gilt $\alpha + \beta = 1$ und somit liegt β meist bei 95%.
- **C** \square Alle statistischen Tests sind so konstruiert, dass die H_A mit 20% bewiesen wird. Die Power ist $1-\beta$ mit β gleich 80% gesetzt.
- **D** \square Die Power wird berechnet und ist keine Eigenschaft des Tests. Die Power wird auf 80% gesetzt und beschreibt mit welcher Wahrscheinlichkeit H_0 bewiesen wird
- **E** □ Die Power wird nicht berechnet sondern ist eine Eigenschaft des Tests. Die Power wird auf 80% gesetzt und beschreibt mit welcher Wahrscheinlichkeit *H*_A bewiesen wird

Sie rechnen einen statistischen Test und erhalten neben dem p-Wert noch einen Effekt wiedergegeben. Welche Aussage zum Effekt ist richtig?

- **A** □ Der Effekt eines statistischen Tests beschreibt die biologisch interpretierbare Ausgabe eines Tests. Moderen Algorithmen liefern keine Effekte mehr sondern nur noch bedingte Wahrscheinlichkeiten. Der Effekt spielt in der modernen Statistik keine Rollen mehr.
- **B** □ Der Effekt eines statistischen Tests beschreibt den Output oder die Wiedergabe eines Tests in einem Computer.
- **C** □ Der Effekt eines statistischen Tests beschreibt die mathematisch interpretierbare Ausgabe eines Tests. Damit ist der Effekt direkt mit dem Begriff der Signifikanz verbunden. Die Entscheidung über die Signifikanz trifft der Forschende unabhängig von der Relevanz eines statistsichen Tests.
- **D** \square Durch den Effekt erfahren wir die statistische interpretierbare Ausgabe eines statistischen Tests. Zum Beispiel das η^2 aus einer ANOVA. Damit können wir die Signifikanz direkt mit dem Effekt verbinden. Am Ende muss der Forschende aber entscheiden, ob der Effekt entsprechend seinen Erwartungen als bedeutet zu bewerten ist.
- **E** □ Der Effekt eines statistischen Tests beschreibt die biologisch interpretierbare Ausgabe eines Tests. Zum Beispiel den mittleren Unterschied zwischen zwei Gruppen aus einem t-Test. Damit ist der Effekt direkt mit dem Begriff der Relevanz verbunden. Die Entscheidung über die Relevanz trifft der Forschende unabhängig von der Signifikanz eines statistischen Tests.

45. Aufgabe (2 Punkte)

Welche Aussage über die Entscheidung anhand der berechneten Teststatistik gegen die Nullhypothese ist richtig?

- **A** \square Ist $Pr(D|H_0)$ kleiner als das Signifikanzniveau α gleich 5% dann wird die Nullhypothese H_0 abgelehnt.
- **B** \square Anhand der berechneten Teststatistik lässt sich wie folgt eine Entscheidung treffen. Liegt der Wert über oder gleich dem Signifikanzniveau α dann kann die Nullhypothese abgelehnt werden.
- **C** \square Ist in dem 95%-Konfidenzintervall nicht die Null enthalten dann wird die Nullhypothese H_0 abgelehnt.
- f D \Box Anhand der berechneten Teststatistik lässt sich wie folgt eine Entscheidung treffen. Liegt der Wert in dem Signifikanzniveauintervall lpha dann kann die Nullhypothese abgelehnt werden.
- **E** \square Ist T_D höher als der kritische Wert $T_{\alpha=5\%}$ dann wird die Nullhypothese H_0 abgelehnt.

46. Aufgabe (2 Punkte)

Ein statistischer Test benötigt für die richtige Durchführung Hypothesen *H*, sonst ist der Test nicht zu interpretieren. Welche Aussage ist richtig?

- **A** \square Es gibt ein Hypothesenset bestehend aus k Hypothesen. Meistens wird die Nullhypothese H_0 und die Alternativhypothese H_A verwendet. Wegen des Falsifikationsprinzips ist es wichtig, die bekannte falsche und unbekannte richtige Hypothese mit in das Set zu nehmen.
- **B** \square Es gibt ein statistisches Hypothesenpaar mit der Hypothese für und gegen die wissenschaftliche Fragestellung. Die Hypothesen werden H_{pro} und H_{contra} bezeichnet.
- **C** \square Es gibt ein statistisches Hypothesenpaar mit der Nullhypothese H_0 und der Alternativehypothese H_A oder H_1 .
- **D** \square Es gibt bedingt durch das das Falsifikationsprinzip ein Set von k Nullhypothesen, die iterative gegen k-1 Alternativhypothesen getestet werden.
- **E** □ Ein statistisches Hypothesenpaare gibt es. Zum einen die Nullhypothese und zum anderen die Alternativehypothese. Es ist aber nur notwendig die Alternative anzugeben, da die Nullhypothese nicht beim Testen benötigt wird.

Statistische Tests für Gruppenvergleiche

47. Aufgabe (2 Punkte)

Nach einem Feldexperiment wollen Sie zwei Gruppen mit einem Welch t-Test vergleichen. Welche Aussage ist auch für den Student t-Test richtig?

- **A** □ Der t-Test vergleicht zwei oder mehr Gruppen indem die Mittelwerte miteinander verglichen werden.
- **B** □ Der t-Test ist ein Vortest der ANOVA und basiert daher auf dem Vergleich von Streuungsparametern
- **C** □ Der t-Test berechnet die Differenz von zwei Mittelwerten als Effekt und gibt eine Entscheidung, ob sich die beiden Mittelwerte *jeweils* von Null unterscheiden.
- D □ Der t-Test vergleicht die Mittelwerte von zwei Gruppen unter der strikten Annahme von Varianzhomogenität. Sollte keine Varianzhomogenität vorliegen, so gibt es keine Möglichkeit den t-Test in einer Variante anzuwenden.
- **E** □ Der t-Test berechnet die Differenz von zwei Mittelwerten als Effekt und gibt eine Entscheidung, ob sich die beiden Mittelwerte in den Gruppen signifikant unterscheiden.

48. Aufgabe (2 Punkte)

In einer Studie zur Bewertung der Wirkung des Mikronährstoff Sulfit auf den Ertrag in t/ha von Papaya im Vergleich zu einer Kontrolle entstand folgende Abbildung. Der Versuch wurde in 6 Parzellen pro Gruppe durchgeführt. Welche Aussage ist im Bezug auf einen t-Test ist richtig?

- **A** □ Nach Betrachtung des Barplots liegt kein signifikanter Unterschied vor. Der Effekt liegt bei -2.
- **B** □ Es liegt ein signifikanter Unterschied vor. Der Effekt liegt bei -0.2.
- C □ Der Effekt und die Signifikanz lassen sich nicht aus Barplots abschätzen. Höchtens der Effekt als relativer Unterschied zwischen der Höhe der Barplots. Standard ist der mediane Unterschied aus Boxplots.
- D □ Die Barplots deuten auf keinen signifikanten Unterschied. Der Effekt liegt vermutlich bei -2 unter einer groben Abschätzung. Wir müssen aber eine ANOVA rechnen um den Effekt wirklich bestimmen zu können.
- **E** □ Die Barplots deuten auf ein signifikanten Unterschied. Der Effekt liegt vermutlich bei -2.

49. Aufgabe (2 Punkte)

In Ihrer Abschlussarbeit betrachten Sie die Effekte von einer Behandlung vor und nach der Gabe eines Vitamins. Sie müssen einen gepaarten t-Test rechnen. Welche Aussage ist richtig?

- **A** □ Der gepaarte t-Test nutzt die Varianz der Beobachtungen jeweils paarweise und bildet dafür eine verbundene Stichprobe. Dieser Datensatz *d* dient dann zur Differenzbildung.
- **B** □ Abhängige Beobachtungen müssen gesondert in einem gepaarten t-Test modelliert werden. Wenn wiederholt an dem gleichen Tier oder Pflanze gemessen wird, dann bilden wir die Differenz zwischen den beiden Zeitpunkten. Auf den Differenzen rechnen wir den gepaarten t-Test.

C □ Wenn die Beobachtungen unabhängig voneinander sind, rechnen wir einen gepaarten t-Test. Messen wir wiederholt an dem gleichen Tier oder Pflanze dann bilden wir das Produkt zwischen den zwei Messpunkten.
 D □ Abhängige Beobachtungen müssen gesondert in einem gepaarten t-Test modelliert werden. Wenn wiederholt an dem gleichen Tier oder Pflanze gemessen wird, dann bilden wir den Quotienten zwischen den beiden Zeitpunkten. Auf den Quotienten rechnen wir den gepaarten t-Test.
 E □ Der gepaarte t-Test wird gerechnet, wenn die Beobachtungen abhängig voneinander sind. Wir messen jede Beobachtung nur einmal und berechnen dann die Differenz zu dem Mittel der anderen Beobachtungen.

50. Aufgabe (2 Punkte)

Nach einem Experiment mit vier Weizensorten ergibt eine ANOVA (p=0.048) einen signifikanten Unterschied für den Ertrag. Sie führen anschließend die paarweisen t-Tests für alle Vergleiche der verschiedenen Weizensorten durch. Nach der Adjustierung für multiples Testen ist kein p-Wert unter der α -Schwelle. Sie schauen sich auch die rohen, unadjustierten p-Werte an und finden hier als niedrigsten p-Wert $p_{3-2}=0.052$. Welche Aussage ist richtig?

- **A** □ Der Fehler liegt in den t-Tests. Wenn eine ANOVA signifikant ist, dann muss zwangsweise auch ein t-Test signifikant sein.
- **B** □ Das Beispiel kann so nicht auftreten, da die ANOVA und die t-Tests algorithmisch miteinander verschränkt sind.
- **C** □ Es gibt einen Fehler in der Varianzstruktur. Daher kann die ANOVA nicht richtig sein und paarweise t-Tests liefern das richtige Ergebnis.
- D □ Das ist kein Wunder. Die ANOVA testet auf der gesamten Fallzahl und die paarweisen t-Tests verlieren immer eine oder mehr Gruppen als Fallzahl. Mit steigender Fallzahl sind mehr signifikante Unterschiede zu erwarten. Die p-Werte unterscheiden sich numerisch auch kaum.
- **E** □ Die adjustierten p-Werte deuten in die richtige Richtung. Zusammen mit den nicht signifikanten rohen p-Werten ist von einem Fehler in der ANOVA auszugehen.

Teil I.

Deskriptive Statistik & Explorative Datenanalyse

51. Aufgabe (8 Punkte)

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

Jonas steht vor einem ersten Problem, denn wenn es nach seiner Betreuer geht, soll er in einem einem Freilandversuch Brokoli auswertet. Soweit eigentlich alles passend. Besser wäre was anderes gewesen. Stricken. Ein wunderbares Hobby um sich drin zu verlieren und Abstand zu bekommen. Jonas denkt gerne über Stricken nach. Das heißt erstmal überlegen für Jonas. 'Hm...', Snickers und Iron Maiden. Das ist und bleibt die beste Kombination zum Nachdenken für Jonas. Die Behandlung werden verschiedene Düngestufen (ctrl, low und high) sein. In seiner Exceldatei wird er den Endpunkt (Y) Trockengewicht als drymatter aufnehmen. Vorab soll Jonas aber eimal die folgenden Barplots seiner Betreuer nachbauen, damit er den Rode schonmal für später vorliegen hat. Damit geht das Problem schon los. Eine echte Herausforderung für ihn war schon immer die Erschöpfung gewesen. Ein leidiges Lied.

Leider kennt sich Jonas mit der Erstellung von Barplots in \mathbf{R} nicht aus. Deshalb braucht er bei der Visualisierung Ihre Hilfe!

- 1. Formulieren Sie die wissenschaftliche Fragestellung! (1 Punkt)
- 2. Erstellen Sie eine Tabelle mit den statistischen Maßzahlen der drei Barplots! Beachten Sie die korrekte Darstellungsform der statistischen Maßzahlen! (3 Punkte)
- 3. Erstellen Sie einen beispielhaften Datensatz im Rüblichen Format, aus dem die drei Barplots *möglicherweise* erstellt wurden! (2 Punkte)
- 4. Kann Jonas einen Unterschied zwischen den Behandlungen erwarten? Begründen Sie Ihre Antwort! (2 Punkte)

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

Barplots sind bedeutend in der Darstellung von wissenschaftlichen Ergebnissen. Leider hat sich Yuki nicht gemerkt, welche statistischen Maßzahlen für einen Barplot erhoben werden müssen. Besser wäre was anderes gewesen. Orchideen. Ein wunderbares Hobby um sich drin zu verlieren und Abstand zu bekommen. Yuki denkt gerne über Orchideen nach. Das ist in soweit doof, da nach seinem Betreuer nun Barplots aus seinen Daten gebaut werden sollen, bevor es mit dem statistischen Testen weitergeht. Na dann mal los. Yuki schafft sich die nötige Stimmung. Yuki streichelt liebevoll das Minischwein. Der Kopf ist in seinem Schloß vergraben um den Klang von London Grammar zu dämpfen. Die Behandlung für Erbsen waren verschiedene Genotypen (AA, AB und BB). Erfasst wurde von Yuki als Endpunkt (Y) Trockengewicht. Yuki hat dann drymatter in seiner Exceldatei eintragen. Aber auch irgendwie egal. Yuki will später nochmal raus um zu Boldern. Druck ablassen, dass muss er auch.

treatment	drymatter
AA	36.3
AB	42.5
BB	29.1
BB	32.6
AA	37.5
AB	31.9
BB	27.7
AA	23.5
AB	51.5
AA	35.5
BB	30.3
AB	26.3
AA	22.3

Leider kennt sich Yuki mit der Erstellung von Barplots nicht aus. Deshalb braucht er bei der Visualisierung Ihre Hilfe!

- 1. Formulieren Sie die wissenschaftliche Fragestellung! (1 Punkt)
- 2. Zeichnen Sie in *einer* Abbildung die Barplots für die Behandlung von Erbsen! Beschriften Sie die Achsen entsprechend!**(4 Punkte)**
- 3. Beschriften Sie einen Barplot mit den gängigen statistischen Maßzahlen! (2 Punkte)
- 4. Wenn Yuki *keinen Effekt* zwischen den Behandlungen von Erbsen erwarten würde, wie sehen dann die Barplots aus? *Antworten Sie mit einer Skizze der Barplots!* (1 **Punkt**)

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

Steffen steht vor einem ersten Problem, denn wenn es nach seiner Betreuerin geht, soll er in einem einem Versuch in einer Klimakammer Maiss auswertet. Soweit eigentlich alles passend. Besser wäre was anderes gewesen. Steffen liebt Klemmbausteine. Darin kann er sich wirklich verlieren und immer wieder neu begeistern. Das heißt erstmal überlegen für Steffen. Steffen schmeißt noch eine Handvoll Oreos in seinen Rachen. Im Hintergrund klirrt leise der Spiegel zum Sound von Taylor Swift. Die Behandlung werden verschiedene Lüftungssystemen und Folientunneln (ctrl, storm und tornado) sein. In seiner Exceldatei wird er den Endpunkt (Y) Ertrag als yield aufnehmen. Vorab soll Steffen aber eimal die folgenden Boxplots seiner Betreuerin nachbauen, damit er den R Code schonmal für später vorliegen hat. Damit geht das Problem schon los. Wenn die Romantik nicht wäre, ja dann wäre wohl vieles möglich für Steffen! Aber so..

Leider kennt sich Steffen mit der Erstellung von Boxplots in \P nicht aus. Deshalb braucht er bei der Visualisierung Ihre Hilfe!

- 1. Erstellen Sie eine Tabelle mit den statistischen Maßzahlen aus der obigen Abbildung der drei Boxplots! Beachten Sie die korrekte Darstellungsform der statistischen Maßzahlen! (3 Punkte)
- 2. Beschriften Sie einen der Boxplots mit den gängigen statistischen Maßzahlen! (2 Punkte)
- 3. Erstellen Sie einen beispielhaften Datensatz, aus dem die drei Boxplots *möglicherweise* erstellt wurden, im Rüblichen Format! (2 Punkte)
- 4. Kann Steffen einen Unterschied zwischen den Behandlungen erwarten? Begründen Sie Ihre Antwort! (2 Punkte)

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

Eine echte Herausforderung für sie war schon immer die Wut gewesen. Ein leidiges Lied. Deshalb gilt anschauen, was andere vor einem gemacht haben. Für Tina ist es eine Möglichkeit schneller ans Ziel zu gelangen. Deshalb hat sich Tina viele Poster in der Fakultät angeschaut und ist zum Schluß gekommen, dass Boxplots eine häufig genutzte Abbildung sind. Tina soll nun in ihrer Hausarbeit Maiss untersuchen. Die Behandlung in ihrer Hausarbeit sind verschiedene Genotypen (AA und BB). Erhoben wurden von Tina als Outcome (Y) Proteingehalt benannt als protein in ihrer Exceldatei. Erwartungsgemäß erhält sie von ihrem Betreuer den Auftrag die erhobenen Daten als Boxplots darzustellen. Dann kann Tina auch schonmal abschätzen, was bei einem statistischen Test rauskommen könnte. Darüber hinaus kann Tina anhand Boxplots eine Aussage über die Normalverteilung von Y treffen. Na dann mal los. Tina schafft sich die nötige Stimmung. Tina nickt im Takt von Tocotronic und bemerkt dabei gar nicht was die Spinne schon wieder anstellt.

treatment	drymatter
AA	25.7
BB	28.9
AA	24.9
AA	24.2
BB	10.9
ВВ	23.6
AA	25.5
AA	25.8
BB	25.4
BB	28.1
AA	32.3
BB	25.8
BB	19.7
AA	25.6
AA	27.3
AA	27.9
ВВ	17.4

Leider kennt sich Tina mit der Erstellung von Boxplots nicht aus. Deshalb braucht sie bei der Visualisierung Ihre Hilfe!

- 1. Zeichnen Sie in *einer* Abbildung die beiden Boxplots für die zwei Behandlungen von Maiss! Beschriften Sie die Achsen entsprechend! **(5 Punkte)**
- 2. Wie ist Ihr Vorgehen, wenn Sie eine gerade Anzahl an Beobachtungen pro Gruppe haben? (1 Punkt)
- 3. Beschriften Sie einen der beiden Boxplots mit den gängigen statistischen Maßzahlen! (2 Punkte)
- 4. Wenn Sie keinen Effekt zwischen den Behandlungen von Maiss erwarten würden, wie sehen dann die beiden Boxplots aus? Antworten Sie mit einer Skizze der Boxplots! (1 Punkt)

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

'Hm...', Katjes und Tocotronic. Das ist und bleibt die beste Kombination zum Nachdenken für Tina. Tina betrachtet die folgenden Daten nach einem Leistungssteigerungsversuch mit Puten. In dem Experiment wurden die Anzahl an weißen Blutkörperchen gezählt. Nach der Meinung ihrem Betreuer muss als erstes geschaut werden, wie diese verteilt sind. Also welcher statistischen Verteilung die Anzahl an weißen Blutkörperchen folgen. Dazu soll Tina ein Histogramm verwenden. Dann hätte man auch einen guten Überblick über den Messwert (Υ). Es wäre einfacher, wenn da nicht noch was wäre. Tina und die Wut, eine unendliche Geschichte mit kniffeligen Wendungen. Tina streichelt liebevoll die Spinne. Der Kopf ist in ihrem Schloß vergraben um den Klang von Tocotronic zu dämpfen.

Die Anzahl an weißen Blutkörperchen: 3, 3, 3, 3, 4, 4, 6, 0, 4, 3, 3, 4, 8, 4, 5, 7, 6, 4, 7, 3, 4, 1, 6, 1, 6, 3, 2, 3, 2, 5, 4, 4, 2, 3, 3

Leider kennt sich Tina mit der Erstellung von Histogrammen überhaupt nicht aus. Deshalb braucht sie bei der Erstellung Ihre Hilfe!

- 1. Zeichen Sie ein Histogramm um die Verteilung der Daten zu visualisieren! (3 Punkte)
- 2. Beschriften Sie die Achsen der Abbildung! (2 Punkte)
- 3. Ergänzen Sie die absoluten und relativen Häufigkeiten in der Abbildung! (1 Punkt)
- 4. Berechnen Sie aus den Daten die Wahrscheinlichkeit mehr als die Anzahl 5 zu beobachten! (1 Punkt)
- 5. Berechnen Sie aus den Daten die Chance mehr als die Anzahl 5 zu beobachten! (1 Punkt)

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

In einem Gespräch mit ihrem Betreuer wird Nilufar gebeten seine Daten aus einem Stallexperiment mit Puten in einem Histogramm darzustellen. Nilufar schmeißt noch eine Handvoll Takis Blue Heat in ihren Rachen. Im Hintergrund klirrt leise der Spiegel zum Sound von Deichkind. In ihrem Experiment hat er die mittlere Anzahl an weißen Blutkörperchen erst fotographiert und dann ausgezählt. Laut ihrem Betreuer soll das Histogramm helfen, die Verteilung der die mittlere Anzahl an weißen Blutkörperchen zu bestimmen. Es wäre einfacher, wenn da nicht noch was wäre. Nilufar und die Erwartung, eine unendliche Geschichte mit kniffeligen Wendungen. Nilufar streichelt liebevoll das Huhn. Der Kopf ist in ihrem Schloß vergraben um den Klang von Deichkind zu dämpfen.

Die mittlere Anzahl an weißen Blutkörperchen: 9.7, 9.1, 9.6, 12.3, 11.1, 8.8, 10, 10.8, 8, 10.9, 10, 8.8, 9.8, 8.6, 12.8, 11.6, 9, 14, 11.6, 9.6, 12, 13.5

Leider kennt sich Nilufar mit der Erstellung von Histogrammen überhaupt nicht aus. Deshalb braucht sie bei der Erstellung Ihre Hilfe!

- 1. Zeichen Sie ein Histogramm um die Verteilung der Daten zu visualisieren! (3 Punkte)
- 2. Erläutern Sie Ihr Vorgehen um ein Histogramm für kontinuierliche Daten zu zeichnen! (2 Punkte)
- 3. Beschriften Sie die Achsen der Abbildung! (2 Punkte)
- 4. Ergänzen Sie die relativen Häufigkeiten in der Abbildung! (1 Punkt)

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

Yuki schmeißt noch eine Handvoll Reese's Peanut Butter Cups in ihren Rachen. Im Hintergrund klirrt leise der Spiegel zum Sound von London Grammar. Jetzt heißt es aber erstmal auf was anderes konzentrieren. Yuki möchte gerne den Zusammenhang zwischen durchschnittlicher Tagestemperatur [C/d] und Gewichtszuwachs in der 1LW im Kontext von Puten herausfinden. Hierfür hat Yuki ein Kreuzungsexperiment in der Uckermark durchgeführt. Nach einigen unvorgesehenen Ereignissen hat sie es geschafft folgende Datentabelle zu erstellen. Yuki und die Faulheit, eine unendliche Geschichte mit kniffeligen Wendungen. Aber das steht auch nicht im Zentrum. Nun stellt sich die Frage für sie, ob es überhaupt einen Zusammenhang zwischen den gemessenen Variablen gibt. Deshalb möchte Yuki als erstes eine explorative Datenanalyse durchführen. Dann was anderes. Wenn Matrix läuft, dann ist das Minischwein nicht mehr da. Aber jetzt braucht sie mal Entspannung!

Durchschnittlicher Tagestemperatur [C/d]	Gewichtszuwachs in der 1LW		
23.9	39.1		
34.5	50.2		
26.1	40.0		
23.3	40.7		
25.0	41.6		
22.9	34.9		
22.1	34.7		
23.5	37.8		
22.1	35.1		

Leider kennt sich Yuki mit der Erstellung einer explorativen Datenanalyse für kontinuierliche Daten überhaupt nicht aus. Deshalb braucht sie bei der Erstellung Ihre Hilfe!

- 1. Erstellen Sie eine Visualisierung für die Datentabelle. Beschriften Sie die Achsen entsprechend! (4 Punkte)
- 2. Schätzen Sie eine Gerade durch die Punkte! (1 Punkt)
- 3. Beschriften Sie die Gerade mit den gängigen statistischen Maßzahlen! Geben Sie die numerischen Zahlenwerte mit an! (3 Punkte)
- 4. Wenn *ein* Effekt von *x* auf *y* vorhanden wäre, wie würde die Gerade verlaufen und welche Werte würden die statistischen Maßzahlen annehmen? **(2 Punkt)**

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

er-

In ein Stallexperiment im Teuteburgerwald hatte Mark sich zum einen die Behandlung Außenklimakontakt [ja/nein] und zum anderen die Messung Fettgehalt erreicht [ja/nein] im Kontext von Puten angeschaut. Nun steht Mark vor dem Problem, dass er zwei kategoriale Variablen in seiner Abschlussarbeit gemessen hat. Dazu kommt dann noch was anderes. Mark und die Unsicherheit, eine unendliche Geschichte mit kniffeligen Wendungen. Da sein Betreuer erstmal die langen Tabellen mit ja/nein in einer explorativen Datenanalyse zusammengefasst und präsentiert bekommen möchte bevor es überhaupt weitergeht, muss er jetzt eine Lösung finden. Was alles auch nicht einfacher macht. Am liebsten würde er ja was anderes machen. Geocaching. Ein wunderbares Hobby um sich drin zu verlieren und Abstand zu bekommen. Mark denkt gerne über Geocaching nach.

Außenklimakonta	k F ettgehalt reicht	er-	Außenklimakonta	k F ettgehalt reicht	
ja ja nein	nein nein nein		ja nein nein	ja nein nein	
nein ja	nein nein		ja nein	nein nein	
nein ja ja nein ja	nein nein nein nein ja		nein ja nein nein ja	nein ja ja nein nein	
nein ja ja ja ja	nein nein nein nein nein		nein nein ja ja nein	nein ja nein ja nein	
nein ja	nein ja		ja nein	ja nein	

Leider kennt sich Mark mit der Erstellung einer explorativen Datenanalyse für kategoriale Daten überhaupt nicht aus. Deshalb braucht er bei der Erstellung Ihre Hilfe!

- 1. Stellen Sie den Zusammenhang zwischen den beiden kategorialen Variablen in einer zusammenfassenden Tabelle dar! (3 Punkte)
- 2. Visualisieren Sie den Zusammenhang zwischen den beiden kategorialen Variablen! (3 Punkte)
- 3. Berechnen Sie die Verhältnisse in der Visualisierung! Welche Annahme haben Sie getroffen? (2 Punkte)
- 4. Wenn *kein* Effekt von der Behandlung vorliegen würde, wie würde die Tabelle und die Visualisierung aussehen? (2 Punkt)

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

'Was soll das denn jetzt schon wieder sein? Drei Boxplot, die auf der Seite liegen?', entfährt es Steffen und schaut dabei Yuki an. 'Keine Ahnung. Es ist bestimmt wieder so ein Lernziel mit der Verteilung und so.', meint Yuki sichtlich genervt und mampft noch ein paar Reese's Peanut Butter Cups. 'Du weißt doch wie es heißt, *Frei ist, wer missfallen kann.*¹', merkt Steffen nickend an. Die beiden schauen angestrengt auf die drei Boxplots. Das Ziel ist es zu verstehen, wie eine Verteilung anhand eines Boxplots bewertet werden kann. Yuki und die Romantik machen die Sache nicht einfacher.

Jetzt brauchen Steffen und Yuki Ihre Hilfe bei der Abschätzung einer Verteilung anhand von Boxplots um ihre Arbeit dann in diesem Semester noch abschließen zu können.

- 1. Zeichnen Sie über die Boxplots die entsprechende zugehörige Verteilung! (3 Punkte)
- 2. Zeichnen Sie unter die Boxplots die entsprechende zugehörige Beobachtungen als Stiche! (3 Punkte)
- 3. Wie viel Prozent der Beobachtungen fallen in das IQR? Ergänzen Sie die Abbildung entsprechend um den Bereich! (2 Punkte)
- 4. Wie viel Prozent der Beobachtungen fallen in $\bar{y}\pm 1s$ und $\bar{y}\pm 2s$ unter der Annahme einer Normalverteilung? (2 Punkte)

¹Oschmann, A. (2024) Mädchen stärken: Stärken fördern, Selbstwert erhöhen und liebevoll durch Krisen begleiten. Goldegg Verlag

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

Mark und die Unsicherheit machen die Sache mit dem Studium nicht einfacher. Immerhin ist noch Alex zur Hilfe mit dabei. Alex hat Marzipankugeln mitgebracht und Andrea Berg aufgedreht. Das ist immerhin eine Ablenkung. Nicht so gut wie Geocaching, aber immerhin etwas. Jetzt sollen die beiden diese komische Aufgabe lösen. Es geht um verschiedene Normalverteilungen. Anscheinend hängen Normalverteilungen vom Mittelwert \bar{y} und der Standardabweichung s ab. 'Wozu brauchen wir nochmal Normalverteilungen?', entfährt es Mark. Durch das Mampfen von Alex versteht er kein Wort der Antwort. Alex lächelt.

Jetzt brauchen Mark und Alex Ihre Hilfe bei der Abschätzung einer Verteilung um ihre Arbeit dann in diesem Semester noch abschließen zu können.

- 1. Skizzieren Sie drei Normalverteilungen mit $\bar{y}_1 \neq \bar{y}_2 \neq \bar{y}_3$ und $s_1 \neq s_2 \neq s_3$! (3 Punkte)
- 2. Beschriften Sie die Normalverteilungen mit den statistischen Maßzahlen! (2 Punkte)
- 3. Liegt Varianzhomogenität oder Varianzheterogenität vor? Begründen Sie Ihre Antwort! (2 Punkte)
- 4. In welchen Bereich fallen 68% bzw. 95% der Beobachtungen in einer Normalverteilung? Ergänzen Sie die Bereiche in einer Normalverteilung! (2 Punkte)
- 5. Ergänzen Sie unter einer der Normalverteilungen den entsprechenden Boxplot! (1 Punkt)

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

'Was sollen wir hier dann noch zeichnen?!', entfährt es Steffen und schaut dabei Nilufar an. 'Wir sollen eine Normalverteilung mit einem Mittelwert von $\bar{y}_1=2$ und einer Standardabweichung von $s_1=9$ zeichnen. Sowie eine weitere Normalverteilung mit einem Mittelwert von $\bar{y}_2=4$ und einer Standardabweichung von $s_2=9$. Keine Ahnung wie das geht. Darunter sollen dann noch eine Poissonverteilung mit einem Mittelwert von $\lambda_1=3$ sowie einer weiteren Poissonverteilung mit einem Mittelwert von $\lambda_2=25$ gezeichnet werden.', meint Nilufar sichtlich genervt und mampft noch ein paar Takis Blue Heat. Im Hintergrund spielt leise Deichkind. 'Wirre Geschichte...', merkt Steffen nickend an. Die beiden schauen angestrengt auf die leeren Flächen für die Abbildungen. Nilufar und die Romantik machen die Suche nach der Lösung nicht einfacher.

Jetzt brauchen Steffen und Nilufar Ihre Hilfe bei der Abschätzung einer Verteilung um ihre Arbeit dann in diesem Semester noch abschließen zu können.

- 1. Skizzieren Sie die zwei Normalverteilungen und zwei Poissonverteilungen! (4 Punkte)
- 2. Achten Sie auf die entsprechende Skalierung in den jeweiligen Abbildungen! (2 Punkte)
- 3. Ergänzen Sie unter einer Normalverteilung den entsprechenden Boxplot! (1 Punkt)
- 4. Ergänzen Sie unter einer Poissonverteilung den entsprechenden Boxplot! (1 Punkt)
- 5. Geben Sie ein Beispiel für ein Outcome y, welches einer Normalverteilung folgt! (1 Punkt)
- 6. Geben Sie ein Beispiel für ein Outcome y, welches einer Poissonverteilung folgt! (1 Punkt)

Teil II.

Statistisches Testen & statistische Testtheorie

62. Aufgabe (9 Punkte)

Grundlage des statistischen Testen ist das Verständnis von der Grundgesamtheit (eng. *population* oder *ground truth*) und der experimentellen Stichprobe (eng. *sample*).

- 1. Nennen Sie das statistische Verfahren und zwei konkrete Beispiele zur Durchführung um von einer Grundgesamtheit auf eine Stichprobe zu gelangen! (3 Punkte)
- 2. Erklären Sie den Zusammenhang zwischen Stichprobe und Grundgesamtheit an einem Schaubild! Beschriften Sie das Schaubild entsprechend! Nutzen Sie hierfür als Veranschaulichung die Körpergröße von Männern oder Frauen aus den Gummibärchendaten! (3 Punkte)
- 3. Erweitern Sie das Schaubild um die Entstehung von $Pr(D|H_0)$! Nutzen Sie hierfür als Veranschaulichung zusätzlich die Gruppierungsvariable "Modul" aus den Gummibärchendaten! (3 Punkte)

Für ein besseres Verständnis der statistischen Testtheorie, auch Null-Ritual genannt, kann eine Visualisierung als Kreuztabelle genutzt werden.

1. Tragen Sie folgende statistische Fachbegriffe zur statistischen Testtheorie korrekt eine selbst erstellte Kreuztabelle ein! (3 Punkte)

 β -Fehler α -Fehler 5% Richtige Entscheidung

2. Ergänzen Sie Ihre erstellte Kreuztabelle um vier weitere, passende Fachbegriffe zur statistischen Testtheorie! (2 Punkte)

Die Entscheidungsfindung durch einen statistischen Test kann auch durch die Analogie zu einem Feuermelder abgebildet werden. Dabei symbolisiert der Feuermelder den statistischen Test und es soll getestet werden, ob ein Feuer ausgebrochen ist.

- 3. In der Analogie des Feuermelders, wie lautet der α -Fehler? (1 Punkt)
- 4. In der Analogie des Feuermelders, wie lautet der β -Fehler? (1 Punkt)
- 5. Wenn der Feuermelder einmal pro Tag messen würde, wie oft würde der Feuermelder mit einem α von 5% in einem Jahr Alarm schlagen? Begründen Sie Ihre Antwort! (2 **Punkte**)

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

Abgebildet ist die t-Verteilung unter der Anahme der Gültigkeit der Nullhypothese. Beachten Sie, dass im Folgenden keine numerisch korrekte Darstellung verlangt wird! Es gilt Erkennbarkeit vor Genauigkeit!

- 1. Ergänzen Sie eine beschriftete x-Achse! (1 Punkt)
- 2. Ergänzen Sie " $\bar{y}_1 = \bar{y}_2$ "! (1 Punkt)
- 3. Ergänzen Sie "A = 0.95"! (1 Punkt)
- 4. Zeichnen Sie $T_{\alpha=5\%}$ in die Abbildung! (1 Punkt)
- 5. Zeichnen Sie das Signifikanzniveau α in die Abbildung! Begründen Sie Ihre Antwort! (2 Punkte)
- 6. Zeichnen Sie $-T_D$ in die Abbildung! (1 Punkt)
- 7. Zeichnen Sie einen signifikant p-Wert in die Abbildung! Begründen Sie Ihre Antwort! (2 Punkte)

Sie rechnen einen t-Test für Gruppenvergleiche der Mittelwerte. Sie schätzen den Unterschied zwischen dem mittleren Befall mit Parasiten zu einer unbehandelten Kontrolle.

- 1. Beschriften Sie die untenstehende Abbildung mit der Signifikanzschwelle! Begründen Sie Ihre Antwort! (2 Punkte)
- 2. Ergänzen Sie eine in den Kontext passende Relevanzschwelle! Begründen Sie Ihre Antwort! (2 Punkte)
- 3. Skizieren Sie in die untenstehende Abbildung sechs einzelne Konfidenzintervalle (a-f) mit den jeweiligen Eigenschaften! (6 Punkte)
 - (a) Ein signifikantes, relevantes 95% Konfidenzintervall
 - (b) Ein 95% Konfidenzintervall mit niedriger Fallzahl n in der Stichprobe als der Rest 95% der Konfidenzintervalle
 - (c) Ein 95% Konfidenzintervall mit höherer Fallzahl n in der Stichprobe als der Rest der 95% Konfidenzintervalle
 - (d) Ein signifikantes, relevantes 90% Konfidenzintervall.
 - (e) Ein nicht signifikantes, nicht relevantes 95% Konfidenzintervall
 - (f) Ein signifikantes, nicht relevantes 95% Konfidenzintervall

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

Beim statistischen Testen gibt es einen Zusammenhang zwischen dem Effekt, der Streuung sowie der Fallzahl. Gegeben sei die Formel für den Student t-Test auf den die folgenden Überlegungen basieren sollen. Welche Auswirkung hat die Änderungen der jeweiligen statistischen Maßzahl des Effekts Δ , der Streuung s und der Fallzahl n auf die Teststistik T_D , den p-Wert $Pr(D|H_0)$ sowie dem Konfidenzintervall $KI_{1-\alpha}$?

- 1. Visualisieren Sie den Zusammenhang zwischen der Teststatiatik T_D und dem p-Wert $Pr(D|H_0)$ für sich verändernde T_D -Werte! Geben Sie dafür ein numerisches Beispiel in dem Sie drei T_D -Werte und deren Einfluss auf den p-Wert vergleichen! (3 Punkte)
- Füllen Sie die untenstehende Tabelle aus in dem Sie die Änderung der statistischen Maßzahlen auf die Teststatistik, den p-Wert sowie das Konfidenzintervall in einem Wort oder Symbol beschreiben! (4 Punkte)

	T_D	$Pr(D H_0)$	$KI_{1-\alpha}$		T_D	$Pr(D H_0)$	$KI_{1-\alpha}$
Δ↑				Δ↓			
<i>s</i> ↑				s ↓			
				n ↓			

3. Visualisieren Sie ein 95%-iges Konfidenzintervall im Vergleich zu einem 99%-igen Konfidenzintervall! Begründen Sie Ihre Visualisierung anhand der Formel des Konfidenzintervalls des t-Tests mathematisch! (3 Punkte)

Teil III.

Der Student t-Test, Welch t-Test & gepaarter t-Test

67. Aufgabe (9 Punkte)

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

Jonas ist im Oldenburger Land für einen Pilotexperiment mit sehr geringer Fallzahl ($n_1 = n_2 = 3$) mit Puten. Allein diese Tatsache ist für ihn eine Erzählung wert. Jonas und die Erschöpfung, eine unendliche Geschichte mit kniffeligen Wendungen. Für seinen Projektbericht musste er ein Kreuzungsexperiment mit Puten durchführen und das sollte laut seinem Betreuer an diesem Ort besonders gut gelingen, da man hier gut neue technische Anlagen und Behandlungen fernab der Bevölkerung testen könne. Zeugen gibt es hier jedenfalls keine. Gar keine. Alleine sein hilft jetzt aber nur bedingt, denn seine Behandlung Bestandsdichte (Verordnung und Erhht) und der Messwert Schlachtgewicht [kg] sollen mit einem t-Test ausgewertet werden. Immerhin weiß er, dass sein Messwert einer Normalverteilung folgt. Hm..., was entspannendes wäre gut. Um zu Schwimmen geht Jonas dann später nochmal raus. Echte Entspannung.

treatment	weight
ctrl	16.7
dose	21.6
ctrl	11.1
ctrl	18.9
dose	25.8
dose	25.9

Leider kennt sich Jonas mit der Berechnung eines t-Tests überhaupt nicht aus. Deshalb braucht er bei der Berechnung Ihre Hilfe!

- 1. Formulieren Sie das statistische Hypothesenpaar! (1 Punkt)
- 2. Bestimmen Sie die Teststatistik T_D eines Welch t-Tests! (3 Punkte)
- 3. Treffen Sie mit $T_{\alpha=5\%}=1.96$ eine Aussage zur Nullhypothese! Begründen Sie Ihre Antwort! (2 Punkte)
- 4. Berechnen Sie den Effekt des Welch t-Tests! (1 Punkt)
- 5. Formulieren Sie eine Antwort an Jonas über das Ergebnis Ihrer statistischen Analyse! (2 Punkte)

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

'Der t-Test testet einen normalverteilten Messwert (Y).', liest Yuki laut. Das hilft jetzt auch nur bedingt weiter. Yuki und die Faulheit, eine unendliche Geschichte mit kniffeligen Wendungen. Laut ihrem Betreuer ist zwar ihr Messwert Gewichtszuwachs in der 1LW normalverteilt, aber wie rechnet sie jetzt einen t-Test? Für ihren Projektbericht musste sie ein Kreuzungsexperiment mit Puten im Teuteburgerwald durchführen. Als wäre das nicht schon anstrengend genug gewesen. Jetzt soll sie auch noch testen, ob die Behandlung Bestandsdichte (*Verordnung* und *Erhht*) ein signifikantes Ergebnis liefert. Hm..., was entspannendes wäre gut. Hm, lecker Reese's Peanut Butter Cups und dazu dann im Hintergrund Matrix laufen lassen.

Bestandsdichte	Gewichtszuwachs
Verordnung	37.6
Erhöht	24.1
Erhöht	30.0
Verordnung	38.0
Erhöht	36.1
Erhöht	35.3
Verordnung	50.6
Erhöht	34.6
Erhöht	27.5
Erhöht	32.9
Erhöht	27.8
Erhöht	19.8
Erhöht	36.7
Verordnung	56.1
Verordnung	47.7
Verordnung	40.2
Verordnung	46.3

Leider kennt sich Yuki mit der Berechnung eines t-Tests überhaupt nicht aus. Deshalb braucht sie bei der Berechnung Ihre Hilfe!

- 1. Formulieren Sie die wissenschaftliche Fragestellung! (1 Punkt)
- 2. Formulieren Sie das statistische Hypothesenpaar! (1 Punkt)
- 3. Bestimmen Sie die Teststatistik T_D eines Student t-Tests! (3 Punkte)
- 4. Treffen Sie mit $T_{\alpha=5\%}=1.64$ eine Aussage zur Nullhypothese! Begründen Sie Ihre Antwort! (2 Punkte)
- 5. Berechnen Sie den Effekt des Student t-Tests! (1 Punkt)
- 6. Wenn Sie *keinen* Unterschied zwischen den Behandlungsgruppen erwarten würden, wie groß wäre dann die Teststatistik T_D ? Begründen Sie Ihre Antwort! (2 Punkte)
- 7. Formulieren Sie eine Antwort an Yuki über das Ergebnis Ihrer statistischen Analyse! (2 Punkte)

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

'Der t-Test testet einen normalverteilten Messwert (Y).', liest Alex laut. Das hilft jetzt auch nur bedingt weiter. Alex und die Gefälligkeit, eine unendliche Geschichte mit kniffeligen Wendungen. Laut seinem Betreuer ist zwar ihm Messwert Protein/Fettrate [%/kg] normalverteilt, aber wie rechnet er jetzt einen t-Test? Für seinen Projektbericht musste er einen Leistungssteigerungsversuch mit Puten im Wendland durchführen. Als wäre das nicht schon anstrengend genug gewesen. Jetzt soll er auch noch testen, ob die Behandlung Lüftungssystem (keins und vorhanden) ein signifikantes Ergebnis liefert. Hm..., was entspannendes wäre gut. Auf seinem Second Screen läuft Alien und Alex schaufelt Gummibärchen. Nicht effizient, aber gut.

Lüftungssystem	Protein/Fettrate
vorhanden	40.9
keins	41.5
keins	44.3
vorhanden	25.1
keins	41.9
vorhanden	34.9
vorhanden	6.9
vorhanden	38.8
vorhanden	47.6
vorhanden	39.6
keins	42.5
keins	41.8
keins	45.4
vorhanden	33.5
vorhanden	33.8
keins	51.9
keins	46.5
keins	46.0
keins	57.0
vorhanden	34.5
keins	51.9

Leider kennt sich Alex mit der Berechnung eines t-Tests überhaupt nicht aus. Deshalb braucht er bei der Berechnung Ihre Hilfe!

- 1. Formulieren Sie die wissenschaftliche Fragestellung! (1 Punkt)
- 2. Formulieren Sie das statistische Hypothesenpaar! (1 Punkt)
- 3. Bestimmen Sie die Teststatistik T_D eines Welch t-Tests! (3 Punkte)
- 4. Treffen Sie mit $T_{\alpha=5\%}=1.64$ eine Aussage zur Nullhypothese! Begründen Sie Ihre Antwort! (2 Punkte)
- 5. Berechnen Sie das 99% Konfidenzintervall. Welche Annahmen haben Sie getroffen? (2 Punkte)
- 6. Nennen Sie den statistischen Grund, warum Sie sich zwischen einem Student t-Test und einem Welch t-Test entscheiden müssen! (1 Punkt)
- 7. Formulieren Sie eine Antwort an Alex über das Ergebnis Ihrer statistischen Analyse! (2 Punkte)

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

Es gibt ja immer die Möglichkeit sich Hilfe zu holen. Das geht natürlich auch immer in einer Abschlussarbeit. Deshalb arbeiten Tina und Alex gemeinsam an einer Abschlussarbeit. Das macht dann auch die Analyse ihres Hauptversuches einfacher. Zwar hat jeder von ihnen noch ein Subthema, aber auch da kann man sich ja helfen. In dem Hauptversuch wurde Folgendes von den beiden gemacht. Tina und Alex haben sich Puten angeschaut. Dabei geht um Zusammenhang zwischen Genotypisierung (0*d* und 14*d*) und Gewichtszuwachs in der 1LW. Jetzt sollen beide einen gepaarten t-Test rechnen. Es würde auch besser funktionieren, wenn Tina nicht die Wut im Weg stehen würde und Alex nicht das Problem hätte die Gefälligkeit zu händeln. Gott sei Dank haben beide genug Katjes und Gummibärchen auf dem Tisch aufgetürmt.

ID	treatment	freshmatter
5	0d	34.2
6	14d	34.7
5	14d	39.4
4	14d	44.9
3	0d	35.4
10	14d	36.5
2	0d	35.1
1	14d	36.5
9	14d	31.9
8	0d	29.3
8	14d	35.8
2	14d	33.3
1	0d	35.8
7	0d	32.3
4	0d	32.5
3	14d	33.1
7	14d	35.4
11	14d	40.0
6	0d	31.2

Leider kennen sich Tina und Alex mit der Berechnung eines gepaarten t-Tests überhaupt nicht aus. Deshalb brauchen sie beide bei der Berechnung Ihre Hilfe!

- 1. Formulieren Sie die wissenschaftliche Fragestellung! (1 Punkt)
- 2. Formulieren Sie das statistische Hypothesenpaar! (1 Punkt)
- 3. Bestimmen Sie die Teststatistik T_D eines gepaarten t-Tests! (3 Punkte)
- 4. Treffen Sie mit $T_{\alpha=5\%}=1.96$ eine Aussage zur Nullhypothese! Begründen Sie Ihre Antwort! (2 Punkte)
- Schätzen Sie den p-Wert des gepaarten t-Tests ab! Begründen Sie Ihre Antwort mit einer Skizze! (2 Punkte)
- 6. Formulieren Sie eine Antwort an Tina über das Ergebnis Ihrer statistischen Analyse! (2 Punkte)

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

Yuki und Nilufar sind bei Tina um sich Hilfe in \mathbb{R} zu holen. Im Hintergrund wummert Tocotronic. Die beiden hatten zwar schon erste Kontakte mit \mathbb{R} sind sich aber unsicher bei der Interpetierung der Ausgabe eines t-Tests für ihren gemeinsamen Versuch. Es würde auch besser funktionieren, wenn Tina nicht die Wut im Weg stehen würde und Nilufar nicht das Problem hätte die Faulheit zu händeln. In einer Hausarbeit haben beide zusammen Puten untersucht. Dabei ging es um den Zusammenhang zwischen der Behandlung Flüssignahrung (ctrl und flOw) und dem Messwert Protein/Fettrate [%/kg]. Der Versuch wurde in einem Kreuzungsexperiment im Oldenburger Land durchgeführt. Nach der Betreuerin ist der Messwert Protein/Fettrate [%/kg] normalverteilt und ein t-Test passt daher. Das wird jetzt nicht mehr angezweifel...Tina überlegt, ob sie die beiden nicht noch auf den Film *Indiana Jones* einlädt.

```
##
## Two Sample t-test
##
## data: Protein/Fettrate by Flüssignahrung
## t = 0.15826, df = 15, p-value = 0.8764
## alternative hypothesis: true is not equal to [condensed]
## 95 percent confidence interval:
## -9.921136 11.512565
## sample estimates:
## mean in group ctrl mean in group flow
## 48.78571 47.99000
```

Helfen Sie Tina bei der Interpretation des t-Tests! Sonst geht es auch für Yuki und Nilufar nicht weiter.

- 1. Formulieren Sie die wissenschaftliche Fragestellung! (1 Punkt)
- 2. Formulieren Sie das statistische Hypothesenpaar! (1 Punkt)
- 3. Liegt ein signifikanter Unterschied zwischen den Gruppen vor? Begründen Sie Ihre Antwort! (2 Punkte)
- 4. Skizzieren Sie eine Abbildung in der Sie T_D , $Pr(D|H_0)$, A=0.95, sowie $T_{\alpha=5\%}=|2.13|$ einzeichnen! **(4 Punkte)**
- 5. Beschriften Sie die Abbildung! (1 Punkt)
- 6. Berechnen Sie den Effekt des t-Tests! (1 Punkt)

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

Almería. Spanien. Sonne und Strand. Mark und Jonas haben ihren gemeinsamen Auslandsaufenthalt sichtlich genossen. Dann hatte sich auch noch angeboten ihre Abschlussarbeit gemeinsam in Almería durchzuführen. Es hätte sogar noch bessser funktionieret, wenn Steffen nicht die Romantik ein paar Mal im Weg gestanden hätte und Mark nicht das Problem gehabt hätte die Gefälligkeit zu händeln. Nun müssen jetzt alle Daten in Rausgewertet werden, da Rinternational der Standard in der Datenauswertung ist und die Betreuer in Spanien nur können. Während beide Steffen Oliven mit Oreos füttern, hoffen Mark und Jonas mehr Informationen von Steffen über die seltsame Rausgabe des t-Tests. Immerhin erinnern beide sich an die Behandlung Genotypen (AA und BB) und das es um Puten ging. Im Hintergrund wummert Taylor Swift und Fotos zeigen Steffen mit dem Hobby Klemmbausteine.

```
##
## Two Sample t-test
##
## data: Gewichtszuwachs by Genotypen
## t = 3.5375, df = 16, p-value = 0.002738
## alternative hypothesis: true is not equal to [condensed]
## 95 percent confidence interval:
## 2.878574 11.487660
## sample estimates:
## mean in group AA mean in group BB
## 47.22857 40.04545
```

Helfen Sie Steffen bei der Interpretation des t-Tests! Sonst geht es auch für Mark und Jonas nicht weiter.

- 1. Formulieren Sie die wissenschaftliche Fragestellung! (1 Punkt)
- 2. Formulieren Sie das statistische Hypothesenpaar! (1 Punkt)
- 3. Liegt ein signifikanter Unterschied zwischen den Gruppen vor? Begründen Sie Ihre Antwort! (2 Punkte)
- 4. Skizieren Sie das sich ergebende 95% Konifidenzintervall! (2 Punkte)
- 5. Beschriften Sie die Abbildung und das 95% Konfidenzintervall entsprechend! (2 Punkte)
- 6. Interpretieren Sie den Effekt des 95% Konifidenzintervalls! (2 Punkte)

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

'Programmieren ist wie eine Sprache lernen. Man muss es nur machen, dann wird man mit der Zeit immer besser!', gibt Nilufar zwinkernd zu Protokoll. Ein paar Mal hat sie schon die Erwartung gehindert weiterzumachen. Das hilft jetzt Tina und Jessica nur bedingt, da beide jetzt die Ausgabe interpretieren müssen und nicht vor drei Wochen, wo noch Zeit gewesen wäre. Beide mampfen konzentriert Katjes und Schokobons in sich hinein. Die beiden hatten im Emsland einen Versuch mit Puten in einem Stallexperiment durchgeführt. Das war schon anstrengend genug! 'Wir haben Schlachtgewicht [kg] gemessen, vielleicht hilft das ja...', meint Jessica leicht genervt. Alle starren auf die Ausgabe des t-Tests. Im Hintergrund wummert Deichkind und man versteht kaum sein eigenes Wort. Jessica hofft, dass das Huhn von Nilufar beruhigend wirkt.

```
##
## Two Sample t-test
##
## data: Schlachtgewicht by Genotypen
## t = 3.2924, df = 17, p-value = 0.0043
## alternative hypothesis: true is not equal to [condensed]
## 95 percent confidence interval:
## 4.715936 21.543155
## sample estimates:
## mean in group AA mean in group BB
## 43.35455 30.22500
```

Helfen Sie Nilufar bei der Interpretation des t-Tests! Sonst geht es auch für Tina und Jessica nicht weiter.

- 1. Formulieren Sie die wissenschaftliche Fragestellung! (1 Punkt)
- 2. Formulieren Sie das statistische Hypothesenpaar! (1 Punkt)
- 3. Liegt ein signifikanter Unterschied zwischen den Gruppen vor? Begründen Sie Ihre Antwort! (2 Punkte)
- 4. Skizieren Sie die sich ergebenden Boxplot! Welche Annahmen an die Daten haben Sie getroffen? Begründen Sie Ihre Antwort! (2 Punkte)
- 5. Skizieren Sie die sich ergebenden Barplots! (2 Punkte)
- 6. Berechnen Sie den Effekt des t-Tests! (1 Punkt)

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

Yuki und Alex haben sich dazu entschieden zusammenzuarbeiten. Das sollte alles etwas einfacher machen. Jeder hat zwar ein getrenntes Themenfeld aber den Hauptversuch machen beide gemeinsam. Das hat sich schonmal als gut Idee soweit herausgestellt. In einer Abschlussarbeit sollen beide herausfinden, ob es einen Zusammenhang zwischen Genotypisierung (0d und 14d) und Gewichtszuwachs in der 1LW gibt. Die Besonderheit ist hierbei, dass die Messungen an der gleichen Beobachtung stattfinden. Beide messen also zweimal an den gleichen Puten. Hier muss dann wohl auf einen normalverteilten Messwert (Y) ein gepaarter t-Test gerechnet werden. Leider kennen sich beide nicht sehr gut in Raus.

```
##
## Paired t-test
##
## data: Gewichtszuwachs by Genotypisierung
## t = -5.8482, df = 8, p-value = 0.0003836
## alternative hypothesis: true is not equal to [condensed]
## 95 percent confidence interval:
## -12.130491 -5.269509
## sample estimates:
## mean difference
## -8.7
```

Jetzt brauchen Yuki und Alex Ihre Hilfe bei der Berechnung eines gepaarten t-Tests in Rum ihre Arbeit dann in diesem Semester noch abschließen zu können.

- 1. Formulieren Sie die wissenschaftliche Fragestellung! (1 Punkt)
- 2. Formulieren Sie das statistische Hypothesenpaar! (1 Punkt)
- 3. Liegt ein signifikanter Unterschied zwischen den Gruppen vor? Begründen Sie Ihre Antwort! (2 Punkte)
- 4. Skizzieren Sie das sich ergebende 95% Konfidenzintervall! (2 Punkte)
- 5. Interpretieren Sie den Effekt des gepaarten t-Tests! (2 Punkte)
- 6. Skizzieren Sie den sich ergebenden Boxplot der Differenzen! Welche Annahmen an die Daten haben Sie getroffen? Begründen Sie Ihre Antwort! (2 Punkte)

Teil IV.

Die einfaktorielle & zweifaktorielle ANOVA

75. Aufgabe (11 Punkte)

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

'Uff... die einfaktorielle ANOVA. Und wir können jetzt anhand der Visualisuierung sehen, ob da schon was signifikant ist?', Tina hebt die Augenbraue. 'Ja, können wir. Dafür müssen wir aber erstmal in {ggplot} uns die Daten anschauen. Oder wir zeichnen es flott mit der Hand. Geht auch.', meint Nilufar dazu. Tina hatte sich in ein Kreuzungsexperiment verschiedene Puten angeschaut. Dabei ging es herauszufinden, ob es einen Zusammenhang zwischen der Behandlung Genotypen (AA, AB und BB) und dem Messwert Gewichtszuwachs in der 1LW gibt.

Genotypen	Gewichtszuwachs
AB	41
AA	38
BB	40
AA	40
AA	43
AB	38
BB	40
BB	40
BB	39
BB	40
AB	38
AB	42
AA	38
BB	40
AA	42
AB	41

Leider kennen sich Tina und Nilufar mit Darstellung einer einfaktoriellen ANOVA überhaupt nicht aus. Deshalb brauchen beide bei der Erstellung Ihre Hilfe!

- 1. Erstellen Sie eine Visualisierung der Datentabelle! Beschriften Sie die Abbildung! (2 Punkte)
- 2. Benennen Sie die Visualisierung mit dem korrekten, statistischen Fachbegriff! (1 Punkt)
- 3. Zeichnen Sie folgende statistischen Maßzahlen passend ein!
 - Globale Mittelwert: β₀ (1 Punkt)
 - Mittelwerte der einzelnen Behandlungsstufen: $\bar{y}_{0.5}$, $\bar{y}_{1.5}$ und $\bar{y}_{2.5}$ (1 Punkt)
 - Mittelwertsdifferenz der einzelnen Behandlungsstufen: $\beta_{0.5}$, $\beta_{1.5}$ und $\beta_{2.5}$ (1 Punkt)
 - Residuen oder Fehler: ε (1 Punkt)
- 4. Liegt ein vermutlicher signifikanter Unterschied vor? Begründen Sie Ihre Antwort! (2 Punkte)
- 5. Schätzen Sie die Effekte der Behandlungsstufen! (2 Punkte)

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

'Uff... die einfaktorielle ANOVA. Und wie füllen wir jetzt die Tabelle der ANOVA aus und schauen, ob da was signifikant ist?', Nilufar hebt die Augenbraue. 'Das ist eine sehr gute Frage. Ich glaube man kann alles in der Tabelle relativ einfach mit wenigen Informationen berechnen.', meint Steffen dazu. Nilufar hatte sich in ein Kreuzungsexperiment verschiedene Puten angeschaut. Dabei ging es herauszufinden, ob es einen Zusammenhang zwischen der Behandlung Flüssignahrung (*ctrl*, *superIn* und *flOw*) und dem Messwert Protein/Fettrate [%/kg] gibt.

Leider kennen sich Nilufar und Steffen mit Berechnung einer einfaktoriellen ANOVA überhaupt nicht aus. Deshalb brauchen beide bei der Erstellung Ihre Hilfe!

- 1. Formulieren Sie die wissenschaftliche Fragestellung! (1 Punkt)
- 2. Formulieren Sie das statistische Hypothesenpaar! (1 Punkt)
- 3. Füllen Sie die unterstehende einfaktorielle ANOVA Ergebnistabelle aus! (3 Punkte)

	Df	Sum Sq	Mean Sq	F value	Pr(>F)
Flüssignahrung	2	106.32			
error	20	735.59			
Total	22				

- 4. Schätzen Sie den p-Wert der Tabelle mit $F_{\alpha=5\%}=3.49$ ab. Begründen Sie Ihre Antwort! (2 Punkte)
- 5. Berechen Sie den Effektschätzer η^2 . Was sagt Ihnen der Wert von η^2 aus? (2 Punkte)

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

'Uff... die einfaktorielle ANOVA. Und wie füllen wir jetzt extitgenau die Tabelle der ANOVA aus und schauen, ob da was signifikant ist?', Nilufar hebt die Augenbraue. 'Das ist eine sehr gute Frage. Ich glaube man kann alles in der Tabelle relativ einfach mit wenigen Informationen berechnen.', meint Jonas dazu. Nilufar hatte sich in ein Kreuzungsexperiment verschiedene Puten angeschaut. Dabei ging es herauszufinden, ob es einen Zusammenhang zwischen der Behandlung Flüssignahrung (*ctrl*, *superIn* und *flOw*) und dem Messwert Gewichtszuwachs in der 1LW gibt. Nun möchte erstmal ihre Betreuerin eine ANOVA Tabelle sehen. Was immer da auch drin zu erkennen sein mag.

Leider kennen sich Nilufar und Jonas mit Berechnung einer einfaktoriellen ANOVA überhaupt nicht aus. Deshalb brauchen beide bei der Erstellung Ihre Hilfe!

- 1. Formulieren Sie die wissenschaftliche Fragestellung! (1 Punkt)
- 2. Formulieren Sie das statistische Hypothesenpaar! (1 Punkt)
- 3. Füllen Sie die unterstehende einfaktorielle ANOVA Ergebnistabelle aus! (3 Punkte)

	Df	Sum Sq	Mean Sq	F value	Pr(>F)
Flüssignahrung	2	6000.04			
Error	23	1118.11			

- 4. Schätzen Sie den p-Wert der Tabelle mit $F_{\alpha=5\%}=3.42$ ab. Begründen Sie Ihre Antwort! (2 Punkte)
- 5. Was bedeutet ein signifikantes Ergebnis in einer einfaktoriellen ANOVA? (1 Punkt)
- 6. Berechnen Sie einen Student t-Test für den vermutlich signifikantesten Gruppenvergleich anhand der untenstehenden Tabelle mit $T_{\alpha=5\%}=2.03$. Begründen Sie Ihre Auswahl! (3 Punkte)

Flüssignahrung	Fallzahl (n)	Mittelwert	Standardabweichung
ctrl	9	5.33	2.12
superIn	10	36.60	10.20
flOw	7	5.43	4.93

7. Gegebenen der ANOVA Tabelle war das Ergebnis des Student t-Tests zu erwarten? Begründen Sie Ihre Antwort! (2 Punkte)

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

Mark schaut sich fragend in der Bibliothek um. Mark hatte gehofft, dass jemand hier sein würde, den er kennt und sich mit auskennt. Wird aber enttäuscht. Mark war im Teuteburgerwald um ein Kreuzungsexperiment mit Puten durchzuführen. Nun möchte sein Betreuer seiner Hausarbeit erstmal eine ANOVA sehen und die Ergebnisse präsentiert bekommen. Dabei ging es herauszufinden, ob es einen Zusammenhang zwischen der Behandlung Flüssignahrung (ctrl, superIn und flOw) und dem Messwert Protein/Fettrate [%/kg] gibt.

```
## Analysis of Variance Table
##
## Response: Protein/Fettrate
## Df Sum Sq Mean Sq F value Pr(>F)
## Flüssignahrung 2 38.038 19.019 1.4193 0.2677
## Residuals 18 241.200 13.400
```

Leider kennen sich Mark mit Berechnung einer einfaktoriellen ANOVA überhaupt nicht aus. Deshalb braucht er bei der Erstellung Ihre Hilfe!

- 1. Formulieren Sie die wissenschaftliche Fragestellung! (1 Punkt)
- 2. Formulieren Sie das statistische Hypothesenpaar! (1 Punkt)
- 3. Interpretieren Sie das Ergebnis der einfaktoriellen ANOVA! (2 Punkte)
- 4. Berechnen Sie den Effektschätzer η^2 . Was sagt Ihnen der Wert von η^2 aus? (2 Punkte)
- 5. Skizzieren Sie eine Abbildung, der dem obigen Ergebnis der einfaktoriellen ANOVA näherungsweise entspricht! (3 Punkte)

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

Wie absolut ärgerlich. Jetzt stellt sich tatsächlich heraus, dass ihrer Betreuerin keine Anhnung von der zweifaktoriellen ANOVA hat. Woher soll Jessica jetzt das Wissen nehmen? Immerhin muss sie ja noch mit ihrer Hausarbeit dieses Jahr fertig werden. In einen Leistungssteigerungsversuch hatte sie Puten mit der Behandlung Bestandsdichte (standard, eng, weit und kontakt) sowie der Behandlung Ernährungszusatz (ctrl und getIt) im Teuteburgerwald untersucht. Es wurde als Messwert Schlachtgewicht [kg] bestimmt. Jetzt muss sie erstmal die zweifaktorielle ANOVA verstehen.

Leider kennen sich Jessica mit Berechnung einer zweifaktoriellen ANOVA überhaupt nicht aus. Deshalb braucht sie bei der Erstellung Ihre Hilfe!

- 1. Formulieren Sie die wissenschaftliche Fragestellung! (1 Punkt)
- 2. Formulieren Sie das statistische Hypothesenpaar! (1 Punkt)
- 3. Füllen Sie die unterstehende einfaktorielle ANOVA Ergebnistabelle aus! (3 Punkte)

	Df	Sum Sq	Mean Sq	F value	Pr(>F)
Bestandsdichte	3	135.9			
Ernährungszusatz	1	363.78			
Bestandsdichte:Ernährungszusatz	3	27.98			
Error	18	290.23			

4. Schätzen Sie den p-Wert der Tabelle ab. Begründen Sie Ihre Antwort! (3 Punkte)

	$F_{\alpha=5\%}$
Bestandsdichte	4.26
Ernährungszusatz	3.40
Bestandsdichte:Ernährungszusatz	5.23

- 5. Was bedeutet ein signifikantes Ergebnis in einer zweifaktoriellen ANOVA? (2 Punkte)
- 6. Was sagt der Term Bestandsdichte: Ernährungszusatz aus? Interpretieren Sie das Ergebnis! (2 Punkte)

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

In ein Stallexperiment wurden Puten mit der Behandlung Flüssignahrung (ctrl, superIn und flOw) sowie der Behandlung Ernährungszusatz (ctrl und getIt) untersucht. Es wurde als Messwert Protein/Fettrate [%/kg] bestimmt. Jetzt starrt Jessica mit auf die Rausgabe einer zweifaktoriellen ANOVA. Leider starrt ihr Betreuer in der gleichen Art Jessica zurück an. Das wird ein langer Nachmmittag, denkt sie sich und kreuselt ihren Mund. 'Und was machen wir jetzt?' entfährt es ihr überrascht entnervt. Immerhin war geht es ja um ihre Abschlussarbeit. Jessica hätte doch nichts mit Puten machen sollen. Puten – was soll das auch bedeutendes sein?

```
## Analysis of Variance Table
##

## Response: Protein/Fettrate
##

## Response: Protein/Fettrate

##

## Response: Protein/Fettrate

##

## Plüssignahrung

## Ernährungszusatz

## Flüssignahrung:Ernährungszusatz

## Residuals

## Residuals

## Analysis of Variance Table

##

## Response: Protein/Fettrate

## Df Sum Sq Mean Sq F value Pr(>F)

## 2 321.39 160.695 8.2012 0.002939

## 5.0104 0.038071

## 6.0104 0.038071

## Residuals

## Residuals

## 18 352.69 19.594
```

Leider kennt sich Jessica mit Berechnung einer zweifaktoriellen ANOVA überhaupt nicht aus. Deshalb braucht sie bei der Erstellung Ihre Hilfe!

- 1. Formulieren Sie die wissenschaftliche Fragestellung! (1 Punkt)
- 2. Formulieren Sie das statistische Hypothesenpaar! (1 Punkt)
- 3. Interpretieren Sie das Ergebnis der einfaktoriellen ANOVA! (3 Punkte)
- 4. Zeichnen Sie eine Abbildung, der dem obigen Ergebnis der zweifaktoriellen ANOVA näherungsweise entspricht! **(5 Punkte)**

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

In ein Kreuzungsexperiment wurden Puten mit der Behandlung Lüftungssystem (keins, storm, tornado und thunder) sowie der Behandlung Flüssignahrung (ctrl und flOw) untersucht. Alex schaut konzentriert auf die Formeln der ANOVA und des t-Tests. In seinem Experiment wurde als Messwert Protein/Fettrate [%/kg] bestimmt. Eine echte Herausforderung für ihn war schon immer die Gefälligkeit gewesen. Ein leidiges Lied. Dann wäre es nicht noch komplizierter. Was war da jetzt nochmal der Zusammenhang zwischen den beiden statistischen Verfahren? Beide Verfahren haben ja irgendwie etwas miteinander zu tun und seine Betreuerin möchte das jetzt auch noch verstehen. Muss das nicht eigentlich klar sein? Immerhin ist Alex nicht die erste Betreuung einer Hausarbeit. Immerhin hat er die beiden Formeln vorliegen. Auf seinem Second Screen läuft Alien und Alex schaufelt Gummibärchen. Nicht effizient, aber gut.

Gegebene Formeln

$$F_D = \frac{MS_{treatment}}{MS_{error}} \quad T_D = \frac{\bar{y}_1 - \bar{y}_2}{s_p \cdot \sqrt{2/n_g}}$$

Leider kennen sich Alex mit dem Zusammenhang zwischen der ANOVA und dem t-Test nicht aus. Deshalb braucht er bei der Erstellung Ihre Hilfe!

- Welche statistische Maßzahl testet der t-Test, welche die ANOVA? Begründen Sie Ihre Antwort! (2 Punkte)
- 2. Erklären Sie den Zusammenhang zwischen der F_D Statistik und T_D Statistik! (2 Punkte)
- 3. Visualisieren Sie in einer 2x2 Tafel den Zusammenhang von MS_{treatment} und MS_{error}! (2 Punkte)
- 4. Beschriften Sie die erstellte 2x2 Tafel mit signifikant und nicht signifikant! Begründen Sie Ihre Antwort! (2 Punkte)
- 5. Nennen Sie das numerische Minimum der F-Statistik F_D! Begründen Sie Ihre Antwort! (2 Punkte)
- 6. Wenn die F-Statistik F_D minimal ist, welche Aussage erhalten Sie über die Nullhypothese? Begründen Sie Ihre Antwort! (2 Punkte)

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

Es ist schon kurz nach fünf und Steffen wird langsam nervös. Steffen wollte heute Abend noch seine E-Sport Qualifikation schauen und dann zum Sport. Stattdessen versucht seine Betreuerin die Ausgabe der zweifaktoriellen ANOVA zu visualieren und zu überprüfen, ob es mit der Visualisierung der Daten als Boxplots zusammenpasst. Es liegt anscheinend eine signifikante Interaktion vor? Steffen hatte im Teuteburgerwald ein Stallexperiment mit Puten durchgeführt. Es gab dabei zwei Behandlungen. Einmal Genotypen (AA, AB und BB) sowie als zweite Behandlung Ernährungszusatz (ctrl und getIt). Gemessen wurde der Messwert (Y) Fettgehalt [%/kg]. So kompliziert kann das jetzt doch nicht sein!

Leider kennen sich Steffen und seine Betreuerin mit der zweifaktoriellen ANOVA überhaupt nicht aus. Geschweige denn mit der Interpretation einer Interaktion. Deshalb braucht er bei der Erstellung Ihre Hilfe, sonst wird es heute Abend mit seinem Hobby Klemmbausteine nichts mehr!

- 1. Visualisieren Sie folgende mögliche Interaktionen zwischen den Behandlungen! Beschriften Sie die Abbildung! (4 Punkte)
 - a) Keine Interaktion liegt vor.
 - b) Eine schwache Interaktion liegt vor.
 - c) Eine starke Interaktion liegt vor.
- 2. Erklären Sie den Unterschied zwischen den verschiedenen Interaktionen! (2 Punkte)
- 3. Welche statistische Maßzahl betrachten Sie für die Bewertung der Interaktion? (1 Punkt)
- 4. Skizzieren Sie die notwendigen Funktionen in Rfür eine Post-hoc Analyse! (2 Punkte)
- 5. Wenn eine signifikante Interaktion in den Daten vorliegt, wie ist dann das weitere Vorgehen? Berücksichtigen Sie auch die Funktion emmeans ()! (2 Punkte)

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

'Mit der einfaktoriellen ANOVA lassen sich flott die Gruppen in einer Behandlungen vergleichen, wenn wir normalverteilte Daten und Varianzhomogenität vorliegen haben!', ihr Betreuer scheint die einfaktoriellen ANOVA zu verstehen. Warum jetzt sie jetzt nochmal alles wiederkäuen muss, wird Nilufar echt nicht so klar. Wenn es doch so klar ist? 'Wir haben jetzt bei der ANOVA einen p-Wert mit 0.061 raus sowie eine F-Statistik F_D mit 1.51 berechnet. Nach den Boxplots müsste sich eigentlich ein Unterschied zwischen AA und AB ergeben. Der Unterschied ist in {emmeans} auch signifikant mit einem p-Wert von 0.036. Wie kann das sein?', fragt Nilufar etwas provokant und dreht Deichkind leiser. Nilufar war im Teuteburgerwald und hatte dort einen Leistungssteigerungsversuch mit Puten durchgeführt. Die Komune wo sie untergekommen war, war cool gewesen. Dort gab es selbstgemachte Takis Blue Heat aus Vollkorn! Nur jetzt muss eben das Experiment fertig ausgewertet werden. Nilufar hatte eine Behandlungen Genotypen (AA, AB und BB) auf Puten angewendet. Gemessen wurde der Messwert (Y) Gewichtszuwachs in der AB0 und AB1 wurden die Daten AB1 erhoben. Jetzt muss das hier zu einem Ende kommen! Nilufar hat schon genug Probleme. Wenn die Erwartung nicht wäre, dann wäre es einfacher.

Gegebene Formeln

$$MS_{treatment} = rac{SS_{treatment}}{df_{treatment}}$$
 $MS_{error} = rac{SS_{error}}{df_{error}}$ $F_D = rac{MS_{treatment}}{MS_{error}}$

Leider kennen sich Nilufar und ihr Betreuer mit der Interpretation einer ANOVA überhaupt nicht aus. Deshalb braucht sie bei der Erstellung Ihre Hilfe und die Zeit wird knapp.

- 1. Formulieren Sie die wissenschaftliche Fragestellung! (1 Punkt)
- 2. Formulieren Sie das statistische Hypothesenpaar! (1 Punkt)
- 3. Was bedeutet eine signifkante ANOVA für die beobachteten Daten D? (1 Punkt)
- 4. Visualisieren Sie den Unterschied zwischen Varianzhomogenität und Varianzheterogenität anhand der Daten D! Beschriften Sie die Abbildung! (2 Punkte)
- 5. Visualisieren Sie für die Daten *D* die Verletzung der Annahme der Varianzhomogenität der ANOVA unter zu Hilfenahme von Boxplots! Beschriften Sie die Abbildung! **(2 Punkte)**
- 6. Welche Auswirkung hat die Verletzung der Annahme der Varianzhomogenität für die Teststatistik F_D der ANOVA? Begründen Sie Ihre Antwort! (2 Punkte)
- 7. Erklären Sie abschließend die Diskrepanz zwischen den Ergebnis der ANOVA und dem paarweisen Gruppenvergleich in {emmeans}! (2 Punkte)

Teil V.

Multiple Gruppenvergleiche

84. Aufgabe (12 Punkte)

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

'Moment, die haben ja das Gleiche gemacht wie wir!', ruft Tina laut aus. Paula schaut etwas verwundert. 'Das glaube ich eher nicht. Lass uns mal unsere Daten mit den Ergebnissen von Qui et al. (2017) vergleichen.', antwortet Paula. In ein Kreuzungsexperiment mit Puten wurde die Behandlung Elterlinie (*ctrl*, *Standard*, *TOP*, *Yray*, *SLOW*, und *Xray*) auf den Messwert Protein/Fettrate [%/kg] untersucht. Jetzt müssen die beiden mal schauen, ob sie wirklich was Neues gefunden haben oder ob die Ergebnisse alle die gleichen sind wie schon bei Qui et al. (2017). Es ergab sich dann die folgende Tabelle der rohen p-Werte für die Vergleiche zu Qui et al. (2017).

Rohen p-Werte	Adjustierte p-Werte	Nullhypothese ablehnen?
0.060		
0.001		
0.020		
0.012		
0.080		
0.760		

Leider kennen sich Tina und Paula mit der Adjustierung von p-Werten und dem Signifikanzniveau α überhaupt nicht aus. Deshalb brauchen die beiden bei der Erstellung Ihre Hilfe!

- 1. Formulieren Sie die wissenschaftliche Fragestellung! (1 Punkt)
- 2. Formulieren Sie die statistischen Hypothesen! (1 Punkt)
- 3. Füllen Sie die Spalte Adjustierte p-Werte nach der Bonferoni-Methode aus! (2 Punkte)
- 4. Entscheiden Sie, ob nach der Adjustierung die Nullhypothese abgelehnt werden kann! Begründen Sie Ihre Antwort! (2 Punkte)
- 5. Wie ist Ihr Vorgehen, wenn Sie anstatt der p-Werte das Signifikanzniveau α adjustieren? (2 Punkte)
- 6. Erklären Sie warum die p-Werte oder das Signifikanzniveau α bei multiplen Vergleichen adjustiert werden müssen! (2 **Punkte**)
- 7. Würden Sie die Adjustierung der p-Werte oder die Adjustierung des Signifikanzniveaus α vorziehen? Begründen Sie Ihre Antwort! (2 **Punkte**)

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

Nilufar betrachtet in sich gekehrt die Poster vor dem Büro von ihrer Betreuerin. Viele der explorativen Abbildungen sagen ihr etwas. Die Barplots und die Boxplots könnte sie dann schon nachbauen. Das macht sie dann zuversichtlich die Abschlussarbeit auch hinzukriegen. Etwas komischer sind die seltsamen Buchstaben über den Barplots. Nilufar betrachtet ein Poster das sich mit Puten beschäftigt. Lüftungssystem (keins, storm, tornado und thunder) und Fettgehalt [%/kg] wurden dort bestimmt. So richtig schlau, wird sie daraus nicht.

Behandlung	Compact letter display
keins	а
storm	a
tornado	a
thunder	b

Leider kennen sich Nilufar mit dem *Compact letter display (CLD)* überhaupt nicht aus. Deshalb braucht sie bei der Erstellung Ihre Hilfe!

- 1. Formulieren Sie die wissenschaftliche Fragestellung! (1 Punkt)
- 2. Formulieren Sie die statistischen Hypothesen! (1 Punkt)
- 3. Zeichnen Sie die sich anhand des Compact letter display (CLD) ergebenden Barplots! (2 Punkte)
- 4. Ergänzen Sie das Compact letter display (CLD) zu den Barplots! (1 Punkt)
- 5. Erklären Sie einen Vorteil und einen Nachteil des Compact letter display (CLD)! (2 Punkte)
- 6. Erstellen Sie eine Matrix mit den paarweisen *p*-Werten eines Student t-Tests, die sich näherungsweise aus dem *Compact letter display (CLD)* ergeben würde! Begründen Sie Ihre Antwort! (3 Punkte)

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

Jessica betrachtet in sich gekehrt die Poster vor dem Büro von ihre Betreuerin. Viele der explorativen Abbildungen sagen ihr etwas. Die Barplots und die Boxplots könnte sie dann schon nachbauen. Das macht sie dann zuversichtlich die Abschlussarbeit auch hinzukriegen. Etwas komischer sind die seltsamen Buchstaben über den Barplots. Jessica betrachtet ein Poster das sich mit Puten beschäftigt. Genotypen (00, AA, AB und BB) und Schlachtgewicht [kg] wurden dort bestimmt. So richtig schlau, wird sie daraus nicht. Als erstes müsse müsse man die Gruppen nach absteigender Effektstärke sortieren, liest Jessica im Methodenteil und ist dann noch verwirrter als vorher schon.

Genotypen	Fallzahl (n)	Mittelwert	Standardabweichung
00	8	4.05	1.38
AA	7	6.09	3.41
AB	7	9.57	3.52
ВВ	8	16.04	3.04

Leider kennen sich Jessica mit dem *Compact letter display (CLD)* überhaupt nicht aus. Deshalb braucht sie bei der Erstellung Ihre Hilfe!

- 1. Formulieren Sie die wissenschaftliche Fragestellung! (1 Punkt)
- 2. Formulieren Sie die statistischen Hypothesen! (1 Punkt)
- 3. Zeichnen Sie die sich ergebenden Barplots! (1 Punkt)
- 4. Berechnen Sie die Matrix der p-Werte anhand von Student t-Tests! (4 Punkte)
- 5. Ergänzen Sie das *Compact letter display (CLD)* zu den gezeichneten Barplots! Begründen Sie Ihre Antwort! **(4 Punkte)**
- 6. Interpretieren Sie das Compact letter display (CLD) für Jessica und Paula! (1 Punkt)

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

'Oh, nee!', ruft Tina aus und rollt entnervt mit ihren Augen. Tina hatte ihre gesamte Analyse in DataTab gerechnet. Das war ja auch alles in Ordnung. Abbilungen haben geklappt und auch die statistischen Tests gingen dann irgendwie doch. Aber das CLD nicht. Tina findet einfach keine Möglichkeit ein CLD in DataTab zu erhalten. Aber ihr Betreuer möchte unbedingt ein CLD. Sonst wird es mit der Abgabe nichts. Dabei hatte sie schon wirklich eine Menge gemacht! Tina hatte sich zwei Variablen mit Lüftungssystem (keins, storm, tornado und thunder) und Gewichtszuwachs in der 1LW in ein Stallexperiment mit Puten angeschaut. Wo kriegt sie jetzt ein CLD her? Dann eben per Hand aus der Matrix der p-Wert. Tina stöhnt...

	keins	storm	tornado	thunder
keins	1.0000000	0.0016214	0.1583054	0.0417466
storm	0.0016214	1.0000000	0.0148937	0.1206392
tornado	0.1583054	0.0148937	1.0000000	0.3510944
thunder	0.0417466	0.1206392	0.3510944	1.0000000

Leider kennen sich Tina mit dem *Compact letter display (CLD)* überhaupt nicht aus. Deshalb braucht sie bei der Erstellung Ihre Hilfe!

- 1. Formulieren Sie die wissenschaftliche Fragestellung! (1 Punkt)
- 2. Formulieren Sie die statistischen Hypothesen! (1 Punkt)
- 3. Zeichnen Sie die sich anhand der Matrix der p-Werte ergebenden Barplots! (2 Punkte)
- 4. Ergänzen Sie das Compact letter display (CLD)! Begründen Sie Ihre Antwort! (4 Punkte)
- 5. Interpretieren Sie das Compact letter display (CLD) für Tina und Paula! (2 Punkte)

Teil VI.

Der Chi-Quadrat-Test & Der diagnostische Test

88. Aufgabe (12 Punkte)

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

Am Ende war es für Tina in ihrer Hausarbeit dann doch kein normalverteiltes Outcome. Das was jetzt etwas doff, da er sich auf eine ANOVA gefreut hatte. Prinzipiell ginge das auch irgendwie, aber nun möchte ihre Betreuerin gerne einen \mathcal{X}^2 -Test auf einer $2x^2$ -Kreuztabelle berechnet bekommen. Tina hatte sich in ein Kreuzungsexperiment n=138 Beobachtungen von Puten angeschaut. Dabei hat sie als Behandlung Automatische Fütterung [ja/nein] bestimmt und zum anderen die Variable Gewichtszuwachs erreicht [ja/nein] ermittelt. Jetzt muss Tina mal schauen, wie sie das jetzt rechnet.

56	21	
23	38	

Leider kennt sich Tina mit der Berechnung eines \mathcal{X}^2 -Test für kategoriale Daten überhaupt nicht aus. Deshalb braucht sie bei der Erstellung Ihre Hilfe!

- 1. Formulieren Sie die wissenschaftliche Fragestellung! (1 Punkt)
- 2. Ergänzen Sie die Tabelle um die fehlenden Informationen! (1 Punkt)
- 3. Visualisieren Sie den Zusammenhang zwischen den beiden kategorialen Variablen! (2 Punkte)
- 4. Berechnen Sie die Teststatistik eines Chi-Quadrat-Test! (2 Punkte)
- 5. Treffen Sie eine Entscheidung im Bezug zu der Nullhypothese gegeben einem $\mathcal{X}^2_{\alpha=5\%}=3.841!$ Begründen Sie Ihre Antwort! (2 Punkte)
- 6. Skizzieren Sie die \mathcal{X}^2 -Verteilung, wenn die H_0 wahr ist! Ergänzen Sie $\mathcal{X}^2_{\alpha=5\%}$ und \mathcal{X}^2_D in der Abbildung! (2 Punkte)
- 7. Berechnen Sie den Effektschätzer Cramers V! Interpretieren Sie den Effektschätzer! (2 Punkte)

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

Am Ende war es für Jessica in ihrer Hausarbeit dann doch kein normalverteiltes Outcome. Das was jetzt etwas doff, da er sich auf eine ANOVA gefreut hatte. Prinzipiell ginge das auch irgendwie, aber nun möchte ihr Betreuer gerne einen \mathcal{X}^2 -Test auf einer $2x^2$ -Kreuztabelle berechnet bekommen. Jessica hatte sich in ein Kreuzungsexperiment n=153 Beobachtungen von Puten angeschaut. Dabei hat sie als Behandlung Klimakontrolle [ja/nein] bestimmt und zum anderen die Variable Fettgehalt erreicht [ja/nein] ermittelt. Jetzt muss Jessica mal schauen, wie sie das jetzt rechnet.

		81
		72
82	71	153

Leider kennt sich Jessica mit der Berechnung eines \mathcal{X}^2 -Test für kategoriale Daten überhaupt nicht aus. Deshalb braucht sie bei der Erstellung Ihre Hilfe!

- 1. Formulieren Sie die wissenschaftliche Fragestellung! (1 Punkt)
- 2. Ergänzen Sie die Tabelle um die fehlenden Informationen! (1 Punkt)
- 3. Ergänzen Sie die Felder innerhalb der 2x2 Kreuztabelle, so dass *kein* signifikanter Effekt zu erwarten wäre! **(2 Punkte)**
- 4. Begründen Sie Ihr Vorgehen an der Formel des Chi-Quadrat-Tests. Erklären Sie Ihr Vorgehen an einem Beispiel! (2 Punkte)
- 5. Visualisieren Sie den Zusammenhang zwischen den beiden kategorialen Variablen! (2 Punkte)
- 6. Was ist die Mindestanzahl an Beobachtungen je Zelle? Wenn in einer der Zellen weniger Beobachtungen auftreten, welchen Test können Sie anstatt des Standard Chi-Quadrat-Tests anwenden? (2 Punkte)

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

Am Ende war es für Jonas in seiner Abschlussarbeit dann doch kein normalverteiltes Outcome. Das was jetzt etwas doff, da er sich auf eine ANOVA gefreut hatte. Prinzipiell ginge das auch irgendwie, aber nun möchte seine Betreuerin gerne einen \mathcal{X}^2 -Test auf einer $2x^2$ -Kreuztabelle berechnet bekommen. Jonas hatte sich in ein Stallexperiment n=153 Beobachtungen von Puten angeschaut. Dabei hat er als Behandlung Automatische Fütterung [ja/nein] bestimmt und zum anderen die Variable Schlachtgewicht im Zielbereich [ja/nein] ermittelt. Jetzt muss Jonas mal schauen, wie er das jetzt rechnet. Nach seinem Experiment erhielt er folgende $2x^2$ Kreuztabelle aus seinen erhobenen Daten.

Dann rechnete Jonas den Fisher-Exakt-Test auf der 2x2-Kreuztabelle in \mathbb{R} und erhielt folgende \mathbb{R} Ausgabe der Funktion fisher.test().

```
##
## Fisher's Exact Test for Count Data
##
## data: Schlachtgewicht im Zielbereich
## p-value = 0.005898
## alternative hypothesis: true odds ratio is not equal to 1
## 95 percent confidence interval:
## 1.462677 32.500828
## sample estimates:
## odds ratio
## 6.352594
```

Leider kennt sich Jonas mit der Berechnung eines \mathcal{X}^2 -Test für kategoriale Daten überhaupt nicht aus. Deshalb braucht er bei der Erstellung Ihre Hilfe!

- 1. Formulieren Sie die wissenschaftliche Fragestellung! (1 Punkt)
- 2. Visualisieren Sie den Zusammenhang zwischen den beiden kategorialen Variablen! (2 Punkte)
- 3. Liegt ein signifikanter Unterschied zwischen den Gruppen vor? Begründen Sie Ihre Antwort! (2 Punkte)
- 4. Skizzieren Sie das sich ergebende 95% Konfidenzintervall! (2 Punkte)
- 5. Beschriften Sie die Abbildung des 95% Konfidenzintervalls! (1 Punkt)
- 6. Interpretieren Sie das *Odds ratio* im Kontext der wissenschaftlichen Fragestellung! (2 Punkte)

Die Prävalenz von Klauenseuche bei Wollschweinen wird mit 4% angenommen. In 85% der Fälle ist ein Test positiv, wenn das Wollschwein erkrankt ist. In 7.5% der Fälle ist ein Test positiv, wenn das Wollschwein nicht erkrankt ist und somit gesund ist. Sie werten 2000 Wollschweine mit einem diagnostischen Test auf Klauenseuche aus.

- 1. Füllen und beschriften Sie den untenstehenden Doppelbaum! Beschriften Sie auch die Äste des Doppelbaumes, mit denen Ihnen bekannten Informationen! (8 Punkte)
- 2. Berechnen Sie die Wahrscheinlichkeit $Pr(K^+|T^+)$! (2 Punkte)
- 3. Was sagt Ihnen die Wahrscheinlichkeit $Pr(K^+|T^+)$ aus? (1 Punkt)

Folgender diagnostischer Doppelbaum nach der Testung auf Klauenseuche bei Fleckvieh ist gegeben.

- 1. Füllen und beschriften Sie den untenstehenden Doppelbaum! (4 Punkte)
- 2. Berechnen Sie die Wahrscheinlichkeit $Pr(K^+|T^+)$! (2 Punkte)
- 3. Berechnen Sie die Prävalenz für Klauenseuche! (2 Punkte)
- 4. Berechnen Sie die Sensifität und Spezifität des diagnostischen Tests für Klauenseuche! Erstellen Sie dafür zunächst eine 2x2 Kreuztabelle aus dem ausgefüllten Doppelbaum! (4 Punkte)

Teil VII.

Lineare Regression & Korrelation

93. Aufgabe (10 Punkte)

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

'Wichtig ist es, dass wir jetzt eine Gerade durch die Punkte zeichnen!', ruft Nilufar. 'Ich sehe nur eine Zahlen und keine Punkte. Wie soll ich da denn jetzt eine Gerade durchzeichnen?', fragt Steffen. Nilufar atmet schwer ein. Die beiden hatten ein Stallexperiment in der Uckermark mit Puten durchgeführt. Dabei wurden die beiden folgenden Variablen gemessen: mittlerer Eisenkonzentration [Fe/ml] und Fettgehalt [%/kg]. Jetzt will die Betreuung von den beiden einmal die Visualisierung der Daten und auch gleich noch die lineare Regression gerechnet bekommen.

Mittlerer Eisenkonzentration [Fe/ml]	Fettgehalt [%/kg]
16.0	16.1
12.8	13.6
12.8	14.3
12.1	18.6
17.2	20.7
20.4	20.1
16.0	14.9
15.3	16.2
12.4	9.5
14.1	14.6
13.4	14.9

Leider kennen sich Nilufar und Steffen mit der linearen Regression für kontinuierliche Daten überhaupt nicht aus. Deshalb brauchen beide bei der Erstellung Ihre Hilfe!

- 1. Formulieren Sie die wissenschaftliche Fragestellung! (1 Punkt)
- 2. Erstellen Sie eine Visualisierung für die Datentabelle. Beschriften Sie die Achsen! (2 Punkte)
- 3. Schätzen Sie die Regressionsgleichung aus der obigen Abbildung ab! (2 Punkte)
- 4. Beschriften Sie die Grade mit den statistischen Maßzahlen der linearen Regressionsgleichung! (2 Punkte)
- 5. Liegt ein Zusammenhang zwischen x und y vor? Begründen Sie Ihre Antwort! (2 Punkte)
- 6. Wenn kein Zusammenhang zu beobachten wäre, wie würde die Grade aussehen? Antworten Sie mit einer Skizze der Geraden! (1 Punkt)

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

'Ich glaube du bringst da was durcheinander. Wir nutzen zwar auch für die ANOVA die Funktion lm() aber hier wollen wir, glaube ich, eine Gerade durch die Punkte zeichnen.', merkt Tina an. 'Ich sehe keine Punkte... ich sehe nur zwei Zeilen einer Tabelle und ich glaube du hast gerade was gelöscht.', antwortet Yuki sichtlich übernächtigt. 'Wir müssen die Koeffizienten der linearen Regression ja auch erst interpretieren!', spricht Tina sehr deutlich und langsam. Die beiden hatten einen Leistungssteigerungsversuch im Teuteburgerwald mit Puten durchgeführt. Dabei wurden die beiden folgenden Variablen gemessen: durchschnittliche Tagestemperatur [C/d] und Gewichtszuwachs in der 1LW. Jetzt wollen sie erstmal schauen, ob es einen Zusammenhang gibt und das soll mit der Rausgabe möglich sein.

term	estimate	std.error	t statistic	p-value
(Intercept)	-2.07	1.86		
Durchschnittliche Tagestemperatur	0.49	0.18		

Leider kennen sich Tina und Yuki mit der linearen Regression für kontinuierliche Daten in Rüberhaupt nicht aus. Deshalb brauchen beide bei der Erstellung Ihre Hilfe!

- 1. Formulieren Sie die wissenschaftliche Fragestellung! (1 Punkt)
- 2. Erstellen Sie eine Visualisierung der lm()-Ausgabe. Beschriften Sie die Achsen! (2 Punkte)
- 3. Beschriften Sie die Visualisierung mit den statistischen Maßzahlen der der lm()-Ausgabe! (2 Punkte)
- 4. Formulieren Sie die Regressionsgleichung! (1 Punkt)
- 5. Ergänzen Sie die t Statistik in der lm()-Ausgabe! (2 Punkte)
- 6. Ergänzen Sie den p-Wert in der lm()-Ausgabe mit $T_{\alpha=5\%}=1.96!$ (2 Punkte)
- 7. Interpretieren Sie den p-Wert im Kontext der wissenschaftlichen Fragestellung! (1 Punkt)
- 8. Wie groß ist der Effekt im Kontext der wissenschaftlichen Fragestellung? (1 Punkt)

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

'Hä? Was ist denn das? Das wird ja immer wilder! Hatten wir das als Aufgabe eine lineare Regression zu rechnen? Wir bauen aus kontinuierlichen Daten eine Abbildung und interpretieren diese dann?', fragt Nilufar. Jessica schaut fragend zurück. 'Keine Ahnung... das ist jetzt jedenfalls keine Abbildung von irgendwas sondern eine Ausgabe mit ganz wilden Bezeichnungen...', antwortet Jessica leicht angespannt. Die beiden hatten einen Leistungssteigerungsversuch im Teuteburgerwald mit Puten durchgeführt. Dabei wurden die beiden folgenden Variablen gemessen: mittlere Anzahl an weißen Blutkörperchen [LEU/ml] und Fettgehalt [%/kg]. Jetzt haben die beiden eigentlich alles zusammen. Eigentlich..., denn mit der Ausgabe haben beide jetzt ein Problem.

```
## Call:
## Fettgehalt ~ Mittlere_Anzahl
## Residuals:
                10 Median
                                30
##
      Min
                                       Max
## -3.3399 -0.5567 0.2502 0.6657
                                    2.4770
##
## Coefficients:
                   Estimate Std. Error t value Pr(>|t|)
##
## (Intercept)
                     4.4162
                                2.3011
                                         1.919
                                                 0.0636
## Mittlere_Anzahl
                     2.2684
                                0.2267 10.006
                                               1.6e-11
## Residual standard error: 1.334 on 33 degrees of freedom
## Multiple R-squared: 0.7521, Adjusted R-squared: 0.7446
## F-statistic: 100.1 on 1 and 33 DF, p-value: 1.596e-11
```

Leider kennen sich Nilufar und Jessica mit der linearen Regression für kontinuierliche Daten in Rüberhaupt nicht aus. Deshalb brauchen beide bei der Erstellung Ihre Hilfe!

- 1. Formulieren Sie die wissenschaftliche Fragestellung! (1 Punkt)
- 2. Wie groß ist der Effekt im Kontext der wissenschaftlichen Fragestellung? (2 Punkte)
- 3. Interpretieren Sie die p-Werte im Kontext der wissenschaftlichen Fragestellung! (2 Punkte)
- 4. Visualisieren Sie die Verteilung der Residuen! (2 Punkte)
- 5. Ist die Annahme der Normalverteilung erfüllt? Begründen Sie die Antwort! (2 Punkte)
- 6. Erklären Sie kurz den Begriff R-squared! Was sagt Ihnen der Wert aus? (2 Punkte)

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

'Ich glaube ich bringe da was durcheinander. Ich möchte eine Gerade durch die Punkte zeichnen oder doch eine Korrelation berechnen?', merkt Paula laut an. 'Ich sehe keine Punkte... das ist doch eine Ausgabe in \textbf{\mathbb{R}}\). Überhaupt, darum geht es doch gar nicht in meinem Versuch. Ich wollte doch keine Gerade zeichnen?.', antwortet Paula sich sichtlich übernächtigt selber. Die Nacht war zu lang und überhaupt. Paula hatte einen Leistungssteigerungsversuch im Oldenburger Land mit Puten durchgeführt. Dabei wurden die beiden folgenden Variablen gemessen: mittlere Anzahl an weißen Blutkörperchen [LEU/ml] und Proteianteil [%/kg]. Jetzt will sie erstmal schauen, ob es einen Zusammenhang gibt und das soll mit der \textbf{\mathbb{R}}\) Ausgabe möglich sein.

```
##
## Pearson's correlation
##
## data: Mittlere Anzahl an weißen Blutkörperchen [LEU/ml] and Proteianteil [%/kg]
## t = 7.0158, df = 8, p-value = 0.0001109
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## 0.7158825 0.9830392
## sample estimates:
## cor
## 0.9274648
```

Leider kennt sich Paula mit der Korrelationsanalyse in \mathbb{R} überhaupt nicht aus. Deshalb braucht sie bei der Erstellung Ihre Hilfe!

- 1. Formulieren Sie die wissenschaftliche Fragestellung! (1 Punkt)
- 2. Formulieren Sie das statistische Hypothesenpaar! (1 Punkt)
- 3. Erstellen Sie eine Visualisierung für den Korrelationskoeffizienten! Beschriften Sie die Abbildung! (2 Punkte)
- 4. Nennen Sie die zwei Eigenschaften des Korrelationskoeffizienten! (2 Punkte)
- 5. Interpretieren Sie den Korrelationskoefizienten hinsichtlich des Effekts und der Signifikanz! Begründen Sie Ihre Antwort! (2 Punkte)
- 6. Visualisieren Sie das 95% Konfidenzintervall! Beschriften Sie die Abbildung! (2 Punkte)

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

foo

In den folgenden Abbildungen sehen Sie drei leere Scatterplots. Füllen Sie diese Scatterplots nach folgenden Anweisungen.

- 1. Zeichnen Sie für die angegebene ρ -Werte eine Gerade in die entsprechende Abbildung! (3 Punkte)
- 2. Zeichnen Sie für die angegebenen R^2 -Werte die entsprechende Punktewolke um die Gerade. (3 Punkte)
- 3. Sie rechnen ein statistisches Modell. Was sagen Ihnen die R^2 -Werte über das jeweilige Modell? (3 **Punkte**)

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

foo.

In den folgenden Abbildungen sehen Sie vier Scatterplots. Ergänzen Sie die Überschriften der jeweiligen Scatterplots.

- 1. Schätzen Sie die ρ -Werte in der entsprechenden Abbildung! (4 Punkte)
- 2. Schätzen Sie die R^2 -Werte in der entsprechenden Punktewolke um die Gerade! (4 Punkte)
- 3. Sie rechnen ein statistisches Modell. Was sagen Ihnen die R^2 -Werte über das jeweilige Modell? (1 **Punkt**)

Pearsons $\rho =$

Pearsons $\rho =$

 $R^2 =$

Pearsons $\rho =$

 $R^2 =$

Pearsons $\rho =$

$$R^2 =$$

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

foo.

Sie rechnen eine lineare Regression um nach einem Feldexperiment den Zusammenhang zwischen Trockengewicht kg/m^2 (drymatter) und Wassergabe l/m^2 (water) bei Spargel zu bestimmen. Sie erhalten folgende Datentabelle.

.id	drymatter	water	.fitted	.resid
1	22.6	9.5	23.1	
2	23.5	8.9	22.3	
3	20.5	7.8	21.0	
4	23.1	9.9	23.5	
5	27.7	13.3	27.6	
6	26.7	12.3	26.4	
7	15.5	2.5	14.9	
8	19.2	6.6	19.6	
9	17.0	4.6	17.3	

- 1. Ergänzen Sie die Werte in der Spalte .resid in der obigen Tabelle. Geben Sie den Rechenweg und Formel mit an! (4 Punkte)
- 2. Zeichnen Sie den sich aus der obigen Tabelle ergebenden Residualplot. Beschriften Sie die Abbildung! (4 Punkte)
- 3. Gibt es auffällige Werte anhand des Residualplots? Begründen Sie Ihre Antwort! (2 Punkte)

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

foo.

- 1. Zeichen Sie in die drei untenstehenden, leeren Abbilungen die Zeile des Regressionskreuzes der Binomialverteilung. Wählen Sie die Beschriftung der y-Achse sowie der x-Achse entsprechend aus! (6 Punkte)
- 2. Ergänzen Sie die jeweiligen statistischen Methoden zu der Abbildung! (2 Punkte)
- 3. Welchen Effektschätzer erhalten Sie aus der entsprechend linearen Regression bzw. den Gruppenvergleich? Geben Sie ein Beispiel! (2 Punkte)
- 4. Wenn Sie keinen Effekt erwarten, welchen Zahlenraum nimmt dann der Effektschätzer ein? Geben Sie ein Beispiel! (2 Punkte)

Teil VIII.

Experimentelles Design

101. Aufgabe (16 Punkte)

Mark und Yuki sind bei Tina um sich Hilfe für eine Versuchsplanung in \mathbb{R} zu holen. Dabei geht es um den Zusammenhang zwischen der Behandlung Genotypen (AA, AB und BB) sowie Lüftungssystem (keins und thunder) und dem Messwert Gewichtszuwachs in der 1LW in Puten. Der Versuch soll in einem Leistungssteigerungsversuch im Oldenburger Land durchgeführt werden. Nach der Dozentin ist der Messwert Gewichtszuwachs in der 1LW normalverteilt. Die beiden entschieden sich für ein faktorielles Versuchsdesign. Im ersten Schritt überlegt Tina ein einfaches experimentelles Design zu probieren. Daher entscheiden sich alle drei für ein $Complete\ randomized\ design\ (CRD)\ mit\ nur\ einem\ der beiden Faktoren. Das sollte für den anfang erstmal reichen. 'Und jetzt, was machen wir jetzt?', Yuki schaut die anderen beiden mit großen Augen an. Die zucken mit der Schulter.$

Leider kennen sich Tina, Mark und Yuki mit dem *Complete randomized design (CRD)* überhaupt nicht aus. Deshalb brauchen die Drei bei der Erstellung Ihre Hilfe!

- 1. Formulieren Sie die wissenschaftliche Fragestellung! (1 Punkt)
- 2. Formulieren Sie das statistische Hypothesenpaar! (1 Punkt)
- 3. Skizzieren Sie das faktorielle Versuchsdesign! (3 Punkte)
- 4. Skizzieren Sie eine Datentabelle für das faktorielle Versuchsdesign in 🔃 (2 Punkte)
- 5. Erstellen Sie das statistische Modell in der in Rüblichen Schreibweise für eine ANOVA! Skizzieren Sie die notwendige Funktionen in R! (3 Punkte)
- 6. Skizzieren Sie die weitere Datenanalyse hinsichtlich eines multiplen Gruppenvergleiches! (2 Punkte)
- 7. Skizzieren Sie eine mögliche Abbildung im Kontext der wissenschaftlichen Fragestellung! Beschriften Sie die Abbildung! (2 Punkte)
- 8. Ergänzen Sie zu der Abbildung ein mögliches Ergebnis des multiplen Gruppenvergleichs! Begründen Sie Ihre Antwort! (2 Punkte)

Leider kennen sich Paula, Yuki und Tina mit dem *Strip plot design oder auch Streifenanlage* überhaupt nicht aus. Deshalb brauchen die Drei bei der Erstellung Ihre Hilfe!

- 1. Formulieren Sie die wissenschaftliche Fragestellung! (1 Punkt)
- 2. Formulieren Sie die statistische Hypothesenpaare! (2 Punkte)
- 3. Skizzieren Sie das faktorielle Versuchsdesign! (3 Punkte)
- 4. Skizzieren Sie eine Datentabelle für das faktorielle Versuchsdesign in 😱! (2 Punkte)
- 5. Erstellen Sie das statistische Modell in der in Rüblichen Schreibweise für eine ANOVA! Skizzieren Sie die notwendige Funktionen in R! (4 Punkte)
- 6. Skizzieren Sie die weitere Datenanalyse hinsichtlich eines multiplen Gruppenvergleiches! (2 Punkte)
- 7. Skizzieren Sie eine mögliche Abbildung im Kontext der wissenschaftlichen Fragestellung! Beschriften Sie die Abbildung! (3 Punkte)
- 8. Ergänzen Sie zu der Abbildung ein mögliches Ergebnis des multiplen Gruppenvergleichs! Welche Annahme hinsichtlich der Modellierung haben Sie getroffen? Begründen Sie Ihre Antwort! (3 Punkte)

Teil IX.

Programmieren in R

103. Aufgabe (9 Punkte)

Mark muss seiner Abschlussarbeit mit Rarbeiten. Deshalb sitzt er jetzt mit Ihnen zusammen und hat einige Fragen zu den Grundlagen in Ran Sie! Na dann wollen Sie mal helfen. Immerhin will sein Betreuer, dass Randte wird.

Mark: Ich habe die Namen der beiden Relate vergessen, die wir eigentlich immer laden. Wie heißen die noch gleich? (1 Punkt)

Sie antworten:

Mark: Was war eigentlich nochmal ein Vorteil von der Nutzng von 📿 ? (1 Punkt)

Sie antworten:

Mark: Warum gibt es eigentlich Objekte, Wörter und Funktionen in R? Wie unterscheiden sich diese überhaupt? (1 Punkt)

Sie antworten:

Mark: Wie sieht der Pipe-Operator aus und was ist seine Funktion? Gerne mit Beispiel! (1 Punkt) Sie antworten:

Mark: In R hat sich doch mein Datensatz geändert. Warum ist er jetzt wieder so wie vorher, wenn ich den Datensatz wieder aufrufe? Was mache ich falsch? (1 Punkt)

Sie antworten:

Mark: Ich verstehe den Zuweisungs-Operator nicht. Wie sieht der aus und was macht der? Gebe mal ein Beispiel! (1 Punkt)

Sie antworten:

Mark: Wie war nochmal der Name der Funktion in dem wir in R Daten intern abspeichern? Was waren da nochmal die Vorteile? (1 Punkt)

Sie antworten:

Mark: Wir brauchen recht häufig die Tilde (~) in R. Wo wird die nochmal angewandt und genutzt? (1 Punkt) Sie antworten:

Mark: Es gibt ja in R unter anderem library() und Packages. Was ist de Unterschied und wozu brauche ich die? (1 Punkt)

Sie antworten:

'Unter den Blinden ist der Einäuge König!', ruft Ihnen Jessica entgegen. Das können Sie schon nicht mehr hören. Nur weil Sie einmal gesagt haben, dass Sie sich schonmal mit R beschäftigt haben, stehen hier alle Schlange. Aber gut, das hat Sie dann doch vorangebracht. Leider kennt sich Jessica auch wieder überhaupt nicht mit R aus aber ihre Betreuerin möchte gerne, dass die Auswertung in R gemacht wird. Da müssen Sie dann wohl mal nochmal ran und helfen.

Jessica fragt: Ich will das R Paket {ggplot} nutzen, da war so eine Analogie an die ich mich nicht erinnern kann. Was war noch gleich das Prinzip von {ggplot}? Wie funktioniert {ggplot} konzeptionell? (2 Punkte) Sie antworten:

Jessica fragt: Nach der EDA zu urteilen liegt eine Interakton vor, wie spezifiziere ich diese im Modell, so dass ich die interaktion zwischen zwei Faktoren f_1 und f_2 testen kann? (1 **Punkt**)

Sie antworten:

Jessica fragt: Wie verbindet {ggplot} die einzelnen Ebenen einer Abbildung? (1 Punkt) Sie antworten:

Jessica fragt: Ich möchte in der Funktion emmeans() den Faktor f_1 getrennt in jedem Level des Faktors f_2 auswerten. Was muss ich da in de Funktion emmeans() angeben? (1 Punkt)

Sie antworten:

Jessica fragt: Man kann doch die Funktion emmeans () von Varianzhomogenität auf Varianzheterogenität umstellen. Wie ging das noch gleich? (1 Punkt)

Sie antworten:

Jessica fragt: Hm... wenn ich in R Daten mit Gruppen eingelesen habe, was muss ich dann nochmal als erstes machen? Und warum? (2 Punkte)

Sie antworten:

Jessica fragt: Wie nennt sich das Datenformat in R? Bitte mit kurzem Beispiel! (1 Punkt) Sie antworten:

Teil X.

Forschendes Lernen

Das forschende Lernen basiert zum einen auf den folgenden wissenschaftlichen Veröffentlichungen. Für die Prüfung wird die vertiefende Kenntnis der folgenden Veröffentlichungen vorausgesetzt.

In der Prüfung erhalten Sie einen Auszug der wissenschaftlichen Veröffentlichung. Für die Einarbeitung in die Veröffentlichung ist in der Prüfung ausdrücklich keine Zeit vorgesehen.

- Sánchez, M., Velásquez, Y., González, M., & Cuevas, J. (2022). Hoverfly pollination enhances yield and fruit quality in mango under protected cultivation. Scientia Horticulturae, 304, 111320. [Link]
- Petersen, F., Demann, J., Restemeyer, D., Olfs, H. W., Westendarp, H., Appenroth, K. J., & Ulbrich, A. (2022). Influence of light intensity and spectrum on duckweed growth and proteins in a small-scale, re-circulating indoor vertical farm. Plants, 11(8), 1010. [Link]
- Selle, P. H., Cadogan, D. J., Li, X., & Bryden, W. L. (2010). Implications of sorghum in broiler chicken nutrition. Animal Feed Science and Technology, 156(3-4), 57-74. [Link]
- Wu, G., Knabe, D. A., & Kim, S. W. (2004). Arginine nutrition in neonatal pigs. The Journal of Nutrition, 134(10), 2783S-2790S. [Link]

Das forschende Lernen basiert zum anderen auf den folgenden wissenschaftlichen Datensätzen und deren vertiefende Analyse werden als bekannt vorausgesetzt. Die Teilaufgaben der Aufgaben stellen nur eine zufällige Auswahl an möglichen Fragen dar. Die Datensätze werden über ILIAS bereitgestellt.

In der Prüfung erhalten Sie <u>keinen Auszug</u> aus den wissenschaftlichen Daten. Die Datensätze werden als bekannt in der Prüfung vorgesetzt. Sie haben sich vorab Notizen und Anmerkungen gemacht.

• bar

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

Vor dem Start der eigenen Arbeit möchte ihr Betreuer, dass Paula einmal die wissenschaftliche Veröffentlichung Selle, P. H., et al. (2010). Implications of sorghum in broiler chicken nutrition sinnvoll zusammenfasst. Dann würde die eigene Arbeit auch leichter von der Hand gehen und Paula hätte dann schon eine Vorlage. 'Das ist jetzt aber umfangreicher als gedacht!', schnauft sie und runzelt die Stirn.

Leider kennt sich Paula mit dem Lesen einer wissenschaftlichen Veröffentlichung mit Fokus auf die Statistik überhaupt nicht aus. Deshalb braucht sie bei der Erstellung Ihre Hilfe! Glücklicherweise kennen Sie die wissenschaftliche Veröffentlichung schon im Detail und können sofort helfen.

- 1. Erläutern Sie die wissenschaftliche Fragestellung der wissenschaftlichen Veröffentlichung anhand des OCAR Prinzips nach Schimel (2012)² (4 Punkte)
- 2. Nennen Sie die untersuchten Endpunkte in der wissenschaftlichen Veröffentlichung! Wie lautet der primäre Endpunkt? (2 Punkte)
- 3. Erstellen Sie das statistische Modell in der in Rüblichen Schreibweise! (2 Punkte)
- 4. Nennen Sie eine Auswahl an bedeutenden statistischen Maßzahlen in der wissenschaftlichen Veröffentlichung! (1 Punkt)
- 5. Interpretieren Sie die Hauptaussage der wissenschaftlichen Veröffentlichung hinsichtlich der Signifkanz für den primären Endpunkt! (2 Punkte)
- 6. Interpretieren Sie die Hauptaussage der wissenschaftlichen Veröffentlichung hinsichtlich der Effektstärke für den primären Endpunkt! (2 Punkte)
- 7. Diskutieren Sie die ökonomische Relevanz der Hauptaussage der wissenschaftlichen Veröffentlichung im Bezug auf Signifikanz und Effektstärke für den primären Endpunkt! (1 Punkt)
- 8. Skizzieren Sie für den primären Endpunkt den sich ergebenden Datensatz in R für eine ausgewählte Abbildung! (2 Punkte)
- 9. Skizzieren Sie einen möglichen Versuchsplan für den primären Endpunkt! (2 Punkte)
- 10. Schätzen Sie die benötigte Fallzahl für ein zukünftiges Experiment anhand der Ergebnisse in der wisenschaftlichen Veröffentlichung für den primären Endpunkt! (2 Punkte)

²Schimel, J. (2012). Writing science: how to write papers that get cited and proposals that get funded. OUP USA.

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

Vor dem Start der eigenen Arbeit möchte sein Betreuer, dass Steffen einmal die wissenschaftlichen Daten data4 sinnvoll zusammenfasst. Dann würde die eigene Arbeit auch leichter von der Hand gehen und Steffen hätte dann schon eine Vorlage um die eigenen erhobenen Daten in eine Tabelle eintragen zu können. 'Das ist jetzt aber umfangreicher als gedacht!', schnauft er und runzelt die Stirn als er in seinen Laptop starrt.

Leider kennt sich Steffen mit der Analyse eines wissenschaftlichen Datensatzes überhaupt nicht aus. Deshalb braucht er bei der Auswertung Ihre Hilfe! Glücklicherweise kennen Sie den wissenschaftlichen Datensatz aus Ihren eigenen Analysen schon im Detail und können sofort helfen.

- 1. Formulieren Sie die wissenschaftliche Fragestellung des Datensatzes in Form einer PowerPoint Folie! (2 Punkte)
- 2. Nennen Sie zwei Besonderheiten des Datensatzes! Begründen Sie Ihre Antwort! (2 Punkte)
- 3. Nennen Sie die untersuchten Endpunkte in dem Datensatz! Wie lautet der primäre Endpunkt für die Auswertung? (2 Punkte)
- 4. Skizzieren Sie die großen Analysebereiche der Statistik! Beschriften Sie die Abbildungen! (2 Punkte)
- 5. In welchen der großen Analysebereiche der Statistik fällt die Auswertung des primären Endpunktes? Begründen Sie Ihre Antwort! (2 Punkte)
- 6. Skizzieren Sie eine ikonische Abbildung für den primären Endpunkt im Kontext der wissenschaftlichen Fragestellung! (2 Punkte)
- 7. Erstellen Sie das statistische Modell in der in Rüblichen Schreibweise! (2 Punkte)
- 8. Skizzieren Sie die Datenanalyse hinsichtlich der Signifkanz für den primären Endpunkt! (2 Punkte)
- 9. Skizzieren Sie die Berechnung der Effektstärke für den primären Endpunkt! (2 Punkte)
- 10. Skizzieren Sie einen möglichen Versuchsplan für den primären Endpunkt! (2 Punkte)

Teil XI.

Mathematik

107. Aufgabe (10 Punkte)

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

Herodot – der Schimmel aus Ivenack Während der Besetzung Mecklenburgs durch die Franzosen kamen Napoleon die Geschichten des berühmten Apfelschimmels Herodot aus Ivenack zu Gehör. Herodot lief zwar niemals Rennen, war aber eines der berühmtesten Pferde dieser Zeit. Napoleon selbst gab den Auftrag, diesen Schimmel durch die Armee nach Frankreich zu bringen. Der Legende nach sollen Arbeiter den Schimmel im hohlen Stamm einer 1000-jährigen Eiche aus Ivenack vor den Franzosen versteckt haben. Doch Herodot verriet sein Versteck durch lautes Wiehern, woraufhin die französische Armee den Schimmel beschlagnahmte und nach Frankreich führte³.

Forschungsfrage: "Konnten die Ivenacker den Apfelschimmel Herodot vor dem Zugriff von Napoleon in der 1000-jährigen Eiche verstecken?"

Gehen Sie von einem radialen Wachstum der 1000-jährigen Eiche von 1.1mm pro Jahr aus. Es ist bekannt, dass die Eiche im Jahr 2022 einen Umfang von 14m in Brusthöhe hatte.

- 1. Wie groß war der Durchmesser in *m* der Eiche im Jahr 1820 als Herodot in der Eiche versteckt werden sollte? **(2 Punkte)**
- Skizzieren Sie in einer Abbildung einen linearen Zusammenhang und einen exponentiellen Zusammenhang für das Wachstum der 1000-jährigen Eiche. Erklären Sie die Auswirkungen der Entscheidung für linear oder exponentiell auf Ihre Berechnungen! (2 Punkte)

Herodot hatte eine Schulterhöhe von 185cm, eine Breite von 75cm sowie eine Länge von 220cm.

3. Berechnen Sie das effektive Volumen von Herodot in m^3 , welches Herodot in der 1000-jährigen Eiche einnehmen würde! (2 Punkte)

Es wurde berichtet, dass sich Herodot in der 1000-jährigen Eiche *bequem* um die eigene Achse drehen konnte.

- 4. Berechnen Sie die Dicke der Eichenwand in *cm*! Verdeutlichen Sie Ihre Berechnungen an einer aussagekräftigen Skizze für Pferd und Eiche! **(2 Punkte)**
- 5. Unter einer Dicke der Eichenwand von 10*cm* bricht die Eiche zusammen. Beantworten Sie die Forschungsfrage! Begründen Sie Ihre Antwort! (2 Punkte)

³Die Quelle der Inspiration für die Aufgabe war eine Fahrt an die Ostsee und folgender Artikel: Entdecke das erste Nationale Naturmonument Deutschlands - Ivenacker Eichen und Hutewald

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

Von Töpfen auf Tischen In einem Experiment wollen Sie die Wuchshöhe von 180 Sonnenblumen bestimmen. Bevor Sie überhaupt mit dem Experiment beginnen können, gibt es aber ein paar Abschätzungen über die Kosten und den Aufwand zu treffen. Zum einen müssen Sie die Sonnenblumen einpflanzen und müssen dafür Substrat bestellen. Zum anderen müssen Sie die Sonnenblumen auch bewegen und in ein Gewächshaus platzieren. Die Töpfe für die Keimung haben einen Durchmesser von 10cm und eine Höhe von 10cm. Der Kubikmeterpreis für Torf liegt bei 310 EUR.

- 1. Skizzieren Sie den Versuchsplan auf zwei Tischen im Gewächshaus! (2 Punkte)
- 2. Berechnen Sie die benötigte Anzahl an Pflanztöpfen, wenn Sie Randpflanzen mit berücksichtigen wollen! (1 Punkt)
- 3. Welche Tischfläche in m^2 gegeben der Anzahl an Pflanztöpfen inklusive Randpflanzen benötigen Sie im Gewächshaus am Anfang der Keimungsphase? (3 Punkte)
- 4. Berechnen Sie die benötigte Menge an Torf in Liter *l*, die Sie für das Befüllen der Pflanztöpfe benötigen! Gehen Sie von *einem Zylinder* für die Pflanztöpfe aus! **(3 Punkte)**
- 5. Berechnen Sie die Kosten in EUR für Ihre Torfbestellung! (1 Punkt)

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

Solar- & Biogasanlagen Um die Energiekosten Ihres Betriebes zu senken, wollen Sie eine Solaranlage auf den Rinderstall montieren lassen. Sie messen Ihren Stall und finden folgende Maße wieder. Die vordere Seite des Rinderstall hat eine Höhe h_{V} von 5.5m. Die hintere Seite des Rinderstall hat eine Höhe h_{b} von 8m. Der Rinderstall hat eine Tiefe t von 12m und eine Breite b von 70m.

- 1. Skizzieren Sie den Rinderstall auf dem die Solaranlage montiert werden soll! Ergänzen Sie die Angaben für die Höhen h_V , h_b , die Tiefe t und die Breite b des Stalls! **(2 Punkte)**
- 2. Berechnen Sie die Fläche der schrägen, neuen Solaranlage auf dem Rinderstall! (3 Punkte)

Ebenfalls planen Sie eine neue Biogasanlage für Ihren Betrieb. Der neue Methantank hat einen Radius r von 1m. Leider gibt es ein paar bauliche Beschränkungen auf dem Grundstück. Ihr Fundament des zylindrischen Methantanks kann nur ein Gewicht von maximal 14t aushalten bevor der Tank wegbricht. Sie rechnen eine Sicherheitstoleranz von 25% ein beinhaltend das Gewicht des Methantanks. In flüssiger Form hat Methan bei -80°C eine Dichte von $240kg/m^3$. Bei -100°C hat Methan eine Dichte von $290kg/m^3$. Sie betrieben Ihre Anlage bei -90°C.

- 3. Extrapolieren Sie die effektive Dichte des Methans in Ihrem Methantank! Welche Annahme haben Sie getroffen? (1 Punkt)
- 4. Berechnen Sie wie viel Kubikmeter m^3 Sie in den Methantank füllen können, bevor das Fundament nachgibt! (2 Punkte)
- 5. Berechnen Sie die maximale Höhe h_{max} in m für den gefüllten Methantank mit dem Radius r, bevor das Fundament wegbricht! (2 **Punkte**)

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

Stichworte: Riesenfaultier • Evolution der Avocado • Bluetooth • Blauzahn • Colonia Dignidad • ODESSA • Rattenlinie • Adolf Eichmann

Aligatorenbirnen und Blaubeeren "Sind Sie ein Riesenfautier oder warum kaufen Sie so viele Aligatorenbirnen?", spricht es hinter Ihnen. Irritiert drehen Sie sich um und blicken in das puderrote Gesicht von einem Studenten im Karohemd. "Wieso?", entfährt es Ihnen und Sie bereuen sogleich die Frage. Sofort werden Sie zu einem Whiteboard voller roter Schnüre geschliffen und müssen folgenden mathematischen untermauerten Argumenten im Aldi über sich ergehen lassen. Da kommen Sie nicht mehr raus, also können Sie auch gleich mitmachen. Das Problem liegt in Chile⁴. Tja, die Deutschen und Südamerika.

Zuerst werden Ihre Fähigkeiten getestet, der Mathematik folgen zu können. Oder berechnen Sie gerade den Einkauf von einem Studenten im Karohemd?

- 1. Wenn 7 Blaubeerschalen 11.13 Euro kosten, wie viel kosten 12 Schalen? (2 Punkte)
- 2. Wenn Sie die 12 Blaubeerschalen gekauft haben, wie viele Aligatorbirnen zu je 2.89 EUR können Sie sich dann noch für 200 EUR leisten? (1 Punkt)

Das Whiteboard beinhaltet folgende Liste mit Informationen zum Wasserverbrauch bei der Produktion von Gemüse aus Chile. Seltsam, was man so alles in einem Aldi über Gemüse erfährt.

- Ein Kilo Strauchtomaten benötigt 1701 Wasser. Eine Strauchtomate wiegt 100 115g.
- Ein Kilo Salat benötigt 100l Wasser. Ein Salatkopf wiegt 300 510g.
- Ein Kilo Avocado benötigt 1050l Wasser. Eine Avocado wiegt 130 410g.
- Ein Kilo Blaubeeren benötigt 880l Wasser. Eine Blaubeere wiegt 3 3.6g.
- 3. Berechnen Sie den Wasserverbrauch für die Produktion für jeweils eine Strauchtomate, einem Salat, einer Avocado und einer Blaubeeren. Stellen Sie das Ergebnis als Tabelle dar! (3 Punkte)

Chile exportiert im großem Ausmaß Blaubeeren und Avocados. In dem Exportjahr 2024 blieben die Erträge von Blaubeeren mit 8×10^4 t in dem prognostizierten Rahmen. Die Menge steigerte sich um 6.8%. Die Exporte für Avocados stiegen in dem gleichen Zeitraum um 21.2% auf 2.1×10^5 t.

4. Wie viele Kubikmeter Wasser hat Chile in dem Exportjahr 2023 exportiert? (2 Punkte)

Chile ist eines der wenigen Länder der Welt, die ihr Wasser komplett privatisiert haben. Derzeit sind nur ein Prozent des Wassers des Landes für den häuslichen Verbrauch vorgesehen. In den Dörfern der Anbauregionen versorgen Tankwagen die Bevölkerung jede Woche mit Wasser, es gibt etwa 61 Liter Wasser pro Kopf für den täglichen Bedarf. In *Deutschland* liegt der Verbrauch bei 8 - 17 Liter pro Spülmaschinenlauf und 9 - 14 Liter pro Spülgang.

5. Mit der rationierten Wassermenge aus Chiles Anbaugebieten können Sie in *Deutschland* wie oft Ihren Bedarf stillen? (1 Punkt)

Das alles hätten Sie nicht von einem Studenten im Karohemd erwartet. Ganz schön viele Informationen wurden da zusammengetragen.

6. Nennen Sie eine *Daten*quelle im Internet, wo Sie mehr Informationen zu landwirtschaftlichen Daten oder klimatischen, wirtschaftlichen und gesellschaftlichen Daten erhalten! **(1 Punkt)**

⁴Die Quelle der Inspiration für die Aufgabe waren folgende Reportagen: "'Bis zum letzten Tropfen"' in AMNESTY – Magazin der Menschenrechte vom August 2021 und "'Wasserknappheit in Chile: Eine Folge der Privatisierung?"' in Die Welternährung dem Fachjournal der Welthungerhilfe vom April 2022.

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

Stichworte: Kardaschow-Skala • Dyson-Sphäre • Hohlerde • Entropie • Proton $r_P = 1.7 \times 10e - 15$ • Wasserstoff $r_H = 5.3 \times 10e - 11$

Die Dampfnudelerde "Was für einen Unsinn!", rufen Sie. Jetzt haben Sie kostbaren Schlaf prokrastiniert um einem Ernährungswissenschaftler auf YouTube über die Erde als Dampfnudel zu lauschen. Irgendwie passt es dann doch mit der Analogie. Übermüdet müssen Sie darüber nachdenken, warum vor 66 Millionen Jahren die Dinosaurier - so groß sie auch waren - nicht von der Schwerkraft zu Boden gerissen wurden. Hat der Dampfplauderer etwa recht und war die Schwerkraft vor Millionen von Jahren eine andere? Sind deshalb alle Lebewesen auf der Erde *heutzutage* so viel kleiner, weil die Schwerkraft größer ist als damals? War die Erde kleiner und hatte weniger Masse? Oder ist es nur ein Rechenfehler wie bei der Theorie der Hohlerde von Edmond Halley aus dem 17.–18. Jahrhundert? Müde reiben Sie sich die Augen. So wird es nichts mehr mit dem Schlafen, dann können Sie auch mal etwas rechnen⁵.

Betrachten wir die Schwerkraft oder Gewichtskraft, die auf Lebewesen damals und heute gewirkt haben soll. Nehmen Sie für die Fallbeschleunigung g der Erde heutzutage einen Wert von 9.87m/s^2 an. Im Weiteren hat die Erde einen ungefähren Durchmesser von $1.1956 \times 10^4 \text{km}$ und eine mittlere Dichte ρ von 5.21g/cm^3 . Das Gewicht von einem heute lebenden afrikanischen Elefanten liegt bei 5t bis 7t und das Gewicht von einem Tyrannosaurus rex (T. rex) bei 4.5 t bis 8t.

- 1. Welchen Durchmesser müsste die Erde vor 66 Millionen Jahren gehabt haben, wenn Dinosaurier und Elefanten die gleiche Gewichtskraft $\overrightarrow{F_G}$ damals und heute erfahren hätten? Beantworten Sie die Frage anhand der folgenden Teilaufgaben!
 - a) Berechnen Sie die Fallbeschleunigung von vor 66 Millionen Jahren unter der obigen Annahme gleich wirkender Gewichtskraft $\overrightarrow{F_G}$ auf Elefant und Dinosaurier! (1 Punkt)
 - b) Berechnen Sie Masse der heutigen Erde! (2 Punkte)
 - c) Schließen Sie über die Masse auf den Durchmesser der Erde vor 66 Millionen Jahren! (2 Punkte)
- 2. Beantworten Sie die Eingangsfrage mit 1-2 Antwortsätzen! (1 Punkt)

Die Distanz zwischen Sonne und Erde entspricht 1.03 astronomische Einheiten (AE). Die Einheit 1 AE wird mit 1.48×10^8 km angegeben. Der *massebehaftete* Sonnenwind besteht aus 87% Wasserstoffkernen mit einer molaren Masse von 1.05g/mol, 9% Heliumkernen mit 4.01g/mol sowie 4% weiteren Atomkernen mit 152.01g/mol. Die Teilchendichte bei Eintritt in die Erdatmosphäre liegt zwischen 0.4 bis 100 Teilchen cm $^{-3}$ pro Sekunde mit einer mittleren Teilchendichte von 8cm $^{-3}$ pro Sekunde.

Lösen Sie den folgenden Aufgabenteil mit einer aussagekräftigen Skizze!

- 4. Berechnen Sie die Anzahl an massebehafteten Teilchen des Sonnenwindes, die die gesamte Erde pro Sekunde treffen! (2 Punkte)
- 5. Berechnen Sie die Anzahl an massebehafteten Teilchen des Sonnenwindes, die die Sonne pro Sekunde in alle Richtungen aussendet! (2 Punkte)
- 6. Berechnen Sie die Masse, die die Erde pro Jahr durch die *massebehafteten* Teilchen des Sonnenwind zunimmt! (2 Punkte)

⁵Die Quelle der Inspiration für die Aufgabe war folgender Artikel: "Skeptische Anmerkungen — Die Erde als Dampfnudel" in Der Humanistische Pressedienst

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

Entschuldigung, ist das Ihre Feder in meinem Auge? So hört man häufiger höfliche Gänse in Mastställen sagen. Das ist natürlich etwas ungünstig, den dann kommt es zu Picken und Kannibalismus. Denn wenn der Nachbar nervt, dann muss zu Maßnahmen gegriffen werden. Kennt jeder aus einer mittelmäßigen Wohngemeinschaft. Das wollen wir aber als vorsorgliche Gänse-Halter:innen nicht⁶. Betrachten wir also einmal das Platzangebot (eng. *space allowance*, abk. *SA*) der Gänse für vier Tätigkeiten und versuchen die notwendige Fläche zu optimieren. Wie immer gibt es dafür eine mathematische Formel:

$$SA = \sum_{i=1}^{n} (A_i \times PB_i)$$
 $A_i = \pi \times (r_i + R_i)^2$

mit

- SA dem benötigten Platzangebot aller aufsummierten Verhalten i.
- Ai dem benötigten Platz für ein Verhalten i.
- PBi dem Anteil des Auftretens eines Verhaltens i.
- r_i dem Radius Gans plus dem benötigten Radius für das Verhalten i.
- Ri dem notwendigen Abstand zu den Nachbarn für das Verhalten i.
- i dem Verhalten: (1) walking, (2) wing/leg stretching, (3) preening und (4) standing.

In der folgenden Tabelle 1 sind die Werte für r_i , R_i und PB_i für ein spezifisches Verhalten i aus drei wissenschaftlichen Veröffentlichungen dargestellt.

	Aldridge et al. (2021)	Baxter et al. (2022)	Jabcobs et al. (2019)
walking	39cm; 17cm; 3.5%	29cm; 25cm; 12.1%	47cm; 29cm; 3.5%
wing/leg stretching	32cm; 20cm; 4.1%	32cm; 19cm; 2.1%	31cm; 29cm; 1.8%
preening	38cm; 20cm; 4.1%	38cm; 27cm; 6.3%	35cm; 23cm; 3.6%
standing	37cm; 19cm; 5.1%	35cm; 30cm; 3.2%	37cm; 30cm; 3.2%

- 1. Erstellen Sie eine zusammenfassende Tabelle mit den mittleren Werten für *r*, *R* und *PB* aus der obigen Tabelle 1 für die jeweiligen Verhalten! (3 Punkte)
- 2. Ergänzen Sie eine Spalte mit dem benötigten Platz A für das jeweilige Verhalten, welches sich aus den mittleren Werten ergibt! (1 Punkt)
- 3. Berechnen Sie das benötigte Platzangebot SA für alle betrachteten Verhalten! (1 Punkt)
- 4. Skizzieren Sie die Werte r_i , R_i und A_i für zwei nebeneinander agierende Gänse für ein Verhalten i. Nutzen Sie hierfür vereinfachte geometrische Formen! (2 **Punkte**)
- 5. Sie entnehmen der Literatur folgende Aussage zur Verteilung der Gänse in der Fläche A: "Assuming, that the animals will optimally and equally distribute in an area A, we observe a small part, which is not covered. This area is called ω and is calculated with $\omega = \frac{A}{0.9069}$." Veranschaulichen Sie die Fläche ω in einer aussagekräftigen Abbildung! (1 Punkt)
- 6. Ein Tier braucht Platz für sich selbst. Berechnen Sie nun die Körperfläche α , die ein Tier einnimmt. Welche Annahmen haben Sie für die Berechnung der Körperfläche getroffen? (2 Punkte)

⁶Die Quelle der Inspiration für die Aufgabe war der folgende wissenschaftliche Artikel: EFSA Panel on Animal Health and Welfare, et al. (2023) Welfare of broilers on farm. EFSA Journal 21.2.

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

Nelken von den Molukken In der Ausstellung "Europa und das Meer" im Deutschen Historischen Museum in Berlin gab es folgendes Zitat über die Probleme der frühen Hochseeschifffahrt.

»Ohne ausreichende Zufuhr von Vitamin C stellen sich nach 42 Tagen die ersten Symptome ein; die ersten Toten sind nach 65 Tagen zu beklagen; nach 100 Tagen rafft die Skorbut eine ganze Schiffsbesatzung dahin«

Ferdinand Magellan stach im Jahre 1519 in See um eine Passage durch den südamerikanischen Kontinent zu finden. Zu seiner Flotte gehörten fünf Schiffe - das Flaggschiff Trinidad, die San Antonio, die Victoria, die Concepción und die Santiago - mit einer Besatzung von insgesamt 237 Mann.

- 1. Stellen Sie den Verlauf der Anzahl an Matrosen auf einem Schiff der Flotte in der Form einer Überlebenszeitkurve dar! Beschriften Sie die Achsen entsprechend! (2 Punkte)
- 2. Was ist die Besonderheit der Überlebenszeitkurve? Begründen Sie Ihre Antwort! (2 Punkte)
- 3. Schätzen Sie die Überlebenswahrscheinlichkeit nach 100 Tagen aus Ihrer Abbildung ab! (1 Punkt)

Der Chronist an Bord der Trinidad, Antonio Pigafetta, schrieb in seinem Bericht "[...] Um nicht Hungers zu sterben, aßen wir das Leder, mit dem die große Rahe zum Schutz der Taue umwunden war." Insbesondere die Mannschaft der Concepción erlitt große Verluste durch die Skrobut bei der Überquerung des Pazifiks, da durch Erkundungsfahrten weniger Zeit blieb, um wilden Sellerie aufzunehmen. Wilder Sellerie enthält $6000\mu g/10mg$ Vitamin C. Der Bedarf liegt bei 115mg pro Tag für Männer.

- 3. Berechnen Sie die notwendige Menge in kg an aufzunehmenden wilden Sellerie auf die Concepción für die ununterbrochene Fahrt von drei Monate und 22 Tage über den Pazifik! (3 Punkte)
- 4. Skizzieren Sie die Überlebenszeitkurve für die Concepción im Vergleich zu der Überlebenszeitkurve der Trinidad! Beschriften Sie die Achsen! (2 Punkte)

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

Event Horizon – Am Rande des Universums Die Sonne hat eine aktuelle, angenommene Masse von 2×10^{27} kg. Wenn die Sonne nun am Ende ihrer Lebenszeit zu einem schwarzen Loch mit dem Radius von 5000m kollabiert, wird die Sonne 35% der aktuellen Masse verloren haben. Ein Lichtteilchen mit der Masse m_f und der Fluchtgeschwindigkeit v_f will dem schwarzen Loch entkommen. Sie haben folgende Formeln für die kinetische Energie des Lichtteilchens E_{kin} und der Graviationsenergie des schwarzen Lochs E_{grav} gegeben⁷.

$$E_{kin} = \frac{1}{2} m_f v_f^2 \qquad E_{grav} = \frac{G m_s m_f}{r_s}$$

mit

- ullet m_f , gleich der Masse [kg] des fliehenden Objektes
- m_s, gleich der Masse [kg] des stationären Objekts
- r_s, gleich dem Radius [m] des stationären Objekts
- G, gleich der Gravitationskonstante mit $6.674 \cdot 10^{-11} m^3 (kg \cdot s^2)^{-1}$

Im Folgenden wollen wir uns mit der Frage beschäftigen, ob das Lichtteilchen der Gravitation des schwarzen Lochs entkommen kann.

- 1. Geben Sie die Formel für die Fluchtgeschwindigkeit v_f an! (1 Punkt)
- 2. Überprüfen Sie Ihre umgestellte Formel nach v_f anhand der Einheiten! (1 Punkt)
- 3. Berechnen Sie die notwendige Fluchtgeschwindigkeit v_f des Lichtteilchens mit den angegebenen Informationen! (2 Punkte)
- 4. Gehen Sie von einer Lichtgeschwindigkeit von $2.9 \times 10^8 m/s$ aus. Kann das Lichtteilchen der Gravitation des schwarzen Lochs entkommen? Begründen Sie Ihre Antwort! (2 Punkte)
- 5. Stellen Sie den Zusammenhang zwischen dem sich verringernden Radius r des schwarzen Lochs bei gleichbleibender Masse m_s und der notwendigen Fluchtgeschwindigkeit v_f in einer Abbildung dar! (2 Punkte)
- 6. Ein Flugzeug und ein Handtuch stürzen aus großer und gleicher Höhe in ein schwarzes Loch. Welches der beiden Objekte überschreitet zuerst den Ereignishorizont des schwarzes Loches? Begründen Sie Ihre Antwort mathematisch! (2 Punkte)

⁷Die Quelle der Inspiration für die Aufgabe war ein Montagnachtfilm: Event Horizon – Am Rande des Universums

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

Das Fermi Paradoxon Der Kernphysiker Enrico Fermi diskutierte 1950 auf dem Weg zum Mittagessen im Los Alamos National Laboratory mit seinen Kollegen angebliche UFO-Sichtungen und fragte schließlich: "Where is everybody?". Warum seien weder Raumschiffe anderer Weltraumbewohner noch andere Spuren extraterrestrischer Technik zu beobachten? Wie lange würde eine außerirdische Zivilisation benötigen um die gesamte Milchstraße zu besuchen, wenn das maximale Reisetempo die Geschwindigkeit der Voyager 1 Sonde wäre?⁸

Wir treffen folgende Annahmen. Eine außerirdische Zivilisation schickt vier Voyager 1 ähnliche Sonden mit der Geschwindigkeit von $6.3587 \times 10^4 km/h$ los um sich auf den erreichten Planeten selbst zu replizieren. Nach 750 Jahren ist die Replikation abgeschlossen und wiederum vier Sonden werden ausgesendet. Gehen Sie von 7.81 Lichtjahren als mittlerer Abstand der Sterne in der Milchstraße aus. Es gibt 2×10^{11} Sterne in der Milchstraße. Nehmen Sie eine Lichtgeschwindigkeit von $2.9 \times 10^8 m/s$ an.

- Skizzieren Sie in einer Abbildung die ersten drei Schritte der Vervielfältigung der Sonden in der Galaxie! Beschriften Sie die Abbildung mit der Dauer und der Anzahl an Sonden für jeden Schritt der Vervielfältigung! (4 Punkte)
- Berechnen Sie die theoretische Anzahl an Vervielfältigungsschritten die benötigt werden um mit einem einzigen Vervielfältigungsschritt die gesamten Sterne der Milchstraße mit Sonden zu besuchen! (2 Punkte)
- 3. Berechnen Sie die Dauer, die eine außerirdische Zivilisation annährungsweise benötigt um die gesamten Sterne der Milchstraße mit Sonden zu besuchen! (2 Punkte)
- 4. Bei einem vermutetet Alter der Erde von 4.1×10^9 Jahren, wie oft war dann eine Sonde einer außerirdischen Zivilisation schon zu Besuch? Korrigieren Sie Ihre Antwort mit dem Wissen, dass sich die Kontinentalplatten einmal alle 10^8 Jahre vollständig im Erdinneren umgewandelt haben! (2 Punkte)

⁸Die Quelle der Inspiration für die Aufgabe war folgender Wikipediaeintrag: Fermi-Paradoxon

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

Pyramiden bauen Es stehen die oldenburgischen Pyramidentage an und Sie sind auf abenteuerlichen Wegen für den Bau der Pyramiden zuständig. Zu allem Überfluss handelt es sich auch noch eine *Reenactment* Veranstaltung. Thema der diesjährigen Pyramidentage sind die Pyramiden von Meroe, die den Königen und Königinnen des historischen Reiches von Kusch in Nubien, dem heutigen Sudan, als Grabstätten dienten. Die Pyramiden in Meroe fallen durch ihren steilen Winkel von 70 Grad im Vergleich zu den ägyptischen Pyramiden mit 51 Grad auf. Die durchschnittliche Seitenlänge der Grundfläche einer Pyramide beträgt 32 Königsellen. Eine Königselle misst 52.6cm.

Lösen Sie diese Aufgabe mit Hilfe einer Skizze der Pyramide. Bezeichnen Sie Seiten und die Winkel der Pyramide entsprechend!

- 1. Bei der Königspyramide von Meroe soll eine Seitenlänge der Grundfläche 32 Königsellen lang sein. Welche Höhe der Königspyramide in *m* ergibt sich? **(1 Punkt)**
- 2. Die Außenflächen der Pyramide soll begrünt werden. Für die Bepflanzung muss eine 3cm dicke Torfschicht auf die Pyramide aufgebracht werden. Berechnen Sie die ungefähre Menge an benötigten Torf in m^3 ! (2 Punkte)

Wie in jedem guten *Reenactment* gibt es viel Oberschicht, aber nur 3 Sklaven, die Ihnen bei dem Befüllen der Pyramide mit Schutt zu Seite stehen. Leider haben Ihre Sklaven zu allem Überfluss auch noch chronische Schulterschmerzen entwickelt, als sie von der anstehenden Aufgabe erfahren haben. Gehen Sie daher von einer Effizienz der Sklaven von 75% aus. In eine Schubkarre passen 95 Liter.

- 3. Wie oft müssen Ihre maladen Sklaven die Rampe mit der Schubkarre zur Spitze der Pyramide hochfahren um die Pyramide mit Schutt zu füllen? (1 Punkt)
- 4. Berechnen Sie die Länge der Rampe zur Spitze der Pyramide mit einem Anstellwinkel von 10°! (2 Punkte)
- 5. Wie weit reicht Ihre Rampe vom Fuß der Pyramide in die oldenburgische Landschaft? (2 Punkte)

Bei der Besichtigung der Pyramide teilt Ihnen der leicht übergewichtige Pharao (Nebenberuf *Versicherungsverteter*) mit, das die Pyramide zu steil sei und somit nicht in die oldenburgische Landschaft passen würde. Sie müssen nochmal ran.

6. Die Grundfläche der Pyramide ändert sich nicht. Berechnen Sie die Änderung der Höhe in Königsellen, wenn sich der Anstellwinkel der Pyramide um 7° ändert! (2 Punkte)

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

Geocaching – Von Satelliten und Plastikdosen Es ist Wochenende und das Wetter ist *sweet*. Sie schwingen sich auf Ihr Cachermobil um mit 19km/h, geleitet von modernster Satellietentechnologie und einem Supercompter aus dem Jahr 2000 in Ihren Händen, Plastikdosen in der Natur und an sehenswerten Orten zu finden. Sie wollen diesmal endlich die aufwärts Schwierigkeitschallenge durchführen. Die Reihenfolge der Caches nach Schwierigkeitswertung gibt daher die von Ihnen abzufahrenden Orte vor. Die Terrainund Schwierigkeitswertungen laufen von 1 (leichteste Wertung) bis 5 (schwierigste Wertung) in 0.5 Schritten. Folgende Informationen zu den Orten und den entsprechenden Caches stehen Ihnen für Ihre Planung der Route zu Verfügung⁹.

Ort	Cache	Wertung (S T G)
Α	GCLVWLB	4.0 2.5 Normal
В	GCTW6KM	5.0 1.5 Mikro
С	GC3HE0W	1.5 5.0 Klein
D	GCV2L5T	2.5 4.0 Normal
Е	GCPL5GQ	3.5 2.0 Mikro

Im Weiteren sind Ihnen folgende Informationen zu den Entfernungen der Orte zugänglich. Der Entfernungsvektor \overrightarrow{AB} ist 6km. Im Weiteren ist Ihnen der Entfernungsvektor \overrightarrow{CB} mit 7.5km bekannt. Der Entfernungsvektor \overrightarrow{BE} ist das 1.5-fache des Entfernungsvektor \overrightarrow{CB} . Wenn Sie von dem Ort A den Ort C anpeilen, so liegt der Ort B ungefähr 25° südlich. Wenn Sie von dem Ort C den Ort B anpeilen, so liegt der Ort D ungefähr 60° östlich. Vom Ort B betrachtet, bilden die Orte C und D einen rechten Winkel am Ort B. Der Ort B liegt auf gerader Linie zwischen den Orten C und E. Somit liegt der Ort E südlich von B. Die Strecke zwischen A und E ist nicht passierbar. Sie starten an dem Ort C Ihre Cachertour.

- 1. Lösen Sie diese Aufgabe mit Hilfe einer aussagekräftigen Skizze der Orte und Caches. Bezeichnen Sie die Strecken und die Winkel Ihrer Skizze entsprechend! (2 Punkte)
- Welche Strecke in km legen Sie bei der Bewältigung der aufwärts Schwierigkeitschallenge zurück? (5 Punkte)
- 3. Gehen Sie von einer zusätzlichen Suchzeit in Stunden für die Caches an den jeweiligen Orten zur reinen Reisezeit mit Ihrem Cachermobil aus. Die Suchzeit in Stunden für jeden einzelnen Cache wird durch die Funktion

$$Suchzeit = 0.15 + 0.25 \cdot Schwierigkeit$$

beschreiben. Wie lange in Stunden benötigen Sie um die aufwärts Schwierigkeitschallenge zu erfüllen? (3 Punkte)

4. An der höchsten Schwierigkeit müssen Sie angeln. Ihre Angel ist ausgefahren 5m lang. Erreichen Sie einen Cache in der Höhe von 6.8m? Berechnen Sie dazu Ihre maximale mögliche Angelhöhe! Welche Annahmen mussten Sie treffen um die Aufgabe zu lösen? (2 Punkte)

⁹Die Quelle der Inspiration für die Aufgabe war folgende Tätigkeit: Geocaching – Mach mit bei der weltweit größten Schatzsuche.

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

Stichworte: Brot aus Luft • Walöl • Haber-Bosch-Verfahren • 1. Weltkrieg • 40% N im menschlichen Körper • Positivist

Die atmende Wand und Brot aus Luft Als Kellerkind vom Dorf wollen das Ausmaß der Radonbelastung in ihrem Kellerzimmer bestimmen und lüften daher nicht. Spart dann auch Energie und lüften wird sowieso überschätzt. Während einer Messperiode von 7:00 Uhr bis 17:00 bestimmen Sie dreimal automatisch die Radonbelastung in Ihrem Kellerraum in Bq/m^3 . Es ergibt sich folgende Abbildung¹⁰.

1. Wie lange dauert es in Stunden bis Sie eine kritische Belastung von $380Bq/m^3$ in Ihrem ungelüfteten Kellerraum erreicht haben? (2 Punkte)

Radon zerfällt mit einer Halbwertszeit von 4.1d zu Polonium. Polonium wiederum zerfällt mit einer Halbwertszeit von 135d zu Blei. Nur Radon und Polonium tragen zur radioaktiven Strahlenbelastung bei.

2. Wie lange dauert es in Stunden bis Ihre kritische Radonbelastung von $380Bq/m^3$ auf unter $90Bq/m^3$ gefallen ist? (4 **Punkte**)

Folgende Tabelle enthält die Informationen zur Zusammensetzung der normalen Umgebungsluft.

	Vol-%	M [g/mol]	ppm
Stickstoff	77.1	28.1	
Sauerstoff	20.45	16.5	
Kohlenstoffdioxid	0.045	12.1	

3. Rechnen Sie die Volumenprozente (Vol-%) der Umgebungsluft in die entsprechenden ppm-Werte um und ergänzen Sie die berechneten ppm-Werte in die Tabelle! (1 Punkt)

Während Sie Ihr etwas pappiges Toastbrot mampfen kommt Ihnen die Dokumentation über Brot aus Luft in den Sinn. Sie denken darüber ein wenig nach. Für die Umwandlung von Stickstoff N_2 mit Wasserstoff H_2 zu Ammoniak NH_3 gilt folgende Reaktionsgleichung¹¹:

$$N_2 + 3H_2 \rightarrow 2NH_3$$

Ein Mol eines beliebigen Gases hat bei normalen Umweltbedingungen ein Volumen von 22.4 Liter.

- 4. Welche Masse an Ammoniak in Kilogramm kg können Sie aus einem Kubikmeter m^3 Luft unter normalen Umweltbedingungen gewinnen? (2 Punkte)
- 5. Wieviel Ammoniak in mol erhalten Sie aus einem Kubikmeter Luft? (1 Punkt)

 $^{^{10}\}mathrm{Die}$ Quelle der Inspiration für die Aufgabe war folgender Artikel: Atmende Wand

¹¹Die Quelle der Inspiration für die Aufgabe war folgender Artikel: Haber-Bosch-Verfahren – Brot aus Luft

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

Armee der Finsternis Ihr Studentenjob war nach Ladenschluss bei IKEA die Regale einzuräumen. Dabei ist Ihnen in der Auslage der Sonderangebote das Necronomicon¹² in die Hände gefallen. Nun sind Sie eine Magierin der Zeichen geworden! Also eigentlich können Sie nur Mathe und das dämliche Necronomicon hat Sie in die Vergangenheit geschleudert... aber gut, was tut man nicht alles im Jahr 879 n. Chr. für den neuen Lehnsherren Fürsten Arthur. Sie bauen natürlich einen Schrottkugelturm um sich den Horden der Finsternis mit genug Schrott erwehren zu können! Ihnen stehen zwei mächtige magische Formeln zur Unterstützung zu Verfügung.

$$E_{kin} = \frac{1}{2} \cdot m \cdot v^2$$
 $E_{pot} = m \cdot g \cdot h$

mit

- m, gleich der Masse [kg] des Objekts
- h, gleich der Höhe [m] des ruhenden Objekts
- ν, gleich der Geschwindigkeit [m/s] des Objekts
- g, gleich der Erdbeschleunigung mit $9.81\frac{m}{s^2}$

Als erstes müssen Sie die Höhe des zu bauenden Schrottkugelturmes bestimmen. Hierfür ist wichtig zu wissen, dass sich die Bleitropfen mit einem Gewicht von 30mg zu gleichförmigen Bleitropfen bei einer Geschwindigkeit von 10m/s bilden.

1. Wie hoch müssen Sie den Schrottkugelturm bauen lassen, damit sich runde Bleikugeln durch die Fallgeschwindigkeit von 10m/s bilden? (3 Punkte)

Ihre erstellten Schrottkugeln sind leider zu groß und somit sind zu wenige Schrottkugeln in einer Ladung. Damit können Sie die Armee der Finsternis nicht aufhalten. Die Sachlage müssen Sie einmal mathematisch untersuchen.

- 2. Nennen Sie die beiden geometrischen Formen aus denen sich näherungsweise ein Tropfen zusammensetzt! Erstellen Sie eine beschriftete Skizze des Tropfens! (2 Punkte)
- 3. Sie messen eine Länge des Tropfens von 2.8mm. Die Löcher im Sieb erlauben ein Tropfendurchmesser von 2.1mm. Welchen Durchmesser in mm haben Ihre produzierten Bleikugeln? (3 Punkte)

Sie haben jetzt die 6.1×10^4 Bleikugeln zusammen. Blei hat eine Dichte von $11.34g/cm^3$.

4. Wie schwer in Kilogramm kg sind die 6.1×10^4 produzierten Bleikugeln, die Sie jetzt auf die Burgmauer transportieren müssen? (1 Punkt)

Am Ende müssen Sie noch die Produktion von dem Bleischrott im Turm optimieren.

5. Wie groß in cm^2 ist Ihr quadratisches Sieb am oberen Ende des Turms, wenn Sie pro Fall ca. 1200 Bleikugeln produzieren wollen und die Bleikugel im Fall 1.2cm Abstand haben müssen? (**1 Punkt**)

 $^{^{12}}$ Ein wirklich gefährliches Buch ist: *Du bist genug: Vom Mut, glücklich zu sein* von Fumitake Koga und Ichiro Kishimi

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

Armee der Kaninchen Leider hat es mit Ihrer Koalakuschelschule in Down Under nicht geklappt. War vielleicht auch nicht *so* die beste Idee... aber dafür haben Sie eine Neue! Oder wie es Mike Tyson zugeschrieben wird: "Ich wurde nie niedergeschlagen, ich war immer am Aufstehen!". Daher machen Sie jetzt einen Großhandel mit Kaninchenfleisch und damit dem teuersten Fleisch in Australien auf. Moment, hopsen hier nicht, seit Thomas Austin im Jahr 1859 ungefähr 32 Kaninchen entlassen hat, Millionen von Kaninchen rum? Wieso ist das Kaninchenfleisch dann so exklusiv? Dem wollen wir mal mathematisch nachgehen!¹³

Forscherinnen fand folgende Sättigungsfunktion für das jährliche Wachstum der gesamten Kaninchenpopulation im westlichen Australien.

$$f(t) = 1.2 \times 10^{10} - 1.2 \times 10^9 \cdot 2.2^{-0.15 \cdot t + 4.1}$$

- 1. Skizzieren Sie die Sättigungsfunktion annäherungsweise in einer Abbildung! (1 Punkt)
- 2. Wie viele Kaninchen können nach der Sättigungsfunktion maximal im westlichen Australien leben? Ergänzen Sie den Wert in Ihrer Abbildung! (2 Punkte)
- 3. Wie viele Millionen Kaninchen leben nach der Sättigungsfunktion nach 12 Jahren auf dem australischen Kontinent? (1 Punkt)

Um den Kaninchen Einhalt zu gebieten wurde das Myxoma Virus und das Rabbit Haemorrhagic Disease Virus (RHDV) in 16 Kaninchen ausgebracht. Da die Kaninchen keine Maßnahmen gegen die Ausbreitung vornehmen können, verläuft die Ausbreitung mit einem wöchentlichen Wachstumsfakor von 1.2 nach folgender Formel.

$$N(t) = N(0) \cdot a^t$$

3. Wie viele Wochen benötigen die Viren um theoretisch die gesamte Kaninchenpopulation nach 10 Jahren Wachstum zu durchseuchen? (1 Punkt)

Das Myxoma Virus und das RHDV töten 99.9% der Kaninchenpopulation innerhalb weniger Wochen.

4. Wie lange in Jahren dauert es bis eine Kaninchenpopulation nach einer Viruspandemie wieder auf 60% der gesättigten Kaninchenpopulation angewachsen ist? (2 Punkte)

Thomas Austin entließ die Kaninchen im äußersten Süden von Australien. Australien hat eine West-Ost-Ausdehnung von 4100km und eine Nord-Süd-Ausdehnung von knapp 3500km. Die Kaninchen breiten sich radial mit einer Geschwindigkeit von 8.8km pro Jahr aus.

5. Wie lange dauert es in Jahren bis die Kaninchen jeden Ort in Australien erreicht haben? Lösen Sie die Aufgabe unter der Verwendung einer schematischen Skizze! (2 Punkte)

Eine jährliche Impfung gegen das Myxoma Virus und das Rabbit Haemorrhagic Disease Virus (RHDV) kosten 10\$ pro Tier und der durchführende Arzt verlangt ca. 40\$ pro Tier.

6. In Ihrem Stall leben 1100 Mastkaninchen. Mit welchen jährlichen Zusatzkosten für die Impfungen der Kaninchen müssen Sie daher kalkulieren? (1 Punkt)

¹³Die Quelle der Inspiration für die Aufgabe war der folgendes YouTube Video: Incredible Stories – Why don't they eat wild rabbits in Australia? They have millions of them! The reason is surprising...

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

Lüneburger Heide. Unendliche Weiten. Wir schreiben das Jahr 2024. Dies sind die Abenteuer des Esels Fridolin und Ihnen. Grünes Gras unter Ihren Füßen und ein strammer Wind im Gesicht, egal wohin Sie schauen. Ein schmatzendes Geräusch ertönt unter Ihnen. Sie sinnieren, sollten Sie Ihre weiten Graslandschaften jetzt schon düngen? Dafür benötigen Sie die *Grünlandtemperatur!* Die Grünlandtemperatur (GLT) ist die Summe aller positiven Tagesmitteltemperaturen seit Jahresbeginn. Ab einer GLT von 200° kann mit der Stickstoffdüngung begonnen werden. Sie sehen nicht ein, Geld für einen Agrarmetrologen zu bezahlen. Also rechnen Sie mit folgenden Informationen zu Monatsmultiplikatoren des GLT-Wertes: Januar mit $0.6\times$, Februar mit $0.75\times$ und März mit $1.1\times$. Sie haben noch im letzten Jahr folgende Temperaturen gemessen.

Datum	C°
01. Jan 2023	0.4
01. Feb 2023	1.1
01. Mrz 2023	3.1
01. Apr 2023	4.3

- 1. Erstellen Sie eine Skizze aus den Informationen aus der Temperaturtabelle! (1 Punkt)
- 2. Stellen Sie die linearen Funktionen $f_1(t)$, $f_2(t)$ und $f_3(t)$ aus der obigen Temperaturtabelle auf! (1 **Punkt**)
- 3. Bestimmen Sie die Stammfunktionen $F_1(t)$, $F_2(t)$ und $F_3(t)$ für Ihre linearen Funktionen aus der obigen Temperaturtabelle! **(1 Punkt)**
- 4. Osterglocken beginnen ab einer GLT von 190°C zu blühen. An welchem Tag im 1. Quartal des Jahres 2023 war dies der Fall? *Ignorieren Sie ein eventuelles Schaltjahr in Ihrer Berechnung.* **(4 Punkte)**

Auf dem Weg zu Ihrer Pink Lady Plantage wurden Sie mit Ihrem Trecker von einer Gruppe elektrifizierter Renter abgedrängt. Der Trecker muss wieder aus dem Graben! Fridolin und die elektrifizierten Rentner ziehen an zwei, separaten Seilen. Dabei zieht Fridolin mit 230N. Die elektrifizierter Renter bringen eine Kraft von 210N auf.

Lösen Sie diese Aufgabe mit Hilfe einer aussagekräftigen Skizze der Kraftvektoren. Bezeichnen Sie die Kraftvektoren und die Winkel Ihrer Skizze entsprechend!

- 5. Im ersten Versuch legen Sie das Seil für Fridolin lotrecht über einen Ast oberhalb des Treckers. Die Rentner ziehen in einer geraden Linie über die Böschung hinweg am anderen Seil. Welche Kraft wird aufgebracht? (2 Punkte)
- 6. Im zweiten Versuch ziehen Fridolin und die Rentner mit einem 40° Winkel mit ihrem Seil an dem Trecker. Welche Kraft wird aufgebracht? (2 Punkte)
- 7. Mit welcher Beschleunigung ziehen Sie den 1.5t schweren Trecker *jeweils* aus dem Graben, wenn $F = m \cdot a$ gilt? **(1 Punkt)**

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

In der Kartonagenfabrik Wenn man sich zu spät anmeldet, dann ist die Exkursion nicht so toll. Also geht es mit Rektor Skinner und Mrs. Krabappel in die Kartonagenfabrik. Wie schon im vorherigen Semester... In der Kartonagenfabrik angekommen erfahren Sie, dass die Kartons zum Versand von Nägeln nicht hier zusammengebaut werden sondern das sich die Endfertigung in Flint, Michigan befindet. Unter anderem wird dort der berühmte *Doppelt gewellte, 6-mal-gefaltete, 0.7mm, 60-cm-Karton* durch Falzung hergestellt. Beim letzten Mal war Rektor Skinner die Stimmung zu schlecht und deshalb geht es erst nach Hause, wenn ein paar Aufgaben gelöst sind. Martin gefällt das. An dem Vorrat an Zigaretten von Mrs. Krabappel meinen Sie wenig Zuversicht zu erkennen.

Jetzt heißt es Kartons optimieren. Der nun zu optimierende, flache Karton hat eine Länge von 60cm und eine Breite von 20cm. Die Kartonagenmaschine in Flint soll dann einen quadratischen Eckenausschnitt der Länge \boldsymbol{x} falzen.

- 1. Erstellen Sie eine Skizze des Karton*blatt*rohlings! Beschriften Sie die Skizze mit den entsprechenden Längenangaben (1 Punkt)
- 2. Berechnen Sie die Falztiefe x für ein maximales Volumen des flachen Kartons! (3 Punkte)
- 3. Welches Volumen in Liter ergibt sich mit der von Ihnen berechneten Falztiefe x? (1 Punkt)
- 4. Sie wollen noch einen bündig mit dem Boden abschließenden Deckel für den Karton stanzen lassen. Wie groß ist die Fläche des Kartondeckel*blattr*ohlings in *cm*²? **(2 Punkte)**

Rektor Skinner möchte sich gerne wieder in seinem Vorgarten aufhalten und nicht die ganze Zeit von Bart mit Erdnüssen beworfen werden. Deshalb möchte er einen geräumigen Teil seines Vorgartens einzäunen. Ein Teil der Umzäunung bildet seine Vorderhauswand. Wegen Lieferschwierigkeiten stehen Rektor Skinner nur 90m Zaun zu Verfügung. Sie wollen nun die maximale Fläche des abgeschirmten Vorgartens in Abhängigkeit der Seitenlängen bei der Verwendung von 90m Zaun bestimmen!

- 5. Welche Seitenlängen für den Zaun ergeben sich für die maximale Fläche des abgeschirmten Vorgartens? (2 Punkte)
- 6. Berechnen Sie die Fläche des abgeschirmten Vorgartens! (1 Punkt)

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

Ein Pfund Insekten, bitte! Das wird wohl häufiger gehört werden, wenn wir die Menschheit mit Proteinen ausreichend ernähren wollen 14 . Schauen wir uns dazu einmal den Vergleich Deutschland zu Nigeria an. Nigeria hat eine der am schnellsten wachsenden Bevölkerungen der Welt und wird vermutlich im Jahr 2100 zu den Top 5 der bevölkerungsreichsten Länder zählen. Im Jahr 2023 leben ca. 8×10^7 Menschen in Deutschland und ca. 1.79×10^8 Menschen in Nigeria. Mit den Informationen wollen wir anfangen und dann eine Prognose für den Fleischkonsum im Jahr 2050 zu treffen.

Im folgenden ist Abbildung des Fleischkonsums im Jahr 2023 in Deutschland und Nigeria in [kg] einmal dargestellt.

- 1. Stellen Sie den Fleischkonsum in Deutschland und Nigeria im Jahr 2023 *pro Kopf* in einer aussagekräftigen Tabelle dar! (2 Punkte)
- 2. Ergänzen Sie in der Tabelle eine Spalte in der Sie für den Fleischkonsum in Nigeria auf Deutschland normieren, daher ins Verhältnis Nigeria/Deutschland, setzen! (1 Punkt)

In der nächsten Abbildung finden Sie die CO₂-Emission in [kg] nach Lebensmittel, die durch die Produktion entsteht, abgebildet.

3. Stellen Sie in einer Tabelle die Treibhausgasemissionen an CO_2 pro Kopf, die durch den Fleischkonsum in Deutschland und Nigeria im Jahr 2023 entstehen, dar! Ergänzen Sie auch hier das Verhältnis Nigeria zu Deutschland! (2 Punkte)

¹⁴Die Quelle der Inspiration für die Aufgabe war der folgende Artikel aus dem Spiegel: Acht Milliarden - sind wir bald zu viele Menschen auf der Erde?

In der folgenden Abbildung sehen Sie die Bevölkerungsentwicklung [Millionen] in Nigeria von 1950 bis ins Jahr 2030 fortgeführt.

- 4. Schätzen Sie graphisch die zu erwartende Bevölkerung [Millionen] in Nigeria im Jahr 2050, die sich anhand der Informationen aus der Abbildung ergibt!
 - a) Ohne Berücksichtigung der Covid-19-Pandemie! (1 Punkt)
 - b) Unter Berücksichtigung der Covid-19-Pandemie! (1 Punkt)
- 5. Berechnen Sie den geschätzten Fleischkonsum von Nigeria im Jahr 2050 unter der Annahme 60%-iger Angleichung der Lebensbedingungen zu Deutschland im Jahr 2023! (1 Punkt)
- 6. Berechnen Sie die prozentuale Steigerung der Treibhausgasemissionen an CO_2 in Nigeria im Jahr 2050 im Vergleich zum Jahr 2023, der sich durch den angeglichenen Fleischkonsum ergibt! (1 Punkt)
- 7. Berechnen Sie die prozentuale Steigerung der Treibhausgasemissionen an CO_2 in Nigeria, wenn die gesamte Proteinaufnahme durch Insekten ersetzt würde! (1 Punkt)

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

Tödliche Seuche AIDS – Die rätselhafte Krankheit Irritiert legen Sie die historische Ausgabe des Spiegels aus den 80zigern beiseite. Sie sind bei Ihrem Orthopäden und wollen einen AIDS-Test machen lassen. Woanders leider keinen Termin gekriegt... Immerhin denken Sie und Ihre Partnerin über Nachwuchs nach und da geht es eben nur durch ungeschützten Sex. Was wissen Sie nun aber über AIDS und dem diagnostischen AIDS-Test, den Sie nun machen werden?

Die Prävalenz von AIDS bei einem Menschen in Europa wird mit 0.8% angenommen. In 96% der Fälle ist ein HIV-Test positiv, wenn der Patient erkrankt ist. In 0.5% der Fälle ist ein HIV-Test positiv, wenn der Patient nicht erkrankt ist und somit gesund ist. Sie stutzen. Wie wahrscheinlich ist es denn eigentlich an AIDS erkrankt zu sein (K^+), wenn Sie einen positiven AIDS-Test vorliegen haben (T^+)? Gehen Sie für die folgenden Berechnungen von $n=10^4$ Patienten mit einem diagnostischen Test für AIDS aus. Sie nehmen sich also einen Kuli und fangen an auf der historischen Ausgabe des Spiegels zu rechnen¹⁵.

- 1. Welche Wahrscheinlichkeit Pr wollen Sie berechnen? (1 Punkt)
- 2. Zeichnen Sie einen Häufigkeitsdoppelbaum zur Bestimmung der gesuchten Wahrscheinlichkeit *Pr*! (2 **Punkte**)
- 3. Beschriften Sie den Häufigkeitsdoppelbaum, mit denen Ihnen bekannten Informationen zu der AIDS Erkrankung und dem AIDS-Test! (1 Punkt)
- 4. Füllen Sie den Häufigkeitsdoppelbaum mit den sich ergebenden, absoluten Patientenzahlen n aus! (2 Punkte)
- 5. Berechnen Sie die gesuchte Wahrscheinlichkeit Pr! (1 Punkt)

Bei dem folgenden Arztgespräch erfahren Sie, dass beim diagnostischen Testen *True Positives (TP)*, *True Negatives (TN)*, *False Positives (FP)* und *False Negatives (FN)* auftreten. Das verstehen Sie so noch nicht und deshalb stellen Sie für sich den Zusammenhang in einer 2x2 Kreuztabelle dar.

- Tragen Sie TP, TN, FP und FN in eine 2x2 Kreuztablle ein. Beschriften Sie die Tabelle entsprechend! (1 Punkt)
- 7. Berechnen Sie die Sensitivität und Spezifität des diagnostischen Tests für AIDS! Füllen Sie dafür die 2x2 Kreuztabelle mit den Informationen aus dem Häufigkeitsdoppelbaum aus! (2 Punkte)
- 8. Was beschreibt die Sensitivität und die Spezifität im Bezug auf die Gesunden und Kranken? Stellen Sie beide diagnostische Maßzahlen als Wahrscheinlichkeiten *Pr* dar! **(2 Punkte)**

¹⁵Die Quelle der Inspiration für die Aufgabe war der folgende wissenschaftlicher Artikel: Binder et al. (2022) Von Baumdiagrammen über Doppelbäume zu Häufigkeitsnetzen – kognitive Überlastung oder didaktische Unterstützung? Journal für Mathematik-Didaktik, 1-33

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

Network-Marketing oder Schneeballschlacht! Eine Möglichkeit, leicht Geld zu verdienen, ist es anderen Menschen für Geld zu versprechen, wie man leicht reich werden kann. Am besten natürlich ohne viel Aufwand und ortsunabhängig. Dann wollen wir mal loslegen. Schnell ein YouTube-Werbevideo gedreht und auf geht es mit unserem Network-Marketing. Aber Moment, wie funktioniert Network-Marketing eigentlich und was hat das alles mit einer Schneeballschlacht zu tun? Wir wollen hier einmal in die Untiefen des "passiven Einkommens" abtauchen¹⁶.

Das Jahr 2022 war das erfolgreichste Jahr in der Geschichte von Up/Down Systems and Networking (UD-SysNet). Das Unternehmen steigerte den Umsatz um rund 18 Prozent von 275 Millionen Euro im Jahr 2021. Doch wie viel kommt bei den Partnern an? Laut UDSysNet habe das Unternehmen 2.8×10^5 aktive Partner.

- 1. Berechnen Sie zuerst den Umsatz der Firma UDSysNet im Jahr 2022! (1 Punkt)
- 2. Wie viel von dem Umsatz im Jahr 2022 wird im Durchschnitt von jedem aktiven Partner erwirtschaftet? (1 Punkt)
- 3. Welche *monatlicher* Umsatz ergibt sich dadurch im Durchschnitt für jeden aktiven Partner bei einer direkten Provision von 30%? (1 Punkt)

Ihr zu vermarkendes Produkt, hinter dem Sie voll stehen, kostet 200EUR pro Einheit im Direktverkauf. Die direkte Provision für die erste Stufe beträgt 20%. Für die zweite, dritte und vierte Stufe betragen die indirekten Provisionen jeweils 1.75%, 0.75% und 0.25%. Jeder Ihrer angeworbenen "Partner" wirbt wiederum drei Partner für sich selbst an. Pro Monat werden im Schnitt fünf Einheiten vom Produkt verkauft. Sie wollen nun 1800EUR im Monat *passiv* – also durch indirekte Provisionen – erwirtschaften.

4. Ergänzen Sie die folgende Tabelle mit den obigen Informationen! (2 Punkte)

Stufe	Anzahl Partner	Umsatz/Stufe	Provision
1	Sie selber		
2			
3			
4			

5. Wie viele Partner müssen Sie auf der 2 Stufe anwerben um Ihr passives Einkommen durch indirekte Provision zu erreichen? Wie viele Menschen arbeiten am Ende indirekt für Sie? Stellen Sie den Zusammenhang graphisch dar! (3 Punkte)

Sie mussten zum Einstieg bei UDSysNet Einheiten des Produkts für 7000EUR kaufen. Diese Einheiten können Sie nur direkt verkaufen. Leider mussten Sie den Kauf über einen Kredit über 5% p.a. über 72 Monate finanzieren.

- 6. Berechnen Sie die Gesamtsumme, die Sie als Kredit abbezahlen müssen! (2 Punkte)
- 7. Wie viele Einheiten müssen Sie pro Monat verkaufen um die anfallenden Zinsen durch die direkte Provision zu erwirtschaften? (1 Punkt)
- Wie lange in Monaten benötigen Sie um den Kredit durch die direkte Provision abzubezahlen? (1 Punkt)

¹⁶Die Quellen der Inspiration für die Aufgabe waren folgendes YouTube Video: Simplicissimus – Die meistgesuchte Betrügerin der Welt und der Artikel: Deutschlandfunk Kultur – Die Illusion, schnell reich zu werden

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

Höhlen & Drachen Nachdem Sie sich begeistert in der Serie *Stranger Thinks* verloren haben, wollen Sie bei einem Ihrer Freunde einmal *Höhlen & Drachen* ausprobieren. Um Geld zu sparen, das Zeug kostet echt, wurde etwas an den Regeln gebastelt. Schnell stellen Sie fest, dass hier ganz schön viele unterschiedliche Würfel durch die Gegend fliegen. Daher müssen Sie sich jetzt einiges an Fragen stellen.

In dem Spiel haben Sie nun auf einmal 5 achtseitige Würfel (5d8) zum würfeln in der Hand. Wenn Sie eine 8 würfeln, haben Sie einen Erfolg.

- 1. Berechnen Sie die Wahrscheinlichkeit genau 3 Erfolge zu erzielen! (2 Punkte)
- 2. Berechnen Sie die Wahrscheinlichkeit keinen Erfolg zu erzielen! (1 Punkt)

Sie betrachten nun aufmerksam die ausufernden Ausrüstungstabellen. Ihnen wird aber geholfen und Sie müssen sich jetzt nur zwischen der Axt oder dem Schwert entscheiden.

3. Würden Sie die Axt mit zwei vierseitigen Würfeln (2d4) als Schaden oder das Schwert mit einem achtseitigen Würfel plus 3 (1d8+3) als Schaden bevorzugen? Begründen Sie Ihre Antwort mathematisch! (1 Punkt)

Jetzt wird es immer wilder, da Sie sich jetzt überlegen müssen, wie wahrscheinlich es ist, dass Ihr Rettungswurf gegen den zaubernden Hexer funktioniert. Sie haben folgende Wahrscheinlichkeiten gegeben. Die Wahrscheinlichkeit für das Ereignis A, der Rettungswurf ist erfolgreich, ist Pr(A) = 0.65, die Wahrscheinlichkeit für das Ereignis B, der Zauberwurf des Hexers ist erfolgreich, ist Pr(B) = 0.9. Sie haben mitgezählt und festgestellt, dass in 45 von 100 Fällen Ihr Rettungswurf bei einem erfolgeichen Zauber funktioniert hat.

- 4. Erstellen Sie eine 2x2 Kreuztabelle mit den Ereignissen A und B sowie den Gegenereignissen \bar{A} und \bar{B} mit einen $\Omega=100$. Beachten Sie hierbei die entsprechenden Wahrscheinlichkeiten für die Ereignisse A und B! (2 Punkte)
- 5. Bestimmen Sie $Pr(A \cap B)$! (1 Punkt)
- 6. Erstellen Sie ein Baumdiagramm mit den passenden Informationen aus der 2x2 Kreuztabelle! (2 Punkte)
- 7. Bestimmen Sie Wahrscheinlichkeit Pr(A|B), dass Ihr Rettungswurf gelingt, wenn der Hexer erfolgreich gezaubert hat! (1 **Punkt**)

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

Retrocheck im TV "Und hier ist sie wieder, die Show der fantastischen Preise. Seien Sie mit dabei, wenn es wieder heißt: Der Preis ist heiß!", ertönt es und Sie fragen sich, ob Sie nicht doch lieber bezahlter Gast bei Barbara Salesch hätten sein sollten. Aber Sie brauchen das Geld und jetzt heißt es Spielschows farmen! Erstmal eine Kaffemaschine von Mitropa gewinnen. Ein Kandidat gewinnt die Kaffeemaschine von Mitropa, wenn nicht alle Kandidaten überbieten (eng. *outbid*). Mit Ihnen bilden Elke und Helmut das Team der drei Kandidaten.

Name	P(win)	P(outbid)
Elke	0.1	0.08
Helmut	0.2	0.02

- 1. Mit welcher Wahrscheinlichkeit gewinnen Sie die Kaffeemaschine von Mitropa, wenn keiner der Kandidaten überbietet? (1 Punkt)
- 2. Wenn Ihre Überbietungswahrscheinlichkeit *P(outbid)* bei 0.11 liegt, mit welcher Wahrscheinlichkeit gewinnt *keiner* die Kaffeemaschine von Mitropa? **(1 Punkt)**

Glücksrad für Arme auf der Kirmes! Leider hat es für Maren Gilzer nicht gereicht. Deshalb sind Sie jetzt auf der Kirmes und spielen mit einem einäugen Piraten um das große Geld. Das Glücksrad hat 24 Felder. Sie drehen das Glücksrad zweimal. Auf 10 Feldern gewinnen Sie 4000EUR sonst 2000EUR. Ganz schön viel Geld und ganz schön zwielichtig hier...

- 3. Skizzieren Sie das Glücksrad und ergänzen Sie die Wahrscheinlichkeiten! (1 Punkt)
- 4. Zeichnen Sie das zugehörige Baumdiagramm für das zweimalige Drehen! Ergänzen Sie die Wahrscheinlichkeiten und die entsprechenden Ereignisse (2 Punkte)
- 5. Mir welcher Wahrscheinlichkeit gewinnen Sie 6000EUR? (1 Punkt)

Nach Ihrem Fiebertraum reisen Sie im Zug nach Köln um bei "Geh aufs Ganze!" mitzuspielen. Sie schaffen es tatsächlich ins Finale und können als Hauptgewinn ein Auto hinter einer der drei Türen gewinnen.

- 6. Bevor die Show beginnt, wird das Auto hinter eine zufällig bestimmte Tür gestellt. Mit welcher Wahrscheinlichkeit wird jeweils eine der drei Türen ausgewählt? Zeichnen Sie ein Baumdiagramm! (1 Punkt)
- 7. Mit welcher Wahrscheinlichkeit wählen Sie sofort die Tür mit dem Auto? Erweitere Sie das Baumdiagramm entsprechend! (1 Punkt)
- 8. Der Moderator öffnet nun eine der nicht gewählten Türen, aber natürlich nicht die mit dem Auto. Mit welcher Wahrscheinlichkeit steht das Auto hinter der anderen Tür? Erweitern Sie das Baumdiagramm entsprechend! (2 Punkte)
- 9. Lösen Sie nun das "Ziegenproblem"! Berechne Sie dazu die Wahrscheinlichkeiten der einzelnen Pfade. Lohnt sich ein Wechsel der anfangs gewählte Tür? Begründen Sie Ihre Antwort mathematisch! (2 Punkte)

Teil XII.

Angewandte Nutztier- und Pflanzenwissenschaften (M.Sc.)

128. Aufgabe (6 Punkte)

Vergleichen Sie die Standardabweichung mit dem Standardfehler und grenzen Sie die beiden Kennzahlen voneinander ab.

129. Aufgabe (8 Punkte)

Ihnen liegt folgendes Varianzanalysemodell mit der üblichen Beschreibung zur Auswertung des Merkmals fett- und eiweißkorrigierte Milchleistung pro Kuh und Jahr in kg vor:

$$Y_{ijkl} = \mu + Var_i + EKA_i + VarEKA_{ij} + V_k + b(L_{ij} - L) + e_{ijkl}$$

mit

- Yijkl: I-te Beobachtung
- μ: Populationsmittel
- Var_i: fixer Effekt der i-ten Variante (i: Kontrolle, Versuchsgruppe 1, Versuchsgruppe 2)
- EKA_i : fixer Effekt der j-ten Erstkalbealtergruppe (j: $EKA \le 25$ Monate, EKA > 25 Monate)
- VarEKAii: fixer Effekt der Interaktion Variante x Erstkalbealtergruppe
- V_k: zufälliger Effekt des Vaters
- $b(L_{ii} L)$: lineare Kovariable Laktationsnummer
- e_{ijkl} : zufälliger Restfehler

Erläutern Sie anhand dieses Beispiels die Begriffe fixer Effekt, Interaktion, zufälliger Effekt und Kovariable und grenzen Sie diese Begriffe voneinander ab.

130. Aufgabe (6 Punkte)

Wie bestimmen Sie die richtige Stichprobengröße? Welche Kennzahlen / statistische Maßzahlen benötigen Sie dabei und nennen Sie die Voraussetzungen.