中国科技大学工程学院 2015 年春季学期热学试卷

姓名:	N/. 🖂	3Z /\
TJP: ヘク 。	/ 	
√+ / 1 !	* 9 :	心区 7.1

注:此为试卷,答案请写在答题纸上,试卷答题纸兼收。请写好姓名和学号,字迹清晰可辨!

题目编号	_	$\vec{\Box}$	三	四	五
得 分					
复 核					

- 1. 设空气分子的有效直径为 d,则电子与气体分子碰撞截面为 $\frac{\pi d^2}{4}$,气体的温度为 T,问阴极射线管要抽到多高的真空度,才能保证从阴极发射的电子有一半能达到 h 远处的阳极,而中途不和空气分子发生碰撞。(15 分)。
- 2. 存在两个热源,热容量是都是 C,初始温度都是 T_0 。有一个可逆热机从第一个热源处吸收热量,并在第二个热源处释放。求当第一个热源的温度达到 T_A 时:
 - a) 第二个热源的温度 T_B。(10 分)
 - b) 当把第二个热源的温度上升到T₁时,外界对系统做的总功。(10分)
- 3. 如图所示的 1mol 理想气体循环过程的 P-T 图, 1mol 理想气体内能 $U = \frac{3}{2}RT$
- a) 系统经过循环对外做功的大小 b)系统做功的效率 (20 分)

4. 证明: U 为内能, S 为熵, P 为压强, T 为温度, V 为体积

a)
$$\left(\frac{\partial S}{\partial V}\right)_P = \frac{1}{T} \left(\frac{\partial U}{\partial V}\right)_P + \frac{P}{T} \cdot (10 \%)$$

- b) $\left(\frac{\partial s}{\partial T}\right)_V = \frac{C_v}{T}$ C_v 为定容热容量;(10 分)提示:利用热力学基本方程证明5.
 - a) 假设某个容器内的理想气体满足麦克斯韦速率分布,分子质量为 m,温度为 T,某速率函数 $F(v)=\frac{1}{v}$,求 F(v)的统计平均值。(10 分)
 - b) 某圆柱形容器, 高为 L, 其内充满处于平衡态的经典气体, 分子质量为 m, 在重力场的作用下, 若气体的温度为 T, 求分子的平均重力势能。 (15 分)