Game theory Nim game, Minimax, Alpha-Beta pruning

beOI Training

OLYMPIADE BELGE D'INFORMATIQUE BELGISCHE INFORMATICA-OLYMPIADE

February 16, 2017

Table of Contents

Basics and decision trees

Subtraction game

Nim game

Minimax algorithm

Alpha-Beta pruning

What is game theory?

Modelling strategic situations:

- with conflict or cooperation
 - chess, football, pictionary, ...
- decisions based on personal goals
 - beating the opponent, maximizing points, ...
- influenced by the choice patterns of other players
 - ▶ if someone plays predictably, you can use it against them
- might involve randomness
 - dice rolls, card draws, ...

Goal: compute choices, optimal strategies, expected gains

Decision trees

A useful tool to examine decisions and their consequences.

Utility vectors and zero-sum games

Utility vectors:

- define the "gains" of an end state
- one entry per player: (2, 3, -2), (0, 7), ...
- determine the choices of players
 - ▶ player 1 will choose (**3**, 5) over (**2**, 3)
- but not always!
 - ▶ should player 2 choose $(0, \mathbf{6}, 5)$ or $(2, \mathbf{6}, 3)$?

Main focus: two-player zero-sum games:

- only two players: no complicated interactions
- zero-sum: our benefits are the opponent's losses
 - (5,-5), (-3,3), (0,0), ... (or just 5, -3, 0)
- the value of a choice is always well-defined

Table of Contents

Basics and decision trees

Subtraction game

Nim game

Minimax algorithm

Alpha-Beta pruning

Subtraction game: rules

"Jeu des alumettes" in French, ??? in Dutch

- ▶ At the beginning, *n* matches on the table
- Two players play in alternance
- ▶ At each turn they remove 1, 2, ..., k matches
- ▶ The player that takes the last match wins

Example with k = 3:

- ▶ At the beginning, n = 8 matches.
- Player A takes 2; remaining: 6.
- Player B takes 1; remaining: 4.
- ▶ Player A takes 3; remaining: 1.
- Player B takes 1 and wins.

Subtraction game: decision tree

? = A plays ? = B plays

Winning states

- ► A winning state is a state such that the *current player* has winning strategy
- ► A state is winning iff one of the moves leads to a losing state for the opponent
- ► If all the next states are winning for the opponent, then we can't win!

Subtraction game: winning states

Observations:

- ▶ All multiples of 4 = k + 1 are losing states
- lacktriangle All other states are winning because they point to a multiple of k+1

Subtraction game: optimal play

If the number of matches is a multiple of k + 1:

- all moves are bad;
- ▶ if the opponent plays perfectly you will certainly lose.

Otherwise:

- only one move is correct;
- remove matches so that you leave a multiple of k + 1;
- if you play perfectly you will certainly win.

Examples of perfect moves (for k = 3):

- $1 \rightarrow 0 \quad 2 \rightarrow 0 \quad 3 \rightarrow 0$
- $5 \rightarrow 5 \quad 6 \rightarrow 4 \quad 7 \rightarrow 4$
- **.** . . .

Table of Contents

Basics and decision trees

Subtraction game

Nim game

Minimax algorithm

Alpha-Beta pruning

Nim game: rules

Similar to subtraction game but:

- More than one heap: sizes (2,3), (2,1,9).
- ► You can remove as many matches as you want but *from a* single heap.
- ► The player that empties the last heap wins.

Example with three heaps:

- At the beginning, there are three heaps: (3, 5, 4).
- ▶ Player A takes 2 on heap 1; remaining: (1,5,4).
- ▶ Player B empties heap 2; remaining: (1,0,4).
- ▶ Player A takes 3 on heap 3; remaining: (1,0,1).
- ▶ Player B empties heap 1; remaining: (0,0,1).
- Player A empties heap 3 and wins.

Nim game: two heaps

Compute the winning/losing states in a bottom-up way.

(We make no distinction between players anymore.)

Nim game: the search of a losing criterion

For two heaps, we can see that losing states have heaps of equal size:

- if they are ≠, you can make them =;
 - ▶ $(5,2) \to (2,2)$ $(3,7) \to (3,3)$ $(4,0) \to (0,0)$
- if they are =, they will always become \neq ;
 - $(2,2) \rightarrow (1,2), (0,2), (2,1), (2,0)$
- the game always ends at (0,0).

What about more heaps? Any idea? Examples of losing states: (0,0,0), (0,1,1), (1,2,3), (1,4,5), (1,6,7), (2,4,6), (3,5,6), (1,1,3,3), (1,3,5,7), (2,3,6,7), (4,5,6,7), (3,3,4,4), ...

Nim game: key invariant

A state (n_1, \ldots, n_l) is losing iff $n_1 \oplus \cdots \oplus n_l = 0$. **WHAT?**

For example: (3, 5, 6) is losing because

$$3_{10} \oplus 5_{10} \oplus 6_{10} = 011_2 \oplus 101_2 \oplus 110_2 = 000_2$$

We call this the nim-sum.

We need to prove this:

- ► The ending situation has a zero nim-sum (clear).
- During one move:
 - When the nim-sum is zero, we cannot keep it zero.
 - ▶ When the nim-sum is not zero, we can make it zero.

Nim game: losing situation

"When the nim-sum is zero, we cannot keep it zero."

- ▶ Before the move: $n_1 \oplus \cdots \oplus n_l = 0$
- ▶ We take matches from heap $i: n_i \rightarrow n'_i$
- After the move:

$$n_{1} \oplus \cdots \oplus n'_{i} \oplus \cdots \oplus n_{l}$$

$$= n_{1} \oplus \cdots \oplus (n_{i} \oplus n_{i} \oplus n'_{i}) \oplus \cdots \oplus n_{l}$$

$$= (n_{1} \oplus \cdots \oplus n'_{i} \oplus \cdots \oplus n_{l}) \oplus (n_{i} \oplus n'_{i})$$

$$= n_{i} \oplus n'_{i}$$

$$\neq 0$$

Nim game: winning situation

"When the nim-sum is not zero, we can make it zero."

- ▶ Before the move: $n_1 \oplus \cdots \oplus n_l = s \neq 0$
- ▶ If we can replace some n_i with $n_i \oplus s$, we win!
- ▶ But it has to verify $n_i \oplus s < n_i$ (we cannot add matches).
- ▶ Let 1<<j be the largest bit in s. We just have to take n_i that contains the bit 1<<j. This implies $n_i \oplus s < n_i$.
- ► Example: state (7, 8, 13).

$$7_{10} \oplus 8_{10} \oplus 13_{10} = 0111_2 \oplus 1000_2 \oplus 1101_2 = 00\textbf{1}0_2$$

Only $7_{10} = 0111_2$ has the required bit.

$$01\boldsymbol{1}1_2 \oplus 00\boldsymbol{1}0_2 = 01\boldsymbol{0}1_2 = 5_{10} < 7_{10}$$

Next state: (5, 8, 13).

Win/lose games: general conclusions

Frequent properties of simple win-or-lose games:

- Few losing states, many winning states
 - because one losing child is enough
- Losing states defined by a specific property
 - ▶ n divisible by k + 1, $n_1 \oplus \cdots \oplus n_l = 0$, ...
- ▶ The property can always be *restored* when broken
 - this defines the winning strategy
- ▶ But it can never be *kept* by a move
 - the losing player can never turn the game around

Exercise: solve this subtraction/Nim mashup.

- ▶ Several heaps with sizes $(n_1, ..., n_l)$.
- ▶ You can 1, 2, ..., k matches from a single heap.

Table of Contents

Basics and decision trees

Subtraction game

Nim game

Minimax algorithm

Alpha-Beta pruning

Minimax principles

- ► So far we've only considered win/lose games
 - utilities: +1 = win, -1 = lose.
- What about games with scores?
 - example: utility is the difference of the scores.
- Each player will take the choice that
 - maximizes his utility
 - or minimizes the utility of his opponent (zero-sum)
- ► Let's fix player A as reference
 - player A will always maximize the value
 - player B will always minimize the value

Minimax implementation

Implementation 1: recursive, DFS-style

```
int minimax(state u) {
   if (terminal(u)) // the game has ended
      return score(u);
   int best = -INF;
   for (state v : nextStates(u)) // possible moves
      best = max(best, -minimax(v));
   return best;
}
```

- Doesn't separate the "min" and "max" steps
- Just takes the opposite of the opponent's score

Complexity: $O(b^d)$, if d is depth and b branches every time.

Minimax with DP

Implementation 2: add DP memoization

```
map<state , int > dp; // make it an array if possible

int minimax(state u) {
    if (terminal(u))
        return score(u);
    if (dp.count(u)) // already computed before
        return dp[u];
    // [...] find best move
    return (dp[u] = best); // don't forget to save
}
```

Complexity: O(s), where s is the number of possible states.

Table of Contents

Basics and decision trees

Subtraction game

Nim game

Minimax algorithm

Alpha-Beta pruning

Very large search spaces

Sometimes there are just too many states to explore! (chess, Go, draughts, ...)

- Solution 1: cut off the tree and evaluate the situation
 - e.g. cut at depth 4, evaluate, and run minimax
 - evaluation based on heuristics (imperfect estimations)
 - ▶ inexact result ⇒ not okay for us
- Solution 2: eliminate states without changing the result
 - prune complete parts of the trees
 - prove that the unvisited states are not part of the optimal play

Alpha-beta definition

- Let's assume we compute A's utility
 - ▶ A wants to maximize the score
 - ▶ B wants to minimize the score
- ▶ During the minimax search, we maintain two parameters:
 - ho α = maximum score that A is assured of
 - β = minimum score that B is assured of
- ▶ In other words, α and β are such that:
 - we know the final result is in $[\alpha, \beta]$
 - lacktriangleright lpha is as big as possible
 - β is as small as possible

Alpha-beta implementation

```
int minimax(state u, int alpha, int beta) {
    if (terminal(u))
        return score(u);
    int best = -INF:
    for (state v : nextStates(u)) {
        best = max(best,
                   -minimax(v, -beta, -alpha));
        alpha = max(alpha, best);
        if (alpha >= beta) break; // pruning
    return best;
```

- ▶ Interval $[\alpha, \beta]$ becomes $[-\beta, -\alpha]$ when switching players
- ▶ Cutoff when current best is $\geq \beta$
 - maybe there is better, but the opponent has a better choice anyway

Sources of figures

▶ https://commons.wikimedia.org/wiki/File: Tic-tac-toe-game-tree.svg