CS 65500 Advanced Cryptography

Lecture 10: Shamir Secret Sharing and MPC

Instructor: Aarushi Goel

Spring 2025

Agenda

-> Threshold Shamir Secret Sharing

-> Secure <u>Multiparty</u> Computation

Reminder: HW3 will be released today!

Correctness: Any subset of t+1 shares can be combined to reconstruct the secret s.

Security: Any subset of & t shares reveal no information about the secret s.

Secret Sharing (tin)

- Definition: A (t,n) secret sharing consists of a pair of PPT algorithms (Share, Reconstruct) S.t.,

 Share(S) \rightarrow $(S_1, ---, S_n)$
 - Reconstruct $(S'_{i_1}, --., S'_{i(t+1)})$ is such that, if $\{S'_{i_1}, --., S'_{i(t+1)}\} \subseteq \{S_1, --., S_n\}$, then it outputs S.
 - $\forall s,s'$ and for any subset of at most t indices $X \subset [1,n]$, $|x| \leq t$ the following distributions are statistically close: $\{(Si|i \in X); (S_1, \dots, S_n) \leftarrow Share(S)\},$ $\{(S_i'|i \in X); (S_1', \dots, S_n) \leftarrow Share(S)\}$

Construction: (1,n) Threshold Secret Sharing

- Shave (m): pick a random

$$S(x) = 4x + m$$

$$S_1 = S(\alpha_1), S_2 = S(\alpha_2), \dots, S_n = S(\alpha_n)$$

Reconstruct
$$(Si,Sj)$$
: $h = (Si - Sj)$

$$(\alpha_i - \alpha_j)$$

Construction: (1,n) Threshold Secret Sharing

Message space: finite field IF
Let $\alpha_1, --$. $\alpha_n \in IF^n$ be some fixed constants

→ Shave (m): pick a random

r + F

S(x) = xx + m $S_1 = S(\alpha_1), S_2 = S(\alpha_2), \dots, S_n = S(\alpha_n)$

Is each si by itself uniformly distributed, irrespective of m? why?

Construction: (t,n) Threshold Secret Sharing

(Shamu Secret Sharing)

Message Space: finite field IF

Let $\alpha_1, ---. \alpha_n \in IF^n$ be some fixed constants

- Shave (m): pick a random degree-t polynomial, s.t.,
 - S(0) = m $\Rightarrow S(x) = m + \stackrel{t}{\leq} c_i x^i$
 - Si=S(ai), Sz=S(dz), ---, Sn=S(an)
- Reconstruct (S₁, ..., S_{t+1}): Lagrange interpolation to find 5(0)= m.

Computing on Linear Shares

Suppose two screts m, and m, were shared using the same secret-sharing scheme

Then for any p,q EIF, shares of p.m, + q.m2 can be computed locally by each party i as:

p.si + q.ri

Seure Multi-Party Computation: Security

- An adversary corrupting at most tout of the n parties learn nothing about the inputs of the remaining thonest* parties beyond what is already revealed by the output of the function.
- In other words, whatever the adversary sees in the protocol, it could have simulated himself using only the inputs of the corrupt parties and output of the function.

Formalizing the Security Requirements for Secure Multi Party Computation

View of the adversary in the protocol }

is indistinguishable from

A simulated view that the adversary could have computed himself given inputs of the corrupted parties and output of the function, without having communicated with the honest parties

Semi-Honest Secure Multi-Party Computation

Definition: A protocol T securely computes a function f in the semi-honest model, if FaPPT simulator algorithm S, s.t., & t-sized subset CC[n] of vorrupt parties, for any security parameter 2 s + inputs $x_1, ---, x_n$, it holds that:) S({xi}iec, f(x1,--,xn)), f(x1,--,xn) \ ~c {View (K), Out (K) } View of output of honest parties.