Machine Learning 1 - Homework 4

Christopher Williams October 7, 2025

1 Phase 1

1.1 Two Classes

1.1.1 Scatter Plot

1.1.2 Class Variance

To calculate the between-class variance, S_B , and the within-class indicator, S_W , we need to calculate the mean of each class, and the total mean.

3

4

X-axis

5

6

2

1

$$\mu_1 = \frac{1}{n_1} \sum_{i=1}^{n_1} x_i^{(1)} = \frac{1}{5} \begin{bmatrix} 1+2+3+4+5\\ 2+3+3+5+5 \end{bmatrix} = \frac{1}{5} \begin{bmatrix} 15\\ 18 \end{bmatrix} = \begin{bmatrix} 3\\ 3.6 \end{bmatrix}$$
 (1)

$$\mu_2 = \frac{1}{n_2} \sum_{i=1}^{n_2} x_i^{(2)} = \frac{1}{6} \begin{bmatrix} 4+5+5+3+5+6 \\ 2+0+2+2+3+3 \end{bmatrix} = \frac{1}{6} \begin{bmatrix} 28 \\ 12 \end{bmatrix} = \begin{bmatrix} 4.67 \\ 2 \end{bmatrix}$$
 (2)

$$\mu_{tot} = \frac{1}{n_{tot}} \sum_{i=1}^{n_1 + n_2} x_i^{(1\&2)} = \frac{1}{11} \begin{bmatrix} 1 + 2 + 3 + 4 + 5 + 4 + 5 + 5 + 3 + 5 + 6 \\ 2 + 3 + 3 + 5 + 5 + 2 + 0 + 2 + 2 + 3 + 3 \end{bmatrix} = \frac{1}{11} \begin{bmatrix} 43 \\ 30 \end{bmatrix} = \begin{bmatrix} 3.91 \\ 2.73 \end{bmatrix}$$
(3)

After finding the means, we can now find the between-class variance with this equation

$$S_B = n_1(\mu_1 - \mu_{tot})(\mu_1 - \mu)^T + n_2(\mu_2 - \mu_{tot})^T$$
(4)

$$S_B = 5\left(\begin{bmatrix} 3 - 3.91 \\ 3.6 - 2.73 \end{bmatrix} \begin{bmatrix} 3 - 3.91 & 3.6 - 2.73 \end{bmatrix}\right) + 6\left(\begin{bmatrix} 4.67 - 3.91 \\ 2 - 2.73 \end{bmatrix} \begin{bmatrix} 4.67 - 3.91 & 2 - 2.73 \end{bmatrix}\right)$$
 (5)

$$S_B = \begin{bmatrix} 7.63 & -7.25 \\ -7.25 & 6.98 \end{bmatrix} \tag{6}$$

Next, we can find the within-class variance with this equation

$$S_W = \sum_{x_1 \in \omega_1} (x_1 - \mu_1)^T (x_1 - \mu_1) + \sum_{x_2 \in \omega_2} (x_2 - \mu_2)^T (x_2 - \mu_2)$$
 (7)

$$S_W = \begin{bmatrix} 1 - 3 & 2 - 3.6 \\ 2 - 3 & 3 - 3.6 \\ 3 - 3 & 3 - 3.6 \\ 4 - 3 & 5 - 3.6 \\ 5 - 3 & 5 - 3.6 \end{bmatrix} \begin{bmatrix} 1 - 3 & 2 - 3 & 3 - 3 & 4 - 3 & 5 - 3 \\ 2 - 3.6 & 3 - 3.6 & 5 - 3.6 & 5 - 3.6 \end{bmatrix} +$$
(8)

$$\begin{bmatrix} 4 - 4.6 & 2 - 2 \\ 5 - 4.6 & 0 - 2 \\ 5 - 4.6 & 2 - 2 \\ 3 - 4.6 & 2 - 2 \\ 5 - 4.6 & 3 - 2 \\ 6 - 4.6 & 3 - 2 \end{bmatrix} \begin{bmatrix} 4 - 4.6 & 5 - 4.6 & 5 - 4.6 & 5 - 4.6 & 6 - 4.6 \\ 2 - 2 & 0 - 2 & 2 - 2 & 2 - 2 & 3 - 2 & 3 - 2 \end{bmatrix}$$
(9)

$$= \begin{bmatrix} 10 & 8 \\ 8 & 7.2 \end{bmatrix} + \begin{bmatrix} 5.33 & 1.00 \\ 1.00 & 6.00 \end{bmatrix} \tag{10}$$

$$S_W = \begin{bmatrix} 15.33 & 9.00 \\ 9.00 & 13.20 \end{bmatrix} \tag{11}$$

1.2 Spectral Decomposition of Fisher Criterion

1.2.1 Eigenvectors

To find the direction that maximizes class separation, we solve the generalized eigenvectors:

$$S_B \mathbf{w} = \lambda S_W \mathbf{w} \tag{12}$$

This is the equivalent to finding eigenvalues and eigenvectors of $S_W^{-1}S_B$. First, S_W^{-1} :

$$\det(S_W) = 15.33 \times 13.20 - 9.00 \times 9.00 = 121.36 \tag{13}$$

$$S_W^{-1} = \frac{1}{121.36} \begin{bmatrix} 13.20 & -9.00 \\ -9.00 & 15.33 \end{bmatrix} = \begin{bmatrix} 0.1087 & -0.0741 \\ -0.0741 & 0.1263 \end{bmatrix}$$
 (14)

Then $S_W^{-1}S_B$:

$$S_W^{-1}S_B = \begin{bmatrix} 0.1087 & -0.0741 \\ -0.0741 & 0.1263 \end{bmatrix} \begin{bmatrix} 7.63 & -7.25 \\ -7.25 & 6.98 \end{bmatrix} = \begin{bmatrix} 1.362 & -1.308 \\ -1.480 & 1.421 \end{bmatrix}$$
(15)

Solving the characteristic equation $\det(S_W^{-1}S_B - \lambda I) = 0$:

$$\lambda^2 - 2.78\lambda = 0 \tag{16}$$

$$\lambda_1 = 2.78 \tag{17}$$

$$\lambda_2 = 0 \tag{18}$$

For $\lambda_1 = 2.78$, the eigenvector is:

$$\mathbf{w}_1 = \begin{bmatrix} -0.68\\0.73 \end{bmatrix} \tag{19}$$

For $\lambda_2 = 0$, the eigenvector is:

$$\mathbf{w}_2 = \begin{bmatrix} 0.69\\0.72 \end{bmatrix} \tag{20}$$

Figure 1: Eigenvectors plotted from the overall mean. \mathbf{w}_1 (green) corresponds to $\lambda_1 = 2.783$ and provides maximum class separation. \mathbf{w}_2 (orange, dotted) corresponds to $\lambda_2 = 0$ and provides no discriminative information.

1.2.2 Display Data

Projecting the data onto eigenvector $\mathbf{w}_1 = [-0.67, 0.73]^T$: For each point \mathbf{x} , the projection is $y = \mathbf{w}_1^T \mathbf{x} = -0.67x_1 + 0.73x_2$.

Class 1 projections:

$$(1,2): \quad y = -0.67(1) + 0.73(2) = 0.79$$

$$(2,3): \quad y = -0.67(2) + 0.73(3) = 0.85$$

$$(3,3): \quad y = -0.67(3) + 0.73(3) = 0.17$$

$$(4,5): \quad y = -0.67(4) + 0.73(5) = 0.97$$

$$(5,5): \quad y = -0.67(5) + 0.73(5) = 0.29$$

Mean: $\bar{y}_1 = 0.61$

Class 2 projections:

$$(4,2): \quad y = -0.67(4) + 0.73(2) = -1.23$$

$$(5,0): \quad y = -0.67(5) + 0.73(0) = -3.38$$

$$(5,2): \quad y = -0.67(5) + 0.73(2) = -1.91$$

$$(3,2): \quad y = -0.67(3) + 0.73(2) = -0.55$$

$$(5,3): \quad y = -0.67(5) + 0.73(3) = -1.17$$

$$(6,3): \quad y = -0.67(6) + 0.73(3) = -1.85$$

Mean: $\bar{y}_2 = -1.68$

Projected Data Points on Fisher's Discriminant Direction

Figure 2: Projected data points showing clear separation between classes along the discriminant direction.

1.3 Reduce Dimensionality

1.3.1 Plot of Probability Density

Choice of projection direction: We choose eigenvector $\mathbf{w}_1 = [-0.67, 0.73]^T$ for the projection because it corresponds to the largest eigenvalue ($\lambda_1 = 2.783$), which maximizes the Fisher criterion. This direction maximizes the ratio of between-class variance to within-class variance, providing optimal class separation.

The second eigenvector \mathbf{w}_2 has eigenvalue $\lambda_2 = 0$, meaning it provides no discriminative information and would not help separate the classes.

After projection, Class 1 has mean 0.619 and Class 2 has mean -1.687, showing clear separation in the 1D subspace.

1.4 L2 Distance Calculations

Before LDA (Original 2D space):

$$||\mu_1 - \mu_2||_2 = \sqrt{(3 - 4.6)^2 + (3.6 - 2)^2} = \sqrt{2.77 + 2.56} = \sqrt{5.338} = 2.31$$
 (21)

After LDA (Projected 1D space):

$$|\bar{y}_1 - \bar{y}_2| = |0.61 - (-1.68)| = |2.30| = 2.30$$
 (22)

Comparison:

• Distance before LDA: 2.31

• Distance after LDA: 2.30

• Difference: 0.01 (0.22%)

The L2 distance between class means is nearly preserved after projection (difference of only 0.005). This demonstrates that Fisher's LDA successfully identifies the projection direction that maintains class separation while reducing dimensionality from 2D to 1D. The small reduction is expected and shows that the discriminant direction \mathbf{w}_1 captures almost all the information relevant for class separation.

Figure 3: Sketch of Probabiltiy Dense Function

2 Phase 2

2.1 Politician Face's Dataset

The number of unique politicians (classes) are in the dataset is 82.

The number of observations (images) in the dataset is 3382

The dimensionality of the dataset is 2914

The names of all the politicians in this dataset are as follows:

1.	Abdullah Gul	29.	Jacques Chirac	57.	Michael Schumacher
2.	Alejandro Toledo	30.	Jean Charest	58.	Naomi Watts
3.	Alvaro Uribe	31.	Jean Chretien	59.	Nestor Kirchner
4.	Amelie Mauresmo	32.	Jennifer Aniston	60.	Nicole Kidman
5.	Andre Agassi	33.	Jennifer Capriati	61.	Paul Bremer
6.	Angelina Jolie	34.	Jennifer Lopez	62.	Pervez Musharraf
7.	Ariel Sharon	35.	Jeremy Greenstock		Pete Sampras
8.	Arnold Schwarzenegger	36.	Jiang Zemin		<u>-</u>
9.	Atal Bihari Vajpayee	37.	John Ashcroft		Recep Tayyip Erdogan
10.	Bill Clinton	38.	John Bolton		Renee Zellweger
11.	Bill Gates	39.	John Howard		Ricardo Lagos
12.	Carlos Menem	40.	John Kerry	67.	Richard Myers
13.	Carlos Moya	41.	John Negroponte	68.	Roh Moo-hyun
14.	Colin Powell	42.	John Snow	69.	Rudolph Giuliani
15.	David Beckham	43.	Joschka Fischer	70.	Saddam Hussein
16.	Donald Rumsfeld	44.	Jose Maria Aznar	71.	Serena Williams
17.	Fidel Castro	45.	Juan Carlos Ferrero	72.	Silvio Berlusconi
18.	George Robertson	46.	Julianne Moore	73.	Spencer Abraham
19.	George W Bush	47.	Junichiro Koizumi	74.	Tiger Woods
20.	Gerhard Schroeder	48.	Kofi Annan	75.	
21.	Gloria Macapagal Arroyo	49.	Lance Armstrong		Tom Daschle
22.	Gray Davis	50.	Laura Bush		
23.	Guillermo Coria	51.	Lindsay Davenport		Tom Ridge
24.	Hamid Karzai	52.	Lleyton Hewitt		Tony Blair
25.	Hans Blix	53.	Luiz Inacio Lula da Silva		Venus Williams
26.	Hugo Chavez	54.	Mahmoud Abbas	80.	Vicente Fox
27.	Igor Ivanov	55.	Megawati Sukarnoputri	81.	Vladimir Putin
28.	Jack Straw	56.	Michael Bloomberg	82.	Winona Ryder

2.2 First Twenty Politicians

Here is the subplot containing the images of the first 20 politicians.

Figure 4: Scatterplot of x vs. y with Eigenvectors

2.3 Image Classification

2.3.1 Required Classes

As determined in Question 5 (Section 2.1), it would be equal to the number of unique politicians in the dataset, which is $\boxed{82}$.

2.3.2 Balanced Dataset?

The dataset is very unbalanced. The minimum number of images per politician is 17, but the maximum for one politician is 530. These numbers are very unbalanced.

Here is a plot show casing the disparity.

Figure 5: Distribution of Images per Politician

2.4 Standardize and LDA

Before computing the S_B and S_W , we must standardize the data matrix

```
1 X_mean = X.mean(axis=0) # mean of each feature
2 X_std = np.sqrt(((X - X_mean) ** 2).mean(axis=0)) # std using mean
3
4 X_standardized = (X - X_mean) / X_std
```

And now we can compute the within and between class variances.

2.4.1 Compute SW

The output of the code in the console of the first 5x5 block of the S_W matrix is

```
[[2322.4009409 2169.98031604 1882.10101306 1591.92321476 1387.70772718]
[[2169.98031604 2283.24829829 2123.59060502 1797.15796739 1535.31690915]
[[1882.10101306 2123.59060502 2275.36009753 2107.61102676 1804.45945579]
[[1591.92321476 1797.15796739 2107.61102676 2293.39020145 2147.38287556]
[[1387.70772718 1535.31690915 1804.45945579 2147.38287556 2324.52218747]]
```

2.4.2 Compute SB

The output of the code in the console of the first 5x5 block of the S_B matrix is

```
[[1059.59459009 1072.23407495 1050.89820118 994.5277415 908.67901927]
[1072.23407495 1098.75804608 1091.22989577 1044.25127986 962.54941031]
[1050.89820118 1091.22989577 1106.63791166 1081.28099694 1013.88409876]
[994.5277415 1044.25127986 1081.28099694 1088.61423538 1052.09610274]
[908.67901927 962.54941031 1013.88409876 1052.09610274 1057.47941533]]
```

2.5 Spectral Decomposition of Fisher Criterion

2.5.1 Five Largest Eigenvalues

The largest five eigenvalues with their corresopnding eigenvectors:

```
Top 5 eigenvalues: [36.43 34.79 26.89 26.65 24.02]
Top 5 eigenvectors: [[ 0.01 0.
                                     -0.
                                           -0.01 0.
                                                      ]
 [-0.02 -0.
                0.
                      0.01 -0.
 [ 0.02 -0.02 -0.
                      -0.
                            -0.01]
 [-0.
          0.
               -0.
                      -0.01 -0.01]
 [ 0.01  0.02  -0.01  0.01  0.01]
 [-0. \quad -0.01 \quad 0. \quad -0. \quad -0.
```

I can't display the entire eigenvectors of this very multidimensional eigenvector.

2.5.2 Five Smallest Eigenvalues

Now the bottom 5:

```
Bottom 5 eigenvalues: [-0. -0. -0. -0.]
                                             0.01 -0. ]
                                       0.
Bottom 5 eigenvectors: [[ 0.
               -0.01 -0.02 -0.01]
  [-0.02 -0.
  [ 0.02 -0.01 0.
                      0.02
                           0.
         0.01 -0.01 -0.01 -0.
  [ 0.01
         -0.
                0.01
                      0.
                           0.
                                ]
  [-0.
  [-0.
         -0.
               -0.
                     -0.
```