INVERSE FUNCTION THEOREM

I use $df_{\mathbf{x}}$ for the linear transformation that is the differential of f at \mathbf{x} .

Definition 1. Suppose $S \subseteq \mathbb{R}^n$ is open, $\mathbf{a} \in S$, and $f: S \to \mathbb{R}^n$ is a function. We say f is locally invertible around a if there is an open set $A \subseteq S$ containing a so that f(A) is open and there is a function $g: f(A) \to A$ so that, for all $x \in A$ and $y \in f(A)$,

$$g(f(x)) = x,$$
 $f(g(y)) = y.$

Clearly, it suffices to have f(A) open and f one-to-one on the open set A. It is important to note how f^{-1} depends on the choice of A. If B another open set and $h: f(B) \to B$ is an inverse for f on B, then on $A \cap B$, h and g agree. So changing the set A may change the domain of f^{-1} but not the value of $f^{-1}(\mathbf{x})$ for any point \mathbf{x} .

Definition 2. If $S \subseteq \mathbb{R}^n$ is open, then $g: S \to \mathbb{R}^m$ is Lipschitz if there is a constant K so that

$$||g(\mathbf{w}) - g(\mathbf{y})|| \le K||\mathbf{w} - \mathbf{y}||.$$

We will need the following result:

Proposition 3. Linear transformations are Lipschitz. That is, for a linear transformation $L: \mathbb{R}^n \to \mathbb{R}^m$, there is M > 0 so that, for all $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$,

$$||L\mathbf{x} - L\mathbf{y}|| \le M||\mathbf{x} - \mathbf{y}||.$$

We also need the following result:

Proposition 4. Let $S \subseteq \mathbb{R}^n$ is open. If function $f: S \to \mathbb{R}$ is continuous and $T \subseteq S$ is a closed and bounded set, then f attains its maximum and minimum on T. That is, there is $t_0, t_1 \in T$ so that, for all $t \in T$,

$$f(t_0) \le f(t) \le f(t_1).$$

Note that f does not need to have an inverse function for $f^{-1}(V)$ to make sense.

Theorem 5 (Local Invertibility). Let $S \subseteq \mathbb{R}^n$ is open, $\mathbf{a} \in S$, and $f: S \to \mathbb{R}^n$ is C^1 . If $df_{\mathbf{a}}$ is invertible, then f is locally invertible around \mathbf{a} and f^{-1} is Lipschitz.

Lemma 6. With the same hypotheses as the theorem, there are $\epsilon, c > 0$ so that, for all $\mathbf{x}, \mathbf{z} \in B_{\epsilon}(\mathbf{a})$,

(7)
$$||f(\mathbf{x}) - f(\mathbf{z})|| \ge c||\mathbf{x} - \mathbf{z}||.$$

and, for all $\mathbf{x} \in B_{\epsilon}(\mathbf{a})$, $df_{\mathbf{x}}$ is invertible.

Proof of Local Invertibility Theorem. Using the lemma, observe that for $\mathbf{x}, \mathbf{z} \in B_{\epsilon}(\mathbf{a})$ with $\mathbf{x} \neq \mathbf{z}$,

$$||f(\mathbf{x}) - f(\mathbf{z})|| \ge c||\mathbf{x} - \mathbf{z}|| > 0$$

and so $f(\mathbf{x}) \neq f(\mathbf{z})$, i.e. f is one-to-one on $B_{\epsilon}(\mathbf{a})$. Thus, there is a function $f^{-1}: f(B_{\epsilon}(\mathbf{a})) \to B_{\epsilon}(\mathbf{a})$. Moreover, for $\mathbf{w}, \mathbf{y} \in f(B_{\epsilon}(\mathbf{a}))$, there are $\mathbf{x}, \mathbf{z} \in B_{\epsilon}(\mathbf{a})$ with $\mathbf{w} = f(\mathbf{x})$ and $\mathbf{y} = f(\mathbf{z})$. Using (7),

$$\|\mathbf{w} - \mathbf{y}\| \ge c \|f^{-1}(\mathbf{w}) - f^{-1}(\mathbf{y})\|.$$

This shows f^{-1} is Lipschitz (with constant 1/c) and so is continuous.

To see that $f(B_{\epsilon}(\mathbf{a}))$ is open, fix \mathbf{v} in this set. There is $\mathbf{x} \in B_{\epsilon}(\mathbf{a})$ with $f(\mathbf{x}) = \mathbf{v}$. Choose s > 0 so that $\overline{B_s(\mathbf{x})}$ is contained in $B_{\epsilon}(\mathbf{a})$. Then $S = \{\mathbf{y} : \|\mathbf{y} - \mathbf{x}\| = s\}$, the boundary of $\overline{B_s(\mathbf{x})}$, is a closed and bounded set. Since f is continuous, the image, f(S), is also closed and bounded. By the proposition, there is $\mathbf{y}_0 \in S$ so that the function $\mathbf{z} \mapsto \|f(\mathbf{z}) - \mathbf{v}\|$ attains its minimum. That is, for all $\mathbf{y} \in S$,

$$||f(\mathbf{y}) - \mathbf{v}|| \ge ||f(\mathbf{y}_0) - \mathbf{v}||.$$

As f is one-to-one, v is not in f(S); so $d = ||f(\mathbf{y}_0) - \mathbf{v}|| > 0$.

We shall show that $B_{d/2}(\mathbf{v})$ is contained in $f(B_{\epsilon}(\mathbf{a}))$. Let $\mathbf{u} \in B_{d/2}(\mathbf{v})$ and define a function on $\overline{B_s(\mathbf{x})}$ by

$$g(\mathbf{y}) = ||f(\mathbf{y}) - \mathbf{u}||^2 = (f(\mathbf{y}) - \mathbf{u}) \cdot (f(\mathbf{y}) - \mathbf{u}).$$

Observe that g is C^1 because f is and by previous work

$$Dg_{\mathbf{y}}(\mathbf{h}) = 2(Df_{\mathbf{y}})(\mathbf{h}) \cdot (f(\mathbf{y}) - \mathbf{u}).$$

Since $\overline{B_s(\mathbf{x})}$ is a closed and bounded set and g is continuous, the proposition guarantees that g attains its minimum value. Observe that at every point of S,

$$g(\mathbf{y}) = ||f(\mathbf{y}) - \mathbf{u}||^2 \ge (||f(\mathbf{y}) - \mathbf{v}|| - ||\mathbf{v} - \mathbf{u}||)^2 \ge \left(d - \frac{d}{2}\right)^2 = \frac{d^2}{4},$$

while

$$g(\mathbf{x}) = \|\mathbf{v} - \mathbf{u}\|^2 < \frac{d^2}{4}.$$

Hence the minimum of g occurs at some interior point \mathbf{y}_0 . So by previous work, $Dg(\mathbf{y}_0) = 0$. But $df(\mathbf{y}_0)$ is invertible by the lemma, so $f(\mathbf{y}_0) - \mathbf{u} = 0$; that is, $f(\mathbf{y}_0) = \mathbf{u}$. Therefore $f(B_{\epsilon}(\mathbf{a}))$ is open.

Proof of Lemma. Let $T=(df_a)^{-1}$. By the proposition above, there is M>0 so that

$$||T\mathbf{u} - T\mathbf{v}|| \le M||\mathbf{u} - \mathbf{v}||.$$

Letting $\mathbf{u} = T^{-1}(\mathbf{x} - \mathbf{a})$ and $\mathbf{v} = T^{-1}(\mathbf{y} - \mathbf{a})$, (so $\mathbf{u} = df_{\mathbf{a}}(\mathbf{x} - \mathbf{a})$), we have

$$||df_{\mathbf{a}}(\mathbf{x} - \mathbf{a}) - df_{\mathbf{a}}(\mathbf{y} - \mathbf{a})|| \le \frac{1}{M} ||\mathbf{x} - \mathbf{y}||.$$

Define $E: S \to \mathbb{R}^n$ by $E(\mathbf{x}) = f(\mathbf{x}) - f(\mathbf{a}) - df_{\mathbf{a}}(\mathbf{x} - \mathbf{a})$. Since f is C^1 and linear transformations are infinitely differentiable, E is C^1 . Notice that

$$dE_{\mathbf{a}}(\mathbf{h}) = df_{\mathbf{a}}(\mathbf{h}) - df_{\mathbf{a}}(\mathbf{h}) = 0.$$

In particular, if $E=(E_1,\ldots,E_n)$, then by the continuity of $d(E_i)_{\mathbf{a}}$ there is some $\epsilon>0$ so that

$$||d(E_i)_{\mathbf{z}}|| \le \frac{1}{2M\sqrt{n}},$$

for $i = 1, \ldots, n$ and all $\mathbf{z} \in B_{\epsilon}(\mathbf{a})$.

Suppose that $\mathbf{x}, \mathbf{z} \in B_{\epsilon}(\mathbf{a})$. Then, for each i, by Taylor's Theorem with linear remainder term, there is $\mathbf{c}_i \in L[\mathbf{x}, \mathbf{z}] \subset B_{\epsilon}(\mathbf{a})$ so that

$$|E_i(\mathbf{x}) - E_i(\mathbf{z})| = |d(E_i)_{\mathbf{c}_i}(\mathbf{x} - \mathbf{z})| \le \frac{1}{2M\sqrt{n}} ||\mathbf{x} - \mathbf{z}||.$$

and so

$$||E(\mathbf{x}) - E(\mathbf{z})||^2 = \sum_{i=1}^n |E_i(\mathbf{x}) - E_i(\mathbf{z})|^2$$

$$\leq \sum_{i=1}^n \left(\frac{1}{2M\sqrt{n}}\right)^2 ||\mathbf{x} - \mathbf{z}||^2$$

$$= \left(\frac{1}{2M}\right)^2 ||\mathbf{x} - \mathbf{z}||^2.$$

Thus, $||E(\mathbf{x}) - E(\mathbf{z})|| \le ||\mathbf{x} - \mathbf{z}||/(2M)$.

As
$$f(\mathbf{x}) - f(\mathbf{z}) = E(\mathbf{x}) - E(\mathbf{z}) - (df_{\mathbf{a}}(\mathbf{x} - \mathbf{a}) - df_{\mathbf{a}}(\mathbf{z} - \mathbf{a})),$$

$$\|f(\mathbf{x}) - f(\mathbf{z})\| \ge \|df_{\mathbf{a}}(\mathbf{x} - \mathbf{a}) - df_{\mathbf{a}}(\mathbf{z} - \mathbf{a})\| - \|E(\mathbf{x}) - E(\mathbf{z})\|$$

$$\ge \frac{1}{M} \|\mathbf{x} - \mathbf{z}\| - \frac{1}{2M} \|\mathbf{x} - \mathbf{z}\| = \frac{1}{2M} \|\mathbf{x} - \mathbf{z}\|.$$

The proves (7) with c = 1/(2M).

Finally, to see that $df_{\mathbf{x}}$ in invertible for each $\mathbf{x} \in B_{\epsilon}(\mathbf{a})$, observe that

$$dE_{\mathbf{x}}(\mathbf{z} - \mathbf{x}) = df_{\mathbf{x}}(\mathbf{z} - \mathbf{x}) - df_{\mathbf{a}}(\mathbf{z} - \mathbf{x}).$$

If there was \mathbf{z} so that $df_{\mathbf{x}}(\mathbf{z} - \mathbf{x}) = 0$, then $dE_{\mathbf{x}}(\mathbf{z} - \mathbf{x}) = -df_{\mathbf{a}}(\mathbf{z} - \mathbf{x})$. On the other hand, we have that

$$||df_{\mathbf{a}}(\mathbf{z} - \mathbf{x})|| \ge \frac{1}{M} ||\mathbf{z} - \mathbf{x}||, \qquad ||dE_{\mathbf{x}}(\mathbf{z} - \mathbf{x})|| \le \frac{1}{2M} ||\mathbf{z} - \mathbf{x}||.$$

This contradiction shows that df_x must be invertible.

Recall that we proved that a function g is differentiable at \mathbf{c} if and only if there is a linear transformation L and a function ϵ so that $\lim_{\mathbf{x}\to\mathbf{c}}\epsilon(\mathbf{x})=0$ and

$$g(\mathbf{x}) = g(\mathbf{c}) + L(\mathbf{x} - \mathbf{c}) + \epsilon(\mathbf{x}) \|\mathbf{x} - \mathbf{c}\|.$$

In this case, L is $dq_{\mathbf{c}}$.

Theorem 8 (Inverse Function Theorem). Let $S \subseteq \mathbb{R}^n$ be open, $\mathbf{a} \in S$, and $f: S \to \mathbb{R}^n$ is C^1 . If $df_{\mathbf{a}}$ is invertible, then f^{-1} is differentiable at $\mathbf{b} = f(\mathbf{a})$ and

$$d(f^{-1})_{\mathbf{b}} = (df_{f^{-1}(\mathbf{b})})^{-1}.$$

Proof. Since f is differentiable at a, there is a function $\epsilon: S \to \mathbb{R}^n$ with $\lim_{\mathbf{x} \to \mathbf{a}} \epsilon(\mathbf{x}) = 0$ and

$$f(\mathbf{x}) = f(\mathbf{a}) + df_{\mathbf{a}}(\mathbf{x} - \mathbf{a}) + \epsilon(\mathbf{x}) \|\mathbf{x} - \mathbf{a}\|.$$

Since f is locally invertible around a, there is some open set A containing a on which f is one-to-one and f^{-1} is Lipschitz on the open set f(A).

For $\mathbf{x} \in A$, there is $\mathbf{y} \in f(A)$ with $\mathbf{x} = f^{-1}(\mathbf{y})$. Using this and $\mathbf{a} = f^{-1}(\mathbf{b})$, we have

$$f(f^{-1}(\mathbf{y})) = f(f^{-1}(\mathbf{b})) + df_{\mathbf{a}}(f^{-1}(\mathbf{y}) - f^{-1}(\mathbf{b})) + \epsilon(f^{-1}(\mathbf{y})) \|f^{-1}(\mathbf{y}) - f^{-1}(\mathbf{b})\|.$$

Using the inverse function identities and moving b over, we have

$$\mathbf{y} - \mathbf{b} = df_{\mathbf{a}}(f^{-1}(\mathbf{y}) - f^{-1}(\mathbf{b})) + \epsilon(f^{-1}(\mathbf{y})) \|f^{-1}(\mathbf{y}) - f^{-1}(\mathbf{b})\|.$$

Applying $(df_a)^{-1}$ to this equation and using the linearity of $(df_a)^{-1}$, we have

$$(df_{\mathbf{a}})^{-1}(\mathbf{y} - \mathbf{b}) = f^{-1}(\mathbf{y}) - f^{-1}(\mathbf{b}) + (df_{\mathbf{a}})^{-1}(\epsilon(f^{-1}(\mathbf{y}))) \|f^{-1}(\mathbf{y}) - f^{-1}(\mathbf{b})\|.$$

Then we can rearrange the previous equation to obtain

$$f^{-1}(\mathbf{y}) = f^{-1}(\mathbf{b}) + (df_{\mathbf{a}})^{-1}(\mathbf{y} - \mathbf{b}) + \eta(\mathbf{y}) \|\mathbf{y} - \mathbf{b}\|.$$

if we define a new function η on f(A) by letting $\eta(\mathbf{b}) = 0$ and otherwise

$$\eta(\mathbf{y}) = \frac{-(df_{\mathbf{a}})^{-1}(\epsilon(f^{-1}(\mathbf{y}))) \|f^{-1}(\mathbf{y}) - f^{-1}(\mathbf{b})\|}{\|\mathbf{y} - \mathbf{b}\|}.$$

To show that f^{-1} is differentiable at b and $d(f^{-1})_b$ is $(df_a)^{-1}$, it suffices to show that

$$\lim_{\mathbf{y} \to \mathbf{b}} \eta(\mathbf{y}) = 0.$$

As f^{-1} is Lipschitz, there is a constant K > 0 so that

$$\frac{\|f^{-1}(\mathbf{y}) - f^{-1}(\mathbf{b})\|}{\|\mathbf{y} - \mathbf{b}\|} \le K$$

for all $y \in f(A)$. So it suffices to prove that

$$\lim_{\mathbf{y}\to\mathbf{b}} -(df_{\mathbf{a}})^{-1}(\epsilon(f^{-1}(\mathbf{y}))) = 0.$$

Now, as $\mathbf{y} \to \mathbf{b}$, $f^{-1}(\mathbf{y}) \to f^{-1}(\mathbf{b}) = \mathbf{a}$. By our choice of the function ϵ , as $f^{-1}(\mathbf{y}) \to \mathbf{a}$, $\epsilon(f^{-1}(\mathbf{y})) \to 0$. Since the linear transformation $(df_{\mathbf{a}})^{-1}$ is continuous, we have the claimed limit. This concludes the proof.

Corollary 9. f^{-1} is C^1 on its domain.

This is very rough. Notice first that since f^{-1} is uniquely defined on its domain, call it A, f is locally invertible at each point of A. By the lemma, we may assume $df_{\mathbf{a}}$ is invertible for each $\mathbf{a} \in A$. By the inverse function theorem, we have that $d(f^{-1})_{\mathbf{b}} = (df_{f^{-1}(\mathbf{b})})^{-1}$ for each $\mathbf{b} \in f(A)$.

To see that this function is continuous, observe first that f^{-1} is continuous; second, that the map $\mathbf{x} \mapsto df_{\mathbf{x}}$ is continuous; and third, that matrix inversion is continuous. As a composition of three continuous operations, $d(f^{-1})_{\mathbf{b}}$ is a continuous function of \mathbf{b} .