Durée: 01h45

L'usage da la calculatrice et du mobile est interdit.

N.B.

E.S.I.

- 1- Il sera tenu compte de la présentation de la copie.
- 2- Les réponses doivent être justifiées.
- 3- Le barème est approximatif.

Exercice 1 : (10 pt) Soient $m \in \mathbb{R}$ et f_m une application linéaire de \mathbb{R}^3 dans $\mathbb{R}_2[X]$ dont la matrice associée relativement aux bases canoniques, respectives $B = (e_1, e_2, e_3)$ et $C = (1, X, X^2)$ de \mathbb{R}^3 et $\mathbb{R}_2[X]$, est donnée par :

$$A_m = \left(egin{array}{ccc} 1 & m & m \\ 2 & 2 & m+1 \\ m & 1 & m \end{array}
ight).$$

Dans tout l'exercice, il n'est pas demandé de déterminer f_m .

- 1/ Calculer suivant les valeurs du paramètre m, ker (f_m) , Im (f_m) et $rg(f_m)$.
- 2/ Déterminer les valeurs de m pour lesquelles A_m est inversible.

Dans toute la suite de l'exercice, on pose $A = A_{-1}$ et $f = f_{-1}$.

- 3/ En déduire que A est inversible puis calculer son inverse.
- 4/ Soit $C' = (P_1 = 1, P_2 = X 1, P_3 = (X 1)^2)$ une base de $\mathbb{R}_2[X]$ et soient v = (1, -1, 1) et $Q = 1 + X + X^2$.

En utilisant la représentation matricielle :

- \mathbf{a} / Calculer f(v).
- **b**/ Déterminer la matrice de passage P de C vers C'.
- \mathbf{c} Calculer les coordonnées du vecteur Q dans la base C'.
- **d**/ Déterminer la matrice $A' = M_{B,C'}(f)$.
- e/ Dire pourquoi A' est inversible puis calculer son inverse.
- f/ Les matrices A et A' sont-elles équivalentes? Justifier.

Exercice 2 : (02 pt+03 pt) Les parties (I) et (II) sont indépendantes.

- I/ Soit la permutation $\sigma \in S_8$ définie par : $\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 5 & 7 & 2 & 4 & 1 & 6 & 8 & 3 \end{pmatrix}$.
- 1/ Décomposer σ en un produit de transpositions.
- 2/ Déduire :
 - **a**/ La signature de σ .
 - **b**/ La décomposition de σ^{-1} en un produit de transpositions, puis la signature de σ^{-1} .
- II/ Soit φ la forme trilinéaire alternée définie de $\mathbb{R}^3 \times \mathbb{R}^3 \times \mathbb{R}^3$ dans \mathbb{R} par $\varphi(e_1, e_2, e_3) = -2$, (e_1, e_2, e_3) étant la base canonique de \mathbb{R}^3 , et soit $v_1 = (1, 1, 1), v_2 = (1, -1, 1)$ et $v_3 = (-1, 1, 1)$ des vecteurs de \mathbb{R}^3 .
- 1/ Calculer $\varphi(v_1, v_2, v_3)$.
- **2**/ Calculer $\varphi(2v_3, v_1 v_2, v_1 v_3)$.

Bon Courage