MAT – 450: Advanced Linear Algebra Homework 5

Instructor: Thomas R. Cameron

Due: 4/6/2018

Instructions

There has been some discussion in class regarding the direct sum, and the null space and range of a linear operator. This small homework assignment is intended to clarify our discussion and give you a stronger understanding of the details.

Problem 1. Let V be a finite-dimensional inner product space and $T \in \mathcal{L}(V)$.

- a. Suppose that $T = T^*$ and show that $V = R(T) \oplus N(T)$.
- b. Suppose that R(T) and N(T) are non-trivial sets. If $V = R(T) \oplus N(T)$ is it necessary that $T = T^*$. If not, then provide a counterexample.
- c. Provide an example where $V = \mathbb{R}^2$ is the direct sum of R(T) and N(T), but $N(T) \neq R(T)^{\perp}$. As a connection to part b., note that in this case it is not possible for $T = T^*$.
- d. Prove that there exists a $k \in \mathbb{N}$ such that $V = R(T^k) \oplus N(T^k)$.