مبانی بینایی کامپیوتر

تمرین نهم

نیکی نزاکتی 98522094

Original Image with padding

10	10	10	10	10	10	10	10	10	10
10	10	10	10	20	10	10	20	10	10
10	10	20	20	20	20	20	20	10	30
10	10	10	10	20	10	20	20	10	30
10	10	10	20	30	10	20	30	10	10
10	10	10	30	10	10	30	10	20	30
20	20	10	30	10	30	20	20	10	30
20	20	20	20	20	20	10	20	10	10
20	20	20	30	20	10	30	10	30	30
20	20	20	30	20	20	20	20	30	30

Erosion

10	10	10	10	10	10	10	10
10	10	10	10	10	10	10	10
10	10	10	10	10	10	10	10
10	10	10	10	10	20	10	10
10	10	10	10	10	10	10	10
10	10	10	10	10	10	10	10
10	10	10	10	10	10	10	10
20	20	30	20	10	10	10	10

Dilation

10	10	20	20	10	10	20	10
10	20	20	20	20	20	20	10
10	10	10	20	10	20	20	30
10	10	20	30	30	20	30	30
20	20	30	30	30	30	30	30
20	10	30	10	30	20	20	10
20	30	30	30	30	30	30	30
20	20	30	30	20	30	30	30

.2

برای استخراج مرز تصویر از ۴ کرنل زیر استفاده میکنیم.

0	-1	0
0	1	0
0	0	0

0	0	0
-1	1	0
0	0	0

0	0	0
0	1	0
0	-1	0

0	0	0
0	1	-1
0	0	0

روی تصویر با هرکدام از عناصر بالا hit or miss اعمال کرده و نتایج را با یکدیگر or میکنیم. نتیجه نهایی به صورت زیر خواهد بود:

.3

برای استخراج اسکلت تصاویر با ایجاد گذرهای متوالی از تصویر، پیکسل ها در حاشیه اشیا را حذف میکنیم و تا زمانی ادامه می دهیم که دیگر پیکسل ها قابل حذف نباشند. این کار را به کمک سایش و افزایش های متوالی به دنبال or کردن انجام می دهیم تا تصویر حاصل از فرسایش پیکسلی با مقدار یک نداشته باشد.

خروجی:

.4

برای تشخیص تصاویر ابتدا تصویر سیاه و سفید شده را denoise میکنیم و با کمک توابع مورفولوژی خطوط بین جاده را از بین می بریم.

gray = cv2.cvtColor(result, cv2.COLOR_BGR2GRAY)
blur = cv2.GaussianBlur(gray,(5,5),0)
dilated = cv2.dilate(blur,np.ones((3,3)))
kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (2, 2))
closing = cv2.morphologyEx(dilated, cv2.MORPH_CLOSE, kernel)

سپس با threshold عکس را باینری کرده و کانتورهای آن را پیدا میکنیم.

thresh = cv2.threshold(closing, 100, 255, cv2.THRESH_BINARY)[1] cnts, _ = cv2.findContours(thresh.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN APPROX SIMPLE)

Resources:

https://www.geeksforgeeks.org/

https://docs.opencv.org/

https://towardsdatascience.com/

4 تمرین نهم