We denote by S(i) and T(i) left and right partial sums of the array:

$$S(i) = \sum_{k=1}^{i} a_k, \qquad T(j) = \sum_{k=1}^{j} a_{n+1-k}.$$

We also denote by $i_1 < i_2 < \dots$ all indexes corresponding to positive left sums: $S(i_\alpha) > 0$, and similarly $j_1 < j_2 < \dots, T(j_\beta) > 0$.

The main idea of algorithm is directly check all three cases of positive parts.

Proposition 1. Case (+; *; +) takes place iff $i_1 + j_1 < n$.

Proof. Left plus corresponds to partial sum $S(i_{\alpha})$ for some α . Right plus corresponds to $T(j_{\beta})$ for some beta. So

$$i_1 + j_1 \le i_\alpha + j_\beta < n.$$

First part of algorithm:

- 1. Find i_1 and j_1 by calculating left and right partial sums,
- 2. If both exist and $i_1 + j_1 < n$, then return i_1 and $n j_1$ as indexes of cuts.

Proposition 2. Case (+;+;*) takes plase iff

$$S(i_{\alpha}) < S(i_{\alpha+1}) \tag{*}$$

for some α .

Proof. If the inequality (*) holds, then evidently we can make cuts on indexes i_{α} , $i_{\alpha+1}$. And conversely, if cuts exist, they are made on some indexes $i_p < i_q$, so $S(i_p) < S(i_q)$, and (*) holds for some α between p and q.

Second part of algorithm:

- 3. Remember current values of index and partial sum,
- 4. Continue calculation of left partial sums S(i) and find next positive,
- 5. If it is greater than previous return both indexes,
- 6. Repeat steps 3-5 till the end of array.

Optionally this part can be written in code:

$$x = y = i_1; X = Y = S(i_1);$$

while(1):
 $do\{ y + +; Y + = a_y; \}$ while($Y <= 0 \text{ and } y < n$);
 $if(y == n)$ break;
 $if(X < Y)$ return x, y ;
 $X = Y; x = y$;

If we achieved end of array, then the third case (*,+,+) takes place. Repeat steps 3-6 for right partial sums T(i).

Complexity is O(n): we have twice passed along the whole array, and at each step number of calculations was constant.