Section 2.3 Worked examples in notes

Example 1

Find *M* such that

$$\left|\frac{e^z + \cos(z)}{z + 6}\right| \le M$$

for all z with |z| = 1.

Example 2

Find the zeroes of cos(z)

Section 2.4: Complex Logarithm

Logs for real numbers

For a real number x, $e^x > 0$, and $ln(x) : (0, \infty) \to \mathbb{R}$ is defined to be its inverse function, i.e., ln(x) is *defined* by

$$e^{\ln(x)} = x$$
 $\ln(e^x) = x$

Complex case: defining log

We have defined $e^{x+iy} = e^r \left[\cos(x) + i \sin(y) \right]$ and so the codomain of the complex exp is $\mathbb{C} \setminus \{0\}$. We want to define log to be the inverse function, but exp isn't one-to-one, so log won't be a function!

Example

log(1) could be $0, 2\pi i, 4\pi i, -2\pi, -56834756380\pi i \cdots$

Real and imaginary parts of log:

For $z = re^{i\theta}$, the real and imaginary parts of log are interesting.

$$\log(z) = \log(re^{i\theta}) = \ln(r) + i\theta$$

So Re(log(z)) = ln(r) = ln(|z|) is well defined.

$$Im(\log(z)) = \theta + 2\pi n = \arg(z)$$

Example

Find all values of $\log(-1-i)$.

Section 3: Simple integrals of complex valued functions

In MAS211, you did line integrals of real functions f(x, y) along a curve in the plane \mathbb{R}^2 . Complex line integrals aren't any harder.

Parametric curves

IN MAS211, you parametrized curves in \mathbb{R}^2 by

$$x = x(t)$$
 $y = y(t)$ $a \le t \le b$

In the complex plane, we write things slightly differently, since z = x + iy:

$$z = z(t) = x(t) + iy(t)$$
 $a \le t \le b$

Example (Unit circle)

In \mathbb{R}^2 , we can parameterize the unit circle by

$$x(t) = \cos(t)$$
 $y(t) = \sin(t)$ $0 \le t \le 2\pi$

In \mathbb{C} , we can write this more compactly with Euler's theorem:

$$z(t) = e^{it} = \cos(t) + i\sin(t) \quad 0 \le t \le 2\pi$$

Vocabulary: Types of curves

Definition (A curve)

A curve γ is a continuously differentiable complex-valued function z of a real variable t on [a, b].

Definition (A path)

A path is a finite union of curves, joined successively at end points.

Definition (Contour)

A contour is a path whose final point is the same as the initial point. A contour is simple if it has no self-intersection.

Important examples of paths. How to parameterize?

- $ightharpoonup C_r(a)$ the circle of radius r around a
- ▶ The straight line segment from z_0 to z_1

Line integrals: Definition is chain/rule u-substitution

Definition (3.3 in Notes; need to use, not quote)

Let f be continuous on a region containing the path γ . Let γ be given by $z=z(t), a \leq t \leq b$. Then

$$\int_{\gamma} f(z) dz := \int_{a}^{b} f(z(t))z'(t) dt$$

What about the fact that it's complex?

Just use linearity of integrals to turn it into real integrals! If g = Re f and h = Im(f) then

$$\int_a^b f(t)dt = \int_a^b g(t) + ih(t)dt = \int_a^b g(t)dt + i\int_a^b g(t)dt$$

Basic properties of line integrals

Basic properties – analogous to usual integrals

One other fact

The length of curve γ , parametrized by $z:[a,b]\to\mathbb{C}$ is calculated similarly as

$$\int_a^b |z'(t)| \mathrm{d}t$$