CUADROS LAB 3

Luis Alberto Sánchez Moreno Colque

May 3, 2018

Abstract

Aquí se haran la comparación de tiempo en mutex y busy waiting y el uso de phtread

1 Busy waiting y Mutex

El mutex es mejor porque al momento de hacer las operaciones no lo hace de forma ordenada si no cuando termina cada thread continua otro y no espera

Table 4.1 Run-Times (in Seconds) of π Programs Using $n=10^8$ Terms on a System with Two Four-Core Processors					
Threads	Busy-Wait	Mutex			
1	2.90	2.90			
2	1.45	1.45			
4	0.73	0.73			
8	0.38	0.38			
16	0.50	0.38			
32	0.80	0.40			
64	3.56	0.38			

2 Tiempo en Listas Enlazadas con Mutex

en el READ and Write es mas rapido porque mientras lee se pone cada pthread y va leyendo y escribiendo

Table 4.3 Linked List Times: 1000 Initial Keys, 100,000 ops, 99.9% Member, 0.05% Insert, 0.05% Delete						
	Number of Threads					
Implementation	1	2	4	8		
Read-Write Locks One Mutex for Entire List One Mutex per Node	0.213 0.211 1.680	0.123 0.450 5.700	0.098 0.385 3.450	0.115 0.457 2.700		

Table 4.4 Linked List Times: 1000 Initial Keys, 100,000 ops, 80% Member, 10% Insert, 10% Delete

Number of Threads

	Number of Threads			
Implementation	1	2	4	8
Read-Write Locks	2.48	4.97	4.69	4.71
One Mutex for Entire List	2.50	5.13	5.04	5.11
One Mutex per Node	12.00	29.60	17.00	12.00

3 Phtreads en matrix vector

Table 4.5 Run-Times and Efficiencies of Matrix-Vector Multiplication (times are in seconds) **Matrix Dimension** 0.393 1.000 0.345 1.000 0.441 1.000 2 0.217 0.906 0.188 0.918 0.300 0.735 4 0.139 0.707 0.115 0.750 0.3880.290

References

[1] Book. an introduction to parallel programming, nov 2011.