İleri Seviyede PostgreSQL Yönetimi

Devrim GÜNDÜZ
PostgreSQL Geliştiricisi
PostgreSQL DBA @ Markafoni
devrim@gunduz.org

devrim@postgresql.org[.tr]
http://twitter.com/devrimgunduz

İleri Seviyede PostgreSQL Yönetimi

Bu seminer 1 saatte bitmez sanıyorum; 3 saatlik seminer slotu istiyoruz! :)

Aklıma gelmişken...

 Markafoni'de çalışmak ister misiniz? Java, Python, Django, PostgreSQL gibi sözcüklerden birisi ya da birden fazlası sizin için anlamlı ise ik@markafoni.com adresine özgeçmişlerinizi gönderebilirsiniz.

- 1. PostgreSQL yönetim temelleri
- 2. Donanim
- 3. İşletim sistemi
- 4. PostgreSQL bileşenleri
 - 1. Bellek kullanımı
 - 2. Bgwriter
 - 3. Checkpoint
 - 4. İstatistiklerin kullanımı
 - 5. Autovacuum

- 1. PostgreSQL yönetim temelleri
- 2. Donanım
- 3. Isletim sistemi
- 4.
- . Ве
- 2. Bgwriter
- 3. Checkpoint
- 4. İstatistiklerin kullanımı
- 5. Autovacuum

PostgreSQL yönetimi temelleri

- Sistem yönetimi
- Donanım bilgisi
- Network bilgisi
- •
- Veritabanı yönetimi

PostgreSQL yönetimi temelleri

- Tüm ekip ile beraber çalışabilme
- Teknolojileri düzgün takip etme

•

- 1. PostgreSQL yönetim temelleri
- 2. Donanim
- 3. Isletim sistemi
- 4.
- **1.** Bellek kullanımı
- 2. Bgwriter
- 3. Checkpoint
- 4. İstatistiklerin kullanımı
- 5. Autovacuum

PostgreSQL Donanımı

- Genel kural: Üretim ortamı yükleri gerçekten hiçbir şekilde kestirilmez.
- Donanım planlaması yapmak bu açıdan zordur.
- Donanım alırken ilerisini de düşünerek hareket etmek gerekli.

PostgreSQL donanımı

- I/O
 - En önemli sorun
 - Veritabanları I/O bağımlısıdır.
- RAID!
 - RAID 0
 - RAID 1
 - RAID 5
 - RAID 10
- Donanımsal ve yazılımsal RAID

PostgreSQL Donanımı

- BBU (Battery Backed Unit)
 - Olmazsa olmaz
 - Arttırılmış başarım
 - Arttırılmış veri güvenliği
- RAID kartları
 - HP P400 ve üzeri (400, 410 ve 800)
 - LSI

PostgreSQL Donanımı

- Disk
 - Bitmeyen tartışma: SATA ve SAS
 - Para mutluluk getirir :-)
 - 6 Gbit'lik SAS diskler ile sırt ağrılarına son.
- Fiber? ISCSI?
- DAS ve SAN

PostgreSQL donanımı

İşlemci

- 64 bit!
- Giriş kapısını geniş tutun: Cache
- Bol miktarda core
- RAM
 - Evdeki makinamda 8, işyerindekinde de 16 GB RAM var.
 - RAM ucuz. Bol bol alın.
- Anahtar kural: Bilgiyi işlemcinin yakınında tutun.

- 1. PostgreSQL yönetim temelleri
- 2. Donanım
- 3. İşletim sistemi
- 4.
- **1.** Bellek kullanımı
- 2. Bgwriter
- 3. Checkpoint
- 4. İstatistiklerin kullanımı
- 5. Autovacuum

İşletim Sistemi

- İşletim sistemi seçim kriterleri
 - Kurumsal destek
 - 64 bit
 - Uzun süreli destek

İşletim sistemi

- Linux!
 - RHEL/CentOS
 - Ubuntu LTS/Debian
 - SLES
- Solaris bir başka alternatif.
- Üretim ortamında Windows, Ubuntu, Fedora ve OpenSuSE'den uzak durmak iyi olacaktır.

İşletim sistemi

- Scheduler
 - deadline scheduler şu anda çok dedicated ortamlarda daha iyi başarım sunuyor.
 - cfq ise paylaşılmış ortamlarda iyi bir denge sağlıyor.
 - grub.conf: elevator=deadline

Dosya sistemi seçimi

- Linux size birçok alternatif sunuyor.
- Ext2, ext3, ext4 ve diğerleri.
- Partitioning
 - Xloglar mutlaka ayrı bir diskte olmalıdır. Sıralı yazma ve okuma başarımı önemlidir.
 - Data ayrı bir disk grubuna gitmelidir.
 Raslansal olarak yazma ve okuma hızlı olmalıdır.
 - Yoğun ortamlarda indexler ayrı disklere gidebilir.

Dosya sistemi

- Xloglar ext2 olabilir. Xlogların zaten kendisi journal'dır. Bu sayede %40 başarım artışı sağlarsınız. xcloglar RAID1 olmalıdır. SATA kullanıyorsanız 4 disk ile RAID 10 yapıp başarım dertlerini çözebilirsiniz.
- Eğer BBU varsa data için data=writeback kullanın, başarım artsın.
- Hadi benchmark görelim :)

- 1. PostgreSQL yönetim temelleri
- 2. Donanim
- 3. İsletim sistemi
- 4. PostgreSQL bileşenleri
 - 1. Bellek kullanımı
 - 2. Bgwriter
 - 3. Checkpoint
 - 4. İstatistiklerin kullanımı
 - 5. Autovacuum

- Bellek kullanan 3 yer var:
 - Bakım işlemleri (maintenance_work_mem)
 - Shared buffer (shared_memory)
 - Çalışma anında sorgu bazlı kullanılan bellek (work mem)

- Shared memory ayrıntıları
 - Shmmax!
 - İdeal değer ve yüksek shared_buffers sorunları
- work mem
 - ORDER BY, DISTINCT, aggregateler, hash join
 - Dikkat: Her işlem için bu bellek ayrı ayrı kullanılacaktır.
 - İdeal ayar
 - log_temp_files (8.3+)

- Örnek bir log_temp_files çıktısı:
- Mar 5 06:00:04 dbhost postgres[21556]: [16-1] user=xxx,db=xxx LOG: temporary file: path "base/pgsql_tmp/pgsql_tmp21556.0", size 146538496
- Bu sorgular için work_mem özel olarak ayarlanmalıdır:
 SET work_mem TO '150MB';
 SELECT ...

 EXPLAIN ANALYZE ile work_mem analizi yapabilirsiniz.

Örnek:

Sort Method: **external merge** Disk:

15672kB

ya da

Sort method: quicksort

Memory:1826Kb

- maintenance_work_mem
 - CREATE INDEX, VACUUM, ALTER TABLE ADD FOREIGN KEY
 - İdeal değer?
 - Autovacuum'a dikkat!

- 1. PostgreSQL yönetim temelleri
- 2. Donanim
- 3. İsletim sistemi
- 4. PostgreSQL bileşenleri
 - 1.
 - 2. Bgwriter
 - 3. Checkpoint
 - 4. İstatistiklerin kullanımı
 - 5. Autovacuum

- Background writer
- Dirty buffer kavramı
- Yararları:
 - Sunucu süreçlerinin daha az dirty buffer temizleyecek olmaları
 - Daha az ve yumuşak checkpoint baskısı
- Olumsuz tarafı: Sürekli ve düzenli bir I/O baskısı çıkartması
- Olumsuz mu demiştik? Aslında değil.

- Bgwriter parametreleri:
 - bgwriter_delay
 - bgwriter_Iru_maxpages
 - bgwriter_Iru_multiplier

- Kullanılan I/O'yu hesaplamak:
- 1000 / bgwriter_delay *
 bgwriter_lru_maxpages * 8192 =
 Kullanılan I/O (byte cinsinden)
- Öntanımlı değerlerle:
 1000/200*100*8192 = 4MB
- Bu hesap %100 doğru değildir. Ancak %100'e yakındır.

- pg_stat_bgwriter (8.3+)
 - checkpoints_timed
 - checkpoints_req
 - checkpoint_timeout
 - buffers_checkpoint
 - buffers_clean
 - maxwritten_clean
 - buffers_backend
 - buffers_alloc

WAL

- Write Ahead Log
- PostgreSQL'in transaction logu
 - Her işlem xloga yazılmaz.
- 2 şekilde flush edilir:
 - Sync commit ve wal writer processleri ile

WAL parametreleri

- fsync
- wal sync method
- full page writes
- wal buffers
- wal_writer_delay

Bgwriter, Checkpoint ve WAL

- Keşke data hep ramde kalsa (savaşlar çıkmasa, her yer sevgi dolsa, lay lay lom)
- İdeal dünya üstteki gibidir. İdeal dünya olmayacaktır, ama elimizden geldiği kadar o noktaya yaklaşmalıyız.
- Checkpoint işlemine mümkün olduğu kadar az yük bırakmak gerekli.
- Wal yazma işlemini wal writer sürecine bırakmak gerekli.

- 1. PostgreSQL yönetim temelleri
- 2. Donanim
- 3. İsletim sistemi
- PostgreSQL bileşenleri
 - . Bellek kullar
 - 2. Bgwriter
 - 3. Checkpoint
 - 4. İstatistiklerin kullanımı
 - 5. Autovacuum

Checkpoint

- Bgwriter'ın bir alt sürecidir.
- Xloglarla doğrudan ilgisi yoktur.
- Sadece dirty bufferların diske aktarılmasına yarar.
- Son kurtarma noktası olarak xloga yazılır.
- Çökme anında son checkpoint noktasından başlanarak xloglar okunur, veriler diske aktarılır sunucu ondan sonra başlar (REDO)

Checkpoint

- Checkpoint parametreleri:
 - checkpoint segments
 - checkpoint_timeout
 - checkpoint_completion_target
 - checkpoint_warning
- (2+c_c_t)*c_s+1 formülü
- 3*checkpoint_segments+1

- 1. PostgreSQL yönetim temelleri
- 2. Donanim
- 3. İsletim sistemi
- 4. PostgreSQL bileşenleri
 - . Bellek k
 - 2. Bgwriter
 - 3. Checkpoint
 - 4. İstatistiklerin kullanımı
 - 5. Autovacuum

- 1. PostgreSQL yönetim temelleri
- 2. Donanim
- 3. İsletim sistemi
- 4. PostgreSQL bileşenleri
 - . Bellek k
 - 2. Bgwriter
 - 3. Checkpoint
 - 4. İstatistiklerin kullanımı
 - 5. Autovacuum

İstatistiklerin kullanımı

- İstatistikler PostgreSQL DBA'i için en önemli kontrol noktalarından birisidir.
- Datayı nereye nasıl yerleştireceğinizin ipucunu bu istatistikler verir.
- pg_stat* tabloları
- http://www.gunduz.org/seminer/pg adresinde Statistics Collector ile ilgili seminer notlarını okuyabilirsiniz.

İstatistiklerin kullanımı

- Canlı bir örnek: Bir indexi boş bir diske/tablespace içine taşıyarak 3 sn süren bir sorguyu 0.2 saniyeye indirdim.
- Aynı zamanda düzgün I/O için de istatistikleri takip etmek önemlidir.
- Munin gibi araçlar kullanılabilir.

- 1. PostgreSQL yönetim temelleri
- 2. Donanim
- 3. İsletim sistemi
- PostgreSQL bileşenleri
 - **l.** Beliek kullanım
 - 2. Bgwriter
 - 3. Checkpoint
 - 4. İstatistiklerin kullanımı
 - 5. Autovacuum

(Auto)VACUUM

- Dead tuple temizliği
- Daha az I/O için önemli
- ANALYZE ile beraber kullanımı
- FSM kavramı (8.4+ itibariyle artık otomatik!)
- Bloat kavramı ve VACUUM ile ilişkisi
- Autovacuum
- VACUUM FULL kullanmayın. 9.0'da bu vacuum modeli kaldırıldı.

Bakım işlemleri

- CLUSTER
- REINDEX
- TRUNCATE

Diğer önemli parametreler

- random_page_cost
- cpu_tuple_cost
- cpu_operator_cost
- effective cache size
- default_statistics_target

İpuçları

- Çok sayıda temp table işlemi yapıyorsanız temp_tablespaces parametresine birden fazla tablespace girebilir ve hatta bu tablespaceleri ramdiske atarak önemli bir başarım artışı sağlayabilirsiniz.
- stats_temp_directory parametresini de benzer şekilde hızlı bir diske ya da ramdiske atmak isteyebilirsiniz.

...ve

Sorular?

İleri Seviyede PostgreSQL Yönetimi

Devrim GÜNDÜZ
PostgreSQL Geliştiricisi
PostgreSQL DBA @ Markafoni
devrim@gunduz.org

devrim@postgresql.org[.tr]
http://twitter.com/devrimgunduz

