

Research Internship (PRe)

Field of Study: Applied Maths Scholar Year: 2023-2024

Hierarchical Matrices and Inexact GMRES

Confidentiality Notice

Non-confidential and publishable report

Author: GUIMARAES Eduardo Promotion: 2025

ENSTA Paris Tutor: FARIAS Luiz

MARCHAND Pierre

Host Organism Tutor: CHAPOUTOT Alexandre

Internship from 13/05/2024 to 15/08/2024

POEMS

Address: 828, Boulevard des Maréchaux, 91762 Palaiseau France

This page was intentionally left blank.

This present document is not confidential. It can be communicated outside in paper format or distributed in electronic format.

Abstract

In this project we will focus on combining a recently develop inexact GMRES algorithm, which differs from the classic GMRES algorithm in that the underlying linear system is allowed to change at each iteration, and hierarchical matrix approximation to a boundary integral discretisation. The main goal is to (i) understand the inner workings of GMRES and how changing the linear system at each iteration affects the convergence properties, and (ii) explore whether inexact GMRES has practical interest when combined with a variable precision -matrix compression. This project will be carried out in the context of two existing libraries: HMatrices.jl and Inti.jl (under development). The internship will take place at the POEMS laboratory, and will be supervised by Luiz M. Faria (chercheur INRIA) and Pierre Marchand (chercheur INRIA).

Keywords— GMRES, BEM, applied maths, acceleration, Julia

Acknowledgments

I am deeply grateful to all those who have contributed to the successful completion of this research project during my internship at Stark Industries.

First and foremost, I would like to express my sincere gratitude to Mr. Tony Stark for providing me with this remarkable opportunity. His visionary guidance and insightful feedback have been invaluable throughout the research process.

I would also like to extend my heartfelt thanks to Dr. Bruce Banner for his mentorship and expert advice. His profound knowledge in the field and his willingness to share it have significantly enriched my understanding and approach to the research.

My appreciation extends to the entire team at Stark Industries for their support and collaboration. Special thanks to Ms. Pepper Potts and Happy Hogan for theirs exceptional administrative support and ensuring a conducive working environment.

I am also grateful to my academic advisor at Midtown School of Science and Technology, Dr. Curt Connors, for his continuous encouragement and academic support.

Finally, I wish to thank my family and friends, especially my Aunt May, for their unwavering support and encouragement, which have been a constant source of motivation.

Thank you all for your invaluable contributions to this research.

cfoot: GUIMARAES Eduardo - POEMS Laboratory

Contents

1	residence in residence and residence	9
	1.1 Iterative Methods and motivation	9
	1.2 Krylov's Subspace	10
	1.3 Arnoldi's Method	10
2	GMRES	12
	2.1 Givens's Rotation	12
	2.2 Inexact GMRES	14
3	Hierarchical Matrices and ACA Method	17
	3.1 Low-rank Matrices	17
	3.2 ACA Method(Adaptative Cross Approximation)	18
4	First results	19
	4.1 Laplace's results	20
	4.2 Helmholtz's results	
5	Bibliography	23

List of Figures

4.1	Geometry used in the test	20
4.2	Speedup and residual evolution for the product between a 8000x8000 HMatrix	
	and a vector	20
4.3	Results for the application of the Inexact GMRES algorithm with a 70000x70000	
	HMatrix	21
4.4	Speedup witnessed in the application of the Inexact GMRES in a 50000x50000	
	matrix	21
4.5	Evolution of the quantity of iterations needed for convergence and overall toler-	
	ance passed as an argument	22

Iterative Methods and Krylov's Subspace

1.1 Iterative Methods and motivation

Iterative methods appear as an alternative to direct solution methods, where the direct solution to a problem usually scales with $\mathcal{O}(m^3)$ complexity, where m is the dimension of the input matrix. Since larger matrices are usually employed in practice, the direct algorithms become inefficient, and we require a more reliable approach.

The idea of the iterable methods is to find, after a certain number of iterations, a sequence x_k that converges to x, the exact solution of the problem 1.1. This should be done while making the large-scale computations faster, i.e., obtaining a complexity smaller than $\mathcal{O}(m^3)$, and keeping a maximum tolerance between the iterable solution and the exact one.

$$x = \lim_{k \to \infty} x_k \tag{1.1}$$

The method stops after k iterations, where x_k is the fist element of the sequence to satisfy the condition 1.2.

$$\frac{||Ax_k - b||}{||b||} \le \epsilon \tag{1.2}$$

We define ϵ as the tolerance given to the algorithm.

To achieve a smaller complexity than $\mathcal{O}(m^3)$, Iterative Methods employ matrix vector products, complexity $\mathcal{O}(m)$, instead of the product between matrices found in direct methods. So, considering an Iterative Method finds a solution in k steps, its complexity would be $\mathcal{O}(km^2)$.

Therefore, guaranteeing that the convergence rate of the method is sufficiently fast gives a $k \ll m$, and the Interative Method can be way more efficient that its counterpart.

The method we employ in our problems is the GMRES, explained later in the report. Its main ideia involves the projection of a high dimensional problem, as large as A in 1.2, in a lower dimensional $Krylov\ Space$:

$$x_k \in \text{span}(b, Ab, A^2b, ..., A^{k-1}b)$$
 (1.3)

Explained in more detail below.

1.2 Krylov's Subspace

Be $A \in \mathbb{K}^{n \times n}$ a matrix and $b \in \mathbb{K}^n$. To each $k \leq n$ the Krylov's Subspace $\mathcal{K}_k = \mathcal{K}_k(A, b)$ associated to A, b is defined as 1.4.

$$\mathcal{K}_k(A,b) = \operatorname{span}(b, Ab, A^2b, \dots, A^{k-1}b)$$
(1.4)

These Subspaces also have the following property: $k < l \rightarrow \mathcal{K}^k \subset \mathcal{K}^l$ [5].

The subspace $\mathcal{K}_k(A, b)$ is also the subspace of all the vectors from \mathbb{R}^m which could be written as x = p(A)b, where p(A) is a polynom of degree less than k-1 which p(0) = 1.

The problem with using $A^k b, k \in 0, 1, 2, ...$ as a base comes from the fact that successive products of A make vectors that are approximately colinear, since those are really close of the eigenvector with the largest eigenvalue of A.

1.3 Arnoldi's Method

Arnoldi's Method is an orthogonal projection method used to find an orthonormal basis q_1, \ldots, q_k to $\mathcal{K}_k(A, b)$. An algorithm for the method can be found in 1.

Algorithm 1 Arnoldi's iteration

```
1: A \in \mathbb{K}^{n \times n} et b \in \mathbb{K}^n
 2: x = 0, \beta = ||b||, q_1 = \frac{b}{\beta}
 3: for j = 1, 2, ...k do
             q_{i+1} = Aq_i
 4:
             for i = 1, 2, ... j do
 5:
                   h_{ij} = q_{j+1}^t q_i
  6:
                    q_{i+1} = q_{i+1} - h_{ij}q_i
  7:
             end for
  8:
             \begin{array}{l} h_{j+1,j} = \|q_{j+1}\| \\ q_{j+1} = \frac{q_{j+1}}{h_{j+1,j}} \end{array}
 9:
10:
11: end for
```

As we can see, at each step in 1, the previous vector q_j is multiplied by A and then orthonormalized in relation to all previous q_i 's with a Gram-Schmidt procedure. If q_{j+1} ever vanishes during the inner loop between lines 5 and 8, the algorithm stops.

What is left is to show the q_i generated by 1 form an othornormal basis for $\mathcal{K}_k(A,b)$.

Proof. By construction q_j , j = 1, 2, ..., k are othornormal. To show they span $\mathcal{K}_k(A, b)$ we prove q_j has the form $p_{j-1}(A)b$, where $p_j(A)$ is a polynomial of degree j-1 in A. Using induction the result is true for j=1 since $q_1=b$. We assume the result is true for all integers $\leq j$ and consider q_{j+1} . Using the definition of q_{j+1} in 1 we have:

$$h_{j+1,j}q_{j+1} = Aq_j - \sum_{i=1}^{j} h_{ij}q_i = Ap_{j-1}(A)b - \sum_{i=1}^{j} h_{ij}p_{i-1}(A)b$$
 (1.5)

Since, by the induction step above, $q_i = p_{i-1}(A)b$.

This shows q_{j+1} can be written as $p_j(A)b$ and completes the proof.

We also make note of the fact $q_1 = \frac{b}{||b||}$.

If we denote by Q the nxk matrix with column vectors q_1, \ldots, q_k found in 1 and H_k the (k+1)xk Hessenberg matrix whose nonzero entries h_{ij} are given just as in 1, we have 1.6.

$$AQ_k = Q_{k+1}H_k \tag{1.6}$$

Proof. For each column-vector of Q, q_i , 1.6 could be written as 1.7, where the representation of $\mathcal{K}_k(A,b)$ with an orthonormal basis becomes more evident.

$$Aq_m = h_{1m}q_1 + h_{2m}q_2 + \dots + h_{m+1,m}q_{m+1}$$
(1.7)

This relation can be directly seen in 1 by using line 10 and the inner loop between lines 5 and 8:

$$q_{m+1}h_{m+1,m} = Aq_m - \sum_{i=1}^m h_{im}q_i$$

$$Aq_m = \sum_{i=1}^{m+1} h_{im}q_i$$
(1.8)

GMRES

A projection in $\mathcal{K}_k(A, b)$, where we take the different approximations as in 2.1, where Q_m is the vector in 1.6.

$$x = x_0 + Q_m y \tag{2.1}$$

With 2.1 and 1.6 the residual becomes 2.2, where $x_0 = 0$, $\beta = ||b||$ and $Q_{m+1}^t b = (||b|| \ 0 \ 0 \dots)^t$ since the columns of Q_{m+1} are orthonormal vectors and $q_1 = \frac{b}{||b||}$.

$$r(y) = ||b - Ax||$$

$$= ||b - A(Q_m y)||$$

$$= ||b - Q_{m+1} H_m y||$$

$$= ||Q_{m+1} (Q_{m+1}^t b - H_m y)||$$

$$= ||\beta e_1 - H_m y||$$
(2.2)

Thus, y which appears in 2.1, is found as the solution of the residual's minimisation problem in 2.2.

$$y = \min_{y} \|\beta e_1 - H_m y\| \tag{2.3}$$

An initial version of the GMRES is in 2. The lines 4 to 12 contain the Arnoldi's Method presented in 1.

However, 2 doesn't present an efficient way of finding the residual in each iteration. To solve this problem and also to find a more efficient way of solving the least squares in 2.3, we apply a transformation to H_m , turning it into a triangular matrix.

2.1 Givens's Rotation

Givens's operator, G(i, i + 1), is a unitary matrix such that the column vector a = Gb has the elements $a(i) = r \in \mathbb{R}$ and a(i + 1) = 0. It has a structure as in 2.4. The coefficients c_i , s_i only appear in the rows i et i + 1.

Algorithm 2 Initial GMRES

```
1: A \in \mathbb{K}^{n \times n} and b \in \mathbb{K}^n
  2: x = 0, \beta = ||b||, q_1 = \frac{b}{\beta}
  3: for k = 1, 2, \dots do
            for j = 1, 2, ... k do
  4:
 5:
                  q_{j+1} = Aq_j
                 for i = 1, 2, ..., j do
  6:
                 h_{ij} = q_{j+1}^t q_i
q_{j+1} = q_{j+1} - h_{ij}q_i
end for
  7:
 8:
 9:
                 \begin{array}{l} h_{j+1,j} = \|q_{j+1}\| \\ q_{j+1} = \frac{q_{j+1}}{h_{j+1,j}} \end{array}
10:
11:
            end for
12:
            Find y = \min_{y} \|\beta e_1 - H_m y\|
13:
            x = Q_k y
14:
15:
            Stop if the residual is smaller than the tolerance
16: end for
```

$$G(i, i+1) = \begin{bmatrix} 1 & & & & & & \\ & \ddots & & & & & \\ & & 1 & & & & \\ & & & c_i & s_i & & \\ & & & -s_i & c_i & & \\ & & & & 1 & & \\ & & & & \ddots & \\ & & & & & 1 \end{bmatrix}$$
 (2.4)

This operator offers a way to transform the columns in H_m , zeroing the elements outside the main diagonal. Since a product of unitary operators is still unitary, 2.3 can be written as 2.5, where R_m and g_m are the results from the application of multiple Givens's operators to H_m and βe_1 .

$$y = \min_{y} \|\beta e_1 - H_m y\| = \min_{y} \|g_m - R_m y\|$$
 (2.5)

Thus, the new problem 2.5 can be solved with a simple backwards substitution. If $g_m = [\gamma_1 \dots \gamma_{m+1}]^t$, an m+1 column vector, and $\{R_m\}_{ij} = r_{ij}$ an m+1 by m upper triangular matrix with $r_{ii} \neq 0$ and its last row filed with zeros, each element of $y_m = [y_1 \dots y_m]$ is given by 2.6.

$$\gamma_k = \sum_{i=k}^m r_{ki} y_i$$

$$y_m = \frac{\gamma_m}{r_{mm}}$$

$$y_i = \frac{1}{r_{ii}} \left(\gamma_i - \sum_{j=i+1}^m r_{ij} \gamma_j \right)$$
(2.6)

A simple algorithm to this end can be written as 3.

Algorithm 3 Backwards substitution

```
1: A \in \mathbb{K}^{n \times n}, \{A\}_{ij} = a_{ij} \text{ and } b \in \mathbb{K}^n

2: for k = n, n - 1, ... do

3: y_k = b_k

4: for j = n, n - 1, ... k + 1 do

5: y_k = y_k - a_{kj}y_j

6: end for

7: y_k = \frac{y_k}{a_{kk}}

8: end for
```

It can be shown that g_m also contains the residual of each iteration [7]. Since it's an m+1 column vector, we have, with Ω_m being the necessary Givens's Rotations to make H_m upper triangular 2.7.

$$||b - Ax_m|| = ||Q_{m+1}^t(\beta e_1 - H_m y_m)||$$

$$||\beta e_1 - H_m y_m|| = ||\Omega_m^t(g_m - R_m y_m)||$$
(2.7)

Since y_m is a solution to the system, the norm in 2.7 is defined by $\|\gamma_{m+1} - (R_m)_{m+1,1:m}y_m\|$. But since the last row in R_m is composed by zeros, we have that $\|b - Ax_m\| = |\gamma_{m+1}|$, which gives a more efficient way to obtain the residuals during each iteration.

2.2 Inexact GMRES

The heaviest part in the code is in the matrix-vector product 1, line 4. Therefore, one approach to accelerate the iterations involves an approximation of Aq, instead of using the exact answer, as shown in 2.8.

$$\mathcal{A}q = (A+E)q \tag{2.8}$$

Where E in 2.8 is a pertubation matrix that changes with each iteration and will be written as E_k for iteration k.

When we realise the inexact matrix-vector product, instead of the regular one, the left side of 1.6 must be changed by 2.9.

$$[(A + E_1)q_1, (A + E_2)q_2, \dots, (A + E_k)q_k] = Q_{k+1}H_k$$

$$(A + \mathcal{E}_k)Q_k = Q_{k+1}H_k, \quad \mathcal{E}_k = \sum_{i=1}^k E_i q_i q_i^t$$

$$\mathcal{A}Q_k = W_k$$
(2.9)

Where $W_m = Q_{m+1}H_m$ from this point foward.

Now the subspace spawn by the vectors of Q_k is not the Krylov's subspace $\mathcal{K}_k(A, b)$, but these are still orthonormal. To see what kind of subspace our new Q spams, 2.9 is looked into in 2.10.

$$(A + E_k)q_k = A_k q_k = h_{1,k}q_1 + h_{2,k}q_2 + \dots + h_{k+1,k}q_{k+1}$$
(2.10)

For k = 1, we have that q_2 is a combination of the vectors $\mathcal{A}_1 b$ and b (since $q_1 = b$). For k = 2 we see that q_3 is a combination that involves $\mathcal{A}_2 \mathcal{A}_1 b$ and so forth.

Expression 2.9 then shows that Q_k becomes a basis for a new Krylov's subspace, $\mathcal{K}_k(A+\mathcal{E}_k,b)$ = span $\{b, \mathcal{A}_1 b, \dots, \mathcal{A}_k \dots \mathcal{A}_1 b\}$, made by a large pertubation in A, that gets updated in each iteration.

A new distinction should also be made between the two types of residuals appearing in the process: r_k , the exact residual of an iteration, and \tilde{r}_k , the one that will really be calculated. A detailed definition for both and a measure of how distant they are is in 2.11.

$$r_{k} = r_{0} - AQ_{k}y_{k}$$

$$= r_{0} - (Q_{k+1}H_{k} - [E_{1}q_{1}, \dots, E_{k}q_{k}])y_{k}$$

$$= \tilde{r}_{k} + [E_{1}q_{1}, \dots, E_{k}q_{k}]y_{k}$$

$$\to \delta_{k} = ||r_{k} - \tilde{r}_{k}|| = ||[E_{1}q_{1}, \dots, E_{k}q_{k}]y_{k}||$$
(2.11)

Considering $y_k = [\eta_1^{(k)} \dots \eta_n^{(k)}]$, upper index to clarify the iteration, an upper bound for δ_k can be found, but before we go through 2.12.

$$||[E_{1}q_{1}, \dots, E_{k}q_{k}]y_{k}|| = \left\| \sum_{i=1}^{k} E_{i}q_{i}\eta_{i}^{(k)} \right\|$$

$$\left\| \sum_{i=1}^{k} E_{i}q_{i}\eta_{i}^{(k)} \right\| \leq \sum_{i=1}^{k} ||E_{i}|| \left\| q_{i}\eta_{i}^{(k)} \right\|$$

$$\left\| \sum_{i=1}^{k} E_{i}q_{i}\eta_{i}^{(k)} \right\| \leq \sum_{i=1}^{k} ||E_{i}|| \left| \eta_{i}^{(k)} \right|$$

$$(2.12)$$

We use the fact that q_i are unitary between the last two lines. The bound on δ_k is then found in 2.13.

$$\delta_k = \|r_k - \tilde{r}_k\| \le \sum_{i=1}^k \|E_i\| \|\eta_i^{(k)}\|$$
(2.13)

2.13 tells us that in order to keep both residuals close, either the pertubation of A, somewhat measured by $||E_i||$, or the elements of y_i should be kept small. Since we expect to use more relaxed approximations of A as the iterations go on, a greater tolerance in E_k could be compensated with a sufficiently small y_k .

The problem is y_k is only found after the construction of E_k , so an upper bound must be also found for its value.

Knowing y_k is the solution of the minimisation of $||H_k y_k - e_1 \beta||$, we consider $\Omega_k = G(k, k+1)G(k-1,k)\ldots G(1,2)$ where each G represents a Givens rotation as shown in 2.4, so Ω_k is the matrix that transforms H_k into an upper triangular matrix.

The aplication of Ω_k in either side of $H_k y_k = e_1 \beta$ gives us 2.14.

$$\Omega_k H_k y_k = \Omega_k e_1 \beta
R_k y_k = g_k
y_k = R_k^{-1} g_k$$
(2.14)

Since R_k , the transformation of a Hessenberg matrix by a series of Givens rotations, is upper triangular, then its inverse also is. Being an upper triangular matrix, the first i-1 elements of its ith line are zeros, so using Matlab index notation in 2.15.

$$(R_k^{-1})_{i,1:k}(g_k)_{1:k} = (R_k^{-1})_{i,i:k}(g_k)_{i:k}$$
(2.15)

cfoot: GUIMARAES Eduardo - POEMS Laboratory

Using this last result in 2.14 gives 2.16.

$$|\eta_{i}^{(k)}| = ||(R_{k}^{-1})_{i,i:k}(g_{k})_{i:k}||$$

$$|\eta_{i}^{(k)}| \le ||e_{k}R_{k}^{-1}|| ||(g_{k})_{i:k}||$$

$$|\eta_{i}^{(k)}| \le ||e_{k}R_{k}^{-1}|| ||(g_{k})_{i:k}||$$
(2.16)

Since $||e_k R_k^{-1}|| \le ||R_k^{-1}|| = \sigma_k(H_k)^{-1}$ and $||(g_k)_{i:k}|| \le ||\tilde{r}_{i-1}||$ [8], the bound is given by 2.17.

$$\|\eta_i^{(k)}\| \le \frac{1}{\sigma_k(H_k)} \|\tilde{r}_{i-1}\|$$
 (2.17)

Putting 2.17 in 2.13 gives the results in 2.18. Setting $\delta_k \leq \epsilon$ and determining a bound for each $||E_i|||$ gets us 2.19.

$$\delta_k \le \sum_{i=1}^k \frac{\|E_i\|}{\sigma_k(H_k)} \|\tilde{r}_{i-1}\| \tag{2.18}$$

$$||E_i|| \le \frac{\sigma_k(H_k)\epsilon}{k ||\tilde{r}_{i-1}||} \tag{2.19}$$

Since H_k is also one of the matrices being constructed throughout the method, a workaround is necessary to apply find these bounds in a pratical situation. Either using an estimation of $\sigma_k(H_k)$ with the singular values of A or grouping all uncalculated terms in an ℓ_k that will be estimated empirically [8], obtaining 2.20.

$$||E_i|| \le \ell_k \frac{1}{\|\tilde{r}_{i-1}\|} \epsilon \tag{2.20}$$

It should be noted [8] that among te initial bounds, some aren't really sharp, mainly 2.12 and 2.17, and further empirical analysis of these bounds could show a better theoretical bound can be found for both. A plot of these bounds for the cavity problem that will be studied is shown later.

It should also be noted that \tilde{r}_k , after the transformation of H_k into an upper triangular matrix, is also found in the i+1'th element of g_m in 2.14. The demonstration follow the same proof as for g_m in 2.5, given that y_m is a solution to a linear system that involves an upper triangular matrix.

The remaining theory in this report also explains the basics of Hierarchical Matrices, the structure that will be used to compress the matrices used in the algorithm, since A appears in the discretization of integral operators and uses large dimensions. It's also though these structures each E_k will be made. As it will be explained later, at each iteration an E_k will be indirectly constructed during the inexact product $A_k q$, mainly using the residues that appear during this structure's construction, in the iterations of the ACAMethod.

Hierarchical Matrices and ACA Method

3.1 Low-rank Matrices

In reality, most matrices are large, so storing each element is not efficient, or even possible. If $A \in \mathbb{C}^{n \times m}$ has a rank k such that $k \leq m$ and k(n+m) < n * m (A is low-rank), A can be written in outer product form, as a product between the matrices $U \in \mathbb{C}^{n \times k}$ and $V \in \mathbb{C}^{m \times k}$, which can be seen in 3.1, where u_i, v_i are the column vectors of U and V.

$$A = UV^{H} = \sum_{i=1}^{k} u_{i} v_{i}^{*}$$
(3.1)

Therefore, storing k(n+m) elements to write A, and not $n \times m$. A matrix A that can be represented as 3.1 is an element of $\mathbb{C}_k^{n \times m}$.

The representation in 3.1 also facilitates other operations with A, like matrix-vector products Ab that are always present in methods like GMRES [4] and different kinds of norms, like $||A||_F$, $||A||_2$ [4].

However, even full rank matrices can be approximated by matrices with lower rank. A theorem [4] establishes that the closest matrix from $\mathbb{C}_k^{n\times m}$ of a matrix from $\mathbb{C}^{n\times m}$ can be obtained from the SVD $A=U\Sigma V^H$, where Σ contains the singular valuers $\sigma_1\geq\sigma_2\ldots\sigma_m\geq 0$ and U,V are unitary.

If A_k is the approximation obtained after taking the first k elements of Σ (creating the matrix Σ_k), the error between A and A_k is 3.2.

$$||A - A_k|| = ||U\Sigma V^H - U'\Sigma_k V_{H}|| = ||\Sigma - \Sigma_k||$$
 (3.2)

If the spectral norm, $\|.\|_2$ is used instead, the error in 3.2 is given by σ_{k+1} . For Frobenius's norm, $\|.\|_F$, the error becomes $\sum_{l=k+1}^n \sigma_l^2$.

Instead of approximating large matrices entirely, it's better to think in approximations made to each of their blocks. Blocks that appear after the discretization of elliptic operators also have the possibility of being approximated by matrices that decay exponentially with k, S_k , as in 3.3.

$$||A - S_k||_2 < q^k ||A||_2 \tag{3.3}$$

That way the rank, and precision are related logarithmically, and the rank required by a certain ϵ is 3.4.

$$k(\epsilon) = \min\{k \in \mathbb{N} : \sigma_{k+1} < \epsilon \sigma_1\} \tag{3.4}$$

3.2 ACA Method(Adaptative Cross Approximation)

As shown in the last section, the SVD methods gives us an approximation of A given a certain ϵ , through the relation in 3.2. Nevertheless, this is an expensive method, where the complexity becomes too heavy for some calculations.

The algorithm for the method is in 4, where a_{ij} are the elements of a matrix $A \in \mathbb{R}^{n \times m}$. The main objective is to approximate A as $A = S_k + R_k$, $S_k = \sum_{l=1}^k u_l v_l^t$ and R_k is the residual.

Algorithm 4 ACA Method

```
1: k = 1 et \mathbf{Z} = \emptyset
 2: repeat
 3:
          TFind i_k
          \hat{v}_k = a_{i_k,1:m}
 4:
          for l=1,\ldots,k-1 do
 5:
               \hat{v}_k = \hat{v}_k - (u_l)_{i_k} v_l
 6:
          end for
 7:
          Z = Z \bigcup \{i_k\}
 8:
          if \hat{v}_k doesn't disappear then
 9:
               j_k = argmax_j | (\hat{v}_k)_j | \; ; \; v_k = (\hat{v}_k)_{j_k}^{-1} \hat{v}_k
10:
                u_k = a_{1:n,j_k}
11:
                for l = 1, ..., k - 1 do
12:
                     u_k = u_k - (v_l)_{i_k} u_l
13:
                end for
14:
                k = k + 1
15:
16:
          end if
17: until ||u_k|| ||v_k|| \le \epsilon
```

Considering $I, J \in \mathbb{N}$ the index set of a given matrix and $\mathbf{T}_{I \times J}$ the cluster block tree that contains an admissible partition P of $I \times J$ in its leaves, $\mathfrak{L}(\mathbf{T}_{I \times J})$. The set of hierarchical matrices in $\mathbf{T}_{I \times J}$ rank k for each block A_b defined in 3.5.

$$\mathfrak{H}(\mathbf{T}_{I\times J}, k) = \left\{ A \in \mathbb{C}^{I\times J} : rank A_b \le k, \forall b \in P \right\}$$
(3.5)

In practice, 4 works with ϵ given by the user during the assembling of the Hierarchical Matrix, and the compression acts in each of the admissible blocks that will then be represented as low rank matrices, shown in 3.1. We also store each one of the residuals obtained in the outer loop of 4.

After giving a tolerance σ for an inexact product, the algorithm, for each admissible block of the cluster tree, uses the right amount of columns of the outer product representation of the block as to reach the desired tolerance. The number of columns can be inferred by using the list of residuals of the ACA Method.

So, the different pertubations E_k used in 2.9 are the matrices that, when added to A, leave each admissible block with the right amount k' of columns in 3.1, so the product can be approximated by the tolerance σ . Calling the approximation of each block B_k as \tilde{B}_k , we have 3.6.

$$\frac{\left\| B_{k}q - \tilde{B}_{k}q \right\|}{\|B_{k}q\|} \le \sigma, \qquad \tilde{B}_{k} = \sum_{i=1}^{k'} u_{i}v_{i}^{*}$$
(3.6)

First results

(Not results in the cluster, left to remake them after finishing the discussions we had about residuals) (I thought about changing the beggining of this chapter as a whole small chapter about BEM)

(Also, I thought about using the graphs with the bounds of each expression in the article, but I'm not shure if we put them here or with the Inexact theory chapter above)

Before using the inexact product in more complex problems, simpler examples are used to validate the approach and fix minor parameters in the scheme.

The two firsts tests evaluate the speedup in the product of a Hierarchical Matrix and a vector and an exection of the Inexact GMRES with few iterations, using the operators obtained through 2nd type Equations of Laplace and Helmholtz 4.1, where the last one is a scattering problem, where Δ is the Laplace operator and everything is suposed to be solved in two dimentions. The last test will use a cavity problem to test the speedup of the algorithm in a situation with more iterations.

$$\Delta u = 0$$

$$\Delta u + k^2 u = 0 \tag{4.1}$$

Reformulations both equations as a Boundary Integral Equation, the simple direct formulation is used to write the solution as 4.2, where Γ is boundary of the domain, S and D are the single and double layer operators, defined as 4.3, and G(x,y) is the fundamental solution of the desired PDE.

$$-\frac{u(x)}{2} + D[u](x) = S[\partial_{\nu}u](x), \qquad x \in \Gamma$$
(4.2)

$$S[\sigma](x) = \int_{\Gamma} G(x, y)\sigma(y) \, ds(y)$$

$$D[\sigma](x) = \int_{\Gamma} \frac{\partial G}{\partial \nu_y}(x, y)\sigma(y) \, ds(y)$$
(4.3)

For the first to examples, a unit circle around the origin is used as the boundary to generate the operators, with the mesh being created with the Inti library [3].

For the last test, the mesh is made from a cavity .geo file avaiable in [1]. A view of the figure can be seen in 4.1. The incident wave' angle is chosen to be $\frac{\pi}{4}$ rad.

A good way to infer the maximum acceleration possible for the inexact products would be using only admissible rank 1 blocks and measuring its execution time. Although such thing would not happen in a practical situation, it gives a maximum bound for the speed up we should expect. For doing that, the product tolerance is changed to *Infinity*, and the product will be

Figure 4.1: Geometry used in the test.

realised with only rank-1 blocks, since it's programmed to get the first aproximation lower than its given tolerance.

4.1 Laplace's results

Setting our product tolerance to Infinity and using only rank-1 blocks in the product, we got a () speedup.

All results are contained in 4.2, showing the evolution of the residual with the product tolerance as well as the speedup to each of these values.

Figure 4.2: Speedup and residual evolution for the product between a 8000x8000 HMatrix and a vector.

4.2 Helmholtz's results

For a maximum speedup bound in the product, the infinity tolerance brought a () speedup.

For the unitary circle boundary the results can be seen in 4.3.

(a) Results for the product of a 70000x (b) Results for an initial application of the 70000 HMatrix and a vector. Inexact GMRES algorithm.

Figure 4.3: Results for the application of the Inexact GMRES algorithm with a 70000x70000 HMatrix.

For the cavity, 4.4.

Figure 4.4: Speedup witnessed in the application of the Inexact GMRES in a 50000x50000 matrix.

An evolution of the number of iterations in face of the different tolerances passed to the algorithm is in 4.5.

To start assessing the maximum gain possible, we start by initiating the product tolerance as infitine and seeing the result. Choosing an infinite tolerance grants us the all admissible block used in the products will have rank 1.

Figure 4.5: Evolution of the quantity of iterations needed for convergence and overall tolerance passed as an argument.

Bibliography

- [1] Github's repository. https://github.com/DuduGuima/InexactGMRES.git.
- [2] Hmatrices.jl. https://github.com/IntegralEquations/HMatrices.jl.
- [3] Inti.jl. https://github.com/IntegralEquations/Inti.jl.
- [4] Mario Bebendorf. Hierarchical matrices. Springer, 2008.
- [5] Marc Bonnet. Lecture notes on numerical linear algebra. ENSTA Paris POEMS Group, 2021.
- [6] Eric Darve and Mary Wootters. Numerical linear algebra with Julia. SIAM, 2021.
- [7] Yousef Saad. Iterative methods for sparse linear systems. SIAM, 2003.
- [8] Valeria Simoncini and Daniel B Szyld. Theory of inexact krylov subspace methods and applications to scientific computing. SIAM Journal on Scientific Computing, 25(2):454–477, 2003.
- [9] Lloyd N Trefethen, David Bau III, and Ricardo D Fierro. Numerical linear algebra. *SIAM Review*, 40(3):735–738, 1998.