CSC 212 Practice Midterm Exam 1B
Problems marked with (*) are challenging and problems marked with (**) are hard

You	r Name:
	points) (*) Write a formula $T(n)$ that counts the number of multiplications performed by the foling function bar on an input of size $n \ge 1$. You do not need to find a closed form for $T(n)$.
int	foo(int n) { int result = 0; for (int i = 1; i <= n; i *= 2)
}	result += i; return result;
2. (10	points) Find a closed form for $\sum_{i=2}^{n} i$.

C: 0.1 1
. Give a Θ -bound on

5.	(10 points) (**) Suppose v is a grow-by-factor dynamic array containing n elements. If $push_back$ is called and there is no room for new elements, v will increase the capacity by 1%. When resizing, the capacity is always increased by at least one. Give a Θ -bound on the time complexity of calling $push_back$. Indicate if your bound is amortized.
6.	(10 points) What is the output of the following program?
0.	<pre>stack < int > s; s.push(0); s.push(1); s.push(2); s.pop(); cout << s.top() << '.'; s.pop(); cout << s.top();</pre>

7. (10 points) (*) Give a Θ -bound on the time complexity of the following program. Justify your answer.

8.	(10 points) What is the output of the following program?
	<pre>priority_queue <int> q; // max-priority queue q.push(1); q.push(2); q.push(0); q.pop(); cout << q.front() << '.'; q.pop(); cout << q.front();</int></pre>
9.	(10 points) What are the contents of ${\tt v}$ after this program executes?
	<pre>vector<int> v{3, 1, 2, 0, 4}; make_heap(v.begin(), v.end()); // max-heap</int></pre>

10.	(10 points) (*) You are an operating systems engineer designing a file management system. Users can navigate to directories by specifying paths, which are strings that describe the sequence of directories to reach a file or folder. Before accessing a path, the system must simplify it to its canonical form.
	In a path,
	 / separates directories. . represents the current directory. . represents moving up one directory.
	The top-level directory is /. Moving up does not change this directory. The canonical form of a path is an equivalent path without any . and components. For example:
	 /home/usr//share/./bin has canonical form /home/share/bin /home/share///usr has canonical form /home/ // has canonical form /
	What abstract data type is best for converting paths to canonical paths? Here, best means efficiently solves the problem. Justify your answer.