QBUS3820 Mid-Term Sample

Question:	Answer A:	Answer B:	Answer C:	Answer D:	Answer E:
In traditional statistics, a parameter is	a random quantity, a function of the sample	a fixed value to be estimated	is the average height of Australians		
A regression is an example of	unsupervised learning	supervised learning	data mining	A and C	B and C
Let a'=[1, -1, 2] and b'=[2, 1, -2]. What is the inner product a'b and what is the norm of a?	-3 and 6	-1 and 6	-3 and square root of 6	-1 and square root of 6	-3 and 3
What is the Euclidean distance between a'=[5, 3, -2] and b'=[3, 1, -1]?	23	11	3	sq root of 11	sq root of 20
What does this formula represent and how would you write it in terms of inner products and vector norms of column vectors x and y?	sample covariance and x'y/ x ^2	sample correlation and xy/sqrt(x y)	sample correlation and x'y/(x y)	none of the above	
$\frac{\sum_{i} x_i y_i}{\sqrt{(\sum_{i} x_i^2)(\sum_{i} y_i^2)}}$					
Let X'X = [1, 1; 1, 1.01]. What is the inverse of X'X?	[1.01, -1; -1, 1]	[101, -100; -100, 100]	[100, -100; -100, 101]		
Which of the following statements are true for any matrices A: NxP, B:NxN, C:PxN	A'B=B'A	BAC = CBA	tr(BAC) = tr(CBA)	1 and 3	none of the above
A training data set is a sample on which we test a learner	no	yes			
k-NN estimator produces no mis- classifications if k equals		infinity	some positive number not equal to 1		

10 Why do we want to have at least two samples	to check if a model	to avoid overfitting, i.e.	because if we have one	all of the above	
from the same DGP?	generalizes	fitting a model with more parameters than needed	sample the training error will always go down if we add		
		necaea	parameters but that is not true for a new		
			sample.		
11 Conditional expectation or mean function of Y	the expected value, or	the sample average of Y	a weighted average of	none of the above	
given X is	population average, of Y	for values of X, in a	sample values of Y		
	when X takes a specific	neighborhood of a			
	value	specific value			
12 OLS produces an estimate of the conditional	replacing averages over	assuming the	that has potentially a	that is consistent	all of the above
expectation of Y given X	the population with	conditional expectation	high bias if linearity fails	asymptotically if the	
	averages over a sample	function is linear in X	but is more precise due	linear model is correctly	
`	of Y and X	/	that assumption	specified	
13 Maximum Likelihood Estimator	finds the value of	finds the value of	is equivalent to OLS if	A and C	B and C
	parameters for which	parameters for which	based on the		
	the likelihood of those	the likelihood of	assumption of normal		
	parameters is highest	observing the sample is	errors		
		highest			
14 Penalty terms in nonparametric estimators	restrict the number of	reduce variance of the	induce bias	B and C	all of the above
are usually used to	parameters	estimator			
15 There is a way to find optimal model	training error is minimal	testing error is minimal	testing error is minimal	A and B	B and C
complexity at which	and this can be done by	and this can be done by	and this can be done by		
	using a test set or an	using a test set on the	using a resampling		
	information criterion	same model or using an	technique (such as		
		information criterion	bootstrap or cross-		
			validation) or by using		
			an information criterion		
16 AIC penalizes large models more than BIC	TRUE	FALSE			
17 What alternative methods can be used for	Linear Discriminant	Quadratic Discriminant	Logistic Regression and	A and B	All of the above
classification, aside from SVM	Analysis	Analysis	Probit	`	

18 What does the Bayesian rule say?	That class posterior is proportional to density of regressors given their class	That the probability of belonging to class j given X is equal to density of X given it is in class j, times	•	A and C	All of the above
	Class	the probability of class j, over the density of X	times the probability of class j, divided by the sum of products of densities of X for each class, and the probabilities of each class		
19 In discriminant analysis, the discriminant function for class k is	log of the posterior probability of class k	log of the product of the prior probability of class k and density of X belonging to class k	•	A and C	All of the above
20 How would you estimate the prior probabilities of belonging to a class?	As a proportion of units belonging to each class	· · · · · · · · · · · · · · · · · · ·	We can take any prior probabilities of belonging to a class, they don't matter to LDA, QDA or anything else.		
21 The empirical error rate for the training sample of size N is	the ratio of false positives and false negatives to N	the ratio of true positives and true negatives to N	the ratio of misclassified observations to N	A and B	A and C
22 Suppose the odds ratio of getting cancer is 3 (ie "3 to 1"). What is the probability of getting cancer?	0.333333333	0.75	0.66	0.33	Both A & C