The ABC of Computational Text Analysis

#8 ETHICS AND THE EVOLUTION OF NLP

Faculty of Humanities and Social Sciences
University of Lucerne

22 April 2022

Recap last Lecture

- an abundance data sources JSTOR, Nexis, few datasets
- creating your own dataset converting any data to .txt

Outline

cover last lecture's batch processing

• ethics is your responsibility 🙀 🔯

 understand the development of modern NLP ... or how to put words into computers

A primer on Ethics

Ethics doesn't need to be abstract

CV Assessment

- 1. You send a CV for a job.
- 2. The company automatically pre-filters candida
- 3. Do you pass?

Interview Assessment

Don't worry about the future ...

... worry about the present.

- Al is persuasive in everyday's life
- Al is extremely capable
- Al is not so smart
- \mathbb{Q} what is going on behind the scene?

An (R)evolution of NLP

From Bag of Words to Embeddings

Putting Words into Computers (Smith 2020; Church2022?)

- from coarse, static to fine, contextual meaning
- how to measure similarity

```
string-based
syntactic (e.g., part-of-speech)
semantic (e.g., animate)
embedding
```

• from counting to learning representations end2end deep learning

Bag of Words

word as arbitrary, discrete numbers

```
King = 1, Queen = 2, Man = 3, Woman = 4
```

- intrinsic meaning derived from data defined by experts
- how are these words similar?

Corpus Representation

Collection of Documents

- 1. NLP is great. I love NLP.
- 2. I understand NLP.
- 3. NLP, NLP, NLP.

Document Term Matrix

	NLP	I	is	term
Doc 1	2	1	1	•••
Doc 2	1	1	0	•••
Doc 3	3	0	0	•••
Doc ID	•••	•••	•••	term frequency

«You shall know a word by the company it keeps!»

Firth (1957)

"I hate ____, but the others eat anything."

Word Embeddings

word2vec (Mikolov et al. 2013)

- words as continuous vectors accounting for similarity between words
- semantic similarity

King - Man + Woman = Queen

Contextualized Word Embeddings

BERT (Devlin et al. 2019)

- recontextualize static word embedding different embedding in different contexts accounting for ambiguity (e.g., bank)
- acquire linguistic knowledge from language models (LM)
 LM predict next/missing word
 pre-trained on massive data (> 1 billion words)

(Cultural) Associations in Data

- « becomes a doctor.»
- « takes care of the children.»

- «Doing illegal things is bad.»
- «A recent study by the Swiss state secretariat for migrants (SEM) estimates that there were 76,000 illegal immigrants.»
 - (i) Are migrants somehow bad, then?

Word vectors are biased ...

... because our data is we are biased. (Bender2022?)

Two Sides of the Al Coin

Explaining vs. Solving

- understanding matters in science: data analysis
- automating matters in business: applied Al

Biased Data and beyond

Data = Digital Traces = Social Artifacts

- collecting, curating, preserving traces
- data is a tool to refine questions rather than reflection of the world

Data vs. Capta

«Differences in the etymological roots of the terms data and capta make the distinction between constructivist and realist approaches clear. Capta is "taken" actively while data is assumed to be a "given" able to be recorded and observed.»

Imperfect Data: A Tail of Bias

social bias

view from somewhere, stereotypes

data/archive holes

lost, uncollected

• corpus curation

supposition that key-word indicates topic

• noise in data

OCR errors, inconsistent spelling, non-content

≪Raw data is an oxymoron.**≫** Gitelman (2013)

Mind your Data

- Who has a voice in your data? social context
- bigger is not necessarily better more vs. more diverse data
- clean your data thoroughly noisy vs. clean data

DATA HUMANISM

```
SMALL big
                            data
                                 bandwith Quality
                            data
     imperfect infallible
                            data
   Subjective impartial
                            data
    inspiring descriptive
                            data
SerenDipitous predictive
                            data
                                  conventions POSSIBILITIES
                            data
                                  to simplify complexity / Depict
                            data
                                  processing DRawing
                            data
                                  driven design
                            data
      SPEND save time with
                            data
                                  is numbers people
                            data
                                  will make us more efficient HUMAN.
                            data
```

Fair is a Fad

- Fair and good but to whom? (Kalluri 2020)
- lacking democratic legitimacy
- debiasing data to avoid regulation
- looking beyond data
 - invading privacy economic monopolies (unpaid) AI-trainers and click-workers environmental costs

«Don't ask if artificial intelligence is good or fair, ask how it shifts power.» Kalluri (2020)

6.10

Data represents real life.

Don't be a fool. Be wise, think twice.

References

- Colyer, Adrian. 2016. "The Amazing Power of Word Vectors." the morning paper. 2016. https://blog.acolyer.org/2016/04/21/the-amazing-power-of-word-vectors/.
- Crawford, Kate, and Vladan Joler. 2018. "Anatomy of an Al System." Anatomy of an Al System. 2018. http://www.anatomyof.ai.
- Devlin, Jacob, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. "BERT: Pre-Training of Deep Bidirectional Transformers for Language Understanding." May 24, 2019. http://arxiv.org/abs/1810.04805.
- Drucker, Johanna. 2011. "Humanities Approaches to Graphical Display." *Digital Humanities Quarterly* 5 (1). http://www.digitalhumanities.org/dhq/vol/5/1/000091/000091.html.
- Firth, John R. 1957. "A Synopsis of Linguistic Theory, 1930-1955." In *Studies in Linguistic Analysis: Special Volume of the Philological Society*, edited by John R. Firth, 1–32. Oxford: Blackwell. http://ci.nii.ac.jp/naid/10020680394/.
- Gitelman, Lisa. 2013. Raw Data Is an Oxymoron. Cambridge: MIT.
- Kalluri, Pratyusha. 2020. "Don't Ask If Artificial Intelligence Is Good or Fair, Ask How It Shifts Power." *Nature* 583 (7815, 7815): 169–69. https://doi.org/10.1038/d41586-020-02003-2.
- Mikolov, Tomas, Ilya Sutskever, Kai Chen, Greg S. Corrado, and Jeff Dean. 2013. "Distributed Representations of Words and Phrases and Their Compositionality." In Advances in Neural Information Processing Systems, 3111–19.
- Smith, Noah A. 2020. "Contextual Word Representations: Putting Words into Computers." *Communications of the ACM* 63 (6): 66–74. https://doi.org/10.1145/3347145.