ENHANCING THE RELIABILITY OF GENERAL-PURPOSE ALGORITHMS FOR APPROXIMATE BAYESIAN INFERENCE

Yu Wang December 4, 2024

Bayesian Inference

$$\pi(\theta \mid Y) = \frac{P(Y \mid \theta)\pi_0(\theta)}{Z}$$

1

Bayesian Approximation

$$\pi(\theta \mid Y) = \frac{P(Y \mid \theta)\pi_0(\theta)}{Z}$$

- We want to learn about π , typically by calculating expectations
 - ullet Find the mean and covariance of heta

Bayesian Approximation

$$\pi(\theta \mid Y) = \frac{P(Y \mid \theta)\pi_0(\theta)}{Z}$$

- We want to learn about π , typically by calculating expectations
 - ullet Find the mean and covariance of heta
- However, in general, the expectations can't be done exactly

Bayesian Approximation

$$\pi(\theta \mid Y) = \frac{P(Y \mid \theta)\pi_0(\theta)}{Z}$$

- We want to learn about π , typically by calculating expectations
 - ullet Find the mean and covariance of heta
- However, in general, the expectations can't be done exactly
- Approximate inference:
 - Markov chain Monte Carlo (MCMC)

Challenges in Modern Approximate Bayesian Inference

• Challenges:

- high-dimensional $\theta \in \mathbb{R}^D$, D is large
- complex relationship $p(Y|\theta)$
- large-scale dataset

Challenges in Modern Approximate Bayesian Inference

• Challenges:

- high-dimensional $\theta \in \mathbb{R}^D$, D is large
- complex relationship $p(Y|\theta)$
- large-scale dataset

• Problems of MCMC:

- Slow convergence and poor mixing in complex cases e.g. those involving heterogeneity or high correlation between coordinates
- Computational cost of likelihood evaluation is proportional to the dataset size

Challenges in Modern Approximate Bayesian Inference

• Challenges:

- high-dimensional $\theta \in \mathbb{R}^D$, D is large
- complex relationship $p(Y|\theta)$
- large-scale dataset

• Problems of MCMC:

- Slow convergence and poor mixing in complex cases e.g. those involving heterogeneity or high correlation between coordinates
- Computational cost of likelihood evaluation is proportional to the dataset size

• Mitigations:

- Variational Inference (VI).
- Subsampling methods (e.g. Stochastic Gradient Langevin Dynamics (SGLD)).

Overview

 A priori finite-time, finite-data guarantees:
 A Unifying Framework for Understanding General-purpose Bayesian Posterior Approximation Methods,
 Huggins, Kasprzak, Wang, Campbell, Broderick. In prep

Overview

 A priori finite-time, finite-data guarantees:
 A Unifying Framework for Understanding General-purpose Bayesian Posterior Approximation Methods,
 Huggins, Kasprzak, Wang, Campbell, Broderick. In prep

• A post hoc quality check for VI:

A Targeted Accuracy Diagnostic for Variational Approximations (TADDAA),

Wang, Kasprzak, Huggins. AISTATS 2023.

 Uncertainty quantification for Subsampling methods:
 Stationary Analysis of Fixed Learning Rate Stochastic Gradient Algorithms,

Wang & Huggins. (Under Review)

TADDAA

Markov chain Monte Carlo (MCMC)

- **Proposal distribution:** $Q_{\psi}(x, dy)$ parameterized by ψ with current state x and corresponding density $q_{\psi}(x, y)$.
- Metropolis–Hastings (MH) correction: to construct a Markov kernel with the desired stationary distribution π , a proposed state $Y \sim Q_{\psi}(x,\cdot)$ is accepted with probability

$$\alpha(x,Y) = \min \left\{ 1, \frac{\pi(Y)q_{\psi}(Y,x)}{\pi(x)q_{\psi}(x,Y)} \right\}.$$

Variational Inference (VI)

Variational inference (VI) provides a potentially faster alternative to MCMC when models are complex and/or the dataset size is large.

$$\hat{\pi} = \arg\min_{\xi \in \mathcal{Q}} \mathcal{D}_{\pi}(\xi).$$

- Variational family Q: we are able to efficiently calculate expectations of interest (e.g. mean and variance).
- Measure of discrepancy $\mathcal{D}_{\pi}(\cdot)$: the canonical choice is Kullback-Leibler (KL) divergence out of convenience.

Related Works

- Existing evaluation tools:
 - Evidence Lower Bound (ELBO)
 - Kernel Stein Discrepancy (KSD)¹
 - Pareto smoothed importance sampling (PSIS) \hat{k}^2
 - W₂ upper bound³
- Problems:
 - Lack interpretability
 - Not applicable in high-dimensional parameter spaces.
 - Don't support marginal checks

¹Gorham et al. (2017). Measuring sample quality with kernels.International Conference on Machine Learning.

²Yao et al. (2018) Yes, but did it work?: Evaluating variational inference. 35th International Conference on Machine Learning (ICML).

³Huggins et al. (2020) Validated variational inference via practical posterior error bounds. AISTATS

TADDAA: Intuition

We want to quantify approximation error $\varepsilon^{(0)} := \mu(\hat{\pi}^{(0)}) - \mu(\pi)$

Figure 1: $\hat{\pi}^{(T)}$ significantly different from $\hat{\pi}^{(0)} \Rightarrow \hat{\pi}^{(0)}$ far from π .

• For another approximation $\hat{\pi}^{(T)}$ closer to taget posteriror π , $\varepsilon^{(T)} := \mu(\hat{\pi}^{(T)}) - \mu(\pi)$

$$\varepsilon^{(0)} \ge |\mu(\hat{\pi}^{(0)}) - \mu(\hat{\pi}^{(T)})|$$

Example: Low-quality VI

Figure 2: Variational approximation on 2-D Neal-Funnel shape model.

The parameterization of Neal-Funnel shape model is given as follows:

$$\log(\sigma) \sim \mathcal{N}(0, \sigma_0^2), \quad x_i \sim \mathcal{N}(0, \sigma).$$

TADDAA Framework

TADDAA Framework

Why not use MCMC directly?

- Slow convergence in complicated cases.
- TADDAA **DOES NOT** rely on convergence of Markov chains.

TADDAA:Input

- \bullet log density of the target π
- approximating distribution $\hat{\pi}^{(0)}$

TADDAA:Input

- log density of the target π
- \bullet approximating distribution $\hat{\pi}^{(0)}$
- functional of interest \mathcal{F} (e.g. marginal mean)

TADDAA:Input

- ullet log density of the target π
- approximating distribution $\hat{\pi}^{(0)}$
- functional of interest F (e.g. marginal mean)
- transition kernel K_h(x, dy)
 (e.g. Barker, HMC)
- number of Markov chains N and iterations T

TADDAA:Run MCMC with inter-chain adaptation (INCA)


```
\begin{aligned} & \textbf{for} \ t = 0 \ \text{to} \ T - 1 \ \textbf{do}: \\ & \textbf{for} \ j = 1 \ \text{to} \ \textit{N} \ \textbf{do}: \\ & X_j^{(t+1)} \sim \textit{K}_{h^{(t)}}(X_j^{(t)}, \cdot) \\ & \textbf{end} \ \textbf{for} \\ & \text{update step-size} \ h^{(t+1)} \ \text{using INCA}. \\ & \textbf{end} \ \textbf{for} \end{aligned}
```

TADDAA:Compute error lower bounds

- Compute a confidence interval $(\ell_{\mathcal{F}}, u_{\mathcal{F}})$ for $\mathcal{F}(\hat{\pi}^{(0)}) \mathcal{F}(\hat{\pi}^{(T)})$ based on $X_{1:N}^{(0)}$ and $X_{1:N}^{(T)}$
- Compute lower bound $B_{\mathcal{F}}$

Transition kernel $K_h(x, dy)$

- Random Walk Metropolis-Hasting (RWMH).
- Metropolis-adjusted Langevin algorithm (MALA).
- Hamiltonian Monte Carlo (HMC).
- Barker Proposal⁴ (recommended choice)
 - robust to precise step size and acceptance rate.
 - high sampling efficiency.

⁴Livingstone et al. The Barker proposal: combining robustness and efficiency in gradient-based MCMC. Journal of the Royal Statistical Society Series B: Statistical Methodology (2022)

Step size h

Step size adaption:

- Inter-chain adaptation(INCA)⁵
 - $Y_j^{(t+1)} \sim Q_{h^{(t)}}(X_j^{(t)},\cdot)$, accept with probability $lpha_j^{(t)}$.
 - $\bullet \ \bar{\alpha}^{(t)} = \frac{1}{N} \sum_{i=1}^{N} \alpha_i^{(t)}.$
- Optimal Scaling⁶
 - $\log h^{(t+1)} = \log h^{(t)} + \frac{1}{\sqrt{t+1}} (\bar{\alpha}^{(t)} \bar{\alpha}_*), \ \bar{\alpha}_*$ is optimal asymptotic acceptance.

⁵Craiu et al. Learn from thy neighbor: Parallel-chain and regional adaptive MCMC. Journal of the American Statistical Association (2009).

⁶Roberts et al. Optimal scaling for various Metropolis-Hastings algorithms. Statistical science (2001).

Step size h

Step size adaption:

- Inter-chain adaptation(INCA)⁵
 - $Y_j^{(t+1)} \sim Q_{h^{(t)}}(X_j^{(t)},\cdot)$, accept with probability $lpha_j^{(t)}$.
 - $\bullet \ \bar{\alpha}^{(t)} = \frac{1}{N} \sum_{i=1}^{N} \alpha_i^{(t)}.$
- Optimal Scaling⁶
 - $\log h^{(t+1)} = \log h^{(t)} + \frac{1}{\sqrt{t+1}} (\bar{\alpha}^{(t)} \bar{\alpha}_*), \ \bar{\alpha}_*$ is optimal asymptotic acceptance.

Optimal initial step size $h^{(0)}$ and $\bar{\alpha}_*$:

• e.g. Barker: $h^{(0)} = 2.4^2/d^{1/3}$, $\bar{\alpha}_* = 0.576$.

⁵Craiu et al. Learn from thy neighbor: Parallel-chain and regional adaptive MCMC. Journal of the American Statistical Association (2009).

⁶Roberts et al. Optimal scaling for various Metropolis-Hastings algorithms. Statistical science (2001).

Step size h

Step size adaption:

- Inter-chain adaptation(INCA)⁵
 - $Y_j^{(t+1)} \sim Q_{h^{(t)}}(X_j^{(t)}, \cdot)$, accept with probability $lpha_j^{(t)}$.
 - $\bar{\alpha}^{(t)} = \frac{1}{N} \sum_{i=1}^{N} \alpha_i^{(t)}$.
- Optimal Scaling⁶
 - $\log h^{(t+1)} = \log h^{(t)} + \frac{1}{\sqrt{t+1}} (\bar{\alpha}^{(t)} \bar{\alpha}_*), \ \bar{\alpha}_*$ is optimal asymptotic acceptance.

Optimal initial step size $h^{(0)}$ and $\bar{\alpha}_*$:

• e.g. Barker: $h^{(0)} = 2.4^2/d^{1/3}$, $\bar{\alpha}_* = 0.576$.

Problem: INCA introduces dependence for $X_{1:N}^{(T)}$.

⁵Craiu et al. Learn from thy neighbor: Parallel-chain and regional adaptive MCMC. Journal of the American Statistical Association (2009).

⁶Roberts et al. Optimal scaling for various Metropolis-Hastings algorithms. Statistical science (2001).

Asymptotic Independence of Adapted Markov Chains

 $X_{1\cdot N}^{(t)}$ are dependent \rightarrow independence assumption of tests violated.

Asymptotic Independence of Adapted Markov Chains

 $X_{1:N}^{(t)}$ are dependent \mapsto independence assumption of tests violated.

Definition

Let $X_{N,1:N}=(X_{N,1},\ldots,X_{N,N})$ denote a random vector. The sequence of random vectors $\{X_{N,1:N}\}_{N=1}^{\infty}$ is $\bar{\nu}$ -chaotic if, for any $r\in\mathbb{N}$ and any bounded continuous real-valued functions g_1,g_2,\ldots,g_r ,

$$\lim_{N\to\infty}\mathbb{E}_{X_{N,1:N}}\left\{\prod_{i=1}^rg_i\left(X_{N,i}\right)\right\}=\prod_{i=1}^r\int g_i(x)\bar{\nu}(\mathrm{d}x).$$

Adapted Markov Chains are Chaotic

Theorem

Under some mild assumptions, for any $t \in \mathbb{N}$, there exists a probability distribution $\bar{\nu}^{(t)}$ such that the sequence $\{X_{1:N}^{(t)}\}_{N=1}^{\infty}$ is $\bar{\nu}^{(t)}$ -chaotic.

Number of Markov chains N

 $\it N$ is determined by user's tolerance for statistical test error $\it \delta$, e.g.

$$N = \max(N_{\text{mean}}, N_{\text{variance}}),$$

where

$$\begin{split} & \textit{N}_{\mathsf{mean}} := \mathsf{min} \left\{ n \in \mathbb{N} : \frac{t_{n-1}(\alpha/2)}{\sqrt{n}} \leq \delta_{\mathsf{mean}} \right\}, \\ & \textit{N}_{\mathsf{variance}} := \mathsf{min} \left\{ n \in \mathbb{N} : \log \left(\frac{\chi_{n-1}^2(1-\alpha/2)}{\chi_{n-1}^2(\alpha/2)} \right) \leq \delta_{\mathsf{var}} \right\}. \end{split}$$

Number of iterations T

Markov chain requires $\Theta(d^{\gamma})$ iterations to mix according to theory of optimal scaling ⁷.

- For RWMH, MALA, Barker: $T = \lfloor cd^{1/3} \rfloor$.
- For HMC: $T = \lfloor cd^{1/4}/L \rfloor$, where L is the number of leapfrog steps in HMC.

 $^{^{7}}$ Roberts et al. Optimal scaling for various Metropolis-Hastings algorithms. Statistical science (2001).

 $^{^8\}mathrm{Bhatia}$, Kush, et al. Statistical and computational trade-offs in variational inference: A case study in inferential model selection.

Number of iterations T

Markov chain requires $\Theta(d^{\gamma})$ iterations to mix according to theory of optimal scaling ⁷.

- For RWMH, MALA, Barker: $T = \lfloor cd^{1/3} \rfloor$.
- For HMC: $T = \lfloor cd^{1/4}/L \rfloor$, where L is the number of leapfrog steps in HMC.

Remark

- Computational cost of TADDAA is comparable to VI:
 - Computational cost for VI: $\Theta(d^{1/3})^8$.
 - Computational cost for MALA and Barker: $\Theta(d^{1/3})$.
 - Computational cost for HMC: $\Theta(d^{1/4})$.

 $^{^{7}}$ Roberts et al. Optimal scaling for various Metropolis-Hastings algorithms. Statistical science (2001).

⁸Bhatia, Kush, et al. Statistical and computational trade-offs in variational inference: A case study in inferential model selection.

A Reliability Check for the Diagnostic

The reliability of TADDAA depends on the mixing behavior of the Markov chains:

Revisit (High-dimensional) Neal-Funnel Shape Model

Figure 3: Diagnostics for Neal-funnel shape model, where TADDAA uses the Barker proposal. Here μ_i and σ_i^2 denote, respectively, the mean and variance of X_i .

Revisit (High-dimensional) Neal-Funnel Shape Model

Figure 4: Diagnostics for Neal-funnel shape model, where TADDAA uses the Barker proposal. Here μ_i and σ_i^2 denote, respectively, the mean and variance of X_i .

Experiment: Neal-Funnel Shape Model

Ablation study on d=30: the lower bounds become nearly constant at our proposed number of iterations T.

Experiment: Logistic Regression Using Horseshoe Prior

Use a logistic regression model with a sparsity-inducing horseshoe prior on

$$egin{aligned} y \mid eta &\sim \mathsf{Bern}(\mathsf{logit}^{-1}(Xeta)), \ eta_j \mid au, \lambda, c &\sim \mathcal{N}(0, au^2 ilde{\lambda}_j^2), \ \lambda_j &\sim \mathrm{C}^+(0, 1), \qquad au &\sim \mathrm{C}^+\left(0, au_0\right), \ c^2 &\sim \mathsf{InvGam}(2, 8), \end{aligned}$$

where y denotes the binary outcomes, $\tau > 0$ and $\lambda > 0$ are global and local shrinkage parameters.

- $X \in \mathbb{R}^{71 \times 100}$.
- Parameter dimension d = 203.

Logistic Regression Using Horseshoe Prior: Mean Diagnostic

- Diagnostic:
 - capture both accurate and inaccurate marginal estimates
 - provide quite precise lower bounds
- Computational efficiency: use 28% as many gradient evaluations as VI.

Logistic Regression Using Horseshoe Prior: Variance Diagnostic

Logistic Regression Using Horseshoe Prior: Reliability Check

Reliability check: Barker and MALA pass reliability check, RWMH and HMC chains fail to mix.

We propose a robust diagnostic tool for VI:

- supports marginal checks and is applicable to high-dimensional parameter spaces
- provides lower bounds on the error of specific posterior summaries
- is computationally efficient
- can be validated using a simple correlation-based reliability check

Stationary Analysis of Fixed Learning Rate Stochastic Gradient Algorithms

Stochastic optimization

Consider data $\{x_n\}_{n=1}^N$ with $x_n \in \mathbb{X}$. For a parameter $\theta \in \mathbb{R}^D$, observation-level differentiable loss $\ell : \mathbb{X} \times \mathbb{R}^D \to \mathbb{R}$, and regularizer $\mathcal{R} : \mathbb{R}^D \to \mathbb{R}$, we aim to minimize the loss function

$$\mathcal{L}(\theta) := N^{-1} \sum_{n=1}^{N} \ell(x_n, \theta) + N^{-1} \mathcal{R}(\theta).$$

Stochastic optimization

Consider data $\{x_n\}_{n=1}^N$ with $x_n \in \mathbb{X}$. For a parameter $\theta \in \mathbb{R}^D$, observation-level differentiable loss $\ell : \mathbb{X} \times \mathbb{R}^D \to \mathbb{R}$, and regularizer $\mathcal{R} : \mathbb{R}^D \to \mathbb{R}$, we aim to minimize the loss function

$$\mathcal{L}(\theta) := N^{-1} \sum_{n=1}^{N} \ell(x_n, \theta) + N^{-1} \mathcal{R}(\theta).$$

Gradient Descnet (GD):

$$\theta_t = \theta_{t-1} - \Lambda \nabla \mathcal{L}(\theta_{t-1})$$

Stochastic optimization

Consider data $\{x_n\}_{n=1}^N$ with $x_n \in \mathbb{X}$. For a parameter $\theta \in \mathbb{R}^D$, observation-level differentiable loss $\ell : \mathbb{X} \times \mathbb{R}^D \to \mathbb{R}$, and regularizer $\mathcal{R} : \mathbb{R}^D \to \mathbb{R}$, we aim to minimize the loss function

$$\mathcal{L}(\theta) := N^{-1} \sum_{n=1}^{N} \ell(x_n, \theta) + N^{-1} \mathcal{R}(\theta).$$

• Gradient Descnet (GD):

$$\theta_t = \theta_{t-1} - \Lambda \nabla \mathcal{L}(\theta_{t-1})$$

• Stochastic Gradient Descret (SGD):

$$\theta_t = \theta_{t-1} - \Lambda G_t(\theta_{t-1}),$$

where $G_t(\theta) := B^{-1} \sum_{n \in S_t} \nabla \ell(x_n, \theta) + N^{-1} \nabla \mathcal{R}(\theta)$ is the stochastic gradient.

Subsampling Markov chain Monte Carlo (SGLD)

SGLD is a Markov chain Monte Carlo (MCMC) algorithm equivalent to modifying SGD to include an additional Gaussian noise term

$$\theta_t = \theta_{t-1} - \Lambda G_t(\theta_{t-1}) + \sqrt{2\beta^{-1}\Lambda} \xi_{t-1},$$

- $\beta \in (0, \infty]$ is the inverse temperature (canonically set to $\beta = N$).
- $\xi_{t-1} \stackrel{\text{iid}}{\sim} \mathcal{N}(0, I)$.

Goal

We would like to accurately estimate the stationary covariance structure

$$\Sigma_{\theta} := \lim_{t \to \infty} \mathsf{Cov}(\theta_t).$$

- Accurately estimate the stationary covariance Σ_{θ} under fixed learning rates:
 - Test loss
 - Escaping efficiency from a sharp minimal⁹
- Learning rate tuning guidance on optimal uncertainty quantification¹⁰

⁹Zhu et al. (2019). The anisotropic noise in stochastic gradient descent: Its behavior of escaping from sharp minima and regularization effects. In International Conference on Machine Learning, pages 7654–7663. PMLR.

 $^{^{10}}$ Negrea et al. (2022). Tuning Stochastic Gradient Algorithms for Statistical Inference via Large-Sample Asymptotics.

Related Work: Quadratic Loss

Current works assume that the loss is well-approximated by a quadratic function¹¹:

$$\mathcal{L}(\theta_t) \approx \widetilde{\mathcal{L}}(\theta_t) := \frac{1}{2} (\theta_t - \widehat{\theta}^{(N)})^{\top} \widehat{H}(\theta_t - \widehat{\theta}^{(N)}) + \text{const},$$

where $\widehat{H} := \nabla^2 \mathcal{L}(\widehat{\theta})$ is the Hessian of the loss (evaluated at $\widehat{\theta}$).

¹¹Mandt et al. (2017). Stochastic Gradient Descent as Approximate Bayesian Inference. Journal of Machine Learning Research.

Related Work: Continuous-time Proxies

Approximate SGD by a continuous-time the Ornstein–Uhlenbeck (OU) process¹²

$$\mathrm{d}\vartheta_t = -\Lambda \widehat{H}\vartheta_t \mathrm{d}t + \Lambda \widehat{C}^{1/2} \mathrm{d}W_t,$$

where W_t be a d-dimensional Brownian motion and $\widehat{C} = \text{Cov}(G_1(\widehat{\theta}))$ is the stationary gradient noise.

¹²Negrea et al. (2022). Tuning Stochastic Gradient Algorithms for Statistical Inference via Large-Sample Asymptotics.

Related Work: Continuous-time Proxies

Approximate SGD by a continuous-time the Ornstein–Uhlenbeck (OU) process¹²

$$\mathrm{d}\vartheta_t = -\Lambda \widehat{H}\vartheta_t \mathrm{d}t + \Lambda \widehat{C}^{1/2} \mathrm{d}W_t,$$

where W_t be a d-dimensional Brownian motion and $\widehat{C} = \text{Cov}(G_1(\widehat{\theta}))$ is the stationary gradient noise.

• The covariance matrix of the stationary distribution $\Sigma_{\vartheta} := \mathsf{Cov}(\pi_{\vartheta})$ satisfies

$$\Sigma_{\vartheta} \widehat{H} + \widehat{H} \Sigma_{\vartheta} = \Lambda \widehat{C}.$$

¹²Negrea et al. (2022). Tuning Stochastic Gradient Algorithms for Statistical Inference via Large-Sample Asymptotics.

Related Work: Continuous-time Proxies

Approximate SGD by a continuous-time the Ornstein–Uhlenbeck (OU) process¹²

$$\mathrm{d}\vartheta_t = -\Lambda \widehat{H}\vartheta_t \mathrm{d}t + \Lambda \widehat{C}^{1/2} \mathrm{d}W_t,$$

where W_t be a d-dimensional Brownian motion and $\widehat{C} = \text{Cov}(G_1(\widehat{\theta}))$ is the stationary gradient noise.

• The covariance matrix of the stationary distribution $\Sigma_{\vartheta} := \mathsf{Cov}(\pi_{\vartheta})$ satisfies

$$\Sigma_{\vartheta}\widehat{H} + \widehat{H}\Sigma_{\vartheta} = \Lambda\widehat{C}.$$

 Limitation: continuous-time proxies provide close approximation to SGD only for small learning rates.

 $^{^{12}}$ Negrea et al. (2022). Tuning Stochastic Gradient Algorithms for Statistical Inference via Large-Sample Asymptotics.

Related Work: Discrete-time proxies

Under quadratic loss, the discrete-time proxy algorithm updates

$$\psi_t = \psi_{t-1} - \frac{\Lambda}{B} \sum_{n \in S_t} \widehat{H}_n(\psi_{t-1} - \widehat{\theta}),$$

where $\widehat{H}_n := \nabla^2 \ell(x_n, \widehat{\theta})$.

 $^{^{13}\!\}text{Liu}$ et at. Noise and Fluctuation of Finite Learning Rate Stochastic Gradient Descent. ICML (2021).

 $^{^{14}}$ Liu et at. Strength of Minibatch Noise in SGD. ICLR (2022).

Related Work: Discrete-time proxies

Under quadratic loss, the discrete-time proxy algorithm updates

$$\psi_t = \psi_{t-1} - \frac{\Lambda}{B} \sum_{n \in S_t} \widehat{H}_n(\psi_{t-1} - \widehat{\theta}),$$

where $\widehat{H}_n := \nabla^2 \ell(x_n, \widehat{\theta})$.

• *Implicit* characterization of Σ_{ψ}^{13} :

$$\Lambda \widehat{H} \Sigma_{\psi} + \Sigma_{\psi} \widehat{H} \Lambda = \Lambda \left(\overline{C}_{\psi} + \widehat{H} \Sigma_{\psi} \widehat{H} \right) \Lambda,$$

where $\Sigma_{\psi} := \text{Cov}(\pi_{\psi})$, and $\overline{C}_{\psi} := \mathbb{E}[\text{Cov}\{G_1(\psi_{\infty})\}]$ is the expected covariance of the gradient noise.

ullet For well-specified linear model and assume $X \sim \mathcal{N}(0,A)^{14}$:

$$\overline{C}_{\psi} \approx B^{-1} \left(A \Sigma_{\psi} A + \text{Tr} \left[A \Sigma_{\psi} \right] A + \sigma^2 A \right).$$

 $^{^{13}}$ Liu et at. Noise and Fluctuation of Finite Learning Rate Stochastic Gradient Descent. ICML (2021).

¹⁴Liu et at. Strength of Minibatch Noise in SGD. ICLR (2022).

Limitations of discrete-time proxies

Limitation:

- Assumptions often do not hold in practice:
 - Sample size $N \gg D$ and $N \to \infty$
 - Mean Squared Error (MSE) loss
 - The model is well-specified
- There is no guarantee that the proxy process $(\psi_t)_{t\geq 0}$ is close to the original process $(\theta_t)_{t\geq 0}$.

Limitations of discrete-time proxies

Limitation:

- Assumptions often do not hold in practice:
 - Sample size $N \gg D$ and $N \to \infty$
 - Mean Squared Error (MSE) loss
 - The model is well-specified
- There is no guarantee that the proxy process $(\psi_t)_{t\geq 0}$ is close to the original process $(\theta_t)_{t\geq 0}$.

Contribution:

- Propose a new discrete-time proxy algorithm that delivers more accurate stationary covariance estimates for:
 - Finite sample size N
 - More general convex loss
 - Misspecified model
- Provide quantitative, non-asymptotic error analysis of our approximation.

A New Proxy Algorithm for Analyzing SG(L)D

Our approach is to apply a second-order Taylor approximation to each loss term $\ell_n(\theta) := \ell(x_n, \theta)$:

$$\tilde{\ell}_n(\theta) := \ell_n(\widehat{\theta}) + \nabla \ell_n^\top(\widehat{\theta})(\theta - \widehat{\theta}) + (\theta - \widehat{\theta})^\top \nabla^2 \ell_n(\widehat{\theta})(\theta - \widehat{\theta}).$$

A New Proxy Algorithm for Analyzing SG(L)D

Our approach is to apply a second-order Taylor approximation to each loss term $\ell_n(\theta) := \ell(x_n, \theta)$:

$$\widetilde{\ell}_n(\theta) := \ell_n(\widehat{\theta}) + \nabla \ell_n^\top(\widehat{\theta})(\theta - \widehat{\theta}) + (\theta - \widehat{\theta})^\top \nabla^2 \ell_n(\widehat{\theta})(\theta - \widehat{\theta}).$$

• Minimizer $\widehat{\theta}$ satisfies

$$\nabla \mathcal{L}(\widehat{\theta}) = \frac{1}{N} N^{-1} \sum_{n=1}^{N} \nabla \ell(x_n, \widehat{\theta}) + N^{-1} \nabla \mathcal{R}(\widehat{\theta}) = 0.$$

• In general,

$$B^{-1} \sum_{n \in S_t} \nabla \ell(x_n, \widehat{\theta}) + N^{-1} \nabla \mathcal{R}(\widehat{\theta}) \neq 0.$$

Stationary Fluctuation

Our new proxy algorithm update:

$$\psi_{t} = \psi_{t-1} - \frac{\Lambda}{B} \sum_{n \in S_{t}} \left\{ \nabla \ell_{n}(\widehat{\theta}) + \mathcal{J}_{n}(\psi_{t-1} - \widehat{\theta}) \right\}$$
$$- \frac{\Lambda}{N} \nabla \mathcal{R}(\psi_{t-1}) + \sqrt{2\beta^{-1}\Lambda} \, \xi_{t-1}.$$

Proposition

Assuming the iterates $(\psi_t)_{t\geq 0}$ have a well-defined stationary distribution, the stationary covariance Σ_{ψ} satisfies

$$\Lambda \widehat{H} \underline{\Sigma}_{\psi} + \underline{\Sigma}_{\psi} \widehat{H} \Lambda = \Lambda \big(\overline{C}_{\psi} + \widehat{H} \underline{\Sigma}_{\psi} \widehat{H} \big) \Lambda + 2 \beta^{-1} \Lambda.$$

Stationary Gradient Noise

Theorem

For the proxy algorithm, if $\mathcal{R}(\theta) = \frac{1}{2}\theta^{\top}\Gamma\theta^{\top}$ and the mini-batches are sampled with replacement, then

$$\overline{C}_{\psi} = \frac{1}{B} \left(\mathcal{I} - \frac{1}{N^2} \Gamma \widehat{\theta} \widehat{\theta}^{\top} \Gamma^{\top} + \frac{1}{N} \sum_{n=1}^{N} \mathcal{J}_n \Sigma_{\psi} \mathcal{J}_n - \mathcal{J} \Sigma_{\psi} \mathcal{J} \right),$$

where
$$\mathcal{I} := \frac{1}{N} \sum_{n=1}^{N} \nabla \ell_n(\widehat{\theta}) \nabla \ell_n(\widehat{\theta})^{\top}$$
, $\mathcal{J}_n = \nabla^2 \ell_n(\widehat{\theta})$.

Wasserstein Distance

How to assess the accuracy of our proxy algorithm? **Wasserstein Distance**

•

$$W_2(\pi, \tilde{\pi}) = \inf \mathbb{E}(\|\theta - \tilde{\theta}\|^2)^{1/2},$$

where the infimum is over all joint distributions of $(\theta, \tilde{\theta})$ such that $\theta \sim \pi$ and $\tilde{\theta} \sim \tilde{\pi}$.

• $W_2(\pi_{\theta}, \pi_{\psi}) \leq \varepsilon$ implies that ¹⁵

$$\begin{aligned} |\sigma_{\theta,d} - \sigma_{\psi,d}| &\leq \varepsilon \ (d = 1, \dots, D) \\ \|\Sigma_{\theta} - \Sigma_{\psi}\| &\leq 2\varepsilon (\|\Sigma_{\theta}\|^{1/2} \wedge \|\Sigma_{\psi}\|^{1/2} + \varepsilon). \end{aligned}$$

¹⁵Huggins et al. Validated variational inference via practical posterior error bounds. AISTATS (2020)

Error Analysis

Corollary

Under the same assumptions stated above and with $\beta=\infty$ (i.e., for the case of SGD), there exists L>0, if $\lambda< L/4$, then there exists an explicit constant A such that

$$W_2(\pi_{\theta},\pi_{\psi}) \leq A \frac{\lambda}{B}.$$

Experiments: Linear Regression

To validate our theory, we compare the predicted stationary covariance structure under the fixed learning rate obtained from other theory with others.

• Simulated misspecified data.:

$$y_n \sim \mathcal{N}(x_n^{\top} \theta_{\star}, 1 + ||x_i||_2^2),$$

where $\theta_{\star} \sim \mathcal{N}(0, I_D)$ is fixed and $x_n \stackrel{\text{iid}}{\sim} \mathcal{N}(0, I_D)$.

• Real-world dataset: Boston housing data.

Experiments: Linear Regression

Experiments: Poisson Regression

• Simulated well-specified data.:

$$y_n \sim \text{Poisson}(\exp\{x_n^{\top}\theta_{\star}\}),$$

where $\theta_{\star} \sim \mathcal{N}(0, I_D)$ is fixed and $x_n \stackrel{\text{iid}}{\sim} \mathcal{N}(0, I_D)$.

• Real-world dataset: German credit data.

Experiments: Poisson Regression

We have established a rigorous framework for understanding SGD and SGLD under:

- large learning rate.
- *N* is not large compared to *D*.
- model is incorrect.

- 1. Post hoc quality check for variational approximation:
 - support marginal checks
 - robust in high-dimensional parameter sapce
 - · computationally efficient
- 2. Uncertainty quantification for subsampling methods:
 - Accurate stationary covariance structure estimation for stochastic gradient algorithms under fixed/nonvanishing learning rate
 - Optimal learning rate tuning guidance

Acknowledgments

Jonathan H. Huggins

Committee

Emily Stephen

Luis Carvalho Konstantinos Spiliopoulos

collaborator

Tamara Broderick

Mikolaj Kasprzak

Trevor Campbell