Trace and Schatten norm estimation using randomized sampling

Zijian Wang

Graduate Seminar on Efficient Simulation Randomized Numerical Linear Algebra May 2, 2022

Motivation

Numerical linear algebra plays a fundamental role in applied mathematics

- Classical methods are often infeasible for large-scale problems
- Randomized algorithms can provide efficient approximations

- Preliminaries
- 2 Trace estimation
 - Estimator based on randomized sampling
 - A priori error estimates
 - A posteriori error estimates
 - Application to Frobenius and Schatten 4-norm
- Schatten norm estimation
 - Approach from classical statistics
 - Computationally efficient method
- Summary and outlook

Review of matrix decomposition

Eigendecomposition:

$$oldsymbol{A} \in \mathbb{R}^{n imes n}$$
 PSD \Longrightarrow $oldsymbol{A} = \sum_{i=1}^n \lambda_i oldsymbol{u}_i oldsymbol{u}_i^{\mathsf{T}}$

with eigenvalues $\lambda_1 \geq \cdots \geq \lambda_n \geq 0$.

• Singular value decomposition:

$$oldsymbol{B} \in \mathbb{R}^{m imes n} \quad \Longrightarrow \quad oldsymbol{B} = \sum_{i=1}^r \sigma_i oldsymbol{u}_i oldsymbol{v}_i^{\mathsf{T}}$$

with $r = \text{rank}(\boldsymbol{B})$ and singular values $\sigma_1 \ge \cdots \ge \sigma_r > 0$.

Recall that σ_i^2 represent the non-zero eigenvalues of B^TB .

Schatten norms

Definition

For a matrix $B \in \mathbb{R}^{m \times n}$ with singular values $\sigma_1(B) \ge \cdots \ge \sigma_r(B) > 0$, we define its *Schatten p-norm* as:

$$\|\boldsymbol{B}\|_{p} = \begin{cases} \left(\sum_{i=1}^{r} \sigma_{i}(\boldsymbol{B})^{p}\right)^{\frac{1}{p}}, & p \in [1, \infty) \\ \sigma_{1}(\boldsymbol{B}), & p = \infty \end{cases}$$

Important properties:

- ullet lp-norm of the vector of singular values \Longrightarrow Hölder, monotonicity, etc.
- ullet Orthogonal invariance: $\|UBV\|_p = \|B\|_p$ for orthogonal matrices U,V

Schatten norms

Definition

For a matrix $\mathbf{B} \in \mathbb{R}^{m \times n}$ with singular values $\sigma_1(\mathbf{B}) \ge \cdots \ge \sigma_r(\mathbf{B}) > 0$, we define its *Schatten p-norm* as:

$$\|\boldsymbol{B}\|_{p} = \begin{cases} \left(\sum_{i=1}^{r} \sigma_{i}(\boldsymbol{B})^{p}\right)^{\frac{1}{p}}, & p \in [1, \infty) \\ \sigma_{1}(\boldsymbol{B}), & p = \infty \end{cases}$$

Special cases:

- ullet Frobenius norm: $\left\|oldsymbol{B}
 ight\|_2 = \left\|oldsymbol{B}
 ight\|_{\mathsf{F}} = \left(\sum_{i,j}\left(oldsymbol{B}
 ight)_{ij}^2
 ight)^{rac{1}{2}}$
- ullet Spectral norm: $\|oldsymbol{B}\|_{\infty} = \|oldsymbol{B}\|_{ extsf{s}} = \sigma_1(oldsymbol{B})$
- ullet PSD matrix $m{A} \in \mathbb{R}^{n imes n}$: $\|m{A}\|_1 = \mathrm{tr}(m{A}) = \sum_{i=1}^n {(m{A})_{ii}}$

- Preliminaries
- 2 Trace estimation
 - Estimator based on randomized sampling
 - A priori error estimates
 - A posteriori error estimates
 - Application to Frobenius and Schatten 4-norm
- Schatten norm estimation
 - Approach from classical statistics
 - Computationally efficient method
- Summary and outlook

Problem setting and first approach

- ullet Given: Non-zero PSD matrix $oldsymbol{A} \in \mathbb{R}^{n imes n}$ via $oldsymbol{u} \mapsto oldsymbol{A} oldsymbol{u}$
- ullet Goal: Estimate ${\sf tr}(m{A})$ without computing $m{\delta}_i^{\sf T}(m{A}m{\delta}_i)$ for $i=1,\ldots,n$
- Idea: Take a random test vector $\boldsymbol{\omega} \in \mathbb{R}^n$ with $\mathbb{E}[\boldsymbol{\omega} \boldsymbol{\omega}^{\mathsf{T}}] = \boldsymbol{I}_n$. Then, the random variable $X = \boldsymbol{\omega}^{\mathsf{T}}(\boldsymbol{A}\boldsymbol{\omega})$ satisfies:

$$\mathbb{E}[X] = \mathbb{E}[\mathsf{tr}(\boldsymbol{\omega}^{\mathsf{T}} \boldsymbol{A} \boldsymbol{\omega})] = \mathbb{E}[\mathsf{tr}(\boldsymbol{A} \boldsymbol{\omega} \boldsymbol{\omega}^{\mathsf{T}})]$$
$$= \mathsf{tr}(\mathbb{E}[\boldsymbol{A} \boldsymbol{\omega} \boldsymbol{\omega}^{\mathsf{T}}]) = \mathsf{tr}(\boldsymbol{A} \mathbb{E}[\boldsymbol{\omega} \boldsymbol{\omega}^{\mathsf{T}}]) = \mathsf{tr}(\boldsymbol{A})$$

- $\Longrightarrow X$ is an unbiased estimator of tr(A)
- Problem: Var[X] possibly large \implies Reduce variance by averaging independent copies of X

A consistent estimator of the trace

- Fix sample size $k \in \mathbb{N}, \, k \ll n$.
- ullet For $i=1,\ldots,k$, sample a test vector $oldsymbol{\omega}_i\simoldsymbol{\omega}$ i.i.d. and compute:

$$X_i = \boldsymbol{\omega}_i^{\mathsf{T}}(\boldsymbol{A}\boldsymbol{\omega}_i), \quad \bar{X}_k = \frac{1}{k} \sum_{i=1}^k X_i$$

• This leads to an unbiased, consistent estimator of tr(A):

$$\mathbb{E}[\bar{X}_k] = \mathsf{tr}(\boldsymbol{A}), \quad \mathsf{Var}[\bar{X}_k] = \frac{1}{k} \mathsf{Var}[X]$$

- Computational complexity:
 - ullet Simulate k independent copies of $oldsymbol{\omega}$
 - ullet Perform k matrix-vector multiplications with $oldsymbol{A}$
 - ullet O(kn) additional arithmetic

Sampling distribution of the estimator

• By the central limit theorem, we have:

$$\begin{array}{ccc} \sqrt{k} \big(\bar{X}_k - \mathrm{tr}(\boldsymbol{A}) \big) & \stackrel{\mathcal{D}}{\longrightarrow} \mathcal{N} \big(0, \mathrm{Var}[X] \big) & \text{as } k \to \infty \\ \Longrightarrow & \bar{X}_k \sim \mathcal{N} \big(\mathrm{tr}(\boldsymbol{A}), k^{-1} \mathrm{Var}[X] \big) & \text{for large } k \end{array}$$

ullet Curse of Monte Carlo: Fluctuations of the order $k^{-\frac{1}{2}}\sqrt{\operatorname{Var}[X]}$

Distribution of the test vector

Lemma

If the coordinates $(\omega)_i$ of the test vector $\omega \in \mathbb{R}^n$ are independent samples from a standardized random variable Z, then $\mathbb{E}[\omega\omega^\mathsf{T}] = \mathbf{I}_n$ and one single copy of the trace estimator $X = \omega^\mathsf{T} A \omega$ has the variance:

$$\mathsf{Var}[X] = 2\sum_{i \neq j} (A)_{ij}^2 + (\mathbb{E}[Z^4] - 1)\sum_i (A)_{ii}^2$$

Important examples:

• Girard estimator $\boldsymbol{\omega} \sim \mathcal{N}(\mathbf{0}, \boldsymbol{I}_n)$: $\mathbb{E}[Z^4] = 3$

$$\implies \mathsf{Var}[X] = 2\sum_{i,j} \left(\boldsymbol{A} \right)_{ij}^2 = 2 \|\boldsymbol{A}\|_\mathsf{F}^2 \leq 2 \|\boldsymbol{A}\|_\mathsf{s} \operatorname{tr}(\boldsymbol{A})$$

Distribution of the test vector

Lemma

If the coordinates $(\omega)_i$ of the test vector $\omega \in \mathbb{R}^n$ are independent samples from a standardized random variable Z, then $\mathbb{E}[\omega\omega^\mathsf{T}] = \mathbf{I}_n$ and one single copy of the trace estimator $X = \omega^\mathsf{T} A \omega$ has the variance:

$$\operatorname{Var}[X] = 2\sum_{i \neq j} \left(\boldsymbol{A}\right)_{ij}^2 + \left(\mathbb{E}[Z^4] - 1\right) \sum_i \left(\boldsymbol{A}\right)_{ii}^2$$

Important examples:

• Hutchinson estimator $\omega \sim \mathcal{U}\{-1,1\}^n$: $\mathbb{E}[Z^4]=1$

$$\implies \mathsf{Var}[X] = 2\sum_{i \neq j} (\boldsymbol{A})_{ij}^2 < 2\|\boldsymbol{A}\|_{\mathsf{F}}^2 \leq 2\|\boldsymbol{A}\|_{\mathsf{s}} \operatorname{tr}(\boldsymbol{A})$$

- Preliminaries
- 2 Trace estimation
 - Estimator based on randomized sampling
 - A priori error estimates
 - A posteriori error estimates
 - Application to Frobenius and Schatten 4-norm
- Schatten norm estimation
 - Approach from classical statistics
 - Computationally efficient method
- 4 Summary and outlook

A priori error estimate

• Chebyshev's inequality implies for t > 0:

$$\mathbb{P}\big(|\bar{X}_k - \mathsf{tr}(\boldsymbol{A})| \geq t \cdot \mathsf{tr}(\boldsymbol{A})\big) \leq \frac{\mathsf{Var}[\bar{X}_k]}{t^2 \, \mathsf{tr}(\boldsymbol{A})^2} = \frac{\mathsf{Var}[X]}{k t^2 \, \mathsf{tr}(\boldsymbol{A})^2}$$

• In case of $\boldsymbol{\omega} \sim \mathcal{N}(\mathbf{0}, \boldsymbol{I}_n)$:

$$\mathbb{P}\big(|\bar{X}_k - \mathsf{tr}(\boldsymbol{A})| \geq t \cdot \mathsf{tr}(\boldsymbol{A})\big) \leq \frac{2\|\boldsymbol{A}\|_{\mathsf{s}}}{kt^2\,\mathsf{tr}(\boldsymbol{A})} = \frac{2}{kt^2\,\mathsf{intdim}(\boldsymbol{A})}$$

Here, we interpret

$$\mathsf{intdim}(\boldsymbol{A}) = \frac{\mathsf{tr}(\boldsymbol{A})}{\|\boldsymbol{A}\|_{\mathsf{s}}} = \frac{\sum_{i=1}^n \lambda_i(\boldsymbol{A})}{\lambda_1(\boldsymbol{A})} \in [1,\mathsf{rank}(\boldsymbol{A})]$$

as a continuous measure of the rank.

A sharper error estimate

In some recent work, an exponential probability bound was established for Girard's trace estimator.

Proposition

Consider the trace estimator obtained from a test vector $\omega \sim \mathcal{N}(\mathbf{0}, \mathbf{I}_n)$. For $\tau > 1$, there holds:

$$\begin{split} & \mathbb{P}(\bar{X}_k \geq \tau \operatorname{tr}(\boldsymbol{A})) \leq \exp\left(-\frac{1}{2}k\operatorname{intdim}(\boldsymbol{A})(\tau^{\frac{1}{2}}-1)^2\right), \\ & \mathbb{P}(\bar{X}_k \leq \tau^{-1}\operatorname{tr}(\boldsymbol{A})) \leq \exp\left(-\frac{1}{4}k\operatorname{intdim}(\boldsymbol{A})(\tau^{-1}-1)^2\right) \end{split}$$

- Preliminaries
- 2 Trace estimation
 - Estimator based on randomized sampling
 - A priori error estimates
 - A posteriori error estimates
 - Application to Frobenius and Schatten 4-norm
- Schatten norm estimation
 - Approach from classical statistics
 - Computationally efficient method
- Summary and outlook

Confidence intervals based on t-distribution

- ullet Idea: Make use of the samples $X_i = oldsymbol{\omega}_i^\mathsf{T} oldsymbol{A} oldsymbol{\omega}_i$
- Compute the sample variance:

$$S_k^2 = \frac{1}{k-1} \sum\nolimits_{i=1}^k (X_i - \bar{X}_k)^2, \quad \mathbb{E}[S_k^2] = \mathsf{Var}[X]$$

• For moderate sample sizes (e.g. $k \ge 30$):

$$\frac{\bar{X}_k - \operatorname{tr}(\boldsymbol{A})}{S_k / \sqrt{k}} \sim t(k-1)$$

• Confidence interval at level $1-2\alpha$ (e.g. $\alpha \geq 0.025$):

$$\mathsf{tr}(m{A}) \in \left[ar{X}_k \pm t_{1-lpha,k-1} rac{S_k}{\sqrt{k}}
ight]$$

Confidence intervals based on bootstrapping

- Idea: Resample from $\mathcal{X}=(X_1,\ldots,X_k)$ to gain more information about the sampling distribution
- For b = 1, ..., B:
 - \bullet Draw a bootstrap replicate (X_1^*,\dots,X_k^*) uniformly from $\mathcal X$ with replacement
 - Compute the average $\bar{X}_k^*=\frac{1}{k}\sum_{i=1}^k X_i^*$ and the error estimate $e_b^*=\bar{X}_k-\bar{X}_k^*$
- Report quantiles q_{α} and $q_{1-\alpha}$ of the error distribution (e_1^*,\ldots,e_B^*) and the $(1-2\alpha)$ confidence interval $[\bar{X}_k+q_{\alpha},\bar{X}_k+q_{1-\alpha}]$
- Typical values: $k \ge 30, B \ge 1000, \alpha \ge 0.025$

Recap - Trace estimation

- Construction of an unbiased and consistent trace estimator, based on randomized sampling
- Runtime advantageous for $k \ll n$
- Distribution of the test vector (normal, Rademacher)
 Influence on the variance of the resulting estimator
- A priori error estimates using concentration inequalities
 Need for a posteriori bounds in practice
- Confidence intervals based on t-distribution or bootstrapping

- Preliminaries
- 2 Trace estimation
 - Estimator based on randomized sampling
 - A priori error estimates
 - A posteriori error estimates
 - Application to Frobenius and Schatten 4-norm
- Schatten norm estimation
 - Approach from classical statistics
 - Computationally efficient method
- Summary and outlook

Application to Frobenius and Schatten 4-norm

- ullet Given: Matrix $oldsymbol{B} \in \mathbb{R}^{m imes n}$ accessed via $oldsymbol{u} \mapsto oldsymbol{B} oldsymbol{u}$
- Draw i.i.d. test vectors $\omega_1, \ldots, \omega_k \sim \mathcal{N}(\mathbf{0}, \boldsymbol{I}_n)$ and consider:

$$X_i = \boldsymbol{\omega}_i^\mathsf{T} \boldsymbol{B}^\mathsf{T} \boldsymbol{B} \boldsymbol{\omega}_i, \quad \bar{X}_k = \frac{1}{k} \sum_{i=1}^k X_i$$

• Recall that \bar{X}_k is our trace estimator for $A = B^T B$:

$$\mathbb{E}[\bar{X}_k] = \operatorname{tr}(\boldsymbol{B}^\mathsf{T}\boldsymbol{B}) = \|\boldsymbol{B}\|_\mathsf{F}^2$$

 \bullet And the sample variance S_k^2 provides a way to estimate $\|{\pmb B}\|_4$:

$$\mathbb{E}[S_k^2] = \mathsf{Var}[X] = 2\|\boldsymbol{B}^\mathsf{T}\boldsymbol{B}\|_\mathsf{F}^2 = 2\|\boldsymbol{B}\|_4^4$$

- Preliminaries
- 2 Trace estimation
 - Estimator based on randomized sampling
 - A priori error estimates
 - A posteriori error estimates
 - Application to Frobenius and Schatten 4-norm
- Schatten norm estimation
 - Approach from classical statistics
 - Computationally efficient method
- Summary and outlook

Approach from classical statistics

- ullet Given: Matrix $oldsymbol{B} \in \mathbb{R}^{m imes n}$ accessed via $oldsymbol{u} \mapsto oldsymbol{B} oldsymbol{u}$
- \bullet Goal: Estimate Schatten $2p\text{-norm } \|\boldsymbol{B}\|_{2p}$ for natural numbers $p\geq 3$
- Sample i.i.d. isotropic test vectors $m{\omega}_1,\dots,m{\omega}_k\in\mathbb{R}^n$ to extract linear information $m{Y}_i=m{B}m{\omega}_i$
 - \Longrightarrow Sample matrix $oldsymbol{Y} = [oldsymbol{Y}_1, \dots, oldsymbol{Y}_k] \in \mathbb{R}^{m imes k}$
- ullet Define $m{X} = m{Y}^\mathsf{T} m{Y} \in \mathbb{R}^{k imes k}$ and check that $(m{X})_{ij} = m{\omega}_i^\mathsf{T} m{B}^\mathsf{T} m{B} m{\omega}_j$

Approach from classical statistics

• For any $1 \leq i_1, \ldots, i_p \leq k$, we have:

$$\begin{split} &(\boldsymbol{X})_{i_1 i_2}(\boldsymbol{X})_{i_2 i_3} \cdots (\boldsymbol{X})_{i_p i_1} \\ &= \operatorname{tr} \bigl(\boldsymbol{\omega}_{i_1}^\mathsf{T} \boldsymbol{B}^\mathsf{T} \boldsymbol{B} \boldsymbol{\omega}_{i_2} \cdot \boldsymbol{\omega}_{i_2}^\mathsf{T} \boldsymbol{B}^\mathsf{T} \boldsymbol{B} \boldsymbol{\omega}_{i_3} \, \cdots \, \boldsymbol{\omega}_{i_p}^\mathsf{T} \boldsymbol{B}^\mathsf{T} \boldsymbol{B} \boldsymbol{\omega}_{i_1} \bigr) \\ &= \operatorname{tr} \bigl(\boldsymbol{\omega}_{i_1} \boldsymbol{\omega}_{i_1}^\mathsf{T} \boldsymbol{B}^\mathsf{T} \boldsymbol{B} \cdot \boldsymbol{\omega}_{i_2} \boldsymbol{\omega}_{i_2}^\mathsf{T} \boldsymbol{B}^\mathsf{T} \boldsymbol{B} \, \cdots \, \boldsymbol{\omega}_{i_p} \boldsymbol{\omega}_{i_p}^\mathsf{T} \boldsymbol{B}^\mathsf{T} \boldsymbol{B} \bigr) \end{split}$$

ullet If i_1,\ldots,i_p are distinct, use independence and isotropy to compute:

$$\begin{split} & \mathbb{E}\big[(\boldsymbol{X})_{i_1i_2}(\boldsymbol{X})_{i_2i_3}\cdots(\boldsymbol{X})_{i_pi_1}\big] \\ &= \mathsf{tr}\big(\mathbb{E}\big[\boldsymbol{\omega}_{i_1}\boldsymbol{\omega}_{i_1}^\mathsf{T}\boldsymbol{B}^\mathsf{T}\boldsymbol{B}\cdot\boldsymbol{\omega}_{i_2}\boldsymbol{\omega}_{i_2}^\mathsf{T}\boldsymbol{B}^\mathsf{T}\boldsymbol{B}\cdots\boldsymbol{\omega}_{i_p}\boldsymbol{\omega}_{i_p}^\mathsf{T}\boldsymbol{B}^\mathsf{T}\boldsymbol{B}\big]\big) \\ &= \mathsf{tr}\big(\mathbb{E}\big[\boldsymbol{\omega}_{i_1}\boldsymbol{\omega}_{i_1}^\mathsf{T}\boldsymbol{B}^\mathsf{T}\boldsymbol{B}\big]\cdot\mathbb{E}\big[\boldsymbol{\omega}_{i_2}\boldsymbol{\omega}_{i_2}^\mathsf{T}\boldsymbol{B}^\mathsf{T}\boldsymbol{B}\big]\cdots\mathbb{E}\big[\boldsymbol{\omega}_{i_p}\boldsymbol{\omega}_{i_p}^\mathsf{T}\boldsymbol{B}^\mathsf{T}\boldsymbol{B}\big]\big) \\ &= \mathsf{tr}\big((\boldsymbol{B}^\mathsf{T}\boldsymbol{B})^p\big) = \|\boldsymbol{B}\|_{2p}^{2p} \end{split}$$

Approach from classical statistics

• Average over all sequences of distinct indices to obtain an unbiased estimator of $\|B\|_{2p}^{2p}$:

$$U_p = \frac{(k-p)!}{k!} \sum_{1 \le i_1, \dots, i_p \le k}^{\circ} (\boldsymbol{X})_{i_1 i_2} (\boldsymbol{X})_{i_2 i_3} \cdots (\boldsymbol{X})_{i_p i_1}$$

- Computationally demanding:
 - Almost k^p summands
 - Only feasible for small values of p (e.g. p=4 or p=5)
- High variability (according to theory of *U*-statistics):

$$k \operatorname{Var}[U_p] \to 2p^2 \|\boldsymbol{B}\|_{4p}^{4p} \quad \text{as } k \to \infty$$

- Preliminaries
- 2 Trace estimation
 - Estimator based on randomized sampling
 - A priori error estimates
 - A posteriori error estimates
 - Application to Frobenius and Schatten 4-norm
- Schatten norm estimation
 - Approach from classical statistics
 - Computationally efficient method
- Summary and outlook

Computationally efficient method

• Recall that for distinct indices i_1, \ldots, i_p :

$$\mathbb{E}[(m{X})_{i_1 i_2} (m{X})_{i_2 i_3} \cdots (m{X})_{i_p i_1}] = \|m{B}\|_{2p}^{2p}$$

Average only over increasing sequences of indices:

$$V_p = \binom{k}{p}^{-1} \sum_{1 \le i_1 < \dots < i_p \le k} (\mathbf{X})_{i_1 i_2} (\mathbf{X})_{i_2 i_3} \cdots (\mathbf{X})_{i_p i_1}$$

Equivalent formulation:

$$V_p = inom{k}{p}^{-1} \mathsf{tr}ig[oldsymbol{X}_{\mathsf{U}}^{p-1}oldsymbol{X}ig]$$

where X_{U} denotes the strict upper triangular part of X

Computationally efficient method

- \bullet Estimator ${\cal V}_p$ suffers from even higher variance than ${\cal U}_p$
- But substantially cheaper in computation:
 - Matrix exponentiation via repeated squaring
 - ullet Method is feasible for larger values of p
 - Employ more samples to account for the high variance
- Apply resampling methods to construct confidence intervals

- Preliminaries
- 2 Trace estimation
 - Estimator based on randomized sampling
 - A priori error estimates
 - A posteriori error estimates
 - Application to Frobenius and Schatten 4-norm
- Schatten norm estimation
 - Approach from classical statistics
 - Computationally efficient method
- Summary and outlook

Summary - Schatten norm estimation

- Estimate Frobenius norm and Schatten 4-norm for free using techniques from trace estimation
- ullet Unbiased estimators of $\|oldsymbol{B}\|_{2p}^{2p}$ based on randomized sampling
- Estimator U_p : High complexity and high variability
- ullet Reduction to estimator V_p whose computation is rather cheap

Outlook

- Parts of the algorithms are parallelizable
- Flexibility in designing the test vector distribution:
 - Sample from an *optimal measurement system* to minimize the variance and the number of required random bits

References

- P. G. Martinsson and J. A. Tropp (2020), 'Randomized numerical linear algebra: Foundations and algorithms', Acta Numerica 29, 403–572.
- D. A. Girard (1989), 'A fast "Monte Carlo cross-validation" procedure for large least squares problems with noisy data', Numer. Math. 56, 1–23.
- S. Gratton and D. Titley-Peloquin (2018), 'Improved bounds for small-sample estimation', SIAM J. Matrix Anal. Appl. 39, 922–931.
- W. Kong and G. Valiant (2017), 'Spectrum estimation from samples', Ann. Statist. 45, 2218–2247.
- J. Gedicke (2021), Lecture notes: Introduction to Basic Principles of Numerics, University of Bonn.
- http://math.uchicago.edu/ may/REU2016/REUPapers/Mazeika.pdf (last accessed: March 26, 2022)
- https://math.ntnu.edu.tw/ jschen/Papers/schatten-p-norm-JNCA.pdf (last accessed: March 26, 2022)