		List 1
φ 507	PROBLEMS : Spr. 1995	07 (95)
# Prs		
	SUBJECT	REMARKS
	Zlevel problem: exact energies & eigenfens of H= Ho+V.	#60, \$507('94),
(40)(45) 20 (15) (46) 20	2-level problem: Vke = () U. Establish level-crossing thum.	# (9), \$ 507 (194).
(15) (46) 20 (40) (47) 20	Transition lineshape for chirped julse: U= Elt) exp{i[0 t)-v]t].	\$ 50, \$ 507 ('94).
16 (48) 20	Analyse O(V2) processes for pulse: V=2KD(x) coswt, 0\$t\$T.	# (50, \$ 507 (194). # (39, \$ 507 (194).
(40) (49) 10	tD pent?: $V(t) = 2h \Omega$ cos wt. tract resonance $\omega = \omega_{km}$. $V(t) = (hA/\tau/\pi)e^{-t^2/\tau^2}$. Show: $P(gnd + out) = (A^2)_{00} - (A_{00})^2$, as $\tau \to 0$.	-new-
<u>60</u> 10	1D SHO: Spring enot k > Nk, suddenly. Gnd-state probability?	#50, \$507 (194),
(17) (51) 10	2- particle system! m1+m2. Find P. R. & R in CM cds + & R.	¥9, \$ 507 (`94).
(45)(5) 15	V(r) = -B/r + A/r2, Show Ene = - 1 Eo/(n+ De)2. Analyse Dne.	#60, \$507 (194).
(3) 10	Show [Jx, Jy] = it Jz follows from relations between rotation operators	-new-
(54) 10 (6) (6) (Prove Dirac Identity: (o. A) (o. B) = A. B+ i o. (Ax B).	#63, \$507 (°94).
(18) (SS) 10 145) (C) 14	Explicit Clebsch-Gordan transform for II: 2P3/2 & 2P1/2.	#65, \$507(194).
(45) (Sp 15 (Sp 10	find CG coefficients for 5= 1/2 and arbitrary 1.	#60, \$507 ('94).
SQ 10	Derwe Lande &-factor. Apply to 2P & 25 states in H.	#@, \$507('94). #@,\$507('94).
(P) (9) 10	Find relative transition rates for 2Ps, > 2Sy, in H via E. r.	#@, \$507 ('94)
10	For spin 1/2, analyse: E= g, g, (µ2/13) [\$1.\$2-3(\$,.\$)(\$,.\$)]	
6) 20	Derive his margies: Ehs = Zhes (I. J). Find Shis for 1e- atoms.	#W, \$507 (194).
(40) (3) 15	KG Egth: two component formulation for a free particle.	\$ \$507 ('94)
	Classical Scattering: relation of lat & CM scattering & S.	#18, \$507 (193).
[290] (4) 10	Verify G(1,t: 1,to) = -i0(t-to) 2 (states) is Schrödinger's G-fen.	#30, \$ 507 (194)
MID (1) 40	Atomic tritium decay: 3H, +3Hez+e+v. Probability of Het ground state.	-new-
1EKM(2) 40	Moments (r") for 1e atom gnd state. I'mp & wariance Ar.	=new-
(200) (3) 40	for A&B as II-rectors, show: LJ, A.B]=0. Why is A.B an inv=?	#@, \$507 (194), 1 # (2) \$ (22) 12:00
(phs / 40 40 5) 40	And the Schrödinger limit for Klein Gordon planewaves.	#(2), \$507('92) MidT.
1 6 20	Analyse scattering from ptl.: VIr) = Vod Olr-a), via Born Approxim.	#(5), \$507(193) Final. 19-20, \$507(193).
(45) (6) 15	Scattering by a Sph. Well via Born approxn: total of & validity. e-Atom Scattering via Born approxn. Notion of form factor.	#@, \$507(193).
(3) 10	Scattering from a screened Conlorab pot - via phase shifts.	#@, Ø507(193).
② 🚱 30	e- Hatom scattering: form of V(r) & total cross-section.	#3, \$507 ('93).
(40) (9) 10	2N identical particles in a SHO pot !: boson v. fermion energies of sizes.	-new-
② (10)	Singlet-triplet splitting for 2e 5 ystem: Dirac's Exchange Pot!	#10, \$507(194).
(40) (1) 15	Average sizes in the Thomas-Fermi aton: 2-scaling.	#®, \$507 ('94).
4) 15 (4) (3) 25	Size of the e-e repulsion term in the Phomis- Fermi atom.	*(4), \$ 507 ('94).
	Ground-state of 2e-atom "nucleus = De variational cale".	#85, \$507 (194).
(40)(74) 15 (75) (75) 10	Tor Dirac matrices: 174, yo } = 28 pw, find eigenvalues, it & rank.	#88, \$ 507 (194).
(5) (5) 10 (5) (6) 10	Continuity extr. for Dirac particle in an external field (A, ip).	\$\\\ \phi \(\frac{4}{60} \) \(
[490] (1)	Durac (q, m) in (A, ip). Show, by change conjo : 4(q, p) + 1/2-q-p	#89, \$507 (194).
8.7.7. 3.117	Il Durino free particle: analyse pk=mcock as a momentum operator.	

# PTS (35)(79) ***	2512-2Pan System: measure S by rf & DC experiments.	REMARKS ~# (Φ), φ507 (192). ~~~
FINAL 2 EXAM 3 (300) 4 bts) 5	Detailed balancing via 1st order time -dept. pert in theory. For & mome ladder operators: It zm) = {B} zm+1>, find A&B. Spectroscopic features of pte-: Balmer a shift & DV (hfs). Scattering from a periodic potential: V(1+20)=V(1+1), Via 1st Born. 2 identical particles in N levels: count symm. & antisymm. States. Free neutrino via the Dirac Egth: 4 mone conserved? he licity?	-new- #(4), \$507('94) MT, #(2), \$507('93) FE: #(3), \$507('93) MT. -new- #(5), \$507('94) FE. #(7), \$507('92) FE:

MOTALS: 35 homework problems, worth 525 pts (51%).

12 lexam problems, worth 500 pts. (49%)

47 1025 pts