Thema: Cauchy-Riemann'sche Differentialgleichungen, Kurvenintegral

Abgabe: Donnerstag, 14. November 2019

Besprechung: Dienstag, 19. November 2019

Aufgabe 1. Sei
$$A = \begin{pmatrix} a & -c \\ c & a \end{pmatrix} \in \mathbb{R}^{2 \times 2}$$
.

(a) Man zeige, daß es $w \in \mathbb{C}$ gibt, so daß A die komplex-lineare Abbildung

$$\mathbb{C} \to \mathbb{C}, z \mapsto w \cdot z$$

beschreibt. In anderen Worten,

$$A \cdot \left(\begin{array}{c} x \\ y \end{array} \right) = \left(\begin{array}{c} \Re \left(w \cdot (x+iy) \right) \\ \Im \left(w \cdot (x+iy) \right) \end{array} \right)$$

für alle
$$\begin{pmatrix} x \\ y \end{pmatrix} \in \mathbb{R}^2$$
.

(b) Man zeige, daß A eine Drehstreckung beschreibt.

Aufgabe 2. Sei $U \subset \mathbb{C}$ offen und $f: U \to \mathbb{C}$ holomorph. Wir identifizieren $x = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \in \mathbb{R}^2$ mit $x_1 + ix_2 \in \mathbb{C}$, und definieren $f_{\Re}, f_{\Im}: U \to \mathbb{R}^2$ durch

$$f_{\Re}(x) = \begin{pmatrix} \Re f(x_1 + ix_2) \\ -\Im f(x_1 + ix_2) \end{pmatrix}, \qquad f_{\Im}(x) = \begin{pmatrix} \Im f(x_1 + ix_2) \\ \Re f(x_1 + ix_2) \end{pmatrix} \quad \text{für alle } x \in U.$$

Weiter sei $\gamma:[a,b]\to U$ eine stetig differenzierbare Kurve. Man zeige

$$\int_{\gamma} f(z)dz = \int_{\gamma} f_{\Re}(x) \cdot dx + i \int_{\gamma} f_{\Im}(x) \cdot dx.$$

Aufgabe 3. Sei $U \subset \mathbb{C}$ offen, $f: U \to \mathbb{C}$ stetig und $\gamma_1, \gamma_2 : [0, 1] \to U$ stetig differenzierbare Kurven, so daß $\gamma_1(1) = \gamma_2(0)$. Definiere $\gamma_1 \cup \gamma_2 : [0, 1] \to U$ und $\gamma_1^- : [0, 1] \to U$ durch

$$\begin{split} \gamma_1 \cup \gamma_2(t) &:= \begin{cases} \gamma_1(2t) & \text{falls } t \in [0, \frac{1}{2}] \\ \gamma_2(2(t - \frac{1}{2})) & \text{falls } t \in [\frac{1}{2}, 1] \end{cases} \\ \gamma_1^-(t) &:= \gamma_1(1 - t) \text{ für alle } t \in [0, 1] \end{split}$$

Man zeige

$$\int_{\gamma_1 \cup \gamma_2} f(z)dz = \int_{\gamma_1} f(z)dz + \int_{\gamma_2} f(z)dz,$$
$$\int_{\gamma_1^-} f(z)dz = -\int_{\gamma_1} f(z)dz.$$

Aufgabe 4. Sei $U \subset \mathbb{C}$ offen.

(a) Für eine holomorphe Funktion $f: U \to \mathbb{C}$ zeige man

$$\Delta |f|^2 = 4|f'(z)|^2.$$

(b) Seien $f_1, \ldots, f_p : U \to \mathbb{C}$ holomorph. Angenommen, $|f_1|^2 + \cdots + |f_p|^2$ ist konstant. Man zeige, daß dann jedes f_i konstant ist.