Занятие *7* Кластеризация

Елена Кантонистова

elena.kantonistova@yandex.ru

Дано: выборка $x_1, ..., x_l$

 \square араметр: число кластеров K

Начало: случайно выбрать центры кластеров c_1,\ldots,c_K

<u>Дано</u>: выборка $x_1, ..., x_l$

Параметр: число кластеров K

1) каждый объект отнести к ближайшему к нему центру кластера

<u>Дано</u>: выборка $x_1, ..., x_l$

Параметр: число кластеров K

<u>Начало</u>: случайно выбрать центры кластеров c_1, \dots, c_K

1) каждый объект отнести к ближайшему к нему центру кластера

2) пересчитать центры полученных кластеров

<u>Дано</u>: выборка $x_1, ..., x_l$

Параметр: число кластеров K

<u>Начало</u>: случайно выбрать центры кластеров c_1, \dots, c_K

- 1) каждый объект отнести к ближайшему к нему центру кластера
- 2) пересчитать центры полученных кластеров
- 3) повторить шаги 1 и 2 несколько раз до стабилизации кластеров

<u>Дано</u>: выборка $x_1, ..., x_l$

 \square араметр: число кластеров K

Идея метода - минимизация внутрикластерного расстояния

$$\sum_{k=1}^{K} \sum_{i=1}^{l} [a(x_i) = k] \rho(x_i, c_k) \to \min_{a}$$

c
$$\rho(a,b) = (a-b)^2$$
, T.e.

$$\sum_{k=1}^{K} \sum_{i=1}^{l} [a(x_i) = k](x_i - c_k)^2 \to \min_{a}$$

<u>Дано</u>: выборка $x_1, ..., x_l$

 \square араметр: число кластеров K

<u>Начало</u>: случайно выбрать центры кластеров $c_1, ..., c_K$

Повторять по очереди до сходимости:

• отнести каждый объект к ближайшему центру

$$y_i = \underset{j=1,...,K}{\operatorname{argmin}} \rho(x_i, c_j)$$

• переместить центр каждого кластера в центр тяжести

$$c_{j} = \frac{\sum_{i=1}^{l} x_{i}[y_{i} = j]}{\sum_{i=1}^{l} [y_{i} = j]}$$

K-MEANS ДЛЯ СЖАТИЯ ИЗОБРАЖЕНИЙ

ГРАФОВЫЕ МЕТОДЫ КЛАСТЕРИЗАЦИИ

• выборка представляется в виде графа, где в вершинах стоят объекты, а на рёбрах – расстояния между ними

ГРАФОВЫЕ МЕТОДЫ КЛАСТЕРИЗАЦИИ

• выборка представляется в виде графа, где в вершинах стоят объекты, а на рёбрах — расстояния между ними Алгоритм выделения связных компонент:

- 1) из графа удаляются все ребра, для которых расстояния больше некоторого значения R
- 2) Кластеры объекты, попадающие в одну компоненту связности

ИЕРАРХИЧЕСКАЯ КЛАСТЕРИЗАЦИЯ

Иерархия кластеров:

- на верхнем уровне один большой кластер
- ullet на нижнем уровне l кластеров, каждый из которых состоит из одного объекта

ИЕРАРХИЧЕСКАЯ КЛАСТЕРИЗАЦИЯ

Алгоритм Ланса-Уильямса:

- первый шаг: один кластер = один объект
- на каждом следующем шаге объединяем два наиболее похожих кластера (по некоторой мере схожести d) с предыдущего шага

ИЕРАРХИЧЕСКАЯ КЛАСТЕРИЗАЦИЯ

Алгоритм Ланса-Уильямса:

- первый шаг: один кластер = один объект
- ullet на каждом следующем шаге объединяем два наиболее похожих кластера (по некоторой мере схожести d) с предыдущего шага

Диаграмма вложения

Дендрограмма

МЕТРИКИ КАЧЕСТВА КЛАСТЕРИЗАЦИИ

RAND INDEX (RI)

• Предполагается, что известны истинные метки объектов.

>Мера зависит не от самих значений меток, а от разбиения выборки на кластеры.

 а – число пар объектов с одинаковыми метками и находящихся в одном кластере, b – число пар объектов с различными метками и находящихся в разных кластерах, N – число объектов в выборке

$$RI = \frac{a+b}{C_N^2} = \frac{2(a+b)}{N(N-1)}$$

RI — доля объектов, для которых исходное и полученное разбиения согласованы. Выражает похожесть двух различных разбиений выборки.

ADJUSTED RAND INDEX (ARI)

RI нормируется так, чтобы величина всегда принимала значения из отрезка [-1;1] независимо от числа объектов N и числа кластеров, получается ARI:

$$ARI = \frac{RI - E[RI]}{\max(RI) - E[RI]}$$

- ARI > 0 разбиения похожи (ARI = 1 совпадают)
- $ARI \approx 0$ случайные разбиения
- ARI < 0 непохожие разбиения

MUTUAL INFORMATION (AMI)

Метрика похожа на ARI.

<u>Индекс *MI*</u> – это взаимная информация для двух разбиений выборки на кластеры:

$$MI(U,V) = \sum_{i=1}^{|U|} \sum_{j=1}^{|V|} P_{UV}(i,j) \frac{\log P_{UV}(i,j)}{P_{U}(i) \cdot P_{V}(j)},$$

где

- ullet $P_{UV}(i,j)$ вероятность, что объект принадлежит кластеру $U_i \subset U$ и кластеру $V_j \subset V$
- ullet $P_U(i)$ вероятность, что объект принадлежит кластеру $U_i \subset U$
- ullet $P_V(j)$ вероятность, что объект принадлежит кластеру $V_i \subset V$

ADJUSTED MUTUAL INFORMATION (AMI)

<u>Индекс MI</u> — это взаимная информация для двух разбиений выборки на кластеры:

$$MI(U,V) = \sum_{i=1}^{|U|} \sum_{j=1}^{|V|} P_{UV}(i,j) \frac{\log P_{UV}(i,j)}{P_{U}(i) \cdot P_{V}(j)}.$$

- Взаимная информация измеряет долю информации, общей для обоих разбиений: насколько информация об одном из них уменьшает неопределенность относительно другого.
- $AMI \in [0;1]$ нормировка MI; чем ближе к 1, тем более похожи разбиения.

ГОМОГЕННОСТЬ, ПОЛНОТА, V-МЕРА

 \bigcirc Пусть H — энтропия: $H = -\sum_{i=1}^{|U|} P(i) log P(i)$. Тогда

$$h = 1 - \frac{H(C|K)}{H(C)}$$
, $c = 1 - \frac{H(K|C)}{H(K)}$,

где K – результат кластеризации, C – истинное разбиение выборки на классы.

- *h* (гомогенность) измеряет, насколько каждый кластер состоит из объектов одного класса
- с (полнота) измеряет, насколько объекты одного класса относятся к одному кластеру

ГОМОГЕННОСТЬ, ПОЛНОТА, V-МЕРА

• Гомогенность и полнота принимают значения из отрезка [0; 1]. Большие значения соответствуют более точной кластеризации.

Эти метрики не нормализованы (как ARI и AMI), т.е. они зависят от числа кластеров!

- При большом числе кластеров и малом числе объектов лучше использовать ARI и AMI
- При более 1000 объектов и числе кластеров меньше 10 проблема не так сильно выражена, поэтому её можно игнорировать.

ГОМОГЕННОСТЬ, ПОЛНОТА, V-МЕРА

V-мера — учитывает и гомогенность и полноту, это их среднее гармоническое:

$$v = \frac{2hc}{h+c}$$

V-мера показывает, насколько два разбиения схожи между собой.

СИЛУЭТ (SILHOUETTE)

Не требует знания истинных меток! (значит, это внутренняя метрика качества кластеризации)

• Пусть а – среднее расстояние от объекта до всех объектов из того же кластера, b – среднее расстояние от объекта до объектов из ближайшего (не содержащего объект) кластера. Тогда силуэт данного объекта:

$$s = \frac{b - a}{\max(a, b)}$$

• Силуэт выборки (S) — средняя величина силуэта по объектам.

Силуэт показывает, насколько среднее расстояние до объектов своего кластера отличается от среднего расстояния до объектов других кластеров.

СИЛУЭТ (SILHOUETTE)

$$S \in [-1; 1].$$

- S близкий к -1 плохие (разрозненные) кластеризации
- $S \approx 0$ кластеры накладываются друг на друга
- *S* близкий к 1 четко выраженные кластеры

С помощью силуэта можно выбирать число кластеров k (если оно заранее неизвестно) — выбирается k, для которого метрика максимальна.

 Силуэт зависит от формы кластеров и достигает больших значений на более выпуклых кластерах.