QUANTUM ALGORITHMS HOMEWORK 8 SELECTED SOLUTIONS

PROF. MATTHEW MOORE

AP 1. After k iterations of \mathcal{G} in Grover's algorithm, we obtained

$$\mathcal{G}^{k} \left| \Psi(1,1) \right\rangle = \left| \Psi \left(a^{-1/2} \sin \left((2k+1)\theta \right), \ b^{-1/2} \cos \left((2k+1)\theta \right) \right) \right\rangle$$

where θ is such that $\sin(\theta) = \sqrt{a}$. Show that when $k = \lfloor \pi/(4\theta) \rfloor$, upon measuring this state the probability of observing a state in $|A\rangle$ is $\geq 1 - a$.

Solution: Given a state vectors $|\alpha\rangle$ and $|\beta\rangle$, the probability of observing $|\alpha\rangle$ to be among the vectors in $|\beta\rangle$ is $|\langle\alpha|\beta\rangle|^2$. The vector $|A\rangle$ is not a state vector since it doesn't have norm 1, but we can normalize it. Therefore, the probability of measuring a state $|\alpha\rangle$ and observing it to be among the vectors in $|A\rangle$ is

$$\left| \frac{1}{\| |A\rangle \|} \langle A | \alpha \rangle \right|^2.$$

For the state vector given in the problem, this is

$$\frac{1}{a} \left| \left\langle A \mid \Psi\left(a^{-1/2} \sin\left((2k+1)\theta\right), \ b^{-1/2} \cos\left((2k+1)\theta\right)\right) \right\rangle \right|^{2}$$

$$= \frac{1}{a} \left| \left\langle A \mid a^{-1/2} \sin\left((2k+1)\theta\right) \mid A \right\rangle + b^{-1/2} \cos\left((2k+1)\theta\right) \mid B \right\rangle \right\rangle \right|^{2}$$

$$= \frac{1}{a} \left| a^{-1/2} \sin\left((2k+1)\theta\right) \left\langle A \mid A \right\rangle \right|^{2} = \frac{1}{a} \left| a^{-1/2} \sin\left((2k+1)\theta\right) a \right|^{2}$$

$$= \sin\left((2k+1)\theta\right)^{2}.$$

Thus the probability of observing a correct answer is $\sin((2k+1)\theta)^2$.

Let $k = \lfloor \pi/(4\theta) \rfloor$ and recall that θ is such that $\sin(\theta) = \sqrt{a}$. As a function in x, $\sin((2x+1)\theta)$ is decreasing near $x = \pi/(4\theta)$. Using this (at the marked inequality), we have

$$\sin\left((2k+1)\theta\right) \stackrel{*}{\geq} \sin\left((\pi/(2\theta)+1)\theta\right) = \sin\left(\pi/2+\theta\right) = \cos(\theta) = \sqrt{b} = \sqrt{1-a}.$$

Hence the probability of measuring a correct answer is $\sin((2k+1)\theta)^2 \ge 1 - a$.

AP 3. Recall that the Fibonacci sequence $(f_i)_{i\in\mathbb{N}}$ is defined

$$f_0 = 0,$$
 $f_1 = 1,$ $f_{n+1} = f_n + f_{n-1}.$

(i) Show that

$$\begin{pmatrix} f_{n+1} \\ f_n \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} f_n \\ f_{n-1} \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}^n \begin{pmatrix} 1 \\ 0 \end{pmatrix}.$$

(ii) Use the same technique that we used to find a closed form of the recurrence in Grover's algorithm to find a closed form for the Fibonacci sequence.

Date: April 2, 2020.

Hint: $f_n = (1/\sqrt{5})(\varphi^n - \psi^n)$ where $\varphi = (1/2)(1+\sqrt{5})$ is the golden ratio and $\psi = (1/2)(1-\sqrt{5})$ is its conjugate.

Solution: Let F be the matrix mentioned in the problem. We begin by diagonalizing F. The eigenvalues are solutions to

$$\det(F - xI) = \det\left(\begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix} - \begin{pmatrix} x & 0 \\ 0 & x \end{pmatrix}\right) = \det\begin{pmatrix} 1 - x & 1 \\ 1 & -x \end{pmatrix}$$
$$= (1 - x)(-x) - 1 = x^2 - x - 1,$$

SO

$$\varphi = \frac{1+\sqrt{5}}{2}$$
 and $\psi = \frac{1-\sqrt{5}}{2}$

are the eigenvalues. Note that from $x^2 - x - 1 = 0$, we obtain $x^2 = x + 1$ and x(x - 1) = 1. Hence $\varphi^2 = \varphi + 1$, $\varphi^{-1} = \varphi - 1$, and $(\varphi - 1)^{-1} = \varphi$. Similar identities hold for ψ . We also have $\psi = 1 - \varphi$.

Next, we find the eigenvectors by computing the null space of F-xI for $x=\varphi$ and $x=\psi$. For $x=\varphi$, we row reduce $F-\varphi I$,

$$\begin{pmatrix} 1 - \varphi & 1 \\ 1 & -\varphi \end{pmatrix} \sim \begin{pmatrix} 1 & -\varphi \\ 0 & 0 \end{pmatrix},$$

yielding the eigenvector $(\varphi, 1)^T$. Similarly, for $x = \psi$ we row reduce $F - \psi I$ to obtain the eigenvector $(\psi, 1)^T$. It follows that

$$F = \begin{pmatrix} \varphi & \psi \\ 1 & 1 \end{pmatrix} \begin{pmatrix} \varphi & 0 \\ 0 & \psi \end{pmatrix} \begin{pmatrix} \varphi & \psi \\ 1 & 1 \end{pmatrix}^{-1} = \frac{1}{\sqrt{5}} \begin{pmatrix} \varphi & \psi \\ 1 & 1 \end{pmatrix} \begin{pmatrix} \varphi & 0 \\ 0 & \psi \end{pmatrix} \begin{pmatrix} 1 & \psi \\ -1 & \varphi \end{pmatrix}.$$

Finally, we have

$$\begin{pmatrix} f_{n+1} \\ f_n \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}^n \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \frac{1}{\sqrt{5}} \begin{pmatrix} \varphi & \psi \\ 1 & 1 \end{pmatrix} \begin{pmatrix} \varphi^n & 0 \\ 0 & \psi^n \end{pmatrix} \begin{pmatrix} 1 & \psi \\ -1 & \varphi \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$
$$= \frac{1}{\sqrt{5}} \begin{pmatrix} \varphi & \psi \\ 1 & 1 \end{pmatrix} \begin{pmatrix} \varphi^n & 0 \\ 0 & \psi^n \end{pmatrix} \begin{pmatrix} 1 \\ -1 \end{pmatrix} = \frac{1}{\sqrt{5}} \begin{pmatrix} \varphi & \psi \\ 1 & 1 \end{pmatrix} \begin{pmatrix} \varphi^n \\ -\psi^n \end{pmatrix}$$
$$= \frac{1}{\sqrt{5}} \begin{pmatrix} \varphi^{n+1} - \psi^{n+1} \\ \varphi^n - \psi^n \end{pmatrix}.$$

Therefore $f_n = (1/\sqrt{5})(\varphi^n - \psi^n)$.