MP*: Oraux Planche 1

Coralie RENAULT

22 mai 2015

Exercice

Montrer, pour tout $n \in \mathbb{N}$, qu'il existe un unique $P_n \in \mathbb{R}_{n+1}[X]$ tel que $P_n(0) = 0$ et $P_n(X + 1) - P_n(X) = X^n$.

Exercice

Soit $f \in \mathcal{C}([a, b], \mathbb{R})$. On suppose que pour tout $n \in \mathbb{N}$,

$$\int_{a}^{b} x^{n} f(x) \, \mathrm{d}x = 0$$

- a) Montrer que la fonction f est nulle.
- b) Calculer

$$I_n = \int_0^{+\infty} x^n e^{-(1-i)x} dx$$

c) En déduire qu'il existe f dans $\mathcal{C}([0,+\infty[\,,\mathbb{R})$ non nulle, telle que, pour tout n dans \mathbb{N} , on ait

$$\int_0^{+\infty} x^n f(x) \, \mathrm{d}x = 0$$