Análise Matemática I recuperação 2011/2012

Universidade de Évora

 1^a frequência: 23–03-2012 duração: 2h30m

Cada grupo deve ser resolvido em folhas de teste separadas.

Deve numerar as folhas de teste que entrega.

Não é permitido o uso de calculadoras, nem qualquer equipamento electrónico.

Justifique cuidadosamente cada resposta.

Grupo I- Sucessões

1. Calcule caso existam ou mostre que não existem os limites das seguintes sucessões:

(a)
$$u_n = \frac{2^{2n} - 3^n}{(-2)^n - 3^{2n}};$$

(b)
$$u_n = (-1)^n \sqrt{n} (\sqrt{n+3} - \sqrt{n});$$

(c)
$$u_n = \sum_{k=2}^n \frac{1}{\sqrt[3]{2n^3 + k}};$$

(d)
$$u_n = \frac{\ln n}{\ln (2n)}$$
.

2. Considere a seguinte sucessão definida por recorrência:

$$\begin{cases} a_1 = 1, \\ a_{n+1} = \frac{1}{1+a_n}, \text{ para } n \ge 1. \end{cases}$$

- (a) Mostre que $a_n > 0$ para qualquer $n \in \mathbb{N}$.
- (b) Mostre que $\{a_n\}$ é decrescente;
- (c) Justifique que $\{a_n\}$ é convergente e calcule o seu limite.
- 3. Usando a definição de limite mostre que se $\{u_n\}$ é convergente então

$$L = \lim_{n \to \infty} u_n = \lim_{n \to \infty} u_{n+1}.$$

Grupo II- Séries

4. Calcule a soma das seguintes séries:

(a)
$$\sum_{n=1}^{+\infty} 2^{-2n} 3^{1+n};$$

(b)
$$\sum_{n=1}^{\infty} n^{\frac{1}{n}} - (n+2)^{\frac{1}{n+2}}$$
.

5. Determine a natureza das seguintes séries:

(a)
$$\sum_{n=1}^{\infty} (-1)^n \frac{5}{\sqrt{9n^2 + 6n + 1}}$$
;

(b)
$$\sum_{n=1}^{\infty} \frac{\sqrt[3]{5n^2 + 3}}{n+4};$$

(c)
$$\sum_{n=1}^{\infty} \left(\frac{n^2+2}{n^2+5} \right)^n.$$

- 6. Diga justificando se as seguintes afirmações são verdadeiras ou falsas:
 - (a) Se $\{u_n\}$ é uma sucessão limitada e $\{v_n\}$ é um infinitésimo então a série $\sum_{n=1}^{+\infty} u_n v_n$ é convergente;

(b) Se
$$\lim_{n\to\infty} u_n = \frac{1}{2}$$
 então a série é $\sum_{n=1}^{\infty} u_n^n$ é divergente;

(c) Se
$$u_n \leq \frac{1}{n^2}$$
 para qualquer $n \geq 17$, então $\sum_{n=1}^{+\infty} u_n$ converge.

Bom Trabalho!