Spatio-temporal statistics (MATH4341)

Michaelmas term, 2023

Homework 2: Geostatistics (Kriging and MLE inference)

Lecturer: Georgios P. Karagiannis

georgios.karagiannis@durham.ac.uk

As formative assessment 1, submit the solutions to all the Exercises

Exercise 1. (*) Consider we the geostatistical model $(Z_s)_{s\in\mathcal{S}}$ with

$$Z(s) = \mu(s) + w(s) + \varepsilon(s)$$

where $\delta(s)$ is a weakly stationary process with mean zero and covariogram $c_{\delta}(h; \sigma^2, \phi) = \sigma^2 \exp\left(-\frac{1}{\phi} \|h\|\right)$, $\mu(s; \beta)$ is a deterministic function

$$\mu(s; \beta) = \sum_{j=0}^{p} \psi_j(s) \beta_j = (\psi(s))^{\top} \beta$$

with unknown coefficients $\beta = (\beta_0, ..., \beta_p)^{\top}$ and known basis functions $\psi(s) = (\psi_0(s), ..., \psi_p(s))^{\top}$, $\varepsilon(s)$ is a nugget effect process whose covariogram has sill τ^2 , and assume that w(s) and $\varepsilon(s)$ are independent.

- 1. Write down the covariogram $c(h; (\sigma^2, \phi, \tau))$ of (Z_s) .
- 2. Consider a re-parametrization $\theta = (\sigma^2, \phi, \xi)$ where $\xi^2 = \frac{\tau^2}{\sigma^2}$ is called signal to noise ratio. Assume there is available a dataset $\{(s_i, Z_i)\}_{i=1}^n$ where $Z_i := Z(s_i)$ is a realization of $(Z_s)_{s \in \mathcal{S}}$ at site s_i .
 - (a) Let Ψ be a matrix with $[\Psi]_{i,j} = \psi_j(s_i)$. Let D be a matrix such as $[D]_{i,j} = \|s_i s_j\|$. Write down the covariance matrix $C(\theta)$ of $Z = (Z_1, ..., Z_n)^{\top}$ as a function of D and θ .

Hint: You can use convenient notation such as $\exp(D)$ meaning $[\exp(D)]_{i,j} = \exp(D_{i,j})$.

- (b) Write down the log likelihood function $\log(L(Z;\theta))$ of $Z = (Z_1,...,Z_n)^{\top}$ given $\theta = (\sigma^2, \phi, \xi)$.
- 3. Let $r(\cdot)$ (called correlogram) such as $c(\cdot) = \sigma^2 r(\cdot)$. For the following, assume that (ϕ, ξ) as known constants.

- (a) Compute the likelihood equations w.r.t. (β, σ^2) , and for given (ϕ, ξ) .
- (b) Compute the MLE $\hat{\beta}_{(\phi,\xi)}$ of β as a function of (ϕ,ξ)
- (c) Compute the MLE $\hat{\sigma}_{(\phi,\xi)}^2$ of σ^2 as a function of (ϕ,ξ) .
- (d) Compute the unbiased estimator of $\tilde{\sigma}^2$ of σ^2 .

Hint Consider the fitted values $e = (e_1, ..., e_n)^{\top}$ as e = [I - H] Z where $H = (\Psi^{\top} R^{-1} \Psi)^{-1} \Psi^{\top} R^{-1}$, and write $\hat{\sigma}^2_{(\phi,\xi)}$ w.r.t. e.

Hint It is given that $\mathrm{E}\left(Z^{\top}AZ\right) = \mathrm{E}\left(Z\right)^{\top}A\mathrm{E}\left(Z\right)^{\top} + \mathrm{tr}\left(A\mathrm{Var}\left(Z\right)\right)$ when $Z \sim \mathrm{Normal}$

4. Compute the so-called log "profiled likelihood" $\log (L(Z; (\phi, \xi)))$ resulting as

$$L(Z; (\phi, \xi)) = L\left(Z; \beta = \hat{\beta}_{(\phi, \xi)}, \sigma^2 = \hat{\sigma}^2_{(\hat{\beta}_{(\phi, \xi)}, \phi, \xi)}, \phi, \xi\right)$$

by replacing the β with $\hat{\beta}_{(\phi,\xi)}$ and σ^2 with $\hat{\sigma}^2_{(\hat{\beta}_{(\phi,\xi)},\phi,\xi)}$ in the actual likelihood $L\left(Z;\beta,\theta=\left(\sigma^2,\phi,\xi\right)\right)$. Describe how you would compute suitable values for the MLE $\left(\hat{\phi},\hat{\xi}\right)$ of (ϕ,ξ)

Exercise 2. (*) Let $(Z_s)_{s \in \mathcal{S}}$ be a specified statistical model. Assume that process $(Z_s)_{s \in \mathcal{S}}$ has known mean $\mu(s) = \mathrm{E}(Z(s))$ and known covariance function $c(\cdot, \cdot)$. Assume there is available a dataset $\{(s_i, Z_i := Z(s_i))\}_{i=1}^n$. Assume that the matrix C such as $[C]_{i,j} = c(s_i, s_j)$ has an inverse. Consider the "Kriging" estimator μ_{SK} Consider the "Kriging" estimator $Z_{\mathrm{SK}}(s_0)$ of $Z(s_0)$ at an unseen spatial location s_0 as the BLUE (Best Linear Unbiased Estimator)

$$Z_{SK}(s_0) = w_{n+1} + \sum_{i=1}^{n} w_i Z(s_i) = w_{n+1} + w^{\top} Z,$$

for some unknown $\{w_i\}$ that we need to learn, and $Z = (Z_1, ..., Z_n)^{\top}$. Let $w = (w_1, ..., w_n)^{\top}$.

- 1. Find sufficient conditions on $w = (w_1, ..., w_n)^{\top}$ so that the Kriging estimator $Z_{SK}(s_0)$ to be unbiased.
- 2. Derive the MSE of $Z_{SK}(s_0)$ as

$$E(Z_{SK}(s_0) - Z(s_0))^2 = w^{\top}Cw + c(s_0, s_i) - 2w^{\top}C_0$$

where C_0 is a vector such as $[C_0]_i = c(s_0, s_i)$.

¹that is, the gradient of the log-likelihood

3. Derive the Kriging estimator of $Z\left(s_{0}\right)$ as

$$Z_{SK}(s_0) = \mu(s_0) + C_0^{\top} C^{-1} [Z - \mu(s_{1:n})]$$

where $\mu\left(s_{1:n}\right)$ is a vector such as $\left[\mu\left(s_{1:n}\right)\right]_{i}=\mu\left(s_{i}\right)$.

4. Compute the Kriging standard error $\sigma_{SK} = \sqrt{\mathbb{E}\left(Z_{SK}\left(s_{0}\right) - Z\left(s_{0}\right)\right)^{2}}$.