Journal Report 9 11/11/19-11/15/19 Ajit Kadaveru Computer Systems Research Lab Period 4, White

Daily Log

Monday November 11

We listened to the last presentation. I decided on my winter goal to be able to identify the cube's state in the program given a clear picture from the perfect angle of a cube. I continued researching about hough transformations.

Tuesday November 12

I created a github account and learned how to use it with a tutorial. I pushed all my current code. I also edited the edge detection code to make sure the lines were clear enough to use hough transformations on.

Thursday November 14

I was researching and found a hough transformation implementation guide online. I coded it up, ran it for an image of a regular pentagon, and saw a bunch of black lines, and wasn't sure how to interpret the results. I realized this was for line detection, while I needed square detection. I did more research and found a few pdfs that help a lot with interpreting the output image, and information specific for square-detection.

Timeline

Date	Goal	Met
Winter	Be able to identify the cube's state in the	
Goal	program given a clear picture from a good	
	angle of a cube	
Today	Identify the colors of the centers of the	No, turned out to be harder than I ex-
minus 2	squares in the visible edge detected im-	pected. It's hard to determine the colors
weeks	age. Use this to determine the orientation	of center squares.
	of the cube in the image.	
Today	Identify the coordinates of many points in	No, it was hard to find coordinates of
minus 1	the centers of the squares in the visible	points in each of the squares just based on
week	edge detected image.	the edge detected image. Need to distin-
		guish squares from each other.
Today	Finish implementing Hough Transform or	Yes, but wasn't sure how to interpret the
	Shape Detection on the edge detected im-	results.
	age	
Today	Finish implementing Hough Transform	
plus 1	for Square Detection on the edge detected	
weeks	image, and be able to interpret the results	
	of the output image	
Today	Use this to find the coordinates of many	
plus 2	points in each of the squares on the cube.	
weeks		

Reflection

This week, I learned how to use github, and made my progress for the future until winter break more clear. After failing with one implementation of hough transform, I did more research. From the pdfs I found while researching, I have a more clear idea of how I'm going to proceed with detecting the squares on a picture of the cube. I'm also going to learn, from the pdfs, about how to interpret the output image of the hough transform, and use it to determine the locations of the squares in the image. I also edited the edge detection code a little to make it easier for the hough transformation part.

Figure 1: An image of the pentagon and its hough transformation output