

By: Leslie Covarrubias-M & Sukhampreet Kaur

Main idea

Purpose: Manage and analyze agriculture data across India

Goal: Support farmers, researchers, and advisors in improving crop production, sustainability, and market planning

Key Outcomes

- Supports data-driven planning and decision-making
- Promotes sustainable and eco-friendly farming practices
- Helps forecast market trends and resource needs
- Turns agricultural data into useful, actionable insights

UML use case diagram

- ** 1. Analyze Crop Production Trends: Study changes in crop yields and production over time.
- **2.** Identify Key Drivers of Productivity: Find what factors (rainfall, soil, fertilizer, technology) affect agricultural output.
- ★ 3. Assess Climate and Policy Impacts: Compare how weather conditions or government policies influence crop yields.
- **4. Support Evidence-Based Decision Making:** Use data to guide resource allocation, planning, and policy development.
- **5. Research Sustainable Practices:** Explore eco-friendly farming, crop diversification, and long-term soil health.
- **6. Monitor Fertilizer and Pesticide Usage:** Track input trends across regions to prevent overuse and protect the environment.
- 7. Forecast Market Prices and Demand: Predict future crop demand and price fluctuations using historical data.

E/R DIAGRAM

RELATIONAL SCHEMA

Primary key: light blue Foreign key: light orange

DISTRICTS(district_id, state_name, district_name)

CROPS(crop_id, crop_name, crop_group)

CROP_REQUIREMENTS(requirement_id, crop_id, N, P, K, temperature, humidity, ph, rainfall)

CROP_PRODUCTION_STATISTIC(stat_id, crop_id, district_id, crop_year, season, area, production, yield)

PESTICIDE_USE(pesticide_id, district_id, compound, low_estimate, high_estimate, avg_estimate)

CROP_PESTICIDE(crop_id, pesticide_id, avg_estimate, effectiveness_score)

CROP_DISTRICT(crop_id, district_id, avg_yield, total_area, best_season)

FARM_WEATHER(weather_id, district_id, record_date, maxT, minT, windspeed, humidity, precipitation)

SUSTAINABILITY_DATA(record_id, crop_id, district_id, record_year, soil_ph, soil_moisture, temperature_c, rainfall_mm, fertilizer_used, pesticide_usage, crop_yield, sustainability_score)

MARKETS(market_id, market_name, district_id, market_type)

CROP_ARRIVAL_PRICE(arrival_id, crop_id, district_id, market_id, variety, arrival_date, arrival_tonnes, min_price_rs_per_quintal, max_price_rs_per_quintal, modal_price_rs_per_quintal)

RELATION-SHIP TABLE

J –	
E	

Crops

TABLE 1	
Districts	
Crops	
Districts	
Districts	
Districts	
Crops	
Districts	
Markets	
Districts	
Crops	
Crops	
Crops	

RELATIONSHIP

1:M

1:1

M:N

M:N

TABLE 2

Pesticide_use

Farm_weather

Sustainability_data

Sustianability_data

Crop_arrival_price

Crop_arrival_price

Crop_arrival_price

Crop_requirements

Markets

Districts

Pesticide_use

Crop_production_satistic

Crop_production_satistic