IN THE CLAIMS

1. (Currently Amended) An organic electroluminescent element comprising an anode, a cathode and a component layer including a light emission layer, the component layer being provided between the anode and the cathode, wherein the component layer contains a compound represented by formula 1,

Formula 1

$$X_1 - (A_1)_n$$

wherein A_1 represents a group represented by formula 2, provided that plural A_1 may be the same or different,

Formula 2

$$-Ar_1-N$$

$$(R_1)_{na}$$

$$(R_2)_{nk}$$

wherein Ar_1 represents a divalent aromatic hydrocarbon or aromatic heterocyclic group; R_1 and R_2 independently represent a hydrogen atom, a substituted or unsubstituted alkyl group, a substituted or unsubstituted aralkyl group, a substituted or unsubstituted aralkyl group, a substituted or unsubstituted aryl group, a substituted or unsubstituted alkoxy group, a substituted or unsubstituted aryloxy group, a cyano group, a hydroxyl group, a substituted or unsubstituted alkenyl group, or a halogen atom; na and nb independently represent an integer of from 1 to 4; and X_1 represents a group represented by formula (d), (e), (f), (g), (h), (i), (j), or (k),

wherein R_{41} and R_{42} independently represent an alkyl group, provided that the total carbon atom number of the alkyl group is from 3 to 9; R_{51} and R_{52} independently represent a substituted or unsubstituted alkyl group, a substituted or unsubstituted arylegroup, a substituted or unsubstituted arylegroup, a substituted or unsubstituted arylegroup, a cyano group, a hydroxyl group, a substituted or unsubstituted alkenyl group, or a halogen atom; R_{61} represents an alkyl group; R_{61} represents a divalent 6- or 7-membered monocyclic heterocyclic ring which is alkyl-substituted or a divalent 7-membered monocyclic heterocyclic ring which is unsubstituted; R_{71} through R_{78} independently represent a hydrogen atom, an alkyl group, or an alkoxy group; R_{91} through R_{98} independently represent a hydrogen atom, an alkyl group, or an alkoxy group; R_{91} through R_{98} independently represent a hydrogen atom, an alkyl group, or an alkoxy group; and "**" represents a linkage site, provided that when R_{11} represents formula (d), (e), R_{11} or (f) or (g), n is 2, and when R_{11} represents formula (h), (i), (j), or (k), n is 4.

2. (Original) The organic electroluminescent element of claim 1, wherein a hole blocking layer is provided between the light emission layer and the cathode.

- 3. (Original) The organic electroluminescent element of claim 2, wherein the hole blocking layer is comprised of at least one selected from the group consisting of a styryl compound, a triazole derivative, a phenanthroline derivative, an oxadiazole derivative and a boron derivative.
- 4. (Original) The organic electroluminescent element of claim 2, wherein the hole blocking layer is comprised of at least one selected from the group consisting of compounds represented by formula 5, 6, 7 or 8,

Formula 5 Formula 6

Formula 7 Formula 8

wherein R_{a1} through R_{a3} , R_{b1} through R_{b4} , and R_{c1} and R_{c2} independently represent an alkyl group, an aryl group or a heterocyclic group; and A_{ra} through A_{rc} independently represent an aryl group or a heterocyclic group.

- 5. (Original) The organic electroluminescent element of claim 1, wherein the light emission layer contains the compound represented by formula 1 above.
- 6. (Original) The organic electroluminescent element of claim 1, wherein the organic electroluminescent element contains a phosphorescent compound.
- 7. (Original) The organic electroluminescent element of claim 6, wherein the phosphorescent compound is an osmium complex, an iridium complex or a platinum complex.

8. (Previously Presented) An organic electroluminescent element comprising an anode, a cathode and a component layer including a light emission layer, the component layer being provided between the anode and the cathode, wherein the component layer contains a compound represented by formula 3,

Formula 3

$$X_2$$
- $(A_2)_m$

wherein A_2 represents a group represented by formula 4, provided that plural A_2 may be the same or different,

Formula 4

$$-\operatorname{Ar}_2-\operatorname{N} = (R_3)_{\operatorname{nc}}$$

$$(R_4)_{\operatorname{nd}}$$

wherein Ar_2 represents a divalent aromatic hydrocarbon or aromatic heterocyclic group; R_3 and R_4 independently represent a hydrogen atom, a substituted or unsubstituted alkyl group, a substituted or unsubstituted aralkyl group, a substituted or unsubstituted aralkyl group, a substituted or unsubstituted aryl group, a substituted or unsubstituted alkoxy group, a substituted or unsubstituted aryloxy group, a cyano group, a hydroxyl group, a substituted or unsubstituted alkenyl group, or a halogen atom; nc and nd independently represent an integer of from 1 to 4; m represents an integer of 2; and X_2 represents a group represented by formula (l), (m), or (o),

Formula (1)

$$\begin{array}{c} R_{101} \\ R_{102} \\ R_{103} \\ R_{104} \\ R_{105} \\ R_{106} \\ \end{array} \\ \begin{array}{c} R_{110} \\ R_{109} \\ R_{107} \\ \end{array}$$

Formula (m)

Formula (o)

wherein R_{101} through R_{110} independently represent a hydrogen atom, an alkyl group, or an alkoxy group, provided that R_{101} through R_{110} does not simultaneously hydrogen atoms; and any two of R_{101} through R_{110} do not combine with each other to form a ring; R_{111} through R_{118} independently represent a hydrogen atom, an alkyl group, or an alkoxy group; A_5 , A_6 , A_7 , and A_8 independently represent - $C(R_{k2})$ = or -N=; X_b represents - $N(R_{k3})$ = or - $Si(R_{k4})(R_{k5})$ -, which R_{k2} , R_{k3} , R_{k4} , and R_{k5} independently represent a hydrogen atom, a substituted or unsubstituted alkyl group, a substituted or unsubstituted aralkyl group, a substituted or unsubstituted aryl group, a substituted or unsubstituted alkoxy group, a substituted or unsubstituted aryloxy group, a cyano group, a hydroxyl group, a substituted or unsubstituted or unsubstituted aryloxy group, a cyano group, a hydroxyl group, a substituted or unsubstituted aryloxy group, or a halogen atom; and "*" represents a linkage site.

- 9. (Original) The organic electroluminescent element of claim 8, wherein a hole blocking layer is provided between the light emission layer and the cathode.
- 10. (Original) The organic electroluminescent element of claim 9, wherein the hole blocking layer is comprised of at least one selected from the group consisting of a styryl compound, a triazole derivative, a phenanthroline derivative, an oxadiazole derivative and a boron derivative.
- 11. (Original) The organic electroluminescent element of claim 9, wherein the hole blocking layer is comprised of at least one selected from the group consisting of compounds represented by formula 5, 6, 7 or 8 above.

- 12. (Original) The organic electroluminescent element of claim 8, wherein the light emission layer contains the compound represented by formula 3 above.
- 13. (Original) The organic electroluminescent element of claim 8, wherein the organic electroluminescent element contains a phosphorescent compound.
- 14. (Original) The organic electroluminescent element of claim 13, wherein the phosphorescent compound is an osmium complex, an iridium complex or a platinum complex.
- 15. (Previously Presented) An organic electroluminescent element comprising an anode, a cathode and a component layer including a light emission layer, the component layer being provided between the anode and the cathode, wherein the component layer contains a compound represented by formula, H2, H3 or H4,

Formula H2

$$(R_9)_{me}$$
 $N-Ar_5-L_2-Ar_6-N$
 $(R_{11})_{mg}$
 $(R_{12})_{mh}$

wherein L₂ represents an alkylene group having at least one fluorine atom; Ar₅ and Ar₆ independently represent a divalent aromatic hydrocarbon group or a divalent aromatic heterocyclic group; R₉, R₁₀, R₁₁, and R₁₂ independently represent a hydrogen atom, a substituted or unsubstituted alkyl group, a substituted or unsubstituted cycloalkyl group, a substituted or unsubstituted aralkyl group, a substituted or unsubstituted aryl group, a substituted or unsubstituted aryloxy group, a cyano group, a hydroxyl group, a substituted or unsubstituted alkenyl group, or a halogen atom; and me, mf, mg, and mh independently represent an integer of from 1 to 4,

Formula H3

$$(R_{13})_{mi}$$
 $N-Ar_7$
 R_{h1}
 R_{h2}
 R_{h4}
 R_{h4}
 R_{h4}
 R_{h4}
 R_{h5}
 R_{h6}
 R_{16}

wherein Ar₇, Ar₈ and Ar₉ independently represent a divalent aromatic hydrocarbon group or a divalent aromatic heterocyclic group; R_{h1}, R_{h2}, R_{h3}, and R_{h4} independently represent an alkyl group, a cycloalkyl group, an aralkyl group, an alkoxy group or a halogen atom; R₁₃, R₁₄, R₁₅, and R₁₆ independently represent a hydrogen atom, a substituted or unsubstituted alkyl group, a substituted or unsubstituted aralkyl group, a substituted or unsubstituted aralkyl group, a substituted or unsubstituted aryl group, a substituted or unsubstituted alkoxy group, a substituted or unsubstituted aryloxy group, a cyano group, a hydroxyl group, a substituted or unsubstituted alkenyl group, or a halogen atom; and mi, mj, mk, and ml independently represent an integer of from 1 to 4,

Formula H4

$$(R_{17})_{mm}$$
 $N-Ar_{10}$
 R_{h5}
 R_{h6}
 $(R_{20})_{mp}$

wherein Ar_{10} and Ar_{11} independently represent a divalent aromatic hydrocarbon group or a divalent aromatic heterocyclic group; R_{h5} and R_{h6} independently represent a substituted or unsubstituted alkyl group, a substituted or unsubstituted aralkyl group, a substituted or unsubstituted aryl group, a substituted or unsubstituted alkoxy group, a substituted or unsubstituted aryloxy group, a cyano group, a hydroxyl group, a substituted or unsubstituted aryloxy group, a cyano group, a hydroxyl group, a substituted or unsubstituted alkenyl group, a halogen atom, or $-\{C(R_{01})(R_{02})\}_P CF_3$, in which R_{01} and R_{02} independently represent a hydrogen atom or a fluorine atom, and p represents an integer of not less than 0, provided that at least one of R_{h5} and R_{h6} is $-\{C(R_{01})(R_{02})\}_P CF_3$; R_{17} , R_{18} , R_{19} , and R_{20}

independently represent a hydrogen atom, a substituted or unsubstituted alkyl group, a substituted or unsubstituted cycloalkyl group, a substituted or unsubstituted aralkyl group, a substituted or unsubstituted alkoxy group, a substituted or unsubstituted alkoxy group, a substituted or unsubstituted aryloxy group, a cyano group, a hydroxyl group, a substituted or unsubstituted alkenyl group, or a halogen atom; and mm, mn, mo, and mp independently represent an integer of from 1 to 4.

- 16. (Original) The organic electroluminescent element of claim 15, wherein a hole blocking layer is provided between the light emission layer and the cathode.
- 17. (Original) The organic electroluminescent element of claim 16, wherein the hole blocking layer is comprised of at least one selected from the group consisting of a styryl compound, a triazole derivative, a phenanthroline derivative, an oxadiazole derivative and a boron derivative.
- 18. (Original) The organic electroluminescent element of claim 16, wherein the hole blocking layer is comprised of at least one selected from the group consisting of compounds represented by formula 5, 6, 7 or 8 above.
- 19. (Original) The organic electroluminescent element of claim 15, wherein the light emission layer contains the compound represented by formula H1, H2, H3, or H4 above.
- 20. (Original) The organic electroluminescent element of claim 15, wherein the organic electroluminescent element contains a phosphorescent compound.
- 21. (Original) The organic electroluminescent element of claim 20, wherein the phosphorescent compound is an osmium complex, an iridium complex or a platinum complex.

22. (Previously Presented) An organic electroluminescent element comprising an anode, a cathode and a component layer including a light emission layer, the component layer being provided between the anode and the cathode, wherein the component layer contains a compound represented by formula I1, I2 or I3,

Formula I1

$$(R_{21})_{ia} \\ N - \begin{array}{c} R_{i1} \\ R_{i2} \\ R_{i4} \\ R_{i4} \\ R_{i5} \\ \end{array} \\ (R_{22})_{ib} \\ R_{i6} \\ R_{i5} \\ \\ (R_{24})_{id} \\ \end{array}$$

Formula I2

$$(R_{25})_{ie} \\ R_{i9} \\ R_{i10} \\ R_{i11} \\ R_{i12} \\ (R_{28})_{ih}$$

Formula I3

$$(R_{29})_{ii}$$
 R_{i13}
 R_{i14}
 R_{i15}
 R_{i16}
 $(R_{30})_{ij}$
 $(R_{32})_{ii}$

wherein R_{i1}, R_{i2}, R_{i3}, R_{i4}, R_{i5}, R_{i6}, R_{i7}, R_{i8}, R_{i9}, R_{i10}, R_{i11}, R_{i12}, R_{i13}, R_{i14}, R_{i15}, and R_{i16} independently represent a hydrogen atom, an alkyl group, a cycloalkyl group, an aralkyl group, an alkoxy group or a halogen atom; R₂₁, R₂₂, R₂₃, R₂₄, R₂₅, R₂₆, R₂₇, R₂₈, R₂₉, R₃₀, R₃₁, and R₃₂ independently represent a hydrogen atom, a substituted or unsubstituted alkyl group, a substituted or unsubstituted aralkyl group, a substituted or unsubstituted aralkyl group, a substituted or unsubstituted aryl group, a substituted or unsubstituted alkoxy group, a substituted or unsubstituted aryloxy group, a cyano group, a hydroxyl group, a substituted or unsubstituted alkenyl group, or a halogen atom; and ia, ib, ic, id, ie, if, ig, ih, ii, ij, ik, and io independently represent an integer of from 1 to 4.

- 23. (Original) The organic electroluminescent element of claim 22, wherein a hole blocking layer is provided between the light emission layer and the cathode.
- 24. (Original) The organic electroluminescent element of claim 23, wherein the hole blocking layer is comprised of at least one selected from the group consisting of a styryl compound, a triazole derivative, a phenanthroline derivative, an oxadiazole derivative and a boron derivative.
- 25. (Original) The organic electroluminescent element of claim 23, wherein the hole blocking layer is comprised of at least one selected from the group consisting of compounds represented by formula 5, 6, 7 or 8 above.
- 26. (Original) The organic electroluminescent element of claim 22, wherein the light emission layer contains the compound represented by formula I1, I2 or I3 above.
- 27. (Original) The organic electroluminescent element of claim 22, wherein the organic electroluminescent element contains a phosphorescent compound.
- 28. (Original) The organic electroluminescent element of claim 27, wherein the phosphorescent compound is an osmium complex, an iridium complex or a platinum complex.

29. (Original) An organic electroluminescent comprising an anode, a cathode and a component layer including a light emission layer, the component layer being provided between the anode and the cathode, wherein the component layer contains a compound represented by formula J1 or J2,

Formula J1

$$(R_{33})_{ja} = (R_{35})_{jc}$$

$$(R_{34})_{jb} = (R_{36})_{jd}$$

$$(R_{36})_{jd}$$

Formula J2

$$(R_{37})_{je} \\ N - R_{j9} R_{j10} \\ R_{j11} R_{j12} \\ (R_{40})_{jh}$$

wherein R_{j1}, R_{j2}, R_{j3}, R_{j4}, R_{j5}, R_{j6}, R_{j7}, R_{j8}, R_{j9}, R_{j10}, R_{j11}, and R_{j12} independently represent a hydrogen atom, an alkyl group, a cycloalkyl group, an aralkyl group, an alkoxy group or a halogen atom; R₃₃, R₃₄, R₃₅, R₃₆, R₃₇, R₃₈, R₃₉, and R₄₀ independently represent a hydrogen atom, a substituted or unsubstituted alkyl group, a substituted or unsubstituted cycloalkyl group, a substituted or unsubstituted aryl group, a substituted or unsubstituted alkoxy group, a substituted or unsubstituted aryloxy group, a cyano group, a hydroxyl group, a substituted or unsubstituted alkenyl group, or a halogen atom; and ja, jb, jc, jd, ie, jf, jg, and jh independently represent an integer of from 1 to 4.

30. (Original) The organic electroluminescent element of claim 29, wherein a hole blocking layer is provided between the light emission layer and the cathode.

- 31. (Original) The organic electroluminescent element of claim 30, wherein the hole blocking layer is comprised of at least one selected from the group consisting of a styryl compound, a triazole derivative, a phenanthroline derivative, an oxadiazole derivative and a boron derivative.
- 32. (Original) The organic electroluminescent element of claim 30, wherein the hole blocking layer is comprised of at least one selected from the group consisting of compounds represented by formula 5, 6, 7 or 8 above.
- 33. (Original) The organic electroluminescent element of claim 29, wherein the light emission layer contains the compound represented by formula J1 or J2 above.
- 34. (Original) The organic electroluminescent element of claim 29, wherein the organic electroluminescent element contains a phosphorescent compound.
- 35. (Original) The organic electroluminescent element of claim 34, wherein the phosphorescent compound is an osmium complex, an iridium complex or a platinum complex.

36-42. (Canceled)

43. (Original) An organic electroluminescent element comprising an anode, a cathode and a component layer including a light emission layer, the component layer being provided between the anode and the cathode, wherein the component layer contains an electron transporting material having a phosphorescence 0-0 band of not more than 450 nm, and the light emission layer contains a phosphorescent compound and a compound represented by formula A,

Formula A

$$(R_1)_{n1}$$
 $(R_2)_{n2}$

wherein R_1 , R_2 and R_3 independently represent a substituted or unsubstituted alkyl group or a substituted or unsubstituted cycloalkyl group; n_1 represents an integer of from 0 to 5; and n_2 and n_3 independently represent an integer of from 0 to 4, provided that R_1 and R_2 , R_1 and R_3 , or R_2 and R_3 , each may combine with each other to form a ring.

44. (Original) The organic electroluminescent element of claim 43, wherein the organic electroluminescent element emits a white light.

45. (Previously Presented) An organic electroluminescent element comprising an anode, a cathode and a component layer including a light emission layer, the component layer being provided between the anode and the cathode, wherein the component layer contains a hole transporting material having a phosphorescence 0-0 band of not more than 480 nm, and the light emission layer contains a phosphorescent compound and a compound represented by formula A:

Formula A

$$(R_1)_{n1}$$
 $(R_2)_{n2}$

wherein R_1 , R_2 and R_3 independently represent a substituted or unsubstituted alkyl group or a substituted or unsubstituted cycloalkyl group; n_1 represents an integer of from 0 to 5; and n_2 and n_3 independently represent an integer of from 0 to 4, provided that R_1 and R_2 , R_1 and R_3 , or R_2 and R_3 , each may combine with each other to form a ring.

46. (Original) The organic electroluminescent element of claim 45, wherein the organic electroluminescent element emits a white light.

47. (Previously Presented) An organic electroluminescent element comprising an anode, a cathode and a component layer including a light emission layer, the component layer being provided between the anode and the cathode, wherein the light emission layer contains a phosphorescent compound having a phosphorescence 0-0 band of not more than 480 nm and a compound represented by formula A:

Formula A

$$(R_1)_{n1}$$
 $(R_2)_{n2}$

wherein R_1 , R_2 and R_3 independently represent a substituted or unsubstituted alkyl group or a substituted or unsubstituted cycloalkyl group; n_1 represents an integer of from 0 to 5; and n_2 and n_3 independently represent an integer of from 0 to 4, provided that R_1 and R_2 , R_1 and R_3 , or R_2 and R_3 , each may combine with each other to form a ring.

- 48. (Original) The organic electroluminescent element of claim 47, wherein the organic electroluminescent element emits a white light.
- 49. (Previously Presented) A display comprising the organic electroluminescent element of any one of claims 1, 8, 15, 22, 29, 43, and 45.
- 50. (Previously Presented) An illuminator comprising the organic electroluminescent element of any one of claims 1, 8, 15, 22, 29, 43, and 45.
- 51. (Original) A display comprising the illuminator of claim 50, and a liquid crystal cell as a displaying element.