My DE1 repisitory link

DE1 - Jiří Navrátil 222721

Binary counter

Table with button connections for Nexys A7 board

Output pins	FPGA pin	FPGA pin name
BTNL	IO_L12P_T1_MRCC_14	P17
BTNR	IO_L10N_T1_D15_14	M17
BTNU	IO_L4N_T0_D05_14	M18
BTND	IO_L9N_T1_DQS_D13_14	P18
BTNC	IO_L9P_T1_DQS_14	N17

Intervals of clock signal

Time interval	Number of clk periods	Number of clk periods in hex	Number of clk periods in binary
2 ms	200 000	x"3_0d40"	b"0011_0000_1101_0100_0000"
4 ms	400 000	x"6_1a80"	b"0110_0001_1010_1000_0000"
10 ms	1 000 000	x"f_4240"	b"1111_0100_0010_0100_0000"
250 ms	25 000 000	x"17d_7840"	b"0001_0111_1101_0111_1000_0100_0000"
500 ms	50 000 000	x"2fa_f080"	b"0010_1111_1010_1111_0000_1000_0000"
1 sec	100 000 000	x"5f5_e100"	b"0101_1111_0101_1110_0001_0000_0000"

VHDL code for binary counter

Process code

Reset and stimulus processes from testbench

```
p_reset_gen : process
begin
   s_reset <= '0';
   wait for 32 ns;
   -- Reset activated
   s_reset <= '1';
   wait for 94 ns;
   s_reset <= '0';</pre>
   wait;
end process p_reset_gen;
p_stimulus : process
begin
    report "Stimulus process started" severity note;
    -- Enable counting
    s_en <= '1';
   -- Change counter direction
    s_cnt_up <= '1';
   wait for 380 ns;
   s cnt up <= '0';
   wait for 220 ns;
    -- Disable counting
   s en <= '0';
    report "Stimulus process finished" severity note;
   wait;
end process p_stimulus;
```

Result

VHDL code of top.vhd file

```
-- Instance (copy) of clock_enable entity
clk_en0 : entity work.clock_enable
    generic map(
        g_MAX => 100000000
    port map(
             => CLK100MHZ,
        clk
        reset => BTNC,
        ce_o => s_en
    );
-- Instance (copy) of cnt_up_down entity
bin_cnt0 : entity work.cnt_up_down
    generic map(
        g_CNT_WIDTH => 4
    )
    port map(
        clk
                 => CLK100MHZ,
        reset
                 => BTNC,
        en_i => s_en,
        cnt_up_i => SW(0),
                 => s_cnt
        cnt_o
    );
-- Display input value on LEDs
LED(3 downto ∅) <= s_cnt;
-- Instance (copy) of hex_7seg entity
hex2seg : entity work.hex_7seg
    port map(
        hex_i
               => s_cnt,
        seg_o(6) \Rightarrow CA,
        seg_o(5) \Rightarrow CB,
        seg_o(4) \Rightarrow CC,
        seg_o(3) \Rightarrow CD,
        seg o(2) \Rightarrow CE,
        seg_o(1) \Rightarrow CF,
        seg_o(0) \Rightarrow CG
    );
-- Connect one common anode to 3.3V
AN <= b"1111_1110";
```

Sketch of the top layer with both counters

