0.1 Softmax [20 points]

I) [10 point] Prove that softmax is invariant to constant sifts in the input, i.e., for any input vector

x and a constant scalar c, the following holds:

$$softmax(x) = softmax(x -+-c),$$

where $\operatorname{softmax}(xh - 4)$ and x-kc means adding c to every dimension of x.

2) [10 point] Let z = W x -F c, where W and c are some matrix and vector, respectively. $\frac{\partial J}{\partial x}$. Let

J = log

1) Given softmax $(x)_i = e^{x_i}$ $\Xi_i \cdot e^{x_i} i'$

Softmax $(X+C)_{i} = e^{X_{i}+C} = e^{X_{i}}e^{C} = e^{X_{i}}e^{C}$ $\sum_{i}e^{X_{i}'}e^{X_{i}'}e^{C} = \sum_{i}e^{X_{i}'}e^{C} = e^{X_{i}}e^{C}$ cancel

Calculate the derivatives of J w.r.t. W and c, respectively, i. e. , calculate _uu- and

$$= \underbrace{e^{x_i}}_{\text{Si}} = Softmax(x)$$

2) $J = \sum_{i} Log Softmax(Z)_{i}$

if softmax $(X)_i \triangleq e^{X_i}$ then, $\sum_{i} e^{X_{i'}}$

 $50ftmax(Z)_i \triangleq e^{Z_i}$ and, $\sum_{i}e^{Z_{i}}$

 $J = \sum_{i} \log e^{z_{i}} = \log e^{z_{i}} = \log e^{z_{i}}$ $\sum_{i} e^{z_{i}} = \log e^{z_{i}} = \log e^{z_{i}}$

$$dJ = d \left(\log e^{2i} \right) = 0 \text{ since all term are }$$

$$dW dW \left(\int_{i}^{2} e^{2i} \right) = 0 \text{ since all term are }$$

$$dT = d \left(\log e^{2i} \right) = 0 \text{ since all term are }$$

$$dC dC \left(\int_{i}^{2} e^{2i} \right) = 0 \text{ since all term are }$$

$$dC dC \left(\int_{i}^{2} e^{2i} \right) = 0 \text{ since all term are }$$

0.2 Logistic Regression with Regularization [20 points]	
1) [10 point] Let the data be (Xi, where Xi G IR ^d and Yi G {O, 1}. Logistic regression is a binary classification model, with the probability of Yi being I as:	
Δ	
$p(y_i =_1 \mathbf{x} \bullet 0) = \mathbf{a} \ 0^{\mathrm{T}} \mathbf{X} \mathbf{i} \stackrel{\triangle}{=} \frac{1}{1 + e^{-\boldsymbol{\theta}^T \mathbf{x}_i}} \ ,$	
where is the model parameter. Assume we impose an 102 regularization term on the parameter, defined as:	
$\mathcal{R}(oldsymbol{ heta}) = rac{\lambda}{2} oldsymbol{ heta}^T oldsymbol{ heta}$	
2 with a positive constant A. Write out the final objective function for this logistic regression with regularization model.	
2) [10 point] If we use gradient descent to solve the model parameter. Derive the updating rule for O. Your answer should contain the derivation, not just the final	
answer.	
	_
	_

0.3 Derivative of the Softmax Function [30 points]
I) [10 point] Define the loss function as
$J(\mathbf{z}) = -\sum_{k=1}^{K} y_k \log \tilde{y}_k \;, $
k=1 $k=1$
where , and , ••••, $!/K$) is a known probability vector. Derive the $\underline{DJ(z)}$
Note $z - ZK$) is a vector so $\underline{DJ(z)}$ is in the form of a vector. Your answer should contain the derivation, not just the final answer.
2 [10 point] Assume the above softmax is the output layer of an FNN. Briefly explain how the derivative is used in the backpropagation algorithm.
$\partial \mathbf{W}$ the derivative is used in the backpropagation algorithm.
(1) J(Z) = - 5 / Klog YK & YK = e K XdJ(Z) = dJ/dZ,
$\sum_{K} e^{z} K' dz$
dJ/17.
dJ(z)=-d Z Yk log Yk dz dz K=1
= - d \(\sum \forall \forall \forall \kappa \left \forall \kappa
QZ Zx,CK
3) [10 points] Let $z = h + b$), where $a(\bullet)$ is the sigmoid function, W is a matrix, b and
= -d & YkZk + d & Yklog & e k'
$d \geq d \geq$
h are vectors. Use the chain rule to calculate the gradient of W and b, i.e., and Db,
= -Y_K + d \(\sum_{K=1}^{K} \) Y_K \log \(\sum_{K'} \) \(\varepsilon^2 K' \)
$d \geq k = 1$
respectively (it is enough to derive the gradients for one element of the matrix/vector
K
= -/x + \sum /k o d log \subsete e^{\frac{1}{k'}} d align*
parameter).
-1 , $\sqrt{2}$, 1
$= -Y_{K} + \sum_{k=1}^{K} Y_{K} \cdot \frac{1}{\sum_{k}^{T} e^{2} K^{T}} \cdot e^{2} K^{T}$
Zi, eck
/ K 7 \
= -YK + ex (S/YK)

$$= - \frac{1}{12} + \frac{1}{12} \frac{1}{12} + \frac{1}{12} \frac{$$

2) The derivative is used in backpropigation to update the weights of a FNN during training to help minimize loss.

$$\frac{dJ}{dW} = ? \qquad \frac{dJ}{db} = ?$$

$$\frac{dJ}{dW} \frac{dJ}{dz} \frac{dJ}{dw} = \begin{bmatrix} -Y_1 + \tilde{Y}_1 \\ -Y_2 + \tilde{Y}_2 \end{bmatrix}$$

$$\begin{bmatrix} -Y_1 + \tilde{Y}_1 \\ \vdots \\ -Y_N + \tilde{Y}_N \end{bmatrix}$$

— 100 can use any packages	but Pytoch is recommended.	
nput Layer t: Image Image rs: 28×28	Hidden Laver	Output Laver
Y: Image y size	Hidden Layer Neurons: 5/2	Output Layer Neurons: 10
5. 21 × 20	0	7007015
		-0
0		0 1
0 ///		0 2
Ó //,		
:		0 9
	1/0	0 3
5		06
C 11	V	7
ayer Fully con	reeted	0 8
		9
	Layer Fully a	connected

0.4 MNIST with F NN [30 points]

1) CIO points] Design an FNN for MNIST classification. Draw the computational graph of

