

An Analysis of Online Food Delivery Service: Zomato Restaurant data

TEAM NUMBER -4

TEAM MEMBERS:

MADASU DEEPIKA(19MIA1066)

G.HARINISRI(19MIA1069)

School of Computer Science and Engineering

CERTIFICATE

The project report entitled "An Analysis of Online Food Delivery Service: Zomato Restaurant data" is prepared and submitted by MADASU DEEPIKA (19MIA1066)
G.HARINISRI(19MIA1069)

It has been found satisfactory in terms of scope, quality, and presentation as partial fulfillment of the requirements for the award of the degree of **Bachelor of Technology – Computer Science and Engineering** in Vellore Institute of Technology, Chennai, India.

Examined by:

Dr. TULASI PRASAD SARIKI

ABSTRACT:

Food technology in a broad area, online food delivery apps are just part of it. This conceptual study will give more insight into emerging innovative technologies in the restaurant industry and strategies followed by online food start-ups Zomato.

From this research paper, we would understand the drivers of online food sites. Different services are given by application that makes consumers happy and satisfied. Comfort and Convenience makes consumer more inclined towards online food ordering.

The research concluded that due to urbanization in the Indian landscape, online food delivery applications are growing with flying colors. The future of online food ordering websites is bright. Facilities, Comfort, User-friendliness are the key features of the success of the online website.

Here we will analysing and studying the zomato dataset with help of exploratory data analysis, visualize them with help graphs and charts, we will be finding three main objectives and provide a recommendation system based on restaurant name and reviews text.

INTRODUCTION:

The food delivery industry is a rapidly growing sector ripe for databased development. Everything is quantifiable, from delivery times and zip codes to prices and customer satisfaction. These data points can be collated and processed to improve operations and profitability while cutting down on loss.

Zomato, one of the largest players in the industry, uses demographic data to make intelligent predictions about what offerings might interest a particular user, then serves that customer ads for that item.

It looks at relationships between variables like time of day, day of the week, and expected prep time of a food item at particular restaurants (along with other factors such as high-profile sports events and weather events) to predict the time a user will have to wait for their food.

Also use predictive analytics to plan how many drivers they will need for particular shifts and offer incentives when drivers are in demand, and they monitor customer satisfaction with particular items to estimate which food items are likely to be in high demand soon.

DATASET DESCRIPTION AND TOOLS:

The dataset used for this project was found on an online public data platform called Kaggle.

It was relatively clean and did not require any major changes.

The collected data has been stored in the Comma Separated Value file Zomato.csv.

Each restaurant in the dataset is uniquely identified by its Restaurant Id. Every

Restaurant contains the following variables:

- Restaurant Id: Unique id of every restaurant across various cities of the world
- Restaurant Name: Name of the restaurant
- Country Code: Country in which restaurant is located
- City: City in which restaurant is located
- Address: Address of the restaurant
- Locality: Location in the city
- Locality Verbose: Detailed description of the locality
- Longitude: Longitude coordinate of the restaurant's location
- Latitude: Latitude coordinate of the restaurant's location
- Cuisines: Cuisines offered by the restaurant
- Average Cost for two: Cost for two people in different currencies
- Currency: Currency of the country
- Has Table booking: yes/no
- Has Online delivery: yes/ no
- Is delivering: yes/ no
- Switch to order menu: yes/no
- Price range: range of price of food
- Aggregate Rating: Average rating out of 5
- Rating color: depending upon the average rating color

- Rating text: text on the basis of rating of rating
- Votes: Number of ratings casted by people

The tool that will be used is google colab/jupyter python for data analysis.

OBJECTIVE:

- To evaluate the Highest Rated and Lowest Rated Restaurant of the City in all the countries. Graph plotted only for countries with maximum restaurants (India and U.S.A).
- To evaluate the most popular cuisine of the world sold in a country and which locality in that country has most number of outlets selling that cuisine.
- To evaluate the value for money restaurants in the U.S.A for the best cuisines served in the cities of U.S.A(value for money refers to the restaurants with highest rating and lowest cost).
- To provide recommendation system with the help of natural language processing.

METHODODLOGY:

- Using pandas, grouping 'Country' and 'City', the aggregate rating is calculated and then the top and least rated restaurants are found for every city in that country.
- Using pandas, splitting the multiple cuisines and stacking them up with the location, melting them with locality, grouping the locality and then country code and then forward sorting the average cost for two and reverse sorting the rating in the country with the names of the restaurants
- Using pandas, splitting the multiple cuisines and stacking them up with the location, melting them with locality,

grouping the locality and then country code and then reverse sorting the count of restaurants in the country with their names.

• For recommendation system:

Data Cleaning:

- Deleting redundant columns.
- Renaming the columns.
- Dropping duplicates.
- Cleaning individual columns.
- Remove the NaN values from the dataset
- Some Transformations

Text Preprocessing

- Cleaning unnecessary words in the review.
- Removing links and other unnessary items
- Removing Symbols

Recommendation System

We will develop a restaurant recommendation system in Python using Matrix Factorization or Latent Factor Collaborative Filtering by considering the attributes user Id, business Id, rating and review text.

RESULT AND DISCUSSIONS:

STEP 1: IMPORT THE PACKAGES AND LIBRARIES REQUIRED AND THE DATASET IS LOADED.

STEP 2: GROUPING THE NECESSARY COLUMNS

```
In [3]:
                   print((df.groupby("Country Code")["Restaurant Name"].count().sort_values(ascending = False))[:5])
print((df.groupby("City")["Restaurant Name"].count().sort_values(ascending = False))[:5])
                  215
214
                                     60
                  189
                                      60
                  Name: Restaurant Name, dtvpe: int64
                 Name: Restaurant Name, dtype: Into4
City
New Delhi 5473
Gurgaon 1118
Noida 1080
Faridabad 251
Ghaziabad 25
Name: Restaurant Name, dtype: int64
In [4]:
                   df.groupby('Cuisines')['Aggregate rating'].mean()
Out[4]:
                 Afghani
Afghani, Mughlai, Chinese
Afghani, Morth Indian
Afghani, North Indian, Pakistani, Arabian
African
                                                                                                                  0.000
                                                                                                                  0.000
                                                                                                                  4.700
                                                                                                                   4.200
                 Western, Asian, Cafe 4.200
Western, Fusion, Fast Food 3.200
World Cuisine 4.900
World Cuisine, Mexican, Italian 4.400
World Cuisine, Patisserie, Cafe 4.200
Name: Aggregate rating, Length: 1825, dtype: float64
```

STEP 3: PRINTING THE SHAPE OF DATASET, DESCRIBING IT AND PROVIDING INFO ABOUT THE DATASET.

STEP 4: TO CHECK IF THE DATA HAS ANY NULL VALUES AND DOING ANALYSIS TO CHECK THE MISSING VALUES.

From this we can find that there are no missing data and no special preprocessing is required.

STEP 5: TO VISUALISE THE DATASET

From the above graph we can find the in aggregating rating 1.5 rating is highest with average cost of two.

From the above graph we can find the who has table booking with the help of aggregate rating and it happens to be that with the aggregating rate of 3.5 many people optes for table booking.

We will understanding the rating in a simpler way,

```
ratings = df.groupby(['Aggregate rating','Rating color',
'Rating text']).size().reset_index().rename(columns={0:'Rating
Count'}) ratings
```

The information helps us to understand the relation between 'Aggregate rating', 'color' and 'text'. We conclude the following color assigned to the ratings: Rating 0 - White - Not rated

Rating 1.8 to 2.4 - Red - Poor Rating 2.5 to

3.4 - Orange – Average Rating 3.5 to 3.9 -

Yellow - Good Rating 4.0 to 4.4 - Green -

Very Good Rating 4.5 to 4.9 - Dark Green -

Excellent

Out[13]:		Aggregate rating	Rating color	Rating text	Rating Count
	0	0.0	White	Not rated	2148
	1	1.8	Red	Poor	1
	2	1.9	Red	Poor	2
	3	2.0	Red	Poor	7.
	4	2.1	Red	Poor	15
	5	2.2	Red	Poor	27
	6	2,3	Red	Poor	47
	7	2.4	Red	Poor	87
	8	2.5	Orange	Average	110
	9	2.6	Orange	Average	191
	10	2.7	Orange	Average	250
	11	2.8	Orange	Average	315
	12	2.9	Orange	Average	381
	13	3.0	Orange	Average	468
	14	3.1	Orange	Average	519
	15	3.2	Orange	Average	522
	16	3.3	Orange	Average	483
	17	3.4	Orange	Average	498
	18	3.5	Yellow	Good	480
	19	3.6	Yellow	Good	458
	20	3.7	Yellow	Good	427
	21	3.8	Yellow	Good	400
	22	3.9	Yellow	Good	335
	23	4.0	Green	Very Good	266
	24	4.1	Green	Very Good	274
	25	4.2	Green	Very Good	221
	26	4.3	Green	Very Good	174

We will be understanding the currency in simpler way,

country_currency = df[['Country Code','Currency']].groupby(['Country
Code','Currency']).size().reset_index(name='count').drop('count', axis=1,
inplace=False)
country currency

Currency	intry Code	out[14]: Cou
Indian Rupees(Rs.)	1:-	О
Dollar(\$)	14	1
Brazilian Real(R\$)	30	2
Dollar(\$)	37	3
Indonesian Rupiah(IDR)	94	4
NewZealand(\$)	148	5
Botswana Pula(P)	162	6
Qatari Rial(QR)	166	7
Dollar(\$)	184	8
Rand(R)	189	9
Sri Lankan Rupee(LKR)	191	10
Turkish Lira(TL)	208	11
Emirati Diram(AED)	214	12
Pounds(□£)	215	13
Dollar(\$)	216	14

Whether online delivery available or not?

Blue indicates no that occupies 74.3% and red indicates yes that occupies 25.7%. Therefore we are able to find that many people didn't opt for online delivery.

With the help of heat map and geo cluster we are able to find the zomato restaurants in any part of world with the help of markers.

Using wordcloud we will be finding it for

(i) Rating text:

average good rated

excellent

(ii) Restaurant name:

(iii) Locality verbose:

STEP 6:

Objective1: To evaluate the Highest Rated and Lowest Rated Restaurant of the City in all the countries.

After many preprocessing we will be finding the highly rated and lowest rated restaurant of city in all countries.

	Country Code	City	Highest Rated Restaurant	Rating Ma	x Lowest Rated Restaurant	Rating Min
106	216	Albany	Jimmie's Hot Dogs	3.	9 BJ's Country Buffet	3.3
107	216	Athens	Sr. Sol 1	4.	6 The Grill	3.7
108	216	Augusta	Rae's Coastal Cafe	4.	9 Sconyers Bar B Que	3.5
109	216	Boise	Flatbread Neapolitan Pizzeria	4.	6 Chandlers Steakhouse	3.9
110	216	Cedar Rapids/Iowa City	Shorts Burger and Shine	4.		3.6
111	216	Clatskanie	Berry Patch Restaurant	4.		4.3
112	216	Cochrane	Sakura Sushi & Grill	3.		3.1
113	216	Columbus	Cafe Le Rue @ The Landings	4.		3.3
114	216	Dalton	Oakwood Cafe	4.		3.7
115	216	Davenport	Tantra Asian Bistro	4.		0.0
116	216 216	Des Moines	The Cafe	4.		3.2
117	216	Dubuque	L. May Eatery Jehova es Mi Pastor Tacos y Burritos	3.		3.3
119	216	Gainesville	Atlanta Highway Seafood Market	4.		2.2
120	216	Lakeview	Burger Queen Drive In	3.		3.6
121	216	Lincoln	Blue Orchid Thai Restaurant	4.		4.5
122	216	Macon	Ingleside Village Pizza	4.		3.7
123	216	Mc Millan	Triangle Restaurant	2,		2.4
124	216	Miller	HI Lite Bar & Lounge	3.		3.4
125	216	Monroe	Vince's Restaurant & Pizzeria	3.	6 Vince's Restaurant & Pizzeria	3.6
126	216	Ojo Caliente	The Artesian Restaurant	3.	6 The Artesian Restaurant	3.6
127	216	Orlando	Yellow Dog Eats	4.	9 The Coop	3.6
126	216	Ojo Caliente	The Artesian Restaurant	3.6	The Artesian Restaurant	3.6
127	216	Orlando	Yellow Dog Eats	4.9	The Coop	3.6
128	216	Pensacola	McGuire's Irish Pub & Brewery	4.9	Hemingway's Island Grill	3.5
129	216	Pocatello	El Herradero	4.1	Nosh Mahal	0.0
130	216	Potrero	Barrett Junction Cafe	3.3	Barrett Junction Cafe	3.3
131	216	Princeton	Blue Point Grill	4.0	Blue Point Grill	4.0
132	216	Rest of Hawaii	Mama's Fish House	4.9	Lulu's Waikiki	3.9
133	216	Savannah	Green Truck Pub	4.7	The Lady & Sons	3.3
134	216	Sioux City	Diamond Thai Cuisine	4.0	Kahill's Steak-Fish Chophouse	3.5
135	216	Tampa Bay	Mazzaro's Italian Market	4.9	Edison: Food+Drink Lab	3.9
136	216	Valdosta	Smok'n Pig B-B-Q	4.1	El Toreo Mexican Restaurant	3.1
137	216	Vernonia	Blue House Cafe	4.3	Blue House Cafe	4.3
1000	100 A	2.712.7107			Masala Grill & Coffee House	
138	216	Waterloo	Tokyo Japanese Steak House	3.9		3.2
139	216	Weirton	Theo Yianni's Authentic Greek Restaurant	3.9	Theo Yianni's Authentic Greek Restaurant	3.9
140	216	Winchester Bay	Fishpatrick's Crabby Cafe	3.2	Fishpatrick's Crabby Cafe	3.2

STEP 7:

Objective 2:To evaluate the most popular cuisine of the world sold in a country and which locality in that country has most number of outlets selling that cuisine.

Popular cuisines around the world:

Out[81]:		Country Code	Locality	Cuisines	Number of restaurants in the country
	0	1	Connaught Place	North Indian	48
	14	216	Dubuque	American	9
	5	148	Te Aro	Cafe	5
	2	30	Ipanema	Brazilian	3
	6	162	Kapitolyo	Filipino	2
	8	184	Marina Centre, Downtown Core	Seafood	2
	9	189	Green Point	Grill	2
	11	208	Kí_í_í_k Esat	Kebab	2
	12	214	Najda	Indian	2
	1	14	Victor Harbor	Australian	1
	3	37	Yorkton	Asian	1
	4	94	Tanjung Duren	Seafood	1
	7	166	The Gate, Dafna	Arabian	1

Popular cuisines in india:

Out[82]:		Cuisines	Locality Verbose	Number of restaurants in the locality
	0	North Indian	Connaught Place, New Delhi	48
	1	Cafe	Satyaniketan, New Delhi	31
	2	Chinese	Chanakyapuri, New Delhi	13
	3	Mughlai	Jama Masjid, New Delhi	12
	4	Bakery	Vasant Vihar, New Delhi	11
	5	Chinese	Majnu ka Tila, New Delhi	10

STEP 8:

Objective 3:To evaluate the value for money restaurants in the U.S.A (value for money refers to the restaurants with highest rating and lowest cost)

Out[94]:	City	Cuisine	Locality Verbose	Country Code	Count	Latitude	Longitude	Aggregate rating	Average Cost for two	Restaurant Name
25	Pensacola	Greek	Perdido Key, Pensacola	216	1	30.319982	-87.421896	4.7	10	Original Georgios Authentic Greek Food
4	Cedar Rapids/Iowa City	American	lowa City, Cedar Rapids/Iowa City	216	3	41.663849	-91.531414	4.5	10	The Hamburg Inn No. 2 Inc.
54	Cedar Rapids/Iowa City	Pizza	Marion, Cedar Rapids/Iowa City	216	1	42.033100	-91.599500	4.7	25	Zoeys Pizzeria
5	Rest of Hawaii	Seafood	Kahuku, Rest of Hawaii	216	1	21,677078	-157.948486	4.5	25	Giovanni's Shrimp Truck
5	Lincoln	Thai	Haymarket, Lincoln	216	1	40.814300	-96.707200	4,5	25	Blue Orchid Thai Restaurant
6	. Orlando	Vegetarian	Winter Park, Orlando	216	1	28,601088	-81.322631	4.7	25	Tibby's New Orleans Kitchen
6	Orlando	Tea	The Milk District, Orlando	216	1	28.543571	-81.351467	4.9	25	Pom Pom's Teahouse and Sandwicheria

STEP 9: correlation map with help of spearmen between the price range, votes, aggregaate rating and found that the relation between themselves gives the value of 1.

To find which type of cuisines has highest rating. Here is it found to be north indian with more than 800 people like it.

With the help of below graph we can find the bar graph between rating text and longitude and latitude and found that poor has more value longitude wise.

Building a Recommendation system:

The aim is to create a content-based recommender system in which when we will write a restaurant name, the Recommender system will look at the reviews of other restaurants, and the System will recommend us other restaurants with similar reviews and sort them from the highest-rated.

Using the reviews_list and cuisines column

```
# 5 examples of these columns before text processing:

zomato[['reviews_list', 'cuisines']].sample(5)

reviews_list cuisines

25274 [('Rated 3.0', "RATED\n An average bar, nothi... Continental, American, Chinese, BBQ, Salad

21244 [('Rated 3.0', 'RATED\n Just ordered shahi pa... North Indian, Biryani, Chinese

18372 [('Rated 2.0', "RATED\n Ambiance - They have ... South Indian, North Indian, Chinese

23189 [('Rated 5.0', 'RATED\n Ordered plain maggi\U... Cafe, Continental

15559 [('Rated 3.0', 'RATED\n Had been to this plac... Cafe, Burger, Continental, Italian, Desserts
```

Appling text preprocessing/ cleaning steps that are:

- Lower casing
- Removal of Punctuations

- Removal of Stopwords
- Removal of URLs
- Spelling correction

```
In [23]: ## Lower Casing
             zomato["reviews_list"] = zomato["reviews_list"].str.lower()
zomato[['reviews_list', 'cuisines']].sample(5)
 Out[23]:
                                                reviews_list
                                                                                             cuisines
               7791 [('rated 5.0', "rated\n very very tasty dabel...
                                                                                         Pizza, Burger
              33096 [('rated 1.0', "rated\n this place is located... Continental, Biryani, Pizza, North Indian, Chi...
              30288 [('rated 3.0', "rated\n though it's located i... Cafe, American, Italian, Burger
               7583 [('rated 1.0', "rated\n i've visited this hot...
                                                                                             Chinese
              24351 [('rated 5.0', 'rated\n you ask for it and it...
  In [24]: ## Removal of Punctuations
             import string
             PUNCT_TO_REMOVE = string.punctuation
             def remove_punctuation(text):
                  """custom function to remove the punctuation"""
                  return text.translate(str.maketrans('', '', PUNCT_TO_REMOVE))
             zomato["reviews_list"] = zomato["reviews_list"].apply(lambda text: remove_punctuation(text))
zomato[['reviews_list', 'cuisines']].sample(5)
 Out[24]:
                                                                                                   cuisines
              35205
                        rated 50 ratedn good food top quality packin...
                                                                                        North Indian, Chinese
              21758 rated 50 ratedn awesome food taste and cost e...
                                                                                        South Indian, Chinese
              14823 rated 30 ratedn a famous vegetarian place hen...
                                                                         North Indian, Chinese, South Indian
              11758
                         rated 40 ratedn this place is better than the... South Indian, North Indian, Chinese, Street Fo...
              17859 rated 30 ratedn wasnt as great as we thought ...
                                                                                        North Indian, Chinese
In [25]: ## Removal of Stopwords
            from nltk.corpus import stopwords
            STOPWORDS = set(stopwords.words('english'))
            def remove_stopwords(text):
    """custom function to remove the stopwords"""
                 return " ".join([word for word in str(text).split() if word not in STOPWORDS])
            zomato["reviews_list"] = zomato["reviews_list"].apply(lambda text: remove_stopwords(text))
In [26]: ## Removal of URLS
            def remove_urls(text):
                 url_pattern = re.compile(r'https?://\S+|www\.\S+')
                 return url_pattern.sub(r'', text)
            zomato["reviews_list"] = zomato["reviews_list"].apply(lambda text: remove_urls(text))
In [27]: zomato[['reviews_list', 'cuisines']].sample(5)
Out[27]:
                                                     reviews list
                                                                                                     cuisines
            12344
                       rated 40 ratedn wifivesnfriendly staff710ntast...
                                                                                                  North Indian
            35257
                      rated 20 ratedn pizzas taste meh located right...
             10881 rated 40 ratedn ordered egg biryani one paneer... North Indian, South Indian, Chinese, Andhra, B...
            23596
                        rated 50 ratedn nice food lot see food verity ...
                                                                             Mangalorean, Chinese, North Indian
            24680 rated 50 ratedn paratha fabulousnbakasura reco...
                                                                                                  North Indian
```

Model building:

Using Term Frequency-Inverse Document Frequency

Term Frequency-Inverse Document Frequency (TF-IDF) vectors for each document. This will give you a matrix where each column represents a word in the overview vocabulary (all the words that appear in at least one document) and each column represents a restaurant, as before.

TF-IDF is the statistical method of evaluating the significance of a word in a given document.

TF — Term frequency(tf) refers to how many times a given term appears in a document.

IDF — Inverse document frequency(idf) measures the weight of the word in the document, i.e if the word is common or rare in the entire document. The TF-IDF intuition follows that the terms that appear frequently in a document are less important than terms that rarely appear. Fortunately, scikit-learn gives you a built-in TfldfVectorizer class that produces the TF-IDF matrix quite easily.

```
In [37]: df_percent.set_index('name', inplace=True)
 In [38]: indices = pd.Series(df_percent.index)
 In [39]: # Creating tf-idf matrix
               tfidf = TfidfVectorizer(analyzer='word', ngram_range=(1, 2), min_df=0, stop_words='english')
              tfidf_matrix = tfidf.fit_transform(df_percent['reviews_list'])
 In [48]: cosine_similarities = linear_kernel(tfidf_matrix, tfidf_matrix)
In [41]: def recommend(name, cosine similarities = cosine similarities):
               # Create a list to put top 10 restaurants
              recommend restaurant = []
               # Find the index of the hotel entere
              idx = indices[indices == name].index[0]
              # Find the restaurants with a similar cosine-sim value and order them from biggest number
score_series = pd.Series(cosine_similarities[idx]).sort_values(ascending=False)
               # Extract top 30 restaurant indexes with a similar cosine-sim value
               top30_indexes = list(score_series.iloc[0:31].index)
               for each in top30_indexes:
                    recommend_restaurant.append(list(df_percent.index)[each])
              # Creating the new data set to show similar restaurants
df_new = pd.DataFrame(columns=['cuisines', 'Mean Rating', 'cost'])
               # Create the top 30 similar restaurants with some of their columns
               for each in recommend_restaurant:
                   df_new = df_new.append(pd.DataFrame(df_percent[['cuisines','Mean Rating', 'cost']][df_percent.index == each].sample()))
              # Drop the same named restaurants and sort only the top 10 by the highest rating df_new = df_new.drop_duplicates(subset=['cuisines', 'Mean Rating', 'cost'], keep=df_new = df_new.sort_values(by='Mean Rating', ascending=False).head(10)
               print('TOP %s RESTAURANTS LIKE %s WITH SIMILAR REVIEWS: ' % (str(len(df_new)), name))
               return df new
```

To print the recommended restaurants based on similar ratings:

```
In [44]: # HERE IS A RANDOM RESTAURANT. LET'S SEE THE DETAILS ABOUT THIS RESTAURANT:
            df_percent[df_percent.index == 'Sri Krishna Kitchen'].head()
Out[44]:
                                online_order book_table rate location
                                                                                                                                  reviews_list
                                                                                                                                                                city
                         name
                                                                                    Fast Food 400.0 rated 20 ratedn place known unlimited thali
                    Sri Krishna
Kitchen
                                                                                                                                                    Koramangala 5th
Block
                                                    False 3.6
                                                                                                                                                                            3.34
                                                                                    Fast Food 400.0 rated 20 ratedn place known unlimited thali
                    Sri Krishna
Kitchen
                                                                                                                                                    Koramangala 6th
Block
                                                    False 3.6
                                                                    BTM
                                                                                                                                                                            3.34
                                        True
                                                                                 North Indian,
Chinese 400.0
                                                                                                       rated 30 ratedn ordered mutton boneless biryan...
                    Sri Krishna
Kitchen
                                                    False 3.7 Bellandur
                                                                                                                                                      Sarjapur Road
                                                                                                                                                                            3.34
                                                                                    Fast Food 400.0 rated 30 ratedn food taste much good rated
                                                    False 3.6
                                                                                                                                                                            3.34
                    Sri Krishna
Kitchen
                                                                                    Fast Food 400.0 rated 20 ratedn place known unlimited thali ge...
                                                                                                                                                    Koramangala 6th
                                                    False 3.6
                                                                     BTM
                                                                                                                                                                            3.34
```

In [45]: recommend('Sri Krishna Kitchen')

TOP 10 RESTAURANTS LIKE Sri Krishna Kitchen WITH SIMILAR REVIEWS:

Out[45]:

	cuisines	Mean Rating	cost
Shree Thali	North Indian	3.94	150.0
3 Spice	North Indian, Chinese	3.71	450.0
Cinnamon	North Indian, Chinese, Biryani	3.62	550.0
Raichur Biryani House	Biryani, North Indian, Chinese	3.58	400.0
Desi Doze	North Indian, Fast Food	3.58	400.0
Kakaji	North Indian	3.45	350.0
Sri Krishna Kitchen	North Indian, Chinese	3.34	400.0
Sri Sai Mango Tree Restaurant	North Indian, Biryani, Chinese	3.32	600.0
Red Chilliez	North Indian, Chinese, Seafood, Mangalorean	3.26	650.0
Red Chilliez	North Indian, South Indian, Chinese, Seafood	3.26	550.0

To check the accuracy:

```
pip install pickle5

Collecting pickle5Note: you may need to restart the kernel to use updated packages.

Downloading pickle5-0.0.12-cp36-cp36m-win_amd64.whl (124 kB)

Installing collected packages: pickle5

Successfully installed pickle5-0.0.12
```

```
import pickle
```

```
file = open("res.pkl", 'wb')
pickle.dump(df_new2, file)
```

```
In [45]:
          df_new2.to_dict()
Out[45]: {'name': {0: 'Cinnamon',
            1: 'Kakaji',
            2: 'Agarwal Food Service',
            3: "Swad 'E' Punjab",
            4: 'Desi Dhaba',
            5: 'Punjabi Tasty Khana',
            6: 'Taza Khaana',
            7: 'Sri Lakshmi Dhaba',
            8: 'Yummy Punjabi',
            9: 'Indian Food'},
           'cuisines': {0: 'North Indian, Chinese, Biryani',
            1: 'North Indian',
            2: 'North Indian, Chinese, Biryani',
            3: 'North Indian, Chinese, Mughlai',
            4: 'Chinese, North Indian',
            5: 'North Indian, Chinese, Biryani',
            6: 'Chinese, North Indian',
            7: 'North Indian',
            8: 'North Indian, Chinese',
            9: 'North Indian, Biryani, Chinese, Momos'},
           'Mean Rating': {0: 3.62,
            1: 3.45,
            2: 3.39,
            3: 3.32,
            4: 3.19,
            5: 2.68,
            6: 2.63,
            7: 2.5,
            8: 2.5,
           9: 2.42},
           'cost': {0: 550.0,
           1: 350.0,
            2: 400.0,
            3: 500.0,
            4: 300.0,
            5: 450.0,
            6: 450.0,
            7: 250.0,
            8: 400.0,
            9: 450.0}}
```

Conclusion:

This paper has analysed of various characteristics of current restaurants in different localities of a city in a particular country and also analyses them to predict the restaurant ratings related to particular food. This makes it an important thing to take into consideration before making a dining in or online ordering decision. Finally using cosine similarities we were able to find the user-user (Restaurant to restaurant) with similar ratings.

References:				
Product and Bran	d Strategy of Zoma	ato* (ijert.org)		
1803_Kundan_Foo	odRecommedationS	SystemBasedOn(ContentFilteringAlgori	<u>thm</u>
(PDF) Diet-Right	: A Smart Food Re	commendation	System (researchgate	<u>.net)</u>
SawantPai-YelpF	oodRecommendati	onSystem.pdf (stanford.edu)	
zomato recomme	ndation system (sat	<u>oevyemekleri.c</u>	om)	