Data Mining and Data Warehousing 6 Data Warehouse Schema & OLAP Operations

Chittaranjan Pradhan School of Computer Engineering, KIIT University

Data Warehouse Schema & OLAP Operations

Chittaranjan Pradhan

Data Cubes

Conceptual Data Modeling/Lattice of Cuboids

Data Warehouse Model Development

Data Warehouse Schema

Star Schema Snowflake Schema Fact Constellation

Measures

OLAP Operations Roll-Up/Drill-Up Operator

Drill-Down/Roll-Down Operator

Slice Operator Dice Operator

Pivot Operator

OLAP Servers

DMQL

Star schema in DMQL Snowflake schema in DMQI

Data Cubes

- A data warehouse is based on a multidimensional data model which views data in the form of a data cube
- Data cube helps to arrange a complex data in a simple format
- Data cube represents the data along some measures of an interest
- It can be of 2-dimensional, 3-dimensional and higher dimensional
- · Mainly used for the retrieval of the data
- It consists of categories of data called dimensions and measures
- Measure and dimension represents fact such as cost, time, locations

Data Cubes

Conceptual Data Modeling/Lattice of Cuboids

Data Warehouse Model Development

Data Warehouse Schema

Star Schema Snowflake Schema Fact Constellation

Measures

OLAP Operations Roll-Up/Drill-Up Operator

Drill-Down/Roll-Down Operator Slice Operator

Slice Operator
Dice Operator
Pivot Operator

OLAP Servers

DMQL

Star schema in DMQL Snowflake schema in DMQL

Conceptual Data Modeling/Lattice of Cuboids

Conceptual Data Modeling/Lattice of Cuboids

- A Cuboid is the data cube at different degrees of summarization. Cuboids can be formed for each possible subset of dimensions which can form a lattice of cuboids
- In data warehousing, an n-D base cube is called a base cuboid. The top most 0-D cuboid, which holds the highest-level of summarization, is called the apex cuboid. The lattice of cuboids forms a data cube
- From a given set of dimensions, we can construct a lattice of cuboids, each showing the data at a different level of summarization

Data Warehouse Schema & OLAP Operations

Chittaranjan Pradhan

Data Cubes

Conceptual Data Modeling/Lattice of

Data Warehouse Model Development

Data Warehouse Schema Star Schema

Snowflake Schema Fact Constellation

Measures

OLAP Operations
Roll-Up/Drill-Up Operator

Drill-Down/Roll-Down Operator Slice Operator

Slice Operator
Dice Operator
Pivot Operator

OLAP Servers

DMQL

Star schema in DMQL Snowflake schema in DMQI

Conceptual Data Modeling/Lattice of Cuboids...

Data Warehouse Schema & OLAP **Operations**

Chittaranian Pradhan

Data Cubes

lodeling/Lattice of

Data Warehouse Model Development

Data Warehouse Schema

Star Schema Snowflake Schema Fact Constellation

Measures

OLAP Operations

Roll-Up/Drill-Up Operator Drill-Down/Roll-Down Operator

Slice Operator

Dice Operator Pivot Operator

OLAP Servers

DMOL

Star schema in DMOI Snowflake schema in

Fact Constellation in DMOI

DMQI

Conceptual Data Modeling/Lattice of Cuboids...

Conceptual Data Modeling/Lattice of Cuboids...

Conceptual Data Modeling/Lattice of Cuboids...

Data Warehouse Schema & OLAP **Operations**

Chittaranian Pradhan

Data Cubes

lodeling/Lattice of

Data Warehouse Model Development

Data Warehouse Schema

Star Schema Snowflake Schema Fact Constellation

Measures

OLAP Operations

Roll-Up/Drill-Up Operator Drill-Down/Roll-Down Operator

Slice Operator Dice Operator Pivot Operator

OLAP Servers

DMOL

Star schema in DMOL

Snowflake schema in DMQI

Data Warehouse Model Development

- Top-down Development
 - Advantages Systematic solution and minimizes integration problem
 - Disadvantages Difficult to achieve consistency and consensus for common data model, expensive, time taking task, not flexible
- Bottom-up Development
 - Design, development and deployment of independent data marts
 - Advantages Fexible, low cost and rapid return of investment
 - Disadvantages Difficult to integrate different data marts into a consistent data warehouse
- Solution: Develop in an incremental and evolutionary manner

Data Cubes

Conceptual Data Modeling/Lattice of Cuboids

Data Warehouse Model Development

Data Warehouse Schema

Star Schema Snowflake Schema Fact Constellation

Measures

OLAP Operations Roll-Up/Drill-Up Operator

Drill-Down/Roll-Down Operator Slice Operator

Dice Operator Pivot Operator

OLAP Servers

DMQL

Star schema in DMQL Snowflake schema in DMQL Fact Constellation in DMQL

Data Warehouse Model Development...

Data Warehouse Model Development...

- First: Define highlevel corporate data model that define the consistent and integrated view of different subjectes and (potential) usages
- Second: Independent data marts can be implemented in parallel with the enterprice warehouse
- Third: Distributed data marts can be constructed to integrate the data marts via hub server
- Finally: A multitier data warehouse is constructed where enterprice data warehouse is the sole custodian and is distributed to various dependent data marts

Data Warehouse Schema & OLAP Operations

Chittaranjan Pradhan

Data Cubes

Conceptual Data Modeling/Lattice of Cuboids

Data Warehouse Model Development

Data Warehouse Schema

Star Schema Snowflake Schema Fact Constellation

Measures

OLAP Operations
Roll-Up/Drill-Up Operator

Drill-Down/Roll-Down Operator Slice Operator

Slice Operator
Dice Operator
Pivot Operator

OLAP Servers

OLAP Server

DMQL

Star schema in DMQL Snowflake schema in DMQI

Fact Constellation in DMQL

6.7

Data Warehouse Schema

- A data warehouse requires a concise, subject-oriented schema (pictorial representation) that facilitates online data analysis
- Modeling data warehouses: dimensions & measures
 - Star schema: A fact table in the middle connected to a set of dimension tables
 - Snowflake schema: A refinement of star schema where some dimensional hierarchy is normalized into a set of smaller dimension tables, forming a shape similar to snowflake
 - Fact constellations: Multiple fact tables share dimension tables, viewed as a collection of stars, therefore called galaxy schema or fact constellation
- Every entry of a fact table can be represented as a dimension or as a measure such as cost, time and count (or quantity)

Data Cubes

Conceptual Data Modeling/Lattice of Cuboids

Data Warehouse Model Development

ata Warehouse

Star Schema Snowflake Schema Fact Constellation

Measures

OLAP Operations Roll-Up/Drill-Up Operator

Drill-Down/Roll-Down Operator Slice Operator

Dice Operator
Pivot Operator

OLAP Servers

DMQL

Star schema in DMQL Snowflake schema in DMQL

Data Cubes

Conceptual Data Modeling/Lattice of Cuboids

Data Warehouse Model Development Data Warehouse

Schema

Star Schema Snowflake Schema

Fact Constellation

Measures

OLAP Operations
Roll-Up/Drill-Up Operator

Drill-Down/Roll-Down Operator

Slice Operator
Dice Operator
Pivot Operator

OLAP Servers

DMOL

Star schema in DMQL Snowflake schema in

DMQL Fact Constellation in DMQL

 Here, the center contains its fact table and the end points contain the dimension tables

 A star schema is a modeling paradigm in which the data warehouse contains a large, single, central fact table and a set of smaller dimension tables, one for each dimension

The fact table contains the detailed summary data

Its primary key has one key per dimension

• Each dimension is a single, highly Denormalized table

 There exists a 1:N relationship between the fact table and the dimension tables

Advantages:

 It is easy to understand, easy to define hierarchies, reduces the number of physical joins, requires low maintenance and very simple meta data

Disadvantages:

 Each dimension is represented by only one table, and each table contains a set of attributes. This constraint may introduce some redundancy

Star Schema...

Data Cubes

Conceptual Data Modeling/Lattice of Cuboids

Data Warehouse Model Development

Data Warehouse Schema

Star Schema

Snowflake Schema Fact Constellation

Measures

OLAP Operations Roll-Up/Drill-Up Operator

Drill-Down/Roll-Down Operator Slice Operator

Slice Operator
Dice Operator
Pivot Operator

OLAP Servers

DMOL

OMQL
Star schema in DMQL
Snowflake schema in

Snowflake Schema

- Here, there exists a single flake fact table and the dimension tables are either connected to the fact table or connected to themselves
- Snowflake schema consists of a single fact table and multiple dimension tables
- Dimension tables in a star schema are Denormalized. while those in a snowflake schema are normalized

Advantages:

- A normalized table is easier to maintain
- Normalizing also saves storage space

Disadvantages:

- System performance may be adversely impacted due to larger number of join operations
- Require more maintenance efforts because of the more lookup tables

Data Cubes

Conceptual Data Modeling/Lattice of Cuboids

Data Warehouse Model Development

Data Warehouse Star Schema Snowflake Schema

Fact Constellation

Measures

Schema

OLAP Operations Roll-Up/Drill-Up Operator

Drill-Down/Roll-Down Operator

Slice Operator Dice Operator

Pivot Operator

OLAP Servers

DMOL

Star schema in DMOL Snowflake schema in DMQI

Snowflake Schema...

Data Warehouse Schema & OLAP **Operations**

Chittaranian Pradhan

Conceptual Data Modeling/Lattice of Cuboids

Data Warehouse Model Development

Data Warehouse Schema Star Schema

Snowflake Schema Fact Constellation

Measures

OLAP Operations Roll-Up/Drill-Up Operator

Drill-Down/Roll-Down Operator

Slice Operator Dice Operator

Pivot Operator

OLAP Servers

DMOL

Star schema in DMOL Snowflake schema in

DMQI

Fact Constellation in DMOI

Snowflake Schema...

- Fact constellation is a kind of schema where we have more than one fact table sharing among them some dimension tables
- It is also called galaxy schema

Data Warehouse Schema & OLAP **Operations**

Chittaranian Pradhan

Data Cubes

Conceptual Data Modeling/Lattice of Cuboids

Data Warehouse Model Development

Data Warehouse Schema Star Schema Snowflake Schema

Fact Constellation Measures

OLAP Operations Roll-Up/Drill-Up Operator Drill-Down/Roll-Down

Operator Slice Operator Dice Operator Pivot Operator

OLAP Servers

DMOL

Star schema in DMOL Snowflake schema in DMQI

Fact Constellation in DMOI

6.13

Measures

- A data cube measure is a numerical function that can be evaluated at each point in the data cube space
- A measure value is computed for a given point by aggregating the data corresponding to the respective dimension - value pairs defining the given point

Distributive:

 An aggregate function is distributive if it can be computed in a distributed manner. Ex: Count(), Sum(), Min(), Max()

Algebraic:

 An aggregate function is algebraic if it can be computed by an algebraic function with "m" arguments, each of which is obtained by applying a distributive aggregate function. Ex: Avg(), Min N(), Max N()

Holistic:

· An aggregate function is holistic if there is no constant bound on the storage size needed to describe a sub aggregate, i.e. there doesn't exist an algebraic function with "m" arguments that characterizes the computation. Ex:

Median(), Mode(), Rank()

Data Cubes

Conceptual Data Modeling/Lattice of Cuboids

Data Warehouse Model Development Data Warehouse

Schema Star Schema Snowflake Schema Fact Constellation

OLAP Operations Roll-Up/Drill-Up Operator

Drill-Down/Roll-Down Operator Slice Operator Dice Operator

Pivot Operator OLAP Servers

DMOL

DMQI

Star schema in DMQI Snowflake schema in Fact Constellation in DMOI

OLAP Operations

Data Warehouse Schema & OLAP **Operations**

Chittaranian Pradhan

OLAP Operations

- OLAP is based on the multidimensional data model
- It allows managers and analysts to get an insight of the information through fast, consistent and interactive access to information
- It facilitates users to extract and present multidimensional data from different view
- It provides a user-friendly environment for interactive data analysis

Data Cubes

Conceptual Data Modeling/Lattice of Cuboids

Data Warehouse Model Development

Data Warehouse Schema

Star Schema Snowflake Schema Fact Constellation

Measures

Roll-Up/Drill-Up Operator Drill-Down/Roll-Down Operator

Slice Operator

Dice Operator Pivot Operator

OLAP Servers

DMOL

Star schema in DMQI Snowflake schema in DMQI

Roll-Up/Drill-Up Operator

Roll-Up/Drill-Up Operator

- It causes an increase in data aggregation and removes a detail level from a hierarchy by climbing up hierarchy or by dimension reduction
- When roll up operation is performed one or more dimension is removed from the given cube
- Roll Up_{Location}C[Location, Month, Product] → C[Region, Month, Product]

Data Warehouse Schema & OLAP Operations

Chittaranjan Pradhan

Data Cubes

Conceptual Data Modeling/Lattice of Cuboids

Data Warehouse Model Development

Data Warehouse Schema Star Schema

Snowflake Schema Fact Constellation

Measures

OLAP Operations

Roll-Up/Drill-Up Operator

Operator Slice Operator

Slice Operator

Dice Operator Pivot Operator

OLAP Servers

DMQL

Star schema in DMQL Snowflake schema in DMQI

Drill-Down/Roll-Down Operator

Drill-Down/Roll-Down Operator

- It is complement to the roll up operator from higher level summary to lower level summary or detailed data, or introducing new dimensions
- When drill-down is performed, one or more dimensions from the data cube are added
- Drill Down_{Month}C[Location, Month, Product] → C[Location, Month_Half, Product]

Chittaranjan Pradhan

Data Cubes

Conceptual Data Modeling/Lattice of Cuboids

Data Warehouse Model Development

Data Warehouse Schema

Snowflake Schema Fact Constellation

Measures

OLAP Operations
Roll-Up/Drill-Up Operator

Drill-Down/Roll-Down Operator

Slice Operator Dice Operator Pivot Operator

OLAP Servers

DMQL

Star schema in DMQL Snowflake schema in DMQI

Slice Operator

Slice Operator

- Slicing reduces the number of cube dimensions after setting one of the dimensions to a specific value
- It reduce the dimensionality of the cubes
- Slice_{Location='BBS'} C[Location, Month, Product] → C[Month, Product]

Chittaranjan Pradhan

Data Cubes

Conceptual Data Modeling/Lattice of Cuboids

Data Warehouse Model Development

Data Warehouse Schema

Star Schema Snowflake Schema Fact Constellation

Measures

OLAP Operations Roll-Up/Drill-Up Operator

Drill-Down/Roll-Down
Operator

Slice Operator

Dice Operator Pivot Operator

OLAP Servers

DMQL

Star schema in DMQL Snowflake schema in DMQI

Slice Operator...

Slice Operator...

 Slice_{Month='Feb'} C[Location, Month, Product] → C[Location, Product]

Data Warehouse Schema & OLAP Operations

Chittaranjan Pradhan

Data Cubes

Conceptual Data Modeling/Lattice of Cuboids

Data Warehouse Model Development

Data Warehouse Schema

Star Schema Snowflake Schema Fact Constellation

Measures

OLAP Operations Roll-Up/Drill-Up Operator Drill-Down/Roll-Down

Slice Operator

Dice Operator Pivot Operator

Operator

OI AP Servers

OLAP Servers

DMQL

Star schema in DMQL Snowflake schema in DMQI

Dice Operator

Dice Operator

- Dicing reduces the set of data being analyzed by a selection criteria
- It selects two or more dimensions from a given cube and provides a new sub-cube

 $Dice_{Month='Jan'OR'Feb'ANDLocation='BBS'OR'Delhi'}C[Location, Month, C[Location', Month', Product]$

Data Warehouse Schema & OLAP Operations

Chittaranjan Pradhan

Data Cubes

Conceptual Data Modeling/Lattice of Cuboids

Data Warehouse Model Development

Data Warehouse

, Product

Snowflake Schema Fact Constellation

Measures

OLAP Operations
Roll-Up/Drill-Up Operator

Operator Slice Operator

Dice Operator

Pivot Operator

OLAP Servers

DMQL

Star schema in DMQL Snowflake schema in DMQI

Pivot Operator

Pivot Operator

- It implies a change in layouts
- It rotates the data axis to view the data from different perspectives
- Pivot₉₀₀ C[Location, Month, Product] → C[Product, Location, Month]

Data Warehouse Schema & OLAP Operations

Chittaranjan Pradhan

Data Cubes

Conceptual Data Modeling/Lattice of Cuboids

Data Warehouse Model Development

Data Warehouse Schema

Star Schema Snowflake Schema Fact Constellation

Measures

OLAP Operations Roll-Up/Drill-Up Operator

Drill-Down/Roll-Down Operator Slice Operator

Slice Operator Dice Operator

Pivot Operator

OLAP Servers

OLAP Servers

DMQL

Star schema in DMQL Snowflake schema in DMQI

OLAP Operations...

OLAP Operations...

- Find out the total number of items sold in March in BBS
- $\sum (Slice_{Location='BBS'} + Slice_{Month='March'})$ or
- \sum (Slice_{Month='March'}(Slice_{Location='BBS'})) or
- Roll Up_{Product}(Slice_{Location='BBS'} + Slice_{Month='March'}) or
- $Roll Up_{Product}(Slice_{Month='March'} + Slice_{Location='BBS'})$ or
- Roll Up_{Product} (Slice_{Month='March' ANDLocation='BBS'})

Data Warehouse Schema & OLAP Operations

Chittaranjan Pradhan

Data Cubes

Conceptual Data Modeling/Lattice of Cuboids

Data Warehouse Model Development

Data Warehouse Schema

Star Schema Snowflake Schema Fact Constellation

Measures

OLAP Operations Roll-Up/Drill-Up Operator

Drill-Down/Roll-Down Operator Slice Operator

Slice Operator Dice Operator

Pivot Operator

OLAP Servers

DMOL

DMQI

Star schema in DMQL Snowflake schema in

OLAP Operations...

- Find out the number of mobiles sold at BBS in all 3 months
- $\sum (Slice_{Location='BBS'} + Slice_{Product='Mob'})$

Data Cubes

Conceptual Data Modeling/Lattice of Cuboids

Data Warehouse Model Development

Data Warehouse Schema

Star Schema Snowflake Schema Fact Constellation

Measures

OLAP Operations Roll-Up/Drill-Up Operator

Drill-Down/Roll-Down Operator Slice Operator

Slice Operator Dice Operator

Pivot Operator

OLAP Servers

OLAP Servers

DMQL

Star schema in DMQL Snowflake schema in

ROLAP (Relational OLAP)

- These servers are placed between relational back-end server and client front-end tools
- To store and manage the warehouse data, the relational OLAP uses relational or extended-relational DBMS
- Advantages
 - ROLAP servers can be easily used with existing RDBMS
 - ROLAP tools do not use pre-calculated data cubes
 - ROLAP server offers highly scalability
 - · Can handle large amount of information
- Disadvantages
 - ROLAP needs high utilization of manpower, software and hardware resources
 - Query performance in this model is slow

Data Cubes

Conceptual Data Modeling/Lattice of Cuboids

Data Warehouse Model Development

Data Warehouse Schema

Star Schema Snowflake Schema Fact Constellation

Measures

OLAP Operations Roll-Up/Drill-Up Operator

Drill-Down/Roll-Down Operator

Slice Operator Dice Operator

Pivot Operator

JLAP Server

DMQL

Star schema in DMQL Snowflake schema in DMQL

MOLAP (Multidimensional OLAP)

- MOLAP uses array-based multidimensional storage engines for multidimensional views of data
- With multidimensional data stores, the storage utilization may be low if the dataset is sparse
- Advantages
 - Fast information retrieval
 - Easier to use
 - · Suitable for slicing and dicing operations
 - Capable of performing complex operations
- Disadvantages
 - MOLAP are not capable of containing detailed data
 - The storage utilization may be low if the data set is sparse

Data Cubes

Conceptual Data Modeling/Lattice of Cuboids

Data Warehouse Model Development

Data Warehouse Schema

Star Schema Snowflake Schema Fact Constellation

Measures

OLAP Operations Roll-Up/Drill-Up Operator

Drill-Down/Roll-Down Operator Slice Operator

Slice Operator Dice Operator

Pivot Operator

OLAP Servers

DMQL

Star schema in DMQL Snowflake schema in DMQI

HOLAP (Hybrid OLAP)

- HOLAP is a mixture of both ROLAP and MOLAP
- It offers fast computation of MOLAP and higher scalability of ROLAP
- HOLAP server allows to store large data volumes of detailed information
- Advantages
 - HOLAP provides the benefits of both ROLAP and MOLAP
 - It provides quick access at all levels of aggregation
- Disadvantages
 - HOLAP architecture is very complicated
 - There are higher chances of overlapping especially into their functionalities

Data Cubes

Conceptual Data Modeling/Lattice of Cuboids

Data Warehouse Model Development

Data Warehouse Schema

Star Schema Snowflake Schema Fact Constellation

Measures

OLAP Operations Roll-Up/Drill-Up Operator

Drill-Down/Roll-Down Operator Slice Operator

Slice Operator
Dice Operator
Pivot Operator

I AP Servers

DMQL

Star schema in DMQL Snowflake schema in DMQI

DMQL

- Cube definition: Fact table define cube <cube_name> [<dimension_list]: <measure_list>
- Dimension definition: Dimension Table define dimension <dimension_name> as (<attribute_or_subdimension_list>)
- Special Case: Shared Dimension Tables
 First time as Cube Definition
 define dimension <dimension_name> as
 <dimension_name_first_time> in cube
 <cube_name_first_time>

Data Cubes

Conceptual Data Modeling/Lattice of Cuboids

Data Warehouse Model Development

Data Warehouse Schema

Star Schema Snowflake Schema Fact Constellation

Measures

OLAP Operations
Roll-Up/Drill-Up Operator

Drill-Down/Roll-Down Operator Slice Operator

Slice Operator Dice Operator

Pivot Operator

OLAP Servers

OLAI SEIVE

Star schema in DMQL Snowflake schema in DMQI

- define cube sales star [time, item, branch, location]: dollars sold = sum(sales in dollars), avg sales = avg(sales in dollars), units sold = count(*)
- define dimension time as (time key, day, day of week, month, quarter, year)
- define dimension item as (item key, item name, brand, type, supplier type)
- define dimension branch as (branch_key, branch_name, branch type)
- define dimension location as (location key, street, city, province or state, country)

Chittaranian Pradhan

Data Cubes

Conceptual Data Modeling/Lattice of Cuboids

Data Warehouse Model Development

Data Warehouse Schema

Star Schema Snowflake Schema Fact Constellation

Measures

OLAP Operations Roll-Up/Drill-Up Operator

Drill-Down/Roll-Down Operator

Slice Operator Dice Operator Pivot Operator

OLAP Servers

DMOL

Star schema in DMQL

Snowflake schema in

DMQI Fact Constellation in DMQI

Snowflake schema in DMQL

Snowflake schema in DMQL

- define cube sales_snowflake [time, item, branch, location]: dollars_sold = sum(sales_in_dollars), avg_sales = avg(sales in dollars), units sold = count(*)
- define dimension time as (time_key, day, day_of_week, month, quarter, year)
- define dimension item as (item_key, item_name, brand, type, supplier(supplier_key, supplier_type))
- define dimension branch as (branch_key, branch_name, branch_type)
- define dimension location as (location_key, street, city(city_key, province_or_state, country))

Data Warehouse Schema & OLAP Operations

Chittaranjan Pradhan

Data Cubes

Conceptual Data Modeling/Lattice of Cuboids

Data Warehouse Model Development

Data Warehouse Schema

Star Schema Snowflake Schema Fact Constellation

Measures

OLAP Operations
Roll-Up/Drill-Up Operator

Drill-Down/Roll-Down Operator

Slice Operator Dice Operator

Pivot Operator

OLAP Servers

DMOL

Star schema in DMQL

Snowflake schema in DMOI

Fact Constellation in DMQL

6.29

Fact Constellation in DMQL

Fact Constellation in DMQL

define cube sales [time, item, branch, location]: dollars_sold =
 sum(sales_in_dollars), avg_sales = avg(sales_in_dollars), units_sold = count(*)
define dimension time as (time_key, day, day_of_week, month, quarter, year)
define dimension item as (item_key, item_name, brand, type, supplier_type)
define dimension branch as (branch_key, branch_name, branch_type)
define dimension location as (location_key, street, city, province_or_state,
 country)

define cube shipping [time, item, shipper, from_location, to_location]:
 dollar_cost = sum(cost_in_dollars), unit_shipped = count(*)

define dimension time as time in cube sales

define dimension item as item in cube sales

define dimension shipper as (shipper_key, shipper_name, location as location in cube sales, shipper_type)

define dimension from_location as location in cube sales define dimension to location as location in cube sales

Data Warehouse Schema & OLAP Operations

Chittaranjan Pradhan

Data Cubes

Conceptual Data Modeling/Lattice of Cuboids

Data Warehouse Model Development

Data Warehouse Schema

Star Schema Snowflake Schema Fact Constellation

Measures

OLAP Operations

Roll-Up/Drill-Up Operator Drill-Down/Roll-Down Operator

Slice Operator Dice Operator

Pivot Operator

OLAP Servers

DMQL

Star schema in DMQL Snowflake schema in DMQI

Fact Constellation in DMQL...

Data Warehouse Schema & OLAP **Operations**

Chittaranian Pradhan

Fact Constellation in DMQL...

Data Cubes

Conceptual Data Modeling/Lattice of Cuboids

Data Warehouse Model Development

Data Warehouse Schema Star Schema Snowflake Schema

Fact Constellation

Measures

OLAP Operations Roll-Up/Drill-Up Operator

Drill-Down/Roll-Down Operator Slice Operator

Dice Operator

Pivot Operator

OLAP Servers

DMOL

Star schema in DMOL Snowflake schema in

DMQI