ESTYMACJA PRZEDZIAŁOWA

Przedziały ufności dla średniej μ :

σ znane	$\left(\bar{x}-z_{\frac{\alpha}{2}}\cdot\frac{\sigma}{\sqrt{n}};\bar{x}+z_{\frac{\alpha}{2}}\cdot\frac{\sigma}{\sqrt{n}}\right)$	$z_{\alpha}=t_{\alpha,\infty}$
σ nieznane	$\left(\bar{x} - t_{\frac{\alpha}{2}, n-1} \cdot \frac{s}{\sqrt{n}}; \bar{x} + t_{\frac{\alpha}{2}, n-1} \cdot \frac{s}{\sqrt{n}}\right)$	
Duża próba n>30	$\left(\bar{x}-z_{\frac{\alpha}{2}}\cdot\frac{s}{\sqrt{n}};\bar{x}+z_{\frac{\alpha}{2}}\cdot\frac{s}{\sqrt{n}}\right)$	

Przedział ufności dla wariancji σ^2 :

$$\left(\frac{(n-1)s^2}{\chi^2_{\frac{1}{2}\alpha,n-1}};\frac{(n-1)s^2}{\chi^2_{1-\frac{1}{2}\alpha,n-1}}\right)$$

Przedział ufności dla odchylenia standardowego σ:

$$\left(\frac{S}{1 + \frac{Z_{\alpha/2}}{\sqrt{2n}}}; \frac{S}{1 - \frac{Z_{\alpha/2}}{\sqrt{2n}}}\right)$$

Przedział ufności dla wskaźnika struktury p:

· · · · · · · · · · · · · · · · · · ·	
$\left(\hat{p}-z_{\frac{\alpha}{2}}\sqrt{\frac{\hat{p}(1-\hat{p})}{n}};\hat{p}+z_{\frac{\alpha}{2}}\sqrt{\frac{\hat{p}(1-\hat{p})}{n}}\right)$	$\hat{p} = \frac{T}{n}$