Modern Statistical Modeling

目录

2 Linear Regression		

1 Prediction and Nearest Neighbor

1 Prediction and Nearest Neighbor

- Goal: (1) predict y from x ("black box"); (2) which variable(s) in x contributes to the prediction of y (" $x^T\beta$ "), estimation, testing, variable selection.
- Why are prediction and estimation different: (1) model parameters; (2) identifiability $(f_{\theta_1} \neq f_{\theta_2} \Rightarrow \theta_1 \neq \theta_2)$.
- Find prediction function $f: \mathcal{X} \to \mathcal{Y}$ that minimizes $\mathbb{E}_{X,Y} \mathcal{L}(f(X),Y) = \mathbb{E}\{\mathbb{E}(\mathcal{L}(f(X),Y)|X)\}$ where loss function $\mathcal{L}: \mathcal{Y} \times \mathcal{Y} \to \mathbb{R}$.
- Optimal predictor conditioned on x: $f^*(x) = \arg\min_{f(x) \in \mathcal{Y}} \mathbb{E}\{\mathcal{L}(f(X), Y) | X = x\}$.
- Regression: y numerical, squared error $(L_2$ -loss) $\mathcal{L}(\hat{y}, y) = (\hat{y} y)^2$, $\mathbb{E}\{(Y f(X))^2 | X\} = \{\mathbb{E}(Y|X) f(X)\}^2 + \mathbb{E}\{(Y \mathbb{E}(Y|X))^2 | X\} = \text{bias}^2 + \text{variance. Optimal } f^*(X) = \mathbb{E}(Y|X).$
- To model f^* , $\begin{cases} \text{parametric: linear, } f*(x) = x^T\beta, \beta \in \mathbb{R}^2 \\ \text{nonparametric: infinite dimension, } f^*(x) = m(x), m \text{ satisfying certain smoothness} \end{cases}.$
- Classification: 0-1 loss $\mathcal{L}(\hat{y}, y) = I(\hat{y} = y)$, $\mathbb{E}\{\mathcal{L}(h(X), Y) | X = x\} = \sum_{j \neq h(x)} P(Y = j | X = x) = 1 P(Y = h(X) | X = x)$. Optimal classification (Bayes classifier): $h^*(x) = \arg \max_{h(x) \in \mathcal{Y}} P(Y = h(X) | X = x)$.
- A fully nonparametric approach: k nearest neighbor (k-NN). Given training data $\{(x_i, y_i)\}_{i=1}^m$, use data "around" x to estimate $m(x) = \mathbb{E}(Y|X=x)$. Rationale: "Things that look alike must be alike". Classification: $h_{k\text{-NN}}(x) = \max_{i=1}^m \sum_{i \in N_k(x)} y_i$. k controls size of neighbor set. $k \uparrow$: effective sample size \uparrow , variance \downarrow , heterogeneity \uparrow , bias \uparrow .
- Theory for 1-NN: Consider binary classification: $\mathcal{Y} = \{0,1\}$, $\mathcal{L}(h(x),y) = I(h(x) \neq y)$. Assume $\mathcal{X} \subset [0,1]^d$, ρ Euclidean distance, $S = \{(x_i,y_i)\}_{i=1}^n$. $\forall x \in \mathcal{X}$, let $\pi_1(x), \dots, \pi_n(x)$ be an ordering of $\{1,\dots,n\}$ with increasing distance to x. $\eta(x) = \mathbb{E}(Y = 1|X = x)$. Bayes classifier: $h^*(x) = I(\eta(x) > \frac{1}{2})$. Assumption on η : η is c-Lipschitz for some c > 0. Goal: Derive an upper bound on $\mathbb{E}_{S \sim \mathcal{D}^n} \mathcal{L}(\hat{h}_S) = \mathbb{E}_{S \sim \mathcal{D}^n} \mathbb{E}_{(x,y) \sim \mathcal{D}} I(\hat{h}_S(x) \neq y)$.
- Lemma 1.1 The 1-NN rule \hat{h}_S satisfies $\mathbb{E}_{S \sim \mathcal{D}^n} \mathcal{L}(\hat{h}_S) \leq 2\mathcal{L}(h^*) + c\mathbb{E}_{S \sim \mathcal{D}^n, x \sim \mathcal{D}} ||x x_{\pi_1}(x)||$.

Proof $\mathbb{E}_{S}\mathcal{L}(\hat{h}_{S}) = \mathbb{E}_{S_{x} \sim \mathcal{D}_{x}^{n}, x \sim \mathcal{D}_{x}, y \sim \eta(x), y' \sim \eta(\pi_{1}(x))} P(y \neq y')$. Note that $P(y \neq y') = \eta(x')(1 - \eta(x)) + (1 - \eta(x'))\eta(x) = (\eta - \eta + \eta')(1 - \eta) + (1 - \eta + \eta - \eta')\eta = 2\eta(1 - \eta) + (\eta - \eta')(2\eta - 1)$. Since η is c-Lipschitz and $|2\eta - 1| \leq 1$, $P(y \neq y') \leq 2\eta(1 - \eta) + c||x - x'||$. Substituting back, $\mathbb{E}_{S}\mathcal{L}(\hat{h}_{S}) \leq 2\mathbb{E}_{x}\eta(x)(1 - \eta(x)) + c\mathbb{E}_{S,x}||x - x_{\pi_{1}(x)}||$. The Bayes error $\mathcal{L}(h^{*}) = \mathbb{E}_{x}\{\eta(x) \wedge (1 - \eta(x))\} \geq \mathbb{E}_{x}(\eta(x)(1 - \eta(x)))$.

• Lemma 1.2 Let C_1, \dots, C_r be a collection of subsets of \mathcal{X} . Then $\mathbb{E}_{S \sim \mathcal{D}^n} \{ \sum_{i: C_i \cap S = \emptyset} \} P(C_i) \leq \frac{r}{ne}$ ("probability of subsets that not hit by S").

Proof By linearity, $\mathbb{E}_S\{\sum_{i:C_i\cap S=\emptyset}P(C_i)\}=\sum_{i=1}^rP(C_i)\mathbb{E}_SI(C_i\cap S=\emptyset)=\sum_{i=1}^rP(C_i)P(C_i\cap S=\emptyset)$. Note that $P(C_i\cap S=\emptyset)=(1-P(C_i))^n\leq e^{-nP(C_i)}$. Thus, LHS $\leq \sum_{i=1}^rP(C_i)e^{-nP(C_i)}\leq r\max P(C_i)e^{-nP(C_i)}\leq r\min P(C_i)e^{-nP(C_i)}$

• Theorem 1.1 (Generalization upper bound for 1-NN) $\mathbb{E}_S \mathcal{L}(\hat{h}_S) \leq 2\mathcal{L}(h^*) + 2c\sqrt{d}n^{-\frac{1}{d+1}}$.

Proof Take C_i of the form $\{x: x_j \in [(\alpha_j - 1)/T, \alpha_j/T], \forall j\}$, where $\alpha_1, \dots, \alpha_d \in \{1, \dots, T\}^d$.

Case 1: If $x, x' \in C_i$ for some i, then $||x - x'|| \le \sqrt{d\epsilon}$.

Case 2: Otherwise, $||x - x'|| \le \sqrt{d}$.

Hence, $\mathbb{E}_{S,x}||x-x_{\pi_1(x)}|| \leq \mathbb{E}_S\{P(\cup_{i:C_i\cap S\neq\emptyset}C_i)\sqrt{d\epsilon} + P(\cup_{i:C_i\cap S=\emptyset})\sqrt{d}\} \leq \sqrt{d}(\epsilon+\frac{r}{ne})$. Since $r=(\frac{1}{\epsilon})^d$, $\cdots \leq \sqrt{d}(\epsilon+\frac{1}{\epsilon^d ne})$. Matching the two terms gives $\epsilon=(\frac{1}{ne})^{\frac{1}{d+1}}$ and the optimal bound $2\sqrt{d}(ne)^{-\frac{1}{d+1}} \leq 2\sqrt{d}n^{-\frac{1}{d+1}}$. \square

LINEAR REGRESSION

- Theorem 1.2 (Generalization upper bound for k-NN) $\mathbb{E}_{S}\mathcal{L}(\hat{h}_{S}) \leq (1 + \sqrt{\frac{8}{k}})\mathcal{L}(h^{*}) + (6c\sqrt{d} + k)n^{-\frac{1}{d+1}}$.
 - **Remark** 1.1 k is called regularization parameter/hyperparameter and the optimal $k \sim n^d$.
 - Remark 1.2 Exponential dependence on d: "curse of dimensionality".
- Theorem 1.3 (Lower bound) $\forall c > 1$ and any learning rule h, \exists a distribution over $[0,1]^d \times \{0,1\}$ s.t. $\eta(x)$ is cLipschitz, the Bayes error is 0, but for $n < (c+1)^d/2$, $\mathbb{E}\mathcal{L}(h) > \frac{1}{4}$ (i.e. minimax bound $\inf_h \sup_y \mathbb{E}\mathcal{L}(h) \ge Cn^{-\frac{1}{d+1}}$).

Hint Let G_c^d be the regular grid on $[0,1]^d$ with distance 1/c between points. Then any $\eta: G_c^d \to \{0,1\}$ is c-Lipschitz. Then use the following theorem.

• Theorem 1.4 (No free-lunch theorem) Let A be any learning rule for binary classification with 0-1 loss over \mathcal{X}^d and $n < |\mathcal{X}|/2$. Then \exists distribution D over $\mathcal{X} \times \{0,1\}$ s.t. $\mathbb{E}\mathcal{L}(A) \geq \frac{1}{4}$. Furthermore, with prob $\geq \frac{1}{7}$, $\mathcal{L}(A_S) \geq \frac{1}{8}$.

2 Linear Regression

- $Y_{n\times 1} = X_{n\times p}\beta_{p\times 1} + \epsilon_{n\times 1}$, $\mathbb{E}(\epsilon|X) = 0$, $Var(\epsilon) = \sigma^2 I_n$ and X fixed.
- Least squares estimator (LSE) solves the normal equation $X^T X \hat{\beta} = X^T Y, \hat{\beta} = (X^T X)^- X^T Y.$
- ANOVA: $y_{ij} = \mu + \alpha_j + \epsilon_{ij}, i = 1, \dots, n_j, j = 1, \dots, J. \sum_j n_j = n, \sum_j \alpha_j = 0.$
- **Definition** 2.1 θ is estimable if \exists an unbiased estimator of θ . $c^T\beta$ is linearly estimable if $\exists l \in \mathbb{R}^n$ s.t. $\mathbb{E}(l^TY) = c^T\beta$, $\forall \beta \in \mathbb{R}^p \Leftrightarrow c = X^Tl \in \mathcal{C}(X^T)$.
- Theorem 2.1 (1) If $c^T \hat{\beta}$ is unique, then $c \in \mathcal{C}(X^T X) = \mathcal{C}(X^T)$.
 - (2) If $c \in \mathcal{C}(X^T)$, then $c^T \hat{\beta}$ is unique and unbiased for $c^T \beta$.
 - (3) If $c^T \beta$ is estimable and $\epsilon \sim \mathcal{N}_n(0, \sigma^2 I_n)$, then $c \in \mathcal{C}(X^T)$.

Proof (1) Let $b \in \mathcal{C}(X^TX)^{\perp}$ be arbitrary, then $X^TY = X^TX\hat{\beta} = X^TX(\hat{\beta} + b) \Rightarrow c^T\hat{\beta} = c^T(\hat{\beta} + b) \Rightarrow c^Tb = 0$. (2) $c = X^Tl$ for some $l \in \mathbb{R}^n$, then $c^T\hat{\beta} = lX^T\hat{\beta} = lX^T(X^TX)^-X^TY = lP_XY$ is unique. $\mathbb{E}(c^T\hat{\beta}) = l^TP_x\mathbb{E}Y = l^TP_XX\beta = l^TX\beta = c^T\beta$.

(3) If \exists an estimator T(X,Y) unbiased for $c^T\beta$, then $c^T\beta = \int T(X,y) \frac{1}{(2\pi\sigma^2)^{\frac{n}{2}}} \exp\{-\frac{1}{2\sigma^2}||y-X\beta||^2\}dy$. Differentiate with β , $c = X^T \int \frac{y-X\beta}{(2\pi\sigma^2)^{\frac{n}{2}}\sigma^2} T(X,y) \exp\{-\frac{1}{2\sigma^2}||y-X\beta||^2\}dy$.