Zeolite

o Zeolite is hydrated sodium aluminium silicate having a general formula,

Na₂OAl₂O₃.xSiO₂.yH₂O.

1) Natural zeolite:

- These are about 40 naturally occurring zeolites, forming in both volcanic and sedimentary rocks
- Natural zeolite are non-porous
- e.g. Natrolite, Mordenite, stillbite and so on

1) Synthetic zeolite:

- These are around 150 Synthetic (Artificial) zeolite which are designed for specific purposes.
- > Synthetic zeolite are porous
- Such zeolites possess higher exchange capacity per unit weight than natural zeolites
- Prepared by heating china clay, feldspar and soda ash.
- e.g. Zeolite A (used as a laundry detergent), Zeolites X and Y (used for catalytic cracking) and ZSM-5 (pentasil-zeolite)

China clay Al₂Si₂O₅(OH)₄

Feldspars (KAlSi₃O₈ – NaAlSi₃O₈)

Zeolite or Permutit Process

- o Common Zeolite is Na₂OAl₂O₃.3SiO₂.2H₂O known as natrolith.
- Other gluconites, green sand (iron potassium phyllosilicate with characteristic green colour, a mineral containing Glauconite), etc. are used for water softening.
- o It exchanges Na⁺ ions for Ca²⁺ and Mg²⁺ ions.
- o Artificial zeolite used for water softening is Permutit.
- o These are porous, glassy particles having higher softening capacity compared to green sand.
- They are prepared by heating china clay (hydrated aluminium silicate), feldspar (KAlSi₃O₈-NaAlSi₃O₈ CaAl₂Si₂O₈) are a group of rock-forming tectosilicate minerals which make up as much as 60% of the earth's crust) and soda ash (Na₂CO₃)

Zeolite process

o Method of softening:

$$Na_2Ze + Ca(HCO_3)_2$$
 \longrightarrow $2 NaHCO_3 + CaZe$
 $Na_2Ze + Mg(HCO_3)_2$ \longrightarrow $2 NaHCO_3 + MgZe$
 $Na_2Ze + CaSO_4$ \longrightarrow $Na_2SO_4 + CaZe$
 $Na_2Ze + CaCl_2$ \longrightarrow $2 NaCl + CaZe$

o Regeneration of Zeolite:

CaZe (or) MgZe + 2 NaCl
$$\longrightarrow$$
 Na₂Ze + CaCl₂ or MgCl₂

$$\downarrow$$
Brine solution

Note:

Zeolite process equipment diagram

Softening of hard water by permutit process.

Zeolite Process

Advantages:

- o Residual hardness of water is about 10 ppm only
- o Equipment is small and easy to handle
- o Time required for softening of water is small
- No sludge formation and the process is clean
- o Zeolite can be regenerated easily using brine solution
- Any type of hardness can be removed without any modifications to the process

Disadvantages:

- Coloured water or water containing suspended impurities cannot be used without filtration
- Water containing acidic pH cannot be used for softening since acid will destroy zeolite.