安徽大学 2020-2021 学年第二学期光学期末考试试卷 (A卷)

出卷人: 杨群

- 1. **简答题** (4小题×5分=20分)
- 1.1. 简述 Huygens-Fresnel 原理

解: 波前 Σ 上的每个面元 d Σ 都可以被看作新的发出次波的振动中心. 空间某点 P 的振动是所有这些次波的相干叠加.

1.2. 简要说明双折射现象及形成原因

解:双折射是光束入射到各向异性晶体中,被分解为两束光而沿不同方向折射的现象.形成原因是两束折射光在晶体内的传播速度不同.

1.3. 简述 Malus 定律

解: 强度为 I_0 的线偏振光通过检偏器后, 出射光的强度为 $I = I_0 \cos^2 \theta$, 其中 θ 是检偏器与偏振方向的夹角.

1.4. 如何区分圆偏振光和自然光

解:在入射光前依次放置 $\frac{\lambda}{4}$ 波晶片和偏振片,旋转偏振片一周.若出射光有消光位置,则该入射光为圆偏振光,否则为自然光.

问: 如何区分入射光的五种偏振态?

解:将偏振片放入光路并慢慢旋转一周. (1) 若出射光强变化且有消光位置,则入射光是线偏振光.

- (2) 若出射光强不变,则入射光为自然光或圆偏振光. 在入射光前依次放置 $\frac{\lambda}{4}$ 波晶片和偏振片,旋转偏振片一周.
- 若出射光有消光位置,则该入射光为圆偏振光,否则为自然光.
- (3) 若出射光强变化但无消光位置,则入射光为部分偏振光或椭圆偏振光.
- 将偏振片旋至光强最强位置,在偏振片后放置 $\frac{\lambda}{4}$ 波晶片,将光轴旋至与偏振片透振方向平行.
- 将偏振片由前面移至后面, 旋转偏振片一周. 若出射光有消光位置, 则入射光为椭圆偏振光, 否则为部分偏振光.
- 2. 一玻璃半球曲率半径为 R, 折射率 n=1.5, 半球平面边镀银. 一物高 h, 置于曲面顶点前 2R 处. 求此光具组所成的最后的像在何处. (10 分)

解: 在折射情况下有 $\frac{n'}{s'}+\frac{n}{s}=\frac{n'-n}{r}$,横向放大率 $V=-\frac{ns'}{n's}$.在反射情况下 $\frac{1}{s'}+\frac{1}{s}=-\frac{2}{r}$,横向放大率 $V=-\frac{s'}{s}$.其中 s',s,r 分别为像距,物距和球面曲率半径,n',n 分别为像方和物方折射率.

第一次 (折射): 代入 n' = 1.5, n = 1, s = 2R, r = R, 得 $s' = \infty$, 即成无穷远处的正立实像;

第二次 (反射): 显然反射为反方向 (从玻璃向空气) 的平行正立实像:

第三次 (折射): 代入 $n = 1.5, n' = 1, s = \infty, r = -R$, 有 s' = 2R, 即映回原处的倒立等大实像.

- 3. 设平凸透镜和平板玻璃良好接触, 两者间空气间隙形成 Newton 环. 用波长 $\lambda = 589 \mathrm{nm}$ 的光照射, 测得从中心算起的第 k 个暗纹直径 $r_k = 0.70 \mathrm{mm}$,第 k+10 个 $r_{k+10} = 1.70 \mathrm{mm}$.求:(1) 平凸透镜凸面的曲率半径 R;
 - (2) 若形成 Newton 环的空气间隙中充满折射率 n = 1.33 的水,则上述两暗纹直径各变为多大? (10 分)

解:
$$(1)R = \frac{r_{k+10}^2 - r_k^2}{10\lambda} = 407.47 \text{mm}$$
; $(2)r_k' = \frac{r_k}{\sqrt{n}} = 1.47 \text{mm}$, $r_{k+10}' = \frac{r_{k+10}}{\sqrt{n}} = 0.61 \text{mm}$

4. 在 Fresnel 圆孔衍射实验中, 光源距圆孔 R=1.5m, 波长 $\lambda=630$ nm, 接受屏距圆孔 b=6.0m, 圆孔半径 ρ 从 0.5mm 开始扩大. 求最先两次出现亮斑和暗斑时圆孔的半径 ρ_{l1}, ρ_{l2} 和 ρ_{d1}, ρ_{d2} . (15 分)

解: $\rho_k = \sqrt{\frac{Rb}{R+b}}k\lambda$, k 为奇数时为亮斑, 为偶数时为暗斑. $\rho_1 = 0.870$ mm $> \rho$, 因此 $\rho_{l1} = \rho_1 = 0.870$ mm, $\rho_{l2} = \rho_3 = 1.506$ mm, $\rho_{d1} = \rho_2 = 1.230$ mm, $\rho_{d2} = \rho_4 = 1.740$ mm.

- 5. 单缝 Fraunhofer 衍射实验中, 垂直入射有波长 $\lambda_1 = 400$ nm和 $\lambda_2 = 760$ nm. 已知单缝宽 $a = 1.0 \times 10^{-2}$ cm, 透镜焦距 f = 50cm.(1) 求两种光的一级衍射明纹中心间距;(2) 若用光栅常数 $d = 1.0 \times 10^{-3}$ cm 的光栅替换单缝, 其他条件同上, 求两种光的一级主极大间距. (15 分)
- 解: (1) 一级衍射班的位置对应 $\alpha = \tan \alpha$ 的第一个根, 其中 $\alpha = \frac{\pi a}{\lambda} \sin \theta$, 解得 $\alpha = 1.43\pi$, $\theta = \arcsin(1.43\frac{\lambda}{a})$. 分别代入 $a = 1.0 \times 10^{-2} \text{cm}$, $\lambda_1 = 400 \text{nm}$, $\lambda_2 = 760 \text{nm}$, 即有 $\theta_1 = 0.0057$, $\theta_2 = 0.0109$, $l_1 = f\theta_1 = 2.86 \text{mm}$, $l_2 = f\theta_2 = 5.43 \text{mm}$, $\Delta l = 2.57 \text{mm}$.
- (2) 一级主极大的位置对应 $\beta = \pi$, 其中 $\beta = \frac{\pi d}{\lambda} \sin \theta$, 即对应 $\theta = \arcsin \frac{\lambda}{d}$. 分别代入 $d = 1.0 \times 10^{-3} \text{cm}$, $\lambda_1 = 400 \text{nm}$, $\lambda_2 = 760 \text{nm}$, 即有 $\theta_1 = 0.0400$, $\theta_2 = 0.0760$, $l_1 = f\theta_1 = 20.00 \text{mm}$, $l_2 = f\theta_2 = 38.04 \text{mm}$, $\Delta l = 18.03 \text{mm}$.
- 6. 通过一理想偏振光片观察部分线偏振光 (由自然光和线偏振光混合而成) 的强度, 当从最大光强方位转过 30°时, 光强变成 7/8. 求:(1) 此部分偏振光种线偏振光和自然光强之比;(2) 入射光的偏振度;(3) 旋转偏振片时最小透射光强和最大透射光强之比;(4) 当偏振光从最大光强方位转过 60°时的透射光强和最大光强之比. (15 分)
- 解: (1) 由 Malus 定律,设自然光强和线偏振光强分别为 I_1,I_2 ,则有 $\frac{I_1}{2}+I_2\cos^2\frac{\pi}{6}=\frac{7}{8}(\frac{I_1}{2}+I_2)$,解得 $\frac{I_1}{I_2}=2$. (2) $P=\frac{I_{\max}-I_{\min}}{I_{\max}+I_{\min}}=\frac{1}{3}$. (3) $\frac{I_{\min}}{\max}=\frac{I_1/2}{I_1/2+I_2}=\frac{1}{2}$. (4) $\frac{I_1/2+I_2\cos^2\frac{\pi}{3}}{I_1/2+I_2}=\frac{5}{8}$.
- 7. 在两块主截面夹角为 $\frac{\pi}{3}$ 的 Nicol 棱镜中插入一块主截面平分上述夹角的 $\frac{\lambda}{4}$ 波片, 光强为 I_0 的自然光入射之. 求 (1) 通过 $\frac{\lambda}{4}$ 波片后光的偏振态;(2) 通过第二个 Nicol 波片的光强. (15~%)
- 解: (1) 沿第一个 Nicol 棱镜透振方向振动的线偏振光.