Teoría de la Comunicación Examen de 6 de febrero de 2015

Nombre:

1) Sea el siguiente sistema, donde la entrada x(t) es un proceso aleatorio estacionario

- a) $(0.75 \ puntos)$ Determine la función de autocorrelación del proceso de salida y(t) en función de la autocorrelación del proceso de entrada x(t).
- b)(0.75 puntos) Determine la densidad de potencia espectral de la salida si la autocorrelación del proceso de entrada viene dada por $R_X(\tau) = \frac{4e^{-|\tau|}}{3}$.
- c)(0.75 puntos) El sistema propuesto se puede considerar un filtro lineal invariante con el tiempo. Obtenga el módulo de la respuesta en frecuencia del sistema a partir de la densidad de potencia espectral de la salida y de la entrada del sistema.
- d)(0.75 punto) Sea la autocorrelación del proceso de entrada x(t) la indicada en el apartado b). Al realizar un muestreo de orden uno del proceso aleatorio x(t) obtenemos una variable aleatoria continua uniforme en el intervalo [-a, a]. Determine el valor de a.
- 2) Sea el canal que se muestra en la figura

Determine:

- a) (1 punto) La información mutua entre la entrada y la salida del canal I(X;Y) en el caso en que las probabilidades de la entrada sean $P(x_1) = 0.3$ y $P(x_2) = 0.7$.
- b) (1 punto) La capacidad C de dicho canal. (Ayuda: Se recomienda partir de la expresión H(Y) H(Y|X)).

- 3) (0.75 puntos) Demuestre por qué la función de autocorrelación de un proceso estacionario en sentido amplio es una medida de la velocidad de cambio del proceso aleatorio. Ayuda:desigualdad de Markov $P[X \ge a] \le \frac{E[X]}{a}$.
- 4) (θ . 75 puntos) Obtenga la expresión de la entropía de una fuente de Markov de orden m.
- 5) (1 punto);Cómo ha determinado la función de autocorrelación temporal $R_t(k)$ de la secuencia de 128000 valores que se le suministraba en la segunda parte de la práctica 1?. Explíquelo en detalle. ¿Cómo verificaba que el proceso era ergódico en la autocorrelación?
- 6) (1 punto) Usando la estimación 4 de la práctica 2 (segundo tipo de estimación descrito para el segundo modelo), determine qué fila o qué columna utilizaría para estimar la muestra que no ha llegado en el instante n, si la muestra que llegó en el instante n-1 es s(n-1)=81. ¿Cómo la utilizaría, es decir, cómo realizaría la estimación usando dicha información?

NOTA: En los ejercicios 1 y 2 no es suficiente con dar sólo la respuesta correcta sino que hay que mostrar cómo se ha obtenido el resultado. Si no se da una explicación el valor del ejercicio será de cero puntos.

TRANSFORMADA DE FOURIER EN TIEMPO CONTINUO PROPIEDADES

Propiedad	Señal	Transformada de Fourier
	$\mathbf{x}(\mathbf{t})$	Χ(ω)
	y(t)	$Y(\omega)$
Ecuaciones	$x(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(\omega) e^{j\omega t} d\omega$	$X(\omega) = \int_{-\infty}^{\infty} x(t) e^{-j\omega t} dt$
	x(t) Par	$X(\omega) = 2\int_0^\infty x(t)\cos\omega t dt$
	x(t) Impar	$X(\omega) = -2j \int_0^\infty x(t) \operatorname{sen}\omega t dt$
Linealidad	a x(t) + b y(t)	$a X(\omega) + b Y(\omega)$
Desplazamiento en el tiempo	$x(t-t_0)$	$X(\omega)e^{-j\omega t_0}$
Desplazamiento en frecuencia	$x(t)e^{j\omega_0t}$	$X(\omega-\omega_0)$
Conjugación	$x^*(t)$	$X^*(-\omega)$
Inversión de tiempo	x(-t)	Χ(-ω)
Escalado de tiempo y frecuencia	x(at)	$\frac{1}{ a }X\left(\frac{\omega}{a}\right)$
Convolución	x(t)*y(t)	Χ(ω) Υ(ω)
Multiplicación	x(t) y(t)	$\frac{1}{2\pi}[X(\omega)*Y(\omega)]$

TABLA 3.1 Algunos pares seleccionados de la transformada de Fou

Thirties	f(t)	$F(\omega) = \mathcal{F}\{f(t)\}\$	
1.	$e^{-at}u(t)$	$1/(a+j\omega)$ (noise agreeus)	
2.	$te^{-at}u(t)$	$1/(a+j\omega)^2$	
3.	$e^{-a t }$	$2a/(a^2+\omega^2)$	
4.	$e^{-t^2/(2\sigma^2)}$	$\sigma\sqrt{2\pi}e^{-\sigma^2\omega^2/2}$	
5.	sgn(t)	$2/(j\omega)$	
6.	$j/(\pi t)$	sgn (ω)	
7.	u(t)		
8.	$\delta(t)$	1	
9.	1	$2\pi\delta(\omega)$	
10.	$e^{\pm j\omega_0 t}$	$2\pi\delta(\omega \mp \omega_0)$	
11.	$\cos \omega_0 t$		
12.	$\operatorname{sen} \omega_0 t$	$-j\pi[\delta(\omega-\omega_0)-\delta(\omega+\omega_0)]$	
13.		$\tau \operatorname{Sa}(\omega \tau/2)$	