Problem 1. Triangle ABC has a right angle at C. If $\sin A = \frac{2}{3}$, what is $\tan B$?

Solution: We have

$$\sin A = \frac{\text{opposite}}{\text{hypotenuse}} = \frac{CB}{BA} = \frac{2}{3}.$$

This tells us we can write CB = 2x and AB = 3x for some x. By the Pythagorean Theorem,

$$AC = \sqrt{(3x)^2 - (2x)^2} = \sqrt{5x^2} = \sqrt{5}x.$$

Then

$$\tan B = \frac{AC}{CB} = \frac{\sqrt{5}x}{2x} = \boxed{\frac{\sqrt{5}}{2}}$$

Problem 2. How many triangles have area 10 and vertices at (-5,0), (5,0), $(5\cos\theta, 5\sin\theta)$ for some angle θ ?

Solution: Recall from the unit circle definition of sin and cos that all points with coordinates $(\cos \theta, \sin \theta)$ for some angle θ are on the unit circle. Therefore, all points of the form $(5\cos \theta, 5\sin \theta)$ are on a circle with center at the origin and radius 5.

The area of a triangle is $\frac{1}{2}$ base height. In the case of our triangle, it has a base of 10. Let it's height be h. We have,

$$\frac{1}{2} \cdot 10 \cdot h = 10 \implies h = 2.$$

Now we know the height of the triangle is 2. There are $\boxed{4}$ points on the unit circle that are a distance of 2 away from the x-axis.

Problem 3. Let x be a real number such that $\sec x - \tan x = 2$. What is $\sec x + \tan x$?

Solution: Converting everything to sin and cos, the given equation becomes

$$\frac{1}{\cos x} - \frac{\sin x}{\cos x} = 2 \implies 1 - \sin x = 2\cos x \implies \sin x = 1 - 2\cos x.$$

Substituting this into the Pythagorean Identity $\sin^2 x + \cos^2 x = 1$ gives $(1 - 2\cos x)^2 + \cos^2 x = 1$, or $5\cos^2 x - 4\cos x + 1 = 1$. Thus $\cos x(5\cos x - 4) = 0$ which means that $\cos x = 0$ or $\cos x = \frac{4}{5}$. However, $\cos x = 0$ is impossible since it would make $\sec x = \frac{1}{\cos x}$ undefined. Therefore, $\cos x = \frac{4}{5}$. It follows that $\sin x = 1 - 2\cos x = 1 - 2 \cdot \frac{4}{5} = -\frac{3}{5}$. Since we know $\cos x$ and $\sin x$, it is now a simple matter to find $\sec x + \tan x$:

$$\sec x + \tan x = \frac{1}{\cos x} + \frac{\sin x}{\cos x} = \frac{1 + \sin x}{\cos x} = \frac{1 - \frac{3}{5}}{\frac{4}{5}} = \boxed{\frac{1}{2}}.$$

Problem 4. Evaluate

$$\log_{10}(\tan 1^{\circ}) + \log_{10}(\tan 2^{\circ}) + \log_{10}(\tan 3^{\circ}) + \dots + \log_{10}(\tan 88^{\circ}) + \log_{10}(\tan 89^{\circ}).$$

Solution: We can use the identity $\log a + \log b = \log ab$ to combine everything into a single \log .

$$\log_{10}(\tan 1^{\circ}) + \log_{10}(\tan 2^{\circ}) + \log_{10}(\tan 3^{\circ}) + \dots + \log_{10}(\tan 88^{\circ}) + \log_{10}(\tan 89^{\circ})$$

$$= \log_{10}(\tan 1^{\circ} \cdot \tan 2^{\circ} \cdot \dots \cdot \tan 88^{\circ} \cdot \tan 89^{\circ}).$$

There's a very helpful identity we can use here: $\tan x \cdot \tan(90^{\circ} - x) = 1$. Now computing the product inside the log is easy. We can pair up the terms that have angles summing up to 90° .

$$\tan 1^\circ \cdot \tan 2^\circ \cdot \dots \cdot \tan 88^\circ \cdot \tan 89^\circ = (\tan 1^\circ \tan 89^\circ)(\tan 2^\circ \tan 88^\circ) \cdot \dots \cdot (\tan 44^\circ \tan 46^\circ) \cdot \tan 45^\circ$$

Notice that $\tan 45^{\circ}$ doesn't pair up with anything. From our helpful identity, each product pair is 1. Also, $\tan 45^{\circ} = 1$, so the whole product is 1. Therefore the answer is $\log_{10} 1 = \boxed{0}$.

Problem 5. If $\sin x + \cos x = \frac{1}{5}$ and $0 \le x < \pi$, what is $\tan x$?

Solution: This problem is similar to Problem 3 in that we are given an equation relating $\sin x$ and $\cos x$. The strategy in both cases is the same: use the given equation and the Pythagorean Identity $\sin^2 x + \cos^2 x = 1$ to solve for $\sin x$ and $\cos x$.

We can rewrite the given equation as $\cos x = \frac{1}{5} - \sin x$. Substituting this into the Pythagorean Identity $\sin^2 x + \cos^2 x = 1$ results in

$$\sin^2 x + \left(\frac{1}{5} - \sin x\right)^2 = 1,$$

or after some algebra, $25\sin^2 x - 5\sin x - 12 = 0$. This is a quadratic in $\sin x$, and it factors as $(5\sin x + 3)(5\sin x - 4) = 0$, so $\sin x = -\frac{3}{5}$ or $\frac{4}{5}$. (Alternatively, we could have used the quadratic formula.) Now since $0 \le x < \pi$, $\sin x \ge 0$, so we must have $\sin x = \frac{4}{5}$. Hence

$$\cos x = \frac{1}{5} - \sin x = \frac{1}{5} - \frac{4}{5} = -\frac{3}{5} \text{ and } \tan x = \frac{\sin x}{\cos x} = \frac{\frac{4}{5}}{-\frac{3}{5}} = \boxed{-\frac{4}{3}}.$$

Problem 6. Which of the following is equal to $\cot 10 + \tan 5$?

- (A) csc 5
- **(B)** csc 10
- (C) sec 5
- **(D)** sec 10
- (E) $\sin 15$

Solution: As usual, we first convert everything into sin and cos. We have

$$\cot 10 + \tan 5 = \frac{\cos 10}{\sin 10} + \frac{\sin 5}{\cos 5}.$$

Writing this over a common denominator gives

$$\frac{\cos 10}{\sin 10} + \frac{\sin 5}{\cos 5} = \frac{\cos 10 \cos 5 + \sin 10 \sin 5}{\sin 10 \cos 5}.$$

Aha! We recognize the numerator as the angle subtraction formula for $\cos(10-5)$. So we can replace the numerator by $\cos 5$, which yields $\frac{\cos 5}{\sin 10 \cos 5} = \frac{1}{\sin 10} = \csc 10$. The answer is (B).

Problem 7. If

$$\cos^{0}\theta + \cos^{2}\theta + \cos^{4}\theta + \cos^{6}\theta + \dots = 5,$$

what is the value of $\cos 2\theta$?

Solution: Notice that the sum on the left is an infinite geometric series with initial term $\cos^0 \theta = 1$ and common ratio $\cos^2 \theta$. By the formula for an infinite geometric series, the left

hand side of the equation equals $\frac{1}{1-\cos^2\theta} = \frac{1}{\sin^2\theta}$. (As a reminder, an infinite geometric series with initial term a and common ratio |r| < 1 equals $a + ar + ar^2 + ar^3 + \cdots = \frac{a}{1-r}$.) Setting this equal to 5, we get

$$\frac{1}{\sin^2 \theta} = 5 \implies \sin^2 \theta = \frac{1}{5}.$$

To find $\cos 2\theta$, it seems natural to use the double angle formula for cosine, which gives $\cos 2\theta = \cos^2 \theta - \sin^2 \theta = 1 - 2\sin^2 \theta$. (The last equality follows from the Pythagorean Identity.)

Plugging in
$$\sin^2 \theta = \frac{1}{5}$$
 gives $\cos 2\theta = 1 - 2 \cdot \frac{1}{5} = \boxed{\frac{3}{5}}$.

Problem 8. Find the largest value of $\frac{y}{x}$ for pairs of real numbers (x, y) which satisfy $(x-3)^2 + (y-3)^2 = 6$.

Solution: Think of the problem in the coordinate plane. $(x-3)^2 + (y-3)^2 = 6$ is a circle centered at (3,3) with radius $\sqrt{6}$, and $\frac{y}{x}$ is the slope of the line connecting the origin and the point (x,y).

Problem 9. The minimum value of $\sin \frac{A}{2} - \sqrt{3} \cos \frac{A}{2}$ is attained when A is

- **(A)** -180°
- **(B)** 60°
- (C) 120°
- **(D)** 0°
- (E) none of these

Solution: To make the expression simpler, let $x = \frac{A}{2}$. The expression that we want to minimize then becomes $\sin x - \sqrt{3} \cos x$. It turns out that we can write this as $c \sin(x+k)$ for some suitable values of c and k.

To find the suitable values of c and k, we first expand $c\sin(x+k)$ using the sine angle addition formula:

 $c\sin(x+k) = c(\sin x \cos k + \cos x \sin k) = c\sin x \cos k + c\cos x \sin k.$

To make this equal to $\sin x - \sqrt{3}\cos x$, it is enough to find values of c and k such that

$$c\cos k = 1$$
.

$$c\sin k = -\sqrt{3}.$$