Параллельное программирование Лабораторная работа №4. "Новенькая" Интерполяция функций

Цель работы

Реализация методов интерполирования функций одной переменной (интерполяция методом ближайшего соседа, линейной интерполяцией, интерполяцией полиномом Лагранжа, интерполяцией полиномом Ньютона, интерполяцией кубическим сплайном) и функций нескольких переменных (метод билинейной интерполяции).

Задание

- 1. Задать вектор значений x_0 с 0.0 до 1.0 с шагом 10^{-3} . Задать вектор значений x_1 из 8 равномерно распределенных элементов с 0 до 1. Определить константы N_0 и N_1 длины векторов x_0 и x_1 . Вычислить $f_0(x_0)$ (модель аналитической функции) и $f_1(x_1)$ (модель экспериментальных данных).
- 2. Интерполировать $f_1(x_1)$ всеми одномерными методами по сетке x_0 . Получить: $f_2(x_0)$ методом ближайшего соседа, $f_3(x_0)$ линейной интерполяцией, $f_4(x_0)$ интерполяцией полиномом Лагранжа, $f_5(x_0)$ интерполяцией полиномом Ньютона вперед, а $f_6(x_0)$ соответственно назад.
- 3. Построить на одной канве два вертикально расположенных графика. На первом графике построить $f_2(x_0)$, $f_3(x_0)$, $f_4(x_0)$, а на втором $f_5(x_0)$ и $f_6(x_0)$ полученных интерполяцией полиномами Ньютона. На обоих графиках построить модель аналитической функции $f_0(x_0)$ и модель экспериментальных данных $f_1(x_1)$.
- 4. Задать вектора значений X_0 и Y_0 с -5 до +5 с шагом 10^{-2} . Задать вектора значений двух переменных X_1 и Y_1 с -5 до +5 с шагом 10^{-0} . Вычислить $Z_1(X_1,Y_1)$ как $Z_k\left(i,j\right)=\sqrt{X(i)^2+Y(j)}$ (модель экспериментальных данных).
- 5. Интерполировать $Z_1(X_1,Y_1)$ по сетке X_0 и Y_0 . Получить $Z_0(X_0,Y_0)$. Построить на одной канве два графика: верхний с поверхностью $Z_1(X_1,Y_1)$, а нижний с $Z_0(X_0,Y_0)$.

БОНУС:

- (+3 балла в итог за семестр). Интерполировать $f_1(x_1)$ методом кубических сплайнов и получить $f_7(x_0)$. Построить $f_7(x_0)$ на первом графике вместе с $f_2(x_0)$, $f_3(x_0)$, $f_4(x_0)$.
- $(+2\ балла\ в\ итог\ за\ семестр).$ Реализовать метод прогонки (в общем виде) в отдельной функции и применить его в методе интерполяции кубическими сплайнами.