UNIVERSIDADE SÃO JUDAS TADEU

Emilly dos santos ferreira RA: 825153657

Sistemas computacionais e segurança

Professor Robson Calvetti

Sao Paulo - 2025

Atividade: Implementação de Algoritmos de Criptografia

- 1. Criptografia com Chaves Simétricas (Exemplo: AES)
 - 2. Criptografia com Chaves Assimétricas (Exemplo: RSA)

3. Função Hash (Exemplo: SHA-256) Optei pela lingugem de programação: Python

Criptografia com Chaves Simétricas (AES - Advanced Encryption Standard)

Código Implementado (Python)

Usamos a biblioteca cryptography e o algoritmo Fernet para garantir segurança.

Instalação da Biblioteca

Antes de rodar o código, instale a biblioteca necessária: pip install cryptography

from cryptography.fernet import Fernet

Gerar chave secreta para criptografia e descriptografia chave = Fernet.generate_key()

cipher = Fernet(chave)

Mensagem que será protegida mensagem = "Texto Secreto"

Criptografar a mensagem
mensagem_criptografada = cipher.encrypt(mensagem.encode())

Descriptografar a mensagem mensagem_descriptografada = cipher.decrypt(mensagem_criptografada).decode()

Exibir resultados

print(" * Mensagem original:", mensagem)

print(" * Texto criptografado:", mensagem_criptografada)

print(" * Texto descriptografado:", mensagem_descriptografada)

Criptografia com Chaves Assimétricas (RSA - Rivest-Shamir-Adleman)

Código Implementado (Python)

Usamos a biblioteca PyCryptodome.

Instalação da Biblioteca

Antes de rodar o código, instale a biblioteca necessária: pip install pycryptodome

from Crypto.PublicKey import RSA from Crypto.Cipher import PKCS1_OAEP import base64

Gerar par de chaves RSA (privada e pública) chave_privada = RSA.generate(2048) chave_publica = chave_privada.publickey()

Criar um objeto de criptografia com a chave pública cipher_rsa = PKCS1_OAEP.new(chave_publica)

Mensagem a ser criptografada mensagem = "Segredo RSA".encode()

Criptografar a mensagem com a chave pública
mensagem_criptografada = cipher_rsa.encrypt(mensagem)
mensagem_criptografada_b64 = base64.b64encode(mensagem_criptografada)

print(" ◆ Texto criptografado (RSA):", mensagem_criptografada_b64)

Criar objeto de descriptografia com a chave privada cipher_rsa_dec = PKCS1_OAEP.new(chave_privada)

Descriptografar a mensagem
mensagem_descriptografada =
cipher_rsa_dec.decrypt(base64.b64decode(mensagem_criptografada_b64))

print(" ◆ Texto descriptografado:", mensagem_descriptografada.decode())

Função Hash (SHA-256 - Secure Hash Algorithm 256 bits)

Código Implementado (Python)

Usamos a biblioteca nativa hashlib. import hashlib

Texto a ser transformado em hash mensagem = "SenhaSuperSegura"

Criar um hash SHA-256 da mensagem hash_sha256 = hashlib.sha256(mensagem.encode()).hexdigest()

Exibir o hash gerado
print(" • Hash SHA-256:", hash_sha256)