Entity Linking

Entity linking

- Assign a unique identity to entities mentioned in the text
 - Knowledge graph
 - Ontology
 - Dictionary
- Aka
 - named-entity disambiguation
 - named-entity normalization
 - Concept Recognition

Related tasks

- Co-reference resolution
 - understands whether multiple words in a text refer to the same entity

Paris is the capital of France. It is also the largest city in France.

- Entity resolution
 - Record linkage, data matching, data linkage
 - Database

Data set	Name	Date of birth	City of residence
Data set 1	William J. Smith	1/2/73	Berkeley, California
Data set 2	Smith, W. J.	1973.1.2	Berkeley, CA
Data set 3	Bill Smith	Jan 2, 1973	Berkeley, Calif.

Related tasks

- Entity alignment
 - identifying and linking equivalent entities across different knowledge graphs
- Multi-modal entity linking

Typical steps

Typical entity linking steps. 1. NER - find named entities in the text (here, Paris and France); 2. link found named named entities to corresponding unique identifiers (here, Wikipedia pages). (2) is often done by: 2.1. defining a metric for comparing candidates in the system; 2.2. creating a small set of candidate identifiers for each named entity, and 2.3. Scoring candidates with the metric and choosing one that has the highest score.

Typical Modules

- Candidate entity generation
 - Filter out irrelevant entities
 - Retrieve a candidate set
 - Requirement: fast
- Candidate entity ranking (Disambiguation)
 - rank the candidate entities
- Unlinkable mention prediction (NIL)
 - whether the top-ranked entity identified in the Candidate Entity Ranking module is the target entity for mention m.

Applications

- Information Extraction
- Information Retrieval
 - Semantic entity-based search
 - Query disambiguation
- Content Analysis
 - recommendation systems
- Question Answering
- Knowledge Base Population

Heuristic Based Methods (Candidate entity generation)

- acronym that is in parenthesis adjacent to the expansion
 - Iowa State University (ISU)
- identify named entities from the document and if some identified named entity contains the entity mention as a substring
 - Michael I. Jordan = Jordan
- Name Dictionary (Wikipedia)
 - Entity page
 - Redirect pages
 - Disambiguation pages
 - Bold phrases from the first paragraphs (nick names, alias, etc)
 - Hyperlinks in Wikipedia articles

Disambiguation

Features

Disambiguation

- Features
 - Similarity
 - Lexicon (name string comparison)
 - semantic
 - Anchors statistic (Mention-entity prior)
 - Entity type
 - Context
 - Entity description
 - KG graph

Entity linking via joint encoding of types, descriptions, and context

Mention Context Encoder

- Local-Context Encoder
 - Sentence:
 - Representation
 - FFNN
- Document-Context Encoder
 - , bag-of-mention for all mentions in training data
 - FFNN
- Mention-Context Encoder
 - FFNN
- maximize the probability of predicting the correct entity from the mention-context vector

$$P_{\text{text}}(e|m) = \frac{\exp(v_m \cdot v_e)}{\sum\limits_{c_k \in C_m} \exp(v_m \cdot v_{c_k})} \qquad \mathcal{L}_{\text{text}} = \frac{1}{M} \sum_{i=1}^M \log P_{\text{text}}(e_{m^{(i)}}|m^{(i)})$$

- Entity Description Encoder
 - maximize the probability of predicting the correct entity from the entity description vector
- Fine-Grained Types Encoder
 - entity has multiple types
 - : probability of typebeing relevant to entity

$$\mathcal{L}_{\text{etype}} = \frac{1}{|\mathcal{E}|} \sum_{e \in \mathcal{E}} \log \prod_{t \in T_e} P(t|e) \prod_{t' \notin T_e} (1 - P(t'|e))$$

- Type-Aware Context Representation
 - between every and if type belongs to for the entity that refers to.
- Entity Representations

$$\{v_e\}, \Theta = \underset{\{v_e\},\Theta}{\operatorname{argmax}} \mathcal{L}_{\operatorname{text}} + \mathcal{L}_{\operatorname{desc}} + \mathcal{L}_{\operatorname{etype}} + \mathcal{L}_{\operatorname{mtype}}$$

$$P(e|m) = P_{\text{prior}}(e|m) + P_{\text{text}}(e|m)$$
$$- (P_{\text{prior}}(e|m) * P_{\text{text}}(e|m))$$
$$\hat{e}_m = \underset{e \in C_m}{\operatorname{argmax}} P(e|m)$$

Supervised Ranking Methods

Binary classification

- Learning to rank
 - Pointwise (regression problem)
 - : predicting the real-value or ordinal score of x

•

- Pairwise
 - : classification problem for a given pair
 - Usually implemented with a scoring function:
- Listwise

Training loss

max-margin loss

$$\mathcal{L} = \max(0, \gamma - \Phi(m, e^+) + \Phi(m, e^-)),$$
 ranking score

Cross-entropy loss

$$\mathcal{L} = -(y \log \Phi(m, e) + (1 - y) \log (1 - \Phi(m, e))),$$

EL Settings

- Zero-shot
 - Train in Domain A
 - Inference in Domain B
 - Unseen mentions & entities
- End-to-End
 - Combine NER with EL
- Multi-modal

BLINK (by Facebook 2020)

Retrieve and rerank

BLINK

Mention Encoder

Input

Context [B] Mention [E] Context

Output

Last layer

Entity Encoder

Input

Entity Title [X] Description

Output

Last layer

Optimize dot-product of the two output

BLINK

Cross Encoder

Input

Context [B] Mention [E] Context [S] Entity Title [X] Description

Output

Probability distribution among entity choices

BiEncoder VS CrossEncoder

- Bi-Encoder
 - Fast
 - Pre-compute entity representations (off-line)
 - Less accurate comparing to crossencoder

- Cross-Encoder
 - Accurate
 - Expensive to compute
 - Linear to number of candidates

End-to-End

global disambiguation layer

final local score

End-to-End Neural Entity Linking

 $\Psi(e_i,m)$ $FFNN_2$ $m - e_i$ Istm similarity scores long range $\log p(e_j|m)$ attention scores $\langle x^m, y_i \rangle$ set of candidate mention m with embedding $FFNN_1$ entities e_0, e_1, \dots, e_s and their embeddings yo y1 y2 context-aware word embeddings x_k bidirectional LSTM word - character embeddings concatenated **Times** The New York is American newspaper

 $\Phi(e_i, m)$

 $FFNN_3$

https://aclanthology.or

g/K18-1050.pdf

global voting score

Kolitsas N, Ganea OE, Hofmann T. End-to-End Neural Entity Linking. InProceedings of the 22nd Conference on Computational Natural Language Learning 2018 Oct (pp. 519-529).

Autoregressive Entity Retrieval

sequence-to-sequence model

- (a) Outside: we can either continue to generate the input or start a new mention.
- (b) Inside a mention: we can either continue to generate the input or end the current mention.
- (c) Inside an entity link: we can either generate from the entities prefix trie or close if the generated prefix is a valid entity.

Figure 2: Example of dynamically constrained *Markup* decoding for entity linking using "In 1503, Leonardo began painting the Mona Lisa." as input. There are 3 cases: when we are outside a mention/entity (a), inside a mention generation step (b), and inside an entity link generation step (c). The model is supposed to output the input source annotating mentions and pointing them to the respective entities: "In 1503, [Leonardo](Leonardo da Vinci) began painting the Mona Lisa".

Autoregressive Entity Retrieval

$$score(e|x) = p_{\theta}(y|x) = \prod_{i=1}^{N} p_{\theta}(y_i|y_{< i}, x)$$

- standard seq2seq objective: maximizing the output sequence likelihood
- Inference: constrained Beam search

Multi Modal EL

- Text
- Vision
- Cross modal

Luo, Pengfei, et al. "Multi-grained multimodal interaction network for entity linking." *Proceedings KDD* 2023.

