22 HAJATAZHTONIPAIMATIKONAPIOMON

ENDIATHE MATABLE

Ένναα < και >

Ένας αριθμός α λέμε ότι:

• είναι μεγαλύτερος από έναν αριθμό β, όταν η διαφορά α - β είναι θετικός αριθμός και γράφουμε:

$$\alpha > \beta$$

• είναι μικρότερος από έναν αριθμό β, όταν η διαφορά α - β είναι αρνητικός αριθμός και γράφουμε:

$$\alpha < \beta$$

(μπορούμε για τις παραπάνω περιπτώσεις να γράψουμε $\beta < \alpha$, $\beta > \alpha$ αντίστοιχα)

- 1. Από τον παραπάνω ορισμό προκύπτει αμέσως ότι:
 - ✓ Κάθε θετικός αριθμός είναι μεγαλύτερος από το μηδέν.
 - ✓ Κάθε αρνητικός αριθμός είναι μικρότερος από το μηδέν.
- 2. Αν για τους αριθμούς α και β ισχύει $\alpha>\beta$ ή $\alpha=\beta$, τότε γράφουμε

$$\alpha \geq \beta$$

και διαβάζουμε: «α μεγαλύτερος ή ίσος του β».

3. Πιο πάνω είπαμε «είναι *μεγαλύτερος* από έναν αριθμό β , όταν η διαφορά $\alpha - \beta$ είναι θετικός αριθμός» Αυτό προκύπτει καθώς

$$\alpha > \beta \iff \alpha - \beta > 0$$

- 4. Με βάση τις πράξεις της πρόσθεσης και του πολ/μού προκύπτουν τα εξής:
 - $(\alpha > 0 \text{ } \text{ } \text{ } \text{ } \text{ } \alpha \text{ } \beta > 0) \Rightarrow \alpha + \beta > 0$

$$(\alpha < 0 και β < 0) \Rightarrow \alpha + \beta < 0$$

• α, β ομόσημοι $\Leftrightarrow \alpha \cdot \beta > 0 \Leftrightarrow \frac{\alpha}{\beta} > 0$

$$\alpha, \beta$$
 ετερόσημοι $\Leftrightarrow \alpha \cdot \beta < 0 \Leftrightarrow \frac{\alpha}{\beta} < 0$

- $\alpha^2 \geq 0$, $\gamma \iota \alpha \kappa \dot{\alpha} \theta \varepsilon \alpha \in \mathbb{R}$ (H ισότητα ισχύει μόνο όταν $\alpha = 0$)
- 5. Ισχύουν επίσης:

•
$$\alpha^2 + \beta^2 = 0 \Leftrightarrow \alpha = 0 \ \kappa \alpha \iota \ \beta = 0$$

•
$$\alpha^2 + \beta^2 > 0 \Leftrightarrow \alpha \neq 0 \ \ \ \beta \neq 0$$

ΙΔΙΟΤΗΤΕΣ ΤΩΝΑΝΣΟΤΗΓΩΝ

Στηριζόμενοι στην ισοδυναμία

$$\alpha > \beta \iff \alpha - \beta > 0$$

μπορούμε να αποδείξουμε τις παρακάτω ιδιότητες των ανισοτήτων:

- **1.** $(\alpha > \beta \ \kappa \alpha \iota \ \beta > \gamma) \Rightarrow \alpha > \gamma$
- 2. Ισχύουν:
 - $\alpha > \beta \iff \alpha + \gamma > \beta + \gamma$
 - $A\nu \quad \gamma > 0 \quad \tau \acute{o} \tau \varepsilon \quad \alpha > \beta \iff \alpha \cdot \gamma > \beta \cdot \gamma$
 - $A\nu \ \gamma < 0 \ \tau \acute{o} \tau \varepsilon \ \alpha > \beta \iff \alpha \cdot \gamma < \beta \cdot \gamma$
- 3. Ισχύουν:
 - $(\alpha > \beta \ \kappa \alpha \iota \ \gamma > \delta) \Rightarrow \alpha + \gamma > \beta + \delta$
 - Για θετικούς αριθμούς α, β, γ, δ ισχύει η συνεπαγωγή:

$$(\alpha > \beta \ \kappa \alpha \iota \ \gamma > \delta) \Rightarrow \alpha \cdot \gamma > \beta \cdot \delta$$

4. Για <u>θετικούς</u> αριθμούς α , β και <u>θετικό ακέραιο</u> ν ισχύουν οι ισοδυναμίες:

$$\alpha > \beta \iff \alpha^{\nu} > \beta^{\nu}$$
 $\kappa \alpha \iota$ $\alpha = \beta \iff \alpha^{\nu} = \beta^{\nu}$

ΓΡΟΣΟΧΗ Στις ιδιότητες των ανισοτήτων έχει πολύ σημασία το πρόσημο. Αν δεν ισχύει ότι $\alpha, \beta > 0$ τότε **δεν** ισχύει η παραπάνω ιδιότητα:

ightharpoonup Παράδειγμα: 2 > -3 αλλά $2^2 > (-3)^2 \Leftrightarrow 4 > 9$ που **ΔΕΝ** ισχύει

ΓΡΟΣΟΧΗ ΔΕΝ επιτρέπεται αφαίρεση και διαίρεση κατά μέλη ανισοτήτων

► Παράδειγμα με αφαίρεση: για 5 < 10 και 1 < 8 τότε

$$5-1 < 10-8 \Leftrightarrow 4 < 2$$
 που είναι ΛΑΘΟΣ!

ightharpoonup Παράδειγμα με διαίρεση: για 6 < 10 και 5 < 5 τότε

$$\frac{6}{2} < \frac{10}{5} \Leftrightarrow 3 < 2$$
 που είναι ΛΑΘΟΣ!

ATAMHIZALA

Διαστήματα μπορούμε να πούμε ότι είναι σύνολα που περιέχουν αριθμούς. Αυτά χωρίζονται σε διάφορα ήδη διαστημάτων ανάλογα ποιοι αριθμοί περιέχονται σε αυτά. Ειδικότερα, έχουμε:

• το σύνολο των αριθμών x με $\alpha \le x \le \beta$ λέγεται κλειστό διάστημα από το α μέχρι το θ και συμβολίζεται με:

 $[\alpha, \beta]$

Περιέχει δηλαδή όλους τους αριθμούς από το α μέχρι και το β (δηλ. και το α, και το β, και αυτούς που βρίσκονται μεταξύ α και β)

• το σύνολο των αριθμών x με $\alpha < x < \beta$ λέγεται ανοικτό διάστημα από το α μέχρι το β και συμβολίζεται με:

 (α, β)

Περιέχει δηλαδή όλους τους αριθμούς «μετά» από το α και «πριν» από το β (που βρίσκονται μεταξύ α και β χωρίς όμως να περιλαμβάνει το α και το β)

Έτσι προκύπτουν και οι εξής παραλλαγές:

• το σύνολο των αριθμών x με $\alpha \leq x < \beta$ λέγεται ανοικτό δεξιά διάστημα και συμβολίζεται με:

 $[\alpha, \beta)$

Περιέχει δηλαδή όλους τους αριθμούς από το α μέχρι το β (δηλ. περιέχει το α, όλους αυτούς που βρίσκονται μεταξύ α και β, αλλά **δεν** περιέχει τον β)

• το σύνολο των αριθμών x με $\alpha < x \le \beta$ λέγεται ανοικτό αριστερά διάστημα και συμβολίζεται με:

 $(\alpha, \beta]$

Περιέχει δηλαδή όλους τους αριθμούς από το α μέχρι το β (δηλ. **δεν** περιέχει το α, περιέχει όμως όλους αυτούς που βρίσκονται μεταξύ α και β, και τον β)

Επιπλέον, προκύπτουν και διαστήματα με άκρα τα άπειρα:

- Το σύνολο των αριθμών x για τους οποίους ισχύει $\alpha \leq x$ συμβολίζεται με: $[\alpha, +\infty)$
- Το σύνολο των αριθμών x για τους οποίους ισχύει $x \leq \alpha$ συμβολίζεται με: $(-\infty, \alpha]$

Έτσι προκύπτει ο συγκεντρωτικός πίνακας για κάθε είδος διαστήματος. Αριστερά βλέπουμε γραφικά το διάστημα, στην μέση την αντίστοιχη ανισότητα και στα δεξιά τον συμβολισμό:

Διάστημα	Ανισότητα	Συμβολισμός
x' α β x	$\alpha \le x \le \beta$	$[\alpha, \beta]$
x' α β x	$\alpha \le x < \beta$	$[\alpha, \beta)$
x' α β x	$\alpha < x \le \beta$	$(\alpha,\beta]$
x' $\stackrel{\diamond}{\alpha}$ $\stackrel{\diamond}{\beta}$ $\stackrel{\star}{x}$	$\alpha < x \le \beta$	(α,β)
$\overrightarrow{x'}$ \overrightarrow{a} \overrightarrow{x}	$x \ge \alpha$	$[\alpha, +\infty)$
x' α x	$x > \alpha$	$(\alpha, +\infty)$
x' α x	$x \le \alpha$	$(-\infty, \alpha]$
x' α x	$x < \alpha$	$(-\infty, \alpha)$

ΠΑΡΑΤΗΡΗΣΕΙΣ

- 1. Η διαφορά μεταξύ ενός κλειστού και του αντίστοιχου ανοικτού διαστήματος είναι ότι το πρώτο περιέχει τα άκρα του, ενώ το δεύτερο δεν τα περιέχει.
- **2.** Οι αριθμοί **α και β** λέγονται **άκρα των διαστημάτων** αυτών και κάθε αριθμός μεταξύ των α και β λέγεται εσωτερικό σημείο αυτών.
- **3.** Δηλαδή, αν από το κλειστό διάστημα $[\alpha, \beta]$ παραλείψουμε τα α και β προκύπτει το αντίστοιχο ανοικτό διάστημα (α, β) .
- 4. Σε γραφική μορφή το διάστημα ακολουθεί τους εξής κανόνες αναπαράστασης
 - → άκρο που **συμπεριλαμβάνεται** στο σύνολο («γεμισμένη» τελεία)
 - $\circ \to$ άκρο που **δεν συμπεριλαμβάνεται** στο σύνολο («κενή» τελεία)
- **5.** Τα σύμβολα
 - +∞ (συν άπειρο)
 - -∞ (πλην άπειρο)

δεν παριστάνουν πραγματικούς αριθμούς αλλά άπειρα.

Το συν άπειρο $+\infty$ αντιπροσωπεύει έναν αριθμό μεγαλύτερο από κάθε πραγματικό αριθμό. Σκέψου ότι προσθέτεις συνεχώς 1 σε έναν αριθμό: 1, 2, 3, 4, 5, ... Καθώς συνεχίζεις να προσθέτεις, οι αριθμοί μεγαλώνουν χωρίς να σταματούν ποτέ. Αυτή η συνεχής αύξηση οδηγεί στο συν άπειρο.

Το πλην άπειρο $-\infty$ αντιπροσωπεύει έναν αριθμό μικρότερο από κάθε πραγματικό αριθμό. Σκέψου ότι αφαιρείς συνεχώς 1 από έναν αριθμό: -1,-2,-3,-4,-5,... Καθώς συνεχίζεις να αφαιρείς, οι αριθμοί μικραίνουν χωρίς να σταματούν ποτέ. Αυτή η συνεχής μείωση οδηγεί στο πλην άπειρο.