Problème. (Probabilités et statistiques) On considère un jeu de lancers successifs et indépendants d'une pièce à pile ou face. On note X_i la variable aléatoire représentant le i^e lancer, $i \in \mathbb{N}^*$. X_i prend la valeur 1 (pile) avec probabilité $p \in [0,1]$ et la valeur 0 (face) avec probabilité q = 1 - p. Les variables aléatoires X_i sont donc indépendantes et identiquement distribuées.

1. Pour $n \in \mathbb{N}^*$, on note $S_n = \sum_{i=1}^n X_i$. Que représente S_n ? Quelle est sa loi? Justifier.

2. On note T_1 le temps d'attente avant l'apparition du premier pile. Ainsi, pour $i \in \mathbb{N}^*$, l'événement $\{T_1 = i\} = \{X_1 = 0, \dots, X_{i-1} = 0, X_i = 1\}$. Déterminer la loi de T_1 et donner son espérance.

3. De façon similaire, pour $k \in \mathbb{N}^*$ on note T_k le temps d'attente avant l'apparition du $k^{\rm e}$ pile. On utilise la convention $T_0 = 0$. Ainsi, $T_k = 0$ si, et seulement si k = 0.

a) Que représente le temps $T_{k+1} - T_k$.

b) Montrer que

$$\mathbf{P}(T_1 = t_1, \dots, T_m = t_m) = \begin{cases} \left(\frac{p}{q}\right)^m q^{t_m}, & \text{si } 0 < t_1 < \dots < t_m, \\ 0 & \text{sinon.} \end{cases}$$

4. On suppose qu'au lancer n, on a observé m piles. Posons $A = \{S_n = m\}$ et

$$B = \{T_1 = t_1, \dots, T_m = t_m\}, (t_1 \leqslant \dots \leqslant t_m \leqslant n).$$

Calculer $\mathbf{P}_{A}(B)$, la probabilité conditionnelle de B sachant A.

5. Soit $n \in \mathbb{N}^*$, un lancer particulier. Que représente T_{S_n} ? $T_{S_{n+1}}$? $T_{S_{n+1}-S_n}$? Attention aux indices : on s'intéresse à $S_n + 1$ et non S_{n+1} (ni même $T_{S_n} + 1$).

6. On pose $U_n = n - T_{S_n}$ et $V_n = T_{S_n+1} - n$. On note que les valeurs possibles pour U_n (respectivement V_n) sont $\{0, \ldots, n\}$ (respectivement \mathbb{N}^*).

a) Calculer $\mathbf{P}(U_n = i, V_n = j)$. (On distinguera les cas i = n et $0 \le i < n$).

b) En déduire que

$$\mathbf{P}(U_n = i) = \begin{cases} pq^i & \text{si } 0 \leqslant i < n \\ q^n & \text{si } i = n, \end{cases} \text{ et } \mathbf{P}(V_n = j) = pq^{j-1}.$$

c) En déduire que U_n et V_n sont des variables aléatoires indépendantes.

7. Exprimer $T_{S_n+1} - T_{S_n}$ en fonction de U_n et V_n . En déduire $\mathbf{E}[T_{S_n+1} - T_{S_n}]$ et la comparer à $\mathbf{E}[T_1]$.