Лабораторная работа № 2.4

ИССЛЕДОВАНИЕ ТЕМПЕРАТУРНОЙ ЗАВИСИМОСТИ СОПРОТИВЛЕНИЯ ПРОВОДНИКОВ ЭЛЕКТРИЧЕСКОГО ТОКА

Цель работы: изучение природы электропроводности вещества; исследование зависимости сопротивления металлов и полупроводников от температуры.

Оборудование: измерительный блок, термостат с исследуемыми образцами проводников.

Общие сведения

Вещество обладает электропроводностью — способностью проводить электрический ток. Степень электропроводности определяется значением удельного сопротивления. По закону Ома в дифференциальной форме плотность тока

$$\vec{j} = \frac{\vec{E}}{\rho},\tag{2.4.1}$$

где \vec{E} — напряженность электрического поля; ρ — удельное сопротивление. Чем меньше удельное сопротивление, тем больше плотность тока при данном значении напряженности поля, т.е. тем выше электропроводность.

Наилучшими проводниками тока являются металлы, обладающие малым удельным сопротивлением $\left(10^{-8} \div 10^{-6}\right)$ Ом·м. Диэлектрики практически не проводят ток, так как их удельное сопротивление очень велико: $\left(10^8 \div 10^{18}\right)$ Ом·м. Промежуточное положение по электропроводности занимают полупроводники. Их удельное сопротивление $\left(10^{-6} \div 10^8\right)$ Ом·м.

Металлы и полупроводники обладают разной температурной зависимостью удельного сопротивления. У металлов с ростом температуры удельное сопротивление увеличивается, а у полупроводников — уменьшается.

Металлы. Рассмотрим основные положения теории электропроводности металлов. Электрический ток — это направленное дви-

жение заряженных частиц. Для его существования необходимо наличие носителей тока, т.е. частиц, которые могли бы свободно перемещаться под действием электрического поля. В металлах носителями тока являются свободные электроны. Так называют электроны, которые отрываются от атомов и могут относительно свободно перемещаться по всему объему металла.

При отсутствии внешнего электрического поля свободные электроны движутся хаотично, сталкиваясь с нарушениями кристаллической решетки металла. Это движение можно характеризовать средней скоростью теплового движения $\langle v_{\scriptscriptstyle T} \rangle$. Если создать электрическое поле в металле, то одновременно с тепловым движением возникнет также направленное движение свободных электронов (дрейф). Направленное движение характеризуют средней скоростью дрейфа $\langle v_{\scriptscriptstyle дp} \rangle$. Этому движению препятствуют столкновения с нарушениями кристаллической решетки. Чем больше напряженность электрического поля, тем больше скорость дрейфа:

$$\left\langle \vec{\mathbf{v}}_{\text{\tiny Ap}} \right\rangle = \beta \vec{E} \,, \qquad (2.4.2)$$

где β — коэффициент пропорциональности, называемый подвижностью.

Как известно, плотность тока \vec{j} может быть выражена через параметры носителей тока:

$$\vec{j} = en\langle \vec{\mathbf{v}}_{\text{AD}} \rangle, \tag{2.4.3}$$

где e – заряд носителей; n – концентрация носителей тока.

Используя (2.4.2), получим для плотности тока выражение

$$\vec{j} = en \, \beta \vec{E} \,. \tag{2.4.4}$$

Это выражение есть не что иное, как закон Ома в дифференциальной форме (2.4.1). Следовательно, удельное сопротивление металла

$$\rho = \frac{1}{en\beta} \,. \tag{2.4.5}$$

Объяснение температурной зависимости сопротивления металлов дала квантовая теория электропроводности. Согласно этой теории, подвижность

$$\beta = \frac{e\langle \lambda_{\phi} \rangle}{m\langle v_{\tau\phi} \rangle}, \qquad (2.4.6)$$

где $\langle \lambda_{\phi} \rangle$ — средняя длина свободного пробега электрона, обладающего энергией Ферми; m — масса электрона; $\langle v_{\tau \phi} \rangle$ — средняя скорость теплового движения электрона, обладающего энергией Ферми. Подставив (2.4.6) в (2.4.5), получим

$$\rho = \frac{m\langle \mathbf{v}_{\tau\phi} \rangle}{e^2 n \langle \lambda_{\phi} \rangle} \,. \tag{2.4.7}$$

Из всех величин в правой части этой формулы от температуры зависит только $\langle \lambda_{\phi} \rangle$, т.е. среднее расстояние, проходимое электроном между столкновениями. Чем выше температура, тем больше амплитуда колебаний ионов кристаллической решетки, следовательно, меньше длина свободного пробега. Поэтому $\langle \lambda_{\phi} \rangle$ обратно пропорциональна термодинамической температуре, т.е. $\langle \lambda_{\phi} \rangle \sim \frac{1}{T}$, а удельное сопротивление прямо пропорционально температуре $\rho \sim T$. Если использовать шкалу Цельсия, то зависимость удельного сопротивления от температуры принимает вид

$$\rho = \rho_0 \left(1 + \alpha t \right), \tag{2.4.8}$$

где ρ – удельное сопротивление при температуре t; ρ_0 – удельное сопротивление при температуре 0 °C; α – температурный коэффициент сопротивления. Взяв производную по температуре от выражения (2.4.8), можно показать, что

$$\alpha = \frac{1}{\rho_0} \frac{d\rho}{dt} \ ,$$

т.е. α характеризует быстроту изменения удельного сопротивления при изменении температуры. Можно определить α как величину, равную относительному приращению удельного сопротивления при нагревании на один °C.

Для всех чистых металлов температурный коэффициент сопротивления близок к величине, равной $\frac{1}{273} \approx 3,67 \cdot 10^{-3} \left(^{\circ}\text{C}\right)^{-1}$. Например, в интервале температур $(0 \div 100)$ °C среднее значение α равно:

у серебра $4\cdot 10^{-3} \left(^{\circ}C\right)^{-1}$, у меди $4,3\cdot 10^{-3} \left(^{\circ}C\right)^{-1}$, у алюминия $3,8\cdot 10^{-3} \left(^{\circ}C\right)^{-1}$, у цинка $3,7\cdot 10^{-3} \left(^{\circ}C\right)^{-1}$, у олова $4,5\cdot 10^{-3} \left(^{\circ}C\right)^{-1}$.

Линейная зависимость сопротивления металлов от температуры экспериментально подтверждается в довольно широком интервале температур. Но при низких температурах, близких к абсолютному нулю, такая зависимость нарушается. У большинства металлов удельное сопротивление выходит на уровень так называемого остаточного сопротивления $\rho_{\text{ост}}$. У некоторых металлов, называемых сверхпроводниками, при низких температурах удельное сопротивление становится равным нулю.

Полупроводники. При температуре абсолютного нуля чистый полупроводник не проводит электрический ток, так как в нем нет носителей тока. Это означает, что все электроны связаны со своими атомами. При $T \neq 0$ часть электронов отрывается от атомов и приобретает возможность перемещаться по всему объему полупроводника. С точки зрения зонной теории такой отрыв электронов рассматривается как переход их из валентной зоны в зону проводимости (рис. 2.4.1). На освободившиеся уровни в валентной зоне могут переходить электроны с более низких энергетических уровней. Направленное движение электронов, находящихся в валентной зоне, можно рассматривать как движение квазичастиц «дырок». «Дырке» приписывают положительный элементарный заряд +e. Таким образом, электрический ток в полупроводнике имеет две составляющие: электронную и дырочную.

Рис. 2.4.1

Для перехода из валентной зоны в зону проводимости электрон должен преодолеть запрещенную зону шириной $W_{\rm a}$. Эту энергию называют также энергией активации. Вероятность таких переходов

пропорциональна $e^{-\frac{W_a}{2kT}}$, где e — основание натурального логарифма; $k=1,38\cdot 10^{-23}$ Дж/К— постоянная Больцмана; T — термодинамическая температура.

Удельное сопротивление полупроводника описывается выражением, подобным выражению для удельного сопротивления металла (2.4.5), но с учетом наличия в полупроводнике двух видов носителей тока — электронов и дырок:

$$\rho = \frac{1}{e \left(n_{+} \beta_{+} + n_{-} \beta_{-} \right)}, \qquad (2.4.9)$$

где n_+, n_- концентрации дырок и электронов, соответственно; β_+, β_- их подвижности. Зависимость подвижности носителей тока в полупроводниках от температуры аналогична температурной зависимости подвижности электронов в металлах. Но в полупроводниках концентрация носителей тока также зависит от температуры. И n_+ , и n_- определяются вероятностью переходов электронов из валентной зоны в

зону проводимости. Следовательно, они пропорциональны $e^{-\frac{\alpha}{2kT}}$. Зависимость концентрации от температуры оказывается более резкой, чем температурная зависимость подвижности. Поэтому удельное сопротивление полупроводника зависит от температуры по экспоненциальному закону:

$$\rho = \rho_{\infty} e^{\frac{W_{\rm a}}{2kT}}, \qquad (2.4.10)$$

где ρ_{∞} – постоянная для данного полупроводника величина, формально равная удельному сопротивлению при бесконечно большой температуре.

Энергия активации для чистых полупроводников равна десятым долям — единицам эВ. Например, для олова Sn $W_{\rm a}=0.1$ эВ, для сурьмы Sb $W_{\rm a}=0.36$ эВ, для германия Ge $W_{\rm a}=0.72$ эВ, для кремния Si $W_{\rm a}=1.1$ эВ, для селена Se $W_{\rm a}=2.5$ эВ.

Описание установки и метода измерений

Лабораторная установка состоит из измерительного блока 1 и термостата 2 (рис. 2.4.2), внутри которого расположены нагреватель и исследуемые образцы проводников. Измерительный блок состоит

из электронного термометра 3 и омметра 4. Включение измерительного блока производится тумблером 5.

Рис. 2.4.2

Для включения нагревателя на блоке имеется кнопка 6. О том, что нагреватель включен, сигнализирует светодиод над кнопкой 6. Для выключения нагревателя необходимо повторно нажать кнопку 6.

Кнопка 7 служит для поочередного подключения исследуемых образцов к омметру. Над ней расположены два светодиода, которые сигнализируют о том, какой из образцов подключен к омметру, металлический или полупроводниковый. Подключение образцов производится повторными нажатиями кнопки 7.

Измерительный блок соединен с термостатом при помощи проводов, проложенных под основанием лабораторной установки (на рисунке не показаны).

В данной работе исследуются температурные зависимости сопротивления металла и полупроводника. Как известно, сопротивление однородного проводника постоянного поперечного сечения равно

$$R = \rho \frac{l}{S},\tag{2.4.11}$$

где ρ – удельное сопротивление; l – длина проводника; S – площадь поперечного сечения проводника. Как видим, сопротивление пропорционально удельному сопротивлению. Температурная зависимость сопротивления будет такой же, как зависимость удельного сопротивления от температуры. Поэтому для металла

$$R = R_0 (1 + \alpha t), (2.4.12)$$

а для полупроводника

$$R = R_{\infty} e^{\frac{W_{\rm a}}{2kT}}. (2.4.13)$$

Зная сопротивление при разных температурах, можно рассчитать температурный коэффициент сопротивления для металла и энергию активации для полупроводника.

Металл. Запишем выражение (2.4.12) для двух значений температуры:

$$\begin{cases} R_1 = R_0 (1 + \alpha t_1); \\ R_2 = R_0 (1 + \alpha t_2). \end{cases}$$

Решая эту систему уравнений относительно α, получим

$$\alpha = \frac{R_2 - R_1}{R_1 t_2 - R_2 t_1}. (2.4.14)$$

Полупроводник. Представим выражение (2.4.13) в виде

$$\frac{R}{R_{co}} = e^{\frac{W_a}{2kT}}$$

и прологарифмируем его:

$$\ln\frac{R}{R_{\infty}} = \frac{W_{\rm a}}{2kT} \,.$$
(2.4.15)

Запишем выражение (2.4.15) для двух значений температуры:

$$\begin{cases}
\ln \frac{R_1}{R_{\infty}} = \frac{W_a}{2kT_1}; \\
\ln \frac{R_2}{R_{\infty}} = \frac{W_a}{2kT_2}.
\end{cases}$$

Вычтем из первого уравнения второе:

$$\ln \frac{R_1}{R_{\infty}} - \ln \frac{R_2}{R_{\infty}} = \ln \frac{R_1}{R_2} = \frac{W_a}{2k} \left(\frac{1}{T_1} - \frac{1}{T_2} \right).$$

Тогда энергия активации

$$W_{\rm a} = 2k \frac{\ln \frac{R_1}{R_2}}{\left(\frac{1}{T_1} - \frac{1}{T_2}\right)} = 2k \frac{T_1 T_2}{T_2 - T_1} \ln \frac{R_1}{R_2}.$$
 (2.4.16)

Порядок выполнения измерений

- 1. Получить у преподавателя допуск к выполнению работы.
- 2. Ознакомиться с органами управления измерительного блока.
- 3. Включить питание измерительного блока. Измерить сопротивление исследуемых образцов при комнатной температуре. Результат записать в табл. 2.4.1.
- 4. Включить нагреватель термостата. Измерить сопротивление образцов при нагревании с интервалом (8–10) °С. Результаты записать в таблицу.
- 5. Выключить питание измерительного блока. Результаты измерений предъявить преподавателю.

Таблица 2.4.1

№ изм.	Металл		Полупроводник		
	t, °C	R,Ом	t, °C	T,K	R, Om
1					
2					
3					
4					
5					
6					
7					
8					
9					
10					

Обработка результатов измерений

- 1. Для каждого значения сопротивления полупроводника вычислить температуру по шкале Кельвина T = t + 273. Результаты вычислений занести в табл. 2.4.1.
- 2. Построить графики зависимостей R(t) для металла и R(T) для полупроводника. При построении графиков масштабы по осям выбрать так, чтобы графики охватывали всю отведенную для них площадь.
- 3. Используя формулу (2.4.14), три раза вычислить температурный коэффициент сопротивления α для металла. В качестве R_1 и R_2 рекомендуется брать не соседние значения.

- 4. Используя полученные значения α , вычислить $\langle \alpha \rangle$, оценить абсолютную погрешность $\Delta \alpha$, считая ее равной случайной погрешности, вычислить относительную погрешность $\delta \alpha$ по методу Корнфельда (см. Приложение 2).
- 5. Записать окончательный результат для температурного коэффициента сопротивления α .
- 6. Используя формулу (2.4.16), три раза вычислить энергию активации $W_{\rm a}$ для полупроводника. В качестве $R_{\rm l}$ и $R_{\rm 2}$ рекомендуется брать не соседние значения.
- 7. Перевести полученные значения энергии активации из джоулей в электрон-вольты, учитывая, что $1 \ni B = 1, 6 \cdot 10^{-19} \, \text{Дж}$. В последующих расчетах использовать значения энергии активации в электрон-вольтах.
- 7. Вычислить среднее значение $\langle W_{\rm a} \rangle$, абсолютную погрешность, $\Delta W_{\rm a}$, относительную погрешность $\delta W_{\rm a}$ по методу Корнфельда.
 - 8. Записать окончательный результат для энергии активации $W_{\rm a}$.
 - 9. Сделать выводы по результатам вычислений.

Контрольные вопросы

- 1. Что такое электропроводность? Каковы типичные значения удельного сопротивления для металлов, полупроводников и диэлектриков?
- 2. Как удельное сопротивление металла зависит от температуры? Поясните смысл температурного коэффициента сопротивления. Как рассчитать температурный коэффициент сопротивления, зная сопротивления при двух значениях температуры?
- 3. Объясните, почему удельное сопротивление металлов растет с повышением температуры.
- 4. Объясните температурную зависимость удельного сопротивления полупроводников.
- 5. Что такое энергия активации электронов полупроводника? Как рассчитать энергию активации, зная сопротивления полупроводника при двух значениях температуры?
- 6. Изобразите зонные схемы металла, диэлектрика, полупроводника. Поясните, в чем их различие.