I rok, Fizyka Wtorek, 8:00-10:15 Data wykonania pomiarów: 18.03.2025

Prowadząca: dr Iwona Mróz

Ćwiczenie nr 11

Wyznaczanie elipsoidy bezwładności bryły sztywnej

Spis treści

1	Wstęp teoretyczny	2
2	Opis doświadczenia	2
3	Opracowanie wyników pomiarów	2
	3.1 Tabele pomiarowe	2
	3.2 Moment bezwładności bryły wzorcowej	3
	3.3 Moment bezwładności badanej bryły	3
	3.4 Wyznaczanie elipsoidy bezwładności badanej bryły	4
	3.5 Wyznaczanie momentu bezwładności względem osi niebędących głównymi osiami	
	bezwładności	4
	3.5.1 Oś przechodząca przez środek masy (s)	4
	3.6 Porównanie momentów bezwładności obliczonych dwoma sposobami	5
4	Ocena niepewności pomiaru	5
	4.1 Niepewność standardowa momentu bezwładności	5
5	Wnioski	5
6	Wykresy	5

1 Wstęp teoretyczny

Wahadło torsyjne wychylone o kąt θ od położenia równowagi wykonuje drgania skrętne pod wpływem momentu siły sprężystości M:

$$M = -k\theta \tag{1}$$

Okres drgań wahadła torsyjnego:

$$T = 2\pi \sqrt{\frac{I}{k}} \tag{2}$$

gdzie:

- \bullet I moment bezwładności bryły
- ullet moment kierujący wahadła

Stad:

$$I = k \left(\frac{T}{2\pi}\right)^2 \tag{3}$$

Dryński - Rozdział 19

2 Opis doświadczenia

3 Opracowanie wyników pomiarów

3.1 Tabele pomiarowe

- Błąd wskazania zerowego suwmiarki wyniósł 0.15 mm.
- Niepewność wzorcowania suwmiarki $\Delta_d D = 0.05$ mm.
- Kat $\alpha = 30^{\circ}$.

Rodzaj układu	Czas 10 drgań [s]	Okres T [s]
Sama ramka	18.135	1.8135
Ramka + walec wzorcowy	25.192	2.5192

Tabela 1: Pomiar czasu drgań ramki i ramki z walcem wzorcowym

Oś obrotu	Czas 10 drgań [s]	Okres T [s]
Główna oś 1 (x)	23.001	2.3001
Główna oś 2 (y)	23.008	2.3008
Główna oś 3 (z)	22.937	2.2937
Dowolna oś przez środek masy (s)	23.006	2.3006
Dowolna oś nieprzechodząca przez środek masy (t)	22.573	2.2573

Tabela 2: Pomiar czasu drgań ramki z badaną bryłą dla różnych osi

Wielkość	Wartość [mm]	Po korekcie [mm]
Średnica podstawy d [mm]	60.15	60.00
Wysokość walca h [mm]	60.15	60.00
Masa walca m [g]	1330	1330

Tabela 3: Rozmiary bryły wzorcowej, wraz z korektą wskazania zerowego

3.2 Moment bezwładności bryły wzorcowej

Badaną bryłą jest walec o wymiarach w tabeli 3, moment bezwładności walca dla osi przechodzącej przez środki podstaw określa wzór:

$$I_w = \frac{1}{2}mr^2 = \frac{1}{2}m\left(\frac{d}{2}\right)^2 \tag{4}$$

Podstawiając dane z tabeli 3 otrzymujemy:

$$I_w = \frac{1}{2} \cdot 1,330 \cdot \left(\frac{0.06}{2}\right)^2 = 0.0060 \,\mathrm{kgm}^2$$
 (5)

3.3 Moment bezwładności badanej bryły

Dla samej ramki okres drgań na podstawie wzoru 2 wynosi:

$$T_0 = 2\pi \sqrt{\frac{I_0}{k}} \tag{6}$$

Stąd okres T_w drgań ramki z bryłą wzorcową o momencie bezwładności ${\cal I}_w$ wynosi:

$$T_w = 2\pi \sqrt{\frac{I_0 + I_w}{k}} \tag{7}$$

Zatem z równań (6) i (7) moment kierujący wahadła wynosi:

$$k = \frac{4\pi^2 I_w}{T_w^2 - T_0^2} \tag{8}$$

Z wzorów (3) i (8) otrzymujemy moment bezwładności I_x badanej bryły:

$$I_x = \frac{T_x^2 - T_0^2}{T_w^2 - T_0^2} \cdot I_w \tag{9}$$

Po podstawieniu okresów drgań z tabel 2 oraz 1 i momentu bezwładności walca I_w z wzoru (5) otrzymujemy:

Oś	Moment bezwładności [kg \cdot m ²]
I_x	0,000392
I_y	0,000392
I_z	0,000386
I_s	0,000392
I_t	0,000354

Tabela 4: Momenty bezwładności względem poszczególnych osi

Przykładowe obliczenia dla I_x :

$$I_x = \frac{(2,3001)^2 - (1,8135)^2}{(2,5192)^2 - (1,8135)^2} \cdot 0,005985 = 0,000392 \,\mathrm{kgm}^2$$

3.4 Wyznaczanie elipsoidy bezwładności badanej bryły

Równanie elipsoidy ma postać:

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1\tag{10}$$

a, b, c to półosie elipsoidy, które są zdefiniowane jako:

$$a = \frac{1}{\sqrt{I_x}}, \quad b = \frac{1}{\sqrt{I_y}}, \quad c = \frac{1}{\sqrt{I_z}}$$

Podstawiając momenty bezwładności z tabeli 4 otrzymujemy:

$$a = 50,519636$$
m $b = 50,479042$ m $c = 50,894785$ m

3.5 Wyznaczanie momentu bezwładności względem osi niebędących głównymi osiami bezwładności

3.5.1 Oś przechodząca przez środek masy (s)

Znając momenty bezwładności względem głównych osi możemy obliczyć momenty bezwładności względem osi niebędących głównymi osiami bezwładności, korzystając z wzoru:

$$I_i = \frac{1}{R_i^2} \tag{11}$$

gdzie R_i to odległość między początkiem układu współrzędnych a punktem przebicia elipsoidy bezwładności przez wybraną oś:

$$R_i = \sqrt{x^2 + y^2 + z^2} \tag{12}$$

Wybrana oś przechodzi przez dwa przeciwległe wierzchołki sześcianu o boku a, stąd współrzędne jednego z punktów leżącego na osi s wynoszą:

$$x = \frac{a}{2}, \quad y = \frac{a}{2}, \quad z = \frac{a}{2}$$

Równanie prostej przechodzącej przez środek sześcianu (0, 0, 0) i punkt (a/2, a/2, a/2) ma postać:

$$\frac{x}{a/2} = \frac{y}{a/2} = \frac{z}{a/2} \Rightarrow x = y = z \tag{13}$$

Tworzymy układ równań (10) i (13) i rozwiązujemy go względem x, y, z:

$$\begin{cases} \frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1\\ x = y = z \end{cases}$$

$$\frac{x^2}{a^2} + \frac{x^2}{b^2} + \frac{x^2}{c^2} = 1$$

$$x^2 \left(\frac{1}{a^2} + \frac{1}{b^2} + \frac{1}{c^2}\right) = 1$$

$$x^2 = \frac{1}{\frac{1}{a^2} + \frac{1}{b^2} + \frac{1}{c^2}}$$

$$x = \sqrt{\frac{1}{\frac{1}{a^2} + \frac{1}{b^2} + \frac{1}{c^2}}}$$

Podstawiając wartości a, b, c otrzymujemy:

$$x = y = z = \sqrt{\frac{1}{\frac{1}{50,519636^2} + \frac{1}{50,479042^2} + \frac{1}{50,894785^2}}} = 29.2313 \,\mathrm{m}$$

Stąd podstawiając do wzoru (11) otrzymujemy:

$$I_{s,elip} = \frac{1}{R_i^2} = \frac{1}{(\sqrt{x^2 + y^2 + z^2})^2} = \frac{1}{3x^2}$$
$$= \frac{1}{3 \cdot 29.231314^2} = 0.0003901 \text{ kgm}^2$$

A obliczona z wzoru (9) wartość z tabeli 4 wynosi $I_s = 0.0003923 \,\mathrm{kgm}^2$.

Porównując metodę elipsoidy (11) z metodą na podstawie okresu drgań wzoru (9) otrzymujemy:

$$\frac{I_s - I_{s,elip}}{I_s} = \frac{0.0003923 - 0.0003901}{0.0003923} = 0.0055$$

Wartość obliczona z elipsoidy bezwładności jest mniejsza o 0.55% od wartości obliczonej z wzoru (9).

3.6 Porównanie momentów bezwładności obliczonych dwoma sposobami

4 Ocena niepewności pomiaru

- 4.1 Niepewność standardowa momentu bezwładności
- 5 Wnioski
- 6 Wykresy

Literatura