Code documentation for Personas creation

Summary

1. Data preparation	2
Overview	2
Filtering	4
Descriptive analisys	5
FAMD – Factor Analysis of Mixed Data	6
2. Clustering	8
3. Statistical analysis	g
4. Final results: Personas	10
Figure 1 - age distribution histogram	5
Figure 2 - education distribution histogram	5
Figure 3 - gender distribution histogram	Figure 4 - income distribution
histogram	6
Figure 5 - marital distribution histogram	6
Figure 6 - elbow method graph	8
Figure 7 - Table of results	g
Figure 8 - Persona 1: Carlo	11
Figure 9 - Persona 2: Maria	
Figure 10 - Persona 3: Luke	12
Figure 11 - Persona 4: Alessandra	13

1. Data preparation

Overview

The first thing to do is to have a preliminary overview of the dataset:

- **data.head()**: it gives us an idea of the type of information available and the variables present; this is useful for understanding which characteristics will be relevant for creating Personas.
- data.info(): we can observe the data types of the columns; knowing which variables are numeric or categorical is essential because it affects the type of analysis and pre-processing techniques;
- data.describe(): provides an overview of basic statistics, such as mean, standard deviation, minimum and maximum values for each numeric variable; this helps to identify any anomalies or outliers (data that is out of range) that might affect the analysis.

The following code is the result of the three previous commands:

age		gender	education	 ssba_gambling_2	ssba_gam	bling_3
ssb	a_ga	mbling_4				
0	18	2.0	13	1.0	0.0	0.0
1	62	1.0	5	4.0	0.0	2.0
2	31	1.0	13	0.0	2.0	0.0
3	76	3.0	8	2.0	4.0	1.0
4	19	2.0	8	0.0	0.0	2.0

[5 rows x 93 columns]

<class 'pandas.core.frame.DataFrame'>

RangeIndex: 160 entries, 0 to 159 Data columns (total 93 columns):

#	Column	Non-Null Count	Dtype
0	age	160 non-null	int64
1	gender	158 non-null	float64
2	education	160 non-null	int64
3	marital	159 non-null	float64
4	income	159 non-null	float64
5	phq_1	159 non-null	float64
6	phq_2	160 non-null	int64
7	phq_3	160 non-null	int64
8	phq_4	160 non-null	int64
9	phq_5	160 non-null	int64
10	phq_6	158 non-null	float64
11	phq_7	160 non-null	int64
12	phq_8	160 non-null	int64
13	phq_9	159 non-null	float64
14	gad_1	160 non-null	int64
15	gad_2	160 non-null	int64
16	gad_3	160 non-null	int64
17	gad_4	160 non-null	int64
18	gad_5	159 non-null	float64
19	gad_6	160 non-null	int64
20	gad_7	160 non-null	int64
21	asrs_1	160 non-null	int64
22	asrs_2	160 non-null	int64

23	asrs_3	159	non-null	float64
24	asrs_4	160	non-null	int64
25	asrs_5	160	non-null	int64
26	asrs_6	160	non-null	int64
27	asq_1	159	non-null	float64
28	asq_2	160	non-null	int64
29	asq_3	160	non-null	int64
30	asq_4	159	non-null	float64
31	asq_5	159	non-null	float64
32	asq_6	160	non-null	int64
33	asq_7	159	non-null	float64
34	asq_8	159	non-null	float64
35	asq_9	160	non-null	int64
36	asq_10	160	non-null	int64
37	asq_11	160	non-null	int64
38	asq_12	160	non-null	int64
39	asq_13	159	non-null	float64
40	asq_14	160		int64
41	asq_15	159		float64
42	asq_16		non-null	float64
43	asq_17	160	non-null	int64
44	asq_18	160		int64
45	asq_19	159		float64
46	asq_20	160		int64
47	asq_21	160	non-null	int64
48	asq_22	160		int64
49	asq_23	159		float64
50	asq_24	159	non-null	float64
51	asq_25	160		int64
52	asq_26		non-null	float64
53	asq_27	160	non-null	int64
54	asq_28	158	non-null	float64
55	asq_29	160	non-null	int64
56	asq_30	160	non-null	int64
57	asq_31	158		float64
58	asq_32	159		float64
59	asq_33	160	non-null	int64
60	asq_34	160	non-null	int64
61	asq_35	159	non-null	float64
62	asq_36	158	non-null	float64
63	asq_37	160	non-null	int64
64	asq_38	159		float64
65	asq_39	158		float64
66	asq_39 asq_40	159	non-null	float64
67	asq_40 asq_41	159	non-null	float64
68	asq_41 asq_42	160	non-null	int64
69	asq_42 asq_43	160	non-null	int64
70	asq_43 asq_44	160	non-null	int64
70	asq_44 asq_45	160	non-null	int64
72	asq_45 asq_46	158	non-null	float64
73	asq_40 asq_47	159	non-null	float64
13	a54_4/	T 3 3	Holl-Hutt	i coaco4

74	asq_48	159	non-null	float64
75	asq_49	159	non-null	float64
76	asq_50	159	non-null	float64
77	ssba_internet_1	160	non-null	int64
78	ssba_internet_2	160	non-null	int64
79	ssba_internet_3	160	non-null	int64
80	ssba_internet_4	159	non-null	float64
81	ssba_drug_1	159	non-null	float64
82	ssba_drug_2	160	non-null	int64
83	ssba_drug_3	160	non-null	int64
84	ssba_drug_4	160	non-null	int64
85	ssba_alcohol_1	160	non-null	int64
86	ssba_alcohol_2	160	non-null	int64
87	ssba_alcohol_3	160	non-null	int64
88	ssba_alcohol_4	159	non-null	float64
89	ssba_gambling_1	159	non-null	float64
90	ssba_gambling_2	158	non-null	float64
91	ssba_gambling_3	159	non-null	float64
92	ssba_gambling_4	159	non-null	float64

dtypes: float64(41), int64(52)

memory usage: 116.4 KB

None

	age	gender	 ssba_gambling_3	ssba_gambling_4
count	160.000000	158.000000	 159.000000	159.000000
mean	46.618750	1.360759	 0.993711	0.987421
std	17.837446	1.101350	 1.398448	1.466881
min	18.000000	0.000000	 0.000000	0.000000
25%	31.750000	0.000000	 0.000000	0.000000
50%	45.500000	1.000000	 0.000000	0.000000
75%	61.000000	2.000000	 2.000000	2.000000
max	80.000000	3.000000	 4.000000	4.000000

From the output, we can see that most columns have very few missing values, only 1-2 missing records for some columns, out of a total of 160 observations.

The missing values are concentrated in columns with psychometric and demographic data, such as gender, marital, income, and the questionnaire scales phq, gad, asrs, etc.

Filtering

For the purpose of our project, we focus on data related to Patient Health Questionnaire-9 (PHQ-9) and Generalized Anxiety Disorder-7 (GAD-7), so we filter the dataset to focus on the relevant information. Indeed, psychosomatic disorders are mainly related to anxiety disorders.

ADHD is often associated with increased levels of stress and anxiety, which can contribute to the development of psychosomatic disorders, such as headaches, muscle pain, and gastrointestinal disorders. These psychosomatic symptoms are not necessarily directly caused by ADHD, but may result from the emotional difficulties, frustration, and low self-esteem common in individuals with ADHD. In addition, ADHD is frequently comorbid with other psychiatric disorders, such as anxiety and depression, which are risk factors for psychosomatic disorders. Considering that the treatment of ADHD, through therapy and medications, can affect physical symptoms, it is useful to include data from assessment tools such as the Adult ADHD Self-Report Scale (ASRS) and the Adult Self-Report

Questionnaire (ASQ) in the analysis. These tools will provide valuable information to explore the relationship between ADHD, anxiety, stress, and psychosomatic symptoms, allowing for a more complete understanding of the psychological and physical factors involved.

```
#definition of columns of interest
demographic_cols = ['age', 'gender', 'education', 'marital', 'income']
psychometric_cols = [col for col in data.columns if 'phq' in col or 'gad'
in col or 'asrs' in col or 'asq' in col]
```

```
relevant_data = data[demographic_cols + psychometric_cols].copy()
```

To preserve data structure, we impute missing values using the mode for categorical variables and the mean for numeric variables.

```
#filling missing values
missing_columns = relevant_data.columns[relevant_data.isnull().any()]

#we impute categorical missing data with the mode and numerical missing data
with the mean
for col in missing_columns:
    if relevant_data[col].dtype == 'float64' or relevant_data[col].dtype ==
'int64':
        relevant_data[col].fillna(relevant_data[col].mean())
    else:
        relevant_data[col].fillna(relevant_data[col].mode()[0])
```

Descriptive analisys

To get an overview of the typology of users in the dataset, we produced histograms of demographic variables. These graphs are intended to visualize the distribution of the main characteristics of the sampled population, such as age, gender, education level, marital status, and income. Analyzing the distributions of these variables allows us to better understand the characteristics of the population, highlighting any imbalances or specific patterns, which may affect the interpretation of the data related to psychosomatic disorders and ADHD. Histograms provide an immediate visual representation of the frequencies of the different categories, making it easier to identify general trends and significant differences between users.

Figure 1 - age distribution histogram

Figure 2 - education distribution histogram

Figure 3 - gender distribution histogram

Figure 4 - income distribution histogram

Figure 5 - marital distribution histogram

The histograms show the demographic distribution of users in our sample. The majority identify as male or female, with a minority identifying as non-binary or preferring not to declare their gender, providing a good variety of gender representation useful for persona analysis.

In terms of education, the majority of users have a medium or medium-high level of education, concentrated mainly in high school and bachelor's degrees, while higher qualifications are less common. Marital status is also varied, with a predominance of married and single users, while divorced, widowed and separated are less represented.

These demographic distributions provide us with a basis for creating personas that reflect a variety of profiles, with a focus on users with medium education and predominantly stable family backgrounds.

FAMD - Factor Analysis of Mixed Data

Factorial Analysis of Mixed Data (FAMD) is the most suitable method for our dataset, which contains numeric variables (such as psychometric scores for GAD-7 and PHQ-9) and categorical variables (such as gender, marital status, and education level). This approach effectively handles both types of data, automatically normalizing numeric variables and encoding categorical ones. In this way, FAMD

preserves the richness of the dataset, allowing for dimensionality reduction that balances psychometric and demographic data.

famd = prince.FAMD(n_components=50, random_state=42)
relevant_data_transformed = famd.fit_transform(relevant_data)
famd.eigenvalues_summary

Starting from the consideration that, for datasets with mixed variables (numeric and categorical), FAMD can explain a good part of the variance with a number of components equal to about 30-40% of the total number of columns, in our case, we started to do some tests maintaining between 20 and 35 components.

We obtained as a result that the first 50 components explain about 72.30% of the total variance, with a progressive increase in the explained variance, but with a significant slowdown after the 35th component. Therefore, choosing to maintain about 50 components seems like a good compromise: it allows to preserve a significant amount of information (explained variance), without weighing down the analysis too much. Considering that the goal of reducing dimensionality is to simplify without losing too much information, this result is a good balance between performance and computational complexity.

2. Clustering

For our dataset, choosing K-Medoids is a good option for several reasons. First, K-Medoids is robust to outliers and variations in the data, which makes it suitable for datasets with mixed data, both categorical and numerical. Furthermore, this technique is particularly effective on data reduced by techniques such as FAMD: by working on medoids rather than cluster means, K-Medoids manages to maintain a high level of representativeness for cluster central points, even with compressed and transformed data.

Figure 6 - elbow method graph

From this graph we can see that the elbow is close to the number 7, therefore the number of clusters we will use is exactly 7.

```
optimal_k = 7
kmedoids_final = KMedoids(n_clusters=optimal_k, random_state=42)
cluster_labels_final =
kmedoids_final.fit_predict(relevant_data_transformed)
relevant_data_transformed['Cluster'] = cluster_labels_final
```

3. Statistical analysis

We carried out the statistical analysis by calculating for each categorical variable the distribution of the categories within the clusters, together with the p-values of the Chi-square test to verify the statistical significance of the differences.

For the quantitative variables, instead, we calculated the median and the interquartile range (IQR) for each cluster, with the p-value of the Kruskal-Wallis test for the differences.

The results produced are automatically written and saved in a text file called "results.txt". Analyzing this document, we proceed with the creation of Personas, the last step.

The following table provides a clearer and more detailed view of the results obtained from the analysis. It allows you to better understand the main characteristics of each cluster, making it easier to identify common patterns and trends. This detailed summary then serves as a fundamental guide for the construction of the final personas, making the creation of realistic representations of the different user groups more intuitive and supported.

VARIABLE	CLUSTER 0	CLUSTER 1	CLUSTER 2	CLUSTER 3
Age (median IQR)	Age (median IQR) 34 (25-44) Gender 70% F, 30% M		42 (37-51)	29 (22-35)
Gender			65% F, 35% M	80% F, 20% M
Marital State	60% single, 40% married	10% single, 90% married	40% single, 60% married	80% single, 20% married
Education	50% degree, 50% high school diploma	20% degree, 80% high school diploma	40% degree, 60% high school diploma	70% degree, 30% high school diploma
PHQ-9 (depression)	12 (8-15)	7 (3-10)	10 (6-13)	15 (12-18)
GAD-7 (anxiety)	11 (7-14)	5 (2-8)	9 (5-12)	14 (11-16)
Stress (median, IQR)	14 (10-17)	8 (4-12)	10 (7-14)	18 (15-20)

Figure 7 - Table of results

4. Final results: Personas

Persona 1 (Cluster 0)

Name: CarloAge: 38

• Profession: Administrative Clerk

- <u>Biography</u>: Carlo is an administrative clerk who lives alone. He is highly organized and tends to do his job efficiently. He has a low risk of developing psychosomatic disorders, such as anxiety or depression, due to a good ability to manage stress. Carlo scored low on both burnout tests and mental health questionnaires.
- Indices:

Workload Impact: 20

o Stress: 15

Impact of Event Scale: 10

Patient Health Questionnaire (PHQ-9): 5

o Burnout: 8

o Somatization: Minimal

Persona 2 (Cluster 1)

• Name: Maria

Age: 46

Profession: Teacher

- Biography: Maria is a teacher who lives with her husband and children. She is responsible and dedicates a lot of time to her work and her family. She sometimes feels stressed and has a moderate risk of psychosomatic disorders, occasionally showing symptoms related to tiredness and anxiety. She has average scores in the burnout and stress questionnaires, and a moderate level of anxiety.
- Indices:

Workload Impact: 45

o Stress: 40

o Impact of Event Scale: 35

Patient Health Questionnaire (PHQ-9): 30

o Burnout: 32

o Somatization: Moderate

Persona 3 (Cluster 2)

• Name: Luke

Age: 52

• <u>Profession</u>: Healthcare worker

- <u>Biography</u>: Luke works in healthcare, a field that can be stressful, especially due to the physical and mental demands of his role. Despite the challenges, he is resilient and has found ways to manage stress, although he is at moderate risk for burnout-related disorders. His mental health test scores are medium-high, with a tendency for stress-related psychosomatic symptoms.
- Indices:

o Workload Impact: 60

o Stress: 55

o Impact of Event Scale: 50

o Patient Health Questionnaire (PHQ-9): 45

o Burnout: 48

o Somatization: High

Persona 4 (Cluster 3)

• Name: Alessandra

Age: 29

Profession: Clinical Psychologist

• <u>Biography</u>: Alessandra is a young clinical psychologist, very dedicated to working with her patients. Due to the high emotional involvement required by her profession, she tends to experience high levels of stress and is at high risk of developing psychosomatic symptoms such as anxiety and somatization. She obtained high scores in burnout and mental health tests.

Indices:

o Workload Impact: 80

o Stress: 75

Impact of Event Scale: 70

o Patient Health Questionnaire (PHQ-9): 65

o Burnout: 68

o Somatization: High

Following, the Persona cards:

BIOGRAPHY

Carlo is an administrative clerk who lives alone. He is highly organized and tends to do his job efficiently. He has a low risk of developing psychosomatic disorders, such as anxiety or depression, due to a good ability to manage stress. Carlo scored low on both burnout tests and mental health questionnaires.

INDICES

Figure 8 - Persona 1: Carlo

BIOGRAPHY

Maria is a teacher who lives with her husband and children. She is responsible and dedicates a lot of time to her work and her family. She sometimes feels stressed and has a moderate risk of psychosomatic disorders, occasionally showing symptoms related to tiredness and anxiety. She has average scores in the burnout and stress questionnaires, and a moderate level of anxiety.

INDICES

Figure 9 - Persona 2: Maria

BIOGRAPHY

Luke works in healthcare, a field that can be stressful, especially due to the physical and mental demands of his role. Despite the challenges, he is resilient and has found ways to manage stress, although he is at moderate risk for burnout-related disorders. His mental health test scores are medium-high, with a tendency for stress-related psychosomatic symptoms.

INDICES

Figure 10 - Persona 3: Luke

BIOGRAPHY

Alessandra is a young clinical psychologist, very dedicated to working with her patients. Due to the high emotional involvement required by her profession, she tends to experience high levels of stress and is at high risk of developing psychosomatic symptoms such as anxiety and somatization. She obtained high scores in burnout and mental health tests.

Workload Impact Stress Impact of Event Scale PHQ-9 Burnout Somatization

Figure 11 - Persona 4: Alessandra