A quick note on Kurtusis and variance

Kurtosis =
$$\frac{1}{N} \times \sum_{i=1}^{N} \frac{(x_i - \overline{x})^4}{(o^2)^2}$$

or = variance

N = Sompk Size

Kurtosis oc TVACZ

As varionce increases, Kurtosis decreases

Probability Mass vs. Probability Density

Discrete Distributions

Must common Poisson distributions exhibit high probability for low values with this probability dropping rapidly toward 0 as k increases

Normal Distribution

Continuous X -> infinitely many X

The probability of all events must still sum to 1, therefore the Probability of my one of the infinite values of X must equal 0.

Ex. Consider a beta distribution with $\mu = 0.25$ and $0^2 = 0.01$.

The value 0.173 exists in this distribution, but the probability of pulling 0.173 out of a bag containing all other values in the domain is

equal to 0.

Probability Density

if p(x) = the PDF of some distribution then $\int_{b}^{a} p(x) dx$ of observing values on the interval from a to 6

As the interval [a, b] gets smaller, the integral yields more accurate probabilities for the midpoint $\frac{a+b}{2}=c$

