問題2 次の浮動小数点数に関する各設問に答えよ。

<設問1> 次の浮動小数点数の表現形式に関する記述中の に入れるべき適切な字句を解答群から選べ。

技術計算などで使用する大きな桁の数値は、浮動小数点数を用いる。一般的に、浮動小数点数は、指数部 (E)、仮数部 (M)、基数 (r) を用いて $M \times r^E$ と表現するが、IEEE754 規格の単精度浮動小数点数表現形式(以下 IEEE754 形式)では、r=2 とし、 $(-1)^S \times (1.M) \times 2^{E-127}$ で表される。

符号部S	指数部 E	仮数部 M
(1 ビット)	(8 ビット)	(23 ビット)
▲ 小数点位置		

符号部 S:0は非負の数,1は負の数

指数部 E:2を基数とし、実際の指数に127を加算(バイアス)した値

仮数部 M:整数部を1とした小数点以下の値

図1 IEEE754 規格の単精度浮動小数点数表現形式

例えば、10 進数の 25 を IEEE754 形式で表現するには、次のようにする。

まず, 符号部(S)は, 25 が非負の数であるため, 0 となる。

次に、10 進数の 25 を 2 進数へ変換し、 $(11001)_2$ となる。IEEE754 規格では、仮数部を 1 以上 2 未満となるように指数を調整する。これを (1) と呼ぶ。 $(11001)_2$ を指数表現で表すと、 $(11001)_2$ ×20 である。これを左端の 1 だけを整数部分とし、残りを小数部分とすると $(1.1001)_2$ ×24 となる。これにより、仮数部 (M) の値は $(1.1001)_2$ から整数部分の 1 を除いた $(.1001)_2$ となり、指数部 (E) の値は 4 にバイアス値である 127 を加えて $(131=(10000011)_2$ となる。

図 2 10 進数 25 を IEEE754 形式に変換した結果

同様に、10進数の2.75をIEEE754形式で表現する。仮数部の値は2進数で

(2) であり、指数部の値は2進数で (3) となる。よって、ビット列は (4) となる。

また、IEEE754形式で表現したビット列が2進数で

(1) の解答群

ア.集中化 イ.正規化 ウ.標準化 エ.分散化

(2) の解答群

(3) の解答群

ア. 00000001 イ. 01111111 ウ. 10000000 エ. 10000001

(4) の解答群

(5) の解答群

ア. 0.50 イ. 0.75 ウ. 1.50 エ. 3.00

<設問2> 次の浮動小数点数の誤差に関する記述中の に入れるべき適切な 字句を解答群から選べ。

コンピュータによる浮動小数点演算では、表現できる桁数が有限であるため、誤差 が生じる場合がある。

誤差には、絶対値の差が非常に大きい2つの値で加減算を行う場合に、絶対値の小さい方の値が無視されてしまう (6) や、絶対値のほぼ等しい値で、同符号どうしの減算や異符号の加算を行った場合に発生する (7) などがある。

大量のデータを処理する場合, (8) ことで (6) の対策となる。

(6), (7)の解答群

ア. 打切り誤差イ. 桁落ちウ. 情報落ちエ. 丸め誤差

(8) の解答群

ア. 計算式を工夫して絶対値が非常に近い値を処理しないようにする

イ. 小数点以下第3位より小さい値を切り捨てる

ウ. 絶対値の降順に並べたデータの先頭から処理をする

エ. 絶対値の昇順に並べたデータの先頭から処理をする