マルチレベルモデル講習会 理論編

清水裕士 広島大学大学院総合科学研究科 http://norimune.net

自己紹介

- 清水裕士
 - 所属: 広島大学 大学院総合科学研究科
 - 助教
 - 専門:社会心理学 グループダイナミクス
 - 親密な対人関係におけるソーシャル・サポート
 - 社会規範・道徳の進化

• 連絡先

- E-mail: simizu706(at)hiroshima-u.ac.jp
- Webサイト: http://norimune.net
- Twitter: @simizu706

なぜマルチレベルモデルなのか

- 階層的な構造を持ったデータ
 - 社会心理学で頻繁に手に入るデータ
 - 通常の線形モデルでは、推定にバイアス
 - とくに、推定精度を高く見積もってしまう
- ・マルチレベルモデル
 - 階層的なデータを適切に分析する方法
 - ほぼ「市民権を得た」分析法
 - 査読者に「マルチレベルモデルを使え」と言われる

解説書もそろってきた

- 基礎から学ぶマルチレベルモデル
 - Kreft & Leeuw (1998)の訳本 ナカニシヤ出版
 - やや難しいが、物足りなさもある
- 縦断データの分析 変化についてのマルチレベルモデリング
 - Singer & Willett (2003)の訳本 朝倉書店
 - とても丁寧な解説書 ただし、縦断データ用
- 個人と集団のマルチレベル分析 ←New!
 - 清水(2014) ナカニシヤ出版
 - 今年の9月か10月に出版予定

マルチレベルモデルにもいろいろ

- ・ 階層線形モデル
 - 最もよく使われている方法
 - 利用可能なソフトウェアが豊富
 - 今日もこの話をします
- マルチレベル構造方程式モデル
 - まだあまり使われてない方法
 - SEMやHLMの上位モデル
 - 第78回日本心理学会@同志社のTWSで話します
 - 「タダでできる、マルチレベル構造方程式モデル」

本発表の概要・目的

- 階層線形モデル(HLM)の理論
 - データの階層性について
 - − 特に、個人・集団の階層性についてとりあげます
 - HLMの考え方
 - サンプルデータで解説
- 階層線形モデル(HLM)の実践
 - ソフトウェアの使い方
 - SPSSとHADによる分析
 - HLMの解釈と結果の書き方

理論編

データの階層性について

個人-集団データの階層性

集団ごとにネストされたデータ

- ・集団内で類似したデータ
 - ・ 学校-生徒、カップルデータ、反復測定データ···etc

このようなデータを階層的データと呼ぶ

サンプルデータ紹介

- 仮想的なデータを利用
 - 3人集団が集団討議を行う実験(100集団300人)
 - ※実際に実験は行っていません!
 - 何が課題満足を高める要因となるのか?
- 測定変数
 - 発話量 →録音してコーディング(5段階)
 - 課題の満足度 →実験後測定(5段階)
 - 集団成績 →集団単位で採点(8段階)
 - 満足度は、個人の発話量と、集団成績で予測

階層的データ

例:サンプルデータの場合

通常の回帰分析で分析する問題

- •「サンプルの独立性仮定」の違反
 - 回帰分析は、サンプルが独立していることを仮定
 - ・階層的データは、サンプルが独立していない
 - 標準誤差を小さく見積もってしまう
 - タイプ I エラーを犯す危険がある
- 推定値の解釈の問題
 - 回帰係数には集団の性質と個人の性質が混在
 - 得られた回帰係数が何を表しているか不明
 - よくしゃべる人は満足しているのか
 - 会話が盛り上がっている集団が、みんな満足しているのか

集団内類似性を評価する

- ・ 個人-集団データの集団内類似性
 - 発言量や満足度は、個々の集団内で類似する
 - →盛り上がっている集団は全員の発話量が多い

- 集団内類似性が階層的データの特徴
 - 個人の得点同士に類似性が見られることによって、サンプルの独立性が違反される
 - 類似性を適切に扱えば、問題は回避される

級内相関係数

- Intra-Class Correlation
 - データが集団内でどれほど類似しているか
 - 集団間変動と集団内変動の比率

$$ICC = \frac{\sigma_B}{\sigma_B + \sigma_W}$$

- ただし, σBは集団間変動, σWは集団内変動
- 定義上は-1~1の間を取る
 - ただし、分散を意味するので0未満は解釈が難しい

集団間変動と集団内変動

- 分散分析と要領は同じ
 - 全平方和=効果の平方和+誤差の平方和
 - データの分散=集団間分散+集団内分散

級内相関係数

- ・ 級内相関係数の評価
 - 有意性検定の結果を確認
 - .10以上あれば、マルチレベルモデルを行ったほうがよい、という説もある。

変数名	有効N	級内相関	df1	df2	F値	p値
満足度	300	.358	99	200	2.671	.000
発話量	300	.316	99	200	2.388	.000
スキル	299	020	99	199	.941	.630
集団成績	300	1.000	99	200		.000
条件	300	1.000	99	200		.000

階層的データのまとめ

- 集団ごとにネストされている,非独立なデータ
 - その本質は、級内相関が存在するデータ
 - ネストされていればすべてがマルチレベルモデルの 対象になるわけではない
- 回帰分析では、誤った結果・解釈を得てしまう
 - 推定精度を高く見積もりすぎる → Type I エラー
 - 推定された回帰係数は、集団単位・個人単位の効果 が混在する
- そこで、マルチレベルモデルが必要
 - その代表格が階層線形モデル

HLMのざっくり説明

階層線形モデル

- Hierarchical Linear Modeling
 - 通称、HLM
 - 重回帰分析のマルチレベル分析版
 - 近年、様々な領域で利用されつつある
- 対応ソフトが豊富
 - HLM7・・・HLMの理論に忠実に実行
 - SAS•••MIXEDモデルを利用
 - SPSS・・・上と同じ
 - Mplus • ML-SEMとして実行
 - R • Mixedモデルとして実行
 - HAD・・・清水が作ったフリーソフトウェア

階層線形モデル

- データの階層性を考慮した回帰分析
 - 切片の集団間変動を推定する
 - 集団単位の変動と個人単位の変動を分離
 - 残差の独立性を保証する
 - さらに、回帰係数の集団間変動も推定できる
 - ・集団ごとに異なる予測が可能 → 予測力向上
 - 回帰係数の分散を推定 → 集団間変動の程度を評価
- 推定方法
 - 最尤法を用いる
 - 手元にあるデータから最も「尤もらしい」モデルを推定する方法
 - 重回帰分析は最小二乗法

基本的な発想は回帰分析

- ・ 切片と回帰係数を推定する
 - 線形性を仮定すること
 - 残差の正規分布を仮定すること
- ・ 回帰分析との違いは、大きく分けて2つ
 - 集団間変動を推定すること
 - ・ 変量効果という言葉が出てくる(後述)
 - 中心化の処理を行うこと
 - ・レベルごとの効果を分けるための作業(後述)

普通の回帰分析

複数のグループの回帰分析 100個の回帰直線

100回も回帰分析をするの・・・? 切片と回帰係数が100個ずつ・・・

HLMによる回帰直線 切片の集団間変動

変量効果・・・集団ごとに異なる値

HLMによる回帰直線 切片と回帰係数の集団間変動

100個のパラメータを、平均と分散で(つまり2個)で表現する

HLMのイメージ

- ・ 集団ごとの回帰分析を縮約する
 - 集団ごとの効果の違いを考慮に入れながら、1つのモデルで表現する
 - 集団間の変動を、分散という形で推定する

- 集団間変動と集団内変動をモデリングする
 - 集団間変動の比率 = 集団内の類似性
 - ・級内相関係数 = 集団間変動 / 全体の変動

集団内類似性の評価

- 目的変数の集団間変動と集団内変動
 - 満足度の集団間変動 = 0.349
 - (プールされた)集団内変動 = 0.637
- 集団内類似性 = 級内相関係数
 - -0.349 / (0.349 + 0.637) = 0.354

变量効果	果(分散成分)			
	変数名	係数	分散比率	信頼性
	切片	0.349	.354	.622
	残差	0.637	,	

普通の回帰分析

• 満足度を目的変数, 発話量を説明変数

- 発話量: B = 0.308 SE = 0.055

- 残差分散: 0.893

回帰係数		従属変数 =	満足度				
	変数名	係数	標準誤差	df	t値	p値	
	切片	3,433	0.055	298	62.724	.000	
	発話量	0.308	0.055	298	5.546	.000	**
	残差分散	0.893	0.073	298	12.203	.000	**

※発話量は平均を0に中心化している

グループごとの回帰直線

階層線形モデルの結果

- ・切片と回帰係数の集団間変動を推定
 - 発話量: B = 0.307 SE = 0.071 (0.055から増大)
 - 切片の集団間変動 : τ₀₀ = 0.175
 - 回帰係数の集団間変動: τ₁₁ = 0.211

固定効果		従属変数 =	満足度					
	変数名	係数	標準誤差	df		t値	p値	
	切片	3.377	0.063	-	99	53.351	.000	**
	発話量	0.307	0.071		99	4.313	.000	**
変量効果	果(分散成分)							
	変数名	係数	分散比率	df		χ2乗値	p値	
	切片	0.175	.257		82	137.781	.000	**
	発話量	0.211	.291		82	132.230	.000	**
	残差	0.506	j					

HLMの理論的な説明

おさらい:回帰分析ってなんだっけ

・ 基本の回帰分析(一般線形モデル)の式

- ただし、Yは従属変数、Xは独立変数、eは残差得点
- β0は切片、β1は回帰係数

おさらい:回帰分析ってなんだっけ

- $Y_i = \beta_0 + \beta_1 X_i + e_i$ ± 1
- ・ 切片と回帰係数
 - $-\beta_0$ と β_1 は定数なので、「固定効果」と呼ぶ

• 残差得点

- eiは人によって値が違うので、「変量効果」と呼ぶ
- 変量効果は、その分散(残差分散)を推定する
 - e_iの分散をσ(シグマと読む)と表現する
 - $e_i \sim N(0, \sigma)$
 - 残差は、平均0、分散oの正規分布に従う

HLMの考え方1 複数の回帰分析

・ 基本の回帰分析の式

$$-Y_i = \beta_0 + \beta_1 X_i + e_i$$

式1

式2

- ここで、各母数が集団ごとで違うと仮定する
 - たとえば、集団ごとに、切片と傾きが異なる
 - ・ いわゆる多母集団分析

HLMの考え方2 複数の回帰分析を縮約する

100回も回帰分析をするの・・・? 切片と回帰係数が100個ずつ・・・

HLMの考え方2 複数の回帰分析を縮約する

- 集団が増えるとパラメータの数も増えていく
 - 100集団なら、100個の切片と傾きが算出される
- 十分な数があるなら、確率変数として扱える
 - 確率変数 = 確率分布に従う変数
 - 各集団の切片・回帰係数が正規分布に従う
- ・ 平均と分散で100集団のパラメータを表現
 - 全体的な傾向を平均値, 集団間変動を分散
 - 100個のパラメータがたった2個で表現できる!

HLMの考え方2 複数の回帰分析を縮約する

100個のパラメータを、平均と分散で(つまり2個)で表現する

HLMの考え方3 切片の集団間変動(変量切片モデル)

・ 複数集団の回帰分析の式

- ・集団ごとの違いは変量効果で表現
 - 変量効果u_{0i}は、平均0, 分散τ₀の正規分布に従う

38

- u_{0j} ~ N(0, τ₀) 添え字のjは集団を意味する N()は正規分布に従うことを意味する τはタウと読む

HLMの考え方4 変量係数モデル

- 回帰係数にも変量効果を考える
 - 変量係数と呼ぶこともある

添え字のjは集団を意味する

- ・ただし、γはパラメータの固定効果、uは変量効果
- u_{0i} u_{1i}は平均0の多変量正規分布に従うと仮定

HLMの考え方5 レベル2の変数の投入

- ・ 目的変数(切片)の集団間変動を説明
 - 集団によって、目的変数の値が異なる
 - -→集団の性質によって説明が可能?
 - ・ 満足度の集団間変動は、集団成績で説明できる
- 集団レベルの変数を投入する
 - HLMではレベル2の変数という
 - 切片だけでなく、変量係数の分散も回帰可能
 - 満足度と発話量の関連は、集団成績によって変わる

HLMの考え方5 レベル2の変数の投入

- 式3,4にレベル2の独立変数を投入
 - レベル1・・・個人の特性を表す変数を投入
 - 発話量がそれにあたる
 - レベル2・・・集団の特性を表す変数を投入
 - 集団成績がそれにあたる

$$-\beta_{0j} = \gamma_{00} + \gamma_{01} W_j + u_{0j}$$
 式5
 $-\beta_{1j} = \gamma_{10} + \gamma_{11} W_j + u_{1j}$ 式6 添え字のjは集団を意味する

- ただし、Wjはレベル2の独立変数
- γ01, γ11は回帰係数
- 集団ごとの切片や傾きをWjで説明をする

サンプルデータで式を記述

- 満足度を目的変数
 - 満足度 = $β_{0i}$ + $β_{1i}$ 発話量 + e_{ii} 式11
 - $-β_{0i} = γ_{00} + γ_{01}$ 集団成績 + u_{0i} 式12
 - -β_{1j} = γ₁₀ + γ₁₁集団成績 + u_{1j} 式13
 - ・ ↓式11に式12と13を代入
 - 満足度 = γ_{00} + γ_{01} 集団成績 + u_{0j} + $(\gamma_{10}$ + γ_{11} 集団成績 + u_{1j}) 発話量 + e_{ij} 式14
 - ・ ↓式14を展開
 - 満足度 $= \gamma_{00} + \gamma_{01}$ 集団成績 $+ u_{0j} + \gamma_{10}$ 発話量+ $+ \gamma_{11}$ 発話量*集団成績 $+ u_{1j}$ 発話量 $+ e_{ij}$

サンプルデータを式で記述

• 満足度 = γ_{00} + γ_{01} 集団成績 + u_{0j} γ_{10} 発話量+ γ_{11} 発話量*集団成績 + u_{1j} 発話量 + e_{ij}

	固定效果	# 	従属変数 =	満足度				
		変数名	係数	標準誤差	df	t値	p値	
	γ_{00}	切片	3.391	0.059	98	57.704	.000	жж
	γ ₁₀	発話量	0.284	0.064	98	4.421	.000	жж
	γ_{01}	集団成績	0.137	0.034	98	3.901	.000	жж
	γ_{11}	発話量*集団成績	0.158	0.037	98	3.585	.001	жж
	変量効果	果(分散成分)						
		変数名	係数	df	χ2乗値	p値		
	τ ₀₀	切片	0.144	81	129.210	.001	жж	
	T 11	発話量	0.136	81	112.675	.011	*	
1	σ	残差	0.481					

まとめ

・ HLMの数式的表現

添え字のiは個人を表す

添え字のjは集団を意味する

- HLMの式の解釈
 - レベル1: データを個人単位で回帰する
 - 集団ごとに切片と傾きを推定
 - レベル2:切片と傾きを集団単位の変数で回帰
 - 切片と傾きの集団間変動への影響を推定

サンプルデータでHLM

階層的データ

例:サンプルデータの場合

目的変数の集団間変動と級内相関係数の評価

目的変数の集団間変動

- 目的変数だけを投入する = Nullモデル
 - 満足度の集団間変動だけを推定
 - 切片は、平均値を意味する

固定効果		従属変数 =満足度					
	変数名	係数	標準誤差	df	t値	p値	
	切片	3.433	0.075	99	45.834	.000	**
変量効果	果(分散成分)						
	変数名	係数	分散比率	df		p値	
	切片	0.349	.354	99	264.398	.000	**
į	残差	0.637					

目的変数の集団間変動

- 目的変数だけを投入する = Nullモデル
 - 満足度の集団間変動だけを推定
 - 切片は, 平均値を意味する

満足度の集団間変動

満足度の集団内変動

集団間変動が有意 → マルチレベルモデルを使うべき変数

級内相関係数

- ・ 全変動に対する集団間変動の比率
 - 級内相関係数 = 集団間変動 / 全変動
- 目的変数の集団間変動
 - 満足度 = γ_{00} + u_{0j} + e_{ij}
 - u_{0i} の分散 = τ₀₀ ••• 集団間の変動
 - e_{ii} の分散 = σ • 残差の変動
 - 満足度の分散 = (τ₀₀ + σ)
 - -級内相関係数 $= τ_{00} / (τ_{00} + σ)$

級内相関 = 0.349 / (0.349 + 0.637) = 0.354

→約35%が集団で共有されている

回帰分析とHLMの比較

普通の回帰分析の結果

• 満足度を目的変数

- 発話量: B = 0.287 SE = 0.053

- 集団成績: B = 0.156 SE = 0.030

- 残差分散:0.818

回帰係数		従属変数 =	満足度				
	変数名	係数	標準誤差	df	t値	p値	
	切片	3.433	0.052	297	65.414	.000	
	発話量	0.287	0.053	297	5.381	.000	**
	集団成績	0.156	0.030	297	5.196	.000	**
	残差分散	0.818	0.067	297	12.175	.000	**

※説明変数はすべて中心化している

普通の回帰分析の結果

- 満足度を目的変数
 - 発話量: B = 0.287 SE = 0.053
 - 集団成績: B = 0.156 SE = 0.030
 - 残差分散:0.818

階層線形モデルの結果

- ・切片だけ集団間変動を仮定
 - 発話量: B = 0.265 SE = 0.054
 - 集団成績: B = 0.157 SE = 0.037
 - 変量効果: 0.213 + 0.605 = 0.818 ※説明変数はすべて中心化

固定効果	果	従属変数 =	満足度					
	変数名	係数	標準誤差	df	t値	p値		
	切片	3.433	0.064	98	53.291	.000	**	
	発話量	0.265	0.054	199	4.953	.000	**	
	集団成績	0.157	0.037	98	4.271	.000	**	
変量効!	果(分散成分)							
	変数名	係数	分散比率	df	χ2乗値	p値		
	切片	0.213	.261	98	205.706	.000	**	
	残差	0.605	j					54

階層線形モデルの結果

- ・切片だけ集団間変動を仮定
 - 発話量: B = 0.265 SE = 0.054
 - 集団成績: B = 0.157 SE = 0.037
 - 変量効果: 0.213 + 0.605 = 0.818

回帰分析とHLMの違い

- 推定值
 - 少し異なるが、近い値
 - HLMのほうが, バイアスは小さい
 - 残差分散が、集団レベルと個人レベルに別れる
- 標準誤差
 - 集団レベルの変数については大きく違う
 - 回帰分析のほうが小さく、また自由度も大きい
 - Type I エラーを犯してしまう可能性が高い
 - HLMのほうが、より正しい推定を行っている
 - 従来法の第一の問題をクリア

説明変数の中心化

しかしこれだとまだ問題が・・・

- 回帰係数の解釈の問題
 - 発話量が満足度に与える影響の単位が不明
 - よく話した人が、満足したのか
 - 話が盛り上がった集団が、みんな満足したのか
- 個人レベルと集団レベルの効果を分ける
 - 個人レベルの効果
 - よく話した人が、満足した
 - 集団レベルの効果
 - 話が盛り上がった集団は、みんな満足した

個人レベルと集団レベルの効果の混在

- 発話量の0.265という効果
 - 実は、個人レベルと集団レベル両方の満足度に 対する効果が混ざっている
 - 説明変数の級内相関係数が高い場合に問題
 - 発話量のICC = 0.316, p < .01

個人レベル変数の集団平均中心化

- ・ 級内相関が高い個人レベルの説明変数
 - 個人と集団の効果が両方含まれている
 - 発話量が、その例
- 個人レベルの効果・・・集団レベルの情報を取り除く
 - 集団平均を、得点から引いてやればいい
 - これを、「集団平均中心化」と呼ぶ
 - Group Mean Centering
 - Centering Within Cluster (wc)
- 集団レベルの効果・・・集団平均値をモデルに加える
 - 失った集団レベルの情報を別の変数として投入
 - 集団レベルの変数は、全体平均で中心化することが多い
 - Grand Mean Centering (gm)

中心化したデータ

A	В	С	D	Е	F
グループ	発話量	発話量_m	発話量_wc	発話量_m_c	3
1	3	2.666667	0.333333	-0.35333	
1	2	2.666667	-0.66667	-0.35333	
1	3	2.666667	0.333333	-0.35333	
2	3	1.666667	1.3333333	-1.35333	
2	1	1.666667	-0.66667	-1.35333	
2	1	1.666667	-0.66667	-1.35333	
3	3	2.666667	0.333333	-0.35333	
3	3	2.666667	0.333333	-0.35333	
3	2	2.666667	-0.66667	-0.35333	
4	4	4	0	0.98	
4	4	4	0	0.98	
4	4	4	0	0.98	
5	2	3	-1	-0.02	
5	4	3	1	-0.02	
5	3	3	0	-0.02	
6	3	2.333333	0.666667	-0.68667	

中心化したHLMの結果

- 発話量をレベルごとに投入
 - 発話量_wc(個人レベル): B = 0.220, SE = 0.067
 - 発話量_m(集団レベル): B = 0.344, SE = 0.089
 - 0.265が, 0.220(個人)と0.344(集団)に分割
 - 集団レベルのほうが効果が大きそう

固定効果		従属変数 =満足度					
	変数名	係数	標準誤差	df	t値	p値	
	切片	1.673	0.310	97	5.398	.000	**
	発話量_wc	0.220	0.067	199	3.289	.001	**
	発話量_m	0.344	0.089	97	3.884	.000	**
	集団成績	0.154	0.037	97	4.183	.000	**

中心化したHLMの結果

- 発話量をレベルごとに投入
 - 発話量_wc(個人レベル): *B* = 0.220, *SE* = 0.067
 - 発話量_m(集団レベル): B = 0.344, SE = 0.089

それぞれの効果を解釈

- 個人レベルの効果・・・有意な効果あり
 - よくしゃべった人ほど満足している
 - ・解釈の単位は「個人」

- 集団レベルの効果・・・有意な効果あり
 - よくしゃべる集団ほど、みんな満足している
 - ・解釈の単位は「集団」
 - 集団レベルの方が効果が大きそう

変量係数モデル

階層線形モデルの結果

- 回帰係数も集団間変動を仮定(変量係数)
 - 発話量: B = 0.194 SE = 0.081
 - 変量効果:τ₁₁ = 0.169, *p* < .01

※説明変数はすべて中心化

固定効果		従属変数 =	満足度				
	変数名	係数	標準誤差	df	t値	p値	
(切片	1.453	0.302	97	4.818	.000	**
	発話量_wc	0.194	0.081	97	2.404	.018	*
	発話量_m	0.366	0.087	97	4.231	.000	**
	集団成績	0.186	0.036	97	5.196	.000	**
変量効果	果(分散成分)						
	変数名	係数	df	χ2乗値	p値		
	切片	0.24 8	80	167.661	.000	**	
	発話量_wc	0.169	82	131.152	.000	**	
	残差	0.503					66

中心化したHLMの結果

- 回帰係数も集団間変動を仮定(変量係数)
 - 発話量: B = 0.194 SE = 0.081
 - 変量効果:τ₁₁ = 0.169, *p* < .01

回帰係数の変量効果

- 仮定するメリット・デメリット
 - 仮定することのメリット: 予測力が向上する
 - 集団による回帰係数の違いをモデルに含められる
 - 仮定することのデメリット:モデルが複雑になる
 - すべての集団で効果が等しいほうが、解釈は楽
- ・ 仮定するか否かの判断
 - 分散成分の検定による判断
 - -情報量基準による判断
 - 理論的な予測

変量切片モデルと変量係数モデル

- 発話量の変量効果を「仮定しない」モデル
 - すべての集団で発話量の効果が等しい
 - AIC = 783.667
- 発話量の変量効果を「仮定する」モデル
 - 集団によって発話量の効果が異なるモデル
 - AIC = 777.784
 - 分散成分の検定統計量 → 有意
 - $X^2(82) = 131.152, p < .01$
 - 発話量の変量効果は仮定したほうが妥当

変量係数への回帰とレベル間交互作用

回帰係数の集団間変動を説明

- 個人レベルのモデルが、集団で異なる
 - 発話量が満足度に与える影響が集団で違う

変量効:	果(分散成分)					
	変数名	係数	df	χ2乗値	p値	
	切片	 0 .248-		 167.661		* *
	発話量_wc	0.169	82	131.152	.000	**
	残差	0.503				

- 回帰係数の集団間変動を説明する
 - 集団レベルの変数で、回帰係数の変動を説明
 - レベル間交互作用と呼ぶ

レベル間交互作用の結果

- 発話量_wcの集団間変動を集団成績で説明
 - レベル間交互作用項: B = 0.178, SE = 0.042

固定効果		従属変数 =満足度					
	変数名	係数	標準誤差	df	t値	p値	
	切片	3.433	0.064	97	53.500	.000	**
	発話量_wc	0.214	0.072	97	2.988	.004	**
	発話量_m	0.350	0.088	97	3.998	.000	**
	集団成績	0.154	0.037	97	4.177	.000	**
	発話量_wc*集団成績	0.178	0.042	97	4.210	.000	**
	尤前里_WC*来凹风惧	0.170	0.042	97	4.210	.000	***

変量効果	果(分散成分)					
	変数名	係数	df	χ2乗値	p値	
	切片	 -0.247	80	164.909	.000	**
	発話量_wc	0.079	81	108.683	.022	*
	残差	0.494				

レベル間交互作用の結果

- 発話量_wcの集団間変動を集団成績で説明
 - レベル間交互作用項: B = 0.178, SE = 0.042

分散成分の変化

- 回帰係数の集団間変動を説明
 - 回帰係数の分散: 0.169 → 0.079
 - 半分程度の集団間変動を説明した
 - しかし、R2乗のように分散説明率として解釈しない
- 交互作用を入れても分散が増えることもある
 - 説明変数間の相関関係も影響
 - 複雑なモデルだと、挙動が不安定になる

交互作用効果の解釈

- 発話量の集団間変動を集団成績が説明
 - 集団成績が高い集団ほど、発話量の効果が高い

- 単純効果分析
 - 成績が高い集団
 - ・ 発話量の効果があり
 - 成績が低い集団
 - ・発話量の効果がない

重回帰分析の交互作用と同じような見方をすればOK

HLMについての基礎知識

1. HLMを使うべきかどうかの判断

- 級内相関係数
 - 有意だったらHLMを使うべきという説
 - 0.10(0.05とも)以上だとHLMを使うべきという説
- デザインエフェクト(DE)
 - $DE = 1 + (k^* 1) ICC$
 - ただし、k*は集団内の平均人数
 - この指標が2を超えたら、HLMを使うべき
 - しかし, 集団内人数が2の場合は常に使わなくていいことになる
- 清水のオススメ基準
 - ICCが有意 or 0.10以上 → 使うべき
 - ICCが0.10以下だが、DEが2を超える場合 → 使うべき
 - 迷ったら、回帰分析とHLMを比較 → 違ったらHLM

2. HLMの推定方法

- 最尤法(ML)
 - すべてのパラメータを同時に推定する
 - 推定効率が良い・・・推定精度が高い
 - ただし、小サンプルの場合にバイアスが生じる
 - 固定効果のパラメータ数が自由度に反映されない
 - 分散については、不偏推定量ではない
- 制限付き最尤法(REML)
 - 最小二乗法と最尤法を組み合わせた方法
 - 固定効果のパラメータ数に合わせて, 自由度を調整
 - 分散が不偏推定量になる
 - ただし、欠点もある
 - 固定効果について情報量基準を参照できない
 - ・ 推定効率が最尤法ほどは高くない

本発表では、最尤法を一貫して用いている

ML vs. REML

• 最尤法

共分散パラメータの推定a

						95% 信頼区間	
パラメータ	<u> </u>	推定値	標準誤差	Wald の Z	有意	下限	上限
残差		.504604	.057963	8.706	.000	.402879	.632015
切片 + 発話量_gm [被験者	UN (1,1)	.121539	.054587	2.227	.026	.050398	.293101
= グループ]	UN (2,1)	.049455	.043930	1.126	.260	036647	.135557
	UN (2,2)	.195438	.066908	2.921	.003	.099908	.382311

a. 従属変数: 満足度。

・制限付き最尤法

共分散パラメータの推定^a

				_,		95% 信頼区間	
パラメータ	i	推定値	標準誤差	Wald の Z	有意	下限	上限
残差		.504264	.058046	8.687	.000	.402416	.631888
切片 + 発話量_gm [被験者	UN (1,1)	.128939	.056236	2.293	.022	.054845	.303133
= グループ]	UN (2,1)	.049458	.045149	1.095	.273	039033	.137948
	UN (2,2)	.200467	.068593	2.923	.003	.102516	.392007

a. 従属変数: 満足度。

どちらがいいのか

- ・ 集団の数が十分大きい場合
 - 50~100以上あるなら、MLで問題ない
- 集団の数が小さく説明変数が多い
 - REMLのほうがバイアスが小さい
- HLMに限った場合の話
 - 分散の推定値そのものにはあまり興味が無い事が多いので、最尤法のほうが使い勝手がいい
 - 情報量基準を固定効果にも利用できる
 - 他のソフトウェアや手法との比較に便利
 - 極端に集団の数が小さい場合は、標準誤差の推定にバイアスが生じるので、REMLも視野にいれる

ベイズ推定という選択肢もある

- MCMCによるベイズ推定
 - 最尤法に比べていくつかアドバンテージがある
 - 分散成分の推定が妥当
 - 小さいサンプルでも推定できる
 - パラメータの正規性を仮定しない
 - データの正規性を仮定しない
- 興味ある人は、こちらの資料を御覧ください
 - http://www.slideshare.net/simizu706/mcmc-35634309
 - MCMCによるマルチレベルモデル(スライドシェア)

3. 標準誤差の推定方法

- モデルに基づいた標準誤差(モデルSE)
 - モデルの仮定を満たす必要性
 - 各グループの分散が等しい
 - データが正規分布である
 - かなり厳しい仮定
- ・ 頑健な標準誤差(ロバストSE)
 - モデルの仮定からの逸脱に対してロバスト
 - 多くのソフトウェアで、出力される
 - デフォルトはこちらを見ておけばOK
 - ただし万能ではない

モデルSE vs. ロバストSE

・ モデルに基づく標準誤差(普通のやつ)

固定効果	国定効果 従属変数 =満足		-満足度				
	変数名	係数	標準誤差	df	t値	p値	
	切片	3.433	0.064	98	53.291	.000	**
	発話量	0.265	0.054	199	4.953	.000	**
	集団成績	0.157	0.037	98	4.271	.000	**

• 頑健な標準誤差

固定効果	固定効果 従属変数 =		満足度				
	変数名	係数	標準誤差	df	t値	p値	
	切片	3.433	0.064	98	53.291	.000	**
	発話量	0.265	0.070	199	3.788	.000	**
	集団成績	0.157	0.044	98	3.549	.001	**

4. 推定値の標準化と効果量

- ・ 回帰係数の変量効果を仮定すると・・・
 - 標準化係数の推定ができなくなる
 - 全体の分散が一意に定義できなくなる
 - 効果量が一意に定義できない
- 変量効果を仮定しないと
 - 標準化係数を定義することができる
 - しかし、出力するソフトウェアはあまりない
 - しかし、その方法も複数ある
 - 全体の分散で標準化するか → HAD
 - レベル1, レベル2ごとで標準化するか → Mplus

5. 変量係数の分散と交互作用

- 回帰係数の分散が有意でない場合
 - 集団間変動が0でないとは言えない
 - レベル間交互作用効果は(原理的には)期待できない
 - しかし、分散成分が有意でなくても、交互作用が有意になること はある
- ・ 分散成分の有意性検定の難しさ
 - SPSSやSASの検定は、かなり保守的
 - 分散が正規分布することを仮定しているため
 - HLM7やHADが採用している方法が推奨される
 - Raudenbush & Bryk (2002)を参照
 - 検定はサンプルサイズに依存してしまう
 - 情報量基準など、いろんな観点で評価する必要がある

6. 個人レベル変数の集団レベル効果

- ・ 発話量の集団レベルの効果
 - 集団平均値が投入されていた
 - しかし、集団平均値による効果にはバイアス
- 集団平均の信頼性を確認
 - 発話量の集団平均の信頼性 = 0.581
 - 信頼性がそれほど高くないので、集団平均値の効果には、個人レベルの効果が混在している
- マルチレベルSEMなら正確に推定可能

集団平均値にも個人レベルの分散

- ・ 集団平均値の分散
 - 集団間変動だけでなく、集団内変動も含まれる

$$MS_B = k^* \sigma_B + \sigma_W$$

- ただし、 MS_B は集団平均の平均平方、k*は平均集団内人数、 σ_B は集団間変動、 σ_W は集団内変動
- 目的変数の集団内変動と共分散が生じる
 - 集団平均値の回帰係数にも、個人レベルの効果が含まれてしまう

実践編に続きます