Risolvere il massimo numero di esercizi accompagnando le risposte con spiegazioni chiare ed essenziali. Inserire le risposte negli spazi predisposti. $NON\ SI\ ACCETTANO\ RISPOSTE\ SCRITTE\ SU\ ALTRI\ FOGLI.\ Scrivere\ il\ proprio\ nome\ anche\ nell'ultima\ pagina.\ 1\ Esercizio = 4\ punti.\ Tempo\ previsto:\ 2\ ore.\ Nessuna\ domanda\ durante\ la\ prima\ ora\ e\ durante\ gli\ ultimi\ 20\ minuti.$

FIRMA	1	2	3	4	5	6	7	8	9	TOT.

1. Sia $G = GL_2(\mathbf{F_3})$ e siano $A = \begin{pmatrix} 2 & 1 \\ 0 & 1 \end{pmatrix}$, $B = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$. Calcolare il numero di elementi del sottogruppo $\langle A, B \rangle$.

2. Sia $G = S_4$. Determinare un sottogruppo di G avente ciascuno dei seguenti ordini: 2, 3, 4, 6, 8, 12. Dimostrare che G non ammette sottogruppi di ordine 10.

6. Calcolare $MCD(5 + 5i, 6)$ in $\mathbf{Z}[i]$.	
7. Dimostrare che $\mathbf{C}[X,Y]$ non è un de	ominio a ideali principali ma è un dominio a fattorizzazione unica.

8.	Determinare gli elementi invertibili rispetto al prodotto di $\mathbf{Z}[i][X].$
9.	Determinare la fattorizzazione di X^4+X^2+1 in $\mathbf{Z}[X],$ in $\mathbf{R}[X]$ e in $\mathbf{F}_2[X].$