2005 年研究生期末试题 (120 分钟)

《图论及其应用》

- 一、填空 (15分,每空1分)
- 1、 已知图 **G** 有 10 条边, 4 个度数为 3 的顶点,其余顶点的度数均小于 2,则 **G** 中至少有 ___8 __ 个顶点 .
- **2**、 **m** 条边的简单图 **G** 中所有不同的生成子图 (包括 **G** 和空图)的个数为 2^m .
- 3、 4个顶点的非同构的简单图有 __11___ 个.
- 4、 图 G₁的最小生成树各边权值之和为 ___28 ___.

- 5、若 W是图 G中一条包含所有边的闭通道,则 W在这样的闭通道中具有最短长度的充要条件是:
 - (1) 每一条边最多重复经过 _1_ 次;
 - (2) 在 G的每一个圈上, 重复经过的边的数目不超过圈的长度的 __一半 ___.
- **6**、**5** 阶度极大非哈密尔顿图族有 $_{--}^{5}$ $_{--}^{5}$ $_{---}$ **.**
- 7、在图 G₂ 中,图的度序列为 (44443322),频序列为 (422),独立数为 3, 团数为 4,点色数为 4,边色数为 4,直径为 3.

- 二、选择 (15分)
 - (1)下列序列中,能成为某简单图的度序列的是 (C)
 - (A) (54221) (B) (6654332) (C) (332222)
- (2)已知图 G 有 13 条边, 2 个 5 度顶点, 4 个 3 度顶点,其余顶点的的度数为2,则图 G 有(A)个 2 度点。

- (A) 2 (B) 4 (C) 8
- (3) 图 G 如(a)所示,与 G 同构的图是(C)

(4) 下列图中为欧拉图的是 (B),为 H图的是(AB),为偶图的是(BC).

5. 下列图中可 1-因子分解的是(B)

(B)

三、设 Δ 和 δ 分别是 (n, m) 图 **G** 的最大度与最小度,求证: $\delta \leq \frac{2m}{n} \leq \Delta$ (10 分).

证明: $n\delta \le 2m = \sum_{v \in V(G)} d(v) \le n\Delta \Rightarrow \delta \le \frac{2m}{n} \le \Delta$.

四、正整数序列 (d_1, d_2, \cdots, d_n) 是一棵树的度序列的充分必要条件是 $\sum_{i=1}^n d_i = 2(n-1)$ **(10** 分**).**

· 证明: "⇒" 结论显然

"⇐" 设正整数序列 $(d_1, d_2, ", d_n)$ 满足 $\sum_{i=1}^n d_i = 2(n-1)$, 易知它是度序列。

设 **G** 是这个度序列的图族中连通分支最少的一个图,知 **m=** |E(G)| = n - 1. 假设 **G** 不连通,则 ω(G) ≥ 2,且至少有一个分支 G,含有圈 **C**,否则,**G** 是森林,

有 $\mathbf{m} = |E(G)| = n - \omega < n - 1$ 矛盾! 从 \mathbf{C} 中任意取出一条边 $e_1 = u_1 v_1$ 。并在另一分支 e_2 中任意取出一条边 $e_2 = u_2 v_2$,作图

$$G' = G - \{u_1v_1, u_2v_2\} + \{u_1v_2, u_2v_1\}$$

则 G'的度序列仍然为 (d_1, d_2, \cdots, d_n) 且 ω (G') = ω (G) -1 , 这与 **G** 的选取矛盾!所以

G 是连通的 , **G** 是树。即 (d_1,d_2,\cdots,d_n) 一棵树的度序列。

五、求证:在简单连通平面图 G中,至少存在一个度数小于或等于 5的顶点 (10分).

证明:若不然 , 2m = ∑ d(v) ≥6n > 6n −12 ⇒ m > 3n − 6, 这与 **G** 是简单连通平 v♥(G)

面图矛盾。

六、证明: (1) 若 G 恰有两个奇度点 u 与 v,则 u 与 v 必连通;

(2) 一棵树至多只有一个完美匹配 (10分).

证明;(1) 因为任意一个图的奇度点个数必然为偶数个, 若 G 恰有两个奇度点 u 与 v,且它们不连通,那么就会得出一个连通图只有一个奇度点的矛盾结论。所以若 G 恰有两个奇度点 u 与 v,则 u 与 v 必连通。

(2) 若树 T 有两个相异的完美匹配 $M_1, M_2, M_1 \triangle M_2 \neq \Phi$ 且 T $[M_1 \triangle M_2]$ 中的每个顶点的度数为 **2**,则 T 中包含圈,这与 T 是数矛盾!

七、求图 **G** 的色多项式 $P_k(G)$ (15 分).

解:图 G 的补图如图 G ,则

$$h(H_1,x)=r_1x+r_2x^2+r_3x^3+r_4x^4$$
 , 其中 , $r_1=N_1(H_1)=0$, $r_2=N_2(H_1)=2$
$$r_3=N_3(H_1)=4$$
 , $r_4=N_4(H_1)=1$;

$$h(H_2, x) = r_1 x + r_2 x^2$$
, $\sharp + r_2 x^2$, $\sharp + r_2 x^2$, $\sharp + r_2 x^2 = r_1 x + r_2 x + r_2 x^2 = r_1 x + r_2 x + r_2$

$$P_k(G) = (x + x^2)(2x^2 + 4x^3 + x^4) = [k]_6 + 5[k]_4 + 6[k]_4 + 2[k]_3$$

八、求图 G中a到b的最短路(15分).

图 G

解 1.
$$A_1 = \{a\}$$
, $t(a) = 0$, $T_1 =$

2.
$$b_1^{(1)} = V_3$$

3.
$$m_1 = 1$$
, $a_2 = v_3$, $t(v_3) = t(a) + l(av_3) = 1 (最小)$, $T_2 = \{av_3\}$

2.
$$A_2 = \{a, v_3\}, b_1^{(2)} = v_1, b_2^{(2)} = v_2$$

3.
$$m_2 = 1$$
, $a_3 = v_1$, $t(v_1) = t(a) + I(av_1) = 2(最小)$, $T_3 = \{av_3, av_1\}$

2. A₃ ={ a, v₃, v₁},
$$b_1^{(3)} = v_2, b_2^{(3)} = v_2, b_3^{(3)} = v_4$$

3.
$$m_3 = 3$$
, $a_4 = v_4$, $t(v_4) = t(v_1) + I(v_1v_4) = 3 (最小) ,$

$$T_4 = \{ av_3, av_1, v_1v_4 \}$$

2.
$$A_4 = \{ a, v_3, v_1, v_4 \}$$
, $b_1^{(4)} = v_2$, $b_2^{(4)} = v_2$, $b_3^{(4)} = v_2$, $b_4^{(4)} = v_5$

3.
$$m_4 = 4$$
, $a_5 = v_5$, $t(v_5) = t(v_4) + I(v_4v_5) = 6 (最小),$

$$T_5 = \{ av_3, av_1, v_1v_4, v_4v_5 \}$$

2.
$$A_5 = \{ a, v_3, v_1, v_4, v_5 \}$$
 , $b_1^{(5)} = v_2$, $b_2^{(5)} = v_2$, $b_3^{(5)} = v_2$, $b_4^{(5)} = v_2$, $b_5^{(5)} = v_2$

3.
$$m_5 = 4$$
, $t(v_2) = t(v_4) + I(v_4v_2) = 7 (最小)$,

$$T_6 = \{ av_3, av_1, v_1v_4, v_4v_5, v_4v_2 \}$$

2.
$$A_6 = \{ a, v_3, v_1, v_4, v_5, v_2 \}, b_2^{(6)} = v_6, b_4^{(6)} = b, b_5^{(6)} = v_6, b_6^{(6)} = v_6$$

3.
$$m_6 = 6$$
, $a_7 = v_6$, $t(v_6) = t(v_2) + l(v_2v_6) = 9 (最小) ,$

$$T_7 = \{ av_3, av_1, v_1v_4, v_4v_5, v_4v_2, v_2v_6 \}$$

2. A₇= { a, v₃, v₁, v₄, v₅, v₂, v₆},
$$b_4^{(7)} = b$$
, $b_5^{(7)} = b$, $b_7^{(7)} = b$

3.
$$m_7 = 7$$
, $a_8 = b$, $t(b) = t(v_6) + l(v_6b) = 11 (最小)$,

 $T_8 = \{ av_3, av_1, v_1v_4, v_4v_5, v_4v_2, v_2v_6, v_6b \}$

于是知 a 与 b 的距离

$$d(a, b) = t(b) = 11$$

由 T_8 导出的树中 a 到 b 路 $av_1v_4v_2v_6b$ 就是最短路。

2006 研究生图论期末试题 (120 分钟)

- 一、填空题 (15分,每空 1分)
- 2、完全图 **K**₄的生成树的数目为 ______ ; 阶为 6 的不同构的树有 _____ 棵。
- 3、设无向图 G 有 12 条边,已知 G 中度为 3 的结点有 6 个,其余结点的度数均小于 3,则
- G 中至少有 _____ 个结点。
- 4、具有 5个结点的自补图的个数有 _______

则由 V_2 到 V_5 的途径长度为 2 的条数为 _____ 。

- 6、若 \mathbf{K}_n 为欧拉图,则 \mathbf{n} = ______ ;若 \mathbf{K}_n 仅存在欧拉迹而不存在欧拉回路,则
- n= _____ 。
- 7、无向完全图 K_n (n 为奇数) , 共有 ________ 条没有公共边的哈密尔顿圈。
- 8、设 G 是具有二分类 (X,Y) 的偶图 M M M 包含饱和 M 的每个顶点的匹配当且仅当
- ______ , 对所有 S⊆X。
- 9、在有 6个点。 12条边的简单连通平面图中,每个面均由 ______ 条边组成。
- 10、彼德森图的点色数为 _______ ; 边色数为 ______ ; 点独立数为 ______ 。
- 二、单选或多选题 (15 分,每题 3 分)
- 1、设 $V = \{1,2,3,4,5\}$, $E = \{(1,2),(2,3),(3,4),(4,5),(5,1)\}$ 则图 G = V , E > 的补图是 ().

2、在下列图中,既是欧拉图又是哈密尔顿图的是 ()

3、下列图中的 ()图 , V_2 到 V_4 是可达的。

4、下列图中,可 1—因子分解的是 ().

- 5、下列优化问题中,存在好算法的是 ()
- (A) 最短路问题; (B) 最小生成树问题; (C) TSP 问题; (D) 最优匹配问题 . 三、作图题 (10 分)
- 1、分别作出满足下列条件的图
- (1)、E图但非 H图; (2) H图但非 E图; (3) 既非 H图又非 E图; (4) 既是 H图又是 E图
- 2、画出度序列为 (3,2,2,1,1,1)的两个非同构的简单图。
- 四、求下图的最小生成树,并给出它的权值之和 (10分)。

五、给出一个同构函数证明 $G_1 \cong G_2$ (10 分)

六、若图 G 为自补图 , 那么 , 它的阶 n 一定能够表示为 4k 或者 4k +1的形式 , 其中 k 为非负整数。而且 , 图 G 的边有 $\frac{n(n-1)}{4}$ 条。 (5 分)

七、设 T 为一棵非平凡树 , 度为 i 的顶点记为 n_i ,则 n_1 = $2+n_3+2n_4+\cdots+(k-2)n_k$ 。(10分)

八、证明:阶数为 8的简单偶图至多有 16条边 (5分)

九、设图 G有 10 个 4 度顶点和 8 个 5 度顶点,其余顶点度数均为 7。求 7 度顶点的最大数

量,使得 G 保持其可平面性 (10分)

十、求图 G 的色多项式 (10 分)

院 学 名

效

无

答

内

以

线

封

密

学

电子科技大学研究生试卷

(考试时间: _____至____, 共 _____小时)

课程名称 _ 图论及其应用 _ 教师 _____ 学时 _60 学分 ____

教学方式 __讲授_ 考核日期 _2007__年___月 ____日 成绩 _____

考核方式: _____(学生填写)

- 一.填空题(每题2分,共12分)
- 1. 简单图 G=(n,m)中所有不同的生成子图 (包括 G和空图)的个数 是______个;
- 2.设无向图 G=(n,m)中各顶点度数均为 3,且 2n=m+3,则 n=____; m=____;
- 3. 一棵树有 n_i个度数为 i 的结点 , i=2,3, ...,k, 则它有 _____个度数为 1 的结点 ;
- 4 . 下边赋权图中,最小生成树的权值之和为 _____;

- 二.单项选择(每题2分,共10分)
- 1.下面给出的序列中,不是某简单图的度序列的是 ()

(A) (11123); (B) (22222); (C) (3333); (D) (1333).

2. 下列图中,是欧拉图的是()

3. 下列图中,不是哈密尔顿图的是()

4. 下列图中,是可平面图的图的是()

5.下列图中,不是偶图的是()

=	(8	分) 画出目右	7个顶点的所有非同构的树
\	(O	刀)凹山县泊	

四 , 用图论的方法证明:任何一个人群中至少有两个人认识的朋友数相同(10分)

五.(10 分) 设 G为 n 阶简单无向图 , n>2 且 n 为奇数 , G与 G的补图 \overline{G} 中度数为奇数的顶点个数是否相等?证明你的结论

六 . (10 分) 设 G 是具有 n 个顶点的无向简单图,其边数 $m=\frac{1}{2}(n-1)(n-2)+2$,证明(1) 证明 G中任何两个不相邻顶点的度数之 和大于等于 n。(2) 给出一个图,使它具有 n 个顶点, $m=\frac{1}{2}(n-1)(n-2)+1$ 条边,但不是哈密尔顿图。

七、(10 分) 今有赵、钱、孙、李、周五位教师,要承担语文、数学、物理、化学、英语五门课程。 已知赵熟悉数学、 物理、化学三门课程,钱熟悉语文、数学、物理、英语四门课程,孙、李、周都只熟悉数学和物理两门课程。问能否安排他们 5 人每人只上一门自己所熟悉的课程,使得每门课程都有人教,说明理由

八、 $(10\ f)$ 设 G是具有 n 个顶点 , m条边 , $p(P\ge 2)$ 个连通分支的平面图 , G的每个面至少由 $k(k\ge 3)$ 条边所围成 , 则

$$m \leq \frac{k(n-p-1)}{k-2}$$

九. (10 分) 求下图 G的色多项式 R(G).

图 G

- 十、(10分)(1)、在一个只有 2个奇度点的边赋权图中,如何构造一个最优欧拉环游?说明理由;
- (2)、在一个边赋权的哈密尔顿图中,如何估计其最优哈密尔顿圈的权值之和的下界?

电子科技大学研究生试卷

1 . 4 . 15 — 1 . 4 —			
(考试时间: _	至	#	2 小时)
(' ' WE' -		, , , ,	

课程名称 图论及其应用 教师 _____ 学时 _50 学分 ____

考核方式: _____(学生填写)

- 一.填空题(每题2分,共20分)
- 1. 若 n 阶单图 G的最大度是 △ ,则其补图的最小度 $\delta(\bar{G}) = ____;$
- 2. 若图 G₁ = (n₁, m₁), G₂ = (n₂, m₂),则它们的联图 G = G₁ v G₂ 的顶点数=_____;边数 =_____;
- 3.G是一个完全 | 部图 , n; 是第 i 部的的顶点数 i=1 , 2,3, ..., Ⅰ。

院 学 效

无

答

内

以

| 名 姓 则它的边数为 ____;

4 . 下边赋权图中,最小生成树的权值之和为 _____;

- 5. 若G=K_n,则 G的谱 spec(G) =_____;
- 6. 5个顶点的不同构的树的棵数为 _____;
- 7.5 阶度极大非哈密尔顿图族是 _____;
- 8. G 为具有二分类 (X,Y) 的偶图 ,则 G 包含饱和 X 的每个顶点的匹配的充分必要条件是 _____
- 9. 3阶以上的极大平面图每个面的次数为 ______;3 阶以上的极大外平面图的每个内部面的次数为 _____;
- 10. n 方体的点色数为 _____; 边色数为 _____。
- 二.单项选择(每题3分,共12分)
- 1.下面给出的序列中,不是某图的度序列的是 ()
- (A) (33323); (B) (12222); (C) (5533); (D) (1333).
- 2.设 V(G)={1,2,3,4,5}, E(G) = {(1,2),(2,3),(3,4),(4,5),(5,1)}则图 G = (V, E) 的补图是()

3. 下列图中,既是欧拉图又是哈密尔顿图的是 ()

- 4. 下列说法中不正确的是 ()
- (A) 每个连通图至少包含一棵生成树;
- (B)k 正则偶图 (k>0) 一定存在完美匹配;
- (C) 平面图 G ≅ (G*)*, 其中 G*表示 G的对偶图;
- (D) 完全图 K_{2n} 可一因子分解。

三、(10 分)设图 G的阶为 14,边数为 27,G中每个顶点的度只可能为 3,4 或 5,且 G有 6个度为 4的顶点。问 G中有多少度为 3的顶点?

四,(10)证明:每棵非平凡树至少有两片树叶 (10分)

五.(10 分) 今有 a,b,c,d,e,f,g 七个人围圆桌开会,已知:a会讲英语,b会讲英语和汉语,c会讲英语、意大利语和俄语,d会讲日语和汉语,e会讲德语和意大利语,f会讲法语、日语和俄语,g会讲法语与德语。给出一种排座方法,使每个人能够和他身边的人交流(用图论方法求解)。

六 . (10 分) 设 是赋权完全偶图 G=(V,E) 的可行顶点标号 , 若标号对应的相等子图 G 含完美匹配 M*,则 M* 是 G 的最优匹配。

七.(10 分) 求证:在 n 阶简单平面图 G 中有 $\phi \le 2n - 4$, 这里 ϕ 是 G 的面数。

八、(10 分)来自亚特兰大,波士顿,芝加哥,丹佛,路易维尔,迈阿密,以及纳什维尔的 7支垒球队受邀请参加比赛, 其中每支队都被安排与一些其它队比赛(安排如下所示)。每支队同一天最多进行一场比赛。建立一个具有最少天数的比赛时间表。

亚特兰大:波士顿,芝加哥,迈阿密,纳什维尔

波士顿:亚特兰大,芝加哥,纳什维尔

芝加哥:亚特兰大,波士顿,丹佛,路易维尔

丹佛:芝加哥,路易维尔,迈阿密,纳什维尔

路易维尔:芝加哥,丹佛,迈阿密

迈阿密:亚特兰大,丹佛,路易维尔,纳什维尔

纳什维尔:亚特兰大,波士顿,丹佛,迈阿密

(要求用图论方法求解)

九. (8 分) 求下图 G的色多项式 P₄(G).

图 G

电子科技大学研究生试卷

(考试时间:至,共2_小时)						
课程名称图论及其应用 教师 学时 _60_ 学分						
教学方式 <u>讲授</u> 考核日期 _2009年月日 成绩						
考核方式:(学生填写)						
一.填空题(每题2分,共20分)						
1. 若自补图 G的顶点数是 10,则 G的边数 m(G) =;						
2. 若图 G₁ = (n₁, m₁) , G₂ = (n₂, m₂) ,则它们的积图 G = G₁× G₂的顶点数						
=;边数=;						
3. 具有 m条边的简单图的子图个数为;						

- 4 . 设 G=Kn,则其最大特征值为 _____;
 - 5. 设 G 是 n 阶的完全 | 等部图,则其边数 m(G)=_____;
 - 6. 下图 G₁中最小生成树的权值为 ______;

- 7. 6 阶度极大非哈密尔顿图族是 _____;
- 8. K₉的 2 因子分解的数目是 _____;
- 9. n (n 3) 阶极大外平面图内部面个数为 ______;3 阶以上的极大平面图的边数 m和顶点数 n 的关系为 _____;
- 10. 下图 G的点色数为 ______;边色数为 _____。

- 二.单项选择(每题3分,共12分)
- 1.下面给出的序列中,不是某图的图序列的是 ()
 (A) (11123); (B) (22222); (C) (3333); (D) (1333).
- 2.下列有向图中是强连通图的是 ()

3. 关于 n 方体 Q(n 3) , 下面说法不正确的是 ()

(A) Q n 是正则图; (B) Q n 是偶图; (C) Q n 存在完美匹配; (D) Q n 是欧拉图。

4. 关于平面图 G 和其几何对偶图 G 的关系,下列说法中不正确的是()

- (A) 平面图 G的面数等于其对偶图的顶点数;
- (B) 平面图 G的边数等于其对偶图的边数;
- (C) 平面图 G ≅ (G*)* , 其中 G * 表示 G的对偶图 ;
- (D) 平面图的对偶图是连通平面图 。

三、(10 分)设根树 T有 17条边, 12片树叶, 4个 4度内点, 1个 3 度内点, 求 T的树根的度数。

四, (10分)证明:若图 G的每个顶点的度数为偶数,则 G没有割边。

五.(10分) 设 G是一个边赋权完全图。如何求出 G 的最优哈密尔顿圈的权值的一个下界?为什么?

六 . (10 分) 求证:偶图 G 存在完美匹配的充要条件是对任意的 $S \subseteq V(G), \ \, f \ \, |S| \le |N(S)|$

七.(10 分) 求证:若 G是连通平面图,且所有顶点度数不小于 3,则 G至少有一个面 f,使得 $deg(f) \le 5$ 。

八、(10 分)一家公司计划建造一个动物园,他们打算饲养下面这些动物:狒狒(b)、狐狸(f)、山羊(g)、土狼(h)、非洲大羚羊(k)、狮子(l)、豪猪(p)、兔子(r)、鼩鼱(s)、羚羊(w)和斑马(z)。根据经验,动物的饮食习惯为: 狒狒喜欢吃山羊、非洲大羚羊 (幼年)、兔子和鼩鼱;狐狸喜欢吃 山羊、豪猪、兔子和 鼩鼱;土狼喜欢吃 山羊、非洲大羚羊、羚羊和斑马;豪猪喜欢吃 鼩鼱和兔子;而其余的则喜欢吃虫子、 蚯蚓、草或其它植物。公司将饲养这些动物, 希望它们能自由活动但不能相互捕食。 求这些动物的一个分组,使得需要的围栏数最少。 (要求用图论方法求解)

九. (8 分) 求下图 G的色多项式 R(G).

图 G

效

电子科技大学研究生试卷

(考试时间: ____至___,共__2_小时)

课程名称 图论及其应用 教师 学时 60 学分

教学方式 __讲授_ 考核日期 _2010__年___月 ____日 成绩 _____

考核方式: _____(学生填写)

- 一. 填空题 (每题 2分,共 20分)
- 1. 若自补图 G的顶点数是 n ,则 G的边数 m(G) =_____;
- 2. 若图 $G_1 = (n_1, m_1)$, $G_2 = (n_2, m_2)$, 则它们的联图 $G = G_1 \vee G_2$ 的顶点 数=_____; 边数 =_____;
- 3.下图 G中 u 与 v 间的最短路的长度为 ____;

4 . 设 $A = (a_{ij})_{n \times n}$ 是图 G的推广的邻接矩阵,则 $A^k = (a_{ij}^{(k)})_{n \times n}$ (k 是正整数)

- 5. 设 G = K_n ,则 G 的谱 SpecA(G) =______;
- 6. 设 8 阶图 G 中没有三角形,则 G 能够含有的最多边数为

_____; 7. 三角形图的生成树的棵数为 _____;

8. G₂的点连通度与边连通度分别为 _____;

9.n=5 的度极大非 H图族为 _____;

10. n 方体(n≥1)的点色数为 _____;边色数为 _____。

- 二.单项选择(每题3分,共12分)
- 1.下面命题正确的是()
- (A) 任意一个非负整数序列均是某图的度序列;
- (B) 设非负整数序列 $\pi = (d_1, d_2, \cdots, d_n)$,则 π 是图序列当且仅当 $\sum_{i=1}^{n} d_i$ 为 偶数;
- (C) 若非负整数序列 $\pi = (d_1, d_2, \cdots, d_n)$ 是图序列 , 则 π 对应的不同构的图一定唯一;
 - (D) n 阶图 G和它的补图 G 有相同的频序列.
- 2.下列有向图中是强连通图的是 ()

3. 关于欧拉图与哈密尔顿图的关系,下面说法正确的是 ()

- (A) 欧拉图一定是哈密尔顿图;
- (B) 哈密尔顿图一定是欧拉图;
- (C) 存在既不是欧拉图又不是哈密尔顿图的图;
- (D) 欧拉图与哈密尔顿图都可以进行圈分解。
- 4. 下列说法中正确的是 ()
- (A) 任意一个图均存在完美匹配;
- (B) k(k≥1)正则偶图一定存在完美匹配;
- (C) 匈牙利算法不能求出偶图的最大匹配 , 只能用它求偶图的完美匹配 ;
- (D) 图 G的一个完美匹配实际上就是它的一个 1 因子。
- 三、(10 分)若阶为 25 且边数为 62 的图 G的每个顶点的度只可能为 3,4,5 或 6,且有两个度为 4的顶点,11 个度为 6的顶点,求 G中
- 5度顶点的个数。

小生成树, 并给出 T 的权和)。

五. (8 分) 求下图的 k 色多项式。

六.(8分) 设 G是一个边赋权完全图。如何求出 G的最优哈密尔顿圈的权值的一个下界?为什么?

七.(8 分) 求证:设 G_i 是赋权完全偶图 $G = K_{n,n}$ 的可行顶点标号 I 对应的相等子图,若 M 是 G_i 的完美匹配,则它必为 G 的最优匹配。

八.(8 分) 求证:若 n 为偶数,且 $\delta(G) \ge \frac{n}{2} + 1$,则 G中存在 3 因子。

九、(10 分)一家公司计划建造一个动物园,他们打算饲养下面这些动物:狒狒(b)、狐狸(f)、山羊(g)、土狼(h)、非洲大羚羊(k)、狮子(l)、豪猪(p)、兔子(r)、鼩鼱(s)、羚羊(w)和斑马(z)。根据经验,动物的饮食习惯为:狒狒喜欢吃山羊、非洲大羚羊(幼年)、兔子和鼩

鼱;狐狸喜欢吃山羊、豪猪、兔子和鼩鼱;土狼喜欢吃山羊、非洲大羚羊、羚羊和斑马;狮子喜欢吃山羊、非洲大羚羊、羚羊和斑马;豪猪喜欢吃鼩鼱和兔子;而其余的则喜欢吃虫子、蚯蚓、草或其它植物。公司将饲养这些动物,希望它们能自由活动但不能相互捕食。 求这些动物的一个分组,使得需要的围栏数最少。 (要求用图论方法求解)

十.(8分) 求证,每个5连通简单可平面图至少有 12个顶点。

效 无 题 院 名 以 ... 线 ...

电子科技大学研究生试卷

(考试时间:至,共2_小时)
课程名称图论及其应用 教师 学时 _60_ 学分
教学方式 <u>讲授</u> 考核日期 _2011年月日 成绩
考核方式:(学生填写)
一.填空题(每空1分,共22分)
 1.若 n 阶单图 G的最小度是 δ ,则其补图的最大度 Δ(Ḡ) =。
2.若图 $G_1 = (n_1, m_1)$, $G_2 = (n_2, m_2)$,则它们的积图 $G = G_1 \times G_2$ 的顶点数
=; 边数=。
3.设A是图G的推广邻接矩阵,则 A ⁿ 的 i 行 j 列元 a _{ij} ⁽ⁿ⁾ 等于由 G 中
顶点 v; 到顶点 v; 的长度为的途径数目。
4 . 完全图 Kn的邻接矩阵的最大特征值为。
5. 不同构的 3 阶单图共有个。
6. 设 n 阶图 G 是具有 k 个分支的森林,则其边数 m(G) =。
7. n阶树 (n≥3)的点连通度为; 边连通度为; 点
色数为; 若其最大度为 Δ ,则边色数为。
8. 图 G 是 k 连通的,则 G 中任意点对间至少有条内点不交
o
9.5 阶度极大非哈密尔顿图族为和和。
10. 完全图 K₂៉ 能够分解为个边不相交的一因子之并。
11. 设连通平面图 G 具有 5 个顶点,9 条边,则其面数为;

n(n ≥3) 阶极大平面图的面数等于; n(n ≥ 3) 阶极大	外
平面图的顶点都在外部面边界上时,其内部面共有个。	
12. 完全偶图 K _{m,n} 的点独立数等于,点覆盖数等	于
0	
13. 完全 m元根树有 t片树叶, i个分支点,则其总度数为	0
14. 对具有 m 条边的单图定向,能得到个不同的定向图。	
二.单项选择(每题 3 分,共 15 分)	
. 下面给出的序列中,不是某图的度序列的是 ()	
(A) (1,3,5,4,7); (B) (2,2,2,2,2); (C) (3,2,3,3); (D)
1,5,7,1).	
2.下列无向图 G = (n, m) 一定是树的是 ()	
(A) 连通图; (B) 无回路但添加一条边后有回路的图;	
(C) 每对结点间都有路的图;	
(D) 连通且 m = n -1。	
3. 以下必为欧拉图的是 ()	
(A) 顶点度数全为偶数的连通图;	
(B) 奇数顶点只有 2个的图;	
(C) 存在欧拉迹的图;	
(D) 没有回路的连通图。	
Ⅰ. 设 G 是 n(n ≥3)阶单图,则其最小度	J
)	
(A) 必要条件; (B) 充分条件; (C) 充分必要条件。	

- 5. 下列说法正确的是()
- (A) 非平凡树和 n(n≥2)方体都是偶图;
- (B) 任何一个 3 正则图都可 1-因子分解;
- (C) 可 1- 因子分解的 3 正则图中一定存在哈密尔顿圈;
- (D) 平面图 G 的对偶图的对偶图与 G 是同构的。
- 三、(10 分)设无向图 G 有 12 条边,且度数为 3 的结点有 6 个,其余结点的度数小于 3,求 G的最少结点个数。

四,(12分)在下面边赋权图中求: (1)每个顶点到点 a的距离(只需要把距离结果标在相应顶点处,不需要写出过程);(2) 在该图中求出一棵最小生成树,并给出最小生成树权值 (不需要中间过程,用波浪线在图中标出即可).

五.(10 分) 今有赵、钱、孙、李、周五位教师,要承担语文、数学、物理、化学、英语五门课程。已知赵熟悉数学、物理、化学三门课程,钱熟悉语文、数学、物理、英语四门课程,孙、李、周都只熟悉数学、物理两门课程。问能否安排他们都只上他们熟悉的一门课程,使得每门课程都有人教(用图论方法求解)。

七.(6 分) 求证:在 n 阶简单平面图 G 中有 $\delta(G) \leq 5$, 这里 $\delta(G)$ 是 G 的最小度。

八、(10 分) 课程安排问题:某大学数学系要为这个夏季安排课程表。 所要开设的课程为: 图论(GT), 统计学(S), 线性代数(LA), 高等微积分(AC), 几何学(G), 和近世代数(MA)。现有 10 名学生(学生用 A表示,如下所示)需要选修这些课程。根据这些信息,确定开设这些课程所需要的最少时间段数, 使得学生选课不会发生冲突。 (要求用图论方法求解)

 A_1 : LA, S; A $_2$: MA, LA, G; A $_3$: MA, G, LA;

A: G, LA, AC; A 5: AC, LA, S; A 6: G, AC;

A: GT, MA, LA; A 8: LA,GT, S; A 9: AC, S, LA;

A10: GT, S .

九. (9分) 求下图 G的色多项式 R(G).

电子科技大学研究生试卷

(考试时间: ____至___,共__2_小时)

课程名称 __图论及其应用__ 教师 _____ 学时 _60_ 学分 ____

教学方式 __讲授_ 考核日期 _2012__年___月 ____日 成绩 _____

考核方式: _____(学生填写)

- 一、填空题 (填表题每空 1分,其余 每题 2分,共 30分)
- 1.n 阶 k 正则图 G 的边数 m(G) = ___ ^{nk} ___ ;
- 2.3个顶点的不同构的简单图共有 ___4__ 个;
- 3. 边数为 m 的简单图 G 的不同生成子图的个数有 $_{--}2^m$ ____ 个 ;
- **4.** 图 $G_1 = (n_1, m_1)$ 与 图 $G_2 = (n_2, m_2)$ 的 积 图 $G_1 \times G_2$ 的 边 数 为 $-n_1 m_2^+ n_2 m_1 : -$
- 5. 在下图 G_1 中,点 a 到点 b 的最短路长度为 __13__ ;

效

7. 设 G 是 n 阶简单图,且不含完全子图 K_3 ,则其边数一定不会超过

$$-\left|\frac{n^2}{4}\right|$$
 ;

- 8. K₃的生成树的棵数为 ___3__;
- 9. 任意图 G 的点连通度 k(G)、边连通度 $\lambda(G)$ 、最小度 $\delta(G)$ 之间的关系为

10. 对下列图,试填下表(是 ××类图的打 ", 否则打 " ×")。

能一笔画的图	Hamilton 图	偶图	可平面图
×		×	
×	×	×	
×			

- 二、单项选择 (每题 2 分, 共 10 分)
 - 1.下面命题正确的是 (B)

对于序列 (7,5,4,3,3,2) , 下列说法正确的是:

- (A) 是简单图的度序列;
- (B) 是非简单图的度序列;
- (C) 不是任意图的度序列;
- (D) 是图的唯一度序列 .
- 2. 对于有向图,下列说法 不正确的是(D)
 - (A) 有向图 D 中任意一顶点 v 只能处于 D 的某一个强连通分支中;
 - (B) 有向图 D 中顶点 v 可能处于 D 的不同的单向分支中 ;
 - (C) 强连通图中的所有顶点必然处于强连通图的某一有向回路中 ;
 - (D) 有向连通图中顶点间的单向连通关系是等价关系。
- 3.下列无向图可能不是偶图的是 (D)

- (A) 非平凡的树;
- (B) 无奇圈的非平凡图;
- (C) n (n ≥1)方体;
- (D) 平面图。

4.下列说法中正确的是 (C)

- (A) 连通 3 正则图必存在完美匹配;
- (B) 有割边的连通 3正则图一定不存在完美匹配;
- (C) 存在哈密尔顿圈的 3 正则图必能 1 因子分解 ;
- (D) 所有完全图都能作 2因子分解。
- 5. 关于平面图,下列说法错误的是 (B)
- (A) 简单连通平面图中至少有一个度数不超过 5 的顶点;
- (B) 极大外平面图的内部面是三角形,外部面也是三角形;
- (C) 存在一种方法,总可以把平面图的任意一个内部面转化为外部面
- (D) 平面图的对偶图也是平面图 。
- 三、 $(10 \, f)$ 设 G 与其补图 \bar{G} 的边数分别为 m_1, m_2 , 求 G 的阶数。

解:设G的阶数为 n。

四、(10分) 求下图的最小生成树(不要求中间过程,只要求画出最小生成树,并给出 T的权和)。

$$w(T) = 16$$

五、(10分) (1). 求下图 G 的 k 色多项式; (2). 求出 G 的点色数 X;

(3). 给出一种使用 ¼种颜色的着色方法。

解:(1)、图 G的补图为:(2分)

2分 解法 2 P_k(G)= (k- 1) 2分 = (k-1) 3 分

=
$$(k-1)[k(k-1)(k-2)^2]$$

= $k(k-1)^2(k-2)^2$ 2 $\%$

(3)、 ¼点着色: (1分)

六、(10分) 5个人 A, B, C, D, E 被邀请参加桥牌比赛。桥牌比赛规则是每一 场比赛由两个 2人组进行对决。要求每个 2人组 $\{X,Y\}$ 都要与其它 2人组 $\{W,Z\}$ ($W,Z\}$) 进行对决。若每个人都要与其他任意一个人组成一个 2人组,且每个组在同一天不能有多余一次的比赛,则最少安排多少天比赛(每一天可以有多场比赛)?请给出相应的一个时间安排表。 (用图论方法求解)

解:(1)、建模:5个人能够组成 10个2人组:AB, AC, AD, AE, BD, BC, BE, CD, CE, DE。

以每个 2 人组作为顶点,因要求每个 2 人组 {X,Y}都与其它 2 人组 {W,Z}比赛,所以,得到比赛状态图如下:

4分

(2)、最少安排多少天比赛转化为求状态图的边色数 "。

因为彼得森图不可 1因子分解,于是可推出 $\chi' \ge 4$,又可用 4种色对其正常边着

色(见下图),所以: 1/≤4。

所以: $\chi'=4$ 。 2分

(3)、安排时间表 :

第一天: AB---DE, AE---BC, AC---BE, AD---CE;

第二天: AB---CE, AC---DE, AE---BD, AD---BC, BE---CD;

第三天: AB---CD, BC---DE, BD---CE; 第四天: AC---BD, AD---BE, AE---CD。

4分

七、(10 分) 由于在考试中获得好成绩 , 6 名学生 A, B, C, D, E, F 将获得下列书籍的奖励 , 分别是:代数学 (a) , 微积分 (c) , 微分方程 (d) , 几何学 (g) , 数学史 (h) , 规划学 (p) , 拓扑学 (t)。每门科目只有 1 本书 , 而每名学生对书的喜好是:A:d, h, t ; B: h, t ; C:d, h ; D:d, t ; E:a, c, d ; F::c, d, p, g 。 每名学生是否都可以得到他喜欢的书?为什么? (用图论方法求解)

解:由题意,得模型图: (4分)

问题转化为是否存在饱和 A,B,C,D,E,F 的匹配存在。 分

取顶点子集合 S={A,B,C,D}, 因 N(S)={d,h,t}, 所以 |N(S)|<|S

由霍尔定理知:不存在饱和 A,B,C,D,E,F 的匹配。

故每名学生不能都得到他喜欢的书。

4分

2

八、(10分) 若 n 为偶数,且单图 G 满足: $\delta(G) \ge \frac{n}{2} + 1$,求证: G 中有 3 因子。 证明:因单图 G 满足: $\delta(G) \ge \frac{n}{2} + 1$, 所以 G 中存在哈密尔顿圈 C_n 。 **2** 分

又因 n 为偶数 , 所以 , C_n 可分解为两个 1 因子 H_1, H_2 , 它们显然也是图 G

的两个 1 因子。 考虑 $G_1 = G - H_1$, 则 $\delta(G_1) \ge \frac{n}{2}$, 于是 , G_1 中存在哈密尔顿圈 C_n' 。

3分

分

作 H = H₁ U C₁ , 则 H 为 G 的一个 3 因子。 3分

效 无 题 院 答 名 以 个面 线 封

电子科技大学研究生试卷

(考试时间:至,共2_小时)		
课程名称图论及其应用 教师 学时 _60_ 学分		
教学方式 <u>讲授</u> 考核日期 _2013年_6月20日 成绩		
考核方式:(学生填写)		
一.填空题(每空2分,共20分)		
1. n 阶 k 正则图 G的边数 m =。		
2.4个顶点的不同构单图的个数为。		
3.完全偶图 K _{r,s} (r,s≥2且为偶数),则在其欧拉环游中共含		
条边。		
4 . 高为 n的完全 2元树至少有片树叶。		
5. G由 3 个连通分支 K₁, K₂, K₄组成的平面图,则其共有		
个面。		
6. 设图 G 与 K₅同胚,则至少从 G 中删掉条边,才可能使		
其成为可平面图。		
7. 设 G 为偶图,其最小点覆盖数为 α,则其最大匹配包含的边数		
为。		
8. 完全图 K ₆ 能分解为 个边不重合的一因子之并。		
9. 奇圈的边色数为。		
10. 彼得森图的点色数为。		
二.单项选择(每题3分,共15分)		

- 1. 下面说法错误的是 ()
- (A) 图 G 中的一个点独立集,在其补图中的点导出子图必为一个完全子图;
 - (B) 若图 G 连通,则其补图必连通;
- (C) 存在 5 阶的自补图;
- (D) 4 阶图的补图全是可平面图 .
- 2.下列说法错误的是()
- (A) 非平凡树是偶图;
- (B) 超立方体图 (n方体,n≥1)是偶图;
- (C) 存在完美匹配的圈是偶图;
- (D) 偶图至少包含一条边。
- 3. 下面说法正确的是 ()
 - (A) 2 连通图的连通度一定为 2;
 - (B) 没有割点的图一定没有割边;
 - (C) n(n≥3) 阶图 G 是块,则 G 中无环,且任意两点均位于同一圈上;
- (D) 有环的图一定不是块。
- 4. 下列说法错误的是()
- (A) 设 n(n ≥ 3) 阶单图的最小度满足 $\delta \ge \frac{n}{2}$,则其闭包一定为完全图 ;
- (B) 设 n(n≥3) 阶 单 图 的 任 意 两 个 不 邻 接 顶 点 u 与 v 满 足 d(u)+ d(x) ,n则其闭包一定为完全图;
- (C) 有割点的图一定是非哈密尔顿图;
- (D) 一个简单图 G 是哈密尔顿图的充要条件是它的闭包是哈密尔顿

图。

- 5. 下列说法错误的是 ()
- (A) 极大平面图的每个面均是三角形;
- (B) 极大外平面图的每个面均是三角形;
- (C) 可以把平面图的任意一个内部面转化为外部面;
- (D) 连通平面图 G 的对偶图的对偶图与 G 是同构的。
- 三、 (10 分)设 $d_1, d_2, \cdots d_n$ 是 n 个 不 同 的 正 整 数 , 求 证 : 序 列 $\pi = (d_1, d_2, \cdots, d_n)$ 不能是简单图的度序列。

四,(15分)在下面边赋权图中求: (1)每个顶点到点 v₁的距离(只需要把距离结果标在相应顶点处,不需要写出过程);(2) 在该图中求出一棵最小生成树,并给出最小生成树权值 (不需要中间过程,用波浪线在图中标出即可);(3),构造一条最优欧拉环游。

五.(10分) 设T是完全m元树,i是分支点数,t是树叶数,求证:

$$(m-1)i = t-1$$

六.(10 分) 某大型公司 7个不同部门有些公开职位,分别是 (a): 广告设计,(b):营销,(c): 计算师,(d)规划师,(e):实验师,(f): 财政主管,(g):客户接待。有6名应聘者前来申请这些职位,分别是:Alvin(A):a, c, f; Beverly(B): a, b, c, d, e, g;

Connie(C): c, f; Donald(D): b,c,d,e,f,g;

Edward(E): a, c, f: Frances(F): a, f.

- (1) 用偶图为此问题建模;
- (2) 这 6 名应聘者是否可以得到他们申请的职位?为什么?

(注:要求每位申请者只能获得一个职位, 每个职位只能被一位申请者获得)

七、(10分) 有6名博士生要进行论文答辩, 答辩委员会成员分别是

A = .{ 张教授,李教授,王教授}; A₂ = .{ 赵教授,李教授,刘教授}; A₃ = .{ 张教授,王教授,刘教授}; A₄ = .{ 赵教授,王教授,刘教授}; A₃ = .{ 张教授,李教授,孙教授}; A₃ = .{ 张教授,李教授,孙教授}; A₃ = .{ 李教授,王教授,刘教授}。要使教授们参加答辩会不至于发生时间冲突,至少安排几次答辩时间段?请给出一种最少时间段下的安排。

八.(10分)求下图 G的色多项式 Pk(G).并求出点色数。

院 学 名 姓

电子科技大学研究生试卷

	• • • •	
	 效	(考试时间:至,共2_小时)
		课程名称图论及其应用 教师 学时 _60_ 学分
	… … 无	教学方式 <u>讲授</u> 考核日期 _2014年_6月20日 成绩
		考核方式:(学生填写)
	… 题 …	一.填空题(每空2分,共20分)
 t		1. n 阶简单 k 正则图 G的补图的边数为。
<u>5</u>	 答	2.4个顶点的不同构树的个数为。
		3. 具有 m条边的简单图的不同生成子图的个数为。
	 内	4 . 彼得森图的点连通度为。
		5. n 点圈的 2—宽直径为。
i E	 以	6. 2n 阶完全图共有个不同的完美匹配。
		7. 设 G 的阶数为 n,点覆盖数为 β,则其点独立数为。
	 线	8. 完全图 K 2n + 能分解为 个边不重合的二因子之并。
		9. 拉姆齐数 R(3,3) =。
	… … 封	10. n 完全图的不同定向方式有 种。
		二.单项选择(每题3分,共15分)
를 호	 密	1.下面说法错误的是 ()
		(A) 在正常点着色下,图 G 中的一个色组,在其补图中的点导出子
		图必为一个完全子图;
		(B) 若图 G 不连通,则其补图必连通;

- (C) 存在 14 阶的自补图;
- (D) 6 阶图的补图可能是可平面图 .
- 2.下列说法错误的是()
- (A) 一个非平凡图是偶图,当且仅当它不含有奇圈;
- (B) 超立方体图 (n方体,n≥1)是偶图;
- (C) 非平凡森林是偶图;
- (D) 不含三角形的图都是偶图。
- 3. 下面说法正确的是 ()
 - (A) k 连通图的连通度一定为 k;
 - (B) 完全图一定没有割边;
 - (C) n(n≥3) 阶图 G 是块,则 G 中无环,且任意两点均位于同一圈上;
- (D) 非平凡树一定有割点。
- 4. 下列说法错误的是 ()
 - (A) 若图 G是哈密尔顿图,则其闭包一定为完全图;
 - (B) 设 n(n≥3) 阶 单 图 的 任 意 两 个 不 邻 接 顶 点 u 与 v 满 足 d(u)+ d(x) ,n则其闭包一定为完全图;
- (C) 若(n,m) 单图 G的边数 m > (n-1) + 1 ,且 n ≥ 3 ,则 G是哈密尔顿图;
- (D) 若 G是 n ≥3的非 H单图,则 G度弱于某个 C_{m,n} 图。
- 5. 下列说法错误的是 ()
- (A) 若(n,m) 图 G是极大可平面图,则 m=3n-6;
- (B) 极大外平面图的外部面边界一定为圈;
- (C) 平面图的外部面只有一个;

- (D) 平面图 G 的对偶图的对偶图与 G 是同构的。
- 三、(10分)求证:任意图中奇度点个数一定为偶数。

四,(10分) 求证:非平凡树至少有两片树叶。

五.(10分) 求证:(1)、若 G中每个顶点度数均为偶数,则 G没有割边;

(2) 、若 G为 k ≥ 2 的 k 正则偶图,则 G没有割边。

六.(10 分) 求出下图的最小生成树,并计算权值 (不要中间过程,在原图中用波浪边标出最小生成树)

七、(8分) 设图 G有 10个 4度顶点和 8个 5度顶点,其余顶点度数均为 7。求 7度顶点的最大数量,使得 G保持其可平面性。

解:分两种情况讨论: (1)、若 G 是非简单图,则容易知道,满足条件的7度顶点数可以为无穷多; 2 分

(2)、若 G是简单图

设 7 度顶点的数量是 x。由握手定理:

$$2m(G) = 10 \times 4 + 8 \times 5 + 7x$$
 2 分

另一方面: 欲使 G 保持其可平面性, 必有

即:
$$\frac{1}{2}(10\times4+5\times8+7x)\le 3(10+8+x)-6$$
 , 得 $x\le 16$ 。 2 分

八、(7分)如果边赋权图中只有两个奇度顶点,如何构造一条最优欧拉环游?说明构造理由。

号_____ 姓 名 学 院____

九. (10 分) 求下图 G的色多项式 P_k(G). 并求出点色数。

图 G