МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА) Кафедра ТОЭ

ОТЧЕТ

по лабораторной работе №2

по дисциплине «Математические основы электротехники» Тема: Исследование линейных резистивных цепей

Студент гр. 8383, ФКТИ	Киреев К.А.
Преподаватель	Портной М.С

Санкт-Петербург 2020

Цель работы

Экспериментальное исследование линейных разветвленных резистивных цепей с использованием методов наложения, эквивалентного источника и принципа взаимности.

Основные теоретические положения

В работе анализируют резистивную цепь с источниками постоянного напряжения U и тока I (рис. 1).

Рисунок 1 – Исследуемая цепь

Для определения токов и напряжений ветвей используют некоторые методы анализа сложных цепей.

Метод наложения. Реакцию цепи на действие нескольких источников определяют как алгебраическую сумму реакций на действие каждого источника в отдельности.

Метод эквивалентного источника напряжения. По отношению к одной из ветвей линейную цепь с несколькими источниками можно представить одним эквивалентным ИН U_0 с последовательно соединенным сопротивлением R_0 .

Принцип взаимности. Если ИН (единственный в цепи), действуя в одной ветви линейной электрической цепи, вызывает ток в другой ветви, то тот же источник после его переноса во вторую ветвь вызовет в первой ветви такой же ток.

Обработка результатов эксперимента

2.2.1 Исследование цепи при питании её от двух источников

Для выполнения лабораторной работы была собрана схема, изображенная на рис. 2.

Рисунок 2 – Схема для исследования цепи при питании её от двух

источников

Данные, полученные в ходе эксперимента занесены в таблицу 2.1.

Таблица 2.1 - U и I всех ветвей цепи

									I ₄ , мА
2,0	0,36	0,48	1,6	2,09	1,06	0,23	0,32	0,55	0,72

Произведём расчёт схемы методом Кирхгофа.

Экспериментальный расчёт:

ЗНК:

$$\begin{cases} -U + U_1 + U_3 = 0 \\ -U_3 - U_2 + U_4 = 0 \end{cases} \longrightarrow \begin{cases} -2.0 + 0.36 + 1.6 = -0.04 \approx 0 \\ -1.6 - 0.48 + 2.09 = 0.01 \approx 0 \end{cases}$$

ЗТК:

$$\begin{cases} I_1 + I_2 - I_3 = 0 \\ I_2 - I + I_4 = 0 \end{cases} \longrightarrow \begin{cases} 0.23 + 0.32 - 0.55 = 0 \\ 0.32 - 1.06 + 0.72 = -0.02 \approx 0 \end{cases}$$

Законы напряжения и тока Кирхгофа выполняются.

Теоретический расчёт.

Дано:
$$U=2$$
В, $I\cong 1$ мА, $R_1=R_2=1$,5 кОм, $R_3=R_4=3$ кОм.

ЗНК:

$$\begin{cases} -U + I_1 R_1 + I_3 R_3 = 0 \\ -I_3 R_3 - I_2 R_2 + I_4 R_4 = 0 \end{cases}$$

ЗТК:

$$\begin{cases} I_1 - I_2 - I_3 = 0 \\ I_2 - I + I_4 = 0 \end{cases}$$

Закон Ома:

$$\begin{cases} U_1 = I_1 R_1 \\ U_2 = I_2 R_2 \\ U_3 = I_3 R_3 \\ U_4 = I_4 R_4 \end{cases}$$

На основании ЗТК и ЗНК получаем систему уравнений:

$$\begin{cases} -U + I_1 R_1 + I_3 R_3 = 0 \\ -I_3 R_3 - I_2 R_2 + I_4 R_4 = 0 \\ I_1 - I_2 - I_3 = 0 \\ -I_2 + I - I_4 = 0 \end{cases} \rightarrow \begin{cases} -2 + 1500 I_1 + 3000 I_3 = 0 \\ -3000 I_3 - 1500 I_2 + 3000 I_4 = 0 \\ I_1 - I_2 - I_3 = 0 \\ -I_2 + 0,001 - I_4 = 0 \end{cases}$$

Решая её и применяя закон Ома, получаем следующее:

Таблица 2.1.2 – Сравнение полученных значений

	<i>U</i> , B	U_1 , B	U_2 , B	U_3 , B	U_4 , B	І, мА	I ₁ , мА	I ₂ , мА	I ₃ , мА	I ₄ , мА
Э-мент	2,0	0,36	0,48	1,6	2,09	1,06	0,23	0,32	0,55	0,72
Теория	2,0	0,358	0,462	1,624	2,097	1,03	0,242	0,312	0,546	0,698

2.2.2. Определение токов цепи методом наложения

В результате проведения двух опытов (при подключении к цепи только ИН и только ИТ, рис. 3) были получены значения, представленные в табл. 2.2.

Рисунок 3 — Схема для исследования цепи при подключении только ИН (a) или только ИТ (б)

Таблица 2.2 – Результаты измерений

Включены источники	I ₁ , мА	I ₂ , мА	I ₃ , мА	I ₄ , мА
U	0,59	0,23	0,35	0,23
I	0,36	0,53	0,19	0,47
U, I	0,23	0,30	0,54	0,70

Согласно методу наложения, получаем:

$$\begin{cases} I_1 = I_1' - I_1'' \\ I_2 = I_2'' - I_2' \\ I_3 = I_3' + I_3'' \\ I_4 = I_4' + I_4'' \end{cases}$$

Полученные результаты записаны в четвёртую строку табл. 2.2. Все значения взяты по модулю.

Значения, полученные методом наложения с учётом погрешностей, сходятся со значениями, полученными в 2.2.1.

2.2.3 Определение тока в ветви с сопротивлением R_3 методом эквивалентного источника напряжения

Для первого опыта была собрана схема, представленная на рис. 4

Рисунок 4 — Схема для исследования цепи при разомкнутых зажимах A, B Для второго опыта была собрана схема, представленная на рис. 5

Рисунок 5 — Схема для исследования цепи при разомкнутых зажимах A, B Напряжение $U_0 = 2,22$ B.

Ток $I_3 = 0,54$ мА.

Теоретический расчёт методом эквивалентного источника.

Изменим схему, представленную на рис.4 следующим образом:

 $I_3 = 0$ (так как XX), тогда по ЗТК $I_1 = I_2 = I_4$.

• По ЗНК:

$$I_1 = \frac{U - IR_4}{R_1 + R_2 + R_4} = \frac{2,0 - 0,001 \cdot 3000}{1500 + 1500 + 3000} = -0,167 \text{ MA}.$$

• По ЗНК:

$$-U + I_1 R_1 + I_3 R_3 + U_{xx} = 0$$

$$U_{xx} = U - I_1 R_1 - I_3 R_3 = 2.0 + 0.000167 \cdot 1500 - 0 \cdot 3000 = 2.25 \text{ B}.$$

Полученное значение (2,25 В) с погрешностью совпадает с U_0 (2,22 В).

Для определения эквивалентного сопротивления потребуется следующая схема:

$$R_{9} = \frac{(R_{2} + R_{4})R_{1}}{R_{2} + R_{1} + R_{4}} = \frac{(1500 + 3000) \cdot 1500}{1500 + 1500 + 3000} = 1125 \text{ Ом.}$$

$$I_{3} = \frac{U_{xx}}{R_{3} + R_{9}} = \frac{2,25}{3000 + 1125} = 0,546 \text{ мA.}$$

Теоретический расчёт тока I_3 методом эквивалентного источника напряжения с учётом погрешности (0,546 мA) сходится со значением I_3 (0,54 мA) произведённого в 2.2.1 и экспериментального значения.

2.2.4. Экспериментальная проверка принципа взаимности

Для эксперимента были собраны схемы, изображённые на рис.6

Рисунок 6 – Схема для проверки принципа взаимности

$$I_3 = 0.36 \text{ MA}, \qquad I_1 = 0.36 \text{ MA}.$$

Полученные результаты подтверждают выполнение принципа взаимности.

Выводы

В процессе выполнения лабораторной работы была исследована линейная разветвленная резистивная цепь с использованием методов наложения, эквивалентного источника и принципа взаимности. Полученные данные полностью совпали с экспериментом.

Ответы на вопросы:

1. Каковы результаты контроля данных в 2.2.1?

Результаты контроля: законы Кирхгофа верны, равенство с учётом погрешностей выполняется.

2. Изменятся ли токи ветвей, если одновременно изменить полярность напряжения ИН и направление тока ИТ на противоположные?

Нет, изменится только их знак.

3. Чему равно напряжение между узлами "С" и "D" цепи?

$$U_{CD} = U_1 - U_2 = 0.36B - 0.48B = -0.12B.$$

4. Как изменить напряжение ИН, чтобы ток I_1 стал равен нулю? Уменьшить на 0,812 В:

$$R_{234} = \frac{(R_2 + R_4)R_3}{R_2 + R_4 + R_3} = \frac{(1500 + 3000) \cdot 3000}{3000 + 1500 + 3000} = 1800 \text{ Ом,}$$

$$I_1 = \frac{U'}{R_1 + R_{234}} \rightarrow U' = I_1(R_1 + R_{234}) = 0,36\text{MA} \cdot (1500 \text{ Ом} + 1800 \text{ Ом})$$

$$= 1,188\text{B}.$$

$$\Delta U = U' - U = 1,188 \text{ B} - 2,000 \text{ B} = -0,812 \text{ B}.$$

5. Почему рис. 5 при $U=U_0$ реализует схему метода эквивалентного источника напряжения?

По формуле для эквивалентного источника: $I_3=\frac{U_0}{R_3+R_9},$ где R_9 — остальная часть цепи без сопротивления R_3 .

Поэтому, если $U_0 = U_{\chi\chi}$, получается обычная резистивная схема с одним источником.

- 6. Чему будет равен ток I_1 , если ИН поместить в ветвь 4, а ИТ отключить? По принципу взаимности: исходный ток $I_4=0$, 72 мА, при перемещении ИН в ветвь 4: $I_1=0$, 72 мА.
- 7. Как проконтролировать результаты экспериментов в 2.2.2, 2.2.3, 2.2.4? Результаты 2.2.2 сравниваются с измеренными в 2.2.1. Результаты 2.2.3 также сравниваются с 2.2.1 и с теоретическими значениями. Результаты 2.2.4 проверяются по принципу взаимности.

2.	21		Uccnego	20 maple	Muneis H	oux pe	N2 zucmubi	ion yen	rec 4	
1	U,B									I4, MA
1	2	0,36	0,48	1,6	2,09	1,06	105	0,32	0,35	9,72

0 27

Brancens	TIMA	Iz,mA	Is, mA	I 4, m A
11	0,59	0,23	0,35	0,23
T	0,36	0,53	0,19	0,47
u,T				

2.23 No= 2,22 B I3 = 0,54A

2.24

W=2B I 3=0,86 mA

II = 0,88 MA Q36 WA

Myroberair D.B. Myrob V.A. Heef