HOMEWORK 4 – MATH 441 May 1, 2018

ALEX THIES athies@uoregon.edu

Assignment: 3.A - 3, 4, 7, 8, 10; 3.B - 4, 9, 31.

SECTION 3.A

Problem 3. Suppose $T \in \mathcal{L}(\mathbb{F}^n, \mathbb{F}^m)$. Show that there exist scalars $A_{j,k} \in \mathbb{F}$ for $j = 1, \ldots, m$ and $k = 1, \ldots, n$ such that

$$T(x_1,\ldots,x_n)=(A_{1,1}x_1+\cdots+A_{1,n}x_n,\cdots,A_{m,1}x_1+\cdots+A_{m,n}x_n)$$

for every $(x_1, \ldots, x_n) \in \mathbb{F}^n$.

Solution. Let T be as above, and let e_1, \ldots, e_n be the standard basis for \mathbb{F}^n , i.e., let $e_i \in \mathbb{F}^n$ for $1 \leq i \leq n$ be a vector of all zeros, with the exception that the i^{th} entry is a 1. This allows us greatly simplify the notation we're working with. Consider the basis element $(1,0,\ldots,0) \in \mathbb{F}^n$; if we apply T to this basis element, then we get $A_{1,1}(1) + A_{1,2}(0) + \cdots + A_{1,n}(0)$, $A_{2,1}(1) + A_{2,2}(0) + \cdots + A_{2,n}(0)$, ..., $A_{m,1}(1) + A_{m,2}(0) + \cdots + A_{m,n}(0)$, because the only terms that don't get multiplied by zero are precisely the terms being multiplied by $x_1 = 1$. Thus, we get $Te_1 = (A_{1,1}, A_{2,1}, \ldots, A_{m,1})$. Continue this process and we obtain:

$$Te_2 = (A_{1,2}, A_{2,2}, \dots, A_{m,2}),$$

 $Te_3 = (A_{1,3}, A_{2,3}, \dots, A_{m,3}),$
 \vdots
 $Te_n = (A_{m,1}, A_{m,2}, \dots, A_{m,n}).$

Since e_1, \ldots, e_n is a basis for \mathbb{F}^n and $(x_1, \ldots, x_n) \in \mathbb{F}^n$ we have $(x_1, \ldots, x_n) \in \operatorname{Span}(e_1, \ldots, e_n)$, so (x_1, \ldots, x_n) can be written as linear combinations of the basis elements e_1, \ldots, e_n . So, with n-many x_i 's for components, instead of the 1 and (n-1)-many zeros that we used for the standard basis elements, we get $T(x_1, \ldots, x_n) = (A_{1,1}x_1 + \cdots + A_{1,n}x_n, \cdots, A_{m,1}x_1 + \cdots + A_{m,n}x_n)$, as we aimed to show. \square

Problem 4. Suppose $T \in \mathcal{L}(V, W)$ and v_1, \ldots, v_m is a list of vectors in V such that Tv_1, \ldots, Tv_n is a linearly independent list in W. Prove that v_1, \ldots, v_m is linearly independent.

Proof. Let $V, W, T, v_1, \ldots, v_m$, and Tv_1, \ldots, Tv_n be as above. Then, since Tv_1, \ldots, Tv_n is linearly independent in W, we know that $a_1Tv_1 + \cdots + a_nTv_n = 0$ if and only if each $a_i = 0$ with $1 \le i \le n$. From the additivity of linear maps we can write

 $T(a_1v_1+\cdots+a_nv_n)=0$. To show that v_1,\ldots,v_n is linearly independent, it remains to show that no other choice of a_i 's yields $a_1v_1+\cdots+a_nv_n=0$. Suppose that there exist $c_i\in V$ with $1\leq i\leq n$ such that $c_1v_1+\cdots c_nv_n=0$. Since T maps 0_V to 0_W , we have that $T(c_1v_1+\cdots c_nv_n)=0$, again by additivity we can write $c_1Tv_1+\cdots+c_nTv_n=0$. By the linear independence of Tv_1,\ldots,Tv_n , given our previous statement, it follows that $a_i=c_i=0$ for each $1\leq i\leq n$, and that v_1,\ldots,v_n is linearly independent as well, as we aimed to show.

Problem 7. Show that every linear map from a 1-dimensional vector space to itself is multiplication by some scalar. More precisely, prove that if dim V=1 and $T \in \mathcal{L}(V,V)$, then there exists $\lambda \in \mathbb{F}$ such that $Tv=\lambda v$ for all $v \in V$.

Proof. Let V and T be as above. Since $\dim V = 1$, take u_1 as a basis for V, additionally, with $T \in \mathcal{L}(V, V)$, it follows that $Tu_1 \in V$ as well. Since u_1 is a basis for V, each element of V is a scalar multiple of u_1 ; linear combinations of one element are pretty boring. Recall that vector spaces are closed under their operations, therefore all scalar multiples λu_1 (with scalars from \mathbb{F}) are elements of V, and since T is mapping elements of V to other elements of V, it follows that T is doing this mapping by scalar multiplication. More formally, $Tu_1 = \lambda u_1$ for some $\lambda \in \mathbb{F}$. Let $v \in V$ and $a \in \mathbb{F}$ such that $v = au_1$, we compute the following:

$$Tv = T(au_1),$$

$$= aT(u_1),$$

$$= a\lambda u_1,$$

$$= \lambda au_1,$$

$$= \lambda v.$$

Thus, since dim V=1 implies that any basis of V consists of only one basis element, for $T \in \mathcal{L}(V,V)$, there exists $\lambda \in \mathbb{F}$ such that $Tv = \lambda v$ for all $v \in V$

Problem 8. Give an example of a function $\varphi : \mathbb{R}^2 \to \mathbb{R}$ such that $\varphi(av) = a\varphi(v)$ for all $a \in \mathbb{R}$ and all $v \in \mathbb{R}^2$ but φ is not linear.

Solution. Let $\varphi: \mathbb{R}^2 \to \mathbb{R}$ by $(x,y) \mapsto (x+y)^{1/2}$; consider (1,0) and (0,1), the standard basis elements of \mathbb{R}^2 . Notice that $\varphi(1,0)=1, \ \varphi(0,1)=1, \ \text{and} \ \varphi(1,0)+\varphi(0,1)=2$. However, $\varphi((1,0)+(0,1))=\varphi(1,1)=\sqrt{2}$. Since $2\neq\sqrt{2}$, we have shown φ is not additive; it remains to show that it is still linear with respect to scalar multiplication. Let $a\in\mathbb{R}$.

Problem 10. Suppose U is a subspace of V with $U \neq V$. Suppose $S \in \mathcal{L}(U, W)$ and $S \neq 0$. Define $T: V \to W$ by

$$Tv = \begin{cases} Sv & \text{if } v \in U, \\ 0 & \text{if } v \in V \text{ and } v \notin U. \end{cases}$$

Prove that T is not a linear map on V.

Proof. Let U, V, S, T be as above. Further, let $u \in U$ and $v \in V$ such that $v \notin U$, notice that $u + v \in V$ but $u + v \notin U$. Then, $T(u) = Sv \neq 0$ and T(v) = 0, so T(u) + T(v) = Sv. But T(u + v) = 0, and $Sv \neq 0$, so T is not additive, hence it is not linear on V.

SECTION 3.B

Problem 4. Show that

$$\{T \in \mathcal{L}(\mathbb{R}^5, \mathbb{R}^4) : \dim \text{null } T > 2\}$$

is not a subspace of $\mathcal{L}(\mathbb{R}^5, \mathbb{R}^4)$.

Solution. Let $W = \{T \in \mathcal{L}(\mathbb{R}^5, \mathbb{R}^4) : \dim \operatorname{null} T > 2\}$, we will show that $W \subsetneq \mathcal{L}(\mathbb{R}^5, \mathbb{R}^4)$ is not a subspace by showing that it is not closed under addition. Let e_1, \ldots, e_5 be a basis for \mathbb{R}^5 , and let $\varepsilon_1, \ldots, \varepsilon_4$ be a basis for \mathbb{R}^4 . Since the dimension of the null space for elements of W must be either 3, 4, or 5, we will construct two linear maps S, T with dim null $S = \dim \operatorname{null} T = 3$, and show that distributing the standard basis elements above across S + T will yield linear maps with a dimension two null space.

Let S, T be linear maps such that $Se_i = \varepsilon_i$ for i = 1, 2; $Se_i = 0$ for i = 3, 4, 5; $Te_i = \varepsilon_i$ for i = 2, 3; and $Te_i = 0$ for i = 1, 4, 5. Notice that dim null $S = \dim \text{null } T = 3$, so $S, T \in W$. Consider the linear map (S + T); we compute the following:

$$(S+T)e_{1} = Se_{1} + Te_{1},$$

$$= \varepsilon_{1};$$

$$(S+T)e_{2} = Se_{2} + Te_{2},$$

$$= 2 \varepsilon_{2};$$

$$(S+T)e_{3} = Se_{3} + Te_{3},$$

$$= \varepsilon_{3};$$

$$(S+T)e_{4} = Se_{4} + Te_{4},$$

$$= 0;$$

$$(S+T)e_{5} = Se_{5} + Te_{5},$$

$$= 0.$$

Thus that dim range (S+T)=3 and dim null (S+T)=2, so $(S+T)\notin W$, and W is not closed under addition. Hence, $W\subsetneq \mathscr{L}(\mathbb{R}^5,\mathbb{R}^4)$ is not a subspace.

Notice that we could replicate this 'partial-overlapping' strategy with linear maps S, T such that dim null $S = \dim \text{null } T = 4$ and create (S+T) such that dim null (S+T) = 1, but not with linear maps S' such that dim null S' = 5, because these linear maps are just the zero map, and so they have no issues with additivity.

Problem 9. Suppose $T \in \mathcal{L}(V, W)$ is injective and v_1, \ldots, v_n is linearly independent in V. Prove that Tv_1, \ldots, Tv_n is linearly independent in W.

Proof. Let $T, V, W; v_1, \ldots, v_n$ be as above. Since v_1, \ldots, v_n is linearly independent in V, we know that $0 = a_1v_1 + \cdots + a_nv_n$ if and only if each $a_i = 0$ for $1 \le i \le n$. Recall that since T is injective, we have null $T = \{0\}$, thus, T(0) = 0 is a unique mapping. Apply T to $0 = a_1v_1 + \cdots + a_nv_n$:

$$0_V = a_1 v_1 + \dots + a_n v_n,$$

$$T(0_V) = T(a_1 v_1 + \dots + a_n v_n),$$

$$0_W = a_1 T(v_1) + \dots + a_n T(v_n).$$

Recall that each $a_i = 0$ for $1 \le i \le n$, and since the mapping T(0) = 0 is unique, these a_i 's are the only way to write Tv_1, \ldots, Tv_n as a homogeneous linear combination, hence Tv_1, \ldots, Tv_n is linearly independent, and since $Tv_1, \ldots, Tv_n \in T$ and range $T \subset W$, we have that Tv_1, \ldots, Tv_n is linearly independent in W.

Problem 31. Give an example of two linear maps T_1 and T_2 from \mathbb{R}^5 to \mathbb{R}^2 that have the same null space but are such that T_1 is not a scalar multiple of T_2 .

Solution. Let e_1, \ldots, e_5 be a basis for \mathbb{R}^5 and $\varepsilon_1, \varepsilon_2$ be a basis for \mathbb{R}^2 ; further, let $T_1, T_2 \in \mathcal{L}(\mathbb{R}^5, \mathbb{R}^2)$ such that:

$$\begin{array}{ll} T_1e_1 = \varepsilon_1, & T_2e_1 = \varepsilon_2, \\ T_1e_2 = \varepsilon_2, & T_2e_2 = \varepsilon_1, \\ T_1e_3 = \varepsilon_1 + \varepsilon_2, & T_2e_3 = \varepsilon_2 - \varepsilon_1, \\ T_1e_4 = \varepsilon_1 - \varepsilon_2, & T_2e_4 = \varepsilon_2 + \varepsilon_1, \\ T_1e_5 = 0. & T_2e_5 = 0. \end{array}$$

Consider $2T_1e_1 = 2\varepsilon_1$ and $2T_2e_1 = 2\varepsilon_2$, clearly these are not scalar multiples of another; there are many other examples such as these.