

Variable-lag Granger Causality for Time Series Analysis

CHAINARONG AMORNBUNCHORNVEJ¹, ELENA ZHELEVA², AND TANYA BERGER-WOLF²

¹NATIONAL ELECTRONICS AND COMPUTER TECHNOLOGY CENTER, THAILAND

²DEPARTMENT OF COMPUTER SCIENCE, UNIVERSITY OF ILLINOIS AT CHICAGO

Get to know Granger Causality

Invented by C. W. J. Granger in 1969

Definition: Given time series *X* and *Y*

"X Granger-causes Y if past information on X predicts the behavior of Y better than using Y's past information alones"

Applications of Granger causality

Finding key factors that initiate collective patterns

- ➤ Group Decision Making Process
 - ➤ Human behaviors: e.g. time series of actions in social network
 - ➤ Animal behaviors: e.g. time series of positions from GPS collars
- Collective events
 - Stock market coordination event: time series of closing prices

Fixed vs. Arbitrary lag follower

Fixed vs. Arbitrary lag follower

Granger: Lockstep marching

Reality: Walking and running

Method

Fixed vs. Arbitrary lag follower

VL-Granger

Traditional vs. VL- Granger

Algorithm: Traditional Granger causality

For all *t* do:

Concept and motivation

- 1. Regret Y(t) on $Y(t-1), ..., Y(t-\delta_{max})$ to get errors of prediction (sum of residuals) for null model H_0
- 2. Regret Y(t) on Y(t-1), ..., $Y(t-\delta_{max})$ and X(t-1), ..., $X(t-\delta_{max})$ to get errors of prediction for alternative model H_1
- Compare errors of H_0 and H_1 :
 - If H_1 reduces errors compared to H_0 significantly (e.g. by F-test), then X Granger-causes Y
 - Else X doesn't Granger-cause Y

Traditional vs. VL- Granger

Algorithm: VL-Granger causality

For all *t* do:

- 1. Regret Y(t) on $Y(t-1), ..., Y(t-\delta_{max})$ to get errors of prediction (sum of residuals) for null model H_0
- 2. Regret Y(t) on $Y(t-1), \dots, Y(t-\delta_{max})$ and $X(t-1), \dots, X(t-\delta_{max})$ to get errors of prediction for alternative model H_1
- 3. Regret Y(t) on $Y(t-1), ..., Y(t-\delta_{max})$ and $X(t-\Delta_1), ..., X(t-\Delta_{\delta_{max}})$ to get errors of prediction for alternative model H_2 s.t. Δ_i is inferred by Dynamic Time Warping (DTW)
- 4. Compare errors of H_0 , H_1 and H_2 :
 - \circ If H_2 reduces errors compared to H_0 and H_1 significantly (e.g. by F-test), then X VL-Granger-causes Y
 - \circ Else if H_1 reduces errors from H_0 significantly, then X Fixed-Lag-Granger-causes Y
 - Else X doesn't Granger-cause Y

Dynamic Time Warping

U follows Q with a time delay Δt

Result

Results - five case studies

Case study: Variable-lag follower.

Initiator

Follower

Fixed-Inferred-Follower

VL-Inferred-Follower

Case study: Simulation & Sensitivity

Case study: Inferring causal graph

Causal Graph

X_i function generator

	\mathcal{N}			ARMA	
Prec.	Rec.	F1	Prec.	Rec.	F1
0.98	0.90	0.93	0.66	0.95	0.77
0.96	0.90	0.93	0.57	0.95	0.71
0.91	0.97	0.93	0.38	0.71	0.49
0.55	0.68	0.59	0.42	0.64	0.47
0.15	0.55	0.23	0.14	0.53	0.23
	0.98 0.96 0.91 0.55	0.98 0.90 0.96 0.90 0.91 0.97 0.55 0.68	0.98 0.90 0.93 0.96 0.90 0.93 0.91 0.97 0.93 0.55 0.68 0.59	Prec. Rec. F1 Prec. 0.98 0.90 0.93 0.66 0.96 0.90 0.93 0.57 0.91 0.97 0.93 0.38 0.55 0.68 0.59 0.42	0.98 0.90 0.93 0.66 0.95 0.96 0.90 0.93 0.57 0.95 0.91 0.97 0.93 0.38 0.71 0.55 0.68 0.59 0.42 0.64

Case study: School of fish movement coordination—24 traces

Case study: 16 Baboons movement coordination

Ground truth: ID3 is the initiator

Summary

We formalized Variable-Lag Granger Causality

Relaxed fixed-lag assumption of Granger causality

Propose VL-Granger Causality Framework in Time Series

- 1. Identifying VL-Granger time series of pair-wise time series
- 2. Identifying VL-Granger time series of group time series

Our results show that,

- Simulation: VL-Granger framework performs better than baseline approaches in various settings
- School of Fish: VL-Granger framework performs better than the traditional approach.
- Baboons: VL-Granger framework can infer the true initiator of coordination movement while several methods fail.

Q&A

Caution! When Granger causality cannot find the true causes

- 1. When all time series we consider share the same cause that we can't observe
 - Issue: Suppose the political situation causes all stocks to fall down, then we can't infer causality from the stock closing price alone.
 - Sol: We should apply Granger causality in various political situations and other potential factors.
- 2. When all time series are periodic and have no causal relation, Granger causality just picks the earliest one that has a strong trend
 - Issue: Suppose the profit gains of companies depend heavily on seasons and no causality, then Granger causality just picks the first company that initiates the trend w.r.t. the season.
 - Sol: We should apply Granger causality in various intervals to find the consistency among different intervals.