

Benchmark Simulation of Natural Circulation Cooling Systems with Salt Working Fluid Using SAM

KAZI AHMED

Department of Engineering Physics University of Wisconsin-Madison kkahmed@wisc.edu 17th International Topical Meeting on Nuclear Reactor Thermal Hydraulics (NURETH-17) 9-7-2017 Xi'an, China

Heat and Mass Transport Group | Professor Raluca Scarlat HEATandMASS.ep.wisc.edu

Background and Motivation

KAZI AHMED
HEATANDMASS.EP.WISC.EDU

2 | 32

Outline

- ☐ Intro: system code analysis for salt-cooled and molten-salt reactors
- ☐ Description of System Analysis Module (SAM)
- Case Study: PB-FHR
 - ☐ Pebble-bed Fluoride salt-cooled High-temperature Reactor
 - ☐ Salt properties
 - Secondary loop model
 - ☐ Primary loop model
 - ☐ Heat structures, core pressure loss, pump coastdown
 - ☐ Transient scenario results and discussion
- Path forward and related work

System Analysis Module (SAM)

- ☐ Plant-level system tool for transient scenario safety analysis
- ☐ Built on MOOSE (finite element framework)
 - ☐ High-order FEM for fluid flow and heat transfer
- Incompressible, thermally expandable flow
 - ☐ Inherent buoyancy-driven circulation

$$\begin{split} &\frac{\partial \rho}{\partial t} + \frac{\partial (\rho u)}{\partial z} = 0 \ , \\ &\frac{\partial (\rho u)}{\partial t} + \frac{\partial (\rho u u + p)}{\partial z} = -\rho g - \frac{f}{D_e} \frac{\rho u |u|}{2} \ , \\ &\frac{\partial (\rho H)}{\partial t} + \frac{\partial (\rho u H)}{\partial z} = q''' \ , \end{split}$$

DR. RUI HU (Lead Developer)
Principal Nuclear Engineer
Argonne National Laboratory
rhu@anl.gov

System Analysis Module (SAM)

- ☐ Modular, component based development
- Flexible for multi-scale modeling
 - □ STAR-CCM+, SHARP, SAS4A/SASSYS-1 ...
- Single or multi-channel core models
 - Flexible full-core modeling
- QA and V&V approach used by MOOSE
 - Development with version control, unit testing, etc.

Simulation of ABTR PLOF

- ☐ Verification with analytical benchmarks, code-to-code comparison
- □ Validation matrix in progress: EBR-II, FFTF, etc.
- ☐ Projects to enhance SAM for MSR/FHR modeling

Case Study: Mk1 PB-FHR Model

Challenge: recreate RELAP5-3D model, address discrepancies

Building Mk1 PBFHR: Properties

- ☐ Molten salt properties were initially implemented differently
- ☐ For purpose of comparison, RELAP5 (R5) version implemented in SAM
- \square Note: most significant effect is from thermal conductivity k

$$\Box h = Nu * \frac{k}{L}$$

FLiBe property	SAM Default	@700 ° C	RELAP5, SAM updated	@700
T Elec property	(T in C, SI units) [3]	2700	(T in C, SI units) [4]	° C
Density (kg/m ³)	2279.92 - 0.488T	1938.32	2279.7 - 0.4884T	1937.82
Conductivity(W/m·K)	0.7662 + 0.0005T	1.1162	1.1	1.1
Specific heat (J/kg·K)	2415.78	2415.78	2386	2386
Viscosity (Pa·s)	$4.638 * 10^5 * T^{-2.79}$	0.005352	$1.16 * 10^{-4} * e^{\frac{3755}{T + 273.15}}$	0.005498

Building Mk1 PBFHR: DRACS

☐ Direct Reactor Auxiliary Cooling System: evaluate steady state performance

Pipe with constant outer wall temperature, codedetermined h at inner boundary with salt

Verify this section is input correctly before continuing

Correct mass flow (after some tuning):

 \Box 10.7 kg/s

DRACS Parasitic Heat Removal

Building Mk1 PBFHR: Primary Side

☐ Same concept as building just the DRACS loop

Building Mk1 PBFHR: Pump Model

☐ Pump provided to RELAP as a simple velocity constraint

- ☐ SAM: Not possible
- Must specify a head curve

- ☐ The piecewise linear velocity coastdown could be mimicked by a piecewise linear head curve
- ☐ Also require primary velocity to go to zero during transient for comparison

Building Mk1 PBFHR: Core Heat Structures

- ☐ No spherical heat structures yet in SAM
- Convert to cylindrical
- ☐ For best approximation, preserve total volume of core materials

Building Mk1 PBFHR: Core Friction

- □ RELAP Provided values for A, B, C:
 - **□** 32.1, 4974.4, -1.0
 - ☐ Not correct for SAM, compare codes
- ☐ Different implementation between codes
 - ☐ Multiply by D/L, new A, B, C:
 - **□** 5.467, 847.17, -1.0
- ☐ Flow rates by component predicted by SAM:

Component	RELAP flow (kg/s)	Loss coefficient	SAM flow (kg/s)	Tuned loss coefficient	Tuned SAM flow (kg/s)
Core	771.40	(Eq. 4)	773.40	(Eq. 4)	771.38
Bypass	261.47	0.3750	263.73	0.6	261.47
Diode	51.60	100	50.78	94.5	51.62
Pump	1084.47	0	1087.92	0	1084.48

K	+	f	$\frac{L}{D}$	=	A	+	BRe	- <i>C</i>
---	---	---	---------------	---	---	---	-----	------------

Get L and D for single volume of nodalization

Building Mk1 PBFHR: Other input

[./Paxial]

Diode: pump with 0 head Different loss coefficient for forward/reverse flow


```
[./Phead]
    type = PiecewiseLinear
x = '0
               1000
                          1004.5
                                    1009
                                               1013.5
                                                          1018
                                                                    1022.5
     1027
               1031.5
                          1036
                                    1040.5
                                               1045
                                                          1049.5
                                                                    1054
     1058.5
               1063
                          1067.5
                                    1072
                                               1076.5
                                                          1081
                                                                    1000001
v = '367475
               367475
                          182810.4
                                    89968.8
                                               43302.0
                                                         19845.0
                                                                    8054.3
     2127.7
               -851.3
                          - 2348.7
                                    -3101.3
                                               -3479.6
                                                          -3669.8
                                                                    -3765.4
     -3813.4
               -3837.6
                          -3849.7
                                     -3855.8
                                               -3858.9
                                                          -3860.4
                                                                    -3861.9
 [../]
  [./Phead2]
    type = PiecewiseLinear
   x = '0\ 100\ 104.5\ 109\ 113.5\ 118\ 122.5\ 127\ 10000'
    v = '367475 367475 171250 80450 38750 18600 4900 0 0'
 [../]
  [./Phead3]
   type = ParsedFunction
   #value = min(367475,371377*exp(-0.1528583*(min(t,200)-100))-3862)
   value = min(367475,371377*exp(-0.1528583*(min(t,1100)-1000))-3862)
  [../]
```

```
type = PiecewiseConstant
                                                                        axis = 0
                                                                        direction = right
                                                                       xy_data =
                                                                              '0.176153846153846
                                                                                                   0.0939862040
                                                                              0.352307692307692
                                                                                                   0.2648701900
                                                                              0.528461538461539
                                                                                                   0.4186657800
                                                                              0.704615384615385
                                                                                                   0.5895497920
                                                                              0.880769230769231
                                                                                                   0.7689779760
                                                                              1.056923076923080
                                                                                                   0.9056851700
                                                                              1.233076923076920
                                                                                                   0.9825829780
                                                                              1.409230769230770
                                                                                                   1.0082155720
                                                                              1.585384615384620
                                                                                                   1.0167597700
                                                                              1.761538461538460
                                                                                                   1.0167597700
                                                                              1.937692307692310
                                                                                                   1.0509365880
                                                                              2.113846153846150
                                                                                                   1.1363785680
                                                                              2.2900000000000000
                                                                                                   1.2047321780
                                                                              2.466153846153850
                                                                                                   1.2218205740
                                                                              2.642307692307690
                                                                                                   1.2303647720
                                                                              2.818461538461540
                                                                                                   1.2559973660
                                                                              2.994615384615380
                                                                                                   1.2389089700
                                                                              3.170769230769230
                                                                                                   1.1961879800
                                                                              3.346923076923080
                                                                                                   1.1278343700
                                                                              3.523076923076920
                                                                                                   1.0509365880
                                                                              3.699230769230770
                                                                                                   1.0851133800
                                                                              3.875384615384620
                                                                                                   1.1192901720
                                                                              4.051538461538460
                                                                                                   1.1876437820
                                                                              4.227692307692310
                                                                                                   1.2645415640
                                                                              4.403846153846150
                                                                                                   1.3499835700
1000 1001 1002 1004 1008 1016 1024 1032 1040 1048 1060 1120 1240 1480 1960 2440 2920 3400 3880
                                                                              4.5800000000000000
                                                                                                   1.2132763760
```

[./shutdownPower]

type = PiecewiseLinear

0.0120762712

0.0529661017

0.0440677966

x = '0

4360 4600 13200'

Building Mk1 PBFHR: Full Model and Transient

Building Mk1 PBFHR: Primary Loop Flow

Transient Results: Flow Reversal

Transient Results: Flow Reversal

Transient Results: Flow Reversal

Transient Results: Key Temperatures

Conclusions and Path Forward

- Overall behavior including flow rates during reversal are well-captured
- ☐ Discrepancies arise from pump modeling and core heat structure treatment
- Future benchmark worth doing if spherical core heat structures used
 - ☐ Furthermore, code comparison could be done with more advanced RELAP model
 - ☐ Consider development of pump geometry, 3D flow model, porous medium approach
- Study opens discussion about passive safety system performance
- Benchmarking validation study with Compact Integral Effects Test (CIET) facility at UC-Berkeley also under consideration
- Continued development of overcooling simulation capability in SAM

Acknowledgements

This work is supported under NEUP Grant DE-NE0008545 (Project 16-10647) Experimental and Modeling Investigation of Overcooling Transients that include Freezing, in Fluoride-Salt Cooled High-Temperature Reactors (FHRs). This material is based upon work supported under an Integrated University Program Graduate Fellowship. Special thanks given to Dr. Nicolas Zweibaum, for giving permission to use his RELAP5 model results and nodalization diagrams.

KAZI AHMED

NEUP Fellow Department of Engineering Physics University of Wisconsin-Madison kkahmed@wisc.edu

DR. RALUCA SCARLAT

Assistant Professor
Department of Engineering Physics
University of Wisconsin-Madison
roscarlat@wisc.edu

DR. RUI HU

Principal Nuclear Engineer Argonne National Laboratory rhu@anl.gov

Heat and Mass Transport Group | Professor Raluca Scarlat HEATandMASS.ep.wisc.edu

References

- 1. R. Hu, "SAM Theory Manual," ANL/NE-17/4, Argonne National Laboratory (2017).
- 2. N. Zweibaum, "Experimental Validation of Passive S Safety System Models: Application to Design and Optimization of Fluoride-Salt-Cooled, High-Temperature Reactors," PhD dissertation, University of California, Berkeley, available: http://www.nzweibaum.com/ (2015).
- 3. R. O. Scarlat, "Design of Complex Systems to Achieve Passive Safety: Natural Circulation Cooling of Liquid Salt Pebble Bed Reactors," PhD dissertation, University of California, Berkeley (2012).
- 4. C. B. Davis, "Implementation of Molten Salt Properties into RELAP5-3D/ATHENA," INEEL/EXT-05-02658, Idaho National Engineering and Environmental Laboratory (2005).
- 5. R. Hu, "Development of a Reduced-Order Three-Dimensional Fluid Model for Thermal Mixing and Stratification Simulation during Reactor Transients," Proceedings of 17th International Topical Meeting on Nuclear Reactor Thermal Hydraulics (NURETH-17), Xi'an China, September 3 8, 2017.

Thanks for your attention

Backup Slides

Key Transient Temperatures, Two Extreme Cases

DHX-TCHX Natural Circulation Loop

Mk1 design parameters for DHX (tube side) and TCHX (coiled tube side)

Parameter	DHX	TCHX	Unit
Water Temperature (T_{∞})	-	100	°C
Outside diameter	0.0127	0.0127	m
Inside diameter	0.0109	0.0109	m
Number of tubes	984	936	-
Tube length	2.5	6	m
Overall U	291	22.6	W/m ² -C
Heat Transfer Area	98	224	m ²

Liquid thermophysical properties for FLiBe (600-800°C)

Property	Correlation (T in °C)	Unit
Viscosity	$4.638 \cdot 10^5 / \mathrm{T}^{2.79}$	kg/m-s
Specific Heat	2415.78	J/kg-C
Thermal Conductivity	$0.7662 + 0.0005 \cdot T$	W/m-C
Density	2279.92 − 0.488 · T	kg/m ³

Building Mk1 PBFHR: Properties

- ☐ Molten salt properties were initially implemented differently
- ☐ For purpose of comparison, RELAP5 (R5) version implemented in SAM

Aside: Example of h Calculation

☐ Heat transfer correlation selected based on Re, Pr

Parameters Used in PB-FHR Models

Component	Number on diagram	Length (m)	Vertical angle (°)	Hydraulic diameter (m)	Flow area (m2)
	Core bran	ch (botton	ı to top)		
Active core region	1	4.58	90	3.00E-02	1.33E+00
Core bypass	2	4.58	90	1.00E-02	1.33E-01
Hot salt collection ring	3	3.96	0	5.67E-01	2.52E-01
Hot salt extraction pipe	4	3.77	90	5.66E-01	2.51E-01
Branch	26	0.5	0	5.80E-01	2.64E-01
	CTAH brai	ıch (top to	bottom)		
Reactor vessel to hot salt well	5	3.73	1.2443	5.80E-01	2.64E-01
Hot salt well	6	2	9.7878	1.45E+00	3.31E+00
Hot salt well to CTAH	7	3.23	-0.8160	4.40E-01	3.04E-01
CTAH hot manifold	8	3.418	-90	2.80E-01	4.93E-01
CTAH salt side	9	18.47	-0.5088	4.57E-03	4.49E-01
CTAH cold manifold	10	3.418	-90	1.75E-01	1.92E-01
CTAH to drain tank	11	3.48	-1.2349	4.38E-01	3.02E-01
Stand pipe	12	6.51	90	4.38E-01	3.02E-01
Stand pipe to reactor vessel	13	6.6033	1.2148	4.38E-01	3.02E-01
Injection plenum	14	3.04	-90	4.38E-01	3.02E-01
Branch	27	0.5	-90	5.60E-02	3.04E-01
Downcomer	15	4.76	-90	5.60E-02	3.04E-01
Inlet plenum	28	0.2	0	3.00E-02	1.33E+00

Parameters Used in PB-FHR Models

Commonant	Number on	Length	Vertical angle	Hydraulic	Flow		
Component	diagram	(m)	(°)	diameter (m)	area (m2)		
DHX branch (bottom to top)							
Downcomer to DHX	16	0.58	90	1.50E-01	3.53E-02		
DHX shell side	17	2.5	90	1.09E-02	2.22E-01		
DHX to hot leg	18	3.008	9.7615	1.50E-01	3.53E-02		
	DRACS loop	o (counterc	lockwise)				
DHX tube side	19	2.5	90	1.09E-02	1.84E-01		
DRACS hot leg 1	20	3.45	90	1.50E-01	3.53E-02		
DRACS hot leg 2	21	3.67	0	1.50E-01	3.53E-02		
TCHX manifold	22	2.6	90	1.50E-01	3.53E-02		
TCHX salt tube	23	6	-25.6793	1.09E-02	1.75E-01		
DRACS cold leg 1	24	4.43	0	1.50E-01	3.53E-02		
DRACS cold leg 2	25	5.95	-90	1.50E-01	3.53E-02		
Heat Structure Component	Number on	Length	Left	Wall			
Heat Structure Component	diagram	(m)	boundary (m)	thickness (m)			
CTAH salt side	9	18.47	2.29E-03	8.89E-04			
DHX tube side	19	2.5	5.45E-03	9.00E-04			
TCHX salt tube	23	6	5.45E-03	9.00E-04			

Overcooling Modeling in CFD

Overcooling Model for System Code

Fluid Pressure

$$\frac{\partial (A\rho)_l}{\partial t} + \frac{\partial (A\rho u)_l}{dz} = -\sigma_A$$

Fluid Velocity

$$\frac{\partial (A\rho u)}{\partial t} + \frac{\partial (A\rho uu + Ap)}{\partial z} = -A\rho g - \frac{Af}{D} \frac{\rho u|u|}{2}$$

Fluid Temperature

$$\frac{\partial (A\rho H)_l}{\partial t} + \frac{\partial (A\rho u H)_l}{\partial z} = -\sigma_A H + q'_{wl} (T_l > T_f) + q'_{int} (T_l \le T_f)$$

Solid Temperature

$$\frac{\partial (A\rho H)_{s}}{\partial t} = \sigma_{A}H_{s} + q'_{ws} - q'_{int}$$

Solid Mass

$$\frac{\partial (A\rho)_{S}}{\partial t} = \sigma_{A}$$

Interface Radius

$$\left(\frac{-q_{ws}^{\prime\prime}R}{r} - h_{int}(T_m - T_l)\right) = \left(1 + \left(\frac{dr_i}{dz}\right)^2\right) \frac{\partial r_i}{\partial t}(\rho \Delta H)$$

