Predicting Heart Failure with ANN

Content

- What is a heart attack?
- 2. The dataset
- 3. Numerical variable analysis
- 4. Categorical variable analysis
- 5. The 3 Neural Network models
- 6. Evaluation of the models
- 7. Conclusion
- 8. Appendix

Healthy heart

What is a heart attack?

Heart failure means that the heart is unable to pump blood around the body properly. It usually happens because the heart has become too weak or stiff. -> lack of oxygen -> cardiac arrest

Due to many causes:

- Coronary artery disease
- Lifestyle (smoking, sedentary, nutrition)
- Genetics

Some symptoms:

- Chest pain
- Shortness of breath
- Fatigue and weakness
- Swelling of legs, ankle, feet

The dataset

- There are 299 records
- 13 columns = 12 features + 1 target variable: DEATH_EVENT
- 6 encoded categorical variables and remaining 6 numeric variables
- 3 float columns and 9 integer columns
- No missing values

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 299 entries, 0 to 298
Data columns (total 13 columns):
     Column
                               Non-Null Count
                                                Dtype
     age
                               299 non-null
                                                float64
     anaemia
                               299 non-null
                                                int64
     creatinine_phosphokinase
                               299 non-null
                                                int64
                                                int64
 3
     diabetes
                               299 non-null
                                                int64
     ejection_fraction
                               299 non-null
     high_blood_pressure
                               299 non-null
                                                int64
     platelets
                               299 non-null
                                                float64
     serum_creatinine
                                                float64
                               299 non-null
                                                int64
     serum_sodium
                               299 non-null
                               299 non-null
                                                int64
     sex
     smokina
                               299 non-null
                                                int64
     time
                               299 non-null
                                                int64
    DEATH_EVENT
                               299 non-null
                                                int64
dtypes: float64(3), int64(10)
memory usage: 30.5 KB
```

Numerical variable analysis

Boxplots

Blood content

Correlation Matrix

Highest correlated variables:

• time: -0.53

serum_creatinine: 0.29

ejection_fraction: -0.27

• age: 0.25

serum_sodium: -0.2

others below 0.1

Categorical variable analysis

imbalance of dataset:

-->model might be better in predicting the outcome for people who didn't die

Profile of person with likelihood of heart failure

Non-conclusive: as the imbalance of data could affect

The 3 Neural Network models

Model: "sequential"			Model: "sequential_3"			Model: "sequential_20"		
Layer (type)	Output Shape	 Param #	Layer (type)	Output Shape	Param #	Layer (type)	Output Shape	Param #
dense (Dense)	(None, 16)	208	dense_11 (Dense)	(None, 16)	208	dense_80 (Dense)	(None, 16)	208
dense_1 (Dense)	(None, 8)	136	dense_12 (Dense)	(None, 8)	136	dense_81 (Dense)	(None, 8)	136
dropout (Dropout)	(None, 8)	0	dense_13 (Dense)	(None, 4)	36	dense_82 (Dense)	(None, 4)	36
dense_2 (Dense)	(None, 1)	9	dropout_3 (Dropout)	(None, 4)	0	dropout_19 (Dropout)	(None, 4)	0
			dense_14 (Dense)	(None, 1)	5	dense_83 (Dense)	(None, 1)	5
Trainable params: 353 Non-trainable params: 0 			Total params: 385 Trainable params: 385 Non-trainable params: 0			Total params: 385 Trainable params: 385 Non-trainable params: 0		

Results from models:

Model 1: loss: 0.3402 - accuracy: 0.8436 - val_loss: 0.3690 - val_accuracy: 0.8500

Model 2: loss: 0.4240 - accuracy: 0.8492 - val_loss: 0.4184 - val_accuracy: 0.8667

Model 3: loss: 0.4021 - accuracy: 0.8715 - val_loss: 0.4017 - val_accuracy: 0.8667

Evaluation of the models: confusion matrix

The confusion matrices of the 3 models predicted the True Negatives the most well and this could be due to the imbalance of data having more data about people who didn't die from heart attack.

ROC

Conclusion

Model 3 is best.

As confusion matrix and ROC are both better.

Next step:

- -remove all outliers from platelets that still lingered even after converting
- -remove some data about the people who didn't die so more balanced data.
- -experiment with hyperparatuning the models

Appendix

Github:

Date: 16/06/2023