Usando COD Crystallography Open Database

Usando la base de datos de COD obtendremos los datos mínimos para contruir el sistema *lattice* y construir el cristal:

 Fe_2O_3

Código: 9015964

- a = 5.09
- b = 5.09
- c = 13.77
- alpha $(y-z) = 90^{00}$
- beta $(x-z) = 90^{\circ}$
- gamma (x-y) = 120°
- Cristal = 30 átomos (lo mínimo para formar la estructura cristalina)
- Densidad = 5,14 g/cm3
- Posición Wykoff de Fe: 12c, x=1/3, y=2/3; z=0.521489
- Posición Wykoff de O: 18e, x=0.694599; y=x; z=3/4
- Volume = 309.29 Å³

Si no teneis ninguno de las bibliotecas instaladas quitand el comentario # que hay al prinicipio.

```
In [1]: # Instalar paquetes en caso de no tenerlos
    #!pip install pymatgen # Incluye MPRester, Element, Composition, Lattice, Structur
    #!pip install numpy
    #!pip install matplotlib
    #!pip install pandas
    #!pip install nglview
    #!pip install ase # Para instalar ASE (Atomic Simulation Environment)
    #!pip install vtk # Para StructureVis (necesita vtk para visualizaciones)
In [2]: # Carga de paquetes
    from nymatgen ext matricol import MPRester
```

```
from pymatgen.ext.matproj import MPRester
from pymatgen.core import Element, Composition, Lattice, Structure, Molecule
from pymatgen.symmetry.analyzer import SpacegroupAnalyzer
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd

api_key = "Vuestro Código"
mpr = MPRester(api_key)
```

Debéis generar vuestra api key registrandose en https://legacy.materialsproject.org/janrain/loginpage/?next=/open y añadirla en **api_key** de la celda de arriba.

```
In [3]: from pymatgen.ext.cod import COD
      cod = COD()
In [4]: fe2o3 = cod.get_structure_by_id(9015964) # nombre que le asignamos a la estructura
      print(fe2o3) # obtenemos los datos de la base de datos según su código id
     Full Formula (Fe12 018)
     Reduced Formula: Fe203
     abc : 5.034600 5.034600 13.747300
     angles: 90.000000 90.000000 120.000000
     pbc : True True True
     Sites (30)
            a b
       # SP
       0 Fe 0 0
                              0.35534
       1 Fe 0.666667 0.333333 0.688673
       2 Fe 0.333333 0.666667 0.022007
       3 Fe 0 0 0.85534
       4 Fe 0.666667 0.333333 0.188673
       5 Fe 0.333333 0.666667 0.522007
       6 Fe 0 0 0.14466
       7 Fe 0.666667 0.333333 0.477993
         Fe 0.333333 0.666667 0.811327
       8
       9 Fe 0 0 0.64466
      10 Fe 0.666667 0.333333 0.977993
      11 Fe 0.333333 0.666667 0.311327
      12 0 0.3056 0 0.25
      13 0 0.972267 0.333333 0.583333
      14 0 0.638933 0.666667 0.916667
      15 0 0.3056 0.3056
                              0.75
      16 0 0.972267 0.638933 0.083333
      17 0 0.638933 0.972267 0.416667
18 0 0 0.3056 0.25
      19 0 0.666667 0.638933 0.583333
      20 0 0.333333 0.972267 0.916667
      21 0 0.6944 0 0.75
      22 0 0.361067 0.333333 0.083333
      23 0 0.027733 0.666667 0.416667
      24 0 0.6944 0.6944 0.25
      25 0 0.361067 0.027733 0.583333
      26 0 0.027733 0.361067 0.916667
      27 0 0 0.6944 0.75
      28 0 0.666667 0.027733 0.083333
      29 0 0.333333 0.361067 0.416667
```

Obtenemos las coordenadas fraccionarias de la celda unidad del cristal Fe2O3. Duplicaremos la celda por dos en cada eje para tener un mayor crista.

```
In [5]: replicas = [2, 2, 2]
structure = fe2o3 * replicas
print(structure)
```

Full Formula (Fe96 0144) Reduced Formula: Fe2O3

abc : 10.069200 10.069200 27.494600 angles: 90.000000 90.000000 120.000000 pbc : True True True Sites (240)

Sites (240)						
#	SP	а	b	С		
0	Fe	0	0	0.17767		
1	Fe	0	0	0.67767		
2	Fe	1	0.5	0.17767		
3	Fe	1	0.5	0.67767		
4	Fe	0.5	0	0.17767		
5	Fe	0.5	0	0.67767		
6	Fe	0.5	0.5	0.17767		
7	Fe	0.5	0.5	0.67767		
8	Fe	0.333333	0.166667	0.344337		
9	Fe	0.333333	0.166667	0.844337		
10	Fe	0.333333	0.666667	0.344337		
11	Fe	0.333333	0.666667	0.844337		
12	Fe	0.833333	0.166667	0.344337		
13	Fe	0.833333	0.166667	0.844337		
14	Fe	0.833333	0.666667	0.344337		
15	Fe	0.833333	0.666667	0.844337		
16	Fe	0.166667	0.333333	0.011003		
17	Fe	0.166667	0.333333	0.511003		
18	Fe	0.166667	0.833333	0.011003		
19	Fe	0.166667	0.833333	0.511003		
20	Fe	0.666667	0.333333	0.011003		
21	Fe	0.666667	0.333333	0.511003		
	Fe					
22		0.666667	0.833333	0.011003		
23	Fe	0.666667	0.833333	0.511003		
24	Fe	0	0	0.42767		
25	Fe	0	0	0.92767		
26	Fe	1	0.5	0.42767		
27	Fe	1	0.5	0.92767		
28	Fe	0.5	0	0.42767		
29	Fe	0.5	0	0.92767		
30	Fe -	0.5	0.5	0.42767		
31	Fe	0.5	0.5	0.92767		
32	Fe -	0.333333	0.166667	0.094337		
33	Fe	0.333333	0.166667	0.594337		
34	Fe -	0.333333	0.666667	0.094337		
35	Fe	0.333333	0.666667	0.594337		
36	Fe	0.833333	0.166667	0.094337		
37	Fe	0.833333	0.166667	0.594337		
38	Fe	0.833333	0.666667	0.094337		
39	Fe	0.833333	0.666667	0.594337		
40	Fe	0.166667	0.333333	0.261003		
41	Fe	0.166667	0.333333	0.761003		
42	Fe	0.166667	0.833333	0.261003		
43	Fe	0.166667	0.833333	0.761003		
44	Fe	0.666667	0.333333	0.261003		
45	Fe	0.666667	0.333333	0.761003		
46	Fe	0.666667	0.833333	0.261003		
47	Fe	0.666667	0.833333	0.761003		

48	Fe	0	0	0.07233
49	Fe	0	0	0.57233
50	Fe	1	0.5	0.07233
51	Fe	1	0.5	0.57233
52	Fe	0.5	0	0.07233
53	Fe	0.5	0	0.57233
54	Fe	0.5	0.5	0.07233
55	Fe	0.5	0.5	0.57233
56	Fe	0.333333	0.166667	0.238997
57	Fe	0.333333	0.166667	0.738997
58	Fe	0.333333	0.666667	0.238997
59	Fe	0.333333	0.666667	0.738997
60	Fe	0.833333	0.166667	0.238997
61	Fe	0.833333	0.166667	0.738997
62	Fe	0.833333	0.666667	0.238997
63	Fe	0.833333	0.666667	0.738997
64	Fe	0.166667	0.333333	0.405663
65	Fe	0.166667	0.333333	0.905663
66	Fe	0.166667	0.833333	0.405663
67	Fe	0.166667	0.833333	0.905663
68	Fe	0.666667	0.333333	0.405663
69	Fe	0.666667	0.333333	0.905663
70	Fe	0.666667	0.833333	0.405663
71	Fe	0.666667	0.833333	0.905663
72	Fe	0	0	0.32233
73	Fe	0	0	0.82233
74	Fe	1	0.5	0.32233
75	Fe	1	0.5	0.82233
76	Fe	0.5	0	0.32233
77	Fe	0.5	0	0.82233
78	Fe	0.5	0.5	0.32233
79	Fe	0.5	0.5	0.82233
80	Fe	0.333333	0.166667	0.488997
81	Fe	0.333333	0.166667	0.988997
82	Fe	0.333333	0.666667	0.488997
83	Fe	0.333333	0.666667	0.988997
84	Fe	0.833333	0.166667	0.488997
85	Fe	0.833333	0.166667	0.988997
86	Fe	0.833333	0.666667	0.488997
87	Fe	0.833333	0.666667	0.988997
88	Fe	0.166667	0.333333	0.155663
89	Fe	0.166667	0.333333	0.655663
90	Fe	0.166667	0.833333	0.155663
91	Fe	0.166667	0.833333	0.655663
92	Fe	0.666667	0.333333	0.155663
93	Fe	0.666667	0.333333	0.655663
94	Fe	0.666667	0.833333	0.155663
95	Fe	0.666667	0.833333	0.655663
96	0	0.1528	0	0.125
97	0	0.1528	0	0.625
98	0	0.1528	0.5	0.125
99	0	0.1528	0.5	0.625
100	0	0.6528	0	0.125
101	0	0.6528	0	0.625
102	0	0.6528	0.5	0.125
103	0	0.6528	0.5	0.625

```
0.486133 0.166667
104
    0
                               0.291667
105
    0
           0.486133 0.166667
                               0.791667
106
    0
           0.486133 0.666667
                               0.291667
107
    0
           0.486133 0.666667
                               0.791667
108
    0
           0.986133 0.166667
                               0.291667
109
    0
           0.986133 0.166667
                               0.791667
110
    0
           0.986133 0.666667
                               0.291667
111
    0
           0.986133
                     0.666667
                               0.791667
112
    0
           0.319467
                     0.333333
                              0.458333
113
    0
           0.319467 0.333333
                               0.958333
114
    0
           0.319467 0.833333 0.458333
115
    0
           0.319467 0.833333 0.958333
           0.819467
    0
                     0.333333
116
                               0.458333
117
    0
           0.819467
                     0.333333
                              0.958333
           0.819467
118
    0
                     0.833333
                              0.458333
119
    0
           0.819467 0.833333 0.958333
    0
120
           0.1528
                     0.1528
                               0.375
121
    0
           0.1528
                     0.1528
                               0.875
122
    0
           0.1528
                     0.6528
                               0.375
123
    0
           0.1528
                     0.6528
                               0.875
                               0.375
124
    0
           0.6528
                     0.1528
125
    0
           0.6528
                     0.1528
                               0.875
126
    0
           0.6528
                     0.6528
                               0.375
127
    0
           0.6528
                     0.6528
                               0.875
128
           0.486133 0.319467
                               0.041667
    0
129
    0
           0.486133 0.319467
                               0.541667
130
    0
           0.486133 0.819467
                               0.041667
131 0
           0.486133 0.819467
                               0.541667
132
    0
           0.986133 0.319467
                               0.041667
133
    0
           0.986133 0.319467
                               0.541667
134
    0
           0.986133 0.819467
                               0.041667
135
    0
           0.986133 0.819467
                               0.541667
           0.319467
                     0.486133 0.208333
136
    0
137
    0
           0.319467 0.486133 0.708333
138
           0.319467
                    0.986133 0.208333
    0
139
    0
           0.319467
                     0.986133 0.708333
140
    0
           0.819467
                     0.486133
                               0.208333
141
    0
           0.819467
                     0.486133 0.708333
142
    0
           0.819467
                     0.986133 0.208333
143
    0
           0.819467 0.986133 0.708333
144
    0
                     0.1528
                               0.125
           1
145
    0
           1
                     0.1528
                               0.625
146
    0
                     0.6528
                               0.125
           1
147
    0
           1
                     0.6528
                               0.625
148
    0
           0.5
                     0.1528
                               0.125
           0.5
149
    0
                     0.1528
                               0.625
150
    0
           0.5
                     0.6528
                               0.125
151
    0
           0.5
                     0.6528
                               0.625
152
    0
           0.333333 0.319467
                               0.291667
153
    0
           0.333333 0.319467
                               0.791667
           0.333333 0.819467
154
    0
                               0.291667
155
    0
           0.333333 0.819467
                               0.791667
156
    0
           0.833333 0.319467
                               0.291667
157
    0
           0.833333 0.319467
                               0.791667
158
    0
           0.833333 0.819467
                               0.291667
159
           0.833333 0.819467
    0
                               0.791667
```

160	0	0.166667	0.486133	0.458333
161	0	0.166667	0.486133	0.958333
162	0	0.166667	0.986133	0.458333
163	0	0.166667	0.986133	0.958333
164	0	0.666667	0.486133	0.458333
165	0	0.666667	0.486133	0.958333
166	0	0.666667	0.986133	0.458333
167	0	0.666667	0.986133	0.958333
168	0	0.3472	0	0.375
169	0	0.3472	0	0.875
170	0	0.3472	0.5	0.375
171	0	0.3472	0.5	0.875
172	0	0.8472	0	0.375
173	0	0.8472	0	0.875
174	0	0.8472	0.5	0.375
175	0	0.8472	0.5	0.875
176	0	0.180533	0.166667	0.041667
177	0	0.180533	0.166667	0.541667
			0.666667	
178	0	0.180533		0.041667
179	0	0.180533	0.666667	0.541667
180	0	0.680533	0.166667	0.041667
181	0	0.680533	0.166667	0.541667
182	0	0.680533	0.666667	0.041667
183	0	0.680533	0.666667	0.541667
184	0	0.013867	0.333333	0.208333
185	0	0.013867	0.333333	0.708333
186	0	0.013867	0.833333	0.208333
187	0	0.013867	0.833333	0.708333
188	0	0.513867	0.333333	0.208333
189	0	0.513867	0.333333	0.708333
190	0	0.513867	0.833333	0.208333
191	0	0.513867	0.833333	0.708333
192	0	0.3472	0.3472	0.125
193	0	0.3472	0.3472	0.625
194	0	0.3472	0.8472	0.125
195	0	0.3472	0.8472	0.625
196	0	0.8472	0.3472	0.125
197	0	0.8472	0.3472	0.625
198	0	0.8472	0.8472	0.125
199	0	0.8472	0.8472	0.625
200	0	0.180533	0.013867	0.291667
201	0	0.180533	0.013867	0.791667
202	0	0.180533	0.513867	0.291667
203	0	0.180533	0.513867	0.791667
204	0	0.680533	0.013867	0.291667
205	0	0.680533	0.013867	0.791667
206	0	0.680533	0.513867	0.291667
207	0	0.680533	0.513867	0.791667
208	0	0.013867	0.180533	0.458333
200	0	0.013867	0.180533	0.456333
210	0	0.013867	0.680533	0.458333
211	0	0.013867	0.680533	0.958333
212	0	0.513867	0.180533	0.458333
213	0	0.513867	0.180533	0.958333
214	0	0.513867	0.680533	0.458333
215	0	0.513867	0.680533	0.958333

```
216 0
          0
                  0.3472
                               0.375
217 0 0
                  0.3472
                               0.875
                  0.8472 0.375
0.8472 0.875
218 0 0
219 0 0
220 0 0.5
                  0.3472 0.375
0.3472 0.875
221 0 0.5
222 0 0.5
                  0.8472 0.375
223 0 0.5 0.8472 0.875
224 0 0.333333 0.013867 0.041667
225 0 0.333333 0.013867 0.541667
226 0 0.333333 0.513867 0.041667
227 0 0.333333 0.513867 0.541667
228 0 0.833333 0.013867 0.041667
229 0 0.833333 0.013867 0.541667
230 0 0.833333 0.513867 0.041667
231 0 0.833333 0.513867 0.541667
232 0 0.166667 0.180533 0.208333
233 0 0.166667 0.180533 0.708333
234 0 0.166667 0.680533 0.208333
235 0 0.166667 0.680533 0.708333
236 0 0.666667 0.180533 0.208333

      237
      0
      0.6666667
      0.180533
      0.708333

      238
      0
      0.6666667
      0.680533
      0.208333

239 0 0.666667 0.680533 0.708333
```

Visor del cristal con más manipulación:

```
In [6]: import nglview as nv

view = nv.show_pymatgen(structure)
view.add_unitcell()
view.display()

NGLWidget()
```

```
In [7]: from pymatgen.vis.structure_vtk import StructureVis

vis = StructureVis()
vis.show_polyhedron = False
vis.set_structure(structure)

vis.show()
```

Finalmente pasaremos las coordenadas de los átomos en un dataframe tanto para formato csv como en excel. El formato dataframe consta de variables tabuladas en columnas y cada fila son sus observaciones.

```
In [8]: df = []
    for site in structure.sites:
        frac_coords = site.frac_coords
        cart_coord = structure.lattice.get_cartesian_coords(frac_coords)
        df.append(cart_coord)
In [9]: mineral = pd.DataFrame(df, columns=['x', 'y', 'z']) #cada columna será las coorden
mineral.to_excel('coord_fe2o3.xlsx')
```

```
mineral.to_csv('coord_fe2o3.csv')
         # Se guardaran en el la ruta donde ejecutes este código
In [10]: # Vemos que apariencia tiene
         mineral.head()
Out[10]:
                X
                                   Z
                         у
         0 0.0000 0.000000 4.884966
         1 0.0000 0.000000 18.632266
         2 7.5519 4.360091 4.884966
         3 7.5519 4.360091 18.632266
         4 5.0346 0.000000 4.884966
```

In [11]: mineral.tail()

Out[11]:		х	у	Z
	235	-1.748013	5.934375	19.475342
	236	5.803887	1.574284	5.728042
	237	5.803887	1.574284	19.475342
	238	3.286587	5.934375	5.728042
	239	3.286587	5.934375	19.475342

Un saludo,

Juan De los Santos

jmdelosantos17@gmail.com