(19) 世界知的所有権機関 国際事務局

(43) 国際公開日 2003 年3 月20 日 (20.03.2003)

PCT

(10) 国際公開番号 WO 03/022927 A1

(51) 国際特許分類⁷: **C08L 67/04**, C08J 5/00, C08K 3/34

(21) 国際出願番号: PCT/JP02/08956

(22) 国際出願日: 2002 年9 月3 日 (03.09.2002)

(25) 国際出願の言語: 日本語

(26) 国際公開の言語: 日本語

(30) 優先権データ: 特願2001-270434 2001年9月6日(06.09.2001) JP

(71) 出願人 (米国を除く全ての指定国について): ユニチカ株式会社 (UNITIKA LTD.) [JP/JP]; 〒660-0824 兵庫県 尼崎市 東本町 1 丁目 5 0番地 Hyogo (JP).

(72) 発明者; および

(75) 発明者/出願人 (米国についてのみ): 山田 和信 (YA-MADA, Kazunobu) [JP/JP]; 〒611-0021 京都府 宇治市宇治小桜 2 3 ユニチカ株式会社中央研究所内 Ky-oto (JP). 上田 一恵 (UEDA, Kazue) [JP/JP]; 〒611-0021

京都府宇治市宇治小桜23ユニチカ株式会社中央研究所内 Kyoto (JP). 小上 明信 (OGAMI,Akinobu) [JP/JP]; 〒611-0021 京都府宇治市宇治小桜23ユニチカ株式会社中央研究所内 Kyoto (JP). 松岡文夫 (MATSUOKA,Fumio) [JP/JP]; 〒611-0021 京都府宇治市宇治小桜23ユニチカ株式会社中央研究所内 Kyoto (JP). 早瀬茂 (HAYASE,Shigeru) [JP/JP]; 〒611-0021 京都府宇治市宇治小桜23ユニチカ株式会社中央研究所内 Kyoto (JP). 矢野 拓磨 (YANO,Takuma) [JP/JP]; 〒611-0021 京都府宇治市宇治小桜23ユニチカ株式会社中央研究所内 Kyoto (JP). 吉村 和子(YOSHIMURA,Kazuko) [JP/JP]; 〒611-0021 京都府宇治市宇治小桜23ユニチカ株式会社中央研究所内 Kyoto (JP). 固本正巳 (OKAMOTO,Masami) [JP/JP]; 〒520-0243 滋賀県大津市堅田1丁目12番52号 Shiga (JP).

- (74) 代理人: 森本 義弘 (MORIMOTO, Yoshihiro); 〒 550-0005 大阪府 大阪市西区 西本町 1 丁目 1 0 番 1 0 号 西本町全日空ビル 4 階 Osaka (JP).
- (81) 指定国 (国内): JP, KR, US.

/続葉有/

(54) Title: BIODEGRADABLE RESIN COMPOSITION FOR MOLDING AND MOLDED OBJECT OBTAINED BY MOLDING THE SAME

(54) 発明の名称: 成形体用の生分解性樹脂組成物およびそれを成形してなる成形体

(57) Abstract: A biodegradable resin composition and a molded object obtained by molding the composition. The resin composition comprises at least 50 parts by weight of a polylactic acid having a melting point of 160°C or higher, 100 parts by weight of a biodegradable polyester resin having a melt flow rate as measured at 190°C under a load of 21.2 N of 0.1 to 50 g/10 min, and 0.1 to 20 parts by weight of a phyllosilicate having, between sheets thereof, a primary, secondary, or tertiary amine salt, quaternary ammonium salt, or phosphonium salt bonded by ionic bonding.

生分解性樹脂組成物およびそれを成形してなる成形体である。こ

(57) 要約:

の樹脂組成物は、融点160℃以上のポリ乳酸を50質量部以上含有し、190℃、荷重21.2Nにおけるメルトフローレートが0. 1~50g/10分である生分解性ポリエステル樹脂100質量部と、層間に1級ないし3級アミン塩、4級アンモニウム塩、またはホスホニウム塩がイオン結合した層状珪酸塩0.1~20質量部とを含む。

WO 03/022927 A1

(84) 指定国 (広域): ヨーロッパ特許 (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, SK, TR).

2文字コード及び他の略語については、定期発行される 各PCTガゼットの巻頭に掲載されている「コードと略語 のガイダンスノート」を参照。

添付公開書類:

— 国際調査報告書

1

明細書

成形体用の生分解性樹脂組成物およびそれを成形してなる成形体

技術分野

5 本発明は成形体用の生分解性樹脂組成物およびそれを成形してなる成形体に関し、特に、ポリ乳酸を主体とする生分解性ポリエステル樹脂と層状珪酸塩とからなる組成物、およびこれを用いて製造した成形体に関する。このような生分解性樹脂組成物にて成形された成形体は、機械的強度、耐熱性、透明性、ガスバリア性に優れ、廃棄後も自然環境下に蓄積することがない。このような成形体としては、シートまたはパイプ、食品用容器、ブリスターパック容器、プレススルーパック容器、各種流動体用容器、および各種射出成形体が挙げられる。

15 背景技術

20

25

近年、環境保全の見地からポリ乳酸をはじめとする生分解性樹脂が注目されている。生分解性樹脂のうちでポリ乳酸は最も耐熱性が高い樹脂の1つであり、大量生産可能なためコストも安く、有用性が高い。しかし、溶融粘度が低いために成形性に劣り、また得られた成形体は脆いという欠点を有している。脆さを克服する手法として柔軟成分を添加する方法が検討されているが、その場合はポリ乳酸の特徴である耐熱性が損なわれるという問題がある。

耐熱性と耐衝撃性を両立させる方法として、熱処理等により結晶化を促進させる試みがなされている。しかし、このときに結晶化速度が遅い場合は、成形加工条件にかなりの制約を伴うとともに、耐

2

衝撃性が不十分なままである。結晶化速度を向上させるためにタルクやシリカ等の結晶核剤の添加がなされているが、機械的特性を満足させるためには添加量を多くする必要があり、するとその結果として比重が高くなったり成形体が不透明になたりして、成形体の用途に制限が加わることになる。

一方、JP-A-2000-17157には、脂肪族ポリエステルと有機化された層状珪酸塩とからなる組成物およびこれらより得られるフィルムに関する技術が開示されている。この文献には、脂肪族ポリエステルを層状珪酸塩と複合化することにより機械的強度およびヒートシール性が向上することが示されている。しかし、フィルム以外の成形体について検討されていないばかりでなく、成形加工性に劣るポリ乳酸樹脂については、実際には全く検討されていない。

JP-A-2001-89646には、生分解性樹脂と有機化された層状珪酸塩とからなる組成物が開示されている。そして、このような組成物であると剛性および生分解速度が向上することが示されている。しかし、実際の成形体については何ら検討がなされていないのみならず、実際には160℃で成形可能な低融点タイプのポリ乳酸を使用しているのみであり、得られる樹脂組成物の耐熱性は20 低い。

発明の開示

25

5

10

本発明は、上記の問題点を解決しようとするものであり、機械的強度や耐熱性に優れた成形体用生分解性樹脂組成物およびそれを成形してなる成形体を提供することを目的とする。

3

本発明者らは、ポリ乳酸を主体とした特定の生分解性ポリエステル樹脂と、層間に特定の塩がイオン結合した層状珪酸塩とからなる組成物、およびそれを成形してなる成形体が、機械的強度、耐熱性、透明性、耐水性、ガスバリア性に優れることを見いだし、本発明に到達した。

本発明の成形体用の生分解性樹脂組成物は、

5

15

20

25

融点 160 C以上のポリ乳酸を 50 質量部以上含有し、190 C、荷重 21.2 Nにおけるメルトフローレートが $0.1\sim50$ g /1 0分である生分解性ポリエステル樹脂 100 質量部と、

10 層間に1級ないし3級アミン塩、4級アンモニウム塩、またはホスホニウム塩がイオン結合した層状珪酸塩0.1~20質量部とを含む。

本発明の成形体用の生分解性樹脂組成物は、好適には、層状珪酸塩の層厚が1~100nmであり、層状珪酸塩の層間距離が2.5 nm以上であり、前記樹脂組成物のアイゾット衝撃強度が30J/m以上であり、前記樹脂組成物の熱変形温度が100℃以上である。

本発明の成形体用の生分解性樹脂組成物は、好適には、層状珪酸塩の層厚が1~100nmであり、層状珪酸塩の層間距離が2.5nm以上であり、前記樹脂組成物の曲げ弾性率が4.4GPa以上であり、前記樹脂組成物の熱変形温度が100℃以上である。

本発明の成形体用の生分解性樹脂組成物は、好適には、ヘーズが60以下である。

本発明の成形体用の生分解性樹脂組成物は、好適には、気温 2 0 ℃、湿度 9 0 %における酸素透過係数が、 1 6 0 m l · m m / m ² · d a y · M P a 以下である。

4

本発明の成形体用の生分解性樹脂組成物は、好適には、層状珪酸塩における1級ないし3級アミン塩、4級アンモニウム塩、またはホスホニウム塩の結合量Kと、塩を結合する前の層状珪酸塩のカチオン交換容量Cとの比K/Cが、0.9~1.25である。

5 本発明の成形体用の生分解性樹脂組成物は、好適には、重量平均 分子量が100,00以上である。

本発明の成形体用の生分解性樹脂組成物は、好適には、ポリアルキレンオキシド、脂肪族ポリエステル、多価アルコールエステル、 多価カルボン酸エステルよりなるグループから選ばれた少なくとも 10 1種の化合物であって、沸点が250℃以上かつ数平均分子量が2 00~50,000であるものを、生分解性ポリエステル樹脂10 0質量部に対して0.01~10質量部含有する。

本発明の、成形体用の生分解性樹脂組成物を製造する際に、生分解性ポリエステル樹脂と層状珪酸塩とを混練法によって溶融混練および分散させるための方法は、混練時の剪断係数を100~300に制御するとともに、混練時の実樹脂温度を(融点+100)℃以下に制御する。

15

本発明の生分解性樹脂成形体は、前記生分解性樹脂組成物が成形加工されたものである。

20 本発明の生分解性樹脂成形体を製造するための方法は、前記成形体を、射出成形、ブロー成形、押出成形、インフレーション成形、シート加工後の真空成形、シート加工後の圧空成形、シート加工後の真空圧空成形のいずれかによって成形する。

本発明の生分解性樹脂成形体は、好適には、押出成形によって成 25 形されたシートまたはパイプである。 本発明の生分解性樹脂成形体は、好適には、真空成形、圧空成形、 真空圧空成形のいずれかによって成形されたところの、食品用容器、 農業および、または園芸用容器、ブリスターパック容器、プレスス ルーパック容器のいずれかである。

5 本発明の生分解性樹脂成形体は、好適には、ブロー成形または射 出成形によって成形された流動体用容器である。

本発明の生分解性樹脂成形体は、好適には、射出成形によって成形されたところの、食器、容器のキャップ、事務用品、日用品、農業および/または園芸用資材、玩具、電化製品用樹脂部品、自動車用樹脂部品のいずれかである。

発明を実施するための形態

10

本発明の生分解性樹脂組成物を構成する生分解性ポリエステル樹脂は、ポリ乳酸を50質量%以上含有している必要があり、このポリ乳酸の含有量は、好ましくは60質量%以上、さらに好ましくは80質量%以上である。ポリ乳酸含有量が50質量%未満では、得られる生分解性樹脂組成物の機械的特性や耐熱性が劣る。

生分解性ポリエステル樹脂の、190 ℃、荷重21.2 Nにおけるメルトフローレートは、 $0.1 \sim 50$ g/10分であることが必20 要であり、好ましくは $0.2 \sim 20$ g/10分、さらに好ましくは $0.5 \sim 10$ g/10分である。メルトフローレートが50 g/10分を超える場合は、溶融粘度が低すぎて成形物の機械的特性や耐熱性が劣る。メルトフローレートが10.1 g/10分未満の場合は、成形加工時の負荷が高くなりすぎて、操業性が低下する場合がある。

25 本発明における生分解性ポリエステル樹脂の主要成分であるポリ

6

乳酸としては、ポリ(L-乳酸)、ポリ(D-乳酸)、およびこれらの混合物または共重合体を用いることができる。このポリ乳酸は融点が160 \mathbb{C} 以上であることが必要で、融点が160 \mathbb{C} 未満では得られる成形体の機械的特性や耐熱性も劣る。

5 この生分解性ポリエステル樹脂は、通常は公知の溶融重合法で、あるいはさらに固相重合法を併用して、製造される。生分解性ポリエステル樹脂のメルトフローレートを所定の範囲に調節する方法として、メルトフローレートが大きすぎる場合は、少量の鎖長延長剤、例えば、ジイソシアネート化合物、ビスオキサゾリン化合物、エポ10 キシ化合物、酸無水物等を用いて樹脂の分子量を増大させる方法が挙げられる。逆に、メルトフローレートが小さすぎる場合は、メルトフローレートの大きな生分解性ポリエステル樹脂や低分子量化合物と混合する方法が挙げられる。

生分解性ポリエステル樹脂には、ポリ乳酸の機械的特性や耐熱性、 透明性、ガスバリア性を大幅に損ねることのない範囲で、必要に応 じて、その他の生分解性樹脂成分を共重合ないしは溶融混練時に混 合することもできる。その他の生分解性樹脂としては、ポリ(エチ レンサクシネート)、ポリ(ブチレンサクシネート)、ポリ(ブチレ ンサクシネートーcoーブチレンアジベート)等に代表されるジオ 20 ールとジカルボン酸からなる脂肪族ポリエステルや、ポリグリコー ル酸、ポリ(3ーヒドロキシ酪酸)、ポリ(3ーヒドロキシ吉草酸)、 ポリ(3ーヒドロキシカプロン酸)等のポリヒドロキシカルボン酸 や、ポリ(εーカプロラクトン)やポリ(δーバレロラクトン)に 代表されるポリ(ωーヒドロキシアルカノエート)や、さらに芳香 疾成分を含んでいても生分解性を示すポリ(ブチレンサクシネート

7

- c o - ブチレンテレフタレート) やポリ (ブチレンアジペートー c o - ブチレンテレフタレート) 等が挙げられ、また、この他に、ポリエステルアミド、ポリエステルカーボネート、澱粉等の多糖類等が挙げられる。

5 層状珪酸塩は、膨潤性層状粘土鉱物であり、具体的には、スメクタイト、バーミキュライト、および膨潤性フッ素雲母等が挙げられる。スメクタイトの例としては、モンモリロナイト、バイデライト、ヘクトライト、サポナイトが挙げられる。膨潤性フッ素雲母の例としては、Na型フッ素四ケイ素雲母、Na型テニオライト、Li型 テニオライト等が挙げられ、また上記の他に、カネマイト、マカタイト、マガディアイト、ケニアイト等のアルミニウムやマグネシウムを含まない層状珪酸塩を使用することもできる。天然品以外に合成品でもよく、合成方法としては、溶融法、インターカレーション法、水熱法等が挙げられるが、いずれの方法であってもよい。これ 5の層状珪酸塩は、単独で使用しても良いが、鉱物の種類、産地、粒径等が異なるものを2種類以上組み合わせて使用しても良い。

層状珪酸塩の配合量は、生分解性ポリエステル樹脂100質量部に対して0.1~20質量部であることが必要であり、好ましくは0.2~10質量部である。0.1質量部未満では本発明の目的と20 する機械的強度の改良効果が得られず、20質量部を超える場合には、樹脂中への微分散が困難となり、靭性が大きく低下する他、透明性も低下する。

層状珪酸塩、特にスメクタイトは、予め有機カチオン処理しておくことが必要である。有機カチオンとしては、1級ないし3級アミンおよびそれらの塩、4級アンモニウム塩、ホスホニウム塩等が挙

8

げられる。これらが、層状珪酸塩の層間にイオン結合する。

1級アミンとしては、オクチルアミン、ドデシルアミン、オクタ デシルアミン等が挙げられる。2級アミンとしては、ジオクチルア ミン、メチルオクタデシルアミン、ジオクタデシルアミン等が挙げ られる。3級アミンとしては、トリオクチルアミン、ジメチルドデ 5 シルアミン、ジドデシルモノメチルアミン等が挙げられる。 4級ア ンモニウムイオンとしては、テトラエチルアンモニウム、オクタデ シルトリメチルアンモニウム、ジメチルジオクタデシルアンモニウ ム、ジヒドロキシエチルメチルオクタデシルアンモニウム、メチル ドデシルビス(ポリエチレングリコール)アンモニウム、メチルジ 10 エチル(ポリプロピレングリコール)アンモニウム等が挙げられる。 さらに、ホスホニウムイオンとしては、テトラエチルホスホニウム、 テトラブチルホスホニウム、ヘキサデシルトリブチルホスホニウム、 テトラキス(ヒドキシメチル)ホスホニウム、2-ヒドロキシエチ ルトリフェニルホスホニウム等が挙げられる。 15

これらのうち、ジヒドロキシエチルメチルオクタデシルアンモニウム、メチルドデシルビス(ポリエチレングリコール)アンモニウム、メチルジエチル(ポリプロピレングリコール)アンモニウム、2-ヒドロキシエチルトリフェニルホスホニウム等の、分子内に水20 酸基を1つ以上もつアンモニウム塩で処理した層状珪酸塩は、生分解性ポリエステル樹脂との親和性が高く、層状珪酸塩の分散性が向上するため特に好ましい。これらの化合物は、単独で使用してもよいが、2種以上を組み合わせて使用してもよい。

層状珪酸塩を上記有機カチオンで処理する方法としては、まず層 25 状珪酸塩を水またはアルコール中に分散させ、ここへ上記有機カチ

9

オンを塩の形で添加して撹拌混合することにより、層状珪酸塩の無機イオンを有機オニウムイオンとイオン交換させた後、濾別・洗浄・乾燥する方法が挙げられる。

生分解性ポリエステル樹脂と層状珪酸塩との分散性を向上させるために、生分解性ポリエステル樹脂および層状珪酸塩の双方と親和性があり、沸点が250℃以上、かつ数平均分子量が200~50,000である、ポリアルキレンオキシド、脂肪族ポリエステル、多価アルコールエステル、多価カルボン酸エステルを含むグループから選ばれる少なくとも1種の化合物を、相溶化剤として添加することができる。

5

10

15

ポリアルキレンオキシドの例としては、ポリエチレングリコール、ポリプロピレングリコール、ポリブチレングリコール、およびこれらの共重合体が挙げられ、末端水酸基の1つまたは2つはアルコキシ封鎖されていてもよく、モノカルボン酸またはジカルボン酸によりエステル化されていてもよい。

脂肪族ポリエステルの例としては、ポリ乳酸、ポリグリコール酸、ポリ(3ーヒドロキシ酪酸)、ポリ(3ーヒドロキシカプロン酸)等のポリヒドロキシカルボン酸や、ポリ(εーカプロラクトン)やポリ(δーバレロラクトン)に代表20 されるポリ (ωーヒドロキシアルカノエート)や、ポリ (エチレンサクシネート)、ポリ (ブチレンサクシネート)、ポリ (ブチレンサクシネート)、ポリ (ブチレンサクシネート)。ポリ (ブチレンサクシネート)。ポリ (ブチレンアジペート)等に代表されるジオールとジカルボン酸からなる脂肪族ポリエステル等が挙げられる。これらの脂肪族ポリエステルは、末端カルボキシル基がアルコールによりエステル化されていてもよく、ジオールにより水酸基置換されて

10

いてもよい。

20

25

多価アルコールエステルの例としては、グリセリンと脂肪酸のエステルであるモノグリセリド、ジグリセリド、トリグリセリド等のグリセリンエステル、ペンタエリスリトールエステル等が挙げられる。多価カルボン酸エステルの例としては、クエン酸トリブチルやクエン酸トリブチルアセテート等のクエン酸エステル等が挙げられる。

上述のように、これらの化合物の沸点は250℃以上であることが好ましく、沸点が250℃未満では成形時のガス発生や得られる10 成形物からのブリードアウト等が顕著なため実用的でない。また数平均分子量としては200~50,000であることが好ましく、より好ましくは500~20,000である。分子量が200未満であると成形時のガス発生や得られる成形物からのブリードアウト等が顕著であるとともに、成形体の機械的強度や耐熱性を損ねるため実用的でなく、また分子量が50,000より高いと層状珪酸塩の層間への挿入が十分でなくなる。

上記化合物の添加量は、生分解性ポリエステル樹脂100質量部に対して0.01~10質量部であることが好ましく、より好ましくは0.02~5質量部である。添加量が0.01質量部未満では添加効果が少なく、10質量部を超えると生分解性ポリエステル樹脂組成物の耐熱性や機械的強度が著しく低下する。

添加方法としては、予め層状珪酸塩に直接上記化合物を含浸処理する方法、水または有機溶剤の存在下で上記化合物を混合した後に濾過等により水または有機溶剤を除去する方法、生分解性ポリエステル樹脂と層状珪酸塩の溶融混錬時に添加する方法、生分解性ポリ

11

エステル樹脂の合成時に層状珪酸塩を共に添加する方法等が挙げられるが、予め層状珪酸塩に混合処理しておく方法が好ましく用いられる。

層状珪酸塩を含有した樹脂組成物における層状珪酸塩の分散形態 としては、層状珪酸塩の層が1枚1枚剥離した完全層間剥離型、あ 5 るいは層間に樹脂分子を挿入した層間挿入型、あるいはこれらの混 合型が好ましい。定量的には、透過型電子顕微鏡で観察される層状 珪酸塩の単層あるいは積層の平均厚みが1~100nmであること が好ましく、より好ましくは1~50nm、さらに好ましくは1~ 20 nmである。またX線回折で観察される層状珪酸塩の層間距離 10 が2.5 nm以上であることが好ましく、より好ましくは3 nm以 上であり、さらに好ましくは4nm以上、最も好ましいのは、層間 距離に由来するピークが観測されないことである。樹脂組成物中の 層状珪酸塩の単層あるいは積層の平均厚みが100nmを超える場 合、あるいは層間距離が2.5nm未満である場合は、得られる成 15 形体の機械的強度が劣ったり、透明性が低下したりする。

樹脂と層状珪酸塩との分散性を制御する手法としては、混練法においては、混練条件の変更、樹脂と層状珪酸塩の双方と親和性のある相溶化剤的な第3成分の添加、樹脂自身への極性基の導入等が挙げられる。また一般的に重合法ではより分散性を高めることができる。

20

25

本発明においては、特定サイズの層状珪酸塩が生分解性ポリエステル樹脂に均一に分散することによって、分散した無数の層状珪酸塩が生分解性ポリエステル樹脂のための結晶核剤として作用し、結晶速度の増大をもたらすと考えることができる。このため、本発明

5

の生分解性樹脂組成物は、射出成形、ブロー成形、押出成形、インフレーション成形、シート加工後の真空成形、シート加工後の圧空成形等の成形方法によって、各種の成形体に加工することができ、特に射出成形の場合は成形サイクルを短縮させることができる。これは、本発明の生分解性樹脂組成物が、上記のように通常のポリ乳酸系樹脂と比較して結晶化速度が速く、成形金型内での冷却固化時間を短縮できることに起因する。

本発明の層状珪酸塩を含有した成形体用の生分解性ポリエステル 樹脂組成物のアイゾット衝撃強度は30J/m以上に向上している 10 ことが好ましく、より好ましくは40J/m以上、さらに好ましく は50J/m以上である。アイゾット衝撃強度が30J/m未満で は、成形体が脆く破損しやすい。ここでいうアイゾット衝撃強度は、 ASTM規格のD-256に従いノッチ(V字型切込み)付きで測 定した値である。

- 15 本発明の層状珪酸塩を含有した成形体用の生分解性ポリエステル 樹脂組成物の曲げ弾性率は、4.4GPa以上に向上していること が好ましい。曲げ弾性率が4.4GPa未満では成形体が変形しや すく実用に際し不適当な場合がある。ここでいう曲げ弾性率は、A STM規格D-790に従い測定した値である。
- 20 本発明の層状珪酸塩を含有した成形体用の生分解性ポリエステル 樹脂組成物の熱変形温度は、100 C以上に向上していることが好 ましく、より好ましくは110 C以上、さらに好ましくは120 C 以上である。熱変形温度が100 C未満では、例えば生分解性樹脂 にて成形された容器に熱湯等を注いだ場合に変形してしまう。ここ でいう熱変形温度は、ASTM規格D-648 に従い測定した値で

13

ある。

5

本発明の層状珪酸塩を含有した成形体用の生分解性ポリエステル 樹脂組成物のヘーズは、60以下であることが好ましい。より好ま しくは40以下、さらに好ましくは30以下である。ヘーズが60 を超えると、例えば容器とした場合に内容物が見えにくい等の好ま しくない現象が生じる場合がある。ここでいうヘーズは、JIS規 格K-7136に従い測定した値である。

本発明の層状珪酸塩を含有した成形体用の生分解性ポリエステル 樹脂組成物は、気温20℃、湿度90%における酸素透過係数が、 10 160ml・mm/m²・day・MPa以下であることが好ましい。より好ましくは100ml・mm/m²・day・MPa以下、さらに好ましくは70ml・mm/m²・day・MPa以下である。酸素透過係数が160ml・mm/m²・day・MPaとである。酸素透過係数が160ml・mm/m²・day・MPaを超えると、例えば流動体容器に揮発性の液体を入れた際に内容物が揮15 散し減少する等の好ましくない現象が生じる場合がある。

本発明の層状珪酸塩を含有した成形体用の生分解性ポリエステル 樹脂組成物は、層状珪酸塩における1級ないし3級アミン塩、4級 アンモニウム塩、またはホスホニウム塩の結合量Kと、塩を結合す る前の層状珪酸塩のカチオン交換容量Cとの比K/Cが、0.9~ 20 1.25であることが好ましい。より好ましくは0.95~1.1 である。この比K/Cが0.9よりも小さい場合は、アンモニウム 塩もしくはホスホニウム塩とのイオン交換が十分でなく、未交換の 層状珪酸塩が多く生じるため、層状珪酸塩の微分散性が低下し、物 性が低下する傾向にある。また1.2よりも大きい場合には、過剰 25 となったアンモニウム塩もしくはホスホニウム塩が不純物として作 用し、やはり物性が低下する傾向にある。

本発明の層状珪酸塩を含有した成形体用の生分解性ポリエステル 樹脂組成物は、重量平均分子量が100,000以上であることが 好ましい。この重量平均分子量は、GPC(ゲル・パーミエーショ ン・クロマトグラフィー)法により、テトラヒドロフランを溶媒と して、標準ポリスチレンを基準において測定した重量平均分子量の 値で示したものである。より好ましくは120,000以上である。 この分子量が100,000未満の場合には、機械的な物性が低下 する傾向にある。

10 本発明の生分解性ポリエステル樹脂組成物には、その特性を大きく損なわない限りにおいて、顔料、熱安定剤、酸化防止剤、耐候剤、難燃剤、可塑剤、滑剤、離型剤、帯電防止剤、充填材、結晶核材等を添加することも可能である。

熱安定剤や酸化防止剤としては、たとえばヒンダードフェノール 15 類、リン化合物、ヒンダードアミン、イオウ化合物、銅化合物、ア ルカリ金属のハロゲン化物あるいはこれらの混合物を使用すること ができる。

無機充填材としては、タルク、炭酸カルシウム、炭酸亜鉛、ワラストナイト、シリカ、アルミナ、酸化マグネシウム、ケイ酸カルシウム、アルミン酸ナトリウム、アルミン酸カルシウム、アルミノ珪酸ナトリウム、珪酸マグネシウム、ガラスバルーン、カーボンブラック、酸化亜鉛、三酸化アンチモン、ゼオライト、ハイドロタルサイト、金属繊維、金属ウイスカー、セラミックウイスカー、チタン酸カリウム、窒化ホウ素、グラファイト、ガラス繊維、炭素繊維等が挙げられる。有機充填材としては、澱粉、セルロース微粒子、木

15

粉、おから、モミ殼、フスマ等の天然に存在するポリマーやこれら の変性品が挙げられる。

無機結晶核材としては、タルク、カオリン等が挙げられ、有機結 晶核材としては、ソルビトール化合物、安息香酸およびその化合物 の金属塩、燐酸エステル金属塩、ロジン化合物等が挙げられる。な かでも有機結晶核材は、少量添加することによって生分解性樹脂の 結晶が微細化し、透明性が向上するため、好ましく使用することが できる。

本発明の生分解性ポリエステル樹脂組成物に上記の熱安定剤、酸 化防止剤、可塑剤、充填材、結晶核材等を混合するための方法は、 10 特に限定されるものではなく、生分解性ポリエステル樹脂の製造時、 あるいは生分解性ポリエステル樹脂と層状珪酸塩を溶融混練する際 に添加することができる。

15

25

次に、本発明の生分解性樹脂組成物の製造方法について説明する。 第1の製造方法としては、一般的な押出機、例えば、一軸押出機、 二軸押出機、ロール混練機、ブラベンダー等を用いて生分解性ポリ エステル樹脂と層状珪酸塩とを溶融混練する方法があるが、層状珪 酸塩の分散をよくする目的で二軸押出機を使用することが好ましい。 本発明の生分解性ポリエステル樹脂組成物を製造する第2の方法と して、生分解性ポリエステルを形成するモノマーに対して層状珪酸 20 塩を所定量存在させた状態でモノマーを重合することによって、生 分解性ポリエステル樹脂組成物を得る方法を挙げることができる。

溶融混練することによる上記第1の製造方法においては、混練時 のせん断係数を100~300に制御するとともに、混練時におけ る、混練装置の温度ではない実際の樹脂の温度を(融点+100)℃

16

以下に制御する。ここで、混練時のせん断係数Fは、混練装置におけるスクリュー断面の平均径をD(mm)、スクリュー回転数をN(rpm)、スクリュー平均溝深さをH(mm)、混練装置での原料の滞留時間をt(sec)として、

 $F = \{(\pi DN) / H\} \times t$

15

20

25

で表される。このせん断係数が300を越えると、ポリ乳酸をせん 断しすぎてその分子量が小さくなりすぎることになり、また100 未満であると、せん断不足で、ポリエステル樹脂組成物への層状珪 酸塩の微分散性が低下することになる。混練時における実際の樹脂 の温度は、(融点+100)℃を越えると、ポリ乳酸の分子量が小 さくなりすぎてしまう。

本発明の生分解性樹脂成形体の製造方法としては、射出成形、ブロー成形、押出成形、インフレーション成形、シート加工後の真空成形、シート加工後の真空圧空成形のいずれかの成形方法を採用することができる。

生分解性のシートまたはパイプを製造する方法としては、押出成形法が好適であり、Tダイ法および丸ダイ法を適用することができる。押出成形温度は、生分解性ポリエステル樹脂組成物の融点(Tm)以上または流動開始温度以上であることが必要であり、好ましくは180~230℃、さらに好ましくは190~220℃の範囲である。成形温度が低すぎると、成形が不安定になったり、過負荷に陥りやすくなったりする。逆に成形温度が高すぎると、ポリ乳酸が分解し、得られるシートやパイプの強度が低下したり、着色する等の問題が発生する。得られた生分解性シートまたはパイプの耐熱性を高める目的で、生分解性ポリエステル樹脂組成物のガラス転移

17

温度 (Tg) 以上かつ (Tm-20℃) 以下で熱処理することもできる。生分解性シートまたはパイプの具体的用途としては、深絞り成形用原反シート、バッチ式発泡用原反シート、クレジットカード等のカード類、下敷き、透明樹脂製のファイル、ストロー、農業・園芸用硬質パイプ等が挙げられる。

5

食品用容器、農業・園芸用容器、ブリスターパック容器、プレススルーパック容器は、上記生分解性シートを用いて、真空成形、圧空成形、真空圧空成形等の深絞り成形により製造することができる。深絞り成形温度および熱処理温度は、生分解性ポリエステル樹脂組の 成物の(Tg+20℃)以上、(Tm-20℃)以下であることが好ましい。成形温度が(Tg+20℃)未満では、深絞りが困難になったり、得られる容器の耐熱性が不十分となる場合がある。逆に成形温度が(Tm-20℃)を超えると、偏肉が生じたり、配向がくずれて耐衝撃性が低下したりする場合がある。

15 食品用容器、農業・園芸用容器、ブリスターパック容器、プレススルーパック容器の形態は、特に限定しないが、食品、物品、薬品等を収容するためには、深さ2mm以上に深絞りされていることが好ましい。容器の厚さは、特に限定しないが、必要強力から考えて50μm以上、より好ましくは150~500μmである。食品用容器の具体例としては、生鮮食品のトレー、インスタント食品の容器、ファーストフードの容器、弁当箱等が挙げられる。農業・園芸用容器の具体例としては、育苗ポット等が挙げられる。ブリスターパック容器の具体例としては、食品以外にも、事務用品、玩具、乾電池等の多様な商品群の包装容器が挙げられる。プレススルーパック容器の具体例としては、医薬品容器等が挙げられる。

18

流動体用容器の製造方法としては、ブロー成形法や射出成形法を 採用することができる。

ブロー成形法としては、原料チップから直接成形を行うダイレクトブロー法や、まず射出成形で予備成形体(有底パリソン)を成形 した後にブロー成形を行う射出ブロー成形法や、延伸ブロー成形法等を採用することができる。また予備成形体の成形後に連続してブロー成形を行うホットパリソン法、いったん予備成形体を冷却し取り出してから再度加熱してブロー成形を行うコールドパリソン法のいずれの方法も採用できる。ブロー成形温度は(Tg+20℃)以下であることが必要である。ブロー成形温度が(Tg+20℃)未満では、成形が困難になったり、得られる容器の耐熱性が不十分となる場合があり、逆にブロー成形温度が(Tm-20℃)を超えると、偏肉が生じたり、粘度低下によりブローダウンする等の問題が発生する。

15 射出成形法としては、一般的な射出成形法を用いることができ、さらにはガス射出成形、射出プレス成形等も採用できる。射出成形時のシリンダ温度は生分解性ポリエステル樹脂のTmまたは流動開始温度以上であることが必要であり、好ましくは180~230℃、さらに好ましくは190~220℃の範囲である。成形温度が低す20 ぎると、成形にショートが発生したりして、成形が不安定になったり過負荷に陥りやすく、逆に成形温度が高すぎると、生分解性ポリエステル樹脂が分解し、得られる成形体の強度が低下したり、着色する等の問題が発生する。一方、金型温度は生分解性樹脂の(Tm −20℃)以下にする必要がある。生分解性ポリエステル樹脂の耐熱性を高める目的で金型内にて結晶化を促進する場合は、(Tg+

19

20%)以上、(Tm-20%)以下で所定時間保った後、Tg以下に冷却することが好ましく、逆に後結晶化する場合は、直接Tg以下に冷却した後、再度Tg以上、(Tm-20%)以下で熱処理することが好ましい。

5 流動体用容器の形態は、特に限定しないが、流動体を収容するためには深さ20mm以上に成形されていることが好ましい。容器の厚さは特に限定しないが、必要強力から考えて0.2mm以上、好ましくは0.5~5mmである。流動体用容器の具体例としては、乳製品や清涼飲料水や酒類等の飲料用コップおよび飲料用ボトル、

10 醤油、ソース、マヨネーズ、ケチャップ、食用油等の調味料の一時保存容器、シャンプー・リンス等の容器、化粧品用容器、農薬用容器等が挙げられる。

射出成形品の製造方法としては、上記に示したような射出成形方法が採用できる。射出成形品の形態は特に限定されず、射出成形機15 で製造できるものであればいかなる形態であってもよい。具体例としては、皿、椀、鉢、箸、スプーン、フォーク、ナイフ等の食器、容器用キャップ、定規、筆記具、透明ケース、CDケース等の事務用品、台所用三角コーナー、ゴミ箱、洗面器、歯ブラシ、櫛、ハンガー等の日用品、植木鉢、育苗ポット等の農業・園芸用資材、プラスチックモデル等の各種玩具類、エアコンパネル、冷蔵庫トレイ、各種筐体等の電化製品用樹脂部品、バンパー、インパネ、ドアトリム等の自動車用樹脂部品等が挙げられる。

本発明によれば、優れた機械特性および耐熱性、透明性、ガスバリア性を有する生分解性樹脂成形体が提供される。この成形体はシートまたはパイプ、食品用容器、ブリスターパック容器、プレスス

25

ルーパック容器、各種流動体用容器、および各種射出成形体等に適 用することができ、廃棄する際にはコンポスト化可能であるので、 ゴミの減量化や、肥料としての再利用が可能となる。

5 実施例

以下、本発明を実施例によりさらに具体的に説明する。しかし、 本発明は下記の実施例のみに限定されるものではない。

以下の実施例および比較例における樹脂組成物の物性の測定方法および成形体の評価方法は、次のとおりである。

10 (1) メルトフローレート (MFR):

JIS規格K-7210 (試験条件4) に従い、190℃、荷重 21.2Nで測定した。

(2)層状珪酸塩の平均層厚:

透過型電子顕微鏡を用い、層状珪酸塩が20個以上観察される視 15 野内で、各層状珪酸塩の厚みを目視で測定し、平均値を算出することにより、求めた。

(3)層状珪酸塩の層間距離

広角X線回折法により底面間距離 d_{001} を測定することにより、求めた。

20 (4) 熱変形温度:

ASTM規格D-648に従い、荷重0.45MPaで熱変形温度を測定した。

(5)衝擊強度:

ASTM規格D-256に従い、ノッチ(V字型切込み)付き試 25 験片を用いてアイゾット衝撃強度を測定した。 10

25

(6) 曲げ弾性率:

ASTM規格D-790に従い、変形速度1mm/分で荷重をかけ、曲げ弾性率を測定した。

(7) ヘーズ:

5 JIS規格K-7136に従い、厚さ1mmの板状試験片に対し て測定を行った。

(8)酸素透過係数:

GTRテック社製の差圧式ガス透過率測定装置 GTR-30X AUを用いて、厚さ約300 μ mの未延伸フィルムについて、20 $^{\circ}$ C、90%RHの条件で、酸素透過係数を以下の式により求めた。

酸素透過係数 (m l · m m / m ² · d a y · M P a)

=酸素透過量 (m 1 / m²・d a y・M P a)

×フィルム厚さ (mm)

この値は、ガスバリア性の指標となるもので、値が小さいほどガ 15 スバリア性が良好となる。

(9) 結合量K:

有機化された層状珪酸塩の100℃における強熱減量(%)および層間カチオンの分子量から、以下の式により求めた

結合量K (mmo1/100g)

20 = (強熱減量/カチオン分子量)

× {100/(100-強熱減量)} ×1000

(10) カチオン交換容量C:

日本ベントナイト工業会標準試験方法によるベントナイト(粉状)の陽イオン交換容量測定方法(JBAS-106-77)に基づいて求めた。

10

15

すなわち、浸出液容器、浸出管および受器を縦方向に連結した装 置を用いて、まず初めに、pH=7に調整した1N酢酸アンモニウ ム水溶液により、層状珪酸塩の層間のイオン交換性カチオンの全て をNH4+に交換した。その後、水とエチルアルコールを用いて十 分に洗浄してから、NH4⁺型の層状珪酸塩を10質量%の塩化力 5 リウム水溶液中に浸し、試料中のNH4⁺をK⁺へと交換した。引き 続いて、上記イオン交換反応に伴い浸出したNH4+を0.1N水 酸化ナトリウム水溶液を用いて中和滴定することにより、原料であ る膨潤性層状珪酸塩のカチオン交換容量C(ミリ当量/100g) を求めた。

成形体については、以下の評価を行った。

(11) 成形性:

成形加工時に問題なく成形できた場合を良好と評価して〇で表し、 厚みムラや離型性が悪いためにうまく成形できなかった場合を不良 と評価して×で表した。

(12) 耐熱性:

各種成形体を95℃の熱水浴中に5分間沈め、変形が原形の1% 未満であった場合を耐熱性良好と評価して〇で表し、変形が原形の 1%以上であった場合を耐熱性不良と評価して×で表した。

(13) 耐衝擊性: 20

各種成形体各10個について、床上に固定し、1mの高さから1 0 gの鋼球を落下させ、全ての成形体が破損しなかった場合を耐衝 撃性良好と評価して〇で表し、1つ以上が破損した場合を耐衝撃性 不良と評価して×で表した。

25 (14) 透明性

各種成形品について、目視で評価を行った。すなわち、食品用トレイに関しては、トレイの内容物が確認できたものを透明性良として×と評価した。ボトルに関しては、内部に無色の液体を充填して、液面を識別できたものを透明性良として〇と評価し、識別できなかったものを透明性不良として×と評価した。スプーンに関しては、スプーンを透かして、向こう側の文字が識別できたものを透明性良として〇と評価し、識別できなかったものを透明性良として×と評価した。

10 実施例1 (樹脂組成物A)

5

ポリ乳酸 (PLA) (カーギルダウ社製 NatureWork s 4 0 3 0 D; MFR=3.0、融点166℃) 1 0 0 質量部と、層状珪酸塩としての、層間がジヒドロキシエチルメチルドデシルアンモニウム塩で置換された膨潤性合成フッ素雲母 (2 (HE) C1 2 N-MICA) (コープケミカル社製 ソマシフMEE) 4 質量部と、相溶化剤としての、ポリカプロラクトンジオール (PCL2000) (ダイセル化学工業社製 プラクセルL220AL) 0.5 質量部とを混合し、スクリュー径45mmの2軸押出機を用いて190℃で溶融混練することで、樹脂組成物Aを得た。得られた樹20 脂組成物を試験片化して各種物性評価を行った。その結果を表1に示す。

		1,1,2,4	組成						物	荊			
	樹脂組成物	生分解性樹脂	1	K/C	相溶化剤 (質量部)	分子量 (Mw)	平均 層厚 (nm)	画 記 (mm)	熱変温の 形度の	衝擊 強度 (J/m)	曲げ 輝性 棒 (GPa)	1-7°	酸素透過 係数 (ml·mm /m²·day· MPa)
実施例1	A	PLA	2(HE)C12N- MICA(4)	1.07	PCL2000 (0.5)	144,000	9	9<	140	32	4.7	37	75
実施例2	B	PLA	C18N-MMT (4)	1.22	PCL2000 (0.5)	162,000	32	3.8	139	37	4.5	45	145
実施例3	C	PLA/PBS	C18N-MMT (4)	1.22	l	142,000	36	3.6	120	43	4.1	09	140
実施例4	Q	PLA/PBAT	2C18N- MICA(4)	0.91	PEG2000 (0.5)	141,000	15	3.5	123	45	4.2	57	152
実施例5	闰	PLA	2(HE)C12N- MICA(2)	1.07	l	152,000	9	9<	126	42	4.4	22	114
比較例1	ĹΤ·Ι	PLA	2(HE)C12N- MICA(0.05)	1.07	1	181,000	5	9<	132	26	3.8	12	200
比較例2	ප	PBS	C18N-MMT (4)	1.22	PEG2000 (0.5)	132,000	42	3.1	93	55	6.0	89	215
比較例3	H	PCL	C18N-MMT (4)	1.22	1	120,000	45	3.2	99	480	9.0	75	265
比較例4	H	PLA (融点なし)	2(HE)C12N- MICA(4)	1.07	PCL2000 (0.5)	156,000	9	9<	09	32	4.2	36	123

#157

実施例2 (樹脂組成物B)

ポリ乳酸 (PLA) (カーギルダウ社製 NatureWork s 4 0 3 0 D; MFR = 3.0、融点 1 6 6 ℃) 1 0 0 質量部と、層状珪酸塩としての、層間がオクタデシルアンモニウム塩で置換されたモンモリロナイト (C18N-MMT) (Nanocor社製ODA-CWC) 4 質量部と、相溶化剤としての、ポリカプロラクトンジオール (PCL2000) (ダイセル化学工業社製 プラクセルL220AL) 0.5 質量部とを混合し、スクリュー径45mmの2軸押出機を用いて190℃で溶融混練することで、樹脂組成物を試験片化して各種物性評価を行った。その結果を表1に示す。

実施例3 (樹脂組成物C)

生分解性ポリエステル樹脂として、ポリ乳酸とポリブチレンサクシネートとのブレンド物を用いた。詳細には、ポリ乳酸(PLA)(カーギルダウ社製 NatureWorks4030D;MFR=3.0、融点166℃)95質量部と、ポリブチレンサクシネート(PBS)(昭和高分子社製ビオノーレ1903;MFR=4.5)5質量部と(ただし、生分解性ポリエステル樹脂全体でMFR20=3.1)、層状珪酸塩としての、層間がオクタデシルアンモニウム塩で置換されたモンモリロナイト(C18N-MMT)(Nanocor社製ODA-CWC)4質量部とを混合し、相溶化剤は用いずに、スクリュー径45mmの2軸押出機を用いて190℃で溶融混練することで、樹脂組成物Cを得た。得られた樹脂組成物を試25験片化して各種物性評価を行った。その結果を表1に示す。

実施例4 (樹脂組成物D)

生分解性ポリエステル樹脂として、下記のブレンド物を用いた。 詳細には、ポリ乳酸(PLA)(カーギルダウ社製 Nature 5 Works4030D; MFR=3.0、融点166℃)95質量 部と、ポリ(ブチレンアジペートーcoーブチレンテレフタレート) (PBAT)(BASF社製 Ecoflex; MFR=6.5) 5質量部と(ただし、生分解性ポリエステル樹脂全体でMFR=3.2)、層状珪酸塩としての、層間がジメチルジオクタデシルアンモ 10 二ウム塩で置換された膨潤性フッ素雲母(2C18N-MICA) (コープケミカル社製 ソマシフMAE)4質量部と、相溶化剤と しての4ポリエチレングリコール(PEG2000)0.5質量部とを混合し、スクリュー径45mmの2軸押出機を用いて190℃で溶融混練することで、樹脂組成物Dを得た。得られた樹脂組成物 を試験片化して各種物性評価を行った。その結果を表1に示す。

実施例5 (樹脂組成物E)

ポリ乳酸 (PLA) (カーギルダウ社製 NatureWork s 4 0 3 0 D; MFR = 3. 0、融点 1 6 6 ℃) 1 0 0 質量部と、 20 層間がジヒドロキシエチルメチルドデシルアンモニウム塩で置換された膨潤性合成フッ素雲母 (2 (HE) C 1 2 N - M I C A) (コープケミカル社製 ソマシフMEE) 2 質量部とを混合し、相溶化剤は用いずに、スクリュー径 4 5 mmの 2 軸押出機を用いて1 9 0 ℃で溶融混練することで、樹脂組成物Eを得た。得られた樹脂組 成物を試験片化して各種物性評価を行った。その結果を表 1 に示す。

比較例1 (樹脂組成物F)

ポリ乳酸 (PLA) (カーギルダウ社製 NatureWorks 4030D; MFR=3.0、融点166℃) 100質量部と、 7 層状珪酸塩としての、層間がジヒドロキシエチルメチルドデシルアンモニウム塩で置換された膨潤性合成フッ素雲母 (2 (HE) C12N-MICA) (コープケミカル社製 ソマシフMEE) 0.0 5質量部とを混合し、相溶化剤は用いずに、スクリュー径45mmの2軸押出機を用いて190℃で溶融混練することで、樹脂組成物の2軸押出機を用いて190℃で溶融混練することで、樹脂組成物の2・2、4の結果を表1に示す。

比較例2 (樹脂組成物G)

比較例3 (樹脂組成物H)

25 ポリ (ε-カプロラクトン) (Ρ C L) (ダイセル化学工業社製

WO 03/022927

セルグリーンP-HB02;MFR=2.7)100質量部のみ(ポリ乳酸は用いない)と、層間がオクタデシルアンモニウム塩で置換されたモンモリロナイト(C18N-MMT)(Nanocor社製 ODA-CWC)4質量部とを混合し、相溶化剤は用いずに、スクリュー径45mmの2軸押出機を用いて150℃で溶融混練することで、樹脂組成物Fを得た。得られた樹脂組成物を試験片化して各種物性評価を行った。その結果を表1に示す。

比較例4 (樹脂組成物 I)

ポリ乳酸 (PLA) (カーギルダウ社製 Nature Work s 4 0 6 0 D; MFR = 3.5、融点なし) 1 0 0 質量部と、層間 がジヒドロキシエチルメチルドデシルアンモニウム塩で置換された 膨潤性合成フッ素雲母 (2 (HE) C 1 2 N - M I C A) (コープケミカル株式会社製 ソマシフMEE) 4 質量部と、相溶化材とし てのポリカプロラクトンジオール (PCL 2 0 0 0) (ダイセル化学工業社製 プラクセルL 2 2 0 A L) 0.5 質量部とを混合し、スクリュー径 4 5 m m の 2 軸押出機を用いて 1 5 0 ℃で溶融混練することで、樹脂組成物 I を得た。得られた樹脂組成物を試験片化して各種物性評価を行った。その結果を表 1 に示す。

20

実施例1~5の樹脂組成物A~Eは、いずれも本発明にもとづく 組成であったため、熱変形温度、衝撃強度、曲げ弾性率、ヘーズ、 酸素透過係数のすべてにおいて、所要の性能を満足するものであっ た。

25 比較例1の樹脂組成物Fは、層状珪酸塩の配合量が0.05質量

29

部と本発明で規定する範囲の下限を下回ったため、透明性にはすぐれていたものの、機械的特性、すなわち衝撃強度および曲げ弾性率が満足できるものではなく、酸素透過係数も高すぎるものとなった。

比較例2の樹脂組成物Gと比較例3の樹脂組成物Hは、ともに生 5 分解性ポリエステル樹脂がポリ乳酸をまったく含有しないものであったため、耐熱性に劣り、また曲げ弾性率が極端に劣るものであった。ヘーズ、酸素透過率も不良であった。

比較例4の樹脂組成物Iは、使用したポリ乳酸が融点を有しない。ものであったため、耐熱性に劣るものであった。

10

実施例6~10、比較例5~8(シート成形後に真空成形)

表 2 に示す樹脂組成物を用い、スクリュー径が 4 5 mmの 2 軸押出機を用いて、温度 2 0 0 ℃で T ダイより溶融押出すことで、厚さ 4 0 0 μmの未延伸シートを得た。この未延伸シートを 1 2 0 ℃に加熱した後、真空成形により、縦 1 8 0 mm、横 1 2 0 mm、深さ 3 0 mmの食品用トレーを作成した。得られた食品用トレーの物性を表 2 に示す。

30

	透明性	0	0	0	0	0	0	0	0	×	×	0	0	×	0
沐	耐衝擊性	0	0	0	0	0	0	0	×	0	0	0	×	0	0
成形	耐熱性	0	0	0	0	0	0	0	0	×	×	×	0	×	×
	成形性	0	0	0	0	0	0	0	0	0	0	×	0	0	×
大十 4	以形力法	シート→真空成形	シート→真空成形	シート→真空成形	シート→真空成形	シート→真空成形	ブロー成形	射出成形	シート→真空成形	シート→真空成形	シート→真空成形	シート→真空成形	ブロー成形	射出成形	射出成形
樹脂組成物		A	В	U	Q	田	A	B	Ţ	IJ	T		[I	H	1 —
		実施例6	実施例7	実施例8	実施例9	実施例10	1		比較例5	比較例 6	比較例7	比較例8	比較例9	比較例10	上一下一下
		成形方法 成形性 耐熱性 耐衝擊性	樹脂組成物 成形方法 成形性 耐熱性 耐衝撃性 A シート→真空成形 ○ ○ ○ ○	樹脂組成物 成形大法 成形性 耐熱性 耐衝撃性 A シート→真空成形 ○ ○ ○ ○ B シート→真空成形 ○ ○ ○ ○	樹脂組成物 成形方法 成形性 耐熱性 耐衝撃性 A シート→真空成形 ○ ○ ○ B シート→真空成形 ○ ○ ○ C シート→真空成形 ○ ○ ○	樹脂組成物 成形技法 成形性 耐熱性 耐衝撃性 A シート→真空成形 〇 〇 〇 〇 B シート→真空成形 〇 〇 〇 〇 C シート→真空成形 〇 〇 〇 〇 D シート→真空成形 〇 〇 〇 〇 〇	樹脂組成物 成形方法 成形性 耐熱性 耐衝撃性 1	横脂組成物 成形方法 成形性 耐熱性 耐衝撃性 日本 シート→真空成形 O O O O O O O O O	樹脂組成物 成形方法 成形性 耐熱性 耐衝撃性 A シート→真空成形 〇 〇 〇 B シート→真空成形 〇 〇 〇 C シート→真空成形 〇 〇 〇 D シート→真空成形 〇 〇 〇 1 A ブロー成形 〇 〇 〇 2 B 射出成形 〇 〇 〇	横脂組成物 成形方法 成形性 耐熱性 耐衝撃性 一	横脂組成物 成形方法 成形性 耐熱性 耐衝撃性 Na シート→真空成形	横脂組成物 成形方法 成形性 耐熱性 耐衝撃性 A シート→真空成形 〇 〇 〇 〇 〇 〇 〇 〇 〇	樹脂組成物 成形方法 成形性 耐熱性 耐衝撃性 A シート→真空成形 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇	# 検胎組成物 成形方法 成形性 耐熱性 耐ಳ性	横脂組成物 成形方法 成形性 耐熱性 耐機性 A シート→真空成形 ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

15

実施例11、比較例9 (ブロー成形)

表2に示す樹脂組成物について、射出ブロー成形機(日精ASB機械社製 ASB-50TH)を用い、シリンダ設定温度200℃で溶融して10℃の金型に充填し、30秒間冷却して、4mm厚の予備成形体(有底パリソン)を得た。これを80℃の温風で加熱した後に金型に入れ、0.4MPaの加圧空気で、縦3倍、横2.5倍にブロー成形し、内容積900m1のボトルを作製した。得られたボトルの物性を表2に示す。

10 実施例12、比較例10、11(射出成形)

表 2 に示す樹脂組成物について、射出成形機(東芝機械社製 I S-80G)を用い、シリンダ設定温度 200 ℃で溶融して、射出圧力 100 M P a、射出時間 12 秒で 10 ℃の金型に充填し、20 秒間冷却して、成形体としてのスプーンを作製した。そして、得られたスプーンを、120 ℃で 5 分間熱処理した。得られたスプーンの物性を表 2 に示す。

本発明の実施例6~12の成形体は、いずれも、成形性、耐熱性、 耐衝撃性、透明性ともに良好なものであった。

20 これに対し、比較例5の成形体は、層状珪酸塩の含有量が低すぎたことが原因して材料の衝撃強度が低すぎたため、耐衝撃性に劣っていた。

比較例6および比較例7の成形体は、材料にポリ乳酸を全く含有しなかったため、耐熱性および透明性に劣っていた。

25 比較例8の成形体は、材料のポリ乳酸が融点をもたないことが原

32

因して、シートの耐熱性が極端に低かったため、成形性および耐熱性に劣っていた。

比較例9の成形体は、層状珪酸塩の含有量が低すぎたことが原因 して材料の衝撃強度が低すぎたため、耐衝撃性に劣っていた。

5 比較例10の成形体は、材料にポリ乳酸を全く含有しなかったため、耐熱性および透明性に劣っていた。

比較例11の成形体は、材料のポリ乳酸が融点を持たなかったため、金型からの離型性が悪く、したがって成形性に劣っており、また材料のポリ乳酸が融点を持たないことで耐熱性に劣っていた。

33

請求の範囲

1. 成形体用の生分解性樹脂組成物であって、

融点160℃以上のポリ乳酸を50質量部以上含有し、190℃、 荷重21.2Nにおけるメルトフローレートが0.1~50g/1 0分である生分解性ポリエステル樹脂100質量部と、

層間に1級ないし3級アミン塩、4級アンモニウム塩、またはホスホニウム塩がイオン結合した層状珪酸塩0.1~20質量部とを含む。

2.請求項1に記載の成形体用の生分解性樹脂組成物であって、層状珪酸塩の層厚が1~100nmであり、層状珪酸塩の層間距離が2.5nm以上であり、前記樹脂組成物のアイゾット衝撃強度が30J/m以上であり、前記樹脂組成物の熱変形温度が100℃以上である。

15

5

3. 請求項1に記載の成形体用の生分解性樹脂組成物であって、層 状珪酸塩の層厚が1~100nmであり、層状珪酸塩の層間距離が 2. 5nm以上であり、前記樹脂組成物の曲げ弾性率が4. 4GP a以上であり、前記樹脂組成物の熱変形温度が100℃以上である。

20

- 4. 請求項1に記載の成形体用の生分解性樹脂組成物であって、ヘーズが60以下である。
- 5. 請求項1に記載の成形体用の生分解性樹脂組成物であって、気 25 温20℃、湿度90%における酸素透過係数が、160ml・mm

34

/m²·day·MPa以下である。

- 6. 請求項1に記載の成形体用の生分解性樹脂組成物であって、層 状珪酸塩における1級ないし3級アミン塩、4級アンモニウム塩、 またはホスホニウム塩の結合量Kと、塩を結合する前の層状珪酸塩 のカチオン交換容量Cとの比K/Cが、0.9~1.25である。
- 7. 請求項1に記載の成形体用の生分解性樹脂組成物であって、重量平均分子量が100,00以上である。

10

5

- 8.請求項1に記載の成形体用の生分解性樹脂組成物であって、ポリアルキレンオキシド、脂肪族ポリエステル、多価アルコールエステル、多価カルボン酸エステルよりなるグループから選ばれた少なくとも1種の化合物であって、沸点が250℃以上かつ数平均分子量が200~50,000であるものを、生分解性ポリエステル樹脂100質量部に対して0.01~10質量部含有する。
- 9.請求項1から8までのいずれか1項に記載の成形体用の生分解性樹脂組成物を製造する際に、生分解性ポリエステル樹脂と層状珪20 酸塩とを混練法によって溶融混練および分散させるための方法であって、混練時の剪断係数を100~300に制御するとともに、混練時の樹脂の実際の温度を(融点+100)℃以下に制御する。
- 10. 生分解性樹脂により成形された成形体であって、請求項1か 58までのいずれか1項に記載の生分解性樹脂組成物が成形加工さ

35

PCT/JP02/08956

れたものである。

WO 03/022927

5

- 11. 請求項10に記載の生分解性樹脂製の成形体を製造するための方法であって、前記成形体を、射出成形、ブロー成形、押出成形、インフレーション成形、シート加工後の真空成形、シート加工後の圧空成形、シート加工後の真空圧空成形のいずれかによって成形する。
- 12.請求項10に記載の生分解性樹脂製の成形体であって、前記10 成形体は、押出成形によって成形されたシートまたはパイプである。
- 13. 請求項10に記載の生分解性樹脂製の成形体であって、前記成形体は、真空成形、圧空成形、真空圧空成形のいずれかによって成形されたところの、食品用容器、農業および、または園芸用容器、 ブリスターパック容器、プレススルーパック容器のいずれかである。
 - 14. 請求項10に記載の生分解性樹脂製の成形体であって、前記成形体は、ブロー成形または射出成形によって成形された流動体用容器である。

20

15. 請求項10に記載の生分解性樹脂製の成形体であって、前記成形体は、射出成形によって成形されたところの、食器、容器のキャップ、事務用品、日用品、農業および/または園芸用資材、玩具、電化製品用樹脂部品、自動車用樹脂部品のいずれかである。

INTERNATIONAL SEARCH REPORT

International application No. PCT/JP02/08956

CLASSIFICATION OF SUBJECT MATTER Int.Cl ⁷ C08L67/04, C08J5/00, C08K3/34										
According to International Patent Classification (IPC) or to both na	ational classification and IPC									
B. FIELDS SEARCHED										
Minimum documentation searched (classification system followed Int.Cl ⁷ C08L67/04	by classification symbols)									
Documentation searched other than minimum documentation to the										
Jitsuyo Shinan Koho 1926-2002 Kokai Jitsuyo Shinan Koho 1971-2002	Toroku Jitsuyo Shinan Koho Jitsuyo Shinan Toroku Koho									
Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)										
C. DOCUMENTS CONSIDERED TO BE RELEVANT										
Category* Citation of document, with indication, where ap	opropriate, of the relevant passages	Relevant to claim No.								
X JP 2001-89646 A (Toyota Cent Development Laboratories, Inc 03 April, 2001 (03.04.01), Column 1, lines 2 to 14; column column 3, line 5; column 3, column 6, lines 36 to 41 (Family: none)	umn 2, line 49 to	1-7,9-15 8								
X JP 2000-17157 A (Showa Denko 18 January, 2000 (18.01.00), A Column 1, lines 2 to 5; column column 2, line 4; column 2, line 28; columns 7 to 8 (Family: none)	mn 1, line 50 to	1,4-7,9-12, 15 2,3,8,13,14								
Further documents are listed in the continuation of Box C.	See patent family annex.									
* Special categories of cited documents: "A" document defining the general state of the art which is not considered to be of particular relevance "E" earlier document but published on or after the international filing date "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) "O" document referring to an oral disclosure, use, exhibition or other means "P" document published prior to the international filing date but later than the priority date claimed	"X" document of particular relevance; the considered novel or cannot be considered step when the document is taken alone "Y" document of particular relevance; the considered to involve an inventive ster combined with one or more other such combination being obvious to a person document member of the same patent.	priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art								
Date of the actual completion of the international search 11 November, 2002 (11.11.02)	Date of mailing of the international sear 26 November, 2002	•								
Name and mailing address of the ISA/ Japanese Patent Office	Authorized officer									
Facsimile No.	Telephone No.									

A. 発明の属する分野の分類(国際特許分類(IPC)) Int. C1' C08L 67/04, C08J 5/00, C08K 3/34 B. 調査を行った分野 調査を行った最小限資料(国際特許分類(IPC)) Int. C17 C08L 67/04 最小限資料以外の資料で調査を行った分野に含まれるもの 日本国実用新案公報 1926-2002年 日本国公開実用新案公報 1971-2002年 日本国登録実用新案公報 1994-2002年 日本国実用新案登録公報 1996-2002年 国際調査で使用した電子データベース (データベースの名称、調査に使用した用語) C. 関連すると認められる文献 引用文献の 関連する カテゴリー* 引用文献名及び一部の箇所が関連するときは、その関連する箇所の表示 請求の範囲の番号 X JP 2001-89646 A (株式会社豊田中央研究所) $1 - 7 \cdot 9 -$ 2001.04.03、第1欄第2-14行、第2欄第49行-第 15 3欄第5行、第3欄第23-27行、第6欄第36-41行(ファ 8 A ミリーなし) X JP 2000-17157 A (昭和電工株式会社) 1, 4-7,2000.01.18、第1欄第2-5行、第1欄第50行-第2 9-12欄第4行、第2欄第30行一第3欄第28行、第7-8欄(ファミ 1 5 リーなし) 2, 3, 8, A 13, 14 C欄の続きにも文献が列挙されている。 パテントファミリーに関する別紙を参照。 * 引用文献のカテゴリー の日の後に公表された文献 「A」特に関連のある文献ではなく、一般的技術水準を示す 「T」国際出願日又は優先日後に公表された文献であって もの 出願と矛盾するものではなく、発明の原理又は理論 「E」国際出願日前の出願または特許であるが、国際出願日 の理解のために引用するもの 以後に公表されたもの 「X」特に関連のある文献であって、当該文献のみで発明 「L」優先権主張に疑義を提起する文献又は他の文献の発行 の新規性又は進歩性がないと考えられるもの 日若しくは他の特別な理由を確立するために引用する 「Y」特に関連のある文献であって、当該文献と他の1以 文献 (理由を付す) 上の文献との、当業者にとって自明である組合せに 「O」口頭による開示、使用、展示等に言及する文献 よって進歩性がないと考えられるもの 「P」国際出願目前で、かつ優先権の主張の基礎となる出願 「&」同一パテントファミリー文献 国際調査を完了した日 国際調査報告の発送日 26.11.02 11. 11. 02 特許庁審査官(権限のある職員) 国際調査機関の名称及びあて先 9268 4 J 日本国特許庁(ISA/JP) 森川 聡 郵便番号100-8915 東京都千代田区霞が関三丁目4番3号 電話番号 03-3581-1101 内線 3455