Importing libraries

```
In [1]: import numpy as np
    import pandas as pd
    from sqlalchemy import create_engine

import matplotlib.pyplot as plt
import seaborn as sns
import sys
import copy
import math
from scipy.stats import chi2

import warnings
from pandas.core.common import SettingWithCopyWarning
import Regression

warnings.simplefilter(action="ignore", category=SettingWithCopyWarning)
```

Reading the data

Out[2]:

```
In [2]: claims = pd.read_excel('claim_history.xlsx')
    claims.head()
```

:		ID	KIDSDRIV	BIRTH	AGE	HOMEKIDS	VOJ	INCOME	PARENT1	HOME_VAL	MSTATUS	•••	T
	0	63581743	0	1939- 03-16	60.0	0	11.0	67000.0	No	NaN	No		
	1	132761049	0	1956- 01-21	43.0	0	11.0	91000.0	No	257000.0	No		
	2	921317019	0	1951- 11-18	48.0	0	11.0	53000.0	No	NaN	No		
	3	727598473	0	1964- 03-05	35.0	1	10.0	16000.0	No	124000.0	Yes		
	4	450221861	0	1948- 06-05	51.0	0	14.0	NaN	No	306000.0	Yes	•••	

5 rows × 26 columns

```
In [3]:
        claims.isna().sum()
Out[3]: ID ....
        KIDSDRIV
                         0
        BIRTH
        AGE
                        7
        HOMEKIDS
                     0
548
570
                       0
       YOJ
INCOME 570
PARENT1 0
HOME_VAL 3483
        GENDER
        EDUCATION
                       0
        OCCUPATION 0
        TRAVTIME
```

```
CAR USE
                  0
BLUEBOOK
                  0
TIF
CAR TYPE
                  0
RED CAR
                  0
REVOKED
                  0
MVR PTS
                  0
CAR AGE
                640
URBANICITY
                  0
CLM AMT
CLM COUNT
                  0
EXPOSURE
dtype: int64
```

In [4]: claims.describe()

ID **KIDSDRIV AGE HOMEKIDS** YOJ **INCOME** Out [4]: HOME 10302.000000 10295.000000 10302.000000 9754.000000 9732.000000 6819.00 count 1.030200e+04 mean 4.956631e+08 0.169288 44.837397 0.720443 10.474062 61566.892725 220421.70 std 2.864675e+08 0.506512 8.606445 1.116323 4.108943 47453.597835 96337.42 6.317500e+04 0.000000 16.000000 0.000000 0.000000 0.000000 50000.00 min 25% 2.442869e+08 0.000000 39.000000 0.000000 9.000000 28000.000000 153000.00 50% 4.970043e+08 0.000000 45.000000 0.000000 11.000000 54000.000000 206000.00 75% 7.394551e+08 0.000000 51.000000 1.000000 13.000000 86000.000000 271000.00 4.000000 81.000000 5.000000 367000.000000 885000.00 max 9.999264e+08 23.000000

```
Question 1
In [5]: target = 'CLM COUNT'
        exposure = 'EXPOSURE'
        int pred = ['AGE', 'BLUEBOOK', 'CAR AGE', 'HOME VAL', 'HOMEKIDS', 'INCOME', 'YOJ', 'KIDS
        cat cols = ['CAR TYPE', 'CAR USE', 'EDUCATION', 'GENDER', 'MSTATUS', 'PARENT1', 'RED CAR
        claims[['BLUEBOOK', 'HOME VAL', 'INCOME']] = claims[['BLUEBOOK', 'HOME VAL', 'INCOME']]/
        train data = claims[claims[exposure] > 0.0] # Only positive exposure
        train data = train data[[target] + [exposure] + int pred] # Only necessary variables
        train data = train data.dropna().reset index(drop=True)
                                                                              # Remove missing va
        train data.shape
        (5715, 22)
Out[5]:
In [6]:
        n sample = train data.shape[0]
        y train = train data[target]
        o train = np.log(train data[exposure])
        # Build a model with only the Intercept term
        X train = train data[[target]]
        X train.insert(0, 'Intercept', 1.0)
        X train = X train.drop(columns = target)
```

result = Regression.PoissonRegression (X train, y train, o train)

outCoefficient = result[0]

nonAliasParam = result[4]

outCovb = result[1]
outCorb = result[2]
llk = result[3]

```
outIterationTable = result[5]
y_pred_intercept_only = result[6]
```

a) Please generate a vertical bar chart to show the frequency of the number of claims.

```
In [7]: plt.rcParams["figure.figsize"] = [7.50, 5.50]
    plt.rcParams["figure.autolayout"] = True

sns.countplot(x='CLM_COUNT', data=train_data, color = 'maroon')
    plt.xlabel('Claim Count')
    plt.ylabel('Frequency')
    plt.title('Frequency of Number of Claims')
    plt.show()
```


b) What is the log-likelihood value, the Akaike Information Criterion (AIC) value, and the Bayesian Information Criterion (BIC) value of the Intercept-only model? Here are the formulas for AIC and BIC. Suppose l is the log-likelihood of a model, p is the number of non-aliased parameters in the model, and n is the number of observations used for training the model. Then AIC = -2l + 2p and $BIC = -2l + p \log p$ n.

```
In [8]:
       result
                  Estimate Standard Error Lower 95% CI Upper 95% CI Exponentiated
Out[8]:
        Intercept -0.263669
                             0.016178 -0.295376 -0.231962
                                                                    0.768228,
                  Intercept
        Intercept
                   0.000262,
                  Intercept
        Intercept
        -9202.190712554877,
        [0],
           Iteration Log-Likelihood N Step-Halving Intercept
        0
                 0 -9231.843623
                                               0 -0.141620
                                                0 -0.256515
        1
                  1
                      -9202.288726
        2
                  2
                      -9202.190714
                                                0 -0.263643
        3
                 3 -9202.190713
                                               0 -0.263669
        4
                       -9202.190713
                                               0 -0.263669
                 4
        5
                 5
                       -9202.190713
                                                0 - 0.263669,
        0
              0.768228
```

```
2
                0.768228
                0.768228
                0.768228
                   . . .
          5710 0.768228
          5711 0.768228
          5712 0.768228
          5713 0.768228
          5714
                0.768228
         Name: EXPOSURE, Length: 5715, dtype: float64]
In [9]: print('Log-likelihood value : ', llk)
         Log-likelihood value : -9202.190712554877
In [10]: def compute aic bic(llk, len nonAliasParam, n sample) :
             AIC = -2*11k + 2*1en nonAliasParam
            print('Akaike Information Criterion (AIC) value : ', AIC)
             BIC = -2*llk + len nonAliasParam*math.log(n sample)
             print('Bayesian Information Criterion (BIC) value : ', BIC)
In [11]: compute aic bic(llk, len(nonAliasParam), n sample)
```

Question 2

1

0.636093

Use the Forward Selection method to build our model. The Entry Threshold is 0.01.

a) Please provide a summary report of the Forward Selection in a table.

Akaike Information Criterion (AIC) value: 18406.381425109754
Bayesian Information Criterion (BIC) value: 18413.032274685982

The report should include:

- 1. the step number,
- 2. the predictor entered,
- 3. the number of non-aliased parameters in the current model,
- 4. the log-likelihood value of the current model,
- 5. the Deviance Chi-squares statistic between the current and the previous models,
- 6. the corresponding Deviance Degree of Freedom, and
- 7. the corresponding Chi-square significance.

```
In [12]:

def create_term_var(col) :
    if col in cat_cols :
        # Reorder the categories in ascending order of frequencies of the target field
        u = trainData[col].astype('category')
        u_freq = u.value_counts(ascending = True)
        pm = u.cat.reorder_categories(list(u_freq.index))
        term_var = pd.get_dummies(pm)
    else :
        term_var = trainData[[col]]
    return term_var

def update_step_summary(preds, train_model, llk_0, df_0):
    # Find the predictor
    step_detail = []
    for i in preds :
        X = train_model.join(create_term_var(i),rsuffix="_"+i)
```

```
outList = Regression.PoissonRegression(X, y train, o train)
                 11k 1 = outList[3]
                 df 1 = len(outList[4])
                 deviance chisq = 2 * (11k 1 - 11k 0)
                 deviance df = df 1 - df 0
                 deviance sig = chi2.sf(deviance chisq, deviance df)
                 step detail.append([i, df 1, llk 1, deviance chisq, deviance df, deviance sig, o
             step detail df = pd.DataFrame(step detail, columns=columns+['output'])
             min index = step detail df['Chi-Square Significance'].idxmin()
             min row = step detail df.iloc[min index].tolist()
             return min row
         def forward selection() :
             preds = int pred.copy()
             y train = trainData[target]
             o train = np.log(trainData[exposure])
             # Intercept only model
             X train = trainData[[target]].copy()
             X train.insert(0, 'Intercept', 1.0)
             X train.drop(columns = [target], inplace = True)
             step summary = []
             outList = Regression.PoissonRegression(X train, y train, o train)
             11k 0 = outList[3]
             df 0 = len(outList[4])
             step summary.append(['INTERCEPT', df 0, llk 0, np.nan, np.nan, np.nan])
             chi siq = 0
             threshold = 0.01
             while chi sig < threshold :</pre>
                 if len(preds) == 0:
                     break
                 else :
                      row = update step summary(preds, X train, llk 0, df 0)
                     11k 0 = row[2]
                     df 0 = row[1]
                      chi sig = row[-2]
                      if chi sig < threshold :</pre>
                          step summary.append(row[:-1])
                          X train = X train.join(create term var(row[0]),rsuffix=" "+row[0])
                          out latest pr = row[-1]
                      preds.remove(row[0])
             return step summary, out latest pr
         trainData = train data.copy()
In [13]:
         columns = ["Predictor", "Non-Aliased Parameters", "Log-Likelihood", "Deviance Chi-Square
                                 "Degrees of Freedom", "Chi-Square Significance"]
         report data, out pr = forward selection()
         report df = pd.DataFrame(report data, columns=columns).reset index(drop=False)
         report df.rename(columns={'index': 'Step'}, inplace=True)
         y pred = out pr[6]
         report df
```

0	0	INTERCEPT	1	-9202.190713	NaN	NaN	NaN
1	1	URBANICITY	2	-8796.722613	810.936199	1.0	2.261281e-178
2	2	EDUCATION	6	-8488.805338	615.834550	4.0	5.795205e-132
3	3	MVR_PTS	7	-8349.865822	277.879032	1.0	2.176697e-62
4	4	CAR_TYPE	12	-8234.985620	229.760403	5.0	1.203794e-47
5	5	TRAVTIME	13	-8163.342263	143.286714	1.0	5.087948e-33
6	6	CAR_USE	14	-8097.875925	130.932677	1.0	2.561479e-30
7	7	KIDSDRIV	15	-8049.321029	97.109791	1.0	6.558776e-23
8	8	INCOME	16	-8000.010438	98.621184	1.0	3.057312e-23
9	9	REVOKED	17	-7958.349167	83.322541	1.0	6.970030e-20
10	10	TIF	18	-7921.746150	73.206035	1.0	1.167981e-17
11	11	PARENT1	19	-7887.529214	68.433872	1.0	1.312044e-16
12	12	BLUEBOOK	20	-7868.500958	38.056513	1.0	6.872492e-10
13	13	MSTATUS	21	-7859.308943	18.384030	1.0	1.805650e-05
14	14	HOMEKIDS	22	-7854.368864	9.880158	1.0	1.670706e-03

b) Our final model is the model when the Forward Selection ends. What are the Akaike Information Criterion (AIC) and the Bayesian Information Criterion (BIC) of your final model?

```
In [15]: compute_aic_bic(llk, len_nonAliasParam, n_sample)
```

Akaike Information Criterion (AIC) value: 15752.737727294354
Bayesian Information Criterion (BIC) value: 15899.05641797139

c) Please show a table of the complete set of parameters of your final model (including the aliased parameters). Besides the parameter estimates, please also include the standard errors, the 95% asymptotic confidence intervals, and the exponentiated parameter estimates. Conventionally, aliased parameters have zero standard errors and confidence intervals.

```
In [16]: out_pr[0]
```

Out[16]:

	Estimate	Standard Error	Lower 95% CI	Upper 95% CI	Exponentiated
Intercept	-0.401503	0.076407	-0.551257	-0.251749	0.669313
Highly Rural/ Rural	-1.943926	0.081602	-2.103863	-1.783989	0.143141
Highly Urban/ Urban	0.000000	0.000000	0.000000	0.000000	1.000000
PhD	0.139734	0.076870	-0.010929	0.290397	1.149968
Below High Sc	0.477629	0.055029	0.369773	0.585485	1.612247
Masters	-0.068989	0.055441	-0.177651	0.039673	0.933337
High School	0.403391	0.044824	0.315538	0.491244	1.496892
Bachelors	0.000000	0.000000	0.000000	0.000000	1.000000
MVR_PTS	0.080916	0.006532	0.068114	0.093718	1.084280
Panel Truck	-0.038398	0.080251	-0.195687	0.118891	0.962330

Van	-0.038103	0.066997	-0.169415	0.093210	0.962614
Sports Car	0.073540	0.052107	-0.028588	0.175668	1.076311
Pickup	-0.234377	0.050293	-0.332949	-0.135805	0.791063
Minivan	-0.549465	0.050585	-0.648610	-0.450320	0.577258
suv	0.000000	0.000000	0.000000	0.000000	1.000000
TRAVTIME	0.011964	0.001009	0.009986	0.013942	1.012036
Commercial	0.529038	0.040710	0.449247	0.608829	1.697299
Private	0.000000	0.000000	0.000000	0.000000	1.000000
KIDSDRIV	0.217802	0.028881	0.161196	0.274407	1.243340
INCOME	-0.004413	0.000528	-0.005449	-0.003378	0.995596
Yes	0.368634	0.042196	0.285931	0.451336	1.445758
No	0.000000	0.000000	0.000000	0.000000	1.000000
TIF	-0.037425	0.004211	-0.045678	-0.029173	0.963266
Yes_PARENT1	0.203617	0.072481	0.061557	0.345677	1.225828
No_PARENT1	0.000000	0.000000	0.000000	0.000000	1.000000
BLUEBOOK	-0.016369	0.002708	-0.021675	-0.011062	0.983765
No_MSTATUS	0.240219	0.048193	0.145763	0.334675	1.271528
Yes_MSTATUS	0.000000	0.000000	0.000000	0.000000	1.000000
HOMEKIDS	0.053730	0.016894	0.020619	0.086841	1.055200

Question 3

We will use accuracy metrics to assess the Intercept-only model and our final model in Question 2. These metrics inform us from various perspectives how well the predicted number of claims agrees with the observed number of claims.

```
In [17]: from sklearn.metrics import mean squared error, mean absolute error, r2 score
         import dcor
         from scipy.stats import pearsonr
         def compute error metrics(y true, y pred) :
             # Root Mean Squared Error (RMSE)
             rmse = np.sqrt(mean squared error(y true, y pred))
             print("RMSE:", rmse)
             # Relative Error
             obs mean = np.mean(y true)
             rel error = (np.sum(np.power(y train - y pred, 2)) / n sample) / (np.var(y train, dd
             print("Relative Error:", rel error)
             # Pearson Correlation
             pearson, = pearsonr(y true, y pred)
             print("Pearson Correlation:", pearson)
             # Distance Correlation
             distance correlation = dcor.distance correlation(y true.astype(float), y pred.astype
             print("Distance Correlation:", distance correlation)
             list(np.float (y true))
```

```
# R-Squared
# r2 = r2_score(y_true, y_pred)
num = np.sum(((y_pred - np.mean(y_pred))*(y_true - np.mean(y_true)))**2)
den = np.sum((y_pred - np.mean(y_pred))**2) * np.sum((y_true - np.mean(y_true))**2)
r2 = num/den
print("R-Squared:", r2)
```

a) Calculate the Root Mean Squared Error, the Relative Error, the Pearson correlation, the Distance correlation, and the R-squared metrics for the Intercept-only model.

```
In [18]: compute_error_metrics(y_train, y_pred_intercept_only)

RMSE: 1.4635157608954519
Relative Error: 1.0759932377154993
Pearson Correlation: -0.19138309783283575
Distance Correlation: 0.22968068175486067
R-Squared: 0.00023764977519819723
```

b) Calculate the Root Mean Squared Error, the Relative Error, the Pearson correlation, the Distance correlation, and the R-squared metrics for our final model in Question 2.

```
In [19]: compute_error_metrics(y_train, y_pred)

RMSE: 1.3946224733422352
Relative Error: 0.9770753409645692
Pearson Correlation: 0.2614873869285943
Distance Correlation: 0.2806093073756397
R-Squared: 0.0002784862880145033
```

c) We will compare the goodness-of-fit of your model with that of the saturated model. We will calculate the Pearson Chi-Squares and the Deviance Chi-Squares statistics, their degrees of freedom, and their significance values. Based on the results, do you think your model is statistically the same as the saturated Model?

```
In [20]: # Calculate Pearson residual
    y_resid = y_train - y_pred
    pearsonResid = np.where(y_pred > 0.0, y_resid / np.sqrt(y_pred), np.NaN)

# Calculate Deviance residual
    yPos = -1*((y_train * np.log(y_pred/y_train))+(y_train-y_pred))
    dR2 = np.where(y_train > 0.0, yPos, 0)
    devResid = np.where(y_train > y_pred, 1.0, -1.0) * np.where(dR2 > 0.0, np.sqrt(2.0 * dR2)

pearson_chisq = np.sum(np.power(pearsonResid, 2.0))
    deviance_chisq = np.sum(np.power(devResid, 2.0))
    df_chisq = n_sample - len_nonAliasParam

pearson_sig = chi2.sf(pearson_chisq, df_chisq)
    deviance_sig = chi2.sf(deviance_chisq, df_chisq)

pd.DataFrame(data = [['Pearson', pearson_chisq, df_chisq, pearson_sig],['Deviance', device columns = ['Type', 'Statistic', 'Degrees of Freedom', 'Significance (p-value)
```

Out [20]: Type Statistic Degrees of Freedom Significance (p-value) 0 Pearson 54445.804414 5693 0.000000e+00 1 Deviance 7047.060487 5693 1.736820e-32

Question 4

magnitude of the Exposure value. You must properly label the axes, add grid lines, and choose appropriate tick marks to receive full credit.

1. Plot the Pearson residuals versus the observed number of claims.

```
In [21]: # Plot Pearson residuals

y_resid = y_train - y_pred

pearsonResid = np.where(y_pred > 0.0, y_resid / np.sqrt(y_pred), np.NaN)

plt.figure(figsize = (8,4), dpi = 200)

sg = plt.scatter(y_train, pearsonResid, c = train_data['EXPOSURE'], marker = 'o')

plt.xlabel('Observed CLM_COUNT')

plt.ylabel('Pearson Residual')

plt.xticks(range(10))

plt.grid(axis = 'both', linestyle = 'dotted')

plt.colorbar(sg, label = 'Exposure')

plt.show()
```


2. Plot the Deviance residuals versus the observed number of claims.

```
In [22]: # Plot Deviance residuals

plt.figure(figsize = (8,4), dpi = 200)
    sg = plt.scatter(y_train, devResid, c = train_data['EXPOSURE'], marker = 'o')
    plt.xlabel('Observed CLM_COUNT')
    plt.ylabel('Deviance Residual')
    plt.xticks(range(10))
    plt.grid(axis = 'both')
    plt.colorbar(sg, label = 'Exposure')
    plt.show()
```


In []: