MAKINE ÖĞRENMESI

Dr.Öğr.Üy. Filiz Gürkan –
Elektrik Elektronik Mühendisliği
İstanbul Medeniyet Üniversitesi

Dr.Öğr.Üyesi Filiz Gürkan filiz.gurkan@medeniyet.edu.tr Kuzey Kampüs- F008

- >Slaytlar
- ➤ Pattern Recognition and Machine Learning, Christopher M. Bishop
- Introduction to Machine Learning, The MIT Press, Ethem ALPAYDIN
- ≻İnternet kaynakları Makale ve bildiriler

Notlandirma:

- > YIL İÇİ ÖDEVLER+PROJE (%60)
- > FİNAL (%40)

00 00 0004	oinio	
23.02.2024	GİRİŞ	
01.03.2024	TEMEL KAVRAMLAR	
08.03.2024	PCA-LDA	
15.03.2024	Öğreticili Öğrenme	ÖDEV1
22.03.2024	Öğreticili öğrenme	
29.03.2024	Öğreticili öğrenme	
05.04.2024	Öğreticili öğrenme	ÖDEV2
12.04.2024	DERS YOK	
19.04.2024	ARA SINAV HAFTASI	
26.04.2024	26.04.2024 Sunumlar-Öğreticisiz öğrenme	
03.05.2024	Öğreticisiz öğrenme	
10.05.2024	WEKA	ÖDEV3
17.05.2024	YAPAY SİNİR AĞLARI	
24.05.2024	TEKRAR	
31.05.2024	SUNUMLAR	

Öğrenme?

Makine öğrenmesi, bilgisayarların bir performans kriterini enbüyük leyecek şekilde programlanması olarak tanımlanabilir

• [Tom Mitchell]
learn from experience E with respect to some class of tasks T and performance measure P, if its performance at tasks in T, as measured by P, improves with experience E

algorithms that improve their **performance** at some **task** with **experience**

 $X \rightarrow Y$

X: emails

Y: {spam, değil}

AMAÇ: $f(X) \rightarrow Y$ yi elde edeceğimiz f(.)

yi belirlemek

Nasıl?

- >Örnek veri seti / geçmiş deneyim
- >Örneklerden genel modelin öğrenilmesi
 - Satış : Müşteri işlemlerinden müşteri profilinin öğrenilmesi
- ➤Belli amaçla toplanmış veriye uygun iyi bir modelleme yapılması
 - Covid verilerinden hastalık teşhisine uygun öznitelikl erin çıkarılması

Arthur Samuel (1952)

Dama oyunu

Frank Rosenblatt (1957) Perceptron – ikili sınıflandırma

1960-1970s – Al Boom (MLP-SGD- geri yayılım)

1970s-1980 – AI WINTER

1980-1987 – AI BOOM

1987-1993 – AI WINTER

Gerry Tesauro (1994) 1997

Öğrenme yaklaşımları

Öğreticili öğrenme

- Sınıflandırma
- Kesikli çıktı (discrete)
 - Yüz tanıma
 - Karakter tanıma
 - Konuşma tanıma
 - Medikal data
 - Biometrik data

Öğreticili öğrenme

- Regresyon
 - Sürekli çıktı (Continuous)

Öğreticisiz öğrenme

- >Çıkışta sınıf etiketi yoktur
 - Öbekleme (Clustering) : Benzerlik kriterlerine göre giriş örneklerini gruplar
- >Örnek uygulamalar
 - >Müşteri segmentini belirleme
 - >Görüntü bölütleme
 - >Anomali tespiti

Pekiştirmeli öğrenme

- >Geri beslemeden öğrenme
- ≻Öğrenme kuralı : Bir dizi çıktı
 - >Oyun algoritmaları

There is only one "supervised" signal at the end of the game.

But you need to make a move at every step

VERİ TÜRLERİ

- Sayisal
 - Sürekli
 - Ayrık
- Kategorik
 - Ordinal
 - Nominal

MAKİNE ÖĞRENMESİ

IRIS VERİSETİ

Iris setosa Iris versicolor Iris virginica

Petal

Sepal

Petal

Petal

Petal

Petal

Petal

Petal

Sepal

50X3 = 150 adet görsel

# sepal_length	F	# sepal_width =	# petal_length =	# petal_width =	▲ species =
5.1		3.5	1.4	0.2	setosa
4.9		3.0	1.4	0.2	setosa
4.7		3.2	1.3	0.2	setosa
5.0		2.0	3.5	1.0	versicolor
5.9		3.0	4.2	1.5	versicolor
6.0		2.2	4.0	1.0	versicolor
7.7		2.6	6.9	2.3	virginica
6.0		2.2	5.0	1.5	virginica
6.9		3.2	5.7	2.3	virginica
5.6		2.8	4.9	2.0	virginica
5.4		3.7	1.5	0.2	setosa

Öznitelikler(feature-attributes)

Sınıf (class)

# sepal_length =	# sepal_width =	# petal_length =	# petal_width =	▲ species =
5.1	3.5	1.4	0.2	setosa
4.9	3.0	1.4	0.2	setosa
4.7	3.2	1.3	0.2	setosa
5.0	2.0	3.5	1.0	versicolor
5.9	3.0	4.2	1.5	versicolor
6.0	2.2	4.0	1.0	versicolor
7.7	2.6	6.9	2.3	virginica
6.0	2.2	5.0	1.5	virginica
6.9	3.2	5.7	2.3	virginica
5.6	2.8	4.9	2.0	virginica
5.4	3.7	1.5	0.2	setosa

Örnekler-Gözlemler (instanceobject)

Yapısal veriler

Yapısal olmayan veriler

Resim: her bir pikseli, renkli resimlerde R,G,B değerleri, siyah-beyaz resimlerde 1–255 arası gri seviyesi kullanılarak sayılara çevrilir. Renkli resimler 3 adet, siyah beyazlar 1 adet en*boy büyüklüğünde matrisle ifade edilir.

Metin :harfler, heceler ve kelimeler genelde frekanslarına göre kodlanarak sayılara çevrilir.

Hareketli görüntü: Resim bilgisine ek olarak resmin hangi resimden sonra geldiğini gösteren zaman bilgisini de içerir. Bu ek bilgi haricinde yapılan işlem resim ile aynıdır.

Ses : genlik ve frekansın zaman içinde değişimiyle kodlanır.

Veri türleri

- Sayısal (NÜMERİK) veriler
 - Sürekli → 1.63 cm boy, 12265 km ...
 - Ayrık →3 kişi, 5 elma (sayılabilir nicelikler)..

- Kategorik
 - Ordinal (sıralı) → iyi-orta-kötü , yüksek-ortadüşük
 - Nominal → cinsiyet, medeni durum, renk

- Tüm ML algoritmaları için
 - Girişi çıkışa dönüştürecek fonksiyonu bulmak f: X → Y
 - X: emails, Y: {spam, notspam}
- Every machine learning algorithm has three components:
 - Representation model (derin öğrenme-SVM..)
 - Evaluation performans değerlendirme aşaması (doğrulukhassaslık ...)
 - Optimizasyon-doğru model ağırlıklarını bulma süreci

Öğrenme yaklaşımları

SPAM MAİL SINIFLANDIRMA

Spam Emails

- Bazı belirgin kelimeler
 - "money"
 - "free"
 - "bank account"
 - •
- Normal Emails
 - Ilgili kelimelerin kullanımı az

Supervised Learning

Unsupervised Learning

Öğreticili öğrenme

- Sınıflandırma
- Kesikli çıktı (discrete)
 - Yüz tanıma
 - Karakter tanıma
 - Konuşma tanıma
 - Medikal data
 - Biometrik data

Image Classification

Yüz Tanıma

Konuşma Tanıma

Slide Credit: Carlos Guestrin

Stock market

Google Inc More results (NASDAQ:GOOG) Add to portfolio 735.79 - 747.99 Div/yield **Q** +1 < 5k Dow Jones 13,758.94 0.34% **744.00** +41.13 (5.85%) 52 week 556.52 - 774.38 **EPS** 32.46 0.27% Nasdag 3.151.72 Open 735.99 Shares 328.59M Real-time: 10:43AM EST Technology 0.33% 2.68M/2.28M Vol / Avg. Beta 1.08 NASDAQ real-time data - Disclaimer 69% GOOG 744.00 5.85% Mkt cap 244.39B Inst. own Currency in USD 22.91 P/E Google Inc. (GOOG) Is Up Sharply On Q4 □ Dow Jones □ Nasdag □ BIDU □ YNDX □ BCOR □ MSFT □ YHOO Compare: Enter ticker here Add more » Results RTT News - 1 hour ago Zoom: 1d 5d 1m 3m 6m YTD 1y 5y 10y All Jan 18, 2013 - Jan 23, 2013 +32.07 (4.51%) B Stocks to Watch: Google, Coach, Annie's Wall Street Journal - 1 hour ago Google Inc (GOOG) Reports Strong 740 Earnings, Shares Rise ValueWalk - 3 hours ago Google 4th-Quarter Profits Increase as Ad 720 Pricing Improves NASDAQ - 15 hours ago Facebook Inc (FB)'s Social Graph Is a 700 X G A Google Inc (GOOG) Plus Killer Insider Monkey - 16 hours ago 12 pm Fri Jan 18 12 pm 2 pm Tue Jan 22 2 pm Wed Jan 23 2 pm Volume (thous / 2min) All news for Google Inc » 350 Subscribe 175 and Add GOOG to my calendars Events 2011 2012 < Apr 15, 2013 Q1 2013 Google Earnings Release 5 Settings | Plot feeds | Technicals | @ Link to this view Volume delayed by 15 mins.

Hava tahmini

Pose Estimation

https://www.youtube.com/watch?v=RMgrAxds3DU

Unsupervised Learning

Y BİLİNMEZ

Clustering Data: Benzer ŞEYLERi gruplama

Outlier bulma (AYKIRI-UÇ DEĞER)

Boyut azaltma

Ham verinin elde edilmesi

Veri ön işleme

Öznitelik seçimi

Ölçeklendirme

Boyut Azaltma

Veri seti bölme

Eğitim seti

Test seti

Eğitim ve Hiperparametre optimizasyonu

Performans değerlendirme ve model oluşturma

Performans analizi

Ön işleme

Kayıp veri analizi

- Silme
- Ortalama yazma

Veri temizleme

- Tekrarları yok etme
- Uç noktaların belirlenmesi
- Anlamsız özniteliklerin silinmesi
- Kategorik verilerin dönüşümü
- Label encoding (sıralı)
- One hot encoding

Irmo
lirme

Student	CGPA	Salary '000
1	3.0	60
2	3.0	40
3	4.0	40

S	tudent	CGPA	Salary '000
	1	-1.184341	1.520013
	2	-1.184341	-1.100699
	3	0.416120	-1.100699

- 1 TL ----- 1 Dolar == 1 birim
- -50 50 C derece --- 10000 100000 km ölçekler çok farklı

Bazı yöntemler için ölçek önemli Standartizasyon X_new = (X - mean)/Std

Normalizasyon (min-max scaling) -- outlier varsa iyi sonuç vermez

 $X_new = (X - X_min)/(X_max - X_min)$

Öznitelik seçimi

N öznitelik varsa → ??? kombinasyon

Öznitelik seçimi

- Öznitelik-sınıf arasındaki ilişkiye göre (Filter Methods)
 - i) Pearson Korelasyonu (Pearson Correlation) sayısal veriler için
 - [-1 1] arası değerler
- ii) Ki-Kare Testi (Chi2) kategorik veriler için
- iii) Anova Testi (Ànova) kategorik ile sayısal arasındaki ilişkiyi ölçmek için
- Ardışık olarak değişkenleri ekleyerek ve çıkartarak seçme (Şarmal Yöntemler- Wrapped Methods)
 - i) Ardışık İleri Yönde Seçim (Sequential Forward Selection (SFS))
 - ii) Ardı́şık Geri Yönde Seçim (Sequential Backward Selection (SBS))

Öznitelik seçimi

- Boyut İndirgeme (Dimensionality Reduction)
 - i) Temel Bileşenler Analizi (Principal Component Analysis (PCA))
 - ii) Lineer Diskriminant Analizi (Linear Discriminant Analysis (LDA))

Eğitim – Test seti

Genelleme (generalization): Test seti ile modelin performansının değerlendirilmesi—oluşan hata genelleme hatası

%80 - %20

Nelere dikkat edilmeli

Eğitim – Test seti

Overfitting (aşırı öğrenme)

Underfitting: Modelin verilerdeki temel örüntüleri yakalamak için çok basit olması ve bu nedenle kötü performans göstermesi
Overfitting: Modelin çok karmaşık olması nedeniyle verilerdeki gürültüyü veya rastgele dalgalanmaları yakalamaya başlaması ve bu nedenle modelin daha önce karşılamadığı yeni verilere genelleme yaparken kötü performans göstermesi

Validation-doğrulama

Model parametrelerini incelemek için eğitim →test yapılmalı TEST VERİSİNİ KULLANDIK ?

-eğitim sırasında, eğitim nasıl gidiyor çıkarım yapabiliriz

K-katlı çapraz doğrulama (k-fold cross validation

Temel amacı, modelin farklı veri alt kümesi üzerindeki performansını değerlendirerek genelleştirme kabiliyeti hakkında daha güvenilir ve kararlı bir tahmin yapmaktır

K kere eğitim-test yapılır ortalaması alınır.

Genelde 10-fold

ı

PCA- Temel bileşen analizi

 PCA, veri setindeki toplam varyansın mümkün olan en büyük kısmını ilk birkaç temel bileşenle yakalamaya çalışır. Yani, ilk temel bileşen veri setindeki en yüksek varyansı, ikinci temel bileşen ilk bileşene dik olarak kalan varyansın en yüksek kısmını, ve bu şekilde devam ederek yakalar.

(b) Spread along x-direction

(e) Direction of largest spread : Direction of the first principal component (solid dot is the point whose coordinates are the means of x and y)

(f) Directions of principal components

Features	Example 1	Example 2	•••	Example N
$\overline{X_1}$	X_{11}	X_{12}		$\overline{X_{1N}}$
X_2	X_{21}	X_{22}		X_{2N}
:				
X_i	X_{i1}	X_{i2}	•••	X_{iN}
:				
X_n	X_{n1}	X_{n2}		X_{nN}

$$\bar{X}_i = \frac{1}{N} (X_{i1} + X_{i2} + \dots + X_{iN}). \qquad \text{Cov}(X_i, X_j) = \frac{1}{N-1} \sum_{k=1}^{N} (X_{ik} - \bar{X}_i)(X_{jk} - \bar{X}_j).$$

$$S = \begin{bmatrix} \operatorname{Cov}(X_1, X_1) & \operatorname{Cov}(X_1, X_2) & \cdots & \operatorname{Cov}(X_1, X_n) \\ \operatorname{Cov}(X_2, X_1) & \operatorname{Cov}(X_2, X_2) & \cdots & \operatorname{Cov}(X_2, X_n) \\ \vdots & & & & \\ \operatorname{Cov}(X_n, X_1) & \operatorname{Cov}(X_n, X_2) & \cdots & \operatorname{Cov}(X_n, X_n) \end{bmatrix}$$

Öz değer bul

öz vektör bul

$$\det(S - \lambda I) = 0.$$

$$U = \begin{bmatrix} u_1 \\ u_2 \\ \vdots \\ u_n \end{bmatrix}$$

$$U = \begin{bmatrix} u_1 \\ u_2 \\ \vdots \\ u_n \end{bmatrix}$$

$$e_i = \frac{1}{\|U_i\|} U_i, \quad i = 1, 2, \dots, n.$$

$$(S - \lambda' I)U = 0.$$

$$X = \begin{bmatrix} X_{11} - \bar{X}_1 & X_{12} - \bar{X}_1 & \cdots & X_{1N} - \bar{X}_1 \\ X_{21} - \bar{X}_2 & X_{22} - \bar{X}_2 & \cdots & X_{2N} - \bar{X}_2 \\ \vdots & & & & \\ X_{n1} - \bar{X}_n & X_{n2} - \bar{X}_n & \cdots & X_{nN} - \bar{X}_n \end{bmatrix}$$

F seçilen özvektörler olmak üzere

$$X_{\text{new}} = FX$$
.

ÖRNEK:

Önceki slyatlardaki adımları kullanılarak, her biri 2 adet öznitelik içeren, 4 örnek için

PCA uygulayın. Tek öznitelik kullanılması durumunda bu öznitelik ne olur, hesaplayın

Feature	Example 1	Example 2	Example 3	Example 4
$\overline{X_1}$	4	8	13	7
$\overline{X_2}$	11	4	5	14