Statystyczna Analiza Danych

Analiza skupień i porządkowanie liniowe wybranych modeli telefonów

Wstęp

Projekt ma za zadanie przedstawienie analizy różnych modeli telefonów dostępnych na rynku. Dane techniczne zostały pozyskane ze strony mgsm.pl, a ich pojedyncze braki uzupełnialiśmy z ofert sprzedaży znajdujących się na allegro.pl. Ceny zostały zaczerpnięte ze strony ceneo.pl. Całość została zrealizowana w języku python. Projekt składa się z dwóch części: porządkowania liniowego oraz analizy skupień.

Spis treści

Wstęp	1
Przedstawienie danych	2
Ogólnie o modelach i metodyce ich doboru	2
Wybrane parametry	3
Proste statystyki przedstawiające wykorzystane dane	3
Współczynnik zmienności	3
Macierz korelacji	4
Wartości odstające	5
Identyfikacja	5
Efekt dokonanych zmian	6
Dodatkowe spostrzeżenia	6
Porządkowanie Liniowe	7
Charakterystyka zmiennych	7
Metody Hellwiga	7
Metoda Hellwiga dla tych samych wag	7
Metoda Hellwiga dla konsumenta dla którego priorytetem jest cena	8
Metoda Hellwiga dla konsumenta gier mobilnych	8
Metoda Hellwiga dla konsumenta dla fotografa	9
Metoda Hellwiga dla nietechnicznego konsumenta	9
Podsumowanie wszystkich wyników metodą Hellwiga	10
Metoda TOPSIS	10
Metoda TOPSIS dla tych samych wag	10
Metoda TOPSIS dla konsumenta dla którego priorytetem jest cena	11
Metoda TOPSIS dla konsumenta gier mobilnych	11
Metoda TOPSIS dla konsumenta dla fotografa	12
Metoda TOPSIS dla nietechnicznego konsumenta	12

Podsumowanie wszystkich wyników metodą TOPSIS	13
Analiza skupień - Grupowanie podziałowe	13
Metoda k-średnich	13
Identyfikacja optymalnego podziału na grupy	13
Metoda k- średnich ostateczny podział	14
Metoda k-medoid	16
Identyfikacja optymalnego podziału na grupy	16
Metoda k- średnich ostateczny podział	17
Analiza skupień - Metoda hierarchiczna	18
Otrzymany dendrogram za pomocą metody Warda	18
Klasyfikacja:	19
Podsumowanie analizy skupień.	20
Zbiór danych i fragmentów kodu	21
Dane	21
Metoda Hellwiga/TOPSIS dla tych samych wag	22
Metoda Hellwiga/TOPSIS dla konsumenta dla którego priorytetem jest cena	23
Metoda Hellwiga/TOPSIS dla konsumenta gier mobilnych	24
Metoda Hellwiga/TOPSIS dla fotografa	25
Metoda Hellwiga/TOPSIS dla nietechnicznego konsumenta	26
Zastosowane wagi	26

Przedstawienie danych

Ogólnie o modelach i metodyce ich doboru

Zebraliśmy 23 modele telefonów różnych producentów, takich jak: Apple, Samsung, Microsoft, Motorola, Google, Huawei, Asus, Nokia, HTC, Xiaomi, Oppo. Nie posiadaliśmy żadnej reguły doboru modeli telefonów. Wykorzystaliśmy te dane, które nas ciekawiły, lub dodaliśmy pierwszy lepszy popularnego producenta, którego uznaliśmy, że powinien otrzymać jakiegoś reprezentanta. Między innymi byliśmy zainteresowani flagowymi produktami firmy Apple (czyli na chwilę obecną iPhonem 15 w wersji zwykłej jak i promax), a także starszym modelem owej firmy (iPhone 13). Wykorzystaliśmy wiele niszowych modeli, takich jak ULEFONE NOTE 16 PRO. Nie umknęły nam także starsze modele np. HTC 10. Udało nam się także znaleźć zmodernizowaną wersję telefonu Nokii 3310.

Po prawej stronie można zobaczyć dokładne modele, które zostały wykorzystane.

1	Apple iphone 15
2	Samsung Galaxy A54
3	Motorola g72
4	DOOGEE SMINI
5	ULEFONE NOTE 16 PRO
6	Google Pixel 6pro
7	HTC U23 PRO
8	HTC DESIRE 22 PRO
9	HTC 10
10	Xiaomi Redmi Note 13 Pro 5G
11	SAMSUNG GALAXY S23
12	Huawei Mate 60 RS Ultimate
13	Apple iphone 15 pro max
14	Apple iphone 13
15	ASUS ROG PHONE 7 ULTIMATE
16	ASUS ROG PHONE 7
17	POCO F3
18	OPPO A91
19	POCO F5 PRO
20	nubia red magic 7 pro

NOKIA 3310 2017 DUAL SIM

Wybrane parametry

Ze względu na zróżnicowane zapotrzebowania konsumentów wybraliśmy 9 parametrów, które według nas, są najważniejsze przy zakupie telefonu. Mianowicie:

- opinie użytkowników (w skali od 0 do 10)
- cena (w złotówkach polskich)
- wbudowana pamięć (w GB)
- pamięć RAM (w GB)
- waga (w gramach)
- pojemność baterii (w mAh)
- zegar procesora (w Mhz)
- data premiery (liczone jako różnica obecnego kwartału a kwartału wypuszczenia danego modelu)
- ilość megapikseli głównego aparatu

Zdajemy sobie sprawę z faktu, iż nie są to wszystkie parametry na które konsument zwraca uwagę, jednakże są to według nas wystarczająco godni reprezentanci danych, różnych typów konsumentów. Jednocześnie już tak duża ilość parametrów sprawiła nam pewne kłopoty, gdyż nie każdy telefon ma wymienione wszystkie parametry. Najcięższym przypadkiem który zachowaliśmy to Nokia 3310 z 2017r. Owa modernizacja legendarnego już telefonu posiada oryginalny procesor którego nie można w taki sposób mierzyć. Z tego też powodu zastosowaliśmy tam wartość 0. Pozostałe modele telefonów, które nie posiadały wszystkich danych zostały usunięte i nie są nawet prezentowane w załączonym pliku z danymi.

Żeby zobaczyć pełne dane kliknij tutaj

Proste statystyki przedstawiające wykorzystane dane

	Ocena	Cena	Pamiec wbudowana	RAM	Waga	Bateria	Procesor	Roznica kwartałów	Mega- piksele
Średnia	7,2	2884,6	272,7	9	189,7	4323,7	2596,96	7,74	56,38
Odchy- lenie std	1,06	2822,6	279,31	4,78	39,6	1168,1	890,88	9,4	40,48
Min	5	249	0,015625	0,016	79,6	1200	0	0	2
Max	8,81	11000	1000	16	246	6000	4200	32	200
Q1	6,52	968,5	128	6	169	3692,5	2200	2	48
Me- diana	7,28	1899	128	8	196	4520	2620	3	50
Q3	8,09	3849,5	384	12	212,5	5001,5	3200	10	64

Współczynnik zmienności

	Ocena	Cena	Pamięć wbudo- wana	RAM	Waga	Bateria	Procesor	Różnica kwarta- łów	Mega- piksele
Wsp zmienno- ści	14,5%	95,7 %	100,18%	51,9 %	20,41 %	26,42%	33,55%	118,8%	70,27%

Analizując macierz korelacji możemy być zaskoczeni faktem, że nie ma znaczącej korelacji między oceną telefonu a jego parametrami technicznymi. Ta obserwacja wynika z heterogeniczności analizowanych modeli telefonów, które pochodzą z różnych okresów. Parametry, które w obecnej erze technologicznej są uznawane za suboptymalne, w przeszłości były całkowicie konkurencyjne w stosunku do dostępnych na rynku standardów. Dodatkowo, zaobserwowano nieznaczącą, lecz pozytywną korelację między oceną a różnicą w kwartałach wprowadzenia modelu na rynek. Możliwym wyjaśnieniem tego zjawiska jest ewolucja oczekiwań użytkowników w stosunku do telefonów komórkowych, co może skutkować ich bardziej krytycznym podejściem do oceny nowszych modeli. Podobną korelację można zauważyć pomiędzy oceną a zegarem procesora. Owe zjawisko w połączeniu z praktycznym brakiem korelacji pomiędzy oceną telefonu a innymi parametrami technicznymi, mogą wskazywać, że nie mała grupa konsumentów nie zwraca uwagi na procesor zainstalowany w telefonie, a następnie ocenia ten telefon między innymi na podstawie działania zainstalowanego w nim procesora.

Największa korelacja została zauważona dla przypadku pamięci wewnętrznej porównywanej z ceną. Korelacja 0,93 wynika prawdopodobnie z tego, że telefony z 512/1000 GB pamięci są jednocześnie modelami droższymi, ponieważ są modelami gamingowymi (np. ASUS ROG PHONE 7 także w wersji ultimate, nubia red magic 7 pro) lub markami premium (np. produkty Apple takie jak iPhone 15 pro max)

Występuje także istotna korelacja pomiędzy wagą a pojemnością baterii, której wartość oscyluje w okolicy 0,9. Podejrzewamy, że jest to spowodowane sporym udziałem baterii w wadze całego telefonu oraz powolnymi zmianami technologicznymi dotyczącymi baterii, co spowodowało, że telefony na przestrzeni kwartałów mają bardzo zbliżone stosunki masy baterii do energii przez nie magazynowanej.

Dodatkowo można zauważyć, iż wszystkie korelacje różnicy kwartałów poza ocenami są istotnie ujemne, co potwierdza postęp technologiczny w modelach telefonów dostępnych na rynku oraz rosnące ceny nowych modeli.

Wartości odstające Identyfikacja

Po wstępnej analizie uwidacznia się 6 wartości odstających. Są to modele:

- 1. MICROSOFT LUMIA 650
- 2. HTC 10
- 3. NOKIA 3310 2017 DUAL SIM
- 4. Xiaomi Redmi Note 13 Pro 5G
- 5. Huawei Mate 60 RS Ultimate
- 6. Apple iphone 15 pro max

Pierwsze trzy telefony są najstarszymi dostępnymi modelami przez nas zanotowanymi. Na tle konkurencji cechują się słabymi parametrami technicznymi, niskimi cenami i stosunkowo dobrymi opiniami. Telefon nr 4 ma nieproporcjonalnie dużo megapikseli na tle konkurencji. Ostatnie dwa telefony z kolei mają istotnie większe ceny względem konkurencji. Podsumowując, za wartości odstające uznaliśmy większość widocznych kropek na wykresach pudełkowych.

Po rozpatrzeniu macierzy korelacji, dla dalszych badań usuwamy parametr wagi. Zdecydowaliśmy się na usunięcie właśnie tego parametru, gdyż wystarczająco dobrze tłumaczy pojemność baterii, oraz jest jednocześnie parametrem najmniej istotnym z omawianej dwójki. Dodatkowo, na podstawie podobnych stwierdzeń, zdecydowaliśmy, że dla bezpieczeństwa, podczas analizy skupień nie weźmiemy pod uwagę pamięci wbudowanej. Dane także będą różnić się w zależności od wykonywanych badań. Ze względu na wrażliwość analizy skupień na wartości odstające, wyłącznie dla owego badania nie będziemy ich uwzględniali. Dzięki temu zabiegowi współczynnik zmienności istotnie się zmieni wraz z macierzą korelacji

Efekt dokonanych zmian

Współczynnik zmienności:

	Ocena	Cena	Pamięć	RAM	Bateria	Procesor	Różnica	Mega-
			wbudo-				kwarta-	piksele
			wana				łów	
Wsp	14,18	66,0	65,97	38,4	16,92%	23,14%	78,41%	37,72%
zmienno-	%	7%		5%				
ści								

Dodatkowe spostrzeżenia

Eliminacja wartości odstających nie tylko zmniejszyła wszystkie wartości tabeli ze współczynnikami zmienności, ale także mocno zmodyfikowała macierz korelacji. Owa macierz w zdecydowanej większości przypadków posiada wartości bezwzględne mniejsze od 0,4, oraz posiada wyłącznie jedną wartość bezwzględną większą od 0,66. Jest to mianowicie korelacja pomiędzy ceną a zegarem procesora, która urosła do wartości 0,86. Owa korelacja nie przekracza bezpiecznej bariery 0,9, więc jest akceptowalna. Zaobserwowane zmiany macierzy korelacji najprawdopodobniej zaszły z powodów nieodporności korelacji liniowej Pearsona na wartości odstające.

Dodatkowo stawia to pod znakiem zapytania hipotezę, że wraz z upływem czasu konsumenci stają się coraz bardziej wymagający. Owe zjawisko może występować, ale w dłuższym terminie, jednakże żeby to zweryfikować należałoby zebrać więcej danych. Jednakże hipotezę, że konsumenci nie zwracają uwagi na

procesor zainstalowany w telefonie wzmacnia, gdyż korelacja zwiększyła się z 0,21 na 0,35. Dodatkowo, można spostrzec nieznaczne korelacje oceny pomiędzy innymi parametrami technicznymi.

Porządkowanie Liniowe

W naszym projekcie wykorzystujemy dwie metody wzorcowe porządkowania liniowego: metodę Hellwiga i TOPSIS.

Metoda Hellwiga to technika porządkowania liniowego, która polega na wyborze alternatywy najbardziej zbliżonej do modelu idealnego, zdefiniowanego przez zestaw kryteriów. Metoda ta opiera się na idei maksymalizacji wskaźnika dostosowania każdej alternatywy do modelu idealnego.

TOPSIS jest oparty na idei, że wybrana alternatywa powinna mieć najmniejszą odległość euklidesową od idealnego rozwiązania (najlepsze wartości dla wszystkich kryteriów) i największą odległość od najgorszego rozwiązania (najgorsze wartości dla wszystkich kryteriów).

Zastosowaliśmy wagi dla czterech różnych typów konsumentów i dla porównania zastosowaliśmy obliczenia bez stosowania wag. Nazwaliśmy tych konsumentów: o priorytecie ceny, konsumentem gier mobilnych, fotografem, nietechnicznym konsumentem.

Dokładne wartości wag można zobaczyć klikając tutaj.

Charakterystyka zmiennych

- Ocena (w skali od 0 do 10) stymulanta
- cena (w złotówkach polskich) destymulanta im niższa cena tym lepiej dla konsumenta
- wbudowana pamięć (w GB) stymulanta
- pamięć RAM (w GB) stymulanta
- pojemność baterii (w mAh) stymulanta
- zegar procesora (w Mhz) stymulanta
- data premiery (liczone jako różnica obecnego kwartału a kwartału wypuszczenia danego modelu) –
 destymulanta im nowszy telefon (mniejsza różnica kwartalna), tym lepiej (kompatybilność, nowsze i
 bardziej wspierane systemy operacyjne)
- ilość megapikseli głównego aparatu stymulanta

Metody Hellwiga

Metoda Hellwiga dla tych samych wag

Najlepsze 3

Telefon	Wartość miary
Xiaomi Redmi Note 13 Pro	
5G	0,624947358
HTC U23 PRO	0,500229973
ASUS ROG PHONE 7	0,495910164

Najgorsze 3

Telefon	Wartość miary
HTC 10	0,117696784
MICROSOFT LUMIA 650	0,003798165
NOKIA 3310 2017 DUAL	
SIM	-0,128361733

Żeby zobaczyć pełną tabelę kliknij tutaj

Najlepsze trzy modele są stosunkowo nowe, mają dużo pamięci wewnętrznej (256gb-512gb) jak i RAM (12gb-16gb), są średnio wyższej ceny o sporej pojemności baterii, o średnich procesorach ale dobrych aparatach. Na miejscu pierwszym, z istotną różnicą punktów, umieścił się telefon, który poza wymienionymi parametrami, ma najlepszy dostępny w naszych danych aparat.

Natomiast najgorsze trzy modele są naszymi wartościami odstającymi, czyli starymi modelami ze słabymi parametrami technicznymi, za to o niskich cenach.

Metoda Hellwiga dla konsumenta dla którego priorytetem jest cena Najlepsze 3

Telefon	Wartość
releion	miary
HTC U23 PRO	0,5514738
Xiaomi Redmi Note 13 Pro 5G	0,5307839
POCO F5 PRO	0,5104056

Najgorsze 3

- 1.6	Wartość
Telefon	miary
NOKIA 3310 2017 DUAL SIM	0,0686704
Apple iphone 15 pro max	0,0408995
Huawei Mate 60 RS Ultimate	-0,1020309

Żeby zobaczyć pełną tabelę kliknij tutaj

Najlepsze dwa telefony są dokładnie tymi samymi co w przypadku tych samych wag, jednak z odwrotną kolejnością. Natomiast na trzecim miejscu pojawił się telefon tańszy, kosztem pamięci wewnętrznej jak i RAM oraz pojemnością baterii, za to otrzymując nieco lepszy aparat i opinie. Różnice w wynikach wartości są nieznaczne, co oznacza, że nie ma zdecydowanego zwycięzcy w tym rankingu.

Najgorszymi telefonami stały się najdroższe modele pomimo ich dobrych parametrów technicznych. Na trzecim miejscu od końca wylądował najtańszy telefon, za to z najgorszymi parametrami technicznymi.

Metoda Hellwiga dla konsumenta gier mobilnych

Najlepsze 3

Telefon	Wartość miary
Xiaomi Redmi Note 13 Pro	
5G	0,6211472
ASUS ROG PHONE 7	0,5955303
ASUS ROG PHONE 7 ULTI-	
MATE	0,5955223

Najgorsze 3

Telefon	Wartość miary
HTC 10	0,1357434
MICROSOFT LUMIA 650	-0,0013916
NOKIA 3310 2017 DUAL	
SIM	-0,1476042

Żeby zobaczyć pełną tabelę kliknij tutaj

Najlepsze telefony nie mają zbyt dużej różnicy w wartości punktowej, co oznacza że są do siebie zbliżone. I faktycznie, wszystkie z nich są z wyższej półki cenowej, o dużej pamięci wewnętrznej (512gb) jak i RAM (16gb), o dużych bateriach. Telefon znajdujący się na pierwszym miejscu ma najlepszy dostępny aparat, kosztem średniego procesora. Jest to przeciwieństwo dwóch pozostałych telefonów, które to mają dobre procesory, za to średnie aparaty. Wszystkie te telefony są modelami tegorocznymi.

Natomiast najgorszymi telefonami są nasze wartości odstające, czyli telefony tanie, za to stare o słabych parametrach technicznych.

Metoda Hellwiga dla konsumenta dla fotografa

Najlepsze 3

Telefon	Wartość miary
Xiaomi Redmi Note 13 Pro	
5G	0,76939
HTC U23 PRO	0,518905
Motorola g72	0,4855068

Najgorsze 3

Telefon	Wartość miary
HTC 10	0,0914111
MICROSOFT LUMIA 650	0,0372495
NOKIA 3310 2017 DUAL SIM	-0,0149095

Żeby zobaczyć pełną tabelę kliknij tutaj

Xiaomi Redmi Note 13 Pro 5G wydaje się być dobrym wyborem dla fotografa. Spośród analizowanych modeli, trzy najlepsze charakteryzują się największą liczbą megapikseli, co jest kluczowym czynnikiem dla telefonu fotograficznego. Xiaomi Redmi Note 13 Pro 5G przoduje w tej kategorii, oferując aparat o rozdzielczości 200 MP, znacznie przewyższając konkurencyjne modele, takie jak HTC U23 PRO i Motorola G72, które dysponują kamerami o rozdzielczości 108 MP. Ta różnica w liczbie megapikseli prawdopodobnie miała istotny wpływ na wyższość tego modelu nad pozostałymi dostępnymi na rynku. Dodatkowo, te nowo wprowadzone na rynek modele wyróżniają się ponadprzeciętną pojemnością akumulatora oraz procesorami o średniej wydajności. Należy jednak zaznaczyć, że mimo nowości tych urządzeń, ich ogólne recenzje mieszczą się poniżej średniej branżowej.

Podobnie jak w poprzednich przypadkach najgorszą 3 są nasi outsiderzy. Najistotniejszymi parametrami technicznymi dla telefonu fotografa są (pamięć wewnętrzna, pojemność akumulatora baterii, ilość megapikseli), we wszystkich tych parametrach telefony te wypadają słabo, są niekonkurencyjne względem nowszych telefonów, stąd wybór tych telefonów będzie słaby dla fotografa.

Metoda Hellwiga dla nietechnicznego konsumenta

Najlepsze 3

Telefon	Wartość miary
Xiaomi Redmi Note 13 Pro	
5G	0,5598035
HTC U23 PRO	0,5397966
POCO F5 PRO	0,5343469

Najgorsze 3

Telefon	Wartość miary
Apple iphone 13	0,1135949
MICROSOFT LUMIA 650	0,0824342
NOKIA 3310 2017 DUAL	
SIM	-0,1100794

Żeby zobaczyć pełną tabelę kliknij tutaj

Najlepszymi telefonami są dokładnie tymi samymi modelami, co w przypadku konsumenta kierującego się cenami. Różnice w wynikach wartości są nieznaczne, co oznacza, że nie ma zdecydowanego zwycięzcy w tym rankingu. Wszystkie te telefony mają dużo pamięci wewnętrznej jak i RAM, ponadprzeciętnie pojemne baterie. Są tegorocznymi modelami o dobrych aparatach i średnich procesorach.

Dwa z trzech najgorszych telefonów są uznanymi przez nas wartościami odstającymi. Jednakże pojawił się tutaj także starszy model iPhona. Prawdopodobnie jest to spowodowane tym, że owy model zebrał fatalne opinie, posiada nienajlepsze parametry z wyłączeniem dobrego procesora i kosztuje ponadprzeciętnie.

Podsumowanie wszystkich wyników metodą Hellwiga

Niezależnie od zastosowanych przez nas wag, Xiaomi Redmi Note 13 Pro 5G zawsze był w top 3 najlepszych wyborach. Podobnie dobrze wypadł telefon HTC U23 PRO, jednakże owy telefon nie był optymalnym wyborem dla konsumenta gier mobilnych. Są to telefony o najlepszych dostępnych aparatach i o jednej z większych pamięci. Pozostałe modele nie wykazywały tendencji do dominowania najlepszych opcji.

W przypadku najgorszych modeli zauważyliśmy podobną tendencję dla modeli: Nokia 3310 2017 dual sim i Microsoft lumia 650. Dodatkowo model HTC 10 pojawił się 3 razy wśród najgorszych modeli. Pokazuje to skalę odstawania owych modeli od pozostałych.

Dodatkowo zauważyliśmy, że wartości odstające zajmują zazwyczaj albo bardzo dobre pozycje, albo bardzo słabe. Żadnej innej zasady, wobec której zmiany danych występowały, nie zauważyliśmy.

Metoda TOPSIS

Metoda TOPSIS dla tych samych wag

Najlepsze 3

Telefon	Wartość miary
Xiaomi Redmi Note 13 Pro 5G	0.250746
HTC U23 PRO	0.379469
ASUS ROG PHONE 7	0.399149

Najgorsze 3

Telefon	Wartość miary
HTC 10	0.623831
MICROSOFT LUMIA 650	0.648423
NOKIA 3310 2017 DUAL SIM	0.649238

Żeby zobaczyć pełną tabelę kliknij tutaj

W owym przypadku, widać silny wpływ parametrów technicznych, spowodowany brakiem wyważenia zmiennych, przy jednoczesnym odsunięciu najdroższych modeli na dalsze miejsca. Najlepsze telefony mało popularnych marek, z wyróżniającymi się parametrami zajęły najwyższe miejsca. Natomiast najgorsze miejsca

zajęły urządzenia przestarzałe, których parametry techniczne są wyjątkowo słabe, pomimo ich bardzo niskich cen.

Metoda TOPSIS dla konsumenta dla którego priorytetem jest cena

Najlepsze 3

Telefon	Wartość
	miary
HTC U23 PRO	0.290045
Motorola g72	0.290055
Xiaomi Redmi Note 13 Pro 5G	0.297188

Najgorsze 3

Telefon	Wartość
	miary
ASUS ROG PHONE 7 ULTIMATE	0.526710
Apple iphone 15 pro max	0.631251
Huawei Mate 60 RS Ultimate	0.657087

Żeby zobaczyć pełną tabelę kliknij tutaj

W tym przypadku, kiedy konsument zwraca uwagę na cenę w największym stopniu, jako optymalny wybór wychodzą telefony tanie względem oferowanych podzespołów, które swoją drogą są nienajgorsze. Są to jednocześnie telefony niszowych producentów telefonów, więc widoczne zjawisko może być spowodowane zachęcaniem nowych konsumentów do poznania się z ich produktami. Na samym końcu są najdroższe modele z dobrymi podzespołami. Warto zauważyć, że ostatnie dwa modele różnią się dosyć sporą ilością punktów od trzeciego. Najprawdopodobniej, jest to spowodowane, że producenci tych telefonów są dobrze znani i posiadają spory udział w tym rynku.

Metoda TOPSIS dla konsumenta gier mobilnych

Najlepsze 3

Telefon	Wartość miary
Xiaomi Redmi Note 13 Pro	
5G	0.283938
Apple iphone 15 pro max	0.317593
Huawei Mate 60 RS Ultimate	0.320637

Najgorsze 3

Telefon	Wartość miary
HTC 10	0.697873
MICROSOFT LUMIA 650	0.742722
NOKIA 3310 2017 DUAL SIM	0.749902

Żeby zobaczyć pełną tabelę kliknij tutaj

Dla tego przypadku, widać iż metoda TOPSIS pokazuje, iż dla gracza, najlepszymi telefonami będą marki premium. Zastanawiającym faktem jest, iż Xiaomi Redmi Note 13 pro 5G wyszedł lepiej niż ASUS ROG PHONE 7 ULTIMATE. Wymieniony Asus ma lepszy procesor i baterię od omawianego Xiaomi. Najprawdopodobniej zostało to spowodowane tym, że mimo wszystko wpływ megapikseli na wynik odgrywa istotną rolę. To Xiaomi ma czterokrotnie lepszy aparat od Asusa, co w połączeniu ze stosunkowo niewielką odległością od

antywzorca aparatu i ceny, omawiany Asus spadł na piąte miejsce. W przypadku telefonów będących najgorszymi, nie ma zaskoczenia. Najgorszymi modelami są te najstarsze ze słabymi parametrami technicznymi.

Metoda TOPSIS dla konsumenta dla fotografa Najlepsze 3

Telefon	Wartość miary
Xiaomi Redmi Note 13 Pro	
5G	0.203350
HTC U23 PRO	0.453502
Motorola g72	0.480114

Najgorsze 3

Telefon	Wartość miary
HTC 10	0.791997
NOKIA 3310 2017 DUAL SIM	0.806824
MICROSOFT LUMIA 650	0.808191

Żeby zobaczyć pełną tabelę kliknij tutaj

Dla osób, którym zależy na najlepszych aparatach, zgodnie z oczekiwaniami, wychodzą, że najlepszymi modelami są te, które mają najlepsze aparaty. Co więcej, widać istotną różnicę w punktacji pomiędzy dwoma najlepszymi modelami. Jest to spowodowane różnicą megapikseli tam osiąganymi. Na drugim końcu tego rankingu są telefony o najgorszych parametrach.

Metoda TOPSIS dla nietechnicznego konsumenta Najlepsze 3

Telefon	Wartość miary
Xiaomi Redmi Note 13 Pro	
5G	0.252726
HTC U23 PRO	0.354860
Motorola g72	0.377634

Najgorsze 3

Telefon	Wartość miary
HTC 10	0.561638
MICROSOFT LUMIA 650	0.583056
NOKIA 3310 2017 DUAL	
SIM	0.591805

Żeby zobaczyć pełną tabelę kliknij tutaj

Z analizy TOPSIS wynika, że najlepszymi telefonami dla konsumenta, który nie jest zainteresowany technologią, najlepszymi modelami są dokładnie te same, co dla konsumenta fotografa. Jest to spowodowane całkiem niezłymi parametrami technicznymi jak i przystępnymi cenami. Jednocześnie klarowność decyzji nie jest tak jednoznaczna co w przypadku fotografa. Mimo to, dosyć istotnie wygrywa w tym przypadku Xiaomi. Na samym końcu, znowu zostały umiejscowione nasze wartości odstające. Co ciekawe, w tym przypadku, produkty marki Apple zostały umiejscowione wyjątkowo nisko, zarówno te starsze modele jak i te najnowsze. Zajmują 4, 6 i 7 miejsce od końca.

Podsumowanie wszystkich wyników metodą TOPSIS

Najlepsze wyniki metodą TOPSIS wyszły podobne do tych metodą Hellwiga, natomiast najgorsze miejsca, zajęły prawie wszystkie najstarsze modele. Nie są one najgorszym wyborem tylko i wyłącznie w przypadku konsumenta kierującego się priorytetem cen, gdzie najgorszymi modelami będą te, które są najdroższe. Wydaje się to oczywiste, jednakże metoda Hellwiga nie jest tego samego zdania. Odnosimy wrażenie, że metoda TOPSIS jest bardziej wyczulona na stosowane wagi.

Analiza skupień - Grupowanie podziałowe Metoda k-średnich Identyfikacja optymalnego podziału na grupy *Metoda łokcia*

Z racji tego, że metoda łokcia jest subiektywną metodą ciężko powiedzieć w którym momencie wykres zaczyna się spłaszczać. Można się spierać czy w tym wypadku powinno się podzielić na 2, 3 czy 4 grupy czy 5. W naszej opinii wykres zaczyna się spłaszczać dla liczby klastrów większej od 5. Natomiast z racji tego, że metoda łokcia jest mocno subiektywna, do wyboru grup zastosujemy metodę profilową.

Metoda profilu

Wg metody profilowej optymalnym podziałem aktualnego zbioru będzie podzielenie danych na 6 grup.

W kontekście tego, że nasz aktualny zbiór po podziale zawiera 17 danych, wydaje się lepszym pomysłem podzielenie naszego zbioru na 2 grupy niż na 6 jakby to wynikało z metody profilowej, grupy byłyby zbyt mało liczne, tak naprawdę nie stanowiły by grup

Metoda k- średnich ostateczny podział

Grupa 0

Apple iphone 15
Samsung Galaxy A54
Motorola g72
DOOGEE SMINI
ULEFONE NOTE 16
PRO
Google Pixel 6pro
HTC U23 PRO
HTC DESIRE 22 PRO
SAMSUNG GALAXY
S23
Apple iphone 13
POCO F3
OPPO A91

POCO F5 PRO POCO X3 NFT

Grupa 1

ASUS ROG PHONE 7 ULTI-MATE ASUS ROG PHONE 7 nubia red magic 7 pro

Średnie wartości zmiennych w grupie

						różnica kwarta-	
Grupa Ocena	cer	na	Ram	Bateria	Zegar procesora	łów	Мрх
0	7,06	1825	8,14	4408,71	2617,14	5,429	58,14
1	7.04	5099	16	5666.66	3466.6666	3.66	54.67

Charakteryzacja grup

Grupa 0 charakteryzuje się jako segment telefonów o bardziej przystępnej cenie, z umiarkowanym RAM. Urządzenia te, są stosunkowo nowe na rynku, osiągają przeciętne oceny. Są to modele, które oferują niezbędne funkcje i wydajność, spełniając podstawowe potrzeby użytkowników poszukujących solidnego, ale niekoniecznie najbardziej zaawansowanego technologicznie urządzenia.

Z kolei Grupa 1 wyróżnia się jako kategoria telefonów premium. Charakteryzują je wysokie ceny, znacznie większa pamięć RAM. Te telefony oferują również dłuższą żywotność baterii, co jest kluczowym atrybutem dla użytkowników którzy długo korzystają z telefonów. Z nowoczesnymi procesorami i aktualnymi funkcjami, urządzenia te stanowią idealny wybór dla konsumentów poszukujących najwyższej klasy technologii mobilnej. Co ciekawe, wszystkie te modele mają największe masy i wbudowane pamięci ze wszystkich niewyeliminowanych modeli, pomimo że nie były brane pod uwagę w tym badaniu.

Podsumowanie uzyskanych wyników

Zaproponowany podział na grupy jest faktycznie interesujący, aczkolwiek niespodziewany. Jesteśmy zaskoczeni faktem idealnego dopasowania grup do parametrów wagi i pamięci wewnętrznej. Z tego też powodu, dla bezpieczeństwa, sprawdziliśmy, czy nie popełniliśmy jakiegoś błędu, który spowodowałby wzięcie pod uwagę tych zmiennych. Okazało się, że wykonaliśmy to badanie zgodnie z zamiarami. Podsumowując, podział na grupy pokazuje, jak silne korelacje pomiędzy wyrzuconymi grupami występują. Biorąc to wszystko pod uwagę, zgadzamy się z tym podziałem.

Metoda k-medoid Identyfikacja optymalnego podziału na grupy *Metoda łokcja*

Ciężko jednoznacznie stwierdzić gdzie następuje wypłaszczenie wykresu. W naszej opinii zaczyna się wypłaszczać w okolicach 5, 6 klastrów. Natomiast tak jak wcześniej napisaliśmy wolimy zaufać metodzie profilu, która jest mniej subiektywna.

Metoda profilu

Wg metody profilowej optymalnym podziałem aktualnego zbioru będzie podzielenie danych na 5 grup, co też zastosujemy.

Metoda k- średnich ostateczny podział

Średnie wartości zmiennych w grupie

	aruna						Z. proce-	r. kwarta-	
,	grupa		Ocena	Cena	RAM	Bateria	sora	low	mpx
		0	7,36	2005,8	7,6	4411,4	2772	9	51,6
		1	7,656667	3718,833	12,66667	5176,667	3226,667	3,166667	54,66667
		2	5,69	965,2333	8	3973,333	2000	2,666667	54,66667
		3	7,335	1399	10	4800	2300	3	108
		4	5,48	2819	4	4085	3220	9	12

Charakterystyka grup

Grupa 0 jest typowym średniakiem. Podzespoły średnie, około dwuletnie modele ze średnimi opiniami w zamian za średnią cenę. Do tej grupy trafiają zarówno modele markowe jak i nie. Wszystkie te telefony, mają bardzo zbliżone wartości opinii użytkowników.

Grupa 1 składa się z telefonów wyższej jakości. Mają dobre opinie. Posiadają bardzo dobre procesory, oraz dobre podzespoły. Wyjątkiem są aparaty, które są średnie. Wszystko to w zamian za stosunkowo wysoką cenę.

Grupa 2 składa się z telefonów niskobudżetowych. Ogólnie parametry mają średnie, poza procesorami które są słabe. Są to telefony nie markowych producentów, co przełożyło się na niskie ceny. Te telefony mają bardzo złe opinie.

Grupa 3 składa się z telefonów tanich, ale stosunkowo dobrych. Posiadają sporą ilość ramu i dobre aparaty. Dodatkowo są to modele maksymalnie roczne i posiadają bardzo podobne procesory.

Grupa 4 składa się przestarzałych telefonów markowych, które posiadają niskie parametry w zamian za wysokie ceny.

Podsumowanie uzyskanych wyników

Ten ciekawy podział na grupy, sprawia nam wiele problemów z analizą. Odczuwamy tutaj niedosyt danych, który powoduje, że musimy charakteryzować grupy składające się z jednego elementu. Istnienie takiej grupy oznacza, że być może nie wykryliśmy wszystkich wartości odstających, lub że dobraliśmy za mało danych. Sam podział na pięć grup jest dosyć ryzykowny przy 17 danych, ponieważ średnio wychodzi nieco powyżej 3 modeli na grupę. Przy istnieniu jakiejkolwiek grupy dominującej, pozostałe grupy muszą być nieliczne. Ogólnie uważamy, że jest to raczej zbyt drobiazgowy podział jak na taką próbkę danych.

Analiza skupień - Metoda hierarchiczna Otrzymany dendrogram za pomocą metody Warda

Jak widać na załączonym obrazku nie jest łatwo jednoznacznie stwierdzić gdzie przyciąć dendrogram. Nie istnieje jeden dobry podział. Generalnie skłaniamy się do dwóch opcji czyli przycinanie przy y=15, generalnie wtedy odległości na osi y maja szerokie odstępy. Warto jednak rozważyć opcje przycięcia na 8 gdyż telefon nr 10 jest daleko od grupy

Klasyfikacja:

wynik Silhouette przy przycieciu 15: 0.2357449852852848 wynik Daviesa przy przycieciu 15 1.226904455017394 wynik Calinski przy przycieciu 15 6.035290892272769 wynik Silhouette przy przycieciu 8: 0.20826952813559962 wynik Daviesa przy przycieciu 8 0.947959136746407 wynik Calinski przy przycieciu 8 5.367283430525851

Silhoutte index 0,236 – wartość ta jest bliska 0, klastry nie są dobrze podzielone, jednak jest to lepszy wynik niż 0,2082 dla przycięcia na 8

Davies_Buildin index 1,227 – im wynik jest bliższy 0 tym lepiej, wynik jest umiarkowany, sugeruje to przeciętną separację klastrów, w tym wypadku podział na y=8 wychodzi lepiej

Calinski Harabasz index 6,03 – im wyższy wynik tym lepiej. Wynik dla y=15 daje lepszy rezultat niż dla y=8

Klasyfikacja wykazała, że lepiej podzielić na y = 15. Oto powstałe grupy.

Grupa 0

Apple iphone 15
SAMSUNG GALAXY A54
Motorola g72
DOOGEE SMINI
ULEFONE NOTE 16 PRO
Google Pixel 6pro
HTC U23 PRO
HTC DESIRE 22 PRO
SAMSUNG GALAXY S23
ASUS ROG PHONE 7
POCO F3
nubia red magic 7 pro
POCO X3 NFT

Grupa 1

Apple iphone 13
ASUS ROG PHONE 7 ULTIMATE
OPPO A91
POCO F5 PRO

Średnie wartości zmiennych w grupie

	Ocena	Cena	Pamiec wbudo- wana	Pa- miec RAM	Waga (g)	bateria (mAh)	Zegar proce- sora (Mhz)	roznica kwarta- Iow	Megapik- sele
Grupa									
0	7,06	2171,44	206,77	9,38	196,19	4 573,23	2 640,00	4,77	61,85
Grupa									
1	7,06	3156,50	256,00	10,00	199,00	4 817,50	3 180,00	6,25	43,50

Charakterystyka grup

Grupa 0 średnio składa się z młodych modeli o stosunkowo dobrych aparatach, ale mniejszej pamięci. Za to kosztują stosunkowo niewiele.

Grupa 1 średnio składa się z nieco starszych modeli o dobrych procesora i większej pamięci. Natomiast kosztują one znacznie więcej.

Podsumowanie uzyskanych wyników

Modeli telefonów w obu grupach tak naprawdę nic nie łączy. Zebrane telefony wyglądają na przydzielone losowo i nie widzimy sensu takiego rozdzielenia modeli pomiędzy grupami. Jest on bezsensowny i chaotyczny.

Podsumowanie analizy skupień.

Według nas, sensownym podziałem na grupy dokonała tylko pierwsza metoda. W przypadku podziału metodą K-Medoid zabrakło nam danych na poprawny podział. Ostatni podział – hierarchiczny – jest bezsensowny. Uważamy, że analiza skupień dla naszego zestawu danych jest naprawdę wymagająca, żeby osiągnąć racjonalne efekty.

Zbiór danych i fragmentów kodu

Dane

Tele- fon\zmienne	Ocena	Cena	Pamięć wbudo- wana	Pamięć RAM	Waga (g)	bate- ria (mAh)	Zegar pro- cesora (Mhz)	różnica kwarta- łów	Me- gapik- sele
Apple iPhone 15	7,28	4192	128	6	171	3349	3460	1	48
Samsung Ga- laxy A54	7,95	1599	128	8	202	5000	2400	3	50
Motorola g72	6,89	899	128	8	166	5000	2200	4	108
DOOGEE SMINI	6,25	1200	256	8	155	3000	2200	0	50
ULEFONE NOTE 16 PRO	5	697,7	128	8	184	4400	1600	2	50
Google Pixel 6pro	7,51	2250	128	12	210	5003	2800	8	50
HTC U23 PRO	7,78	1899	256	12	205	4600	2400	2	108
HTC DESIRE 22 PRO	5,82	998	128	8	205,5	4520	2200	6	64
HTC 10	8,78	555	32	4	161	3000	2200	30	12
Xiaomi Redmi Note 13 Pro 5G	6,81	3700	512	16	187	5100	2800	1	200
SAMSUNG GA- LAXY S23	8,22	3048	128	8	167	3900	3360	3	50
Huawei Mate 60 RS Ultimate	6,79	11000	1000	16	246	5000	2620	1	48
Apple iPhone 15 pro max	8,22	9504	1000	8	221	4422	3770	1	48
Apple iPhone 13	5,48	2819	128	4	174	4085	3220	9	12
ASUS ROG									
PHONE 7 ULTI- MATE	6,83	6499	512	16	246	6000	4200	2	50
ASUS ROG PHONE 7	8,23	3999	512	16	239	6000	3200	2	50
POCO F3	7,47	1399	128	6	196	4520	3200	11	48
OPPO A91	7,28	939	128	8	172	4025	2100	12	48
POCO F5 PRO	8,64	2369	256	12	204	5160	3200	2	64
nubia red magic 7 pro	6,07	4799	512	16	235	5000	3000	7	64
NOKIA 3310 2017 DUAL SIM	6,15	249	0,015625	0,015625	79,6	1200	0	26	2
POCO X3 NFT	7,26	1249	128	6	215	5160	2300	13	64
MICROSOFT LU- MIA 650	8,81	483	16	1	122	2000	1300	32	8

Metoda Hellwiga/TOPSIS dla tych samych wag

Telefon	Wartość miary
Xiaomi Redmi Note 13 Pro	·
5G	0,624947358
HTC U23 PRO	0,500229973
ASUS ROG PHONE 7	0,495910164
POCO F5 PRO	0,479339215
ASUS ROG PHONE 7 ULTI-	
MATE	0,43635835
nubia red magic 7 pro	0,420086192
Motorola g72	0,416679448
Apple iphone 15 pro max	0,384568052
Google Pixel 6pro	0,383931509
SAMSUNG GALAXY S23	0,366749608
Samsung Galaxy A54	0,363916627
POCO F3	0,34310305
POCO X3 NFT	0,339012555
Huawei Mate 60 RS Ulti-	
mate	0,325276412
Apple iphone 15	0,306814915
OPPO A91	0,300273763
HTC DESIRE 22 PRO	0,299984444
DOOGEE SMINI	0,27946177
ULEFONE NOTE 16 PRO	0,209399396
Apple iphone 13	0,181973042
HTC 10	0,117696784
MICROSOFT LUMIA 650	0,003798165
NOKIA 3310 2017 DUAL	
SIM	-0,128361733

Telefon	Wartość miary
Xiaomi Redmi Note 13	0.250746
Pro 5G	0.230740
HTC U23 PRO	0.379469
ASUS ROG PHONE 7	0.399149
Motorola g72	0.415979
POCO F5 PRO	0.418318
nubia red magic 7 pro	0.425246
ASUS ROG PHONE 7 ULTI-	0.420001
MATE	0.428681
Apple iphone 15 pro max	0.444818
DOOGEE SMINI	0.448462
Huawei Mate 60 RS Ulti-	0.455463
mate	0.455463
HTC DESIRE 22 PRO	0.469355
Samsung Galaxy A54	0.469406
ULEFONE NOTE 16 PRO	0.470537
SAMSUNG GALAXY S23	0.482311
Google Pixel 6pro	0.482793
Apple iphone 15	0.500083
POCO F3	0.503907
POCO X3 NFT	0.504898
OPPO A91	0.511241
Apple iphone 13	0.554818
HTC 10	0.623831
MICROSOFT LUMIA 650	0.648423
NOKIA 3310 2017 DUAL SIM	0.649238
=,	

Metoda Hellwiga/TOPSIS dla konsumenta dla którego priorytetem jest cena

Telefon	Wartość
releion	miary
HTC U23 PRO	0,5514738
Xiaomi Redmi Note 13 Pro 5G	0,5307839
POCO F5 PRO	0,5104056
Motorola g72	0,4759463
ASUS ROG PHONE 7	0,4570585
Samsung Galaxy A54	0,4412941
Google Pixel 6pro	0,428283
POCO X3 NFT	0,4203441
POCO F3	0,405765
OPPO A91	0,395215
SAMSUNG GALAXY S23	0,3902853
DOOGEE SMINI	0,3378
HTC DESIRE 22 PRO	0,337545
nubia red magic 7 pro	0,3149784
Apple iphone 15	0,2860224
HTC 10	0,2714191
ULEFONE NOTE 16 PRO	0,2450128
ASUS ROG PHONE 7 ULTIMATE	0,2447952
MICROSOFT LUMIA 650	0,1940701
Apple iphone 13	0,1852015
NOKIA 3310 2017 DUAL SIM	0,0686704
Apple iphone 15 pro max	0,0408995
Huawei Mate 60 RS Ultimate	-0,1020309

Telefon	Wartość miary
HTC U23 PRO	0.290045
Motorola g72	0.290055
Xiaomi Redmi Note 13 Pro	
5G	0.297188
DOOGEE SMINI	0.320119
HTC DESIRE 22 PRO	0.323317
ULEFONE NOTE 16 PRO	0.325017
POCO F5 PRO	0.334036
OPPO A91	0.336394
POCO X3 NFT	0.337703
Samsung Galaxy A54	0.341779
POCO F3	0.348917
Google Pixel 6pro	0.363226
ASUS ROG PHONE 7	0.386985
HTC 10	0.388855
SAMSUNG GALAXY S23	0.398792
NOKIA 3310 2017 DUAL	
SIM	0.400527
MICROSOFT LUMIA 650	0.401309
Apple iphone 13	0.428295
nubia red magic 7 pro	0.435973
Apple iphone 15	0.459780
ASUS ROG PHONE 7 ULTI-	
MATE	0.526710
Apple iphone 15 pro max	0.631251
Huawei Mate 60 RS Ulti-	
mate	0.657087

Metoda Hellwiga/TOPSIS dla konsumenta gier mobilnych

Telefon	Wartość miary
Xiaomi Redmi Note 13 Pro	
5G	0,6211472
ASUS ROG PHONE 7	0,5955303
ASUS ROG PHONE 7 ULTI	
MATE	0,5955223
Apple iphone 15 pro max	0,5673346
nubia red magic 7 pro	0,5418201
Huawei Mate 60 RS Ulti-	
mate	0,5189994
POCO F5 PRO	0,5125459
HTC U23 PRO	0,4678188
Google Pixel 6pro	0,4120469
SAMSUNG GALAXY S23	0,4102334
Apple iphone 15	0,3710123
POCO F3	0,3668294
Motorola g72	0,3639349
Samsung Galaxy A54	0,3597943
DOOGEE SMINI	0,3423831
HTC DESIRE 22 PRO	0,3194571
POCO X3 NFT	0,3140042
OPPO A91	0,3040014
Apple iphone 13	0,2839883
ULEFONE NOTE 16 PRO	0,2406284
HTC 10	0,1357434
MICROSOFT LUMIA 650	-0,0013916
NOKIA 3310 2017 DUAL SIM	-0,1476042

Telefony	Wynik
Xiaomi Redmi Note 13 Pro 5G	0.283938
Apple iphone 15 pro max	0.317593
Huawei Mate 60 RS Ultimate	0.320637
ASUS ROG PHONE 7	0.341732
ASUS ROG PHONE 7 ULTI- MATE	0.343075
nubia red magic 7 pro	0.369927
HTC U23 PRO	0.418687
POCO F5 PRO	0.418814
DOOGEE SMINI	0.458432
Motorola g72	0.482615
SAMSUNG GALAXY S23	0.484246
Apple iphone 15	0.490208
Samsung Galaxy A54	0.496046
Google Pixel 6pro	0.497433
ULEFONE NOTE 16 PRO	0.506588
HTC DESIRE 22 PRO	0.511552
POCO F3	0.534508
Apple iphone 13	0.554656
OPPO A91	0.557178
POCO X3 NFT	0.563787
HTC 10	0.697873
MICROSOFT LUMIA 650	0.742722
NOKIA 3310 2017 DUAL SIM	0.749902

Metoda Hellwiga/TOPSIS dla fotografa

0 /	0			
Telefon	Wartość			
	miary			
Xiaomi Redmi Note 13 Pro				
5G	0,76939			
HTC U23 PRO	0,518905			
Motorola g72	0,4855068			
nubia red magic 7 pro	0,4012885			
POCO F5 PRO	0,3878768			
ASUS ROG PHONE 7	0,372526			
ASUS ROG PHONE 7 ULTI-				
MATE	0,3623404			
Apple iphone 15 pro max	0,3559158			
Huawei Mate 60 RS Ultimate	0,3515723			
POCO X3 NFT	0,3428752			
HTC DESIRE 22 PRO	0,3341036			
Google Pixel 6pro	0,3096875			
Samsung Galaxy A54	0,3085341			
SAMSUNG GALAXY S23	0,2958026			
POCO F3	0,2901098			
DOOGEE SMINI	0,2809072			
OPPO A91	0,2777299			
ULEFONE NOTE 16 PRO	0,2755238			
Apple iphone 15	0,2704883			
Apple iphone 13	0,1456053			
HTC 10	0,0914111			
MICROSOFT LUMIA 650	0,0372495			
NOKIA 3310 2017 DUAL SIM	-0,0149095			

Telefon	
Xiaomi Redmi Note 13 Pro	
5G	0.203350
HTC U23 PRO	0.453502
Motorola g72	0.480114
Huawei Mate 60 RS Ultimate	0.509167
Apple iphone 15 pro max	0.510150
nubia red magic 7 pro	0.545857
ASUS ROG PHONE 7	0.550050
ASUS ROG PHONE 7 ULTI-	
MATE	0.557052
POCO F5 PRO	0.558779
DOOGEE SMINI	0.593891
HTC DESIRE 22 PRO	0.595715
ULEFONE NOTE 16 PRO	0.609469
Samsung Galaxy A54	0.611713
POCO X3 NFT	0.621292
SAMSUNG GALAXY S23	0.622526
Apple iphone 15	0.627393
Google Pixel 6pro	0.631199
POCO F3	0.651576
OPPO A91	0.657959
Apple iphone 13	0.715233
HTC 10	0.791997
NOKIA 3310 2017 DUAL SIM	0.806824
MICROSOFT LUMIA 650	0.808191

Metoda Hellwiga/TOPSIS dla nietechnicznego konsumenta

TVICTORA FICTIVISA/ FOT 515 C	na meteemmezn
Telefon	Wartość miary
Xiaomi Redmi Note 13 Pro	
5G	0,5598035
HTC U23 PRO	0,5397966
POCO F5 PRO	0,5343469
ASUS ROG PHONE 7	0,527367
Motorola g72	0,4402031
Samsung Galaxy A54	0,4354871
Google Pixel 6pro	0,4251652
SAMSUNG GALAXY S23	0,4024165
POCO X3 NFT	0,3970996
ASUS ROG PHONE 7 ULTI-	
MATE	0,3898788
POCO F3	0,3840789
Apple iphone 15 pro max	0,365802
OPPO A91	0,3398266
nubia red magic 7 pro	0,3322277
Apple iphone 15	0,3004129
Huawei Mate 60 RS Ulti-	
mate	0,2637614
HTC DESIRE 22 PRO	0,2516496
DOOGEE SMINI	0,222035
HTC 10	0,1980953
ULEFONE NOTE 16 PRO	0,1194493
Apple iphone 13	0,1135949
MICROSOFT LUMIA 650	0,0824342
NOKIA 3310 2017 DUAL SIM	-0,1100794

THE TIES	
Telefon	Wartość miary
Xiaomi Redmi Note 13 Pro	•
5G	0.252726
HTC U23 PRO	0.354860
Motorola g72	0.377634
POCO F5 PRO	0.400842
ASUS ROG PHONE 7	0.403805
DOOGEE SMINI	0.438901
Samsung Galaxy A54	0.439437
HTC DESIRE 22 PRO	0.439452
nubia red magic 7 pro	0.441695
ULEFONE NOTE 16 PRO	0.446372
Google Pixel 6pro	0.456137
POCO X3 NFT	0.456823
ASUS ROG PHONE 7 ULTI-	
MATE	0.458803
POCO F3	0.468655
SAMSUNG GALAXY S23	0.470098
OPPO A91	0.470927
Apple iphone 15 pro max	0.501045
Apple iphone 15	0.503543
Huawei Mate 60 RS Ulti-	
mate	0.516314
Apple iphone 13	0.540027
HTC 10	0.561638
MICROSOFT LUMIA 650	0.583056
NOKIA 3310 2017 DUAL SIM	0.591805

Zastosowane wagi

	Ocena	Cena	Pa- miec Wbu-	Ram	Pojem- ność baterii	Zegar Proce- sora	Roz- nica kwar-	Mega- piksele
			do- wana		(mAh)	(Mhz)	tałów	
Oszczędny	0,15	0,5	0,08	0,07	0,07	0,02	0,04	0,07
Gamer	0,05	0,05	0,2	0,2	0,05	0,25	0,15	0,05
Fotograf	0,04	0,04	0,17	0,04	0,15	0,03	0,1	0,43
Nietechniczny	0,3	0,14	0,07	0,07	0,2	0,05	0,07	0,1