RISK PREDICTION AND DIAGNOSTICS OF CARDIOVASCULAR DISEASES

IGOR PUTRENKO

Insight Health Data Science Program

SAN FRANCISCO, CA OCTOBER 2017

CARDIOVASCULAR DISEASES (CVD)

- Annual direct medical expenditures (by 2030) \$818 billion
- One in three U.S. adults has one or more types of CVD
- Optimized diagnostic process can substantially decrease the costs

CAN WE PREDICT CVD TYPE BASED ON LAB TESTS?

DATA SOURCE

- MIMIC-III, critical care database
- o 38,597 patients
- Median age is 65.8 years (52.8–77.8)

Recordings
Images
Lab Tests
Demographics
Notes and Reports

Data Archive

De-identification
Date shifting
Format conversion

MIMIC-III

DATA PIPELINE

PREDICTIVE MODELING

- 6 CVD categories
- Balanced classes
- Cross-validation (5-fold)
- Grid search

- Gradient Boosting
- Random Forest
- Artificial Neural Network

Accuracy: 39% (vs 16.7% chance)

FEATURE IMPORTANCE

Identified features are indicators of:

- psychological well-being
- status of immune system
- chronic diseases (kidneys, liver, heart)
- chronic infection
- genetic factors

SHOULD YOU GET MARRIED?

CONCLUSION

The developed model can improve CVD diagnostic process:

- Risk assessment
- Early detection
- Decision support
- Cost reduction
- Faster diagnostics

Clients: clinicians, health agencies, insurance companies

ABOUT ME

- Ph.D. in Biochemistry
- Academia: ion channel electrophysiology, brain & pain research
- Biotech industry: pain drug discovery
- IT: business / systems analysis, infrastructure, network administration
- Concentrate on Data Science

BACKUP SLIDES

CVD CATEGORIES

Patients selected with the following Diagnosis Related Groups (DRGCODES) used by the hospital for billing purposes

- ACUTE ISCHEMIC STROKE
- ACUTE MYOCARDIAL INFARCTION (AMI)
- CARDIAC ARRHYTHMIA & CONDUCTION DISORDERS
- HEART FAILURE
- CIRCULATORY DISORDERS EXCEPT AMI
- CIRCULATORY DISORDERS WITH AMI

DEMOGRAPHIC DATA

DIMENSION REDUCTION - SELECTING LAB TESTS

Distribution of the number of lab tests among patients

Total number of CVD patients	2455		
Total number of lab tests			
Feature selection – missing values threshold			
(patients/test)	2155		
Lab tests (features) passed	35		
Final number of selected patients	1209		

IDENTIFYING MULTICOLLINEARITY

CONFUSION MATRIX

PRECISION, RECALL, AND F1-SCORE

support	f1-score	recall	precision	
29	0.19	0.14	0.29	0
111	0.37	0.40	0.35	1
118	0.28	0.27	0.30	2
130	0.34	0.32	0.36	3
85	0.37	0.39	0.36	4
132	0.41	0.44	0.38	5
605	0.35	0.35	0.35	avg / total