Part E: Regression Discontinuity

E2: RDD Extensions

Kirill Borusyak

ARE 213 Applied Econometrics

UC Berkeley, Fall 2023

E2 Outline

- Fuzzy RDD
- Discrete running variables
- Adding covariates
- Politician characteristics RDDs
- Multiple thresholds and cutoffs
- 6 Local randomization approach
- Extrapolating RD estimates

Reading: Cattaneo, Idrobo, Titiunik ("Practical introduction: Extensions," 2023)

Fuzzy RDD

- Think of fuzzy RDD as using $Z_i = 1$ [$X_i \ge c$] as an instrument:
 - ▶ $D_i \neq Z_i$: treatment is not fully determined by X_i
 - ▶ But $\mathbb{E}[D_i \mid X_i]$ jumps at the cutoff $\Longrightarrow Z_i$ is a relevant IV around $X_i = c$

Fuzzy RDD examples

(MHE, Fig. 6.2.1a, based on Angrist and Lavy 1999)

(van der Klaauw 2002, Fig. 4)

Identification and estimation

- With binary treatment, need standard IV assumptions:
 - Exclusion: $Y_i(d, z) \equiv Y_i(d)$
 - ▶ Independence: continuity of $\mathbb{E}[D_i(z) \mid X_i = x]$ and $\mathbb{E}[Y_i(d) \mid X_i = x]$ at x = c
 - Monotonicity: $D_i(1) \ge D_i(0)$
- Then, Reduced form/First stage $\equiv \tau_Y/\tau_D$ identifies LATE:

$$\frac{\tau_{Y}}{\tau_{D}} = \mathbb{E}\left[Y_{i}(1) - Y_{i}(0) \mid D_{i}(1) > D_{i}(0), X_{i} = c\right]$$

- ▶ Show RD plots for the first stage and reduced form (ITT)
- Report $\hat{\tau}_D$, $\hat{\tau}_Y$ and fuzzy RD estimate $\hat{\tau}_Y/\hat{\tau}_D$ from local polynomial estimation with the same bandwidth for Y and D
 - rdrobust chooses bandwidth to minimize MSE for the IV

4

Outline

- Fuzzy RDD
- Discrete running variables
- Adding covariates
- Politician characteristics RDDs
- Multiple thresholds and cutoffs
- 6 Local randomization approach
- Extrapolating RD estimates

Discrete running variables

- In many RDD applications X_i is discrete
 - ► E.g. number of kids in a cohort (Angrist and Lavy 1999)
- Does this matter conceptually?
 - ▶ $\lim_{X \downarrow, \uparrow c} \mathbb{E}[Y_i \mid X_i = x]$ is not well-defined \Longrightarrow RD identification fails
 - As $N \to \infty$, we can't shrink bandwidth $h \to 0$
- Does this matter in practice?
 - ▶ If there are many mass points of X_i around c, can probably ignore the issue
 - If X_i is sparse around c, it's more salient

An "honest" approach

- Armstrong and Kolesar (2020) and Kolesar and Rothe (2018) develop an "honest" approach to RDDs
 - Acknowledges that bias in local linear estimation is inevitable
 - ▶ With discrete X_i we cannot consistently estimate bias
- Instead, it bounds worst-case bias by assuming that $\mathbb{E}\left[Y_i \mid X_i\right]$ is sufficiently smooth on either side of c
 - ▶ Choose bound M on the curvature of $\mathbb{E}\left[Y_i \mid X_i\right] \Rightarrow \mathsf{get}$ a partially identified set of τ
 - Reminds you of anything?
- ullet Choosing M is annoying but ignoring discreteness does the same implicitly
 - A rule of thumb is available

An "honest" approach (2)

- rdhonest produces a "bias-aware" confidence interval
 - Centered around the local linear estimator
 - ★ For bandwidth optimized for CI length but similar to the Calonico et al. (2014) bandwidth
 - Adds worst-case bias rather than estimated bias
- Approach applies even with continuous running variable
 - And can have good finite-sample properties because doesn't rely on h being small
- See Imbens and Wager (2019) for an honest approach not based on local linear estimation
 - More complex (via numerical optimization) but more generalizable

RD in time

Related problems arise with "RD in time"

- X_i = period; often no cross-sectional variation at all, just a time series
- E.g. Anderson (2014): the effect of a public transit strike in LA on highway congestion

• Similar situation: $X_i = age$

How to think about RD in time?

- Theoretically, time is a continuous variable
 - ► Could measure the outcome 1 second before and after the policy change like event studies in finance
 - Asymptotic with data frequency growing
- ullet In practice, outcomes are measured at discrete intervals, and collecting more data involves going further in time from c
 - As $T \to \infty$ the bandwidth can't (and doesn't) shrink
 - ▶ Understanding check #1: how come, given $h \propto T^{-1/5}$?
 - ▶ Understanding check #2: what if we also observe cross-sectional variation, $N \to \infty$? E.g. congestion separately by neighborhood
 - ▶ Understanding check #3: is the McCrary test helpful here?

Outline

- Fuzzy RDD
- Discrete running variables
- Adding covariates
- 4 Politician characteristics RDDs
- Multiple thresholds and cutoffs
- 6 Local randomization approach
- Extrapolating RD estimates

Adding covariates

As usual, covariates W_i can be added to increase efficiency or to avoid OVB

- If W_i are predetermined, i.e. $\mathbb{E}[W_i \mid X_i]$ is continuous at the cutoff:
 - ▶ Include W_i in the regression implementation of local linear estimator without interactions:

$$Y_i = \tau D_i + \gamma_0 + \gamma_1 (X_i - c) + \gamma_2 (X_i - c) D_i + \delta' W_i + \text{error}$$

- ▶ This increases efficiency without changing the estimand (Calonico et al. 2019)
- ▶ See Noack, Olma, Rothe (2023) on flexible covariate adjustment
- If W_i jumps at the cutoff, the effects of D_i and W_i cannot be separated without further assumptions
 - ► Frölich and Huber (2019) make a selection-on-observables assumption; see also Peng and Ning (2021)

Outline

- ¶ Fuzzy RDD
- Discrete running variables
- Adding covariates
- Politician characteristics RDDs
- Multiple thresholds and cutoffs
- 6 Local randomization approach
- Extrapolating RD estimates

Politician characteristics RDDs

- Marshall (2022) studies RD designs where D_i = some characteristic of winning politician
 - ▶ E.g. the effect of having a female politician in office
 - Sample restricted to close races between a woman and a man
- This is an unusual setup:
 - ▶ Standard RDD: effect of winning (e.g. on candidate longevity) ⇒ observe outcomes for both winners and losers
 - ► Here: effect of being female conditional on winning ⇒ only observe outcomes for winners (or the district)

Politician characteristics RDDs (2)

How do we interpret the estimand?

- Standard issue: being female is an attribute not a cause a bundle of characteristics
- Additional issue in RDDs: consider a characteristic W_i uncorrelated with D_i among all candidates
 - ▶ Suppose both D_i and W_i affect vote shares
 - ▶ Then among close races, D_i and W_i will be correlated "compensating differential"
- Is this a bias or a different interpretation/mechanism?
 - Marshall (2022) argues for bias: it's not the effect of changing D_i while holding other characteristics fixed

Outline

- ¶ Fuzzy RDD
- Discrete running variables
- Adding covariates
- Politician characteristics RDDs
- Multiple thresholds and cutoffs
- 6 Local randomization approach
- Extrapolating RD estimates

Multiple thresholds and cutoffs

Three scenarios:

- 1. Binary treatment with heterogeneous cutoffs
- 2. Multi-valued treatment with multiple cutoffs
- 3. Multi-dimensional running variable

Note: package rdmulti provides commands for estimation and plotting

Binary treatment with heterogeneous cutoffs

- E.g. states have different income cutoffs for a means-tested program: $D_i = 1 \ [X_i \ge C_i]$ for $C_i \in \{c_1, \dots, c_K\}$
- Obviously, we can RD by subgroup $C_i = c$:

$$\tau_c = \mathbb{E}\left[Y_i(1) - Y_i(0) \mid X_i = c, C_i = c\right]$$

- Can also pool them by using "normalized" $\tilde{X}_i = X_i C_i$ with a cutoff of zero
 - ▶ Pooled RDD identifies a weighted average of group-specific ones:

$$au_{\mathsf{pooled}} = rac{\sum_{c} \omega_{c} au_{c}}{\sum_{c} \omega_{c}}, \qquad \omega_{c} = f_{X|C}(c, c)$$

14

Multi-valued treatment with multiple cutoffs

- E.g. the Maimonides rule (Angrist, Lavy 1999) generates cutoffs at $X_i = 40, 80, \dots$
- Or federal subsidies determined by local population, with several discontinuities

• Consider a sharp design with
$$D_i = egin{cases} d_0, & ext{if } X_i < c_1 \ d_1, & ext{if } c_1 \leq X_i < c_2 \ \dots \ d_{\mathcal{K}}, & ext{if } c_{\mathcal{K}} \leq X_i \end{cases}$$

- ullet RDD on subsample with $D_i \in \{d_{k-1}, d_k\}$ identifies $\mathbb{E}\left[Y_i(d_k) Y_i(d_{k-1}) \mid X_i = c_k
 ight]$
- Mostly similar to the previous case
 - Same observation can be used twice (unless bandwidth is small enough)

Multi-dimensional running variable

E.g. scholarship awarded to students scoring above a cutoff in both math and English:

$$extbf{X}_i = (extit{Math}_i, extit{English}_i) \,, \qquad extit{D}_i = \mathbf{1} \left[extit{Math}_i \geq c_{ extit{Math}}
ight] imes \mathbf{1} \left[extit{English}_i \geq c_{ extit{English}}
ight]$$

(Cattaneo and Titiunik 2023, Fig. 5.5a)

 Note that a student needn't be close to the border on both running variables to be near the boundary

Multi-dimensional running variable (2)

Spatial discontinuity designs are a special case: $X_i = (Longitude_i, Latitude_i)$

(Cattaneo and Titiunik 2023, Fig. 5.5b)

- E.g. Black (1999) compares house prices across boundaries of elementary school catchment areas (within school districts and administrative areas)
 - $ightharpoonup D_i = \text{average test score in the school}$

Estimand #1: Effects at a single boundary point

- Let $D_i=a(\mathbf{X}_i)$, $A_0=\{x\colon a(x)=0\}$, $A_1=\{x\colon a(x)=1\}$, and B= boundary between A_0 and A_1
- Assume $\mathbb{E}\left[Y_i(d) \mid \boldsymbol{X}_i = x\right]$ is continuous at $x \in B$
 - Violated when multiple outcome-relevant treatments jump at the same boundary
 - \triangleright Or when location X_i can be manipulated
- Average causal effect at point $b \in B$, $\tau(b)$, is identified by

$$\tau(b) = \lim_{x \to b, \ x \in A_1} \mathbb{E}\left[Y_i \mid \boldsymbol{X}_i = x\right] - \lim_{x \to b, \ x \in A_0} \mathbb{E}\left[Y_i \mid \boldsymbol{X}_i = x\right]$$

- ▶ To implement, let $d(X_i, b)$ denote some distance metric (e.g. Euclidean)
- Use $\tilde{X}_i = d(X_i, b) \cdot (2D_i 1)$ as a scalar running variable with a cutoff of zero

Estimand #1: Effects at a single boundary point (contd.)

Estimand #2: Pooled effect

- How can we estimate the average effect pooling across boundary points, $\mathbb{E}[Y_i(1) Y_i(0) \mid \mathbf{X}_i \in B]$?
- ullet Naive approach: Compute distance $d_{min}(\mathbf{X}_i)$ to the *closest* boundary point
 - ▶ Use scalar $\tilde{X}_i = d_{min}(\mathbf{X}_i) \cdot (2D_i 1)$ with a cutoff of zero
 - But in finite samples this may not be enough...
 - Observations on the two sides of the border may be geographically imbalanced

Pooled effect: better estimators

- Black (1999): use minimum distance but include FEs of boundary segments as controls to improve geographic balance
- Imbens and Zajonc (2009): manually average estimated $\hat{\tau}(b)$ over the boundary $b \in B$
- The honest approach of Imbens and Wager (2019)
 - ▶ Directly chooses the optimal estimator (via numerical optimization), accounting for worst-case bias under a bound on two-dimensional curvature of $\mathbb{E}\left[Y_i(d) \mid \mathbf{X}_i\right]$

Spillovers in spatial RDDs

- We assumed away spillovers (SUTVA violations)
 - But in some spatial RDDs they are very important
 - ▶ Comparing places just around the boundary is a terrible idea when Y_i can be affected by $D_{\mathsf{neighbors}(i)}$
- One popular approach: "donut" estimation
 - ▶ Pick a smaller bandwidth $h' < h^*$ and drop observations within h' from the cutoff when estimating the direct effect
 - Used also in conventional RDDs when some manipulation is possible
- What do you think of this idea? How would you estimate the effect?
 - See Noack and Rothe (2023)

Outline

- Fuzzy RDD
- Discrete running variables
- Adding covariates
- Politician characteristics RDDs
- Multiple thresholds and cutoffs
- 6 Local randomization approach
- Extrapolating RD estimates

Local randomization approach to RDDs

- Lee (2008) title: "Randomized experiments from non-random selection in U.S. House elections"
- In the continuity approach this idea is a heuristic
 - ▶ D_i is only approximately independent from $Y_i(d) \Longrightarrow$ local polynomial adjustments, approximate permutation tests, etc.
- Local randomization approach (Cattaneo et al. 2015) takes this idea seriously
 - ▶ Assume $X_i \perp \!\!\! \perp Y_i(d) \mid X_i \in \mathcal{X}$ in a finite neighborhood $\mathcal{X} = [c h, c + h]$
 - ▶ And that $F(X_i | X_i \in \mathcal{X})$ is known, e.g. uniform in \mathcal{X} or across permutations
 - For no good reason!
- Under these assumptions, can use all RCT machinery
 - ▶ E.g. randomization inference that is valid in finite-samples (in contrast to Canay and Kamat 2018)

Choosing the window

Cattaneo et al. (2015) propose to start from smallest h and increase it until you reject balance of some predetermined W_i

(Cattaneo and Titiunik 2023, Figure 2.4)

Outline

- ¶ Fuzzy RDD
- Discrete running variables
- Adding covariates
- Politician characteristics RDDs
- Multiple thresholds and cutoffs
- 6 Local randomization approach
- Extrapolating RD estimates

Extrapolating RD estimates

A key limitation of RDDs is the local nature of $\tau = \mathbb{E}\left[Y_i(1) - Y_i(0) \mid X_i = c\right]$

- Kids who barely receive financial aid and politicians who barely win may be unusual
- When can we identify effects away from the cutoff to improve external validity?

Idea #1 (Dong and Lewbel 2015): local linear estimation also yields

$$\phi = \frac{\partial \mathbb{E}\left[Y_i(1) - Y_i(0) \mid X_i = x\right]}{\partial x} \mid_{x=c}$$

- Difference in regression slopes on the right and left
- Thus, $\mathbb{E}[Y_i(1) Y_i(0) \mid X_i = x] \approx \tau + \phi(x c)$ for $x \approx c$
 - lacktriangle Still a local parameter but a useful measure of sensitivity of au to shifting the cutoff

Extrapolating RD estimates (2)

Idea #2 (Angrist and Rokkanen 2015): suppose X_i is a noisy version of observable W_i

- E.g. D_i = offer for selective school in Boston, X_i = admission test score
 - ► Assume X_i is random noise conditionally on pre-application test score
- Conditional independence assumption:

$$\mathbb{E}\left[Y_i(d) \mid X_i, W_i\right] = \mathbb{E}\left[Y_i(d) \mid W_i\right] \quad \Longrightarrow \quad \mathbb{E}\left[Y_i(d) \mid D_i, W_i\right] = \mathbb{E}\left[Y_i(d) \mid W_i\right]$$

- ightharpoonup Given W_i , we can compare treated and untreated, as long as there is overlap
- Can use standard CIA methods to get the ATE (on everyone nothing local)
- Note: we used that D_i is a deterministic function of X_i , but not its discontinuity

Extrapolating RD estimates (3)

Angrist and Rokkanen's CIA assumption is falsifiable:

$$\mathbb{E}\left[Y_{i}(d) \mid X_{i}, D_{i}, W_{i}\right] = \mathbb{E}\left[Y_{i}(d) \mid W_{i}\right] \implies \mathbb{E}\left[Y_{i}(d) \mid X_{i}, D_{i}, W_{i}\right] = \mathbb{E}\left[Y_{i}(d) \mid D_{i}, W_{i}\right]$$

$$\implies \mathbb{E}\left[Y_{i} \mid X_{i}, D_{i}, W_{i}\right] = \mathbb{E}\left[Y_{i} \mid D_{i}, W_{i}\right]$$

• Among the treated, X_i should not predict Y_i given W_i ; same for the untreated

Note: RDD with heterogeneous cutoffs, $D_i = 1$ [$X_i \ge C_i$], where C_i is **not** correlated with potential outcomes is a special case:

For
$$\tilde{X}_i = X_i - C_i$$
, $\mathbb{E}\left[Y_i(d) \mid \tilde{X}_i, X_i\right] = \mathbb{E}\left[Y_i(d) \mid X_i\right]$