Combinational circuits

It is made up with combining various logic gates.

- 1. Find number of inputs and outputs
- 2. Give symbols to inputs and outputs.
- 3. Design truth table which relates input and output.
- 4. Design function of output
- 5. Implement circuit using logic gates

And → AB

 $OR \rightarrow A + B$

NOT→A'

Α	В	EX-or
0	0	0
0	1	1
1	0	1
1	1	0

Half Subtractor:

- 1. 2 inputs and 2 outputs
- 2. Inputs \rightarrow A, B outputs \rightarrow S(subtraction), Bo(Borrow)

3.

Α	В	S	Во
0	0	0-0=0	0
0	1	0-1=1	1
1	0	1-0=1	0
1	1	1-1=10→0	0

$$2 \text{ inputs} = 2^2 = 4$$

Half Adder:

1. 2 inputs and 2 outputs

2. Inputs \rightarrow A, B outputs \rightarrow S(sum), C(carry)

3.	•						
	Α	В	S	С			
	0	0	0+0=0	0			
	0	1	0+1=1	0			
	1	0	1+0=1	0			
	1	1	1+1=10→0	1			

2 inputs = 2^2 =4

4.
$$S = A'B + AB' = A (EXOR) B$$

$$C = AB$$

5.

Full adder:

- 1. 3 inputs and 2 outputs
- 2. A, B, Cin \rightarrow S, Cout 3 inputs = 2^3 =8
- 3.

Α	В	Cin	S	Cout
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

$$= A'B'C + A'BC' + AB'C' + ABC$$

$$= \underline{A'BC' + AB'C'} + \underline{A'B'C + ABC}$$

$$= C'[A'B + AB'] + C[A'B' + AB]$$

$$= C'[A (EXOR)B] + C[A (EXNOR) B]$$

$$= C'[A (EXOR)B] + C[A (EXOR) B]'$$

Assume A (EXOR) B=Y

$$= C'Y + CY'$$

C

$$= A'BC + AB'C + ABC' + ABC$$

$$= C [A'B + AB'] + AB [C + C']$$

$$= C [A (EXOR) B] + AB$$

$$= AB + C [A (EXOR) B]$$

Full Subtractor:

