Building a Convolutional Network for Brain Tumor Segmentation

Intelligent systems for pattern recognition (760AA)

Giovanni Scognamiglio

What we did

- Research
 - understanding the assumptions behind convolutional architectures & modules
 - identifying lightweight module innovations
- Model design and implementation
 - choosing the right architecture and modules for the task at hand
- Test the final model

Introduction

- What is brain tumor segmentation?
 - brain tumor and MRIs
 - benefits of automatically segmenting tumor area in MRIs
- Why are neural network ideal for identifying brain tumor?
 - fuzzy borders, hard to distinguish
 - no priors about location, shape or contrast

Introduction

The dataset we used

- created by researchers to investigate statistical relationship between tumor shape and genomic data
- available on kaggle with 200+ notebooks with deep CNN (90% implementations are
 U-Net)

Limitations and opportunities

 Sporadic access to Colab GPU meant we had to take a more theoretical approach for model selection

Research - segmentation models

- Understanding U-Net popularity
 - what is U-Net
 - the pillars of U-Net
 - 3x3 conv
 - encoder decoder structure
 - convolutional transpose
 - why are U-Net modules/architecture effective for medical image segmentation
 - what came after U-Net

Research - segmentation models

- Understanding DeepLab: U-Net's antagonist
 - is encoding actually necessary for image segmentation?
 - what is "multi-scale contextual learning"?
 - the pillars of DeepLab:
 - dilated convolutions (a double edged sword)
 - Atrous Spatial Pyramid Pooling (ASPP)
- a note on dilated convolutions: current limitations and future possibilities

DeepLab

Atrous Spatial Pooling (ASPP)

(we will use it later)

Research - lightweight models

- Why researching lighter models?
- Our focus: parameter-efficient models.
 - reduction in # of parameters and multiplications-additions (mult.adds)
- How?
 - Factorizing convolutions
 - reducing redundancy

Research - lightweight models

- Factorizing convolutions
 - Depthwise separable convolutions
 - Group convolutions
 - o many other ways...
- Reducing redundancy
 - Residual connections
 - Dense feed-forward connections
 - many other ways...

Model implementation: MobileNetv3

- Why we chose MobileNetv3
 - 1: research and papers
 - 2: code and documentation
 - 3: pre-designed segmentation head

Input	Operator	exp size	#out	SE	NL	s
$224^{2} \times 3$	conv2d, 3x3	-	16	-	HS	2
$112^{2} \times 16$	bneck, 3x3	16	16	1	RE	2
$56^{2} \times 16$	bneck, 3x3	72	24	_	RE	2
$28^{2} \times 24$	bneck, 3x3	88	24		RE	1
$28^{2} \times 24$	bneck, 5x5	96	40	1	HS	2
$14^{2} \times 40$	bneck, 5x5	240	40	1	HS	1
$14^{2} \times 40$	bneck, 5x5	240	40	1	HS	1
$14^{2} \times 40$	bneck, 5x5	120	48	1	HS	1
$14^{2} \times 48$	bneck, 5x5	144	48	1	HS	1
$14^{2} \times 48$	bneck, 5x5	288	96	1	HS	2
$7^{2} \times 96$	bneck, 5x5	576	96	1	HS	1
$7^{2} \times 96$	bneck, 5x5	576	96	1	HS	1
$7^{2} \times 96$	conv2d, 1x1	-	576	1	HS	1
$7^{2} \times 576$	pool, 7x7	-	-	-	-	1
$1^{2} \times 576$	conv2d 1x1, NBN	-	1024	-	HS	1
$1^2 \times 1024$	conv2d 1x1, NBN	-	k	_	_	1

MobileNetv3

Hybrid MobileNetv3 + AL-NET

Implementation and Results

- Model selection for two models:
 - MobileNetV3
 - MobileNetV3 with extra skip connections

2*Models	2*# of trainable parameters	Hyperparpameters				DICE coef		
		opt	lr	mom	nest	bn	DICE VAL	DICE TEST
MobileNetv3 + LR-ASPP	310 thousands	SGD	0.09	0.95	Yes	Yes	83.49%	84.76%
MobileNetv3 + LR-ASPP with extra skip connections	312 thousands	SGD	0.09	0.95	Yes	Yes	84.01%	85.26%
U-Net (pre-trained)	7 milion	(- S	-	×	-	:8	71.12%	74.12%
U-Net (claimed)	7 milion	-	-	1 = 1	-	17	17	82%

Conclusion

- 1. Consider lightweight models before trying U-Net as default go to
- 2. A need for general-purpose lightweight architectures
- 3. MobileNetv3 proved it self as a solid lightweight general purpose architecture