MAINTENANCE PRÉDICTIVE COURS 3

Plan du cours

- Introduction
- Modélisation statistique des lois de vie
- Capteurs, construction d'indicateurs de santé
- Sélection de variables, types de variables et prédiction
- Analyse de risques, réseaux bayésiens
- Examen

MAINTENANCE & DONNÉES STATIQUES

Rappels & illustration

Le suivi périodique : différentes granularités de maintenances planifiées

- > Vérification de l'avion ou l'hélicoptère avant chaque vol
- > Maintenance régulières selon un certain nombre d'heures de vols ou d'atterrissage / décollage
- > Les maintenances régulières ont des exigences plus ou moins grandes
 - Sans démonter l'équipement
 - En le démontant et en le laissant au soin de la compagnie
 - En le démontant et en le renvoyant au constructeur ou dans un « shop » agréé
- > Toutes les instructions sont dans les manuels de maintenance

Les maintenances non planifiées / correctives

- Ingestion de corps étrangers
- Dégradations imprévues (corrosion, érosion)

- Comment aller au-delà de la modélisation statistique pure ?
 - > En ajoutant des données & de la connaissance
- Comment sont construits les manuels de maintenance ?
 - > Connaissances physiques / métier
 - Modélisations
 - Cycles de vie
 - > Retour d'expérience
 - Impact de l'environnement
 - Impact de l'usage
- Comment décide-t-on d'une maintenance imprévue ?
 - > Connaissances physiques
 - Notions de marges
 - Inspections
 - > Retour d'expérience
 - Inspections

- Les données statiques : quelles sont-elles ?
 - > Les dates de pannes
 - > Mais aussi d'autres variables disponibles simplement
 - Type d'avion
 - Pollution de l'air
 - Météo moyenne
 - ...
 - > Ainsi que des modélisations physiques
 - - ce ne sont pas à proprement parler des données, mais plus des connaissances a priori, sans données d'utilisation

L'impact de l'environnement

- > Les moteurs absorbent de l'air
- > En fonction de la qualité de l'air et de ses composantes, le moteur s'endommagera plus ou moins

> Pollution

> Humidité

> Sable

> Salinité

L'impact de l'environnement

- > Les moteurs absorbent de l'air
- > En fonction de la qualité de l'air et de ses composantes, le moteur s'endommagera plus ou moins

Cet effet est pris en compte dans le manuel de maintenance :

- > Ajout de filtres pour le sable
- > Lavage plus régulier pour la pollution et la salinité

> Dans un cas simple de l'utilisation de ces données, elles sont utilisées comme covariables pour les lois statistiques qu'on a vu dans le cours précédent

Utilisation des modèles physiques

- À partir des contraintes physiques exercées sur une pièce mécanique
 - Changement de température
 - Forces et moments exercés sur les matériaux
- > Il est possible de simuler les effets d'usure sur les pièces:
 - Apparition de fissures
 - Risque de ruptures
 - Etc...

Utilisation des modèles physiques

- > Ces simulations physiques permettent donc d'estimer des cycles
 - Un cycle est une séquence typique vu par un équipement
 - Les simulations prédisent quel est l'impact de chaque cycle sur les différentes pièces de l'équipement
 - Le moteur est déposé pour être placé en maintenance après N cycles
 - Ex: endofluage, freins d'avion, ...

> Dans un cas d'usage simple de l'utilisation de ces modélisation, ces cycles **remplacent le temps** dans les modèles

statistiques

Exemple nb cycles vs fissure

La maintenance planifiée : le lien entre activités des clients et états des moteurs

- En fonction du business du client, les équipements s'usent différemment
- Exemple dans l'aéronautique
- Par ce retour d'expérience, une typologie de mission a été créée basée sur cette idée
- Actuellement, les missions sont réparties en différents grands types:

> Emergency Medical Services

Jtilitaire

> Militaire

>Tourisme

> VIP

> Off-shore

- Cependant, l'utilisation des données statiques a ses limites
 - Exemple sur les types de missions : deux compagnies de tourisme, deux utilisations différentes

Tourisme à Hawaii

Tourisme au grand canyon

Cependant, l'utilisation des données statiques a ses limites

- Exemple sur le cyclage : l'utilisation non continue des équipements
 - Que faire si un client fait des manœuvres particulières qui endommagent l'équipement mais ne sont pas standard ?
 - Solution possible : on introduit la notion de cycle partiel
 - Un algorithme détecte automatiquement ces manœuvres
 - Une table physique vient prédire l'impact de telles manœuvres sur le moteur
 - ... Que faire si le client s'adapte ... ?
 - lci, on est passé aux données dites longitudinales, des données récoltées tout au long de la vie de l'appareil

Les données longitudinales, une granularité plus fine

- ◆ Pour chaque usage particulier on veut mesurer un vieillissement particulier
- On décompose usage et vieillissement
 - > L'usage est l'usage effectué
 - > Le vieillissement est l'état de l'équipement

COLLECTER LES DONNÉES

Collecter les données : quelles données ?

Interne

- Les capteurs utilisés pour le contrôle de l'équipement
- > Les capteurs de l'équipement spécifique pour la maintenance

Externe

- > Environnement
 - Humidité, températures, pressions, ...
- > Commandes
 - Valeurs de consignes, accélérations, ...

Résultats intermédiaires

- > Indicateurs embarqués
- > Résumés de vol

Collecter les données : quels systèmes/technologies de collecte ?

La chaîne de collecte :

- > Capteurs
- > Cloud (stockage & analyse)
- > Réseaux de transport d'information (fibre / wifi / bluetooth, faible énergie, ...)

En tant qu'analyste, ne pas sous-estimer les étapes dans le monde matériel!

- > Placer les capteurs,
- > Monter les réseaux locaux / externes
- > Raccorder le tout au cloud
- Certains clients ont des contraintes particulières
- > Anecdote: Usine bosch, 2 mois par machine

Focus sur les capteurs

Capteurs pour la maintenance

- > La maintenance prédictive est souvent associée à certains capteurs particuliers
- > Le traitement peut être embarqué ou hors ligne

Les propriétés d'un capteur :

- > L'exactitude/le biais d'un capteur renvoie à la véracité des données qu'il produit
- > La résolution d'un capteur renvoie au plus petit incrément ou décrément de position pouvant être mesuré par celui-ci
- > La précision d'un capteur est déterminée par son degré de répétabilité.

• Que peut-on mesurer ?

- > Vibrations
 - Surveiller les fréquences & amplitudes des mouvements
 - Isoler la ou les sources de vibration
- > Chocs
 - Détecter les mouvements anormalement brutaux de l'équipement

• Quels défauts sont liés à ce genre de mesure ?

- > État des roulements
- > Engrènement des engrenages
- > Cavitation de la pompe
- > Désalignement
- > Déséquilibre
- > État de charge

Les principales technologies

Piézoélectriques

- Certains cristaux et certaines céramiques se chargent électriquement lorsqu'ils sont soumis à une déformation
- Le cristal se charge sur deux faces en regard avec des charges opposées lorsqu'on le soumet à une force exercée entre ces deux faces
- Une métallisation des faces permet de recueillir une tension électrique qui pourra être utilisée dans un circuit
- > Bien pour les vibrations

Piézorésistif

> Changement de résistance plutôt que la création de charge

Capacitif

Changement dans la capacité des condensateurs quand les plaques se rapprochent ou s'éloignent

Sources : https://www.dmesures.fr/fr/produits/inclinaison-acceleration-fr.html
https://www.alliantech.com/pdf/coin des experts/generalite sur accelerometrie.pdf

- Les principales technologies
- À jauge de déformation
 - > Proche du résistif
 - > On mesure des courants dans une jauge qui se déforme

Inductif

> On utilise deux bobines de sens contraires, on mesure un courant

Par laser / source lumineuse

- > Avec une fibre optique et on mesure des temps de parcours
- > Avec des systèmes d'occultation, ...

J₁, J₂, J₃, J₄ jauges de contrainte

https://www.dmesures.fr/fr/11-produits/capteur.html

α débattement pendulaire

F force exercée par la masse sismique

Les principales technologies

- Et d'autres
 - > plus expérimentaux ou pour d'autres usages (navigation inertielle par exemple)
 - > Pendules
 - > Poutres vibrantes
 - > Ondes de surface
 - > Effet hall
 - > Piézo-optique
 - > Etc...

• Quelles spécificités pour le traitement de données ?

> Connaissance en traitement du signal : les fréquences, les bande-passantes, seront déterminantes pour détecter et/ou caractériser les défauts considérés

Force / Couple

Principales technologies

> Jauges de contraintes

• Quels défauts peut-on mesurer ?

- Généralement, pour la maintenance, un couple / une force est une sortie désirée
- Un changement dans la sortie désirée indique un problème dans le système en général
- > Il faudra certainement l'associer à d'autres variables

Jauges de contrainte

Thermographie infrarouge, rayon X, tomographie

- Quels défauts peut-on détecter ?
 - > Défauts de structure / composition
 - > Défauts de surface

- Quelles spécificités pour le traitement de données ?
 - Méthodes de résolution de problèmes inverses
 - > Méthodes de traitement d'image classique
 - > Méthodes de Deep Learning

- La bande 2-5 μm appelée Ondes courtes (SW, Short Waves).
- La bande 7-15 μ m appelée Ondes longues (LW, Long Waves).

Thermographie infrarouge, rayon X, tomographie

Principales technologies

Name	Source of data	Abbreviation	Year of introduction
Aerial tomography	Electromagnetic radiation	AT	2020
Array tomography[2]	Correlative light and electron microscopy	AT	2007
Atom probe tomography	Atom probe	APT	
Computed tomography imaging spectrometer ^[3]	Visible light spectral imaging	CTIS	2001
Computed tomography of chemiluminescence ^{[4][5]}	Chemiluminescence Flames	стс	2009
Confocal microscopy (Laser scanning confocal microscopy)	Laser scanning confocal microscopy	LSCM	
Cryogenic electron tomography	Cryogenic transmission electron microscopy	CryoET	
Electrical capacitance tomography	Electrical capacitance	ECT	1988[6]
Electrical capacitance volume tomography	Electrical capacitance	ECVT	
Electrical impedance tomography	Electrical impedance	EIT	1984
Electrical resistivity tomography	Electrical resistivity	ERT	
Electron tomography	Transmission electron microscopy	ET	1968[7][8]
Focal plane tomography	X-ray		1930s
Functional magnetic resonance imaging	Magnetic resonance	fMRI	1992
Hydraulic tomography	fluid flow	нт	2000
Infrared microtomographic imaging[9]	Mid-infrared		2013
Laser Ablation Tomography	Laser Ablation & Fluorescent Microscopy	LAT	2013

Thermographie infrarouge, rayon X, tomographie

Principales technologies

Name	Source of data	Abbrev iation	Year of introd uction
Microwave tomography ^[12]	<u>Microwave</u>		
Multi-source tomography ^[10]	X-ray		
Muon tomography	Muon		
Neutron stimulated emission computed tomography			
Neutron tomography	Neutron		
Ocean acoustic tomography	Sonar	OAT	
Optical coherence tomograp	Interferometry	ОСТ	
Optical diffusion tomograph	Absorption of light	ODT	
Optical projection tomograp	Optical microscope	OPT	
Photoacoustic imaging in bi	Photoacoustic spectros	PAT	
Photoemission Orbital Tomo	Angle-resolved photoe	POT	2009[131
Positron emission tomograp	Positron emission	PET	
Positron emission tomograp hy - computed tomography	Positron emission & X-ray	PET- CT	
Quantum tomography	Quantum state	QST	
Seismic tomography	Seismic waves		
Single-photon emission computed tomography	Gamma ray	SPEC T	
Terahertz tomography	Terahertz radiation	THz- CT	
Thermoacoustic imaging	Photoacoustic spectros	TAT	
Ultrasound computer tomog	Ultrasound	USCT	

Et bien d'autres

- Capteurs plus bas niveau
 - > Résistance
 - > Courant
 - > Tension
- Thermomètres
- Baromètres
- Microphones
- Moniteur de particules
- Capteurs d'humidité

• ...

Commentaire général

Vous aurez compris que chaque type de variables à mesurer a un grand nombre de capteurs disponibles

- > Vous devrez apprendre à comprendre le principe des capteurs qui vous fournissent les données
- > Ne jamais prendre les données comme une boîte noire

Un capteur = des techniques spécifiques de traitement

- > Les capteurs créent des données structurées, spécifiques
- > La prise en compte de ces structures dans les données est la clef d'une bonne analyse
- > L'adéquation entre les structures dues au défaut et/ ou au système et les capteurs est clef pour une bonne détection

Les capteurs ont des contraintes aussi

- > Température, pressions, forces ...
- > Ils ne vous donneront donc pas toujours l'information dont vous avez besoin, mais un dérivé
- > Ne pas oublier qu'ils sont aussi des composants qui peuvent tomber en panne

MAINTENANCE & DONNÉES LONGITUDINALES : CONSTRUCTION D'INDICATEURS

• Qu'est-ce qu'un indicateur de santé ?

- > Une vision (souvent partielle) de l'état de santé du système
- > On souhaite que lorsque l'état de santé du système se dégrade, l'indicateur suive les variations de santé

Pourquoi faire des indicateurs ?

> On n'a souvent pas accès direct à la santé du système

Exemples pour la santé d'un humain :

- > Température
- > Douleurs au ventre
- > Taux de glycémie
- > Ce sont des symptômes, pas des maladies
- > Parfois, les symptômes sont invisibles sans inspection

Les indicateurs

- > Points opérationnels
- > Résidus
- > Paramètres
- > Variables latentes

Propriétés souhaitées

- > Temps de calcul
- > Conservation de l'information de tendance
- > Conservation de l'information de rupture

Les indicateurs

- > Points opérationnels
 - Max
 - Min
 - Mediane
 - Moyenne
 - Conditionnés à certains autres variables

> Résidus

- Construction d'un modèle « black box » à partir des données
- Suivi de Y hat Y

Les indicateurs

- > Paramètres
 - Apprentissage d'un modèle
 - Suivi de ces paramètres dans le temps
 - Précautions à prendre :
 - Les variables doivent être indépendantes
 - Les modèles doivent être pertinents

> Variables latentes

- Construction d'un modèle de construction de variables latentes
- Ex: Analyse en Composantes Principales
- Suivi des variables

Déclencher une maintenance non planifiée : les marges (indicateur par résidu)

- Les modèles thermodynamiques permettent de connaître les relations entre les variables d'un moteur
 - Ces relations dépendent des conditions extérieures
 - Il est possible de se ramener aux conditions standards T0, P0 (conditions de laboratoires)
 - Ces corrections sont générales, il est possible d'effectuer des « super-corrections », qui s'obtiennent par le recalage sur les données de banc d'essai

$$XNHR1 = \frac{XNH}{\sqrt{T1/288.15}}$$

$$WOR1 = \frac{W0 \cdot \sqrt{T1/288.15}}{P1/101.325}$$

Déclencher une maintenance non planifiée : les marges (indicateur par résidu)

- Les modèles thermodynamiques permettent de connaître les relations entre les variables d'un moteur
 - La puissance maximum atteignable est une caractéristique importante du moteur
 - Pour atteindre une puissance, il faut atteindre une certaine température interne
 - Cette température nécessaire varie selon l'état du moteur
 - Si la température à atteindre devient trop élevée, le moteur est déclaré inapte à voler : il a dépassé la limite, la marge

Les marges en maintenance prédictive

- > Calcul automatique
 - Conditionnement pour correspondre au modèle physique
- > Suivi de tendance
 - Régressions
 - Filtrages
 - ...
- > Puis, lien avec les connaissances métier :
 - L'allongement des pales crée une augmentation de rendement
- > ou le retour d'expérience :
 - À chaque fois que la marge sur la variable 1 monte & la marge sur la variable 2 descend, alors c'était de l'érosion du second module

Données longitudinales : la construction d'indicateurs

Les marges ne sont qu'un exemple parmi d'autres

- > Temps de repos du moteur avant arrêt
- > Vitesses maximales
- > Températures atteintes...
- > Ces indicateurs sont en lien avec l'usage et l'usure, et comme les marges, peuvent être suivis et prédits
- > On voit ici qu'on boucle entre retour d'expérience & physique

Données longitudinales : la construction d'indicateurs

Les contraintes

- Intégration de la physique
 - La typologie trouvée doit être insensible à l'état du système
 - Les variables ont différentes unités et <u>la normalisation</u> est cruciale avant une intégration dans un algorithme
 - Les données vont de quelques minutes à plusieurs heures
 - La physique induit des contraintes sur les échelles de temps et les déformations acceptables

Interprétation

- Les résultats doivent être interprétables
- Pour comprendre les résultats il est nécessaire d'avoir l'état du moteur, donc une bonne connaissance de la maintenance et de la configuration

Données longitudinales : la construction d'indicateurs

- Avoir des indicateurs permet de suivre la santé, mais il manque une notion importante
 - > L'indicateur permet de mesurer un proxy de l'âge
 - > Mais pas le modèle de dégradation
 - On pourrait dire que l'estimation pas de temps par pas de temps suffit, cependant :
 - On souhaite prédire la panne
 - Il y a présence <u>de bruits et d'incertitudes</u>

MAINTENANCE & DONNÉES LONGITUDINALES: MODÉLISATION TEMPORELLE

Modélisation physique

- > Filtre de Kalman
- > Filtre à particules (ou filtrage particulaire)
- → En général, les méthodes de filtrage par conditionnement bayésien

Modélisation par analyse de données / time series analysis

- > AR models
- > Random Coefficient models
- > Processus
 - Wiener process models
 - Gamma process models
 - Inverse Gaussian process
- > Modèles de Markov

Modélisation par analyse de données / régression standard

- > Régressions SVM
- > Neural Nets (MLPs or RNNs)
- > Gaussian Process Regression
- > ...

La question du traitement du temps est par rapport à un « tout intégré » vs un « pas à pas »

- Modélisation physique
 - > Filtre de Kalman
 - > Filtre à particules (ou filtrage particulaire)
 - → En général, les méthodes de filtrage par conditionnement bayésien

Des outils pour intégrer filtrage & indicateurs simultanément (modèles <u>du</u> <u>système + de dégradation</u>)

- Modélisation par analyse de données / time series analysis
 - > AR models
 - > Random Coefficient models
 - > Processus
 - Wiener process models
 - Gamma process models
 - Inverse Gaussian process
 - > Modèles de Markov
- Modélisation par analyse de données / régression standard
 - > Régressions SVM
 - > Neural Nets (MLPs or RNNs)
 - > Gaussian Process Regression
 - > ...

- Modélisation physique
 - > Filtre de Kalman
 - > Filtre à particules (ou filtrage particulaire)
 - → En général, les méthodes de filtrage par conditionnement bayésien
- Modélisation par analyse de données / time series analysis
 - > AR models
 - > Random Coefficient models
 - > Processus
 - Wiener process models
 - Gamma process models
 - Inverse Gaussian process
 - > Modèles de Markov

Des outils pour filtrer a posteriori sur des modèles particuliers de dégradation

Modélisation par analyse de données / régression standard

- > Régressions SVM
- > Neural Nets (MLPs or RNNs)
- > Gaussian Process Regression

> ...

- Modélisation physique
 - > Filtre de Kalman
 - > Filtre à particules (ou filtrage particulaire)
 - → En général, les méthodes de filtrage par conditionnement bayésien
- Modélisation par analyse de données / time series analysis
 - > AR models
 - > Random Coefficient models
 - > Processus
 - Wiener process models
 - Gamma process models
 - Inverse Gaussian process
 - > Modèles de Markov
- Modélisation par analyse de données / régression standard
 - > Régressions SVM
 - Neural Nets (MLPs or RNNs)
 - > Gaussian Process Regression

> ...

Des outils pour filtrer a posteriori ou a priori

Intégration du temps pas à pas

- > Plus simple
- > Moins optimale
- > Meilleure si on part de rien!

Intégration du temps simultané

- > Théoriquement optimale
- > En pratique dépend de la justesse des modèles et surtout de la robustesse à l'écart aux modèles choisis

Les variables d'environnement et d'usage

- > Rappelons nous le cours précédent : un même équipement ne peut vivre de manière déterministe
- > Connaître son passé n'assure pas le futur
- > Les modélisations prennent en compte un aspect supplémentaire lors de la prédiction : l'environnement & l'usage
- > Une modélisation spécifique devient nécessaire, et tous les modèles ne peuvent pas le prendre en compte

MAINTENANCE &
DONNÉES
LONGITUDINALES:
QUELQUES MOTS SUR
LES MÉTRIQUES

Analyse de données : Remaining Useful Life, métriques

Métriques

- > Métriques dépendant d'une vérité terrain (complètes ou partielles) :
 - RMSE
 - Prediction horizon
 - a-k accuracy
 - Relative accuracy
 - Cumulative relative accuracy → remember Brier Score ?
 - Convergence → basée sur une autre métrique
 - Mean prediction error
 - Overall average bias
 - Overall average variability
 - Reproducibility
 - Predictability

Analyse de données : Remaining Useful Life, métriques

Métriques

- > Basées sur une vérité terrain
 - RMSE sur le tRUL
 - RMSE sur la trajectoire
 - Prognostic horizon
 - a-k accuracy
 - Relative accuracy
 - Cumulative relative accuracy
 - Convergence

- ...

- > Basées sur un flux de données
 - Online RMSE
 - Online coverage (la RUL espérée appartient-elle à l'intervalle de confiance de la RUL prédite ?)
 - Online width (largeur de l'intervalle de confiance)

Analyse de données : Remaining Useful Life, métriques

Métriques

- > En l'absence de vérité terrain, on n'a que des indicateurs, que faire ?
- > Si un seul indicateur
 - Monotonie (temporelle ou cyclique)
 - Robustesse
 - Attention aux données manquantes...
- > Si plusieurs indicateurs et ou plusieurs systèmes ?
 - Consistance inter systèmes / intra systèmes

Pour en savoir plus :

LEI, Yaguo, LI, Naipeng, GUO, Liang, et al. Machinery health prognostics: A systematic review from data acquisition to RUL prediction. *Mechanical systems and signal processing*, 2018, vol. 104, p. 799-834.

CONCLUSIONS

Conclusions

Analyse de données pour la maintenance

- > Données statiques & lien avec la modélisation statistique
- > Données longitudinales :
 - Collecte
 - Construction d'indicateurs
 - Suivi et la prédiction temporels
 - Métriques

La semaine prochaine

- > Nettoyage des données
- > Traitement des données manquantes
- > Sélection automatique de variables

AUTRES CAPTEURS

Vitesse / position

- Quels défauts peut-on détecter ?
 - > Jeux
 - > Balourds
- Principales technologies
 - > Potentiomètres
 - > Optique
 - > Magnétique
 - > Magnétostrictif
 - > Capacitif
 - > Capteurs inductifs

Inductif

Magnetoresistif

Thermomètres

• Quels défauts peut-on détecter ?

- > Frottements
- > Changements de charge
- > Démarrages/arrêts excessifs
- > Alimentation électrique insuffisante
- > ...

Principales technologies

- > Expansion thermique (mercure)
- > Pression
- > Densité
- > Thermochromisme / Fulorescence
- > Radiations
- > Absorption
- > Résistance électrique
- > Magnetisque

Microphones

• Que peut-on détecter ?

- > Vibrations anormales
- > Chocs

• Quels défauts détecter ?

- > État des roulements
- > Engrènement des engrenages
- > Cavitation de la pompe
- > Désalignement
- > Déséquilibre
- > État de charge

Principe général

- > Une membrane vibre sous l'effet de la pression acoustique
- > La vibration est transformée en courant électrique

Microphones

Les principales technologies

- > La membrane
 - Entre l'air et un milieu fermé → omnidirectionnel
 - La membrane subit l'onde des 2 côtés → bidirectionnel
 - On peut allier les deux pour avoir des zones de couverture différentes
- ➤ La conversion vibration → électricité
 - microphone dynamique : une bobine collée à la membrane
 - Microphone à ruban : un ruban (la membrane) est placé entre deux aimants
 - Microphone électrostatique

Dynamic Microphone

• Quelles spécificités pour le traitement de données ?

- > Comme l'accéléromètre, traitement de signal
- > C'est aussi une mesure de **pression**

Source: wikipedia

