- **21 8.2.16 Let V be an inner product space and W a finite-dimensional subspace of V. There are (in general) many projections which have W as their range. One of these, the orthogonal projection on W, has the property that $||E\alpha|| \le ||\alpha||$ for every α in V. Prove that if E is a projection with range W, such that $||E\alpha|| \le ||\alpha||$ for all α in V, then E is the orthogonal projection on W.
 - **Solution** Let E be a projection with range W such that $||E\alpha|| \le ||\alpha||$ for all $\alpha \in V$. Assume E is not the orthogonal projection onto W. Then there exists $\beta \in W$ and $\gamma \in \ker E$ such that $<\beta, \gamma> \ne 0$. If this were not true, then $<\beta, \gamma> = 0$ for all $\beta \in W$ and $\gamma \in \ker E$, which means $\ker E = W^{\perp} \implies E$ is the orthogonal projection. Define $\alpha = \lambda\beta + \gamma$. Note that $E\alpha = \lambda\beta$. Then

$$\begin{split} \|\alpha\|^2 &= \|\lambda\beta + \gamma\|^2 \\ &= \lambda^2 \|\beta\|^2 + \lambda < \beta, \gamma > + \overline{\lambda} < \gamma, \beta > + \|\gamma\|^2 \\ &= \|E\alpha\|^2 + \|\gamma\|^2 + \lambda < \beta, \gamma > + \overline{\lambda} < \beta, \gamma > \end{split}$$

Homework 9

This is true for any λ . Take $\lambda = -\frac{\|\gamma\|^2}{\langle \beta, \gamma \rangle}$. Then

$$\|\alpha\|^2 = \|E\alpha\|^2 + \|\gamma\|^2 - \|\gamma\|^2 - \overline{\|\gamma\|^2}$$
$$= \|E\alpha\|^2 - \|\gamma\|^2$$

This implies that $||E\alpha|| > ||\alpha||$, which is a contradiction. Hence E must be the orthogonal projection.

**22 8.2.11 Let V be a finite-dimensional inner product space, and let $\{\alpha_1, \ldots, \alpha_n\}$ be an orthonormal basis for V. Show that for any vector α, β in V,

$$<\alpha,\beta>=\sum_{k=1}^n<\alpha,\alpha_k>\overline{<\beta,\alpha_k>}.$$

Solution We can write $\alpha = a_1 \alpha_1 + \dots + a_n \alpha_n$ and $\beta = b_1 \alpha_1 + \dots + b_n \alpha_n$. Note that since $\{\alpha_1, \dots, \alpha_n\}$ is orthonormal, $a_i = \langle \alpha, \alpha_i \rangle$ and $b_i = \langle \beta, \alpha_i \rangle$. Then

$$\sum_{k=1}^{n} <\alpha, \alpha_k > \overline{<\beta, \alpha_k >} = \sum_{k=1}^{n} a_k \overline{b_k}.$$

Moreover,

$$<\alpha,\beta> = < a_1\alpha_1 + \dots + a_n\alpha_n, b_1\alpha_1 + \dots + b_n\alpha_n >$$

$$= \sum_{k=1}^n a_k < \alpha_k, b_1\alpha_1 + \dots + b_n\alpha_n >$$

$$= \sum_{k=1}^n a_k \left(\overline{b_1} < \alpha_k, \alpha_1 > + \dots + \overline{b_n} < \alpha_k, \alpha_n > \right)$$

$$= \sum_{k=1}^n a_k \overline{b_k} < \alpha_k, \alpha_k >$$

$$= \sum_{k=1}^n a_k \overline{b_k}$$

Thus,

$$<\alpha, \beta> = \sum_{k=1}^{n} a_k \overline{b_k} = \sum_{k=1}^{n} <\alpha, \alpha_k > \overline{<\beta, \alpha_k>}$$

as desired.