- 1. $B = \frac{\mu_0 I}{2\pi a}$ (2 или 4 въпрос), $B = \frac{4\pi . 10^{-7} . 10}{2\pi . 5 . 10^{-2}} = 4.10^{-5} \,\mathrm{T}$.
- 2. $\overrightarrow{dF} = I \left[\overrightarrow{dl} \times \overrightarrow{B} \right]$ (3 въпрос), големината на силата е $dF = IBdl \sin \alpha$, а за праволинеен проводник с дължина $l F = IBl \sin \alpha = 5.10^{-3}.2.2.10^{-1}.\sin 30^{\circ} = 10^{-3} \,\mathrm{N}$.
- 3. а). Циркулацията е $\oint_L \vec{B}.\vec{dl} = \sum_{i=1}^n I_i$ (4 въпрос). Тъй като контура L обхваща цялата рамка, а тя е перпендикулярна на контура, само две от страните на рамката пробождат площта на контура. Токовете по тези страни са равни по големина (големината на тока по цялата рамка е един и същ I) и противоположни по посока и тяхната сума е равна на нула $\oint_I \vec{B}.\vec{dl} = \sum_{i=1}^n I_i = I I = 0$.
- 4. $\overrightarrow{F_L} = q \left[\overrightarrow{v} \times \overrightarrow{B} \right]$ (5 въпрос), а големината ѝ $-F_L = qvB \sin \alpha = evB \sin 30^\circ = 1,6.10^{-19}.10^5.2.\frac{1}{2} = 1,6.10^{-14} \,\mathrm{N}$.
- 5. Формулировка на закона на Фарадей (7 въпрос) с думи и формула (индуцираното ЕДН зависи от скоростта на промяна на магнитния поток, $\varepsilon_i = -\frac{d\Phi_B}{dt}$). Трябва да се дефинира и величината магнитен поток и мерната ѝ единица (4 въпрос).
- 6. $\varepsilon_i = -L \frac{dI}{dt}$ (8 въпрос). В дадения случай $\varepsilon_i = -L \frac{\Delta I}{\Delta t} = -5.10^{-3} \frac{3}{2} = 7,5.10^{-3} \mathrm{V}$; Енергията $W = \int\limits_0^I LIdI = \frac{1}{2} LI^2$ (8 въпрос). Тъй като токът в конкретния случай се изменя от **0 A** до **3 A**, $W = \int\limits_0^3 LIdI = \frac{1}{2} LI^2 \Big|_0^3 = \frac{1}{2}.5.10^{-3}.9 = 22,5.10^{-3} \mathrm{J}$.
- 7. $f = \frac{\omega}{2\pi}$ (9 въпрос), $\omega = \sqrt{\frac{k}{m}}$ (10 въпрос). $f = \frac{1}{2\pi}\sqrt{\frac{k}{m}} = \frac{1}{2\pi}\sqrt{\frac{9.10^{-3}}{100.10^{-3}}} = \frac{1}{2\pi}\frac{3}{10} = \frac{3}{20\pi} \text{s}^{-1} \text{(Hz)}$.
- 8. с). (12 въпрос).
- 9. Определение, мерна единица и формулата $\lambda = vT = \frac{v}{f}$ (14 въпрос).
- 10. Общият вид на уравнението на плоска хармонична вълна е: $y = A \sin(\omega t kx + \varphi)$ (14 въпрос). Коефициентът пред t е кръговата честота ω , а пред x вълновото число k. Като го сравним с конкретното уравнение: $y = 4 \sin(10\pi(t-x)) = 4 \sin(10\pi t 10\pi x)$, виждаме, че $\omega = 10\pi$ и $k = 10\pi$. Следователно $k = 10\pi$ m⁻¹, а $T = \frac{2\pi}{\omega} = \frac{2\pi}{10\pi} = \frac{1}{5} = 0,2$ s.
- 11. Формулировка на законите с думи и формули (17 въпрос) и чертеж с падащия, отразения и пречупения лъч с обозначени ъгли на падане, отражение и пречупване.
- 12. Закон на Малюс $I_a = I_p \cos^2 \alpha$ (20 въпрос). В случая $I_a = I_2$, а $I_p = \frac{I_1}{2}$, тъй като след поляризатора преминава светлина с два пъти по-малък интензитет от падащата върху него неполяризирана светлина (20 въпрос). Следователно $I_2 = \frac{I_1}{2} \cos^2 45^\circ \Rightarrow \frac{I_2}{I_1} = \frac{1}{2} \cdot \frac{1}{2} = \frac{1}{4}$.
- 13. Закон на Стефан–Болцман за топлинното излъчване (21 въпрос) $E_T = \sigma T^4$. $T = t^\circ + 273 = 400$ K. $E_T = 5, 7.10^{-8}.400^4 = 5, 7.256.10^{-8}.10^8 = 1459, 2$ W/m².
- 14. Формулировка на законите (22 въпрос).
- 15. с). $\lambda = \frac{h}{p} = \frac{h}{mv}$ (24 въпрос). $\lambda = \frac{6,62.10^{-34}}{3,31.10^{-6}.10^2} = 2.10^{-30} \,\mathrm{m}$.

- 16. $\int_{V_{\infty}} |\Psi|^2 dV = 1$ (24 въпрос). Физическият смисъл е, че частицата се намира някъде в пространството, т.е. ако частицата реално съществува, вероятността да я намерим в целия обем на пространството е равна на единица.
- 17. b). Съотношения за неопределеност на Хайзенберг $\Delta x.\Delta p_x \ge h$ (24 въпрос). $\Delta x.\Delta p_x = \Delta x.m.\Delta v_x \ge h$, $\Delta v_x \ge \frac{h}{\Delta x.m} \Rightarrow \Delta v_{x \min} = \frac{h}{\Delta x.m} = \frac{6,62.10^{-34}}{10^{-8}.9.1.10^{-31}} = \frac{6,62}{9.1}.10^5 = 0,727.10^5 \,\mathrm{m/s} \approx 73 \,\mathrm{km/s} \,.$
- 18. Втори постулат на Бор $E_{\gamma}=hf=\left|E_{2}-E_{1}\right|$ (26 въпрос). $f=\frac{\left|E_{2}-E_{1}\right|}{h},\lambda=\frac{c}{f}=\frac{hc}{\left|E_{2}-E_{1}\right|}$ $\lambda=\frac{6,62.10^{-34}.3.10^{8}}{3,31.10^{-19}}=6.10^{-7}\,\mathrm{m}=600\,\mathrm{nm}\,.$
- 19. Стойността на отклонението (координатата x) в даден момент от време t получаваме като заместим стойността на t в уравнението на трептението (закона за движение, 9 въпрос): $x\left(\frac{1}{12}\right) = A\sin\left(2\pi.\frac{1}{12}\right) = 2.\sin\frac{\pi}{6} = \text{lcm}$. За да намерим скоростта в даден момент, трябва първо да намерим закона за скоростта: $v(t) = \frac{dx}{dt} = 4\pi\cos2\pi t$. $v\left(\frac{1}{12}\right) = 4\pi\cos\left(2\pi.\frac{1}{12}\right) = 4\pi\cos\frac{\pi}{6} = 2\pi\sqrt{3}\text{cm/s}$ Пълната енергия на хармонично трептение е $E = \frac{1}{2}kA^2 = \frac{1}{2}m\omega^2A^2$ (10 въпрос). Общият вид на закона за движение при хармонични трептения е $x = A\sin\left(\omega t + \varphi\right)$. От сравнението с конкретния зададен закон следва, че $\omega = 2\pi$. Следователно $E = \frac{1}{2}.2.10^{-2}.4\pi^2.4.10^{-4} = 16\pi^2.10^{-6}\,\text{J}$.
- 20. Чертеж на опита на Юнг. Извод на формулата $\Delta = \frac{xd}{L}$ и $x_{\min} = \frac{2m+1}{2} \frac{\lambda L}{d}$, като използваме условието за интерференчен минимум $\Delta = \left(2m+1\right) \frac{\lambda}{2}$ (18 въпрос).