Algorithmen und Wahrscheinlichkeit

Nicola Studer nicstuder@student.ethz.ch

18. Juni 2022

Graphen

Terminologie

- $K_n := \text{Vollständiger Graph mit } n \text{ Knoten}$
- $C_n := \text{Kreisgraph mit } n \text{ Knoten}$
- $P_n := Pfad mit n Knoten$
- $H_d := d$ -dimensionaler Hyperwürfel
- \bullet Hamiltonkreis := Ein Kreis in G, der jeden Knoten genau einmal enthält. $\mathcal{O}(n^2 2^n)$
- \bullet Eulertour := Ein geschlossener Weg in G, der jede Kante genau einmal enthält

1.2 Zusammenhang

Def 1.23 (k-zusammenhängend). Ein Graph G = (V, E)heisst k-zusammenhängend, falls $|V| \geq k+1$ und für alle Teilmengen $X \subseteq V$ mit |V| < k gilt: Der Graph $G[V \setminus X]$ is zusammenhängend.

Def 1.24 (k-kanten-zusammenhängend). Ein Graph G =(V, E) heisst k-kanten-zusammenhängend, falls für alle Teilmengen $X \subseteq E$ mit |X| < k gilt: Der Graph $(V, E \setminus X)$ is zusammenhängend.

Satz 1.25 (Menger). Sei G = (V, E) ein Graph. Dann gilt:

- a) G ist k-zusammenhängend $\iff \forall u, v \in V, u \neq v$ gibt es k intern-knotendiskunkte u-v-Pfade-Pfade
- b) G ist k-kanten-zusammenhängend $\iff \forall u,v \in V, u \neq$ v gibt es k kantendisjunkte u-v-Pfade

Bmk.. (Knoten-) Zusammenhang ≤ Kanten-Zusammenhang 1.4 Matchings < minimaler Grad

Bmk. (low-Werte).

$$low[v] = \min \left(dfs[v], \min_{(v,w) \in E} \begin{cases} dfs[v] & \text{if } (v,w) \text{ rest-edge} \\ low[w] & \text{if } (v,w) \text{ tree-edge} \end{cases} \right)$$

Artikulationsknoten. Sei G = (V, E) ein zusammenhängender $e \in M$ gibt, die v enthält. Graph. $v \in V$ Artikulationsknoten $\iff G[V \setminus \{v\}]$ nicht zusammenhängend. Artikulationsknoten, wenn:

- 1. $v \neq \text{root und } v \text{ hat Kind } u \text{ im DFS-Baum mit low}[u] \geq$ dfs[v]
- 2. v = root und v hat mindestens zwei Kinder im DFS-Baum.

Brücken. $e \in E$ Brücke $\iff G-e$ nicht zusammenhängend. Eine Baumkante $e = (v, w) \in E$ ist genau dann eine Brücke, wenn low[w] > dfs[v]. Restkanten sind niemals Brücken.

Lemma. Sei G = (V, E) ein zusammenhängender Graph. Ist $\{x,y\} \in E$ eine Brücke so gilt: deg(x) = 1 oder x ist Artikulationsknoten.

Satz 1.28. Für zusammenhängende Graphen G = (V, E), die mit Adjazenzlisten gespeichert sind, kann man in Zeit $\mathcal{O}(|E|)$ alle Artikulationsknoten und Brücken berechnen.

Def 1.29. Sei G = (V, E) ein zusammenhängender Graph. Für $e, f \in E$ definieren wir eine Äquivalenzrelation durch:

$$e \sim f : \iff e \begin{cases} e = f, & \text{oder} \\ \exists \text{Kreis durch } e \text{ und } f \end{cases}$$

1.3Kreise

Satz 1.31. Ein zusammenhängender Graph G = (V, E)enthält eine Eulertour \iff der Grad jedes Knotens gerade ist. Die Tour kann man in $\mathcal{O}(|E|)$ Zeit finden.

Satz 1.32. Seien $m, n \geq 2$. Ein $n \times m$ Gitter enthält einen Hamiltonkreis $\iff n \cdot m$ gerade ist.

Satz 1.40 (Dirac 1952). Jeder Graph G = (V, E) mit |V| >3 und Minimalgrad $\delta(G) \geq \frac{|V|}{2}$ enthält einen Hamiltonkreis.

Für das Metrische Traveling Salesman Problem gibt es einen 2-Approximationsalgorithmus mit Laufzeit $\mathcal{O}(n^2)$. Graph enthält ein perfektes Matching.

Matching. Eine Kantenmenge $M \subseteq E$ heisst Matching in einem Graphen G = (V, E), falls kein Knoten des Graphen zu mehr als einer Kante aus M inzident ist.

$$e \cap f = \emptyset$$
 für alle $e, f \in M$ mit $e \neq f$

Ein Knoten wird von M überdeckt, falls es eine Kante

Perfekts Matching. Ein Matching M heisst perfektes Matching, wenn jeder Knoten durch genau eine Kante aus M überdeckt wird, oder, anders ausgedrückt, wenn $M = \frac{|V|}{2}$

Matching Typen.

- M heisst inklusionsmaximal, falls gilt $M \cup \{e\}$ ist kein Matching für alle Kanten $e \in E \setminus M$.
- M heisst kardinalitätsmaximal, falls gilt $|M| \geq |M'|$ für alle Matchings M' in G.

Satz 1.47. Der Algortihmus Greedy-Matching bestimmt in Zeit $\mathcal{O}(|E|)$ ein inklusionsmaximales Matching M_{Greedy} für das gilt:

$$|M_{Greedy}| \ge \frac{1}{2} |M_{max}|$$

wobei M_{max} ein kardinalitätsmaximales Matching sei.

Augmentierender Pfad. Ein M-augmentierender Pfad ist ein Pfad, der abwechselnd Kanten aus M und nicht aus M enthält und der in von M nicht überdeckten Knoten beginnt und endet.

 \implies durch tauschen entlang M können wir das Matching verbessern.

Satz 1.48 (Berge). Ist M ein Matching in einem Graphen G = (V, E), das nicht kardinalitätsmaximal ist, so existiert ein augmentierender Pfad zu M.

Satz 1.51. Für das Metrische Travelling Salesman PROBLEM gibt es einen 3/4-Approximationsalgorithmus mit Laufzeit $\mathcal{O}(n^3)$ mit MST, Matching und Eulertour.

Satz 1.52 (Hall, Heiratssatz). Ein bipartiter Graph G = $(A \uplus B, E)$ enthält ein Matching M der Kardinalität |M| = $|A| \iff \forall X \subseteq A \ (|X| \le |N(X)|)$

Cor (Frobenius). Für alle k gilt: Jeder k-reguläre bipartite

Färbungen 1.5

Def 1.56. Eine Färbung eines Graphen G = (V, E) mit kFarben ist eine Abbildung $c: V \to [k]$, so dass gilt

$$c(u) \neq c(v)$$
 für alle Kanten $\{u, v\} \in E$

Die chromatische Zahl $\chi(G)$ ist die minimale Anzahl Farben, die für eine Knotenfärbung von G benötigt wird.

$$\chi(G) \leq k \iff G \text{ k-partit}$$

Satz 1.58. Ein Graph G = (V, E) ist genau dann bipartit, wenn er keinen Kreis ungerader Länge als Teilgraphen enthält.

Satz 1.59 (Vierfarbensatz). Jede Landkarte lässt sich mit vier Farben färben.

Bmk.. • Die Heuristik findet immer eine Färbung mit 2 Farben für Bäume

- ist ein Graph planar (Kann überkreuzungsfrei in der Ebene gezeichnet werden), so gibt es immer einen Knoten vom Grad < 5.
- Die Heuristik findet eine Färbung mit ≤ 6 Farben für planare Graphen
- G = (V, E) zshgd. und es gibt $v \in V$ mit $\deg(v) <$ $\Delta(G)$. Heuristik (Breiten/Tiefensuche) liefert Reihenfolge, für die der Greedy-Algorithmus höchstens $\Delta(G)$ Farben benötigt.

Satz 1.60. Sei G ein zusammenhängender Graph. Für die Anzahl Farben C(G), die der Algorithmus Greedy-Färbung benötigt, um die Knoten des Graphen G zu färben, gilt

$$\chi(G) \le C(G) \le \Delta(G) + 1$$

ist der Graph als Adjazenzliste gespeichert, findet der Algortihmus die Färbung in zeit $\mathcal{O}(|E|)$

Cor. Ist G ein Graph, in dem man jeden Block mit k Farben färben kann, dann kann man auch G mit k Farben färben.

Theorem. $\forall k \in \mathbb{N}, \forall r \in \mathbb{N}$: es gibt Graphen ohne einen Kreis mit Länge $\leq k$, aber mit chromatischer Zahl $\geq r$.

Satz 1.64 (Brooks). Ist G = (V, E) ein zusammenhängender **Satz 2.5** (Siebformel). Für Ereignisse $A_1, \ldots, A_n (n \ge 2)$ Graph, $G \neq K_n, G \neq C_{2n+1}$, so gilt:

$$\chi(G) \le \Delta(G)$$

und es gibt einen Algorithmus, der die Knoten des Graphen in Zeit $\mathcal{O}(|E|)$ mit $\delta(G)$ Farben färbt.

Satz 1.66 (Mycielski-Konstruktion). Für alle $k \geq 2$ gibt es einen dreiecksfreien Graphen G_k mit $\chi(G_k) > k$.

Satz 1.67. Einen 3-färbbaren Graphen kann man in Zeit $\mathcal{O}(|V| + |E|)$ mit $\mathcal{O}(\sqrt{|V|})$ Farben färben.

Wahrscheinlichkeit Theorie

Def 2.1. Ein diskreter Wahrscheinlichkeitsraum ist bestimmt durch eine Ergebnismenge $\Omega = \{\omega_1, \omega_2, \ldots\}$ von Elementarereignissen. Jedem Elementarereignis ω_i ist eine Wahrscheinlichkeit $Pr[\omega_i]$ zugeordnet, wobei wir fordern, dass $0 \leq \Pr[\omega_i] \leq 1$ und $\sum_{\omega \in \Omega} \Pr[\omega] = 1$. Eine Menge $E \subseteq \Omega$ heisst Ergeinis. Die Wahrscheinlichkeit Pr[E] eines Ereginisses ist definiert durch $\Pr[E] := \sum_{\omega \in E} \Pr[\omega]$. Ist E ein Ergeinis, so bezeichnen wir mit $\overline{E} := \Omega \setminus E$ das Komplementärereignis zu E.

Lemma 2.2. Für Ereignisse A, B gilt:

- 1. $\Pr[\varnothing] = 0, \Pr[\Omega] = 1$
- 2. $0 < \Pr[A] < 1$
- 3. $\Pr[\overline{A}] = 1 \Pr[A]$
- 4. Wenn $A \subseteq B$, so folgt $\Pr[A] < \Pr[B]$

Satz 2.3 (Additionssatz). Wenn A_1, \ldots, A_n paarweise disjunkte Ereignisse sind, so gilt

$$\Pr\left[\bigcup_{i=1}^{n} A_i\right] = \sum_{i=1}^{n} \Pr[A_i]$$

Für eine unendliche Menge von disjunkten Ereignissen $A_1, A_2, ...$ gilt analog

$$\Pr\left[\bigcup_{i=1}^{\infty} A_i\right] = \sum_{i=1}^{\infty} \Pr[A_i]$$

gilt:

$$\Pr\left[\bigcup_{i=1}^{n} A_{i}\right] = \sum_{l=1}^{n} (-1)^{l+1} \sum_{1 \leq i_{1} < \dots < i_{l} \leq n} \Pr[A_{i_{1}} \cap \dots \cap A_{i_{l}}]$$

$$= \sum_{i=1}^{n} \Pr[A_{i}] - \sum_{i \leq i_{1} < i_{2} \leq n} \Pr[A_{i_{1}} \cap A_{i_{2}}]$$

$$+ \sum_{1 \leq i_{1} < i_{2} < i_{3} \leq n} \Pr[A_{i_{1}} \cap A_{i_{2}} \cap A_{i_{3}}] - \dots$$

$$+ (-1)^{n+1} \dots \Pr[A_{1} \cap \dots \cap A_{n}]$$

Cor 2.6 (Boolsche Ungleichung). Für Ereignisse A_1, \ldots, A_n

$$\Pr\left[\bigcup_{i=1}^{n} A_i\right] \le \sum_{i=1}^{n} \Pr[A_i]$$

Analog gilt für eine unendliche Folge von Ereignissen A_1, A_2, \ldots dass $\Pr[\bigcup_{i=1}^{\infty} A_i] \leq \sum_{i=1}^{\infty} \Pr[A_i]$.

Def 2.8. A und B seien Ereignisse mit Pr[B] > 0. Die bedingte Wahrscheinlichkeit Pr[A|B] von A gegeben B ist definiert durch

$$\Pr[A|B] := \frac{\Pr[A \cap B]}{\Pr[B]}$$

Satz 2.10 (Multiplikationssatz). Seien die Ereignisse A_1, \ldots, A_n gegeben. Falls $\Pr[A_1 \cap \cdots \cap A_n] > 0$ ist, gilt

$$Pr[A_1 \cap \dots \cap A_n] = \Pr[A_1] \cdot \Pr[A_2 | A_1] \cdots \Pr[A_n | A_1 \cap \dots \cap A_{n-1}]$$

Satz 2.13 (Totale Wahrscheinlichkeit). Die Ereignisse A_1, \ldots, A seien paarweise diskunkt und es gelte $B \subseteq A_1 \cup \ldots \cup A_n$. Dann folgt

$$\Pr[B] = \sum_{i=1}^{n} \Pr[B|A_i] \cdot \Pr[A_i]$$

Analog gilt für paarweise disjunkte Ereignisse A_1, A_2, \ldots mit $B \subseteq \bigcup_{i=1}^{\infty} A_i$, dass

$$\Pr[B] = \sum_{i=1}^{\infty} \Pr[B|A_i] \cdot \Pr[A_i]$$

Satz 2.15 (Bayes). Die Ereignisse A_1, \ldots, A_n seien paarweise disjunkt. Ferner sei $B \subseteq A_1 \cup \ldots \cup A_n$ ein Ereignis mit $\Pr[B] > 0$. Dann gilt für ein beliebiges $i = 1, \ldots, n$

$$\Pr[A_i|B] = \frac{\Pr[A_i \cap B]}{\Pr[B]} = \frac{\Pr[B|A_i] \cdot \Pr[A_i]}{\sum_{j=1}^n \Pr[B|A_j] \cdot \Pr[A_j]}$$

Analog gilt für paarweise disjunkte Ereignisse A_1, A_2, \ldots mit $B \subseteq \bigcup_{i=1}^{\infty} A_i$, dass

$$\Pr[A_i|B] = \frac{\Pr[A_i \cap B]}{\Pr[B]} = \frac{\Pr[B|A_i] \cdot \Pr[A_i]}{\sum_{j=1}^{\infty} \Pr[B|A_j] \cdot \Pr[A_j]}$$

Def 2.18. Die Ereignisse A und B heissen unabhängig, wenn gilt $Pr[A \cap B] = Pr[A] \cdot Pr[B]$

Def 2.22. Die Ereignisse A_1, \ldots, A_n heissen unabhängig, wenn für alle Teilmengen $I \subseteq \{1, \ldots, n\}$ mit $I = \{i_1, \ldots, i_k\}$ gilt, dass

$$\Pr[A_{i_1} \cap \dots \cap A_{i_k}] = \Pr[A_{i_1}] \cdots \Pr[A_{i_k}]$$

Eine unendliche Familie von Ereignissen A_i mit $i \in \mathbb{N}$ heisst unabhängig, wenn die Gleichung für jede endliche Teilmenge $I \subseteq \mathbb{N}$ erfüllt ist.

Lemma 2.23. Die Ereignisse A_1, \ldots, A_n sind genau dann unabhängig, wenn für alle $(s_1, \ldots, s_n) \in \{0, 1\}^n$ gilt, dass

$$\Pr[A_1^{s_1} \cap \dots \cap A_n^{s_n}] = \Pr[A_1^{s_1}] \cdots \Pr[A_n^{s_n}]$$

wobei $A_i^0 = \overline{A}_i$ und $A_i^1 = A_i$.

Lemma 2.24. Seien A, B und C unabhängige Ereignisse Dann sind auch $A \cap B$ und C bzw. $A \cup B$ und C unabhängig.

Def 2.25. Eine Zufallsvariable ist eine Abbildung $X: \Omega \to \mathbb{R}$, wobei Ω die Ergebnismenge eines Wahrscheinlichkeitsraum ist.

Dichtefunktion.

$$f_X: \mathbb{R} \to [0,1], \quad x \mapsto \Pr[X=x]$$

Verteilungsfunktion.

$$F_X : \mathbb{R} \to [0, 1], \quad x \mapsto \Pr[X \le x] = \sum_{x' \in W_X : x' \le x} \Pr[X = x']$$

Def 2.27. Zu einer Zufallsvariable X definieren wir den Erwartungswert $\mathbb{E}[X]$ durch

$$\mathbb{E}[X] := \sum_{x \in W_X} x \cdot \Pr[X = x]$$

sofern die Summe absolut konvergiert. Ansonsten sagen wir, dass der Erwartungswert undefiniert ist.

Lemma 2.29. Ist X eine Zufallsvariable, so gilt:

$$\mathbb{E}[X] = \sum_{\omega \in \Omega} X(\omega) \cdot \Pr[\omega]$$

Satz 2.30. Sei X eine Zufallsvariable mit $W_X \subseteq \mathbb{N}_0$. Dann gilt

$$\mathbb{E}[X] = \sum_{i=1}^{\infty} \Pr[X \ge i]$$

Satz 2.32. Sei X eine Zufallsvariable. Für paarweise disjunkte Ereignisse A_1, \ldots, A_n mit $A_1 \cup \cdots A_n = \Omega$ und $\Pr[A_1], \ldots, \Pr[A_n] > 0$ gilt

$$\mathbb{E}[X] = \sum_{i=1}^{n} \mathbb{E}[X|A_i] \cdot \Pr[A_i]$$

Für paarweise disjunkte Ereignisse A_1, A_2, \ldots mit $\bigcup_{i=1}^{\infty} A_k = \Omega$ und $\Pr[A_1], \Pr[A_2], \ldots > 0$ gilt analog

$$\mathbb{E}[X] = \sum_{i=1}^{\infty} \mathbb{E}[X|A_i] \cdot \Pr[A_i]$$

Satz 2.33 (Linearität des Erwartungswerts). Für Zufallsvariable X_1, \ldots, X_n und $X := a_1 X_1 + \ldots + a_n X_n + b$ mit $a_1, \ldots, a_n, b \in \mathbb{R}$ gilt

$$\mathbb{E}[X] = a_1 \mathbb{E}[X_1] + \ldots + a_n \mathbb{E}[X_n] + b$$

Def 2.35 (Indikatorvariable). Für ein Ereignis $A \subseteq \Omega$ ist die zugehörige Indikatorvariable X_A definiert durch:

$$X_A(\omega) := \begin{cases} 1, & \text{falls } \omega \in A \\ 0, & \text{sonst} \end{cases}$$

Für den Erwartungswert von X_A gilt: $\mathbb{E}[X_A] = \Pr[A]$.

Def 2.39. Für eine Zufallsvariable X mit $\mu = \mathbb{E}[X]$ definieren wir die Varianz Var[X] durch:

$$Var[X] := \mathbb{E}[(X - \mu)^2] = \sum_{x \in W_X} (x - \mu)^2 \cdot \Pr[X = x]$$

Die Grösse $\sigma := \sqrt{\operatorname{Var}[X]}$ heisst Standardabweichung von X.

Satz 2.40. Für eine beliebige Zufallsvariable X gilt

$$Var[X] = \mathbb{E}[X^2] - \mathbb{E}[X]^2$$

Satz 2.41. Für eine beliebige Zufallsvariable X und $a,b \in \mathbb{R}$ gilt

$$Var[a \cdot X + b] = a^2 \cdot Var[X]$$

2.1 Diskrete Verteilungen

Bmk. (Bernoulli-Verteilung).

$$X \sim \text{Bernoulli}(p) \implies \mathbb{E}[X] = p \quad \text{Var}[X] = p(1-p)$$

$$f_X(x) = \begin{cases} p & \text{für } x = 1, \\ 1 - p & \text{für } x = 0, \\ 0 & \text{sonst} \end{cases}$$

Bmk. (Binomial-Verteilung).

$$X \sim \text{Bin}(n, p) \implies \mathbb{E}[X] = np \quad \text{Var}[X] = np(1-p)$$

$$f_X(x) = \begin{cases} \binom{n}{x} p^x (1-p)^{n-x} & x \in \{0, 1, \dots, n\} \\ 0 & \text{sonst} \end{cases}$$

Bmk. (Negativ Binomial-Verteilung).

$$\mathbb{E}[Z] = \sum_{i=1}^{n} \mathbb{E}[X_i] = \frac{n}{p}$$

$$f_Z(z) = {z-1 \choose n-1} \cdot p^n (1-p)^{z-n}$$

Bmk. (Geometrisch-Verteilung).

$$X \sim \text{Geo}(p) \implies \mathbb{E}[X] = \frac{1}{p} \quad \text{Var}[X] = \frac{1-p}{p^2}$$

$$f_X(i) = \begin{cases} p(1-p)^{i-1} & \text{für } i \in \mathbb{N} \\ 0 & \text{sonst} \end{cases}$$

Satz 2.45. Ist $X \sim \text{Geo}(p)$, so gilt für alle $s, t \in \mathbb{N}$:

$$\Pr[X \ge s + t \mid X > s] = \Pr[X \ge t]$$

Bmk. (Poisson-Verteilung).

$$X \sim \text{Po}(\lambda) \implies \mathbb{E}[X] = \text{Var}[X] = \lambda$$

$$f_X(i) = \begin{cases} \frac{e^{-\lambda}\lambda^i}{i!} & \text{für } i \in \mathbb{N} \\ 0 & \text{sonst} \end{cases}$$

Mehrere Zufallsvariablen

$$\Pr[X = x, Y = y] = \Pr[\{\omega \in \Omega \mid X(\omega) = x, Y(\omega) = y\}]$$

Bmk.. Die gemeinsame Dichte von X und Y:

$$f_{X,Y}(x,y) := \Pr[X = x, Y = y]$$

$$f_X(x) = \sum_{y \in W_Y} f_{X,Y}(x,y)$$
 bzw. $f_Y(y) = \sum_{x \in W_X} f_{X,Y}(x,y)$

Def 2.52. Zufallsvariablen X_1, \ldots, X_n heissen unabhängig, genau dann wenn für alle $(x_1, \ldots, x_n) \in W_{X_1} \times \ldots \times W_{X_n}$

$$\Pr[X_1 = x_1, \dots, X_n = x_n] = \Pr[X_1 = x_1] \cdot \dots \cdot \Pr[X_n = x_n]$$

Lemma 2.53. Sind X_1, \ldots, X_n unabhängige Zufallsvariablen und S_1, \ldots, S_n beliebige Mengen mit $S_i \subseteq W_{X_i}$, dann

$$\Pr[X_1 \in S_1, \dots, X_n \in S_n] = \Pr[X_1 \in S_1] \cdot \dots \cdot \Pr[X_n \in S_n]$$

Cor 2.54. Sind X_1, \ldots, X_n unabhängige Zufallsvariablen und ist $I = \{i + 1, ..., i_k\} \subseteq [n]$, dann sind $X_{i_1}, ..., X_{i_k}$ ebenfalls unabhängig.

Satz 2.55. Seien f_1, \ldots, f_n reellwertige Funktionen $(f_i : f_i)$ unabhängig sind, dann gilt dies auch für $f_1(X_1), \ldots, f_n(X_n)$.

Satz 2.58. Für zwei unabhängige Zufallsvariablen X und Y und Z := X + Y. Es gilt

$$f_Z(z) = \sum_{x \in W_X} f_X(x) \cdot f_Y(z - x)$$

Satz 2.60 (Linearität des Erwartungswert). Für Zufallsvariablen X_1, \ldots, X_n und $X := a_1 X_1 + \cdots + a_n X_n$ mit $a_1, \ldots, a_n \in \mathbb{R}$ gilt

$$\mathbb{E}[X] = a_1 \mathbb{E}[X_1] + \dots + a_n \mathbb{E}[X_n]$$

Satz 2.61 (Multiplikativität des Erwartungswerts). Für unabhängige Zufallsvariablen X_1, \ldots, X_n gilt

$$\mathbb{E}[X_1 \cdot \cdots X_n] = \mathbb{E}[X_1] \cdot \cdots \cdot \mathbb{E}[X_n]$$

Satz 2.62. Für unabhängige Zufallsvariablen X_1, \ldots, X_n und $X := a_1 X_1 + \cdots + a_n X_n$ gilt

$$Var[X] = Var[X_1] + \dots + Var[X_n]$$

Satz 2.60 (Waldsche Identität). N und X seien zwei unabhängige Zufallsvariable, wobei für den Wertebereich von N gilt: $W_N \subseteq \mathbb{N}$. Weiter sei $Z := \sum_{i=1}^N X_i$ wobei X_1, X_2, \ldots unabhängige Kopien von X seien. Dann gilt: $\mathbb{E}[Z] = \mathbb{E}[N]$. $\mathbb{E}[X]$

Satz 2.67 (Ungleichung von Markov). Sei X eine Zufallsvariable, die nur nicht-negative Werte annimmt. Dann gilt für alle $t \in \mathbb{R}$ mit t > 0, dass

$$\Pr[X \ge t] \le \frac{\mathbb{E}[X]}{t}$$

Oder äquivalent: $\Pr[X \ge t \cdot \mathbb{E}[X]] \le \frac{1}{4}$

Satz 2.68 (Ungleichung von Chebyshev). Sei X eine Zufallsvariable und $t \in \mathbb{R}$ mit t > 0. Dann gilt

$$\Pr[|X - \mathbb{E}[X]| \ge t] \le \frac{\operatorname{Var}[X]}{t^2}$$

oder äquivalent: $\Pr[|X - \mathbb{E}[X]| \ge t\sqrt{\operatorname{Var}[X]}] < \frac{1}{2}$

Satz 2.70 (Chernoff-Schranken). Seien X_1, \ldots, X_n unabhängig $\mathbb{R} \to \mathbb{R} \text{ für } i=1,\ldots,n). \text{ Wenn die Zufallsvariablen } X_1,\ldots,X_n \text{ Bernoulliverteilte Zufallsvariablen mit } \Pr[X_i=1]=p_1 \text{ und } x_1,\ldots,x_n$ $\Pr[X_1 = 0] = 1 - p_i$. Dann gilt für $X := \sum_{i=1}^{n} X_i$:

(i)
$$\Pr[X \ge (1+\delta)\mathbb{E}[X]] \le e^{-\frac{1}{3}\delta^2\mathbb{E}[X]} \quad \forall 0 < \delta \le 1$$

- (ii) $\Pr[X < (1-\delta)\mathbb{E}[X]] \le e^{-\frac{1}{2}\delta^2\mathbb{E}[X]} \quad \forall 0 < \delta \le 1$
- (iii) $\Pr[X \ge t] \le 2^{-t}$ für $t \ge 2e\mathbb{E}[X]$

Randomisierte Algorithmen 2.3

Satz 2.72. Sei A ein randomisierter Algorithmus, der nie eine falsche Antwort gibt, aber zuweilen '???' ausgibt, wobei

$$\Pr[A(I) \text{ korrekt}] \le \epsilon$$

Dann gilt für alle $\delta > 0$: bezeichnet man mit A_{δ} den Algorithmus, der A solange aufruft bis entweder ein Wert verschieden von '???' ausgegeben wird (und A_{δ} diesen Wert dann ebenfalls ausgibt) oder bis $N = \epsilon^{-1} \ln \delta^{-1}$ mal '??? ausgegeben wurde (und A_{δ} dann ebenfalls '???' ausgibt), so gilt für den Algorithmus A_{δ} , dass

$$\Pr[A_{\delta}(I) \text{ korrekt}] \ge 1 - \delta$$

Satz 2.74 (Monte Carlo - Einseitiger Fehler). Sei A ein randomisierter Algorithmus, der immer eine der beiden Antworten 'Ja' oder 'Nein' ausgibt, wobei

$$Pr[A(I) = Ja] = 1$$
 falls I eine Ja-Instanz ist

und

$$\Pr[A(I) = \text{Nein}] \ge \epsilon$$
 falls I eine Nein-Instanz ist

Dann gilt für alle $\delta > 0$: bezeichnet man mit $A_{\delta}(I)$ den Algorithmus, der A solange aufruft bis entweder der Wert 'Nein' ausgegeben wird (und A dann ebenfalls 'Nein' ausgibt) oder bis $N = \epsilon^{-1} \ln \delta^{-1}$ mal 'Ja' ausgegeben wurde (und A_{δ} dann ebenfalls 'Ja' ausgibt), so gilt für alle Instanzen I

$$\Pr[A_{\delta}(I) \text{ korrekt}] \ge 1 - \delta$$

Satz 2.75 (Monte Carlo - zweiseitiger Fehler). Sei $\epsilon > 0$ und A ein randomisierter Algorithmus, der immer eine der beiden Antworten 'Ja' oder 'Nein' ausgibt, wobei

$$\Pr[A(I) \text{ korrekt}] \ge \frac{1}{2} + \epsilon$$

Dann gilt für alle $\delta > 0$: bezeichnet man mit A_{δ} den Algorithmus, der $N = 4\epsilon^{-2} \ln \delta^{-1}$ unabhängige Aufrufe von A macht und dann die Mehrheit der erhaltenen Antworten ausgibt, so gilt für den Algorithmus A_{δ} , dass

$$\Pr[A_{\delta}(I) \text{ korrekt}] \ge 1 - \delta$$

Satz 2.76. Sei $\epsilon > 0$ und A ein randomisierter Algorithmus für ein Maximierungsproblem, wobei gelte:

$$\Pr[A(I) \ge f(I)] \ge \epsilon$$

Dann gilt für alle $\delta > 0$ bezeichnet man mit A_{δ} den Algorithmus, der $N = \epsilon^{-1} \ln \delta^{-1}$ unabhängige Aufrufe von A macht und die beste der erhaltenen Antworten ausgibt, so gilt für den Algorithmus A_{δ} , dass

$$\Pr[A_{\delta}(I) \ge f(I)] \ge 1 - \delta$$

(Für Minimierungsprobleme gilt eine analoge Aussage wenn wir " $\geq f(I)$ " durch " $\leq f(I)$ " ersetzen.)

2.3.1 Primzahltest

Satz 2.77 (Kleiner fermatscher Satz). Ist $n \in \mathbb{N}$ prim, so gilt für alle Zahlen 0 < a < n

$$a^{n-1} \equiv 1 \mod n$$

2.3.2 Target Shooting

Satz 2.79. Seien $\delta, \epsilon > 0$. Falls $N \geq 3\frac{|U|}{|S|} \cdot \epsilon^{-2} \cdot \ln(\frac{2}{\delta})$, so ist die Ausgabe des Algorithmus TARGET-SHOOTING mit Wahrscheinlichkeit mindestens $1 - \delta$ im Intervall

$$\left[(1 - \epsilon) \frac{|S|}{|U|}, (1 + \epsilon) \frac{|S|}{|U|} \right]$$

(multiplikativer Fehler von $1 \pm \epsilon$)

Bmk. (Hashfunktion). Hashfunktion $h:U\to [m]$ mit folgenden Eigenschaften:

- h ist effizient berechenbar
- \bullet h verhält sich wie eine Zufallsfunktion, d.h.

$$\forall u \in U \ \forall i \in [m] : \Pr[h(u) = i] = \frac{1}{m} \quad \text{unabhängig}$$

•
$$s_i = s_j \implies h(s_i) = h(s_j)$$

Essenz: m viel kleiner als |U| für Komprimierung.

Bmk. (Kollisionen bei Hashing). Kollisionen sind neue (unerwünschte) Duplikate im Hashmap. Sei $K_{i,j}$ die Bernoulli Variable mit

$$K_{i,j} = 1 \iff (i,j)$$
 is eine Kollision

Es gilt

$$\Pr[K_{i,j} = 1] = \begin{cases} 1/m & \text{if } s_i \neq s_j, \\ 0 & \text{else} \end{cases} \implies \mathbb{E}[K_{i,j}] \leq \frac{1}{m}$$

$$\mathbb{E}[\#\text{Kollisionen}] = \sum_{1 \le i < j \le n} \mathbb{E}[K_{i,j}] \le \binom{n}{2} \frac{1}{m}$$

Mit $m=n^2$ is der Mehraufwand durch Kollisionen konstant. Laufzeit:

$$\mathcal{O}(n) + \mathcal{O}(n \log n) + \mathcal{O}(n + |\text{Dupl}(S)|)$$