

HAMBURG UNIVERSITY OF TECHNOLOGY

PROBLEM-BASED LEARNING

Advanced System-on-Chip Design

author @tuhh.de

Documentation

Dozent
Dipl.-Ing. Wolfgang BRANDT

Contents

1	Task 3 - MIPS Extension	4
2	Task 4 - Caches	5
	2.1 Cache Simulation - Results	5
	2.2 Design a Finite State Machine for the Cache	6
3	Appendix	10
	3.1 Finite State Machine - Example	10
	3.2 Cache Results - Snapshots	10

List of Figures

I	State diagram of the cache controller	8
2	Sketch of Mealy Automata - Cache Controller	9
3	Column Major, Direct Mapping, Cache Block Size 2	10
4	Column Major, Direct Mapping, Cache Block Size 4	11
5	Column Major, Direct Mapping, Cache Block Size 8	11
6	Column Major, Direct Mapping, Cache Block Size 16	12
7	Column Major, 2-Way Associative, Cache Block Size 2	12
8	Column Major, 2-Way Associative, Cache Block Size 4	13
9	Column Major, 2-Way Associative, Cache Block Size 8	13
10	Column Major, 2-Way Associative, Cache Block Size 16	14
11	Column Major, 4-Way Associative, Cache Block Size 2	14
12	Column Major, 4-Way Associative, Cache Block Size 4	15
13	Column Major, 4-Way Associative, Cache Block Size 8	15
14	Column Major, 4-Way Associative, Cache Block Size 16	16
15	Row Major, Direct Mapping, Cache Block Size 2	16
16	Row Major, Direct Mapping, Cache Block Size 4	17
17	Row Major, Direct Mapping, Cache Block Size 8	17
18	Row Major, Direct Mapping, Cache Block Size 16	18
19	Row Major, 2-Way Associative, Cache Block Size 2	18
20	Row Major, 2-Way Associative, Cache Block Size 4	19
21	Row Major, 2-Way Associative, Cache Block Size 8	19
22	Row Major, 2-Way Associative, Cache Block Size 16	20
23	Row Major, 4-Way Associative, Cache Block Size 2	20
24	Row Major, 4-Way Associative, Cache Block Size 4	21
25	Row Major, 4-Way Associative, Cache Block Size 8	21
26	Row Major, 4-Way Associative, Cache Block Size 16	22

List of Tables

1	Cache Simulation of Column Major	5
2	Cache Simulation of Row Major	5
3	Overview - FSM States	7
4	Overview - FSM Inputs	7
5	Overview - FSM Outputs	7

1 Task 3 - MIPS Extension

Hello, here is some text without a meaning. This text should show what a printed text will look like at this place. If you read this text, you will get no information. Really? Is there no information? Is there a difference between this text and some nonsense like "Huardest gefburn"? Kjift – not at all! A blind text like this gives you information about the selected font, how the letters are written and an impression of the look. This text should contain all letters of the alphabet and it should be written in of the original language. There is no need for special content, but the length of words should match the language.

Table 1: Cache Simulation of Column Major

Placement (Policy)	Cache Block Size (Words)	Cache Hit Count	Cache Miss Count	Cache Hit Rate
Direct Mapping	2	0	256	0
Direct Mapping	4	0	256	0
Direct Mapping	8	0	256	0
Direct Mapping	16	0	256	0
2-Way Set Associative	2	0	256	0
2-Way Set Associative	4	0	256	0
2-Way Set Associative	8	0	512	0
2-Way Set Associative	16	0	256	0
4-Way Set Associative	2	0	256	0
4-Way Set Associative	4	0	256	0
4-Way Set Associative	8	0	256	0
4-Way Set Associative	16	0	256	0

Table 2: Cache Simulation of Row Major

Placement (Policy)	Cache Block Size (Words)	Cache Hit Count	Cache Miss Count	Cache Hit Rate
Direct Mapping	2	128	128	50
Direct Mapping	4	192	64	75
Direct Mapping	8	224	32	88
Direct Mapping	16	240	16	94
2-Way Set Associative	2	128	128	50
2-Way Set Associative	4	192	64	75
2-Way Set Associative	8	224	32	88
2-Way Set Associative	16	240	16	94
4-Way Set Associative	2	128	128	50
4-Way Set Associative	4	192	64	75
4-Way Set Associative	8	224	16	88
4-Way Set Associative	16	240	16	94

2 Task 4 - Caches

2.1 Cache Simulation - Results

The two assembler programs *row-major.asm* and *column-major.asm* has been used for the cache simulation. 1 contains the results regarding the file *column-major.asm* and 2 illustrates the results of *row-major.asm*.

TODO Interpretation

2.2 Design a Finite State Machine for the Cache

Table 3: Overview - FSM States

Abbreviation	Name	CPU Request Mode	Description
IDLE	-	-	-
CW	COMPARE WRITE	Write Request	-
CMW	CACHE MISS WRITE	Write Request	-
WBW	WRITE BACK WRITE	Write Request	-
WCW	WRITE CACHE WRITE	Write Request	-
CR	COMPARE READ	Read Request	-
CMR	CACHE MISS READ	Read Request	-
WBR	WRITE BACK READ	Read Request	-
WCR	WRITE CACHE READ	Read Request	-

Table 4: Overview - FSM Inputs

Abbreviation	Name	Description
rdCPU	CPU Read Request	-
wrCPU	CPU Write Request	-
cacheMiss	Cache Miss	-
cacheHit	Cache Hit	-
readyMEM	Write-Back is resolved	-
isDirty	Cache Block is dirty	_

In figure 1 the state diagram of the cache controller is illustrated. The state diagram represents a Mealy automaton. The state space of the state machine is given in table 3. Besides the state machine inputs are listed in table 4 and the state machine outputs are shown in table 5. A sketch of the state diagram is printed in figure 2.

Table 5: Overview - FSM Outputs

Tuble 3. Overview 1 bit outputs			
Abbreviation	Name	Description	
stallCPU	Stall Processor	-	
setDirty	Set Dirty Bit (Modified) Bit	-	
wrMEM	Write To Memory	Write Replaced Block To Memory	
dataCPU	Read Data Into CPU	-	
rdMEM	Read Cache Block Into Cache From Memory	-	
dataCPU2Cache	Write Data Into Cache	-	

Reset rdCpUn. Rectaction 1 Total Color cacheHit cacheMiss='1'/stallCPU='1' cacheMiss='1'/stallCPU='1' readyMEM=' $^{1'/data}$ CP 0 2Cache, set $^{Dirt_{\mathcal{Y}}='_{1'}}$ isDing I wanten isditor, i land Mitter 1 isDirty='0'/rdMEM='1' isDirty='0'/rdMEM='1' Teady MENTAL THUMENAL TO readyMEM='0' readyMi readyMEM='0'/readyMEM='0'/-

Figure 1: State diagram of the cache controller.

Figure 2: Sketch of Mealy Automata - Cache Controller

Figure 3: Column Major, Direct Mapping, Cache Block Size 2

3 Appendix

3.1 Finite State Machine - Example

3.2 Cache Results - Snapshots

Figure 4: Column Major, Direct Mapping, Cache Block Size 4

Figure 5: Column Major, Direct Mapping, Cache Block Size 8

Figure 6: Column Major, Direct Mapping, Cache Block Size 16

Figure 7: Column Major, 2-Way Associative, Cache Block Size 2

Figure 8: Column Major, 2-Way Associative, Cache Block Size 4

Figure 9: Column Major, 2-Way Associative, Cache Block Size 8

Figure 10: Column Major, 2-Way Associative, Cache Block Size 16

Figure 11: Column Major, 4-Way Associative, Cache Block Size 2

Figure 12: Column Major, 4-Way Associative, Cache Block Size 4

Figure 13: Column Major, 4-Way Associative, Cache Block Size 8

Figure 14: Column Major, 4-Way Associative, Cache Block Size 16

Figure 15: Row Major, Direct Mapping, Cache Block Size 2

Figure 16: Row Major, Direct Mapping, Cache Block Size 4

Figure 17: Row Major, Direct Mapping, Cache Block Size 8

Figure 18: Row Major, Direct Mapping, Cache Block Size 16

Figure 19: Row Major, 2-Way Associative, Cache Block Size 2

Figure 20: Row Major, 2-Way Associative, Cache Block Size 4

Figure 21: Row Major, 2-Way Associative, Cache Block Size 8

Figure 22: Row Major, 2-Way Associative, Cache Block Size 16

Figure 23: Row Major, 4-Way Associative, Cache Block Size 2

Figure 24: Row Major, 4-Way Associative, Cache Block Size 4

Figure 25: Row Major, 4-Way Associative, Cache Block Size 8

Figure 26: Row Major, 4-Way Associative, Cache Block Size 16