

Universidade Federal do Ceará Centro de Ciências/Departamento de Computação

Código da Disciplina: CK0084 Ano: 2021

Professor: Ismayle de Sousa Santos

Sistemas de Informações e Banco de Dados

Introdução à Diagramas de Classe

Hoje aprenderemos sobre ...

- Introdução à Diagrama de classes
 - O que é um Diagrama de Classe?
 - Entendendo o Diagrama de Classe
 - Como Criar um Diagrama de Classe?
 - o Relacionamentos no Diagrama de Classe

O que é um Diagrama de Classe?

- Em programação, um diagrama de classes é uma representação da estrutura e relações das classes
 - Eles são um tipo de diagrama da estrutura que modela suas classes, seus atributos, operações e relações entre objeto

Entendendo o Diagrama de Classe

 Os diversos componentes em um diagrama de classes podem representar as classes que serão realmente programadas, os principais objetos ou as interações entre classes e objetos

Entendendo o Diagrama de Classe

- A forma de classe em si consiste em um retângulo com três linhas
- A linha superior contém o nome da classe, a linha do meio, os atributos da classe e a linha inferior expressa os métodos ou operações que a classe pode utilizar
- Classes e subclasses s\u00e3o agrupadas juntas para mostrar a rela\u00e7\u00e3o est\u00e1tica entre cada objeto

Exemplo de Diagrama de Classe

Fonte: https://www.treinaweb.com.br/blog/os-pilares-da-orientacao-a-objetos

Benefícios do Diagrama de Classe

- Demonstra a estrutura estática das classes de um sistema
- Expressam visualmente as necessidades e informações específicas de um sistema
- Fornecem gráficos e uma descrição independente de implementação de tipos utilizados em um sistema

Exemplo de Criação de uma Classe no Diagrama

- O diagrama de classes padrão é composto de três partes:
 - o Parte superior: contém o nome da classe
 - Parte do meio: contém os atributos da classe
 - Parte inferior: inclui as operações da classe (métodos)

Atributos em um Diagrama de Classe

- Os atributos representam o conjunto de características (estado) dos objetos daquela classe
- Cada atributo possui uma visibilidade:
 - + público: visível em qualquer classe de qualquer pacote
 - # protegido: visível para classes do mesmo pacote
 - privado: visível somente para classe
- Também possui um nome que demonstra as características dos objetos e tipo de dados que são os mesmos tipos usados em Java: String, boolean, int, float, double, Date, etc...

Métodos em um Diagrama de Classe

- Os métodos representam o conjunto de operações (comportamento) que a classe fornece
 - É exibido em formato de lista, cada operação ocupa sua própria linha
 - As operações descrevem como uma classe interage com dados
- Cada método também possui sua visibilidade (+ público, # protegido e - privado)
- Um nome do método deve expressar a ação que realiza, por exemplo incluirAluno() que não deve possuir espaços e nem começar com dígitos

Métodos em um Diagrama de Classe

- Também deve conter uma lista de parâmetros que deverá vir entre parênteses e separados por vírgula
- E por fim, um tipo de retorno que informa que tipo de dado o método deverá retornar após a sua execução
 - Se o método não retornar nada, deverá ser usada a palavra "void" no tipo de retorno

Exemplo de Atributos e Métodos em um Diagrama de Classe

Como várias classes se associam?

Os diversas
relacionamentos e
ligações que podem
existir em diagramas de
classes e objetos são
chamadas de Interações

Relacionamentos no Diagrama de Classe

- Geralmente as classes n\u00e3o est\u00e3o s\u00f3s e se relacionam entre si
 - Possuem relacionamentos entre elas (para comunicação)
 - Compartilham informações
 - Colaboram umas com as outras

Descreve o relacionamento.

Relacionamentos no Diagrama de Classe

- Os relacionamentos possuem:
 - Nome: descrição dada ao relacionamento (faz, tem, possui,...)
 - Sentido de leitura
 - Navegabilidade: indicada por uma seta no fim do relacionamento
 - Multiplicidade: 0..1, 0..*, 1, 1..*, 2, 3..7
 - Tipo: associação (agregação, composição), generalização e dependência
 - Papéis: desempenhados por classes em um relacionamento

Relacionamentos no Diagrama de Classe

- Os relacionamentos ou interações no diagrama de classes são:
 - Associação (Agregação e Composição)
 - Define um relacionamento entre duas entidades conceituais do sistema
 - Ocorre quando uma classe possui atributos do tipo de outra classe
 - Generalização
 - Dependência

Associação

- Uma associação é um relacionamento estrutural que indica que os objetos de uma classe estão vinculados a objetos de outra classe
 - Descreve um vínculo entre duas classes
 - Determina que as instâncias de uma classe estão de alguma forma ligadas às instâncias da outra classe

Associação

• Cada associação possui indicadores de multiplicidade:

Multiplicidade	Significado
01	No máximo um Indica que os objetos da classe associada não precisam obrigatoriamente estar relacionados
11	Um e somente um Indica que apenas um objeto da classe se relaciona com os objetos da outra classe
0*	Muitos Indica que podem haver muitos objetos da classe envolvidos no relacionamento
1*	Um ou muitos Indica que há pelo menos um objeto envolvido no relacionamento
mn	Valores específicos

Representação da Associação

- Uma associação é representada por uma linha sólida conectando duas classes
- Deve conter multiplicidades uma em cada extremo da linha de associação e navegabilidade ou direção de leitura que indica como a associação deve ser lida

Agregação

- Agregação é uma associação em que um objeto é parte de outro, de tal forma que a parte pode existir sem o todo
 - Um objeto poderá agregar uma ou mais instâncias de um outro objeto
 - Uma agregação consiste de um objeto contendo referências para outros objetos, de tal forma que o primeiro seja o todo, e que os objetos referenciados sejam as partes do todo

Representação da Agregação

- Uma agregação é representada por losango na extremidade da classe que contém os objetos-todo
 - Um objeto "parte" pode fazer parte de vários objetos "todo"

Composição

- Uma composição é uma variação da agregação que tenta representar também uma relação todo - parte
- Em uma composição um mesmo objeto-parte não pode se associar a mais de um objeto-pai
 - Objetos-parte têm que pertencer ao objeto-todo
 - O todo não existe (ou não faz sentido) sem as partes
 - Ou, as partes não existem sem o todo

Representação da Composição

 Uma composição é representada por losango preenchido na extremidade da classe que contém os objetos-todo

Generalização

- É um relacionamento entre itens gerais (superclasses) e itens mais específicos (subclasses) "é um" "é um tipo de" superclasse
- A generalização acontece quando existe a necessidade de criar uma classe que herde as propriedades de outra classe, isto é, os atributos, métodos e também relacionamentos (associações) da classe superior.

Representação da Generalização

 Uma generalização é representada por uma relação de herança

Visão Geral do Diagrama de Classe

Obrigado!

Por hoje é só pessoal...

Dúvidas?

