Your company's infrastructure team provides different storage solutions such as Block, NAS, Object storage, Google Cloud disks, AWS disks and more.

There need to be a consistent way to deal with all these storage types

What is Kubernetes solution for it?



# Persistent Volume (PV) Persistent Volume Claim (PVC)

# Concept



## Objectives

#### Concept

- a. Why Persistent Volumes (PV)
- b. What is Persistent Volume (PV) and Persistent Volume Claim (PVC)
- c. PV Lifecycle
- d. Types of provisioning PV
  - Static PV
  - Dynamic PV

#### Think time...

GCEPersistentDisk NFS VsphereVolume **iSCSI** AWSElasticBlockStore Quobyte Volumes CephFS AzureDisk HostPath Cinder (OpenStack block storage) Glusterfs Portworx Volumes AzureFile FC (Fibre Channel) ScaleIO Volumes RBD (Ceph Block Device) Flexvolume StorageOS Flocker **Block Storage Object storage Others** NFS

### Persistent Volumes

Abstracts details of how storage is provided from how it is consumed



## Lifecyle of a Persistent Volume

```
Provisioning Binding Using Reclaiming
```

Provisioning ············ Using ·········· Reclaiming



**PVC** 

PV is created at same time of

**PVC** 



# **Dynamic PV** SSD GlusterFS HDD Registers Storage Classes Distributed Fast Admin

Developer

#### Summary

#### Concept

- a. Why Persistent Volumes (PV)
- b. What is Persistent Volume (PV) and Persistent Volume Claim (PVC)
- c. PV Lifecycle
- d. Types of provisioning PV
  - Static Provisioning
  - Dynamic Provisioning

Coming up...

Static PV