Observe that $\mathbf{GL}(n,\mathbb{C})$ is indeed an open subset of the normed vector space $\mathbf{M}_n(\mathbb{C})$ of complex $n \times n$ matrices, since its complement is the closed set of matrices $A \in \mathbf{M}_n(\mathbb{C})$ satisfying $\det(A) = 0$. Then we have

$$d\iota_A(H) = -A^{-1}HA^{-1}$$

for all $A \in \mathbf{GL}(n, \mathbb{C})$ and for all $H \in \mathbf{M}_n(\mathbb{C})$.

To prove the preceding line observe that for H with sufficiently small norm, we have

$$\begin{split} \iota(A+H) - \iota(A) + A^{-1}HA^{-1} &= (A+H)^{-1} - A^{-1} + A^{-1}HA^{-1} \\ &= (A+H)^{-1}[I - (A+H)A^{-1} + (A+H)A^{-1}HA^{-1}] \\ &= (A+H)^{-1}[I - I - HA^{-1} + HA^{-1} + HA^{-1}HA^{-1}] \\ &= (A+H)^{-1}HA^{-1}HA^{-1}. \end{split}$$

Consequently, we get

$$\epsilon(H) = \frac{\iota(A+H) - \iota(A) + A^{-1}HA^{-1}}{\|H\|} = \frac{(A+H)^{-1}HA^{-1}HA^{-1}}{\|H\|},$$

and since

$$\|(A+H)^{-1}HA^{-1}HA^{-1}\| \le \|H\|^2 \|A^{-1}\|^2 \|(A+H)^{-1}\|,$$

it is clear that $\lim_{H\to 0} \epsilon(H) = 0$, which proves that

$$d\iota_A(H) = -A^{-1}HA^{-1}.$$

In particular, if A = I, then $d\iota_I(H) = -H$.

Next, if $f: \mathrm{M}_n(\mathbb{C}) \to \mathrm{M}_n(\mathbb{C})$ and $g: \mathrm{M}_n(\mathbb{C}) \to \mathrm{M}_n(\mathbb{C})$ are differentiable matrix functions, then

$$d(fg)_A(B) = df_A(B)g(A) + f(A)dg_A(B),$$

for all $A, B \in \mathbf{M}_n(\mathbb{C})$. This is known as the *product rule*.

When E is of finite dimension n, for any frame $(a_0, (u_1, \ldots, u_n))$ of E, where (u_1, \ldots, u_n) is a basis of \overrightarrow{E} , we can define the directional derivatives with respect to the vectors in the basis (u_1, \ldots, u_n) (actually, we can also do it for an infinite frame). This way, we obtain the definition of partial derivatives, as follows.

Definition 39.4. For any two normed affine spaces E and F, if E is of finite dimension n, for every frame $(a_0, (u_1, \ldots, u_n))$ for E, for every $a \in E$, for every function $f: E \to F$, the directional derivatives $D_{u_j}f(a)$ (if they exist) are called the *partial derivatives of* f with respect to the frame $(a_0, (u_1, \ldots, u_n))$. The partial derivative $D_{u_j}f(a)$ is also denoted by $\partial_j f(a)$, or $\frac{\partial f}{\partial x_j}(a)$.