Автоматизация пайплайнов в ML

Ирина Степановна Трубчик

Лекция 6

Цели занятия

- (1) Почему нужна автоматизация пайплайнов в ML
- **2** Современные системы: Apache Airflow, Prefect, Kubeflow Pipelines, DVC
- з Как связать ML пайплайн с CI/CD

Какая операция в ваших проектах самая рутинная и требует автоматизации?" проголосовать

Почему нужна автоматизация MLпроцессов

Автоматизация решает три ключевые проблемы:

- Воспроизводимость каждый запуск пайплайна гарантированно повторяет одну и ту же последовательность шагов с теми же параметрами.
- Снижение ошибок ручные операции подвержены человеческому фактору (забыли запустить скрипт, перепутали файлы, использовали старую версию данных). Автоматизация устраняет эти риски.
- Скорость итераций вместо часов на ручной запуск всех этапов,
 автоматизированный пайплайн запускается одной командой или по триггеру (коммит в Git, изменение данных, расписание).

Дополнительные преимущества

- > Легкая интеграция тестов (проверка данных, кода, метрик)
- > Автоматическая генерация отчетов и уведомлений
- > Возможность автоматического retraining при деградации качества модели
- Прозрачность для всей команды любой член может посмотреть лог и понять,
 что происходило

Базовые этапы ML-пайплайна

Все эти этапы должны быть описаны в виде кода и связаны зависимостями.

Изменение на любом этапе должно автоматически запускать все последующие зависимые этапы

Какие из этих этапов в вашей практике чаще всего выполняются вручную и почему?"

Чем отличается автоматизация пайплайна ML от обычной автоматизации ETL

Аспект	ETL Pipeline	ML Pipeline
Детерминированность	Полностью детерминирован	Содержит стохастические компоненты
Проверка качества	Схемы данных, бизнес-правила	Метрики моделей, дрейф данных
Артефакты	Трансформированные данные	Данные + модели + метрики
Версионирование	Версии кода	Версии кода + данных + моделей
Мониторинг	Объем данных, время выполнения	+ качество предсказаний, дрейф
Rollback	Откат кода	Откат кода + модели + данных
Dependency	Только от данных	От данных + кода + гиперпараметров

Инструменты для оркестрации пайплайнов

сравнительная таблица

Инструмент	преимущества	недостатки
Apache Airflow	 ✓ Богатая экосистема операторов (Python, Bash, Docker, Spark, и многие другие) ✓ Мощный UI для мониторинга и управления ✓ Поддержка SLA, алертов, повторных попыток ✓ Масштабируемость (поддержка Celery, Kubernetes executors) ✓ Активное сообщество и обширная документация 	 Сложность настройки для новичков Требует отдельной инфраструктуры (база данных, воркеры)
Prefect	 ✓ Чистый pythonic синтаксис, легкий старт ✓ Поддержка динамических workflow ✓ Встроенная интеграция с облачными сервисами ✓ Современная архитектура и UI ✓ Автоматическое кеширование и retry-логика 	 Меньшее сообщество по сравнению с Airflow Некоторые продвинутые функции доступны только в облачной версии

сравнительная таблица

Инструмент	преимущества	недостатки
Kubeflow Pipelines	 ✓ Глубокая интеграция с Kubernetes ✓ Встроенная поддержка GPU, распределенного обучения ✓ Компонентный подход (каждый шаг — контейнер) ✓ Визуализация метрик и артефактов ✓ Идеально для облачных развертываний 	 Требует Kubernetes кластера Более крутая кривая обучения Оверкилл для небольших проектов
DVC Pipelines	 ✓ Декларативный синтаксис (YAML) ✓ Тесная интеграция с Git ✓ Автоматическое кеширование и инкрементальные запуски ✓ Не требует отдельной инфраструктуры ✓ Идеально для воспроизводимых экспериментов 	 Ограниченные возможности для сложных workflow Нет built-in планировщика (нужен cron или CI/CD) Меньше возможностей для мониторинга Выбор инструмента зависит от: Размера команды и проекта Существующей инфраструктуры Требований к масштабируемости Опыта команды

Пример DAG-пайплайна на Airflow

```
from airflow import DAG
                                                             # Определение DAG
from airflow.operators.python_operator import PythonOperator
                                                             default args = {
from airflow.operators.bash operator import BashOperator
                                                                 'owner': 'mlops-team',
from datetime import datetime, timedelta
                                                                 'depends_on_past': False,
                                                                 'start_date': datetime(2025, 1, 1),
# Функции для каждого этапа
                                                                 'email_on_failure': True,
def preprocess_data(**context):
                                                                 'email_on_retry': False,
    # Загрузка и обработка данных
                                                                 'retries': 2,
   # Сохранение результатов
                                                                 'retry delay': timedelta(minutes=5),
    pass
def train_model(**context):
    # Обучение модели
                                                             with DAG(
    # Логирование в MLflow
                                                                 'ml_training_pipeline',
    pass
                                                                 default_args=default_args,
                                                                 description='ML pipeline for flight delay prediction',
def evaluate_model(**context):
                                                                 schedule_interval='@daily', # Запуск каждый день
    # Валидация модели
                                                                 catchup=False
    # Проверка метрик
                                                             ) as dag:
    pass
```

DAG (Directed Acyclic Graph) — это граф задач с направленными связями без циклов. Каждая задача зависит от предыдущих и запускается только после их успешного выполнения.

Пример DAG-пайплайна на Airflow

```
# Определяем задачи
preprocess = PythonOperator(
    task_id='preprocess_data',
    python_callable=preprocess_data,
    provide context=True
train = PythonOperator(
    task_id='train_model',
    python_callable=train_model,
    provide_context=True
evaluate = PythonOperator(
    task_id='evaluate_model',
    python_callable=evaluate_model,
    provide_context=True
register = BashOperator(
    task_id='register_model',
    bash_command='python src/register_model.py'
# Определяем зависимости
preprocess >> train >> evaluate >> register
```

```
Операторы — это обертки для разных типов задач:
```

```
PythonOperator — запуск Python-функции
```

BashOperator — выполнение bash-команды

DockerOperator — запуск контейнера

Зависимости (>>) — определяют порядок выполнения. preprocess >> train означает "train запустится только после успешного завершения preprocess".

Параметры запуска:

```
schedule_interval — частота запуска (cron-формат или предустановки типа @daily, @hourly)

retries — количество повторных попыток при сбое

retry_delay — пауза между попытками

email_on_failure — уведомления при ошибках
```

Где в этом пайплайне точка возврата при фейле? Какие задачи можно было бы запустить параллельно для ускорения?

Преимущества такого подхода

- > Визуализация всего пайплайна в UI
- > Автоматические retry при временных сбоях
- > Параллельное выполнение независимых задач
- Исторический лог всех запусков
- Возможность запуска отдельных задач вручную для отладки

Где в этом пайплайне точка возврата при фейле? Какие задачи можно было бы запустить параллельно для ускорения?

Интеграция ML-пайплайнов с CI/CD

Причины интеграции

- 1. Автоматический запуск пайплайна при push/мерже в репозиторий
- 2. В связке: Checkpoints, gates на метриках (стоп, если качество плохое)
- 3. GitHub Actions/Jenkins/DVCCML проекция: build test pipeline deploy
- 4. Логи, уведомления (Slack, email), автоматическое поднятие/откат моделей

Вопрос: Какие этапы стоит всегда делать "blocking" для перехода в прод?

Автоматизация retraining и мониторинга

- Мониторинг метрик качества и срабатывание перезапуска пайплайна
- Сценарии retrain: по времени (schedule), по дрейфу данных, по алерту метрик
- Автоматическая генерация отчетов (например, Evidently, MLflow
- > Возможность уведомлений команде

Практикум: создаем свой пайплайн для автозапуска

- Опишите (на доске/в чате) свой ML-процесс в виде блок-схемы
- Подумайте, какие этапы можно описать как автоматические задачи
- Решите, какие проверки нужны для безопасного автоматического деплоя
- Для продвинутых: попробуйте реализовать простейший DVC pipeline или Airflow DAG локально

Контрольные вопросы

- 1. Что предотвращает автоматизация для ML-команды?
- 2.Кто должен иметь право запускать автоматический деплой и retraining?
- 3. Чем отличается автоматизация пайплайна ML от обычной автоматизации ETL?

Материалы и ссылки

1. https://airflow.apache.org/docs/

2. https://docs.dvc.org/doc/start/pipeline

3. https://mlflow.org/docs/latest/projects.html

4. https://docs.github.com/en/actions

5. https://evidentlyai.com/

Вопросы

Телеграм https://t.me/+PsC-JDrwrvsxNmVi

СКИФ (https://do.skif.donstu.ru/course/view.php?id=7508)