Problem N. Xor Sum 4

Time limit 2000 ms **Mem limit** 1048576 kB

Problem Statement

We have N integers. The i-th integer is A_i .

Find $\sum_{i=1}^{N-1} \sum_{j=i+1}^{N} (A_i \text{ XOR } A_j)$, modulo $(10^9 + 7)$.

▶ What is XOR?

Constraints

- $2 \le N \le 3 \times 10^5$
- $0 \le A_i < 2^{60}$
- All values in input are integers.

Input

Input is given from Standard Input in the following format:

$$egin{bmatrix} N \ A_1 \ A_2 \ \dots \ A_N \end{bmatrix}$$

Output

Print the value $\sum_{i=1}^{N-1} \sum_{j=i+1}^{N} (A_i \text{ XOR } A_j)$, modulo $(10^9 + 7)$.

Sample 1

Input	Output
3 1 2 3	6

We have (1 XOR 2) + (1 XOR 3) + (2 XOR 3) = 3 + 2 + 1 = 6.

Sample 2

Input	Output
10 3 1 4 1 5 9 2 6 5 3	237

Sample 3

TEP 2023.1 - Lista 03 Apr 29, 2023

Input	Output
10 3 14 159 2653 58979 323846 2643383 27950288	103715602

Print the sum modulo $(10^9 + 7)$.