# МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное автономное образовательное учреждение высшего образования

# «Национальный исследовательский Нижегородский государственный университет им. Н.И. Лобачевского» (ННГУ)

## Институт информационных технологий, математики и механики

Направление подготовки: «Фундаментальная информатика и информационные технологии»

Магистерская программа: «Инженерия программного обеспечения»

### ОТЧЕТ

по лабораторной работе «Волновая схема на задаче Дирихле для уравнения Пуассона»

| Выполнил: студент группы 382006  |  |  |
|----------------------------------|--|--|
| 1м                               |  |  |
| А.А. Солуянов                    |  |  |
|                                  |  |  |
| Проверил:                        |  |  |
| к.фм. н., доц., доцент каф. МОСТ |  |  |
| К.А. Баркалов                    |  |  |

Нижний Новгород 2021

## Оглавление

| Введение                  | 3  |
|---------------------------|----|
| Постановка задачи         | 4  |
| Погрешность аппроксимации | 5  |
| Метод верхних релаксаций  | 5  |
| Реализация                |    |
| Описание алгоритма        | 7  |
| Схема распараллеливания   |    |
| Результаты                | 9  |
| Тестовая инфраструктура   | 9  |
| Эксперименты              | 9  |
| Заключение                | 11 |
| Литепатура                | 12 |

#### Введение

Математическое моделирование задач механики, физики и других отраслей науки и техники сводятся к дифференциальным уравнениям. В связи с этим решение дифференциальных уравнений является одной из важнейших математических задач. В вычислительной математике изучаются численные методы решения дифференциальных уравнений, которые особенно эффективны в сочетании с использованием вычислительной техники.

Задача Дирихле для уравнения Пуассона является одной из классических задач математической физики. Для решения уравнений с частными производными как правило используются сеточные методы, Нередко с помощью компьютера в области определения строится сетка, и составляется разностное уравнение, в котором искомыми неизвестными являются значения функции в узлах сетки. Решение разностного уравнение также можно искать по-разному. На практике широко применяются итерационные методы. Вычислительная схема в этом случае описывает, как следующее состояние сетки зависит от предыдущего. В результате счета на компьютере получается приближенное решение уравнений с частными производными.

Бывают сложные модели, в которых строятся сетки с большим количеством узлов: десятки миллионов и даже больше. Актуальной задачей для таких моделей является распараллеливание вычислений с целью сокращения времени счета.

В данной лабораторной работе будет рассмотрен метод релаксации с оптимальным параметром для задачи Дирихле для уравнения Пуассона с волновой схемой параллелизации вычислений.

Рассмотрим уравнение Пуассона

$$\Delta u = \frac{\partial^2 u}{\partial x_1^2} + \frac{\partial^2 u}{\partial x_2^2} = -f(x_1, x_2)$$
 (1)

Будем искать его решение, непрерывное в прямоугольнике

$$\overline{G} = G \cup \Gamma = \{x = (x_1, x_2): 0 \le x_{\alpha} \le l_{\alpha}, \alpha = 1, 2\}$$

и принимающее на границе Г заданные значения

$$\mathbf{u}\mid_{\Gamma} = \mu(\mathbf{x}) \tag{2}$$

Задача, определяемая уравнением (1) и условием (2), называется задачей Дирихле. Физическая интерпретация задачи — изгиб упругой пластины.

Определим разностную схему для задачи (1), (2). Введем в  $\bar{G}$  сетку  $\overline{\omega_h} = \omega_h \cup \gamma_h = \{x_i = (i_1h_1, i_2h_2), i_\alpha = 0, 1 \dots, N_\alpha, h_\alpha = \frac{l_\alpha}{N_\alpha}, \alpha = 1, 2\}$  и обозначим через  $y_i = y_{i_1i_2} = y(i_1, i_2) = y(x_i)$  сеточную функцию заданную на  $\overline{\omega_h}$ ;  $h_1$  и  $h_2$  – шаги сетки по координатами  $x_1$ и  $x_2$ .

Чтобы написать разностную схему для (1), (2), аппроксимируем каждую из производных  $\frac{\partial^2 u}{\partial x_n^2}$  на трехточечным шаблоне, полагая

$$\frac{\partial^2 u}{\partial x_1^2} \sim \frac{u(x_1 - h_1, x_2) - 2u(x_1, x_2) + u(x_1 + h_1, x_2)}{h_1^2}$$
(3)

$$\frac{\partial^2 u}{\partial x_2^2} \sim \frac{u(x_1, x_2 - h_2) - 2u(x_1, x_2) + u(x_1, x_2 + h_2)}{h_2^2}$$
(4)

Пользуясь выражениями (3), (4), заменим (1) разностным уравнением

$$\frac{y(i_1 - 1, i_2) - 2y(i_1, i_2) + y(i_1 + 1, i_2)}{h_1^2} + \frac{y(i_1, i_2 - 1) - 2y(i_1, i_2) + y(i_1, i_2 + 1)}{h_2^2}$$

$$= -f(i_1, i_2)$$
(5)

К этому уравнению надо присоединить краевые условия

$$y = \mu(x), x = (i_1 h_1, i_2 h_2) \epsilon \gamma_h$$
 (6)

Уравнения (5) и (6) в совокупности образуют систему линейных алгебраических уравнений (СЛАУ), где число уравнений системы равно  $(M-1)\times (N-1)$ , т.е. столько, сколько и неизвестных, это значения  $u_{mn}$  при  $m=1,2,...,M-1,\ n=1,2,...,N-1$ .

#### Погрешность аппроксимации

Пусть u=u(x) — решение задачи Дирихле (1), (2), а  $y=y(i_1,i_2)$  — решение разностной задачи (5), (6). Рассмотрим погрешность  $z(x)=y(x)-u(x),\ x=(i_1h_1,i_2h_2)\in\omega_h$  Подставляя y=z+u В (5) и (6), получаем для погрешности z=z(x) неоднородное уравнение

$$\Lambda z = z_{x_1 x_1} + z_{x_2 x_2} = -\psi(x), x \in \omega_h(G)$$
 (7)

с однородным краевым условием

$$z = 0$$
 при  $x \in \gamma_h$  (8)

Здесь

$$\psi(x) = \Lambda u + f(x) = u_{x_1 x_1} + u_{x_2 x_2} + f(x)$$
(9)

Есть невязка или погрешность аппроксимации для схемы (5) на решении u = u(x) уравнения (1).

Можно показать, что

$$|\psi| \le M_4 \frac{h_1^2 + h_2^2}{24} \tag{10}$$

где

$$M_4 = \max(\left|\frac{\partial^4 u}{\partial x_1^4}\right|, \left|\frac{\partial^4 u}{\partial x_2^4}\right|) \tag{11}$$

А значит схема (5) имеет второй порядок аппроксимации.

#### Метод верхних релаксаций

Среди явных одношаговых итерационных методов наибольшее распространение получил метод верхних релаксаций. Это связано с тем, что метод верхних релаксаций содержит свободный параметр  $\omega$ , изменяя который можно получать различную скорость сходимости итерационного процесса.

Наиболее эффективно этот метод применяется при решении множества близких алгебраических систем линейных уравнений. На первом этапе проводится решение одной из систем с различными значениями итерационного параметра  $\omega$  и из анализа скорости сходимости итерационного процесса выбирается оптимальное значение этого параметра. Затем все остальные системы решаются с выбранным значением  $\omega$ .

Еще одно достоинство итерационного метода верхних релаксаций состоит в том, что при его реализации на ЭВМ алгоритм вычислений имеет простой вид и позволяет использовать всего один массив для неизвестного вектора.

Основная вычислительная формула имеет вид

$$a_{ii}x_i^{s+1} = -\omega \sum_{j=1}^{i-1} a_{ij}x_j^{s+1} + (1-\omega)a_{ii}x_i^s - \omega \sum_{j=i+1}^{n} a_{ij}x_j^s + \omega b_i$$
(12)

Метод релаксации для разностной схемы имеет вид

$$Dv_{ij}^{s+1} = \frac{\omega}{h^2} v_{i-1,j}^{s+1} + \frac{\omega}{k^2} v_{i,j-1}^{s+1} + \frac{\omega}{h^2} v_{i+1,j}^{s} + \frac{\omega}{k^2} v_{i,j+1}^{s} + (1-\omega) Dv_{ij}^{s} + \omega f_{ij}$$
(13)

где D = 
$$2(\frac{1}{h^2} + \frac{1}{k^2})$$

Оптимальный параметр метода релаксации:

$$\omega_{\text{opt}} = 2/(1 + 2\sin\left(\frac{\pi h}{2}\right)) \tag{14}$$

### Реализация

#### Описание алгоритма

Входными параметрами алгоритма является объект типа *heat\_task*, который содержит информацию о размерности сетки, размерах пластины и функции, определяющие граничные условия и внешнее воздействие.

Формат выхода должен выглядеть как указатель на массив, в котором содержится решение задачи.

Предварительными действиями является подготовка выходного вектора и матрицы внешнего воздействия, так как она неизменна и часто используется в алгоритме, поэтому выгодно посчитать ее заранее.

Таким образом основное тело алгоритма (Листинг 1) можно представить, как итеративное вычисление элементов результирующего вектора с помощью метода верхней релаксации.

```
for (int iteration = 0; iteration < max iter; iteration++) {</pre>
        for (int k = 0; k < task.n + task.m - 3; ++k) {
            int start = min(1 + k, task.n - 1);
            int finish = max(1, k - task.m + 3);
#pragma omp parallel for private(prev, curr index, top index, bot index,
left index, right index)
            for (int i = start; i >= finish; --i) {
                int j = task.m - (k - i + 2);
                curr index = i * (task.m + 1) + j;
                top index = curr index + 1;
                bot index = curr index - 1;
                left index = curr index - (task.m + 1);
                right index = curr index + (task.m + 1);
                prev = v[curr index];
                v[curr index] = omega * (h * (v[left index] +
v[right\_index]) + k_* * (v[top\_index] + v[bot index]) + f[i][j]) + 
                    (1 - omega) * D * prev;
                v[curr index] /= D;
            }
```

Листинг 1. Основное тело алгоритма

#### Схема распараллеливания

Рассмотрим возможность построения параллельного алгоритма, который выполнял бы только те вычислительные действия, что и последовательный метод (может быть только в несколько ином порядке) и, как результат, обеспечивал бы получение точно таких же решений исходной вычислительной задачи. Как уже было отмечено выше, в последовательном алгоритме каждое очередное k — ое приближение значения  $u_{ij}$  вычисляется по последнему k — му приближению значений  $u_{i-1j}$  и  $u_{ij-1}$  и предпоследнему k — му приближению значений  $u_{i+1j}$  и  $u_{ij+1}$ .

Таким образом, при требовании совпадения результатов вычислений последовательных и параллельных вычислительных схем в начале каждой итерации метода только одно значение  $u_{11}$  может быть пересчитано (возможности для распараллеливания нет). Но далее после пересчета  $u_{11}$  вычисления могут выполняться уже в двух узлах сетки  $u_{12}$  и  $u_{21}$  (в этих узлах выполняются условия последовательной схемы), затем после пересчета узлов  $u_{12}$  и  $u_{21}$  — в узлах  $u_{13}$ ,  $u_{22}$  и  $u_{31}$  и т.д. Обобщая сказанное, можно увидеть, что выполнение итерации метода сеток можно разбить на последовательность шагов, на каждом из которых к вычислениям окажутся подготовленными узлы вспомогательной диагонали сетки с номером, определяемым номером этапа (Рисунок 1).



Рисунок 1. Волновая схема обработки данных

Такой алгоритм получил название волновой схемы. Следует отметить, что в нашем случае размер волны (степень возможного параллелизма) динамически изменяется в ходе вычислений — волна нарастает до своего пика, а затем затухает при приближении к правому нижнему узлу сетки.

### Результаты

### Тестовая инфраструктура

Вычислительные эксперименты проводились с использованием следующей инфраструктуры (Таблица 1).

Таблица 1. Тестовая инфраструктура

| Процессор            | 4 ядра, Intel(R) Core(TM) i7-8550U |
|----------------------|------------------------------------|
|                      | CPU @ 1.80GHz 1.99 GHz             |
|                      |                                    |
| Память (RAM, Cache)  | 8,00 ГБ, L1 – 256 Kb, L2 – 1 Mb,   |
|                      | L3 – 8 Mb                          |
| Операционная система | Windows 10                         |
| Среда разработки     | Visual Studio 2019                 |
| Компилятор           | Intel(R) oneAPI DPC++/C++          |
|                      | Compiler 2021.1                    |
| Библиотеки           | OpenMP                             |

#### Эксперименты

Испытания проводились на задаче со следующими данными (Рисунок 2,3):

- Размер пластины 10 × 10
- Разбиения на сетку с числом узлов  $1000 \times 1000$ ,  $1500 \times 1500$ ,  $2000 \times 2000$
- Граничные условия
  - $\circ$  Левая граница:  $1 + y^2$
  - $\circ$  Левая граница:  $4 + y^2$
  - $\circ$  Левая граница:  $4 + x^2$
  - Левая граница:  $9 + x^2$
- Функция внешнего воздействия f(x, y) = 4



Рисунок 2. Зависимость времени работы программы от числа потоков



Рисунок 3. Зависимость ускорения от числа потоков

## Заключение

В ходе данной лабораторной работы был изучен метод релаксации с оптимальным параметром для задачи Дирихле для уравнения Пуассона с волновой схемой параллелизации вычислений.

Использование волновой схема обработки данных удалость достигнуть существенного ускорения алгоритма и избежать гонки данных, которая была бы неизбежна при попытке параллелизации последовательного обхода элементов матрицы.

# Литература

- 1. Самарский А.А. Введение численные методы. СПб.: Лань, 2005
- 2. Самарский А.А., Гулин А.В. Численные методы. М.: Наука, 1989.
- 3. Е.А. Рындин, И.В. Куликова, И.Е. Лысенко. Основы численных методов: теория и практика, 2015
- 4. Бахвалов Н.С., Жидков Н.П., Кобельков Г.М. Численные методы. М.: Наука, 1987
- 5. Тихонов А.Н., Самарский А.А. Уравнения математической физики. М.: Наука, 1977.