

Algorithmen und Datenstrukturen

Stefan Roth, SS 2025

02 Sortieren

Folien beruhen auf der Veranstaltung von Prof. Marc Fischlin und Christian Janson aus dem SS 2024

Das Sortierproblem

Sortierproblem in der Praxis

Sortierproblem

Gegeben: Folge von Objekten

Gesucht: Sortierung der Objekte

(gemäß ausgewiesenen Schlüsselwerts)

Schlüssel(wert) — Wert, nach dem Objekt sortiert wird

"Satellitendaten" Steuer-ID

Name

Beispiel

Name Adresse Bankverbindung

. . .

Objekt

Schlüsselproblem

Schlüssel(werte) müssen nicht eindeutig sein,

aber müssen "sortierbar" sein

Schlüssel(wert)

Wert, nach dem Objekt sortiert wird

"Satellitendaten"

Objekt

Annahme im Folgenden:

Es gibt eine totale Ordnung ≤ auf der Menge *M* aller möglichen Schlüsselwerte

Totale Ordnung

Beispiel: lexikographische Ordnung auf Strings

Sei M eine nicht leere Menge und $\leq \subseteq M \times M$ eine binäre Relation auf M

Die Relation \leq auf M ist genau dann eine totale Ordnung, wenn gilt:

Reflexivität: $\forall x \in M: x \leq x$

Transitivität: $\forall x, y, z \in M$: $x \leq y \land y \leq z \Rightarrow x \leq z$

Antisymmetrie: $\forall x, y \in M$: $x \leq y \land y \leq x \Rightarrow x = y$

Totalität: $\forall x, y \in M: x \leq y \lor y \leq x$

(ohne Totalität: partielle Ordnung)

Bemerkung: Totale Ordnung \leq impliziert Relation > durch x > y: $\Leftrightarrow x \not\leq y$

Darstellung in diesem Abschnitt

Wir betrachten nur Schlüssel(werte) ohne Satellitendaten, in Beispielen meistens durch Zahlen gegeben

Eingabe der Objekte bzw. Schlüsselwerte in Form eines Arrays A:

Lese-/Schreibzugriff per Index in konstanter Zeit:

A.length beschreibt (fixe) Länge des Arrays, im Beispiel 9

A[i...j] beschreibt Teil-Array von Index i bis j, 0<=i<=j<=A.length-1

Insertion Sort

Idee: Karten umsortieren

(hell nach dunkel)

Gehe von links nach rechts durch und sortiere aktuelle Karte richtig nach links ein

Algorithmus: Insertion Sort

Durch !(A[j]=<key)
wohldefiniert

```
insertionSort(A)
1 FOR i=1TO A.length-1 DO
    // insert A[i] in pre-sorted sequence A[0...i-1]
2 key=A[i];
3 j=i-1; // search for insertion point backwards
4 WHILE j>=0 AND A[j]>key DO
5 A[j+1]=A[j]; // move elements to right
6 j=j-1;
7 A[j+1]=key;
```

Wir beginnen mit i=1, aber erstes Element ist A[0]

Short Circuit Evaluation (wie in Java): Wenn erste AND-Bedingung **false**, wird zweite Bedingung nicht mehr ausgewertet

Beispiel: Insertion Sort (I)

```
Beispiel: FOR-Schleife i=1 2 key=12 3 j=0

WHILE-Schleife j=0 A[j]=53 > key=12

7 12 53 17 87

6 i=-1
```

1. Fall: linker Rand erreicht

Beispiel: Insertion Sort (II)

```
insertionSort(A)
1 FOR i=1TO A.length-1 DO
    // insert A[i] in pre-sorted sequence A[0...i-1]
2 key=A[i];
3 j=i-1; // search for insertion point backwards
4 WHILE j>=0 AND A[j]>key DO
5 A[j+1]=A[j]; // move elements to right
6 j=j-1;
7 A[j+1]=key;
```

```
Beispiel: FOR-Schleife i=2 2 key=17 3 j=1 WHILE-Schleife j=1 A[j]=53 > key=17
```


2. Fall: Einfügeposition erreicht

6 j = 0

Beispiel: Insertion Sort (III)

```
Beispiel: FOR-Schleife i=2 2 key=17 3 j=1

WHILE-Schleife j=0 A[j]=12 < key=17

12 17 53 87

7
```

2. Fall: Einfügeposition erreicht

6 j = 0

Beispiel: Insertion Sort (IV)

```
insertionSort(A)
1 FOR i=1TO A.length-1 DO
        // insert A[i] in pre-sorted sequence A[0...i-1]
2     key=A[i];
3     j=i-1; // search for insertion point backwards
4     WHILE j>=0 AND A[j]>key DO
5         A[j+1]=A[j]; // move elements to right
6     j=j-1;
7     A[j+1]=key;
```

```
Beispiel: FOR-Schleife i=3 2 key=87 3 j=2

WHILE-Schleife j=2 A[j]=53 < key=87

12 17 53 87

7
```

3. Fall: Element bleibt

Terminierung

```
insertionSort(A)
1 FOR i=1TO A.length-1 DO
    // insert A[i] in pre-sorted sequence A[0...i-1]
2 key=A[i];
3 j=i-1; // search for insertion point backwards
4 WHILE j>=0 AND A[j]>key DO
5 A[j+1]=A[j]; // move elements to right
6 j=j-1;
7 A[j+1]=key;
```

Jede Ausführung der WHILE-Schleife erniedrigt j<n in jeder Iteration um 1 und bricht ab, wenn j<0 → terminiert also immer

FOR-Schleife wird nur endlich oft durchlaufen

Korrektheit (I)

```
insertionSort(A)
1 FOR i=1TO A.length-1 DO
    // insert A[i] in pre-sorted sequence A[0...i-1]
2 key=A[i];
3 j=i-1; // search for insertion point backwards
4 WHILE j>=0 AND A[j]>key DO
5 A[j+1]=A[j]; // move elements to right
6 j=j-1;
7 A[j+1]=key;
```

Schleifeninvariante (der FOR-Schleife):

Beweis per vollständiger Induktion

Klassische mathematische Beweismethode für Aussagen A(n), die für alle natürliche Zahlen $n \in \mathbb{N}$ gelten, die größer oder gleich einem bestimmten Startwert n_0 sind. n_0 ist häufig 0 oder 1.

Behauptung: Aussage A(n) gilt $\forall n \in \mathbb{N}, n \geq n_0 \in \mathbb{N}$.

Beweisstruktur:

Induktionsanfang: Zeige, dass Aussage $A(n_0)$ für Startwert n_0 gilt.

Induktionsschritt: Zeige, dass wenn A(n) für ein beliebiges

 $n \in \mathbb{N}, n \ge n_0$ gilt (Induktionsannahme), auch A(n+1) gelten muss (Induktionsbehauntung)

A(n+1) gelten muss (Induktionsbehauptung).

Induktionsschluss:* Aus Induktionsanfang und Induktionsschritt folgt

die Behauptung.

^{*} Wird der Vereinfachung halber oft weggelassen

Beweis per vollständiger Induktion – Beispiel I

Gauß'sche Summenformel

Behauptung:

Aussage
$$A(n)$$
:

Aussage A(n):
$$\sum_{i=1}^{n} i = \frac{n(n+1)}{2} \quad \text{gilt } \forall n \in \mathbb{N}.$$

Beweis:

Induktionsanfang:

$$n = 1$$
:

$$\sum_{i=1}^{n} i = \sum_{i=1}^{1} i = 1 = \frac{1(1+1)}{2} = \frac{n(n+1)}{2}$$

Induktionsschritt:

$$n \rightarrow n + 1$$
:

Induktionsannahme

$$\sum_{i=1}^{n+1} i = \sum_{i=1}^{n} i + (n+1) = \underbrace{\frac{n(n+1)}{2}} + (n+1) = \underbrace{\frac{n(n+1) + 2(n+1)}{2}}_{2}$$

$$=\frac{(n+2)(n+1)}{2}=\frac{(n+1)((n+1)+1)}{2}$$

Beweis per vollständiger Induktion – Beispiel II

Bernoulli'sche Ungleichung

Behauptung: Aussage A(n): $(1+x)^n \ge 1 + nx$

gilt $\forall n \in \mathbb{N}_0$ und $\forall x \in \mathbb{R}, x > -1$.

Beweis:

Induktionsanfang: $\underline{n=0}$: $(1+x)^n = (1+x)^0 = 1 = 1 + 0x = 1 + nx$

Induktionsschritt: $n \rightarrow n + 1$:

Induktionsannahme
$$(1+x)^{(n+1)} = (1+x)^n \cdot (1+x) \ge (1+nx) \cdot (1+x) = 1+nx+x+nx^2$$

$$= 1+(n+1)x+(nx^2) \ge 1+(n+1)x$$

Korrektheit (II)

Beweis per Induktion:

Induktionsbasis i=1: Beim ersten Eintritt ist A[0]=a[0] und "sortiert". Ferner gilt noch A[1]=a[1],...,A[n-1]=a[n-1].

Korrektheit (III)

Beweis per Induktion: Induktionsschritt von i-1 auf i:

Vor der (i-1)—ten Ausführung galt Schleifeninvariante nach Voraussetzung. Inbesondere war A[0],...,A[i-2] sortierte Version von a[0],...,a[i-2] und A[i-1]=a[i-1],...,A[n-1]=a[n-1]

Durch die WHILE-Schleife wurde A[i-1]=a[i-1] nach links einsortiert und größere Elemente von A[0],...,A[i-2] um jeweils eine Position nach rechts verschoben. Elemente A[i],...,A[n-1] wurden nicht geändert

Also gilt Invariante auch für i

Korrektheit (IV)

Aus Schleifeninvariante folgt für letzte Ausführung (also quasi vor gedanklichem Eintritt der Schleife für **i=n**):

A[0],...,A[n-1] ist sortierte Version von a[0],...,a[n-1]

und somit am Ende das Array sortiert

Wozu brauchen Sie (intuitiv) beim Sortieren die vier Eigenschaften einer totalen Ordnung?

Überlegen Sie sich, dass Insertion Sort **stabil** ist, d.h. die Reihenfolge von Objekten mit gleichem Schlüssel bleibt erhalten.

Laufzeitanalysen: *O*-Notation

Laufzeitanalyse

Wieviel Schritte macht Algorithmus in Abhängigkeit von der Eingabekomplexität?

meistens: schlechtester Fall über alle Eingaben gleicher Komplexität

(Worst-Case-)Laufzeit $T(n) = \max \{ \text{Anzahl Schritte für x } \}$

Maximum über alle Eingaben x der Komplexität n

fasst alle Eingaben ähnlicher Komplexität zusammen

Beispiel: *n* Anzahl zu sortierender Zahlen

(man könnte auch zusätzlich Größe der Zahlen betrachten; wird aber meist von Anzahl dominiert)

Laufzeitanalyse Insertion Sort (I)

n Anzahl zu sortierender Elemente

```
insertionSort(A)
1 FOR i=1TO A.length-1 D0
    // insert A[i] in pre-sorted sequence A[0..i-1]
2 key=A[i];
3 j=i-1; // search for insertion point backwards
4 WHILE j>=0 AND A[j]>key D0
5 A[j+1]=A[j]; // move elements to right
6 j=j-1;
7 A[j+1]=key;
```

Analysiere, wie oft jede Zeile maximal ausgeführt wird

Jede Zeile *i* hat Aufwand *ci*

Laufzeitanalyse Insertion Sort (II)

n Anzahl zu sortierender Elemente

Zeile	Aufwand	Anzahl	
1	c1	n	
2	c2	n-1	
3	сЗ	n-1	
4	c4	Z5 + <i>n</i> − 1	
5	c5	n(n-1)/2	
6	с6	n(n-1)/2	
7	с7	n-1	

Zeilen 4, 5 und 6 im schlimmsten Fall bis j=-1 also jeweils i-mal. Insgesamt:

$$\sum_{i=1}^{n-1} i = \frac{n(n-1)}{2}$$

Analysiere, wie oft jede Zeile maximal ausgeführt wird

Jede Zeile *i* hat Aufwand *ci*

(Zeile 4 jeweils einmal mehr bis Abbruch)

Laufzeitanalyse Insertion Sort (III)

n Anzahl zu sortierender Elemente

Zeile	Aufwand	Anzahl	
1	c1	n	
2	c2	n-1	
3	сЗ	n-1	
4	c4	Z5 + <i>n</i> - 1	
5	c5	n(n-1)/2	
6	с6	n(n-1)/2	
7	с7	n-1	

maximale Gesamtlaufzeit Insertion-Sort:

$$T(n) = c1 \cdot n + (c2 + c3 + c4 + c7) \cdot (n - 1) + (c4 + c5 + c6) \cdot \frac{n(n-1)}{2}$$

Analysiere, wie oft jede Zeile maximal ausgeführt wird

Jede Zeile *i* hat Aufwand *ci*

Kosten für individuelle Schritte?

Wie teuer ist z.B. Zuweisung A[j+1]=A[j] in Zeile 5, also was ist c5?

Hängt stark von Berechnungsmodell ab (in dem Pseudocode-Algorithmus umgesetzt wird)...

nehmen üblicherweise an, dass elementare Operationen (Zuweisung, Vergleich,...) in einem Schritt möglich $\rightarrow c5=1$

Asymptotische Vereinfachung (I)

Gesamtlaufzeit Insertion-Sort (mit ci = 1): $T(n) = n + 4 \cdot (n - 1) + 3 \cdot \frac{n(n-1)}{2}$

Zum Vergleich (nur dominanter Term) : $D(n) = 3 \cdot \frac{n(n-1)}{2}$

n	T(n)	D(n)	relativer Fehler $(T(n) - D(n))/T(n)$
100	15.346	14.850	3,2321 %
1.000	1.503.496	1.498.500	0,3323 %
10.000	150.034.996	149.985.000	0,0333 %
100.000	15.000.349.996	14.999.850.000	0,0033 %
1.000.000	150.000.034.999.996	1.499.998.500.000	0,0003 %

Asymptotische Vereinfachung (II)

Weiter Vereinfachung (nur abhängiger Term):

$$A(n) = \frac{n(n-1)}{2}$$

Zum Vergleich (nur dominanter Term):

$$D(n) = 3 \underbrace{\frac{n(n-1)}{2}}$$

Konstante hängt stark vom Berechnungsmodell ab

Konstante ändert sich "schnell" durch Fortschritte in Rechenleistung

Moore's Law: The number of transistors on microchips doubles every two ye

Beispiel Moore's Law (bis ca. 2000): Verdoppelung der Transistoren etwa alle 1,5 Jahre

Quelle: de.wikipedia.org/wiki/Mooresches_Gesetz

O-Notation / Landau-Symbole

Paul Bachmann Edmund Landau ca. 1900

Schreibweise: $f \in \Theta(g)$, manchmal auch $f = \Theta(g)$

Veranschaulichung @-Notation

$$n \ge n_0$$
:

$$c_1g(n) \le f(n)$$

$$c_2g(n) \ge f(n)$$

g(n) ist eine asymptotisch scharfe Schranke von f(n)

Θ-Notation beschränkt eine Funktion asymptotisch von oben und unten

Beispiel: Laufzeit Insertion Sort in @-Notation (I)

$$T(n) = n + 4 \cdot (n-1) + 3 \cdot \frac{n(n-1)}{2} = \Theta(n^2)$$

Für untere Schranke wähle $c_1 = \frac{3}{2}$ und $n_0 = 2$:

$$T(n) \ge 5 \cdot (n-1) + \frac{3}{2} \cdot n^2 - \frac{3}{2} \cdot n$$

$$\ge \frac{7}{2} \cdot n - 5 + \frac{3}{2} \cdot n^2$$

$$\ge \frac{3}{2} \cdot n^2 \quad \text{für } n \ge 2$$

$$\Theta(g) = \{ f : \exists c_1, c_2 \in \mathbb{R}_{>0}, n_0 \in \mathbb{N}, \forall n \ge n_0, 0 \le c_1 g(n) \le f(n) \le c_2 g(n) \}$$

Beispiel: Laufzeit Insertion Sort in Θ-Notation (II)

$$T(n) = n + 4 \cdot (n-1) + 3 \cdot \frac{n(n-1)}{2} = \Theta(n^2)$$
 für $c_1 = \frac{3}{2}$, $c_2 = 7, n_0 = 2$

Für obere Schranke wähle $c_2 = 7$ und das bereits fixierte $n_0 = 2$:

$$T(n) \le n + 4 \cdot n + 2 \cdot n(n-1)$$

$$\le 5 \cdot n + 2 \cdot n^{2}$$

$$\le 5 \cdot n^{2} + 2 \cdot n^{2}$$

$$< 7 \cdot n^{2}$$

$$\Theta(g) = \{ f : \exists c_1, c_2 \in \mathbb{R}_{>0}, n_0 \in \mathbb{N}, \forall n \ge n_0, 0 \le c_1 g(n) \le f(n) \le c_2 g(n) \}$$

\mathcal{O} -Notation

Obere asymptotische Schranke

Sprechweise: f wächst höchstens so schnell wie g

Schreibweise: $f = \mathcal{O}(g)$ oder auch $f \in \mathcal{O}(g)$

Veranschaulichung der \mathcal{O} -Notation

Quelle: Corman et al. Introduction to Algorithms

$$n \ge n_0$$
:

$$0 \le f(n) \le cg(n)$$

Beachte: $\Theta(g(n)) \subseteq \mathcal{O}(g(n))$ und somit $f(n) = \Theta(g) \implies f(n) = \mathcal{O}(g)$

O-Notation: Rechenregeln

Konstanten: $f(n) = a \text{ mit } a \in \mathbb{R}_{>0} \text{ konstant. Dann } f(n) = \mathcal{O}(1)$

Skalare Multiplikation: $f = \mathcal{O}(g)$ und $a \in \mathbb{R}_{>0}$. Dann $a \cdot f = \mathcal{O}(g)$

Addition: $f_1 = \mathcal{O}(g_1)$ und $f_2 = \mathcal{O}(g_2)$. Dann $f_1 + f_2 = \mathcal{O}(\max\{g_1, g_2\})$

punktweise

Multiplikation: $f_1 = \mathcal{O}(g_1)$ und $f_2 = \mathcal{O}(g_2)$. Dann $f_1 \cdot f_2 = \mathcal{O}(g_1 \cdot g_2)$

Ω -Notation

Untere asymptotische Schranke

Sprechweise: f wächst mindestens so schnell wie g

Schreibweise: $f = \Omega(g)$ oder auch $f \in \Omega(g)$

Veranschaulichung der Ω -Notation

$$n \ge n_0$$
:

$$0 \le cg(n) \le f(n)$$

Beachte: $\Theta(g(n)) \subseteq \Omega(g(n))$ und somit $f(n) = \Theta(g) \implies f(n) = \Omega(g)$

Überlegen Sie sich die Rechenregeln für Ω analog zu denen für die \mathcal{O} -Notation.

Überlegen Sie sich, dass gilt: $\mathcal{O}(n) \subseteq \mathcal{O}(n^2) \subseteq \mathcal{O}(n^3) \subseteq \mathcal{O}(n^4) \subseteq \mathcal{O}(n^5) \subseteq \dots$ und $\Omega(n) \supseteq \Omega(n^2) \supseteq \Omega(n^3) \supseteq \Omega(n^4) \supseteq \Omega(n^5) \supseteq \dots$

und dass die Inklusionen jeweils strikt sind

Zusammenhang O, Ω und Θ

Für beliebige $f(n), g(n): \mathbb{N} \to \mathbb{R}_{>0}$ gilt:

$$f(n) = \Theta(g(n))$$
 genau dann, wenn
$$f(n) = \mathcal{O}(g(n)) \text{ und } f(n) = \Omega(g(n))$$

Beachte: $\Omega(g)$, $\mathcal{O}(g)$ sind nur untere bzw. obere Schranken:

Beispiel: $f(n) = \Theta(n^3)$, also auch:

$$f(n) = \mathcal{O}(n^5)$$
, da $\Theta(n^3) \subseteq \mathcal{O}(n^3) \subseteq \mathcal{O}(n^5)$

$$f(n) = \Omega(n)$$
, da $\Theta(n^3) \subseteq \Omega(n^3) \subseteq \Omega(n)$

Anwendung \mathcal{O} -Notation (I)

 $f = \mathcal{O}(g)$ übliche Schreibweise, sollte aber gelesen werden als $f \in \mathcal{O}(g)$

Allgemein besser immer als Mengen auffassen und von links nach rechts lesen (mit \in , \subseteq):

$$5 \cdot n^2 + n^4 = \mathcal{O}(n^2) + n^4 = \mathcal{O}(n^4) = \mathcal{O}(n^5)$$

$$\in \qquad \subseteq$$

$$\text{als Menge}$$

$$\{f(n)\} + n^4 = \{f(n) + n^4\}$$

nicht: $\mathcal{O}(n^4) = \mathcal{O}(n^5)$, und damit auch $\mathcal{O}(n^5) = \mathcal{O}(n^4)$

wird mit Mengenschreibweise klarer: $A \subseteq B$ bedeutet allgemein nicht auch $B \subseteq A$

Anwendung \mathcal{O} -Notation (II)

Ungleichungen mit \leq sollten nur mit \mathcal{O} verwendet werden, Ungleichungen mit \geq sollten nur mit Ω verwendet werden.

$$5 \cdot n^2 + n^4 \le 6 \cdot n^4 = \mathcal{O}(n^4)$$
 es gibt c, n_0 und Funktion $f(n)$ mit $6 \cdot n^4 \le c \cdot f(n)$

obere Schranke vs. untere Schranke

nicht:
$$5 \cdot n^2 + n^4 \le 6 \cdot n^4 = \Omega(n^4)$$

\mathcal{O}, Ω und Θ bei Insertion Sort (I)

```
insertionSort(A)
1 FOR i=1 TO A.length-1 DO
        // insert A[i] in pre-sorted sequence A[0..i-1]
2     key=A[i];
3     j=i-1; // search for insertion point backwards
4     WHILE j>=0 AND A[j]>key DO
5         A[j+1]=A[j]; // move elements to right
6     j=j-1;
7     A[j+1]=key;
```

Algorithmus macht maximal T(n) viele Schritte und $T(n) = \Theta(n^2)$

Also Laufzeit Insertion Sort = $\Theta(n^2)$?

korrekte Anwendung: Laufzeit $\leq T(n) = \mathcal{O}(n^2)$

\mathcal{O}, Ω und Θ bei Insertion Sort (II)

```
insertionSort(A)
1 FOR i=1TO A.length-1 DO
    // insert A[i] in pre-sorted sequence A[0..i-1]
2 key=A[i];
3 j=i-1; // search for insertion point backwards
4 WHILE j>=0 AND A[j]>key DO
5 A[j+1]=A[j]; // move elements to right
6 j=j-1;
7 A[j+1]=key;
```

zur Erinnerung: (Worst-Case-)Laufzeit $T(n) = \max \{ Anzahl Schritte für x \}$

Für untere Schranke muss man "nur" eine schlechte bzw. die schlechteste Eingabe x finden

Dann gilt $T(n) \ge \text{Anzahl Schritte für schlechtes x}$

\mathcal{O}, Ω und Θ bei Insertion Sort (III)

Insertion Sort hat quadratische Laufzeit $\Theta(n^2)$

```
insertionSort(A)

1 FOR i=1TO A.length-1 DO

    // insert A[i] in pre-sorted sequence A[0..i-1]

2 key=A[i];
3 j=i-1; // search for insertion point backwards
4 WHILE j>=0 AND A[j]>key DO
5 A[j+1]=A[j]; // move elements to right
6 j=j-1;
7 A[j+1]=key;
```

"Schlechte" Eingabe:

A $n \mid n-1 \mid n-2 \mid \dots \mid \dots \mid 2 \mid 1$

Jede WHILE-Schleifenausführung für i = 1, ..., n - 1 macht jeweils i Iterationen

Insgesamt macht Algorithmus für **A** also $\sum_{i=1}^{n-1} i = \frac{n(n-1)}{2} = \Omega(n^2)$ Schritte

"Gute" Eingaben für Insertion Sort?

```
insertionSort(A)
1 FOR i=1TO A.length-1 DO
    // insert A[i] in pre-sorted sequence A[0..i-1]
2 key=A[i];
3 j=i-1; // search for insertion point backwards
4 WHILE j>=0 AND A[j]>key DO
5 A[j+1]=A[j]; // move elements to right
6 j=j-1;
7 A[j+1]=key;
```

"gute" Eingaben bereits vorsortiert, extremes Beispiel:

Α

WHILE-Schleife wird für dieses **A** nie ausgeführt

Insgesamt macht Algorithmus für dieses A also $\Theta(n)$ Schritte

Laufzeit Insertion Sort (I)

"guter" Fall (fast vorsortiertes Array)

"schlechter" Fall (invertiertes, vorsortiertes Array)

Quelle: https://web.archive.org/web/20150302064244/http://www.sorting-algorithms.com/insertion-sort

Laufzeit Insertion Sort (II)

"guter" Fall (fast vorsortiertes Array)

"schlechter" Fall (invertiertes, vorsortiertes Array)

Quelle: https://web.archive.org/web/20150302064244/http://www.sorting-algorithms.com/insertion-sort

Wort-Case-Laufzeiten: auch wenn für manche Eingaben schneller, gilt:

Insertion Sort hat quadratische Laufzeit $\Theta(n^2)$

Komplexitätsklassen

n ist die Länge der Eingabe (z.B. Arraylänge, Länge des Strings)

Klasse	Bezeichnung	Beispiel
$\Theta(1)$	Konstant	Einzeloperation
$\Theta(\log n)$	Logarithmisch	Binäre Suche
$\Theta(n)$	Linear	Sequentielle Suche
$\Theta(n \log n)$	Quasilinear	Sortieren eines Arrays
$\Theta(n^2)$	Quadratisch	Matrixaddition
$\Theta(n^3)$	Kubisch	(naive) Matrixmultiplikation*
$\Theta(n^k)$	Polynomiell	
$\Theta(\mathbf{k}^n)$	Exponentiell	Travelling-Salesperson [†]
$\Theta(n!)$	Faktoriell	Permutationen

^{*} Strassen-Algorithmus $\mathcal{O}(n^{2.8074})$

 $^{^{\}dagger} \Theta(n^2 2^n)$ wenn der Algorithmus geschickt implementiert ist

o-Notation und ω -Notation

nicht asymptotisch scharfe Schranken

$$o(g) = \{ f : \forall c \in \mathbb{R}_{>0}, \exists n_0 \in \mathbb{N}, \forall n \ge n_0, 0 \le f(n) < cg(n) \}$$

Gilt für **alle** Konstanten c > 0, in \mathcal{O} -Notation für eine Konstante c > 0

Beispiel: $2n = o(n^2)$ und $2n^2 \neq o(n^2)$

$$\omega(g) = \{ f : \forall c \in \mathbb{R}_{>0}, \exists n_0 \in \mathbb{N}, \forall n \ge n_0, 0 \le cg(n) < f(n) \}$$

Beispiel: $n^2/2 = \omega(n)$ und $n^2/2 \neq \omega(n^2)$

Was macht der folgende Sortier-Algorithmus Bubble-Sort?

Welche Laufzeit hat der Algorithmus?

Wie verhält er sich im Vergleich zu Insertion Sort?

