Chemistry 3P51 – Fall 2013 Quantum Chemistry

Lecture No. 29 Nov 15th, 2013

1

Objectives

- · To remind the student the main ideas about term symbols
- · To present Hund's to determine the most stable configuration

2

Term symbols for atomic states

Because the orbital and spin angular momenta ${\bf L}$ and ${\bf S}$ interact, atomic states with different L and S have different energies. Atomic states that have the same electron configuration, same L value, same S value, and same energy constitute a **term**. Atomic terms are classified (and designated) according to L and S. The convention is to report the values of L and S for a given configuration as a **term symbol**

in which the value of *L* is represented by a capital letter as follows:

$$L =$$
 0 1 2 3 4 ...
Symbol S P D F G ...

The superscript 2S+1 is the **spin multiplicity**:

$$2S+1 = 1$$
 2 3 4 5 6
Name singlet doublet triplet quartet quintet sextet

Examples of terms: ²S, ³P, ¹D.

Table showing term symbols for some electron configurations

Terms for Equivalent Electrons	
Electron Configuration	Terms
$s^2; p^6; d^{10}; f^{14}$ (filled subshells)	^{1}S
s^1	^{2}S
$p^1;p^5$	^{2}P
$p^2;p^4$	³ P; ¹ D; ¹ S
p^3	${}^{4}S; {}^{2}D; {}^{2}P$
$d^1;d^9$	^{2}D
$d^2;d^8$	${}^{3}F; {}^{3}P; {}^{1}G; {}^{1}D; {}^{1}S$

4

Hund's rules for the most stable states of a molecule

Given several term using the same orbitals, it is important to know their enegies. This is determined using **Hund's rules**.

Hund's Rule No.1. The higher the multiplicity of a state, the lower its energy.

Hund's Rule No.2. Among states of equal multiplicity, the one with the highest value of *L* has the lowest energy.

Hund's Rule No.3. If spin-orbit effects are considered, then for given values of *S* and *L*, the state with the lowest value of *J* is the lowest energy state when the *unfilled* shell is less than half-filled. If the *subshell* is more than *half-filled*, the highest value of *J* is the lowest energy state.

5

Summary

To summarize, given an electronic configuration:

- 1. We first determine all the term symbols.
- 2. The Hund's rules are applied in order to determine the symbol with the lowest energy.

6