T-SPLITTING MULTIPLICATIVE SETS OF IDEALS IN INTEGRAL DOMAINS

GYU WHAN CHANG, TIBERIU DUMITRESCU, AND MUHAMMAD ZAFRULLAH

ABSTRACT. Let D be an integral domain. We study those multiplicative sets of ideals S of D with the property that every nonzero principal ideal dD of D can be written as $dD = (AB)_t$ with A, B ideals of D such that A contains some ideal in S and $(C + B)_t = D$ for each $C \in S$.

Let D be an integral domain with quotient field K and let F(D) be the set of nonzero fractional ideals of D. Clearly, for $A \in F(D)$, $A^{-1} = D :_K A$ is again in F(D). Recall that a closure operation * on F(D) is called a star operation if $D^* = D$ and $(aA)^* = aA^*$ for each $0 \neq a \in K$ and $A \in F(D)$. A is a *-ideal if $A = A^*$. For standard material about star operations, see sections 32 and 34 of [9]. Three well-known examples of star operations are the maps $A \mapsto A$ (the d-operation), $A \mapsto A_v$ (the v-operation) and $A \mapsto A_t$ (the t-operation), where $A_v = (A^{-1})^{-1}$ and $A_t = \bigcup \{B_v \mid 0 \neq B \subseteq A \text{ is finitely generated}\}$. Clearly, $A_v = A_t$ if A is finitely generated. An ideal $A \in F(D)$ is t-invertible if $(AA^{-1})_t = D$. In this case A has finite type, that is, $A_t = (x_1, ..., x_n)_t$ for some $x_1, ..., x_n \in A$. D is called a $Pr\ddot{u}fer\ v$ -multiplication domain (PVMD), if every finitely generated ideal $A \in F(D)$ is t-invertible. The t-class group $Cl_t(D)$ of D is the group of t-invertible fractional t-ideals, under the product $A * B = (AB)_t$, modulo its subgroup of principal fractional ideals.

The following concept was introduced and studied in [3]. A multiplicative subset S of D is said to be t-splitting, if for each $d \in D \setminus \{0\}$, $dD = (AB)_t$ for some ideals A, B of D with $A_t \cap S \neq \emptyset$ and $(B, s)_t = D$ for each $s \in S$. The main result of [3] asserts that $D + XD_S[X]$ is a PVMD if and only if D is a PVMD and S is a t-splitting set of D, where $D + XD_S[X]$ is the subring of $D_S[X]$ consisting of those $f \in D_S[X]$ with constant term in D. The t-splitting sets are investigated further in [6].

The main purpose of this note is to extend certain results from [3] and [6] to the case of multiplicative sets of ideals. We aim to show that by using the notion of t-splitting sets of ideals, we can explain a number of multiplicative phenomena that cannot be explained otherwise or are hard to explain. The main concept we use is that of t-splitting set of ideals \mathcal{S} of a domain D (see Definition 1). We show that many results from [3] and [6] can be stated for t-splitting sets of ideals. A characterization of \mathcal{S} being t-splitting using the \mathcal{S} -transform of D (see definition below) is given in Proposition 5. In Theorem 12, we show that the presence of a t-splitting set of ideals induces a natural cardinal product decomposition of the ordered monoid of fractional t-ideals of D (with the t-product and ordered by reverse inclusion). Restricting to t-prime ideals, this decomposition gives a well-behaved

2000 Mathematics Subject Classification: 13A15, 13B30, 13F05, 13G05.

Key words and phrases: t-splitting set of ideals, Krull domain.

partition of the set of t-prime (resp. t-maximal) ideals of D (see Remark 14 and Corollary 15). Some applications for PVMDs and Krull domains are given in Propositions 16 and 17. The final part of this note contains several Nagata-type theorems.

Throughout this note, all rings are commutative unital and integral (integral domains). Every undefined terminology is standard as in [9]. Let D be an integral domain, S a multiplicative set of ideals of D and $D_S = \{x \in K | xA \subseteq D \text{ for some } A \in S\}$ the S-transform of D (see [4] for basic properties of this construction). If I is an ideal of D, then $I_S = \{x \in K | xA \subseteq I \text{ for some } A \in S\}$ is an ideal of D_S containing I. Denote by S^{\perp} the set of all ideals B of D with $(A+B)_t = D$ for all $A \in S$. Note that S^{\perp} is also a multiplicative set of ideals. Call it the t-complement of S. Consider also, the multiplicative set of ideals $sp(S) \supseteq S$ consisting of all ideals C of D with $C_t \supseteq A$ for some $A \in S$. It is easy to see that sp(sp(S)) = sp(S), $sp(S)^{\perp} = S^{\perp}$ and $D_S = D_{sp(S)}$.

We begin by providing a formal definition of the notion of t-splitting sets of ideals.

Definition 1. Let S be a multiplicative set of ideals of D and S^{\perp} its t-complement. We call S a t-splitting set of ideals if every nonzero principal ideal dD of D can be written as $dD = (AB)_t$ with $A \in sp(S)$ and $B \in S^{\perp}$.

Clearly, S is t-splitting if and only if sp(S) is t-splitting. If $S \subseteq D$ is a saturated multiplicative set of D and $S = \{sD | s \in S\}$, then S is t-splitting in the sense of [3] if and only if S is t-splitting in our sense.

In a Krull domain E, every nonzero proper principal ideal can be (uniquely) written as a t-product of height-one primes [7, Theorem 3.12], so every set of height-one prime ideals of E generates a t-splitting set (see also Proposition 17). Some easy consequences of Definition 1 are given below.

Proposition 2. If S is a t-splitting set of ideals of D, then the following assertions hold.

- (a) S^{\perp} is t-splitting.
- (b) For every $C \in \mathcal{S}$, C_t contains some t-invertible ideal of $sp(\mathcal{S})$.
- (c) The set S_i of all t-invertible ideals in sp(S) is a t-splitting set with t-complement S^{\perp} and $sp(S_i) = sp(S)$.

Proof. (a) is clear from Definition 1. For (b) and (c), note that when $0 \neq d \in C \in \mathcal{S}$ and $dD = (AB)_t$ with $A \in sp(\mathcal{S})$ and $B \in \mathcal{S}^{\perp}$, it follows that A is t-invertible and $C_t \supseteq A$. Indeed, as $C \in \mathcal{S}$ and $B \in \mathcal{S}^{\perp}$, we get $(C+B)_t = D$, so $A = (A(C+B))_t \subseteq C_t$. So, (b) follows, and, consequently, $sp(\mathcal{S}_i) = sp(\mathcal{S})$. Thus (c) follows from the remarks accompanying Definition 1.

In [8], a multiplicative set of ideals S of D is said to be v-finite if for each $A \in S$, A_t contains some v-finite ideal $J \in sp(S)$. Since an invertible t-ideal is v-finite, part (b) of the preceding result shows that a t-splitting set is v-finite. Our next result shows that, when S is t-splitting, the t-product decomposition imposed in Definition 1 for the principal ideals extends to all t-ideals (thus extending [3, Lemma 4.6]).

Proposition 3. Let S be a t-splitting set of ideals of D. Then for every nonzero ideal I of D, I_t can be written as $I_t = (AB)_t$ with $A \in sp(S)$ and $B \in S^{\perp}$. This decomposition is unique in the following sense. If $(AB)_t = (A'B')_t$ with

 $A, A' \in sp(S)$ and $B, B' \in S^{\perp}$, then $A_t = A'_t$ and $B_t = B'_t$. In particular, if I_t is of finite type, then we can choose A and B as finite type t-ideals.

Proof. Let I be a nonzero ideal of D and set $J = I \setminus \{0\}$. As S is a t-splitting set, for each $j \in J$, we can write $jD = (A_jB_j)_t$ with $A_j \in sp(S)$ and $B_j \in S^{\perp}$. Then $I_t = (\sum_j jD)_t = (\sum_j (A_jB_j)_t)_t = (\sum_j A_jB_j)_t$. But $(\sum_j A_jB_j)_t = ((\sum_h A_h)(\sum_i B_i))_t$. Indeed, the inclusion \subseteq is clear. For \supseteq , let $h, i \in J$, $h \neq i$. Then $(A_i + B_h)_t = D$, so $A_hB_i \subseteq (A_hB_i(A_i + B_h))_t \subseteq (\sum_j A_jB_j)_t$. Finally, note that $\sum_j A_j \in sp(S)$ and $\sum_j B_j \in S^{\perp}$.

For the uniqueness part, assume that $(AB)_t = (A'B')_t$ with $A, A' \in sp(S)$ and $B, B' \in S^{\perp}$. Since $(A + B')_t = (A' + B)_t = D$, we get $A_t = (A(A' + B))_t = (AA' + (AB)_t)_t = (AA' + (A'B')_t)_t = ((A + B')A')_t = A'_t$. Similarly, $B_t = B'_t$. The "in particular" part was proved on the way.

As a consequence, $S^{\perp\perp} = sp(S)$. Indeed, let C in the t-complement of S^{\perp} . As shown above, $C_t = (AB)_t$ for some $A \in sp(S)$ and $B \in S^{\perp}$. Since $(C+B)_t = D$ and $C \subseteq B_t$, we get $B_t = D$. So $C_t = A_t \in sp(S)$, hence $C \in sp(S)$.

In Proposition 5, we generalize [3, Lemma 4.2]. We need the next lemma which relies on [14, Lemma 3.4] and [8, Proposition 1.2].

Lemma 4. Let S be a multiplicative set of ideals of D and I a nonzero ideal of D. Then

- $(a) (ID_{\mathcal{S}})_t = (I_t D_{\mathcal{S}})_t.$
- (b) If I is a t-invertible ideal of D and $(ID_S)_t = D_S$, then $I \in sp(S)$.

Proof. (a) is a part of [14, Lemma 3.4]. For (b), assume that I is t-invertible. By [8, Proposition 1.2], $(JD_{\mathcal{S}})_t = (J_t)_{\mathcal{S}}$ for each finitely generated nonzero ideal J of D with D:J v-finite. As I is t-invertible, $I_t = J_t$ for some finitely generated ideal $J \subseteq I$. Moreover, D:I=D:J is v-finite and, by (a), $(ID_{\mathcal{S}})_t = (JD_{\mathcal{S}})_t$. So, $D_{\mathcal{S}} = (ID_{\mathcal{S}})_t = (JD_{\mathcal{S}})_t = (J_t)_{\mathcal{S}} = (I_t)_{\mathcal{S}}$. Hence $1 \in (I_t)_{\mathcal{S}}$, that is, $H \subseteq I_t$ for some $H \in \mathcal{S}$. Consequently, $I \in sp(\mathcal{S})$.

Proposition 5. Let S be a multiplicative set of ideals of D. Then S is t-splitting if and only if S is v-finite and $dD_S \cap D$ is a t-invertible ideal for each $0 \neq d \in D$.

Proof. Assume that S is t-splitting. Then S is v-finite, as shown in the paragraph after Proposition 2. Let $0 \neq d \in D$. Then $dD = (AB)_t$ for some $A \in S$ and $B \in S^{\perp}$. As B is t-invertible, it suffices to show that $dD_S \cap D = B_t$. In particular, it will follow that $dD_S \cap D \in S^{\perp}$. As $A(d^{-1}B_t) \subseteq d^{-1}(AB)_t = D$, we get $d^{-1}B_t \subseteq D_S$, hence $B_t \subseteq dD_S \cap D$. On the other hand, let $x \in dD_S \cap D$. Then $C(d^{-1}x) \subseteq D$ for some $C \in S$. So $Cx \subseteq dD \subseteq B_t$, hence $x \in B_t$, because $(C + B)_t = D$.

Conversely, assume that S is v-finite and $dD_S \cap D$ is a t-invertible ideal for each $0 \neq d \in D$. Let $0 \neq d \in D$. As $B = dD_S \cap D$ is a t-invertible ideal containing dD, $dD = (AB)_t$ for some (t-invertible) ideal A of D. Note that $BD_S \subseteq dD_S$. By part (a) of Lemma 4, we get $dD_S = ((AB)_tD_S)_t = (ABD_S)_t \subseteq (dAD_S)_t$, hence $(AD_S)_t = D_S$. By part (b) of Lemma 4, $A \in sp(S)$. To verify that $B \in S^{\perp} = sp(S)^{\perp}$, it suffices to see that $(B + H)_t = D$ for each t-ideal $H \in sp(S)$. By the second part of our assumption, we may assume that H is v-finite. If $x \in H^{-1} \cap B^{-1}$, then $x \in D_S$, so $Bx \subseteq BD_S \cap D = dD_S \cap D = B$. As B is t-invertible, $x \in D$. Thus $(H+B)^{-1} = H^{-1} \cap B^{-1} = D$, that is, $(H+B)_v = D$. So $(H+B)_t = (H+B)_v = D$, because H and B are v-finite ideals. Thus $B \in S^{\perp}$.

To see that in the 'if' part of the preceding proposition, the assumption that S is v-finite is essential, we may use the following example from [8]. Let V be a nontrivial valuation domain whose maximal ideal M is idempotent and $S = \{D, M\}$. Then $V_S = V$, because V : M = V. So $dV_S \cap V$ is t-invertible for each $0 \neq d \in V$. However, S is not v-finite.

Remark 6. Let S be a t-splitting set of ideals of D, I a nonzero ideal of D_S and $0 \neq d \in I \cap D$. As shown in the proof of Proposition 5, $dD_S \cap D \in S^{\perp}$. Hence $I \cap D \in S^{\perp}$, because $I \cap D \supseteq dD_S \cap D$. Similarly, $I \cap D \in sp(S)$ whenever I is a nonzero ideal of $D_{S^{\perp}}$.

The next proposition is only a restatement, in our setup, of [3, Theorem 4.10]. The proof is virtually the same. We begin with a simple lemma.

Lemma 7. If S is a multiplicative set of ideals of D, then $D = D_S \cap D_{S^{\perp}}$.

Proof. Let $x \in D_{\mathcal{S}} \cap D_{\mathcal{S}^{\perp}}$. Then $xA \subseteq D$ and $xB \subseteq D$ for some $A \in \mathcal{S}$ and $B \in \mathcal{S}^{\perp}$. So $xD = x(A+B)_t = (xA+xB)_t \subseteq D$, hence $x \in D$.

Proposition 8. Let S be a t-splitting set of ideals of D and I a nonzero ideal of D. Then

$$I_t = (ID_S)_t \cap (ID_{S^{\perp}})_t = (((ID_S)_t \cap D)((ID_{S^{\perp}})_t \cap D))_t.$$

Proof. By Lemma 7, $D = D_{\mathcal{S}} \cap D_{\mathcal{S}^{\perp}}$. Hence by [1, Theorem 2], the map sending a nozero fractional ideal A of D into $A^* = (AD_{\mathcal{S}})_t \cap (AD_{\mathcal{S}^{\perp}})_t$ is a finite character star-operation on D. Consequently, $I_t \supseteq I^*$. Part (a) of Lemma 4 supplies the opposite inclusion. For the second equality, set $U = (ID_{\mathcal{S}})_t \cap D$ and $V = (ID_{\mathcal{S}^{\perp}})_t \cap D$. By Remark 6, $U \in \mathcal{S}^{\perp}$ and $V \in sp(\mathcal{S})$, so $(U + V)_t = D$. Consequently, $I_t = U \cap V = (U \cap V)_t = (UV)_t$.

Remark 9. Let S be a t-splitting set of ideals of D and I a nonzero ideal of D. By Proposition 3, $I_t = (AB)_t$ with $A \in sp(S)$ and $B \in S^{\perp}$. Combining the previous result, Remark 6 and Proposition 3, we get $A_t = (ID_{S^{\perp}})_t \cap D$ and $B_t = (ID_S)_t \cap D$. Note that $(ID_S)_t \cap D$ and $(ID_{S^{\perp}})_t \cap D$ are t-ideals of D, cf. Lemma 4 and [5, Proposition 1.1].

Let D be a domain. By definition, a t-prime ideal of D is a nonzero prime ideal of D which is also a t-ideal. It is well-known that a prime ideal which is minimal over a nonzero principal ideal is t-prime. Also, a maximal t-ideal, that is, a maximal element of the set of all proper t-ideals, is a t-prime ideal (see e.g. [12]).

Proposition 10. Let S be a t-splitting set of ideals of D with t-complement S^{\perp} and let P be a prime t-ideal of D. Then P is either in sp(S) or in S^{\perp} . Moreover, if $P \in S^{\perp}$ and $Q \subseteq P$ is a nonzero prime ideal, then $Q \in S^{\perp}$. A similar assertion holds for sp(S).

Proof. If $0 \neq d \in P$ and $dD = (AB)_t$ with $A \in \mathcal{S}$ and $B \in \mathcal{S}^{\perp}$, then $P \supseteq A$ or $P \supseteq B$. So $P \in sp(\mathcal{S})$ or $P \in \mathcal{S}^{\perp}$, but not both because $P_t \neq D$. For the second part, we may assume that Q is a prime t-ideal, so $Q \in \mathcal{S}^{\perp}$, by the first part. \square

Lemma 11. Let S be a t-splitting set of ideals of D. Then

- (a) $(AD_S)_t = D_S$ for each $A \in sp(S)$, and
- (b) $I = ((I \cap D)D_{\mathcal{S}})_t = (I \cap D)_{\mathcal{S}}$ for each t-ideal I of $D_{\mathcal{S}}$.

Proof. S is v-finite cf. Proposition 5, so we may apply [8, Proposition 1.8] and part (iv) of [8, Proposition 1.5] to conclude.

Denote by T(D) the ordered monoid of fractional t-ideals of D with the t-product and ordered by reverse inclusion and denote by $T_+(D)$ its positive cone, that is, $T_+(D) = \{A \in T(D) | A \subseteq D\}$. When S is a multiplicative set of ideals of D, $T(D_S) \times_c T(D_{S^{\perp}})$ stands for the cardinal product of the monoids $T(D_S)$ and $T(D_{S^{\perp}})$. Our next result is an extension of [3, Theorem 4.12].

Theorem 12. If S be a t-splitting set of ideals of D, the map $\alpha : T(D) \to T(D_S) \times_c T(D_{S^{\perp}})$, $\alpha(I) = ((ID_S)_t, (ID_{S^{\perp}})_t)$ is a monoid order-isomorphism.

Proof. Clearly, α is an order-preserving monoid homomorphism. It suffices to show that $\gamma = \alpha \mid_{T_+(D)}: T_+(D) \to T_+(D_S) \times T_+(D_{S^\perp})$ is a monoid order-isomorphism. Consider the map $\beta: T_+(D_S) \times_c T_+(D_{S^\perp}) \to T_+(D)$, $\beta(I,J) = ((I \cap D)(J \cap D))_t$ (note that $I \cap D \in \mathcal{S}^\perp$ and $J \cap D \in sp(\mathcal{S})$, cf. Remark 6). We prove that γ and β are inverse to each other. Indeed, if $A \in T_+(D)$, then $\beta(\gamma(A)) = ((AD_S)_t \cap D)((AD_{S^\perp})_t \cap D)_t = A$ cf. Proposition 8. Conversely, let $(I,J) \in T_+(D_S) \times_c T_+(D_{S^\perp})$ and set $A = \beta(I,J) = ((I \cap D)(J \cap D))_t$. Since $J \cap D \in sp(\mathcal{S})$, $((J \cap D)D_S)_t = D_S$, cf. Lemma 11. Again by Lemma 11, $((I \cap D)D_S)_t = I$. So $(AD_S)_t = ((I \cap D)D_S)_t = I$. Similarly, $(AD_{S^\perp})_t = J$. Thus $\gamma(\beta(I,J)) = (I,J)$.

The next result extends [3, Remark 4.13]. Denote by TI(D) the group of fractional t-invertible t-ideals of D with the t-product and by $Cl_t(D)$ the t-class group of D, that is, the factor group of TI(D) modulo its subgroup of principal fractional ideals. For $I \in TI(D)$, let [I] denote the image of I in $Cl_t(D)$.

Remark 13. Let S be a t-splitting set of ideals of D. By Theorem 12, the map α given there induces an isomorphism $TI(D) \to TI(D_S) \times TI(D_{S^{\perp}})$. Moreover, if A is a principal fractional ideal of D, then both components of $\alpha(A)$ are principal. Consequently, α induces a surjective group homomorphism $\bar{\alpha}: Cl_t(D) \to Cl_t(D_S) \times Cl_t(D_{S^{\perp}})$, $\bar{\alpha}([I]) = ([(ID_S)_t], [(ID_{S^{\perp}})_t])$.

For a domain D, let t-Spec(D) (resp., t-Max(D)) denote the set of all t-prime ideals (resp., maximal t-ideals) of D.

Remark 14. Let S be a t-splitting set of ideals of D. From the proof of Theorem 12, we get a one-to-one correspondence between $S^{\perp} \cap T_{+}(D)$ and $T_{+}(D_{S})$ given by $A \mapsto (AD_{S})_{t}$ and $I \mapsto I \cap D$. Restricting, we get a one-to-one correspondence between $S^{\perp} \cap t$ -Spec(D) and t-Spec (D_{S}) . By [4, Theorem 1.1], if $Q \in t$ -Spec (D_{S}) , then $(D_{S})_{Q} = D_{Q \cap D}$. Also, we get a one-to-one correspondence between $sp(S) \cap t$ -Spec(D) and t-Spec $(D_{S^{\perp}})$. Note that by Proposition 10, the sets $sp(S) \cap t$ -Spec(D) and $S^{\perp} \cap t$ -Spec(D) give a partition of t-Spec(D). Similar correspondences hold when replacing t-Spec by t-Max.

Therefore, by Remark 14 and [4, Theorem 1.1], $t\text{-Max}(D_{\mathcal{S}^{\perp}}) = \{P_{\mathcal{S}^{\perp}}; P \in sp(\mathcal{S}) \cap t\text{-Max}(D)\}$ and $(D_{\mathcal{S}^{\perp}})_{P_{\mathcal{S}^{\perp}}} = D_P$ for each $P \in sp(\mathcal{S}) \cap t\text{-Max}(D)$. Similarly, $t\text{-Max}(D_{\mathcal{S}}) = \{P_{\mathcal{S}}; P \in \mathcal{S}^{\perp} \cap t\text{-Max}(D)\}$ and $(D_{\mathcal{S}})_{P_{\mathcal{S}}} = D_P$ for each $P \in \mathcal{S}^{\perp} \cap t\text{-Max}(D)$.

Corollary 15. Let S be a t-splitting set of ideals of D. Then $D_S = \cap \{D_P | P \in t\text{-}Max(D) \cap S^{\perp}\}$ and $D_{S^{\perp}} = \cap \{D_P | P \in t\text{-}Max(D) \cap sp(S)\}$.

Proof. By the preceding paragraph, $D_{S^{\perp}} = \cap \{(D_{S^{\perp}})_Q | Q \in t\text{-Max}(D_{S^{\perp}})\} = \cap \{D_P | P \in t\text{-Max}(D) \cap sp(S)\}$. The other equality can be proved similarly. \square

Let us recall from [10] that D is a PVMD if and only if D_P is a valuation domain for each maximal t-ideal P of D.

Proposition 16. Let S be a t-splitting set of ideals of D. Then every finite type t-ideal in sp(S) is t-invertible if and only if $D_{S^{\perp}}$ is a PVMD.

Proof. (\Rightarrow) Let $Q \in t\text{-Max}(D_{S^{\perp}})$ and $P = Q \cap D$. Then $P \in t\text{-Max}(D) \cap sp(S)$ by Lemmas 4 and 11.

Let J be a nonzero finitely generated ideal of D_P . Then $J = ID_P$ where I is a finitely generated ideal of D. Then $I_t = (AB)_t$ for some $A \in sp(\mathcal{S})$ and $B \in \mathcal{S}^{\perp}$. Since $P \in sp(\mathcal{S})$, $B \nsubseteq P$, and so $(ID_P)_t = (I_tD_P)_t = ((AB)_tD_P)_t = ((AB)D_P)_t = (AD_P)_t$. Also, since I is finitely generated, I_t , and hence A_t is of finite type; so A_t is t-invertible. Note that P is a prime t-ideal of D; so $AA^{-1} \nsubseteq P$. Hence AD_P and ID_P are invertible, and thus ID_P is principal. So D_P is a valuation domain. Thus as $D_P \subseteq (D_{\mathcal{S}^{\perp}})_Q$, $(D_{\mathcal{S}^{\perp}})_Q$ is a valuation domain, and thus $D_{\mathcal{S}^{\perp}}$ is a PVMD.

(\Leftarrow) Let $I \in sp(S)$ be a finite type t-ideal of D, and let $P \in t$ -Max(D). If $P \notin sp(S)$, then $I \nsubseteq P$, and hence $ID_P = D_P$. Assume that $P \in sp(S)$. Then $P_{S^{\perp}}$ is a t-ideal of $D_{S^{\perp}}$ and $D_P = (D_{S^{\perp}})_{P_{S^{\perp}}}$. Since $D_{S^{\perp}}$ is a PVMD, D_P is a valuation domain. Also, since I is a finite type t-ideal, ID_P is principal. Hence I is t-locally principal, and thus I is t-invertible. □

Our next result is a variant of [6, Theorem 2.2].

Proposition 17. Let Γ be a collection of t-invertible prime t-ideals of D and S the multiplicative set generated by Γ . Then the following statements are equivalent.

- (a) S is a t-splitting set.
- (b) $\cap_n P_1 \cdots P_n = 0$ for each sequence (P_n) of elements of Γ .
- (c) $D_{S^{\perp}}$ is a Krull domain.

Proof. Clearly, S^{\perp} is the set of ideals I of D contained in no $P \in \Gamma$. Note that $\Gamma \subseteq t\text{-Max}(D)$ cf. [13, Proposition 1.3].

- $(a)\Rightarrow (c)$ Let $Q\in t\text{-Max}(D)\cap sp(\mathcal{S})$ and $Q'\subseteq Q$ a minimal prime of a principal ideal. Then Q' is a t-ideal and $Q'\in sp(\mathcal{S})$ cf. Proposition 10. Then $Q'\supseteq P_1\cdots P_n$ for some $P_i\in \Gamma$. Hence $Q'=P_i=Q$ because $P_i\in t\text{-Max}(D)$. Thus $t\text{-Max}(D)\cap sp(\mathcal{S})=\Gamma$ and each $P\in \Gamma$ has height one. By Lemma 4, $P_{\mathcal{S}^\perp}$ is t-invertible in $D_{\mathcal{S}^\perp}$ for each $P\in \Gamma$. By the paragraph after Remark 14, $t\text{-Max}(D_{\mathcal{S}^\perp})=\{P_{\mathcal{S}^\perp}|\ P\in \Gamma\}$ and each $P_{\mathcal{S}^\perp}$ has height one, because $(D_{\mathcal{S}^\perp})_{P_{\mathcal{S}^\perp}}=D_P$. By [15, Theorem 3.6], $D_{\mathcal{S}^\perp}$ is a Krull domain.
- $(c) \Rightarrow (b)$ Let (P_n) be a sequence of elements of Γ and $P \in (P_n)$. Clearly $P \notin \mathcal{S}^{\perp}$. As P is t-invertible, we have $(PD_{\mathcal{S}^{\perp}})_t = P_{\mathcal{S}^{\perp}}$ (see the proof of Lemma 4), so $P_{\mathcal{S}^{\perp}}$ is a prime t-ideal of $D_{\mathcal{S}^{\perp}}$. Since $D_{\mathcal{S}^{\perp}}$ is a Krull domain, we get $\cap_n P_1 \cdots P_n \subseteq \cap_n (P_1)_{\mathcal{S}^{\perp}} \cdots (P_n)_{\mathcal{S}^{\perp}} = 0$.
- $(b) \Rightarrow (a)$ Assume that $\cap_n P_1 \cdots P_n = 0$ for each sequence (P_n) of ideals of Γ . Let $0 \neq d \in D$. Since each $P \in \Gamma$ is t-invertible, if I is a nonzero ideal contained in P, we get $I_t = (PJ)_t$ with $J = P^{-1}I$. We use repeatedly this factorization property starting with I = dD. By our assumption on Γ , we get $dD = (P_1 \cdots P_n J)_t$ for some $P_1, ..., P_n \in \Gamma$, $n \geq 0$ and some ideal J contained in no $P \in \Gamma$, thus $J \in \mathcal{S}^{\perp}$.

We recall that a Mori domain is a domain satisfying the ascending chain condition for the divisorial ideals.

Corollary 18. A collection of t-invertible prime t-ideals of a Mori domain generates a t-splitting set.

Corollary 19. A collection of t-invertible uppers to zero in D[X] generates a t-splitting set.

Recall that with the realization of the power of splitting sets came various extensions of Nagata's theorem for UFD's (see e.g. [2]). Now the question is what can the t-splitting sets of ideals do for us? In fact they can deliver a somewhat modified version of Nagata type Theorems.

An integral domain D is said to be of *finite t-character* if every nonzero nonunit of D belongs to only finitely many maximal t-ideals of D.

Proposition 20. Let S be a t-splitting set of ideals of an integral domain D, and suppose that every proper ideal in S is contained in at most a finite number of maximal t-ideals of D. Then D_S is a ring of finite t-character if and only if D is a ring of finite t-character.

Proof. By Proposition 10 and the paragraph preceding Corollary 15, if P is a maximal t-ideal of D, then either $P \in sp(\mathcal{S})$ or $P \in \mathcal{S}^{\perp}$ and that t-Max $(D_{\mathcal{S}}) = \{P_{\mathcal{S}} | P \in \mathcal{S}^{\perp} \cap t$ -Max(D). For $0 \neq d \in D$, let $dD = (AB)_t$, where $A \in sp(\mathcal{S})$ and $B \in \mathcal{S}^{\perp}$. Since $A \in \mathcal{S}$, there are only a finite number of maximal t-ideals in $sp(\mathcal{S})$ containing A (and hence d). Moreover, since t-Max $(D_{\mathcal{S}}) = \{P_{\mathcal{S}} | P \in \mathcal{S}^{\perp} \cap t$ -Max(D)}, the number of maximal t-ideals in \mathcal{S}^{\perp} containing d is finite. Therefore, D is of t-finite character. The converse is straightforward from the above observation.

This result can be put to direct use in a number of situations. In the following, we address a few of them.

Corollary 21. Let D be an integral domain and let S be a t-splitting set of ideals of D generated by height-one prime ideals. Suppose that every proper ideal in S is contained in at most a finite number of maximal t-ideals of D. Then D_S is a ring of finite t-character if and only if D is a ring of finite t-character.

An integral domain D is called a weakly Krull domain if $D = \bigcap_{P \in X^1(D)} D_P$ and this intersection has finite character. In [11], Griffin introduced a ring of Krull type; an integral domain which is a locally finite intersection of essential valuation overrings. The ring of Krull type D is an independent ring of Krull type if each prime t-ideal of D lies in a unique maximal t-ideal and a generalized Krull domain if D is weakly Krull.

Corollary 22. Let \mathcal{F} be a family of height-one t-invertible prime t-ideals of an integral domain D. Let \mathcal{S} be a multiplicative set of ideals generated by \mathcal{F} and suppose that every nonzero nonunit of D belongs to at most a finite number members of \mathcal{F} .

- (1) D is a weakly Krull domain if and only if $D_{\mathcal{S}}$ is.
- (2) D is a generalized Krull domain if and only if D_S is.
- (3) D is a ring of Krull type if and only if $D_{\mathcal{S}}$ is.
- (4) D is an independent ring of Krull type if and only if $D_{\mathcal{S}}$ is.
- (5) D is a PVMD if and only if D_S is.

Proof. The proof consists in noting that every t-invertible prime t-ideal P is a maximal t-ideal [13, Proposition 1.3] and that P being of height-one implies that D_P is a discrete valuation domain. The rest depends upon recalling the definitions of the respective notions.

In this vein it would be interesting to record the following result.

Corollary 23. Let X be an indeterminate over the integral domain D and $S = \{f \in D[X] | A_f^{-1} = D\}$. Then D is a ring of Krull type if and only if $(D[X])_S$ is a Bezout domain of finite character.

Proof. Recall that D is a PVMD if and only if $D[X]_S$ is a Bezout domain [14, Theorem 3.7] and that D is of finite type if and only if D[X] is [9, Exercise 1, pp.537]. So the result follows from Corollary 22(4) because the set $S := \{I \subseteq D[X] | I \text{ is an ideal of } D[X] \text{ such that } f \in I \text{ for some } f \in S\}$ is a t-splitting set of ideals. \square

Just to give an idea of how these results can be extended we state the following. Let * be a star operation on an integral domain D, and let $*_s$ be the finite type star operation induced by *, i.e., $I^{*_s} = \cup \{F^* | F \subseteq I \text{ is finitely generated} \}$ for any $I \in \mathcal{F}$. Then D is called a $Pr\ddot{u}fer *-multiplication domain if every finitely generated ideal of <math>D$ is $*_s$ -invertible. It is clear that Pr $\ddot{u}fer *-multiplication$ domains are PVMDs because $I^{*_s} \subseteq I_t$.

Proposition 24. Let D be a domain, * a star operation of finite type on D, \mathcal{F} a family of maximal height-one principal primes of D and \mathcal{S} the multiplicative set generated by \mathcal{F} . Suppose that each nonzero nonunit of D is contained in at most a finite number of members of \mathcal{F} . Then D is of *-finite character (resp., Prüfer *-multiplication domain) if and only if $D_{\mathcal{S}}$ is of *-finite character (resp., Prüfer *-multiplication domain).

We note that if the finite character star operation * is the identity star operation d that takes $A \mapsto A$ for all $A \in F(D)$, then a Prüfer *-multiplication domain is a Prüfer domain. Thus for * = d Proposition 24 gives us the following corollary.

Corollary 25. Let D be domain, \mathcal{F} a family of height-one principal primes that are also maximal ideals and \mathcal{S} the multiplicative set generated by \mathcal{F} . Suppose that every nonzero nonunit of D belongs to at most a finite number of members of \mathcal{F} . Then D is a Prüfer domain of finite character if and only if $D_{\mathcal{S}}$ is a Prüfer domain of finite character.

References

- [1] D.D. Anderson, Star-operations induced by overrings, Comm. Algebra 16 (1988), 2535-1553.
- [2] D.D. Anderson, D.F. Anderson and M. Zafrullah, Splitting the t-class group, J. Pure Appl. Algebra 74 (1991), 17-37.
- [3] D.D. Anderson, D.F. Anderson and M. Zafrullah, The ring $D + XD_S[X]$ and t-splitting sets, Arab. J. Sci. Eng., Sect. C Theme Issues, **26** (2001), 3-16.
- [4] J.T. Arnold and J. Brewer, On flat overrings, ideal transforms and generalized transforms of a commutative ring, J. Algebra 18 (1971), 254-263.
- [5] V. Barucci, S. Gabelli and M. Roitman, The class group of a strongly Mori domain, Comm. Algebra 22 (1994), 173-211.
- [6] G.W. Chang, T. Dumitrescu and M. Zafrullah, t-Splitting sets in integral domains, to appear in J. Pure Appl. Algebra.
- [7] R.M. Fossum, The Divisor Class Group of a Krull domain, Springer Verlag, New York/Berlin, 1973.
- [8] S. Gabelli, On Nagata's theorem for the class group II, Commutative Algebra and Algebraic Geometry (Ferrara), 117-142, Lecture Notes in Pure and Appl. Math. 206, Marcel Dekker, New York, 1999.
- [9] R. Gilmer, Multiplicative Ideal Theory, Marcel Dekker, New York, 1972.
- [10] M. Griffin, Some results on v-multiplication rings, Canad. J. Math. 19 (1967) 710-722.
- [11] M. Griffin, Rings of Krull type, J. Reine Angew. Math. 229 (1968), 1-27.

- [12] J. Hedstrom, E. Houston, Some remarks on star-operations, J. Pure Appl. Algebra 18 (1980), 37-44
- [13] E. Houston and M. Zafrullah, On t-invertibility II, Comm. Algebra 17 (1989), 1955-1969.
- [14] B.G. Kang, Prüfer v-multiplication domains and the ring $R[X]_{N_v}$, J. Algebra 123 (1989), 151-170
- [15] B.G. Kang, On the converse of a well-known fact about Krull domains, J. Algebra 124 (1989), 284-299.

(Chang) Department of Mathematics, University of Incheon, Incheon 402-749, Korea $E\text{-}mail\ address$: whan@incheon.ac.kr

(DUMITRESCU) FACULTATEA DE MATEMATICA, UNIVERSITATEA BUCURESTI, STR. ACADEMIEI 14, BUCHAREST, RO-010014, ROMANIA

 $E ext{-}mail\ address: tiberiu@al.math.unibuc.ro}$

(Zafrullah) Department of Mathematics, Idaho State University, Pocatello, ID 83209-8085, USA

E-mail address: mzafrullah@usa.net