Differential expression analysis

Charlotte Soneson

Friedrich Miescher Institute for Biomedical Research & SIB Swiss Institute of Bioinformatics

Hinxton, April 9, 2019

Differential analysis types for RNA-seq

- Does the total output of a gene change between conditions? DGE
- Does the expression of individual transcripts change? DTE
- Does any isoform of a given gene change? DTE+G
- Does the isoform composition for a given gene change? DTU/DIU/DEU
- (Does anything change? GDE*)
- need different abundance quantification of transcriptomic features (genes, transcripts, exons)

Differential expression analysis

Input: expression/abundance matrix
 (features x samples) + grouping/sample annotation

	SRR1039508	SRR1039509	SRR1039512	SRR1039513	SRR1039516	SRR1039517	SRR1039520	SRR1039521
ENSG000000000003	693	451	887	416	1148	1069	774	581
ENSG000000000005	0	0	0	0	0	0	0	0
ENSG00000000419	466	515	623	364	590	794	419	510
ENSG00000000457	326	274	372	223	356	450	308	297
ENSG00000000460	91	75	61	48	110	95	100	82
ENSG00000000938	0	0	2	0	1	0	0	0

Output: result table (one line per feature)

```
LogFC logCPM LR PValue FDR ENSG00000109906 -5.882117 4.120149 924.1622 5.486794e-203 3.493826e-198 ENSG00000165995 -3.236681 4.603028 576.1025 2.641667e-127 8.410672e-123 ENSG00000189221 -3.316900 6.718559 562.9594 1.909251e-124 4.052512e-120 ENSG00000120129 -2.952536 7.255438 506.3838 3.881506e-112 6.179067e-108 ENSG00000196136 -3.225084 6.911908 463.2175 9.587512e-103 1.221008e-98 ENSG00000101347 -3.759902 9.290645 449.9697 7.323427e-100 7.772231e-96 ENSG00000162692 3.616656 4.551120 402.0266 1.994189e-89 1.587300e-85 ENSG00000171819 -5.705289 3.474697 389.3431 1.150502e-86 8.140055e-83 ENSG00000152583 -4.364255 5.491013 376.1995 8.363745e-84 5.325782e-80
```

Differential expression analysis - input

	SRR1039508	SRR1039509	SRR1039512	SRR1039513	SRR1039516	SRR1039517	SRR1039520	SRR1039521
ENSG000000000003	693	451	887	416	1148	1069	774	581
ENSG000000000005	0	0	0	0	0	0	0	0
ENSG000000000419	466	515	623	364	590	794	419	510
ENSG000000000457	326	274	372	223	356	450	308	297
ENSG000000000460	91	75	61	48	110	95	100	82
ENSG00000000938	0	0	2	0	1	0	0	0

- Most RNA-seq methods (e.g., edgeR, DESeq2, voom) need raw counts (or equivalent) as input
- Don't provide these methods with (e.g.) RPKMs, FPKMs, TPMs, CPMs, log-transformed counts, normalized counts, ...
- Read documentation carefully!

Model formulas and design matrices

- Testing is done separately for each gene
- · We must tell the packages which model to fit (e.g. which predictors to use)
- The design does not follow "automatically" from having the sample annotation table - many different designs are often possible
- Model formulas in R:

response variable \sim predictors

 Fit a separate model for each gene - response variable changes. Specify only predictors

Testing and contrasts

- After fitting the model(s), we must decide which coefficient (or combination thereof) we want to apply a hypothesis test for.
- Combinations of coefficients are called contrasts.
- Design matrices can often be defined in many equivalent ways important that the contrast is defined accordingly!

Model formulas and design matrices

A design matrix contains the values of the predictor variables for each sample

coefficients

$$\begin{pmatrix} y_1 \\ y_2 \\ y_3 \\ y_4 \\ y_5 \\ y_6 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 1 & 0 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} \beta_0 \\ \beta_1 \end{pmatrix} + \begin{pmatrix} \varepsilon_1 \\ \varepsilon_2 \\ \varepsilon_3 \\ \varepsilon_4 \\ \varepsilon_5 \\ \varepsilon_6 \end{pmatrix} = X\beta + \varepsilon$$

$$y_i = \beta_0 + \beta_1 x_i + \varepsilon_i$$

e.g.: (log) expression values for a given gene

Sample table:

	sample	treatment
1	s1	control
2	s2	control
3	s3	control
4	s4	treated
5	s5	treated
6	s6	treated

Design matrix:

treatmenttreated	treatmentcontrol	
0	1	1
0	1	2
0	1	3
1	0	4
1	0	5
1	0	6

Formula:

control	treated
treatmentcontrol	treatmenttreated

Sample table:

	sample	treatment
1	s1	control
2	s2	control
3	s3	control
4	s4	treated
5	s5	treated
6	s 6	treated

Design matrix:

treatmenttreated	(Intercept)	
0	1	1
0	1	2
0	1	3
1	1	4
1	1	5
1	1	6

Formula:

 \sim treatment

Sample table:

sample treatment

1	s1	control
2	s2	control
3	s3	control
4	s4	treated
5	s5	treated
6	s6	treated

Design matrix:

	<u> </u>	
1	1	0
2	1	0
3	1	0
4	1	1
5	1	1
6	1	1

Formula:

 \sim treatment

Sample table:

	sample	treatment
1	s1	control
2	s2	control
3	s3	control
4	s4	treated
5	s5	treated
6	s6	treated

Design matrix:

	(Intercept)	treatmenttreated
1	1	0
2	1	0
3	1	0
4	1	1
5	1	1
6	1	1

Formula:

 \sim treatment

Sample table:

	sample	treatment
1	s1	control
2	s2	control
3	s3	control
4	s4	treated
5	s5	treated
6	s6	treated

Design matrix:

	(Intercept)	treatmenttreated
1	1	0
2	1	0
3	1	0
4	1	1
5	1	1
6	1	1

Formula:

 \sim treatment

Sample table:

	sample	treatment
1	s1	control
2	s2	control
3	s3	control
4	s4	treated
5	s5	treated
6	s6	treated

Design matrix:

	(Intercept) treatmenttreate	
1	1	0
2	1	0
3	1	0
4	1	1
5	1	1
6	1	1

Formula:

 \sim treatment

Sample table:

	sample	treatment
1	s1	control
2	s2	control
3	s3	control
4	s4	treated
5	s 5	treated
6	s 6	treated

Design matrix:

	(Intercept)	treatmenttreated
1	1	0
2	1	0
3	1	0
4	1	1
5	1	1
6	1	1

Formula:

 \sim treatment

Sample table:

	sample	treatment
1	s1	control
2	s2	control
3	s3	control
4	s4	treated
5	s5	treated
6	s 6	treated

Design matrix:

	(Intercept)	treatmenttreated
1	1	0
2	1	0
3	1	0
4	1	1
5	1	1
6	1	1

Formula:

 \sim treatment

Sample table:

	sample	treatment
1	s1	control
2	s2	control
3	s3	control
4	s4	treated
5	s5	treated
6	s 6	treated

Design matrix:

treatmenttreated	(Intercept)	
0	1	1
0	1	2
0	1	3
1	1	4
1	1	5
1	1	6

Formula:

Model formulas and design matrices - example 2 One continuous predictor

Sample table:

	sample	age	
1	s1	21	
2	s2	12	
3	s3	64	
4	s4	44	
5	s5	19	
6	s6	26	

Design matrix:

	(Intercept)	age
1	1	21
2	1	12
3	1	64
4	1	44
5	1	19
6	1	26

Formula:

s1	s2	s3	s4	s5	s6
Intercept +					
21 * age	12 * age	64 * age	44 * age	19 * age	26 * age

Model formulas and design matrices - example 3 One predictor, three levels

Sample table:

Design matrix:

	sample	treatment		(Intercept)	treatmenttreatA	treatmenttreatB
1	s1	control	1	1	0	0
2	s2	control	2	1	0	0
3	s3	treatA	3	1	1	0
4	s4	treatA	4	1	1	0
5	s5	treatB	5	1	0	1
6	s6	treatB	6	1	0	1

Formula:

$\sim { m treatment}$	control	treatA	treatB
		Intercept +	Intercept +
	Intercept	treatmenttreatA	treatmenttreatB

Model formulas and design matrices - example 4 One predictor, paired data (or two predictors)

Sample table:

Design matrix:

	sample	treatment		(Intercept)	samples2	samples3	treatmenttreated
1	s1	control	1	1	0	0	0
2	s1	treated	2	1	0	0	1
3	s2	control	3	1	1	0	0
4	s2	treated	4	1	1	0	1
5	s3	control	5	1	0	1	0
6	s3	treated	6	1	0	1	1

Formula:

		s1	s2	s3
\sim sample + treatment	control	Intercept	Intercept + samples2	Intercept + samples3
	treated	Intercept + treatmenttreated	Intercept + samples2 + treatmenttreated	Intercept + samples3 + treatmenttreated

Model formulas and design matrices - example 4 One predictor, paired data (or two predictors)

Sample table:

	genotype	treatment
1	A	control
2	A	control
3	A	treated
4	A	treated
5	В	control
6	В	control
7	В	treated
8	В	treated

Design matrix:

	(Intercept)	genotypeB	treatmenttreated
1	1	0	0
2	1	0	0
3	1	0	1
4	1	0	1
5	1	1	0
6	1	1	0
7	1	1	1
8	1	1	1

Formula:

~ genotype + treatment

	genotype A	genotype B
control	Intercept	Intercept + genotypeB
treated	Intercept + treatmenttreated	Intercept + genotypeB + treatmenttreated

Model formulas and design matrices - example 5 Two predictors, with interaction

Sample table:

Design matrix:

	genotype	treatment					
1	A	control		(Intercept)	genotypeB	treatmenttreated	genotypeB:treatmenttreated
2	A	control	1	1	0	0	0
2			2	1	0	0	0
3	A	treated	3	1	0	1	0
4	A	treated	4	1	0	1	0
5	В	control	5	1	1	0	0
6	В	control	6	1	1	0	0
7	В	treated	7	1	1	1	1
,	_		8	1	1	1	1
Ω	B	treated					

Formula:

		genotype A	genotype B
\sim genotype * treatment \sim genotype + treatment + genotype:treatment	control	Intercept	Intercept + genotypeB
	treated	Intercept + treatmenttreated	Intercept + genotypeB + treatmenttreated + genotypeB:treatmenttreated

Model formulas and design matrices - example 6 Two predictors, with interaction

Sample table:

Design matrix:

treat.gt					
1 control.A	treat.	gtcontrol.A treat	.gttreated.A trea	t.gtcontrol.B t	reat.gttreated.B
2 control.A	1	1	0	0	0
3 treated.A	2	1	0	0	0
4 treated.A	3	0	1	0	0
5 control.B	4	0	1	0	0
6 control.B	5	0	0	1	0
7 treated.B	6	0	0	1	0
8 treated.B	7	0	0	0	1
	8	0	0	0	1

Formula:

	genotype A	genotype B
control	treat.gtcontrol.A	treat.gtcontrol.B
reated	treat.gttreated.A	treat.gttreated.B

\sim	0	+	treat.gt
--------	---	---	----------

Using contrasts vs subsetting data set

- Fitting model to full data set and using contrasts gives more samples to estimate parameters (generally recommended)
- Also assumes that dispersion is similar in all groups (estimates one dispersion parameter per gene)
- In some situations, subsetting to only groups of interest is advantageous:

