

Шинопровод РОGLIANО Серия ВХ 800A-5000A

Содержание INDEX

Схема монтажа	Assembly layout	2
Характеристики системы	System features	4
	Straight feeder sections	6
Прямые секции с точками отвода	Straight plug-in sections	8
Прямые секции с огнезащитным барьером	Firebarriers	9
Расчет длины недостающего элемента	How to measure a gap	9
Угловые секции для монтажа «плашмя»	Edgewise elbows	10
Угловые секции для монтажа «на ребро»	Flatwise elbow	10
Т-образные элементы	T – sections	11
Специальные элементы	Special versions	11
Адаптер	Terminal element	12
Отверстия в адаптере	Drillings on terminal elements	12
Размеры фланца адаптера	Flange dimensions	13
Блоки подачи питания	Feed-in boxes	14
Промежуточные блоки подачи питания	Intermediate feed-in boxes	15
Втычные отводные блоки	Tap-off plugs	16
Фиксированные отводные блоки	Joint tap-off plugs	17
Фиксированные отводные блоки	Joint tap-off plugs	18
Установочные размеры отводных блоков	Tap-off sizes	18
Аксессуары	Accessories	19
Крепежи	Hangers	19
Падение напряжения	Voltage drop	20
Технические харатеристики	Technical data	22

Cxema mohtawa
BLINDOCOMPATTO SYSTEM LAYOUT

Характеристики системы BLINDOCOMPATTO®

BLINDOCOMPATTO® SYSTEM FEATURES

Соответствует международным и внутренним стандартам: EN 60439-1, EN 60439-2, IEC 439-1, 439-2

 Номинальный ток от 800 до 5000А. Транспортные линии или линии с точками отвода с горизонтальными или вертикальными секциями, прямыми или угловыми.

Компактность, высокая устойчивость к коротким замыканиям, низкое сопротивление, низкий уровень падения напряжения и хорошая коррозионная устойчивость делает шинопровод серии ВХ удобным для установки и эксплуатации в маленьком пространстве и неблагобриятных условиях окружающей среды.

■ Степень защиты IP 55 (EN 60529)

Напряжение до 1000 В при частоте 50/60Гц.

Оцинкованный стальной кожух (EN 10142) с толщиной металла 1.5мм. Окрашенный стальной кожух (RAL 7035) по запросу.

 Шины: электротехническая медь (99.9%) или алюминий AD14, оцинкованные, покрытые медью и оловом по всей длине

Каждая шина изолирована полиэстровой пленкой, после чего шины собираются в конструкцию типа «сэндвич» и изолируются еще раз. Изоляция класса F (1550C).

Complies to international and domestic standards: EN 60439-1, EN 60439-2, IEC 439-1 and 439-2 and all national standards deriving from them

Rated current from 800 up to 5000 A. Feeder or plug-in lines with horizontal or vertical sections, straight or bent.

Very compact size, high short-circuit strength, low impedance, low voltage drop and good corrosion strength make BX system suitable for installation in small spaces and difficult environments.

IP55 protection degree (EN 60529)

Voltage up to 1000V at frequencies of 50/60 HZ

Zinc-plated steel housing (EN 10142) with a thickness of 1.5 mm. Pre-painted steel housing (RAL 7032) on request.

Busbars: pure electrolytic copper (99.9%) or aluminium AD 14 busbars, zinc-plated, copper-plated and tin-plated throughout their length.

Each bar is wrapped with a polyester tape and then all the bars are packed together sandwich-type and wrapped one more time.
The insulation is in F class (155 degrees Celsius).

Защитный проводник РЕ состоит из двух оцинкованных стальных изолированных шин, подключенных параллельно с кожухом. По заказу защитный проводник РЕ может быть медным или алюминиевым, что увеличивает его поперечное сечение.

steel bars enclosed and connected in parallel with the housing. On re- quest the PE conductor can be made of copper or aluminium, thus increasing the PE cross section.

- Быстрый и удобный монтаж, в том числе благодаря одноболтовым соединениям (момент затяжки 60 Нм).
- Speedy and easy installation, also thanks to the single-bolt joint (torque: 60 Nm).
- Шины собраны по типу «сэндвича» без использования дополнительных креплений. Такая конструкция позволяет снизить реактивное сопротивление. Благодаря большому попречному сечению, полное сопротивление системы ВХ - максимально низкое.

The busbars are assembled sandwich-type with no supports. This configuration minimizes reactance. Thanks to abundant phase cross sections, resistance is also very low. system is, consequently, a low-impedance system.

У версии с промежуточными отводами, трехметровые секции имеют розетки на обеих узких сторонах (137 мм).

In the plug-in version the three meter sections have tap-off outlets on both narrow sides (137 mm).

Отводы выполнены с выключателями и предохранителями, или автоматическим выключателем в литом корпусе

Tap-off units with switch and fuses or MCCB's.

Любая секция может быть демонтирована без перемещения смежных секций. В любой момент возможно изменить маршрут трассы, что делает систему очень гибкой.

Any section can be taken out without moving the adjacent ones. At any moment it is possibile to modify the path of the run, which makes for a very flexible system.

Система обеспечивает минимальные тепловые потери. что позволяет экономить энергию (смотрите тех. описание)

Low Joule losses, which contributes to energy savings (see technical data sheet).

Обеспечивается отличный теплоотвод через поверхность

Excellent heat dissipation through the surface of the hou-

кожуха.

Easily-installed suspension system that assures a high me-

Система крепления легко устанавливается и обеспечивает высокую механическую прочность.

chanical strength.

Секции шинопровода BUSBAR TRUNKING SECTIONS

Прямые секции STRAIGHT SECTIONS

3200A

4000A

5000A

225700Z3LAC

225900Z3LPC

226800Z3LAC

225780Z2LAC

225980Z2LPC

226880Z2LAC

225781Z1LAC

225981Z1LPC

226881Z1LAC

215900Z3LAC

215000Z3LPC

216000Z3LPC

215980Z2LAC

215080Z2LPC

216080Z2LPC

215981Z1LAC

215081Z1LPC

216081Z1LPC

4P + PE

Прямые транспортные секции с возможностью подключения отводных блоков в месте соединения;

Секция с промежуточными отводами;

Конфигурация системы: 1, 2 или 3 системы шин;

Степень защиты IP55;

 Прямые транспортные секции и секции с промежуточными отводами - заменяемы;

 С обеих сторон на секции расположение фаз обозначено как 3, 2, 1, N;

 Версия с промежуточными отводами дает возможность разместить в общей сложности 6 розеток на трехметровой секции (по три на каждой из сторон шириной 137мм);

 Возможна установка отводного блока на каждом соединении транспортных секций;

 Втычные отводные блоки рассчитаны на силу тока до 630А, могут быть установлены на линию под напряжением;

 Фиксированные отводные блоки и блоки рассчитанные на силу тока от 400А и выше должны устанавливаться только при обесточенной линии;

Отводные блоки выполнены с определенной полярностью;

Соединение с помощью одного болта обеспечивает электрическое и механическое соединение всех шин, включая РЕ, двух смежных секций;

 В зависимости от высоты, шины соединяются одним или двумя болтами;

 Соединительный блок состоит из посеребренных медных пластин, помещенных в изоляционный материал.

Как только соединение затянуто, на стороне соединения, противоположной болту, появится красный маркер. Правильный момент затяжки: 60Нм.

Изоляционный материал класса F, выдерживает темпратуру до 155° C;

Момент затяжки можно проверить без отключения линии. (Номинальный момент 60Нм);

 Термические расширение линии компенсируется в каждом соединении;

 Все секции системы, включая блоки питания, оснащены соединительными блоками;

Тепловыделение происходит через поверхность кожуха.
 Повышение температуры корпуса при номинальном токе всегда не более 55°C, вне зависимости от положения трассы;

испытательное напряжение изоляции 3500 V.

4P + PE

Feeder with possibility to tap off joints;

Plug-in section;

System configuration: 1, 2 or 3 ducts;

Protection degree IP55;

Feeder and plug-in sections are interchangeable;

On both sides of the sections the phase position is indicated as 3, 2, 1, N;

The plug-in version allows for a total of six tap-off outlets on a 3m section (three per 137 mm side);

It is possible to insert a joint tap-off plugs at every joint of a feeder section;

Tap-off plugs with a rated I up to 630 A may be installed with the line live;

Joint tap-off plugs and plugs of rated I equal to or higher than 400 A must be installed with the line off;

Tap-off plugs are polarized;

The single-bolt joint assures in one operation: -the electrical and mechanical connection of all busbars, PE included, between two adjacent sections

Depending on the height of the busbars, the joint has either one or two bolts;

The joint stack consists of a set of silver-plated copper plates. The plates are interposed in layers with other plates of insulating material.

Once the coupling is torqued, on the side of the joint opposite the bolt a red marker indicates that the joint has been torqued. Correct torque: 60 Nm.

The insulation material is class F, up to 155 degrees C;

Torque can be checked again without turning off the line. Torque is 60 Nm;

Linear thermal expansion is compensated at every joint;

All system sections, feed-in boxes included, come with a joint stack;

Heat dissipation is by conduction through the surface of the housing. The temperature rise of the housing at rated current is always below 55 degrees C, in whatever position the duct is installed:

The dielectric test voltage is 3500 V.

Элементы трассы шинопровода BUSBAR TRUNKING SECTIONS

Прямые секции с точками отвода STRAIGHT PLUG-IN SECTIONS

Длина секций с точками отвода - 3 метра. Они оснащены meter long. They are equipшестью отводами на каждой секции (по три на каждой из узких сторон шириной 137мм)

Plug-in sections are three ped with six tap-off outlets per section (three on each narrow 137mm side)

	М С ДЬ <i>COPPER</i>	алюминий <i>aluminium</i>	
Hom.tok Rated I	4P + PE		4P + PE
800A			214409Z3LAC
1000A	224409Z3LAC		214509Z3LAC
1250A	224509Z3LAC		214709Z3LAC
1600A	224709Z3LAC		214909Z3LAC
2000A	224809Z3LPC		214009Z3LPC
2500A	224909Z3LPC		215809Z3LAC
3200A	225709Z3LAC		215909Z3LAC
4000A	225909Z3LPC		215009Z3LPC
5000A	22680973LAC		21600973LPC

алюминий

ΔΙΙΙΝΛΙΝΙΙΙΝΛ

Элементы трассы шинопровода BUSBAR TRUNKING SECTIONS

Секции с огнезащитным барьером **FIREBARRIERS**

Чтобы избежать эффекта «вытяжки» при прохождении через пол или стены. Секция располагается в нужном месте на заводе. Состоит из двойной изоляции: между шинами и кожухом и между кожухом и дополнительной стальной защитной крышкой.

To block the "chimney" effect when crossing a wall or floor slab. It is positioned in the right place at the factory. It consists of a double insulation: between the bars and the housing and between the housing and the additional steel-sheet cover.

Резмерность в мм.

Указанная длина прибавляется к длине прямой секции на которую будет установлен огнезащитный барьер. Уточняйте, в какой точке секции он должен быть установлен.

Reference number to be added to the straight section on which the firebarrier will be applied. Specify at which point of the section it must be placed.

	ALUIVIIIVI UIVI		
Hom.tok Rated I	4P + PE		4P + PE
800A			214419Z0AAC
1000A	214419Z0AAC		214419Z0AAC
1250A	214419Z0AAC		214719Z0AAC
1600A	214719Z0AAC		214719Z0AAC
2000A	224819Z0APC		214019Z0APC
2500A	224819Z0APC		215619Z0AAC
3200A	215719Z0AAC		215719Z0AAC
4000A	225919Z0APC		215019Z0APC
5000A	216819Z0AAC		216019Z0APC

медь

CODDED

Расчет длины недостающего элемента HOW TO MEASURE A GAP BETWEEN TWO SECTIONS

Длина соединительного блока

165 мм.

Длина недостающей секции таким образом, L=X-165мм.

Длина прямого элемента от 410мм до 3 метров.

The joint stack clears 165 mm lengthwise.

The missing section will therefore have a length L=X-165

Straight element from 410 mm up to 3 meters.

Элементы трассы шинопровода BUSBAR TRUNKING SECTIONS

Угловые секции для монтажа «плашмя» EDGEWISE ELBOWS

	Медь <i>copper</i>	алюминий <i>ацимини</i> м	
Hom.tok Rated I	4P + PE		4P + PE
800A			214401Z1LAC
1000A	224401Z1LAC		214501Z1LAC
1250A	224501Z1LAC		214701Z1LAC
1600A	224701Z1LAC		214901Z1LAC
2000A	224801Z1LPC		214001Z1LPC
2500A	224901Z1LPC		215801Z1LAC
3200A	225701Z1LAC		215901Z1LAC
4000A	225901Z1LPC		215001Z1LPC
5000A	226801Z1LAC		216001Z1LPC

Угловые секции для монтажа «на ребро» FLATWISE ELBOWS

	М С ДЬ СОРРЕК			алюминий <i>АLUMINIUM</i>		
Hom. Tok Rated I	4P + PE	Размер A <i>Quote A</i>		4P + PE	размер A Quote A	
800A				214402Z1LAC	500	
1000A	224402Z1LAC	500		214502Z1LAC	500	
1250A	224502Z1LAC	500		214702Z2LAC	620	
1600A	224702Z2LAC	620		214902Z2LAC	620	
2000A	224802Z2LPC	620		214002Z2LPC	620	
2500A	224902Z2LPC	620		215802Z2LAC	838	
3200A	225702Z2LAC	838		215902Z2LAC	838	
4000A	225902Z2LPC	838		215002Z2LPC	838	
5000A	226802Z3LAC	1056		216002Z3LPC	1056	

Элементы трассы шинопровода BUSBAR TRUNKING SECTIONS

T - образный элемент FLATWISE T

	медь <i>copper</i>				алюминий <i>ациніліц</i> м			
Hom.tok Rated I	4P + PE	размер A Quote A	размер В Quote В		4P + PE	размер A Quote A	размер В Quote В	
800A					214406Z2LAC	350	450	
1000A	224406Z2LAC	350	450		214506Z2LAC	350	450	
1250A	224506Z2LAC	350	450		214706Z2LAC	385	510	
1600A	224706Z2LAC	385	510		214906Z2LAC	385	510	
2000A	224806Z2LPC	385	510		214006Z2LPC	385	510	
2500A	224906Z2LPC	385	510		215806Z3LAC	600	840	
3200A	225706Z3LAC	600	840		215906Z3LAC	600	840	
4000A	225906Z3LPC	600	840		215006Z3LPC	600	840	
5000A	226806Z3LAC	700	1000		216006Z3LPC	700	1000	

Специальные элементы SPECIAL VERSIONS

По дополнительному запросу возможна поставка нестандартных или двойных углов и нестандартных адаптеров

Non-standard or double elbows and non-standard terminal elements are available on request.

Элементы трассы шинопровода BUSBAR TRUNKING SECTIONS

Адаптер TERMINAL ELEMENT

	М С ДЬ СОРРЕК	алюминий <i>aluminium</i>
Hom.tok Rated I	4P + PE	4P + PE
800A		214403Z1LAC
1000A	224403Z1LAC	214503Z1LAC
1250A	224503Z1LAC	214703Z1LAC
1600A	224703Z1LAC	214903Z1LAC
2000A	224803Z1LPC	214003Z1LPC
2500A	224903Z1LPC	215803Z1LAC
3200A	225703Z1LAC	215903Z1LAC
4000A	225903Z1LPC	215003Z1LPC
5000A	226803Z1LAC	216003Z1LPC

Отверстия в адаптере DRILLINGS ON TERMINAL ELEMENTS

Аксессуары ACCESSORIES

Размеры фланцев адаптера SIZES OF TERMINAL ELEMENT FLANGES

AI 5000A

Блоки подачи питания FEED-IN BOXES

IP 55 Торцевые блоки подачи питания *IP55 END FEED-IN BOX*

Оборудован соединительными пластинами

It is equipped with connection plates.

медь *copper*

	OOI I LIK				
Hom. Tok Rated I	4P + PE	размер А	ры - <i>dir</i> . В	nensions C	сечение кабеля - cable cross section (MM)
800A					
1000A	224651Z0LAC	450	410	474	4 x 240
1250A	224651Z0LAC	450	410	474	4 x 240
1600A	224751Z0LAC	450	410	474	4 x 240
2000A	224851Z0LPC	450	410	474	6 x 240
2500A	224951Z0LPC	450	410	474	7 x 240
3200A	225751Z0LAC	450	630	474	9 x 240
4000A					
5000A					

алюминий *ALUMINIUM*

	ALUMITATUM					
Hoм.ток Rated I	4P + PE	размер А	оы - <i>din</i> В	nensions C	сечение кабеля - cable cross section	(MM)
800A	214551Z0LAC	450	410	474	3 x 240	
1000A	214551Z0LAC	450	410	474	3 x 240	
1250A	214951Z0LAC	450	410	474	4 x 240	
1600A	214951Z0LAC	450	410	474	4 x 240	
2000A	214051Z0LPC	450	410	474	7 x 240	
2500A	215951Z0LAC	450	630	474	9 x 240	
3200A	215951Z0LAC	450	630	474	9 x 240	
4000A						
5000A						

Блок подачи питания FEED-IN BOX

Промежуточный блок подачи питания IP 55 INTERMEDIATE FEED-IN BOX IP55

Поставляется с соединительным блоком. См. стр. 19

Максимальный ток 1250 А

It comes with a joint stack. See page 19

The feed-in box comes with a maximum rated I of 1250

Используется для питания в промежуточной точке.

Оборудован соединительными

пластинами с зажимами

Два сегмента трассы питаются одновременно, для уменьшения падения напряжения

Эти блоки подачи питания невозможно использовать для независимого питания каждого из сегментов.

Equipped with connection plates with eyed clamps

It is used for feeding a run at an intermediate point.

The two segments of the run are fed at the same time to reduce voltage drop.

It is not possibile to use these feed-in boxes to feed either segment independently.

Внимание

Общий ток от двух сегментов трассы не должен превышать номинальный ток блока подачи питания.

Внимание Для полного заказа добавьте код соединительного блока (см. стр. 19)

CAUTION The total current branched off the two segments of the run must not exceed the rated current of the feed-in box.

CAUTION For complete orders add the code of the joint (see page 19)

	М С ДЬ СОРРЕК	алюминий <i>atuminium</i>	
Hom. Tok Rated I	4P + PE		размеры - dimensions сечение кабеля - cable cross section (мм)
800A		214553Z0LAC	600 500 500 4 x 240
1000A	224653Z0LAC	214553Z0LAC	600 500 500 4 x 240
1250A	224653Z0LAC	214953Z0LAC	600 500 500 4 x 240

Отводные блоки

TAP-OFF UNITS

Втычные отводные блоки TAP-OFF UNITS PLUG-IN

Втычные отводные блоки для прямых секций с точками отвода могут быть установлены на трассе под напряжением.

Поставляются оборудованные блокировкой, которая препятствует установке или снятию блока с линии, когда выключатель включен. Могут быть установлены на трассы с любым номинальным током. Поставляются без предохранителей.

The tap-off plugs for the plugin section may be installed with the line live.

They come equipped with a safety mechanical interlock that prevents insertion or disinsertion from the duct when the tap-off switch is on.

They can be installed on ducts of any rated I.

They come without fuses.

Отводные блоки по стандарту DIN Plug-in tap off units it fits DIN modules switch

				Размеры				
			maximum clearing size					
Hom.tok Rated I	код Code	исполнение Executions	предохранители Fuses	A (mm)	B (mm)	C (mm)	D (mm)	сечение кабеля cable cross sec.
125A	224452Z0LAA	3P+PE+N	-	554	306	263	95	1 x 95 mm ²

Отводные блоки с выключателем и предохранителями Plug-in tap off units with switch and fuses

125A	224540Z0LAC	3P+PE+N sez.	NH00	554	306	263	95	1 x 95 mm ²
125A	224740Z0LAC	3P+PE+N dir.	NH00	554	306	263	95	1 x 95 mm ²
250A	224541Z0LAC	3P+PE+N sez.	NH1	594	494	385	132	1 x 240 mm ²
250A	224741Z0LAC	3P+PE+N dir.	NH1	594	494	385	132	1 x 240 mm ²
315A	224542Z0LAC	3P+PE+N sez.	NH2	594	495	385	132	2 x 150 mm ²
315A	224742Z0LAC	3P+PE+N dir.	NH2	594	495	385	132	2 x 150 mm ²
400A	224543Z0LAQ	3P+PE+N sez.	NH3	594	495	385	45	2 x 150 mm ²
400A	224743Z0LAQ	3P+PE+N dir.	NH3	594	495	385	45	2 x 150 mm ²
630A	224544Z0LAQ	3P+PE+N sez.	NH3	594	495	385	45	3 x 185 mm ²

Отводные блоки с автоматическими выключателями в литом корпусе.

Plug-in tap-off units with MCCB's.

250A	224541Z0LAL	3P+PE+N sez.	ручные - manual	554	306	263	50	1 x 95 mm ²
250A	224741Z0LAL	3P+PE+N dir.	ручные - manual	554	306	263	50	1 x 95 mm ²
400A	224543Z0LAL	3P+PE+N sez.	ручные - manual	554	306	263	50	2 x 150 mm ²
400A	224743Z0LAL	3P+PE+N dir.	ручные - manual	554	306	263	50	2 x 150 mm ²
630A	225547Z0LAC	3P+PE+N sez.	ручные - manual	594	494	385	63	3 x 185 mm ²
630A	225747Z0LAC	3P+PE+N dir.	ручные - manual	594	494	385	63	3 x 185 mm ²
250A	224541Z0LAP	3P+PE+N sez.	электр motor	594	494	385	34	1 x 95 mm ²
250A	224741Z0LAP	3P+PE+N dir.	электр motor	594	494	385	34	1 x 95 mm ²
400A	224543Z0LAP	3P+PE+N sez.	электр motor	594	494	385	34	2 x 150 mm ²
400A	224743Z0LAP	3P+PE+N dir.	электр motor	594	494	385	34	2 x 150 mm ²
630A	225547Z0LAP	3P+PE+N sez.	электр motor	884	494	385	34	3 x 185 mm ²
630A	225747Z0LAP	3P+PE+N dir.	электр motor	884	494	385	34	3 x 185 mm ²

Отводные блоки TAP-OFF UNITS

Фиксированные отводные блоки JOINT TAP-OFF PLUGS

Должны устанавливаться только на трассу без напряжения. Могут быть установлены на трассы с любым номинальным током. Поставляются без предохранителей.

Внимание Для полного заказа необходимо добавить коды соединительных блоков. (См. стр. 19)

Отводные блоки с выключателем и предохранителями

Plug-in tap off units with switch and fuses

				Размеры maximum clearing size							
Hoм.ток Rated I	код Code	исполнение Executions	предохранители Fuses	A (mm)	B (mm)	C (mm)	D (mm)	E (mm)	F (mm)	G (mm)	сечение кабеля cable cross sec.
250A	212440Z0LAA	3P+PE+N sez.	NH1	800	880	290	132	421	350	621	1 x 240 mm ²
250A	212448Z0LAA	3P+PE+N dir.	NH1	800	880	290	132	421	350	621	1 x 240 mm ²
315A	212443Z0LAA	3P+PE+N sez.	NH2	800	880	290	132	421	350	621	2 x 150 mm ²
315A	212445Z0LAA	3P+PE+N dir.	NH2	800	880	290	132	421	350	621	2 x 150 mm ²
400A	212441Z0LAA	3P+PE+N sez.	NH3	800	880	290	45	335	550	621	2 x 150 mm ²
400A	212444Z0LAA	3P+PE+N dir.	NH3	800	880	290	45	335	550	621	2 x 150 mm ²
630A	212447Z0LAA	3P+PE+N sez.	NH3	800	880	290	45	335	550	621	3 x 185 mm²

Отводные блоки с автоматическими выключателями в литом корпусе. Plug-in tap-off units with MCCB's.

250A	212545Z0LAA	3P+PE+N sez.	ручные - manual	800	880	290	50	340	350	621	1 x 95 mm ²
250A	212745Z0LAA	3P+PE+N dir.	ручные - manual	800	880	290	50	340	350	621	1 x 95 mm ²
400A	212546Z0LAA	3P+PE+N sez.	ручные - manual	800	880	290	50	340	350	621	2 x 150 mm ²
400A	212746Z0LAA	3P+PE+N dir.	ручные - manual	800	880	290	50	340	350	621	2 x 150 mm ²
630A	212547Z0LAA	3P+PE+N sez.	ручные - manual	1266	1346	384	63	447	450	1088	2 x 300 mm ²
630A	212747Z0LAA	3P+PE+N dir.	ручные - manual	1266	1346	384	63	447	450	1088	2 x 300 mm ²
800A	225548Z0LAE	3P+PE+N sez.	ручные - manual	1266	1346	384	63	447	450	1088	2 x 300 mm ²
800A	225748Z0LAE	3P+PE+N dir.	ручные - manual	1266	1346	384	63	447	450	1088	3 x 240 mm ²
1250A	225549Z0LAE	3P+PE+N sez.	ручные - manual	1266	1346	384	63	447	450	1088	3 x 240 mm ²
1250A	225749Z0LAE	3P+PE+N dir.	ручные - manual	1266	1346	384	63	447	450	1088	3 x 240 mm ²
630A	212547Z0LAB	3P+PE+N sez.	электр motor	1266	1346	384	34	418	450	1088	2 x 300 mm ²
630A	212747Z0LAB	3P+PE+N dir.	электр motor	1266	1346	384	34	418	450	1088	2 x 300 mm ²
800A	225548Z0LAF	3P+PE+N sez.	электр motor	1266	1346	384	34	418	450	1088	2 x 300 mm ²
800A	225748Z0LAF	3P+PE+N dir.	электр motor	1266	1346	384	34	418	450	1088	3 x 240 mm ²
1250A	225549Z0LAF	3P+PE+N sez.	электр motor	1266	1346	384	34	418	450	1088	3 x 240 mm ²
1250A	225749Z0LAF	3P+PE+N dir.	электр motor	1266	1346	384	34	418	450	1088	3 x 240 mm ²

Отводные блоки TAP-OFF UNITS

Отводные блоки с боковой крышкой TAP-OFF UNITS PLUG-IN WHITH LATERAL OPENING

Могут быть установлены на трассу под напряжением.

Поставляются оборудованные механической блокировкой, которая препятствует установке или снятию блока с трассы, когда выключатель включен. Могут быть установлены на трассы с любым указанным номинальным током. Поставляются без предохранителей.

The tap-off plugs for the plugin section may be installed with the line live.

They come equipped with a safety mechanical interlock that prevents insertion or disinsertion from the duct when the tap-off switch is on.

They can be installed on ducts of any rated I.

They come without fuses.

Размеры maximum clearing size

Hом.ток Rated I	код Code	исполнение Executions	предохранители Fuses	A (mm)	B _(mm)	C (mm)	сечение кабеля cable cross sec.
250A	224541Z0LAJ	3P+PE+N	NH1	580	350	300	1 x 95 mm ²
250A	224541Z0LAK	3P+PE+N	NH1	580	350	300	1 x 95 mm ²
400A	224541Z0LAJ	3P+PE+N	NH2	580	350	300	1 x 95 mm ²
400A	224541Z0LAK	3P+PE+N	NH2	580	350	300	1 x 95 mm ²

Установочные размеры. INSTALLATION AND CLEARING SIZES OF TAP-OFF UNITS ON DUCTS.

Аксессуары ACCESSORIES

Соединительные блоки для отводных блоков JOINT STACKS FOR JOINT TAP-OFFS

Внимание
В заказ не забудьте
включить код
соединительного
блока в соответствии
с выбранным фиксированным отводным
блоком.

CAUTION Add the reference numbers of joint stacks corresponding to the joint tap-off unit you

are choosing.

	МЕДЬ <i>COPPER</i>	алюминии <i>aluminium</i>
Hoм.ток Rated I		
800A		218028R0AAA
1000A	218028R0AAA	218028R0AAA
1250A	218028R0AAA	218029R0AAA
1600A	218029R0AAA	218029R0AAA
2000A	218029R0AAA	218029R0AAA
2500A	218029R0AAA	218031R0AAA
3200A	218031R0AAA	218031R0AAA
4000A	218031R0AAA	218033R0AAA
5000A	218033R0AAA	218033R0AAA

Торцевая крышка END COVER

	М С ДЬ СОРРЕК	алюминий <i>ацимилим</i>
Hom.tok Rated I	4P + PE	4P + PE
800A		214410Z0LAC
1000A	214410Z0LAC	214410Z0LAC
1250A	214410Z0LAC	214710Z0LAC
1600A	214710Z0LAC	214710Z0LAC
2000A	214710Z0LAC	214710Z0LAC
2500A	214710Z0LAC	215710Z0LAC
3200A	215710Z0LAC	215710Z0LAC
4000A	215710Z0LAC	215710Z0LAC
5000A	216810Z0LAC	216810Z0LAC

Промежуточный подвес HALF HANGER

Элементы трассы могут быть закреплены «плашмя» или «на ребро», вне зависимости, на горизонтальной или вертикальной поверхности, при этом стандартные подвесы должны устанавливаться парами, на дистанции:

для одиночных систем шин:

- * 3м, если устанавливается «на ребро».
- * 2м, если устанавливается «плашмя».

Двойные или тройные системы шин:

* 2м, независимо от положения.

Такие же подвесы используются со всеми версиями серии ВХ.

The duct can be installed flatwise or edgewise, indifferently, in horizontal or vertical runs, with standard hangers to be used in pairs at a distance of:

Single-duct systems:

- 3 m if installed edgewise
- 2 m if installed flatwise

Double or triple ducts:

• 2 meters whether edgewise or flatwise

Hom.tok	КОД
Rated I	Code
Tutte-All	214420Z0AAA

The same hanger is used with all versions of BX.

V/m

Падение напряжения на метр длины - (для медного исполнения) VOLTAGE DROP PER METER - (COPPER VERSION)

Данные рассчитаны с учетом активного и реактивного сопротивлений для каждого номинального тока. Computed based on resistance and reactance values of each rated I

Величина падения напряжения вычисляется для системы работающей при номинальном токе, после достижения теплового баланса, при трехфазной нагрузке, сосредоточенной в конце трассы.

Падение напряжения для распределенных нагрузок можно подсчитать умножив ниже приведенные величины на 0,5

Внимание: когда ток в трассе отличается от номинального, приведенные величины должны быть умножены на отношение рабочего тока к номинальному.

Пример: падение напряжения на конце трассы медного шинопровода серии ВХ 1600 А, длиной 30 м, при рабочем токе 1100 А и коэффициенте мощности 0,6:

Voltage drop values refer to a system operating at rated current, after reaching thermal balance, with a three-phase load concentrated at the end of the line.

Voltage drop values for distributed loads can be calculated by multiplying the below values by 0.5.

Caution: when the current of the line is different from rated current, the below values must be multiplied by the ratio of operating to rated current.

Example: voltage drop at the end of a BX 1600 A copper run 30 meters long, operating at a current of 1100 and a power factor of 0.6:

$$\Delta V = 0.0897 \times \frac{1100}{1600} \times 30 = 1.85 V$$

Медь **COPPER**

In	Cos Ψ	φ	L	R	X	V/m	In	$\text{Cos } \phi$	
1000	1	0	1	4,5	2,8	0,0779	2500	1	
1000	0,9	0,451027	1	4,5	2,8	0,0777	2500	0,9	0,4510
1000	0,8	0,643501	1	4,5	2,8	0,0913	2500	0,8	0,643
1000	0,7	0,795399	1	4,5	2,8	0,0891	2500	0,7	0,795
1000	0,6	0,927295	1	4,5	2,8	0,0855	2500	0,6	0,927
1000	0,5	1,047198	1	4,5	2,8	0,0809	2500	0,5	1,047
1200	1	0	1	3,31	2,4	0,0687	3200	1	
1200	0,9	0,451027	1	3,31	2,4	0,0836	3200	0,9	0,4510
1200	0,8	0,643501	1	3,31	2,4	0,0849	3200	0,8	0,643
1200	0,7	0,795399	1	3,31	2,4	0,0837	3200	0,7	0,795
1200	0,6	0,927295	1	3,31	2,4	0,0811	3200	0,6	0,927
1200	0,5	1,047198	1	3,31	2,4	0,0775	3200	0,5	1,047
1350	1	0	1	3,04	2,3	0,0710	4000	1	
1350	0,9	0,451027	1	3,04	2,3	0,0873	4000	0,9	0,4510
1350	0,8	0,643501	1	3,04	2,3	0,0890	4000	0,8	0,643
1350	0,7	0,795399	1	3,04	2,3	0,0881	4000	0,7	0,795
1350	0,6	0,927295	1	3,04	2,3	0,0856	4000	0,6	0,927
1350	0,5	1,047198	1	3,04	2,3	0,0820	4000	0,5	1,047
1600	1	0	1	2,6	2,1	0,0720	5000	1	
1600	0,9	0,451027	1	2,6	2,1	0,0901	5000	0,9	0,4510
1600	0,8	0,643501	1	2,6	2,1	0,0925	5000	0,8	0,643
1600	0,7	0,795399	1	2,6	2,1	0,0919	5000	0,7	0,795
1600	0,6	0,927295	1	2,6	2,1	0,0897	5000	0,6	0,927
1600	0,5	1,047198	1	2,6	2,1	0,0863	5000	0,5	1,047
2000	1	0	1	2,3	1,8	0,0796			
2000	0,9	0,451027	1	2,3	1,8	0,0988			
2000	0,8	0,643501	1	2,3	1,8	0,1010			
2000	0,7	0,795399	1	2,3	1,8	0,1002			
2000	0,6	0,927295	1	2,3	1,8	0,0976			
2000	0,5	1,047198	1	2,3	1,8	0,0937			

In	Cos Y	Ψ	L	R	Х	V/m
2500	1	0	1	1,7	1,2	0,0735
2500	0,9	0,451027	1	1,7	1,2	0,0888
2500	0,8	0,643501	1	1,7	1,2	0,0900
2500	0,7	0,795399	1	1,7	1,2	0,0885
2500	0,6	0,927295	1	1,7	1,2	0,0856
2500	0,5	1,047198	1	1,7	1,2	0,0817
3200	1	0	1	1,4	0,9	0,0775
3200	0,9	0,451027	1	1,4	0,9	0,0915
3200	0,8	0,643501	1	1,4	0,9	0,0919
3200	0,7	0,795399	1	1,4	0,9	0,0898
3200	0,6	0,927295	1	1,4	0,9	0,0864
3200	0,5	1,047198	1	1,4	0,9	0,0819
4000	1	0	1	1,2	0,8	0,0830
4000	0,9	0,451027	1	1,2	0,8	0,0989
4000	0,8	0,643501	1	1,2	0,8	0,0996
4000	0,7	0,795399	1	1,2	0,8	0,0977
4000	0,6	0,927295	1	1,2	0,8	0,0941
4000	0,5	1,047198	1	1,2	0,8	0,0895
5000	1	0	1	0,8	0,6	0,0692
5000	0,9	0,451027	1	0,8	0,6	0,0849
5000	0,8	0,643501	1	0,8	0,6	0,0865
5000	0,7	0,795399	1	0,8	0,6	0,0855
5000	0,6	0,927295	1	0,8	0,6	0,0830
5000	0,5	1,047198	1	0,8	0,6	0,0795

Падение напряжения на метр длины - (для алюминевого исполнения) VOLTAGE DROP PER METER - (ALUMINIUM VERSION)

Данные расчитаны с учетом активного и реактивного сопротивлений для каждого номинального тока. Computed based on resistance and reactance values of each rated I

Величина падения напряжения вычисляется для системы, работающей при номинальном токе после достижения теплового баланса, при трехфазной нагрузке, сосредоточенной в конце трассы.

Падение напряжения для распределенных нагрузок можно подсчитать умножив ниже приведенные величины на 0,5

Внимание: когда ток в трассе отличается от номинального, приведенные величины должны быть умножены на отношение рабочего тока к номинальному.

Пример: падение напряжения на конце медной трассы шинопровода серии ВХ 1600 А, длинной 30 м, при рабочем токе 1100 А и коэффициэнте мощности 0,6:

Voltage drop values refer to a system operating at rated current, after reaching thermal balance, with a three-phase load concentrated at the end of the line.

Voltage drop values for distributed loads can be calculated by multiplying the below values by 0.5.

Caution: when the current of the line is different from rated current, the below values must be multiplied by the ratio of operating to rated current.

Example: voltage drop at the end of a BX 1600A aluminium run 30 meters long, operating at a current of 1100 and a power factor of 0.6:

$$\Delta V = 0.0891 \times \frac{1100}{1600} \times 30 = 1.83 V$$

Алюминий *ALUMINIUM*

						ALUI	VII IVI OIVI						
In	$\cos\phi$	φ	L	R	X	V/m	In	$\cos \phi$	φ	L	R	X	V/m
800	1	0	1	7,9	2,8	0,1093	2000	1	0	1	2,7	1,2	0,0934
800	0,9	0,451027	1	7,9	2,8	0,1153	2000	0,9	0,451027	1	2,7	1,2	0,1022
800	0,8	0,643501	1	7,9	2,8	0,1107	2000	0,8	0,643501	1	2,7	1,2	0,0996
800	0,7	0,795399	1	7,9	2,8	0,1042	2000	0,7	0,795399	1	2,7	1,2	0,0950
800	0,6	0,927295	1	7,9	2,8	0,0966	2000	0,6	0,927295	1	2,7	1,2	0,0893
800	0,5	1,047198	1	7,9	2,8	0,0882	2000	0,5	1,047198	<u>-</u> -	2,7	1,2	0,0827
	0/0	.,,,,,,,,		.,,		0,0002		0/0	.,,,,,,,,			.,_	0,002.
1000	1	0	1	5,9	2,1	0,1021	2500	1	0	1	2,1	0,9	0,0908
1000	0,9	0,451027	1	5,9	2,1	0,1077	2500	0,9	0,451027	1	2,1	0,9	0,0987
1000	0,8	0,643501	1	5,9	2,1	0,1035	2500	0,8	0,643501	1	2,1	0,9	0,0960
1000	0,7	0,795399	1	5,9	2,1	0,0974	2500	0,7	0,795399	1	2,1	0,9	0,0914
1000	0,6	0,927295	1	5,9	2,1	0,0903	2500	0,6	0,927295	1	2,1	0,9	0,0856
1000	0,5	1,047198	1	5,9	2,1	0,0825	2500	0,5	1,047198	1	2,1	0,9	0,0791
1250	1	0	1	4,8	1,8	0,1038	3200	1	0	1	1,8	0,8	0,0996
1250	0,9	0,451027	1	4,8	1,8	0,1104	3200	0,9	0,451027	1	1,8	0,8	0,1090
1250	0,8	0,643501	1	4,8	1,8	0,1064	3200	0,8	0,643501	1	1,8	0,8	0,1063
1250	0,7	0,795399	1	4,8	1,8	0,1005	3200	0,7	0,795399	1	1,8	0,8	0,1014
1250	0,6	0,927295	1	4,8	1,8	0,0934	3200	0,6	0,927295	1	1,8	0,8	0,0952
1250	0,5	1,047198	1	4,8	1,8	0,0856	3200	0,5	1,047198	1	1,8	0,8	0,0882
1.400		^		4	1 (0.00/0	4000				1.1	0.75	0.00/0
1400	1	0	1	4	1,6	0,0969	4000	1	0	1	1,4	0,75	0,0969
1400	0,9	0,451027	1	4	1,6	0,1041	4000	0,9	0,451027	1	1,4	0,75	0,1098
1400 1400	0,8	0,643501	<u>1</u> 1	4	1,6	0,1008	4000	0,8	0,643501	1	1,4	0,75	0,1086
1400		0,795399	1	4	1,6 1,6	0,0955	4000	0,7	0,795399	1	1,4	0,75	0,1049
1400	0,6 0,5	0,927295 1,047198	<u> </u>	4	1,6	0,0891	4000	0,6 0,5	0,927295 1,047198	1	1,4	0,75 0,75	0,0996
1400	0,5	1,047190	- 1	4	1,0	0,0620	4000	0,5	1,047190	<u> </u>	1,4	0,75	0,0934
1600	1	0	1	3,5	1,4	0,0969	5000	1	0	1	1,2	0,7	0,1038
1600	0,9	0,451027	1	3,5	1,4	0,1041	5000	0,9	0,451027	<u>'</u> 1	1,2	0,7	0,1030
1600	0,8	0,643501	1	3,5	1,4	0,1008	5000	0,8	0,643501	1	1,2	0,7	0,1194
1600	0,7	0,795399	1	3,5	1,4	0,0955	5000	0,7	0,795399	1	1,2	0,7	0,1159
1600	0,6	0,927295	1	3,5	1,4	0,0891	5000	0,6	0,927295	1	1,2	0,7	0,1107
1600	0,5	1,047198	1	3,5	1,4	0,0820	5000	0,5	1,047198	1	1,2	0.7	0,1043
	0,0	.,017170		0,0	- 1 1	0,0020		0,0	.,01,170		1,2	0,1	3,1010

Технические характеристики - медь TECHNICAL DATA — COPPER

Ном.ток (А)								
Rated current	1000	1250	1600	2000	2500	3200	4000	5000
Конфигурация системы (число параллельных систем шин)	1	1	1	1	1	2	2	2
System configuration (number of ducts)	_			1	1			
Материал кожуха (сталь)		горяче -оцинков.		RAL 7032	RAL 7032	горяче -оцинков	RAL 7032	горяче -оцинков.
Housing made of (steel)	hot-galvanized	hot-galvanized	hot-galvanized		1012 7002	hot-galvanized		hot-galvanized
Число болтов для соединения	1 x 1	1 x 1	1 x 2	1 x 2	2 x 1	2 x 2	2 x 2	2 x 2
Number of bolts for joint Размеры (мм) (137 х A)								
Dimensions	190x137	190x137	254x137	254x137	254x137	472x137	472x137	472x137
Поперечное сечение фазы и нейтрали (мм)	404	CAE	020	000	1100	1677	1025	2206
Phase and neutral cross section	484	645	839	968	1193	1677	1935	2386
Номинальное напряжение изоляции (V)	1000	1000	1000	1000	1000	1000	1000	1000
Insulation rated voltage	1000	1000	1000	1000	1000	1000	1000	1000
Испытат. напряжение изоляции (V)	3500	3500	3500	3500	3500	3500	3500	3500
Dielectric test voltage	2333	2200	3333	5500	5500	0000	0000	
Cопротивление при коротком замыкании R ₂₀ (мОм/м) Short-circuit resistance	0,036	0,027	0,021	0,018	0,015	0,010	0,009	0,007
Сопротивление переменному току R , (мОм/м) (1)		·			·			
Alternate current resistance	0,040	0,030	0,024	0,021	0,017	0,012	0,010	0,008
Джоулевы потери <i>3RI</i> ² (Вт/м)	405	4.40	200	200	040	400	F7/	
Joule losses In 3RI ²	135	143	200	288	319	430	576	600
Реактивное сопротивление фазы (мОм/м)	0,028	0,024	0,021	0,016	0,012	0,009	0,009	0,006
Phase reactance	0,020	0,027	0,021	0,010	0,012	0,009	0,009	0,000
Полное сопротивление фазы (мОм/м)	0,054	0,040	0,032	0,028	0,022	0,016	0,013	0,011
Phase impedance	· ·		'	'	,		•	
Номинальный ток трехфазного КЗ (КА)* Short-circuit rated current (short-time) Distr.	100 75	100 75	100 75	100 75	200 150	200 150	200 150	300 225
Номинальный ток короткого замыкания, фаза - N (KA)* Trasp.	60	60	60	60	120	120	120	180
Short-circuit rated current (short-time) Distr.	45	45	45	45	90	90	90	135
Номинальный ток короткого замыкания, фаза - PE (KA) Тгаsp.	60	60	60	60	120	120	120	180
Short-circuit rated current (short-time) Distr.	45	45	45	45	90	90	90	135
Пиковый ток короткого замыкания, трехфазный (KA)** Trasp.	176	176	176	176	352	352	352	528
Short-circuit rated current (peak) Distr.	141	141	141	141	282	282	282	423
Пиковый ток короткого замыкания, фаза - N (KA)**	106	106	106	106	211	211	211	317
Short-circuit rated current (peak) Distr.	85	85	85	85	169	169	169	254
Пиковый ток короткого замыкания, фаза - PE (KA) Short-circuit rated current (peak) Distr.	106 85	106 85	106 85	106 85	211 169	211 169	211 169	317 254
Short-circuit rated current (peak) Distr. Максимальная термическая стойкость, трехфазная (1c) (A²c)* 106 Trasp.	10000	10000	10000	10000	40000	40000	40000	90000
Specific energy (short-time) Distr.	5625	5625	5625	5625	22500	22500	22500	50625
Максимальная термическая стойкость, фаза - N (1c) (A ² c)* 106 Trasp.	3600	3600	3600	3600	14400	14400	14400	32400
Specific energy (short-time) Distr.	2025	2025	2025	2025	8100	8100	8100	18225
Максимальная термическая стойкость, фаза - PE (1c) (A ² c)* 106 Trasp.	3600	3600	3600	3600	14400	14400	14400	32400
Specific energy (short-time) Distr.	2025	2025	2025	2025	8100	8100	8100	18225
Попречное сечение защитного проводника	2014	2014	2458	2458	3753	4646	4646	6832
Protective conductor cross section						1 1		
Macca (κr∖м) <u>Trasp.</u> <i>Mass Distr.</i>	37 38	43 44	55 56	60	93 95	110 112	120 122	180 183
мазь ————————————————————————————————————								
Minimum length edgewise elbows	400x400	400x400	400x400	400x400	400x400	400x400	400x400	400x400
Минимальные размеры углов для монтажа «на ребро» (мм)	F00 F00	F00 F00	620, 620	620 620	CE4 CE4	020 020	020 020	1056 1056
Minimum length flatwise elbows	500x500	500x500	620x620	620x620	654x654	838x838	838x838	1056x1056
Активное сопротивление аварийного контура (мОм/100м)	0.00	6.62	E 20	4.00	2.40	2.00	2.40	1 65
Fault loop resistance	9,00	6,62	5,20	4,80	3,40	2,80	2,40	1,65
Реактивное сопротивление аварийного контура (мОм/100м)	2,80	2,40	2,10	1,60	1,20	0,90	0,80	0,60
Fault loop reactance	2,00	2,70	2,10	1,00	1,20	0,50	0,00	0,00
Полное сопротивление аварийного контура (мОм/100м)	9,42	7,04	5,61	5,06	3,60	2,94	2,53	1,75
Fault loop impedance	,							

^{*} эффективная величина

^{**} пиковое значение (первый полупериод)

⁽¹⁾ Величина измерена при 50 Гц после достижение теплового баланса, при номинальном токе

^{*} R.m.s. value

^{**} Peak (first half-period)

⁽¹⁾ Value measured at 50 Hz after reaching thermal balance at rated current

Технические характеристики - алюминий TECHNICAL DATA - ALUMINIUM

Hom.tok (A) Rated current	800	1000	1250	1600	2000	2500	3200	4000	5000
Конфигурация системы (число параллельных систем шин) System configuration (number of ducts)	1	1	1	1	1	2	2	2	3
Материал корпуса (сталь) Housing made of (steel)	zincata hot-galvaniz.	zincata hot-galvaniz.	zincata hot-galvaniz.	zincata hot-galvaniz.	RAL 7032	zincata hot-galvaniz.	zincata hot-galvaniz.	RAL 7032	RAL 7032
Число болтов для соединения Number of bolts for joint	1 x 1	1 x 1	1 x 2	1 x 2	1 x 2	2 x 2	2 x 2	2 x 2	3 x 2
Размеры (мм) (137 x A) Dimensions	190x137	190x137	254x137	254x137	254x137	472x137	472x137	472x137	690x137
Поперечное сечение фазы и нейтрали (мм) Phase and neutral cross section	484	645	839	1129	1193	1935	2258	2386	3386
Номинальное напряжение изоляции (V) Insulation rated voltage	1000	1000	1000	1000	1000	1000	1000	1000	1000
Испытательное напряжение изоляции (V) Dielectric test voltage	3500	3500	3500	3500	3500	3500	3500	3500	3500
Сопротивление при коротком замыкании R ₂₀ (мОм/м) Short-circuit resistance	0,070	0,053	0,041	0,030	0,028	0,018	0,015	0,014	0,010
Сопротивление переменному току R $_{\rm t}({\rm MOM/M})$ (1) Alternate current resistance	0,081	0,058	0,045	0,035	0,034	0,020	0,017	0,016	0,011
Джоулевы потери 3RI ² (Вт/м) Joule losses In 3RI ²	152	177	225	269	420	356	507	792	900
Реактивное сопротивление фазы (мОм/м) Phase reactance	0,028	0,021	0,018	0,014	0,014	0,009	0,008	0,008	0,007
Полное сопротивление фазы (мОм/м) Phase impedance	0,085	0,062	0,048	0,037	0,036	0,022	0,019	0,018	0,013
Номинальный ток трехфазного КЗ (KA)* Short-circuit rated current (short-time)	Trasp. 100 Distr. 75	100 75	100 75	100 75	100 75	200 150	200 150	200 150	300 225
Номинальный ток короткого замыкания, фаза - N (KA)* Short-circuit rated current (short-time)	Trasp. 60 <i>Distr.</i> 45	60 45	60 45	60 45	60 45	120 90	120 90	120 90	180 135
Номинальный ток короткого замыкания, фаза - PE (KA) Short-circuit rated current (short-time)	Trasp. 60 <i>Distr.</i> 45	60 45	60 45	60 45	60 45	120 90	120 90	120 90	180 135
Пиковый ток короткого замыкания, трехфазный (КА)** Short-circuit rated current (peak)	Trasp. 176 Distr. 141	176 141	176 141	176 141	176 141	352 282	352 282	352 282	528 423
Пиковый ток короткого замыкания, фаза - N (KA)** Short-circuit rated current (peak)	Trasp. 106 Distr. 85	106 85	106 85	106 85	106 85	211 169	211 169	211 169	317 254
Пиковый ток короткого замыкания, фаза - PE (KA) Short-circuit rated current (peak)	Trasp. 106 Distr. 85	106 85	106 85	106 85	106 85	211 169	211 169	211 169	317 254
Максимальная термическая стойкость, трехфазная (1c) (A ² c)* 106 Specific energy (short-time)	Trasp. 10000 Distr. 5625	10000 5625	10000 5625	10000 5625	10000 5625	40000 22500	40000 22500	40000 22500	90000 50625
Максимальная термическая стойкость, фаза - N (1c) (A²c)* 106 Specific energy (short-time)	Trasp. 3600 Distr. 2025	3600 2025	3600 2025	3600 2025	3600 2025	14400 8100	14400 8100	14400 8100	32400 18225
Максимальная термическая стойкость, фаза - PE (1c) (A ² c)* 106	Trasp. 3600	3600	3600	3600	3600	14400	14400	14400	32400
Specific energy (short-time) Попречное сечениее защитного проводника	Distr. 2025 2014	2025 2014	2025 2458	2025 2458	2025 2458	8100 4646	8100 4646	8100 4646	18225 6832
Protective conductor cross section Macca (kr\m)	Trasp. 26	28	34	38	40	72	76	76	114
<u>Mass</u> Минимальные размеры углов для монтажа «плашмя» (мм)	Distr. 27 400x400	29 400x400	35 400x400	39 400x400	41 400x400	74 400x400	78 400x400	78 400x400	117 400x400
Minimum length edgewise elbows Минимальные размеры углов для монтажа «на ребро» (мм)					620x620				
Minimum length flatwise elbows Активное сопротивление аварийного контура (мОм/100м)	15,80	11,80	9,60	7,00	7,00	4,20	3,60	3,60	2,40
Fault loop resistance Реактивное сопротивление аварийного контура (мОм/100м) Fault loop reactance	2,80	2,10	1,80	1,40	1,40	0,90	0,80	0,80	0,70
Полное сопротивление аварийного контура (мОм/100м) Fault loop impedance	16,05	15,21	9,77	7,14	7,14	4,30	3,69	3,69	2,50
тин тоор троинис									

^{*} эффективная величина

^{**} пиковое значение (первый полупериод)

⁽¹⁾ Величина измерена при 50 Гц после достижение теплового баланса, при номинальном токе

^{*} R.m.s. value

^{**} Peak (first half-period)

⁽¹⁾ Value measured at 50 Hz after reaching thermal balance at rated current

#