

Conformational Changes and Substrate Recognition in *Pseudomonas* aeruginosa D-Arginine Dehydrogenase

Guoxing Fu Dr. Irene Weber March 16, 2012

Biological function of D-amino acids

• L-amino acids

- Building blocks of proteins.

• D-amino acids

- Bacteria cell wall synthesis (D-Ala, D-Glu)
- Trigger bacteria biofilm disassembly (D-Tyr, D-Met, D-Trp, D-Leu. Kolodkin-Gal et al., Science, 2010)
- Related to brain development and neural signaling in mammals (D-Ser, D-Asp, Yoshimura et al., *J Biosci Bioeng*, 2003)

• L- and D- amino acids are inter-converted by enzymes like D-amino acid oxidase.

D-arginine dehydrogenase

- dauBAR operon in P.aeruginosa is highly induced by D-arginine.
- D-arginine dehydrogenase (DADH) and L-arginine dehydrogenase (LADH) perform D-to-L inversion of Arginine.

(Li and Lu, *PNAS*, 2009)

DADH has a broad substrate specificity

Li et al., Microbiology, 2010; Fu et al., Biochemistry, 2010

What is the molecular basis for recognition of D-amino acids by DADH?

Crystallographic Method

Crystal Structure of DADH/imino acids

	DADH	DADH/ imino-Arg	DADH/ imino-His	DADH/ imino-Phe	_
Space group	P 2 ₁ 2 ₁ 2 ₁	Substrate-binding domain			
a (Å)	62.18	62.17	62.10	62.20	
b (Å)	78.08	78.43	78.15	78.40	
c (Å)	89.72	89.95	89.59	89.92	Imino-Arg
Resolution (Å)	1.06	1.30	1.30	1.05	
Total observation	1258,212	600,949	627,618	1296,946	FAD
Unique reflections	190,545	98,021	97,110	203,913	EAD binding days to
Completene ss (%)	96.2	90.6	90.4	99.9	FAD-binding domain
R-work (%)	13.2	13.4	12.8	14.6	DADH/imino-Arg, resolution 1.30 Å
R-free (%)	15.7	16.6	16.3	17.1	

Conformational changes upon substrate binding

DADH interactions with imino-Arg

DADH interactions with imino-His

DADH interactions with imino-Phe

DADH/imino-Phe (1.05 Å)

Active site hydrophobic wall: Tyr53, Met240, Val242, and Tyr249

Side chain of imino-Phe forms: parallel-displaced π -stacking with Tyr53 T-shaped π -stacking with Tyr249

Ligand	$k_{\rm cat}/K_{\rm m}$
D-Arg	3.8×10^6
D-Phe	6.9×10^{3}
	(550 fold)

(~550 fold)

D-Arg and D-His bind to DADH in distinct patterns

Tyr53, Gly332 and Gln336 are removed to view the internal active site

Fu et al., *Biochemistry*, 2010 Yuan et al., *Biochemistry*, 2010

Comparison with related enzymes

DADH/imino-Arg (1.30 Å)

D-amino acid oxidase/ imino-Trp (3.10 Å)

D-aspartate oxidase/ imino-Asp (Model)

Positive charge

(Fu et al., 2010)

Hydrophobic

(Todone et al., 1997, Setoyama et al., 2006)

Negative charge

(Katane et al., 2011)

Conclusions

- The active site of DADH allows it to accommodate different D-amino acids.
- Glu87 is critical for DADH preference for positively charged residues (D-Arg, D-Lys).
- The conformational change of "active site lid" is involved in substrate binding and product release.
- Key structural features are important to the distinct substrate specificity of DADH, D-amino acid oxidase and D-aspartate oxidase

Acknowledgements

Dr. Irene Weber

Dr. Robert Harrison

Dr. Johnson Agniswamy Yuan-Fang Wang

Dr. Bin Fang

Chen-Hsiang Shen

Ying Zhang

Hongmei Zhang

Xiaodan Du

Dr. Chung-Dar Lu

Dr. Giovanni Gadda

Georgia Cancer Coalition National Institutes of Health Molecular Basis of Disease Program, GSU