DATA 621 Assignment 2

Kai Lukowiak 2018-03-14

Import Data

```
library(tidyverse)
library(knitr)
df <- read_csv('~/DATA621/Assignments/Assignment2/classification-output-data.csv')
sample_n(df, size = 5) %>% kable()
```

pregnant	glucose	diastolic	skinfold	insulin	bmi	pedigree	age	class	scored.class	scored.probability
6	80	66	30	0	26.2	0.313	41	0	0	0.1156596
9	72	78	25	0	31.6	0.280	38	0	0	0.1493509
0	95	85	25	36	37.4	0.247	24	1	0	0.0994799
2	134	70	0	0	28.9	0.542	23	1	0	0.2089265
1	102	74	0	0	39.5	0.293	42	1	0	0.1814974

Confusion Matrix

R's table function can be used to create a confusion matrix. For an more indepth explenation of this please see this excelent website.

```
x <- table(df$class, df$scored.class)
colnames(x) <- c('Actual Negative ', 'Actual Positive')
rownames(x) <- c("Predicted Negative", 'Predicted Positive')
x %>% kable()
```

	Actual Negative	Actual Positive
Predicted Negative	119	5
Predicted Positive	30	27

The sum of the rows and columns can give insight into model performance. The rows represent the predicted values while the columns represent the actual values.

Accuracy

Write a function that takes the data set as a dataframe, with actual and predicted classifications identified, and returns the accuracy of the predictions.

```
confusionFunction <- function(df, actual, predicted, metric){ x \leftarrow table(df[[actual]], df[[predicted]]) TN <- x[2, 2]; FN <- x[1, 2]; FP <- x[2, 1]; TP <- x[2, 2] # Values.
```

```
if (metric == 'Accuracy'){
   Accuracy <- (TP + TN) / (TN + FN + FP + TP)
   return(Accuracy)
  else if (metric == 'ClassificationErrorRate'){
   ClassificationErrorRate <- (FP + FN) / (TN + FN + FP + TP)
   return(ClassificationErrorRate)
 }
  else if (metric == 'Precicion'){
    Precicion <- TP / (TP + FP)
     return( Precicion)
 else if (metric == "Sensitivity"){
   Sensitivity <- TP / (TP + FN)
   return(Sensitivity)
 }
  else {
   Specificity <- TN / (TN + FP)</pre>
   return(Specificity)
 }
}
confusionFunction(df, 9, 10, "Accuracy")
```

Classification Error Rate

```
confusionFunction(df, 9, 10, 'ClassificationErrorRate')
## [1] 0.3932584
To verify that these sum to one:
confusionFunction(df, 9, 10, 'ClassificationErrorRate') +
   confusionFunction(df, 9, 10, 'Accuracy')
## [1] 1
This test is passed.
```

Sensitivity

[1] 0.6067416

```
confusionFunction(df, 9, 10, 'Sensitivity')
## [1] 0.84375
```

Precision

```
confusionFunction(df, 9, 10, 'Precicion')
## [1] 0.4736842
```

Specificity

```
confusionFunction(df, 9, 10, 'Specificity')

## [1] 0.4736842

Prec <- confusionFunction(df, 9, 10, 'Precicion')
Prec

## [1] 0.4736842

ACC= confusionFunction(df, 9, 10, 'Accuracy')
ACC

## [1] 0.6067416</pre>
```

F1 Score

Write a function to calculate the F1 score.

```
f1 <- function(df, actual, predicted){
  f1Tab <- table(df[[actual]], df[[predicted]])
  sens <- confusionFunction(df, actual, predicted, 'Sensitivity')
  prec <- confusionFunction(df, actual, predicted, 'Precision')
  f1Score <- 2 * sens * prec / (prec + sens)
  return(f1Score)
}

f1(df, 9, 10)</pre>
```

[1] 0.6067416

Bounds of F1

The F1 score is bouned between zero and 1.

$$F1_{Score} = \frac{2*Precicion*Sensitivity}{Precicion+Sensitivity}$$

For values of a, b 0 < a < 1 and 0 < b < 1 ab < a and ab < b. Therefore the numerator is strictly less than the demoninator of the above fraction.

ROC Curve Function

```
rocFunc <- function(values, predictions){</pre>
  # Returns a df of FPR and TPR and a tufte style graph of the AUC.
  # Special thanks too: http://blog.revolutionanalytics.com/2016/08/roc-curves-in-two-lines-of-code.htm
  values <- values[order(predictions, decreasing=TRUE)]</pre>
  df <- data.frame(TPR=cumsum(values)/sum(values),</pre>
             FPR=cumsum(!values)/sum(!values))
  p <- ggplot(df, aes(FPR, TPR)) +
    geom_line() +
    ggtitle('AUC Curve') +
    geom_abline(slope = 1) +
    ggthemes::theme_tufte()
  auc <- df %>%
    mutate(AUC = FPR * lead(FPR) * TPR) %>%
    select(AUC)
  return(list(auc, p))
Temp <- rocFunc(df$class, df$scored.probability)</pre>
x \leftarrow Temp[1]
data.frame(AUC = matrix(unlist(x))) %>% head() %>% kable()
```

AUC 0.0e+00 1.1e-06 2.3e-06 3.4e-06 4.6e-06 5.7e-06

AUC Curve

Investigate the caret package

```
library(caret)
## Warning: package 'caret' was built under R version 3.4.3
## Warning in as.POSIXlt.POSIXct(Sys.time()): unknown timezone 'zone/tz/2018c.
## 1.0/zoneinfo/America/Edmonton'
confusionMatrix(df$class, df$scored.class)
## Confusion Matrix and Statistics
##
##
             Reference
## Prediction
##
            0 119
                    5
            1 30
##
                  27
##
##
                  Accuracy: 0.8066
                    95% CI: (0.7415, 0.8615)
##
##
       No Information Rate: 0.8232
       P-Value [Acc > NIR] : 0.7559
##
##
                     Kappa: 0.4916
##
##
   Mcnemar's Test P-Value : 4.976e-05
##
```

```
##
               Sensitivity: 0.7987
##
               Specificity: 0.8438
##
            Pos Pred Value: 0.9597
            Neg Pred Value: 0.4737
##
##
                Prevalence: 0.8232
##
            Detection Rate: 0.6575
##
      Detection Prevalence: 0.6851
         Balanced Accuracy: 0.8212
##
##
##
          'Positive' Class : 0
##
```

We can see that this is a much more concise way to get many of the values that our function got. Given that it is probably written in C++ it will also be faster.

Investigate the pROC package

This is also a much more concise way to perform the analysis, however, in my huble opinion, my graph looks better.

There is also the plotROC package which performs well:

```
#devtools::install_github("sachsmc/plotROC")
library(plotROC)

ggplot(df, aes(d = class, m = scored.probability)) +
    geom_roc() +
    ggtitle('AUC Graph')+
    geom_abline()+
    ggthemes::theme_tufte()
```

AUC Graph

This produces an even better graph.