9/3/12 Cross Correlation

The Cross-Correlation package is available on github: https://github.com/keflavich/image_registration.

The goal is to determine the offset between two images with primarily extended structure.

```
In [1]: # import statement (with warnings silenced).
        with warnings.catch warnings():
            warnings.filterwarnings("ignore")
            import image registration
        errmsgs = np.seterr(all='ignore') # silence warning messages about div-by-zero
In [8]: # create a simulated image by randomly sampling from a power-law power spectrum with
        im1 = image registration.tests.make extended(100)
        # create an offset version corrupted by noise
        subplot(121); img1=imshow(im1)
        subplot(122); img2=imshow(im2)
                               80
                               60
         60
         40
                               40
         20
                               20
In [3]: # Run the registration methods 100 times each (and hide the output)
        offsets n1,eoffsets n1 = image registration.tests.compare methods(im1,im2,noise=0.1)
In [11]: # plot the simulation data
         # (note that the "gaussian" approach is hidden; it was problematic)
        image registration.tests.plot compare methods(offsets n1,eoffsets n1,dx=4.76666666,dy
        figure(2); ax=axis([4.7,4.85,-12.23,-12.43])
        figure(1); ax=axis([4.7,4.85,-12.23,-12.43])
        # the outputs below show the x,y standard deviations (i.e., the "simulated error"),
        # the means of the reported errors (i.e., the measured errors)
         \# and the ratio of the measured error to the simulated error - should be ^{\sim}1 if correc
         # the black X is the correct answer
        Standard Deviations: [ 0.00471562  0.00529775  0.00503669  0.00506778  0.
          0.00464351 0.004825291
        Error Means: [ 0.00497512  0.00497512  0.0727985  0.07114768  0.
                                                                                  0.
          0.00490234 0.00476562]
                                     0.93910169 14.45364199 14.03922113
        emeans/stds: [ 1.05503078
                                                                                  nan
                  nan
                       1.05574073
                                    0.987635731
                 - Taylor ⊪
                  - Gaussian
```


In [10]: # plot the simulation data but zoomed in more (same as above otherwise)
(note that the "gaussian" approach is hidden; it was problematic)
image_registration.tests.plot_compare_methods(offsets_n1,eoffsets_n1,dx=4.766666666,dy
figure(2); ax=axis([4.74,4.79,-12.32,-12.35])
figure(1); ax=axis([4.74,4.79,-12.32,-12.35])
the outputs below show the x,y standard deviations (i.e., the "simulated error"),
the means of the reported errors (i.e., the measured errors)
and the ratio of the measured error to the simulated error - should be ~1 if correc
the black X is the correct answer

In [5]: