

Instituto de Ciência e Tecnologia

Universidade Federal de São Paulo

Compiladores: Análise Sintática LL(1)

Profa Thaina A. A. Tosta

tosta.thaina@unifesp.br

Estratégia de construção do parser LL(1)

Estratégia de construção do parser LL(1)

- A construção da tabela preditiva para gramáticas complexas não é tarefa trivial;
- Para auxiliar na construção da tabela preditiva, adotamos a construção de conjuntos Primeiros (FIRST) e de Seqüência (FOLLOW);
- Conjuntos FIRST ajudam a escolher as regras gramaticais quando a parte sentencial delas começam com símbolos não-terminais;
- Conjuntos FOLLOW ajudam a saber quais tokens podem suceder apropriadamente um símbolo nãoterminal que pode desaparecer durante a derivação.

Conjuntos FIRST

- Dada uma gramática, deve ser criado um conjunto FIRST para cada símbolo da gramática, terminal ou não-terminal;
- Seja X um símbolo gramatical, o conjunto FIRST(X) é composto por terminais, e possivelmente ε, definido da seguinte maneira:
 - Se X for um terminal ou ε, então FIRST(X) = {X};
 - Se X for um não-terminal, então para cada escolha de produção $X \to X_1 X_2 ... X_n$, FIRST(X) contém FIRST(X_1) { ϵ }.

Conjuntos FIRST

- Adicionalmente:
 - Considerando a produção X → X₁X₂...X_n, se para algum i < n, todos os conjuntos FIRST(X₁),...,FIRST(X_i) contiverem ε, então FIRST(X) conterá FIRST(X_{i+1}) − {ε};
 - Se todos os conjuntos FIRST(X_1),...,FIRST(X_n) contiverem ε , então FIRST(X) também conterá ε .

Conjuntos FIRST

- Observações sobre a construção dos conjuntos FIRST:
 - O conjunto FIRST é formado apenas por símbolos terminais (e possivelmente ε);
 - A definição dos conjuntos FIRST funciona "à esquerda" das produções;
 - Um não-terminal A é anulável (ou seja, pode desaparecer) se e somente se FIRST(A) contiver ε.

Conjuntos FIRST

Algoritmo para construção do conjunto FIRST:

```
for cada não-terminal A do Primeiro(A) := \{\};

while houver alterações em algum Primeiro(A) do

for cada escolha de produção A \rightarrow X_1 X_2 ... X_n do

k := 1; Continue := true;

while Continue = true and k <= n do

acrescente Primeiro(X_k) - \{\epsilon\} a Primeiro(A);

if \epsilon não pertencer a Primeiro(X_k) then Continue := false;

k := k + 1;

if Continue = true then acrescente \epsilon a Primeiro(A);
```

Figura 4.6 Algoritmo para a computação de Primeiro(A) para todos os não-terminais A.

Conjuntos FIRST

Algoritmo para construção do conjunto FIRST:

```
for cada não-terminal A do Primeiro(A) := \{\};
while houver alterações em algum Primeiro(A) do
for cada escolha de produção A \to X_1 X_2 ... X_n do
acrescente Primeiro(X_1) a Primeiro(A);
```

Figura 4.7 Algoritmo simplificado da Figura 4.6 na ausência de ε-produções.

Conjuntos FIRST

Exemplo (4.9 – Louden):
 Considere a gramática:
 exp → exp soma termo | termo
 soma → + | termo → termo mult fator | fator
 mult → *
 fator → (exp) | NUM

Tabela 4.6	Computação dos conjuntos	Primeiros para a gramática d	o Exemplo 4.9.
Regra gramatical	Passada 1	Passada 2	Passada 3
$\begin{array}{c} exp \rightarrow exp \\ soma \ termo \end{array}$			
$exp \rightarrow termo$			Primeiro(exp) = {(, número}
$soma \rightarrow +$	Primeiro(soma) = {+}		
soma → -	Primeiro(soma) = {+, -}		
$termo \rightarrow termo \\ mult \ fator$			
$termo \rightarrow fator$		Primeiro(termo) = {(, número}	
$mult \rightarrow \star$	$Primeiro(mult) = \{ \star \}$		
fator ightarrow (exp)	Primeiro(fator) = { (}		
$\mathit{fator} \to \mathtt{número}$	Primeiro(fator) = { (, número }		

for cada não-terminal A do $Primeiro(A) := \{\};$ while houver alterações em algum Primeiro(A) do for cada escolha de produção $A \to X_1X_2...X_n$ do acrescente $Primeiro(X_1)$ a Primeiro(A);

Conjuntos FIRST

Exemplo:

```
Considere a gramática:
\exp \rightarrow \exp soma termo \mid termo
soma \rightarrow + | -
termo → termo mult fator | fator
mult \rightarrow *
                                   Primeiro(exp) = { (, número }
fator \rightarrow (exp) | NUM
                                   Primeiro(termo) = { (, número }
                                   Primeiro(fator) = { (, número }
                                   Primeiro(soma) = {+, -}
                                   Primeiro(mult) = \{*\}
```

Conjuntos FOLLOW

- Necessários para a montagem da tabela preditiva, quando algum conjunto FIRST possui ε;
- Dado um não-terminal A, o conjunto FOLLOW(A), composto por terminais e possivelmente \$, é definido como:
 - 1. Se A for o símbolo inicial, então \$ pertence a FOLLOW(A);
 - 2. Se houver uma produção $B \rightarrow \alpha A \gamma$, então FIRST(γ) {ε} pertence a FOLLOW(A);
 - 3. Se houver uma produção $B \rightarrow \alpha A \gamma$ tal que ϵ pertença a FIRST(γ), então FOLLOW(A) contém FOLLOW(B);

OBS: o símbolo \$ indica final da entrada (se comporta como se fosse um *token* indicando fim de arquivo).

Conjuntos FOLLOW

- Observações sobre a construção dos conjuntos FOLLOW:
 - O conjunto FOLLOW é formado apenas por símbolos terminais;
 - O símbolo \$ indica final da entrada (se comporta como se fosse um token);
 - ε nunca é um elemento do conjunto FOLLOW (ε foi usado nos conjuntos FIRST apenas para marcar as cadeias que podem desaparecer);
 - Os conjuntos FOLLOW são definidos apenas para os símbolos nãoterminais;
 - A definição dos conjuntos FOLLOW funciona "à direita" das produções;
 - Regras que não têm não-terminais à direita nada acrescentam à construção dos conjuntos FOLLOW.

Conjuntos FOLLOW

```
Seqüência(símbolo-inicial) := {$}; for cada não-terminal A # símbolo-inicial do Seqüência(A) := {}; while houver alterações em algum conjunto de Seqüência do for cada produção A \to X_1 X_2 ... X_n do for each X_i que for não-terminal do adicione Primeiro(X_{i+1} X_{i+2} ... X_n) - {\epsilon} a Seqüência(X_i) (* Nota: se i=n, então X_{i+1} X_{i+2} ... X_n = \epsilon *) if \epsilon estiver em Primeiro (X_{i+1} X_{i+2} ... X_n) then adicione Seqüência(A) a Seqüência(X_i)
```

Figura 4.8 Algoritmo para a computação de conjuntos de Seqüência.

Conjuntos FOLLOW

```
Exemplo (4.12 – Louden):
Considere novamente a gramática:
\exp \rightarrow \exp soma termo \mid termo
soma → + | -
termo → termo mult fator | fator
mult \rightarrow *
fator → (exp) | NUM
                                  Primeiro(exp) = \{(, número)\}
                                  Primeiro(termo) = { (, número }
                                  Primeiro(fator) = \{(, número)\}
                                  Primeiro(soma) = \{+, -\}
                                  Primeiro(mult) = \{*\}
```

Tabela 4.8 Computação de conjuntos de Sequência para a gramática do Exemplo 4.12.

Regra gramatical	Passada 1	Passada 2
$exp \rightarrow exp$ soma	Seqüência(exp) =	Seqüência(termo) =
termo	{\$, ÷, -}	{\$, +, -, *,)}
	Seqüência(soma) =	
	{(, número}	
	Seqüência(termo) =	
	{\$, +, -}	
$exp \rightarrow termo$		
$termo \rightarrow termo \ mult$	Seqüência(termo) =	Seqüência(fator) =
fator	{\$, +, -, *}	{\$, +, -, *,)}
•	Seqüência(mult) =	
	{(, número}	
	Seqüência(fator) =	
	{\$, +, -, *}	
$termo \rightarrow fator$		
$fator \rightarrow (exp)$	Seqüência(exp) =	
	{\$, +, -,)}	

```
Primeiro(exp) = { (, número }

Primeiro(termo) = { (, número }

Primeiro(fator) = { (, número }

Primeiro(soma) = {+, -}

Primeiro(mult) = {*}

Seqüência(exp) = {$, +, -, )}

Seqüência(termo) = {$, +, -, *, )}

Seqüência(mult) = { (, número }

Seqüência(fator) = {$, +, -, *, )}
```

```
Seqüência(símbolo-inicial) := {$}; for cada não-terminal A # símbolo-inicial do Seqüência(A) := {}; while houver alterações em algum conjunto de Seqüência do for cada produção A \to X_1X_2...X_n do for each X_i que for não-terminal do adicione Primeiro(X_{i+1}X_{i+2}...X_n) - {\epsilon} a Seqüência(X_i) (* Nota: se i=n, então X_{i+1}X_{i+2}...X_n = \epsilon *) if \epsilon estiver em Primeiro (X_{i+1}X_{i+2}...X_n) then adicione Seqüência(A) a Seqüência(X_i)
```

Exercício: construa os conjuntos First e Follow para a GLC abaixo.

```
exp' \rightarrow soma\ termo\ exp' \mid \varepsilon
soma \rightarrow + | -
termo \rightarrow fator \ termo'
termo' \rightarrow mult fator termo' \mid \varepsilon
mult \rightarrow *
fator \rightarrow (exp) \mid número
Primeiro(exp) = \{(, número)\}
Primeiro(exp') = {+, -, \varepsilon}
Primeiro(soma) = \{+, -\}
Primeiro(termo) = \{(, número)\}
Primeiro(termo') = {*, \varepsilon}
Primeiro(mult) = \{*\}
Primeiro(fator) = { (, número)
```

 $exp \rightarrow termo \ exp'$

```
Seqüência(exp) = {$, }}
Seqüência(exp') = {$, }}
Seqüência(soma) = {(, número)}
Seqüência(termo) = {$, }, +, -}
Seqüência(termo') = {$, }, +, -}
Seqüência(mult) = {(, número)}
Seqüência(fator) = {$, }, +, -, *}
```

Construção da Tabela Preditiva

- Repetir os dois passos a seguir para cada não-terminal A e escolha de produção $A \rightarrow \alpha$
 - Para cada terminal α em FIRST(α), adicione $A \rightarrow \alpha$ a $M[A, \alpha]$;
 - Se ϵ pertencer a FIRST(A), para cada elemento α de FOLLOW(A) adicione $A \rightarrow \alpha$ a $M[A, \alpha]$.

Exemplo de construção de tabela preditiva (4.15 – Louden)

```
exp \rightarrow termo \ exp'
exp' \rightarrow soma\ termo\ exp' \mid \epsilon
soma \rightarrow + | -
termo \rightarrow fator termo'
termo' \rightarrow mult fator termo' \mid \epsilon
mult \rightarrow *
fator \rightarrow (exp) \mid número
Primeiro(exp) = \{(, número)\}
Primeiro(exp') = {+, -, \varepsilon}
Primeiro(soma) = \{+, -\}
Primeiro(termo) = \{(, número)\}
Primeiro(termo') = {*, \varepsilon}
Primeiro(mult) = \{*\}
Primeiro(fator) = { (, número)
```

```
Seqüência(exp) = {$, }}
Seqüência(exp') = {$, }}
Seqüência(exp') = {$, }}
Seqüência(soma) = {(, número)}
Seqüência(termo) = {$, }, +, -}
Seqüência(termo') = {$, }, +, -}
Seqüência(mult) = {(, número)}
Seqüência(fator) = {$, }, +, -, *}
```

Para cada não-terminal A e escolha de produção $A \rightarrow \alpha$:

Para cada terminal α em FIRST(α), adicione $A \rightarrow \alpha$ a $M[A, \alpha]$;

Se ε pertencer a FIRST(A), para cada elemento α de FOLLOW(A) adicione $A \to \alpha$ a $M[A, \alpha]$.

	Tabela	4.4 Tabela de a	análise sintátio	ca LL(1) para a g	ramática da Fig	ura 4.4.	
M[N,T]	(número)	+	-	* ;	\$
exp	exp → termo exp'	exp → termo exp'					
exp'			$exp' \rightarrow \varepsilon$	exp' → soma termo exp'	exp' → soma termo exp'		$exp' \rightarrow \varepsilon$
soma				soma → +	soma →		
termo	termo → fator termo'	termo → fator termo'					
termo'			$termo' \rightarrow \epsilon$	$termo' \rightarrow \epsilon$	$termo' \rightarrow \epsilon$	termo' → mult fator termo'	$termo' \rightarrow \epsilon$
mult						$mult \rightarrow *$	
fator	$\begin{array}{c} \textit{fator} \rightarrow \\ \textit{(exp)} \end{array}$	fator → número					

```
exp \rightarrow termo \ exp'
 exp' \rightarrow soma\ termo\ exp' \mid \varepsilon
 soma \rightarrow + | -
 termo \rightarrow fator termo'
 termo' \rightarrow mult fator termo' \mid \varepsilon
 mult \rightarrow *
fator \rightarrow (exp) \mid número
Primeiro(exp) = \{(, número)\}
Primeiro(exp') = {+, -, \varepsilon}
Primeiro(soma) = \{+, -\}
Primeiro(termo) = { (, número}
Primeiro(termo') = {*, \varepsilon}
Primeiro(mult) = \{*\}
Primeiro(fator) = { (, número)
Sequência(exp) = {$, )}
Sequência(exp') = {$, )}
Sequência(soma) = { (, número)
Sequência(termo) = {$, \, +, -}
Sequência(termo') = {$, ), +, -}
Sequência(mult) = \{(, número)\}
Sequência(fator) = {$, \), +, -, *}
```

Bibliografia consultada

LOUDEN, K. C. **Compiladores: princípios e práticas.** São Paulo: Pioneira Thompson Learning, 2004.

MERINO, M. **Notas de Aulas - Compiladores**, UNIMEP, 2006.