

### **TRANSFORMACIONES RÍGIDAS**

Alan Reyes-Figueroa Geometría Diferencial

(AULA 06) 24.ENERO.2023

### Definición

Sea  $d: \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}$  una función de distancia en  $\mathbb{R}^n$  (e.g. la distancia euclideana). Una **transformación rígida** (**movimiento rígido** o **euclideano**) en  $\mathbb{R}^n$  es una transformación  $M: \mathbb{R}^n \to \mathbb{R}^n$  que satisface

$$d(M\mathbf{x}, M\mathbf{y}) = d(\mathbf{x}, \mathbf{y}), \quad \forall \mathbf{x}, \mathbf{y} \in \mathbb{R}^n.$$

### Definición

Sea  $d: \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}$  una función de distancia en  $\mathbb{R}^n$  (e.g. la distancia euclideana). Una **transformación rígida** (**movimiento rígido** o **euclideano**) en  $\mathbb{R}^n$  es una transformación  $M: \mathbb{R}^n \to \mathbb{R}^n$  que satisface

$$d(M\mathbf{x}, M\mathbf{y}) = d(\mathbf{x}, \mathbf{y}), \quad \forall \mathbf{x}, \mathbf{y} \in \mathbb{R}^n.$$

¿Qué tipos de transformaciones rígidas hay?



### Definición

Sea  $d: \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}$  una función de distancia en  $\mathbb{R}^n$  (e.g. la distancia euclideana). Una **transformación rígida** (**movimiento rígido** o **euclideano**) en  $\mathbb{R}^n$  es una transformación  $M: \mathbb{R}^n \to \mathbb{R}^n$  que satisface

$$d(M\mathbf{x}, M\mathbf{y}) = d(\mathbf{x}, \mathbf{y}), \quad \forall \mathbf{x}, \mathbf{y} \in \mathbb{R}^n.$$

¿Qué tipos de transformaciones rígidas hay?



• Traslaciones:

Todo vector  $\mathbf{v} \in \mathbb{R}^n$  define una única traslación  $\mathbf{x} \mapsto \mathbf{x} + \mathbf{v}$ . Representamos el grupo de translaciones por  $\mathbb{R}^n$ .

- Traslaciones:
  - Todo vector  $\mathbf{v} \in \mathbb{R}^n$  define una única traslación  $\mathbf{x} \mapsto \mathbf{x} + \mathbf{v}$ . Representamos el grupo de translaciones por  $\mathbb{R}^n$ .
- Rotaciones y Reflexiones: Se representan por una trasformación lineal  $A: \mathbb{R}^n \to \mathbb{R}^n$  que satisface la propiedad de isometría

$$\langle A\mathbf{x}, A\mathbf{y} \rangle = \langle \mathbf{x}, \mathbf{y} \rangle, \quad \forall \mathbf{x}, \mathbf{y} \in \mathbb{R}^n.$$

En consecuencia, A es una matriz ortogonal real (sus columnas son una base ortonormal de  $\mathbb{R}^n$ ). El grupo de matrices ortogonales se llama el **grupo ortogonal** O(n).

- Traslaciones:
  - Todo vector  $\mathbf{v} \in \mathbb{R}^n$  define una única traslación  $\mathbf{x} \mapsto \mathbf{x} + \mathbf{v}$ . Representamos el grupo de translaciones por  $\mathbb{R}^n$ .
- Rotaciones y Reflexiones: Se representan por una trasformación lineal  $A: \mathbb{R}^n \to \mathbb{R}^n$  que satisface la propiedad de isometría

$$\langle A\mathbf{x}, A\mathbf{y} \rangle = \langle \mathbf{x}, \mathbf{y} \rangle, \quad \forall \mathbf{x}, \mathbf{y} \in \mathbb{R}^n.$$

En consecuencia, A es una matriz ortogonal real (sus columnas son una base ortonormal de  $\mathbb{R}^n$ ). El grupo de matrices ortogonales se llama el **grupo ortogonal** O(n).

$$A \in O(n) \Rightarrow A^T A = I \Rightarrow A^{-1} = A^T,$$
  
 $\Rightarrow \det(A)^2 = \det(A^T) \det(A) = \det(A^T A) = \det(I) = 1$   
 $\Rightarrow \det(A) = \pm 1.$ 

 <u>Rotaciones</u>: se caracterizan por tener determinante 1, Ellas forman la mitad del grupo ortogonal. El grupo de rotaciones se llama el **grupo especial ortogonal** SO(n).



- <u>Rotaciones</u>: se caracterizan por tener determinante 1, Ellas forman la mitad del grupo ortogonal. El grupo de rotaciones se llama el **grupo especial ortogonal** SO(n).
- <u>Reflexiones</u>: se caracterizan por tener determinante —1. Forman la otra mitad del grupo ortogonal.

- <u>Rotaciones</u>: se caracterizan por tener determinante 1, Ellas forman la mitad del grupo ortogonal. El grupo de rotaciones se llama el **grupo especial ortogonal** SO(n).
- Reflexiones: se caracterizan por tener determinante —1. Forman la otra mitad del grupo ortogonal.

### Propiedad

Una transformación rígida en  $\mathbb{R}^n$  es de la forma

$$M(\mathbf{x}) = A\mathbf{x} + \mathbf{t}$$
, donde  $A \in O(n)$ ,  $\mathbf{t} \in \mathbb{R}^n$ .

- <u>Rotaciones</u>: se caracterizan por tener determinante 1, Ellas forman la mitad del grupo ortogonal. El grupo de rotaciones se llama el **grupo especial ortogonal** SO(n).
- Reflexiones: se caracterizan por tener determinante —1. Forman la otra mitad del grupo ortogonal.

### Propiedad

Una transformación rígida en  $\mathbb{R}^n$  es de la forma

$$M(\mathbf{x}) = A\mathbf{x} + \mathbf{t}$$
, donde  $A \in O(n)$ ,  $\mathbf{t} \in \mathbb{R}^n$ .

<u>Prueba</u>: Traslaciones, rotaciones y reflexiones, son de la forma  $A\mathbf{x} + \mathbf{t}$ .

- <u>Rotaciones</u>: se caracterizan por tener determinante 1, Ellas forman la mitad del grupo ortogonal. El grupo de rotaciones se llama el grupo especial ortogonal SO(n).
- <u>Reflexiones</u>: se caracterizan por tener determinante —1. Forman la otra mitad del grupo ortogonal.

### Propiedad

Una transformación rígida en  $\mathbb{R}^n$  es de la forma

$$M(\mathbf{x}) = A\mathbf{x} + \mathbf{t}$$
, donde  $A \in O(n)$ ,  $\mathbf{t} \in \mathbb{R}^n$ .

<u>Prueba</u>: Traslaciones, rotaciones y reflexiones, son de la forma  $A\mathbf{x} + \mathbf{t}$ . La composición es de esa forma:

$$A_2(A_1\mathbf{x} + \mathbf{t}_1) + \mathbf{t}_2 = A_2A_1\mathbf{x} + (A_2\mathbf{t}_1 + \mathbf{t}_2) = A\mathbf{x} + \mathbf{t}.$$



### Definición

El grupo de transformaciones rígidas en  $\mathbb{R}$  se llama el **grupo euclideano** E(n).



### Definición

El grupo de transformaciones rígidas en  $\mathbb R$  se llama el **grupo euclideano** E(n).



### **Propiedad**

La longitud de arco es invariante bajo transformaciones rígidas.



### **Propiedad**

La longitud de arco es invariante bajo transformaciones rígidas.

### Prueba:

Sea  $\alpha: I \to \mathbb{R}^n$  curva regular,  $M(\mathbf{x}) = A\mathbf{x} + \mathbf{v}$  un movimiento rígido. Entonces

### **Propiedad**

La longitud de arco es invariante bajo transformaciones rígidas.

### Prueba:

Sea  $\alpha: I \to \mathbb{R}^n$  curva regular,  $M(\mathbf{x}) = A\mathbf{x} + \mathbf{v}$  un movimiento rígido. Entonces  $\beta(s) = (M \circ \alpha)(s)\beta'(s) = (M \circ \alpha)'(s) = (A\alpha(s) + \mathbf{v})' = A\alpha'(s)$ .

### **Propiedad**

La longitud de arco es invariante bajo transformaciones rígidas.

### Prueba:

Sea  $\alpha: I \to \mathbb{R}^n$  curva regular,  $M(\mathbf{x}) = A\mathbf{x} + \mathbf{v}$  un movimiento rígido. Entonces  $\beta(s) = (M \circ \alpha)(s)\beta'(s) = (M \circ \alpha)'(s) = (A\alpha(s) + \mathbf{v})' = A\alpha'(s)$ . De ahí

$$\ell_{\beta}(s) = \int_{s_{0}}^{s} |\beta'(u)| du = \int_{s_{0}}^{s} |A\alpha'(u)| du = \int_{s_{0}}^{s} \langle A\alpha'(u), A\alpha'(u) \rangle^{1/2} du$$
$$= \int_{s_{0}}^{s} \langle \alpha'(u), \alpha'(u) \rangle^{1/2} du = \int_{s_{0}}^{s} |\alpha'(u)| du = \ell_{\alpha}(s), \ \forall s.$$

### **Propiedad**

La longitud de arco es invariante bajo transformaciones rígidas.

### Prueba:

Sea  $\alpha: I \to \mathbb{R}^n$  curva regular,  $M(\mathbf{x}) = A\mathbf{x} + \mathbf{v}$  un movimiento rígido. Entonces  $\beta(\mathbf{s}) = (M \circ \alpha)(\mathbf{s})\beta'(\mathbf{s}) = (M \circ \alpha)'(\mathbf{s}) = (A\alpha(\mathbf{s}) + \mathbf{v})' = A\alpha'(\mathbf{s})$ . De ahí

$$\ell_{\beta}(s) = \int_{s_0}^{s} |\beta'(u)| du = \int_{s_0}^{s} |A\alpha'(u)| du = \int_{s_0}^{s} \langle A\alpha'(u), A\alpha'(u) \rangle^{1/2} du$$
$$= \int_{s_0}^{s} \langle \alpha'(u), \alpha'(u) \rangle^{1/2} du = \int_{s_0}^{s} |\alpha'(u)| du = \ell_{\alpha}(s), \forall s.$$

Esto muestra que  $\ell$  es invariante bajo movimientos rígidos.  $\Box$ 

### **Propiedad**

La curvatura  $\kappa$  y la torsión  $\tau$  son invariantes bajo transformaciones rígidas.



### **Propiedad**

La curvatura  $\kappa$  y la torsión  $\tau$  son invariantes bajo transformaciones rígidas.

### Prueba:

Sea  $\alpha: I \to \mathbb{R}^3$  curva regular,  $M(\mathbf{x}) = A\mathbf{x} + \mathbf{v}$  un movimiento rígido. Sea  $\beta(\mathbf{s}) = (M \circ \alpha)(\mathbf{s})$ .

### **Propiedad**

La curvatura  $\kappa$  y la torsión  $\tau$  son invariantes bajo transformaciones rígidas.

#### Prueba:

Sea  $\alpha: I \to \mathbb{R}^3$  curva regular,  $M(\mathbf{x}) = A\mathbf{x} + \mathbf{v}$  un movimiento rígido. Sea  $\beta(\mathbf{s}) = (M \circ \alpha)(\mathbf{s})$ .

Ya vimos que  $\beta'(s) = A\alpha'(s)$ . Luego,  $\beta''(s) = A\alpha''(s)$  y  $\beta'''(s) = A\alpha'''(s)$ .

### **Propiedad**

La curvatura  $\kappa$  y la torsión  $\tau$  son invariantes bajo transformaciones rígidas.

#### Prueba:

Sea  $\alpha: I \to \mathbb{R}^3$  curva regular,  $M(\mathbf{x}) = A\mathbf{x} + \mathbf{v}$  un movimiento rígido. Sea  $\beta(\mathbf{s}) = (M \circ \alpha)(\mathbf{s})$ .

Ya vimos que  $\beta'(s) = A\alpha'(s)$ . Luego,  $\beta''(s) = A\alpha''(s)$  y  $\beta'''(s) = A\alpha'''(s)$ . En particular,

$$\mathbf{t}_{\beta}(\mathbf{s}) = \beta'(\mathbf{s}) = \mathbf{A}\alpha'(\mathbf{s}) = \mathbf{A}\mathbf{t}_{\alpha}(\mathbf{s}),$$

### **Propiedad**

La curvatura  $\kappa$  y la torsión  $\tau$  son invariantes bajo transformaciones rígidas.

#### Prueba:

Sea  $\alpha: I \to \mathbb{R}^3$  curva regular,  $M(\mathbf{x}) = A\mathbf{x} + \mathbf{v}$  un movimiento rígido. Sea  $\beta(\mathbf{s}) = (M \circ \alpha)(\mathbf{s})$ .

Ya vimos que  $\beta'(s) = A\alpha'(s)$ . Luego,  $\beta''(s) = A\alpha''(s)$  y  $\beta'''(s) = A\alpha'''(s)$ . En particular,

$$\mathbf{t}_{\beta}(s) = \beta'(s) = A\alpha'(s) = A\mathbf{t}_{\alpha}(s),$$
  
 $\mathbf{n}_{\beta}(s) = A\mathbf{n}_{\alpha}(s)$  (ya que  $\beta''(s) = A\alpha''(s)$ ),

### **Propiedad**

La curvatura  $\kappa$  y la torsión  $\tau$  son invariantes bajo transformaciones rígidas.

#### Prueba:

Sea  $\alpha: I \to \mathbb{R}^3$  curva regular,  $M(\mathbf{x}) = A\mathbf{x} + \mathbf{v}$  un movimiento rígido. Sea  $\beta(\mathbf{s}) = (M \circ \alpha)(\mathbf{s})$ .

Ya vimos que  $\beta'(s) = A\alpha'(s)$ . Luego,  $\beta''(s) = A\alpha''(s)$  y  $\beta'''(s) = A\alpha'''(s)$ . En particular,

$$\begin{array}{lcl} \mathbf{t}_{\beta}(s) & = & \beta'(s) = A\alpha'(s) = A\mathbf{t}_{\alpha}(s), \\ \mathbf{n}_{\beta}(s) & = & A\mathbf{n}_{\alpha}(s) & \text{(ya que } \beta''(s) = A\alpha''(s)), \\ \mathbf{b}_{\beta}(s) & = & \mathbf{t}_{\beta}(s) \times \mathbf{n}_{\beta}(s) = A\mathbf{t}_{\alpha}(s) \times A\mathbf{n}_{\alpha}(s) = A(\mathbf{t}_{\alpha}(s) \times \mathbf{n}_{\alpha}(s)) = A\mathbf{b}_{\alpha}(s). \end{array}$$

Luego A lleva el triedro de Frenet de  $\alpha$ , en el triedro de Frenet de  $\beta$ .

Luego A lleva el triedro de Frenet de  $\alpha$ , en el triedro de Frenet de  $\beta$ .

Además,

$$\kappa_{\beta}(s) = \langle \beta''(s), \mathbf{n}_{\beta}(s) \rangle = \langle A\alpha''(s), A\mathbf{n}_{\alpha}(s) \rangle = \langle \alpha''(s), \mathbf{n}_{\alpha}(s) \rangle$$

Luego A lleva el triedro de Frenet de  $\alpha$ , en el triedro de Frenet de  $\beta$ .

Además,

$$\kappa_{\beta}(s) = \langle \beta''(s), \mathbf{n}_{\beta}(s) \rangle = \langle A\alpha''(s), A\mathbf{n}_{\alpha}(s) \rangle = \langle \alpha''(s), \mathbf{n}_{\alpha}(s) \rangle$$
$$= \kappa_{\alpha}(s), \ \forall s;$$

Luego A lleva el triedro de Frenet de  $\alpha$ , en el triedro de Frenet de  $\beta$ .

Además,

$$\begin{array}{lll} \kappa_{\beta}(s) & = & \langle \beta''(s), \mathbf{n}_{\beta}(s) \rangle = \langle A\alpha''(s), A\mathbf{n}_{\alpha}(s) \rangle = \langle \alpha''(s), \mathbf{n}_{\alpha}(s) \rangle \\ & = & \kappa_{\alpha}(s), \ \, \forall s; \\ y & \\ \tau_{\beta}(s) & = & \langle \mathbf{b}_{\beta}'(s), \mathbf{n}_{\beta}(s) \rangle = \langle A\mathbf{b}_{\alpha}'(s), A\mathbf{n}_{\alpha}(s) \rangle = \langle \mathbf{b}_{\alpha}'(s), \mathbf{n}_{\alpha}(s) \rangle \end{array}$$

Luego A lleva el triedro de Frenet de  $\alpha$ , en el triedro de Frenet de  $\beta$ .

Además,

$$\begin{array}{lll} \kappa_{\beta}(s) & = & \langle \beta''(s), \mathbf{n}_{\beta}(s) \rangle = \langle A\alpha''(s), A\mathbf{n}_{\alpha}(s) \rangle = \langle \alpha''(s), \mathbf{n}_{\alpha}(s) \rangle \\ & = & \kappa_{\alpha}(s), \ \, \forall s; \\ & \mathbf{y} \\ & \tau_{\beta}(s) & = & \langle \mathbf{b}_{\beta}'(s), \mathbf{n}_{\beta}(s) \rangle = \langle A\mathbf{b}_{\alpha}'(s), A\mathbf{n}_{\alpha}(s) \rangle = \langle \mathbf{b}_{\alpha}'(s), \mathbf{n}_{\alpha}(s) \rangle \\ & = & \tau_{\alpha}(s), \ \, \forall s. \end{array}$$

De ahí que  $\kappa$  y au son invariantes bajo movimientos rígidos.  $\Box$