ALGEBRA Chapter 20

Ecuaciones de Segundo Grado

$$ax^{2} + bx + c = 0$$

$$x = \frac{-b \pm \sqrt{b^{2} - 4ac}}{2a}$$

BHASKARA II (1114-1185)

Conocido también como Bhaskara Acharya, fue un matemático y astrónomo hindú conocido por escribir su tratado principal Siddhānta Shiromani el cual está dividido en cuatro partes , Livavati(Aritmética), Goladhyaya(globo celestial), Grahaganita(matemáticas de los planetas) y finalmente Bijaganita (Álgebra), este último dividido en 6 partes, contiene 213 versos dedicados al álgebra. Se presume que Bhaskara II escribió basándose en muchos matemáticos antiguos como Diofanto de Alejandría entre otros, deduciendo y formulando por primera ves la Fórmula General de una ecuación cuadrática.

Bhaskara Acharya (1114-1185)

ECUACIÓN DE SEGUNDO GRADO

Llamada también ecuación cuadrática.

Forma General

$$ax^2 + bx + c = 0$$
; $a \neq 0$

Donde x es la incógnita y a,b y c son coeficientes reales.

Esta ecuación tiene dos soluciones:

$$x_1 = \frac{-b + \sqrt{\Delta}}{2a} \quad \land \quad x_2 = \frac{-b - \sqrt{\Delta}}{2a}$$

Además $\Delta = b^2 - 4ac$ es llamado discriminante de la ecuación de segundo grado.

se cumple qué:

Propiedades	
Suma de raíces	$x_1 + x_2 = -\frac{b}{a}$
Producto de raíces	$x_1 \times x_2 = \frac{c}{a}$

HELICO PRACTICE

1. Resuelva e indique la menor solución

$$(x-1)^2 + 2(x+3) = 32$$

RESOLUCIÓN

$$(x-1)^{2} + 2(x+3) = 32$$

$$x^{2} - 2x + 1 + 2x + 6 = 32$$

$$x^{2} + 7 - 32 = 0$$

$$x^{2} - 25 = 0$$

$$(x-5)(x+5) = 0$$

$$x - 5 = 0 \quad \forall x + 5 = 0$$

$$C.S = \{-5; 5\}$$

RECORDEMOS

Binomio al cuadrado

$$(a+b)^2 = a^2 + 2ab + b^2$$

Diferencia de cuadrados

$$a^2 - b^2 = (a - b)(a + b)$$

2. Calcule los valores de x en

$$(2x+1)(2x-1) = 3x$$

RESOLUCIÓN

$$(2x + 1)(2x - 1) = 3x$$

$$(2x)^{2} - 1^{2} = 3x$$

$$4x^{2} - 1 = 3x$$

$$4x^{2} - 3x - 1 = 0$$

$$4x = 0$$

$$4x = 0$$

$$4x = 0$$

$$x = 0$$

$$x = 0$$

$$(4x + 1)(x - 1) = 0$$

$$4x + 1 = 0 \lor x - 1 = 0$$

$$x_1 = -\frac{1}{4} ; x_2 = 1$$

RECORDEMOS

Diferencia de cuadrados

$$a^2 - b^2 = (a - b)(a + b)$$

3. Determine la suma y el producto de raíces de

$$5x^2 - 10x + 15 = 0$$

RESOLUCIÓN

$$5x^2 - 10x + 15 = 0$$

Suma de raíces

$$x_1 + x_2 = -\frac{b}{a}$$

$$x_1 + x_2 = \frac{-(-10)}{5}$$

$$x_1 + x_2 = \frac{10}{5} = 2$$

Producto de raíces

$$x_1 \times x_2 = \frac{c}{a}$$

$$x_1 \times x_2 = \frac{15}{5}$$

$$x_1 \times x_2 = 3$$

Suma de raíces = 2 Producto de raíces = 3

RECORDEMOS

$$ax^2 + bx + c = 0$$
; $a \neq 0$

Propiedades		
Suma de raíces	$x_1 + x_2 = -\frac{b}{a}$	
Producto de raíces	$x_1 \times x_2 = \frac{c}{a}$	

HELICO | PRACTICE

4. Sea $x^2 - 5x + 3 = 0$ donde x_1 y x_2 son raíces. Calcule $x_1 + x_2 + x_1 \cdot x_2$

RESOLUCIÓN

$$1x^2 - 5x + 3 = 0$$

Suma de raíces

$$x_1 + x_2 = -\frac{b}{a}$$
$$x_1 + x_2 = \frac{-(-5)}{1}$$

$$x_1 + x_2 = 5$$

Producto de raíces

$$x_1 \times x_2 = \frac{c}{a}$$

$$x_1 \times x_2 = \frac{3}{1}$$

$$x_1 \times x_2 = 3$$

$$x_1 + x_2 + x_1 \cdot x_2 = 5 + 3 = \boxed{8}$$

RECORDEMOS

$$ax^2 + bx + c = 0$$
; $a \neq 0$

Propiedades	
Suma de raíces	$x_1 + x_2 = -\frac{b}{a}$
Producto de raíces	$x_1 \times x_2 = \frac{c}{a}$

5. Sea $2x^2 - 5x + 7 = 0$ de raíces x_1 y x_2 . Calcule $\frac{x_1 \cdot x_2}{x_1 + x_2}$.

RESOLUCIÓN

$$2x^2 - 5x + 7 = 0$$

Suma de raíces

$$x_1 + x_2 = -\frac{b}{a}$$
$$x_1 + x_2 = \frac{-(-5)}{2}$$

$$x_1 + x_2 = \frac{5}{2}$$

Producto de raíces

$$x_1 \times x_2 = \frac{c}{a}$$
$$x_1 \times x_2 = \frac{7}{2}$$

$$\frac{x_1 \cdot x_2}{x_1 + x_2} = \frac{5}{2} \div \frac{7}{2} = \frac{5}{2} \times \frac{2}{7} = \boxed{\frac{5}{7}}$$

RECORDEMOS

$$ax^2 + bx + c = 0$$
; $a \neq 0$

Propiedades	
Suma de raíces	$x_1 + x_2 = -\frac{b}{a}$
Producto de raíces	$x_1 \times x_2 = \frac{c}{a}$

6. Sea la ecuación

 $x^2 - mx + 3 = 0$ de raíces $x_1 \wedge x_1$ Calcule el valor de m si $\frac{1}{r_1} + \frac{1}{r_2} = 8$.

RESOLUCIÓN

$$1x^2 - mx + 3 = 0$$

Suma de raíces

$$x_{1} + x_{2} = -\frac{b}{a}$$

$$x_{1} \times x_{2} = \frac{c}{a}$$

$$x_{1} \times x_{2} = \frac{a}{a}$$

$$x_{1} \times x_{2} = \frac{3}{1}$$

$$x_{1} \times x_{2} = 3$$

Producto de raíces

$$x_1 \times x_2 = \frac{c}{a}$$

$$x_1 \times x_2 = \frac{3}{1}$$

$$x_1 \times x_2 = 3$$

$$\frac{1}{x_1} + \frac{1}{x_2} = 8 \to \frac{x_2 + x_1}{x_1 \times x_2} = 8 \quad \therefore \frac{m}{3} = 8$$

$$m = 24$$

RECORDEMOS

$$ax^2 + bx + c = 0$$
; $a \neq 0$

Propiedades	
Suma de raíces	$x_1 + x_2 = -\frac{b}{a}$
Producto de raíces	$x_1 \times x_2 = \frac{c}{a}$

7. Sea $x^2 - 4x + 1 = 0$ de raíces x_1 y x_2 .

RESOLUCIÓN

Suma de raíces

$$x_1 + x_2 = -\frac{b}{a}$$

$$x_1 + x_2 = \frac{-(-4)}{1}$$

$$x_1 + x_2 = 4$$

Producto de raíces

$$x_1 \times x_2 = \frac{1}{1}$$
$$x_1 \times x_2 = 1$$

RECORDEMOS

Binomio al cuadrado

$$(a+b)^2 = a^2 + 2ab + b^2$$

Entonces

$$(x_1 + x_2)^2 = x_1^2 + 2x_1 \cdot x_2 + x_2^2$$

$$()^2 = x_1^2 + 2() + x_2^2$$

$$16 = x_1^2 + 2 + x_2^2$$

$$14 = x_1^2 + x_2^2$$

8. El número de estudiantes ajedrecistas de un local está dado por el valor de E sabiendo que

$$x^2 - 2x - 4 = 0$$

De raíces a y b, calcule $E = a^2 + b^2$. ¿Cuántos son los estudiantes?

RESOLUCIÓN

Suma de raíces

$$a + b = -\frac{b}{a}$$

$$a + b = \frac{-(-2)}{1}$$

$$a + b = 2$$

Producto de raíces

$$a \times b = \frac{-4}{1}$$
$$a \times b = -4$$

RECORDEMOS

Binomio al cuadrado

$$(a+b)^2 = a^2 + 2ab + b^2$$

Entonces

$$(a+b)^{2} = a^{2} + 2 \cdot a \cdot b + b^{2}$$

$$()^{2} = a^{2} + 2() + b^{2}$$

$$16 = x_{1}^{2} + 4 + x_{2}^{2}$$

$$12 = x_{1}^{2} + x_{2}^{2}$$

$$E = 12$$

El número de estudiantes ajedrecistas son 12

HELICO | RESUME

1. Resuelva e indique la menor solución

$$(x-1)^2 + 2(x+3) = 32$$

RESOLUCIÓN

$$(x-1)^{2} + 2(x+3) = 32$$

$$x^{2} - 2x + 1 + 2x + 6 = 32$$

$$x^{2} + 7 - 32 = 0$$

$$x^{2} - 25 = 0$$

$$(x-5)(x+5) = 0$$

$$x-5 = 0 \text{ v } x+5 = 0$$

$$C.S = \{-5; 5\}$$

 $5x^2 - 10x + 15 = 0$

 $5x^2 - 10x + 15 = 0$

Suma de raíces = 2

Producto de raíces= 3

Producto de raíces

 $x_1 \times x_2 = \frac{c}{a}$

 $x_1 \times x_2 = \frac{15}{5}$

 $x_1 \times x_2 = 3$

-5

2. Calcule los valores de x en

$$(2x+1)(2x-1) = 3x$$

RESOLUCIÓN

$$(2x+1)(2x-1) = 3x$$

$$(2x)^2 - 1^2 = 3x$$

$$4x^2 - 1 = 3x$$

$$4x^2 - 3x - 1 = 0$$

$$4x \qquad 1 \rightarrow x$$

$$x \qquad x \rightarrow 1 \rightarrow x + 1$$

$$(4x+1)(x-1)=0$$

 $4x+1=0$ y $x-1=0$

$$x_1 = -\frac{1}{4}; \ x_2 = 1$$

$$(4x+1)(x-1)=0$$

 $x+1=0 \ \forall \ x-1=0$

$$x_1 = -\frac{1}{4} \; ; \; x_2 = 1$$

5. Sea $2x^2 - 5x + 7 = 0$ de raíces $x_1 y x_2$. Calcule $x_1.x_2$ $x_1 + x_2$

RESOLUCIÓN

RESOLUCIÓN

$$2x^2 - 5x + 7 = 0$$

Suma de raíces $x_1 + x_2 = -\frac{b}{a}$ $x_1 \times x_2 = \frac{c}{a}$ $x_1 + x_2 = \frac{-(-5)}{2}$ $x_1 \times x_2 = \frac{7}{2}$ $x_1 + x_2 = \frac{5}{2}$

$$\frac{x_1, x_2}{x_1 + x_2} = \frac{5}{2} \div \frac{7}{2} = \frac{5}{2} \times \frac{7}{7} = \boxed{\frac{5}{7}}$$

3. Determine la suma y el producto de raíces de **4.** Sea $x^2 - 5x + 3 = 0$ donde x_1 y x_2 son raíces. **6.** Sea la ecuación Calcule $x_1 + x_2 + x_1 \cdot x_2$

 $x^2 - mx + 3 = 0$ de raíces $x_1 \wedge x_1$ Calcule el valor de **m** si $\frac{1}{x_1} + \frac{1}{x_2} = 8$

RESOLUCIÓN

$$1x^2 - 5x + 3 = 0$$

Suma de raíces Producto de raíces $x_1 \times x_2 = \frac{5}{a}$

$$x_1 + x_2 = -\frac{b}{a}$$

$$x_1 + x_2 = \frac{-(-5)}{1}$$

$$x_1 + x_2 = 5$$

$$x_1 \times x_2 = \frac{3}{1}$$
$$x_1 \times x_2 = 3$$

$$x_1 + x_2 + x_1$$
, $x_2 = 5 + 3 =$ 8

 $1x^2 - mx + 3 = 0$

Suma de raíces Producto de raíces $x_1 + x_2 = -\frac{b}{a}$ $x_1 \times x_2 = \frac{1}{a}$

$$x_1 + x_2 = m$$
 $x_1 \times x_2 = 3$ $\frac{1}{x_1} + \frac{1}{x_2} = 8 \rightarrow \frac{x_2 + x_1}{x_1 \times x_2} = 8 \therefore \frac{m}{3} = 8$ $m = 24$

7. Sea $x^2 - 4x + 1 = 0$ de raíces x_1 y x_2 . Calcule T = $x_1^2 + x_2^2$.

RESOLUCIÓN

$$\frac{1}{a}x^2 - 4x + 1 = 0$$

Suma de raíces

$$x_1 + x_2 = -\frac{b}{a}$$
$$x_1 + x_2 = \frac{-(-4)}{1}$$

Producto de raíces

$$x_{1} + x_{2} = -\frac{1}{a}$$

$$x_{1} + x_{2} = \frac{-(-4)}{1}$$

$$x_{1} + x_{2} = 4$$

$$x_{1} \times x_{2} = \frac{1}{1}$$

$$x_{1} \times x_{2} = 1$$

$$x_1 \times x_2 = \frac{1}{1}$$
$$x_1 \times x_2 = 1$$

 $16 = x_1^2 + 2 + x_2^2$ $14 = x_1^2 + x_2^2$

Binomio al cuadrado

 $(a+b)^2 = a^2 + 2ab + b^2$

 $(x_1 + x_2)^2 = x_1^2 + 2x_1 \cdot x_2 + x_2^2$

 $()^2 = x_1^2 + 2() + x_2^2$

8. El número de estudiantes ajedrecistas de un local está dado por el valor de E sabiendo que

$$x^2 - 2x - 4 = 0$$

De raíces a y b, calcule $\mathbf{E} = a^2 + b^2$. ¿Cuántos son los estudiantes?

RESOLUCIÓN

$$\begin{array}{ccc}
1 & x^2 - 2x - 4 = 0 \\
a & b & c
\end{array}$$

Suma de raíces Producto de raíces

$$a+b = -\frac{b}{a}$$

$$a+b = \frac{-(-2)}{1}$$

$$a \times b = \frac{-4}{1}$$

$$a \times b = -4$$

RECORDEMOS

RECORDEMOS

Fntonces:

Binomio al cuadrado

$$(a+b)^2 = a^2 + 2ab + b^2$$

Entonces:

$$(a+b)^{2} = a^{2} + 2.a.b + b^{2}$$

$$()^{2} = a^{2} + 2() + b^{2}$$

$$16 = x_{1}^{2} + 4 + x_{2}^{2}$$

$$12 = x_{1}^{2} + x_{2}^{2}$$

$$E = 12$$

El número de estudiantes ajedrecistas son 12

RESOLUCIÓN

Suma de raíces

 $x_1 + x_2 = -\frac{b}{a}$

 $x_1 + x_2 = \frac{10}{5} = 2$