MATH 250: TOPOLOGY I PROBLEM SET #4

FALL 2025

Due Friday, October 31. Please attempt all of the problems. <u>Six</u> of them will be graded. You may consult books, papers, and websites as long as you cite all sources and write up your solutions in your own words.

Problem 1 (Munkres 157, #1(a)). Show that no two of the spaces

are homeomorphic. Hint: What happens if you remove any point from (0,1)?

Problem 2 (Munkres 158, #3). Let $f: X \to X$ be continuous. Show that:

- (1) If X = [0, 1], then f has a *fixed point*: that is, a point $x \in X$ such that f(x) = x. *Hint*: Intermediate Value Theorem.
- (2) If X = [0, 1), then the analogue of (1) fails.

Problem 3 (Munkres 162, #4). Show that if X is locally path connected, then every connected open subset of X is path connected. *Hint:* Munkres Theorem 25.5.

Problem 4 (Munkres 171, #5). Let X be Hausdorff, and let A, B be disjoint compact subspaces of X. Show that there exist disjoint open $U, V \subseteq X$ such that $A \subseteq U$ and $B \subseteq V$. Hint: Munkres Lemma 26.4.

Problem 5 (Munkres 171, #7). Show that if Y is compact, then for any space X, the projection $\operatorname{pr}_X: X \times Y \to X$ defined by

$$\operatorname{pr}_X(x,y) = x$$

is a *closed map*, meaning it takes closed sets to closed sets.

Problem 6. Read the definition of the T_1 axiom in Munkres §17, and the definitions of regular and normal spaces in Munkres §31. (The Hausdorff axiom is sometimes called the T_2 axiom.)

- (1) Put the four conditions above in order from most to least restrictive.
- (2) Show that \mathbf{R} is <u>not</u> Hausdorff in the finite complement topology.
- (3) Show directly, without using tools from Munkres §32 onwards, that **R** is normal in the analytic topology.

Problem 7 (Munkres 330, #2). For any spaces X, Y, let [X, Y] be the set of homotopy classes of maps of X into Y. For clarity, let I = [0, 1]. Show that:

- (1) If X is nonempty, then [X, I] is a singleton.
- (2) If Y is nonempty and path-connected, then [I, Y] is a singleton.

Problem 8 (Munkres 330, #3). Keep the notation of Problem 7. We say that a nonempty space X is *contractible* if and only if its identity map is nulhomotopic: *i.e.*, homotopic to some constant-valued map. Show that:

- (1) I and \mathbf{R} are contractible.
- (2) Any contractible (nonempty) space is path-connected.
- (3) If X, Y are nonempty and Y is contractible, then [X, Y] is a singleton.
- (4) If X, Y are nonempty, X is contractible, and Y is path-connected, then [X, Y] is a singleton.

In Problems 9–12, we study inverse limits. For any poset I with partial order \leq (\preceq), we define an *inverse system* over I to consist of:

- A collection of sets $\{X_i\}_{i\in I}$.
- A collection of maps $\{\phi_{i,j}: X_j \to X_i\}_{i \leq j}$, such that for all $i, j, k \in I$ with $i \leq j \leq k$, we have $\phi_{i,k} = \phi_{i,j} \circ \phi_{j,k}$.

We define the *inverse limit* $\underline{\lim}_{i} X_{i}$ to be the set

$$\varprojlim_{i} X_{i} = \left\{ (x_{i})_{i} \in \prod_{i \in I} X_{i} \middle| \phi_{i,j}(x_{j}) = x_{i} \text{ for all } i, j \in I \text{ with } i \leq j \right\}.$$

Problem 9. Fix a positive integer p. Consider the following inverse system:

- The poset is $\mathbf{Z}_{>0}$ under \leq .
- The sets are $\mathbf{Z}/p^i\mathbf{Z}$ for $i \in \mathbf{Z}_{>0}$.
- The map $\phi_{i,j}: \mathbf{Z}/p^j\mathbf{Z} \to \mathbf{Z}/p^i\mathbf{Z}$ is reduction mod p^i for all $i, j \in \mathbf{Z}_{>0}$ with $i \leq j$.

The inverse limit is denoted \mathbf{Z}_p . For prime p, it is the set of p-adic integers.

Let \mathbf{T}_p be the collection of formal power series $\alpha(t) = \sum_{i \geq 0} \alpha_i t^i$ such that $\alpha_i \in \{0, 1, \dots, p-1\}$ for all i. Show that for all $\alpha \in \mathbf{T}_p$, the sequence $(x_{i,\alpha})_i \in \prod_i \mathbf{Z}/p^i\mathbf{Z}$ defined by

$$x_i = \sum_{0 \le l < i} \alpha_l p^l \mod p^i$$
 for all $i > 0$

is an element of \mathbf{Z}_p .

(In fact, the map from \mathbf{T}_p to \mathbf{Z}_p that sends $\alpha \mapsto (x_{i,\alpha})_i$ is bijective. Hence, \mathbf{Z}_p is infinite.)

Problem 10. Consider the following inverse system.

- The poset is the collection \mathcal{T} of open subsets of \mathbf{R} under \subseteq .
- The sets are $X_U = \{\text{continuous functions from } U \text{ to } \mathbf{R}\}.$
- The maps $\phi_{U,V}: X_V \to X_U$ are given by $\phi_{U,V}(f) = f|_U$, where $|_U$ means we restrict the domain from V to U.

Let $X_{\mathbf{R}} = \{\text{continuous functions from } \mathbf{R} \text{ to } \mathbf{R}\}.$

- (1) Show that the map $X_{\mathbf{R}} \to \underline{\varprojlim}_U X_U$ defined by $f \mapsto (f|_U)_U$ is a bijection.
- (2) If we replace the word "continuous" with the word "bounded" throughout this problem, does the analogue of (1) still hold?

Problem 11. Let $(\{X_i\}_{i\in I}, \{\phi_{i,j}\}_{i\leq j})$ be an inverse system. Suppose that each set X_i is endowed with a topology, such that each map $\phi_{i,j}$ is continuous. View $\varprojlim_i X_i$ as a subspace of $\prod_i X_i$ in the product topology. Show that:

- (1) If X_i is Hausdorff for all i, then $\lim_{i \to \infty} X_i$ is Hausdorff.
- (2) If X_i is Hausdorff for all i, then $\varprojlim_i X_i$ is closed in $\prod_i X_i$. Hint: Observe that the composition

$$\prod_{i} X_{i} \xrightarrow{\operatorname{pr}_{j} \times \operatorname{pr}_{i}} X_{j} \times X_{i} \xrightarrow{\phi_{i,j} \times \operatorname{id}} X_{i} \times X_{i}$$

is continuous for all $i, j \in I$ with $i \leq j$. Use Problem Set 3, #7(3).

(3) If X_i is compact for all i, then $\varprojlim_i X_i$ is compact. *Hint:* Combine part (2) above with Tychonoff's theorem.

Problem 12. We keep the setup of Problem 9, but now, endow $\mathbf{Z}/p^i\mathbf{Z}$ with the discrete topology for all i.

- (1) Show that the maps $\phi_{i,j}$ are all continuous, and that \mathbf{Z}_p is compact and Hausdorff.
- (2) For all $j \in \mathbf{Z}_{>0}$ and $a \in \mathbf{Z}$, we define $a + p^j \mathbf{Z}_p$ to be the preimage of the residue $a \mod p^j$ under the composition

$$\mathbf{Z}_p \to \prod_{i>0} \mathbf{Z}/p^i \mathbf{Z} \xrightarrow{\operatorname{pr}_j} \mathbf{Z}/p^j \mathbf{Z}.$$

Show that $a + p^j \mathbf{Z}_p$ is always clopen.

(Using (2), one can show that \mathbf{Z}_p is totally disconnected. However, \mathbf{Z}_p is not discrete.)