第十七届全国青少年信息学奥林匹克联赛初赛试题

(提高组 C++语言 两小时完成)

●● 全部试题答案均要求写在答卷纸上,写在试卷纸上一律无效 ●●

一、单项选择题 (共10题,每题1.5分,共计15分。每题有且仅有一个正确选项。)

1.	. 在二进制下,1011001 + () = 1100110。 A. 1011 B. 1101 C. 1010	D. 1111
2.	字符 "A"的 ASCII 码为十六进制 41,则字符 "Z"的 A A. 66 B. 5A C. 50 D. 视具作	
3.	. <mark>右图</mark> 是一棵二叉树,它的先序遍历是()。 A. ABDEFC B. DBEFAC C. DFEBCA	D. ABCDEF B C
	. 寄存器是() 的重要组成部分。 A. 硬盘 B. 高速缓存 C. 内存 L处理器(CPU)	D. 中
5.	. 广度优先搜索时,需要用到的数据结构是 ()。 A. 链表 B. 队列 C. 栈	D. 散列表
6.	. 在使用高级语言编写程序时,一般提到的"空间复杂度"A. 程序运行时理论上所占的内存空间B. 程序运行时理论上所占的数组空间C. 程序运行时理论上所占的硬盘空间D. 程序源文件理论上所占的硬盘空间	中的空间是指()。
7.	. 应用快速排序的分治思想,可以实现一个求第 K 大数的和以实现的最低的算法时间复杂度为 ()。 A. O (n²) B. O (n log n) C. O (n	
ΧN	. 为解决 web 应用中的不兼容问题,保障信息的顺利流通,ML、CSS 等,并建议开发者遵循。 A. 微软 B. 美国计算机协会(ACM) C. 联合国	
到:	体育课的铃声响了,同学们都陆续的奔向操场,按老师的 则操场时,都从排尾走到排头,找到第一个比自己高的同学, 证法。	
10.	A. 快速排序B. 插入排序C. 冒泡D. 1956年()授予肖克利(William Shockley)、巴丁(A. 诺贝尔物理学奖B. 约翰・冯・诺依曼奖C. 图灵奖D. 高德纳奖(Donald E. Kr	(John Bardeen)和布拉顿(Walter Brattain)

二、不定项选择题 (共 10 题, 每题 1.5 分, 共计 15 分。每题正确答案的个数不少于 1。多选或少选均不得分)。						
1. 如果根结点的深度记为 1,则一棵恰有 2011 个叶子结点的二叉树的深度可能是 S 3 3 1						
A. 10	B. 11	C. 12	D. 2011	D 1 C		
2. 在布尔逻辑中,逻辑 A. 交换律: PVQ = B. 结合律: PV(C C. 幂等律: PVP = D. 有界律: PV1 =	QVP $QVR) = (PVQ) VR$ P) 。				
3. 一个正整数在十六章 A. 399	_ , , , , , , , , , , , , , , , , , , ,	它在二进制下可能 [。] C. 401	有()位。 D. 404			
4. 汇编语言()。 A. 是一种与具体硬件无关的程序设计语言 B. 在编写复杂程序时,相对于高级语言而言代码量大,且不易调试 C. 可以直接访问寄存器、内存单元、I/O端口 D. 随着高级语言的诞生,如今已被完全淘汰,不再使用						
]次数分别为 700、	起见,假设这段文言文只由 600、300、400。那么,"也 D. 4			
6. 生物特征识别,是利用人体本身的生物特征进行身份认证的一种技术。目前,指纹识别、虹膜识别、 人脸识别等技术已广泛应用于政府、银行、安全防卫等领域。以下属于生物特征识别技术及其应用的是 ()。						
			++			
A. 指静脉验证	B. 步态验证	C. ATM 机	上密码验证 D. 声音验证			
7. 对于序列"7、5、1 3。	. 9, 3, 6, 8, 4"	,在不改变顺序的情	情况下,去掉()会使逆	序对的个数减少		
A. 7	B. 5	C. 3	D. 6			
8. 计算机中的数值信息分为整数和实数(浮点数)。实数之所以能够表示很大或者很小的数,是由于使用了()。						
	B. 补码	C. 反码	D. 较长的尾数			
	算法计算 S 点到其系 还会出现的值有(B. 7) 。	长度时,到 B 点的距离 d[B]初 D. 5]始时赋为 8,在		

10. 为计算机网络中进行数据交换而建立的规则、标准或约定的集合称为网络协议。下列英文缩写中,() 是网络协议

A. HTTP

- B. TCP/IP
- C. FTP
- D. WWW

三. 问题求解(共2题,每空5分,共计10分)

1. 平面图可以在画在平面上,且它的边仅在顶点上才能相交的简单无向图。4 个的平面图至少有 6 条边,如右图所示。那么,5 个顶点的平面图至少有_____条

四. 阅读程序写结果(共4题,每题8分,共计32分)

```
1.
#include<iostream>
#include<cstring>
using namespace std;
const int SIZE = 100;
int main()
{
    int n,i,sum,x,a[SIZE];
    cin>>n;
    memset(a,0,sizeof(a));
    for(i=1;i \le n;i++){
         cin>>x;
         a[x]++;
     }
    i=0;
    sum=0;
     while(sum < (n/2+1)){
         i++;
         sum+=a[i];
    cout<<i<<endl;
    return 0:
}
输入:
```

4 5 6 6 4 3 3 2 3 2 1

```
输出: _____
2.
#include<iostream>
using namespace std;
int n;
void f2(int x,int y);
void f1(int x,int y)
{
    if(x < n)
         f2(y,x+y);
}
void f2(int x,int y)
{
    cout<<x<<' ';
    f1(y,x+y);
}
int main()
{
    cin>>n;
    f1(0,1);
    return 0;
    return 0;
}
输入: 30
输出: _____
3.
#include<iostream>
using namespace std;
const int V=100;
int n,m,ans,e[V][V];
bool visited[V];
void dfs(int x,int len)
    int i;
```

```
visited[x]= true;
    if(len>ans)
        ans=len;
    for(i=1;i<=n;i++)
        if( (!visited[i]) && (e[x][i]!=-1) )
            dfs(i,len+e[x][i]);
    visited[x]=false;
}
int main()
{
    int i,j,a,b,c;
    cin>>n>>m;
    for(i=1;i<=n;i++)
        for(j=1;j<=m;j++)
            e[i][j]=-1;
    for(i=1;i<=m;i++)
         cin>>a>>b>>c;
         e[a][b]=c;
         e[b][a]=c;
    for(i=1;i<=n;i++)
        visited[i]=false;
    ans=0;
    for(i=1;i<=n;i++)
        dfs(i,0);
    cout<<ans<<endl;
    return 0;
}
输入:
4 6
1 2 10
2 3 20
3 4 30
4 1 40
1 3 50
2 4 60
输出: __
4.
#include<iostream>
#include<cstring>
#include<string>
```

```
using namespace std;
const int SIZE=10000;
const int LENGTH=10;
int n,m,a[SIZE][LENGTH];
int h(int u,int v)
{
    int ans,i;
    ans=0;
    for(i=1;i<=n;i++)
        if( a[u][i]!=a[v][i])
            ans++;
    return ans;
}
int main()
{
    int sum,i,j;
    cin>>n;
    memset(a,0,sizeof(a));
    m=1;
    while(1)
         i=1;
         while( (i<=n) && (a[m][i]==1) )
             i++;
         if(i>n)
            break;
         m++;
         a[m][i]=1;
         for(j=i+1;j<=n;j++)
             a[m][j]=a[m-1][j];
    }
    sum=0;
    for(i=1;i<=m;i++)
        for(j=1;j<=m;j++)
           sum+=h(i,j);
    cout<<sum<<endl;
    return 0;
}
输入: 7
输出: _____
```

五. 完善程序 (第1题,每空2分,第2题,每空3分,共28分)

1.(大整数开方) 输入一个正整数 n ($1 \le n \le 10^{100}$),试用二分法计算它的平方根的整数部分。 #include<iostream> #include<string> using namespace std; const int SIZE=200; struct hugeint{ int len,num[SIZE]; }; //其中 len 表示大整数的位数; num[1]表示个位, num[2]表示十位, 以此类推 hugeint times(hugeint a, hugeint b) // 计算大整数 a 和 b 的乘积 { int i,j; hugeint ans; memset(ans.num, 0, sizeof(ans.num)); for(i=1;i<=a.len;i++) for(j=1;j<=b.len;j++)</pre> _____+=a.num[i]*b.num[j]; for(i=1;i<=a.len+b.len;i++) {</pre> ans.num[i+1]+=ans.num[i]/10; ② ; if(ans.num[a.len+b.len]>0) ans.len=a.len+b.len; else ans.len=a.len+b.len-1; return ans; } hugeint add(hugeint a, hugeint b) //计算大整数 a 和 b 的和 { int i; hugeint ans; memset(ans.num, 0, sizeof(ans.num)); if(a.len>b.len) ans.len=a.len; else ans.len=b.len; for(i=1;i<=ans.len;i++) {</pre>

ans.num[i]+= ③ ;

```
ans.num[i+1]+= ans.num[i]/10;
      ans.num[i]%=10;
   if(ans.num[ans.len+1]>0)
      ans.len++;
   return ans;
}
hugeint average(hugeint a, hugeint b)
//计算大整数 a 和 b 的平均数的整数部分
{
   int i;
   hugeint ans;
   ans=add(a,b);
   for(i=ans.len;i>=2;i--){
      ans.num[i-1]+=( 4 )*10;
      ans.num[i]/=2;
   ans.num[1]/=2;
   if(ans.num[ans.len]==0)
      ans.len--;
   return ans;
}
hugeint plustwo(hugeint a)
// 计算大整数 a 加 2 之后的结果
   int i;
   hugeint ans;
   ans=a;
   ans.num[1] += 2;
   i=1;
   while ( (i \le ans.len) \& (ans.num[i] >= 10) ) {
      ans.num[i+1]+=ans.num[i]/10;
      ans.num[i]%=10;
      i++;
   if(ans.num[ans.len+1]>0)
   return ans;
}
bool over(hugeint a, hugeint b)
// 若大整数 a>b 则返回 true, 否则返回 false
{
```

```
int i;
   if( 6 )
      return false;
   if( a.len>b.len )
      return true;
   for(i=a.len;i>=1;i--){
       if(a.num[i] < b.num[i])</pre>
         return false;
      if(a.num[i]>b.num[i])
         return true;
   return false;
}
int main()
{
   string s;
   int i;
   hugeint target, left, middle, right;
   cin>>s;
   memset(target.num, 0, sizeof(target.num));
   target.len=s.length();
   for(i=1;i<=target.len;i++)</pre>
       target.num[i]=s[target.len-i]-
   memset(left.num, 0, sizeof(left.num));
   left.len=1;
   left.num[1]=1;
   right=target;
   do{
      middle=average(left, right);
      if(over(<u>8</u>))
          right=middle;
       else
          left=middle;
   }while(!over(plustwo(left),right));
   for(i=left.len;i>=1;i--)
      cout<<left.num[i];</pre>
   return 0;
}
```

2. **(笛卡尔树)** 对于一个给定的两两不等的正整数序列,笛卡尔树是这样的一棵二叉树: 首先,它是一个最小堆,即除了根结点,每个节点的权值都大雨父节点的权值; 其次,它的中序遍历恰好就是给定的序列。例如,对于序列 7、2、12、1、10、5、15、3,下图就是一棵对应的笛卡尔树。现输入序列的规模 $n(1 \le n < 100)$ 和序列的 n个元素,试求其对应的笛卡尔树的深度 d(根节点深度为 1),以及有多少个叶子节点的深度为 d。

```
#include<iostream>
using namespace std;
const int SIZE=100+5;
const int INFINITY=1000000;
int n,a[SIZE],maxDeep,num;
void solve(int left,int right,int deep)
    int i,j,min;
    if(deep>maxDeep){
         maxDeep=deep;
         num=1;
    else if(deep==maxDeep)
                (1)
    min= INFINITY;
    for(i=left;i<=right;i++)
         if(min>a[i]){
              min=a[i];
                   2
          }
    if(left<j)
    if(j<right)
}
int main()
{
    int i;
    cin>>n;
    for(i=1;i<=n;i++)
         cin>>a[i];
    maxDeep=0;
    solve(1,n,1);
    cout<<maxDeep<<' '<<num<<endl;</pre>
    return 0;
```

}

NOIP2011 年提高组(C++语言)参考答案与评分标准

- 一、单项选择题: (每题 1.5 分)
 - 1. B 2. B 3. A 4. D 5. B
 - 6. A 7. C 8. D 9. B 10. A
- 二、 不定项选择题 (共 10 题,每题 1.5 分,共计 15 分。每题正确答案的个数大于或等于 1。多选或少选均不得分)。
 - 1. CD 2. ABCD 3. AB 4. BC 5. BC
 - 6. ABD 7. CD 8. A 9. BCD 10. ABC
- 三、问题求解: (共2题,每空5分,共计10分)
- 1. 9
- 2. 4
- 四、阅读程序写结果(共4题,每题8分,共计32分)
 - 1. 3
 - 2. 1 2 5 13 34
 - 3. 150
 - 4. 57344
- 五、完善程序(第1题,每空2分,第2题,每空3分,共计28分)
- (说明:以下各程序填空可能还有一些等价的写法,各省可请本省专家审定和上机验证,不一定上报科学委员会审查)
- 1.
- ① ans. num[i + j 1]
- \bigcirc ans. num[i] = ans. num[i] mod 10
- ③ a. num[i] + b. num[i]
- ④ ans. num[i] % 2 (或 ans. num[i] & 1)
- ⑤ ans. len++ (或 ans. len = ans. len + 1)
- ⑥ a. len < b. len
- ⑦ '0'(或48)
- 8 times (middle, middle), target
- 2.
- ① num++ (或 num = num + 1)
- \bigcirc j = i
- 3 solve(left, j 1, deep + 1)
- 4 solve(j + 1, right, deep + 1)