Tolerância a Falhas: medidas

Taisy Silva Weber

Medidas

- taxa de defeitos
- curva da banheira
- tempos médios (mean times)
 - MTTF, MTBF, MTTR
 - exemplos de cálculo de tempos médios
- confiabilidade
- disponibilidade
- cobertura

Barry W. Johnson. **Design and Analysis of Fault-Tolerant Digital Systems**. Addison-Wesley, 1989 (**cap 4**)

Johnson, B.W. "Fault Tolerance"

The Electrical Engineering Handbook
Ed. Richard C. Dorf
Boca Raton: CRC Press LLC, 2000

Barry Johnson, cap. 1, livro-texto Pradhan96

Meios: previsão

Reliability engineering

J.H. Saleh, K. Marais. Highlights from the early (and pre-) history of reliability engineering. Reliability Engineering and System Safety 91 (2006) 249–256

Reliability engineering

- Walter Shewhart
 - década de 20 métodos estatísticos para o controle de qualidade na produção
 - métodos não foram bem recebidos
- segunda guerra
 - acelerou a adoção de técnicas estatísticas de controle de qualidade
- Edward Deming
 - década de 50
 - não teve muito sucesso nos USA
 - se mudou para o Japão e teve enorme sucesso

Reliability engineering

- data oficial de nascimento: 4 junho de 1954
 - relatório AGREE
 - Advisory Group on Reliability of Electronic Equipment (AGREE),
 - 1952
 - department of defense
 - industria eletrônica americana

problemas com válvulas (em uso até o final dos 60s)

- previsão de falhas (ou de defeitos de componentes)
 - falhas permanentes (randômicas)
 - medidas para software problema ainda em aberto

Comportamento ideal x real

ideal

real

O que medir?

- com que frequência ocorrem defeitos?
- qual o tempo entre um defeito e outro?
- qual o tempo até o primeiro defeito?
- qual o tempo gasto para reparar cada defeito?
- quais as chances do sistema funcionar sem defeitos durante um determinado período de tempo?
- quais as chances do sistema estar funcionando em um determinado instante?

Taxa de defeitos

com que frequência ocorrem defeitos?

taxa de defeitos

número esperado de defeitos em um dado período de tempo (failure rate)

- geralmente assumido valor constante
- na verdade não é constante
- boa aproximação: curva da banheira
- unidade: defeitos por unidade de tempo

Exemplo: um computador apresenta defeito a cada 2000 horas, qual a taxa de defeito?

- função:
 - z(t) hazard function, hazard rate ou taxa de defeitos (failure rate)

Curva da banheira

fases de mortalidade infantil e envelhecimento muito pequenas comparadas ao período de vida útil

válido para hardware (componentes eletrônicos)

Mortalidade infantil

- alta taxa de defeitos que diminui rapidamente no tempo
 - componentes fracos e mal fabricados

mortalidade infantil é uma fase de curto período de duração

- burn-in: remoção de componentes fracos
 - operação acelerada de componentes antes de colocá-los no produto final
 - só entram em operação componentes que sobreviveram à mortalidade infantil

Envelhecimento

- taxa de defeitos aumenta rapidamente com o tempo
 - devido ao desgaste físico do componente
 - conhecendo o início da fase de envelhecimento é possível substituir o componente
 - sistema volta a operar na fase de vida útil

envelhecimento é também uma fase de curto período de duração

ideal é evitá-la

Tempo de vida útil

λ – taxa de defeitos **constante**

- unidade: defeitos por hora
 - λ corresponde a taxa de defeitos no tempo de vida útil
 - essa fase apresenta um serviço mais previsível em relação a falhas
- relação exponencial entre confiabilidade e tempo
 - usa λ taxa de defeitos constante
 - válido para hardware
 - será visto mais adiante

$$R(t) = e^{-\lambda t}$$

Curva da banheira em software

- software comporta-se diferente do hardware
 - erros (bugs) são constantemente removidos
 - taxa de defeitos continua caindo com o tempo
 - confiabilidade aumenta com o tempo ?

considerar alterações, adaptações ou mudança de plataforma (sisop e hardware)

- fase de envelhecimento de software ?
 - obsolescência dos programas
 - alterações nas plataformas
 - aging

Exemplos de taxa de defeitos

categoria	módulo	taxa de defeitos
CPU	processador	19,0 x 10 ⁻⁶ /hrs
	memória	13,0 x 10 ⁻⁶ /hrs
saída	relé	9,2 x 10 ⁻⁶ /hrs
	triac	33,8 x 10 ⁻⁶ /hrs
entrada	conversor A/D	10,4 x 10 ⁻⁶ /hrs
comunicações	controlador de barramento	19,8 x 10 ⁻⁶ /hrs
outros	fonte	33,0 x 10 ⁻⁶ /hrs
	rack	2,6 x 10 ⁻⁶ /hrs

Tempos médios

- com que frequência ocorrem defeitos?
- taxa de defeitos
- qual o tempo entre um defeito e outro?
- qual o tempo até o primeiro defeito?
- qual o tempo gasto para reparar cada defeito?
- quais as chances do sistema funcionar sem defeitos durante um determinado período de tempo?
- quais as chances do sistema estar funcionando em um determinado instante?

Medidas

MTTF

mean time to failure

 tempo esperado até a primeira ocorrência de defeito

MTTR

mean time to repair

 tempo médio para reparo do sistema

MTBF

mean time between failures

 tempo médio entre defeitos do sistema

MTTF - mean time to failure

- tempo esperado de operação do sistema antes da ocorrência do primeiro defeito
 - considera-se N sistemas idênticos colocados em operação a partir do tempo t=0
 - mede-se o tempo de operação ti de cada um até apresentar defeito
 - MTTF é o tempo médio de operação

MTTF - mean time to failure

 tempo esperado de operação do sistema antes da ocorrência do primeiro defeito

$$MTTF = \sum_{i=1}^{N} \frac{t_i}{N}$$

quanto maior a quantidade de amostras **N**, mais próximo do valor real será o **MTTF** estimado

considerando $R(t) = e^{-\lambda t}$

$$MTTF = 1/\lambda$$

MTTF

$$MTTF = \sum_{i=1}^{N} \frac{t_i}{N}$$

para \mathbf{um} único sistema o procedimento é semelhante: t_i passa a ser Δt_i , o intervalo de tempo em operação entre os defeitos, e N o número de defeitos

MTTR - mean time to repair

- tempo médio de reparo do sistema
 - difícil de estimar
 - geralmente usa-se injeção de falhas
 - injeta-se uma falha de cada vez e mede-se o tempo
 - nova constante μ
 - taxa de reparos
 μ = número de reparos por hora

$$MTTR = 1 \over \mu$$

em sistemas de alta disponibilidade, é importante diminuir o tempo de reparo para aumentar a disponibilidade do sistema

MTTR

R_i tempo de reparo da falha i

n número de falhas

$$MTTR = \sum_{i=1}^{n} R_i / n$$
 ou $MTTR = 1/\mu$ sendo $\mu = taxa$ de reparo

quanto maior o número de amostras, melhor

MTTR: Exemplo

grandemente simplificado

tempo de reparo do 1º defeito $(R_1) = 0.5 h$ tempo de reparo do 2º defeito $(R_2) = 1 h$

MTTR =
$$(R_1 + R_2) / n^0$$
 reparos
MTTR = $1,5/2$

$$MTTR = 0.75 h$$

Mean Time Between Failure

- MTBF = MTTF + MTTR
 - diferença numérica pequena em relação a MTTF
 - os tempos de operação são geralmente muito maiores que os tempos de reparo
 - na prática valores numéricos muito aproximados (não faz diferença usar um ou outro)
 - considera-se:
 - reparo coloca sistema em condições ideais de operação

e se o MTBF for maior que o tempo até obsolescência?

MTBF

$$MTBF = \sum_{i=1}^{n} \Delta d_i / n$$
 ou $MTBF = MTTF + MTTR$

MTBF: Exemplo

grandemente simplificado

tempo entre o início e o 1º defeito $(\Delta d_1) = 6 \text{ h}$ tempo entre 1º e 2º defeitos $(\Delta d_2) = 26 \text{ h}$ tempo entre 2º e 3º defeitos $(\Delta d_3) = 16 \text{h}$

MTBF =
$$(\Delta d_1 + \Delta d_2 + \Delta d_3)/n^0$$
 defeitos
MTBF = 48 / 3
MTBF = 16 h

Demais medidas

- quais as chances do sistema funcionar sem defeitos durante um determinado período de tempo?
- quais as chances do sistema estar funcionando em um determinado instante?

Confiabilidade e taxa de defeitos

N componentes idênticos, operacionais em t_o $N_f(t)$ número de componentes com defeito em t $N_o(t)$ núm. de componentes operacionais em t

$$R(t) = N_o(t) / N = N_o(t) / (N_o(t) + N_f(t))$$

confiabilidade: a probabilidade que um componente tenha sobrevivido no intervalo

Q(t) é a não confiabilidade

$$Q(t) = N_f(t) / N = N_f(t) / (N_o(t) + N_f(t))$$

$$R(t) = 1.0 - Q(t) = 1 - N_f(t) / N$$

Confiabilidade e taxa de defeitos

$$R(t) = 1.0 - Q(t) = 1 - N_f(t)/N$$

fazendo a diferencial da confiabilidade em relação ao tempo

$$dR(t)/dt = (-1/N) dN_f(t)/dt$$

 $dN_f(t)/dt$ é a taxa instantânea em que componentes estão falhando.

$$dN_f(t)/dt = (-N) dR(t)/dt$$

Dividindo esta taxa por No(t)

Confiabilidade e taxa de defeitos

$$dN_f(t)/dt = (-N) dR(t)/dt$$

dividindo por $N_o(t)$

$$z(t) = dN_f(t)/dt \cdot 1/N_o(t) = (-N/N_o(t)) \cdot dR(t)/dt$$

$$R(t) = N_o(t)/N$$

$$z(t) = -1/R(t) \cdot dR(t)/dt$$

z(t) - hazard function ou taxa de defeitos

$$dR(t)/dt = -R(t) \cdot z(t)$$

solução geral dessa equação é

considerando z(t) constante então:

$$R(t) = e^{-\int z(t)dt}$$

$$R(t) = e^{-\lambda t}$$

$$R(t) = e^{-\lambda t}$$

probabilidade de que um sistema funcione corretamente durante um intervalo de tempo [to,t]

- para um taxa de defeitos constante λ a confiabilidade R(t) varia exponencialmente em função do tempo
 - sistema na fase de vida útil: taxa de defeitos constante λ
- $R(t) = e^{-\lambda t}$ exponential failure law
 - é a mais usada relação entre confiabilidade e tempo
 - válida principalmente para componentes eletrônicos

Distribuição de Weibull

Weibull W. A statistical distribution function of wide applicability. J Appl Mech 1951;18:293–7.

- se taxa de defeitos varia com o tempo
 - z(t) distribuição de Weibull
 - importante para modelagem de software onde a confiabilidade pode inclusive aumentar com o tempo
 - $z(t) = \alpha \lambda (\lambda t)^{\alpha-1}$ para $\alpha > 0$ e $\lambda > 0$

• R(t) =
$$e^{-(\lambda t)^{\alpha}}$$

 α e λ são constantes que controlam a variação de z(t) no tempo

• para
$$\alpha$$
=1 $z(t)$ = constante = λ

• para
$$\alpha > 1$$
 $z(t) = aumenta com o tempo$

• para
$$\alpha$$
<1 $z(t) = \text{diminui com o tempo}$

• para: α =1 λ =0,1

taxa de defeitos constante

• para: α =0,6 λ =0,1

taxa de defeitos diminui com o tempo

• para: α =2 λ =0,1

taxa de defeitos aumenta linearmente com o tempo

Disponibilidade

- probabilidade do sistema estar operacional no instante t (disponível para o trabalho útil)
 - alternância entre funcionamento e reparo
 A(t) = R(t) quando reparo tende a zero
 - lembrar que MTBF = MTTF + MTTR
 - intuitivamente

$$A(t) = t_{op} / (t_{op} + t_{reparo})$$

A(t):availability

tempo de operação normal

Disponibilidade

- MTBF = MTTF + MTTR
- $A(t) = t_{op} / (t_{op} + t_{reparo})$
- genericamente

$$A(t) = MTTF / (MTTF + MTTR)$$

nessa relação, o significado de alta disponibilidade fica mais

claro

diminuindo o tempo médio de reparo, aumenta a disponibilidade

Cobertura

fault coverage

cobertura de falhas

significado intuitivo

- habilidade do sistema de realizar detecção, confinamento, localização, recuperação ...
- habilidade do sistema de tolerar falhas
 - geralmente se refere a habilidade de realizar recuperação de falhas
- significado matemático:
 - probabilidade condicional que dada uma falha o sistema se recupere

extremamente difícil de calcular

Cobertura

- geralmente assumido valor constante
- determinação:
 - listar falhas possíveis e falhas que o sistema pode tolerar e calcular o percentual
- usada no modelo de Markov
- muito usada também em experimentos de injeção de falhas

falhas simuladas são injetadas no sistema e se observa a reação do mecanismo de TF

relação entre falhas injetadas e falhas percebidas pelo mecanismo de TF

Problemas com medidas

- defeitos são eventos aleatórios
 - podem demorar muito para ocorrer, não ocorrer ou ocorrer em um momento não apropriado
 - custo de avaliação experimental é alto
 - necessária uma grande quantidade de amostras
 - necessário tempo grande de avaliação
 - é importante avaliar durante o projeto do sistema
 - injeção de falhas

Bibliografia para medidas

capítulo de livro

- Johnson, Barry. An introduction to the design na analysis of the fault-tolerante systems, cap 1. Fault-Tolerant System Design. Prentice Hall, New Jersey, 1996
- Johnson, B.W. "Fault Tolerance" The Electrical Engineering Handbook. Ed. Richard C. Dorf. Boca Raton: CRC Press LLC, 2000

livro

- Dunn, Willian R. Practical design of safety critical computer systems. Reliability Press. 2002. (cap 4 e 5).
- Barry W. Johnson. Design and Analysis of Fault-Tolerant Digital Systems. Addison-Wesley, 1989

http://dream.eng.uci.edu/eecs224/johnson_pt1.pdf http://dream.eng.uci.edu/eecs224/johnson_pt2.pdf http://dream.eng.uci.edu/eecs224/johnson_pt3.pdf

Bibliografia para medidas

normas

• MIL-HDBK-217F-2, Reliability Prediction of Electronic Equipment, Department of Defense.

artigos

• J.H. Saleh, K. Marais. Highlights from the early (and pre-) history of reliability engineering. Reliability Engineering and System Safety 91 (2006) 249–256