Distinguish abnormal individuals from Neck laser data

Supervised by: Professor Jie Wei

Presented by: Md Ayub Ali Sarker

Problem statement

- Neck laser data is collected from three group of peoples(A:18~30, B:31~50 and C:50+). Each observation contains multiple signal files, and each file is 1D signal values in time domain.
- We also have participant information that contains pulse and health issues of each individual.
- Motivation: Our laser sensor is remote sensor. It can measure bio sign from 10m. In theory, it could be 400~500m. This can be used to determine remote bio sign. Like covid-19 and other serious illness. That's why I am motivated.
- In this work, We extracted features from signal in time and frequency domain, We determined heartbeat of each individual and health condition (Normal and Not Normal) using signal processing and machine learning technique.

Neck Laser Data

 Neck Laser data contains the human pulse vibrations over the neck artery collected by a laser droppler vibrometer. Each observation is collected for a person from multiple left and right-side scans and saved in .mat format. Each file is the 60 seconds duration with sampling rate 44,100 Hz. We have total of 235 mat files of 39 persons of three groups.

 We also have participant data that contains information like Health issue, Pulse, Age, Sex, Blood pressure, Ethnicity and Weight.

Solution to the problem

In order to address this problem, we did follow major tasks

- Heartbeat extraction
- Extract features in time and frequency domain
- Extract Level from participant data
- Feature Selection
- Feed the model with original data
- Generate 200 synthetic data using TCGAN
- Feed the model with original plus synthetic data

Heartbeat Extraction

- We developed two procedures to extract heartbeat from signal
 - Clustering Approach
 - Average Approach

Heartbeat Extraction-Clustering Approach

Heartbeat Extraction-Average Approach

Heartbeat Extraction

 We compared the derived heartbeat with actual heartbeat from the participation data. We calculated error of each approach.

 We took heartbeat calculated from average approach as the final heartbeat to use in later machine learning approach

Extract features in time and frequency domain

- Feature extraction in frequency spectrum: We divided the signal in frequency domain into six bands and found out peak frequency as a feature in that band using cluster approach. Those bands are
 - 0~0.7hz
 - 2.6~10hz
 - 11~20hz
 - 21~30hz
 - 31~40hz
 - 41~50hz
- **Feature extraction in time domain**: We extracted following features from the signal in time domain
 - Zero crossing rate average
 - Spectral rolloff average
 - Spectral centroid average
 - Spectral bandwidth average
 - Poly features average
 - RMS average
 - Spectral flatness average

Extract Level from participant data

 Participant data contains health issues of each individual. We used this health issues information as an indication of health condition (Normal/ Not Normal)

Level	Spectral bandwidth avg	Poly features avg	Spectral centroid avg	Spectral rolloff avg	Spectral flatness avg	Zero crossing rate avg	RMS avg	Peak Hz in 41~50hz	Peak Hz in 31~40hz	Peak Hz in 21~30hz	Peak Hz in 2.6~10hz	dz in hz
abnormal	5149.4551	0.8441	3655.5029	3931.6415	0.0202	0.0280	0.2528	43.67	31.00	23.33	5.50	1.0
normal	6042.2007	0.6950	4887.3982	5369.9529	0.0211	0.0372	0.1949	43.25	40.00	30.00	3.12	1.0
abnormal	6013.8062	0.6630	4598.1605	5252.5443	0.0148	0.0275	0.2060	41.50	39.50	24.71	3.00	1.0
normal	6818.1680	1.1817	7041.1570	7429.2183	0.0470	0.0720	0.2054	50.00	40.00	25.00	4.00	1.0
abnormal	605.7551	0.4138	128.8602	71.4086	0.0000	0.0008	0.2440	45.00	38.78	22.40	5.78	0.0
normal	600.0443	0.4349	130.6257	72.5249	0.0000	0.0013	0.2539	46.00	37.40	26.00	6.00	1.0
normal	6385.6767	0.9369	5796.0671	6426.0823	0.0258	0.0423	0.2299	49.75	40.00	23.88	6.12	0.0
abnormal	5553.6838	1.9134	5706.2273	5556.0980	0.0676	0.0764	0.2813	43.00	40.00	21.09	10.00	1.0
normal	4423.1727	0.9283	2380.4616	2613.0217	0.0138	0.0170	0.3111	50.00	37.00	26.00	3.00	0.0
normal	5553.5699	1.6762	5016.2431	5209.9116	0.0499	0.0597	0.3109	43.67	40.00	29.67	9.09	1.0
normal	623.3123	0.4341	147.9980	96.7716	0.0000	0.0009	0.2565	50.00	36.00	26.50	9.10	0.0
normal	6485.1432	0.8806	5974.1852	6508.9343	0.0248	0.0425	0.2195	45.75	34.38	30.00	6.00	1.0
abnormal	6166.3718	0.5465	4564.8693	5342.5278	0.0104	0.0244	0.1906	47.44	40.00	25.12	3.00	0.0
normal	6555.1387	0.6881	5847.1872	6538.1594	0.0211	0.0424	0.1900	41.00	35.00	30.00	7.00	1.0
abnormal	6116.2743	0.6449	4649.6131	5303.3936	0.0161	0.0289	0.2009	50.00	36.00	30.00	6.00	0.0
abnormal	5555.7867	0.6559	3952.0604	4491.5204	0.0125	0.0221	0.2271	48.00	35.00	26.12	3.00	1.0
abnormal	6496.4923	1.0353	5980.8607	6579.2238	0.0397	0.0556	0.2035	42.43	33.57	24.50	3.00	1.0
normal	4682.7387	0.8236	4232.8570	4739.5686	0.0225	0.0353	0.2212	41.50	39.71	23.33	4.00	1.0
normal	6663.8258	0.5981	5703.6169	6633.9151	0.0163	0.0345	0.1796	41.67	36.00	30.00	3.70	0.0

Feature Selection

- We used RandomForestClassifier to see feature's importance.
- We can see the zero-crossing rate average has the highest contribution, then Heartbeat and peak frequency between 31~40Hz and then spectral Rolloff frequency and so on.
- In order to found out top important sets of features we feed RandomForestClassifier to five different sets of top important features [6, 8, 9, 10]. and plot the accuracy, precision and recall
- We can see that recall are same for all, but accuracy and procession are higher in 8 sets of features. So, we used first 8 importance features to feed our model

Feed the model with original data

Model	Accuracy
AdaBoostClassifier	67%
DecisionTreeClassifier	67%
KNeighborsClassifier	50%
RandomForestClassifier	50%

Generate 200 synthetic data using TCGAN

- We have small set of observations. A small data set suffers from high bias and overfitting. Getting more data in our case it very difficult and costly.
- We used TCGAN to generate 200 synthetic data. We used that 200 synthetic plus original data to feed our model.

Feed the model with original plus synthetic data

MODEL	ACCURACY
AdaBoostClassifier	71%
DecisionTreeClassifier	62%
KNeighborsClassifier	74%
RandomForestClassifier	73%

Summary of result

- Looking at the result we can see that Adaboost has moderate accuracy as 67% original and 71% in synthetic plus original data.
- Although Random forest(73) and KNN(74) has high accuracy in synthetic plus original data but they have low accuracy in original data
- So Adaboost is the best choice for our data set

Conclusion and Future plan

- We have small set of data. Most experimental involving primary research
 with real people have small data due to cost of conduction in person.
 In our case, this collection process is costly, too difficult and timeconsuming. That's why we used to TCGAN to generate some synthetic data.
- We tried four different classifiers like AdaBoost, Decision Tree, KNN and Random Forest. We saw that Adaboost is the best choice.
- In future we planned to extend this work to identify sex and age group of individual
- https://github.com/msarker000/dse-capstone

Question?