1 Introduction to Analog Design 1	
1.1 Why Analog? 1	
1.1.1 Sensing and Processing Signals	
1.1.2 When Digital Signals Become Analog 2	
1.1.3 Analog Design Is in Great Demand	
1.1.4 Analog Design Challenges	
1.2 Why Integrated? 4	
1.3 Why CMOS?	
1.4 Why This Book? 5	
1.5 Levels of Abstraction 5	
2 Basic MOS Device Physics 7	
2.1 General Considerations 7	
2.1.1 MOSFET as a Switch 7	
2.1.2 MOSFET Structure 8	
2.1.3 MOS Symbols9	
2.2 MOS I/V Characteristics	10
2.2.1 Threshold Voltage	10
2.2.2 Derivation of I/V Characteristics	12
2.2.3 MOS Transconductance	19
2.3 Second-Order Effects	20
2.4 MOS Device Models	26
2.4.1 MOS Device Layout	26
2.4.2 MOS Device Capacitances	27
2.4.3 MOS Small-Signal Model	31
2.4.4 MOS SPICE models	34
2.4.5 NMOS Versus PMOS Devices	35
2.4.6 Long-Channel Versus Short-Channel Devices	35
2.5 Appendix A: FinFETs	36
2.6 Annendix B: Rehavior of a MOS Device as a Canacitor	37

xii Contents

3 Single-Stage Amplifiers	45
3.1 Applications	45
3.2 General Considerations	45
3.3 Common-Source Stage	47
3.3.1 Common-Source Stage with Resistive Load	47
3.3.2 CS Stage with Diode-Connected Load	52
3.3.3 CS Stage with Current-Source Load	58
3.3.4 CS Stage with Active Load	59
3.3.5 CS Stage with Triode Load	60
3.3.6 CS Stage with Source Degeneration	61
3.4 Source Follower	68
3.5 Common-Gate Stage	75
3.6 Cascode Stage	82
3.6.1 Folded Cascode	90
3.7 Choice of Device Models	92
4 Differential Amplifiers	. 100
4.1 Single-Ended and Differential Operation	100
4.2 Basic Differential Pair	103
4.2.1 Qualitative Analysis	104
4.2.2 Quantitative Analysis	106
4.2.3 Degenerated Differential Pair	116
4.3 Common-Mode Response	118
4.4 Differential Pair with MOS Loads	123
4.5 Gilbert Cell	126
5 Current Mirrors and Biasing Techniques	34
E 1 Pacia Current Mirrore	124

5.2 Cascode Current Mirrors	139
5.3 Active Current Mirrors	146
5.3.1 Large-Signal Analysis	149
5.3.2 Small-Signal Analysis	152
5.3.3 Common-Mode Properties	156
5.3.4 Other Properties of Five-Transistor OTA	159
5.4 Biasing Techniques	160
5.4.1 CS Biasing	161
5.4.2 CG Biasing	164
5.4.3 Source Follower Biasing	165
5.4.4 Differential Pair Biasing	166
6 Frequency Response of Amplifiers	173
6.1 General Considerations	173
6.1.1 Miller Effect	174
6.1.2 Association of Poles with Nodes	179
6.2 Common-Source Stage	180
6.3 Source Followers	188
Razavi-3930640 raz24936 FM 00i-xviii December 18, 201510:37 xiii	
Contents xiii	
6.4 Common-Gate Stage	193
6.5 Cascode Stage	196
6.6 Differential Pair	198
6.6.1 Differential Pair with Passive Loads	198
6.6.2 Differential Pair with Active Load	201
6.7 Gain-Bandwidth Trade-Offs	
6.7.1 One-Pole Circuits	204
6.7.2 Multi-Pole Circuits	205
6.8 Appendix A: Extra Element Theorem	206
6.9 Appendix B: Zero-Value Time Constant Method	208

6.10 Appendix C: Dual of Miller's Theorem	
7 Noise	
7.1 Statistical Characteristics of Noise	
7.1.1 Noise Spectrum	
7.1.2 Amplitude Distribution	
7.1.3 Correlated and Uncorrelated Sources	
7.1.4 Signal-to-Noise Ratio	
7.1.5 Noise Analysis Procedure	
7.2 Types of Noise	
7.2.1 Thermal Noise	
7.2.2 Flicker Noise	
7.3 Representation of Noise in Circuits	
7.4 Noise in Single-Stage Amplifiers	
7.4.1 Common-Source Stage	
7.4.2 Common-Gate Stage	
7.4.3 Source Followers	
7.4.4 Cascode Stage	
7.5 Noise in Current Mirrors	
7.6 Noise in Differential Pairs	
7.7 Noise-Power Trade-Off	
7.8 Noise Bandwidth	
7.9 Problem of Input Noise Integration	
7.10 Appendix A: Problem of Noise Correlation	
8 Feedback	
8.1 General Considerations	
8.1.1 Properties of Feedback Circuits	
8.1.2 Types of Amplifiers	
8.1.3 Sense and Return Mechanisms	
8.2 Feedback Topologies	

8.2.1 Voltage-Voltage Feedback
8.2.2 Current-Voltage Feedback
8.2.3 Voltage-Current Feedback
8.2.4 Current-Current Feedback
8.3 Effect of Feedback on Noise
Razavi-3930640 raz24936 FM 00i-xviii December 18, 201510:37 xiv
xiv Contents
8.4 Feedback Analysis Difficulties
8.5 Effect of Loading
8.5.1 Two-Port Network Models
8.5.2 Loading in Voltage-Voltage Feedback
8.5.3 Loading in Current-Voltage Feedback
8.5.4 Loading in Voltage-Current Feedback
8.5.5 Loading in Current-Current Feedback
8.5.6 Summary of Loading Effects
8.6 Bode's Analysis of Feedback Circuits
8.6.1 Observations
8.6.2 Interpretation of Coefficients
8.6.3 Bode's Analysis
8.6.4 Blackman's Impedance Theorem
8.7 Middlebrook's Method
8.8 Loop Gain Calculation Issues
8.8.1 Preliminary Concepts
8.8.2 Difficulties with Return Ratio
8.9 Alternative Interpretations of Bode's Method
9 Operational Amplifiers
9.1 General Considerations
9.1.1 Performance Parameters
9.2 One-Stage Op Amps

9.2.1 Basic Topologies	
9.2.2 Design Procedure	
9.2.3 Linear Scaling	
9.2.4 Folded-Cascode Op Amps	
9.2.5 Folded-Cascode Properties	
9.2.6 Design Procedure	
9.3 Two-Stage Op Amps	
9.3.1 Design Procedure	
9.4 Gain Boosting	4
9.4.1 Basic Idea	
9.4.2 Circuit Implementation	
9.4.3 Frequency Response	
9.5 Comparison	3
9.6 Output Swing Calculations	
9.7 Common-Mode Feedback	
9.7.1 Basic Concepts	
9.7.2 CM Sensing Techniques	
9.7.3 CM Feedback Techniques	
9.7.4 CMFB in Two-Stage Op Amps	
9.8 Input Range Limitations	88
9.9 Slew Rate	390
Razavi-3930640 raz24936 FM '00i-xviii December 18, 201510:37 xv	
Contents xv	
9.10 High-Slew-Rate Op Amps	
9.10.1 One-Stage Op Amps	
9.10.2 Two-Stage Op Amps	
9.11 Power Supply Rejection	İ
9.12 Noise in Op Amps	
10 Stability and Frequency Compensation	

10.1 General Considerations	410
10.2 Multipole Systems	414
10.3 Phase Margin	416
10.4 Basic Frequency Compensation	420
10.5 Compensation of Two-Stage Op Amps	426
10.6 Slewing in Two-Stage Op Amps	433
10.7 Other Compensation Techniques	436
10.8 Nyquist's Stability Criterion	439
10.8.1 Motivation	439
10.8.2 Basic Concepts4	40
10.8.3 Construction of Polar Plots	12
10.8.4 Cauchy's Principle	47
10.8.5 Nyquist's Method	47
10.8.6 Systems with Poles at Origin	0
10.8.7 Systems with Multiple 180° Crossings	
11 Nanometer Design Studies	59
11.1 Transistor Design Considerations	459
11.2 Deep-Submicron Effects	460
11.3 Transconductance Scaling	463
11.4 Transistor Design	466
11.4.1 Design for Given ID and VDS,min	56
11.4.2 Design for Given gm and ID	9
11.4.3 Design for Given gm and VDS,min	170
11.4.4 Design for a Given gm	71
11.4.5 Choice of Channel Length	72
11.5 Op Amp Design Examples	472
11.5.1 Telescopic Op Amp	73
11.5.2 Two-Stage Op Amp	87
11.6 High-Speed Amplifier	495

11.6.1 General Considerations
11.6.2 Op Amp Design
11.6.3 Closed-Loop Small-Signal Performance
11.6.4 Op Amp Scaling
11.6.5 Large-Signal Behavior
11.7 Summary
Razavi-3930640 raz24936 FM 00i-xviii December 18, 201510:37 xvi
xvi Contents
12 Bandgap References509
12.1 General Considerations
12.2 Supply-Independent Biasing
12.3 Temperature-Independent References513
12.3.1 Negative-TC Voltage
12.3.2 Positive-TC Voltage
12.3.3 Bandgap Reference
12.4 PTAT Current Generation
12.5 Constant-Gm Biasing
12.6 Speed and Noise Issues
12.7 Low-Voltage Bandgap References
12.8 Case Study533
13 Introduction to Switched-Capacitor Circuits
13.1 General Considerations
13.2 Sampling Switches
13.2.1 MOSFETS as Switches
13.2.2 Speed Considerations
13.2.3 Precision Considerations
13.2.4 Charge Injection Cancellation
13.3 Switched-Capacitor Amplifiers
13.3.1 Unity-Gain Sampler/Buffer555

13.3.2 Noninverting Amplifier	
13.3.3 Precision Multiply-by-Two Circuit	
13.4 Switched-Capacitor Integrator	. 568
13.5 Switched-Capacitor Common-Mode Feedback	571
14 Nonlinearity and Mismatch576	
14.1 Nonlinearity	576
14.1.1 General Considerations	
14.1.2 Nonlinearity of Differential Circuits	
14.1.3 Effect of Negative Feedback on Nonlinearity	
14.1.4 Capacitor Nonlinearity	
14.1.5 Nonlinearity in Sampling Circuits	
14.1.6 Linearization Techniques	
14.2 Mismatch	591
14.2.1 Effect of Mismatch	93
14.2.2 Offset Cancellation Techniques	
14.2.3 Reduction of Noise by Offset Cancellation	
14.2.4 Alternative Definition of CMRR	
15 Oscillators	7
15.1 General Considerations	607
15.2 Ring Oscillators	609
15.3 LC Oscillators.	618
Razavi-3930640 raz24936 FM 00i-xviii December 18, 201510:37 xvii	
Contents xvii	
15.3.1 Basic Concepts	
15.3.2 Cross-Coupled Oscillator	
15.3.3 Colpitts Oscillator	
15.3.4 One-Port Oscillators	
15.4 Voltage-Controlled Oscillators	. 630
15.4.1 Tuning in Ring Oscillators	

15.4.2 Tuning in LC Oscillators	. 641
15.5 Mathematical Model of VCOs	644
16 Phase-Locked Loops	651
16.1 Simple PLL	651
16.1.1 Phase Detector	651
16.1.2 Basic PLL Topology	. 653
16.1.3 Dynamics of Simple PLL	660
16.2 Charge-Pump PLLs	666
16.2.1 Problem of Lock Acquisition	. 666
16.2.2 Phase/Frequency Detector	667
16.2.3 Charge Pump	669
16.2.4 Basic Charge-Pump PLL	. 671
16.3 Nonideal Effects in PLLs	677
16.3.1 PFD/CP Nonidealities	677
16.3.2 Jitter in PLLs	681
16.4 Delay-Locked Loops	683
16.5 Applications	685
16.5.1 Frequency Multiplication and Synthesis	. 685
16.5.2 Skew Reduction	687
16.5.3 Jitter Reduction	688
17 Short-Channel Effects and Device Models	691
17.1 Scaling Theory	691
17.2 Short-Channel Effects	695
17.2.1 Threshold Voltage Variation	695
17.2.2 Mobility Degradation with Vertical Field	. 697
17.2.3 Velocity Saturation	698
17.2.4 Hot Carrier Effects	700
17.2.5 Output Impedance Variation with Drain-Source Voltage	700
17.3 MOS Device Models	701

17.3.1 Level 1 Model	702
17.3.2 Level 2 Model	702
17.3.3 Level 3 Model	704
17.3.4 BSIM Series	. 706
17.3.5 Other Models	707
17.3.6 Charge and Capacitance Modeling	707
17.3.7 Temperature Dependence	708
17.4 Process Corners	708
Razavi-3930640 raz24936 FM 00i-xviii December 18, 201510:37 xviii	
xviii Contents	
18 CMOS Processing Technology	712
18.1 General Considerations	712
18.2 Wafer Processing	713
18.3 Photolithography	714
18.4 Oxidation	715
18.5 Ion Implantation	716
18.6 Deposition and Etching	718
18.7 Device Fabrication	718
18.7.1 Active Devices	718
18.7.2 Passive Devices	721
18.7.3 Interconnects	727
18.8 Latch-Up	730
19 Layout and Packaging	. 733
19.1 General Layout Considerations	733
19.1.1 Design Rules	734
19.1.2 Antenna Effect	736
19.2 Analog Layout Techniques	736
19.2.1 Multifinger Transistors	737
19.2.2 Symmetry	739

19.2.3 Shallow Trench Isolation Issues	743
19.2.4 Well Proximity Effects	. 744
19.2.5 Reference Distribution	. 744
19.2.6 Passive Devices	. 746
19.2.7 Interconnects	753
19.2.8 Pads and ESD Protection	757
19.3 Substrate Coupling	760
19.4 Packaging	764
Index	. 774