January Online Camp 2021

Number Theory Level L3

Dominik Burek

CONTENTS

Problems	2
Solutions	5
References	14

Problems 🔊

Problem 1. Let a, b be a positive integers such that a + b + 1 is a prime divisor of 4ab - 1. Prove that a = b.

Problem 2. Let a, b be integers such that

$$2a^2 + a = 3b^2 + b.$$

Prove that a - b and 2a + 2b + 1 are perfect squares.

Problem 3. Let m, n be a positive integers such that set $\{1, 2, ..., n\}$ contains exactly m different prime numbers. Prove that if we choose any m+1 different numbers from $\{1, 2, ..., n\}$ then we can find number from m+1 choosen numbers, which divide product of other m numbers.

Proglem 4. Positive rational number a and b satisfy the equality

$$a^3 + 4a^2b = 4a^2 + b^4$$
.

Prove that the number $\sqrt{a} - 1$ is a square of a rational number.

Proglem 5. Let $a \ge 3$ be an integer. Prove that there exists infinitely many positive integers n such that $n^2 \mid a^n - 1$.

Problem 6. Consider a sequence $a_n = |n(n+1)-19|$ for integer $n \ge 0$. Prove that for any $n \ne 4$ the following holds: If for all integers k < n numbers a_k and a_n are coprime, then a_n is a prime.

Problem 7. Let p a prime number and r an integer such that $p \mid r^7 - 1$. Prove that if there exist integers a, b such that $p \mid r + 1 - a^2$ and $p \mid r^2 + 1 - b^2$, then there exist an integer c such that $p \mid r^3 + 1 - c^2$.

Progenesis lem 8. Four integers are marked on a circle. On each step we simultaneously replace each number by the difference between this number and next number on the circle, moving in a clockwise direction; that is, the numbers a, b, c, d are replaced by a - b, b - c, c - d, d - a. Is it possible that after 2019 of such moves to have numbers a, b, c, d such the numbers |bc - ad|, |ac - bd|, |ab - cd| are primes?

Problem 9. Let k > 1 be the integer. Sum of a divisor of k and a divisor of k-1 is equal to ℓ and $\ell > k+1$. Prove that at least one number: $\ell-1$ or $\ell+1$ is composite.

Progenian 10. Let k, n be a positive integers such that k > n!. Prove that there exist distinct prime numbers p_1, p_2, \ldots, p_n such that $p_i \mid k+i$ for all $i=1,2,\ldots,n$.

Problem 11. Let a, b, c, d be a positive integers such that

$$cn + d \mid an + b$$

for any positive integers n. Prove that a = kc and b = kd for some integer k.

Problem 12. Find all positive integers n for which there exist positive integers x_1, x_2, \ldots, x_n such that

$$\frac{1}{x_1^2} + \frac{2}{x_2^2} + \frac{2^2}{x_3^2} + \dots + \frac{2^{n-1}}{x_n^2} = 1.$$

Problem 13. Let d(k) denote the number of positive divisors of a positive integer k. Prove that there exist infinitely many positive integers M that cannot be written as

$$M = \left(\frac{2\sqrt{n}}{d(n)}\right)^2$$

for any positive integer n.

Problem 14. For any integer $N \geq 2$, let f(N) denotes sum of N and the greatest divisor of N (other than N). Prove that for any integer $A \geq 2$, by iterating f on A we can get a number divisible by 3^{2021} .

Problem 15. Call a positive integer n a good number, if there exists prime number p such that $p \mid n$ and $p^2 \nmid n$. Prove that 99% numbers among $1, 2, 3, \ldots, 10^{12}$ are good.

Proglem 16. Integers a_1, a_2, \ldots, a_n satisfy

$$1 < a_1 < a_2 < \ldots < a_n < 2a_1$$
.

If m is the number of distinct prime factors of $a_1 a_2 \dots a_n$, then prove that

$$(a_1 a_2 \dots a_n)^{m-1} \geqslant (n!)^m.$$

Proglem 17. Find all positive integers n for which there exist non-negative integers a_1, a_2, \ldots, a_n such that

$$\frac{1}{2^{a_1}} + \frac{1}{2^{a_2}} + \dots + \frac{1}{2^{a_n}} = \frac{1}{3^{a_1}} + \frac{2}{3^{a_2}} + \dots + \frac{n}{3^{a_n}} = 1.$$

Solutions 33

Problem 1. Let a, b be a positive integers such that a + b + 1 is a prime divisor of 4ab - 1. Prove that a = b.

Solution. We see that

$$a + b + 1 \mid 4ab - 1 + 2(a + b + 1) = (2a + 1)(2b + 1),$$

so a+b+1 divides 2a+1 or 2b+1. WLOG assume, that $a+b+1 \mid 2a+1$, then

$$\frac{2a+1}{a+b+1} = 1,$$

because otherwise inequality

$$\frac{2a+1}{a+b+1}\geqslant 2$$

implies that $2b+1\leqslant 0$ – contradiction. Therefore 2a+1=a+b+1 i.e. a=b. $\ \square$

Discussion. AoPS

Problem 2. Let a, b be integers such that

$$2a^2 + a = 3b^2 + b$$
.

Prove that a - b and 2a + 2b + 1 are perfect squares.

Solution. Notice that

(1)
$$b^2 = 2a^2 + a - 2b^2 - b = (a - b)(2a + 2b + 1).$$

If prime p divides a - b and 2a + 2b + 1, then $p \mid b$ and so

$$p \mid (2a + 2b + 1 - 2(a - b)) - 4b = 4b + 1 - 4b = 1.$$

Therefore gcd(a-b, 2a+2b+1) = 1.

If a-b < 0, then $a-b = -k^2$ and $2a+2b+1 = -\ell^2$ for some integers k, l. The number $3b^2 + b = b(3b+1)$ is even, so $2a^2 + a$ too and so a is even.

Since $a = \frac{1}{4}(-2k^2 - \ell^2 - 1)$, we see that ℓ is odd, i.e. $\ell = 2n + 1$ for some integer n.

Then $a = \frac{-k^{2} - 2n(n+1) - 1}{2}$. Therefore k is odd, so k = 2m + 1 for some integer m. Thus

$$a = \frac{-2(4m^2 + 4m + 1) - 4n(n + 1) - 2}{4} = -2m^2 - 2m - n(n + 1) - 1,$$

hence a is odd – contradiction.

Therefore a - b > 0 and so from 1 the problem follows.

Discussion.

Problem 3. Let m, n be a positive integers such that set $\{1, 2, ..., n\}$ contains exactly m different prime numbers. Prove that if we choose any m+1 different numbers from $\{1, 2, ..., n\}$ then we can find number from m+1 choosen numbers, which divide product of other m numbers.

Solution. Suppose that problem statement doesn't hold. Then there exists (m+1)-elements set $A \subset \{1, 2, ..., n\}$, such that no $x \in A$ which divide product of remaining elements in A. Therefore any $x \in A$ has a prime divisor p, whose exponent is greater then exponent of p in a product of numbers in $A \setminus \{x\}$.

Thus to any $x \in A$ we associate a prime number from $\{1,2,\ldots,n\}$. Since A consists of m+1 elements, then by the Pigeonhole Principle some prime p is associated for two different elements $x,y \in A$. Denote by w the product m-1 elements of the set $A \setminus \{x,y\}$. There exists non-negative integers k and l such that $p^k \mid x$, $p^k \nmid wy$, $p^l \mid y$ and $p^l \nmid wx$. Then exponent of p in $wy \cdot wx$ is smaller then k+l, and simultaneously $p^{k+l} \mid xy \mid wy \cdot wx$ – contradiction.

Discussion.

Proglem 4. Positive rational number a and b satisfy the equality

$$a^3 + 4a^2b = 4a^2 + b^4$$

Prove that the number $\sqrt{a} - 1$ is a square of a rational number.

Solution. Note that

$$a(a+2b)^2 = a^3 + 4a^2b + 4ab^2 = 4a^2 + b^4 + 4ab^2 = (2a+b^2)^2$$
.

thus

$$a = \frac{(2a+b^2)^2}{(a+2b)^2}$$
 and $\sqrt{a} = \frac{2a+b^2}{a+2b}$.

Therefore $\sqrt{a} \in \mathbb{Q}$. Moreover x = b is a root of quadratic equation

$$x^2 - 2\sqrt{a}x + 2a - a\sqrt{a} = 0.$$

Simultaneously coefficients of these equation are rational, hence its discriminant too. Thus

$$\Delta = (2\sqrt{a})^2 - 4(2a - a\sqrt{a}) = 4a(\sqrt{a} - 1)$$

is a perfect square, in particular

$$\frac{\Delta}{(2\sqrt{a})^2} = \sqrt{a} - 1$$

П

is a perfect square, too.

Solution. As in the above solution we have that $\sqrt{a} \in \mathbb{Q}$. Let $c := \sqrt{a}$, then our equality becomes $c^6 + 4c^4b = 4c^4 + b^4$. Hence

$$c^{2} + 4b = 4 + \left(\frac{b}{c}\right)^{4} = \left(\left(\frac{b}{c}\right)^{2} + 2\right)^{2} - 4 \cdot \frac{b^{2}}{c^{2}},$$

П

SO

$$\left(\frac{2b}{c} + c\right)^2 = c^2 + 4 \cdot \frac{b^2}{c^2} + 4b = \left(\left(\frac{b}{c}\right)^2 + 2\right)^2,$$

thus

$$\left(\frac{b}{c}\right)^2 + 2 = \frac{2b}{c} + c$$

i.e.

$$\sqrt{a}-1=c-1=\left(\frac{b}{c}\right)^2-2\cdot\frac{b}{c}+1=\left(\frac{b}{c}-1\right)^2.$$

Solution. As in the previous solutions we get that

$$\sqrt{a} = \frac{(2a+b^2)^2}{(a+2b)},$$

so we are left with proving that

$$\sqrt{a} - 1 = \frac{(b^2 - 2b + a)(a + 2b)}{(a + 2b)^2}$$

is a square of a rational number. Since a is a perfect square of some rational, it is enough to prove that $a(b^2 - 2b + a)(a + 2b)$ a square of a rational number. But

$$a(b^2 - 2b + a)(a + 2b) = a^2b^2 + a^3 + 2b^3a - 4b^2a =$$

$$= a^2b^2 + 4a^2 + b^4 + 2b^3a - 4a^2b - 4b^2a = (2a - b^2 - ab)^2.$$

Discussion. AoPS

Proglem 5. Let $a \ge 3$ be an integer. Prove that there exists infinitely many positive integers n such that $n^2 \mid a^n - 1$.

Solution. Suppose that $n^2 \mid a^n - 1$ for some n. Let $m := \frac{a^n - 1}{n}$. We show that $m^2 \mid a^m - 1$.

We see that $n \mid m$. Moreover

$$\frac{a^m - 1}{a^n - 1} = 1 + a^n + a^{2n} + \dots + a^{m-n},$$

thus $\frac{a^m-1}{a^n-1}$ is sum of $\frac{m}{n}$ numbers, which are 1 modulo a^n-1 , so modulo $\frac{a^n-1}{n^2}$ too. Thus

$$\frac{a^n-1}{n^2} \mid \frac{a^m-1}{a^n-1}$$

i.e.

$$m^2 = (a^n - 1)\frac{a^n - 1}{n^2} \mid (a^n - 1)\frac{a^m - 1}{a^n - 1} = a^m - 1.$$

Discussion. AoPS

Problem 6. Consider a sequence $a_n = |n(n+1)-19|$ for integer $n \ge 0$. Prove that for any $n \ne 4$ the following holds: If for all integers k < n numbers a_k and a_n are coprime, then a_n is a prime.

Solution. Let $c_n = n(n+1) - 19$, then $a_n = \pm c_n$. We check that a_0, a_1, a_2, a_3 are primes and $a_4 = 1$. Take $a_n = c_n$, which is a composite number for n > 4. It is enough to prove that c_n has a common divisor d > 1 with at least one integer from $c_0, c_1, \ldots, c_{n-1}$.

Let d > 1 be the smallest divisor of c_n . Then $\frac{c_n}{d}$ also divides c_n and $d \leqslant \frac{c_n}{d}$, thus

$$d^2 \leqslant n(n+1) - 19 < (n+1)^2,$$

so $d \leq n$ i.e. $k = n - d \in \{0, 1, \dots, n - 2\}$. Since $c_n - c_k = d(2n - d + 1)$ is divisible by d, we get that d is a common divisor of c_n and c_k .

Discussion. AoPS

Problem 7. Let p a prime number and r an integer such that $p \mid r^7 - 1$. Prove that if there exist integers a, b such that $p \mid r + 1 - a^2$ and $p \mid r^2 + 1 - b^2$, then there exist an integer c such that $p \mid r^3 + 1 - c^2$.

Solution. It is easy to exclude cases $r \equiv \pm 1, 0 \pmod{p}$. Therefore

$$\left(\frac{r-1}{p}\right) \left(\frac{r^4+1}{p}\right) = \left(\frac{r-1}{p}\right) \left(\frac{r+1}{p}\right) \left(\frac{r^2+1}{p}\right) \left(\frac{r^4+1}{p}\right) = \left(\frac{r^8-1}{p}\right) = \left(\frac{r^8-r^7}{p}\right) = \left(\frac{r}{p}\right) \left(\frac{r-1}{p}\right).$$

Hence,

$$\left(\frac{r^3+1}{p}\right) = \left(\frac{r^3+r^7}{p}\right) = \left(\frac{r}{p}\right)\left(\frac{r^4+1}{p}\right) = 1. \quad \blacksquare$$

Discussion. AoPS

Proglem 8. Four integers are marked on a circle. On each step we simultaneously replace each number by the difference between this number and next number on the circle, moving in a clockwise direction; that is, the numbers a, b, c, d are replaced by a - b, b - c, c - d, d - a. Is it possible that after 2019 of such moves to have numbers a, b, c, d such the numbers |bc - ad|, |ac - bd|, |ab - cd| are primes?

Solution. Obviously, after the first step the sum of a, b, c and d is zero. So after 2019 steps we will get new numbers a', b', c', d', such that a' + b' + c' + d' = 0.

Notice that

$$a'b' - c'd' = a'b' + c'(a' + b' + c') = (c' + a')(c' + b'),$$

$$a'c' - b'd' = a'c' + b'(a' + b' + c') = (b' + a')(b' + c'),$$

$$b'c' - a'd' = b'c' + a'(a' + b' + c') = -(a' + b')(a' + c').$$

So we get that:

Discussion.

$$|a'b' - c'd'| \cdot |a'c' - b'd'| \cdot |a'd' - b'c'| = (a' + b')^2 (b' + c')^2 (c' + a')^2.$$

But the product of three primes can't be a perfect square, so the answer is no. \Box

Problem 9. Let k > 1 be the integer. Sum of a divisor of k and a divisor of

Problem 9. Let k > 1 be the integer. Sum of a divisor of k and a divisor of k - 1 is equal to ℓ and $\ell > k + 1$. Prove that at least one number: $\ell - 1$ or $\ell + 1$ is composite.

Solution. Any divisor of N is equal to N or is at most N/2. Therefore if sum of divisors of k and k-1 is greater then k+1 then one of them is equal to k or k-1.

If one is equal to k, then $\ell - 1 = k - 1 + d$, where d > 1 and $d \mid k - 1$. Thus $d \mid \ell - 1$, so $\ell - 1$ is composite.

If one of them is k-1, then $\ell+1=k+e$, for some e>1 and $e\mid k$. Then $e\mid \ell+1$, so $\ell+1$ is composite.

Discussion. AoPS

Proglem 10. Let k, n be a positive integers such that k > n!. Prove that there exist distinct prime numbers p_1, p_2, \ldots, p_n such that $p_i \mid k + i$ for all $i = 1, 2, \ldots, n$.

Solution. For $i = 1, 2, \ldots, n$ let

 $a_i = \text{lcm}(\text{divisors of } k + i \text{ which not exceed } n).$

Then $a_i \leq n! < k$. Moreover $a_i \mid k+i$, thus

$$\frac{k+1}{a_1}, \quad \frac{k+2}{a_2}, \dots, \frac{k+n}{a_n}$$

are integers greater than 1.

No we prove that these numbers are coprime. Take any $1 \leqslant i, j \leqslant n$. Since (k+i)-(k+j) < n, than $d := \gcd(k+i,k+j) \leqslant n$, so $d \mid a_i$ and $d \mid a_j$. It means that $\frac{k+i}{a_i}$ and $\frac{k+j}{a_j}$ are divisors of $\frac{k+i}{d}$ and $\frac{k+j}{d}$, respectively. But the letter numbers are coprime, so $\frac{k+i}{a_i}$ and $\frac{k+j}{a_j}$ are coprime too.

Finally easy to observe that these numbers satisfy problem statement.

Discussion.

Problem 11. Let a, b, c, d be a positive integers such that

$$cn + d \mid an + b$$

for any positive integers n. Prove that a = kc and b = kd for some integer k.

Solution. Given condition implies that

$$cn + d \mid a(cn + d) - c(an + b) = ad - bc$$

for any integer $n \ge 0$. Therefore ad = bc, so

$$\frac{a}{c} = \frac{b}{d} = k,$$

for some $k \in \mathbb{Q}$. But a+b=k(c+d) is divisible by c+d (we put n=1 in problem condition). Therefore $k \in \mathbb{Z}$ and we are done.

Discussion. AoPS

Problem 12. Find all positive integers n for which there exist positive integers x_1, x_2, \ldots, x_n such that

$$\frac{1}{x_1^2} + \frac{2}{x_2^2} + \frac{2^2}{x_3^2} + \dots + \frac{2^{n-1}}{x_n^2} = 1.$$

Solution. We will prove by induction that all n except 2 satisfies given condition. Claim: If n has a solution, then n + 2 has a solution.

Proof. Let (x_1, x_2, \ldots, x_n) be a solution for n. Then just check that

$$(x_1, x_2, \dots, x_{n-1}, 2x_n, 2x_n, 4x_n)$$

is a solution for n+2. Now note that 1 is a solution for n=1, (2,2,4) for n=3 and (3,3,3,6) is a solution for n=4 so that all $n \neq 2$ work.

Finally for n=2 the equation is equivalent to $(x_1^2-1)(x_2^2-2)=2$ which is easily seen to not have solution.

Discussion. AoPS

Problem 13. Let d(k) denote the number of positive divisors of a positive integer k. Prove that there exist infinitely many positive integers M that cannot be written as

$$M = \left(\frac{2\sqrt{n}}{d(n)}\right)^2$$

for any positive integer n.

Solution. Let M be an odd perfect square, and suppose

$$M = \left(\frac{2\sqrt{n}}{d(n)}\right)^2.$$

In particular \sqrt{n} is an integer and hence n is a perfect square. But then d(n) is odd, which implies that M is even – contradiction.

Since there are infinitely many odd perfect squares, our proof is complete.

Discussion.

Problem 14. For any integer $N \geq 2$, let f(N) denotes sum of N and the greatest divisor of N (other than N). Prove that for any integer $A \geq 2$, by iterating f on A we can get a number divisible by 3^{2021} .

Solution. Note that f takes even values for odd arguments. Moreover taking even number of the form $2^k a$, where $k \ge 1$ and $2 \nmid a$, we see that

$$2^k a \xrightarrow{f} 2^{k-1} \cdot 3a \xrightarrow{f} 2^{k-2} \cdot 3^2 a \xrightarrow{f} \dots \xrightarrow{f} 3^k a.$$

We will prove inductively, that for any natural n by iterating f, from any integer (≥ 2) we can made odd number divisible by 3^n .

Base case of an induction was at the beginning, since we made from any number, the odd number divisible by 3. Suppose that by iterating f we obtained number of the form $3^n a$, where a is odd number. Then

$$3^n a \xrightarrow{f} 2^2 \cdot 3^{n-1} a \xrightarrow{f} 2 \cdot 3^n a \xrightarrow{f} 3^{n+1} a$$

which ends inductive step.

Discussion.

Problem 15. Call a positive integer n a good number, if there exists prime number p such that $p \mid n$ and $p^2 \nmid n$. Prove that 99% numbers among $1, 2, 3, \ldots, 10^{12}$ are good.

Solution. Let us observed that the number which is not good has the form a^3b^2 for some integers a, b. Therefore the number of not good numbers (bad one's) does not exceed the number of numbers in $\{1, \ldots, 10^{12}\}$ with the form a^3b^2 .

Since $a^3b^2 \le 10^{12}$ we see that $a \le 10^4$ and $b \le 10^6$, so the number of bad numbers is not greater that $10^4 \cdot 10^6 = 10^{10}$. Thus there is at least

$$\frac{10^{12} - 10^{10}}{10^{12}} = 99\% \cdot 10^{12}$$

good numbers in the set $\{1, \ldots, 10^{12}\}$.

Discussion.

Proglem 16. Integers a_1, a_2, \ldots, a_n satisfy

$$1 < a_1 < a_2 < \ldots < a_n < 2a_1$$
.

If m is the number of distinct prime factors of $a_1 a_2 \dots a_n$, then prove that

$$(a_1 a_2 \dots a_n)^{m-1} \geqslant (n!)^m.$$

Solution. Let us write $a_i = p^{k_i} \cdot b_i$, where $p \nmid b_i$ for a prime divisor p of $a_1 a_2 \dots a_n$. Then, due to $a_1 < a_2 < \dots < a_n < 2a_1$ we get that b_i are pairwise distinct. Indeed, if $b_i = b_i$ for some i < j then

$$\frac{a_j}{a_i} = \frac{p^{k_j} \cdot b_i}{p^{k_i} \cdot b_i} = p^{k_j - k_i} \geqslant 2.$$

Thus

$$b_1b_2\dots b_n\geqslant n!$$
.

Multiplying such inequalities for each $p \mid a_1 a_2 \dots a_n$ we get the result.

Discussion.

Proglem 17. Find all positive integers n for which there exist non-negative integers a_1, a_2, \ldots, a_n such that

$$\frac{1}{2^{a_1}} + \frac{1}{2^{a_2}} + \dots + \frac{1}{2^{a_n}} = \frac{1}{3^{a_1}} + \frac{2}{3^{a_2}} + \dots + \frac{n}{3^{a_n}} = 1.$$

Solution. The answer is $n \equiv 1, 2 \pmod{4}$. These are obviously the only n that work, since if $n \equiv 3, 4 \pmod{4}$, then

$$1 = \frac{1}{3^{a_1}} + \frac{2}{3^{a_2}} + \dots + \frac{n}{3^{a_n}} \equiv 1 + 2 + \dots + n \equiv 0 \pmod{2},$$

contradiction.

We will show all $n \equiv 1, 2 \pmod 4$ by strong induction, with the following base cases:

- For n = 1, take $(a_1) = (0)$.
- For n = 5, take $(a_1, \ldots, a_5) = (2, 2, 2, 3, 3)$.
- For n = 9, take $(a_1, \ldots, a_9) = (2, 3, 3, 3, 3, 4, 4, 4, 4)$.

Claim: If 4k + 1 works, then so does 4k + 2.

Proof. Note the identities

$$\frac{1}{2^{a_{2k+1}}} = \frac{1}{2^{a_{2k+1}+1}} + \frac{1}{2^{a_{2k+1}+1}} \quad \text{and} \quad \frac{2k+1}{3^{a_{2k+1}}} = \frac{2k+1}{3^{a_{2k+1}+1}} + \frac{4k+2}{3^{a_{2k+1}+1}}.$$

Now suppose (a_1, \ldots, a_{4k+1}) is a valid solution for n = 4k + 1. Setting $b_{2k+1} = b_{4k+2} = a_{2k+1} + 1$ and $b_i = a_i$ for all other i, we obtain a valid solution (b_1, \ldots, b_{4k+2}) for n = 4k + 2.

Claim: If 4k + 1 works, then so does 4k + 13.

Proof. Let $(x_1, \ldots, x_{13}) = (2, 2, 3, 3, 6, 6, 6, 6, 6, 6, 6, 4, 4)$ satisfy

$$\frac{1}{2^{x_1}} + \frac{1}{2^{x_2}} + \dots + \frac{1}{2^{x_{13}}} = \frac{1}{3^{x_1}} + \frac{2}{3^{x_2}} + \dots + \frac{13}{3^{x_{13}}} = 1 \quad \text{and} \quad \frac{1}{3^{x_1}} + \frac{1}{3^{x_2}} + \dots + \frac{1}{3^{x_{13}}} = \frac{1}{3}.$$

It follows that the following identities hold:

$$\frac{1}{2^{a_{k+1}}} = \frac{1}{2^{a_{k+1}+2}} + \sum_{t=2}^{13} \frac{1}{2^{a_{k+1}+x_t}} \quad \text{and} \quad \frac{k+1}{3^{a_{k+1}}} = \frac{k+1}{3^{a_{k+1}+2}} + \sum_{t=2}^{13} \frac{4k+t}{3^{a_{k+1}+x_t}}.$$

Now suppose (a_1, \ldots, a_{4k+1}) is a valid solution for n = 4k+1. Setting $b_{k+1} = a_{k+1} + 2$, $b_{4k+t} = a_{k+1} + x_t$, and $b_i = a_i$ for all other i, we obtain a valid solution (b_1, \ldots, b_{4k+13}) for n = 4k+13.

Discussion.

References

- Art of Problem Solving https://artofproblemsolving.com
- Polish Mathematical Olympiad https://om.mimuw.edu.pl
- Homepage of Dominik Burek http://dominik-burek.u.matinf.uj.edu.pl