Leader-Follower Formation Control for Non-Holonomic WMR

Arashdeep Singh Pranav Deshpande

RML 7020 Mobile Robots Indian Institute of Technology Jodhpur

Introduction

Leader-Follower

Introduction

Leader-Follower

Introduction

Leader-Follower

Formation Control

Formation Control

Formation Control

Formation Control

Differential Drive WMR

Differential Drive WMR

Differential Drive WMR

Differential Drive WMR

Leader-Follower Relation

Distance between Leader and Follower

$$L_{ijx} = x_i - x_j - d\cos\theta_i$$

Distance between Leader and Follower

$$L_{ijx} = x_i - x_j - d\cos\theta_i$$

$$L_{ijy} = y_i - y_j - d\sin\theta_i$$

Distance between Leader and Follower

$$L_{ijx} = x_i - x_j - d\cos\theta_i$$

$$L_{ijy} = y_i - y_j - d\sin\theta_i$$

$$L_{ij} = \sqrt{L_{ijx}^2 + L_{ijy}^2}$$

Relative Bearing

$$\phi_{ij} = \operatorname{atan2}\left(rac{L_{ijy}}{L_{ijx}}
ight) - heta_i + \pi$$

Relative Bearing

$$\phi_{ij} = ext{atan2}\left(rac{L_{ijy}}{L_{ijx}}
ight) - heta_i + \pi$$
 $\gamma_{ij} = heta_i + \phi_{ij} - heta_j$

Assumptions:

Distance between rear and front wheel is negligible.

Assumptions:

Distance between rear and front wheel is negligible.

Both Leader and Follower have same orientation.

$$\theta_i = \theta_j$$

Assumptions:

Distance between rear and front wheel is negligible.

Both Leader and Follower have same orientation.

$$\theta_i = \theta_j$$

Relative Bearing is also assumed to be zero.

$$\phi_{ij}=0$$

Using Lyapunov Approach

Using Lyapunov Approach

$$V = \frac{1}{2}(L_{dx} - L_{ijx})^2 + \frac{1}{2}(L_{dy} - L_{ijy})^2$$

Using Lyapunov Approach

$$V = rac{1}{2}(L_{dx} - L_{ijx})^2 + rac{1}{2}(L_{dy} - L_{ijy})^2$$
 $\dot{L}_{ijx} = V_i \cos heta_i - V_j \cos heta_j$
 $\dot{L}_{ijy} = V_i \sin heta_i - V_j \sin heta_j$

$$\dot{V} = (L_{dx} - x_i + x_j)(u_x - V_i \cos \theta_i) + (L_{dy} - y_i + y_j)(u_y - V_i \sin \theta_i)$$

$$\dot{V} = (L_{dx} - x_i + x_j)(u_x - V_i \cos \theta_i) + (L_{dy} - y_i + y_j)(u_y - V_i \sin \theta_i)$$

$$u_x = -K_x(L_{dx} - x_i + x_j) + V_i \cos \theta_i$$

$$u_y = -K_y(L_{dy} - y_i + y_i) + V_i \sin \theta_i$$

Line-Formation Simulation

Parameters Taken

Agent	Coordinates	Desired Distance	
Leader	(-13, -10)		
Follower 1	(6,6)	(6,0)	
Follower 2	(-9, 6)	(8,0)	
Follower 3	(12, 12)	(6,0)	
Follower 4	(-18, -12)	(8,0)	

Rectangle-Formation Simulation

Parameters Taken

Agent	Coordinates	Desired Distance
Leader	(120,0)	
Follower 1	(6,6)	(4,5)
Follower 2	(-12, -16)	(4, -5)
Follower 3	(30, 30)	(7,0)
Follower 4	(-18, -12)	(7,0)
Follower 5	(-20, 10)	(4,0)
Follower 6	(24, 30)	(11,0)

Considering error in current and desired orientation and position error

$$V = \frac{1}{2}(L_{dx} - L_{ijx})^2 + \frac{1}{2}(L_{dy} - L_{ijy})^2 + \frac{1}{2}(\theta_d - \theta_c)^2$$
$$\theta_c = \theta_i - \theta_j$$

Considering error in current and desired orientation and position error

$$V = \frac{1}{2}(L_{dx} - L_{ijx})^2 + \frac{1}{2}(L_{dy} - L_{ijy})^2 + \frac{1}{2}(\theta_d - \theta_c)^2$$
$$\theta_c = \theta_i - \theta_j$$

Differentiating with time

$$\dot{V} = (L_{dx} - L_{ijx})(\dot{L}_{dx} - \dot{L}_{ijx})
+ (L_{dy} - L_{ijy})(\dot{L}_{dy} - \dot{L}_{ijy})
+ (\theta_d - \theta_i + \theta_j)(\dot{\theta}_d - \dot{\theta}_i + \dot{\theta}_j)$$

As we already know

$$L_{ijx} = x_i - x_j - dcos heta_i$$
 $L_{ijy} = y_i - y_j - dsin heta_i$ $\dot{L}_{iix} = V_i cos heta_i - V_i cos heta_i + d\omega_i sin heta_i$

 $\dot{L}_{iiv} = V_i \sin \theta_i - V_i \sin \theta_i - d\omega_i \cos \theta_i$

Controllers

Controllers for follower velocity

$$u_x = V_j cos\theta_j$$

 $u_y = V_j sin\theta_j$
 $\omega_j = \dot{\theta}_j$

Differentation of Lyapunov Function

So \dot{V} comes out to be

$$\dot{V} = (L_{dx} - L_{ijx})(u_x - V_i \cos \theta_i) + (L_{dy} - L_{ijy})(u_y - V_i \sin \theta_i) + (\theta_d - \theta_i + \theta_j)(-\omega_i + \omega_j)$$

Choosing

$$u_{x} = -K(L_{dx} - x_{i} + x_{j}) + V_{i}cos\theta_{i}$$

$$u_y = -K(L_{dy} - y_i + y_j) + V_i sin\theta_i$$

$$\omega_j = (\omega_i) + (-\theta_d + \theta_i - \theta_j)$$

$$\dot{V} = -K(L_{dx} - x_i + x_j)^2 - K(L_{dy} - y_i + y_j)^2 - (\theta_d - \theta_i + \theta_j)^2$$

$$\dot{V} = -K(L_{dx} - x_i + x_j)^2 - K(L_{dy} - y_i + y_j)^2 - (\theta_d - \theta_i + \theta_j)^2$$

which is negative semi-definite.

$$\dot{V} = -K(L_{dx} - x_i + x_j)^2 - K(L_{dy} - y_i + y_j)^2 - (\theta_d - \theta_i + \theta_j)^2$$

which is negative semi-definite.

According to Lasalle's Principle

$$L_{dx} = x_i - x_j$$

$$L_{dy}=y_i-y_j$$

$$\theta_d = \theta_i - \theta_j$$

Therefore, according to LaSalle's invariance principle, trajectories of the system will converge to the equilibrium point as time progresses.

Simulation

Parameters Taken

Agent	Coordinates	Orientation	Desired Distance	Desired Orientation
Leader	(-13, -10)	$\pi/4$		
Follower 1	(6,6)	$\pi/2$	(6,0)	$\pi/12$
Follower 2	(-9,6)	π	(8,0)	$\pi/12$
Follower 3	(12, 12)	$\pi/3$	(6,0)	$\pi/12$

Issues

Sharp Trajectory

ssues

- Sharp Trajectory
- Collision Avoidance

Work Distribution

- Pranav Deshpande
 - Velocity Control
 - Simulation
 - Presentation

- Arashdeep Singh
 - Relation between Leader-Follower
 - Orientation Control
 - Simulation

References

- "Leader-Follower Formation control of nonholonomic mobile robots," IEEE Conference Publication IEEE Xplore, Oct. 13, 2020. https://ieeexplore.ieee.org/document/9272048
- ERC-ACI, Seoul National University, "The Mathematics of Formation Control: The 5th Wook Hyun Kwon Lecture," YouTube. Jan. 20, 2023. [Online].
- D. Chikurtev, M. Grueva, and Institute of Information and Communication Technologies BAS, "Leader-follower formation control of multiple mobile robots," BULGARIAN ACADEMY OF SCIENCES, journal-article, 2018. [Online].

References

- Brian Douglas, "Controlling robotic swarms," YouTube. Dec. 03, 2014. [Online].
- Xiangyu Meng, "Formation Control of Multi-Agent Systems Part 1 Formation Specification," YouTube. Sep. 23, 2020. [Online].

THANK YOU

THANK YOU

