- Similarly, when a *large positive signal* is applied at the *base* of Q₁ (w.r.t. the base of Q₂), Q₂-Q₄ branch would *instantly turn off*
 - \Rightarrow Entire bias current I_{C8} would flow through the Q_1 - Q_3 branch, pushing the same current through Q_5
 - \Rightarrow Q₆ would *carry the same current* (*mirror* with Q₅)
- This *current* would *flow* from the *output node* through C_C to Q_6
 - \Rightarrow C_C would *start to discharge*, and V₀ would *start to fall*, going into its *negative swing*
- Since the *same current* (I_{C8}) is used to *discharge* the *output node*:

$$SR^{+} = SR^{-} = 1.52 \text{ V/}\mu\text{sec}$$

Slew Rate Limitation of Op-Amps

- Situation becomes *more dramatic* if a *sinusoidal signal* is applied at the *non-inverting input* of the op-amp, connected in a *voltage-follower* configuration
- Let *input signal* $V_i = V_M sin(\omega t)$, with *large* V_M
 - ⇒ *Transistors* in the *differential input stage* act as *switches*
- Under *unity feedback*, V_0 would *follow* V_i $\Rightarrow dV_0/dt = dV_i/dt = V_M \omega \cos(\omega t)$
- The *maximum value* of this *derivative* occurs when $\omega t = n\pi$ (n = 0, 1, 2, ...)
 - \Rightarrow It occurs when the *signal crosses zero*
- So long as this rate remains smaller than SR, V₀ would follow V_i with fidelity

- However, as soon as dV_0/dt becomes $\geq SR$, V_0 won't be able to follow V_i anymore rather, it would start to become triangular
- **Note**: dV_0/dt with an **increase** of **either** V_M or ω or **both**
 - \Rightarrow What essentially matters is the product $V_M \omega$
- If this *product* keeps on *increasing* beyond the SR, then V₀ remains *triangular*, however, *two major observations* become apparent:
 - \diamond The zero crossings of V_0 do not quite coincide with those of V_i
 - ❖ The *peak-to-peak swing* of V_0 starts to become *smaller* than that of V_i due to V_0 *not getting enough time* to *reach its maximum possible value*

Normal Behavior

Onset of Slew Rate Limitation

Severely Slew Rate Limited

Aloke Dutta/EE/IIT Kanpur

- If $V_M \omega$ becomes *very large*, then there *may not be any output at all*
 - \Rightarrow V₀ would *become zero*, implying that the op-amp is *not able to keep up with the variation* of V_i at all!
- Mathematical Description:
 - ❖ Let the *gain* of the op-amp = A ⇒ $(dV_0/dt)_{max} = AV_Mω$
 - ❖ This must be *less* than the SR of the op-amp to get a *distortion-free output*
 - ***** *Maximum possible value* of $AV_M = V_{SAT}$
 - \Rightarrow The *maximum allowed value* of ω (= $\omega_{\rm M}$) of $V_{\rm i}$ for $V_{\rm 0}$ to be *without any distortion* due to *slew rate limitation*:

$$\omega_{\rm M} = {\rm SR/V_{\rm SAT}}$$

- This is an *extremely important relation*, and $\omega_{\rm M}$ is referred to as the *full-power bandwidth*
- It is a *constant* for a given op-amp
- This *derivation* is for V_0 *swinging* between $\pm V_{SAT}$
- If the *swing* of V_0 is *less* than this, then ω can be *increased* beyond ω_M , following the *relation*:

$$SR = \omega_M V_{SAT} = \omega_0 V_0 = \omega_0 A V_i$$

- ω_0 : Frequency till which V_0 won't have any slew rate limited distortion
- \Rightarrow Maximum amplitude of V_i (of frequency ω_0), beyond which slew rate limited distortion would set in at the output:

$$V_{i,max} = \omega_M V_{SAT} / (\omega_0 A)$$

