Predicati e Quantificatori

- Logica proposizionale: il mondo è descritto attraverso proposizioni elementari e loro combinazioni logiche
- I singoli oggetti cui si riferiscono le proposizioni o le proprietà di tali oggetti enunciati nelle proposizioni NON hanno identificazione nella logica proposizionale

Esempio:

Giovanni è uno studente dell'Università di Salerno

- Logica proposizionale: il mondo è descritto attraverso proposizioni elementari e loro combinazioni logiche
- I singoli oggetti cui si riferiscono le proposizioni o le proprietà di tali oggetti enunciati nelle proposizioni NON hanno identificazione nella logica proposizionale

Esempio:

Giovanni è uno studente dell'Università di Salerno oggetto proprietà

- * Asserzioni devono essere ripetute per oggetti diversi *
 - Nella logica proposizionale ciascuna delle proposizioni deve essere ripetuta esaustivamente

Esempio:

Se Giovanni è laureato in Informatica allora ha sostenuto l'esame di MMI

Traduzione:

Giovanni è laureato in Informatica → ha sostenuto l'esame di MMI

Assumendo di avere altri laureati:

Anna è laureata in Informatica → ha sostenuto l'esame di MMI Nicola è laureato in Informatica → ha sostenuto l'esame di MMI

.

Giovanni è laureato in Informatica → ha sostenuto l'esame di MMI Anna è laureata in Informatica → ha sostenuto l'esame di MMI Nicola è laureato in Informatica → ha sostenuto l'esame di MMI

Problema: snellire la ripetizione esaustiva

Soluzione: costruire le proposizioni con le variabili

x è laureato in Informatica \rightarrow x ha sostenuto l'esame di MMI

* Asserzioni definiscono una proprietà per un gruppo di oggetti *

Esempio:

- Tutte le auto nuove devono essere immatricolate
- Qualche laureato in Informatica si laurea con lode

Problema: esprimere proprietà di gruppo

Soluzione: usare i quantificatori

- Quantificatori universali la proprietà è soddisfatta per tutti i membri del gruppo
- Quantificatori esistenziali almeno un membro del gruppo soddisfa la proprietà

Logica predicativa

- Rimedia alle limitazioni della logica proposizionale:
 - Modella in maniera esplicita gli oggetti e le loro proprietà (chiamate predicati)
 - Permette di costruire asserzioni con variabili e quantificatori

Logica predicativa

Elementi fondamentali della logica predicativa

- costante: modella uno specifico oggetto
 - * Esempi: Giovanni, Salerno, 7
- variabile: rappresenta un oggetto di un tipo specificato
 - * (il tipo è definito stabilendo un *universo del discorso*)
 - * <u>Esempi</u>: x, y (*uníverso del discorso* può essere persone, studenti, numeri)

Logica predicativa

Elementi fondamentali della logica predicativa

- predicato: rappresenta la proprietà o le relazioni tra gli oggetti
 - * Esempio: x è più grande di 3
 - P = è più grande di 3 predicato
 - x è più grande di 3 è denotata con P(x)
 - * Può essere relativo ad uno, due o più oggetti
 - * <u>Esempi</u>: Rosso(automobile), studente(x), sposati(Giovanni, Maria)

Predicato: rappresenta la proprietà o le relazioni tra gli oggetti

- Un predicato P(x) assume un valore Vero o Falso in dipendenza del fatto che la proprietà P vale o meno per x
- La variabile x è un oggetto preso dall' universo del discorso

<u>Esempio</u>: consideriamo il predicato <u>Studenti(x)</u> dove l' *universo del discorso* sono le *persone*

- Studente(Giovanni) T se Giovanni è uno studente
- Studente(Anna)
 T se Anna è uno studente
- Studente(Nicola) F se Nicola non è uno studente

Esempio: Sia P(x) un predicato che rappresenta l'asserzione:

x è un numero primo

Quali sono i valori di verità di:

- P(2)
 - T
- P(3)
 - Т
- P(4)
 - F
- P(5)
 - 1
- P(6)
 - F
- P(7)
 - T

Esempio: Sia P(x) un predicato che rappresenta l'asserzione:

x è un numero primo

Quali sono i valori di verità di:

• P(2) T

• P(3)

• P(4) F

• P(5) T

• P(6) F

• P(7) T

Tutte le asserzioni P(2), P(3), P(4), P(5), P(6), P(7) sono proposizioni

Esempio: Sia P(x) un predicato che rappresenta l'asserzione:

x è un numero primo

Quali sono i valori di verità di:

• P(2) T

• P(3)

• P(4) F

• P(5) T

• P(6) F

• P(7) T

E'P(x) una proposizione?

No, perché P(x) può essere applicata a più oggetti ed assumere valori diversi

I predicati possono avere più argomenti

Il predicato rappresenta la relazione tra gli argomenti (oggetti)

- Piu_vecchio(Giovanni, Pietro)
 denota l'asserzione Giovanni è più vecchio di Pietro
 - È una proposizione perché è vera o falsa
- Piu_vecchio(x, y)
 denota l'asserzione x è più vecchio di y
 - Non è una proposizione, ma la diventa dopo aver sostituto alle variabili i valori

I predicati possono avere più argomenti

Il predicato rappresenta la relazione tra gli argomenti (oggetti)

- Q(x, y)denota x+5 > y
 - Q(x,y) è una proposizione?

I predicati possono avere più argomenti

Il predicato rappresenta la relazione tra gli argomenti (oggetti)

- Q(x, y)denota x+5 > y
 - Q(x,y) è una proposizione? NO

I predicati possono avere più argomenti

Il predicato rappresenta la relazione tra gli argomenti (oggetti)

- Q(x, y)denota x+5 > y
 - Q(x,y) è una proposizione? NO
 - Q(3,7) è una proposizione?

I predicati possono avere più argomenti

Il predicato rappresenta la relazione tra gli argomenti (oggetti)

- Q(x, y)denota x+5 > y
 - Q(x,y) è una proposizione? NO
 - Q(3,7) è una proposizione? SI

I predicati possono avere più argomenti

Il predicato rappresenta la relazione tra gli argomenti (oggetti)

- Q(x, y)denota x+5 > y
 - Q(x,y) è una proposizione? NO
 - Q(3,7) è una proposizione? SI
 - Quali sono i valori di verità di:
 - * Q(3,7)
 - * Q(1,6)

I predicati possono avere più argomenti

Il predicato rappresenta la relazione tra gli argomenti (oggetti)

Esempi:

```
Q(x, y)denota x+5 > y
```

- Q(x,y) è una proposizione? NO
- Q(3,7) è una proposizione? SI
- Quali sono i valori di verità di:

```
* Q(3,7) T
```

- Q(3,y) è una proposizione?

I predicati possono avere più argomenti

Il predicato rappresenta la relazione tra gli argomenti (oggetti)

Esempi:

```
Q(x, y)denota x+5 > y
```

- Q(x,y) è una proposizione? NO
- Q(3,7) è una proposizione? SI
- Quali sono i valori di verità di:

```
* Q(3,7) T
```

* Q(1,6) F

- Q(3,y) è una proposizione? NO. Non possiamo dire se è vera o falsa

Asserzioni composte nella logica predicativa

Le asserzioni composte sono ottenute attraverso connettivi logici

- Studente(Giovanni) \(\) Studente(Anna)
 - Traduzione: Sia Giovanni che Anna sono studenti
 - Proposizione: SI
- Città(Arno) v Fiume(Arno)
 - Traduzione: L'Arno è un fiume o una città
 - Proposizione: SI
- MMI(x) → Matricola(x)
 - Traduzione: Se x segue il corso di MMI allora x è una matricola
 - Proposizione: NO

logica predicativa versus logica proposizionale

Logica proposizionale:

 utilizza asserzioni che descrivono proprietà di oggetti ben definiti (proposizioni)

Logica predicativa:

- consente di utilizzare asserzioni valide per più oggetti (predicati)
- Permette di quantificare le asserzioni, consente di fare asserzioni riguardanti gruppi di oggetti (quantificatori)

Asserzioni quantificate

La logica predicativa consente di fare asserzioni riguardanti gruppi di oggetti

Vengono utilizzate asserzioni quantificate

universale

- Esempio: Tutti gli studenti di MMI sono iscritti ad Informatica
- L'asserzione è vera per tutti gli studenti di MMI

esistenziale

- Esempio: Alcuni studenti di Informatica si laureano con lode
- L'asserzione è vera per alcuni studenti di Informatica

La quantificazione universale di P(x) è l'asserzione: P(x) è vera **per tutti** i valori di x nel dominio (universo del discorso).

La notazione ∀x P(x) denota la quantificazione universale di P(x), ed è espressa dicendo per ogni x P(x) è vera

- Supponiamo che P(x) denoti x > x 1
- Quale è il valore di verità di ∀x P(x)
- Assumiamo che il dominio sia l'insieme di tutti i numeri reali
 R
- Risposta: poiché il numero reale x è più grande di se stesso diminuito di 1, abbiamo
 - ∀x P(x) è vera

- MMI(x) → Matricola(x)
 - Traduzione: Se x segue il corso di MMI allora x è una matricola
 - Proposizione: NO
- $\forall x \ (MMI(x) \rightarrow Matricola(x))$
 - Dominio: persone
 - Traduzione: Se una persona segue il corso di MMI allora è una matricola
 - Proposizione: SI

La quantificazione converte una funzione proposizionale (predicato) P(x) in una proposizione poiché fissa il valore di P(x) per variabili prese da un insieme ben definito

- Supponiamo che P(x) denoti $x \ge 0$
- P(x) è una proposizione?
 - NO. Può assumere molti valori diversi
- ▼x P(x) è una proposizione?
 - SI. Il valore di ∀x P(x) è ben definito;
 - è vero se P(x) è vero per ogni x nel dominio, ed
 - è falso se esiste un valore di x per cui P(x) risulta falso.

Nell'utilizzo del quantificatore è importante definire esattamente il dominio (l'universo del discorso).

- Supponiamo che P(x) denoti $x \ge 0$
- Quale è il valore di ∀x P(x)?
 - Assumiamo che il dominio sia l'insieme dei numeri interi (ricordate Z = { ..., −1, 0, 1, 2, ... })
 - * $\forall x \in \mathbf{Z} P(x)$
 - * Falso. Poiché per x=-1 abbiamo x<0
 - Assumiamo che il dominio sia l'insieme dei numeri naturali (ricordate N = { 0, 1, 2, ... })
 - * $\forall x \in \mathbb{N} P(x)$
 - * Vero.

Un elemento x del dominio per il quale P(x) è falsa è detto controesempio di ∀x P(x)

Per provare che una asserzione che utilizza un quantificatore universale è falsa basta individuare un controesempio.

Esempio: con P(x) che denota x ≥ 0 e con dominio l'insieme dei numeri interi Z, si ha che

 La prova è data dall'esistenza di un intero come x=−1 per il quale P(x) è falso. Cioè x=−1 è un controesempio per ∀x P(x)

Quantificatore esistenziale

La quantificazione esistenziale di P(x) è l'asserzione:

Esiste un elemento x del dominio (universo del discorso) per il quale P(x) è vera.

La notazione $\exists x P(x)$ denota la quantificazione esistenziale di P(x), ed è espressa dicendo esiste un x tale che P(x) è vera

Esempio 1:

- Supponiamo che P(x) denoti x > 5
- Dominio: insieme dei numeri reali R
- Quale è il valore di verità di ∃ x P(x) ?
- Risposta: poiché è possibile trovare un numero reale maggiore di 5, per esempio 10 > 5, abbiamo
 - ∃ x P(x) è vera

Quantificatore esistenziale

La quantificazione esistenziale di P(x) è l'asserzione: Esiste un elemento x del dominio (universo del discorso) per

il quale P(x) è vera.

The notazione $\exists x P(x)$ denota la quantificazione esistenziale di P(x), ed è espressa dicendo esiste un x tale che P(x) è vera

Esempio 2:

- Supponiamo che Q(x) denoti x = x+2
- Dominio: insieme dei numeri reali R
- Quale è il valore di verità di ∃ x Q(x) ?
- Risposta: poiché nessun numero reale è uguale a se stesso aumentato di 2, abbiamo
 - ∃ x P(x) è falsa

- Laureato_Inf(x) ∧ Lode(x)
 - Traduzione: x è un laureato in Informatica e x si è laureato con lode
 - Proposizione: ?

- Laureato_Inf(x) ∧ Lode(x)
 - Traduzione: x è un laureato in Informatica e x si è laureato con lode
 - Proposizione: NO

- Laureato_Inf(x) ∧ Lode(x)
 - Traduzione: x è un laureato in Informatica e x si è laureato con lode
 - Proposizione: NO
- ∃ x Laureato_Inf(x) ∧ Lode(x)
 - Dominio: persone
 - Traduzione: C'è una persona che è un laureato in Informatica e che si è anche laureato con lode
 - Proposizione: ?

- Laureato_Inf(x) ∧ Lode(x)
 - Traduzione: x è un laureato in Informatica e x si è laureato con lode
 - Proposizione: NO
- ∃ x Laureato_Inf(x) ∧ Lode(x)
 - Dominio: persone
 - Traduzione: C'è una persona che è un laureato in Informatica e che si è anche laureato con lode
 - Proposizione: SI

Asserzioni quantificate (sintesi)

Asserzione	Quando è vera?	Quando è falsa?
∀x P(x)	P(x) è vera per tutti gli x	C'è un x per il quale P(x) è falsa
∃x P(x)	C'è qualche x per il quale P(x) è vera	P(x) è falsa per tutti gli x

Supponiamo che gli elementi del dominio possano essere enumerati, cioè essi siano $x_1, x_2, ..., x_N$ allora

- $\forall x P(x) \hat{e} \text{ vera se } P(x_1) \land P(x_2) \land ... \land P(x_N) \hat{e} \text{ vera}$
- $\exists x P(x) \text{ è vera se } P(x_1) \vee P(x_2) \vee ... \vee P(x_N) \text{ è vera}$

Asserzioni quantificate

Esempio 1:

- Supponiamo che P(x) denoti x² > 10
- Dominio: {1,2,3,4}
- Quale è il valore di verità di 3 x P(x) ?
- Risposta:
 - il valore di ∃x P(x) è lo stesso della disgiunzione
 P(1) ∨ P(2) ∨ P(3) ∨ P(4)
 - poiché, P(4)=16 > 10, abbiamo $\exists x P(x)$ è vera

Asserzioni quantificate

Esempio 2:

- Supponiamo che P(x) denoti x² > 10
- Dominio: {1,2,3,4}
- Quale è il valore di verità di ∀x P(x) ?
- Risposta:
 - il valore di ∀x P(x) è lo stesso della disgiunzione
 P(1) ∧ P(2) ∧ P(3) ∧ P(4)
 - poiché, P(1)= 1 < 10, abbiamo ∀x P(x) è falsa

La formulazione di un asserzione nella logica predicativa dipende dal dominio

Esempio 1:

Tutti gli studenti di Informatica sono simpatici

- Dominio: studenti di Informatica
 - Traduzione: ∀x Simpatici(x)
- Dominio: studenti
 - Traduzione: ∀x (Inf(x) → Simpatici(x))
- Dominio: persone
 - Traduzione: ∀x ((Stud(x) ∧ Inf(x)) → Simpatici(x))

La formulazione di un asserzione nella logica predicativa dipende dal dominio

Esempio 2:

Qualche studente di Ingegneria è simpatico

- Dominio: studenti di Ingegneria
 - Traduzione: ∃x Simpatico(x)
- Dominio: studenti
 - Traduzione: ∃x (Ing(x) ∧ Simpatico(x))

Tipicamente, date due qualunque predicati S(x) e P(x):

Le "asserzioni universali" sono legate alle "implicazioni"

- Tutti S(x) sono P(x)
 - $\forall x (S(x) \rightarrow P(x))$
- Nessun S(x) è P(x)
 - $\forall x (S(x) \rightarrow \neg P(x))$

Esempio:

Tutti gli italiani mangiano la pasta

- Dominio: italiani
 - Traduzione: ∀x Mangia_pasta(x)
- Dominio: persone
 - Traduzione: ∀x (Italiano(x) → Mangia_pasta(x))

Tipicamente, date due qualunque predicati S(x) e P(x):

Le "asserzioni esistenziali" sono legate alle "congiunzioni"

- Qualche S(x) è P(x)
 - $\exists x (S(x) \land P(x))$
- Qualche S(x) non è P(x)
 - $\exists x (S(x) \land \neg P(x))$

Esempio:

Qualche italiano è vegano

- Dominio: italiani
 - Traduzione: ∃x Vegano(x)
- Dominio: persone
 - Traduzione: ∃x (Italiano(x) ∧ Vegano(x))

Asserzioni matematiche quantificate

La maggioranza dei teoremi ed asserzioni matematiche esprimono l'esistenza di un oggetto con una qualche proprietà o una proprietà valida per tutti gli oggetti

Esempio 1:

 $x^2+2x+1=0$ ha una radice reale

La natura esistenziale di questa asserzione è più esplicita se la si esprime come

Esiste un numero reale x tale che $x^2+2x+1=0$

Considerando l'insieme dei numeri reali R come dominio, simbolicamente può essere espressa come

$$\exists x (x^2+2x+1=0)$$

Asserzioni matematiche quantificate

La maggioranza dei teoremi ed asserzioni matematiche esprimono l'esistenza di un oggetto con una qualche proprietà o una proprietà valida per tutti gli oggetti

Esempio 2:

 $\sqrt{2}$ è un numero irrazionale

La natura esistenziale di questa asserzione è più esplicita se la si esprime come

Non esistono due interi p e q tale che $\sqrt{2}$ = p/q

Simbolicamente può essere espressa come

$$\neg (\exists p \in \mathbf{Z} \exists q \in \mathbf{Z} (\sqrt{2} = p/q))$$

Lo proveremo più in là

Asserzioni matematiche quantificate

La maggioranza dei teoremi ed asserzioni matematiche esprimono l'esistenza di un oggetto con una qualche proprietà o una proprietà valida per tutti gli oggetti

Esempio 3:

Il quadrato di un qualunque numero reale è maggiore o uguale a zero

La natura universale di questa asserzione è più esplicita se la si esprime come

Ogni numero reale ha il quadrato maggiore o uguale a zero

Considerando l'insieme dei numeri reali R come dominio, simbolicamente può essere espressa come

$$\forall x (x^2 \ge 0)$$

Più di un quantificatore può essere necessario per rappresentare una qualche asserzione

Esempio:

Ogni numero reale ha un corrispondente negativo

Assumiamo che:

- il dominio sia l'insieme dei numeri reali R
- P(x,y) sia "x+y=0"

Traduzione: $\forall x \exists y P(x,y)$

Più di un quantificatore può essere necessario per rappresentare una qualche asserzione

Esempio:

C'è una persona che ama tutti gli altri

Assumiamo che:

- il dominio sia l'insieme delle persone
- A(x,y) sia "x ama y"

Traduzione: ∃x ∀y Ama(x,y)

Invertendo i quantificatori le asserzioni potrebbero avere un significato completamente differente

L'ordine dei quantificatori innestati è importante

Esempio:

Un americano muore di melanoma ogni ora

Muore(x,h) sia "x muore nell'ora h" allora così come è scritta l'asserzione precedente è

 $\exists x \ \forall h \ Muore(x,h)$

Mentre noi avevamo in mente

 $\forall h \exists x Muore(x,h)$

Invertendo i quantificatori le asserzioni potrebbero avere un significato completamente differente

L'ordine dei quantificatori innestati è importante

Esempio:

 $\forall x \exists y Ama(x,y) \hat{e} diverso da \exists y \forall x Ama(x,y)$

Infatti, se come prima A(x,y) è "x ama y", allora

- ▼x ∃y Ama(x,y) significa
 - Ognuno ama qualcun altro
- ∃y ∀x Ama(x,y) significa
 - C'è una persona che è amato da tutti gli altri

Invertendo i quantificatori le asserzioni potrebbero avere un significato completamente differente

L'ordine dei quantificatori innestati è importante

Esempio:

Per tutte le x e le y, se x è un genitore di y allora y è figlio di x

Consideriamo: Genitore(x,y) è "x è genitore di y" e

Figlio(y,x) è "y è figlio di x"

L'asserzione può essere rappresentata in due modi equivalenti

- $\forall x \ \forall y \ Genitore(x,y) \rightarrow Figlio(y,x)$
- $\forall y \ \forall x \ Genitore(x,y) \rightarrow Figlio(y,x)$

Esercizio

Supponiamo:

- Le variabili x,y denotano persone
- Ama(x,y) denota "x ama y"

Si traducano le seguenti asserzioni:

- Ognuno ama Antonio
 - ∀x Ama(x,Antonio)
- Ognuno ama qualcuno
 - ∀x∃y Ama(x,y)

Esercizio

Supponiamo:

- Le variabili x,y denotano persone
- Ama(x,y) denota "x ama y"

Si traducano le seguenti asserzioni:

- C'è qualcuno che ama ogni altro
 - ∃x∀y Ama(x,y)
- C'è qualcuno che non è amato da Antonio
 - ∃y ¬Ama(Antonio,y)
- C'è qualcuno che non ama nessun altro
 - ∃x ∀y ¬Ama(x,y)