EXAMINATION DATA SHEET FOR THE PHYSICAL SCIENCES (PHYSICS)

TABLE 1 PHYSICAL CONSTANTS

NAME SYMBOL		VALUE	
Acceleration due to gravity on Earth	g	9,8 m⋅s ⁻²	
Speed of light in a vacuum	С	$3.0 \times 10^8 \; \text{m} \cdot \text{s}^{-1}$	
Universal gravitational constant	G	$6.7 \times 10^{-11} \text{ N} \cdot \text{m}^2 \cdot \text{kg}^{-2}$	
Coulomb's constant	k	$9.0 \times 10^9 \ N \cdot m^2 \cdot C^{-2}$	
Magnitude of charge on an electron	е	$1,6 \times 10^{-19}\mathrm{C}$	
Mass of an electron	m _e	$9,1 \times 10^{-31} \text{ kg}$	
Planck's constant	h	6,6 × 10 ^{−34} J·s	
1 electron-volt	eV	$1.6 \times 10^{-19} \text{J}$	

TABLE 2 PHYSICS FORMULAE

MOTION

$v = u + at$ or $v_i = v_i + a\Delta t$	$s = \left(\frac{v+u}{2}\right)t$ or $\Delta x = \left(\frac{v_f + v_i}{2}\right)\Delta t$	
$v^2 = u^2 + 2as$ or $v_f^2 = v_i^2 + 2a\Delta x$	$s = ut + \frac{1}{2} at^2$ or $\Delta x = v_i \Delta t + \frac{1}{2} a(\Delta t)^2$	

FORCE AND MOMENTUM

F _{net} = ma	$F_{net} = \frac{\Delta p}{\Delta t}$ or $F_{net} \Delta t = m \Delta v$	$J = \Delta p = mv - mu$ or $J = \Delta p = mv_f - mv_i$
p = mv	$F_g = mg$	$F_{fs}^{max} = \mu_s F_N$ $F_{fk} = \mu_k F_N$

WORK, ENERGY AND POWER

W = Fs or $W =or W = F\Delta x \cos \theta$	D =		$P = \frac{W}{t}$	P = Fv
$E_p = mgh$	E _K =	$\frac{1}{2}$ mv ²	$W_{net} = \Delta E_K$	$\% efficiency = \frac{power_{out}}{power_{in}} \times 100$

IEB Copyright © 2023 PLEASE TURN OVER

GRAVITATIONAL AND ELECTRIC FIELDS

$F = G \frac{m_1 m_2}{r^2}$	$g = \frac{F}{m}$	$g = G \frac{M}{r^2}$
$F = k \frac{q_1 q_2}{r^2}$	$E = \frac{F}{q}$	$E = k \frac{Q}{r^2}$

ELECTRIC CIRCUITS

LEEGTRIC GIRCOITS			
$I=rac{q}{t}$	$V = \frac{W}{q}$		
$R = \frac{V}{I}$	$emf = I(R_{ext} + r)$ or $emf = V_{load} + V_{internal\ resistance}$		
$R_S = R_1 + R_2 + \dots$	$\frac{1}{R_P} = \frac{1}{R_1} + \frac{1}{R_2} + \dots$		
$P = \frac{W}{t}$ or	W = Pt		
W = VIt or $W = VI$	$= I^2 Rt \text{or} W = \frac{V^2}{R} t$		
P = VI or $P = VI$	$=I^2R \qquad \text{or} \qquad P=\frac{V^2}{R}$		

ELECTRODYNAMICS

$\Phi = BA\cos\theta$	$emf = -N \frac{\Delta \Phi}{\Delta t}$	$F = IB\ell \sin\theta$	
$V_{\rho}I_{\rho}=V_{s}I_{s}$		$\frac{N_s}{N_p} = \frac{V_s}{V_p}$	

PHOTONS AND ELECTRONS

$c = f \lambda$		E = h	f or	$E = \frac{hc}{\lambda}$
$E = W_0 + E_{K(max)}$	<i>W</i> ₀ :	= hf ₀	$E_{K(ma)}$	$_{\rm nx)}=\frac{1}{2}\;mv_{max}^2$