MENG WANG

mengwang@ece.ubc.ca 4025 Fred Kaiser Building, 2332 Main Mall Vancouver, BC, Canada V6T 1Z4

SUMMARY

I am currently a 4th-year Ph.D. candidate in Computer Engineering at the University of British Columbia, where my research focuses on practical quantum computing for the NISQ era and beyond. My academic journey has involved building advanced quantum circuit simulators and optimizing the execution efficiency of variational quantum algorithms. During my previous internship at Pacific Northwest National Laboratory, I gained valuable experience in high-performance computing for quantum simulations and also engaged in interdisciplinary collaboration with experts in Chemistry and Physics.

EDUCATION

Ph.D in Electrical and	Computer Engineerin	\mathbf{g}
------------------------	---------------------	--------------

The University of British Columbia

 $Advisor:\ Dr. Prashant\ Nair$

September 2020 - Present Vancouver, BC, Canada

BASc in Computer Engineering The University of British Columbia

Graduated with Distinction

September 2017 - June 2020 Vancouver, BC, Canada

Associate of Science September 2015 - July 2017

Langara College

Vancouver, BC, Canada

2021, 2022, 2023, UBC

AWARDS

Faculty of Applied Science Graduate Award

The annual award, subject to annual review and criteria fulfillment.

The annual data, subject to annual review and errier a juignmen

APSC Capstone Faculty Award

May 2020, UBC

Dean's Honour List

Jun 2019, UBC

Special Progressing Award Feb 2016, Langara College

Entrance Scholarship

Jul 2015, Langara College

CONFERENCE PUBLICATIONS

1. 🚨 ASPLOS'24 — Meng Wang, Bo Fang, Ang Li, and Prashant Nair

Red-QAOA: Efficient Variational Optimization through Circuit Reduction International Conference on Architectural Support for Programming Languages and Operating Systems, 2024

ARXIV PREPRINTS

1. A Meng Wang, Rui Huang, Swamit Tannu, and Prashant Nair TQSim: a case for reuse-focused tree-based quantum circuit simulation arXiv preprint arXiv:2203.13892

2. 🔼	Chenxu Liu, Meng Wang, Samuel A. Stein, Yufei Ding, and Ang Li
	Quantum Memory: A Missing Piece in Quantum Computing Units
arXiv preprint arXiv:2309.14432	

3. Fei Hua, **Meng Wang**, Gushu Li, Bo Peng, Chenxu Liu, Muqing Zheng, Samuel A. Stein, Yufei Ding, Eddy Z Zhang, Travis Humble, and Ang Li

QASMTrans: A QASM-based Quantum Transpiler Framework for NISQ Devices

arXiv preprint arXiv:2308.07581

4. Ang Li, Chenxu Liu, Samuel Stein, In-Saeng Suh, Muqing Zheng, **Meng Wang**, Yue Shi, Bo Fang, Martin Roetteler, and Travis Humble

*TANQ-Sim: Tensorcore Accelerated Noisy Quantum System Simulation via QIR on Perlmutter HPC

arXiv preprint arXiv:2404.13184

WORKSHOP PUBLICATIONS

1. 🚨 QCS'23	Meng Wang , Fei Hua, Chenxu Liu, Nicholas Bauman, Karol Kowalski, Daniel Claudino, Travis Humble, Prashant Nair, Ang Li
	Enabling Scalable VQE Simulation on Leading HPC Systems
	The International Conference for High Performance Computing, Networking, Storage, and Analysis Workshop: Quantum Computing Softwares, 2023
2. 🚨 QCS'23	Fei Hua, Meng Wang , Gushu Li, Bo Peng, Chenxu Liu, Muqing Zheng, Samuel A. Stein, Yufei Ding, Eddy Z Zhang, Travis Humble, and Ang Li

QASMTrans: A QASM Quantum Transpiler Framework for NISQ Devices

The International Conference for High Performance Computing, Networking, Storage, and

3. QCCC'23

Meng Wang, Bo Fang, Ang Li, and Prashant Nair

Efficient QAOA Optimization using Directed Restarts and Graph Lookup

The Second International Workshop on Quantum Classical Cooperative Computing

Analysis Workshop: Quantum Computing Softwares, 2023

WORK EXPERIENCE

Pacific Northwest National Laboratory

Ph.D. Research Intern. Mentor: Ang Li, Bo Fang

October 2022 - August 2023 Richland, WA, USA

- Participated in developing simulation frameworks leveraging leading HPC systems including Frontier, Summit, and Perlmutter to simulate large-scale quantum circuits on GPU clusters. The simulation framework is open-sourced at https://github.com/pnnl/NWQ-Sim.
- Led research improving the efficiency of classical optimization in Quantum Approximated Optimization Algorithm (QAOA), yielding two publications: Red-QAOA (accepted at **ASPLOS'24**) proposing a circuit reduction technique, and INFORMR (in progress for **ISCA'24**) introducing an informed restart approach.

TEACHING EXPERIENCE

Teaching Assistant at UBC	Vancouver, BC, Canada
CPEN 312 - Digital Systems and Microcomputers	January 2024 - April 2024
CPSC 322 - Introduction to Artificial Intelligence	July 2022 - August 2022
APSC 160 - Introduction to Computation in Engineering Design	January 2022 - April 2022
CPEN 411 - Computer Architecture	September 2021 - December 2021
CPSC 340 - Machine Learning and Data Mining	January 2021 - April 2021

SKILLS

Programming skills:

Verilog, C, C++, CUDA, HIP, MPI, Java, Python, ARMv7 Assembly, Racket.

Software Packages:

Qiskit, Qulacs.

Hardware:

System-on-Chip (SoC) FPGA, Raspberry Pi, Arduino.