第八章 复积分

8.1 复积分

本节定义复积分,可类比实函数沿曲线的积分。此时积分空间是一条曲线,积分对象是复值函数。

假设 $\gamma(t) = x(t) + iy(t) : [a,b] \to \mathbb{C}$ 是一条分段光滑曲线,它的正方向指的是参数 t 增加的方向。沿此方向, $\gamma(a)$ 与 $\gamma(b)$ 分别为曲线的起点和终点。 γ 的逆曲线 γ^- 定义为 $\gamma^-(t) = \gamma(a+b-t), t \in [a,b]$,它与 γ 表示的点集相同,但作为曲线,方向相反。

假设 f 是定义在 γ 上的复值函数。在闭区间 [a,b] 上取分点 $a=t_0 < t_1 < \cdots < t_n = b$,分点集形成 [a,b] 上的一个划分,记为 $\mathcal{P} = \{t_0, \cdots, t_n\}$ 。这诱导沿着 γ 的正方向的一组分点 $z_0 = \gamma(a), z_1 = \gamma(t_1), \cdots, z_n = \gamma(b)$ (可能有重合),它们将 γ 分解为 n 段弧,位于 z_{k-1} 与 z_k 之间的一段记为 $\gamma_k = \gamma([t_{k-1}, t_k])$, $k=1,\cdots,n$ 。

图 8.1: 曲线的划分

在弧段 γ_k 上取点 ζ_k , 并考虑 Riemann 和

$$S(\mathcal{P}) = \sum_{k=1}^{n} f(\zeta_k)(z_k - z_{k-1}).$$

记划分的长度 $|\mathcal{P}| = \max\{|t_k - t_{k-1}|; 1 \le k \le n\}$ 。如果当 $|\mathcal{P}| \to 0$ 时,不论 ζ_k 取法如何,Riemann 和总存在一确定的极限,就称 f 沿 γ 可积。此极限称为 f 沿 γ 的积分,记为

$$\int_{\gamma} f(z)dz = \lim_{|\mathcal{P}| \to 0} S(\mathcal{P}).$$

一个自然的问题是,上式右端极限何时存在? 事实上,只需要 f 在 γ 上连续即可。为说明这一点,我们将 Riemann 和写成实形式。记 $z_k = x_k + iy_k, f(z) = u(z) + iv(z)$,则

$$S(\mathcal{P}) = \sum_{k=1}^{n} (u(\zeta_k) + iv(\zeta_k))((x_k - x_{k-1}) + i(y_k - y_{k-1}))$$

$$= \sum_{k=1}^{n} (u(\zeta_k)(x_k - x_{k-1}) - v(\zeta_k)(y_k - y_{k-1}))$$

$$+ i \sum_{k=1}^{n} (v(\zeta_k)(x_k - x_{k-1}) + u(\zeta_k)(y_k - y_{k-1}))$$

$$= \sum_{k=1}^{n} (u(\zeta_k)\Delta x_k - v(\zeta_k)\Delta y_k) + i \sum_{k=1}^{n} (v(\zeta_k)\Delta x_k + u(\zeta_k)\Delta y_k).$$

f 在 γ 上连续等价于 u,v 在 γ 上连续。因此当 $|\mathcal{P}| \to 0$ 时,上式 趋于第二类曲线积分

$$\int_{\gamma} u dx - v dy + i \int_{\gamma} v dx + u dy.$$

因此, 如果 f = u + iv 在 γ 上连续, 则 f 沿 γ 可积, 且

$$\int_{\gamma} f(z)dz = \int_{\gamma} udx - vdy + i \int_{\gamma} vdx + udy.$$

上式右端积分对象即是 f(z)dz = (u + iv)(dx + idy) 的展开。

在曲线 $\gamma: [a,b] \to \mathbb{C}$ 的参数化之下, 可验证

$$\int_{\gamma} f(z)dz = \int_{a}^{b} f(\gamma(t))\gamma'(t)dt.$$

这一变量替换给出了计算积分的通用办法。

类似地,可用 Riemann 和的极限定义曲线积分 $\int_{\gamma} |f(z)||dz|$, $\int_{\gamma} f(z)|dz|$, 并可验证

$$\int_{\gamma} |f(z)||dz| = \int_{a}^{b} |f(\gamma(t))||\gamma'(t)|dt,$$

$$\int_{\gamma} f(z)|dz| = \int_{a}^{b} f(\gamma(t))|\gamma'(t)|dt,$$
$$\int_{\gamma} f(z)d\bar{z} = \int_{a}^{b} f(\gamma(t))\overline{\gamma'(t)}dt.$$

8.2 复积分的性质

沿着曲线的积分依赖于曲线的方向, 但不依赖于曲线的参数 化。下面依次说明。以下讨论总假设 γ 分段光滑。

事实上, γ 的逆曲线 $\gamma ^{-}$ 积分为

$$\int_{\gamma^{-}} f(z)dz = \int_{a}^{b} f(\gamma^{-}(t))\gamma^{-'}(t)dt$$

$$= -\int_{a}^{b} f(\gamma(a+b-t))\gamma'(a+b-t)dt$$

$$= -\int_{b}^{a} f(\gamma(s))\gamma'(s)(-ds)$$

$$= -\int_{a}^{b} f(\gamma(s))\gamma'(s)ds$$

$$= -\int_{\gamma} f(z)dz.$$

这说明将曲线改变方向, 积分反号。

任取可微同胚 $h:[a,b]\to[c,d]$, 可将曲线 $\gamma:[a,b]\to\mathbb{C}$ 重新参数化为 $\widehat{\gamma}:[c,d]\to\mathbb{C}$, 满足 $\widehat{\gamma}(s)=\gamma(h^{-1}(s))$ 亦即 $\widehat{\gamma}(h(t))=\gamma(t)$ 。于是

$$\int_{\widehat{\gamma}} f(z)dz = \int_{c}^{d} f(\widehat{\gamma}(s))\widehat{\gamma}'(s)ds = \int_{a}^{b} f(\widehat{\gamma}(h(t)))\widehat{\gamma}'(h(t))h'(t)dt$$
$$= \int_{a}^{b} f(\gamma(t))\gamma'(t)dt = \int_{\gamma} f(z)dz.$$

由积分定义, 可验证: 如果复值函数 f,g 都在 γ 上连续, 则对任何复数 α,β , 成立

$$\int_{\gamma} (\alpha f(z) + \beta g(z)) dz = \alpha \int_{\gamma} f(z) dz + \beta \int_{\gamma} g(z) dz.$$

如果曲线 γ_1 的终点为 γ_2 的起点, 则

$$\int_{\gamma_1\cup\gamma_2}f(z)dz=\int_{\gamma_1}f(z)dz+\int_{\gamma_2}f(z)dz.$$

如果两曲线并非首尾相连,积分亦可如上定义。 积分性质中最为常用的是如下不等式: **定理** 8.1. (复积分基本不等式) 假设 f 在分段光滑曲线 γ 上连续, 记 $L(\gamma)$ 为 γ 的长度。则

$$\bigg| \int_{\gamma} f(z) dz \bigg| \leq \int_{\gamma} |f(z)| |dz| \leq \max_{z \in \gamma} |f(z)| L(\gamma).$$

证明: 不妨假设 $\int_{\gamma} f(z)dz \neq 0$, 否则结论平凡。记 $\int_{\gamma} f(z)dz$ 的一个辐角为 θ 。则

$$\begin{split} \left| \int_{\gamma} f(z) dz \right| &= e^{-i\theta} \int_{\gamma} f(z) dz = \int_{a}^{b} e^{-i\theta} f(\gamma(t)) \gamma'(t) dt \\ &= \int_{a}^{b} \operatorname{Re}(e^{-i\theta} f(\gamma(t)) \gamma'(t)) dt \\ &+ i \int_{a}^{b} \operatorname{Im}(e^{-i\theta} f(\gamma(t)) \gamma'(t)) dt \\ &= \int_{a}^{b} \operatorname{Re}(e^{-i\theta} f(\gamma(t)) \gamma'(t)) dt \\ &\leq \int_{a}^{b} |f(\gamma(t))| |\gamma'(t)| dt \\ &\leq \max_{z \in \gamma} |f(z)| \int_{a}^{b} |\gamma'(t)| dt \\ &= \max_{z \in \gamma} |f(z)| \cdot L(\gamma). \end{split}$$

例题 8.1.计算积分

$$\int_{\gamma} z^n dz$$

其中 n 是整数, γ 是以原点为圆心, 以 r 为半径的圆周。

解: 取 γ 的参数化 $\gamma(t) = re^{it}, t \in [0, 2\pi], 则 <math>\gamma'(t) = ire^{it},$

$$\int_{\gamma} z^n dz = ir^{n+1} \int_0^{2\pi} e^{i(n+1)t} dt = \begin{cases} 2\pi i, & n = -1, \\ 0, & n \neq -1. \end{cases}$$

8.3 原函数

如何有效计算沿曲线的积分?

现考虑一个自然的问题。假设 Ω 是一个平面区域, f 是 Ω 上的连续函数。在什么条件下, f 沿着曲线的积分与曲线的路径无关?即是说, 曲线积分只依赖于曲线起点和终点的位置?

8.3 原函数 65

事实上, 给定两点 $z_1, z_2 \in \Omega$, 记 γ_1, γ_2 都是以 z_1 为起点, z_2 为终点的分段光滑曲线。显然 $\gamma_1 \cup \gamma_2^-$ 是以 z_1 为起点和终点的分段光滑闭曲线。积分与路径无关, 意味着

$$\int_{\gamma_1 \cup \gamma_2^-} f(z)dz = \int_{\gamma_1} f(z)dz - \int_{\gamma_2} f(z)dz = 0.$$

即沿闭曲线 $\gamma_1 \cup \gamma_2^-$ 积分为零。反之, 如果 f 沿着任何分段光滑闭曲线积分为零. 则容易说明 f 沿着曲线的积分与路径无关。

于是问题等价于: 在什么条件下, *f* 沿着任何分段光滑闭曲线积分为零?

为回答此问题,引入原函数的概念。

称复值函数 $f:\Omega\to\mathbb{C}$ 在 Ω 上存在原函数 (primitive), 如果存在 Ω 上的全纯函数 F, 满足 $F'(z)=f(z),z\in\Omega$ 。

如果存在原函数,积分计算大大简化:

定理 8.2.(Newton-Leibniz 公式) 假设复值函数 $f:\Omega\to\mathbb{C}$ 连续, 存在原函数 F, 则对任意分段光滑曲线 $\gamma:[a,b]\to\Omega$, 成立

$$\int_{\gamma} f(z)dz = F(\gamma(b)) - F(\gamma(a)).$$

证明: 先假设 γ 光滑, 此时

$$\int_{\gamma} f(z)dz = \int_{a}^{b} f(\gamma(t))\gamma'(t)dt$$

$$= \int_{a}^{b} F'(\gamma(t))\gamma'(t)dt$$

$$= \int_{a}^{b} \frac{dF(\gamma(t))}{dt}dt$$

$$= F(\gamma(b)) - F(\gamma(a)).$$

如果 γ 分段光滑, 不妨假设 $\gamma:[t_{k-1},t_k]\to\Omega$ 光滑, 其中 $a=t_0< t_1< \cdots < t_n=b$ 。则

$$\begin{split} \int_{\gamma} f(z)dz &= \sum_{k=1}^{n} \int_{t_{k-1}}^{t_{k}} f(\gamma(t))\gamma'(t)dt \\ &= \sum_{k=1}^{n} (F(\gamma(t_{k})) - F(\gamma(t_{k-1}))) \\ &= F(\gamma(b)) - F(\gamma(a)). \end{split}$$

值得一提:并非所有复值函数都有原函数。后面将会看到,如果 f 有原函数,则 f 只能为全纯函数。但即使 f 全纯,亦不

能保证 f 有原函数,例8.1表明,1/z 在 $\mathbb{C}\setminus\{0\}$ 上没有原函数,因其沿单位圆周积分非零。

下面给出原函数存在性的一个等价描述。

命题 8.1. 假设复值函数 $f:\Omega \to \mathbb{C}$ 连续, 则以下等价

- 1. $f \in \Omega$ 上存在原函数;
- 2. f 沿 Ω 中任何分段光滑闭曲线的积分为零。

证明: $1 \Longrightarrow 2$ 由 Newton-Leibniz 公式得。

 $2 \Longrightarrow 1$. 取一定点 $z_0 \in \Omega$ 。对任意 $z \in \Omega$, 存在分段光滑曲线 $\gamma_z : [a,b] \to \mathbb{C}$ 满足 $\gamma_z(a) = z_0, \gamma_z(b) = z$ 。定义函数

$$F(z) = \int_{\gamma_z} f(\zeta) d\zeta.$$

先说明 F 良定义。事实上,如果 α_z 是另一条起点为 z_0 ,终点为 z 的分段光滑曲线,则 $\gamma_z \cup \alpha_z^-$ 是闭曲线。由条件知

$$\int_{\gamma_z \cup \alpha_z^-} f(\zeta) d\zeta = \int_{\gamma_z} f(\zeta) d\zeta - \int_{\alpha_z} f(\zeta) d\zeta = 0,$$

这说明 F 的取值不依赖于路径 γ_z 的选取。因此良定义。

图 8.2: 原函数的构造与积分路径

为说明 F 全纯, 只需说明 F 在任意点导数存在。任取 $z \in \Omega$, 取 r > 0 足够小使得 $D(z,r) \subset \Omega$ 。当 $w \in D(z,r)$ 时,

$$F(w) - F(z) - \int_{[z,w]} f(\zeta)d\zeta = \int_{\gamma_w \cup \gamma_z^- \cup [w,z]} f(\zeta)d\zeta = 0.$$

利用基本事实

$$\int_{[z,w]}1d\zeta=w-z,\ \int_{[z,w]}1|d\zeta|=|w-z|,$$

8.4 习题 67

可得

$$\left| \frac{F(w) - F(z)}{w - z} - f(z) \right| = \left| \frac{1}{w - z} \int_{[z, w]} (f(\zeta) - f(z)) d\zeta \right|$$

$$\leq \frac{1}{|w - z|} \int_{[z, w]} |f(\zeta) - f(z)| |d\zeta|$$

$$\leq \max_{\zeta \in [z, w]} |f(\zeta) - f(z)|$$

$$\to 0 \text{ as } w \to z.$$

上式说明, 极限

$$\lim_{w \to z} \frac{F(w) - F(z)}{w - z} = f(z).$$

这说明 F 全纯, 且 F'(z) = f(z)。因此, F 是 f 的原函数。

原函数存在性是一个非常基本的问题,是否存在不仅依赖于全纯函数本身,亦依赖于区域本身的拓扑。本质上,是函数与区域这一配对的综合作用。要回答此问题,需要全纯函数的积分理论以及同调群的基础知识。后文分解。

8.4 习题

"科学和人类其他事业完全不同,它是一种平等的事业。真正的科学没有在中国诞生,这是有原因的。这是因为中国的文化传统里没有平等:从打孔孟到如今,讲的全是尊卑有序。上面说了,拿煤球炉子可以炼钢,你敢说要做实验验证吗?你不敢。炼出牛屎一样的东西,也得闭着眼说是好钢。在这种框架之下,根本就不可能有科学。

科学的美好,还在于它是种自由的事业。它有点像它的一个产物互联网(Internet)——谁都没有想建造这样一个全球性的电脑网络,大家只是把各自的网络连通,不知不觉就把它造成了。科学也是这样的,世界上各地的人把自己的发明贡献给了科学,它就诞生了。这就是科学的实质。还有一样东西也是这么诞生的,那就是市场经济。做生意的方法,你发明一些,我发明一些,慢慢地形成了现在这个东西,你看它不怎么样,但它还无可替代。一种自由发展而成的事业,总是比个人能想出来的强大得多。参与自由的事业,像做自由的人一样,令人神往。当然,扯到这里就离了题。现在总听到有人说,要有个某某学,或者说,我们要创建有民族风格的某某学.仿佛经他这么一规划、一呼吁.在他

画出的框子里就会冒出一种真正的科学。老母鸡"格格"地叫一阵,挣红了脸,就能生一个蛋,但科学不会这样产生。人会情绪激动,又会爱慕虚荣。科学没有这些毛病,对人的这些毛病,它也不予回应。最重要的是:科学就是它自己,不在任何人的管辖之内。

对于科学的好处,我已经费尽心机阐述了一番,当然不可能说得全面。其实我最想说的是:科学是人创造的事业,但它比人类本身更为美好。我的老师说过,科学对中国人来说,是种外来的东西,所以我们对它的理解,有过种种偏差:始则惊为洪水猛兽,继而当巫术去理解,再后来把它看做一种宗教,拜倒在它的面前。他说这些理解都是不对的,科学是个不断学习的过程。我老师说得很对。我能补充的只是:除了学习科学已有的内容,还要学习它所有、我们所无的素质。我现在不学科学了,但我始终在学习这些素质。这就是说,人要爱平等、爱自由,人类开创的一切事业中,科学最有成就,就是因为有这两样做根基。"

—王小波《科学的美好》

- 1. (原函数的唯一性) 证明: 一个复值函数的原函数, 在差一个常数的意义下是唯一的.
- 2. (原函数的存在性) 函数 f(z) = 1/z 在 $\mathbb{C} \setminus \{0\}$ 上是否存在原函数? 函数 $g(z) = \overline{z}$ 在 \mathbb{C} 上是否存在原函数? 证明你的结论。
- 3. (复积分计算) 假设 $\gamma:[0,1] \to \mathbb{H} := \{z; \Im z > 0\}$ 是上半平面的一条光滑曲线, 起点 $\gamma(0) = 1 + i$, 终点 $\gamma(1) = i$ 。
 - (a). 计算积分

$$\int_{\gamma} \frac{1}{z} dz$$
, $\int_{\gamma} z dz$.

- (b). z和 1/z 在上半平面是否有原函数?说明理由。
- 4. (复积分计算) 令 $\gamma(t) = z_0(1-t) + tz_1, t \in [0,1]$.
- (a). 计算积分

$$\int_{\gamma} \operatorname{Re}(z) \ dz, \ \int_{\gamma} \overline{z} dz.$$

(b). 求满足

$$\bigg| \int_{\gamma} f(z) dz \bigg| = \int_{\gamma} |f(z)| |dz|$$

的连续函数 f 的一般形式。

8.4 习题 69

5. (复积分的极限) 假设复值函数 f 在 z_0 连续, 证明

$$f(z_0) = \lim_{r \to 0^+} \frac{1}{2\pi i} \int_{|z-z_0|=r} \frac{f(z)}{z-z_0} dz.$$