

มหาวิทยาลัยเทคโนโลยีพระจอมเกล้าธนบุรี

การสอบกลางภาคุเรียนที่ 2 ปีการศึกษา 2555

Linear Control Systems

วิชา ENE 341 ระบบควบคุมเชิงเส้น

ภาควิชาวิศวกรรมอิเล็กทรอนิกส์และโทรคมนาคม ปีที่ 3 (ปกติ) สอบ วันศุกร์ที่ 8 มีนาคม พ.ศ. 2556 เวลา 13:00 -16:00น.

คำเตือน

- 1. ข้อสอบวิชานี้มี 4 ข้อ 8 หน้า (รวมใบปะหน้า) คะแนนรวม 70 คะแนน <u>ให้ทำทุกข้อ</u>
- 2. แสดงวิธีทำลงในข้อสอบเท่านั้น และแสดงวิธีทำทุกข้อโดยใช้<u>เลขนัยสำคัญ 2 ดำแหน่ง</u>
- 3. <u>ไม่อนุญาต</u>ให้นำเอกสาร หรือหนังสือประกอบการเรียนเข้าห้องสอบ
- 4. สามารถนำเครื่องคำนวณเข้าห้องสอบได้ตามระเบียบของมหาวิทยาลัย
- 5. ขอให้นักศึกษาทุกคนโชคดีในการสอบ

เมื่อนักศึกษาทำข้อสอบเสร็จ ต้องยกมือบอกกรรมการคุมสอบ เพื่อขออนุญาตออกนอกห้องสอบ ห้ามนักศึกษานำข้อสอบและกระดาษคำตอบออกนอกห้องสอบ

นักศึกษาซึ่งทุจริตในการสอบ อาจถูกพิจารณาโทษสูงสุดให้พันสภาพการเป็นนักศึกษา

ข้อสอบข้อที่	1	2	3	4	คะแนนรวม
คะแนนเต็ม	15	15	20	20	70
คะแนนที่ได้					

ชื่อ-สกุล	
รหัสประจำตัวเลขที่นั่งสอบ	

รศ.ตร.วุฒิชัย อัศวินชัยโชติ ผู้ออกข้อสอบ (โทร 9061)

ข้อสอบนี้ได้ผ่านการประเมินจากคณุสุดิรรมการประจำภาควิชาแล้ว

(รศ.ตร.วุฒิชัย อัศวินชัยโชติ)

หัวหน้าภาควิชาวิศวกรรมอิเล็กทรอนิกส์และโทรคมนาคม

ชื่อ-สกุล	
รหัสประจำตัวเลขที่นั่งสอบเลขที่นั่งสอบ	

(15 คะแนน) ข้อ 1. จงหา Transfer Function $\frac{C(s)}{R(s)}$ ของ รูปต่อไปนี้

(15 points) Problem 1. Find the transfer function $\frac{C(s)}{R(s)}$ of the following figure.

ชื่อ-สกล		i I
•	เลขที่นั่งสอบ	İ

(15 คะแนน) ข้อ 2. พิจารณารูปภาพค้านล่าง

(15 points) Problem 2. Consider the following figure.

จงหาค่าความไวของสมการถ่ายโอนของระบบควบคุมแบบปิค M(s) เทียบกับค่า K ที่ $\omega=5$ rad/sec.

$$\left(S_{\kappa}^{M}(j\omega)\Big|_{\omega=5}\right)$$

Determine the sensitivity of closed loop transfer function M(s) to the variation in K at $\omega = 5$ rad/sec.? $\left(S_K^M(j\omega)\Big|_{\omega=5}\right)$

ชื่อ-สกุล	
รหัสประจำตัวเลขที่นั่งสอบเลขที่นั่งสอบ	

(20 กะแนน) ข้อ 3. พิจารณารูปภาพค้านล่าง

(20 points) Problem 3. Consider the following figure.

- ก. จงหาค่า K_A ที่ทำให้ระบบเข้าสู่สถานะ steady state โดยไม่เกิดสภาวะ overshoot
- A. Determine the gain K_A so that the system reaches steady state with no overshoot.

ชื่อ-สกุล	ĺ
รหัสประจำตัวเลขที่นั่งสอบเลขที่นั่งสอบ	i

- ข. จงหาค่า steady state error โดยกำหนดให้อินพุทเท่ากับ $\theta_R = (5+t)u(t)$ และ ค่า K_A เท่ากับค่าที่ได้ จากข้อ ก.
- B. Determine the steady state error for input of $\theta_R = (5+t)u(t)$ with the value of K_A obtained from A.

(20 กะแนน) ข้อ 4. พิจารณารูปภาพด้านล่าง

(20 points) Problem 4. Consider the following figure

จงหาค่า K, B และ M ของระบบ

Determine the parameters K, B and M of the system.

ชื่อ-สกุล	<u> </u>
รหัสประจำตัวเลขที่นั่งสอบเลขที่นั่งสอบ	
	7

"I'm voing to need tech support."

Have a Happy Summer Holiday!!!

ชื่อ-สกุล	
รหัสประจำตัวเลขที่นั่งสอบเลขที่นั่งสอบ	i

TABLE OF LAPLACE TRANSFORMS

f(t)	F(s)
$\delta(t)$	1
H(t-a)	$\frac{e^{-as}}{s}$
1	- S - 1 s
t ⁿ	n! s ⁿ⁺¹
e ^{kt}	$\frac{1}{s-k}$
1 ⁿ e ^{kt}	$\frac{n!}{(s-k)^{n+1}}$
$\sin(\omega t)$	$\frac{\omega}{s^2 + \omega^2}$
$\cos(\omega t)$	$\frac{s}{s^2 + \omega^2}$
$e^{kt}\sin(\omega t)$	$\frac{\omega}{\left(s-k\right)^2+\omega^2}$
$e^{kt}\cos(\omega t)$	$\frac{(s-k)}{(s-k)^2+\omega^2}$
$\sinh(\omega t)$	$\frac{\omega}{s^2-\omega^2}$
$\cosh(\omega t)$	$\frac{s}{s^2-\omega^2}$
$t\sin(\omega t)$	$\frac{2\omega s}{\left(s^2+\omega^2\right)^2}$
$t\cos(\omega t)$	$\frac{s^2 - \omega^2}{\left(s^2 + \omega^2\right)^2}$