

03 de junho de 2019

CURSO ARDUÍNO PRÁTICO

Instrutores: Rafael e Ruben

Simplificando o processo de um computador...

Entrad

Processo

Saída

... para o arduino.

Entrad a

Processo

Saída

Sensor Atuador

Processo

Portas e Componentes Regula tensão Conector USB tipo B

Impede que a USB do
computador seja danificada em
caso de sobrecorrente.
(acima de 500 mA)

Conector

Compara se a tensão DC está presente. Se não estiver, deixa que a tensão da USB Alimente o circuito.

> Regula a tensão DCpara 3,3 V.

Conjunto microcontrolador e cristal, responsável pelo controle e leitura de todos os pinos da placa.

Conjunto microcontrolador e cristal que faz a interface USB com o computador

Conector para gravação ICSP, do ATMEGA16U2

Led conectado ao pino 13 do arduino

Leds de status da comunicação seria Entre placa e computador

Os sinais em amarelo e vermelho Indicam dois pinos que estão em curto

Caso utilize esses sinais no projeto, tome cuidado pois estão conectados ao outro microcontrolador para

Monitor Serial

Monitor Seria

Baud rate vs Bit rate

Baud = 10 Bit rate = 10 bps

Baud = 10 Bit rate = 20 bps Monitor Serial Sketch jun01a | Arduino 1.8.4

Plotter Serial

Monitor Serial

Vejamos na prática!

osketch_jun01a | Arduino 1.8.4

Arquivo Editar Sketch Ferramentas Ajuda

sketch_jun01a§

```
char entrada:
void setup()
  //Definindo a taxa de transmissão como 9600 bps
  Serial.begin(9600);
void loop()
  //Apresente os resultados enquanto houver dados para leitura
 while (Serial.available() > 0)
    // Lê byte da serial
    entrada = Serial.read();
    Serial.println(entrada);
```

Deixando os monitores Serial em "stand by", vamo para um Show de Luzes!

Projeto 01 - Show de luzes

Monte o esquema: Componentes:

■ 1 - resistor 100 Ohms

■ 5 - LEDS

DIGITE O CODIGO NA

IDE

```
int arrayLed[] = {11, 10, 9, 6, 5};
int tamanhoArray = sizeof(arrayLed) / sizeof(arrayLed[0]);
```

```
void apaga()
{
  for (int i =0; i<tamanhoArray; i++)
  {
    digitalWrite(arrayLed[i], LOW);
  }
}</pre>
```

```
void acende()
{
  for (int i =0; i<tamanhoArray; i++)
  {
    digitalWrite(arrayLed[i], HIGH);
  }
}</pre>
```

```
void trocarEstadoLed(char estado)
  switch (estado)
    case '0':
      apaga();
      break;
    case '1':
      acende();
     break:
    case '2':
      sequencial();
      break:
```

```
void sequencial()
  for (int i=0; i < tamanhoArray; i++)</pre>
    digitalWrite(arrayLed[i], HIGH);
    delay (150);
    digitalWrite(arrayLed[i], LOW);
    delay (150);
void setup()
 for (int i =0; i<tamanhoArray; i++)
    pinMode(arrayLed[i], OUTPUT);
```

```
void loop()
{
    trocarEstadoLed(1);
}
```

setup() - Parte do código dedicado para iniciar o programa. Dizer para o arduino com quais portas ele deve trabalhar, além de iniciar algumas funções e modos de trabalho. Esta parte é lida uma única vez.

loop() - Parte do código dedicado ao trabalho repetitivo. Esta parte roda infinitas vezes.

Função pinMode()

►Sintaxe: pinMode(PORTA, FORMATO);

► As portas podem ser as portas analógicas A0,A1,A2..A7, ou digital 0,1,2,3...13.

►O formato pode ser INPUT para sinais que chegam ao arduino, e OUTPUT para sinais enviados pelo arduino.

Função digitalWrite()

Serve para enviar um sinal digital, verdadeiro ou falso...5v ou 0v.

▶Sintaxe : digitalWrite(PORTA, FORMATO);

►As portas podem ser as portas analógicas A0,A1,A2..A7, ou digital 0,1,2,3...13.

►O formato pode ser HIGH (ou 1) para enviar 5V, e LOW (ou 0) para enviar 0V.

Função delay()

▶Serve para espera um tempo em milisegundos.

▶Sintaxe : delay(tempo);

▶O tempo é dado em milissegundos.

Vamos voltar para o Monitor Serial?

Projeto 1.1 -Controlando o Show de luzes pela Serial.

Adicionando alguns códigos ao anterior

►Variável globa... char entrada;

Atualizando a loop():

```
void loop()
  if (Serial.available() > 0)
   // Lê byte da serial
    entrada = Serial.read();
   Serial.println(entrada);
    trocarEstadoLed(entrada);
```

MELHOR FORMA DE APRENDER É PRATICANDO.

Projeto 02 - Sensor ultrassônico

Monte o esquema: Componentes:

- 1 Sensor Ultrassônico
- Library:

https://github.com/ErickSimoes/Ultrasonic

DIGITE O CÓDIGO NA IDE

```
* Leitura de distância com o sensor HC - SR04
    * Library used: https://github.com/ErickSimoes/Ultrasonic
   #include <Ultrasonic.h>
      * Definindo o nome do sensor (ultrassom) - um objeto e
      * especificando as portas de conexão trig(8) e echo(7)
      * respectivamente.
 9
10
11
     Ultrasonic ultrassom(8,7);
12
   //Função setup() roda apenas 1 vez quando a placa é ligada ou resetada
13
   void setup()
15 □ {
16
     //Habilitando a comunicação serial a uma taxa de 9600 bauds.
     Serial.begin (9600);
17
18
   //Definindo a variável (global) que receberá a distância
   long distancia;
20
21
   //Função loop(): executa um loop infinitamente enquanto a placa estiver ligada.
   void loop()
24 □ {
     distancia = ultrassom.read(CM); //ultrassom.read(CM) retorna a distância em
2.5
26
                                      //centimetros (CM)
27
     Serial.print(distancia); //imprime o valor da variável distancia
     Serial.println(" cm");
28
29
30
     delay(100); //Aquarda 100ms antes de executar o loop novamente
31
```

Lembra do Plotter?

Filtros são usados para reduzir ruídos vindos de sinais.

Vamos praticar?!

PROJETO 3 - FILTRO LINEAR

MODELO DE CÓDIGO

```
#define N INTERACAO 700
int filtroLinear(int porta)
  unsigned long sinalFiltrado = 0;
  for (int i = 0; i < N INTERACAO; i++)
    sinalFiltrado += analogRead(porta);
  return sinalFiltrado / N INTERACAO;
```

Experimente passar o filtro linear no sinal lido por um potenciômetro

PROJETO 3.1 - FILTRO LINEAR COM POTENCIÔMETRO

SIGA O ESQUEMA:


```
#define POT A0
void setup()
  Serial.begin(9600);
 pinMode(POT, INPUT);
void loop()
    int valor = 0;
    valor = analogRead(POT);
    Serial.print("valor: ");
    Serial.print(valor);
```


Vamos aprender a utilizar o LCD (Light Cristal Display)

► PROJETO 4 – LCD

Monte o

Descrição dos pinos

Pino	Nome	Função
1	Vss	Terra
2	Vdd	Positivo (normalmente 5V)
3	Vo	Contraste do LCD. Às vezes também é chamado de Vee
4	RS	Register Select
5	R/W	Read/Write
6	E	Enable
7	D0	Bit 0 do dado a ser escrito no LCD (ou lido dele).
8	D1	Bit 1 do dado a ser escrito no LCD (ou lido dele).
9	D2	Bit 2 do dado a ser escrito no LCD (ou lido dele).
10	D3	Bit 3 do dado a ser escrito no LCD (ou lido dele).
11	D4	Bit 4 do dado a ser escrito no LCD (ou lido dele).
12	D5	Bit 5 do dado a ser escrito no LCD (ou lido dele).
13	D6	Bit 6 do dado a ser escrito no LCD (ou lido dele).
14	D7	Bit 7 do dado a ser escrito no LCD (ou lido dele).
15	A	Anodo do back-light (se existir back-light).
16	K	Catodo do back-light (se existir back-light).
Tabela 1: Descrição das funções dos pinos do LCD		

DIGITE O CÓDIGO:

```
// Inclue a biblioteca:
   #include <LiquidCrystal.h>
   // Inicializa o LCD
   LiquidCrystal lcd(12, 11, 5, 4, 3, 2);
   void setup() {
    // Inicia o LCD com suas dimensões
    lcd.begin(16, 2);
     // Imprime uma mensagem no LCD
     lcd.print("hello, world!");
   void loop() {
    //Coloca o cursor na coluna 1 e linha 0
    lcd.setCursor(0, 1);
     // Imprime o tempo de operação
     lcd.print(millis() / 1000);
19
```


Algo de uso mais prático...

► PROJETO 4.1 – LETREIRO ELETRÔNICO

NO CÓDIGO ANTERIOR, INCLUA E FAÇA USO

DESTA FUNÇÃO: String lerSerial ()

```
String conteudol = "";
char entradal;
// Se receber algo pela serial
while (Serial.available() > 0) {
  //Segue fazendo a leitora de cada byte enviado
  entradal = Serial.read():
  //Ignora sinal/caractere de ENTER
  if (entradal != '\n') {
    conteudol.concat(entradal);
  // Aquarda buffer serial ler próximo caractere
  delay(10);
//Quando não houver mais bytes a ler...
if (Serial.available() <= 0) {
  return conteudol:
```

USANDO INTEGRADO

CIRCUITO

▶ PROJETO 5 - Led de 7 segmentos com Cl Decodificador

SEGUE O ESQUEMA

SEGUE O ESOUEMA

O CÓDIGO

```
//Definicao dos pinos de entrada me relação ao CI
#define PinoA0 4
#define PinoAl 5
#define PinoA2 6
#define PinoA3 7
void setup()
 Serial.begin(9600);
 //Define os pinos como saida
 pinMode(PinoA0, OUTPUT);
 pinMode(PinoAl, OUTPUT);
 pinMode(PinoA2, OUTPUT);
 pinMode(PinoA3, OUTPUT);
void loop()
 Serial.print("Numero: 0 ");
 digitalWrite(PinoA0, LOW);
 digitalWrite(PinoAl, LOW);
 digitalWrite(PinoA2, LOW);
 digitalWrite(PinoA3, LOW);
 delay(1000);
 Serial.print("1 ");
 digitalWrite(PinoA0, HIGH);
 digitalWrite(PinoAl, LOW);
 digitalWrite(PinoA2, LOW);
 digitalWrite(PinoA3, LOW);
 delay(1000);
```

UMA CURIOSIDADE...

"RESETANDO" A PROGRAMAÇÃO VIA CÓDIGO

O CÓDIGO

```
void (*reset)(void) = 0;
void setup() {
  Serial.begin(9600);
  Serial.println("Comando 1 Executado!");
  delay(1000);
  reset();
  Serial.println("Comando 2 Executado!");
void loop() {
```

Instrução que levará o controlador a ler a posição inicial da memória onde está o código a ser executado.

Para projeto que não permitam acesso direto à placa.

Vamos montar um esquema pull-down de um botão, e ele vai determinar se o nosso LED vai está ligado ou não.

► PROJETO 5 – BOTÃO

- 1 BOTÃO (PUSHBUTTON)
- 2 RESISTOR 100 OHM
- 1- RESISTOR >10KOHMS

DIGITE O CÓDIGO:

```
int botao = 12;
   int led = 10;
   void setup()
     pinMode(botao, INPUT);
     pinMode(led, OUTPUT);
   void loop()
12
        if(digitalRead(botao) == 1)
13
14
            digitalWrite(led, HIGH);
15
16
       else
17
18
            digitalWrite(led,LOW);
19
```


DETALHES DO BOTÃO (PUSHBUTTON)

O botão é uma chave na qual quando é pressionado liga os pontos A e B.

ESQUEMA PULL-DOWN

i diigao digitaliteda()

▶Sintaxe : digitalRead(PORTA);

►Retorno: 1 caso tenha sinal e 0 caso não tenha sinal

► As portas podem ser as portas analógicas A0,A1,A2..A7, ou digital 0,1,2,3...13.

►O formato pode ser INPUT para sinais que chegam ao arduino, e OUTPUT para sinais enviados pelo arduino.

Vamos aprender a trabalhar com um poderoso sensor de som.

► PROJETO 6 – SENSOR DE SOM

1 - SENSOR DE SOM

```
#define N_INTERACOES 400
void setup() {
 pinMode (A0, INPUT);
 Serial.begin(9600);
void loop()
  int valor = 0;
 valor = filtro(A0);
  Serial.print("Valor =");
  Serial.println(valor);
int filtro(int porta)
  unsigned long valorfiltrado = 0;
  for(int i =0; i< N INTERACOES; i++)</pre>
     valorfiltrado += analogRead(A0);
  return valorfiltrado/N INTERACOES;
```

DIGITE O CÓDIGO:

Vamos aprender a trabalhar e como funciona um servo motor.

► PROJETO 7 – SERVO MOTOR

- 1 POTENCIOMETRO
- 2 SERVO MOTOR


```
#include <Servo.h>
Servo meuservo; //create servo object to control a servo
// Pino analogico do potenciometro
int potpin = 0;
int servopin = 9;
// Variavel que armazena o valor lido do potenciometro
int val:
void setup() {
  // Define que o servo esta ligado a porta 9
  meuservo.attach(servopin);
}-
void loop() {
  // Le o valor do potenciometro (valores entre 0 e 1023)
  val = analogRead(potpin);
  // Converte o valor pra ser usado(valores entre 0 e 180)
  val = map(val, 0, 1023, 0, 179);
  // Move o eixo do servo, de acordo com o angulo
  meuservo.write(val):
  // Aguarda o servo atingir a posiçao
  delay(15);
```

Vamos aprender a trabalhar e como funciona um motor DC.

► PROJETO 8 - MOTOR DC

- 1 POTENCIOMETRO
- 2 MOTOR DC
- 3 TIP 122
- 4 DIODO
- 5 RESISTORES

```
int motor = 10;
int poten = A0;
int valor = 0;
void setup() {
  pinMode(poten, INPUT);
  Serial.begin(9600);
void loop() {
  valor = analogRead(poten)/4;
  analogWrite(motor, valor);
  Serial.println(valor);
```