Izrač	unamo li u nekom trenutku vektor brzine i vektor akceleracije neke čestice, znamo da će vrijediti sljedeće tvrdnje (označi):	
Odal	perite jedan ili više odgovora:	
	Ako je iznos brzine jednak nuli, onda je i iznos akceleracije jednak nuli.	
	Ako je iznos akceleracije jednak nuli, onda je i iznos brzine jednak nuli.	
	Ako su iznosi brzine i akceleracije različiti od nule, smjerovi brzine i akceleracije se podudaraju (vektori su paralelni).	
	Ako su iznosi brzine i akceleracije različiti od nule, smjer brzine je suprotan smjeru akceleracije (vektori su antiparalelni).	
	Ako je iznos akceleracije jednak nuli, onda iznos brzine mora biti različit (veći) od nule.	
	Ako je iznos brzine jednak nuli, onda iznos akceleracije mora biti različit (veći) od nule.	
~	Iznos akceleracije i iznos brzine mogu istovremeno biti jednaki nuli.	~
~	Ako su iznosi brzine i akceleracije različiti od nule, akceleracije može imati bilo koji smjer u odnosu na brzinu.	~
	Ako su iznosi brzine i akceleracije različiti od nule, smjer akceleracije i smjer brzine međusobno su okomiti.	
	Iznos akceleracije i iznos brzine ne mogu istovremeno biti jednaki nuli.	

Ako vektor $\overrightarrow{7}$ opisuje položaj prve, a vektor $\overrightarrow{7}$ položaj druge čestice u odnosu na odabrano ishodište, onda kažemo da vektor

$$\vec{r}_{21} = \vec{r}_{2} - \vec{r}_{1}$$

opisuje relativni položaj druge čestice u odnosu na prvu. Deriviramo li po vremenu gornji izraz dobit ćemo vektor relativne brzine druge čestice u odnosu na prvu česticu.

$$\vec{v}_{21} = \vec{v}_2 - \vec{v}_1$$

gdje su \overrightarrow{V} i \overrightarrow{V} brzine čestica. Označi istinite tvrdnje:

Odaberite jedan ili više odgovora:

- Iznos relativne brzine manji je od zbroja iznosa brzina čestica.
- Ako su vektori brzina čestica istog smjera, onda je iznos relativne brzine jednak zbroju iznosa brzina čestica.
- Iznos relativne brzine veci je od zbroja iznosa brzina čestica.
- Iznos relativne brzine manji je ili je jednak zbroju iznosa brzina čestica.
- Ako su vektori brzina čestica suprotnog smjera, onda je iznos relativne brzine jednak apsolutnoj vrijednosti razlike iznosa brzina čestica.
- Ako su vektori brzina čestica istog smjera, onda je iznos relativne brzine jednak apsolutnoj vrijednosti razlike iznosa brzina čestica.
- Iznos relativne brzine jednak je zbroju iznosa brzina čestica.
- Ako su vektori brzina čestica suprotnog smjera, onda je iznos relativne brzine jednak zbroju iznosa brzina čestica.
- Iznos relativne brzine veci je ili je jednak zbroju iznosa brzina čestica.

Čestica napušta ishodište s početnom brzinom

 $\vec{a} = -a_{0x}\vec{i} - a_{0y}\vec{j}$

 $\overrightarrow{v_0} = v_{0x}i$

 $s = ((v0X - a0X * t^2 / 2)^2 + (a0Y * t^2 / 2)^2)^(1/2)$

i akceleracijom

koordinatu, kolika joj je udaljenost od ishodišta (izražena u m)?

gdje su
$$v_{0x}=3\,\mathrm{m/s}$$
 , $a_{0x}=3\,\mathrm{m/s}^2$, $a_{0y}=3\,\mathrm{m/s}^2$. Kada čestica dosegne maksimalnu x -

Odgovor: 2,12

Čestica se giba (isključivo) duž z-osi i u trenutku to se nalazi u položaju zo = -10 m. Za koju od slijedećih kombinacija predznaka početne brzine i konstantnog

√ (-, +)

(-, -)

Položaji $ec{r}(t)$ kao funkcija vremena t za pet čestica dani su slijedećim vektorima. Koje čestice posjeduju akceleraciju različitu od nule? Odaberite jedan ili više odgovora:

 $(5+t)^2\vec{i}+3\vec{j}-2\vec{k}$ $\frac{1}{1+t}\vec{i}+3\vec{j}-5\vec{k}$

 $4\vec{i} + 3\vec{j} - 10\vec{k}$

$$2\vec{i} + 3\sin(t)\vec{j} - 5\vec{k}$$

$$2i + 3\sin(t)j - 5k$$

$$2\vec{i} + 3\vec{j} - 5t^2\vec{k}$$

