

International Conference on Computer Vision

MANTRA: MINIMUM MAXIMUM LATENT STRUCTURAL SVM

FOR IMAGE CLASSIFICATION AND RANKING

Thibaut DURAND, Nicolas THOME, Matthieu CORD

Sorbonne Universités, UPMC Univ Paris 06, LIP6, Paris, France

CONTEXT

- \triangleright Supervision: full annotations (e.g. BB) expensive
- > Weakly Supervised Learning (WSL) framework > Option: using latent variables
 - ▶ Most popular framework: LSSVM [1]
 - ▶ Ranking optimization challenging [2]

Contributions

- ▶ MANTRA: new structured output latent model
 - ▷ 2 latent variables: max + min
- ▷ Efficient optimization
- > 2 instantiations: multi-class, AP ranking
- > Experimental validation on 6 datasets

MANTRA MODEL

> Scoring function:

$$D_{\mathbf{w}}(\mathbf{x}, \mathbf{y}) = \underbrace{\langle \mathbf{w}, \Psi(\mathbf{x}, \mathbf{y}, \mathbf{h}_{\mathbf{y}}^{+}) \rangle}_{s(\mathbf{h}_{\mathbf{y}}^{+})} + \underbrace{\langle \mathbf{w}, \Psi(\mathbf{x}, \mathbf{y}, \mathbf{h}_{\mathbf{y}}^{-}) \rangle}_{s(\mathbf{h}_{\mathbf{y}}^{-})}$$

> Prediction function:

$$\hat{\mathbf{y}} = \underset{\mathbf{y}}{\operatorname{arg\,max}} D_{\mathbf{w}}(\mathbf{x}, \mathbf{y})$$

> Notations:

▶ max scoring latent value

$$\mathbf{h}_{\mathbf{y}}^{+} = \underset{\mathbf{h}}{\operatorname{arg\,max}} \langle \mathbf{w}, \Psi(\mathbf{x}, \mathbf{y}, \mathbf{h}) \rangle$$

> min scoring latent value

$$\mathbf{h}_{\mathbf{y}}^{-} = \underset{\mathbf{h}}{\operatorname{arg\,min}} \langle \mathbf{w}, \Psi(\mathbf{x}, \mathbf{y}, \mathbf{h}) \rangle$$

- > x: input (image)
- > y: output (multi-class label, ranking matrix)
- ▶ **h**: latent (bounding box)
- $\triangleright \Psi(\mathbf{x}, \mathbf{y}, \mathbf{h}) \in \mathbb{R}^d$: joint feature map
- $\triangleright \mathbf{w} \in \mathbb{R}^d$: model parameters

Intuition

- $\triangleright s(\mathbf{h}_{\mathbf{v}}^+)$: witnesses the **presence** of the class
- $\triangleright s(\mathbf{h}_{\mathbf{v}}^{-})$: witnesses the <u>absence</u> of the class
- $\triangleright \mathbf{h}_{\mathbf{v}}^{-}$: contextual information complementary to $\mathbf{h}_{\mathbf{v}}^{+}$ (latent space regularizer)

original image correct class: street

 $D_{\mathbf{w}}(\mathbf{x}, \mathbf{street}) = 2$ $s(\mathbf{h_{street}^+}) = 1.8$: high $s(\mathbf{h}_{\mathbf{street}}^{-}) = 0.2$: medium

 $D_{\mathbf{w}}(\mathbf{x}, \mathbf{coast}) = -1.5$ $s(\mathbf{h_{coast}^+}) = -0.3$: low $s(\mathbf{h_{coast}^{-}}) = -1.2$: low

 $D_{\mathbf{w}}(\mathbf{x}, \mathbf{highway}) = 0.7$ $s(\mathbf{h_{highway}^+}) = 1.6$: high $s(\mathbf{h}_{\mathbf{highway}}^{-}) = -0.9$: low

Prediction: $\hat{\mathbf{y}} = \arg \max_{\mathbf{v}} D_{\mathbf{w}}(\mathbf{x}, \mathbf{y}) \Rightarrow \mathbf{street}$

EXPERIMENTS

Multi-class

UIUC

num. classes

MOP-CNN [5]

> Comparison to LSSVM

ImageNet

Places |4|

MANTRA

LSSVM [1]

MANTRA

15Scene

> Features: Multi-scale deep features (Caffe)

> Comparison to state-of-the-art models

UIUC

94.1

97.3

Mono-scale results for the smallest scale

UIUC

73.3

93.2

PPMI

15Sc

90.2

93.4

15-Scene

80.7

PPMI

54.5

38.6

66.2

PPMI

13.3

51.0

MIT67

58.5

68.9

76.6

MIT67

26.6

56.4

Ranking

VOC 2011 Action

> VOC 2007 Results

	[3]	MANTRA-Acc	MANTRA-AP
MAP(%)	82.4	82.6	85.8

> VOC 2011 Action Results

Method	Ranking AP (%)	Detect. ov. (%)
LSSVM [1]	29.5 ± 1.3	12.7 ± 0.3
MANTRA-Acc	35.2 ± 1.2	18.9 ± 0.9
LAPSVM [2]	36.7 ± 0.8	20.1 ± 0.7
MANTRA-AP	$\textbf{42.2}\pm\textbf{1.3}$	$\textbf{26.5}\pm\textbf{1.4}$

- [1] C.-N. Yu and T. Joachims. Learning structural syms with latent variables. In ICML, 2009.
- [2] Behl et al. Optimizing average precision using weakly supervised data. CVPR, 2014.
- [3] Chatfield et al. Return of the Devil in the Details: Delving Deep into Convolutional Nets BMVC, 2014.
- [4] Zhou et al. NIPS, 2014.
- [5] Gong et al. ECCV, 2014.

LEARNING

- $\triangleright N \text{ training pairs } (\mathbf{x}_i, \mathbf{y}_i)$
- $\triangleright \Delta(\mathbf{y}_i, \mathbf{y})$: user-defined loss function
- > Constraints: during training:

$$\forall \mathbf{y} \neq \mathbf{y}_i, \quad D_{\mathbf{w}}(\mathbf{x}_i, \mathbf{y}_i) \geq \Delta(\mathbf{y}_i, \mathbf{y}) + D_{\mathbf{w}}(\mathbf{x}_i, \mathbf{y})$$

▷ Primal objective:

$$\frac{1}{2} \|\mathbf{w}\|^2 + \frac{C}{N} \sum_{i=1}^{N} \max_{\mathbf{y}} [\Delta(\mathbf{y}_i, \mathbf{y}) + D_{\mathbf{w}}(\mathbf{x}_i, \mathbf{y})] - D_{\mathbf{w}}(\mathbf{x}_i, \mathbf{y}_i)$$

> Optimization: non-convex cutting plane

MANTRA INSTANTIATION

- \triangleright Define feature map Ψ and loss function Δ .
- > Solve inference and loss-augmented inference (LAI) (during training):

$$\hat{\mathbf{y}} = \underset{\mathbf{y}}{\operatorname{arg\,max}} \left[\Delta(\mathbf{y}_i, \mathbf{y}) + D_{\mathbf{w}}(\mathbf{x}_i, \mathbf{y}) \right]$$

	Multi-class	Ranking AP
X	image	set of images
\mathbf{y}	multi-class label	ranking matrix
h	region	regions
$\Psi(\mathbf{x},\mathbf{y},\mathbf{h})$	joint multi-class	joint latent ranking
	feature map	feature map
$\Delta(\mathbf{y}_i,\mathbf{y})$	0/1 loss	AP loss
LAI	exhaustive	exact and efficient

▷ MANTRA ranking: exact and efficient solutions for inference and LAI (proof in the paper)

be decoupling the optimization over **y** and **h**

Conclusion

 \triangleright max + min scoring function \gg max

> AP optimization: **significant improvements**

> State-of-the-art results on 5 datasets

rowing

croquet

> Code available project page: give it a try! http://webia.lip6.fr/~durandt/project/mantra.html