Lecture 3: Omitted Variables Bias and Multivariate Regression

Outline of Lecture 3

Omitted Variables Bias and Multiple Regression

Sampling Distribution of OLS Estimator in Multiple Regression

Homoskedasticity vs. Heteroskedasticity

 Hypothesis Tests (covered in supplementary notes & homework)

Omitted Variables Bias

Consider the simple model with two regressors:

$$Y_i = \beta_0 + \beta_1 X_{1i} + \beta_2 X_{2i} + u_i$$

Suppose that the variable X_{2i} is <u>omitted</u> from the regression (either because of model specification error, or maybe because you don't have data on the variable X_{2i})

Then the regression model becomes:

$$Y_i = \beta_0 + \beta_1 X_{1i} + v_i, \quad v_i = \beta_2 X_{2i} + u_i$$

 \square Q: LSA #1 is now E[$v_i|X_{1i}$]=0. Is it satisfied here?

Key Result:

- Let $Corr(X_{1i}, X_{2i}) = \rho_{12} \neq 0$ (Note: LSA #1 not satisfied, i.e., $Corr(X_{1i}, v_i) \neq 0$ even if $Corr(X_{1i}, u_i) = 0$)
- Then, we can prove that the OLS estimator has the following probability limit:

$$\hat{\beta}_1 \xrightarrow{p} \beta_1 + \beta_2 \rho_{12} \frac{\sigma_{X2}}{\sigma_{X1}}$$

This says that as the sample size increases, $\hat{\beta}_1$ does not get close to the true β_1 with high probability

Olivier Deschenes, UCSB, ESM 296, Spring 2016

Implications:

- □ If the regressor X_{7i} is correlated with a variable that:
 - (i) has been omitted from the model, and
 - (ii) is also a predictor of the dependent variable Y_i, then the OLS estimator will suffer from <u>omitted</u> <u>variable bias</u> (i.e. OLS is not consistent)
- In the house value example, omitted variable bias will arise if NOx concentrations are correlated with other predictors of house values (for example: house size, noise levels, other pollutants, etc) and if these factors are not controlled for in the regression

Conclusion on Omitted Variables Bias

- Omitted variable bias is a problem whether the sample size is small or large. Even in the limit experiment when n→∞, the OLS estimator remains inconsistent
- Whether this "bias" is large or small depends on:
 - (i) the magnitude of the correlation between X_{1i} and the omitted variable (X_{2i} in the example). The larger $|\rho_{12}|$, the larger is the bias
 - (ii) the magnitude of the regression coefficient on the omitted variable (β_2 in the example)
- The direction of the bias depends on the sign of ρ_{12} and β_2 . If $\rho_{12}>0$ and $\beta_2>0$, then the OLS estimator <u>overstates</u> β_1

Solutions to Problem of Omitted Variables Bias:

- 1. Add more variables to the regression model
- Effectively, this improves the credibility of the assumption E[u_i| X_i] = 0 (LSA#1)
- Why: the more variables you include, the more potential relevant predictors of Y_i you include
- However: there is a bias/variance tradeoff in finite samples (including more regressors reduces the risk of bias but it also reduces the precision of OLS estimator)
 - Moreover, some important factors may be unobservable so it impossible to directly include controls for them
- 2. <u>Later</u>: Matching, Instrumental variables regression, Panel data models, and also controlled random experiments Olivier Deschenes, UCSB, ESM 296, Spring 2016

The Population Multiple Regression Model

Consider the case of <u>two</u> regressors:

$$Y_i = \beta_0 + \beta_1 X_{1i} + \beta_2 X_{2i} + u_i$$
 $i = 1,...,n$

- \square β_0 = unknown population intercept
- \square β_1 = effect on Y of a change in X_1 , holding X_2 constant
- \square β_2 = effect on Y of a change in X_2 , holding X_1 constant
- u_i = the regression error (omitted factors)

Interpretation of Coefficients in Multiple Regression

$$Y_i = \beta_0 + \beta_1 X_{1i} + \beta_2 X_{2i} + u_{ii}$$
 $i = 1,...,n$

- □ Consider changing X_1 by ΔX_1 while holding X_2 constant:
- Population regression function before the change:

$$\square \quad Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2$$

Population regression function, after the change:

$$\Box$$
 $Y + \Delta Y = \beta_0 + \beta_1(X_1 + \Delta X_1) + \beta_2 X_2$

□ Difference: $\Delta Y = \beta_1 \Delta X_1$

Implications:

$$\beta_1 = \frac{\Delta Y}{\Delta X_1}$$
, holding X_2 constant

Similarly,

$$\beta_2 = \frac{\Delta Y}{\Delta X_2}$$
, holding X_1 constant

- \square β_0 = predicted value of Y when $X_1 = X_2 = 0$
 - Rarely a useful parameter

OLS Estimator in Multivariate Regression

Recall the formula from <u>bivariate</u> regression

$$Y_i = \beta_0 + \beta_1 X_{1i} + U_i$$
:

$$\hat{\beta}_{1} = \frac{S_{X_{1}Y}}{S_{X_{1}}^{2}}$$

Equivalent formula in <u>multivariate</u> setting

$$Y_i = \beta_0 + \beta_1 X_{1i} + \beta_2 X_{2i} + U_i$$
:

$$\hat{\beta}_1 = \frac{S_{\widetilde{X}_1 Y}}{S_{\widetilde{X}_1}^2}$$

Where \widetilde{X}_{1i} is the fitted <u>residual</u> from a regression of X_{1i} on a constant term and <u>all</u> the other regressors (here only X_{2i}) Olivier Deschenes, UCSB, ESM 296, Spring 2016

Multiple Regression in STATA

regress price nox rooms, robust;

Linear regression

Number of obs = 206 F(2, 203) = 78.47 Prob > F = 0.0000 R-squared = 0.5923 Root MSE = 6019.3

price	Coef.	Robust Std. Err.	t	P> t	[95% Conf.	Interval]
nox	-1062.208	357.8614	-2.97	0.003	-1767.811	-356.6063
rooms	9836.748	924.3718	10.64	0.000	8014.146	11659.35
_cons	-33216.07	6655.565	-4.99	0.000	-46338.97	-20093.17

$$\hat{P}rice = -33216 - 1062 \times NOX + 9837 \times ROOMS$$

Interpretation:

□ Recall the regression of *Price* on *NOx (Lecture 2)*:

$$\hat{P}rice = 38068 - 2776 \times NOX$$

□ Now include number of rooms (*Rooms*) as well:

$$\hat{P}rice = -33216 - 1062 \times NOX + 9837 \times ROOMS$$

- □ What happens to the coefficient on *NOx*?
- □ Why? (*Note*: corr(NOx, Rooms) = -0.29)
- \Rightarrow In the model that omits *Rooms* the regression attributes some of the effect of *Rooms* to *NOx*

Application of "by hand" OLS Estimator Formula

□ Step 1: Regress *NOx* on *Rooms*, get fitted residuals:

. regress nox rooms, robust;

| Robust
nox | Coef. Std. Err. t P>|t| [95% Conf. Interval]

rooms | -.4806996 .1127166 -4.26 0.000 -.7029385 -.2584607
_cons | 8.549037 .715984 11.94 0.000 7.137359 9.960715

. predict nox_resid, residual;

 \square Step 2: Compute $\hat{\beta}_1$

. summ price nox_resid;

Variable	•	Mean	Std. Dev.		Max
price		22723.11		5000	50001
${\tt nox_resid}$	206	-9.20e-10	1.095036	-1.802523	3.107652

. correlate price nox_resid, cov;
(obs=206)

$$\hat{\beta}_1 = \frac{-1273.7}{1.095^2} = -1062$$

THE LEAST SQUARES ASSUMPTIONS IN THE MULTIPLE REGRESSION MODEL

6.4

$$Y_i = \beta_0 + \beta_1 X_{1i} + \beta_2 X_{2i} + \ldots + \beta_k X_{ki} + u_i, i = 1, \ldots, n$$
, where

1. u_i has conditional mean zero given $X_{1i}, X_{2i}, \ldots, X_{ki}$; that is,

$$E(u_i|X_{1i},X_{2i},\ldots,X_{ki})=0.$$

- 2. $(X_{1i}, X_{2i}, \dots, X_{ki}, Y_i)$, $i = 1, \dots, n$ are independently and identically distributed (i.i.d.) draws from their joint distribution.
- 3. Large outliers are unlikely: X_{1i}, \ldots, X_{ki} and Y_i have nonzero finite fourth moments.
- 4. There is no perfect multicollinearity.

LSA#1 is key: An implication is that each regressor (X) is uncorrelated with the regression error $\mathbf{u_i}$

Discussion of the LSA's for Multivariate Model

- \square LSA1: $E[u_i|X_{1i}, X_{2i}, ..., X_{Ki}] = 0$
- □ ⇒Remember that it is <u>not testable</u> without more information
- LSA2 and LSA3: technical assumptions, always maintained in this class
- LSA4: The regressors are perfectly multi-collinear if one of the regressors is a perfect linear function of another
 - We rule this out Olivier Deschenes, UCSB, ESM 296, Spring 2016

Discussion of Perfect Multi-Collinearity

LSA4: The regressors are perfectly multi-collinear if one of the regressors is a perfect linear function of some of the others

- Example: $X_{1i}=(=1 \text{ if observation i is male})$ $X_{2i}=(=1 \text{ if observation i is female})$ So: $X_{1i} + X_{2i} = 1$, perfectly collinear with intercept
- LSA4 is "testable". If two (or more) regressors are perfectly collinear, Stata will throw one out of the regression model
- It simply means that you cannot separately identify the effect of the multi-collinear regressors on Y

Example: Suppose you accidentally include *NOX* twice in the regression:

regress price nox nox, robust
note: nox omitted because of collinearity

Linear regression Number of ol	os =	206
F(1, 204	1) =	44.86
Prob > F	=	0.0000
R-squared	=	0.1146
Root MSE	=	8849

 price	Coef.				[95% Conf.	Interval]
nox	-2775.674					-1958.608
nox _cons		2222.545	17.13	0.000	33686.17	42450.38

"Imperfect" Multi-Collinearity

 Two variables that are highly correlated with each other, although not perfectly (i.e. correlation coefficient close to 1 or -1)

The more multi-collinear X_1 and X_2 are, the more "unstable" the OLS estimates of β_1 and β_2 become, and also the larger their standard errors become

Detectable by examining data and regression result

KEV	CONCEPT
INET	CONCELL

Large Sample Distribution of $\hat{\beta}_0, \hat{\beta}_1, \ldots, \hat{\beta}_k$

6.5

If the least squares assumptions (Key Concept 6.4) hold, then in large samples the OLS estimators $\hat{\beta}_0, \hat{\beta}_1, \dots, \hat{\beta}_k$ are jointly normally distributed and each $\hat{\beta}_j$ is distributed $N(\beta_j, \sigma_{\hat{\beta}_i}^2), j = 0, \dots, k$.

Same results as in the bivariate regression model

OLS estimator is distributed with a Normal distribution (when n is large) due to the Central Limit Theorem (CLT)

Implication 1. Can use Normal distribution for hypothesis tests

<u>Implication 2</u>. Formula for covariance matrix of OLS estimator depends on assumption of <u>homoskedasticity</u> or <u>heteroskedasticity</u>

*** Here we always proceed with the assumption of heteroskedasticity Olivier Deschenes, UCSB, ESM 296, Spring 2016

Heteroskedasticity and Homoskedasticity

- What do these two terms mean?
- If $Var(u_i|X_i=x)$ is **constant** that is, if the variance of the conditional distribution of u_i given X_i does not depend on X_i then u_i is said to be **homoskedastic**
- □ Otherwise, *u_i* is *heteroskedastic*
- Since it involves the unobserved error term, it is difficult to <u>directly</u> assess heteroskedasticity by looking at the data, especially in multivariate models
- So in general we will simply assume heteroskedastic errors and adjust our methods of inference to account for it Olivier Deschenes, UCSB, ESM 296, Spring 2016

Implications of Homoskedasticity:

- Homoskedasticity of the error term Var(u_i|X_i) = σ² implies that the conditional variance of Y is also constant:
- Consider simple bivariate model $Y_i = \beta_0 + \beta_1 X_i + u_i$

$$Var(Y_{i} | X_{i}) = Var(\beta_{0} | X_{i}) + Var(\beta_{1}X_{i} | X_{i}) + Var(u_{i} | X_{i})$$

$$= \beta_{0}Var(1 | X_{i}) + \beta_{1}Var(X_{i} | X_{i}) + \sigma^{2}$$

$$= 0 + 0 + \sigma^{2}$$

[Note that all covariance terms are equal to 0 (by LSA#1)]

Looking at data scatter plot to assess homoskedasticity

Scatter plot and regression line for hourly wages vs. years of education (data source: Current Population Survey)

Olivier Deschenes, UCSB, ESM 296, Spring 2016

Sampling Variance of OLS Estimator <u>Without</u> Homoskedasticity in Bivariate Model

Recall the earlier result

When the sample size n grows large, under assumptions LSA#1, LSA#2, and LSA#3, and without assuming homoskedasticity you can prove that:

$$\hat{\beta}_{1} \stackrel{A}{\approx} N \left(\beta_{1}, \frac{Var[(X_{i} - \mu_{X})u_{i}]}{nVar(X_{i})^{2}} \right)$$

The standard errors reported by STATA under the "regress y x, robust" command is an estimate of the square root of the sampling variance of the OLS estimator

Sampling Variance of OLS Estimator <u>in</u> <u>Multivariate Regression</u>

The same logic applies here, but the formulas for the variance of the sampling distribution is more complicated (come to office hours if you want to know...)

** The OLS estimator has an approximately normal sampling distribution:

$$\hat{\beta}_{j} \stackrel{A}{\approx} N(\beta_{j}, \sigma_{\hat{\beta}_{i}}^{2})$$

You should assume (at least in ESM 296) that $\sigma_{\hat{eta}_{\mathrm{j}}}^{2}$ is derived under heteroskedasticity

Conclusion on Heteroskedasticity:

- <u>1.</u> Whether the errors are homoskedastic or heteroskedastic does not change how we estimate the slope coefficients in all of our regression models
- - So, we always use heteroskedasticity-robust standard errors and inference