Optimizing models for faster inference

Markovich Alexander

How to measure the speed of inference?

- The inference time is how long is takes for a forward propagation
- In order to measure this time, we must understand 3 ideas: FLOPs, FLOPS, and MACs
- FLOPs or Floating Point Operations are total number of calculations such as addition, subtraction, division, multiplication
- FLOPS are the Floating Point Operations per Second
- MACs or Multiply-Accumulate Computations are operations that perform addition and multiplication, that is, 2 operations. As a rule, we consider 1 MAC = 2 FLOPs.

Calculating the FLOPs

- The model will do FLOPs = 60,840 + 259,200 + 737,280 + 2,560 = 1,060,400 operations
- Say we have a CPU that performs 1 GFLOPS
 FLOPs/FLOPS = (1,060,400)/(1,000,000,000) = 0,001 s or 1ms

So that we want...

- A low number of FLOPs in our model, but keeping it complex enough to be good
- A high number of FLOPS in our hardware (previous week)
- To reduce the model size
 This gives faster loading, smaller size in storage, faster compilation

Response-Based Knowledge

- Update student weights and freeze teacher weights
- The responses can be logits, offsets, heatmaps and so on

Response-Based Knowledge

- Optimise weighted combination of student and distillation losses
- As usual, student loss is cross-entropy and distillation loss is Kullback-Leibler divergence

Why we need temperature?

Temperature	Logits	Softmax Probabilities	
1	[30,5,2,2]	$[1\mathrm{e}+0, 1.38\mathrm{e}-11, 6.91\mathrm{e}-13, 6.91\mathrm{e}-13]$	
10	[3, 0.5, 0.2, 0.2]	[0.8308, 0.0682, 0.0505, 0.0505]	

- Soft targets contain the informative dark knowledge from the teacher model
- Higher temperatures produce softer probabilities which provides a stronger signal to the student

Feature-Based Knowledge

 Directly match the feature activations of the teacher and the student

Feature-Based Knowledge

$$L=\mathcal{L}_F(\Phi_t(f_t(x)),\Phi_s(f_s(x)))$$

Similarity Function (L1, L2, MMD, CE)

Alignment Function (MLP, Conv)

Feature-Based Knowledge

$$egin{aligned} p_{i|j} &= rac{Kig(\mathbf{x}_i, \mathbf{x}_j; 2\sigma_t^2ig)}{\sum_{k=1, k
eq j}^N Kig(\mathbf{x}_k, \mathbf{x}_j; 2\sigma_t^2ig)} \qquad q_{i|j} &= rac{Kig(\mathbf{y}_i, \mathbf{y}_j; 2\sigma_t^2ig)}{\sum_{k=1, k
eq j}^N Kig(\mathbf{y}_k, \mathbf{y}_j; 2\sigma_s^2ig)} \ K_{ ext{cosine}}\left(\mathbf{a}, \mathbf{b}
ight) &= rac{1}{2} \left(rac{\mathbf{a}^T \mathbf{b}}{\|\mathbf{a}\|_2 \|\mathbf{b}\|_2} + 1
ight) \in [0, 1] \ \mathcal{KL}(\mathcal{P} \| \mathcal{Q}) &= \int_{\Gamma} \mathcal{P}(\mathbf{t}) \log rac{\mathcal{P}(\mathbf{t})}{\mathcal{O}(\mathbf{t})} d\mathbf{t} \end{aligned}$$

Note that you can vary the kernel function and the divergence metric

Feature-Based Knowledge

Activation-based Attention Map

$$egin{aligned} F_{ ext{sum}}\left(A
ight) &= \sum_{i=1}^{C} |A_i| \ F_{ ext{sum}}^p\left(A
ight) &= \sum_{i=1}^{C} |A_i|^p \ F_{ ext{max}}^p(A) &= \max_{i=1,C} |A_i|^p \end{aligned}$$

Gradient-based Attention Map

$$J_S = rac{\partial}{\partial x} \mathcal{L}(\mathbf{W_S}, x), J_T = rac{\partial}{\partial x} \mathcal{L}(\mathbf{W_T}, x)$$
 $\mathcal{L}(\mathbf{W_S}, \mathbf{W_T}, x) = \mathcal{L}(\mathbf{W_S}, x) + rac{\beta}{2} \|J_S - J_T\|_2$

Note that same technique in the attention mechanism can be applied

Distillation Schemes

Teacher-Student Architecture

- Fewer layers or fewer channels in each layer
- Quantized version
- Efficient basic operations
- Optimized global network structure

Pruning

Pruning What can be sparsified?

Sparsification **Ephemeral Sparsity Model Sparsity** (per example) (per model) Neuron-like Gradients Weights **Neurons** Dropout Optimizer **Errors** (Filters/Channels/Heads) (Activations/Weights) e_1 g_1 State gradient-based optimization structured sparsity affects training structured unstructured Activations Conditional computation (blocked) (fine-grained) (route each example through a (e.g., ReLU) Different sparse subnetwork) affects inference + forward pass inference + forward pass

Pruning

local/global and Individuals/groups

$$-\sum_{i=1}^{N}\log p(y_i\mid x_i, W) + \lambda \sum_{\eta\in\mathcal{H}, \ w_\eta\in W} \left\|w_\eta
ight\|_2 o \min$$

Pruning Sparsification Schedules

Pruning

Magnitude-based (not only weights)

(c) After 3-epoch Retraining (71.4%)

Pruning Regularizations

$$\min_{eta \in \mathbb{R}^p} \Biggl(\left\| \mathbf{y} - \sum_{g=1}^G \mathbf{X_g} eta_g
ight\|_2^2 + \lambda_1 \sum_{g=1}^G \left\| eta_g
ight\|_2 + \lambda_2 \|eta\|_1 \Biggr)$$

Quantization

Quantization

Uniform, Symmetric and Asymmetric

$$Q(r) = \operatorname{Int}(r/S) - Z$$
 $ilde{r} = S(Q(r) + Z)$

$$egin{aligned} Q(r) &= \operatorname{Int}\!\left(rac{r}{S}
ight) \ S &= rac{eta - lpha}{2^b - 1} \end{aligned}$$

Quantization Static vs Dynamic

- In dynamic quantization, range is dynamically calculated for each activation map during runtime
 Suitable for RNNs
- In static quantization clipping range is pre-calculated and static during inference.
 - Calibrate range with calibration dataset

Quantization

Granularity

- Layerwise
- Groupwise
- Channelwise
- Sub-channelwise

Quantization QAT vs PTQ

Quantization

Clustering

Quantization

Product

Efficient Neural Architecture MobileNet

	Params	MACs	Arithmetic intensity	
Spatial conv	MNK^2	$BMNK^2F^2$	$\frac{BMNK^2F^2}{BF^2(M+N)+K^2MN}$	
Spatially separable conv	MNK	$BMNKF^2$	$\frac{BMNKF^2}{BF^2(M+N)+KMN}$	
Pointwise conv	MN	$BMNF^2$	$\frac{BMNF^2}{BF^2(M+N)+MN}$	
Group conv	MNK^2/G	$BMNK^2F^2/G$	$\frac{BMNK^2F^2/G}{BF^2(M+N)+K^2MN/G}$	
Depthwise conv	MK^2	BMK^2F^2	$\frac{BMK^2F^2}{2BMF^2+K^2M}$	

(a) Residual block

(b) Inverted residual block

Efficient Neural Architecture

EfficientNet

 $\max_{d,w,r} Accuracy(\mathcal{N}(d,w,r))$

$$s.t. \qquad \mathcal{N}(d,w,r) = \bigodot_{i=1...s} \hat{\mathcal{F}}_i^{d\cdot \hat{L}_i} \big(X_{\langle r\cdot \hat{H}_i,r\cdot \hat{W}_i,w\cdot \hat{C}_i \rangle} \big)$$

 $Memory(\mathcal{N}) \leq target_memory$

 $FLOPS(\mathcal{N}) \leq target_flops$

Neural Architecture Search FBNet

$$\mathcal{L}(a, w_a) = \mathrm{CE}(a, w_a) \cdot lpha \log(\mathrm{LAT}(a))^eta$$

 $\min_{m{ heta}} \min_{w_a} \mathbf{E}_{a \sim P_{m{ heta}}} \{\mathcal{L}(a, w_a)\}, \ P ext{ is GumbelSoftmax}$

TinyBERT: Distilling BERT for NLU

$$egin{aligned} \mathcal{L}_{ ext{attn}} &= rac{1}{h} \sum_{i=1}^h ext{MSE}ig(m{A}_i^S, m{A}_i^Tig) \ \mathcal{L}_{ ext{hidn}} &= ext{MSE}ig(m{H}^S W_h, m{H}^Tig) \end{aligned}$$

$$\mathcal{L}_{ ext{hidn}} = ext{MSE}ig(oldsymbol{H}^S W_h, oldsymbol{H}^Tig)$$

$$\mathcal{L}_{ ext{embd}} = ext{MSE}ig(oldsymbol{E}^Soldsymbol{W}_e, oldsymbol{E}^Tig)$$

$$\mathcal{L}_{ ext{pred}} = ext{CE}ig(oldsymbol{z}^T/t,oldsymbol{z}^S/tig)$$

$$\mathcal{L}_{ ext{model}} = \sum_{x \in \mathcal{X}} \sum_{m=0}^{M+1} \lambda_m \mathcal{L}_{ ext{layer}} \left(f_m^S(x), f_{g(m)}^T(x)
ight)$$

Teachers Do More Than Teach: Compressing Image-to-Image Models

conv

Teachers Do More Than Teach: Compressing Image-to-Image Models

Algorithm 1 Searching via One-Step Pruning.

Require: Computational budget T_b , teacher model G_T , scaling factors $\gamma_i^{(l)}$ (used for pruning) of the i-th channel in normalization layers $N^{(l)} \in G_T$, minimum # output channels c_{lb} for convolution layers (outside the IncResBlock).

Ensure: pruned student architecture G_S.

- 1: Initialize scale lower bound γ_{lo} : $\gamma_{lo} \leftarrow \min_{i,l} |\gamma_i^{(l)}|$.
- 2: Initialize scale upper bound γ_{hi} : $\gamma_{hi} \leftarrow \max_{i,l} |\gamma_i^{(l)}|$.
- 3: while $\gamma_{lo} < \gamma_{hi}$ do
- 4: $\gamma_{th} \leftarrow (\gamma_{lo} + \gamma_{hi})/2$
- 5: Prune channels satisfying $|\gamma_i^{(l)}| < \gamma_{th}$ on G_T while keep c_{lb} to get G_S
- 6: $T \leftarrow \text{computational cost of } G_S$
- 7: if $T > T_{\rm b}$ then
- 8: $\gamma_{lo} \leftarrow \gamma_{th}$
- 9: **else**
- 10: $\gamma_{hi} \leftarrow \gamma_{th}$
- 11: **end if**
- 12: end while

Teachers Do More Than Teach: Compressing Image-to-Image Models

$$ext{KA}(X,Y) = rac{\left\|Y^{ ext{T}}X
ight\|_{ ext{F}}^2}{\left\|X^{ ext{T}}X
ight\|_{ ext{F}}\left\|Y^{ ext{T}}Y
ight\|_{ ext{F}}}$$

$$ext{KA}(X,Y) = rac{\left\|Y^{ ext{T}}X
ight\|_{ ext{F}}^2}{\left\|X^{ ext{T}}X
ight\|_{ ext{F}}\left\|Y^{ ext{T}}Y
ight\|_{ ext{F}}} \qquad \mathcal{L}_{ ext{dist}} = -\sum_{l \in \mathcal{S}_{ ext{KD}}} ext{KA}\left(X_t^{(l)}, X_s^{(l)}
ight)$$

Teachers Do More Than Teach: Compressing Image-to-Image Models

Table 1: Quantitative comparison between different compression techniques for Image-to-Image models. We use mIoU to evaluate the generation quality of Cityspaces and FID for other datasets. Higher mIoU or lower FID indicates better performance.

Model	Dataset	Method	MACs	$FID\downarrow$	mIoU↑
CycleGAN	Horse→Zebra	Original [85, 36]	56.8B	61.53	and .
		Shu et al. [64]	13.4B	96.15	±
		AutoGAN Distiller [20]	6.39B	83.60	-
		GAN Slimming [70]	11.25B	86.09	E
		GAN Lottery [11]	~11.35B [†]	$\sim 83.00^{\dagger}$	-
		Li et al. [36]	2.67B	71.81	=
		CAT (Ours)	2.56B	53.48	-
Pix2pix	Cityscapes	Original [29, 36]	56.8B	s 	42.06
		Li et al. [36]	5.66B		40.77
		CAT (Ours)	5.57B	e -	42.65
	Map→Aerial photo	Original [29, 36]	56.8B	47.76	a
		Li et al. [36]	4.68B	48.02	=
		CAT (Ours)	4.59B	45.63	
GauGAN	Cityscapes	Original [58, 36]	281B		62.18
		Li et al. [36]	31.7B	5 =	61.22
		CAT-A (Ours)	29.9B	3. 570.	62.35
		CAT-B (Ours)	5.52B		54.71

