Modern Control Systems

Matthew M. Peet Arizona State University

Lecture 10: Linear Systems Theory

Linear Analysis

We will now temporarily skip realization theory in favor of linear analysis.

$$y_e = Gu_e$$

We now view systems only in terms of inputs and outputs.

• We also have control inputs and outputs

$$\begin{bmatrix} y_e \\ y_c \end{bmatrix} = G \begin{bmatrix} u_e \\ u_c \end{bmatrix}$$

More on this later

Normed Spaces

Recall about normed Spaces

Definition 1.

A **Norm** on a vector space, V, is a function $\|\cdot\|:V\to\mathbb{R}^+$ such that

- 1. ||x|| = 0 if and only if x = 0
- 2. $\|\alpha x\| = |\alpha| \|x\|$ for all $x \in V$ and $\alpha \in \mathbb{R}$
- 3. $||u+v|| \le ||u|| + ||v||$ for all $u, v \in V$

Norms only satisfy Pythagorean Theorem

Definition 2.

A vector space with an associated norm is called a **Normed Space**.

M. Peet Lecture 10: 3 / 16

Normed Spaces

Recall examples of normed spaces On \mathbb{R}^n :

- $||x||_1 = \sum_{i=1}^n |x_i|$ (Taxicab norm)
- $||x||_2 = \sqrt{\sum_{i=1}^n x_i^2}$ (Euclidean norm)
- $||x||_p = \sqrt[p]{\sum_{i=1}^n x_i^p}$
- $||x||_{\infty} = \max |x_i|$

On infinite sequences $q: \mathbb{N} \to \mathbb{R}$

- $||f||_{\ell_1} = \sum_{i=1}^{\infty} |g_i|$
- $||f||_{\ell_2} = \sqrt{\sum_{i=1}^{\infty} g_i^2}$
- $||f||_{\ell_p} = \sqrt[p]{\sum_{i=1}^{\infty} g_i^p}$
- $||f||_{\ell_{\infty}} = \max_{i=1,\dots,\infty} |g_i|$

On functions $f:[0,1]\to\mathbb{R}$

•
$$||f||_{L_1} = \int_0^1 |f(s)| ds$$

•
$$||f||_{L_2} = \sqrt{\int_0^1 f(s)^2 ds}$$

•
$$||f||_{L_p} = \sqrt[p]{\int_0^1 f(s)^p ds}$$

•
$$||f||_{L_{\infty}} = \sup_{s \in [0,1]} |f(s)|$$

M. Peet Lecture 10: 4 / 16

Normed Spaces

Convergence of a Sequences

Norms define what is meant by convergence of a sequence.

Definition 3.

We say that

$$\lim_{i \to \infty} x_i = y$$

if for every $\epsilon>0$, there exists a N such that

$$||y - x_i|| \le \epsilon$$
 for all $i > N$.

Or the limit of a function $f: X \to V$.

Definition 4.

For normed spaces X and Y, we say that

$$\lim_{x\to y} f(x) = z$$

if for every $\epsilon > 0$, there exists a β such that

$$||x - y||_X \le \beta$$

implies

$$||f(x) - z||_Y \le \epsilon.$$

Complete Spaces

Cauchy Sequences

For function $f: X \to V$, suppose that

$$\lim_{x\to y} f(x) = z$$

Question: does this imply that $z \in V$?

Question: Does every function have a limit?

Answer: It depends on the norm of V

Definition 5.

A sequence x_i is a **Cauchy Sequence** if for any $\epsilon>0$, there exists an N such that

$$||x_i - x_j|| \le \epsilon$$

for all i, j > N.

This is a definition of a convergent sequence without the inconvenience of requiring the existence of a limit

- Otherwise, we need to find the limit to prove convergence.
- Now we just show the elements get closer together.

M. Peet Lecture 10: 6 / 16

Complete Spaces

Cauchy Sequences

Question: Are all convergent sequences Cauchy?

Lemma 6.

Yes! Any convergent sequence is Cauchy.

Question: Are all Cauchy sequences convergent?

Whether all Cauchy sequences converge depends on the norm.

Definition 7.

A normed space, V, is **Complete** if every Cauchy sequence converges to a point in V.

• A complete normed space is called a **Banach Space**

In a Banach Space, if a sequence converges, it converges to a point in the space

M. Peet Lecture 10: 7 / 16

Banach Space

Example

For any p, the space of functions $L_p(-\infty,\infty)$ is a Banach Space.

On infinite sequences $g: \mathbb{N} \to \mathbb{R}$

•
$$||f||_{\ell_1} = \sum_{i=1}^{\infty} |g_i|$$

•
$$||f||_{\ell_2} = \sqrt{\sum_{i=1}^{\infty} g_i^2}$$

•
$$||f||_{\ell_p} = \sqrt[p]{\sum_{i=1}^{\infty} g_i^p}$$

•
$$||f||_{\ell_{\infty}} = \max_{i=1,\dots,\infty} |g_i|$$

On functions $f:[-\infty,\infty]\to\mathbb{R}$

•
$$||f||_{L_1} = \int_{-\infty}^{\infty} |f(s)| ds$$

$$\bullet \|f\|_{L_2} = \sqrt{\int_{-\infty}^{\infty} f(s)^2 ds}$$

•
$$||f||_{L_p} = \sqrt[p]{\int_{-\infty}^{\infty} f(s)^p ds}$$

•
$$||f||_{L_{\infty}} = \sup_{s \in [-\infty,\infty]} |f(s)|$$

8 / 16

Also the $L_p[0,1]$ spaces are complete

Lemma 8.

A subspace of a Banach Space is complete if and only if it is closed.

Example: The subspace

$$L_p[0,\infty) := \{ f \in L_p(-\infty,\infty) : f(t) = 0 \quad \text{ for } t < 0 \}$$

Question: is $L_p(0,\infty)$ closed?

M. Peet Lecture 10:

Banach Space

Example

Let C[0,1] be the set of **continuous** functions with norm

$$||f|| = ||f||_{L_1} = \int_0^1 |f(s)| ds$$

To show that this is **NOT** a Banach space, define the sequence of functions $x_i \in C[0,1]$

$$x_i(t) = \begin{cases} 0 & t \le \frac{1}{2} - \frac{1}{n} \\ 1 - \frac{n}{2} + nt & t \in \left[\frac{1}{2} - \frac{1}{n}, \frac{1}{2}\right] \\ 1 & t \ge \frac{1}{2} \end{cases}$$

The sequence is Cauchy since

$$||x_i - x_j|| = \frac{1}{2} |1/i - 1/j| \to 0$$

However, there is obviously no continuous limit.

M. Peet Lecture 10: 9 / 16

Inner Product Spaces

Now we get to a really important concept

Definition 9.

An Inner Product on a vector space V is a function $\langle\cdot,\cdot\rangle:V\times V\to\mathbb{R}$, such that

- 1. $\langle x, x \rangle \geq 0$ for all $x \in V$.
- 2. $\langle x, x \rangle = 0$ if and only if x = 0.
- 3. $\langle x, \alpha y + \beta z \rangle = \alpha \langle x, y \rangle + \beta \langle x, z \rangle$. [Linearity]
- 4. $\langle x, y \rangle = \langle y, x \rangle$.

Definition 10.

A vector space with an inner product is called a Inner Product Space

Any inner product space is a normed space using

$$||x||_V^2 = \langle x, x \rangle_V$$

M. Peet Lecture 10: 10 / 16

Inner Product Spaces

An inner product space has the concept of an angle between vectors.

Theorem 11 (Cauchy Schwartz).

If
$$||x||^2 = \langle x, x \rangle$$
, then

$$|\langle x, y \rangle| \le ||x|| ||y||$$

IMPORTANT:

Only norms derived from inner products satisfy Cauchy-Schwartz.

M. Peet 11 / 16 Lecture 10:

Pythagorean Theorem

Inner Product Spaces allow for "right angles".

Definition 12.

x and y are orthogonal in inner product space V, denoted $x \perp y$, if

$$\langle x, y \rangle_V = 0$$

Pythagorean Theorem

Theorem 13.

For x and y in inner product space V,

$$||x + y||^2 = ||x||^2 + ||y||^2$$

if and only if $x \perp y$.

Inner Product Spaces

Some inner product spaces:

Euclidean Space On \mathbb{R}^n

$$\langle x, y \rangle_2 = x^T y = \sum_{i=1}^n x_i y_i$$

The Frobenius Norm on Matrices $\mathbb{R}^{n \times m}$

$$\langle A, B \rangle = \operatorname{trace}(A^T B) = \sum_{i=1}^{n} \sum_{j=1}^{m} A_{ij} B_{ij}$$

which induces the Frobenius norm

$$||X||^2 = \langle X, X \rangle = \sum_{i=1}^n \sum_{i=1}^m X_{ij}^2$$

M. Peet Lecture 10: 13 / 16

Hilbert Spaces

Definition 14.

An inner product space which is complete in the norm $\|x\|^2 = \langle x, x \rangle$ is called a **Hilbert Space**.

Hilbert spaces are actually quite unusual.

Example: Define the following inner product on $L_2[0,\infty)$:

$$\langle x, y \rangle_{L_2} := \int_0^\infty x^T(s) y(s) ds$$

Then

$$||x||_{L_2}^2 = \int_0^\infty ||x(s)||^2 ds$$

And since L_2 is complete in this norm, $L_2[0,\infty)$ is a Hilbert Space.

M. Peet Lecture 10: 14 / 16

Hilbert Spaces

Example

ℓ_p -Spaces

- $||f||_{\ell_p} = \sqrt[p]{\sum_{i=1}^{\infty} g_i^p}$
- $||f||_{\ell_{\infty}} = \max_{i=1,\dots,\infty} |g_i|$

L_p -Spaces

- $||f||_{L_p} = \sqrt[p]{\int_{-\infty}^{\infty} f(s)^p ds}$
- $||f||_{L_{\infty}} = \sup_{s \in [-\infty,\infty]} |f(s)|$

Neither ℓ_p nor L_p are Hilbert spaces for $p \neq 2$.

Hilbert Spaces

Example

Definition 15.

 $C[0,\infty)$ is the space of continuous functions with norm

$$||f||_{\infty} = \sup_{t} ||f(t)||$$

- $C[0,\infty)$ is a Banach Space.
- $C[0,\infty)$ is not a Hilbert space.