ر. - - سری

التمرين الأول: (تمرين شامل للتحكم في أسئلة القراءة البيانية)

 $f o c_f$ دالة معرفة على $\{2\}$ $R - \{2\}$ تمثيلها البياني في م م م (c_f) المستقيم (Δ) مستقيم مقارب (c_f) بجوار (Δ) و (Δ) مماس لـ (C_f) عند النقطة ذات الفاصلة (Δ) بجوار (Δ)

- بقراءة بيانية عين مايلى:

2- معادلات المستقيمات المقاربة

$$\lim_{x\to 0} \frac{f(x)+4}{x}$$
; $f'(-1)$; $f'(-2)$; $f\left(-\frac{7}{2}\right)$; $f(1)$; $f(-2)$; $f(0)$ -3

$$\lim_{h\to 0} \frac{f(4+h)-f(4)}{h} \; \; ; \; \lim_{x\to -1} \frac{f(x)}{x^2-1} \; ; \; \lim_{x\to -5} \frac{f(x)+3}{x+5} \; \; ; \; \lim_{x\to -5} \frac{f(x)-f(-5)}{x+5}$$

$$\lim_{x\to+\infty}[f(x)+x]$$
 : عين (T) و (T) و (Δ)

علل
$$x=-5$$
 على الدالة f قابلة للإشتقاق عند القيمة f

مع التعليل
$$x=4$$
 مع التعليل على يسار القيمة $x=4$ مع التعليل على يمين القيمة $x=4$ مع التعليل مع التعليل مع التعليل

$$f'(x) < 0$$
 ; $f'(x) > 0$; $f(x) < 0$, $f(x) \ge 0$:-8 حل المتراجحات $f'(x) < 0$; $f'(x) < 0$) .

$$f$$
 شكل جدول تغيرات الدالة

(وسيط حقيقي
$$m$$
) $2f(x)-2m+10=0$ وسيط حقيقي m

التمرين الثاني: (تمرين شامل في دراسة الدوال)

الجزء الأول:

 $g(x) = x^3 - 3x - 4$: بعتبر الدالة g المعرفة على R با

1/ أدرس تغيرات الدالة g ، ثم أنجز جدول تغيراتها

g(x)=0 بين أن المعادلة g(x)=0 تقبل حلا وحيدا α حيث : $\alpha<2.2$ ، ثم استنتج إشارة α

الجزء الثاني:

f دالة معرفة على (c_f) المنحنى الممثل للدالة $f(x)=rac{x^3+2x^2}{x^2-1}$ بي R $-\{-1;1\}$ المنحنى الممثل للدالة f في المستوي المنسوب إلى معلم متعامد و متجانس $(o.\vec{i}.\vec{j})$

1/ أحسب نهايات الدالة لل عند حدود مجموعة تعريفها

$$f'(x) = \frac{x \cdot g(x)}{(x^2-1)^2}$$
: R $-\{-1; 1\}$ is x at $x = 1/2$

ب- شكل جدول تغيرات الدالة f

 $x \in \mathbb{R} - \{-1, 1\}$ من أجل $b \; ; \; a$ عين العددين الحقيقيين $b \; ; \; a$

$$f(x) = x + 2 + \frac{ax+b}{x^2-1}$$

 (c_f) مستقيم مقارب مائل للمنحنى y=x+2 مستقيم مقارب مائل للمنحنى

 (Δ) بالنسبة إلى المنحنى (c_r) بالنسبة إلى

$$f(\alpha)$$
 بين أن : $f(\alpha) = \frac{3}{2}\alpha + 2$ ثم جد حصرا للعدد /4

? ماذا تستنتج $\lim_{h\to 0} \frac{f(\alpha+h)-f(\alpha)}{h}$: ماذا ماذا ماذا

- فسر هندسيا النتيجة

 (c_f) أرسم المنحنى (c_f) و المستقيمات المقاربة

f(x)=|m| : ناقش بیانیا عدد و اشارهٔ حلول المعادلة f(x)=|m|

$$h(x) = \frac{x^3 + 2x^2}{|x^2 - 1|}$$
 : $+ R - \{-1; 1\}$ بعتبر الدالة h المعرفة على R

 (c_f) اعتمادا على المنحنى - اشرح كيفية رسم المنحنى (c_h)

:
$$k(x)$$
 عبارة ($k(x)=g(-3x)$ ، دون حساب عبارة ($k(x)$ دالة معرفة على R بارة ($k(x)$

k عين نهايات الدالة

k ثم شكل جدول تغيرات الدالة K'(x)