Learning Goal: Introduction to Probability

3 Basic Types of Probability:

1. Subjective Probability

- an estimate of likelihood based on intuition and experience
- example: "I think...."

2. Empirical (Experimental) Probability

- an estimate of likelihood based on an experiment by the number of trials
- example: "3 out of 5 times I tried rolling a die is 2."

3. Theoretical Probability

- an estimate of likelihood based on analysis
- example: "There's 50% chance of getting a head when flipping a coin."

Out cames : possible results

Event: an occurrence

Trial : an examination/experiment

Sample Space : all possible outcomes of an event

Notation:

$$P(A) = \frac{n(A)}{n(S)}, 0 \le P(A) \le 1$$
Frumber of element of sample space

0 = impossible; 1 = occurs 100% of the time

Example#1: Event: Flipping a coin

$$P(head) = \frac{1}{2}$$

$$P(tail) = \frac{1}{2}$$

Example#2: Event: Flipping a coin if **both** sides are head.

$$P(head) = \frac{1}{1} = 1$$

$$P(tail) = \frac{0}{1} = 0$$

Example#3: Event: Rolling a die:

$P(1) = \frac{1}{6}$	$P(4) = \frac{1}{6}$
$P(2) = \frac{1}{6}$	$P(5) = \frac{1}{6}$
$P(3) = \frac{1}{6}$	$P(6) = \frac{1}{6}$

Example#4:

Event: Rolling **a pair** of standard dice to find **the sum**:

P(1) = 0 36	$P(\text{evens}) = \frac{18}{36} = \frac{1}{2}$
P(2) = 1 36	P(odds) = 1
$P(3) = \frac{2}{36} - \frac{1}{8}$	$P(\text{doubles}) = \frac{6}{36} = \frac{1}{6}$
$P(4) = \frac{3}{36} = \frac{1}{12}$	$P(prime) = \frac{15}{36} = \frac{5}{12}$
$P(7) = \frac{6}{36} = \frac{1}{6}$	$P(composite) = \frac{7}{12}$
P(not 7) = 5	

 \bullet Example #5: Given the sample space $\{1,2,3,4,5,6,\dots,50\}$

	P(evens) =	P(odds) =
{2. 23 29	P(prime) = 15 3.5.7, 11,13,17,19 3.5.7, 11,13,17,19 50 = 10	P(composite) = $\frac{34}{50} = \frac{17}{25}$
	P(perfect squares) = 750	P(perfect cubes) = 3 50
	$P(\text{not perfect squares}) = \frac{43}{50}$	P(not perfect cubes) = $\frac{47}{50}$

Tree Diagram:

Determine the probability of tossing at least 2 tails with 3 coins

