Midterm Exam (1h15)

Exercise 1 Determine the distribution of the random variable T = n - S, where S is a real random variable that follows the $\mathcal{B}(n,p)$ distribution.

Exercise 2 Let $X \leadsto Geo(p)$, $0 . Find <math>\mathbb{E}\left[\frac{1}{2^X}\right]$.

Exercise 3 At the entrance to a restaurant, n people give their hats to the cloakroom. After the meal, they find their hats completely mixed up, and each person takes a hat at random. Let X_k $(k = 1, \dots, n)$ be the random variable that takes the value 1 if the kth person picks up his hat, and 0 otherwise. Let $S_n = X_1 + \dots + X_n$ be the number of people who retrieved their hats.

- 1. Construct a probabilistic space describing this experiment.
- 2. Calculate $\mathbb{E}[S_n]$ and $Var(S_n)$.

Exercise 4 We consider a function f defined by

$$f(x) = \frac{1}{2\theta} \log \left(\frac{\theta}{|x|}\right) \mathbb{I}_{[-\theta,\theta]}(x), \text{ where } \theta > 0.$$

- 1. Show that the function f is a density of probability.
- 2. Let X be a random variable admitting the density f.
 - **a.** Determine F_X the cumulative distribution function of X.
 - **b.** Calcuatte $\mathbb{E}\left[X^{k}\right]$ and deduce $Var\left(X\right)$.