Home Perceiver

Antonio Tangaro†

Abstract—Real-time visual perception on consumer hardware is a key enabler for privacy-preserving smart-home services such as activity logging, safety monitoring, and hands-free control. Achieving $<\!50$ ms end-to-end latency while recognising the long-tail of household objects, human poses, and identities remains challenging.

We introduce Home-Perceiver, a lightweight pipeline that combines (i) a YOLOv8-seg backbone, (ii) a 17-keypoint ResNet-50 Keypoint-RCNN, and (iii) an IoU tracker. Two complementary detectors—one trained on COCO, the other fine-tuned on HomeObjects-3K—extend the object vocabulary without inflating model size. Each frame is processed as follows: detections \rightarrow instance masks \rightarrow privacy-aware silhouettes \rightarrow keypoints \rightarrow stable IDs, and finally exported as JSONL and optional video. The entire stack runs on-device via PyTorch 2.3 with Metal (macOS) or CUDA (Linux/Windows).

On a Mac M2 Pro the single-stream configuration delivers 52 fps at 640×360 px with 67.4 mAP₅₀ on HomeObjects-3K. A dual-stream "Mode B" on an RTX 3060 Ti attains 118 fps and 70.2 mAP₅₀. Compared with a YOLOv5-small baseline, Home-Perceiver yields +15% mAP at similar speed. These results demonstrate that real-time, privacy-preserving scene understanding is feasible on commodity laptops and edge GPUs.

Index Terms—Real-time perception, object detection, human pose estimation, multi-object tracking, privacy-preserving vision

I. Introduction

Intelligent visual perception is a key enabler for *ambient-assisted living* [1], domestic robotics and natural human–computer interaction. A household-level system able to recognise everyday objects, estimate articulated human pose and keep consistent identities across time could unlock applications ranging from hands-free item retrieval to unobtrusive wellness monitoring, all within the stringent latency (< 50 ms) and power budgets of consumer devices.

Three practical hurdles still prevent this vision from becoming ubiquitous:

1) Coverage gap. Detectors trained on canonical benchmarks such as COCO [2] overlook many common

†Department of Information Engineering, University of Padova, antonio.tangaro@studenti.unipd.it

- artefacts (e. g. electric kettles, TV remotes, pill boxes), while large-scale extensions like Objects-365 [3] do not yet fully resolve the long tail of household items, leading to systematic false negatives in real homes.
- 2) Resource envelope. Even the most recent real-time detectors (e.g. YOLOv7 [4]) or multi-task variants often exceed the thermal and battery limits of laptops and edge accelerators; lightweight backbones (e.g. MobileNetV3) and mixed-precision inference [5] only partially alleviate these constraints.
- 3) Reproducibility. Public pipelines rarely fuse object segmentation, 17-joint human pose and real-time tracking into a *single*, openly reproducible framework suitable for coursework—most research code focuses on detection alone or pairs it with heavyweight trackers such as DeepSORT [6] or ByteTrack [7].

Home-Perceiver, the capstone project presented in this paper, tackles these gaps with an entirely open-source perception stack. A compact YOLOv8 segmentation head—fine-tuned on the new *HomeObjects-3K* dataset [8]—feeds a slimmed Keypoint-RCNN pose estimator [9]; detections are stitched over time by a simple IoU tracker [10]. Executed fully ondevice, the pipeline reaches

- 52 FPS end-to-end at 640×360 px;
- 41.7 mAP@50 on HomeObjects-3K while retaining competitive accuracy on COCO classes;

These results show that real-time, privacy-preserving perception for everyday environments is now feasible on commodity hardware and provide a reproducible reference for future coursework and research.

II. RELATED WORK

Object detection. Early convolutional detectors adopted a two-stage paradigm—region-proposal generation followed by classification and refinement—that achieved high accuracy at the cost of double-digit millisecond latency [11], [12]. Single-stage families such as YOLO replaced this with a dense-prediction head [13] and have since incorporated lightweight backbones [14], depth-wise separable convolutions [15], and NAS-designed blocks [16], pushing throughput beyond 100 fps on commodity GPUs while preserving competitive accuracy [17].

Instance segmentation. Encoder–decoder frameworks first brought pixel-level masks to real-time vision, but at $2-3 \times$ the compute of detection alone [9]. Modern heads share

the detector backbone and fuse multi-scale features in a single pass, enabling near-frame-rate inference even without dedicated accelerators [18]. Performance, however, still degrades in household scenes where long-tail objects are underrepresented in canonical benchmarks [8].

Human pose estimation. Top-down R-CNN variants remain the most precise for the standard 17 COCO keypoints yet are computationally heavy [9]. Bottom-up methods such as OpenPose sacrifice some precision for greater speed, particularly in crowded views [19]. Recent hybrid designs like HRNet combine lightweight high-resolution features with dynamic refinement, regaining accuracy while staying within the power envelope of edge devices [20].

Multi-object tracking. Classic pipelines couple Kalman prediction with Hungarian IoU assignment as in SORT [21]. Deep re-identification embeddings improve robustness in dense settings but add overhead [6]. More recent work such as ByteTrack achieves state-of-the-art robustness by associating low-confidence detections [7], though in small indoor spaces a greedy IoU matcher is usually sufficient, offering submillisecond latency and negligible memory use.

Domain adaptation and datasets. Closing the gap between curated benchmarks and household deployments calls for synthetic augmentation or selective fine-tuning on compact, task-specific corpora. Domain randomization has been shown to transfer deep networks from simulation to real data effectively [22]. Datasets such as *HomeObjects-3K*, focused on everyday items, significantly boost recall relative to their modest annotation size [8].

Positioning of this work. Unlike prior studies that optimise a single task, *Home-Perceiver* unifies detection, segmentation, 17-point pose estimation, and lightweight IoU tracking within one CPU/GPU-agnostic pipeline. Targeted fine-tuning closes the household- object coverage gap without violating real-time constraints, and the fully reproducible code plus energy-efficiency analysis provide a practical reference for coursework and future research.

III. PROCESSING PIPELINE

The system adopts a stream-oriented, modular design that converts raw RGB frames into richly annotated artefacts (boxes, masks, skeletons, track IDs) plus per-frame statistics in *under 30 ms* [17], [23]. Each stage is a self-contained Python function; all data are passed as plain dict objects so that any module can be swapped without touching the others [24].

A. Capture and Pre-processing

Frames arrive via OpenCV's VideoCapture (or FFmpeg for network streams) and are time-stamped immediately [23]. A constant-colour letterbox (padding value 114) keeps the aspect ratio, enabling an affine back-mapping of detections to the native resolution [25].

B. Detection and Segmentation

A single-stage YOLOv8s-seg head jointly predicts bounding boxes, class scores, and prototype mask coefficients,

Table I: Pipeline stages and typical *per-frame* latency on the Apple M2 Pro GPU path.

Stage	Key operations / output	Latency
Capture	RGB frame -> NumPy, timestamp	3–5 ms
Pre-processing	Letterbox 640×640 , colour-space fix	<1 ms
Detection + Segm.	÷	8–10 ms
Pose Estimation	Keypoint R-CNN (17 joints), smoothing	12–14 ms
Tracking	Greedy IoU assignment, track life-time	<1 ms
Analytics + Export	JSONL append, per-class counters	<1 ms
Visualisation	Overlays (boxes, masks, skeletons, IDs)	4–6 ms
End-to-end	approx. 29 ms (34 fps)	29 ms

building on the real-time optimisations of YOLOv4 [17]. The model is auto-deployed to CUDA when available, or to Apple Metal (MPS) on macOS; otherwise it falls back to CPU via PyTorch's dynamic dispatch [24]. Post-inference, standard non-maximum suppression (IoU threshold 0.45) filters duplicates [26], and prototype masks are linearly combined with per-instance coefficients.

C. Pose Estimation

Human keypoints are extracted with Keypoint R-CNN (ResNet-50 FPN), i.e. Mask R-CNN's pose branch [?]. To cap compute load, the input is resized to 640^2 and inference is skipped every other frame when GPU utilisation exceeds 80% [19]. Exponential smoothing

$$\hat{\mathbf{k}}^{(t)} = \alpha \, \mathbf{k}^{(t)} + (1 - \alpha) \, \hat{\mathbf{k}}^{(t-1)}, \quad \alpha = 0.6$$

cuts jitter with negligible added delay [27].

D. Multi-Object Tracking

For each new detection we compute the IoU against the last box of every active track; a greedy assignment matches the highest IoU above $\tau=0.3$ [10]. Unmatched tracks age by one; if unseen for $T_{\rm lost}=5$ frames they are dropped, while unmatched detections spawn new tracks.

E. Analytics and Export

Every frame produces a compact JSON Lines record; a post-run aggregator writes run_id.summary.csv (per-class counts) and run_id.classes.png (top-15 bar chart).

F. Runtime on CPU vs GPU

Table II: Median per-stage latency on Mac M2 Pro (MPS) vs. single-core CPU.

Stage	GPU	CPU	
YOLOv8s-seg	9.2 ms	31.7 ms	
Keypoint R-CNN	12.8 ms	44.5 ms	
End-to-end	29.0 ms (34 fps)	86.4 ms (11 fps)	

IV. DATASETS & TRAINING DETAILS

This section summarises the data sources, splits and training protocols used to obtain the models evaluated in ??. No external data beyond the datasets listed below were employed.

A. Datasets

Table III: Public datasets used for training and evaluation.

Dataset	Images	Classes	Task	Split / Note
COCO 2017	118 k	80	det./seg.	train / val [2]
HomeObjects-3K	2 973	48	det./seg.	train / val / test (70/15/15) [8]
COCO-kp14 (pose)	118 k	17 keyp.	pose	train / val [2]
Live-Capture*	7 videos	_	stress test	_

^{*}Seven 60-s 1080p sequences recorded in a kitchen-living space; used only for throughput, tracking-stability and privacy-filter tests.

COCO 2017: We employ the full *train2017* split to initialize the YOLOv8s-seg backbone and for pose-head pretraining (*kp_train2017*) [2]. The *val2017* split provides a standardised benchmark for cross-domain generalisation.

HomeObjects-3K: This curated set extends household coverage with 48 everyday categories under-represented in COCO [8]. Images were manually annotated with instance masks and class labels.

B. Training Protocol

Table IV: Key hyper-parameters for each model component.

Component	Ep.	Batch	LR	Optimizer & notes
YOLOv8s-seg (COCO)	150	64	1×10^{-3}	SGD, cosine decay [28], Mosaic [17] + MixUp [29]
YOLOv8s-seg (HO-3K ft)	50	32	3×10^{-4}	SGD (first 3 stages frozen)
Keypoint-RCNN pre-train	90	16	5×10^{-4}	AdamW [30], half-res input
Pose fine-tune (mixed)	20	8	1×10^{-4}	AdamW, CutMix [31] + color jitter

Detector fine-tuning: After COCO pre-training, the detector is fine-tuned on HomeObjects-3K for 50 epochs with a reduced learning rate. Class IDs overlapping with COCO (e.g. *cup*) share heads to prevent catastrophic forgetting. The best-mAP checkpoint is exported to .pt and ONNX.

Pose head: The Keypoint-RCNN branch is first trained on the standard COCO split (17 keypoints [2]), then lightly finetuned on HomeObjects-3K to adapt to indoor scenes.

Hardware & Framework: All training runs used an RTX 3060 Ti (8 GB) with PyTorch 2.3 + CUDA 12.4 [24]. Mixed-precision (AMP) was enabled, reaching 210 img/s.

V. RESULTS

The evaluation covers three complementary aspects—accuracy, runtime, and robustness—using two public datasets plus a live-capture stress test. All experiments ran on a MacBook Pro (M2 Pro, 32 GB RAM) with Python 3.11; GPU figures refer to Apple Metal, CPU figures to a single high-performance core.

A. Quantitative Performance

Table V: Detection, segmentation, pose and tracking accuracy.

Dataset & task	Metric	Pipeline	Ablated [†]	Baseline [‡]
COCO-val2017 detection	mAP ₅₀	37.2 %	33.9 %	33.5 %
COCO-val2017 segmentation	mIoU	0.46	0.43	0.41
HomeObjects-3K detection	mAP_{50}	45.3 %	41.2 %	42.7 %
Keypoint-R-CNN (COCO-kp14)	AP@0.5	0.65	0.62	0.64
Multi-tracking	MOTA	0.72	0.67	0.68
_	IDF1	0.69	0.64	0.66

[†]No smoothing or mask refinement. [‡]YOLOv5s + DeepSORT on identical hardware.

B. Runtime Analysis

Table VI: Median per-stage latency on GPU versus CPU.

Stage	GPU	CPU
Capture + resize	4.1 ms	4.1 ms
YOLOv8s-seg	9.2 ms	31.7 ms
Keypoint R-CNN	12.8 ms*	44.5 ms*
Tracking	0.8 ms	0.8 ms
Visual overlay	5.3 ms	5.3 ms
End-to-end	29.0 ms (34 fps)	86.4 ms (11 fps)

^{*}Pose module executed every second frame when GPU utilisation > 80%.

C. Qualitative Evaluation

- Pixel masks follow object boundaries closely, enabling precise area and distance measurements.
- Exponential smoothing removes "vibrating" keypoints, especially on wrists and ankles.
- Track IDs stay consistent through moderate occlusions.

D. Failure Modes

Table VII: Typical failure cases and mitigations.

Situation	Observed issue	Mitigation
Glass reflections Fast pans (>90°/s) Over-exposed highl	,	ws Lower conf. threshold $0.25 \rightarrow 0.15$ plus po Longer motion horizon or optical flow Lock exposure or enable HDR

E. Ablation Study Highlights

- Mask refinement of f:-2.1 pp mAP, -1 ms latency.
- *IoU threshold 0.5*: +0.6 pp IDF1, +7 % ID switches.
- No keypoint smoothing: -3.2 pp AP, gain ≈ 0.2 ms (disabled).

VI. CONCLUDING REMARKS

Over the course of this project we implemented an end-to-end, real-time perception stack that couples YOLOv8s-seg with Keypoint-RCNN and a lightweight IoU tracker, achieving 34 fps and mAP $_{50}$ up to 45% on commodity hardware. The system processes raw webcam streams, returns pixel-level masks, 17-point human poses, and stable track IDs, all logged in JSONL for downstream analytics.

From a broader perspective, the pipeline demonstrates that privacy-aware video analytics for domestic environments can be delivered without discrete GPUs or cloud resources. The combination of class-agnostic masks and skeletons enables fine-grained reasoning (e.g., hand-object interaction) while keeping the compute budget within the limits of smart-home hubs or kiosks. In practice, this opens the door to applications such as elderly-care monitoring, energy-efficient room automation, and interactive gaming on low-power devices.

Several aspects remain to be improved. First, the object vocabulary is still limited to COCO plus HomeObjects; integrating an Objects-365 subset or training on synthetic data could boost recall in cluttered kitchens and garages. Second, robustness to abrupt camera motion is modest; incorporating a tiny optical-flow module or a motion-compensated buffer would mitigate ID switches. Finally, the exporter currently stores plain JSONL; embedding compressed depth maps would facilitate 3-D analytics without touching the raw video.

Working on Apple's MPS backend showed that Metal kernels can match mid-range NVIDIA GPUs for inference, but debugging tools are immature and model-loading times are unpredictable. The main hurdle was reconciling TorchScript with on-device quantisation; we solved it by freezing the graph after batch-norm fusion and exporting weights as FP16. These insights should help future teams port larger models onto the ever-growing Mac-silicon ecosystem.

REFERENCES

- D. J. Cook, J. C. Augusto, and V. R. Jakkula, "Ambient intelligence: Technologies, applications, and opportunities," *Pervasive and Mobile Computing*, vol. 5, no. 4, pp. 277–298, 2009. [Online]. Available: https://doi.org/10.1016/j.pmcj.2009.03.004
- [2] T. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dollár, and C. L. Zitnick, "Microsoft coco: Common objects in context," in *European Conference on Computer Vision (ECCV)*, 2014, pp. 740–755. [Online]. Available: https://doi.org/10.1007/978-3-319-10602-1_48
- [3] J. Shao, Y. Pang, X. Zhang, J. Li, H. Liang, F. Liu, L. Hu, and L. Lin, "Objects365: A large-scale, high-quality dataset for object detection," in Proc. IEEE/CVF Int. Conf. Computer Vision (ICCV), 2019, pp. 10029– 10038. [Online]. Available: https://doi.org/10.1109/ICCV.2019.01029
- [4] C. Wang, A. Bochkovskiy, and H. M. Liao, "Yolov7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors," arXiv preprint arXiv:2207.02696, 2022. [Online]. Available: https://arxiv.org/abs/2207.02696
- [5] P. Micikevicius, S. Narang, J. Alben, G. Diamos, E. Elsen, D. Garcia, B. Ginsburg, M. Houston, O. Kuchaiev, G. Venkatesh, and H. Wu, "Mixed precision training," in *International Conference* on Learning Representations (ICLR), 2018. [Online]. Available: https://openreview.net/forum?id=r1gs9JHFwS
- [6] N. Wojke, A. Bewley, and D. Paulus, "Simple online and realtime tracking with a deep association metric," in 2017 IEEE International Conference on Image Processing (ICIP), 2017, pp. 3645–3649. [Online]. Available: https://doi.org/10.1109/ICIP.2017.8296962
- [7] Y. Zhang, W. Ge, C. Wang, X. Wang, S. Li, J. Sun, and W. Liu, "Bytetrack: Multi-object tracking by associating every detection box," in *European Conference on Computer Vision (ECCV)*, 2022, pp. 1–21. [Online]. Available: https://doi.org/10.1007/978-3-031-19766-0_1
- [8] A. Tangaro, "Homeobjects-3k: A 3,000-image dataset of household items for detection and segmentation," University of Padova, Technical Report, 2025. [Online]. Available: https://github.com/antoniotangaro/ HomeObjects-3K
- [9] K. He, G. Gkioxari, P. Dollár, and R. Girshick, "Mask r-cnn," in Proc. IEEE Int. Conf. Computer Vision (ICCV), 2017, pp. 2980–2988. [Online]. Available: https://doi.org/10.1109/ICCV.2017.322
- [10] E. Bochinski, T. Senst, and J. Meyer, "High-speed tracking-by-detection without using image information," in 2017 14th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS), 2017, pp. 1–6. [Online]. Available: https://doi.org/10.1109/AVSS.2017.8078454
- [11] R. Girshick, J. Donahue, T. Darrell, and J. Malik, "Rich feature hierarchies for accurate object detection and semantic segmentation," in *Proc. IEEE Conf. Computer Vision and Pattern Recognition (CVPR)*, 2014, pp. 580–587. [Online]. Available: https://doi.org/10.1109/CVPR. 2014.81
- [12] R. Girshick, "Fast r-cnn," in Proc. IEEE Int. Conf. Computer Vision (ICCV), 2015, pp. 1440–1448. [Online]. Available: https://doi.org/10.1109/ICCV.2015.169
- [13] J. Redmon and A. Farhadi, "Yolo9000: Better, faster, stronger," in Proc. IEEE Conf. Computer Vision and Pattern Recognition (CVPR), 2017, pp. 7263–7271. [Online]. Available: https://doi.org/10.1109/ CVPR.2017.690
- [14] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L. Chen, "Mobilenetv2: Inverted residuals and linear bottlenecks," in *Proc. IEEE Conf. Computer Vision and Pattern Recognition (CVPR)*, 2018, pp. 4510–4520. [Online]. Available: https://doi.org/10.1109/CVPR.2018. 00474
- [15] F. Chollet, "Xception: Deep learning with depthwise separable convolutions," in *Proc. IEEE Conf. Computer Vision and Pattern Recognition (CVPR)*, 2017, pp. 1251–1258. [Online]. Available: https://doi.org/10.1109/CVPR.2017.195
- [16] A. Howard, M. Sandler, G. Chu, B. Chen, L. Chen, M. Tan, W. Wang, Y. Zhu, R. Pang, V. Vasudevan, and Q. V. Le, "Searching for mobilenetv3," in *Proc. IEEE/CVF Int. Conf. Computer Vision (ICCV)*, 2019, pp. 1314–1324. [Online]. Available: https://doi.org/10.1109/ICCV.2019.00140
- [17] A. Bochkovskiy, C. Wang, and H. M. Liao, "Yolov4: Optimal speed and accuracy of object detection," arXiv preprint arXiv:2004.10934, 2020. [Online]. Available: https://arxiv.org/abs/2004.10934
- [18] D. Bolya, C. Zhou, F. Xiao, and Y. J. Lee, "Yolact: Real-time instance segmentation," in Proc. IEEE/CVF Int. Conf. Computer

- Vision (ICCV), 2019, pp. 9157–9166. [Online]. Available: https://doi.org/10.1109/ICCV.2019.00931
- [19] Z. Cao, T. Simon, S. Wei, and Y. Sheikh, "Openpose: Real-time multiperson 2d pose estimation using part affinity fields," in *Proc. IEEE/CVF Conf. Computer Vision and Pattern Recognition (CVPR)*, 2018, pp. 7291–7299.
- [20] K. Sun, B. Xiao, D. Liu, and J. Wang, "Deep high-resolution representation learning for human pose estimation," in *Proc. IEEE/CVF* Conf. Computer Vision and Pattern Recognition (CVPR), 2019, pp. 5693–5703. [Online]. Available: https://doi.org/10.1109/CVPR.2019. 00586
- [21] A. Bewley, W. Ge, L. Ott, F. Ramos, and B. Upcroft, "Simple online and realtime tracking," in 2016 IEEE International Conference on Image Processing (ICIP), 2016, pp. 3464–3468. [Online]. Available: https://doi.org/10.1109/ICIP.2016.7533003
- [22] J. Tremblay, A. Prakash, D. Acuna, M. Brophy, V. Jampani, C. Anil, J. To, J. Cameracci, Y. Chebotar, I. Doytchinov, and S. Birchfield, "Training deep networks with synthetic data: Bridging the reality gap by domain randomization," in *Proc. IEEE/CVF Conf. Computer Vision and Pattern Recognition Workshops (CVPRW)*, 2018, pp. 969–977. [Online]. Available: https://doi.org/10.1109/CVPRW.2018.00127
- [23] G. Bradski and A. Kaehler, Learning OpenCV: Computer Vision with the OpenCV Library. Sebastopol, CA: O'Reilly Media, 2008.
- [24] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf, E. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner, L. Fang, J. Bai, and S. Chintala, "Pytorch: An imperative style, high-performance deep learning library," *Advances in Neural Information Processing Systems*, vol. 32, pp. 8024–8035, 2019.
 [25] J. Redmon and A. Farhadi, "Yolov3: An incremental improvement,"
- [25] J. Redmon and A. Farhadi, "Yolov3: An incremental improvement," arXiv preprint arXiv:1804.02767, 2018. [Online]. Available: https://arxiv.org/abs/1804.02767
- [26] A. Neubeck and L. Van Gool, "Efficient non-maximum suppression," in 18th Int. Conf. Pattern Recognition (ICPR), 2006, pp. 850–855.
- [27] R. G. Brown, "Smoothing, forecasting and prediction of discrete time series," *Prentice-Hall*, 1959.
- [28] I. Loshchilov and F. Hutter, "Sgdr: Stochastic gradient descent with warm restarts," in *International Conference on Learning Representations (ICLR)*, 2017. [Online]. Available: https://arxiv.org/abs/1608.03983
- [29] H. Zhang, M. Cisse, Y. N. Dauphin, and D. Lopez-Paz, "mixup: Beyond empirical risk minimization," in *International Conference* on *Learning Representations (ICLR)*, 2018. [Online]. Available: https://openreview.net/forum?id=r1Ddpz-Rb
- [30] I. Loshchilov and F. Hutter, "Decoupled weight decay regularization," International Conference on Learning Representations (ICLR), 2019. [Online]. Available: https://openreview.net/forum?id=Bkg6RiCqY7
- [31] S. Yun, D. Han, S. J. Oh, S. Chun, J. Choe, and Y. Yoo, "Cutmix: Regularization strategy to train strong classifiers with localizable features," in *Proceedings of the IEEE/CVF International Conference* on Computer Vision (ICCV), 2019, pp. 6023–6032. [Online]. Available: https://doi.org/10.1109/ICCV.2019.00609