February 28, 2023

MATH 575 Homework 6

Collaboration: I discussed some of the problems with Jack, Chance, and Sam.

Problem 1 Let $n \geq 3$, and let G be an n-vertex graph. Prove that if $\kappa(G) = k$, then there exists $v \in V(G)$ such that $\kappa(G - v) = k - 1$. (We proved already (Midterm 1 Practice Problems) that $\kappa(G - v) \geq \kappa(G) - 1$ for all $v \in V(G)$. You may use this fact without repeating the proof.)

Solution.

Let G be a graph on n vertices with $\kappa(G) = k$. Then, we have a separating set S of size k. Now, consider G - v for some $v \in S$. Since S was a separating set, $S - \{v\}$ must be a separating set of G - v, and thus $\kappa(G - v) \le k - 1$. Since we have proved that $\kappa(G - v) \ge k - 1$, we have $\kappa(G - v) = k - 1$.

Problem 2 Let G be a graph on $n \geq 3$ vertices. Prove that G is 2-connected if and only if for every three distinct vertices $x, y_1, y_2 \in V(G)$, there exists a y_1, y_2 -path that passes through x.

Solution.

- (\Leftarrow) Let G be a graph that is not 2-connected. Then, G is either 0- or 1-connected. If it is 0-connected, then there are at least two components, so there exist a pair of vertices with no path between them at all. If it 1-connected, then we have a vertex v such that G v has two components G_1 and G_2 . Let $g_1, g_2 \in V(G_1)$ and $g_1 \in V(G_2)$. Then, any path in $g_2 \in V(G_2)$ has to pass through $g_2 \in V(G_2)$ and $g_3 \in V(G_2)$ are contain $g_4 \in V(G_2)$. Since we must pass through $g_4 \in V(G_2)$ and again to get back to $g_4 \in V(G_2)$ and paths must contain no repeated vertices.
- (\Rightarrow) Let G be a 2-connected graph, and let x, y_1 , and y_2 be three distinct vertices in G. We have shown in class that for every pair of vertices in G, there exist two internally disjoint paths. Thus, we have an y_1 , x-path P_1 and two internally disjoint x, y_2 -paths P_2 and P_2 .
- Case 1: P_1 is internally disjoint with either P_2 or P_2' . Then we can simply travel from y_1 to x along P_1 and then from x to y_2 along the internally disjoint path to obtain a y_1, y_2 -path that passes through x.
- Case 2: P_1 intersects with both P_2 and P_2' . Without loss of generality, assume that P_1 intersects with P_2 before it intersects with P_2 . Then, we can travel along P_1 until we first intersect with P_2 , and then travel (backward) along P_2 until we get to x. Now, we can travel from x to y_2 along P_2' to obtain a y_1, y_2 -path that passes through x: since P_1 intersects with P_2 before P_2' , P_2' will be disjoint from the part of P_1 we traversed.

Problem 3 Let G be an n-vertex graph. A $Hamiltonian\ cycle$ in G is a cycle of length n, i.e., a cycle that covers all vertices of G. We say G is Hamiltonian if it contains a $Hamiltonian\ cycle$.

- (a) Prove or disprove: if G is 2-connected, then G is Hamiltonian.
- (b) Prove or disprove: if G is Hamiltonian, then G is 2-connected.

Solution.

(a) This is false. For example, the graph below is 2-connected but has no Hamiltonian cycle:

(b) This is true. Suppose that G is Hamiltonian. Then, we can partition G into a cycle C, and edges e_1, e_2, \ldots, e_k incident on vertices in C. Since these edges are all ears of C, we have that $C \cup e_1 \cup e_2 \cup \ldots \cup e_k$ is an ear decomposition of G, and so by Whitney G is 2-connected.

Problem 4 Let G be a k-connected graph and suppose A and B are disjoint subsets of V(G) with $|A|, |B| \ge k$. Prove there exists k pairwise-disjoint A, B-paths. (An A, B-path is a path with one endpoint in A and one endpoint in B.)

Solution.

Construct a graph G' by adding a vertex u with N(u) = A and by adding a vertex v with N(v) = B. Since $|A|, |B| \ge k$, we have from the expansion lemma that G' is k-connected. By Menger's theorem, then, there exist k internally disjoint u, v-paths. Since every u, v-path must pass through A and B, these k paths are pairwise-disjoint A, B-paths.

Problem 5 Let G be the graph below.

- (a) Determine $\kappa(x,y)$ and give an example of an x,y-cut of size $\kappa(x,y)$.
- (b) Determine $\kappa'(x,y)$ and give an example of an x,y-disconnecting set of size $\kappa'(x,y)$

Hint: use the dual problems to give a short proof of optimality.

Solution.

- (a) We observe that $\{d, e, f\}$ is an x, y-cut of size 3, and that we have the internally disjoint x, y-paths:
 - 1. x, a, f, g, h, y
 - 2. x, e, y

3. x, c, d, i, y

So by Menger's theorem, we have $3 \le \kappa(x,y) = \lambda(x,y) \ge 3 \implies \kappa(x,y) = 3$.

- (b) We observe that $\{xa, xf, xe, xc\}$ is an x, y-disconnecting set of size 4, and that we have the pairwise edge-disjoint x, y-paths:
 - $1. \ xa, af, fg, gh, hy$
 - 2. xf, fy
 - 3. xe, ey
 - 4. xc, cd, di, iy

So by "Menger II", we have $4 \le \kappa'(x,y) = \lambda'(x,y) \ge 4 \implies \kappa'(x,y) = 4$.