Biostatisztika

Kunosné Nedényi Fanni, Szűcs Gábor

Szegedi Tudományegyetem, Bolyai Intézet

2018/19 őszi félév

Mi is az a biostatisztika?

lde majd még jön valami, valamikor...

Események valószínűsége

A valószínűségszámítás a matematika egyik ága, melynek célja a véletlen jelenségekhez kapcsolódó valószínűségek meghatározása. Alapfogalmak:

- Véletlen kísérlet: Egy véletlen jelenség megfigyelése.
- Kimenetelek: A véletlen kísérlet lehetséges eredményei.
- Esemény: A kísérlet aktuális kimenetelével kapcsolatos állítás. Egy esemény akkor következik be, ha a véletlen kísérlet olyan kimenetelt ad, melyre az állítás igaz.
- Valószínűség: Annak az esélye, hogy az esemény bekövetkezik.

Példa:

- Véletlen kísérlet: feldobunk egy szabályos dobókockát.
- Kimenetelek: 1, 2, 3, 4, 5, 6.
- Egy esemény: A = páros számot dobunk. Ez akkor következik be, ha a 2, 4, 6 értékek valamelyikét dobjuk, egyébként nem következik be.
- Az A esemény valószínűsége: P(A) = 3/6 = 50%.

Ezen a kurzuson jellemzően az lesz majd a kísérlet, hogy véletlenszerűen kiválasztunk egy vagy több egyedet egy ember/állat/növény populációból. A "véletlenszerűen" szó itt azt jelenti, hogy mindegyik egyedet ugyanakkora eséllyel választjuk ki.

Feladat: Magyarországon az emberek 52 illetve 24 százalékának a vérében található meg az A illetve a B típusú antigén. Mindkét antigén az emberek 8 százalékánál található meg. Véletlenszerűen kiválasztunk egy magyar embert, és leteszteljük az antigénekre. Tekintsük a következő eseményeket:

 $A=\mathsf{a}$ kiválasztott ember rendelkezik az A típusú antigénnel

B= a kiválasztott ember rendelkezik a $\sf B$ típusú antigénnel

Most minden embert azonos eséllyel választunk ki, ezért a tulajdonságok bekövetkezési valószínűsége azonos lesz a tulajdonságok teljes populáción belül mért részarányával:

P(A)= az A antigén aránya a teljes populáción belül=52%=0,52

P(B)=a B antigén aránya a teljes populáción belül=24%=0,24

P(A 'es B) = a k'et antigén együttes megjelenésének aránya = 8% = 0.08

Az alábbi ábrán a magyar emberek populációját ábrázoljuk a két antigén szempontjából. A mellette lévő táblázat a vércsoportokat foglalja össze.

	van A	nincs A
van B	AB	В
nincs B	А	0

Amit tudunk: P(A) = 52%, P(B) = 24%, P(A és B) = 8%.

Feladat: Határozzuk meg a vércsoportok részarányát!

P(a kiválasztott ember az AB vércsoportba esik) = P(A és B) = 8%

P(A v'ercsoport) = P(A igen, de B nem) = P(A) - P(A 'es B) = 44%

P(B v'ercsoport) = P(B igen, de A nem) = P(B) - P(A 'es B) = 16%

P(0 v'ercsoport) = 100% - az előző h'arom "osszege = 32%

A kurzuson a valószínűség a teljes populáción belüli arányt jelenti. Időnként szükségünk lesz arra, hogy az arányokat egy részpopuláción belül vizsgáljuk. Az A eseménynek a B eseményre vett **feltételes valószínűsége**:

$$P(A|B) = \frac{P(A \text{ és } B)}{P(B)}.$$

A feltételes valószínűség jelentése:

P(A|B) = az A tulajdonság aránya a B részpopuláción belül= <math>az A esemény valószínűsége, ha tudjuk, hogy B bekövetkezik

Feladat: Mennyi P(A|B) az előző feladatban?

$$P(A|B) = \frac{P(A \text{ és } B)}{P(B)} = \frac{8\%}{24\%} = \frac{1}{3} = 33\%$$

Feladat: Mekkora az A típusú antigénnel rendelkező emberek aránya azon emberek között, akik nem rendelkeznek a B antigénnel?

$$P(A \mid \text{nem } B) = \frac{P(A \text{ és nem } B)}{P(\text{nem } B)} = \frac{44\%}{76\%} = 58\%,$$

 $P(\text{nem } B) = 100\% - P(B) = 76\%,$
 $P(A \text{ és nem } B) = P(A \text{ vércsoport}) = 44\%.$

Értelmezzük, hogy mit kaptunk:

- Ha véletlenszerűen kiválasztunk egy embert a teljes populációból, akkor 52% valószínűséggel található meg nála az A típusú antigén.
- Ha tudjuk, hogy a kiválasztott ember rendelkezik a B antigénnel, akkor 33% az esélye, hogy az A is antigén megtalálható nála.
- Ha viszont azt tudjuk, hogy nem rendelkezik a B típusú antigénnel, akkor 58% az esélye, hogy az A antigén megtalálható nála.
- Tehát a B antigén jelenléte csökkenti az A antigén megjelenési esélyét: $P(A|B) = 33\% < 58\% = P(A \mid \text{nem B})$

Legyenek A és B tetszőleges események. Bebizonyítható, hogy ekkor az alábbi három egyenlőség ekvivalens, tehát következnek egymásból:

- **1** P(A és B) = P(A)P(B)
- **2** P(A|B) = P(A)
- P(B|A) = P(B)

Amennyiben ezen egyenlőségek közül bármelyik (és ezáltal mindegyik) teljesül, akkor azt mondjuk, hogy A és B **független események**.

A függetlenség szemléletesen azt jelenti, hogy a két esemény nem hat egymásra, nem akadályozzák, és nem is segítik elő egymás bekövetkezését.

Lássuk, hogyan következik az első egyenlőségből a második:

$$P(A|B) = \frac{P(A \text{ \'es } B)}{P(B)} = \frac{P(A)P(B)}{P(B)} = P(A).$$

Feladat: A vércsoportos feladatban A és B független események?

Nem, ugyanis P(A|B) = 33% < 52% = P(A).

Feladat: A feladatban a két antigén aránya: P(A) = 52% és P(B) = 24%. Mikor lenne a két antigén megjelenése független egymástól?

A két antigén megjelenése akkor független, ha

$$P(A \text{ \'es } B) = P(A)P(B) = 0.52 \cdot 0.24 = 0.125 = 12.5\%$$

Feladat: Mennyi lenne a feltételes valószínűségek értéke ebben az esetben?

Az A típusú antigénnel rendelkező emberek aránya a B csoporton belül:

$$P(A|B) = \frac{P(A \text{ és } B)}{P(B)} = \frac{12.5\%}{24\%} = 52\%$$

Az A típusú antigénnel rendelkező emberek aránya a B csoporton kívül:

$$P(A \mid \text{nem } B) = \frac{P(A \text{ és nem } B)}{P(\text{nem } B)} = \frac{39,5\%}{76\%} = 52\%,$$

 $P(A \text{ és nem } B) = P(A) - P(A \text{ és } B) = 39,5\%.$

Tehát a független esetben az A antigénnel rendelkező emberek aránya (=kiválasztási valószínűsége) azonos az alábbi három populáción belül:

- a teljes populáción belül: P(A) = 52%,
- a B típusú antigénnel rendelkező emberek részpopulációján belül: P(A|B) = 52%
- a B típusú antigénnel nem rendelkező emberek részpopulációján belül: P(A | nem B) = 52%.

Diszkrét valószínűségi változók

A biológiai vizsgálatok során gyakran felmerül az a kérdés, hogy mi az eloszlása egy mennyiségnek (életkor, testtömeg, utódok száma, stb.) egy populáción belül. Válasszunk ki véletlenszerűen egy egyedet a populációból, és legyen ξ a vizsgált mennyiség értéke a kiválasztott egyed esetében. Mivel az egyedet véletlenszerűen választjuk, a ξ érték egy véletlen szám lesz.

- Valószínűségi változó: Egy véletlen kísérletből származó véletlen szám (véletlen mennyiség). Jele: ξ (kszi), η (éta), stb.
- ullet Értékkészlet: A változó lehetséges értékeinek a halmaza. Jele: R_{ξ}, R_{η}
- Diszkrét valószínűségi változó: A változó értékkészlete egy véges vagy végtelen sorozat. Mi tipikusan két esettel fogunk találkozni:
 - az értékkészlet véges halmaz;
 - VAGY minden lehetséges érték egész szám.
- Folytonos valószínűségi változó: A változó értékkészlete egy véges vagy végleten intervallum.

Feladat: Egy lengyel felmérés alapján a fehér gólyák 2-5 tojást raknak az alábbi táblázatban található megoszlásban. Véletlenszerűen kiválasztunk egy gólyafészket, és jelölje ξ a fészekben található tojások számát.

x	2	3	4	5	
		20%		35%	

A ξ egy valószínűségi változó, értékkészlete $R_{\xi}=\{2,3,4,5\}$. Ez egy véges halmaz, tehát a ξ diszkrét változó. A fészket véletlenszerűen választottuk, ezért a ξ pontosan akkora valószínűséggel veszi fel az egyes értékeket, amennyi ezen értékek aránya a teljes (fészek-) populáción belül:

$$P(\xi = 2) = 0.05$$
, $P(\xi = 3) = 0.2$, $P(\xi = 4) = 0.4$, $P(\xi = 5) = 0.35$.

Legyen ξ diszkrét valószínűségi változó. A $p_x=P(\xi=x)$ valószínűségeket a változó **valószínűségeloszlásának** nevezzük. Véletlenszerű kiválasztás esetén a valószínűségeloszlás azonos a populáción belül mért arányokkal.

Feladat: Mennyi a ξ változó lehetséges értékeinek összvalószínűsége?

$$P(\xi = 2) + P(\xi = 3) + P(\xi = 4) + P(\xi = 5) = 0.05 + 0.2 + 0.4 + 0.35 = 1$$

Feladat: A fészkek mekkora hányadában található legfeljebb 3 tojás?

$$P(\text{legfeljebb 3 tojás}) = P(\xi \le 3) = P(\xi = 2) + P(\xi = 3) = 0.25.$$

Feladat: Melyik tojásszám a leggyakoribb a populációban?

A 4-es érték a leggyakoribb, a fészkek 40%-ában ennyi tojás található.

Feladat: Átlagosan hány tojás található a fészkekben?

A tojások átlagos száma: $E(\xi) = 2 \cdot 0.05 + 3 \cdot 0.2 + 4 \cdot 0.4 + 5 \cdot 0.35 = 4.05$.

Legyen ξ diszkrét valószínűségi változó.

- Módusz: A ξ változó legnagyobb valószínűségű értéke. Jelentése: a ξ változó leggyakoribb értéke a teljes populáción belül.
- Várható érték: $\mathsf{E}(\xi) = \sum_{x \in R_{\xi}} x P(\xi = x)$. Jelentése: a ξ változó átlagos értéke a teljes populáción belül.

Milyen módon számszerűsíthetjük egy ξ diszkrét változó szóródását?

- Várható értéktől való átlagos eltérés: $\sum_{x \in R_{\xi}} \left| x \mathsf{E}(\xi) \right| P(\xi = x)$
- Variancia:

$$Var(\xi) = \sum_{x \in R_{\xi}} (x - E(\xi))^2 P(\xi = x)$$

• Szórás: $D(\xi) = \sqrt{Var(\xi)}$

A szóródás mérésére a várható értéktől való átlagos eltérés egy egyszerű mutatószám lenne, de sajnos ennek rosszak a matematikai tulajdonságai. Emiatt inkább a szórást szoktuk alkalmazni a szóródás mérésére. A két érték jellemzően közel van egymáshoz:

szórás pprox várható értéktől való átlagos eltérés

Emiatt az alkalmazásokban a szórást magát is úgy értelmezzük, mint az átlagtól való átlagos eltérés. A varianciára csak azért van szükségünk, mert abból számoljuk ki a szórást.

Feladat: Mennyi a várható értéktől való átlagos eltérés és a szórás a jelen feladatban? (A várható érték $E(\xi) = 4,05$.)

X	2	3	4	5
$ x - E(\xi) $	2,05	1,05	0,05	0,95
$(x-E(\xi))^2$	2,05 ²	$1,05^{2}$	$0,05^{2}$	$0,95^{2}$
$P(\xi=x)$	0,05	0,2	0,4	0,35

Várható értéktől való átlagos eltérés:

$$2,05 \cdot 0,05 + 1,05 \cdot 0,2 + 0,05 \cdot 0,4 + 0,95 \cdot 0,35 = 0,665$$

Variancia:

$$Var(\xi) = 2,05^2 \cdot 0,05 + 1,05^2 \cdot 0,2 + 0,05^2 \cdot 0,4 + 0,95^2 \cdot 0,35 \approx 0,75$$

Szórás: $D(\xi) = \sqrt{0.75} \approx 0.87$.

Folytonos valószínűségi változók

Egy valószínűségi változó **folytonos**, ha értékkészlete egy véges vagy végleten intervallum. A ξ folytonos változó **sűrűségfüggvénye** egy olyan $f_{\xi}:\mathbb{R}\to\mathbb{R}$ függvény, melyre tetszőleges a és b számok esetén:

$$P(a \le \xi \le b) = \int_a^b f_{\xi}(x) dx$$

Tekintünk egy mennyiséget (például a testtömeget) egy populáción belül. Véletlenszerűen kiválasztunk egy egyedet, és legyen ξ a mennyiség értéke ezen egyed esetében. Ekkor:

azon egyedek aránya, melyeknél a vizsgált mennyiség a és b közé esik $=P(a \le \xi \le b)=$ görbe alatti terület a és b között

A folytonos változók és a sűrűségfüggvények néhány tulajdonsága:

- 2 $f_{\xi}(x) \ge 0$ minden x valós szám esetén.
- **3** A ξ változó értékkészlete azon x számok halmaza, melyekre $f_{\xi}(x) > 0$.
- Tetszőleges a szám esetén $P(\xi = a) = 0$.

Rövid indoklás a fenti állításokhoz:

- $\int_{-\infty}^{\infty} f_{\xi}(x) dx = P(-\infty \le \xi \le \infty) = 1.$
- ② Tegyük fel, hogy az f_{ξ} függvény negatív egy [a,b] intervallumon. Ekkor $\int_a^b f_{\xi}(x) dx < 0$, tehát $\int_a^b f_{\xi}(x) dx \neq P(a \leq \xi \leq b)$, ami ellentmondás.
- \bullet Ha $f_{\xi}=0$ az [a,b] intervallumon, akkor $P(a\leq \xi\leq b)=\int_a^b 0 dx=0$. Ha $f_{\xi}>0$ az [a,b] halmazon, akkor $P(a\leq \xi\leq b)=\int_a^b f_{\xi}(x) dx>0$. Tehát a ξ változó oda eshet, ahol $f_{\xi}>0$.
- $P(\xi = a) = P(a \le \xi \le a) = \int_a^a f_{\xi}(x) dx = 0.$

Feladat: Egy állatpopulációban legyen ξ egy véletlenszerűen kiválasztott egyed tömege. A változó az alábbi sűrűségfüggvénnyel írható le.

$$f_{\xi}(x) = egin{cases} 4/x^2, & ext{ha } 2 \leq x \leq 4, \ 0, & ext{k\"ul\"onben}. \end{cases}$$

Feladat: A teljes görbe alatti terület valóban 1?

$$\int_{-\infty}^{\infty} f_{\xi}(x) dx = \int_{-\infty}^{2} 0 dx + \int_{2}^{4} \frac{4}{x^{2}} dx + \int_{4}^{\infty} 0 dx = 0 + 4 \int_{2}^{4} x^{-2} dx + 0$$

$$= 4 \left[\frac{x^{-1}}{-1} \right]_{2}^{4} = 4 \left[-\frac{1}{x} \right]_{2}^{4} = 4 \left[\left(-\frac{1}{4} \right) - \left(-\frac{1}{2} \right) \right] = 4 \cdot 0.25 = 1$$

Feladat: Milyen értékeket vehet fel a ξ változó?

A változó értékkészlete: $R_{\xi} = [2, 4]$.

Feladat: Mennyi az esélye annak, hogy a ξ változó 2,5-nél kisebb értéket vesz fel? Mennyi a valószínűsége annak, hogy a ξ nagyobb, mint 3,5?

$$f_{\xi}(x) = egin{cases} 4/x^2, & ext{ha } 2 \leq x \leq 4, \ 0, & ext{k\"ul\"onben}. \end{cases}$$

$$P(\xi < 2.5) = P(2 \le \xi \le 2.5) = 4 \int_{2}^{2.5} x^{-2} dx = 4 \left[-\frac{1}{x} \right]_{2}^{2.5}$$
$$= 4 \left[\left(-\frac{1}{2.5} \right) - \left(-\frac{1}{2} \right) \right] = 4 \cdot 0.1 = 0.4,$$
$$P(\xi > 3.5) = P(3.5 \le \xi \le 4) = 4 \int_{3.5}^{4} x^{-2} dx = \dots \approx 0.14.$$

Legyen ξ folytonos valószínűségi változó!

- ullet Móduszok: Az f_{ξ} függvény lokális maximumhelyei.
- Várható érték: $E(\xi) = \int_{-\infty}^{\infty} x f_{\xi}(x) dx$. Jelentése: ξ átlagos értéke a teljes populációban.
- Variancia: $Var(\xi) = \int_{-\infty}^{\infty} (x E(\xi))^2 f_{\xi}(x) dx$.
- Szórás: $D(\xi) = \sqrt{Var(\xi)}$. Jelentése: a várható értéktől való átlagos eltérés a populációban.

A varianciára adható egy könnyebben számolható formula is:

$$Var(\xi) = \int_{-\infty}^{\infty} (x - E(\xi))^{2} f_{\xi}(x) dx$$

$$= \int_{-\infty}^{\infty} x^{2} f_{\xi}(x) dx - \int_{-\infty}^{\infty} 2E(\xi) x f_{\xi}(x) dx + \int_{-\infty}^{\infty} (E(\xi))^{2} f_{\xi}(x) dx$$

$$= \int_{-\infty}^{\infty} x^{2} f_{\xi}(x) dx - 2E(\xi) \int_{-\infty}^{\infty} x f_{\xi}(x) dx + (E(\xi))^{2} \int_{-\infty}^{\infty} f_{\xi}(x) dx$$

$$= \int_{-\infty}^{\infty} x^{2} f_{\xi}(x) dx - 2E(\xi) E(\xi) + (E(\xi))^{2} \cdot 1 = \int_{-\infty}^{\infty} x^{2} f_{\xi}(x) dx - (E(\xi))^{2}$$

Feladat: Mennyi a ξ változó módusza, várható értéke és szórása a jelen feladatban?

A függvénynek csak egy maximumhelye van, az x=2 helyen, ez a módusz.

$$E(\xi) = \int_{-\infty}^{\infty} x f_{\xi}(x) dx = \int_{-\infty}^{2} x \cdot 0 dx + \int_{2}^{4} x \cdot \frac{4}{x^{2}} dx + \int_{4}^{\infty} x \cdot 0 dx$$

$$= 0 + 4 \int_{2}^{4} x^{-1} dx + 0 = 4 \left[\ln x \right]_{2}^{4} = 4 \left[\ln 4 - \ln 2 \right] = 2,77,$$

$$\int_{-\infty}^{\infty} x^{2} f_{\xi}(x) dx = \int_{2}^{4} x^{2} \frac{4}{x^{2}} dx = \int_{2}^{4} 4 dx = (4 - 2) \cdot 4 = 8,$$

$$Var(\xi) = \int_{-\infty}^{\infty} x^{2} f_{\xi}(x) dx - \left(E(\xi) \right)^{2} = 8 - (2,77)^{2} \approx 0,33,$$

$$D(\xi) = \sqrt{Var(\xi)} = \sqrt{0,33} = 0,57.$$

Tehát a ξ változó a 2 érték (módusz) közelébe esik a legnagyobb eséllyel. A változó átlagos értéke 2,77, a várható értéktől való átlagos eltérés 0,57.

Egy tetszőleges ξ valószínűségi változó **eloszlásfüggvénye** a következő módon van definiálva: $F_{\xi}: \mathbb{R} \to [0,1], F_{\xi}(t) = P(\xi < t).$

Ha a ξ értéket úgy kapjuk, hogy véletlenszerűen kiválasztunk egy egyedet egy populációból, és megmérünk egy kérdéses mennyiséget, akkor

 $\mathit{F}_{\xi}(t)=$ azon egyedek aránya a populációban, melyeknél ξ kisebb, mint t

Tetszőleges a és b valós számok esetén teljesülnek az alábbi egyenlőségek:

- **1** $P(\xi < a) = F_{\xi}(a)$,
- **2** $P(\xi \geq a) = 1 F_{\xi}(a)$,
- $P(a \le \xi < b) = F_{\xi}(b) F_{\xi}(a).$

Hogyan kapjuk meg ezeket az azonosságokat?

- Ez csak az eloszlásfüggvény definíciója.
- $P(\xi \ge a) = 100\% P(\xi < a) = 1 F_{\xi}(a),$
- **3** $P(a \le \xi < b) = P(\xi < b) P(\xi < a) = F_{\xi}(b) F_{\xi}(a)$.

Feladat: Hogyan írható fel az eloszlásfüggvény a jelen feladatban?

Sűrűségfüggvény:

$$f_{\xi}(x) = egin{cases} 4/x^2, & ext{ha } 2 \leq x \leq 4, \ 0, & ext{k\"ul\"onben}. \end{cases}$$

Eloszlásfüggvény: $F_{\mathcal{E}}(t) = P(\xi < t)$

- Ha t < 2: $F_{\mathcal{E}}(t) = 0$.
- Ha t > 4: $F_{\mathcal{E}}(t) = 1$.
- Ha 2 < t < 4:

$$F_{\xi}(t) = P(2 \le \xi \le t) = \int_{2}^{t} \frac{4}{x^{2}} dx = 4 \int_{2}^{t} x^{-2} dx = 4 \left[-\frac{1}{x} \right]_{2}^{t} = 2 - \frac{4}{t}.$$

Legyen ξ tetszőleges valószínűségi változó, és legyen $\alpha \in (0,1)$. A ξ változó α -kvantilise egy olyan q_{α} valós szám, melyre $P(\xi < q_{\alpha}) = \alpha$.

$$P(\xi < q_{\alpha}) = \alpha \qquad P(\xi \ge q_{\alpha}) = 1 - \alpha$$

$$q_{\alpha}$$

A kvantilis jelentése: a vizsgált ξ mennyiség a teljes populáción belül

- ullet az egyedek lpha hányadánál kisebb, mint $oldsymbol{q}_{lpha}$,
- ullet az egyedek 1-lpha hányadánál nagyobb vagy egyenlő, mint ${m q}_lpha.$

Megjegyzés: Az α -kvantilis nem mindig létezik, és ha létezik, akkor nem feltétlenül egyértelmű.

Nevezetes kvantilisek:

- Medián: q_{50%}
- ullet Alsó és felső kvartilis: $q_{25\%}$ és $q_{75\%}$
- Decilisek: $q_{10\%}, q_{20\%}, \dots, q_{90\%}$

Feladat: Adjuk meg a mediánt valamint az alsó és a felső kvartilist a jelen feladatban. ↑

$$F_{\xi}(t) = egin{cases} 0, & t < 2, \ 2 - 4/t, & 2 \leq t \leq 4, \ 1, & t > 4. \end{cases}$$

Tetszőleges 0<lpha<1 szám esetén

$$C_{\xi}$$
 C_{ξ}
 C_{ξ

$$\alpha = P(\xi < q_{\alpha}) = F_{\xi}(q_{\alpha}) = 2 - 4/q_{\alpha}.$$

Ebből következik, hogy $q_{\alpha}=4/(2-\alpha)$. A kérdéses értékeket az alábbi táblázat tartalmazza. A medián és a két kvartilis négy részre bontja fel a változó értékkészletét, és a változó mindegyik részbe 25% eséllyel esik bele.

α	25%	50%	75%
q_{lpha}	2,29	2,67	3,2

A módoszok száma alapján kétfajta sűrűségfüggvényt különböztetünk meg: egymóduszú és többmóduszú sűrűségfüggvényt.

A több módusz gyakran arra utal, hogy a populációt több részpopulációra lehet felbontani, melyeken belül a vizsgált ξ mennyiség már egymóduszú. Példa: lábméret eloszlása a felnőtt népességen belül.

- kék görbe: a lábméret sűrűségfüggvénye a felnőtt népességen belül,
- zöld görbe: a lábméret sűrűségfüggvénye a nők körében,
- piros görbe: a lábméret sűrűségfüggvénye a férfiak körében.

Tegyük fel, hogy a sűrűségfüggvénynek csak egyetlen módusza van. A módusz, a medián és a várható érték jelentése:

- Módusz: A változó ezen érték közelébe esik a legnagyobb eséllyel.
- Medián: A változó "középső" értéke.
- Várható érték: A változó átlagos értéke.

Ha a sűrűsgfüggvény szimmetrikus, akkor a három mennyiség megegyezik. Ha a sűrűségfüggvény nem szimmetrikus, akkor jellemzően(!):

- Balra ferde sűrűségfüggvény esetén: várható érték < medián < módusz
- Jobbra ferde sűrűségfüggvény esetén: módusz<medián<várható érték

A normális eloszlás

Az η valószínűségi változó **normális** (másnéven **normál** vagy **Gauss**-) eloszlást követ $\mu \in \mathbb{R}$ (mű) és $\sigma > 0$ (szigma) paraméterekkel, ha a sűrűségfüggvénye:

$$f_{\eta}(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

A sűrűségfüggvény neve: **Gauss-görbe**, **haranggörbe**.

A normális eloszlás fontosabb alkalmazásai:

- Mérési hibák modellezése: mért érték = igazi érték + mérési hiba, ahol a mérési hiba normális eloszlást követ.
- Élettudományok: számos mennyiség (testmagasság, vérnyomás, IQ) normális vagy a normálisból származtatott eloszlást követ.

A normális eloszlás tulajdonságai:

- ullet $f_{\eta}(x)>0$ minden x valós számra, ezért $R_{\eta}=\mathbb{R}.$
- $E(\eta) = \mu$ és $D(\eta) = \sigma$.
- ullet A sűrűségfüggvény szimmetrikus, ezért módusz = medián = ${\sf E}(\xi)=\mu.$

Hogyan hat a két paraméter a sűrűségfüggvényre:

- ullet σ : a sűrűségfüggvény alakját határozza meg,
- ullet μ : eltolás, a sűrűségfüggvény szimmetriatengelye.

A $\mu=0$ és $\sigma=1$ paraméteres normális eloszlást **standard normális** eloszlásnak nevezzük. Jelölésben: $\eta_{0,1}$. Sűrűség- és eloszlásfüggvénye:

$$\varphi(x) = \frac{1}{\sqrt{2\pi}}e^{-x^2/2}, \qquad \Phi(t) = P(\eta_{0,1} < t) = \int_{-\infty}^t \varphi(x)dx.$$

A Φ függvény tulajdonságai:

$$\Phi(t) egin{cases} <0.5, & \mbox{ha } t<0, \ =0.5, & \mbox{ha } t=0, \ >0.5, & \mbox{ha } t>0, \end{cases}$$

$$\Phi(-t)=1-\Phi(t).$$

Ha η normális eloszlású, akkor tetszőleges a és b valós számokra:

$$P(a \le \eta \le b) = \int_a^b f_{\eta}(x) dx = \int_a^b \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}} dx$$

Probléma: ezt az integrált nem tudjuk papíron kiszámolni.

Legyen η normális eloszlású μ várható értékkel és σ szórással. Ekkor az $(\eta-\mu)/\sigma$ valószínűségi változót η standardizáltjának nevezzük. Megmutatható, hogy ez az új változó standard normális eloszlás követ.

Ha η normális eloszlású változó, akkor standardizálással:

$$P(a \le \eta < b) = P\left(\frac{\mathsf{a} - \mu}{\sigma} \le \frac{\eta - \mu}{\sigma} < \frac{\mathsf{b} - \mu}{\sigma}\right) = \Phi\left(\frac{\mathsf{b} - \mu}{\sigma}\right) - \Phi\left(\frac{\mathsf{a} - \mu}{\sigma}\right).$$

Feladat. Egy tejgyárban az 1 literes dobozos tej csomagolását automata töltőberendezés végzi, és a dobozokba töltött mennyiség egy normális eloszlású valószínűségi változó, melynek várható értéke a névleges tartalom és szórása $\sigma=10$ ml. Véletlenszerűen kiválasztunk egy dobozt.

- Mennyi annak a valószínűsége, hogy a doboz legfeljebb 2,5%-kal tér el a névleges tartalomtól?
- Mennyi annak az esélye, hogy a doboz legalább 990 ml tejet tartamaz?

Legyen η a kiválasztott dobozban található mennyiség. Az η változó normális eloszlású $\mu=1000$ ml várható értékkel és $\sigma=10$ ml szórással. A következő valószínűségekre (=területekre) vagyunk kíváncsiak, de ezek most nem számolhatóak ki integrálással:

Az első valószínűség standardizálással határozható meg:

$$P(975 \le \eta \le 1025) = P\left(\frac{975 - 1000}{10} \le \frac{\eta - \mu}{\sigma} \le \frac{1025 - 1000}{10}\right)$$
$$= P(-2.5 \le \eta_{0,1} \le 2.5) = \Phi(2.5) - \Phi(-2.5) = 0.9938 - 0.0062 = 0.9876,$$

Ez azt jelenti, hogy a tejesdobozok 98,76%-a tartalmaz 975 ml és 1025 ml közötti tejet. Itt felhasználtuk azt, hogy

$$\Phi(-2,5) = 1 - \Phi(2,5) = 1 - 0.9938 = 0.0062.$$

A második valószínűség az első mintájára:

$$\begin{split} &P(\eta \geq 990) = P\bigg(\frac{\eta - \mu}{\sigma} \geq \frac{990 - 1000}{10}\bigg) = P\big(\eta_{0,1} \geq -1\big) \\ &= 1 - P\big(\eta_{0,1} < -1\big) = 1 - \Phi(-1) = 1 - \big[1 - \Phi(1)\big] \\ &= 1 - \big[1 - 0.84\big] = 0.84. \end{split}$$

Feladat. Adjunk meg egy olyan [a, b] intervallumot, amire teljesül, hogy a tejesdobozok 95%-a ebbe az intervallumba esik: $P(a \le \eta \le b) = 0.95$.

Az intervallumot $[\mu - c\sigma, \mu + c\sigma]$ alakban fogjuk keresni. Ismét csak standardizálással:

$$0.95 = P(\mu - c\sigma \le \eta \le \mu + c\sigma) = P\left(-c \le \frac{\eta - \mu}{\sigma} \le c\right)$$

= $P(-c \le \eta_{0,1} \le c) = \Phi(c) - \Phi(-c) = \Phi(c) - [1 - \Phi(c)] = 2\Phi(c) - 1$.

Ebből azt kapjuk, hogy $\Phi(c) = 0.975 = \Phi(1.96)$, tehát c = 1.96.

Tehát a kérdéses intervallum: $[\mu - 1,96\sigma, \mu + 1,96\sigma] = [980,4,1019,6]$.

Közelítő intervallum a 2σ -szabállyal: $[\mu - 2\sigma, \mu + 2\sigma] = [980, 1020]$.

Az alábbi ábra azt mutatja meg, hogy egy η normális eloszlású változó mekkora eséllyel esik a várható érték két oldalára felmért intervallumokba:

Legyen η normális eloszlású változó. Ekkor:

- 1σ -szabály: $P(\mu \sigma \le \eta \le \mu + \sigma) \approx 68\%$,
- 2σ -szabály: $P(\mu 2\sigma \le \eta \le \mu + 2\sigma) \approx 95\%$,
- 3σ -szabály: $P(\mu 3\sigma \le \eta \le \mu + 3\sigma) \approx 99,75\%$.

Statisztikai alapfogalmak

Legyen adva egy populáció, és tekintsünk egy mennyiséget az egyedeken (életkor, testtömeg, utódok száma, stb.). Véletlenszerűen kiválasztunk egy egyedet, és ξ jelöli a vizsgált mennyiséget a kiválasztott egyed esetében.

Valószínűségszámítás: Ha ismerjük a ξ változó valószínűségeloszlását vagy sűrűségfüggvényét, akkor ki tudjuk számolni a következő értékeket:

- $E(\xi) = a$ vizsgált mennyiség átlagos értéke a populáción belül,
- $D(\xi) = a$ vizsgált mennyiség szórása a populáción belül,
- $P(a \le \xi \le b) = \text{arány a teljes populáción belül.}$

Matematikai statisztika: Nem ismerjük a ξ változó valószínűségeloszlását vagy sűrűségfüggvényét, ezért nem tudjuk kiszámolni ezeket az értékeket. Ehelyett megfigyeléseket végzünk a ξ változóra, és a kapott minta alapján vonunk le következtetéseket. Célok:

- Becsléselmélet: Adjunk becslést a várható értékre, szórásra, stb.
- Hipotézisvizsgálat: Adott egy állítás a ξ mennyiséggel kapcsolatban. (Pl: $E(\xi) = 2$.) Döntsük el, hogy ez az állítás igaz vagy hamis.

Statisztikai alapfogalmak:

- **Háttérváltozó**: Az a ξ valószínűségi változó, melyet vizsgálunk.
- Statisztikai minta (statistical sample): ξ_1, \ldots, ξ_n valószínűségi változók, független megfigyelések a ξ változóra. Jellemzően: véletlenszerűen kiválasztunk n egyedet a teljes populációból.
- Mintarealizáció (realization, observations): a ξ_1, \ldots, ξ_n változók megfigyelés során kapott konkrét értékei.
- Mintaméret (sample size): a megfigyelések száma (n).

Hogyan is történik ez a gyakorlatban:

- Kíváncsiak vagyunk egy ξ mennyiség eloszlására egy populációban.
- Megtervezzük a mintavételezést és a statisztikai kiértékelést. Ezen a ponton a mintaelemek valószínűségi változók: még nem tudjuk, hogy mik lesznek a megfigyelt értékek.
- Elvégezzük a mintavételezést, ezzel megkapjuk a realizációt, tehát a mintaelemek konkrét értékeit.
- Elvégezzük a statisztikai elemzést a realizáción. (Mi a továbbiakban nagyrészt ezzel a lépéssel foglalkozunk.)

Leíró statisztikák (descriptive statistics)

Egy ξ háttérváltozó várható értékét, varianciáját és szórását a következő módon becsülhetjük meg egy ξ_1,\ldots,ξ_n minta alapján:

Empirikus várható érték, mintaátlag (sample mean):

$$\overline{\xi} = \mathsf{E}_n(\xi) = \frac{\xi_1 + \dots + \xi_n}{n} \approx \mathsf{E}(\xi)$$

Empirikus variancia (sample variance):

$$\operatorname{Var}_n(\xi) = \frac{\left(\xi_1 - \overline{\xi}\right)^2 + \dots + \left(\xi_n - \overline{\xi}\right)^2}{n} \approx \operatorname{Var}(\xi)$$

• Empirikus szórás (standard deviation): $D_n(\xi) = \sqrt{\operatorname{Var}_n(\xi)} \approx D(\xi)$

Miért így van definiálva az empirikus variancia?

$$\mathsf{Var}(\xi) = \mathsf{E}\Big(\big[\xi - \mathsf{E}(\xi)\big]^2\Big) \approx \frac{\big[\xi_1 - \mathsf{E}(\xi)\big]^2 + \dots + \big[\xi_n - \mathsf{E}(\xi)\big]^2}{n} \approx \mathsf{Var}_n(\xi)$$

Az előző oldalon felsorolt becslések erősen konzisztensek, tehát

$$\mathsf{E}_n(\xi) \to \mathsf{E}(\xi), \qquad \mathsf{Var}_n(\xi) \to \mathsf{Var}(\xi), \qquad \mathsf{D}_n(\xi) \to \mathsf{D}(\xi), \qquad n \to \infty.$$

Ez azt jelenti, hogy ezek a becslések nagy n esetén pontosak lesznek.

Probléma: kis n esetén $Var_n(\xi)$ és $D_n(\xi)$ tipikusan alábecsli az igazi varianciát és szórást. Megoldás: kicsit megnöveljük ezeket az értékeket.

Korrigált empirikus variancia és korrigált empirikus szórás:

$$\operatorname{Var}_n^*(\xi) = \frac{n}{n-1} \operatorname{Var}_n(\xi) \approx \operatorname{Var}(\xi), \qquad \operatorname{D}_n^*(\xi) = \sqrt{\operatorname{Var}_n^*(\xi)} \approx \operatorname{D}(\xi).$$

Nagy mintaméret esetén a korrigálás csak kis mértékben változtat a becsléseken. Kis mintaméret esetén viszont jelentős a növekedés.

A korrigálás során kapott becslések kis n esetén pontosabban, mint az eredeti becslések, de az erős konzisztencia is megmarad:

$$\operatorname{\sf Var}^*_n(\xi) o \operatorname{\sf Var}(\xi), \qquad \operatorname{\sf D}^*_n(\xi) o \operatorname{\sf D}(\xi), \qquad n o \infty.$$

Feladat: A kar férfi hallgatóinak testmagasságát vizsgáljuk, jelölje ξ egy véletlenszerűen kiválasztott férfi hallgató magasságát. Megfigyeléseket végzünk a változóra, a következő realizációt kapjuk: 180, 175, 188, 168, 173, 183. Adjunk becslést a testmagasság átlagára és szórására.

$$\begin{split} \overline{\xi} &= \mathsf{E}_6(\xi) = \frac{180 + 175 + 188 + 168 + 173 + 183}{6} = 177.8 \approx \mathsf{E}(\xi), \\ \mathsf{Var}_6(\xi) &= \frac{(180 - 177.8)^2 + \dots + (183 - 177.8)^2}{6} = 43.81 \approx \, \mathsf{Var}(\xi), \\ \mathsf{D}_6(\xi) &= \sqrt{43.81} = 6.62 \approx \mathsf{D}(\xi). \end{split}$$

A kis mintaméret miatt (n=6) a szórást jobb a korrigált szórással becsülni:

$$\mathsf{Var}_6^*(\xi) = \frac{6}{5} \, 43,81 = 52,57, \qquad \mathsf{D}_6^*(\xi) = \sqrt{52,57} = 7,25 \approx \mathsf{D}(\xi).$$

Foglaljuk össze, hogy mit kaptunk:

- átlagos testmagasság a populációban = $E(\xi) \approx 177.8$,
- ullet a testmagasság szórása a populációban $= \mathsf{D}(\xi) pprox 7,25$.

Ezt a két értéket publikációkban így szokták közölni: 177.8 ± 7.25 cm.

Ha van egy mintarealizációnk, akkor a mintaátlag egy becslés az ismeretlen várható értékre. Ha egy másik mintavételből származó másik realizációval dolgozunk, akkor egy másik becslést kapunk ugyanarra a várható értékre. A mintaátlag egy valószínűségi változó, ami a realizációtól függ.

Tétel. A mintaátlag várható értéke és szórása:

$$\mathsf{E}(\overline{\xi}) = \mathsf{E}(\xi)$$
 és $\mathsf{D}(\overline{\xi}) = \mathsf{D}(\xi)/\sqrt{n}$.

Értelmezzük a kapott eredményeket:

- Ha minden lehetséges realizációból kiszámolnánk a mintaátlagot, akkor átlagban a várható értéket kapnánk. Ez egy jó tulajdonság, amit tozítatlanságnak nevezünk.
- Ha minden lehetséges realizációból kiszámolnánk a mintaátlagot, akkor ezek az értékek átlagosan $D(\xi)/\sqrt{n}$ mértékben térnek el a becsülni kívánt $E(\xi)$ várható értéktől. Tehát átlagosan ennyit tévedünk a becslés során.

Vegyük észre: $D(\xi)/\sqrt{n} \to 0$, amint $n \to \infty$. Ez azt jelenti, hogy egyre nagyobb minta alapján egyre kisebb hibával tudunk becsülni.

- Ha a standard hiba kicsi, akkor a mintaátlag minden realizáció esetén pontos becslése lesz a várható értéknek.
- Ha a standard hiba nagy, akkor vannak olyan realizációk, melyekre a mintaátlag pontatlan becslést ad a várható értékre.

Feladat: Határozzuk meg a standard hibát a jelen feladatban.

Amit tudunk: n = 6, $E_6(\xi) = 177.8$, $D_6^*(\xi) = 7.25$.

Ekkor: $SE = 7,25/\sqrt{6} = 2,96$.

Foglaljuk össze, hogy mit kaptunk:

- Az ismeretlen várható értékre adott becslésünk: 177,8. Ez csak egy becslés, nem fogja pontosan telibe találni az igazi várható értéket.
- A standard hiba: 2,96. A mintaátlag várhatóan ennyivel tér el az igazi várható értéktől, várhatóan ennyi a becslés hibája.
- Ezt a két értéket így szokták közölni: 177.8 ± 2.96 (SE).

A ξ valószínűségi változó α -kvantilise egy olyan q_{α} valós szám, melyre $P(\xi < q_{\alpha}) = \alpha$. Jelentése: a populáción belül a vizsgált ξ mennyiség az egyedek α hányadánál kisebb, mint q_{α} .

Az α -kvantilis becslésére egy ξ_1,\ldots,ξ_n statisztika minta alapján több módszer is létezik. Mi most nem adunk precíz matematikai formulát a becslésre, csak a becslés alapötletét ismertetjük.

Empirikus kvantilis, percentilis (percentile): Az a \hat{q}_{α} szám, melyre teljesül, hogy a ξ_1, \ldots, ξ_n értékek α hányada kisebb, mint \hat{q}_{α} . Például: empirikus medián:

$$\hat{q}_{50\%} = egin{cases} ext{a k\"oz\'eps\~o mintaelem}, & ext{ha n p\'aratlan}, \ ext{a k\'et k\"oz\'eps\~o \'atlaga}, & ext{ha n p\'aros}. \end{cases}$$

Feladat: Adjunk becslést a testmagasság elméleti mediánjára a kar férfi hallgatóinak populációjában.

A rendezett minta: 168, 173, 175, 180, 183, 188. A becslés:

$$q_{50\%}pprox\hat{q}_{50\%}=$$
 két középső mintaelem átlaga $=177,5.$

A **boxplot** egy olyan grafikon, mely az alábbi statisztikai mutatószámokat ábrázolja egyszerű formában:

További mutatószámok:

- Terjedelem (range) = max min = a boxplot magassága,
- Interkvartilis távolság (interquartile range):

IQR = felső kvartilis - alsó kvartilis = a doboz magassága.

Konfidencia intervallumok (confidence intervals)

A statisztikában egy minta alapján kétféle formában becsülhetjük meg az ismeretlen mennyiségeket (várható érték, szórást, stb.):

- Pontbecslés: Az ismeretlen mennyiséget egyetlen számmal becsüljük meg, és reménykedünk benne, hogy nem tévedünk nagyot.
- Intervallumbecslés: Egy intervallumot adunk meg, mely nagy megbízhatósággal tartalmazza a kérdéses mennyiséget.

Legyen ξ_1,\ldots,ξ_n statisztikai minta egy ξ valószínűségi változóra, és legyen $\alpha\in(0,1)$. A minta alapján felírt [a,b] intervallum egy $1-\alpha$ megbízhatóságű **konfidencia intervallum a várható értékre**, ha

$$P(E(\xi) \in [a, b]) = 1 - \alpha.$$

- A megbízhatóság általában 90%, 95% vagy 99% szokott lenni, a biostatisztikában tipikusan a 95%-ot használják.
- A konfidencia intervallum hasonló módon definiálható tetszőleges más mutatószámra is (szórás, variancia, medián, stb.)

Feladat: Legyen ξ normális eloszlású valószínűségi változó ismeretlen μ várható értékkel és ismert σ szórással. Egy ξ_1, \ldots, ξ_n statisztikai minta alapján adjunk konfidencia intervallumot a várható értékre.

Tétel. Ha a ξ háttérváltozó normális eloszlású, akkor a $\xi_1 + \cdots + \xi_n$ összeg és a $\overline{\xi} = (\xi_1 + \dots + \xi_n)/n$ mintaátlag is normális eloszlású változó.

Jelölje $\mu_{ar{\mathcal{E}}}$ és $\sigma_{ar{\mathcal{E}}}$ a mintaátlag várható értékét és szórását. Ekkor

•
$$\mu_{\bar{\xi}} = \mathsf{E}(\bar{\xi}) = \mathsf{E}(\xi) = \mu$$
,

•
$$\sigma_{\overline{\xi}} = D(\overline{\xi}) = D(\xi)/\sqrt{n} = \sigma/\sqrt{n}$$
.

Az alábbi ábrán a ξ háttérváltozó és a $\overline{\xi}$ mintaátlag sűrűségfüggvénye látható:

Először megadunk egy olyan intervallumot, mely 1-lpha valószínűséggel tartalmazza a $\overline{\xi}$ változót. Az intervallumot most is $[\mu_{\bar{\xi}}-c\sigma_{\bar{\xi}},\mu_{\bar{\xi}}+c\sigma_{\bar{\xi}}]$ alakban keressük. Standardizálással:

$$1 - \alpha = P\left(\mu_{\bar{\xi}} - c\sigma_{\bar{\xi}} \le \bar{\xi} \le \mu_{\bar{\xi}} + c\sigma_{\bar{\xi}}\right) = P\left(-c \le \frac{\xi - \mu_{\bar{\xi}}}{\sigma_{\bar{\xi}}} \le c\right)$$
$$= P\left(-c \le \eta_{0,1} \le c\right) = \Phi(c) - \Phi(-c) = \Phi(c) - \left[1 - \Phi(c)\right] = 2\Phi(c) - 1$$

Tehát $\Phi(c) = 1 - \alpha/2$, amiből $c = \Phi^{-1}(1 - \alpha/2)$. Ezt az értéket ki tudjuk keresni a táblázatból tetszőleges $\alpha \in (0,1)$ esetén.

A fenti nagy formulát a következő módon tudjuk továbbalakítani:

$$\begin{aligned} &1 - \alpha = P \left(\mu_{\bar{\xi}} - c \sigma_{\bar{\xi}} \leq \overline{\xi} \leq \mu_{\bar{\xi}} + c \sigma_{\bar{\xi}} \right) = P \left(-\overline{\xi} - c \sigma_{\bar{\xi}} \leq -\mu_{\bar{\xi}} \leq -\overline{\xi} + c \sigma_{\bar{\xi}} \right) \\ &= P \left(\overline{\xi} + c \sigma_{\bar{\xi}} \geq \mu_{\bar{\xi}} \geq \overline{\xi} - c \sigma_{\bar{\xi}} \right) = P \left(\overline{\xi} + c \frac{\sigma}{\sqrt{n}} \geq \mu \geq \overline{\xi} - c \frac{\sigma}{\sqrt{n}} \right) \end{aligned}$$

De hát ez éppen egy konfidencia intervallum az $E(\xi) = \mu$ ismeretlen várható értékre:

$$1-lpha=Pigg(\mathsf{E}(\xi)\in\left[\,\overline{\xi}-crac{\sigma}{\sqrt{n}}\,,\,\overline{\xi}+crac{\sigma}{\sqrt{n}}\,
ight]igg)$$

Legyen ξ normális eloszlású változó ismert σ szórással. Ekkor a változó várható értékére a következő formában adható $1-\alpha$ megbízhatóságú konfidencia intervallum:

$$\left[\overline{\xi} - c \frac{\sigma}{\sqrt{n}}, \, \overline{\xi} + c \frac{\sigma}{\sqrt{n}}\right], \qquad c = \Phi^{-1} \left(1 - \frac{\alpha}{2}\right).$$

Feladat: Tegyük fel, hogy a kar férfi hallgatóinak testmagassága normális eloszlású $\sigma=7$ cm szórással. Adjunk 95% megbízhatóságú konfidencia intervallumot a testmagasság várható értékére (az átlagos testmagasságra).

A minta: 180, 175, 188, 168, 173, 183.

A mintaméret és a mintaátlag: n=6, $\overline{\xi}=177.8$.

Most $\alpha = 5\% = 0.05$, tehát $c = \Phi^{-1}(0.975) = 1.96$.

Az intervallum:

$$\[177.8 - 1.96\frac{7}{\sqrt{6}}, 177.8 + 1.96\frac{7}{\sqrt{6}}\] = \[172.2, 183.4\].$$

De mi ennek az intervallumnak a jelentése?

Probléma: a ξ háttérváltozó igazi szórását sosem tudjuk.

Megoldás: helyettesítsük a szórást a becslésével: $\sigma \approx D_n^*(\xi)$. Ennek az az ára, hogy a c értéket a **Student-eloszlás** táblázatából kell kikeresni.

Legyen ξ normális eloszlású változó ismeretlen szórással. Egy $1-\alpha$ megbízhatóságú konfidencia intervallum a változó várható értékére:

$$\left[\overline{\xi} - c \frac{\mathsf{D}_n^*(\xi)}{\sqrt{n}} \,,\, \overline{\xi} + c \frac{\mathsf{D}_n^*(\xi)}{\sqrt{n}}\right] = \left[\overline{\xi} - c\,\mathsf{SE} \,,\, \overline{\xi} + c\,\mathsf{SE}\right], \quad c = \Phi_{n-1}^{-1}\bigg(1 - \frac{\alpha}{2}\bigg).$$

ltt Φ_{n-1} az n-1 szabadsági fokú Student-eloszlás eloszlásfüggvénye.

Feladat: Adjunk 95% megbízhatóságú konfidencia intervallumot a kar férfi hallgatóinak átlagos testmagasságra ismeretlen szórás esetén!

Most:
$$n = 6$$
, $\overline{\xi} = 177.8$, $D_6^*(\xi) = 7.25$, $c = \Phi_5^{-1}(0.975) = 2.57$.

Az intervallum:

$$\left[177,8-2,57\frac{7,25}{\sqrt{6}}\,,\,177,8+2,57\frac{7,25}{\sqrt{6}}\right]=\left[170,2\,,\,185,4\right].$$

Kérdés: Hogyan értelmezhető a kapott eredmény?

A mintavételezés során a véletlen sok különböző mintarealizációt sorsolhat ki nekünk. Ezek két csoportba sorolhatóak:

- "Jó" mintarealizációk: az ezekből számolt konfidencia intervallum tartalmazza az ismeretlen várható értéket. Ezek teszik ki az összes lehetséges mintarealizáció $1-\alpha=0.95$ hányadát.
- "Rossz" mintarealizációk: ezek félrevezetőek, ugyanis a belőlük számolt konfidencia intervallum nem tartalmazza a várható értéket. Ezek alkotják az összes realizáció $\alpha = 0.05$ hányadát.

Kérdés: Ebben a feladatban jó vagy rossz mintarealizációt kaptunk? Ezt nem tudjuk eldönteni. Csak reménykedhetünk benne, hogy a jók közül kaptunk egyet, ugyanis ezek vannak többségben.

Kérdés: Ismeretlen szórás esetén miért kaptunk bővebb intervallumot? Nem volt ismert a szórás, ami további bizonytalanságot jelentett. Emiatt egy kis "ráhagyással" kellett számolnunk: nagyobb lett a c érték, ami bővebb intervallumot eredményezett.

Kérdés: Hogyan értelmezhető az intervallum: $[\xi - c SE, \overline{\xi} + c SE]$?

A konfidencia intervallum felírásakor a $\overline{\xi}$ mintaátlagból indulunk ki, ugyanis ez egy jó becslése a várható értéknek. Erre a becslésre mérjük fel a c SE szorzatot két oldalra. Ebben a szorzatban két dolog jelenik meg:

- A standard hiba számszerűsíti, hogy mennyire jól becsli a mintaátlag a várható értéket, mekkora "ráhagyással" kell számolni a konfidencia intervallum felírásakor.
- A c értékben a megbízhatóság jelenik meg: nagyobb megbízhatóság \Rightarrow magasabb c érték \Rightarrow bővebb intervallum.

Kérdés: Miért nem számolunk 99,99%-os megbízhatósággal?

A magasabb megbízhatóság szélesebb intervallumot jelent. A túl széles intervallum viszont nehezíti az eredmény alkalmazhatóságát.

A 95%-os választás jó egyensúlyt jelent a két cél (magas megbízhatóság és szűk konfidencia intervallum) között. A megbízhatóság további növelése drasztikusan szélesebb intervallumot eredményez. Csak akkor dolgozunk magasabb megbízhatósággal, ha a standard hiba alacsony.

Kérdés: Mi a helyzet akkor, ha a ξ nem normális eloszlású?

A levezetésnek a következő tétel volt az alapja: ha a ξ háttérváltozó normális eloszlású, akkor a $\bar{\xi}$ mintaátlag is normális eloszlású változó.

Tétel. Ha a minta nem normális eloszlásből jön, de a mintaméret elég nagy, akkor a $\overline{\xi}$ mintaátlag közel normális eloszlású.

A tételnek az a következménye, hogy a kapott intervallum egy közelítő konfidencia intervallum a várható értékre tetszőleges & háttérváltozó esetén:

$$P(E(\xi) \in [\overline{\xi} - cSE, \overline{\xi} + cSE]) \approx 1 - \alpha.$$

Kérdés: Mit jelent ebben az esetben az "elég nagy mintaméret"? Erre a kérdésre nincs egyszerű válasz, a szükséges mintaméret attól függ,

hogy a ξ változó eloszlása mennyire hasonlít a normális eloszláshoz:

- (közel) szimmetrikus eloszlás esetén 20–30 mintaelem tipikusan elég szokott lenni a pontos közelítéshez,
- ferde eloszlás esetén jellemzően kell legalább 50, vagy akár még annál is több mintaelem.

Hipotézisvizsgálat

A hipotézisvizsgálat (hypothesis testing) alapfogalmai:

- Adott egy ξ háttérváltozó és egy ξ_1, \ldots, ξ_n statisztikai minta.
- Null-hipotézis (H_0 , null hypothesis): Egy állítás a ξ változóra.
- Alternatív hipotézis (HA, alternative hypothesis): Egy másik állítás a ξ változóra.
- A hipotézisvizsgálat célja: A két hipotézis közül valamelyik igaz. Döntsük el a statisztikai minta alapján, hogy H_0 vagy H_A igaz.

Például: $H_0 : E(\xi) = 2$, $H_A : E(\xi) = 4$.

A továbbiakban a kurzuson az alternatív hipotézis mindig a nullhipotézis tagadása lesz. Azt kell eldönteni, hogy H_0 igaz vagy nem. Például:

- $H_0: P(\xi = 5) = 1/2$, $H_A: P(\xi = 5) \neq 1/2$.
- H_0 : ξ normális eloszlású, H_A : ξ nem normális eloszlású.

A hipotézisvizsgálat menete:

- Eldöntjük, hogy milyen módszerrel tesztelünk.
- A statisztikai minta alapján kiszámoljuk a próbastatisztika (test statistic) értékét: s_n.
- Meghatározzuk a kritikus értéket (critival value): c.
- Ha $|s_n| \le c$, akkor elfogadjuk (accept) a nullhipotézist. Ha $|s_n| > c$, akkor elvetjük (reject) a nullhipotézist.

Az egész olyan, mint egy bírósági tárgyalás:

- A nullhipotézis a vádlott szava ("ártatlan vagyok").
- A statisztikai minta a bizonyítékok halmaza.
- A próbastatisztika (s_n) azt fejezi ki, hogy a vádlott szava mennyire van ellentmondásban a bizonyítékokkal.
- A c kritikus érték egy küszöbérték. Ha $|s_n| \le c$, akkor a bíró hisz a vádlottnak, és felmenti. Ha $|s_n| > c$, akkor nem hisz neki, és elítéli.

Feladat: A kar férfi hallgatóinak testmagasságát vizsgáljuk, jelölje ξ egy véletlenszerűen kiválasztott férfi hallgató magasságát. Mit állíthatunk ξ várható értékéről, az átlagos testmagasságról a teljes populáción belül?

- Megfigyelt értékek: 180, 175, 188, 168, 173, 183.
- Becslések: $E(\xi) \approx \overline{\xi} = 177.8$, $D(\xi) \approx D_6^*(\xi) = 7.25$.

Teszteljük a következő nullhipotézist: H_0 : $E(\xi) = 175$.

Látni fogjuk, hogy a várható értéket a t-próba segítségvel lehet tesztelni:

Próbastatisztika:

$$s_n = \frac{\overline{\xi} - 175}{D_n^*(\xi)/\sqrt{n}} = \frac{177.8 - 175}{7,25/\sqrt{6}} = 0,946,$$

- ullet A kritikus érték: c=2,571. (Miért ennyi? Majd később kiderül.)
- Döntés: $|s_n| \le c$, tehát a nullhipotézist elfogadjuk. A megfigyelt értékek nincsenek ellentmondásban a nullhipotézis állításával.

Kérdés: Biztosan jól döntöttünk? Biztos, hogy a nullhipotézis igaz?

Sajnos nem: ha félrevezető a minta, amivel dolgozunk, akkor helytelen következtetést vonhatunk le, és hibás döntést hozunk?

Milyen hibákat véthetünk a hipotézisvizsgálat során:

• Elsőfajú hiba (type I error): Elvetjük az igaz nullhipotézist, tehát börtönbe küldünk egy ártatlant. Valószínűsége:

$$\alpha = P(\text{elvetj\"uk } H_0\text{-t} \mid H_0 \text{ igaz}).$$

 Másodfajú hiba (type II error): Elfogadjuk a hamis nullhipotézist, tehát felmentünk egy bűnöst. Valószínűsége:

$$\beta = P(\text{elfogadjuk } H_0\text{-t} \mid H_0 \text{ hamis}).$$

Még egy fogalom:

erő (power) =
$$P(\text{elvetj\"uk } H_0\text{-t} \mid H_0 \text{ hamis}) = 1 - \beta$$
.

A lehetőségeket az alábbi táblázatban foglalhatjuk össze:

	elfogadjuk	elvetjük
H_0 igaz	helyes döntés	elsőfajú hiba
H_0 hamis	másodfajú hiba	helyes döntés

Mire hathatunk és mire nem a hipotézisvizsgálat során?

- Akkor vetjük el a nullhipotézist, ha $|s_n| > c$.
- A nullhipotézis, a tesztelési módszer és a statisztikai minta adott: az s_n próbastatisztika értékét nem tudjuk befolyásolni.
- A c kritikus értéket (=mennyire szigorú a bíró) mi választjuk.

Meg lehet választani úgy a kritikus értéket, hogy mindkét hiba alacsony maradjon? Erre sajnos nincs lehetőség:

alacsony elsőfajú hiba \Rightarrow magas kritikus érték \Rightarrow magas másodfajú hiba alacsony másodfajú hiba \Rightarrow alacsony kritikus érték \Rightarrow magas elsőfajú hiba Adott n mintaméret esetén a kétfajta hiba nagysága egymással ellentétesen változik, ha módosítjuk a kritikus értéket:

A hipotézisvizsgálat során az α elsőfajú hibát (szignifikancia szintet) előre meg szoktuk adni, és a kritikus értéket ennek megfelelően választjuk. A szignifikancia szint kicsi (tipikusan 1%, 5% vagy 10%) szokott lenni (ártatlanok védelme). A β másodfajú hibára nincsen ráhatásunk.

A kritikus érték meghatározása:

- ullet A feladat megadja az $\,lpha\,$ szignifikancia szintet (=elsőfajú hiba).
- ullet Meghatározzuk a hozzá tartozó kritikus értéket (c_lpha) és tesztelünk.
- ullet A eta másodfajú hiba lehet kicsi vagy nagy is, erre nincs ráhatásunk.

A hipotézisvizsgálat során megjelenő valószínűségek:

	elfogadjuk	elvetjük
H_0 igaz	1-lpha (nagy)	lpha (kicsi)
H_0 hamis	β (nem ismert)	1-eta (nem ismert)

Hogyan lehet értelmezni a hipotézisvizsgálat eredményét?

- Ha elfogadjuk a nullhipotézist, az nem jelent semmit sem:
 - lehetséges, hogy a nullhipotézis igaz, tehát jól döntöttünk,
 - lehetséges, hogy hamis, és másodfajú hibát vétettünk.
- Ha elvetjük a nullhipotézist, az már jelent valamit:
 - lehetséges ugyan, hogy a nullhipotézis igaz, és elsőfajú hibát vétettünk, de ennek kicsi az esélye, ez ritkán történik meg,
 - a nullhipotézis elvetése tipikusan azt jelenti, hogy a nullhipotézis hamis.

Az általunk tanult tesztelési módszerek esetében $\beta \to 0$, ha $n \to \infty$. Tehát ha növeljük a mintaméretet, akkor a másodfajú hiba is alacsony lesz. Ez azt jelenti, hogy ezeknél módszereknél nagy mintaméret esetén a nullhipotézis elfogadása már tényleg arra utal, hogy a nullhipotézis igaz.

Az egymintás *t*-próba

Egymintás t-próba (One sample t test)

Cél a ξ valószínűségi változó várható értékének tesztelése egy ξ_1, \ldots, ξ_n statisztikai minta alapján.

- Feltevések.
 - ξ normális eloszlású változó ismeretlen μ várható értékkel,
 - μ₀ egy tetszőleges hipotetikus érték.
- Nullhipotézis: $H_0: \mu = \mu_0$.
- Próbastatisztika: (t-próba esetén hagyományosan t_n a jele)

$$t_n = \frac{\overline{\xi} - \mu_0}{\mathsf{D}_n^*(\xi)/\sqrt{n}} = \frac{\overline{\xi} - \mu_0}{\mathsf{SE}}.$$

- Kritikus érték: $c_{\alpha} = \Phi_{n-1}^{-1}(1 \alpha/2)$.
- Döntés: akkor fogadjuk el a nullhipotézist, ha $|t_n| \leq c_{\alpha}$.

Feladat: A kar férfi hallgatóinak testmagasságát vizsgáljuk, jelölje ξ egy véletlenszerűen kiválasztott férfi hallgató magasságát. Mit állíthatunk ξ várható értékéről, az átlagos testmagasságról a teljes populáción belül?

- Megfigyelt értékek: 180, 175, 188, 168, 173, 183.
- Becslések: $E(\xi) \approx \overline{\xi} = 177.8$, $D(\xi) \approx D_6^*(\xi) = 7.25$.

Teszteljük 5%-os szignifikancia szinten azt, hogy H_0 : $\mathsf{E}(\xi)=175$.

Tegyük fel, hogy a testmagasság normális eloszlást követ a populáción belül. Ekkor a t-próba alkalmazható.

- ullet Hipotetikus érték, szignifikancia szint: $\mu_0=175, \quad lpha=0,05.$
- Próbastatisztika:

$$t_n = \frac{\overline{\xi} - \mu_0}{\mathsf{D}_n^*(\xi)/\sqrt{n}} = \frac{177.8 - 175}{7.25/\sqrt{6}} = 0.946,$$

- A kritikus érték: $c_{\alpha} = \Phi_{n-1}^{-1}(1 \alpha/2) = \Phi_{5}^{-1}(0.975) = 2.571.$
- Döntés: $|t_n| \le c$, tehát a nullhipotézist elfogadjuk. A várható érték nem különbözik szignifikáns (=statisztikailag kimutatható) mértékben a 175-ös értéktől.

Mi a gondolat a t-próba mögött? A mintaátlag jó becslése a μ igazi várható értéknek, tehát

$$t_n = \frac{\overline{\xi} - \mu_0}{\mathsf{SE}} \approx \frac{\mu - \mu_0}{\mathsf{SE}}.$$

A $H_0: \mu = \mu_0$ nullhipotézist teszteljük.

Ha a nullhipotézis igaz, akkor

$$t_n \approx \frac{\mu - \mu_0}{\mathsf{SE}} = 0.$$

Ha a nullhipotézis nem igaz, akkor

$$t_n pprox rac{\mu - \mu_0}{\mathsf{SE}}
eq 0.$$

A nullhipotézist akkor fogadjuk el, ha $|t_n| \leq c_{\alpha}$, tehát ha t_n nullához közeli szám. Ez logikus ötlet, hiszen

- ha $t_n \approx 0$, akkor az arra utal, hogy H_0 igaz,
- ha $t_n \not\approx 0$, akkor az arra utal, hogy H_0 nem igaz.

Fejtsük ki egy kicsit jobban az előző oldalt! Mikor fogadjuk el H_0 -t?

$$\begin{aligned} |t_n| &\leq c_\alpha \iff -c_\alpha \leq t_n \leq c_\alpha \iff -c_\alpha \leq \frac{\overline{\xi} - \mu_0}{\mathsf{SE}} \leq c_\alpha \\ &\iff \overline{\xi} - c_\alpha \, \mathsf{SE} \leq \mu_0 \leq \overline{\xi} + c_\alpha \, \mathsf{SE} \iff \mu_0 \in \left[\overline{\xi} - c_\alpha \, \mathsf{SE} \,, \, \overline{\xi} + c_\alpha \, \mathsf{SE}\right] \end{aligned}$$

Amit kaptunk, az az $1-\alpha$ megbízhatóságú konfidencia intervallum a normális eloszlás várható értékére. Ekkor

$$\begin{split} &P\big(\mathsf{elfogadjuk}\; H_0\text{-t} \mid H_0 \; \mathsf{igaz}\big) = P\Big(\mu_0 \in \left[\overline{\xi} - c_\alpha \, \mathsf{SE} \, , \, \overline{\xi} + c_\alpha \, \mathsf{SE}\right] \mid \mu = \mu_0\Big) \\ &= P\Big(\mu \in \left[\overline{\xi} - c_\alpha \, \mathsf{SE} \, , \, \overline{\xi} + c_\alpha \, \mathsf{SE}\right]\Big) = 1 - \alpha. \end{split}$$

Ebből következik, hogy

$$P(\text{elvetj\"uk } H_0\text{-t} \mid H_0 \text{ igaz}) = 1 - P(\text{elfogadj\'uk } H_0\text{-t} \mid H_0 \text{ igaz}) = \alpha.$$

Az előző oldalon levezetett számolásnak több fontos következménye van:

- A próba pontosan akkor fogadja el a μ_0 hipotetikus várható értéket, ha μ_0 az $1-\alpha$ megbízhatóságú konfidencia intervallumba esik. A konfidencia intervallum értelmezhető olyan módon, mint a "hihető" várható értékek halmaza.
- Ha a minta normális eloszlásból jön, akkor a t-próba pontosan betartja az előírt elsőfajú hibát:

$$P(\text{elvetj\"uk } H_0\text{-t} \mid H_0 \text{ igaz}) = \text{megadott szignifikancia szint.}$$

 Ha a minta nem normális eloszlásból származik, de a mintaméret elég nagy, akkor a t-próba használható a várható érték tesztelésére. Ebben az esetben a próba csak közelítőleg tartja be az előírt elsőfajú hibát:

 $P(\text{elvetj\"uk } H_0\text{-t} \mid H_0 \text{ igaz}) \approx \text{megadott szignifikancia szint.}$

Lefutattam a *t*-próbát 5%-os szignifikancia szinten a testmagasságokra az R programmal, az alábbi eredményt kaptam:

One Sample t-test

data: magassag

t = 0.95723, df = 5, p-value = 0.3824

alternative hypothesis: true mean is not equal to 175

95 percent confidence interval: 170.2246 185.4420

sample estimates: mean of x 177.8333

Ertelmezzük, hogy milyen információ van az outputban:

- Egymintás *t*-próba a "magassag" nevű adatsoron.
- Próbastatisztika: t = 0.95723, szabadsági fok (degrees of freedom): df = 5.
- Nullhipotézis és alternatív hipotézis: $H_0: \mu=175, H_A: \mu\neq175.$
- 95%-os konfidencia intervallum: [170.2246, 185.4420].
- Mintaátlag: 177.8333

A program által adott értékek kissé eltérnek attól, amit mi kaptunk: nálunk sok volt a kerekítési hiba. Felmerülő kérdések:

• Hol a kritikus érték és a döntés? És mi az a "p-value"?

A **p-érték (p-value)** az a határ szignifikancia szint, amikor még éppen elfogadjuk a nullhipotézist, tehát $c_{p\text{-value}}=t_n$. Ekkor

elvetjük
$$H_0$$
-t \iff $|t_n| > c_{\alpha} \iff$ p -value $< \alpha$.

A statisztikai programok tesztelés során gyakran nem a kritikus értéket, hanema p-értéket adják meg. A p-érték 0 és 1 közé esik, és értelmezhető olyan módon, hogy mennyire "hihető" a nullhipotézis az adott statisztikai minta mellett. A nullhipotézist akkor vetjük el, ha a p-érték alacsony.

Az előző feladatban: p-value = 0.3824 > α = 0.05, tehát H_0 -t elfogadjuk.

Kétmintás hipotézisvizsgálat

Legyenek ξ és η valószínűségi változók. Két statisztikai minta:

- ullet ξ_1,\ldots,ξ_n független megfigyelések ξ -re,
- ullet η_1,\ldots,η_m független megfigyelések η -ra.

A minták segítségével becsléseket végezhetünk:

- $\overline{\xi} = \mathsf{E}_n(\xi) \approx \mathsf{E}(\xi), \quad \mathsf{D}_n^*(\xi) \approx \mathsf{D}(\xi),$
- $\overline{\eta} = \mathsf{E}_m(\eta) \approx \mathsf{E}(\eta), \quad \mathsf{D}_m^*(\eta) \approx \mathsf{D}(\eta).$

A minták tipikusan kétfajta kapcsolatban állhat egymással:

- Független minták (independent samples): A minták között nincs kapcsolat, mert a két minta független mintavételezésből származik.
 Például: egymástól függetlenül veszünk mintát két részpopulációból.
- Összetartozó minták (paired samples, related samples): A ξ_i és az η_i megfigyelés minden i esetén a populáció ugyanazon egyedére vonatkozik, ezért ezek az értékek nem függetlenek egymástól. Ebben az esetben mindig n=m.

Feladat: Döntsük el, hogy az alábbi példákban független vagy összetartozó mintákról van szó.

- ξ_1, \dots, ξ_n : n véletlenszerűen kiválasztott férfi hallgató testmagassága,
 - η_1, \ldots, η_m : m véletlenszerűen kiválasztott női hallgató testmagassága.

Független minták: a minták független megfigyelésekből jönnek.

- 2 n férfi hallgató testmagassága egy mai felmérésben, \bullet ξ_1,\ldots,ξ_n
 - η_1, \ldots, η_n : ugyanezen hallgatók édesanyjának testmagassága.

Összetartozó minták: a megfigyelések azonos egyedekre vonatkoznak.

- ξ_1, \ldots, ξ_n : n férfi hallgató testmagassága egy mai felmérésben,
 - η_1, \ldots, η_n : n férfi hallgató testmagassága egy 5 évvel ezelőtti független felmérésben.

Független minták: a minták független megfigyelésekből jönnek.

- n férfi hallgató testmagassága egy mai felmérésben, \bullet ξ_1,\ldots,ξ_n
 - η_1, \ldots, η_n : ugyanezen hallgatók testmagassága egy 5 évvel ezelőtti felmérésben.

Összetartozó minták: a megfigyelések azonos egyedekre vonatkoznak.

A ξ és az η valószínűségi változó **együttesen normális eloszlást követ**, ha tetszőleges a és b valós számok esetén $a\xi + b\eta$ normális eloszlású. Ez egy kicsivel több annál, hogy ξ és η normális eloszlású.

Tegyük fel, hogy

- ullet és η együttesen normális eloszlásúak,
- ullet a várható értékek $(\mu_{\xi}$ és $\mu_{\eta})$ ismeretlenek,
- ξ_1, \ldots, ξ_n és η_1, \ldots, η_n összetartozó minták,

Célunk a következő nullhipotézist tesztelni: $H_0: \mu_\xi = \mu_\eta.$

Gondolatmenet:

- $(+1)\xi + (-1)\eta = \xi \eta$ normális eloszlású változó.
- $\xi_1-\eta_1,\ldots,\xi_n-\eta_n$ statisztikai minta a $\xi-\eta$ változóra.
- $\mathsf{E}(\xi-\eta)=\mathsf{E}(\xi)-\mathsf{E}(\eta)=\mu_{\xi}-\mu_{\eta}$, ezért $H_0\Leftrightarrow\mathsf{E}(\xi-\eta)=0$.
- Teszteltjük a $H_0: \mathsf{E}(\xi-\eta)=0$ nullhipotézist egymintás t-próbával.

Foglaljuk össze, hogyan lehet összetartozó minták várható értékét tesztelni:

Páros t-próba (paired samples t test)

Cél a várható értékek tesztelése összetartozó minták esetén.

- Feltevések:
 - ξ és η együttesen normális eloszlásúak,
 - a várható értékek $(\mu_{\xi}$ és $\mu_{\eta})$ ismeretlenek,
 - ξ_1, \ldots, ξ_n és η_1, \ldots, η_n összetartozó minták.
- Nullhipotézis: $H_0: \mu_{\mathcal{E}} = \mu_n$.
- Próbastatisztika:

$$t_n = \frac{\xi - \eta - 0}{\mathsf{D}_n^*(\xi - \eta)/\sqrt{n}}.$$

- Kritikus érték: $c_{\alpha} = \Phi_{n-1}^{-1}(1 \alpha/2)$.
- Döntés: akkor fogadjuk el a nullhipotézist, ha $|t_n| \leq c_{\alpha}$.

Legyen

- ullet $\xi=$ véletlenszerűen kiválasztott férfi hallgató testmagassága ma,
- ullet $\eta=$ ugyanezen hallgató testmagassága 5 évvel ezelőtt,
- ullet $\xi-\eta=$ testmagasság változása 5 év alatt.

Várható értékek:

- ullet $\mu_{\xi}=\mathsf{E}(\xi)=\mathsf{férfi}$ hallgatók átlagos testmagassága ma,
- ullet $\mu_{\eta}=\mathsf{E}(\eta)=\mathsf{ugyanezen}$ hallgatók átlagos magassága 5 évvel ezelőtt,
- $\mu_{\xi} \mu_{\eta} = \mathsf{E}(\xi \eta) = \mathsf{\acute{a}tlagos}$ magasságváltozás 5 év alatt.

Nullhipotézis: $H_0: \mu_{\xi} = \mu_{\eta}$. Helyette: $H_0: \mathsf{E}(\xi - \eta) = 0$.

Statisztikai minták: (n = 6)

- Kiválasztott hallgatók magassága ma: 180, 175, 188, 168, 173, 183.
- Ugyanezen hallgatók magassága 1 éve: 175, 172, 184, 167, 170, 178.
- Minta a $\xi \eta$ változóra: 5, 3, 4, 1, 3, 5.

Minta a $\xi-\eta$ változóra: 5, 3, 4, 1, 3, 5.

Becslések:

- Mintaátlag: $\overline{\xi-\eta}=3.5pprox \mathsf{E}(\xi-\eta).$
- Korrigált empirikus szórás: $\mathsf{D}_6^*(\xi-\eta)=1{,}52\approx \mathsf{D}(\xi-\eta).$

Nullhipotézis: $H_0: E(\xi - \eta) = 0.$

Egymintás t-próba:

Próbastatisztika:

$$t_n = \frac{\overline{\xi - \eta}}{\mathsf{D}_n^*(\xi - \eta)/\sqrt{n}} = \frac{3.5 - 0}{1.52/\sqrt{6}} = 5.64.$$

- A kritikus érték: $c_{\alpha} = \Phi_{n-1}^{-1}(1 \alpha/2) = \Phi_{5}^{-1}(0.975) = 2.571.$
- Döntés: $|t_n| > c_{\alpha}$, tehát a nullhipotézist elvetjük. A populációban az átlagos testmagasság szignifikáns módon változott az elmúlt 5 év folyamán.

Kétmintás t-próba (independent samples t test)

Cél a várható értékek tesztelése független minták esetén.

- Feltevések:
 - ξ és η normális eloszlásúak,
 - a várható értékekek $(\mu_\xi$ és $\mu_\eta)$ és a szórások $(\sigma_\xi$ és $\sigma_\eta)$ ismeretlenek,
 - ullet a szórások megegyeznek: $\sigma_{\mu}=\sigma_{\eta}$,
 - ξ_1, \ldots, ξ_n és η_1, \ldots, η_m független minták.
- Nullhipotézis: $H_0: \mu_{\xi} = \mu_{\eta}.$
- Próbastatisztika: $t_{n,m}=(\overline{\xi}-\overline{\eta})/\operatorname{D}_{n,m}$, ahol

$$\mathsf{D}_{n,m} = \sqrt{\left[\left(n-1\right)\mathsf{Var}_n^*(\xi) + \left(m-1\right)\mathsf{Var}_m^*(\eta)\right]\frac{n+m}{nm(n+m-2)}}$$

- Kritikus érték: $c_{\alpha} = \Phi_{n+m-2}^{-1}(1 \alpha/2)$.
- Döntés: akkor fogadjuk el a nullhipotézist, ha $|t_{n,m}| \leq c_{\alpha}$.

Mi a kétmintás t-próba alapötlete? A mintaátlag jó becslés a várható értékre, ezért

$$t_{n,m} = \frac{\overline{\xi} - \overline{\eta}}{\mathsf{D}_{n,m}} pprox \frac{\mu_{\xi} - \mu_{\eta}}{\mathsf{D}_{n,m}}.$$

A $H_0: \mu_{\mathcal{E}} = \mu_n$ nullhipotézist teszteljük.

Ha a nullhipotézis igaz, akkor

$$t_{n,m} pprox rac{\mu_{\xi} - \mu_{\eta}}{\mathsf{D}_{n,m}} = 0.$$

Ha a nullhipotézis nem igaz, akkor

$$t_{n,m} pprox rac{\mu_{\xi} - \mu_{\eta}}{\mathsf{D}_{n,m}}
eq 0.$$

A nullhipotézist akkor fogadjuk el, ha $t_{n,m}$ nullához közeli szám. Ez logikus ötlet, hiszen

- ha $t_{n,m} \approx 0$, akkor az arra utal, hogy H_0 igaz,
- ha $t_{n,m} \not\approx 0$, akkor az arra utal, hogy H_0 nem igaz.

Feladat: Teszteljük azt a nullhipotézist, hogy a kar férfi hallgatóinak átlagos testmagassága nem változott ez elmúlt 5 év folyamán. (lpha=5%)

- $\xi = \text{v\'eletlenszer\'uen kiv\'alasztott f\'erfi hallgat\'o testmagass\'aga ma,}$
- η = véletlenszerű hallgató magassága az 5 évvel ezelőtti populációban.

Várható értékek:

Legyen

- $\mu_{\xi} = \mathsf{E}(\xi) = \mathsf{férfi} \; \mathsf{hallgatók} \; \mathsf{átlagos} \; \mathsf{testmagassága} \; \mathsf{ma},$
- $\mu_{\eta} = \mathsf{E}(\eta) = \mathsf{f\acute{e}rfi}$ hallgatók átlagos testmagassága 5 évvel ezelőtt.

Statisztikai minták két független felmérésből:

- Kiválasztott hallgatók magassága ma: 180, 175, 188, 168, 173, 183.
- Kiválasztott hallgatók magassága 5 éve: 171, 178, 183, 168, 175.

Becslések:

- $\mu_{\xi} \approx \overline{\xi} = 177.8$, $\sigma_{\xi} \approx D_{6}^{*}(\xi) = 7.25$.
- $\mu_{\eta} pprox \overline{\eta} = 175$, $\sigma_{\eta} pprox \mathsf{D}_5^*(\eta) = 5.87$.

Nullhipotézis: $H_0: \mu_\xi = \mu_\eta$.

Feltehető, hogy a minták normális eloszlásból származnak és az elméleti szórások azonosak $(\sigma_{\xi} = \sigma_{\eta})$.

Kétmintás t-próba:

• Próbastatisztika: $t_{n,m} = (177.8 - 175)/3.845 = 0.73$, ugyanis

$$D_{n,m} = \sqrt{\left[(6-1)7,25^2 + (5-1)5,87^2 \right] \frac{6+5}{6\cdot 5\cdot (6+5-2)}} = 3,845.$$

- Kritikus érték: $c_{\alpha} = \Phi_{9}^{-1}(0.975) = 2.262$.
- Döntés: $|t_{n,m}| \leq c_{\alpha}$, ezért a nullhipotézist elfogadjuk. A kar férfi hallgatóinak átlagos testmagassága az elmúlt 5 évben nem változott szignifikáns mértékben.

F-próba (F test)

Cél a szórások tesztelése független minták esetén.

- Feltevések:
 - ullet és η normális eloszlásúak, a szórások $(\sigma_{\xi}$ és $\sigma_{\eta})$ ismeretlenek,
 - ξ_1, \ldots, ξ_n és η_1, \ldots, η_m független minták.
- Nullhipotézis: $H_0: \sigma_\xi = \sigma_\eta$.
- Próbastatisztika, kritikus érték: nem tanuljuk.

Welch-próba (Welch test)

Ugyanaz, mint a kétmintás t-próba, de nem kell a szórások egyenlősége.

- Feltevések:
 - ξ és η normális eloszlásúak,
 - ullet a várható értékekek $(\mu_{\xi}$ és $\mu_{\eta})$ ismeretlenek,
 - ξ_1, \ldots, ξ_n és η_1, \ldots, η_m független minták.
- Nullhipotézis: $H_0: \mu_{\xi} = \mu_{\eta}$.
- Próbastatisztika, kritikus érték: nem tanuljuk.

A tanult statisztikai módszerek (becslések, tesztek) mögött matematikai tételek állnak. Ezek a tételek garantálják, hogy megfelelő feltételek mellett ezek a módszerek jól működnek. (Például a becslések erősen konzisztensek, a tesztek betartják az előírt elsőfajú hibát.) De mennyire hetékonyak ezek a módszerek akkor, ha a szükséges feltételek nem teljesülnek?

Egy statisztikai módszer robusztus (robust) egy feltételre nézve, ha a módszer a feltétel elhagyásával is jól alkalmazható. Például:

- A tanult t-próbák és a Welch-próba robusztus a normalitási feltételre nézve, ezek a próbák nem normális eloszlásra is alkalmazhatóak, ha a mintaméret elég nagy. (50 mintaelem elég szokott lenni.)
- A kétmintás t-próba nem robusztus a szórásfeltételre nézve. Ha a szórások nem azonosak, akkor a Welch-próbát kell alkalmazni.

Kovariancia és korreláció

Eddig azt vizsgáltuk, hogy egy ξ mennyiségnek milyen az eloszlása egy populáción belül. A továbbiakban két mennyiség $(\xi$ és $\eta)$ együttes viselkedésével foglalkozunk. Főleg az a kérdés, hogy milyen irányú és milyen erősségű kapcsolat van a két változó között. A fontosabb esetek:

- Pozitív irányú kapcsolat: a ξ és az η (jellemzően) azonos irányba mozdul el. (Például: testmagasség és testsúly.)
- Negatív irányú kapcsolat: ξ és η (jellemzően) egymással ellentétes irányba mozog.
- Független változók: nincs kapcsolat az értékek között.

Legyen ξ és η valószínűségi változó. Ekkor a két változó **kovarianciája** (covariance) illetve korrelációs együtthatója (correlation coefficient):

$$\mathsf{Cov}(\xi,\eta) = \mathsf{E}\Big(\big[\xi - \mathsf{E}(\xi)\big]\big[\eta - \mathsf{E}(\eta)\big]\Big), \quad \mathsf{corr}(\xi,\eta) = \frac{\mathsf{Cov}(\xi,\eta)}{\mathsf{D}(\xi)\,\mathsf{D}(\eta)}.$$

Ha a kovariancia (és ezáltal a korrelációs együttható) értéke nulla, akkor azt mondjuk, hogy a két változó korrelálatlan (uncorrelated).

A kovariancia és a korrelációs együttható fontosabb tulajdonságai:

- A kovariancia és a korrelációs együttható a teljes populációt jellemzi valamilyen (de vajon milyen?) szempontból.
- Lehetséges értékek: $\mathsf{Cov}(\xi,\eta) \in \mathbb{R}$, $\mathsf{corr}(\xi,\eta) \in [-1,+1]$.
- Szimmetria: $Cov(\xi, \eta) = Cov(\eta, \xi)$, $corr(\xi, \eta) = corr(\eta, \xi)$.
- Ha ξ és η függetlenek, akkor korrelálatlanok is. Viszont a korrelálatlanságból nem következik a függetlenség.
- Ha a két változó együttesen normális eloszlású, akkor a függetlenség és a korrelálatlanság ekvivalens fogalmak.

Lineáris regresszió a teljes populáción: szeretnénk megérteni, hogy az $\,\eta\,$ változó értéke milyen módon alakul ki. Vegyük a következő reprezentációt:

$$\eta = (a\xi + b) + \varepsilon = \text{predikciós tag} + \text{hibatag}.$$

Elnevezések és modellfeltevések:

- ullet a magyarázó változó, η a függő változó,
- ullet az egyedre jellemző **hibatag**, ami független a ξ változótól,
- $E(\varepsilon) = \text{átlagos hiba} = 0$.

A regressziós modell lehetséges alkalmazásai:

- Becslés az η változóra: ha a hibatag kicsi, akkor $\eta \approx a\xi + b$.
- Megérteni, hogy milyen hatások szerint alakul ki az η változó.

Probléma: több olyan egyenes is létezhet, ami teljesíti a modellfeltevéseket.

Mi a $D(\varepsilon)$ szórás jelentése a populációra nézve?

$$\mathsf{D}(arepsilon) = arepsilon$$
 átlagos eltérése a 0 várható értéktől
$$= \mathsf{az} \ \mathsf{abszol\acute{u}t} \ \mathsf{hiba} \ \mathsf{\acute{a}tlagos} \ \mathsf{\acute{e}rt\acute{e}ke}$$

Cél: azt az egyenest keressük, melynél $D(\varepsilon)$ minimális, ugyanis ez az egyenes illeszkedik a legjobban a ponthalmazra.

Minimalizáljuk a hibatag szórását az a és b változókban!

$$D^{2}(\varepsilon) = D^{2}(\eta - a\xi - b) = D^{2}(\eta) + a^{2}D^{2}(\xi) - 2aD(\xi)D(\eta)\operatorname{corr}(\xi, \eta)$$

Deriválással:

$$0 = \frac{\partial \mathsf{D}^2(\varepsilon)}{\partial \mathsf{a}} = 2\mathsf{a}\mathsf{D}^2(\xi) - 2\mathsf{D}(\xi)\mathsf{D}(\eta)\operatorname{corr}(\xi,\eta),$$

amiből következik, hogy

$$a = \frac{\mathsf{corr}(\xi, \eta) \, \mathsf{D}(\eta)}{\mathsf{D}(\xi)}.$$

Azt is tudjuk, hogy $E(\varepsilon) = 0$, tehát

$$0 = \mathsf{E}(\varepsilon) = \mathsf{E}(\eta - a\xi - b) = \mathsf{E}(\eta) - a\mathsf{E}(\xi) - b,$$

amiből

$$b = \mathsf{E}(\eta) - a\mathsf{E}(\xi) = \mathsf{E}(\eta) - rac{\mathsf{corr}(\xi,\eta)\,\mathsf{D}(\eta)}{\mathsf{D}(\xi)}\mathsf{E}(\xi).$$

Legyen $\,\xi\,$ és $\,\eta\,$ a Tisza illetve a Maros vízhozama torkolat felett. Ekkor

$$\mathsf{E}(\xi) = 660, \ \ \mathsf{D}(\xi) = 160, \ \ \mathsf{E}(\eta) = 200, \ \ \mathsf{D}(\eta) = 50, \ \ \mathsf{corr}(\xi,\eta) = 0.8.$$

Az előző oldalakon kapott formulák alkalmazásával kapjuk, hogy

$$a = \frac{\text{corr}(\xi, \eta) D(\eta)}{D(\xi)} = 0.25, \qquad b = E(\eta) - aE(\xi) = 35.$$

Tehát a két vízhozamra az alábbi regressziós modell írható fel:

$$\eta=a\xi+b+\mathsf{hibatag}=0.25\xi+35+\mathsf{hibatag}\approx0.25\xi+35$$
 .

A mai napon $\xi = 800$, tehát $\eta \approx 0.25 \cdot 800 + 35 = 235$.

Viszgáljuk meg a varianciákat! A tagok függetlensége miatt

$$\mathsf{D}^2(\eta) = \mathsf{D}^2(a\xi + b + \varepsilon) = \mathsf{D}^2(a\xi + b) + \mathsf{D}^2(\varepsilon).$$

Egy kis számolás után (amit nem részletezünk) a predikciós tag varianciája

$$\mathsf{D}^2(\mathsf{a}\xi+\mathsf{b})=\mathsf{corr}^2(\xi,\eta)\mathsf{D}^2(\eta).$$

Ebből következik, hogy a hibatag varianciája

$$\mathsf{D}^2(\varepsilon) = \mathsf{D}^2(\eta) - \mathsf{D}^2(a\xi + b) = \left[1 - \mathsf{corr}^2(\xi, \eta)\right] \mathsf{D}^2(\eta).$$

Foglaljuk össze, hogy mit kaptunk:

- A pedikciós tag varianciája a teljes varianciának corr $^2(\xi, \eta)$ hányada. "Ekkora mértékben magyarázza a ξ változó az η értékét."
- A hibatag varianciája a teljes varianciának $1 \text{corr}^2(\xi, \eta)$ hányada. "Ekkora mértékben magyarázza az arepsilon változó az η értékét."

Feladat: Mekkora a predikciós tag illetve a hibatag várható értéke illetve szórása a vízhozamos feladatban? Milyen arányban magyarázza a Tisza vízhozama a Maros vízhozamát?

A modell: $\eta = (0.25\xi + 35) + \varepsilon = \text{predikciós tag} + \text{hibatag}$. A predikciós tag várható értéke:

$$\mathsf{E}(\mathsf{predikciós}\;\mathsf{tag}) = 0.25\;\mathsf{E}(\xi) + 35 = 0.25\cdot 600 + 35 = 200.$$

A varianciák:

$$D^{2}(\text{predikciós tag}) = D^{2}(a\xi + b) = \text{corr}^{2}(\xi, \eta)D^{2}(\eta) = 0.8^{2} \cdot 50^{2} = 1600,$$

$$D^{2}(\text{hibatag}) = D^{2}(\varepsilon) = \left[1 - \text{corr}^{2}(\xi, \eta)\right]D^{2}(\eta) = \left[1 - 0.8^{2}\right] \cdot 50^{2} = 900.$$

Foglaljuk össze ezeket egy táblázatban:

Hatás	Е	Var	D	Var%
Tisza $(a\xi+b)$	200	1600	40	64%
hibatag $(arepsilon)$	0	900	30	36%
Maros (η)	200	2500	50	100%

A Tisza 64%, a hibatag 36% arányban magyarázza a Maros vízhozamát.

Milyen módon jellemzi a korrelációs együttható a ξ és az η változó kapcsolatát? Induljunk ki a következő két összefüggésből:

$$\mathbf{a} = \frac{\mathsf{corr}(\xi, \eta) \mathsf{D}(\eta)}{\mathsf{D}(\xi)}, \qquad \mathsf{D}^2(\varepsilon) = \left[1 - \mathsf{corr}^2(\xi, \eta)\right] \mathsf{D}^2(\eta).$$

A regressziós egyenes meredeksége (a) alapján:

- Ha $\operatorname{corr}(\xi,\eta)>0$, akkor a>0, tehát a változók között pozitív irányú kapcsolat van.
- Ha $\operatorname{corr}(\xi,\eta)<0$, akkor a<0, tehát a változók között negatív irányú kapcsolat van.

A hibatag varianciája alapján:

- Ha $\operatorname{corr}(\xi,\eta)\approx \pm 1$, akkor $\operatorname{D}(\varepsilon)\approx 0$. Ebben az esetben jó az illeszkedés a regressziós egyeneshez, a változók közötti kapcsolat erős.
- Ha $\operatorname{corr}(\xi,\eta)\approx 0$, akkor a $\operatorname{D}(\varepsilon)$ szórás nagy. Ebben az esetben nem jó az illeszkedés a regressziós egyeneshez, a változók között gyenge a kapcsolat (vagy akár függetlenek is).

Statisztikai lineáris regresszió

Az előző részben két mennyiség $(\xi$ és η) kapcsolatát vizsgáltuk a teljes populáción belül. Probléma: nem ismerjük a változók elméleti várható értékét, szórását és korrelációs együtthatóját. Megoldás: egy statisztikai minta alapján mindent becsülni fogunk.

Tekintsünk összetartozó mintákat a $\,\xi\,$ és $\,\eta\,$ változókra:

- ξ_1, \ldots, ξ_n független megfigyelések ξ -re,
- ullet η_1,\ldots,η_n az η mennyiség értékei ugyanezen egyedeknél.

Empirikus kovariancia (sample covariance) és empirikus korrelációs együttható (sample correlation coefficient):

$$\mathsf{Cov}_n(\xi,\eta) = \frac{1}{n-1} \sum_{i=1}^n \left(\xi_i - \overline{\xi} \right) \left(\eta_i - \overline{\eta} \right), \qquad \mathsf{corr}_n(\xi,\eta) = \frac{\mathsf{Cov}_n(\xi,\eta)}{\mathsf{D}_n^*(\xi) \, \mathsf{D}_n^*(\eta)}.$$

$$\eta = (a\xi + b) + \varepsilon = \text{predikciós tag} + \text{hibatag}.$$

Lineáris regresszió a mintaelemeken:

$$\eta_i = (\hat{a}\xi_i + \hat{b}) + \hat{\varepsilon}_i = \text{predikciós tag} + \text{reziduális}, \qquad i = 1, \dots, n.$$

Az egyenest a **legkisebb négyzetes becslés (least squares estimation)** alkalmazásával kapjuk meg: keressük azon \hat{a} és \hat{b} számokat, melyekre

$$S(\hat{a},\hat{b}) = \sum_{i=1}^{n} \hat{\varepsilon}_{i}^{2} = \sum_{i=1}^{n} (\eta_{i} - \hat{a}\xi_{i} - \hat{b})^{2} \longrightarrow \min.$$

Az összeget \hat{a} és \hat{b} szerint deriválva:

$$0 = \frac{\partial S}{\partial \hat{a}} = -2 \sum_{i=1}^{n} (\eta_i - \hat{a}\xi_i - \hat{b})\xi_i,$$

$$0 = \frac{\partial S}{\partial \hat{b}} = -2 \sum_{i=1}^{n} (\eta_i - \hat{a}\xi_i - \hat{b}).$$

Az egyenletrendszer megoldása:

$$\hat{a} = \frac{\mathsf{corr}_n(\xi, \eta) \, \mathsf{D}_n^*(\eta)}{\mathsf{D}_n^*(\xi)}, \qquad \hat{b} = \overline{\eta} - \frac{\mathsf{corr}_n(\xi, \eta) \, \mathsf{D}_n^*(\eta)}{\mathsf{D}_n^*(\xi)} \overline{\xi}.$$

Vegyük észre: lényegében elemenként becsültünk mindent *a* és *b* formulájában.

A kapott becslések erősen konzisztensek, tehát $n \to \infty$ esetén

$$\mathsf{Cov}_n(\xi,\eta) o \mathsf{Cov}(\xi,\eta), \quad \mathsf{corr}_n(\xi,\eta) o \mathsf{corr}(\xi,\eta), \quad \hat{a} \to a, \quad \hat{b} \to b.$$

Mennyire jó az illeszkedés a regressziós egyeneshez? A teljes populáción az illeszkedés "jóságát" a corr $^2(\xi,\eta)$ mennyiség számszerűsíti. Becslése a minta alapján: R-squared = $\operatorname{corr}_{n}^{2}(\xi, \eta)$. Tulajdonságai:

- \bullet 0 < R-squared < 1,
- Annál jobb az illeszkedés, minél nagyobb az R-squared értéke,
- Ha R-squared < 0.5, akkor nagyon rossz az illeszkedés a regressziós egyeneshez, nagyok a hibatagok, ezért a modell alapján nem érdemes becsléseket végezni.

Korrelációs teszt

Cél a ξ és az η valószínűségi változó függetlenségének tesztelése összetartozó minták alapján.

- ullet Feltevés: ξ és η együttesen normális eloszlású.
- Nullhipotézis: H_0 : ξ és η függetlenek.
- Próbastatisztika: egy ronda formula, amiben szerepel az empirikus korreláció.

Megjegyzések:

- Ez a teszt nem robusztus a normalitásfeltételre nézve: nagy minta esetén szimmetrikus eloszlásra még alkalmazható, de dőlt eloszlásra ne használjuk!
 - Mit alkalmazzunk dőlt eloszlás esetén? Spearman-féle korreláció.
- Mi a jelentősége a függetlenségvizsgálatnak a regressziós modellben? Ha a próba nem veti el ξ és η függetlenségét, akkor nem érdemes regressziót végezni.

Varianciaanalízis

Korábban kétmintás t-próbával tesztelteltük a várható értékek azonosságát részpopuláción belül. Most több részcsoportot fogunk vizsgálni egyszerre. Véletlenszerűen kiválasztva egy egyedet tekintsünk két változót:

- $\xi = az$ egyed melyik részcsoportba esik (diszkrét változó),
- $\eta = \text{egy vizsgált mennyiség (diszkrét vagy folytonos változó)}$.

Modellezzük az $\,\eta\,$ mennyiséget a következő módon: ha az egyed a j. csoportba esik (tehát $\xi=j$), akkor legyen

$$\eta = a_j + \varepsilon = \text{csoporthat}$$
ás $+$ egyedi hatás,

ahol

- a_i rögzített valós szám, a j. csoport hatása,
- $E(\varepsilon)=0$, és ε független a ξ változótól.

Az η változó átlagos értéke a j. csoportban (feltételes várható érték):

$$\mathsf{E}(\eta \mid \xi = j) = \mathsf{a}_j + \mathsf{E}(\varepsilon) = \mathsf{a}_j.$$

Tehát a modell:

$$\eta = \mathit{a_j} + \varepsilon = \mathsf{csoporthat\'{a}s} + \mathsf{egyedi}$$
 hat\'{as}

Adjunk becslést a populációátlagra és a csoporthatásokra. A teljes minta:

- ullet minta az 1. részcsoportra: $\eta_{11},\eta_{12},\ldots,\eta_{1n_1},$
- minta a 2. részcsoportra: $\eta_{21}, \eta_{22}, \dots, \eta_{2n_2}$
- ...
- ullet minta az utolsó (r.) részcsoportra: $\eta_{r1},\eta_{r2},\ldots,\eta_{rn_r}$.

A teljes minta elemszáma: $n=n_1+n_2+\cdots+n_k$. Mintaátlag: $\overline{\eta}$.

Mintaátlag a j. csoportban: $\overline{\eta}_j = (\eta_{j1} + \eta_{j2} + \cdots + \eta_{jn_j})/n_j$.

Legyenek $\hat{a}_1, \hat{a}_2, \dots, \hat{a}_k$ a becslések. A j. csoport egy tetszőleges egyedére vonatkozó **reziduális**:

$$\hat{\varepsilon}_{ji} = \eta_{ji} - \hat{a}_j \approx \eta_{ji} - a_j = \varepsilon_{ji}$$
.

A paramétereket a legkisebb négyzetek módszerével fogjuk becsülni:

SSW = a mintaelemek reziduálisainak négyzetösszege

$$=\sum_{j=1}^r\sum_{i=1}^{n_j}\hat{\varepsilon}_{ji}^2=\sum_{j=1}^r\sum_{i=1}^{n_j}\left[\eta_{ji}-\hat{a}_j\right]^2\longrightarrow \min$$

Egy kis számolás után a következő becsléseket kapjuk:

Mennyiség	Elméleti érték	Becslés
j. csoport átlaga	a _j	$\hat{a}_j = \overline{\eta}_j$
Egyedi hatás (hibatag)	$\varepsilon_{ji} = \eta_{ji} - a_j$	$\hat{arepsilon}_{ji} = \eta_{ji} - \overline{\eta}_{j}$

Az előző oldalról:

SST = sum of squares (total) =
$$\sum_{j=1}^{r} \sum_{i=1}^{n_j} (\eta_{ji} - \overline{\eta})^2$$

= milyen mértékben szóródnak az adatok a mintaátlag körül

Ez a szóródás két forrásból származik:

SSW = sum of squares (within groups) =
$$\sum_{j=1}^{r} \sum_{i=1}^{n_j} (\eta_{ji} - \overline{\eta}_j)^2$$

= milyen mértékben szóródnak az adatok a csoportátlagok körül

SSB = sum of squares (between groups) =
$$\sum_{j=1}^{r} \sum_{i=1}^{n_j} (\overline{\eta}_i - \overline{\eta})^2$$

= milyen mértékben szóródnak a csoportátlagok a mintaátlag körül Megmutatható, hogy SST = SSW + SSB.

Varianciaanalízis (Analysis of Variances, ANOVA)

A cél azt tesztelni, hogy minden csoportnak azonos a hatása, tehát a teljes populáción belül azonosak a csoportátlagok.

- ullet Feltevések: az η változó minden csoporton belül normális eloszlást követ, és minden csoporton belül azonos a szórása.
- Nullhipotézis: $H_0: a_1 = a_2 = \ldots = a_r$.
- Próbastatisztika: $F = \frac{SSB}{SSW} \frac{n-r}{r-1}$.

A kapott értékeket az ANOVA táblázatban szoktuk összefoglalni:

Effect	Df	Sum Sq	Mean Sq	F value	Pr(>F)
ξ	<i>r</i> – 1	SSB	$\frac{SSB}{r-1}$	$\frac{SSB}{SSW} \frac{n-r}{r-1}$	p-value
Residuals	n-r	SSW	$\frac{SSW}{n-r}$		
Total	n-1	SST			

Ha a csoportonkénti szórások azonosak, akkor $D(\varepsilon) \approx SSW/(n-r)$.

Megjegyzések:

- Alapötlet: ha H_0 igaz, akkor SSB ≈ 0 , tehát $F \approx 0$. Akkor fogadjuk el a nullhipotézist, ha $F \leq c$, ahol c a kritikus érték.
- A teszt robusztus a normalitásfeltételre nézve, de nem robusztus a szórásfeltételre nézve. Ha a szórások nem azonosak, akkor használjuk inkább a Welch-féle ANOVA tesztet.
- Két csoport (r = 2) esetén: ANOVA = kétmintás t-próba.
- Azt szeretjük, ha közel ugyanannyi megfigyelés esik minden csoportba.

Milyen módszerrel ellenőrizhető a csoportonkénti szórások egyenlősége?

- Levene-teszt: formálisan kell hozzá a csoportonkénti normalitás, de robusztus erre a feltételre nézve. (Opcióknál: median!)
- Bartlett-teszt: formálisan ehhez is kell a csoportonkénti normalitás, és nem robusztus erre a feltételre nézve. (Ezért kevésbé ajánlott.)
- F-próba: csak r=2 csoport esetén működik, és ez a legérzékenyebb a normalitásra.

Várható érték és szórás tesztelése független minták alapján, illetve a robusztusság a normalitásfeltételre nézve:

	Csoportok száma	a Várható érték teszt (azonos szórás) Várható érték teszt (tetszőleges szórás)		Szórás teszt	
-	r = 2	Két mintás t-próba (robusztus)	Welch- próba (robuszt us)	F-próba (nem robusztus!!!)	
-	$r \ge 2$	ANOVA (robusztus)	Welch-féle ANOVA (robuszt us)	Levene-teszt (robusztus)	

Lineáris modellek

A lineáris regresszió és az ANOVA azonos alapötletre épül: egy magyarázó változó megfelelő függvényével modellezzük egy függő változó értékét. Ezt több magyarázó változóval is meg lehet tenni:

- Két (vagy több) magyarázó változó: ξ , ζ .
- Függő változó: η.
- Az egyedre jellemző hibatag: ε , független a magyarázó változóktól.

Lássunk néhány ilyen modellt!

Többszörös lineáris regresszió (multivariate linear regression):

Tipikusan akkor alkalmazzuk, ha a magyarázó változók folytonosak, de diszkrét változókra is lehet. A modell:

$$\eta = (a\xi + b\zeta + c) + \varepsilon = \text{predikciós tag} + \text{hibatag}.$$

Például: felnőtt embereket vizsgálunk,

testsúly =
$$a \cdot \text{testmagasság} + b \cdot \text{derékbőség} + c + \varepsilon$$
.

Többszempontos varianciaanalízis (multi-factor ANOVA):

A magyarázó változók **faktorok (factors)**, tehát olyan diszkrét változók, melyek részpopulációkat definiálnak. Ha az egyedre $\xi=i$ és $\zeta=j$, akkor

$$\eta = (m + a_i + b_j) + \varepsilon = \text{predikciós tag} + \text{hibatag}.$$

Jelölések:

- m = populációátlag,
- $a_i = az$ első faktor szerint az i-edik részpopuláció hatása,
- $b_i = a$ második faktor szerint a j-edik részpopuláció hatása.

Például: felnőtt embereket vizsgálunk,

- ξ : nem (1=férfi, 2=nő), csoporthatások: a_1, a_2 ,
- ζ : életmód, szokott-e sportolni (1=soha, 2=időnként, 3=naponta), csoporthatások: b_1, b_2, b_3 .

testsúly = populációátlag + nem hatása + életmód hatása + ε .

Kevert modell (mixed model): Akkor alkalmazzuk, ha a magyarázó változók között van faktor és folytonos változó is. Legyen ξ a folytonos változó és ζ a faktor. A modellben ha $\zeta=j$, akkor

$$\eta = (a\xi + b_j + c) + \varepsilon = \mathsf{predikciós} \; \mathsf{tag} + \mathsf{hibatag}.$$

Például: felnőtt embereket vizsgálunk,

testsúly = $a \cdot \text{testmagasság} + \text{életmód hatása} + c + \varepsilon$.

Lineáris modell (linear model): A magyarázó változók tetszőlegesek (folytonosak vagy diszkrétek) lehetnek. A modellben rögzítettek a *g* és *h* függvények, melyek segítségével:

$$\eta = a \cdot g(\xi) + b \cdot h(\zeta) + c + \varepsilon.$$

A bemutatott modellek (többszörös lineáris regresszió, többszempontos ANOVA, kevert modell) mind felírhatóak ilyen alakban, tehát ezek speciális esetei a lineáris modellnek.

Valószínűségek becslése és tesztelése

Feladat: Becsüljük meg egy statisztikai minta alapján azon egyedek arányát egy populációban, melyek rendelkeznek egy adott tulajdonsággal.

Válasszunk ki véletlenszerűen egy egyedet a populációból, és legyen:

A = a kiválasztott egyed rendelkezik a vizsgált tulajdonsággal

Ekkor: P(A) = a vizsgált tulajdonság aránya a populációban (ismeretlen) Vezessük be a következő valószínűségi változót:

$$\xi = \begin{cases} 1, & \text{ha a kiválasztott egyed rendelkezik a vizsgált tulajdonsággal,} \\ 0, & \text{ha nem rendelkezik.} \end{cases}$$

Ekkor:
$$P(\xi=1)=P(A)$$
 és $P(\xi=0)=1-P(A)$, tehát
$$\mathsf{E}(\xi)=0\cdot P(\xi=0)+1\cdot P(\xi=1)=0+1\cdot P(A)=P(A)$$
 = a vizsgált tulajdonság aránya a populációban.

Tehát igazából egy várható értéket kell megbecsülnünk!

a tulajdonság aránya a populációban = $P(A) = E(\xi) \approx \frac{\xi_1 + \dots + \xi_n}{n}$.

Sőt, ez egy erősen konzisztens becslés, tehát $\overline{\xi} o P(A)$, amint $n o \infty$.

Gyakoriság, tapasztalati gyakoriság (frequency): $k_A = \xi_1 + \cdots + \xi_n$. A mintaelemek közül ennyi rendelkezik a vizsgált tulajdonsággal.

Relatív gyakoriság (relative frequency): k_A/n .

A mintaelemek ekkora hányada rendelkezik a vizsgált tulajdonsággal.

A relatív gyakoriság erősen konzisztens becslés: ha $n o \infty$, akkor

$$k_A/n o P(A) =$$
 a tulajdonság aránya a teljes populációban

Feladat: Megvizsgáltunk 200 japán nemzetiségű embert, közülük 84 esett az A vércsoportba. Adjunk becslést az A vércsoport arányára Japánban! Az A vércsoport tapasztalati gyakorisága illetve relatív gyakorisága:

$$k_A=84$$
, $k_A/n=84/200=42\%\approx {\rm arany\ a\ populacioban}$.

a tulajdonság aránya a populációban = $P(A) = E(\xi)$. Tudjuk:

A várható értékre vonatkozó módszerek alkalmazásával lehetőség van:

- Konfidencia intervallumot adni a P(A) valószínűségre.
- Tesztelni a P(A) valószínűség értékét. Legyen $p \in [0, 1]$ tetszőleges hipotetikus valószínűség, és tekintsük az alábbi nullhipotézist:

$$H_0: P(A) = p$$
 tehát $H_0: E(\xi) = p$.

Ez a nullhipotézis tesztelhető t-próbával.

FONTOS: Most a ξ háttérváltozó nem normális eloszlást követ, emiatt ezek a módszerek csak nagy mintaméretre működnek. Tipikusan legyen n > 20, de inkább n > 50.

Mit tegyünk, ha csak kevés mintaelemünk van?

- Ne használjunk t-próbát!
- Alkalmazzuk a binomiális próbát, ugyanis ez tetszőleges n esetén alkalmazható. (Ezt a próbát nem tanuljuk.)

Feladat: Megvizsgáltunk 200 japán nemzetiségű embert, közülük 84 esett az A vércsoportba. Teszteljük azt a nullhipotézist, hogy a japán emberek körében az A vércsoport aránya 40%! Adjunk 95% megbízhatóságú konfidencia intervallumot erre az arányra!

Vezessük be a következő valószínűségi változót:

$$\xi = \begin{cases} 1, & \text{ha a kiv\'alasztott ember az A v\'ercsoportba esik,} \\ 0, & \text{ha nem oda esik.} \end{cases}$$

Nullhipotézis: $H_0: E(\xi) = 0,4.$

- Statisztikai minta $(\xi_1, \dots, \xi_{200})$: 84 db 1-es és 116 db 0-ás érték.
- Mintaátlag: $\overline{\xi} = 0.42$.
- Korrigált empirikus szórás: $D_n^*(\xi) = 0.495$.
- Standard hiba: $SE = D_n^*(\xi)/\sqrt{n} = 0.035$.
- Próbastatisztika: $t = (\overline{\xi} 0.4)/SE = 0.57$.
- Kritikus érték: $c = \Phi_{199}^{-1}(0.975) = 1.97$.
- Döntés: $|t| \le c$, ezért a nullhipotézist elfogadjuk.
- Konfidencia intervallum: $[\overline{\xi} c\,\mathsf{SE}, \overline{\xi} + c\,\mathsf{SE}] = [0.35, 0.49].$

Mit tesztelhetünk még hasonló módszerrel?

- Két vagy több részpopuláción belüli arányok összehasonlítása független minták alapján. Például:
 - ξ_1, \ldots, ξ_{200} : 200 japán ember közül ki esik az A vércsoportba (0/1)
 - $\eta_1, \ldots, \eta_{100}$: 100 magyar ember közül ki esik az A vércsoportba (0/1)

 H_0 : a japánoknál és a magyaroknál azonos az A vércsoport aránya Tesz: Welch-próba vagy ANOVA

- Egy populáción belüli két arány összehasonlítása összetartozó minták alapján. Például:
 - ξ_1, \ldots, ξ_{200} : 200 japán ember közül ki esik az A vércsoportba (0/1)
 - $\eta_1, \ldots, \eta_{200}$: ugyanezen emberek közül ki esik a B vércsoportba (0/1)

 H_0 : a japánoknál azonos az A és a B vércsoport aránya Tesz: páros t-próba.

FONTOS: kell a nagy minta! Legalább 50 megfigyelés kell minden egyes változóra. Kis mintaelemszám esetén olyan teszteket kell keresni, melyek speciálisan arányokra vannak kitalálva.

Tegyük fel, hogy a populáció valamely szempont szerint több részcsoportra bontható fel. Ezek a részcsoportok együttesen lefedik az összes egyedet, és minden csoportban van egyed. Feladat: teszteljük a részcsoportok arányát.

Legyen r > 2 a részcsoportok száma. Véletlenszerűen kiválasztunk egy egyedet, és legyen

 $A_i = a$ kiválasztott egyed az *i*-edik részcsoportba esik, $i = 1, \dots, r$.

Válasszunk ki véletlenszerűen n egyedet a populációból. Ekkor:

- $k_i = az i$ -edik csoport gyakorisága a mintában,
- $k_i/n = az$ i-edik csoport relatív gyakorisága a mintában.

Becslés: $k_i/n \approx P(A_i) = \text{az } i\text{-edik részcsoport aránya}.$ Kunosné Nedényi Fanni, Szűcs Gábor

Tekintsünk hipotetikus valószínűségeket (részarányokat): $p_1, \ldots, p_m > 0$, ahol $p_1 + \cdots + p_m = 1$. A célunk a következő nullhipotézist tesztelni:

$$H_0: P(A_i) = p_i$$
 minden i részcsoport esetén.

Ötlet: ha igaz a nullhipotézis, akkor az n elemű mintában körülbelül np_i olyan egyednek kell lennie, mely az i-edik csoportba tartozik.

χ^2 -próba (khinégyzet-próba) valószínűségek tesztelésére

A fenti nullhipotézis tesztelhető a következő próbastatisztikával:

$$\chi^2 = \frac{(k_1 - np_1)^2}{np_1} + \dots + \frac{(k_r - np_r)^2}{np_r}$$

A kritikus érték a χ^2 -eloszlás táblázatából kereshető ki.

Feltétel: nagy minta, $n \ge 5/\min(p_1, \ldots, p_r)$.

Vegyük észre, a fenti összegben minden tag a következő módon áll elő:

Feladat: Megvizsgáltunk 200 japán nemzetiségű embert. Közülük rendre 62, 84, 38 illetve 24 esett a 0, az A, a B és az AB vércsoportba. Adjunk becslést a vércsoportok arányára a teljes populáción belül! Teszteljük 90%-os szignifikancia szinten azt a nullhipotézist, hogy a japán emberek körében a vércsoportok aránya rendre 30%, 40%, 20% illetve 10%!

	0	Α	В	AΒ	össz.
Tapasztalati gyakoriság (k_i)	62	84	38	24	200
Relatív gyakoriság (k_i/n)	0,31	0,42	0,19	0,12	1
Hipotetikus valószínűség (p_i)	0,3	0,4	0,2	0,1	1
Várt gyakoriság (<i>np_i</i>)	60	80	40	20	200

Próbastatisztika:

$$\chi^2 = \frac{(62-60)^2}{60} + \frac{(84-80)^2}{80} + \frac{(38-40)^2}{40} + \frac{(24-20)^2}{20} = 1,17.$$

A kritikus érték a χ^2 -eloszlás táblázatából: c=6,25.

Most $|\chi^2| \le c$, tehát a nullhipotézist elfogadjuk.

Függetlenségvizsgálat

Kérdés: milyen módon tesztelhető egy ξ és egy η mennyiség függetlensége? Válasz: attól függ, hogy milyen változókról van szó...

- Korrelációs teszt a Pearson-féle korrelációs együtthatóval:
 - Csak normális eloszlású változókra.
 - A korrelációs együttható segítségével tényleg a függetlenséget teszteli.
- Korrelációs teszt a Spearman-féle korrelációs együtthatóval:
 - Folytonos eloszlású változókra, nem csak normálisra.
 - A korrelációs együttható segítségével tényleg a függetlenséget teszteli.
- ANOVA, kétmintás t-próba, Welch-próba:
 - Egyik változó diszkrét (csoportokat definiál), a másik folytonos.
 - Azt teszteli, hogy nincs csoporthatás, tehát az η változó várható értékére nem hat a ξ változó. Ez jóval kevesebb, mint a függetlenség!
- χ^2 -próba (khinégyzet-próba) függetlenségre:
 - Nem azonos a valószínűségeknél tanult χ^2 -próbával!
 - Mindkét változó diszkrét, a függetlenséget teszteli.
 - Kell a nagy mintaméret!

Adott két mennyiség a populációban, ξ és η . Összetartozó minták:

- ξ_1, \ldots, ξ_n : a ξ mennyiség értéke n kiválasztott egyednél,
- ullet η_1,\ldots,η_n az η mennyiség értéke ugyanezen egyedeknél.

 H_0 : a két mennyiség független egymástól.

Tesztelési módszer a változók típusa szerint:

	η diszkrét	η normális	η folytonos
ξ diszkrét	χ^2 -próba (nagy minta!)	ANOVA	ANOVA (nagy minta!)
ξ normális	ANOVA	Pearson-korreláció	Spearman-korreláció (nagy minta!)
ξ folytonos	ANOVA (nagy minta!)	Spearman-korreláció (nagy minta!)	Spearman-korreláció (nagy minta!)

Illeszkedésvizsgálat

Feladat: becsüljük meg és teszteljük le egy ξ mennyiség eloszlását a teljes populációban a ξ_1,\ldots,ξ_n megfigyelések alapján!

Legyen ξ diszkrét, és legyen $R_{\xi} = \{x_1, \dots, x_k\}$ az értékkészlete. Feladat: becsüljük meg és teszteljük a $P(\xi = x_i)$ valószínűségeket. Becslés:

 $P(\xi=x_i)pprox {
m relativ}$ gyakoriság= az x_i érték aránya a mintában

Tesztelés: adottak $p_1,\ldots,p_k>0$ hipotetikus arányok, $p_1+\cdots+p_k=1$.

$$H_0: P(\xi = x_i) = p_i$$
 minden i-re

Tesztelési módszer: χ^2 -próba a valószínűségekre. Probléma megoldva.

A továbbiakban csak azzal az esettel foglalkozunk, amikor ξ folytonos eloszlású egy ismeretlen f_{ξ} sűrűségfüggvénnyel.

Sűrűségfüggvény becslése **hisztogrammal**: bontsuk fel a számegyenest azonos (mondjuk h>0) hosszúságú intervallumokra. Minden intervallumra állítsunk egy olyan magas oszlopot, ahány elem esik az adott intervallumba. Az így kapott hisztogrammnak még nincs sok köze a sűrűségfüggvényhez.

Osszuk minden oszlop magasságát *nh*-val! Az így kapott új hisztogramm összterülete pontosan 1 lesz.

Tétel. Ha $n \to \infty$ és $h \to 0$, akkor az átskálázott hisztogramm konvergál az ismeretlen sűrűségfüggvényhez. Ilyen módon grafikus becslést adhatunk a sűrűségfüggvényre.

A legtöbb statisztikai program nem olyan módon ábrázolja a boxplotot, ahogyan azt korábban tanultuk. Általában felmérnek a doboz aljára és tetejére $1.5 \cdot \text{IQR}$ távolságot, és a bajúszt csak eddig ábrázolják. Az ezen kívül eső megfigyeléseket **outlier** értékeknek nevezzük, ezek egyesével vannak ábrázolva a boxploton.

Normalitásvizsgálat **boxplot** segítségével: amennyiben a minta normális eloszlásból jön, akkor a boxplotnak két speciális tulajdonsága van:

- A boxplot körülbelül szimmetrikus a mediánra.
- Az outlier értékek a teljes minta legfeljebb 1%-át teszik ki. Az ennél több outlier arra utal, hogy a minta nem normális eloszlásból jön. Ezt a tulajdonságot jól szemlélteti ez a Wikipedia ábra.

Mi lehet még az oka a sok outlier értéknek? Mérési hibák, jegyzőkönyvezési hibák, stb. Az adatelemzés során az outlier értékeket külön-külön meg szokták vizgálni, nem hibából származnak-e.

Rendezzük növekvő sorrendbe a megfigyelt értékeket: $\xi_1^* \leq \ldots \leq \xi_n^*$. Ezt nevezzük **rendezett mintának**. Legyen q_{α} a ξ változó α -kvantilise.

Tétel. Nagy mintaelemszám esetén $\xi_i^* \approx q_{i/(n+1)}$ minden *i-*re.

Q-Q plot: Koordináta-rendszerben ábrázoljuk a $(q_{i/(n+1)}, \xi_i^*)$ pontokat.

Eloszlásvizsgálat Q-Q plot segítségével: kíváncsiak vagyunk arra, hogy a minta egy adott (például normális) eloszlásból származik-e.

- Kiszámoljuk a kérdéses eloszlás kvantiliseit: $q_{1/(n+1)}, \ldots, q_{n/(n+1)}$
- Ábrázoljuk a Q-Q plotot.
- Ha a minta a kérdéses eloszlásból származik, akkor $\xi_i^* \approx q_{i/(n+1)}$ minden i-re, tehát minden pont az x = y egyenes közelébe esik.
- Ha a minta nem a kérdéses eloszlásból jön, akkor $\xi_i^* \not\approx q_{i/(n+1)}$ bizonyos megfigyelésekre, tehát egyes pontok nem illeszkednek az x = y egyeneshez.
- Hátrány: nem egzakt módszer, hanem szubjektív döntés.
- Előny: azt is le lehet olvasni az ábráról, hogy a minta mely értéktartományban milyen mértékben illeszkedik a kérdéses eloszláshoz.

Empirikus eloszlásfüggvény (sample distribution function):

 $F_n(x) = az x$ értéknél kisebb elemek relatív gyakorisága a mintában

Tulajdonságok:

- Minden x valós számra $F_n(x) \in [0, 1]$.
- Az F_n függvény egy lépcsős függvény. A mintaelemeknél van ugrása, és minden mintaelemnél 1/n az ugrás nagysága.
- Nagy mintaméret esetén $F(x) = P(\xi < x) \approx F_n(x)$.

A matematikai statisztika alaptétele: Jelölje F_{ξ} a minta valódi eloszlásfüggvényét. Ekkor

$$\max_{x\in\mathbb{R}}\left|F_n(x)-F_{\xi}(x)\right|\to 0, \qquad n\to\infty.$$

A tétel következményei:

- A matematikai statisztikának van értelme: a mintában van elég információ ahhoz, hogy mindent meg tudjunk becsülni.
- Tesztelhetjük az eloszlásfüggvényt.

Kolmogorov–Szmirnov-próba

Cél: teszteljük egy ξ változó eloszlásfüggvényét egy minta alapján. Legyen F_{ξ} az igazi eloszlásfüggvény (ismeretlen) és F_0 egy tetszőleges hipotetikus eloszlásfüggvény. Nullhipotézis: $H_0: F_{\xi} = F_0$. Próbastatisztika:

$$D_n = \max_{x \in \mathbb{R}} |F_n(x) - F_0(x)|.$$

Akkor fogadjuk el a nullhipotézist, ha $D_n \approx 0$.

A Kolmogorov-Szmirnov-próba tulajdonsága:

- Csak konkrét eloszlást lehet vele tesztelni. Például: H_0 : a ξ változó normális eloszlású 0 várható értékkel és 1 szórással.
- Tetszőleges eloszlás esetén alkalmazható, de főleg folytonos változókra szokták alkalmazni.
- Hátránya: kis mintaelemszám esetén alacsony az ereje, a hamis nullhipotéziseket is elfogadja.

Cél a normalitás tesztelése:

 H_0 : a ξ változó normális eloszlást követ valamilyen paraméterekkel

Fontosabb tesztelési módszerek:

- Lilliefors-teszt: Becslést végez a várható értékre és a szórásra a minta alapján, majd azt teszteli a K–Sz-próbával, hogy a minta normális eloszlást követ $\mu = \mathsf{E}_n(\xi)$ és $\sigma = \mathsf{D}_n^*(\xi)$ paraméterekkel.
- Shapiro-Wilk-teszt: Sokak szerint ez a legjobb normalitásteszt, kis mintaelemszám esetén is magas az ereje.

Skewness (ferdeség): egy olyan statisztikai mutatószám, mely a minta alapján jellemzi a sűrűségfüggvény szimmetriáját. Tulajdonságai:

- ullet skewness pprox 0: (közel) szimmetrikus sűrűségfüggvény
- skewness > 0: jobbra ferde sűrűségfüggvény
- skewness < 0: balra ferde sűrűségfüggvény

Néhány további gondolat

Az adatelemzés akkor hatékony, ha a statisztiai minta jól reprezentálja a teljes populációt. Hogyan kaphatunk **reprezentatív mintát**?

Véletlenszerű mintavételezés: véletlenszerűen kiválasztunk egyedeket a teljes populációból.

- Előny: egyszerűen és olcsón megvalósítható (biztos?)
- Hátrány: a reprezentativitáshoz nagy mintaméretre lehet szükség.

lrányítottan összeállított minta: a teljes populáción belüli arányokat figyelembe véve magunk állítunk össze egy mintát.

- Előny: kisebb mintaméter, mint véletlenszerű mintavételezésnél.
- Hátrány: előzetes ismeretekre van szükség a populációról; bonyolult és gyakran drága.
- Gyakran súlyozást alkalmaznak a populációarányok reprezentálásához.

Egyes statisztika programok (SPSS, R Commander) típusokba sorolják a változókat, és csak azokat az eljárásokat engedik futtatni, amik megfelelnek az adott típusnak. Milyen típusokról tanultunk eddig:

- Folytonos változó: mindig valós szám az értéke, az értékkészlete egy intervallumon.
- Diszkrét változó: valós szám vagy szöveg is lehet az értéke, de az értékkészlete véges.

Még egy kifejezés:

Faktor: csoportokat definiáló változó. Mindig diszkrét.

Milyen típusokba sorolján egyes programok a változókat:

- Skálaváltozó: értelmezhetőek a matematikai műveletek (összeadás, átlagolás). Például: testmagasság, utódok száma, vizsgajegy(?).
- Ordinális változó: nem értelmezhetőek a matematikai műveletek, de van rendezés az értékek között. Például: rendfokozatok, ordinális skálák.
- Nominális változó: nem értelmezhetőek a matematikai műveletek és rendezés sincs az értékek között. Például: nem, nemzetiség.