NREFLUX 1

Aqui realizamos a análise de sensibilidade S2-NREFLUX variando o numero de refluxo de $0.5 \rightarrow 5.0$ em intervalos de 0.1 para cada configuração encontrada até agora.

Em seguida realizamos a anaíse do design specks DS-1 tentando optimizar porem percebemos alguma inconsistencia nos valores e decidimos realizar uma segunda análise de sensibilidade com uma precisão maior para encontrar os melhores valores.

A segunda análise de sensibilidade, continua usando o S2-NREFLUX porem variando com a precisão de 0.001 indo do menor valor econtrado na análise de sensibilidade anteriror \pm 0.05 caso o melhor resultado esteja em alguma dessas extremidades realizar para os numeros de refluxo até o próximo valor ja simu-

Exemplo: Melhor valor encontrado foi 2.000, varia $1.95 \rightarrow 2.05$ variando 0.001 se melhor valor for em 2.05, simular $2.051 \rightarrow 2.099$

NSTAGES	RR	Reculperaç Tolueno	ão Cumeno	Error
Design Specs DS-1				
8	3.222	95.051 %	94.936%	$1.211\mathrm{E}^{-3}$
9	2.010	95.026%	94.847%	$1.884~{ m E}^{-3}$
10	1.629	95.067%	94.972%	$1.001~{\rm E}^{-3}$
11	1.426	95.070%	94.952%	$1.244~{ m E}^{-3}$
12	1.314	95.028%	94.967%	$6.425~{ m E}^{-4}$
Best values				
8	3.299	95.109 %	94.997%	$1.177\mathrm{E}^{-3}$
9	2.069	95.168%	94.998%	$1.786~{ m E}^{-3}$
10	1.634	95.091%	94.996%	$9.925\mathrm{E}^{-4}$
11	1.432	95.112%	94.995%	$1.228\mathrm{E}^{-3}$
12	1.317	95.054%	94.993 %	$6.379\mathrm{E}^{-4}$

coluna B1

Tabela 1: Melhores numeros de refluxo seguindo DS-1 e S2-NREFLUX para

 $\cdot 10^{-5}$ $\cdot 10^{-5}$ 122

que para que todos tenham o mesmo desempenho as maiores precisarão de menos refluxo para separar e vice-versa.

3 2.5

Figura 3: Relação inversa entre numero de pratos e refluxo

Se pode tirar uma sequencia mais optimizada para análise de dados que infelizmente não foi ultilizada nesse estudo:

- 1. Simular $0.5 \rightarrow 5.0$ em variação de 0.1
- 2. Simular intervalo melhor valor $\pm~0.1$ em variação de 0.01
- 3. Simular próximo intervalo de melhor valor anterior \pm 0.01 em variação de 0.001

Esse processo gera o menor numero de dados para atingir mesmo objetivo e pode ser repetido para atingir maiores precisões. Comparando com o processo ante-

rior, esse gera 10 dados cada etapa a partir da segunda, enquanto o processo anterior gera de 100 a 200, porem exige uma etapa a mais de simulação. Pela inconsistencia do DS-1 decidimos abandonar esses dados para fulturas

simulações, usando a análise de sensibilidade como o métodod mais confiável.