ICA 01 – Uke 4

Oppgave 1.2.1 Informasjonsmengde

Binær	Base_10
001	1
010	2
011	3
100	4
101	5
110	6
111	7

a) Lise har fått vite / lærer at tallet er et oddetall

Mulige binærkoder med informasjonen gitt: 011, 101 og 111.

b) Per har fått vite at tallet er IKKE et multiplum av 3 (dvs. ikke 0, 3, 6)

Luker ut følgende binærkoder: 001, 010, 100, 101 og 111. Følgende binærkoder som kan være riktige kode: **101 og 111.**

c) Oskar har fått vite at tallet inneholder nøyaktig 2 enere

Siden det bare er den binære koden **101** som innehar 2 enere, er det også derfor dette tallet vi skal frem til.

d) Louise har fått vite alt det Lise, Per og Oskar vet

Luise har som nevnt fått den samme informasjon som er nevnt over.

e) Hvor mye informasjon (i bits) har hver spiller fått?

$$log_{2}\left(\frac{10}{3}\right) = 1,73 \ bits$$
 $log_{2}\left(\frac{10}{7}\right) = 0,51 \ bits$
 $log_{2}\left(\frac{10}{5}\right) = 1 \ bit$
 $1,73 + 0,51 + 1 = 3,24 \ bits$
 $Total = 3,24 + 3,24 = 6,48 \ bits$

Formlene er i rekkefølge av oppgavene, altså første formell som har resultat 1,73 bits representerer resultatet av oppgave a.

Oppgave 1.2.2

Sannsynligheten:

$$P((X) = 0.8)$$

$$P (wY) = 0,1$$

$$P (xZ) = 0,1$$

Koden:

$$xX$$
 = x 0 ×

$$\text{«Y»} = \text{«10»}$$

$$x = x_1 = x_1 = x_2 = x_1 =$$

a) Hvorfor er en slik kode et bedre valg enn å kode alle valg med en 2-bits kode ("X" med "00", for eksempel)?

Fordi ved å komprimere koden til kun 2 siffer, vil koden ta mindre plass å overføre og lagres på RAM.

b) Analyser følgende kildekode ("source code") "00101001100000". Kildekoden skal leses fra venstre til høyre. Dekodere kildekoden og finn den opprinnelige meldingen (representert med X, Y og Z).

Source code: «00101001100000»

Dekodes til: «xxyyxzxxxxx»