Fractales

LPSC Semestre printemps 2022 Glenn Muller

Sommaire

- Introduction
- Calculateur de Mandelbrot
- Intégration du calculateur
- Résultats
- Conclusion

Introduction

- Composant mandelbrot_calculator
 - Réel : $Z_R = Z_R^2 Z_{Im}^2 + C_R$
 - Imaginaire : $Z_{Im} = 2 * Z_R * Z_{Im} + C_{Im}$
- Implémentation pour l'affichage

• Entrée sortie

Nom	Direction	Туре	Description	
Clk	In	Std_logic	Horloge	
Rst	In	Std_logic	Reset	
ready	Out	Std_logic	Prêt à calculer	
Start	In	Std_logic	Démarre le calcul	
Finished	Out	Std_logic	Calcul terminé	
C_real	In	Std_logic_vector(SIZE)	Partie réelle du nombre à évalué	
C_imaginary	In	Std_logic_vector(SIZE)	Partie imaginaire du nombre à évaluer	
Z_real	Out	Std_logic_vector(SIZE)	Partie réelle du résultat	
Z_imaginary	Out	Std_logic_vector(SIZE)	Partie imaginaire du résultat	
Iteration	Out	Std_logic_vector(SIZE)	Nombre d'itération effectué	

• Paramètres générique

Nom	Туре	Valeur initiale	Description
Comma	Integer	12	Nombres de bits après la virgule
Max_iter	Integer	100	Nombre d'itération maximale
SIZE	Integer	16	Taille des opérandes

• Schéma du calculateur

- Machine d'état
 - IDLE
 - Sortie Ready à 1
 - Compteur Reset et désactivé
 - Finish à 0
 - Compteur activé
 - Lecture c_real et c_imaginary
 - Basculement mode COMPUTE

- Machine d'état
 - IDLE
 - COMPUTE
 - Calcul de Mandelbrot effectué
 - Résultat utilisé comme nouvelle entrée
 - Calcul diverge $(RE^2 + IM^2 > 4)$
 - Limit d'itération atteinte
 - Compteur à 0 (affichage de noir)
 - Basculement en mode DONE

- Machine d'état
 - IDLE
 - COMPUTE
 - DONE
 - Finish à 1 (pendant un coup de clock)
 - Compteur Reset
 - Ready à 1
 - Basculement en mode IDLE

- Test du calculateur
 - Programme python
 - Banc de test

```
| z_real = 0.25000000
                                       z imag = 0.250000
iteration : 0
iteration : 1 | z real = 0.25000000 |
                                      z imag = 0.375000
iteration : 2 | z real = 0.17187500 |
                                      z imag = 0.437500
iteration : 3 | z_real = 0.08813477 |
                                      z imag = 0.400391
iteration : 4 | z real = 0.09745508 |
                                       z imag = 0.320577
                                      z imag = 0.312484
iteration : 5 | z real = 0.15672809 |
iteration : 6 | z real = 0.17691766 |
                                      z imag = 0.347950
iteration : 7 \mid z \text{ real} = 0.16023070
                                       z imag = 0.373117
```


Intégration du calculateur

- C_gen
 - Génération des nombres complexe c_real et c_imaginary
 - Ajout d'une entrée EnableNext
 - Connexion au ComplexValueGenerator
 - Fournit les valeurs complexe quand le calculateur à fini
 - Fonction Zoom sur deux bouton
- ClkMandelbrotxI
 - Génère clock pour le calculateur

Intégration du calculateur

- VgaHdmiToFpgaUserCDCxB.BramVidéoMemoryxl
 - Stockage des sorties du calculateur
 - Mémoire vidéo
 - Addresse fournit par c_gen
- VgaHdmiCDxB.Hdmixl
 - BRAM -> Bus HDMI

Résultat

• Affichage sans zoom

Résultats

Affichage avec Zoom

Résultats

• Performance énergétique

Power analysis from Implemented netlist. Activity derived from constraints files, simulation files or vectorless analysis.

Total On-Chip Power: 0.535 W

Design Power Budget: Not Specified

Power Budget Margin: N/A
Junction Temperature: 26.8°C

Thermal Margin: 58.2°C (17.2 W)

Effective θ JA: 3.3°C/W Power supplied to off-chip devices: 0 W

Confidence level: Medium

<u>Launch Power Constraint Advisor</u> to find and fix invalid switching activity

Résultats

• Performance temporelle

Design Timing Summary

Setup		Hold		Pulse Width	
Worst Negative Slack (WNS):	-2.589 ns	Worst Hold Slack (WHS):	0.144 ns	Worst Pulse Width Slack (WPWS):	2.845 ns
Total Negative Slack (TNS):	-316.918 ns	Total Hold Slack (THS):	0.000 ns	Total Pulse Width Negative Slack (TPWS):	0.000 ns
Number of Failing Endpoints:	466	Number of Failing Endpoints:	0	Number of Failing Endpoints:	0
Total Number of Endpoints:	5619	Total Number of Endpoints:	5619	Total Number of Endpoints:	531
Timing constraints are not me	et.				

Conclusion

- Calculateur testé et approuvé
- Intégration réussie
- Amélioration
 - Performance temporelle
 - Zoom plus poussé