VECTORES POSICIÓN Y VELOCIDAD. ENERGÍA CINÉTICA

Vector posición

1. Posición suma

a) Guardar en una variable llamada a_r un vector que indique la posición $\vec{r}_a = 3\hat{e}_x + 0\hat{e}_y + 5\hat{e}_z$.

c) Restar las variables correspondientes para realizar $\Delta \vec{r}_{a \to b} = \vec{r}_b - \vec{r}_a$ y guardar el resultado en ab_deltaR.

e) Para verificar que todo se hizo bien leer c_r y comprobar que $\vec{r_c} = \vec{r_b}$.

2. Posición en función de una variable

Una partícula de masa m está engarzada en un aro de radio R, por lo que su radio medido desde el centro del aro es constante. Basta entonces conocer el ángulo φ para describir su posición.

- a) Escríbala en coordenadas cartesianas.
- b) Calcule la velocidad.

Energía cinética

3. **Péndulo con punto de suspensión libre** [Landau §5 ej. 2]

Péndulo plano de masa m_2 , cuyo punto de suspensión (de masa m_1) puede desplazarse en el mismo plano sobre una recta horizontal. La cuerda que une las partículas de masas m_1 y m_2 se considera rígida (no se dobla) y por tanto mantiene una distancia constante de ℓ entre ambas.

Escriba la energía cinética en función de las coordenadas indicadas por las figura: x, ϕ .

4. **Péndulo doble** [Landau §5 ej. 1]

Un péndulo doble oscila en un plano en función de las coordenadas generalizadas sugeridas por las figura.

Calcule su energía cinética.

Mecánica Analítica Computacional

5. **Péndulo con punto de suspensión en rotación** [Marion (e) ex. 7.5] [Landau §5 ej. 3]

El punto de suspensión de un péndulo de longitud b se mueve en el plano plano se desplaza en un círculo vertical de radio a con una frecuencia constante ω .

Calcule la energía cinética para la partícula de masa m.

6. Pesas acopladas rotando en torno a eje [Landau §5 ej. 4]

La partícula con m_2 se desplaza sobre un eje vertical, y todo el sistema gira con una velocidad angular constante Ω en torno a ese eje. El ángulo m_1 de apertura θ es variable.

Calcule la energía cinética para cada una de las tres masas y exprese en la forma más compacta posible la del sistema en su conjunto.

