Compressed Low-Light Scene Reconstruction using Hyper-spectral Single Photon Lidar

V. Anirudh Puligandla

MSc. student in Computer Vision & Robotics
Université de Bourgogne
Universitat de Girona
Heriot-Watt University

June 10, 2018

Anirudh (HWU) MSc. Thesis Defense June 10, 2018 1 / 24

Objectives

- LiDAR data \rightarrow 2D Image + Depth
- ullet Goal o
 - Reconstruct 2D intensity images at multiple wavelengths
 - Under low-light (limited observed data) conditions
 - From incomplete data

Anirudh (HWU) MSc. Thesis Defense June 10, 2018 2 / 24

- Introduction
- 2 Problem Formulation
- Methods
- 4 Results
- Conclusion

3 / 24

Anirudh (HWU) MSc. Thesis Defense June 10, 2018

- Introduction
- 2 Problem Formulation
- Methods
- 4 Results
- Conclusion

4 / 24

Anirudh (HWU) MSc. Thesis Defense June 10, 2018

Introduction

- Can detect a single photon reflected from the target
- Operate at multiple wavelengths from IR to Visible
- Collects data in a raster scanning fashion

source: NASA

Anirudh (HWU) MSc. Thesis Defense June 10, 2018 5 / 24

Why is this work important?

- source: Single-Photon Imaging¹
- Left: Photons interacting with the sensor
- Right : Photon detection process
- ullet Low-intensity photons sparsely distributed o impossible to differentiate from dark counts

Anirudh (HWU) MSc. Thesis Defense June 10, 2018 6 / 24

¹Seitz, Peter, and Albert JP Theuwissen, eds. Single-photon imaging. Vol. 160. Springer Science & Business Media, 2011.

Problem Definition

- Left : Photons collected uniformly at all pixels
- \bullet Center : More photons collected randomly at $\sim 6\%$ pixels
- Right : Ground truth intensity image

Anirudh (HWU) MSc. Thesis Defense June 10, 2018 7 / 24

- Introduction
- 2 Problem Formulation
- Methods
- 4 Results
- Conclusion

Anirudh (HWU)

Observation Model

Observation Model (contd ...)

Baseline intensity (at pixel p and wavelength I):

$$y_{p,l} \sim Pr(b_{p,l}) \tag{1}$$

• Response Intensity :

$$y_{p,l} \sim Pr(r_{p,l}F_l a_{p,l} + b_{p,l})$$
 (2)

- where,
 - $y_{p,l} \rightarrow$ photon counts summed over t_b/t_a
 - $Pr(\lambda) \rightarrow Poisson$ distribution with mean intensity λ
 - $b \rightarrow$ baseline intensity, $a \rightarrow$ response intensity
 - $r_{p,l} \rightarrow \text{vignetting effect}, F_l \rightarrow \text{calibration data}$
- Minimize negative log-likelihood :

$$\mathcal{L}_{Y,\alpha}(A|\hat{B}) = \sum_{l=1}^{L} \sum_{p \in S_{\alpha,l}} [-\log(Pr(\lambda))]$$
 (3)

• where, $S_{\alpha,l}$ represents a set of randomly selected pixels

- Introduction
- 2 Problem Formulation
- Methods
- 4 Results
- Conclusion

Anirudh (HWU) MSc. Thesis Defense June 10, 2018 11 / 24

Regularization - TV and NN

- Total Variation (TV)
 - Integral of the absolute gradient
 - Promotes spatial correlation & sparsity
 - Spectral TV -

$$STV(X) = \sum_{l=1}^{L} TV(x_l)$$
 (4)

- Nuclear Norm (NN)
 - Consider $X \in \mathbb{R}^{N \times L}$, $N \rightarrow \text{pixels}$, $L \rightarrow \text{wavelengths}$
 - Sum of absolute singular values of X
 - ullet $||X||_*$, where, $X=U\Sigma V^T$ is the SVD decomposition

Anirudh (HWU) MSc. Thesis Defense June 10, 2018 12 / 24

Minimization Problem - TVNN

• Given by²,

$$\hat{X} = \underset{X}{\operatorname{arg\,min}} [\mathcal{L}_{Y,\alpha}(X) + \tau_1 STV(X) + \tau_2 ||X||_* + i_{\mathbb{R}^+}(X)]$$
 (5)

- $i_{\mathbb{R}^+}(X)$ is indicator function enforcing positivity
- Computing SVD can be slow
- Requires manual tuning of two parameters

June 10, 2018

13 / 24

Anirudh (HWU) MSc. Thesis Defense

Regularization - Joint Sparsity

- Joint Sparsity or group TV regularization
- ullet ℓ_2 norm on the rows o promotes spectral correlation
- ullet followed by ℓ_1 norm o promotes smoothness or spatial correlation
- Promotes joint sparsity and low-rankness
- Represented by

$$\hat{X} = \underset{X}{\operatorname{arg\,min}} \left[\mathcal{L}_{Y,\alpha}(X) + \tau_1 ||\Psi^{\dagger}X||_{2,1} + i_{\mathbb{R}^+}(X) \right] \tag{6}$$

- ullet where, Ψ is any wavelet basis in which data is sparse
- Much faster than the TVNN model

◆ロト ◆個ト ◆差ト ◆差ト を めらぐ

Anirudh (HWU) MSc. Thesis Defense June 10, 2018

Algorithmic Details

- Alternating Direction Method of Multipliers (ADMM) algorithm
- Fast usually converges within tens of iterations
- Guaranteed convergence
- Initialization does not need to be specific

Anirudh (HWU) MSc. Thesis Defense June 10, 2018 15 / 24

- Introduction
- 2 Problem Formulation
- Methods
- 4 Results
- Conclusion

Anirudh (HWU)

Results

$$SNR = 10 \log \left(\frac{||\hat{x}||_2^2}{||\hat{x} - x||_2^2} \right) \tag{7}$$

before subsampling	sub-sampling ratio	after sub-sampling	
0.5, 1, 2, 4, 8	1, 1/2, 1/4, 1/8, 1/16	0.5	
1, 2, 4, 8, 16	1, 1/2, 1/4, 1/8, 1/16	1	
10, 20, 40, 80, 160	1, 1/2, 1/4, 1/8, 1/16	10	
50, 100, 200	1, 1/2, 1/4	50	
100, 200	1, 1/2	100	

Anirudh (HWU) MSc. Thesis Defense June 10, 2018 17 / 24

Results - Qualitative

p pp α		1	1/2	1/4	1/8	1/16
50	TVNN	46.74	48.69	46.33		
	JS-DCT	47.95	47.27	42.68		
	JS-DWT	<u>48.99</u>	47.97	43.79		
10	TVNN	34.38	41.33	42.79	39.75	35.69
	JS-DCT	37.58	42.12	40.22	36.03	31.69
	JS-DWT	39.29	43.14	41.43	37.34	27.83
1	TVNN	22.65	27.77	34.42	<u>35.89</u>	32.73
	JS-DCT	28.25	30.64	31.06	30.34	28.01
	JS-DWT	27.22	27.31	<u>27.41</u>	27.15	21.87
0.5	TVNN	20.91	21.32	22.33	22.53	23.09
	JS-DCT	26.68	26.95	26.89	26.78	26.16
	JS-DWT	26.70	28.75	29.67	28.99	24.64

Anirudh (HWU) MSc. Thesis Defense June 10, 2018 18 / 24

Results - Visual

Results - Visual

Anirudh (HWU) MSc. Thesis Defense June 10, 2018 20 / 24

- Introduction
- 2 Problem Formulation
- Methods
- 4 Results
- Conclusion

Anirudh (HWU) MSc. Thesis Defense June 10, 2018 21 / 24

Conclusion

- In-painting method with Poisson noise model
- Image intensity estimation in two sequential steps
- Two separate minimization problems proposed
- ullet Good reconstructions from data with ~ 0.5 photons per pixel
- Improvement through compressed sensing

Anirudh (HWU) MSc. Thesis Defense June 10, 2018 22 / 24

Limitations and Future Work

• Limitations :

- First one month spent on a multi-scale approach
- Testing TVNN consumed too much time

• Future Work :

- Depth Estimation
- Material classification
- Improve Joint Sparsity method

Anirudh (HWU) MSc. Thesis Defense June 10, 2018 23 / 24

Thank you for your attention!