

Erteilt auf Grund des Ersten Überleitungsgesetzes vom 8. Juli 1949 (WAGBL S. 175)

BUNDESREPUBLIK DEUTSCHLAND

AUSGEGEBEN AM 5. JUNI 1953

DEUTSCHES PATENTAMT

PATENTS CHRIFT

M: 878 539 KLASSE 22 e GRUPPE 3

F 3760 IVd | 22e

Dr. Hans von Freyberg, Frankfurt/M.-Nied und Dr. Heinrich Koch, Frankfurt/M.-Höchst sind als Erfinder genannt worden

Farbwerke Hoechst, vormals Meister Lucius & Brüning, Frankfurt/M.-Höchst

Verfahren zur Herstellung von Methinfarbstoffen

Patentiert im Gebiet der Bundesrepublik Deutschland vom 18. August 1939 an Der Zeitraum vom 8. Mai 1945 bis einschließlich 7. Mai 1950 wird auf die Patentdauer nicht angerechnet (Ges. v. 15. 7. 51)

> Patentanmeldung bekanntgemacht am 28. August 1952 Patenterteilung bekanntgemacht am 16. April 1953

Es ist bekannt, Methinfarbstoffe durch Kondensation von p-Diäthylaminobenzaldehyden mit Verbindungen herzustellen, die reaktionsfähige Methyl- oder Methylengruppen enthalten, wie z. B. Cyanessigsäureester, Cyanessigsäureamide, Malonitril, Indolin, Methyloxyindol, α-Alkylpyridin u. a. Die erhaltenen Farbstoffe eignen sich zum Färben von Celluloseestern und -äthern, beispielsweise Acetatseide.

Es wurde nun gefunden, daß man zu wertvollen Methinfarbstoffen gelangt, wenn man Verbindungen mit reaktionsfähigen Methyl- oder Methylengruppen mit solchen p-Dialkylaminobenzaldehyden umsetzt, in denen die Summe der Kohlenstoffatome der Alkylgruppen 7 bis 10 beträgt.

Zur Umsetzung geeignet sind z.B. p-Aminobenz- 15 aldehyde von folgender allgemeiner Formel

$$R_1$$
 R_2
 N
 CHO

worin R₁ und R₂ gleiche oder verschiedene Alkylreste normaler oder verzweigter Ketten sind, bei denen die Summe der Kohlenstoffatome dieser Alkylreste zusammen mindestens 7 beträgt, aber 10 nicht überschreitet, und worin X Wasserstoff, Alkyl oder Halogen bedeuten kann.

Die neuen Farbstoffe zeichnen sich durch ein sehr gutes Ziehvermögen, sehr gute Wasser- und Waschechtheit und sehr gute Lichtechtheit aus. So übertrifft der Farbstoff aus N-Butyl-i-butyl-aminobenzaldehyd und Cyanessigsäureäthylester den bekannten Farbstoff aus Dimethylaminobenzaldehyd mit Cyanessigsäureäthylester in der Wasserechtheit. Ferner sind die neuen Farbstoffe den durch Kondensieren von Dialkylaminobenzaldehyden, bei denen die Summe der Kohlenstoffatome der Alkylgruppen 6 beträgt, mit Verbindungen mit reaktionsfähiger Methylengruppe erhältlichen Methinfarbstoffen im Ziehvermögen auf Acetatseide und teilweise auch in der Schweiß- und Lichtechtheit erheblich überlegen.

Die neuen Farbstoffe eignen sich auch zum Färben vorgebeizter, z.B. tannierter Baumwolle und können zum Teil mit komplexen Phosphor-Wolfram-Säuren in Farblacke von guten Echtheitseigenschaften über-

geführt werden.

Beispiel I

114 Gewichtsteile Cyanessigsäureäthylester werden mit 235 Gewichtsteilen N-Butyl-isobutyl-aminobenzaldehyd vom Kp_{1,7} 177 bis 179° (erhältlich durch Umsetzung von N-Butyl-isobutylanilin mit Methylformanilid und Phosphoroxychlorid nach bekanntem Verfahren) in 400 Gewichtsteilen Alkohol unter Zusatz von 0,4 Gewichtsteilen Piperidin mehrere Stunden zum Sieden erhitzt, bis die Farbstoffbildung beendet ist.
30 Der Alkohol wird dann abdestilliert, und nach einiger Zeit kristallisiert der Farbstoff in braungelben Kristalldrusen. F. 51 bis 53°. Der Farbstoff färbt Celluloseester und -äther in sehr klaren grünstichig gelben Tönen. Er besitzt ein hervorragendes Ziehvermögen auf Acetatseide, sehr gute Naßechtheiten und sehr gute Lichtechtheit.

Das N-Butyl-isobutylanilin kann auf bekannte Weise hergestellt werden (vgl. Chemisches Centralblatt 1926, II, S. 391; Berichte der Deutschen Chem. 40 Ges. 59, S. 1202ff.). Kp₁₁ 142°.

Beispiel 2

100 Gewichtsteile Cyanessigsäuremethylester werden mit 235 Gewichtsteilen N-Methyl-isoheptyl-amino45 benzaldehyd vom Kp_{1,4} 175 bis 180°, erhältlich analog Beispiel I, in 400 Gewichtsteilen Methanol unter Zusatz von 0,4 Gewichtsteilen Piperidin mehrere Stunden zum Sieden erhitzt. Nach beendeter Farbstoffbildung wird mit Wasserdampf destilliert, bis das Methanol und Piperidin abgetrieben sind. Der im Wasser unlösliche Farbstoff wird abgetrennt. Er färbt Celluloseester und -äther in sehr klaren grünstichig gelben Tönen, besitzt ein hervorragendes Ziehvermögen und sehr gute Echtheiten.

Die zur Herstellung des Aldehyds benötigte Base wurde nach bekanntem Verfahren aus Isoheptylalkohol, Anilin und Salzsäure und Methylieren des entstandenen Monoisoheptylanilins hergestellt. Kp_{1.7}

120°.

60

Beispiel 3

66 Gewichtsteile Malonitril werden mit 247 Gewichtsteilen N-Methyl-isooctyl-aminobenzaldehyd Kp_{2,5} 187 bis 194°, Herstellung analog Beispiel 1, in 300 Gewichtsteilen Alkohol unter Zusatz von 65 0,3 Gewichtsteilen Piperidin mehrere Stunden zum Sieden erhitzt. Nach beendeter Farbstoffbildung wird mit Wasserdampf destilliert, bis Alkohol und Piperidin übergegangen sind. Der Farbstoff wird abgesaugt. Er zieht sehr gut auf Celluloseester und -äther in 70 leuchtend gelben Tönen und besitzt sehr gute Echtheiten.

Das zur Herstellung des Aldehyds benötigte Methylisooctyl-anilin wurde nach bekanntem Verfahren aus Methylanilin und Isooctylbromid hergestellt. Kp_{1.8} 112 bis 114°.

Beispiel 4

147 Gewichtsteile N-Methyloxindol werden mit 247 Gewichtsteilen N-Methyl-isooctyl-aminobenz-80 aldehyd in 500 Gewichtsteilen Alkohol unter Zusatz von 0,5 Gewichtsteilen Piperidin mehrere Stunden zum Sieden erhitzt. Nach beendeter Farbstoffbildung wird der Alkohol abdestilliert. Der Farbstoff scheidet sich kristallin ab. Er zieht sehr gut auf Celluloseester und -äther in rotstichig gelben Tönen und zeichnet sich durch hervorragende Naßechtheiten aus.

Beispiel 5

173 Gewichtsteile I, 3, 3-Trimethyl-2-methylenindolin und 310 Gewichtsteile N-Isooctyl-β-chloräthylamino-0-tolylaldehyd (nicht destillierbares gelbes Öl, Herstellung analog Beispiel I) werden in 750 Gewichtsteilen Eisessig mehrere Stunden auf 70 bis 80° erhitzt. Nach beendeter Farbstoffbildung wird die Farbstofflösung in konzentrierte Salzsäure gegeben und mit Kochsalzlösung ausgesalzen. Nach dem Trocknen bildet der Farbstoff bronzierende Schuppen. Er färbt Celluloseester und -äther in sehr brillanten rotvioletten Tönen und zeichnet sich besonders durch hervorragende Naßechtheiten aus.

Das zur Herstellung des Aldehyds benötigte Isooctyl-oxäthyl-m-toluidin wurde nach bekanntem Verfahren aus m-Toluidin und Isooctylbromid und Behandlung des entstandenen Monoisooctyl-m-toluidin mit Äthylenoxyd unter Druck hergestellt. Kp4 157 bis 165°.

Beispiel 6

203 Gewichtsteile 5-Methoxy-I, 3, 3-trimethyl-2-methylenindolin und 234 Gewichtsteile N-Äthyl-iso-amylamino-o-tolylaldehyd vom Kp_{3.5} 177 bis 180°, Herstellung analog Beispiel I, werden in 700 Gewichtsteilen Eisessig mehrere Stunden auf 70 bis 80° erhitzt. 115 Nachdem die Farbstoffbildung beendet ist, wird die Farbstofflösung in starke Salzsäure gegeben und mit Kochsalzlösung ausgesalzen. Nach dem Trocknen fällt der Farbstoff als bronzierendes Harz an, das sich leicht in Wasser löst und sehr gut auf Celluloseester 120 und -äther mit rotvioletter Farbe zieht. Der Farbstoff zeichnet sich durch hervorragende Naßechtheiten und sehr gute Lichtechtheit aus.

Die zur Herstellung des Aldehyds benötigte Base wurde aus Äthyl-m-toluidin und Isoamylbromid nach 125 bekanntem Verfahren hergestellt. Kp₁₂ 134°.

20

Beispiel 7

173 Gewichtsteile I, 3, 3-Trimethyl-2-methylenindolin und 269 Gewichtsteile N-Methyl-isoheptyl-aminoso-chlorbenzaldehyd vom Kp3 190 bis 196°, Herstellung analog Beispiel I, werden in 900 Gewichtsteilen Eisessig auf 70 bis 80° erhitzt, bis die Farbstoffbildung beendet ist. Dann wird die Farbstoffbildung beendet ist. Dann wird die Farbstofflösung in starke Phosphorsäure gegeben und mit saurem Natriumphosphat ausgesalzen. Nach dem Trocknen bildet der Farbstoff ein bronzeglänzendes Harz, das leicht wasserlöslich ist und Celluloseester und -äther in einem blaustichigen Rot von sehr guten Naßechtheiten färbt.

Die zur Herstellung des Aldehyds benötigte Base 15 wurde nach bekanntem Verfahren aus m-Chloranilin, Isoheptylalkohol und Salzsäure und Methylieren des entstandenen Monoisoheptyl-m-chloranilins hergestellt. Kp_{2.5} 145 bis 150°.

PATENTANSPRUCH:

Verfahren zur Herstellung von Methinfarbstoffen, dadurch gekennzeichnet, daß man p-Dialkylaminobenzaldehyde, bei denen die Summe der 25 Kohlenstoffatome der Alkylgruppen 7 bis 10 beträgt, mit Verbindungen mit reaktionsfähigen Methyl- oder Methylengruppen umsetzt.