RIVER PARISHES COMMUNITY COLLEGE

MATH 1100: COLLEGE ALGEBRA

QUADRATIC FUNCTIONS

5.1 Quadratic Functions and Parabolas

Semester Spring 2021 $\begin{tabular}{ll} Department \\ Physical Science: Math \\ \end{tabular}$

Learning Objectives

In this section, you will learn:

- Recognize characteristics of parabolas
- ♣ Undertstand how the graph of a parabola is related to its quadratic function
- ♣ Determine minimum or maximum value (turning points) in a quadratic function's
- ♣ Solve problems involving a quadratic function's minimum or maximum value

Quadratic Equation

A quadratic equation is a polynomial equation with degree two. In other words, it is an equation of the form

$$ax^2 + bx + c = 0,$$

where a, b and c are real numbers and $a \neq 0$. The graph of a quadratic function is a U-shaped graph and is called Parabolas.

Examples of Quadratic equation

a.
$$x^2 - 1 = 0$$

b.
$$3x^{2} + 5x + 2 = 10$$

c. $x^{2} = 4$
d. $\frac{3}{2}x^{2} + 7x = 5$

c.
$$x^2 = 4$$

d.
$$\frac{3}{2}x^2 + 7x = 5$$

Examples of Non-Quadratic eunction

- a. f(x,y) = 3x + 2y function of two Variables
- b. 0 = 3 + 2x The highest exponent (degree/power) is not 2
- c. $0 = \sqrt{x} + 2$ radical (fractional) exponents.
- d. $0 = \frac{2}{x} + 3$ Variable in denominator e. $x^3 + 3x^2 + 9 = 0$ Third degree equation

2 Quadratic Forms

$$y = ax^2 + bx + c$$

eg

$$y = 2x^2 + 4x - 6$$

2. Vertex Form

$$y = a(x - h)^2 + k$$

eg

$$y = 2(x+1)^2 - 8$$

3. Factor Form

$$y = a(x - p)(x - q)$$

eg

$$y = 2(x+3)(x-1)$$

If a > 0, i.e a is positive, parabola opens up.

if a < 0, i.e a is negative, parabola opens down.

 $Parabola \quad y = ax^2 + bx + c$

opens upward

opens downward

3 Key Features of Quadratic function

1. Vertex

All quadratic have a **minimum** or **maximum** point which is also the **turning point** of the parabola. It is called the **vertex** of the parabola. The coordinates can be found using the following formulas:

$$x = -\frac{b}{2a}$$
, and $\mathbf{Vertex} = \left(-\frac{b}{2a}, f(-\frac{b}{2a})\right)$ for $y = ax^2 + bx + c$
 $\mathbf{Vertex} = (h, k)$ for $y = a(x - h)^2 + k$

2. Axis of Symmetry

Every quadratic is symmetrical with respect to some vertical line called **Axis of Symmetry**. It is a line that passes through the vertex, so the equation of line of symmetry is given by:

$$x = -\frac{b}{2a}, \text{ for } y = ax^2 + bx + c$$

$$x = h$$
, for $y = a(x - h)^2 + k$

3. Y-intercept

A quadratic graph always cross the y-axis at a point given by co-ordinates (0, f(0)). The x-coordinate is zero and y co-ordinate can be found by plugging x = 0 in quadratic equation

4. X-intercepts: roots, Zeros, Solutions

A quadratic equation may or may not touch x-axis. If it touches x-axis, it may touch x-axis at two points or only one points. These points are called x-intercepts. They can be found by solving quadratic equations.

THE KEY FEATURES OF A QUADRATIC FUNCTION

Examples:

Fill	the following
Vertex	
Axis of Symmetry	
Y-intercept	
X-intercepts	

	3 2
-5 /4 -3 -2	-1 1 2
	-4

Fill	the following
Vertex	
Axis of Symmetry	
Y-intercept	
X-intercepts	

4 Graphing in Standard form: $y = ax^2 + bx + c$

Example Graph $f(x) = y = 2x^2 - 2x - 4$

To find axis of symmetry:

 $x = -\frac{b}{2a} =$ = ____ into ____ into ____

 $a = \underline{\hspace{0.5cm}}, b = \underline{\hspace{0.5cm}}, c = \underline{\hspace{0.5cm}}$ The graph opens UP ____ or Down ____ The graph has max ___ or min ____ Vertex ____ Axis of Symmetry ____ Y-intercept ____ X-intercepts ____ One point in Parabola : $(x = \underline{\hspace{0.5cm}}, y = \underline{\hspace{0.5cm}})$

Example Graph $f(x) = y = -3x^2 - 6x + 1$

To find axis of symmetry:

 $a = \underline{\hspace{0.5cm}}, b = \underline{\hspace{0.5cm}}, c = \underline{\hspace{0.5cm}}$ The graph opens UP ____ or Down ____ The graph has max ___ or min ____ Vertex ____ Axis of Symmetry ____ Y-intercept ____ X-intercepts ____ One point in Parabola : $(x = \underline{\hspace{0.5cm}}, y = \underline{\hspace{0.5cm}})$

5 Graphing in Vertex form: $y = a(x - h)^2 + k$

In this form the vertex is given by (h, k).

Example Graph $f(x) = y = 2(x-3)^2 - 4$

To find axis of symmetry:

$$x = h = \underline{\hspace{1cm}}$$

 $\mathbf{vertex:}\ (h,k) = \underline{\hspace{1cm}}$

Example Graph $f(x) = y = -(x+3)^2 + 1$

To find axis of symmetry:

$$x = h =$$

vertex: (h, k) = _____

 $a = __, h = __, k = _$ The graph opens UP ____ or Down ____
The graph has max ___ or min ____
Vertex ____
Axis of Symmetry ____
Y-intercept ____
X-intercepts
One point in Parabola : $(x = __, y = __)$

 $a = \underline{\hspace{0.5cm}}, h = \underline{\hspace{0.5cm}}, k = \underline{\hspace{0.5cm}}$ The graph opens UP ____ or Down ____ The graph has max ___ or min ____ Vertex ____ Axis of Symmetry ____ Y-intercept ____ X-intercepts ____ One point in Parabola : $(x = \underline{\hspace{0.5cm}}, y = \underline{\hspace{0.5cm}})$

6 Graphing in factored form: y = a(x - p)(x - q)

x - -

Example Graph f(x) = y = -2(x-3)(x-1)

To find axis of symmetry:

$$x = \frac{p+q}{2} = \underline{\hspace{1cm}}$$

To find vertex, plug back ____ into ____ $f(\underline{\hspace{1cm}}) = -2(\underline{\hspace{1cm}} -3)(\underline{\hspace{1cm}} -1)$

 $a = \underline{\hspace{0.5cm}}, p = \underline{\hspace{0.5cm}}, q = \underline{\hspace{0.5cm}}$ The graph opens UP ____ or Down ____ The graph has max ___ or min ____ Vertex ____ Axis of Symmetry ____ Y-intercept ____ X-intercepts ____ One point in Parabola : $(x = \underline{\hspace{0.5cm}}, y = \underline{\hspace{0.5cm}})$

Example Graph f(x) = y = (x+1)(x-1)

To find axis of symmetry: $x = \frac{p+q}{2} = \underline{\hspace{1cm}}$

 $a = \underline{\hspace{0.5cm}}, p = \underline{\hspace{0.5cm}}, q = \underline{\hspace{0.5cm}}$ The graph opens UP ____ or Down ____ The graph has max ___ or min ___ Vertex ____ Axis of Symmetry ____ Y-intercept ____ X-intercepts _____ One point in Parabola : $(x = \underline{\hspace{0.5cm}}, y = \underline{\hspace{0.5cm}})$