International IOR Rectifier

- Generation V Technology
- Ultra Low On-Resistance
- N-Channel MOSFET
- SOT-23 Footprint
- Low Profile (<1.1mm)
- Available in Tape and Reel
- Fast Switching
- Lead-Free

Description

Fifth Generation HEXFETs from International Rectifier utilize advanced processing techniques to achieve extremely low on-resistance per silicon area. This benefit, combined with the fast switching speed and ruggedized device design that HEXFET Power MOSFETs are well known for, provides the designer with an extremely efficient and reliable device for use in a wide variety of applications.

A customized leadframe has been incorporated into the standard SOT-23 package to produce a HEXFET Power MOSFET with the industry's smallest footprint. This package, dubbed the Micro3, is ideal for applications where printed circuit board space is at a premium. The low profile (<1.1mm) of the Micro3 allows it to fit easily into extremely thin application environments such as portable electronics and PCMCIA cards.

IRLML2402PbF

HEXFET® Power MOSFET

Absolute Maximum Ratings

	Parameter	Max.	Units
I _D @ T _A = 25°C	Continuous Drain Current, V _{GS} @ 4.5V	1.2	
I _D @ T _A = 70°C	Continuous Drain Current, V _{GS} @ 4.5V	0.95	Α
I _{DM}	Pulsed Drain Current ①	7.4	
P _D @T _A = 25°C	Power Dissipation	540	mW
	Linear Derating Factor	4.3	mW/°C
V_{GS}	Gate-to-Source Voltage	± 12	V
dv/dt	Peak Diode Recovery dv/dt ②	5.0	V/ns
T _J , T _{STG}	Junction and Storage Temperature Range	-55 to + 150	°C

Thermal Resistance

	Parameter	Тур.	Max.	Units
$R_{\theta JA}$	Maximum Junction-to-Ambient ④		230	°C/W

IRLML2402PbF

International

TOR Rectifier

Electrical Characteristics @ T_J = 25°C (unless otherwise specified)

	Parameter	Min.	Тур.	Max.	Units	Conditions
V _{(BR)DSS}	Drain-to-Source Breakdown Voltage	20			V	$V_{GS} = 0V, I_D = 250\mu A$
$\Delta V_{(BR)DSS}/\Delta T_J$	Breakdown Voltage Temp. Coefficient		0.024		V/°C	Reference to 25°C, I _D = 1mA
	Static Ducin to Service On Besintance			0.25		V _{GS} = 4.5V, I _D = 0.93A ③
R _{DS(on)}	Static Drain-to-Source On-Resistance			0.35	Ω	V _{GS} = 2.7V, I _D = 0.47A ③
V _{GS(th)}	Gate Threshold Voltage	0.70			V	$V_{DS} = V_{GS}$, $I_D = 250\mu A$
9fs	Forward Transconductance	1.3			S	V _{DS} = 10V, I _D = 0.47A
1	Drain-to-Source Leakage Current			1.0		V _{DS} = 16V, V _{GS} = 0V
I _{DSS}	Brain-to-obtroe Leakage Garrent			25	μA	V _{DS} = 16V, V _{GS} = 0V, T _J = 125°C
lana	Gate-to-Source Forward Leakage			-100	nA	V _{GS} = -12V
I _{GSS}	Gate-to-Source Reverse Leakage			100	''^	V _{GS} = 12V
Qg	Total Gate Charge		2.6	3.9		$I_D = 0.93A$
Q _{gs}	Gate-to-Source Charge		0.41	0.62	nC	V _{DS} = 16V
Q _{gd}	Gate-to-Drain ("Miller") Charge		1.1	1.7		V_{GS} = 4.5V, See Fig. 6 and 9 ③
t _{d(on)}	Turn-On Delay Time		2.5			V _{DD} = 10V
t _r	Rise Time		9.5			$I_D = 0.93A$
t _{d(off)}	Turn-Off Delay Time		9.7		ns	$R_G = 6.2\Omega$
t _f	Fall Time		4.8			R_D = 11 Ω , See Fig. 10 ③
C _{iss}	Input Capacitance		110			V _{GS} = 0V
C _{oss}	Output Capacitance		51		pF	V _{DS} = 15V
C _{rss}	Reverse Transfer Capacitance		25			f = 1.0MHz, See Fig. 5

Source-Drain Ratings and Characteristics

	Parameter	Min.	Тур.	Max.	Units	Conditions	
Is	Continuous Source Current			0.54		MOSFET symbol	
	(Body Diode)			0.54	Α	showing the	
I _{SM}	Pulsed Source Current			7.4		integral reverse	
	(Body Diode) ①			7.4	7.4		p-n junction diode.
V _{SD}	Diode Forward Voltage			1.2	V	$T_J = 25$ °C, $I_S = 0.93$ A, $V_{GS} = 0$ V ③	
t _{rr}	Reverse Recovery Time		25	38	ns	$T_J = 25$ °C, $I_F = 0.93A$	
Q _{rr}	Reverse RecoveryCharge		16	24	nC	di/dt = 100A/µs ③	

Notes:

- ① Repetitive rating; pulse width limited by max. junction temperature. (See fig. 11)
- $\begin{tabular}{ll} @ I_{SD} \le 0.93A, & di/dt \le 90A/\mu s, & V_{DD} \le V_{(BR)DSS}, \\ & T_{J} \le 150 \mbox{°C} \end{tabular}$

International TOR Rectifier

IRLML2402PbF

Fig 1. Typical Output Characteristics

Fig 3. Typical Transfer Characteristics

Fig 2. Typical Output Characteristics

Fig 4. Normalized On-Resistance Vs. Temperature

Fig 5. Typical Capacitance Vs. Drain-to-Source Voltage

Fig 7. Typical Source-Drain Diode Forward Voltage

Fig 6. Typical Gate Charge Vs. Gate-to-Source Voltage

Fig 8. Maximum Safe Operating Area

International TOR Rectifier

IRLML2402PbF

 $\begin{array}{c|c} & & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ &$

Fig 9a. Basic Gate Charge Waveform

Fig 10a. Switching Time Test Circuit

Fig 9b. Gate Charge Test Circuit

Fig 10b. Switching Time Waveforms

5

Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Ambient

Peak Diode Recovery dv/dt Test Circuit

Fig 12. For N-Channel HEXFETS

IRLML2402PbF

Micro3 (SOT-23) Package Outline

Dimensions are shown in millimeters (inches)

Micro3 (SOT-23/TO-236AB) Part Marking Information

PART NUMBER CODE REFERENCE:

A= IRLML2402

B = IRLML2803

C = IRLML6302

D = IRLML5103E = IRLML6402

F = IRLML6401

G = IRLML2502

H = IRLML5203

Note: A line above the work week (as shown here) indicates Lead-Free

W = (27-52) IF PRECEDED BY A LETTER

Υ	WORK WEEK	W
Α	27	Α
В	28	В
С	29	С
D	30	D
E		
F		
G		
Н	1	1
J	1	1
K	50	X
	51	Υ
	52	Z
	A B C D E F G H J	Y WEEK A 27 B 28 C 29 D 30 E F G H J K 50 51

Micro3™ Tape & Reel Information

Dimensions are shown in millimeters (inches)

NOTES:

- CONTROLLING DIMENSION : MILLIMETER.
 OUTLINE CONFORMS TO EIA-481 & EIA-541.

Data and specifications subject to change without notice.

International IOR Rectifier

IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903

Visit us at www.irf.com for sales contact information. 03/05