1 Intro

Goals of Course

- overview over moder nonlinear analyses and control concepts
- modern methodologies to analyze nonlinear systems
- \bullet apply a wide range of nonlinear control method learn the mathmatic basis

Differential equations $\dot{x} = f(x)$

Nonlinear differential eqution $\dot{x} = f(t, x)$

System with input $\dot{x} = f(x, u)$

System with input and output

$$\dot{x} = f(x, u)$$

 $y = g(x, u) \quad (1)$

Input-output methods

Scope

- [1] Khalil Nonlinear System, Prentice Hall, 2002
- [2] Sepulchre Constructive Nonlinear Control, Springer-Verlag 1997

2 Differential equations

Consider differential equality

$$\frac{d}{dt}x(t) = \dot{x}(t) = f(x(t)), \ x(0) = x_0 \tag{2}$$

Where $f: D \to \mathbb{R}^n$, $D \subset \mathbb{R}^n$ is open, [here we should explain, what means open set].

Solution to 2 $x:I_{x_0}\to D,\ t\to x(t)$ is differentiable

Interval existence solution

Questions:

existence of solution

"how large" is I_{x_0}

uniquence of solution

Usaly we will add some restrictions on f functions, like continuous.

2.1 Existence of solutions

Function $f: D \to \mathbb{R}^n$ is continuous at $x' \in D$ if for $\forall \epsilon > 0 \ \exists \delta > 0$ such that for $\forall x \in D$, $\|x - x'\| < \delta => \|f(x) - f(x')\| < \epsilon$

Function $f: D \to \mathbb{R}^n$ is continuous on D if it's continuous at $\forall x' \in D$

If $f: D \to \mathbb{R}^n$ continuous, then for each $x_0 \in D \exists x: (-\epsilon, \epsilon) \to D, \ \epsilon > 0$ satisfying (2).

Further, given a compact sed $U \subset D$, then $\exists \alpha > 0$ s.t. $\forall x_0 \in U \ \exists x : (-\epsilon, \epsilon) \to D$ satisfying (2).

Consider equation $\dot{x}(t) = x(t)^2$, $x(0) = x_0 = 0$. Solution $x(t) = -\frac{1}{t-c}$, $c = \frac{1}{x_0}$. In this example solution exist in interval (-c, c).

But, what about the number of solutions? Which conditions we should add to garanty uniquence of solution?

2.2 Uniquence of solutions

Function $f: D \to \mathbb{R}^n$ is locally Lipshitz (continuous???) on D if $\forall x \in D$ there is a neighborhood $N(x) \subset D$ and $\exists L > 0$ s.t.

$$||f(x_1) - f(x_2)|| \le L||x_1 - x_2|| \tag{3}$$

For all $x_1, x_2 \in N$.

- Lipschiz on $W \in D$ if (3) holds $\forall x_1, x_2 \in W$ (with same L)
- globally Lipschitz if (3) holds $\forall x_1, x_2 \in \mathbb{R}^n$ (with same L)

We have

- # localy Lipschitz functions are continuous
- # differenciable functions are locally Lipschitz
- # locally Lipschitz functions are Lipschitz on each compact subset of D (Khalil Ex 3.19)

Suppose that $0 \le \phi(t) \le c + L \int_0^t \phi(\tau) d\tau$, c, L > 0, ϕ – continuous. Then $\phi(t) \le c \exp Lt$. Proof. $c + L \int_0^t \phi(\tau) d\tau := \psi(t)$, $\dot{\psi}(t) = L\phi(t) \le L\psi(t)$.

Consider $\frac{d}{dt}(\psi(t)\exp{-LT}) = \exp{-Lt\dot{\psi}(t)} - L\psi(t)$ () ≤ 0 , thus $\psi(t)\exp{-LT}$ is decreased, and as a result we have $\phi(t)\exp{-Lt} \leq \psi(t)\exp{-Lt} \leq \psi(0) = c$

If function $f: D \to \mathbb{R}^n$ is localy Lipschitz then for $\forall x_0 \in D \ \exists ! x : (-\epsilon, \epsilon) \to D, \ \epsilon > 0$ satisfying (2).

Proof:

* existence from Piano theorem

Proof of uniqueness

Consider two solutions $x_1(.)$ and $x_2(.)$ to (2). $\dot{x}_1 - \dot{x}_2 = f(x_1) - f(x_2)$, $x_1(0) = x_2(0)$. Then we can integrate equality: $x_1(t) - x_2(t) = \int_0^t f(x_1(\tau)) - f(x_2(\tau)) d\tau$. $|x_1(t) - x_2(t)| \le \int_0^t |f(x_1(\tau)) - f(x_2(\tau))| d\tau$. Now we can apply Cromwall's lemma with c = 0 and $\phi(t) = |x_1(t) - x_2(t)|$, then $\phi(t) \le 0$, then $x_1(t) = x_2(t)$, $\forall t \in (-\epsilon, \epsilon)$

$$\dot{x} = \begin{cases} \sqrt{x}, & \text{if } x \ge 0\\ 0, & \text{else } x < 0 \end{cases}$$

Solutions
$$x(t) = \begin{cases} \frac{1}{4}(t-c)^2, & \text{if } t \ge c \ge 0\\ 0, & \text{else} \end{cases}$$

Global existance & uniqueness

- sufficient condition: f globally Lipschitz
- another sufficient condition: solution entirely lies in a coplex set
- forward completeness has equivalent Lyapunov-like characterization: system is forward-complete iff \exists solution $V: \mathbb{R}^n \to \mathbb{R} \geq 0$ s.t. $\frac{\partial V}{\partial x} f(x) \leq V(x), \forall x \in \mathbb{R}^n$

2.3 Lyapunov stability

If functions $\dot{V}(x) < 0$, $\forall x \in D$ $\{0\}$, then x^* is asymptotically stable.

Equilibrium point x = 0 is stable if $\forall \epsilon > 0 \ \exists \delta > 0$ s.t. from $||x_0|| < \delta$ follows $||x(t)|| \le \epsilon$, $\forall t \ge 0$.

Equilibrium point x=0 is asymptotikaly stable if it stable and exist $\delta>0$ s.t. from $||x_0||<\delta$ follows $\lim_{t\to\infty}x(t)\to 0$.

Let $x^* = 0 \in D$ be an equilibrium point of (2), i.e., f(0) = 0. Let $f: D \to \mathbb{R}^n$ is continious. If there exist a differentiable $V: D \to \mathbb{R}$ s.t.

1.
$$V(x^*) = 0, V(x) > 0, \forall x \in D$$

{0}

2.
$$\dot{V}(x) = \frac{\partial V}{\partial x} f(x) \le 0, \forall x \in D$$

then $x^* = 0$ is stable.

Proof. Fix compact $U = \{x : V(x) \le c\}$ s.t. $U \in D$. By Piano: exist $\alpha > 0$ s.t. any solution x with $x_0 \in U$ exists at least on the interval $[0, \alpha)$.

TODO proof is not full

Lyapunovs direct method gives us:

- stability
- convergence (if V < 0)
- subset of the region of attraction (all compact $U = \{x : V(x) \le c\} \in D$)
- existance of solution for all times

3 Nonlinear systems

In this section we consider function $f: R \times D \to R^n$, where $D \subseteq R^n$, and D is open.

$$\dot{x}(t) = f(t, x(t)), \quad t \ge t_0 \ge 0, \quad x(t_0) = x_0$$

$$\tag{4}$$

The origin $x^* \in D$ is an equilinrium point for (4), if f(t,0) = 0, $\forall t \ge 0$.

Remark: EP (equilibrium point) $x^* = 0$ can be translation of a nonzero solution.

Suppose \overline{y} is a solution of $\dot{y} = g(t, y)$.

Change of coordinates: $x(t) = y(t) - \overline{y}(t)$, then $\dot{x}(t) = \dot{y}(t) - \dot{\overline{y}}(t) = g(t, x(t) + \overline{y}(t)) - \dot{\overline{y}}(t) := f(t, x(t))$. Since $\dot{\overline{y}}(t) = g * t, \overline{y}(t)$, then $f(t, 0) = 0, \ \forall t \geq 0$.

Existance and uniquence of solution to (4):

- if f continuous, then exist local colution
- if f continuous and locally Lipschitz in x^* , then exist local uniq solution

Now we need new stability definitions.

Point $x^* = 0$ is stable if $\forall \epsilon > 0$ and $\forall t_0 \ge 0$, $\exists \delta > 0$ s.t. from $||x_0|| < \delta$ follows $||x(t)|| < \epsilon$, $\forall t \ge t_0$.

Point $x^* = 0$ is uniformly stable if $\forall \epsilon > 0 \ \exists \delta > 0$, s.t $\forall t_0 \geq 0$, from $||x_0|| < \delta$ follows $||x(t)|| < \epsilon$, $\forall t \geq t_0$.

Point $x^* = 0$ asymptotically stable if it is stable and $\forall t_0 \ge 0 \quad \exists c > 0$, s.t from $||x_0|| < c$ follows $\lim_{t\to\infty} ||x(t)|| \to 0$.

Point $x^* = 0$ uniformly asymptotically stable if it is uniformly stable and $\exists c > 0$, s.t $\forall t_0 \ge 0$ from $||x_0|| < c$ follows $\lim_{t \to \infty} ||x(t)|| \to 0$.

Convergence: $\forall \eta > 0 \ \forall t_0 \geq 0, \exists T > 0 \text{ such that } \forall t \geq t_0 + T \text{ follows } ||x(t)|| < \eta.$

Uniform convergence: $\forall \eta > 0 \ \exists T > 0$ such that $\forall t_0 \geq 0$ and $\forall t \geq t_0 + T$ follows $||x(t)|| < \eta$.

Consider next equation:

$$\dot{x}(t) = -\frac{x(t)}{1+t}, \quad t_0 \ge 0 \tag{5}$$

Solution $x(t) = x(t_0) \frac{1+t_0}{1+t}$. It is uniformly stable, because we can choose $\delta = \epsilon$. But does x(t) convergence uniformly? Answer is no.

Point $x^* = 0$ is globaly uniformly asymptotically stable if it is uniformly stable with $\delta \to \infty$ for $\epsilon \to \infty$ and $\forall c, \eta \quad \exists T > 0$ such that $\forall t_0 \geq 0$ from $||x_0|| < c$ follows $||x(t)|| < \eta$, $\forall t \geq t_0 + T$.

3.1 Lyapunov's direct method

Consider some function $V:[0,\infty)\times D\to R, \ (t,x)\to V(t,x)$ such that $\dot{V}(t,x)=\frac{\partial}{\partial t}V(t,x)+\frac{\partial}{\partial x}V(t,x)f(t,x)$.

Let $f:[0,\infty)\times D\to R^n$ is continuous and let $x^*=0$ be equilibrium point. If there is a differentiable function $V:[0,\infty)\times D\to R$ with:

- $W_1(x) \leq V(t,x) \leq W_2(x), \forall t \geq 0, x \in D$
- $\dot{V}(t,x) \le 0, \forall t \ge 0, x \in D$

where $W_1, W_2: D \to R$ continuous and positive definite, then $x^* = 0$ is uniformly stable.

If further $\dot{V}(t,x) \leq -W_3(x)$, $\forall t \geq 0$, $x \in D$ with $W_3: D \to R$ continuous and positive definite, the $x^* = 0$ is uniformly asymptotically stable.

If $D = \mathbb{R}^n$ and W_1 is radialy unbounded then $X^* = 0$ is globally uniformly asymptotically stable.

Consider the equation $\dot{x}(t) = -(1+t)x(t)$.

Check function $V(t,x) = \frac{1}{2}x^2$ as candidat for Lyapunov's function. Then $W_1(x) = W_2(x) = \frac{1}{2}x^2$ and $\dot{V}(t,x) = -(1+t)x^2 \le -x^2(t) =: W_3(x)$. Then from theorem we have, that $X^* = 0$ is globally uniformly asymptotically stable.

3.2 Exponential stability

Point $X^* = 0$ is an exponentially stable EP of (4) if $\exists \lambda, c, k > 0$ s.t. $t \ge t_0 \ge 0$ and all $||x_0|| < c$ follows $||x(t)|| \le K||x(t_0)||e^{\lambda(t-t_0)}$.

Remark: from exponential stability follows uniformly asymptoticaly stability.

Let $\dot{x}(t) = f(t, x(t))$, f scalar and $\dot{\xi}(t) \leq f(t, \xi(t))$ with $\xi(t_0) \leq x(t_0)$. Then $\xi(t) \leq x(t) \ \forall t \geq t_0$.

Let $f:[0,\infty)\times D\to R^n$ be continuous and $x^*=0\in D$ be an EP.

If there is a differentiable function $V:[0,\infty)\times D\to R$ and constants $k_1,k_2,k_3,a>0$ s.t.

- 1. $k_1||x||^a \le V(t,x) \le k_2||x||^a, \forall t \ge 0, x \in D$
- 2. $\dot{V}(t,x) \leq -k_3 ||x||^a$

then $x^* = 0$ is exponentially stable.

If $D = \mathbb{R}^n$, then X^* is globally exponential stable.

Proof. For c > 0 small enough, trajectories initialized in $\{x : k_2||x||^a < c\}$ remain bounded and in D. From 1) and 2) we can conclude $\dot{V} \leq -\frac{k_3}{k_2}V$. Then from previous Lemma $V(t, x(t)) \leq$

$$V(t_0, x(t_0)) \exp{-\frac{k_3}{k_2}(t - t_0)}. \text{ Then } ||x(t)|| \leq [from 1] \leq \left(\frac{V(t, x(t))}{k_1}\right)^{\frac{1}{a}} \leq \left(\frac{V(t_0, x(t_0)) \exp{-\frac{k_3}{k_2}(t - t_0)}}{k_1}\right)^{\frac{1}{a}} \leq \left(\frac{k_2||x(t_0)||^a \exp{-\frac{k_3}{k_2}(t - t_0)}}{k_1}\right)^{\frac{1}{a}} = \left(\frac{k_2}{k_1}\right)^{\frac{1}{a}} ||x(t_0)|| \exp{-\frac{k_3}{k_2a}(t - t_0)}$$

Consider the equation $\dot{x}(t) = -(1+t)x(t)$.

Here $V(t,x) = \frac{1}{2}x^2$ then X^* is exponentially stable.

3.3 Comparsion function

A function $\alpha:[0,\delta)\to[0,\infty)$ is (of) "klass K"if it is continuous, strictly increasing, and $\alpha(0)=0$.

A function $\alpha:[0,\delta)\to[0,\infty)$ is "class K_{∞} if αinK and $\lim_{r\to\infty}\to\infty$.

Function $\alpha(r) = \tan^{-1}(r) - \text{class } K$

Function $\alpha(r) = r^k - \text{class } K_{\infty}$

A function $\beta:[0,\delta)\times[0,\delta)\to[0,\infty)$ is "class KL if it is continuous, $\beta(\cdot,s)\in K$ for all fixed s, and for each fixed r, $\beta(r,\cdot)$ is strictly decreasing: $\lim_{s\to\infty}\beta(r,s)=0$

Function $\beta(x,s) = max(r,r^2) \exp s$ belong class KL.

Properties of compasion functions:

- If $\alpha \in K$ on $[0, \delta)$, then α^{-1} is defined on $[0, \alpha(\delta))$ and $\alpha^{-1} \in K$.
- If $\alpha \in K_{\infty}$, then $\alpha^{-1} \in K_{\infty}$
- If $\alpha_1, \alpha_2 \in K$, then $\alpha_1 \circ \alpha_2 \in K$ (same for K_{∞}
- If $\alpha_1, \alpha_2 \in K$, $\beta \in KL$ then $\alpha_1(\beta(\alpha_2(r), s)) \in KL$

Now we conseider comparsion functions and stability definitions.

The equilibrium $x^* = 0$ of $\dot{x}(t) = f(t, x(t))$ is uniformly stable iff $\exists \alpha \in K$ and c > 0 s.t. $\forall t \geq t_0$, $\forall ||x(t_0)|| < c$ and $||x(t)|| \leq \alpha(||x(t_0)||)$.

Proof. (only sufficiency) Given $\epsilon > 0$ choose $\delta < \min(c, \alpha^{-1}(\epsilon))$. Then from $||x(t_0)|| < \delta$ follows $||x(t)|| \le \alpha(||x(t_0)||) < \alpha(\alpha^{-1}(\epsilon)) = \epsilon$.

The equilibrium $x^* = 0$ of $\dot{x}(t) = f(t, x(t))$ is uniformly asymptotically stable iff $\exists \beta \in KL$ and c > 0 s.t. $\forall t \geq t_0, \forall ||x(t_0)|| < c$ and $||x(t)|| \leq \beta(||x(t_0)||, t - t_0)$.

Proof. (only sufficiency) Let $||x(t_0)|| < c$. Then $||x(t)|| \le \beta(||x(t_0)||, t - t_0) < \beta(c, t - t_0)$. This mean uniform convergence. $||x(t)|| \le \beta(||x(t_0)||, t - t_0) < \beta(||x_{t_0}||, 0)$. This gives us uniform stability.

The equilibrium $x^* = 0$ of $\dot{x}(t) = f(t, x(t))$ is uniformly asymptotically stable iff $\exists \beta \in KL$ and c > 0 s.t. $\forall t \geq t_0, \forall ||x(t_0)|| < c$ and $||x(t)|| \leq \beta(||x(t_0)||, t - t_0)$.

Proof. (only sufficiency) Let $||x(t_0)|| < c$. Then $||x(t)|| \le \beta(||x(t_0)||, t-t_0) < \beta(c, t-t_0)$. This mean uniform convergence. $||x(t)|| \le \beta(||x(t_0)||, t-t_0) < \beta(||x_{t_0}||, 0)$. This gives us uniform stability.

The equilibrium $x^* = 0$ of $\dot{x}(t) = f(t, x(t))$ is globally uniformly asymptotically stable iff previous lemma holds for all $x_0 \in \mathbb{R}^n$.

Now consider comparsion function and Lyapunov functions

If $W: \mathbb{R}^n \to \mathbb{R}$ is continuous and positive definite, then $\forall r > 0 \ \exists \alpha_1, \alpha_2 \in K \text{ s.t. } \alpha_1(||x||) \leq W(x) \leq \alpha_2(|x||)$ for all $x \in B_r(0) = \{x|||x|| \leq r\}$.

If W is radially unbounded, then $\exists \alpha_1, \alpha_2 \in K_{\infty}$ s.t. $\alpha_1(||x||) \leq W(x) \leq \alpha_2(|x||)$ for all $x \in \mathbb{R}^n$.

Consider $\dot{y} = \alpha(y)$, $y(t_0) = y_0 > 0$, $\alpha \in K$. Then $\exists \beta \in KL \text{ s.t. } y(t) = \beta(y_0, t - t_0)$.

Sketch of proof of Lyapunov's direct method:

$$\begin{cases} W_1(x) \le V(t, x) \le W_2(x) \\ \dot{V} \le -W_3(x) \end{cases}$$

Where W_1, W_2, W_3 – continuous and positive defined.

Then $\exists \alpha_1, \alpha_2, \alpha_3 \in K$ such that $\alpha_1(||x||) \leq V(t,x) \leq \alpha_2(||x||)$ and $\dot{V}(t,x) \leq -\alpha_3(||x||)$.

Proof uniform stability:

$$||x(t)|| \le \alpha_1^{-1}(V(t, x(t))) \le [\alpha_1 i n K] \le \alpha_1^{-1}(V(t_0, x(t_0))) \le \alpha_1^{-1}(\alpha_2(||x(t_0)||)).$$

Proof uniform convergence

 $\dot{V} \leq -\alpha_3(||x||) \leq -\alpha_3(\alpha_2^{-1}(V)). \text{ We know, that } \alpha_3 \circ \alpha_2^{-1} \in K. \text{ By comparsion lemma, } V(t,x(t)) \leq W(t), \text{ where } W \text{ solves } \dot{W} = -\alpha_3(\alpha_2^{-1}(W)) \text{ with } W(t_0) = V(t_0,x(t_0)). \text{ By auxility lemma } \exists \beta \in KL \text{ s.t. } V(t,x(t)) \leq \beta(V(t_0,x(t_0)),t-t_0), \text{ then } ||x(t)|| \leq \alpha_1^{-1}(V(t,x(t))) \leq \alpha_1^{-1}(\beta(V(t_0,x(t_0)),t-t_0)) \leq \alpha_1^{-1}(\beta(\alpha_2(||x(t_0)||),t-t_0)) =: \bar{\beta}(||x(t_0)||,t-t_0). \text{ From this follows uniform asymptotic stability since } \bar{\beta} \in KL.$

3.4 Converse theorems

Let $X^* = 0$ be an EP of $\dot{x}(t) = f(t, x(t))$ with $f: [0, \infty) \times \mathbb{R}^n \to \mathbb{R}^n$ continously differentiable and $\frac{\partial f}{\partial x}$ bounded in \mathbb{R}^n , uniformly in t $(||\frac{\partial f}{\partial x}(t, x)|| \le L$ for all $x \in \mathbb{R}^n$, $t \ge 0$, t > 0.

If $x^* = 0$ is globally exponentially stale, then exists differentiable $V: [0, \infty) \times \mathbb{R}^n \to \mathbb{R}$ and

 $c_1, c_2, c_3, c_4 > 0$ s.t. $c_1||x||^2 \le V(t, x) \le c_2||x||^2, \dot{V}(t, x) \le -c_3||x||^2$ and $\left\|\frac{\partial V}{\partial x}\right\| \le c_4||x||$.

Proof. Let $\Phi(\tau;t,x)$ – solution to $\dot{x}(t)=f(t,x(t))$ which static at (t,x).

 $\begin{array}{ll} V(t,x) \ = \ \int_t^{t+\delta} \Phi^T(\tau;t,x) \Phi(\tau;t,x) d\tau, \quad \delta \ > \ 0. \ \ \text{Upper bound:} \ V(t,x) \ = \ \int_t^{t+\delta} ||\Phi(\tau;t,x)||_2^2 d\tau \ \leq \\ [exponential \ stability] \ \leq \ \int_t^{t+\delta} k^2 \exp{-2\lambda(\tau-t)} d\tau ||x||_2^2 = \frac{k^2}{2\lambda} (1-\exp{-2\lambda\delta}) ||x||_2^2. \end{array}$

Lower bound: since $\left\|\frac{\partial V}{\partial x}\right\| \leq L$, then $||f(t,x)||_2 \leq L||x||_2$. Thus by comparation lemma $||\Phi(\tau;t,x)||_2^2 \geq ||x||_2^2 \exp{-2L(\tau-t)}$. Set it in $V(t,x) \geq \int_t^{t+\delta} \exp{-2L(\tau-t)} d\tau ||x||_2^2 = \frac{1}{2L}(1-\exp{-2L\delta})||x||_2^2$.

Decrease conditions: $\dot{V}(t,x) = \cdots \leq -(1-k^2 \exp{-2\lambda\delta})||x||_2^2$.