21/4817-67/14/53170

1 Carilah deverah asal dari

$$0) \quad f(x) = \frac{x^3 + x^2 - x - 1}{x - 1}$$

× 7 1

* Daerah alal adalah semua nilai x kecuali 1: $(-\infty, 1) () (1, +\infty)$

& Daerah hasil:

kita perlu menyederhanakan persamaan f (x).

$$f(x) = x^{3} + x^{2} - x - 1 = x - 1$$

$$x^{1} + 2x + 1$$

$$x^{3} + x^{2} - x - 1$$

$$x^{3} - x^{2} - x - 1$$

$$2x^{2} - x - 1$$

$$2x^{2} - 2x - 1$$

$$x - 1$$
Mencari nilai maksimum atau

Minimum:

f'(x) = 2x + 2 = 0f(x)=2x =-1

X = -1

saat nilai x = -1 dan x=1 maka daerah hanl bernilai minimum.

$$f(-1) = 1-2+1=0$$
 $f(1) = 1+2+1=4$

dika x = 2; maka f(2) = 4+4+1= 9

Nilai y akan bernilai oo jika x terus bertambah Milainya.

Doerah hart dari fox) adalah interval: [0,4) U (4,+00)

b)
$$y = \sqrt[2]{(9-x^2)}$$

* Mencaii syarat-syarat terpenuhinga nilai y:

$$9-x^2 > 0$$

$$9 > x^2$$

$$x \leq \pm 3$$

& Darrah asal nya dari fungsi "y" adalah pada interval:

* Daerah hanil:

Mencari nilai maknimum dari y:

$$y = (9 - x^2)^{\frac{1}{2}}$$

$$y' = \frac{-2x}{2\sqrt{(9-x^2)}} = \frac{-x}{\sqrt{9-x^2}} = 0$$

$$-X = 0$$

$$y = \sqrt{9-0} = 3$$

maka nilai makumum dari y = 3

Daerah houil dari y adalah pada interval [0,3]

Tentukan hasil dan soal berikut dan Jentukan apakah fungpi tersebut kontinu 2 atom tidak

a)
$$\lim_{x \to +x^3+2}$$
 im

a)
$$\lim_{x \to + x^3 + 2} = \lim_{x \to + x^2 + 2} \frac{1 + 0 + 6}{x} = 1$$

a) lin	$ \frac{x^{5} + x^{3} + 1}{x^{5} + x^{2} + x + 1} = \lim_{x \to \infty} \frac{x^{5} \left(1 + \frac{1}{x^{2}} + \frac{2}{x^{5}}\right)}{x^{5} \left(1 + \frac{1}{x^{3}} + \frac{1}{x^{4}}\right)} = \frac{1 + 0 + 6}{1 + 0 + 0 + 6} = 1 $
fu	nysi diatas tidak kontinu karona ketika x = 0, maka nilai nyri tidak ter definisi.
γ) l ^{j,}	$\frac{x^{8} + x^{5} + x^{3} + 2}{x^{5} + x^{3} + x + 1}$
lí ×	$\frac{0}{-} = \frac{0}{0} = \frac{0}{0} = \frac{2}{0} = \frac{2}$
* t	$c0) = \frac{0 + 0 + 0 + 1}{0 + 0 + 0 + 1} = 2$
fu	ngri dratas kontinu karena lim fcx) = fco)
c) li	$ \begin{array}{c} $
2	lim x + x + x + + x + 1 + x + x + + x + 1 x - 3 \infty 100 98 2
=	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
	$\lim_{x \to \infty} \frac{x^{1} + x^{3} + \dots + x^{2} + 1}{x^{1} + \dots + \frac{2}{x^{1}} + \frac{2}{x^{1}} + \dots + \frac{2}{x^{1}} + \frac{2}{x^{1}} + \dots}$ $\lim_{x \to \infty} \frac{x^{1} + x^{1} + \dots + \frac{2}{x^{1}} + \frac{2}{x^{1}} + \dots + \frac{2}{x^{1}} + \frac{2}{x^{1}} + \dots + \frac{2}{x^{1}$
	$\frac{1}{x^{2}} = \frac{1}{x^{10}} = \frac{1}{x^{10}}$ $\frac{1}{x^{10}} = \frac{1}{x^{10}} = \frac{1}{x^{10}}$
2	$\frac{1+0+0+\ldots+0}{1+0+0+\ldots+0}$ Funcio tribat kontinu tarena ketika $x=\infty$, nilai fununi

	funga	tid	.ak k	ontino	u ka	rena	Ketil	ca	χ -	- o	,	nilai	fw	ነ ዛ ንሰ		
	tidak	terd	efnis	,	,-0				,.		•			J		
	35000															
d)	lim (s	(n)	+ 0	,s (nj)											
	Vji limi	+ :	Sin O	+ Ca	030 =	- 0	+ 1									
	Primes: It	مامد م		L.a.	Auren		n ((Indi	n,	ka.	<i>a</i> 0 <i>a</i> 1	l/a.	hka	oilai	v) = 1	ሳ
	fungii di maka n	ilai da	rerupa n fu	(5 m'	dapat	terde	finih		,	ω _ι ,	Z 1 V 1	μe	(100	()(()()		_
e)	lim n->0		+1													
*	Uji limi		Co s(0) +	1	- C	∞	,	tida	ık b	erhi	ngga				
			O					,				00				
*	limit		+1	Ξ	+ 0	ρ										
	N→ 0 [†]	11														
表	limit	cus	(n)	- (- 🛇										
	n -> 0-	n	\													
	dad per	dekala	n di	ri	kin d	on k	oran	· r	iilai	Aan	Ŋ	berb	eda			
	sehingg	a fu	\5 m [·]	diata	, tide	at Ko	ntinu.	/					·			
<i>b</i> J	lim Si	0 ² (0)														
1)	U->0	n														
			1 6		•											
※	Uji limit	; Sin	0)2) =	0 O	;	+da	e H	rde	finin	•					
	Nilai da						lim					0				
					n		n→									
					yn d											

	Karena ketika x = 0 , fungsi diatas memiliki milai yang tak te definisi
	sehingga fungsi tersebut tidak kontinu.
9)	lim n-cos(n)
•	$n \rightarrow \infty$ n
*	Usi limi: 0 - cos (00) = Tak terdefinisi
%	Nilai limit: $\lim_{n\to\infty} \frac{n-\cos(n)}{n} = 1-0=1$
	11-) Ø N
	Nori havil percoberan diatas; tetika nilai x = 0; maka nilai
	dari fungsi menjadi tidak hingga Dapat disimpulkan tungsi diatas
	fidak konfinu.
ከ)	line Sin (2 a)
,	$\lim_{n\to 0} \sin(2n) \cdot \frac{1}{n^3}$
×χ	Oji limit:
	$Sin(0) = \frac{1}{0^3} = \frac{0}{0}$; fidal terdefining
X.	Mencan' nilai limit:
	$\lim_{N \to 0} \sin(2n) \cdot \frac{1}{n^3} = \lim_{N \to 0} \frac{\sin(2n)}{n} \cdot \frac{1}{n^2} = \lim_{N \to 0} \frac{2}{n^2} = \frac{2}{0} = 0$

Dari han 1 percohaan dintas $\lim_{x\to 0} f(x) \neq f(x)$, funyn tersebut trdak kontinu

Tutor Kvt Page 5

Bunt persaman gms singgung

a)
$$y = x^2 + 5x + 6$$
; $x = 0$
 $y' = 2x + 5$; $x = 0$
 $y' = m = 5$
 $y = 0 + 5(0) + 6 = 6$

Titik (0,6); (x1; y1)

Garis singgung:

 $y - y_1 = m(x - x_1)$
 $y - 6 = 5x$

$$y-y_1 = m(x-x_1)$$

 $y-6 = 5(x-0)$
 $y-6 = 5x$
 $y = 5x + 6$

b)
$$y = \sin(x) + 1$$
 titik $(\frac{\pi}{4})$
 $y = \sin(\frac{\pi}{4}) + 1$
 $y = \sqrt{2} + 1$ Fitik $(\frac{\pi}{4}, \sqrt{2} + 1)$

& Mencart gardien

0 = sm(4)

-1 = (mex)

= - [

$$y' = cos(x)$$
 $y' = (os(\frac{\pi}{4}) = \frac{\sqrt{2}}{2} > m$

$$y - y_{1} = M(x - x_{1})$$

$$y - \frac{\sqrt{2}}{2} - 1 = \frac{\sqrt{2}}{2}(x - \frac{17}{4})$$

$$y = \frac{\sqrt{2}}{2}x - \frac{7}{8} + \frac{\sqrt{2}}{2}$$

$$y = 4x\sqrt{2} - 7\sqrt{2} + 4\sqrt{2} + 8$$

	1		2					
	y = 4	X J2 - 17 J2 + 4V	1+8					
		d						
	+		1					
*	Tabel		*	Pable the	kourdmat	garis singe) N)	
	X			X	1,1517 &	π		
	<u>0</u>	0		U T ~ - 1.622	0	3		
	0 to 2 to	2	2	<u>11</u> π ~ -1,622				
	2	0						
	20			360 = 217				
				Iyo = IT				
		y -						
				, , , , , , , , , , , , , , , , , , , 				
	-311 -	η <u>π</u> -1-	H 1/2	TT 3 TT 2				
		-2 -						
		-> -						
		-4 -						
म १	nI = (x)	(sin (x))						
f	(x) = ?							
*				, 1				
Î Y	we :	d (xlnx)_	lnx	+ X L				
		d×						
		of (Inv)	1					
		d (Inx) =	X X					
		α *						
C	(4)	d (In csinx))	1 1 00.	n e l	1 644	_	
1	(J) =	a (In Chilk)	_/ モ	<u>a</u> (5)	<u>'' </u>	. (0)	7	

£ (x) =	d (ln (smx))	1 .	(un s)	C(1) 4	
1 0,7 =	d(In(smx)) = dx cotan(x)	sinx &	$d\tau$ Si	n∗	
f'(x) =	cotan(x)				