Topics in Applied Econometrics

Challenges to identify causal effects

Attila Gyetvai

Duke Economics Summer 2020

How to tackle an empirical project

- 1 What causal effects are we interested in?
- What ideal experiment would capture this effect?
- 3 What is our identification strategy?
- What is our mode of statistical inference?

Establishing some language

- "Treatments"
 - Terminology and some tools come from the medical literature
 - Any causal effect can be thought of as the effect of some "treatment"
- We are interested in the outcome Y
- Consider the effect of the treatment on a potential participant i
- Two states of the world:
 - \triangleright Y_{1i} if *i* is treated
 - \triangleright Y_{0i} if *i* is not treated
- $Y_{1i} Y_{0i}$ is the effect of the treatment on i

Counterfactual approach

- We can be in only one state of the world
- *i* is either treated or not
 - ▶ If *i* is treated, we can observe Y_{1i} but not Y_{0i}
 - ▶ If *i* is not treated, we can observe Y_{0i} but not Y_{1i}
- The unobserved outcome is the *counterfactual* outcome

Fundamental problem of causal inference

 $Y_{1i} - Y_{0i}$ cannot be observed

- We can only see the actual but not the counterfactual outcome
- Therefore the effect of the treatment is fundamentally unobservable
- However, not all hope is lost!

4/12

Measuring the counterfactual

- Observation vs. measurement
 - We cannot observe the counterfactual outcome
 - ... but we can measure it under certain assumptions
- Example: $Y_{1i} = Y_i$ when j is treated and i is not
 - This assumption is simple but very restrictive
- Question: What is the least restrictive set of assumptions under which we can identify the effect of the treatment?
- During this course, we will cover various sets of such assumptions

The potential outcomes framework

- Potential outcome: what the counterfactual outcome could be
- Treatment variable: $D_i = 1$ if i is treated / 0 if i is not treated
- Observed outcome:

$$Y_i = \begin{cases} Y_{1i} & \text{if } D_i = 1 \\ Y_{0i} & \text{if } D_i = 0 \end{cases}$$

Starting to think about treatment effects

- The effect of the treatment is $Y_{1i} Y_{0i}$
- How can we say something meaningful about this effect?
- We need to aggregate outcomes within groups, i.e., take expectations
- Example: the average treatment effect (ATE)

$$ATE = \mathbb{E}(Y_{1i} - Y_{0i}) = \mathbb{E}(Y_{1i}) - \mathbb{E}(Y_{0i})$$

Average treatment effect

$$ATE = \mathbb{E}(Y_{1i} - Y_{0i}) = \mathbb{E}(Y_{1i}) - \mathbb{E}(Y_{0i})$$

- Recall the fundamental problem: we can only observe the actual outcomes
- How can we measure the ATE from these observations?
- We need to make assumptions about the counterfactual outcomes $\mathbb{E}(Y_{1i}|D_i=0)$ and $\mathbb{E}(Y_{0i}|D_i=1)$
- E.g., assume that the potential outcomes in the treated and untreated groups are the same
- · When is this assumption reasonable?

Challenges arise

- Potential outcomes are not the same
 - Units "select into treatment" (choose treatment status)
 - Selection on observable vs. unobservable characteristics
- Treated and untreated groups are not well-defined
 - Some units opt out of the treatment
 - ▶ Some units fight their way into treatment, even though they are not supposed to
- The treatment effect is different for various subgroups
 - ► The effect is larger for units with certain characteristics
 - The effect is larger for those who are "just treated"
- And so on...

Evaluating the treatment effect

- Suppose we successfully measure the treatment effect. What does it tell us?
- In social sciences, we are mostly interested in generalizing the findings from a certain program to other settings
- Internal validity: Does the analysis show the effect of the particular program?
- External validity: Can the effects be generalized to other programs?
- Internal vs. external validity:
 - One can argue that only internally valid results should be generalized
 - ...but the more tailored the analysis to a certain program, the less it is generalizable

Looking forward

- We will cover the cornerstones of a successful empirical project
 - 1 What causal effects are we interested in?
 - What ideal experiment would capture this effect?
 - What is our identification strategy?
 - 4 What is our mode of statistical inference?
- You will tackle an empirical project along these principles
 - Pose an empirical question
 - Design a project that seeks to answer the question
 - Describe the ideal experiment
 - Simulate data from a non-ideal experiment
 - Evaluate the treatment effect

Empirical project

- You will work in groups
- Groups will be formed after the add/drop date
- Groups will regularly update me on their progress in Zoom meetings
- At the end of the course, each group will present their project