PLP - Práctica 4: Subtipado

Zamboni, Gianfranco

2 de marzo de 2018

Reglas de subtipado

4.1. Ejercicio 1

1)

$$\frac{\{y\}\subseteq\{x,y,z\} \qquad y:Nat=y:Nat}{\{x:Nat,\ y:Nat,\ z:Nat\}<:\{y:Nat\}} \text{ S-Rcd}$$

Esta demostración no es única porque existe la regla S-Trans que nos permite probar la transitividad de los tipos, si hubiesemos decidido usarla para primero conseguir un supertipo $\{x: Nat, y: Nat\}$ del primer término y luego probar que ese supertipo es subtipo de $\{y: Nat\}$ entonces también hubiese sido una demostración válida.

2)

$$\frac{\emptyset \subseteq \{x,y,z\}}{\{x:Nat,\ y:Nat\}<:\{\}} \text{ S-Rcd}$$

$$\frac{\{x\} \subseteq \{x,y\} \qquad x:Nat=x:Nat}{\{x:Nat,\ y:Nat\}<:\{x:Nat\}} \text{ S-Rcd} \qquad \frac{\emptyset \subseteq \{x,y,z\}}{\{x:Nat\}<:\{\}} \text{ S-Rcd}$$

$$\frac{\{x:Nat,\ y:Nat\}<:\{\}}{\{x:Nat,\ y:Nat\}<:\{\}}$$

4.2. Ejercicio 2

1) Los registros tienen subtipos infinitos porque dado el tipo de un registro $\omega = \{l_i : \sigma_i\}_{i \in 1..n}$, entonces cualquier tipo de la forma $\omega' = \{l_i : \tau_i\}_{i \in 1..k}$ con $k \ge n$ tal que $\tau_i <: \sigma_i^{i \in 1..n}$ es subtipo del tipo de ω .

Top tiene como subtipo a los registros y los registros tienen infinitos subtipos, entonces Top tiene infinitos subtipos.

Por S-Arrow, los subtipos de una función $\sigma \to \tau$ son los tipos de la forma $\sigma' \to \tau'$ tal que $\sigma <: \sigma'$ y $\tau' <: \tau$. En particular si τ es de tipo registro, entonces τ tiene infinitos subtipos, por lo que $\sigma \to \tau$ tambien los tiene (son las funciones que devuelven registros).

2) Top no tiene supertipos.

Los registros tiene una cantidad finita de supertipos, siendo el máximo registro {} <: Top

Otra vez, hay casos en que las funciones tienen infinitos supertipos y es cuando toman como parámetro a un registro. Esto es porque la regla S-Arrow es contravariante respecto del tipo del párametro de la función, es decir, para que un tipo $\sigma \to \tau$ sea supertipo de $\sigma' \to \tau$ tiene que valer que $\sigma <: \sigma'$. Y si sigma' es un registro, entonces tiene infinitos subtipos.

4.3. Ejercicio 3

1)
$$S = Top$$

- 2) Si solo consideramos los tipos básicos Bool, Nat, Int, Float, entonces S=Bool, pero cuando empezamos a considerar registros o listas u otros tipos, entonces, los "mínimos" de cada tipo no están relacionados de ninguna forma, incluso, en el caso de los registros, ese mínimo nisiquiera existe.
- 3) Por S-Arrow, tenemos que $S_1 \to S_2 <: T_1 \to T_2$ si $T_1 <: S_1 y T_2 <: S_2$. El primer caso es el punto 1), el segundo es el punto 2).
- 4) Es similar al anterior pero con los casos invertidos.

4.4. Ejercicio 4

- $\mathbf{1)} \quad T <: S \iff_{\text{S-Trans}} T <: T \ \land \ T <: S \iff_{\text{S-Arrow}} S \rightarrow T <: T \rightarrow T$
- 2) Si S = Bool y T = Top, entonces $\{x : Bool, y : Top\}$ tiene 26 supertipos y el tipo $Bool \to Top$ solo tiene como supertipo a Top, porque Bool no tiene subtipos y Top no tiene supertipos.
- 3) Si S = Top y T = Top, entonces $\{x : Top, y : Top\}$ tiene como supertipos a $\{x : Top\}$, $\{y : Top\}$, $\{\}$ y a Top y el tipo $Top \to Top$ tiene infinitos por el ejercicio 2.

4.5. Ejercicio 5

Subtipado en el contexto de tipado

PLP - Prácticas