Calculus(I)

Homework 1, Sep, 11, 2019

Deadline: Sep, 20, 2019

1.
$$\lim_{x \to 2} (x^2 + 1) = ?$$

Ans : 5

2.
$$f(x) = 2x^3 + 7x + 2$$
, Find $f'(x)$.

Ans: $6x^2 + 7$

3. If
$$f(x) = \sin x$$
, $g(x) = \cos x$, $h(x) = \tan x$, Find $f'(x)$, $g'(x)$, $h'(x)$.

Ans:
$$f'(x) = \cos x$$
, $g'(x) = -\sin x$, $h'(x) = \sec^2 x$.

4. Let
$$Sn = \frac{1}{2} + \frac{1}{2^2} + \frac{1}{2^3} + \dots + \frac{1}{2^{n-1}} + \frac{1}{2^n}$$

(a) Find Sn.

Ans:
$$\therefore \sum_{k=1}^{n} a_k = a_1 + a_2 + \dots + a_n$$

$$= a_1 + a_1 r + a_1 r^2 + \dots + a_1 r^{n-1}, r \text{ is common ratio}$$

$$= \frac{a_1(1-r^n)}{1-r}, r \neq 1$$

$$\therefore a_1 = \frac{1}{2}, r = \frac{1}{2}, S_n = \frac{\frac{1}{2}[1-(\frac{1}{2})^n]}{1-\frac{1}{2}} = 1 - (\frac{1}{2})^n$$

(b) Find $\lim Sn$.

Ans:
$$\lim_{n \to \infty} S_n = \lim_{n \to \infty} \left[1 - \left(\frac{1}{2}\right)^n\right] = 1 - 0 = 1$$

5. Find the domain of the function

(a)
$$f(x) = \frac{x+4}{x^2-9}$$

Ans:
$$\therefore x^2 - 9 \neq 0$$
, $\therefore x \neq \pm 3$,
 $\therefore f(x) \text{ domain} = \{x | x \in R, x \neq \pm 3\}$

(b)
$$q(t) = \sqrt{3-t} - \sqrt{2+t}$$

Ans:
$$\because 3\text{-t} \ge 0$$
 and $2+t \ge 0 \Rightarrow t \le 3$ and $t \ge -2$
 \therefore g(t) domain = $\{t | t \in R, -2 \le t \le 3\}$

6. If $f(x) = x + \frac{1}{x}$, $g(x) = \frac{x+1}{x+2}$ Find the function (a) $f \circ g$, (b) $g \circ f$, (c) $f \circ f$, (d) $g \circ g$ and their domains.

(a)
$$f \circ g = f(g(x)) = f(\frac{x+1}{x+2}) = \frac{x+1}{x+2} + \frac{x+2}{x+1} = \frac{(x+1)^2 + (x+2)^2}{(x+2)(x+1)}$$

 $x \neq -2, and \ x \neq -1, \ domain = \{x | x \in R, x \neq -2, -1\}$

(b)
$$g \circ f = g(f(x)) = g(x + \frac{1}{x}) = \frac{x + \frac{1}{x} + 1}{x + \frac{1}{x} + 2} = \frac{x^2 + x + 1}{x^2 + 2x + 1} = \frac{x^2 + x + 1}{(x + 1)^2}$$

$$x \neq 0 \text{ and } x \neq 1 \text{ domain} = \int x | x \in R, x \neq 0$$

$$x \neq 0, and \ x \neq -1, \ domain = \{x | x \in R, x \neq 0, -1\}$$

(c)
$$f \circ f = f(f(x)) = f(x + \frac{1}{x}) = \frac{x^2 + 1}{x} + \frac{x}{x^2 + 1} = \frac{x^4 + 3x^2 + 1}{x(x^2 + 1)}$$

 $x \neq 0, \ domain = \{x | x \in R, x \neq 0\}$

(d)
$$g \circ g = g(g(x)) = g(\frac{x+1}{x+2}) = \frac{2x+3}{3x+5}$$

 $x \neq -2, and \ x \neq \frac{-5}{3}, \ domain = \left\{ x | x \in R, x \neq -2, \frac{-5}{3} \right\}$

7. If $f(x) = \frac{6x}{x^2-9}$ and $g(x) = \sqrt{3x}$ Find f(g(12)) value and f(g(x)) domain

Ans:
$$f(g(x)) = f(\sqrt{36}) = f(6) = \frac{4}{3}$$
, $domain = \{x | x \in R, x \neq \pm 3\}$

8. (Find a formula for the described function and state its domain) A rectangle has area $16m^2$. Express the perimeter of the rectangle as a function of the length of one of its sides.

Ans: if
$$y = \frac{16}{x}$$
, $p = 2x + 2y = \frac{2x^2 + 32}{x}$, $domain = \{x | x \in R, x \neq 0\}$

- 9. The graph of f is given, Use it to graph the following functions.
 - (a) y = f(2x)

(b) $y = f(\frac{1}{2}x)$

(c) y = f(-x)

(d) $y = -\tilde{f}(-x)$

10. In multiple expansion of $(2x - y^2)^6$, find the coefficient of x^4y^4 .

Ans:
$$C_2^6(2x)^4(-y^2)^2 = 240x^4y^4$$

11. what are your expectation for yourself in Calculus class?