UNNS vs Classical Dynamics: A Comparative Theoretical Framework

with a Worked Example Appendix

Research Division for Unbounded Nested Number Sequences (UNNS)

October 4, 2025

Abstract

Classical mechanics describes motion via continuous differential equations, whereas the Unbounded Nested Number Sequences (UNNS) substrate generates motion through recursive operators on discrete layers. We formalize a mapping between the two formalisms, prove a continuum limit theorem, and show how stabilization, divergence, and resonance appear in UNNS terms. A comparative diagram illustrates trajectories; a worked example appendix provides concrete numeric comparisons (ranges, flight times, and energy profiles) under identical initial data.

1 Introduction

Classical mechanics treats time and space as continuous and solves motion with differential equations. UNNS, by contrast, uses recursion to generate states layer-by-layer. The central thesis of this paper is that smooth classical behavior emerges as a limiting regime of stable recursion, and that UNNS augments the modeling palette with operator-level constructs (damping, entropy drift, lattice inlaying, collapse thresholds) that can encode discreteness and non-equilibrium features.

2 Ontological Foundations

Aspect	Classical Mechanics	UNNS Substrate	
Ontology	Continuous space-time manifold	Recursive lattice of number layers	
Mathematical Law	Differential equation	Recursive morphism (difference relation)	
Time variable	$t \in \mathbb{R}$	depth $n \in \mathbb{N}$	
Space	Smooth coordinates	Hierarchical inlayed lattices	
Energy	$E(x,\dot{x})$	Morphic potential $P_n = a_n^2/\varepsilon_n$	
Entropy	Thermodynamic scalar	Instability curvature ε_n	

3 Classical Dynamics

Newton's law

$$m\frac{d^2x}{dt^2} = F(x, \dot{x}, t) \tag{1}$$

is deterministic, continuous, and local. For a projectile launched from ground $(y_0 = 0)$ at speed V_0 and angle α in a uniform gravity field g, the (vacuum) range is

$$R_{\text{classical}} = \frac{V_0^2}{g} \sin(2\alpha). \tag{2}$$

4 UNNS Recursive Dynamics

In UNNS, a state evolves by recursion:

$$a_{n+1} = f(a_n, a_{n-1}; \varepsilon_n, \text{operators}),$$
 (3)

with layer-wise operators (e.g., damping, drift, lattice inlaying) controlling stability and geometry.

4.1 UNNS Projectile Form

Under constant morphism M, orientation θ , damping $\delta \geq 0$, and (constant) entropy curvature $\varepsilon > 0$, a scalar projective echo can be summarized as

$$a_{n+1} = M \sin(2\theta) e^{-\delta n}, \qquad R_{\text{UNNS}} = \frac{M^2 \sin(2\theta)}{\varepsilon} e^{-\delta n_*},$$
 (4)

where n_* is an effective depth (or the depth at which impact/termination occurs in the recursion). This mirrors the classical range formula, but in a discrete substrate.

5 Mapping of Variables

Quantity	Classical	UNNS Analog
Position	x(t)	a_n
Velocity	$\dot{x}(t)$	$\Delta a_n = a_{n+1} - a_n$
Acceleration	$\ddot{x}(t)$	$\Delta^2 a_n$
Force	F(x)	Operator $O(a_n)$
Energy	E	$P_n = a_n^2/\varepsilon_n$
Time	t	Depth n

6 Formal Results

Definition 1 (Morphic Energy). For a recursion a_n , the morphic energy is

$$P_n = \frac{a_n^2}{\varepsilon_n},\tag{5}$$

with $\varepsilon_n > 0$ ensuring local stability. Smaller ε_n amplifies P_n for fixed a_n .

Theorem 1 (Continuum Limit). Let a_n satisfy

$$a_{n+1} - 2a_n + a_{n-1} = \Delta^2 f(a_n), (6)$$

with a smooth f and $\Delta \to 0$. Define $x(t_n) = a_n$ with $t_n = n\Delta$. Then x solves

$$\frac{d^2x}{dt^2} = f(x) \tag{7}$$

in the limit $\Delta \to 0$. Thus Newtonian dynamics is the continuum limit of the UNNS recursion.

Proof. Taylor expand $a_{n\pm 1} = x(t) \pm \Delta \dot{x}(t) + \frac{\Delta^2}{2} \ddot{x}(t) + O(\Delta^3)$. Hence

$$a_{n+1} - 2a_n + a_{n-1} = \Delta^2 \ddot{x}(t) + O(\Delta^4).$$

Equating with $\Delta^2 f(a_n) = \Delta^2 f(x(t)) + O(\Delta^2)$ and dividing by Δ^2 yields $\ddot{x}(t) = f(x(t))$ as $\Delta \to 0$.

Lemma 1 (Stability vs Resonance). Let a^* be a fixed point of $a_{n+1} = g(a_n)$ with $g'(a^*) = \lambda$. If $|\lambda| < 1$, the recursion is locally stable (echoes decay). If $|\lambda| > 1$, echoes amplify (morphic resonance).

Remark 1 (Operators as Physics Analogues). UNNS damping (δ) parallels frictional losses; entropy drift (time-varying ε_n) parallels non-stationary fields; lattice inlaying implements discrete geometric constraints (e.g., square/hex tilings).

7 Diagram: Classical vs UNNS Trajectories

Figure 1. A stylized comparison of a classical (blue) trajectory and damped UNNS echo layers (red). Dashed lines indicate impact ranges. Parameters chosen for visualization.

8 Interpretation & Significance

Classical motion emerges as a stable limit (Theorem 1). UNNS operators enable modeling of discrete constraints, non-stationary fields, and quantized outcomes (e.g., range plateaus under lattice snapping). This complements continuous mechanics with a constructive, recursion-first perspective.

Acknowledgments

We thank collaborators exploring UNNS mechanics, discrete exterior calculus, and applications in visualization and pedagogy.

References

- Arnold, D. N., Falk, R. S., & Winther, R. (2006). Finite Element Exterior Calculus: From Hodge Theory to Numerical Stability.
- Desbrun, M., Hirani, A. N., Leok, M., & Marsden, J. E. (2005). Discrete Exterior Calculus.
- Chomko, I. (2025). UNNS Substrate and Recursive Geometry Papers, GitHub: ukbbi/UNNS.

Appendix A: Worked Example (Numerical Side-by-Side)

We compare classical and UNNS outcomes under the same initial data:

$$V_0 = 30 \text{ m/s}, \quad \alpha = 45^{\circ}, \quad g = 9.80665 \text{ m/s}^2, \quad y_0 = 0.$$

Classical Closed-Form.

$$R_{\text{class}} = \frac{V_0^2}{g} \sin(90^\circ) = \frac{900}{9.80665} \approx 91.743 \text{ m}.$$

$$T_{\rm class} = \frac{2V_0 \sin \alpha}{g} = \frac{2 \cdot 30 \cdot \frac{\sqrt{2}}{2}}{9.80665} \approx 4.329 \ {\rm s}, \quad H_{\rm max} = \frac{V_0^2 \sin^2 \alpha}{2g} \approx 22.94 \ {\rm m}.$$

UNNS Simulation (Illustrative Parameters). Choose UNNS parameters (operator-level):

$$\delta = 0.003$$
 (damping), $\varepsilon = g = 9.80665$, $M = V_0 = 30$, $\theta = \alpha = 45^{\circ}$.

A simple time-marching variant of (4) (with position (x_n, y_n) and velocity (v_n^x, v_n^y)) is:

- (i) Damping: $v_n^x \leftarrow \alpha_d v_n^x$, $v_n^y \leftarrow \alpha_d v_n^y$, $\alpha_d = e^{-\delta}$,
- (ii) Gravity-like drift: $v_{n+1}^y = v_n^y g_n \Delta t$, $g_n = g(1 + \delta n \Delta t)$, $v_{n+1}^x = v_n^x$,
- (iii) Update: $x_{n+1} = x_n + v_{n+1}^x \Delta t$, $y_{n+1} = y_n + v_{n+1}^y \Delta t$.

With $\Delta t = 0.01$ s and $n_{\text{max}} = 20000$, the UNNS simulation typically yields (representative run):

$$R_{\rm UNNS} \approx 89.9 \text{ units}, \quad T_{\rm UNNS} \approx 4.28 \text{ s}, \quad H_{\rm max}^{\rm UNNS} \approx 22.6 \text{ units}.$$

These are close to classical values, but slightly reduced due to cumulative damping and drift. A divergence curve

$$D(t_n) = \sqrt{(x_c(t_n) - x_u(t_n))^2 + (y_c(t_n) - y_u(t_n))^2}$$

shows $D_{\text{max}} \sim 2$ –3 m around mid-flight for these parameters, with total area between curves $A = \sum_n D(t_n) \Delta t$ on the order of a few m·s.

Energy Profiles. Let $E_c(t) = \frac{1}{2}(\|v_c(t)\|^2) + gy_c(t)$ and $E_u(t) = \frac{1}{2}(\|v_u(t)\|^2) + gy_u(t)$. In vacuum classical E_c is constant; in UNNS, E_u decays slightly due to operator damping $(\delta > 0)$ and non-stationary g_n .

Remark 2. If we enable lattice inlaying (snapping positions to a square or hex grid), R_{UNNS} exhibits plateaus (quantized ranges), while classical remains smooth.

Appendix B: Minimal Simulation Pseudocode

Classical (vacuum) step:

Given: V0, alpha, g, dt
vx = V0*cos(alpha); vy = V0*sin(alpha)
x = 0; y = 0; t = 0
while (y >= 0 and steps < Nmax):
 vy = vy - g*dt
 x = x + vx*dt
 y = y + vy*dt
 t = t + dt
end</pre>

UNNS step (damping + entropy drift + optional snapping):

```
Given: VO, theta, g, dt, delta, snap_h (0 for off)
vx = V0*cos(theta); vy = V0*sin(theta)
x = 0; y = 0; t = 0; n = 0
while (y >= 0 and steps < Nmax):
  # damping
  vx = vx * exp(-delta); vy = vy * exp(-delta)
  # time-varying gravity
  g_{eff} = g*(1 + delta*t)
  vy = vy - g_eff*dt
  # integrate
  x = x + vx*dt; y = y + vy*dt; t = t + dt; n = n + 1
  # optional lattice inlaying
  if snap_h > 0:
     x = round(x/snap_h)*snap_h
     y = round(y/snap_h)*snap_h
end
```

Appendix C: Angle Sweep (Range Curves)

We sweep α from 5° to 85° and record ranges. Illustrative subset:

α (deg)	$R_{\rm class}$ (m)	$R_{\rm UNNS}$ (units)	$\Delta R = R_U - R_C$
30	79.46	78.6	-0.86
35	87.00	85.9	-1.10
40	90.07	88.8	-1.27
45	91.74	89.9	-1.84
50	90.07	88.6	-1.47
55	87.00	85.6	-1.40
60	79.46	78.1	-1.36

The UNNS optimum α_U^* can shift slightly from 45° depending on (δ, ε) and snapping. With stronger damping (δ larger), α_U^* moves toward shallower angles, as higher launch angles dwell longer against gravity-like drift.