Оцінювання характеристик частково спостережуваного ланцюга Маркова на двійкових послідовностях

А. В. Цибульник І. І. Ніщенко

Всеукраїнська науково-практична конференція студентів, аспірантів та молодих вчених

2023

План доповіді

- 🚺 Сфери застосування бінарних послідовностей
- Моделювання об'єкту дослідження
- Побудова оцінок невідомих параметрів
- Результати чисельного експерименту

План доповіді

- Сфери застосування бінарних послідовностей
- Моделювання об'єкту дослідження
- Побудова оцінок невідомих параметрів
- 4 Результати чисельного експерименту

Сфери застосування бінарних послідовностей

• Еволюція ДНК в біології

• Бінарні послідовності в теорії інформації

• Спінові системи у фізиці

План доповіді

- Сфери застосування бінарних послідовностей
- Моделювання об'єкту дослідження
- Побудова оцінок невідомих параметрів
- Результати чисельного експерименту

Еволюцію бінарної послідовності довжини N уявимо як випадкове блукання вершинами N- вимірного куба.

Ліниве блукання: з імовірністю p залишаємося на місці, з імовірністю $\frac{1-p}{N}$ переходимо в сусідню вершину.

$$t = 1 \quad (0, 1, 1)$$

$$t = 2 \quad (0, 1, 0)$$

$$t = 3 \quad (1, 1, 0)$$

$$t = 4 \quad (1, 0, 0)$$

 $\{X^t\}_{t=\overline{1,T}}$ є ланцюгом Маркова зі станами в $E=\{0,1\}^N$ з початковим рівномірним розподілом π :

$$\pi_x = P\left(X^1 = x\right) = \frac{1}{2^N}$$

та матрицею перехідних імовірностей A:

$$A_{xx'}=P\left(X^{t+1}=x'\,|\,X^t=x
ight)=egin{cases} p, & d_H(x,x')=0\ rac{1-p}{N}, & d_H(x,x')=1\ 0, & ext{iнакшe} \end{cases}$$

Спостерігаємо набір функціоналів

$$Y^t = (Y_1^t, \dots, Y_L^t) = (\sum_{i \in I_1} X_i^t, \dots, \sum_{i \in I_L} X_i^t),$$

де I_1, \ldots, I_L є заданими підмножинами $\{1, 2, \ldots, N\}$.

Спостерігаємо набір функціоналів

$$Y^t = (Y_1^t, \dots, Y_L^t) = (\sum_{i \in I_1} X_i^t, \dots, \sum_{i \in I_L} X_i^t),$$

де I_1, \ldots, I_L є заданими підмножинами $\{1, 2, \ldots, N\}$.

Наприклад,
$$N = 12$$
, $I_1 = (1, 2, 3)$, $I_2 = (6, 7, 10, 11, 12)$

$$x^{t} y^{t}$$

$$t = 1 010011101101 (1,4)$$

$$t = 2 011011101101 (2,4)$$

$$t = 3 0110111111101 (2,4)$$

$$t = 4 011011111111 (2,5)$$

Твердження

Послідовність $\{(X^t,Y^t)\}_{t=\overline{1,T}}$ утворює приховану марковську модель (π,A,B) , де

$$B_{xy} = P\left(Y^t = y \mid X^t = x\right) = \prod_{k=1}^{L} \mathbb{1}\left(y_k = \sum_{i \in I_k} x_i\right)$$

План доповіді

- Сфери застосування бінарних послідовностей
- Моделювання об'єкту дослідження
- Побудова оцінок невідомих параметрів
- Результати чисельного експерименту

lacktriangled Оцінити параметр p за набором спостережень та декодувати послідовність станів прихованого ланцюга;

lacktriangledown Оцінити параметр p за набором спостережень та декодувати послідовність станів прихованого ланцюга;

Метод максимальної правдоподібності

$$P\left(\left. Y = y \, | \, p \right) = \sum_{x \in E^T} P\left(X = x, \, Y = y \, | \, p \right) \longrightarrow \max$$

Функція повної правдоподібності

$$L_{p,x,y} = P\left(X = x, Y = y \mid p\right)$$

Відтак

$$\widehat{p} = \operatorname*{argmax}_{p} \sum_{x \in E^{T}} L_{p,x,y}$$

Ітераційний алгоритм Баума-Велша:

$$Q\left(p^{(n)},p\right) = \sum_{x \in E^T} L_{p^{(n)},x,y} \cdot \ln L_{p,x,y} \longrightarrow \max$$

Тож починаючи з деякого $p^{(0)}$

$$p^{(n+1)} = \underset{p}{\operatorname{argmax}} Q\left(p^{(n)}, p\right)$$

Формула переоцінки параметра p:

$$p^{(n+1)} = p^{(n)} \cdot \frac{\sum_{t=1}^{T-1} \sum_{x \in E} \alpha_t(x) B_{xy^{t+1}} \beta_{t+1}(x)}{\sum_{t=1}^{T-1} \sum_{x \in E} \alpha_t(x) \beta_t(x)},$$

де

$$\alpha_t(x) = P(Y^1 = y^1, \dots, Y^t = y^t, X^t = x \mid p^{(n)})$$

$$\beta_t(x) = P(Y^{t+1} = y^{t+1}, \dots, Y^T = y^T \mid X^t = x, p^{(n)})$$

Алгоритм Вітербі: пошук такої послідовності прихованих станів $\widehat{X}^1, \widehat{X}^2, \dots, \widehat{X}^T$, яка найкращим чином описує наявні спостереження:

$$\widehat{X} = \operatorname*{argmax}_{x \in E^{T}} P\left(X = x \mid Y = y, \ \widehat{p} \right)$$

② Спостерігаємо значення $Y_{I_*}^t = \sum\limits_{i \in I_*} X_i^t$, де I_* — деяка невідома підмножина множини індексів.

② Спостерігаємо значення $Y_{I_*}^t = \sum_{i \in I_*} X_i^t$, де I_* — деяка невідома підмножина множини індексів.

Наприклад, N=12, $I_1=(1,2,3)$, $I_2=(6,7,10,11,12)$, $I_*=?$

$$x^{t}$$
 y^{t} $y_{I_{*}}^{t}$
 $t = 1$ 010011101101 (1,4) 3
 $t = 2$ 011011101101 (2,4) 3
 $t = 3$ 0110111111101 (2,4) 4
 $t = 4$ 011011111111 (2,5) 4

② Спостерігаємо значення $Y_{I_*}^t = \sum\limits_{i \in I_*} X_i^t$, де I_* — деяка невідома підмножина множини індексів.

Наприклад, N=12, $I_1=(1,2,3)$, $I_2=(6,7,10,11,12)$, $I_*=?$

$$x^{t}$$
 y^{t} $y_{I_{*}}^{t}$
 $t = 1$ 010011101101 (1,4) 3
 $t = 2$ 011011101101 (2,4) 3
 $t = 3$ 0110111111101 (2,4) 4
 $t = 4$ 011011111111 (2,5) 4

Яким чином можна відтворити елементи множини I_* за спостереженнями Y_L^1, \ldots, Y_L^T ?;

Твердження

Змістовною і незміщеною оцінкою потужності множини I_* є статистика

$$|\widehat{I_*}| = \frac{N}{1-p} \left(1 - \frac{1}{T-1} \sum_{t=1}^{T-1} \mathbb{1} \left(Y_{I_*}^t = Y_{I_*}^{t+1} \right) \right)$$

Визначення компонент множини I_* :

$$\widehat{I} = \underset{1 \leqslant k \leqslant C_N^{\widehat{|I_*|}}}{\operatorname{argmin}} \, d\left(\widehat{Y}_{\, \mathtt{I_k}}, \, Y_{I_*}\right),$$

тут

$$\widehat{Y}_{\mathtt{I}_{\mathtt{k}}} = \sum_{i \in \mathtt{I}_{\mathtt{k}}} \widehat{X}_{i}^{t}$$

є сумою від декодованих елементів прихованого ланцюга.

Визначення компонент множини I_* :

$$\widehat{I} = \underset{1 \leqslant k \leqslant C_N^{|\widehat{I_*}|}}{\operatorname{argmin}} \, d\left(\widehat{Y}_{\, \mathtt{I_k}}, \, Y_{I_*}\right),$$

ТУТ

$$\widehat{Y}_{\mathtt{I}_{\mathtt{k}}} = \sum_{i \in \mathtt{I}_{\mathtt{k}}} \widehat{X}_{i}^{t}$$

є сумою від декодованих елементів прихованого ланцюга.

Що обрати в ролі міри близькості d?

Середньоквадратична відстань

$$d_{S}\left(\widehat{\boldsymbol{Y}}_{\mathbf{I}_{k}},\,Y_{I_{*}}\right) = \sum_{t=1}^{T}\left(\widehat{\boldsymbol{Y}}_{\mathbf{I}_{k}}^{t} - Y_{I_{*}}^{t}\right)^{2}$$

Зважена відстань Жаккара

$$d_{J}\left(\widehat{\boldsymbol{Y}}_{\mathbf{I}_{k}}, \, Y_{I_{*}}\right) = 1 - \frac{\sum\limits_{t=1}^{T} \min\left(\widehat{\boldsymbol{Y}}_{\mathbf{I}_{k}}^{t}, \, Y_{I_{*}}^{t}\right)}{\sum\limits_{t=1}^{T} \max\left(\widehat{\boldsymbol{Y}}_{\mathbf{I}_{k}}^{t}, \, Y_{I_{*}}^{t}\right)}$$

lacktriangledown Спостереження на множинах I_1,\ldots,I_L спотворюються ймовірностями q_1,\ldots,q_L :

$$Y^{t} = \left(Y_{k}^{t}\right)_{k=\overline{1,L}} = \left(\sum_{i \in I_{k}} \widetilde{X}_{i}^{t}\right)_{k=\overline{1,L}}$$

де для $i \in I_k$

$$\widetilde{X}_i^t = egin{cases} 1 - X_i^t, & extbf{3} ext{ імовірністю } q_k \ X_i^t, & extbf{3} ext{ імовірністю } 1 - q_k \end{cases}$$

Оцінити невідомий параметр моделі p та ймовірності спотворень q_1, q_2, \ldots, q_L .

Наприклад,
$$N = 12$$
, $I_1 = (1, 2, 3)$, $I_2 = (6, 7, 10, 11, 12)$

$$x^{t}$$
 \widetilde{x}^{t} y^{t} q
 $t = 1$ 010011101101 000011101101 (0,4) (q_{1}, q_{2})
 $t = 2$ 011011101101 010011101101 (1,4) (q_{1}, q_{2})
 $t = 3$ 0110111111101 111011111111 (3,5) (q_{1}, q_{2})
 $t = 4$ 011011111111 011011111100 (2,3) (q_{1}, q_{2})

Твердження

Якщо множини I_1,\dots,I_L є попарно неперетинними, то утворена послідовність $\{(X^t,Y^t)\}_{t=\overline{1,T}}$ є прихованою марковською моделлю (π,A,B^q) , де

$$B_{xy}^q = P(Y^t = y \mid X^t = x) = \prod_{k=1}^L P(\xi_{01}^k(x) + \xi_{11}^k(x) = y_k),$$

$$\xi_{01}^k(x) \sim Bin\left(|I_k| - \sum\limits_{i \in I_k} x_i, \ q_k
ight), \ \xi_{11}^k(x) \sim Bin\left(\sum\limits_{i \in I_k} x_i, \ 1 - q_k
ight), \ k = \overline{1,L}$$

Починаючи з деякого наближення моделі $\left(\pi,A^{(0)},B^{q^{(0)}}\right)$, формула переоцінки параметра p :

$$p^{(n+1)} = p^{(n)} \cdot \frac{\sum_{t=1}^{T-1} \sum_{x \in E} \alpha_t(x) B_{xy^{t+1}}^{q^{(n)}} \beta_{t+1}(x)}{\sum_{t=1}^{T-1} \sum_{x \in E} \alpha_t(x) \beta_t(x)}$$

Формула переоцінки компонент вектора q:

$$q_k^{(n+1)} = q_k^{(n)} \cdot \frac{\sum_{t=1}^T \sum_{x \in E} \beta_t(x) \sum_{x' \in E} \alpha_{t-1}(x') A_{x'x}^{(n)} \sum_{i \in I_k} P_{x,i}^{q^{(n)}}}{|I_k| \sum_{t=1}^T \sum_{x \in E} \alpha_t(x) \beta_t(x)}$$

План доповіді

- Сфери застосування бінарних послідовностей
- Моделювання об'єкту дослідження
- Побудова оцінок невідомих параметрів
- 4 Результати чисельного експерименту

Було згенеровано прихований ланцюг Маркова протягом T=200 моментів часу, N=5 та p=0.2. Множина спостережуваних індексів: $I=\{I_1,I_2\}=\{(2,3),(1,4)\}$.

① Оцінити параметр p за набором спостережень та декодувати послідовність станів прихованого ланцюга;

p	\widehat{p}	$ p-\widehat{p} $
0.2	0.1959	0.0041

lacktriangled Оцінити параметр p за набором спостережень та декодувати послідовність станів прихованого ланцюга;

$$d_H\left(X^t,\widehat{X}^t\right) = \sum\limits_{i=1}^N \mathbb{1}\left(X_i^t
eq \widehat{X}_i^t\right)$$

② Відтворити елементи «множини неявних індексів» I_* ;

Спостереження $I=\{I_1,I_2\}=\{(2,3),(1,4)\}$, неявні індекси покладемо $I_*=(1,3,5)$:

 $oldsymbol{0}$ Відтворити елементи «множини неявних індексів» I_* ;

Залежність значення оцінки від довжини ланцюга

T	200	400	600	800	1000
\widehat{p}	0.1959	0.1823	0.1882	0.2099	0.2092
$ \widehat{I_*} $	2	2	2	3	3

② Відтворити елементи «множини неявних індексів» I_* ;

Залежність значення оцінки від довжини ланцюга

T	200	400	600	800	1000
\widehat{p}	0.1959	0.1823	0.1882	0.2099	0.2092
$\widehat{ I_* }$	2	2	2	3	3

При малих N можна використати оцінку

$$\widehat{|I_*|}_{\max} = \max_{1 \leqslant t \leqslant T} Y_{I_*}^t$$

 $oldsymbol{0}$ Відтворити елементи «множини неявних індексів» I_* ;

Отримані результати:

Істинна множина I_st	(1, 3, 5)
Оцінка \widehat{I}_{S} за середньоквадратичною відстанню	(1, 2, 5)
Оцінка \widehat{I}_J за зваженою відстанню Жаккара	(1, 2, 3)

③ Оцінити невідомий параметр моделі p при ймовірностях спотворення q_1, q_2, \ldots, q_L .

Для I_1, I_2 було задано такі коефіцієнти спотворення:

③ Оцінити невідомий параметр моделі p при ймовірностях спотворення q_1, q_2, \dots, q_L .

p	\widehat{p}	$ p-\widehat{p} $
0.2	0.2559	0.0559

③ Оцінити невідомий параметр моделі p при ймовірностях спотворення q_1, q_2, \dots, q_L .

q_1	\widehat{q}_{1}	$ q_1-\widehat{q}_{1} $
0.05	0.0454	0.0046

q_2	\widehat{q}_{2}	$ q_2-\widehat{q} _2$	
0.1	0.1184	0.0184	

Висновки

Невідомі параметри заданої моделі були оцінені

- або шляхом побудови змістовних та незміщених статистичних оцінок;
- або за допомогою ітераційного алгоритму Баума-Велша.

Результати чисельного експерименту продемонстрували ефективність використаних методів, зокрема збіжність побудованих оцінок до істинних значень параметрів при збільшенні кількості спостережень.