Data Analysis

Christophe Ambroise

Model selection: How many clusters?

The number of clusters K controls the model complexity.

Choosing K is an example of model selection.

The optimal Bayesian approach is to pick the model with the largest marginal likelihood,

$$K^* = \arg \max_{k} p(\mathcal{D}|K).$$

In practice,

- Simple approximations, such as BIC, ICL can be used.
- We can use the cross-validated likelihood as a performance measure
- An alternative approach is to perform stochastic sampling in the space of models (MCMC)

The Laplace approximation

Gaussian approximation to a probability density defined over a set of continuous variables.

Considering the density

$$p(z) = \frac{1}{Z}f(z)$$

The normalizing constant is

$$Z = \int f(\mathbf{z}) d\mathbf{z}$$

$$= f(\mathbf{z}_0) \int \exp{-\frac{1}{2} (\mathbf{z}_- \mathbf{z}_0)^T A(\mathbf{z}_- \mathbf{z}_0) d\mathbf{z}}$$

$$\approx f(\mathbf{z}_0) \frac{(2\pi)^{p/2}}{|A|^{1/2}}$$

where z_0 is a mode of the distribution and A is the Hessian matrix of second derivatives of log-density f(z) at $z = z_0$.

BIC I

From the Bayes theorem the model evidence is

$$p(\mathcal{D}) = \int p(\theta)p(D|\theta)d\theta$$

Using Laplace approximation in for $f(\theta) = p(\theta)p(D|\theta)$ in $\theta = \theta_{MAP}$:

$$\ln p(\mathcal{D}) pprox \ln p(\mathcal{D}|\boldsymbol{\theta}_{MAP}) + \underbrace{\ln p(\boldsymbol{\theta}_{MAP}) + rac{p}{2} \ln(2\pi) - rac{1}{2} \ln |A|}_{Occamfactor}$$

- In $p(\mathcal{D}|\theta_{MAP})$ represents the log-likelihood
- the Occam factor penalizes the model complexity

Christophe Ambroise Data Analysis 4 / 11

BIC II

Assuming a simple Gaussian prior distribution over parameters, with full rank Hessian we can further approximate by

$$\ln p(\mathcal{D}) \approx \ln p(\mathcal{D}|\boldsymbol{\theta}_{MAP}) - \frac{1}{2}p \ln n$$

which is known a the BIC (Bayesian Information Criterion) or the Schwartz criterion (1978).

BIC for chosing the number of clusters

$$K_{BIC} = \arg \max_{k} \ln p(\mathcal{D}|\boldsymbol{\theta}_{MAP}^{k}) - \frac{1}{2}p_{k} \ln n$$

where p_k is the number of parameters of the model with k clusters and θ^k_{MAP} the MAP estimate of the model

Christophe Ambroise Data Analysis 5/11

Integrated Complete Likelihood (ICL)

$$BIC(k) = p(\mathcal{D}|\boldsymbol{\theta}_{MAP}^{k}) - \frac{1}{2}p_{k}\ln n$$

$$= \mathbb{E}_{Z|X;\boldsymbol{\theta}_{MAP}^{k}}[\ln p(X,Z;\boldsymbol{\theta}_{MAP}^{k})] - \mathbb{E}_{Z|X;\boldsymbol{\theta}_{MAP}^{k}}[\ln p(Z|X;\boldsymbol{\theta}_{MAP}^{k})] - \frac{1}{2}p_{k}$$

Biernacki et al. (2000) proposed to favour clustering with high-confidence (low entropy) by removing entropy term to BIC.

ICL for chosing the number of clusters

$$K_{ICL} = \arg \max_{k} \ln \mathbb{E}_{Z|X;\theta_{MAP}^{k}}[\ln p(X,Z;\theta_{MAP}^{k})] - \frac{1}{2}p_{k} \ln n$$

Christophe Ambroise Data Analysis 6/11

Akaike information criterion

Using information theory Akaike (1974) derived an alternative criterion:

AIC

$$\mathcal{K}_{AIC} = rg \max_k \ln p(\mathcal{D}|oldsymbol{ heta}_k) - p_k$$

Penalized Likelihood criteria

Generally AIC chooses more complex models than BIC which chooses more complex models than ICL $\,$

$$K_{AIC} \geq K_{BIC} \geq K_{ICL}$$

Multivariate Gaussian Mixture models

Assumes K classes in proportion $\pi_1, ..., \pi_K$ with component densities

$$\mathbf{x}_i|z_i=k\sim\mathcal{N}_p(\boldsymbol{\mu}_k,\boldsymbol{\Sigma}_k)$$

- \bullet $\mu_k \in \mathbb{R}^p$
- $\mathbf{\Sigma}_k \in \mathbb{R}^{p \times p}$

Number of parameters

$$p_k = p.K + p(p-1)/2 + K - 1$$

Data Analysis

Covariance matrix parametrization

Table 1: Parameterizations of the covariance matrix Σ_k currently available in mclust for hierarchical clustering (HC) and/or EM for multidimensional data. (' \bullet ' indicates availability).

identifier	Model	HC	EM	Distribution	Volume	Shape	Orientation
E		•	•	(univariate)	equal		
V		•	•	(univariate)	variable		
EII	λI	•	•	Spherical	equal	equal	NA
VII	λ_k I	•	•	Spherical	variable	equal	NA
EEI	λA		•	Diagonal	equal	equal	coordinate axes
VEI	$\lambda_k A$		•	Diagonal	variable	equal	coordinate axes
EVI	λA_k		•	Diagonal	equal	variable	coordinate axes
VVI	$\lambda_k A_k$		•	Diagonal	variable	variable	coordinate axes
EEE	λDAD^T	•	•	Ellipsoidal	equal	equal	equal
EEV	$\lambda D_k A D_k^T$		•	Ellipsoidal	equal	equal	variable
VEV	$\lambda_k D_k A D_k^T$		•	Ellipsoidal	variable	equal	variable
VVV	$\lambda_k D_k A_k D_k^T$	•	•	Ellipsoidal	variable	variable	variable

Complete (Classification) log-likelihood

$$CL(\theta; X, Z) = \ln \prod_{i} p(x_{i}, z_{i} = k; \theta_{k})$$

$$= \ln \prod_{i} \prod_{k} p(x_{i}, z_{i} = k; \theta_{k})^{\mathbb{I}(z_{i} = k)}$$

$$= \sum_{i} \sum_{k} \mathbb{I}(z_{i} = k) \ln p(x_{i}, z_{i} = k; \theta_{k})$$

CEM algorithm

 $CL(\theta; X, Z)$ can be maximized using CEM algorithm if $\forall k$ we habe $\pi_k = \frac{1}{K}$, $\Sigma_k = \sigma I_p$ then $CEM \triangleq kmeans$

Christophe Ambroise Data Analysis $11\,/\,11$