GAM modelling workshop: computer lab exercises

Matteo Fasiolo

Software installation

The main packages we will need are mgcv, mgcViz and testGam which should have been installed by doing

```
install.packages("devtools")
library(devtools)
install_github("mfasiolo/testGam")
```

If this worked, stop reading this section and go to the exercises. Otherwise, if install_github fails saying "Rate limit remaining: 0/60", then Plan B consists in running the code:

and then

```
# I will pass you these packages via a USB stick
install.packages("testGam_0.0.1.tar.gz", repos = NULL, type = "source")
```

1 GAMLSS modelling of aggregate UK electricity demand

Here we consider a UK electricity demand dataset, taken from the National Grid. The dataset covers the period January 2011 to June 2016 and it contains the following variables:

- NetDemand net electricity demand between 11:30am and 12am.
- wM instantaneous temperature, averaged over several cities.
- wM_s95 exponential smooth of wM, that is wM_s95[i] = a*wM[i] + (1-a)*wM_s95[i] with a=0.95.
- Posan periodic index in [0, 1] indicating the position along the year.
- Dow factor variable indicating the day of the week.
- Trend progressive counter, useful for defining the long term trend.
- NetDemand.48 lagged version of NetDemand, that is NetDemand.48[i] = NetDemand[i-2].
- Holy binary variable indicating holidays.
- Year and Date should obvious, and partially redundant.

Questions:

- 1. Load mgcViz and the data (data("UKload")). Then create a model formula (e.g. y~s(x)) containing: smooth effects for wM, wM_s95 and Trend with 20, 20 and 4 knots and cubic regression splines bases (bs='cr'), a cyclic effect (bs='cc') for Posan with 30 knots; and parametric fixed effects for Dow, NetDemand.48 and Holy. Fit a Gaussian GAM using gamV with this model formula, and set argument aViz=list(nsim = 50) to have some simulated responses for residuals checks. Let fit0 be the fitted model.
- 2. Use the check1D function together with the 1_gridCheck1D layer to check whether the conditional mean of the residuals of fit0 varies along wM, wM_s95 or Posan. In the call to 1_gridCheck1D you can set stand = "sc" to standardize the residuals means, thus making the residuals patterns more visible. Look at the plot for Posan, does the residuals mean in January (Posan ≈ 0) differ from that in December (Posan ≈ 1)? What does this suggest?
- 3. Change the model formula, by using a cubic regression spline basis also for Posan, and refit the model. Is there any improvement in AIC? Re-check the residuals along Posan using check1D and l_gridCheck1D. Is the pattern gone? Now use check(fit1) and look at the p-values. Recall that a low p-value means that an effect might not have a sufficiently large basis. Also, plot all the smooth effects using plot(fit1), how does the effect of Posan look like? Given this plot and the result of check can you think of a better spline basis for Posan?
- 4. Change the model formula, by using an adaptive spline basis (bs = 'ad') for Posan, and refit the model. Is there any improvement in AIC? Now that we are satisfied with our mean model, we start looking at the conditional variance. Use l_gridCheck1D with gridFun = sd to check for non-constant residuals variance along the same variables. Does the variance change along wM, wM_s95 and Posan?
- 5. Now we will fit a GAMLSS model using the gaulss family (see ?gaulss). For the location use the same model formula we have used in the Gaussian GAM, while for the scale use two cubic regression spline smooths for wM_s95 and Posan (10 and 20 knots respectively) and a fixed effect for Dow. Fit the model using gamV and then check whether there has been any improvement in AIC, and check the conditional variance again using l_gridCheck1D. Is the variance pattern as strong as before? Plot the fitted effects using plot.
- 6. Extra question: now that we have a satisfactory model for the conditional variance, we look at further features of the residuals distribution. Plot a QQ-plot of the residuals of fit3 using qq. Do you see significant deviations from the model-based theoretical residuals distribution? Load the e1071 package and use check1D with l_gridCheck1D and gridFun = skewness to verify how the skewness of the residuals varies along wM_s95 and Posan. Do you see major departures from the model-based simulations?
- 7. Extra question: to allow the distribution of the response to be skewed we will now consider the shash distribution (see ?shash). The shash family has four parameters, so we need to specify four linear predictors (location, scale, skewness and kurtosis in that order) in the model formula. For location and scale use the same models we used for gaulss, for the skewness include a fixed (linear) effect for Dow and a smooth effect for Posan (with k = 10 and bs='cr'), while for the kurtosis use only an intercept (~ 1). Fit the model, convert it and call it fit4. Check whether the AIC has improved, relative to fit3 and produce another QQ-plot using qq. Are the deviations from the theoretical distribution larger or smaller in this model?
- 8. Extra question: well... congratulations if you got here! What one could do at this point is to check how the kurtosis changes along the covariates using l_gridCheck1D (e1071 provides a

function called kurtosis). But beware: the shash might break down during model fitting if you try to fit overly complicated models.