Primera serie de ejercicios de Álgebra Moderna

Akiyuki Shinbou

Mayo 2018

Problema 1. Para n = 5, 8, 12, 20 y 25, encuentra todos los enteros positivos menores a n y relativamente primos a n.

Solución:

Para n = 5: $\{1, 2, 3, 4\}$

Para n = 8: $\{1, 3, 5, 7\}$

Para n = 12: $\{1, 5, 7, 11\}$

Para n = 20: $\{1, 3, 7, 9, 11, 13, 17, 19\}$

Para n = 25: $\{1, 2, 3, 4, 6, 7, 8, 9, 11, 12, 13, 14, 16, 17, 18, 19, 21, 22, 23, 24\}$

Problema 2. Determina $gcd(2^4 \cdot 3^2 \cdot 5 \cdot 7^2, 2 \cdot 3^3 \cdot 7 \cdot 11)$ y $lcm(2^3 \cdot 3^2 \cdot 5, 2 \cdot 3^3 \cdot 7 \cdot 11)$

Solución:

$$\gcd(2^4 \cdot 3^2 \cdot 5 \cdot 7^2, 2 \cdot 3^3 \cdot 7 \cdot 11) = 2 \cdot 3^2 \cdot 7.$$

$$lcm(2^3 \cdot 3^2 \cdot 5, 2 \cdot 3^3 \cdot 7 \cdot 11) = 2^3 \cdot 3^3 \cdot 5 \cdot 7 \cdot 11$$

Problema 3. Determine 51 mod 13, 342 mod 85, 62 mod 15, 10 mod 15, $(82 \cdot 73) \mod 7$, $(51+68) \mod 7$, $(35 \cdot 24) \mod 11$, $y (47+68) \mod 11$.

Solución:

 $51 \mod 13 = 12$

 $342 \mod 85 = (2 \mod 85 \cdot 171 \mod 85) \mod 85 = (2 \cdot 1) \mod 85 = 2$

 $62 \mod 15 = 2$

 $10 \mod 15 = 10$

 $(82 \cdot 73) \mod 7 = (5 \cdot 3) \mod 7 = 1$

```
(51+68) \mod 7 = (2+5) \mod 7 = 0
```

$$(35 \cdot 24) \mod 11 = (2 \cdot 2) \mod 11 = 4$$

$$(47+68) \mod 11 = (3+2) \mod 11 = 5$$

Problema 4. Encuentra enteros s y t tales que $1 = 7 \cdot s + 11 \cdot t$. Muestra que s y t no son unicos.

Solución:

Dos soluciones: s = 8, t = -5; s = 19, t = -12

Problema 5. En Florida, el cuarto y quinto digito del final de una licencia de conducir da el año de nacimiento. Los ultimos tres digitos de un hombre con mes de nacimiento m y dia de nacimiento b son representados por 40(m-1). Para las mujeres los digitos son 40(m-1)+b+500. Determine las fechas de nacimiento y sexos correspondientes a los numeros 42218 y 53953.

Solución:

42218: Hombre; 18 de Junio del 42.

53953: Mujer; 13 de diciembre del 53.

Problema 6. Para las licencias de conducir en Nueva York previas al septiembre de 1992, los tres digitos precediendo a los ultimos 3 del numero de un hombre con mes de nacimiento m y dia de nacimiento b se representan por 63m + 2b. Para mujeres los digitos son 63m + 2b + 1. Determine las fechas de nacimiento y los sexos correspondientes a los numeros 248 y 601.

Solución:

248: Mujer; 29 de Junio.

601: Hombre; 17 de Septiembre

Problema 7. Demuestra que si a y b son enteros positivos, entonces $ab = lcm(a, b) \cdot gcd(a, b)$.

Solución:

Podemos expresar a y b como factores primos elevados a una potencia no negativa: $a=p_1^{m_1}\cdot p_2^{m_2}\cdot\ldots\cdot p_k^{m_k}$ y $b=p_1^{n_1}\cdot p_2^{n_2}\cdot\ldots\cdot p_k^{n_k}$. Entonces $lcm(a,b)=p_1^{s_1}\cdot p_2^{s_2}\cdot\ldots\cdot p_k^{s_k}$, donde $s_i=\max(m_i,n_i)$ y $\gcd(a,b)=p_1^{t_1}\cdot p_2^{t_2}\cdot\ldots\cdot p_k^{t_k}$ donde $t_i=\min(m_i,n_i)$. Ahora, $lcm(a,b)\cdot\gcd(a,b)=p_1^{m_1+n_1}\cdot p_2^{m_2+n_2}\cdot\ldots\cdot p_k^{m_k+n_k}=ab$.

Problema 8. Supón que a y b son enteros que dividen al entero c. Si a y b son primos relativos, demuestra que ab divide a c. Muestra, por ejemplo, que si a y b no son primos relativos, entonces ab no necesariamente divide a c.

Solución:

Si a y b son primos relativos, entonces los podemos expresar como una relación lineal 1 = as + bt. Ademas, como a y b dividen a c, sabemos que existen $u, v \in Z$ tales que c = ua y c = vb. Procede que c = cas + cbt = vbas + uabt = ab(vs) + ab(ut) = ab(vs + ut), es decir, ab divide a c.

Para el contrajemplo tomamos a=6, b=4 y c=12. 6 y 4 no son primos relativos y dividen a 12, sin embargo $6 \cdot 4 = 24$ no divide a 12.

Problema 9. Si a y b son enteros y n es un entero positivo, pruebe que $a \mod n = b \mod n$ si y solo si n divide a - b

Solución:

Para probar esto, empecemos por demostrar que:

Si $a \mod n = b \mod n$ entonces $a - b \mod n = 0$.

A partir de la hipótesis:

 $a \mod n - b \mod n = 0$, y aplicando división modular por ambos lados obtenemos:

 $(a \bmod n - b \bmod n) \bmod n = 0 \bmod n$

Y haciendo un breve desarrollo de la ecuación que buscamos encontrar:

 $a - b \mod n = (a \mod n - b \mod n) \mod n$

Se realiza exactamente lo mismo para demostrar que la proposición es bicondicional.

Problema 10. Sean a y b enteros $y d = \gcd(a, b)$. Demuestre que si a = da y b = db, entonces $\gcd(a', b') = 1$.

Solución:

Sabemos que existen s, $t \in Z$ tales que d = as + bt = (da')s + (db')t = d(sa' + tb'). Dividiendo ambos lados por d tenemos que 1 = sa' + tb'. Regresandonos a la definición, si decimos que $d' = \gcd(a',b')$, entonces d'|a'| y d'|b', entonces d'|tb' + sa'. Así, d'|1 lo que significa que d' = 1.

Problema 12. Sean $a ext{ y } b$ enteros positivos $ext{ y sea } d = \gcd(a,b) ext{ y } m = lcm(a,b)$. Demuestre que si t divide a t divide a

Solución:

Suponiendo que t divide a a y b. Existe enteros x, y takes que ax + by = d. Porque t divide a y b, también cualquier combinación lineal de a y b, por tanto t divide a d.

Suponiendo que s es múltiplo de a y b. Por el algoritmo de la división, existe un $0 \le r < m$ y q tal que: S = mq + r, esto implica que: r = s - mq.

s es un común multiplo de a y b, y m es un común múltiplo. Pero $0 \le r < m$ y porque m es el mínimo común múltiplo, entonces r = 0. Por lo tanto s = mq

Problema 13. Sean n y a enteros positivos y $d = \gcd(a, n)$. Demuestre que la ecuación $ax \mod n = 1$ tiene una solución si y solo di d = 1.

Solución:

$$ax = nk + 1, d > 1$$

$$\frac{ax}{d} = \frac{nk + 1}{d}$$

$$\frac{ax}{d} = \frac{nk}{d} + \frac{1}{d}$$

$$a'x = n'k + \frac{1}{d}$$

Esto significa que el modulo de la operacion es $\frac{1}{d}$ y la unica forma que eso sea 1, es si d = 1.

Problema 15. Demuestra que todo primo mayor a 3 puede ser escrito de la forma 6n + 1 o 6n + 5.

Solución:

Considerando los residuos posibles al dividir un primo entre 6, observamos que el residuo no puede ser 0, 2 o 4, porque significaria que el numero es divisible por 2. No puede ser 3, porque implicaria que el numero es divisible entre 3. Esto nos deja con 6n + 1 y 6n + 5 como las formas que podrian representar un numero primo.

Problema 16. Determina $7^{1000} \mod 6 y 6^{1001} \mod 7$.

Solución:

Considerando que $a \cdot b \mod n = a \mod n \cdot b \mod n$, podemos notar que la primer división nos resulta 1, ya que 7 mod 6 = 1. Mientras que, por otra parte, 6 mod 7 = 6, por lo que la segunda división debemos resolverta a partir de una observación adicional. Notemos que 36 mod 7 = 1 y que $6 \cdot 36 \mod 7 = 6$, por la propiedad antes mencionada. Lo que significa que podemos resumirlo como $6^n \mod 7 = 1$ si $n \mod 2 = 0$, y $6^n \mod 7 = 6$ si $n \mod 2 = 1$, entonces $6^{1001} \mod 7 = 6$.

Problema 17. Sean a, b, s y t enteros. Si $a \mod s = b \mod s$, demuestra que $a \mod s = b \mod s$ y $a \mod t = b \mod t$. ¿Cual es la condicion de s y t

que hacen que lo opuesto sea verdad?

Solución:

a y b dejan el mismo residuo al ser divididos por st. Es posible entonces expresar $a = st \cdot q_1 + r$ y $b = st \cdot q_2 + r$. Como a y b son divisibles por st y st es divisible por s entonces r es dividido por s por lo que $r = s \cdot q_3 + r_s$ con $0 \le r_s < s$. De esta forma $a = st \cdot q_1 + s \cdot q_3 + r_s$ y $b = st \cdot q_2 + s \cdot q_3 + r_s$. Reordenando:

- 1. $a = s(tq_1 + q_3) + r_s$
- 2. $b = s(tq_2 + q_3) + r_s$

Lo anterior es posible traducirse como que a y b dejan el mismo residuo al ser divididos por s. Con ello a mod $s = b \mod s$.

Un procedimiento análogo se sigue para demostrar que a mod $t = b \mod t$.

La condición necesaria para que se cumpla es que s y t sean primos relativos.

Problema 19. Demuestre que gcd(a,bc) = 1 si y solo si gcd(a,b) = 1 y gcd(a,c) = 1.

Solución:

Si gcd(a,bc) = 1 entonces no existe ningun primo que divida tanto a como a bc. Usando la descomposición en primos y el lema de Euclides, podemos decir que no existe primo que divida tanto a a como a b o a como a c. Por esto, gcd(a,b) = 1 y gcd(a,b) = 1.

Por otro lado, si gcd(a,b) = 1 y gcd(a,b) = 1, entonces no existe primo que divida tanto a como b o a como a c. Por el lema de euclides tambien sabemos que no existe primo que divida tanto a a como a bc, por lo que gcd(a,bc) = 1.

Problema 20. Sean $p_1, p_2, ..., p_n$ primos. Demuestra que $p_1p_2...p_n$ no es divisible por ninguno de estos primos.

Solución:

 $p_1, p_2, ..., p_n$ es divisible por cada numero en la lista, pero si se suma 1, ciertamente seria divisible por algun primo pero no por los primos en la lista. Si 1 fuese primo entonces seria el caso pero no lo es.

Problema 22. Para cada entero positivo n, demuestra que $1 + \cdots + n = n(n+1)/2$.

Solución:

Por inducción. El caso base dice que 1 = 1(1+1) / 2 = 1.

Para el paso inductivo, asumimos que $1 + \cdots + n = n(n+1)/2$ y queremos

probar que $1+\cdots+n+n+1=(n+1)((n+1)+1)/2$. Sustituyendo la hipotesis obtenemos que n(n+1)/2+(n+1)=(n+1)((n+1)+1)/2

$$1 + \dots + n + (n+1) = n(n+1)/2 + (n+1)$$

$$= (n(n+1) + 2(n+1))/2$$

$$= (n+2)(n+1)/2$$

$$= (n+1)((n+1) + 1)/2$$

Problema 23. Para todo entero positivo n, pruebe que un conjunto con exactamente n elementos tiene exactamente 2^n subconjuntos (contando el conjunto vacío y el conjunto mismo).

Solución:

Para esta prueba recurriremos a la inducción matemática. Para el paso base, cuando n=1, tenemos 2 subgrupos, lo cual es correcto, ya que corresponden al conjunto vacío y al conjunto mismo.

Para el paso inductivo, vamos a demostrar que un conjunto con n+1 elementos tiene 2^{n+1} subgrupos, con la hipótesis correspondiente (un conjunto de n elementos tiene 2^n subgrupos).

Para ello, es necesario notar que $2^{n+1} = 2 \cdot 2^n$ Recordemos que por hipótesis 2^n es el número de subgrupos que tiene un conjunto de n elementos. Y si multiplicamos por dos ese número, obtendríamos el total de subgrupos, ya que son los que ya teníamos, más ahora todos esos subgrupos iguales incluyendo al nuevo elemento.

Problema 24. Para todo entero positivo n, demuestre que $2^n 3^{2n} - 1$ siempre es divisible por 17.

Solución:

Por inducción. El caso base dice que $2^{1}3^{2} - 1 = 17$ es divisible entre 17.

Para el paso inductivo queremos probar que $2^{n+1}3^{2n+2}-1$ es divisible entre 17 sabiendo que $2^n3^{2n}-1$ es divisible entre 17, digamos $17m=2^n3^{2n}-1$ donde m es un numero entero positivo.

$$2^{n+1}3^{2n+2} - 1 = 2^{1}3^{2}2^{n}3^{2n} - 1$$

$$= 18(2^{n}3^{2n}) - 1$$

$$= 18(2^{n}3^{2n} - 1) - 17$$

$$= 18(17m) - 17$$

$$= 17(18m - 1)$$

Problema 26. Demuestra que si p es un primo y p divide a $a_1a_2...a_n$, entonces p divide a a_i para algun i.

Solución:

Inducción sobre n. En el caso base p divide a a_1 por definición.

En el caso inductivo, queremos probar que si p divide a $a_1a_2...a_na_{n+1}$ encontes p divide a algun a_i , sabiendo que p divide a $q = a_1a_2...a_n$ esto se cumple con el lema de euclides, sabiendo que $a_1a_2...a_na_{n+1} = qa_{n+1}$ y que p divide a q.

Problema 27. Utiliza el lema generalizado de Euclides para establecer la parte de unicidad del teorema fundamental de la aritmética.

Solución:

 $n=p_1p_2...p_n$. Si p_i divide n, entonces n se reescribe como: $\frac{n}{p_i}=p_i...p_{i-1}p_{i+1}...p_m$ por lo que se redúce la expresion. Si se repite el proceso, se piede ver que se llega siempre a $\frac{n}{p_1...p_m}=1$, lo cual muestra la unicidad.

Problema 29. Demuestra que el primer principio de la inducción matematica es una consecuencia del principio del ordenamiento.

Solución:

Tomamos S como un conjunto que contiene al elemento a y siempre que $n \ge a$ pertenece a S, entonces $n+1 \in S$. Debemos demostrar que S contiene a todos los enteros mayores o iguales a a. Sean T los enteros mayores que a que no se encuentran en T y supongamos que T no está vacio. Sea b el numero mas pequeño en T, es decir, que $b-1 \in S$. Si esto es así, entonces $(b-1)+1 \in S$, lo cual contradice nuestra asumpcion que bS.

Problema 30. Los números de Fibonacci son 1, 1, 2, 3, 5, 8, 13, 21, 34...En general, los números Fibonacci se definen por $f_1 = 1, f_2 = 1$, y para $n \ge 3, f_n = f_{n-1} + f_{n-2}$. Pruebe que el enésimo número de Fibonacci f_n satisface $f_n < 2^n$

Nuevamente utilizaremos inducción matemática para demostrar tal proposición. Nuestro caso base es cuando n=3, quedando de la siguiente manera:

$$f_3 = 1 + 1 = 2$$
$$2 < 2^3$$

Ahora en el paso inductivo, tenemos por hipótesis que $f_n < 2^n$ y vamos a demostrar que $f_{n+1} < 2^{n+1}$

$$f_n + f_{n-1} < 2 \cdot 2^n$$

$$f_n + f_{n-1} < 2^n + 2^n$$

Quedando evidente que se cumple la proposición mencionada.

Problema 31. En la canción "As" de Songs in the Key of Life, Stevie Wonder menciona que la ecuación $8 \times 8 \times 8 \times 8 = 4$. Encuentra todos los enteros para los cuales esto se cumple, modulo n.

Solución:

Se cumple para cualquier divisor de $8^4 - 4 = 4092$.

Problema 33. Si fuesen las 2:00 A.M., ¿que hora seria en 3736 horas?

Solución:

 $(2+3736) \mod 24 = 18 \text{ horas, o las } 6:00 \text{ p.m.}.$

Problema 36. Supón que una un número de identificación de una orden de dinero y digito de verificación 21720421168 es copiado erroneamente como 27750421168. ¿El digito de verificación detectará el error?

Solución:

 $2172042116 \mod 9 = 8$ y 2775042116 $\mod 8 = 9,$ así que no, el error no será detectado.

Problema 43. El numero de libro estandar internacional de 10 digitos (ISBN-10) $a_1a_2a_3a_4a_5a_6a_7a_8a_9a_{10}$ tiene la propiedad $(a_1, a_2, \ldots, a_{10}) \cdot (10, 9, 8, 7, 6, 5, 4, 3, 2, 1)$ mod 11 = 0. El digito a^{10} es el digito de verificación. Verifica el digito para el ISBN-10 asignado a este libro.

Solución:

El ISBN-10 es 0-547-16509-9. $(0,5,4,7,1,6,5,0,9,9) \cdot (10,9,8,7,6,5,4,3,2,1) = 209.$ 209 mod 11 = 0

Problema 44. Supón que un ISBN-10 tiene una entrada borrada: 0-716?-2841-9. Determine el digito faltante.

Solución:

La solución a la ecuación $(0,7,1,6,x,2,8,4,1,9) \cdot (10,9,8,7,6,5,4,3,2,1) \mod 11 = 0$ tal que $0 \le x \le 9$ es 7.

Problema 50. El estado de Utah anexa un noveno digito a_9 al numero de ocho digitos de una licencia de conducir $a_1a_2...a_8$ de manera que $(9a_1 + 8a_2 + 7a_3 + 6a_4 + 5a_5 + 4a_6 + 3a_7 + 2a_8 + a_9) \mod 10 = 0$. Si sabes que el numero de licencia tiene exactamente un digito incorrecto, explica porque el error no puede estar en la posición 2, 4, 6 o 8.

Solución:

Cambiar uno de los digitos pares hace que al momento de verificar el resultado cambie por una cantidad par, sin embargo $(9 \cdot 1 + 8 \cdot 4 + 7 \cdot 9 + 6 \cdot 1 + 5 \cdot 0 + 4 \cdot 5 + 3 \cdot 2 + 2 \cdot 6 + 7) \mod 10 = 5$.

Problema 57. Suponga que α , β y γ son funciones. Si $\alpha \gamma = \beta \gamma$ y γ es uno a uno y sobre, demuestre que $\alpha = \beta$.

Solución:

Si γ es sobre y uno a uno, entonce existe una función inversa γ^{-1} , y multiplicando $\alpha \gamma = \beta \gamma$ por γ^{-1} por el lado derecho obtenemos que $\alpha = \beta$.