

Amylase activity V.1

Bjorn Bartholdy¹, a.g.henry ¹

¹Leiden University

Oct 27, 2021

protocol.

BYOC

Bjorn Bartholdy

This protocol is a scaled-down, modified version of the Enzymatic Assay of α -Amylase (EC 3.2.1.1) found here.

Bjorn Bartholdy, a.g.henry 2021. Amylase activity . protocols.io https://protocols.io/view/amylase-activity-bw8jphun

•

 $_{-}$ protocol ,

Aug 09, 2021

Oct 27, 2021

52203

Chemicals

Potato starch

D-(+)-maltose monohydrate

Sodium phosphate monobasic

Sodium chloride

potassium sodium tartrate, tetrahydrate

Sodium Hydroxide

3,5 Dinitrosalicylic acid

Equipment

Pipettes

- 2 20 µL
- 20 200 µL
- 100 -- 1000 µL

8-channel pipette (ca. 20 - 300 µL) [OPTIONAL, but recommended]

96 well microplate

Spectrophotometer (with 540 nm filter)

Prepare solutions 15m 15m 0.5% Potato starch solution 1. add a small amount of dH₂O to a beaker 2. add [M] 0.5 Mass Percent 0.5% (W/V) potato starch 3. Boil for **© 00:15:00** while stirring 4. Take off heat and leave at room temperature 5. Add dH₂O to final volume 6. Continuous stirring throughout the assay 0.2% Maltose 1. add $\blacksquare 100$ mg maltose to $\blacksquare 50$ mL dH₂0 **Buffer** 3 1. add $\blacksquare 250 \text{ mL}$ dH₂O to a beaker 2. add **600 mg** of sodium phosphate, monobasic 3. add **97.5 mg** of sodium chloride 4. adjust to p⊦6.9 with 81 M NaOH Contributed by users and **⊠1 M HCl Contributed by users** 2 M NaOH 1. add **□0.8 g ⊠**NaOH Contributed by users to **□10 mL** dH₂O 5.3 M potassium sodium tartrate, tetrahydrate solution 1. add **14.96 mg** Aldrich Catalog #S2377 to ■10 mL of the 2 M NaOH solution

2. dissolve solids with heat and stirring

DO NOT heat to a boil

- 6 96 mM 3,5-Dinitrosalicylic acid solution
 - 1. add **0.438 g 3,5-dinitrosalicylic acid** to **20 mL dH₂0**
 - 2. dissolve solids with heat and stirring

DO NOT heat to a boil

7 Colour reagent

- 1. add
 ☐12 mL of § 50-70 °C dH₂O to an appropriate size amber bottle (or something that can protect the solution from light).
- 2. add (slowly and with mixing) 38 mL of warm [M]5.3 Molarity (M)

Aldrich Catalog #S2377

3. add **20 mL** of warm **96 mM 3,5-Dinitrosalicylic acid solution**

The colour reagent is stable for 6 months in a dark place at ambient temperature

Saliva collection

30s

8 Saliva samples are included as a positive control for amylase activity.

30s

Saliva donors rinse their mouth with water for © 00:00:30

- 9 Collect the saliva by spitting into 50 ml plastic centrifuge tubes.
- 10 Centrifuge the saliva at **31000** x g, 00:10:00 and sample from the supernatant.

10m

Standard curve preparation

11 Two standard curves are prepared: one containing dH₂O, and one containing artificial saliva.

- Add **300 mL** distilled (or deionized) dH₂O to a **1000 mL** beaker, with stirring and heat **60 °C**.
- 11.2 Add:

- **2.5** g Aldrich Catalog #M1778
 - **⊠**Trypticase™ Peptone **Thermo**
- **■**5 g Fisher Catalog #211921

⊗ Oxoid[™] Proteose Peptone **Thermo**

- ■10 g Fisher Catalog #LP0085B
- **□5 g ⊗** Bacto Yeast Extract **Becton-Dickinson**

Let the reagents completely dissolve before continuing to the next step

- 11.3 Add:
 - **2.5** g ⊠KCl Contributed by users
 - **□0.35 g ⊗** NaCl **Contributed by users**

- 11.4 Add the remaining \blacksquare 700 mL distilled (or deionized) dH₂O
- 11.5 Adjust to p+7 with NaOH Contributed by users and stirring
- 11.6 Transfer to two 1000 ml bottles, so half of each bottle is filled.

Autoclave at § 121 °C , ⊙1 Bar for © 00:15:00 minutes

A

Do NOT screw bottle caps on tightly.

Loosely screw the caps on the bottles or cover the tops with foil

15m

- 117 Once the solution has cooled, add:
 - **1 mg 8** Menadione **Contributed by users**
 - **Q**0.3 g ⊠Urea Contributed by users

⊠L-Arginine Contributed by

- **3**0.17 g users Catalog #A5006
- 11.8 Store in fridge at ca. & 4 °C

Occasionally test the pH to ensure it stays around p+7

Add the following reagents to the wells of a deep-well microplate so each well contains a total

m protocols.io

12 volume of 225 μ L. Each column in the table represents a single well.

Add the Maltose to each well first, then dH₂O, then colour reagent.

Reagent	STD1	STD2	STD3	STD4	STD5	STD6	STD7	STD Blank
0.2% Maltose	3.75	15	30	45	60	75	150	0
dH2O	146.25	135	120	105	90	75	0	150
Colour reagent	75	75	75	75	75	75	75	75

All quantities are in µL

- 0 go to step #12 and repeat the process, but adding artificial saliva instead of dH₂0.
- Boil the deep-well microplate(s) for © 00:03:00 , then cool on ice to room temperature.
- 15 Add \blacksquare 675 μ L of dH₂O to each well for a final volume of \blacksquare 900 μ L .

Sample preparation

16 Samples are prepared in a 96 deepwell plate with approx. 1 mL volume per well.

Samples should be analysed in duplicates or triplicates.

17 To each well, add \Box 75 μ L of sample (or saliva)

It is best to make duplicates or triplicates of the samples

Then add $\mathbf{75}\,\mu\text{L}$ of the 0.5% potato starch solution to each of the wells with samples (and saliva)

Once the storch has been added to the completible receives will be significant.

22 then transfer $\mathbf{200}\,\mu \mathbf{L}$ to a 96 well microplate suitable for the photometer.

Photometer

23

Multiskan FC

Microplate Photometer

Thermo Scientific 51119000

Photometer settings:

540 nm filter

- 1. Photometer reading 1
- 2. Pause
- 3. Shake
- 4. Pause
- 5. Photometer reading 2

Make sure to include a sample blank (with dH_2O for saliva positive controls, and stock artificial saliva for samples)

Calculations

24 Calculate ΔA_{540} of each Standard by subtracting the Standard Blank.

 ΔA 540 Standard = ΔA 540 Standard - ΔA 540 StandardBlank

- Prepare the standard curve by regressing (OLS) the $\Delta A_{540 \text{ of each Standard on mg Maltose}}$ (\odot go to step #12)
- 26 $\,$ Calculate ΔA_{540} of each Sample by subtracting the Sample Blank.

 ΔA 540 Sample $= \Delta A$ 540 Sample $-\Delta A$ 540 SampleBlank

27 Then calculate the mg of Maltose released (x) using the regression coefficients:

$$\frac{y-b}{a} = x$$

Where y is the $\Delta A 540~Sample$, b is the intercept, and a is the slope.

28 Units per mL enzyme can be calculated as:

$$U/mL~enzyme = rac{mg~Maltose~released imes dilution~factor}{mL~enzyme}$$

where *dilution factor* is how much the sample was diluted (if at all), and *mL enzyme* is how much of the sample was added in step 17. **go to step #17**

A *Unit* is defined as mg of maltose released from starch in 6 minutes.