Linear Regression: Introduction to summary statistics

Output from statsmodels

Dep. Variable:	DomesticTotalGross	R-squared:	0.286
Model:	OLS	Adj. R-squared:	0.278
Method:	Least Squares	F-statistic:	34.82
Date:	Sun, 14 Sep 2014	Prob (F-statistic):	6.80e-08
Time:	21:59:46	Log-Likelihood:	-1738.1
No. Observations:	89	AIC:	3480.
Df Residuals:	87	BIC:	3485.
Df Model:	1		

	coef	std err	t	P> t	[95.0% Conf. Int.]
Budget	0.7846	0.133	5.901	0.000	0.520 1.049
Ones	4.44e+07	1.27e+07	3.504	0.001	1.92e+07 6.96e+07

Omnibus:	39.749	Durbin-Watson:	0.674
Prob(Omnibus):	0.000	Jarque-Bera (JB):	99.441
Skew:	1.587	Prob(JB):	2.55e-22
Kurtosis:	7.091	Cond. No.	1.54e+08

Target or dependent variable

	U		
Dep. Variable:	DomesticTotalGross	R-squared:	0.286
Model:	OLS	Adj. R-squared:	0.278
Method:	Least Squares	F-statistic:	34.82
Date:	Sun, 14 Sep 2014	Prob (F-statistic):	6.80e-08
Time:	21:59:46	Log-Likelihood:	-1738.1
No. Observations:	89	AIC:	3480.
Df Residuals:	87	BIC:	3485.
Df Model:	1		

	coef	std err	t	P> t	[95.0% Conf. Int.]
Budget	0.7846	0.133	5.901	0.000	0.520 1.049
Ones	4.44e+07	1.27e+07	3.504	0.001	1.92e+07 6.96e+07

Omnibus:	39.749	Durbin-Watson:	0.674
Prob(Omnibus):	0.000	Jarque-Bera (JB):	99.441
Skew:	1.587	Prob(JB):	2.55e-22
Kurtosis:	7.091	Cond. No.	1.54e+08

Model type: Ordinary Least Squares = linear regression

Dep. Variable:	DomesticTotalGross	R-squared:	0.286
Model:	OLS	Adj. R-squared:	0.278
Method:	Least Squares	F-statistic:	34.82
Date:	Sun, 14 Sep 2014	Prob (F-statistic):	6.80e-08
Time:	21:59:46	Log-Likelihood:	-1738.1
No. Observations:	89	AIC:	3480.
Df Residuals:	87	BIC:	3485.
Df Model:	1		

	coef	std err	t	P> t	[95.0% Conf. Int.]
Budget	0.7846	0.133	5.901	0.000	0.520 1.049
Ones	4.44e+07	1.27e+07	3.504	0.001	1.92e+07 6.96e+07

Omnibus:	39.749	Durbin-Watson:	0.674
Prob(Omnibus):	0.000	Jarque-Bera (JB):	99.441
Skew:	1.587	Prob(JB):	2.55e-22
Kurtosis:	7.091	Cond. No.	1.54e+08

	•		
Dep. Variable:	DomesticTotalGross	R-squared:	0.286
Model:	OLS	Adj. R-squared:	0.278
Method:	Least Squares	F-statistic:	34.82
Date:	Sun, 14 Sep 2014	Prob (F-statistic):	6.80e-08
Time:	21:59:46	Log-Likelihood:	-1738.1
No. Observations:	89	AIC:	3480.
Df Residuals:	87	BIC:	3485.
Df Model:	1		

	coef	std err	t	P> t	[95.0% Conf. Int.]
Budget	0.7846	0.133	5.901	0.000	0.520 1.049
Ones	4.44e+07	1.27e+07	3.504	0.001	1.92e+07 6.96e+07

Omnibus:	39.749	Durbin-Watson:	0.674
Prob(Omnibus):	0.000	Jarque-Bera (JB):	99.441
Skew:	1.587	Prob(JB):	2.55e-22
Kurtosis:	7.091	Cond. No.	1.54e+08

OLS Regression Results

Dep. Variable:	DomesticTotalGross	R-squared:	0.286
Model:	OLS	Adj. R-squared:	0.278
Method:	Least Squares	F-statistic:	34.82
Date:	Sun, 14 Sep 2014	Prob (F-statistic):	6.80e-08
Time:	21:59:46	Log-Likelihood:	-1738.1
No. Observations:	89	AIC:	3480.
Df Residuals:	87	BIC:	3485.
Df Model:	1		

Residual degrees of freedom

Number of observations - number of parameters (including intercept)

OLS Regression Results

Dep. Variable:	DomesticTotalGross	R-squared:	0.286
Model:	OLS	Adj. R-squared:	0.278
Method:	Least Squares	F-statistic:	34.82
Date:	Sun, 14 Sep 2014	Prob (F-statistic):	6.80e-08
Time:	21:59:46	Log-Likelihood:	-1738.1
No. Observations:	89	AIC:	3480.
Df Residuals:	87	BIC:	3485.
Df Model:	1		

Model degrees of freedom

Number of parameters – 1 (or # of features not including intercept)

Dep. Variable:	DomesticTotalGross	R-squared:	0.286
Model:	OLS	Adj. R-squared:	0.278
Method:	Least Squares	F-statistic:	34.82
Date:	Sun, 14 Sep 2014	Prob (F-statistic):	6.80e-08
Time:	21:59:46	Log-Likelihood:	-1738.1
No. Observations:	89	AIC:	3480.
Df Residuals:	87	BIC:	3485.
Df Model:	1		

	coef	std err	t	P> t	[95.0% Conf. Int.]
Budget	0.7846	0.133	5.901	0.000	0.520 1.049
Ones	4.44e+07	1.27e+07	3.504	0.001	1.92e+07 6.96e+07

Omnibus:	39.749	Durbin-Watson:	0.674
Prob(Omnibus):	0.000	Jarque-Bera (JB):	99.441
Skew:	1.587	Prob(JB):	2.55e-22
Kurtosis:	7.091	Cond. No.	1.54e+08

Some thoughts about R²

OLS's most controversial metric

Revisiting the OLS cost function

► The OLS cost function minimizes the sum of squared residuals, also called the **sum of squared errors (SSE)**

$$\sum_{i=1}^{m} \left(y_{\beta}(x^{(i)}) - y_{obs}^{(i)} \right)^{2}$$

▶ We can also calculate the variance of the observed (actual) points, also called the total sum of squares (SST)

$$\sum_{i=1}^{m} \left(y_{obs} - y_{obs}^{(i)} \right)^{2}$$

Calculating the R² metric

$$R^2 = 1 - \frac{SSE}{SST}$$

Calculating the R² metric

"Distraction or nuisance?" - CMU stats prof on R²

- ► There are some reasons we teach R² and reasons why it's popular
 - ► Easy to calculate and built-in to most stats packages
 - ▶ Does give us insight into how our model is behaving, *given some strong conditions*
 - ► Know that it doesn't measure "how well the model fits"
 - ▶ Use it to compare only models with the same number of features
- ▶ But there's been pushback against R² in the stats and science community
 - ► E.g. This CMU stats professor's notes that went viral (as much as such a thing can): http://www.stat.cmu.edu/~cshalizi/mreg/15/lectures/10/lecture-10.pdf

- ▶ 1) R² does not measure goodness of fit
 - ▶ It can be arbitrarily close to 1 for a wrong model and arbitrarily low for a correct model

- ▶ 1) R² does not measure goodness of fit
 - ▶ It can be arbitrarily close to 1 for a wrong model and arbitrarily low for a correct model
- ▶ 2) R² is also pretty useless as a measure of predictability
 - ▶ R² says nothing about prediction error

- ▶ 1) R² does not measure goodness of fit
 - ▶ It can be arbitrarily close to 1 for a wrong model and arbitrarily low for a correct model
- ▶ 2) R² is also pretty useless as a measure of predictability
 - ▶ R² says nothing about prediction error
- ▶ 3) R² cannot be compared across data sets

- ▶ 1) R² does not measure goodness of fit
 - ▶ It can be arbitrarily close to 1 for a wrong model and arbitrarily low for a correct model
- ▶ 2) R² is also pretty useless as a measure of predictability
 - ▶ R² says nothing about prediction error
- ▶ 3) R² cannot be compared across data sets
- ▶ 4) R² cannot be compared between a model with untransformed Y and one with transformed Y, or between different transformations of Y

- ▶ 1) R² does not measure goodness of fit
 - ▶ It can be arbitrarily close to 1 for a wrong model and arbitrarily low for a correct model
- ▶ 2) R² is also pretty useless as a measure of predictability
 - ▶ R² says nothing about prediction error
- ▶ 3) R² cannot be compared across data sets
- ▶ 4) R² cannot be compared between a model with untransformed Y and one with transformed Y, or between different transformations of Y
- ▶ 5) The one situation where R² can be compared is when different models are fit to the same data set with the same, untransformed response variable

- ▶ 1) R² does not measure goodness of fit
 - ▶ It can be arbitrarily close to 1 for a wrong model and arbitrarily low for a correct model
- ▶ 2) R² is also pretty useless as a measure of predictability
 - ▶ R² says nothing about prediction error
- ▶ 3) R² cannot be compared across data sets
- ▶ 4) R² cannot be compared between a model with untransformed Y and one with transformed Y, or between different transformations of Y
- ▶ 5) The one situation where R² can be compared is when different models are fit to the same data set with the same, untransformed response variable
- ▶ 6) It is very common to say that R² is "the fraction of variance explained" by the regression
 - ▶ But if we regressed X on Y, we'd get exactly the same R². This in itself should be enough to show that a high R² says nothing about explaining one variable by another

Adjusted R² can overcome some of the issues

$$\overline{R}^{2} = 1 - \frac{SSE}{SST} / \frac{df_{e}}{df_{t}} \longrightarrow \begin{array}{c} m - k - 1 \\ m - 1 \end{array}$$

$$m = \# \text{ points}$$

$$k = \# \text{ parameters}$$

Adjusted R² can overcome some of the issues

$$\overline{R}^{2} = 1 - \frac{SSE}{SST} / \frac{df_{e}}{df_{t}} \longrightarrow m - k - 1$$

$$m = \# \text{ points}$$

$$k = \# \text{ parameters}$$

Use them with care...

More metrics

OLS Regression Results

Dep. Variable:	DomesticTotalGross	R-squared:	0.286
Model:	OLS	Adj. R-squared:	0.278
Method:	Least Squares	F-statistic:	34.82
Date:	Sun, 14 Sep 2014	Prob (F-statistic):	6.80e-08
Time:	21:59:46	Log-Likelihood:	-1738.1
Time: No. Observations:		Log-Likelihood:	-1738.1 3480.

F-test

Null hypothesis:

This data can be modeled by setting all β values to zero (the linear relationship we've found is purely due to chance)

OLS Regression Results

Dep. Variable:	DomesticTotalGross	R-squared:	0.286
Model:	OLS	Adj. R-squared:	0.278
Method:	Least Squares	F-statistic:	34.82
Date:	Sun, 14 Sep 2014	Prob (F-statistic):	6.80e-08
Time:	21:59:46	Log-Likelihood:	-1738.1
No. Observations:	89	AIC:	3480.
No. Observations: Df Residuals:	89 87	AIC: BIC:	3480. 3485.

F-test

Prob (F-statistic):

The p-value for the whole model (i.e. probability of finding the observed-or more-extreme results when the null hypothesis (H_0) is true). If p-value <0.05, we **can** reject the null hypothesis (data is too extreme to fit this model just by chance). It doesn't guarantee the model is "true"!

OLS Regression Results

Dep. Variable:	DomesticTotalGross	R-squared:	0.286
Model:	OLS	Adj. R-squared:	0.278
Method:	Least Squares	F-statistic:	34.82
Date:	Sun, 14 Sep 2014	Prob (F-statistic):	
Time:	21:59:46	Log-Likelihood:	-1738.1
No. Observations:	89	AIC:	3480.
Df Residuals:	87	BIC:	3485.
Df Model:	1		

Log likelihood

Likelihood is another cost function!

$$L(\beta_0, \beta_1) = p(y_{obs} | \beta_0, \beta_1)$$

For a given model with specific coefficients (assume the model is right), likelihood is the chance of seeing this real data. The model with maximum likelihood is the best fit!

Dep. Variable:	DomesticTotalGross	R-squared:	0.286
Model:	OLS	Adj. R-squared:	0.278
Method:	Least Squares	F-statistic:	34.82
Date:	Sun, 14 Sep 2014	Prob (F-statistic):	6.80e-08
Time:	21:59:46	Log-Likelihood:	-1738.1
No. Observations:	89	AIC:	3480.
Df Residuals:	87	BIC:	3485.
Df Model:	1		

	coef	std err	t	P> t	[95.0% Conf. Int.]
Budget	0.7846	0.133	5.901	0.000	0.520 1.049
Ones	4.44e+07	1.27e+07	3.504	0.001	1.92e+07 6.96e+07

Omnibus:	39.749	Durbin-Watson:	0.674
Prob(Omnibus):	0.000	Jarque-Bera (JB):	99.441
Skew:	1.587	Prob(JB):	2.55e-22
Kurtosis:	7.091	Cond. No.	1.54e+08

		coef	std err	t	P> t	[95.0% Conf. Int.]
β_1	Budget	0.7846	0.133	5.901	0.000	0.520 1.049
β_{0}	Ones	4.44e+07	1.27e+07	3.504	0.001	1.92e+07 6.96e+07

t-test

Null hypothesis:

This specific β value is zero (the data can be created by such a model, with the other β values intact)

P > |t|:

P-value for this test. If p-value < 0.05, we can reject the null hypothesis: This variable does contribute to this model (DOES or DOESN'T, not how much).

Normality test

Omnibus:	39.749	Durbin-Watson:	0.674
Prob(Omnibus):	0.000	Jarque-Bera (JB):	99.441
Skew:	1.587	Prob(JB):	2.55e-22
Kurtosis:	7.091	Cond. No.	1.54e+08

Null hypothesis:

ε is normally distributed, no skew, no excess kurtosis

Prob(Omnibus):

The p-value for this test. If p-value < 0.05, we reject the null hypothesis: ϵ does not exactly follow the normal distribution that we assumed.

Skew & Kurtosis

Omnibus:	39.749	Durbin-Watson:	0.674
Prob(Omnibus):	0.000	Jarque-Bera (JB):	99.441
Skew:	1.587	Prob(JB):	2.55e-22
Kurtosis:	7.091	Cond. No.	1.54e+08

Skew (asymmetry)

Kurtosis (peakiness)

Omnibus:	39.749	Durbin-Watson:	0.674
Prob(Omnibus):	0.000	Jarque-Bera (JB):	99.441
Skew:	1.587	Prob(JB):	2.55e-22
Kurtosis:	7.091	Cond. No.	1.54e+08

Another normality test

Null hypothesis:

Again, ε is normally distributed. We are looking for skewness \sim 0, and kurtosis \sim 3. JB is an alternate to Omnibus and tests if those conditions are close enough to ideal to accept the Null.

Prob(JB):

The p-value for this test.

Omnibus:	39.749	Durbin-Watson:	0.674
Prob(Omnibus):	0.000	Jarque-Bera (JB):	99.441
Skew:	1.587	Prob(JB):	2.55e-22
Kurtosis:	7.091	Cond. No.	1.54e+08

An autocorrelation test

Null hypothesis: Errors are uncorrelated

The Durbin Watson test reports a test statistic, with a value from 0 to 4, where:

- 2 is no autocorrelation.
- 0 to <2 is positive autocorrelation (common in time series data).
- >2 to 4 is negative autocorrelation (less common in time series data).

Omnibus:	39.749	Durbin-Watson:	0.674
Prob(Omnibus):	0.000	Jarque-Bera (JB):	99.441
Skew:	1.587	Prob(JB):	2.55e-22
Kurtosis:	7.091	Cond. No.	1.54e+08

Sensitivity of prediction to small errors in input

Condition Number:

Given Mx=b, we can calculate the condition number :

$$CN = \frac{|\lambda \max(M)|}{|\lambda \min(M)|}$$

Note: if the condition number is large, the data matrix is ill-posed (does not have a unique, well-defined solution). This means the solution is unstable and coefficients can easily change with new data.

Introduction to model selection

For models with the same number of features, easy:

▶ Pick the model with the best cost function (highest log-likelihood)

$$y_{\beta}(x) = \beta_0 + \beta_1 x + \varepsilon$$

Need to revisit over/under-fitting and model complexity

Need to revisit over/under-fitting and model complexity

Process: Fit a training set then calculate MSE on your test set (in sklearn: fit > predict > score)

We can use adjusted R2 for models of different complexity

Low adj. R²

Higher adj. R²

Highest adj. R²

OLS Regression Results

Dep. Variable:	DomesticTotalGross	R-squared:	0.286
Model:	OLS	Adj. R-squared:	0.278
Method:	Least Squares	F-statistic:	34.82
Date:	Sun, 14 Sep 2014	Prob (F-statistic):	6.80e-08
Time:	21:59:46	Log-Likelihood:	-1738.1
No. Observations:	89	AIC:	3480.
Df Residuals:	87	BIC:	3485.
Df Model:	1		

	coef	std err	t	P> t	[95.0% Conf. Int.]
Budget	0.7846	0.133	5.901	0.000	0.520 1.049
Ones	4.44e+07	1.27e+07	3.504	0.001	1.92e+07 6.96e+07

Omnibus:	39.749	Durbin-Watson:	0.674
Prob(Omnibus):	0.000	Jarque-Bera (JB):	99.441
Skew:	1.587	Prob(JB):	2.55e-22
Kurtosis:	7.091	Cond. No.	1.54e+08

Akaike Information Criterion

AIC measures model parsimony (lower AIC is better)

$$AIC = 2k - 2\ln(L)$$

k = # parameters L = Log likelihood

OLS Regression Results

Dep. Variable:	DomesticTotalGross	R-squared:	0.286
Model:	OLS	Adj. R-squared:	0.278
Method:	Least Squares	F-statistic:	34.82
Date:	Sun, 14 Sep 2014	Prob (F-statistic):	6.80e-08
Time:	21:59:46	Log-Likelihood:	-1738.1
No. Observations:	89	AIC:	3480.
Df Residuals:	87	BIC:	3485.
Df Model:	1		

	coef	std err	t	P> t	[95.0% Conf. Int.]
Budget	0.7846	0.133	5.901	0.000	0.520 1.049
Ones	4.44e+07	1.27e+07	3.504	0.001	1.92e+07 6.96e+07

Omnibus:	39.749	Durbin-Watson:	0.674
Prob(Omnibus):	0.000	Jarque-Bera (JB):	99.441
Skew:	1.587	Prob(JB):	2.55e-22
Kurtosis:	7.091	Cond. No.	1.54e+08

Bayesian Information Criterion

BIC is a penalized AIC, again lower is better

My model isn't awesome enough yet!

What more can I do?

Try these and check test error (or AIC, BIC, etc.):

- 1. Use a smaller set of features
- 2. Try adding polynomials
- 3. Check functional forms for each feature
- 4. Try including other features
- 5. Use more data (bigger training set)
- 6. Regularization (this week)
- 7. Try other model types (future lectures)

