

A teoria da Evolução Natural

□ 1885 – C. Darwin - "A Origem das Espécies";

- População de indivíduos com diferentes propriedades e habilidades
- □ Limite do número de indivíduos numa população
- Os mais hábeis são selecionados para reprodução
- A natureza cria novos indivíduos com propriedades similares
- Na natureza todos os indivíduos dentro de um ecossistema competem entre si por recursos

2

3 4

Algoritmos Evolutivos

busca por soluções melhores!

- Indivíduos de uma espécie pouco aptos possuem menor chance de gerar prole
 - Essa descendência reduzida faz com que suas características possuam uma menor probabilidade de serem propagadas
 - O contrário ocorre com os indivíduos mais aptos!
- Uma solução é representada como um indivíduo
 Um conjunto de soluções é uma população
- □ A ideia é aplicar a seleção natural como processo de

Indivíduo

 Na natureza, as características dos indivíduos são codificadas em genes

- □ Um conjunto específico de genes é chamado de **genótipo**
- O genótipo é a base do fenótipo, que é a expressão das características físicas e mentais codificadas pelos genes

5 6

Indivíduo

- □ Genótipo é composto por um cromossomo, ou seja, vetores de números:
 - Binários
 - Inteiros
 - Reais
- □ Fenótipo é a forma que o genótipo é aplicado para solucionar o problema

Exemplo

- □ Considere um problema de produção em que o lucro de uma empresa, dado pelas quantidades x₁, x₂ e x₃ de três determinados produtos, construídos por segundo, é dado por uma função f(·) em centenas de reais
- □ Exemplo:
 - \Box i = {x₁=4, x₂=2, x₃=7}, f(i)=0,05
 - ou seja, se produzo 4 unidades do produto 1, 2 do produto 2, e 7 do produto 3, tenho 5 reais de lucro

7 8

Genótipo

- Se i é uma possível solução do problema, podemos codificar essa solução em um genótipo, ou seja, em um cromossomo
- □ Por exemplo, uma sequência de números inteiros:

Fenótipo e Aptidão

 O fenótipo está relacionado com o resultado que a solução i, representada pelo genótipo ci, consegue obter

□ Funções são utilizadas para medir o resultado

Quanto melhor o resultado, mais apta está a solução

 Por esse motivo, chamamos a função utilizada para avaliar um indivíduo como função de aptidão

■ Exemplo:

 $\hfill\Box$ O indivíduo $i=\{x_1=4,\;x_2=2,\;x_3=7\}$ gera f(i)=0,05 de lucro e, portanto, sua aptidão é 0,05

9 10

Visão geral dos algoritmos evolutivos População População Final Nova População Seleção Cruzamento e/ou Mutação

11 12

População

- Para aplicar seleção natural é preciso que haja uma população, ou seja, um conjunto de indivíduos
 - □ Cada indivíduo representa uma solução
 - É importante que haja diversidade entre os indivíduos, para que a busca ocorra em diferentes locais do espaço de soluções (estados)
 - □ Alguns exemplos de indivíduos da população inicial são
 - Soluções de potencial
 - Soluções conhecidas para o problema
 - Soluções aleatórias

Exemplo

 Considere os três estados a seguir, de forma que cada um seja uma possível solução para o problema de produção.

 $c_{1} \begin{array}{c|cccc} & 4 & 10 & 8 \\ \hline c_{2} & 5 & 3 & 12 \\ \hline c_{3} & 8 & 10 & 9 \\ \hline x_{1} & x_{2} & x_{3} \\ \hline \end{array}$

 Escolhidos aleatoriamente, essa será nossa população inicial para o problema do lucro

13 14

Avaliação

- □ Função aptidão é utilizada para avaliar os indivíduos
 - □ Usada para definir o impacto do mesmo
- □ Exemplo:
 - \blacksquare Suponhamos que o lucro da empresa é calculado pela fórmula: $f(i) = \frac{x_1^2 2x_1x_2 + x_2x_3}{x_2^3 + x_1}$
 - \Box f(i) é a aptidão do indivíduo i

15 16

17 18

Seleção

- Para gerar uma nova população, é preciso selecionar indivíduos baseados em sua aptidão
 - Os indivíduos mais aptos devem possuir maior probabilidade de seleção
- □ Diversos métodos:
 - □ Seleção proporcional
 - Seleção determinística
 - Outras

Seleção Proporcional

- Este tipo de seleção é proporcional a aptidão dos indivíduos da população
- □ A probabilidade de seleção de um indivíduo de uma população de tamanho |P| é igual A:

$$p_i = \frac{f(c_i)}{\sum_{i=1}^{|P|} f(c_i)}$$

19 20

Exemplo

- □ Voltemos para as aptidões dos cromossomos $f(c_1)=0.0310$, $f(c_2)=0.0179$ e $f(c_3)=-0.0081$
 - Não podemos ter probabilidades negativas!
 - □ Normalizamos os valores do intervalo [-0.0081, 0.0310] para o intervalo [1, 10]

antes
$$f(c_1) = 0.0310$$
 depois $f(c_2) = 0.0179$ normalização $\begin{array}{c} 10 \\ 6.98 \\ 1 \end{array}$

Exemplo

 Agora podemos calcular as probabilidades de cada indivíduo ser selecionado

□ Semelhante a uma roleta

$$T = f(c_1) + f(c_2) + f(c_3)$$

$$T = 10 + 6.98 + 1 = 17.98$$

$$p_1 = \frac{10}{17.98} = 0.56$$

$$p_2 = \frac{6.98}{17.98} = 0.39$$

$$p_3 = \frac{1}{17.98} = 0.05$$

21 22

Seleção Determinística

- Os indivíduos são sorteados aleatoriamente e comparados entre si
- □ Em seguida, é selecionado o indivíduo que possui maior aptidão dentre os dois comparados
- □ O processo é repetido

Operadores Genéticos

- Responsáveis pela modificação dos cromossomos ao longo das gerações
 - □ Executam a busca de novas soluções
 - □ Podem ser guiados ou não
 - □ Utilizam algum tipo de heurística
 - □ Vamos estudar dois tipos:
 - □ Cruzamento ou recombinação
 - Mutação

Cruzamento

Os indivíduos selecionados são cruzados dois a dois

 Os indivíduos selecionados são chamados de progenitores

 O cruzamento combina características dos indivíduos selecionados para gerar novos indivíduos

 Os indivíduos gerados são chamados de descendentes

25 26

Cruzamento Simples O cruzamento mais simples consiste em trocar os cromossomos de um par de progenitores em um determinado ponto $c_1 = \frac{4}{10} \cdot \frac{10}{8} \cdot \frac{10}{12} \cdot \frac{$

27 28

29

Blitismo Os operadores de cruzamento e mutação alteram os indivíduos de uma população para outra Essa alteração nem sempre melhora a população Por isso, é interessante manter um conjunto com o(s) melhor(es) indivíduo(s) de uma população para outra Essa prática é chamada elitismo

31 32

Nova População

- □ Depois que os indivíduos da população anterior são selecionados e os operadores evolutivos são aplicados, uma nova geração é formada
- □ A partir da nova população, todo o processo é aplicado novamente
- □ Cada ciclo completo do AE é chamado de geração
- □ O processo é repetido, criando novas gerações

Critérios de Parada

 O algoritmo finaliza quando algum critério de parada é atingido

- □ Exemplos:
 - □ Convergência da população
 - □ Número máximo de gerações
 - □ Limite de gerações sem melhora

33

Algoritmo Básico

- ı. t=0;
 - Gerar população inicial P(0);
- Para todo indivíduo i da população atual P(t) faça Avaliar aptidão do indivíduo i;
- 4. Fim para;
- Enquanto Critério de parada n\u00e3o for satisfeito fa\u00e7a t=t+1;

Selecionar população P(t) a partir de P(t-1); Aplicar operadores de cruzamento sobre P(t); Aplicar operadores de mutação sobre P(t);

Avaliar P(t); Aplicar elitismo sobre P(t);

. Fim enquanto

Exemplo de codificação

Figura 01 – Um exemplo gráfico do funcionamento dos algoritmos genéticos (TELES, 2011 apud NUNES; GUIMARÃES; CARVALHO, 2013)

35 36

1/31/22

37

39 40

1/31/22

41 42

43 44

1/31/22

45 46

47 48

