Opprentice: Towards Practical and Automatic Anomaly Detection Through Machine Learning

Dapeng Liu, Youjian Zhao, Haowen Xu, Yongqian Sun, Dan Pei, Jiao Luo, Xiaowei Jing, Mei Feng

KPIs (Key Performance Indicators): A set of performance measures that evaluate the service quality

KPIs (Key Performance Indicators): A set of performance measures that evaluate the service quality

KPI anomalous (unexpected) behaviors → Potential failures, bugs, attacks...

KPIs (Key Performance Indicators): A set of performance measures that evaluate the service quality

KPI anomalous (unexpected) behaviors → Potential failures, bugs, attacks...

Anomaly detection matters: Find anomalous behaviors of the KPI curve

- → Diagnose and fix it
- → Avoid further influences and revenue losses

How to Build the Anomaly Detection System

Domain experts (Operators)

- Responsible for the KPIs
- Knowing the KPI behaviors well

Developers

- Building the detection system
- Knowing several anomaly detectors

Simple threshold

Historical Average

Wavelet

Holt-Winters

...

How to Build the Anomaly Detection System

Challenges

A More Natural Way

Design Goal

Outline

- Background and Motivation
- Key Ideas
- Results
- Conclusion

Detector model:

data point
$$\xrightarrow{\text{a detector with parameters } \{p\}}$$
 severity $\xrightarrow{\text{sThId}}$ $\{1,0\}$

Detector model:

Detector model:

Key Ideas

Classification in the feature space (Supervised machine learning)

Key Ideas

Classification in the feature space (Supervised machine learning)

Labeling overhead

Solution: an effective labeling tool

- Labeling overhead
 - Solution: an effective labeling tool
- Incomplete anomaly types in the historical data
 - Solution: incremental re-training with new data

- Labeling overhead
 - Solution: an effective labeling tool
- Incomplete anomaly types in the historical data
 - Solution: incremental re-training with new data
- Class imbalance problem
 - Solution: adjusting classification threshold (cThld) based on the preference

- Labeling overhead
 - Solution: an effective labeling tool
- Incomplete anomaly types in the historical data
 - Solution: incremental re-training with new data
- Class imbalance problem
 - Solution: adjusting classification threshold (cThld) based on the preference
- Irrelevant and redundant features
 - Solution: random forests

Design Overview

Operators specifies one time Historical & Latest KPI Data processed by loaded into use Labeling Tool Detectors (Features) Accuracy Preference Labels ` cThld Prediction **Machine Learning** (Random Forest) cThld Latest Anomaly Classifier

Training a classifier

See the paper

Design Overview

Training a classifier

Detecting anomalies

Outline

- Background and Motivation
- Key Ideas
- Results
- Conclusion

Random forests vs. Basic Detectors and Static Combinations

Random Forests vs. Other Learning Algorithms

(The order of features is based on *mutual information*)

Evaluation

Opprentice as a whole

Opprentice achieves

40% 23% 110%

more points inside the preference regions than 5-Fold cross-validation

Opprentice as a whole

Opprentice achieves

40% 23% 110%

more points inside the preference regions than 5-Fold cross-validation

Conclusion

 Opprentice is an automatic and accurate machine learning framework for KPI anomaly detection

- Opprentice bridges the gap in applying complex detectors in practice
- The idea of Opprentice i.e., using machine learning to model the domain knowledge could be a very promising way to automate other service managements

Thank you

liudp10@mails.tsinghua.edu.cn

On the job market ©