CSC110 Lecture 18: Introduction to Cryptography

Print this handout

Exercise 1: The One-Time Pad Cryptosystem

1. Suppose we want to encrypt the plaintext 'david' using the one-time pad cryptosystem and the secret key 'mario'. Fill in the table below to come up with the encrypted ciphertext. You may find the following useful:

```
>>> [ord(char) for char in 'david']
                                                                               [100, 97, 118, 105, 100]
>>> [ord(char) for char in 'mario']
[109, 97, 114, 105, 111]
```

If you are trying to do this first without using the Python console, you can use the ASCII code chart found at the bottom of this worksheet.

message char	ord of message char	key char	ord of key char	ord of ciphertext char	ciphertext char
'd'	100	'm'	109	81	'Q'
'a'		'a'			
'v'		'r'			
'i'		'i'			
'd'		'o'			

- 2. Next, implement the one-time pad cryptosystem by completing the following two functions encrypt otp and decrypt_otp. Some tips/hints:
 - The implementation is quite similar to the Caesar cipher from <u>Section 8.1</u>.
 - Remember that you can use ord and chr to convert back and forth between characters and numbers.

```
∘ % has higher precedence than +/-, so you'll need to do (a + b) % n instead of a + b % n.
def encrypt_otp(k: str, plaintext: str) -> str:
                                                                                     """Return the encrypted message of plaintext using the key k with the
    one-time pad cryptosystem.
    Precondtions:
        - len(k) >= len(plaintext)
        - all({ord(c) < 128 for c in plaintext})</pre>
        - all({ord(c) < 128 \text{ for } c \text{ in } k})
    >>> encrypt_otp('david', 'HELLO')
    ',&B53'
def decrypt_otp(k: str, ciphertext: str) -> str:
    """Return the decrypted message of ciphertext using the key k with the
    one-time pad cryptosystem.
    Precondtions:
        - len(k) >= len(ciphertext)
        - all({ord(c) < 128 for c in ciphertext})</pre>
        - all({ord(c) < 128 for c in k})
    >>> decrypt_otp('david', ',&B53')
    'HELLO'
```

functions: >>> plaintext = 'david'

>>> key = 'mario'

3. Check if you can get the original plaintext message back when using your encrypt_otp and decrypt_otp

```
>>> ciphertext = encrypt_otp(key, plaintext)
    >>> decrypt_otp(key, ciphertext)
    'david'
Exercise 2: The Diffie-Hellman key exchange algorithm
```

We discussed in lecture how the Diffie-Hellman key exchange is computationally secure. But it's important to

remember that computational security is not the same as theoretical security. Let's implement a *brute-force*

algorithm for an eavesdropper to take the $p, g, g^a \% p$, and $g^b \% p$ values that Alice and Bob communicate from the algorithm, and uses this to determine the shared secret key. Your algorithm should try to recover one of the exponents a or b simply by try all possible values: $\{1, 2, \ldots, p-1\}$. This is computationally inefficient in practice when p is chosen to be extremely large. But how

quickly can we do it with small prime numbers (e.g., 23)? def break_diffie_hellman(p: int, g: int, g_a: int, g_b: int) -> int: """Return the shared Diffie-Hellman secret key obtained from the eavesdropped inform

```
Remember that the secret key is (g ** (a * b)) % p, where a and b are the
secret exponents chosen by Alice and Bob.
You'll need to find at least one of a and b to compute the secret key.
Preconditions:
    - p, g, g_a, and g_b are the values exhanged between Alice and Bob
      in the Diffie-Hellman algorithm
>>> p = 23
>>> g_a = 9 # g ** 5 % p
>>> g_b = 8 # g ** 14 % p
>>> break_diffie_hellman(p, g, g_a, g_b) # g ** (5 * 14) % p
16
```

16 DLE 0 NUL 1 SOH 17 DC1

30 RS

31 US

2 STX

14 SO

15 SI

ASCII chart

```
18 DC2
                   34 "
                                                       114 r
                                                        115 s
                   35 #
                                                  99 c
 3 ETX
         19 DC3
                           51 3
                                  67 C
                                          83 S
 4 EOT
         20 DC4
                   36 $
                           52 4
                                  68 D
                                          84 T
                                                 100 d
                                                        116 t
 5 ENQ
         21 NAK
                   37 %
                           53 5
                                  69 E
                                          85 U
                                                101 e
                                                        117 u
 6 ACK
         22 SYN
                   38 &
                           54 6
                                  70 F
                                          86 V
                                                102 f
                                                      118 v
         23 ETB
                           55 7
                                  71 G
                                          87 W 103 g 119 w
 7 BEL
                   40 (
                           56 8
 8 BS
         24 CAN
                                  72 H
                                          88 X 104 h 120 x
                           57 9
9 HT
         25 EM
                   41 )
                                  73 I
                                          89 Y
                                               105 i 121 y
         26 SUB
10 LF
                   42 *
                           58:
                                  74 J
                                          90 Z
                                               106 j 122 z
11 VT
         27 ESC
                   43 +
                           59 ;
                                  75 K
                                          91 [ 107 k 123 {
                   44,
12 FF
         28 FS
                           60 <
                                  76 L
                                          92 \ 108 1 124 |
                   45 -
         29 GS
13 CR
                           61 =
                                  77 M
                                          93 ]
                                               109 m 125 }
```

48 0

49 1

50 2

62 >

63 ?

64 @

65 A

66 B

78 N

79 O

80 P

81 Q

82 R

94 ^

96 `

97 a

98 b

110 n 126 ~

95 _ 111 o 127 DEL

112 p

113 q

32

33 !

46.

47 /