More Asymptotic Notation. Analysis of recursive algorithms.

Abhiram Ranade

January 7, 2016

Summary of last time

Developed a framework for analysing algorithms

- "Time taken by an algorithm" = "Time taken by an algorithm in the worst case as a function of problem size"
- Consider algorithm to be executing on RAM. Pay attentional to the functional form of the expression of the time taken, e.g. whether linear or quadratic etc. in problem size.
- ▶ General goal: Try to express time taken by an algorithm as $\theta(...)$.
- ightharpoonup heta includes upper bound as well as lower bound.

Used the framework to analyze matrix multiplication algorithm and algorithm for merging.

Outline for today

- Additional asymptotic notation
- Analysis of recursive algorithms
- Divide and conquer algorithms

Additional asymptotic notation

 $f = \theta(g)$: "f is between multiples of g for large n"

f is the same as g to within constant factors

f is bounded below and above by g.

Sometimes we may only be able to prove a bound above, or sometimes only a bound below.

In such cases we cannot say $f = \theta(g)$.

We need some different notation.

θ , O, Ω notations

 $f = \theta(g)$: there exist real constants $c_1, c_2, n_0 > 0$ such that for all $n \ge n_0$ we have $0 \le c_1 g(n) \le f(n) \le c_2 g(n)$.

f = O(g): there exist real constants $c_2, n_0 > 0$ such that for all $n \ge n_0$ we have $0 \le f(n) \le c_2 g(n)$.

 $f = \Omega(g)$: there exist real constants $c_1, n_0 > 0$ such that for all $n \ge n_0$ we have $0 \le c_1 g(n) \le f(n)$.

$$f = \theta(g)$$
 iff $f = O(g)$ and $f = \Omega(g)$.
 $f = O(g)$ iff $g = \Omega(f)$

Intuitively:

- $\triangleright \theta$ means =
- ▶ O means <
- $ightharpoonup \Omega$ means >

upto constant factors, asymptotically.

Examples

$$n^2 + 16n + 23 = O(n^2)$$

 $n^2 + 16n + 23 = O(n^3)$
 $\therefore n^2 + 16n + 23 \le (1 + 16 + 23)n^2 \le 40n^3$ for all n .
 $n^2 + 16n + 23 \notin \Omega(n^3)$
Proof: Suppose contrary.
For some c , all $n \ge n_0$ we have $cn^3 \le n^2 + 16n + 23 \le 40n^2$
Thus $n < 40/c$. So not true for all $n > n_0$

Simplifying inside θ, O, Ω

$$O(n^2 + 2n) = O(n^2)$$

Just as for θ

Analysis of recursive algorithms

General analysis strategy:

Let T(n) = worst case time for size n. If the base case is for size n_0 , we know $T(n_0)$ directly.

ow $I(n_0)$ directly.

$$T(1) \leq c_1$$

Relate T(n) to $T(n'), T(n''), \ldots$ assuming function is recursively called on problems of size n', n'', \ldots

$$T(n) = 2T(n/2) + \text{ merge time.}$$

$$T(n) \le 2T(n/2) + c_2n$$
 for some c_2 and $n \ge n_0$.

Try to solve for T(n).

Analysis of mergesort

$$T(n) \le 2T(n/2) + c_2n$$

 $\le 2(2T(n/4) + c_2n/2) + c_2n$ Assume n power of 2.
 $= 4T(n/4) + 2c_2n$
 $\le 4(2T(n/8) + c_2n/4) + 2c_2n$
 $= 8T(n/8) + 3c_2n$
 $\le 2^k T(n/2^k) + kc_2n$
 $= nT(1) + \log n \cdot c_2n$ Choose $k = \log n$.
 $\le c_1n + c_2n\log n$
 $\le \max(c_1 + c_2)n\log n$
 $= O(n\log n)$

By similar analysis we can show $T(n) = \Omega(n \log n)$. Thus $T(n) = \theta(n \log n)$

Remarks

► The idiom: break the input into two parts, recurse on the parts, and then combine the results of the parts appears very often.

This kind of recursion is called Divide-and-conquer.

- We assumed n = 2^k keys were being sorted. Acceptable because: More laborious analysis using floors and ceilings will get us the same result.
 - Also, we can always introduce dummy keys to make $n = 2^k$. This will not increase the time by a constant factor, which we are ignoring anyway.
- ▶ Idea of substituting the recurrence into itself works often.
- ► Exercise: Solve $T(n) \le 3T(n/2) + cn$, $T(1) \le k$

Another D&C example: integer multiplication

Primary school algorithm for multiplying n bit integers: $\theta(n^2)$ time. can be improved!

Recursive view:

Inputs: *n* bit integers *A*, *B*.

$$A_1 = k$$
 Isbs of A . $A_2 = \text{rest.}$

Similarly B_1, B_2

$$A \cdot B = (A_2 2^k + A_1)(B_2 2^k + B_1)$$

= $A_2 B_2 2^{2k} + (A_1 B_2 + B_1 A_2) 2^k + A_1 B_1$.

Recurse for multiplications A_2B_2 , A_1B_1 , ... Multiplication by 2^k : shift

Choice
$$k = 1$$
: $T(n) = T(n-1) + \text{Addition time} \le T(n-1) + cn$.
Thus $T(n) = O(n^2)$.

Choice
$$k = n/2$$
: $T(n) \le 4T(n/2) + cn$

Solution of $T(n) \le 4T(n/2) + cn$

$$T(n) \le 4T(n/2) + cn$$

 $\le 4(4T(n/4) + cn/2) + cn$
 $= 16T(n/4) + cn(1+2)$
 $\le 16(4T(n/8) + cn/4) + cn(1+2)$
 $= 64T(n/8) + cn(1+2+4)$
 $\le 4^kT(n/2^k) + cn(2^k-1)$
 $\le n^2c' + cn(n-1)$
Thus $T(n) = O(n^2)$.

But we can do better!

A faster algorithm

Our basic relationship: $A \cdot B = (A_2 2^k + A_1)(B_2 2^k + b_1)$ = $A_2 B_2 2^{2k} + (A_1 B_2 + B_1 A_2) 2^k + A_1 B_1$. = $A_2 B_2 2^n + (A_1 B_2 + B_1 A_2) 2^{n/2} + A_1 B_1$ For k=n/2

Algorithm:

1. Compute $P_1 = (A_1 + A_2)(B_1 + B_2)$, $P_2 = A_1B_1$, $P_3 = A_2B_2$

2.
$$A \cdot B = P_3 2^n + (P_1 - P_2 - P_3) 2^{n/2} + P_2$$

$$T(n) \le 2T(n/2) + T(n/2+1) + T_{add}$$
 $P_3: n+1$ bit inputs $T(n/2+1) \le T(n/2) + c_1 n, T_{add} \le c_2 n$ $\le 3T(n/2) + cn$

 $n=2^k$

$$\leq 3(3T(n/4) + cn/2) + cn = 3^2T(n/2^2) + cn(1+3/2)$$

 $\leq 3^kT(n/2^k) + \sum_{i=0}^{i=k-1} (3/2)^i cn$

$$\leq 3^{\log_2 n} T(1) + c n \frac{(3/2)^{\log_2 n} - 1}{3/2 - 1}$$

$$\leq 3^{\log_2 n} T(1) + 2c(3)^{\log_2 n}$$

Both terms are $O(3^{\log_2 n}) = O(n^{\log_2 3})$.

$$T(n) = O(n^{\log_2 3}) = O(n^{1.58})$$

Similarly $T(n) = \Omega(n^{\log_2 3})$.

Recursion trees: a graphical method for solving recurrences

- 1. Draw the tree representing the recursive calls made by the algorithm. Root = original call.
- 2. Figure out number of levels.
- 3. Estimate the work at each level of the tree.
- 4. Add up the work.

Example: Mergesort.

- ▶ Number of levels = $\log n$, where n = size of entire sequence.
- ▶ Work at internal nodes ≤ cm where m = size of the subsequence generated.
- ► Total work at any level ≤ cn
- ► There are *n* leaves, and hence total work at the leaves is also *c'n*.

Thus total time $\leq c n \log n + c n = O(n \log n)$.

Unequal size subproblems

Suppose just for fun we recurse on sequences of size n/3 and 2n/3.

What changes in the analysis?

The total work at each level is still $\leq cn$, because total number of keys at each level is $\leq cn$.

The number of levels? Some branches terminate early, others go deep.

The rightmost leaf would be deepest, with number of levels $= \log_{3/2} n$.

Max depth = $\log_{3/2} n$.

Time $\leq c n \log_{3/2} n$

Graphical analysis is easier than algebraic?

Equal sized subproblems better.

Floors and ceilings

If number of keys being sorted is not a power of 2, we will encounter floors and ceilings in the analysis.

The subproblems will not be exactly equal. Larger problem will have size $\lceil n/2 \rceil$. Reduction at each step $= \lceil n/2 \rceil / n \le 2/3$

Equality for n = 3.

Thus depth of tree $\leq \log_{3/2} n$.

Work at each level $\leq cn$.

Thus total time = $O(n \log n)$

Note that $\log_a n = \log_2 n / \log_2 a = \theta(\log_2 n)$

Base of the logarithm does not matter if we are ignoring constant factors and the base is a constant.

Master Theorem

If $T(n) = aT(\lceil n/b \rceil) + O(n^d)$ for some constants a > 0, b > 1, and $d \ge 0$, then

$$T(n) = \begin{cases} O(n^d) & \text{if } d > \log_b a \\ O(n^d \log n) & \text{if } d = \log_b a \\ O(n^{\log_b a}) & \text{if } d < \log_b a \end{cases}$$

Proof: Omitted.

Covers many cases that may arise in practice. Gives insight.

You may memorize this and use it, unless you are explicitly asked not to.

Exercise: Solve $T(n) \le 7T(n/7) + cn$.

Remarks

- Need to understand carefully which constants can be ignored and which cannot.
 - If the time taken for something is cn, usually the precise value of c does not matter.
 - ▶ If something creates *c* subproblems, the the value of *c* matters very much!
- Dividing subproblems equally is often more efficient.

Remarks

- ▶ Even faster algorithms are possible for integer multiplication.
- Sometimes we may write $T(n) + \theta(n)$ and so on. In general $f + \theta(g)$ is to be interpreted a $\{f + g'|g' \in \theta(g)\}$.
- Questions you should ask about a given algorithm
 - 1. What is an upper bound on the time taken for the worst case? (Answer expected as O()).
 - 2. What is a lower bound on the time taken for the worst case? (Answer expected as $\Omega()$).
 - 3. Have we found the best possible algorithm? This last question is very hard to answer...