jméno a příjmení	login	cvičící
		Fuchs / Hliněná / Tůma

IDM, zadání S

Т	1	9	3	1	5	6	Σ	
'	1	'	0	'	1 9	0		

Zkouška se skládá ze dvou částí, testu za **20 bodů** a písemky za **60 bodů**. Z testu musíte získat **aspoň 15 bodů**, v opačném případě písemka nebude hodnocena a celá zkouška bude hodnocena 0 body.

TEST

Každá otázka je za 2 body. Odpovědi napište na tento list do vymezeného prostoru pod otázkou.

- 1. Znegujte: $\forall x \in \mathbb{R}$: $(x > 1 \lor x \le 2) \Rightarrow (x^2 > 4 \land x \le 8)$. Odpověď:
- **2.** Najděte alespoň jednu dvojici přirozených čísel a,b, pro kterou platí: $a < b \Rightarrow a+1 > b+1.$ Odpověď:
- 3. Určete $|\mathcal{P}(\{\emptyset\})|$. Odpověď:
- 4. Rozhodněte, zda pro libovolné množiny A,B,C platí: $C\subseteq A\Rightarrow C\subseteq A\cup B.$ Odpověď:
- 5. $A = \emptyset, B = \{1\}$. Určete $A \times B$. Odpověď:
- 6. $A = \{1, 2\}, B = \{\{1, 2\}\}.$ Platí $A \subseteq B$? Odpověď:
- 7. $R = \{[a, b], [b, c], [c, b]\}$. Určete R^+ . Odpověď:
- 8. Napište rozklad množiny $A = \{a, b, c, d, e\}$ určený relací ekvivalence

$$R = \{[a, a], [a, b], [b, a], [b, b], [c, c], [c, d], [d, c], [d, d], [e, e]\}.$$

Odpověď:

- 9. Na množině $\mathbb R$ je dána operace \star následovně: $a\star b=a-b$. Je operace \star komutativní? Odpověď:
- 10. Nakreslete graf s posloupností stupňů 4, 4, 4, 4, 4.

Graf:

PÍSEMKA

Každý příklad je za 10 bodů. Písemku vypracujte na vlastní papíry. U každého příkladu přehledně napište postup řešení a jasně označte výsledek.

1. a) Najděte všechny dvojice množin A, B, pro které platí:

$$A \setminus B = A \land A \cup B = \{1, 2, 3, 4, 5, 6\} \land \forall a \in A \exists b \in B : a + 3 = b.$$

- **b)** Nechť $A = \{1, \{2\}\}$. Určete $\mathcal{P}(A)$.
- **2.** Dokažte, že pro všechna přirozená čísla n platí:

$$3+4+5+\cdots+(5n+2)=\frac{25}{2}n(n+1).$$

3. Nechť

$$A = \{m \in \mathbb{N} \colon 1 < m < 9\}, \ B = \{m \in \mathbb{N} \colon 2 < m < 10\},$$

$$R = \{[m,n] \in A \times B \colon m+1 = n\}, \ S = \{[m,n] \in B \times A \colon m = 2n\}.$$

Určete vyjmenováním prvků relaci a) R, b) S, c) $R \circ S$, d) $S \circ R$.

4. Na množině $A = \{a, b, c, d, e, f\}$ je dán rozklad \mathcal{S} :

$$S = \{\{a, b\}, \{c, d\}, \{e, f\}\}.$$

- a) Určete relaci ekvivalence R, která je dána rozkladem S.
- b) Na množině A určete operaci \circ tak, aby R byla relací kongruence na A vzhledem k operaci \circ .
- c) Na množině A určete operaci \star tak, aby R byla relací kongruence na A vzhledem k operaci \star a aby faktorová algebra byl komutativní monoid.
- 5. a) Najděte nejkratší cestu z vrcholu A do vrcholu B v grafu na obrázku. Postup vyznačte do obrázku.

- b) Může být graf s posloupností stupňů 3, 3, 4, 4, 4 rovinný?
- **6. a)** Na množině $L = \{a, b, c, d, e, f, g, h\}$ sestrojte svaz, který je distributivní, ale není komplementární. Zdůvodněte, že sestrojený svaz uvedené podmínky splňuje.
 - b) Najděte všechny neizomorfní komplementární svazy na 5prvkové množině.