IN THE CLAIMS

Please amend the claims as appears below. The present listing of claims replaces all prior versions and listings of claims in the application:

1. (Currently Amended) A method for measuring an absolute steering angle Φ of a steering shaft for a vehicle using a first rotatable body that rotates together with the steering shaft of the vehicle at a predetermined rotation ratio, the method comprising the steps of:

obtaining a Ψ_{M} ' value by measuring a relative rotational angle Ψ' of the first rotatable body by means of using a first angle sensor whose having a measurement range isof Ω ;

obtaining a present value for a frequency i-value of the first rotatable body by comparing the present Ψ_{M}' value to a previous Ψ_{M}' value; and

obtaining a present value for a absolute steering angle $\Phi 1$ of the steering shaft from a present value for an absolute rotational angle Ψ of the first rotatable body bybody, using the Ψ_{M} value and the present i-value.

2. (Currently Amended) The method according to claim 1, comprising the steps of:

obtaining a θ_{M} ' value by measuring a relative rotational angle θ' of the a second rotatable body, which is rotating together with athe steering shaft at a predetermined rotation ratio, by means of using a second angle sensor whose having a measurement range isof Ω ;

obtaining a present value for a frequency j-value of the second rotatable body by comparing a present θ_{M} value to a previous θ_{M} value; and

obtaining a present value for the absolute steering angle $\Phi 2$ of the steering shaft from a present value for an absolute rotational angle θ of the second rotatable body bybody, using the θ_M value and the present j-value; and

taking a mean value of the $\Phi 1$ and the $\Phi 2$.