Inteligencia Artificial

Problemas de Lógica P. O.

1. Sentencias en lógica de primer orden

Sea un vocabulario con los siguientes símbolos:

- *Profesión*(p, o): Predicado. La persona p tiene la profesión o.
- *Cliente*(p1, p2): Predicado. La persona p1 es cliente de la persona p2.
- Jefe(p1, p2): Predicado. La persona p1 es jefe de la persona p2.
- *Médico, Cirujano, Abogado, Actor*: Constantes denotando profesiones
- Ana, Bruno: Constantes denotando gente

Escribir en lógica de primer orden

- (i) Ana es o bien cirujana o bien abogada
 - Profesión(Ana, Cirujano) V Profesión(Ana, Abogado)
- (ii) Bruno es actor, pero también tiene otro trabajo
 - Profesión(Bruno, Actor) $\land \exists x (Profesión(Bruno, x) \land x \neq Actor)$
- (iii) Todos los cirujanos son médicos.
 - $\forall x \text{ (Profesión(x, Cirujano)} \Rightarrow \text{Profesión(x, Médico))}$
- (iv) Bruno no tiene un abogado (es decir, no es cliente de ninguno)
 - $\neg \exists x (Cliente(Bruno, x) \land Profesión(x, Abogado))$
- (v) Ana tiene un jefe que es abogado.
 - $\exists x (Jefe(x, Ana) \land Profesión(x, Abogado))$

2. Instanciación existencial

Suponga que una base de conocimientos contiene solo una sentencia, ∃x TanAltoComo(x, Everest). ¿Cuáles de los siguientes son resultados legítimos de aplicar la instanciación existencial?

- (i) TanAltoComo(Everest, Everest)
- (ii) TanAltoComo(Kilimanjaro, Everest).
- (iii) TanAltoComo(Kilimanjaro, Everest) ∧ TanAltoComo(BenNevis, Everest) (después de dos aplicaciones).

Tanto b como c son legítimas; a no lo es porque introduce el símbolo Everest, utilizado anteriormente. Obsérvese que c no implica que haya dos montañas tan altas como el Everest, porque en ninguna parte se afirma que BenNevis sea diferente del Kilimanjaro (o del Everest, para el caso)

3. Unificación

Para cada par de oraciones atómicas, proporcione el unificador más general si existe:

(i) P(A, B, B), P(x, y, z).

 $\{x/A, y/B, z/B\}$

- (ii) Q(y, G(A,B)), Q(G(x, x),y).
 - Para que estas dos oraciones sean idénticas, necesitamos que y = G(A,B) y G(x,x) = G(A,B).
 - Observando G(x,x) = G(A,B), deducimos que x = A y x = B, lo que implica A = B.
 - Sin embargo, esto presenta una inconsistencia porque no podemos tener x igual a dos valores diferentes al mismo tiempo. Por lo tanto, <u>no existe</u> un unificador para estas oraciones.
- (iii) Older(Father(y), y), Older(Father(x), John).
 - Aquí, para que las dos oraciones sean idénticas, Father(y) = Father(x) e y = John.
 - Ya que Father(y) y Father(x) son términos de función (mapeo único), podemos asumir que x = y.

Solución: {y/John, x/John}

- (iv) Knows(Father(y), y), Knows(x, x).
 - Para que estas oraciones sean idénticas, necesitamos que Father(y) = x e y = x.
 - Esto significa que x debe ser igual a Father(y) y también a y, lo que es imposible porque Father(y) e y no pueden ser la misma entidad al mismo tiempo (no se puede sustituir y por un término complejo que contiene a y). Por lo tanto, no existe un unificador para estas oraciones.