

Лекция 2

Классификация текста. Рекуррентые нейронные сети и их применения

План лекции

- Классификация текста
- Рекуррентные нейронные сети
- LSTM, GRU

Классификация текстов

• Просто чтобы классифицировать тексты

- Просто чтобы классифицировать тексты
 - Спам-фильтр

- Просто чтобы классифицировать тексты
 - о Спам-фильтр
 - Токсичные комментарии

- Просто чтобы классифицировать тексты
 - о Спам-фильтр
 - Токсичные комментарии
 - о Фейк-ньюс

- Просто чтобы классифицировать тексты
 - о Спам-фильтр
 - Токсичные комментарии
 - о Фейк-ньюс
- Не совсем классификация, а скорее регрессия
 - Оценка тональности текста

- Просто чтобы классифицировать тексты
 - Спам-фильтр
 - Токсичные комментарии
 - о Фейк-ньюс
- Не совсем классификация, а скорее регрессия
 - Оценка тональности текста
- Как часть другой задачи NLP
 - Фильтрация обучающей выборки

- Просто чтобы классифицировать тексты
 - о Спам-фильтр
 - Токсичные комментарии
 - о Фейк-ньюс
- Не совсем классификация, а скорее регрессия
 - Оценка тональности текста
- Как часть другой задачи NLP
 - Фильтрация обучающей выборки
 - Выбор сценария в диалоговой системе

Методы классификации текстов

Классические методы

- См. предыдущую лекцию
 - o Bag of Words
 - o tf-idf
 - Классические методы + эмбеддинги слов

Классические методы

- См. предыдущую лекцию
 - Bag of Words
 - o tf-idf
 - Классические методы + эмбеддинги слов
- Проблемы
 - Большая размерность
 - Не учитывается порядок

Слова

Words (9) The quick brown fox jumps over a lazy dog

Формируем эмбеддинги

Проводим свёртку по оси времени (${\bf v}={\bf A}_1{\bf x}_1+{\bf A}_2{\bf x}_2$)

"Max over time pooling"

Fully-connected NN

Улучшение CNN для классификации текстов

Zhang et al., 2015

Классификация текстов с помощью RNN

Недостаток предыдущих подходов

Мы по-прежнему не можем учитывать информацию с неограниченно длинного предложения

• Заводим функцию $f_w(h_{t-1}, x_t)$

- Заводим функцию $f_w(h_{t-1}, x_t)$
- Применяем её рекурсивно к скрытым состояниям $\mathbf{h}_{\text{t-1}}$

- Заводим функцию $f_w(h_{t-1}, x_t)$
- Применяем её рекурсивно к скрытым состояниям h_{t-1}

- Заводим функцию $f_w(h_{t-1}, x_t)$
- Применяем её рекурсивно к скрытым состояниям h_{t-1}

- Заводим функцию $f_w(h_{t-1}, x_t)$
- Применяем её рекурсивно к скрытым состояниям h_{t-1}

- Заводим функцию $f_w(h_{t-1}, x_t)$
- Применяем её рекурсивно к скрытым состояниям h_{t-1}

- Заводим функцию $f_w(h_{t-1}, x_t)$
- Применяем её рекурсивно к скрытым состояниям h_{t-1}

- Заводим функцию $f_w(h_{t-1}, x_t)$
- Применяем её рекурсивно к скрытым состояниям h_{t-1}

- Заводим функцию $f_w(h_{t-1}, x_t)$
- Применяем её рекурсивно к скрытым состояниям h_{t-1}

- Заводим функцию $f_w(h_{t-1}, x_t)$
- Применяем её рекурсивно к скрытым состояниям $\mathbf{h}_{\text{t-1}}$
- Получили h_i, h₁₀

Vanilla RNN

• $f_w(h, x) = tanh(A_h h + A_x x)$

Обучение RNN

Алгоритм "Back Propagation Through Time"

Обучение RNN

Обучение RNN

$$h_t = Wf(h_{t-1}) + W^{(hx)}x_{[t]}$$
$$\hat{y}_t = W^{(S)}f(h_t)$$

Вычисление градиента функции потерь

$$h_t = Wf(h_{t-1}) + W^{(hx)}x_{[t]}$$
$$\hat{y}_t = W^{(S)}f(h_t)$$

$$\frac{\partial E}{\partial W} = \sum_{t=1}^{T} \frac{\partial E_t}{\partial W} \qquad \text{E = erro}$$

$$\frac{\partial E_t}{\partial W} = \sum_{k=1}^t \frac{\partial E_t}{\partial y_t} \frac{\partial y_t}{\partial h_t} \frac{\partial h_t}{\partial h_k} \frac{\partial h_k}{\partial W}$$

Вычисление градиента функции потерь

$$\frac{\partial E_t}{\partial W} = \sum_{k=1}^t \frac{\partial E_t}{\partial y_t} \frac{\partial y_t}{\partial h_t} \frac{\partial h_t}{\partial h_k} \frac{\partial h_k}{\partial W}$$

$$\frac{\partial h_t}{\partial h_k} = \prod_{j=k+1}^t \frac{\partial h_j}{\partial h_{j-1}}$$

Преимущества и недостатки RNN

• Преимущества

- обрабатывает вход произвольной длины
- о (теоретически) может использовать информацию с любого момента времени
- можно обрабатывать все префиксы

• Недостатки

- о проблема взрывающегося градиента
- вся информация закодирована одним вектором (достаточно ли?)

Архитектуры RNN

• Дополнительный путь течения информации (состояние сети, C₊)

• Состояние сети обновляется в каждой клетке (очень аккуратно, с возможностью не обновляться вообще)

• Forget gate: часть информации забывается (домножение на результаты сигмоиды)

• Input gate: новая информация формируется

• Input gate: новая информация прибавляется к состоянию сети

 \bullet Ouput: новое состояние сети скрещивается с $\boldsymbol{h}_{t\text{-}1}$ и формирует \boldsymbol{h}_{t}

Gated Recurrent Units (GRU)

The End