1 Подгруппы, смежные классы, порядок и индекс подгруппы

Определение 1.1 (Подгруппа). Подгруппа - подмножество Н группы G, само являющееся группой относительно операции, определяющей G Подгруппа - подалгебра в группе

Следствие 1.2. Подгруппа является группой

Определение 1.3 (Тривиальная подгруппа). Тривиальная подгруппа - подгруппа, состоящая только из одного нейтрального элемента группы или равна самой группе

Пример 1.4 (Пример подгрупп).

Пример 1.5. $(\mathbb{Z}_p; +, 0, -)$, p - простое число B этой группе нет нетривиальных подгрупп

ДОКАЗАТЕЛЬСТВО.
$$A\subseteq \mathbb{Z}_p,\ x\in A,\ x\ x,2x,3x,...,px$$
 - все разные предположим, что $ix=jx(i< j),$ тогда $jx-ix=0\Rightarrow (j-i)x=0$ $(j-i)xmodp=0$ $(j-i)modp=0$ $j-i=0$ ПОЧЕМУ $j=i$ $A=\mathbb{Z}_p$

Теорема 1.6. Любая бесконечная группа имеет нетривиальную подгруппу

Доказательство. Пусть
$$a \in G, a \neq e$$
, тогда $A = \{a^0 = e, a^1, a^2, ..., a^{-1}, a^{-2}, ...\}$

- 1. $A \neq G$ A нетривиальная подгруппа
- 2. $A = G A' = \{a^0, a^2, a^4, ..., a^{-2}, a^{-4}, ...\}$

Пример 1.7 (Пример подгрупп). Возьмём группу из ?? и выпишем подгруппы:

- 1. $\{e\}$ тривиальная подгруппа
- 2. $\{e, r_1, r_2, s_1, s_2, s_3\}$ тривиальная подгруппа

3.
$$\{e, r_1, r_2\}$$

4.
$$\{e, s_1\}, \{e, s_2\}, \{e, s_3\}$$

Пример 1.8. Группа операций над треугольником - подгруппа

Пример 1.9. Является ли группой моноид $(A; \cap, e)$, где A - множество фигур на плоскости, e - вся плоскость.

Доказательство. $A\cap A^{-1}=e$, этого не может быть, $(\mathcal{A};\cap,e)$ - не группа

Является ли группой алгебра $(A; \dot{-})$, где A - множество фигур на плоскости.

Доказательство. Сперва докажем ассоциативность \div : $A \div (B \div C) = (A \div B) \div C$

$$A \stackrel{\cdot}{-} B = (\overline{A} \cap B) \cup (\overline{B} \cap A)$$

$$A \doteq (B \dotplus C) = (\overline{A} \cap (B \dotplus C)) \cup (A \cap (\overline{B} \dotplus \overline{C})) =$$

$$(\overline{A} \cap ((\overline{B} \cap C) \cup (\overline{C} \cap B)) \cup (A \cap ((\overline{B} \cap C) \cup (\overline{C} \cap B)))) =$$

$$(\overline{A} \cap ((\overline{B} \cap C) \cup (\overline{C} \cap B)) \cup (A \cap ((\overline{B} \cap C) \cap (\overline{C} \cap B))) =$$

$$(\overline{A} \cap ((\overline{B} \cap C) \cup (\overline{C} \cap B)) \cup (A \cap ((B \cup \overline{C}) \cap (C \cup \overline{B}))) =$$

$$(\overline{A} \cap \overline{B} \cap C) \cup (\overline{A} \cap B \cap \overline{C}) \cup (A \cap ((B \cup \overline{C}) \cap (C \cup \overline{B}))) =$$

$$(\overline{A} \cap \overline{B} \cap C) \cup (\overline{A} \cap B \cap \overline{C}) \cup (A \cap B \cap C) \cup (A \cap \overline{B} \cap \overline{C}) \cup (A \cap \overline{B} \cap \overline{C})$$

$$(\overline{A} \cap \overline{B} \cap C) \cup (\overline{A} \cap B \cap \overline{C}) \cup (\overline{A} \cap B \cap C) \cup (\overline{A} \cap B \cap C) \cup (\overline{A} \cap \overline{B} \cap \overline{C})$$

$$(A - B) - C = C - (A - B) = \dots =$$

$$(\overline{C} \cap \overline{B} \cap A) \cup (\overline{C} \cap B \cap \overline{A}) \cup (C \cap B \cap A) \cup (C \cap \overline{B} \cap \overline{A})$$

$$A - (B - C) = (A - B) - C$$

теперь доказать существование обратного

Пусть
$$e=\emptyset$$
, Тогда $A \div \emptyset = A$ $A - A^{-1} = \emptyset \Rightarrow (\overline{A} \cap A^{-1}) \cup (\overline{A^{-1}} \cap A) = \emptyset \Rightarrow A^{-1} = A$ $(\mathcal{A};\dot{-})$ - группа

Пример 1.10. Конечные группы

Таблица умножения *

$$\begin{array}{c|c} e \\ \hline e & e \end{array}$$

1.
$$G_1 = (\{e\}; *)$$

2.
$$\mathcal{G}_2 = (\{e, a\}; *)$$

Таблица умножения *

$$\begin{array}{c|cccc}
e & a \\
\hline
e & e & a \\
\hline
a & a & e \\
\end{array}$$

3.
$$\mathcal{G}_3 = (\{e, a, b\}; *)$$

Таблица умножения *

4.
$$A = (\{e, a, b, c\}, *)$$

Таблица умножения *

	e	a	b	c
e	e	a	b	c
\overline{a}	a	e	b	c
b	b	c	e	a
\overline{c}	c	b	a	e

Пример 1.11. Построить группу симметрии правильного п-угольника (Диэдрическая группа)

 $\mathcal{D}_n = (r_0, ..., r_{n-1}, s_1, ..., s_n; \circ, e, ^{-1}), \ \textit{где} \ r_0, ..., r_{n-1} - \textit{повороты}, s_1, ..., s_n$ - отражения, эти элементы множсетва являются автоморфизмами, композиция задана следующей таблицей умножения:

Таблица умножения о

нейтральным элементом является r_0 , обратным к любому отражению s_i само отражение s_i , обратным к повороту r_i поворот r_{n-i}

Определение 1.12 (Рекурсивная перестановка). Рекурсивная перестановка - разнозначная общерекурсивная функция, область значений которой - множество ω

Теорема 1.13. Рекурсивные перестановки с операцией композиции образуют группу

Доказать
лоство. Надо доказать ассоциативность \circ , существование нейтрального и обратных

1.
$$a \in \omega$$
, $a = g(b)$, $b = f(c)$, $a = g(f(c)) = (f \circ g)(c)$, \circ ассоциативна

2.
$$e = \mathrm{Id}_1^1$$
, $(f \circ e)(a) = e(f(a)) = f(a)$

3.
$$f^{-1} =$$

Теорема 1.14. Любая группа вкладывается в группу перестановок

Доказательство. Пусть $\mathcal{G}=(G,*),S$ - множество перестановок G, надо доказать

$$h(x * y) = h(x) \circ h(y)$$

Пусть $h(x) = f_x$, такой что $f_x(y) = y * x$ (А существует ли f_x для каждого x?). h разнозначна, так как $f_x(e) = f_y(e) \Rightarrow ex = ey \Rightarrow x = y$,

$$h(x * y)(a) = f_{x*y}(a) = a * (x * y) = (a * x) * y = f_x(a) * y = f_y(f_x(a)) = (f_x \circ f_y)(a) = (h(x) \circ h(y))(a)$$

Teopema 1.15. Любой конечный моноид, в котором нет неединичных идемпотентов является группой

П

Доказательство. Пусть M - конечный моноид, $a \in M, \ a*a^-1 = e$ Индукция по количеству элементов

Базис: n = 1, a = e, $M = \{e\}$

Шаг индукции: пусть для моноидов с k < n верно. Тогда для k = n Пусть $a \in M, A$ - циклический моноид, порождённый a

- 1. $A \neq M$, |A| < n, по индукционному предположению
- 2. A = M, так как M не содержит неединичных идемпотентов, то A это моноид типа (0,n)

$$a^x a^y = egin{cases} a^{x+y} & \text{, если } x+y < n, y < n-1 \ a^{j+(x+y-i)} & \text{, если } x+y \geq n \end{cases}$$

следовательно $a^x a^y = a^{(x+y) \bmod n}$ и $a^{-1} = a^{n-1}$

Пример 1.16. Построить группу симметричную чему-то там

Теорема 1.17. Любая чётная перестановка является произведением циклов длины 3

Доказательство. Любую чётную перестановку можно разложить в произведение циклов длины 2. Таких циклов будет чётное число, соответственно будет n произведений циклов вида (ab)(cd)

- 1. b = c, тогда (ab)(cd) = (abd)
- 2. $b \neq c$, тогда (ab)(cd) = (ab)(bc)(bc)(cd) = (abc)(bcd)

Теорема 1.18. Если $\mathcal G$ - группа, $\mathcal H\subseteq\mathcal G$, $\mathcal H\neq\emptyset$, $a,b\in\mathcal H\to ab^{-1}\in\mathcal H$, тогда $\mathcal H$ является подгруппой

Доказательство. Пусть $a,b \in H$

1. $H \neq \emptyset$, $a \in H \Rightarrow aa^{-1} \in H \Rightarrow e \in H$ есть нейтральный элемент

- 2. $a \in H \Rightarrow ea^{-1} \in H \Rightarrow a^{-1} \in H$, есть обратные
- 3. $a,b\in H,\,b^{-1}\in H\Rightarrow a(b^{-1})^{-1}\in H\Rightarrow ab\in H,$ замкнуто по операции группы $\mathcal G$

 \mathcal{H} - подгруппа

Определение 1.19 (Центр группы). Центр группы - $\mathcal{Z} = \{a \in G, ab = ba$ для всех $b \in G\}$

Пример 1.20.
$$\mathcal{M}=(M_2^*(\mathbb{R});\cdot)$$
, невырожденные матрицы $\mathcal{Z}=\left\{egin{pmatrix} a & 0 \\ 0 & a \end{pmatrix}: a\in R \right\}$

Теорема 1.21. Центр группы - подгруппа

Доказательство.
$$a,b\in\mathcal{Z},\,ab^{-1}\in\mathcal{Z}$$
 Надо доказать: $x\in\mathcal{G},\,(ab^{-1})x=x(ab^{-1})$

$$(ab^{-1})x = ab^{-1}xe = ab^{-1}xbb^{-1} = ab^{-1}bxb^{-1} = axb^{-1} = x(ab)^{-1}$$

следует что $x \in \mathcal{Z}$ (что это вообще доказывает)

Определение 1.22 (Порядок группы). Порядок группы - количество элементов группы. $ord\mathcal{G}$

Определение 1.23 (Порядок элемента). Порядок элемента - порядок порождённой им циклической подгруппы $orda = ord\langle a \rangle$

Пример 1.24. Пример на порядок через группу треугольника

$$\mathcal{D}_3 = \{e, r_1, r_2, s_1, s_2, s_3\}$$

ord $\mathcal{D}_3 = 6$

$$\langle r_0 \rangle = \{r_0\} & \text{ord } r_0 = 1$$

$$\langle r_1 \rangle = \{r_0, r_1, r_2\} & \text{ord } r_1 = 3$$

$$\langle r_2 \rangle = \{r_0, r_1, r_2\} & \text{ord } r_2 = 3$$

$$\langle s_1 \rangle = \{r_0, s_1\} & \text{ord } s_1 = 2$$

$$\langle s_2 \rangle = \{r_0, s_2\} & \text{ord } s_2 = 2$$

$$\langle s_3 \rangle = \{r_0, s_3\} & \text{ord } s_3 = 2$$

Следствие **1.25.** ord e = 1, $\langle e \rangle = \{e\}$

Определение 1.26 (Смежный класс). Пусть \mathcal{G} - группа, $\mathcal{H} \subseteq \mathcal{G}$, $a \in \mathcal{G}$ Левый смежный класс a по \mathcal{H} - $a\mathcal{H} = \{ab : b \in \mathcal{H}\}$ Правый смежный класс a по \mathcal{H} - $\mathcal{H}a = \{ba : b \in \mathcal{H}\}$

Пример 1.27. Пример смежных классов:

$$\langle s_1 \rangle \subseteq \mathcal{D}_3, r_1 \in \mathcal{D}_3$$

$$r_1\langle s_1 \rangle = r_1\{r_0, s_1\} = \{r_1, s_2\}$$

 $\langle s_1 \rangle r_1 = \{r_0, s_1\} r_1 = \{r_1, s_3\}$
 $r_1\langle s_1 \rangle \neq \langle s_1 \rangle r_1$

Определение 1.28 (Нормальная подгруппа). Нормальная подгруппа - подгруппа, у которой любой левый смежный класс совпадает с правым

Пример 1.29. Пример нормальных групп

$$\langle r_1 \rangle = \{r_0, r_1, r_2\} \subseteq \mathcal{D}_3$$

$$r_i \langle r_1 \rangle = r_i \{r_0, r_1, r_2\} = \{r_{0+i}, r_{1+i}, r_{2+i}\} = \langle r_1 \rangle$$

$$\langle r_1 \rangle r_i = \{r_0, r_1, r_2\} r_i = \{r_{0+i}, r_{1+i}, r_{2+i}\} = \langle r_1 \rangle$$

$$r_i \langle r_1 \rangle = \langle r_1 \rangle r_i$$

$$s_i \langle r_1 \rangle = \{s_i r_0, s_i r_1, s_i r_2\} = \{s_i, s_{i-1}, s_{i+1}\}$$

$$\langle r_1 \rangle s_i = \{r_0 s_i, r_1 s_i, r_2 s_i\} = \{s_i, s_{i+1}, s_{i-1}\}$$

$$s_i \langle r_1 \rangle = \langle r_1 \rangle s_i$$

 $\langle r_1
angle$ - нормальная подгруппа

Следствие 1.30. Если группа $\mathcal G$ - абелева, то любая подгруппа - нормальная.

Теорема 1.31. Если \mathcal{G} - группа, $\mathcal{H} \subseteq \mathcal{G}$, $u \equiv$ - отношение принадлежности к одному левому смежному классу, то \equiv - отношение эквивалентности

Доказательство. 1. Рефлексивность $a \in a\mathcal{H} \Rightarrow a \equiv a$

2. Симметричность $a \equiv b \Rightarrow a \in x\mathcal{H}, b \in x\mathcal{H} \Rightarrow b \equiv a$

3. Транзитивность $a \equiv b, b \equiv c \Rightarrow$

$$a, b \in x\mathcal{H} \qquad a = xh_a \qquad b = xh_b$$

$$b, c \in y\mathcal{H} \qquad b = yh'_b \qquad c = yh_c$$

$$xh_b = yh'_b \Rightarrow x = yh'_bh_b^{-1} \Rightarrow a = y\underbrace{h'_bh_b^{-1}h_a}_{\mathcal{H}}$$

$$c \in y\mathcal{H}$$

$$a \in y\mathcal{H}$$

$$a \in y\mathcal{H}$$

Следствие 1.32. Каждый левый смежный класс является классом эквивалентности

Следствие 1.33. Левые смежные классы или совпадают или не пересекаются

Следствие 1.34. Количество элементов в левом смежном классе совпадает $c \operatorname{ord} \mathcal{H}$

Доказательство. Пусть $f:\mathcal{H}\to a\mathcal{H},\, f(x)=ax,\,$ тогда

$$f(x) = f(y) \Rightarrow ax = ay \Rightarrow = a^{-1}ax = a^{-1}ay \Rightarrow x = y$$

f - взаимоодназначная функция, соответственно $\operatorname{ord} a\mathcal{H} = \operatorname{ord} \mathcal{H}$

Определение 1.35 (Индекс подгруппы). Индекс подгруппы - количество левых смежных классов ind H

Теорема 1.36. Если H - подгруппа G, то ord $G = \operatorname{ord} H \cdot \operatorname{ind} H$

Доказательство. Разобьём группу G на левые смежные классы. Их количество - ind H, каждый содержит ord H элементов. Общее количество этих элементов - ind H · ord H

Следствие 1.37. $\operatorname{ind} H = \frac{\operatorname{ord} G}{\operatorname{ord} H}$

Следствие 1.38. $\operatorname{ord} H | \operatorname{ord} G$

Следствие 1.39. ord $a \mid \operatorname{ord} \mathcal{G}$

Доказательство. $\mathcal{H} = \langle a \rangle$, ord $a = \operatorname{ord} \mathcal{H}$

Теорема 1.40. $a^{\text{ord } a} = e$

Доказательство.
$$\langle a \rangle = \{\underbrace{a^0, a^1, ..., a^{\operatorname{ord} a - 1}}_{\operatorname{ord} a}\}, \ a^{\operatorname{ord} a} = a^0 = e$$

Теорема 1.41. $a^n = e \Leftrightarrow \operatorname{ord} a | n$

Доказательство. Пусть $x = \operatorname{ord} a + r = n$, $(0 \le r < \operatorname{ord} a)$, тогда

$$e = a^n = a^{x \operatorname{ord} a} \cdot a^r = (a^{\operatorname{ord} a})^x \cdot a^r = e^x \cdot a^r = a^r$$

П

$$a^r = e \Rightarrow r = 0 \Rightarrow n = x \cdot \text{ord } a \Rightarrow \text{ord } a | n$$

Теорема 1.42. $a^{\text{ord } G} = e$

Доказательство. ord $a|\operatorname{ord}\mathcal{G}\Rightarrow\operatorname{ord}\mathcal{G}=x\cdot\operatorname{ord}a\Rightarrow a^{\operatorname{ord}\mathcal{G}}=(a^{\operatorname{ord}a})^x=e$

Пример 1.43. A_5 - группа чётных перестановок из 5 элементов. В A_5 нет нормальных подгрупп

Теорема 1.44. Любая подгруппа индекса 2 является нормальной

Доказательство. 1. (a) $e\mathcal{H} = \mathcal{H}$

(b)
$$a\mathcal{H} \neq \mathcal{H}$$

 $a\mathcal{H} = \mathcal{G}/\mathcal{H}$

2. (a) $\mathcal{H}e = \mathcal{H}$

(b)
$$\mathcal{H}a \neq \mathcal{H}$$

 $\mathcal{H}a = \mathcal{G}/\mathcal{H}$

Что и зачем