

Escola Tècnica Superior d'Enginyeria de Telecomunicació de Barcelona

UNIVERSITAT POLITÉGNICA DE CATALUNYA DEPARTAMENT D'ENGINYERIA ELECTRÒNICA CISE IV

13 de Gener de 2009

Data notes provisionals: 21 de Gener

Límit d'al·legacions: 23 de Gener a les 14h.

Data notes revisades: 28 de Gener

Professors: Manel Domínguez, Francesc Masana, Clemente Pol, Jordi Salazar

Informacions addicionals:

• Duració de l'examen: 2,5 hores.

• S'ha de respondre en aquests mateixos fulls d'enunciat als problemes 2 i 3.

• S'han de lliurar els problemes per separat.

PROBLEMA 1 (30 %)

A la figura 1 es mostren els corresponents models dels següents elements:

- μP V25
- Memòria EPROM 27C2001 de 256K x 8. $t_{ACA}(Adreces) = 140ns$, $t_{ACC}(CS^*) = 140ns$, $t_{ACO}(OE^*) = 70ns$
- Memòria SRAM 68100 de 128K x 8. Temps d'accés de lectura: t_{ACA} (Adreces)= 70ns, t_{ACC}(CS*)= 70ns, t_{ACC}(OE*)= 25ns. Temps d'accés d'escriptura t_{CW} = 65ns (Veure definició més avall)
- Controlador E/S amb 4 registres de 8 bits. Temps d'accés per lectura o escriptura: t_{ACC}(Adreces, CS*, R/W*)= 100ns
- Descodificador de 3 a 8. $t_R = 10$ ns

A més d'aquests elements, en el nombre necessari, només es poden fer servir portes NAND i NOR de dues entrades i inversors, tots amb $t_R = 5$ ns.

La freqüència de rellotge és de 10 MHz. Els senyals del V25 en un cicle màquina sense estats d'espera (lectura o escriptura) son els de la figura 2 (suposar que els canvis es produeixen amb coincidència amb ½ període de CLOCK):

Fig. 2

L'instant de lectura coincideix amb el flanc de pujada de MREQ*i MSTB* o bé de IOSTB* (En el cicle de lectura de E/S no es valida MREQ*)

L'accés per una operació d'escriptura a la SRAM (t_{CW}) es defineix com el temps entre l'instant en que tots dos senyals CS* i WE* estan a nivell baix i que qualsevol dels dos torna a nivell alt

- 1. (4p) Construir un sistema que tingui 256K de EPROM acabant a l'adreça 0xFFFFF, 512K de SRAM començant a l'adreça 0x00000 i pugui contenir, en el mapa de E/S, fins a vuit controladors com l'indicat. La descodificació de memòria ha de ser completa. La de E/S el més senzilla possible.
- 2. (6p) Calcular, justificant la resposta, el nombre d'estats d'espera necessaris per accedir a cada una de les memòries i a l' E/S.

NOTA: En els accessos de E/S només són vàlides les 16 adreces menys significatives del μP.

PROBLEMA 2 (40 %)

S'ha dissenyat un sistema basat en el microcontrolador SAB 80C166W de Siemens. Aquest microcontrolador multiplexa en temps el bus de dades (D0-D7) amb la part baixa del bus d'adreces (A0-A7): de fet passa a dirse el bus AD0-7. D'aquesta forma el bus multiplexat es diu AD0-7, i durant els cicles de bus primer dóna l'adreça i després fa de bus de dades, ja sigui a lectura o escriptura. El sistema és el següent:

Per tal de guardar *la part de les adreces baixes (AD0-7) un cop desapareixen es fa servir un latch. El senyal ALE (Address* Latch Enable) controla el *latch*. Les característiques de *latch* són:

	Min	Max
$t_{ m SU}$	7 ns	
$t_{\rm h}$	5 ns	-

Dn input	√ ¹ — — — — — — — — — — — — — — — — — — —	1
	GND	
	VOH	T PLH
On output	vor	

	Min	Max
t_{PHL}	-	10 ns
t_{PLH}	-	10 ns

La temporització del microcontrolador és:

Descripció	Símbol	Valor
Extensió de temps d'ALE	t_A	M x T _{CL}
Cicles d'espera	t_{C}	N x T _{CL}
Temps de tri-state a memòria	t_{F}	0

Parameter Symbol		CPU Clock = 16 MHz Duty cycle 0.4 to 0.6		
			min.	max.
ALE high time	t ₅	CC	15 + t _A	
Address setup to ALE	<i>t</i> ₆	СС	10 + t _A	-
Address hold after ALE	t ₇	CC	15 + t _A	-
ALE falling edge to RD, WR (with RW-delay)	<i>t</i> ₈	CC	15 + t _A	-
ALE falling edge to \overline{RD} , \overline{WR} (no RW-delay)	t ₉	CC	-10 + t _A	-
Address float after RD, WR (with RW-delay)	t ₁₀	CC	_	5
Address float after RD, WR (no RW-delay)	t ₁₁	CC	-	42.5
RD, WR low time (with RW-delay)	t ₁₂	CC	52.5 + t _C	-
RD WR low time (no RW-delay)	t ₁₃	CC	77.5 + t _C	-
RD to valid data in (with RW-delay)	t ₁₄	SR	-	47.5 + t _C
RD to valid data in (no RW-delay)	t ₁₅	SR	_	72.5 + t _C
ALE low to valid data in	t ₁₆	SR	7 11	72.5 + t _A + t _C
Address to valid data in	t ₁₇	SR	7	100 + 2t _A + t _C
Data hold after RD rising edge	t ₁₈	SR	0	-

Parameter	Symbol		CPU Clock = 16 MHz Duty cycle 0.4 to 0.6	
			min.	max.
Data float after RD	t ₁₉	SR		47.5 + t _F
Data valid to WR	t ₂₂	CC	47.5 + t _C	-
Data hold after WR	t ₂₃	СС	47.5 + t _F	-
ALE rising edge after RD,	t ₂₅	CC	47.5 + t _F	_
Address hold after RD,	t ₂₇	CC	47.5 + t _F	-

(tots els temps estan en nanosegons)

La temporització de la RAM en lectura és:

Read Cycle

		HM628	128D
	•	-5	
Parameter	Symbol	Min	Max
Read cycle time	t _{ac}	55	_
Address access time	t _{AA}	_	55
Chip select access time	tACS1	-	55
	t _{ACS2}	_	55
Output enable to output valid	toE	_	30
Output hold from address change	t _{oH}	10	_
Chip selection to output in low-Z	t _{CLZ1}	10	_
	t _{CLZ2}	10	_
Output enable to output in low-Z	toLZ	5	_
Chip deselection to output in high-Z	t _{CHZ1}	0	20
	t _{CHZ2}	0	20
Output disable to output in high-Z	t _{oHZ}	0	20

Es demana, tenint en compte que la freqüència del microcontrolador és 16 MHz = $1/T_{\rm CL}$:

a) (2 punts) En lectura, un cop baixa el senyal ALE (Address Latch Enable), podem tenir un conflicte entre l'adreça que el microcontrolador ha posat a AD7-0 i la dada que comença a posar la memòria. Avalueu si aquest conflicte es dóna al nostre

b) (1 punt) Complim els temps de setup i hold del latch? Quin seria el valor òptim de 'M'? (el nombre de cicles de rellotge que s'ha d'estendre l'activació del senyal ALE, veure Taula: temps t_A) Justifiqueu la resposta.

c) (3 punts) Calculeu el nombre òptim de 'N' per les operacions de lectura (el nombre de cicles de rellotge d'espera, t_C, veure taula).

max + 14 = 47/5 + N. TCL > 30ms = tof (RAM) V N=0 max +10 = 7215+0+MCL > 55 ms = tAA = tACSI = +ACS 2

max +17 - tLATCH = 100+0+MCL > 55 ms -> Amb aguests dos n'hi ho suficient.

5

La temporització de la RAM en escriptura és:

Write Cycle

		HM628128D	
		-5	
Parameter	Symbol	Min	Max
Write cycle time	t _{wc}	55	
Address valid to end of write	t _{AW}	50	_
Chip selection to end of write	t _{cw}	50	_
Write pulse width	t _{wp}	40	_
Data to write time overlap	tow	20	_

d) (4 punts) Torneu a calcular el valor de 'N', tenint ara en compte el cicle d'escriptura del microprocessador.

Temps munims garantits per uc'.

Temps munims garan

Write cycle: +6+ t2+ t22 + t27 = 10+ 15+ 4215 + 4215 >, 55 ms

[hi han altres possibles equocions).

PROBLEMA 3 (30 %)

Es tracta d'estudiar alguns aspectes del conegut esquema del circuit de connexió dels displays de 7-segments de les pràctiques de l'assignatura i que es presenta a continuació.

Les entrades 1E i 2E del xip de buffers 74LV224 estan connectades a la sortida P029 del microcontrolador i a una resistència R_{329} de $10k\Omega$ fins l'alimentació externa de $V_{CC} = 3,3V$. Tenint en compte que P029 és una sortida de 3 estats (i, per tant, NO és de drenador obert), amb les següents característiques:

Característiques port µC	Valor
V_{OH}	2.9 V
V_{oL}	0.4 V
I_{OH}	-4 mA
I _{OL}	4 mA

i que les característiques d'entrada del xip de buffers 74LV224 són: $V_{IH} = 2,3 \text{ V}$, $V_{IL} = 1 \text{ V}$, $I_{IH} = -I_{IL} = 1 \mu A$, es demana:

a) (2p) Quins són els valors límit de R₃₁₉ per tal que es transmetin correctament els nivells de '1' i '0' de P029?

Posq NO & derendor when
$$\frac{1}{2}$$
 | $\frac{1}{4}$ | $\frac{1}$

c) (1p) Quin efecte té la resistència R₃₁₉ al funcionament del xip de buffers 74LV224 quan la P029 és al 3r estat (high-Z: Alta Impedància)?

d) (2p) Quan la sortida P029 es troba en el 3r estat (alta impedància), amb una característica d'I_{O(pèrdues)} = 3μA, i es vol tenir uns marges de soroll de 0,6V, quins serien ara els valors límits correctes de R₃₁₉?

- Ruin = que a apartet a) = 725/11

- Ruin = que a apartet a) = 725/11

- Ruin =
$$\frac{Vcc - (VIH+NMH)}{ZIIIH} = \frac{3'3V - (2'3V + 0'6V)}{3uA + 2. luA} = 80KH$$

e) (2p) Quins són els valors màxim i mínim de la resistència R₃₂₁ que connecta la sortida P016 del microcontrolador (amb les mateixes característiques elèctriques que la P029), les entrades D6 dels 2 xips de latches 74HC373 ($V_{IH} = 2.3V$, $V_{IL} = 1V$,

f) (2p) Les resistències R_{328} - R_{335} connecten les sortides dels latches 74HC373 ($V_{OH} = 3V$; $I_{OL} = -I_{OH} = 50 \text{mA}$; $V_{OL} = 0.3V$) amb els displays de LEDS de 7 segments. Aquests displays són en càtode comú, és a dir, per encendre un determinat segment d'un dígit cal posar un '0' al senyal 'hit' corresponent al dígit i posar un '1' al senyal a, b, c, etc., corresponent al segment.

Considerant que els LEDS estan multiplexats en temps, i per tant, en tot moment com a molt NOMÉS hi ha un dígit activat, quins són els valors màxim i mínim de les resistències R₃₂₈-R₃₃₅ per tal que els LEDs s'encenguin correctament?

NOTA: Per tal que un LED dels displays s'encengui correctament, cal un corrent mínim de I_F = 4mA (V_D = 1,3V). El corrent màxim de cada LED és $I_D = 10$ mA ($V_D = 1,7V$)).

m de cada LED és
$$I_D = 10 \text{mA} (V_D = 1,7V)$$
).

$$|IDL| = |IDH| = 50 \text{ mA} >> IF > 10 \text{mA} (\text{maxim})$$

Rmax: (fu que quan encemen el LED passin com a minim 4 mA) R < VOH - VOL - VD (min) = 3V - 013 - 113V = 350 V)

Ruin: (for que no passi massa coment) $R \ge \frac{3'3V-1'7V}{100} = 160 \, \text{pi}$

160 L R & 350 DI