

Graph Neural Networks in Vision and Graphics

Jan Eric Lenssen – Stanford Graph Learning Workshop, September 16, 2021

Differentiable programming in CV is dominated by CNNs

What about object hierarchies?

DIV2K dataset

Or graphs with geometric information?

Fey et al., Deep Graph Matching Consensus, ICLR 2020

Cao et al., Realtime Multi-Person 2D Pose Estimation using Part Affinity Fields, CVPR 2017

Point Clouds and Meshes?

KITTI dataset

Fey et al., SplineCNN, CVPR 2018

GNNs describe differentiable data flow between entities

Entities can be:

- Nodes
- 3D points
- Scene objects
- Keypoints

Relations can be:

- Cartesian/Polar relationship
- Hierarchical relationship
- Mesh edges
- •

$$\vec{x}_i' = \text{UPDATE}\left(\vec{x}_i, \underbrace{\square}_{j \in \mathcal{N}(i)} \text{MESSAGE}\left(\vec{x}_i, \vec{x}_j, \vec{e}_{j,i}\right)\right)$$

GNNs as building block for differentiable programmming

... to fuse data from multiple entities

... to process data on irregular domains

... to analyze geometric structures

GNNs for Continuous Convolution

GNNs for Continuous Convolution

Continuous Convolution:

$$\mathbf{x}_i = \sum_{j \in \mathcal{N}(i)} K(\mathbf{p}_j - \mathbf{p}_i) \cdot \mathbf{x}_j$$

Message Passing:

$$\mathbf{x}_i = \text{Update}\left(\mathbf{x}_i, \sum_{j \in \mathcal{N}(i)} \text{Message}(\mathbf{x}_i, \mathbf{x}_j, \mathbf{e}_{i,j})\right)$$

Message for Continuous Convolution:

Message
$$(\mathbf{x}_j, \mathbf{e}_{j,i} = (\mathbf{p}_j - \mathbf{p}_i))$$

= $K(\mathbf{e}_{j,i}) \cdot \mathbf{x}_j$

GNNs for Continuous Convolution

Processing data on irregular, geometric domains

Shape Correspondence

Fey et al., SplineCNN, CVPR 2018

Semantic Segmentation

Thomas et al., KPConv, CVPR 2019

3D Object Detection

Shi et al., Point-GNN, CVPR 2020

Stanford Graph Learning Workshop 2021

Jan Eric Lenssen

Processing geometric structures

Processing geometric structures

	Ours	Nesti-Net	PCPNet
Number of network parameters	7981	179M	22M
Execution time for 100k points Relative execution time	3.57 s 1×	1350 s 378 ×	470 s 131×

WILLOW-ObjectClass dataset

WILLOW-ObjectClass dataset

WILLOW-ObjectClass dataset

Graph Neural Networks in Vision and Graphics

Jan Eric Lenssen – Stanford Graph Learning Workshop, September 16, 2021

