Definición: Sea $X = (X(t), t \ge 0)$ un proceso estocástico a tiempo continuo y (\mathcal{F}_t) una filtración. Se dice X es una (\mathcal{F}_t) martingala si para todo $t \ge 0$, X(t) es \mathcal{F}_t -medible, $\mathbb{E}(|X(t)|) < \infty$ y

$$\mathbb{E}(X(t)|\mathcal{F}_s) = \mathcal{F}_s$$
, para todo $0 < s < t$.

- 1. Sea (X_n, \mathcal{F}_n) una Martingala. Considerar $\mathcal{U}_n = \mathcal{U}(X_1, \dots, X_n)$. Probar que (X_n, \mathcal{U}_n) es una Martingala.
- 2. Sean $\xi_1, \dots, \xi_n, \dots$ v.a. i.i.d. con $P(\xi_i = 1) = p$, $P(\xi_i = -1) = q$. Sea $S_n = \sum_{i=1}^n \xi_i$. Probar que

$$X_n = \left(\frac{q}{p}\right)^{S_n}$$
 e $Y_n = S_n - n(p-q)$

son Martingalas.

3. Sean $\xi_1, \dots, \xi_n, \dots$ v.a. i.i.d. con $P(\xi_i = 0) = P(\xi_i = 2) = 1/2$. Considerar

$$X_n = \prod_{i=1}^n \xi_i.$$

Probar que X_n es una Martingala y que no existe ξ tal que

$$X_n = E(\xi | \mathcal{F}_n)$$
 con ξ $\mathcal{U}(X_i, i \ge 1)$ – medible.

Sugerencia: si $E(\xi|\mathcal{F}_n) \to Y$ entonces $Y = \xi$.

4. Sean $(X_n, \mathcal{F}_n)_{n\geq 1}$ una Martingala e $\{Y_n\}_{n\geq 1}$ un proceso tal que $|Y_n|\leq C_n$, Y_n es \mathcal{F}_{n-1} medible. Sea $X_0=0$ y consideremos

$$M_n = \sum_{k=1}^n Y_k (X_k - X_{k-1}).$$

Probar que (M_n, \mathcal{F}_n) es una Martingala.

- 5. Sea $B(\cdot)$ un movimiento Browniano unidimensional. Mostrar que es una Martingala.
- 6. Enunciar y probar la versión a tiempo continuo de las dos desigualdades maximales de Doob. Sugerencia: discretizar y tomar límite.
- 7. Sea $X(t) := \int_0^t B(s) ds$, donde $B(\cdot)$ es un movimiento Browniano. Probar que

$$E(X^2(t)) = \frac{t^3}{3} \qquad \forall t > 0.$$

8. Sea $U(t) \coloneqq e^{-t}B(e^{2t}), (B(\cdot))$ es un movimiento Browniano unidimensional). Mostrar que

$$E(U(t)U(s)) = e^{-|t-s|}$$
 para todo $-\infty < s, t < \infty$.

9. Probar que $I(t) := B^2(t) - t$ es una martingala.

Sugerencia (y ojo!): $B^2(t) = (B(t) - B(s))^2 - B^2(s) + 2B(t)B(s)$. Tomar esperanza condicional respecto de \mathcal{B}_s , la historia de $B(\cdot)$, y después respecto e la historia de $I(\cdot)$.

Fecha estimada de entrega: 27 de abril.

^{*}Entregar dos ejercicios a elección.