Tre cariche puntiformi, $Q_1 = 5.00 \times 10^{-6}$ C, $Q_2 = -3.00 \times 10^{-6}$ C e $Q_3 = 2.00 \times 10^{-6}$ C sono disposte sulle coordinate: Q_1 (0,a), Q_2 (0,0), Q_3 (a,0), con a = 0.5 m. Trovare modulo, direzione e verso della forza totale agente su Q_3 . Calcolare inoltre le coordinate di un ipotetica carica $|Q_4| = 4 \times 10^{-6}$ C affinchè essa abbia lo stesso effetto di Q_1 e Q_2 su Q_3 .

Soluzione

La forza finale è di 0.155 N e forma un angolo di 35° con la verticale. F_x = -0.089 N, F_y = -0.127 N.

La carica Q₄ sarebbe posta nel punto (0.89 m, 0.56 m)

Tre cariche puntiformi, $Q_1 = 5.00 \times 10^{-6}$ C, $Q_2 = -3.00 \times 10^{-6}$ C e $Q_3 = 2.00 \times 10^{-6}$ C sono disposte sulle coordinate: Q_1 (0,q), Q_2 (0,0), Q_3 (q,0), con q = 0.5 m. Trovare modulo, direzione e verso del campo elettrico nel punto medio la congiungente delle cariche Q_1 e Q_3 .

Soluzione

Il campo risultante ha modulo $E = 3.05x10^5$ V/m ed è diretto verso il basso.

Tre cariche puntiformi, $Q_1 = 5.00 \times 10^{-6}$ C, $Q_2 = -3.00 \times 10^{-6}$ C e $Q_3 = 2.00 \times 10^{-6}$ C sono disposte sulle coordinate: Q_1 (0,a), Q_2 (0,0), Q_3 (a,0), con a = 0.5 m. Trovare l'energia elettrostatica totale del sistema di cariche, il potenziale elettrostatico nel punto medio la congiungente delle cariche Q_1 e Q_3 e il lavoro necessario ad una forza esterna per portare una carica $q_0 = 10^{-9}$ C da una distanza molto elevata a quel punto.

 $U_{\text{tot}} = -0.125 \text{ J. V(P)} = 1.02 \times 10^5 \text{ V. L} = 1.02 \times 10^{-4} \text{ J.}$

Una pallina carica di massa m=2.00 g è appesa ad un filo. Un campo uniforme orizzontale E=1000 N/C spinge la pallina inclinando il filo di un angolo $\theta=15^\circ$ rispetto alla verticale. Calcolare la carica Q sulla pallina.

Soluzione

 $Q = 5.26 \times 10^{-6} C.$

Una barretta lunga L=5 cm è uniformemente carica con una densità di carica lineare pari a $\lambda=5.00\times10^{-6}$ C/m. Calcolare il modulo E del campo elettrico alla distanza a=5 cm da un suo estremo. Eseguire lo stesso calcolo se la carica varia secondo la legge $\lambda(x)=\lambda_0 x$, con $\lambda_0=5.00\times10^{-6}$ C/m² per un punto alla distanza a=5 cm dall'estremo con la carica più elevata.

 $E = 4.5 \times 10^5 \text{ V/m}. E = 1.38 \times 10^4 \text{ V/m}$

Una barretta lunga L = 5 cm è uniformemente carica con una densità di carica lineare pari a $\lambda = 5.00 \times 10^{-6}$ C/m. Calcolare il potenziale elettrostatico V prodotto dalla bacchetta alla distanza a = 5 cm da un suo estremo. Eseguire lo stesso calcolo se la carica varia secondo la legge $\lambda(x) = \lambda_0 x$, con $\lambda_0 = 5.00 \times 10^{-6}$ C/m² per un punto alla distanza a = 5 cm dall'estremo con la carica più elevata. Se un protone viene messo in quel punto, calcolare che energia cinetica acquista quando si è allontanato ad una distanza elevata.

 $V = 3.12x10^4 V$. V = 869 V/m. $K = 1.4x10^{-16} J$ nel primo caso.

Un filo posto a semicerchio ha una densità di carica lineare che dipende dall'angolo q rispetto alla verticale secondo la legge $\lambda(\theta) = \lambda_0 \cos\theta$. Se la carica totale del filo è $Q = 12.0~\mu$ C e il raggio del semicerchio è R = 60.0 cm, calcolare modulo, direzione e verso del campo elettrico nel centro del semicerchio, nonché la forza alla quale sarebbe sottoposta una carica $q_0 = 3.00~n$ C posta nel centro.

 $E = 2.35 \times 10^5 \text{ V/m}$ verticale verso il basso. $F = 7.05 \times 10^{-4} \text{ N}$

Un filo posto a semicerchio ha una densità di carica lineare che dipende dall'angolo θ rispetto alla verticale secondo la legge $\lambda(\theta) = \lambda_0 \cos\theta$. Se la carica totale del filo è $Q = 12.0 \,\mu$ C e il raggio del semicerchio è $R = 60.0 \,\mu$ C cm, calcolare il valore del potenziale elettrostatico nel centro del semicerchio, nonché il lavoro necessario per portare in quel punto una carica $q_0 = 3.00 \,\mu$ C.

 $V = 1.80 \times 10^5 \text{ V. L} = 5.40 \times 10^{-4} \text{ J.}$

Calcolare l'energia cinetica (in J ed eV) che dovrebbe avere un protone ($m_p = 1.67 \times 10^{27}$ Kg, $q = e = 1.602 \times 10^{-19}$ C) per penetrare fino al centro di una sfera uniformemente carica di raggio R = 10^{-10} m e carica Q = Ze, con Z = 6. Considerare la sfera con una carica uniformemente distribuita con densità costante ρ e tale da non opporre resistenza meccanica alla penetrazione del protone.

$$K = 130 \text{ eV} = 2.08 \times 10^{-17} \text{ J}$$

Un protone (M = 1.67×10^{-27} Kg) viene posto a 10 cm sull'asse di un anello di raggio R = 5 cm e carica totale Q = -2×10^{-6} C. La particella viene quindi attratta verso il centro del cerchio. Calcolare con che energia cinetica e con che velocità passa per quel punto.

 $K = 3.2x10^{-14} J = 2.0x10^5 eV. v = 6.19x10^6 m/s.$

In figura è mostrata una sfera metallica concentrica ad una sfera metallica cava. Dati i valori del campo elettrico indicati, calcolare le cariche Q_1 sulla superficie della sfera interna, Q_2 sulla superficie interna della sfera cava e Q_3 sulla superficie esterna della sfera cava. Calcolare inoltre la differenza di potenziale fra quei due punti.

 $Q_1 = -10.7 \text{ nC. } Q_2 = -Q_1. Q_3 = 48.2 \text{ nC.}$

Un sottile filo rettilineo e lungo L = 12 m con una carica Q = 74 nC uniformemente distribuita è coassiale con un tubo conduttore scarico di raggio interno $R_i = 6.0$ mm e raggio sterno $R_e = 9.0$ mm. Determinare la densità superficiale di carica σ indotta sulle superfici interna ed esterna del tubo nonché la differenza di potenziale fra due punti distanti $r_1 = 1.0$ mm e $r_2 = 15$ mm dall'asse.

 $\sigma_{int} = -164 \text{ C/m}^2$. $\sigma_{ext} = 109 \text{ C/m}^2$. $\Delta V = 268 \text{ V}$.

Un cilindro cavo di raggio interno R_1 = 3 cm e raggio esterno R_2 = 5 cm è uniformemente carico con una densità di carica ρ = 10^{-4} C/m³. Calcolare il campo elettrico alle distanze r_1 = 4 cm e r_2 = 8 cm dall'asse del cilindro nonché la differenza di potenziale fra questi due punti.

 $E_1 = 9.88 \times 10^4 \text{ V/m}$. $E_2 = 1.13 \times 10^5 \text{ V/m}$. $V_2 - V_1 = 5.66 \times 10^3 \text{ V}$.