Quiz# 1

QUIZ 1(10 Points)

Choose 2 of the following problems.

(1) Find the smallest number of iterations that will guarantee us a root of the function $f(x) = x^5 - 2x + 1/2$ on the interval [0, 1] accurate to less than 10^{-3}

Proof: First, we are guaranteed a root of the function in the interval because f(1)f(0) < 0, and f is continuous. We have an error bound for the distance from p_n to p, where p_n is the nth iterate, and p is the correct value, as follows:

$$|p_n - p| \le \frac{b - a}{2^n}.$$

In this case, b-a=1, so we just need the smallest n such that $2^{-n} < 1000$, which is n=10.

(2) If f(h) converges to 0 at rate O(h), (that is f(h) = O(h)) as $h \to 0$, and g(h) = O(h) as $h \to 0$, show that $f(h)g(h) = O(h^2)$ as $h \to 0$.

Proof: For sufficiently small h, we have that $|f(h)| \le K_1 h$ and $|g(h)| \le K_2 h$, and therefore

Proof: For sufficiently small h, we have that $|f(h)| \leq K_1 h$ and $|g(h)| \leq K_2 h$, and therefore, $|fg| = |f||g| \leq K_1 K_2 h^2$, which implies that fg = O(h).

(3) Suppose p^* must approximate p with relative error at most 10^{-3} . Find the largest interval in which p^* must lie for p = 150.

Quiz# 1

Proof:

$$\frac{|p - p^*|}{|p|} \le 10^{-3} \to |150 - p^*| \le .15 \to -.15 \le p^* - 150 \le .15.$$

We conclude, that $p^* \in [149.85, 150.15]$.