

SATHYABAMA

INSTITUTE OF SCIENCE AND TECHNOLOGY

C.S.E / I.T 2016-2020

Deemed to be University

Declared as category 'A' University by MHRD, Govt. of India

Jeppiaar Nagar, Rajiv Gandhi Salai, Chennai – 600 119, Tamil Nadu. India.

SURVEY OF CERVICAL CANCER PREDICTION USING MACHINE LEARNING

PROJECT SUPERVISOR: Dr. G.Kalaiarasi, M.E., Ph.d.,

TEAM MEMBER: 1. Natasha (36119004)

2. Vaishnavi (36111421)

Presentation Outline

- Introduction
- Literature survey
- Objectives
- System Architecture
- Implementation
- Methodology
- Results and Discussion
- Conclusion
- References
- Q&A

Introduction

- Cervical cancer is one of the deadliest cancers recognized
- •A malignant disease which develops in the cells of the uterus
- •The Cancer is undetected until the final stages no symptoms
- Implements Gaussian Mixture Model and Probabalistic Neural Network
- Advanced attempt for early precancerous screening equipment
- More accurate

Literature Review

AUTHOR	YEAR OF PUBLICATION	DESCRIPTIONS PROS		CONS	
[1] P.Mohanaiah, P. Sathyanarayana, L.Gurukumar "Image Texture Feature Extraction using GLCM Approach", International Journal of Scientific and Research Publication, Volume 3, Issue 5, May 2013	2013	 Captures visual content of images for indexing and retrieval Uses GLCM for extraction of textures 	 High Discrimination accuracy Real time pattern recognition 	More Computation	
[2] Imran S. Bajwa, M. Shahid Naweed, M. Nadim Asif, S.Irfan Hyder "Feature Based Image Classification by using Principal Component Analysis", CIST – Journal of Graphics, Vision and Image	2013	 Principal Component Analysis provides enhanced accurcy for cloud precipitation Characteristically used for image recognition hool of Computing 	Classifier system designed to exhibit enhancement	 Used only for weather application 	

Literature Review

[3]Jyoti Patil and Anant. L. Chaudhari, "Intensity Observation of cervical cytology using DIP", International Journal of Applied Information Systems (IJAIS) – ISSN: 2249-0868 Foundation of Computer Science FCS, New York, USA Volume 4– No.4, October 2012	2012	 Application of finding Key features within an image utilizing PCA Uses many mathematical and statistical processes 	•	Compares images which will be termed authentic and imposter images		
[4] D S Guru, Y.H. Sharath, S. Manjunath "Texture Features amd KNN in Classifiaction of Flower Images", s IJCA Special issue on "Recent Trends in Image Processing and Pattern Recognition".	2010	Algorithmic model for Automatic classification of flowers using KNN classifier	•	Qualitative comparitive analysis Good performance	re	ot eal me

Objectives

- Motivated by the necessity of high accuracy when dealing with a human life.
- Computer assistance improves the results of humans in such a domain.
- Due to large number of patients and cost the conventional method fails
- So Automated classification of cervical magnetic resonance images is proposed
- Uses Histogram Division

Entropy Measurement

Lab color space

GLCM Features

NN Classification

GMM- segmentation

System Architecture

Implementation

REQUIREMENTS

- Matlab 2104a and above
- Image Processing Toolbox
- Windows 7 and above
- Minimum 2GB of ram
- Minimum 250GB hard disk

CERVICAL MODEL

 In order to test the validation of any imaging method, a model that represents the main tissues of the cervix is needed.

DATA MODEL

- The stored data that represents those scattered signals are segmented into 500 samples for each prob.
- The signature of the tumor is hidden in those data.

USED NEURAL NETWORK

- Neural network is the best tool in recognition and discrimination between different sets of signals.
- It has an input layer with 2000 inputs,
- First hidden layer with 11 nodes and T ANSIG transfer function
- Second hidden layer with 7 nodes, and T ANSIG transfer function
- Output layer with PURELIN transfer function and 2 outputs.
- One of the two outputs is used for the detection of tumor, and the other for the localization

PROPOSED NEURAL NETWORK

REMOVING UNNECESSARY NEURONS

- DTREG provides an option to cause it remove unnecessary neurons from the model after the model has been constructed
- The process of removing unnecessary neurons is an iterative process.
- Leave-one-out validation or the neuron that causes the least increase in error is then removed from the model
- The process is repeated with the remaining neurons until the stopping criterion is reached.

Methodology

GAUSSIAN MIXTURE MODEL

For a probability model determination, we can suppose to have mixture of Gaussian distribution as the following form:

$$f(x) = \sum_{i=1}^{k} p_i N(x \mid \mu_i, \sigma_i^2)$$

GRAY-LEVEL CO-OCCURRENCE MATRIX

The graycomatrix function creates a gray-level cooccurrence matrix (GLCM) by calculating how often a pixel with the intensity (gray-level) value *i* occurs in a specific spatial relationship to a pixel with the value *j*.

- Model requires converting the image into a format capable of being manipulated by the computer.
- The MR images are converted into matrices form by using MATLAB.
- The NN is used to classify the MR images.
- NN classifier presented good accuracy, very small training time, robustness to weight changes, and negligible retraining time.
- Performance based on the result will be analyzed at the end of the development phase.

Results and Discussion

CLASSIFICATION

Conclusion

- In the fig.Classification the inputted image is classified whether normal or abnormal and the histogram group and cell count are validated to show the number of cells.
- In test image the features are extracted to classify the image.
- The same features will be extracted in the data set image
- By these set of features we can classify the input image is normal or abnormal.
- Based on the training the neural network, the detection is achieved.

References

- 1) P.Mohanaiah, P. Sathyanarayana, L. Gurukumar "Image Texture Feature Extraction using GLCM Approach", International Journal of Scientific and Research Publication, Volume 3, Issue 5, May 2013
- 2) Saroja, GAS, Sulochana C.H. "Texture analysis of non uniform images using GLCM", Information and Communication technologies (ICT), 2013 IEEE conference April 2013 pp: (1319-1322)
- 3) Imran S. Bajwa, M. Shahid Naweed, M. Nadim Asif, S. Irfan Hyder "Feature Based Image Classification by using Principal Component Analysis", CIST Journal of Graphics, Vision and Image processing.
- 4) Jyoti Patil and Anant. L. Chaudhari, "Intensity Observation of cervical cytology using DIP", International Journal of Applied Information Systems (IJAIS) ISSN: 2249-0868 Foundation of Computer Science FCS, New York, USA Volume 4– No.4, October 2012
- 5) Schmeelk .S, Schemeelk J "Image authenticity implementing Principal Components Analysis (PCA)", IEEE 2013 Emerging Technologies for a Smarter World (CEWIT) pp: 1-4
- 6) Jianfeng Ren, Yuntao Shen, Songhui Ma, Lei Guo "Applying Multiclass SVMs into Scene Image Classification", Innovations in Applied Artificial Intelligence (2004) pp: 924-934
- 7) D S Guru, Y.H. Sharath, S. Manjunath "Texture Features amd KNN in Classifiaction of Flower Images", s IJCA Special issue on "Recent Trends in Image Processing and Pattern Recognition".

- 8)Imran S. Bajwa, M. Shahid Naweed, M. Nadim Asif, S. Irfan Hyder "Feature Based Image Classification by using Principal Component Analysis", CIST Journal of Graphics, Vision and Image processing.
- 9] Jyoti Patil and Anant. L. Chaudhari, "Intensity Observation of cervical cytology using DIP", International Journal of Applied Information Systems (IJAIS) ISSN: 2249-0868 Foundation of Computer Science FCS, New York, USA Volume 4– No.4, October 2012
- 10] Schmeelk .S, Schemeelk J "Image authenticity implementing Principal Components Analysis (PCA)", IEEE 2013 Emerging Technologies for a Smarter World (CEWIT) pp: 1-4
- 11] Jianfeng Ren, Yuntao Shen, Songhui Ma, Lei Guo "Applying Multiclass SVMs into Scene Image Classification", Innovations in Applied Artificial Intelligence (2004) pp: 924-934
- 12] DS Guru, Y.H. Sharath, S. Manjunath "Texture Features amd KNN in Classifiaction of Flower Images", s IJCA Special issue on "Recent Trends in Image Processing and Pattern Recognition".
- 13] Thyagharajan, K.K., Kalaiarasi, G. A Review on Near-Duplicate Detection of Images using Computer Vision Techniques. Arch Computat Methods Eng (2020).
- 14] K.K. Thyagharajan, G. Kalaiarasi, "Pulse Coupled Neural Network based Near-Duplicate Detection of Images (PCNN NDD)," Advances in Electrical and Computer Engineering, vol.18, no.3, pp.87-96, 2018.
- 15] Kalaiarasi, G., Thyagharajan, K.K. Clustering of near duplicate images using bundled features. Cluster Comput 22, 11997–12007 (2019).

29 April 2020 School of Computing 18

SATHYABAMA

INSTITUTE OF SCIENCE AND TECHNOLOGY

C.S.E / I.T 2016-2020

Deemed to be University

Declared as category 'A' University by MHRD, Govt. of India

Jeppiaar Nagar, Rajiv Gandhi Salai, Chennai – 600 119, Tamil Nadu. India.

SURVEY OF CERVICAL CANCER PREDICTION USING MACHINE LEARNING

Questions & Answers