

Inferência estatística

Testes de hipóteses

Texto baseado no livro:

Estatística Aplicada - Larson / Farber - Editora Pearson - 2010

A Inferência estatística é um conjunto de técnicas que tem por objetivo estudar uma população através de evidências fornecidas por uma amostra.

Note que é a amostra que contém os elementos que podem ser observados e, a partir daí, as quantidades de interesse podem ser medidas e estudadas.

Inferência estatística

Na inferência estatística, os dois principais objetivos são:

- 1. Estimar um parâmetro populacional, que pode ser uma:
- Estimativa pontual.
- Estimativa intervalar (intervalo de confiança).
- 2. Testar uma hipótese ou afirmação sobre um parâmetro populacional.

Geralmente, os parâmetros considerados são: média, desvio padrão, variância, proporção, ...

Testes de hipóteses

Vamos introduzir a idéia dos testes de hipótese por meio de dois exemplos hipotéticos como motivação

Deseja-se estudar a proporção de peixes machos e fêmeas de uma mesma espécie em uma lagoa.

Sem nenhuma informação prévia, supõe-se que a proporção sexual é de 50% (p=0.5).

Em três amostras de 100 peixes, obteve-se:

- Amostra 1: 54 forem fêmeas.
- Amostra 2: 65 forem fêmeas.
- Amostra 3: 62 forem fêmeas.

Existe evidência estatística para se concluir que a proporção de fêmeas é maior que a de machos nessa população?

Exemplo de Motivação

Um fabricante de automóveis anuncia que seu novo carro híbrido faz em média 21 km por litro de combustível. Para testar essa afirmação, três amostras foram colhidas e a média amostral foi:

- Amostra 1: 18 km/l

- Amostra 2: 22 km/

- Amostra 3: 19 km/l

Há evidência estatística para inferir que o consume difere da média anunciada? você pode afimar que o anúncio está incorreto?

Testes de Hipóteses

Hipótese:

É uma afirmativa sobre uma propriedade da população.

Teste de hipótese:

É um procedimento para se testar uma **afirmação** sobre uma propriedade da população.

Permite tomar **decisões** sobre a população com base em informações de dados amostrais.

Fundamentos de testes de hipóteses.

Hipóteses estatísticas.

- Significância e tipos de erro.
- Tipos de testes.
- Estatísticas de teste.
- Nível descritivo (p-valor).

Serão estudados:

- Testes para médias.
- Testes para variâncias.
- Testes para proporções

Procedimentos gerais para um teste de hipótese:

- 1 . Definir a hipótese nula (H_0) e a alternativa (H_a) .
- 2. Definir um nível de significância α , que irá determinar o nível de confiança dado por: $100(1-\alpha)\%$ do teste.
- 3. Definir o tipo de teste, com base na hipótese alternativa.
- 4. Calcular a estatística de teste, com base na distribuição amostral do estimador do parâmetro sob o teste → valor calculado.
- 5. Determinar a região crítica (região de rejeição), com base no nível de significância $\alpha \rightarrow$ valor crítico.
- 6. Concluir o teste (fazer a inferência)

Hipótese nula

é uma hipótese estatística que contém uma afirmação de igualdade, tal como:

$$\leq$$
 , = ou \geq .

Denotada como H_0 e é lida como "H zero" ou "hipótese nula."

Hipótese alternativa

Uma afirmação de desigualdade, tal como:

Deve ser verdadeira se H_0 for falsa.

Denotada como H_a

Para escrever as hipóteses nula e alternativa, traduza a afirmação feita sobre o parâmetro populacional de uma afirmação verbal para uma afirmação matemática e então, escreva seu complemento.

$$H_0$$
: $\mu \le k$ H_0 : $\mu \ge k$ H_0 : $\mu = k$ H_a : $\mu > k$ H_a : $\mu \ne k$

Sem considerarmos qual dos três pares de hipóteses você poderá usar, sempre supomos, inicialmente, que H_0 é verdadeira e examinamos a distribuição amostral com base em sua suposição.

Quando fazemos um teste de hipótese, chegamos a um dos dois possíveis resultados:

Rejeitar H_0 : em favor da hipótese alternativa H_a .

Não rejeitar H_0 : e conclui-se que não existem diferenças.

Atenção: O termo aceitar a hipótese nula H_0 é filosoficamente incorreto, pois não se pode aceitar uma hipótese baseada apenas em evidências amostrais. E também existe um erro associado a todo teste de hipótese, devido à aleatoriedade da coleta da amostra.

Escreva a afirmação como uma sentença matemática. Afirme as hipóteses nula e alternativa e identifique qual representa a afirmação.

Uma universidade afirma que a proporção de seus estudantes que se graduaram em 4 anos é de 82%

Solução:

Escreva a afirmação como uma sentença matemática. Afirme as hipóteses nula e alternativa e identifique qual representa a afirmação.

Um fabricante de torneiras anuncia que o índice médio de fluxo de água de certo tipo de torneira é maior ou igual a 2,5 galões por minuto.

Solução:

 H_0 : $\mu \ge 2.5$ galões por minuto

Condição de desigualdade

 H_a : $\mu < 2.5$ galões por minuto \leftarrow Complemento de H_0

Tipos de erros

Não importa qual das hipóteses represente a afirmação, você começa o teste de hipótese assumindo que a condição na hipótese nula é verdadeira.

Ao final do teste, você toma uma dessas duas decisões:

- Rejeitar a hipótese nula ou:
- Não rejeitar a hipótese nula.

Pelo fato de sua decisão ser baseada em uma amostra em vez de ser baseada na população inteira, há sempre a possibilidade de você tomar a **decisão errada**.

Dois tipos de erros possíveis: erro tipo I e erro tipo II

	Possibilidades para H_0					
Decisão	H_0 é verdadeira	H_0 é falsa				
Não rejeite H_0	Decisão correta	Erro tipo II				
Rejeite H_0	Erro tipo I	Decisão correta				

Um **erro tipo I** ocorre se a hipótese nula for rejeitada quando é verdadeira.

Um **erro tipo II** ocorre se a hipótese nula não for rejeitada quando é falsa.

Exemplo: identificando erros tipo I e II

O limite para contaminação por salmonela por frango é de 20%. Um inspetor de carnes reporta que o frango produzido por uma empresa excede o limite. Você realiza um teste de hipóteses para determinar se a afirmação do inspetor de carne é verdadeira.

Quando irá ocorrer um erro tipo I ou tipo II?

Qual erro é mais sério?

Solução: identificando erros tipo I e II

Se p representa a proporção de frangos contaminados.

Hipóteses: H_0 : $p \le 0.2$ H_a : p > 0.2

O frango está dentro dos limites.

O frango excede os limites.

$$H_0: p \le 0.20$$
 $H_0: p > 0.20$
 0.16 0.18 0.20 0.22 0.24

Hipóteses: H_0 : $p \le 0.2$

 H_a : p > 0.2 (Afirmação)

Um erro tipo I: rejeitar H_0 quando ele for verdadeiro.

A proporção verdadeira de frangos contaminados é menor ou igual a 0,2, mas você decide rejeitar H_0 .

Um erro tipo II: não rejeitar H_0 quando ele for falso.

A proporção verdadeira de frangos contaminados é maior que 0,2 mas você não rejeita H_0 .

Hipóteses: H_0 : $p \le 0.2$

 H_a : p > 0.2 (Afirmação)

Com um erro tipo I, você pode criar um pânico sobre saúde e causar danos às vendas de produtores de frangos que na verdade estão dentro dos limites.

Com um erro tipo II, você pode estar permitindo que frangos que excedam o limite de contaminação sejam vendidos ao consumidor.

Um erro tipo II pode resultar em doenças ou mesmo em mortes.

Nível de significância

É a probabilidade máxima permissível para cometer um erro tipo I.

Ele é denotado por: P(tipo de erro I) = α (alpha).

Configurando-se o nível de significância em um valor pequeno, você está dizendo que quer que a probabilidade de rejeitar uma hipótese nula verdadeira seja pequena.

Os três níveis de significância comumente usados são: $\alpha = 0.10$ $\alpha = 0.05$ $\alpha = 0.01$

 $P(\text{tipo de erro II}) = \beta \text{ (beta)}.$

Testes estatísticos

Depois de afirmar as hipóteses nula e alternativa e especificar o nível de significancia, uma amostra aleatória é tomada da população e testes estatísticos são calculados.

A estatística que é comparada com o parâmetro na hipótese nula é chamada de **estatística do teste.**

Parâmetro	Estatística	Estatística de teste			
populacional	de teste	padronizada			
μ		z (Normal: $n \ge 30$)			
μ	\bar{x}	t (Student: $n < 30$)			
p	\hat{p}	z (Normal)			
σ^2	s^2	χ^2 (Quidrado)			

Valor P (ou valor de probabilidade)

A probabilidade, se a hipótese nula for verdadeira, de obter uma estatística amostral com valores tão extremos ou mais extremos do que aquela determinada a partir dos dados da amostra.

Depende da natureza do teste.

Natureza do teste

Três tipos de teste de hipóteses:

Teste unicaudal à esquerda.

Teste unicaudal à direita.

Teste bicaudal.

O tipo de teste depende da região da distribuição da amostra que favorece uma rejeição da H_0 .

Essa região é indicada pela hipótese alternativa.

A hipótese alternativa H_a contém o símbolo de menos que (<).

Teste unicaudal à direita

A hipótese alternativa H_a contém um símbolo de maior que (>).

Teste bicaudal

A hipótese alternativa H_a contém o símbolo de desigualdade (≠). Cada cauda tem uma área de ½P.

$$H_0$$
: $\mu = k$

$$H_a$$
: $\mu \neq k$

Usando valores P para tomada de decisões

Para usar um valor P para tomar uma decisão em um teste de hipóteses, compare o valor P com α .

Se $P \leq \alpha$, então rejeite H_0 .

Se $P > \alpha$, então falhe em rejeitar H_0 .

Exemplo: interpretando um valor P

O valor P para o teste de hipótese é P = 0,0237. Qual sua decisão se o nível de significância é:

1. 0,05?

Solução:

Porque 0,0237 < 0,05, você deve rejeitar a **hipótese nula**.

2. 0,01?

Solução:

Porque 0,0237 > 0,01, você deve **falhar em rejeitar a hipótese nula**.

Encontrando o valor P

- Depois de determinar a estatística do teste padronizada do teste de hipótese e a área correspondente da estatística do teste, realize um dos passos a seguir para encontrar o valor *P*.
- a. Para o teste unicaudal à esquerda, P = (área na cauda esquerda).
- b. Para o teste unicaudal à direita, P = (área na cauda direita).
- c. Para o teste bicaudal, P = (área na cauda da estatística do teste).

Exemplo: encontrando o valor P

Encontre o valor P para o teste de hipótese unicaudal à esquerda com estatística de teste z = -2,23. Decida se rejeita H_0 se o nível de significância for $\alpha = 0,01$.

Solução:

Para um teste unicaudal à esquerda, P = (Área na cauda à esquerda)

-2,0	0,0228	0,0222	0,0217	0,0212	0,0207	0,0202	0,0197	0,0192	0,0188	0,0183
-2,1	0,0179	0,0174	0,0170	0,0166	0,0162	0,0158	0,0154	0,0150	0,0146	0,0143
-2,2	0,0139	0,0136	0,0132	0,0129	0,0125	0,0122	0,0119	0,0116	0,0113	0,0110
-2,3	0,0107	0,0104	0,0102	0,0099	0,0096	0,0094	0,0091	0,0089	0,0087	0,0084
-2,4	0,0082	0,0080	0,0078	0,0075	0,0073	0,0071	0,0069	0,0068	0,0066	0,0064

Exemplo: encontrando o valor P

Encontre o valor P para o teste de hipótese unicaudal à esquerda com estatística de teste z = -2,23. Decida se rejeita H_0 se o nível de significância for $\alpha = 0,01$.

Solução:

Para um teste unicaudal à esquerda, P = (Área na cauda à esquerda)

$$P = \begin{array}{c} \text{Encontre o valor } P \text{ para o teste de hipótese unicaudal à} \\ P = \begin{array}{c} \text{Encontre o valor } P \text{ para o teste de hipótese unicaudal à} \\ \text{Esquerda com estatistica de teste } z = -2.23. \text{ Decida se rejeita} \\ H_0 \text{ se o nivel de significância for } \alpha = 0.01. \end{array}$$

Porque 0.0129 > 0.01, você deve **falhar em rejeitar** H_0 .

Encontre o valor P para o teste bicaudal com estatística do teste de z = 2.14. Decida se rejeita H0 se o nível de significância for $\alpha = 0.05$.

Solução: Para um teste bicaudal, P = 2 (área na cauda da estatística do teste).

2,0	0,9772	0,9778	0,9783	0,9788	0,9793	0,9798	0,9803	0,9808	0,9812	0,9817
2,1	0,9821	0,9826	0,9830	0,9834	0,9838	0,9842	0,9846	0,9850	0,9854	0,9857
2,2	0,9861	0,9864	0,9868	0,9871	0,9875	0,9878	0,9881	0,9884	0,9887	0,9890

Porque 0.0324 < 0.05, você deve **rejeitar** H_0 .

Teste z para uma média µ

Pode ser usado quando a população é normal e σ é conhecido, ou para qualquer população quando o tamanho da amostra n for pelo menos 30.

A estatística do teste é a média amostral A estatística do teste padronizado é z.

$$Z = \frac{\overline{X} - \mu}{\sigma / \sqrt{n}}$$

$$\frac{\sigma}{\sqrt{n}}$$
 = erro padrão = $\sigma_{\overline{x}}$.

Quando $n \ge 30$, o desvio padrão da amostra s pode ser substituído por σ .

Exemplo: usando valores P para testes de hipóteses

Em um anúncio, uma pizzaria afirma que a média do tempo de entrega é menor que 30 minutos. Uma seleção aleatória de 36 tempos de entrega tem média amostral de 28,5 minutos e desvio padrão de 3,5 minutos. Há evidência suficiente para apoiar a afirmação em α = 0,01? Use um valor P.

Solução: usando valores P para testes de hipóteses

-2,	0,0082	0,0080	0,0078	0,0075	0,0073	0,0071	0,0069	0,0068	0,0066	0,0064
-2,	0,0062	0,0060	0,0059	0,0057	0,0055	0,0054	0,0052	0,0051	0,0049	0,0048
-2,	0,0047	0,0045	0,0044	0,0043	0,0041	0,0040	0,0039	0,0038	0,0037	0,0036

$$H_0$$
: $\mu \geq 30 \text{ min}$

$$H_a$$
: $\mu < 30 \text{ min}$

$$\alpha = 0.01$$

Teste estatístico:

$$z = \frac{\bar{x} - \mu}{\frac{\sigma}{\sqrt{n}}}$$

$$= \frac{28.5 - 30}{\frac{3.5}{\sqrt{36}}} = -2.57$$

Decisão: Rejeite H_0

0,0051 < 0.01

No nível de significância 1% você tem evidência o suficiente para concluir que o tempo médio da entrega é menos de 30 minutos.

Exemplo: usando valores P para testes de hipóteses

Você acha que a informação do investimento médio de franquia mostrada no gráfico é incorreta, então você seleciona aleatoriamente 30 franquias e determina o investimento necessário para cada uma. A média amostral de investimento é \$ 135.000 com desvio padrão de \$30.000. Há evidência suficiente para apoiar sua afirmação em α = 0,05. Use um valor P.

Solução: usando valores P para testes de hipóteses

-1,4	0,0808	0,0793	0,0778	0,0764	0,0749	0,0735	0,0721	0,0708	0,0694	0,0681
-1,5	0,0668	0.0655	0,0643	0,0630	0,0618	0,0606	0,0594	0,0582	0,0571	0,0559
-1,6	0,0548	0,0537	0,0526	0,0516	0,0505	0,0495	0,0485	0,0475	0,0465	0,0455

$$H_0$$
: $\mu = 143.260$

$$H_a$$
: $\mu \neq 143.260$

$$\alpha = 0.05$$

Teste estatístico:

$$z = \frac{\bar{x} - \mu}{\frac{\sigma}{\sqrt{n}}}$$

$$= \frac{135,000 - 143,260}{\frac{30,000}{\sqrt{30}}}$$

$$= -1.51$$

Decisão: 0,1310 > 0,05 Falha em rejeitar H_0

No nível de siginificância 5%, não há evidência suficiente para concluir que a média do investimento em franquias é diferente de \$143.260.

Região de rejeição (ou região crítica):

A amplitude de valores para a qual a hipótese nula não é provável.

Se uma estatística de teste está nessa região, a hipótese nula é rejeitada.

Um valor crítico z_0 separa a região de rejeição da região de não rejeição.

Exemplo: encontrando valores críticos

Encontre o valor crítico e a região de rejeição de um teste bicaudal com α = 0,05.

As regiões de rejeição estão à esquerda de $-z_0$ = -1,96 e à direita de z_0 = 1,96.

Regra da decisão baseada numa região de rejeição

- Para usar a região de rejeição para conduzir um teste de hipótese, calcule a estatística do teste padronizado z. Se a estatística do teste padronizado:
- 1. estiver na região de rejeição, então rejeite H_0 .
- 2. $n\tilde{a}o$ estiver na região de rejeição, então falhe em rejeitar H_0 .

Funcionários de uma grande firma de contabilidade afirmam que a média dos salários dos contadores é menor que a de seu concorrente, que é \$ 45.000. Uma amostra aleatória de 30 dos contadores da firma tem média de salário de \$ 43.500 com desvio padrão de \$ 5.200. Com α = 0,05, teste a afirmação dos funcionários.

 H_0 : $\mu \ge 45.000$

 H_a : $\mu < 45.000$

 $\alpha = 0.05$

Região de rejeição:

Teste estatístico:

$$z = \frac{\bar{x} - \mu}{\frac{\sigma}{\sqrt{n}}} = \frac{43,500 - 45,000}{\frac{5200}{\sqrt{30}}}$$
$$= -1.58$$

Decisão: Falha em rejeitar H_0

Como: 0,0571 > 0,05, No nível de siginificância 5%, não há evidência suficiente para confirmar a afirmação dos funcionários de que a média dos salários é menor que \$45.000.

O departamento de agricultura dos Estados Unidos reporta que o custo médio para se criar um filho até a idade de 2 anos na zona rural é de \$ 10.460. Você acredita que esse valor está incorreto, então você seleciona uma amostra aleatória de 900 crianças (com idade de 2 anos) e descobre que a média dos custos é \$ 10.345 com desvio padrão de \$ 1.540. Com α = 0,05, há evidência suficiente para concluir que a média do custo é diferente de \$ 10.460? (Adaptado de U.S. Department of Agriculture Center for Nutrition Policy and Promotion)

Solução: testes com regiões de rejeição

 H_0 : $\mu = 10.460$

 H_a : $\mu \neq 10.460$

 $\alpha = 0.05$

Região de rejeição:

Teste estatístico:

$$z = \frac{\bar{x} - \mu}{\frac{\sigma}{\sqrt{n}}} = \frac{10,345 - 10,460}{\frac{1540}{\sqrt{900}}}$$
$$= -2.24$$

Decisão: Rejeitar H_0

Como: 2(0,0125) < 0,05, com nível de siginificância 5%, você tem evidência suficiente para concluir que o custo médio de criar uma criança até os 2 anos numa área rural é significativamente diferente de \$10,460.

Seção 7.3

Teste de hipótese para a média (amostras pequenas)

Encontrando valores críticos numa distribuição *t*

- 1. Identifique o nível de significância α .
- 2. Identifique os graus de liberdade gl = n 1.
- 3. Encontre o(s) valore(s) crítico(s) usando a tabela t na fileira com n-1 graus de liberdade. Se o teste de hipótese é:
 - a. Unicaudal à esquerda, use a coluna "Unicaudal, α " com um sinal de negativo;
 - b. Unicaudal à direita, use a coluna "Unicaudal, α " com um sinal de positivo;
 - c. Bicaudal, use a coluna "Bicaudal, α " com um sinal de negativo e um de positivo.

Exemplo: encontrando valores críticos para t

Encontre o valor crítico t_0 para um teste unicaudal à esquerda, dado:

$$\alpha$$
 = 0,05 e n = 21.

Solução:

negativo.

Os graus de liberdade são gl = n - 1 = 21 - 1 = 20. Procure $\alpha = 0.05$ na coluna "Unicaudal, α ". Porque o teste é unicaudal à esquerda, o valor crítico é

Encontre os valores críticos t_0 e - t_0 para um teste bicaudal dado α = 0,05 e n = 26.

Solução:

Os graus de liberdade são

$$g1 = n - 1 = 26 - 1 = 25$$
.

Procure $\alpha = 0.05$ na coluna

"Bicaudal, α ".

Porque o teste é bicaudal, um valor crítico é positivo e o outro é negativo.

Teste-t para uma média μ (n < 30, σ desconhecido)

Teste-t para uma média

Um teste estatístico para uma média populacional.

O teste-t pode ser usado quando a população é normal, ou aproximadamente normal, σ é desconhecido e n < 30.

- O teste estatístico é a média amostral
- O teste estatístico padronizado é t.

$$t = \frac{\bar{x} - \mu}{\frac{S}{\sqrt{n}}}$$

Os graus de liberdade são gl = n - 1.

Um revendedor de carros usados diz que o preço médio de um Honda Pilot LX 2005 é de pelo menos \$ 23.900. Você suspeita que essa afirmação é incorreta e descobre que uma amostra aleatória de 14 veículos similares tem média de preço de \$ 23.000 e desvio padrão de \$ 1.113. Há evidências suficientes para rejeitar a afirmação do revendedor em α = 0,05? Assuma que a população é normalmente distribuída. (*Adaptado de Kelley Blue Book*)

$$H_0$$
: $\mu \geq 23.900

$$H_a$$
: $\mu < 23.900

$$\alpha = 0.05$$

$$gl = 14 - 1 = 13$$

Região de rejeição:

Teste estatístico:

$$t = \frac{\bar{x} - \mu}{\frac{s}{\sqrt{n}}} = \frac{23,000 - 23,900}{\frac{1113}{\sqrt{14}}} \approx -3.026$$

Decisão: Rejeitar H_0

No nível de significância 0,05, há evidência o suficiente para rejeitar a afirmação de que a média de preço de um Honda Pilot LX 2005 é pelo menos \$23.900.

Exemplo: testando µ com uma amostra pequena

Uma indústria afirma que a média do nível do pH na água do rio mais próximo é de 6,8. Você seleciona 19 amostras de água e mede os níveis de pH de cada uma. A média amostral e o desvio padrão são de 6,7 e 0,24, respectivamente. Há evidência suficiente para rejeitar a afirmação da indústria em α = 0,05? Assuma que a população é normalmente distribuída.

$$H_0$$
: $\mu = 6.8$

$$H_a$$
: $\mu \neq 6.8$

$$\alpha = 0.05$$

$$gl = 19 - 1 = 18$$

Região de rejeição:

Teste estatístico:

$$t = \frac{\bar{x} - \mu}{\frac{S}{\sqrt{n}}} = \frac{6.7 - 6.8}{\frac{0.24}{\sqrt{19}}} \approx -1.816$$

Decisão: Falhar em rejeitar H_0

No nível de significância 0,05 não há evidência o bastante para afirmar que a média do pH seja 6.8.

Seção 7.4

Testes de hipótese para proporções

Um teste estatístico para uma proporção populacional. Pode ser usado quando uma distribuição binomial é dada para $np \ge 5$ e $nq \ge 5$.

- O **teste** e**statístico** é a proporção da amostra \hat{p} .
- O teste estatístico padronizado é z.

$$z = \frac{\hat{p} - \mu_{\hat{p}}}{\sigma_{\hat{p}}} = \frac{\hat{p} - p}{\sqrt{\frac{pq}{n}}}$$

Exemplo: teste de hipótese para uma proporção

A Zogby Internacional declara que 45% das pessoas nos Estados Unidos são a favor de tornar a venda do cigarro ilegal dentro dos próximos 10 anos. Você decide testar essa afirmação e entrevista uma amostra de 200 pessoas, dentre as quais, 49% são a favor da lei. Com α = 0,05, há evidência o bastante para apoiar a afirmação?

Solução:

Verifique que $np \ge 5$ e $nq \ge 5$.

$$np = 200(0.45) = 90$$
 e $nq = 200(0.55) = 110$

Solução: teste de hipótese para uma proporção

$$H_a: p \neq 0.45$$

$$\alpha = 0.05$$

Região de rejeição:

Teste estatístico:

$$z = \frac{\hat{p} - p}{\sqrt{\frac{pq}{n}}} = \frac{0.49 - 0.45}{\sqrt{\frac{(0.45)(0.55)}{200}}} \approx 1.14$$

Decisão: Não rejeitar H_0

No nível de significância de 5%, não há evidência o bastante para rejeitar a afirmação que 45% das pessoas nos Estados Unidos são a favor de tornar a venda de cigarros ilegal dentro dos próximos 10 anos.

Exemplo: teste de hipótese para uma proporção

O centro de pesquisas Pew afirma que mais de 55% dos adultos norte-americanos assistem seus noticiários locais regularmente. Você decide testar essa afirmação e entrevista uma amostra de 425 adultos nos Estados Unidos sobre esse assunto. Dos 425 entrevistados, 255 responderam que assistem seus noticiários locais regularmente. Com $\alpha = 0,05$, há evidência o suficiente para apoiar essa afirmação do centro de pesquisas Pew?

Solução:

Verfique que $np \ge 5$ e $nq \ge 5$.

$$np = 425(0.55) \approx 234$$
 e $nq = 425(0.45) \approx 191$

$$H_0$$
: $p \le 0.55$

$$H_a$$
: $p > 0.55$

$$\alpha = 0.05$$

Região de rejeição:

Teste estatístico:

$$z = \frac{\hat{p} - p}{\sqrt{\frac{pq}{n}}} = \frac{\frac{255}{425} - 0.55}{\sqrt{\frac{(0.55)(0.45)}{425}}} = 2.07$$

Decisão: Rejeite H_0

No nível de significância de 5%, há evidência o bastante para dar suporte à afirmação de que mais que 55% dos adultos norteamericanos assistem seus noticiários locais regularmente.

Seção 7.5

Teste de hipótese para variância e desvio padrão

Encontrando valores críticos para o teste χ^2

- 1. Especifique o nível de significância α .
- 2. Determine os graus de liberdade gl = n 1.
- 3. Os valores críticos para a distribuição χ^2 são encontradas na Tabela qui-quadrado. Para encontrar os valores críticos para um:
- a. Teste unicaudal à direita, use o valor que corresponde a gl e α ;
- b. Teste unicaudal à esquerda, use o valor que corresponde a gl e $1-\alpha$;
- c. Teste bicaudal, use os valores que correspondem a gl e ½ α e gl e $1-\frac{1}{2}\alpha$.

Encontrando valores críticos para o teste χ^2

Encontre o valor crítico $\chi 2$ para um teste unicaudal à esquerda quando n=11 e $\alpha=0.01$.

Solução:

Graus de liberdade: n - 1 = 11 - 1 = 10 gl

A área à direita do valor crítico é

$$1 - \alpha = 1 - 0.01 = 0.99$$
.

Da tabela, o valor crítico é: $\chi_0^2 = 2.558$

Encontre o valor crítico χ^2 para um teste bicaudal quando n = 13 e $\alpha = 0.01$.

Solução:

Graus de liberdade: n - 1 = 13 - 1 = 12.

As áreas à direita do valor crítico são:

$$\frac{1}{2}\alpha = 0.005$$

$$1 - \frac{1}{2}\alpha = 0.995$$

Na tabela 6, os valores críticos são $\chi_L^2 = 3.074$ e $\chi_R^2 = 28.299$

O teste quiquadrado

O teste χ^2 para uma variância ou desvio padrão

Um teste estatístico para uma variância populacional ou desvio padrão.

Pode ser usado quando a população for normal.

O teste estatístico é s^2 .

O teste estatístico padronizado é: $\chi^2 = \frac{(n-1)s^2}{\sigma^2}$

segue uma distribuição quiquadrada com graus de liberdade gl = n-1.

Exemplo: usando um teste de hipótese para a variância populacional

Uma empresa de processamento de laticínios declara que a variância da quantidade de gordura no leite integral processado por ela é de não mais que 0,25. Você suspeita que essa afirmação esteja errada e descobre que uma amostra aleatória de 41 contêineres de leite tem uma variância de 0,27. Com α = 0,05, há evidência suficiente para rejeitar a declaração da empresa? Suponha que a população seja normalmente distribuída.

$$H_0$$
: $\sigma^2 \le 0.25$

$$H_a$$
: $\sigma^2 > 0.25$

$$\alpha = 0.05$$

$$gl = 41 - 1 = 40$$

Região de rejeição:

Teste estatístico:

$$\chi^2 = \frac{(n-1)s^2}{\sigma^2} = \frac{(41-1)(0.27)}{0.25} = 43.2$$

Decisão: Não rejeite a H_0

No nível de significância de 5%, não há evidência o bastante para rejeitar a afirmação da empresa de que a variância da quantidade de gordura no leite integral não é maior que 0,25.

Um restaurante afirma que o desvio padrão no tempo de servir é menor que 2,9 minutos. Uma amostra aleatória de 23 tempos de serviço tem um desvio padrão de 2,1 minutos. Com α = 0,10, há evidência o bastante para dar suporte à afirmação do restaurante? Suponha que a população seja normalmente distribuída.

Solução: teste de hipótese para o desvio padrão

 H_0 : $\sigma \ge 2.9$.

 H_a : $\sigma < 2.9$

 $\alpha = 0.10$

gl = 23 - 1 = 22

Região de rejeição:

Teste estatístico:

$$\chi^{2} = \frac{(n-1)s^{2}}{\sigma^{2}} = \frac{(23-1)(2.1)^{2}}{(2.9)^{2}}$$
$$= 11.536$$

Decisão: Rejeite H_0

No nível de significância de 10%, há evidência o bastante para dar suporte à afirmação de que o desvio padrão para o tempo de serviço é menor que 2,9 minutos.