LISTA DE EXERCÍCIOS 20 - CÁLCULO II

01. Encontre o limite. Use a Regra de l'Hôspital quando for apropriado. Se houver um método mais elementar, considere utilizá-lo. Se a Regra de l'Hôspital não se aplicar, explique o porquê.

a)
$$\lim_{x \to -1} \frac{x^2 - 1}{x + 1}$$
 b) $\lim_{x \to 1} \frac{x^3 - 2x^2 + 1}{x^3 - 1}$ c) $\lim_{x \to \frac{1}{2}} \frac{6x^2 + 5x - 4}{4x^2 + 16x - 9}$ d) $\lim_{x \to \frac{\pi^+}{2}} \frac{\cos x}{1 - \sin x}$

e)
$$\lim_{x\to 0} \frac{\sin 4x}{\operatorname{tg} 5x}$$
 f) $\lim_{t\to 0} \frac{e^{2t}-1}{\sin t}$ g) $\lim_{x\to 0} \frac{x^2}{1-\cos x}$ h) $\lim_{\theta\to \frac{\pi}{2}} \frac{1-\sin \theta}{1+\cos 2\theta}$ i) $\lim_{\theta\to \frac{\pi}{2}} \frac{1-\sin \theta}{\cos \cot \theta}$

j)
$$\lim_{x \to +\infty} \frac{\ln x}{\sqrt{x}}$$
 k) $\lim_{x \to 1} \frac{\ln x}{\sin \pi x}$ l) $\lim_{x \to 0^+} \frac{\ln x}{x}$ m) $\lim_{x \to +\infty} \frac{\ln(\ln x)}{x}$ n) $\lim_{t \to 1} \frac{t^8 - 1}{t^5 - 1}$ o) $\lim_{t \to 0} \frac{8^t - 5^t}{t}$

p)
$$\lim_{x\to 0} \frac{\sqrt{1+2x}-\sqrt{1-4x}}{x}$$
 q) $\lim_{u\to +\infty} \frac{e^{\frac{u}{10}}}{u^3}$ r) $\lim_{x\to 0} \frac{e^x-1-x}{x^2}$ s) $\lim_{x\to 0} \frac{{\rm senh}\, x-x}{x^3}$

t)
$$\lim_{x\to 0} \frac{\operatorname{tgh} x}{\operatorname{tg} x}$$
 u) $\lim_{x\to 0} \frac{x-\sin x}{x-\operatorname{tg} x}$ v) $\lim_{x\to +\infty} \frac{(\ln x)^2}{x}$ w) $\lim_{x\to 0} \frac{x3^x}{3^x-1}$ x) $\lim_{x\to 0} \frac{x+\sin x}{x+\cos x}$

y)
$$\lim_{x \to 1} \frac{1 - x + \ln x}{1 + \cos \pi x}$$
 z) $\lim_{x \to 0} \frac{e^x - e^{-x} - 2x}{x - \sin x}$