Universidad Nacional Autónoma de México Facultad de Ciencias

Asignatura: Redes de computadoras Semestre: 2024-1

Profesor: Javier León Cotonieto

Ayudantes: Magdalena Reyes Granados

Itzel Gómez Muñoz Sandra Plata Velázquez

Ejercicios de Subnetting, VLSM y configuración en Cisco Packet Tracer

Equipo 5 Integrantes:

- Almanza Torres José Luis
- Jimenez Reyes Abraham
- Martínez Pardo Esaú

Ejercicios de Subnetting, VLSM y configuración en Cisco Packet Tracer

Realice cada uno de los ejercicios y detalle el procedimiento para obtener el resultado.

1.- Dada la red de clase C 192.168.32.0, se requieren generar 14 subredes totales. ¿Cuál es la máscara de subred que deberá utilizar?

Red de clase C: 192.168.32.0

Subredes totales: 14

$$2^{n} \ge 14 \rightarrow 2^{4} = 16 \rightarrow n = 4$$

Tomamos 4 bits de la parte de host y dejamos 28 bits para la parte de red.

11111111.11111111.1111111.11110000 = 255.255.255.240

En notación CIDR se expresartía: 192.168.32.0/28

2.- Una red de clase B se encuentra dividida en 30 subredes. ¿Qué máscara de subred se deberá utilizar si se pretende tener 2000 host por subred?

Número de host por subred: 2000

$$2^{n} \ge 2000 \rightarrow 2^{11} = 2,048 \rightarrow n = 11$$

Tomamos 11 bits de la parte de host

1111111.11111111.11111000.00000000 = **255.255.248.0**

Clase B con CIDR /21

3.- Una red de clase C 192.168.1.0 tiene una máscara 255.255.255.252, se encuentra dividida en subredes. ¿Cuántas subredes totales y cuántos host por subred tendrá cada una?

Tenemos una red de clase C 192.168.1.0 con una máscara de 255.255.255.252 , si tiene una máscara de 255.255.255.252 quiere decir que su máscara en forma de bits es:

11111111.11111111.11111111.11111100

Tomamos 2 bits de la parte de host

Obtenemos subredes totales

Aplicamos la fórmula 2ⁿ, con n el número de 1's en nuestro último octeto

 \rightarrow 2 ⁶ = 64 subredes totales

Obtenemos host por subred

Aplicamos la fórmula 2ⁿ-2, con n el número de 0's en nuestro último octeto

```
\rightarrow 2<sup>2</sup> - 2 = 4 - 2 = 2 host por subred
```

Por lo tanto tenemos 2 host para cada una de las 64 subredes.

4.- Se tiene una IP 156.233.42.56 con una máscara de subred de 7 bits adicionales a la clase a la que pertenece por default. ¿Cuántos host y cuántas subredes son posibles?

Tenemos una IP 156.233.42.56, es decir, una IP de clase B.

Por default, la clase B tiene una máscara de 255.255.0.0, esto en bits:

11111111.11111111.00000000.00000000

Agregamos los 7 bits adicionales

11111111.11111111.11111110.00000000

Obtenemos subredes totales

Aplicamos la fórmula 2ⁿ, con n el número de 1's adicionales

 \rightarrow 2⁷ = 128 subredes totales

Obtenemos host por subred

Aplicamos la fórmula 2ⁿ-2, con n el número de 0's después de los 1 que agregamos

 \rightarrow 2⁹ - 2 = 512 - 2 = 510 host por subred

Por lo tanto tenemos 510 host para cada una de las 128 subredes.

- 5.- Por el método de VLSM se desea direccionar la red 191.168.0.0 y se tienen las siguientes subredes; a)9000, b)1000, c)2000, d)240, e) 6000, f)500 wan1) 2, wan2) 2, wan3) w4) 2. Obtenga la tabla de direccionamiento considerando el segmento de red, rango de direcciones útiles, máscara, gateway y broadcast de cada subred.
- -Ordenar de mayor a menor la cantidad de host
- a)9000
- e)6000
- c)2000
- b)1000
- f)500
- d)240

wan1)2

wan2)2

wan3)2

wan4)2

a) 9000

-Calculamos host por cada subred

Fórmula: 2^m-2 ≥ Host

 \rightarrow 2^m-2 ≥ 9000

 \rightarrow 2¹⁴ - 2 = 16384 - 2 = 16382

En base a nuestra máscara por default de una red de clase B, dejamos 14 bits para la parte de host:

11111111 11111111 11000000 00000000

En decimal: 255.255.192.0

-Calculamos el salto para la siguiente subred

256 - 192 = 64

e) 6000

-Calculamos host por cada subred

Fórmula: 2^m-2 ≥ Host

 \rightarrow 2^m-2 ≥ 6000

 \rightarrow 2¹³ - 2 = 8192 - 2 = 8190

En base a nuestra máscara por default de una red de clase B, dejamos 13 bits para la parte de host:

11111111 11111111 11100000 00000000

En decimal: 255.255.224.0

-Calculamos el salto para la siguiente subred

256 - 224 = 32

c) 2000

-Calculamos host por cada subred

Fórmula: 2^m-2 ≥ Host

$$\rightarrow 2^m\text{-}2 \ge 2000$$

$$\rightarrow$$
 2¹¹ - 2 = 2048 - 2 = 2046

En base a nuestra máscara por default de una red de clase B, dejamos 11 bits para la parte de host:

11111111 11111111 11111000 000000000

En decimal: 255.255.248.0

-Calculamos el salto para la siguiente subred

b) 1000

-Calculamos host por cada subred

Fórmula: 2^m-2 ≥ Host

$$\rightarrow$$
 2^m-2 ≥ 1000

$$\rightarrow$$
 2¹⁰ - 2 = 1024 - 2 = 1022

En base a nuestra máscara por default de una red de clase B, dejamos 10 bits para la parte de host:

1111111 1111111 11111100 00000000

En decimal: 255.255.252.0

-Calculamos el salto para la siguiente subred

$$256 - 252 = 4$$

f) 500

-Calculamos host por cada subred

Fórmula: 2^m-2 ≥ Host

$$\rightarrow$$
 2^m-2 \geq 500

$$\rightarrow$$
 2⁹ - 2 = 512 - 2 = 510

En base a nuestra máscara por default de una red de clase B, dejamos 9 bits para la parte de host:

11111111 11111111 11111110 00000000

En decimal: 255.255.254.0

-Calculamos el salto para la siguiente subred

256 - 254 = 2

d) 240

-Calculamos host por cada subred

Fórmula: 2^m-2 ≥ Host

 \rightarrow 2^m-2 \geq 500

$$\rightarrow$$
 2⁸ - 2 = 256 - 2 = 254

En base a nuestra máscara por default de una red de clase B, dejamos 8 bits para la parte de host:

11111111 11111111 11111111 00000000

En decimal: 255.255.255.0

-Calculamos el salto para la siguiente subred

256 - 255 = 1

wan1)wan2)wan3)wan4) 2

-Calculamos host por cada subred

Fórmula: 2^m-2 ≥ Host

 $\rightarrow 2^m-2 \ge 2$

$$\rightarrow$$
 2² - 2 = 4 - 2 = 2

En base a nuestra máscara por default de una red de clase C, dejamos 2 bits para la parte de host:

11111111 11111111 11111111 11111100

En decimal: 255.255.252.0

-Calculamos el salto para la siguiente subred

256 - 252 = 4

SUBRED	SEGMENTO DE RED	RANGO DIR. ÚTILES	MÁSCARA	BROADCAST
а	191.168.0.0/18	191.168.0.1- 191.168.63.254	255.255.192.0	191.168.63.255
е	191.168.64.0 /19	191.168.64.1-1 91.168.95.254	255.255.224.0	191.168.95.255
С	191.168.96.0/21	191.168.96.1-1 91.168.103.254	255.255.248.0	191.168.103.25 5
b	191.168.104.0/2 2	191.168.104.1- 191.168.107.25 4	255.255.252.0	191.168.107.25 5
f	191.168.108.0/2 3	191.168.108.1- 191.168.109.25 4	255.255.254.0	191.168.109.25 5
d	191.168.110.0/2 4	191.168.110.1-1 91.168.110.254	255.255.255.0	191.168.110.25 5
wan1	191.168.111.0/3 0	191.168.111.1-1 91.168.111.2	255.255.255.25 2	191.168.111.3
wan2	191.168.111.4/3 0	191.168.111.5-1 91.168.111.6	255.255.255.25 2	191.168.111.7
wan3	191.168.111.8/3 0	191.168.111.9-1 91.168.111.10	255.255.255.25 2	191.168.111.11
wan4	191.168.111.12/ 30	191.168.111.13- 191.168.111.14	255.255.25 2	191.168.111.15

6.- Del ejercicio 2 realizado en clase el cuál es:

Se desea direccionar la red 172.16.0.0 y se tienen las siguientes subredes; a)1000, b)800, c)2000, d)250, e) 600, wan1) 2, wan2) 2, wan3) 2. Obtenga el rango de direcciones útiles de cada subred. Por el método de VLSM.

- Realice el encaminamiento estático y configúrelo en cisco packet tracer.

SUBRED	SEGMENTO DE RED	RANGO DIR. ÚTILES	MÁSCARA	BROADCAST
С	172.16.0.0	172.16.0.1- 172.16.7.254	255.255.248.0	172.16.7.255
А	172.16.8.0	172.16.8.1- 172.16.11.254	255.255.252.0	172.16.11.255
В	172.16.12.0	172.16.12.1- 172.16.15.254	255.255.252.0	172.16.15.255
E	172.16.16.0	172.16.16.1- 172.16.19.254	255.255.252.0	172.16.19.255
D	172.16.20.0	172.16.20.1- 172.16.20.254	255.255.255.0	172.16.20.255
W1	172.16.21.0	172.16.21.1- 172.16.21.2	255.255.255.252	172.16.21.3
W2	172.16.21.4	172.16.21.5- 172.16.21.6	255.255.255.252	172.16.21.7
W3	172.16.21.8	172.16.21.9- 172.16.21.10	255.255.255.252	172.16.21.11

Creamos nuestra topología.

Configuramos las IP, Mascara y Gateway de las pc con los datos que tenemos en nuestra tabla.

Configuramos nuestros routers (Se muestran las configuraciones de las interfaces)

Router0

Router1

Router2

Router3

Enviamos paquetes para ver si tenemos conexión

En el promt de la pc con ping

7.- Del ejercicio 3 realizado en clase el cuál es:

Dada la siguiente dirección de red 122.0.0.0. Obtenga mediante VLSM el rango de direcciones útiles, segmento de red, máscara de subred, gateway y broadcast para

cada subred. Subredes: A) 10,000, B)20,048, C)40,000, D)5,000, E)1200, wan1, wan2, wan3, wan4, wan5, wan6.

- Realice el encaminamiento dinámico RIPv2 y configúrelo en cisco packet tracer.

	1	1	1	
SUBRED	SEGMENTO DE RED	RANGO DIR. ÚTILES	MÁSCARA	BROADCAST
С	122.0.0.0	122.0.0.1- 122.0.255.254	255-255.0.0	122.0.255.255
В	122.1.0.0	122.1.0.1- 122.1.127.254	255.255.128.0	122.1.127.255
А	122.1.128.0	122.1.128.1- 122.1.191.254	255.255.192.0	122.1.191.255
D	122.1.192.0	122.1.192.1- 122.1.223.254	255.255.224.0	122.1.223.255
Е	122.1.224.0	122.1.224.1- 122.1.231.254	255.255.248.0	122.1.231.255
W1	122.1.232.0	122.1.232.1- 122.1.232.2	255.255.255.2 52	122.1.232.3
W2	122.1.232.4	122.1.232.5- 122.1.232.6	255.255.255.2 52	122.1.232.7
W3	122.1.232.8	122.1.232.9- 122.1.232.10	255.255.255.2 52	122.1.232.11
W4	122.1.232.12	122.1.232.13- 122.1.232.14	255.255.255.2 52	122.1.232.15
W5	122.1.232.16	122.1.232.17- 122.1.232.18	255.255.255.2 52	122.1.232.19
W6	122.1.232.20	122.1.232.21- 122.1.232.22	255.255.255.2 52	122.1.232.23

Construimos la topología de acuerdo a la tabla VLSM.

Vemos que haya comunicación

