Homework 10

Tushar Jain, N12753339 CSCI-GA 1170-003 - Fundamental Algorithms

November 10, 2017

Problem 1. The diameter of an undirected tree T=(V,E) on n vertices V (and (n-1) edges E) is the largest of all shortest paths distances in the tree: $D=\max_{x,y\in V}\delta(x,y)$. You will design an O(n) algorithm to compute D and will prove its correctness as follows.

Problem 1.a. Let r be the root of T. Let b is the furthest node from r in T. Show that the diameter path in T either ends or starts at b.

Solution. Let's us assume there is longer path between 2 vertices u and v, neither of which is b. We observe that on the unique path between u and v, there must be some highest (closest to the root) vertex h. There are two possibilities:

- 1. the u-v path intersects the path from the root to b (at some vertex x, not necessarily at the u-v path's highest point h), and
- 2. it doesn't.

We show by method of contradiction that in both cases, the u-v path can be made at least as long by replacing some path segment in it with a path to b.

For case 1: We know that $\delta(r,b) \geq \delta(r,u)$ as b is the farthest most point from root, r. Since the highest point of the intersection of path u-v and r-b would be closer to the root than both b and u. Therefore, $\delta(x,b) \geq \delta(x,u)$. Thus, replacing the u-x part of the u-v with b-x would lead to longer path and would include b as either starting or ending node.

For case 2: Let's assume u to be further away from root, r, among the two nodes u and v. But still $\delta(r,b) \geq \delta(r,u)$ as b is the farthest most point from root, r. And thus, $\delta(r,b) \geq \delta(r,v)$ obviously. Since, the u-v path and root to b path do not intersect. We can find a node x(which would be the root itself in the extreme case) closer to the root which would be on both the v-r and b-r paths. Now, the distance v-x and distance x-b would be additional to the distance of u-v if we consider the path u-b. Here again, b is either at the end or the beginning of the diameter.

Thus, for all the cases, the condition that b is either at the end or the beginning of the diameter is maintained.

Problem 1.b. Assuming part (a), irrespective of whether or not you solved it, design an O(n) algorithm to compute D. For partial credit, give a slower algorithm.

Solution.

We can achieve this by adding an additional attribute, length, to every vertex which keeps track of length from current node/vertex to the farthest vertex 'b'. Then using DFS-VISIT from the b, we get diameter, i.e., the maximum shortest path between 2 vertices in the graph as we proved that diameter either starts/ends on the farthest vertex b.

Pseudo-Code:

```
def dfs_dia(G):
 1
 2
        color = ['white']*(len(G. Vertices))
        p = [None]*(len(G. Vertices))
 3
 4
 5
        time = 0
 6
        for u in range(len(G.V)):
 7
             if color [u] == 'white':
                  dfs_visit_dia(u,G, 0)
 8
9
10
    def dfs_visit_dia(u, G, l):
11
        time += 1
12
        d[u] = time
13
        length[u] = 1
        color[u] = 'grey'
14
        for v in G[u]:
15
             if color[v] = 'white':
16
17
                 p[v] = u
                  dfs_visit_dia(v, G, l+1)
18
        color[u] = 'black'
19
20
        time +=1
21
        f[u] = time
22
23
    def diameter (G):
24
        dfs_dia(G)
25
        v = \operatorname{argmax}(\operatorname{length})
26
        dfs_visit_dia(G, v, 0)
27
        D = \max(length)
28
29
        return D
```

Running Time: Total running time is O(V+E)=O(n) as DFS-Visit takes O(V+E) time and finding max, argmax takes O(V).

Problem 2. An undirected graph is said to be connected if there is a path between any two vertices in the graph. Given a connected undirected graph G = (V, E), where $V = 1, \ldots, n$, give an algorithm that runs in time O(|V| + |E|) and finds a permutation $\pi : [n] \to [n]$ such that the subgraph of G induced by the vertices $(1), \ldots, (i)$ is connected for any $i \le n$. Justify briefly the correctness and running time of your algorithm.

Solution:

This can be achieved by including nodes only after including their ancestors. A topological sorting is one way to solve. Here however, we're given an undirected connected graph and we can achieve the same by just accumulating new encountered nodes using a single DFS-visit

Pseudo-Code:

```
1  def dfs_visit_dia(u, G, A):
2     time += 1
3     d[u] = time
4     A.append(u)
5     color[u] = 'grey'
6     for v in G[u]:
```

Problem 3a. Explain how a vertex u of a directed graph can end up in a depth-first tree containing only u, although u has both incoming and outgoing edges.

Solution:

This can happen because of the order of how we pick nodes to be part of the DFS forest. For instance:

Example: Consider a directed Graph

Vertices: a,b,c Edges: [(a,b),(b,c)] Order of visit: c, b, a

Problem 3b. Assume u is part of some directed cycle in G. Can u still end up all by itself in the depth-first forest of G? Justify your answer.

Hint: Recall the White Path Theorem.

Solution:

Using the white Path Theorem, we know whenever a vertex in a directed cycle u is discovered there will be a white-path to all other vertices in the cycle during a DFS traversal. Thus no vertex in the directed cycle can be in a DFS-tree containing only itself. This is because each vertex in the cycle will be in the same DFS-tree as they are descendants of some other vertex in the loop. This can however happen if a vertex in the graph has a self-loop and no other incoming or outgoing edges. The self-loop can be considered as a directed cycle. As this vertex doesnt have any other incoming or outgoing edges, it will form a DFS tree containing only itself.

Problem 4. Give a counterexample to the conjecture that if a directed graph G contains a path from u to v, then any depth-first search must result in $v.d \le u.f$.

Solution:

 $Counter\hbox{-} example:$

Vertices: a,b,c

Edges: [(a,b),(a,c),(b,a)]

Let's assume we start our DFS at 'a' and then look at 'b' before 'c', here the b.f = 3 and the c.d = 4. In this case we do have a path from 'b' to 'c' however, $b.f \le c.d$ which is a contradiction of the provided conjecture.

Problem 5. Show that we can use a depth-first search of an undirected graph G to identify the connected components of G, and that the depth-first forest contains as many trees as G has connected components. More precisely, show how to modify depth-first search so that it assigns to each vertex v an integer label v.cc

between 1 and k, where k is the number of connected components of G, such that u.cc = v.cc if and only if u and v are in the same connected component. Your solution should also run in time O(|V| + |E|). Briefly justify correctness and running time.

Solution:

Every time we encounter a white node in the original DFS, we update cc count by 1 as we have found a new root of a tree in the forest. Also, in the recursive calls to DFS - VISIT, we simply label the current node being visited with the current cc value. **Pseudo-Code:**

```
1
    \mathbf{def} \ \mathrm{dfs\_cc}(\mathrm{G}):
 2
         color = ['white'] * (len(G. Vertices))
 3
         p = [None] * (len (G. Vertices))
 4
 5
         time = 0
 6
         cc = 0
 7
         for u in range(len(G.V)):
 8
              if color[u] = 'white':
 9
                   cc += 1
                   dfs_visit_cc(u,G, cc)
10
11
12
    def dfs_visit_cc(u, G, cc):
13
         u.cc = cc
14
         . . .
15
16
             Same as normal DFS-VISIT
         . . .
```

Running Time:

The total running time is the same as that of a normal DFS, i.e., O(V + E) running time as only 2 lines which takes constant time have been added into the algorithm

Correctness: In, an undirected graph, all nodes of a connected components can be reached using only DFS-visit. Thus, whenever we start DFS-visit from a new node, we know it's going to be a a tree in DFS forest and thus, we increase the connected component account and keep the count constant for all descendants. \Box

Problem 6. Professor Jeff conjectures the following: let G = (V, E) be a connected, undirected graph with a real-valued weight function w defined on E. Let A be a subset of E that is included in some minimum spanning tree for G, let $(S, V \setminus S)$ be any cut of G that respects A, and let (u, v) be a safe edge for A crossing $(S, V \setminus S)$. Then, (u, v) is a light edge for the cut. Show that the professors conjecture is incorrect by giving a counterexample. Recall that we say a cut $(S, V \setminus S)$ respects a set of edges A if no edge $(u, v) \in A$ has one node in S and S are S and S are S and S and S and S and S and S and S are S and S and S and S are S and S and S and S and S are S and S and S and S and S are S and S and S and S and S are S and S and S are S and S and S are S and S and S and S are S and S and S are S and S and S are S are S and S are S an

Solution:

Counter-example: Vertices: a,b,c,d Edges: [(a,b),(a,c),(c,d)] Weights: [5,1,3]

Let A be the set (a, c). Let S = A. S clearly respects A. Also, since G is a tree, its minimum spanning tree is itself, so A is trivially a subset of a minimum spanning tree. Also, every edge is safe. In particular, (a, b) is safe but not a light edge for the cut. Therefore Professor Jeffs conjecture is false.

Problem 7. Show that if an edge (u, v) is contained in some minimum spanning tree, then it is a light edge crossing some cut of the graph.

Solution:

Method of Contradiction:

If edge (u, v) is a bridge of a minimum spanning tree, and if we make a split at that edge, we would get 2 trees.

If we suppose there's an edge that has weight less than that of (u, v) in this cut, it would imply that we can construct a minimum spanning tree of the whole graph using that edge which would create an MST with weight less than the original. This a contradiction as we assumed the original selection to be a Minimum Spanning Tree on the given graph.

Problem 8. Give a simple example of a connected graph such that the set of edges (u, v) there exists a cut $(S, V \setminus S)$ such that (u, v) is a light edge crossing $(S, V \setminus S)$ does not form a minimum spanning tree.

Solution:

Example: Vertices: a,b,c

Edges: [(a,b),(b,c),(c,a)] Weights: [1,1,1]

As the weights of all the edges are the same, each edge is a light edge for the a cut which it spans. But if we take all edges, we would get a cycle. \Box