Multilevel Ex-Gaussian Model for Response Times

This is a minimal example, using artificial data, of how to model human response times using a multilevel ExGaussian regression model. It is implemented in Jags and R and uses the gamlss and rjags packages. For details about how to see up R to use Jags, see a guide I wrote for a workshop that I teach that requires R to use Jags.

Details

An ExGaussian probability distribution with parameters μ , σ^2 , and τ ;, is a convolution of a Gaussian (or Normal) distribution with mean and variance parameters μ , σ^2 respectively, and an exponential distribution with rate parameter τ . More simply, if x is normally distributed random variable, with parameters μ , σ^2 , and y is an exponentially distributed with parameters τ , then

$$z = x + y$$

is an ExGaussian random variable with parameters μ , σ^2 and τ .

The ExGaussian distribution has been used a model of human reaction times, see [Hea1991]. As such, it could be used to replace the Normal probability distribution that is the standard assumption of linear regression models. What follows is a description of how to do this in a multilevel regression model, where the slope and intercepts for some predictor vary randomly across subjects in an experiment. Also, both μ and τ vary as (linear or transformed linear) functions of the predictor.

In detail, let us assume that our observed data are

$$(z_i, v_i, s_i)$$

for $i \in 1...n$, where z_i is the observed response time on trial i, v_i is the value of the predictor variable on trial i, and $s_i \in 1...K$ is the identity of the subject on trial i.

The main details of this model are as follows:

$$z_i \sim \operatorname{dexgauss}(\mu_i, \tau_i, \sigma^2)$$

 $\mu_i = \alpha_{0[s_i]} + \beta_{0[s_i]} v_i,$
 $\log(\tau_i) = \alpha_{1[s_i]} + \beta_{1[s_i]} v_i,$

where, for $k \in 1...K$, each of α_{0k} , β_{0k} , α_{1k} , β_{1k} are normally distributed random variables. These are random slopes and intercepts for each subject.

[Hea1991] Analysis of response time distributions: An example using the Stroop task. Heathcote, Andrew; Popiel, Stephen J.; Mewhort, D. J. Psychological Bulletin, Vol 109(2), Mar 1991, 340-347.