Report number: Z071C-08414 Page 1 of 49

ZACTA Technology Corporation Yonezawa Testing Center 4149-7 Hachimanpara 5-chome Yonezawa-shi Yamagata 992-1128 Japan Phone: +81-238-28-2880 Fax: +81-238-28-2888

TEST REPORT

Report number: Z071C-08414

Issue Date: March 25, 2009

The device, as described herewith, was tested pursuant to applicable test procedure indicated below and complies with the requirements of;

FCC Part15 Subpart C / IC RSS-210

The test results are traceable to the international or national standards.

Applicant : NIKON-TRIMBLE CO., LTD.

20, Shin-oyoke, Miya, Zao-machi, Katta-gun,

Miyagi 989-0701 Japan

Phone: +81-224-32-2240 Fax: +81-224-32-2242

Equipment under test (EUT) : Bluetooth Module FCC ID : W4LNT0001 : 8170A-NT0001 Model Number : BTunit01 : N/A

EUT Condition : Production

Test procedure : ANSI C63.4-2003 Date of test : January 29, 30, 2009

February 2, 3, 2009

Test place : 3m Semi-anechoic chamber, Shielded room

Test results : Complied

Zacta Technology Corporation certifies that no party to the application is subject to a denial of federal benefits that include FCC benefits, pursuant to Section 5301 of the Anti-Drug Abuse Act of 1988,21U.S.C. 853(a).

The results in this report are applicable only to the samples tested.

This report shall not be re-produced except in full without the written approval of ZACTA Technology Corporation.

This test report must not be used by client to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the federal government.

Tested by:

Hiroaki Suzuki

Authorized by:

Katsumi Sumiyoshi

Manager of Quality Control Division

NVLAP LAB CODE 200306-0

ZACTA Technology Corp. FCC 15C Rev.2.2

FCC ID: W4LNT0001 IC ID: 8170A-NT0001

Table of contents

	Page
1. Summary of Test	5
1.1 Purpose of test	5
1.2 Standards	5
1.3 Summary of test results	5
1.4 Deviation from the standard	5
1.5 Modification to the EUT by laboratory	5
2. Equipment description	6
2.1 General Description of equipment	6
2.2 EUT information	6
2.3 Operating channels and frequencies	7
2.4 Operating mode	8
3. Configuration information.	9
3.1 Peripheral(s) used	9
3.2 Cable(s) information	9
3.3 System configuration	10
4. Test Instruments	11
5. Test Type and Results	12
5.1 20dB Bandwidth / Occupied Bandwidth	12
5.1.1 Test Procedure [FCC 15.247(a)(1), IC RSS-210 A8.1(a)]	12
5.1.2 Measurement Setup	12
5.1.3 Limit of Bandwidth at 20 dB below	12
5.1.4 Measurement Result	12
5.1.5 Trace Data	
5.2 Carrier Frequency Separation	
5.2.1 Test Procedure [FCC 15.247(a)(1), IC RSS-210 A8.1(b)]	
5.2.2 Measurement Setup	
5.2.3 Limit of Carrier Frequency Separation	
5.2.4 Measurement Result	
5.2.5 Trace Data	
5.3 Number of Hopping Frequencies	
5.3.1 Test Procedure [FCC 15.247(a)(1)(iii), IC RSS-210 A8.1(d)]	
5.3.2 Measurement Setup	
5.3.3 Limit of Number of Hopping Frequencies	
5.3.4 Measurement Result	
5.4 Time of Occupancy (Dwell Time)	
5.4.1 Test Procedure [FCC 15.247(a)(1)(iii), IC RSS-210 A8.1(d)]	
5.7.1 105.1 106.000 [1 CC 15.277(a)(1)(11), 1C K55-210 Ao.1(u)]	10

5.4.2 Measurement Setup	18
5.4.3 Limit of Time of Occupancy (Dwell Time)	18
5.4.4 Measurement Result	18
5.4.5 Trace Data	18
5.5 Maximum Peak Output Power - Conducted	
5.5.1 Test Procedure [FCC 15.247(b)(1), 15.31(e), IC RSS-210 A8.4(2)]	
5.5.2 Test Instruments and Measurement Setup	
5.5.3 Limit of Maximum Peak Output Power	22
5.5.4 Measurement Result	22
5.5.5 Trace Data	22
5.6 Band Edge Compliance of RF Conducted Emissions	24
5.6.1 Test Procedure [FCC 15.247 (d), IC RSS-210 A8.5]	24
5.6.2 Test Instruments and Measurement Setup	
5.6.3 Limit of Band-edge Compliance of RF Conducted Emissions	24
5.6.4 Measurement Results of Band-edge	24
5.6.5 Trace Data	24
5.7 Spurious Emissions - Conducted -	26
5.7.1 Test Procedure [FCC 15.247(d), IC RSS-210 A8.5, RSS-Gen 4.9&4.10]	26
5.7.2 Measurement Setup	26
5.7.3 Limit of Spurious Emissions - Conducted -	
5.7.4 Measurement Results of Spurious Emissions - Conducted -	
5.7.5 Trace Data	26
5.8 Spurious Emissions - Radiated - (9kHz - 25GHz)	29
5.8.1 Test Procedure [FCC 15.205/209/247(d), IC RSS-210 A8.5, RSS-Gen 4.9&4.10]	
5.8.2 Measurement Setup	
5.8.3 Limit of Spurious Emission Measurement	
5.8.4 Sample of field strength calculation	30
5.8.5 Measurement Results	30
5.9 Restricted Band of Operation.	37
5.9.1 Test Procedure [FCC 15.205, 15.209, 15.247(d), IC RSS-210 2.2]	
5.9.2 Measurement Setup	37
5.9.3 Limit of Restricted Band of Operation	37
5.9.4 Measurement Result	37
5.9.5 Trace Data	38
5.10 Transmitter Power Spectral Density	43
5.10.1 Test Procedure [FCC 15.247(d), IC RSS-210 A8.2(b)]	43
5.10.2 Measurement Setup	43
5.10.3 Limit of Transmitter Power Spectral Density	43
5.10.4 Measurement Results	43
5.10.5 Trace Data	43
5.11 Antenna requirement	46
6. Uncertainty of measurement	47
7. Laboratory description	48
ZACTA Technology Corp. FCC 15C Rev.2.2	FCC ID: W4LNT0001 IC ID: 8170A-NT0001

	7.1 Location:	48
	7.2 Facility filing information:	48
8. ′	Test photographs	49

Report number: Z071C-08414 Page 5 of 49

1. Summary of Test

1.1 Purpose of test

It is the original test in order to verify conformance to standards listed in section 1.2.

1.2 Standards

CFR47 FCC Part 15 Subpart C, RSS-210

1.3 Summary of test results

Table-A presents the list of the measurement items for Spread Spectrum, Frequency hopping devices under FCC Part 15 Subpart C and Industry Canada RSS-210 Issue 7.

Table-A: List of the measurements

Test Items	Test Items	Condition	Result
Section	Transmit mode [Tx]:	Condition	resure
15.247(a)(1)	Occupied Bandwidth	Conducted	Pass
RSS-210 A8.1(a)	(20dB Bandwidth)		
RSS-Gen 4.6.1	99% Occupied bandwidth	Conducted	Pass
15.247(a)(1) RSS-210 A8.1(b)	Carrier Frequency Separation	Conducted	Pass
15.247(a)(1)(iii) RSS-210 A8.1(d)	Number of Hopping Frequencies	Conducted	Pass
15.247(a)(1)(iii) RSS-210 A8.1(d)	Time of Occupancy (Dwell Time)	Conducted	Pass
15.247(b)(1) 15.31(e) RSS-210 A8.4(2)	Maximum Peak Output Power - Conducted -	Conducted	Pass
15.247(d) RSS-210 A8.5	Band Edge Compliance of RF Conducted Emissions	Conducted	Pass
15.247(d) RSS-210 A8.5 RSS-Gen 4.9, 4.10	Spurious Emissions	Conducted Radiated	Pass
15.247(d) 15.205 15.209 RSS-210 2.2	Restricted Bands of Operation	Radiated	Pass
15.247(e) RSS-210 A8.2(b)	Transmitter power spectral density	Conducted	Pass
15.207 RSS-Gen 7.2.2	AC Power Line Conducted Emissions 150kHz – 30MHz	Conducted	N/A

Note: Conducted Emissions measurement is not applicable because the EUT is powered by dry batteries.

1.4 Deviation from the standard

None

1.5 Modification to the EUT by laboratory

None

Report number: Z071C-08414

Page 6 of 49

2. Equipment description

2.1 General Description of equipment

EUT is the Bluetooth module.

2.2 EUT information

No.	EUT	Company	Model No.	Serial No.	FCC/IC ID	Comment
1	Bluetooth Module	NIKON-TRIMBLE	BTunit01	N/A	FCC ID: W4LNT0001 IC ID: 8170A-NT0001	EUT
2	Total Station	NIKON-TRIMBLE	Nivo ^{5.M}	600001	-	Host device
3	Battery Pack	Tripod Data Systems	2908	N/A	-	Accessory
4	Battery Pack	Tripod Data Systems	2908	N/A	-	Accessory

Oscillator(s)/Crystal(s) : 16MHz

Operating frequency

Power ratings : DC 3.3V

Size : (W) 25 x (D) 27 x (H) 5 mm

Type of equipment : Bluetooth Module
Operating temperature : -20°C to 50°C
Operating mode : Tx mode, Rx mode

Host device

Variation of model(s) : There are four electrically identical host devices as follows;

Model No. Modification(s) From Nivo^{5.M} **Brand name** Note Nivo^{5.M} Nikon with/without BT $Nivo^{3.M}$ Nikon angle precision with/without BT TS635 angle precision, yellow body with BT Trimble FOCUS4 Spectra Precision angle precision, blue body with/without BT

[RF Specification]

Protocol : Bluetooth

Spread method : Frequency hopping spread spectrum (FHSS)

Communication method : TDD

Frequency Range : 2402MHz - 2480MHz

Number of FR Channels : 79 Channels

Modulation Method/Data rate : GFSK (1Mbps), π/4-DQPSK (2Mbps), 8-DPSK (3Mbps)

Nominal Bit Rates 1600hops/s Channel Separation 1MHz 5.105mW Output power Antenna (Rx and Tx) Chip antenna Antenna gain 2dBi RF type Transceiver Intended use Data transmission RF emission type designator 880KF1D (GFSK) 1M17G1D (8-DPSK)

2.3 Operating channels and frequencies

Channel	Frequency [MHz]	Channel	Frequency [MHz]	Channel	Frequency [MHz]
0	2402	27	2429	54	2456
1	2403	28	2430	55	2457
2	2404	29	2431	56	2458
3	2405	30	2432	57	2459
4	2406	31	2433	58	2460
5	2407	32	2434	59	2461
6	2408	33	2435	60	2462
7	2409	34	2436	61	2463
8	2410	35	2437	62	2464
9	2411	36	2438	63	2465
10	2412	37	2439	64	2466
11	2413	38	2440	65	2467
12	2414	39	2441	66	2468
13	2415	40	2442	67	2469
14	2416	41	2443	68	2470
15	2417	42	2444	69	2471
16	2418	43	2445	70	2472
17	2419	44	2446	71	2473
18	2420	45	2447	72	2474
19	2421	46	2448	73	2475
20	2422	47	2449	74	2476
21	2423	48	2450	75	2477
22	2424	49	2451	76	2478
23	2425	50	2452	77	2479
24	2426	51	2453	78	2480
25	2427	52	2454		
26	2428	53	2455		

Report number: Z071C-08414

Page 8 of 49

2.4 Operating mode

[Tx mode]

- i) Bluetooth test program set up
- ii) Select a test mode

Operating frequency: No hopping (CH 0, 39, 78), Hopping

Packet type: DH1, DH5, 3-DH5

iii) Start test mode

Note: Tests were performed in DH5 and 3-DH5 which have the maximum bandwidth.

【Standby / Rx mode 】

- i) Bluetooth test program set up
- ii) Select a test mode

Write Receive only

Operating frequency: No hopping (CH 0, 39, 78)

iii) Start test mode

Report number: Z071C-08414 Page 9 of 49

3. Configuration information

3.1 Peripheral(s) used

No.	Equipment	Company	Model No.	Serial No.	FCC ID/DoC	Comment
5	Personal Computer	hp	Compaq nx6320	CNU7071H4D	DoC	-
6	AC adapter for PC	hp	PA-1650-02HC	7108054501	-	-
7	Test board	SMK	BE005	N/A	-	-
8	AC adapter	UNIFIVE	US300520	707-0288125	-	-

3.2 Cable(s) information

No.	Cable	Length [m]	Shield	Connector	Comment
a	I/O cable	1.8	No	Plastic	-
b	DC cable	1.8	No	Plastic	-
c	Serial cable	3.0	Yes	Metal	-
d	DC cable for PC AC adapter	1.8	No	Plastic	-
e	AC Power cord for PC AC adapter	1.7	No	Plastic	-

3.3 System configuration

Note 1: Numbers assigned to equipment or cables on this diagram are corresponded to the list in "2.1 EUT information", "3.1 Peripheral(s) used and "3.2 Cable(s) information".

4. Test Instruments

List of Measuring Instruments

List of Measuring Instruments								
Equipment	Company	Model No.	Serial No.	Cal. due	Cal. date			
Spectrum Analyzer (3Hz – 42.98GHz)	Agilent Technologies	E4447A	MY46180188	Feb. 2009	Feb. 12, 2008			
Preamplifier (100kHz-1.2GHz)	ANRITSU	MH648A	M96057	Jun. 2009	Jun. 14, 2008			
Preamplifier (1GHz-26.5GHz)	Agilent Technologies	8449B	3008A01008	Dec. 2009	Dec. 11, 2007			
EMI Receiver	ROHDE&SCHWARZ	ESCI	100764	May. 2009	May. 30, 2008			
Loop antenna	ROHDE&SCHWARZ	HFH2-Z2	892246/010	Feb.2009	Feb. 12, 2008			
Coaxial cable	N/A	RG213	N/A	Feb. 2009	Feb. 14, 2008			
TRILOG Antenna	Schwarzbeck	VULB9160	9160-3218	Apr. 2009	Apr. 23, 2008			
Attenuator(6dB)	TDC	TAT-43B-06	N/A	Aug. 2009	Aug. 8, 2008			
Double Ridged Guide Antenna	EMCO	3115	5205	Sep. 2009	Sep. 26, 2007			
M:	STORM	MFR-57500 15m	90-660-591	Dec. 2009	Dec. 11, 2007			
Microwave cable	SUHNER	SUCOFLEX 104 1m	199119/4	Dec. 2009	Dec. 11, 2007			
		5D-2W/10m	#AEC3R-001	Feb. 2010	Feb. 5, 2009			
Coaxial cable	Fujikura	5D-2W/1.5m	#AEC3RC-001	Feb. 2010	Feb. 5, 2009			
Coaxiai Cable	1 ujikura	5D-2W/1m	#AEC3RC-002	Feb. 2010	Feb. 5, 2009			
		SUCOFLEX_106/7m	#AEC3R-003	Feb. 2010	Feb. 5, 2009			
Microwave cable	SUHNER	SUCOFLEX104	199511/4	Nov. 2009	Nov. 12, 2008			
Attenuator	Weinschel	56-10	J4180	Nov. 2009	Nov. 12, 2008			
PC	DELL	DIMENSION E521	85465BX	N/A	N/A			
PC	IBM	6892-44J	97-42089	N/A	N/A			
Software	TOYO Corporation	EP5/RE-AJ	0611193/V3.4	N/A	N/A			
Site attenuation	ZACTA Technology	3m Semi-anechoic chamber	5192Z	Apr. 2009	Apr. 26, 2008			

^{*}The calibrations of the above equipment are traceable to NIST or equivalent standards of the reference organizations.

Report number: Z071C-08414 Page 12 of 49

5. Test Type and Results

5.1 20dB Bandwidth / Occupied Bandwidth

5.1.1 Test Procedure [FCC 15.247(a)(1), IC RSS-210 A8.1(a)]

The bandwidth at 20 dB down from the highest inband spectral density is measured with a spectrum analyzer connected to the antenna terminal, while EUT is operating in transmission mode at the appropriate center frequency.

The spectrum analyzer is set to:

- RBW=30kHz, VBW=300kHz, Span=3MHz, Sweep=auto

The EUT was set to operate with following conditions.

- No hopping [ch 0 (low), ch 39 (mid) and ch 78 (high)]

The test mode of EUT is as follows.

- Tx mode

5.1.2 Measurement Setup

5.1.3 Limit of Bandwidth at 20 dB below

None

5.1.4 Measurement Result

Channel	Packet type	Center Frequency [MHz]	20dB Bandwidth [MHz]	Occupied Bandwidth [MHz]
0	DH5	2402.0	0.945	0.879
U	3-DH5	2402.0	1.265	1.173
39	DH5	2441.0	0.947	0.880
39	3-DH5	2441.0	1.266	1.170
78	DH5	2480.0	0.949	0.880
/8	3-DH5	2480.0	1.250	1.173

5.1.5 Trace Data

Test Personnel:		Date	:	Jan. 29, 2009
Tooted by:	Hiroaki Cumuki	Temperature	:	21.0 [°C]
Tested by:	Hiroaki Suzuki	Humidity	:	52.5 [%]
		Test place	•	Shielded room

20dB Bandwidth/Occupied Bandwidth

Channel Low: 2402.0MHz [Channel 0]

DH5

3-DH5

Channel Middle: 2441.0MHz [Channel 39]

DH5

3-DH5

Channel High: 2480.0MHz [Channel 78]

DH5

3-DH5

Report number: Z071C-08414 Page 14 of 49

5.2 Carrier Frequency Separation

5.2.1 Test Procedure [FCC 15.247(a)(1), IC RSS-210 A8.1(b)]

The adjacent channel interval is measured with a spectrum analyzer connected to the antenna terminal, while EUT is operating in transmission mode at the appropriate center frequency.

The spectrum analyzer is set to:

- RBW=30kHz, VBW=30kHz, Span=3MHz, Sweep=auto

The EUT was set to operate with following conditions.

- Hopping [ch 39 (mid)]

The test mode of EUT is as follows.

- Tx mode

5.2.2 Measurement Setup

5.2.3 Limit of Carrier Frequency Separation

Systems shall have hopping channel carrier frequencies separated by a minimum of; 25kHz or two-thirds of the 20dB bandwidth of the hopping channel, whichever is greater.

5.2.4 Measurement Result

Packet type	Channel Separation [MHz]	Limit [MHz]	PASS / FAIL
DH5	1.000	>two-thirds of the 20dB Bandwidth =631kHz	PASS
3-DH5	1.005	>two-thirds of the 20dB Bandwidth =844kHz	PASS

5.2.5 Trace Data

Test Personnel:		Date	:	Jan. 29, 2009
Tooted by:	Hiroaki Suzuki	Temperature	:	21.0 [°C]
Tested by:	HIIOAKI SUZUKI	Humidity	:	52.5 [%]
		Test place	:	Shielded room

Carrier Frequency Separation

Channel Middle: 2441.0MHz [Channel 39]

DH5

3-DH5

Report number: Z071C-08414 Page 16 of 49

5.3 Number of Hopping Frequencies

5.3.1 Test Procedure [FCC 15.247(a)(1)(iii), IC RSS-210 A8.1(d)]

The number of hopping channels is measured with a spectrum analyzer connected to the antenna terminal, while EUT is operating in transmission mode at the appropriate center frequency.

The spectrum analyzer is set to:

- RBW=100kHz, VBW=300kHz, Span=Arbitrary setting, Sweep=auto

The EUT was set to operate with following conditions.

- Hopping

The test mode of EUT is as follows.

- Tx mode

5.3.2 Measurement Setup

5.3.3 Limit of Number of Hopping Frequencies

Shall have more than 15 channels.

5.3.4 Measurement Result

Number of channels	Limit	PASS / FAIL			
79	15 channel	PASS			

5.3.5 Trace Data

Test Personnel:		Date	:	Jan. 29, 2009
Tested by:	Hiroaki Suzuki	Temperature	:	21.0 [°C]
rested by.	Tilloaki Suzuki	Humidity	:	52.5 [%]
		Test place	:	Shielded room

Number of Hopping Frequencies

Low

High

Report number: Z071C-08414 Page 18 of 49

5.4 Time of Occupancy (Dwell Time)

5.4.1 Test Procedure [FCC 15.247(a)(1)(iii), IC RSS-210 A8.1(d)]

The time occupancy of hopping channel is measured with a spectrum analyzer connected to the antenna terminal, while EUT is operating in transmission mode at the appropriate center frequency.

The spectrum analyzer is set to:

- RBW=1MHz, VBW=1MHz, Span=0MHz, Sweep=5ms, 10ms

The EUT was set to operate with following conditions.

- Hopping [ch 0 (low), ch 39 (mid) and ch 78 (high)]

The test mode of EUT is as follows.

- Tx mode

5.4.2 Measurement Setup

5.4.3 Limit of Time of Occupancy (Dwell Time)

The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed.

5.4.4 Measurement Result

Channel	Frequency [MHz]	Packet type	Dwell Time [ms]	Occupancy time of 31.6 seconds [s]	Limit	PASS / FAIL
		DH1	0.383	0.123		PASS
0	2402.0	DH5	2.883	0.308		PASS
		3-DH5	2.933	0.313		PASS
		DH1	0.383	0.123		PASS
39	2441.0	DH5	2.900	0.309	< 0.4 s	PASS
		3-DH5	2.900	0.309		PASS
		DH1	0.383	0.123		PASS
78	2480.0	DH5	2.900	0.309		PASS
		3-DH5	2.900	0.309		PASS

The hopping rates of Bluetooth devices change with different types of payload. The longer the payload is, the slower the hopping rate. The hopping rate scenario is defined in Bluetooth core specification.

Calculation:

Occupancy time of 31.6 seconds * = time domain slot length x hop rate / number of hopper channel / $79 \times 31.6 = EX$.) For Ch. 0, DH1 = 0.383 ms x $1600 / 2 / 79 \times 31.6 = 123.0 = 123$

5.4.5 Trace Data

		Date	:	Jan. 29, 2009
Test Personnel:		Temperature	:	21.0 [°C]
Tooted by:	Hiroaki Suzuki	Humidity	:	52.5 [%]
Tested by:	HIIOAKI SUZUKI	Test place	:	Shielded room

Dwell Time

Channel Low: 2402.0MHz [Channel 0] DH1

Channel Low: 2402.0MHz [Channel 0] DH5

Channel Low: 2402.0MHz [Channel 0] 3-DH5

Dwell Time

Channel Middle: 2441.0MHz [Channel 39] DH1

Channel Middle: 2441.0MHz [Channel 39] DH5

Channel Middle: 2441.0MHz [Channel 39] 3-DH5

Dwell Time

Channel High: 2480.0MHz [Channel 78] DH1

Channel High: 2480.0MHz [Channel 78] DH5

Channel High: 2480.0MHz [Channel 78] 3-DH5

Report number: Z071C-08414 Page 22 of 49

5.5 Maximum Peak Output Power - Conducted -

5.5.1 Test Procedure [FCC 15.247(b)(1), 15.31(e), IC RSS-210 A8.4(2)]

The peak power is measured with a spectrum analyzer connected to the antenna terminal, while EUT is operating in transmission mode at the appropriate center frequency.

The spectrum analyzer is set to:

- RBW=1MHz, VBW=3MHz, Span=100MHz, Sweep=auto

The EUT was set to operate with following conditions.

- No hopping [ch 0 (low), ch 39 (mid) and ch 78 (high)]

The test mode of EUT is as follows.

- Tx mode in Battery operation. (Full charge)

5.5.2 Test Instruments and Measurement Setup

5.5.3 Limit of Maximum Peak Output Power

0.125 watt or less.

5.5.4 Measurement Result

[Test mode in Battery operation (Full charge) DC 3.8V]

Channel	Center Frequency [MHz]	Packet type	Factor [dB]	Reading [dBm]	Antenna Gain of EUT [dBi]	Level [dBm]	Peak Output Power [mW]	Limit [mW]	PASS /FAIL
0	2402.0	DH5	10.36	-6.75	2.0	5.61	3.639	125	PASS
0	2402.0	3-DH5	10.36	-5.28	2.0	7.08	5.105	125	PASS
39	2441.0	DH5	10.36	-7.19	2.0	5.17	3.289	125	PASS
39	2441.0	3-DH5	10.36	-5.89	2.0	6.47	4.436	125	PASS
70	2400.0	DH5	10.36	-8.20	2.0	4.16	2.606	125	PASS
78	2480.0	3-DH5	10.36	-7.08	2.0	5.28	3.373	125	PASS

Calculation:

Reading (dBm) + Factor (dB) + Antenna Gain of EUT (dBi) = Level (dBm) 10logP = Level (dBm) P = 10^{(Maximum Peak Output Power (dBm)/10)} (mW)

5.5.5 Trace Data

Test Personnel: : Jan. 30, 2009 Date Temperature : 18.0 [°C] Tested by: Hiroaki Suzuki [%] Humidity 46.0 Test place : Shielded room

Maximum Peak Output Power - Conducted - [Full charge]

Channel Low: 2402.0MHz [Channel 0]

DH5 3-DH5

Channel Middle: 2441.0MHz [Channel 39]

DH5

Channel High: 2480.0MHz [Channel 78]

DH5

3-DH5

Report number: Z071C-08414 Page 24 of 49

5.6 Band Edge Compliance of RF Conducted Emissions

5.6.1 Test Procedure [FCC 15.247 (d), IC RSS-210 A8.5]

The Band Edge is measured with a spectrum analyzer connected to the antenna terminal, while EUT is operating in transmission mode at the appropriate center frequency.

The spectrum analyzer is set to:

- RBW=100kHz, VBW=100kHz, Span=15MHz, Sweep=Auto

The EUT was set to operate with following conditions.

- No hopping [ch 0 (low) and ch 78 (high)]

The test mode of EUT is as follows.

- Tx mode

5.6.2 Test Instruments and Measurement Setup

5.6.3 Limit of Band-edge Compliance of RF Conducted Emissions

In any 100KHz bandwidth outside the frequency band the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the 100KHz bandwidth within the band that contains the highest level of the desired power.

5.6.4 Measurement Results of Band-edge

Channel	Frequency [MHz]	Packet type	RF power Level [dBm]	Band-edge Frequency [MHz]	Band-edge Level [dBm]	Difference Level [dBm]	Limit [dBm]	PASS / FAIL
0	2402.0	DH5	-7.06	2400.50	-45.20	38.14		PASS
0	2402.0	3-DH5	-8.20	2400.52	-44.38	36.18	At least 20dB below	PASS
70	2480.0	DH5	-8.41	2481.85	-49.98	41.57	from peak of RF.	PASS
78	2480.0	3-DH5	-10.41	2482.38	-50.78	40.37		PASS

5.6.5 Trace Data

Test Personnel:		Date	:	Jan. 30, 2009
Tagtad by:	Hiroaki Suzuki	Temperature	:	18.0 [°C]
Tested by:	Tilloaki Suzuki	Humidity	:	46.0 [%]
		Test place	:	Shielded room

Band Edge Compliance of RF Conducted Emissions

Channel Low: 2402.0MHz [Channel 0]

DH5 3-DH5

Channel High: 2480.0MHz [Channel 78]

DH5

Report number: Z071C-08414 Page 26 of 49

5.7 Spurious Emissions - Conducted -

5.7.1 Test Procedure [FCC 15.247(d), IC RSS-210 A8.5, RSS-Gen 4.9&4.10]

The spurious emissions (Conducted) are measured with a spectrum analyzer connected to the antenna terminal, while EUT is operating in transmission mode at the appropriate center frequency.

The spectrum analyzer is set to:

- RBW=100kHz, VBW=300kHz, Span=Arbitrary setting, Sweep=Auto

The EUT was set to operate with following conditions.

- No hopping [ch 0 (low), ch 39 (mid) and ch 78 (high)]

The test mode of EUT is as follows.

- Tx mode

5.7.2 Measurement Setup

5.7.3 Limit of Spurious Emissions - Conducted -

In any 100KHz bandwidth outside the frequency band the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the 100KHz bandwidth within the band that contains the highest level of the desired power.

5.7.4 Measurement Results of Spurious Emissions - Conducted -

Channel	Frequency [MHz]	Limit [dBm]	Results Chart	PASS / FAIL
0	2402.0	At least 20dB below from peak of RF.	See the Trace Data	PASS
39	2441.0	At least 20dB below from peak of RF.	See the Trace Data	PASS
78	2480.0	At least 20dB below from peak of RF.	See the Trace Data	PASS

5.7.5 Trace Data

Test Personnel:		Date	:	Jan. 30, 2009
Tooted by:	Hirooki Cuzuki	Temperature	:	18.0 [°C]
Tested by:	Hiroaki Suzuki	Humidity	:	46.0 [%]
		Test place	:	Shielded room

Spurious Emissions - Conducted -

DH5

Channel Low: 2402.0MHz [Channel 0]

30MHz-3GHz

3GHz-26.5GHz

Channel Middle: 2441.0MHz [Channel 39]

30MHz-3GHz

3GHz-26.5GHz

Channel High: 2480.0MHz [Channel 78]

30MHz-3GHz

3GHz-26.5GHz

3-DH5
Channel Low: 2402 0MHz [Cha

Channel Low: 2402.0MHz [Channel 0] 30MHz-3GHz

Channel Middle: 2441.0MHz [Channel 39]

30MHz-3GHz

3GHz-26.5GHz

3GHz-26.5GHz

Channel High: 2480.0MHz [Channel 78]

30MHz-3GHz

3GHz-26.5GHz

5.8 Spurious Emissions - Radiated - (9kHz - 25GHz)

5.8.1 Test Procedure [FCC 15.205/209/247(d), IC RSS-210 A8.5, RSS-Gen 4.9&4.10]

Radiated emission measurements are performed at 3m distance with the broadband antenna (Loop antenna, TRILOG antenna, and double-ridged guide antenna). The antenna is positioned both the horizontal and vertical planes of polarization and height is varied 1 to 4 meters and stopped at height producing the maximum emission. As for the Loop antenna, it is positioned with its plane vertical, and the center of the Loop is 1.0meter above the ground plane. Frequency Range: 9kHz –1GHz is scanned and investigated with the test receiver, and above 1GHz, with the spectrum analyzer. The detector function of the test receiver is set to CISPR Quasi-peak mode and the bandwidth is set to 120kHz. Peak and average detectors are used for measurements above 1GHz. The bandwidth of the spectrum analyzer is set to 1MHz.

The EUT and support equipment are placed on a 1meter x 2meter surface, 0.8meter height FRP table. The turntable is rotated by 360 degrees and stopped at azimuth of producing the maximum emission.

Interconnecting cables, which hanging closer than 40cm to the horizontal metal ground plane are bundled its excess in center. The highest fundamental frequency generated in the EUT is 2402-2480MHz, therefore the frequency was investigated up to 25GHz, as specified in CFR section 15.33, and at least six highest emissions are reported. The test results represent the worst-case emission for each emission with manipulating the EUT, support equipment, interconnecting cables and varying the mode of operation.

Sufficient time for the EUT, support equipment, and test equipment are allowed in order for them to warm up to their normal operating condition.

5.8.2 Measurement Setup

Test configuration for Spurious emissions

Report number: Z071C-08414 Page 30 of 49

5.8.3 Limit of Spurious Emission Measurement

Frequency	Field Str	ength		
[MHz]	[uV/m]	[dBuV/m]		
0.009 - 0.490	2400 / F [kHz]	20logE [uV/m]		
0.490 - 1.705	24000 / F [kHz]	20logE [uV/m]		
1.705-30	30	29.5		
30 – 88	100	40.0		
88 – 216	150	43.5		
216 – 960	200	46.0		
Above 960	500	54.0		

NOTE:

- 1. The lower limit shall apply at the transition frequencies.
- 2. Emission level $[dBuV/m] = 20 \log Emission [uV/m]$
- 3. As shown in 15.35(b), for frequencies above 1000MHz, the field strength limits are based on average detector, however, the peak field strength of any emission shall not exceed the maximum permitted average limits, specified above by more than 20dB under any condition of modulation.

5.8.4 Sample of field strength calculation

Spurious Emission $dB\mu V/m = 20log_{10} (\mu V/m)$

Limit @147.6MHz = $150\mu V/m = 43.5dB\mu V/m$ Reading = $42.8dB\mu V$

Ant. Factor + Cable Loss - Amp. Gain = 14.2 + 3.0 - 30.0 = -12.8dB Total = 42.8 - 12.8 = 30.0dB μ V/m

Margin = 43.5 - 30.0 = 13.5dB

5.8.5 Measurement Results

 Test Personnel:
 Date
 : Feb. 2, 2009

 Tested by:
 Hiroaki Suzuki
 Temperature
 : 20.1 [°C]

 Humidity
 : 23.9 [%]

Test place : 3m Semi-anechoic chamber

 Test Personnel:
 Date
 : Feb. 3, 2009

 Tested by:
 Hiroaki Suzuki
 Temperature Humidity
 : 21.5 [°C]

 Humidity
 : 26.9 [%]

Test place : 3m Semi-anechoic chamber

Spurious Emissions - Radiated -

DH5

Tx Channel Low: 2402.0MHz [Channel 0]

No.	Frequer	псу	(P) I	Reading	c. f	Rest	ılt	Limit	Margi	n Heig	ght	Angle
				QP		QI	•		QP			
	[MHz]		[6	$B(\mu V)$	[dB(1/n	n)] [dB(μ	V/m) [c	$B(\mu V/m)$	[dB]	[cr	n]	[°]
1	87. 1	120	V	43.5	-14. 4	1 29	9. 1	40.0	10.9	100	0.0	242.0
2	114.7	710	V	42.4	-10.6	3	1.8	43.5	11.7	100	0.0	143.0
3	353.8	390	V	44.6	-5. 8	5 39	9. 1	46.0	6.9	144	4. 0	113.0
4	472.4	180	V	40.3	-2.6	3	7. 7	46.0	8.3		0.0	44.0
5	796. (060	V	34.1	3. 6	3	7. 7	46.0	8.3	100	0.0	204.0
No.	Frequency	(P)	Reading	Reading	c. f	Result	Result	Limit	Margin	Margin	Height	Angle
			AV	PK		AV	PK		AV	PK		
	[MHz]		$[dB(\mu V)]$	$[dB(\mu V)]$	[dB(1/m)]	$[dB(\mu V/m)]$	$[dB(\mu V/m)]$		[dB]	[dB]	[cm]	[°]
1	4804.000	Н		58. 3	5.8		64. 1	74.0		9. 9	100.0	268.0
2	4803.980	Н	37.8		5.8	43.6		54.0	10.4		100.0	256.0
3	4804.020	V		58. 3	5.8		64. 1	74.0		9. 9	100.0	262.0
4	4804.020	V	38. 1		5.8	43.9		54.0	10. 1		100.0	262.0
5	7206, 000	V		45. 9	11.2		57.1	74.0		16. 9	100.0	265.0
6	7206.000	V	31.6		11.2	42.8		54.0	11.2		100.0	265.0

Tx Channel Middle: 2441.0MHz [Channel 39]

No.	Frequency	(P)	Reading	c. f	Result	Limit	Margin	Height	Angle
	[MHz]		QP [dB(μV)]	[dB(1/m)]	QP [dB(μV/m)]	[dB(µV/m)]	QP [dB]	[cm]	r° 1
1	87. 110	V	43. 2	-14.4	28. 8	40.0	11. 2	100.0	243.0
2	113.440	V	41.7	-10.7	31.0	43.5	12.5	100.0	309.0
3	353.890	V	44. 1	-5.5	38.6	46.0	7.4	150.0	95.0
4	472.500	V	40.6	-2.6	38.0	46.0	8.0	100.0	46.0
5	796. 140	V	35.4	3.7	39. 1	46.0	6.9	100.0	212.0

No.	Frequency	(P)	Keading	Keading	c. f	Kesult	Kesult	L1m1t	Margin	Margin	He1ght	Angle
			AV	PK		AV	PK		AV	PK		
	[MHz]		$[dB(\mu V)]$	$[dB(\mu V)]$	[dB(1/m)]	$[dB(\mu V/m)]$	$[dB(\mu V/m)]$	$[dB(\mu V/m)]$	[dB]	[dB]	[cm]	[°]
1	4882.020	Н		60.4	5.8		66. 2	74.0		7.8	160.0	255.0
2	4882.020	Н	39. 2		5.8	45.0		54.0	9.0		160.0	255.0
3	4881.980	V		59. 9	5.8		65.7	74.0		8.3	100.0	280.0
4	4881.930	V	39.0		5.8	44.8		54.0	9. 2		100.0	280.0
5	7323.000	V		46.3	11.6		57.9	74.0		16. 1	100.0	269.0
6	7323.000	V	31.8		11.6	43. 4		54.0	10.6		100.0	269.0

Tx Channel High: 2480.0MHz [Channel 78]

No.	Freque	ncy	(P) I	Reading	c. f	Res		Limit	Margi	n Hei	ght	Angle
			_	QP		Q			_QP_	_	_	
	[MHz]		[($dB(\mu V)$	[dB(1/r)]	n)] [dB(μ	ιV/m)] [($dB(\mu V/m)$	[dB]	[c	m	[°]
1	85.8	860	V	42.4	-14.3	3 2	8. 1	40.0	11.9	10	0.0	221.0
2	110.9	930	V	42.3	-10.9	9 3	1.4	43.5	12. 1	10	0.0	143.0
3	353.8	890	V	43.1	-5.	5 3	7. 6	46.0	8.4	14	1.0	92.0
4	472.	500	V	40.5	-2.6	6 3	7. 9	46.0	8. 1	10	0.0	46.0
5	796.	100	V	35.3	3. ′	7 3	9.0	46.0	7.0	10	0.0	209.0
No.	Frequency	(P)	Reading	Reading	c. f	Result	Result	Limit	Margin	Margin	Height	Angle
	Comp. 3		AV	PK	F 10 (4 () 3	AV	PK	3 F m (** /) 3	AV	PK		F0 7
	[MHz]		$[dB(\mu V)]$			$[dB(\mu V/m)]$			[dB]	[dB]	[cm]	[°]
1	4960. 000	H		60. 9	6. 1	45.0	67.0	74. 0		7. 0	153.0	
2	4960.000	Н	39. 5		6. 1	45. 6		54.0	8. 4		153.0	261.0
3	4960.000	V		61. 1	6. 1		67. 2	74. 0		6.8	100.0	280. 0
4	4960.000	V	39.6		6. 1	45. 7		54.0	8. 3		100.0	280. 0
5	7440.000	V		46.0	11.8		57.8	74.0		16. 2	100.0	279.0
6	7440.000	V	34.5		11.8	46. 3		54.0	7. 7		100.0	279.0

Note:

- 1. Emission Level (Margin) = Limit [Reading + Factor (Antenna + Cable Amp)]
- 2. No emissions were detected in frequency range 9KHz to 30MHz at the 3 meters distance.

3-DH5

Tx Channel Low: 2402.0MHz [Channel 0]

<u> 1 X C</u>	maimei Lo	w:	24U2.UIVI.	nz Chan	nei v							
No.	Frequen	юу	(P) I	Reading	c. f	Res		Limit	Margi	n Hei	ght	Angle
				QP		Q]	P		QP			
	[MHz]		[6	$B(\mu V)$	[dB(1/n	n)] [dB(μ	V/m] [$dB(\mu V/m)$		[c	m]	[°]
1	85.8	360	V	42.9	-14.3	3 2	8. 6	40.0	11.4	10	0.0	260.0
2	114.7	700	V	42.0	-10.6	3	1.4	43.5	12. 1	10	0.0	298.0
3	353.8	390	V	44.2	-5.8	5 3	8. 7	46.0	7.3	15	6.0	132.0
4	472.5	500	V	40.3	-2.6	3	7. 7	46.0	8.3	10	0.0	47.0
5	796. 1	20	V	36.0	3. 7	7 39	9. 7	46.0	6.3	10	0.0	210.0
No.	Frequency	(P)	Reading	Reading	c. f	Result	Result	Limit	Margin		Height	Angle
			AV	PK		AV	PK		_AV_	_PK_		
	[MHz]		$[dB(\mu V)]$	$[dB(\mu V)]$		$[dB(\mu V/m)]$		$] [dB(\mu V/m)]$	[dB]	[dB]	[cm]	[°]
1	4803. 990	H		52. 7	5.8		58. 5	74. 0		15. 5	100.0	
2	4803. 990	H	32. 5		5.8	38. 3		54.0	15. 7		100.0	
3	4803.990	V		53. 6	5.8		59.4	74.0		14. 6	100.0	
4	4803. 990	V	32.7		5.8	38. 5		54.0	15. 5		100.0	
5	7206.000	V		46. 1	11. 2		57.3	74. 0		16. 7	100.0	
6	7206.000	V	31. 7		11. 2	42. 9		54.0	11. 1		100.0	279.0

Tx C	Channel Midd	le: 244	1.0MHz [Ch	annel 39]					
No.	Frequency	(P)	Reading	c. f	Result	Limit	Margin	Height	Angle
1 2 3 4 5	[MHz] 85. 860 114. 700 353. 890 472. 500 796. 120	V V V	QP [dB (μ V)] 43. 4 42. 5 44. 4 40. 0 34. 0	[dB(1/m)] -14.3 -10.6 -5.5 -2.6 3.7	QP 29. 1 31. 9 38. 9 37. 4 37. 7	$\begin{bmatrix} \mathrm{dB}(\mu\mathrm{V/m})] \\ 40.0 \\ 43.5 \\ 46.0 \\ 46.0 \\ 46.0 \\ \end{bmatrix}$	QP [dB] 10. 9 11. 6 7. 1 8. 6 8. 3	[cm] 100.0 100.0 150.0 100.0	[°] 232. 0 128. 0 90. 0 45. 0 215. 0
No. 1 2 3 4 5 6	Frequency (P) [MHz] 4881.970 H 4881.970 H 4881.980 V 4881.980 V 7323.000 V 7323.000 V	Readin AV [dB(µ V 33.7 33.8 31.8	PK (γ)] [dB (μ V)] 55. 0 55. 5 46. 6		Result Result AV PK (B (μ V/m)] [dB (μ V	/m)] [dB(μV/m)] 8 74.0 54.0 3 74.0 54.0	AV [dB] 	Margin Height PK [dB] [cm] 13. 2 160. 12. 7 100. 15. 8 100. 100.	[°] 0 253.0 0 253.0 0 253.0 0 312.0 0 312.0 0 280.0
Tx C	hannel High:	2480.0	MHz [Char	<u>nel 78]</u>					
No.	Frequency	(P)	Reading QP	c. f	Result QP	Limit	Margin QP	Height	Angle
1 2 3 4 5	[MHz] 87. 120 114. 700 353. 890 472. 500 796. 120	V V V	[dB(μV)] 43. 1 42. 4 43. 4 40. 2 35. 5	[dB(1/m)] -14.4 -10.6 -5.5 -2.6 3.7		$ \begin{bmatrix} \mathrm{dB} (\mu \mathrm{V/m})] \\ 40. 0 \\ 43. 5 \\ 46. 0 \\ 46. 0 \\ 46. 0 \\ \end{bmatrix} $	[dB] 11.3 11.7 8.1 8.4 6.8	[cm] 100.0 100.0 149.0 100.0 100.0	[°] 240.0 144.0 110.0 52.0 205.0
No.	Frequency (P)	Readin AV [dB(μV	PK		Result Resul AV PK B(µV/m)][dB(µV		Margin M AV [dB]	Margin Heigh PK [dB] [cm]	

Note:

- 1. Emission Level (Margin) = Limit [Reading + Factor (Antenna + Cable Amp)]
- 2. No emissions were detected in frequency range 9KHz to 30MHz at the 3 meters distance.

Spurious Emissions - Radiated - DH5

Rx Channel Low: 2402.0MHz [Channel 0]

No.	Freque	ency	(P)	Reading QP	c. f		ult P	Limit	Margi QP	in Hei	ght	Angle
,	[MHz			dB (μV)]	_	m)] [dB(,	ιV/m)] [dB(μV/m)]	[dB]		m]	[°]
1		320		37. 2	-11.		6. 1	40.0	13. 9		0.0	358.0
2		700	V	44.3	-10.	6 3	3. 7	43.5	9.8	3 10	0.0	150.0
3	353.	880	V	46.7	-5.	5 4	1. 2	46.0	4.8	3 15	64.0	123.0
4	472.	490	V	41.0	-2.	6 3	8. 4	46.0	7. 6	3 10	0.0	247.0
5	796.	120	V	34.2	3.	7 3	7.9	46.0	8. 1	1 10	0.0	221.0
				01.2	•			20.0				
No.	Frequency	(P)	Reading	Reading	c. f	Result	Result	Limit	Margin	Margin	Height	Angle
			AV	PK		AV	PK		_AV_	PK		F0 7
	[MHz]		$[dB(\mu V)]$		[dB(1/m)]	$[dB(\mu V/m)]$		$] [dB(\mu V/m)]$	[dB]	[dB]	[cm]	[°]
1	1600. 320	V		54. 9	-7.0		47.9	74.0		26. 1	185.0	221.0
2	1600. 320	V	45.3		-7.0	38. 3		54.0	15. 7		185.0	221.0
3	1600. 330	Н		62. 9	-7.0		55. 9	74.0		18. 1	148.0	316.0
4	1600.330	Н	57.3		-7.0	50. 3		54.0	3. 7		148.0	316.0
5	2400.480	Н		49.9	-2.4		47.5	74.0		26. 5	143.0	217.0
6	2400, 480	Н	40.5		-2.4	38. 1		54.0	15.9		143.0	217.0

Rx Channel Middle: 2441.0MHz [Channel 39]

No.	Frequency	(P)	Reading	c. f	Result	Limit	Margin	Height	Angle
			\mathbf{QP}		\mathbf{QP}		$\mathbf{Q}\mathbf{P}$		
	[MHz]		$[dB(\mu V)]$	[dB(1/m)]	$[dB(\mu V/m)]$	$[dB(\mu V/m)]$	[dB]	[cm]	[°]
1	84.620	V	43.2	-14.2	29.0	40.0	11.0	142.0	63.0
2	114.690	V	44.3	-10.6	33. 7	43.5	9.8	100.0	139.0
3	353.890	V	46.6	-5.5	41. 1	46.0	4.9	151.0	116.0
4	431.260	V	40.7	-3.6	37. 1	46.0	8.9	100.0	38.0
5	796.080	V	34.0	3.7	37. 7	46.0	8.3	100.0	189.0

No.	Frequency	(P)	Reading	Reading	c. f	Result	Result	Limit	Margin	Margin	Height	Angle
			AV	PK		AV	PK		AV	PK		
	[MHz]		$[dB(\mu V)]$	$[dB(\mu V)]$	[dB(1/m)]	$[dB(\mu V/m)]$	$[dB(\mu V/m)]$	$[dB(\mu V/m)]$	[dB]	[dB]	[cm]	[°]
1	1626.330	V		52. 1	-6.8		45. 3	74. 0		28. 7	176.0	3. 0
2	1626, 330	V	44. 1		-6.8	37. 3		54.0	16.7		176.0	3.0
3	1626.330	Н		60.0	-6.8		53. 2	74.0		20.8	144.0	271.0
4	1626, 330	Н	57.8		-6.8	51.0		54.0	3.0		144.0	309.0
5	2439.490	Н		50.4	-2.4		48.0	74.0		26.0	151.0	289.0
6	2439.490	Н	42. 4		-2.4	40.0		54.0	14.0		151.0	289.0

No.	Frequen	су	(P) F	Reading	c. f	Rest	ılt	Limit	Margin	n Hei	ght	Angle
				QP		QI	•		QP			
	[MHz]		[d	$B(\mu V)$	[dB(1/m)]	i)] [dB(μ	V/m] [d	$\mathbb{B}(\mu \text{ V/m})$	[dB]	[c:	m]	[°]
1	85.8	60	V	43.5	-14.3		9. 2	40.0	10.8	$\bar{1}4$	5. 0	55.0
2	114.7	00	V	44.2	-10.6	33	3. 6	43.5	9.9	10	0.0	148.0
3	353.9	00	V	45.9	-5.5	40). 4	46.0	5.6	15	2.0	101.0
4	431.2	60	V	38.9	-3.6	38	5. 3	46.0	10.7	11'	7.0	53.0
5	796.0	90	V	34.6	3. 7	38	3. 3	46.0	7.7	10	0.0	223.0
No.	Frequency	(P)	Reading AV	Reading PK	c. f	Result AV	Result PK	Limit	Margin AV	Margin PK	Height	Angle
	[MHz]			$[dB(\mu V)]$	[dB(1/m)]	$[dB(\mu V/m)]$		$[dB(\mu V/m)]$		[dB]	[cm]	[°]
1	1652, 330	V		53, 0	-6, 6		46. 4	74. 0		27.6	100.0	346, 0
2	1652, 330	V	46.6		-6.6	40.0		54. 0	14.0		100.0	346.0
3	1652, 330	Н		59.3	-6.6		52. 7	74.0		21.3	139.0	315.0
4	1652, 330	Н	56. 7		-6.6	50.1		54. 0	3.9 -		139.0	315.0
5	2478.490	Н		51.7	-2.0		49.7	74.0		24.3	139.0	280.0
6	2478,490	Н	44, 3		-2.0	42.3		54. 0	11.7 -		139.0	280, 0

Note:

- 1. Emission Level (Margin) = Limit [Reading + Factor (Antenna + Cable Amp)]
- 2. No emissions were detected in frequency range 9KHz to 30MHz at the 3 meters distance.

3-DH5
Rx Channel Low: 2402.0MHz [Channel 0]

MA C	Hailliei Lu	· • • • •	<u> </u>	IIZ [Chan	HCI U							
No.	Frequen	су	(P)	Reading QP	c. f	Res		Limit	Margi QP	n Heig	ght	Angle
	[MHz]		Γ	$dB(\mu V)$	[dB(1/r	•		$dB(\mu V/m)$		[cm	nΠ	[°]
1	87. 1		V	43. 7	-14.		9. 3	40. 0	10. 7		5. 0	23.0
2	114.7	00	V	44.2	-10. (3. 6	43.5	9.9			142.0
3	353.8	880	V	46.6	-5.	5 4	1. 1	46.0	4.9	143	3. 0	94.0
4	431.2	270	V	40.0	-3.	3	6. 4	46.0	9.6	100). 0	12.0
5	796. 1	.00	V	34.8	3.	7 3	8. 5	46.0	7. 5	100). 0	224.0
No.	Frequency	(P)	Reading AV	Reading PK	c. f	Result AV	Result PK	Limit	Margin AV	Margin PK	Height	Angle
	[MHz]		$[dB(\mu V)]$		[dB(1/m)]] [dB(μV/m)]	[dB]	[dB]	[cm]	[°]
1	1600. 290	Н		61.5	-7. 0		54. 5	74. 0		19.5	144.0	
2	1600, 290 1600, 330	H	58. 0	53. 8	-7.0 -7.0	51.0	46.8	54. 0 74. 0	3.0	27. 2	144. 0 185. 0	303. 0 223. 0
4	1600, 330	V	44. 7	55, 6	-7. 0 -7. 0	37.7	40, 0	54. 0	16, 3		185. 0	
5	2400. 490	Ĥ		50.7	-2.4		48.3	74. 0		25.7	137. 0	
6	2400.490	Н	42.7		-2.4	40.3		54. 0	13.7		137.0	271.0

Rx Channel Middle: 2441.0MHz [Channel 39]

No.	Frequen	су	(P) F	Reading QP	c. f	Rest Qi		Limit	Margir QP	n Heig	ht	Angle
	[MHz]		[6	B(μV)]	[dB(1/n	n)] [dB(μ	V/m) [d	$B(\mu V/m)$	[dB]	[cm]	[°]
1	84.6	10	V	43.6	-14. 2	29	9. 4	40.0	10.6	138	. 0	37.0
2	114.7	700	H	44.4	−10. €	33	3. 8	43.5	9.7	100	. 0	138.0
3	353.9	900	V	46.2	-5. E). 7	46.0	5. 3	151	. 0	70.0
4		260	V	39.3	−3. €		5. 7	46.0	10.3	100	. 0	38.0
5	799.9	910	V	35.6	3.8	39	9. 4	46.0	6.6	100	. 0	226.0
No. 1 2 3 4 5 6	Frequency [MHz] 1626, 330 1626, 330 1626, 330 1626, 330 2439, 490 2439, 490	(P) H H V V H H	Reading AV [dB(μV)] 57. 0 45. 8 42. 4	Reading PK [dB(µV)] 59.4		Result AV [dB(μV/m)] 50.2 39.0 40.0	PK	Limit [dB(μ V/m)] 74.0 54.0 74.0 54.0 74.0 54.0	3.8	Margin PK [dB] 21.4 27.8	[cm] 141.0 141.0 180.0 180.0 150.0	Angle [°] 314.0 314.0 216.0 216.0 282.0 282.0

Rx Channel High: 2480.0MHz [Channel 78]

No.	Frequency	(P)	Reading	c.f	Result	Limit	Margin	Height	Angle
			\mathbf{QP}		QP		$\mathbf{Q}\mathbf{P}$		
	[MHz]		$[dB(\mu V)]$	[dB(1/m)]	$[dB(\mu V/m)]$	$[dB(\mu V/m)]$	[dB]	[cm]	[°]
1	84.620	V	43.1	-14.2	28. 9	40.0	11. 1	140.0	48.0
2	114.700	V	44.2	-10.6	33. 6	43.5	9.9	100.0	129.0
3	353.900	V	46.0	-5.5	40.5	46.0	5. 5	157.0	93.0
4	431.250	V	39.9	-3.6	36. 3	46.0	9.7	100.0	29.0
5	796.080	V	35. 1	3.7	38.8	46.0	7.2	100.0	226.0

No.	Frequency	(P)	Reading	Reading	c. f	Result	Result	Limit	Margin	Margin	Height	Angle
			AV	PK		AV	PK		AV	PK		
	[MHz]		$[dB(\mu V)]$	$[dB(\mu V)]$	[dB(1/m)]	$[dB(\mu V/m)]$	$[dB(\mu V/m)]$	$[dB(\mu V/m)]$	[dB]	[dB]	[cm]	[°]
1	1652.320	V		56. 2	-6.6		49.6	74. 0		24.4	121.0	274.0
2	1652.320	V	52. 1		-6.6	45. 5		54.0	8.5		121.0	274.0
3	1652.330	Н		59. 9	-6.6		53. 3	74.0		20.7	141.0	308.0
4	1652, 330	H	57.6		-6.6	51.0		54.0	3.0		141.0	308.0
5	2478.490	H		51. 1	-2.0		49. 1	74.0		24.9	139.0	280.0
6	2478.490	Н	43.8		-2.0	41.8		54.0	12.2		139.0	280.0

Note:

^{1.} Emission Level (Margin) = Limit – [Reading + Factor (Antenna + Cable - Amp)]

^{2.} No emissions were detected in frequency range 9KHz to 30MHz at the 3 meters distance.

5.9 Restricted Band of Operation

5.9.1 Test Procedure [FCC 15.205, 15.209, 15.247(d), IC RSS-210 2.2]

The peak power is measured with a spectrum analyzer connected to the antenna terminal, while EUT is operating in transmission mode at the appropriate center frequency.

The spectrum analyzer is set to:

- RBW=1MHz, VBW=1MHz, 10Hz, Span=40MHz, Sweep=auto

The EUT was set to operate with following conditions.

- No hopping [ch 0 (low), ch 78 (high)]

The test mode of EUT is as follows.

- Tx mode

5.9.2 Measurement Setup

5.9.3 Limit of Restricted Band of Operation

Emission at the boundary of the restricted band provided by 15.205 shall be lower than 15.209 limit.

5.9.4 Measurement Result

DH5

No.	Frequency	(P)	Reading	Reading	c. f	Result	Result	Limit	Margin	Margin
			AV	PK		AV	PK		AV	PK
	[MHz]		$[dB(\mu V)]$	$[dB(\mu V)]$	[dB(1/m)]	$[dB(\mu V/m)]$	$[dB(\mu V/m)]$	$[dB(\mu V/m)]$	[dB]	[dB]
1	2390.000	Н		44.0	-2.5		41.5	74.0		32. 5
2	2390.000	Н	30.9		-2.5	28. 4		54.0	25.6	
3	2390.000	V		46.6	-2.5		44.1	74.0		29. 9
4	2390.000	V	30.8		-2.5	28. 3		54.0	25. 7	
5	2483.500	Н		53.6	-1.9		51.7	74.0		22. 3
6	2483.500	Н	34.8		-1.9	32. 9		54.0	21. 1	
7	2483.500	V		54. 5	-1.9		52.6	74.0		21.4
8	2483.500	V	34. 5		-1.9	32.6		54.0	21.4	

3-DH5

No.	Frequency	(P)	Reading	Reading	c.f	Result	Result	Limit	Margin	Margin
			AV	PK		AV	PK		AV	PK
	[MHz]		$[dB(\mu V)]$	$[dB(\mu V)]$	[dB(1/m)]	$[dB(\mu V/m)]$	$[dB(\mu V/m)]$	$[dB(\mu V/m)]$	[dB]	[dB]
1	2390.000	Н		44.8	-2.5		42.3	74.0		31. 7
2	2390.000	Н	30.8		-2.5	28. 3		54.0	25. 7	
3	2390.000	V		48.3	-2.5		45.8	74.0		28. 2
4	2390.000	V	30.7		-2.5	28. 2		54.0	25.8	
5	2483.500	Н		56. 5	-1.9		54.6	74.0		19. 4
6	2483.500	Н	34.8		-1.9	32. 9		54.0	21. 1	
7	2483.500	V		58. 3	-1.9		56.4	74.0		17.6
8	2483.500	V	35.3		-1.9	33. 4		54.0	20.6	

5.9.5 Trace Data

Test Personnel:		Date	:	Feb. 2,	, 2009
Tested by:	Hiroaki Suzuki	Temperature Humidity		20.1 23.9	[°C] [%]

Test place : 3m Semi-anechoic chamber

Report number: Z071C-08414 Page 39 of 49

Restricted Band of Operation

DH5

Frequency: 2390.0MHz -Horizontal-

Average

**REM 1 MEz

*VEM 10 Ez

30.91 dBuV

*Att 10 dB

SWT 14.5 s

2,39000000 GHz

**OHAT 10 GBuV

*Att 10 dB

**THE 1 MEZ

**THE 1

Date: 3.FEB.2009 12:50:19

Date: 3.FEB.2009 12:52:49

Frequency: 2390.0MHz -Vertical-

Date: 3.FEB.2009 12:54:20

Date: 3.FEB.2009 12:56:32

Report number: Z071C-08414 Page 40 of 49

Restricted Band of Operation

DH5

Frequency: 2483.5MHz -Horizontal-

Average

*FRW 1 MHz Marker 1 [T1]

*VRW 10 Hz 34.45 dBpV

*Att 10 dB SWT 14.5 s 2.483500000 GHz

100

-70

-60

-50

Center 2.4835 GHz 4 MHz/ Soan 40 MHz

Date: 3.FEB.2009 12:59:38

Date: 3.FEB.2009 13:05:55

Frequency: 2483.5MHz -Vertical-

Date: 2.FEB.2009 17:57:32

Date: 3.FEB.2009 13:05:55

3-DH5

Frequency: 2390.0MHz -Horizontal-Peak

Date: 3.FEB.2009 13:16:05

Date: 3.FEB.2009 13:14:41

Frequency: 2390.0MHz -Vertical-Peak

Date: 3.FEB.2009 13:17:32

Date: 3.FEB.2009 13:20:05

3-DH5

Frequency: 2483.5MHz -Horizontal-Peak

Date: 3.FEB.2009 13:23:11

Date: 3.FEB.2009 13:25:25

Frequency: 2483.5MHz -Vertical-Peak

Date: 3.FEB.2009 13:27:46

Date: 3.FEB.2009 13:30:42

Report number: Z071C-08414 Page 43 of 49

5.10 Transmitter Power Spectral Density

5.10.1 Test Procedure [FCC 15.247(d), IC RSS-210 A8.2(b)]

The peak power density is measured with a spectrum analyzer connected to the antenna terminal, while EUT is operating in transmission mode at the appropriate center frequency.

The spectrum analyzer is set to:

RBW= 3kHz, VBW=3kHz, Span=3MHz, Sweep = 1000sec.

The EUT was set to operate with following conditions.

- No hopping [ch 0 (low), ch39 (mid), ch 78 (high)]

The test mode of EUT is as follows.

- Tx mode

5.10.2 Measurement Setup

5.10.3 Limit of Transmitter Power Spectral Density

The peak power spectral density shall not be greater then 8dBm in any 3kHz band.

5.10.4 Measurement Results

Ch No.	Frequency [MHz]	Packet type	Reading [dBm]	Factor (Cable loss) [dB]	Level [dBm]	Limit [dBm]	Margin [dB]
0	2402.0	DH5	-19.62	10.36	-9.26	8.0	17.26
	2402.0	3-DH5	-22.61	10.36	-12.25	8.0	20.25
39	2441.0	DH5	-19.81	10.36	-9.45	8.0	17.45
		3-DH5	-23.26	10.36	-12.90	8.0	20.90
78	2480.0	DH5	-20.82	10.36	-10.46	8.0	18.46
		3-DH5	-24.79	10.36	-14.43	8.0	22.43

Note:

5.10.5 Trace Data

Test Personnel:		Date	:	Jan. 29, 2009
Tastad by	Hiroaki Suzuki	Temperature	:	21.0 [°C]
Tested by:	TIIIOAKI SUZUKI	Humidity	:	52.5 [%]
		Test place	:	Shielded room

^{1.} Transmitter Power Spectral Density Level (Margin) = Limit – [Reading + Factor (Cable)]

Transmitter Power Spectral Density

DH5

Channel Low: 2402.0MHz [Channel 0]

Channel Middle: 2441.0MHz [Channel 39]

Channel High: 2480.0MHz [Channel 78]

3-DH5 Channel Low: 2402.0MHz [Channel 0]

Channel Middle: 2441.0MHz [Channel 39]

Channel High: 2480.0MHz [Channel 78]

Report number: Z071C-08414 Page 46 of 49

5.11 Antenna requirement

According to FCC section 15.203., an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

The antenna is a chip antenna mounted inside of the EUT. Therefore, the EUT complies with the antenna requirement of FCC section 15.203.

6. Uncertainty of measurement

Expanded uncertainties stated were calculated with a coverage Factor k=2.

Please note that these results are not taken into account when determining compliance or non-compliance with test result.

Test item	Measurement uncertainty
Conducted emission at mains port (150kHz - 30MHz)	±2.9dB
Radiated emission (9kHz - 30MHz)	±4.4dB
Radiated emission (30MHz – 1000MHz)	±5.2dB
Radiated emission (1000MHz – 26GHz)	±3.6dB

Report number: Z071C-08414 Page 48 of 49

7. Laboratory description

7.1 Location: ZACTA Technology Corporation Yonezawa Testing Center

4149-7 Hachimanpara 5-chome Yonezawa-shi Yamagata 992-1128 Japan

Phone: +81-238-28-2880 Fax: +81-238-28-2888

7.2 Facility filing information:

1) NVLAP accreditation: NVLAP Lab. code: 200306-0

2) FCC filing:

Site name	Registration Number	Expiry Date
Site 2, Site3	91065	November 16, 2011
3m Semi-anechoic chamber 10m Semi-anechoic chamber	540072	March 12, 2010

3) Industry Canada Oats site filing:

Site name	Sites on file: Oats 3m/10m	Expiry Date
Site 2	4224A-2	January 24, 2010
Site 3	4224A-3	January 24, 2010
3m Semi-anechoic chamber	4224A-4	January 24, 2010
10m Semi-anechoic chamber	4224A-5	January 24, 2010

4) VCCI site filing:

Site name	Radiated emission	Conducted Emission for mains port	Expiry Date	Conducted emission for telecom port	Expiry Date
Site 2	R-137	C-133	Nov. 16, 2011	T-1477	Oct. 8, 2011
Site 3	R-138	C-134	Nov. 16,2011	T-1478	Oct. 8, 2011
10m Semi-anechoic chamber	R-2480	C-2722	Dec. 19, 2009	T-1474	Oct. 8, 2011
3m Semi-anechoic chamber	R-2481	C-2723	Dec. 19, 2009	T-1475	Oct. 8, 2011
Shielded room No.1	R-137	C-2724	Dec. 19, 2009	T-1476	Oct. 8, 2011

5) ETL SEMKO authorization:

Authorized as an EMC test laboratory.

6) TUV Rheinland authorization:

Authorized as an EMC test laboratory.

7) BUREAU VERITAS certification:

Certified as an EMC test laboratory.

8. Test photographs

System configuration (RF Conducted test)

Transmitter Radiated Spurious Emissions (RF Radiated test)

