3.3 - Viscosity and Turbulent Flow

PJ Gibson - Peace Corps Tanzania May 2020

- (1998) Two equal drops of water are falling through air with a steady velocity of $0.15~\rm ms^{-1}$, If the drops coalesce, find their new terminal velocity.
- (1999) With the help of a well labelled diagram briefly explain how you will determine the coefficient of viscosity of a liquid by a constant pressure head apparatus in the laboratory.
- (2010) In the form of Millikans experiment, an oil drop was observe fall with a constant velocity of $2.5 \times 10^{-4} m/s$ in the absence of an electric field. When a p.d of 1000 V was applied between the plates 10 mm apart, the drop remained stationary between them. i the density of oil is $9 \times 10^2 \text{ kg/m}^3$, density of air is 1.2 kg/m^3 and viscosity of air is $1.8 \times 10^{-5} \text{ Ns/m}^2$, Calculate the radius of the oil drop and the number of electric charges it carries.
- (2013) Write down the Poiscuilles equation for a viscous fluid flowing through a tube defining all the symbols.
 - What assumptions are used to develop the equation above.
- (2015) A sphere is dropped under gravity through a fluid of viscosity, η . Taking average acceleration as half of the initial acceleration, show that the time taken to attain terminal velocity is independent of fluid density.
- (2015) The flow rate of water from a tap of diameter 1.25 cm is 3 litres per minute. The coefficient of viscosity of water is $10^{-3}~{\rm Ns/m^2}$. Determine the Reynolds number and then state the type of flow of water.
- (2016) State Newtons law of viscosity and hence deduce the dimensions of the coefficient of viscosity.
- (2016) In an experiment to determine the coefficient of viscosity of motor oil, the following measurements are made:
 - Mass of glass sphere = 1.2×10^{-4} kg.
 - Diameter of sphere = 4.0×10^{-3} m.
 - Terminal velocity of sphere = 5.4×10^{-5} m/s.
 - Density of oil = 860 kg/m^3
 - Calculate the coefficient of viscosity of the oil.
- (2016) Give reasons for the following observations as applied in fluid dynamics.
 - A flag flutter when strong winds are blowing on a certain day.

- A parachute is used while jumping from an airplane.
- Hotter liquids flow faster than cold ones.
- (2017) Derive an expression for the terminal velocity of a spherical body falling from rest through a viscous fluid.
- (2019) Give the meaning of the terms velocity gradient, tangential stress and coefficient of viscosity as used in fluid dynamics.
- (2019) Write Stokes equation defining clearly the meaning of all symbols used.
 - State two assumptions used to develop the equation above
- (2019) Calculate the terminal velocity of the rain drops falling in air assuming that the flow is laminar, the rain drops are spheres of diameter 1 mm and the coefficient of viscosity, $\eta=1.8\times10^{-5}~{\rm Ns/m^2}$.
- (2019) Water flows past a horizontal plate of area 1.2 m² . If its velocity gradient and coefficient of viscosity adjacent to the plate are 10 s⁻¹ and 1.3×10^{-5} Ns/m² respectively, calculate the force acting on the plate.