$$\mathcal{D}_1: [m{X}][m{Y}_1] \longrightarrow h_1: \mathcal{D}_1
ightarrow \hat{m{Y}}_1$$

$$\mathcal{D}_2: [m{X}][m{Y}_2] \longrightarrow h_2: \mathcal{D}_2
ightarrow \hat{m{Y}}_2$$

$$\vdots$$

$$\mathcal{D}_m: [m{X}][m{Y}_m] \longrightarrow h_m: \mathcal{D}_m
ightarrow \hat{m{Y}}_m$$

Multi-Target Support Vector Regression (SVR)

Input: Training dataset \mathcal{D}

Output: ST models $h_j, j = 1, \ldots, m$

- 1: **for** j = 1 to m **do**
- $\mathcal{D}_j = \{\boldsymbol{X}, \boldsymbol{Y}_j\}$

 \triangleright Get ST data

- $h_i: \boldsymbol{X} \to \mathbb{R}$
- \triangleright Build ST model for the j^{th} target

4: end for

Build Chained Model

Input: Training dataset \mathcal{D} , random chain C

Output: A chained model $h_j, j = \{1, ..., m\}$

- 1: $\mathcal{D}_1 = \{X, Y_{C_1}\}$
- \triangleright Initialize first dataset \triangleright For each target in chain C

2: for j = 1 to m do

- $h_j:\mathcal{D}_j\to\mathbb{R}$ 3:
- > Train model on appended dataset
- if j < m then 4: 5:
 - $\mathcal{D}_{j+1} = \{\mathcal{D}_j, \mathbf{Y}_{C_j}\}$ > Append new target in chain to dataset
- 6: end if
- 7: end for

Multi-Target SVR with Random-Chains (SVRRC)

Input: Training dataset \mathcal{D} , c random chains \mathcal{C}

Output: An ensemble of chained models $h_{\mathcal{C}}$

1: for each $C \in \mathcal{C}$ do

- ⊳ For each random chain
- $h_{m{C}} \leftarrow \mathtt{buildChainedModel}(\mathcal{D}, m{C}) \quad \triangleright \ \, \mathtt{Build} \,\, \mathrm{a} \,\, \mathtt{chained} \,\, \mathtt{model} \,\, \mathtt{for} \,\, \mathtt{chain} \,\, m{C}$
- 3: end for

$$\mathcal{D}: [\boldsymbol{X}][\boldsymbol{Y}_{1}\boldsymbol{Y}_{2}\boldsymbol{Y}_{3}] \xrightarrow{generate\ maximum\ correlation\ chain} \underbrace{\frac{\mathbb{E}[(Y_{i}-\mu_{i})(Y_{j}-\mu_{j})]}{\sqrt{\mathbb{E}[(Y_{i}-\mu_{i})(Y_{i}-\mu_{i})]\mathbb{E}[(Y_{j}-\mu_{j})(Y_{j}-\mu_{j})]}}} \to [1,2,3]$$

$$\uparrow h_{1}: [\boldsymbol{X}] \to \hat{\boldsymbol{Y}}_{1} \xrightarrow{} h_{2}: [\boldsymbol{X}\boldsymbol{Y}_{1}] \to \hat{\boldsymbol{Y}}_{2} \xrightarrow{} h_{3}: [\boldsymbol{X}\boldsymbol{Y}_{1}\boldsymbol{Y}_{2}] \to \hat{\boldsymbol{Y}}_{3}$$

Multi-Target SVR with max-Correlation Chain (SVRCC)

1: $\mathbf{P} = corrcoef(Y)$ \triangleright Find correlation coefficient matrix for target variables 2: $\mathbf{C} = \sum_{i=1}^{n} \mathbf{P}_{ij}, \forall j = 1, \dots, m$ \triangleright Sum rows of the correlation matrix 3: $\mathbf{C} = \mathbf{sort}(\mathbf{C}, \mathbf{decreasing})$

4: $h_C = \text{buildChainedModel}(\mathcal{D}, C)$ \triangleright Build a max-correlation chained model

Average Relative Root Mean Square Error (aRRMSE) for MT regressors

Datasets	MORF	ST	MTS	MTSC	RC	ERC	ERCC	SVR	SVRRC	SVRCC
Slump	0.6939	0.6886	0.6690	0.6938	0.7019	0.7022	0.6886	0.5765	0.5545	0.5560
Polymer	0.6159	0.5971	0.5778	0.6493	0.6270	0.6544	0.6131	0.5573	0.5253	0.5116
Andro	0.5097	0.5979	0.5155	0.5633	0.5924	0.5885	0.5666	0.4856	0.4651	0.4455
EDM	0.7337	0.7442	0.7413	0.7446	0.7449	0.7452	0.7443	0.7058	0.7070	0.6978
Solar Flare 1	1.3046	1.1357	1.1168	1.0758	0.9951	1.0457	1.0887	0.9917	0.9455	0.9320
Jura	0.5969	0.5874	0.5906	0.5892	0.5910	0.5896	0.5880	0.5952	0.5764	0.5885
Enb	0.1210	0.1165	0.1231	0.1211	0.1268	0.1250	0.1139	0.0977	0.0910	0.0899
Solar Flare 2	1.4167	1.1503	0.9483	1.0840	1.0092	1.0522	1.0928	1.0385	1.0253	1.0298
Wisconsin Cance	r 0.9413	0.9314	0.9308	0.9336	0.9305	0.9313	0.9323	0.9555	0.9483	0.9427
California Housin	1 g 0.6611	0.6447	0.6974	0.6630	0.7131	0.6690	0.6146	0.6130	0.5945	$\boldsymbol{0.5852}$
Stock	0.1653	0.1844	0.1787	0.1803	0.1802	0.1789	0.1752	0.1364	0.1337	0.1388
SCPF	0.8273	0.8348	0.8436	0.8308	0.8263	0.8105	0.8290	0.8164	0.8037	0.8013
Puma8NH	0.7858	0.8142	0.8118	0.8311	0.8199	0.8205	0.8207	0.7655	0.7744	0.7676
Friedman	0.9394	0.9214	0.9231	0.9210	0.9231	0.9209	0.9204	0.9218	0.9208	0.9196
Puma32H	0.9406	0.8713	0.8727	0.8791	0.8752	0.8729	0.8740	0.9364	0.9367	0.9319
Water Quality	0.8994	0.9085	0.9109	0.9093	0.9121	0.9097	0.9057	0.9343	0.9310	0.9045
M5SPEC	0.5910	0.5523	0.5974	0.5671	0.5552	0.5542	0.5558	0.2951	0.2935	0.2925
MP5SPEC	0.5522	0.5120	0.5683	0.5133	0.5145	0.5143	0.5119	0.2484	0.2323	0.2358
MP6SPEC	0.5553	0.5152	0.5686	0.5119	0.5198	0.5187	0.5109	0.2850	0.2669	0.2623
ATP7d	0.5563	0.5308	0.5141	0.5142	0.5558	0.5397	0.5182	0.5455	0.5371	0.5342
OES97	0.5490	0.5230	0.5229	0.5217	0.5239	0.5237	0.5222	0.4641	0.4618	0.4635
Osales	0.7596	0.7471	0.7086	0.7268	0.8318	0.7258	0.7101	0.7924	0.7924	0.7811
ATP1d	0.4173	0.3732	0.3733	0.3712	0.3790	0.3696	0.3721	0.3773	0.3707	0.3775
OES10	0.4518	0.4174	0.4176	0.4171	0.4178	0.4180	0.4166	0.3570	0.3555	0.3538
Average	0.6910	0.6625	0.6551	0.6589	0.6611	0.6575	0.6536	0.6039	0.5935	0.5893
Ranks	7.5000	5.7708	5.9375	6.1667	7.4375	6.3750	4.9792	4.7708	3.2708	2.7917

Run Time (seconds) for MT regressors

Datasets	MORF	ST	MTS	MTSC	RC	ERC	ERCC	SVR	SVRRC	SVRCC
Slump	38.1	2.6	9.9	15.9	1.8	11.1	50.5	0.6	1.9	0.7
Polymer	7.6	2.7	9.1	15.5	1.9	14.9	80.5	0.5	2.6	0.5
Andro	25.7	4.4	15.0	34.2	3.4	33.2	197.9	1.1	6.2	1.1
EDM	24.8	2.8	9.4	18.1	2.1	5.8	19.0	0.9	1.0	0.9
Solar Flare 1	34.1	3.5	13.6	26.7	2.7	17.7	86.9	2.3	9.3	2.6
Jura	64.3	7.9	31.8	74.3	6.4	43.5	254.2	4.7	18.7	5.3
Enb	71.4	6.6	26.1	63.6	$\bf 5.4$	15.6	69.6	11.3	17.7	15.9
Solar Flare 2	55.4	7.4	30.7	68.0	6.3	42.9	241.5	9.4	53.5	15.6
Wisconsin Cancer	51.4	6.1	21.9	53.7	4.9	14.8	61.6	2.0	2.4	2.0
California Housing	93.0	9.7	34.8	75.9	8.2	21.3	102.0	15.8	25.2	23.6
Stock	93.7	11.7	46.8	96.7	11.0	75.4	427.3	18.5	90.5	26.3
SCPF	66.3	19.3	65.9	176.3	15.0	104.2	734.2	32.8	162.8	48.8
Puma8NH	130.4	29.7	106.7	288.6	27.9	201.6	1227.7	94.1	516.6	177.1
Friedman	79.5	27.0	81.2	258.3	25.0	273.7	2871.6	12.3	322.3	18.8
Puma32H	93.9	68.1	181.0	635.0	87.7	667.9	6087.0	$\bf 32.2$	1018.7	53.1
Water Quality	108.4	93.1	262.1	912.3	127.2	925.4	10993.3	110.2	2567.9	189.5
M5SPEC	89.8	68.9	166.3	604.6	73.7	262.3	3132.1	39.2	546.7	45.1
MP5SPEC	84.5	94.6	221.2	888.3	91.5	557.0	6864.1	49.3	1132.1	58.4
MP6SPEC	90.3	93.4	212.6	871.0	89.1	557.6	6761.3	47.2	1227.1	58.5
ATP7d	70.5	262.6	452.1	2319.8	242.1	1779.2	24373.8	80.0	1897.4	136.5
OES97	83.4	485.3	1146.6	4928.9	499.8	5315.0	58072.1	148.2	3759.1	342.6
Osales	92.0	1094.8	2340.7	8322.2	986.5	11361.2	122265.3	437.0	4830.1	843.6
ATP1d	70.7	272.9	476.5	2568.9	261.9	2138.9	26768.9	95.0	2127.8	174.4
OES10	90.0	738.9	1633.6	6682.9	688.5	7150.8	83533.1	229.1	5419.4	577.1
Average	71.2	142.2	316.5	1250.0	136.2	1316.3	14803.2	61.4	1073.2	117.4
Ranks	5.5	3.71	6.0	8.29	3.0	7.08	9.92	1.88	6.71	2.92

$$\min_{\boldsymbol{w},b,\boldsymbol{\xi}} \frac{1}{2} ||\boldsymbol{w}||^2 + C \sum_{I} \xi_{I}, \qquad \max_{\boldsymbol{\alpha}} \sum_{I} \alpha_{I} - \frac{1}{2} \sum_{I} \sum_{K \in I} \alpha_{I} \alpha_{K} Y_{I} Y_{K} \mathcal{K} \left(\boldsymbol{x}_{s_{I}}, \boldsymbol{x}_{s_{K}}\right)$$
s.t. $Y_{I}(\langle \boldsymbol{w}, \boldsymbol{x}_{s_{I}} \rangle + b) \geq 1 - \xi_{I}, \ \forall I \in \{1, \dots, n\}, \qquad \text{s.t.} \sum_{I} \alpha_{I} Y_{I} = 0,$

$$\xi_{I} \geq 0, \ \forall I \in \{1, \dots, n\}, \qquad 0 \leq \alpha_{I} \leq C, \ \forall I \in \{1, \dots, n\}, \\
s_{I} = \underset{i \in I}{\operatorname{argmax}} (\langle \boldsymbol{w}, \boldsymbol{x}_{i} \rangle + b), \ \forall I \in \{1, \dots, n\}.$$

$$s_{I} = \underset{i \in I}{\operatorname{argmax}} (\boldsymbol{o}_{I}), \ \forall I \in \{1, \dots, n\}.$$

Figure 1: Vapnik's ϵ -insensitivity loss function.

Figure 2: Linear support vector regression example solution on a toy 2D dataset.

Multi-Instance Representative SVM (MIRSVM)

16: end while

Input: Training dataset \mathcal{D} , SVM Parameters C and σ

Output: SVM model parameters α and b, Bag Representative IDs S

```
1: for I \in \{1, ..., n\} do
          S_I \leftarrow \operatorname{rand}(|\mathcal{B}_I|, 1, 1)
                                                                                                     3: end for
 4: while S \neq S_{old} do
          S_{old} \leftarrow S
 5:
          X_S \leftarrow X(S), Y_S \leftarrow Y(S)
                                                                                                     ▷ Initialize the representative dataset
          G \leftarrow (Y_S \times Y_S) \cdot \mathcal{K}(X_S, X_S, \sigma)
                                                                                                                            \triangleright Build Gram matrix
 7:
          \alpha \leftarrow \text{quadprog}(G, -1^n, Y_S, 0^n, 0^n, C^n)
                                                                                                                              ⊳ Solve QP Problem
 8:
          sv \leftarrow \text{find} (0 < \alpha \leq C)
                                                                                                            ▷ Get the support vector indices
9:
          n_{sv} \leftarrow \text{count} (0 < \alpha \leq C)
                                                                                                      10:
         b \leftarrow \frac{1}{n_{sv}} \sum_{i=1}^{n_{sv}} (Y_{sv} - G_{sv} * (\alpha_{sv} \cdot Y_{sv}))
for I \in \{1, \dots, n\} do
                                                                                                                      ▷ Calculate the bias term
11:
12:
               G_I \leftarrow (Y_I \times Y_S) \cdot \mathcal{K}(\mathcal{B}_I, X_S, \sigma)
13:
               S_I \leftarrow \operatorname{argmax}_{i \in I} (G_I * \alpha + b)
                                                                                                       ▷ Select optimal bag-representatives
14:
          end for
15:
```

$$\min_{(\boldsymbol{w},b)\in\mathcal{H}_o\times\mathbb{R}} R = \frac{1}{2}||\boldsymbol{w}||^2 + C\sum_{i=1}^n L(y_i, o_{(\boldsymbol{w},b)}(\boldsymbol{x}_i))$$
(1)

$$L(y_i, o_{(w,b)}(\mathbf{x}_i)) = \max\{0, 1 - y_i o_{(w,b)}(\mathbf{x}_i)\}$$
(2)

$$\min_{(\boldsymbol{w},b)\in\mathcal{H}_o\times\mathbb{R}} R = \frac{1}{2}||\boldsymbol{w}||^2 + C\sum_{i=1}^n(|y_i - o_{(\boldsymbol{w},b)}(\boldsymbol{x_i})|_{\epsilon})$$
(3)

$$L(y_i, o_{(w,b)}(\boldsymbol{x}_i)) = \begin{cases} 0 & if|y_i - o_{(w,b)}(\boldsymbol{x}_i)| \le \epsilon \\ |y_i - o_{(w,b)}(\boldsymbol{x}_i)| - \epsilon & \text{otherwise.} \end{cases}$$
(4)

OnLine Learning Algorithm using Worst-Violators (OLLAWV)

```
Input: \mathcal{D}, C, \gamma, \beta, M
Output: \alpha, b, S
 1: \alpha \leftarrow \mathbf{0}, b \leftarrow 0, \mathbf{S} \leftarrow \mathbf{0}
                                                                                                           \triangleright Initialize OLLAWV model parameters
 2: \boldsymbol{o} \leftarrow \boldsymbol{0}, t \leftarrow 0
                                                                                          ▷ Initialize the output vector and iteration counter
 3: wv \leftarrow 0, yo \leftarrow y_{wv} * \boldsymbol{o}_{wv}
                                                                                        ▷ Initialize hinge loss error and worst-violator index
 4: while yo < M do
           t \leftarrow t + 1
 5:
           \eta \leftarrow 2/\sqrt{t}
 6:
                                                                                                                                                  ▶ Learning rate
 7:
           \Lambda \leftarrow \eta * C * y_{wv}
                                                                                                                            ▷ Calculate hinge loss update
 8:
           B \leftarrow (\Lambda * \beta) / n
                                                                                                                                     ▷ Calculate bias update
 9:
           o \leftarrow o + \Lambda * \mathcal{K}(\boldsymbol{x}_{\neg S}, \, \boldsymbol{x}_{wv}, \gamma) + B
                                                                                                                                     \triangleright Update output vector
10:
11:
           \alpha_{wv} \leftarrow \alpha_{wv} + \Lambda
                                                                                                               ▷ Update worst-violator's alpha value
12:
           b \leftarrow b + B
                                                                                                                                            ▶ Update bias term
13:
           S_t \leftarrow wv
                                                                                                                            \triangleright Save index of worst-violator
14:
           [yo, wv] \leftarrow \min_{wv \in \{\neg S\}} \{y_{wv} \cdot o_{wv}\}
                                                                                                                                   ▷ Find the worst-violator
15:
16: end while
```

Classification Datasets

Classification Datasets								
Dataset	# Samples	# Attributes	# Classes					
$small\ datasets$								
iris	150	4	3					
teach	151	5	3					
wine	178	13	3					
cancer	198	32	2					
sonar	208	60	2					
glass	214	9	6					
vote	232	16	2					
heart	270	13	2					
dermatology	366	33	6					
prokaryotic	997	20	3					
eukaryotic	2,427	20	4					
$medium\ datasets$	3							
optdigits	5,620	64	10					
satimage	6,435	36	6					
usps	9,298	256	10					
pendigits	10,992	16	10					
reuters	11,069	8,315	2					
letter	20,000	16	26					
$large\ datasets$								
adult	48,842	123	2					
w3a	49,749	300	2					
shuttle	58,000	7	7					
web (w8a)	64,700	300	2					
ijcnn1	141,691	22	2					
intrusion	5,209,460	127	2					

Comparison of OLLAWV vs. NNISDA and MNSVM

Dataset		Accuracy (%)			Run Time (s)		Sup	port Vectors (%)
	OLLAWV	NNISDA	MNSVM	OLLAWV	NNISDA	MNSVM	OLLAWV	NNISDA	MNSVM
small datasets									
iris	97.33	94.00	96.67	0.05	0.27	3.57	13.50	40.20	29.80
teach	52.32	52.31	52.95	0.12	0.44	8.85	69.19	99.80	87.40
wine	98.87	96.60	96.60	0.28	0.43	4.84	15.02	44.40	48.60
cancer	80.36	81.86	81.38	0.49	0.85	4.46	42.79	83.80	89.60
sonar	92.32	89.48	87.57	0.59	0.98	3.03	31.26	73.00	66.00
glass	72.41	67.81	69.30	0.46	1.01	11.94	62.84	90.80	87.60
vote	96.54	96.11	93.99	0.26	0.46	1.49	13.36	33.20	34.00
heart	82.22	83.33	83.33	0.50	0.91	6.45	37.69	73.00	82.00
dermatology	97.82	98.36	98.36	1.62	2.47	11.68	36.94	59.00	59.80
prokaryotic	88.96	88.86	88.97	6.09	10.64	50.86	29.01	51.20	49.00
eukaryotic	77.38	79.56	81.21	61.95	49.16	342.76	54.11	76.40	72.60
medium datasets	s								
optdigits	99.11	99.29	99.31	411	528	787	28.64	31.60	30.60
satimage	91.66	92.39	92.35	1,334	687	1,094	20.72	45.00	44.80
usps	97.49	98.05	98.24	10,214	5,245	7,777	11.22	29.40	28.00
pendigits	99.56	99.62	99.61	723	909	1,500	10.27	17.60	16.60
reuters	98.03	98.08	97.99	954	1,368	1,657	8.770	18.20	18.60
letter	96.99	99.11	99.13	5,259	12,009	26,551	43.56	57.60	56.60
large datasets									
adult	84.75	85.07	85.13	21,025	$72,\!552$	123,067	34.66	56.00	56.60
w3a	98.86	98.82	98.82	6,532	15,951	24,562	3.270	14.60	12.40
shuttle	99.77	99.83	99.87	2,833	7,420	45,062	2.010	6.00	16.40
web	98.94	99.00	99.00	12,067	30,583	38,040	4.320	13.20	10.80
ijcnn1	98.31	99.34	99.41	162,587	296,917	370,144	16.36	11.00	7.600
intrusion	99.77	99.67	99.66	2,402,804	4,646,810	3,772,113	0.780	2.000	1.700
Average	91.29	91.15	91.25	114,209	221,350	191,861	25.66	44.65	43.79
Ranks	1.739	2.022	2.239	1.217	1.913	2.869	1.087	2.609	2.304

Accuracy (%) for Non-SVM Methods vs. OLLAWV

Dataset	OLLAWV	k-NN	J48	JRip	Naïve Bayes	Logistic
small datasets	1					
iris	97.33 ± 1.49	96.00 ± 3.65	94.00 ± 2.79	90.67 ± 4.35	96.00 ± 2.79	97.33 ± 2.79
teach	52.32 ± 3.46	$\textbf{59.64}\pm\textbf{2.89}$	49.72 ± 7.58	56.75 ± 9.60	53.75 ± 6.46	51.77 ± 6.68
wine	98.87 ± 1.54	97.73 ± 3.72	90.43 ± 5.83	93.24 ± 3.27	96.60 ± 3.14	96.05 ± 2.58
cancer	80.36 ± 5.80	77.32 ± 6.93	73.81 ± 8.57	73.78 ± 5.81	67.73 ± 5.07	77.32 ± 7.78
sonar	92.32 ± 3.11	88.99 ± 4.59	76.16 ± 10.6	75.18 ± 6.77	73.69 ± 7.65	75.18 ± 7.31
glass	$\textbf{72.41}\pm\textbf{2.28}$	67.73 ± 5.91	65.06 ± 5.51	65.59 ± 9.66	49.46 ± 5.19	62.04 ± 5.75
vote	96.54 ± 1.87	92.26 ± 3.19	95.70 ± 2.12	96.54 ± 2.45	92.24 ± 3.24	93.54 ± 2.59
heart	82.22 ± 2.93	79.63 ± 5.71	78.52 ± 2.81	80.74 ± 4.06	$\textbf{84.44}\pm\textbf{4.46}$	83.33 ± 3.93
dermatology	97.82 ± 0.05	96.18 ± 1.78	94.52 ± 2.21	91.27 ± 5.08	97.28 ± 1.64	96.98 ± 2.28
prokaryotic	$\textbf{88.96}\pm\textbf{2.14}$	87.96 ± 3.01	78.54 ± 1.62	79.13 ± 2.78	62.38 ± 3.54	87.57 ± 2.56
eukaryotic	77.38 ± 1.96	$\textbf{81.42}\pm\textbf{2.06}$	65.27 ± 2.92	66.42 ± 3.47	39.27 ± 3.43	69.55 ± 1.34
$medium\ datas$	ets					
optdigits	99.11 ± 0.38	98.74 ± 0.39	90.87 ± 1.09	91.28 ± 0.40	92.42 ± 0.75	95.05 ± 0.91
satimage	91.66 ± 0.80	90.38 ± 0.72	85.64 ± 1.21	85.33 ± 0.77	85.41 ± 0.92	88.14 ± 1.11
usps	97.49 ± 0.22	97.04 ± 0.47	88.73 ± 0.46	89.20 ± 1.00	79.45 ± 0.59	91.88 ± 0.65
pendigits	99.56 ± 0.12	99.33 ± 0.17	96.24 ± 0.31	96.34 ± 0.41	88.34 ± 0.65	95.59 ± 0.18
reuters	98.03 ± 0.22	97.15 ± 0.43	96.90 ± 0.32	97.18 ± 0.44	93.52 ± 0.02	69.54 ± 0.28
letter	96.99 ± 0.21	95.71 ± 0.19	87.34 ± 0.68	87.02 ± 0.66	74.12 ± 0.97	77.45 ± 0.16
$large\ datasets$						
adult	84.75 ± 0.26	83.85 ± 0.28	84.38 ± 0.28	83.73 ± 0.17	80.57 ± 0.09	82.46 ± 0.14
w3a	98.86 ± 0.04	98.60 ± 0.06	98.71 ± 0.05	98.41 ± 0.10	96.71 ± 0.20	98.61 ± 0.12
shuttle	99.77 ± 0.03	99.93 ± 0.03	99.97 ± 0.02	99.96 ± 0.02	98.57 ± 0.24	96.83 ± 0.12
web	98.94 ± 0.05	98.89 ± 0.06	98.79 ± 0.09	98.50 ± 0.13	96.71 ± 0.21	98.70 ± 0.08
ijcnn1	98.31 ± 0.07	$\textbf{98.48}\pm\textbf{0.04}$	98.40 ± 0.09	98.11 ± 0.10	90.69 ± 0.26	92.29 ± 0.16
intrusion	99.77 ± 0.02	88.20 ± 1.06	58.01 ± 26.6	87.66 ± 3.79	49.75 ± 30.7	65.15 ± 15.7
Average	91.29 ± 1.26	90.05 ± 2.06	84.60 ± 3.64	86.18 ± 2.84	79.96 ± 3.58	84.45 ± 2.83
Ranks	1.500	2.500	4.041	3.958	5.063	3.938

Accuracy (%)

Run Time (s)

Support Vectors (%)

$$C \in \{4^n\}, \quad n = \{-2, \dots, 5\}$$
 (5a)
 $\gamma \in \{4^n\}, \quad n = \{-5, \dots, 2\}$ (5b)

Algorithm Hyperparameters

Algorithm	Parameters
SVM	Penalty: $C \in \{4^n\}, n = \{-2,, 5\}$ RBF Kernel: $\gamma \in \{4^n\}, n = \{-5,, 2\}$
$k ext{-NN}$	Number of neighbors: $k \in \{1, 3, 5, 7\}$
J48	Pruning: {True, False} Pruning Confidence: {0.1, 0.25, 0.5}
JRip	Pruning: {True, False}
Naïve Bayes	Use kernel estimation: {True, False}
Logistic	Log-likelihood: $\{1e^{-7}, 1e^{-8}, 1e^{-9}\}$

$$\min_{(\boldsymbol{w},b)\in\mathcal{H}_o\times\mathbb{R}} R = \frac{1}{2}||\boldsymbol{w}||^2 + C\sum_{i=1}^n L(y_i, o_{(\boldsymbol{w},b)}(\boldsymbol{x}_i)),$$

$$\min_{(\boldsymbol{w},b)\in\mathcal{H}_o\times\mathbb{R}} R = \frac{1}{2}||\boldsymbol{w}||^2 + CL(y_i, o_{(\boldsymbol{w},b)}(\boldsymbol{x}_i)).$$

$$\min_{\boldsymbol{w}\in\mathcal{H}_o\times\mathbb{R}} R = \frac{1}{2}||\boldsymbol{w}||^2 + C\sum_{i=1}^n \max\left\{0, 1 - y_i o_{(\boldsymbol{w})}(\boldsymbol{x}_i)\right\}$$

$$\boldsymbol{w} \leftarrow \boldsymbol{w} - \eta \frac{\partial R}{\partial \boldsymbol{w}}$$

$$\boldsymbol{w} \leftarrow \boldsymbol{w} + \eta \begin{cases} Cy_i \boldsymbol{x}_i - \boldsymbol{w} & y_i o_i < 1\\ -\boldsymbol{w} & \text{otherwise} \end{cases}$$

$$\sum_{i=1}^n \alpha_i \phi(\boldsymbol{x}_i) \leftarrow \sum_{i=1}^n \alpha_i \phi(\boldsymbol{x}_i) + \eta \begin{cases} Cy_i \phi(\boldsymbol{x}_i) - \sum_{i=1}^n \alpha_i \phi(\boldsymbol{x}_i) & y_i o_i < 1\\ -\sum_{i=1}^n \alpha_i \phi(\boldsymbol{x}_i) & \text{otherwise} \end{cases}$$

$$\forall i : \alpha_i \phi(\boldsymbol{x}_i) \leftarrow \alpha_i \phi(\boldsymbol{x}_i) + \eta \begin{cases} (Cy_i \phi(\boldsymbol{x}_i) - \alpha_i \phi(\boldsymbol{x}_i)) & y_i o_i < 1\\ (-\alpha_i \phi(\boldsymbol{x}_i)) & \text{otherwise} \end{cases}$$

$$\forall i : \alpha_i \leftarrow \alpha_i + \eta \begin{cases} (Cy_i - \alpha_i) & y_i o_i < 1\\ (-\alpha_i) & \text{otherwise} \end{cases}$$

$$\Lambda \leftarrow Cy_i \\ \alpha_i \leftarrow \alpha_i + \eta \Lambda \\ b \leftarrow b + \eta \Lambda$$

$$\forall i : b \leftarrow b + \eta \frac{Cy_i}{n}$$

$$\delta \leftarrow o + \Lambda * \mathcal{K}(\boldsymbol{x} - \boldsymbol{s}, \boldsymbol{x}_{wv}, \gamma) + B$$
(6)

Comparison of OLLAWV vs. OLLA-L2

Dataset	Accura	acy (%)	Run Time (s)		
	OLLA-L2	OLLAWV	OLLA-L2	OLLAWV	
RBFNoDrift	93.07	94.21	0.0238	0.0329	
HyperplaneSlow	87.40	90.09	0.0261	0.0353	
HyperplaneFaster	87.40	89.51	0.0256	0.0263	
STAGGERGeneratorF1	100.0	100.0	0.0034	0.0021	
HyperplaneFaster02	87.41	89.49	0.0257	0.0268	
MixedGeneratorBT	92.45	98.00	0.0108	0.0205	
MixedGeneratorBF	92.55	98.03	0.0107	0.0299	
SineGeneratorF1BF	97.37	97.79	0.0091	0.0122	
SineGeneratorF2BF	97.37	97.79	0.0091	0.0121	
STAGGERGeneratorF1BF	100.0	100.0	0.0035	0.0021	
STAGGERGeneratorF2BF	100.0	100.0	0.0039	0.0022	
HyperplaneFasterAN0	87.40	89.51	0.0255	0.0263	
HyperplaneFasterAN5	87.29	89.29	0.0258	0.0264	
SEASuddenAN0	84.01	87.80	0.0494	0.0208	
SEASuddenAN05	83.69	87.53	0.0494	0.0284	
Average	91.83	93.94	0.0201	0.0203	
Rank	1.900	1.100	1.3333	1.6667	

OnLine Learning Algorithm - List 2 (OLLA-L2)

```
Input: X, Y, \beta, n, e
Output: \alpha, b, S
 1: \alpha \leftarrow \mathbf{0}, b \leftarrow 0, \mathbf{S} \leftarrow \mathbf{0}, \mathbf{o} \leftarrow \mathbf{0}, i \leftarrow 0
                                                                                            ▷ Initialize model and algorithm parameters
 2: for t = 1, ..., n * e do
          \eta \leftarrow 2/\sqrt{t}
                                                                                                          ▶ Learning rate in function of time
                                                                                                     ▷ Check if current sample is a violator
          if y_i o_i \leq 1 then
 4:
               Calculate \Lambda and P
                                                                                                                ▷ Calculate update parameters
 5:
               S \leftarrow [S \cup i]
                                                                                                               \triangleright Save index of current violator
  6:
               \alpha_i \leftarrow \alpha_i + (\Lambda - P)
                                                                                                               ▷ Update violator's alpha value
  7:
               b \leftarrow b + (\Lambda - P)\beta
                                                                                                                                 ▶ Update bias term
  8:
 9:
          end if
          i \leftarrow i + 1
                                                                                                                                   \triangleright Get new sample
10:
          if i = n then
                                                                                \triangleright If the sample index exceeds the number of samples
11:
               i = 0
                                                                                                                              \triangleright Reset sample index
12:
13:
          end if
          o_i \leftarrow \boldsymbol{K}(\boldsymbol{x}_i,\,\boldsymbol{x}_S)\,\boldsymbol{\alpha}_S + b
                                                                                               ▷ Calculate the new sample's output value
14:
15: end for
```

