Obsah

24 Opt	ické soustavy a optická zobrazení	1
24.1	Základní pojmy	1
	24.1.1 Obraz	1
	24.1.2 Ohnisko	2
	24.1.3 Střed křivosti	2
	24.1.4 Zobrazovací rovnice	2
	24.1.5 Konvence znamének a značení	2
	24.1.6 Významné paprsky	2
24.2	Zobrazení zrcadlem	3
	24.2.1 Rovinné zrcadlo	3
	24.2.2 Vypuklé zrcadlo	3
	24.2.3 Duté zrcadlo	3
24.3	Zobrazení čočkou	3
	24.3.1 Spojka	3
	24.3.2 Rozptylka	5
24.4	Oko jako optická soustava	5
	24.4.1 Rohovka	5
	24.4.2 Čočka	5
	24.4.3 Sklivec	6
	24.4.4 Sítnice	6
	24.4.5 Vady oka	6
	24.4.6 Zorný úhel	7
24.5	Paraxiální prostor	7
24.6	Optické přístroje	7
	24.6.1 Lupa	7
	24.6.2 Mikroskop	7
	24.6.3 Dalekohled	8

24 Optické soustavy a optická zobrazení

- souhrn věcí ovlivňující přechod paprsku a vytvářející obraz pozorovaného předmětu
 - lámavé/odrazové plochy
 - rozhraní prostředí
 - clony
- centrovaná optická soustava středy křivosti leží na jedné přímce

24.1 Základní pojmy

24.1.1 Obraz

místo, kde se skutečně nebo zdánlivě protínají paprsky vycházející z jednotlivých bodů zobrazovaného předmětu

Vlastnosti

- zvětšení Z
 - velikost obrazu relativně k zobrazovanému předmětu
 - zmenšený / stejně velký / zvětšený (|Z| < 1, |Z| = 1, |Z| > 1)

 $Z = \frac{y'}{y} = -\frac{a'}{a}$

^{*} y, y' – výška předmětu a obrazu

* a, a' – vzdálenost předmětu a obrazu čočky nebo zrcadla

- orientace
 - přímý (Z>0) / převrácený (Z<0) obraz relativně k původní orientaci předmětu
- skutečný / zdánlivý obraz
 - -skutečný paprsky se sbíhají, lze zachytit na stínítku $(a^\prime>0)$
 - -zdánlivý paprsky se rozbíhají, nelze zachytit na stínítku $(a^{\prime}<0)$

24.1.2 Ohnisko

místo, kde se skutečně (spojka, duté zrcadlo) nebo zdánlivě¹ (rozptylka, vypuklé zrcadlo) sbíhají paprsky původně rovnoběžné s optickou osou

Ohnisková vzdálenost

- vzdálenost ohniska od čočky
- polovina poloměru křivosti
- značení: f, [f] = m

Optická mohutnost

- schopnost čočky koncentrovat světlo
- \bullet převrácená hodnota f
- značení: φ , $[\varphi] = m^{-1}$

24.1.3 Střed křivosti

- střed zakřivení čočky nebo zrcadla
- čočky a zrcadla tvořeny z části kulové plochy
- poloměr kulové plochy r =poloměr křivosti

24.1.4 Zobrazovací rovnice

rovnice udávající vztah vzdáleností při zobrazení

•

$$\frac{1}{a} + \frac{1}{a'} = \frac{1}{f}$$

24.1.5 Konvence znamének a značení

- optická soustava kreslena zleva doprava
 - → doleva kladný směr, doprava záporný směr
- f před čočkou kladné, f za čočkou záporné
- vzdálenosti měřeny od středu čočky
- čočky
 - $-\ a>0$ před čočkou, a<0 za čočkou -a'<0před čočkou, a'>0 za čočkou
- zrcadla
 - -a, a' > 0 před zrcadlem, a, a' < 0 za zrcadlem

24.1.6 Významné paprsky

- světelné paprsky používány k dedukci obrazu objektu
- 3 paprsky
 - rovnoběžný s optickou osou po ohybu/odrazu míří od ohniska
 - mířící do optického středu čočky/zrcadla jeho trasa se nemění / odráží se dle zákona odrazu

¹za pomoci geometrického prodloužení paprsků

– mířící do ohniska před čočkou/zrcadlem – po ohybu/odrazu rovnoběžný s optickou osou

24.2 Zobrazení zrcadlem

- zrcadlo předmět odrážející světlo
- u kulových zrcadel obraz nikdy není dokonalý, pouze u parabolických

24.2.1 Rovinné zrcadlo

- využití zákonu odrazu
- $f \to \infty$
- stejně velký, přímý, zdánlivý obraz

24.2.2 Vypuklé zrcadlo

- odraz z vnějšku kulové plochy
- ohnisko za zrcadlem záporná ohnisková vzdálenost
- obraz zmenšený, přímý, zdánlivý

Obr. 24.1: Vypuklé zrcadlo

24.2.3 Duté zrcadlo

- odraz ze vnitřku kulové plochy
- kladná ohnisková vzdálenost
- obraz závislý na poloze objektu
 - -0 < a < f zvětšený, přímý, zdánlivý
 - $-a = f |Z| \rightarrow \infty$ obraz v nekonečnu
 - -f < a < 2f zvětšený, převrácený, skutečný
 - $-\ a=2f$ stejně velký, převrácený, skutečný
 - -a > 2f zmenšený, převrácený, skutečný

24.3 Zobrazení čočkou

24.3.1 Spojka

- zakřivuje světlo do ohniska
- kladná ohnisková vzdálenost platí stejné pravidla jako u dutého zrcadla (sekce 24.2.3, graf 24.2)

Obr. 24.2: Hodnoty Za a'v závislosti na $kf_0; k \in \mathtt{R}, f_0 = 1$

Obr. 24.3: Nákres dutého zrcadla

Obr. 24.4: Spojná čočka

24.3.2 Rozptylka

- rozptyluje paprsky směrem od ohniska
- záporná hodnota ohniskové vzdálenosti f
 - obraz vždy zmenšený, přímý, skutečný

Obr. 24.5: Rozptylná čočka

24.4 Oko jako optická soustava

- oko lidský orgán
- umí zaostřovat měnit mohutnost

24.4.1 Rohovka

- umožňuje světlu dosáhnout sítnice
- práce na základě lomu světla

24.4.2 Čočka

- proměnlivá mohutnost schopnost akomodace
- různé materiály nemá jednotný index lomu
- ohyb světla do ohniska

Akomodace

- schopnost měnit optickou mohutnost
- čočka mění svojí šířku pomocí svalů
- čočka se přizpůsobuje, aby zaostřila změnila ohnisko
- změna s věkem ochabování svalů

Blízký a vzdálený bod

- nejbližší a nejvzdálenější bod, na který je možné zaostřit
- nejméně +-1 cm; nejvzdálenější nekonečnost (pro zdravé oko)

Konvenční zraková vzdálenost

- vzdálenost, při které se oko nejméně namáhá
- $\pm 30 \, \mathrm{cm}$

24.4.3 Sklivec

- výplň oka
- rosolovitá hmota, připomínaje vodu
- průhledná, světlo jí prochází

24.4.4 **Sítnice**

- světločivné buňky tyčinky (černobílé) a čípky (barvy)
- zrakový nerv slepá skvrna místo bez buněk
- žlutá skvrna místo s nejvyšší koncentrací buněk
- zmenšený, převrácený, skutečný obraz

24.4.5 Vady oka

Krátkozrakost

- špatná schopnost vidět do dálky
- obraz před sítnicí
- korekce pomocí rozptylky

Dalekozrakost

- špatná schopnost vidět na blízko
- daleký bod v nekonečnu
- obraz za sítnicí
- korekce spojkou

Astigmatizmus

- nerovnoměrné zakřivení oka
- různé optické zaostřování
- zaměňování znaků
- hlavně u dětí

Šilhavost

• špatná koordinace svalů

Šedý zákal

• člověk vidí "mlhu", lze vyléčit

Zelený zákal

• zvětšený oční tlak, neléčitelný

Barevné vady / barvoslepost

čípky nevnímají dostatečně, špatně vidíme barvy

24.4.6 Zorný úhel

- úhel, který může lidské oko rozeznat
- 1 minuta

24.5 Paraxiální prostor

- prostor blízko optické osy
- nedochází zde k ovlivnění paprsků
- prochází přímočaře, bez dalších vlivů
- vyznačuji 3 význačné paprsky

24.6 Optické přístroje

• přístroje, které využívají optickou soustavu pro své fungování

24.6.1 Lupa

- zvětšování malých předmětů (malý text, detaily, ...)
- pro a' typicky použita konvenční zraková vzdálenost d ($\pm 25 \, \mathrm{cm}$)
- pro zvětšený a přímý obraz nutno a < f
- zvětšení Z = -a'/a = d/f
 - při správném značení je d záporné, tedy Z>0
- maximální reálné zvětšení asi 1 500krát

24.6.2 Mikroskop

- zvětšování velice malých předmětů (buňky, malé organismy, ...)
- soustava více čoček
- obraz zvětšený, převrácený, skutečný
- příčné zvětšení $Z = \Delta/f$
 - optický interval mikroskopu $\Delta = |F'F_0|$ vzdálenost mezi ohnisky objektivu a okuláru
- úhlové zvětšení $\gamma_2 = d/f_0$
- celkové zvětšení $\gamma = Z\gamma_2 = \Delta d/(ff_0)$

Obr. 24.6: Zobrazení předmětu mikroskopem, kde f a f_0 jsou ohniskové vzdálenosti, delta je optický interval mikroskopu; F, F', F_0 , F'_0 značí ohniska, y je objekt a y' je skutečný obraz. Optická soustava mikroskopu se skládá ze dvou čoček. Objektiv funguje jako běžná spojná čočka, okulár jako lupa.

24.6.3 Dalekohled

- zvětšování velice vzdálených předmětů
- soustava čoček a v mnohdy i zrcadel
- mnoho různých typů
- úhlové zvětšení $\gamma = f/f_0$

Obr. 24.7: Nákres jednoduchého dalekohledu