休闲模拟赛 Day1

zzq

2018.12

题目名称	配对	排行	电路
源程序文件名	pair.c/cpp/pas	rank.cpp	circuit.c/cpp/pas
输入文件名	pair.in	N/A	circuit.in
输出文件名	pair.out	N/A	circuit.out
时间限制	1s	1s	1s
是否捆绑测试	是	是	是
内存限制	512MB	512MB	512MB
是否有部分分	否	是	否
题目类型	传统	交互	传统
是否有附加文件	否	是	否
编译开关	-O2 -std=c++11	-O2 -std=c++11	-O2 -std=c++11

注意:

- 1.AK 了不要 D 出题人, 没 AK 也不要 D 出题人。
- 2. 按照剧本所有题目时限均为 std 运行最大点用时两倍以上。
- 3. 题目顺序与难度无关。
- 4. 如有更改,输入输出文件、时间限制、内存限制、编译开关以 oj 上的为准。

Problem A. 配对 (pair.c/cpp/pas)

Input file: pair.in
Output file: pair.out
Time limit: 1 second

Memory limit: 512 megabytes

由于 zzq 太懒了, 所以这题没有题目背景。

有一棵树,树上有n个点,每条边上有一个非负边权。

在这 n 个点中有 k 个特殊点,其中 k 为偶数。定义两个点的距离为它们在树上的简单路径上的边权之和。你需要将这 k 个点配成 $\frac{k}{2}$ 个互不相交的对,并最大化每一对点的距离之和。

Input

第一行两个正整数 n,k,表示树的点数和特殊点的数量。k 为偶数。

接下来 n-1 行每行三个正整数 a,b,c,表示 a 和 b 两点之间有一条边权为 c 的无向边。

接下来一行 k 个互不相同的 [1,n] 的正整数,为 k 个特殊点的编号。

Output

输出 $\frac{k}{2}$ 行,每行两个特殊点的编号,表示一个匹配。

Examples

pair.in	pair.out
6 4	1 5
1 2 1	6 4
2 3 1	
3 4 1	
4 5 1	
5 6 1	
1 4 5 6	

醒醒,都ioi赛制了,你还想要大样例?

Notes

对于所有数据, $1 \le n \le 10^5, 0 \le c \le 10^5$ 。

Subtask 1 (10pts): $n \le 14$.

Subtask 2 (10pts): $n \le 5000$, $k \le 14$.

Subtask 3 (20pts): $n \le 5000$, $k \le 100$.

Subtask 4 (20pts): $n \le 5000$.

Subtask 5 (40pts): 无特殊限制。

Problem B. 排行 (rank.cpp)

Input file: stdin
Output file: stdout
Time limit: 1 second

Memory limit: 512 megabytes

这是一道交互题, 本题仅支持 C++。

传说在 2345 年,Byteland 中举行了一场质因数分解比赛,规则中说名次为 1,2,3 的参赛者将获得奖金。比赛顺利结束了,但是选手们发现主办方进行了暗箱操作,他们将选手从一个整数 a < 1 开始排名,所以选手的名次为 $a, a + 1, a + 2 \dots 0, 1, 2, 3 \dots$,也就是说拿到奖金的并不是真正的前三名。虽然选手怨声载道,主办方坚称比赛公平公正。

今年是 3345 年,你打算还原千年前这场比赛的名次,但是主办方称由于技术原因排名遗失了,连用于排名的 a 也丢失了。所幸,在 Byteland 中生活的都是机器人,所以你可以询问这些千年前的参赛选手。为了谨慎起见,你可以每次询问一个参赛者,某一个参赛者的比赛成绩比它好还是比它差。但是,机械心理学家告诉你,这些选手不一定愿意回答你的提问。具体地:

- 1. 名次小于 1 的选手由于耿耿于怀,如果它应该回答另一个参赛者成绩比它好,它就会选择不回答, 否则它会如实回答。
- 2. 名次为1的选手决定闷声大发财,它无论如何都不会回答任何提问。
- 3. 名次为 2 的选手只当询问排名为 3 的选手时才回答比排名 3 的好, 其他时候都不回答。
- 4. 名次为 3 的选手趾高气扬,如果它应该回答另一个参赛者成绩比它好,它就会选择不回答,否则它会如实回答。
- 5. 名次大于 3 的选手感觉自己水平不行,如果它应该回答另一个参赛者成绩比它差,它就会选择不回答,否则它会如实回答。

你希望通过一些询问还原每个选手的名次,询问数越少你的得分越高,评分细则请看 Notes 一节。

Interactor Notes

为了方便起见,参赛者被编号为0,1,2...n-1,这个编号与名次没有关系。

选手目录中有 rank.hpp 、sample.cpp 两个文件,以下是详细说明,如果懒得看的话你也可以直接参照 sample.cpp 编写代码。

你需要在你代码的开头 #include "rank.hpp" 来与交互库交互,你不应该实现 main 函数或试图进行任何文件输入输出,你只需要实现一个函数: std::vector<int> work(int n),它接受选手数 n,返回一个长度为 n 的 std::vector,第 i 个元素表示编号为 i 的参赛者的名次。

你可以使用交互库提供的一个函数: char ask(int a,int b),这个函数接受两个参数 a,b,需要满足 $0 \le a,b < n$ 且 $a \ne b$,表示询问编号为 a 的参赛者编号为 b 的参赛者表现如何。如果回答为'比我好',函数返回 'g',如果回答为'比我差',函数返回 'b',如果它不想回答,函数返回 'n'。

样例交互库(下发的rank.hpp)会从标准输入读入 n 和每个参赛者的名次。

Examples

stdin	stdout	
7	Good job! You used 1234 queries.	
5 1 4 2 3 0 -1		

这个输入输出格式是对样例交互库而言的,实际交互库可能不同。

Notes

 $4 \le n \le 1000$,数据保证名次由一个a < 1生成,且存在名次为1, 2, 3的选手。

本题有若干个测试点, 你本题的得分是每个测试点的得分的最小值。

对于某个测试点, 若你没有正确还原出每个选手的名次, 该测试点得 0 分。

否则设你使用了x个询问,设 $y = \{11500, 12000, 13000, 14000, 15000, 16000, 17000, 18000, 19000, 21000\}$,若y中有a个大于等于x的元素,则该测试点得10a分。

交互库是 non-adaptive 的,即在你的函数运行之前交互库中已经生成了每个参赛者的名次,不会随着你调用的询问而改变。保证调用不超过 21000 次 ask 时交互库占用不超过 0.2s 时间和 30M 空间。

Problem C. 电路 (circuit.c/cpp/pas)

Input file: circuit.in
Output file: circuit.out

Time limit: 1 second

Memory limit: 512 megabytes

在认真学习了初中物理之后,zzq 打算将知识学以致用。

他找来了一个印刷电路板,上面有 2 排接点,每排 n+1 个。他计划把这些接点按下图所示用细铜丝连接(蓝色的是接点,红色的是铜丝,电源不用连),然后计算电阻和电流。连接下图所示的相邻两个节点需要 1 单位长度的铜丝。

为了实现这个伟大目标,zzq 找来了总长为 3n 的若干条铜丝。zzq 可以把每条铜丝弯曲若干次,但是不能把铜丝弄断。请给 zzq 一种合法方案或判断不可行。

Input

第一行输入 n 和 m, m 是铜丝的条数。

第二行 m 个空格分隔的正整数 $x_1, x_2 \dots x_m$,表示标号为 $1, 2 \dots m$ 的铜丝的长度。保证总和为 3n。

Output

如果没有合法方案,输出一行 no。

否则你需要首先输出一行 yes,接下来输出 3 行,每行 n 个 [1, m] 的整数,表示对应位置的铜丝标号。如有多种合法方案,输出任意一种即可。

这里对应位置的意思如下:第一行从左到右表示的是印刷电路板第一排相邻节点之间的连线,第二行从左到右表示的是两行节点之间竖着的连线,第三行从左到右表示的是印刷电路板第二排相邻节点之间的连线。实在看不懂就看样例解释吧。

Examples

circuit.in	circuit.out
2 3	yes
4 1 1	1 2
	1 1
	1 3
2 3	yes
1 1 4	1 3
	3 3
	3 2
3 1	no
9	

样例 1 的解释:

其中不同的铜丝用不同颜色表示。

Notes

对于所有数据, $1 \le n, m \le 10^5$, $\sum_{i=1}^m x_i = 3n$ 。

Subtask 1 (10pts): $n \le 3, m \le 9$.

Subtask 2 (10pts): m = 1.

Subtask 3 (20pts): $x_i \leq 2$.

Subtask 4 (20pts): $x_i \geq 2$.

Subtask 5 (20pts): $n, m \leq 5000$.

Subtask 6 (20pts): 无特殊限制。