Dynamická optimalizace – úloha s volným časem a pevným koncem

Zadání semestrální práce

Uvažujte pohyb duokoptéry ve svislé rovině pod vlivem homogenního gravitačního pole jak je

Obrázek 1: Zjednodušený model duokoptéry

ilustrováno na obrázku 1. Samotná duokoptéra je modelována jako dva hmotné body, které reprezentují motor s vrtulí 1 a motor s vrtulí 2. Předpokládá se, že hmotné body jsou spojené nehmotným nosníkem pevné délky. Každá z vrtulí vytvoří tah síly, který je kolmý na nehmotný nosník. Poloha duokoptéry je reprezentována polohou jejího těžiště T a orientace je dána úhlem, který svírá nehmotný nosník s osou x. Geometrický střed duokoptéry je označen jako C. Zjednodušený dynamický model duokoptéry je

$$\begin{bmatrix} \dot{x}_{1}(t) \\ \dot{x}_{2}(t) \\ \dot{x}_{3}(t) \\ \dot{x}_{4}(t) \\ \dot{x}_{5}(t) \\ \dot{x}_{6}(t) \end{bmatrix} = \begin{bmatrix} x_{4}(t) \\ x_{5}(t) \\ x_{6}(t) \\ -\frac{\sin(x_{3})(u_{1}(t)+u_{2}(t))}{m_{1}+m_{2}} \\ -g + \frac{\cos(x_{3})(u_{1}(t)+u_{2}(t))}{m_{1}+m_{2}} \\ \frac{u_{1}(t)}{m_{1}d} - \frac{u_{2}(t)}{m_{2}d} \end{bmatrix}, t \in [t_{0}, t_{f}],$$

$$(1)$$

kde $x_1(t) \in \mathbb{R}$ je souřadnice těžiště $x_1^{\mathrm{T}}(t) \in \mathbb{R}$, $x_2(t) \in \mathbb{R}$ je souřadnice těžiště $x_2^{\mathrm{T}}(t) \in \mathbb{R}$, $x_3(t) \in \mathbb{R}$ je úhel v radiánech reprezentující orientaci duokoptéry, $x_4(t) \in \mathbb{R}$ je rychlost těžiště $\dot{x}_1^{\mathrm{T}}(t) \in \mathbb{R}$, $x_5(t) \in \mathbb{R}$ je rychlost těžiště $\dot{x}_2^{\mathrm{T}}(t) \in \mathbb{R}$, $x_6(t) \in \mathbb{R}$ je úhlová rychlost změny orientace duokoptéry v radiánech za sekundu, $u_1(t) \in \mathbb{R}$ je síla generovaná vrtulí 1 a $u_2(t) \in \mathbb{R}$ je síla generovaná vrtulí 2. Hmotnost motoru a vrtule 1 je $m_1 \in \mathbb{R}^{++}$, hmotnost motoru a vrtule 2 je $m_2 \in \mathbb{R}^{++}$. Pevná vzdálenost mezi vrtulí 1 a vrtulí 2 je $d \in \mathbb{R}^{++}$. Velikost zrychlení způsobeného homogenním gravitačním polem je $g \in \mathbb{R}^{++}$.

Počáteční čas t_0 , počáteční stav $\mathbf{x}(t_0)$ a koncový čas t_f jsou dány. Cílem je nalézt řízení $\mathbf{u}: [t_0, t_f] \mapsto \mathbb{R}^2$, které minimalizuje funkcionál

$$J = \int_0^{t_{\rm f}} \frac{1}{2} \mathbf{u}(t)^{\rm T} \mathbf{u}(t) \, \mathrm{d}t \tag{2}$$

a zajistí dosažení požadovaného koncového stavu $\mathbf{x}(t_f)$, který je specifikován slovně v bodu 3 zadání.

3. dubna 2025 (rev. 1.0)

Body vypracování

- 1. Stanovení transformačních funkcí
 - Odvoď te transformační funkce a jejich inverze pro výpočet polohy hmotných bodů $\mathbf{x}^{V1}(t)$, $\mathbf{x}^{V2}(t)$ a geometrického středu duokoptéry $\mathbf{x}^{C}(t)$ na základě znalosti polohy těžiště $\mathbf{x}^{T}(t)$ a úhlu $x_{3}(t)$.
 - Odvoď te transformační funkce a jejich inverze pro výpočet rychlostí hmotných bodů $\dot{\mathbf{x}}^{V1}(t)$, $\dot{\mathbf{x}}^{V2}(t)$ a geometrického středu duokoptéry $\dot{\mathbf{x}}^{C}(t)$ na základě rychlosti těžiště $\dot{\mathbf{x}}^{T}(t)$, úhlu $x_3(t)$ a rychlosti změny úhlu $x_6(t)$.

2. Simulační ověření modelu

- S využitím funkce Matlabu ode 45 simulujte model duokoptéry na časovém intervalu [t₀, t_f] a posuď te zda chování modelu odpovídá fyzikálnímu náhledu. Použijte následující dva testovací vstupní signály.
 - Nulový testovací signál $\mathbf{u}_{\text{test},1}:[t_0,t_{\text{f}}]\mapsto \mathbb{R}^2$ daný jako

$$\mathbf{u}_{\text{test},1}(t) = \mathbf{0}_{2\times 1}, \quad t \in [t_0, t_f].$$
 (3)

- Testovací signál $\mathbf{u}_{\text{test},2}:[t_0,t_f]\mapsto \mathbb{R}^2$, který je napočítán tak, aby počáteční rychlost těžiště a rychlost změny orientace byly v čase konstantní. Pokud takový vstupní signál pro dané zadání neexistuje, použijte nějaký nenulový konstantní signál.
- Vykreslete časový průběh testovacího vstupu a stavu modelu. Dále vykreslete trajektorii polohy duokoptéry. Volitelně můžete realizovat i vizualizaci pohybu duokoptéry.
- 3. Na základě následujícího slovního popisu stanovte požadovaný koncový stav \mathbf{x}_f , kdy je nutné zohlednit, že ve stavu je poloha těžiště a rychlost těžiště, ale požadavek na koncový stav je vyjádřen pro geometrický střed. Pro každou skupinu platí jedno slovní zadání.
 - 1 Geometrický střed má zastavit na pozici [2, 1]^T a duokoptéra má být stabilizována v horizontální rovině.
 - **2** Geometrický střed má proletět pozicí $[-1, 2]^T$ rychlostí $0.14\,\mathrm{m\,s^{-1}}$ pod úhlem 135° a orientace doukoptéry má být taková, aby oba motory zabíraly směrem průletu.
 - **3** Geometrický střed má proletět pozicí [2, 0] směrem seshora dolů rychlostí $0.2 \,\mathrm{m\,s^{-1}}$ a duokoptéra má být stabilizována v horizontální rovině.
 - **4** Geometrický střed má proletět pozicí [2, 1.5] směrem doprava rychlostí 0.1 m s⁻¹ a duokoptéra má být stabilizována v horizontální rovině.
 - **5** Geometrický střed má proletět pozicí [0, 2] střemhlav dolu rychlostí $0.6\,\mathrm{m\,s^{-1}}$ a duokoptéra má být orientována ve směru průletu.
- 4. Stanovení řízení s vyžitím alternativních návrhových postupů
 - S využitím alternativních způsobů návrhu regulátorů navrhněte řízení $\gamma_{\text{alternative}} : \mathbb{R}^6 \times [t_0, t_f] \mapsto \mathbb{R}^2$ tak, aby stav $\mathbf{x}(t_f)$ nabyl požadované hodnoty \mathbf{x}_f .
 - Vykreslete časový průběh vstupu a stavu modelu. Dále vykreslete trajektorii polohy duokoptéry. Diskutujte úspěšnost intuitivního řešení včetně hodnoty funkcionálu.

3. dubna 2025 (rev. 1.0) © 2025

5. Stanovení optimálního řízení

- Formulujte zadaný problém jako úlohu optimálního řízení spojitého dynamického systému s pevným časem a pevným koncem (tj. stanovte funkci vyjadřující dynamiku systému, ztrátovou funkci a omezující podmínky na koncový stav).
- Specifikujte Hamiltonovu funkci.
- Stanovte nutné podmínky optimálního řízení (tj. kanonické rovnice a okrajové podmínky) a vypočtěte všechny potřebné parciální derivace.
- Stanovte funkci $\mathbf{y}: \mathbb{R}^{13} \mapsto \mathbb{R}^2$, která poskytuje optimální řízení $\mathbf{u}(t)$ pro optimální stav $\mathbf{x}(t)$, optimální Langrangeovy multiplikátory $\lambda(t)$ a čas t

$$\mathbf{u}(t) = \mathbf{y}(\mathbf{x}(t), \, \mathbf{\lambda}(t), t). \tag{4}$$

Poznamenejme, že funkce γ nemusí nutně záviset na všech výše uvedených argumentech.

- Sumarizujte nutné podmínky extrému ve formě dvoubodového okrajového problému.
- Použijte funkci Matlabu bvp4c pro stanovení numerického řešení dvoubodového okrajového problému.
 - Vypočtěte Jacobiho matici pravé strany diferenciální rovnice a Jacobiho matici okrajových podmínek. Tyto Jacobiho matice můžete poskytnout funkci bvp4c.
 - Experimentujte s volbou hustoty časové mřížky, počátečního řešení, a dalších parametrů funkce bvp4c pro získání optimálního řešení.
- Vykreslete časovou závislost optimálního řízení, stavů, Lagrangeových multiplikátorů
 a Hamiltonovy funkce. Na základě průběhu Hamiltonovy funkce posuď te zda nalezené řešení odpovídá extrému. Dále vykreslete trajektorii polohy duokoptéry. Volitelně
 můžete odvodit vztah pro sílu působící na nehmotný nosník a vykreslit průběh její
 velikosti v čase.

Pozn.: Parametry úlohy získáte pomocí makra ops_zadani_2_2025_data.m, kde jako vstupní parametr použijete přidělené číslo zadání.

3. dubna 2025 (rev. 1.0)