Problem 8.F.2

Let $\alpha = (a_1 a_2 ... a_s)$ be a cycle of length s

Then
$$\alpha^2 = \begin{pmatrix} a_1 & a_2 & \dots & a_s \\ a_2 & a_3 & \dots & a_1 \end{pmatrix} \begin{pmatrix} a_1 & a_2 & \dots & a_s \\ a_2 & a_3 & \dots & a_1 \end{pmatrix} = \begin{pmatrix} a_1 & a_2 & \dots & a_s \\ a_3 & a_4 & \dots & a_2 \end{pmatrix}$$

$$\alpha^{3} = \begin{pmatrix} a_{1} & a_{2} & \dots & a_{s} \\ a_{2} & a_{3} & \dots & a_{1} \end{pmatrix} \begin{pmatrix} a_{1} & a_{2} & \dots & a_{s} \\ a_{2} & a_{3} & \dots & a_{1} \end{pmatrix} \begin{pmatrix} a_{1} & a_{2} & \dots & a_{s} \\ a_{2} & a_{3} & \dots & a_{1} \end{pmatrix} = \begin{pmatrix} a_{1} & a_{2} & \dots & a_{s} \\ a_{4} & a_{5} & \dots & a_{3} \end{pmatrix}$$

 $\Rightarrow \alpha$ takes a_1 to a_2 , α^2 takes a_1 to a_3 , α^3 takes a_1 to a_4

 α^{s-1} takes a_1 to a_s , α^s takes a_1 to a_1

 $\Longrightarrow s$ is the least positive integer such that $\alpha^s = \varepsilon$

Hence, the order of $\alpha = s$

Problem 8.F.3

- (a) (12)(345): disjoint and of lengths 2 and 3
 - \Rightarrow the order of permutation is lcm(2,3) = 6
- (b) (12)(3456): disjoint and of lengths 2 and 4
 - \Rightarrow the order of permutation is lcm(2,4) = 4
- (c) (1234)(56789): disjoint and of lengths 4 and 5
 - \Rightarrow the order of permutation is lcm(4,5) = 20

Problem 8.G.4

Let A_n be the set of even permutations in S_n .

(1) Let $a, b \in A_n$ where $a = a_1 a_2 \dots a_{2k}$ and $b = b_1 b_2 \dots b_{2k}$

$$\Rightarrow a^{-1} = a_{2k}a_{2k-1} \dots a_2a_1 \text{ and } b^{-1} = b_{2k}b_{2k-1} \dots b_2b_1$$

$$\Rightarrow (ab)^{-1} = b^{-1}a^{-1} = b_{2k}b_{2k-1}\dots b_2b_1a_{2k}a_{2k-1}\dots a_2a_1$$

- \Rightarrow the inverse of a product of even permutation is the product of the same transpositions in reverse order.
- $\Rightarrow (ab)^{-1} \in S_n$ since $a, b \in S_n$ where S_n is closed under products and inverse.
- $\implies (ab)^{-1} \in A_n$
- (2) Take a = b, $(ab)^{-1} = (aa)^{-1} = a^{-1}a^{-1} = aa$

 $\Rightarrow e \in A_n$

- 414
- (3) The product of two even permutations will have an even number of factors $\Rightarrow A_n$ is closed

Therefore, we conclude that A_n is a subgroup of S_n .

Problem 9.C.2

	Tal	ole for	r G	
	I	V	Н	D
I	I	V	Н	D
V	V	I	D	Н
Н	Н	D	I	V
D	D	Н	V	I

Tab	le for	$\mathbb{Z}_4 =$	{0,1,2	2,3}
	0	1	2	3
0	0	1	2	3
1	1	2	3	0
2	2	3	0	1
3	3	0	1	2

G and H are not isomorphic because in G every element is its own inverse (VV = I, HH = I, and DD = I), whereas in H there are elements not equal to their inverse. For example, (1)(1) = 2 \neq 1. Thus, $G \ncong H$.

Problem 9.C.3

Tal	ble for F	$P_2 = \{\emptyset, \{\emptyset\}\}$	a }, $\{b\}$, $\{a$, b}}
	Ø	{a}	{b}	{a,b}
Ø	Ø	{a}	{b}	{a,b}
{a}	{a}	Ø	{a,b}	{b}
{b}	{b}	{a,b}	Ø	{a}
{a, b}	$\{a,b\}$	{b}	{a}	Ø

	Ta	ble fo	r H	
	1	-1	i	-i
1	1	-1	i	-i
-1	-1	1	-i	i
i	i	-i	-1	1
-i	-i	i	1	-1

G and H are not isomorphic because in G every element is its own inverse ($aa = \emptyset$, $bb = \emptyset$, and (ab)(ab) = \emptyset), whereas in H there are elements not equal to their inverse. For example, (1)(1) = 2 \neq 1. Thus, $G \ncong H$.

Problem 9.C.6

e = Identity transformation

a =Reflection by the midpoint of the long side

b =Reflection by the midpoint of the short side

c =Rotation through 180°

T	able f	or re	ctang	le
	е	а	b	С
e	е	а	b	С
а	а	е	С	b
b	b	С	е	а
С	С	b	а	е

	Ta	ble fo	r H	
	1	-1	i	-i
1	1	-1	i	-i
-1	-1	1	-i	i
i	i	-i	-1	1
-i	-i	i	1	-1

G and H are not isomorphic because in G every element is its own inverse (aa = e, bb = e, and cc = e), whereas in H there are elements not equal to their inverse. For example, $(i)(i) = -1 \neq 1$. Thus, $G \ncong H$.

```
α = reflect y-xis

β = {e, a, b, c}, b = reflect x-axis H = {1, -1, a, -i}
                                       c = rotate 180° clockersize
             b b c e a c b a e
                    f= ( f f f f f f f f + g -> H
            f is a bijection s.t. f: 6 -> H. The operation tables are similar.
        Therefore, G & H
D 2. 3, 7, 7, 7, 7, 7, 7, 7, 1, 5, 6}
            5,= (123) degree = 3 arder = n! = 6
            53 * () (12) (132) (23) (123)
          () (1 (12) (13) (132) (23) (123)
         (12) (12) (132) (13) (123) (23)
           (12) (13) (123) () (23) (132) (12)
       (132) (132) (23) (12) (123) (13)
        (23) (28) (182) (123) (12) () (13)
      (123) (123) (13) (23) () (12) (132)

    1
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0</t
    I know the number shouldn't have a
```

table . sony !

bar, but I don't want to rewrite the

f: Z -> Z"

	71.3×71.2 (5, 5) (5, 7) (1, 5) (1, 7) (2, 6) (2, 7)
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
	if $Z_{6} \cong Z_{7}^{*}$ and $Z_{6} \cong Z_{3} \times Z_{2}$, then $Z_{7}^{*} \cong Z_{3} \times Z_{2}$
	Then, I = I' = I x Z, 53 \$ any of the groups.
5	2. G= {10" n E ZL & Prove that G = ZL
	Head (i) f is a bijection = t. f: G -> Z and (ii) Show
	that $f(a * b) = f(b) * f(b)$, $\rho: G \rightarrow Z$
	Groups are (G, x) and (Z, +), f(ab) = f(a) + f(b)
	f(a+b) = f(10°106) = f(10°) + f(106)
	(i) $f(x) = \log(x)$ $\log_{10}(x)$
	(ii) f(a+6) = f(10x 106) = f(10x+6) = log (10x+3) = (a+6) log 10
	= (a+b)(1) = a+b
	f(a)+f(b) = log (10n) - log (10h) = a log 10 + b log 10 = a(1)+b(1) = a+b
	Therefore, G= { lon n & Zl } = Z
E	4. Prove that (IR, +) \$ (IR*, x)
	Torsion element Tor(6) = {g,,g, 3, g & 6 5-6. gn = e
	For (IR, +), there are no torsion elements
	For (IR, x), the torsion element is (-1)
	This means that (IR, +) is infinite while (IR* x) is finite.

or do

Problem 9.E.2

Suppose $f: G \to \mathbb{Z}$, $f(10^n) = n$

Let $x, y \in G$ such that f(x) = f(y) and let $x = 10^n$ and $y = 10^m$ for some $m, n \in \mathbb{Z}$

 $f(x) = f(y) \Rightarrow f(10^n) = f(10^m) \Rightarrow n = m \Rightarrow f \text{ is injective}$

Let $x \in G$, $a \in \mathbb{Z}$, thus $10^a \in G$.

Now let $x = 10^a$, then $f(x) = f(10^a) = a \Rightarrow f$ is surjective

Let $x, y \in G$ such that $x = 10^n$ and $y = 10^m$ for some $m, n \in \mathbb{Z}$

Thus $f(xy) = f(10^n 10^m) = f(10^{n+m}) = n + m = f(10^n) + f(10^m) \implies f$ is homomorphism

Since f is injective, surjective and homomorphism, we conclude that $G \cong \mathbb{Z}$.

Problem 9.E.4

Let $\mathbb{R}^{pos} \cong \mathbb{R}^* \Rightarrow \mathbb{R}^* \cong \mathbb{R}^{pos} \Rightarrow f \colon \mathbb{R}^{pos}$ is bijective and homomorphim $\Rightarrow f(1) = 1$

Let
$$f(-1) = x \Rightarrow f(1) = f((-1)(-1)) = f(-1)f(-1) = x^2 = 1 \Rightarrow x = \pm 1$$

Since $-1 \notin \mathbb{R}^{pos}$, $x = 1 \Longrightarrow f(-1) = 1$

 $\Rightarrow \begin{cases} f(1) = 1 \\ f(-1) = 1 \end{cases}$ which contradict to the assumption that f is injective.

Therefore, $\mathbb{R}^{pos} \ncong \mathbb{R}^*$

Problem 9.E.6

Let $\mathbb{Q}^{pos} \cong \mathbb{Q} \Longrightarrow f : \mathbb{Q} \to \mathbb{Q}^{pos}$ is bijective and homomorphim

For example, $2 \in \mathbb{Q}^{pos} \Longrightarrow \exists x \in \mathbb{Q} \text{ such that } f(x) = 2$

Since $x \in \mathbb{Q}$, then $\frac{x}{2} \in \mathbb{Q}$

Let
$$f\left(\frac{x}{2}\right) = a$$
, then $f(x) = f\left(\frac{x}{2} + \frac{x}{2}\right) = f\left(\frac{x}{2}\right)f\left(\frac{x}{2}\right) = a^2 = 2 \Longrightarrow a \notin \mathbb{Q}$

Since there is no $a \in \mathbb{Q}$ such athat $a^2 = 2$ which is contradict to the assumption

Therefore, Q^{pos} ≇ Q

Problem 9.G.3

Let
$$x, y, z \in G$$
,
$$\begin{cases} x * (y * z) = x * \left(\frac{yz}{2}\right) = \frac{xyz}{4} \\ (x * y) * z = \left(\frac{xy}{2}\right) * z = \frac{xyz}{4} \implies x * (y * z) = (x * y) * z \implies \text{Associative} \end{cases}$$

Let
$$e = 2$$
,
$$\begin{cases} x * 2 = \frac{x(2)}{2} = x \\ 2 * x = \frac{2x}{2} = x \end{cases} \Rightarrow x * e = e * x = x \Rightarrow \text{Identity} = 2$$

Let
$$x * x' = 2 \Rightarrow \frac{xx'}{2} = 2 \Rightarrow x' = \frac{4}{x} \Rightarrow \begin{cases} x * \frac{4}{x} = \frac{x\left(\frac{4}{x}\right)}{2} = 2 \\ \frac{4}{x} * x = \frac{\left(\frac{4}{x}\right)x}{2} = 2 \end{cases} \Rightarrow \text{Inverse} = \frac{4}{x}$$
Therefore, G is a group.

Let
$$f: \mathbb{R}^* \longrightarrow \mathbf{G}, \mathbf{G} = \mathbb{R} - \{\mathbf{0}\}, \mathbb{R}^* = \mathbb{R} - \{\mathbf{0}\}, f(x) = \frac{2}{x}$$

Now let
$$x, y \in \mathbb{R}^* \Longrightarrow f(x) = f(y) \Longrightarrow \frac{2}{x} = \frac{2}{y} \Longrightarrow x = y \Longrightarrow f$$
 is injective

Let
$$\frac{2}{x} \in \mathbf{G} \Longrightarrow f\left(\frac{2}{x}\right) = \frac{2}{\frac{2}{x}} = x \Longrightarrow f$$
 is surjective

Hence $f: \mathbb{R}^* \to \mathbf{G}$ is isomorphism.

Problem 9.H.3

Let
$$x, y \in G$$
, then $f(x) = f(y) \Rightarrow x^{-1} = y^{-1} \Rightarrow \frac{1}{x} = \frac{1}{y} \Rightarrow x = y \Rightarrow f$ is injective

Let $x \in G$, then $f(x^{-1}) = x \Longrightarrow f$ is surjective

Hence, f is bijective.

 (\Longrightarrow) Suppose that G is abelian.

Let
$$x, y \in G$$
, then $f(xy) = (xy)^{-1} = y^{-1}x^{-1} = x^{-1}y^{-1} = f(x)f(y)$

 \implies f is homomorphism and bijective, thus isomorphism from G to G.

 (\Leftarrow) Suppose that $f(x) = x^{-1}$ is isomorphism from G to G \Rightarrow f is homomorphism

Let
$$x, y \in G$$
, then
$$\begin{cases} f(x^{-1}y^{-1}) = f(x^{-1})f(y^{-1}) = (x^{-1})^{-1}(y^{-1})^{-1} = xy \\ f(x^{-1}y^{-1}) = (x^{-1}y^{-1})^{-1} = (y^{-1})^{-1}(x^{-1})^{-1} = yx \end{cases} \Rightarrow G \text{ is abelian}$$

