15.6. SUMMARY 575

If B is a skew symmetric matrix, since tr(B) = 0, we deduce that $det(e^B) = e^0 = 1$. This allows us to obtain the following result. Recall that the (real) vector space of skew symmetric matrices is denoted by $\mathfrak{so}(n)$.

Proposition 15.15. For every skew symmetric matrix $B \in \mathfrak{so}(n)$, we have $e^B \in \mathbf{SO}(n)$, that is, e^B is a rotation.

Proof. By Proposition 9.23, e^B is an orthogonal matrix. Since $\operatorname{tr}(B) = 0$, we deduce that $\det(e^B) = e^0 = 1$. Therefore, $e^B \in \mathbf{SO}(n)$.

Proposition 15.15 shows that the map $B \mapsto e^B$ is a map $\exp: \mathfrak{so}(n) \to \mathbf{SO}(n)$. It is not injective, but it can be shown (using one of the spectral theorems) that it is surjective.

If B is a (real) symmetric matrix, then

$$(e^B)^{\top} = e^{B^{\top}} = e^B,$$

so e^B is also symmetric. Since the eigenvalues $\lambda_1, \ldots, \lambda_n$ of B are real, by Proposition 15.13, since the eigenvalues of e^B are $e^{\lambda_1}, \ldots, e^{\lambda_n}$ and the λ_i are real, we have $e^{\lambda_i} > 0$ for $i = 1, \ldots, n$, which implies that e^B is symmetric positive definite. In fact, it can be shown that for every symmetric positive definite matrix A, there is a *unique* symmetric matrix B such that $A = e^B$; see Gallier [72].

15.6 Summary

The main concepts and results of this chapter are listed below:

- Diagonal matrix.
- Eigenvalues, eigenvectors; the eigenspace associated with an eigenvalue.
- Characteristic polynomial.
- Trace.
- Algebraic and geometric multiplicity.
- Eigenspaces associated with distinct eigenvalues form a direct sum (Proposition 15.3).
- Reduction of a matrix to an upper-triangular matrix.
- Schur decomposition.
- The *Gershgorin's discs* can be used to locate the eigenvalues of a complex matrix; see Theorems 15.9 and 15.10.
- The conditioning of eigenvalue problems.
- Eigenvalues of the matrix exponential. The formula $det(e^A) = e^{tr(A)}$.