

Makine Öğrenmesi ve İmge Tanıma

Birleştirme Modelleri

BÖLÜMLEME KARARI

BAŞARILI - BAŞARISIZ

Araştırma: Gelir Dağılımındaki Eşitsizlik Değerleri (Gini Katsayıları)

1. Gini Endeksi

Gini: «Bir popülasyondan rastgele iki öğe seçildiğinde, aynı sınıfta olmaları gerekir» Bu durumda popülasyonlardan birinin saf olması olasılığı yüksektir.

"Başarı" (success) veya "Başarısızlık" (failure) gibi kategorik hedef değişkenle çalışır.

Yalnızca İkili bölümleme yapabilir.

Gini değeri arttıkça, homojenlik değeri de artar.

Gini yöntemi, CART (Sınıflandırma ve Regresyon Ağacı) tarafından ikili bölünmeler yapmak için kullanılır.

BÖLÜMLEME KARARI

1. Gini Endeksi

Başarı ve başarısızlık için olasılık karesinin toplamını hesapla, yani (p²+q²) Şimdi oluşturulan bölümün her bir düğümünün ağırlıklı Gini bölünümü için Gini'yi hesaplayın.

BÖLÜMLEME KARARI

Gini değeri arttıkça, homojenlik değeri de artar.

1. Gini Endeksi

Başarı ve başarısızlık için olasılık karesinin toplamını hesapla, yani (p²+q²) Şimdi oluşturulan bölümün her bir düğümünün ağırlıklı Gini bölünümü için Gini'yi hesaplayın.

•	elma = 4 = 4/12 = 1/3	4 4/12	4 4/12	
= 1 -	[1/9 +	•	. ,	(1/3)^2]
	- 1/3			
= 2/ = 0.0				

```
elma muz brokoli

Adet = 3 3 6

p = 3/12 3/12 6/12

= 1/4 1/4 1/2

GI = 1 - [(1/4)^2 + (1/4)^2 + (1/2)^2]

= 1 - [1/16 + 1/16 + 1/4]

= 1 - 6/16

= 10/16

= 0.625
```


BÖLÜMLEME KARARI

1. Gini Endeksi

Başarı ve başarısızlık için olasılık karesinin toplamını hesapla, yani (p²+q²) Şimdi oluşturulan bölümün her bir düğümünün ağırlıklı Gini bölünümü için Gini'yi hesaplayın.

```
elma muz brokoli

Adet = 3 3 6

p = 3/12 3/12 6/12

= 1/4 1/4 1/2

GI = 1 - [ (1/4)^2 + (1/4)^2 + (1/2)^2 ]

= 1 - [ 1/16 + 1/16 + 1/4 ]

= 1 - 6/16

= 10/16

= 0.625
```


	Predictors						
Outlook	Temp.	Humidity	Windy	Play Golf			
Rainy	Hot	High	Falce	No			
Rainy	Hot	High	True	No			
Overoact	Hot	High	Falce	Yes			
Sunny	Mild	High	Falce	Yes			
Sunny	Cool	Normal	Falce	Yes			
Sunny	Cool	Normal	True	No			
Overoast	Cool	Normal	True	Yes			
Rainy	Mild	High	Falce	No			
Rainy	Cool	Normal	Falce	Yes			
Sunny	Mild	Normal	Falce	Yes			
Rainy	Mild	Normal	True	Yes			
Overoact	Mild	High	True	Yes			
Overoast	Hot	Normal	Falce	Yes			
Sunny	Mild	High	True	No			

		р	lay	
		yes	no	total
	sunny	3	2	. 5
Outlook	overcast	4	. (4
	rainy	2	. 3	5
				14

		Pro	edictors		Target							
7				_)				play		
	Outlook	Temp	Humidity	Windy	Play Golf				yes	no	total	
>	Rainy	Hot	High	Falce	No	¢		sunny		3	2	5
 	Rainy	Hot	High	True	No	(h)	Outlook	overcast		4	0	4
	Overoact	Hot	High	Falce	Yes		Outrook			2	3	5
	Sunny	Mild	High	Falce	Yes			rainy		2	J	
	Sunny	Cool	Normal	Falce	Yes	1						14
	Sunny	Cool	Normal	True	No		Cim i	/ O tl.a.a	l. Da:			
	Overoact	Cool	Normal	True	Yes		Gini	(Outloo	к=каі	ny)=		
=	Rainy	Mild	High	Falce	No	4	1_	$(2/5)^2$	(3/5)	2 – 1 – C	14 – (0.36 = 0.48
=	Rainy	Cool	Normal	Falce	Yes	\Diamond	'	(2/0)	(0/0)	- 1 ().IO (0.50 - 0.70
Ì	Sunny	Mild	Normal	Falce	Yes							
⇒	Rainy	Mild	Normal	True	Yes	\Diamond						
	Overoact	Mild	High	True	Yes]			(1)[) IKKAT	(1)	
	Overoact	Hot	Normal	Falce	Yes	T			(:/-		(•)	
	Sunny	Mild	High	True	No	1			Cin	ilmn	rity —	1 Cini
		16			70	7			GIII	i Impu	rity =	1-01111

		Pro	edictors		Target								
		_								play			
	Outlook	Temp	Humidity	Windy	Play Golf				yes	no		total	
/	Rainy	Hot	High	Falce	No			sunny		3	2		5
	Rainy	Hot	High	True	No		Outlook	overcast		4	0		4
-	Overoact	Hot	High	Falce	Yes					2	2		
	Sunny	Mild	High	Falce	Yes			rainy		2	J		14
	Sunny	Cool	Normal	Falce	Yes								14
	Sunny	Cool	Normal	True	No		Cinil	(Outloo	de Dai	m, 1/_			
•	Overoact	Cool	Normal	True	Yes		Gini	(Outloc)K=Kai	ny)=			
	Rainy	Mild	High	Falce	No		1-	$(2/5)^2$ -	-(3/5)	2 = 1 -	O 16	- 0.36	= 0.48
	Rainy	Cool	Normal	Falce	Yes			(2/0)	(0/0)	-	0.10	0.00	- 0.40
	Sunny	Mild	Normal	Falce	Yes		Ginifo)utlook=(Waraac	+) - 1 -	(1/1)	$\frac{12}{12} = (0/4)$	$^{2}-0$
1	Rainy	Mild	Normal	True	Yes		Ullillo	Juliook-C	Jvercas	i) - I -	(4/4,	(0/4)	- 0
\	Overoact	Mild	High	True	Yes		Gini	i(Outlo	ok-Su	nnv)-			
+	Overoact	Hot	Normal	Falce	Yes	(1		$(3/5)^2$ -			174	0.16 -	0.40
\	Sunny	Mild	High	True	No		1-	(3/3)	(2/3)	- 1- 0	.50	- 0.10 =	0.40
		75	A	- 8	X.								

		Pre	edictors		Target							
V.		_							p	lay		
	Outlook	Temp.	Humidity	Windy	Play Golf				yes	no	total	
	Rainy	Hot	High	Falce	No			sunny	3	2	5	
	Rainy	Hot	High	True	No	Outl	ook	overcast	4	0	4	
-	Overoact	Hot	High	Falce	Yes			rainy	2	2	5	
	Sunny	Mild	High	Falce	Yes			laniy			14	
	Sunny	Cool	Normal	Falce	Yes						14	
	Sunny	Cool	Normal	True	No		ini/	Outlook	-Dainy	_		
•	Overoact	Cool	Normal	True	Yes	ا	11111	Outlook	-Kalliy,)=		
	Rainy	Mild	High	Faice	No		1 – 1	$(2/5)^2 - 1$	$3/5)^2 =$	1 - 0.16	- 0.36 = 0.48	
	Rainy	Cool	Normal	Falce	Yes		'	(2/0)	0/0) -	. 0.10	0.00 - 0.40	
Î	Sunny	Mild	Normal	Falce	Yes	Gi	niſ∩	utlook-Ov	oroact) -	1 _ (1/1)	$(0/4)^2 = 0$	
	Rainy	Mild	Normal	True	Yes	UI UI	UJIII	utiouk-uv	ercastj –	1- (4/4)	(0/4) - 0	
	Overoact	Mild	High	True	Yes	ے ا	ini	(Outloo	k=Sunn	v)=		
+	Overoact	Hot	Normal	Falce	Yes			•			- 0.16 = 0.48	
\	Sunny	Mild	High	True	No		1-	(3/3) - (2/0) -	1 - 0.30	- 0.10 - 0.40	

Ağırlıklı hesap

Gini(Outlook) = $(5/14) \times 0.48 + (4/14) \times 0 + (5/14) \times 0.48 = 0.171 + 0 + 0.171 = 0.342$

	Target			
Outlook	Temp.	Numidity	Windy	Play Golf
Rainy	Hot	High	Falce	No
Rainy	Hot	High	True	No
Overcast	Hot	High	Falce	Yes
Sunny	Mild	High	Falce	Yes
Sunny	Cool	Norma	Falce	Yes
Sunny	Cool	Normal	True	No
Overoast	Cool	Normal	True	Yes
Rainy	Mild	High	Falce	No
Rainy	Cool	Norma	Falce	Yes
Sunny	Mild	Normal	Falce	Yes
Rainy	Mild	Normal	True	Yes
Overcast	Mild	High	True	Yes
Overcast	Hot	Nomal	Falce	Yes
Sunny	Mild	High	True	No

Temperature	Yes	No	Number of instances
Hot	2	2	4
Cool	3	1	4
Mild	4	2	6

Gini(Temp=Hot) = $1 - (2/4)^2 - (2/4)^2 = 0.5$

Gini(Temp=Cool) = $1 - (3/4)^2 - (1/4)^2 = 1 - 0.5625 - 0.0625 = 0.375$

Gini(Temp=Mild) = $1 - (4/6)^2 - (2/6)^2 = 1 - 0.444 - 0.111 = 0.445$

Gini(Temp) = (4/14) x 0.5 + (4/14) x 0.375 + (6/14) x 0.445 = 0.142 + 0.107 + 0.190 = 0.439

Gini(Outlook) = $(5/14) \times 0.48 + (4/14) \times 0 + (5/14) \times 0.48 = 0.171 + 0 + 0.171 = 0.342$

	Predictors						
Outlook	Temp	Humidity	Windy	Play Golf			
Rainy	Hot	High	Falce	No			
Rainy	Hot	High	True	No			
Overcast	Hot	High	Falce	Yes			
Sunny	Mild	High	Falce	Yes			
Sunny	Coo	Normal	Falce	Yes			
Sunny	Cool	Normal	True	No			
Overoact	Cocl	Normal	True	Yes			
Rainy	Mild	High	Faice	No			
Rainy	Coo	Normal	Falce	Yes			
Sunny	Mild	Normal	Falce	Yes			
Rainy	Mild	Normal	True	Yes			
Overcast	Mild	High	True	Yes			
Overoact	Hot	Normal	Falce	Yes			
Sunny	Mild	High	True	No			

Humidity	Yes	No	Number of instances
High	3	4	7
Normal	6	1	7

Gini(Humidity=High) = $1 - (3/7)^2 - (4/7)^2 = 1 - 0.183 - 0.326 = 0.489$

Gini(Humidity=Normal) = $1 - (6/7)^2 - (1/7)^2 = 1 - 0.734 - 0.02 = 0.244$

Gini(Humidity) = $(7/14) \times 0.489 + (7/14) \times 0.244 = 0.367$

Wind	Yes	No	Number of instances
Weak	6	2	8
Strong	3	3	6

Gini(Wind=Weak) = $1 - (6/8)^2 - (2/8)^2 = 1 - 0.5625 - 0.062 = 0.375$

Gini(Wind=Strong) = $1 - (3/6)^2 - (3/6)^2 = 1 - 0.25 - 0.25 = 0.5$

Gini(Wind) = (8/14) x 0.375 + (6/14) x 0.5 = 0.428

Gini(Temp) = $(4/14) \times 0.5 + (4/14) \times 0.375 + (6/14) \times 0.445 = 0.142 + 0.107 + 0.190 = 0.439$

Gini(Outlook) = (5/14) x 0.48 + (4/14) x 0 + (5/14) x 0.48 = 0.171 + 0 + 0.171 = 0.342

	Predictors						
Outlook	Temp.	Humidity	Windy	Play Golf			
Rainy	Hot	High	Falce	No			
Rainy	Hot	High	True	No			
Overoact	Hot	High	Falce	Yes			
Sunny	Mild	High	Falce	Yes			
Sunny	Cool	Normal	Falce	Yes			
Sunny	Cool	Normal	True	No			
Overoast	Cool	Normal	True	Yes			
Rainy	Mild	High	Falce	No			
Rainy	Cool	Normal	Falce	Yes			
Sunny	Mild	Normal	Falce	Yes			
Rainy	Mild	Normal	True	Yes			
Overoact	Mild	High	True	Yes			
Overoast	Hot	Normal	Falce	Yes			
Sunny	Mild	High	True	No			

Gini index
0.342
0.439
0.367
0.428

PAÜ CENG420 Makin

KARAR AĞAÇLARI

- Üç farklı özellikle tanımlanan 30 çocuğa bakalım.
 - Cinsiyet (E veya K),
 - Sınıf(IX. veya X.)
- − Boy (1.50 − 1.80 cm).
- Peki üç öznitelikten en belirgin/belirleyici olan girdi değişkeni hangisi?

KARAR AĞAÇLARI

- Üç farklı özellikle tanımlanan 30 cocuğa bakalım.
 - Cinsiyet (E veya K),
 - Sinif(IX. veya X.)
- Boy (1.50 1.80 cm).
- Peki üç öznitelikten en belirgin/belirleyici olan girdi değişkeni hangisi?

Cinsiyet:

Gini(Kiz) = (0.2)*(0.2)+(0.8)*(0.8)=0.68

Gini(Erkek) = (0.65)*(0.65)+(0.35)*(0.35)=0.55

Gini (Cinsiyet)= (10/30)*0.68+(20/30)*0.55 = **0.59**

Sinif:

Gini(IX) = (0.43)*(0.43)+(0.57)*(0.57)=0.51

Gini(X) = (0.56)*(0.56)+(0.44)*(0.44)=0.51

Gini(Sınıf) = (14/30)*0.51+(16/30)*0.51 = 0.51

Play Cricket = 9 (56%)

BÖLÜMLEME KARARI

- 1.Gini Endeksi
- 2.Ki-Kare(Chi-Square):
- üst düğüm ve alt düğüm arasındaki istatistiksel farkı bulmak için kullanılır. Hedef değişkenin beklenen frekansları ile hedef değişkenin gözlemlenen/elde edilen frekansları arasındaki tüm farkların karelerinin toplamı ile hesaplanır.
- Ki-Karenin değeri arttıkça, ana düğüm ile alt düğüm arasındaki istatistiksel fark değeri de artar.
- Ki kare = ((Gerçek Beklenen)² / Beklenen)^{1/2}

Variance =
$$\frac{\sum (X - \overline{X})^2}{n}$$

X⁻: X in ortalaması

BAŞARILI - BAŞARISIZ

Kİ-KARE

- Üç farklı özellikle tanımlanan 30 çocuğa bakalım.
 - Cinsiyet (E veya K),
 - Sınıf(IX. veya X.)
 - Boy (1.50 1.80 cm).
- Peki üç öznitelikten en belirgin/belirleyici olan girdi değişkeni hangisi?

Kİ-KARE

- Üç farklı özellikle tanımlanan
 30 çocuğa bakalım.
 - Cinsiyet (E veya K),
 - Sınıf(IX. veya X.)
 - Boy (1.50 1.80 cm).
- Peki üç öznitelikten en belirgin/belirleyici olan girdi değişkeni hangisi?

Node	Play Cricket	Not Play Cricket		Expected Play Cricket	Expected Not Play Cricket	I	Deviation Not Play Cricket	Chi-Square		
			Total					Play	Not Play	
				,	,	,	,	Cricket	Cricket	
Female	2	8	10	5	5	-3	3	1.34	1.34	
Male	13	7	20	10	10	3	-3	0.95	0.95	
				•	_		Total Chi-Square	4.58		

Node	Play Cricket	Not Play Cricket		Expected Play Cricket	Expected Not Play Cricket		Deviation Not Play Cricket	Chi-Square		
			Total					Play	Not Play	
L					,	,	,	,	Cricket	Cricket
	IX	6	8	14	7	7	-1	1	0.38	0.38
	X	9	7	16	8	8	1	-1	0.35	0.35
Ī		1 1/2		Total Chi-Square	1.	46				

Ki kare = ((Gerçek - Beklenen) 2 / Beklenen) 1/2

Kİ-KARE

Node	Play Cricket	Not Play Cricket		Expected Play Cricket	•		Deviation Not Play Cricket	Chi-Square	
			Total t					Play	Not Play
	1			2		•		Cricket	Cricket
Female	2	8	10	5	5	-3	3	1.34	1.34
Male	13	7	20	10	10	3	-3	0.95	0.95
• Ki	kare = ((G	erçek -	Total Chi-Square	4.	58				

		Not Play Cricket	Total Play Cricket	Expected Not	Deviation	Deviation Not	Chi-Square		
Node	Play Cricket			Play Cricket	•			Play Cricket	Not Play Cricket
IX	6	8	14	7	7	-1	1	0.38	0.38
X	9	7	16	8	8	1	-1	0.35	0.35
-/2 5\ 2	/ Baklanar	a) ½		Total Chi-Square	1.	46			

=(2-5)²/ Beklenen) ^{1/2}

 $= (9/5)^{1/2} = 1.8 \% = 1.34$

AVANTAJLARI

Anlaması kolay:

Analitik altyapısı olmayan insanlar için bile, karar ağacı algoritmasının anlaşılması çok kolaydır. Bir kullanıcının ağaçları incelemesi, okuması ve yorumlaması için herhangi bir istatistiksel bilgi veya bilgiye sahip olması gerekmez. Kullanıcılar verileri kolayca okuyabilir.

Grafik **gösterimi** son derece sezgisel (bütünsel) ve kullanıcı dostudur .

Veri araştırmalarında faydalı:

Karar ağacı, en hızlısı olmasa bile, kesinlikle en önemli değişkenin tanımlanmasının en hızlı yönteminden olduğuna inanılmaktadır. Karar ağacı, kullanıcıların, özelliklerin yanı sıra yeni değişkenler oluşturmalarına yardımcı olabilir. Bu yeni özellikler, hedef değişkeni tahmin etmek için daha fazla güce sahip olacaktır. Veri arama aşamasında da kullanılabilir.

AVANTAJLARI

Daha az veri temizliği gerekiyor:

makine öğreniminde, bir kullanıcı zamanının çoğunu veri temizlemeye ve iyi verileri kötü verilerden ayırmaya harcamak zorundadır. Bununla birlikte, karar ağacı söz konusu olduğunda, bu süreç oldukça kolaydır ve çok zaman almaz. Uç değerlerin yanı sıra aykırı değerlerden etkilenmez ve böylece temizleme işlemi kolaylaşır.

Veri türü bir kısıtlama değil:

Karar ağacı çok yönlü bir algoritmadır ve kategorik ve sayısal veri değişkenlerini kolaylıkla işleyebilir.

Parametrik Olmayan Yöntem:

Parametrik olmayan bir yöntem, sınıflandırıcı yapıları veya uzamsal dağılım ile ilgili varsayımları olmayan bir yöntem anlamına gelir. Karar ağacı parametrik olmayan bir yöntemdir.

NOT: parametrik yöntemler sınırlı sayıda parametre alır parametrik olmayan yöntemlerde veri arttıkça parametre artablik olmayan 29

DEZAVANTAJI

Aşırı uyum (overfitting) gösterme:

Karar ağacı modellerinde, aşırı uyumun en yaygın ve karşılaşılan problemdir. Modeli eldeki veriyle son derece yüksek başarılı sonuç üretecek şekilde oluşturur ama hiç görmediği yeni bir veriye çok yüksek hata verir. (Soruları ezberleme örneği) Bununla birlikte, bu sorun budamanın yanı sıra model parametreleri üzerindeki kısıtlamalar kullanılarak çözülebilir.

Sürekli değişkenler için uygun değil:

Sürekli değişkenlerle çalışabilse de, hiç uygun değildir. Karar ağacı, de değişkenleri gittikçe daha fazla sınıflandırmaya başladığında kategoride bilgileri kaybetmeye başlar.

NOT: Bağımlı değişken sürekli olduğunda, regresyon ağaçları kullanılırken bağımlı değişken kategorik olduğunda; sınıflandırma ağaçları kullanılır

Aşırı uyum (overfitting) gösterme:

Karar ağacı modellerinde, aşırı uyumun en yaygın ve karşılaşılan problemdir. Modeli eldeki veriyle son derece yüksek başarılı sonuç üretecek şekilde oluşturur ama hiç görmediği yeni bir veriye çok yüksek hata verir. (Soruları ezberleme örneği) Bununla birlikte, bu sorun budamanın yanı sıra model parametreleri üzerindeki kısıtlamalar kullanılarak çözülebilir.

- Ağaç boyutuna ilişkin kısıt koyma
- Ağaç budaması

Ağaç boyutuna ilişkin kısıt koyma

- Ağaç budaması
- Düğüm bölümlemesi için Minimum Örnekler (minimum samples).
- Bölümlemek için gereken gözlem adedi tanımlanabilir.
- Bir yaprak için minimum örnek tanımlanabilir.
- Azınlık sınıfının çoğunluk sınıfı olduğu bölgeler çok sınırlı olduğundan, dengesiz sınıf problemleri için daha düşük değerler seçilir.

Ağacın Maksimum Derinliği (maximum depth):

- Bu, bir ağacın derinliğini kontrol etmek için kullanılabilir.
- Çapraz kontrol (cross validation) kullanılarak ayarlanması gerekir.
- Çok sayıda terminal düğüm oluşur.

Ağaç budaması

Açgözlü yaklaşım (greedy)

Yöntem, verilen en iyi durma koşullarından biri elde edilene kadar sadece en iyi ayrımı kontrol edecektir.

Gerçek hedef ne?

- -geçmek mi?
- -Mesafe almak mı?
- Maksimum yol kat etmek mi? PAÜ CENG420 Makine Öğrenmesi ve imge Tanıma

budama olsaydı, yöntem birkaç adım geri alacak ve üzerinde işlem yapmadan önce durumu düşünme şansına sahip olacaktı.

Pruning

Ders Notları 2024 40

PAÜ CENG420 Makine Öğrenmesi ve İmge Tanıma Ders Notları 2024

TANIMLAR

Birleştirme (ensemble) yöntemleri:

Birleştirme yöntemleri, daha iyi kararlılık (stability)ve doğruluk(accuracy) elde edebilen bir grup öngörücü modelden oluşur.

Karar ağacı temelli modellerinin sapma ve varyans problemleri bulunmaktadır. Modelin karmaşıklığı arttığında, modeldeki düşük sapma sayesinde tahmin hatasındaki azalmayı görmek mümkündür.

Bununla birlikte, yavaş yavaş daha karmaşık bir model oluşturmaya devam ettiğinizde, modeliniz ezberleyebilir ve bu nedenle modeliniz yüksek varyans gösterebilir.

(Sapma, gerçek değerlerden tahmin edilen ortalama değerler arasındaki farkı ifade eder. Varyans, numuneler aynı popülasyondan alınırsa, aynı noktada modellerin tahminlerinin çeşitliliğini ifade eder.)

Birleştirme öğreniminin en yaygın yöntemleri şunlardır:

- Torbalama (bagging)
- Artırma (boosting)
- İstifleme (stacking)

41

Bagging

TANIMLAR

Rassal Orman(Random Forest)

hangi algoritmayı kullanacağınızı bilmiyorsanız(?)

Rassal orman, hem sınıflamaları hem de regresyon görevlerini yerine getirebilen çok yönlü ve akıllı bir makine öğrenme yöntemi olarak tanımlanabilir.

Bazı veri araştırma adımlarını da içerir:

- o boyut küçültme (dimension reduction),
- o aykırı değerler(outlier),
- o eksik değerler gibi

Bagging den farklı olarak rassal orman **verinin altkümesini** girdi olarak kullanır. (bagging tamamını kullanır)

Bir güçlü model oluşturmak için bir grup zayıf modelin bir araya getiren bir topluluk öğrenme yöntemi olarak bilinir.

Tüm ağaçlar büyüyebildikleri kadar büyür ve budama yapılmaz.

Rassal Orman

Rassal Ormanın Avantajları

- Rassal orman algoritması regresyon ve sınıflandırmada kullanılabilir.
- ●Yüksek boyutlu büyük miktarda veri kümesini işleyebilir ve aralarındaki önemli değişkenleri çok iyi tanımlayabilir. Bu nedenle önemli bir boyutsal küçültme yöntemi olarak kabul edilir.
- Eksik verileri etkin bir şekilde tahmin edebilir ve çok miktarda veri beslenmiş olsa bile doğruluğu kolayca koruyabilir.
- Veri kümesindeki hataları dengelemek için kullanılabilecek çeşitli yöntemleri vardır.

Yukarıdaki özellikler etiketlenmemiş verilerle de kullanılabilir. Böylece denetimsiz çalışabilir.

Giriş verilerini değiştirerek örnekler. Bu işleme bootstrap örneklemesi denir

Rassal Orman

Rassal Ormanın Dezavantajları

- Regresyonda, sınıflandırmada olduğu kadar iyi değildir. Sürekli tahminlemede kesin sonuç elde edemez. Regresyon durumunda sağlanan eğitim verisi aralığının ötesinde tahminlerde bulunamaz.
- Örnek veriler çok gürültülü ise veriler aşırı uyum gösterebilir (ezberler).

Boosting(Artırma)

Boosting(Artırma)

Zayıf modelleri güçlü öğrenici modellere dönüştüren bir algoritma ailesidir.

Ancak, bu ölçütlerin e-postaları spam değil/spam olarak sınıflandırmak için yeterli değildir.

Örnek:

Spam ve normal postaları tanımlamanız istenirse,

- E-postada yalnızca bir tane promosyon resmi varsa,: SPAM
- Yalnızca bağlantılar varsa: SPAM
- E-postanın gövdesi yalnızca "- olarak bir ödül para kazandınız" gibi cümleler içerirse: SPAM
- Resmi bir alan adından alınan e-posta: <u>SPAM değ i l</u>
- Bilinen bir gönderenden alınan e-posta: SPAM değ il

Boosting(Artırma)

Zayıf kuralı bulmak için önce makine-öğrenme algoritmasını değişik bir dağılımla uygulamak gerekir.

Bu algoritma her uygulandığında yeni bir zayıf tahmin kuralı oluşur. Bu tekrarlayan bir süreçtir ve birçok kez tekrarlanır.

Algoritma bu kuralları tek bir güçlü tahmin kuralında birleştirir.

Arttırma, daha önce gelen yanlış sınıflandırılmış ve yüksek

hata örneklerine odaklanır.

