AM213B Assignment #8

Problem 1 (Computational)

Consider the IVP of Burgers' equation

$$\begin{cases} u_t + \left(\frac{1}{2}u^2\right)_x = 0, & t > 0 \\ u(x,0) = \begin{cases} -\frac{1}{2}, & x \le 0 \\ 1, & 0 < x \le 1 \\ 0, & x > 1 \end{cases}$$
 (IVP-1)

For $t \le 2$, the exact solution of (IVP-1) is

$$u_{\text{ext}}(x,t) = \begin{cases} \frac{-1}{2}, & x \le \frac{-1}{2}t \\ \frac{x}{t}, & \frac{-1}{2}t < x \le t \\ 1 & t < x \le 1 + \frac{1}{2}t \\ 0 & x > 1 + \frac{1}{2}t \end{cases}$$

We implement the three methods below to solve (IVP-1).

• Upwind method 1 (with no entropy fix)

$$F_{i+1/2}^{(\text{Up})} = \frac{1}{2} \Big(F(u_{i+1}^n) + F(u_i^n) \Big) - \frac{1}{2} \alpha(u_i^n, u_{i+1}^n) (u_{i+1}^n - u_i^n)$$

$$\alpha(u_i^n, u_{i+1}^n) = \frac{F(u_{i+1}^n) - F(u_i^n)}{u_{i+1}^n - u_i^n} = \frac{\frac{1}{2} \Big(u_{i+1}^n \Big)^2 - \frac{1}{2} \Big(u_i^n \Big)^2}{u_{i+1}^n - u_i^n} = \frac{1}{2} (u_i^n + u_{i+1}^n)$$

• Upwind method 2 (with LeVeque entropy fix)

$$F_{i+1/2}^{(\text{Up})} = \frac{1}{2} \Big(F(u_{i+1}^n) + F(u_i^n) \Big) - \frac{1}{2} \psi_{i+1/2} (u_{i+1}^n - u_i^n)$$

$$\psi_{i+1/2} = \max \Big\{ \Big| \alpha(u_i^n, u_{i+1}^n) \Big|, -F'(u_i^n), F'(u_{i+1}^n) \Big\}$$

Lax-Wendroff method

$$F_{i+1/2}^{(LW)} = \frac{1}{2} \Big(F(u_{i+1}^n) + F(u_i^n) \Big) - \frac{\Delta t}{2\Delta x} \alpha (u_i^n, u_{i+1}^n)^2 (u_{i+1}^n - u_i^n)$$

We select $[L_1, L_2]$ with $L_1 = -1$ and $L_2 = 2$ as the computational domain.

We use the finite volume discretization: viewing x_i as the center of cell i.

$$\Delta x = \frac{L_2 - L_1}{N}$$
, $x_i = L_1 + (i - 0.5)\Delta x$, $i = 0, 1, ..., N + 1$

$$x_0 = L_1 - 0.5\Delta x$$
, $x_1 = L_1 + 0.5\Delta x$,..., $x_N = L_2 - 0.5\Delta x$, $x_{N+1} = L_2 + 0.5\Delta x$

To calculate $\{u_i^{n+1}, 1 \le i \le N\}$ in each time step, we need u^n at x_0 and at x_{N+1} . In this problem, we use artificial boundary conditions: $u_0^n = u_1^n$, $u_{N+1}^n = u_N^n$.

Use N = 300 and $r = \Delta t/\Delta x = 0.5$ in simulations.

Part 1: Plot in one figure, the exact solution and numerical solutions of the three methods at t = 1. Which methods deviate substantially from the exact solution?

<u>Part 2:</u> Plot in one figure, numerical solutions of upwind method 2 at t = 0, t = 1, t = 1.5, t = 3, and t = 6 to show the time evolution.

Does any characteristic at boundaries ever go into the computational domain?

<u>Remark:</u> When all characteristics at boundaries are going out of the computational domain, the artificial boundary conditions will not affect the interior of the domain.

Problem 2 (Computational)

Continue with (IVP-1) and the upwind method 2 in Problem 1.

We use the same $[L_1, L_2]$, the same BCs and N = 300 as in Problem 1.

Part 1: Use $r = \Delta t/\Delta x = 10/8$, which is above the CFL condition ($r \le 1$). Plot the numerical solution of upwind method 2 at t = 0.5. You will see huge oscillations.

Part 2: Use $r = \Delta t/\Delta x = 10/8.5$, which is above the CFL condition ($r \le 1$). Plot in one figure the numerical solution of upwind method 2 and the exact solution at t = 1.6. You will see a different effect of violating the CFL condition.

Problem 3 (Computational)

Consider the IVP of conservation law

$$\begin{cases} u_t + \left(\frac{1}{4}u^4\right)_x = 0, & t > 0 \\ u(x,0) = \sin(\pi x) \end{cases}$$
 (IVP-2)

Implement the upwind method 2 to solve (IVP-2). Note that for (IVP-2), we have

$$\alpha(u_{i}^{n}, u_{i+1}^{n}) = \frac{F(u_{i+1}^{n}) - F(u_{i}^{n})}{u_{i+1}^{n} - u_{i}^{n}} = \frac{\frac{1}{4} \left(u_{i+1}^{n}\right)^{4} - \frac{1}{4} \left(u_{i}^{n}\right)^{4}}{u_{i+1}^{n} - u_{i}^{n}}$$
$$= \frac{1}{4} \left[\left(u_{i+1}^{n}\right)^{3} + \left(u_{i+1}^{n}\right)^{2} \left(u_{i}^{n}\right) + \left(u_{i+1}^{n}\right) \left(u_{i}^{n}\right)^{2} + \left(u_{i}^{n}\right)^{3} \right]$$

We select $[L_1, L_2]$ with $L_1 = 0$ and $L_2 = 4$ as the computational domain.

Since (IVP-2) is periodic, we use periodic boundary conditions: $u_0^n = u_N^n$, $u_{N+1}^n = u_1^n$.

Use N = 400 and $r = \Delta t/\Delta x = 0.5$ in simulations.

Part 1: Plot in one figure, u(x, t) vs x at t = 0, 1, 3, 10, and 40.

Part 2: Plot in one figure, $\left(u(x,t)/\max_{x}u(x,t)\right)$ vs x at t=0,1,3,10, and 40. Do your results support the assertion that u(x,t) vs x has a similar shape for large t?

Problem 4 (Computational)

We use the method of characteristics to solve the 2D IVP below

$$\begin{cases} \frac{\partial u(x,y,t)}{\partial t} + \nabla \cdot (\vec{a}(x,y)u(x,y,t)) = 0\\ u(x,y,0) = u_0(x,y) \equiv \sin^2(x+y) \end{cases}$$
 (IVP-2D)

where

$$\vec{a}(x,y) = \begin{pmatrix} a_1(x,y) \\ a_2(x,y) \end{pmatrix} \equiv \begin{pmatrix} \sin(x)\sin(y) \\ 1 - \exp(\sin(x+y)) \end{pmatrix}$$

The whole problem is periodic in both x and y directions with period = 2π .

We first write out the divergence and write the PDE as

$$\frac{\partial u}{\partial t} + a_1(x, y) \frac{\partial u}{\partial x} + a_2(x, y) \frac{\partial u}{\partial y} = b(x, y)u$$

where

$$b(x,y) = -\frac{\partial a_1}{\partial x} - \frac{\partial a_2}{\partial y} = -\cos(x)\sin(y) + \exp(\sin(x+y))\cos(x+y)$$

Our goal is to calculate the solution of (IVP-2D) at any given point (ξ , η , T).

The method of characteristics consists of the two steps below.

• Tracing back the C-line from (ξ, η, T) to time 0

$$\frac{dX}{dt} = a_1(X, Y)$$

$$\frac{dY}{dt} = a_2(X, Y)$$

$$X(T) = \xi, \quad Y(T) = \eta$$
(FVP-C)

We use an ODE solve to solve (FVP-C) from t = T to t = 0.

AM213B Numerical Methods for the Solution of Differential Equations

With the solution of (FVP-C), we set $x_0 = X(0)$ and $y_0 = Y(0)$.

• Advancing from $(x_0, y_0, 0)$ to (ξ, η, T) .

$$\frac{dx}{dt} = a_1(x, y)
\frac{dy}{dt} = a_2(x, y)
\frac{dv}{dt} = b(x, y)v
x(0) = x_0, y(0) = y_0, v(0) = u_0(x_0, y_0)$$
(IVP-C)

We use an ODE solve to solve (IVP-C) from t = 0 to t = T.

The solution of the (IVP-2D) at (ξ, η, T) is given by $u(\xi, \eta, T) = v(T)$.

Write a code to calculate u(x, y, T) at any given point (x, y, T).

In your implementation, use RK4 with h = 0.01 (h = -0.01 in tracing back).

Test your code at (x, y, T) = (3.9, 2.3, 1.2). You should get $u(3.9, 2.3, 1.2) \approx 5.340824$

Part 1: Set $x_1 = 3.9$. Calculate and plot $u(x_1, y, T)$ as a function of y for T = 0.75, 1.0, and 1.25 in one figure. Use about 300 points for y in $[0, 2\pi]$.

Part 2: Set $x_1 = 2.5$. Calculate and plot $u(x_1, y, T)$ as a function of y for T = 0.75, 1.0, and 1.25 in one figure. Use about 300 points for y in $[0, 2\pi]$.

Problem 5 (Computational)

Continue with (IVP-2D) in problem 4.

For each set of $(x_1, y_1) = (3.9, 2.3)$, (2.7, 4.0), and (2.0, 3.0), calculate $u(x_1, y_1, t)$ as a function of t. Plot $u(x_1, y_1, t)$ vs t for the 3 sets of (x_1, y_1) in one figure.

Problem 6 (Computational)

Continue with (IVP-2D) in problem 4. Consider the numerical grid on (x, y):

$$\Delta x = \Delta y = \frac{2\pi}{N}$$
, $x_i = i \Delta x$, $0 \le i \le N$, $y_j = j \Delta x$, $0 \le j \le N$

Use N = 80 and calculate u(x, y) on the grid for T = 0.0, 0.5, 1.0, and 1.25.

Plot u(x, y) using contourf with colorbar (see sample code).

Plot 4 panels, one panel for each time level specified above.