Assignment 2 for MAT 215

Note:

- **Date of submission:** 17 December 2022 (up to 11:59 pm).
- Each question carries 12.5 marks. **Total marks: 50.** It will be finally converted to **25**.
- Don't answer other sets. Attempt the set that is instructed to do. Plagiarism and attempting other sets will lead you 0 mark.
- Please try to solve the problems by yourself.
- Please show the calculations in details for each question.
- You have to submit a scan copy of your hand written assignment.
- There should be a front page with all your details (ID, Full name etc.).
- Rename your file as: Sec_ID_Name before uploading to Google form.

SET: 1

1. Evaluate $\int_{0}^{\infty} te^{-3t} \sin 3t dt$. [Hint: Use the definition of Laplace transform]	[12.5]
2. Expand $f(z) = \frac{z}{(z-1)(2-z)}$; $ z-1 > 1$.	[12.5]
3. Evaluate the Laplace transform of $f(t) = \begin{cases} \sin t & ; 0 \le t < \pi \\ 0 & ; t \ge \pi \end{cases}$.	[12.5]
4. Given that $\int_{-\pi}^{\pi} \frac{2a}{(a+\cos\theta)^2} d\theta$; $a > 1$ where $a = A+2$ and A is the last digit of	[12.5]
your student ID.	
(i) Input a in the given integral (Example, suppose for student ID: 111223, last	
digit 3 is A. Therefore $a = 3 + 2 = 5$).	
(ii) Now solve the integral that is obtained in part (i) using Cauchy's residue	
theorem.	

Assignment 2 for MAT 215

Note:

- **Date of submission:** 17 December 2022 (up to 11:59 pm).
- Each question carries 12.5 marks. **Total marks: 50.** It will be finally converted to **25**.
- Don't answer other sets. Attempt the set that is instructed to do. Plagiarism and attempting other sets will lead you 0 mark.
- Please try to solve the problems by yourself.
- Please show the calculations in details for each question.
- You have to submit a scan copy of your hand written assignment.
- There should be a front page with all your details (ID, Full name etc.).
- Rename your file as: Sec_ID_Name before uploading to Google form.

SET: 2

1. Evaluate $\int_{0}^{\infty} te^{-2t} \cos 5t dt$. [Hint: Use the definition of Laplace transform]	[12.5]
2. Expand $f(z) = \frac{1}{(z-1)(z-2)}$; $0 < z-1 < 1$.	[12.5]
3. Evaluate the Laplace transform of $f(t) = \begin{cases} 0 & ; 0 \le t < \frac{\pi}{2} \\ \cos t & ; t \ge \frac{\pi}{2} \end{cases}$.	[12.5]
4. Given that $\int_{-\pi}^{\pi} \frac{2a}{(a+\cos\theta)^2} d\theta$; $a > 1$ where $a = A+2$ and A is the last digit of	[12.5]
your student ID.	
(i) Input a in the given integral (Example, suppose for student ID: 111223, last	
digit 3 is A. Therefore $a = 3 + 2 = 5$).	
(ii) Now solve the integral that is obtained in part (i) using Cauchy's residue	
theorem.	

Assignment 2 for MAT 215

Note:

- **Date of submission:** 17 December 2022 (up to 11:59 pm).
- Each question carries 12.5 marks. **Total marks: 50.** It will be finally converted to **25**.
- Don't answer other sets. Attempt the set that is instructed to do. Plagiarism and attempting other sets will lead you 0 mark.
- Please try to solve the problems by yourself.
- Please show the calculations in details for each question.
- You have to submit a scan copy of your hand written assignment.
- There should be a front page with all your details (ID, Full name etc.).
- Rename your file as: Sec_ID_Name before uploading to Google form.

SET: 3

1. Evaluate $\int_{0}^{\infty} te^{2t} \sin 6t dt$. [Hint: Use the definition of Laplace transform]	[12.5]
2. Expand $f(z) = \frac{z}{(z-1)(3-z)}$; $ z-1 > 2$.	[12.5]
3. Evaluate the Laplace transform of $f(t) = \begin{cases} 2t+1 & \text{; } 0 \le t < 1 \\ 0 & \text{; } t \ge 1 \end{cases}$	[12.5]
4. Given that $\int_{-\pi}^{\pi} \frac{2a}{(a+\cos\theta)^2} d\theta$; $a > 1$ where $a = A+2$ and A is the last digit of	[12.5]
your student ID.	
(i) Input a in the given integral (Example, suppose for student ID: 111223, last	
digit 3 is A. Therefore $a = 3 + 2 = 5$).	
(ii) Now solve the integral that is obtained in part (i) using Cauchy's residue	
theorem.	