Student: Arfaz Hossain Instructor: Muhammad Awais Assignment: Practice Questions for Date: 02/28/22 Course: Math 101 A04 Spring 2022 Sections 6.3 & 7.2 [Not for

Find the length of the curve
$$x = \int_{0}^{y} \sqrt{2 \sec^4 t - 1} dt$$
, on $-\frac{\pi}{6} \le y \le \frac{\pi}{6}$.

The length, L, of a curve on
$$a \le y \le b$$
 defined by $x = g(y)$ is $L = \int_{a}^{b} \sqrt{\left[1 + \left(\frac{dx}{dy}\right)^{2}\right]} dy$.

To obtain
$$\frac{dx}{dy}$$
 for $x = \int_{0}^{y} \sqrt{2 \sec^4 t - 1} dt$, apply the Fundamental Theorem of Calculus Part 1.

The Fundamental Theorem states that if
$$F(x) = \int_{a}^{x} f(t)dt$$
, then $F'(x) = \frac{d}{dx} \int_{a}^{x} f(t)dt = f(x)$.

Applying the the Fundamental Theorem to
$$x = \int_0^y \sqrt{2 \sec^4 t - 1} \, dt$$
, $F'(y) = \frac{dx}{dy} = \frac{d}{dy} \int_0^y \sqrt{2 \sec^4 t} \, dt = \sqrt{2 \sec^4 y - 1}$.

Substituting
$$\frac{dx}{dy} = \sqrt{2 \sec^4 y - 1}$$
 into $L = \int_a^b \sqrt{\left[1 + \left(\frac{dx}{dy}\right)^2\right]} dy$, $L = \sqrt{2} \int_{-\pi/6}^{\pi/6} \left(\sec^2 y\right) dy$.

Thus, the curve length is $2\sqrt{\frac{2}{3}}$.