

Gestion de configuration

Ce document et les informations qu'il contient sont protégés par les lois et traités sur la propriété intellectuelle et ne doivent en aucun cas être copiés, affichés ou diffusés, par quelque moyen technique que ce soit sans l'autorisation préalable et écrite de FMS.

Ce document n'est pas contractuel, il doit être utilisé comme aide support et non comme référence technique.

- Partie 1 : Les définitions
- > Partie 2 : Les niveaux de la gestion de configuration
- Partie 3 : Les éléments de la gestion de configuration
- Partie 4 : Product structure
- Partie 5 : Codification des éléments

Partie 1 / Les définitions

Configuration: Etat constitutif d'une fourniture, à un instant, décrit dans une documentation qui lui est attachée

Gestion de Configuration: Suivi et contrôle de la configuration de ses produits, de leurs conceptions à leurs retraits de service

La Gestion de Configuration garantit la conformité entre la commande (émise par le client) et la réalisation durant toutes les phases du processus (spécifier, définir, préparer, assembler, attester, livrer)

La Gestion de Configuration est encadrée par une norme ISO, selon le processus suivant :

- Identification de la configuration du produit
- Maitrise de cette configuration
- Enregistrement et traçabilité de cette configuration
- Validation au travers d'audits et de revues

Identifications:

- L'entreprise sélectionne les éléments soumis à la gestion de configuration, et les identifie dans une arborescence produit
- Chaque produit doit comporter un marquage (tampon, étiquette...) pour en assurer la traçabilité

Maitrise de la Configuration :

- Cette étape consiste à examiner et approuver une configuration dite de référence
- Tout écart par rapport à cette configuration doit être tracé
- Toute évolution de cette configuration doit être justifiée et validée
- Les écarts et évolutions débouchent sur une configuration « applicable » puis « appliquée » qui diffère de la configuration de « référence »

Enregistrement de l'état de configuration :

• Cette étape consiste à suivre les configurations « applicables » et « appliquées » tout au long de la vie du produit

Validation et Amélioration Continue:

- Les audits de la Configuration sont nécessaires pour déterminer si un produit est conforme à ses exigences
 - o Audit de la Configuration Fonctionnelle : Vérification des performances
 - Audit de la Configuration Physique : Vérification des caractéristiques physiques

PARTIE 2 Les niveaux de la gestion de configuration

Résumé:

WB = A300/310

SA = A318/319/320/321

LR = A330/340

XWB = A350

DD = A380

A400M (Avion militaire)

Pour chaque programme, il existe un ou plusieurs standard. Chaque standard correspond à une architecture structure/système de base différente

Ex : pour le programme LR A330/A340 Il existe les programmes suivants :

511 → A340-300	STA → A340-600
ST2 → A340-200	STB → A340-500
ST4 → A340-300 évolution de ST1	STE → A340-600 évoluti

ST4 → A340-300 évolution de ST1 STE → A340-600 évolution du STA ST5 → A340-200 évolution de ST2 STF → A340-500 évolution du STB

ST6 → A330-300

 $ST7 \rightarrow A330-200$ $STG \rightarrow A330-800$ NEO évolution du ST7

ST8 \rightarrow A330-300 évolution de ST6 STH \rightarrow A330-900 NEO évolution du ST8 ST9 \rightarrow A330-200F conversion du ST7 STL \rightarrow A330-200 BXL conversion du ST9

en cargo (freighter)

Quelques exemples:

AFR/AIF = Air France QTR = Qatar Airways

ETD EY = Etihad (Emirats arabes unis)

TAM = Latam Brasil

SIA = Singapore Airlines

QFA = Qantas Airways (Australie)

ANZ = Air New Zealand

N° de MSN = N° de l'avion

C'est l'équivalent d'une plaque d'immatriculation pour les voitures

CA / EC (Constituent Assembly / Ensemble Constitutif)

- Un CA est un élément physique associé à une unité de production
- Un avion est une somme de CA fournis par les RSP

■ Un Avion est lui-même un CA de responsabilité FAL

ATA (Air Transport Association)

Les métiers « ATA » sont codifiés dans un référentiel international de l'aéronautique :

Le BAABI Basic Approved ATA Breakdown Index

	GENERALITES AVION
00	Génératilés
01	Introduction / documents de certification
05	Limites de potentiel/inspections périodiques
06	Dimensions/surfaces
07	Levage et mise en vérins
08	Centrage/masse
09	Remorquage et circulation au sol
10	Stationnement et amarrage
11	Plaquettes et inscriptions
12	Entretien courant
14	Materiel
18	Analyse des vibrations et du bruit (hélicoptères)
89	Installation d'essais en vol

	STRUCTURE
50	Compartiment cargo et accessoires
51	Pratiques et structure standart générales
52	Portes
53	Fuselage
54	Nacelles et pylônes
55	Empennage
56	Fenêtres
57	Ailes

	MOTORISATION
70	Pratigues standard - moteur
71	Groupe propulseur
72	Moteur
73	Carburant moteur et régulation
74	Allumage
75	Air
76	Commandes moteur
77	Indications moteur
78	Echappement et inverseur de poussée
79	Lubrification
80	Démarrage
81	Turbines (moteurs à pistons)
82	Injection d'eau
83	Boite à accessoires

	AIRFRAME SYSTEMS
20	Pratiques standard - cellule
21	Air conditionné et pressurisation
22	Pilote automatique
23	Communications
24	Génération électrique
25	Éguipements / Ameublement
26	Protection incendie
27	Commandes de vol
28	Carburant
29	Génération hydrauliques
30	Protection givre et pluie
31	Système d'indication / d'enregistrement
32	Trains d'atterrissage
33	Feux de signalisation
34	Navigation
35	Oxygène
36	Pneumatique
37	Vide
38	Eau/déchets
42	Avionique Modulaire Intégrée
43	Système de secours solaire
44	Système de la cabine
45	Système de diagnostique et de maintenance
46	Système d'information
47	Système de génération d'Azote
48	Ravitaillement en vol
49	Puissance auxiliaire
92	Installation électrique et électronique courante

Programme

Standard

Version

Rang/MSN

CA/EC

ATA

CI/RF

CI / RF (Constituent Item / Repère Fonctionnel)

- Un CI est une fonction invariante à remplir
- Concrètement cela correspond à un redécoupage d'un CA

Exemple: Monter un pédalier sur le cadre d'un vélo

LO / ST (Link Object / Solution Technique)

Le LO est l'élément porteur de la configuration, il donne l'effectivité de la DS

Exemple numérotation:

54S123450 = CI

54S123450-050 = 50eme LO du CI

Ex : Monter un pédalier sur le cadre d'un vélo

DS (Design Solution)

Une DS permet de répondre à un besoin spécifique pour un CI, c'est une opération d'assemblage unique.

Plusieurs DS peuvent exister sur un seul CI.

Pour un MSN, une seule DS est associé par CI

Parts

STD/FLX/BHF...

Assemblages = Ensemble de plusieurs parts, pièces équipées et autres.

Généralement les ASSY (Assemblages) sont notés ainsi :

000 / 002 Coté Gauche (car coté pilote)

001 / 003 Coté Droit et souvent symétrique du coté Gauche

Ex: 001 = symétrique du 000

Parts = Pièces simple, élémentaires

Généralement les Parts (Pièces) sont notés ainsi :

200 / 202 Coté Gauche (car coté pilote)

201 / 203 Coté Droit et souvent symétrique du coté Gauche

Ex: 201 = symétrique du 200

Exemple d'architecture :

MC = XWB-PYLON

Section = XWB-S41L-PYLON

ATA Section = XWB-S41L-ATA54-PYLON

ATA Zone = XWB-S41L-54-51-ATA54-PYLON

ADAP-CI = W54C32000000

ADAP-LO = W54C32000014

ADAP-DS = V54515900000

Dev Assembly = V54515540000

Dev Part 1 = V54515321200

Dev Part 2 = V54515987202

STD = V54515900000-STD01

Level

PARTIE 3 Les éléments de la gestion de configuration

Partie 3 / Les éléments de la gestion de configuration

TRS (Technical Repercussion Sheet)

- Une TRS contient l'ensemble des éléments nécessaires à la réalisation d'un travail (évolution, options, demandes compagnies...)
- Depuis que les TRS sont instruites dans ICC, leur numérotation est le même que la MP
- Une TRS est constituée de 7 Sheets (chapitres)

Sheet 0: Historique

Sheet 1: Documents d'origine, Application souhaitée, Classification, Implantation, SB, Description Générale...

Sheet 2: Règles impactées, Impacts sur Equipements...

Sheet 3: Sketches (Images des modifications)

Sheet 4: Description Détaillée

Sheet 5: Impacts sur les circuits, Cascade Components, Product Structure...

Sheet 6: Implication du design, Responsables d'activités

MP (Modification Proposal)

- Une MP est une numérotation correspondant à un travail (Amélioration, Option, Requis Safety...)
 à intégrer sur tous les MSN concernés par cette MP
- La numérotation d'un MP est constitué d'une lettre et 5 chiffres (ex: S35428 : STRUCTURE-PYLON for A320NEO...)
- Il y a plusieurs type de MP (Version, Standard)
 - > MP Version : Validé pour tous les avions d'une même version
 - > MP Standard : validé pour toutes les nouvelles versions à partir d'une version donnée pour chaque standard

Partie 3 / Les éléments de la gestion de configuration

MOD (Modification)

- Une MOD est une numérotation qui permet d'assigner une effectivité à une MP
- Elle est associée à des avions et à une ou plusieurs MP
- C'est une localisation qui permet de lier les MP à un avion
 - Ex: 103105, cette MOD est associée à la MP S35428 et aux MSN 1234 et suivant pour les ST4 MSN 950 et suivant pour les ST5 et 951 et suivant pour les ST6

CIN (Configuration Item Number)

Un CIN est l'ensemble MOD/MP

CIN = MP + MOD

- Une MOD peut être associée à plusieurs MP et une MP peut etre associée à plusieurs MOD
 - Ex: 103105/ S35428

CIN Stack (Empilage de CIN)

C'est un empilage de CIN associé à un avion donné sur un CI donné

• Cet empilage permet de retrouver toutes les MP à appliquer sur le CI et sur cet avion

■ Le but est d'associer cet empilage à un LO (existant ou nouveau)

92Z521234								
100530	S20123	201158	S36987	20002	S20010			
30026	S10721	32145	S58321	39155	S28542			
52589	S69875	68664	S40064	12591	S75391			

∑ (MP + MOD)

Partie 4 / Product structure

Partie 4 / Product structure

La partie Etudes et partie production correspondent C'est juste que pour une même référence par exemple pour une DS Celle-ci aura une lettre pour la partie SAM et un chiffre pour la partie MRG

SAM/DEFN MRG/DEVP Programme Programme Standard Standard Program A350UPLV Version Version Major Component Rang/MSN Rang/MSN ATA-Section CA/EC CA/EC Upper **Upper** A350DEFN A350DEVP Level ADF-CI ADAP-CI Level ATA **ATA** ADAP-L CI/RF CI/RF Configuration ADAP-ASS ADF-PART ADF-ASS Configuration LO/ST LO/ST Level Level DS V54**\$**16151000 ◀ V54516151000 DS Assemblages Assemblages Lower Lower Level Level **Parts Parts**

Partie 5 / Codification des éléments

Le Part Number est une codification désignant le plan d'une pièce ou d'un ensemble, un TRD ou encore un EC.

- Les caractères 1 à 14, comprennent le code d'identification
- Les caractères 16 à 20 sont utilisés pour le code d'extension

Partie 5 / Codification des éléments

Le Part Number est une codification désignant le plan d'une pièce ou d'un ensemble, un TRD ou encore un EC.

- Les caractères 1 à 14, comprennent le code d'identification
- Les caractères 16 à 20 sont utilisés pour le code d'extension

STan**D**ard: M5398765400000-STD03 **ENV**ironment: M5712345600200-ENV03 **FLeX**ible: M2112345600000-FLX07

Interface Node for Bracket, Feed through or Hole: V92D1100102000-BFH01

CUBe for Interface Point Visualization: V0000000020000-CUB00

Metallic Bonding Network Node V5315898800000-MBN

Electrical Structural Network **BoND**ing Node: V5311010100000-BND Electrical Structural Network **G**rou**ND**ing Node: V5323345600000-GND

Composite Engineering Designed plies: M5711032101000-CD000

Composite Elementary Manuf. Designed Ply: M5711032101000-CP000

Composite rough SoLid model: M5711032120000-CSL00

Bundle Segment: V92970001000A1-BS001

Mounted part for electric Installation: M87810011000C1-MIN01

Full3D Annotation ConText: V92828150000FD-ACT01

Full3D Annotation Design Solution: V92828150000FD-ADS01

Full3D Annotations Harness Definition: V92828150000FD-AHD01

Full3D Frozen ConText: V92828150000FD-FCT01

Full3D Frozen Harness Definition: V92828150000FD-FHD01

Créé par Cazaux,N Le 30/04/2021

Facylities Multi Services (FMS) Entreprise Adaptée & Solidaire - Agrément N° EA 17-72-040-001 ZA ATLANTISUD - 478, rue du Pays de Gosse - 40230 SAINT GEOURS DE MAREMNE.