Taraxa PBFT

Version 1.0

February 01, 2025

Contents

1	Con	sensus Protocol	1
	1.1	Timing Parameters	1
	1.2	Protocol Instructions	2
	1.3	Round (p, r) parameters values	2
	1.4	Round (p, r) Voting Instructions	2

1 Consensus Protocol

Taraxa consensus is based on Algorand pBFT algorithm. User u starts new period p the moment he receives 2t+1 cert-votes for some value v and valid block B_v , he starts new round r the moment he receives 2t+1 next-votes for some value v or \bot for round r - 1

1.1 Timing Parameters

- $\lambda=2000$ ms: Intuitively corresponds to the time it takes for a small message (e.g., a vote) to propagate in good network conditions.
- $\lambda_1^{\min} = 500$ ms: Minimum time the dynamic algorithm allows for a small message to propagate under ideal conditions for round 1, reverting to λ in future rounds if insufficient.
- $\lambda_1^{\rm max} = 1500$ ms: Maximum time the dynamic algorithm allows for a small message to propagate under ideal conditions for round 1, reverting to λ in future rounds if insufficient.
- $\Lambda = 17000$ ms: Time it takes for a big message (e.g., a block) to propagate in reasonable network conditions.
- $\Lambda_1 = 4000$ ms: Time it takes for a big message to propagate in good conditions for round 1, reverting to Λ in future rounds if insufficient.
- λ_r : selected λ value for current round
- Λ_r : selected Λ value for current round

1.2 Protocol Instructions

User u starts period p round 0 when he first sees 2t + 1 cert-votes for some value v and valid block B_v . If u sees 2t + 1 next-votes for some value v or \bot , then u starts new round r' + 1.

Whenever u starts a new period (or a new round), he resets timer_u, used to decide when to vote for each step.

1.3 Round (p, r) parameters values

When user u starts round (p, r), they reset their timer_u to 0 and other constants as follows:

- If r = 1:
 - $\lambda_r \in (\lambda_1^{\min}, \lambda_1^{\max})$
 - $-\Lambda_r = \Lambda_1$
 - $-st_u^r = \bot$
- Otherwise if $r \ge 2$:
 - $-\lambda_r = \lambda$
 - $-\Lambda_r = \Lambda$
 - $-st_u^r = v$

1.4 Round (p, r) Voting Instructions

The voting instructions are as follows:

Step 1: **Proposal** - When $timer_u = 0$:

- If r=1 or r>1 and u has received 2t+1 next-votes for \perp from round (p,r-1), then u assembles a new block proposal v_u and propagates v_u together with his round r credential.
- Otherwise, if r > 1 and u has received 2t+1 next-votes for some value $v \neq \bot$ from (p, r-1), then u proposes v, which he propagates together with his round r credential.

Step 2: **Filtering** - When timer_u = $2\lambda_r$:

- If r=1 or if r>1 and u has received received 2t+1 next-votes for \bot , then u selects the proposal with the minimum credential and soft-votes for it.
- Otherwise, if r>1 and u has received 2t+1 next-votes for some value $\mathbf{v}\neq \bot$, then u soft-votes for \mathbf{v} .

Step 3: Certifying - While $timer_u \in (2\lambda_r, \max(4\lambda_r, \Lambda_r))$:

– If u receives 2t+1 soft-votes for some value $v \neq \bot$ and a valid block B_v , then u cert-votes v.

Step s=2n, where $n\in(2,\infty)$: First Finishing Step - When $timer_u=\max(4\lambda_r,\Lambda_r)+(s-4)\lambda_r$:

- If u has certified some value v for round r, he next-votes v.
- Else if $(r \ge 2$ and i has seen 2t+1 next-votes for \bot for round r-1), he next-votes \bot .
- Else he next-votes his starting value st_u^r .

Step s=2n+1, where $n\in(2,\infty)$: Second Finishing Step - When $\limsup_u=\max(4\lambda_r,\Lambda_r)+(s-5)\lambda_r+100$ ms:

- If u sees 2t+1 soft-votes for some value $v \neq \bot$ for round r, then u next-votes v.
- If $(r \ge 2 \text{ and } i \text{ sees } 2t+1 \text{ next-votes for } \bot \text{ for round } r-1 \text{ and } i \text{ has not certified in round } r)$, then u next-votes \bot .

 λ_r is exponentially increased in second finish step after reaching step 15, max value is 60000 ms